# Penugasan Logika Informatika

Tanggal 24 September 2025 Dosen Pengampu: Ikhwan Baidlowi Sumafta, S.Kom., M.Kom.

Nama: Mohamad Malik Fajar Baihaqi

NIM/Prodi/Kelas: 254311011 / TRPL / 1A

## A. <u>Proposisi Majemuk</u>

#### i. Latihan-1

Ubahlah pernyataan-pernyataan berikut menjadi ekspresi logika berupa proposisi majemuk:

1. Jika tikus itu waspada dan bergerak cepat, maka kucing atau anjing itu tidak mampu menangkapnya.

Jawab:

#### **Parse Tree:**

- [1] Jika tikus itu waspada dan bergerak cepat, maka kucing atau anjing itu tidak mampu menangkapnya.
  - [1.1] Jika tikus waspada dan bergerak cepat
    - [1.1.1] Tikus waspada

Dan

- [1.1.2] Tikus bergerak cepat
- [1.2] Maka kucing atau anjing itu tidak mampu menangkapnya
  - [1.2.1] Kucing tidak mampu menangkap tikus

Atau

[1.2.2] Anjing tidak mampu menangkap tikus



### **FPE(Fully Parenthesized Expresions):**

A = Tikus Waspada

B = Tikus Bergerak Cepat

C = Kucing bisa menangkap

D = Anjing bisa menangkap

$$(A \land B) \rightarrow ((\neg C) \lor (\neg D))$$

2. Andi membeli saham dan properti untuk investasinya, atau dia dapat menanamkan uang di deposito bank dan menerima bunga uang Jawab:

#### **Parse Tree:**

- [1] Andi membeli saham dan properti untuk investasinya, atau dia dapat menanamkan uang di deposito bank dan menerima bunga uang
  - [1.1] Andi membeli saham dan properti untuk investasinya
    - [1.1.1] Andi membeli saham

Dan

[1.1.2] Andi membeli property

Maka

[1.1.3] Investasi

- [1.2] Dia dapat menanamkan uang di deposito bank dan menerima bunga uang
  - [1.2.1] Andi menanamkan uang di deposito bank Dan
  - [1.2.2] Andi menerima bunga uang



## **FPE**(Fully Parenthesized Expresions):

A = Andi membeli saham

B = Andi membeli property

C = Andi Investasi

D = Andi menanam uang deposito

E = Andi menerima bunga uang

 $(A \land B) \rightarrow C) \lor (D \land E)$ 

#### ii. Latihan-2

Beri tanda kurung pada ekspresi berikut agar tidak ambigu.

- 1. A  $\wedge$  B  $\wedge$  C  $\rightarrow$  D
- 2. A  $\vee$  B  $\vee$  C  $\rightarrow \neg$ D
- 3.  $\neg A \land B \rightarrow \neg C \lor D$

#### Jawab:

- 1.  $(A \land B \land C) \rightarrow D \equiv$   $((A \land B) \land C) \rightarrow D \equiv$  $(A \land (B \land C)) \rightarrow D$
- 2.  $(A \lor B \lor C) \rightarrow (\neg D) \equiv$   $((A \lor B) \lor C) \rightarrow (\neg D) \equiv$  $(A \lor (B \lor C)) \rightarrow (\neg D)$
- 3.  $((\neg A) \land B) \rightarrow ((\neg C) \lor D)$

### iii. Latihan-3

Jika nilai A dan B adalah T, sedangkan C dan D adalah F, carilah nilai kebenaran dari ekspresi logika berikut:

- 1.  $A \wedge (B \vee C)$
- 2.  $((A \lor B) \land C) \lor \neg ((A \lor B) \land (B \lor D))$
- 3.  $(\neg(A \land B) \lor \neg C) \lor (((\neg A \land B) \lor \neg D) \land C)$

