1、判断题:

判断下列模式分别属于哪个范式(最高范式)并说明理由。

- 1. R ($\{A, B, C\}$, $\{(A, C) \longrightarrow B$, $(A, B) \longrightarrow B$ $C \rightarrow B$
- 2. R ({S#, SD, SL, SN}, {S#—9D, S# SN→ S# SL, 5D SL})→

2、判断题:判断下题中给出的命题是否正确,若不对,请给出你认为正确的答案。 如一组事务是按一定顺序执行的,则称这组事务是可串行的。

2、判断题:

错误。

根据可串行化的定义,多个事务并发执行时,当且仅当其执行的结果与这一组事务按 某一次序串行地执行结果相同,才能称这种调度策略为可串行化。各种调度的策略会产生不 同的结果,但未必与串行的结果相同,所以它们不都是可串行的。

5、求解题:

设有关系模式 R(C,T,S,N,G), 其中 C 代表课程, T 代表教师的职工号, S 代表学生号, N 代表学生的姓名, G 代表分数(成绩)。其函数依赖集 $F=\{C \rightarrow T,CS \rightarrow G,S \rightarrow N\}$,即每一门课由一名教师讲授,每个学生每门课只有一个成绩,学生的学号决定学生的姓名。试求: 1.该关系模式的候选码(应根据候选码的定义,并给出所求的过程);

6、问答题:

图书流通数据库中的三个关系:读者关系、图书关系、借书关系,他们所含的属性及码分别为:

READER(<u>CARDNO</u>, SNAME, DEPT), KEY=CARDNO BOOKS(BCALLNO, TITLE, AUTHOR, BOOKNO, PUBHOU, PRICE), KEY=BCALLNO

LOANS(CARDNO, BCALLNO, DATE), KEY=(CARDNO, BCALLNO,)

其中:

CARDNO——借书证号

SNAME——姓名

DEPT——单位

BOOKNO——图书登记号 (一本书对应一个图书登记号,例如《数据库系统概论》有一个图书登记号 RD DB 1801)

DATE——借书日期

BCALLNO——索书号 (借出一本书有一个索书号, 例如图书馆中有 60 本数据库系统 概论书, 有 60 个索书号, 例如从 RD DB 1801 001 到 RD DB 1801 060)

TITLE——书名

AUTHOR——作者

PUBHOU——出版单位

PRICE——价格

要求用关系代数和 SQL 分别表示如下查询:

- 1.查询借阅"数据库"的读者姓名;
- 2.找出 2014.1.1 前被借出的书的书名和作者;
- 3.作者 "王平" 所著 "操作系统" 书共借出几本? (仅用 SQL) hitnes//bloot.padn.net/on_48139801

(1)/*查询借阅"数据库"的读者姓名*/

select SNAME

from BOOKS, LOANS, READER

where BOOKS.BCALLNO=LOANS.BCALLNO and LOANS.CARDNO=READER.CARDNO and TITLE='数据库'

(2)/*找出2014.1.1前被借出的书的书名和作者*/

select distinct(TITLE,AUTHOR)

from LOANS, BOOKS

where LOANS.BCALLNO=BOOKS.BCALLNO and DATE< '2014-01-01'

(3)/*作者"王平"所著"操作系统"书共借出几本*/

select COUNT(*)

from BOOKS, LOANS

where BOOKS.BCALLNO=LOANS.BCALLNO and AUTHOR='王平' and TITLE='操作系统'

1. 五种基本关系代数运算是【】

- A. U, -, ×, π和 σ
- B. U, -, ∞, π和σ
- C. U, ∩, ×, π和σ
- D. U, ∩, ∞, π和 σ bloo estin nation 45 139801

参考解答: A

解析: (书本P57)

本节介绍了8种关系代数运算,其中并、差、笛卡尔积、选择和投影这5种运算为基本运算。

其他三种运算,即交、连接和除,均可以用这5种基本运算来表达。

引进它们并不增加语言的能力, 但可以简化表达。

2. 下列聚集函数中不忽略空值 (null) 的是 【】

- A. SUM (列名)
- B. MAX (列名)
- C. COUNT (*)
- D. AVG (列名)

(考试资料网 www.ppkao.com) 在聚合函 答案解析: 数中遇到空值时,除了COUNT(*)外,都 跳过空值而去处理非空值。

- 4. 在数据库设计中,将 ER 图转换成关系数据模型的过程属于【】
 - A. 需求分析阶段
 - B. 概念设计阶段
 - C. 逻辑设计阶段
 - D. 物理设计阶段

参考解答: C

解析: (书本P209)

逻辑结构设计是将概念结构转换为某个数据库管理系统所支持的数据库模型,并对其进行优化。

- 5. DBMS 中实现事务持久性的子系统是【】
 - A. 安全性管理子系统
 - B. 完整性管理子系统
 - C. 并发控制子系统
 - D. 恢复管理子系统

参考解答: D

(考试资料网 www.ppkao.com) [分析] 答案解析: DBMS中实现事务持久性的子系统是:

恢复管理子系统。

- 6. 当关系R和S自然联接时,能够把R和S原该舍弃的元组放到结果关系中的操作是【】
 - A. 左外连接
 - B. 右外连接
 - C. 外部并
 - D. 外连接

参考解答: D

解析: (书本P55)

如果把悬浮元组也保存在结果关系中,而在其他属性上填空值(NULL),那么这种连接就叫做外 连接:

如果只保留左边关系R中的悬浮元组就叫做左外连接:如果只保留右边关系S中的悬浮元组就叫做右 外连接。

答案解析:

(考试资料网 www, ppkao. com) [分析] 在外连接中,某些不满足条件的列也会 显示出来,也就是说,只限制其中一个 表的行,而不限制另一个表中的行。

4、求解题:

在供应商、零件数据库中有以下三个关系模式:

供应商: S(SNO,SNAME,CITY,STATUS)

零件: P(PNO,PNAME,WEIGHT,COLOR,CITY)

供应货: SP(SNO,PNO,QTY)

各属性的含义可由属性名体现了,不再重复,供应货关系 SP 表示某供应商 SNO,供应

了 PNO 零件,数量为QTY。

用 SQL 语言完成以下操作:

- 1、 求供应红色零件的供应商名字。
- 2、 求北京供应商的号码, 名字和状况 (STATUS)。
- 3、 求零件 P2 的总供应量。
- 4、 把零件 P2 的重量增加 5, 颜色该为黄色。

(1)/*供应红色零件的供应商名字*/

select SNAME

from S,P,SP

where S.SNO=SP.SNO and SP.PNO=P.PNO and COLOR='红色'

(2)/*北京供应商的号码,名字和状况(STATUS)*/

select SNO, SNAME, STATUS

from S

where CITY='北京'

(3)/*求零件P2的总供应量*/

select SUM(QTY)

from SP

where PNO='P2'

(4)/*把零件P2的重量增加5,颜色该为黄色*/

update P

set WEIGHT=WEIGHT+5, COLOR='黄色'

where PNO='P2'

7、综合题:

现有如下关系模式:

Ħ.

Teacher (Tno, Tname, Tel, Dpartment, Bno, Bname, BorrowDate, RDate, Backup) .

Tno-教师编号,

Tname - 教师姓名,

Tel-电话,

Department - 所在部门,

Bno-借阅图书编号,

Bname - - 书名,

BorrowDate-借书日期,

RDate - 还书日期,

Backup - - 备注

该关系模式的属性之间具有通常的语义,例如教师编号函数决定教师姓名,即教师编号

是唯一的; 图书编号是唯一的等等。

请回答:

- 1。教师编号是候选码吗?
- 2。说明上一题判断的理由是什么。
- 3。写出该关系模式的主码。
- 4。该关系模式中是否存在部分函数依赖?如果存在,请写出其中两个。
- 5。说明要将一个 1NF 的关系模式转化为若干个 2NF 关系,需要如何做?
- 6。该关系模式最高满足第几范式?并说明理由。
- 1. 教师编号 Tno 不是候选码。
- 因为:教师编号→书名(Tno->Bname)不成立,根据候选码的定义可知 Tno 不是候选码。
- 3. 该关系模式的主码是: (Bno,Tno,BorrowDate)。
- 4. 存在部分函数依赖, 如: (Tno->Department), (Bno->Bname)。
- 5. 找出其中存在的所有的码, 找出非主属性对码的部分依赖, 将该关系模式分解为两个或两个以上的关系模式, 使得分解后的关系模式中均消除了非主属性对码的部分依赖。

8、综合题

假设某商业集团数据库中有一关系模式 R 如下:

R(商店编号,商品编号,商品库存数量,部门编号,负责人)

如果规定: (1) 每个商店的每种商品只在该商店的一个部门销售;

