1 Zillow - Time series forecasting Model

1.1 Business Case and Project focus

We will be presenting this case to a real estate investment firm from Philadelphia, that is looking for us to analyze the data and determine what Metro area is best for their investment and this analysis will give them the ability to narrow down their focus and determine where to look for investments.

We will be using the Zillow dataset which covers the years from 2000-2018 and we will be focused in the Northeast, our client has determined that the area of business for them is the states within a reasonable drive from their home office in Princeton, NJ. We will filter the dataset to only contain the east coast homes from Delaware, Pennsylvania and New Jersey. This will give them information on what the forecasted growth for these markets would be and where they should focus their attention and their greatest opportunities will be.

Our client also only wants to start with an investment of \$250,000 per home since they will be looking for multiple homes to invest in, so we will have to filter the data set to eliminate the more expensive homes.

1.2 Data set Utilized

The data set encompusess the sales data for over

There are 14,723 rows and 272 variables:

- RegionID: Unique index, 58196 through 753844
- RegionName: Unique Zip Code, 1001 through 99901
- · City: City in which the zip code is located
- State: State in which the zip code is located
- Metro: Metropolitan Area in which the zip code is located
- CountyName: County in which the zip code is located
- SizeRank: Numerical rank of size of zip code, ranked 1 through 14723 1996-04 through 2018-04: refers to the median housing sales values for April 1996 through April 2018, that is 265 data points of monthly data for each zip code

2 Exploratory Data Analysis and Data Preparation

###Importing necessary libraries and packages

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        from matplotlib.pylab import rcParams
        import seaborn as sns
        from sklearn.metrics import mean squared error
        from sklearn.linear model import LinearRegression
        from sklearn.model_selection import TimeSeriesSplit
        import itertools
        import pmdarima as pm
        from pmdarima.arima import auto_arima
        import statsmodels.api as sm
        from statsmodels.tsa.stattools import adfuller, pacf, acf
        from statsmodels.tsa.arima.model import ARIMA
        from statsmodels.tsa.statespace.sarimax import SARIMAX
        import warnings
        warnings.filterwarnings('ignore')
        %matplotlib inline
        plt.rcParams['figure.figsize']=[12,10]
        sns.set_style(style = 'whitegrid')
        executed in 983ms, finished 07:47:54 2022-09-05
```

2.1 Importing Data and Preprocessing

Importing data and looking and Basic Info

Out[3]:

	RegionID	RegionName	City	State	Metro	CountyName	SizeRank	1996-04	1996-05
0	84654	60657	Chicago	IL	Chicago	Cook	1	334200.0	335400.0
1	90668	75070	McKinney	TX	Dallas- Fort Worth	Collin	2	235700.0	236900.0
2	91982	77494	Katy	TX	Houston	Harris	3	210400.0	212200.0
3	84616	60614	Chicago	IL	Chicago	Cook	4	498100.0	500900.0
4	93144	79936	El Paso	TX	El Paso	El Paso	5	77300.0	77300.0

5 rows × 272 columns

```
In [4]: df.shape

executed in 4ms, finished 07:47:55 2022-09-05
```

Out[4]: (14723, 272)

The raw data set has 272 columns, because of the fact that the time data is in the columns and has 14,723 entries in the rows. There are 7 columns which are focused on the location of the entry, but RegionID seems to be random, since in the head we can see two entries with Cook county Chicago and they have different RegionID's. We will explore if this information means anything or not.

```
In [5]: df['RegionID'].value_counts()
         executed in 7ms, finished 07:47:55 2022-09-05
Out[5]: 84654
         60802
         58299
                    1
         63186
                   1
         77596
                   1
         67309
                   1
         72802
         74730
                   1
         72705
                    1
         95851
         Name: RegionID, Length: 14723, dtype: int64
```

It appears that each entry has a separate RegionID and that they do not have any significance

2.2 Filtering the Data to Tristate area and within our clients budget

We will filter the dataset to only include the 3 states with which we are concerned and then filter for our clients budget

```
In [6]: #Using isin to filter
    df_tri = df[df['State'].isin(['PA', 'DE', 'NJ'])]
    executed in 10ms, finished 07:47:55 2022-09-05

In [7]: #Checking to ensure Dataset only contains our 3 states
    df_tri['State'].nunique()
    executed in 3ms, finished 07:47:55 2022-09-05

Out[7]: 3

In [8]: #Dataset containing only the areas with a mean value under $250,000
    df_tri_budget = df_tri[df_tri['2018-04'] <= 250000]
    executed in 4ms, finished 07:47:55 2022-09-05</pre>
```

```
In [9]: df_tri_budget['2018-04'].sort_values(ascending=False)
         executed in 3ms, finished 07:47:55 2022-09-05
Out[9]: 12452
                   249500
         1999
                   249000
         7736
                   248900
         9345
                   248800
         11075
                   248600
                    . . .
         6745
                    38500
         10542
                    36600
         14225
                    31400
         6325
                    30400
         7402
                    29000
         Name: 2018-04, Length: 843, dtype: int64
```

Data if now filtered by state and for homes in our clients budget

2.3 Melt Data Function

