braidlab user's guide

Jean-Luc Thiffeault

1 Installing braidlab

The package braidlab is defined inside a Matlab namespace, which are specified as subfolders beginning with a '+' character. The Matlab path must contain the folder that contains the subfolder +braidlab, and not the +braidlab folder itself:

```
>> addpath 'path to folder containing +braidlab'
```

To execute a braidlab *function*, either call it using the syntax braidlab. *function*, or import the whole namespace:

```
>> import braidlab.*
```

This allows invoking *function* by itself, without the braidlab prefix. For the remainder of this document, we assume this has been done and omit the braidlab prefix. The addpath and import commands can be added to startup.m to ensure they are executed at the start of every Matlab session.

2 A tour of braidlab

2.1 The braid class

braidlab defines a number of classes, most importantly braid and loop. The braid $\sigma_1 \sigma_2^{-1}$ is defined by

```
>> a = braid([1 -2])  % defaults to 3 strings
a = < 1 -2 >
```

which defaults to the minimum required strings, 3. The same braid on 4 strings is defined by

```
> a4 = braid([1 -2],4)  % force 4 strings
a4 = < 1 -2 >
```

Two braids can be multiplied:

```
>> a = braid([1 -2]); b = braid([1 2]);
>> a*b, b*a

ans = < 1 -2  1  2 >

ans = < 1  2  1 -2 >
```

Powers can also be taken, including the inverse:

```
>> a^5, inv(a), a*a^-1
ans = < 1 -2  1 -2  1 -2  1 -2  1 -2 >
ans = < 2 -1 >
ans = < 1 -2  2 -1 >
```

Note that this last expression is the identity braid, but is not simplified. The method compact attempts to simplify the braid:

```
>> compact(a*a^-1)

ans = < e >
```

The method compact is based on the heuristic algorithm of Bangert et al. [2002], since finding the braid of minimum length in the standard generators is in general difficult [Paterson and Razborov, 1991].

The number of strings is

```
>> a.n
ans = 3
```

Note that

```
>> help braid
```

describes the class braid. To get more information on the braid constructor, invoke

>> help braid.braid

which refers to the method braid within the class braid. (Use methods (braid) to list all the methods in the class.) There are other ways to construct a braid, such as using random generators, here a braid with 5 strings and 10 random generators:

```
>> braid('random',5,10)
ans = < 1  4 -4  2  4 -1 -2  4  4  4 >
```

The constructor can also build some standard braids:

```
>> braid('halftwist',5)
ans = < 4  3  2  1  4  3  2  4  3  4 >
```

In Section 2.2 we will also show how to construct a braid from a trajectory data set. The braid class also handles equality of braids:

```
>> a = braid([1 -2]); b = braid([1 -2 2 1 2 -1 -2 -1]);
>> a == b
ans = 1
```

These are the same braid. Equality is determined efficiently by acting on loop (Dynnikov) coordinates [Dynnikov, 2002], as described by Dehornoy [2008]. See Sections 2.3–2.4 for more details.

We can extract a subbraid by choosing specific strings: for example, if we take the 4-string braid $\sigma_1 \sigma_2 \sigma_3^{-1}$ and discard the third string, we obtain $\sigma_1 \sigma_2^{-1}$:

There are a few methods that exploit the connection between braids and homeomorphisms of the punctured disk. Braids label *isotopy classes* of homeomorphisms, so we can assign a topological entropy to a braid:

```
>> entropy(braid([1 2 -3]))
ans = 0.8314
```

The entropy is computed by iterated action on a loop [Moussafir, 2006]. This can fail if the braid is finite-order or has very low entropy:

```
>> entropy(braid([1 2]))
Warning: Failed to converge to requested tolerance; braid is
   likely finite-order or has low entropy.
> In braid.entropy at 89
ans = 0
```

