A polynomial-time algorithm for approximating degenerate ground states of gapped spin chains.

Christopher T. Chubb and Steven T. Flammia

Australian Institute of Physics Congress 2014

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA

Efficien

Area La

Algorith

Naïve method Viablility

Degenera

Problem

Result

c . . .

Problem

- This is not possible¹ for a general system². We're going to be considering gapped 1D systems, which serve as a nice toy-model in which it is.
- Local and gapped interactions give us the <u>area law</u>³, a conjectured structural bound on the complexity of ground states
- Restricting further to 1D allows us to use a rigorous proof of the area law⁴

¹Given standard complexity theoretic assumptions, analogous to $P \neq NP$

² J. Kempe, A. Kitaev and O. Regev, doi:10/dqbscx, arXiv:quant-ph/0406180, 2004.

³J. Eisert, M. Cramer and M.B. Plenio, doi:10/bts7tp, arXiv:0808.3773, 2008

⁴V H.... -- Vi...1402 0227 2014

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA

Area La

Naïve method Viablility

Degenerac Problem

Solution Result

C 1 ...

Problem

- This is not possible for a general system. We're going to be considering gapped 1D systems, which serve as a nice toy-model in which it is.
- Local and gapped interactions give us the <u>area law</u>³, a conjectured structural bound on the complexity of ground states
- Restricting further to 1D allows us to use a rigorous proof of the area law⁴.

¹Given standard complexity theoretic assumptions, analogous to P \neq NP.

² J. Kempe, A. Kitaev and O. Regev. doi:10/dgbscx. arXiv:quant-ph/0406180, 2004.

³J. Eisert, M. Cramer and M.B. Plenio, doi:10/bts7tp, arXiv:0808.3773, 2008.

⁴V H.... --Vi...1402 0207 0014

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA Efficience

Area La

Aica La

Naïve method Viablility

Degeneracy Problem Solution

Conclusion

Problem

- This is not possible¹ for a general system². We're going to be considering gapped 1D systems, which serve as a nice toy-model in which it is.
- Local and gapped interactions give us the <u>area law</u>³, a conjectured structural bound on the complexity of ground states.
- Restricting further to 1D allows us to use a rigorous proof of the area law⁴.

¹Given standard complexity theoretic assumptions, analogous to P \neq NP.

² J. Kempe, A. Kitaev and O. Regev, doi:10/dqbscx, arXiv:quant-ph/0406180, 2004.

³J. Eisert, M. Cramer and M.B. Plenio, doi:10/bts7tp, arXiv:0808.3773, 2008.

⁴v H.... -- vi...1402 0227 2014

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA

Area La

/ (CG _ _ C

Naïve method Viablility

Problem Solution

C---l---

Problem

- This is not possible¹ for a general system². We're going to be considering gapped 1D systems, which serve as a nice toy-model in which it is.
- Local and gapped interactions give us the <u>area law</u>³, a conjectured structural bound on the complexity of ground states.
- Restricting further to 1D allows us to use a rigorous proof of the area law⁴

¹Given standard complexity theoretic assumptions, analogous to $P \neq NP$.

² J. Kempe, A. Kitaev and O. Regev, doi:10/dqbscx, arXiv:quant-ph/0406180, 2004.

³J. Eisert, M. Cramer and M.B. Plenio, doi:10/bts7tp, arXiv:0808.3773, 2008.

⁴Y. Huang, arXiv:1403.0327, 2014

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA Efficiency

Area Lav

Naïve method Viablility

Degeneracy Problem Solution Result

Conclusio

 By efficient we mean that the run-time of the algorithm is polynomial in the system size.

- There are heuristic methods such as the density matrix renormalisation group – which are <u>typically</u> efficient, but are inefficient in the worst-case¹.
- How and why these heuristic methods fail however is poorly understood, our goal is provable-efficiency.
- May leads to a practical algorithm with efficiency guarantees (c.f. linear programming).
- Also sheds more light on which quantum systems can and cannot be classically simulated.

^{1 |} Fisert doi:10/dtkfcr arXiv:guant-ph/0609051 2006

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA Efficiency

Aica Lai

Naïve method Viablility

Degeneracy Problem Solution Result

Conclusio

 By efficient we mean that the run-time of the algorithm is polynomial in the system size.

- There are heuristic methods such as the density matrix renormalisation group – which are <u>typically</u> efficient, but are inefficient in the worst-case¹.
- How and why these heuristic methods fail however is poorly understood, our goal is provable-efficiency.
- May leads to a practical algorithm with efficiency guarantees (c.f. linear programming).
- Also sheds more light on which quantum systems can and cannot be classically simulated.

¹ J. Eisert, doi:10/dtkfcr, arXiv:quant-ph/0609051, 2006.

