Transport Optimal pour l'adaptation de Domaines à travers des mélanges Gaussiens

Eduardo MONTESUMA Fred NGOLÈ Antoine SOULOUMIAC

Université Paris-Saclay, CEA, List, F-91120 Palaiseau France

Sommaire

Introduction

Contributions Méthodologiques

Expérimentations Numériques

Conclusion

Adaptation de domaines

Données étiquetées:
$$\mathbf{x}_i^{(P)} \sim P$$
 et $y_i^{(P)} = h_0(\mathbf{x}_i^{(P)})$

Minimisation du risque empirique,

$$h^{\star} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(h(\mathbf{x}_{i}^{(P)}), y_{i}^{(P)})$$

 h^{\star} généralise pour des échantillons $\mathbf{x} \sim P$

Défi

Comment apprendre un classifieur sur Q sans ses étiquettes?

^{*} Montesuma, Mboula, Souloumiac, Recent Advances on Optimal Transport for machine learning. arXiv:2306.16156, 2023

Transport optimal Empirique

$$\gamma^* = \operatorname*{argmin}_{\gamma \in \Gamma(P,Q)} \sum_{i=1}^n \sum_{j=1}^m \gamma_{ij} C_{ij}$$

$$\mathcal{W}_2(P,Q)^2 = \operatorname*{min}_{\gamma \in \Gamma(P,Q)} \sum_{i=1}^n \sum_{j=1}^m \gamma_{ij} C_{ij}$$

$$C_{ij} = \|\mathbf{x}_i^{(P)} - \mathbf{x}_i^{(Q)}\|_2^2$$

Dans le cas discret, il n'est pas evident comment avoir un mapping de Monge. On a, néanmoins, une notion de mapping définit à travers de γ :

$$T_{\gamma}(\mathbf{x}_{i}^{(P)}) = \underset{\mathbf{x} \in \mathbb{R}^{d}}{\operatorname{argmin}} \sum_{j=1}^{m} \gamma_{ij} c(\mathbf{x}, \mathbf{x}_{j}^{(Q)})$$

[†] Pevré, Cuturi, Computational Optimal Transport: with applications to data science. Foundations and Trends in Machine Learning

GMM-OTDA

^{*} Montesuma, Mboula, Souloumiac, Recent Advances on Optimal Transport for machine learning. arXiv:2306.16156, 2023

Transport optimal Gaussien

$$P = \mathcal{N}(\mu^{(P)}, \Sigma^{(P)}) \ \ \text{et} \ \ Q = \mathcal{N}(\mu^{(Q)}, \Sigma^{(Q)})$$
 Alors,

$$T(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$$
 (mapping affine)

$$\mathbf{A} = (\Sigma^{(P)})^{-1/2} ((\Sigma^{(P)})^{1/2} \Sigma^{(Q)} (\Sigma^{(P)})^{1/2})^{1/2} (\Sigma^{(P)})^{-1/2}$$

$$\mathbf{b} = \mu^{(Q)} - \mathbf{A} \mu^{(P)}$$

Distance de Wasserstein

$$\mathcal{W}_2(P,Q)^2 = \|\mu^{(P)} - \mu^{(Q)}\|_2^2 + \mathcal{B}(\Sigma^{(P)}, \Sigma^{(Q)})^2$$

où $\mathcal{B}(\Sigma^{(P)}, \Sigma^{(Q)})$ est la distance de Bures,

$$\sqrt{\text{Tr}\left(\Sigma^{(P)} + \Sigma^{(Q)} - 2((\Sigma^{(P)})^{1/2}\Sigma^{(Q)}(\Sigma^{(P)})^{1/2})^{1/2}\right)}$$

Avantage:

 $(\mu^{(P)}, \mu^{(Q)}, \Sigma^{(P)}, \Sigma^{(Q)})$ peuvent être estimées à partir de $\{\mathbf{x}_i^{(P)}\}_{i=1}^n$ et $\{\mathbf{x}_i^{(Q)}\}_{i=1}^m$ ces estimations définissent T et W_2 à partir des échantillons de P et Q

- † Peyré, Cuturi, Computational Optimal Transport: with applications to data science. Foundations and Trends in Machine Learning
- * Montesuma, Mboula, Souloumiac, Recent Advances on Optimal Transport for machine learning, arXiv:2306.16156, 2023

Transport optimal entre mélanges Gaussiens

Un mélange Gaussien est une mésure sous la forme,

$$P = \sum_{k_1=1}^{K} \pi_{k_1}^{(P)} P_{k_1}$$
 $P_{k_1} = \mathcal{N}(\mu_{k_1}^{(P)}, \Sigma_{k_1}^{(P)})$

