

#### Machine Learning

Lecture 5: Optimization

Prof. Dr. Stephan Günnemann

Data Mining and Analytics Technical University of Munich

19.11.2018

## Reading material

#### Reading material

- Boyd Convex Optimization: chapters 2.1 2.3, 3.1, 3.2, 4.1 4.4, 9
  - free pdf version online
- Sebastian Ruder An overview of gradient descent optimization algorithms
  - https://arxiv.org/abs/1609.04747

#### Motivation

- Many data mining/machine learning tasks are optimization problems
- Examples we've already seen:
  - Linear Regression  $w^* = \underset{W}{\operatorname{argmin}} \frac{1}{2} (Xw y)^T (Xw y)$
  - Logistic Regression  $w^* = \underset{w}{\operatorname{argmin}} \ln p(y|w, X)$
- Other examples:
  - Support Vector Machines: find hyperplane that separates the classes with a maximum margin
  - k-means: find clusters and centroids such that the squared distances is minimized
  - Matrix Factorization: find matrices that minimize the reconstruction error
  - Neural networks: find weights such that the loss is minimized
  - And many more...

#### General task

- Let  $\theta$  denote the variables/parameters of our problem we want to learn
  - e.g.  $\theta = w$  in Logistic Regression
- Let  $\mathcal{X}$  denote the domain of  $\boldsymbol{\theta}$ ; the set of valid instantiations
  - constraints on the parameters!
  - e.g.  $\mathcal{X}$  = set of (positive) real numbers
- Let  $f(\theta)$  denote the objective function
  - e.g. f is the negative log likelihood
- Goal: Find solution  $m{ heta}^*$  minimizing function  $f\colon m{ heta}^* = \operatorname{argmin}_{m{ heta} \in \mathcal{X}} f(m{ heta})$ 
  - find a global minimum of the function f!
  - similarly, for some problems we are interested in finding the maximum

# Introductory example

Goal: Find minimum of function

$$f(\theta) = 0.6 * \theta^4 - 5 * \theta^3 + 13 * \theta^2 - 12 * \theta + 5$$

- Unconstrained optimization + differentiable function
- Necessary condition for minima
  - Gradient = 0
  - Sufficient?



General challenge: multiple local minima possible

#### Convexity: Sets

• X is a convex set iff for all  $x, y \in X$  it follows that  $\lambda x + (1 - \lambda)y \in X$  for  $\lambda \in [0,1]$ 





#### Convexity: Functions

• f(x) is a convex function on a convex set X iff for all  $x, y \in X$ :  $\lambda f(x) + (1 - \lambda)f(y) \ge f(\lambda x + (1 - \lambda)y)$  for  $\lambda \in [0,1]$ 





# Convexity and *minimization* problems



Region above a convex function is convex



$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
  
hence  $\lambda f(x) + (1 - \lambda)f(y) \in X$  for  $x, y \in X$ 

- Convex functions don't have local minima
  - Proof by contradiction linear interpolation breaks local minimum condition



- Each local minimum is a global minimum
  - zero gradient implies (local) minimum for convex functions
  - if  $f_0$  is a convex function and  $\nabla f_0(\boldsymbol{\theta}^*) = 0$  then  $\boldsymbol{\theta}^*$  is a global minimum
  - minimization becomes "relatively easy"

**Data Mining** and Analytics

# First order convexity conditions (I)

Convexity imposes a rate of rise on the function

• 
$$f((1-t)x + ty) \le (1-t) f(x) + t f(y)$$

• 
$$f(y) - f(x) \ge \frac{f((1-t)x+ty)-f(x)}{t}$$

• Difference between f(y) and f(x) is bounded by function values between x and y



# First order convexity conditions (II)

• 
$$f(\mathbf{y}) - f(\mathbf{x}) \ge \frac{f((1-t)\mathbf{x} + t\mathbf{y}) - f(\mathbf{x})}{t}$$

- Let  $t \to 0$  and apply the definition of the derivative
- $f(y) f(x) \ge (y x)^T \nabla f(x)$

Theorem:

