Exploração e visualização de dados

Gilberto Pereira Sassi

Departamento de Estatística Instituto de Matemática e Estatística

Preparando o ambiente

- Em casa, você pode usar:
 - colab.research.google.com/#create=true&language=r;
 - posit.cloud.
- No seu dia-a-dia, recomenda-se instalar o R com versão pelo menos
 - 4.1: cran.r-project.org.
- IDE recomendadas: RStudio e VSCode.
 - Caso você queira usar o VSCode, instale a extensão da linguagem R.
- Neste curso, usaremos o framework tidyverse:
 - Instale o framework a partir do repositório CRAN: install.packages("tidyverse")
- Outras linguagens interessantes: python e julia.
 - python: linguagem interpretada de próposito geral, contemporânea do R, simples e fácil de aprender.
 - julia: linguagem interpretada para análise de dados, lançada em 2012, promete simplicidade e velocidade.

A linguagem R:

uma introdução

O precursor do R: S.

- R é uma linguagem derivada do S.
- S foi desenvolvido em fortran por John Chambers em 1976 no Bell Labs.
- S foi desenvolvido para ser um ambiente de análise estatística.
- Filosofia do S: permitir que usuários possam analisar dados usando estatística com pouco conhecimento de programação.

História do R

- Em 1991, Ross Ihaka e Robert Gentleman criaram o R na Nova Zelândia.
- Em 1996, Ross e Robert liberam o R sob a licença "GNU General License", o que tornou o R um software livre.
- Em 1997, The Core Group é criado para melhorar e controlar o código fonte do R.

Porque usar R

- Constante melhoramento e atualização.
- Portabilidade (roda em praticamente todos os sistemas operacionais).
- Grande comunidade de desenvolvedores que adicionam novas capacidades ao R através de pacotes.
- Gráficos de maneira relativamente simples.
- Interatividade.
- Um grande comunidade de usuários (especialmente útil para resolução de problemas).

Onde estudar fora de aula?

Livros

Recomendo principalmente o livro R for Data Science.

- Nível Iniciante: R Tutorial na W3Schools.
- **Nível Iniciante:** Hands-On Programming with R.
- Nível Iniciante: R for Data Science.
- **Nível Intermediário:** Advanced R.

Livros em português

- Nível cheguei agora aqui: zen do R.
- Nível Avançado: Advanced R.
- Nível Iniciante: material.curso-r.com.
- Nível Iniciante: ecoR.
- Nível Iniciante: analises-ecologicas.com.

Plataformas de ensino on-line

- Datacamp: datacamp.com
- Dataquest: dataquest.io

O que você pode fazer quando estiver em apuros?

consultar a documentação do R:

```
help(mean)
?mean
```

- Peça ajuda a um programador mais experiente.
- Conmsulte Rstudio community.
- Consulte pt.stackoverflow.com.
- Use ferramentas de busca como o google e duckduckgo.com.

```
sqrt("Gilberto")
```

 Na ferramenta de busca, pesquise por Error in sqrt("Gilberto"): non-numeric argument to mathematical function

Operações básicas

Soma

- 1 + 1
- [1] 2

Substração

- 2 1
- [1] 1

Divisão

- 3 / 2
- [1] 1.5

Potenciação

- 2^3
- [1] 8

Operações básicas Exercício

Qual o resultado das seguintes operações?

- $\mathbf{0}$ 5.32 + 7.99
- 2 5.55 10
- 3 3.33 * 5.12
- **4** 1 / 4.55
- **5** 5¹.23

Funções na linguagem R

Função: é uma ação e tem os seguinte componentes na ordem:

- nome da função
- parênteses
- argumentos posicionais
- argumentos nomeados

example:

```
read_xlsx('data/raw/casas.xlsx', sheet=1)
```

Funções na linguagem R Exercício

- Obtenha ajuda para mean usando a função help.
- Calcule o logaritmo de 10 na base 3 usando a função log.
- Leia o conjunto de dados amostra_enem_salvador.xlsx usando a função read_xlsx do pacote readxl.

Estrutura de dados no R

- Tipo de dados: caracter (character), número real (double), número inteiro (integer), número complexo (complex) e lógico (logical).
- Estrutura de dados: atomic vector (a estrutura de dados mais básicA no R), matrix, array, list e data.frame (tibble no tidyverse).
- Estrutura de dados Homogênea: vector, matrix e array.
- Estrutura de dados Heterôgenea: list e data.frame (tibble no tidyverse).

Tipo de dados no R

Número inteiro

```
class(1L)
[1] "integer"
```

Número real

```
class(1.2)
```

```
[1] "numeric"
```

Número complexo

```
class(1 + 1i)
```

```
[1] "complex"
```

Tipo de dados no R

Número lógico ou valor booleano

```
class(TRUE)
[1] "logical"
```

Caracter ou string

```
class("Gilberto")
```

[1] "character"

Vetor

- Agrupamento de valores de mesmo tipo em um único objeto.
- Criação de vetor:
 - c(...):
 - vector('<tipo de dados>', <comprimento do vetor>);
 - seq(from = a, to = b, by = c);
 - seq_along(<vetor>) vetor de números inteiros com o mesmo trabalho de <vetor>;
 - seq_len(<número inteiro>) vetor de números inteiros com o tamanho <número inteiro>;
 - <número inicial>:<número final> sequência de números inteiros entre <número inicial> e <número final>
- Podemos checar o tipo de dados de um vetor com a função class.

Vetor de caracteres

```
nomes <- c("Gilberto", "Sassi")</pre>
class(nomes)
```

```
[1] "character"
```

nomes

```
[1] "Gilberto" "Sassi"
```

```
texto_vazio <- vector("character", 3)</pre>
class(texto_vazio)
```

```
[1] "character"
```

```
texto_vazio
```

[1] "" "" ""

Vetor de números reais

```
vetor_real <- c(0.2, 1.35)
class(vetor_real)
[1] "numeric"
vetor_real
[1] 0.20 1.35
vetor real <- vector("double", 3)</pre>
vetor real
[1] 0 0 0
vetor_real \leftarrow seq(from = 1, to = 3.5, by = 0.5)
vetor real
[1] 1.0 1.5 2.0 2.5 3.0 3.5
```

Vetor de números inteiros

```
vetor inteiro <- c(1L, 2L)
class(vetor inteiro)
[1] "integer"
vetor inteiro
[1] 1 2
vetor_inteiro <- vector("integer", 3)</pre>
vetor_inteiro
[1] 0 0 0
vetor_inteiro <- 1:4</pre>
vetor_inteiro
[1] 1 2 3 4
```

```
vetor_real <- seq_along(nomes)</pre>
class(vetor real)
[1] "integer"
vetor_real
[1] 1 2
vetor_real <- seq_len(5)</pre>
class(vetor_real)
[1] "integer"
vetor_real
```

[1] 1 2 3 4 5

Vetor lógico

```
vetor_logico <- c(TRUE, FALSE)
class(vetor_logico)

[1] "logical"</pre>
```

vetor_logico

[1] TRUE FALSE

```
vetor_logico <- vector("logical", 3)
vetor_logico</pre>
```

[1] FALSE FALSE FALSE

Estrutura de dados homogênea Exercício

Crie os seguintes vetores:

- (TRUE TRUE FALSE)
- 3 ("Marx" "Engels" "Lênin")
- **4** (1 2 3)

Operações com vetores númericos (double, integer e complex).

- Operações básicas (operação, substração, multiplicação e divisão) realizada em cada elemento do vetor.
- Slicing: extrair parte de um vetor (não precisa ser vetor numérico).

Slicing

```
vetor <- c("a", "b", "c", "d", "e", "f", "g", "h", "i") # selecionado todos os elementos entre o primeiro e o quinta vetor[1:5]
```

```
[1] "a" "b" "c" "d" "e"
```

Adição (vetores númericos)

```
vetor_1 <- 1:5
vetor_2 <- 6:10
vetor_1 + vetor_2</pre>
```

```
[1] 7 9 11 13 15
```

Substração (vetores numéricos)

```
vetor_1 <- 1:5
vetor_2 <- 6:10
vetor_2 - vetor_1</pre>
```

[1] 5 5 5 5 5

Multiplicação (vetores numéricos)

```
vetor_1 <- 1:5
vetor_2 <- 6:10
vetor_2 * vetor_1</pre>
```

[1] 6 14 24 36 50

Divisão (vetores numéricos)

```
vetor_1 <- 1:5
vetor_2 <- 6:10
vetor_2 / vetor_1</pre>
```

[1] 6.000000 3.500000 2.666667 2.250000 2.000000

Estrutura de dados homogênea Exercício

Realize as seguintes operações envolvendo vetores:

- (3) $(1 \ 2 \ 3) * (0,1 \ 0,05 \ 0,33)$ (4) $(1 \ 2 \ 3) / (0,1 \ 0,05 \ 0,33)$

Matriz

- Agrupamento de valores de mesmo tipo em um único objeto de dimensão 2.
- Criação de matriz:
 - matrix(..., nrow = <integer>, ncol = <integer>, byrow = TRUE) - preenche a matriz a partir das linhas se byrow = TRUE;
 - diag(<vector>) diagonal principal igual a <vetor> e outros elementos zero;
 - rbind() especificação das linhas da matriz;
 - cbind() especificação das colunas da matriz.

Matriz de caracteres

[,1] [,2] [1,] 0 0.5 [2,] 1 1.5

Matriz de inteiros

```
matriz_inteiro <- cbind(c(1L, 2L), c(3L, 4L))
matriz_inteiro

[,1] [,2]
[1,] 1 3
[2,] 2 4</pre>
```

Matriz de valores lógicos

```
matriz_logico <- matrix(c(TRUE, F, F, T), nrow = 2)
matriz_logico</pre>
```

```
[,1] [,2]
[1,] TRUE FALSE
[2,] FALSE TRUE
```

Array

- Agrupamento de valores de mesmo tipo em um único objeto em duas ou mais dimensões.
- Criação de array: array(..., dim = <vector of integers>).

```
\begin{array}{rll} {\rm dados\_matriz\_1} & <& 10:13\\ {\rm dados\_matriz\_2} & <& -14:17\\ {\rm resultado} & <& -{\rm array}(c({\rm dados\_matriz\_1},\ {\rm dados\_matriz\_2}),\\ &&&& {\rm dim} = c(2,\ 2,\ 2))\\ {\rm resultado} \end{array}
```

```
, , 1
    [,1] [,2]
[1,] 10 12
[2,] 11
         13
```

[,1] [,2] [1,] 14 16 [2,] 15

17

, , 2

Operações com matrizes númericas (double, integer e complex).

- Operações básicas (operação, substração, multiplicação e divisão) realizada em cada elemento das matrizes.
- Outras operações:
 - Multiplicação de matrizes;
 - Inversão de matrizes:
 - Matriz transposta;
 - Determinante:
 - Solução de sistema de equações lineares.

Matrizes

```
matriz_a <- rbind(c(1, 2), c(0, 3))
matriz_b <- matrix(runif(4), ncol = 2)</pre>
```

Soma

```
matriz_soma <- matriz_a + matriz_b
matriz_soma</pre>
```

```
[,1] [,2]
[1,] 1.2832783 2.678966
[2,] 0.9676014 3.515805
```

Subtração

```
matriz_menos <- matriz_a - matriz_b
matriz_menos
```

```
[,1] [,2]
[1,] 0.7167217 1.321034
[2,] -0.9676014 2.484195
```

Produto de Hadamard

- Multiplicação de matrizes, elemento por elemento.
- Para detalhes consulte produto de Hadamard.

```
matriz_hadamard <- matriz_a * matriz_b
matriz_hadamard</pre>
```

Multiplicação de matrizes

```
matriz_multiplicacao <- matriz_a %*% matriz_b
matriz_multiplicacao</pre>
```

```
[,1] [,2]
[1,] 2.218481 1.710576
[2,] 2.902804 1.547416
```

Matriz inversa

```
matriz_inversa <- solve(matriz_a)
matriz_inversa</pre>
```

```
[,1] [,2]
[1,] 1 -0.6666667
[2,] 0 0.3333333
```

matriz_a %*% matriz_inversa

```
[,1] [,2]
[1,] 1 0
[2,] 0 1
```

Matriz transposta

```
matriz_transposta <- t(matriz_a)
matriz_transposta</pre>
```

```
[,1] [,2]
[1,] 1 0
[2,] 2 3
```

Determinante

```
det(matriz_a)
```

[1] 3

Solução de sistema de equações lineares

```
b <- c(1, 2)
solve(matriz_a, b)</pre>
```

[1] -0.3333333 0.6666667

Matriz inversa generalizada

G é a matriz inversa generalizada de A se $A \cdot G \cdot A = A$. Para detalhes vide matriz inversa generalizada.

```
p_load(MASS) # ginv é uma função do pacote MASS
ginv(matriz_a)
```

```
[,1] [,2]
[1,] 1.000000e+00 -0.6666667
[2,] -2.775558e-17 0.3333333
```

Operações com matrizes

Outras operações com matrizes.

Operador ou função	Descrição
A %o% B	produto diádico $A \cdot B^T$
<pre>crossprod(A, B)</pre>	$A \cdot B^T$
<pre>crossprod(A)</pre>	$A \cdot A^T$
diag(x)	retorna uma matrix diagonal
	com diagonal igual a x
diag(A)	retorna um vetor com a diagona
	de <i>A</i>
diag(k)	retorna uma matriz diagona de
	ordem k

Estrutura de dados homogênea Exercício

Realize as seguinte operações envolvendo as matrizes:

3 Multiplicação de matriz:
$$\begin{pmatrix} 1 & 0 \\ 2 & 0, 5 \end{pmatrix} \cdot \begin{pmatrix} 0, 1 & 0 \\ 0 & 0, 5 \end{pmatrix}$$

6 Resolva o seguinte sistema de equações:
$$\begin{cases} x + 2y = 21 \\ x - 2y = 1 \end{cases}$$

6 Encontre a matriz inversa de
$$\begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix}$$
.

Estrutura de Dados Heterogênea

Lista

- Agrupamento de valores de tipos diversos e estrutura de dados
- Criação de listas: list(...) e vector("list", <comprimento da lista>)

```
$pedido_id
[1] 8001406
$nome
[1] "Fulano"
$sobrenome
[1] "de Tal"
$cpf
[1] "12345678900"
$itens
$itens[[1]]
$itens[[1]]$descricao
[1] "Ferrari"
$itens[[1]]$frete
[1] 0
$itens[[1]]$valor
[1] 5e+05
$itens[[2]]
$itens[[2]]$descricao
[1] "Dolly"
$itens[[2]]$frete
[1] 1.5
$itens[[2]]$valor
[1] 3.9
```

Estrutura de dados heterogênea Exercício

Crie uma lista, chamada informacoes_pessoais com os seguintes campos:

nome: seu nome

idade: sua idade

- informacao_profissional: uma lista com os seguintes campos:
 - matricula: escolaridade
 - origem: variável qualitativa com a sua cidade de origem.
- matriz: inclua uma matriz de números reais de dimensão 2 × 2

Operação com listas

- slicing [] extrai parte da lista (valor retornado é uma lista).
- Acessando k-ésimo valor da lista: lista[[k]].
- Acessando um valor da lista pela chave (nome do campo): lista\$cpf.
- Concatenação de listas: c().

