MAML is a Noisy Contrastive Learner in Classification

Chia-Hsiang Kao

Wei-Chen Chiu

National Yang Ming Chiao Tung University

Pin-Yu Chen

MIT-IBM Watson AI Lab

Take Home Message

Under a mild assumption, we show that **MAML** (model-agnostic meta-learning) is a noisy supervised contrastive learning algorithm in a few-shot classification paradigm.

Why is MAML effective in learning general-purpose representations?

Because MAML implicitly exploits contrastive learning.

What is the role of support and query data in MAML?

- In first-order MAML, the features of support data act as the prototypes, guiding the update of the features of query data.

What is the role of inner loops and outer loops in MAML?

- <u>In the inner loop, the features of support data are memorized by the linear classifier</u>. Therefore, in the outer loop, the SoftMax output of the query data contains the inner products between the support features and the query feature.

A Motivating Example

Model structure

Condition

Linear classifier is zeroed (w = 0) at the start of an outer loop

Algorithm

MAML, with

- One inner loop update.
- Inner loop loss function: mean square error.
- Outer loop loss function: mean square error.

A few-shot learning setting

- 5-way: Each task contains 5 classes of images.
- 1-shot: Only one image per class in the support data.

Inner Loop (1 step)

Negative sample

- q_1 and s_1 have <u>different</u> labels
- Their <u>inner product</u> of their features should <u>be zero</u>.

Output

Model:

Image

Setting:

Negative sample

- q_1 and s_1 have different labels
- Their inner product of their features should be zero.

Positive sample

- q_1 and s_3 have same labels,
 - Their inner product of their features should be one.

Insights from the motivating example

Under a mild assumption, we show that **MAML** (model-agnostic meta-learning) is a noisy supervised contrastive learning algorithm in a few-shot classification paradigm.

Why is MAML effective in learning general-purpose representations?

Because MAML implicitly exploits contrastive learning.

What is the role of support and query data in MAML?

- In first-order MAML, the features of support data act as the prototypes, guiding the update of the features of query data.

What is the role of inner loops and outer loops in MAML?

- <u>In the inner loop, the features of support data are memorized by the linear classifier</u>. Therefore, in the outer loop, the SoftMax output of the query data contains the inner products between the support features and the query feature.

Difference between FOMAML and SOMAML

We also explain the difference between first-order MAML and second-order MAML.

$$\begin{split} L_{FOMAML} &= \sum_{k=\{1,2,4,5\}} \eta \phi(q_1)^{\mathsf{T}} \phi(s_k) \ + \left(1 - \eta \phi(q_1)^{\mathsf{T}} \phi(s_3)\right)^2 \\ \frac{\partial L_{FOMAML}}{\partial \varphi} &= \frac{\partial L_{FOMAML}}{\partial \phi(q_1)} \frac{\partial \phi(q_1)}{\partial \varphi} \end{split}$$
 Gradient stopping Gradient stopping
$$\frac{\partial L_{FOMAML}}{\partial \varphi} = \sum_{k=\{1,2,4,5\}} \eta \phi(s_k) \ - 2 \Big(1 - \eta \phi(q_1)^{\mathsf{T}} \phi(s_3)\Big) \phi(s_3) \end{split}$$

In FOMAML, the encoder is updated s.t.

- query feature is moving towards the same-class support features;
- query feature is moving further to the different-class support features."

$$L_{SOMAML} = \sum_{k=\{1,2,4,5\}} \eta \phi(q_1)^{\mathsf{T}} \phi(s_k) + \left(1 - \eta \phi(q_1)^{\mathsf{T}} \phi(s_3)\right)^2$$

$$\frac{\partial L_{SOMAML}}{\partial \varphi} = \frac{\partial L_{FOMAML}}{\partial \phi(q_1)} \frac{\partial \phi(q_1)}{\partial \varphi} + \sum_{k=1}^{5} \frac{\partial L_{FOMAML}}{\partial \phi(s_k)} \frac{\partial \phi(s_k)}{\partial \varphi}$$

In SOMAML, the encoder is updated s.t.

- query feature and its same-class support features are closer;
- query feature and its different-class support features are further

Difference between FOMAML and SOMAML

We illustrate the difference between first-order MAML and second-order MAML.

Difference between FOMAML and SOMAML

We illustrate the difference between first-order MAML and second-order MAML.

We show why SOMAML converges faster than FOMAML

Gradient from positive sample

Gradient from negative sample

Rethinking vanilla MAML

• It does not zero its linear classifier at the start of each outer loop.

Results Rethinking vanilla MAML

- It does not zero its linear classifier at the start of each outer loop.
 - Thus, the estimation of supervised contrastiveness in MAML is affected.

Rethinking vanilla MAML

- It does not zero its linear classifier at the start of each outer loop.
 - Thus, the estimation of supervised contrastiveness in MAML is affected.
 - Down-scaling the weight of the classifier also helps mitigate the interferences.

Rethinking vanilla MAML

• Increasing the number of inner loop updates (N_{step}) yield better results, because larger N_{step} helps mitigate the interference.

Results Rethinking vanilla MAML

- Increasing the number of inner loop updates (N_{step}) yield better results, because larger N_{step} helps mitigate the interference.
 - Thus, with the zeroing trick, increasing N_{step} has no effect on the performance.

Take Home Message

Under a mild assumption, we show that **MAML** (model-agnostic meta-learning) is a noisy supervised contrastive learning algorithm in a few-shot classification paradigm.

Why is MAML effective in learning general-purpose representations?

Because MAML implicitly exploits contrastive learning.

What is the role of support and query data in MAML?

- In first-order MAML, the features of support data act as the prototypes, guiding the update of the features of query data.

What is the role of inner loops and outer loops in MAML?

- <u>In the inner loop, the features of support data are memorized by the linear classifier</u>. Therefore, in the outer loop, the SoftMax output of the query data contains the inner products between the support features and the query feature.