Задание 9.

Преобразование $A: V_3 \to V_3$ пространства V_3 — геометрических векторов представляет собой ортогональное проектирование на плоскость, содержащую векторы $\overline{i} + \overline{k}$ и \overline{j} . Для этого преобразования:

- а) найти собственные векторы и собственные значения;
- b) определить алгебраическую и геометрическую кратности собственных значений;
- с) указать одномерные и двумерные инвариантные подпространства.

Решение:

- а) Используем алгоритм нахождения собственных векторов и собственных значений линейного преобразования.
 - 1. Выбираем стандартный базис $\bar{i}, \bar{j}, \bar{k}$ пространства V_3 и составляем матрицу преобразования A.

Вектор \bar{j} принадлежит плоскости $A(\bar{j}) = 1 \cdot \bar{j}$.

Вектор $\bar{j} \perp \bar{i}, \bar{j} \perp \bar{k}, \bar{i} \perp (\bar{i} + \bar{k})$. Тогда $A(\bar{i}) = \frac{1}{2}(\bar{j} + \bar{k}), A(\bar{k}) = \frac{1}{2}(\bar{j} + \bar{k})$.

$$A = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}.$$

2. Найдем определитель

$$det(A - \lambda E) = \begin{vmatrix} \frac{1}{2} - \lambda & 0 & \frac{1}{2} \\ 0 & 1 - \lambda & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} - \lambda \end{vmatrix} = (0, 5 - \lambda)^{2} (1 - \lambda) - \frac{1}{4} (1 - \lambda) =$$

$$= -\lambda^3 + 2\lambda^2 - \lambda = -\lambda(\lambda - 1)^2.$$

3. $-\lambda(\lambda-1)^2=0$. Тогда уравнение имеет два корня $\lambda_1=0$, $\lambda_2=1$. Эти вещественные корни являются собственными значениями преобразования A.

Для корня $\lambda_1 = 0$ находим фундаментальную систему решений однородной системы $(A - \lambda_1 E)x = o$, следовательно, Ax = o:

$$(A|o) = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

Выражаем базисные переменные через свободные: $x_1 = -x_3$, $x_2 = 0$. Тогда $\phi_1 = (-1 \ 0 \ 1)^T$. Решению $\phi_1 = (-1 \ 0 \ 1)^T$ соответствует собственный вектор $\overline{s_1} = -\overline{i} + \overline{k}$. Все собственные векторы, соответствующие собственному значению $\lambda_1 = 0$ имеют вид $\overline{s} = (-\overline{i} + \overline{k})C_1$, где $C_1 \in R$, $C_1 \neq 0$. Все эти векторы \overline{s} перпендикулярны плоскости.

Для корня $\lambda_2 = 1$ находим фундаментальную систему решений однородной системы $(A - \lambda_2 E)x = o$, следовательно, (A - Ex) = o:

$$(A - E|o) = \begin{pmatrix} -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & -\frac{1}{2} & 0 \end{pmatrix} \sim (1 \quad 0 \quad -1 \mid 0).$$

Выражаем базисную переменную через свободную: $x_1 = x_3$. Тогда $\phi_2 = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}^T$, $\phi_3 = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^T$. Решению $\phi_2 = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}^T$ соответствует собственный вектор $\overline{s_1} = \overline{i} + \overline{k}$. Все собственные векторы, соответствующие собственному значению $\lambda_2 = 1$ имеют вид $\overline{s} = (\overline{i} + \overline{k})C_2$, где $C_2 \in R$, $C_2 \neq 0$. Решению $\phi_3 = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^T$ соответствует собственный вектор $\overline{s_1} = \overline{j}$. Все собственные векторы, соответствующие собственному значению $\lambda_3 = 1$ имеют вид $\overline{s} = \overline{j} \cdot C_3$, где $C_3 \in R$, $C_3 \neq 0$.

b) Характеристическое уравнение имеет вид $-\lambda(\lambda-1)^2=0$. Значит, алгебраическая кратность собственного значения $\lambda_1=0$ равна 1, так как этот

корень простой, а кратность $\lambda_2=1$ равна 2, так как этот корень двойной. Геометрическая кратность $\lambda_1=0$ равна 1, так как для этого корня был найден только 1 линейно независимый вектор $\overline{s_1}$. В этом случае размерность собственного подпространства $KerA(A-\lambda_1 E)=Lin(\overline{s_1})$ равна 1.

Для $\lambda_2=1$ был найден только один линейно независимый собственный вектор $\overline{s_2}$, поэтому $KerA(A-\lambda_2 E)=Lin(\overline{s_2})$. Значит, геометрическая кратность $\lambda_2=1$ равна 1.

с) Для любого линейного преобразования одномерными инвариантными подпространствами являются линейные оболочки каждого собственного вектора. Любой ненулевой вектор , перпендикулярный нашей плоскости одномерное инвариантное подпространство. Любой порождает принадлежащий нашей плоскости порождает также инвариантное подпространство. Тогда одномерные инвариантные пространства будут иметь вид $Lin(\overline{s_1}), Lin(\overline{s_2}), Lin(\overline{i}), Lin(\overline{s}),$ но $\overline{s_1}$ перпендикулярен нашей плоскости, поэтому $Lin(\overline{s}_1) \subset Lin(\overline{s})$, так как \overline{s} перпендикулярен нашей плоскости, любая плоскость П перпендикулярная или содержащая нашу плоскость является инвариантным подпространством. Если плоскость П образует острый угол с нашей плоскостью, то проекция некоторых векторов из П не будет принадлежать П. Тогда получим, что двумерные инвариантные подпространства имеют вид $Lin(\overline{s}, \overline{s_2})$, $Lin(\overline{j}, \overline{i} + \overline{k})$, $Lin(\overline{s}, \overline{i})$, где s — перпендикуляр к плоскости, \overline{i} , \overline{j} , \overline{k} — стандартный базис, $\overline{s_2} = \overline{i} + \overline{k}$.

Ответ: а) собственному значению $\lambda_1 = 0$ соответствуют собственные векторы $\overline{s} = \overline{s_1}C_1$, где $C_1 \in R$, $C_1 \neq 0$, $\overline{s_1} = (-\overline{i} + \overline{k})$. Собственному значению $\lambda_2 = 1$ соответствуют собственные векторы $\overline{s} = \overline{s_2}C_2$, где $C_2 \in R$, $C_2 \neq 0$,

 $\overline{s_2}=(\overline{i}+\overline{k})$. Собственному значению $\lambda_3=1$ соответствуют собственные векторы $\overline{s}=\overline{s_3}C_3$, где $C_3\in R$, $C_3\neq 0$, $\overline{s_3}=\overline{j}$.

b) собственное значение $\lambda_1=0$ имеет геометрическую кратность равную 1, а собственное значение $\lambda_2=1$ имеет алгебраическую кратность равную 2 и геометрическую кратность равную 1.