Suppose  $f: \mathcal{X} \to \mathbb{R}$  is a differentiable function and  $\mathcal{X}$  is convex. Then f is convex iff for  $x, y \in \mathcal{X}$ 

$$f(y) \ge f(x) + (y - x)^T \nabla f(x)$$

Proof. See Boyd p.70



## Convexity: Vertices & Convex Hull



Given a (closed) convex set X.  $x \in X$  is a vertex of the convex set if it cannot be extrapolated within the convex set:



We denote with Ve(X) the set of all vertices of X

- Convex hull: Given a set of points  $X \subseteq \mathbb{R}^d$ , the convex hull is defined as  $Conv(X) := \{ \sum_{i=1}^{n} \alpha_i \cdot \mathbf{x}_i \mid \mathbf{x}_i \in X, n \in \mathbb{N}, \sum \alpha_i = 1, \alpha_i \geq 0 \}$
- Convex hull of a set is a convex set

# Example: Vertices & Convex Hull

- Red = set X
- Red + Blue = convex hull of X
- Here: set X equals to the vertices of the convex hull
- In general:
  - Ve(Conv(X)) ⊆ X



# Convexity and *maximization* problems (I)

MAX f(G)

 Maximum over a convex function on a convex set is obtained on a vertex

- Proof:
  - Assume that maximum inside line segment
  - Then function cannot be convex
  - Hence it must be on vertex

We only need to test the vertices to find the maximum

In some cases this set is finite (see figure)



# Convexity and maximization problems (II)

Supremum on convex hull

$$\sup_{x \in X} f(x) = \sup_{x \in Conv(X)} f(x)$$

Proof: by contradiction



- Instead of working with a "complex" set X,
   operate with the easier, i.e. convex, set Conv(X)
- One might also simply focus on Ve(Conv(X))

# Verifying convexity (I)



- Convexity makes optimization "easier"
- How to verify whether a function is convex?
- For example:  $e^{x_1+2*x_2} + x_1 \log(x_2)$  convex on  $[1,\infty) \times [1,\infty)$ ?

- 1. Prove whether the definition of convexity holds (See slide 7)
- 2. Exploit special results
  - First order convexity (See slide 10)
  - Example: A twice differentiable function of one variable is convex on an interval if and only if its second-derivative is non-negative on this interval
  - More general: a twice differentiable function of several variables is convex (on a convex set) if and only if its Hessian matrix is positive semidefinite (on the set)

# Verifying convexity (II)

- 3. Show that the function can be obtained from simple convex functions by operations that preserve convexity
- a) Start with simple convex functions, e.g.
  - $f(x) = \text{const and } f(x) = x^T \cdot b$  (these are also concave functions)
  - $f(x) = e^x$
- b) Apply "construction rules" (next slide)

- Let  $f_1: \mathbb{R}^d \to \mathbb{R}$  and  $f_2: \mathbb{R}^d \to \mathbb{R}$  be convex functions, and  $g: \mathbb{R}^d \to \mathbb{R}$  be a concave function, then
  - $h(x) = f_1(x) + f_2(x)$  is convex
  - $h(x) = \max\{f_1(x), f_2(x)\}\$ is convex
  - $-h(x) = c \cdot f_1(x)$  is convex if  $c \ge 0$
  - $-h(x) = c \cdot g(x)$  is convex if  $c \le 0$
  - $-h(x) = f_1(Ax + b)$  is convex (A matrix, b vector)
  - $-h(x)=m(f_1(x))$  is convex if  $m:\mathbb{R}\to\mathbb{R}$  is convex and nondecreasing

• Example:  $e^{x_1+2*x_2}+x_1-\log(x_2)$  is convex on, e.g.,  $[1,\infty)\times[1,\infty)$ 



## Verifying convexity for sets

#### Prove definition

often easier for sets than for functions

#### Apply intersection rule

- Let A and B be convex sets, then  $A \cap B$  is a convex set



## An easy problem

0 = ...

