bhargav-nte-casestudy

June 13, 2025

#Case Study Title: Audience Scoring for Direct Mail Marketing

```
[1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  import warnings
  warnings.filterwarnings('ignore')
```

0.1 Data Loading

```
[2]: Sales_df=pd.read_csv('06052025_Sales_Data.csv')
Dates_df=pd.read_csv('06052025_DM_Dates.csv')
Sales_df
```

[2]:		Gold_Cus	t TD	Pos	t_Cd	Tran_Dt	Dept ID		Dept Name	\
	0	4014_04A	_	34481	_	_	_		Ocala Retail	
	1			34481					Ocala Retail	
	2		213	34481	3463	5/16/2023	5611		Ocala Retail	
	3		213	34481	3463	5/16/2023	5611		Ocala Retail	
	4		213	34481	3463	5/16/2023	5611		Ocala Retail	
	•••	•••		•••				•••		
	271130	3754	3211	27349	9366	4/30/2025	5518	Burli	ngton Retail	
	271131	3754	4105	32119	3400	5/1/2025	2191		E-Commerce	
	271132	3754	5460	27604	2489	5/1/2025	5513	East Ra	leigh Retail	
	271133	3754	5460	27604	2489	5/1/2025	5513	East Ra	leigh Retail	
	271134	3754	5944		NaN	5/1/2025	5505	North Char	lotte Retail	
		Division	Chan	m o 1	0-	olina C+ama	T+m T.d	Class Cada		
	•	Division	Chan			nline Store	_	Class Code	\	
	0	Retail	Ret			Applicable		57		
	1	Retail	Ret	ail	/Not	Applicable	18359	57		
	2	Retail	Ret	ail	/Not	Applicable	18359	57		
	3	Retail	Ret	ail	/Not	Applicable	18359	57		
	4	Retail	Ret	ail	/Not	Applicable	18359	57		
	•••	•••	•••				•••			
	271130	Retail	Ret	ail	/Not	Applicable	111740	33		
	271131	Direct	Inter	net		NTE.com	5864861	7		
	271132	Retail	Ret	ail	/Not	Applicable	41911	7		

271133	Retail Ret	ail /Not	Appl	icable	41911	7		
271134	Retail Ret	ail /Not	Appl	icable	26911	13		
		G 3	3.7		D 1 M	D . D . I	TT	,
			ss Na			Price Paid	Units	\
0	TRAILERS/TRAII				Applicable	6.99	1.0	
1	TRAILERS/TRAIL				Applicable	6.99	1.0	
2	TRAILERS/TRAII	ER PARTS		/Not	Applicable	6.99	1.0	
3	TRAILERS/TRAIL	ER PARTS		/Not	Applicable	6.99	1.0	
4	TRAILERS/TRAIL	ER PARTS		/Not	Applicable	6.99	1.0	
•••					•••			
271130	POWER TOOLS			/Not	Applicable	39.97	1.0	
271131	AUTOMOTIVE ACC	CESSORIES		/Not	Applicable	1129.00	1.0	
271132	AUTOMOTIVE ACC	CESSORIES		No	rthern Tool	1694.96	4.0	
271133	AUTOMOTIVE ACC	CESSORIES		No	rthern Tool	1694.96	4.0	
271134	CLEANING SUPPI	IES/TOOLS		/Not	Applicable	19.99	1.0	
	Shipping Cost	DMCoupon:		Return_I				
0	NaN		0		0			
1	NaN		0		0			
2	NaN		0		0			
3	NaN		0		0			
4	NaN		0		0			
•••	•••	•••		•••				
271130	NaN		0		0			
271131	41.49		0		0			
271132	NaN		0		0			
271133	NaN		1		0			
271134	NaN		0		0			

[271135 rows x 17 columns]

[3]: Dates_df

0.2 Exploratory Data Analysis

[3]: Gold_Cust_ID DM Mail Date 0 213 5/8/2023

1 213 9/9/2024 2 213 11/6/2023 3 213 4/8/2024 4 4/7/2025 213 29963 36904813 4/7/2025 29964 36905023 4/7/2025 4/7/2025 29965 36916725 29966 36924552 4/7/2025 29967 36981351 4/7/2025

[5]: Sales_df.isnull().sum()

```
[4]: print(Sales_df.info())
     print(Dates_df.info())
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 271135 entries, 0 to 271134
    Data columns (total 17 columns):
         Column
                        Non-Null Count
                                         Dtype
         _____
                        _____
     0
         Gold_Cust_ID
                        271135 non-null
                                         int64
     1
         Post_Cd
                        264758 non-null
                                         object
     2
         {\tt Tran\_Dt}
                        271135 non-null
                                         object
     3
         Dept ID
                        271135 non-null
                                        int64
     4
         Dept Name
                        271135 non-null object
     5
         Division
                        271135 non-null object
     6
         Channel
                        271135 non-null object
     7
         Online Store
                        271135 non-null object
     8
         Itm_Id
                        271135 non-null object
     9
         Class Code
                        271135 non-null object
        Class Name
                        271135 non-null
                                        object
        Brand Name
                        271135 non-null object
                        271135 non-null float64
     12
        Price Paid
     13
        Units
                        271135 non-null float64
                                         float64
     14
         Shipping Cost 12732 non-null
         {\tt DMCouponInd}
                        271135 non-null
                                         int64
     16 Return_Ind
                                         int64
                        271135 non-null
    dtypes: float64(3), int64(4), object(10)
    memory usage: 35.2+ MB
    None
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 29968 entries, 0 to 29967
    Data columns (total 2 columns):
         Column
                       Non-Null Count Dtype
                       -----
     0
         Gold_Cust_ID 29968 non-null
                                       int64
         DM Mail Date 29968 non-null object
    dtypes: int64(1), object(1)
    memory usage: 468.4+ KB
    None
    0.3
         Data Cleaning
```

```
[5]: Gold_Cust_ID
                            0
     Post_Cd
                         6377
     Tran_Dt
                            0
     Dept ID
                            0
     Dept Name
                            0
     Division
                            0
     Channel
                            0
     Online Store
     Itm_Id
                            0
     Class Code
                            0
     Class Name
                            0
     Brand Name
                            0
                            0
     Price Paid
                            0
     Units
     Shipping Cost
                       258403
     DMCouponInd
     Return_Ind
                            0
     dtype: int64
[6]: Sales_df.duplicated().sum()
[6]: np.int64(216376)
     Sales_df.nunique()
[7]: Gold_Cust_ID
                       10000
     Post_Cd
                        8967
     Tran_Dt
                         728
     Dept ID
                         150
                         150
     Dept Name
                           2
     Division
     Channel
                           4
                           7
     Online Store
     Itm_Id
                       11856
     Class Code
                         110
     Class Name
                          56
     Brand Name
                          18
     Price Paid
                        6426
     Units
                          55
                        1072
     Shipping Cost
     {\tt DMCouponInd}
                           2
     Return_Ind
                           2
     dtype: int64
[8]: Sales_df.drop_duplicates(inplace=True)
[9]: Sales_df.axes
```

```
[9]: [Index([
                 0,
                          10,
                                  20,
                                          30,
                                                  31,
                                                          60,
                                                                  80,
                                                                         100,
                                                                                 110,
                 120,
             271125, 271126, 271127, 271128, 271129, 271130, 271131, 271132, 271133,
             2711347.
             dtype='int64', length=54759),
      Index(['Gold_Cust_ID', 'Post_Cd', 'Tran_Dt', 'Dept ID', 'Dept Name',
              'Division', 'Channel', 'Online Store', 'Itm_Id', 'Class Code',
              'Class Name', 'Brand Name', 'Price Paid', 'Units', 'Shipping Cost',
              'DMCouponInd', 'Return_Ind'],
             dtype='object')]
[10]: Sales_df.shape
[10]: (54759, 17)
     0.3.1 convert the object data to Datatime
[11]: Dates_df['DM Mail Date'] = pd.to_datetime(Dates_df['DM Mail Date'],
       ⇔errors='coerce')
      Dates_df.dtypes
[11]: Gold_Cust_ID
                               int64
      DM Mail Date
                      datetime64[ns]
      dtype: object
[12]: Sales_df['Tran_Dt'] = pd.to_datetime(Sales_df['Tran_Dt'], errors='coerce')
      Sales_df['Post_Cd'] = Sales_df['Post_Cd'].astype(str)
      Sales_df.dtypes
[12]: Gold Cust ID
                                int64
     Post_Cd
                               object
      Tran_Dt
                       datetime64[ns]
     Dept ID
                                int64
     Dept Name
                               object
     Division
                               object
      Channel
                               object
      Online Store
                               object
      Itm_Id
                               object
      Class Code
                               object
     Class Name
                               object
     Brand Name
                               object
     Price Paid
                              float64
     Units
                              float64
                              float64
     Shipping Cost
     DMCouponInd
                                int64
     Return_Ind
                                int64
```