Slicing

```
lista_info[c(2, 4)]
```

\$nome
[1] "Fulano"

\$cpf
[1] "12345678900"

Acessando elemento pela posição

```
lista_info[[2]]
```

[1] "Fulano"

Acessando elemento pela chave

```
lista_info$nome
```

```
[1] "Fulano"
```

Concatenação de listas

```
lista_1 <- list(1, 2)
lista_2 <- list("Gilberto", "Sassi")
lista_concatenada <- c(lista_1, lista_2)
lista_concatenada</pre>
```

```
[[1]]
[1] 1
[[2]]
```

[1] 2

```
[[3]]
```

```
[[4]]
[1] "Sassi"
```

[1] "Gilberto"

Estrutura de dados heterogênea Exercício

Recupe e imprima as seguintes informações da lista informacoes_pessoais:

- os três primeiros campos de informacoes_pessoais
- os nomes dos campos de informacoes_pessoais
- campo nome de informacoes_pessoais
- o terceiro campo de informacoes_pessoais

Estrutura de Dados Heterogênea

Tidy data

- Dados em formato de tabela.
- Cada coluna é uma variável e cada linha é uma observação.

tibble (data frame)

- Estrutura de dados tabular.
- Assumimos que os dados estão tidy.
- Criação de tibble: tibble(...) e tribble(...).
- glimpse mostra as informações do tibble.

```
p_load(tidyverse) # carregando o framework tidyverse
data_frame <- tibble(
  nome = c("Marx", "Engels", "Rosa", "Lênin", "Olga Benário"),
  idade = c(22, 23, 21, 24, 30)
)
glimpse(data_frame)</pre>
```

\$ nome <chr> "Marx", "Engels", "Rosa", "Lênin", "Olga Benário"

Rows: 5 Columns: 2

\$ idade <dbl> 22, 23, 21, 24, 30

Valores especiais em R

Valores especiais	Descrição	Função para identificar
NA	Valor faltante.	is.na()
NaN	Resultado do cálculo indefinido.	is.nan()
Inf	Valor que excede o valor máximo que sua máquina aguenta.	<pre>is.inf()</pre>
NULL	Valor indefinido de expressões e funções (diferente de NaN e NA)	is.null()

Operações básicas em um tibble

Função	Descrição
head()	Mostra as primeiras linhas de um tibble
tail()	Mostra as últimas linhas de um tibble
<pre>glimpse()</pre>	Impressão de informações básicas dos dados
add_case()	Adiciona uma nova observação
add_row()	Adiciona uma nova observação

```
head(data_frame, n=2)
```

A tibble: 2 x 2 nome idade <chr> <dbl>

1 Marx 22 2 Engels 23

tail(data_frame, n=2)

A tibble: 2 x 2 nome

2 Olga Benário

1 Lênin

idade

<chr>

<dbl>

24

30

Estrutura de dados heterogênea Exercício

Realize as seguintes operações no dataset iris (disponível no R):

- imprima um resumo sobre o dataset iris.
- pegue as 5 primeiras linhas de iris.
- pegue as 5 últimas linhas de iris.
- crie na mão o seguinte conjunto de dados:

nomes	origem
Fidel Castro Ernesto 'Che' Guevara Célia Sánchez	Cuba Cuba Cuba

Organização é fundamental

O nome de um objeto precisa ter um significado.

O nome deve indicar e deixar claro o que este objeto é ou faz.

- Use a convenção do R:
 - Use apenas letras minúsculas, números e underscore (comece sempre com letras minúsculas).
 - Nomes de objetos precisam ser substantivos e precisam descrever o que este objeto é ou faz (seja conciso, direto e significativo).
 - Evite ao máximo os nomes que já são usados (buit-in) do R.Por exemplo: c.
 - Coloque espaço depois da vírgula.
 - Não coloque espaço antes nem depois de parênteses. Exceção: Coloque um espaço () antes e depois de if, for ou while, e coloque um espaço depois de ().
 - Coloque espaço entre operadores básicos: +, -, *, == e outros. Exceção: ^.

Estrutura de diretórios

Mantenha uma estrutura (organização) consistente de diretórios em seus projetos.

- Sugestão de estrutura:
 - dados: diretório para armazenar seus conjuntos de dados.
 - brutos: dados brutos.
 - processados: dados processados.
 - scripts: código fonte do seu projeto.
 - figuras: figuras criadas no seu projeto.
 - output: outros arquivos que não são figuras.
 - legado: arquivos da versão anterior do projeto.
 - notas: notas de reuniões e afins.
 - relatorio (ou artigos): documento final de seu projeto.
 - documentos: livros, artigos e qualquer coisa que são referências em seu projeto.

Para mais detalhes, consulte esse guia do curso-r: diretórios e .Rproj.

Leitura de arquivos no formato xlsx ou xls

- Pacote: readxl
- Parêmetros das funções read_xls (arquivos .xls) e read_xlsx (arquivos .xlsx):
 - path: caminho até o arquivo.
 - sheet: especifica a planilha do arquivo que será lida.
 - range: especifica uma área de uma planilha para leitura. Por exemplo: B3:E15.
 - col_names: Argumento lógico com valor padrão igual a TRUE. Indica se a primeira linha tem o nome das variáveis.

Para mais detalhes, consulte a documentação: documentação de read_xl.

Leitura de arquivos no formato x1sx ou x1s

```
p_load(tidyverse)
p_load(readxl)
dados_iris <- read_xlsx("dados/brutos/iris.xlsx")
dados_iris <- clean_names(dados_iris)
glimpse(dados_iris)</pre>
```

```
Rows: 150
Columns: 5
$ comprimento_sepala <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4,
$ largura_sepala <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9,
$ comprimento_petala <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4,
$ largura_petala <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2,
$ especies <chr> "setosa", "setosa", "setosa", "setosa", "setosa", "set
```

Lendo dados no R Exercício

Leia o $dataset \; {\tt dados_leitura.xlsx} \; {\tt usando} \; {\tt o} \; {\tt pacote} \; {\tt readxl}.$

As formatações dos arquivos csv

 csv: comma separated values (valores separados por coluna). O separador varia em diferentes sistemas de medidas.

- No sistema métrico:
 - As casas decimais são separadas por ,
 - O agrupamento de milhar é marcada por .
 - As colunas dos arquivos de texto são separadas por ;

- No sistema imperial inglês (UK e USA):
 - As casas decimais são separadas por .
 - O agrupamento de milhar é marcada por ,
 - As colunas dos arquivos de texto são separadas por ,

Preste atenção em como o seus dados estão armazenados!

Leitura de arquivos no formato csv

- Pacote: readr do tidyverse (instale com o comando install.packages('readr')).
- Parêmetros das funções read_csv (sistema imperial inglês) e read_csv2 (sistema métrico):
 - path: caminho até o arquivo.

Para mais detalhes, consulte a documentação oficial do *tidyverse*: documentação de read_r.

Leitura de arquivos no formato csv

```
dados_mtcarros <- read_csv2("dados/brutos/mtcarros.csv")
dados_mtcarros <- clean_names(dados_mtcarros)
glimpse(dados_mtcarros)</pre>
```

```
Rows: 32
Columns: 11
$ milhas por galao <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8,~
$ cilindros
                 <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4,~
$ cilindrada
                 <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.~
$ cavalos forca
                 <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 1~
                 <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92,~
$ eixo
$ peso
                 <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.19~
$ velocidade
                 <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.0~
$ forma
                 <dbl> 0. 0. 1. 1. 0. 1. 0. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 1.~
                 $ transmissao
                 <db1> 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4,~
$ marchas
$ carburadores
                 <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1,~
```

Lendo dados no R Exercício

Leia o dataset dados_leitura.csv usando o pacote readr.

Leitura de arquivos no formato ods

- Pacote: readODS (instale com o comando install.packages('readODS')).
- Parêmetros das funções read_ods:
- path: caminho até o arquivo.
 - sheet: especifica a planilha do arquivo que será lida.
 - range: especifica uma área de uma planilha para leitura. Por exemplo: B3:E15.
 - col_names: Argumento lógico com valor padrão igual a TRUE. Indica se a primeira linha tem o nome das variáveis.

Para mais detalhes, consulte a documentação do *readODS*: documentação de readODS.

Lendo dados no R

Leitura de arquivos no formato ods

Rows: 60

\$ dose

```
p_load(readODS)
dados_dentes <- read_ods("dados/brutos/crescimento_dentes.ods")
dados_dentes <- clean_names(dados_dentes)
glimpse(dados_dentes)</pre>
```

```
Columns: 3
$ comprimento <dbl> 4.2, 11.5, 7.3, 5.8, 6.4, 10.0, 11.2, 11.2,
$ suplemento <chr> "Vitamina C", "Vitamina C", "Vitamina C", "V
```

Lendo dados no R Exercício

Leia o $dataset \; {\tt dados_leitura.ods} \; {\tt usando} \; {\tt o} \; {\tt pacote} \; {\tt readODS}.$

Exportando dados no R

Salvar no formato .csv (sistema métrico)

write_csv2 é parte do pacote readr.

```
write_csv2(dados_dentes, file = "dados/processados/nome.csv")
```

Salvar no formato .xlsx

write_xlsx é parte do pacote writexl.

```
write_xlsx(dados_dentes, path = "dados/processados/nome.xlsx")
```

Salvar no formato ods

write_ods é parte do pacote readODS.

```
write_ods(dados_toothgrowth, path = "dados/processados/nome.ods")
```

Salvando dados no R Exercício

- Salve o objeto milhas do pacote dados como milhas.ods na pasta output do seu projeto.
- 2 Salve o objeto diamante do pacote dados como diamante.csv na pasta output do seu projeto.
- Salve o objeto velho_fiel do pacote dados como velho_fiel.xlsx na pasta output do seu projeto.

O operador pipe

O valor resultante da expressão do lado esquerdo vira primeiro argumento da função do lado direito.

Principal vantagem: simplifica a leitura e a documentação de funções compostas.

Executar

é exatamente a mesma coisa que executar

$$x \mid > f(y)$$

```
log(sqrt(sum(x<sup>2</sup>)))
```

é exatamente a mesma coisa que executar

```
x^2 > sum() > sqrt() > log()
```

Fazendo um bolo

Exemplo adaptado de 6.1 O operador pipe.

Para cozinhar o bolo precisamos usar as seguintes funções:

- acrescente(lugar, algo)
- misture(algo)
- asse(algo)

```
    Passo 1:

acrescente(
  "tigela vazia",
  "farinha"
  Passo2:
acrescente(
  acrescente(
    "tigela vazia",
    "farinha"
  "ovos"
```

```
• Passo3:
acrescente(
  acrescente(
    acrescente(
      "tigela vazia",
      "farinha"
    "ovos"
  "leite"
```

```
• Passo4:
acrescente(
  acrescente(
    acrescente(
      acrescente(
        "tigela vazia",
        "farinha"
      "ovos"
    "leite"
  "fermento"
```

```
• Passo 5:
misture(
  acrescente(
    acrescente(
      acrescente(
        acrescente(
          "tigela vazia",
          "farinha"
        "ovos"
      "leite"
    "fermento"
```

```
• Passo 6:
asse(
  misture(
    acrescente(
      acrescente(
        acrescente(
          acrescente(
            "tigela vazia",
            "farinha"
          "ovos"
        "leite"
      "fermento"
```

Usando o operador |>.

asse()

```
acrescente("tigela vazia", "farinha") |>
  acrescente("ovos") |>
  acrescente("leite") |>
  acrescente("fermento") |>
  misture() |>
```


Estatística Descritiva no R Conceitos básicos

- População: todos os elementos ou indivíduos alvo do estudo.
- Amostra: parte da população.
- Parâmetro: característica numérica da população. Usamos letras gregas para denotar parâmetros populacionais.
- Estatística: função ou cálculo da amostra
- Estimativa: característica numérica da amostra, obtida da estatística computada na amostra. Em geral, usamos uma estimativa para estimar o parâmetro populacional.
- Variável: característica mensurável comum a todos os elementos da população.
 - Usamos letras maiúsculas do alfabeto latino para representar uma variável.
 - Usamos letras minúsculas do alfabeto latino para representar o valor observado da variável em um elemento da amostra.

Estatística Descritiva no R Conceitos básicos

Exemplo

- População: todos os eleitores nas eleições gerais de 2022.
- Amostra: 3.500 pessoas abordadas pelo datafolha.
- Variável: candidato a presidente de cada pessoa.
- Parâmetro: porcentagem de pessoas que escolhem Lula como presidente entre todos os eleitores.
- Estatística: porcentagem de pessoas que escolhem o lula
- Estimativa: porcentagem de pessoas que escolhem Lula como presidente entre todos os eleitores da amostra de 3.500 pessoas entrevistas pelo datafolha.

Classificação de variáveis

Figura 1: Classificação de variáveis.

Tabela de frequência Variável qualitativa

A primeira coisa que fazemos é contar!

X	frequência	frequência relativa	porcentagem
B_1	n_1	f_1	100 · f ₁ %
B_2	n_2	f_2	$100 \cdot f_2\%$
:	:	:	:
B_k	n_k	f_k	$100 \cdot f_k\%$
Total	n	1	100%

Em que n é o tamanho da amostra.

Tabela de distribuição de frequências Variável qualitativa

- Pacote: janitor.
- tabyl: cria a tabela de distribuição de frequências e tem os seguintes parâmetros:
 - dat: data frame ou vetor com os valores da variável que desejamos tabular.
 - var1: nome da primeira variável.
 - var2: nome da segunda variável (opcional).
- adorn_totals: adiciona uma linha com os totais de cada coluna
- adorn_pct_formatting: acrescenta o sinal de porcentagem e tem o seguinte parâmetro:
 - digits: o número de casas decimais depois da vírgula
- rename (do pacote dplyr) muda os nomes das colunas para português no seguinte formato:
 - "novo nome" = "velho nome"

Para mais detalhes, consulte a documentação oficial do *janitor*. documentação de taby1.

