Logique du premier ordre (syntaxe et sémantique)

David Delahaye

Faculté des Sciences David. Delahaye@lirmm.fr

Master Informatique M1 2025-2026

Limites de la logique propositionnelle

Problèmes d'expressivité

- L'« atome » est la variable propositionnelle, qui est indécomposable;
- Comment rendre compte de points communs entre propositions?
 « Marie dort » et « Pierre ne dort pas »;
- Comment représenter le partage d'entités?
 - « Pierre ne dort pas » et « Pierre regarde Marie ».

Définitions préliminaires

- $V \equiv$ ensemble de variables d'individu x, y, etc.;
- $S_F \equiv$ ensemble de symboles de fonctions f, g, etc.;
- $\mathcal{S}_{\mathcal{P}} \equiv$ ensemble de symboles de prédicats P, Q, etc.;
- $\mathcal{S}_{\mathcal{F}} \cap \mathcal{S}_{\mathcal{P}} = \emptyset$;
- Arité (nombre d'arguments) $m: \mathcal{S}_{\mathcal{F}} \cup \mathcal{S}_{\mathcal{P}} \to \mathbb{N}:$
 - Exemple : pour f(x, y) avec $f \in \mathcal{S}_{\mathcal{F}}$, m(f) = 2;
 - Exemple : pour P(x, y, z) avec $P \in \mathcal{S}_{\mathcal{P}}$, m(P) = 3.

Termes du premier ordre

- ullet Plus petit ensemble ${\mathcal T}$ t.q. :
 - ▶ Si $x \in \mathcal{V}$ alors $x \in \mathcal{T}$;
 - ▶ Si $f \in \mathcal{S}_{\mathcal{F}}$ d'arité n et $t_1, \ldots, t_n \in \mathcal{T}$ alors $f(t_1, \ldots, t_n) \in \mathcal{T}$.
- Les constantes sont des fonctions d'arité 0;
- Important : dans un premier temps, nous ne considérerons que les fonctions d'arité 0 (constantes) dans nos exemples.

Formules du premier ordre

- ullet Plus petit ensemble ${\mathcal F}$ t.q. :
 - ▶ Si $P \in \mathcal{S}_{\mathcal{P}}$ d'arité n et $t_1, \ldots, t_n \in \mathcal{T}$ alors $P(t_1, \ldots, t_n) \in \mathcal{F}$;
 - \bot , $\top \in \mathcal{F}$;
 - ▶ Si $\Phi \in \mathcal{F}$ alors $\neg \Phi \in \mathcal{F}$;
 - ▶ Si $\Phi, \Phi' \in \mathcal{F}$ alors $\Phi \land \Phi', \Phi \lor \Phi', \Phi \Rightarrow \Phi', \Phi \Leftrightarrow \Phi' \in \mathcal{F}$;
 - ▶ Si $x \in \mathcal{V}$ et $\Phi \in \mathcal{F}$ alors $\forall x.\Phi, \exists x.\Phi \in \mathcal{F}$.

Associativité et précédence des connecteurs

• Inchangées par rapport à la logique propositionnelle.

Notation pointée pour les quantificateurs

- La portée d'un quantificateur va jusqu'à la parenthèse fermante de la formule du quantificateur;
- Si la formule du quantificateur n'est pas parenthésée, la portée du quantificateur va jusqu'à la fin de la formule;
- Donc, si on veut arrêter la portée d'un quantificateur, il suffit d'utiliser des parenthèses pour limiter explicitement la portée du quantificateur;
- Exemple :
 - $\exists x. P(x) \Rightarrow P(a) \land P(b) \equiv \exists x. (P(x) \Rightarrow P(a) \land P(b));$
 - Si on veut que le \exists ne porte que sur P(x), on doit écrire : $(\exists x.P(x)) \Rightarrow P(a) \land P(b)$.
- Notation : $\forall x, y. \Phi \equiv \forall x. \forall y. \Phi$ (idem pour \exists).

Définitions

- Une variable x est libre dans une formule Φ ssi il existe une occurrence de x dans Φ qui n'est sous la portée d'aucun quantificateur;
- Une variable x est liée dans une formule Φ ssi il existe une occurrence de x dans Φ qui est sous la portée d'un quantificateur;

Définitions

- L'ensemble des variables libres $FV(\Phi)$ et l'ensemble des variables liées $BV(\Phi)$ d'une formule Φ sont définis par récurrence structurelle par :
 - ▶ Si $x \in V$ alors $FV(x) = \{x\}$, $BV(x) = \emptyset$;
 - Si $f \in \mathcal{S}_{\mathcal{F}}$ d'arité n et $t_1, \ldots, t_n \in \mathcal{T}$ alors $FV(f(t_1, \ldots, t_n)) = FV(t_1) \cup \ldots \cup FV(t_n), BV(f(t_1, \ldots, t_n)) = \emptyset$;
 - Si $P \in \mathcal{S}_{\mathcal{P}}$ d'arité n et $t_1, \ldots, t_n \in \mathcal{T}$ alors $FV(P(t_1, \ldots, t_n)) = FV(t_1) \cup \ldots \cup FV(t_n), \ BV(P(t_1, \ldots, t_n)) = \emptyset$;
 - $FV(\top) = FV(\bot) = \emptyset$, $BV(\top) = BV(\bot) = \emptyset$;
 - ► Si $\Phi \in \mathcal{F}$ alors $FV(\neg \Phi) = FV(\Phi)$, $BV(\neg \Phi) = BV(\Phi)$;
 - Si Φ , $\Phi' \in \mathcal{F}$ alors $FV(\Phi \land \Phi') = FV(\Phi \lor \Phi') = FV(\Phi \Rightarrow \Phi') = FV(\Phi \Leftrightarrow \Phi') = FV(\Phi) \cup FV(\Phi')$, $BV(\Phi \land \Phi') = BV(\Phi \lor \Phi') = BV(\Phi \Leftrightarrow \Phi') = BV(\Phi \Leftrightarrow \Phi') = BV(\Phi) \cup BV(\Phi')$;
 - Si $x \in \mathcal{V}$ et $\Phi \in \mathcal{F}$ alors $FV(\forall x.\Phi) = FV(\exists x.\Phi) = FV(\Phi) \setminus \{x\}$, $BV(\forall x.\Phi) = BV(\exists x.\Phi) = BV(\Phi) \cup \{x\}$.

Exemples

- y est libre dans $\forall x.P(x,y)$;
- x est liée dans $\forall x.P(x,y)$;
- Dans la formule $(\forall x.P(x,y)) \land (\exists z.Q(z) \lor R(t))$:
 - L'ensemble des variables libres est $\{y, t\}$;
 - L'ensemble des variables liées est $\{x, z\}$.
- Une variable peut être libre et liée à la fois (c'est-à-dire qu'elle possède une occurrence où elle est libre et une autre où elle est liée), par exemple : $(\forall x.P(x,y)) \land Q(x)$, où x est libre (deuxième occurrence) et liée (première occurrence) à la fois.

Formule polie ou propre

- Une formule est polie ou propre si aucune variable n'est à la fois libre et liée dans cette formule, et si aucune variable liée n'est soumise à plus d'une quantification;
- Exemples :
 - $(\forall x.P(x,y)) \land (\exists z.Q(z) \lor R(t))$ est une formule polie;
 - $\forall x.P(x,y) \land Q(x)$ n'est pas une formule polie;
 - $\forall x.P(x,y) \land \exists x.Q(x)$ n'est pas une formule polie.

α -conversion

- Il est toujours possible de renommer les variables liées d'une formule (en utilisant des variables « fraîches ») sans changer la validité de cette formule;
- Ce processus est appelé α -conversion;
- On peut donc toujours transformer une formule non polie en une formule polie par α -conversion;
- Exemple : $(\forall x.P(x,y)) \land Q(x)$ peut être transformée en $(\forall z.P(z,y)) \land Q(x)$, où l'occurrence liée de x a été transformée en z.

Formule close

- Une formule est close ou fermée si aucune variable n'est libre dans cette formule;
- Un énoncé est une formule close :
- Une théorie est un ensemble d'énoncés.

Conditions nécessaires et suffisantes

- Dire que A est une condition nécessaire pour B signifie que pour que B soit réalisée, il faut que A le soit : B ⇒ A;
- Dire que A est une condition suffisante pour B signifie que si A est réalisée alors B le sera : $A \Rightarrow B$;
- Dire que A est une condition nécessaire et suffisante pour B signifie que A et B sont réalisées en même temps : $A \Leftrightarrow B$.

Conditions nécessaires et suffisantes

- Condition nécessaire : « Il est nécessaire d'avoir le permis de conduire pour conduire une voiture ».
- Modélisation :
 - $P(x) \equiv x$ a le permis de conduire;
 - $C(x) \equiv x$ conduit une voiture.

$$\forall x. C(x) \Rightarrow P(x).$$

Conditions nécessaires et suffisantes

- Condition suffisante : « Il suffit qu'il neige à Montpellier pour qu'il neige à Oslo »;
- Modélisation :
 - $N(x) \equiv \text{il neige à } x;$
 - $m \equiv Montpellier;$
 - $oldsymbol{o} = Oslo.$
 - $N(m) \Rightarrow N(o)$.

Prédicats de « typage »

- La logique du premier ordre peut être sortée (avec une ou plusieurs sortes) afin de typer les termes du premier ordre manipulés;
- En l'absence de sortes, il faut avoir recours à des prédicats qui vont jouer ce rôle de typage;
- Par exemple, « Les chats n'aiment pas les chiens » :
 - $ightharpoonup Chat(x) \equiv x \text{ est un chat};$
 - $Chien(x) \equiv x$ est un chien;
 - $A(x,y) \equiv x \text{ aime } y.$

 $\forall x. Chat(x) \Rightarrow \forall y. Chien(y) \Rightarrow \neg A(x, y).$

Prédicats de « typage »

- Attention au connecteur utilisé pour introduire les prédicats de typage (selon qu'il s'agit d'un ∀ ou d'un ∃);
- « Tous les chats aiment boire du lait » :
 - $ightharpoonup Chat(x) \equiv x \text{ est un chat};$
 - $B(x) \equiv x$ aime boire du lait.

$$\forall x. Chat(x) \Rightarrow B(x).$$

- « Il existe un chat qui n'aime pas boire du lait » :
 - $ightharpoonup Chat(x) \equiv x \text{ est un chat};$
 - $B(x) \equiv x$ aime boire du lait.
 - $\exists x. Chat(x) \land \neg B(x).$

Modélisations équivalentes

- Deux formules peuvent être équivalentes (même sémantique) même si elles ne sont pas égales syntaxiquement;
- De ce fait, deux modélisations d'un même problème peuvent être équivalentes même si elles ne sont pas syntaxiquement égales;
- Par exemple, « Les chats n'aiment pas les chiens » :
 - Chat(x) ≡ x est un chat;
 - $Chien(x) \equiv x$ est un chien;
 - $A(x,y) \equiv x \text{ aime } y.$

$$\forall x. Chat(x) \Rightarrow \forall y. Chien(y) \Rightarrow \neg A(x, y), \\ \forall x, y. Chat(x) \Rightarrow Chien(y) \Rightarrow \neg A(x, y),$$

et
$$\forall x, y. Chat(x) \land Chien(y) \Rightarrow \neg A(x, y)$$

sont des modélisations équivalentes.

