일년과하루

- 지구의 공전궤도
 - 타원궤도
 - 계절
 - 지구의 자전축은 이러한 공전궤도에 기울어져 있음
 - 북반구 여름: 태양에 멀리 떨어짐
 - 북반구 겨울: 태양에 가까워짐
 - 계절은 공전궤도에서 지구 자전축의 기울기 에 의해 결정

- 황도 黃道 ecliptic
 - 지구에서 본 태양의 하늘을 1년에 걸쳐 이동한 경로
 - 춘분 (vernal equinox) : 겨울에서 여름으로 가면서 낮과 밤의 길이가 똑같은 날
 - 추분 (autumnal equinox) : 여름에서 겨울로 가면서 낮과 밤의 길이가 똑같은 날

- 1년
 - 1년 (年, year)이란 시간의 기준
 - 평균 태양년 tropical year, solar year
 - 봄부터 봄까지의 평균. 약 365.24219일
 - 평균 항성년 sidereal year
 - 태양을 지구가 한 바퀴 도는 기간의 평균. 약 365.25636일
 - 평균 근점년 anomalistic year
 - 지구의 근일점 통과 때부터 다음 근일점 통과 때가지의 평균. 약 365.2596일

- 평균이란 말을 왜 쓰는가?
 - 일(일, day)이 동일한 시간 길이가 아니기 때문이다.

- 평균 항성년 (平均 恒星年, sidereal year)
 - 태양 중심
 - 태양 주위를 지구가 온전히 360° 도는데 걸리는 시간
 - 약 365.25636일

- 세차운동 precession
 - BCE 129년에 그리스 천문학자 Hipparchus는 별들의 위치가 바벨론에서 관측한 위치에서 이동한 것을 확인
 - 지구 자전축
 - 태양공전면의 수직 방향에서 볼 때 23.5° 기울어져 있음
 - 이 수직 방향을 기준으로 지구 자전축이 25772년 마다 다시 제자리로 돌아옴
 - 현재의 북극성(polaris)은 약 14000년 후에 Vega라는 별이 그 역할을 하며 이때는 지구 자전축이 정반대에 위치하므로 지구의 계절은 지금과 정반대가 된다.
 - 즉, 여름이 겨울이 되고, 겨울이 여름이 된다.

- 평균 태양년 (平均 太陽年, tropical year, solar year)
 - 지구 중심
 - 지구의 계절 주기의 동일한 위치에 왔을 때까지 걸린 시간
 - 회귀년 약 365.24219일
 - 춘분(vernal equinox)에서 다음 춘분까지 혹은 summer solstice에서 다음 summer solstice까지 걸린 시간
 - 평균 항성년보다 20분 평균 태양년이 짧음
 - 황도를 따라 춘분과 추분이 매년 50.3"씩 서쪽으로 이동
 - 실제 춘분에서 다음 춘분까지 태양은 황도를 한 바퀴 돌지 못함

- 1° = 60' (° : degree, ': minute 혹은 arcminute)
- 1'=60" (": second 혹은 arcsecond)

- 1일 (하루)
 - 24 시간
 - 하루는 불변하는 것이 아니다.
 - 대략 10만년마다 하루의 길이가 1초 늘어난다.
 - 이는 달이나 화성, 목성 등 다른 천체들과의 중력 기조력 때문에 발생한다.

시대	1년	하루	
기원전 20억년	800일	11시간	
기원전 8억년	500일	17시간	
기원전 4억년	400일	22시간	
기원전 1억년	375일	23.5시간	

- 태양일 (太陽日, solar day)
 - 하늘의 정해 놓은 어떤 위치에 태양이 다시 나타나는데까지 걸린 시간
 - ~24h (시간)
 - 평균 태양년 = 365.242199 태양일
- 항성일 (恒星日, sidereal day)
 - 고정된 별에 대하여 지구가 온전히 한 번 자전하는 시간
 - 23h 56' 04"
 - 평균 태양년 = 366.2422 항성일

- * 23h 56' 04"
 - 23시 56분 4초

- 태양일 (太陽日, solar day)
 - 태양 주위 지구의 공전 궤도 : 타원 (ellipse)
 - Kepler law 케플러 법칙
 - 여름과 겨울에 지구의 공전 속도가 다름
 - 따라서 태양일의 시간이 같은 값이 아님

- 그러므로 1 태양일 = 24h±7.9"
- 최근 수십년간 태양일의 평균
 - 86400.002" (24.0000006 h)

- 1 태양년 = 365.242199 태양일
 - 1년은 365일
 - 매년 0.242199 일이 남는다
 - 4년을 다음과 같이 나누자
 - 365일+365일+366일 = 1461일
 - 365.242199X4=1460.968796일
 - 위 두 값이 일치하지 않으니 365일과 366일의 분배를 4년마다 말고 좀 더 정밀하게 해야 한다.

