

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In Re U.S. Patent Application of Wilhelm Schwaeble and Robert Braidwood Sim)
Application No.: 09/316,163)) Examiner: Marianne DeBrino
Filed: June 18, 2001 (CPA filing date)) Group Art Unit: 1644
For: COMPLEMENT INHIBITOR)
COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, VA 22313-1450	

SUPPLEMENT TO RESPONSE TO OFFICE ACTION MAILED MARCH 25, 2003

Further, in response to the Office Action mailed March 25, 2003, the applicant encloses a certified copy of the priority document.

The Commissioner is hereby authorized to charge any deficiency in fees to Deposit Account No. 23-0280.

Respectfully submitted,

Date: November 3, 2003

Monique A. Morneault, Reg. No. 37,893 Wallenstein Wagner & Rockey, Ltd.

311 South Wacker Drive, 53rd Floor

Chicago, Illinois 60606 Phone: (312) 554-3300 Attorneys for Applicants

MAM/183986.1

CERTIFICATE OF MAILING (37 C.F.R. 1.8a)
I hereby certify that this correspondence is, on the date shown below, being deposited with the United States Postal Service as first class mail, postage prepaid, in an envelope addressed to: Commissioner For Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on November 3, 2003.

Carol J. Wiechers (186631)

The Patent Office Concept House Cardiff Road Newport South Wales NP10 8OO

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation and Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein together with the Statement of inventorship and of right to grant of a Patent (Form 7/77), which was subsequently filed.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 14 October 2003

		. ~. :

Patents Form 1/77
Patents Act 1977
(Rule 16)

Request for grant of a patent
(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to belp you fill in this form)

28NOV96 E236932-3 C03020..... P01/7700 25.00

The Patent Office

Cardiff Road Newport Gwent NP9 1RH

1. Your reference

M96/0591/GB

2. Patent application number (The Patent Office will fill in this part)

9624731.7

28 NOV 1996

3. Full name, address and postcode of the or of each applicant (underline all surnames)

University of Leicester University Road Leicester LEI 7RH

Patents ADP number (if you know it)

If the applicant is a corporate body, give the country/state of its incorporation

TATTY SOON

f. Title of the invention

(including the postcode)

COMPLEMENT INHIBITOR

5. Name of your agent (if you have one)

"Address for service" in the United Kingdom to which all correspondence should be sent

McNeight & Lawrence

Regent House Heaton Lane Stockport Cheshire SK4 1BS

Patents ADP number (if you know it)

0001115001

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country

Priority application number (if you know!!)

Date of filing (day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if:

Yes

- a) any applicant named in part 3 is not an inventor, or
- b) there is an inventor who is not named as an applicant, or
- c) any named applicant is a corporate body. See note (d))

Patents Form 1/77

Enter the number of sheets for any of the following items you are filing with this form. Do not count copies of the same document

Continuation sheets of this form

Description 15

Claim(s) 2

Abstract 1

Drawing(s) 3

14 Paces

10 If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

one

Request for preliminary examination and search (Patents Form 9/77)

one

Request for substantive examination

(Patents Form 10/77)

Any other documents

(please specify)

1/We request the grant of a patent on the basis of this application.

Signature

Date 27.11.96

Mcneight & Lawrence

Name and daytime telephone number of person to contact in the United Kingdom

David L McNeight Ol61 480 6394

Warning

11.

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

Patents Act 1977 (Rule 15)

Statement of inventorship and of right to grant of a patent

The Patent Office

Cardiff Road Newport Gwent NP9 1RH

1.	Your reference	M96/0591/GB
2.	Patent application number (if you know it)	9624731.7
3.	Full name of the or of each applicant	University of Leicester
4.	Title of the invention	Complement Inhibitor
 5.	State how the applicant(s) derived the right from the inventor(s) to be granted a patent	by virtue of employment
6.	How many, if any, additional Patents Forms 7/77 are attached to this form? (see note (c))	
7.		I/We believe that the person(s) named over the page (and on any extra copies of this form) is/are the inventor(s) of the invention which the above patent application relates to. 12.12.96 Signature Date
 8.	Name and daytime telephone number of person to contact in the United Kingdom	David L McNeight Ol61 480 6394

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there are more than three inventors, please write the names and addresses of the other inventors on the back of another Patents Form 7/77 and attach it to this form.
- d) When an application does not declare any priority, or declares priority from an earlier UK application, you must provide enough copies of this form so that the Patent Office can send one to each inventor who is not an applicant.
- e) Once you have filled in the form you must remember to sign and date it.

Enter the full names, addresses and postcodes of the
inventors in the boxes and underline the surnames

Wilhelm Schwaeble 13 Swithland Court Woodhouse Eves Leicestershire LE12 8SJ

Patents ADP number (if you know it):

Robert Braidwood Sim 106 Water Eaton Lane Gosford Kidlington Oxfordshire OX5 2PR

Patents ADP number (if you know it): 7/3094400

Reminder

Have you signed the form?

Patents ADP number (if you know it):

Complement Inhibitor

The present invention concerns regulation of complement activation, in particular the fluid phase regulation of complement activation.

The complement system (see McAleer, M.A. and Sim, R.B. in Activators and Inhibitors of Complement, Kluwer Academic Publishers, Dordrecht, ed R.B. Sim, 1993, p. 1-15; Reid, K.B.M. and Law, A., 1988, Complement, IRL Press, Oxford) is concerned with host defence against infection - upon activation of the system a catalytic set of reactions and interactions occur resulting in the targeting of the activating cell, organism or particle for destruction. Due to the destructive nature of the system it has the potential to cause severe damage to a host system if incorrectly triggered (Davis, A.E., 1988, Ann. Rev. Immunol., 6: 595-628; Frank, M.M., 1993, In: Complement in Health and Disease, 2nd Edition, Whaley, K. et al. eds., Kluwer Academic Publishers, Dordrecht, p. 229) and if its activity is diminished then it has the potential to leave the host open to attack from infecting pathogens.

This is particularly the case with patients suffering from Factor H (FH) deficiency which leads to an uncontrolled activation of the complement system resulting in a depletion of serum complement. Factor H deficient patients are susceptible to recurrent bacterial infection (particularly meningitis) and may not be able to clear immune complexes efficiently from circulation, resulting in glomerulonephritis.

Factor H is an important complement regulator which controls activation by its virtue to bind to native and complexed C3b and to serve as a cofactor in the Factor I mediated conversion of C3b to haemolytically inactive iC3b (Whaley, K. and Ruddy, S., 1976, J. Exp. Med., 144: 1147). It hereby acts as an antagonist to factor B and holds in check the alternative pathway activation, a positive feedback loop in which C3b

complexes with factor B, after which the serine protease factor D activates factor B by proteolysis, to form the alternative pathway C3 convertase, C3bBb. Factor H has a further important regulatory function as it can accelerate the decay of the C3 convertase by displacing Bb from the complex (Whaley, K. and Ruddy, S., 1976, Science, 193: 1011). Absence of factor H results in uncontrolled turnover of the alternative pathway. Because C3b is an integral component of the C5 convertases of both classical and alternative pathways, the binding of factor H to C3b also regulates C5 convertase activity (Whaley, K. and Ruddy, S., 1976, Science, 193: 1011). Thus factor H plays a key role in controlling the alternative pathway C3 convertase activity and also the activities of the C5 convertases of both classical and alternative pathways.

No complement regulatory activity has as yet been ascribed to the recently characterized variant factor H related serum glycoproteins of 39/43 kDa and 24/29 kDa (Timmann, C. et al., 1991, J. Immunol., 146:1265; Estaller, C. et al., 1991, J. Immunol., 146: 3190; Schwaeble, W. et al., 1991, Eur J. Biochem., 198: 399 - 404; Skerka, C. et al., 1991, J. Biol. Chem., 266: 12015; Zipfel, P.F. and Skerka, C., 1994, Immunology Today, 15: 121). These factor H related mRNAs are exclusively expressed in the liver (Schwaeble, W. et al., 1991, Immunobiol., 182:307) and encoded by at least two different factor H related genes (Estaller, C. et al., 1991, J. Immunol., 146: 3190; Hourcade, D. et al., 1991, Abstr. XIVth Int. Complement Workshop, Complement Inflamm., 8: 163; Zipfel, P.F. and Skerka, C., 1994, Immunology Today, 15: 121).

