Matematică M_mate-info

Varianta 6

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că numărul $n = (3 i\sqrt{2})(3 + i\sqrt{2})$ este întreg, unde $i^2 = -1$.
- **5p 2.** Determinați numărul real a, știind că punctul A(a,3) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + a.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $2019^x + 2019^{-x} = 2$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă cifra unităților impară.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(3,-3) și B(2,-2). Determinați ecuația dreptei d care trece prin A și este perpendiculară pe AB.
- **5p** | **6.** Arătați că $\sin(a-b)\sin(a+b) = (\sin a \sin b)(\sin a + \sin b)$, pentru orice numere reale a și b.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(a) = \begin{pmatrix} a & 0 & -a \\ 0 & 2 & 0 \\ -a & 0 & a \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(a)) = 0$, pentru orice număr real a.
- **5p b**) Demonstrați că A(a)A(b) = 2A(ab), pentru orice numere reale a și b.
- **5p** c) Demonstrați că matricea $B = A(\log_2 3) \cdot A(\log_3 4) \cdot A(\log_4 5) \cdot ... \cdot A(\log_{15} 16)$ are toate elementele numere întregi.
 - **2.** Se consideră polinomul $f = X^3 + X^2 + mX + n$, unde m și n sunt numere reale.
- **5p** a) Arătați că f(-1)-2f(0)+f(1)=2, pentru orice numere reale m și n.
- **5p b**) Determinați numerele reale m și n, știind că polinomul f este divizibil cu polinomul $X^2 1$.
- **5p** c) Demonstrați că $3(x_1x_2 + x_1x_3 + x_2x_3 + x_1x_2x_3) (x_1^3 + x_2^3 + x_3^3) = 1$, pentru orice numere reale m și n, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 e^{-x}$.
- **5p** a) Arătați că $f'(x) = x(2-x)e^{-x}$, $x \in \mathbb{R}$.
- **5p b**) Determinați intervalele de monotonie a funcției f.
- **5p** c) Demonstrați că, pentru orice $a \in (0, 4e^{-2})$, ecuația f(x) = a are exact trei soluții reale.
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x^2 + \ln x$.
- **5p** a) Arătați că $\int_{1}^{2} (f(x) \ln x) dx = \frac{7}{3}$.
- **5p b)** Demonstrați că suprafața plană delimitată de graficul funcției $g:(0,+\infty) \to \mathbb{R}$ $g(x) = 2x x^2 + f(x)$, axa Ox și dreptele de ecuații x = 1 și x = e are aria egală cu e^2 .
- **5p** c) Demonstrați că $\lim_{n \to +\infty} \int_{e^{-1}}^{1} x^n (f(x) x^2) dx = 0$.

Matematică M_mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 6

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$n=3^2-\left(i\sqrt{2}\right)^2=$	2p
	$=9-2i^2=11\in\mathbb{Z}$	3 p
2.	$f(a) = 3 \Rightarrow 2a + a = 3$	3p
	a=1	2 p
3.	$2019^{x} + 2019^{-x} - 2 = 0 \Leftrightarrow (2019^{x} - 1)^{2} = 0$	3p
	$2019^x = 1$, deci $x = 0$	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Mulțimea numerelor naturale de două cifre care au cifra unităților impară are 45 de elemente, deci sunt 45 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{45}{90} = \frac{1}{2}$	1p
5.	$m_{AB} = -1 \Rightarrow m_d = 1$	2p
	Ecuația dreptei d este $y - y_A = m_d(x - x_A)$, deci $y = x - 6$	3 p
6.	$\sin(a-b)\sin(a+b) = \sin^2 a \cdot \cos^2 b - \sin^2 b \cdot \cos^2 a =$	2p
	$= \sin^2 a (1 - \sin^2 b) - \sin^2 b (1 - \sin^2 a) = \sin^2 a - \sin^2 b = (\sin a - \sin b) (\sin a + \sin b), \text{ pentru}$	3 p
	orice numere reale a și b	

