

Université Paris Cité

Projet mathématiques - Informatique

Sous-groupes de $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$

Kevin Garnier Charly Martin Avila

> Dirigé par Olivier Brunat

L3 Mathématiques - Informatique Année 2023

Table des matières

1	Introduction	4
2	Quelques simplifications du problème	5
	2.1 Décomposition de n en éléments irréductibles	5
	2.2 Simplification des sous-groupes	6
3	Matrices à coefficients entier et forme normales de Hermite	7
	3.1 Matrices à coefficients entier	7
	3.2 Formes normales de Hermite	8
4	Génération et énumération des sous-groupes	11
	4.1 Génération des sous-groupes	11
	4.2 Énumération des sous-groupes	13
5	Génération du treillis	14
6	Quelques résultats	15
	6.1 Pour $n = 2$	15
	6.2 Pour $n = 4$	15
	6.3 Pour $n = 20 \dots $	15
7	Bibliographie	16

1 Introduction

Il est très facile de décrire tous les sous-groupes d'un groupe cyclique d'ordre n: il y en a exactement un par diviseur positif de n. Pourtant, étonnamment, décrire tous les sous-groupes d'un groupe abélien est en général un problème difficile.

Dans ce projet, nous nous se proposons de considérer cette question pour le groupe $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ qui, de nos jour n'a pas l'air d'avoir été traitée.

D'un point de vue théorique, nous mettrons en avant la générations et la caractérisations de sous-groupes grâce aux vecteurs colonne des matrices à coefficients entier et en particulier aux formes normales de Hermite. Nous montrerons aussi une formule permettant de les compter.

D'un point de vue pratique, nous créerons un programme OCAML capable de générer les sous-groupes de $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ ainsi que leur treillis à partir d'un entier donné en paramètres.

2 Quelques simplifications du problème

2.1 Décomposition de n en éléments irréductibles

Nous pouvons tout d'abord simplifier le problème aux cas où $n = p^m$ avec p un nombre premier et $m \in \mathbb{N}$. En effet la proposition suivante nous garantie que le résultat est isomorphe

Proposition 1. Soit $n = \prod_{i=1}^{k} p_i^{\alpha_i}$, avec p_i des nombres premiers, alors

$$(\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}) \simeq \prod_{i}^{k} (\mathbb{Z}/p_{i}^{\alpha_{i}}\mathbb{Z})^{2}$$

Démonstration. Soit $n = \prod_{i=1}^{k} p_i^{\alpha_i}$. Par le théorème des restes chinois, on a

$$\mathbb{Z}/n\mathbb{Z} \simeq (\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}) \times \cdots \times (\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z})$$

En particulier,

$$\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \simeq (\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}) \times \cdots \times (\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}) \times (\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}) \times \cdots \times (\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z})$$
$$\simeq (\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z})^2 \times \cdots \times (\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z})^2$$

En pratique, pour décomposer en entier en facteurs irréductibles, nous avons utilisé la procédure de ρ -Pollard pour obtenir un diviseur de n:

```
fonction rho_pollard P n x y k i d

Si d <> 1:
Retourne d

Sinon:

x = P(x) mod n

d = pgcd(|y - x|, n)

Si i = k:

Alors Retourne rho_pollard loop P n x x 2k (i + 1) d

Sinon Retourne rho_pollard P n x y k (i + 1) d
```

Puis nous répétons la procédure jusqu'à que les diviseurs soient premier.

En triant et en regroupant les nombres premier, nous obtenons donc les différents $p_i^{\alpha_i}$.

Dans notre implémentation, $P(X) = X^2 - 1$ et n n'est pas premier.