Factor H comprises a number of independently folded domains (CCP modules or short consensus repeats - SCRs) of approximately 60 amino acids (aa) residues with a framework of highly conserved residues involving 4 cysteine, 1 tryptophane and 2 proline residues. In human serum, two different FH glycoproteins of 155 kDa (FHp155) and of 43 kDa (FHp43) are known (Schwaeble, W. et al., 1987, Eur. J. Immunol., 17: 1485; Ripoche, J. et al., 2988, Biochem. J., 249: 593; Schwaeble, W. et al., 1991, Eur. J. Biochem., 198: 399-404; Estaller, C. et al., Eur. J. Immunol., 21:

799) and both forms express cofactor (i.e. complement regulatory) activity in the FI (Factor I) mediated conversion of C3b to iC3b (Misasi, R. et al., 1989, Eur. J. Immunol., 19: 1765 - 1768). See also Whaley, K. and Ruddy, S., 1976, J. Exp. Med. 144: 1147-1163; Whaley, K. and Ruddy, S., 1976, Science, 193: 1011-1013.

According to the present invention there is provided a molecule comprising at least complement control protein (CCP) modules (Reid, K.B.M. *et al.*, 1986, Immunol. Today, 7: 230-234) 1-4 of complement factor H, or a molecule resulting from partial modification thereof or an allelic mutant thereof.

By "partial modification" and "partially modified" is meant, with reference to amino acid sequences a partially modified form of the molecule which retains substantially the properties of the molecule from which it is derived, although it may of course have additional functionality. Partial modification may, for example, be by way of addition, deletion or substitution of amino acid residues. Substitutions may be conserved substitutions. Hence the partially modified molecules may be homologues of the molecules from which they are derived. They may, for example, have at least 40% homology with the molecules from which they are derived. They may for example have at least 50, 60, 70, 80, 90 or 95% homology with the molecules from which they are derived. Similarly nucleotide sequences encoding the molecules or amino acid sequences may be partially modified to code for any such modifications to an amino acid sequence or molecule. Nucleotide sequences may also of course be modified such that they still code for the same amino acid residues but have a different nucleotide sequence.

The molecule may for example comprise CCP modules 1-5, 1-6 or 1-7 of complement factor H, or a molecule resulting from partial modification thereof or an allelic mutant thereof.

The complement factor H may be human complement factor H or it may for example be a different animal complement factor H, for example rat complement factor H.

The molecule may comprise FHp43, or a molecule resulting from partial modification thereof or an allelic mutant thereof.

The molecule may be for use in inhibiting complement activation.

The present inventor has found that, surprisingly, FHp43 is approximately 10-100 fold more potent than FHp155, and that this potency is to be found particularly in CCP modules 1-7.

Hence a molecule according to the present invention may have increased complement inhibitory activity compared to that of FHp155, i.e. it may have an enhanced efficacy. A molecule according to the present invention comprises at least CCP modules 1-4 of FHp43. It may for example comprise at least CCP modules 1-5, 1-6 or 1-7 of FHp43.

The present inventor has found that the C-terminal 180 amino acids of FHp43 may be removed without significant loss of the complement inhibitory function of FHp43. Hence molecules according to the present invention may have C-terminal deletions of for example about 180 amino acids, when compared to FHp43.

The regulatory activity of these molecules may be used for example in preventing tissue damage due to myocardial infarction, ischemia (for example limb and gut ischemia), infarction of neural tissue, in treating the adult respiratory distress syndrome, rheumatoid arthritis and thermal injuries. The molecules may be used as a fluid phase regulator of complement activity. They may for example be used to improve

the biocompatability of artificial membranes by e.g. coating haemofiltration membranes with immobilised FH polypeptides in order to reduce complement activation or by encapsulating xenografts in artificial membranes coated with FH polypeptides. Fusion proteins may be made comprising a FH protein according to the present invention fused to a membrane anchor in order to act as a potent complement regulator on the surface of transfected (or transformed) cells and transgenic animals. Such membrane anchored molecules may be used to reduce xenograft rejection using xenotransplant organs. Spacer residues may be added between the membrane anchor and the FH protein in order to increase or optimise the efficacy of the FH protein (Adams, E.M. *et al.*, 1991, J. Immunol., 147: 3005). Methods of transformation and transfection of cells are well known in the art and where reference is made to transfection, reference is also to transformation and *vice versa*.

Molecules according to the present invention may be modified such that they have an increased half-life in order that they may have a prolonged protective effect upon a patient. Particular molecules may for example comprise dimeric or trimeric forms of molecules according to the present invention. For example a molecule may comprise a trimer of CCP modules 1-4 or a trimer of FHp43.

Also provided according to the present invention is the use of a molecule according to the present invention in the manufacture of a medicament for use in inhibiting complement activation.

Also provided according to the present invention is a method of inhibiting complement activation comprising the use of a molecule according to the present invention.

The present inventor has also succeeded in isolating and sequencing rat FH 4.3 and FH1.0 mRNA and so according to the present invention there is also provided

a nucleotide sequence having the sequence of SEQ ID NO: 1 (Figure 1 - FH4.3) encoding rat FH 4.3 kb mRNA, together with a nucleotide sequence having the sequence of SEQ ID NO: 2 (Figure 1 - FH1.0) encoding rat FH 1.0 kb mRNA. The present invention also extends to partially modified forms of the nucleotide sequences and to polypeptides derived from them and partially modified forms thereof.

FHp155 and FHp43 may be readily isolated and purified (Misasi, R. et al., Eur. J. Immunol., 1989, 19: 1765-1768; Sim, R.B. et al., 1993, Int. Rev. Immunol., 10: 65; Sim, R.B. et al., 1993, Meth. Enzymol., 223: 13 and references therein) and the genes encoding the proteins may be isolated using standard techniques. Standard expression systems, for example MaxBac (Invitrogen) may be used to synthesise the isolated protein (see Sharma, A.K. and Pangburn, M.K., 1994, Gene, 143: 301).

The ability of the molecules of the present invention to inhibit complement activation may be readily shown by activating complement with antigen-antibody complexes (classical pathway) or zymosan (alternative pathway) in the presence of the molecules of the present invention and assaying levels of C3a, C5a and C5b-9 complement components using commercially available reagents (Amersham) and ELISA (enzyme linked immunosorbent assay).

The alternative pathway C3 and C5 convertases ((C3b)_nBbP) and classical pathway C5 convertase (C4b2a3b) may be readily prepared from for example rat or human components and the activity of the factor H molecules of the present invention on the formation and stability of each convertase and on C5 activation may be assayed using haemolytic assay systems (Sim *et al.*, 1993, *supra*).

The ability of the molecules of the present invention to inhibit complement activation and limit tissue injury *in vivo* may be determined using for example a model of perfusion injury of ischaemic myocardium (Weisman, H.F et al., 1990, Science, 249:

146) and a model of antibody-dependent experimental allergic encephalomyelitis (Piddlesden, S. et al., 1990, Clin. Exp. Immunol., <u>83</u>: 245).

The molecules of the present invention may be readily coupled to artificial membranes, for example dialysis membranes, as follows. Using cuprophan-cellulose membranes (Enka-Azko, Wuppertal, Germany), the following steps may be performed:

i) Activation of the membrane:

1,1'-Carbodiimidazole (Kennedy, J.F. and Paterson, M., 1993, Polymer.

Intern., 32: 71;

Chlorformic acid-p-nitrophenylester (Vandorne, F. et al., 1991, Makromol.

Chem., <u>192</u>: 773);

Cyanogen bromide (Kennedy, J.F. and Patterson, M., 1993, supra)

ii) Coupling of spacers:

Use of aliphatic diamines (e.g. 1,12 Diaminododecane, Kery et al., 1991, Carbohydr. Res., 209: 83);

Use of 6-aminocaproicacid (Burton, S.C., 1991, J. Chromatogr., <u>587</u>: 271); Use of aminosubstituted aliphatic thiols (Kery *et al.*, 1991, *supra*)

iii) Coupling of the peptide:

Activation of the N-terminal spacer by thiophosgen;

Activation of a carboxyterminal spacer using alternatively the acid method or the addition of coupling reagents (e.g. DCC or EDC, Royer, G.P. and Anantharmaiah, G.M., 1979, J. Am. Chem. Soc., 101: 3395; Bodanszky, M. and Bodanszky, A., 1984, K. Hafner *et al.*, Hrsg, Bd. 21, Springer-Verlach, Berlin);

Activation of S-terminal spacer by 2,2'-Dithiodipyridine and coupling via cysteine residues.

The effect of uncoated and coated membranes (above) upon complement activation may be readily quantified using C3a, C5a and C5b-9 assays (Chenoweth, D.E., 1987, Contr. Nephrol., <u>59</u>: 51 and as described above).

According to a further aspect of the invention, there is provided a DNA molecule, which may be in recombinant or isolated form, comprising a sequence encoding a molecule according to the present invention.

