

This document is sponsored by The Science Foundation College Kiwanga- Namanve Uganda East Africa Senior one to senior six

+256 778 633 682, 753 802709

Linear interpolation and extrapolation

Linear interpolation

Deals with computations of values that lie within a given range

Example 1

The table below shows values of a function f(x)

Х	1.8	2.0	2.2	2.4
f(x)	0.532	0.484	0.436	0.384

Find values of (i) f(1.88)

(ii) x corresponding to f(x) = 0.4

Solution

1.8	1.88	2.0
0.532	У	0.484
y-0.532 = 0	0.884-0.532	
1 00_1 0	2.0_1.0	

$$y = 0.513$$

2.2	X 0	2.4
0.436	0.4	0.384
$x_0 - 2.2$	2.4-2.2	

$$x_0 = 2.34$$

Example 2

Given the table below

х	9	10	11	12
f(x)	2.66	2.42	2.18	1.92

Using linear interpolation find

(i)
$$f(x)$$
 when $x = 10.15$

Solution

10		10.15	11	
2.42		У	2.18	
y-2.42 _	2.1	8-2.42		
10 15-10		1_10		

$$y = 2.384$$

$$\begin{array}{c|cccc}
11 & x_0 & 12 \\
2.18 & 2.02 & 1.92 \\
\hline
x_0-11 \\
2.02-2.18 & 1.92-2.18
\end{array}$$

$$x_0 = 11.62$$

Example 3

Given table below

x ⁰	40.0 ⁰	40.4 ⁰	40.8 ⁰	50.4 ⁰
sin x ⁰	0.6428	0.6481	0.6534	0.7705

Find (i) sin 40.5⁰

(ii) sin⁻¹ 0.6445

Solution

40.4 ⁰	40.5°	40.8 ⁰
0.6481	У	0.6534
$y-0.6481$ _	0.6534-0.6481	
40.5-40.4	40.8-40.4	

$$y = 0.6494$$

40.0 ⁰	X 0		40.4 ⁰
0.6428	0.6	445	0.6481
$x_0 - 40.0$		40.4-	-40.0
0.6445-0.642	8 _	0.6481-	-0.6428

$$x_0 = 40.13$$

Linear extrapolation

This deals with computation of values that lie outside given values

Example 4

Given the table below

X	2.2	2.6	3.1
χ^3	10.648	17.576	29.791

Find 3.4³

2.6		3.1	3.4
17.576		29.791	У
y-29.791 _	29.	791-17.576	
3.4-3.1		3.1-2.6	

y = 37.12

Example 5

The table below is an extract from table of sec x

$x = 60^{\circ}$	0'	12'	24'	36'	48'
sec x	2.0000	2.0122	2.0245	2.0371	2.0498

Use linear interpolation to determine

- (i) $\sec 60^{\circ}15'$
- (ii) angle whose secant is $2.0436 [60^{\circ}42']$

Solution

(i)

12'	15'	24'
2.0122	У	2.0245
y-2.0122 _	2.0245-2.0122	
15-12	24-12	

$$y = 2.03065$$

(ii)

36'	х		48'
2.0371	2.043	6	2.0498
x-36		4	8-36
2.0436-2.0	371	2.049	8-2.0371

$$x = 42'$$
 hence angle = $60^{\circ}42'$

Example 6

The table below shows the values of a function f(x)

Х	1.8	2.0	2.2	2.4
f(x)	0.532	0.484	0.436	0.384

Use linear interpolation to find the value of

1.8	2.08	2.0
0.532	f(x)	0.484
$\frac{f(x)-0.436}{}$	0.436-0.484	
2.08-2.0	2.2-2.0	
f(x) = 0.436	-0048	
0.08	0.2	

f(x) = 0.4648 or 0.465 (3D)

(ii) x corresponding to f(x) = 0.5 (05marks)

1.8		X	2.0
0.532		0.5	0.484
	0.5-0.532 _	0.484-0.532	
	x-1.8	2.0-18	
	$\frac{-0.032}{} = \frac{-0.032}{}$	048	
	x-1.8 0	.2	
	x = 1.9333	or 1.9 (1D)	

Example 7

Given the table below,

Х	0	10	20	30
У	6.6	2.9	-0.1	-2.9

Use linear interpolation to find

(a) y when x = 16

Extract

Х	10	16	20
У	2.9	y o	-0.1

$$\frac{y_0 - 2.9}{16 - 10} = \frac{-0.1 - 2.9}{20 - 10}$$
$$\frac{y_0 - 2.9}{6} = \frac{-3.0}{10}$$

$$y_0 = 1.1$$

hence when x = 16, y = 1.1

Hence when y = -1; x = 23.2

(b) x when y = -1

Extract

Х	20	X 0	30
у	-0.1	-1	-2.9
$\frac{x_0 - 20}{-1 - (-0.5)}$ $x_0 = 2$	$\frac{1}{1)} = \frac{1}{-2.9 - ()}$		

Example 8

The table below shows the values of a function f(x) for given values of x.

