Problem Set 8 Abstract Algebra I

Bennett Rennier barennier@gmail.com

January 15, 2018

Section 5.5

Let H and K be groups, let φ be a homomorphism from K into $\operatorname{Aut}(H)$ and, as usual, identify H and K as subgroups of $G = H \rtimes_{\varphi} K$.

Ex 1 Prove that $C_K(H) = \ker \varphi$ (recall that $C_K(H) = C_G(H) \cap K$).

Ex 4 Let p = 2 and check that the construction of the two non-abelian groups of order p^3 is valid in this case. Prove that both resulting groups are isomorphic to D_8 .

Ex 5 Let $G = \text{Hol}(\mathbb{Z}_2 \times \mathbb{Z}_2)$.

- a) Prove that $G = H \rtimes K$ where $H = \mathbb{Z}_2 \times \mathbb{Z}_2$ and $K \simeq S_3$. Deduce that |G| = 24.
- b) Prove that G is isomorphic to S_4 . [Obtain a homomorphism from G into S_4 by letting G act on the left cosets of K. Use Exercise 1 to show this representation is faithful.]

Ex 16 Show that there are exactly 4 distinct homomorphisms from \mathbb{Z}_2 into Aut(\mathbb{Z}_8). Prove that the resulting semidirect products are the groups: $\mathbb{Z}_8 \times \mathbb{Z}_2$, D_{16} , the quasidihedrel group QD_{16} and the modular group M.

Ex 22 Let F be a field and let n be a positive ineger and let G be the group of upper triangular matrices in $GL_n(F)$.

- a) Prove that G is the semidirect product $U \rtimes D$ where U is the set of upper triangular matrices with 1's down the diagonal and D is the set of diagonal matrices in $GL_n(F)$.
- b) Let n=2. Recall that $U \simeq F$ and $D \simeq F^{\times} \times F^{\times}$. Describe the homomorphism from D into $\operatorname{Aut}(U)$ explicitly in terms of these isomorphisms (i.e., show how each element of $F^{\times} \times F^{\times}$ acts as an automorphism on F).

Ex 25 Let $H(\mathbb{F}_p)$ be the Heisenberg group over the finite field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. Prove that $H(\mathbb{F}_2) \simeq D_8$.

Additional Problems

Ex A Let \mathbb{R} be the real numbers and let $\mathcal{C} = \mathbb{R}$ -Vect be the collection of all \mathbb{R} vector spaces. For \mathbb{R} -vector spaces V and W, let $\text{Hom}_{\mathcal{C}}(V, W)$ be all linear functions from V to W. Please show that \mathbb{R} -Vect is a category.

Ex B Let \mathbb{R} be the real numbers and let $\mathcal{C} = \mathbb{R}$ -fdVect be the collection of all finite dimensional \mathbb{R} -vector spaces. For finite dimensional \mathbb{R} -vector spaces V and W, let $\text{Hom}_{\mathcal{C}}(V, W)$ be all linear functions from V to W. Please show that \mathbb{R} -fdVect is a category.

Ex C Let (G, \cdot) be a finite group. Let \mathcal{C} have a single object, call it *, and let $\operatorname{Hom}_{\mathcal{C}}(*, *) = G$ with composition given by the binary operation of G. Prove that \mathcal{C} is a category.

Ex D Let (G, \cdot) be a finite group. Let \mathcal{C} be the collection of all subgroups of G. Given two subgroups of G, H_1 and H_2 , let

$$\operatorname{Hom}_{\mathcal{C}}(H_1, H_2) = \{ g \in G \mid gH_1g^{-1} \subseteq H_2 \}$$

where $gH_1g^{-1} = \{ghg^{-1} \mid h \in H_1\}$. Please show that \mathcal{C} is a category.

Ex E Let $X = \mathbb{R}$ = be the real plane. Let \mathcal{C} have as objects the points in X, and for $p_1, p_2 \in X$, let $\text{Hom}_{\mathcal{C}}(p_1, p_2)$ be the collection of all paths from p_1 to p_2 . For example, $\text{Hom}_{\mathcal{C}}(p_1, p_1)$ is the set of all loops which begin and end at the point p_1 (including the "do nothing" loop which never leaves the point p_1). Let composition be given by concatenation of paths. Prove that \mathcal{C} is a category.

Ex F Let \mathcal{T} be the collection of all topological spaces and if X, Y are topological spaces, then let $\operatorname{Hom}_{\mathcal{T}}(X, Y)$ be all continuous functions from X to Y. Please show that \mathcal{T} is a category.

Ex G Let Γ be a directed graph (in the mathematical sense of a collection of points and arrows between pairs of those points). Let \mathcal{C} be the collection of points in Γ . For points $x, y \in \Gamma$, let $\text{Hom}_{\mathcal{C}}(x, y) = \{\text{all directed paths which start at } x \text{ and end at } y\}$. Note that we include the "empty path" from x to x made up of no arrows at all. Please show that \mathcal{C} is a category. This is the graph theory version of Problem E.