The coding sequence may be operatively linked to an expression control sequence sufficient to drive expression. Recombinant DNA in accordance with the invention may be in the form of a vector. The vector may for example be a plasmid, cosmid or phage. A vector may include at least one selectable marker to enable selection of cells transfected (or transformed) with the vector. Such a marker or markers may enable selection of cells harbouring vectors incorporating heterologous DNA. The vector may contain appropriate start and stop signals. The vector may be an expression vector having regulatory sequences to drive expression. Vectors not having regulatory sequences may be used as cloning vectors (as may expression vectors).

Cloning vectors can be introduced into suitable hosts (for example *E. coli*) which facilitate their manipulation. According to another aspect of the invention, there is therefore provided a host cell transfected or transformed with DNA according to the present invention. Such host cells may be prokaryotic or eukaryotic. Eukaryotic hosts may include yeasts, insect and mammalian cell lines. Expression hosts may be stably transformed. Unstable and cell-free expression systems may of course also be used.

DNA of the invention may also be in the form of a transgene construct designed for expression in a transgenic plant or animal. In principle, the invention is applicable to all animals, including birds such as placental mammals, (for example cattle, sheep, goats, water buffalo, camels and pigs), domestic fowl, amphibian species and fish

species. The protein may be harvested from body fluids or other body products (such as eggs or milk, where appropriate). Such mammalian transgenic mammary expression systems are well known - see for example WO-A-8800239, WO-A-9005188 and WO-A-9416570. The β -lactoglobulin promoter may be used in transgenic mammary expression systems.

Expression hosts, particularly transgenic animals, may contain other exogenous DNA to facilitate the expression, assembly, secretion and other aspects of the biosynthesis of molecules of the invention.

The invention is in principle capable of accommodating the use of synthetic DNA sequences, cDNAs, full genomic sequences and "minigenes", i.e. partial genomic sequences containing some, but not all, of the introns present in the full length gene.

DNA in accordance with the invention can in principle be prepared by any convenient method involving coupling together successive nucleotides, and/or ligating oligo- and/or poly-nucleotides, including *in vitro* processes, as well as by the more usual recombinant DNA technology.

The invention will be further apparent from the following description, with reference to the several figures of the accompanying drawings, which show, by way of example only, forms of complement inhibition. Of the figures:

Figure 1 shows sequence alignments of the nucleotide sequences of four different types of rat factor H mRNA transcripts (rFH4.3, rFH2.7, rFH1.8 and rFH1.0). Start and stop-codons are underlined, the polyadenylation initiation signal is written in italics;

Figure 2 shows a cofactor assay showing the functional activity of recombinant human FHp43. Lanes are as follows: Lane 1 - C3b with human Factor I (FI); lane 2 - C3b with rat FI; lane 3 - C3b with human FI and recombinant rat FHSCR1-7; lane 4 - C3b with human FI and recombinant human FHp43 (10 mM); and lane 5 - C3b with rat FI and purified human factor H; and

Figure 3 shows a cofactor assay showing the functional activity of recombinant rat FHSCR1-7. Lanes are as follows: Lane 1 - C3b with human FI; lane 2 - C3b with rat FI; lane 3 - C3b with human FI and recombinant human factor H; lane 4 - C3b with human FI and recombinant rat factor H; lane 5 - C3b with rat FI and recombinant rat FHSCR1-7; lane 6 - C3b with rat factor I and 10 mM recombinant rat FHSCR1-7; and lane 7 - C3b with human factor I and 10 mM recombinant FHp43.

EXPERIMENTAL

With the following experiments, a truncated recombinant human and rat factor H are expressed in a high efficiency yeast expression system. The yield of expression is estimated to be in a range of up to 5mg of recombinant protein per litre of yeast culture.

Figures 2 and 3 show the results of the cofactor assays described below. The presence of an α' band at 43 kDa (a cleavage product of the α -chain of C3b) indicates cofactor activity (Figure 2, lane 4; Figure 3, lanes 3, 5, 6 and 7). Hence both the recombinant human FHp43 and rat FHSCR1-7 peptides cooperate with factor I in a species specific manner and, surprisingly, exhibit cofactor activity even at low concentrations (10 mM) when incubated with C3b and factor I of the corresponding species.

Materials and Methods

Isolation and characterization of 4 different factor H or factor H related gene products of the rat

Using a rat liver cDNA library in λ -ZAP II (#937506 STATAGENE, La Jolla, CA), cDNA clones rFH4.3, rFH1.8, rFH2.7 and rFH1.0 were isolated as follows. Approximately 300,000 colonies were screened with a 5' specific PstI/XhoI cDNA subfragment of the mouse factor H cDNA clone MH8 (Kirstensen, T. *et al.*, 1986, J. Immunol., 136: 3407). From eighteen hybridizing plaques obtained in the rescreen procedure, the four clones listed above were analysed further. The pBluescript SK-plasmid containing the cDNA insertions of interest were rescued from the λ -ZAP II phagemid by *in vivo* excision. The cDNA sequences of the 4 different types of clones was determined by sequencing both strands using the Sanger dideoxy chain termination method with Sequenase II (RTM) and the reagent kit (USB, Cleveland, USA).

RNA extraction and Northern blot analysis

Total RNA was isolated according to standard methods (Chirgwin, J.W. *et al.*, 1979, Biochemistry, 18: 5294), quantified by measuring the absorbence at 260 nm, separated on a formaldehyde-containing 1.2% agarose gel and blotted to Hybond N filters. Agarose gel electrophoresis, RNA transfer and hybridization of blots were performed by standard techniques (Sambrook, J., Frisch, E.F., and Maniatis, T.: Molecular cloning. A laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor Press, New York, 1989). Northern blot filters were probed with a 5'-specific 553 bp long PstI/XhoI restriction subfragment of the murine factor H clone MH8 encoding SCR 1-2 of mouse factor H, and the 867 bp long cDNA insert of the rat specific factor H clone rFH1.0. The probes were used at a concentration of 5×10^6 cpm of 32 P labelled cDNA/ml hybridization solution. Hybridization was performed at 65 °C in the absence of formamide. The washing of the Northern blots was carried out according to standard procedures (Sambrook et al., 1989, *supra*). The last washing step was performed in $0.3 \times SSC$ for 1 hour at 65 °C.

Expression of recombinant human and rat factor H in Pichia pastoris

The coding sequence for the mature human factor H serum protein FHp43 was amplified by PCR using the oligonucleotide primers H19 5' EcoRI: 3' GTA GAA TTC GAA GAT TGC AAT GAA CTT 5' and the reverse 3' primer H19 3' NOT I: 5' GGG CGG CCG CTC AGA GGG TAA AGC TGA C 3' using cDNA clone phFH1.8 (Estaller, C. et al., 1991, Eur. J. Immunol., 21: 799) as template. Characters in bold indicate the start of the Factor H sequence or the end of the coding Factor H sequence as appropriate. Uppercase characters are coding and lowercase characters are non-coding. In order to obtain further truncated versions of recombinant factor H proteins (i.e. SCR1-6, SCR1-5, SCR1-4), the same procedure was repeated using the primers H19 5' EcoRI: 3' GTA GAA TTC GAA GAT TGC AAT GAA CTT 5' and the reverse 3' primer H19 3' SCR6 NOT I: 5' GGG CGG CCG CTC A tac tgg aaa gta tgg tct acg 3' (to amplify

SCR1-6), H19 5' EcoRI: 3' GTA GAA TTC GAA GAT TGC AAT GAA CTT 5' and the reverse 3' primer H19 3' SCR5 NOT I: 5' GGG CGG CCG CTC A ttt aat cct taa agg tga gta 3' (to amplify SCR1-5), H19 5' EcoRI: 3' GTA GAA TTC GAA GAT TGC AAT GAA CTT 5' and the reverse 3' primer H19 3' SCR4 NOT I: 5' GGG CGG CCG CTC A aat ctt ctg aga tat agg aga 3' (to amplify SCR1-4). In each case, the PCR reaction was performed using the GeneAmp DNA amplification reagent kit (Perkin Elmer Cetus, Überlingen, Germany) and the PCR protocol: 95 °C for 5 minutes, followed by 40 cycles (95 °C for 1 min., 50 °C for 2 min, 72 °C for 2 min.) and 72 °C for 10 min. The PCR products were subcloned into the PCRII (INVITROGEN, San Diego, CA), excised using the EcoRI/NotI restriction sites generated within the primers and cloned in frame with the alpha factor prepro sequence of the Pichia pastoris expression vector pPICZα A (INVITROGEN, San Diego, CA) (using the EcoRI/NotI restriction sites in the polylinker of pPICZα A).