- (2) 每个商店的每个部门只有一个负责人;
- (3) 每个商店的每种商品只有一个库存数量。

试回答下列问题:

- (1) 根据上述规定,写出关系模式 R 的基本函数依赖;
- (2) 找出关系模式 R 的候选码;
- (3) 试问关系模式 R 最高已经达到第几范式? 为什么? 100_46139801

11)基本級 作業 「高店編品、商品編品)→部门編品、「商店編品、部门編品)→ 無品库存数量]

12) 「Timin = 「「商店編品、商品編品) →部门編品、「商店編品、部门編品) → 表品库存数量]

13) 「商店编品、商品编品) → (商店编品、商品编品、商品编品、部门编品、矮人)

13) 「存在 非主届性 负责 对码的传递函数 作教

13) 「存在 非主届性 负责 对码的传递函数 作教

13) 「存在 非主届性 负责 对码的传递函数 作教

11) 「商店编品、商品编品) → 负责人

11 「商店编品、商品编品) — 负责人

12 「商店编品、商品编品) — 负责人

13 「商店编品、商品编品) — 负责人

13 「商店编品、商品编品) — 负责人

13 「商店编品、商品编品) — 负责人

14 「商店编品、商品编品) — 负责人

15 「商店编品、商品编品) — 负责人

2、求解题:

烷上. RG2NF

有一学校教学数据库,包括学生、课程、教师、学生成绩 4 个关系。 学生关系 S(SNO,SN,AGE,SEX),有属性: 学号、姓名、年龄、性别; 课程关系 C(CNO,CN,PCNO),包括属性 课程号、课程名、先修课课程号; 教师关系 T(ENO,EN,DEPT),包括属性 职工号、姓名、系别,; 学生成绩关系 SC(SNO,CNO,ENO,G),包括属性 学生号、课程号、任课教师职工号和学生 学习成绩。

请分别用关系代数与关系演算完成下列操作:

- 1、求选修了所有课程并且成绩全都为 A 的学生名。
- 2、求选修了王平老师讲授的所有课程的学生名。
- 3、求不选修信息系老师开设的所有课程的学生名。

5、求解题:

供应商一零件一工程项目数据库由以下四个关系模式构成:

- S (SNO, SNAME, STATUS, CITY)
- P (PNO, PNAME, COLOR, WEIGHT, CITY)
- J (JNO, JNAME, CITY)
- SPJ (SNO, PNO, JNO, QTY)

供应商 S,零件 P 和工程项目 J 分别由供应商号(SNO),零件号(PNO)和工程项目号(JNO)唯一标识。供货 SPJ 是指由某个供应商向某个工程项目供应某些数量的某种零件。请用 SQL 语言完成如下的操作:

- 1. 找出给北京的工程项目提供不同的零件号。
- 2. 将没有供货的所有工程项目从J中删除。
- 3. 查询提供全部零件的供应商名。
- 查询这样的工程项目号:供给该工程项目的零件 P1 的平均供应量大于供给工程项目 J1 的任何一种零件的最大供应量。
- 5. 定义一个视图,它由所有这样的工程项目(工程项目号与所在城市名称)组成: 它们由供应商 S1 供货且使用零件 P1。

```
(1)/*找出给北京的工程项目提供不同零件的零件号*
select distinct PNO
from J,SPJ
where J.JNO=SPJ.JNO and CITY='北京'
(2)/*将没有供货的所有工程项目从J表中删除*/
delete
J
where JNO not in(select JNO
               from SPJ
              )
**(3)/*查询提供全部零件的供应商名*/
select SNAME
from S
where not exists(select *
              from P
              where not exists(select *
                            from SPJ
                            where SNO=S.SNO and PNO=P.PNO
                            )
             )
(4)/*查询这样的工程项目号:供给该工程项目的零件P1的平均供应量大于供给工程项目J1的任何
一种零件的
最大供应量*/
select distinct JNO
from SPJ
where PNO='P1'
group by JNO
having AVG(QTY)>(select MAX(QTY)
              from SPJ
              where JNO='J1'
```

(5)/*定义一个视图,它由所有这样的工程项目(工程项目号与所在城市名称)组成:它们由供应商S1供货

且使用零件P1*/

create view enginproj

25

select J.JNO, CITY

from J,SPJ

where J.JNO=SPJ.JNO and SNO='S1' and PNO='P1'

- 1. 数据库与文件系统的根本区别在于
- a) 提高了系统效率
- b) 方便了用户使用
- c) 数据的结构化
- d) 节省了存储空间

参考解答: C

解析: (书本P11)

数据库系统实现整体数据的结构化,这是数据库的主要特征之一,也是数据库系统与文件系统的本质区别。

EMP(empno, ename, mgr, sal, workday)

DEPT(deptno,dname,loc)

在以下视图中,不可能更新的视图为。

- a) 视图V1, 由2014年以后参加工作的雇员组成
- b) 视图V2, 由部门号和各部门的平均工资组成
- c) 视图V3, 由雇员姓名和其领导者姓名组成
- d) 视图V4, 由薪金超出所有雇员平均薪金以上的雇员组成。

参考解答:B、D

解析:

因为B中视图V2的一个字段是来自聚集函数AVG,所以不能更新;

D中视图V4含有内层嵌套,且涉及的表是导出该视图的基本表,所以也不能更新。

- 3. 对由SELECT-FROM-WHERE-GROUP-ORDER 组成的SQL 语句,其在被DBMS处理时,各子句的执序次序为。
- a) SELECT-FROM-GROUP-WHERE-ORDER
- b) FROM-SELECT-WHERE-GROUP-ORDER
- c) FROM-WHERE-GROUP-SELECT-ORDER
- d) SELECT-FROM-WHERE-GROUP-ORDER

答案: C

(考试资料网 www. ppkao. com)

[解析] SELECT[ALL DISTNCT] <目标列表达式>[<目标列表达式>]… FROM <表名或视图名>[表名或视图名 >]... [WHERE <条件表达式>]

[GROUP BY<列名1>[HAVING<条件表达式>]]

[ORDER BY<列名2>[ASC DESC]];整个SBLECT语句的含义是,根据WHERE子句的条件表达式,从FROM子句指定的基本表或视图中找出满足条件的元组,再按SELECTT子句中的目标列表达式,选出元组中的属性值形成结果表,如果有GROUP子句,则将结果按<列名1>的值进行分组,该属性列值相等的元组为一个组。通常会在每组中作用集函数。如果GROUP子句带HAVING短语,则只有满足指定条件的组才予抽出;如果有ORDER子句,则结果表还要按<列名2>的值的升序或降序排序。

3、求解题:

设有学生表S(SNO, SN)(SNO 为学生号, SN 为姓名)和学生选修课程表SC(SNO, CNO, CN, G)(CNO为课程号, CN为课程名, G为成绩),试用SQL语言完成以下各题:

- (1) 建立一个视图V-SSC(SNO,SN,CNO,CN,G),并按CNO升序排序;
- (2) 从视图V-SSC上查询平均成绩在90分以上的SN、CN和G。

(1)/*建立一个视图V-SSC(SNO,SN,CNO,CN,G),并按CNO升序排序*/create view V-SSC

as

select S.SNO, SN, CNO, CN, G

from S,SC

where S.SNO=SC.SNO

order by CNO

(2)/*从视图V-SSC上查询平均成绩在90分以上的SN、CN和G*/

select SN, CN, G

from V-SSC

group by SNO

having AVG(G)>90

4、求解题:

今有如下关系数据库:

S(SNO, SN, STATUS, CITY)

P(PNO, PN, COLOR, WEIGHT)

J(JNO, JN, CITY)

SPJ(SNO, PNO, JNO, QTY)

其中,S为供应单位,P为零件,J为工程项目,SPJ为工程订购零件的订单,其语义为:某供应单位供应某种零件给某个工程,请用SOL完成下列操作。

- (1) 求为工程31提供红色零件的供应商代号。
- (2) 求使用S1供应的零件的工程名称。
- (3) 求供应商与工程所在城市相同的供应商提供的零件代号。
- (4) 求至少有一个和工程不在同一城市供应商提供零件的工程代号。

(1)/*为工程J1提供红色零件的供应商代号*/

select distinct SNO

from P,SPJ

where P.PNO=SPJ.PNO and JNO='J1' and COLOR='红色'

(2)/*使用S1供应的零件的工程名称*/

select distinct JN

from SPJ, J

where SPJ.JNO=J.JNO and SNO='S1'

(3)/*供应商与工程所在城市相同的供应商提供的零件代号*/

select distinct PNO

from S, SPJ, J

where S.SNO=SPJ.SNO and SPJ.JNO=J.JNO and S.CITY=J.CITY

(4)/*至少有一个和工程不在同一城市供应商提供零件的工程代号*/

select distinct J.JNO

from S,SPJ,J

where S.SNO=SPJ.SNO and SPJ.JNO=J.JNO and S.CITY<>J.CITY

一、判断题

判断下列模式分别属于哪个范式(最高范式)并说明理由。

- 1. $R(\{A,B,C\},\{(A,C)\rightarrow B,(A,B)\rightarrow C,B\rightarrow C\})$
- 2. $R(\{S \# SD, SL, SN\}, \{S \# \rightarrow SD, S \# \rightarrow SN, S \# \rightarrow SL, SD \rightarrow SL\})$

一、判断题

1. 1NF.

