Họ và tên : Dương Minh Vương

MSV: 22022156

BÁO CÁO TUẦN 3+4

Mục Lục

I.Thiết kế mạch NAND	2
1.Đặc tả chức năng	2
2.Mô phỏng bằng ModelSim	2
3.Mô phỏng	3
4.Chay trên quartus	3
5.Kiểm thử trên bo mạch	3
II.Mux 4:1	5
1.Đặc tả chức năng	5
2.Mô phỏng trên ModelSim	7
3.Mô phỏng	7
4.Chạy trên Quartus	8
5.Kiểm thử trên bo mạch	8
III.Tri State Buffer	11
1.Đặc tả chức năng	11
2.Mô phỏng trên ModelSim	11
3.Mô phỏng	12
4.Chạy trên Quartus	13
5.Kiểm thử trên bo mạch	13
IV.Encoder 4:2	
1.Đặc tả chức năng	15
2.Mô phỏng trên Model Sim	
3.Mô phỏng	16
4.Chạy trên Quartus	16
5.Kiểm thử trên bo mạch	16
V. Decode 2:4	19
1.Đặc tả chức năng	19
2.Mô phỏng trên ModelSim	
3.Mô phỏng	20
4.Chạy trên Quartus	
5.Kiểm thử trên bo mạch	
VI.4 bit ripple carry full adder	23
1.Đặc tả chức năng	
2.Chạy trên ModelSim	
3.Mô phỏng	
4.Chạy trên Quartus	
5.Kiểm thử trên bo mạch	24

I.Thiết kế mạch NAND

1.Đặc tả chức năng

Inputs		Outputs
A	В	Z
0	0	1
0	1	1
1	0	1
1	1	0

$$Z = \overline{A.B}$$

2.Mô phỏng bằng ModelSim

nand.sv	nand tb.sv

```
timescale lns/lns
module nand gate (
      input a, b,
                                        module tb nand gate();
                                           reg tha, thb;
      output z
                                           wire z;
);
                                            nand gate test (
      assign z = \sim (a \& b);
                                               .a(tba),
                                               .b (tbb),
endmodule
                                               .z(z)
                                            initial begin
                                               tba = 0; tbb = 0; \pm 20;
                                               tba = 0; tbb = 1; #20;
                                               tba = 1; tbb = 0; #20;
                                               tba = 1; tbb = 1; #20;
                                               $finish;
                                            end
                                        endmodule
```

3.Mô phỏng

4.Chay trên quartus

5.Kiểm thử trên bo mạch

Trường họp	Ånh
------------	-----

a=0,b=0	
a=0,b=1	
a=1,b=0	

II.Mux 4:1 1.Đặc tả chức năng

Inputs		Outputs
S1	S0	F
0	0	10
0	1	I1
1	0	I2
1	1	I3

Bộ MUX 4-to-1 từ MUX 2-to-1 có chức năng chọn một trong bốn đầu vào dữ liệu (I0, I1, I2, I3) dựa trên hai tín hiệu chọn (S1, S0), và xuất đầu ra (F). Cụ thể:

MUX 4-to-1 sử dụng ba MUX 2-to-1 để chọn đầu vào:

+ Hai MUX 2-to-1 đầu tiên nhận cặp đầu vào (I0, I1) và (I2, I3) và dựa vào tín hiệu chọn thấp (S0) để chọn một trong hai đầu vào của mỗi cặp.

+ MUX 2-to-1 thứ ba nhận kết quả từ hai MUX trước và sử dụng tín hiệu chọn cao (S1) để quyết định đầu ra cuối cùng.

