MATH-505A: Homework # 4

Due on Friday, September 19, 2014

Saket Choudhary 2170058637

Contents

Exerc																											
(1)											 	 										 					
(2)																											
(3)												 										 					
(4)													 									 					
(5)																						 					
Exerc																											
(1)																											
(2)																											
(3)																											
(4)																						 					
(5)												 	 														

Exercise # 2.1

(1)

Given: X is a random variable \Longrightarrow

$$\{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F} \ \forall x \in R \tag{1}$$

Part A) To Prove: aX is a random variable

Consider Y = aX, then since equation 1 holds:

Case1: $a \ge 0$

Then $\{\omega \in \Omega : aX(\omega) \leq x'\} \in \mathcal{F} \ \forall x' \in R \text{ where } x' = ax$

Case2: $a \leq 0$

Then $\{\omega \in \Omega : aX(\omega) \ge x'\} \forall x' \in R \text{ where } x' = ax \implies \bigcup \{\{\omega \in \Omega : aX(\omega) \le x''\}\}^c \in \mathcal{F} \text{ where } x'' = x'$

Case3: a is 0 Then, aX = 0

Case i: x < 0

 $\{\omega \in \Omega : aX(\omega) = \phi\} \in \mathcal{F}$

Case ii: $x \ge 0$

 $\{\omega \in \Omega : aX(\omega) = \Omega\} \in \mathcal{F}$

Thus from all the above cases.

Part (b)):

Consider Y = X - X, Then:

 $Y = X(\omega) - X(\omega) \forall \omega \in R \implies Y = 0$

Consider Y = X + X, Then $Y = X(\omega) + X(\omega) \forall \omega in\Omega \implies Y = 2X(\omega) \forall \omega in\Omega$ Thus Y = 2X.

(2)

For part 1, Y' = aX is also a random variable:

To Prove: Y = Y' + b is a random variable where Y' is a random variable and b is a constant.

Since Y' is a random variable: $\{\omega \in \Omega : Y(\omega) \le y\} \in \mathcal{F} \ \forall y \in R \ \text{and so}, \ \{\omega \in \Omega : Y(\omega) + b \le y'\} \in \mathcal{F} \ \forall y' \in R \ \text{where} \ y' = y + b$

Since $\{\omega \in \Omega : Y(\omega) + b \le y'\} \in \mathcal{F} \ \forall y' \in R, Y' + b \text{ is a random variable } \implies aX + b \text{ is a random variable}$

(3)

$$p(H) = p; p(T) = 1 - p$$

Tossing a coin n times is a binomial process(each individual toss is a bernoulli process) and let A be the event such that k out of n tosses are heads and this can occur in $\binom{n}{k}$ ways with probability p^k . There would also be n-k tails and the probability for that is $(1-p)^{n-k}$. Thus,:

$$p(A) = \binom{n}{k} p^k * (1-p)^{n-k}$$

For a fair coin, $p = \frac{1}{2}$ and hence $p(A) = \binom{n}{k} (\frac{1}{2})^k (\frac{1}{2})^{n-k} = \binom{n}{k} (\frac{1}{2})^n$

(4)

A distribution function satisfies the following set of properties:

- a) $\lim_{x\to\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$
- b) if x < y then $F(x) \le F(y)$,
- c) F is right continuous, $c < x < c + \delta$ then $|F(x) F(c)| < \epsilon$ for $\epsilon > 0, \delta > 0$

Consider $Y = \lambda F + (1 - \lambda)G$, Both G,F satisfy a, b, c Then $\lim_{x \to -\infty} Y(x) = \lambda \lim_{x \to -\infty} F(x) + (1 - \lambda)G$

 λ) $\lim_{x\to-\infty} G(x) \implies \lim_{x\to-\infty} Y(x) = 0$

Similarly considering limit as $x \to \infty$: Then $\lim_{x \to \infty} Y(x) = \lambda \lim_{x \to \infty} F(x) + (1 - \lambda) \lim_{x \to \infty} G(x) \implies$

 $\lim_{x \to -\infty} Y(x) = \lambda * 1 + (1 - \lambda) * 1 = 1$

Since for x < y, then F(x) < F(y); $G(x) < G(y) \implies \lambda F(x) < \lambda F(y)$; $(1 - \lambda)G(x) < (1 - \lambda)G(y)$ since $0 < \lambda < 1$

Adding the two inequalities we get:

$$\lambda F(x) + (1 - \lambda)G(x) < \lambda F(y) + (1 - \lambda)G(y) \implies Y(x) < Y(y).$$

Since F,G are right continuous, any linear combination of these would be right continuous too.

Hence $Y = \lambda F + (1 - \lambda)G$ satisfies all the 3 required properties and is a distribution function.

(5)

Since F is a distribution function:

- (i) $\lim_{x\to-\infty} F(x) = 0$; $\lim_{x\to\infty} = 1$
- (ii) If x < y then, F(x) < F(y)
- (iii) F is right continuous

Part a) $F(x)^r$ (i) $\lim_{x\to-\infty} F(x)^r = 0$ since $\lim_{x\to-\infty} F(x) = 0$ and r>0

- (ii) If x < y as F(x) < F(y) and $F(x) > 0 \implies F(x)^r < F(y)^r$
- (iii) Since r > 0 and F(x) is right-continuous $F(x)^r$ is right continuous. (One possible case ehere $F(x)^r$ would not have been right continuous is for r < 0 say r = -1 where $F(x)^{-1}$ is not right continuous at all x_0 such that $F(x_0) = 0$.

Part b) $1 - (1 - F(x))^r$

(i); $\lim_{x\to-\infty} (1-(1-F(x))^r) = 1-\lim_{x\to-\infty} (1-F(x))^r = 1-(1-0)^r = 0$

Similarly for ; $\lim_{x\to\infty} (1-(1-F(x))^r) = 1-(1-1)^r = 1$

- (ii) If x < y, $F(x) < F(y) \implies -F(x) > -F(y) \implies 1 F(x) > 1 F(y) \implies (1 F(x))^r > (1 F(y))^r \forall r > 0$ Thus, $1 (1 F(x))^r < 1 (1 F(y))^r$
- (iii) Since F(x) is right continuous, 1 F(x) is right continuous $\implies (1 F(x))^r$ is right continuous(since (r > 0) implies $1 (1 F(x))^r$ is right continuous

Part c F(x) + (1 - F(x))log(1 - F(x))

Exercise # 2.3

(1)

Saket Choudhary	MATH-505A : Homework $\#$ 4	Exercise # 2.3 (continued)
(2)		
(3)		
(4)		
(5)		