To force the entropy to be computed using the Bestvina–Handel train track algorithm Bestvina and Handel [1995], we add an optional parameter:

```
>> entropy(braid([1 2]),'trains')
ans = 0
```

Note that for large braids the Bestvina–Handel algorithm is impractical. But when applicable it can also determine the Thurston–Nielsen type of the braid [Fathi et al., 1979, Thurston, 1988, Casson and Bleiler, 1988, Boyland, 1994]:

```
>> tntype(braid([1 2 -3]))
ans = pseudo-Anosov
>> tntype(braid([1 2]))
ans = finite-order
>> tntype(braid([1 2],4)) % reducing curve around 1,2,3
ans = reducible
```

braidlab uses Toby Hall's implementation of the Bestvina–Handel algorithm [Hall, 2012].

Finally, we can also find the Burau matrix representation [Burau, 1936, Birman, 1975] of a braid:

where the last argument (-1) is the value of the parameter t in the Laurent polynomials that appear in the entries of the Burau matrices.

Figure 1: (a) A dataset of four trajectories, (b) projected along the X axis. (c) The compacted braid $\sigma_1^{-1}\sigma_2^{-1}\sigma_1^{-8}\sigma_3^2\sigma_2\sigma_1$ corresponding to the X projection in (b). (d) The compacted braid $\sigma_3^{-7}\sigma_1\sigma_3^{-1}\sigma_1$ corresponding to the Y projection, with closure enforced. The braids in (c) and (d) are conjugate.

2.2 Constructing a braid from data

One of the main purposes of braidlab is to analyze two-dimensional trajectory data using braids. We can assign a braid to trajectory data by looking for *crossings* along a projection line [Thiffeault, 2005, 2010]. The braid constructor allows us to do this easily.

The folder testsuite contains a dataset of trajectories, from laboratory data for granular media [Puckett et al., 2012]. From the testsuite folder, we load the data:

<pre>>> clear; >> whos</pre>	load testdata			
Name	Size	Bytes	Class	Attributes
XY ti	9740x2x4 1x9740	623360 77920	double double	

Here \mathtt{ti} is the vector of times, and XY is a three-dimensional array: its first component specifies the timestep, its second specifies the X or Y coordinate, and its third specifies one of the 4 particles. Figure 1(a) shows the X and Y coordinates of these four trajectories, with time plotted vertically. Figure 1(b) shows the same data, but

projected along the X direction. To construct a braid from this data, we simply execute

```
>> b = braid(XY);
>> b.length
ans = 894
```

This is a very long braid! But Figure 1(b) suggests that this is misleading: many of the crossings are 'wiggles' that cancel each other out. Indeed, if we attempt to shorten the braid:

```
>> b = compact(b)

b = < -1 -2 -1 -1 -1 -1 -1 -1 -1 3 3 2 1 >
>> b.length

ans = 14
```

we find the number of generators (the length) has dropped to 14! We can then plot this shortened braid as a braid diagram using plot(b) to produce Figure 1(c). The braid diagram allows us to see topological information clearly, such as the fact that the second and third particles undergo a large number of twists around each other; we can check this by creating a subbraid with only those two strings:

```
>> subbraid(bX,[2 3])
ans = < -1 -1 -1 -1 -1 -1 -1 >
```

which shows that the winding number between these two strings is -4.

The braid was constructed from the data by assuming a projection along the X axis (the default). We can choose a different projection by specifying an optional angle for the projection line; for instance, to project along the Y axis we invoke

```
>> b = braid(XY,pi/2);  % project onto Y axis
>> b.length

ans = 673
>> b.compact

ans = < -3 -3 -3 -3 -3 -3 1 -3 >
```

In general, a change of projection line only changes the braid by conjugation [Boyland, 1994, Thiffeault, 2010]. We can test for conjugacy:

```
>> bX = compact(braid(XY,0)); bY = compact(braid(XY,pi/2));
>> conjtest(bX,bY) % test for conjugacy of braids
ans = 0
```