Х	9	10	11	12
f(x)	2.66	2.42	2.18	1.92

Use linear interpolation or extrapolation to find

(a) f(10.4)

Extract

10	10.4	11
2.42	f(x)	2.1

Using gradient approach

$$\frac{2.18-f(x)}{11-10.4} = \frac{2.18-2.42}{11-10}$$
$$\frac{2.18-f(x)}{0.6} = \frac{-0.24}{1}$$
$$f(x) = 2.18 + 0.24 \times 0.6 = 2.324$$

(b) the value of x, corresponding to f(x) = 1.46 (05marks)

Extract

х	12	11
1.46	1.92	2.18

Using gradient approach

$$\frac{2.18-1.46}{11-x} = \frac{2.18-1.92}{11-12}$$

$$\frac{0.72}{11-x} = \frac{0.26}{-1}$$

$$X = 11 - \frac{-1 \times 0.72}{0.26} = 13.769$$

Revision exercise

1. Table below is an extract from the table of cos x

х	00	10 ⁰	20 ⁰	30 ⁰	40 ⁰	50 ⁰
Cos x	0.1736	0.1708	0.1679	0.1650	0.1622	0.1593

Use linear interpolation to determine: (i) $\cos 80^{\circ} 36' [0.1633] \cos^{-1}(0.1685) [80^{\circ}18']$

2. The table below shows variation of temperature with time in a certain experiment.

Time (s)	0	120	240	360	480	600
Temperature (°C)	100	80	76	65	50	48

Use linear interpolation to determine

- (i) value of °C corresponding to 400s [62°C]
- (ii) time at which the temperature is 77°C [192s]
- 3. The table below shows the value of a function In(x) for given values of x

х	1.4	1.5	1.6	1.7
In(x)	0.3365	0.4055	0.4700	0.5306

Using linear interpolation or extrapolation, find

- (i) In(1.66) [0.5064] (ii) find value of x corresponding to In(x) = 0.400 [1.492]
- 4. The table below shows variation of temperature with time in certain experiment.

Time (s)	0	10	15	20	30
Temperature (°C)	80	70.2	65.8	61.9	54.2

Use linear interpolation to determine

- (i) value of θ^0 corresponding to T= 18s [63.5°C]
- (ii) Time T at which the temperature $\theta^0 = 60^{\circ}\text{C}$ [22.5s]
- 5. Given the table below

Х	-1.0	-0.5	-1.4
У	-1.0	-2.2	-3.7

Using linear interpolation or linear extrapolation to find

(i) y when
$$x = 0.5 [-4.6]$$
 (ii) x when $y = -4.5 [0.458]$

- 6. In an examination, scaling is done such that candidate A who originally scored 35% gets 50% and candidate B with 40% gets 65%, determine the original mark for candidate C whose new mark is 80% [45%]
- 7. The table below is an extract of $\log_{10} x$

х	80.00	80.20	80.50	80.80
$\log_{10} x$	1.9031	1.9042	1.9058	1.9074

Using linear interpolation find

- (i) $\log_{10} 80.759[1.9072]$
- (ii) the number whose logarithm is 1.90388 [80.14]
- 8. The table below shows the values of a function f(x) for given values of x

х	2	3	4	5
f(x)	3.88	5.11	8.14	11.94

Use linear interpolation to determine

- (i) f(2.15) [4.06]
- (ii) the value of x corresponding to f(10.6) [4.68]
- 9. The table below shows distance in km a truck moves with a given amount of fuel in litres (I)

Distance (km)	20	28	33	42
Fuel (l)	10	13	21	24

Use linear interpolation or extrapolation to find

- (i) How far the truck can move on 27.5l of fuel [52.5km]
- (ii) the amount of fuel required to cover29.8km [15.88l]
- 10. The table below shows the values of a continuous f(t) with respect to t

t	0	0.3	0.6	1.2	1.6
f(t)	2.72	3.00	3.32	4.06	4.95

Use linear interpolation or extrapolation, find

- (i) f(t) when t = 0.9 [3.69]
- (ii) the value of t corresponding to f(t) = 4.48 [1.48]
- 11. The table below shows the delivery charges by courier company

Mass (g)	200	400	600
charges (shs.)	700	1200	300

Use linear interpolation or extrapolation, find

- (i) the delivery charge of a parcel weighing 352g [1080]
- (ii) mass of a parcel whose delivery charge is shs. 3,300 [633.33kg]
- 12. The table below shows the cost y shillings for hiring a motor cycle for a distance x kilometres.

Distance x (km)	10	20	30	40
Cost (shs.)	2800	3600	4400	5200

Use linear interpolation or extrapolation, find

- (i) the cost of hiring the motor cycle for distance of 45km [shs. 5600]
- (ii) distance travelled if he paid shs. 4000 [25km]
- 13. The table below shows the values of a function f(x) for given values of x

Х	0.4	0.6	0.8
f(x)	-0.9613	-0.5108	-0.2231

Use linear interpolation to determine f⁻¹(-0.4308) correct to 2 decimal places [0.66]

14. The table below shows how T caries with S

T	-2.9	-0.1	2.9	3.1
S	30	20	12	9

Use linear interpolation/extrapolation to estimate values of

(a) T when S = 26 [-1.78] (ii) S when T = 3.4 [4.5]

15. The table below shows the commuter bus fare from stages A to B, C, D and E

Stage	Α	В	С	D	E
Distance (km)	0	12	16	19	23
Fare (shs)	0	1300	1700	2200	2500

- (a) Jane boarded from A and stopped at a place 2km after E. How much did she pay? (03marks) [shs. 2650]
- (b) Okello paid shs 2000. How far from A did the bus leave him? (02marks) [17.km]
- 16. The table below shows the value of x and corresponding values of a function f(x)

The table below shows how T caries with S

Х	0.3	0.6	0.9	1.2
f(x)	3.00	3.22	3.69	4.06

Use linear interpolation/extrapolation to estimate values of

(i) f(x) when x = 0.4 [3.0733] (ii) x when f(x) = 3.82 [1.0054]

Thank you

Dr. Bbosa Science