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA Efficiency

Naïve method

Problem Solution

Conclusio

• By efficient we mean that the run-time of the algorithm is polynomial in the system size.

- There are heuristic methods such as the density matrix renormalisation group – which are <u>typically</u> efficient, but are inefficient in the worst-case¹.
- How and why these heuristic methods fail however is poorly understood, our goal is provable-efficiency.
- May leads to a practical algorithm with efficiency guarantees (c.f. linear programming).
- Also sheds more light on which quantum systems can and cannot be classically simulated.

¹ J. Eisert, doi:10/dtkfcr, arXiv:quant-ph/0609051, 2006.

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA Efficiency

AICA LAV

Naïve method Viablility

Degeneracy Problem Solution Result

Conclusio

 By efficient we mean that the run-time of the algorithm is polynomial in the system size.

- There are heuristic methods such as the density matrix renormalisation group – which are <u>typically</u> efficient, but are inefficient in the worst-case¹.
- How and why these heuristic methods fail however is poorly understood, our goal is provable-efficiency.
- May leads to a practical algorithm with efficiency guarantees (c.f. linear programming).
- Also sheds more light on which quantum systems can and cannot be classically simulated.

¹ J. Eisert, doi:10/dtkfcr, arXiv:quant-ph/0609051, 2006.

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA Efficiency

Area Lav

Naïve method Viablility

Problem Solution

Conclusio

 By efficient we mean that the run-time of the algorithm is polynomial in the system size.

- There are heuristic methods such as the density matrix renormalisation group – which are <u>typically</u> efficient, but are inefficient in the worst-case¹.
- How and why these heuristic methods fail however is poorly understood, our goal is provable-efficiency.
- May leads to a practical algorithm with efficiency guarantees (c.f. linear programming).
- Also sheds more light on which quantum systems can and cannot be classically simulated.

¹ J. Eisert, doi:10/dtkfcr, arXiv:quant-ph/0609051, 2006.

Area Law

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA Efficience

Area Law

Algorith

Naïve metho

Dogonoro

Problem

Conclusion

One barrier to an efficient algorithm is entanglement, it turns out the states we consider only have limited entanglement however.

 For general states the entanglement entropy S of an arbitrary region A obeys a volume law, for ground states of gapped/local systems it is conjectured to obey an area law.

Volume:
$$S(A) = \mathcal{O}(|A|)$$

Area: $S(A) = \mathcal{O}(|\partial A|)$

• Restricting to area law states allows us to use the matrix product state ansatz, an efficient state representation.

Area Law

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA Efficience

Area Law

Algorithm

Naïve metho Viablility

Dogonor

Problem Solution

Conclusio

- One barrier to an efficient algorithm is entanglement, it turns out the states we consider only have limited entanglement however.
- For general states the entanglement entropy *S* of an arbitrary region *A* obeys a volume law, for ground states of gapped/local systems it is conjectured to obey an area law.

Volume:
$$S(A) = \mathcal{O}(|A|)$$

Area: $S(A) = \mathcal{O}(|\partial A|)$

 Restricting to area law states allows us to use the matrix product state ansatz, an efficient state representation.

Area Law

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA Efficienc

Area Law

Algorithm

Naïve method

Viablility Structure

Problem

Solution

Conclusio

- One barrier to an efficient algorithm is entanglement, it turns out the states we consider only have limited entanglement however.
- For general states the entanglement entropy *S* of an arbitrary region *A* obeys a volume law, for ground states of gapped/local systems it is conjectured to obey an area law.

Volume:
$$S(A) = \mathcal{O}(|A|)$$

Area: $S(A) = \mathcal{O}(|\partial A|)$

• Restricting to area law states allows us to use the matrix product state ansatz, an efficient state representation.

A naïve method

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA Efficience

Area La

Naïve method

Viablility

Structure

Degenerac

Problem

Result

Conclusio

ullet We could simply optimise the Hamiltonian: find a mixed state σ by the convex program

min
$$Tr(H\sigma)$$
 where $\sigma > 0$, $Tr \sigma = 1$.

then take $|\Gamma\rangle$ to be the leading eigenvector of σ .

- The domain of σ is however exponentially large, meaning this cannot be computed efficiently.
- This approach can be salvaged if we had some polynomial-sized subspace¹.

¹7eph Landau, Umesh Vazirani and Thomas Vidick, doi:10/xd2, arXiv:1307.5143, 2013.

A naïve method

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA Efficience

Area Lav

Naïve method

Vishilla.

Viablility

Degenera

Problem

Solutio

Conclusio

ullet We could simply optimise the Hamiltonian: find a mixed state σ by the convex program

min
$$Tr(H\sigma)$$
 where $\sigma > 0$, $Tr \sigma = 1$.

then take $|\Gamma\rangle$ to be the leading eigenvector of σ .

