Computer Logic Design Fundamentals Chapter 3 – Combinational Logic Design

Part 3—Arithmetic Functions

Prof. Yueming Wang ymingwang@zju.edu.cn

College of Computer Science and Technology, Zhejiang University

Overview

- Part 3 Arithmetic Functions
 - Iterative combinational circuits
 - Binary adders
 - Half and full adders
 - Ripple carry and carry lookahead adders
 - Binary subtraction
 - Binary adder-subtractors
 - Signed binary numbers
 - Signed binary addition and subtraction
 - Overflow
 - *Binary multiplication
 - Other arithmetic functions
 - Design by contraction

Iterative Combinational Circuits

- Arithmetic functions
 - Operate on binary vectors
 - Use the same subfunction in each bit position
- Can design functional block for subfunction and repeat to obtain functional block for overall function
- Cell subfunction block
- Iterative array an array of interconnected cells
- An iterative array can be in a <u>single</u> dimension (1D) or multiple dimensions

Block Diagram of a 1D Iterative Array

- Example: n = 32
 - Number of inputs = ?
 - Truth table rows = ?
 - **Equations with up to? input variables**
 - **Equations with huge number of terms**
 - **Design impractical!**
- Iterative array takes advantage of the regularity to make design feasible

Functional Blocks: Addition

- Binary addition used frequently
- Addition Development:
 - Half-Adder (HA), a 2-input bit-wise addition functional block,
 - Full-Adder (FA), a 3-input bit-wise addition functional block,
 - Ripple Carry Adder, an iterative array to perform binary addition, and
 - Carry-Look-Ahead Adder (CLA), a hierarchical structure to improve performance.

Functional Block: Half-Adder

A 2-input, 1-bit width binary adder that performs the following computations:

- A half adder adds two bits to produce a two-bit sum
- The sum is expressed as a sum bit, S and a carry bit, C
- The half adder can be specified as a truth table for S and $C \Rightarrow$

Y	C	S
0	0	0
1	0	1
0	0	1
1	1	0
	0 1 0	0 0 1 0 0 0

Logic Simplification: Half-Adder

- The K-Map for S, C is:
- This is a pretty trivial map! By inspection:

$$S = X \overline{Y} + \overline{X} Y = X \oplus Y$$

$$S = (X + Y) \overline{(X + Y)}$$

and

$$C = X Y$$

$$C = \overline{(XY)}$$

These equations lead to several implementations.

Five Implementations: Half-Adder

We can derive following sets of equations for a halfadder:

(a)
$$S = X \overline{Y} + \overline{X} Y$$

 $C = X Y$
(b) $S = (X + Y) (\overline{X} + \overline{Y})$
 $C = X Y$
(c) $S = (C + \overline{X} \overline{Y})$
 $C = X Y$
(d) $S = (X + Y) \overline{C}$
 $C = (X + Y) \overline{C}$
(e) $S = X \oplus Y$
 $C = X Y$

- (a), (b), and (e) are SOP, POS, and XOR implementations for S.
- In (c), the C function is used as a term in the AND-NOR implementation of S, and in (d), the C function is used in a POS term for S.

Implementations: Half-Adder

The most common half adder implementation is:

$$S = X \oplus Y$$

$$C = X Y$$

A NAND only implementation is:

$$S = (X + Y) C$$

$$C = (\overline{(X Y)})$$

Functional Block: Full-Adder

- A full adder is similar to a half adder, but includes a carry-in bit from lower stages. Like the half-adder, it computes a sum bit, S and a carry bit, C.
 - For a carry-in (Z) of 0, it is the same as the half-adder:

For a carry- in(Z) of 1:

Logic Optimization: Full-Adder

Full-Adder Truth Table:

X	Y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full-Adder K-Map:

Equations: Full-Adder

• From the K-Map, we get:

$$S = X\overline{Y}\overline{Z} + \overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z + XYZ$$

$$C = XY + XZ + YZ$$

The S function is the three-bit XOR function (Odd Function):

$$S = X \oplus Y \oplus Z$$

The Carry bit C is 1 if both X and Y are 1 (the sum is 2), or if the sum is 1 and a carry-in (Z) occurs. Thus C can be re-written as:

$$C = XY + (X \oplus Y)Z$$

- The term $X \cdot Y$ is carry generate.
- The term $X \oplus Y$ is carry propagate.

