

MACHINE LEARNING FOR TUNEABLE BAND-GAPS

A brief presentation to report the details of the summer research project for design credit

PHONONIC STRUCTURES AND BAND GAPS

A brief overview of phononic structures and their band gaps

PHONONIC STRUCTURES

A phononic crystal is an artificially manufactured structure, or material, with periodic constitutive or geometric properties that are designed to influence the characteristics of mechanical wave propagation.

When engineering these crystals, it is possible to isolate vibration within a certain frequency range. Vibration within this selected frequency range, referred to as the **band gap**, is attenuated by a mechanism of wave interferences within the periodic system.

Phononic crystals and band gaps

Courtesy: https://www.comsol.com/blogs/modeling-phononic-band-gap-materials-and-structures/

SOFT TUNABLE PHONONIC STRUCTURES

Hard Material based phononic structures

Once the structure is fabricated, it is difficult to substantially shift band gaps during use.

Frequency range can be adapted for wide range of applications

Soft active elastomers

Undergo large deformation or shape change when subjected to external loading, i.e., mechanical, electrical, magnetic fields.

Applications:

- Vibration isolation technology
- Noise suppression
- Frequency filters

AIM OF THE PROJECT

The project is aimed to create a ML model that can be utilised to obtain the values of the first two tuneable band-gaps that are present in a 1-D structured phononic crystal with a composition of two substances using the mechanical and electromagnetic properties of the crystal.

The current method is to compute solutions of complex mathematical functions to ascertain the wavelengths' values primarily using MATLAB. To simplify and increase the efficiency of the process, this machine learning based solution has been proposed.

Structure of the 1-D structure

Wavelengths and bandgaps of the structure above

METHODOLOGY

Process followed for the project

DATA

Data is generated using MATLAB scripts provided by our project supervisor, Dr. Sharma through the implementation of his research paper [Topology optimization of soft compressible phononic laminates for widening the mechanically tunable band gaps, ISSN 0263-8223, https://doi.org/10.1016/j.compstruct.2022.115389].

The following are taken as features/input variables:

Property of unit cell	Range/Form
Length (L)	0.1 to 10
Applied magnetic flux density (B)	-5 to 5
Shear Contrast Parameter (α)	0.05 to 50
Microstructure	A 1x200 binary vector
Magnetic contrast parameter (eta)	0.05 to 50
Local measure of volume change parameter(J)	2 to 1000

The target/output variables are:

ω_{max1}
ω_{min2}
ω_{max2}
ω_{min3}

Target Variables in Data

DATA MANIPULATION

Data

Processing

- Original
- Normalisation
- Standardisation

PCA

• PCA is applied over all the datasets

Train-Test-Split

 4:1 ratio split over all datasets normalise, standardised, original, pca before and after

DATA MANIPULATION

DAIA MANII ULAIIUN			
Original	Data 1	The data is kept as it is without any feature engineering.	
Data	Jaiai	Data1_Normalised	The data is Normalised Data1_Normalised_PCA
			The data is processed using PCA
		Data1_Standardised	The data is Standardised Data1_Standardised_PCA
			 The data is processed further using PCA
	Data2		re is originally a 200 column set. It is reduced to a set of 20 columns are converted to decimal values.
		Data2_Normalised	The data is Normalised
			Data2_Normalised_PCA
			The data is processed using PCA
		Data2_Standardised	The data is Standardised
			Data2_Standardised_PCA
			 The data is processed further using PCA
		Data3	The Data2_Standardised has Microstructure in 20 columns, it is further reduced to a single column by adding those 20 standardised decimal values. Data3_Standardised
			The data is Standardised
			• Data3_Standardised_PCA
			 The data is processed further using PCA

FEATURE IMPORTANCE

DATA3 DATA2 DATA1

Features	Correlation
Length (L)	-0.375538
Shear Contrast Parameter (α)	-0.167207
Magnetic contrast parameter (β)	0.146558
Applied magnetic flux density (B)	0.111587
Local measure of volume change parameter(J)	0.035253
Microstructure	0.0977

Features	Correlation
Length (L)	-0.375538
Shear Contrast Parameter (α)	-0.167207
Magnetic contrast parameter (β)	0.146558
Applied magnetic flux density (B)	0.111587
Local measure of volume change parameter(J)	0.035253
Microstructure	0.0067

DAIAI	
Features	Correlation
Length (L)	-0.375538
Shear Contrast Parameter ($lpha$)	-0.167207
Magnetic contrast parameter (β)	0.146558
Applied magnetic flux density (B)	0.111587
Local measure of volume change parameter(J)	0.035253
Microstructure	0.000050

MODELS TRAINED

We trained 80+ models of different regressors for predicting. We also applied 5-fold cross validation on the models and used GridSearchCV for hyperparameter tuning.

