Subjectul 1 (3 puncte)

Se dă un graf neorientat ponderat G cu n>3 vârfuri, m muchii și un vârf s. Informațiile despre graf se citesc din fișierul *graf.in* cu structura:

- pe prima linie sunt n și m
- pe următoarele m linii sunt câte 2 numere naturale reprezentând extremitățile unei muchii
- pe ultima linie este un vârf sursă s.

Pentru un lanț P în G definim ponderea lanțului P ca fiind produsul ponderilor muchiilor care îl compun.

Dacă G este arbore, să se afișeze pentru fiecare vârf v ponderea unicului lanț elementar de la s la v (sub forma v: pondere lanț de la s la v), altfel să se afișeze un arbore parțial al componentei care conține s. **Complexitate O(n+m)**

graf.in	lesire pe ecran	
65	Este arbore	
123	1:0	
132	2: 3	
2 4 2	3: 2	
351	4: 6	
363	5: 2	
1	6: 6	

Subjectul 2 (3 puncte)

Se citesc informații despre un graf **neorientat** ponderat conex G din fișierul graf.in. Fișierul are următoarea structură:

- pe prima linie sunt două numere reprezentând numărul de vârfuri n (n>4) și numărul de muchii m ale grafului, **m>n**
- pe următoarele m linii sunt câte 3 numere pozitive reprezentând extremitatea inițială, extremitatea finală și costul unei muchii din graf
- a) Să se afișeze costul unui arbore parțial de cost minim în G. Complexitate O(mlog(n)).
- b) Se citesc de la tastatură două muchii **noi** date tot prin extremitatea inițială, extremitatea finală și cost. Știind că **doar una** dintre aceste muchii se va adăuga la graful G, decideți pe care o adăugați astfel încât noul graf să aibă un arbore parțial de cost minim cu cost cât mai mic și afișați muchiile unui arbore parțial de cost minim în acest graf. **Complexitate O(n)**

Exemplu

graf.in	Iesire pe ecran (nu conteaza
	ordinea în care sunt afisate
	muchiile)
5 5	a)
121	13
1 4 2	b)
2 3 4	adaugam 3 5
3 4 8	12
4 5 6	14
	2 3
Intrare de la tastatura	3 5
3 5 5	
135	

Subjectul 3 (3 puncte)

Propuneți un algoritm bazat pe algoritmul Ford-Fulkerson / Edmonds Karp pentru rezolvarea următoarei probleme.

Pentru n proiecte, numerotate 1,..., n s-au înscris m studenți numerotați 1,...,m, fiecare student depunând o listă de optiuni cu proiectele la care vrea să participe.

- a) Dat un număr k de la tastatură, să de determine o listă de k asocieri proiect student prin care k studenți diferiți sunt asociați la k proiecte diferite **Complexitate O(km)**
- b) Să se determine, dacă există, o modalitatea de a asocia toți studenții la proiecte astfel încât un student să fie asociat la exact 2 proiecte, iar la un proiect să fie asociați exact 2 studenți și să se afișeze o astfel de modalitate sub forma prezentată în exemplul de mai jos. Altfel se va afișa mesajul "nu este posibil". **Complexitate O(nm)**

Datele despre proiecte și studenți se vor citi dintr-un fișier cu următoarea structură:

- pe prima linie sunt numerele naturale n și m
- pe următoarele linii sunt perechi de numere naturale i j cu $i \in \{1,..., n\}$ și $j \in \{1,..., m\}$ cu semnificația: studentul j s-a înscris la proiectul i.

graf.in	lesire pe ecran (solutia nu este unica)
4 4	a)
11	pentru k=2
12	asocieri proiect - student
13	11
2 1	2 2
2 2	b)
31	asocieri proiect-student
33	11
3 4	12
43	2 1
4 4	2 2
	33
(primul este indicele proiectului, al doilea al	3 4
studentului)	4 3
	4 4

