#### **CNN Attention-based Networks**

+ Attention, CNN Review

Tensorflow-KR **PR-163**, Taeoh Kim MVPLAB, Yonsei Univ

#### **Contents**

- Attention, Self-Attention in NLP
- CNN-Review
- CNN Attention Networks for Recognition
- CNN Attention Networks for Other Vision Tasks

**Review 1: Attention** 

### **Neural Networks**



### **Attention**

$$y = \sum_{i} w_{i}x_{i}$$

$$y = \sum_{i} f(Quary, Key) \times Value$$

### **Fully Connected Neural Network**



#### **Convolutional Neural Network**



### **Attention**



**Attention** 

Represent Blue using Weighted Sum of Inputs

from Blue State and Inputs

$$w_n = softmax(f(BS, K_n))$$

### ex) Machine Translation (PR-055)



# ex) Image Captioning



### **Self-Attention**



Self-Attention

Represent Blue using Weighted Sum of Inputs

from Input and Inputs

$$w_n = softmax(f(K_2, K_n))$$

### ex) Transformer (Enc) (PR-049, PR-161)



#### ex) Transformer (Dec) English Feature (K, V) (K, V) $W_1$ $W_1$ $W_2$ $W_2$ (K, V)(K, V) ...



## **CNN Self-Attention for Image = Representation**



### ex) Non-local Neural Networks (CVPR18, PR-083)



## **CNN Simplified-Attention for Image = Recalibration**



### **CNN Simplified-Attention for Image = Recalibration**



# ex) Squeeze-and-Excitation Networks (CVPR18)



### **Summary**

| Attention      | Quary          | Structure    | Objective      | Examples                    |
|----------------|----------------|--------------|----------------|-----------------------------|
| Attention      | Current States | Recurrent    | Representation | NMT, Captioning,<br>VQA     |
| Self-Attention | Input Itself   | Feed-Forward | Representation | Transformer<br>Non-local NN |
|                | Input Itself   | Feed-Forward | Recalibration  | SE-Net, RAN,<br>CBAM        |

**Review 2: CNN Networks** 

#### **CNN Review**



### **CNN Review**



#### **Plain Networks**



- Plain Networks using Max-Pooling
- Low Performance / Large Parameters, Operations



#### ResNet



Deeper Networks using Skip-Connection





#### **ResNet Variants**



• Pre-activation ResNet



#### **ResNet Variants**



Wider Channel ResNet



## **ResNet with Cardinality**



Cardinality= Group Conv

- Modify Convolution Operators
- PR-034: Xception
- PR-044: MobileNet
- PR-054: SuffleNet / ResNeXt

# ResNeXt (C=32)



# ResNeXt (C=32) with Group Conv.





### ResNeXt (C=32) with Group Conv.



# **Xception (G=Channel)**



### MobileNet / ShuffleNet

MobileNet: Lightweight Xception

• *Xception:*  $1x1 \rightarrow 3x3$  *Depthwise* 

• MobileNet: 3x3 Depthwise → 1x1

ShuffleNet: Lightweight ResNeXt + Channel Shuffle

#### **DenseNet**



• DenseNet: Concat Previous Layers: PR-028



### DenseBlock



### Inception / NASNet







#### **CNN Performances**



https://github.com/CeLuigi/models-comparison.pytorch

### **CNN Review**

| Category    | Networks                                 | Pros                            | Cons            |
|-------------|------------------------------------------|---------------------------------|-----------------|
| Plain       | AlexNet, VGG                             | Simple<br>Good Transfer         | Low Performance |
| ResNet      | ResNet                                   | Simple                          |                 |
| Cardinality | ResNeXt/Xception<br>MobileNet/ShuffleNet | Cost Efficient<br>+ Performance | Group Conv      |
| DenseNet    | DenseNet                                 | Cost Efficient<br>+ Performance | Memory I/O      |
| Engineering | Inception<br>NASNet                      | SoTA                            | Complex         |

