# Self-Managing Associative Memory for Dynamic Acquisition of Expertise in High-Level Domains

Jacob Beal IJCAI 2009



#### SOMs as Associative Memory

- Fast, parallel content retrieval
- Generalize to representative models
  - Higher resolution for more frequent categories
- Unsupervised organization of inputs
  - Episodic memory, analogical retrieval, sensory maps
- Dynamics poorly understood



# Self-Organizing Map



Set of models  $M_i$  arranged in Euclidean space (normally k-vectors in a grid)

Generalization of [Kohonen, '82]

# Self-Organizing Map



Example  $\xi_t$ : find highest match quality  $Q(M_i, \xi_t)$  (association = match w. incomplete example)

Generalization of [Kohonen, '82]

# Self-Organizing Map



Blend into nearby models with  $B(M_i, \xi_i, w(d(b, i)))$  (initial organization may use time-varying weight)

Generalization of [Kohonen, '82]

## High-Level Domain Distributions

- Structured high-level models are very sparse
- Assumption: hierarchical clustering → "spikes"
  - $m_i$  = probability of draw from *i*th spike



#### Growth of a cluster



- Blend: linear,  $w(d) = max(0,\alpha(1-d/r))$ 
  - Free parameters: α, r

# Analysis of Cluster growth

- Assume homogeneity
  - All growth on boundary
- Unconstrained, size n
  - boundary area =  $O(\sqrt{n})$
  - $dn/dt = k/\sqrt{n} \rightarrow O(t^{2/3})$
  - Linear in  $\alpha$ , r,  $m_o$
- Eventual equilibrium
  - Size based only on m<sub>i</sub>
  - Converge exponentially



## **Experiment: Initial Growth**



100x100 SOM, 40 trials, 5x10⁴ examples

## **Experiment: Initial Growth**



100x100 SOM, 40 trials, 5x10⁴ examples

# Experiment: Convergence



• 100x100 SOM, 40 trials, 10<sup>7</sup> examples

# Experiment: Convergence



100x100 SOM, 40 trials, 10<sup>7</sup> examples

# Change of distribution



- Experiment with three cases:
  - Join: green added to red
  - Shift: green instead of red
  - Decay: no spike

## Dynamics: Time Response



• 40x40 SOM, 40 trials, 106 old then 106 new

#### **Dynamics: Parameter Variation**



• Large SOMs grow similarly;  $m_2$  speeds growth

## **Dynamics: Parameter Variation**



Large SOMs decay slower; m<sub>2</sub> slows decay

## Erosion of Prior Knowledge



- New knowledge erodes the old unevenly
  - More similar knowledge is more likely to be lost

#### Contributions

- Analytic and experimental measure of SOM dynamics for high-level associative memory:
  - Growth of expertise set by boundary interactions
  - Initial  $O(t^{2/3})$  growth fast enough w. high sample rate
  - Growth/decay ratio can support long-term retention of expertise
- Learning erodes prior knowledge unevenly