The braids are not conjugate. This is because our trajectories do not form a 'true' braid: the final points do not correspond exactly with the initial points, as a set. If we truly want a rotationally-conjugate braid out of our data, we need to enforce a closure method:

```
>> XY = closure(XY); % close braid and avoid new crossings
>> bX = compact(braid(XY,0)), bY = compact(braid(XY,pi/2))
bX = < -1 -2 -1 -1 -1 -1 -1 -1 -1 3 3 2 1 >
bY = < -3 -3 -3 -3 -3 -3 1 -3 1 >
```

This default closure simply draws line segments from the final points to the initial points in such a way that no new crossings are created in the X projection. Hence, the X-projected braid bX is unchanged by the closure, but here the Y-projected braid bY is longer by one generator (bY is plotted in Figure 1(d)). This is enough to make the braids conjugate:

```
>> [~,c] = conjtest(bX,bY) \% ~ means discard first return arg c = < 3 2 >
```

where the optional second argument c is the conjugating braid, as we can verify:

```
>> bX == c*bY*c^-1
ans = 1
```

There are other ways to enforce closure of a braid (see help closure), in particular closure(XY, 'mindist'), which minimizes the total distance between the initial and final points.

Note that conjtest uses the library *CBraid* [Cha, 2011] to first convert the braids to Garside canonical form [Birman and Brendle, 2005], then to determine conjugacy. This is very inefficient, so is impractical for large braids.

Figure 2: (a) A simple close loop in a disk with n=5 punctures. (b) Definition of intersection numbers μ_i and ν_i . [From Thiffeault [2010].]

2.3 The loop class

A simple closed loop on a disk with 5 punctures is shown in Figure 2(a). We consider equivalence classes of such loops under homotopies relative to the punctures. In particular, the loops are *essential*, meaning that they are not null-homotopic or homotopic to the boundary or a puncture. The *intersection numbers* are also shown in Figure 2(a): these count the minimum number of intersections of an equivalence class of loops with the fixed vertical lines shown. For n punctures, we define the intersection numbers μ_i and ν_i in Figure 2(b).

Any given loop will lead to a unique set of intersection numbers, but a general collection of intersection numbers do not typically correspond to a loop. It is therefore more convenient to define

$$a_i = \frac{1}{2} (\mu_{2i} - \mu_{2i-1}), \qquad b_i = \frac{1}{2} (\nu_i - \nu_{i+1}), \qquad i = 1, \dots, n-2.$$
 (1)

We then combine these in a vector of length (2n-4),

$$\mathbf{u} = (a_1, \dots, a_{n-2}, b_1, \dots, b_{n-2}),$$
 (2)

which gives the *loop coordinates* (or *Dynnikov coordinates*) for the loop. (Some authors such as Dehornoy [2008] give the coordinates as $(a_1, b_1, \ldots, a_{n-2}, b_{n-2})$.) There is now a bijection between \mathbb{Z}^{2n-4} and essential simple closed loops [Dynnikov, 2002, Moussafir, 2006, Hall and Yurttaş, 2009, Thiffeault, 2010]. Actually, *multiloops*: loop coordinates can describe unions of disjoint loops.

Let's create the loop in Figure 2(a) as a loop object:

Figure 3: (a) The loop ((-1 1 -2 0 -1 0)). (b) The braid generator σ_1^{-1} applied to the loop in (a).

```
>> 1 = loop([-1 1 -2 0 -1 0])
1 = (( -1 1 -2 0 -1 0 ))
```

Figure 3(a) shows the output of the plot(1) command. Now we can act on this loop with braids. For example, we define the braid b to be σ_1^{-1} with 5 strings, corresponding to the 5 punctures, and then act on the loop 1 by using the multiplication operator:

Figure 3(b) shows plot(b*1). The first and second punctures were interchanged counterclockwise (the action of σ_1^{-1}), dragging the loop along.