Implementation: Full Adder

- Full Adder Schematic
- Here X, Y, and Z, and C (from the previous pages) are A, B, C_i and C_o, respectively. Also,

G = generate and P = propagate.

• Note: This is really a combination of a 3-bit odd function (for S)) and Carry logic (for C_0):

(G = Generate) OR (P = Propagate AND
$$C_i$$
 = Carry In)
 $C_0 = G + P \cdot C_i$

Binary Adders

 To add multiple operands, we "bundle" logical signals together into vectors and use functional blocks that operate on the vectors

- Example: 4-bit ripple carry adder: Adds input vectors
 A(3:0) and B(3:0) to get a sum vector S(3:0)
- Note: carry out of cell i becomes carry in of cell i + 1

Description	Subscript 3 2 1 0	Name
Carry In	0110	C _i
Augend	1011	A_i
Addend	0011	B _i
Sum	1110	S_i
Carry out	0011	C_{i+1}

4-bit Ripple-Carry Binary Adder

A four-bit Ripple Carry Adder made from four
 1-bit Full Adders:

Carry Propagation & Delay

- One problem with the addition of binary numbers is the length of time to propagate the ripple carry from the least significant bit to the most significant bit.
- The gate-level propagation path for a 4-bit ripple carry adder of the last example:

• Note: The "long path" is from A_0 or B_0 though the circuit to S_3 .

Carry Lookahead

- Given Stage i from a Full Adder, we know that there will be a <u>carry generated</u> when $A_i = B_i =$ "1", whether or not there is a carry-in.
- Alternately, there will be a <u>carry propagated</u> if the "half-sum" is "1" and a carry-in, C_i occurs.
- These two signal conditions are called generate, denoted as G_i, and propagate, denoted as P_i respectively and are identified in the circuit:

Carry Lookahead (continued)

- In the ripple carry adder:
 - Gi, Pi, and Si are <u>local</u> to each cell of the adder
 - Ci is also local each cell
- In the carry lookahead adder, in order to reduce the length of the carry chain, C_i is changed to a more global function spanning multiple cells
- Defining the equations for the Full Adder in term of the P_i and G_i:

$$P_{i} = A_{i} \oplus B_{i}$$

$$G_{i} = A_{i} B_{i}$$

$$S_{i} = P_{i} \oplus C_{i}$$

$$C_{i+1} = G_{i} + P_{i} C_{i}$$

Carry Lookahead Development

- C_{i+1} can be removed from the cells and used to derive a set of carry equations spanning multiple cells.
- Beginning at the cell 0 with carry in C_0 :

$$\begin{split} &C_1 = G_0 + P_0 \ C_0 \\ &C_2 = G_1 + P_1 \ C_1 = \ G_1 + P_1 (G_0 + P_0 \ C_0) \\ &= G_1 + P_1 G_0 + P_1 P_0 \ C_0 \\ &C_3 = G_2 + P_2 \ C_2 = \ G_2 + P_2 (G_1 + P_1 G_0 + P_1 P_0 \ C_0) \\ &= G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 \ C_0 \\ &C_4 = G_3 + P_3 \ C_3 = G_3 + P_3 G_2 + P_3 P_2 G_1 \\ &+ P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 \ C_0 \end{split}$$

Group Carry Lookahead Logic

- Figure 5-6 in the text shows the implementation of these equations for four bits. This could be extended to more than four bits; in practice, due to limited gate fan-in, such extension is not feasible.
- $C_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0 C_0$
- Instead, the concept is extended another level by considering group generate (G_{0-3}) and group propagate (P_{0-3}) functions:

$$G_{0\sim3} = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0$$

$$P_{0\sim 3} = P_3 P_2 P_1 P_0$$

Using these two equations:

$$C_4 = G_{0\sim3} + P_{0\sim3} C_0$$

Thus, it is possible to have four 4-bit adders use one of the same carry lookahead circuit to speed up 16-bit addition

Group Carry Lookahead Logic (Cont.)

