

3D Computer Graphics for People in a Hurry

Shading

Professor Eric Shaffer

Shading

Shading refers to the process of determining the color for a pixel (or vertex...or polygon) during the rendering process

What is the difference between the two images?

Scattering

- Light strikes A
 - Some scattered
 - Some absorbed
- Some of scattered light strikes B
 - Some scattered
 - Some absorbed
- Some of this scattered light strikes A and so on

Light Sources

General light sources are complex to model

Would need to integrate light coming from all points on the source

Simple Light Source Models

- Point source
 - Model with position and color
- Directional source
 - Distant source = infinite distance away (parallel)
- Ambient light
 - Same amount of light everywhere in scene
 - Can model contribution of many sources and reflecting surfaces

Surface Types

- Consider light traveling along a specific ray
- The smoother a surface, the more reflected light is concentrated in a single direction
 - Perfect mirror reflects perfectly in a single direction
- A very rough surface scatters light in all directions

smooth surface

rough surface

The Phong Reflection Model

- A simple model that can be computed rapidly
- Has three components
 - Diffuse
 - Specular
 - Ambient
- Uses four vectors
 - To light
 - To viewer
 - Normal
 - Perfect reflector

Phong Reflectance Model

$$I_{
m p} = k_{
m a} i_{
m a} + \sum_{m \; \in \; ext{lights}} (k_{
m d} (\hat{L}_m \cdot \hat{N}) i_{m,
m d} + k_{
m s} (\hat{R}_m \cdot \hat{V})^lpha i_{m,
m s})$$

Specular Reflection

- Perfect specular reflection
 - Light is reflected in the single direction r
 - ...the mirror reflection direction
- Glossy specular reflection
 - Scattering clustered around mirror reflection direction

Specular Reflection

- Reflectance determined by
 - Alignment of view vector with mirror reflection vector
 - Shininess coefficient
- High coefficient means smoother look
 - Maybe 100 for metal
 - Maybe 10 for plastic

Modeling a Lambertian Surface – Diffuse Reflection

- Perfectly diffuse reflector
- Light scattered equally in all directions
- Amount of light reflected is affected by the angle of incidence
 - reflected light proportional to cosine of angle between I and n
 - if vectors normalized

$$\cos(\theta) = n \cdot l$$

- ullet Amount of reflected light also affected by k_d and i_d
 - Each is an rgb value with each channel in [0,1]

Ambient Light

- Result of multiple interactions between light sources and surfaces
- Amount and color depend on the color of the light(s) and the material properties
- Add k_a I_a to diffuse and specular terms
 reflection intensity of ambient light

Remember that ki multiplications are component-wise multiplications of rgb values $(k_r, k_g, k_b)(i_r, i_g, i_b) = (k_r i_r, k_g i_g, k_b i_b)$

Distance Terms

- The light from a point source that reaches a surface is attenuated
 - Intensity falls off with the square of the distance
- We can apply a factor to the diffuse and specular terms

$$\frac{1}{ad^2+bd+c}$$

- **d** is the distance from the light to surface
- a,b,c are constants you choose to get different effects

Blinn-Phong Reflectance Model

- Jim Blinn suggested an approximating changing specular term
- Replace (V · R) a by (N · H) where
 - "Halfway vector"
- More efficient in terms of the operations used
- Closer to physically correct lighting
- Pick exponent b to match what you want
 - Using higher b>a will make output similar to Phong with a

$$H=rac{L+V}{\|L+V\|}$$

The Halfway Vector

H is normalized vector halfway between L and V

$$H = rac{L + V}{\|L + V\|}$$

$$r = 2(l \cdot n)n - l$$

Phong versus Blinn-Phong

Gouraud and Phong Shading

Gouraud Shading

- Find average normal at each vertex
- Compute shade at each vertex
- Interpolate vertex shades across each polygon

Phong shading

- Find average normal at each vertex
- Interpolate vertex normals across edges
- Interpolate edge normals across polygon
- Compute shade at each fragment

Phong Shading is NOT THE SAME as the Phong reflectance model

Bui Tuong Phong

- December 14, 1942 July 1975
- Born in Hanoi
- Earned his PhD in 2 years at the University of Utah (1973)
 - Worked with Professor Ivan Sutherland
 - Dissertation work was the Phong reflectance model
 - Also produced model and realistic image of a VW bug

Graphics and Image Processing W. Newman Editor

Illumination for Computer Generated Pictures

Bui Tuong Phong University of Utah

Fig. 9. Improved shading, applied to the example of Figure 2.