由题目可知,关系的侯选码为(A, C)和(A, B)。 B→C 表明存在对码的部分 依赖,所以这只能是 1NF。

2. 2NF.

由题目可知.关系的码为 S # 。这里存在对码的传递依赖。

- 1. 在数据库中为什么要有并发控制?
- 2. 试述数据库中完整性的概念、类型及你所了解的系统完整性检查方法。
- 3. 什么是数据模型? 试述其组成部分。
- 4. 什么是数据库系统的三级模式结构 ? 这种体系结构的优点是什么 ?
- 1.数据库是一个共享资源,它允许多个用户同时存取修改同一个数据。若系统对并行操作不加控制,就可能产生错误的结果,如存取和存储不正确的数据,破坏数据库一致性等。并发控制的目的,就是要以正确的方式调度并发操作,避免造成各种不一致性,使一个事务的执行不受另一个事务的干扰。
- 2.数据库的完整性是指数据的正确性和相容性,为了防止不合语义的数据进入数据库。完整性的类型一般可以分为六类:静态列级约束、静态元组约束、静态关系约束、动态列级约束、动态元组约束、动态关系约束。系统完整性检查方法有多种,例如,在一条语句执行完后立即检查是否违背完整性约束,即立即执行完整性检查。有时完整性检查延迟到整个事务执行结束后再进行,检查正确方可提交,即延迟执行约束完整性检查。
- 3.数据模型是数据库中用来对现实世界进行抽象的工具,是数据库中用于提供信息表示和操作手段的形式构架。不同的数据模型是提供给我们模型化数据和信息的不同工具。根据模型应用的不同目的,可以将模型分成两类或两个层次:一是概念模型,是按用户的观点来对数据和信息建模,用于信息世界的建模,强调语义表达能力,概念简单清晰;另一是数据模型,是按计算机系统的观点对数据建模,用于机器世界,人们可以用它定义、操纵数据库中的数据。一般需要有严格的形式化定义和一组严格定义了语法和语义的语言,并有一些规定和限制,便于在机器上实现。一般地讲,数据模型是严格定义的概念的集合。这些概念精确地描述系统的静态特性、动态特性和完整性约束条件。因此数据模型通常由数据结构、数据操作和完整性约束三部分组成。
- 4.数据库系统的三级模式结构由外模式、模式和内模式组成。 -外模式,亦称子模式或用户模式,是数据库用户看到的数据视图。模式,亦称逻辑模式,是数据库中全体数据的逻辑结构和特性的描述,是所有用户的公共数据视图。 -内模式,亦称存储模式,是数据在数据库系统内部的表示,即对数据的物理结构和存储方式的描述。模式描述的是数据的全局逻辑结构。外模式涉及的是数据的局部的逻辑结构,通常是模式的子集。这种体系结构的优点:数据库系统的三级模式是对数据的三个抽象级别,它把数据的具体组织留给 DB MS 管理,使用户能逻辑抽象地处理数据,而不必关心数据在计算机中的表示和存储。而为了能够在内部实现这 3 个抽象层次的联系和转换,数据库系统在这三级模式之间提供了两层映像:外模式/模式映像和模式/内模式映像。正是这两层映像保证了数据库系统中的数据能够具有较高的逻辑独立性和物理独立性。

四、求解题

某医院病房计算机管理中需要如下信息:

科室:科名,科地址,科电话,医生姓名

病房:病房号,床位号,所属科室名

医生:姓名,职称,所属科室名,年龄,工作证号

病人:病历号,姓名,性别,诊断,主管医生,病房号

其中,一个科室有多个病房,多个医生,一个病房只能属于一个科室,一个医

生只属于一个科室,但可负责多个病人的诊治,一个病人的主管医生只有一个。

完成如下设计:

- (1) 涉及该计算机管理系统的 E-R 图:
- (2) 将该 E-R 图转换为关系模型的结构;
- (3) 指出转换结果中每个关系模式的候选码。

- (1) 本题的 E-R 图如下所示
- (2) 对应的关系模型结构如下: 料室(料名,料地址,料电话); 病房(据房号,床位号,料室名); 医生(工作证号,姓名,职称,科室名,年龄);

设有关系模式 R(C,T,S,N,G),其中 C 代表课程,T 代表教师的职工号,S 代表学生号,N 代表学生的姓名,C 代表分数(成绩)。其函数依赖集 $F = \{C \rightarrow T,CS \rightarrow G,S \rightarrow N\}$,即每一门课由一名教师讲授,每个学生每门课只有一个成绩,学生的学号决定学生的姓名。试求:

- 1. 该关系模式的候选码(应根据候选码的定义,并给出所求的过程);
- 2. 将该模式分解成既符合 BCNF,又具有无损连接的若干关系模式(要求给 出过程);
- 3. 将 R 分解成 R 1 (C,T,S,G)和 R 2 (C,S,N,G)试说明它们各符合第几范式。

1 只有一个码 CS 求解过程:令 U = {C, S, T, N, G}, CF_F⁺ = {C, T}, S_F⁺ = {S, N}, CS_F⁺ = {C, S, T, G, N} = U; 所以只有一个码 CS。 2 分解成 R₁(C, T) R₂(S, N) R₃(C, S, G)

求解过程:按照"分解法",步骤依次为

```
step1: 因为 C→T 不满足 BCNF, 所以令 Un = {C, T}, Un = {C, S, N, G};
step2: 因为 S→N 不满足 BCNF, 所以令 Uzr = {S, N}, Uzz = {C, S, G};
step3: 因为 CS→ G 満足 BCNF, 算法停止, U<sub>31</sub> = [C, S, G]:
Un, Uzt, Uni即为分解结果。
R: 与 R: 都为 1NF, 因为都存在非主属性对码的部分函数依赖。
R<sub>1</sub> 的码是 CS, CS→T, 而 R<sub>1</sub> 中有 C→T, 是部分函数依赖。
同样, R. 的码是 CS, CS→N, 而 R. 中有 S→N, 是部分函数依赖。
一、选择题
1. 五种基本关系代数运算是【】
A. U. - .× .π和σ
B. U, -,∞,π和σ
C. U,Λ,×,π和σ
D. U.Ω,∞,π₹Ωσ
2. 下列聚集函数中不忽略空值 (null) 的是【】
A. SU M (列名)
B. M AX (列名)
C. COUNT (*)
D. A VG (列名)
3. 设关系模式 R (A, B, C), F 是 R 上成立的 FD 集, F = {B→ C},则分解p = {AB, BC}
A. 是无损联接,也是保持 FD 的分解
B. 是无损联接,但不保持 FD 的分解
C. 不是无损联接,但保持 FD 的分解
D. 既不是无损联接,也不保持 FD 的分解
4. 在数据库设计中,将 E-R 图转换成关系数据模型的过程属于 []
A. 需求分析阶段
B. 概念设计阶段
C. 逻辑设计阶段
D. 物理设计阶段
5. DB MS 中实现事务持久性的子系统是【】
A. 安全性管理子系统
B. 完整性管理子系统
C. 并发控制子系统
D. 恢复管理子系统
6. 当关系 R 和 S 自然联接时,能够把 R 和 S 原该舍弃的元组放到结果关系中的操作是
A. 左外联接
B. 右外联接
C. 外部并
                              ao mike *#
```

D. 外联接

```
1 1.
                                                 2 SELECT SNAME
                                                 3 FROM S
                                                 4 WHERE SNO IN
                                                 5 (SELECT SNO
                                                 6 FROM P, SP
                                                 7 WHERE P.COLOR = 红色 AND P.PNO = SP.PNO);
                                                 8
四、求解题
                                                 9 2.
                                                10 SELECT SNO, SNAME, STATUS
在供应商、零件数据库中有以下3个关系模式:
                                                11 FROM S
供应商:S(SNO,SNA M E.CITY,STATUS)
                                                12 WHERE S.CITY = 北京
零件:P(PNO,PNA M E, W EIGHT,COLOR,CITY)
                                                13
供应货:SP(SNO,PNO,QTY)
                                                 14 3.
各属性的含义可由属性名体现,不再重复,供应货关系 SP表示某供应商 15 SELECT SUM(QTY)
SNO,供应了 PNO 零件,数量为 QTY。
                                                16 FROM SP
用 SQL 语言完成以下操作:
                                                17 WHERE PNO = P2
                                                18
1. 求供应红色零件的供应商名字:
                                                19 4.
2. 求北京供应商的号码、名字和状况(STATUS);
                                                20 UPDATE P
3. 求零件 P2 的总供应量;
                                                21 SET WEIGHT = WEIGHT + 5, COLOR = 黄色
4. 把零件 P2 的重量增加 5,颜色该为黄色。
                                                22 WHERE PNO = P2
```

五、问答题

已知关系模式 R < U,F > , U = {A, B, C,D, E, G} F = { $AC \rightarrow B$, $CB \rightarrow D$, $A \rightarrow BE$, $E \rightarrow GC$ } 求: AB, BC, AC 是否为关系 R 的候选码?