1.a)	$\begin{vmatrix} a & 0 & -a \end{vmatrix}$	
	$\det(A(a)) = \begin{vmatrix} a & 0 & -a \\ 0 & 2 & 0 \\ -a & 0 & a \end{vmatrix} =$	2 p
	$=2a^{2}+0+0-2a^{2}-0-0=0$, pentru orice număr real <i>a</i>	3 p
b)	$\begin{vmatrix} A(a)A(b) = \begin{vmatrix} 0 & 4 & 0 \\ -2ab & 0 & 2ab \end{vmatrix} =$	3 p
	$= 2 \begin{pmatrix} ab & 0 & -ab \\ 0 & 2 & 0 \\ -ab & 0 & ab \end{pmatrix} = 2A(ab), \text{ pentru orice numere reale } a \text{ și } b$	2 p
c)	$B = 2^{13} A (\log_2 3 \cdot \log_3 4 \cdot \log_4 5 \cdot \dots \cdot \log_{15} 16) = 2^{13} A (\log_2 16) =$	3 p
	$=2^{13}A(4)$, care are toate elementele numere întregi	2p

2.a)	$f(-1) = -m + n, \ f(0) = n$	2p
	$f(1) = 2 + m + n \Rightarrow f(-1) - 2f(0) + f(1) = -m + n - 2n + 2 + m + n = 2$, pentru orice	3p
	numere reale m și n	
b)	f este divizibil cu $X^2 - 1 \Leftrightarrow f(-1) = 0$ și $f(1) = 0$	3 p
	m = -1, n = -1	2p
c)	$x_1 + x_2 + x_3 = -1$, $x_1x_2 + x_1x_3 + x_2x_3 = m$, $x_1x_2x_3 = -n$, $x_1^3 + x_2^3 + x_3^3 = -1 + 3m - 3n$	3 p
	$3(x_1x_2 + x_1x_3 + x_2x_3 + x_1x_2x_3) - (x_1^3 + x_2^3 + x_3^3) = 3(m-n) - (-1 + 3m - 3n) = 1$	2p

		/
1.a)	$f'(x) = 2xe^{-x} - x^2e^{-x} =$	3 p
	$= (2x - x^2)e^{-x} = x(2 - x)e^{-x}, x \in \mathbb{R}$	2p
b)	$f'(x) = 0 \Leftrightarrow x = 0 \text{ sau } x = 2$	2p
	$f'(x) \le 0$, pentru orice $x \in (-\infty, 0]$, deci f este descrescătoare pe $(-\infty, 0]$, $f'(x) \ge 0$	
	pentru orice $x \in [0,2]$, deci f este crescătoare pe $[0,2]$ și $f'(x) \le 0$, pentru orice	3 p
	$x \in [2, +\infty)$, deci f este descrescătoare pe $[2, +\infty)$	
c)	$f(0) = 0 < a, f(2) = 4e^{-2} > a $ și $\lim_{x \to +\infty} f(x) = 0 < a, $ pentru orice $a \in (0, 4e^{-2})$	3p
	Cum $\lim_{x\to-\infty} f(x) = +\infty$, f este continuă pe \mathbb{R} și f este strict monotonă pe $(-\infty,0)$, pe	2p
	$(0,2)$ și pe $(2,+\infty)$, ecuația $f(x)=a$ are exact trei soluții reale	- F
2.a)	$\int_{1}^{2} (f(x) - \ln x) dx = \int_{1}^{2} x^{2} dx = \frac{x^{3}}{3} \Big _{1}^{2} =$	3 p
	$=\frac{8}{3}-\frac{1}{3}=\frac{7}{3}$	2p
b)	$g(x) = 2x + \ln x \Rightarrow \mathcal{A} = \int_{1}^{e} g(x) dx = \int_{1}^{e} (2x + \ln x) dx = x^{2} \Big _{1}^{e} + x \ln x \Big _{1}^{e} - \int_{1}^{e} x \cdot \frac{1}{x} dx =$	3 p
	$=e^2-1+e-0-(e-1)=e^2$	2 p
c)	$\int_{e^{-1}}^{1} x^{n} (f(x) - x^{2}) dx = \int_{e^{-1}}^{1} x^{n} \ln x dx = \left(\frac{x^{n+1}}{n+1} \ln x - \frac{x^{n+1}}{(n+1)^{2}} \right) \Big _{e^{-1}}^{1} = \frac{1}{(n+1)e^{n+1}} - \frac{1}{(n+1)^{2}} + \frac{1}{(n+1)^{2}e^{n+1}} = \frac{1}{(n+1)e^{n+1}} - \frac{1}{(n+1)e^{n+1}} = \frac{1}{(n+1)e^{n+1}} = \frac{1}{(n+1)e^{n+1}} - \frac{1}{(n+1)e^{n+1}} = \frac{1}{(n+1)e^{n+1}} = \frac{1}{(n+1)e^{n+1}} - \frac{1}{(n+1)e^{n+1}} = \frac{1}{(n+1)e^{n+1}$	3p
	$\lim_{n \to +\infty} \int_{e^{-1}}^{1} x^{n} (f(x) - x^{2}) dx = \lim_{n \to +\infty} \left(\frac{1}{(n+1)e^{n+1}} - \frac{1}{(n+1)^{2}} + \frac{1}{(n+1)^{2} e^{n+1}} \right) = 0$	2p