Tabela de distribuição de frequências Variável qualitativa

```
dados_iris <- read_xlsx("dados/brutos/iris.xlsx")
tab <- tabyl(dados_iris, especies) |>
   adorn_totals() |>
   adorn_pct_formatting(digits = 2) |>
   rename(
    "Espécies" = especies, "Frequência" = n,
    "Porcentagem" = percent
)
tab
```

```
Espécies Frequência Porcentagem setosa 50 33.33% versicolor 50 33.33% virginica 50 33.33% Total 150 100.00%
```

Tabela de distribuição de frequências Variável qualitativa Exercício

Para o conjunto de dados amostra_enem_salvador.xlsx, construa a tabela de distribuição de frequências para as seguintes variáveis:

- tp_sexo: gênero que a pessoa se identifica (segundo classificação usada pelo IBGE)
- tp_cor_raca: raça (segundo classificação usada pelo IBGE)

Tabela de distribuição de frequências Variável quantitativa discreta

Muito semelhante a tabela de distribuição de frequência para variáveis qualitativas.

X	frequência	frequência relativa	porcentagem
	n_1	f_1	$100 \cdot f_1\%$
x_2	n_2	f_2	$100 \cdot f_2\%$
:	:	:	:
x_k	n_k	f_k	$100 \cdot f_k\%$
Total	n	1	100%

Em que n é o tamanho da amostra e $\{x_1, \ldots, x_k\}$ são os números que são valores únicos de X na amostra.

Tabela de distribuição de frequências Variável quantitativa discreta

```
dados_mtcarros <- read_csv2("dados/brutos/mtcarros.csv")
tab <- tabyl(dados_mtcarros, carburadores) |>
   adorn_totals() |>
   adorn_pct_formatting(digits = 2) |>
   rename(
    "Carburadores" = carburadores, "Frequência" = n,
    "Porcentagem" = percent
)
tab
```

```
      Carburadores
      Frequência
      Porcentagem

      1
      7
      21.88%

      2
      10
      31.25%

      3
      3
      9.38%

      4
      10
      31.25%

      6
      1
      3.12%

      8
      1
      3.12%

      Total
      32
      100.00%
```

Tabela de distribuição de frequências Variável quantitativa discreta Exercício

Para o conjunto de dados amostra_enem_salvador.xlsx, construa a tabela de distribuição de frequências para a variável q005: número de pessoas que moram na casa da(o) candidata(o).

Tabela de frequência Variável quantitativa contínua

X: variável quantitativa contínua

Tabela 7: Tabela de frequências para a variável quantitativa contínua.

Х	Frequência	Frequência relativa	Porcentagem
$[l_0, l_1)$ $[l_1, l_2)$	n ₁ n ₂	$f_1 = \frac{n_1}{n_1 + \dots + n_k}$ $f_2 = \frac{n_2}{n_1 + \dots + n_k}$	$p_1 = f_1 \cdot 100$ $p_2 = f_2 \cdot 100$
$\vdots \\ [I_{k-1}, I_k]$: n _k	$f_k = \frac{\vdots}{n_k + \dots + n_k}$	$p_k = f_k \cdot 100$

- menor valor de $X = I_0 \le I_1 \le \cdots \le I_{k-1} \le I_k = \text{maior valor de } X$
- n_i é número de valores de X entre l_{i-1} e l_i
- I₀, I₁,..., I_k quebram o suporte da variável X (breakpoints).
 I₀, I₁,..., I_k são escolhidos de acordo com a teoria por trás da análise de dados

Recomendações:

- use l_0, l_1, \dots, l_k igualmente espaçados
 - e use a regra de Sturges para determinar o valor de k:
 - $k = 1 + \log 2(n)$ onde n é tamanho da amostra
 - Se $1 + \log 2(n)$ onde n e tanianno da anostra • Se $1 + \log 2(n)$ não é um número inteiro, usamos $k = \lceil 1 + \log 2(n) \rceil$.

Tabela de frequência Variável quantitativa contínua

Primeiro agrupamos os valores em faixas usando a regra de Sturges.

Usamos a função cut, com os seguintes argumentos:

- breaks número de intervalos ou os limites dos intervalos;
- include.lowest se TRUE inclue o valor à esquerda no intervalo;
- right se TRUE inclue o valor à direita no intervalo.

Usamos a função mutate para adicionar uma nova coluna em um tibble, com os seguintes argumentos:

- data tibble para adicionar uma nova coluna;
- <nome da variavel> = <vetor> adicione uma ou mais colunas separadas por vírgula.

```
k <- ceiling(1 + log(nrow(dados_iris)))
dados_iris2 <- mutate(
   dados_iris,
   comprimento_sepala_int = cut(
      comprimento_sepala,
      breaks = k,
      include.lowest = TRUE,
      right = FALSE
   )
)
glimpse(dados_iris2)</pre>
```

<dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2,

\$ largura_petala

Tabela de frequência Variável quantitativa contínua

Agora podemos contar a frequência de cada intervalo.

```
tabyl(dados_iris2, comprimento_sepala_int) |>
  adorn_totals() |>
  adorn_pct_formatting(digits = 2) |>
  rename(
    "Comprimento de sépala" = comprimento_sepala_int,
    "Frequência absoluta" = n,
    "Porcentagem" = percent
)
```

Comprimento de sépala Frequ	ência absoluta	Porcentagem
[4.3,4.81)	16	10.67%
[4.81.5.33)	30	20.00%

21.0,1.01/		_ 0 . 0 . 70
[4.81,5.33)	30	20.00%
[E 33 E 84)	3/1	22 67%

[5.33, 5.84)34 22.67% [5.84, 6.36)18.67% 28

[6.36, 6.87)16.67% 25

[6.87, 7.39)6.67% 10 [7.39, 7.9]7 4.67%

Total 150 100.00%

Tabela de frequência Variável quantitativa contínua Exercício

Para o conjunto de dados amostra_enem_salvador.xlsx, construa as seguintes tabelas de distribuição de frequências:

- nu_nota_mt (nota da prova em matemática): l_0, l_1, \ldots, l_k são igualmente espaços com $l_k l_{k-1} = 100$
- nu_nota_cn (nota da prova de ciências humanas): use a regra de Sturges

Gráficos usando ggplot2

- Pacote: ggplot2.
- Permite gráficos personalizados com uma sintaxe simples e rápida, e iterativa por camadas.
- Começamos com um camada com os dados ggplot(dados), e vamos adicionando as camadas de anotações, e sumários estatísticos.
- Usa a gramática de gráficos proposta por Leland Wilkinson: Grammar of Graphics.
- Ideia desta gramática: delinear os atributos estéticos das figuras geométricas (incluindo transformações nos dados e mudança no sistema de coordenadas).

Para mais detalhes, você pode consultar ggplot2: elegant graphics for data analysis e documentação do ggplot2.

Estrutura básica de ggplot2

Você pode usar diversos temas e extensões que a comunidade cria e criou para melhorar a aparência e facilitar a construção de ggplot2.

Lista com extensões do ggplot2: extensões do ggplot2.

Indicação de extensões:

- Temas adicionais para o pacote ggplot2: ggthemes.
- Gráfico de matriz de correlação: ggcorrplot.
- Gráfico quantil-quantil: qqplotr.

Gráficos usando ggplot2

Gráfico de barras no ggplot2

- Argumentos adicionais:
 - fill: mudar a cor do preenchimento das figuras geométricas.
 - color: mudar a cor da figura geométrica.
- Rótulos dos eixos
 - Mudar os rótulos: labs(x = <rótulo do eixo x>, y = <rótulo do eixo y>).
 - Trocar o eixo-x pelo eixo-y: coord_flip().

Gráfico de barras Variável qualitativa

Gráfico de barras para a variável qualitativa especies do conjunto de dados iris.xlsx.

```
ggplot(dados_iris) +
  geom_bar(mapping = aes(especies), fill = "blue") +
  labs(x = "Espécies", y = "Frequência") +
  theme_minimal()
```


Gráfico de barras Variável qualitativa Exercício

Para o conjunto de dados amostra_enem_salvador.xlsx, construa o gráfico de barras para as seguintes variáveis:

- tp_sexo: gênero que a pessoa se identifica (segundo classificação do IBGE);
- tp_cor_raca: raça autodeclarada (segundo classificação do IBGE).

Tabela de distribuição de frequências Variável quantitativa discreta

De maneira similar, podemos contar quantas vezes cada valor de uma variável quantitativa discreta foi amostrado.

X	frequência	frequência relativa	porcentagem
<i>x</i> ₁	n_1	f_1	$100 \cdot f_1\%$
<i>x</i> ₂	n_2	f_2	$100 \cdot f_2\%$
<i>X</i> ₃	n_3	f_3	$100 \cdot f_3\%$
:	:	<u>:</u>	:
x_k	n_k	f_k	$100 \cdot f_k\%$
Total	n	1	100%

Em que n é o tamanho da amostra.

Tabela de distribuição de frequências Variável quantitativa discreta

Vamos construir a tabela de distribuição de frequências para a variável quantitativa discreta carburadores do conjunto de dados mtcarros.

```
tab <- tabyl(dados_mtcarros, carburadores) |>
  adorn_totals() |>
  adorn_pct_formatting(digits = 2) |>
  rename(
    "Número de carburadores" = carburadores,
    "Frequência (absoluta)" = n,
    "Porcentagem" = percent
)
tab
```

Numero	αe	carburadores	Frequencia	(absoluta)	Porcentagem	
		1		7	21.88%	
		2		10	31.25%	
		3		3	9.38%	
		4		10	31.25%	

3.12%

3.12%

100.00%

32

6

8

Total

Gráfico de barras Variável quantitativa discreta

Gráfico de barras para a variável quantitativa discreta carburadores do conjunto de dados mtcarros.csv.

- after_stat(prop) retorna a frequência relativa ou proporção de um valor (ou categoria) de uma variável.
- after_stat(count) retorna a frequência absoluta de um valor (ou categoria) de uma variável.

```
ggplot(dados_mtcarros) +
  geom_bar(
    mapping = aes(carburadores, after_stat(100 * prop)),
    fill = "#002f81"
) +
  labs(x = "Número de carburadores", y = "Porcentagem") +
  theme_minimal()
```


Gráfico de barras Variável quantitativa discreta Exercício

- Para a variável q005 do conjunto de dados amostra_enem_salvador.xlsx, construa o gráfico de barras onde o eixo y é a frequência absoluta.
- Para a variável q005 do conjunto de dados amostra_enem_salvador.xlsx, construa o gráfico de barras onde o eixo y é a frequência relativa.
- Para a variável q005 do conjunto de dados amostra_enem_salvador.xlsx, construa o gráfico de barras onde o eixo y é a porcentagem.

Histograma

Para variávieis quantitativas contínuas, geralmente não construímos gráficos de barras, e sim uma figura geométrica chamada de *histograma*.

- O histograma é um gráfico de barras contíguas em que a área de cada barra é igual à frequência relativa.
- Cada faixa de valor $[l_{i-1}, l_i), i = 1, ..., n$, será representada por um barra com área $f_i, i = 1, ..., n$.
- Como cada barra terá área igual a f_i e base $l_i l_{i-1}$, e a altura de cada barra será $\frac{f_i}{l_i l_{i-1}}$.
- $\frac{f_i}{I_i I_{i-1}}$ é denominada de densidade de frequência.
- Podemos usar os seguintes parâmetros (obrigatório o uso de apenas um deles):
 - bins: número de intervalos no histograma (usando, por exemplo, a regra de Sturges)
 - binwidth: tamanho (ou largura) dos intervalos
 - breaks: os limites de cada intervalo

Histograma

Figura 2: Representação de uma única barra de um histograma.

Denside de frequência

Histograma

```
ggplot(dados_iris) +
  geom_histogram(
   aes(x = comprimento_sepala, y = after_stat(density)),
  bins = k,
  fill = "#002f81"
) +
  theme_minimal() +
  labs(
   x = "Comprimento de Sépala",
   y = "Densidade de Frequência"
)
```


Histograma Exercício

- Para a variável nu_nota_mt do conjunto de dados amostra_enem_salvador.xlsx, construa o histograma onde os intervalos tem o mesmo tamanho igual a 100.
- Para a variável nu_nota_cn do conjunto de dados amostra_enem_salvador.xlsx, construa o histograma usando a regra de Sturge.

Histograma Linha de densidade

- Podemos adicionar uma linha que acompanha o formato do histograma.
- Chamamos esta linha de densidade.
- Podemos fazer isso com a função geom_density do pacote ggplot2.

```
ggplot(dados_iris, aes(x = comprimento_sepala,
                      y = after stat(density))) +
  geom histogram(
    bins = k,
   fill = "#002f81"
  ) +
  geom_density(size = 2, color = "red") +
  theme minimal() +
  labs(
    x = "Comprimento de Sépala",
   y = "Densidade de Frequência"
```


Histograma Exercício

- Para a variável nu_nota_mt do conjunto de dados amostra_enem_salvador.xlsx, construa o histograma onde os intervalos tem o mesmo tamanho igual a 100. Adicione a curva de densidade ao histograma.
- Para a variável nu_nota_cn do conjunto de dados amostra_enem_salvador.xlsx, construa o histograma usando a regra de Sturge. Adicione a curva de densidade ao histograma.

Medidas resumo Variável quantitativa

A ideia é encontrar um ou alguns valores que sintetizem todos os valores.

Medidas de posição (tendência central)

A ideia é encontrar um valor que representa bem todos os valores.

- Média: $\overline{x} = \frac{x_1 + \cdots + x_n}{n}$.
- Mediana: valor que divide a sequência ordenada de valores em duas partes iguais.
 - Ordene os valores do menor ao maior;
 - Valor que divide os valores entre os 50% menores e os 50% maoires:
 - 50% dos valores x_i satisfazem: $x_i \leq Mediana$;
 - 50% dos valores x_i satisfazem: $x_i \ge Mediana$.

Medidas resumo Variável quantitativa

Figura 3: Representação gráfica para nota em matemática, português, ciências naturais e ciências humanas.

A variáveis nota em matemática, nota em português, nota em ciências naturais, e nota em ciências humanas têm a mesma média, moda e mediana, mas as variáveis não são guais.

Precisamos analisar como os valores são distribuídos.

Medidas de dispersão

A ideia é medir a homogeneidade dos valores.

- Variância: $s^2 = \frac{(x_1 \overline{x})^2 + \dots + (x_n \overline{x})^2}{n-1}$.
- Desvio padrão: $s=\sqrt{s^2}$ (mesma unidade dos dados). Coeficiente de variação $cv=\frac{s}{v}\cdot 100\%$ (adimensional, ou seja, "sem unidade").

