SCREENING TOOL FOR CHRONIC KIDNEY DISEASE

Anagha Srivaths

OBJECTIVE

 Develop an easy-to-use screening tool that helps identify patients at high risk for chronic kidney disease

WHAT WE ALREADY KNOW

- CDC and NHCS collects data from nationwide surveys of US adults
 - Hypertension and Diabetes are identified as major causes for CKD
 - Age is also an important factor

SCREENING TOOL FOR CKD

THE DATASET

Dataset consists of 8819 adults: 6000 records for training data and 2819 records for test data

10 continuous and 23 categorical variables

The target variable CKD is imbalanced : only 464 out of 6000 reportedly have CKD

Blacks and Hispanics are more prone to CKD but are underrepresented in the dataset

PROCESS

Exploratory Data Analysis & Data Preprocessing

Feature Selection & Feature Engineering

Build a Logistic Regression Model

Select an appropriate threshold for classification

Determine what features are most important

DATA PREPROCESSING

Removed 2819 rows with missing values for CKD and stored separately as test dataset

6000 rows remain stored as training dataset Removed rows with missing values in any column, rather than imputing values

Fixed the datatypes of the variables

FEATURE SELECTION

- 1. Remove highly correlated variables using Variance Inflation Factor Tests. This addresses the problem of multicollinearity
- 2. Two sample t-tests between numerical predictor variables and categorical target variable to include only strong and significant predictors
- 3. Chi-Square tests between categorical predictor variables and target variable to include only strong and significant predictors

VIF TESTS

VARIABLE	VIF		
Age	2.263513		
Female	2.428272		
Educ	1.249053		
Unmarried	1.174469		
Income	1.292704		
Insured	1.328344		
Weight	93.847686		
Height	24.843140		
ВМІ	73.446612		

VARIABLE	VIF		
Obese	2.589737		
Waist	8.297568		
SBP	2.174986		
DBP	1.314585		
HDL	100.00000		
LDL	100.000000		
Total Chol	100.00000		
Dyslipidemia	1.166641		
PVD	1.083044		

VARIABLE	VIF		
Activity	1.078867		
PoorVision	1.055844		
Smoker	1.097945		
Hypertension	1.808456		
Fam Hypertension	2.635881		
Diabetes	1.205459		
Fam Diabetes	1.106771		
Stroke	1.785756		
CVD	2.026512		

VIF TESTS

VARIABLE	VIF		
Fam CVD	2.707840		
CHF	1.157335		
Anemia	1.032044		
Racegrp_black	1.289021		
Racegrp_hispa	1.497455		
Racegrp_other	1.066870		
CareSource_	1.019016		
CareSource_clinic	1.132133		
CareSource_noplace	1.368662		
CareSource_other	1.092397		

VIF TESTS

VARIABLE	P-VALUE
Hypertension & Fam Hypertension	0.00020
Diabetes and Fam Diabetes	4.1091e-52

Removed BMI, Height and Waist - High Correlation with Weight

Removed LDL - High Correlation with Total Cholesterol

Removed Fam Diabetes & retained Diabetes

Removed Fam Hypertension & retained Hypertension

t - tests

Two sample t-tests between continuous predictor variables and target variables to retain only statistically significant variables

VARIABLE	P-VALUE
Age	2.841272e-113
Weight	8.060397e-01
SBP	9.505868e-40
DBP	2.818226e-03
Total Chol	1.492170e-01
HDL	3.800099e-03

Eliminated variables with p-values less than 0.05

Dropped Weight and Total Chol as they were not statistically significant

CHI SQUARE TESTS

Chi Square tests between categorical predictor variables and target variables to retain only statistically significant variables

VARIABLE	P-VALUE
Female	5.155155e-01
Racegrp	8.446885e-10
Educ	4.421879e-05
Unmarried	1.434536e-03
Income	3.562931e-08

VARIABLE	P-VALUE
CareSource	1.511427e-06
Insured	3.471815e-11
Obese	1.683670e-01
Dyslipidemia	1.000000e+00
PVD	3.039083e-23