dtype: object

```
[13]: print("Mean of Shipping Cost: ",Sales_df['Shipping Cost'].mean())
      print("Median of Shipping Cost: ",Sales_df['Shipping Cost'].median())
     Mean of Shipping Cost: 11.17155603508772
     Median of Shipping Cost: 0.0
[14]: Sales_df['Shipping Cost'].fillna(Sales_df['Shipping Cost'].mean(),inplace=True)
      Sales_df.isnull().sum()
[14]: Gold_Cust_ID
                       0
      Post_Cd
                       0
      Tran_Dt
                       0
      Dept ID
                       0
      Dept Name
                       0
      Division
                       0
      Channel
                       0
      Online Store
      Itm_Id
      Class Code
                       0
      Class Name
                       0
      Brand Name
                       0
     Price Paid
                       0
      Units
                       0
      Shipping Cost
                       0
      DMCouponInd
                       0
      Return_Ind
                       0
      dtype: int64
[15]:
     Sales_df.describe()
[15]:
             Gold_Cust_ID
                                                  Tran_Dt
                                                                 Dept ID
                                                                           Price Paid
             5.475900e+04
                                                    54759
                                                            54759.000000
                                                                          54759.00000
      count
             1.913001e+07
                            2024-04-22 22:18:02.780913152
                                                             5258.631768
      mean
                                                                             75.15660
      min
             2.130000e+02
                                      2023-05-01 00:00:00
                                                             2101.000000
                                                                          -9999.99000
      25%
             5.921431e+06
                                      2023-10-19 00:00:00
                                                             5506.000000
                                                                              6.99000
      50%
             1.828684e+07
                                      2024-04-23 00:00:00
                                                             5563.000000
                                                                             19.97000
      75%
             3.275347e+07
                                      2024-10-28 00:00:00
                                                             5650.000000
                                                                             54.44000
                                      2025-05-01 00:00:00
      max
             3.754594e+07
                                                             5695.000000
                                                                          16999.99000
             1.310654e+07
                                                              994.488319
      std
                                                       NaN
                                                                            339.77446
                    Units
                           Shipping Cost
                                            DMCouponInd
                                                            Return_Ind
             54759.000000
                             54759.000000
                                           54759.000000
                                                          54759.000000
      count
     mean
                 1.251694
                                11.171556
                                               0.133932
                                                              0.034040
      min
               -33.000000
                                 0.000000
                                               0.000000
                                                              0.000000
      25%
                 1.000000
                                11.171556
                                               0.000000
                                                              0.000000
```

```
50%
                 1.000000
                                11.171556
                                                0.000000
                                                               0.000000
      75%
                  1.000000
                                11.171556
                                                0.000000
                                                               0.000000
      max
               144.000000
                              1387.410000
                                                1.000000
                                                               1.000000
      std
                  1.787558
                                14.789561
                                                0.340583
                                                               0.181334
[16]: Dates_df.describe()
[16]:
             Gold_Cust_ID
                                              DM Mail Date
             2.996800e+04
                                                     29968
      count
      mean
             1.340509e+07
                            2024-03-17 09:12:18.067271680
             2.130000e+02
                                      2023-05-08 00:00:00
      min
      25%
             2.750468e+06
                                      2023-09-05 00:00:00
      50%
             1.207334e+07
                                       2024-04-08 00:00:00
      75%
             2.292054e+07
                                      2024-09-09 00:00:00
             3.698135e+07
                                      2025-04-07 00:00:00
      max
             1.050861e+07
      std
                                                       NaN
[17]: Sales_df.dtypes
[17]: Gold_Cust_ID
                                 int64
      Post_Cd
                                object
      Tran_Dt
                        datetime64[ns]
      Dept ID
                                 int64
      Dept Name
                                object
      Division
                                object
      Channel
                                object
      Online Store
                                object
      Itm_Id
                                object
      Class Code
                                object
      Class Name
                                object
      Brand Name
                                object
      Price Paid
                               float64
      Units
                               float64
      Shipping Cost
                               float64
      DMCouponInd
                                 int64
      Return_Ind
                                 int64
      dtype: object
     0.4 Data Visualization with single column
```

```
[18]: print("\nSales_Data.csv Value Counts (Top 10):")

for col in ['Dept Name', 'Division', 'Channel', 'Online Store', 'Class Name',

→'Brand Name']:

print(f"\n{col}:")

top_10_counts = Sales_df[col].value_counts().head(10)

plt.figure(figsize=(10, 6)) # Create a new figure for each plot

plt.bar(top_10_counts.index, top_10_counts.values)
```

```
plt.title(f'Top 10 {col} Counts')
plt.xlabel(col)
plt.ylabel('Count')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.show()
```

Sales_Data.csv Value Counts (Top 10):

Dept Name:

Division:

Channel:

Online Store:

Class Name:

Brand Name:


```
[19]: # Histograms for 'Price Paid' and 'Units'
plt.figure(figsize=(12, 5))

plt.subplot(1, 2, 1)
sns.histplot(Sales_df['Price Paid'].dropna(), bins=50, kde=True)
plt.title('Distribution of Price Paid')
plt.xlabel('Price Paid')
plt.ylabel('Frequency')

plt.subplot(1, 2, 2)
sns.histplot(Sales_df['Units'].dropna(), bins=20, kde=True)
plt.title('Distribution of Units')
plt.xlabel('Units')
plt.ylabel('Frequency')

plt.tight_layout()
plt.show()
```