Exercices

Syntaxe

- $A \equiv \forall x. P(x) \Rightarrow \exists y. Q(x, y)$
- $B \equiv (\forall x. P(x)) \Rightarrow \exists y. Q(x, y)$
- $C \equiv \forall x. \exists y. Q(x,y) \land \exists x. \neg Q(y,x)$
- Parenthéser les formules A, B, et C au maximum de manière à lever toutes les ambiguïtés liées à la portée par défaut des quantificateurs.
- 2 Dessiner les arbres syntaxiques des formules A, B, et C.
- 3 Sur l'arborescence syntaxique, donner l'algorithme que permet de dire si une occurrence de variable est libre ou liée.
- Pour chaque formule A, B, et C, dire :
 - Quelles sont les variables libres, liées, et libres et liées à la fois;
 - Si la formule est close.
- Pour chaque formule A, B, et C, dire si la formule est propre ou non (effectuer les renommages nécessaires pour les rendre propres).

Exercices

Modélisation

Formaliser les énoncés suivants (au préalable, donner les constantes et symboles de prédicats utilisés pour la formalisation) :

- Les chiens et les oiseaux sont des animaux domestiques.
- 2 Tobby est un chien qui aime les enfants.
- Les oiseaux n'aiment pas les chiens.
- Serge aime tous les animaux domestiques sauf les chiens.
- 5 Tous les enfants n'ont pas peur des chiens.
- Ocertains chiens aiment les enfants.
- Certains chiens aiment les enfants et réciproquement.
- 8 Les enfants aiment certains chiens.

Définitions préliminaires

- $V \equiv$ ensemble de variables d'individu x, y, etc.;
- $S_F \equiv$ ensemble de symboles de fonctions f, g, etc.;
- $\mathcal{S}_{\mathcal{P}} \equiv$ ensemble de symboles de prédicats P, Q, etc.;
- $\mathcal{S}_{\mathcal{F}} \cap \mathcal{S}_{\mathcal{P}} = \emptyset$;
- Arité (nombre d'arguments) $m: \mathcal{S}_{\mathcal{F}} \cup \mathcal{S}_{\mathcal{P}} \to \mathbb{N}:$
 - Exemple : pour f(x, y) avec $f \in \mathcal{S}_{\mathcal{F}}$, m(f) = 2;
 - Exemple : pour P(x, y, z) avec $f \in \mathcal{S}_{\mathcal{P}}$, m(P) = 3.

Termes du premier ordre

- ullet Plus petit ensemble ${\mathcal T}$ t.q. :
 - ▶ Si $x \in \mathcal{V}$ alors $x \in \mathcal{T}$;
 - ▶ Si $f \in \mathcal{S}_{\mathcal{F}}$ d'arité n et $t_1, \ldots, t_n \in \mathcal{T}$ alors $f(t_1, \ldots, t_n) \in \mathcal{T}$.
- Les constantes sont des fonctions d'arité 0;
- Important : dans un premier temps, nous ne considérerons que les fonctions d'arité 0 (constantes) dans nos exemples.

Formules du premier ordre

- ullet Plus petit ensemble ${\mathcal F}$ t.q. :
 - ▶ Si $P \in \mathcal{S}_{\mathcal{P}}$ d'arité n et $t_1, \ldots, t_n \in \mathcal{T}$ alors $P(t_1, \ldots, t_n) \in \mathcal{F}$;
 - \bot , $\top \in \mathcal{F}$;
 - ▶ Si $\Phi \in \mathcal{F}$ alors $\neg \Phi \in \mathcal{F}$;
 - ▶ Si $\Phi, \Phi' \in \mathcal{F}$ alors $\Phi \land \Phi', \Phi \lor \Phi', \Phi \Rightarrow \Phi', \Phi \Leftrightarrow \Phi' \in \mathcal{F}$;
 - ▶ Si $x \in \mathcal{V}$ et $\Phi \in \mathcal{F}$ alors $\forall x.\Phi, \exists x.\Phi \in \mathcal{F}$.

Sémantiques

Logique classique

- Une formule est toujours vraie ou fausse;
- Que je puisse en démontrer la validité ou non;
- Logique bi-valuée (vrai, faux);
- Logique du « tiers exclu » : $A \lor \neg A$.

Logique intuitionniste ou constructive

- Une formule est vraie, fausse, ou « on ne sait pas »;
- Si on ne sait en démontrer la validité, alors « on ne sait pas »;
- Logique tri-valuée d'une certaine manière;
- Le « tiers exclu » n'est pas admis dans cette logique.

Interprétation

• Une interprétation I est un ensemble non vide D_I , appelé le domaine de l'interprétation, muni d'éléments I(c) de D_I pour chaque symbole de constante (fonction d'arité 0), et d'une application I(P) de D_I^n vers $\mathcal B$ pour chaque symbole de prédicat P d'arité n.

Affectation

- Une affectation ho est une application de ${\cal V}$ vers D_I ;
- Pour toute affectation ρ , $\rho[v/x]$ est l'affectation envoyant chaque variable y autre que x vers $\rho(y)$, et x vers v.

Remarque

• Important : dans un premier temps, nous ne considérerons que les fonctions d'arité 0 (constantes) dans la sémantique.

Termes

- Dans une interprétation I, et modulo l'affectation ρ , la sémantique des termes et des formules est définie par :
 - Si $x \in \mathcal{V}$ alors $[x]_{\rho}^{I} = \rho(x)$;
 - Si $c \in \mathcal{S}_{\mathcal{F}}$ d'arité 0 (constante) alors $\llbracket c \rrbracket_{\varrho}^I = I(c)$.

Prédicats

- Dans une interprétation I, et modulo l'affectation ρ , la sémantique des termes et des formules est définie par :
 - Si $P \in \mathcal{S}_{\mathcal{P}}$ d'arité n et $t_1, \ldots, t_n \in \mathcal{T}$ alors $\llbracket P(t_1, \ldots, t_n) \rrbracket_{\rho}^I = I(P)(\llbracket t_1 \rrbracket_{\rho}^I, \ldots, \llbracket t_n \rrbracket_{\rho}^I)$;

Formules propositionnelles

• Dans une interprétation I, et modulo l'affectation ρ , la sémantique des termes et des formules est définie par :

```
\begin{split} & \|\top\|_{\rho}^{I} = T, \ \|\bot\|_{\rho}^{I} = F; \\ & \text{Si } \Phi \in \mathcal{F} \text{ alors } \|\neg \Phi\|_{\rho}^{I} = \neg_{\mathcal{B}} \|\Phi\|_{\rho}^{I}; \\ & \text{Si } \Phi, \Phi' \in \mathcal{F} \text{ alors } : \\ & \|\Phi \wedge \Phi'\|_{\rho}^{I} = \|\Phi\|_{\rho}^{I} \wedge_{\mathcal{B}} \|\Phi'\|_{\rho}^{I}; \\ & \|\Phi \vee \Phi'\|_{\rho}^{I} = \|\Phi\|_{\rho}^{I} \vee_{\mathcal{B}} \|\Phi'\|_{\rho}^{I}; \\ & \|\Phi \Rightarrow \Phi'\|_{\rho}^{I} = \|\Phi\|_{\rho}^{I} \Rightarrow_{\mathcal{B}} \|\Phi'\|_{\rho}^{I}; \\ & \|\Phi \Leftrightarrow \Phi'\|_{\rho}^{I} = \|\Phi\|_{\rho}^{I} \Leftrightarrow_{\mathcal{B}} \|\Phi'\|_{\rho}^{I}. \end{split}
```

où $\neg_{\mathcal{B}}$, $\wedge_{\mathcal{B}}$, $\vee_{\mathcal{B}}$, $\Rightarrow_{\mathcal{B}}$, et $\Leftrightarrow_{\mathcal{B}}$ sont les fonctions d'interprétation de la logique propositionnelle.

Quantificateurs

- Dans une interprétation I, et modulo l'affectation ρ , la sémantique des termes et des formules est définie par :
 - Si $x \in \mathcal{V}$ et $\Phi \in \mathcal{F}$ alors :
 - $\llbracket \forall x. \Phi \rrbracket_{\rho}^{I} = \bigwedge_{v \in D_{I}} \llbracket \Phi \rrbracket_{\rho \llbracket v/x \rrbracket}^{I};$
 - $* [\exists x. \Phi]_{\rho}^{I} = \bigvee_{v \in D_{I}} [\Phi]_{\rho[v/x]}^{I}.$
 - où ∧ est la conjonction distribuée et ∨ la disjonction distribuée :
 - $\bigwedge_{v \in D_I} f(v) = f(v_0) \wedge_{\mathcal{B}} f(v_1) \wedge_{\mathcal{B}} \dots, \text{ avec } v_0, v_1, \dots \in D_I;$ $\bigvee_{v \in D_I} f(v) = f(v_0) \vee_{\mathcal{B}} f(v_1) \vee_{\mathcal{B}} \dots, \text{ avec } v_0, v_1, \dots \in D_I.$

Définition

• Dans une interprétation I, et modulo l'affectation ρ , la sémantique des termes et des formules est définie par :

```
Si x \in \mathcal{V} alors [x]_{\rho}^{I} = \rho(x);
Si c \in \mathcal{S}_{\mathcal{F}} d'arité 0 (constante) alors [\![c]\!]_{o}^{I} = I(c);
  ▶ Si P \in S_{\mathcal{D}} d'arité n et t_1, \ldots, t_n \in \mathcal{T} alors
                                            [P(t_1,\ldots,t_n)]_0^I = I(P)([t_1]_0^I,\ldots,[t_1]_0^I);
\blacksquare \square \square = T, \square \square = F;
\triangleright Si \Phi \in \mathcal{F} alors \llbracket \neg \Phi \rrbracket_a^I = \neg_{\mathcal{B}} \llbracket \Phi \rrbracket_a^I;
  ▶ Si \Phi, \Phi' \in \mathcal{F} alors :
                                                                                     \star \quad \llbracket \Phi \Rightarrow \Phi' \rrbracket_{\rho}^{I} = \llbracket \Phi \rrbracket_{\rho}^{I} \Rightarrow_{\mathcal{B}} \llbracket \Phi' \rrbracket_{\rho}^{I};
                                                                                     \star \tilde{\boldsymbol{\mathbf{A}}} \boldsymbol{\mathbf{A}} \boldsymbol{\mathbf{A}}
     ▶ Si x \in \mathcal{V} et \Phi \in \mathcal{F} alors :
                                                                                        \star \| \forall x. \Phi \|_{\rho}^{I} = \bigwedge_{v \in D_{r}} \| \Phi \|_{\rho[v/x]}^{I};
                                                                                        \star \|\exists x. \Phi\|_{\rho}^{I} = \bigvee_{v \in D_{I}} \|\Phi\|_{\rho[v/x]}^{I}.
```

Remarque

- La sémantique donnée est valable pour des formules closes ou non;
- Si une formule Φ est close, sa sémantique $\llbracket \Phi \rrbracket_{\rho}^I$ ne dépend pas de ρ ;
- Pour une formule close Φ , sa sémantique sera donc notée $\llbracket \Phi \rrbracket^I$;
- Par la suite, nous ne considérerons que des formules closes.

Sémantique

Vocabulaire

- Soit Φ une formule et I une interprétation;
- I est un modèle de Φ ou I satisfait Φ , noté $I \models \Phi$, ssi $\llbracket \Phi \rrbracket^I = T$;
- Un ensemble G de formules entraîne Φ, noté G ⊨ Φ, ssi toutes les interprétations satisfaisant toutes les formules de G en même temps (les modèles de G) sont aussi des modèles de Φ, c'est-à-dire quand I ⊨ Φ' pour tout Φ' ∈ G implique I ⊨ Φ;
- Φ est valide ssi Φ est vraie dans toute interprétation ($\llbracket \Phi \rrbracket^I = T$ pour tout I, noté $\models \Phi$), et est invalide sinon;
- Une formule valide est aussi appelée une tautologie;
- Φ est satisfiable ssi elle est vraie dans au moins une interprétation ($\llbracket \Phi \rrbracket^I = T$ pour un certain I, c'est-à-dire elle a un modèle), et est insatisfiable sinon.

