Studiul oscilațiilor amortizate. Determinarea perioadei oscilației. Determinarea decrementului logaritmic al oscilației

Olteanu Iulia, 314CC

Numar oscilație	0	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5	5.5	6	6.5	7	7.5	8	8.5	9	9.5	10
t(s)	0,45	1,45	2,40	3,38	4,30	5,25	6,20	7,10	8,10	9,00	9,90	10,90	11,90	12,80	13,70	14,70	15,60	16,60	17,50	18,50	19,40
A(a.u)	780	630	500	405	325	260	210	170	130	110	90	70	55	45	39	30	20	18	15	10	7
lnA	6,65	6,44	6,21	6,00	5,78	5,56	5,34	5,13	4,86	4,70	4,49	4,24	4,00	3,80	3,66	3,40	2,99	2,89	2,70	2,30	1,94

$t_{\text{extremum}}(n)=c+T_1*n$

 $ln(A(n))=lnA_0-D*n$

Pentru aflarea pseudoperioadei am calculat dreapta de regresie de gradul $I(y=c+T_1*n)$ pentru punctele din tabel.

Am considerat matricea $A \in M_{21,2}$ (\mathbb{R}), unde prima coloană conține doar elemente egale cu 1, iar coloana a doua conține prima linie din tabelul de pe prima pagină. De asemenea , alegem vectorul coloană b , ce are elementele egale cu linia a doua a tabelului de pe prima pagină și se rezolvă ecuația cu ajutorul programului Octave: $A^t * A * \binom{c}{T1} = A^t * b$.

În final se obține $T_1 = 1,8907$ s și c=0,5048

Analog, am determinat decrementul logaritmic de amortizare, dreapta de regresie fiind de forma $y=\alpha+\beta x$. Însă, vectorul coloană b conține valorile egale cu ultima linie a tabelului (lnA), matricea $A \in M_{21,2}$ ($\mathbb R$) are pe prima coloană elementele egale cu 1 și pe coloana a doua se găsesc valorile din prima linie a tabelului . Se calculează $A^t * A * \binom{\alpha}{\beta} = A^t * b$, obținându-se $\alpha = 6,7004$ și $\beta = -0,4536 => D = 0,4536$

$$D=T_1*\Upsilon$$

$$\Upsilon = \frac{D}{T_1} \approx 0.2399 \text{ s}^{-1}$$

 $\tau = \frac{1}{\gamma} \approx 4,1684$ s (masură a timpului de "viață" a oscilației amortizate, timpul după care amplitudinea oscilației scade de e=2,718 ori)