For linear regressor, AdaBoost, gradient boosting, and random forest regressor models, we utilized the scikit-learn library. As for the artificial neural network (ANN) regressor, we employed the Keras library for implementation.

- •Linear Regressor: Utilized to establish a linear relationship between dependent and independent variables.
- •AdaBoost: Employed to combine weak learners and improve overall prediction accuracy.
- •Gradient Boosting: Utilized for ensemble learning, sequentially improving model performance by correcting errors.
- Random Forest Regressor: Utilized to create an ensemble of decision trees, resulting in robust and accurate predictions.
- •ANN Regressor: Used to model complex relationships and solve regression problems using artificial neural networks.

Linear Regressor

AdaBoost Regressor

Gradient Boost Regressor

Random Forest Regressor

ANN

MODEL EVALUATION

The models were evaluated using the R-squared metric for regressors. It was utilised so as to attain robust and easy to understand performance values ranged between -1 to 1 so as to be able to compare the various models trained.

Formula

$$R^2 = 1 - rac{RSS}{TSS}$$

 R^2 = coefficient of determination

RSS = sum of squares of residuals

TSS = total sum of squares

$$RSS = \Sigma \left(y_i - \widehat{y}_i \right)^2$$

Where: y_i is the actual value and, $\hat{y_i}$ is the predicted value.

$$TSS = \Sigma \left(y_i - \overline{y} \right)^2$$

Where: y_i is the actual value and $\overline{y_i}$ is the mean value of the variable/feature

R-squared score diagram and formula

RESULTS

Outcomes of the project

PERFORMANCE OF MODELS

Model type	Best R-2 Score on Testing dataset
Linear Regressor	0.612
AdaBoost Regressor	0.741
Gradient Boost Regressor	0.789
Random Forest Regressor	0.828
Artificial Neural Network	0.934

ANN (ARTIFICIAL NEURAL NETWORK)

The most optimal ML model attained for the task and its configuration

16

Machine Learning for Tunable Band-gaps

DR. SHARMA, A; DR. AKOLEKAR, HD | RAJ A; SHRIVASTAVA Y

After conducting numerous experiments, we have successfully identified the optimal structure and hyperparameters of the ANN, resulting in the best possible outcome.

Optimal Configuration for ANN:

- ➤ Optimizer: RMSprop , Adam
- Activation Function: "ReLU", "elu" ReLU
- Structure (Hidden Layers with Nodes): $\max(0, x)$ 128, 128, 64, 32

Optimizer

- ➤ Batch Size: 140 (Using a higher batch size resulted in more robust and faster convergence)(Number of training examples used in each iteration of the training process in a machine learning model)
- Number of Epochs: 2000
- ➤ Total Runtime: Training + Testing = 8 minutes
- Loss Function: Mean Absolute Error (This choice prevents harsh penalization for errors, considering the high range of results)
- >R2 Score (Testing): 0.92 to 0.94 (Demonstrating a strong correlation between predicted and actual values).
- ➤R2 Score (Training): 0.98 to 0.99 (The training score is notably high because the results are generated by a mathematical function. Therefore, there is no need to be concerned about its performance during training)

With this optimized configuration, the artificial neural network achieves impressive results, showcasing faster convergence and improved accuracy compared to other setups.

CONTRIBUTION

Anshu Raj	 Data Preprocessing Feature Reduction (Binary addition) Standardisation and Normalisation Training Models Artificial Neural Network Hyperparameter Tuning
Yash Shrivastava	 □ Data Generation using MATLAB □ Data Preprocessing ■ Feature Importance (Correlation, Feature Permutation, RFR importance) ■ Feature Reduction (PCA and others) ■ Standardisation and Normalisation □ Training Models ■ Linear Regressor ■ Gradient Boosting Regressor ■ AdaBoost Regressor ■ Random Forest Regressor