五、问答题

BC 不是候选码, AB、AC 是超码。

解析:分别求出 ABr、ACr、BCr,

ABi = U, ACi = U, BCi = (B, C, D), 可以推出 BC 不是候选码;

进一步分析, $\Lambda_{\nu}^{c}=U$, 即 AB 和 AC 都不是候选码的最小集, 可以得出 AB 和 AC 是超码; 候选码应该为 A。

现有如下关系模式:

其中, Teacher(Tno, Tname, Tel, Dpartment, Bno, Bname, BorrowDate,

RDate, Backup).

Tno-教师编号,

Tname—教师姓名,

Tel-电话.

Department—所在部门,

Bno-借阅图书编号,

Bname—书名.

BorrowDate—借书日期,

R Date—还书日期.

Backup—备注

该关系模式的属性之间具有通常的语义,例如,教师编号函数决定教师姓名,即教师编号是惟一的,图书编号是惟一的,等等。

- 1. 教师编号是候选码吗?
- 2. 说明上一题判断的理由是什么。
- 3. 写出该关系模式的主码。
- 4. 该关系模式中是否存在部分函数依赖?如果存在,请写出其中两个。
- 5. 说明要将一个 1NF 的关系模式转化为若干个 2NF 关系,需要如何做?
- 6. 该关系模式最高满足第几范式?并说明理由。
- 7. 将该关系模式分解为 3NF。

七、综合题

- 1 教师编号 Tno 不是候选码。
- 2 因为: 教师编号→书名(Tno->Bname)不成立。根据候选码的定义可知 Tno 不是候选码。
 - 3 该关系模式的主码是:(Bno, Tno, Borrow Date)
 - 4 存在部分函数依赖,如: (Tno-> Department), (Bno-> Bname)
- 5 找出其中存在的所有的码,找出非主属性对码的部分依赖,将该关系模式分解为两个或两个以上的关系模式,使得分解后的关系模式中均消除了非主属性对码的部分依赖。
- 6 关系模式 teacher 最高满足 1NF, 因为存在非主属性对码的部分函数依赖,实例如上面第 4 小题。
 - 7 BK (Bno, Bname) F1 = (Br

F1 = {Bno -> Bname}

TH(Tno, Tname, Tel, Department) F2 = { Tno \rightarrow Tname, Tno \rightarrow Tel, Tno \rightarrow Department)

TBB (Tno, Bno, BorrowDate, Rdate, Backup) F3 = [(Tno, Bno, BorrowDate) -

> Rdate, (Tno, Bno, BorrowDate) -> Backup)

八、综合题

假设某商业集团数据库中有一关系模式 R 如下:

R (商店编号,商品编号,商品库存数量,部门编号,负责人) 如果规定·

- (1)每个商店的每种商品只在该商店的一个部门销售;
- (2)每个商店的每个部门只有一个负责人;
- (3)每个商店的每种商品只有一个库存数量。

试回答下列问题

- (1) 根据上述规定,写出关系模式 R 的基本函数依赖;
- (2) 找出关系模式 R 的候选码;
- (3) 试问关系模式 R 最高已经达到第几范式?为什么?
- (4) 如果 R不属于 3NF,请将 R 分解成 3NF 模式集。

八、综合题

- (1) 有3个函数依赖:
- (商店编号,商品编号)→部门编号,(商店编号,部门编号)→负责人,
- (商店编号,商品编号)→商品库存数量
- (2) R 的候选码是 (商店编号,商品编号)。
- (3) 因为 R 中存在着非主属性"负责人"对候选码(商店编号、商品编号)的 传递函数依赖,所以 R 属于 2NF, R 不属于 3NF。
 - (4) 将 R 分解成: R₁(商店编号,商品编号,商品库存数量,部门编号) R₂(商店编号,部门编号,负责人)

三、求解题

某学校有若干系,每个系有若干学生,若干课程,每个学生选修若干课程,每 门课有若干学生选修,某一门课可以为不同的系开设,今要建立该校学生选修课程的数据库。请你设计:

- 1. 关于此学校数据库的 E-R 图;
- 2. 并把该 E-R 图转换为关系模型。

1 E-R 图中省略了各个实体的属性,图在下面 2

(在数据库中要存放以下信息:

系:系名,系代号,系主任名,电话;

学生:学号,姓名,年龄,性别,所在系代号;

课程:课程号码、课程名称:

每个学生选修某门课的日期,成绩:

每个系开设的课程。)

学生关系: Student(Sno, Sname, Sage, Ssex, Sdept);

系关系: Dept(Dno, Dname, Dmanager, Dtelephone);

课程关系: Course(Cno, Cname);

hitmat/foliage again, nelisar, mike

五、问答题

供应商 - 零件 - 工程项目数据库由以下四个关系模式构成:
S(SNO, SN A ME,STATUS,CITY)
P(PNO, PN A ME,COLOR, W EIGHT,CITY)
J(JNO, JN A ME, CITY)
SPJ(SNO, PNO, JNO, QTY)
供应商 S,零件 P 和工程项目J 分别由供应商号(SNO),零件号(PNO)和工程项目号(JNO)惟一标识。供货 SPJ 是指由某个供应商向某个工程项目供应某些数量的某种零件。请用 SQL 语言完成如下的操作:
1. 找出给北京的工程项目提供不同的零件号;

- 2. 将没有供货的所有工程项目从 J 中删除;
- 3. 查询提供全部零件的供应商名;
- 4. 查询这样的工程项目号:供给该工程项目的零件 P1 的平均供应量大于供给工程项目 J1 的任何一种零件的最大供应量:
- 5. 定义一个视图,它由所有这样的工程项目(工程项目号与所在城市名称)组成:它们由供应商 S1 供货且使用零件 P1。

```
1 1.
2 SELECT DISTINCT SPJ.PNO
3 FORM SPJ,J
4 WHERE SPJ.JNO = J.JNO AND J.CITY = #
5
6 2.
7 DELETE
8 FROM J
9 WHERE JNO NOT IN(
10 SELECT JNO
11 FROM SPJ);
12
13 3.
14 SELECT SNAME
15 FROM S
16 WHERE NOT EXISTS(
17 SELECT *
18 FROM P
19 WHERE NOT EXISTS(
28 SELECT *
21 FROM SPJ
22 WHERE SNO = S.SNO AND PNO = P.PNO));
23
24 4.
25 SELECT DISTINCT JNO
26 FROM SPJ
27 | WHERE PNO = P128 | GROUP BY JNO
29 HAVIN AVG(QTY) >
30 (SELECT MAX (QTY)
31 FROM SPJ
32 WHERE JNO = J1 );
33
34 5.
35 CREATE VIEW J_S1_P1
36 AS SELECT J.JNO,J.CITY
37 FROM SPJ, J
38 WHERE SPJ.JNO = J.JNO AND SPJ. SNO = S1 AND SPJ.PNO = P1
```

一、选择题

- 1. 数据库与文件系统的根本区别在于【】
- A. 提高了系统效率
- B. 方便了用户使用
- C. 数据的结构化
- D. 节省了存储空间
- 2. 现有关系模式:
- E MP(empno,ename, mgr,sal,workday)
- DEPT(deptno,dname,loc)
- 在以下视图中,不可能更新的视图为【】。
- A. 视图 V1.由 1970 年以后参加工作的雇员组成
- B. 视图 V2,由部门号和各部门的平均工资组成
- C. 视图 V3,由雇员姓名和其领导者姓名组成
- D. 视图 V4,由薪金超出所有雇员平均薪金以上的雇员组成
- 3. 对由 SELECT—FROM— WHERE—GROUP—ORDER组成的 SQL语句,其 在被 DBMS处理时,各子句的执序次序为【】。
- A. SELECT-FROM-GROUP-WHERE-ORDER
- B. FROM-SELECT-WHERE-GROUP-ORDER
- C. FROM- WHERE-GROUP-SELECT-ORDER
- D. SELECT-FROM- WHERE-GROUP-ORDER