Sémantique

Vocabulaire

- Toutes les formules valides sont satisfiables, et toutes les formules insatisfiables sont invalides;
- Ceci divise l'espace des formules en trois catégories :
 - Les valides (toujours vraies);
 - Les insatisfiables (toujours fausses);
 - Les formules contingentes (parfois vraies, parfois fausses).
- La validité et l'insatisfiabilité se correspondent via négation : Φ est valide ssi ¬Φ est insatisfiable, Φ est insatisfiable ssi ¬Φ est valide.

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :

```
 [P(a) \Rightarrow \forall x. P(x)]^I = [P(a) \Rightarrow \forall x. P(x)]^I_{\rho} = 
 [P(a)]^I_{\rho} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]^I_{\rho} = 
 I(P)([a]^I_{\rho}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} [P(x)]^I_{\rho[v/x]} = 
 I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} I(P)[x]^I_{\rho[v/x]} = 
 I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} I(P)\rho[v/x](x) = 
 T \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_0) = T \Rightarrow_{\mathcal{B}} T = T.
```

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :

```
 [P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(x)]_{\rho[v/x]}^{I} = [P(x)
```

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :

$$[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(x)]_{\rho[v/x]}^{I} = [P(x)]_{\rho[x]}^{I} = [P($$

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :

$$[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(x)]_{\rho[v/x]}^{I} = [P(x)]_{\rho[x/x]}^{I} = [P(x)$$

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :

$$[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = I(P)([a]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}\}} [P(x)]_{\rho[v/x]}^{I} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}\}} I(P)[x]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}\}} I(P)\rho[v/x](x) = I \Rightarrow_{\mathcal{B}} I(P)(a_{0}) = I \Rightarrow_{\mathcal{B}} I = I.$$

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
 - $[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(x)]_{\rho[v/x]}^{I} = [P(x)]_{\rho[x/x]}^{I} = [P(x)$

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
 - $[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [I(P)([a]]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}\}} [I(P)[x]]_{\rho[v/x]}^{I} = [I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}\}} I(P)[v/x](x) = [I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}\}} I(P)(v) = [I(P)(a_{0}) = I] \Rightarrow_{\mathcal{B}} I = I.$

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :

$$[P(a) \Rightarrow \forall x. P(x)]^I = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^I = [P(a)]_{\rho}^I \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^I = I(P)([a]_{\rho}^I) \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^I = I(P)([a]_{\rho}^I) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} [P(x)]_{\rho[v/x]}^I = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} I(P)[x]_{\rho[v/x]}^I = I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} I(P)\rho[v/x](x) = I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} I(P)(v) = I \Rightarrow_{\mathcal{B}} I(P)(a_0) = I \Rightarrow_{\mathcal{B}} I = I(P)(a_0) = I \Rightarrow_{\mathcal{B}} I(P)(A$$

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
 - $$\begin{split} & \llbracket P(a) \Rightarrow \forall x. P(x) \rrbracket^I = \llbracket P(a) \Rightarrow \forall x. P(x) \rrbracket^I_{\rho} = \\ & \llbracket P(a) \rrbracket^I_{\rho} \Rightarrow_{\mathcal{B}} \llbracket \forall x. P(x) \rrbracket^I_{\rho} = \\ & I(P) (\llbracket a \rrbracket^I_{\rho}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} \llbracket P(x) \rrbracket^I_{\rho[v/x]} = \\ & I(P) (I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} I(P) \llbracket x \rrbracket^I_{\rho[v/x]} = \\ & I(P) (a_0) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} I(P) \rho[v/x](x) = \\ & T \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_0) = T \Rightarrow_{\mathcal{B}} T = T. \end{split}$$

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
 - $[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \Rightarrow_{\mathcal{B}} [\forall x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} [P(x)]^{I}_{\rho[v/x]} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)(v/x)(x) = I \Rightarrow_{\mathcal{B}} I(P)(a_{0}) \land_{\mathcal{B}} I(P)(a_{1}) = I \Rightarrow_{\mathcal{B}} I \land_{\mathcal{B}} F = F.$
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
 - $[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} [P(x)]^{I}_{\rho[v/x]} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)\rho[v/x](x) = I \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)(v) = I \Rightarrow_{\mathcal{B}} I(P)(a_{0}) \land_{\mathcal{B}} I(P)(a_{1}) = I \Rightarrow_{\mathcal{B}} I \land_{\mathcal{B}} F = F.$
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
 - $[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]^{I}_{\rho} = [I(P)([a]^{I}_{\rho}) \Rightarrow_{\mathcal{B}} [\forall x. P(x)]^{I}_{\rho} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} [P(x)]^{I}_{\rho[v/x]} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)(v/x)(x) = T \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_{0}) \land_{\mathcal{B}} I(P)(a_{1}) = T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F = F.$
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
 - $[P(a) \Rightarrow \forall x. P(x)]^I = [P(a) \Rightarrow \forall x. P(x)]^I_{\rho} = [P(a)]^I_{\rho} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]^I_{\rho} = I(P)([a]^I_{\rho}) \Rightarrow_{\mathcal{B}} [\forall x. P(x)]^I_{\rho} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0, a_1\}} [P(x)]^I_{\rho[v/x]} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0, a_1\}} I(P)[x]^I_{\rho[v/x]} = I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0, a_1\}} I(P)\rho[v/x](x) = T \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0, a_1\}} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(a_1) = T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F = F.$
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
 - $[P(a) \Rightarrow \forall x. P(x)]^I = [P(a) \Rightarrow \forall x. P(x)]^I_{\rho} = [P(a)]^I_{\rho} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]^I_{\rho} = I(P)([a]^I_{\rho}) \Rightarrow_{\mathcal{B}} [\forall x. P(x)]^I_{\rho} = I(P)([a]^I_{\rho}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0, a_1\}} [P(x)]^I_{\rho[v/x]} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0, a_1\}} I(P)[x]^I_{\rho[v/x]} = I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0, a_1\}} I(P)(v/x)(x) = T \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0, a_1\}} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_0) \wedge_{\mathcal{B}} I(P)(a_1) = T \Rightarrow_{\mathcal{B}} T \wedge_{\mathcal{B}} F = F.$
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
 - $[P(a) \Rightarrow \forall x. P(x)]^I = [P(a) \Rightarrow \forall x. P(x)]^I_{\rho} = [P(a)]^I_{\rho} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]^I_{\rho} = I(P)([a]^I_{\rho}) \Rightarrow_{\mathcal{B}} [\forall x. P(x)]^I_{\rho} = I(P)([a]^I_{\rho}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0, a_1\}} [P(x)]^I_{\rho[v/x]} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0, a_1\}} I(P)[x]^I_{\rho[v/x]} = I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0, a_1\}} I(P)(v/x)(x) = T \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0, a_1\}} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_0) \wedge_{\mathcal{B}} I(P)(a_1) = T \Rightarrow_{\mathcal{B}} T \wedge_{\mathcal{B}} F = F.$
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

$$[P(a) \Rightarrow \exists x. P(x)]^{I} = [P(a) \Rightarrow \exists x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \Rightarrow_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} [P(x)]^{I}_{\rho[v/x]} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$$

- Deux cas selon $I(P)(a_0)$:
 - $I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D} I(P)(v) = T;$
 - $I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_l} I(P)(v) = T$

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

```
\begin{split} & [P(a) \Rightarrow \exists x. P(x)]^I = [P(a) \Rightarrow \exists x. P(x)]_\rho^I = \\ & [P(a)]_\rho^I \Rightarrow_\mathcal{B} [\exists x. P(x)]_\rho^I = I(P)([a]_\rho^I) \Rightarrow_\mathcal{B} \bigvee_{v \in D_I} [P(x)]_{\rho[v/x]}^I = \\ & I(P)(I(a)) \Rightarrow_\mathcal{B} \bigvee_{v \in D_I} I(P)[x]_{\rho[v/x]}^I = \\ & I(P)(a_0) \Rightarrow_\mathcal{B} \bigvee_{v \in D_I} I(P)\rho[v/x](x) = \\ & I(P)(a_0) \Rightarrow_\mathcal{B} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F}; \\ & \text{Deux cas selon } I(P)(a_0): \\ & I(P)(a_0) = F: \mathcal{F} = F \Rightarrow_\mathcal{B} \bigvee_{v \in D_I} I(P)(v) = T; \\ & I(P)(a_0) = T: \mathcal{F} = T \Rightarrow_\mathcal{B} \bigvee_{v \in D_I} I(P)(v) = \\ & T \Rightarrow_\mathcal{B} I(P)(a_0) \vee_\mathcal{B} \ldots = T \Rightarrow_\mathcal{B} T \vee_\mathcal{B} \ldots = T \Rightarrow_\mathcal{B} T = T. \end{split}
```

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

```
 \begin{split} & \llbracket P(a) \Rightarrow \exists x. P(x) \rrbracket^I = \llbracket P(a) \Rightarrow \exists x. P(x) \rrbracket_{\rho}^I = \\ & \llbracket P(a) \rrbracket_{\rho}^I \Rightarrow_{\mathcal{B}} \llbracket \exists x. P(x) \rrbracket_{\rho}^I = I(P) (\llbracket a \rrbracket_{\rho}^I) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} \llbracket P(x) \rrbracket_{\rho[v/x]}^I = \\ & I(P) (I(a)) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \llbracket x \rrbracket_{\rho[v/x]}^I = \\ & I(P) (a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \rho[v/x](x) = \\ & I(P) (a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) (v) = \mathcal{F}; \\ & \text{Deux cas selon } I(P) (a_0) : \\ & I(P) (a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) (v) = T; \\ & I(P) (a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) (v) = \\ & T \Rightarrow_{\mathcal{B}} I(P) (a_0) \vee_{\mathcal{B}} \ldots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \ldots = T \Rightarrow_{\mathcal{B}} T = T. \end{split}
```

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

```
 \begin{split} & \llbracket P(a) \Rightarrow \exists x. P(x) \rrbracket^I = \llbracket P(a) \Rightarrow \exists x. P(x) \rrbracket^I_{\rho} = \\ & \llbracket P(a) \rrbracket^I_{\rho} \Rightarrow_{\mathcal{B}} \llbracket \exists x. P(x) \rrbracket^I_{\rho} = I(P) (\llbracket a \rrbracket^I_{\rho}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} \llbracket P(x) \rrbracket^I_{\rho[v/x]} = \\ & I(P) (I(a)) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) [\llbracket x \rrbracket^I_{\rho[v/x]} = \\ & I(P) (a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \rho[v/x](x) = \\ & I(P) (a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) (v) = \mathcal{F}; \\ & \text{Deux cas selon } I(P) (a_0) : \\ & & I(P) (a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) (v) = T; \\ & & I(P) (a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) (v) = \\ & T \Rightarrow_{\mathcal{B}} I(P) (a_0) \vee_{\mathcal{B}} \ldots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \ldots = T \Rightarrow_{\mathcal{B}} T = T. \end{split}
```

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

```
 \begin{split} & \llbracket P(a) \Rightarrow \exists x. P(x) \rrbracket^I = \llbracket P(a) \Rightarrow \exists x. P(x) \rrbracket^I_{\rho} = \\ & \llbracket P(a) \rrbracket^I_{\rho} \Rightarrow_{\mathcal{B}} \llbracket \exists x. P(x) \rrbracket^I_{\rho} = I(P)(\llbracket a \rrbracket^I_{\rho}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} \llbracket P(x) \rrbracket^I_{\rho[v/x]} = \\ & I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \llbracket x \rrbracket^I_{\rho[v/x]} = \\ & I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \rho[v/x](x) = \\ & I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F}; \\ & \text{Deux cas selon } I(P)(a_0) : \\ & I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T; \\ & I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \\ & T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T = T. \end{split}
```