Examenul de bacalaureat național 2019 Proba E. c) Matematică *M_st-nat*

Varianta 6

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați termenul b_3 al progresiei geometrice $(b_n)_{n\geq 1}$, știind că $b_1=1$ și rația q=5.
- **5p 2.** Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 x + 1$ și $g: \mathbb{R} \to \mathbb{R}$, g(x) = 4x 5. Determinați abscisele punctelor de intersecție a graficelor celor două funcții.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt{2x} + x = 4$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{\sqrt{1}, \sqrt{2}, \sqrt{3}, ..., \sqrt{49}\}$, acesta să fie număr natural.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,3), B(-3,0) și C(-3,6). Determinați ecuația medianei din A a triunghiului ABC.
- **5p** | **6.** Arătați că $\sin x(3\sin x \cos x) + \cos x(\sin x + 3\cos x) = 3$, pentru orice număr real x.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(a) = \begin{pmatrix} a & 4 \\ -4 & a \end{pmatrix}$, unde a este număr real.
- **5p** | **a**) Arătați că $\det(A(-1)) = 17$.
- **5p b**) Demonstrați că A(2019-a) + A(2019+a) = 2A(2019), pentru orice număr real a.
- **5p** c) Determinați perechile de numere reale x și y, pentru care A(x)A(y) = 2A(-8).
 - **2.** Pe mulțimea G = (-2, 2) se definește legea de compoziție $x * y = \frac{4x + 4y}{4 + xy}$.
- **5p** a) Arătați că 0 este elementul neutru al legii de compoziție "*".
- **5p b)** Determinați $x \in G$, pentru care $x * x = \frac{8}{5}$.
- **5p** c) Se consideră funcția $f:(0,+\infty) \to G$, $f(x) = \frac{2(x-1)}{x+1}$. Demonstrați că f(xy) = f(x) * f(y), pentru orice $x, y \in (0,+\infty)$.

- **1.** Se consideră funcția $f:(-1,+\infty)\to\mathbb{R}$, $f(x)=1-2x+2\ln(x+1)$.
- **5p** a) Arătați că $f'(x) = \frac{-2x}{x+1}$, $x \in (-1, +\infty)$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p** c) Demonstrați că $\ln(1+\cos x) \le \cos x$, pentru orice $x \in (0,\pi)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x+3}{e^x}$.
- **5p** a) Arătați că $\int_{-1}^{1} f(x)e^{x} dx = 6$.
- **5p b**) Demonstrați că orice primitivă a funcției f este crescătoare pe intervalul $[-3,+\infty)$.
- **5p** c) Determinați numărul natural nenul n, știind că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 0 și x = n are aria egală cu $4 6e^{-n}$.

