SEMINAR ON MODULI THEORY

August 26, 2020

NEERAJ DESHMUKH

1. Summary

One way to go to through these sessions is go recall theory of schemes (at level of things in Hartshorne chapter two), by doing a beeline through all the definitions, properties, etc. However, I feel since the point of doing this exercise is to become more comfortable in working with scheme, we will just do lots of examples instead. By this, I mean we will just to prove some things in very concrete situations. This will help you build a concrete picture of the generalities.

List of some things to discuss (just do lots of examples):

- (1) Definition of a scheme.
- (2) Say affine communication lemma stress this!
- (3) examples
 - (a) \mathbb{P}^n and it sheaf theory! This already clarifies the $\mathcal{O}(n)$'s

Definition 1. A *scheme* is a locally ringed space with the property that every point has an open neighbourhood which is an affine scheme. A *morphism of schemes* is a morphism of locally ringed spaces. The category of schemes will be denoted *Sch*.

Things to say: finite-generation, valuative criteria for \mathbb{P}^1 (using DVR's - how giving a point and it's specialisation is the same as giving a map Spec $R \to \mathbb{P}^1$). List of examples:

- (1) \mathbb{A}^1 with a double point (what are quasi-coherent sheaves on this?)
- (2) $\mathbb{A}^2 \setminus \{0,0\}$ (what is the structure sheaf?).
- (3) \mathbb{P}^1 (its structure sheaf!).
- (4) $V_{+}(x^{2}+y^{2}+z^{2})$
- (5) Blow-up of \mathbb{A}^2 at a point. (because everyone should know about blow-ups!)
- (6) Spec $R[x_1, x_2, \ldots]$ as an example of something non-noetherian.
- (7) An example of a scheme without a closed point.

List of morphisms:

- (1) $x \mapsto x^2$ (more, generally x^n). This covers ramified, finitely presented, flat.
- (2) a non-quasicompact open-immersion. Polynomial ring in infinitely many variables and knock off the origin. Also, the origin of is an example of something