Podemos usar a função summarise do pacote dplyr (incluso no pacote tidyverse).

```
dados_iris |>
  summarise(
   media = mean(comprimento_sepala),
   mediana = median(comprimento_sepala),
   dp = sd(comprimento_sepala),
   cv = dp / media
)
```

Medidas resumo: exemplo

Podemos usar a função group_by para calcular medidas resumo por categorias de uma variável qualitativa.

```
tabela <- dados_iris |>
  group_by(especies) |>
  summarise(
   media = mean(comprimento_sepala),
   mediana = median(comprimento_sepala),
   dp = sd(comprimento_sepala),
   cv = dp / media
)
tabela
```

Medidas de resumo Exercício

- Calcule média, mediana, o desvio padrão e coeficiente de variação para a variável nu_nota_mt do conjunto de dados amostra_enem_salvador.xlsx por gênero (tp_sexo).
- Calcule média, mediana, o desvio padrão e coeficiente de variação para a variável nu_nota_cn do conjunto de dados amostra_enem_salvador.xlsx por gênero (tp_sexo).
- Calcule média, mediana, o desvio padrão e coeficiente de variação para a variável nu_nota_mt do conjunto de dados amostra_enem_salvador.xlsx por raça (tp_cor_raca).
- Calcule média, mediana, o desvio padrão e coeficiente de variação para a variável nu_nota_cn do conjunto de dados amostra_enem_salvador.xlsx por raça (tp_cor_raca).

Quantis

Ideia

q(p) é um valor que satisfaz;

- $100 \cdot p\%$ das observações x_i satisfazem $x_i \leq q(p)$
- 100 \cdot (1-p)% das observações satisfazem $x_i \geq q(1-p)$

Alguns quantis especiais

- Primeiro quartil: $q_1 = q(0,25)$
- Primeiro quartil: $q_2 = q(0,5)$
- Primeiro quartil: $q_3 = q(0,75)$

Quantis

- Existem diversas formas para calcular os quantis.
- Várias formas de calcular os quantis.
- Vamos ver apenas 9 formas neste curso usadas na linguagem R e propostas por Hyndman e Fan (1996).

Considere uma amostra x_1, \ldots, x_n . O *i*-ésimo menor valor da amostra é chamado de estatística de ordem *i* e é denotado por $x_{(i)}$. Mais precisamente:

$$\#\{x \in \{1,\ldots,n\} \mid x \leq x_{(i)}\} = i.$$

As aproximações dos quantis satisfazem a seguinte equação:

$$\hat{Q}(p) = (1 - \gamma)x_{(j)} + \gamma x_{(j+1)},$$

onde

- $j = |p \cdot n + m|$ onde $m \in \mathbb{R}$;
- $g = p \cdot n + m j$;
- $0 \le \gamma \le 1$ é uma função de g e j.

Vamos usar a variável dos dados apresentados na Tabela 2.1 (página 28 de Morettin e Bussab 2010):

```
dados_MB <- read_xlsx("dados/brutos/companhia_MB.xlsx")
p <- c(1/8, 1/4, 1/2, 3/4, 7/8)
salario <- dados_MB$salario</pre>
```

Quantis

Método 1 - type = 1

• m = 0; • $j = \lfloor p \cdot n \rfloor$;

- $g = p \cdot n \lfloor p \cdot n \rfloor;$
- $\bullet \ \gamma = \begin{cases} 1, & g > 0 \\ 0, & g = 0 \end{cases}.$

Método 2 - type = 2

Método implementado pelo SAS.

- m = 0;
- $j = |p \cdot n|$;

•
$$g = p \cdot n - \lfloor p \cdot n \rfloor$$
.

Método 3 - type = 3

•
$$m = -\frac{1}{2}$$
;
• $j = \lfloor p \cdot n + m \rfloor$;

•
$$g = p \cdot n + m - \lfloor p \cdot n + m \rfloor;$$

$M\'{e}todo 4 - type = 4$

•
$$g = p \cdot n - \lfloor p \cdot n \rfloor$$
.

•
$$\gamma = \begin{cases} f_i, & g > 0 \\ 0, & g = 0 \end{cases}$$
, em que $f_i = \frac{p - \frac{i}{n}}{\frac{1}{n}}$.

Quantis

Método 5 - type = 5

Método apresentado por Morettin e Bussab (2010).

```
• m = -\frac{1}{2}; • g = p \cdot n + m - \lfloor p \cdot n + m \rfloor;

• j = \lfloor p \cdot n + m \rfloor; • \gamma = \frac{p - p_i}{p_{i+1} - p_i} \cdot I_{(p_i, p_{i+1})}, em que p_i = \frac{i - 0.5}{n}.

(quantil_tipo_5 <- quantile(salario, probs = p, type = 5))

12.5% 25% 50% 75% 87.5%

6.260 7.515 10.165 14.270 16.610
```

$M\'{e}todo 6 - type = 6$

Método usado por SPSS e Minitab.

```
• m = p;

• j = \lfloor p \cdot n + m \rfloor;

• \gamma = g.

(quantil_tipo_6 <- quantile(salario, probs = p, type = 6))

12.5% 25% 50% 75% 87.5%

6.06125 7.47750 10.16500 14.48000 16.85375
```

```
Método 7 - type = 7
```

Método usado pela linguagem R e S.

```
• m = 1 - p; • g = p \cdot n + m - \lfloor p \cdot n + m \rfloor;

• j = \lfloor p \cdot n + m \rfloor; • \gamma = g.

(quantil_tipo_7 <- quantile(salario, probs = p, type = 7))

12.5% 25% 50% 75% 87.5%

6.41000 7.55250 10.16500 14.06000 16.46375
```

$M\'{e}todo 8 - type = 8$

```
Método 9 - type = 9
```

Adequado com normalidade.

```
• m = fracp4 + \frac{3}{8}; • g = p \cdot n + m - \lfloor p \cdot n + m \rfloor;

• j = \lfloor p \cdot n + m \rfloor; • \gamma = g.

(quantil_tipo_9 <- quantile(salario, probs = p, type = 9))

12.5% 25% 50% 75% 87.5%

6.210312 7.505625 10.165000 14.322500 16.670938
```

Tabela 9: Comparação de alguns quantis calculados usando diferentes métodos de aproximação para a variável salario.

aproximaça	proximação para a variavel salario.				
tipos	12,5 %	25,0 %	50,0 %	75,0 %	87,5 %
tipos 1	6,260000	7,440000	9,800	13,8500	16,61000
tipos 2	6,260000	7,515000	10,165	14,2700	16,61000
tipos 3	5,730000	7,440000	9,800	13,8500	16,61000
tipos 4	5,995000	7,440000	9,800	13,8500	16,41500
tipos 5	6,260000	7,515000	10,165	14,2700	16,61000
tipos 6	6,061250	7,477500	10,165	14,4800	16,85375

10,165

10,165

10,165

14,0600

14,3400

14,3225

16,46375

16,69125 16,67094

7,552500

7,502500

7,505625

tipos 7

tipos 8

tipos 9

6,410000

6,193750

6,210312

Vamos considerar o caso normal para uma amostra de tamanho 1000.

```
set.seed(12345)
amostra <- rnorm(1000, mean = 500, sd = 100)</pre>
```

Tabela 10: Comparação de alguns quantis calculados usando diferentes métodos de aproximação para a distribuição normal com média 500 e desvio padrão 100.

tipos	12,5 %	25,0 %	50,0 %	75,0 %	87,5 %
Quantil	384,9651	432,5510	500,0000	567,4490	615,0349
populacional					
tipos 1	386,8585	440,0202	504,1709	568,7699	612,6283
tipos 2	386,8741	440,2752	504,6217	568,9435	612,7397
tipos 3	386,8585	440,0202	504,1709	568,7699	612,6283
tipos 4	386,8585	440,0202	504,1709	568,7699	612,6283
tipos 5	386,8741	440,2752	504,6217	568,9435	612,7397
tipos 6	386,8624	440,1477	504,6217	569,0303	612,8232
tipos 7	386,8859	440,4027	504,6217	568,8567	612,6561
tipos 8	386,8702	440,2327	504,6217	568,9725	612,7675
tipos 9	386,8712	440,2433	504,6217	568,9652	612,7606

```
dados_iris |>
  group_by(especies) |>
  summarise(
    q1 = quantile(comprimento_sepala, 0.25),
    q2 = quantile(comprimento_sepala, 0.5),
    q3 = quantile(comprimento_sepala, 0.75),
    frequencia = n()
)
```

```
# A tibble: 3 x 5
especies q1 q2 q3 frequencia
<chr> <dbl> <dbl> <dbl> <dbl> <int>
1 setosa 4.8 5 5.2 50
2 versicolor 5.6 5.9 6.3 50
3 virginica 6.22 6.5 6.9 50
```

n() calcula a frequência de cada valor de uma variável qualitativa.

Quantis Exercício

- Calcule o primeiro quartil, segundo quartil e o terceiro quartil para a variável nu_nota_mt do conjunto de dados amostra_enem_salvador.xlsx por gênero (tp_sexo). Inclua uma coluna com a frequência da variável tp_sexo.
- Calcule o primeiro quartil, segundo quartil e o terceiro quartil para a variável nu_nota_cn do conjunto de dados amostra_enem_salvador.xlsx por gênero (tp_sexo). Inclua uma coluna com a frequência da variável tp_sexo.
- Calcule o primeiro quartil, segundo quartil e o terceiro quartil para a variável nu_nota_mt do conjunto de dados amostra_enem_salvador.xlsx por raça (tp_cor_raca). Inclua uma coluna com a frequência da variável tp_cor_raca.
- Calcule o primeiro quartil, segundo quartil e o terceiro quartil para a variável nu_nota_cn do conjunto de dados amostra_enem_salvador.xlsx por raça (tp_cor_raca). Inclua uma coluna com a frequência da variável tp_cor_raca.

Valor de letra (letter value)

- Proposto para ser simples para calcular sumários usando Tukey et al. (1977) e Hoaglin, Mosteller, e Tukey (1983).
- Medidas de posição e dispersão simples usando apenas estatísticas de ordem.
- Medidas de resumo resistente (alteração em uma pequena parte da amostra tem poucos efeitos nas medidas de resumo).

Definição

Lembre que

- Estatística de ordem i com notação x_(i): i-ésimo menor valor observado;
- 2 Posto à esquerda de x: $\#\{i \mid x_i \leq x\}$;
- 3 Posto à direita de x: $\#\{i \mid x_i \geq x\}$;
- Profundidade de x: min{Posto à esquerda de x; Posto à direita de x};
- **5** Profundidade de $x_{(j)}$: min $\{j; n+1-j\}$.

- Definimos os valores de letras espeficando a profundadidade.
- Para variáveis quantitativas contínuas, a área a abaixo ou acima (área da cauda) dos valores de letras são aproximadamente potências de ¹/₂.

Tabela 11: Definição de valores de letras.

Estatística	Profundidade	Representação por um letra	Quantidade de valores	área da cauda
Mediana	<u>n+1</u>	М	1	1/2
Fourths (quartas)	_profundidade da mediana]⊣ 2	<u>-1</u> F	2	$\frac{1}{2}$ $\frac{1}{4}$
Eighths (oitavas)	_profundidade das quartas] + 2	_ E	2	<u>1</u> 8
Sixteenths (16 avos)	_profundidade das quartas] ⊣ 2	- <u>1</u> D	2	$\frac{1}{16}$
thirty-seconds (32 avos)	_profundidade das 16 avos 2	<u>-1</u> D	2	$\frac{1}{32}$
thirty-fourths (64 avos)	_profundidade das 32 avos 2	- <u>1</u> C	2	$\frac{1}{64}$
thirty-fourths (128 avos)	_profundidade das 64 avos 2	<u>-1</u> B	2	$\frac{1}{128}$
thirty-fourths (256 avos)	profundidade das 128 avos 2	+1 B	2	$\frac{1}{256}$
thirty-fourths (512 avos)	_profundidade das 256 avos	+1 B	2	$\frac{1}{512}$
thirty-fourths (1024 avos)	profundidade das 512 avos 2	<u>+1</u> B	2	$\frac{1}{1024}$

- A profundidade dos extremos (mínimo e máximo) é 1, e usamos o número 1 para representar esses valores de letras.
- Com exceção da mediana, toda profundadidade do slide anterior tem
 - dois valores de letras:

 - uma mais perto do mínimo valor observado
- Para calcular os valores de letras precisamos que a profundidade seja maior que um.

uma mais perto do máximo valor observado

Geralmente, usamos os *valores de letras* no seguinte diagrama chamada de *diagrama de resumo de cinco números*:

Figura 4: Diagrama de resumo de cinco números.

n (tamanho da amostra)

etra	Profundidade			
М	Profundidade da mediana		Mediana	
F	Profundidade das quartas	1 quartil		3 quartil
1	1	Mínimo		Máximo

Podemos adicionar outras letras no diagrama para obter, por exemplo, um diagrama de resumo de nove números:

Figura 5: Diagrama de resumo de nove números.

n (tamanho da amostra)

Letra	Profundidade		
М	Profundidade da mediana	Me	diana
F	Profundidade das quartas	1 quartil	3 quartil
Е	Profundidade das oitavas	oitava inferior	oitava superior
D	Profundidade das 16 avos	16 avo inferior	16 avo superior
1	1	Mínimo	Máximo

Valor de letra (letter value)

- Por que usamos a profundidade $\frac{n+1}{2}$ para a mediana em vez de $\frac{n}{2}$?
- Por que usamos a profundidade
 \[
 \frac{\profundidade anterior] + 1}{2}
 \] em vez de

 \[
 \frac{\profundidade anterior]}{2}
 \] (exceto os extremos)?
- É simples usar $\frac{\lfloor profundidade \ anterior \rfloor + 1}{2}$;

Seja $X_i \stackrel{\text{iid}}{\sim} F$ e considere as estatísticas de ordem $X_{(1)}, \ldots, X_{(n)}$.

Então $F(X_i) \sim U(0,1)$, e $U_{(i)} = F(X_{(i)}), i = 1, \ldots, n$ pois F é não decrescente.

Pode-se provar que:

- **1** $U_{(i)}$ tem FDA dada por $F_{U_{(i)}}(x) = \sum_{j=i}^{n} {n \choose j} x^{j} (1-x)^{n-j}$;
- 2 $U_{(i)}$ tem Função Densidade de Probabilidade (FDP) dada por $f_{U_{(i)}}(x) = \frac{n!}{(i-1)!(n-r)!}x^{i-1}(1-x)^{n-i};$
- **3** $E[U_{(i)}] = \frac{i}{n+1}$;

Em média, temos que:

Figura 6: Representação da distância média entre $U_{(i)}$ e $U_{(i-1)}$ para $i=1,\ldots,n+1$, onde $U_{(0)}=0$ e $U_{(n+1)}=1$.

Para achar a metade dessa reta entre 0 e 1 dividida em n+1 intervalos, pegamos o ponto $\frac{n+1}{2}$ deta reta.

Esta é a razão para usarmos $\frac{\lfloor profundidade\ anterior \rfloor + 1}{2}$.

