CAS 701

Logic and Discrete Mathematics Fall 2017

1 Mathematical Values and Structures

William M. Farmer

Department of Computing and Software McMaster University

September 11, 2017

Outline

- 1. What is mathematics?
- 2. Mathematical values.
 - a. Numbers.
 - b. Sets.
 - c. Sequences.
 - d. Relations.
 - e. Functions.
- 3. Mathematical structures.
 - a. Orders.
 - b. Algebraic structures.
 - c. Lattices.
 - d. Graphs.
 - e. Trees.

What is Mathematics?

- Mathematics is a process for understanding the mathematical aspects of the world involving such things as time, space, measure, pattern, and logical consequence.
- The process consists of the following intertwined activities:
 - 1. The creation of mathematical models representing mathematical aspects of the world.
 - 2. The exploration of the models by;
 - a. Stating and proving conjectures.
 - b. Performing computations.
 - c. Creating and studying visual representations.
 - d. Studying examples of the models.
 - 3. The organization and interconnection of the models.
 - 4. The presentation of the models in a narrative form.

Mathematical Models

- There are many kinds of mathematical models.
- Mathematical values and mathematical structures are the building blocks of mathematical models!

Mathematical Proof

- In mathematics, a proof is a deductive argument that shows a conclusion follows from a set of premises.
- Proof is a central component of the mathematics process which is unique to mathematics.
- Proofs are used for several purposes:
 - 1. Communicating mathematical ideas.
 - 2. Certifying that mathematical results are correct.
 - 3. Discovering new mathematical facts.
 - 4. Learning mathematics.
 - 5. Establishing connections between mathematical ideas.
 - 6. Showing the universality of mathematical results.
 - 7. Creating mathematical beauty.

Formal Proofs

- A formal proof is a derivation in a proof system for a formal logic.
- A formal proof can be presented in two ways:
 - As a description of the actual derivation.
 - As a prescription for creating the derivation.
- Software systems can be used to interactively develop and mechanically check formal proofs.
- The writer is highly constrained by the logic, the proof system, and the fact that every detail must be verified.
 - So the meaning of the theorem and the key ideas of proof may not be readily apparent.
- But there is a very high assurance that the theorem is correct.

What is a Number System?

- A number system consists of:
 - 1. A set of mathematical values called numbers.
 - 2. A set of functions on the numbers called arithmetic operations.
- The arithmetic operations include addition (+) and multiplication (*) and may also include other operations such as subtraction, division, and exponentiation.
- A number system is not a numeral system like the Hindu-Arabic or Roman numeral systems.

Common Number Systems

 $\mathbb{N} = \{0, 1, 2, \ldots\}$, the natural numbers, for counting and ordering.

 $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$, the integers, for counting forwards and backwards.

 \mathbb{Q} , the rational numbers, for measuring.

 \mathbb{R} , the real numbers, for solving geometric problems.

 $\ensuremath{\mathbb{C}},$ the complex numbers, for solving algebraic problems.

 \mathbb{Z}_n , the modular integers, for integer arithmetic modulo n (clock arithmetic).

$$\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}.$$

$$\mathbb{Z}_n \subseteq \mathbb{N}.$$

Other Notable Number Systems

O, the ordinals, for ordering infinite sets.

 ${}^*\mathbb{R}$, the hyperreal numbers, for calculating limits in calculus.

 \mathbb{H} , the quaternions, for calculating in three-dimensional space.

S, the surreal numbers, for "total happiness".

$$\mathbb{N}\subseteq\mathbb{O}\subseteq\mathbb{S}.$$

$$\mathbb{R}\subseteq {}^*\mathbb{R}\subseteq \mathbb{S}.$$

$$\mathbb{C}\subseteq\mathbb{H}.$$

Table of Number Systems

Number System	Algebraic Classification
N	semiring
\mathbb{Z}	ring
Q	ordered field
\mathbb{R}	complete ordered field
\mathbb{C}	algebraically closed field
\mathbb{Z}_n	ring
\mathbb{Z}_p , p prime	field
0	near-semiring
$^*\mathbb{R}$	ordered field
H	division ring
S	ordered field

Computer Number Systems

- Fixed precision integers.
 - \triangleright Finite set of integers represented using 2^n bits.
 - Representation scheme is usually two's complement.
 - ▶ Usually implemented as \mathbb{Z}_{2^n} .
- Floating point numbers.
 - Finite set of rational numbers represented in scientific notation $\pm a * 2^b$ using 2^n bits.
- Arbitrary precision integers.
 - Every integer is representable.
 - Know as "bignums".
- Arbitrary precision rational numbers.
 - Every rational number is represented by two bignums.