Likewise, the first seven SCR units of rat factor H were amplified by PCR using the oligonucleotide primers rFH4.3-5' Sna B I: 3' GGT ACG TAG AAG ATT GTA AAG GTC CT 5' and rFH4.3-3' Not I 3' GGG CGG CCG CGA TAC GGA CGC ATT TGG G 5' with cDNA clone rFH4.3 as a template. The PCR product was subcloned into PCRII, excised using the SnaBI and the NotI restriction sites introduced within the primers and subcloned in frame with the alpha factor prepro coding sequence using the corresponding restriction sites of the Pichia pastoris expression vector pPIC 9 (INVITROGEN, San Diego, CA). The ligation products were transfected and amplified in the E. coli strain TOP 10 (INVITROGEN, San Diego, CA) according to the manufacturers protocol.

The Pichia pastoris strain GS115 was transfected with the linearised constructs (the $pPICZ\alpha$ construct containing the human factor H cDNA was linearised by BstX1 digest, the pPIC9 construct containing the rat factor H cDNA was linearised by Bgl II digest)

electroporation using the BioRad Gene Pulsar (BioRad, Hercules, CA) according to the manufacturers protocol. Plating and screening for transformants was performed according to the manufacturers protocol (INVITROGEN, San Diego, CA). After electroporation, Pichia pastoris cells were plated on MD plates (containing dextrose) and grown at 30 °C for 48 hours. Single colonies were picked from these plates and replated on Methanol containing MM plates (without dextrose) to select for AOX1- disrupted transformants which have the cDNA of interest inserted into the polylinker region. Alcohol oxidase genes AOX1 and AOX2 allow the metabolism of methanol, thereby providing a source of carbohydrates. MM plates (without dextrose) provide no other source of carbohydrates and so AOX1-disrupted transformants, which have a reduced ability to metabolise methanol, were recognised by their slower growth on dextrosol-free MM plates. The insertion of the cDNA construct of interest was further confirmed by PCR analysis of genomic DNA isolated from poorly growing colonies. In order to select for such colonies that secrete high rates of recombinant factor H, twenty AOX1-disrupted colonies were inoculated each in 10 ml of BMGY medium (Invitrogen) in a 50 ml tube and cultured at 30 °C with vigorous shaking (>200 rpm) for 48 hours to saturation (OD_{600} = 10.0-20.0). Cells were harvested by centrifugation for 10 minutes at room temperature at 4000 g, supernatant discarded and the pellet resuspended in 2 ml of BMMY (Invitrogen) medium. This time, tubes were only covered with two layers of sterile gauze and again, incubation occurred at 30 °C with vigorous shaking (>200 rpm) for 48 hours. Cells were pelleted as before and supernatants analysed by Western blot analysis.

Cofactor assay

Functional activity of recombinant rat and human factor H was determined in a factor H dependent factor I mediated C3b cleavage assay. Therefore, human C3b and factor I were purified from peripheral blood as previously described (Misasi, R. et al., 1989, Eur. J. Immunol., 19: 1765). In order to establish a species-specific variant of this assay, rat factor I was purified from 2 ml of rat serum by fluid phase liquid chromatography using Pharmacia FPLC apparatus P500 and a Pharmacia Mono S HR 5/5 column eqilibrated

with PE buffer at pH 6. Separation of serum proteins occurred by addition of PE-buffer plus 1M NaCl at pH 6 and a flow rate of 1 ml/min. Fractions were depleted of factor H by immune-chromatography using a Sepharose C14b column preabsorbed with the human anti-factor H monoclonal antibody OX23 (Schwaeble, W. *et al.*, 1987, Eur. J. Immunol., 17: 1485). The cofactor assay for the recombinant human FHp43 and rat FHSCR1-7 expressed in yeast as described above was performed in a 1.5 ml Eppendorf reaction tube at 37 °C for 30 min using 100,000 cpm of ¹²⁵I labelled C3b diluted in PE buffer with 20 mg SBTI, 0.1% Triton X 100, pH 7 by addition of either 1 μg rat or human factor I alone or 1 μg of recombinant rat FHSCR1-7 or human FHp43 alone or combinations of human factor I with rat or human recombinant factor H or rat factor I with recombinant human or rat factor H. Cleavage of C3b was monitored by SDS-PAGE and autoradiography by the generation of the 73 kDa and 43 kDa cleavage products of the α-chain of C3b. Production of the 43 kDa α' cleavage product was indicative of cofactor activity.

CLAIMS

- 1. A molecule comprising at least complement control protein modules 1-4 of complement factor H, or a molecule resulting from partial modification thereof, or an allelic mutant thereof.
- 2. A molecule according to claim 1 comprising complement control protein modules 1-5, 1-6 or 1-7 of complement factor H, or a molecule resulting from partial modification thereof, or an allelic mutant thereof.
- 3. A molecule according to either one of claims 1 or 2, the complement factor H being human complement factor H.
- 4. A molecule according to any one of claims 1-3, comprising Fhp43 or a molecule resulting from partial modification thereof, or an allelic mutant thereof.
- 5. A molecule according to any one of claims 1-4, for use in inhibiting complement activation.
- 6. A molecule according to claim 5, having an enhanced efficacy when compared to FHp155.
- 7. The use of a molecule according to any one of the preceding claims in the manufacture of a medicament for inhibiting complement activation.
- 8. A method of inhibiting complement activation comprising the use of a molecule according to any one of claims 1-6.

- 9. A nucleotide sequence having the formula of SEQ ID NO: 1 and encoding rat FH 4.3 kb mRNA.
- 10. A nucleotide sequence having the formula of SEQ ID NO: 2 and encoding rat FH 1.0 mRNA.
- 11. A DNA molecule comprising a sequence encoding a molecule according to any one of claims 1-6.

ABSTRACT

The present invention concerns regulation of complement activation, in particular the fluid phase regulation of complement activation, and provides molecules comprising at least complement control protein modules 1-4 of complement factor H, DNA molecules encoding same, their use in the manufacture of a medicament for inhibiting complement activation and methods of same, together with DNA sequences encoding rat FH 4.3 and 1.0 kb mRNA.

Figure 1 60 30 -18 40 20 10 ${\tt tcgagtcaactgctcccagatagatccaagac} \underline{\tt ATG} {\tt AGACTGTCAGCAAGAATTATTTGGC}$ rFH4.3 ${\tt tcgagtcaactgctcccagatagatccaagac} \underline{\tt ATG} {\tt AGACTGTCAGCAAGAATTATTTGGC}$ rFH2.7 ${\tt tcgagtcaactgctcccagatagatccaagac} \underline{\tt ATG} {\tt AGACTGTCAGCAAGAATTATTTGGC}$ rFH1.8 ${\tt tcgagtcaactgctcccagatagatccaagac} \underline{\tt ATG} {\tt AGACTGTCAGCAAGAATTATTTGGC}$ rFH1.0 SCR1 110 120 100 +1 90 70 80 $\tt TTATATTATGGACTGTTTGTGTAGCA\underline{GAA}GATTGTAAAGGTCCTCCTAAGAGAAAATT$ rFH4.3 ${\tt TTATATTATGGACTGTTTGTGTAGCA} {\tt GAA} {\tt GATTGTAAAGGTCCTCCTAAGAGAAAATT}$ rFH2.7 ${\tt TTATATTATGGACTGTTTGTGTAGCA} {\tt GAA} {\tt GATTGTAAAGGTCCTCCTAAGAGAAAATT}$ rFH1.8 ${\tt TTATATTATGGACTGTTTGTGTAGCA} \underline{GAA}\underline{GATTGTAAA}\underline{GGTCCTCCTAAGAGAAAATT}$ rFH1.0 180 170 160 140 150 130 CAGAAATTCTCTCAGGTTCGTGGTCTGAACAACTATATTCAGAAGGCACTCAGGCAACCT rFH4.3 CAGAAATTCTCTCAGGTTCGTGGTCTGAACAACTATATTCAGAAGGCACTCAGGCAACCT rFH2.7 CAGAAATTCTCTCAGGTTCGTGGTCTGAACAACTATATTCAGAAGGCACTCAGGCAACCT rFH1.8 CAGAAATTCTCTCAGGTTCGTGGTCTGAACAACTATATTCAGAAGGCACTCAGGCAACCT rFH1.0 240 230 200 210 220 190 ACAAATGCCGCCCTGGATACCGAACACTTGGTACTATTGTAAAAGTATGCAAGAATGGAG rFH4.3 rFH2.7 ACAAATGCCGCCCTGGATACCGAACACTTGGTACTATTGTAAAAGTATGCAAGAATGGAG ACAAATGCCGCCCTGGATACCGAACACTTGGTACTATTGTAAAAGTATGCAAGAATGGAG rFH1.8 ACAAATGCCGCCCTGGATACCGAACACTTGGTACTATTGTAAAAGTATGCAAGAATGGAG rFH1.0 SCR2a 290 300 270 280 260 250 AATGGGTACCTTCTAACCCATCAAGGATATGTCGGAAAAGGCCATGTGGGCATCCCGGAG rFH4.3 AATGGGTACCTTCTAACCCATCAAGGATATGTCGGAAAAGGCCATGTGGGCATCCCGGAG rFH2.7 AATGGGTACCTTCTAACCCATCAAGGATATGTCGGAAAAGGCCATGTGGGCATCCCGGAG rFH1.8 AATGGGTACCTTCTAACCCATCAAGGATATGTCGGAAAAGGCCATGTGGGCATCCCGGAG rFH1.0 360 350 340 310 320 330