- $C_4 = C_3 + P_3C_2 + P_3P_2C_1 + P_3P_2P_1C_0 +$ $P_3P_2P_1P_0C_0 = G_{0\sim 3} + P_{0\sim 3}C_0$
- $\mathbf{C}_{8} = \mathbf{G}_{7} + \mathbf{P}_{7}\mathbf{G}_{6} + \mathbf{P}_{7}\mathbf{P}_{6}\mathbf{G}_{5} + \mathbf{P}_{7}\mathbf{P}_{6}\mathbf{P}_{5}\mathbf{G}_{4} + \mathbf{P}_{7}\mathbf{P}_{6}\mathbf{G}_{5} + \mathbf{P}_{7}\mathbf{P}_{6}\mathbf{G}_{5}\mathbf{G}_{5} + \mathbf{P}_{7}\mathbf{P}_{6}\mathbf{G}_{5}\mathbf{G}_{6} + \mathbf{P}_{7}\mathbf{P}_{6}\mathbf{G}_{5}\mathbf{G}_{6} + \mathbf{P}_{7}\mathbf{P}_{6}\mathbf{G}_{5}\mathbf{G}_{6} + \mathbf{P}_{7}\mathbf{P}_{6}\mathbf{G}_{5}\mathbf{G}_{6} + \mathbf{P}_{7}\mathbf{P}_{6}\mathbf{G}_{5}\mathbf{G}_{6} + \mathbf{P}_{7}\mathbf{P}_{6}\mathbf{G}_{5}\mathbf{G}_{6} + \mathbf{P}_{7}\mathbf{P}_{6}\mathbf{G}_{5}\mathbf{G}_{6}\mathbf{G}_{5} + \mathbf{P}_{7}\mathbf{P}_{6}\mathbf{G}_{5}\mathbf{G}_{6}\mathbf{$ $P_7P_6P_5P_4C_4 = G_{4\sim7} + P_{4\sim7}C_4$
- $C_{12} = G_{11} + P_{11}G_{10} + P_{11}P_{10}G_{0} + P_{11}P_{10}P_{0}G_{8} + P_{11}P_{10}P_{0}G_{10} + P_{11}P_{0}P_{0}G_{10} + P_{11}P_{0}P_{0}$ $P_{11}P_{10}P_{0}P_{8}C_{8} = G_{8\sim11} + P_{8\sim11}C_{8}$
- $C_{16} = G_{15} + P_{15}G_{14} + P_{15}P_{14}G_{13} + P_{15}P_{14}P_{13}G_{12} + P_{15}P_{14}P_{15}$ $P_{15}P_{14}P_{13}P_{12}C_{12} = G_{12\sim15} + P_{12\sim15}C_{12}$

Group Carry Lookahead Logic (Cont.)

Compare:

4-bit Adder

$$C_1 = C_0 + P_0 C_0$$

$$C_2 = G_1 + P_1 C_1$$

$$C_3 = C_2 + P_2 C_2$$

$$C_4 = C_3 + P_3 C_3$$

16-bit Adder

$$\mathbf{C}_4 = \mathbf{G}_{0\sim 3} + \mathbf{P}_{0\sim 3} \mathbf{C}_0$$

$$\mathbf{C}_8 = \mathbf{G}_{4\sim7} + \mathbf{P}_{4\sim7} \mathbf{C}_4$$

$${}^{\bullet}$$
 $C_{12} = G_{8\sim11} + P_{8\sim11}C_{8}$

$$\mathbf{C}_{16} = \mathbf{G}_{12 \sim 15} + \mathbf{P}_{12 \sim 15} \mathbf{C}_{12}$$

Exactly the same structure. So CLA could be used to generate Group Carry.

