Semiconductor Wafer Map Defect Pattern Classification

Shaalini DSIF2 Capstone project

Contents

Introduction
Problem Statement
Machine Learning Process
Results & Conclusion
Future work

Introduction

Our Life's are powered by System on Chip Integrated Circuits

Making these ICs are no mean feat

Courtesy: Fab1 ArsTechnica Web

- Semiconductor
 Wafer/IC Fabrication
 involves hundreds of
 Process steps, takes a
 month or few to
 complete and costs
 thousand of dollars
 for each wafers
- With such huge investment, consistent Yield Improvement is crucial for Profitability

Images of wafer defects

- One of the major cause for yield loss is the errors from Process
- Identifying these fabrication errors in shorter time is crucial in improving the yield

Wafer Bin Map Pattern

Wafer/IC Fabrication Process

Wafer Electrical Test Assembly (Dicing & Packaging)

Test and Distribution

- Wafer Bin Map -> pictorial representation of Defective ICs
- Fail (Defect) Patterns -> can be related to different Fabrication errors

 Scratch pattern: Handling Issues, Localised pattern: Uneven Cleaning

Problem Statement

Less complex (Less training time)
Achieving overall AccuracyScore/ExactMatchRatio > 90%
Achieving Precision/Recall/F1-score > 90% for each individual defect pattern

Machine Learning Process

Data Gathering

Mixed-type Wafer Defect Datasets (Public dataset)

By Institute of Intelligent Manufacturing, Donghua University

https://www.kaggle.com/cold7era/mixedtype-wafer-defect-datasets

Wafer Map Image: Numpy array format (52 X 52) Image Labels: 8-bit one-hot encoding format (1 X 8) 38,000 Images

(Real data obtained from Testing & some generated data using GAN)

8 Different Individual Defect patterns

Defects: Center, Donut, Localized Edge, Ring Edge, Localized, Near Full, Scratch, Random **38 Mixed Defect Types**

1 normal (no defect) 8 single (1 defect) 28 mixed type (2 different defects, 3 different defects, 4 different defects)

Data Preprocessing

Replaced invalid pixel values

Normalized the Image data

Calculated Class weights

Stratified Train-Val-Test split

Convert to RGB representation

Exploratory Data Analysis

Same type of defect pattern can be at different size/position/angle

Exploratory Data Analysis

Stratified split: 50% in Train set, 25% in Validation set, 25% in Test set
- For both Mixed defect types and also the individual defect counts

NearFull(NF) and Random(R) defects are much lower in count & Loc(L) and Scratch(S) are higher in count

Class Weights are calculated for each individual defects to address this Class Imbalance

Model

VGG16 base model + 2 Fully connected Layer + 1 Output Layer

Results & Conclusions

Model Metrics

Evaluation Metric	Exact Match Ratio/ Accuracy Score	Hamming Loss	
Train Set	0.957	0.007	
Val Set	0.953	0.007	
Test Set	0.954	0.007	

•	High Exact Match Ratio and Low Hamming
	Loss for all the 3 data sets

No Signs of overfitting

	precision	recall	f1-score	
	precision	recall	T1-Score	support
Center(C)	1.000000	0.999692	0.999846	3250.0
Donut(D)	1.000000	1.000000	1.000000	3000.0
Edge_Loc(EL)	0.997504	0.983692	0.990550	3250.0
Edge_Ring(ER)	0.990089	0.999000	0.994525	3000.0
Loc(L)	0.999776	0.991778	0.995761	4500.0
Near_Full(NF)	0.972973	0.972973	0.972973	37.0
Scratch(S)	0.993909	0.996211	0.995058	4750.0
Random(R)	0.995392	0.995392	0.995392	217.0
micro avg	0.996812	0.994819	0.995815	22004.0
macro avg	0.993705	0.992342	0.993013	22004.0
weighted avg	0.996828	0.994819	0.995810	22004.0
samples avg	0.970320	0.968768	0.969099	22004.0

• Precision/F1-score/Recall > 95% for all the individual defects in test data

Confusion Matrix

• False Positive/False Negatives < 1% for all the individual defects

 Model predicts Well for all type of defects and Mixed defect Patterns

LIME explainer segmentation mask

- In this Image top label is the Donut(D)
- LIME Segmentation Image on the right clearly shows that the model is able to identify the shape of the Donut(D) well and so can predict it correctly

Conclusions

The Multi-label Classification model that have been built can successfully predict the Mixed-type defects with overall Accuracy score > 90% and Precision/Recall/F1 score >90% of for individual defects

Future Work

Future Work

- As the complexity of the semiconductor process keep increasing constantly with the advancement in technology, there are high possibility to encounter new defect patterns.
 - As the Future work, plan to develop Image Segmentation model to detect New patterns and integrate with Multi-Label Classification Model

Thank You!

- GlobalAveragePooling2D convert multi dimensional object to one dimensional
- **Sigmoid** activation squashes a vector of range (0,1) for each of the 8 outputs
- **BinaryCrossentrophy** Loss computed for every vector is not affected by other component values
- Class weights would provide a weight or bias for each output class
- Exact Match Ratio: Percentage of samples that have all their labels classified correctly
- Hamming-Loss: Fraction of labels that are incorrectly predicted

Glossary

Free themes and templates for Google Slides or PowerPoint

NOT to be sold as is or modified!

Read FAQ on slidesmania.com

Sharing is caring!