Convex objective function f

- Objective function differentiable on its whole domain
  - i.e. we are able to compute gradient f' at every point
- We can solve  $f'(\boldsymbol{\theta}) = 0$  for  $\boldsymbol{\theta}$  analytically
  - i.e. solution for  $\theta$  where gradient = 0 is known
- Unconstrained minimization
  - i.e. above computed solution for  $\boldsymbol{\theta}$  is valid
- We are done!





#### Outlook





- No analytical solution for  $f'(\theta) = 0$ 
  - e.g. Logistic Regression
  - Solution: try numerical approaches, e.g. gradient descent
- Constraints on  $\theta$ 
  - e.g.  $f'(\theta) = 0$  only holds for points outside the domain
  - Solution: constrained optimization
- f not differentiable on whole domain
  - Potential solution: subgradients; or is it a discrete optimization problem?
- f not convex
  - Potential solution: convex relaxations; convex in some variables?

#### One-dimensional problems

- Key idea
  - For differentiable f search for  $\theta$  with  $\nabla f(\theta) = 0$
  - Interval bisection (derivative is monotonic)
- Can be extended to nondifferentiable problems
  - exploit convexity in upper bound and keep 5 points



```
Require: a, b, Precision \epsilon
Set A = a, B = b
repeat

if f'\left(\frac{A+B}{2}\right) > 0 then
B = \frac{A+B}{2}
else
A = \frac{A+B}{2}
end if
until (B-A)\min(|f'(A)|, |f'(B)|) \le \epsilon
Output: x = \frac{A+B}{2}
```

#### **Gradient Descent**

- Key idea
  - Gradient points into steepest ascent direction
  - Locally, the gradient is a good approximation of the objective function



- GD with Line Search
  - Get descent direction, then unconstrained line search

Turn a multidimensional problem into a one-dimensional problem that we already know how to solve

**given** a starting point  $\theta \in \text{dom}(f)$ . repeat

- 1.  $\Delta \theta \coloneqq -\nabla f(\theta)$
- 2. Line search.  $t = \arg\min_{t>0} f(\theta + t \cdot \Delta \theta)$
- 3. Update.  $\theta := \theta + t\Delta\theta$  until stopping criterion is satisfied.



## Gradient Descent convergence

- Let  $p^*$  be the optimal value,  $\theta^*$  be the minimizer the point where the minimum is obtained, and  $\theta^{(0)}$  be the starting point
- The residual error  $\rho$ , for the k-th iteration is (for strongly convex f):

$$ho = f(m{ heta}^{(k)}) - p^* \le c^k \left( f(m{ heta}^{(0)}) - p^* \right), \quad c < 1$$
  $f(m{ heta}^{(k)})$  converges to  $p^*$  as  $k \to \infty$ 



- We must have  $f(\boldsymbol{\theta}^{(k)}) p^* \le \epsilon$  after at most  $\frac{\log((f(\boldsymbol{\theta}^{(0)}) p^*)/\epsilon)}{\log(1/c)}$  iterations
- Linear convergence for strongly convex objective

- 
$$k \sim \log(\rho^{-1})$$
 //  $k = number of iterations,  $\rho$$ 

- Attention: linear convergence = exponentially fast
  - i.e. linear when plotting on a log scale old statistics terminology

## Line search types

- Exact line search:  $t = \arg\min_{t>0} f(x + t \cdot \Delta x)$
- Backtracking line search: (with parameters  $\alpha \in (0, 1/2), \beta \in (0, 1)$ )
  - starting at t = 1, repeat  $t := \beta t$  until

$$f(x + t \cdot \Delta x) < f(x) + t \cdot \alpha \cdot \nabla f(x)^T \Delta x$$

– graphical interpretation: backtrack until  $t \leq t_0$ 



# Backtracking vs. exact line search





backtracking line search

exact line search

from Boyd & Vandenberghe



# Distributed/Parallel implementation

Often problems are of the form

$$- f(\boldsymbol{\theta}) = \sum_{i} L_{i}(\boldsymbol{\theta}) + g(\boldsymbol{\theta})$$