Examenul de bacalaureat național 2019 Proba E. c) Matematică *M_st-nat* BAREM DE EVALUARE ȘI DE NOTARE

Varianta 6

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$b_3 = b_1 \cdot q^2 =$	3p
	$=1 \cdot 5^2 = 25$	2p
2.	$f(x) = g(x) \Leftrightarrow x^2 - x + 1 = 4x - 5 \Leftrightarrow x^2 - 5x + 6 = 0$	2p
	x = 2, x = 3	3 p
3.	$\sqrt{2x} = 4 - x \Rightarrow 2x = 16 - 8x + x^2 \Rightarrow x^2 - 10x + 16 = 0$	3 p
	x = 2, care convine, $x = 8$, care nu convine	2p
4.	Mulțimea A are 49 de elemente, deci sunt 49 de cazuri posibile	2p
	În mulțimea A sunt 7 numere naturale, deci sunt 7 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{7}{49} = \frac{1}{7}$	1p
5.	Punctul $M(-3,3)$ este mijlocul laturii BC	2p
	Ecuația medianei din A este $y = 3$	3 p
6.	$\sin x(3\sin x - \cos x) + \cos x(\sin x + 3\cos x) = 3\sin^2 x - \sin x \cos x + \cos x \sin x + 3\cos^2 x =$	2p
	$=3(\sin^2 x + \cos^2 x) = 3$, pentru orice număr real x	3p

1.a)	$A(-1) = \begin{pmatrix} -1 & 4 \\ -4 & -1 \end{pmatrix} \Rightarrow \det(A(-1)) = \begin{vmatrix} -1 & 4 \\ -4 & -1 \end{vmatrix} = (-1) \cdot (-1) - (-4) \cdot 4 =$	3p
	=1+16=17	2p
b)	$A(2019-a) + A(2019+a) = \begin{pmatrix} 2019-a & 4 \\ -4 & 2019-a \end{pmatrix} + \begin{pmatrix} 2019+a & 4 \\ -4 & 2019+a \end{pmatrix} = \begin{pmatrix} 4038 & 8 \\ -8 & 4038 \end{pmatrix} =$	3 p
	$= 2 \begin{pmatrix} 2019 & 4 \\ -4 & 2019 \end{pmatrix} = 2A(2019), \text{ pentru orice număr real } a$	2p
c)	$A(x)A(y) = \begin{pmatrix} x & 4 \\ -4 & x \end{pmatrix} \begin{pmatrix} y & 4 \\ -4 & y \end{pmatrix} = \begin{pmatrix} xy - 16 & 4x + 4y \\ -4x - 4y & xy - 16 \end{pmatrix}, \ 2A(-8) = \begin{pmatrix} -16 & 8 \\ -8 & -16 \end{pmatrix}$	3p
	xy = 0 şi $x + y = 2$, deci $x = 0$, $y = 2$ sau $x = 2$, $y = 0$	2p
2.a)	$x*0 = \frac{4x+4\cdot 0}{4+x\cdot 0} = \frac{4x}{4} = x, \text{ pentru orice } x \in G$	2p
	$0*x = \frac{4 \cdot 0 + 4 \cdot x}{4 + 0 \cdot x} = \frac{4x}{4} = x$, pentru orice $x \in G$, deci 0 este elementul neutru al legii de compoziție ,,*"	3 p
b)		3p
	x = 1, care convine, $x = 4$, care nu convine	2p

Centrul Național de Evaluare și Examinare
$$f(x) * f(y) = \frac{4f(x) + 4f(y)}{4 + f(x)f(y)} = \frac{4 \cdot \frac{2(x-1)}{x+1} + 4 \cdot \frac{2(y-1)}{y+1}}{4 + \frac{4(x-1)(y-1)}{(x+1)(y+1)}} = \frac{2(xy + x - y - 1 + xy - x + y - 1)}{xy + x + y + 1 + xy - x - y + 1} = 3p$$

$$= \frac{4(xy-1)}{2(xy+1)} = \frac{2(xy-1)}{xy+1} = f(xy), \text{ pentru orice } x, y \in (0,+\infty)$$

