Interactive Theorem Proving and Program Verification Lecture 4

Pablo Buiras and Karl Palmskog

Academic Year 2019/20, Period 3-4

Based on slides by Thomas Tuerk

Part X

Basic Definitions

Definitional Extensions

- there are conservative definition principles for types and constants
- conservative means that all theorems that can be proved in extended theory can also be proved in the original one
- however, such extensions make the theory more comfortable
- definitions introduce no new inconsistencies
- the HOL community has a very strong tradition of a purely definitional approach

Axiomatic Extensions

- axioms are a different approach
- they allow postulating arbitrary properties, i. e. extending the logic with arbitrary theorems
- this approach might introduce new inconsistencies
- in HOL4, axioms are rarely needed
- using definitions is considered more elegant and proper ("honest toil")
- it is hard to keep track of axioms
- use custom axioms only if you really know what you are doing

Oracles

- oracles are families of axioms
- however, they are used differently than axioms
- they are used to enable usage of external tools and knowledge
- you might want to use an external automated prover
- this external tool acts as an oracle
 - it provides answers
 - it does not explain or justify these answers
- you don't know whether this external tool might be buggy
- all theorems proved via it are tagged with a special oracle-tag
- tags are propagated
- this allows keeping track of everything depending on the correctness of this tool

Oracles II

- Common oracle-tags
 - DISK_THM theorem was written to disk and read again
 - ► HolSatLib proved by MiniSat
 - HolSmtLib proved by external SMT solver
 - fast_proof proof was skipped to compile a theory rapidly
 - ▶ cheat we cheated :-)
- cheating via, e.g., the cheat tactic means skipping proofs
- it can be helpful during proof development
 - test whether some lemma allows you to finish the proof
 - skip lengthy but boring cases and focus on critical parts first
 - experiment with exact form of invariants
- cheats should be removed at a reasonable pace
- HOL4 warns about cheats and skipped proofs

Pitfalls of Definitional Approach

- definitions can't introduce new inconsistencies
- they force you to state all assumed properties at one location
- however, you still need to be careful:
 - Is your definition really expressing what you had in mind?
 - ▶ Does your formalisation correspond to the real world artefact?
 - How can you convince others that this is the case?
- we will discuss methods to deal with this later in this course:
 - formal sanity
 - reduction theorems
 - conformance testing
 - code review
 - comments, good names, clear coding style
 - **•** . . .
- this is complex and needs a lot of effort in general

Specifications

 HOL4 allows to introduce new constants with certain properties, provided the existence of such constants has been shown

- new_specification is a convenience wrapper
 - ▶ it uses existential quantification instead of Hilbert's choice
 - deals with pair syntax
 - stores resulting definitions in theory
- new_specification captures the underlying principle nicely

Definitions

special case: new constant defined by equality

Specification with Equality > double_EXISTS val it = |- ?double. (!n. double n = (n + n))

```
> val double_def = new_specification ("double_def", ["double"], double_EXISTS);
val double_def =
```

```
|-!n. double n = n + n
```

there is a specialised methods for such simple definitions

Non Recursive Definitions

Restrictions for Definitions

- all variables occurring on right-hand-side (RHS) need to be arguments
 - ▶ e.g. new_definition (..., 'F n = n + m'') fails
 - m is free on RHS
- all type variables occurring on RHS need to occur on LHS

 - IS_FIN_TY would lead to inconsistency
 - ▶ |- FINITE (UNIV : bool set)
 - ▶ |- ~FINITE (UNIV : num set)
 - ► T <=> FINITE (UNIV:bool set) <=>
 IS_FIN_TY <=>
 FINITE (UNIV:num set) <=> F
 - therefore, such definitions can't be allowed

Underspecified Functions

- function specification do not need to define the function precisely
- multiple different functions satisfying one spec are possible
- functions resulting from such specs are called underspecified
- underspecified functions are still total, one just lacks knowledge
- one common application: modelling partial functions
 - ▶ functions like e.g. HD and TL are total
 - they are defined for empty lists
 - however, it is not specified, which value they have for empty lists
 - only known: HD [] = HD [] and TL [] = TL []
 val MY_HD_EXISTS = prove (''?hd. !x xs. (hd (x::xs) = x)'', ...);
 val MY_HD_SPEC =
 new_specification ("MY_HD_SPEC", ["MY_HD"], MY_HD_EXISTS)