#### Variabel & Nilai Boolean:

A = True

B = True

C = False

D = False

#### Tabel Nilai Kebenaran:

1. A  $\wedge$  (B  $\vee$  C)

| A    | В    | С     | BVC  | A Λ (B V C) |
|------|------|-------|------|-------------|
| True | True | True  | True | True        |
| True | True | False | True | True        |

| True  | False | True  | True  | True  |
|-------|-------|-------|-------|-------|
| True  | False | False | False | False |
| False | True  | True  | True  | False |
| False | True  | False | True  | False |
| False | False | True  | True  | False |
| False | False | False | False | False |

Jadi Nilai Kebenaran dari Ekspresi Logika A  $\wedge$  (B  $\vee$  C) Jika:

A = True

B = True

C = False

D = False

 $A \wedge (B \vee C) = TRUE$ 

2.  $((A \lor B) \land C) \lor \neg((A \lor B) \land (B \lor D))$ 

| A | В | С | D | AVB | AVB | BVD | (AVB)A(BVD) | (AVB)AC | ¬((AVB)A(BVD)) | $((AVB) \land C) \lor \neg ((AVB) \land (BVD))$ |
|---|---|---|---|-----|-----|-----|-------------|---------|----------------|-------------------------------------------------|
| T | T | T | T | T   | T   | T   | T           | T       | F              | T                                               |
| T | T | T | F | T   | T   | T   | T           | T       | F              | T                                               |
| T | T | F | T | T   | T   | T   | T           | F       | F              | T                                               |
| T | T | F | F | T   | T   | T   | T           | F       | F              | T                                               |
| T | F | T | T | T   | T   | T   | T           | T       | F              | T                                               |
| T | F | T | F | T   | T   | F   | F           | T       | T              | T                                               |
| T | F | F | T | T   | T   | T   | T           | F       | F              | T                                               |
| T | F | F | F | T   | T   | F   | F           | F       | T              | T                                               |
| F | T | T | T | T   | T   | T   | T           | T       | F              | T                                               |
| F | T | T | F | T   | T   | T   | T           | T       | F              | T                                               |
| F | T | F | T | T   | T   | T   | T           | F       | F              | T                                               |
| F | T | F | F | T   | T   | T   | T           | F       | F              | T                                               |
| F | F | T | T | F   | F   | T   | F           | F       | T              | T                                               |
| F | F | T | F | F   | F   | F   | F           | F       | T              | T                                               |
| F | F | F | T | F   | F   | T   | F           | F       | T              | T                                               |
| F | F | F | F | F   | F   | F   | F           | F       | T              | T                                               |

Jadi Nilai Kebenaran dari Ekspresi Logika (( $\mathbf{A} \lor \mathbf{B}$ )  $\land$   $\mathbf{C}$ )  $\lor \neg ((\mathbf{A} \lor \mathbf{B}) \land (\mathbf{B} \lor \mathbf{D}))$  Jika:

A = True

B = True

C = False

D = False

 $((A \lor B) \land C) \lor \neg ((A \lor B) \land (B \lor D)) = \mathsf{TRUE}$ 

## 3. $(\neg(A \land B) \lor \neg C) \lor (((\neg A \land B) \lor \neg D) \land C)$

| A | В | С | D |
|---|---|---|---|
| T | T | T | T |
| T | T | T | F |
| T | T | F | T |
| T | T | F | F |
| T | F | T | T |
| T | F | T | F |
| T | F | F | T |
| T | F | F | F |
| F | T | T | T |
| F | T | T | F |
| F | T | F | T |
| F | T | F | F |
| F | F | T | T |
| F | F | T | F |
| F | F | F | T |
| F | F | F | F |