2.2 Simplification des sous-groupes

Proposition 2.

$$\mathbb{Z}^2/n\mathbb{Z} \times n\mathbb{Z} \simeq \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$

Démonstration. Soit

$$\varphi: \mathbb{Z}^2 \to \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$
$$(a,b) \mapsto (\bar{a},\bar{b})$$

 φ est surjective par définition de la classe d'équivalence de a et b. Montrons que $\ker \varphi = n\mathbb{Z} \times n\mathbb{Z}$.

$$(a,b) \in \ker \varphi$$

$$\operatorname{ssi} \varphi(a,b) = (\bar{0},\bar{0})$$

$$\operatorname{ssi} (\bar{a},\bar{b}) = (\bar{0},\bar{0})$$

$$\operatorname{ssi} \bar{a} = \bar{0} \text{ et } \bar{b} = \bar{0}$$

$$\operatorname{ssi} a \in n\mathbb{Z} \text{ et } b \in n\mathbb{Z}$$

$$\operatorname{ssi} (a,b) \in n\mathbb{Z} \times n\mathbb{Z}$$

Ainsi par le premier théorème d'isomorphisme, on a

$$\mathbb{Z}^2/n\mathbb{Z} \times n\mathbb{Z} \simeq \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$

Ainsi le problème se résout à trouver les sous-groupes G de \mathbb{Z}^2 tels que $H=\begin{pmatrix} a & c \\ b & d \end{pmatrix}$ et $n\mathbb{Z}\times n\mathbb{Z}\subseteq G=\langle \begin{pmatrix} \bar{a} \\ \bar{b} \end{pmatrix}, \begin{pmatrix} \bar{c} \\ \bar{d} \end{pmatrix} \rangle$

3 Matrices à coefficients entier et forme normales de Hermite

Nous avons vu dans la section précédente qu'il était possible de caractériser les sous-groupe de $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ par une matrice $H = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$. Cependant, ces matrices ne sont pas uniques. C'est pourquoi, nous allons utiliser les formes normales d'Hermite. Énonçons d'abord une proposition les matrices à coefficients entier qui nous sera forte utile par la suite.

3.1 Matrices à coefficients entier

Proposition 3. Soient $A \in \mathcal{M}_{m,n}(\mathbb{Z})$ et $Q \in GL_n(\mathbb{Z})$, alors

$$\operatorname{Im} AQ = \operatorname{Im} A$$

Démonstration. Soit $y \in \text{Im } AQ$, il existe $x \in \mathbb{Z}^n$ tel que y = AQx. Or,

$$y = AQx$$

$$\implies y = A(Qx)$$

$$\implies y \in \text{Im } A$$

Donc Im $AQ \subseteq \text{Im } A$. Soit $y \in \text{Im } A$. Il existe $x \in \mathbb{Z}^n$ tel que y = Ax. Cherchons $z \in \mathbb{Z}^n$ tel que y = Ax = AQz

$$Ax = AQz$$

$$\implies A(x) = A(Qz)$$

$$\implies x = Qz$$

$$\implies Q^{-1}x = z \text{ (car } B \in GL_n(\mathbb{Z}))$$

Donc il existe bien un $z\in\mathbb{Z}^n$ tel que ABz=y. Donc $y\in\operatorname{Im}AQ.$ D'où $\operatorname{Im}AQ=\operatorname{Im}A$

3.2 Formes normales de Hermite

Nous allons désormais énoncer la définition de la forme normale de Hermite.

Définition 4. Soit $A \in \mathcal{M}_{m,n}(\mathbb{Z})$. Alors il existe une unique matrice échelonnée réduite suivant les colonnes $H \in \mathcal{M}_{m,n}(\mathbb{Z})$ telle qu'il existe $Q \in GL_n(\mathbb{Z})$ avec H = AQ. La matrice H s'appelle la forme normale de Hermite de A.