Valor de letra (letter value)

- Pacote: lettervalue
- Parêmetros das funções letter_value
 - x: vetor numérico.
 - leve1: indicação da profundadidade do diagrama de resumo (valores entre 2 e 9). Valor padrão é 2.
 - na_rm: argumento booleano. Por padrão, os valores faltantes são retirados.

```
p_load(lettervalue)
letter_value(dados_iris$comprimento_sepala, level = 3)
```

n = 150

Valor de letra (*letter value*) Exercício

Para o conjunto de dados enem_amostra_salvador.xlsx, construa:

- o diagrama de resumo com 5 números para a variável nu_nota_mt;
- o diagrama de resumo com 7 números para a variável nu_nota_mt;
- o diagrama de resumo com 5 números para a variável nu_nota_lc;
- o diagrama de resumo com 7 números para a variável nu_nota_lc.

Medidas de resumo usando valores de letra

Medidas de posição

Mediana:

Μ

Trimédia:

$$\frac{\text{primeiro quartil}}{4} + \frac{\text{mediana}}{2} + \frac{\text{terceiro quartil}}{4}$$

Medidas de dispersão

- F-spread: $d_F = F_U F_L$, onde F_U é o terceiro quartil e F_L é o primeiro quartil;
- F-pseudo sigma: $\frac{d_F}{1,349}$.

Pontos exteriores

- Valores da amostra que se destacam;
- Valores muito pequenos ou muito grandes (0,7% da amostra);
- abaixo de $1, 5 \cdot d_F F_I$ ou acima de $1, 5 \cdot d_F + F_{II}$.

Motivação para F-spread.

Considere a distribuição $N(\mu, \sigma^2)$:

- O quantil de ordem 25% é μ 0, 6745 · σ ;
- O quantil de ordem 75% é μ + 0,6745 · σ ;
- d_F é aproximadamente $\mu + 0,6745 \cdot \sigma (\mu 0,6745 \cdot \sigma) = 1,349 \cdot \sigma$;

•
$$\sigma = \frac{d_F}{1,349}$$
.

Medidas de resumo usando valores de letra

Para calcular medidas resumo, usamos a função summary em um objeto lv.

```
valores_letras <- letter_value(rivers)
summary(valores_letras)</pre>
```

Medidas de resumo usando valores de letra Exercício

Para o conjunto de dados enem_amostra_salvador.xlsx, calcule:

- medidas de resumo para a variável nu_nota_mt;
- medidas de resumo para a variável nu nota lc;
- medidas de resumo para a variável nu_nota_cn;
- medidas de resumo para a variável nu_nota_ch.

Diagrama de caixa boxplot

- Permite visualizar: centro (mediana); dispersão (intervalo interquartil); assimetria; e ponto exterior.
- Pontos exteriores: valores observados acima de LS ou abaixo de LI.
- Pontos exteriores precisam de nossa atenção.
- Como calcular *LS* e *LI*:
 - $LS = 1, 5 \cdot (q_3 q_1) + q_3$;
 - $LS = -1, 5 \cdot (q_3 q_1) + q_1$.

Medida de dispersão: distância entre q_3 e q_1

Diferença de quartis: $dq = q_3 - q_1$

Assimetria à direita ou positiva:

- frequências diminuem à direita no histograma
- q_2 perto q_1 : $q_2 q_1 < q_3 q_2$

Assimetria à esquerda ou negativa: frequências diminuem à esquerda no histograma

- frequências diminuem à direita no histograma
- q_2 perto q_3 : $q_2 q_1 > q_3 q_2$

Assimetria


```
ggplot(dados_iris) +
  geom_boxplot(aes(x = "", y = comprimento_sepala)) +
  labs(x = "", y = "Comprimento de Sépala") +
  theme_minimal()
```


Gráficos lado a lado com patchwork

- patchwork permite que colocar gráficos lado a lado com
 - +: figuras ao lado
 - \: figuras embaixo
- Para mais detahes, visite a documentação do patchwork

```
sepala <- ggplot(dados_iris) +
  geom_boxplot(aes(x = "", y = comprimento_sepala)) +
  labs(x = "", y = "Comprimento de Sépala") +
  ylim(c(0, 10)) +
  theme_minimal()

petala <- ggplot(dados_iris) +
  geom_boxplot(aes(x = "", y = comprimento_petala)) +
  labs(x = "", y = "Comprimento de Pétala") +
  ylim(c(0, 10)) +
  theme_minimal()

sepala + petala</pre>
```


Diagrama de caixa Duas ou mais populações

Se adicionarmos uma variável qualitativa em aes(x = <variável qualitativa>), construimos o diagrama de caixa para cada grupo (ou população) de <variável qualitativa>.

```
ggplot(dados_iris) +
  geom_boxplot(aes(x = especies, y = comprimento_sepala)) +
  labs(x = "", y = "Comprimento de Sépala") +
  ylim(c(0, 10)) +
  theme_minimal()
```


Diagrama de caixa Exercício

Para o conjunto de dados amostra_enem_salvador.xlsx:

- construa o diagrama de caixa para as variáveis nu_nota_mt, nu_nota_lc, nu_nota_ch e nu_nota_cn e os coloque lado a lado usando o pacote patchwork.
- construa o diagrama de caixa para as variável nu_nota_mt cada valor de tp cor raca.
- construa o diagrama de caixa para as variável nu_nota_mt cada valor de tp_sexo.
- construa o diagrama de caixa para as variável nu_nota_mt cada valor de tp_tipo_escola.

Medidas de assimetria usando quantis

Podemos mensurar a assimetria usando os quartis.

Note que:

- 2 Se os dados têm assimetria à esquerda (ou negativa): $q_2 q_1 > q_3 q_2$;
- **3** Se os dados têm assimetria à direita (ou positiva): $q_2 q_1 < q_3 q_2$;
- $4 -1 \le \frac{q_3 q_2 (q_2 q_1)}{q_3 q_1} \le 1.$

 $B=rac{q_3-q_2-(q_2-q_1)}{q_3-q_1}$ é chamado de coeficiente de Bowley.

- **1** A variável tem assimetria à esquerda (ou negativa) se, e somente se, B < 0:
- ② A variável tem assimetria à direita (ou positiva) se, e somente se, B>0:
- 3 A variável tem simetria se, e somente, se $B \approx 0$.

Não use o coeficiente de Bowley para amostras menores que 100.

Podemos usar a seguinte regra de ouro como referência:

- **1** se $-0, 25 \le B \le 0, 25$, temos indícios que a variável tem simetria;
- 2 se B < -0,25, temos indícios que a variável tem assimetria negativa;
- 3 se B > 0.25, temos indícios que a variável tem assimetria positiva.

Tabela 12: Limite inferior e superior para o coeficiente de Bowley no contexto de normalidade pelo tamanho da amostra, usando intervalo de confiança com coeficiente de confiança 90%.

Tamanhos das amostras	Limite inferior	Limite superior
25	-0,45	0,43
30	-0,39	0,38
50	-0,30	0,30
60	-0,28	0,28
70	-0,27	0,26
80	-0,25	0,24
90	-0,23	0,23
100	-0,22	0,22
150	-0,18	0,18
250	-0,14	0,14
300	-0,13	0,13
500	-0,10	0,10
750	-0,08	0,08
1.000	-0,07	0,07

Podemos usar a função BowleySkew do pacote KbMvtSkew para calcular o coeficiente de Bowley.

Vamos usar o conjunto de dados rivers que tem o comprimento dos 141 maiores rios da América do Norte (EUA, Canadá e México).

```
p_load(KbMvtSkew)
```

Γ1] 0.3783784

BowleySkew(rivers)

Medidas de assimetria usando momentos

Definimos os momentos amostrais por $m_r = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^r$ para $r \ge 1$.

- m_2 é uma aproximação para a variância da população.
- m_1 é aproximadamente zero.

Note que:

- existe assimetria à direita ou positiva se, e somente se, $m_3 > 0$.
- existe assimetria à esquerda ou negativa se, e somente se, $m_3 < 0$.
- existe simetria se, e somente se, $m_3 = 0$.

Para criarmos uma medida sem unidade, usamos:

$$g_1 = \frac{m_3}{m_2^{\frac{3}{2}}}.$$

Medidas de assimetria usando momentos

Melhorias de g_1 :

Medida de assimetria usada po SAS, SPSS e Excel:

$$G_1 = \frac{\sqrt{n(n-1)}}{n-2} \frac{m_3}{m_2^{\frac{3}{2}}};$$

Método implementado pelo MINITAB:

$$b_1 = \left(\frac{n-1}{n}\right)^{\frac{3}{2}} \frac{m_3}{m_2^{\frac{3}{2}}}.$$

• Para amostras grandes, g_1 , G_1 e b_1 são próximos.

Consulte Joanes e Gill (1998) para mais detalhes.

- g₁ é a pior estimativa (maior variabilidade nas estimativas), mas está nos livros introdutórios de estatística pela simplificidade;
- b_1 é a *melhor* estimativa no contexto de normalidade;
- G_1 é a *melhor* estimativa no contexto de ausência de normalidade.

Segundo Doane e Seward (2011), podemos usar as 3 tabelas seguintes como referência para g_1 , G_1 e b_1 .

Tabela 13: Limite inferior e superior para g_1 no contexto de normalidade pelo tamanho da amostra, usando intervalo de confiança com coeficiente de confiança 90%.

Tamanhos das amostras	Limite inferior	Limite superior
25	-0,71	0,71
30	-0,66	0,66
50	-0,53	0,53
60	-0,48	0,48
70	-0,46	0,47
80	-0,44	0,42
90	-0,41	0,40
100	-0,39	0,39
150	-0,32	0,32
250	-0,25	0,25
300	-0,23	0,23
500	-0,18	0,18
750	-0,15	0,15
1.000	-0,13	0,13

Tabela 14: Limite inferior e superior para G_1 no contexto de normalidade pelo tamanho da amostra, usando intervalo de confiança com coeficiente de confiança 90%.

Tamanhos das amostras	Limite inferior	Limite superior
25	-0,76	0,75
30	-0,70	0,70
50	-0,55	0,55
60	-0,50	0,50
70	-0,47	0,48
80	-0,45	0,43
90	-0,41	0,41
100	-0,40	0,40
150	-0,32	0,32
250	-0,25	0,25
300	-0,23	0,23
500	-0,18	0,18
750	-0,15	0,15
1.000	-0,13	0,13

Tabela 15: Limite inferior e superior para b_1 no contexto de normalidade pelo tamanho da amostra, usando intervalo de confiança com coeficiente de confiança 90%.

Limite inferior	Limite superior
-0,67	0,67
-0,63	0,63
-0,52	0,52
-0,47	0,47
-0,45	0,46
-0,43	0,41
-0,40	0,39
-0,38	0,38
-0,32	0,32
-0,25	0,25
-0,23	0,23
-0,18	0,18
-0,15	0,15
-0,13	0,13
	-0,67 -0,63 -0,52 -0,47 -0,45 -0,43 -0,40 -0,38 -0,32 -0,25 -0,23 -0,18 -0,15

Medidas de assimetria usando momentos

Podemosa usar a função skewness do pacote e1071 para estimar a assimetria usando momentos. Com o argumento type, podemos escolher entre g_1 , G_1 e b_1 :

- **b** type = 2, skewness calcula G_2 ;
- **c** type = 3, skewness calcula b_1 (valor padrão).

Medidas de assimetria

```
p_load(e1071)
# coeficiente de Bowley
BowleySkew(rivers)
[1] 0.3783784
# g_1
skewness(rivers, type = 1)
[1] 3.183879
# G 1
skewness(rivers, type = 2)
[1] 3.218217
# b_1
skewness(rivers, type = 3)
[1] 3.150068
```

Medidas de assimetria Exercício

Para o conjunto de dados amostra_enem_salvador.xlsx, cheque a assimetria de nu_nota_mt, nu_nota_lc, nu_nota_ch e nu_nota_cn usando:

- diagrama de caixa;
- histograma;
- coeficiente de Bowley;
- *g*₁;
- *G*₁;
- *b*₁.

ldea: mede a chance de aparecer *pontos exteriores* ao amostrador valores desta variável na população, usando a distribuição normal como padrão.

- uma variável com normalidade tem curtose igual a 0. Dizemos que a variável é mesocúrtica (de mesocurtose);
- se a variável que tem menos chance de aparecer pontos exteriores, então a curtose é negativa e dizemos que a variável é lepcúrtica (de leptocurtose);
- se a variável que mais chance de aparecer pontos exterioes, então a curtose é positiva e dizemos que a variável é platicúrtica (de platicurtose).

Medimos a curtose usando uma função do quarto momento amostral:

$$g_2 = \frac{m_4}{m_2^2} - 3.$$

Medida usada por SAS, SPSS e Excel:

$$G_2 = \frac{n-1}{(n-2)(n-3)} \left[(n+1) \left(\frac{m_4}{m_2^2} - 3 \right) + 6 \right].$$

Medida usada por MINITAB:

$$b_2 = \left(\frac{n-1}{n}\right)^2 \frac{m_4}{m_2^2} - 3.$$

• Para amostras grandes, g_1 , G_1 e b_1 são próximos.

Consulte Joanes e Gill (1998) para mais detalhes.

- g_1 é a *pior* estimativa (maior variabilidade nas estimativas), mas está nos livros introdutórios de estatística pela simplificidade;
- b_1 é a *melhor* estimativa no contexto de normalidade;
- ullet G_1 é a *melhor* estimativa no contexto de ausência de normalidade.

Tabela 16: Limite inferior e superior para g_2 no contexto de normalidade pelo tamanho da amostra, usando intervalo de confiança com coeficiente de confiança 90%.

Tamanhos das amostras	Limite inferior	Limite superior
25	-1,09	1,17
30	-1,03	1,12
50	-0,86	0,97
60	-0,79	0,93
70	-0,76	0,90
80	-0,71	0,84
90	-0,69	0,81
100	-0,65	0,77
150	-0,56	0,64
250	-0,45	0,52
300	-0,41	0,48
500	-0,33	0,37
750	-0,27	0,30
1.000	-0,24	0,27

Tabela 17: Limite inferior e superior para G_2 no contexto de normalidade pelo tamanho da amostra, usando intervalo de confiança com coeficiente de confiança 90%.

Tamanhos das amostras	Limite inferior	Limite superior
25	-1,06	1,72
30	-0,98	1,52
50	-0,81	1,23
60	-0,76	1,09
70	-0,71	1,05
80	-0,69	0,97
90	-0,65	0,94
100	-0,62	0,86
150	-0,53	0,69
250	-0,44	0,55
300	-0,40	0,51
500	-0,32	0,39
750	-0,27	0,32
1.000	-0,23	0,27

Tabela 18: Limite inferior e superior para b_2 no contexto de normalidade pelo tamanho da amostra, usando intervalo de confiança com coeficiente de confiança 90%.