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :
 - $$\begin{split} & \llbracket P(a) \Rightarrow \exists x. P(x) \rrbracket^I = \llbracket P(a) \Rightarrow \exists x. P(x) \rrbracket^I_{\rho} = \\ & \llbracket P(a) \rrbracket^I_{\rho} \Rightarrow_{\mathcal{B}} \llbracket \exists x. P(x) \rrbracket^I_{\rho} = I(P)(\llbracket a \rrbracket^I_{\rho}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} \llbracket P(x) \rrbracket^I_{\rho[v/x]} = \\ & I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \llbracket x \rrbracket^I_{\rho[v/x]} = \\ & I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \rho[v/x](x) = \\ & I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F}; \\ & \text{Deux cas selon } I(P)(a_0) : \\ & I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T; \\ & I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T. \end{split}$$

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

Validité

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

$$[P(a) \Rightarrow \exists x. P(x)]^{I} = [P(a) \Rightarrow \exists x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\exists x. P(x)]_{\rho}^{I} = I(P)([a]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} [P(x)]_{\rho[v/x]}^{I} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = F$$

```
I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T;

I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) =

T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T = T.
```

Validité

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

$$[P(a) \Rightarrow \exists x. P(x)]^I = [P(a) \Rightarrow \exists x. P(x)]_{\rho}^I = [P(a)]_{\rho}^I \Rightarrow_{\mathcal{B}} [\exists x. P(x)]_{\rho}^I = I(P)([a]]_{\rho}^I) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} [P(x)]_{\rho[v/x]}^I = I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)[v/x](x) = I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F};$$

```
I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T;
I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) =
T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T = T
```

Validité

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

$$[P(a) \Rightarrow \exists x. P(x)]^{I} = [P(a) \Rightarrow \exists x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\exists x. P(x)]_{\rho}^{I} = I(P)([a]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} [P(x)]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$$

```
I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T;
I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) =
T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T = T
```

Validité

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

$$[P(a) \Rightarrow \exists x. P(x)]^{I} = [P(a) \Rightarrow \exists x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\exists x. P(x)]_{\rho}^{I} = I(P)([a]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} [P(x)]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$$

```
* I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T;

* I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T = T
```

Validité

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

$$[P(a) \Rightarrow \exists x. P(x)]^{I} = [P(a) \Rightarrow \exists x. P(x)]_{\rho}^{I} =$$

$$[P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\exists x. P(x)]_{\rho}^{I} = I(P)([a]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} [P(x)]_{\rho[v/x]}^{I} =$$

$$I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]_{\rho[v/x]}^{I} =$$

$$I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) =$$

$$I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F} ;$$

*
$$I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T ;$$

 $I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) =$
 $T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T = T$

Validité

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

$$[P(a) \Rightarrow \exists x. P(x)]^{I} = [P(a) \Rightarrow \exists x. P(x)]^{I}_{\rho} =$$

$$[P(a)]^{I}_{\rho} \Rightarrow_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} [P(x)]^{I}_{\rho[v/x]} =$$

$$I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} =$$

$$I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) =$$

$$I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$$

*
$$I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T;$$

 $I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B} \dots} = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B} \dots} = T \Rightarrow_{\mathcal{B}} T = T$

Validité

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

$$[P(a) \Rightarrow \exists x. P(x)]^{I} = [P(a) \Rightarrow \exists x. P(x)]_{\rho}^{I} =$$

$$[P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\exists x. P(x)]_{\rho}^{I} = I(P)([a]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} [P(x)]_{\rho[v/x]}^{I} =$$

$$I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]_{\rho[v/x]}^{I} =$$

$$I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) =$$

$$I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$$

- Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T$;
 - * $I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_L} I(P)(v) =$

 $T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \ldots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \ldots = T \Rightarrow_{\mathcal{B}} T = T.$

Validité

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

- ▶ Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T$;
 - * $I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_t} I(P)(v) =$

 $T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \ldots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \ldots = T \Rightarrow_{\mathcal{B}} T = T.$

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

- ▶ Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T$;
 - * $I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T = T.$

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

$$[P(a) \Rightarrow \exists x. P(x)]^{I} = [P(a) \Rightarrow \exists x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\exists x. P(x)]_{\rho}^{I} = I(P)([a]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} [P(x)]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$$

- ▶ Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T$;
 - * $I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T = T.$

Validité

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

- Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_t} I(P)(v) = T$;
 - * $I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T = T$

Validité

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

$$\begin{split} & \llbracket P(a) \Rightarrow \exists x. P(x) \rrbracket^I = \llbracket P(a) \Rightarrow \exists x. P(x) \rrbracket^I_{\rho} = \\ & \llbracket P(a) \rrbracket^I_{\rho} \Rightarrow_{\mathcal{B}} \llbracket \exists x. P(x) \rrbracket^I_{\rho} = I(P)(\llbracket a \rrbracket^I_{\rho}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} \llbracket P(x) \rrbracket^I_{\rho[v/x]} = \\ & I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \llbracket x \rrbracket^I_{\rho[v/x]} = \\ & I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \rho[v/x](x) = \\ & I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F}; \end{split}$$

- Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_t} I(P)(v) = T$;
 - $I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T = T.$

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I
- Démonstration :

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

```
 \begin{split} & [P(a) \land \neg \exists x. P(x)]^I = [P(a) \land \neg \exists x. P(x)]^I_{\rho} = \\ & [P(a)]^I_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^I_{\rho} = I(P)([a]^I_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^I_{\rho} = \\ & I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)[x]^I_{\rho[v/x]} = \\ & I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)\rho[v/x](x) = \\ & I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F}; \\ & \text{Deux cas selon } I(P)(a_0): \\ & = I(P)(a_0) = F: \mathcal{F} = F \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = F; \\ & = I(P)(a_0) = T: \mathcal{F} = T \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \\ & = T \land_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} (T \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} T = \\ & = T \land_{\mathcal{B}} F = F \end{split}
```

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

```
 [P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} [\neg \exists x. P(x)]^{I}_{\rho} =
```

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

```
 [P(a) \land \neg \exists x. P(x)]]^{I} = [P(a) \land \neg \exists x. P(x)]]_{\rho}^{I} = 
 [P(a)]_{\rho}^{I} \land_{\mathcal{B}} [\neg \exists x. P(x)]_{\rho}^{I} = I(P)([a]_{\rho}^{I}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]_{\rho}^{I} = 
 I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]_{\rho[v/x]}^{I} = 
 I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F}; 
 Deux cas selon I(P)(a_{0}) : 
 I(P)(a_{0}) = \mathcal{F} : \mathcal{F} = \mathcal{F} \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F}; 
 I(P)(a_{0}) = \mathcal{T} : \mathcal{F} = \mathcal{T} \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = 
 T \land_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} (T \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} T = 
 T \land_{\mathcal{B}} \mathcal{F} = \mathcal{F}
```

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

```
 [P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[v]_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F}; 
Deux cas selon I(P)(a_{0}) :
 I(P)(a_{0}) = F : \mathcal{F} = F \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = F; 
 I(P)(a_{0}) = T : \mathcal{F} = T \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} (I(P)(a_{0}) ) = T \land_{\mathcal{B}} (I(P)(a_{0}) ) = T \land_{\mathcal{B}} (I(P)(a
```

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

```
 [P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[v]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F}; 
Deux cas selon I(P)(a_{0}):
 I(P)(a_{0}) = F : \mathcal{F} = F \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = F; 
 I(P)(a_{0}) = T : \mathcal{F} = T \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots
```

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

```
 [P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F}; 
Deux cas selon I(P)(a_{0}):
 I(P)(a_{0}) = F : \mathcal{F} = F \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = F; 
 I(P)(a_{0}) = T : \mathcal{F} = T \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} T = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \ldots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} T = T \land_{\mathcal{B}} T = T \land_{\mathcal{B}} \neg_{\mathcal{B}} T = T \land_{\mathcal{B}} T = T
```

Insatisfiabilité

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

$$[P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} =$$

$$[P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F}$$

Deux cas selon $I(P)(a_0)$

```
I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = F;
```

$$I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) =$$

 $T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} T =$

 $T \wedge_{\mathcal{B}} F = F$

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

$$[P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} =$$

$$[P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$$

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :
 - $[P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} =$ $[P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$
 - ▶ Deux cas selon $I(P)(a_0)$:
 - $I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = F;$ $I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) =$ $T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} T =$ $T \wedge_{\mathcal{B}} F = F.$

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :
 - $[P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} =$ $[P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$
 - Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = F ;$ * $I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) =$ $T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} T =$ $T \wedge_{\mathcal{B}} F = F .$

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :
 - $[P(a) \land \neg \exists x. P(x)]^I = [P(a) \land \neg \exists x. P(x)]^I_{\rho} = [P(a)]^I_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^I_{\rho} = I(P)([a]]^I_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^I_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)[x]^I_{\rho[v/x]} = I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)\rho[v/x](x) = I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F};$
 - ▶ Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_l} I(P)(v) = F ;$ * $I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_l} I(P)(v) =$ * $T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} T =$ * $T \wedge_{\mathcal{B}} F = F .$

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :
 - $[P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$
 - Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_l} I(P)(v) = F ;$ $I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_l} I(P)(v) =$ $T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} T =$ $T \wedge_{\mathcal{B}} F = F .$

Insatisfiabilité

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

$$[P(a) \land \neg \exists x. P(x)]^I = [P(a) \land \neg \exists x. P(x)]^I_{\rho} = [P(a)]^I_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^I_{\rho} = I(P)([a]]^I_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^I_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)[x]^I_{\rho[v/x]} = I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)\rho[v/x](x) = I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F};$$

▶ Deux cas selon $I(P)(a_0)$:

$$I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = F;$$

$$I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) =$$

 $T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}(I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}(T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} T =$

 $T \wedge_{\mathcal{B}} F = F$

Insatisfiabilité

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

$$[P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} =$$

$$[P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$$

Deux cas selon $I(P)(a_0)$:

*
$$I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = F;$$

$$I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) =$$

 $T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}(I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}(T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}T = T \wedge_{\mathcal{B}} F = F.$

Insatisfiabilité

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

$$[P(a) \land \neg \exists x. P(x)]^I = [P(a) \land \neg \exists x. P(x)]^I_{\rho} = [P(a)]^I_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^I_{\rho} = I(P)([a]]^I_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^I_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)[x]^I_{\rho[v/x]} = I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)\rho[v/x](x) = I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F};$$

▶ Deux cas selon $I(P)(a_0)$:

$$I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = F ;$$

$$I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} T = T \wedge_{\mathcal{B}} T$$

 $T \wedge_{\mathcal{B}} F = F$

Insatisfiabilité

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

$$[P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$$

- ▶ Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_i} I(P)(v) = F;$
 - * $I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} T =$

 $T \wedge_{\mathcal{B}} F = F$.