Démonstration. Nous supposerons l'unicité admise, l'algorithme suivant nous montre son existence.

```
Fonction hermite_aux(A, i):
       Pour chaque j allant de i à m :
             Sii = j:
                  Si a_{ij} < 0 : réaliser l'opération C_j \leftarrow -C_j
                  Si a_{ij} < 0 : réaliser l'opération C_i \leftarrow -C_j
                  k,r = \text{div\_euclide}(a_{ij}, a_{ii})
                  réaliser l'opération C_j \leftarrow C_j - kC_i
       Si \forall i < j <= m, a_{ij} = 0:
             Réduire à gauche du pivot
             Retourner A
11
12
       d_k = \min(\{ a_{ij} \mid i \le j \le n a_{ij} \ne 0 \})
       Permuter C_k avec C_i
14
       hermite_aux(A, i)
1.5
16
  Fonction hermite(A):
       Pour chaque i allant de A à n :
18
             d_k = \min(\{ a_{ij} \mid i \le j \le n a_{ij} \ne 0 \})
             Si d = None:
                  Continuer boucle
             Sinon:
22
                  Permuter C_k avec C_i
                  A = hermite_aux(A, i)
24
       vérifier signe des pivots de A
       Retourner A
```

Montrons la terminaison de l'algorithme. La fonction hermite_aux se repose sur l'algorithme d'euclide. En effet, pour tout i < j < m, on réalise la division euclidienne de a_{ij} par a_{ii} .

Si à la fin de la boucle il existe j tel que $a_{ij} < a_{ii}$, alors on recommence en permutant C_j et C_i et a_{ij} devient notre nouveau pivot.

Ainsi, par la correction de l'algorithme d'Euclide, il existe un rang N où tous les a_{ij} avec j > i sont tous nuls. Ainsi la fonction hermite_aux se termine. La fonction hermite étant seulement une boucle, elle se termine également. Donc l'algorithme se termine bien.

Montrons la correction de l'algorithme. La fonction hermite_aux se repose sur l'algorithme d'Euclide en utilisant des opérations élémentaires sur les matrices.

Par la correction de l'algorithme d'Euclide, nous pouvons en déduire que pour tout j > i, $a_{ij} = 0$.

De plus, avant de retourner, on réalise la division euclidienne des a_{ij} par a_{ii} avec 0 < j < i.

Donc les a_{ij} sont les restes des divisions euclidiennes et sont donc réduit au maximum.

On réalise ces opération sur toutes les lignes sans jamais revenir sur les lignes précédentes. Enfin, on vérifie le signe de pivot et on change la colonne de signe si nécessaire.

Ainsi la matrice obtenue est bien échelonnée réduite, il s'agit donc d'une forme normale de Hermite, ce qui prouve donc son existence.

Exemple 5.

$$A = \begin{pmatrix} 2 & 1 \\ 4 & 10 \\ 5 & 13 \\ 13 & 12 \end{pmatrix} \xrightarrow{C_2 \leftrightarrow C_1} \begin{pmatrix} 1 & 2 \\ 10 & 4 \\ 13 & 5 \\ 12 & 13 \end{pmatrix} \xrightarrow{C_2 \leftarrow C_2 - 2C_1} \begin{pmatrix} 1 & 0 \\ 10 & -16 \\ 13 & 3 \\ 12 & -14 \end{pmatrix} \xrightarrow{C_2 \leftarrow -C_2} \begin{pmatrix} 1 & 0 \\ 10 & 16 \\ 13 & -3 \\ 12 & 14 \end{pmatrix} = H$$

Remarque 6. Il existe des algorithmes beaucoup plus efficace pour calculer la forme normale de Hermite comme l'algorithme de de Domich & Ai (1989) qui réalise les calculs modulo le déterminant de A ou l'algorithme de Micciancio-Warinshi. Cependant ces algorithmes étant plus ou moins compliqué, le choix ici a été de faire nous même un algorithme à partir de la méthode naïve employée lors du calcul de la forme normale de Hermite à la main.

Définition 7. Soient $A \in \mathcal{M}_{m,n}$, $B \in \mathcal{M}_{m,p}$ deux formes normales de Hermite

 $A \sim B$ ssi les colonnes non nulles de A sont les mêmes que les colonnes non nulles de B.