- The domain of σ is however exponentially large, meaning this cannot be computed efficiently.
- This approach can be salvaged if we had some polynomial-sized subspace¹.

¹Zeph Landau, Umesh Vazirani and Thomas Vidick, doi:10/xd2, arXiv:1307.5143, 2013.

A naïve method

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA

Area Lav

Algorithm

Naïve method

Viablility

Structure

Degenera

Solution

Result

 \bullet We could simply optimise the Hamiltonian: find a mixed state σ by the convex program

min
$$Tr(H\sigma)$$
 where $\sigma > 0$, $Tr \sigma = 1$.

then take $|\Gamma\rangle$ to be the leading eigenvector of σ .

- ullet The domain of σ is however exponentially large, meaning this cannot be computed efficiently.
- This approach can be salvaged if we had some polynomial-sized subspace¹.

¹Zeph Landau, Umesh Vazirani and Thomas Vidick, doi:10/xd2, arXiv:1307.5143, 2013.

Viable sets

AIP Congress 2014 Talk

C.T. Chubb

Motivatio 1D-GSA Efficiency

Area La

Algorithm

Naïve metho

Degeneracy Problem Solution

Conclusion

A viable set captures the 'local part' of an approximate ground state:

Viable set

A set of states S is (i,δ) -viable if

- The set can be efficiently described.
- The states are defined on the first *i* spins.
- There exists a witness state $|\psi\rangle$ which is an approximate ground state of error δ such that the parts of $|\psi\rangle$ on those first i spins is contained in Span(S).

The span of a i=n viable set forms the desired polynomial subspace for the previous optimisation. Such a set can be constructed inductively.

Viable sets

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA Efficience

Area La

Algorithm

Naïve method

Viablility

Problem Solution A viable set captures the 'local part' of an approximate ground state:

Viable set

A set of states S is (i,δ) -viable if

- The set can be efficiently described.
- The states are defined on the first *i* spins.
- There exists a witness state $|\psi\rangle$ which is an approximate ground state of error δ such that the parts of $|\psi\rangle$ on those first i spins is contained in Span(S).

The span of a i=n viable set forms the desired polynomial subspace for the previous optimisation. Such a set can be constructed inductively.

AIP Congress 2014 Talk

C.T. Chubb

Structure

Stepping from a viable set on i-1 spins to i spins is done via three steps:

$$T = n^{\mathcal{O}(1/\epsilon)}$$

AIP Congress 2014 Talk

C.T. Chubb

Structure

Stepping from a viable set on i-1 spins to i spins is done via three steps:

- 1) Extension: Tensor product the viable set with a basis on the ith spin, causing the set to grow whilst the error is preserved.

$$T = n^{\mathcal{O}(1/\epsilon)}$$

AIP Congress 2014 Talk

C.T. Chubb

Structure

Stepping from a viable set on i-1 spins to i spins is done via three steps:

- 1) Extension: Tensor product the viable set with a basis on the ith spin, causing the set to grow whilst the error is preserved.
- 2) Trimming: Use convex optimisations to remove locally high energy states, bringing the cardinality back down at some error cost.

$$T = n^{\mathcal{O}(1/\epsilon)}$$

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA Efficience

Area La

Algorithm
Naïve metho
Viablility
Structure

Degeneracy Problem Solution

Conclusion

Stepping from a viable set on i-1 spins to i spins is done via three steps:

- 1) Extension: Tensor product the viable set with a basis on the *i*th spin, causing the set to grow whilst the error is preserved.
- 2) Trimming: Use convex optimisations to remove locally high energy states, bringing the cardinality back down at some error cost.
- 3) Error Reduction: Using approximate ground state projectors, bringing down the error at some small cardinality cost.

Along with the final optimisation this give a ground state approximation of inverse-polynomial error in run-time

$$T = n^{\mathcal{O}(1/\epsilon)}$$

where ϵ is the gap.

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA Efficience

Area La

Algorithm
Naïve method
Viablility
Structure

Degeneracy Problem Solution Result Stepping from a viable set on i-1 spins to i spins is done via three steps:

- 1) Extension: Tensor product the viable set with a basis on the *i*th spin, causing the set to grow whilst the error is preserved.
- 2) Trimming: Use convex optimisations to remove locally high energy states, bringing the cardinality back down at some error cost.
- 3) Error Reduction: Using approximate ground state projectors, bringing down the error at some small cardinality cost.

Along with the final optimisation this give a ground state approximation of inverse-polynomial error in run-time

$$T = n^{\mathcal{O}(1/\epsilon)}$$

where ϵ is the gap.

