Генерация графов «Враги в разных комнатах»

Хаханов Тимофей, 6372

Изначальная задача

Построить графы к этим задачам:

Цыбышев А.

- 15) Сколько максимально может быть ребер в k-дольном графе на n вершинах? (легенда: вершины дети, соединены ребром если враги, их можно рассадить по k комнатам) А решение такое: вычисление и варьирование (ответ в долях должно быть как можно более поровну вершин)
- 16) Доказать, что граф на n вершинах с максимально возможным количеством ребер, не содержащий в качестве подграфа полного графа на k + 1 вершине, можно правильно раскрасить в k цветов. (легенда: вершины дети, соединены ребром если враги, "ситуация не k-тастрофическая", если среди любых (k + 1) детей есть невраждующая пара.) Решение: Надо доказать индукцией по n, что любой граф с максимальным количеством ребер, не содержащий полного п.г. на (k + 1) вершине, изоморфен графу из пункта (1). Для перехода индукции надо удалить из графа на n вершинах вершину минимальной степени, и оценить количество ребер через количество ребер в подграфе на (n 1) вершине. (база индукции n = (k + 1))

В общем если посчитать, получается оценка $E(n) \leq (n/(n-2)) \cdot E(n-1)$, соответственно, если E(n-1) не максимально возможное, то и E(n) тем более (с учётом того что для максимально возможного значения E(n-1) получается $E(n) = [(n/(n-2)) \cdot E(n-1)]$ (целая часть) — это равенство проверяется подстановкой формул из пункта (1).

Что такое k-дольный граф?

- **k-дольный граф** это граф, вершины которого можно условно поделить на доли («группы» вершин), что не существует ребра, соединяющего вершины из одной доли.
- Полный k-дольный граф это такой k-дольный граф, что каждая вершина соединена ребрами со всеми вершинами графа, кроме вершин «своей» доли. Именно с этими графами мы будем работать.

Полный *дву*дольный граф на *восьми* вершинах

Переход к фактической задаче

Графы второй задачи, в соответствии с доказательством, приложенным к ней, являются изоморфными первой. Поэтому для выполнения задания достаточно построить графы из первой задачи: они будут аналогичны необходимым во второй, и выбрать среди них граф с максимальным числом ребер.

Фактическая задача

- Сгенерировать все возможные полные k-дольные графы на n вершинах
- Выбрать из них граф с максимальным числом ребер

Подход к решению задачи

Задача была решена следующим образом.

Рассмотрим доли графа как «комнаты». Всего у нас k комнат, в каждой п детей. При таком подходе видно, что перед нами практически тривиальная комбинаторная задача: перебрать все варианты расположения «детей» по «комнатам» таких, что в каждой комнате находится хотя бы один «ребенок». При этом относительное расположение («порядок на этаже») нас не интересует, важно лишь распределение детей, т.е. необходимо отбросить изоморфные варианты.

Алгоритм распределения вершин

Все операции производились с массивом целых чисел длиной k, сумма элементов всегда равнялась n.

Перебор осуществлялся следующим образом:

- Создавался массив из k элементов {n-k+1, 1, ..., 1}
- Рекурсивно вызывалась функция, отнимающая единицу у ведущего, и прибавляющая единицу к следующему наибольшему, но такому, что ведущий элемент не будет меньше или равен следующещему-1. Следующие запуски вызывались со смещением ведущего вправо.
- Результаты записывались в память, формируя коллекцию графов, удовлетворяющих условию.

Пример работы алгоритма:

6111->5211->4311->4221->3321->3222 — все уникальные комбинации без изоморфности

Алгоритм распределения вершин

```
static int[] Gen(int[] arr, int offset = 0)
    if (offset + 1 < arr.Length)</pre>
        while (true)
            bool wasLess = false;
            for (int i = offset + 1; i < arr.Length; ++i)</pre>
                if (arr[offset] - 1 > arr[i])
                    arr[offset]--;
                    arr[i]++;
                    Graphs.Add(new GraphMap(arr));
                    arr = Gen(arr, offset + 1);
                    wasLess = true;
                    break;
            if (!wasLess)
                return arr;
   return arr;
```

Максимальное число ребер

У графа тем больше ребер, чем больше сумма степеней вершин этого графа. Добиться максимальной суммы степеней в k-дольном графе можно только при максимально-равномерном распределении вершин по долям.

Т.к. алгоритм распределения вершин между долями перебирает от самого неравномерного к самому равномерному (6111->5211->4311->4221->3321->3222), максимальное число связей будет в последнем графе, сгенерированном алгоритмом (3222 в данном случае).

Доказательство

Лемма о рукопожатиях гласит, что сумма степеней вершин графа равна удвоенному числу ребер => нам необходимо добиться максимальной суммы степеней вершин.

Степень каждой вершины в k-дольном графе — число вершин, не входящих в ее долю («врагов»). Т.к. мы «распределяем» ограниченное кол-во вершин (не можем менять их число), от для того, чтобы добиться максимума на каждой доле, необходимо, чтобы каждая доля была наиболее близка к минимуму(меньше «своих» => больше «врагов»), что наблюдается при равномерном распределении (все числа уменьшены настолько, насколько возможно). Уменьшение суммы степеней при «менее равномерном» перераспределении доказывается алгебраически, рассмотрим примеры 2- и 3-дольных графов (где легче следить за вычислениями).

Расчеты изменения суммы степеней для 2- и 3дольных графах при перераспределении

Пусть х, у, z - число вершин на доле, тогда число вершин в равномерном графе определяется так (a = x = y = z):

$$\Sigma deg(v) = 2(x^*y) = 2a^2$$

$$\Sigma deg(v) = 2(x^*y) = 2a^2$$
 $\Sigma deg(v) = x(z+y)+y(x+z)+$
 $+z(x+y) = 3a(a+a)=6a^2$

Перераспределение вызовет уменьшение степени:

$$\Sigma deg(v) =$$
 $(x+1)(y-1)+(y-1)(x+1) =$
 $= 2(xy-x+y-1) = 2(a^2-1)$

$$2a^2 > 2(a^2-1)$$

$$\Sigma deg(v) = (x+1)(y+z-1)+$$

$$+(y-1)(x+z+1)+z(x+y+1-1)$$

$$= (a+1)(2a-1)+(a-1)(2a+1)+2a^{2} =$$

$$= 2a^{2}-a+2a-1+2a^{2}+a-2a-1+2a^{2} =$$

$$= 6a^{2}-2$$

$$6a^{2} > 6a^{2} - 2$$

Сумма степеней при равномерном распределении определяется формулой: $\Sigma deg(v) = k*a*(k-1),$ где k – число долей, a – число вершин на доле.

Вычисления для графов на больших долях (или с большим смещением) аналогичны, общая формула следующая:

$$\Sigma \deg(v) = \sum_k (a_k * \sum_{j!=k}^k a_j)$$

Где k — число долей, a_i -
число вершин в i-той доле

Результат

Преобразуя полученные массивы в графы, можно получить все уникальные (не изоморфные) графы, удовлетворяющие условию, для любых n и k (n >= k). 197.703 графа (1000 долей на 100.00 вершинах) программа генерирует за 1870 **милли**секунд, при небольших входных параметрах — за доли миллисекунды (все вычисления производились на среднем, потребительском процессоре семилетней давности).

Пример сгенерированного графа:

Использованные технологии:

- Язык программирования: C# 6.o + .NET Framework 4.5
- IDE: Microsoft Visual Studio 2015
- Интерфейс: Windows Forms
- Графическая библиотека для вывода графов: MsAlg Automatic graph layout
- Презентация: Microsoft PowerPoint