Sets

- A set is a collection of objects.
- A set can be a member of a set.
- Some very large collections of objects cannot be sets.
 - ► For example, consider the the Russell set, the set of all sets that do not contain themselves.
 - A collection that is too large to be a set is called a proper class.
- Styles of set theories:
 - Naive set theory.
 - Having a universal set.
 - ▶ Having no universal set (e.g., ZF set theory).
 - Having a universal class (e.g., NBG set theory).

Set Concepts

- Basic properties: membership, subset, cardinality.
- Basic operations:
 - Union, intersection, complement, difference, symmetric difference.
 - Cartesian product (product), disjoint union (sum).
 - Sum set, power set.
- Special sets: the emptyset, universal sets, ordered pairs, sequences, relations, functions, ordinals, cardinals.
- Relations and functions can be represented as special kinds of sets (e.g., as sets of tuples).

Sequences

- A sequence is an ordered set.
 - ► Alternate definition: A sequence is a mapping of an initial segment of the natural numbers to a set.
 - Sequences can be either finite or infinite.
 - A finite sequence a_1, \ldots, a_n is usually written as $(a_1, \ldots, a_n), \langle a_1, \ldots, a_n \rangle$, or $[a_1, \ldots, a_n]$.
- Finite sequences are used in many ways in mathematics and computing:
 - A tuple is a finite sequence, usually written as (a_1, \ldots, a_n) , whose members may be of different kinds.
 - A list is a finite sequence, usually written as $[a_1, \ldots, a_n]$, whose members are of the same kind.
 - A string is a finite sequence of characters, usually written as " $a_1 \cdots a_n$ ".

Relations

- For $n \ge 1$, an *n*-ary relation is a set $R \subseteq A_1 \times \cdots \times A_n$ $(n \ge 1)$.
 - ▶ Any set can be considered as a unary relation.
 - ▶ Any nonunary relation can be considered as a binary relation.
- Functions are considered as special relations.
 - An *n*-ary function $f: A_1, \ldots, A_n \to B$ is identified with the corresponding (n+1)-ary relation $R_f \subseteq A_1 \times \cdots \times A_n \times B$ called the graph of the function.
- An n-ary relation can be represented by an n-ary predicate.

Relation Concepts

- Basic binary relation properties:
 - Reflexive, symmetric, transitive.
- Basic binary relation operations:
 - ▶ Domain, range.
 - Composition, inverse.
- Special relations: the empty relation, universal relations, equivalence relations.
- Ways of representing relations:
 - Using zero-one matrices (for binary relations).
 - Using directed graphs (for homogeneous binary relations).

Closures of Relations

- Reflexive closure.
- Symmetric closure.
- Transitive closure.
 - Equals the connectivity relation.

Equivalence Relations

- A binary relation on a set is an equivalence relation if it is reflexive, symmetric, and transitive.
- Given an equivalence relation R on a set S, the equivalence class of $a \in S$ is the set

$$\{b \in S \mid a R b\}.$$

- Theorem.
 - 1. The equivalence classes of an equivalence relation on a set S form a partition of S.
 - 2. Given a partition of a set *S*, there is an equivalence relation on *S* whose equivalence classes are the members of the partition.

(Unary) Functions

- Definition 1: A function is a rule $f: I \rightarrow O$ that associates members of I (inputs) with members of O (outputs).
 - Every input is associated with at most one output.
 - Some inputs may not be associated with an output. Example: $f: \mathbb{Z} \to \mathbb{Q}$ where $x \mapsto 1/x$.
- Definition 2: A function is a set $f \subseteq I \times O$ such that if $(x,y),(x,y') \in f$, then y=y'.
- Each function f has a domain $D \subseteq I$ and a range $R \subseteq O$.
 - f is total if D = I and partial if $D \subset I$.
- A set or relation can be represented as a special kind of function (e.g., as a predicate, a characteristic function, or an indicator).

