Algorithm 1 CAPO: Context-Aware Prompt Optimization

Require: Dataset $\mathcal{D} = \{(X_i, y_i)\}_{i=1}^n$, Meta-LLM $\Phi(x)$, Downstream LLM $\phi(x)$, Cost function $\ell(y, \hat{y})$, Initial prompts ν , Population size p, Block size b, Number of iterations n1: Divide dataset \mathcal{D} into blocks $\mathcal{B} = \{B_1, ..., B_k\}$ where $|B_i| = b$

- 2: Create $d \in \mathbb{R}^x$ for fewshot examples
- 3: for i = 1 to n do
- 4: $P \leftarrow \text{random_selection}(\nu)$
- 5: $O \leftarrow \operatorname{cross_over}(P)$
- 6: $\nu \leftarrow \nu.\text{update}(O)$
- 7: $\nu \leftarrow \text{mutate}(\nu)$
- 8: prepend few-shot examples to ν
- 9: $\nu \leftarrow \text{do_racing}(\nu, \text{top_k} = p)$
- 10: end for
- 11: best_prompt \leftarrow do_racing(ν , top_k = 1)
- 12: **return** best prompt

Algorithm 2 do_racing

Require: Prompts ν , Top-k p, cost function $\ell(y,\hat{y})$, blocks \mathcal{B} , Downstream LLM $\phi(x)$

```
1: survivors \leftarrow \nu
```

- $2: i \leftarrow 0$
- 3: scores $\leftarrow [0] * len(\nu)$
- 4: shuffle \mathcal{B}
- 5: while len(survivors) > top_k $\wedge i < \text{len}(\mathcal{B})$ do
- 6: $i \leftarrow i + 1$
- 7: scores $\leftarrow \frac{1}{i}$ (evaluate $(\nu, B_i) + (i-1) * scores$)
- 8: survivors \leftarrow racing_elimination(ν , scores, $i * b, \alpha, k$)
- 9: end while
- 10: **return** survivors

Algorithm 3 Confidence-based Racing Elimination

Require: Prompts P, scores S, number of evaluations a, confidence level α , total blocks

$$B$$
, top k

1:
$$z_{\alpha} \leftarrow \Phi^{-1}(1 - \alpha/2)$$

▷ Critical value

- 2: survivors $\leftarrow P$
- 3: for $p_i \in P$ do
- 4: if $\sum_{j\neq i} \mathbf{1}_{\left((s_j-s_i)\sqrt{a}>z_{\alpha}\right)} \geq k$ then
- \triangleright # prompts better than p_i exceeds k
- 5: survivors \leftarrow survivors $\setminus \{p_i\}$

 \triangleright Eliminate p_i

- 6: end if
- 7: end for
- 8: **return** survivors