2.Mô phỏng trên ModelSim

```
module mux 2tol (
mux_2to1.sv
                        input wire IO, II,
                        input wire 5,
                        output wire F
                   );
                        assign F = S ? I1 : I0;
                   endmodule
                   module mux 4tol (
mux 4to1.sv
                       input wire IO, Il, I2, I3,
                       input wire S0, S1,
                       output wire F
                   );
                       wire Fl, F2;
                       mux_2tol muxl (.IO(IO), .II(II), .S(SO), .F(F1));
                       mux_2tol mux2 (.IO(I2), .II(I3), .S(S0), .F(F2));
                       mux_2tol mux3 (.IO(F1), .II(F2), .S(S1), .F(F));
                   endmodule
                   `timescale lns/lns
mux 4to1 tb.sv
                   module tb_mux_4tol();
                         reg IO, I1, I2, I3;
reg SO, S1;
                         wire F;
                         mux_4tol test (
                              .IO(IO),
                               .I1(I1),
                              .I2(I2),
                               .I3(I3),
                              .SO(SO),
                              .S1(S1),
                              .F(F)
                         ) ;
                         initial begin
                              IO = 0; I1 = 1; I2 = 0; I3 = 1;

SO = 0; S1 = 0; #20;

SO = 1; S1 = 0; #20;

SO = 0; S1 = 1; #20;
                              S0 = 1; S1 = 1; #20;
                              $finish;
                   endmodule
```

3.Mô phỏng

4.Chạy trên Quartus

5.Kiểm thử trên bo mạch

out F	Output	PIN_N15	5	B5_N0	PIN_M4	2.5 Vault)	12mAult) 2 (default)	
<u>⊩</u> 10	Input	PIN_J9	5	B5_N0	PIN_L6	2.5 Vault)	12mAult)	
<u>⊩</u> I1	Input	PIN_K14	5	B5_N0	PIN_L8	2.5 Vault)	12mAult)	
<u>⊩</u> 12	Input	PIN_J11	5	B5_N0	PIN_R11	2.5 Vault)	12mAult)	
⊩ 13	Input	PIN_J14	5	B5_N0	PIN_P15	2.5 Vault)	12mAult)	
<u></u> S0	Input	PIN_H11	6	B6_N0	PIN_N8	2.5 Vault)	12mAult)	
<u></u> S1	Input	PIN_J12	6	B6_N0	PIN_P7	2.5 Vault)	12mAult)	

Trường hợp	Ånh

S1S0=00,

I0=0,

I1=1,

I2=1,

I3=1

S1S0=01,

I0=1,

I1=0,

I2=1,

I3=1

S1S0=10,	4
I0=1,	
I1=1,	
I2=0,	O Line State
I3=1	
C1CO 11	

S1S0=11,

I0=1,

I1=1,

I2=1,

I3=0

III.Tri State Buffer 1.Đặc tả chức năng

Enable	Α	В
0	0	z
0	1	z
1	0	0
1	1	1

B= (Enable) ? A : 1'bz

Tri state buffer sẽ có 3 trạng thái đầu ra.

Khi chân Enable = 1 thì bộ đệm sẽ chuyển đầu vào A đến đầu ra B. Khi chân Enable = 0 thì bộ đêm sẽ chặn đầu vào và đầu ra mà nó kết nối và được coi

là tải điện trở kháng cao.

2.Mô phỏng trên ModelSim

<u> </u>	
tri_state_buffer	tri_state_buffer_tb

```
module tri state buffer (
                                       `timescale lns/lns
    input wire A,
    input wire Enable,
                                       module tb_tri_state_buffer;
    output wire B
                                           reg tA;
                                           reg tEnable;
    assign B = (Enable) ? A : 1'bz;
                                           wire tB;
endmodule
                                            tri_state_buffer uut (
                                                .A(tA),
                                                .Enable (tEnable),
                                               .B(tB)
                                            );
                                            initial begin
                                               tA = 0;
                                               tEnable = 0;
                                                #10;
                                                tA = 1;
                                                tEnable = 0;
                                                #10;
                                                tA = 0;
                                               tEnable = 1;
                                                #10;
                                                tA = 1;
                                                tEnable = 1;
                                                #10;
                                                $finish;
                                           end
                                       endmodule
```

3.Mô phỏng

4. Chạy trên Quartus

5.Kiểm thử trên bo mạch

Chân	Location	Loại
A	J9	Button
В	N15	LED
Enable	J12	Switch

IV.Encoder 4:2

1.Đặc tả chức năng

Chức năng: Encoder 4-to-2 có chức năng chuyển đổi 4 tín hiệu đầu vào (Y0, Y1, Y2, Y3) thành 2 tín hiệu đầu ra (A1, A0). Chỉ có một đầu vào được kích hoạt tại một thời điểm, và các đầu ra sẽ biểu diễn giá trị nhị phân tương ứng của đầu vào đó. Nó được sử dụng để giảm số lượng đường dây điều khiển hoặc dữ liệu bằng cách mã hóa nhiều đầu vào thành ít đầu ra hơn.

