Evaluating Branching Heuristics in Interval Constraint Propagation for Satisfiability

Calvin Huang Soonho Kong Sicun Gao **Damien Zufferey** Scale Labs Toyota Research UCSD MPI-SWS

NSV 2019 13.07.2019

Branch and Prune ICP

Used to numerically solve systems of non-linear equations

$$\exists^{[3.0,3.14]} x_1. \exists^{[-7.0,5.0]} x_2.2 \times 3.14 - 2x_1 \arcsin\left(\cos 0.8 \times \sin\left(\frac{3.14}{x_1}\right)\right) \le -0.6 - 0.03x_2 + 1.5$$

- Interval Constraint Propagation (ICP)
 Hypercube over-approximation of the solution space of non-linear constraints.
- Efficient (numerical) but incomplete (finite precision)

Branch and Prune Algorithm

```
ICP(c_1,...,c_m, \mathbf{D} = D_1 \times \cdots \times D_n, \delta)
                                                                                               Variables have a bounded domain
S.\mathrm{push}(\boldsymbol{D})
while S \neq \emptyset do
     D \leftarrow S.pop()
     while \exists 1 \leq i \leq m, \mathbf{D} \neq_{\delta} \text{Prune}(\mathbf{D}, c_i) do
                                                                                               Pruning: constraint propagation
          \boldsymbol{D} \leftarrow \text{Prune}(\boldsymbol{D}, c_i)
     end while
    \text{if } D \neq \emptyset \text{ then }
                                                                                              Terminate: reached a given precision
          if \exists 1 \leq i \leq n, |D_i| \geq \delta then
               \{\boldsymbol{D}_1, \boldsymbol{D}_2\} \leftarrow \operatorname{Branch}(\boldsymbol{D}, i)
                                                                                              Branch: divide and conquer
               S.\mathrm{push}(\boldsymbol{D}_1)
               S.\mathrm{push}(\boldsymbol{D}_2)
          else
               return sat
          end if
     end if
end while
                                                                                              Terminate: no possible solution
return unsat
```

Branch-and-Prune ICP Algorithm

Prune by B

Prune by A

Branch

Prune by A

Prune by B

Prune by A

Prune by B

Then Came Some New Benchmarks

Small robotic arm partly designed and programmed using constraint solving.

- Generated constraints
 - Each part
 - 7 variables for the pose
 - variables for dimensions
 - Joints are constraints
 - Planning by unfolding the constrains
 - >100 var, >500 constraints

Scaling ICP, Paving, and SAT

- The search is exponential in the number of dimensions.
 Which variable is split can make a huge difference.
- Uses for ICP
 - Paving: map the entire solution space
 - Satisfiability: stop when one solution is found
- Evaluations in the literature focus on paving, we wanted to see what happens with satisfiability.

Finding All Solutions

Turns complicated non-linear constraints into a collection of hypercubes.

Branching Matters (1)

After branching on x

After branching on y

Branching Matters (2)

Branching Heuristics

- Compare three heuristics:
 - Largest First
 - Smearing
 - Lookahead
- Try to isolate the effect of each heuristic:
 - No combinations of methods (no kitchen sink approach)
 - Each method has parameters, we pick some value on a few examples and then did not change it (no over-fitting)

Largest First (Baseline)

 Pick the variable with the largest range.

- + simple
- agnostic to the constraints or search history

Choose x

Smearing (Gradient)

- Evaluate the Jacobian at the center point.
- Rank variables by sum of partial derivatives multiplied variable domain
- Example: x+5y=0• Example: $x \in [0;10]$, branch on y (x score is 10, y is 15) $y \in [0;3]$
- + exploits information about the constraints
- more complicated the largest first

Lookahead

- Split along all the dimensions and do one step of pruning.
- Keep the choice that worked best.

Idea: "wrong" split doubles the search, find the "best" choice

- + locally optimal (does not translate to globally optimal)
- can be very expensive

Early Hopes

Excerpt from an email exchange with Calvin:

... I implemented the gradient splitting, and it's better sometimes, worse sometimes. ...

Test Name	Largest First	Smearing
mass_spring	0.098	0.336
model0a	12.109	0.016
model2	0.185	ТО
oneParam	3.148	7.344

Test Name	Largest First	Smearing
12	0.154	0.176
simdreal_4	1.729	0.206
simdreal_5	2.259	0.173
stephen_01	0.212	0.014

Benchmarks and Tests

- Tested with the dReal SMT solver for QF_NRA.
- It is easy to fall in the trap of over-fitting heuristics.
 - We need data: over 11,000 benchmarks
- What is a representative set of benchmarks?
 - SMT-Lib, Flyspeck, robotics, control, information th, ...
- We split the benchmarks in two categories:
 - Small: all tests, timeout of 300 sec.
 - Large: at least 8 real variables, 1800 sec. (896 tests)
- Available at https://github.com/dreal/benchmarks

Results: Small Instances

Results: Large Instances

No Clear Winner

Instances	Small (Δ)	Large (Δ)
#Benchmarks	11789	896
Solved Baseline Solved Gradient Solved Lookahead Virtual Best Virtual Worst	10654 $10654 (+0)$ $10667 (+13)$ $10827 (+173)$ $10439 (-206)$	292 266 (-26) 283 (-9) 337 (+45) 222 (-70)
Unique Baseline Unique Gradient Unique Lookahead	34 65 19	19 5 31

Smearing vs Largest First

Lookahead vs Largest First

Branching is Key (Large Instances)

Where Do We Go Now?

- Portfolio
 - It is an NP problem after all.
- Concurrency: New version of dReal is parallel
 - Easy parallelism across the branches of the search
 - parallel lookahead and synchronization overhead ?
- Gathering an even wider variety of benchmarks

Largest First is Easy to Trick

- Back to our robotic example. We needed solutions...
- Identify important variables (domain specific knowledge)
- Scale the dimensions: importance ~ range
- 2 orders of magnitude speed-up

It it not possible to use such trick with the other methods.

Take Home Message

- We evaluated three branching heuristics for ICP.
 Largest first, Smearing, Lookahead
- Large set of benchmarks made publicly available.
- Unfortunately, no conclusive results yet ...

Questions?