ACACACCCTTTGGGTCCTTTAGGCTGGCAGTTGGATCTGAATTTGAATTTGGTGCAAAGG

ACACACCCTTTGGGTCCTTTAGGCTGGCAGTTGGATCTGAATTTGAATTTGGTGCAAAGG ACACACCCTTTGGGTCCTTTAGGCTGGCAGTTGGATCTGAATTTGAATTTGGTGCAAAGG

ACACACCCTTTGGGTCCTTTAGGCTGGCAGTTGGATCTGAATTTGAATTTGGTGCAAAGG

rFH4.3 rFH2.7

rFH1.8 rFH1.0

SCR2b

	370	380	390	400	410	420	
TTGTTTA?	TACATGTGA	TGAAGGGTAC	CAACTATTAG	GTGAAATTG!	ATTACCGTGAA	TGTG	rFH4.3
TTGTTTAT	TACATGTGA	TGAAGGGTAC	CAACTATTAG	GTGAAATTG	ATTACCGTGAA	TGTG	rFH2.7
					ATTACCGT		rFH1.8
					ATTACCGTGAA		rFH1.0
IIGIIIA.	IACAICICI.	10.11.0001					
			-	CR3			
	420	440	450	460	470	480	
	430	440			AGTGCTTGCCA		rFH4.3
							rFH2.7
ATGCAGA'	TGGGTGGAC	CAATGATATI	CCAATATGT	AAGIIGIGA	AGTGCTTGCC#		rFH1.8
ATGCAGA	TGGGTGGAC	CAATGATATI	CCAATATGT	SAAGTTGTGA.	agtgcttgcc <i>i</i>	AGTGA	rFH1.0
	490	500	510	520	530	540	
CAGAACT	GGAGAATGG	BAAGAATTGT	BAGTGGTGCA	GCCGAACCAG	ACCAGGAATAT	TTATT	rFH4.3
CAGAACT	GGAGAATGG	BAAGAATTGTO	SAGTGGTGCA	GCCGAACCAG	ACCAGGAATAT	TTATT	rFH2.7
							rFH1.8
CAGAACT	GGAGAATGO	AAGAATTGT	BAGTGGTGCA	GCCGAACCAG	ACCAGGAATA:	TTATT	rFH1.0
	550	560	570	580	590	600	
		200	5/0	360	220	600	
TTGGACA	GGTGGTAC	_					rFH4.3
		CTTTGAATG	CAACTCCGGC	TTCAAGATTG	AAGGACAGAA	AGAAA	rFH4.3 rFH2.7
		CTTTGAATG	CAACTCCGGC	TTCAAGATTG		AGAAA	
TTGGACA	GGTGGTAC	CTTTGAATG	CAACTCCGGC CAACTCCGGC	TTCAAGATTG	AAGGACAGAA AAGGACAGAA	AGAAA AGAAA	rFH2.7
TTGGACA	GGTGGTAC	CTTTGAATG	CAACTCCGGC CAACTCCGGC	TTCAAGATTG	AAGGACAGAA	AGAAA AGAAA	rFH2.7 rFH1.8
TTGGACA	GGTGGTAC	CTTTGAATG	CAACTCCGGC CAACTCCGGC	TTCAAGATTG	AAGGACAGAA AAGGACAGAA	AGAAA AGAAA	rFH2.7 rFH1.8
TTGGACA	GGTGGTAC	CTTTGAATG	CAACTCCGGC CAACTCCGGC	TTCAAGATTG	AAGGACAGAA AAGGACAGAA AAGGACAGAA	AGAAA AGAAA	rFH2.7 rFH1.8
TTGGACA	AGGTGGTACO	GCTTTGAATGO GCTTTGAATGO GCTTTGAATGO	CAACTCCGGC CAACTCCGGC CAACTCCGGC	TTCAAGATTG TTCAAGATTG TTCAAGATTG	AAGGACAGAA AAGGACAGAA AAGGACAGAA SCR4	AGAAA AGAAA AGAAA	rFH2.7 rFH1.8
TTGGACA	AGGTGGTACO AGGTGGTACO	GCTTTGAATGO GCTTTGAATGO GCTTTGAATGO	CAACTCCGGC CAACTCCGGC CAACTCCGGC	TTCAAGATTG TTCAAGATTG TTCAAGATTG TTCAAGATTG	AAGGACAGAA AAGGACAGAA AAGGACAGAA SCR4	AGAAA AGAAA AGAAA	rFH2.7 rFH1.8 rFH1.0
TTGGACA	AGGTGGTACO AGGTGGTACO 610 GCTCATAAA	GCTTTGAATGG GCTTTGAATGG GCTTTGAATGG GCTTTGAATGG	CAACTCCGGC CAACTCCGGC CAACTCCGGC	TTCAAGATTG TTCAAGATTG TTCAAGATTG 640 AAGCCACAGT	AAGGACAGAA AAGGACAGAA AAGGACAGAA SCR4 650	AGAAA AGAAA AGAAA 660	rFH2.7 rFH1.8 rFH1.0
TTGGACA	AGGTGGTACO AGGTGGTACO 610 GCTCATAAA	GCTTTGAATGG GCTTTGAATGG GCTTTGAATGG GCTTTGAATGG	CAACTCCGGC CAACTCCGGC CAACTCCGGC	TTCAAGATTG TTCAAGATTG TTCAAGATTG 640 AAGCCACAGT	AAGGACAGAA AAGGACAGAA AAGGACAGAA SCR4	AGAAA AGAAA AGAAA 660	rFH2.7 rFH1.8 rFH1.0
TTGGACA TTGGACTG	AGGTGGTACO AGGTGGTACO 610 ECTCATAAA	GCTTTGAATGG GCTTTGAATGG GCTTTGAATGG 620 ATGGCCTCTG	CAACTCCGGC CAACTCCGGC CAACTCCGGC 630 GAGCAATGAA	TTCAAGATTG TTCAAGATTG TTCAAGATTG 640 AAGCCACAGT	AAGGACAGAA AAGGACAGAA AAGGACAGAA SCR4 650 CGTGTGGAAAT	AGAAA AGAAA AGAAA AGAAA 660 TTCTT	rFH2.7 rFH1.8 rFH1.0 rFH4.3 rFH2.7 rFH1.8
TTGGACA TTGGACTG	AGGTGGTACO AGGTGGTACO 610 ECTCATAAA	GCTTTGAATGG GCTTTGAATGG GCTTTGAATGG 620 ATGGCCTCTG	CAACTCCGGC CAACTCCGGC CAACTCCGGC 630 GAGCAATGAA	TTCAAGATTG TTCAAGATTG TTCAAGATTG 640 AAGCCACAGT	AAGGACAGAA AAGGACAGAA AAGGACAGAA SCR4 650	AGAAA AGAAA AGAAA AGAAA 660 TTCTT	rFH2.7 rFH1.8 rFH1.0 rFH4.3 rFH2.7 rFH1.8
TTGGACA TTGGACTG	AGGTGGTACO AGGTGGTACO 610 ECTCATAAA	GCTTTGAATGG GCTTTGAATGG GCTTTGAATGG 620 ATGGCCTCTG	CAACTCCGGC CAACTCCGGC CAACTCCGGC 630 GAGCAATGAA	TTCAAGATTG TTCAAGATTG TTCAAGATTG 640 AAGCCACAGT	AAGGACAGAA AAGGACAGAA AAGGACAGAA SCR4 650 CGTGTGGAAAT	AGAAA AGAAA AGAAA AGAAA 660 TTCTT	rFH2.7 rFH1.8 rFH1.0 rFH4.3 rFH2.7 rFH1.8
TTGGACA TTGGACTG	AGGTGGTACO AGGTGGTACO 610 ECTCATAAA	GCTTTGAATGG GCTTTGAATGG GCTTTGAATGG 620 ATGGCCTCTG	CAACTCCGGC CAACTCCGGC CAACTCCGGC 630 GAGCAATGAA	TTCAAGATTG TTCAAGATTG TTCAAGATTG 640 AAGCCACAGT	AAGGACAGAA AAGGACAGAA AAGGACAGAA SCR4 650 CGTGTGGAAAT	AGAAA AGAAA AGAAA AGAAA 660 TTCTT	rFH2.7 rFH1.8 rFH1.0 rFH4.3 rFH2.7 rFH1.8
TTGGACA TTGGACTG	AGGTGGTACO AGGTGGTACO 610 ECTCATAAA	GCTTTGAATGG GCTTTGAATGG GCTTTGAATGG 620 ATGGCCTCTG	CAACTCCGGC CAACTCCGGC CAACTCCGGC 630 GAGCAATGAA	TTCAAGATTG TTCAAGATTG TTCAAGATTG 640 AAGCCACAGT	AAGGACAGAA AAGGACAGAA AAGGACAGAA SCR4 650 CGTGTGGAAAT	AGAAA AGAAA AGAAA AGAAA 660 TTCTT	rFH2.7 rFH1.8 rFH1.0 rFH4.3 rFH2.7 rFH1.8
TTGGACA TTGGACTG	AGGTGGTACO AGGTGGTACO 610 ECTCATAAA	GCTTTGAATGG GCTTTGAATGG GCTTTGAATGG 620 ATGGCCTCTGATGGCCTCTGATGGCCTCTG	CAACTCCGGC CAACTCCGGC CAACTCCGGC 630 GAGCAATGAA GAGCAATGAA	TTCAAGATTG TTCAAGATTG TTCAAGATTG 640 AAGCCACAGT	AAGGACAGAA AAGGACAGAA AAGGACAGAA SCR4 650 GTGTGGAAAT	AGAAA AGAAA AGAAA 660 TTCTT	rFH2.7 rFH1.8 rFH1.0 rFH4.3 rFH2.7 rFH1.8
TTGGACA TTGGACTO TGCACTO	AGGTGGTACO AGGTGGTACO 610 ECTCATAAA ECTCATAAA	GCTTTGAATGG GCTTTGAATGG GCTTTGAATGG 620 ATGGCCTCTGATGGCCTCTGATGGCCTCTGATGGCCTCTG	CAACTCCGGC CAACTCCGGC CAACTCCGGC 630 GAGCAATGAA GAGCAATGAA GAGCAATGAA	TTCAAGATTG TTCAAGATTG TTCAAGATTG 640 AAGCCACAGT AAGCCACAGT AAGCCACAGT	AAGGACAGAA AAGGACAGAA AAGGACAGAA SCR4 650 GTGTGGAAAT	AGAAA AGAAA AGAAA 660 TTCTT TTCTT	rFH2.7 rFH1.8 rFH1.0 rFH4.3 rFH2.7 rFH1.8
TTGGACA TTGGACTO TGCACTO TGCACTO	610 ECTCATAAA ECTCATAAA ECTCATAAA	GCTTTGAATGG GCTTTGAATGG GCTTTGAATGG 620 ATGGCCTCTGATGGCCTCTGATGGCCTCTGGATGGCCTCTGGATGGCCTCTGGATGGCCTCTGGATGGCCTCTGGATGGCCTCTGGATGGCCTCTGGATGGCCTCTGGATGGCCTCTG	CAACTCCGGC CAACTCCGGC CAACTCCGGC 630 GAGCAATGAA GAGCAATGAA GAGCAATGAA	TTCAAGATTG TTCAAGATTG TTCAAGATTG 640 AAGCCACAGT AAGCCACAGT AAGCCACAGT	AAGGACAGAA AAGGACAGAA AAGGACAGAA SCR4 650 GTGTGGAAAT GTGTG	AGAAA AGAAA AGAAA 660 TTCTT TTCTT 720 GGAGA	rFH2.7 rFH1.8 rFH1.0 rFH4.3 rFH2.7 rFH1.8 rFH1.0
TTGGACA TTGGACTO TGCACTO TGCACTO	610 ECTCATAAA ECTCATAAA ECTCATAAA	GCTTTGAATGG GCTTTGAATGG GCTTTGAATGG 620 ATGGCCTCTGATGGCCTCTGATGGCCTCTGGATGGCCTCTGGATGGCCTCTGGATGGCCTCTGGATGGCCTCTGGATGGCCTCTGGATGGCCTCTGGATGGCCTCTGGATGGCCTCTG	CAACTCCGGC CAACTCCGGC CAACTCCGGC 630 GAGCAATGAA GAGCAATGAA GAGCAATGAA	TTCAAGATTG TTCAAGATTG TTCAAGATTG 640 AAGCCACAGT AAGCCACAGT AAGCCACAGT	AAGGACAGAA AAGGACAGAA SCR4 650 CGTGTGGAAAT CGTGTGGAAAT CGTGTGGAAAT	AGAAA AGAAA AGAAA 660 TTCTT TTCTT 720 GGAGA	rFH2.7 rFH1.8 rFH1.0 rFH4.3 rFH2.7 rFH1.8 rFH1.0
TTGGACA	610 GCTCATAAA GCTCATAAA GCTCATAAA	GCTTTGAATGG GCTTTGAATGG GCTTTGAATGG 620 ATGGCCTCTGATGGCCTCTGATGGCCTCTG	CAACTCCGGC CAACTCCGGC CAACTCCGGC 630 GAGCAATGAA GAGCAATGAA GAGCAATGAA GAGCAATGAA	TTCAAGATTG TTCAAGATTG TTCAAGATTG 640 AAGCCACAGT AAGCCACAGT AAGCCACAGT 700 TATCTGAAAAC	AAGGACAGAA AAGGACAGAA SAAGGACAGAA SCR4 650 AGTGTGGAAAT AGTGTGGAAAT AGTGTGGAAAT	AGAAA AGAAA AGAAA 660 TTCTT TTCTT 720 GGAGA	rFH2.7 rFH1.8 rFH1.0 rFH4.3 rFH2.7 rFH1.8 rFH1.0

