AMENDMENTS TO THE CLAIMS

1-2. (Cancelled)

3. (Original) A single crystal substrate comprising:

a langasite substrate with a SAW propagation surface; and

input and output IDTs having electrodes on the surface for launching and/or detecting

surface acoustic waves, wherein a direction of surface wave propagation is parallel to an X'-axis,

and the substrate further has an Z'-axis perpendicular to the surface and a Y'-axis parallel to the

surface and perpendicular to the X'-axis, the langasite substrate having a crystal orientation

defined by modified axes X, Y and Z, the relative orientation of axes X', Y' and Z' being

defined by Euler angles ϕ , θ and ψ , in which ϕ is 0° , θ is in a range of $12^{\circ} \le \theta \le 17^{\circ}$, and ψ is in a

range of $73^{\circ} \le \psi \le 78^{\circ}$.

4. (Original) The single crystal substrate according to claim 3, wherein optimal Euler

angles of the langasite are $\phi = 0^{\circ}$, $\theta = 14.6^{\circ}$ and $\psi = 76.2^{\circ}$.

5. (Original) A single crystal substrate comprising:

a quartz substrate with a SAW propagation surface; and

input and output IDTs having electrodes on the surface for launching and/or detecting

surface acoustic waves, wherein a direction of surface wave propagation is parallel to an X'-axis,

and the substrate further has an Z'-axis perpendicular to the surface and a Y'-axis parallel to the

surface and perpendicular to the X'-axis, the quartz substrate having a crystal orientation defined

Amendment dated September 26, 2006 Reply to Office Action of July 20, 2006 Docket No.: 3449-0404PUS1

Page 4 of 14

by modified axes X, Y and Z, the relative orientation of axes X', Y' and Z' being defined by Euler angles ϕ , θ and ψ , in which ϕ is in a range of $-5^{\circ} \le \phi \le +5^{\circ}$, θ is in a range of $60^{\circ} \le \theta \le 80^{\circ}$

and ψ is in a range of $-5^{\circ} \le \psi \le +5^{\circ}$.

6. (Original) The single crystal substrate according to claim 5, wherein optimal Euler

angles of the quartz are $\phi = 0^{\circ}$, $\theta = 70.5^{\circ}$ and $\psi = 0^{\circ}$.

7. (Original) A single crystal substrate comprising:

a quartz substrate with a SAW propagation surface; and

input and output IDTs having electrodes on the surface for launching and/or detecting surface acoustic waves, wherein a direction of surface wave propagation is parallel to an X'-axis, and the substrate further has an Z'-axis perpendicular to the surface and a Y'-axis parallel to the surface and perpendicular to the X'-axis, the quartz substrate having a crystal orientation defined by modified axes X, Y and Z, the relative orientation of axes X', Y' and Z' being defined by Euler angles ϕ , θ and ψ , in which ϕ is 0° , θ is in a range of $17^{\circ} \le \theta \le 23^{\circ}$ and ψ is in a range of $10^{\circ} \le \psi \le 20^{\circ}$.

8. (Original) The single crystal substrate according to claim 7, wherein optimal Euler angles of the quartz are $\phi = 0^{\circ}$, $\theta = 20^{\circ}$ and $\psi = 13.7^{\circ}$.

9. (Original) A single crystal substrate comprising:

a lithium tantalate substrate with a SAW propagation surface; and

input and output IDTs having electrodes on the surface for launching and/or detecting surface acoustic waves, wherein a direction of surface wave propagation is parallel to an X'-axis, and the substrate further has an Z'-axis perpendicular to the surface and a Y'-axis parallel to the surface and perpendicular to the X'-axis, the lithium tantalate substrate having a crystal orientation defined by modified axes X, Y and Z, the relative orientation of axes X', Y' and Z' being defined by Euler angles ϕ , θ and ψ , in which ϕ is in a range of $-5^{\circ} \le \phi \le +5^{\circ}$, θ is in a range of $70^{\circ} \le \theta \le 90^{\circ}$ and ψ is in a range of $85^{\circ} \le \psi \le 95^{\circ}$.

- 10. (Original) The single crystal substrate according to claim 9, wherein optimal Euler angles of the lithium tantalate are $\phi = 0^{\circ}$, $\theta = 79^{\circ}$ and $\psi = 90^{\circ}$.
 - 11. (Original) A single crystal substrate comprising:
 - a lithium tantalate substrate with a SAW propagation surface; and

input and output IDTs having electrodes on the surface for launching and/or detecting surface acoustic waves, wherein a direction of surface wave propagation is parallel to an X'-axis, and the substrate further has an Z'-axis perpendicular normal to the surface and a Y'-axis parallel to the surface and perpendicular to the X'-axis, the lithium tantalate substrate having a crystal orientation defined by modified axes X, Y and Z, the relative orientation of axes X', Y' and Z' being defined by Euler angles ϕ , θ and ψ , in which ϕ is in a range of $-5^{\circ} \le \phi \le +5^{\circ}$, θ is in a range of $160^{\circ} \le \theta \le 180^{\circ}$ and ψ is in a range of $85^{\circ} \le \psi \le 95^{\circ}$.

