The group G is isomorphic to the group labelled by [72, 19] in the Small Groups library. Ordinary character table of $G \cong (C3 \times C3)$: C8:

	1a	3a	3b	8a	4a	8b	2a	6a	6b	8c	4b	8d
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	-1	1	-1	1	1	1	-1	1	-1
χ_3	1	1	1	-E(4)	-1	E(4)	1	1	1	-E(4)	-1	E(4)
χ_4	1	1	1	E(4)	-1	-E(4)	1	1	1	E(4)	-1	-E(4)
χ_5	1	1	1	-E(8)	E(4)	$-E(8)^{3}$	-1	-1	-1	E(8)	-E(4)	$E(8)^{3}$
χ_6	1	1	1	$-E(8)^3$	-E(4)	-E(8)	-1	-1	-1	$E(8)^{3}$	E(4)	E(8)
χ_7	1	1	1	$E(8)^{3}$	-E(4)	E(8)	-1	-1	-1	$-E(8)^{3}$	E(4)	-E(8)
χ_8	1	1	1	E(8)	E(4)	$E(8)^{3}$	-1	-1	-1	-E(8)	-E(4)	$-E(8)^3$
χ_9	4	-2	1	0	0	0	-4	2	-1	0	0	0
χ_{10}	4	-2	1	0	0	0	4	-2	1	0	0	0
χ_{11}	4	1	-2	0	0	0	-4	-1	2	0	0	0
χ_{12}	4	1	-2	0	0	0	4	1	-2	0	0	0

Trivial source character table of $G \cong (C3 \times C3)$: C8 at p = 2:

, , ,								
Normalisers N_i		N_1			N_2		N_3	N_4
p-subgroups of G up to conjugacy in G					P_2		P_3	P_4
Representatives $n_j \in N_i$	1a	3a	3b	1a	3a	3b	1a	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	8	8	8	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12}$	8	2	-4	0	0	0	0	0
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \right $	8	-4	2	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	4	4	4	4	4	0	0
	4	1	-2	4	1	-2	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	-2	1	4	-2	1	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	2	2	2	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1	1	1

```
P_1 = Group([()]) \cong 1
```

 $P_2 = Group([(1,5)(2,6)(3,7)(4,8)]) \cong C2$

 $P_3 = Group([(1,5)(2,6)(3,7)(4,8),(1,7,5,3)(2,8,6,4)(11,12)(13,14)]) \cong C4$

 $P_4 = Group([(1,5)(2,6)(3,7)(4,8),(1,7,5,3)(2,8,6,4)(11,12)(13,14),(1,4,7,2,5,8,3,6)(9,10)(11,14,12,13)]) \cong \mathbb{C}8$

 $N_3 = Group([(1,3,5,7)(2,4,6,8)(11,12)(13,14),(1,6,3,8,5,2,7,4)(9,10)(11,13,12,14),(1,5)(2,6)(3,7)(4,8)]) \cong C8$

 $N_4 = Group([(1, 8, 7, 6, 5, 4, 3, 2)(9, 10)(11, 14, 12, 13), (1, 3, 5, 7)(2, 4, 6, 8)(11, 12)(13, 14), (1, 5)(2, 6)(3, 7)(4, 8)]) \cong C8$