Package xAct`xPerm` version 1.2.3, {2015, 8, 23}

CopyRight (C) 2003-2020, Jose M. Martin-Garcia, under the General Public License.

Connecting to external linux executable...

Connection established.

Package xAct`xTensor` version 1.2.0, {2021, 10, 17}

CopyRight (C) 2002-2021, Jose M. Martin-Garcia, under the General Public License.

Package xAct`xPlain` version 1.0.0-developer, {2023, 6, 10}

CopyRight © 2023, Will E. V. Barker and Sebastian Zell, under the General Public License.

These packages come with ABSOLUTELY NO WARRANTY; for details type Disclaimer[]. This

is free software, and you are welcome to redistribute it under certain conditions. See the General Public License for details.

PSALTer Calibration

About xPlain and formatting

Welcome to the calibration file for the PSALTer package. Commentary is provided in this green text throughout by virtue of the xPlain package.

Key observation: Occasionally, more important points will be highlighted in boxes like this.

The xPlain package is not part of PSALTer, so the output from PSALTer itself will contrast with this formatting and be quite distinctive.

The structure of this file

The calibration file runs PSALTer on a very long list of theories, whose particle spectra are already known.

The first step is to load the PSALTer package.

Great, so PSALTer is now loaded and we can start to do some science.

(1)

(2)

(3)

Poincaré gauge theory (PGT)

Key observation: We will test the PoincareGaugeTheory module.

Here is the inverse translational gauge field, or tetrad.

 h_{α}^{X}

Here is the translational gauge field, or inverse tetrad.

 b^{α}_{λ}

Here is the Riemann-Cartan tensor.

 $\mathcal{R}^{\alpha\beta}_{\delta\epsilon}$

 $\mathcal{A}^{\alpha\gamma}_{\quad \phi} \mathcal{A}^{\beta}_{\quad \gamma\chi} h_{\delta}^{\quad \chi} h_{\epsilon}^{\quad \phi} - \mathcal{A}^{\alpha\gamma}_{\quad \chi} \mathcal{A}^{\beta}_{\quad \phi} h_{\delta}^{\quad \chi} h_{\epsilon}^{\quad \phi} + h_{\delta}^{\quad \chi} h_{\epsilon}^{\quad \phi} \partial_{\chi} \mathcal{A}^{\alpha\beta}_{\quad \phi} - h_{\delta}^{\quad \chi} h_{\epsilon}^{\quad \phi} \partial_{\phi} \mathcal{A}^{\alpha\beta}_{\quad \chi}$

Here is the torsion tensor.

 $\mathcal{T}^{\alpha}_{\ \beta\chi}$ (5)

 $\mathcal{A}^{\alpha}_{\chi\delta} h_{\beta}^{\delta} - \mathcal{A}^{\alpha}_{\beta\delta} h_{\chi}^{\delta} + h_{\beta}^{\delta} h_{\chi}^{\epsilon} \partial_{\delta} b_{\epsilon}^{\alpha} - h_{\beta}^{\delta} h_{\chi}^{\epsilon} \partial_{\epsilon} b_{\delta}^{\alpha}$

Now we set up the general Lagrangian. In the first instance we will do this with some coupling constants which are proportional to those used by Hayashi and Shirafuji in Prog. Theor. Phys. 64 (1980) 2222. The normalisations are not absolutely identical, but this should not be a problem.

$$-\frac{1}{2}\alpha_{\bullet}\eta^{\alpha\chi}\eta^{\beta\delta}\mathcal{R}_{\alpha\beta\chi\delta} + \left(\alpha_{\bullet}\hat{\mathcal{P}}_{\mathcal{R}}\mathbf{1}_{,\theta\gamma\eta}^{\alpha\beta\chi\delta} + \alpha_{\bullet}\hat{\mathcal{P}}_{\mathcal{R}}\mathbf{2}_{,\theta\gamma\eta}^{\alpha\beta\chi\delta} + \alpha_{\bullet}\hat{\mathcal{P}}_{\mathcal{R}}\mathbf{3}_{,\theta\gamma\eta}^{\alpha\beta\chi\delta} + \alpha_{\bullet}\hat{\mathcal{P}}_{\mathcal{R}}\mathbf{3}_{,\theta\gamma\eta}^{\alpha\gamma\lambda\delta} + \alpha_{\bullet}\hat{\mathcal{P}}_{\mathcal{R}}\mathbf{3}_{,\theta\gamma\eta}^{\alpha\gamma\lambda} + \alpha_{\bullet}\hat{\mathcal{P}}_{\mathcal{R}}\mathbf{3}_{,\theta\gamma\eta}^{\alpha\gamma\lambda\delta} + \alpha_{\bullet}\hat{\mathcal{P}}_{\mathcal{R}}\mathbf{3}_{,\theta\gamma\eta}^{\alpha\gamma\lambda} + \alpha_{\bullet}\hat{\mathcal{P}}_{\mathcal{R}}\mathbf{3}_{,\theta\gamma\eta}^{\alpha\gamma\lambda} + \alpha_{\bullet}\hat{\mathcal{P}}_{\mathcal{R}}\mathbf{3}_{,\theta\gamma\gamma}^{\alpha\gamma\lambda} + \alpha_{\bullet}\hat{$$

In Eq. (7) we are using projectors to extract the Lorentz irreps of the fields. Next we will expand these.

