Exercise 10.1

We will do three transformations to G to show that it has K_5 as a minor. This is the original graph:

1. Contract $\{a, d\}$

2. Contract $\{c, e\}$

3. Contract $\{f, e\}$

When we rearrange the nodes we can clearly see that it's a K_5 graph. Thus G is not planar.

Exercise 10.2

(a)

(b)

Exercise 10.3

(a)

(b)

Exercise 10.4

(a) We will analyze the statement $\phi = (((Y \land Z) \to X) \lor \neg (X \lor \neg Z))$ over $\{X, Y, Z\}$.

Satisfiability: Let $\mathcal{I} = \{X \mapsto 0, Y \mapsto 1, Z \mapsto 1\}$. We have $\mathcal{I} \models X$ and $\mathcal{I} \not\models Z$. From the definition of negation we have that $\mathcal{I} \models \neg Z$. Therefore, with the definition of disjuntion, we get $\mathcal{I} \not\models (X \vee \neg Z)$. With the definition of negation we have $\mathcal{I} \models \neg (X \vee \neg Z)$. With the definition of disjuntion we have $\mathcal{I} \models \psi \vee \neg (X \vee \neg Z)$ for all formulas ψ , in particular $\mathcal{I} \models (((Y \wedge Z) \to X) \vee \neg (X \vee \neg Z))$. Therefore ϕ is satisfiable.

Falsifiability: The statement ϕ is by the definition of disjuntion and negation false, iff both

 $((Y \land Z) \to X)$ and $\neg(X \lor \neg Z)$ are false. The formula $((Y \land Z) \to X)$ is only false, if $\mathcal{I} = \{X \mapsto 0, Y \mapsto 1, Z \mapsto 1\}$. But under this interpretation, the formula $\neg(X \lor \neg Z)$ is true. Therefore ϕ can never be false.

Validness The formula ϕ is valid, since it can never be false.

Unsatisfiability The formula is not unsatisfiable because it's satisfiable.

(b)
$$\phi = (A \land \neg A) \land (B \land \neg B)$$