

CSL 252- Design and Analysis of Algorithms Indian Institute of Technology Bhilai Tutorial Sheet 2

Solve the following recurrences.

1.
$$T(1) = 1$$
, and for all $n \ge 2$, $T(n) = 3T(n-1) + 2$.

2.
$$T(1) = 8$$
, and for all $n \ge 2$, $T(n) = 3T(n-1) - 15$

3.
$$T(1) = 2$$
, and for all $n \ge 2$, $T(n) = T(n-1) + n - 1$

4.
$$T(1) = 3$$
, and for all $n \ge 2$, $T(n) = T(n-1) + 2n - 3$

5.
$$T(1) = 1$$
, and for all $n \ge 2$, $T(n) = 2T(n-1) + n - 1$

6.
$$T(1) = 1$$
, and for all $n \ge 2$ a power of 2, $T(n) = 2T(\frac{n}{2}) + 6n - 1$

7.
$$T(1)=4$$
, and for all $n\geq 2$ a power of 2, $T(n)=2T(\frac{n}{2})+3n+2$

8.
$$T(1) = 1$$
, and for all $n \ge 2$ a power of 6, $T(n) = 6T(\frac{n}{6}) + 2n + 3$

9.
$$T(1) = 3$$
, and for all $n \ge 2$ a power of 6, $T(n) = 2T(\frac{n}{2}) + 3n - 1$

10.
$$T(1)=3$$
, and for all $n\geq 2$ a power of 3 , $T(n)=4T(\frac{n}{3})+2n-1$

11.
$$T(1)=2$$
, and for all $n\geq 2$ a power of 3 , $T(n)=4T(\frac{n}{3})+3n-5$

12.
$$T(1) = 1$$
, and for all $n \ge 2$ a power of 2, $T(n) = 3T(\frac{n}{2}) + n^2 - n$.

13.
$$T(1) = 4$$
, and for all $n \ge 2$ a power of 3, $T(n) = 4T(\frac{n}{3}) + n^2 - 7n + 5$.

14.
$$T(1) = 1$$
, and for all $n \ge 2$ a power of 3, $T(n) = 4T(\frac{n}{3}) + n^2$.

15.
$$T(1) = 1$$
, and for all $n \ge 4$ a power of 4, $T(n) = T(\frac{n}{4}) + \sqrt{n} + 1$.

16.
$$T(1) = 1, T(2) = 6$$
, and for all $n \ge 3$,

$$T(n) = T(n-2) + 3n + 4.$$

17.
$$T(0) = c, T(1) = d$$
, and for all $n > 1$,

$$T(n) = T(n-2) + n.$$

18.
$$T(1) = 1, T(2) = 6, T(3) = 13$$
, and for all $n \ge 4$,

$$T(n) = T(n-3) + 5n - 9.$$

19.
$$T(1) = 1$$
, and for all $n \ge 2$,

$$T(n) = \sum_{i=1}^{n-1} T(i) + 1$$

20. T(1) = 1, and for all $n \ge 2$,

$$T(n) = \sum_{i=1}^{n-1} T(i) + 7$$

21. T(1) = 1, and for all $n \ge 2$,

$$T(n) = \sum_{i=1}^{n-1} T(i) + n^2$$

22. T(1) = 1, and for all $n \ge 2$,

$$T(n) = 2\sum_{i=1}^{n-1} T(i) + 1$$

23. T(1) = 1, and for all $n \ge 2$,

$$T(n) = \sum_{i=1}^{n-1} T(n-i) + 1$$

- 24. Show that the solution T(0)=1, T(1)=2 and T(n)=5T(n-1)-6T(n-2) for $n\geq 2$ is $\Theta(2^n)$
- 25. Show that the solution T(n) = T(n-1) + n for $n \ge 2$ is $O(n^2)$
- 26. Show that the solution $T(n) = \sqrt{n}T(\sqrt{n}) + n$ for $n \ge 1$ and T(1) = 1 is $\Theta(n \log \log n)$
- 27. Show that the solution T(n+1) = T(n) + 2n for $n \ge 1$ and T(1) = 10 is $O(n^2)$
- 28. Show that the solution of the recurrence is $O(n \log n)$ T(0) = 0, and for all $n \ge 2$,

$$T(n) = \frac{2}{n} \sum_{i=1}^{n-1} T(i) + n - 1$$

- 29. Solve nT(n) = n 2T(n-1) + 2 for for n > 1 with T(1) = 1
- 30. Show that the solution of the recurrence is $\Theta(n^2)$ T(1) = c, and for all $n \ge 2$,

$$T(n) = 4T\left(\frac{n}{2}\right) + dn$$