0.5 Data Visualization with two Columns

```
[20]: # Group by transaction date and calculate total price paid and units sales_over_time = Sales_df.groupby('Tran_Dt')[['Price Paid', 'Units']].sum().

Greset_index()
sales_over_time
```

```
[20]:
             Tran_Dt
                        Price Paid Units
                                      74.0
      0
          2023-05-01
                       3820.530000
                       8251.210000
                                     142.0
      1
          2023-05-02
      2
          2023-05-03
                       8335.870000
                                      72.0
      3
          2023-05-04
                       6475.920000
                                      80.0
          2023-05-05
                       2562.840000
                                      52.0
                                      86.0
      723 2025-04-27
                       3899.460000
      724 2025-04-28
                       6500.490001
                                     111.0
      725 2025-04-29
                       4241.470000
                                      94.0
      726 2025-04-30
                        6680.600000
                                     103.0
      727 2025-05-01 14718.010000
                                     104.0
```

[728 rows x 3 columns]

```
[21]: # Visualize sales trends over time
plt.figure(figsize=(14, 6))

plt.subplot(1, 2, 1)
sns.lineplot(data=sales_over_time, x='Tran_Dt', y='Price Paid')
plt.title('Total Price Paid Over Time')
plt.xlabel('Transaction Date')
plt.ylabel('Total Price Paid')
plt.xticks(rotation=45)
```

```
plt.subplot(1, 2, 2)
sns.lineplot(data=sales_over_time, x='Tran_Dt', y='Units')
plt.title('Total Units Sold Over Time')
plt.xlabel('Transaction Date')
plt.ylabel('Total Units Sold')
plt.xticks(rotation=45)

plt.tight_layout()
plt.show()
```



```
[22]: # Analyze sales by Channel
      sales_by_channel = Sales_df.groupby('Channel')['Price Paid'].sum().reset_index()
      sales_by_channel
[22]:
          Channel
                    Price Paid
        Internet 1.066056e+06
          Mobile 3.544730e+03
      1
      2
           Phone 2.419144e+05
      3
          Retail 2.803985e+06
[23]: plt.figure(figsize=(10, 6))
      sns.barplot(data=sales_by_channel, x='Channel', y='Price Paid')
      plt.title('Total Price Paid by Channel')
      plt.xlabel('Channel')
      plt.ylabel('Total Price Paid')
      plt.xticks(rotation=45)
      plt.tight_layout()
      plt.show()
```



```
[24]: # Analyze sales by Division
      sales_by_division = Sales_df.groupby('Division')['Price Paid'].sum().
       →reset_index()
      sales_by_division
[24]:
       Division
                    Price Paid
          Direct 1.307970e+06
          Retail 2.807530e+06
      1
[25]: plt.figure(figsize=(10, 6))
      sns.barplot(data=sales_by_division, x='Division', y='Price Paid')
     plt.title('Total Price Paid by Division')
      plt.xlabel('Division')
     plt.ylabel('Total Price Paid')
      plt.xticks(rotation=45)
      plt.tight_layout()
      plt.show()
```



```
[26]: # Group by 'Dept Name' and calculate total price paid and units sales_by_department = Sales_df.groupby('Dept Name')[['Price Paid', 'Units']].

→sum().reset_index()
```

```
[27]: # Sort by total price paid and display top 10 departments

top_10_revenue_departments = sales_by_department.sort_values(by='Price Paid',__

ascending=False).head(10)

print("Top 10 Departments by Total Revenue:")

display(top_10_revenue_departments)
```

Top 10 Departments by Total Revenue:

```
Dept Name
                                   Price Paid
                                                Units
38
                      E-Commerce 1.064622e+06 5915.0
19
                Bus to Bus Sales 1.971518e+05 1211.0
                   Odessa Retail 7.601413e+04
                                                747.0
111
108
            North Midland Retail 5.062689e+04
                                                 769.0
            Grand Prairie Retail 5.021415e+04
53
                                                 697.0
29
                  Conyers Retail 4.875858e+04 1755.0
34
                  Denton Retail 4.459278e+04
                                                 557.0
                 Burleson Retail 4.455192e+04
16
                                                 847.0
60
    Houston-Gulf Freeway Retail 4.388297e+04
                                                762.0
                 Consumer Sales 3.930975e+04
28
                                                 651.0
```

```
[28]: # Visualize top 10 departments by revenue plt.figure(figsize=(12, 6))
```



```
[29]: # Sort by total units sold and display top 10 departments

top_10_units_departments = sales_by_department.sort_values(by='Units',__

ascending=False).head(10)

print("\nTop 10 Departments by Total Units Sold:")

display(top_10_units_departments)
```

Top 10 Departments by Total Units Sold:

```
Dept Name
                          Price Paid
                                        Units
38
             E-Commerce
                        1.064622e+06
                                       5915.0
29
        Conyers Retail
                        4.875858e+04
                                       1755.0
110
           Ocala Retail 2.717839e+04
                                       1449.0
19
       Bus to Bus Sales 1.971518e+05
                                      1211.0
42
        El Paso Retail 2.244786e+04
                                      1125.0
86
       Marietta Retail 3.511488e+04
                                        882.0
37
      Duluth MN Retail 3.333268e+04
                                       861.0
16
       Burleson Retail 4.455192e+04
                                        847.0
    Chattanooga Retail 3.052109e+04
24
                                        828.0
75
        Lakeland Retail 1.802721e+04
                                        824.0
```

```
[30]: # Visualize top 10 departments by units sold

plt.figure(figsize=(12, 6))

sns.barplot(data=top_10_units_departments, x='Units', y='Dept Name',

palette='viridis')

plt.title('Top 10 Departments by Total Units Sold')

plt.xlabel('Total Units Sold')

plt.ylabel('Department Name')

plt.tight_layout()

plt.show()
```


Distribution of Sales by Channel


```
[32]: # Pie chart for 'Division' distribution

division_counts = Sales_df['Division'].value_counts()

plt.figure(figsize=(8, 8))

plt.pie(division_counts, labels=division_counts.index, autopct='%1.1f%%',___

startangle=90, colors=sns.color_palette('pastel'))

plt.title('Distribution of Sales by Division')

plt.show()
```

Distribution of Sales by Division


```
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```



```
[34]: # Line chart for total 'Units' sold over time
plt.figure(figsize=(14, 6))
sns.lineplot(data=sales_over_time_sales_df, x='Tran_Dt', y='Units')
plt.title('Total Units Sold Over Time (Sales Data)')
plt.xlabel('Transaction Date')
plt.ylabel('Total Units Sold')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```



```
[35]: %pip install squarify
     Requirement already satisfied: squarify in /usr/local/lib/python3.11/dist-
     packages (0.4.4)
[36]: import squarify
      # Treemap
      # Aggregate sales data by Department Name
      treemap_data = Sales_df.groupby('Dept Name')['Price Paid'].sum().reset_index()
      treemap data
[36]:
                        Dept Name
                                     Price Paid
                   Abilene Retail 17236.169993
      0
                  Amarillo Retail 16743.810000
      1
      2
                  Appleton Retail 16725.290000
      3
                    Arnold Retail
                                    8429.770000
      4
                 Asheville Retail 22330.299999
                West Allis Retail 24387.790000
      145
      146 White Bear Lake Retail 7133.469994
      147
                   Wichita Retail
                                    7968.980000
      148
               Willowbrook Retail 17328.649995
                  Woodbury Retail 12597.399992
      149
      [150 rows x 2 columns]
[37]: # Sort the data and select top N departments for better visualization if there
       ⇔are many departments
      treemap_data = treemap_data.sort_values(by='Price Paid', ascending=False).
       \rightarrowhead(20)
      plt.figure(figsize=(20,15))
      squarify.plot(sizes=treemap_data['Price Paid'], label=treemap_data['Deptu
       →Name'], alpha=.8)
      plt.title('Treemap of Total Price Paid by Department Name (Top 20)')
      plt.axis('off')
      plt.show()
```