```
In [10]: # Data Melted to turn the dates into the index
         df_tri_melted = pd.melt(df_tri_budget, id_vars=['RegionName', 'City', 'Stat
         executed in 39ms, finished 07:47:55 2022-09-05
In [11]: df tri melted.info()
         executed in 110ms, finished 07:47:55 2022-09-05
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 223395 entries, 0 to 223394
         Data columns (total 9 columns):
          #
              Column
                          Non-Null Count
                                            Dtype
                           -----
              RegionName 223395 non-null int64
          1
              City
                           223395 non-null object
          2
                           223395 non-null object
              State
          3
             Metro
                           219420 non-null object
          4
              CountyName 223395 non-null object
          5
             RegionID 223395 non-null int64
                           223395 non-null int64
          6
              SizeRank
                           223395 non-null object
          7
              time
                           216642 non-null float64
              value
         dtypes: float64(1), int64(3), object(5)
         memory usage: 15.3+ MB
In [12]: | df_tri_melted['time'] = pd.to_datetime(df_tri_melted['time'], infer_datetim
         executed in 25ms, finished 07:47:55 2022-09-05
```

```
In [13]: df_tri_melted.info()
```

executed in 86ms, finished 07:47:55 2022-09-05

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 223395 entries, 0 to 223394
Data columns (total 9 columns):

3 Metro 219420 non-null object 4 CountyName 223395 non-null object 5 RegionID 223395 non-null int64

6 SizeRank 223395 non-null int64 7 time 223395 non-null datetime64[ns]

8 value 216642 non-null float64

dtypes: datetime64[ns](1), float64(1), int64(3), object(4)

memory usage: 15.3+ MB

In [14]: #df_tri_melted.set_index('time', inplace=True)

executed in 1ms, finished 07:47:55 2022-09-05

In [15]: df_tri_melted.tail()

executed in 6ms, finished 07:47:55 2022-09-05

Out[15]:

	RegionName	City	State	Metro	CountyName	RegionID	SizeRank	time	va
223390	16836	Girard	PA	DuBois	Clearfield	64760	14622	2018- 04-01	5830
223391	8317	Weymouth	NJ	Atlantic City	Atlantic	61044	14633	2018- 04-01	16500
223392	8241	Port Republic	NJ	Atlantic City	Atlantic	61023	14648	2018- 04-01	17930
223393	17006	Toboyne	PA	Harrisburg	Perry	64839	14653	2018- 04-01	7080
223394	15083	Sutersville	PA	Pittsburgh	Westmoreland	63889	14666	2018- 04-01	8260

```
In [16]: sns.lineplot(data= df_tri_melted, x= 'time',y = 'value', hue = 'State')
   plt.xlabel('Year', fontsize = 20)
   plt.ylabel('Average Median Home Price', fontsize = 20)
   plt.title('Avg Median Home prices for Tristate region 1996-2018', fontsize
   executed in 12.2s, finished 07:48:07 2022-09-05
```


All three states have a similar shape to their histories, PA appears to have the lowest risk factor, as the curve is smoother and flatter then the other two. Delaware appears to have the highest volatility with smaller peaks and valleys in its path and NJ seems to be the greatest risk reward state, having the highest peak, but also the steepest climb and descent.

As we can see from this graph, there was a market crash in 2008, being that the real estate market is a historically stable market and this appears to be a blip on the radar, we will focus on the data from 2012 till 2018. This is after the market began to rebound.

Since we will be looking at the different Metro areas in our filtered dataset we need to split the dataset onto the metro areas and then set the index equal to the time series for modeling

Out[19]:

Metro	Allentown	Altoona	Atlantic City	Bloomsburg	Bradford	Chambersburg
time						
2012- 01-01	158960.526316	113300.000000	178769.230769	116533.333333	54400.000000	149014.285714
2012- 02-01	158223.684211	112588.888889	177169.230769	116416.666667	55016.666667	148957.142857
2012- 03-01	157800.000000	112366.666667	176146.153846	116616.666667	55433.333333	149428.571429
2012- 04-01	157610.526316	112633.333333	176407.692308	116666.666667	55816.666667	148642.857143
2012- 05-01	157036.842105	113500.000000	177253.846154	116750.000000	56400.000000	146157.142857

5 rows × 36 columns

```
In [20]: df_metro_filtered.isna().sum().sum()
    executed in 3ms, finished 07:48:07 2022-09-05
```

Out[20]: 0

```
In [21]: plt.plot(df_metro_filtered)
   plt.xlabel('Years', fontsize = 20)
   plt.ylabel('Median home Price', fontsize = 20)
   plt.title('Average Home Value Metro areas 2012-2018', fontsize = 20);
   executed in 143ms, finished 07:48:08 2022-09-05
```


The data has been successfully filtered to only contain the data following 2012, the retail market is generally a stable investment and environment, so we will focus on the data following the crash

2.4 Train Validation split

Here we will need to split the time series data into a Training set and a Testing set