二、简答题

1. 试给出 BCNF 的定义,并说明满足 BCNF 的关系有哪些特性。

1

关系模式 R < U, F > ∈ 1NF。若 X→ Y 且 Y \ X 时 X 必含有码,则 R < U,F > ∈ BCNF。

满足 BCNF 关系的特性有:

所有非主属性对每一个码都是完全函数依赖;

所有的主属性对每一个不包含它的码,也是完全函数依赖:

没有任何属性完全函数依赖于非码的任何一组属性

三、求解题

设有学生表 S(SNO,SN)(SNO 为学生号,SN 为姓名)和学生选修课程表 SC(SNO,CNO,CN,G)(CN O 为课程号,CN 为课程名,G 为成绩),试用 SQL 语言完成以 下各题

- (1)建立一个视图 V SSC(SNO,SN,CNO,CN,G),并按 CNO 升序排序;
- (2) 从视图 V SSC 上查询平均成绩在 90 分以上的 SN、CN和 G。

```
1 (1)
2 CREATE VIE W V - SSC(SNO,SN,CNO,CN,G)
3 AS SELECT S.SNO,S.SN, CNO, SC. CN, SC.G 8 (2)
4 FROM S, SC
5 WHERE S.SNO = SC. SNO
6 ORDER BY CNO;
10 FROM V - SSC
11 GROUP BY SNO
12 HAVING AVG(G) > 90;
```

四、求解题

今有如下关系数据库:

S(SNO,SN,STATUS,CITY)

P(PNO,PN,COLOR, W EIG HT)

J(JNO, JN, CITY)

SPJ(SNO,PNO,JNO,QTY)

其中,S为供应单位,P为零件,J为工程项目,SPJ为工程订购零件的订单,

其语义为:某供应单位供应某种零件给某个工程,请用 SQL 完成下列操作。

- (1) 求为工程 J1 提供红色零件的供应商代号。
- (2) 求使用 S1 供应的零件的工程名称。
- (3) 求供应商与工程所在城市相同的供应商提供的零件代号。
- (4) 求至少有一个和工程不在同一城市的供应商提供零件的工程代号。

```
1 (1)
 2 | SELECT DISTINCT SPJ.SNO
3 FROM SPJ, P
4 WHERE P.PNO = SPJ.PNO AND SPJ.JNO = J1 AND P.COLOR = ET.;
7 SELECT J.JN
8 FROM J, SPJ
9 WHERE J.JNO = SPJ.JNO AND SPJ.SNO = S1;
10
11 (3)
12 SELECT DISTINCT SPJ. PNO
13 FROM S, J, SPJ
14 WHERE S.SNO = SPJ.SNO AND J.JNO = SPJ.JNO AND S.CITY = J.CITY;
15
16 (4)
17 SELECT DISTINCT SPJ. JNO
18 FROM S, J, SPJ
19 WHERE S.SNO = SPJ.SNO AND J.JNO = SPJ.JNO AND S.CITY < > J.CITY;
```

(第一章)

(1) 数据库系统的核心和基础是()。

A.物理模型

- B.概念模型
- C.数据模型
- D.逻辑模型
 - (2) 实现将现实世界抽象为信息世界的是()。
- A.物理模型
- B.概念模型
- C. 关系模型Q
- D.逻辑模型
- (3) 数据管理技术经历了若干阶段,其中人工管理阶段和文件系统阶段相比文件系统的一个显著优势是()。

A.数据可以长期保存

- B.数据共享性很强
- C.数据独立性很好
- D.数据整体结构化

(4) 能够保证数据库系统中的数据具有较高的逻辑独立性的是()

A.外模式/模式映像

- B.模式
- C.模式/内模式映像
- D外模式
- (5) IBM公司的IMS数据库管理系统采用的数据模型是()

A.层次模型

- B.网状模型
- C.关系模型
- D.面向对象模型
- (6) DBMS是一类系统软件,它是建立在下列哪种系统之上的? ()
- A.应用系统
- B.编译系统

C.操作系统

- D.硬件系统
 - (7) 关于网状数据库,以下说法正确的是()
- A.只有一个结点可以无双亲
- B.一个结点可以有多于一个的双亲
- C.两个结点之间只能有一种联系
- D.每个结点有且只有一个双亲
 - (8) 下列说法中, 正确的是()
- A.数据库的概念模型与具体的DBMS有关
- B.三级模式中描述全体数据的逻辑结构和特征的是外模式
- C.数据库管理员负责设计和编写应用系统的程序模块
- D.从逻辑模型到物理模型的转换一般是由DBMS完成的
- (9) 长期存储在计算机内,有组织的、共享的大量数据的集合是()。
- A.数据 (Data)
- B.数据库 (DataBase)
- C.数据库管理系统 (DBMS)
- D.数据库系统 (DBS)
 - (10) 在数据管理技术发展过程中,需要应用程序管理数据的是()

A.人工管理阶段

- B.人工管理阶段和文件系统阶段
- C.文件系统阶段和数据库系统阶段
- D.数据库系统阶段

第二章

- (1) 在关系模型中关系操作包括查询、插入、删除和修改等。
- (2) 关系模型的三类完整性约束是指实体完整性、参照完整性和用户定义的完整性
- (3) 关系模型包括 8 种查询操作,其中选择、投影、并、差和笛卡儿积是 5 种基本操作,其他操作可以用基本操作定义和导出
- (**4**) 职工(职姓名年龄和部门(部号部门名称)存在引用关系,其中职工是参照关系,<mark>部门号</mark>是外码

第三章

- (1) SQL 语言具有数据定义、数据查询、数据操纵和数据控制的功能。
- (2) SQL 语句中用来消除重复的关键词是 DISTINCT
- (3) 若一个视图是从单个基本表导出的,并且只是去掉了基本表的某些行和某些列,但保留了主码,这类视图称为行列子集视图
- (4) 5L 语言的数据定义功能包括模式定义、表定义、视图定义和索引定义等。

第四章

- (1)数据库安全技术包括用户身份鉴别、自助存取控制和强制存取控制、视图、审计和数据加密等。
- (2) 在数据<mark>加密</mark>技术中,原始数据通过某种加密算法变换为不可直接识别的格式,称为<mark>密文</mark>
- (3) 数据库角色实际上是一组与数据库操作相关的各种权限
- (4) 在对用户授于列 INSERT 权限时,一定要包含对主码的 INSERT 权限,否则用户的插入会因为空值被拒绝。除了授权的列,其他列的值或者取<mark>空值</mark>或者为默认值

第五章

- (1) 在 CREATE TABLE 时,用户定义的完整性可以通过 NOT NULL、UNIQUE、CHECK 等子句实现。
- (2) 关系 R 的属性 A 参照引用关系 T 的属性 A, T 的某条元组对应的 A 属性值在 R 中出现,当要删除 T 的这条元组时,系统可以采用的策略包括<mark>拒绝执行、级联删除、设为空值</mark>
- (3) 定义数据库完整性一般是由 SQL 的 DDL 语句实现的。

第七章

- (1)数据库设计方法包括新奥尔良方法、基于 E-R 模型的方法、3NF 的设计方法、面向对象的设计和统一建模语言(UML)方法等。
- (2) 数据库设计的基包括需求分析、概念结构设计、逻辑结构设计、物理结构设计、数据库实施、数据库运行和维护等
- (3) 集成局部 E 一 R 图要分两个步骤,分别是合并和修改和重构
- (4)数据库常见的存取方法主要有索引、聚簇和 Hash 方法。

关系代数 笛卡尔积

面不好	时刻	系, 计	算:	1 18	.)			44	
1. PXS		TCB.	(OAC	5.AC>	7 CP	ه را		3	
1	9	B	C	<u>l</u>	<u> </u>	<u></u>	A	B	10
P	5	9	8	.C.A.	11.3	S	8	4	8
	1 4	4	9	-			12	2	3
T	2	2	3						j.
T	5	6	8						
EXS=	IA	B	To	IA	1 _B	lc	1		
£10.00	В	9	8	8	4	8			()
	6	9	8	2		13			
	1	4	9	8	4	8			
	1	4	9	2	2	3			
7 %	2	2	3	8	4	8			
A TA	2	2	3	2	2	3			
	6	Ь	8	8	4	8			
	6	Ь	8	2	2	3	0 6		18
		YA L	(01)						
TIGBLE	5	. 0-	71 2 1						