Primitive Type Definitions

- HOL4 allows introducing non-empty subtypes of existing types
- a predicate P : ty -> bool describes a subset of an existing type ty
- ty may contain type variables
- only non-empty types are allowed
- therefore a non-emptyness proof ex-thm of form ?e. P e is needed
- new_type_definition (op-name, ex-thm) then introduces a new type op-name specified by P

Primitive Type Definitions - Example 1

- lets try to define a type dlist of lists containing no duplicates
- predicate ALL_DISTINCT : 'a list -> bool is used to define it
- easy to prove theorem dlist_exists: |- ?1. ALL_DISTINCT 1
- val dlist_TY_DEF = new_type_definitions("dlist", dlist_exists) defines a new type 'a dlist and returns a theorem

```
|- ?(rep :'a dlist -> 'a list).
     TYPE_DEFINITION ALL_DISTINCT rep
```

- rep is a function taking a 'a dlist to the list representing it
 - ► rep is injective
 - ▶ a list satisfies ALL_DISTINCT iff there is a corresponding dlist

Primitive Type Definitions - Example 2

 define_new_type_bijections can be used to define bijections between old and new type

- other useful theorems can be automatically proved by
 - prove_abs_fn_one_one
 - ▶ prove_abs_fn_onto
 - prove_rep_fn_one_one
 - prove_rep_fn_onto

Primitive Definition Principles Summary

- primitive definition principles are easily explained
- they lead to conservative extensions
- however, they are cumbersome to use
- LCF approach allows implementing more convenient definition tools
 - Datatype package
 - TFL (Total Functional Language) package
 - ► IndDef (Inductive Definition) package
 - quotientLib Quotient Types Library
 - **.**..

Functional Programming

- the Datatype package allows to define datatypes conveniently
- the TFL package allows to define (mutually recursive) functions
- the EVAL conversion allows evaluating those definitions
- this gives many HOL4 developments the feeling of a functional program
- there is really a close connection between functional programming and definitions in HOL4
 - functional programming design principles apply
 - ► EVAL is a great way to test quickly, whether your definitions are working as intended
- more details on these connections later in the context of the CakeML language and compiler

Functional Programming Example

Datatype Package

- the Datatype package allows to define SML style datatypes easily
- there is support for
 - algebraic datatypes
 - record types
 - mutually recursive types
 - **.**..
- many constants are automatically introduced
 - constructors
 - case-split constant
 - size function
 - field-update and accessor functions for records
 - **.**..
- many theorems are derived and stored in current theory
 - injectivity and distinctness of constructors
 - dichotomy and structural induction theorems
 - rewrites for case-split, size and record update functions
 - **.**..

Datatype Package - Example I

Tree Datatype in SML

```
datatype ('a,'b) btree = Leaf of 'a
| Node of ('a,'b) btree * 'b * ('a,'b) btree
```

Tree Datatype in HOL4

```
Datatype 'btree = Leaf 'a | Node btree 'b btree'
```

Tree Datatype in HOL4 — Deprecated Syntax

Datatype Package - Example I - Derived Theorems 1

btree_distinct

|- !a2 a1 a0 a. Leaf a <> Node a0 a1 a2

btree_11

```
|- (!a a'. (Leaf a = Leaf a') <=> (a = a')) /\
    (!a0 a1 a2 a0' a1' a2'.
        (Node a0 a1 a2 = Node a0' a1' a2') <=>
        (a0 = a0') /\ (a1 = a1') /\ (a2 = a2'))
```

btree_nchotomy

```
|-!bb. (?a. bb = Leaf a) \/ (?b b1 b0. bb = Node b b1 b0)
```

btree_induction

Datatype Package - Example I - Derived Theorems 2

btree_size_def

```
|- (!f f1 a. btree_size f f1 (Leaf a) = 1 + f a) /\
  (!f f1 a0 a1 a2.
  btree_size f f1 (Node a0 a1 a2) =
   1 + (btree_size f f1 a0 + (f1 a1 + btree_size f f1 a2)))
```

btree_case_def

```
|- (!a f f1. btree_CASE (Leaf a) f f1 = f a) /\
   (!a0 a1 a2 f f1. btree_CASE (Node a0 a1 a2) f f1 = f1 a0 a1 a2)
```

btree_case_cong

```
|- !M M' f f1.
   (M = M') /\ (!a. (M' = Leaf a) ==> (f a = f' a)) /\
   (!a0 a1 a2.
        (M' = Node a0 a1 a2) ==> (f1 a0 a1 a2 = f1' a0 a1 a2)) ==>
   (btree_CASE M f f1 = btree_CASE M' f' f1')
```

