Vorkurs Einführung in die Hochschulmathematik:

LOGISTIC MAP

JONATHAN BUSSE

Universität Duisburg Essen Github.com/JoKaBus/VEH2020

SITZUNG VOM 15. OKTOBER 2020

ORGANISATORISCHES

ORGANISATORISCHES

ZEITPLANUNG

ZEITPLANUNG

- 10:00 Begrüßung
- **10:05** Break-Out-Session Eine rekursive Folge
- 10:50 Kaffepause
- 11:00 Vorrechnen
- 11:20 Zusammenfassung und Schluss

ÜBUNGSAUFGABE

ÜBUNGSAUFGABE

VORRECHNEN

Sei $(x_n)_{n\in\mathbb{N}}$ definiert durch

$$X_{n+1} = X_n \cdot r \cdot (1 - X_n)$$

Sei $(x_n)_{n\in\mathbb{N}}$ definiert durch

$$X_{n+1} = X_n \cdot r \cdot (1 - X_n)$$

für ein $0 < x_0 < 1$ und $0 \le r \le 4$.

Sei $(x_n)_{n\in\mathbb{N}}$ definiert durch

$$X_{n+1} = X_n \cdot r \cdot (1 - X_n)$$

für ein $0 < x_0 < 1$ und $0 \le r \le 4$.

Ausprobieren: Stellt Vermutungen auf

Sei $(x_n)_{n\in\mathbb{N}}$ definiert durch

$$X_{n+1} = X_n \cdot r \cdot (1 - X_n)$$

für ein $0 < x_0 < 1$ und $0 \le r \le 4$.

Ausprobieren: Stellt Vermutungen auf

 Für welche x_o, r konvergiert die Folge und was können wir über den Grenzwert sagen?
das heißt, x_n nähert sich einem festen Wert an

Sei $(x_n)_{n\in\mathbb{N}}$ definiert durch

$$X_{n+1} = X_n \cdot r \cdot (1 - X_n)$$

für ein $0 < x_0 < 1$ und $0 \le r \le 4$.

Ausprobieren: Stellt Vermutungen auf

 Für welche x_o, r konvergiert die Folge und was können wir über den Grenzwert sagen?
das heißt, x_n nähert sich einem festen Wert an

Kein Beweis

Ihr müsst die Vermutungen nicht beweisen und könnte eure Ideen mit WolframAlpha, Taschenrechner, Google oder anderen Ressourcen testen.

ÜBUNGSAUFGABE

VISUALISIERUNG

THE LOGISTIC MAP

VIEL ERFOLG FÜR DEN STUDIENSTART!