Le problème GMM-OT est définit par,

$$\gamma^{\star} = \operatorname*{argmin}_{\gamma \in \Gamma(P,Q) \cap \mathrm{GMM}_{2d}(+\infty)} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} c(\mathbf{x}_1, \mathbf{x}_2) d\gamma(\mathbf{x}_1, \mathbf{x}_2)$$

Problème équivalent discret,

$$\omega^* = \operatorname*{argmin}_{\omega \in \Gamma(\pi^{(P)}, \pi^{(Q)})} \sum_{k_1 = 1}^{K_P} \sum_{k_2 = 1}^{K_Q} \omega_{k_1, k_2} \mathcal{W}_2(P_{k_1}, Q_{k_2})^2$$

 γ^* et ω^* sont liées:

$$\gamma(\mathbf{x}_1,\mathbf{x}_2) = \sum_{k_1=1}^{K_P} \sum_{k_2=1}^{K_Q} \omega_{ij} \phi(\mathbf{x}_1 | \mu_{k_1}^{(P)}, \Sigma_{k_1}^{(P)}) \delta(\mathbf{x}_2 - T_{k_1,k_2}(\mathbf{x}_1))$$

Remarque 1

 γ^{\star} est un plan de transport entre échantillons ω^{\star} est un plan de transport entre composantes

Remarque 2

GMM-OT correspond à un programme linéaire de $K_P\times K_Q$ variables.

^{*} Delon, Desolneux, A wasserstein-type distance in the space of gaussian mixture models. SIAM journal of Imaging Sciences, 2020

Mélanges Gaussiens Étiquettées

Sur un jeu de données labelisé $\{(\mathbf{x}_i^{(P)},y_i^{(P)})\}_{i=1}^n$, on peut définir des étiquettes pour les composantes d'un GMM par la loi totale des probabilités,

$$P(y|k) = \sum_{i=1}^{n} P_{\theta}(\mathbf{x}_{i}^{(P)}|k) P(y|\mathbf{x}_{i}^{(P)})$$

$$= \sum_{i=1}^{n} \left(\frac{p_{k} P_{k}(\mathbf{x}_{i}^{(P)})}{\sum_{k'} p_{k'} P_{k'}(\mathbf{x}_{i}^{(P)})}\right) P(y|\mathbf{x}_{i}^{(P)})$$

Basée sur P(y|k), on peut construire un vécteur

$$\mathbf{y}_k^{(P)} = (P(1|k), \cdots, P(n_c|k)) \in \Delta_{n_c}$$

La GMM $\{(\mu_k^{(P)}, \Sigma_k^{(P)})\}_{k=1}^K$ muni des $\{\tilde{\mathbf{y}}_k^{(P)}\}_{k=1}^K$ nous permet d'avoir un classifieur avec **Maximum a Posteriori** (MAP): $\hat{h}_{MAP}(\mathbf{x}) = \underset{j=1,\cdots,n_c}{\operatorname{argmin}} \sum_{k=1}^K P_{\theta}(\mathbf{x}|k) P_{\theta}(j|k)$.

Transport optimal pour l'adaptation de domaines

Commissariat à l'énergie atomique et aux énergies alternatives

Propagation d'étiquettes

Avec les étiquettes de P et ω , on peut estimer les étiquettes de Q par la formule*:

$$\tilde{\mathbf{y}}_{k_2}^{(Q)} = rac{1}{\pi_{k_2}^{(Q)}} \sum_{k_1=1}^{K_P} \omega_{k_1,k_2} \tilde{\mathbf{y}}_{k_1}^{(P)}$$

Cela nous permet d'avoir une GMM étiquettée sur la cible, et donc un classifieur (e.g., par MAP)

(a) Plan de transport ω

(b) Étiquettes propagées

Remarque 3

GMM-OTDA_M: \hat{h}_{MAP}

GMM-OTDA_E: on échantillone $\mathbf{x} \sim Q$. Si \mathbf{x} vient de Q_k , il hérite $\tilde{\mathbf{y}}_k^{(Q)}$

^{*} Redko, Courty, Flamary, Tuia, Optimal transport for multi-source domain adaptation under target shift. AISTATS'19

Estimation d'une carte de Monge

Basées sur P et ω , on veut définir une carte de monge T^{\star} . Néanmoins, comme γ est une GMM, elle n'est pas sous la forme $(Id,T)_{\sharp}P$

Nous proposons donc une heuristique,

- 1. Estimer $k_1 = \operatorname{argmax}_k P_k(\mathbf{x})$
- 2. Transporter \mathbf{x} avec $T_{k_1,k_2}(\mathbf{x})$ pour tout k_2 , avec importance donnée par ω_{k_1,k_2}