[38]:	<pre>num_Sales_df=Sales_df.select_dtypes(include=['int64','float64'])</pre>
	num_Sales_df

[38]:	<pre>Gold_Cust_ID</pre>	Dept ID	Price Paid	Units	Shipping Cost	${\tt DMCouponInd}$	\
0	213	5611	6.99	1.0	11.171556	0	
10	213	5611	179.99	1.0	11.171556	0	
20	213	5611	14.99	1.0	11.171556	0	
30	213	5611	3.49	1.0	11.171556	0	
31	213	5611	11.99	1.0	11.171556	0	
•••	•••						
271130	37543211	5518	39.97	1.0	11.171556	0	
271131	37544105	2191	1129.00	1.0	41.490000	0	
271132	37545460	5513	1694.96	4.0	11.171556	0	
271133	37545460	5513	1694.96	4.0	11.171556	1	
271134	37545944	5505	19.99	1.0	11.171556	0	

	Return_Ind
0	0
10	0
20	0

```
30 0
31 0
... ... 271130 0
271131 0
271132 0
271133 0
271134 0
```

[54759 rows x 7 columns]

0.6 Data Visualization on numerical columns

```
[39]: num_Sales_df.boxplot(figsize=(12,8))
plt.xticks(rotation=90)
```



```
[40]: corr=num_Sales_df.corr()
plt.figure(figsize=(10,8))
sns.heatmap(corr,annot=True,cmap='coolwarm')
```

[40]: <Axes: >

[41]: num_Sales_df.hist(figsize=(10,8))
plt.show()

0.7 Merged two Dataset with left join

```
[42]: merged_df=Sales_df.merge(Dates_df, on='Gold_Cust_ID', how='left')
merged_df
```

[42]:		Gold_Cust_ID	Post_Cd	Tran_Dt	Dept ID	Dept Name \
	0	213	344813463	2023-05-16	5611	Ocala Retail
	1	213	344813463	2023-05-16	5611	Ocala Retail
	2	213	344813463	2023-05-16	5611	Ocala Retail
	3	213	344813463	2023-05-16	5611	Ocala Retail
	4	213	344813463	2023-05-16	5611	Ocala Retail
	•••	•••	•••			
	257648	37543211	273499366	2025-04-30	5518	Burlington Retail
	257649	37544105	321193400	2025-05-01	2191	E-Commerce
	257650	37545460	276042489	2025-05-01	5513	East Raleigh Retail
	257651	37545460	276042489	2025-05-01	5513	East Raleigh Retail
	257652	37545944	nan	2025-05-01	5505	North Charlotte Retail
		Division Cha	nnel Oı	nline Store	Ttm Td	Class Code \
						·· ,

0	Retail	Retail	/Not	Applica	ble	183	359	57		
1	Retail	Retail		Applica		183	359	57		
2	Retail	Retail		Applica		183	359	57		
3	Retail	Retail		Applica		183	359	57		
4	Retail	Retail	/Not	Applica	ble	183	359	57		
•••	•••	•••		•••	•••		•••			
257648	Retail	Retail	/Not	Applica	ble	1117	40	33		
257649	Direct I	Internet		NTE.	com	58648	861	7		
257650	Retail	Retail	/Not	Applica	ble	419	911	7		
257651	Retail	Retail	/Not	Applica	ble	419	911	7		
257652	Retail	Retail	/Not	Applica	ble	269	911	13		
			Clas	ss Name		Bran	nd Name	Price Paid	Units	\
0	TRAILERS/T	TRAILER P	ARTS		/Not	Appl	icable	6.99	1.0	
1	TRAILERS/T	TRAILER P	ARTS				icable	6.99	1.0	
2	TRAILERS/T	TRAILER P	ARTS		/Not	Appl	icable	6.99	1.0	
3	TRAILERS/T	TRAILER P	ARTS		/Not	Appl	icable	6.99	1.0	
4	TRAILERS/T	TRAILER P	ARTS		/Not	Appl	icable	6.99	1.0	
•••				•••			•			
257648	POWER TOOL	LS			/Not	Appl	icable	39.97	1.0	
257649	AUTOMOTIVE	E ACCESSO	RIES		/Not	Appl	icable	1129.00	1.0	
257650	AUTOMOTIVE	E ACCESSO	RIES		No	rther	n Tool	1694.96	4.0	
257651	AUTOMOTIVE	E ACCESSO	RIES		No	rther	n Tool	1694.96	4.0	
257652	CLEANING S	SUPPLIES/	TOOLS		/Not	Appl	icable	19.99	1.0	
	Shipping (oupon:	Ind Ret	urn_I	ind DM	Mail D			
0	11.171			0		0	2023-05			
1	11.171			0		0	2024-09			
2	11.171			0		0	2023-11			
3	11.171	1556		0		0	2024-04			
4	11.171	1556		0		0	2025-04	-07		
	•••		•••			••	•			
257648	11.171			0		0		NaT		
257649	41.490			0		0		NaT		
257650	11.171			0		0		NaT		
257651	11.171			1		0		NaT		
257652	11.171	1556		0		0		NaT		

[257653 rows x 18 columns]

[43]: merged_df.dtypes

Division object Channel object Online Store object Itm_Id object Class Code object Class Name object Brand Name object Price Paid float64 Units float64 Shipping Cost float64 DMCouponInd int64 Return_Ind int64 DM Mail Date datetime64[ns]

dtype: object

0.8 Data Cleaning on Merged Dataset

```
[44]: merged_df.isnull().sum()
[44]: Gold_Cust_ID
                            0
      Post_Cd
                            0
      Tran_Dt
                            0
      Dept ID
                            0
      Dept Name
                            0
      Division
                            0
      Channel
                            0
      Online Store
                            0
      Itm_Id
                            0
                            0
      Class Code
      Class Name
                            0
                            0
      Brand Name
                            0
      Price Paid
                            0
      Units
      Shipping Cost
                            0
      DMCouponInd
                            0
      Return_Ind
                            0
      DM Mail Date
                        19784
      dtype: int64
[45]: merged_df.duplicated().sum()
[45]: np.int64(7035)
[46]: merged_df.drop_duplicates(inplace=True)
      merged_df.dropna(inplace=True)
```

0.8.1 It calculates if a purchase happened 30 days before or after the DM date

```
[47]: from datetime import timedelta

merged_df['Days_From_DM'] = (merged_df['Tran_Dt'] - merged_df['DM Mail Date']).

odt.days

merged_df['Pre_DM'] = merged_df['Days_From_DM'].between(-30, -1)

merged_df['Post_DM'] = merged_df['Days_From_DM'].between(0, 30)
```

