Optimization for Machine Leanning Stochastic Gradient Pt2 October 19, 2023
Stochastic Gradient Pt2
5 crobe 19, 2023
· ·
Today: Theory + Exercise
Monday: Advanced methods + (ab (bring laptops if you can)

THEORY OF STOCHASTIC GRADIENT

Setup

minimize
$$f(z) = \frac{1}{n} \sum_{i=1}^{m} f_i(z)$$

 $x \in \mathbb{R}^d$ $f_i \in \mathbb{R}^d$

fired >1R C1

and fi depends on the

ith point in a dataset

of Size m (with

m>71)

Stochastic gradient iteration:

ile random index in 14, -, m}

Gnadient descent (GD)
$$\chi_{h+1} = \chi_h - \chi_h \nabla f(\chi_h) = \chi_h - \chi_h \sum_{i=1}^{N} \mathcal{F}_i(\chi_h)$$

L) For GD, we can prove convergence rates when the function g is CLAL (C1+L-Lipschitz continuous quadrent):

$$\forall k > 1$$
, min $||\nabla f(x_k)|| \leq O\left(\frac{1}{\sqrt{K}}\right)$

If in addition f is n-strongly convex, can show f(x) = f(x) = f(x) = f(x) f(x) = f(x) f(x) = f(x) f(x) = f(x)

QJ (au ve prove convergence ratter for SG?
A semption: I is CL and u-strongly convex for some uso "L-smooth"
Since f is C^1 and μ -strategy convex, $f(x) + f(x)^2$ $f(x) + f(x)^2$ $f(x) + f(x)^2$ $f(x) + f(x)^2$
(2) $\forall (x,3) \in (\mathbb{R}^d)^2$, $g(3) \leq g(x) + \nabla f(x)^{\top}(3-x) + \frac{1}{2} 3-x ^2$
(=) L 7/h
(a) Applying (2) with $x = x_k$ and $y = x_{k+1}$ (two iterates from the stochastic gradient method) gives $f(x_{k+1}) \leq f(x_k) - x_k \nabla f(x_k) \nabla f_{ik}(x_k) + \sum_{k=1}^{n} d_k \nabla f_{ik}(x_k) ^2$
Assumptions on the stochastic gradients the random indices $\{i_0, i_1, \dots \}$ are drawn so that i) it is drawn independently of $i_0, \dots $ that $\{i_1, i_2, \dots \}$ ii) Eig [$\nabla f_{ik}(x_k)$] = $\nabla f_{ik}(x_k)$ iii) Eig [$\nabla f_{ik}(x_k)$] $= \langle f_{ik}(x_k)$
rice) Wike [11 Vaix (m) 11] -

(N)

Stotracting for or both sides, we get $\mathbb{F}_{ik}\left[\left\{\left(\chi_{k+1}\right)-\int_{0}^{b}\right]\leq \left\{\left(\chi_{k}\right)-\int_{0}^{b}-\frac{1}{2L}\|\nabla f(\chi_{k})\|^{2}+\frac{\sigma^{2}}{2L}\right]$ Using flat fis u-rhangly convex, we have $||\nabla f(xu)||^2 > 2\mu \left(f(xu) - f^* \right)$ (as a consequence of (n)) $f_{ih} \left[\int (x_{i+1}) - \int_{0}^{6} \right] \leq \int (x_{i}) - \int_{0}^{4} - \mu \left(\int (x_{i}) - \int_{0}^{4} \right) + \frac{\sigma^{2}}{2L}$ (fin [f(xu+1) - fo] = (1-/L) (f(xu) -fo) + 02/2L $= \left(\Lambda - \frac{\mu}{L} \right) \left(\int \left(\mu_{k} \right) - \int_{k}^{k} - \frac{\sigma^{2}}{2\mu} \right)$ + (1-/2) 5 + 52 + 52 - 02 + 02 = (1-/2) (J(xh) - f - 5) + 5 2 $\mathbb{F}_{ih}\left[f(x_h)-f^b\right]\leq (1-\frac{\mu}{2})\left(f(x_h)-f^b-\frac{\sigma^2}{2\mu}\right)+\frac{\sigma^2}{2\mu}$ Ein [p(xk+1)-f"-52) < (1-12) (f(xh)-f"-52)
Hilleretron k?

