Community detection for directed graphs using random walk

Phan Thi Ha Duong, Do Duy Hieu and Dang Tien Dat

Institute of Mathematics, Vienam Academy of Science and Technology

ICDMCS, Dalat 2nd December, 2022

Table of contents

- Introduction about Community Detection
- The WalkTrap algorithm
- Oi-WalkTrap algorithm
- 4 Experiments
- **6** Conclusion and Future Work

Table of contents

- Introduction about Community Detection
- 1.1 Community Detection problem
- 1.2 Traditional method
- 1.3 Modularity function
- 1.4 Random walk on the graph
- 2 The WalkTrap algorithm
- 2.1 Overview of the WalkTrap algorithm
- 2.2 The mechanism of WalkTrap algorithm
- 3 Di-WalkTrap algorithm
 - 3.1 Our proposed method The Di-WalkTrap algorithm
- 3.2 The relationship with spectral approachs and singular value decomposition
- 4 Experiments
- 4.1 Some types of random partition graph
- 4.2 Results on Undirected graph
- 4.3 Results on Directed graph
- **(5)** Conclusion and Future Work

1.1 Community Detection problem

Community Detection problem

- Community is a set of nodes having close relationship while the opposite is true with nodes being in different communities.
- The detection of communities provides latent information about the relationship between vertices inside a graph.

Figure 1.1: Illustration of communities in the Karate Club graph¹.

¹https://bigdata.oden.utexas.edu/project/graph-clustering

1.2 Some traditional methods

Traditional method

- Graph Partitioning
- Hierarchical clustering
- Partitional clustering
- Spectral clustering
- Divisive algorithms

Figure 1.2: Illustration of hierarchical clustering².

²https://sbme-tutorials.github.io/2019/cv/notes/

1.3 Modularity function

- It is the most widely used and well-known clustering quality evaluation function.
- Range of value is (-1,1). Modularity determines the quality of clustering.

Modularity of unweighted undirected graph proposed by M. Newman [1]:

$$Q_{u} = \frac{1}{2m} \sum_{ij} \left[A_{ij} - \frac{k_{i}k_{j}}{2m} \right] \delta(C_{i}, C_{j})$$

$$(1.1)$$

Notation

 C_i is community of node i;

$$\delta(C_i, C_j) = 1$$
 if $C_i = C_j$ while $C_i \neq C_j$ then $\delta(C_i, C_j) = 0$;

 A_{ij} is the number of edges between two nodes i, j;

 $\frac{k_i k_j}{2m}$ is the mean of edges between 2 nodes i, j based on the configuration model.

1.3 Illustration of modularity

Figure 1.3: Illustration of modularity function.

1.4 Random walk on the graph

Figure 1.4: Illustration of random walk on graph.

Transition matrix:

$$P = \left[\begin{array}{cccc} 0 & 1/2 & 1/6 & 1/3 \\ 3/4 & 0 & 1/4 & 0 \\ 1/3 & 1/3 & 0 & 1/3 \\ 2/3 & 0 & 1/3 & 0 \end{array} \right]$$

- P_{ij} : probability from node ito node j
- $P_{ij}^{(t)}$: probability from node *i*to node *j* after *t* steps (transitions) denoted as P_{ij}^{t}
- $P^{(t)} = \left[P_{ij}^{(t)}\right]_{i,j=\overline{1,n}} = P^t = P \times P \times ... \times P$ is transition matrix after t steps.

Table of contents

- Introduction about Community Detection
- 1.1 Community Detection problem
- 1.2 Traditional method
- 1.3 Modularity function
- 1.4 Random walk on the graph
- 2 The WalkTrap algorithm
- 2.1 Overview of the WalkTrap algorithm
- 2.2 The mechanism of WalkTrap algorithm
- Oi-WalkTrap algorithm
 - 3.1 Our proposed method The Di-WalkTrap algorithm
- 3.2 The relationship with spectral approachs and singular value decomposition
- 4 Experiments
- 4.1 Some types of random partition graph
- 4.2 Results on Undirected graph
- 4.3 Results on Directed graph
- **(5)** Conclusion and Future Work

2.1 The WalkTrap algorithm

Some features

- The community detection algorithm used on undirected graphs.
- The process is similar to the hierarchical clustering algorithm, in addition, the WalkTrap algorithm [4] is particularly interested in three criteria:
 - Defining distance between vertices based on random walk on undirected graph.
 - Controlling the association between communities must be based on the objective function which is the average distance from the vertices to the clusters.
 - Finding the optimal slice by using the modularity function.