Insatisfiabilité

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

$$[P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$$

▶ Deux cas selon $I(P)(a_0)$:

*
$$I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_i} I(P)(v) = F;$$

$$I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} T = T$$

 $T \wedge_{\mathcal{B}} F = F$

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :
 - $[P(a) \land \neg \exists x. P(x)]^I = [P(a) \land \neg \exists x. P(x)]^I_{\rho} = [P(a)]^I_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^I_{\rho} = I(P)([a]]^I_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^I_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)[x]^I_{\rho[v/x]} = I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)\rho[v/x](x) = I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F};$
 - ▶ Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_i} I(P)(v) = F;$
 - * $I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} T = T \wedge_{\mathcal{B}} F = F$

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :
 - $[P(a) \land \neg \exists x. P(x)]^I = [P(a) \land \neg \exists x. P(x)]^I_{\rho} = [P(a)]^I_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^I_{\rho} = I(P)([a]]^I_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^I_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)[x]^I_{\rho[v/x]} = I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)\rho[v/x](x) = I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F};$
 - Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = F;$
 - $I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} T = T \wedge_{\mathcal{B}} F = F.$

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

$$\begin{aligned} & \left[\exists x. P(x) \Rightarrow P(a) \land P(b) \right]^I = \left[\exists x. P(x) \Rightarrow P(a) \land P(b) \right]_{\rho}^I = \\ & \bigvee_{v \in D_I} \left[P(x) \Rightarrow P(a) \land P(b) \right]_{\rho[v/x]}^I = \\ & \bigvee_{v \in D_I} \left(\left[P(x) \right]_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} \left[P(a) \land P(b) \right]_{\rho[v/x]}^I \right) = \\ & \bigvee_{v \in D_I} \left(I(P) \left[x \right]_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} \left[P(a) \right]_{\rho[v/x]}^I \land_{\mathcal{B}} \left[P(b) \right]_{\rho[v/x]}^I \right) = \\ & \bigvee_{v \in D_I} \left(I(P) \rho[v/x](x) \Rightarrow_{\mathcal{B}} I(P) \left(\left[a \right]_{\rho[v/x]}^I \land_{\mathcal{B}} I(P) \left(\left[b \right]_{\rho[v/x]}^I \right) \right) = \\ & \bigvee_{v \in D_I} \left(I(P)(v) \Rightarrow_{\mathcal{B}} I(P) \left(I(a) \right) \land_{\mathcal{B}} I(P) \left(I(b) \right) \right) = \\ & \bigvee_{v \in D_I} \left(I(P)(v) \Rightarrow_{\mathcal{B}} I(P) \left(a_0 \right) \land_{\mathcal{B}} I(P) \left(b_0 \right) \right) \lor_{\mathcal{B}} \\ & \left(I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P) \left(a_0 \right) \land_{\mathcal{B}} I(P) \left(b_0 \right) \right) \lor_{\mathcal{B}} \dots = \mathcal{F}. \end{aligned}$$

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

$$\begin{aligned} & \left[\left[\exists x. P(x) \Rightarrow P(a) \land P(b) \right] \right]^{I} = \left[\left[\exists x. P(x) \Rightarrow P(a) \land P(b) \right] \right]_{\rho}^{I} = \\ & \bigvee_{v \in D_{I}} \left[P(x) \Rightarrow P(a) \land P(b) \right]_{\rho[v/x]}^{I} = \\ & \bigvee_{v \in D_{I}} \left(\left[P(x) \right] \right]_{\rho[v/x]}^{I} \Rightarrow_{\mathcal{B}} \left[P(a) \land P(b) \right]_{\rho[v/x]}^{I} \right) = \\ & \bigvee_{v \in D_{I}} \left(I(P) \left[x \right] \right]_{\rho[v/x]}^{I} \Rightarrow_{\mathcal{B}} \left[P(a) \right]_{\rho[v/x]}^{I} \land_{\mathcal{B}} \left[P(b) \right]_{\rho[v/x]}^{I} \right) = \\ & \bigvee_{v \in D_{I}} \left(I(P) \rho[v/x](x) \Rightarrow_{\mathcal{B}} I(P) \left(\left[a \right] \right]_{\rho[v/x]}^{I} \right) \land_{\mathcal{B}} I(P) \left(\left[b \right] \right)_{\rho[v/x]}^{I} \right) = \\ & \bigvee_{v \in D_{I}} \left(I(P)(v) \Rightarrow_{\mathcal{B}} I(P) \left(I(a) \right) \land_{\mathcal{B}} I(P) \left(I(b) \right) \right) = \\ & \bigvee_{v \in D_{I}} \left(I(P)(v) \Rightarrow_{\mathcal{B}} I(P) \left(a_{0} \right) \land_{\mathcal{B}} I(P) \left(b_{0} \right) \right) \vee_{\mathcal{B}} \\ & \left(I(P)(b_{0}) \Rightarrow_{\mathcal{B}} I(P) \left(a_{0} \right) \land_{\mathcal{B}} I(P) \left(b_{0} \right) \right) \vee_{\mathcal{B}} \dots = \mathcal{F}. \end{aligned}$$

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

$$[\exists x. P(x) \Rightarrow P(a) \land P(b)]^{I} = [\exists x. P(x) \Rightarrow P(a) \land P(b)]^{I}_{\rho} =$$

$$\bigvee_{v \in D_{I}} [P(x) \Rightarrow P(a) \land P(b)]^{I}_{\rho[v/x]} =$$

$$\bigvee_{v \in D_{I}} ([P(x)]^{I}_{\rho[v/x]} \Rightarrow_{\mathcal{B}} [P(a) \land P(b)]^{I}_{\rho[v/x]}) =$$

$$\bigvee_{v \in D_{I}} (I(P)[x]^{I}_{\rho[v/x]} \Rightarrow_{\mathcal{B}} [P(a)]^{I}_{\rho[v/x]} \land_{\mathcal{B}} [P(b)]^{I}_{\rho[v/x]}) =$$

$$\bigvee_{v \in D_{I}} (I(P)\rho[v/x](x) \Rightarrow_{\mathcal{B}} I(P)([a]]^{I}_{\rho[v/x]}) \land_{\mathcal{B}} I(P)([b])^{I}_{\rho[v/x]}) =$$

$$\bigvee_{v \in D_{I}} (I(P)(v) \Rightarrow_{\mathcal{B}} I(P)(I(a)) \land_{\mathcal{B}} I(P)(I(b))) =$$

$$\bigvee_{v \in D_{I}} (I(P)(v) \Rightarrow_{\mathcal{B}} I(P)(a_{0}) \land_{\mathcal{B}} I(P)(b_{0})) \lor_{\mathcal{B}}$$

$$(I(P)(a_{0}) \Rightarrow_{\mathcal{B}} I(P)(a_{0}) \land_{\mathcal{B}} I(P)(b_{0})) \lor_{\mathcal{B}}$$

$$(I(P)(b_{0}) \Rightarrow_{\mathcal{B}} I(P)(a_{0}) \land_{\mathcal{B}} I(P)(b_{0})) \lor_{\mathcal{B}} ... = \mathcal{F}.$$

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

$$\|\exists x. P(x) \Rightarrow P(a) \land P(b)\|^{I} = \|\exists x. P(x) \Rightarrow P(a) \land P(b)\|_{\rho}^{I} = V_{v \in D_{I}} \|P(x) \Rightarrow P(a) \land P(b)\|_{\rho[v/x]}^{I} = V_{v \in D_{I}} (\|P(x)\|_{\rho[v/x]}^{I}) \Rightarrow_{\mathcal{B}} \|P(a) \land P(b)\|_{\rho[v/x]}^{I}) = V_{v \in D_{I}} (I(P)\|x\|_{\rho[v/x]}^{I}) \Rightarrow_{\mathcal{B}} \|P(a)\|_{\rho[v/x]}^{I}) \land_{\mathcal{B}} \|P(b)\|_{\rho[v/x]}^{I}) = V_{v \in D_{I}} (I(P)\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(P)(\|a\|_{\rho[v/x]}^{I}) \land_{\mathcal{B}} I(P)(\|b\|_{\rho[v/x]}^{I})) = V_{v \in D_{I}} (I(P)(v)) \Rightarrow_{\mathcal{B}} I(P)(I(a)) \land_{\mathcal{B}} I(P)(I(b))) = V_{v \in D_{I}} (I(P)(v)) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} (I(P)(b_0)) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} (I(P)(b_0)) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots = \mathcal{F}.$$

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

$$\|\exists x. P(x) \Rightarrow P(a) \land P(b)\|^{I} = \|\exists x. P(x) \Rightarrow P(a) \land P(b)\|_{\rho}^{I} = V_{v \in D_{I}} \|P(x) \Rightarrow P(a) \land P(b)\|_{\rho[v/x]}^{I} = V_{v \in D_{I}} (\|P(x)\|_{\rho[v/x]}^{I}) \Rightarrow_{\mathcal{B}} \|P(a) \land P(b)\|_{\rho[v/x]}^{I}) = V_{v \in D_{I}} (I(P) \|x\|_{\rho[v/x]}^{I}) \Rightarrow_{\mathcal{B}} \|P(a)\|_{\rho[v/x]}^{I}) \land_{\mathcal{B}} \|P(b)\|_{\rho[v/x]}^{I}) = V_{v \in D_{I}} (I(P) \rho[v/x](x)) \Rightarrow_{\mathcal{B}} \|P(b)\|_{\rho[v/x]}^{I}) \land_{\mathcal{B}} \|P(b)\|_{\rho[v/x]}^{I}) = V_{v \in D_{I}} (I(P) \land_{\mathcal{B}} |P(b)|_{\rho(b)}) \land_{\mathcal{B}} |P(b)|_{\rho(b)}) = V_{v \in D_{I}} (I(P) \land_{\mathcal{B}} |P(b)|_{\rho(a)}) \land_{\mathcal{B}} |P(b)|_{\rho(b)}) \lor_{\mathcal{B}} (I(P) \land_{\mathcal{B}} |P(b)|_{\rho(b)}) \lor_{\mathcal{B}} \dots = \mathcal{F}.$$

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

$$\|\exists x. P(x) \Rightarrow P(a) \land P(b)\|^{I} = \|\exists x. P(x) \Rightarrow P(a) \land P(b)\|_{\rho}^{I} = \bigvee_{v \in D_{I}} \|P(x) \Rightarrow P(a) \land P(b)\|_{\rho[v/x]}^{I} = \bigvee_{v \in D_{I}} (\|P(x)\|_{\rho[v/x]}^{I}) \Rightarrow_{\mathcal{B}} \|P(a) \land P(b)\|_{\rho[v/x]}^{I}) = \bigvee_{v \in D_{I}} (I(P)\|x\|_{\rho[v/x]}^{I}) \Rightarrow_{\mathcal{B}} \|P(a)\|_{\rho[v/x]}^{I}) \land_{\mathcal{B}} \|P(b)\|_{\rho[v/x]}^{I}) = \bigvee_{v \in D_{I}} (I(P)\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(P)(\|a\|_{\rho[v/x]}^{I}) \land_{\mathcal{B}} I(P)(\|b\|_{\rho[v/x]}^{I})) = \bigvee_{v \in D_{I}} (I(P)(v)) \Rightarrow_{\mathcal{B}} I(P)(I(a)) \land_{\mathcal{B}} I(P)(I(b))) = \bigvee_{v \in D_{I}} (I(P)(v)) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} (I(P)(a_0)) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} (I(P)(b_0)) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots = \mathcal{F}.$$

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

$$\|\exists x. P(x) \Rightarrow P(a) \land P(b)\|^{I} = \|\exists x. P(x) \Rightarrow P(a) \land P(b)\|_{\rho}^{I} = \bigvee_{v \in D_{I}} \|P(x) \Rightarrow P(a) \land P(b)\|_{\rho[v/x]}^{I} = \bigvee_{v \in D_{I}} (\|P(x)\|_{\rho[v/x]}^{I}) \Rightarrow_{\mathcal{B}} \|P(a) \land P(b)\|_{\rho[v/x]}^{I}) = \bigvee_{v \in D_{I}} (I(P)\|x\|_{\rho[v/x]}^{I}) \Rightarrow_{\mathcal{B}} \|P(a)\|_{\rho[v/x]}^{I}) \land_{\mathcal{B}} \|P(b)\|_{\rho[v/x]}^{I}) = \bigvee_{v \in D_{I}} (I(P)\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(P)(\|a\|_{\rho[v/x]}^{I}) \land_{\mathcal{B}} I(P)(\|b\|_{\rho[v/x]}^{I})) = \bigvee_{v \in D_{I}} (I(P)(v)) \Rightarrow_{\mathcal{B}} I(P)(I(a)) \land_{\mathcal{B}} I(P)(I(b))) = \bigvee_{v \in D_{I}} (I(P)(v)) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} (I(P)(a_0)) \land_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} (I(P)(b_0)) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots = \mathcal{F}.$$