```
In [22]: #Determining where the cutoff value is for Split
    cutoff = round(df_metro_filtered.shape[0]* 0.8)
    cutoff
    executed in 2ms, finished 07:48:08 2022-09-05
Out[22]: 61
```

```
In [23]: train = df_metro_filtered[:61]
valid = df_metro_filtered[61:]

executed in 2ms, finished 07:48:08 2022-09-05
```

```
In [24]: fig, ax = plt.subplots(figsize=(12,8))
    ax.plot(train['Allentown'], label = 'train')
    ax.plot(valid['Allentown'], label = 'Valid')
    ax.set_title('Train-Validation Split');
    plt.legend();
    executed in 118ms, finished 07:48:08 2022-09-05
```


Our Dataset has been split into a Train and a validation set

```
In [25]: train.tail() executed in 10ms, finished 07:48:08 2022-09-05
```

Out[25]:

Metro	Allentown	Altoona	Atlantic City	Bloomsburg	Bradford	Chambersburg	
time							
2016- 09-01	163650.000000	123350.0	161553.846154	127833.333333	62550.000000	145457.142857	17876
2016- 10-01	164028.947368	124780.0	160553.846154	126266.666667	62600.000000	146814.285714	17891
2016- 11-01	164568.421053	125680.0	160238.461538	125250.000000	62616.666667	148842.857143	17987
2016- 12-01	165244.736842	126260.0	160369.230769	124833.333333	62516.666667	150357.142857	18135
2017- 01-01	166415.789474	126880.0	160430.769231	124983.333333	62566.666667	150342.857143	18276

5 rows × 36 columns

2.5 Exploratory data analysis without modeling

We will attempt to use straight ROI on the data to see if the modeling is a better forecast, we will compare modeling to the straight mathematical process.

```
In [26]: names = []
ROI = []
#Itterating through dataset to determine what the raw ROI is for each Metro
for i in range(len(train.columns)):

    metro_name = train.columns[i][:]
    initial_value = train[train.columns[i]]['2012-01-01']
    latest_value = train[train.columns[i]]['2017-01-01']

    calculate_roi = round(((latest_value-initial_value)/initial_value)*100,
    names.append(metro_name)
    ROI.append(calculate_roi)

df_roi_train = pd.DataFrame()
df_roi_train['Metro'] = names
df_roi_train['ROI'] = ROI
executed in 9ms, finished 07:48:08 2022-09-05
```

```
In [28]: plt.bar(df_roi_train['Metro'], df_roi_train['ROI'])
    plt.xticks(rotation=90)
    plt.xlabel('Metro area', fontsize=20)
    plt.ylabel('ROI %', fontsize = 20)
    plt.title('ROI for Investment 2012-2018', fontsize = 30);
    executed in 235ms, finished 07:48:08 2022-09-05
```


In [29]: df_roi_train.head()
executed in 3ms, finished 07:48:08 2022-09-05

Out[29]:

	Metro	ROI
22	Pittsburgh	18.84
25	Salisbury	15.76
4	Bradford	15.01
33	Williamsport	13.86
16	Meadville	13.78

As we can see above, a cursory ROI calculation would lead us to the 5 metro areas listed as the top choices for investment. We will check to see if this holds true once we have run modeling on the dataset

Out[30]:

Metro	Allentown	Altoona	Atlantic City	Bloomsburg	Bradford	Chambersburg
time						
2012- 01-01	NaN	NaN	NaN	NaN	NaN	NaN
2012- 02-01	158960.526316	113300.000000	178769.230769	116533.333333	54400.000000	149014.285714
2012- 03-01	158223.684211	112588.888889	177169.230769	116416.666667	55016.666667	148957.142857
2012- 04-01	157800.000000	112366.666667	176146.153846	116616.666667	55433.333333	149428.571429
2012- 05-01	157610.526316	112633.333333	176407.692308	116666.666667	55816.666667	148642.857143

5 rows × 36 columns

```
In [31]: sns.lineplot(data = train, x= train.index,y = 'Dover')
sns.lineplot(data = naive, x = naive.index, y='Dover');
executed in 117ms, finished 07:48:08 2022-09-05
```


In [32]: round(train.diff(), 2)

executed in 20ms, finished 07:48:08 2022-09-05

Out[32]:

Metro	Allentown	Altoona	Atlantic City	Bloomsburg	Bradford	Chambersburg	Dover	DuBois	Strou
time									
2012- 01-01	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
2012- 02-01	-736.84	-711.11	-1600.00	-116.67	616.67	-57.14	110.00	100.00	
2012- 03-01	-423.68	-222.22	-1023.08	200.00	416.67	471.43	140.00	130.77	
2012- 04-01	-189.47	266.67	261.54	50.00	383.33	-785.71	20.00	84.62	
2012- 05-01	-573.68	866.67	846.15	83.33	583.33	-2485.71	110.00	-61.54	
2016- 09-01	292.11	1320.00	-1315.38	333.33	0.00	485.71	236.36	223.08	
2016- 10-01	378.95	1430.00	-1000.00	-1566.67	50.00	1357.14	154.55	246.15	
2016- 11-01	539.47	900.00	-315.38	-1016.67	16.67	2028.57	954.55	223.08	
2016- 12-01	676.32	580.00	130.77	-416.67	-100.00	1514.29	1481.82	315.38	
2017- 01-01	1171.05	620.00	61.54	150.00	50.00	-14.29	1409.09	430.77	

61 rows × 36 columns

3 Modeling

Pittsburgh showed the highest ROI in the cursory investigation, so we will use Pittsburgh to train our model

