Numerical Simulation of Time-Resolved Photoluminescence to Improve Solar Cell Performance

Bowling Green State University, Dept. of Physics and Astronomy Patrick Knowles and Marco Nardone

ABSTRACT

- Recombination of electron-hole pairs is one of the primary mechanisms that limit solar cell performance.
- Time-Resolved Photoluminescence (TRPL) is a useful technique for studying recombination.
- Cd(Se,Te) solar cells are a leading thin-film, commercial technology that can be improved by understanding where recombination is occurring in the devices
- Here we explore how well analytical models can account for TRPL data.
- We employ numerical simulation to analyze TRPL at various light intensities, material thicknesses, and charge carrier mobilities.
- Comparison of numerical and analytical models indicates that simple analytical models are more effective at higher mobility.
- Analytical models should be improved to reduce the discrepancies at low mobility.

INTRODUCTION

- Climate change and the worlds violent addiction to non-renewable forms of energy require solutions.
- Non-renewable resources are predicted to be obsolete with in this century.¹
- Solar energy has increased in efficiency³ (see Fig. 1) and affordability allowing the USA to go from just 0.34 Gigawatts in 2008 to 97.2 Gigawatts today.
- As of today, only 3% of the United States electricity comes from solar photovoltaics and concentrating solar thermal power.²
- Our focus is on solar technology and how theoretical calculations can help improve the efficiency of these energy solutions.
- Numerical simulation of TRPL help us determine the electron-hole pair lifetime (τ) at various light intensities and material properties.
- A challenge with TRPL data is determining where in the device most of the recombination is occurring and a lack of accurate analytical models.⁴
- Analytical models are more accessible to experimentalists, so we compared our numerical model results to the analytical estimates to see how well they matched.
- If the predictions match the numerical calculations, then experimentalist can deduce material quality through simpler means.

Fig. 1. chart of the highest confirmed conversion efficiencies for research cells for a range of photovoltaic technologies, plotted from 1976 to the present.

MATERIALS AND METHODS

TRPL Simulation

Double Heterostructures are when a semiconductor material is grown into a "sandwich" with a larger band gap material on both sides. These structures are very useful for optoelectrical studies due to confinement of charge carriers in the semiconductor. For this reason, a Al₂O₃/Cd(Se,Te)/Al₂O₃ heterostructure were used for TRPL simulations.

Fig. 2. Simulated electron-hole pair generation rate (cm⁻³ s⁻¹) for a $Al_2O_3/Cd(Se,Te)/Al_2O_3$ heterostructure under 1-sun light intensity and 2-photon excitation (2PE). Model considers a 10-micron diameter cylindrical grain with front (S_f), back (S_b), and grain boundary recombination (S_{gb}).

- Laser pulse time of 0.3 ps at 1.1 MHz frequency.
- Excitation wavelength for 1PE is 640nm and 2PE is 1120nm.
- Excitation power is 0.001-100mW for 1PE and 3-100mW for 2PE.
- Time-dependent Poisson and continuity equations solved using the finite element method in COMSOL Multiphysics[®]. 3D axi-symmetric model domains.
- Recombination mechanisms included radiative, nonradiative (Shockley Read Hall) in the bulk and at interfaces.
- Considered field screening and charge redistribution effects.
- PL intensity calculated by integrating the radiative recombination rate over the volume of the illuminated region:

Data Analysis

- PL decays curves were fit at the most linear state to determine τ .
- Obtained values plotted in Excel and OriginPro with other independent variables.
- Numerical results compared to analytical estimates (see Fig. 3).

Fig. 3. Process of determining lifetime (τ) by fitting TRPL simulations, collecting data, and comparing numerical (solid curves) to analytical calculations (dashed curves).

RESULTS

- Numerical and analytical calculations match reasonably well (Fig. 4).
- It appears that, at low mobility (μ), the analytical equation [Eq. (1)] is less reliable, but further analysis is required to quantify the discrepancies.
- TRPL lifetime becomes less dependent on thickness and surface recombination velocity (S_{fs}) as mobility decreases because most of the recombination occurs in the bulk.
- For any mobility, TRPL lifetime is less dependent on thickness as S_{fs} decreases.
- Bulk lifetime (τ_{SRH}) can be estimated by the y-intercept of the data.

Fig. 4. Plots of $1/\tau$ vs. Cd(Se,Te) thickness for numerical (solid curves) and analytical (dashed curves) calculations at various bulk lifetimes (τ_{SRH}), mobilities (μ), and front surface recombination velocities (S_{fs}). TRPL simulations are for 2-photon excitation with a laser power of 3 μ W.

CONCLUSIONS

- TRPL simulations can be used to better understand recombination in photovoltaic materials and devices.
- Analytical models can provide reasonable estimates, but additional work is required to quantify discrepancies and improve accuracy.

REFERENCES

(1) *MindTheFyouture*. MET Group. (n.d.). Retrieved April 14, 2022, from https://group.met.com/en/mind-the-fyouture/mindthefyouture (2) Péan, E. V., Dimitrov, S., Castro, C. S. D., & Davies, M. L. (2020, November 23). *Interpreting time-resolved photoluminescence of Perovskite Materials*. Physical

Chemistry Chemical Physics. Retrieved April 14, 2022, from

https://pubs.rsc.org/en/content/articlelanding/2020/cp/d0cp04950f (3) Best research-cell efficiency chart. NREL.gov. (n.d.). Retrieved April 14, 2022, from https://www.nrel.gov/pv/cell-efficiency.html

(4) J. R. Fox, D. Kuciauskas, D. S. Albin, and M. Nardone, "Numerical Analysis of Time Resolved Photoluminescence for Alumina/Cd (Se,Te) Double Heterostructures," in 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), 2021, pp. 0551–0556...