$$2p$$

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = -2 + \frac{2}{x+1} =$	3p
	$= \frac{-2x - 2 + 2}{x + 1} = \frac{-2x}{x + 1}, \ x \in (-1, +\infty)$	2 p
b)	f(0)=1, f'(0)=0	2 p
	Ecuația tangentei este $y - f(0) = f'(0)(x - 0)$, adică $y = 1$	3 p
c)	$f'(x) \ge 0$, pentru orice $x \in (-1,0] \Rightarrow f$ este crescătoare pe $(-1,0]$ și $f'(x) \le 0$, pentru orice	
	$x \in [0, +\infty) \Rightarrow f$ este descrescătoare pe $[0, +\infty)$, deci $f(x) \le f(0) \Rightarrow 1 - 2x + 2\ln(x+1) \le 1$,	3 p
	deci $\ln(x+1) \le x$, pentru orice $x \in (-1, +\infty)$	
	$\cos x > -1$, pentru orice $x \in (0, \pi)$, deci $\ln(1 + \cos x) \le \cos x$, pentru orice $x \in (0, \pi)$	2 p
2.a)	$\int_{-1}^{1} f(x)e^{x} dx = \int_{-1}^{1} (x+3) dx = \left(\frac{x^{2}}{2} + 3x\right) \Big _{-1}^{1} =$	3 p
	$=\left(\frac{1}{2}+3\right)-\left(\frac{1}{2}-3\right)=6$	2p
b)	F este o primitivă a funcției $f \Rightarrow F'(x) = f(x) = \frac{x+3}{e^x}, x \in \mathbb{R}$	2p
	$F'(x) \ge 0$, pentru orice $x \in [-3, +\infty)$, deci funcția F este crescătoare pe intervalul $[-3, +\infty)$	3 p
c)	$\mathcal{A} = \int_{0}^{n} f(x) dx = \int_{0}^{n} (x+3)e^{-x} dx = -(x+4)e^{-x} \Big _{0}^{n} = -(n+4)e^{-n} + 4$	3p
	$-(n+4)e^{-n} + 4 = 4 - 6e^{-n}$, de unde obţinem $n = 2$	2p

Matematică M tehnologic

Varianta 6

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\sqrt{7}(\sqrt{7}+1)-\sqrt{7}=7$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 6x + 8$. Determinați coordonatele punctului de intersecție a graficului funcției f cu axa Oy.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\log_5(x^2+9)=2$.
- **5p 4.** După o ieftinire cu 40%, prețul unui obiect este 300 de lei. Calculați prețul obiectului înainte de ieftinire.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(3,2), B(-3,2) și C(0,6). Determinați, în triunghiul ABC, lungimea medianei din vârful C.
- **5p 6.** Arătați că $\frac{\sqrt{3}}{2} \cdot \sin 60^{\circ} \frac{\sqrt{2}}{2} \cdot \sin 45^{\circ} = \frac{1}{4}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 6 & -10 \\ 3 & -5 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $M(a) = I_2 + aA$, unde a este număr real.
- **5p** a) Arătați că det A = 0.
- **5p b**) Demonstrați că $M(a) \cdot M(b) = M(a+b+ab)$, pentru orice numere reale a și b.
- **5p** c) Determinați numărul real a pentru care M(1) + M(2) + ... + M(2019) = 2019 M(a).
 - **2.** Se consideră polinomul $f = mX^3 + 2X^2 mX 2$, unde m este număr real nenul.
- **5p** a) Arătați că f(1) = 0, pentru orice număr real nenul m.
- **5p b)** Pentru m = 3, determinați rădăcinile polinomului f.
- **5p** c) Determinați numărul real nenul m pentru care $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} = -4$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 3x + 5$.
- **5p a)** Arătați că $f'(x) = 3(x-1)(x+1), x \in \mathbb{R}$.
- **5p b**) Demonstrați că funcția f este convexă pe $[0,+\infty)$.
- **5p** c) Demonstrați că $f(x) \le 7$, pentru orice $x \in (-\infty, 1]$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{3x^2 + 6x + 7}$.
- **5p a)** Arătați că $\int_{0}^{1} f^{2}(x) dx = 11$.
- **5p b)** Calculați $\int_{-1}^{1} \frac{x+1}{f(x)} dx$.
- **5p** c) Demonstrați că, pentru orice $a \in (0, +\infty)$, suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 0 și x = a are aria mai mare sau egală cu $a\sqrt{7}$.

