Manifold Learning and Sparse Representation: Assignment 5

ZHANG Yuan, 1601111332

Exercise 76.

Proof. Becasue Frobenius norm is unitary invariant, we have

$$L = \|\mathbf{X} - \mathbf{A}\|_F^2 = \|\mathbf{U}^T \mathbf{X} \mathbf{U} - \mathbf{\Lambda}\|_F^2$$

$$= \|\tilde{\mathbf{X}} - \mathbf{\Lambda}\|_F^2$$

$$= \sum_{i} (\tilde{x}_{ii} - \lambda_i)^2 + 2 \sum_{i < j} x_{ij}^2$$

$$\geq \sum_{i} (\tilde{x}_{ii} - \lambda_i)^2,$$

where $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathbf{T}}$ is the eigen-decomposition of \mathbf{A} and $\tilde{\mathbf{X}} \triangleq \mathbf{U}^{\mathbf{T}} \mathbf{X} \mathbf{U}$.

Since $dim\{\mathbf{a}|\mathbf{a^TXa}>0\}=rank(\mathbf{X})\leq r$, the number of non-zero diagonal elements (i.e. $\{x_ii\}$) of \mathbf{X} is less or equal than r. Besides, the fact that X is p.s.d. implies all the non-zero diagonal elements should be positive. Thus, the solution to min L is $\tilde{\mathbf{X}}=diag(\max(\lambda_1,0),\max(\lambda_r,0),0,...,0)$ so that $\mathbf{X}=\mathbf{U_r}\max(\mathbf{\Lambda_r},\mathbf{0})\mathbf{U_r^T}$.

Exercise 77.

The visualization of CMDS with k = 2 is shown as in Fig. 1. Square Euclidean distance that is widely used in many clustering scenarios is used in my settings.

Figure 1: 2-D embedding visualization w/ square Euclidean distance.

Exercise 93.

The first 12 faces of each person are used for training and another 5 faces for testing. The average recognition rate is 0.8103.