```
In [33]: #Filtering out results for Pittsburgh to train the model
pittsburgh = df_metro_filtered[['Pittsburgh']].copy()
```

executed in 2ms, finished 07:48:08 2022-09-05

```
In [34]: pittsburgh = pittsburgh.loc['2012-01-01':]
executed in 3ms, finished 07:48:08 2022-09-05
```

```
In [35]: plt.subplots(figsize=(16,10))
  plt.plot(pittsburgh)
  plt.xlabel('Year', fontsize=20)
  plt.ylabel('Price', fontsize=20)
  plt.title('Price History from 2012 till 2018 for Pittsburgh Metro', fontsiz
  executed in 123ms, finished 07:48:08 2022-09-05
```


As we can see, there is a fairly steady incline in price for Pittsburgh and it should give us a pretty good option for modeling

3.1 Train Test Split

We will split our data for the modeling process using the last 24 months as our test data

```
In [36]: pittsburgh_train = pittsburgh[:'2016-04-01']
pittsburgh_test = pittsburgh['2016-05-01':]
executed in 3ms, finished 07:48:08 2022-09-05
```

3.2 Auto-ARIMA method

Utilizing auto-ARIMA method to find optimal values for p,d and q, so that we can model and forecast in the most efficient manner

```
In [37]: auto_model = pm.auto_arima(pittsburgh_train,
                             start p=0, start q=0,
                             test='adf',
                             \max p=5, \max q=5,
                             m=1,
                             d=0,
                             seasonal = True,
                             start P=0, start_Q=0,
                             D=0,
                             trace=True,
                             error action= 'ignore',
                             suppress_warnings=True,
                             stepwise=True,with_intercept=False)
        print(auto_model.summary())
         executed in 1.09s, finished 07:48:09 2022-09-05
         Performing stepwise search to minimize aic
         ARIMA(0,0,0)(0,0,0)[0]
                                           : AIC=1356.611, Time=0.01 sec
                                           : AIC=inf, Time=0.02 sec
         ARIMA(1,0,0)(0,0,0)[0]
                                          : AIC=1323.210, Time=0.02 sec
         ARIMA(0,0,1)(0,0,0)[0]
         ARIMA(1,0,1)(0,0,0)[0]
                                           : AIC=inf, Time=0.03 sec
         ARIMA(0,0,2)(0,0,0)[0]
                                           : AIC=1317.653, Time=0.01 sec
                                           : AIC=692.840, Time=0.06 sec
         ARIMA(1,0,2)(0,0,0)[0]
                                           : AIC=inf, Time=0.09 sec
         ARIMA(2,0,2)(0,0,0)[0]
         ARIMA(1,0,3)(0,0,0)[0]
                                           : AIC=inf, Time=0.07 sec
                                           : AIC=1317.821, Time=0.02 sec
         ARIMA(0,0,3)(0,0,0)[0]
                                          : AIC=674.431, Time=0.14 sec
         ARIMA(2,0,1)(0,0,0)[0]
                                           : AIC=inf, Time=nan sec
         ARIMA(2,0,0)(0,0,0)[0]
         ARIMA(3,0,1)(0,0,0)[0]
                                          : AIC=inf, Time=0.15 sec
                                          : AIC=inf, Time=0.08 sec
         ARIMA(3,0,0)(0,0,0)[0]
                                          : AIC=inf, Time=0.19 sec
         ARIMA(3,0,2)(0,0,0)[0]
         ARIMA(2,0,1)(0,0,0)[0] intercept : AIC=inf, Time=0.14 sec
         Best model: ARIMA(2,0,1)(0,0,0)[0]
         Total fit time: 1.085 seconds
                                      SARTMAX Results
         Dep. Variable:
                                               No. Observations:
                                           У
         52
        Model:
                            SARIMAX(2, 0, 1)
                                               Log Likelihood
                                                                            -33
         3.216
        Date:
                            Mon, 05 Sep 2022
                                               AIC
                                                                             67
         4.431
         Time:
                                    07:48:09
                                               BIC
                                                                             68
         2.236
         Sample:
                                  01-01-2012
                                               HQIC
                                                                             67