### **CNN Review**

| Category         | Networks                                 | Pros                            | Cons            |
|------------------|------------------------------------------|---------------------------------|-----------------|
| Plain            | AlexNet, VGG                             | Simple<br>Good Transfer         | Low Performance |
| ResNet           | ResNet                                   | Simple                          |                 |
| Cardinality      | ResNeXt/Xception<br>MobileNet/ShuffleNet | Cost Efficient<br>+ Performance | Group Conv      |
| DenseNet         | DenseNet                                 | Cost Efficient<br>+ Performance | Memory I/O      |
| Engineering      | Inception<br>NASNet                      | SoTA                            | Complex         |
| Attention Module | SENet, CBAM, GCNet                       | Simple<br>+ Performance         |                 |

#### **CNN Review**



## **CNN** x Attention

#### **CNN Attention-Networks**



### Spatial Transformer Networks (NIPS15, PR-011)

Recalibration (with Transform)



# Residual Attention Network (CVPR17)



# Residual Attention Network (CVPR17)

Original ResNet (BottleNeck Block)





### Residual Attention Network (CVPR17)

• Results: Interpretable Features



# Squeeze-and-Excitation Networks (CVPR18) ReLU Sigmoid Recalibrate Channel Only BN 1×1 AvgPool c/16 Conv(1x1) Conv(3x3)Conv(1x1)

Recalibrate Channel Only



ReLU

Sigmoid



|                          | orig              | iginal re-implementation |            | re-implementation |        | SENet            |                 |        |
|--------------------------|-------------------|--------------------------|------------|-------------------|--------|------------------|-----------------|--------|
|                          | top-1 err.        | top-5 err.               | top-1 err. | top-5 err.        | GFLOPs | top-1 err.       | top-5 err.      | GFLOPs |
| ResNet-50 [13]           | 24.7              | 7.8                      | 24.80      | 7.48              | 3.86   | $23.29_{(1.51)}$ | $6.62_{(0.86)}$ | 3.87   |
| ResNet-101 [13]          | 23.6              | 7.1                      | 23.17      | 6.52              | 7.58   | $22.38_{(0.79)}$ | $6.07_{(0.45)}$ | 7.60   |
| ResNet-152 [13]          | 23.0              | 6.7                      | 22.42      | 6.34              | 11.30  | $21.57_{(0.85)}$ | $5.73_{(0.61)}$ | 11.32  |
| ResNeXt-50 [19]          | 22.2              | -                        | 22.11      | 5.90              | 4.24   | $21.10_{(1.01)}$ | $5.49_{(0.41)}$ | 4.25   |
| ResNeXt-101 [19]         | 21.2              | 5.6                      | 21.18      | 5.57              | 7.99   | $20.70_{(0.48)}$ | $5.01_{(0.56)}$ | 8.00   |
| VGG-16 [11]              | -                 | -                        | 27.02      | 8.81              | 15.47  | 25.22(1.80)      | $7.70_{(1.11)}$ | 15.48  |
| BN-Inception [6]         | 25.2              | 7.82                     | 25.38      | 7.89              | 2.03   | $24.23_{(1.15)}$ | $7.14_{(0.75)}$ | 2.04   |
| Inception-ResNet-v2 [21] | 19.9 <sup>†</sup> | $4.9^{\dagger}$          | 20.37      | 5.21              | 11.75  | $19.80_{(0.57)}$ | $4.79_{(0.42)}$ | 11.76  |

| Ratio r  | top-1 err. | top-5 err. | Params |
|----------|------------|------------|--------|
| 2        | 22.29      | 6.00       | 45.7M  |
| 4        | 22.25      | 6.09       | 35.7M  |
| 8        | 22.26      | 5.99       | 30.7M  |
| 16       | 22.28      | 6.03       | 28.1M  |
| 32       | 22.72      | 6.20       | 26.9M  |
| original | 23.30      | 6.55       | 25.6M  |

| Excitation | top-1 err. | top-5 err. |
|------------|------------|------------|
| ReLU       | 23.47      | 6.98       |
| Tanh       | 23.00      | 6.38       |
| Sigmoid    | 22.28      | 6.03       |

| Squeeze | top-1 err. | top-5 err. |
|---------|------------|------------|
| Max     | 22.57      | 6.09       |
| Avg     | 22.28      | 6.03       |