Carry Lookahead Example

- Specifications: 3
 - 16-bit CLA
 - Delays:
 - $\mathbf{NOT} = 1$
 - XOR = Isolated AND = 3
 - \blacksquare AND-OR = 2
- Longest Delays:
 - Ripple carry adder* = $3 + 15 \times 2 + 3 = 36$
 - CLA = $3 + 3 \times 2 + 3 = 12$

Unsigned Subtraction

• Algorithm:

- Subtract the subtrahend N from the minuend M
- If no end borrow occurs, then $M \ge N$, and the result is a non-negative number and correct.
- If an end borrow occurs, the N > M and the difference $M N + 2^n$ is subtracted from 2^n , and a minus sign is appended to the result.

Examples:

0	1
1001	0100
- <u>0111</u>	- <u>0111</u>
0010	1101
	10000
	<u> – 1101 </u>
	(-) 0011

Unsigned Subtraction (continued)

■ The subtraction, 2ⁿ − N, is taking the 2's complement of N

■ To do both unsigned addition and unsigned

subtraction requires:

• Quite complex!

Goal: Shared simpler logic for both addition and subtraction

Introduce complements as an approach

Complements

- Two complements:
 - Diminished Radix Complement of N
 - (r-1)'s complement for radix r
 - 1's complement for radix 2
 - Defined as $(r^n 1) N$
 - Radix Complement
 - r's complement for radix r
 - 2's complement in binary
 - Defined as rⁿ N
- Subtraction is done by adding the complement of the subtrahend
- If the result is negative, takes its 2's complement

Binary 1's Complement(反码)

- For r = 2, $N = 01110011_2$, n = 8 (8 digits): $(r^n - 1) = 256 - 1 = 255_{10}$ or 111111111_2
- The 1's complement of 01110011₂ is then:

11111111

- <u>01110011</u>
 10001100
- Since the 2^n-1 factor consists of all 1's and since 1-0=1 and 1-1=0, the one's complement is obtained by complementing each individual bit (bitwise NOT).

Binary 2's Complement(补码)

• For r = 2, $N = 01110011_2$, n = 8 (8 digits), we have:

$$(r^n) = 256_{10} \text{ or } 100000000_2$$

The 2's complement of 01110011 is then:

100000000

- -0111001110001101
- Note the result is the 1's complement plus 1, a fact that can be used in designing hardware

Alternate 2's Complement Method

- Given: an n-bit binary number, beginning at the least significant bit and proceeding upward:
 - Copy all least significant 0's
 - Copy the first 1
 - Complement all bits thereafter.
- 2's Complement Example:

10010100

Copy underlined bits:

100

and complement bits to the left: 01101100

Subtraction with 2's Complement

- For n-digit, <u>unsigned</u> numbers M and N, find M
 - N in base 2:
 - Add the 2's complement of the subtrahend N to the minuend M:

$$M + (2^n - N) = M - N + 2^n$$

- If $M \ge N$, the sum produces end carry r^n which is discarded; from above, M - N remains.
- If M < N, the sum does not produce an end carry and, from above, is equal to $2^n - (N - M)$, the 2's complement of (N - M).
- To obtain the result -(N-M), take the 2's complement of the sum and place a - to its left.

Unsigned 2's Complement Subtraction Example 1

• Find 01010100, - 01000011,

The carry of 1 indicates that result is positive and no correction of the result is required.

Unsigned 2's Complement Subtraction Example 2

■ Find 01000011₂ - 01010100₂

- The carry of 0 indicates that result is negative and a correction of the result is required.
- Result = -(00010001)

Signed Integers

- Positive numbers and zero can be represented by unsigned n-digit, radix r numbers. We need a representation for negative numbers.
- To represent a sign (+ or –) we need exactly one more bit of information (1 binary digit gives $2^1 = 2$ elements which is exactly what is needed).
- Since computers use binary numbers, by convention, the most significant bit is interpreted as a sign bit:

$$s a_{n-2} \dots a_2 a_1 a_0$$

where:

s = 0 for Positive numbers

s = 1 for Negative numbers and $a_i = 0$ or 1 represent the magnitude in some form.