So with the projectors expanded we have the following nonlinear Lagrangian.

$$-\frac{1}{2}\alpha_{0}\mathcal{R}^{\alpha\beta}_{\alpha\beta} + \frac{1}{6}\left(2\alpha_{1} + 3\alpha_{2} + \alpha_{3}\right)\mathcal{R}_{\alpha\beta\chi\delta}\mathcal{R}^{\alpha\beta\chi\delta} + \frac{2}{3}\left(\alpha_{1} - \alpha_{3}\right)\mathcal{R}_{\alpha\chi\beta\delta}\mathcal{R}^{\alpha\beta\chi\delta} + \left(-\alpha_{1} - \alpha_{2} + \alpha_{4} + \alpha_{5}\right)\mathcal{R}^{\alpha\beta}_{\alpha}\mathcal{R}^{\beta}_{\beta}\mathcal{R}^{\lambda} + \frac{1}{6}\left(2\alpha_{1} - 3\alpha_{2} + \alpha_{3}\right)\mathcal{R}^{\alpha\beta\chi\delta}\mathcal{R}^{\lambda}_{\lambda\delta} + \frac{1}{3}\left(2\beta_{1} + \beta_{3}\right)\mathcal{T}^{\alpha\beta\chi}\mathcal{R}^{\lambda}_{\lambda\delta} + \frac{1}{6}\left(2\alpha_{1} - 3\alpha_{2} + \alpha_{3}\right)\mathcal{R}^{\alpha\beta\chi\delta}\mathcal{R}^{\lambda}_{\lambda\delta} + \frac{1}{6}\left(2\alpha_{1} - 3\alpha_{2} + \alpha_{3}\right)\mathcal{R}^{\alpha\beta\chi\delta}\mathcal{R}^{\lambda}_{\lambda\delta} + \frac{1}{6}\left(2\alpha_{1} - 3\alpha_{2} + \alpha_{3}\right)\mathcal{R}^{\lambda}_{\lambda\delta} + \frac{1}{6}\left$$

We can also use a different set of coupling coefficients, as developed by Karananas.

Minimal even-parity scalar model

We will study the minimal model set out in Eq. (4.1) of arXiv:9902032. We will do this using the general coupling coefficients defined in Eq. (8).

$$-\frac{1}{2}\alpha_{0}\mathcal{R}^{\alpha\beta}_{\alpha\beta} + \frac{1}{6}\alpha_{6}\mathcal{R}^{\alpha\beta}_{\alpha\beta}\mathcal{R}^{\chi\delta}_{\chi\delta} + \frac{1}{2}\beta_{1}\mathcal{T}_{\alpha\beta\chi}\mathcal{T}^{\alpha\beta\chi} + \beta_{1}\mathcal{T}^{\alpha\beta\chi}\mathcal{T}_{\beta\alpha\chi} + 2\beta_{1}\mathcal{T}^{\alpha\beta\chi}\mathcal{T}_{\beta\chi}$$

$$(10)$$

PSALTer results panel

$$\mathcal{S} = \iiint \left(-\frac{1}{2} \left(\alpha_{0} - 4 \, \beta_{1} \right) \, \mathcal{R}^{\alpha \beta}_{\quad \alpha} \, \mathcal{R}^{\, \chi}_{\beta \, \chi} + \, \mathcal{R}^{\alpha \beta \chi} \, \sigma_{\alpha \beta \chi} + \, f^{\alpha \beta}_{\quad \alpha} \, \tau \, (\Delta + \mathcal{K})_{\alpha \beta} - \alpha_{0} \, f^{\alpha \beta}_{\quad \beta \beta} \, \partial_{\beta} \mathcal{R}^{\, \chi}_{\alpha \, \chi} + \alpha_{0} \, \partial_{\beta} \mathcal{R}^{\alpha \beta}_{\quad \alpha} - 4 \, \beta_{1} \, \mathcal{R}^{\, \chi}_{\alpha \, \chi} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} + 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \, \partial_{\beta} f^{\alpha \beta}_{\quad \alpha} - 2 \, \beta_{1} \,$$