12. (Original) The single crystal substrate according to claim 11, wherein optimal Euler angles of the lithium tantalate are $\phi = 0^{\circ}$, $\theta = 168^{\circ}$ and $\psi = 90^{\circ}$.

13. (Original) A single crystal substrate comprising:

a lithium tantalate substrate with a SAW propagation surface; and

input and output IDTs having electrodes on the surface for launching and/or detecting surface acoustic waves, wherein a direction of surface wave propagation is parallel to an X'-axis, and the substrate further has an Z'-axis perpendicular to the surface and a Y'-axis parallel to the surface and perpendicular to the X'-axis, the lithium tantalate substrate having a crystal orientation defined by modified axes X, Y and Z, the relative orientation of axes X', Y' and Z' being defined by Euler angles ϕ , θ and ψ , in which ϕ is in a range of $-5^{\circ} \le \phi \le +5^{\circ}$, θ is in a range of $20^{\circ} \le \theta \le 40^{\circ}$ and ψ is in a range of $5^{\circ} \le \psi \le 25^{\circ}$.

14. (Original) The single crystal substrate according to claim 13, wherein optimal Euler angles of the lithium tantalate are $\phi = 0^{\circ}$, $\theta = 30^{\circ}$ and $\psi = 16.5^{\circ}$.

15-18. (Cancelled)

19. (New) A single crystal substrate comprising:

a langasite substrate with a SAW propagation surface; and

input and output IDTs having electrodes on the surface for launching and/or detecting surface acoustic waves, wherein a direction of surface wave propagation is parallel to an X'-axis, Birch, Stewart, Kolasch & Birch, LLP

JTE/GH/cl

and the substrate further has an Z'-axis perpendicular to the surface and a Y'-axis parallel to the surface and perpendicular to the X'-axis, the langasite substrate having a crystal orientation defined by modified axes X, Y and Z, the relative orientation of axes X', Y' and Z' being defined by Euler angles ϕ , θ and ψ , in which optimal Euler angles of the langasite are $\phi = 10^{\circ}$, θ = 23.6° and ψ = 78.8° such that a power flow angle and a first order temperature coefficient of delay are substantially zero (0).

- 20. (New) A cutting method of a single crystal substrate comprising the steps of:
- (a) defining a crystal orientation based on modified axes X, Y and Z, for the surface of the single crystal substrate which surface acoustic waves are propagated;
- (b) defining X', Y' and Z' axes on the single crystal substrate, in which a direction of surface wave of the propagation is parallel to X'-axis and the Z'-axis is perpendicular to the surface wave and the Y'-axis is parallel to the surface and normal to the X'-axis;
- (c) defining the X', Y' and Z' axes defined at (b) as relative orientation Euler angles of crystals, ϕ , θ and ψ ; and
- (d) setting a range of the ϕ , θ , and ψ defined at (c) in an optimal range in accordance with a type of the substrate, wherein the single crystal substrate is one of a langasite substrate, a quartz substrate and a lithium tantalite substrate,

when the single crystal substrate is the langasite substrate, selecting the range of the ϕ , θ , and ψ to be either that $\phi = 10^{\circ}$, $\theta = 23.6^{\circ}$ and $\psi = 78.8^{\circ}$ such that a power flow angle and a first order temperature coefficient of delay are substantially zero (0), or that ϕ is 0° , θ is in a range of $12^{\circ} \le \theta \le 17^{\circ}$, and ψ is in a range of $73^{\circ} \le \psi \le 78^{\circ}$;

Amendment dated September 26, 2006 Reply to Office Action of July 20, 2006 Docket No.: 3449-0404PUS1

Page 8 of 14

when the single crystal substrate is the quartz substrate, selecting the range of the ϕ , θ , and ψ to be either that ϕ is in a range of $-5^{\circ} \le \phi \le +5^{\circ}$, θ is in a range of $60^{\circ} \le \theta \le 80^{\circ}$ and ψ is in a range of $-5^{\circ} \le \psi \le +5^{\circ}$, or that ϕ is 0° , θ is in a range of $17^{\circ} \le \theta \le 23^{\circ}$ and ψ is in a range of $10^{\circ} \le \psi \le 20^{\circ}$;

when the single crystal substrate is the lithium tantalite substrate, selecting the range of the ϕ , θ , and ψ to be either that ϕ is in a range of $-5^{\circ} \le \phi \le +5^{\circ}$, θ is in a range of $70^{\circ} \le \theta$ $\leq 90^{\circ}$ and ψ is in a range of $85^{\circ} \leq \psi \leq 95^{\circ}$, or that ϕ is in a range of $-5^{\circ} \leq \phi \leq +5^{\circ}$, θ is in a range of $160^{\circ} \le \theta \le 180^{\circ}$ and ψ is in a range of $85^{\circ} \le \psi \le 95^{\circ}$.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.