Lambda Notation

- Lambda notation is a precise, convenient way to specify functions.
- If B is an expression of type β ,

$$\lambda x : \alpha . B$$

denotes a function $f: \alpha \to \beta$ such that $f(a) = B[x \mapsto a]$.

- Example: Let $f = \lambda x : \mathbb{R} . x * x$.
 - $f(2) = (\lambda x : \mathbb{R} \cdot x * x)(2) = 2 * 2.$
 - f denotes the squaring function.
- Lambda notation is used in many languages to express ideas about functions.
- Examples:
 - Lambda Calculus (a model of computability).
 - ► Simple Type Theory (a higher-order predicate logic).
 - ▶ Lisp (a functional programming language).

n-Ary Functions

- Definition 1: For $n \ge 0$, an n-ary function is a rule $f: I_1, \ldots, I_n \to O$ that associates members of I_1, \ldots, I_n (inputs) with members of O (outputs).
 - Every list of inputs is associated with at most one output.
 - Some lists of inputs may not be associated with an output.
- Definition 2: For $n \ge 0$, an n-ary function is a set $f \subseteq I_1 \times \cdots \times I_n \times O$ such that if $(x_1, \dots, x_n, y), (x_1, \dots, x_n, y') \in f$, then y = y'.
- Each function f has a domain $D \subseteq I_1 \times \cdots \times I_n$ and a range $R \subseteq O$.

Representing n-Ary Functions as Unary Functions

There are two ways of representing a *n*-ary function as a unary function:

1. As a function of tuples: $f:I_1,\ldots,I_n\to O$ is represented as

$$f': I_1 \times \cdots \times I_n \to O$$

where

$$f(x_1,\ldots,x_n)=f'((x_1,\ldots,x_n)).$$

2. As a curryed function: $f: I_1, \ldots, I_n \to O$ is represented as

$$f'': I_1 \rightarrow (I_2 \rightarrow (\cdots (I_n \rightarrow O) \cdots))$$

where

$$f(x_1,\ldots,x_n)=f''(x_1)\cdots(x_n).$$

Example

- Let $f = \lambda x, y : \mathbb{R} \cdot x^2 + y^2$.
- $f' = \lambda p : \mathbb{R} \times \mathbb{R}$. $[fst(p)]^2 + [snd(p)]^2$. $f'((a,b)) = (\lambda p : \mathbb{R} \times \mathbb{R} \cdot [fst(p)]^2 + [snd(p)]^2)((a,b))$ $= [fst((a,b))]^2 + [snd((a,b))]^2$ $= a^2 + b^2$
- $f'' = \lambda x : \mathbb{R} . \lambda y : \mathbb{R} . x^2 + y^2.$ $f''(a)(b) = (\lambda x : \mathbb{R} . \lambda y : \mathbb{R} . x^2 + y^2)(a)(b)$ $= (\lambda y : \mathbb{R} . a^2 + y^2)(b)$ $= a^2 + b^2.$

Function Concepts

- Basic properties:
 - ▶ Arity (0-ary, unary, *n*-ary with $n \ge 2$, flexary).
 - ► Total, injective, surjective, bijective.
 - Image, inverse image.
- Basic operations: composition, restriction, inverse.
- Special functions: the empty function, identity functions, choice functions.

Cardinality

- Two sets A and B are equipollent, written $A \approx B$, if there is a bijection $f: A \rightarrow B$ between them.
- $A \leq B$ means $A \approx B'$ for some $B' \subseteq B$.
- A set is infinite if it is equipollent with a proper subset of itself.
- The cardinality of a set A is the cardinal number c such that A and c are equipollent.
- Theorem.
 - 1. $\mathbb{N} \approx \mathbb{Q}$.
 - 2. (Cantor) $\mathbb{N} \not\approx \mathbb{R}$.
- Theorem (Schröder-Bernstein). If $A \leq B$ and $B \leq A$, then $A \approx B$.

Mathematical Structures

- Loosely speaking, a mathematical structure is a set of mathematical values that are structured in some manner.
- A typical mathematical structure consists of:
 - 1. A finite set of nonempty domains (sets) of values: D_1, D_2, \ldots, D_n .
 - 2. A set of distinguished values in the domains: a_1, a_2, \ldots
 - 3. A set of functions whose inputs and outputs are in the domains: $f_1, f_2, ...$
 - 4. A set of relations over the domains: $R_1, R_2, ...$
- Such a mathematical structure may be written as a tuple:

$$(D_1, D_2, \ldots, D_n; a_1, a_2, \ldots; f_1, f_2, \ldots; R_1, R_2, \ldots).$$

The semicolons may be dropped for the meaning is clear.

