Module G12 : Correction du contrôle continu n° 2

Exercice 1. 1. Les variables aléatoires $(X_n)_{n\geq 1}$ sont réelles donc, pour tout entier $r\geq 1$, $A=\left\{\sup_{n\geq r}X_n<+\infty\right\}$: A est un événement asymptotique de la suite $(X_n)_{n\geq 1}$.

- **2.** B n'est pas un événement asymptotique de $(X_n)_{n\geq 1}$. Voici un contre-exemple. Plaçons-nous sur $([0,1],\mathcal{B}([0,1]))$ muni de la mesure de Lebesgue et prenons $X_1=\mathbf{1}_{[1/2,1]},\,X_n=0$ si $n\geq 2$ de sorte que $\{\sup_{n\geq 1}X_n\leq 1/2\}=\{X_1\leq 1/2\}=[0,1/2[$. Or, pour tout $r\geq 1,\,\mathcal{A}^r=\{\emptyset,[0,1]\}$ et donc $\mathcal{A}^{\infty}=\{\emptyset,[0,1]\}:B\not\in\mathcal{A}^{\infty}$.
- **3.** D'après l'inégalité de Markov, on a, pour tout $\varepsilon > 0$,

$$\mathbb{P}(|X_n| > \varepsilon) \le \varepsilon^{-1} \, \mathbb{E}[|X_n|].$$

Si donc $(X_n)_{n\geq 1}$ converge vers 0 dans L^1 , elle converge aussi vers 0 en probabilité.

4. La convergence dans L¹ vers 0 n'implique pas la convergence dans L² vers 0. Voici un contre-exemple. Prenons, pour tout $n \ge 1$, $1 - \mathbb{P}(X_n = 0) = \mathbb{P}(X_n = n) = n^{-2}$. On a $\mathbb{E}[|X_n|] = n^{-1}$ et $\mathbb{E}[|X_n|^2] = 1$.

Exercice 2. 1. On a $\mathbb{E}[S_n] = \mathbb{E}[X_1] + \ldots + \mathbb{E}[X_n]$ et puisque les v.a. sont indépendantes $\mathbb{V}(S_n) = \mathbb{V}(X_1) + \ldots + \mathbb{V}(X_n)$. Or, pour tout $k \geq 1$, comme $X_k \in \{0, 1\}$,

$$\mathbb{E}[X_k] = \mathbb{P}(X_k = 1) = \frac{1}{\sqrt{k}}, \qquad \mathbb{V}(X_k) = \mathbb{E}\left[X_k^2\right] - \mathbb{E}[X_k]^2 = \mathbb{E}[X_k] - \mathbb{E}[X_k]^2 = \frac{1}{\sqrt{k}} - \frac{1}{k}.$$

Par conséquent, $\mathbb{E}[S_n] = \sum_{k=1}^n \frac{1}{\sqrt{k}}$ et $\mathbb{V}(S_n) = \sum_{k=1}^n \frac{1}{\sqrt{k}} - \frac{1}{k}$. On a clairement $\mathbb{V}(S_n) \leq \mathbb{E}[S_n]$.

2. Puisque $\mathbb{E}[S_n] > 0$, $\mathbb{P}(|Y_n - 1| > \varepsilon) = \mathbb{P}(|S_n - \mathbb{E}[S_n]| > \varepsilon \mathbb{E}[S_n])$ et on obtient, via l'inégalité de Tchebycheff, comme $\mathbb{V}(S_n) \leq \mathbb{E}[S_n]$,

$$\mathbb{P}(|S_n - \mathbb{E}[S_n]| > \varepsilon \mathbb{E}[S_n]) \le \frac{\mathbb{V}(S_n)}{\varepsilon^2 \mathbb{E}[S_n]^2} \le \frac{1}{\varepsilon^2 \mathbb{E}[S_n]}.$$

Comme $\lim_{n\to+\infty} \mathbb{E}[S_n] = +\infty$, $(Y_n)_{n\geq 1}$ converge vers 1 en probabilité.

3. Pour tout $n \in \mathbb{N}^*$, $\mathbb{E}[S_{n^4}] \ge 2(n^2 - 1)$ et donc, si $n \ge 2$,

$$\mathbb{P}(|Y_{n^4} - 1| > \varepsilon) \le \frac{1}{\varepsilon^2 \, \mathbb{E}[S_{n^4}]} \le \frac{1}{2\varepsilon^2 (n^2 - 1)}$$

qui est le terme général d'une série convergente. D'après le lemme de Borel-Cantelli, pour tout $\varepsilon > 0$, $\mathbb{P}(\limsup\{|Y_{n^4} - 1| > \varepsilon\}) = 0$: $(Y_{n^4})_{n \geq 1}$ converge vers 1 presque sûrement.

4. (a) Soit $n \in \mathbb{N}^*$, on a $p_n \le n^{1/4} < p_n + 1$ et donc $p_n^4 \le n < (p_n + 1)^4$. Les variables $(X_n)_{n \ge 1}$ étant positives, on a

$$S_{p_n^4} \leq S_n \leq S_{(p_n+1)^4}, \qquad \mathbb{E}\left[S_{p_n^4}\right] \leq \mathbb{E}[S_n] \leq \mathbb{E}\left[S_{(p_n+1)^4}\right],$$

puis, comme $\mathbb{E}\left[S_{p_n^4}\right] > 0$,

$$\frac{S_{p_n^4}}{\mathbb{E}[S_{(p_n+1)^4}]} \leq Y_n \leq \frac{S_{(p_n+1)^4}}{\mathbb{E}[S_{p_n^4}]}.$$

(b) On a, pour tout $n \geq 2$,

$$1 \le \frac{\mathbb{E}[S_{(n+1)^4}]}{\mathbb{E}[S_{n^4}]} \le \frac{2(n+1)^2}{2(n^2-1)},$$

ce qui donne la limite requise.

(c) Écrivons, pour $n \ge 1$,

$$\frac{\mathbb{E}[S_{p_n^4}]}{\mathbb{E}[S_{(p_n+1)^4}]}\,Y_{p_n^4} \leq Y_n \leq Y_{(p_n+1)^4}\,\frac{\mathbb{E}[S_{(p_n+1)^4}]}{\mathbb{E}[S_{p_n^4}]}.$$

Puisque $p_n \geq n^{1/4} - 1$, $\lim_{n \to +\infty} p_n = +\infty$; donc $(Y_{p_n})_{n \geq 1}$ converge vers 1 presque sûrement et $\mathbb{E}\left[S_{(p_n+1)^4}\right]/\mathbb{E}\left[S_{p_n^4}\right] \longrightarrow 1$. L'encadrement précédent et le « théorème des gendarmes » conduisent alors au résultat.