0.9 It creates customer-level features:

- Spend and units before/after DM
- Average coupon use rate
- Ratio of online purchases

```
[48]: # Aggregate spend
      pre_spend = merged_df[merged_df['Pre_DM']].groupby('Gold_Cust_ID')['Price_
       →Paid'].sum().rename('Spend_Before')
      post spend = merged df[merged df['Post DM']].groupby('Gold Cust ID')['Price, |
       →Paid'].sum().rename('Spend_After')
      # Units
      pre_units = merged_df[merged_df['Pre_DM']].groupby('Gold_Cust_ID')['Units'].
       sum().rename('Units_Before')
      post_units = merged_df[merged_df['Post_DM']].groupby('Gold_Cust_ID')['Units'].
       sum().rename('Units_After')
      # Coupon usage
      coupon_rate = merged_df.groupby('Gold_Cust_ID')['DMCouponInd'].mean().
       →rename('Coupon Usage Rate')
      # Online Store to 1 and '/Not Applicable' to 0
      merged_df['Is_Online'] = merged_df['Online Store'].apply(lambda x: 0 if x == '/
       ⇔Not Applicable' else 1)
      # calculate the proportion of online orders per customer
      channel_rate = merged_df.groupby('Gold_Cust_ID')['Is_Online'].mean().
       →rename('Online Store Rate')
```

0.9.1 Create new Table called Feature with Customer level

```
[49]:
            Gold_Cust_ID Spend_Before Spend_After Units_Before Units_After \
                                  214.45
                                                243.40
                                                                               10.0
      0
                      213
                                                                  5.0
                                                                                0.0
      1
                      801
                                   61.98
                                                  0.00
                                                                  2.0
      2
                     5038
                                  208.22
                                                  0.00
                                                                  4.0
                                                                                0.0
                                  234.97
      3
                                                679.98
                                                                  3.0
                                                                                2.0
                    16010
      4
                    19413
                                 1884.91
                                                  0.00
                                                                  5.0
                                                                                0.0
      1598
                 35723689
                                  102.96
                                                 55.23
                                                                  4.0
                                                                                7.0
      1599
                                                235.35
                                                                  2.0
                                                                                8.0
                 35766496
                                  142.18
      1600
                 35947203
                                    8.77
                                                  0.00
                                                                  3.0
                                                                                0.0
      1601
                                  104.97
                                                124.98
                                                                  3.0
                                                                                2.0
                 36054508
      1602
                 36924552
                                  -45.02
                                                  0.00
                                                                  2.0
                                                                                0.0
            Coupon_Usage_Rate
                                 Online_Store_Rate
      0
                      0.000000
                                          0.000000
      1
                      0.000000
                                          0.000000
      2
                      0.000000
                                          0.000000
      3
                      0.000000
                                          0.200000
      4
                      0.071429
                                          0.000000
      1598
                      0.000000
                                          0.000000
      1599
                      0.727273
                                          0.090909
      1600
                      0.000000
                                          0.000000
      1601
                      0.000000
                                          0.894737
      1602
                      0.000000
                                          0.000000
      [1603 rows x 7 columns]
[50]: def label_influence(row):
          if row['Spend_Before'] == 0 and row['Spend_After'] > 0:
               return 1
          if row['Spend_After'] > 1.2 * row['Spend_Before']:
               return 1
          return 0
      features['Target'] = features.apply(label_influence, axis=1)
      features
[50]:
                                                        Units_Before
                                                                       Units_After \
            Gold_Cust_ID
                           Spend_Before
                                          Spend_After
      0
                      213
                                  214.45
                                                243.40
                                                                  5.0
                                                                               10.0
      1
                      801
                                   61.98
                                                  0.00
                                                                  2.0
                                                                                0.0
      2
                     5038
                                  208.22
                                                  0.00
                                                                  4.0
                                                                                0.0
      3
                    16010
                                  234.97
                                                679.98
                                                                  3.0
                                                                                2.0
      4
                                                                  5.0
                    19413
                                 1884.91
                                                  0.00
                                                                                0.0
                                  102.96
                                                                  4.0
                                                                                7.0
      1598
                 35723689
                                                 55.23
      1599
                 35766496
                                  142.18
                                                235.35
                                                                  2.0
                                                                                8.0
```

1600 1601 1602	35947203 36054508 36924552	104.97 124	.00 .98 .00	3.0 3.0 2.0	0.0 2.0 0.0
	Coupon_Usage_Rate	Online_Store_Rate	Target		
0	0.000000	0.000000	0		
1	0.000000	0.000000	0		
2	0.000000	0.000000	0		
3	0.000000	0.200000	1		
4	0.071429	0.000000	0		
	•••	•••			
1598	0.000000	0.000000	0		
1599	0.727273	0.090909	1		
1600	0.000000	0.000000	0		
1601	0.000000	0.894737	0		
1602	0.000000	0.000000	1		
[1603	rows x 8 columns]				

0.10 Exploratory Data Analysis on features table

[51]: features.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1603 entries, 0 to 1602
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	<pre>Gold_Cust_ID</pre>	1603 non-null	int64
1	Spend_Before	1603 non-null	float64
2	Spend_After	1603 non-null	float64
3	Units_Before	1603 non-null	float64
4	Units_After	1603 non-null	float64
5	Coupon_Usage_Rate	1603 non-null	float64
6	Online_Store_Rate	1603 non-null	float64
7	Target	1603 non-null	int64

dtypes: float64(6), int64(2)
memory usage: 100.3 KB

[52]: features.describe()

Units_After \ [52]: Gold_Cust_ID Spend_Before Spend_After Units_Before 1.603000e+03 1603.000000 1603.000000 1603.000000 1603.000000 count mean 1.299954e+07 322.046787 234.440387 6.205552 5.471616 801.702959 14.367773 std 1.052069e+07 609.684380 15.898701 min 2.130000e+02 -399.990000 -1400.000000 -2.000000 -2.000000 25% 2.586444e+06 36.955000 0.000000 1.000000 0.000000

```
50%
             1.105064e+07
                              105.930000
                                             37.040000
                                                             3.000000
                                                                           1.000000
      75%
                                                                           6.000000
             2.243449e+07
                              310.925000
                                             214.725000
                                                             6.000000
      max
             3.692455e+07
                            20482.020000
                                          10569.480000
                                                           410.000000
                                                                         449.000000
             Coupon_Usage_Rate
                                 Online_Store_Rate
                                                          Target
                   1603.000000
                                       1603.000000
                                                     1603.000000
      count
                      0.139728
                                          0.101218
                                                        0.262009
      mean
      std
                      0.269082
                                          0.268180
                                                        0.439865
      min
                      0.000000
                                          0.000000
                                                        0.000000
      25%
                      0.000000
                                          0.000000
                                                        0.000000
      50%
                      0.000000
                                          0.000000
                                                        0.000000
      75%
                      0.166667
                                          0.000000
                                                        1.000000
      max
                       1.000000
                                          1.000000
                                                        1.000000
[53]: features.axes
[53]: [RangeIndex(start=0, stop=1603, step=1),
       Index(['Gold_Cust_ID', 'Spend_Before', 'Spend_After', 'Units_Before',
              'Units_After', 'Coupon_Usage_Rate', 'Online_Store_Rate', 'Target'],
             dtype='object')]
[54]:
     features.nunique()
[54]: Gold Cust ID
                            1603
      Spend_Before
                            1234
      Spend After
                             867
      Units_Before
                              60
      Units_After
                              62
      Coupon_Usage_Rate
                             169
      Online_Store_Rate
                              80
      Target
                               2
      dtype: int64
           Data Cleaning on features table
[55]: features.isnull().sum()
[55]: Gold_Cust_ID
                            0
      Spend Before
                            0
      Spend_After
                            0
      Units_Before
                            0
      Units After
                            0
      Coupon_Usage_Rate
                            0
      Online_Store_Rate
                            0
      Target
                            0
      dtype: int64
```

```
[56]: features.duplicated().sum()
```