| AΛB | ¬(АЛВ) | ¬C | ¬А | ¬А∧В | ¬D | $(\neg A \land B) \lor \neg D$ | $\neg (A \land B) \lor \neg C$ | $((\neg A \land B) \lor \neg D) \land C$ | $\neg (A \land B) \lor \neg C) \lor (((\neg A \land B) \lor \neg D) \land C$ |
|-----|--------|----|----|------|----|--------------------------------|--------------------------------|------------------------------------------|------------------------------------------------------------------------------|
| T   | F      | F  | F  | F    | F  | F                              | F                              | F                                        | F                                                                            |
| T   | F      | F  | F  | F    | T  | T                              | F                              | T                                        | T                                                                            |
| T   | F      | T  | F  | F    | F  | F                              | T                              | F                                        | Т                                                                            |
| T   | F      | T  | F  | F    | T  | T                              | T                              | F                                        | T                                                                            |
| F   | T      | F  | F  | F    | F  | F                              | T                              | F                                        | T                                                                            |
| F   | T      | F  | F  | F    | T  | T                              | T                              | T                                        | T                                                                            |
| F   | T      | T  | F  | F    | F  | F                              | T                              | F                                        | T                                                                            |
| F   | T      | T  | F  | F    | T  | T                              | T                              | F                                        | T                                                                            |
| F   | T      | F  | T  | T    | F  | T                              | T                              | T                                        | T                                                                            |
| F   | T      | F  | T  | T    | T  | T                              | T                              | T                                        | T                                                                            |
| F   | T      | T  | T  | T    | F  | T                              | T                              | F                                        | T                                                                            |
| F   | T      | T  | T  | T    | T  | T                              | T                              | F                                        | T                                                                            |
| F   | T      | F  | T  | F    | F  | F                              | T                              | F                                        | T                                                                            |
| F   | T      | F  | T  | F    | T  | T                              | T                              | T                                        | T                                                                            |
| F   | T      | T  | T  | F    | F  | F                              | T                              | F                                        | T                                                                            |
| F   | T      | T  | T  | F    | T  | T                              | T                              | F                                        | T                                                                            |

Jadi Nilai Kebenaran dari Ekspresi Logika  $(\neg(A \land B) \lor \neg C) \lor (((\neg A \land B) \lor \neg D) \land C)$  Jika:

A = True

B = True

C = False

D = False

 $(\neg (A \land B) \lor \neg C) \lor (((\neg A \land B) \lor \neg D) \land C) = TRUE$ 

## B. Tautologi, Kontradiksi & Contingent

## iv. Latihan-4

1. Tentukan apakah ekspresi logika berikut ini termasuk Tautologi, Kontradiksi, atau Contingent:

$$\bullet \quad A \to (B \to A)$$

| A | В | $\mathrm{B} \rightarrow \mathrm{A}$ | $A \to (B \to A)$ |
|---|---|-------------------------------------|-------------------|
| T | T | T                                   | T                 |
| T | F | T                                   | T                 |
| F | T | F                                   | T                 |
| F | F | T                                   | T                 |

Jadi Ekspresi Logika  $A \to (B \to A)$  merupakan *Tautologi* karena Nilai kebenarannya Selalu TRUE Terlepas dari Nilai Proposisi penyusunnya.

• 
$$(A \land B) \land \neg B$$

| A | В | АлВ | ¬В | $(A \land B) \land \neg B$ |
|---|---|-----|----|----------------------------|
| T | T | T   | F  | F                          |
| T | F | F   | T  | F                          |
| F | T | F   | F  | F                          |
| F | F | F   | T  | F                          |

Jadi Ekspresi Logika (**A** ∧ **B**) ∧ ¬**B** merupakan *Kontradiksi* karena Nilai kebenarannya Selalu FALSE Terlepas dari Nilai Proposisi penyusunnya.

•  $(\neg \neg A \rightarrow A) \leftrightarrow ((A \rightarrow B) \land \neg B)$ 

|   |   | $(\neg \neg A \to A)$ |                             | ((. | $A \rightarrow I$ | B) ∧ ¬B)                         | $(\neg \neg \land \rightarrow \land) \hookrightarrow ((\land \rightarrow B) \land \neg B)$ |  |
|---|---|-----------------------|-----------------------------|-----|-------------------|----------------------------------|--------------------------------------------------------------------------------------------|--|
| A | В | $\neg \neg A$         | $\neg \neg A \rightarrow A$ | А→В | ¬В                | $(A \rightarrow B) \land \neg B$ | $(\neg \neg A \to A) \leftrightarrow ((A \to B) \land \neg B)$                             |  |
| T | T | T                     | T                           | T   | F                 | F                                | F                                                                                          |  |
| T | F | T                     | T                           | F   | T                 | F                                | F                                                                                          |  |
| F | T | F                     | T                           | T   | F                 | F                                | F                                                                                          |  |
| F | F | F                     | T                           | T   | T                 | T                                | T                                                                                          |  |

Jadi Ekspresi Logika ( $\neg \neg A \rightarrow A$ )  $\leftrightarrow$  (( $A \rightarrow B$ )  $\land \neg B$ ) merupakan *Contingent* karena Nilai kebenarannya bisa saja TRUE maupun FALSE bergantung pada Nilai Proposisi penyusunnya.