The minimum length of an equivalence class of loops is determined by assuming the punctures are one unit of length apart and have zero size. After pulling tight the loop on the punctures, it is then made up of unit-length segments. The minimum length is thus an integer. For the loop in Figure 3(a),

```
>> minlength(1)
ans = 12
```

The entropy method computes the topological entropy of a braid by repeatedly acting on a loop, and monitoring the growth rate of the loop.

Figure 4: (a) The multiloop created by loop(5). (b) The multiloop b*loop(5), where b is the braid $\sigma_1 \sigma_2 \sigma_3 \sigma_4^{-1}$.

```
>> b = braid([1 2 3 -4]);
% apply braid 100 times to l, then compute growth of length
>> log(minlength(b^100*1)/minlength(1)) / 100
ans = 0.7637
>> entropy(b)
ans = 0.7672
```

The entropy value returned by entropy(b) is more precise, since that method monitors convergence and adjusts the number of iterations accordingly.

2.4 Loop coordinates for a braid

The loop coordinates allow us to define a unique normal form for braids. Consider the multiloop depicted in Figure 4(a), which is the output of plot(loop(5)). Notice that loop(5) defaulted to a loop on a disk with 6 punctures. The reason is that this default multiloop is used to define loop coordinates for braids. The extra puncture is regarded as the outer boundary of the disk, and the loops form a generating set for the fundamental group of the disk with 5 punctures. The canonical loop coordinates for braids exploit the fact that two braids are equal if and only if they act the same way on the fundamental group of the disk. Hence, if we take a braid and act on loop(5),

```
>> b = braid([1 2 3 -4]);
>> b*loop(5)
ans = (( 0 0 3 -1 -1 -1 -4 3 ))
```

then the set of numbers ((0 0 3 -1 -1 -1 -4 3)) can be thought of as uniquely characterizing the braid. It is this property that is used to rapidly determine equality of braids [Dehornoy, 2008]. (The loop b*loop(5) is plotted in Figure 4(b).) The same loop coordinates for the braid can be obtained without creating an intermediate loop with

```
>> loopcoords(b)
ans = (( 0  0  3 -1 -1 -1 -4  3 ))
```

3 Side note: On filling-in punctures

Recall the command subbraid from Section 2.1. We took the 4-string braid $\sigma_1 \sigma_2 \sigma_3^{-1}$ and discarded the third string, to obtain $\sigma_1 \sigma_2^{-1}$:

```
>> a = braid([1 2 -3]);
>> b = subbraid(a,[1 2 4])  % discard string 3, keep 1,2,4
b = < 1 -2 >
```

The braids a and b are shown in Fig. 5; their entropy is

```
>> a.entropy, b.entropy

ans = 0.8314
ans = 0.9624
```

Note that the entropy of the subbraid b is *higher* than the original braid. This is counter-intuitive: shouldn't removing strings cause loops to shorten, therefore lowering their growth?¹

In some sense this must be true: consider the rod-stirring device shown in Fig. 6(a), where the rods move according the to braid $\sigma_1 \sigma_2 \sigma_3^{-1}$. Removing the third

 $^{^{1}}$ In fact, the entropy obtained by the removal of a string is constrained by the minimum possible entropy for the remaining number of strings [Song et al., 2002, Hironaka and Kin, 2006, Thiffeault and Finn, 2006, Ham and Song, 2007, Venzke, 2008, Lanneau and Thiffeault, 2011]. So here the entropy of the 3-braid could only be zero or ≥ 0.9624.

Figure 5: Removing the third string from the braid (a) $\sigma_1 \sigma_2 \sigma_3^{-1}$ yields the braid (b) $\sigma_1 \sigma_2^{-1}$.