Signed Integer Representations

- Signed-Magnitude here the n 1 digits are interpreted as a positive magnitude.
- •Signed-Complement here the digits are interpreted as the rest of the complement of the number. There are two possibilities here:
 - Signed 1's Complement
 - Uses 1's Complement Arithmetic
 - Signed 2's Complement
 - Uses 2's Complement Arithmetic

Signed Integer Representation Example

$$r = 2, n = 3$$

Number	Sign -Mag.	1's Comp.	2's Comp.
+3	011	011	011
+2	010	010	010
+1	001	001	001
+0	000	000	000
-0	100	111	
-1	101	110	111
-2	110	101	110
-3	111	100	101
_4			100

Signed-Magnitude Arithmetic

• If the parity of the three signs is 0:

- 1. Add the magnitudes.
- 2. Check for overflow (a carry out of the MSB)
- 3. The sign of the result is the same as the sign of the first operand.

• If the parity of the three signs is 1:

- 1. Subtract the second magnitude from the first.
- 2. If a borrow occurs:
 - take the two's complement of result
 - and make the result sign the complement of the sign of the first operand.
- 3. Overflow will never occur.

Sign-Magnitude Arithmetic Examples

0010 **Example 1:** +0101

0010 Example 2: +1101

Example 3: 1010 **- 0101**

Signed-Complement Arithmetic

Addition:

- 1. Add the numbers including the sign bits, discarding a carry out of the sign bits (2's Complement), or using an end-around carry (1's Complement).
- 2. If the sign bits were the same for both numbers and the sign of the result is different, an overflow has occurred.
 - 3. The sign of the result is computed in step 1.

Subtraction:

Form the complement of the number you are subtracting and follow the rules for addition.

Signed 2's Complement Examples

Example 1: 1101 +0011

Example 2: 1101 -0011

2's Complement Adder/Subtractor

Subtraction can be done by addition of the 2's Complement.

 B_2

- 1. Complement each bit (1's Complement.)
- 2. Add 1 to the result.
- The circuit shown computes A + B and A B:

 B_3

- For S = 1, subtract, the 2's complement of B is formed by using XORs to form the 1's comp and adding the 1 applied to C_0 .
- For S = 0, add, B is passed through unchanged

Overflow Detection

- Overflow occurs if n + 1 bits are required to contain the result from an n-bit addition or subtraction
- Overflow can occur for:
 - Addition of two operands with the same sign
 - Subtraction of operands with different signs
- Signed number overflow cases with correct result sign

Detection can be performed by examining the result signs which should match the signs of the top operand

Overflow Detection

- An example:
- Add two 8-bit registers with +70 and +80, or -70 and -80

 ${f C}_{n-1}$ and ${f C}_n$ are different

Overflow Detection

Signed number cases with carries C_n and C_{n-1} shown for correct result signs:

Signed number cases with carries shown for erroneous result signs (indicating overflow):

- Simplest way to implement overflow $V = C_n \oplus C_{n-1}$
- This works correctly only if 1's complement and the addition of the carry in of 1 is used to implement the complementation! Otherwise fails for $-10 \dots 0$

Arithmetic Logic Unit (ALU)

- Arithmetic circuit design
 - Decompose the arithmetic circuit into:
 - An n-bit parallel adder
 - A block of logic that selects four choices for the B input to the adder
 - See next slide for diagram

Arithmetic Circuit Design (continued)

• There are only four functions of B to select as Y in G = A + Y:

What functions are implemented with carry-in to the adder = 0?

Assignment

- **3-50**; **3-51**; **3-52**; **3-59**
- Supplement: Assume the binary numbers in Problem 3-51 are all signed binary numbers in Signed-Magnitude form, repeat Problem 3-51.