Example: The real numbers as a complete ordered field:

$$(\mathbb{R}; 0, 1; +, -, *, ^{-1}; =, <).$$

Examples of Mathematical Structures

- Number systems.
- Orders.
- Algebraic structures.
- Lattices.
- Graphs.
- Trees.
- Abstract data types (ADTs) used in computing (e.g, ADTs for strings, lists, streams, arrays, records, stacks, queues).

Orders

An order is a mathematical structure of the form

where R is binary relation that orders D is some manner.

• The order is weak [strict] if

$$aRa [\neg (aRa)]$$

holds for all $a \in D$.

Pre-Orders

- A pre-order is a mathematical structure (S, \leq) where \leq is a binary relation on S that is:
 - ▶ Reflexive: $\forall x . x \le x$.
 - ▶ Transitive: $\forall x, y, z . x \le y \land y \le z \Rightarrow x \le z$.
- Example: (F,⇒) is a pre-order where F is a set of formulas and ⇒ is implication.
- A pre-order can have cycles.
- Every binary relation R on a set S can be extended to a pre-order on S by taking the reflexive and transitive closure of R.

Partial Orders

- A weak partial order is a mathematical structure (S, \leq) where \leq is a binary relation on S that is:
 - ▶ Reflexive: $\forall x . x < x$.
 - ▶ Antisymmetric: $\forall x, y . x \le y \land y \le x \Rightarrow x = y$.
 - ▶ Transitive: $\forall x, y, z . x \le y \land y \le z \Rightarrow x \le z$.
- A strict partial order is a mathematical structure (S, <) where < is a binary relation on S that is:
 - ▶ Irreflexive: $\forall x . \neg (x < x)$.
 - ▶ Asymmetric: $\forall x, y . x < y \Rightarrow \neg(y < x)$.
 - ▶ Transitive: $\forall x, y, z . x < y \land y < z \Rightarrow x < z$.
- Examples: $(\mathcal{P}(S), \subseteq)$ and $(\mathcal{P}(S), \subset)$ are weak and strict partial orders.
- A partial order does not have cycles.
- Every pre-order can be interpreted as a partial order.

Total Orders

- A weak total order is a mathematical structure (S, \leq) where \leq is a binary relation on S that is:
 - ▶ Antisymmetric: $\forall x, y . x \le y \land y \le x \Rightarrow x = y$.
 - ▶ Transitive: $\forall x, y, z . x \le y \land y \le z \Rightarrow x \le z$.
 - ▶ Total: $\forall x, y . x \leq y \lor y \leq x$.
- A strict total order is a mathematical structure (S, <) where < is a binary relation on S that is:
 - ▶ Irreflexive: $\forall x . \neg (x < x)$.
 - ► Asymmetric: $\forall x, y . x < y \Rightarrow \neg (y < x)$.
 - ▶ Transitive: $\forall x, y, z . x < y \land y < z \Rightarrow x < z$.
 - ▶ Trichotomous: $\forall x, y . x < y \lor y < x \lor x = y$.

Examples: (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{Q}, \leq) , and (\mathbb{R}, \leq) are weak total orders.

Some Basic Order Definitions

- Let (P, \leq) be a partial order and $S \subseteq P$.
- A maximal element [minimal element] of S is a $M \in S$ [$m \in S$] such that $\neg (M < x)$ [$\neg (x < m)$] for all $x \in S$.
- The maximum element or greatest element [minimum element or least element] of S, if it exists, is a $M \in S$ $[m \in S]$ such that $x \leq M$ $[m \leq x]$ for all $x \in S$.
- An upper bound [lower bound] of S is a $u \in P$ $[I \in P]$ such that $x \le u$ $[I \le x]$ for all $x \in S$.
- The least upper bound or supremum [greatest lower bound or infimum of S, if it exists, is a $U \in P$ [$L \in P$] such that U is an upper bound of S and, if u is an upper bound of S, then $U \le u$ [L is a lower bound of S and, if I is a lower bound of S, then $I \in L$].
- A function $f: P \to P$ is monotone with respect to \leq if, for all $a, b \in P$, $a \leq b$ implies $f(a) \leq f(b)$.