•  $(A \land (A \rightarrow B)) \rightarrow B$ 

| A | В | $A \rightarrow B$ | $A \land (A \rightarrow B)$ | $(A \land (A \to B)) \to B$ |
|---|---|-------------------|-----------------------------|-----------------------------|
| T | T | T                 | T                           | T                           |
| T | F | F                 | F                           | T                           |
| F | T | T                 | F                           | T                           |
| F | F | T                 | F                           | T                           |

Jadi Ekspresi Logika ( $\mathbf{A} \wedge (\mathbf{A} \to \mathbf{B})$ )  $\to \mathbf{B}$  merupakan Tautologi karena Nilai kebenarannya Selalu TRUE Terlepas dari Nilai Proposisi penyusunnya.

2. Jika (A ∨ ¬A) adalah Tautologi, buktikan bahwa ekspresi logika berikut ini adalah Tautologi:

•  $(A \rightarrow B) \lor \neg (A \rightarrow B)$ 

| A | В | $(A \rightarrow B)$ | $(A \rightarrow B)$ | $\neg(A \to B)$ | $(A \to B) \lor \neg (A \to B)$ |
|---|---|---------------------|---------------------|-----------------|---------------------------------|
| T | T | T                   | T                   | F               | T                               |
| T | F | F                   | F                   | T               | T                               |
| F | T | T                   | T                   | F               | T                               |
| F | F | T                   | T                   | F               | T                               |

Ekspresi  $(A \rightarrow B) \lor \neg (A \rightarrow B)$  merupakan *Tautologi*.

$$(A \to B) \lor \neg (A \to B) \equiv (A \lor \neg A)$$

 $\bullet \quad \neg A \ \lor \neg \neg A$ 

| A | ¬A | $\neg \neg A$ | ¬A V ¬¬A |
|---|----|---------------|----------|
| T | F  | T             | T        |
| F | T  | F             | T        |

Ekspresi  $\neg A \lor \neg \neg A$  merupakan *Tautologi*.  $\neg A \lor \neg \neg A \equiv (A \lor \neg A)$ 

•  $((A \land C) \lor B) \lor \neg((A \land C) \lor B)$ 

| A | В | С | ΑΛC | АлС | (AAC)VB | (AAC)VB) | $\neg((A \land C) \lor B)$ | $((A \land C) \lor B) \lor \neg ((A \land C) \lor B)$ |
|---|---|---|-----|-----|---------|----------|----------------------------|-------------------------------------------------------|
| T | T | T | T   | T   | T       | T        | F                          | T                                                     |
| T | T | F | F   | F   | T       | T        | F                          | T                                                     |
| T | F | T | T   | T   | T       | T        | F                          | T                                                     |
| T | F | F | F   | F   | F       | F        | T                          | T                                                     |
| F | T | T | F   | F   | T       | T        | F                          | T                                                     |
| F | T | F | F   | F   | T       | T        | F                          | T                                                     |
| F | F | T | F   | F   | F       | F        | T                          | T                                                     |
| F | F | F | F   | F   | F       | F        | T                          | T                                                     |

Ekspresi (( $\mathbf{A} \wedge \mathbf{C}$ )  $\vee \mathbf{B}$ )  $\vee \neg ((\mathbf{A} \wedge \mathbf{C}) \vee \mathbf{B})$  merupakan *Tautologi*. (( $\mathbf{A} \wedge \mathbf{C}$ )  $\vee \mathbf{B}$ )  $\vee \neg ((\mathbf{A} \wedge \mathbf{C}) \vee \mathbf{B}) \equiv (\mathbf{A} \vee \neg \mathbf{A})$