# Circuits & Schematics

August 28, 2018

# Reminders

Bring something to hack on Thursday

You should have a class buddy

# Circuits

Common Components | Voltage | Current | Resistance

Ohms Law | Watt's Law | Series and Parallel Circuits

Voltage Divider | Pull-up and Pull-down circuits

Electrical circuits are networks of electrical elements that contain a closed loop which allows electrons to flow through the elements.

### **Examples of Electrical Components**











Current (measured in Amperes or Amps) is the quantity of electrons passing through a point in a circuit. I

Voltage (measured in Volts) is the potential difference in electrical charge between two points in a circuit.V

Resistance ( measured in 0hms -  $\Omega$  ) is the capacity of a circuit element to impede the flow of electrons in an electrical circuit. R

Current flows with almost no resistance in metal, and so things that are connected by direct metal-on-metal contact share the same voltage.



image from https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard

originally from http://www.instructables.com/id/Use-a-real-Bread-Board-for-prototyping-your-circui/











## Pushbutton LED circuit



### Pushbutton LED circuit breadboard drawing



# Pushbutton LED circuit schematic



# Power in the Pushbutton LED circuit



### KIRCHOFF'S LAW in the Pushbutton LED circuit

amount generated = the amount

used



#### Common Alkaline and Carbon Zinc Cells





1.5V

"C"



1.5V

"D"



"9V"

| D                           | Н                             |
|-----------------------------|-------------------------------|
| 0.56"                       | 1.97"                         |
| $\left(\frac{9}{16}\right)$ | $\left(1\frac{31}{32}\right)$ |

$$\begin{array}{c|c}
D & H \\
\hline
1.02'' & 1.97'' \\
\left(1\frac{1''}{64}\right) & \left(1\frac{31}{32}''\right)
\end{array}$$

$$\begin{array}{c|cc}
D & H \\
\hline
1.32'' & 2.39'' \\
\left(\frac{11}{32}''\right) & 2 & \frac{27}{64}''
\end{array}$$

| W                            | L                            | Н                             |
|------------------------------|------------------------------|-------------------------------|
| 1.03"                        | 0.65"                        | 1.91"                         |
| $\left(\frac{13}{32}\right)$ | $\left(\frac{11}{16}\right)$ | $\left(1\frac{15}{16}\right)$ |

#### Lithium



Voltage: 1.55 to 6V Diameter: 0.460 t0 0.965" Thicknesses: 0.079" to 0.990" mAh: 60 to 250 mAh Label: Given in I.E.C. number (e.g., CRXXXX or BRXXXXX)

#### Zinc air



Voltage: 1.15 to 1.4V mAh: 70 to 600 mAh Labels: ZAXXX

#### Mercury



Voltage: 1.35 to 5.6V Diameter: 0.5 to 0.695" Thicknesses: 0.135" to 0.845" mAh: 80 to 1000 mAh

#### Silver oxide



Voltage:

1.55V Diameter: 0.267 to 0.610" Thicknesses: 0.81" to 0.210" mAh: 15 to 250 mAh Label: Given in I.E.C. number (e.g., SRXX)

# Power can come from supplies or batteries.



# Power Supply





# 5V DC to DC Step Up - 1xAA







#### **ENERGIZER CR2032**



#### **Industry Standard Dimensions**



0.10 (0.004) Minimum Ref. (Applies to top edge of gasket or edge of crimp, whichever is higher.)

#### Lithium Coin

#### Specifications

Classification: "Lithium Coin"

Chemical System: Lithium / Manganese Dioxide (Li/MnO<sub>2</sub>)

Designation: ANSI / NEDA-5004LC, IEC-CR2032

Nominal Voltage: 3.0 Volts

**Typical Capacity:** 240 mAh (to 2.0 volts) (Rated at 15K ohms at 21°C)

Typical Weight: 3.0 grams (0.10 oz.)

**Typical Volume:** 1.0 cubic centimeters (0.06 cubic inch)

**Typical IR:** 10,000 - 40,000 mΩ **Max Rev Charge:** 1 microampere

**Energy Density:** 198 milliwatt hr/g, 653 milliwatt hr/cc

Typical Li Content: 0.109 grams (0.0038 oz.)