2.1 Initial idea of the WalkTrap algorithm

 Assuming two nodes being same community should have approximately the same probability to arbitrary node after tsteps:

$$P_{ik}^t \approx P_{jk}^t \tag{2.1}$$

- Imporntance of each node is different ⇒ the weighted sum.
- The distance formula from node *i* to node *j*:

$$r_{ij} = \sqrt{\sum_{u=1}^{N} \frac{\left(P_{iu}^{t} - P_{ju}^{t}\right)^{2}}{k_{u}}} = ||D^{-1/2}P_{i*}^{t} - D^{-1/2}P_{j*}^{t}||$$
 (2.2)

• Furthermore, this formula can be represented based on eigenvectors and eigenvalues of transition matrix *P*.

2.2 Distance formulas

$$r_{ij} = \sqrt{\sum_{u=1}^{N} \frac{\left(P_{iu}^{t} - P_{ju}^{t}\right)^{2}}{k_{u}}} = ||D^{-1/2}P_{i*}^{t} - D^{-1/2}P_{j*}^{t}|| \quad (2.3)$$

$$P_{Cj}^{t} = \frac{1}{|C|} \sum_{i \in C} P_{ij}^{t} \tag{2.4}$$

$$r_{C_1C_2} = \sqrt{\sum_{u=1}^{N} \frac{\left(P_{C_1u}^t - P_{C_2u}^t\right)^2}{k_u}} = ||D^{-1/2}P_{C_1*}^t - D^{-1/2}P_{C_2*}^t||$$
(2.5)

- The distance between nodes r_{ii} .
- The probability from a community to a node: P_{Cj}^t .
- The distance between communities: $r_{C_1C_2}$.
- P is transition matrix $(P_{ij} = A_{ij}/k_i)$
- P^t is transition matrix after t steps.
- D is the diag degree matrix.

2.2 Object function and criteria to merge communities

Object function:

$$\sigma_k = \frac{1}{N} \sum_{C \in \mathcal{P}_k} \sum_{i \in C} r_{iC}^2 \tag{2.6}$$

• Criteria to merge two communities: (C_1, C_2) so tha $\Delta \sigma(C_1, C_2)$ is minimal, let $C_3 = C_1 \cup C_2$:

$$\Delta\sigma(C_1, C_2) = \frac{1}{N} \left(\sum_{i \in C_3} r_{iC_3}^2 - \sum_{i \in C_1} r_{iC_1}^2 - \sum_{i \in C_2} r_{iC_2}^2 \right)$$
(2.7)

Determine the optimal number of communities

- ullet From the beginning is N communities, after N-1 loops we will get only one community.
- Using the modularity function evaluates the quality of each partition...

Example of the process of WalkTrap

Table of contents

- Introduction about Community Detection
- 1.1 Community Detection problem
- 1.2 Traditional method
- 1.3 Modularity function
- 1.4 Random walk on the graph
- 2 The WalkTrap algorithm
- 2.1 Overview of the WalkTrap algorithm
- 2.2 The mechanism of WalkTrap algorithm
- **3** Di-WalkTrap algorithm
 - $3.1\,$ Our proposed method The Di-WalkTrap algorithm
- 3.2 The relationship with spectral approachs and singular value decomposition
- 4 Experiment
- 4.1 Some types of random partition graph
- 4.2 Results on Undirected graph
- 4.3 Results on Directed graph
- **(5)** Conclusion and Future Work

3.1 Our proposed method - The Di-WalkTrap algorithm

Some features

- The community detection algorithm can be applied on both undirected graph and directed graph.
- The process is similar to the WalkTrap algorithm, in addition, our proposed method defined the new distances between nodes:
 - Defining the new distance formulas based on hitting times and stationary distribution on graph (both undirected and directed cases).
 - Proposing the new relationship with spectral approaches on undirected case and singular value decomposition on directed case.
- Overcome the problem with eigenvalue less than 1 of WalkTrap algorithm.

