

CC0308 - Análise de Séries Temporais Lista de Exercícios: Modelos Profa. Jeniffer J. Duarte Sanchez

- 1. Seja X que tem distribuição com média μ e variância σ^2 , e seja $Y_t = X$ para todo t.
 - Mostre que $\{Y_t\}$ é estacionária de forma estrita e de segunda ordem.
 - Encontre a função de autocovariância de $\{Y_t\}$.
 - Faça um esboço de um gráfico típico de Y_t .
- 2. Considere os momentos de ordem (r_1, \ldots, r_n) das v.a. $Z(t_1), \cdots, Z(t_n)$, para qualquer $n \geq 1$,

$$\mu(r_1, \dots, r_n; t_1, \dots, t_n) = E\{Z^{r_1}(t_1) \cdots Z^{r_n}(t_n)\}$$

$$= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} z_1^{r_1} \cdots z_n^{r_n} f(z_1, \dots, z_n; t_1, \dots, t_n) dz_1 \cdots dz_n$$

em que $f(z_1, \ldots, z_n; t_1, \ldots, t_n)$ é a fdp correspondente. Mostre que se Z(t) é estacionário, então $\mu(t)$ e V(t) são constantes.

3. Prove que o passeio aleatório

$$X_t = \epsilon_1 + \cdots + \epsilon_t$$

em que $\{\epsilon_t, t \geq 1\}$ é uma sequência de v.a. i.i.d. $(\mu_{\epsilon}, \sigma_{\epsilon}^2)$, tem facv dada por $\gamma(t_1, t_2) = \sigma_{\epsilon}^2 \min(t_1, t_2)$.

4. Considere as observações

\overline{t}	1961	1962	1963	1964	1965	1966	1967
$\overline{Z_t}$	15	19	13	17	22	18	22

Calcule $c_k \in r_k, k = 0, 1, ..., 6$.

5. Considere o processo estocástico $Z_t = a_t$, em que a_t é ruído branco, com $t = 0, \pm 1, \pm 2, \dots$ e

$$a_t = \left\{ \begin{array}{ll} 1 & \text{com probabilidade } 1/2; \\ -1 & \text{com probabilidade } 1/2. \end{array} \right.$$

• Obtenha a média do processo Z_t ;

- Calcule $\gamma(\tau), \tau = 0, \pm 1, \pm 2, ...;$
- Calcule $\rho(\tau)$, $\tau = 0, \pm 1, \pm 2, \dots$ e faça o seu gráfico.
- 6. Seja $\{Z_t\}$ um processo estacionário com média μ_Z e função de autocovariância γ_Z . Um novo processo é definido por $Y_t = Z_t Z_{t-1}$. Obtenha a média e a função de autocovariância de $\{Y_t\}$ em termos de μ_Z e γ_Z . Mostre que $\{Y_t\}$ é um processo estacionário.
- 7. Prove que, se $\{Z(t), t \in R\}$ for Gaussiano e estacionário de segunda ordem, então ele será estritamente estacionário.
- 8. Seja $Z_t = a_t + ca_{t-1} + \cdots + ca_1, t \ge 1$, em que c é uma constante a $a_t \sim RB(0, \sigma_a^2)$.
 - Encontre a média e a autocovariância de Z_t . Ela é estacionária?
 - Encontre a média e a autocovariância de $(1-B)Z_t$. Ela é estacionária?
- 9. Dado o processo X_t , a primeira diferença é dada por $\Delta X_t = X_t X_{t-1}$ e, sucessivamente, $\Delta^2 X_t = \Delta(\Delta X_t)$, $\Delta^3 X_t = \Delta(\Delta^2 X_t)$, etc. Suponha que $Y_t = \alpha + \beta t + \gamma t^2 + X_t$, em que α , β e γ são constantes e x_t é estacionário com função de autocovariância $\gamma_X(t)$. Mostre que $\Delta^2 Y_t$ é estacionário e encontre sua função de autocovariância.
- 10. Suponha $X_t \sim RB(0, \sigma^2)$ e seja $Y_t = X_t \cos(2\pi f_0 t + \phi), 0 < f_0 < 1/2$ fixada.
 - Mostre que, se ϕ é uma constante, Y_t não é estacionário;
 - Mostre que se ϕ for uma v.a. uniformemente distribuída sobre o intervalo $[-\pi, \pi]$ e independente de X_t , então Y_t é um ruído branco.