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

$$\begin{split} & \left[\left[\exists x. P(x) \Rightarrow P(a) \land P(b) \right]^I = \left[\left[\exists x. P(x) \Rightarrow P(a) \land P(b) \right] \right]_{\rho}^I = \\ & \bigvee_{v \in D_I} \left[P(x) \Rightarrow P(a) \land P(b) \right]_{\rho[v/x]}^I = \\ & \bigvee_{v \in D_I} \left(\left[P(x) \right] \right]_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} \left[P(a) \land P(b) \right]_{\rho[v/x]}^I \right) = \\ & \bigvee_{v \in D_I} \left(I(P) \left[x \right] \right]_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} \left[P(a) \right] \right]_{\rho[v/x]}^I \land_{\mathcal{B}} \left[P(b) \right] \right]_{\rho[v/x]}^I \right) = \\ & \bigvee_{v \in D_I} \left(I(P) \rho[v/x](x) \Rightarrow_{\mathcal{B}} I(P) \left(\left[a \right] \right]_{\rho[v/x]}^I \land_{\mathcal{B}} I(P) \left(\left[b \right] \right]_{\rho[v/x]}^I \right) \right) = \\ & \bigvee_{v \in D_I} \left(I(P)(v) \Rightarrow_{\mathcal{B}} I(P) \left(I(a) \right) \land_{\mathcal{B}} I(P) \left(I(b) \right) \right) = \\ & \bigvee_{v \in D_I} \left(I(P)(v) \Rightarrow_{\mathcal{B}} I(P) \left(a_0 \right) \land_{\mathcal{B}} I(P) \left(b_0 \right) \right) \lor_{\mathcal{B}} \\ & \left(I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P) \left(a_0 \right) \land_{\mathcal{B}} I(P) \left(b_0 \right) \right) \lor_{\mathcal{B}} \dots = \mathcal{F}. \end{split}$$

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

$$\begin{split} & \left[\left[\exists x. P(x) \Rightarrow P(a) \land P(b) \right]^I = \left[\left[\exists x. P(x) \Rightarrow P(a) \land P(b) \right] \right]_{\rho}^I = \\ & \bigvee_{v \in D_I} \left[P(x) \Rightarrow P(a) \land P(b) \right]_{\rho[v/x]}^I = \\ & \bigvee_{v \in D_I} \left(\left[P(x) \right] \right]_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} \left[P(a) \land P(b) \right] \right]_{\rho[v/x]}^I) = \\ & \bigvee_{v \in D_I} \left(I(P) \left[x \right] \right]_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} \left[P(a) \right] \right]_{\rho[v/x]}^I \land_{\mathcal{B}} \left[P(b) \right] \right]_{\rho[v/x]}^I) = \\ & \bigvee_{v \in D_I} \left(I(P) \rho[v/x](x) \Rightarrow_{\mathcal{B}} I(P) \left(\left[a \right] \right]_{\rho[v/x]}^I \land_{\mathcal{B}} I(P) \left(\left[b \right] \right]_{\rho[v/x]}^I \right)) = \\ & \bigvee_{v \in D_I} \left(I(P)(v) \Rightarrow_{\mathcal{B}} I(P) \left(I(a) \right) \land_{\mathcal{B}} I(P) \left(I(b) \right) \right) = \\ & \bigvee_{v \in D_I} \left(I(P)(v) \Rightarrow_{\mathcal{B}} I(P) \left(a_0 \right) \land_{\mathcal{B}} I(P) \left(b_0 \right) \right) \lor_{\mathcal{B}} \\ & \left(I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P) \left(a_0 \right) \land_{\mathcal{B}} I(P) \left(b_0 \right) \right) \lor_{\mathcal{B}} \dots = \mathcal{F}. \end{split}$$

Exotisme de la logique classique

Démonstration :

```
\mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}}
(I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots;
Quatre cas selon I(P)(a_0) et I(P)(b_0):
I(P)(a_0) = F, I(P)(b_0) = F:
\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = F, I(P)(b_0) = T:
\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = T, I(P)(b_0) = F:
\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = T, I(P)(b_0) = T:
\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.
```

• La formule est valide mais il n'y a aucun terme t tel que $[t]^I = v$ et $[P(x) \Rightarrow P(a) \land P(b)]^I_{\rho[v/x]} = T!$

Exotisme de la logique classique

Démonstration :

```
 \mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} 
 (I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \ldots; 
 \text{Quatre cas selon } I(P)(a_0) \text{ et } I(P)(b_0) : 
 I(P)(a_0) = F, I(P)(b_0) = F : 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \ldots = T; 
 I(P)(a_0) = F, I(P)(b_0) = T : 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \ldots = T; 
 I(P)(a_0) = T, I(P)(b_0) = F : 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \ldots = T; 
 I(P)(a_0) = T, I(P)(b_0) = T : 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \ldots = T.
```

Exotisme de la logique classique

Démonstration :

```
 \mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} 
 (I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \ldots; 
 \text{Quatre cas selon } I(P)(a_0) \text{ et } I(P)(b_0): 
 * I(P)(a_0) = F, I(P)(b_0) = F: 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \ldots = T; 
 * I(P)(a_0) = F, I(P)(b_0) = T: 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \ldots = T; 
 * I(P)(a_0) = T, I(P)(b_0) = F: 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \ldots = T; 
 * I(P)(a_0) = T, I(P)(b_0) = T: 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \ldots = T.
```

Exotisme de la logique classique

Démonstration :

```
 \mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} 
 (I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots; 
 \text{Quatre cas selon } I(P)(a_0) \text{ et } I(P)(b_0) : 
 * I(P)(a_0) = F, I(P)(b_0) = F : 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T ; 
 I(P)(a_0) = F, I(P)(b_0) = T : 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T ; 
 I(P)(a_0) = T, I(P)(b_0) = F : 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T ; 
 I(P)(a_0) = T, I(P)(b_0) = T : 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T .
```

Exotisme de la logique classique

Démonstration :

```
 \mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} 
 (I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots; 
Quatre cas selon I(P)(a_0) et I(P)(b_0):
 * I(P)(a_0) = F, I(P)(b_0) = F: 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T; 
 I(P)(a_0) = F, I(P)(b_0) = T: 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T; 
 I(P)(a_0) = T, I(P)(b_0) = F: 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T; 
 I(P)(a_0) = T, I(P)(b_0) = T: 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.
```

Exotisme de la logique classique

Démonstration :

```
 \mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \wedge_{\mathcal{B}} I(P)(b_0)) \vee_{\mathcal{B}} 
 (I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \wedge_{\mathcal{B}} I(P)(b_0)) \vee_{\mathcal{B}} \dots; 
 \text{Quatre cas selon } I(P)(a_0) \text{ et } I(P)(b_0) : 
 * I(P)(a_0) = F, I(P)(b_0) = F : 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \wedge_{\mathcal{B}} F) \vee_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \wedge_{\mathcal{B}} F) \vee_{\mathcal{B}} \dots = T; 
 * I(P)(a_0) = F, I(P)(b_0) = T : 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \wedge_{\mathcal{B}} T) \vee_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \wedge_{\mathcal{B}} T) \vee_{\mathcal{B}} \dots = T; 
 * I(P)(a_0) = T, I(P)(b_0) = F : 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \wedge_{\mathcal{B}} F) \vee_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \wedge_{\mathcal{B}} F) \vee_{\mathcal{B}} \dots = T; 
 * I(P)(a_0) = T, I(P)(b_0) = T : 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \wedge_{\mathcal{B}} T) \vee_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \wedge_{\mathcal{B}} T) \vee_{\mathcal{B}} \dots = T.
```

Exotisme de la logique classique

Démonstration :

```
 \mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} 
 (I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots; 
Quatre cas selon I(P)(a_0) et I(P)(b_0):
 * I(P)(a_0) = F, I(P)(b_0) = F: 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T; 
 * I(P)(a_0) = F, I(P)(b_0) = T: 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T; 
 I(P)(a_0) = T, I(P)(b_0) = F: 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T; 
 I(P)(a_0) = T, I(P)(b_0) = T: 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.
```

Exotisme de la logique classique

Démonstration :

```
 \mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} 
 (I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots; 
Quatre cas selon I(P)(a_0) et I(P)(b_0):
 * I(P)(a_0) = F, I(P)(b_0) = F: 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T; 
 * I(P)(a_0) = F, I(P)(b_0) = T: 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T; 
 I(P)(a_0) = T, I(P)(b_0) = F: 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T; 
 I(P)(a_0) = T, I(P)(b_0) = T: 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.
```

Exotisme de la logique classique

Démonstration :

```
 \mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} 
 (I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots; 
Quatre cas selon I(P)(a_0) et I(P)(b_0):
 I(P)(a_0) = F, I(P)(b_0) = F: 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T; 
 I(P)(a_0) = F, I(P)(b_0) = T: 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T; 
 I(P)(a_0) = T, I(P)(b_0) = F: 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T; 
 I(P)(a_0) = T, I(P)(b_0) = T: 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.
```

Exotisme de la logique classique

Démonstration :

```
\mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}}
(I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots;
Quatre cas selon I(P)(a_0) et I(P)(b_0):
I(P)(a_0) = F, I(P)(b_0) = F:
\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = F, I(P)(b_0) = T:
\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = T, I(P)(b_0) = F:
\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = T, I(P)(b_0) = T:
\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.
```

Exotisme de la logique classique

Démonstration :

```
\mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}}
(I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots;
Quatre cas selon I(P)(a_0) et I(P)(b_0):
I(P)(a_0) = F, I(P)(b_0) = F:
\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = F, I(P)(b_0) = T:
\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = T, I(P)(b_0) = F:
\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = T, I(P)(b_0) = T:
\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.
```

Exotisme de la logique classique

Démonstration :

```
\mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}}
(I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots;
Quatre cas selon I(P)(a_0) et I(P)(b_0):
I(P)(a_0) = F, I(P)(b_0) = F:
\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = F, I(P)(b_0) = T:
\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = T, I(P)(b_0) = F:
\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = T, I(P)(b_0) = T:
\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.
```

Exotisme de la logique classique

Démonstration :

```
\mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}}
(I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots;
Quatre cas selon I(P)(a_0) et I(P)(b_0):
I(P)(a_0) = F, I(P)(b_0) = F :
\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = F, I(P)(b_0) = T :
\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = T, I(P)(b_0) = F :
\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = T, I(P)(b_0) = T :
\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.
```

Exotisme de la logique classique

- Démonstration :
 - $\mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}}$ $(I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots;$ Quatre cas selon $I(P)(a_0)$ et $I(P)(b_0)$: $I(P)(a_0) = F, I(P)(b_0) = F :$ $\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;$ $I(P)(a_0) = F, I(P)(b_0) = T :$ $\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T;$ $I(P)(a_0) = T, I(P)(b_0) = F :$ $\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;$ $I(P)(a_0) = T, I(P)(b_0) = T :$ $\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.$
- La formule est valide mais il n'y a aucun terme t tel que $[t]^I = v$ et $[P(x) \Rightarrow P(a) \land P(b)]_{\rho[v/x]}^I = T!$