<u>Wave</u> <u>operator</u>

	${}^{0^{+}}_{ullet}\mathcal{H}^{\parallel}$	${}^{0^{+}}f^{\parallel}$	${}^{0^{\scriptscriptstyle +}}_{\: \scriptstyle ullet} f^{\scriptscriptstyle \perp}$	${}^{\scriptscriptstyle{0}^{\scriptscriptstyle{-}}}\!\mathcal{A}^{\scriptscriptstyle{\parallel}}$										
^{0⁺} Æ [∥] †	$\frac{\alpha_{\bullet}}{\frac{\alpha_{\bullet}}{2}} - 2\beta_{\bullet} + \alpha_{\bullet} k^2$	$-\frac{i\left(\alpha_{0}-4\beta_{1}\right)k}{\sqrt{2}}$	0	0										
⁰ ⁺ <i>f</i> †	$\frac{i\left(\alpha_{0}-4\beta_{1}\right)k}{\sqrt{2}}$	$-4 \beta_{\stackrel{\cdot}{1}} k^2$		0										
⁰ ⁺ <i>f</i> [⊥] †		0	0	0										
^{⊙⁻} Æ [∥] †	0	0	0	$\frac{1}{2}\left(\alpha_{\stackrel{\bullet}{0}}-4\beta_{\stackrel{\bullet}{1}}\right)$	${}^{1^{\scriptscriptstyle +}}_{}\mathcal{A}^{\parallel}{}_{lphaeta}$	${}^{1^{\scriptscriptstyle +}}_{}\mathcal{A}^{\scriptscriptstyle \perp}{}_{lphaeta}$	${}^{1^{\cdot}}_{\bullet}f^{\parallel}{}_{\alpha\beta}$	${}^{1}\overline{\mathscr{S}}^{\parallel}{}_{lpha}$	${}^{1}\dot{\cdot}\mathcal{H}^{\perp}{}_{\alpha}$	${}^{1} \cdot f^{\parallel}_{\alpha}$	$^{1}_{\bullet}f^{\perp}_{\alpha}$			
				${}^{1^+}_{m{\cdot}}\mathcal{R}^{\parallel}\dagger^{lphaeta}$	$\frac{1}{4} \left(\alpha_{0} - 4 \beta_{1} \right)$	$\frac{\alpha \cdot -4 \beta \cdot \frac{1}{2}}{2 \sqrt{2}}$	$\frac{i\left(\alpha_{0}-4\beta_{1}\right)k}{2\sqrt{2}}$	Θ	0	0	0			
					$\frac{\alpha \cdot -4 \beta \cdot \frac{\theta}{1}}{2 \sqrt{2}}$		0	Θ	0	0	0			
				${}^{1^{\cdot}}f^{\parallel} \uparrow^{\alpha\beta}$	$-\frac{i\left(\alpha_{0}-4\beta_{1}\right)k}{2\sqrt{2}}$	0	Θ	Θ	0	0	0			
				${}^{1}\overline{\cdot}\mathcal{A}^{\parallel}\dagger^{lpha}$	0	0	0	$\frac{1}{4} \left(\alpha_{0} - 4 \beta_{1} \right)$	$-\frac{\alpha_{\cdot}-4\beta_{\cdot}}{2\sqrt{2}}$	0	$-\frac{1}{2} i \left(\alpha_{0} - 4 \beta_{1}\right) k$			
				${}^{1}\overline{\cdot}\mathcal{A}^{\scriptscriptstyle \perp}\dagger^{^{lpha}}$	0	0	Θ	$-\frac{\alpha \cdot -4 \beta \cdot \frac{1}{2}}{2 \sqrt{2}}$	0	0	0			
				${}^{1}\cdot f^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$^{1}\overline{\cdot}f^{\scriptscriptstyle \perp}\dagger^{\alpha}$	0	0	0	$\frac{1}{2} i \left(\alpha_{0} - 4 \beta_{1} \right) k$	0	0	0	${}^{2^+}\!\mathcal{A}^{\parallel}{}_{lphaeta}$	${}^{2^{+}}_{\bullet}f^{\parallel}_{\alpha\beta}$	${}^{2^{-}}\mathcal{A}^{\parallel}{}_{lphaeta\chi}$
												$-\frac{\alpha_{\bullet}^{2}}{4}+\beta_{\bullet}$		0
											${}^{2^{+}}f^{\parallel}$ † ${}^{\alpha\beta}$	$-\frac{i\left(\alpha_{0}-4\beta_{1}\right)k}{2\sqrt{2}}$	$2\beta_{1}k^{2}$	0
											$\mathcal{F}^{\mathbb{Z}^{-}}\mathcal{H}^{\mathbb{I}} \uparrow^{\alpha\beta\chi}$	0	0	$-\frac{\alpha_{\cdot}}{4} + \beta_{\cdot}$

<u>Saturated</u> <u>propagator</u>

$\frac{2^{+} \sigma_{\parallel} + \alpha \beta}{2^{+} \sigma_{\parallel} + \alpha \beta} = \frac{2^{+} \sigma_{\parallel} \alpha \beta}{2^{+} \sigma_{\parallel} + \alpha \beta} = \frac{2^{-} \sigma_{\parallel} \alpha \beta}{2^{-} \sigma_{\parallel} + \alpha \beta} = \frac{16 \beta_{\perp}}{\alpha_{0}^{2} - 4 \alpha_{0} \beta_{\perp}} = \frac{2 i \sqrt{2}}{\alpha_{0} k} = 0$ $\frac{2^{+} \tau_{\parallel} + \alpha \beta}{2^{+} \sigma_{\parallel} + \alpha \beta} = \frac{2 i \sqrt{2}}{\alpha_{0} k} = 0$ $\frac{2^{-} \sigma_{\parallel} + \alpha \beta \chi}{2^{-} \sigma_{\parallel} + \alpha \beta \chi} = 0$ $0 = \frac{1}{\alpha_{0}^{-} + \beta_{\perp}^{-} + \beta_{\perp}^{-}}$

<u>Source</u> <u>constraints</u>

Spin-parity form	Covariant form	Multiplicities					
^{0⁺} τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==0$	1					
$2 i k \cdot \frac{1}{\cdot} \sigma^{\perp}^{\alpha} + \frac{1}{\cdot} \tau^{\perp}^{\alpha}$	$=0 \ \partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\beta\chi} ==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2 \ \partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3					
1- _τ ^α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} \ == \ \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3					
$i k \cdot 1^+ \sigma^{\perp} + 1^+ \tau^{\parallel} \alpha \beta$	$ \tilde{l} k \stackrel{1^+}{\cdot} \sigma^{\perp} \alpha^{\beta} + \stackrel{1^+}{\cdot} \tau^{\parallel} \alpha^{\beta} == 0 $ $ \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\beta \chi} + \partial_{\chi} \partial^{\beta} \tau \left(\Delta + \mathcal{K} \right)^{\chi \alpha} + \partial_{\chi} \partial^{\chi} \tau \left(\Delta + \mathcal{K} \right)^{\alpha \beta} + 2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\chi \alpha \beta} == \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\chi \beta} + \partial_{\chi} \partial^{\beta} \tau \left(\Delta + \mathcal{K} \right)^{\beta \alpha} + 2 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} $						
Total expected g	Total expected gauge generators:						