Tamanhos das amostras	Limite inferior	Limite superior
25	-1,23	0,82
30	-1,15	0,83
50	-0,93	0,84
60	-0,87	0,81
70	-0,81	0,78
80	-0,78	0,74
90	-0,74	0,76
100	-0,70	0,72
150	-0,58	0,61
250	-0,47	0,47
300	-0,44	0,45
500	-0,33	0,35
750	-0,28	0,29
1.000	-0,25	0,26

Podemos usar a função kurtosis do pacote e1071 para estimar a curtose. Com o argumento type, podemos escolher entre g_2 , G_2 e b_2 :

- a type = 1, kurtosis calcula g_2 ;
- **b** type = 2, kurtosis calcula G_2 ;
 - c type = 3, kurtosis calcula b_2 .

Medida de curtose

```
p_load(e1071)
# g_2
kurtosis(rivers, type = 1)
[1] 13.29813
# G_2
kurtosis(rivers, type = 2)
[1] 13.82581
# b 2
kurtosis(rivers, type = 3)
[1] 13.06777
```

Medida de curtose Exercício

Para o conjunto de dados amostra_enem_salvador.xlsx, cheque a curtose de nu_nota_mt, nu_nota_lc, nu_nota_ch e nu_nota_cn, e classifique cada uma dessas variáveis como mesocúrtica, platicúrtica e leptocúrtica usando:

- histograma;
- g₂;
- *G*₂;
- *b*₂.

Violin plot

- Adaptação do diagrama de caixa proposta por Hintze e Nelson (1998).
- Ideia: visualizar o formato do histograma através da curva de densidade.
- Recomanda-se usar para amostras com tamanho de amostra igual ou maior que 30.
- Sugestão: usar diagrama de caixa (com sumário estatístico) e violin plot.

Curva de densidade:

Considere uma amostra aleatória x_1 dots, x_n da variável X. Então, a curva de densidade é dada por:

$$d(x,h)=\frac{1}{n\cdot h}\sum_{i=1}^n\delta_i,$$

onde $\delta_i = \begin{cases} 1, & x - \frac{h}{2} \le x_i \le x + \frac{h}{2} \\ 0, & \text{caso contrário} \end{cases}$, h é a largura banda usada para estimar no estimador kernel, e n é tamanho da amostra.

- h deve garantir entre $\left[x \frac{h}{2}; x + \frac{h}{2}\right]$ entre 10% e 40% dos valores observados.
- Por padrão, h garante que $\left[x-\frac{h}{2};x+\frac{h}{2}\right]$ tem 15% dos valores observados.

Diagrama de caixa não consegue capturar a forma da distribuição dos valores.

Exemplo de Hintze e Nelson (1998):

Vamos amostrar valores da distribuição com densidade dada por

$$f(x) = 0.5 \cdot f_X(20 \cdot x - 10) + 0.5 \cdot f_Y(20 \cdot x - 10),$$

onde $X \sim Beta(2; 6)$ e $Y \sim Beta(2; 0, 8)$. Esta distribuição é bimodal.

- Vamos amostrar valores da distribuição uniforme $X \sim U[-10,10]$.
- Vamos amostrar valores da distribuição normal $X \sim N(0, 54, 95)$.

```
alpha \leftarrow c(2, 2)
beta <- c(6, 0.8)
amostrador <- function(n) {</pre>
  indices \leftarrow sample.int(2, n, TRUE, prob = c(0.5, 0.5))
  indices |> map dbl(\(k) {
    20 * rbeta(1, alpha[k], beta[k]) - 10
 })
n < -1000
dados <- tibble(
  bimodal = amostrador(n),
  uniforme = runif(n, -10, 10),
  normal = rnorm(n, 0, sqrt(54.95))
```

```
bimodal <- ggplot(dados, aes(x = "")) +
  geom\ boxplot(aes(y = bimodal)) + theme minimal() +
  ylim(c(-10, 10))
uniforme <- ggplot(dados, aes(x = "")) +
  geom boxplot(aes(y = uniforme)) + theme minimal() +
  ylim(c(-10, 10))
normal \leftarrow ggplot(dados, aes(x = "")) +
  geom_boxplot(aes(y = normal)) + theme_minimal() +
  ylim(c(-10, 10))
bimodal + uniforme + normal
```

- Os três diagramas de caixas são semelhantes.
- O diagrama de caixa n\u00e3o consegue identificar as formas das distribui\u00f3\u00f3es.

Violin plot

Exemplo

```
ggplot(dados_iris, aes(x = especies, y = comprimento_petala)) +
  geom_violin() +
  geom_boxplot(width = 0.1) +
  theme_minimal() +
  labs(x = "Espécies", y = "Comprimento de pétala")
```


Violin plot

Para o conjunto de dados amostra_enem_salvador.xlsx:

- Construa o Violin plot para a variável nu_nota_mt.
- Construa o *Violin plot* para a variável nu_nota_mt por tp_cor_raca.

- Ideia: generalização do diagrama de caixa.
- Podemos usar mais valores de letra além de M (mediana) e F (primeiro e terceiro quartis).
- Podemos observar a forma (distribuição) semelhante ao geom_violin.
- Menos valores são marcados com pontos exteriores.

Figura 7: geom_lv versus geom_boxplot.

Precisamos determinar:

- Quantos valores de letra incluir no geom_lv?
- 6 Qual a largura de cada uma das caixas em geom_lv?

Quantos valores de letra incluir no geom_lv?

Regra 5-8 - inclui de 5 a 8 valores como pontos exteriores:

$$k = \lfloor \log_2(n) - 2 \rfloor$$
.

Proporção constante - inclui $p \cdot 100\%$ dos valores da amostra serão marcados como pontos exteriores:

$$k_p = \lfloor \log_2(n) \rfloor - \lfloor \log_2(n \cdot p) \rfloor.$$

Confiabilidade - inclui o valor de letra de nível i se os intervalos de confiança com coeficiente de confiança $1-\alpha$ para os valores de letra de níveis i e i+1 não tem intersecção (veja Heike Hofmann e Kafadar (2017) par maiores detalhes):

$$k_{1-\alpha} = \lfloor \log_2(n) \rfloor - \lfloor \log_2(2 \cdot z_{1-\frac{\alpha}{2}}^2) \rfloor.$$

Este é o método usado por padrão pelo pacote lvplot.

Erro máximo - inclui o valor de letra de nível i se o desvio padrão estiver abaixo de um limite estabelecido. O desvio padrão de nível i é dado por

$$DP(LV_i) \approx s\sqrt{\frac{\frac{1}{2^i}\left(1-\frac{1}{2^i}\right)}{n}}\phi\left(\Phi^{-1}\left(\frac{1}{2^i}\right)\right),$$

onde LV_i é o valor de letra de nível i, ϕ é a função densidade de probabilidade da distribuição normal padrão e Φ é a função de distribuição acumulada da distribuição normal padrão.

Quantos valores de letra incluir no geom_lv?

- linear largura da caixa é inversamente proporcional ao nível do valor de letra (ou seja, as larguras das caixas diminuem sucessivamente de forma linear). Este é o método usado por padrão pelo pacote lvplot.
- **área** a largura da caixa é inversamente proporcional a $2^{i+1}|LV_i LV_{i+1}|$ (a área da caixa tem aproximadamente a $\frac{1}{2^{i+1}}$).
- $2^{i+1}|LV_i LV_{i+1}|$ (a área da caixa tem aproximadamente a $\frac{1}{2^{i+1}}$). **height** a largura da caixa é aproximadamente $\frac{1}{2^i}$.

LV plot

Para o conjunto de dados amostra_enem_salvador.xlsx:

- Construa o *lv plot* para a variável nu_nota_mt.
- Construa o *lv plot* para a variável nu_nota_mt por tp_cor_raca.

Ramos-e-folhas

- Alternativa para histograma quando 20 < tamanho da amostra < 300.
- Olhar os números não nos apresenta informações.
- Diagrama de ramos-e-folhas é uma forma de escanear rapidamente os dados.
- Simples e rápido de desenhar a mão no papel.
- Facilita na ordenação dos dados para encontrar quantis.
- Não envolve qualquer teoria elaborada ou complexa.
- Valores da amostra são mostrados no diagrama.
- O que podemos achar no diagrama de ramos-e-folhas:
 - simetria
 - dispersão ou distribuição dos valores
 - centralidade (mediana)
 - pontos exteriores (valores isolados do montante)
 - região de concentração dos valores observados
 - regiões sem observações

Desvantagens do histograma:

- Dados originais não são apresentados.
- Pode ser difícil de desenhar na mão.

Ideia

- Cada valor observado é divido em duas partes: ramo e folha.
- Criamos uma coluna com os ramos em ordem crescente.
- Para cada ramo, escrevemos as folhas correspondente a cada valor observado.
- Indesejável:
 - a Um ramos todos as folhas.
 - b Vários ramos com uma folha.
- Se um ramo tiver muitas folhas, podemos quebrar o ramo em duas linhas:
 - a * fica com os dígitos 0, 1, 2, 3, e 4;
 - **b** . ficam com os dígitos 5, 6, 7, 8, e 9.

- Se os ramos * e . tiverem muitas folhas, podemos quebrar o ramos em cinco linhas:
 - a dígitos 0 e 1 ficam na linha *:
 - b dígitos 2 e 3 ficam na linha t (do inglês two e three);
 - c) dígitos 4 e 5 ficam na linha f (do inglês four e five);
 - d dígitos 6 e 7 ficam na linha s (do ingles six e seven);
 - a dígitos 8 e 9 ficam na linha ...
- O ramo com parênteses indica que a mediana está neste ramo.
- Número de linhas no diagrama de ramos-e-folhas:

próxima potência de 10 maior que
$$\frac{R}{L}$$
,

em que $R = \max\{x_1, \dots, x_n\} - \min\{x_1, \dots, x_n\}$ e $L = \lfloor 10 \cdot \log_{10}(n) \rfloor$, onde n é o tamanho da amostra.

Não arredonde valores. Trunque os valores em uma casa significativa.

• Posto de x - número de observações menores ou iguais a x:

$$\#\{i \in \{1,\ldots,n\} \mid x_i \leq x\};$$

Profundidade de x:

$$\min \{ \# \{ i \in \{1, \dots, n\} \mid x_i \le x \}; \# \{ i \in \{1, \dots, n\} \mid x_i \ge x \} \};$$

- Inclua a esquerda da coluna de ramos uma coluna de profundadidade.
- Se existirem valores isolados, você indicar eles separadamente.

Ramos-e-folhas

- Função: stem.leaf do pacote aplpack.
- Parâmetros da função stem:
 - x: vetor numérico
 - m: controla a quantidade de ramos. Se m = 0.5, 0 e 1 são agrupados no 0, 2 e 3 são agrupados no 2, e assim por diantes. Quando aumentamos m=1, cria-se o diagrama de ramos-e-folhas padrão. Se m=2, cada ramo é quadrado em duas linhas (* e .). Se m=3, cada ramos é quebrado em cinco linhas (*, t, f, s e .).

dados_menstruacao <- read_csv("dados/brutos/menstruacao.csv")
stem.leaf(dados_menstruacao\$tamanho_ciclo, m=1)</pre>

```
1 | 2: represents 1.2
 leaf unit: 0.1
            n: 21
LO: 22.9
```

29 | 49 30 | 03 31 | 28

26 | 36899 27 | 566 (6) 28 | 044588

6

6

Ramos-e-folhas back-to-back

- Comparação de uma mesma variável em duas populações diferentes.
- No lado esquerdo, coloca-se os valores observados para uma população.
- No lado direito, coloca-se os valores observados para a outra população.

```
df_companhia_MB <- read_xlsx("dados/brutos/companhia_MB.xlsx")
df_solteiro <- filter(df_companhia_MB, estado_civil == "solteiro")
df_casado <- filter(df_companhia_MB, estado_civil == "casado")
stem.leaf.backback(df_solteiro$idade, df_casado$idade, m=2)</pre>
```

| 5* |

20

16

n:

Ramos-e-folhas Exercício

Construa o gráfico de ramos-e-folhas para os seguintes conjunto de dados:

- rivers (vetor disponível no R).
- variável erupcoes do conjunto de dados velho_fiel do pacote dados.
- variável comprimento_sepala do conjunto de dados iris.
- compare a variável comprimento para os grupos Vitamina C e Suco de laranja usando ramos-e-folha back-to-back do conjunto de dados comprimento_dentes.

Gráfico quantil-quantil

Objetivo: checar se duas variáveis quantitativas tem a mesma distribuição.

- Considere duas variáveis quantitativas X e Y com
 - $X : x_1, ..., x_n$;
 - $Y : y_1, \ldots, y_m$.
- Considere os quantis de X e Y:
 - $X_{(1)}, \ldots, X_{(n)};$
 - $y_{(1)}, \ldots, y_{(m)}$.
- Se m = n, cada par $(x_{(j)}, y_{(j)}), \forall j = 1, ..., n$ desenhamos um ponto no plano cartesiano.
- Se m < n, cada par $(q_{(\frac{j}{m})}, x_{(m)}), \forall j = 1, \ldots, m$ desenhamos um ponto no plano cartesiano onde $q_{(\frac{j}{m})}$ é o quantil de ordem $\frac{j}{m}$ na variável X.
- Se os pontos estiverem aproximadamente sobre a reta y = x, então X e Y tem a mesma distribuição.

Gráfico quantil-quantil Exemplo

Vamos comparar a altura de 150 crianças de duas escolas privadas de uma região nobre de salvador: escola *A* e escola *B*.

```
df_escola_a <- read_xlsx("dados/brutos/escola_a.xlsx")</pre>
df escola b <- read xlsx("dados/brutos/escola b.xlsx")</pre>
estat ordem a <- sort(df escola a$escola a)
estat ordem b <- sort(df escola b$escola b)</pre>
tibble(escola_a = estat_ordem_a, escola_b = estat_ordem_b) |>
  ggplot(aes(escola_a, escola_b)) +
  geom\ point(size = 3) +
  geom_abline(intercept = 0, slope = 1, size = 2,
              color = "blue") +
  theme_minimal() +
  labs(x = "Escola A", y = "Escola B")
```


Gráfico quantil-quantil Exemplo

Vamos comparar a altura de 150 crianças de duas escolas:

- escola A: escola privada de uma região nobre;
- escola C: escola pública de uma região periférica.

```
df_escola_a <- read_xlsx("dados/brutos/escola_a.xlsx")</pre>
df_escola_c <- read_xlsx("dados/brutos/escola_c.xlsx")</pre>
estat ordem a <- sort(df escola a$escola a)
estat ordem c <- sort(df escola c$escola c)</pre>
tibble(escola a = estat ordem a, escola c = estat ordem c) |>
  ggplot(aes(escola a, escola c)) +
  geom point(size = 3) +
  geom_abline(intercept = 0, slope = 1, size = 2,
              color = "blue") +
  theme minimal() +
  labs(x = "Escola A", y = "Escola C")
```


Gráfico quantil-quantil checando normalidade

- Seja X uma variável quantitativa com amostra x_1, \ldots, x_n ;
- Considere as estatísticas de ordem: $x_{(1)}, \dots, x_{(n)}$;
- Considere os valores padronizados: $z_{(j)} = \frac{x_{(i)} \bar{x}}{s}, \forall i = 1, \dots, n;$
- Considere os quantis da distribuição normal: $q_{(i)} = \Phi^{-1}(\frac{i-0.5}{2}), \forall i = 1, ..., n;$
- Para cada par $(x_{(i)}, q_{(i)}), \forall i = 1, ..., n$, desenhamos um ponto no plano cartesiano;
- Se os pontos estiverem sobre a reta y = x, temos indícios que X tem distribuição normal.