[56]: np.int64(0)

0.11.1 Data Visualization on feature table

```
[57]: features.hist(figsize=(10,8))
plt.show()
```



```
[58]: features.boxplot(figsize=(12,8))
plt.xticks(rotation=90)

[58]: (array([1, 2, 3, 4, 5, 6, 7, 8]),
```

```
[Text(1, 0, 'Gold_Cust_ID'),
  Text(2, 0, 'Spend_Before'),
  Text(3, 0, 'Spend_After'),
  Text(4, 0, 'Units_Before'),
  Text(5, 0, 'Units_After'),
  Text(6, 0, 'Coupon_Usage_Rate'),
```

```
Text(7, 0, 'Online_Store_Rate'),
Text(8, 0, 'Target')])
```



```
[59]: corr=features.corr()
plt.figure(figsize=(10,8))
sns.heatmap(corr,annot=True,cmap='coolwarm')
```

[59]: <Axes: >

[60]: sns.pairplot(features)
plt.show()


```
[62]: # Alternatively, we could plot a scatter plot if we want to see the relationship per customer

plt.figure(figsize=(8, 8))

sns.scatterplot(data=features, x='Spend_Before', y='Spend_After', alpha=0.5)

plt.title('Scatter Plot of Spend Before vs After DM Mail Date per Customer')

plt.xlabel('Spend Before DM Mail Date')

plt.ylabel('Spend After DM Mail Date')

plt.ylabel('Spend After DM Mail Date')

plt.xscale('log') # Using log scale can help visualize data with wide range

plt.yscale('log')

plt.grid(True, which='both', linestyle='--', linewidth=0.5)

plt.show()
```


0.12 Model Building on features table

```
lr_model.fit(X_train, y_train)
      y_pred_lr = lr_model.predict(X_test)
      y_prob_lr = lr_model.predict_proba(X_test)[:, 1]
[64]: from sklearn.ensemble import RandomForestClassifier
      from sklearn.metrics import classification_report, roc_auc_score
      rf_model = RandomForestClassifier(random_state=42)
      rf_model.fit(X_train, y_train)
      y_pred_rf = rf_model.predict(X_test)
      y_prob_rf = rf_model.predict_proba(X_test)[:, 1]
[65]: from sklearn.tree import DecisionTreeClassifier
      from sklearn.model_selection import train_test_split
      from sklearn.metrics import classification report, roc auc score
      dt_model = DecisionTreeClassifier(random_state=42)
      dt_model.fit(X_train, y_train)
      y_pred_dt = dt_model.predict(X_test)
      y_prob_dt = dt_model.predict_proba(X_test)[:, 1]
```

```
[66]: from sklearn.ensemble import GradientBoostingClassifier

gb_model = GradientBoostingClassifier(random_state=42)
gb_model.fit(X_train, y_train)

y_pred_gb = gb_model.predict(X_test)
y_prob_gb = gb_model.predict_proba(X_test)[:, 1]
```

0.13 Report of Model building with classification report

```
[67]: from sklearn.metrics import classification_report, roc_auc_score

models = {
    'Logistic Regression': (y_pred_lr, y_prob_lr),
    'Random Forest': (y_pred_rf, y_prob_rf),
    'Decision Tree': (y_pred_dt, y_prob_dt),
    'Gradient Boosting': (y_pred_gb, y_prob_gb)
}

results = {}

for name, (y_pred, y_prob) in models.items():
```

```
results[name] = {
         'report': classification_report(y_test, y_pred, output_dict=True),
         'auc': roc_auc_score(y_test, y_prob)
    }
    print(f"===== {name} =====")
    print("Classification Report:")
    print(classification_report(y_test, y_pred))
    print(f"AUC Score: {results[name]['auc']:.4f}\n")
==== Logistic Regression =====
Classification Report:
                           recall f1-score
              precision
                                               support
           0
                   1.00
                             0.99
                                        0.99
                                                   355
           1
                   0.97
                             0.99
                                        0.98
                                                   126
                                        0.99
                                                   481
   accuracy
                   0.98
                             0.99
                                        0.99
                                                   481
  macro avg
weighted avg
                   0.99
                             0.99
                                        0.99
                                                   481
AUC Score: 0.9999
==== Random Forest =====
Classification Report:
              precision
                           recall f1-score
                                               support
           0
                   0.96
                             0.99
                                        0.97
                                                   355
           1
                   0.97
                             0.89
                                        0.93
                                                   126
                                        0.96
                                                   481
    accuracy
  macro avg
                   0.96
                              0.94
                                        0.95
                                                   481
weighted avg
                                        0.96
                                                   481
                   0.96
                              0.96
AUC Score: 0.9871
===== Decision Tree =====
Classification Report:
              precision
                           recall f1-score
                                               support
           0
                             0.97
                                        0.97
                   0.97
                                                   355
           1
                   0.91
                             0.92
                                        0.92
                                                   126
                                        0.96
                                                   481
    accuracy
  macro avg
                   0.94
                             0.94
                                        0.94
                                                   481
weighted avg
                   0.96
                             0.96
                                        0.96
                                                   481
```

AUC Score: 0.9448 ==== Gradient Boosting ===== Classification Report: precision recall f1-score support 0 0.97 0.98 0.97 355 0.94 0.91 1 0.93 126 0.96 481 accuracy 0.96 0.95 0.95 481 macro avg weighted avg 0.96 0.96 0.96 481

AUC Score: 0.9916

0.14 Model Comparison Summary

```
[68]: # Summarize key metrics
      summary_data = []
      for model_name, model_results in results.items():
          report = model_results['report']
          summary_data.append({
              'Model': model_name,
              'Accuracy': report['accuracy'],
              'Precision (Weighted Avg)': report['weighted avg']['precision'],
              'Recall (Weighted Avg)': report['weighted avg']['recall'],
              'F1-Score (Weighted Avg)': report['weighted avg']['f1-score'],
              'AUC Score': model_results['auc']
          })
      summary_df = pd.DataFrame(summary_data)
      print("===== Model Comparison Summary =====")
      display(summary df)
     ==== Model Comparison Summary =====
                      Model Accuracy Precision (Weighted Avg) \
     O Logistic Regression 0.989605
                                                       0.989781
     1
              Random Forest 0.962578
                                                       0.962658
     2
              Decision Tree 0.956341
                                                       0.956462
     3
          Gradient Boosting 0.962578
                                                       0.962356
        Recall (Weighted Avg) F1-Score (Weighted Avg) AUC Score
     0
                     0.989605
                                              0.989644
                                                         0.999866
                     0.962578
                                              0.962065
     1
                                                         0.987112
     2
                     0.956341
                                              0.956396
                                                         0.944825
     3
                     0.962578
                                              0.962381
                                                         0.991639
```

0.15 Visualize AUC scores

```
[69]: plt.figure(figsize=(8, 5))
    sns.barplot(x='Model', y='AUC Score', data=summary_df)
    plt.title('AUC Score Comparison Across Models')
    plt.ylabel('AUC Score')
    plt.ylim(0, 1)
    plt.xticks(rotation=45, ha='right')
    plt.tight_layout()
    plt.show()
```