Nous allons énoncer quelques résultats utiles des formes normales de Hermite. Tout d'abord, la proposition suivante nous permettra de réduire nos forme de matrices dont les colonnes génèrent un sous groupe de \mathbb{Z}^2

Proposition 8. Soit $A \in \mathcal{M}_{m,n}(\mathbb{Z})$ et soit H sa forme normale d'Hermite. Alors,

$$\operatorname{Im} A = \operatorname{Im} H$$

Démonstration. C'est une application de la proposition 3 avec H = AQ avec $Q \in GL_n(\mathbb{Z})$

Ainsi les colonnes de la forme normale de Hermite H d'une matrice A génèrent le même sous-groupe que les colonnes de A.

Nous n'avons donc plus qu'à trouver des matrices de la forme $H = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$ telle que

$$n\mathbb{Z} \times n\mathbb{Z} \subseteq \langle \begin{pmatrix} \bar{a} \\ b \end{pmatrix}, \begin{pmatrix} 0 \\ \bar{c} \end{pmatrix} \rangle$$

Proposition 9. Soient $A, B \in \mathcal{M}_{m,n}(\mathbb{Z})$.

Soit H_A (resp. H_B) la forme normale de Hermite de A (resp. B). Alors,

$$H_A = H_B \Leftrightarrow \operatorname{Im} A = \operatorname{Im} B$$

 $D\acute{e}monstration$. Supposons que $H_A=H_B$. Par la proposition 8, on a

$$\operatorname{Im} A = \operatorname{Im} H_A = \operatorname{Im} H_B = \operatorname{Im} B$$

Réciproquement, supposons que $\operatorname{Im} A = \operatorname{Im} B$. Par la proposition 8, on a

$$\operatorname{Im} A = \operatorname{Im} H_A = \operatorname{Im} H_B = \operatorname{Im} B$$

Donc les vecteurs colonnes de H_A qui génèrent ${\rm Im}\, H_A$ sont les mêmes que ceux de H_B qui génèrent ${\rm Im}\, H_B$, d'où $H_A=H_B$

Cette proposition nous affirme donc qu'en traitant seulement les formes normales de Hermite, nous pourrons générer tous les sous-groupes de \mathbb{Z}^2

La proposition suivante, va nous être utile pour trouver la bonne forme des matrices de Hermite ainsi que la génération du treillis.

Proposition 10. Soient $A, B \in \mathcal{M}_{m,n}$ deux formes normales de Hermite et soit G (resp. H) le groupe engendré par les colonnes de A (resp. B). Alors,

$$G \cup H = G \Leftrightarrow hermite(A|B) \sim A$$

où hermite(A|B) est la forme normale de hermite de la matrice augmentée (A|B).

Démonstration. Supposerons que $G \cup H = G$. Alors $H \subseteq G$.Donc

$$\forall x \in H, \exists y \in G, \exists \lambda \in \mathbb{Z}, x = \lambda y$$

En particulier la base de H est une combinaison linéaire de la base de G. D'où

$$hermite(A|B) = (A|0) \sim A$$

Réciproquement, soit $hermite(A|B) \sim A$. Alors par définition de la relation d'équivalence, hermite(A|B) = (A|0). Ainsi les colonnes de B sont des combinaisons linéaire des colonnes de A, c'est-à-dire la base de B est une combinaison linéaire de la base de B.

D'où
$$H \subseteq G$$
 et $G \cup H = G$

Nous avons désormais tous les outils à notre disposition pour démontrer la forme voulue des matrices ainsi que la formule permettant de compter le nombre de sous-groupe de $\mathbb{Z}^2/n\mathbb{Z} \times n\mathbb{Z}$

4 Génération et énumération des sous-groupes

Nous allons voir dans cette section la forme des matrices dont les vecteurs colonne génèrent les sous-groupes de $\mathbb{Z}^2/n\mathbb{Z} \times n\mathbb{Z}$, la formule permettant de les compter ainsi que quelques propositions sur leurs caractéristiques. Nous avons montré dans la section 2.1 que nous pouvons nous restreindre aux cas où $n = p^m$ avec p un nombre premier et $m \in \mathbb{N}$.

