4.6 이산확률변수

Topics:

- 확률변수
- 이산형 확률분포
- 확률변수의 평균과 분산

확률변수(random variable):
----------------------	----

확률 실험의 결과에 대한 _____ 표현

• 예: 주사위를 던질 때 나타나는 눈의 수와 그 값이 취하는 확률은?

• 표본공간의 자료를 숫자로 바꾸는 이유는?

- 이산(discrete)확률변수와 연속(continuous)확률변수: 취할 수 있는 값의 형태에 따라 분류
- 이산확률변수와 연속확률변수의 예:

이산형 확률분포(discrete probability distribution):

확률변수가 취할 수 있는 값들에 _	이 대응되고 이러한 분포를	라 한다.
특히, 이산형	확률변수에 대응되는 확률분포를	라 정의

• 예: 두 개의 동전을 던지는 시행에서 앞면이 나오는 횟수를 X라 할 때 확률변수 X의 확률분포는?

	А	В	С	D	E	F	G	Н	I	J
1	표본공간	T, T	T, H	H, T	H, H		Х	0	1	2
2	앞면이 나오는 횟수 X						P(X=x)			
3							P(X≤x)			
4										

• 이산형 확률질량함수의 조건:

• 던지는 실험을 무한히 반복하면 무수히 많은 X의 값들의 모임은 앞면의 수에 대한 $\underline{\text{모집단}}$ 으로 생각할 수 있을까?

확률변수의 평균(expectation)과 분산(variance):

확률변수의 평균: $\mu = E(X) =$

확률변수의 분산: $\sigma^2 = Var(X) =$

(변형식): σ^2 =

확률변수의 표준편차: $\sigma = \mathrm{SD}(X) =$

• 예: 복권 상금의 분류에서 한 장의 복권에 대한 상금을 X라 할 때 확률변수 X의 평균은?

	Α	В	С	D	Е	F	G	Н	1	J	K	L
1	상금	당첨 장수	확률		х	도수	P(X=x)=f(x)	F(x)	x*f(x)	x2*f(x)	x-u	(x-u)2*f(x)
2	100	1	1/1000		100	1						
3	50	2	2/1000		50	2						
4	10	10	10/1000		10	10						
5	5	100	100/1000		5	100						
6	0	887	887/1000		0	887						
7	합계	1000			합계	1000						
8					평균							
9	(단위: 만 원)				분산							
10					(변형식)							
11					표준편차							

- 위 평균의 의미는?
- 확률변수에서 분산은 왜 필요한가?
- 분산의 변형식:

Lecture 4 4. 확률과 확률분포

4.7 두 확률변수의 결합분포

Topics:

- 결합확률분포
- 공분산과 상관계수

결합확률분포(joint probability distribution):

두 개 이상의 확률변수가 동시에 취하는 여러 가지 값들에 확률을 대응시켜 주는 관계

• 예: 한 가구의 자동차 수와 TV세트 수를 조사

	А	В	С	D	E	F	G	Н	1	J	K
1	Car	1	2	3	4			Х	P(X=x)	Υ	P(Y=y)
2	0	0.2	0.15	0.1	0	0.45		0		1	
3	1	0.1	0.2	0.07	0.03	0.4		1		2	
4	2	0.04	0.05	0.04	0.02	0.15		2		3	
5		0.34	0.4	0.21	0.05			합계		4	
6										합계	

• 예: 하나의 동전을 세 번 던졌을 때 나오는 앞면의 수를 X, 처음 두 번의 시행에서 나오는 뒷면의 수를 Y라 하자. 이 실험에서 표본공간을 구하고 X와 Y의 결합확률분포와 각각의 주변확률분포를 확인하여라.

	А	В	С	D	E	F	G	Н	1	J	K	
1	표본공간											
2	X											
3	Υ											
4												
5	결합확률분포							주변확률분포				
6	YX							X	P(X=x)	Υ	P(Y=y)	
7												
8												
9												
10												
11												
12												

공분산(covariance)과 상관계수(correlation coefficient):

두 확률변수의 공분산: 두 확률변수 X와 Y가 변하는 정도의 측도

$$Cov(X, Y) =$$

(변형식):

$$Cov(X, Y) =$$

두 확률변수의 상관계수:

$$\rho = \operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\operatorname{SD}(X) \cdot \operatorname{SD}(Y)}$$

- X와 Y의 공분산의 성질:
 - 1. Cov(X,Y) > 0: X와 Y는 양의 선형적 관계
 - $2. \operatorname{Cov}(X,Y) < 0: X와 Y는 음의 선형적 관계$
 - $3. \operatorname{Cov}(X,Y) = 0$: X와 Y는 선형적 관계를 갖지 않는다.
- X와 Y의 상관계수 성질:

• 예: 동전을 세 번 던지는 시행에서 공분산을 계산하고 X와 Y의 상관계수를 계산하여라.