0.16 Influence_probability with logistics regression

[70]:	<pre>features['Influence_Probability'] = lr_model.predict_proba(X)[:, 1]</pre>
	features

[70]:	${\tt Gold_Cust_ID}$	Spend_Before	Spend_After	Units_Before	Units_After \
0	213	214.45	243.40	5.0	10.0
1	801	61.98	0.00	2.0	0.0
2	5038	208.22	0.00	4.0	0.0
3	16010	234.97	679.98	3.0	2.0
4	19413	1884.91	0.00	5.0	0.0
•••	•••	•••	•••		
1598	35723689	102.96	55.23	4.0	7.0
1599	35766496	142.18	235.35	2.0	8.0

1600	35947203	8.77	0.	00	3.0	0.0
1601	36054508	104.97	124.	98	3.0	2.0
1602	36924552	-45.02	0.	00	2.0	0.0
	Coupon_Usage_Rate	Online_Store	_Rate	Target	Influence_Pr	obability
0	0.000000	0.0	00000	0	6.9	66567e-07
1	0.000000	0.0	00000	0	2.1	66450e-44
2	0.000000	0.0	00000	0	6.99	5317e-145
3	0.000000	0.2	00000	1	1.0	00000e+00
4	0.071429	0.0	00000	0	0.0	00000e+00
•••	•••	•••	•••		•••	
1598	0.000000	0.0	00000	0	5.8	77527e-39
1599	0.727273	0.0	90909	1	1.0	00000e+00
1600	0.000000	0.0	00000	0	1.1	46103e-07
1601	0.000000	0.8	94737	0	1.0	98346e-01
1602	0.000000	0.0	00000	1	1.0	00000e+00

[1603 rows x 9 columns]

[71]: pd.options.display.float_format = '{:.6f}'.format display(features)

	${\tt Gold_Cust_ID}$	Spend_Before	Spend_After	Units_Before	${\tt Units_After} \ \setminus \\$
0	213	214.450000	243.400000	5.000000	10.000000
1	801	61.980000	0.000000	2.000000	0.00000
2	5038	208.220000	0.000000	4.000000	0.00000
3	16010	234.970000	679.980000	3.000000	2.000000
4	19413	1884.910000	0.000000	5.000000	0.00000
	•••	•••	•••	***	••
1598	35723689	102.960000	55.230000	4.000000	7.000000
1599	35766496	142.180000	235.350000	2.000000	8.000000
1600	35947203	8.770000	0.000000	3.000000	0.000000
1601	36054508	104.970000	124.980000	3.000000	2.000000
1602	36924552	-45.020000	0.000000	2.000000	0.000000
	Coupon_Usage_	Rate Online_S	Store_Rate T	arget Influen	ce_Probability
0	0.00	0000	0.000000	0	0.00001
1	0.00	0000	0.000000	0	0.00000
2	0.00	0000	0.000000	0	0.00000
3	0.00	0000	0.200000	1	1.000000
4	0.07	1429	0.000000	0	0.00000
•••					•••
1598	0.00	0000	0.000000	0	0.00000
1599	0.72	7273	0.090909	1	1.000000
1600	0.00	0000	0.000000	0	0.00000
1601	0.00	0000	0.894737	0	0.109835
1602	0.00	0000	0.000000	1	1.000000

[1603 rows x 9 columns]

0.16.1 few visualization on results

```
[72]: plt.figure(figsize=(10, 6))
sns.scatterplot(data=features, x='Influence_Probability', y='Target')
plt.title('Scatter Plot of Target vs. Influence Probability (Logistic
→Regression)')
plt.xlabel('Influence Probability')
plt.ylabel('Target (0: No Influence, 1: Influenced)')
plt.show()
```



```
[73]: # Distribution of Influence Probability by Target Class
plt.figure(figsize=(10, 6))
sns.histplot(data=features, x='Influence_Probability', hue='Target', kde=True,
bins=30)
plt.title('Distribution of Influence Probability by Target Class')
plt.xlabel('Influence Probability (Logistic Regression)')
plt.ylabel('Count')
plt.legend(title='Target', labels=['Not Influenced (0)', 'Influenced (1)'])
plt.show()
```


0.16.2 Hyperparameter tuning(Random Search cv) with gradient Boosting

```
[74]: from sklearn.model_selection import RandomizedSearchCV
      from scipy.stats import uniform, randint
      # Define a parameter distribution for RandomizedSearchCV
      param_dist = {
          'n_estimators': randint(100, 300), # Sample from 100 to 300
          'learning rate': uniform(0.01, 0.2), # Sample from 0.01 to 0.2
          'max_depth': randint(3, 6), # Sample from 3 to 6
          'min_samples_split': randint(2, 20), # Sample from 2 to 20
          'min_samples_leaf': randint(1, 10) # Sample from 1 to 10
      }
      random_search = RandomizedSearchCV(estimator=gb_model,_
       →param_distributions=param_dist,
                                         n_iter=50, cv=3, scoring='roc_auc', _
       on_jobs=-1, verbose=2, random_state=42)
      # Fit the randomized search to the training data
      random_search.fit(X_train, y_train)
      # Get the best parameters and best score
```

```
best_params = random_search.best_params_
best_score = random_search.best_score_
print(f"Best parameters found: {best_params}")
print(f"Best cross-validation AUC score: {best_score:.4f}")
# Evaluate the best model on the test set
best_gb_model = random_search.best_estimator_
y pred gb tuned = best gb model.predict(X test)
y_prob_gb_tuned = best_gb_model.predict_proba(X_test)[:, 1]
print("\n===== Tuned Gradient Boosting (Randomized Search) =====")
print("Classification Report:")
print(classification_report(y_test, y_pred_gb_tuned))
print(f"AUC Score: {roc_auc_score(y_test, y_prob_gb_tuned):.4f}\n")
Fitting 3 folds for each of 50 candidates, totalling 150 fits
Best parameters found: {'learning_rate': np.float64(0.029082023298082266),
'max depth': 5, 'min_samples_leaf': 7, 'min_samples_split': 6, 'n_estimators':
198}
Best cross-validation AUC score: 0.9933
==== Tuned Gradient Boosting (Randomized Search) =====
Classification Report:
             precision
                          recall f1-score
                                              support
           0
                   0.97
                             0.98
                                       0.98
                                                  355
           1
                   0.95
                             0.92
                                       0.94
                                                  126
```

0.97

0.96

0.97

481

481

481

AUC Score: 0.9935

accuracy

macro avg

weighted avg

0.16.3 Model Comparison Summary (Including Tuned GB)

0.95

0.97

0.96

0.97

```
[75]: import pandas as pd
import matplotlib.pyplot as plt

# Compare the tuned GB model with the original models
summary_data_tuned = summary_data.copy() # Start with the original summary
summary_data_tuned.append({
    'Model': 'Gradient Boosting (Tuned)',
    'Accuracy': classification_report(y_test, y_pred_gb_tuned,___
→output_dict=True)['accuracy'],
```

```
'Precision (Weighted Avg)': classification_report(y_test, y_pred_gb_tuned,__
Output_dict=True)['weighted avg']['precision'],
    'Recall (Weighted Avg)': classification_report(y_test, y_pred_gb_tuned,__
Output_dict=True)['weighted avg']['recall'],
    'F1-Score (Weighted Avg)': classification_report(y_test, y_pred_gb_tuned,__
Output_dict=True)['weighted avg']['f1-score'],
    'AUC Score': roc_auc_score(y_test, y_prob_gb_tuned)
})

summary_df_tuned = pd.DataFrame(summary_data_tuned)
print("===== Model Comparison Summary (Including Tuned GB) =====")
display(summary_df_tuned)
```