Matematică *M_tehnologic*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 6

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{7}\left(\sqrt{7}+1\right)-\sqrt{7}=\sqrt{7}\cdot\sqrt{7}+\sqrt{7}-\sqrt{7}=$	2p
	=7+0=7	3p
2.	f(0)=8	3p
	Coordonatele punctului de intersecție cu axa Oy sunt $x = 0$ și $y = 8$	2p
3.	$x^2 + 9 = 5^2 \Rightarrow x^2 - 16 = 0$	2p
	x = -4 sau $x = 4$, care convin	3p
4.	$x - \frac{40}{100} \cdot x = 300$, unde x este prețul obiectului înainte de ieftinire	3 p
	x = 500 de lei	2p
5.	M(0,2), unde punctul M este mijlocul laturii AB	2p
	CM = 4	3p
6.	$\sin 60^\circ = \frac{\sqrt{3}}{2}, \sin 45^\circ = \frac{\sqrt{2}}{2}$	2p
	$\frac{\sqrt{3}}{2} \cdot \sin 60^{\circ} - \frac{\sqrt{2}}{2} \cdot \sin 45^{\circ} = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{3}{4} - \frac{2}{4} = \frac{1}{4}$	3p

1.a)	$\det A = \begin{vmatrix} 6 & -10 \\ 3 & -5 \end{vmatrix} = 6 \cdot (-5) - 3 \cdot (-10) =$	3p
	=-30+30=0	2p
b)	$A \cdot A = A$ şi $M(a) \cdot M(b) = (I_2 + aA)(I_2 + bA) = I_2 + aA + bA + abA \cdot A =$	2 p
	= $I_2 + aA + bA + abA = I_2 + (a+b+ab)A = M(a+b+ab)$, pentru orice numere reale a și b	3 p
c)	$(I_2 + A) + (I_2 + 2A) + \dots + (I_2 + 2019A) = 2019I_2 + (1 + 2 + \dots + 2019)A =$	3 p
	$=2019(I_2+1010A)=2019M(1010)$, de unde obținem $a=1010$	2p
2.a)	$f(1) = m \cdot 1^3 + 2 \cdot 1^2 - m \cdot 1 - 2 =$	3p
	= m + 2 - m - 2 = 0, pentru orice număr real nenul m	2p
b)	$f = 3X^3 + 2X^2 - 3X - 2 \Rightarrow f = (X - 1)(X + 1)(3X + 2)$	2p
	$x_1 = -1, \ x_2 = -\frac{2}{3}, \ x_3 = 1$	3p
c)	$x_1 x_2 + x_1 x_3 + x_2 x_3 = -1, \ x_1 x_2 x_3 = \frac{2}{m}$	2p
	$\frac{x_1 x_2 + x_1 x_3 + x_2 x_3}{x_1 x_2 x_3} = -4 \Leftrightarrow \frac{-m}{2} = -4 \Leftrightarrow m = 8$	3p

