MW 22.11.08

Model grafityzacji wg Franklin

- ullet Oparty na wynikach strukturalnych badań rentgenowskich. Mierzone parametry struktury: $d_{002}, L_c\,i\,L_a$
- Zasadniczy element budowy materiałów węglowych pakiety warstw grafenowych o dwuwymiarowym uporządkowaniu; struktura turbostratyczna.
- Występuje **substancja węglowa nieuporządkowana** w postaci pojedynczych atomów i grup atomów węgla poza warstwami grafenowymi.
- Materiały węglowe otrzymane w temperaturze ok $1000^{o}C$ zawierają pakiety złożone z **2-4 warstw** grafenowych o średnicach <**2nm i 10-45% substancji nieuporządkowanej.**
- Podczas obróbki termicznej początkowo rosną średnice krystalitów L_a , kosztem substancji nieuporządkowanej. **Szybszy wzrost wymiarów krystalitów powyżej** $1700^{o}C$.
- Materiały **częściowo zgrafityzowane** są zbudowane z pakietów warstw uporządkowanych ($d_{002}=0.3354$ nm) i nieuporządkowanych ($d_{002}=0.344$ nm). Przejście od "nieporządku" do "porządku" jest nieciągłe. Zmierzona wartość d_{002} wynika z proporcji obu typów struktur na danym etapie procesu

doskonała książka o węglach aktywnych: Harry Marsh, Activated carbons

wykres (MW-4 w materiałach [po prawej]) - nie mam pojęcia, o który wykres mi tu chodziło

Węgle aktywne

grupa materiałów węglowych o silnie rozwiniętej powierzchni wewnętrznej i porowatości, a dzięki temu dużej zdolności do adsorpcji związków chemicznych z gazów i cieczy

Activated carbon - porosity (space) enclosed by carbon atoms. Assemblies of defective graphene layers.

porowatość ≠ rozwinięcie powierzchni/powierzchnia właściwa

Na porowatość wpływa objętość porów

Adsorpcja na powierzchni ciała stałego:

Adsorpcja - gromadzenie cząstek jednej fazy (gaz, ciecz) na powierzchni innej fazy (ciecz, ciało stałe)

Adsorbent - substancja, na której powierzchni ma miejsce zagęszczanie (węglowe, mineralne, mieralnowęglowe, aerożele organiczne)

Adsorbat - substancja, która ulega koncentracji

Aby proces adsorpcji był efektywny adsorbent musi charakteryzować się **wysoką powierzchnią właściwą** - musi być porowaty lub złożony z bardzo drobnych cząstek.

Adsorpcja fizyczna	Adsorpcja chemiczna
Adsorpcja niespecyficzna, zachodzi pomiędzy dowolnym układem adsorbat-adsorbent	Zachodzi tylko na reaktywnych miejscach powierzchni (Adsorpcja specyficzna)
Wielowarstwowa	ograniczona do monowarstwy
Ciepło adsorpcji 10-25 kJ/mol	40-400 kJ/mol
Nie wymaga energii aktywacji. Stan równowagi jest szybko osiągany, gdy transport nie kontroluje szybkości adsorpcji	Często posiada energię aktywacji i trudno osiągnąć stan równowagi

Adsorpcja fizyczna	Adsorpcja chemiczna
Jest procesem odwracalnym	Jest procesem nieodwracalnym

Adsporpcja fizyczna

- 1. Oddziaływania międzycząsteczkowe (van der Waalsa)
 - Niespecyficzne oddziaływania między dowolnymi cząsteczkami
 - Efekt dyspersyjny oddziaływanie natury kwantowomechanicznej między chwilowymi dipolami powstającymi w wyniku fluktuacji elektronów w obrębie każdego atomu (siły Londona)
 - Specyficzne oddziaływanie elektrostatyczne (siły kulombowskie) związane ze szczególnym lokalnym rozmieszczeniem gęstości elektronowej na krańcach cząsteczek (trwałe dipole, polaryzowalność cząsteczek)
- 2. Wiązania wodorowe

Atomy wodoru w grupach -OH, =NH, HF, HCL tworzą na powierzchni wiązania wodorowe. Energia wiązania 20-25kJ/mol (kilkakrotnie wyższa niż przy oddziaływaniach van der Waalsa)

Adsorpcja chemiczna

oddziaływania z wymianą elektronów, chemiczne połączenie cząsteczek adsorbatu z adsorbentem. Energia wiązania rzędu 100kJ/mol

Cechy porowatych materiałów węglowych

- nanoporowata natura
 - ultramikropory <0.7nm
 - mikropory <2nm
 - mezopory 2-50nm
 - makropory >50nm
- dający się kontrolować rozkład wymiarów porów
- szeroki zakres rozwinięcia porowatości
- z natury hydrofobowa, ale chemicznie niejednorodna powierzchnia
- możliwość modyfikacja chemii powierzchni
- polaryzowalność
- przewodnictwo elektryczne

Zastosowania węgli aktywnych:

- rozdzielanie mieszanin gazowych
- nośniki katalizatorów
- uzdatnianie wody
- kondensatory elektrochemiczne
- odzyskiwanie rozpuszczalników
- oczyszczanie powietrza

rysunek makropory-mezopory-mikropory

Produkcja przemysłowa węgli aktywnych

Surowce	Udział [%]
drewno	35
węgiel kamienny	28
węgiel brunatny	14
łupiny orzechów kokosowych	10
torf	10
inne	3

Produkcja węgli aktywnych na świecie

rok	produkcja [mln t]
2014	1.4
2016	1.6
2020	2.4
2021	2.7

rodzaj WA	udział [%]
pyłowe (<0.18mm)	27
ziarniste (kawałkowe)	36
formowane (pastylki, wypraski)	19
aktywowane włókna i włókniny węglowe i inne	?

Konsumpcja na świecie

Kraj	udział [%]
USA	28
Chiny	28
Europa	22
Japonia	14
pozostałe	9