AN OVERVIEW OF

SPRING XD

Erik Lupander Callista Enterprise AB

ON THE AGENDA...

- Big Data & Data Ingestion
- Spring XD
- Demo

According to IBM

$$2,5 \times 10^{18}$$

bytes of information is produced each day

That's roughly

~ 2.5 million 1-terabyte hard drives

~ 3,8 billion CD-ROM discs

~1,7 trillion 3.5" floppy discs

BIG DATA

- Big Data can be about ...
 - Collecting data
 - Analyzing data
 - Acting on data
 - And more depending in your context ...
- Machine Learning
 - Is often applied on huge datasets
 - Is often used for drawing conclusions from datasets
 - Fascinating subject
 - But not what this presentation is about
- Spring XD
 - Is about collecting data

SPRING XD

For the sake of context, a few real-world Big Data examples.

BIG DATA — EXAMPLES

General Electric Jet Engine

• ~ one terabyte per flight

BIG DATA — EXAMPLES

2014 U.S GP Formula 1 race

- 18 cars
- 150 sensors per car
- 243 terabytes of data

BIG DATA — EXAMPLES

A modern connected car

• ~ 25 gb per hour

BIG DATA - APPLICATIONS

Oil rigs

- \$150 000 per incident
- 25 000 metrics per second
- Machine Learning
 - Predictive maintenance
 - Early warning
 - Reduce failures
 - Progress anticipation

BIG DATA - APPLICATIONS

Mining industry

Dundee Precious Metals

- Sensor data mining and machine learning
 - Reduce production outages
 - \$60 to \$40 per ton raw material extraction cost

BIG DATA - APPLICATIONS

Commodity futures

Example from Spring One 2GX:

Predict price of corn, soybean and wheat futures for an undisclosed agricultural company using Twitter posts.

- Ingests ~ 50 million tweets per day using Spring XD
- By using various data analysis technologies together with other data sets, crop futures could be forecasted.

DATA INGESTION

- Data Ingestion is about collecting "Big Data"
 - Distributed & Scalable
 - Pipelining
- Data is often heterogenous
 - Protocols (HTTP, JMS, JDBC, TCP/UDP, FTP, ...)
 - Format (JSON, XML, plain text, binary, ...)
- Data may need processing before being sunk into the Data Lake
 - Filtering
 - Transformation
 - Aggregation
 - Splitting
 - Routing
 - (E.g. traditional Integration Patterns)

DATA INGESTION VS INTEGRATION FRAMEWORKS

- Data Ingestion is used for different purposes than Integration Platforms
- Focus is on scalability over correctness:
 - Aggregated data over single data items
 - E.g. metrics
 - Used for enabling analysis of data rather than handling your core business process
 - No focus on guaranteed or eventual data consistency
 - E.g. no transaction, retry or rollback semantics
- Strictly one-way
 - Can't return data to the remote party

SPRING EXTREME DATA

So, what is Spring XD (eXtreme Data)?

"Distributed data pipelines for real-time and batch processing"

SPRING EXTREME DATA

- Which boils down to:
 - Framework for performing Data Ingestion
 - Distributed streaming of real-time data
 - Real-time analysis of data streams at ingestion time
 - Batch Jobs

SPRING XD IN THE BIG DATA CONTEXT

SPRING XD — DISTRIBUTED SYSTEM LANDSCAPE

SPRING XD — A DISTRIBUTED XD NODE

THE XD CONTAINER

SPRING XD OPERATING MODES

- Distributed
 - QA, production etc.
 - Semi-complex infrastructure, more configuration
- Single-node
 - Development purposes

THE SPRING XD STREAM

- Ingest —> Transform —> Sink pattern
- A stream is defined by at least one source and one sink

Direction of data

STREAMS & MODULES

- Each part of a Stream is an XD module
- Each module is a "Spring Integration message flow" component
- Each module connects to the next one in the stream through a "channel"

CHANNELS

- Channels connects the XD modules of a Stream
- Based on distributed message passing
 - RabbitMQ, Redis or Kafka
- Modules in the same Stream can live in totally different XD containers and nodes of the cluster