UL Listed: MH12454

**Shipping:** For complete details, please reference:

Global (except US): Special Provision A45 of the International Air Transport Association Dangerous

Goods Regulations
United States: 49 CFR 173.185

Safety: A WARNING

- (1) KEEP OUT OF REACH OF CHILDREN. Swallowing may lead to serious injury or death in as little as 2 hours due to chemical burns and potential perforation of the esophagus. Immediately see doctor; have doctor phone (202) 625-3333.
- (2) Battery compartment design. To prevent children from removing batteries, battery compartments should be designed with one of the following methods: a) a tool such as screwdriver or coin is required to open battery compartment or b) the battery compartment door/cover requires the application of a minimum of two independent and simultaneous movements of the securing mechanism to open by hand. Screws should remain captive with the battery door or cover.

#### **Continuous Discharge Characteristics**



#### **Cross Section**



#### **Simulated Application test**

Typical Performance at 21°C (70°F)

| Schedule:  | Typical Drains:<br>at 2.9V | Load   | Cutoff<br>2.0V |
|------------|----------------------------|--------|----------------|
|            | (mA)                       | (ohms) | (hours)        |
| Continuous | 0.043                      | 68.000 | 721            |

#### **Important Notice**

This datasheet contains typical information specific to products manufactured at the time of its publication.

© Energizer Holdings, Inc. - Contents herein do not constitute a warranty.

Form No. FRC - 4120M

### Input in the Pushbutton LED circuit



## Switches/Buttons



# Switches/Buttons



# Output in the Pushbutton LED circuit



# LEDs



### LED datasheet

https://learn.adafruit.com/all-aboutleds/the-led-datasheet

### Kingbright

#### T-1 3/4 (5mm) SOLID STATE LAMP

Part Number: WP7113SRD/D

Super Bright Red

#### **Features**

- LOW POWER CONSUMPTION.
- POPULAR T-1 3/4 DIAMETER PACKAGE.
- GENERAL PURPOSE LEADS.
- RELIABLE AND RUGGED.
- LONG LIFE SOLID STATE RELIABILITY.
- AVAILABLE ON TAPE AND REEL.
- Rohs Compliant.

#### Description

The Super Bright Red source color devices are made with Gallium Aluminum Arsenide Red Light Emitting Diode.

#### **Package Dimensions**





- All dimensions are in millimeters (inches).
   Tolerance is ±0.25(0.01") unless otherwise noted.
- Lead spacing is measured where the leads emerge from the package. Specifications are subject to change without notice.

SPEC NO: DSAF2433 APPROVED: WYNEC

REV NO: V.2 CHECKED: Allen Liu DATE: MAY/11/2007 DRAWN: Y.L.LI

PAGE: 1 OF 6 ERP: 1101005271-02

### Inside LEDs



### RGB LEDs





# Current regulation in the Pushbutton LED circuit



Ohm's Law states that Voltage = Current X Resistance

Watt's Law states that Power = Voltage x Current

$$P=VI=I^2R$$

Ohm's Law states that Voltage = Current X Resistance



Ohm's Law states that Voltage = Current X Resistance



# Equivalent Pushbutton LED circuit



### **DON'T SHORT POWER TO GROUND**

$$I=V/R$$

If 
$$R=0$$
,  $I=\infty$ 

## A little excitement

# Why is this a **BAD** circuit?







images from www.steiniche.dk/.../resistors-filer

#### **READING RESISTANCE VALUES**



#### Resistors in series **ADD**



#### Resistors in parallel **DIVIDE**



#### What is a **SHORT CIRCUIT**??? Why is this bad?



### **VOLTAGE DIVIDER CIRCUIT**



### PULL UP RESISTOR



## PULL DOWN RESISTOR



### Adjusting the brightness of your LEDs

A potentiometer is a variable resistor,

a voltage divider in a package.





### Adjusting the brightness of your LEDs



The LED is a diode, with a fixed voltage drop.

The Current is set by the series resistor

The brightness of the LED is a function of the current, created by the resistance.

$$I = V/R$$

# Why is this a **BAD** circuit?





#### Pushbutton LED circuit



#### Pushbutton LED circuit breadboard drawing



### Pushbutton LED circuit schematic

