Funciones Trigonométricas.

Angulos importantes de Send y Coseno; considere el triángulo rectangulo

Seno =
$$L.0.$$
 Coseno = $L.A.$ Tangente = $L.0$
H

L.O lado opuesto L.A. lado adyacente H hipotenusa -

Los valores de seno, coseno y tangente se pueden en contrar ctilizando unos triángulos especiales de 30°, 45° y 60°.

Considere el toingulo equilatero

$$\frac{2}{500} = \frac{1}{100} = \frac{1}$$

Considere el triángulo isósceles de 45°, 45° y 90°

In hipotenusa es ignal a
$$\sqrt{2}$$

sen $45^\circ = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$, $\cos 45^\circ = \frac{\sqrt{2}}{2}$ $\tan 45^\circ = \frac{\sec 45^\circ}{\cos 45^\circ} = 1$

Los anteriores valores se resumen en la siguiente tabla.

$$\times$$
 0 $\frac{1}{6}(30^{\circ})$ $\frac{1}{4}(45^{\circ})$ $\frac{1}{3}(60^{\circ})$ $\frac{11}{2}$ Utility larged a descent 0 $\frac{1}{2}$ $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{2}$ $\frac{1}{2}$ ormentan $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ or $\frac{1}{2}$ $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ or $\frac{1}{2}$ $\frac{1}{2}$

Lus angulus se miden también en radianes, donde 360° son 211 va dianes. por lo que 30° es ZIT = Tradiones, 45° es ZIT = Tradianes y a si Sucesivanente

La circunferencia unitaria.

Tiene radio 1 y centro en elorigen, su ecuación es x2+y2=1.

Dado un triángulo rectángulo con L.O b, L.A a, e hipotenusa C

Teorema de Pitágoras
$$a^2 + b^2 = C^2$$
.

Divide por C^2 : $\left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2 = 1$

Como sen $a = a/c$ y $cos a = b/c$, obtenemos que

Identidad Trigonométrica: COS, 20 + SM 20 = 1

Lo anterior nos indica que los valores de coso y sino están sobre la circunferencia unitaria, x = coso "la coordenada-x" y-sino "coordenada-y"

De esta forma

- $1 \le \sin \theta \le 1$ - $1 \le \cos \theta \le 1$ Ean θ se indefine coundo $\theta = \frac{\pi}{2}, \frac{3\pi}{2}$.

Sin $0 = \sin 2\pi = 0$, $\cos 0 = \cos 2\pi = 1$ Además, $\sin 0 = \sin \pi = 0$, $\sin \frac{\pi}{2} = 1$, $\sin \frac{3\pi}{2} = -1$ $\cos \frac{\pi}{2}$, $\cos \frac{3\pi}{2} = 0$, $\cos 0 = 1$, $\cos \pi = -1$

El angulo o tiene sentido antihorario, donde o=o es el eje-x y o= = es el eje y.

Lutro cuadrantes I, I, I y IV

Utilizando el círculo unitario se puede determinar cuando seno, coseno y tangente tienen signos positivos o negativos

Como el ángulo 27 (360°) termina en el eje-x (Angulo O), los valorres de seno, coseno y tangente se repiten cada ZT a'agulos. Para encontrar sint, cost dunde &> zt, encuentre el ángulo terminal equivalente parq el ángulo.

Evalue cossit

COSSO= (05 T=-1 El angulo terminal de STT es STI-4TI=TT, por loque sin so=sinsit = 0. $\cos \frac{2\pi}{3} = \cos \left(\frac{7\pi}{3} - 2\pi\right) = \cos \frac{\pi}{3} = \frac{\sqrt{3}}{2}$ $\sin \left(-\frac{4\pi}{3}\right) = \sin \left(-\frac{4\pi}{3} + 2\pi\right) = \sin \frac{2\pi}{3} = \frac{\sqrt{3}}{3}$

tunciones Trigonométricas.

Utilice la circonferencia unitaria

Seno: fcx = sin X

Dominio: 12

Rango : [-[]:1]

Intersectory: (0,0)

Ideaectos-x: (0,0), (T,0)(2,t)

Cada núltiplo de T NI, nE72

Function impar f(-x)=-sinx=-fcx)

Coseno: fcx)=cosx

Dominio: IR Rango [-1,1]

Intersectory: (0,1)

Intersectos-x: I + hT n t Z

function par: cos(-x) = cosx

se repite cada 27 radiones

 $\cos(x+2\pi)=\cos x$

(-T/2,2)

coseno es seno desplazado Zalaiza

311/2

 $cos(x) = sin(x+\pi/2)$

Función Tangente $f(x) = tanx = \frac{sinx}{cosx}$

Definida cuando $\cos x \neq 0$ $x \neq \frac{\pi}{2} + n\pi$

Dominio: IR - { = + n x, n & 12}

Rango = (-00, 00)

Intersectory f(0)= fano=0 (0,0)

Intersectos x: méltipos de T (hTi,0)

función impar tan(-x)=-sinx = -tanx.

AVs: en $X = \frac{\pi}{2} + n\pi$ $\lim_{\chi \to \frac{\pi}{2}} \frac{\sin \chi}{\cos \chi} = +\infty$

 $\lim_{\chi \to \frac{\pi}{2}^+} \frac{\sin \chi}{\cos \chi} = -\infty.$

funciones Secante, cosecante y cotangente

 $Secx = \frac{1}{\cos x}$

Dominio: 12-{ =+nx, n = 72}

hango (-0,-1] U[1, 00)

Función par

AVS en X = + 1 + 3/2/...

cosecante cscx = 1 senx

Dominio: 12- { T+ nT, n 676}.

Función impar Aus en $\chi = 0, \pi, \pm 2\pi$

CSC desplazada I a la dececha.

co fungente Got x = COS X SENX

Dominia: IR = { \frac{\pi}{2} + h\pi, n \in \frac{72}{2}}

Rango. $(-\infty, \infty)$

función impar

tan desplatada I a la izquierda reflejada respecto de ere-x

Identidades Trigonométricas Básicas

Teorema de Pitagúras: x = L.A y = L.O 1 = H, entonces

Como x = coso, y = sind:

Oivida por coszo:

Divida pur senzo:

Suna de Angulos:

$$Sin(X+Y) = Sin X Cos y + Sin y Cos X$$

 $Sin (X-y) = Sin X Cos y - Sin y Cos X$
 $Cos (X+y) = Cos X Cos y - Sin X Sin y$
 $Cos (X-y) = Cos X Cos y + Sin X Sin y$

Por medio de estas propiedades se comprueba que sin x y cos x se repiter cada 2x radiunes (360° grados)

epiten cada
$$2\pi$$
 radiunes (360° graoos)

 $sin(x+2\pi) = sin \times cos/2\pi + sin/2\pi cos \times = sin \times \Rightarrow sin(x+2\pi) = sin \times cos \times \Rightarrow cos(x+2\pi) = cos \times cos(x+2\pi) = c$

Tumbién con ellas se comprueba que senx y cosx están desplazados $\frac{\pi}{2}$ rads. Cos $(X - \frac{\pi}{2}) = \cos x \cos \frac{\pi}{2} + \sin x \sin \frac{\pi}{2} = \sin x$ $\frac{\pi}{2}$ a la dececha de cos x $\sin LX + \frac{\pi}{2}) = \sin x \cos \frac{\pi}{2} + \sin \frac{\pi}{2} \cos x = \cos x$

Otras Identidades: Ley de Cosenos.

Cuando el triángulo no es tectángulo C2 = a2+b2-2abcos0.

Cuando 0= 11/2, obtenemos el teorema de Pitágoras cos = 0