VARIABLE	P-VALUE
Activity	1.241635e-09
PoorVision	4.104805e-10
Smoker	8.361968e-04
Hypertension	9.625535e-47
Diabetes	3.662216e-23

CHI SQUARE TESTS

Chi Square tests between categorical predictor variables and target variables to retain only statistically significant variables

VARIABLE	P-VALUE
Stroke	3.480925e-21
CVD	3.695777e-36
CHF	1.021426e-12
Anemia	2.471501e-01
CKD	0.000000e+00

Eliminated variables with p-values less than 0.05

Dropped Female, Obese, Dyslipidaemia & Anemia as they were not statistically significant

FINAL VARIABLES SELECTED FOR MODELLING

PREDICTIVE MODELLING – LOGISTIC REGRESSION

- Target Variable CKD → Categorical variable with 2 levels :
 - 0 indicating the absence of CKD
 - 1 indicating the presence of CKD
- Train Validation set split in the ratio 80: 20
- Normalised all continuous variables
- Created Dummy variables for all categorical variables

OPTIMAL THRESHOLD SELECTION

A logistic regression assumes equal probability (50/50) of belonging to either target class

With an imbalance in the target variable, this approach would be invalid

Thus, an optimal threshold is selected using the ROC curve

For this particular application : Cost of FN > Cost of FP \rightarrow Choose a threshold to maximise *recall* (TPR)

OPTIMAL THRESHOLD = 0.0053

MODEL PERFORMANCE

ANOTHER THRESHOLD: BALANCE BETWEEN PRECISION & RECALL

FEATURE IMPORTANCE: WHAT CAN BE USED TO SCREEN PEOPLE?

VARIABLE	COEFF	P> Z	ODDS RATIO	VARIABLE	COEFF	P> Z	ODDS RATIO
Age	0.0867	0.002	1.090569	Income_1	-0.1396	0.466	0.869706
SBP	-0.0060	0.189	0.994018	CareSource_clinic	-0.0527	0.797	0.948665
DBP	0.0018	0.793	1.001802	CareSource_noplace	-0.6563	0.103	0.518767
HDL	-0.0146	0.008	0.985506	CareSource_other	0.2708	0.453	1.311013
Racegrp_hispa	-1.0693	0.000	0.343249	Income_1	-0.1396	0.466	0.869706
Racegrp_other	-0.4799	0.456	0.618845	Insured_1	0.0006	0.999	1.000600
Racegrp_white	0.0104	0.963	1.010454	PVD_1	0.2470	0.359	1.280179
Educ_1	-0.2520	0.162	0.777245	Activity_2	-0.2118	0.231	0.809127
Unmarried_1	0.2203	0.209	1.246451	Activity_3	-0.5162	0.081	0.596784

FEATURE IMPORTANCE: WHAT CAN BE USED TO SCREEN PEOPLE?

VARIABLE	COEFF	P> Z	ODDS RATIO
Activity_4	1.3483	0.68	0.259681
PoorVision_1	0.1082	0.671	1.114271
Smoker_1	0.1850	0.275	0.831104
Hypertension_1	0.7979	0.0005	2.220872
Diabetes_1	0.4716	0.018	1.602556
Stroke_1	0.1433	0.709	1.154076
CVD_1	0.5252	0.073	1.690797
Fam CVD_1	0.3663	0.051	0.693295
CHF_1	0.0610	0.862	0.940823

Every unit increase in age increase the probability of having CKD by 9%

Presence of Hypertension increases the probability of having CKD by 122%

Presence of Diabetes increase the probability of having CKD by 60%

Presence of a cardiovascular disease increases the probability of having CKD by 69%

VARIABLES
TO BE
INCLUDED IN
THE
SCREENING
TOOL

Age (Chances of having CKD increases significantly with age)

Presence of Hypertension

Presence of Diabetes

Presence of Cardiovascular Disease/Family history of Cardiovascular Disease

THANK YOU!