INPUTS			OUTPUTS		
Y3	Y2	Y1	YO	A1	A0
О	О	О	1	0	О
О	О	1	О	0	1
О	1	О	О	1	О
1	О	О	О	1	1

Từ bảng chân lí ta có

A1 = Y2 + Y3

A0 = Y1 + Y3

2.Mô phỏng trên Model Sim

1 4 0	1 4 2 1
encoder 4to2.sv	encoder 4to2 tb.sv

```
module encoder 4to2 (
                                                      timescale lns/lns
        input wire YO, Y1, Y2,
                                                     module encoder_4to2_tb ();
                                                          reg y0_tb, y1_tb, y2_tb, y3_tb;
wire A0_tb, A1_tb;
        output wire Al, A0
);
                                                          encoder_4to2 DUT (
                                                              .Y0 (y0_tb),
        assign Al = Y2 | Y3;
                                                               .Yl(yl_tb),
        assign A0 = Y1 | Y3;
                                                               .Y2 (y2_tb),
                                                               .Y3 (y3 tb),
                                                               .A0 (A0_tb),
.A1 (A1_tb)
endmodule
                                                          initial begin
                                                               y0_tb = 0; y1_tb = 0; y2_tb = 0; y3_tb = 0;
                                                               #20 y0_tb = 1; y1_tb = 0; y2_tb = 0; y3_tb = 0;
                                                               #20 y0_tb = 0; y1_tb = 1; y2_tb = 0; y3_tb = 0;

#20 y0_tb = 0; y1_tb = 1; y2_tb = 0; y3_tb = 0;

#20 y0_tb = 0; y1_tb = 0; y2_tb = 1; y3_tb = 0;

#20 y0_tb = 0; y1_tb = 0; y2_tb = 0; y3_tb = 1;
                                                               Sfinish;
                                                          end
                                                     endmodule
```

3.Mô phỏng

4.Chạy trên Quartus

5.Kiểm thử trên bo mạch

Y0=0,	
Y1=1,	
Y2=0,	
Y3=0	
	haining 12.1
	O Language and O U See See See See See See See See See S
	The second secon
	1000 1000 1000 1000 1000 1000 1000 100
Y0=0,	
Y1=0,	
Y2=1,	
Y3=0	
	Training V2.1 O separation to the O
	0 18 19 19 19 0 0 18 19 19 19 19 19 19 19 19 19 19 19 19 19
	THE SECOND SECON
	The state of the s
	The state of the s

V. Decode 2:4 1.Đặc tả chức năng

Chức năng : Bộ giải mã 2-to-4 (2x4 Decoder) có chức năng chuyển đổi 2 tín hiệu đầu vào (A, B) thành 4 tín hiệu đầu ra (D0, D1, D2, D3). Ứng với mỗi tổ hợp nhị phân của A và B, một trong bốn đầu ra sẽ được kích hoạt (bật 1), trong khi các đầu ra khác sẽ ở trạng thái 0. Bộ giải mã này thường được dùng trong các ứng dụng điều khiển đa đường hoặc chọn dữ liệu.

Inputs		Outputs			
A	В	D0	D1	D2	D3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0

1	1 1	Ι Λ	1 0	Λ	1 1
		l ()	l (<i>)</i>	l (<i>)</i>	
-	1	O .	•	O .	-

2.Mô phỏng trên ModelSim

```
decoder 2to4.sv
                                  decoder 4to2 tb.sv
module decoder 2to4 (
                                   'timescale lns/lns
    input wire A, B,
                                  module decoder 2to4 tb ();
    output wire DO, D1, D2, D3
                                      reg A tb, B tb;
);
                                      wire DO_tb, D1_tb, D2_tb, D3_tb;
    assign D0 = ~A & ~B;
                                      decoder_2to4 DUT (
    assign D1 = ~A & B;
                                           .A(A_tb),
    assign D2 = A & ~B;
                                           .B(B_tb),
    assign D3 = A & B;
                                           .DO (DO tb),
                                           .D1 (D1_tb),
                                           .D2 (D2_tb),
endmodule
                                           .D3 (D3_tb)
                                      );
                                       initial begin
                                          A_{tb} = 0; B_{tb} = 0;
                                           #20 A tb = 0; B tb = 1;
                                           #20 A_tb = 1; B_tb = 0;
                                           #20 A tb = 1; B tb = 1;
                                           #20;
                                           Sfinish;
                                       end
                                   endmodule
```

