Глава 1: Геометрия пространств со скалярным произведением.

Определение 1 (Метрическое простривство). *Метрика* $\rho(x,y): M^2 \to \mathbb{R}$

- 1) $\forall x, y \rho(x, y) \ge -(\rho(x, y) = 0 \Leftrightarrow x = y)$
- 2) $\forall x, y \in M \rho(x, y) = \rho(y, x)$
- 3) $\forall x, y, z \rho(x, z) \le \rho(x, y) + \rho(y, z)$

$$B_{\varepsilon}(x) = \{ y \in M | \rho(x, y) < \varepsilon \}$$

Определение 2. *Множество открытое, если любая точка в нем содержится в нем вместе некоторой окрестностью.*

$$\rho(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$

Дискретная метрика:

$$X = \{x \in M\}$$

$$B_{\varepsilon}(x) = \{y | \rho(x, y) < \frac{1}{2}\}$$

1. Линейно (векторное) пространство

Определение 3. Непустое множество элементов L произвольной природы, называется линейным (векторным) над полем чисел $\mathbb{R}(\mathbb{C})$ если

- 1) $\forall x, y$ введена операция сложения
 - 1.1) x + y = y + x
 - 1.2) x + (y + z) = (x + y) + z
 - 1.3) В L существует элемент называемым нулем $0: x + 0 = x \ \forall x \in L$
- 1.4) $\forall x \in L$ существует противоположный элемент принадлежащий L: x+y=0
- 2) $\forall x \in L \ u \ \forall \ числа \ \alpha \in \mathbb{R}(\mathbb{C})$ определен вектор из L произведения элементов на число $\alpha \quad \alpha x \in L$
 - 1.1) $\alpha(\beta x) = (\alpha \beta) x \ \forall \alpha \beta$
 - 1.2) $1 \cdot x = x$
 - 1.3) $\alpha(x+y) = \alpha x + \alpha y$
 - 1.4) $\alpha(x+y) = \alpha x + \alpha y$

$$f:X o Y$$
 $g:X o Y$ $lpha f+g:X o Y$ $(lpha f+g)(x)=lpha f(x)+g(x)$ поточечная сумма

Примеры:

1)

$$\mathbb{C}^n \quad + \frac{\alpha(x_1, x_2, \dots, x_n)}{\beta(y_1, y_2, \dots, y_n)} = (\alpha x_1 + \beta y_1, \dots \alpha x_n + \beta y_n)$$

- 2) $C[a,b]=\{f(a,b)\to\mathbb{C},$ непрерывная функции f непрерывна
- 3) $L_p(x)=\{f$ измерима по Лебегу,а заданная на $X,f:X\to\mathbb{C}$ таких, что

$$\int_{X} |f(x)| dx < \infty$$

4)
$$l_2 - x = \{x_1, \dots, x_n\}$$
 $\sum_{1}^{\infty} |x_n|^2 < \infty$

Определение 4. x_1, \ldots, x_n называется линейно зависимыми, если $\exists \alpha_1, \ldots, \alpha_n$ не все равные нулю, такие что $\alpha_1 x_1 + \cdots + \alpha_n x_n = 0$

В противном случае: из того, что $\alpha_1 x_1 + \dots + \alpha_n x_n = 0$ следует, что все $\alpha_i = 0$ x_1, \dots, x_n называется линейно независимыми наборами векторов

Определение 5. Бесконечный набор элементов L называется линейно независимым, если любой его конечный поднабор линейно независимым

Определение 6. Если в L можно найти n линейно независимых векторов, а любой набор из n+1 векторов является линейно зависимыми, то $\dim L=n$. Если в L можно указать n набор из произволльного числа линейно независимых элементов, то $\dim L=\infty$.

Определение 7. Непустое подмножество $S \subset L$ называется подпространством, если оно само является пространством введенных в L линейно операций

Определение 8. Линейной оболочкой < M > называется совокупность всех линейных комбинаций $\alpha x + \beta y$ где $x, y \in M \subset \alpha, \beta \in \mathbb{C}(\mathbb{R})$

 $<\!\!M\!\!>$ - подпространство в L (натянутое или порожденное множеством элементов M)

Определение 9. Норма в линейном пространстве $L: ||||: L \to \mathbb{R}^+ = [0, \infty)$

 $\forall x, y \in L \quad \forall \alpha \in \mathbb{C}(\mathbb{R})$

- 1) $||x|| \ge 0$ $||x|| = 0 \Leftrightarrow x = 0$
- 2) $||\alpha x|| = |\alpha|||x||$
- 3) $||x+y|| \le ||x|+||y||$

В конечномерном пространствах все нормы эквиваленты $c_1||||_1 \le ||x||_2 \le c_2||x||_1$. В конечномерных пространствах это не так!

Пример норм $2 ||f|| = \max_{t \in [a,b]} |f(t)|$ - норма в C[a,b] равномерная норма

$$3 \quad ||f||_{L_{1}} = \int_{X} |f| dx \text{ B } L_{1}$$

$$||f||_{L_{p}} = \sqrt[p]{\int_{X} |f|^{p} dx} \text{B} L_{p}$$

$$4 \quad ||x||_{l_{2}} = \sqrt{\sum_{i=1}^{\infty} |x_{i}|^{2}}$$

Определение 10. Последовательность $(x_n)_{n\in\mathbb{N}}$ точек линейно нормированное пространстов L сходятся κ x, если $||x_n-x||\xrightarrow{n\to\infty} 0 \forall \varepsilon>0 \exists n_0 n>n_0 ||x_n-x||<\varepsilon$

Определение 11. Предельной точкой $M \subset L$ называется точка x, если существует сходящиеся κ x последовательность элементов из $n \exists x_n \in Mx_n \to x$

Определение 12. Замыканием \overline{M} - объединение M u его предельных точек.

Определение 13. Замкнутое множество, если содержит все предельные точки.

Определение 14. Множество M в L - линейно нормированном пространстве называется плотностью в L, если $\overline{M}=L$

Определение 15. M_1, M_2 подмножества в L M_1 плотность в M_2 , если

$$\underbrace{M_2}_{(R\setminus Q)}\subset \underbrace{\overline{M_1}}_R \quad M_1=Q$$

Определение 16. Сепарабельное множество, если в нем \exists счетное плотное подмножество