	730	740	750	760	770	780	
атсаааса		AAATGTAAGO	AAGGTTTTG	rgtacaaaga;	AGAGGGGATG	CTG	rFH4.3
							rFH2.7
							rFH1.8
							rFH1.0
				SCR5		240	
	790		810		830	840	
TCTGCAC	GGGTTCTGGA	TGGAATCCT	CAGCCTTCCT	GTGAAGAAAT(GACATGTTTGA	CTC	rFH4.3
							rFH2.7
							rFH1.8
							rFH1.0
	050	860	870	880	890	900	
					AATTGATGAT(rFH4.3
				TIMMENERS			rFH2.7
							rFH1.8
							rFH1.0
							11111.0
	910	920	930	940	950	960	
TCAGATA	TGAATGTAA	AAATGGCTTC	TATCCTGCAA	CCCGATCACC	TGTTTCAAAG	TGTA	rFH4.3
							rFH2.7
							rFH1.8
							rFH1.0
				SCR6			
	970	980	990	1000	1010	102	.0
ר ב בידים מ		CCCTGCTCC	AGATGTAGC	TGAAACCTT	TGATTTTCCA	CAAT	rFH4.3
					TGATTTTCCA		rFH2.7
	. 						rFH1.8
							rFH1.0
			1050	1050	1070	108	3.0
	1030	1040	1050	1060			rFH4.3
					rcccagtacci		
TCAAAC	ATGGACGTCT	CGTATTATGA	AGAAAGCCGG.	AGACCCTACT	rcccagtacc1	ATAG	rFH2.7
							rFH1.8
							rFH1.0

	1090	1100	1110	1120	1130	1140
GAAAGGAG	TACAGCTATA	ACTGTGACAA	CGGGTTTACA	ACGCCTTCAC	AGTCATACTG	G rFH4.3
GAAAGGAG	TACAGCTATA	ACTGTGACAA	CGGGTTTACA	ACGCCTTCAC	AGTCATACTG	G rFH2.7
						- rFH1.8
						rFH1.0
		•				
					SCR7	
	1150	1160	1170	1180	1190	1200
አ ርጥ አ ርርጥጥ					TCAGGCAATG	TA rFH4.3
					TCAGGCAATG	
						7
						21112.0
	1010	1000	1230	1240	1250	1260
mmmmaaaa	1210					
					'ATATAGAGGG'	
					'ATATAGAGGG'	
			. 			
						rFH1.0
						•
	1270		1290	1300	1310	
					LAAGATACATA	
AGTCTGCA	AAAGTCCAGI	rgtcacagtg(CTATAGTCT	CCAAATGGTC	'AAGATACATA'	
						rFH1.8
						rFH1.0
					SCRB	
	1330	1340	1350	1360	1370	1380
ATTGTACA	AGAGAATGGCT	rggtccctc	CTCCCAAATG	CGTCCGTATCA	AGACTTGTTC	AG rFH4.3
ATTGTACA	AGAGAATGGCT	rggtcccttc	CTCCCAAATG	CGTCCGTATCA	AGACTTGTTC	AG rFH2.7
						rFH1.8
						rFH1.0
	1390	1400	1410	1420	1430	1440
ጥልጥሮአርአባ					ACATATGCTCT.	
					CATATGCTCT.	
IMI CAGA	ININGAMMII	JAAAAIGGGI		alcignithi		rFH1.8
						rFH1.0
						