Exotisme de la logique classique

- Démonstration :
 - $\mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}}$ $(I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \ldots;$ Quatre cas selon $I(P)(a_0)$ et $I(P)(b_0)$: $I(P)(a_0) = F, I(P)(b_0) = F:$ $\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \ldots = T;$ $I(P)(a_0) = F, I(P)(b_0) = T:$ $\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \ldots = T;$ $I(P)(a_0) = T, I(P)(b_0) = F:$ $\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \ldots = T;$ $I(P)(a_0) = T, I(P)(b_0) = T:$ $\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \ldots = T.$
- La formule est valide mais il n'y a aucun terme t tel que $[t]^I = v$ et $[P(x) \Rightarrow P(a) \land P(b)]^I_{o[v/x]} = T!$

Syllogisme et conséquence logique

- Valider le syllogisme d'Aristote suivant :
 - Tout homme est mortel;
 - Or Socrate est un homme;
 - Donc Socrate est mortel.
- Modélisation :
 - $H(x) \equiv x$ est un homme;
 - $M(x) \equiv x \text{ est mortel};$
 - $s \equiv \mathsf{Socrate}$.
 - $\forall x. H(x) \Rightarrow M(x) (\mathcal{H}_1);$
 - $H(s)(\mathcal{H}_2)$
 - M(s) (\mathcal{H}_3)

On doit démontrer : $\mathcal{H}_1, \mathcal{H}_2 \models \mathcal{H}_3$

Syllogisme et conséquence logique

- Valider le syllogisme d'Aristote suivant :
 - Tout homme est mortel;
 - Or Socrate est un homme;
 - Donc Socrate est mortel.
- Modélisation :
 - $H(x) \equiv x$ est un homme;
 - $M(x) \equiv x \text{ est mortel};$
 - $ightharpoonup s \equiv \mathsf{Socrate}.$
 - $\forall x. H(x) \Rightarrow M(x) (\mathcal{H}_1);$
 - $H(s)(\mathcal{H}_2)$
 - M(s) (\mathcal{H}_3)

On doit démontrer : $\mathcal{H}_1, \mathcal{H}_2 \models \mathcal{H}_3$

Syllogisme et conséquence logique

- Valider le syllogisme d'Aristote suivant :
 - Tout homme est mortel;
 - Or Socrate est un homme;
 - Donc Socrate est mortel.
- Modélisation :
 - $H(x) \equiv x$ est un homme;
 - $M(x) \equiv x \text{ est mortel};$
 - $ightharpoonup s \equiv \mathsf{Socrate}.$
 - $\forall x. H(x) \Rightarrow M(x) (\mathcal{H}_1);$
 - \vdash $H(s)(\mathcal{H}_2)$;
 - M(s) (\mathcal{H}_3) .

On doit démontrer : $\mathcal{H}_1, \mathcal{H}_2 \models \mathcal{H}_3$

Syllogisme et conséquence logique

- Valider le syllogisme d'Aristote suivant :
 - Tout homme est mortel;
 - Or Socrate est un homme;
 - Donc Socrate est mortel.
- Modélisation :
 - $H(x) \equiv x$ est un homme;
 - $M(x) \equiv x \text{ est mortel};$
 - $ightharpoonup s \equiv \mathsf{Socrate}.$
 - $\forall x. H(x) \Rightarrow M(x) (\mathcal{H}_1);$
 - \vdash $H(s)(\mathcal{H}_2)$;
 - M(s) (\mathcal{H}_3) .

On doit démontrer : $\mathcal{H}_1, \mathcal{H}_2 \models \mathcal{H}_3$.

Syllogisme et conséquence logique

Démonstration :

- Soit *I* une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
- On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

$$[M(s)]' = [M(s)]'_{\rho} = I(M)([s]'_{\rho}) = I(M)(s_0) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $\llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket^I = T$:

 - - $\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket'_{\rho[v/x]}) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket'_{\rho[v/x]})) =$
 - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
 - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$
 - $[H(s)]^{I} = [H(s)]^{I}_{\rho} = I(H)([s]^{I}_{\rho}) = I(H)(s_{0}) = T (2).$
- En remplaçant (2) dans (1), on obtient : $T \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$, ce qui implique que $I(M)(s_0) = T$ (3).

Syllogisme et conséquence logique

Démonstration :

- Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
- ${rliah}$ On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s)
 rbracket^I = T$:

$$[M(s)]^{I} = [M(s)]_{\rho}^{I} = I(M)([s]_{\rho}^{I}) = I(M)(s_{0}) = T (3).$$

- $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - $\|\forall x. H(x) \Rightarrow M(x)\|^{I} = \|\forall x. H(x) \Rightarrow M(x)\|_{\rho}^{I} =$
 - - $\bigwedge_{v \in D_I} (I(H)(\Vert x \Vert'_{\rho[v/x]}) \Rightarrow_{\mathcal{B}} I(M)(\Vert x \Vert'_{\rho[v/x]})) =$
 - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x))) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
- $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$

$$[H(s)]^{I} = [H(s)]^{I}_{\rho} = I(H)([s]^{I}_{\rho}) = I(H)(s_{0}) = T$$
 (2).

Syllogisme et conséquence logique

Démonstration :

- Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
- On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:

 - $\bigwedge_{v \in D_I} [H(x) \Rightarrow M(x)]_{\rho[v/x]}^I = \bigwedge_{v \in D_I} ([H(x)]_{\rho[v/x]}^I) \Rightarrow_{\mathcal{B}} [M(x)]_{\rho[v/x]}^I) =$
 - $\bigwedge_{v \in D_{I}} (I(H)([x]]_{\rho[v/x]}) \Rightarrow_{\mathcal{B}} I(M)([x]]_{\rho[v/x]})) =$
 - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x))) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
- $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$
 - $[\![H(s)]\!]^I = [\![H(s)]\!]^I_{\rho} = I(H)([\![s]\!]^I_{\rho}) = I(H)(s_0) = T (2).$
- En remplaçant (2) dans (1), on obtient : $T \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$, ce qui implique que $I(M)(s_0) = T$ (3).

Syllogisme et conséquence logique

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

$$[M(s)]^{I} = [M(s)]^{I}_{\rho} = I(M)([s]^{I}_{\rho}) = I(M)(s_{0}) = T (3).$$

- $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - $\llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket' = \llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket'_{\rho} =$
 - $\bigwedge_{v \in D_I} [\![H(x) \Rightarrow M(x)]\!]_{\rho[v/x]}^I = \bigwedge_{v \in D_I} ([\![H(x)]\!]_{\rho[v/x]}^I) \Rightarrow_{\mathcal{B}} [\![M(x)]\!]_{\rho[v/x]}^I) =$
 - $\bigwedge_{v \in D_I} (I(H)(\Vert x \Vert'_{\rho[v/x]}) \Rightarrow_{\mathcal{B}} I(M)(\Vert x \Vert'_{\rho[v/x]})) =$
 - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x))) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
- $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:

$$[H(s)]^{I} = [H(s)]^{I}_{\rho} = I(H)([s]^{I}_{\rho}) = I(H)(s_{0}) = T (2).$$

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

$$[M(s)]^{I} = [M(s)]_{\rho}^{I} = I(M)([s]_{\rho}^{I}) = I(M)(s_{0}) = T (3).$$

- $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - - $\bigwedge_{v \in D_I} \llbracket H(x) \Rightarrow M(x) \rrbracket_{\rho[v/x]}^I = \bigwedge_{v \in D_I} (\llbracket H(x) \rrbracket_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} \llbracket M(x) \rrbracket_{\rho[v/x]}^I) =$
 - $\bigwedge_{v \in D_{I}} (I(H)([x]'_{\rho[v/x]}) \Rightarrow_{\mathcal{B}} I(M)([x]'_{\rho[v/x]})) =$
 - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
- $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$
 - $[H(s)]^I = [H(s)]^I_{\rho} = I(H)([s]^I_{\rho}) = I(H)(s_0) = T$ (2).
- En remplaçant (2) dans (1), on obtient : $T \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$, ce qui implique que $I(M)(s_0) = T$ (3).

Syllogisme et conséquence logique

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

$$M(s)$$
 $M(s)$ $M(s)$ $M(s)$ $M(s)$ $M(s)$ $M(s)$ $M(s)$ $M(s)$

- $I \models \mathcal{H}_1$ signifie que $[\![\forall x. H(x) \Rightarrow M(x)]\!]^I = T$:

 - $\bigwedge_{v \in D_I} \llbracket H(x) \Rightarrow M(x) \rrbracket_{\rho[v/x]}^I = \bigwedge_{v \in D_I} (\llbracket H(x) \rrbracket_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} \llbracket M(x) \rrbracket_{\rho[v/x]}^I) =$
 - $\bigwedge_{v \in D_{I}} (I(H)([\![x]\!]_{\rho[v/x]}^{I}) \Rightarrow_{\mathcal{B}} I(M)([\![x]\!]_{\rho[v/x]}^{I})) =$
 - $\bigwedge_{v \in D_l} (I(H)(\rho[v/x](x))) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
- $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:

$$[\![H(s)]\!]^I = [\![H(s)]\!]^I_{\rho} = I(H)([\![s]\!]^I_{\rho}) = I(H)(s_0) = T (2).$$

Syllogisme et conséquence logique

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^{I} = [M(s)]_{\rho}^{I} = I(M)([s]_{\rho}^{I}) = I(M)(s_{0}) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:

 - $\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket'_{\rho[v/x]}) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket'_{\rho[v/x]})) =$
 - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x))) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
 - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:

$$[H(s)]^{I} = [H(s)]^{I}_{\rho} = I(H)([s]^{I}_{\rho}) = I(H)(s_{0}) = T$$
 (2).

Syllogisme et conséquence logique

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^{I} = [M(s)]^{I}_{\rho} = I(M)([s]^{I}_{\rho}) = I(M)(s_{0}) = T$$
 (3).

 $I \models \mathcal{H}_1$ signifie que $\llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket^I = T$:

$$[\![\forall x.H(x)\Rightarrow M(x)]\!]'=[\![\forall x.H(x)\Rightarrow M(x)]\!]'_{\rho}=$$

$$\bigwedge_{v \in D_{I}} [\![H(x) \Rightarrow M(x)]\!]_{\rho[v/x]}^{I} = \bigwedge_{v \in D_{I}} (\![H(x)]\!]_{\rho[v/x]}^{I} \Rightarrow_{\mathcal{B}} [\![M(x)]\!]_{\rho[v/x]}^{I}) =$$

$$\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket_{\rho[v/x]}^I) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket_{\rho[v/x]}^I)) =$$

$$\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$$

$$\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = \overline{I}$$

* Ce qui implique que :
$$I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$$
 (1)

$$I \models \mathcal{H}_2$$
 signifie que $\llbracket H(s) \rrbracket^I = T$

$$[H(s)]^{I} = [H(s)]^{I}_{\rho} = I(H)([s]^{I}_{\rho}) = I(H)(s_{0}) = T$$
 (2).

Syllogisme et conséquence logique

- Démonstration :
 - Soit *I* une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^{I} = [M(s)]^{I}_{\rho} = I(M)([s]^{I}_{\rho}) = I(M)(s_{0}) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $\llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket^I = T$:
 - * $[\![\forall x.H(x)\Rightarrow M(x)]\!]^I = [\![\forall x.H(x)\Rightarrow M(x)]\!]_\rho^I =$

- $\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket_{\rho[v/x]}^I) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket_{\rho[v/x]}^I)) =$
- $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
- $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
- Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$

$$[H(s)]^{I} = [H(s)]^{I}_{\rho} = I(H)([s]^{I}_{\rho}) = I(H)(s_{0}) = T$$
 (2).