<u>Massive</u> <u>spectrum</u>

Massive particle

Pole residue:	$\frac{1}{\alpha_{\cdot}} + \frac{1}{\alpha_{\cdot}} - \frac{1}{4\beta_{\cdot}} > 0$
Square mass	$\frac{\frac{\alpha. (\alpha4 \beta.)}{0.001}}{\frac{8 \alpha. \beta.}{6.001}} > 0$
Spin:	0
Parity:	Even

<u>Massless</u> <u>spectrum</u>

Massless particle

	Pole residue:	$\left \frac{p^2}{\alpha_{\cdot}} > 0\right $
Ī	Polarisations:	2

Gauge symmetries

(Not yet implemented in PSALTer)

<u>Unitarity</u> <u>conditions</u>

 $\alpha_{0} > 0 \&\& \alpha_{6} > 0 \&\& \left(\beta_{1} < 0 \mid |\beta_{1} > \frac{\alpha_{0}}{4}\right)$

<u>Validity</u> <u>assumptions</u>

(Not yet implemented in PSALTer)

Minimal massive odd-parity scalar model

We will study the minimal model set out in Eq. (4.25) of arXiv:9902032. We will do this using the general coupling coefficients defined in Eq. (8).

$$-\frac{1}{2}\alpha_{0}\mathcal{R}^{\alpha\beta}_{\alpha\beta} + \frac{1}{6}\alpha_{3}\mathcal{R}_{\alpha\beta\chi\delta}\mathcal{R}^{\alpha\beta\chi\delta} - \frac{2}{3}\alpha_{3}\mathcal{R}_{\alpha\chi\beta\delta}\mathcal{R}^{\alpha\beta\chi\delta} + \frac{1}{6}\alpha_{3}\mathcal{R}^{\alpha\beta\chi\delta}\mathcal{R}_{\chi\delta\alpha\beta} + \frac{1}{2}\beta_{1}\mathcal{T}_{\alpha\beta\chi}\mathcal{T}^{\alpha\beta\chi} + \beta_{1}\mathcal{T}^{\alpha\beta\chi}\mathcal{T}_{\beta\alpha\chi} + 2\beta_{1}\mathcal{T}^{\alpha\beta\chi}\mathcal{T}_{\beta\chi}\mathcal{T}^{\alpha\beta\chi}\mathcal{T}^{\alpha\beta\chi}\mathcal{T}_{\gamma\gamma}\mathcal{T}^{\alpha\beta\chi}\mathcal{T}_{\gamma\gamma}\mathcal{T}^{\alpha\gamma\chi}\mathcal$$

PSALTer results panel

$$S = \frac{1}{\left[\int\int\int\int (\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau(\Delta + \mathcal{K})_{\alpha\beta} - -\alpha \cdot \left(\mathcal{A}_{\alpha\chi\beta} \ \mathcal{A}^{\alpha\beta\chi} + \mathcal{A}^{\alpha\beta}_{\alpha} \ \mathcal{A}^{\chi}_{\beta} + 2 \ f^{\alpha\beta}_{\alpha} \ \partial_{\beta}\mathcal{A}^{\chi}_{\alpha} - 2 \ \partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} - 2 \ f^{\alpha\beta}_{\alpha} \ \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta} \right) + \beta \cdot \left(2 \ \mathcal{A}^{\alpha\beta}_{\alpha} \ \mathcal{A}^{\chi}_{\beta} - 4 \ \mathcal{A}^{\chi}_{\alpha\chi} \ \partial_{\beta}f^{\alpha\beta} + 4 \ \mathcal{A}^{\chi}_{\beta\chi} \ \partial^{\beta}f^{\alpha}_{\alpha} - 2 \ \partial_{\beta}f^{\chi}_{\alpha} \partial^{\beta}f^{\alpha}_{\alpha} - 2 \ \partial_{\beta}f^{\alpha\beta}_{\alpha} \partial_{\chi}f^{\chi}_{\alpha} + 4 \ \partial^{\beta}f^{\alpha}_{\alpha} \partial_{\chi}f^{\chi}_{\beta} - 2 \ \partial_{\alpha}f_{\beta\chi} \right)} \\ = \partial^{\chi}f^{\alpha\beta}_{\alpha\beta\chi} - \partial_{\alpha}f^{\alpha\beta}_{\alpha} + \partial_{\alpha}f^{\alpha\beta}_{\alpha\gamma} \partial_{\gamma}f^{\alpha\beta}_{\alpha} + \partial_{\chi}f^{\alpha\beta}_{\alpha\beta} \partial_{\gamma}f^{\alpha\beta}_{\alpha} + 2 \ \mathcal{A}^{\alpha\beta}_{\alpha\chi} \partial_{\gamma}f^{\alpha\beta}_{\alpha} - 2 \ \partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha\chi} - 2 \ \partial_{\alpha}\mathcal{A}^{\alpha\beta}_{\alpha\chi} - 2 \ \partial_{\alpha}\mathcal{A}^{\alpha\beta}_{\alpha\chi} - 2 \ \partial_{\alpha}\mathcal{A}^{\alpha\beta}_{\alpha\chi} - 2 \ \partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha\chi} - 2 \ \partial_{\alpha}\mathcal{A}^{\alpha\beta}_{\alpha\chi} - 2 \ \partial_{\alpha}\mathcal{A}^{$$