         7.423
                                -04-01-2016
         Covariance Type:
                                         opg
         ______
         =====
                                                       P> | z |
                                                                  [0.025
                         coef
                                std err
                                                 Z
         0.975]
                        _____
```

ar.L1	1.7864	0.085	20.923	0.000	1.619	
1.954						
ar.L2	-0.7864	0.085	-9.201	0.000	-0.954	_
0.619						
${\tt ma.L1}$	0.8562	0.084	10.153	0.000	0.691	
1.021						
sigma2	1.56e+04	3068.132	5.085	0.000	9588.808	2.1
6e+04						
====== Ljung-Box	_		1.46	Jarque-Bera	(JB):	
6.00						
Prob(Q):			0.23	Prob(JB):		
0.05						
Heterosked -0.65	dasticity (H):	1	5.00	Skew:		
Prob(H) (t	cwo-sided):		0.00	Kurtosis:		
4.03						
=======	-=======		:=======	========	========	=====
========	=					

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (co mplex-step).

- In [38]: #Determining best model order from auto ARIMA auto_model.order
 executed in 3ms, finished 07:48:09 2022-09-05
- Out[38]: (2, 0, 1)
- In [39]: #Determining if there is any seasonality that needs to be accounted for auto_model.seasonal_order

 executed in 3ms, finished 07:48:09 2022-09-05
- Out[39]: (0, 0, 0, 0)

========	========	:=======		=======	========	====
====	_	_				
0.055	coef	std err	Z	P> z	[0.025	
0.975]						
ar.L1	1.1390	0.127	8.949	0.000	0.890	
1.388						
ar.L2	-0.1365	0.128	-1.068	0.285	-0.387	
0.114						
ma.L1	0.9661	0.094	10.245	0.000	0.781	
1.151						
sigma2	1.605e+04	3312.619	4.845	0.000	9558.490	2.2
5e+04						

====

There are some outliers and there is some noise at both ends of the spectrum for Ocean City, but it appears we meet all requirements and that the first two lags are correlated above the required .05 percent level for correlations. The rest will not provide a good model.

- In the top right our KDE line closely follows the normal distribution, having a mean of 0 and a std deviation of 1
- Our qq plot closely follows our our residuals line trend line. This shows us that our residuals are normally distributed
- From the Correlogram we can see that the time series residuals have a low correlation with their lag versions and it becomes clearer as we move further along the time series

From these observations, we can assume that there are not obvious correlations and we can fit the model for predictions of future prices

3.3 Model Effectiveness

we will run the model and calculate the lower and upper range to determine how risky our model is and what the range will be for predictions

In [41]: # Running predictions and placing upper and lower predictions in a datafram pred = output.get_prediction(start=('2016-05-01'), end=('2018-04-01'), dyna pred_range = pred.conf_int() pred_range executed in 8ms, finished 07:48:10 2022-09-05

Out[41]:

	lower Pittsburgh	upper Pittsburgh
2016-05-01	118300.978639	118798.110802
2016-06-01	118296.692531	119454.369472
2016-07-01	118410.533156	120023.366425
2016-08-01	118574.861271	120547.793674
2016-09-01	118767.417304	121046.521005
2016-10-01	118978.486583	121528.806797
2016-11-01	119202.975684	121999.687380
2016-12-01	119437.846987	122462.197614
2017-01-01	119681.120710	122918.321930
2017-02-01	119931.422636	123369.440214
2017-03-01	120187.753378	123816.557682
2017-04-01	120449.359625	124260.433502
2017-05-01	120715.657194	124701.657739
2017-06-01	120986.182484	125140.699891
2017-07-01	121260.560486	125577.940881
2017-08-01	121538.482940	126013.694901
2017-09-01	121819.692951	126448.224795
2017-10-01	122103.973885	126881.753161
2017-11-01	122391.141171	127314.470556
2017-12-01	122681.036122	127746.541665
2018-01-01	122973.521219	128178.110027
2018-02-01	123268.476432	128609.301706
2018-03-01	123565.796329	129040.228187
2018-04-01	123865.387772	129470.988678

Model predictions appear to under valuate the future sale price, but this will also help mitigate the risk of investment

3.4 Forecasting the future

=======	=========		========	=======	========	=====
=====						
	coef	std err	Z	P > z	[0.025	
0.975]						
ar.L1	1.2063	0.093	12.958	0.000	1.024	
1.389						
ar.L2	-0.2033	0.094	-2.174	0.030	-0.387	_
0.020						
${\tt ma.L1}$	0.8229	0.098	8.372	0.000	0.630	
1.016						
sigma2	2.234e+04	3665.804	6.093	0.000	1.52e+04	2.9
5e+04						
=======	=========		========	=======	========	=====

=====