| Design      | top-1 err. | top-5 err. |
|-------------|------------|------------|
| SE          | 22.28      | 6.03       |
| SE-PRE      | 22.23      | 6.00       |
| SE-POST     | 22.78      | 6.35       |
| SE-Identity | 22.20      | 6.15       |

| Stage      | top-1 err. | top-5 err. | GFLOPs | Params |
|------------|------------|------------|--------|--------|
| ResNet-50  | 23.30      | 6.55       | 3.86   | 25.6M  |
| SE_Stage_2 | 23.03      | 6.48       | 3.86   | 25.6M  |
| SE_Stage_3 | 23.04      | 6.32       | 3.86   | 25.7M  |
| SE_Stage_4 | 22.68      | 6.22       | 3.86   | 26.4M  |
| SE_All     | 22.28      | 6.03       | 3.87   | 28.1M  |

| Design          | top-1 err. | top-5 err. | GFLOPs | Params |
|-----------------|------------|------------|--------|--------|
| SE              | 22.28      | 6.03       | 3.87   | 28.1M  |
| $SE_3 \times 3$ | 22.48      | 6.02       | 3.86   | 25.8M  |

Channel Recalibration Stats.



## **Bottleneck Attention Networks (BMVC18)**



### Convolutional Block Attention Networks (ECCV18)



### **BAM / CBAM Results**

| Architecture                         | Parameters                | GFLOPs             | Top-1(%) | Top-5(%) |
|--------------------------------------|---------------------------|--------------------|----------|----------|
| ResNet18 [15]                        | 11.69M                    | 1.81               | 29.60    | 10.55    |
| ResNet18 [15] + BAM                  | 11.71M <sub>(+0.02)</sub> | $1.82_{(+0.01)}$   | 28.88    | 10.01    |
| ResNet50 [15]                        | 25.56M                    | 3.86               | 24.56    | 7.50     |
| ResNet50 [15] + BAM                  | 25.92M <sub>(+0.36)</sub> | $3.94_{(+0.08)}$   | 24.02    | 7.18     |
| ResNet101 [15]                       | 44.55M                    | 7.57               | 23.38    | 6.88     |
| ResNet101 [15] + BAM                 | 44.91M <sub>(+0.36)</sub> | $7.65_{(+0.08)}$   | 22.44    | 6.29     |
| WideResNet18 [47] (widen=1.5)        | 25.88M                    | 3.87               | 26.85    | 8.88     |
| WideResNet18 [47] (widen=1.5) + BAM  | 25.93M <sub>(+0.05)</sub> | $3.88_{(+0.01)}$   | 26.67    | 8.69     |
| WideResNet18 [47] (widen=2.0)        | 45.62M                    | 6.70               | 25.63    | 8.20     |
| WideResNet18 [47] (widen=2.0) + BAM  | 45.71M <sub>(+0.09)</sub> | $6.72_{(+0.02)}$   | 25.00    | 7.81     |
| ResNeXt50 [43] (32x4d)               | 25.03M                    | 3.77               | 22.85    | 6.48     |
| ResNeXt50 [43] (32x4d) + BAM         | 25.39M <sub>(+0.36)</sub> | $3.85_{(+0.08)}$   | 22.56    | 6.40     |
| MobileNet[18]                        | 4.23M                     | 0.569              | 31.39    | 11.51    |
| MobileNet[18] + BAM                  | 4.32M <sub>(+0.09)</sub>  | $0.589_{(+0.02)}$  | 30.58    | 10.90    |
| MobileNet[18] $\alpha = 0.7$         | 2.30M                     | 0.283              | 34.86    | 13.69    |
| MobileNet[18] $\alpha = 0.7 + BAM$   | 2.34M <sub>(+0.04)</sub>  | $0.292_{(+0.009)}$ | 33.09    | 12.69    |
| MobileNet[18] $\rho = 192/224$       | 4.23M                     | 0.439              | 32.89    | 12.33    |
| MobileNet[18] $\rho = 192/224 + BAM$ | 4.32M <sub>(+0.09)</sub>  | $0.456_{(+0.017)}$ | 31.56    | 11.60    |
| SqueezeNet v1.1 [22]                 | 1.24M                     | 0.290              | 43.09    | 20.48    |
| SqueezeNet v1.1 [22] + BAM           | 1.26M <sub>(+0.02)</sub>  | $0.304_{(+0.014)}$ | 41.83    | 19.58    |
|                                      |                           |                    |          |          |

