ESTRUTURA DE DADOS

Métodos de Ordenação

Profa. Dra. Jaqueline Brigladori Pugliesi

1

Algoritmo	Comparações		
Algoritmo	Melhor	Médio	Pior
Bubble	$O(n^2)$		
Selection	$O(n^2)$		
Insertion	O(n)	$O(n^2)$	
Merge	O(n log n)		
Quick	$O(n \log n)$ O		$O(n^2)$
Shell	$O(n^{1.25})$ ou $O(n (ln n)^2)$		

Profa. Dra. Jaqueline Brigladori Pugliesi

3

Impacto do aumento de velocidade em 10 vezes de uma máquina para outro

Complexidade de Tempo		Tamanho máximo de problema resolvível na máquina rápida
log₂n	X ₀	$(x_0)^{10}$
n	X ₁	10x ₁
n . log₂n	Х2	10x2 (p/ x2 grande)
n ²	X ₃	3,16x₃
n ³	X ₄	2,15x ₄
2 ⁿ	X ₅	$x_5 + 3,3$
3 ⁿ	X ₆	x ₆ + 2,096

Tabela 1.1.2 - Complexidade do algoritmo x Tamanho máximo de problema resolvível

Tamanhos limites de problemas resolvíveis por diferentes algoritmos (uma operação em lus)

Complexidade	Tamanho de problema executável em:			
de tempo	1 segundo	1 minuto	1 hora	
log₂n	2.10 ⁶	2^{610^7}	2 ^{3,6109}	
n	10 ⁶	6.10 ⁷	3,6 . 10 ⁹	
n . log₂n	62 746	2,8 . 10 ⁶	1,3 . 10 ⁸	
n²	10 ³	7,746 . 10 ³	60 000	
n³	10 ²	3,9 . 10 ²	1,5 . 10 ³	
2 ⁿ	20	25	32	
3 ⁿ	13	16	20	

Tabela 1.1.3 - Complexidade do algoritmo x Tempo de execução

5

Definição de Ordem

O(1) - tempo constante

O(log₂n) - ordem logarítmica

O(n) - ordem linear

O(n²) - ordem quadrática

O(n3) - ordem cúbica

O(2ⁿ) - ordem exponencial