Si l'on applique cet heuristique aux échantillons de P, cela nous fait

un nouveau jeu de données. Le mapping correspond à

$$\{\mathbf{x}_{i}^{(P)}, y_{i}^{(P)}\}_{i=1}^{n} \mapsto \{\omega_{k_{1}, k_{2}}, T_{k_{1}, k_{2}}(\mathbf{x}_{i}^{(P)}), y_{i}^{(P)}\}_{i=1}^{n}$$

Cela fait un mapping **affine par morceaux**, en dépendant sur l'assignation $\mathbf{x}_i^{(P)} \mapsto k_1$

- ▶ Diagnostique de fautes: à partir des séries temporelles de capteurs, déterminer le type de faute (classe) ou son absence.
- ▶ Méthodologie,
 - 1. Pré-etrainement: on entraı̂ne un réseau de neuronnes (encoder ϕ et classifieur h) sur les données sources
 - 2. Extraction de features: on applique $\mathbf{z}_i^{(P)} = \phi(\mathbf{x}_i^{(P)})$ (resp. Q).
 - 3. La classification est faite sur les characteristiques extraites (e.g., SVM)
 - 4. Adaptation de domaines: on fait l'adaptation de domaines au niveau des features $\mathbf{z}_i^{(P)}$.

TEP

CWRU

	Tennessee Eastmann Process	Case Western Reserver University
Type	Installation Chimique	Machine méchanique
Domaines	Modes de production	Vitesse de rotation
Type du réseau	$_{ m CNN}$	MLP
# Classes	28 fautes + 1	9 fautes + 1
# Features	128	256

Résultats (CWRU)

Tâche	SVM	OTDA_{EMD}	$\mathrm{OTDA}_{Sinkhorn}$	OTDA_{Linear}	HOT-DA	$\operatorname{GMM-OTDA}_E$	$\operatorname{GMM-OTDA}_M$	$\operatorname{GMM-OTDA}_T$
$A{ ightarrow}B$	58.3	69.1	70.4	81.6	80.0	79.8	79.8	80.0
$A \rightarrow C$	47.4	85.7	96.8	94.8	99.9	100.0	100.0	100.0
$_{\mathrm{B} \to \mathrm{A}}$	41.8	67.4	76.0	77.0	79.5	79.6	80.0	80.0
$_{\mathrm{B} \to \mathrm{C}}$	35.2	71.7	75.7	76.6	79.8	79.6	80.0	80.0
$C \rightarrow A$	58.6	89.1	98.6	93.2	99.0	99.3	99.7	100.0
$C \rightarrow B$	62.0	70.1	75.0	76.3	80.0	79.8	80.0	80.0
Moyenne	50.5	75.5	82.1	83.2	86.4	86.3	86.6	86.7

A: 1772rpm, B: 1750rpm, C: 1730rpm

GMM-OTDA

Visualization (CWRU, $A \rightarrow C$)

Conclusion

- ▶ Nous proposons des nouveaux outils pour l'adaptation de domaines à travers une modélisation par mélanges Gaussiens.
- ▶ Nos approches sont avantageux par rapport au transport optimal empirique.

Travaux Futurs

- ► Formalisation mathématique des concepts proposées par des bornes de l'érreur d'un classifieur appris avec nos méthodes.
- ▶ Application en adaptation de domaines multi-sources

in

Article

Article (MSDA)

Transport optimal

$$\begin{split} T^{\star} &= \operatorname*{argmin}_{T_{\sharp}P = Q} \int_{\mathbb{R}^{d}} c(\mathbf{x}, T(\mathbf{x})) dP(\mathbf{x}) \\ T_{\sharp}P &= Q \iff T^{-1}(B) = A \end{split}$$

Métrique du terrain,

$$c(\mathbf{x}_1, \mathbf{x}_2) = \|\mathbf{x}_1 - \mathbf{x}_2\|_2^2$$

* Villani. Optimal Transport: old and new. Springer, 2019

$$\gamma^* = \underset{\gamma \in \Gamma(P,Q)}{\operatorname{argmin}} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} c(\mathbf{x}_1, \mathbf{x}_2) d\gamma(\mathbf{x}_1, \mathbf{x}_2)$$
$$\gamma \in \Gamma(P,Q) \iff \int \gamma(A, \mathbf{x}_2) d\mathbf{x}_2 = P(A)$$
$$\int \gamma(\mathbf{x}_1, B) d\mathbf{x}_1 = Q(B)$$

Distance de Wasserstein

$$\mathcal{W}_2(P,Q)^2 = \min_{\gamma \in \Gamma(P,Q)} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} c(\mathbf{x}_1, \mathbf{x}_2) d\gamma(\mathbf{x}_1, \mathbf{x}_2)$$

Résultats

(f) GMM-OTDA_E

(g) $GMM-OTDA_M$

(h) GMM-OTDA_T