SUBI	SUBIECTUL al III-lea (30 de puno	
1.a)	$f'(x) = 3x^2 - 3 =$	3p
	$=3(x^2-1)=3(x-1)(x+1), x \in \mathbb{R}$	2p
b)	$f''(x) = 6x, x \in \mathbb{R}$	2p
	$f''(x) \ge 0$, pentru orice $x \in [0, +\infty)$, deci funcția f este convexă pe $[0, +\infty)$	3p
c)	$f'(x) \ge 0$, pentru orice $x \in (-\infty, -1] \Rightarrow f$ este crescătoare pe $(-\infty, -1]$ și $f'(x) \le 0$, pentru	2n
	orice $x \in [-1,1] \Rightarrow f$ este descrescătoare pe $[-1,1]$	2p
	$f(x) \le f(-1)$, pentru orice $x \in (-\infty, 1]$ și $f(-1) = 7$, deci $f(x) \le 7$, pentru orice $x \in (-\infty, 1]$	3p
2.a)	$\left \int_{0}^{1} f^{2}(x) dx = \int_{0}^{1} (3x^{2} + 6x + 7) dx = \left(\frac{3x^{3}}{3} + \frac{6x^{2}}{2} + 7x \right) \right _{0}^{1} =$	3 p
	=1+3+7-0=11	2p
b)	$\int_{-1}^{1} \frac{x+1}{f(x)} dx = \int_{-1}^{1} \frac{x+1}{\sqrt{3x^2 + 6x + 7}} dx = \frac{1}{3} \sqrt{3x^2 + 6x + 7} \Big _{-1}^{1} =$	3р
	$= \frac{1}{3} \left(\sqrt{16} - \sqrt{4} \right) = \frac{2}{3}$	2p
c)	$\sqrt{3x^2 + 6x + 7} \ge \sqrt{7}$, pentru orice $x \in [0, +\infty)$	2p
	$\mathcal{A} = \int_{0}^{a} f(x) dx = \int_{0}^{a} \sqrt{3x^2 + 6x + 7} dx \ge \int_{0}^{a} \sqrt{7} dx = a\sqrt{7}, \text{ pentru orice } a \in (0, +\infty)$	3р

Matematică M pedagogic

Varianta 6

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Calculați suma primilor trei termeni ai progresiei geometrice cu termeni pozitivi $(b_n)_{n\geq 1}$, știind că $b_1 = 2$ și $b_3 = 8$.
- **5p** 2. Determinați numărul real m, știind că punctul A(m,2m) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, f(x) = 5x 6.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2 10x + 25} = 5$.
- **5p 4.** După o ieftinire cu 10%, urmată de o scumpire cu 10 lei, prețul unui obiect este 190 de lei. Determinați prețul inițial al obiectului.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(4,4) și B(6,0). Determinați, în triunghiul AOB, ecuatia medianei din vârful A.
- **5p** | **6.** Arătați că $2\sin 30^{\circ} \sin 90^{\circ} = 0$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = 2(xy + x + y) + 1$.

- **5p** | **1.** Arătați că $(-1) \circ 1 = -1$.
- **5p 2.** Arătați că legea de compoziție "°" este comutativă.
- **5p** | **3.** Demonstrați că $x \circ y = 2(x+1)(y+1)-1$, pentru orice numere reale x și y.
- **5p 4.** Demonstrați că $e = -\frac{1}{2}$ este elementul neutru al legii de compoziție " \circ ".
- **5p 5.** Determinați numerele reale x pentru care $(x-1) \circ (x+2) = -5$.
- **5p 6.** Determinați numerele naturale nenule *n* pentru care $n \circ (n-1) \le 11$.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $A = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$ și $B = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$.

- **5p 1.** Arătați că det A = -2.
- **5p 2.** Calculați $\det(A+B)$.
- **5p** | **3.** Arătați că $A \cdot A = B$.
- **5p 4.** Determinați numerele reale a și b pentru care $aA + bB = \begin{pmatrix} 5 & 3 \\ 6 & 2 \end{pmatrix}$.
- **5p** | **5.** Arătați că, dacă $X \in \mathcal{M}_2(\mathbb{R})$ astfel încât X + A = B, atunci matricea X este inversabilă.
- **5p 6.** Determinați valorile reale ale lui a pentru care $\det(A + B aI_2) \le 0$, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Matematică $M_pedagogic$