| Architecture                             | Param. | GFLOPs | Top-1 Error (%) | Top-5 Error (%) |
|------------------------------------------|--------|--------|-----------------|-----------------|
| ResNet18 [5]                             | 11.69M | 1.814  | 29.60           | 10.55           |
| ResNet18 $[5]$ + SE $[28]$               | 11.78M | 1.814  | 29.41           | 10.22           |
| ResNet18 [5] + CBAM                      | 11.78M | 1.815  | 29.27           | 10.09           |
| ResNet34 [5]                             | 21.80M | 3.664  | 26.69           | 8.60            |
| ResNet34 [5] + SE [28]                   | 21.96M | 3.664  | 26.13           | 8.35            |
| ResNet34 [5] + CBAM                      | 21.96M | 3.665  | 25.99           | 8.24            |
| ResNet50 [5]                             | 25.56M | 3.858  | 24.56           | 7.50            |
| ResNet50 [5] + SE [28]                   | 28.09M | 3.860  | 23.14           | 6.70            |
| ResNet50 [5] + CBAM                      | 28.09M | 3.864  | 22.66           | 6.31            |
| ResNet101 [5]                            | 44.55M | 7.570  | 23.38           | 6.88            |
| ResNet101 [5] + SE [28]                  | 49.33M | 7.575  | 22.35           | 6.19            |
| ResNet101 [5] + CBAM                     | 49.33M | 7.581  | 21.51           | 5.69            |
| WideResNet18 [6] (widen=1.5)             | 25.88M | 3.866  | 26.85           | 8.88            |
| WideResNet18 [6] $(widen=1.5) + SE$ [28] | 26.07M | 3.867  | 26.21           | 8.47            |
| WideResNet18 [6] $(widen=1.5) + CBAM$    | 26.08M | 3.868  | 26.10           | 8.43            |
| WideResNet18 [6] (widen=2.0)             | 45.62M | 6.696  | 25.63           | 8.20            |
| WideResNet18 [6] $(widen=2.0) + SE$ [28] | 45.97M | 6.696  | 24.93           | 7.65            |
| WideResNet18 [6] $(widen=2.0) + CBAM$    | 45.97M | 6.697  | 24.84           | 7.63            |
| ResNeXt50 [7] (32x4d)                    | 25.03M | 3.768  | 22.85           | 6.48            |
| ResNeXt50 [7] (32x4d) + SE [28]          | 27.56M | 3.771  | 21.91           | 6.04            |
| ResNeXt50 [7] $(32x4d) + CBAM$           | 27.56M | 3.774  | 21.92           | 5.91            |
| ResNeXt101 [7] (32x4d)                   | 44.18M | 7.508  | 21.54           | 5.75            |
| ResNeXt101 [7] (32x4d) + SE [28]         | 48.96M | 7.512  | 21.17           | 5.66            |
| ResNeXt101 [7] (32x4d) + CBAM            | 48.96M | 7.519  | 21.07           | 5.59            |

# RAN / SE / BAM / CBAM Comparison

| Network       | Module Position                 | Attention                   |
|---------------|---------------------------------|-----------------------------|
| RAN (CVPR17)  | Modified                        | ChannelxSpatial 3D          |
| SE (CVPR18)   | In the ResBlock                 | Channel                     |
| BAM (BMVC18)  | Before the Stride=2<br>ResBlock | Channel, Spatial Parallel   |
| CBAM (ECCV18) | In the ResBlock                 | Channel, Spatial Sequential |

### **Non-local Networks**

Represent Spatial-Only











Quary Independent Representation → Recalibration



(1x1) $1 \times H \times W$ C xiHW Softmax  $C \times 1 \times 1$ conv (1x1)**Transform** 