1 1 1 <u>1 1</u>	~+ K Z.	۸ -	.		- 10 6) N-	1 00	b. 2
					8=3B, C			
					8	The state of the s		
(-4)	R		200					
					6,8)3			
3.H	第二	TIP	A S.I	3, S.D.	(OR.A	815.00	7 LPX	EXC2
12	WS.		AD	15	PM.	S, 27	5	1A.S
!	2.B. <5.1	J	PI	S=>IH		le ve		
	1 .	1 1	100	! !	········	I A I	. T.	
2	A	B.	10		<u> </u>	A	RII	2
	16	8	3			8	4/8	<u> </u>
	8	4	9			> .	2 3	IM PIMIL
	2	2	9			dil.	31	STAL
	1	L	8			2	(A)	3 1
	0	0	0 1					
								<u> </u>
I) TI	2.A.S.	B.,.5	S.D (OP,AC	8.A.S.D.	7 (PXS))	
	I E	$\frac{\sim}{A l}$	S.B	SD				V 2-79 (3)
	6	F	4	8	7.		51/4	LADA A
	1	10	1	8			& S	
	2	-	4	10			4. 5	3)
			N S	11			Q.,, (4)	
		8					3 1 3	
12) 6	M	5					The	利用了证 是
·	P.BC	S.D.	P	TIC	I SA) C.R	ID	MATERIA.
	2 17		1.B	0	8	1.	8	A Brown
787	8	I.M.	4	9		T. A.		SASAL ASSA
	2	12	2	9	8	X14 (8	2. 岩地区 1相分
	0	1	-	a	2	>	121	ALTERNATION OF THE PARTY OF THE

8

8 4

5. 综合题

(1) 假设有一个数据库包含以下关系模式:

Teacher(Tno, Tname, Tage, Tsex) /* 主码下面加了下划线*/

Department (Dno, Dname, Tno)

Work (Tno, Dno, Year, Salary)

教师表 Teacher 由教师代码(Tno)、教师名字(Tname)、教师年龄(Tage)、教师性别(Tsex)组成。

系表 Department 由系代码(Dno)、系名(Dname)、系主任代码(Tno)组成。

工作表由教师代码(Tno)、系代码(Dno)、人职年份(Year)、工资(Salary)组成。

使用关系代数表示每个查询:

- ① 列出工资超过 5 000 的教师的不同年龄;
- ② 查找不在计算机系工作的教师代码;
- ③ 系主任 T1 管辖范围内的所有教师姓名;
- ④ 假设对关系 r,ρ_x(r)表示得到别名为 x 的一个相同的关系,系里的每个教师都有工资,列出比 D1 系的所有教师工资都高的教师代码。 https://blog.co.do.mai/alo_mike

5. 综合题

(1)

- ① Π Tare (Teacher M σ_{Salary 5000} (Work))
- ② Π_{Tno}(Teacher) Π_{Tno}(Work M Π_{Dno}(σ_{Dname *' 計算机系*}(Department)))
- ③ ∏_{Tooms} (Teacher ⋈ ∏_{Too} (Work ⋈ σ_{Too='T,1'} (Department)))
- ④ ∏_{Tno}(Work) (∏_{Work,Tno}(Work ⋈_{Work,Salary} ≤ Work2,Salary ∧ Work2,Dno='D1'ρ_{Work2}(Work)))

(2) 考虑第(1) 题描述的数据库,每个关系包含的元组如下:

Teacher

Tno	Tname	Tage	Tsex
TI	张丽	42	女
T2	李波	45	男
Т3	王艳	33	女
T4	赵明	29	男

Department

Dno	Dname	Tno
D1	计算机系	TI
D2	数学系	T2
D3	电子系	NULL

Work

Tno	Dno	Year	Salary	
TI	D1	1995	6 000	
T2	D2	1992	6 500	
Т3	D1	2005	4 500	

- ① 列出所有教师的姓名以及所在的系名;
- ② 列出所有系的名称以及包含的教师姓名。

(2)

① ∏ Tname, Dname (Teacher → (Work → Department))

Tname	Dname
张丽	计算机系
李波	数学系
王艳	计算机系
赵明	NULL

② ∏ Tname . Dname ((Teacher ⋈ Work) ⋈ Department)

Tname	Dname
张丽	计算机系
李波	数学系
王艳	计算机系
NULL	电子系//blook

son revalo_mike

(1) 求供应工程 J1 零件的供应商号 SNO;

答

关系代数

$$\pi_{_{SN0}}(\sigma_{_{JN0=J1}}(SPJ))$$

(2) 求供应工程 J1 零件 P1 的供应商号 SNO;

答

关系代数

$$\pi_{_{SN0}}$$
 ($\sigma_{_{JN0}=J1 \wedge PN0=P1}$ (SPJ))

(3) 求供应工程 I1 红色零件的供应商号 SNO:

答

关系代数

$$\boldsymbol{\pi}_{\text{SNO}}\left(\boldsymbol{\pi}_{\text{SNO, PNO}}\left(\boldsymbol{\sigma}_{\text{INO = JI}}\left(\text{SPJ}\right)\right) - \boldsymbol{\pi}_{\text{PNO}}\left(\boldsymbol{\sigma}_{\text{COLOR = }\text{$\frac{1}{2}$}\text{\mathbb{I}}}\left(\text{P}\right)\right)\right)$$

(4) 求没有使用天津供应商生产的红色零件的工程号 IN 0:

答

关系代数

$$\boldsymbol{\Pi}_{\text{JNO}}\left(\boldsymbol{J}\right) - \boldsymbol{\Pi}_{\text{JNO}}\left(\boldsymbol{\Pi}_{\text{SNO}}\left(\boldsymbol{O}_{\text{CHY}=\ \text{$\%$}}\right)\right) \qquad \boldsymbol{\Pi}_{\text{SNO},\ \text{PNO},\ \text{JNO}}\left(\text{SPJ}\right) \qquad \boldsymbol{\Pi}_{\text{PNO}}\left(\boldsymbol{O}_{\text{COLOR}=\ \text{$\%$}}\right)\right)$$

试述数据库系统的特点。

- (1) 数据结构化
- (2) 数据的共享性高, 冗余度低, 易扩充
- (3) 数据独立性高
- (4) 数据由 DB MS 统一管理和控制

数据库管理系统的主要功能有哪些?

- (1) 数据库定义功能;
- (2) 数据存取功能;
- (3) 数据库运行管理:
- (4) 数据库的建立和维护功能。

试述关系数据库的特点。

关系数据模型具有下列优点:

- (1) 关系模型与非关系模型不同,它是建立在严格的数学概念的基础上的。
- (2) 关系模型的概念单一,无论实体还是实体之间的联系都用关系表示,操作的对象和操作的结果都是关系,所以其数据结构简单、清晰,用户易懂易用。
- (3) 关系模型的存取路径对用户透明,从而具有更高的数据独立性、更好的安全保密性,也简化了程序员的工作和数据库开发建立的工作。

缺点是,由于存取路径对用户透明,查询效率往往不如非关系数据模型。因此为了提高性能,必须对用户的查询请求进行优化,增加了开发数据库管理系统的难度。

试述 SQL 语言的特点。

- (1) 综合统一。SQL 语言集数据定义语言 DDL、数据操纵语言 D ML、数据控制语言 DCL 的功能于一体。
- (2) 高度非过程化。用 SQL 语言进行数据操作,只要提出"做什么",而无需指明 "怎么做",因此无需了解存取路径,存取路径的选择以及 SQL 语句的操作过程由 系统自动完成。
- (3) 面向集合的操作方式。SQL 语言采用集合操作方式,不仅操作对象、查找结果可以是元组的集合,而且一次插入、删除、更新操作的对象也可以是元组的集合。
- (4) 以同一种语法结构提供两种使用方式。SQL 语言既是自含式语言,又是嵌入式语言。作为自含式语言,它能够独立地用于联机交互的使用方式;作为嵌入式语言,它能够嵌入到高级语言程序中,供程序员设计程序时使用。
- (5) 语言简捷,易学易用。

试述 SQL 的定义功能。

SQL 的数据定义功能包括定义表、定义视图和定义索引。

SQL 语言使用 CREATE TABLE 语句建立基本表, ALTER TABLE 语句修改 基本表定义, DROP TABLE 语句删除基本表;使用 CREATE IN DEX 语句建立 索引, DROP INDEX 语句删除索引;使用 CREATE VIEW 语句建立视图, DROP VIEW 语句删除视图。