Figure 6: (a) The mixing device described by the braid $\sigma_1 \sigma_2 \sigma_3^{-1}$ [Thiffeault et al., 2008]. The inset shows how the rods are moved. (b) The pure braid $(\sigma_1 \sigma_2 \sigma_3^{-1})^4$. (c) The braid $(\sigma_1 \sigma_2^{-1})^2 \sigma_1 \sigma_2$, obtained by removing the third string from (b).

string can be regarded as *filling-in* the third puncture (rod); clearly then the material line can be shortened, leading to a decrease in entropy.

The flaw in the argument is that even though we can remove any string, we cannot fill in a puncture that is permuted, since the resulting braid does not define a homeomorphism on the filled-in surface. To remedy this, let us take enough powers of the braid $\sigma_1\sigma_2\sigma_3^{-1}$ to ensure that the third puncture returns to its original position, using the method perm to find the permutation induced by the braid:

```
>> perm(a)
ans = 2 3 4 1
```

The permutation is cyclic (it can be constructed with exactly one cycle), so the fourth power should do it:

```
>> perm(a^4)
ans = 1 2 3 4
```

This is now a *pure* braid: all the strings return to their original position (Fig. 6(b)). Now here's the surprise: the subbraid obtained by removing the third string from a^4 is

```
>> b2 = subbraid(a^4,[1 2 4])
b2 = < 1 -2 1 -2 1 2 >
```

which is not b⁴ (Fig. 6(c))! However, now there is no paradox in the entropies:²

```
>> entropy(a^4), entropy(b2)
ans = 3.3258

Warning: Failed to converge to requested tolerance; braid is
   likely finite-order or has low entropy.
> In braid.entropy at 89
ans = 0
```

braidlab has trouble computing the entropy because the braid b2 appears to be finite-order. Indeed, the braid b2 is conjugate to σ_1^2 :

²Song [2005] showed that the entropy of a pure braid is greater than 1.4436, if it is nonzero.

```
>> c = braid([2 -1],3)

c = < 2 -1 >
>> compact(c*b2*c^-1)

ans = < 1 1 >
```

showing that its entropy is indeed zero.

The moral is: when filling-in punctures, make sure that the strings being removed are permuted only among themselves. For very long, random braids, we still expect that removing a string will decrease the entropy, since the string being removed will have returned to its initial position many times.

Acknowledgments

The development of braidlab was supported by the US National Science Foundation, under grants DMS-0806821 and CMMI-1233935. The author thanks Michael Allshouse and Marko Budisic for extensive testing, comments, and for contributing some of the code. James Puckett and Karen Daniels provided the test data from their granular medium experiments [Puckett et al., 2012]. braidlab uses Toby Hall's *Train* [Hall, 2012]; Jae Choon Cha's *CBraid* [Cha, 2011]; Juan González-Meneses's *Braiding* [González-Meneses, 2011]; and Markus Buehren's *assignmentoptimal* [Buerhen, 2011].

References

- P. D. Bangert, M. A. Berger, and R. Prandi. In search of minimal random braid configurations. J. Phys. A, 35(1):43-59, January 2002. doi: 10.1088/0305-4470/35/1/304.
- M. Bestvina and M. Handel. Train-tracks for surface homeomorphisms. *Topology*, 34(1):109–140, 1995.
- J. S. Birman. Braids, Links, and Mapping Class Groups. Number 82 in Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1975.