윤년 : 태양년에 태양일 날수를 자연수 365보다 1 큰 366으로 끼워 넣는 해

기본적으로 윤년을 4년 마다 되풀이 되는데 ...

• 윤년 계산

- 해당년도 끝 두 자리가 00으로 끝나지 않으면
 - [1]해당년도가 4로 나누어진다 → 해당년도 = 윤년 (안 나눠지면 평년)
- 해당년도 끝 두 자리가 00으로 끝나면
 - [21] 해당년도가 100으로 나누어진다 → 해당년도 = 평년 (안 나눠지면 윤년)
 - [22] 해당년도가 400으로 나누어진다 → 해당년도 = 윤년 (안 나눠지면 평년)
- * 해당년도가 00이면 [21], [22] 계산하는데 나중 해당년도가 윤년과 평년의 기준

• 예제

- 2020 : [1] 해당년도=윤년 → 2020년 = 윤년
- 2000 : [21] 해당년도=평년 [22] 해당년도=윤년 → 2000년=윤년
- 2200 : [21] 해당년도=평년 [22] 해당년도=평년 > 2200년=평년
- 1900 : [21] 해당년도=평년 [22] 해당년도=평년 > 1900년=평년
- 2017 : [1] 해당년도=평년 → 2017년=평년

- 부활절(復活節, Easter)
 - 기독교의 최대 명절
 - AD 313년 로마의 기독교 공인 이후 부활절은 중요한 절기
 - **부활절** 날짜
 - 춘분 이후 첫 보름 이후 **일요일**
 - 춘분: 겨울에서 여름으로 가는 도중 황도와 적도가 만나는 날 (태양력)
 - 보름 : 달이 꽉 찬 날(full moon) (태음력)
 - 양력 날짜를 음력 날짜로 변환
 - 이 변환을 여러분과 논의하기에는 너무 복잡
 - 인터넷 프로그램 이용 : (예) https://superkts.com/cal/solar_lunar/
 - 해당년도 춘분 날짜 확인
 - 인터넷 프로그램 이용 : (예) https://data.kma.go.kr/climate/solarTerms/solarTerms.do

- 2020년 부활절 날짜 계산
 - 2020년 춘분 날짜 : 3월 20일
 - 2020년 3월 20일 : 음력 2020년 2월 26일
 - 2월이 몇일까지 있는지 모르니 날짜를 바꿔 양력 4월 5일을 넣으니 음력 3월 13일이다.
 - 3월 15일이 음력 보름이니 양력 4월 7일이 보름에 대응되는 날이다.
 - 4월 7일은 윈도우 달력에 보니 화요일이고, 이 날이 지난 일요일은 4월 12일이다.
 - 따라서 **2020년 부활절은 4월 12일**이다.

• 년도별 부활절

춘분 날짜는 3월 20일 혹은 21일로 고정

년도	춘분	보름	부활절	년도	춘분	보름	부활절
2001	3월 20일	4월 8일	4월 15일	2018	3월 21일	3월 31일	4월 1일
2002	3월 21일	3월 29일	3월 31일	2019	3월 21일	4월 19일	4월 21일
2003	3월 21일	4월 17일	4월 20일	2020	3월 20일	4월 8일	4월 12일
2004	3월 20일	4월 5일	4월 11일	2021	3월 20일	3월 29일	4월 4일
2005	3월 20일	3월 26일	3월 27일	2022	3월 21일	4월 17일	4월 24일
2006	3월 21일	4월 14일	4월 16일	2023	3월 21일	4월 6일	4월 9일
2007	3월 21일	4월 3일	4월 8일	2024	3월 20일	3월 25일	3월 31일
2008	3월 20일	3월 22일	3월 23일	2025	3월 20일	4월 13일	4월 20일
2009	3월 20일	4월 9일	4월 12일	2026	3월 20일	4월 2일	4월 5일
2010	3월 21일	3월 30일	4월 4일	2027	3월 21일	3월 22일	3월 28일
2011	3월 21일	4월 18일	4월 24일	2028	3월 20일	4월 9일	4월 16일
2012	3월 20일	4월 7일	4월 8일	2029	3월 20일	3월 30일	4월 1일
2013	3월 20일	3월 27일	3월 31일	2030	3월 20일	4월 19일	4월 21일
2014	3월 21일	4월 15일	4월 20일	2031	3월 21일	4월 8일	4월 13일
2015	3월 21일	4월 4일	4월 5일	2032	3월 20일	3월 27일	3월 28일
2016	3월 20일	3월 23일	3월 27일	2033	3월 20일	4월 15일	4월 17일
2017	3월 20일	4월 11일	4월 16일	2034	3월 20일	4월 4일	4월 9일