Well-Orders

- A well-order is a mathematical structure (S, \leq) that is a weak total order such that every nonempty subset of S has a minimum element with respect to \leq .
- Examples: (\mathbb{N}, \leq) and (\mathbb{O}, \leq) are well-orders.
- A well-order has no infinite strictly decreasing sequences.
- The proof technique of induction and definition technique of recursion can be applied with respect to a well-ordered set.

Algebraic Structures

An algebraic structure is a mathematical structure of the form

$$(D_1, D_2, \ldots, D_n; a_1, a_2, \ldots; f_1, f_2, \ldots;)$$

(that contains no relations).

 There is a huge number of different kinds of algebraic structures.

Examples of Algebraic Structures

- Having a single binary operation:
 - Magma: (D;; mul;).
 - Semigroup: (*D*; ; mul;).
 - ► Monoid: (*D*; *e*; mul;).
 - ► Group: (*D*; *e*; mul, inv;).
- Having + and * operations:
 - Semiring: (R; 0, 1; +, *;).
 - Ring: (R; 0, 1; +, -, *;).
 - Division ring: $(R; 0, 1; +, -, *, ^{-1};)$.
 - Field: $(R; 0, 1; +, -, *, ^{-1};)$.
- Having + and scalar multiplication:
 - ▶ Module over a ring $R: (M, R; \cdots)$.
 - ▶ Vector space over a field $F: (V, F; \cdots)$.

Boolean Algebras

A boolean algebra is an algebraic structure

$$(B; 0, 1; +, *, ^-;)$$

that satisfies the axioms (i.e., properties) given below. + and * are binary functions and $^-$ is a unary function.

- Boolean algebra was first presented by the logician George Boole (1815-1864) in 1847.
- There are infinitely many nonisomorphic boolean algebras.
- Boolean algebra is is used to model electronic circuits.
- Examples:
 - 1. $(\{T,F\},F,T,\vee,\wedge,\neg)$.
 - 2. $(\mathcal{P}(U), \emptyset, U, \cup, \cap, \overline{})$ where U is any set.

The Axioms of a Boolean Algebra

Associativity Laws

$$\forall x, y, z . (x + y) + z = x + (y + z)$$

 $\forall x, y, z . (x * y) * z = x * (y * z)$

Commutativity Laws

$$\forall x, y . x + y = y + x$$
 $\forall x, y . x * y = y * x$

Distributive Laws

$$\forall x, y, z . x + (y * z) = (x + y) * (x + z)$$

 $\forall x, y, z . x * (y + z) = (x * y) + (x * z)$

Identity Laws

$$\forall x . x + 0 = x \qquad \forall x . x * 1 = x$$

Complement Laws

$$\forall x . x + \overline{x} = 1$$
 $\forall x . x * \overline{x} = 0$

Some Theorems of a Boolean Algebra

Idempotent Laws

$$\forall x . x + x = x \qquad \forall x . x * x = x$$

Absorption Laws

$$\forall x, y . x + (x * y) = x \qquad \forall x, y . x * (x + y) = x$$

De Morgan Laws

$$\forall x, y . \overline{x+y} = \overline{x} * \overline{y}$$

 $\forall x, y . \overline{x*y} = \overline{x} + \overline{y}$

Laws of Zero and One

$$\forall x . x + 1 = 1 \qquad \forall x, y . x * 0 = 0$$

$$\overline{0} = 1 \qquad \overline{1} = 0$$

Law of Double Complement

$$\forall x . \overline{\overline{x}} = x$$

Lattices

- A lattice is partial order (L, \leq) such that:
 - 1. Every pair a, b of elements of L has a least upper bound in L called the join of a and b (joins exist).
 - 2. Every pair a, b of elements of L has a greatest lower bound in L called the meet of a and b (meets exist).
- The minimum and maximum of a lattice, if they exist, are called the bottom denoted by 0 or ⊥ and the top denoted by 1 or ⊤, respectively.
- Examples:
 - 1. $(\mathcal{P}(S), \subseteq)$ is a lattice with a bottom and top.
 - 2. (\mathbb{N}, \leq) is a lattice with a bottom but no top.
 - 3. $(\mathbb{N}, |)$, where a | b means a divides b, is a lattice with a bottom and top.
 - 4. If (B,0,1,+,*,-) is a boolean algebra, then (B,\leq) is a complemented distributive lattice with a top and bottom where $a \leq b$ means $a = a * b \wedge a + b = b$.