Datatype Package - Example II

Enumeration type in SML

datatype my_enum = E1 | E2 | E3

Enumeration type in HOL4

Datatype 'my_enum = E1 | E2 | E3'

Datatype Package - Example II - Derived Theorems

my_enum_nchotomy

|- !P. P E1 /\ P E2 /\ P E3 ==> !a. P a

my_enum_distinct

|- E1 <> E2 /\ E1 <> E3 /\ E2 <> E3

my_enum2num_thm

|- $(my_enum2num E1 = 0) / (my_enum2num E2 = 1) / (my_enum2num E3 = 2)$

my_enum2num_num2my_enum

 $|-!r.r < 3 \iff (my_enum2num (num2my_enum r) = r)$

Datatype Package - Example III

Record type in SML

```
type rgb = \{ r : int, g : int, b : int \}
```

Record type in HOL4

```
Datatype 'rgb = <| r : num; g : num; b : num |>'
```

Datatype Package - Example III - Derived Theorems

rgb_component_equality

rgb_nchotomy

|- !rr. ?n n0 n1. rr = rgb n n0 n1

rgb_r_fupd

|- !f n n0 n1. rgb n n0 n1 with r updated_by f = rgb (f n) n0 n1

rgb_updates_eq_literal

```
|- !r n1 n0 n.
r with <|r := n1; g := n0; b := n|> = <|r := n1; g := n0; b := n|>
```

Datatype Package - Example IV

- nested record types are not allowed
- however, mutual recursive types can mitigate this restriction

Filesystem Datatype in SML

Not Supported Nested Record Type Example in HOL4

Filesystem Datatype - Mutual Recursion in HOL4

Datatype Package - No support for Co-Algebraic Types

- there is no support for co-algebraic ("infinite") types
- the Datatype package could be extended to do so
- other systems like Isabelle/HOL provide high-level methods for defining such types

```
Co-algebraic Type Example in SML — Lazy Lists
```

Datatype Package - Discussion

- Datatype package allows to define many useful datatypes
- however, there are many limitations
 - some types cannot be defined in HOL4, e.g., empty types
 - some types are not supported, e.g. co-algebraic types
 - there are bugs (currently, e.g., some trouble with certain mutually recursive definitions)
- biggest restrictions in practice (in my opinion and my line of work)
 - no support for co-algebraic datatypes
 - no nested record datatypes
- depending on datatype, different sets of useful lemmas are derived
- most important ones are added to TypeBase
 - tools like Induct_on, Cases_on use them
 - there is support for pattern matching

Total Functional Language (TFL) package

- TFL package implements support for terminating functional definitions
- Define defines functions from high-level descriptions
- there is support for pattern matching
- look and feel is like function definitions in SML
- based on well-founded recursion principle
- Define is the most common way for definitions in HOL4

Define - Initial Examples

Simple Definitions

```
> val DOUBLE_def = Define 'DOUBLE n = n + n'
val DOUBLE_def =
   |-!n. DOUBLE n = n + n:
  thm
> val MY LENGTH def = Define '(MY LENGTH [] = 0) /\
                              (MY_LENGTH (x::xs) = SUC (MY_LENGTH xs))'
val MY LENGTH def =
   |- (MY_LENGTH [] = 0) /\ !x xs. MY_LENGTH (x::xs) = SUC (MY_LENGTH xs):
  thm
> val MY_APPEND_def = Define '(MY_APPEND [] vs = vs) /\
                              (MY\_APPEND (x::xs) ys = x :: (MY\_APPEND xs ys))
val MY APPEND def =
   [-(!ys. MY\_APPEND [] ys = ys) /
      (!x xs ys. MY_APPEND (x::xs) ys = x::MY_APPEND xs ys):
  thm
```

Define discussion

- Define feels like a function definition in HOL4
- it can be used to define "terminating" recursive functions
- Define is implemented by a large, non-trivial piece of SML code
- it uses many heuristics
- outcome of Define is sometimes hard to predict
- the input descriptions are only hints
 - the produced function and the definitional theorem might be different
 - in simple examples, quantifiers added
 - pattern compilation takes place
 - earlier "conjuncts" have precedence