==== Model Comparison Summary (Including Tuned GB) =====

```
Model Accuracy Precision (Weighted Avg) \
        Logistic Regression 0.989605
                                                      0.989781
0
1
              Random Forest 0.962578
                                                      0.962658
              Decision Tree 0.956341
                                                      0.956462
          Gradient Boosting 0.962578
                                                      0.962356
3
  Gradient Boosting (Tuned) 0.966736
                                                      0.966559
  Recall (Weighted Avg) F1-Score (Weighted Avg) AUC Score
0
               0.989605
                                        0.989644 0.999866
1
               0.962578
                                        0.962065 0.987112
                                        0.956396
2
               0.956341
                                                  0.944825
3
               0.962578
                                        0.962381
                                                  0.991639
4
               0.966736
                                        0.966561
                                                  0.993472
```

0.16.4 AUC Score Comparison Across Models

```
[76]: # Visualize AUC scores
plt.figure(figsize=(10, 6))
sns.barplot(x='Model', y='AUC Score', data=summary_df_tuned)
plt.title('AUC Score Comparison Across Models')
plt.ylabel('AUC Score')
plt.ylim(0, 1)
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.show()
```


0.17 Influence_Probability on logistics regression and gradient boost with tuning

[77]:		res['Influence	_Probability'] = lr_model.p	oredict_proba(X	()[:, 1]
	featu	ires				
[77]:		Gold_Cust_ID	Spend_Before	Spend_After	Units_Before	Units_After \
	0	213	214.450000	243.400000	5.000000	10.000000
	1	801	61.980000	0.000000	2.000000	0.000000
	2	5038	208.220000	0.000000	4.000000	0.000000
	3	16010	234.970000	679.980000	3.000000	2.000000
	4	19413	1884.910000	0.000000	5.000000	0.000000
		•••	•••	•••		
	1598	35723689	102.960000	55.230000	4.000000	7.000000
	1599	35766496	142.180000	235.350000	2.000000	8.000000
	1600	35947203	8.770000	0.000000	3.000000	0.00000
	1601	36054508	104.970000	124.980000	3.000000	2.000000
	1602	36924552	-45.020000	0.000000	2.000000	0.000000
		Coupon_Usage_	Rate Online_ S	Store_Rate Ta	rget Influenc	e_Probability
	0	0.00	0000	0.000000	0	0.00001
	1			0.000000	0	0.00000
	2			0.000000	0	0.000000
	3	0.00	0000	0.200000	1	1.000000
	4	0.07	1429	0.000000	0	0.000000

```
0
      1598
                      0.000000
                                          0.000000
                                                                           0.00000
      1599
                      0.727273
                                          0.090909
                                                          1
                                                                           1.000000
                                                          0
      1600
                      0.000000
                                          0.000000
                                                                           0.00000
      1601
                      0.000000
                                          0.894737
                                                          0
                                                                           0.109835
      1602
                      0.000000
                                          0.000000
                                                          1
                                                                           1.000000
      [1603 rows x 9 columns]
[78]: features['Influence_Probability_GB_Tuned'] = best_gb_model.predict_proba(X)[:,__
       →1]
      display(features)
            Gold_Cust_ID
                           Spend_Before
                                         Spend_After
                                                       Units_Before
                                                                     Units_After
     0
                     213
                             214.450000
                                           243.400000
                                                            5.000000
                                                                         10.000000
     1
                     801
                              61.980000
                                             0.00000
                                                            2.000000
                                                                          0.00000
     2
                    5038
                             208.220000
                                             0.000000
                                                            4.000000
                                                                          0.00000
     3
                             234.970000
                                                            3.000000
                   16010
                                           679.980000
                                                                          2.000000
     4
                   19413
                            1884.910000
                                             0.000000
                                                            5.000000
                                                                          0.00000
     1598
                35723689
                             102.960000
                                            55.230000
                                                            4.000000
                                                                          7,000000
     1599
                35766496
                             142.180000
                                           235.350000
                                                            2.000000
                                                                          8.000000
     1600
                35947203
                               8.770000
                                             0.000000
                                                            3.000000
                                                                          0.00000
     1601
                36054508
                             104.970000
                                           124.980000
                                                            3.000000
                                                                          2.000000
                             -45.020000
                                             0.000000
     1602
                36924552
                                                            2.000000
                                                                          0.00000
                                Online Store Rate
                                                    Target
                                                             Influence Probability
            Coupon_Usage_Rate
                     0.000000
                                          0.00000
                                                          0
     0
                                                                           0.000001
                                                          0
     1
                     0.000000
                                         0.00000
                                                                           0.00000
     2
                     0.000000
                                         0.00000
                                                          0
                                                                           0.00000
     3
                     0.00000
                                         0.200000
                                                          1
                                                                           1.000000
     4
                                          0.00000
                                                          0
                                                                           0.00000
                     0.071429
                                                          0
     1598
                     0.000000
                                         0.00000
                                                                           0.000000
     1599
                     0.727273
                                          0.090909
                                                          1
                                                                           1.000000
                                                          0
     1600
                     0.000000
                                          0.00000
                                                                           0.00000
     1601
                     0.000000
                                          0.894737
                                                          0
                                                                           0.109835
                     0.000000
                                          0.00000
                                                                           1.000000
     1602
                                                          1
            Influence_Probability_GB_Tuned
                                   0.093891
     0
     1
                                   0.002597
     2
                                   0.001972
     3
                                   0.983393
                                   0.001048
     4
```

0.013048

1598

```
15990.97201616000.00419816010.02653316020.986110
```

[1603 rows x 10 columns]

0.18 few more visualization on Influence_Probability


```
[80]: # Distribution of both influence probabilities

plt.figure(figsize=(12, 6))

sns.histplot(data=features, x='Influence_Probability', label='Logistic_

ARegression', kde=True, bins=30, color='skyblue')

sns.histplot(data=features, x='Influence_Probability_GB_Tuned', label='Gradient_

Boosting (Tuned)', kde=True, bins=30, color='salmon')

plt.title('Distribution of Influence Probabilities')
```

```
plt.xlabel('Influence Probability')
plt.ylabel('Count')
plt.legend()
plt.show()
```


0.18.1 Compare correlations of the two probabilities with the target

```
[82]: print("Correlation of Influence Probability (LR) with Target:", 

features['Influence_Probability'].corr(features['Target']))

print("Correlation of Influence Probability (GB Tuned) with Target:", 
features['Influence_Probability_GB_Tuned'].corr(features['Target']))
```

Correlation of Influence Probability (LR) with Target: 0.993999256156432 Correlation of Influence Probability (GB Tuned) with Target: 0.9770610384972637

```
[83]: # Visualize the correlations using a heatmap for selected columns
correlation_matrix = features[['Influence_Probability',__

'Influence_Probability_GB_Tuned', 'Target']].corr()

plt.figure(figsize=(6, 4))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f",__

ilinewidths=.5)
plt.title('Correlation Heatmap: Influence Probabilities and Target')
plt.show()
```