Syllogisme et conséquence logique

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^{I} = [M(s)]_{\rho}^{I} = I(M)([s]_{\rho}^{I}) = I(M)(s_{0}) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $\llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket^I = T$:

$$\bigwedge_{v \in D_I} \|H(x) \Rightarrow M(x)\|_{\rho[v/x]}^I = \bigwedge_{v \in D_I} (\|H(x)\|_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} \|M(x)\|_{\rho[v/x]}^I) =$$

- $\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket_{\rho[v/x]}^{\prime}) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket_{\rho[v/x]}^{\prime})) =$
- $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
- $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
- Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$

$$[H(s)]^I = [H(s)]^I_{\rho} = I(H)([s]^I_{\rho}) = I(H)(s_0) = T$$
 (2).

Syllogisme et conséquence logique

Démonstration :

- Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
- On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $\llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket^I = T$:

$$\bigwedge_{v \in D_I} \llbracket H(x) \Rightarrow M(x) \rrbracket_{\rho[v/x]}^I = \bigwedge_{v \in D_I} (\llbracket H(x) \rrbracket_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} \llbracket M(x) \rrbracket_{\rho[v/x]}^I) =$$

- $\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket_{\rho[v/x]}^{\prime}) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket_{\rho[v/x]}^{\prime})) =$
- $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x))) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
 - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$
- Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:

$$[H(s)]^I = [H(s)]^I_{\rho} = I(H)([s]^I_{\rho}) = I(H)(s_0) = T$$
 (2).

Syllogisme et conséquence logique

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- ▶ $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - - $\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket'_{\rho[v/x]}) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket'_{\rho[v/x]})) =$
 - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
 - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:

$$[H(s)]^{I} = [H(s)]^{I}_{\rho} = I(H)([s]^{I}_{\rho}) = I(H)(s_{0}) = T$$
 (2)

Syllogisme et conséquence logique

Démonstration :

- Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
- On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^{I} = [M(s)]^{I}_{\rho} = I(M)([s]^{I}_{\rho}) = I(M)(s_{0}) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $\llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket^I = T$:
 - - $\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket_{\rho[v/x]}^I) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket_{\rho[v/x]}^I)) =$
 - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
- $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$

$$[H(s)]^I = [H(s)]^I_{\rho} = I(H)([s]^I_{\rho}) = I(H)(s_0) = T$$
 (2).

Syllogisme et conséquence logique

Démonstration :

- Soit *I* une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
- On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^{I} = [M(s)]^{I}_{\rho} = I(M)([s]^{I}_{\rho}) = I(M)(s_{0}) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $\llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket^I = T$:
 - $\|\forall x. H(x) \Rightarrow M(x)\|^{l} = \|\forall x. H(x) \Rightarrow M(x)\|_{\rho}^{l} =$ $\bigwedge_{v \in D_{l}} \|H(x) \Rightarrow M(x)\|_{\rho[v/x]}^{l} = \bigwedge_{v \in D_{l}} (\|H(x)\|_{\rho[v/x]}^{l}) \Rightarrow_{\mathcal{B}} \|M(x)\|_{\rho[v/x]}^{l}) =$ $\bigwedge_{v \in D_{l}} \|H(x)\|_{\rho[v/x]}^{l} \xrightarrow{\text{local}} \|M(x)\|_{\rho[v/x]}^{l} \xrightarrow{\text{local}} \|M(x)\|_{\rho[v/x]}^{l}) =$

$$\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket_{\rho[v/x]}^I) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket_{\rho[v/x]}^I)) = \\ \bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$$

$$\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$$

- Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$

$$[H(s)]^{I} = [H(s)]^{I}_{\rho} = I(H)([s]^{I}_{\rho}) = I(H)(s_{0}) = T (2).$$

Syllogisme et conséquence logique

Démonstration :

- Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
- On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^{I} = [M(s)]^{I}_{\rho} = I(M)([s]^{I}_{\rho}) = I(M)(s_{0}) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $\llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket^I = T$:

$$\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket_{\rho[v/x]}^I) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket_{\rho[v/x]}^I)) = \\ \bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$$

$$\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$$

- Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1).
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:

$$[H(s)]^{I} = [H(s)]^{I}_{\rho} = I(H)([s]^{I}_{\rho}) = I(H)(s_{0}) = T (2).$$

Syllogisme et conséquence logique

- Démonstration :
 - Soit *I* une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- ► $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:

$$\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket_{\rho[v/x]}^I) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket_{\rho[v/x]}^I)) = \\ \bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$$

$$\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) = \\ \bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \land \ldots = \mathcal{T};$$

$$\bigwedge_{\mathbf{v} \in D_{I}} (I(H)(\mathbf{v}) \to \mathcal{B} I(M)(\mathbf{v})) = (I(H)(\mathbf{s_0}) \to \mathcal{B} I(M)(\mathbf{s_0})) \wedge \dots = I(H)(\mathbf{s_0}) + I(M)(\mathbf{s_0}) = I(H)(\mathbf{s_0}) + I(H)(\mathbf{s_0}) = I(H$$

- Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1).
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:

$$[H(s)]^{I} = [H(s)]^{I}_{\rho} = I(H)([s]^{I}_{\rho}) = I(H)(s_{0}) = T (2).$$

Syllogisme et conséquence logique

- Démonstration :
 - Soit *I* une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- ► $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - - $\bigwedge_{v \in D_l} (I(H)(\llbracket X \rrbracket_{\rho[v/x]}) \to \mathcal{B} I(M)(\llbracket X \rrbracket_{\rho[v/x]})) = \\ \bigwedge_{v \in D_l} (I(H)(\rho[v/x](x)) \to \mathcal{B} I(M)(\rho[v/x](x))) = \\$
 - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1).
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:

$$[H(s)]^{I} = [H(s)]^{I}_{\rho} = I(H)([s]^{I}_{\rho}) = I(H)(s_{0}) = T$$
 (2).

Syllogisme et conséquence logique

- Démonstration :
 - Soit *I* une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- ► $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - $\|\forall x. H(x) \Rightarrow M(x)\|^{l} = \|\forall x. H(x) \Rightarrow M(x)\|^{l}_{\rho} =$ $\bigwedge_{v \in D_{l}} \|H(x) \Rightarrow M(x)\|^{l}_{\rho[v/x]} = \bigwedge_{v \in D_{l}} (\|H(x)\|^{l}_{\rho[v/x]}) \Rightarrow_{\mathcal{B}} \|M(x)\|^{l}_{\rho[v/x]} =$
 - $\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket_{\rho[v/x]}^I) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket_{\rho[v/x]}^I)) = \\ \bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
 - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$
 - * Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1).
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:

$$[H(s)]^{I} = [H(s)]^{I}_{\rho} = I(H)([s]^{I}_{\rho}) = I(H)(s_{0}) = T$$
 (2).

Syllogisme et conséquence logique

- Démonstration :
 - Soit *I* une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- ▶ $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - - $\bigwedge_{v \in D_l} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
 - $\bigwedge_{v \in D_1} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$
 - * Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1).
- ▶ $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:

$$[H(s)]^I = [H(s)]^I_{\rho} = I(H)([s]^I_{\rho}) = I(H)(s_0) = T$$
 (2).

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- ▶ $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x])) \to B I(H)(\mu[v/x]) =$ $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x))) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
 - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$
 - * Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1).
- ▶ $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:
 - * $[H(s)]^I = [H(s)]^I_{\rho} = I(H)([s]^I_{\rho}) = I(H)(s_0) = T$ (2).
- En remplaçant (2) dans (1), on obtient : $T \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$, ce qui implique que $I(M)(s_0) = T$ (3).

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- ▶ $I \models \mathcal{H}_1$ signifie que $\llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket^I = T$:
 - - $\bigwedge_{v \in D_I} (I(H)(p[v/x]) \to B I(H)(p[v/x])) =$ $\bigwedge_{v \in D_I} (I(H)(p[v/x](x)) \Rightarrow_B I(M)(p[v/x](x))) =$
 - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$
 - * Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1).
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:
 - * $[H(s)]^{I} = [H(s)]^{I}_{\rho} = I(H)([s]^{I}_{\rho}) = I(H)(s_{0}) = T$ (2).
- En remplaçant (2) dans (1), on obtient : $T \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$, ce qui implique que $I(M)(s_0) = T$ (3).

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- ▶ $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x)) =$
 - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$ Coordinately the sum of th
 - * Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1).
- ▶ $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:
 - * $[H(s)]^{I} = [H(s)]^{I}_{\rho} = I(H)([s]^{I}_{\rho}) = I(H)(s_{0}) = T$ (2).
- En remplaçant (2) dans (1), on obtient : $T \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$, ce qui implique que $I(M)(s_0) = T$ (3).

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- ▶ $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
 - $\bigwedge_{v \in D_1} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$
 - * Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1).
- ▶ $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:
 - * $[H(s)]^I = [H(s)]^I_{\rho} = I(H)([s]^I_{\rho}) = I(H)(s_0) = T$ (2).
- En remplaçant (2) dans (1), on obtient : $T \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$, ce qui implique que $I(M)(s_0) = T$ (3).

- Démonstration :
 - Soit *I* une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^{I} = [M(s)]^{I}_{\rho} = I(M)([s]^{I}_{\rho}) = I(M)(s_{0}) = T$$
 (3).

- ▶ $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$
 - * Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1).
- ▶ $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:
 - * $[H(s)]^I = [H(s)]^I_{\rho} = I(H)([s]^I_{\rho}) = I(H)(s_0) = T$ (2).
- En remplaçant (2) dans (1), on obtient : $T \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$, ce qui implique que $I(M)(s_0) = T$ (3).

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - ▶ On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - * $[\forall x. H(x) \Rightarrow M(x)]^I = [\forall x. H(x) \Rightarrow M(x)]_{\rho}^I =$ $\textstyle \bigwedge_{v \in D_i} \llbracket H(x) \Rightarrow M(x) \rrbracket_{\rho[v/x]}^I = \bigwedge_{v \in D_i} (\llbracket H(x) \rrbracket_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} \llbracket M(x) \rrbracket_{\rho[v/x]}^I) =$ $\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket_{\rho[v/x]}^I) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket_{\rho[v/x]}^I)) =$
 - $\bigwedge_{v \in D_{\iota}} (I(H)(\rho[v/x](x))) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$ $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$
 - * Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1).
- $I \models \mathcal{H}_2$ signifie que $[H(s)]^I = T$:
 - $[H(s)]^{I} = [H(s)]^{I}_{0} = I(H)([s]^{I}_{0}) = I(H)(s_{0}) = T$ (2).
- En remplaçant (2) dans (1), on obtient : $T \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$, ce qui implique que $I(M)(s_0) = T$ (3).

Exercices

Interprétation

- $P(x) \equiv x$ a réussi son examen
- $Q(x, y) \equiv x$ a posé des questions à y
- Traduire en formules les énoncés suivants :
 - Quelqu'un a raté l'examen et n'a été questionné par personne.
 - Tous ceux qui ont réussi à l'examen ont posé des questions à quelqu'un.
 - Tous ceux qui ont réussi à l'examen ont été questionnés par quelqu'un.
 - Personne n'a posé de question à tous ceux qui ont réussi à l'examen.
 - Tous ceux qui ont posé des questions à quelqu'un, ont posé des questions à quelqu'un qui a réussi l'examen.

Exercices

Interprétation

- $P(x) \equiv x$ a réussi son examen
- $Q(x,y) \equiv x$ a posé des questions à y
- Soit l'interprétation I avec D_I = {Anatole, Boris, Catarina, Diana}. Dans cette interprétation, seuls Boris et Catarina ont réussi l'examen. Les garçons (Anatole et Boris) ont posé des questions aux filles (Catarina et Diana), Diana a posé des questions à Boris, Catarina à Diana et ce sont les seuls cas d'entraide.
 - Donner les définitions de I(P) et I(Q).
 - Donner la sémantique des formules précédentes dans cette interprétation.

Exercices

Validité

Démontrer la validité des formules suivantes :