Splines

H.M. James Hung

In many practical problems, the expected value of the response variable y may follow a complex form of the regressor x. An example is that $E(y \mid x)$ is linear in x in one interval of x and quadratic in x in other intervals.

How to model $E(y \mid x)$?

Refer to Section 7.2.2 of Textbook

Use of splines is a powerful method.

Use subscript + to define the knot; for example, + in $(x-t)_+$ implies when x>t, $(x-t)_+=x-t$, which is positive. when $x\leq t$, $(x-t)_+=0$

Use superscript "power" to define the degree of the polynomial function (e.g., linear, quadratic), as shown in Mod05.

Thus, when x > t, $(x - t)_+^0 = (x - t)^0 = 1$; that is, any positive number to the 0^{th} power is 1.

Define $(x-t)_+^0 = 0$, when $x \le t$.

When
$$x > t$$
, $(x - t)_+^1 = (x - t)^1 = (x - t)$.
When $x \le t$, $(x - t)_+^1 = 0$.
Likewise, for any $j \ge 2$,
when $x > t$, $(x - t)_+^j = (x - t)^j$;
when $x \le t$, $(x - t)_+^j = 0$.