	1450	1460	1470	1480	1490	1500)
ТАСАСТА	ACACGGTATA	GATGTAAACA	GGGATATGTA	ACAAATACCG	GAGAAATAT	CAG	rFH4.3
	ACACGGTATA						rFH2.7
							rFH1.0
					SCR9		
	1510	1520	1530	1540	1550	1560	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ACTTGTCTTC				ATTAAGTCTT	GTG	rFH4.3
	ACTIGICTIC						rFH2.7
			1500	1600	1610	162	0
		1580					
ATATGCCI	GTATTTGAGA	ATTCTATGAC	TAAGAATAA	TAACACATGG	TTTAMETCA TTTA A A CTCA	ATG	rFH2.7
	GTATTTGAGA						
		<del></del> -					rFH1.0
							IFMI.0
					1670	1.60	0
	1630			1660			
ACAAATT	AGACTATGAA	rgtcacattg(	GATATGAAAA	TGAATATAAA	CATACCAAAG	GCT	EFR4.3
	AGACTATGAA					GCT.	
							rFH1.8
							rFH1.0
					SCR10		
				1720			
CTATAAC	ATGTACTTAT	GATGGATGGT	CTAGTACACO	CTCCTGTTA	rgaaagaaa.	rgca	rFH4.3
CTATAAC	ATGTACTTAT	GATGGATGGT	CTAGTACAC	CTCCTGTTA	GAAAGAGAA?	<b>rgca</b>	rFH2.7
							rFH1.8
							rFH1.0
							•
	1750	1760	1770	1780	1790	186	00
CCDTTCC	CCTGTTACAC					GTTG	rFH4.3
	CCTGTTACAC						rFH2.7
GCATICC	CIGITACAC	,canonerine					rFH1.8
							rFH1.0

		,	

	1810	1820	1830	1840	1850	1860	
SAGATTCG	TTGAGTTTC	TCTTGCCGTT	CAGGACACAG	AGTTGGAGC	AGATTTAG <b>T</b> G	TAAC	rFH4.3
CAGATTCG	TTGAGTTTC	TCTTGCCGTI	CAGGACACAG	AGTTGGAGC	AGATTTAGTG(	TAAC	rFH2.7
							rFH1.8
							rFH1.0
					SCR11		
	1870	1880	1890	1900	1910	1920	)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					AGTAAAATCA	TGTG	rFH4.3
CCENCCAC	CTTTGGATGG	TCCCCTAAT	TTCCCAACGT	TGAAGGCCA	AGTAAAATCA	TGTG	rFH2.7
GCIACCA	IIIGGAIGG	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					rFH1.8
							rFH1.0
		1040	1950	1960	1970	1986	0
	1930				AGTTGAATAC		
ACCAACC	TCTTGAAATC	CCGAATGGG	GAAATAAAGG GAAATAAAGG	CAACAAAAA	AGTTGAATAC	'AGCC	rFH2.7
							rFH1.8
							rFH1.0
					2020	204	0
					2030		
ATGGTGA	CGTGGTGGA	ATATGATTGC	AAACCTAGAT	TTCTACTGA	AGGGACCCAAT	DAAAA	EFRE.5
ATGGTGA	CGTGGTGGA	ATATGATTGC	'AAACCTAGA'I	TTCTACTGA	AGGGACCCAA!	LAAAA	FRI O
							rFH1.0
					TR12		
	2050	2060	2070	2080	2090	210	_
TCCAGT	GTGTTGACGG	GAAGTGGAC	AAGGTTGCCG!	ATATGCGTTG	AGTATGAGAG.	AACAT	rFH4.3
TCCAGT	GTGTTGACGG	GAAGTGGAC	AAGGTTGCCG!	ATATGCGTTG	AGTATGAGAG.	AACAT	rFH2.7
							rFH1.8
							rFH1.0
	2110	2120	2130	2140	2150	216	5 0
amaas a					TCCCTCCCTA	CCATC	rFH4.3
GTGGAG	ACCITCCIGA ACCOMPAGNA	72C11GAGCA	TGGCTCTGTC	AAGTTATCT0	TCCCTCCCTA	CCATC	rFH2.7
GTGGAG	ACCITCCIGA	AAC I I GAGCA	1000101010				rFH1.8
							

	2170	2180	2190	2200	2210	2220	,
ATGGAGAT	TCAGTGGA	GTTCACTTGT/	ACAGAAACCT	TCACAATGAT	TGGACATGCA	GTAG	rFH4.3
ATGGAGAT	TCAGTGGA	GTTCACTTGT	ACAGAAACCT	TCACAATGAT'	rggacatgca	GTAG	rFH2.7
							rFH1.8
							rFH1.0
					SCR13		
	2230	2240	2250	2260	2270	2280	7
ጥጥጥጥርጥር		AAGGTGGACC					rFH4.3
	·	AAGGTGGACC(rFH2.7
11110160	ATTAGIGG.	AAGGIGGACC					rFH1.8
							rFH1.0
	2290	2300	2310	2320	2330	234	o .
AGAAGTG	TAAAGCCCC	GAAGTCAACT	GGCATAGATG	CAATTCATCC	AAATAAGAAT	GAAT	rFH4.3
AGAAGTG'	TAAAGCCCC	GAAGTCAACT	GGCATAGATG	CAATTCATCC	AAATAAGAAT	GAAT	rFH2.7
							rFH1.8
							rFH1.0
		2360	2370	2380	2390	240	
TTAATCA	TAACTTTAG	TGTGAGTTAC	AGATGTAGAC	AAAAGCAGGA	GTATGAACAT	TCAA	rFH4.3
		TGTGAGTTAC					rFH2.7
							rFH1.8
							rFH1.0
				S	CR14		
•		2420				246	0
TCTGCAT	CAATGGAAG	SATGGGATCCT	GAACCAAACT	GTACAAGCAA	AAGATTCTGC	CCTC	rFH4.3
TCTGCAT	CAATGGAAG	SATGGGATCCT	GAACCAAACT	GTACAAGCAA	AAGATTCTGC	CCTC	rFH2.7
							rFH1.8
							rFH1.0
	2470	2480	2490	2500	2510	252	0
CTCCCCC		CAAATGCCCAA					rFH4.3
		CAAATGCCCAA					rFH2.7
							rFH1.0

	<u>,</u>		

	2530	2540	2550	2560	2570	2360
AAAAAGTAT	CTGTTCTTTC	CCAAGATGG	TACCTAACT	CAGGGCCCAGI	AGAAATGGT	FT rFH1.8
AAAAAGTAT	CTGTTCTTTC	CCAAGATGG	TACCTAACT	CAGGGCCCAG	AGAAATGGT	FT rFH2.7
						rFH4.3
						rFH1.0
				SCR15		
	2590	2600	2610	2620	2630	2640
				GAAAAAATTC		GC rFH4.3
				GAAAAAATTC		
GIAAACAIG	GAAGG1GGC					rFH1.8
		_				rFH1.0
						11111.0
			0.500	2500	2690	2700
		2660	2670	2000		
				TCCTCAGAAG.		
CCCCTAAAA	TTGAACATG	GATCTATTAA	GTCGCCCAGG	TCCTCAGAAG	AGAGGAGAGA	TT rFH2.7
						rFH1.0
	2710	2720	2730	2740	2750	2760
TAATTGAGT	CCAGCAGTT	ATGAACACGG	AACTACATTC	AGCTATTGCT	GTAGAGATGG.	AT rFH4.3
TAATTGAGT	CCAGCAGTT	ATGAACACGG	AACTACATTO	AGCTATTGCT	GTAGAGATGG	AT rFH2.7
						rFH1.8
						rFH1.0
•	2770	2780	2790	2800	2810	2820
man nan man				GGAAAATGGA	GCTCTCTGCC	TC rFH4.3
				GGAAAATGGA		
TCAAGATAT	CTGAAGAAA	AIAGGGIAAC	.C1GCAACA1C	JOGAHANI COM		rFH1.8
						rFH1.0
						IIII.
	SCR16					
	2830	2840	2850			
				rcctcttggt <i>i</i>		
GTTGTGTT	GAATACCTI	GTGGACCCC	CACCTTCAAT	rcctcttggt <i>i</i>	TTGTTTCTCA	TG rFH2.7
						rFH1.8
						rFH1.0