3.Mô phỏng

4. Chạy trên Quartus

5.Kiểm thử trên bo mạch

VI.4 bit ripple carry full adder

1.Đặc tả chức năng

Bộ cộng đầy đủ 1 bit

Bảng chân lí:

Inputs			Outputs		
Α	В	C_in	SUM	C_out	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

Từ bộ cộng đầy đủ 1 bit ta xây dựng được bộ cộng đầy đủ 4 bit

- Đây là một mạch dùng để cộng hai số nhị phân 4-bit (A4, A3, A2, A1 và B4, B3, B2, B1) cùng với bit nhớ vào (Cin) và sinh ra kết quả tổng (S4, S3, S2, S1) cùng với bit nhớ ra cuối cùng (Cout hoặc C4).
- -Bộ cộng toàn phần (Full Adder FA): Mỗi khối FA là một bộ cộng toàn phần, có nhiệm vụ cộng hai bit đầu vào tương ứng (A[i], B[i]) và bit nhớ từ khối FA trước đó.
- Hoạt động của ripple carry:
- +Bit nhớ (Cout) từ FA đầu tiên (FA1) được truyền sang FA tiếp theo (FA2), sau đó tiếp tục truyền đến FA3 và FA4.
- +Quá trình này tiếp diễn từ bit có trọng số thấp nhất (LSB A1, B1) đến bit có trọng số cao nhất (MSB A4, B4).

2.Chay trên ModelSim

```
module full_adder (
full_adder.sv
                             input wire A, B, Cin,
                             output wire Sum, Cout
                        );
                             assign Sum = A ^ B ^ Cin;
                             assign Cout = (A & B) | (B & Cin) | (A & Cin);
                        endmodule
                        module ripple_carry_adder_4bit (
full_adder_4bit.sv
                            input wire [3:0] A, B,
                            input wire Cin,
                            output wire [3:0] Sum,
                            output wire Cout
                        );
                            wire Cl, C2, C3;
                            full_adder FA1 (
                                .A(A[0]), .B(B[0]), .Cin(Cin),
                                .Sum(Sum[0]), .Cout(C1)
                            full_adder FA2 (
                                .A(A[1]), .B(B[1]), .Cin(C1),
                                .Sum(Sum[1]), .Cout(C2)
                            full_adder FA3 (
                                .A(A[2]), .B(B[2]), .Cin(C2),
                                .Sum(Sum[2]), .Cout(C3)
                            full_adder FA4 (
                                .A(A[3]), .B(B[3]), .Cin(C3),
                                .Sum(Sum[3]), .Cout(Cout)
                            );
                        endmodule
```

```
`timescale lns/lns
full_adder_4bit_tb.sv
                      module tb_ripple_carry_adder_4bit ();
                          reg [3:0] A_tb, B_tb;
                          reg Cin_tb;
                          wire [3:0] Sum tb;
                          wire Cout tb;
                          ripple carry adder 4bit DUT (
                              .A (A_tb),
                              .B(B_tb),
                              .Cin(Cin tb),
                              .Sum (Sum tb),
                              .Cout (Cout_tb)
                          );
                          initial begin
                              A_tb = 4'b0001; B_tb = 4'b0010; Cin_tb = 0;
                              #20;
                              A_tb = 4'b0101; B_tb = 4'b0011; Cin_tb = 0;
                              #20;
                              A_tb = 4'bllll; B_tb = 4'bllll; Cin_tb = 1;
                              #20;
                              $finish;
                          end
                      endmodule
```

3.Mô phỏng

4. Chạy trên Quartus