```
In [44]: forecast = full_output.get_forecast(24)
    predic = forecast.conf_int()
    predic['value'] = forecast.predicted_mean
    predic.columns = ['lower', 'upper', 'prediction']
    predic
    executed in 9ms, finished 07:48:10 2022-09-05
```

Out[44]:

	lower	upper	prediction
2018-05-01	132881.898016	133467.760111	133174.829063
2018-06-01	133000.482662	134325.818853	133663.150758
2018-07-01	133222.678590	135089.627559	134156.153075
2018-08-01	133501.237804	135801.880656	134651.559230
2018-09-01	133814.063533	136483.763259	135148.913396
2018-10-01	134149.966116	137146.291147	135648.128631
2018-11-01	134502.765712	137795.619774	136149.192743
2018-12-01	134868.732065	138435.485328	136652.108697
2019-01-01	135245.436833	139068.328269	137156.882551
2019-02-01	135631.201964	139695.840056	137663.521010
2019-03-01	136024.812935	140319.248924	138172.030930
2019-04-01	136425.358319	140939.480113	138682.419216
2019-05-01	136832.134170	141557.251440	139194.692805
2019-06-01	137244.583954	142173.133372	139708.858663
2019-07-01	137662.259108	142787.588446	140224.923777
2019-08-01	138084.792216	143400.998114	140742.895165
2019-09-01	138511.878163	144013.681570	141262.779866
2019-10-01	138943.260579	144625.909321	141784.584950
2019-11-01	139378.721839	145237.913179	142308.317509
2019-12-01	139818.075563	145849.893764	142833.984664
2020-01-01	140261.160876	146462.026243	143361.593559
2020-02-01	140707.837959	147074.464780	143891.151369
2020-03-01	141157.984548	147687.346036	144422.665292
2020-04-01	141611.493152	148300.791955	144956.142553

Now that we have our model and predictions for Pittsburgh, we will iterate the model over all of our Metro areas and forecast the average home for all Metro areas in our dataset

3.5 Forecasting Model across all Metro in dataset

```
In [46]: metro_predic = {}
         metro name = []
         lower_val = []
         upper_val = []
         predic_val = []
         for metro in df_metro_filtered:
             #Filtering data to only include data after 2012
             recent_series = df_metro_filtered[metro]['2012':]
             # Splitting data into train and test.
             train series = recent series[:'2017-04']
             test series = recent series['2017-05':]
             #Auto ARIMA model
             auto_model = pm.auto_arima(train_series, start_p=0, start q=0,
                              test='adf',
                              max p=5, max q=5,
                              m=1,
                              d=0,
                              seasonal = True,
                               start_P=0,start_Q=0,
                              D=0,
                              trace=True,
                              error_action= 'ignore',
                               suppress warnings=True,
                               stepwise=True, with intercept=False)
             #Values from Auto Arima plugde into SARIMAX model
             SARIMAX MODEL = sm.tsa.statespace.SARIMAX(recent series,
                                                      order= auto model.order,
                                                      seasonal order= auto model.seas
                                                      enforce stationarity=False,
                                                      enforce invertibility=False)
             # Fit the model and print results
             output = SARIMAX MODEL.fit()
             ## Getting a forecast for the next 36 months after the last absrecorded
             forecast = output.get forecast(36)
             prediction = forecast.conf int()
             prediction['value'] = forecast.predicted mean
             prediction.columns = ['lower', 'upper', 'mean']
             metro name.append(metro)
             forecast = prediction['mean'][35]
             low int = prediction['lower'][35]
             high_int = prediction['upper'][35]
             #Appending values to create a dataframe of predicted results
             predic val.append(forecast)
             lower val.append(low int)
             upper val.append(high int)
             df metro predic = pd.DataFrame(index=metro name)
             df metro predic['Upper'] = upper_val
             df metro predic['Lower'] = lower val
```

