Hegers s.

	1–7 сен.	1	Электростатическое поле в вакууме. Поле диполя. Теорема Гаусса.	$^{0}1.1$	1.14	1.7
				$^{0}1.2$	1.21	1.10
				$^{0}1.3$	T1	1.16
					1.22/23	1.17

1.20

⁰1.1. Вычислить отношение сил электростатического отталкивания и гравитационного притяжения двух протонов.

Ompon. 7'8.19,

12°2.

°1.2. Оцените среднюю концентрацию электрических зарядов в атмосфере, если известно, что напряжённость электрического поля на поверхности Земли равна 100 В/м, а на высоте h=1,5 км она падает до 25 В/м. Вектор E направлен к центру Земли. Ответ выразить в элементарных зарядах на см³.

Dano.

E. = 100 J.

E. = 25 J.

h = 1500 m

Pennehul's

EIN)
h

Seums

Begenne parmoione gurrege e serobarun 2° Momon bennoper É repre up nobeprhame:

npupabneur (E, -Eh) = 4+κgh = = = = 100-25 4+κh = 4+9.05.1500 = 4,4.10 = 43

Ombun: 4,4.10 = 19 km

 0 **1.3.** Используя формулу для напряжённости поля точечного диполя с дипольным моментом \vec{p} , найдите напряжённость поля на оси диполя $(\alpha=0)$ и в перпендикулярном направлении $(\alpha=\pi/2)$.

$$E = E_{1} - E_{1} = \frac{\kappa q}{v_{1}^{2}} - \frac{\kappa q}{(v_{1} + v_{2})^{2}} = \kappa q \left(\frac{1}{v_{1}^{2}} - \frac{1}{(v_{1} + v_{2})^{2}} \right) = \kappa q \cdot \frac{(v_{1} + v_{2})^{2} - v_{2}^{2}}{v_{1}^{2} - (v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2} - v_{2}^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2} - v_{2}^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2} - v_{2}^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2} - v_{2}^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2} - v_{2}^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2} - v_{2}^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2} - v_{2}^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2} - v_{2}^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2} - v_{2}^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2} - v_{2}^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2} - v_{2}^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2} - v_{2}^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2} - v_{2}^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2} - v_{2}^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2} - v_{2}^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2} - v_{2}^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2}}{(v_{1} + v_{2})^{2}} = \kappa q \cdot \frac{(v_{1} + v_{2})^{2}}{(v_{1} +$$

=
$$V_{2}$$
 $\frac{(v_{1}+v_{2}-v_{1})(v_{1}+v_{2}+v_{2})}{v_{2}} = Kq \frac{v_{1}\cdot(v_{1}+2v_{2})}{v_{2}^{2}(v_{1}+v_{2})} \approx Rq - \frac{l-2v}{v_{2}^{2}v_{2}^{2}} = K \cdot \frac{r_{3}}{r_{3}^{2}}$

(2) Ha ver, neprengunjaephon k ganours u movogegée ≈ nepez gents.

- - - - -

$$E = E_1 \cos x + E_2 \cos x = x \cdot \frac{1}{r} \cos x = x \cdot$$

Bleumopnon luge: É=-Kf3