<u>Wave operator</u>

<i>.</i> : A∥ †	- (α 4 β.)			0										
[⊙] • <i>f</i> [∥] †	$\frac{i\left(\alpha_{0}-4\beta_{1}\right)k}{\sqrt{2}}$	$-4\beta_{1}k^{2}$	Θ	0										
⁰ ⁺ <i>f</i> [⊥] †	0	0	0	0										
^o -⁄ <i>Я</i> ∥†	0	0	0	$\frac{\alpha_{\bullet}}{\frac{\theta}{2}} - 2\beta_{\bullet} + \alpha_{\bullet} k^2$	${}^{1^{\scriptscriptstyle +}}_{^{}}\mathcal{A}^{\parallel}{}_{\alpha\beta}$	${}^{1^{\scriptscriptstyle +}}_{}\mathcal{A}^{\scriptscriptstyle \perp}{}_{lphaeta}$	${}^{1^{+}}_{\bullet}f^{\parallel}{}_{\alpha\beta}$	${}^{1^{-}}_{\boldsymbol{\cdot}}\mathcal{R}^{\parallel}{}_{\alpha}$	${}^{1}\overline{\cdot}\mathcal{A}^{\perp}{}_{lpha}$	$\int_{\bullet}^{1} f^{\parallel} \alpha$	${}^{1}_{ullet}f^{{}^{\perp}}\alpha$	_		
				${}^{1}\dot{\mathcal{A}}^{\parallel} \uparrow^{lphaeta}$	$\frac{1}{4} \left(\alpha_{0} - 4 \beta_{1} \right)$	$\frac{\alpha \cdot -4 \beta \cdot \frac{1}{2 \sqrt{2}}}{2 \sqrt{2}}$	$\frac{i\left(\alpha_{0}-4\beta_{1}\right)k}{2\sqrt{2}}$	Θ	0	0	0			
				$\overset{1^{+}}{\cdot}\mathcal{A}^{\perp}$ † lphaeta	$\frac{\alpha \cdot -4 \beta \cdot \frac{1}{2}}{2 \sqrt{2}}$	0	0	0	0	Θ	0			
				$\dot{\cdot}^{f^{\parallel}} \uparrow^{\alpha\beta}$	$-\frac{i\left(\alpha_{\bullet}-4\beta_{1}\right)k}{2\sqrt{2}}$	0	0	Θ	0	0	0			
				${}^{1^{-}}\!\mathcal{A}^{\parallel}\dagger^{lpha}$	0	0	0	$\frac{1}{4} \left(\alpha_{0} - 4 \beta_{1} \right)$	$-\frac{\alpha \cdot -4\beta \cdot \frac{1}{2}}{2\sqrt{2}}$	0	$-\frac{1}{2}\bar{i}\left(\alpha_{\stackrel{\bullet}{0}}-4\beta_{\stackrel{\bullet}{1}}\right)k$			
				$^{1}\overline{\mathcal{A}}^{\perp}\dagger^{\alpha}$	0	0	0	$-\frac{\alpha4\beta.}{2\sqrt{2}}$	0	0	0			
				${}^{1}_{\bullet}f^{\parallel}\uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$^{1} \cdot f^{\perp} \uparrow^{\alpha}$	0	0	0	$\frac{1}{2} i \left(\alpha_{0} - 4 \beta_{1} \right) k$	0	0	0	${}^{2^{+}}\mathcal{H}^{\parallel}{}_{lphaeta}$	${}^{2^{+}}f^{\parallel}{}_{\alpha\beta}$	${}^{2^{-}}\mathcal{H}^{\parallel}{}_{\alpha\beta\chi}$
				·							$\mathscr{A}^{\parallel} + \alpha^{\beta}$	$-\frac{\alpha_{\bullet}}{4} + \beta_{\bullet}$		
											${}^{2^{+}}f^{\parallel}$ † lphaeta	$-\frac{i\left(\alpha_{0}-4\beta_{1}\right)k}{2\sqrt{2}}$		0
											${}^{2^{-}}\mathcal{H}^{\parallel} \uparrow^{lphaeta\chi}$	0	0	$-\frac{\alpha_{\bullet}}{\frac{9}{4}} + \beta_{\bullet}$
l														

