定理 7.11 设 G 是 $n(n \geq 6)$ 阶简单无向连通图, $\lambda(G) < \delta(G)$,则必存在由 K_{n_1}, K_{n-n_1} 及在它们之间适当地连入 $\lambda(G)$ 条边,含 G 作为生成子图的图 G^* ,其中 $\lambda(G) + 2 \leq n_1 \leq \left\lfloor \frac{n}{2} \right\rfloor$.

推论

- (1) $\delta(G) \le \delta(G^*) \le n_1 1 \le \left| \frac{n}{2} \right| 1;$
- (2) G^* 中存在不相邻的顶点 u, v,使得 $d_{G^*}(u) + d_{G^*}(v) \le n 2$;
- (3) $d(G) \ge d(G^*) \ge 3$.

定理 7.12 设 $G \neq n(n > 6)$ 阶连通简单无向图.

- (1) $\not\equiv \delta(G) \ge \left| \frac{n}{2} \right|$, $\not\bowtie \lambda(G) = \delta(G)$;
- (2) 若对于 G 中任意一对不相邻的顶点 u, v 均有 $d(u) + d(v) \ge n 1$,则 $\lambda(G) = \delta(G)$;
- (3) 若 $d(G) \leq 2$, 则 $\lambda(G) = \delta(G)$.

定理 7.13 设 $G \in \mathbb{R}$ 阶无向简单连通图,且 G 不是完全图 K_n ,则

$$\kappa(G) \ge 2\delta(G) - n + 2.$$

定理 7.14 对于给定的正整数 $n, \delta, \kappa, \lambda$, 存在 n 阶简单连通无向图 G, 使得 $\delta(G) = \delta$, $\kappa(G) = \kappa$, $\lambda(G) = \lambda$ 的充分必要条件是下列三式之一成立:

- (1) $0 \le \kappa \le \lambda \le \delta < \left\lfloor \frac{n}{2} \right\rfloor;$
- (2) $1 \le 2\delta n + 2 \le \kappa \le \lambda = \delta < n 1$;
- (3) $\kappa = \lambda = \delta = n 1$.

定理 7.15 (Whitney) 设 G 为 $n(n \ge 3)$ 阶无向连通图, G 为 2-连通图当且仅当 G 中任意两个项点共图。

定理 7.16 设 G 为 $n(n \ge 3)$ 阶无向图, G 为 2 边-连通图当且仅当 G 中任何两个顶点共简单回路.

定理 7.17 设 v 为无向连通图 G 中的一个顶点,v 为 G 的割点当且仅当存在 V(G)-v 的一个划分: $V(G)-v=V_1\cup V_2$,使得对于任意的 $u\in V_1$,任意的 $w\in V_2$,v 在每一条 u 到 w 的路径上.

推论 设v为无向连通图 G中的一个项点,v为割点当且仅当存在与v不同的两个项点 u 和w,使v处在每一条从u到v 的路径上.

定理 7.18 设 e 为无向连通图 G 中的一条边,e 是 G 的桥当且仅当 e 不在 G 中的任何圈上.

定理 7.19 设 e 为无向连通图 G 中的一条边,e 为桥当且仅当存在 V(G) 的一个划分: $V(G) = V_1 \cup V_2$ 使得对于任意的 $u \in V_1, v \in V_2$,e 在每一个 u 到 v 的路径上.

定理 7.20 设 G 为 $n(n \ge 3)$ 阶无向简单连通图,则下面命题是等价的:

- (1) G是块;
- (2) G中任意二顶点共圈;
- (3) G中任意一个顶点与任意一条边共圈;
- (4) G中任意两条边共圈;
- (5) 任给 G 中两个顶点 u, v 和一条边 e, 存在从 u 到 v 经过 e 的路径;
- (6) 对于 G 中的任意 3 个顶点中的两个顶点,都存在从一个顶点到另一个顶点且含第 3 个顶点的路径:
- (7) 对于 G 中任意 3 个顶点中的任意两个顶点,都存在从一个顶点到另一个顶点而不含第 3 个顶点的路径.