- where i iterates over, e.g., each data instance
- Example OLS regression: // with regularization

$$-L_i(\mathbf{w}) = (\mathbf{x}_i^T \mathbf{w} - \mathbf{y}_i)^2 \qquad g(\mathbf{w}) = \lambda \cdot ||\mathbf{w}||_2^2$$

- Gradient can simply be decomposed based on the sum rule
- Easy to parallelize/distribute

# Basic steps (I)

**given** a starting point  $\theta \in \text{Dom}(f)$ .

easy parallel computation

#### repeat

- 1.  $\Delta \theta := -\nabla f(\theta)$
- 2. Line search.  $t = argmin_{t>0} f(\theta + t \cdot \Delta \theta)$
- 3. Update.  $\theta := \theta + t\Delta\theta$  until stopping criterion is satisfied.

- Distribute data over several machines
- Compute partial gradients (on each machine in parallel)
- Aggregate the partial gradients to the final one
- Communicate the final gradient back to all machines

# Basic Steps (II)

**given** a starting point  $\theta \in \text{Dom}(f)$ . **repeat** 

update value in search direction and feed back (might be done multiple times: expensive!)

- 1.  $\Delta \theta \coloneqq -\nabla f(\theta)$
- 2. Choose *t* via exact or backtracking line search.
- 3. Update.  $\theta := \theta + t\Delta\theta$  until stopping criterion is satisfied.

communicate final step size to each machine

- Line search is expensive
  - for each tested step size: scan through all datapoints

28

# Scalability analysis

- + Linear time in number of instances
- + Linear memory consumption in problem size (not data)
- + Logarithmic time in accuracy
- + 'Perfect' scalability

Multiple passes through dataset for each iteration

## A faster algorithm

Avoid the line search; simply pick update

$$\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t - \tau \cdot \boldsymbol{\nabla} f(\boldsymbol{\theta}_t)$$

- $-\tau$  is often called the learning rate
- Only single pass through data per iteration
- Logarithmic iteration bound (as before)
  - if learning rate is chosen "correctly"
- How to pick the learning rate?
  - too small: slow convergence
  - too high: algorithm might oscillate, no convergence
- Interactive tutorial on optimization
  - http://www.benfrederickson.com/numerical-optimization/

Data Mining and Analytics

#### The value of au

- A too small value for  $\tau$  has two drawbacks
  - We find the minimum more slowly
  - We end up in local minima or saddle/flat points



Data Mining and Analytics

#### The value of au

- A too large value for  $\tau$  has one drawback
  - You may never find a minimum; oscillations usually occur
- We only need 1 steps to overshoot



#### Learning rate adaptation

- Simple solution: let the learning rate be a decreasing function  $\tau_t$  of the iteration number t
  - so called learning rate schedule
  - first iterations cause large changes in the parameters; later do fine-tuning
  - convergence easily guaranteed if  $\lim_{t o \infty} au_t = 0$
  - example:  $\tau_{t+1}$  ←  $\alpha \cdot \tau_t$  for  $0 < \alpha < 1$

## Learning rate adaptation

Other solutions: Incorporate "history" of previous gradients

#### • Momentum:

- $\ \, \boldsymbol{m}_t \leftarrow \tau \cdot \boldsymbol{\nabla} f(\boldsymbol{\theta}_t) + \gamma \cdot \boldsymbol{m}_{t-1} \qquad \qquad // \text{ often } \gamma = 0.5$
- $\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t \boldsymbol{m}_t$
- As long as gradients point to the same direction, the search accelerates

#### • AdaGrad:

- different learning rate per parameter
- learning rate depends inversely on accumulated "strength" of all previously computed gradients
- large parameter updates ("large" gradients) lead to small learning rates

