A Practical Guide to Bayesian Optimization

Jason King, PhD
Data Scientist, XSOLIS

What led me to Bayesian Optimization?

- Like many of you, I compete in Kaggle competitions
- For whatever reason, GBMs tend to be the most popular (single) model types
 - Significantly more hyperparameters to consider compared to GLMs
- Most competitive teams use ensembling and/or stacking
 - Zillow entry was a stacked model: XGBoost, Light GBM, Random Forest, Extra Trees, AdaBoost (tree-based), two Neural Networks, and a K-Nearest-Neighbor.
 - Linear Regression meta-learner

Hyperparameter comparison

- Linear Regression:
 - fit_intercept, normalize
- Ridge:
 - alpha, fit_intercept, normalize, solver, max_iter
- Decision Tree:
 - criterion, splitter, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_features, max_leaf_nodes, min_impurity_split, min_impurity_descrease, presort
- Random Forest:
 - above, n_estimators, bootstrap

Hyperparameter comparison

• XGBoost:

 booster, eta, gamma, max_depth, min_child_weight, max_delta_step, subsample, colsample_bytree, colsample_bylevel, lambda, alpha, tree_method, sketch_eps, scale_pos_weight, updater, refresh_leaf, process_type, grow_policy, max_leaves, max_bin, objective, base_score

Neural Networks:

• ∞ (get a grad student!)

Zillow Prize

- High-cost training
- Started seeing a lot of chatter about a smarter automated tuning method
 - Learning the hyperparameter space
- A number of Python implementations
 - Metric Optimization Engine (MOE)
 - Bayesian Optimization
 - Hyperopt
- Relatively straightforward to implement in my code
 - Still required a bounded range to search over
 - Took less iterations, and new models performed better

Hyperparameter tuning strategies

Grid

Random

Iterative subsampling

Objectives

- Learn how to implement Bayesian Optimization in your code
- 2. Understand the underlying mechanism
- 3. Discuss the limitations of the technique
- 4. Explore some extended use cases

Installation

pip install bayesian-optimization

Example 1

simple regression.ipynb

Example 2

simple classification.ipynb

Example 3

mercari prep.ipynb mercari train.ipynb

Gaussian Process

- A gaussian process uses lazy learning and a measure of similarity between points (kernel function) to predict the value for unseen points
- Given a black box function/process, we can obtain a few samples and generate a predicted function with uncertainty
- This enables derivative-free optimization
- More importantly, if sampling the target function is expensive, we can reduce overall cost

Gaussian Process

Noiseless GP Regression

$$\begin{pmatrix} f \\ f_* \end{pmatrix} \sim N \left(\begin{pmatrix} \mu \\ \mu_* \end{pmatrix} \cdot \begin{pmatrix} K & K_* \\ K_*^T & K_{**} \end{pmatrix} \right)$$

$$p(f_*|X_*, X, f) = N(f_*|\mu_*, \Sigma_*)$$

$$\mu_* = \mu(X_*) + K_*^T K^{-1} (f - \mu(X))$$

$$\Sigma_* = K_{**} - K_*^T K^{-1} K_*$$

$$K(x, x_*) = e^{\left(-\frac{1}{2}(x - x_*)^2\right)}$$


```
def gaussian(x, y, x0=0.5, y0=0, sigma=1):
    d = np.sqrt((x-x0)**2 + (y-y0)**2)
    return np.exp(-(d**2/(2.0*sigma**2)))

x, y = np.meshgrid(np.linspace(-1,1,100), np.linspace(-1,1,100))
z = gaussian(x, y)
```

```
X_sample = np.random.uniform(-1, 1, size=(3,2))
z_sample = gaussian(X_sample[:,0], X_sample[:,1])

gp = GaussianProcessRegressor().fit(X_sample, z_sample)
mu, std = gp.predict(np.hstack((x.reshape(-1,1), y.reshape(-1,1))), return_std=True)
mu, std = mu.reshape(100,100), std.reshape(100,100)
```



```
def sine_plane(x, y, x0=0.5, y0=0):
    return np.sin(3*x) + 0.5*y

x, y = np.meshgrid(np.linspace(-1,1,100), np.linspace(-1,1,100))
z = sine_plane(x, y)
```

```
X_sample = np.random.uniform(-1, 1, size=(10,2))
z_sample = sine_plane(X_sample[:,0], X_sample[:,1])

gp = GaussianProcessRegressor(alpha=1e-8).fit(X_sample, z_sample)
mu, std = gp.predict(np.hstack((x.reshape(-1,1), y.reshape(-1,1))), return_std=True)
mu, std = mu.reshape(100,100), std.reshape(100,100)
```