0	^{9⁺} σ [∥]	0⁺ τ∥	⊙⁺ τ⊥	0⁻σ∥	1									
$^{0^{+}}\sigma^{\parallel}$ + $\frac{\epsilon}{\alpha_{\bullet}^{2}}$	$\begin{array}{c} 8 \beta_{\bullet} \\ \hline -4 \alpha_{\bullet} \beta_{\bullet} \\ \hline \end{array}$	$-\frac{i\sqrt{2}}{\alpha \cdot k}$		0										
⁰⁺ τ †	$\frac{\sqrt{2}}{\alpha_{0} k}$	$-\frac{1}{\alpha_{i} k^{2}}$	0	0										
0⁺ τ⁺ †	0	Θ	0	0										
ο⁻σ∥†	0	0	0	$\frac{2}{\underset{0}{\alpha \cdot -4} \underset{1}{\beta \cdot +2} \underset{3}{\alpha \cdot k^2}}$	$^{1^{+}}\sigma^{\parallel}{}_{lphaeta}$	$^{1^{+}}_{\bullet}\sigma^{\perp}{}_{lphaeta}$	${}^{1^{+}}_{\bullet}\tau^{\parallel}{}_{\alpha\beta}$	1 $^{\circ}\sigma^{\parallel}{}_{lpha}$	1 σ^{\perp}_{α}	$^{1}_{\cdot}\tau^{\parallel}\alpha$	$^{1}_{\bullet}\tau^{\perp}_{\alpha}$			
				$\dot{\cdot}^{\dagger}\sigma^{\parallel}\dagger^{lphaeta}$	0	$\frac{2\sqrt{2}}{\left(\alpha_{\bullet}-4\beta_{\bullet}\right)\left(1+k^{2}\right)}$	$\frac{2i \sqrt{2} k}{\left(\alpha - 4 \beta \right) \left(1 + k^2\right)}$	Θ	Θ	0	0			
				$\dot{\cdot}^{\sigma^{\perp}}$	(0 1)	$-\frac{2}{\left(\alpha_{\stackrel{\cdot}{0}}-4\beta_{\stackrel{\cdot}{1}}\right)\left(1+k^2\right)^2}$	$-\frac{2ik}{\left(\alpha4\beta.\right)(1+k^2)^2}$	0	0	0	0			
				$\dot{\cdot}^{\tau^{\parallel}} \dot{\tau}^{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{\left(\alpha_{\bullet}-4\beta_{\bullet}\right)(1+k^2)}$	$\frac{2 i k}{\left(\alpha \cdot -4 \beta \cdot \right) \left(1+k^2\right)^2}$	$-\frac{2 k^2}{\left(\alpha_{.}-4 \beta_{.}\right) (1+k^2)^2}$	0	0	0	0			
				1 σ^{\parallel} \dagger^{α}	0	0	0	Θ	$-\frac{2\sqrt{2}}{\left(\alpha_{\bullet}-4\beta_{1}\right)\left(1+2k^{2}\right)}$	0	$-\frac{4 i k}{\left(\alpha \cdot -4 \beta \cdot \right) \left(1+2 k^2\right)}$			
				$\dot{\cdot}^{\sigma_{\perp}}$ $\dot{\sigma}^{\alpha}$	0	0	0	$-\frac{2\sqrt{2}}{\left(\alpha_{0}-4\beta_{1}\right)\left(1+2k^{2}\right)}$	$-\frac{2}{\left(\alpha_{\bullet}-4\beta_{\bullet}\right)\left(1+2k^{2}\right)^{2}}$	0	$-\frac{2i\sqrt{2}k}{\left(\alpha_{0}-4\beta_{1}\right)\left(1+2k^{2}\right)^{2}}$			
				$^{1^{-}}\tau^{\parallel}$ \dagger^{α}	0	0	0	0	0	0	0			
				$\dot{\cdot}^{1}$ τ^{\perp} \uparrow^{α}	0	Θ	Θ	$\frac{4 i k}{\left(\alpha \cdot -4 \beta \cdot \right) \left(1+2 k^2\right)}$	$\frac{2 i \sqrt{2} k}{\left(\alpha \cdot -4 \beta \cdot 1\right) \left(1 + 2 k^2\right)^2}$	Θ	$-\frac{4 k^2}{\left(\alpha \cdot -4 \beta \cdot \right) \left(1+2 k^2\right)^2}$	$^{2^{\scriptscriptstyle +}}\sigma^{\parallel}{}_{lphaeta}$	$^{2^{+}}_{\bullet}\tau^{\parallel}_{\alpha\beta}$	$^{2^{-}}\sigma^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$-\frac{16\beta_{\bullet}}{\alpha_{\bullet}^{2}-4\alpha_{\bullet}\beta_{\bullet}}_{0}\beta_{\bullet}$	$\frac{2i\sqrt{2}}{\alpha \cdot k}$	0
											$\dot{\cdot}^{2^+} \tau^{\parallel} \uparrow^{\alpha\beta}$		$\frac{2}{\alpha_{\bullet} k^2}$	0
											$^{2\overline{\cdot}}\sigma^{\parallel}$ † $^{lphaeta\chi}$	0	0	$\frac{1}{\frac{\alpha}{4}+\beta}$

<u>Source</u> <u>constraints</u>

	Spin-parity form	Covariant form	Multiplicities
	^{0⁺} τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
	$2 i k \cdot \frac{1}{\cdot} \sigma^{\perp} + \frac{1}{\cdot} \tau^{\perp} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
•	1⁻ _τ π∥ ^α == Θ	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} \ == \ \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
•	$\bar{i} k \stackrel{1^+}{\cdot} \sigma^{\perp}^{\alpha\beta} + \stackrel{1^+}{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \\ = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\alpha\delta} = \\ = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\alpha\delta} = \\ = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\alpha\delta} = \\ = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{$	3
	Total expected gauge	generators:	10

<u>Massive</u> <u>spectrum</u>

Massive particle

Pole residue:	$-\frac{1}{\alpha} > 0$			
Square mass:	$-\frac{\frac{\alpha4\beta.}{0}}{\frac{2\alpha.}{3}} > 0$			
Spin:	0			
Parity:	Odd			

<u>Massless</u> <u>spectrum</u>

Massless particle

	Pole residue:	$\frac{p^2}{\alpha_{\cdot}} > 0$
ĺ	Polarisations:	2

<u>Gauge symmetries</u>

(Not yet implemented in PSALTer)

<u>Unitarity</u> <u>conditions</u>

 $\alpha_{0} > 0 \&\& \alpha_{1} < 0 \&\& \beta_{1} < \frac{\alpha_{0}}{4}$

<u>Validity</u> <u>assumptions</u>

(Not yet implemented in PSALTer)

Key observation: Thus we see that only the even-parity scalar mode is moving with a mass, as claimed.