Ainsi dans cette section, nous supposerons que $n = p^m$.

4.1 Génération des sous-groupes

Commençons tout d'abord par montrer la forme des matrices dont les vecteurs colonne génèrent les sous-groupes de $\mathbb{Z}^2/p^m\mathbb{Z} \times p^m\mathbb{Z}$. Dans la section 2.2, nous avons montré que les sous-groupes de \mathbb{Z}^2 recherché sont les sous groupes G tels que $p^m\mathbb{Z} \times p^m\mathbb{Z} \subseteq G$, c'est-à-dire

$$G \cup p^m \mathbb{Z} \times p^m \mathbb{Z} = G$$

Par la proposition 10, cela revient à trouver les matrices $H = \begin{pmatrix} \alpha & 0 \\ \beta & \gamma \end{pmatrix}$ telles que

$$(H|Mat(p^m\mathbb{Z}\times p^m\mathbb{Z})) = \begin{pmatrix} \alpha & 0 & p^m & 0 \\ \beta & \gamma & 0 & p^m \end{pmatrix} \sim \begin{pmatrix} \alpha & 0 \\ \beta & \gamma \end{pmatrix} = H$$

Théorème 11. Les seules matrices dont les colonnes génèrent un sous-groupe de $\mathbb{Z}^2/p^m\mathbb{Z} \times p^m\mathbb{Z}$ sont les matrices de la forme

$$H = \begin{pmatrix} p^a & 0 \\ j & p^b \end{pmatrix} avec \ a \le m, \ b \le m \ et \ j < p^b$$

ou

$$H = \begin{pmatrix} p^a & 0 \\ jp^k & p^b \end{pmatrix} avec \ a \le m, \ b \le m, \ k \le m \ et \ j < p^{b-k}$$

Démonstration. Montrons tout d'abord que ces matrices sont les seules qui génèrent les sous-groupe de $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

Supposons qu'il existe H, H' deux formes normales de Hermite qui génèrent G un sous-groupe de $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. Alors, on a Im $H = \operatorname{Im} H'$ et par la proposition 9, H = H'.

Nous pouvons donc créer une classe d'équivalence pour la relation \sim où la matrice de hermite est la représentante de ces classes.

Montrons désormais l'existence de telles matrices.

Soit $H = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$ On cherche à réaliser des operations élémentaires telles que

$$A = \begin{pmatrix} \alpha & 0 & p^m & 0 \\ \beta & \gamma & 0 & p^m \end{pmatrix} \longrightarrow \begin{pmatrix} \alpha & 0 & 0 & 0 \\ \beta & \gamma & 0 & 0 \end{pmatrix}$$

Annuler $a_{13} = a_{24} = p^m$ nécessite les conditions suivante sur α et β :

$$\begin{cases} \alpha = p^a \text{ avec } a \le m \\ \gamma = p^b \text{ avec } a \le m \end{cases}$$

Nous pouvons donc réaliser les opérations $C_3 \leftarrow C_3 - p^{m-a}C_1$ et $C_4 \leftarrow C_4 - p^{m-b}C_2$. Ceci nous donne donc :

$$\begin{pmatrix} \alpha & 0 & p^m & 0 \\ \beta & \gamma & 0 & p^m \end{pmatrix} \xrightarrow{C_3 \leftarrow C_3 - p^{m-a} C_1} \begin{pmatrix} \alpha & 0 & 0 & 0 \\ \beta & \gamma & -p^{m-a} \beta & 0 \end{pmatrix}$$

Nous cherchons désormais β tel que $p^b \mid \beta p^{m-a}$.

Tout d'abord, par la définition de la forme normale de Hermite, $\beta < p^b$.

Nous pouvons isoler deux cas en fonction de a et b:

- Si $a+b \le m$, alors $b \le m-a$ et $p^b \mid p^{m-a}$ et donc $p^b \mid \beta p^{m-a}$.
- Sinon $m \le a + b \le 2m \implies 0 \le a + b m \le n$.

