	111	011	5
(Tt)		111	3
The hasis			7

The basic computation in the DIT FFT algorithm is illustrated in Fig. 6.9, which is called a butterfly because the shape of its flow graph.

The symmetric state of the symmetric state

The symmetry and periodicity of W_N can be exploited to obtain further reductions in computation. The multiplications by $W_N^{0} = 1$, $W_N^{N/2} = -1$, $W_N^{N/4} = j$ and $W_N^{3N/2} = -j$ can be avoided in the DFT computation process in order to save the computational complexity.

Fig. 6.9 Basic Butterfly Flow Graph for the Computation in the DIT FFT Algorithm

In the 8-point DIT FFT flow graph shown in Fig. 6.8, W_2^0 , W_2^4 and W_2^8 are equal to 1, and hence these scale factors do not actually represent complex multiplications. Also, since W_2^0 , W_2^4 , and W_2^5 equal to -1, they do not represent a complex multiplication, where there is just a change in sign Further. W_1^4 , W_3^4 , W_2^6 and W_8^6 are j or -j, they need only sign changes and interchanges of real and imaginary parts, even though they