Hiting times and stationary distribution

 $\{X_k\}_{k=0,1,2,\ldots}$ is finite Markov chain and the state space $\mathbb{S}=\{1,2,\ldots\}$

• Hitting time H_{ii} : the expected number of steps for the first transition from i to j.

$$T_{j} = \inf \{ l \ge 1 : X_{l} = j \}$$

$$H_{ij} = E [T_{j} | X_{1} = i]$$

• Stationary distribution $\phi = (\phi_1, \phi_2, ..., \phi_n)$: ϕ_i has meaning is the limitation of probability the chain reach to state $i \in \mathbb{S}$:

$$\phi_i = \lim_{k \to \infty} P(X_k = i)$$

Initial idea

- Replacing transition matrix after tsteps P^t by expected hitting time matrix H which is steady instead of depending on t.
- Assuming two nodes being same community should have approximately the same number of steps to arbitrary node:

$$H_{ik} \approx H_{jk}$$
 (3.1)

- Imporntance of each node is different ⇒ the weighted sum.
- Stationary distribution $\phi = (\phi_1, \phi_2, ..., \phi_n)$ not only distinguish nodes but also has the property that sum of each quantile is 1.

$$\sum_{i=1}^{n} \phi_i = 1 \tag{3.2}$$

$$r_{ij} = \sqrt{\sum_{k=1}^{n} \phi_k (H_{ik} - H_{jk})^2}$$
 (3.3)

• Furthermore, this distance formula is related to eigenvalue, eigenvector and SVD.

The new distance formulas

$$r_{ij} = \sqrt{\sum_{k=1}^{n} \phi_k (H_{ik} - H_{jk})^2} = \|\Phi^{1/2} H_{i\bullet} - \Phi^{1/2} H_{j\bullet}\| \quad (3.4)$$

$$H_{Cj} = \frac{1}{|C|} \sum_{i \in C} H_{ij} \tag{3.5}$$

$$r_{C_1C_2} = \sqrt{\sum_{k=1}^n \phi_k (H_{C_1k} - H_{C_2k})^2} = \|\Phi^{1/2} H_{C_1 \bullet} - \Phi^{1/2} H_{C_2 \bullet}\|$$
(3.6)

- The distance between nodes r_{ij} .
- The expected hitting times from a community to a node: P^t_{Ci}.
- (3.5) The distance between communities: $r_{C_1C_2}$.
 - H is expected hitting time matrix.
 - Φ is stationary transition matrix.
 - H_{i•} is ithrow of expected hitting time matrix.

3.2 The relationship with spectral approachs on undirected graph

Theorem

The distance r is related to the spectral properties of the matrix P by:

$$r_{ij}^{2} = \sum_{\alpha=2}^{n} \frac{1}{(1 - \lambda_{\alpha})^{2}} (v_{\alpha}(i) - v_{\alpha}(j))^{2}, \tag{3.7}$$

where $(\lambda_{\alpha})_{1 \leq \alpha \leq n}$ and $(v_{\alpha})_{1 \leq \alpha \leq n}$ are respectively the eigenvalues and right eigenvectors of the matrix P.

• *Note:* $1 = \lambda_1 > \lambda_2 \geq ... \geq \lambda_n \geq -1$.