## Adaptive moment estimation (Adam)

- $\mathbf{m}_t = \beta_1 \mathbf{m}_{t-1} + (1 \beta_1) \nabla f(\boldsymbol{\theta}_t)$ 
  - estimate of the first moment (mean) of the gradient
  - Exponentially decaying average of past gradients  $m_t$  (similar to momentum)
- $\mathbf{v}_t = \beta_2 \mathbf{v}_{t-1} + (1 \beta_2) (\nabla f(\boldsymbol{\theta}_t))^2$ 
  - estimate of the second moment (uncentered variance) of the gradient
  - Exponentially decaying average of past squared gradients  $v_t$
- To avoid bias towards zero (due to 0's initialization) use bias-corrected version instead:

$$-\widehat{\mathbf{m}}_t = \frac{\mathbf{m}_t}{1 - \beta_1^t} \qquad \widehat{\mathbf{v}}_t = \frac{\mathbf{v}_t}{1 - \beta_2^t}$$

• Finally, the Adam update rule for parameters  $\theta$ :

$$- \boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \frac{\tau}{\sqrt{\widehat{\mathbf{v}}_t} + \epsilon} \; \widehat{\mathbf{m}}_t$$

• Default values:  $\beta_1 = 0.9$ ,  $\beta_2 = 0.999$ ,  $\epsilon = 10^{-8}$ 

## Visualizing gradient descent variants

- AdaGrad and variants
  - often have faster convergence
  - might help to escape saddlepoints

http://sebastianruder.com/
optimizing-gradient-descent/



#### Discussion

- Gradient descent and similar techniques are called first-order optimization techniques
  - they only exploit information of the gradients (i.e. first order derivative)
- Higher-order techniques use higher-order derivatives
  - e.g. second-order = Hessian matrix
  - Example: Newton Method

### Newton method



- Convex objective function f
- Nonnegative second derivative:  $\nabla^2 f(\theta) \ge 0$  // Hessian matrix
- Taylor expansion of f at point  $\theta_t$

Minimize approximation: leads to

$$\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t - [\boldsymbol{\nabla}^2 f(\boldsymbol{\theta}_t)]^{-1} \boldsymbol{\nabla} f(\boldsymbol{\theta}_t) \qquad \boldsymbol{\tau} \quad \boldsymbol{\theta}_{\star} \quad \boldsymbol{+} \quad \boldsymbol{\delta}$$

Repeat until convergence







# Rescaling of space

Newton method rescales the space



from Boyd & Vandenberghe



# Rescaling of space

Newton method rescales the space



### Parallel Newton method

- + Good rate of convergence
- + Few passes through data needed
- + Parallel aggregation of gradient and Hessian
- + Gradient requires O(d) data
- Hessian requires  $O(d^2)$  data
- Update step is  $O(d^3)$  & nontrivial to parallelize

41

Use it only for low dimensional problems!

## Large scale optimization



- Higher-order techniques have nice properties (e.g. convergence) but they are prohibitively expensive for high dimensional problems
- For large scale data / high dimensional problems use first-order techniques
  - i.e. variants of gradient descent

- But for real-world large scale data even first-order methods are too costly
- Solution: Stochastic optimization!

### Motivation: Stochastic Gradient Descent

- Goal: minimize  $f(\theta) = \sum_{i=1}^{n} L_i(\theta)$  + potential constraints
- For very large data: even a single pass through the data is very costly
- Lots of time required to even compute the very first gradient

Is it possible to update the parameters more frequently/faster?

### Stochastic Gradient Descent



Consider the task as empirical risk minimization

$$\frac{1}{n}(\sum_{i=1}^n L_i(\boldsymbol{\theta})) = \mathbb{E}_{i \sim \{1,\dots,n\}}[L_i(\boldsymbol{\theta})]$$

• (Exact) expectation can be approximated by smaller sample:

• 
$$\mathbb{E}_{i \sim \{1,\dots,n\}}[L_i(\boldsymbol{\theta})] \approx \frac{1}{|S|} \sum_{j \in S} (L_j(\boldsymbol{\theta}))$$
 // with  $S \subseteq \{1,\dots,n\}$ 

or equivalently: 
$$\sum_{i=1}^{n} L_i(\boldsymbol{\theta}) \approx \frac{n}{|S|} \sum_{j \in S} L_j(\boldsymbol{\theta})$$