On pose k = a + b - m et on a donc $0 \le k \le m$.

On pose $\beta = ip^k$ avec $0 \le i \le p^{b-k}$. On a bien $\forall i, \beta = ip^k \le p^b$.

De plus $p^b \mid ip^k p^{m-a}$ car $p^b \mid p^k p^{m-a}$ car b = k + m - a

Ainsi, dans les deux cas, nous pouvons annuler a_{23} et nous obtenons bien la matrice suivante en faisant l'operations élémentaire. $\begin{pmatrix} \alpha & 0 & 0 & 0 \\ \beta & \gamma & 0 & 0 \end{pmatrix}$.

Dans le premier cas, nous obtenons en posant $j = \beta < p^b$

$$\begin{pmatrix} p^a & 0 & 0 & 0 \\ j & p^b & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} p^a & 0 \\ j & p^b \end{pmatrix}$$

Dans le deuxième cas, nous obtenons en posant $j = i < p^{b-k}$

$$\begin{pmatrix} p^a & 0 & 0 & 0 \\ jp^k & p^b & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} p^a & 0 \\ jp^k & p^b \end{pmatrix}$$

Ce qui démontre bien l'existence de ces matrices.

Corollaire 12. Soit la suite $(A_k)_{0 \le k \le n}$ telle que

$$A_0 = \{ (a,b) \mid a+b \le m \}$$

$$A_k = \left\{ (a,b) \mid a \le m, b \le m \\ a+b = m+k \right\}$$

Alors, l'ensemble des matrices du théorème, c'est-à-dire, les matrices dont les colonnes génèrent les sous-groupes de $\mathbb{Z}^2/p^m\mathbb{Z} \times p^m\mathbb{Z}$ est

$$M = \bigsqcup_{k=0}^{m} M_k$$

où

$$M_k = \left\{ \begin{pmatrix} p^a & 0 \\ jp^k & p^b \end{pmatrix} \middle| \begin{array}{l} (a,b) \in A_k \\ 0 \le j < p^{b-k} \end{array} \right\}$$

Proposition 13.

Exemple 14 (Cas pour n = 2). On a $n = 2 = 2^1$ donc m = 1.

Calculons les matrices appartenant à
$$M_0 = \left\{ \begin{pmatrix} p^a & 0 \\ j & p^b \end{pmatrix} \middle| \begin{array}{l} (a,b) \in A_0 \\ 0 \le j < p^b \end{array} \right\}$$

On a $A_0 = \{ (a,b) \mid a+b \le 1 \} = \{ (0,0), (0,1), (1,0) \}$. Ainsi

$$M_0 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

Calculons les matrices appartenant à
$$M_1 = \left\{ \begin{pmatrix} 2^a & 0 \\ 2j & 2^b \end{pmatrix} \middle| \begin{array}{l} (a,b) \in A_1 \\ 0 \le j < 2^{b-1} \end{array} \right\}$$
.

On a
$$A_1 = \left\{ (a, b) \middle| \begin{array}{l} a \le 1, b \le 1 \\ a + b = 2 \end{array} \right\} = \{ (1, 1) \}.$$
 Ainsi

$$M_0 = \left\{ \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \right\}$$

4.2 Énumération des sous-groupes

5 Génération du treillis

6 Quelques résultats

- 6.1 Pour n=2
- 6.2 Pour n = 4
- 6.3 Pour n = 20

7 Bibliographie

- [1] COSTE Michel, Algèbre linéaire sur les entiers, Mars 2018
- [2] TODO livre algo
- [3] PERNET Clément, Calcul de formes normales matricielles : de l'algorithmique à la mise en pratique, Séminaire SIESTE, ENS-Lyon, 12 février 2013
- [4] BERHURY Grégory, Algèbre le grand combat : Cours et exercices, 2^e édition. Paris : Calvage & Mounet, 2020. 1215 p. (Mathématiques en devenir)