Minimal massless odd-parity scalar model

We will study the minimal model set out between Eqs. (4.47) and (4.48) of arXiv:9902032. We will do this using the general coupling coefficients defined in Eq. (8).

$$-2\beta_{1}^{2}\mathcal{R}_{\alpha\beta}^{\alpha\beta} + \frac{1}{6}\alpha_{3}^{2}\mathcal{R}_{\alpha\beta\chi\delta}\mathcal{R}^{\alpha\beta\chi\delta} - \frac{2}{3}\alpha_{3}^{2}\mathcal{R}_{\alpha\chi\beta\delta}\mathcal{R}^{\alpha\beta\chi\delta} + \frac{1}{6}\alpha_{3}^{2}\mathcal{R}^{\alpha\beta\chi\delta}\mathcal{R}_{\chi\delta\alpha\beta} + \frac{1}{2}\beta_{1}^{2}\mathcal{T}_{\alpha\beta\chi}\mathcal{T}^{\alpha\beta\chi} + \beta_{1}^{2}\mathcal{T}^{\alpha\beta\chi}\mathcal{T}_{\beta\alpha\chi} + 2\beta_{1}^{2}\mathcal{T}_{\alpha\chi}^{\alpha\beta\chi}\mathcal{T}_{\beta\chi}$$

$$(12)$$

PSALTer results panel

$$S = \frac{1}{\left[\int\int\int\int\int \mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \tau(\Delta + \mathcal{K})_{\alpha\beta} + \beta_{\frac{1}{2}} \left(4 \,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{} - 4 \,\mathcal{R}^{}_{\alpha} \,\partial_{\beta}f^{\alpha\beta} + 4 \,\mathcal{R}^{}_{}_{} \,\partial^{\beta}f^{\alpha}_{} - 2 \,\partial_{\beta}f^{}_{} \,\partial^{\beta}f^{\alpha}_{} - 4 \,f^{\alpha\beta} \left(\partial_{\beta}\mathcal{R}^{}_{} - \partial_{\alpha}\mathcal{R}^{}_{} \right) - 4 \,f^{\alpha}_{} \,\partial_{\chi}\mathcal{R}^{\beta\chi}_{} - 2 \,\partial_{\beta}f^{\alpha\beta}_{} \,\partial_{\chi}f^{}_{} + 4 \,\mathcal{R}^{}_{}_{} \,\partial^{\chi}f^{\alpha\beta}_{} - 2 \,\partial_{\beta}f^{}_{} \,\partial^{\chi}f^{\alpha\beta}_{} - 4 \,f^{\alpha\beta} \left(\partial_{\beta}\mathcal{R}^{}_{} - \partial_{\chi}\mathcal{R}^{}_{} \right) - 4 \,f^{\alpha}_{} \,\partial_{\chi}\mathcal{R}^{\beta\chi}_{} - 2 \,\partial_{\beta}f^{\alpha\beta}_{} \,\partial_{\chi}f^{}_{} + 4 \,\mathcal{R}^{}_{} \,\partial^{\chi}f^{\alpha\beta}_{} - 2 \,\partial_{\alpha}f^{}_{} \,\partial^{\chi}f^{\alpha\beta}_{} + \partial_{\beta}f^{\alpha}_{} \,\partial_{\chi}f^{\alpha\beta}_{} - 2 \,\partial_{\alpha}f^{}_{} \,\partial^{\chi}f^{\alpha\beta}_{} - 2 \,\partial_{\alpha}f^{}_{} \,\partial^{\chi}f^{\alpha\beta}_{} - 2 \,\partial_{\alpha}f^{}_{} \,\partial^{\chi}f^{\alpha\beta}_{} + \partial_{\beta}f^{\alpha}_{} \,\partial_{\chi}f^{\alpha\beta}_{} - 2 \,\partial_{\alpha}f^{}_{} \,\partial^{\chi}f^{\alpha\beta}_{} + \partial_{\alpha}f^{\alpha\beta}_{} \,\partial^{\chi}f^{\alpha\beta}_{} - 2 \,\partial_{\alpha}f^{}_{} \,\partial^{\chi}f^{\alpha\beta}_{} + \partial_{\beta}f^{\alpha}_{} \,\partial_{\chi}f^{\alpha\beta}_{} - \partial_{\alpha}f^{}_{} \,\partial^{\chi}f^{\alpha\beta}_{} - \partial_{\alpha}f^{}_{\phantom$$