```
df_metro_predic['Prediction'] = predic_val
```

```
executed in 40.4s, finished 07:48:51 2022-09-05
Performing stepwise search to minimize aic
           ARIMA(0,0,0)(0,0,0)[0]
                                                    : AIC=1717.542, Time=0.01 sec
                                                    : AIC=inf, Time=0.02 sec
           ARIMA(1,0,0)(0,0,0)[0]
                                                    : AIC=1675.035, Time=0.02 sec
           ARIMA(0,0,1)(0,0,0)[0]
                                                    : AIC=919.326, Time=0.05 sec
           ARIMA(1,0,1)(0,0,0)[0]
                                                    : AIC=inf, Time=0.06 sec
           ARIMA(2,0,1)(0,0,0)[0]
                                                   : AIC=878.549, Time=0.09 sec
           ARIMA(1,0,2)(0,0,0)[0]
           ARIMA(0,0,2)(0,0,0)[0]
                                                   : AIC=1667.216, Time=0.02 sec
           ARIMA(2,0,2)(0,0,0)[0]
                                                   : AIC=inf, Time=0.10 sec
           ARIMA(1,0,3)(0,0,0)[0]
                                                   : AIC=inf, Time=0.09 sec
                                                    : AIC=1665.752, Time=0.03 sec
           ARIMA(0,0,3)(0,0,0)[0]
           ARIMA(2,0,3)(0,0,0)[0]
                                                   : AIC=inf, Time=0.14 sec
                                                   : AIC=inf, Time=0.10 sec
           ARIMA(1,0,2)(0,0,0)[0] intercept
          Best model: ARIMA(1,0,2)(0,0,0)[0]
          Total fit time: 0.728 seconds
          Performing stepwise search to minimize aic
           ARIMA(0,0,0)(0,0,0)[0]
                                                    : AIC=1675.753, Time=0.01 sec
           ARIMA(1,0,0)(0,0,0)[0]
                                                    : AIC=inf, Time=0.02 sec
           3DTM3/0 0 11/0 0 01/01
                                                      3 TO 1000 007 Mims 0 00 ---
In [47]: df metro predic.head()
          executed in 6ms, finished 07:48:51 2022-09-05
Out[47]:
                             Upper
                                          Lower
                                                    Prediction
                      205884.746158 182243.092753 194063.919455
             Allentown
               Altoona 142089.614407 103059.180543 122574.397475
           Atlantic City 188860.700017 145061.249198 166960.974607
           Bloomsburg
                      153693.626880
                                  125147.357552 139420.492216
              Bradford
                       78912.381739
                                    59787.771573
                                                 69350.076656
In [48]: df current value = df metro filtered.T
          executed in 2ms. finished 07:48:51 2022-09-05
          df current value['Staring Value'] = df current value[['2018-04-01']]
In [49]:
          executed in 3ms, finished 07:48:51 2022-09-05
In [50]:
          df metro predic['Starting Value'] = df current value['Staring Value']
          executed in 2ms, finished 07:48:51 2022-09-05
```

In [51]: df_metro_predic = round(df_metro_predic, 2)
 df_metro_predic.head()
 executed in 6ms, finished 07:48:51 2022-09-05

Out[51]:

	Upper	Lower	Prediction	Starting Value
Allentown	205884.75	182243.09	194063.92	180813.16
Altoona	142089.61	103059.18	122574.40	120090.00
Atlantic City	188860.70	145061.25	166960.97	169607.69
Bloomsburg	153693.63	125147.36	139420.49	131550.00
Bradford	78912.38	59787.77	69350.08	64983.33

- In [53]: = round((df_metro_predic['Upper']-df_metro_predic['Lower'])/df_metro_predic
 executed in 3ms, finished 07:48:51 2022-09-05
- In [54]: df_metro_predic.sort_values(by ='ROI', ascending=False, inplace=True)
 executed in 3ms, finished 07:48:51 2022-09-05
- In [55]: df_metro_predic.head()
 executed in 7ms, finished 07:48:51 2022-09-05

Out[55]:

	Upper	Lower	Prediction	Starting Value	ROI	Error Percentage
Ocean City	293927.48	186739.71	240333.60	198750.00	21.0	54.0
Oil City	104495.18	81397.48	92946.33	79680.00	17.0	29.0
Meadville	128164.13	82369.72	105266.93	92241.67	14.0	50.0
Reading	217988.59	189275.25	203631.92	177856.25	14.0	16.0
Pittsburgh	156099.54	145644.64	150872.09	132702.45	14.0	8.0

```
In [56]: df_metro_predic.reset_index(inplace=True)
    df_metro_predic.rename({'index':'Metro'}, axis=1, inplace=True)
    df_metro_predic.head()
    executed in 8ms, finished 07:48:51 2022-09-05
```

Out[56]:

	Metro	Upper	Lower	Prediction	Starting Value	ROI	Error Percentage
0	Ocean City	293927.48	186739.71	240333.60	198750.00	21.0	54.0
1	Oil City	104495.18	81397.48	92946.33	79680.00	17.0	29.0
2	Meadville	128164.13	82369.72	105266.93	92241.67	14.0	50.0
3	Reading	217988.59	189275.25	203631.92	177856.25	14.0	16.0
4	Pittsburgh	156099.54	145644.64	150872.09	132702.45	14.0	8.0

```
In [58]: plt.bar(df_metro_predic['Metro'].head(), df_metro_predic['ROI'].head())
   plt.axhline(y = df_metro_predic['ROI'].mean(), label = 'Mean ROI', color='d
   plt.xlabel('Metro', fontsize=20)
   plt.ylabel('ROI', fontsize = 20)
   plt.title("Top Five Metro ROI's after 3 year prediction", fontsize= 20)
   plt.legend();
   executed in 132ms, finished 08:10:29 2022-09-05
```



```
In [59]: plt.bar(df_metro_predic['Metro'].head(), df_metro_predic['Error Percentage'
plt.axhline(y = df_metro_predic['Error Percentage'].mean(), label = 'Mean R
plt.xlabel('Metro', fontsize=20)
plt.ylabel('Error Percentage', fontsize = 20)
plt.title("Top Five Metro Error range after 3 year prediction", fontsize= 2
plt.legend();
executed in 128ms, finished 08:10:36 2022-09-05
```