	2890	2900	2910	2920	2930	294	U
AACTAGA	AAGTTACCA	ATATGGAGAG	GAGGTTACAT.	ACAATTGTTC	TGAAGGCTTT	GGAA	rFH4.3
AACTAGA	AAGTTACCA	ATATGGAGAG	GAGGTTACAT.	ACAATTGTTC	TGAAGGCTTT	GGAA	rFH2.7
							rFH1.8
							rFH1.0
	2950	2960	2970	2980	2990	300	0
TTGATGG		TATTAAATGT					rFH4.3
		TATTAAATGT					
							rFH1.8
							rFH1.0
SCR17							
	3010	3020	3030	3040	3050	306	0
TAAAAAC'	TGATTGTGA	CAACTTGCCC	ACATTTGAAA	TTGCCAAACC	GACAGAAAAG	AAAA	rFH4.3
TAAAAAC'	TGATTGTGA	CAACTTGCCC	ACATTTGAAA	TTGCCAAACC	GACAGAAAAG	AAAA	rFH2.7
							rFH1.8
							rFH1.0
	3070	3080	3090	3100	3110	312	0
AAAAATC	ATACAGGTO	AGGAGAACAA	GTGACATTCA	GATGTCCACC	TCCGTATCGA	ATGG	rFH4.3
					TATCGA	ATGG	rFH1.8
							rFH1.0
•		3140					0
ATGGCTC	TGACATTGT	CACATGTGTT	'AATACGAAG'I	rggattggac <i>i</i>	AGCCGGTATGC	:AAAG	rFH4.3
							rFH2.7
ATGGCTC	TGACATTG1	CACATGTGTT	'AATACGAAG'I	rggattggaca	AGCCGGTATGC	:AAAG	rFH1.8
					·	·	rFH1.0
SCR18		25.5	200	2000	2222	204	
		3200					
		ATCCACCACAI					rFH4.3
							rFH2.7
ATAATTC	CTGTGTGA	ATCCACCACAI	GIGCCAAATC	SCTACTATAC'	LAACAAGGCAC	ADAM	
							rFH1.0

	3250	3260	3270	3280	3290	3300	l
TAAAT	CCATCTGGT	GACAAAGTAC	GTTATGACTG	TAATAAACCT	TTTGAATTAT	TTG	rFH4.3
							rFH2.7
TATAAA1	CCATCTGGT	'GACAAAGTAC	GTTATGACTG	TAATAAACCT	TTTGAATTAT	"I"I'G	rrui.o
							IFHI.U
					2250	2260	2
	3310	3320	3330	3340	335U '777777777777	יסכנ ייייתי	rFH4.3
			GGATTTGGAC	AGAACCACCG	AAAIGCAAA		rFH2.7
GGAAGTG	GAAGTGAT	GTGCCAAAAC(GGATTTGGAC	AGAACCACCG	AAAIGCAAA		rFH1.0
							·
SCR19			3390	3400	3410	342	0
	3370	3380	3390 CCTATTGACA	₽₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	CACCTCCTTG	TCAT	rFH4.3
'AACAGGO	BAAATGTGG	GCCTCCTCCA	CCTATTGACA	AIGGAGACAI			rFH2.7
		accordered A	CCTATTGACA	atggagacat	CACCTCCTTG	TCAT	rFH1.8
;AACAGG(GAAATGTGG	GCCTCCTCCA					rFH1.0
	3430	3440	3450	3460	3470	348	30
_{ፐል} ୯୯ልሮፐ	ATATGCACO	TATTATCATCA	GTTGAATATC	AATGCCAGAA	CTATTATCTA.	CTTA	rFH4.3
							rFH2.7
TACCAGT	ATATGCACO	CATTATCATCA	GTTGAATATC	AATGCCAGAA	CTATTATCTA	CTTA	rFH1.8
							rFH1.0
		2500	3510	3520	3530	35	40
•	3490	3500	3310 AAATGGAAAG	raamanaaaa raamanaaaa	CACCAACCTG	CTTAC	rFH4.3
AGGGAAA	YTAAGATAG	TAACATGTAG					rFH2.7
			AAATGGAAAG'	TGGTCTCAGC	CACCAACCTG	CTTAC	rFH1.8
AGGGAAI							rFH1.0
SCR20)		2550	2 5 6 0	3590	36	:00
			3570				rFH4.3
ATGCAT	GTGTGATAC	CAGAAGATAT	TATGGAAAAA				rFH2.7
			TATGGAAAAA	בבבבבבב	ምጥርጥር ልር ልጥር	GAGGG	
ATGCAT	GTGTGATAC	CAGAAGATAT	TATGGAAAAA	CAIMMIMIAG			rFH1.0

	3610	3620	3630	3640	3650	366	0
AAAATGC	AAAGATTTAI	TCCCAATCA	GGGAGAATA	TTGAATTCAT	GTGTAAACCT	GGAT	rFH4.3
							rFH2.7
AAAATGC	AAAGATTTAT	TCCCAATCA	EGGGAGAATA	TTGAATTCAT	GTGTAAACCT	GGAT	rFH1.8
						GGAT	rFH1.0
					2710	272	•
		3680			3710		
					GGGTCACATC.		rFH4.3
							rFH2.7
					GGGTCACATC		rFH1.8
ATAGAAA	ATTCAGAGG	ATCACCTCCG'	TTTCGTACAA	AGTGCATTGA	GGGTCACATC	AATT	rFH1.0
	3730	3740	3750	3760	3770	378	0
ATCCCAC	TTGTGTA <u>TA</u>	<u>A</u> aatcgctat	acaattatta	gtaaacctta	tggatgagaa	atgc	rFH4.3
							rFH2.7
ATCCCAC	TTGTGTA <u>TA</u>	<u>A</u> aatcgctat	acaattatta	agtaaacctta	atggatgagaa	atgc	rFH1.8
					atggatgacac		rFH1.0
	3790	3800	3810	3820	3830	384	0
acatgta	atattactaa	tacagtttga	atttacatti	taaatattgt1	ttagctcattt	cctc	rFH4.3
							rFH2.7
acatgta	atattactaa	tacagtttga	atttacatt	taaatattgti	ttagctcattt	cctc	rFH1.8
					ttgaaaaa		rFH1.0
•				3880			
	_				ttacagactgt		rFH4.3
							rFH2.7
taataa	gtatataaad	cttttttata	tggtggtta	atcagtaact	ttacagactgt	tgcc	rFH1.8
							rFH1.0

	3910	3920	3930	3940	3950	3960)
ecaaagca		attcaaaact	cctaatcca	aatatgatat	gtccaaggac	aaa	rFH4.3
							rFH2.7
					gtccaaggac		rFH1.8
							rFH1.0
	3970	3980	3990	4000	4010	402	
ctatqtct	aagcaagaa	aataaatgtt	agttcttcaa	atgtctgtttt	tattcaggac	ctt:	rFH4.3
							rFH2.7
ctatgtct	taagcaagaa	aataaatgtt	agttcttcaa	atgtctgttti	ttattcaggad	cctt	rFH1.8
							rFH1.0
	4030	4040	4050	4060	4070	408	0
tcagatt	ttcttggata	ccttttgtta	ggttctgat	tcacagtgag	tggaagacac	actg	rFH4.3
							rFH2.7
tcagatt	ttcttggata	ccttttgtta	ggttctgat	tcacagtgag	tggaagacac	actg	rFH1.8
							rFH1.0
					4130		ī O
actctqa	cttcaaatta	agtattactt	gcaatacatt	aacaaccaaa	ctatcataat	atca	rFH4.3
							rFH2.7
actctqa	acttcaaatta	agtattactt	gcaatacatt	aacaaccaaa	ctatcataat	atca	rFH1.8
							rFH1.0
		4160			4190	42	
caaatg	tatacagcta	attactgtgt	cctaccttt	gtatcaataa	agaaatctaag	gaaag	rFH4.3
							rFH2.7
casata	tatacaccta	attactgtgt	cctaccttt	gtatcaataa	agaaatctaa	gaaag	rFH1.8
							rFH1.0
•							
	4230	4220	4230				
							rFH4.3
							rFH2.7
							rFH1.8
ttette		aaaaaaaaa					rFH1.0

		,

1 2 3 4 5

203

118
86

β-chain

α'

34

k D a

Figure 2

Spac

Figure 3

Spare

	·	