ریز پر دازنده (میکروکنتر لرهای AVR) پورت های ۱/۵

محسن راجي

دانشگاه شیراز بخش مهندسی و علوم کامپیوتر

پورت 0/ا

- این پورت ها امکان دسترسی با دنیای خارجی را فراهم می کنند
- در AVR ها پورت ها به صورت AVR ما پورت ها به صورت AVR می شوند.
 - پورت ها ۸ پایه دارند
- علاوه بر کاربرد عمومی به عنوان پورت I/O وظایف مخصوص به خود دارد
- مثلا پورت A در Atmega32 ورودی های آنالوگ برای ADC و مقایسه کننده آنالوگ نیز هستند

2

پورت 0/ا

- هر یک از پین های I/O دارای دو دیود محافظ برای محافظت از ولتاژ ورودی منفی یا بزرگتر از VCC است
- •دارای یک مقاومت بالاکش (Pull Up) داخلی که میتوان فعال کرد یا غیرفعال کرد
 - فعال بودن بالاکش به این معناست که مقدار پیش فرض پین برابر با یک است و میتواند به خروجی جریان بدهد
- بافر خروجی در هر پین قابلیت جریان کشی *اج*ریان دهی تا ۲۰ میلی آمیر را فراهم می کند
 - به طور مستقیم می توان یک LED را روشن کرد

رجیسترهای پورت 0/ا

- هر پورت ۳ رجیستر دارد
 - PORTx•
 - داده خروجي
 - DDRx•
- تعیین جهت داده روی پایه های پورت (ورودی یا خروجی بودن)
 - PINx داده های ورودی به پورت
- هر پین (پایه) از یک پورت دارای بیت های PORTxn و DDxn DDxn و PINxn مختص خود است
 - x اسم پورت
 - n شماره پین

رجیسترهای پورت 0/ا

Port A Data Register - PORTA

Bit	7	6	5	4	3	2	1	0	
	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	PORTA
Read/Write	R/W	'							
Initial Value	0	0	0	0	0	0	0	0	

Port A Data Direction Register

- DDRA

5

Bit	7	6	5	4	3	2	1	0	
	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	DDRA
Read/Write	R/W	•							

Port A Input Pins Address – PINA

Bit	7	6	5	4	3	2	1	0	
	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	PINA
Read/Write	R	R	R	R	R	R	R	R	
Initial Value	N/A								

6

پیکربندی پین ها • تعیین وضعیت جهت و مقدار پین n ام از پورت x ام

DDxn	PORTxn	PUD (in SFIOR)	1/0	Pull-up	Comment
0	0	Х	Input	No	Tri-state (Hi-Z)
0	1	0	Input	Yes	Pxn will source current if ext. pulled low.
0	1	1	Input	No	Tri-state (Hi-Z)
1	0	Х	Output	No	Output Low (Sink)
1	1	Х	Output	No	Output High (Source)

Bit	7	6	5	4	3	2	1	0	
	ADTS2	ADTS1	ADTS0	ADHSM	ACME	PUD	PSR2	PSR10	SFIOR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

نوشتن و خواندن

- نوشتن در پایه ها به چه صورت است؟
 - برای نوشتن :
- •ابتدا جهت پایه یا پین مورد نظر را به صورت خروجی تعریف می کنیم (DDxn=1)
 - مقدار مورد نظر رو در بیت نگهدار (PORTxn) بنویسیم
- مثال : اگر DDRC = FFh اطلاعات متناظر با رجیستر \leftarrow DDRC روی پورت \leftarrow نوشته خواهد شد و از روی پایه این پورت قابل دسترسی هستند.

9

نوشتن و خواندن

- برای خواندن : به دو صورت امکان پذیر است
 - خواندن مستقیم از روی پایه ها
- به کمک بیتهای رجیستر PINx میتوان اطلاعات را از روی پایه ها دریافت کرد
- (مثلا IN R1, PINA اطلاعات را به طور مستقیم از روی پایه های پورت A خوانده و درون رجیستر R1 قرار می دهد)
 - خواندن از روی نگهدار پایه ها
 - داده از روی نگهدار پایه یعنی رجیستر PORTx خوانده می شود
- (مثلا IN R2 , PORTA اطلاعات را از روی رجیستر پورت داده A خوانده و در R2 قرار می دهد)
 - معمولا زمانی از خواندن از روی رجیستر PORTx انجام می شود که نیاز به خواندن آخرین وضعیت پایه ها باشد

10

مثال

```
Assembly Code Example(1)
       ; Define pull-ups and set outputs high
       ; Define directions for port pins
       ldi r16,(1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PB0)
      ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)
       out DDRB.r17
       ; Insert nop for synchronization
                                               C Code Example(1)
       ; Read port pins
       in r16,PINB
                                                   unsigned char i;
                                                      /* Define pull-ups and set outputs high */
                                                      /* Define directions for port pins */
                                                     PORTB = (1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PB0);
                                                     DDRB = (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDB0);
                                                     /* Insert nop for synchronization*/
                                                     NOP():
                                                     /* Read port pins */
                                                     i = PINB;
11
```

نكات تكميلي

- ورودی سیگنال آنالوگ
- •اغلب سیگنال های محیطی که مقادیر پیوسته دارند اصطلاحا سیگنالهای آنالوگ هستند
 - برای کار با این سیگنال ها ، برخی از پایه های AVR دارای حالت ورودی سیگنال آنالوگ هستند
- که معمولا ورودی های مقایسه کننده آنالوگ یا ورودی برای مبدل آنالوگ به دیجیتال ADCمی باشند

(12