1 Preliminaries

Definition 1. A database \mathcal{D} is a finite multi-set of m-tuples associated with an m-tuple for column names \mathcal{C} and an m-tuple of finite sets for column domains \mathcal{F} , such that $\mathcal{D} \subseteq \times_{F \in \mathcal{F}} F$. Let the function of taking the absolute be such that it implicitly transforms a multi-set into a set by removing the duplicates.

Definition 2 (k-Anonymity). k is an integer. A database \mathcal{D} is k-anonymous iff, for all entries $d \in \mathcal{D}$ and some subsets of column names $Q \subseteq \mathcal{C}$, there exist a subset $S \subseteq \mathcal{D}$ of size at least k such that $\Pi_Q s = \Pi_Q d$ for all $s \in S$.

Definition 3 (MultiR k-Anonymity). k-Anonymity with multiple databases joined.

Definition 4 (ℓ -**Diversity**). Extension of k-Anonymity. ℓ is an integer. A database \mathcal{D} is ℓ -diverse iff, for all entries $d \in \mathcal{D}$ and for all subsets of column names $Q \subseteq \mathcal{C}$, there exist a subset $S \subseteq \mathcal{D}$ of size at least k such that $\Pi_Q s = \Pi_Q d$ for all $s \in S$, and for some other columns $Q' \subseteq \mathcal{C} - Q$, $|\Pi_c S|$ is at least ℓ for all $c \in Q'$.

Definition 5 (Confidence Bounding). Probabilistic property.

Definition 6 ((α, k) -Anonymity).

Definition 7 ((X,Y)-Privacy). $X,Y \subseteq C$ are subsets of column names. A database \mathcal{D} is (X,Y)-anonymous for some integer k iff, for all entries $d \in \mathcal{D}$ and all columns $x \in X$, there is $S \subseteq \mathcal{D}$ such that $\Pi_x d = \Pi_x s$ for all $s \in S$, and $|\Pi_y S|$ is at least k for all $y \in Y$.

Definition 8 ((k, e)-Anonymity).

Definition 9 ((ϵ, m) -Anonymity).

Definition 10 (Personalized Privacy).

```
Definition 11 (t-closeness).
```

Definition 12 (
$$\delta$$
-Presence).

Definition 13
$$((c,t)$$
-Isolation).

Definition 14 (ϵ -Differential Privacy).

Definition 15 (
$$(d, \gamma)$$
-Privacy).

Definition 16 (Distributional Privacy).