QUESTION 7: Adding a Centrifugal pump as a load to the EE and SE Motor:

7.a) Operating speed

Speed when operating pump for EE motor: 1416.75 rpm Speed when operating pump for SE motor: 1405.50 rpm

7.b) Current drawn

Current drawn when operating pump for EE motor: 6.3926 A Current drawn when operating pump for SE motor: 6.6546 A

7.c) Efficiency

Efficiency when operating pump for EE motor: 89.1560 % Efficiency when operating pump for SE motor: 86.2766 %

7.d) Output power

Output power when operating pump for EE motor: 2925.0831 W Output power when operating pump for SE motor: 3019.3662 W

7.e) Input power

Input Power drawn when operating pump for EE motor: 3280.8605 W Input Power drawn when operating pump for SE motor: 3499.6335 W

7.f) Comparing input power

The difference in input power is: 218.7729 W

The EE motor has a lower slip value when running the load compared to the SE motor(reason \checkmark lower slip cause higher efficiency). The higher slip means the slip dependent resistance \checkmark is larger hence I2 for EE is lower than that in SE. I2 affects I1 hence a drop in I2 \checkmark results in a corresponding drop in I1. The input power is therefore lower in EE compared \checkmark to SE.This is as observed in simulation.