Precision and stability of the automatic Velo Alignment in 2015

Giulio Dujany, Silvia Borghi

University of Manchester
3 March 2016

Introduction

- In 2015 commissioned automatic alignment procedure
- Still a couple of things to finalise
- Possible to exploit information from 2015 run

Automatic alignment procedure

- At each fill a new alignment is evaluated
- HLT1 lines collect dedicated samples for each alignment (VELO, Tracker, Muon)
- Run the alignment as soon as enough data are collected
- Update only if new alignment is significantly different from the old one
- Check significance based on variation of χ^2 and of alignment constants
- If alignment procedure does not converge or proposed variation unphysically large then alignment is not updated and experts should investigate
- Time requested: few minutes after the enough data have been collected

Setting the thresholds

- Need to set the thresholds on the variation of the constants to determine when a new alignment is significantly different from the previous one
- For 2015 run determined accuracy and precision from MC and data from 2012
- Now possible to use data taken in 2015 to study more in depth the precision and optimise the thresholds

Thresholds used in 2015

- too small: statistical fluctuation
- too big: unexpected behaviour

dof	Min variation	Max variation
$T_x T_y [\mu m]$	2	10
$T_z [\mu m]$	4	10
R_x , R_y [μ rad]	3.5	25
R_z [μ rad]	15	100

Setting the thresholds for 2016

- To study precision considered 5 runs, for each of them:
- divide data available for alignment in 6 independents datasets (~ 8k events)
- run using only a dataset per time the alignment procedure starting always from the same optimal alignment (obtained using the full dataset)
- the difference wrt the initial alignment is a proxy of the dependence of the alignment on the dataset and hence of the precision of the method

Max variations

$$T_x$$
, $T_y \sim 1 \,\mu\text{m}$
 R_x , $R_v \sim 3.5 \,\mu\text{rad}$

$$T_z \sim 4.5 \, \mu \text{m}$$

 $R_z \sim 25 \, \mu \text{rad}$

Variations due to different dataset

Variations due to different dataset

New thresholds for 2016

- too small: statistical fluctuation
- too big: unexpected behaviour

dof	Min variation	Max variation
$T_x T_y [\mu m]$	1.5	10
T_z [μ m]	5	10
R_x , R_y [μ rad]	4	25
R_z [μ rad]	30	100

Dependence from initial alignment

- For computing a new alignment we start from an input alignment, usually the one from the previous fill
- How much the input alignment matters?
- Consider 5 fills and for each of them align starting from 3 different alignment:
 - the optimal alignment for that run
 - the optimal alignment plus a small misalignment
 - the optimal alignment plus a big misalignment
- Subtract the optimal alignment and compare

Max variations after alignment

$$T_x$$
, $T_y \sim 0.07 \,\mu\text{m}$

$$T_z \sim 0.2 \, \mu m$$

$$R_z \sim 1.5 \, \mu rad$$

Variations due to initial alignment

Variations due to initial alignment

Studying stability

- As the new alignment does not depend significantly on the input alignment I can see the effect of applying the new thresholds without having to run again all the alignments:)
- Considered 68 runs in COLLISION15
- With old thresholds 40 updates, (9 for R_z alone, 7 for T_x alone ...)
- With old thresholds 38 updates, (13 for T_x alone, 4 for Ty alone ...)

Stability $T_x T_y$

Stability T_z

Stability $R_x R_y$

Stability R_z

Alarms when something goes wrong

- In the procedure if the automatic alignment procedure does not converge or the variation is unphysically large an expert should investigate
- but the error was lost in log files not checked regularly so it was hard to spot
- Now a error message can appear on the alarm screen and an email sent to lhcb-onlinealignmentcalibration@cern.ch
- For details see the twiki

Error on alarm panel

BACKUP

Accuracy and precision of alignment procedure from Run

Accuracy from MC: evaluated with 50 different misalignments over the same data sample

Precision from MC: evaluated with 8 different samples (misaligned and not misaligned scenario compatibles)

Precision from Data: evaluated from 8 different samples from the same fill Variation 3 fills 2012: evaluated difference of 3 fills (2520, 2855, 3316)

taken on April, July and November 2012

Accuracy and precision of alignment procedure

2 halves				
dof	Accuracy from MC	Precision from MC	Precision from Data	Variation 3 fills 2012
T _x T _y [μm] T _z [μm] R _x , R _y [μrad] R _z [μrad]	<1 3 3 10	< 1 4 2 15	2 1 3 40	up to 6 0.5 4 up to 25
Modules				
$T_x T_y [\mu m]$ $R_z [\mu rad]$	< 1 30	< 1 50	2 100	2 60

Updates with old tresholds

```
[(('VeloLeft.Rz',), 9), (('VeloLeft.Tx',), 7), (('VeloLeft.Ry,' 'VeloLeft.Rz', 'VeloLeft.Rz', 'VeloLeft.Tx'), 3), (('VeloLeft.Ry,' 'VeloLeft.Tx', 'VeloLeft.Ty', 'VeloLeft.Tz'), 2), (('VeloLeft.Ry,'), 2), (('VeloLeft.Tx', 2), (('VeloLeft.Rx', 'VeloLeft.Ry,' VeloLeft.Tz'), 1), (('VeloLeft.Rz', 'VeloLeft.Tx'), 1), (('VeloLeft.Ry,' VeloLeft.Ry,' VeloLeft.Rx', 'VeloLeft.Ry,' VeloLeft.Rx', 'VeloLeft.Tx'), 1), (('VeloLeft.Rx', 'VeloLeft.Tx', 'VeloLeft.Tx', 1), (('VeloLeft.Rx', 'VeloLeft.Tx', 'VeloLeft.Tx', 1), (('VeloLeft.Rx', 'VeloLeft.Tx', 'VeloLeft.Tx', 1), (('VeloLeft.Rx', 'VeloLeft.Tx', 'VeloLeft.Tx', 'VeloLeft.Tx', 'VeloLeft.Tx', 'VeloLeft.Tx', 1), (('VeloLeft.Rx', 'VeloLeft.Tx', 1), (('VeloLeft.Rx', 'VeloLeft.Tx', 1), (('VeloLeft.Tx', 1), (('VeloLeft.Tx', 1), (('VeloLeft.Tx', 1), (('VeloLeft.Tx', 1), 1)]
```

Updates with new tresholds

```
[(('VeloLeft.Tx,'), 13), (('VeloLeft.Ty,'), 4), (('VeloLeft.Tx,', 'VeloLeft.Ty,'), 3), (('VeloLeft.Ry,', 'VeloLeft.Tx,', 'Velo
```