Context Modeling

conv





**NLNet** 

**Simplified NLNet** Spatial Weighted Sum

**Spatial Aggregation** (Global Avg Pool)

**Spatial Weighted Sum** → for Channel Recalibration

**Spatial Weighted Sum** Per Pixel (HxW)

**Shared** (Scalar)

→ for Channel Recalibration

PR-163: CNN Attention Networks



Quary Independent Representation > Recalibration

Non-local Networks Meet Squeeze-Excitation Networks and Beyond (GCNet)

|                          |          | (a) <b>t</b> | est on | validati | on set |        |        |        |
|--------------------------|----------|--------------|--------|----------|--------|--------|--------|--------|
| backbone                 |          |              |        |          |        | APmask | APmask | FLOPS  |
| R50                      | baseline | 37.2         | 59.0   | 40.1     | 33.8   | 55.4   | 35.9   | 279.4G |
|                          | +GC r16  | 39.4         | 61.6   | 42.4     | 35.7   | 58.4   | 37.6   | 279.6G |
|                          | +GC r4   | 39.9         | 62.2   | 42.9     | 36.2   | 58.7   | 38.3   | 279.6G |
| R101                     | baseline | 39.8         | 61.3   | 42.9     | 36.0   | 57.9   | 38.3   | 354.0G |
|                          | +GC r16  | 41.1         | 63.6   | 45.0     | 37.4   | 60.1   | 39.6   | 354.3G |
|                          | +GC r4   | 41.7         | 63.7   | 45.5     | 37.6   | 60.5   | 39.8   | 354.3G |
| X101                     | baseline | 41.2         | 63.0   | 45.1     | 37.3   | 59.7   | 39.9   | 357.9G |
|                          | +GC r16  | 42.4         | 64.6   | 46.5     | 38.0   | 60.9   | 40.5   | 358.2G |
|                          | +GC r4   | 42.9         | 65.2   | 47.0     | 38.5   | 61.8   | 40.9   | 358.2G |
| X101<br>+Cascade         | baseline | 44.7         | 63.0   | 48.5     | 38.3   | 59.9   | 41.3   | 536.9G |
|                          | +GC r16  | 45.9         | 64.8   | 50.0     | 39.3   | 61.8   | 42.1   | 537.2G |
|                          | +GC r4   | 46.5         | 65.4   | 50.7     | 39.7   | 62.5   | 42.7   | 537.3G |
| X101+DCN<br>+Cascade     | baseline | 47.1         | 66.1   | 51.3     | 40.4   | 63.1   | 43.7   | 547.5G |
|                          | +GC r16  | 47.9         | 66.9   | 52.2     | 40.9   | 63.7   | 44.1   | 547.8G |
|                          | +GC r4   | 47.9         | 66.9   | 51.9     | 40.8   | 64.0   | 44.0   | 547.8G |
| (b) test on test-dev set |          |              |        |          |        |        |        |        |
| X101<br>+Cascade         | baseline | 45.0         | 63.7   | 49.1     | 38.7   | 60.8   | 41.8   | 536.9G |
|                          | +GC r16  | 46.5         | 65.7   | 50.7     | 40.0   | 62.9   | 43.1   | 537.2G |
|                          | +GC r4   | 46.6         | 65.9   | 50.7     | 40.1   | 62.9   | 43.3   | 537.3G |
| X101+DCN<br>+Cascade     | baseline | 47.7         | 66.7   | 52.0     | 41.0   | 63.9   | 44.3   | 547.5G |
|                          | +GC r16  | 48.3         | 67.5   | 52.7     | 41.5   | 64.6   | 45.0   | 547.8G |
|                          | +GC r4   | 48.4         | 67.6   | 52.7     | 41.5   | 64.6   | 45.0   | 547.8G |