### Stochastic Gradient Descent

 Intuition: Instead of using "exact" gradient, compute only a noisy (but still unbiased) estimate based on smaller sample

- Stochastic gradient decent:
  - 1. randomly pick a (small) subset S of the points  $\rightarrow$  so called mini-batch
  - 2. compute gradient based on mini-batch
  - 3. update:  $\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t \tau \cdot \frac{n}{|S|} \sum_{j \in S} \nabla L_j(\boldsymbol{\theta}_t)$
  - 4. pick a new subset and repeat with 2
- "Original" SGD uses mini-batches of size 1
  - larger mini-batches lead to more stable gradients (i.e. smaller variance in the estimated gradient)

45

# Example: Perceptron

axty Eles -0

Simple linear binary classifier:

$$\delta(\mathbf{x}) = \begin{cases} 1 & if \ \mathbf{w}^T \mathbf{x} + b > 0 \\ -1 & else \end{cases}$$

Learning task:

Given 
$$(x_1, y_1), \dots, (x_n, y_n)$$
 find 
$$\min_{\mathbf{w}, \mathbf{b}} \sum_i L(y_i, \mathbf{w}^T \mathbf{x}_i + b)$$



L is the loss function

$$- \text{ e.g. } L(u,v) = \max(0,-u\cdot v) = \begin{cases} -uv & \textit{if } uv < 0 \\ 0 & \textit{else} \end{cases} \quad \begin{array}{l} \leftarrow \textit{incorrect classification} \\ \leftarrow \textit{correct classification} \end{cases}$$

## Example: Perceptron

- Let's solve this problem via SGD
- Result:

```
initialize w = \mathbf{0} and b = 0

repeat

if y_i \cdot (w^T x_i + b) \le 0 then

w \leftarrow w + \tau \cdot n \cdot y_i \cdot x_i and b \leftarrow b + \tau \cdot n \cdot y_i

end if

until all classified correctly
```

- Note: Nothing happens if classified correctly
  - gradient is zero
- Does this remind you of the original learning rules for perceptron?

## Optimizing Logistic Regression

- Recall we wanted to solve  $w^* = \arg\min_{w} E(w)$
- $E(\mathbf{w}) = -\ln p(\mathbf{y} \mid \mathbf{w}, \mathbf{X})$  $= -\sum_{\{i=1\}}^{N} y_i \ln \sigma(\mathbf{w}^T \mathbf{x}_i) + (1 y_i) \ln(1 \sigma(\mathbf{w}^T \mathbf{x}_i))$
- Closed form solution does not exist
- Solution:
  - Computed the gradient ∇E(w)
  - Find w\* using gradient descent
- Is E(w) convex?
- Can you use SGD?
- How can you choose the learning rate?
- What changes if we add regularization, i.e.  $E_{reg}(\mathbf{w}) = E(\mathbf{w}) + \lambda ||\mathbf{w}||_2^2$ ?

## Convergence in expectation

- Subject to relatively mild assumptions, stochastic gradient descent converges almost surely to a global minimum when the objective function is convex
  - almost surely to a local minimum for non-convex functions
- The expectation of the residual error decreases with speed

$$\mathbb{E}[\rho] \sim t^{-1}$$

// i.e. 
$$t \sim \mathbb{E}[\rho]^{-1}$$

- Note: Standard GD has speed  $t \sim \log \rho^{-1}$ 
  - faster convergence speed; but each iteration takes longer

## Summary

- General task: Find solution  $oldsymbol{ heta}^*$  minimizing function f
- Convex sets & functions
  - Global vs. local minimum
  - Convex hull Conv(X)
  - Verifying convexity: Definition, special results (first-order convexity,
     2nd derivative), convexity-preserving operations
- Gradient descent:  $\theta := \theta t \nabla f(\theta)$ 
  - Line search: How to choose t? E.g. backtracking, exact
  - Learning rate: Fix t= au, change via learning rate adaptation (momentum, AdaGrad)
  - Faster methods: Adam, Newton method
  - Stochastic gradient descent (SGD): Only use part of data (mini-batches) at each step

50