DISTRIBUTION OF MODULES

THE SPRING XD MODULE

- The XD module is the core building component
- Three major types:
 - Sources Data inputs such as HTTP, TCP, JDBC, JMS, FTP
 - Processors filters, transformers, aggregators, splitters, routers...
 - E.g. Good ol' Integration Patterns
 - Sinks Data outputs. HDFS, JDBC, JMS, HTTP, TCP, FTP, Logs, Files, Null ...
- One special type: Taps
 - Comparable to a wiretap, branches off at a defined position in a Stream with a copy of the payload
- XD comes with ~ 60 ready-to-use modules
- Custom XD modules very easy to develop
 - Groovy scripts, Java, ...

INGEST -> TRANSFORM -> SINK

DSL demo

DSL

THE DEMO

- Make-believe "Fleet Management"
- Simulates 2000 vehicles
- Each submitting one TCP and one HTTP message every two seconds
 - Geolocation & Engine data
- Process and dump TCP into MongoDB
- Log HTTP and TCP
- Realtime analytics

DEMO - LOAD TEST TOOL

- Uses "Gotling" load-test framework
 - Inspired by Gatling, but written i Go.
 - Support for high volumes of HTTP requests and TCP packets
- See http://callistaenterprise.se/blogg/teknik/2015/11/22/gotling

GOTLING SIMULATION SPECIFICATION

```
iterations: 500
users: 2000
rampup: 60
feeder:
 type: csv
 filename: fleetdata.csv
actions:
  - sleep:
      duration: 1
  - http:
      title: Submit Geolocation data
     method: POST
      url: http://localhost:10000
      accept: json
      body: '{"vehicleid":${UID},"lat":${lat},"lon":${lon}}'
  - sleep:
      duration: 1
  - tcp:
      title: TCP engine data packet
      address: 127.0.0.1:8081
      payload: ${UID}|${dp1}|${dp2}|${dp3}|${dp4}|${dp5}
```


DEMO STREAMS - HTTP GEOLOCATION

DEMO STREAMS — TCP ENGINE DATA

CUSTOM PROCESSOR USING GROOVY

DSL SNIPPET

```
... | transform --script=totuple.groovy | ...
```

totuple.groovy

DEMO

SPRING CLOUD DATA FLOW VS SPRING XD

- Spring Cloud Data Flow
 - "Cloud-native Data Ingestion"
- Redesign of Spring XD for the Cloud
 - Uses the same DSL, admin shell, GUI etc.
- Geared for cloud-based (PaaS) runtime environments
 - Pivotal Cloud Foundry
 - YARN
 - Apache Mesos
 - Kubernetes

SIMILAR PROJECTS / PRODUCTS

- Apache Spark Streaming (Berkeley)
- Apache Storm (Twitter)
- Gobblin (LinkedIn)

SUMMARY

- Big Data & Data Ingestion:
 - Huge subject with many use cases and perspectives
 - Data Ingestion is important:
 - Many Data Scientists spend > 50% time on data setup
 - Data is diverse
 - There are a lot of data out there!
- Spring XD:
 - Provides a scalable framework for ingesting data
 - Simple DSL and decent admin tools
 - Easy to extend and customize
 - Slightly complex runtime environment
 - Spring Cloud Data Flow may be an option
 - Is NOT a traditional Integration Framework

SUMMARY

Thanks for listening!

SUMMARY

Questions?

SOME URLS

Dundee Precious Metals:

http://www.wsj.com/articles/mining-sensor-data-to-run-a-better-gold-mine-1424226463

GE Jet engine:

http://www.bloomberg.com/bw/articles/2012-12-06/ge-tries-to-make-its-machines-cool-and-connected

Connected car:

https://www.hds.com/assets/pdf/hitachi-point-of-view-internet-on-wheels-and-hitachi-ltd.pdf

F1 teams

http://www.forbes.com/sites/frankbi/2014/11/13/how-formula-one-teams-are-using-big-data-to-get-the-inside-edge/

Oil Industry

https://blog.pivotal.io/pivotal/case-studies/data-as-the-new-oil-producing-value-for-the-oil-gas-industry