YOLOV4 TensorFlow Lite

Yolo é um modelo de rede neural convolucional para detecção de objetos em tempo real. O modelo utiliza o *framework "You Only Look Once"* e é baseado na

rede Darknet53.

Rede Utilizada

Optamos primeiramente por treinar uma rede para detecção de objetos customizados utilizando a rede *YoloV3* com a rede inicial *darknet53.conv.74*.

Pipeline para o treinamento da rede:

- Extração dos frames de imagem;
- Anotação de imagens e composição do dataset;
- Treinamento da rede;
- Validação da rede.

Detecção de Modelos de "Youtubers" Virtuais

Em 2020, devido às condições de quarentena, houve um aumento no consumo de entretenimento digital, e com isso, houve o crescimento e surgimento de diversos conteúdos criativos e inusitados na internet. Um deles foi a implementação de personagens animados fictícios, onde a pessoa por trás utiliza esse personagem ao invés de se expor. (Claramente algo que veio do Japão, país que possui diversas peculiaridades esquisitas e criativas).

Resultado (*Dataset* de 1600 Samples para 5 "Youtubers" Virtuais)

Rede Pré-treinada para 80 Objetos do Yolov4

- O tamanho do .weights é de 256MB
- Alguns Labels:
 - notebook;
 - o pessoa;
 - livro;
 - o mouse;
 - celular;
 - o garfo;
 - o faca.

Otimizações do TensorFlow Lite

Dynamic Quantization

- o converte os pesos para int;
- executa como float.

• Full integer Quantization

- converte parte ou toda rede para int;
- executa como int, ou como float nas partes que não puderam ser convertidas;
- o necessita de um conjunto de dados representativo.

Float16 Quantization

- converte os pesos para float16;
- ele é executado como float32, a menos que o hardware tenha as instruções para float16.

Dispositivos Usados

- Motorola Moto G4 Play (2016);
- Samsung Galaxy S9+ (2018).
 - Advanced NEON Floating Point.

Additional capabilities for NEON/FPU

- Dedicated renaming engine for NEON/FPU
- Support for FP16 half-precision processing
- Double throughput compared to single precision
- Significant performance uplift for image processing
- Support for Int8 dot product
- Increased performance on neural network algorithms
- Enhanced floating-point MAC throughput
- Dedicated data store queue

©ARM 2017

Saída da Rede

Métricas dos Experimentos

	Tempo		Tamanho do Modelo <i>tflite</i>
Dispositivo	Motorola Moto G4 play	Samsung Galaxy S9+	
Rede com Pesos int	15502 ms	1870 ms	124 MB
Rede com float16	18503 ms	1990 ms	62 MB

Conclusão

Aprendemos que converter a rede para *tflite* não é tão linear assim, já que nem todas as operações estão implementadas no *tflite*, necessitando a criação dessas operações para poder executar no interpretador. O resultado da rede *yoloV4* foi bom, mas a demora da execução é um problema. Apesar de não termos conseguido aplicar as otimizações que diminuem a latência, podemos ver que o uso da *dynamic quantization* pode diminuir o tamanho da rede de forma considerável.

Grupo 5

Fernando Akio Tutume de Salles Pucci Lucas Nobuyuki Takahashi Vitor Kodhi Teruya (8957197) (10295670) (10284441)