S表		1		1	SPJ 表			
SNO	SNAME	STATUS	CITY	是要想出	SNO	PNO	JNO	QTY
SI	精益	20	天津	京北京大	SI	Pl	JI	200
S2	盛锡	10	北京	100	SI	PI	J3	100
S3	东方红	30	北京	NE STONE	SI	P1	J4	700
S4	丰泰盛	20	天津	1000	SI	P2	J2	100
S5	为民	30	上海	3.00	S2	P3	JI	400
P表	MSSAXE	WE AND AND	William S	CH See	S2	P3	J2	200
PNO	PNAME	COLOR	WEIGHT	\$ 7 E5-W	S2	P3	J4	500
Pl	螺母	紅	12	(Mc) (3)	S2	P3	J5	400
P2	螺栓	绿	17		S2	P5	Л	400
P3	螺丝刀	蓝	14	137/4	S2	P5	J2	100
P4	螺丝刀	紅	14		S3	PI	J1	200
P5	凸轮	蓝	40		S3	P3	Л	200
P6	齿轮	紅	30		S4	P5	JI	100
J表	BL - L		188 40	100 A-100	S4	P6	J3	300
JNO	JNAME	CITY			S4	P6	J4	200
JI .	三建	北京			S5	P2	J4	100
J2	一代	长春	10000		S5	P3	Л	200
J3	弹簧厂	天津	2000		S5	P6	J2	200
J4	造船厂	天津	TS BEA		S5	P6	J4	500
J5	机车厂	唐山	-300128 X		851 87.1	DESCRIPTION	NO. S. I	17 3
J6	无线电厂	常州			20TTEN			
J7	半导体厂	南京				per//oleg	(e) a self-self-self-	

设有一个

SPJ 数据库,包括S、P、及SP4个关系模式

S (SNO, SNAME, STATUS, CITY):

P (PNO, PNAME, COLOR, WEIGHT)

J (NOJNAME, CITY)

SPJ(SNO, PNO, .QTY)

供应商表供应代码(SNO)、供应商姓名(SNAME)、供应商状态(STATUS) 供应商所在城市(CTY)组成

零件表 P 由零件代码(PNO)、零件名(PNAME)颜色(COLOR)、重量(WEIGHT) 组成

工程项目表 J 由工程项目代码(JNO)、工程项(JNAME)、工程项目所在城市(CTY)组成

供应情况表 SPJ 由供应商代码(SNO)件代码(PNO)、工程项代码(JNO)、供应数量(QTY)组成,表示某供应商供应某种零件给某工程项目的数量为 QTY 今有若干数据如下:

- (1) 找出所有供应商的姓名和所在城市。 SELECT SNAME, CITY FROM S;
- (2) 找出所有零件的名称、颜色、重量。

```
SELECT PNAME, COLOR, WEIGHT FROM P:
```

(3) 找出使用供应商 S1 所供应零件的工程号码。

SELECT JNO

FROM SPJ

WHERE SNO = S1;

(4)找出工程项目 J2 使用的各种零件的名称及其数量。

SELECT P.PNAM E, SPJ.QTY

FROM P, SPJ

WHERE P.PNO = SPJ.PNO

AND SPJ.JNO = J2;

(5) 找出上海厂商供应的所有零件号码。

SELECT DISTINCT PNO

FROM SPJ

WHERE SNO IN

(SELECT SNO

FRO M S

WHERE CITY = 上海);

(6) 找出使用上海产的零件的工程名称。

SELECT JNAM E

FROM J, SPJ, S

WHERE J. JNO = SPJ. JNO

AND SPJ. SNO = S.SNO

AND S.CITY = 上海;

或

SELECT JNAM E

FROM J

WHERE JNO IN

(SELECT JNO

FROM SPJ, S

WHERE SPJ. SNO = S.SNO

AND S.CITY = 上海);

(7) 找出没有使用天津产的零件的工程号码。

SELECT JNO

FROM J

WHERE NOT EXISTS

(SELECT *

FROM SPJ

WHERE SPJ.JNO = J.JNO

```
AND SNO IN
(SELECT SNO
FROM S
WHERE CITY = 天津 ));
或
SELECT JNO
FROM J
WHERE NOT EXISTS
(SELECT *
FROM SPJ, S
WHERE SPJ.JNO = J.JNO
AND SPJ.SNO = S.SNO
AND S.CITY = 天津);
(8) 把全部红色零件的颜色改成蓝色。
UPDATE P
SET COLOR = 蓝
WHERE COLOR = 红;
(9) 由 S5 供给 J4 的零件 P6 改为由 S3 供应,请做必要的修改。
UPDATE SPJ
SET SNO = S3
WHERE SNO = S5
AND JNO = J4
AND PNO = P6;
(10) 从供应商关系中删除 S2 的记录,并从供应情况关系中删除相应的记
录。
DELETE
FROM SPJ
WHERE SNO = S2;
DELETE
FROM S
WHERE SNO = S2;
注意删除顺序,应该先从 SPJ 表中删除供应商 S2 所供应零件的记录,然后
从 S 表中删除 S2。
(11) 请将 (S2,J6,P4,200) 插入供应情况关系。
INSERT INTO SPJ(SNO, JNO, PNO, QTY) /* INTO 子句中指明列名 */
                         /* 插入的属性值与指明列要对应 */
VALUES (S2,J6,P4,200);
INSERT INTO SPJ x
                          /* INTO 子句中没有指明列名 */
                     /* 插入的记录在每个属性列上有值 */
VALUES (S2,P4,J6,200);
```

- 1. 考虑关系模式 R(A,B,C,D),写出满足下列函数依赖时 R 的码,并给出 R 属于哪种范式(1NF、2NF、3NF 或 BCNF)。
 - ① $B \rightarrow D$, $AB \rightarrow C$;
 - ② $A \rightarrow B$, $A \rightarrow C$, $D \rightarrow A$;
 - 3 BCD $\rightarrow A$, $A \rightarrow C$;
 - $\textcircled{4} B \rightarrow C, B \rightarrow D, CD \rightarrow A;$
 - ⑤ $ABD \rightarrow C$ 。
- 2. 考虑属性集 ABCDEF 和函数依赖集 $|AB\rightarrow C, B\rightarrow D, BC\rightarrow E, AC\rightarrow D, E\rightarrow F, CD\rightarrow A|$,对下面每个属性集,回答下面两个问题: a. 写出在属性集上的函数依赖集,说明是否是最小覆盖; b. 指出属于哪种范式(1NF、2NF、3NF或 BCNF)。
 - ① ABC
 - ② ABCD
 - (3) BCDE
 - 4 CDEF
 - (5) CDF
- 3. 对于属性集 ABCDEF 和函数依赖集 $\{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, BE \rightarrow F, EF \rightarrow A\}$, 说明下列的分解 a. 是否是无损连接分解; b. 是否保持函数依赖。
 - 1 | ABCD, EFA |
 - 2 | ABC, BD, BEF |

https://elfoc.oseln.net/ap_mike

1.

- ① R的码为 AB; R是 INF。
- ② R的码为 D:R 是 2NF。
- ③ R的码为 BCD、ABD; R是 3NF。
- ④ R 的码为 B:R 是 2NF。
- ⑤ R的码为 ABD; R是 BCNF。

2.

- ① ABC:函数依赖集为 $AB \rightarrow C$,是最小覆盖;是 BCNF。解析:可以求得码=AB,决定因素 AB 是码,所以是 BCNF。
- ② ABCD: 函数依赖集为 $AB \rightarrow C$, $B \rightarrow D$, $AC \rightarrow D$, $CD \rightarrow A$, 是最小覆盖; 是 1NF。解析: 码 = AB, 因为 $B \rightarrow D$, 存在 非主属性 D 对码 AB 的部分函数依赖。
- ③ BCDE:函数依赖集为 B→D,BC→E,是最小覆盖;是 1NF。

解析:码=BC,因为 $B \rightarrow D$,存在 非主属性 D 对码 BC 的部分函数依赖。

④ CDEF:函数依赖集为 E→F,是最小覆盖;是 1NF。

解析:码=CDE,因为 $E \rightarrow F$,存在 非主属性 F 对码 CDE 的部分函数依赖。

⑤ CDF:没有函数依赖,是最小覆盖;是 BCNF。

解析:码=CDF,没有函数依赖,是BCNF。

hittores//ellerer esteler etel

3.