Este gráfico também é chamado gráfico de probabilidade normal.

Gráfico de probabilidade normal

Vamos checar se a variável largura_sepala no conjunto de dados iris.xlsx tem distribuição normal.

Vamos usar o pacote qqplotr que é uma extensão do pacote ggplot2.

- stat_qq_point inclui os pontos no plano cartesiano;
- stat_qq_line inclui a reta y = x;
- stat_qq_band(bandType = "ts") inclui uma faixa ao gráfico. Os pontos precisam estar dentro desta faixa (intervalo de confiança) para indicar a normalidade.

```
p load(qqplotr)
ggplot(
  dados iris,
  aes(sample = largura sepala)
  stat_qq_point(color = "blue") +
  stat_qq_line(size = 1.5, color = "purple") +
  stat_qq_band(bandType = "ts", fill = "red", alpha = 0.25) +
  theme_minimal() +
  labs(
    x = "Quantis teóricos da distribuição normal",
    v = "Quantis amostrais"
```


Gráfico quantil-quantil Exercício

- Verifique se nu_nota_mt e nu_nota_lc do conjunto de dados amostra_enem_salvador.xlsx tem a mesma distribuição usando histograma, violin plot, lv plot e gráfico quantil-quantil;
- Verifique se nu_nota_mt do conjunto de dados amostra_enem_salvador.xlsx tem distribuição normal usando histograma e gráfico quantil-quantil;
- Verifique se nu_nota_lc do conjunto de dados amostra_enem_salvador.xlsx tem distribuição normal usando histograma e gráfico quantil-quantil.

Associção entre duas variáveis

Gráficos Duas variáveis quantitativas

Ideia: estudar a associação entre duas variáveis quantitativas.

Gráfico de dispersão

```
ggplot(dados_iris) +
  geom_point(aes(comprimento_petala, comprimento_sepala)) +
  labs(
    x = "Comprimento de pétala",
    y = "Comprimento de sépala"
  ) +
  theme_minimal()
```


Gráfico de dispersão Exercício

Para o conjunto de dados amostra_enem_salvador.xlsx, construa o gráfico de dispersão entre as variáveis nu_nota_mt e nu_nota_cn.

Inclua o argumento nomeado alpha = 0.1 na função geom_point para incluir opacidade no gráfico de dispersão. Isso ajuda quando temos amostra de tamanho médio e grande.

Associação entre duas variáveis qualitativas

Ideia

Sejam X e Y duas variáveis qualitativas com os seguintes valores possíveis:

- $X: A_1, \cdots, A_r$
- $Y: B_1, \cdots, B_s$

Desejamos estudar a associação entre X e Y.

Associação entre X e Y

Suponha que A_i tenha porcentagem $100 \cdot f_i \cdot \%$. Então, X e Y são:

- não associados: se ao conhecermos o valor de Y para um elemento da população, continuamos com a porcentagem 100 · f_i% deste elemento ter valor de X igual a A_i
- associados: se ao conhecermos o valor de Y para um elemento da população, alteramos a porcentagem 100 · fi% deste elemento ter valor de X igual a A_i

Associação entre duas variáveis qualitativas Exemplo de associação

Um pesquisador interessado em estudar a associação entre Câncer e o tabagismo coletou uma amostra com 300 indivíduos e obteve a tabela de distribuição de frequência conforme Tabela 19. Você diria que as duas variáveis estão associadas?

Tabela 19: Tabela de contingência entre Câncer e Tabagismo.

	Câncer		
Tabagismo	Não	Sim	Total
Não-Fumante Fumante	200	0 100	200 100
Total	200	100	300

Precisamos de uma referência e podemos calcular a frequência relativa ao total das colunas ou total das linhas. Neste exemplo, vamos usar o total das linhas.

Tabela 20: Tabela de contingência com frequência relativa ao total das linhas.

	Cânce		
Tabagismo (X)	Não	Sim	Total
Não-Fumante Fumante	$\begin{vmatrix} \frac{200}{200} \cdot 100 = 100\% \\ \frac{0}{100} \cdot 100 = 0\% \end{vmatrix}$	$\frac{\frac{0}{200} \cdot 100 = 0\%}{\frac{100}{100} \cdot 100 = 100\%}$	$\begin{vmatrix} \frac{200}{200} \cdot 100 = 100\% \\ \frac{100}{100} \cdot 100 = 100\% \end{vmatrix}$
Total	$\frac{200}{300} \cdot 100 = 66,67\%$	$\frac{100}{300} \cdot 100 = 33,33\%$	$\frac{300}{300} \cdot 100 = 100\%$

Note que a probabilidade de um indivíduo ter câncer é 33,33%, mas

- Se o valor de Y é igual "Não-Fumante", então a probabilidade do indivíduo ter câncer é 0%;
- Se o valor de Y é igual "Fumante", então a probabilidade do indvíduo ter câncer é 100%.

Associação entre duas variáveis qualitativas Exemplo de ausência de associação

Um pesquisador está interessado em estudar a associação entre Gênero e Tabagismo. Para isso, ele coletou uma amostra de 300 de elementos da população e obteve a tabela contingência na Tabela 21.

Tabela 21: Tabela de contingência entre Gênero e Tabagismo.

	Gên		
Tabagismo	Homem	Mulher	Total
Não-Fumante Fumante	80 120	40 60	120 180
Total	200	100	300

Precisamos de uma referência e podemos calcular a frequência relativa ao total das colunas ou total das linhas. Neste exemplo, vamos usar o total das colunas.

Tabela 22: Tabela de distribuição de frequência relativa ao total das colunas.

Gênero (Y)			
Tabagismo (X)	Homem	Mulher	Total
Não-Fumante Fumante	$\begin{vmatrix} \frac{80}{200} \cdot 100 = 40\% \\ \frac{120}{200} \cdot 100 = 60\% \end{vmatrix}$	$\frac{\frac{40}{100} \cdot 100}{\frac{60}{100} \cdot 100} = 40\%$	$\begin{vmatrix} \frac{120}{300} \cdot 100 = 40\% \\ \frac{180}{300} \cdot 100 = 60\% \end{vmatrix}$
Total	$\frac{200}{200} \cdot 100 = 100\%$	$\frac{100}{100} \cdot 100 = 100\%$	$\frac{300}{300} \cdot 100 = 100\%$

Note que a probabilidade de um indivíduo ser Fumante é 40%, mas

- Se o valor de Y é igual Homem, então a probabilidade do indvíduo ser Fumante é 40%;
- Se o valor de Y é igual Mulher, então a probabilidade do indvíduo ser Fumante é 40%.

Associação entre duas variáveis qualitativas Exemplo

Vamos checar a associação entre fundacao_tipo e geral_condicao.

Associação entre duas variáveis qualitativas Gráfico de barras

Podemos agrupar as barras por grupos para analisar a associação entre duas variáveis qualitativas.

Associação entre duas variáveis qualitativas Gráfico de barras Exercício

- Verifique se existe associação entre as variáveis q006 e tp_cor_raca do conjunto de dados amostra_enem_salvador.xlsx usando gráfico de gráficos usando o position=fill.
- Verifique se existe associação entre as variáveis q006 e tp_sexo do conjunto de dados amostra_enem_salvador.xlsx usando gráfico de gráficos usando o position=dodge.

Associação entre duas variáveis qualitativas Medidas de associação

Propriedade quando duas variáveis qualitativas não estão associadas.

frequência observada.

	Gên		
Tabagismo	Homem	Mulher	Total
Não-Fumante	80	40	120
Fumante	120	60	180
Total	200	100	300

Tabela 23: Tabela de contingência: Tabela 24: Tabela de contingência: frequência esperada.

	Gên		
Tabagismo	Homem	Mulher	Total
Não-Fumante Fumante	$\frac{\frac{200 \cdot 120}{300}}{\frac{200 \cdot 180}{300}} = 80$ $\frac{200 \cdot 180}{300} = 120$	$\frac{\frac{100 \cdot 120}{300}}{\frac{100 \cdot 180}{300}} = 40$	120 180
Total	200	100	300

Propriedade importante: No contexto de não associação, as tabelas de distribuição de frequência observada e a tabela de distribuição de frequência esperada são iguais.

Associação entre duas variáveis qualitativas Medidas de associação

Considere duas variáveis qualitativas X e Y com valores possíveis:

- $X: A_1, A_2, \cdots, A_r$;
- $Y: B_1, B_2, \cdots, B_s;$

com tabela de contingência conforme tabela abaixo

	Y				
Χ	B ₁	B_2		B_s	Total
A ₁ A ₂	n ₁₁ n ₂₁	n ₁₂ n ₂₂		n _{1s} n _{2s}	n _{1.} n _{2.}
\vdots A_r	\vdots n_{r1}	: n _{r2}	·	: n _{rs}	\vdots n_{r}
Total	n.1	n.2		n.s	n

em que

•
$$n_{i.} = n_{i1} + n_{i2} + \cdots + n_{is}, \quad i = 1, 2, \cdots, r;$$

•
$$n_{.j} = n_{1j} + n_{2j} + \cdots + n_{rj}, \quad j = 1, 2, \cdots, s;$$

n é o tamanho da amostra.

Se X e Y não estão associadas, temos que $n_{ii}^{\star} = n_{ij}, \quad i = 1, \dots, r, j = 1, \dots, s$. Note que se,

- Se as distâncias $\frac{(n_{ij} n_{ij}^*)^2}{n^* ij}$ forem pequenas, então as duas variáveis **não** estão associadas:
- Se as distâncias $\frac{(n_{ij} n_{ij}^*)^2}{n^* ij}$ forem grandes, então as duas variáveis estão associadas;

então calculamos uma medida chamada qui-quadrado

$$\chi^{2} = \frac{(n_{11} - n_{11}^{\star})^{2}}{n_{11}^{\star}} + \frac{(n_{12} - n_{12}^{\star})^{2}}{n_{12}^{\star}} + \dots + \frac{(n_{1s} - n_{1s}^{\star})^{2}}{n_{1s}^{\star}} + \frac{(n_{21} - n_{21}^{\star})^{2}}{n_{21}^{\star}} + \frac{(n_{22} - n_{22}^{\star})^{2}}{n_{22}^{\star}} + \dots + \frac{(n_{2s} - n_{2s}^{\star})^{2}}{n_{2s}^{\star}} + \dots$$

:

$$+\frac{(n_{r1}-n_{r1}^{\star})^{2}}{n_{r1}^{\star}}+\frac{(n_{r2}-n_{r2}^{\star})^{2}}{n_{r2}^{\star}}+\cdots+\frac{(n_{rs}-n_{rs}^{\star})^{2}}{n_{rs}^{\star}},$$

 χ^2 é medida não-negativa, por isso usamos uma padronização entre 0 e 1.

Seja $k = \min\{\text{número de linhas}, \text{número de colunas}\}$ (de tabelas de contingência), e n é o tamanho da amostra.

- Coeficiente de contingência modificada: $C = \sqrt{\frac{k \cdot \chi^2}{(k-1) \cdot (n+\chi^2)}}$.
- Coeficiente V de Cramer: $C = \sqrt{\frac{\chi^2}{k \cdot \chi^2}}$.

Usamos o pacote DescTools para calcular essas medidas.

- Para calcular o Coeficiente de Contingência Modificada: ContCoef(x, y).
- Para calcular o Coeficiente V de Cramer: CramerV(x, y).

Associação entre duas variáveis qualitativas Medidas de associação Exemplo

```
dados_casas <- read_xlsx("dados/brutos/casas.xlsx")

dados_casas |>
    summarise(
    cont_coef = ContCoef(fundacao_tipo, geral_condicao),
    cramer_v = CramerV(fundacao_tipo, geral_condicao),
)
# A tibble: 1 x 2
```

Associação entre duas variáveis qualitativas Medidas de associação Exercício

- Verifique se existe associação entre as variáveis q006 e tp_cor_raca do conjunto de dados amostra_enem_salvador.xlsx calculando Coeficiente de Contingência Modificada.
- Verifique se existe associação entre as variáveis q006 e tp_sexo do conjunto de dados amostra_enem_salvador.xlsx calculando Coeficiente V de Cramer.

Associação entre variáveis qualitativas ordinais

Sejam X e Y duas variáveis qualitativas ordinais valores possíveis:

- valores possíveis de X: A_1, \ldots, A_n com $A_1 < A_2 < \cdots < A_n$;
- valores possíveis de $Y: B_1, \ldots, B_n$ com $B_1 < B_2 < \cdots < B_n$.

Associação entre X e Y:

- X e Y estão positivamente associadas, se o nível de Y aumenta quando o nível de X aumenta e vice-versa;
- X e Y estão negativamente associadas, se o nível de Y diminui quando o nível de X aumenta e vice-versa.

Suponha que temos duas variáveis qualitativas ordinais:

- escolaridade: ensino fundamental, ensino médio e ensino superior com ensino fundamental < ensino médio < ensino superior;
- classe social: A, B, C e D com D < C < B < A.

Dizemos

- que duas observações são concordantes se elas se posicionam em posições concordantes nas duas variáveis.
 - Exemplo: considere duas observações (João e Joaquim)
 - João: escola = ensino fundamental e classe_social = D
 - Joaquim: escola = ensino médio e classe_social = C
- que duas observações são concordantes se elas se posicionam em posições discordantes nas duas variáveis.
 - Exemplo: considere duas observações (João e Josué)
 - João: escola = ensino fundamental e classe social = C
 - Josué: escola = ensino médio e classe_social = D

- Se a maioria dos pares de observações são concordantes, então X e Y são positivamente associadas.
- Se a maioria dos pares de observações são discordantes, então X e Y são negativamente associadas.
- Se temos mesmo a quantidade de pares concordantes e discordantes, então X e Y então não estão associadas.

Sejam:

- n_c número de pares de observações concordantes;
- n_d número de pares de observações disconcordantes.

Então:

$$\gamma = \frac{n_c - n_d}{n_c + n_d}.$$

 γ é chamado de *Coeficiente Gama de Goodman-Kruskal*.

- $\gamma > 0$ se, e somente se, X e Y estão positivamente associadas;
- $\gamma < 0$ se, e somente se, X e Y estão negativamente associadas;
- $\gamma \approx 0$ se, e somente se, X e Y não estão associadas.