Gaussian Process - Kernels

Bayesian Optimization

bayes opt example.ipynb

- Upper Confidence Bound (UCB)
 - $UCB(x) = \mu(x) + \kappa \sigma(x)$
- Probability of Improvement (PI)
 - $PI(x) = P(f(x) > f(x^{+}) + \xi | D_{1:t})$
 - $f(x^+)$ is the current max
- Expected Improvement (EI)
 - $EI(\mathbf{x}) = \mathbf{E}[max\{0, f(\mathbf{x}) f(\mathbf{x}^+) \xi | D_{1:t}\}]$

Limitations

- Overhead
 - Retrain Gaussian process regressor every iteration
- (Hyper)-Hyperparameters
 - Kernel choice
 - Scaling
 - Noise level
- Sequential (traditionally)
 - Smarter initialization
 - Efficient sampling
- Bounds
 - Not unique to Bayesian Optimization

Efficient Initialization

```
rs_params = { 'n_estimators':[10, 20, 50, 100],
             'min samples split':[2, 5, 10, 20],
             'max features':[0.5, 0.6, 0.7, 0.8, 0.9, 1.0]}
rs = RandomizedSearchCV(estimator=RandomForestRegressor(random state=seed),
                         param distributions=rs params,
                         n iter=5,
                         scoring=neg rmsle,
                         n jobs=6,
                         cv=3,
                         verbose=3,
                         refit=False,
                         return train score=True)
start = time.time()
rs.fit(X train, y train)
dump dill('rs.dill', rs)
params init = {}
params_init.update({'target': rs.cv_results_['mean_test_score']})
for key in rs params.keys():
    params_init[key] = [val[key] for val in rs.cv_results_['params']]
params = \{ n \text{ estimators}' : (10,100), \text{ 'min samples split}' : (2,20), \text{ 'max features}' : (0.5,1.0) \}
bo = BayesianOptimization(score model, pbounds=params, verbose=1)
bo.initialize(params init) -
bo.maximize(init_points=0, n_iter=10, acq='ucb')
end = time.time()
print('Time to perform Bayesian optimization: %0.2fs' % (end - start))
bo time = end - start
```

Scaling issues

 Large variances in target values greatly affect standard deviation estimates

Scaling issues

new_kernel = kernels.ConstantKernel(10000.0, constant_value_bounds='fixed')*kernels.RBF(1, length_scale_bounds='fixed')
gp = GaussianProcessRegressor(kernel=new_kernel)
gp.fit(x_sample, y_sample)

Scaling issues

Modified Target Functions

- Add additional constraints to the scoring method (target)
- Mercari challenge limitation
 - All training must be completed within a Kaggle kernel

Questions?

Jason King jkkphys@gmail.com

Resources

- Machine Learning: Nando de Freitas @ UBC
 - Introduction to Gaussian processes
 - Regression with Gaussian processes
 - Bayesian optimization and multi-armed bandits
- Gaussian Processes for Machine Learning
 - Carl Edward Rasmussen and Christopher K. I. Williams
- A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning
 - Eric Brochu, Vlad M. Cora, and Nando de Freitas
- Scikit-learn: Gaussian Processes