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 6

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$b_2 = 4$	2p
	$S_3 = b_1 + b_2 + b_3 = 2 + 4 + 8 = 14$	3 p
2.	f(m) = 5m - 6	2 p
	$5m-6=2m \Leftrightarrow m=2$	3 p
3.	$x^2 - 10x + 25 = 25 \Rightarrow x^2 - 10x = 0$	2p
	x = 0 sau $x = 10$, care convin	3 p
4.	$x - \frac{10}{100} \cdot x + 10 = 190$, unde x este prețul inițial al obiectului	3 p
	x = 200 de lei	2 p
5.	Punctul $M(3,0)$ este mijlocul segmentului OB	2p
	Ecuația medianei este $y = 4x - 12$	3р
6.	$\sin 30^\circ = \frac{1}{2}$	2p
	$\sin 90^{\circ} = 1 \Rightarrow 2\sin 30^{\circ} - \sin 90^{\circ} = 2 \cdot \frac{1}{2} - 1 = 0$	3 p

1.	$(-1) \circ 1 = 2 \cdot ((-1) \cdot 1 + (-1) + 1) + 1 =$	3 p
	$= 2 \cdot (-1) + 1 = -1$	2 p
2.	$x \circ y = 2(xy + x + y) + 1 = 2(yx + y + x) + 1 =$	3 p
	$= y \circ x$, pentru orice numere reale x și y , deci legea de compoziție " \circ " este comutativă	2 p
3.	$x \circ y = 2xy + 2x + 2y + 2 - 1 =$	2p
	=2x(y+1)+2(y+1)-1=2(x+1)(y+1)-1, pentru orice numere reale x şi y	3 p
4.	$x \circ \left(-\frac{1}{2}\right) = 2(x+1)\left(-\frac{1}{2}+1\right) - 1 = x+1-1 = x$, pentru orice număr real x	2p
	$\left(-\frac{1}{2}\right) \circ x = 2\left(-\frac{1}{2}+1\right)(x+1)-1=x+1-1=x$, pentru orice număr real x , deci $e=-\frac{1}{2}$ este elementul neutru al legii de compoziție " \circ "	3 p
5.	$2(x-1+1)(x+2+1)-1=-5 \Leftrightarrow x^2+3x+2=0$	3p
	x = -2 sau $x = -1$	2 p
6.	$2(n+1)(n-1+1)-1 \le 11 \Leftrightarrow n^2+n-6 \le 0$	2 p
	$n \in [-3,2]$ şi, cum n este număr natural nenul, obținem $n=1$ sau $n=2$	3 p

SUBIECTUL al III-lea

-	(*****	/
1.	$\det A = \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} = 1 \cdot 0 - 2 \cdot 1 =$	3p
	=0-2=-2	2p
2.	$A + B = \begin{pmatrix} 4 & 2 \\ 4 & 2 \end{pmatrix}$	3p
	$\det(A+B) = \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix} = 0$	2p
3.	$A \cdot A = \begin{pmatrix} 1 \cdot 1 + 1 \cdot 2 & 1 \cdot 1 + 1 \cdot 0 \\ 2 \cdot 1 + 0 \cdot 2 & 2 \cdot 1 + 0 \cdot 0 \end{pmatrix} =$	3p
	$ = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix} = B $	2p
4.	$aA + bB = \begin{pmatrix} a & a \\ 2a & 0 \end{pmatrix} + \begin{pmatrix} 3b & b \\ 2b & 2b \end{pmatrix} = \begin{pmatrix} a+3b & a+b \\ 2a+2b & 2b \end{pmatrix}$	2p
	$ \begin{pmatrix} a+3b & a+b \\ 2a+2b & 2b \end{pmatrix} = \begin{pmatrix} 5 & 3 \\ 6 & 2 \end{pmatrix}, \text{ de unde obținem } a=2 \text{ și } b=1 $	3р
5.	$X = B - A \Rightarrow X = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$	3p
	$\det X = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4 \neq 0, \text{ deci matricea } X \text{ este inversabilă}$	2p
6.	$A + B - aI_2 = \begin{pmatrix} 4 - a & 2 \\ 4 & 2 - a \end{pmatrix} \Rightarrow \det(A + B - aI_2) = a^2 - 6a$	3p
]

 $a^2 - 6a \le 0 \Leftrightarrow a \in [0, 6]$

(30 de puncte)

2p