Wave operator

Saturated propagator

	$^{0^{+}}\sigma^{\parallel}$	${}^{\scriptscriptstyle 0^+}\tau^{\scriptscriptstyle \parallel}$	$^{0^{+}}_{\bullet}\tau^{\perp}$	${}^{\scriptscriptstyle{0}^{\scriptscriptstyle{-}}}\sigma^{\scriptscriptstyle{\parallel}}$										
${}^{\scriptscriptstyle{0^{\scriptscriptstyle{+}}}}\sigma^{\scriptscriptstyle{\parallel}}$ †	0	Θ	0	0										
⊕ τ∥ †	0	$-\frac{1}{4\beta_{1}k^{2}}$	0	Θ										
${\stackrel{0^{\scriptscriptstyle +}}{\cdot}} \tau^{\scriptscriptstyle \perp} +$	0	0	0	0										
⁰⁻ σ [∥] †	0	0	0	$\frac{1}{\alpha_{\cdot} k^2}$	$^{1^{+}}\sigma^{\parallel}{}_{\alpha\beta}$	$^{1^{+}}\sigma^{\perp}_{\alpha\beta}$	$^{1^{\cdot}}_{\bullet}\tau^{\parallel}{}_{\alpha\beta}$	1 $^{-}$ σ^{\parallel} $_{\alpha}$	1 σ^{\perp}_{α}	$^{1^{-}}\tau^{\parallel}\alpha$	$^{1^{-}}\tau^{\perp}\alpha$	_		
				$\cdot^{1^+}\sigma^{\parallel} + ^{\alpha\beta}$	0	0	0	0	0	0	0			
				$\dot{\cdot} \sigma^{\perp} \dagger^{\alpha\beta}$	0	0	0	0	0	Θ	0			
				$\stackrel{1^+}{\cdot} \tau^{\parallel} \uparrow^{\alpha\beta}$		0	0	0	0	0	0			
				1 σ^{\parallel} \dagger^{α}	0	0	0	0	0	0	0			
				1 σ^{\perp} \dagger^{α}	0	0	0	0	0	0	0			
				$^{1}_{\cdot}\tau^{\parallel}\uparrow^{\alpha}$	0	Θ	Θ	0	0	0	0			
				1 τ^{\perp} \uparrow^{α}	0	0	0	0	0	0	0	$^{2^{+}}\sigma^{\parallel}_{\alpha\beta}$	$^{2^{+}}_{\bullet}\tau^{\parallel}{}_{\alpha\beta}$	$^{2} \cdot \sigma^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	0	0	0
											$\dot{\cdot}^{2^{+}} \tau^{\parallel} \uparrow^{\alpha\beta}$	0	$\frac{1}{2\beta \cdot k^2}$	0
											$\dot{\sigma}^{\parallel} \dot{\sigma}^{\parallel} \dot{\sigma}^{\alpha\beta\chi}$	0	0	Θ

<u>Source</u> <u>constraints</u>

Spin-parity form	Covariant form	Multiplicities
^{0⁺} τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1
^{0⁺} σ == 0	$\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta} = 0$	1
1- _τ . α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3
1- _T ^α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
1-σ [±] α == 0	$\partial_{\chi}\partial_{\beta}\sigma^{etalpha\chi}$ == 0	3
1-σ α == 0	$\partial_{\delta}\partial^{\alpha}\sigma_{\chi}^{\chi}{}^{\delta} + \partial_{\delta}\partial^{\delta}\sigma_{\chi}^{\chi\alpha}{}_{==} \partial_{\delta}\partial_{\chi}\sigma_{\chi}^{\chi\alpha\delta}$	3
$1^{+}_{\bullet} \tau^{\parallel}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} = = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$1^{+}\sigma^{\perp}\alpha^{\beta} = 0$	$\partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\sigma}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} == \partial_{\sigma}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3
$\int_{\bullet}^{1^{+}} \sigma^{\parallel} \alpha \beta = 0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi}$	3
$^{2^{-}}\sigma^{\parallel}^{\alpha\beta\chi}=0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}_{\delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\delta \alpha \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} + 2 \partial_{\epsilon} \partial^{\kappa} \partial^{\chi} \partial^{\chi} \sigma^{\delta \alpha \delta} + 2 \partial_{\epsilon} \partial^{\kappa} \partial^{\chi} \partial^{\chi} \sigma^{\delta \alpha \delta} + 2 \partial_{\epsilon} \partial^{\kappa} \partial^{\chi} \partial^{\chi} \sigma^{\delta \alpha \delta} + 2 \partial_{\epsilon} \partial^{\kappa} \partial^{\chi} \partial^{\chi} \sigma^{\delta \alpha \delta} + 2 \partial_{\epsilon} \partial^{\kappa} \partial^{\chi} $	5
	$3 \ \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \ \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}_{ \ \delta} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\delta \alpha \chi} + 4 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\chi \alpha \beta} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \xi} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \xi} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \xi} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \xi} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \xi} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \xi} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \xi} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \xi} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \xi} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \xi} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \xi} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \xi} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \xi} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \xi} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \xi} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \xi} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \xi} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \xi} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \partial^{\delta} \sigma^{\delta \alpha \xi} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \partial^{\delta}$	
$^{2^{+}}\sigma^{\parallel}^{\alpha\beta} == 0$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi}_{\chi}^{\delta} = 2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{\chi}_{\chi}^{\delta} + 3 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \alpha \chi} \right)$	5
Total expected	gauge generators:	33

<u>Massive</u> <u>spectrum</u>

(There are no massive particles)

<u>Massless</u> <u>spectrum</u>

Massless particle

Pole residue:	$\frac{p^2}{\beta_1^p} > 0$
Polarisations:	2

Gauge symmetries

(Not yet implemented in PSALTer)

<u>Unitarity</u> <u>conditions</u>

 $\beta_{\frac{1}{1}} > 0$

<u>Validity</u> <u>assumptions</u>

(Not yet implemented in PSALTer)

Key observation: Thus we see that only the odd-parity scalar mode is moving without a mass, as claimed.

Key observation: We have now reached the end of the PSALTer calibration script.