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA Efficience

Area La

Algorithm

Naïve method Viablility Structure

Problem

Solution Result

- The new result is an extension of this algorithm to degenerate systems, with a run-time of the same scaling.
- The main problem is the size-trimming step, which involves optimising over part of the Hamiltonian.
- Degenerate viable sets requires multiple witnesses and simply performing one optimisation only guarantees the existence of one
- As we are only optimising parts of the Hamiltonian, the problem of distinguishability arises.

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA Efficience

Area La

Algorithm
Naïve metho

Naïve method Viablility Structure

Problem

Solution Result

- The new result is an extension of this algorithm to degenerate systems, with a run-time of the same scaling.
- The main problem is the size-trimming step, which involves optimising over part of the Hamiltonian.
- Degenerate viable sets requires multiple witnesses and simply performing one optimisation only guarantees the existence of one.
- As we are only optimising parts of the Hamiltonian, the problem of distinguishability arises.

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA Efficience

Area La

Naïve method Viablility

Structure

Problem

Result

- The new result is an extension of this algorithm to degenerate systems, with a run-time of the same scaling.
- The main problem is the size-trimming step, which involves optimising over part of the Hamiltonian.
- Degenerate viable sets requires multiple witnesses and simply performing one optimisation only guarantees the existence of one.
- As we are only optimising parts of the Hamiltonian, the problem of distinguishability arises.

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA Efficience

Area La

Algorithm

Naïve method

Viablility

Degenerac

Problem Solution

- The new result is an extension of this algorithm to degenerate systems, with a run-time of the same scaling.
- The main problem is the size-trimming step, which involves optimising over part of the Hamiltonian.
- Degenerate viable sets requires multiple witnesses and simply performing one optimisation only guarantees the existence of one.
- As we are only optimising parts of the Hamiltonian, the problem of distinguishability arises.

Degeneracy: The solution

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA

Area La

Algoritha

Naïve method Viablility

Degenera

Problem Solution

Conclusion

Consider a two-fold degeneracy:

• The first step is to perform the original optimisation:

$$\begin{aligned} & \text{min } & \mathsf{Tr}(\mathcal{H}_L\sigma_1) \\ & \text{where } & \sigma_1 \geq 0, \, \mathsf{Tr}\,\sigma_1 = 1 \,, \end{aligned}$$

where H_L is the part of the Hamiltonian defined on the first i spins, and the viable set S_1 is constructed from σ_1 .

 The second step it to restrict to low energies and project away from this viable set, this corresponds to the convex optimisation

min
$$\operatorname{Tr}(P_1\sigma_2)$$
 where $\sigma_2 \geq 0$, $\operatorname{Tr}\sigma_2 = 1$, $\operatorname{Tr}(H_L\sigma_2) \leq \operatorname{Tr}(H_L\sigma_1) + \operatorname{small\ error\ }$.

where P_1 is the projector onto Span(S_1), and S_2 is constructed from σ_2 , analogous to S_1 .

Degeneracy: The solution

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA

Area La

Algorithm

Naïve method Viablility

Degeneracy Problem Solution

Conclusion

Consider a two-fold degeneracy:

• The first step is to perform the original optimisation:

$$\begin{aligned} & \text{min } & \mathsf{Tr}(\mathcal{H}_L\sigma_1) \\ & \text{where } & \sigma_1 \geq 0, \, \mathsf{Tr}\,\sigma_1 = 1 \,, \end{aligned}$$

where H_L is the part of the Hamiltonian defined on the first i spins, and the viable set S_1 is constructed from σ_1 .

• The second step it to restrict to low energies and project away from this viable set, this corresponds to the convex optimisation

$$\begin{split} &\text{min } \mathsf{Tr}(P_1\sigma_2)\\ &\text{where } \sigma_2 \geq 0, \, \mathsf{Tr}\,\sigma_2 = 1,\\ &\mathsf{Tr}(H_L\sigma_2) \leq \mathsf{Tr}(H_L\sigma_1) + \mathsf{small error}\,, \end{split}$$

where P_1 is the projector onto Span(S_1), and S_2 is constructed from σ_2 , analogous to S_1 .

Degeneracy: The result

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA Efficiency

Area Lav

Algorithm
Naïve metho

Viablility Structure

Problem Solution

Result
Conclusion

It turns out that the error of the second witness in S_1/S_2 depends on the distinguishability.

By taking the union the error induced by trimming can be kept low, and the error of the algorithm kept down.

Conclusion

AIP Congress 2014 Talk

C.T. Chubb

1D-GSA

Area La

Algorithm

Naïve metho Viablility Structure

Degeneracy

Problem Solution

Conclusion

• The ground states of any gapped and 1D local spin-chain can be approximated with inverse-polynomial error in run-time

$$T = n^{\mathcal{O}(1/\epsilon)}$$

where ϵ is the gap.

- As such 1D gapped systems are able to be classically simulated to some extent.
- This may lead to practical algorithms with efficiency guarantees.