SIMPLE PRESENTATION FOR COMPETITION HUBMAP + HPA

UW-MADISON GITRACT IMAGE SEGMENTATION

MINGZIRUI WU

BOTAO JIANG

BASELINE COMPARISON

- UW-MADISON Similar Baseline
 - PyTorch + Segmentation models
- FastAl Baseline
 - PyTorch + FastAl
- MONAl Baseline
 - PyTorch + MONAI

UW-MADISON SIMILAR BASELINE

- Loss Function
 - Dice
 - Training Result: LovaszLoss May Better
- Network
 - UnetPlusPlus + EfficientNet-b0
 - UnetPlusPlus + EfficientNet-b1

UW-MADISON SIMILAR BASELINE

Result

HuBMAP: UNet Semantic Approach [Infer]

unet-eff1-diceloss/best_epoch-04 (1).bin (version 2/2) a day ago by KaggleJbt

Notebook HuBMAP: UNet Semantic Approach [Infer] | une diceloss/best_epoch-04 (1).bin

HuBMAP: UNet Semantic Approach [Infer]

unet-eff1-diceloss/best_epoch-04.bin (version 1/2)

a day ago by KaggleJbt

Notebook HuBMAP: UNet Semantic Approach [Infer] | une diceloss/best_epoch-04.bin

HuBMAP: UNet Semantic Approach [Infer]

(version 2/3)

2 days ago by cenxun

Unet++ Effb0 Epoch120

HuBMAP: UNet Semantic Approach [Infer]

BestEpoch (version 3/3)

7 minutes ago by cenxun

Succeeded 0.38

Try to add more augmentation method, but lower.

Succeeded

0.39

Notebook HuBMAP: UNet Semantic Approach [Infer] | BestEpoch

FASTAI BASELINE

- Loss Function
 - Lovász loss
 - Symmetric Lovász loss: consider not only a predicted segmentation and a provided mask but also the inverse prediction and the inverse

return 0.5*(lovasz_hinge(outputs, targets) + lovasz_hinge(-outputs, 1.0 - targets))

def symmetric_lovasz(outputs, targets):

- Network
 - UneXt50
 - Unet + ResNeXt50 (ResNet50 + Inception)

mask (predict mask for negative case).

UNEXT50

- FPN (Feature Pyramid Network):
 - These skip-connections provide a shortcut for gradient flow improving model performance and convergence speed
- ASPP (Atrous Spatial Pyramid Pooling)
 - The flaw of the traditional U-shape networks is resulted by a small receptive field.
 - Image Size 3000*3000, Confuse for model to see a little part of the image.
 - A way to increase the receptive field and enable interactions between different parts of the image is use of a block combining convolutions with different dilatations (Atrous convolutions with various rates in ASPP block).

FASTAI BASELINE

Result

FORK of [Inference] - FastAl Baseline (version 1/1)	Succeeded	0.56	
11 days ago by cenxun			
Notebook FORK of [Inference] - FastAl Baseline Version 1			
[Inference] - FastAl Baseline trial _1_fold_0 (version 2/2) 17 hours ago by KaggleJbt	Succeeded	0.53	
Notebook [Inference] - FastAl Baseline trial _1_fold_0			

- Complex Network Architecture
- Better performance But harder to understand...

MONAI BASELINE

- Loss Function
 - Dice
 - Training Result: LovaszLoss May Better
- Network
 - Unet

MONAI BASELINE

- Public Score: 0.48
- Advantage:
 - MONAl has more models than Segmentation models
 - Baseline Easy to undertand
 - More intuitive where optimization is possible

```
# TODO: add metric
def _init_model(self) -> nn.Module:
    # TODO: try other networks
    return monai.networks.nets.UNet(
        spatial_dims=2,
        in_channels=3,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
def _init_loss_fn(self):
    # TODO: try other losses
   return monai.losses.DiceLoss(sigmoid=True)
def configure_optimizers(self):
   # TODO: try other optimizers and schedulers
   return torch.optim.Adam(
        params=self.parameters(), lr=self.hparams.learning_rate, weight_decay=self.hparams.weight_decay
```

Thank you!