Define - More Examples


```
> val MY HD def = Define 'MY HD (x :: xs) = x'
val MY_HD_def = |-!x xs. MY_HD (x::xs) = x : thm
> val IS SORTED def = Define '
     (IS\_SORTED (x1 :: x2 :: xs) = ((x1 < x2) / (IS\_SORTED (x2 :: xs)))) /
    (IS SORTED = T)'
val IS_SORTED_def =
   |- (!xs x2 x1. IS_SORTED (x1::x2::xs) <=> x1 < x2 /\ IS_SORTED (x2::xs)) /\
      (IS SORTED [] <=> T) /\ (!v. IS SORTED [v] <=> T)
> val EVEN def = Define '(EVEN 0 = T) /\ (ODD 0 = F) /\
                         (EVEN (SUC n) = ODD n) / \setminus (ODD (SUC n) = EVEN n)
val EVEN_def =
   |- (EVEN 0 <=> T) /\ (ODD 0 <=> F) /\ (!n. EVEN (SUC n) <=> ODD n) /\
      (!n. ODD (SUC n) \iff EVEN n) : thm
> val ZIP_def = Define '(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /
                        (ZIP = [])'
val ZIP def =
   |-(!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) /
      (!v1. ZIP [] v1 = []) / (!v4 v3. ZIP (v3::v4) [] = []) : thm
```

Primitive Definitions

- Define introduces (if needed) the function using WFREC
- intended definition derived as a theorem
- the theorems are stored in current theory
- usually, one never needs to look at it

Examples

```
val IS_SORTED_primitive_def =
|- IS_SORTED =
    WFREC (@R. WF R /\ !x1 xs x2. R (x2::xs) (x1::x2::xs))
    (\IS_SORTED a.
        case a of
        [] => I T
        | [x1] => I T
        | x1::x2::xs => I (x1 < x2 /\ IS_SORTED (x2::xs)))

|- !R M. WF R ==> !x. WFREC R M x = M (RESTRICT (WFREC R M) R x) x
|- !f R x. RESTRICT f R x = (\y. if R y x then f y else ARB)
```

Structural Induction Theorems

- Define automatically defines induction theorems
- these theorems are stored in current theory with suffix ind
- use DB.fetch "-" "something_ind" to retrieve them
- these induction theorems are useful to reason about corresponding recursive functions

Example

```
val IS_SORTED_ind = |- !P.
    ((!x1 x2 xs. P (x2::xs) ==> P (x1::x2::xs)) /\
    P [] /\
    (!v. P [v])) ==>
!v. P v
```

Other Induction Theorems

- there are many induction theorems in HOL4
- Example: complete induction principle

```
|-!P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n
```

- besides datatype definitions, recursive relation definitions also give rise to induction theorems
- many are manually defined, e.g., proved from other induction theorems
- Examples

Define failing

- Define might fail for various reasons to define a function
 - such a function cannot be defined in HOL4
 - such a function can be defined, but not via the methods used by TFL
 - ► TFL can define such a function, but its heuristics are too weak and user guidance is required
 - there is a bug in HOL4
- termination is an important concept for Define
- it is easy to misunderstand termination in the context of HOL4
- we need to understand what is meant by termination

Termination in HOL4

- in SML it is natural to talk about termination of functions
- in the HOL4 logic there is no concept of execution
- thus, there is no concept of termination in HOL4

3 characterisations of a function f : num -> num

```
| - !n. f n = 0
```

$$\rightarrow$$
 |- (f 0 = 0) /\ !n. (f (SUC n) = f n)

$$-$$
 (f 0 = 0) /\ !n. (f n = f (SUC n))

Is f terminating? All 3 theorems are equivalent.

Termination in HOI 4 II

- it is useful to think in terms of termination
- the TFL package implements heuristics to define functions that would terminate in SML
- the TFL package uses well-founded recursion
- the required well-founded relation corresponds to a termination proof
- therefore, it is very natural to think of Define searching a termination proof
- important: this is the idea behind this function definition package, not a property of HOL

HOL is not limited to "terminating" functions

Termination in HOI 4 III

- one can define "non-terminating" functions in HOL4
- however, one cannot do so (easily) with Define

Definition of WHILE in HOL4

```
|-|P|g|x. WHILE P|g|x = if P|x then WHILE P|g|(g|x) else x
```

Execution Order

There is no "execution order". One can easily define a complicated constant function:

```
(myk : num \rightarrow num) (n:num) = (let x = myk (n+1) in 0)
```

Unsound Definitions

A function **f** : **num** -> **num** with the following property cannot be defined in HOL4 unless HOL4 has an inconsistancy:

```
!n. f n = ((f n) + 1)
```

Such a function would allow proving 0 = 1.