① $U_1 = ABCD$, $U_2 = EFA$, 是无损连接分解, 没有保持函数依赖。

解析:U = ABCDEF,根据函数依赖集 $\{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, BE \rightarrow F, EF \rightarrow A\}$,可以求得码 = $A \rightarrow BE$,所以有 $A \rightarrow EF$ 成立。

因为 $U_1 \cap U_2 = A$, $U_2 - U_1 = EF$, 即 $U_1 \cap U_2 \rightarrow U_2 - U_1$, 所以分解 $U_1 = ABCD$ 、 $U_2 = EFA$ 是无损连接分解。

分解 $U_1 = ABCD$ 上面的函数依赖集为 $|A \rightarrow BC, B \rightarrow D|$, 分解 $U_2 = EFA$ 上面的函数依赖集为 $|EF \rightarrow A|$, 丢失了 $CD \rightarrow E$ 、 $BE \rightarrow F$,因此没有保持函数依赖。

②解析:

对于分解
$$U_1 = ABC$$
 $F_1 = \{A \rightarrow BC\}$
$$U_2 = BD \quad F_2 = \{B \rightarrow D\}$$

$$U_3 = BEF, F_3 = \{BE \rightarrow F\}$$

构造初始表:

ritios://bleatesch.met/ac_mike

A	В	С	D	E	F
a1	a2	a3	b14	b15	b16
b21	a2	<i>b</i> 23	a4	b25	b26
b31	a2	<i>b</i> 33	634	a5	a6

第一遍扫描由 B→D 可将 b14、b34 改为 a4:

A	В	С	D	E	F
al	a2	a3	a4	b15	b16
b21	a2	b23	a4	b25	b26
b31	a2	<i>b</i> 33	a4	a5	a6

第二遍扫描表无变化,没有出现一行 a1、a2、a3、a4、a5、a6,因此不是无损连接分解。分解也没有保持函数依赖,因为丢失了 $CD\rightarrow E$, $EF\rightarrow A$ 。

4.

- ①不成立
- ② 不成立
- ③ 不确定
- ④ 不确定
- ⑤ 不成立
- ⑥不成立

解析:针对关系的某个值,可以判断某个函数依赖和多值依赖不成立,不能确定它们成立。

4. 关系 R 有属性 ABCD,包括如下记录:

A	В	С	D
2	4	3	3
2	3	5	3
1	4	3	2
3	1	2	2

指出下列函数依赖或多值依赖在 R 上是否成立:

- ① $A \rightarrow B$
- ② $A \rightarrow BC$
- $\textcircled{3} A \rightarrow \rightarrow BC$
- $\textcircled{4} B \rightarrow C$
- 5 $BC \rightarrow \rightarrow A$
- $\textcircled{6} C \rightarrow \rightarrow D$
- 5. 关系模式 *R*(员工编号,日期,零件数,部门名称,部门经理),表示某个工厂里每个员工的日生产零件数以及员工所在的部门和经理信息。

假设:每个员工每天只有一个日生产零件数,每个员工只在一个部门工作,每个部门只有一个经理,那么:

- ① 写出模式 R 的基本函数依赖和码;
- ② R是否是 2NF,如果不是,把 R分解成 2NF;
- ③ 进一步将 R 分解成 3NF。

nitios///pleaneseln.net/aip_mike

5. 答:

① 根据给出的语义, R(员工编号, 日期, 零件数, 部门名称, 部门经理)的函数依赖有: (员工编号, 日期)→零件数, 员工编号→部门名称, 部门名称→部门经理。

码:(员工编号,日期)。

② R 不是 2NF,因为(员工编号,日期)是码,存在非主属性-部门名称对码的部分依赖(员工编号→部门名称)。

分解为 2NF: R1(员工编号,日期,零件数)

R2(员工编号,部门名称,部门经理)

③ 分解为 3NF:

R1(员工编号,日期,零件数)

R2(员工编号,部门名称)

R3(部门名称,部门经理)

https://blog.csdn.net/ao_mike

- 6. 对于关系模式 R(会议,主持人,时间,会议室,会员,职务),假设一个会议有唯一的一个主持人;在一个时间地点只能召开一个会议;在给定时间一个主持人只能在一个会议室;在给定时间一个会员只能在一个会议室;一个会员在一个会议中只能有一个职务。按照语义可以得到 R 的函数依赖 F = |会议→主持人,(时间,会议室)→会议,(时间,主持人)→会议室,(时间,会员)→会议室,(会议,会员)→职务
 - ① 写出 R 的所有码:
 - ② 说明给出的函数依赖集 F 是否极小函数依赖集;
 - ③ 将 R 分解成具有无损连接和保持函数依赖的 3NF,判断是否有违反 BCNF 的关系。
- 7. 对于下列各个关系模式和依赖,回答是否是 4NF,若不是则将关系分解为满足 4NF 的关系:
 - ① R(A,B,C),存在如下依赖: $A \rightarrow \rightarrow B$ 和 $A \rightarrow C$;
 - ② R(A,B,C,D),存在如下依赖: $A \rightarrow C$ 和 $C \rightarrow \rightarrow BD$ 。

https://blog.esdn.net/ao_mike

6.

① R(U,F), U=(会议, 主持人, 时间, 会议室, 会员, 职务)

R的码为(时间,会员),因为(时间,会员);=U。

② 函数依赖集 F 是极小函数依赖集。理由如下:

首先,所有函数依赖的右边都已经是单个属性;

其次,没有一个函数依赖在删除之后可以被剩下的函数依赖集逻辑蕴含;

最后,对于右部是属性组的函数依赖,(时间,会议室)→会议,(时间,主持人)→会议室,(时间,会员)→会议室,(会议,会员)→职务,考察它们的子集:时间→会议,会议室→会议,时间→会议室,主持人→会议室,会员→会议室,会议→职务,会员→职务,都无法由函数依赖集导出。所以,函数依赖集 F 是极小函数依赖集。

③ 根据合成法(《概论》算法 6.3)可以将 R 分解为:

 U_1 (会议,主持人), U_2 (时间,会议室,会议), U_3 (时间,主持人,会议室),

 U_4 (时间,会员,会议室), U_5 (会议,会员,职务),

其中 U_4 (时间,会员,会议室)包含码(时间,会员),因此不需要添加新的关系,此分解是具有无损连接和保持函数依赖的 3NF。

分解后的每个关系具有一个函数依赖,每个决定因素是码,因此也是 BCNF。

7.

- ① R 的码是 AB, 因为 $A \rightarrow \rightarrow B$, 而 A 不是码, 所以 R 不是 4NF; 分解为 AB, AC, 满足 4NF。
- ② R的码是 ABCD, 因此 R 不是 4NF;将 R 分解为 AC、CBD, 满足 4NF。 costinue viac_mikes

4. 综合题

- (1) 某商场可以为顾客办理会员卡,每个顾客只能办理一张会员卡,顾客信息包括顾客姓名、地址、电话、身份证号,会员卡信息包括号码、等级、积分,给出该系统的 E-R 图。
 - (2) 按照下列说明修改题(1)中的要求,分别给出相应的 E-R 图:
- ① 顾客具有多个地址和多个电话号码,地址包括省、市、区、街道,电话号码包括区号、号码:
- ② 顾客具有多个地址,每个地址具有多个电话号码,地址包括省、市、区、街道,电话号码包括区号、号码。
- (3) 某数据库记录乐队、成员和歌迷的信息,乐队包括名称、多个成员、一个队长,队长也是乐队的成员,成员包括名字、性别,歌迷包括名字、性别、喜欢的乐队、喜欢的成员。
 - ① 画出基本的 E-R 图:
- ② 修改 E-R 图,使之能够表示成员在乐队的工作记录,包括进入乐队时间以及离开乐队时间。
 - (4) 考虑某个 IT 公司的数据库信息:
 - ① 部门具有部门编号、部门名称、办公地点等属性;
 - ② 部门员工具有员工编号、姓名、级别等属性,员工只在一个部门工作;
 - ③ 每个部门有唯一一个部门员工作为部门经理;
 - ④ 实习生具有实习编号、姓名、年龄等属性,只在一个部门实习:
 - ⑤ 项目具有项目编号、项目名称、开始日期、结束日期等属性;
 - ⑥ 每个项目由一名员工负责,由多名员工、实习生参与;
 - ⑦ 一名员工只负责一个项目,可以参与多个项目,在每个项目具有工作时间比:
 - ⑧ 每个实习生只参与一个项目。

画出 E-R 图,并将 E-R 图转换为关系模型(包括关系名、属性名、码和完整性约束条件)。

4. 综合题 (1) 姓名 地址 号码 等级 电话 身份证号 和有 会员卡

关系模型为:

的编号;

部门(编号,名称,办公地点,经理编号),部门的经理编号参照员工的编号; 员工(编号,姓名,级别,部门编号),员工的部门编号参照部门的编号; 实习生(编号,姓名,年龄,部门编号),实习生的部门编号参照部门的编号; 项目(编号,名称,开始日期,结束日期,负责人编号),项目的负责人编号参照员工 mitps://biog.pesdp.net/ao_m

实习参与(<u>实习生编号</u>,项目编号),实习生编号、项目编号分别参照实习生的编号、项目的编号;

员工参与(<u>员工编号</u>,项目编号,时间比),员工编号、项目编号分别参照员工的编号、项目的编号,且一个员工的所有时间比相加不超过100%。