Algorithm	Relation formula	Weighted
WalkTrap	$r_{ij}^2 = \sum_{lpha=2}^n \lambda_lpha^{2t} (v_lpha(i) - v_lpha(j))^2.$	λ_{lpha}^{2t}
Di-WalkTrap	$r_{ij}^2 = \sum_{lpha=2}^n rac{1}{(1-\lambda_lpha)^2} (extsf{v}_lpha(i) - extsf{v}_lpha(j))^2$	$\frac{1}{\left(1-\lambda_{lpha} ight)^{2}}$

Comparision with WalkTrap algorithm

- Walktrap algorithm: There isn't much of a difference between distances r_{ij} because $|\lambda_{\alpha}| \leq 1 \ \forall \alpha = \overline{1,n}$
- ullet Our algorithm: makes this difference be clearly when the coffecient is $\dfrac{1}{\left(1-\lambda_{lpha}
 ight)^2}$

Figure 3.1: Illustration of coffecient function of two algorithms.

3.2 The relationship with singular value decomposition on directed graph

Theorem

The distance r is related to the spectral properties of the matrix P by:

$$r_{ij}^2 = \sum_{\alpha=2}^n \frac{1}{\sigma_{\alpha}^2} (w_{\alpha}(i) - w_{\alpha}(j))^2,$$
 (3.8)

where σ_i , v_i be the i^{th} singular value, the corresponding right singular vectors of $\Gamma = \Phi^{1/2}(I - P)\Phi^{-1/2}$ where $\Phi^{1/2} = diag[\sqrt{\phi_i}]$ and $w_\alpha = \Phi^{-1/2}v_\alpha$.

Table of contents

- Introduction about Community Detection
- 1.1 Community Detection problem
- 1.2 Traditional method
- 1.3 Modularity function
- 1.4 Random walk on the graph
- 2 The WalkTrap algorithm
- 2.1 Overview of the WalkTrap algorithm
- 2.2 The mechanism of WalkTrap algorithm
- Oi-WalkTrap algorithm
- 3.1 Our proposed method The Di-WalkTrap algorithm
- 3.2 The relationship with spectral approachs and singular value decomposition
- 4 Experiments
- 4.1 Some types of random partition graph
- 4.2 Results on Undirected graph
- 4.3 Results on Directed graph
- **6** Conclusion and Future Work

4.1 Some types of random partition graph

Figure 4.1: Illustration of planted l-partition.

Figure 4.2: Illustration of Gaussian random partition

Figure 4.3: Illustration of LFR.

4.2 Results on Undirected graph - LFR benchmark graph

Figure 4.4: Result of Di-WalkTrap ($Q_u=0.707$).

Figure 4.5: Result of WalkTrap ($Q_u = 0.327$).

Heatmap Jaccard Index Matrix

Figure 4.6: Di-WalkTrap - Heatmap Jaccard index Jaccard.

Figure 4.7: WalkTrap - Heatmap Jaccard index matrix.

4.3 Results on Directed graph - Gaussian random partition

Figure 4.8: Results of Di-Walktrap on directed graph.

Figure 4.9: Heatmap Jaccard index matrix.

Conclusion and Future work

- Proposed new distance formula based on the hitting times and the stationary distribution.
- After proposing a new definition of distance, we use a mechanism similar to the Walktrap algorithm to perform clustering.
- The relationship with eigenvalues, eigenvectors and SVD demonstrate our effective algorithm.
- In the future, deep intervention into the processes occurring in the graph will yield a lot of hidden information about the relationship between the vertices.

References

- [1] Newman, M. (2013). Spectral methods for community detection and graph partitioning. Physical review. E, Statistical, nonlinear, and soft matter physics. 88. 042822. 10.1103/PhysRevE.88.042822.
- [2] Leicht, EA & Newman, M. (2008). Community Structure in Directed Networks. Physical review letters. 100. 118703. 10.1103/PhysRevLett.100.118703.
- [3] Phan Thi Ha Duong, Do Duy Hieu and Dang Tien Dat, Community detection methods for directed graphs (preprint), 2022.
- [4] P. Pons and M. Latapy. Computing communities in large networks using random walks, Journal of Graph Algorithms and Applications, volume 10. no. 2, 2006, Pages 191–218, 2006.

Thanks for your attention.