- J. S. Birman and T. E. Brendle. Braids: A survey. In W. Menasco and M. Thistlethwaite, editors, *Handbook of Knot Theory*, pages 19–104. Elsevier, Amsterdam, 2005. Available at http://arXiv.org/abs/math.GT/0409205.
- P. L. Boyland. Topological methods in surface dynamics. *Topology Appl.*, 58:223–298, 1994.
- Markus Buerhen. Functions for the rectangular assignment problem, 2011. http://www.mathworks.com/matlabcentral/fileexchange/6543.
- W. Burau. Über Zopfgruppen und gleichsinnig verdrilte Verkettungen. Abh. Math. Semin. Hamburg Univ., 11:171–178, 1936.
- A. J. Casson and S. A. Bleiler. Automorphisms of surfaces after Nielsen and Thurston, volume 9 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1988. ISBN 0-521-34203-1.
- Jae Choon Cha. CBraid: A C++ library for computations in braid groups, 2011. http://code.google.com/p/cbraid.
- P. Dehornoy. Efficient solutions to the braid isotopy problem. *Discr. Applied Math.*, 156:3091–3112, 2008. doi: 10.1016/j.dam.2007.12.009.
- I. A. Dynnikov. On a Yang–Baxter map and the Dehornoy ordering. Russian Math. Surveys, 57(3):592–594, 2002.
- A. Fathi, F. Laundenbach, and V. Poénaru. Travaux de Thurston sur les surfaces. Astérisque, 66-67:1–284, 1979.
- Juan González-Meneses. Braiding: A computer program for handling braids, 2011. The version used is distributed with CBraid: http://code.google.com/p/cbraid.
- T. Hall. Train: A C++ program for computing train tracks of surface homeomorphisms, 2012. http://www.liv.ac.uk/~tobyhall/T_Hall.html.
- T. Hall and S. Ö. Yurttaş. On the topological entropy of families of braids. *Topology Appl.*, 156(8):1554–1564, April 2009. doi: 10.1016/j.topol.2009.01.005.
- J.-Y. Ham and W. T. Song. The minimum dilatation of pseudo-Anosov 5-braids. *Experiment. Math.*, 16(2):167–179, 2007.

- E. Hironaka and E. Kin. A family of pseudo-Anosov braids with small dilatation. *Algebraic & Geometric Topology*, 6:699–738, 2006.
- E. Lanneau and J.-L. Thiffeault. On the minimum dilatation of braids on the punctured disc. *Geometriae Dedicata*, 152(1):165–182, June 2011.
- J.-O. Moussafir. On computing the entropy of braids. *Func. Anal. and Other Math.*, 1(1):37–46, 2006. doi: 10.1007/s11853-007-0004-x.
- M. S. Paterson and A. A. Razborov. The set of minimal braids is co-NP complete. J. Algorithm, 12:393–408, 1991.
- J. G. Puckett, F. Lechenault, K. E. Daniels, and J.-L. Thiffeault. Trajectory entanglement in dense granular materials. *Journal of Statistical Mechanics: Theory and Experiment*, 2012(6):P06008, June 2012. doi: 10.1088/1742-5468/2012/06/P06008. URL http://iopscience.iop.org/1742-5468/2012/06/P06008.
- W. T. Song. Upper and lower bounds for the minimal positive entropy of pure braids. Bull. London Math. Soc., 37(2):224–229, 2005.
- W. T. Song, K. H. Ko, and J. E. Los. Entropies of braids. *J. Knot Th. Ramifications*, 11(4):647–666, 2002.
- J.-L. Thiffeault. Measuring topological chaos. *Phys. Rev. Lett.*, 94(8):084502, March 2005.
- J.-L. Thiffeault. Braids of entangled particle trajectories. *Chaos*, 20:017516, January 2010. doi: 10.1063/1.3262494.
- J.-L. Thiffeault and M. D. Finn. Topology, braids, and mixing in fluids. *Phil. Trans. R. Soc. Lond. A*, 364:3251–3266, December 2006. doi: 10.1098/rsta.2006.1899.
- J.-L. Thiffeault, M. D. Finn, E. Gouillart, and T. Hall. Topology of chaotic mixing patterns. *Chaos*, 18:033123, September 2008. doi: 10.1063/1.2973815.
- W. P. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces. *Bull. Am. Math. Soc.*, 19:417–431, 1988.
- R. W. Venzke. Braid Forcing, Hyperbolic Geometry, and Pseudo-Anosov Sequences of Low Entropy. PhD thesis, California Institute of Technology, 2008.