We can apply this inequality necessively by taking the appropriate expected value

Ly the analysis above partly explains one strategy in learning rate scheduling which consists in running SG with fixed a >0 until the average function value appears to stall MMMM
until the average function value appears to stall
then decreasing \propto (e.g. by a factor of 2) and run SG again until the same phenomenon is observed
Marine de la company de la com
=) Such strategies can be analyzed using similar tools as those used to analyze SC with decreasing stepsizes
$\alpha_{k} > 0$
In Suppose that we run Kilvertions of SG with $x_k = \frac{R}{k+3}$ where $x_0 = \frac{1}{k+3}$ where $x_0 = \frac{1}{k+3}$ and $x_0 = \frac{1}{k+3}$
$\mathbb{E}\left[f(x_{k})-f^{*}\right] \leq O\left(\frac{1}{k+8}\right) = O\left(\frac{1}{k}\right)$
Unlike in the contant stepsize case, this neall granantees that $f(xx) - f''$ converges to 0 in expectation
Ly the rate of convergence is the which is worse than (1-Me) K that we had for S6 with contant step size and for GD
(amparing the two rates: SG F[f(k)-f°] & O(\frac{1}{k}) GD f(xn)-f° & O((1/\frac{1}{k})^k)

Lis If we compare the nates of SG and GD with the same number of iterations, then the results are better for GD (deterministic + better rate)
LIBUT an iteration of SG is less expensive than an iteration of GD in terms of accesses to data points The number of accesses to data points The number of accesses to data points The number of accesses to data points
1 epoch = cost of n accesses to a data point
1 Newhor of GD GNs 1 epoch SG GNS 1 epoch
Cusides now that we wan GO and SG for NE > 1 epochs
$\int (2N_{\varepsilon}) - \int^{\infty} \leq O\left(\left(1 - \frac{1}{L}\right)^{N_{\varepsilon}}\right)$
NE epochs = MNESG : Verelow
$ \left(\frac{1}{m N_{\varepsilon}} \right) \leq C \left(\frac{1}{m N_{\varepsilon}} \right) $
If m>>NE, then Inve (1-12/NE) SG has a better rate (in expectation) than GD in that setting

2) Extensions -> To the convex and nonconvex cases . Convex, C1,1 J: 5 mlar conlusion than in the strongly Fixed of: CV to an interval in $O(\frac{1}{K})$ (some nate than GO)

Decreasing of: CV to go in $O(\frac{1}{K})$ (while than GO)

GO) [] (xx) - 6,) Jelle rete han 60 when m>> much $\left\{ \left\{ \frac{1}{\sum_{k=0}^{K-1} \alpha_k} \sum_{k=0}^{\infty} \left(\left(x_k \right) \mu^2 \right) \right\}$ weighted overage of the lostor contant de: Theo (m) 12 coverento

with the content of (m) 12 coverento

an interval

rate O(te) L) For deneating of: Rate is $G\left(\frac{1}{\sqrt{R}}\right)$ F[1 [x, 1] (hu)) >0 Corollary of the roult for decreening oh: . $MOS(x_{k(K)}) M \rightarrow 0$ in possibility

k(K) is a random index in 0,..., R-1 AK>1 P(b(K)=j) = \[\frac{\sigma_{k=1}}{\sum_{k=2}} \pi_{k} \] to 56 on norconvex findrans, you can get granulees on a rouder sequence drawn from the -> To botch SG methods $\chi_{her} = \chi_h - \frac{\chi_k}{|S_k|} \leq \frac{|S_k|}{|S_k|}$ Sk is a set indian drawn randonly in 41, -, m> (with or without replacement) . By adapting the assumptions on his for SG to enjoyers on Sht, can prove similar rate for the betch variouts => the results still defen from SG, and they help in explaining how batch methods have lower variance. Ex) Convair step of to betch age of mb E[1,n],

J (21, n.sharpy convex, She = Mb iid indices then, after Kirenatione, $\mathbb{E}\left[f(x_{k})-f^{*}\right]\leq\frac{\sigma^{2}}{2nm_{b}}+\left(1-\frac{n}{L}\right)^{k}\left[f(x_{b})-f^{*}-\frac{\sigma^{2}}{2nm_{b}}\right]$ (Essentially o²-) $\frac{\sigma^2}{m_b}$

- 1) what does this north in ply or the convergence of

 If [f(ree)-fo]? Is the rost better than that

 of SG?
 - 2) Sippose that we ven SG with $d_{L} = \frac{1}{m_{L}}$ where $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ where $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ where $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ where $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ where $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ where $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ and $m_{L} = \frac{1}{m_{L}}$ where $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ and $m_{L} = \frac{1}{m_{L}}$ where $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ and $m_{L} = \frac{1}{m_{L}}$ where $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ and $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ and $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ and $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ and $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ and $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ and $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ and $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ and $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ and $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ and $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ and $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ and $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ and $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ and $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ and $m_{L} = \frac{1}{m_{L}}$ is the $m_{L} = \frac{1}{m_{L}}$ and $m_{L} = \frac{1}$