```
In [ ]: df_metro_predic.sort_values('Error Percentage')
    executed in 57.3s, finished 07:48:51 2022-09-05
```

4 Conclusion and Recommendations

In [76]: df_metro_predic

executed in 38ms, finished 08:17:41 2022-09-05

Out[76]:

	Metro	Upper	Lower	Prediction	Starting Value	ROI	Error Percentage
0	Ocean City	293927.48	186739.71	240333.60	198750.00	21.0	54.0
1	Oil City	104495.18	81397.48	92946.33	79680.00	17.0	29.0
2	Meadville	128164.13	82369.72	105266.93	92241.67	14.0	50.0
3	Reading	217988.59	189275.25	203631.92	177856.25	14.0	16.0
4	Pittsburgh	156099.54	145644.64	150872.09	132702.45	14.0	8.0
5	DuBois	80641.02	67369.77	74005.40	65561.54	13.0	20.0
6	Salisbury	273513.78	219355.86	246434.82	220466.67	12.0	25.0
7	New York	249401.95	209093.37	229247.66	206733.33	11.0	19.0
8	Sunbury	161379.14	138305.66	149842.40	134550.00	11.0	17.0
9	State College	223844.55	197070.51	210457.53	191533.33	10.0	14.0
10	Dover	226284.26	198154.18	212219.22	193218.18	10.0	15.0
11	Lancaster	234135.53	220245.32	227190.42	206775.68	10.0	7.0
12	York	207936.64	189993.06	198964.85	183329.41	9.0	10.0
13	New Castle	138642.44	100492.82	119567.63	109475.00	9.0	35.0
14	Williamsport	180599.29	137637.76	159118.52	147790.00	8.0	29.0
15	Sayre	150885.43	123214.41	137049.92	128600.00	7.0	22.0
16	Allentown	205884.75	182243.09	194063.92	180813.16	7.0	13.0
17	Bradford	78912.38	59787.77	69350.08	64983.33	7.0	29.0
18	Erie	145785.33	130903.79	138344.56	129683.33	7.0	11.0
19	Lebanon	191831.26	166078.19	178954.72	169622.22	6.0	15.0
20	Bloomsburg	153693.63	125147.36	139420.49	131550.00	6.0	22.0
21	Trenton	184704.73	157868.51	171286.62	161600.00	6.0	17.0
22	Philadelphia	194447.55	166562.72	180505.14	170027.69	6.0	16.0
23	Harrisburg	173831.60	161985.94	167908.77	158353.66	6.0	7.0
24	Pottsville	124786.13	92500.80	108643.47	102400.00	6.0	32.0
25	Gettysburg	238389.54	160865.29	199627.41	188690.00	6.0	41.0
26	Youngstown	124176.00	83861.70	104018.85	99071.43	5.0	41.0
27	Somerset	106101.69	90400.65	98251.17	94145.45	4.0	17.0
28	Johnstown	104044.13	85232.28	94638.21	90764.71	4.0	21.0
29	East Stroudsburg	166530.48	137240.25	151885.37	146290.00	4.0	20.0
30	Scranton	120590.94	105217.31	112904.13	109143.90	3.0	14.0
31	Huntingdon	118824.11	107801.71	113312.91	110425.00	3.0	10.0

	Metro	Upper	Lower	Prediction	Starting Value	ROI	Error Percentage
32	Chambersburg	181463.59	138711.16	160087.37	156428.57	2.0	27.0
33	Altoona	142089.61	103059.18	122574.40	120090.00	2.0	33.0
34	Vineland	163149.78	123570.08	143359.93	142450.00	1.0	28.0
35	Atlantic City	188860.70	145061.25	166960.97	169607.69	-2.0	26.0

In [79]:

is {df_metro_predic.Metro[0]} with a forecast ROI of {df_metro_predic.ROI[est ROI is {df_metro_predic.Metro[1]} with a forecast ROI of {df_metro_predicted st ROI is {df_metro_predic.Metro[2]} with a forecast ROI of {round(df_metro_est ROI is {df_metro_predic.Metro[3]} with a forecast ROI of {round(df_metro_st ROI is {df_metro_predic.Metro[4]} with a forecast ROI of {round(df_metro_executed in 8ms, finished 08:18:59 2022-09-05

The Metro area with the highest ROI is Ocean City with a forecast ROI of 21.0

The Metro area with the second highest ROI is Oil City with a forecast RO I of 17.0

The Metro area with the Highest ROI is Meadville with a forecast ROI of 1 4.0

The Metro area with the Highest ROI is Reading with a forecast ROI of 14.0

The Metro area with the Highest ROI is Pittsburgh with a forecast ROI of 14.0

Now if we take a look at the top five ROI Metro's in conjunction with the possible error, derived from the spread of the confidence interval. We can see that the top three Metros all have an error percentage above the mean of all the Metros in our dataset. This would cause concern and leads us to recommend Pittsburgh and Reading as our top two Metro areas for investment, since they couple a lower risk of prediction with an ROI still well above the mean ROI for the total set.

Now if we take a look at the top five ROI Metro's in conjunction with the possible error, derived from the spread of the confidence interval. We can see that the top three Metros all have an error percentage above the mean of all the Metros in our dataset. This would cause concern and leads us to recommend Pittsburgh and Reading as our top two Metro areas for investment, since they couple a lower risk of prediction with an ROI still well above the mean ROI for the total set.

In []: executed in 20ms, finished 07:26:31 2022-09-05