Semilattices

- A semilattice is partial order (S, \leq) such that either joins exist or meets exist.
 - It is a join-semilattice if joins exist.
 - ▶ It is a meet-semilattice if meets exist.
- Examples:
 - Any lattice is a semilattice.
 - Any tree can be viewed as a semilattice.

Lattices as Algebraic Structures

A lattice can also be defined as an algebraic structure

$$(L;;\vee,\wedge;)$$

that satisfies the axioms given below.

- ullet \vee and \wedge denotes the join and meet of the lattice, resp.
- If (L, \vee, \wedge) are lattices, the (L, \vee) and (L, \wedge) are semilattices.
- A bounded lattice is an algebraic structure

$$(L; 0, 1; \vee, \wedge;)$$

such that (L, \vee, \wedge) is a lattice, 0 is the identity element for \vee , and 1 is the identity element for \wedge .

The Axioms of a Lattice

Associativity Laws

$$\forall x, y, z . (x \lor y) \lor z = x \lor (y \lor z)$$

$$\forall x, y, z . (x \land y) \land z = x \land (y \land z)$$

Commutativity Laws

$$\forall x, y . x \lor y = y \lor x$$

 $\forall x, y . x \land y = y \land x$

Absorption Laws

$$\forall x, y . x \lor (x \land y) = x$$
$$\forall x, y . x \land (x \lor y) = x$$

Notice that the absorption laws imply:

Idempotent Laws

$$\forall x . x \lor x = x$$

$$\forall x . x \land x = x$$

Complete Lattices

- A complete lattice is a partial order (L, \leq) such that, for each $S \subseteq L$, S has a least upper bound and greatest lower bound in L.
- Examples:
 - $(\mathcal{P}(S),\subseteq)$ is a complete lattice.
 - $(\mathbb{R}(0,1),\leq)$ is not a complete lattice.
 - $(\mathbb{R}[0,1],\leq)$ is a complete lattice.
 - $(\mathbb{Q}[0,1],\leq)$ is not a complete lattice.
 - (\mathbb{N}, \leq) is not a complete lattice.
 - $(\mathbb{N}, |)$ is a complete lattice.

Knaster-Tarski Fixed Point Theorem

- Theorem. Let (L, ≤) be a complete lattice and f: L → L
 be monotone with respect to ≤. Then there exists a fixed
 point of f, i.e., there exists an a ∈ L such that f(a) = a.
 Moreover, (F, ≤), where F is the set of fixed points of f,
 is a complete lattice.
- There are several other fixed point theorems related to the Knaster-Tarski theorem.
- Fixed point theorems can be used to define objects by recursion.

Graphs

A graph is a mathematical structure of the form

where $R \subseteq E \times V \times V$ and, for all $e \in E$, there are $v_1, v_2 \in V$ such that $R(e, v_1, v_2)$.

- The members of V and E are called the vertices and edges, respectively, of the graph.
- An edge $e \in E$ is undirected [directed] if $R(e, v_1, v_2)$ implies $R(e, v_2, v_1)$ [$\neg R(e, v_2, v_1)$].
- A graph (V, E, R) is undirected [directed] if every e ∈ E is directed [undirected].
- A graph (V, E, R) is simple if $R(e_1, v_1, v_2)$ and $R(e_2, v_1, v_2)$ imply $e_1 = e_2$.

Connectedness

- Let G = (V, E, R) be a graph and $v, v' \in V$.
- A path from v to v' in G is a finite sequence $\langle u_0, \ldots, u_n \rangle$ of vertices in V with $n \geq 1$ such that $v = u_0$, $v' = u_n$, and, for all i with $0 \leq i < n$, there is some $e_i \in E$, such that $R(e_i, u_i, u_{i+1})$.
- v is connected to v' if there is a path from v to v' in G.
- *G* is connected if each pair of vertices in *V* is connected.
- A cycle in G is a path from a vertex to itself in G.
- *G* is cyclic if there is a cycle in *G*.

Trees

- A tree is a connected, acyclic, undirected, simple graph.
- A directed tree is an acyclic directed graph (V, E, R) with a vertex v ∈ V (called the root) such that there is a unique path from v to each other vertex in V.