МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа аэрокосмических технологий

Отчёт о выполнении лабораторной работы 1.4.5

Изучение колебаний струны

Автор: Говорухин Матвей Группа Б03-201

1 Аннотация

Цель работы: изучить поперечные стоячие волны на тонкой натянутой струне; измерить собственные частоты колебаний струны и проверить условие образования стоячих волн; измерить скорость распространения поперечных волн на струне и исследовать её зависимость от натяжения струны.

Оборудование: закрепленная на станине стальная струна, набор грузов, электромагнитные датчики, звуковой генератор, двухканальный осциллограф, частотомер.

2 Теоретические сведения

В работе изучаются поперечные колебания стальной гитарной струны, натянутой горизонтально и закрепленной между двумя неподвижными зажимами. Так как поперечные размеры струны много меньше её длины, то напряжение в струне может быть направлено только вдоль неё. В натянутой струне возникает поперечная упругость, то есть способность сопротивляться всякому изменению формы, происходящему без изменения объёма. При вертикальном смещении произвольного элемента струны, возникают силы, действующие на соседние элементы, и в результате вся струна приходит в движение в вертикальной плоскости, т.е. возбуждение «бежит» по струне. Передача возбуждения представляет собой поперечные бегущие волны, распространяющиеся с некоторой скоростью в обе стороны от места возбуждения. В ненатянутом состоянии струна не обладает свойством поперечной упругости, и поперечные волны на ней невозможны. Скорость распространения поперечной волны равна:

$$u = \sqrt{\frac{F}{\rho_l}}. (1)$$

Так как на концах струны амплитуда колебаний равна нулю, в струну длиной L должно укладываться целое число полуволн:

$$L = \frac{\lambda_n}{2}n.$$

Поскольку длина волны однозначно связана с ее частотой, струна может колебаться только с определенными частотами:

$$\nu_n = \frac{u}{\lambda_n} = \frac{n}{2L}u, \ n \in \mathbb{N}. \tag{2}$$

Набор таких частот называют собственными частотами колебаний струны.

Рис. 1: Стоячие волны (собственные моды колебаний струны) для n = 1,2,3

Резонанс возникает при совпадении внешней синусоидальной силы с частотой собственных колебаний пружины. Струна возбуждается синусоидальным сигналом от генератора при помощи датчика у конца струны. Сигнал в катушке, которая находится в пучности, регистрируется осциллографом.

3 Описание экспериментальной установки

Схема экспериментальной установки изображена на рис. 1. На массивной металлической рейке 1 установлены опора 2 и магнит 3, которые можно перемещать вдоль рейки, а также неподвижная опора 4. Один конец струны закреплен в изоляторе опоры 4. От него струна проходит между полюсами магнита и через опору 2, которая дает возможность струне перемещаться в горизонтальном направлении, неподвижный блок и соединяется с чашкой 5, на которую помещают грузы. Такое устройство необходимо для натяжения струны. К концу струны, закрепленному в изоляторе опоры 4, и к массивной металлической рейке 1 подводится переменное напряжение от звукового генератора 6. Движение струны вызывается силой Ампера, действующей на проводник с током в магнитном поле. Частота действия силы, раскачивающей струну

Рис. 2: Экспериментальная установка

4 Ход работы.

- Искомое значение $ho_{\text{иск}} = 568.4 \, \frac{\text{мг}}{\text{м}}.$
- Колеблющийся участок струны $L = (736 \pm 1)$ мм.
- Погрешность масс грузиков $\sigma_M=0.1$ г.

М, гр	n	1	2	3	4	5	6	7	8	9
1084.1	v, Гц	93.1	188.3	283.3	378.2	473.1	567.9	663.5	759.4	853.3
1565.1	v, Гц	111.7	225.7	338.2	451.8	563.9	679.2	791.1	907.9	1019.6
2045.5	v, Гц	127.9	258.0	386.2	516.7	644.5	775.3	903.7	1034.6	1163.5
2532.7	v, Гц	141.6	285.8	426.7	571.5	714.2	857.7	1000.8	1145.6	1287.6
3020,1	v, Гц	154.7	310.4	466.1	623.1	777.8	934.5	1088.7	1247.1	1401.2
3351.1	v, Гц	163.1	327.0	491.5	654.3	819.3	983.2	1148.1	1312.1	1477.2

Таблица 1: Измерение зависимости частоты колебаний струны от массы М и от числа полуволн n

• По полученным данным строим график зависимости ν от n с помощью МНК и найдём погрешности коэффициентов наклонов прямых $\nu=k_in+b_i$

Рис. 3: График зависимости ν от n,m

Рис. 4: График зависимости u^2 от F

уравнения аппроксимаций для масс соответственно, из которых берем коэффициенты наклона и видим, что свободные члены не равны нулю, а значит аппроксимации не проходят через точку (0;0):

$$97.7x - 20.51$$
 $113.5x - 2.161$
 $129.4x - 1.55$
 $143.3x - 1.872$
 $155.9x - 1.228$
 $164.2x - 1.617$

По полученным данным построим график зависимости u^2 от F. Из формулы (2) $u_i=2Lk_i$ и уравнение аппроксимации: 1707x+2126, отсюда $\rho=\frac{1}{k}\approx (585.8\pm 1.6)\frac{\text{мг}}{\text{м}}$; $\varepsilon_{\rho}=\frac{\sigma_{\rho}}{\rho}\approx 0.3\%$; $\left(\sigma_{\rho}=\frac{\sigma_{b}}{h^2}\right)$

Рис. 5: фигура лиссажу с одним самопересечением

Рис. 6: фигура лиссажу с одним самопересечением

Благодаря высокой добротности струны, возможно возбуждение её колебаний при кратных частотах генератора, меньших, чем ν_1 . Для наблюдения явления переключили осциллограф в режим (X–Y) и настроили установку на наблюдение основной гармоники. Затем уменьшили частоту возбуждения в два раза, установив на генераторе $\nu = \nu_1 \cdot 1/2$..

Рис. 7: АЧХ

5 Вывод

В работе были измерены собственные частоты колебаний тонкой натянутой струны, получена скорость распространения волн в струне и её линейная плотность. Значения экспериментальных данных на обоих графиках хорошо ложатся на аппроксимирующие прямые, но эти прямые не проходят через начало координат. Также полученное значение линейной плотность отличается от искомого на 3%. Само значение ρ измерено с точностью 0.3%. Отличие ρ от искомого более, чем на погрешность, и непрохождение графиков через начало координат может быть связано с:

- Неточностью определения частот с помощью осциллографа из-за возникновения нелинейных эффектов при резонансе.
- Неучтением погрешностей измерения частот.
- неидеальностью системы в узлах струна не совсем неподвижна