Como calcular γ usando a tabela de contingência? Suponha que temos duas variáveis qualitativas ordinais:

- $X: A_1, A_2, A_3, A_4 \in A_5 \text{ com } A_1 < A_2 < A_3 < A_4 < A_5;$
- Y: B_1 , B_2 , B_3 , B_4 e B_5 com $B_1 < B_2 < B_3 < B_4 < B_5$.

Número de pares de observações concordantes com observações com $X=A_2$ e $Y=B_3$: $n_{23}\cdot (n_{34}+n_{35}+n_{44}+n_{45}+n_{54}+n_{55})$.

X			Y		
,,	B_1	B_2	B_3	B_4	B_5
A_1	n ₁₁	n ₁₂	n ₁₃	n ₁₄	n ₁₅
A_2	n ₂₁	n ₂₂	n ₂₃	n ₂₄	n ₂₅
A_3	n ₃₁	n_{32}	n_{33}	n ₃₄	n ₃₅
A_4	n ₄₁	n_{42}	n_{43}	n ₄₄	n ₄₅
A_5	n ₅₁	n ₅₂	n ₅₃	n ₅₄	n ₅₅

Número de pares de observações disconcordantes com observações com $X = A_2$ e $Y = B_3$: $n_{23} \cdot (n_{31} + n_{32} + n_{41} + n_{42} + n_{51} + n_{52})$.

Fazemos essas contagens em todas as células para obter n_c e n_d .

Usamos o pacote DescTools:

 A função GoodmanKruskalGamma(x, y) calcula o Coeficiente de Goodman-Kruskal entre x e y.

x e y precisam ser fatores (para indicar a ordem das variáveis qualitativas ordinais).

Use a função fct do pacote forcats para criar transformar um vetor de caracteres em um fator.

Vamos usar um conjunto de dados de respostas ao Questionário de dezesseis fatores de personalidade (16PF), e checar as variáveis qualitativas ordinais A1 e A2 estão associadas.

As perguntas deste questionário podem se consultadas em: dicionario_psicologia.html.

```
df 16f <- read csv2("dados/brutos/psicologia.csv")</pre>
# A1 e A2 precisam ser fatores
df_16f <- df_16f |>
  mutate(
    A1 = fct(as.character(A1), levels = paste(0:5)),
    A2 = fct(as.character(A2), levels = paste(0:5))
df 16f |>
  summarise(gk = GoodmanKruskalGamma(A1, A2))
# A tibble: 1 \times 1
    gk
  <dbl>
1 0.564
GoodmanKruskalGamma(df 16f$A1, df 16f$A2, conf.level = 0.95)
    gamma lwr.ci upr.ci
```

0.5638367 0.5548132 0.5728602

- Verifique se existe associação entre as variáveis q006 e q001 do conjunto de dados amostra_enem_salvador.xlsx calculando Coeficiente Gama de Goodman-Kruskal.
- Verifique se existe associação entre as variáveis q006 e q002 do conjunto de dados amostra_enem_salvador.xlsx calculando Coeficiente Gama de Goodman-Kruskal.

Associação entre uma variável qualitativa e uma variável quantitativa

```
boxplot <- ggplot(dados iris) +</pre>
  geom boxplot(aes(x = especies, y = comprimento sepala)) +
  labs(x = "Espécies", y = "Comprimento de Sépala", title = "Dia
  theme minimal()
violino <- ggplot(dados iris) +</pre>
  geom violin(aes(x = \text{especies}, y = \text{comprimento sepala}) +
  labs(x = "Espécies", y = "Comprimento de Sépala", title = "Vio
  theme minimal()
lv <- ggplot(dados_iris) +</pre>
  geom_lv(aes(x = especies, y = comprimento_sepala)) +
  labs(x = "Espécies", y = "Comprimento de Sépala", title = "Val
  theme_minimal()
boxplot + violino + lv
```


Associação entre uma variável qualitativa e uma variável quantitativa Exercício

- Para o conjunto de dados amostra_enem_salvador.xlsx, compare a variável nu_nota_mt por raça (tp_cor_raca).
- Para o conjunto de dados amostra_enem_salvador.xlsx, compare a variável nu_nota_cn por raça (tp_cor_raca).
- Coloque os dois gráficos acima lado a lado usando o pacote patchwork.

Customizando tabelas usando o pacote gt

Salvando tabelas com o pacote gt

Vamos usar o pacote gt para customizar a apresentação de uma tabela.

A ideia do pacote gt é melhorar apresentação por camadas.

The Parts of a gt Table

TABLE HEADER							
HEADER			SUBTITL	E			
STUB	STUBHEAD LABEL		SPANNER CO	LUMN LABEL	COLUMN	Ī	COLUMN
HEAD			LABEL	LABEL	LABEL		LABELS
		н					
	ROW GROUP LABEL						
07115	ROW LABEL		Cell	Cell	Cell		TABLE
STUB	ROW LABEL		Cell	Cell	Cell		BODY
	SUMMARY LABEL		Summary Cell	Summary Cell	Summary Cell		
	FOOTNOTES						TABLE
			SOURCE NO	TES			FOOTER

Para mais detalhes, visite documentação do pacote gt

Salvando tabelas com o pacote gt

Vamos usar um exemplo para ensinar como usar o pacote gt.

```
tab <- dados_iris |>
  group_by(especies) |>
  summarise(
  m_petala = mean(comprimento_petala),
  dp_petala = sd(comprimento_petala),
  q1_petala = quantile(comprimento_petala, probs = 0.25),
  q2_petala = quantile(comprimento_petala, probs = 0.5),
  q3_petala = quantile(comprimento_petala, probs = 0.75),
  cv_petala = dp_petala / m_petala
)
tab
```

A tibble: 3 x 7
especies m_petala dp_petala q1_petala q2_petala q3_petala cv_petala
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1.4

5.1

4

1.5

4.35

5.55

1.58

4.6

5.88

11.9

11.0

9.94

1 setosa

2 versicolor

3 virginica

1.46

5.55

4.26

0.174

0.470

0.552

Cabeçalho da tabela: legenda e sub-legenda da tabela.

- tab_header: permite incluir legenda (title) e sub-legenda na tabela (subtitle)
- gtsave: permite salvar objeto gtnos formatos .html, .tex e .docx.
- md: permite formatação usando a sintaxe markdown.
 - Para mais detalhes sobre markdown, consulte cheatsheet do markdown

```
gt_tab <- gt(tab) |>
  tab_header(
    title = md("**Comprimento de pétala**"),
    subtitle = md("_Algumas estatísticas descritivas_")
)
gtsave(gt_tab, "output/tabela.html")
gtsave(gt_tab, "output/tabela.tex")
gtsave(gt_tab, "output/tabela.docx")
```

Salvando tabelas com o pacote gt Exercício

- ① Calcule a média, o desvio padrão, o primeiro quartil, o segundo quartil e o terceiro quartil para a variável nu_nota_mt por raça (tp_cor_raca) do conjunto de dados amostra_enem_salvador.xlsxe salve o resultado em objeto tab.
- 2 Crie um objeto gt com nome gt_tab a partir da tabela em tab.
- 3 Inclua uma legenda com o texto "Nota em matemática por raça" e sublegenda "Edição 2021" com a função tab_header.

Salvando tabelas com o pacote gt

• tab_source: inclusão de _fonte de dados_dentes

```
gt_tab <- gt_tab |>
  tab_source_note(
    source_note = md("**Fonte:** Elboração própria.")
)
gt_tab
```

Algumas estatísticas descritivas

especies	m_petala	dp_petala	q1_petala	q2_petala	q3_petala	cv_petala
setosa	1.462	0.1736640	1.4	1.50	1.575	11.878522
versicolor	4.260	0.4699110	4.0	4.35	4.600	11.030774
virginica	5.552	0.5518947	5.1	5.55	5.875	9.940466

Fonte: Elboração própria.

Salvando tabelas com o pacote gt Exercício

Inclua fonte de dados usando a função tab_source_note como texto "Fonte: elaboração própria." no objeto gt_tab.

Rótulo (legenda) para grupo de linhas

tab_row_group: permite colocar um *rótulo* para um grupo de linhas.

```
gt_tab <- gt_tab |>
  tab_row_group(
   rows = c(1, 3),
   label = md("_Espécies principais_")
)
gt_tab
```

Algumas estatísticas descritivas al netala

d2 netala d3 netala

4.600

4.35

cv netala

11.030774

Сэрссісэ	III_petala	ир_регата	qperaia	qz_petala	чэ_регата	cv_petala
Espécies p	rincipais					
setosa	1.462	0.1736640	1.4	1.50	1.575	11.878522
virginica	5.552	0.5518947	5.1	5.55	5.875	9.940466

4.0

Fonte: Elboração própria.

m netala

4.260

dn netala

0.4699110

ecnecies

versicolor

Rótulo (legenda) para grupo de linhas Exercício

Inclua um *rótulo* para as linhas pardas e pretas com o texto "negras" no objeto gt_tab.

Rótulo (legenda) para grupo de colunas

tab_spanner: permite rótulo para grupo de colunas.

```
gt_tab <- gt_tab |>
 tab_spanner(
    columns = c(
      q1_petala,
      q2_petala,
     q3_petala
   label = "Quantis"
 ) |>
 tab_spanner(
    columns = c(dp_petala, cv_petala),
    label = "Dispersão"
gt_tab
```

Algumas actatísticas doscritivas

11.878522

9.940466

11.030774

14

5.1

4.0

1.50

5.55

4.35

1.575

5.875

4.600

Algumas estatisticas descritivas
Dispersão

Dispersão

Dispersão

0.1736640

0.5518947

0.4699110

Espécies principais

Fonte: Elboração própria.

1.462

5.552

4.260

setosa

virginica

versicolor

		Dispersão		Quantis		
especies	m_petala	dp_petala	cv_petala	q1_petala	q2_petala	q3_petala

Rótulo (legenda) para grupo de colunas Exercício

Inclua um *rótulo* pra as colunas do primeiro quartil, segundo quartil e terceiro quartil com o texto "Quartis" no objeto gt_tab.

Movendo as colunas na tabela

- cols_move_to_start: move uma ou mais colunas para o início da tabela.
- cols_move_to_end: move uma ou mais colunas para o fim da tabela.
- cols_move: move uma ou mais colunas para depois um determinada coluna.

```
gt_tab <- gt_tab |>
  cols_move_to_start(
    columns = c(especies, dp petala, cv petala)
  ) |>
  cols move to end(
    columns = m petala
  ) |>
  cols move(
    after = cv petala,
    columns = c(q1_petala, q2_petala, q3_petala)
gt_tab
```

Algumas estatísticas descritivas

	Disp	ersão		Quantis		
especies	dp_petala	cv_petala	q1_petala	q2_petala	q3_petala	m_petala

Espécies p	rincipais					
setosa	0.1736640	11.878522	1.4	1.50	1.575	1.462
virginica	0.5518947	9.940466	5.1	5.55	5.875	5.552

setosa	0.1736640	11.878522	1.4	1.50	1.575	1.462
virginica	0.5518947	9.940466	5.1	5.55	5.875	5.552
versicolor	0.4699110	11.030774	4.0	4.35	4.600	4.260

Fonte: Elboração própria.

Movendo as colunas na tabela Exercício

Deixe as colunas de gt_tab na seguinte ordem: raça, média, primeiro quartil, segundo quartil, terceiro quartil e desvio padrão usando as funções cols_move_to_start, cols_move e cols_move_to_end.

Atualizando as colunas

cols_label: permite atualizar os rótulos das colunas.

```
gt_tab <- gt_tab |>
  cols_label(
    especies = md("**Espécies**"),
    dp_petala = "Desvio padrão",
    cv_petala = "Coeficiente de variação",
    q1_petala = md("*Q1*"),
    q2_petala = md("*Q2*"),
    q3_petala = md("*Q3*"),
    m_petala = "Média"
  )
gt_tab
```

Algumas estatísticas descritivas

	Disper	Quantis				
Espécies	Desvio padrão	CV	Q1	Q2	Q3	Média
Espécies p	rincipais					
setosa	0.1736640	11.878522	1.4	1.50	1.575	1.462
virginica	0.5518947	9.940466	5.1	5.55	5.875	5.552
versicolor	0.4699110	11.030774	4.0	4.35	4.600	4.260

Fonte: Elboração própria.

Atualizando as colunas Exercício

Para o objeto gt_tab, garante que as colunas tenham os seguintes nomes: Raça, Média, Desvio padrão, Primeiro quartil, Segundo quartil e Terceiro quartil.

Formatação de valores

fmt_number: formatação de valores numéricos de uma ou mais colunas.

```
gt tab <- gt tab |>
  fmt number(
    columns = c(
      dp petala, q1 petala, q2 petala,
      q3 petala, m petala
    decimals = 2,
    dec mark = ",",
    sep mark = "."
  ) |>
  fmt number(
    columns = cv_petala,
    decimals = 2,
    dec_mark = ",",
    sep_mark = ".",
    patter = "\{x\} \ \ ""
gt_tab
```

Algumas estatísticas descritivas

	Dispers					
Espécies	Desvio padrão	CV	Q1	Q2	Q3	Média
Espécies p	rincipais					
setosa	0, 17	11,88 %	1,40	1,50	1,58	1,46
virginica	0,55	9,94 %	5,10	5,55	5,88	5,55
versicolor	0,47	11,03 %	4,00	4, 35	4,60	4, 26

Fonte: Elboração própria.

Formatação de valores Exercício

No objeto ${\tt gt_tab}$, para as colunas numéricas coloque "," para o separador de casa decimal e "." para o agrupador de milhar.

Referências

- Doane, David P, e Lori E Seward. 2011. "Measuring skewness: a forgotten statistic?" *Journal of statistics education* 19 (2).
- Heike Hofmann, Hadley Wickham, e Karen Kafadar. 2017. "Letter-Value Plots: Boxplots for Large Data". *Journal of Computational and Graphical Statistics* 26 (3): 469–77. https://doi.org/10.1080/10618600.2017.1305277.
- Hintze, Jerry L, e Ray D Nelson. 1998. "Violin plots: a box plot-density trace synergism". *The American Statistician* 52 (2): 181–84.
- Hoaglin, David C, Frederick Mosteller, e John W Tukey. 1983. "Understanding robust and exploratory data anlysis". Wiley series in probability and mathematical statistics.
- Hyndman, Rob J., e Yanan Fan. 1996. "Sample Quantiles in Statistical Packages". The American Statistician 50 (4): 361–65. https://doi.org/10.1080/00031305.1996.10473566.
- Joanes, Derrick N, e Christine A Gill. 1998. "Comparing measures of sample skewness and kurtosis". *Journal of the Royal Statistical Society: Series D (The Statistician)* 47 (1): 183–89.
- Morettin, Pedro A, e Wilton O Bussab. 2010. *Estatística Básica*. Editora Saraiva.
- Tukey, John W et al. 1977. Exploratory data analysis. Vol. 2. Reading, MA.