CHAPTER 2: Algorithms Analysis

- 1. RAM model of computation
- 2. Best, Worst and Average-Case Complexity
- 3. Big-Oh Notation
- 4. Working with Asymptotics
- 5. Growth Rates and Dominance
- 6. Reasoning about Efficiency
- 7. Logarithms and their Applications

Ram Model of Computation

- Assume that each simple statement (arithmetic, memory, assignment, etc) requires 1 unit of time per execution.
- Figure out how many times each simple statement is executed.
- Add up for all statements.
- Loop and function calls are **NOT** simple statements.

This model is useful and accurate in the same sense as the flat-earth model (useful but not the truth).

Ram Model Worksheet

- # steps depends on n (for loop, single execution in for loop).
- # steps depends on input permutation, even for the same n.
- # steps would change slightly with another INSERTION SORT algorithm

Number of steps don't predict algorithms runtime with 100% accuracy

• Some instructions are more expensive to do

Problem-specific metrics

- Common in analysis of sorting or searching to count # of data comparisons
 number of comparison in while loop on worksheet
- Matrix multiplication: count # of scalar multiplication

Hone in on the important lines when doing ram model worksheet problems.

Worst, Average, Best Case Complexity

- Worst case complexity: maximum # of steps taken on instance of size n
- Best case complexity: minimum
- Avg case complexity: average (lolnoshit)

Figure 1: Complexity Graph

Exact analysis is hard, so use upper and lower bounds of functions (Asymptotic notation)

Definitions: $\mathbf{O}, \Omega, \Theta$

- 1. $O(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } \mathbf{0} \le \mathbf{f(n)} \le \mathbf{cg(n)} \text{ for all } n \ge n_0\}.$
- 2. $\Omega(g(n)) = \{f(n): \text{ these exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0\}.$
- 3. $\Theta(g(n)) = \{f(n): \text{ these exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } \mathbf{0} \le \mathbf{c_2} \mathbf{g}(\mathbf{n}) \le \mathbf{f}(\mathbf{n}) \le \mathbf{c_1} \mathbf{g}(\mathbf{n}) \text{ for all } n \ge n_0 \}.$
- All of the above define sets. (O(g(n))) is a set of functions
- If f(n) belongs to this set, we should write it as $f(n) \in O(g(n))$
- Instead, the convention is to write it as f(n) = O(g(n))
- To show that f(n) belongs to one of these sets, all we need to do is find one set of constants that make the inequalities work (c)
- $n \ge n_0$ says don't worry about what happens at lower values of n (Care about things as they approach infinity)

Know how to prove an equation is a certain N complexity time (common exam question)

Using Big-Oh and Θ

Is $n = O(n^2)$, YES

Is $n = O(n^3)$, YES

Is $n = \Theta(n^2)$, NO

Think of these equations as bounds and averages. Makes more sense that way.

Also keep in mind to make sensible bounds

Asymptotic Dominance in Action

n	lg n	n	$n \lg n$	n ²	2 ⁿ	n!
10	0.003 μs	0.01 μs	0.033 μs	0.1 μs	1 μs	3.63 ms
20	0.004 μs	0.02 μs	0.086 μs	0.4 μs	1 ms	77.1 years
30	$0.005~\mu s$	0.03 μs	$0.147 \mu s$	0.9 μs	1 sec	$8.4 \times 10^{15} \text{ yrs}$
40	$0.005~\mu s$	0.04 μs	$0.213 \mu s$	1.6 μs	18.3 min	
50	0.006 μs	$0.05~\mu s$	$0.282 \mu s$	$2.5 \mu s$	13 days	
100	0.007 μs	0.1 μs	0.644 μs	10 μs	$4 \times 10^{13} \text{ yrs}$	
1,000	$0.010~\mu s$	$1.00~\mu s$	9.966 μs	1 ms		
10 ⁴	$0.013~\mu s$	$10~\mu s$	130 μ s	100 ms		
10 ⁵	0.017 μs	0.10 ms	1.67 ms	10 sec		
10 ⁶	0.020 μs	1 ms	19.93 ms	16.7 min		
107	0.023 μs	0.01 sec	0.23 sec	1.16 days		
108	0.027 μs	0.10 sec	2.66 sec	115.7 days		
10 ⁹	0.030 μs	1 sec	29.90 sec	31.7 years		

Figure 2: Asymptotic Dominance in Action

Implication of Dominance

- Exponential (2ⁿ and n!): goes bad fast
- Quadratic (n²): goes bad at or before 1,000,000
- O(nlogn) is possible to 1 billion
- O(logn) never sweats

Testing Dominance

f(n) dominates g(n) if
$$\lim_{n\to\infty}g(n)/f(n)=0$$

Which is the same as saying g(n) = O(f(n)) n^a dominates n^b if a > b
$$\lim_{n\to\infty} n^b/n^a = n^{b-a} \to 0$$

Dominance Ranking

$$n! >> 2^n >> n^3 >> n^2 >> n logn >> n >> logn >> 1$$

Advanced Dominance Ranking

n! >> c^n >> n^3 >> nlogn >> n >>
$$\sqrt{n}$$
 >> logn >> loglogn >> 1 Epsilon is a small fraction in $n^{1+\epsilon}$

Reasoning About Efficiency

Selection Sort Example

```
selection_sort(int s[], int n) {
    int i,j;
    int min;

    for (i=0; i<n; i++) {
        min=i;
        for (j=i+1; j<n; j++)
            if (s[j] < s[min]) min=j;
        swap(&s[i],&s[min]);
    }
}</pre>
```

The outer loop takes n times, the inner loop at worst is n times Nested loops means n x n which is $O(n^2)$ worst case

Logarithms

Logarithm is an inverse exponential function

```
b^{x} = y is equivalent to x = log_{b}y
```

Logarithms reflects how many times we can double something until we get n, or halve something until we get to 1.

• How many doubling from 1 to n is log_2n

Binary Search

Binary search throws away half the elements after each comparison.

• Binary Search = how many halves on n before getting 1 (LOG)

How tall a binary tree do we need until we have n leaves?

- Number of leaves double per level
- How many times we do need to double until we have n? (LOG)

Logarithms and Bits

How many bits do you need to represent the numbers from 0 to 2^{i} - 1?

• Each bit doubles the possble number of bit patterns, so $LOG(2^i) = i$

Logarithms and Multiplication

$$\log_a(xy) = \log_a(x) + \log_a(y)$$

Base is not Asymptotically Important

Recall...

$$log_b a = \frac{log_c a}{log_c b}$$

Changing base is like adding a constant to the expression, so in Big Oh, changing base is negligible.

Log of Polynomial Functions of n

$$\log(n^{473} + n^2 + n) = O(\log n)$$

• This is because $\log(n^{472}) = 472 * \log(n)$. Constant melts away

Logs of Exponential Functions

$$\log(2^n) = O(n * \log(2)) = O(n)$$

$$log(n!) = O(nlog(n))$$