| (a) Block Design       |           |           |            |          |  |  |
|------------------------|-----------|-----------|------------|----------|--|--|
|                        | Top-1 Acc | Top-5 Acc | #params(M) | FLOPs(G) |  |  |
| baseline               | 76.88     | 93.16     | 25.56      | 3.86     |  |  |
| +1NL                   | 77.20     | 93.51     | 27.66      | 4.11     |  |  |
| +1SNL                  | 77.28     | 93.60     | 26.61      | 3.86     |  |  |
| +1GC                   | 77.34     | 93.52     | 25.69      | 3.86     |  |  |
| +all GC                | 77.70     | 93.66     | 28.08      | 3.87     |  |  |
| (b) Pooling and fusion |           |           |            |          |  |  |
|                        | Top-1 Acc | Top-5 Acc | #params(M) | FLOPs(G) |  |  |
| baseline               | 76.88     | 93.16     | 25.56      | 3.86     |  |  |
| avg+scale (SENet)      | 77.26     | 93.55     | 28.07      | 3.87     |  |  |
| avg+add                | 77.40     | 93.60     | 28.07      | 3.87     |  |  |
| att+scale              | 77.34     | 93.48     | 28.08      | 3.87     |  |  |
| att+add                | 77.70     | 93.66     | 28.08      | 3.87     |  |  |

Table 4: **Ablation study** of GCNet with ResNet-50 on **image** classification on ImageNet validation set.

# **Summary**

| Network            | Attention                   | Spatial Modeling         |
|--------------------|-----------------------------|--------------------------|
| RAN (CVPR17)       | ChannelxSpatial 3D          | Network                  |
| SE (CVPR18)        | Channel                     | Avg Pool                 |
| BAM (BMVC18)       | Channel, Spatial Parallel   | Avg Pool                 |
| CBAM (ECCV18)      | Channel, Spatial Sequential | Avg Pool + Max Pool      |
| NLNet (CVPR18)     | Spatial (Representation)    | Non-local Representation |
| GCNet (Preprint19) | Channel                     | Non-local Representation |

**CNN x Attention: Other Vision Tasks** 

#### **Self-Attention GAN**



# **Style Transfer (CVPR19)**



Arbitrary Style Transfer with Style-Attentional Networks

#### PSANet (ECCV18) / Context Encoding (CVPR18) / OCNet (2018)





#### (d) ASP-OC



## **Dual Attention Network (CVPR19)**



### Criss-Cross Non-local Attention Networks (2019)





Figure 4. An example of information propagation when the loop number is 2.

# **Semantic Segmentation**

| Network                   | Performance (Cityscape) mloU | Structure                  |
|---------------------------|------------------------------|----------------------------|
| DenseASPP (CVPR18)        | 80.6                         | DenseNet                   |
| PSANet (ECCV18)           | 80.1                         | Spatial Attention          |
| Context Encoding (CVPR18) | -                            | Channel Attention          |
| CCNet (Arxiv19)           | 81.4                         | Fast NL-Net                |
| DANet (CVPR19)            | 81.5                         | NL-Net (Spatial + Channel) |
| OCNet (Arxiv18)           | 81.7                         | NL-Net + PSP               |

#### Non-local in SISR



# Single Image Super-Resolution





Figure 2. Framework of the proposed second-order attention network (SAN) and its sub-modules.

| Network       | Performance (set5, PSNR) | Structure                  |
|---------------|--------------------------|----------------------------|
| RDN (CVPR18)  | 38.24 / 32.47 (x2, x4)   | DenseNet                   |
| RNRN (ICLR19) | 38.17 / 32.49            | NL-Net                     |
| RCAN (ECCV18) | 38.27 / 32.63            | Channel Attention          |
| SAN (CVPR19)  | 38.31 / 32.64            | Channel Attention + NL-Net |

#### Conclusion

- Attention (Recurrent) vs Self-Attention (Feed-Forward)
- Representation vs Recalibration
- Channel Attention: Simple
- Spatial Attention: Global Information

#### Summary: CNN Architectures

- Many popular architectures available in model zoos
- ResNet and SENet currently good defaults to use
- Networks have gotten increasingly deep over time
- Many other aspects of network architectures are also continuously being investigated and improved
- Even more recent trend towards meta-learning
- Next time: Recurrent neural networks

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 120 April 30, 2019

Thank You Q&A?