How does one replicate claims in the Black-Scholes merliet:

Sely financing disoreti trading strategy (Dt, b,), t=1,-,T us Self Linancing for portfolio time t value V+ $V_{t} := \Delta_{t} S_{t} + b_{t} (l + n)^{t} = \Delta_{t+1} S_{t} + b_{t+1} (l + n)^{t}, t < T$ $V_{t+1} - V_{t} = \Delta_{t+1} S_{t+1} + b_{t+1} (1+x_1)^{t+1}$ $-\Delta_{t+1}S_{t}-b_{t+1}(1+r)^{t}$ $= \Delta_{t+1}(S_{t+1}-S_t) + b_{t+1}(B_{t+1}-B_t)_{3}t<T$ Cont bivariate proces (Dt, bt), te[=,T] is trading strategy of it is predictable and integrals Subject of the self deprised time & portbolio value V, := D & St + St Bt the trading straty (Dt, bt) is self thaneing as dV4 = DtdSt + bt dBt > t<T So, in the contactor , the absence of arbitrage means that there is no self-linancing trading Strategy that her zero indial value and a.s. VT ? 0 at the terminal time T with push P(V_7>0)>0. Replicating (or hedger,) a class X means consucting

a sey monerny warmy survey that would generate the same Cash Ilon as X at expery.

Self Linancing sheaty which replicate the claim $X = J(S_T)$ (so the $V_T(\omega) = X(\omega) = X(\omega) = x_{0}$)

that claim value $P_{+}(x) = V_{+}$, $t \in T$ Or otherwise there will be an arbitrage oppositionally.

 $P_{+}(x) = E^{*}(e^{-\pi(T-t)}x|f_{t})$ $= e^{-\pi(T-t)}E^{*}(s(s_{T})|f_{t})$ $= e^{-\pi(T-t)}E^{*}(s(s_{T})|s_{t})$ $= e^{\pi(T-t)}E^{*}(s(s_{T})|s_{t})$ $= e^{\pi(T-t)}E^{*}(s(s_{T})|s_{t})$ $= e^{\pi(T-t)}E^{*}(s(s_{T})|s_{t})$ $= e^{\pi(T-t)}E^{*}(s(s_{T})|s_{t})$

Assuming the h f(t, s) in smoothenough, one con apply Ito Jermile

 $\Delta_t dS_t + dS_t = dP_t(X) = df(t, S_t)$

 $= \partial_{t} f(t, s_{+}) dt + \partial_{s} f(t, s_{+}) ds_{t} + \frac{1}{2} \partial_{ss} f(t, s_{+}) (as_{t})^{2}$ $\int S_{t} = M S_{t} dt + \sigma S_{t} dW_{t}$

= $[\partial_{+} f(t,S_{+}) + \frac{1}{2} \partial_{SS} f(t,S_{+}) \sigma^{2} S_{1}^{2}] dt + \partial_{-} I I I C 1 I C$

.- replacating strategy must be of the how $\Delta_t = \partial_s f(t, S_t) ; b_t = (f(t, S_t) - \Delta_t S_t)/B_t, t \in [-7]$ Thus # of shares in the hedge is given by the

partial derivative of the time to claim value Sen starties of claving process

della D = DSC

Gamma [:= dss f(t, Sf)

rega U:= 2, P+(X)

theta (i):= of Pf(X)

sho f := 2 P4(X)

Example Sensitivities for a European call and put:

who to European call (= C(So,T, k, n, o)

Usy \$ P_o(X) = S_o ₱(4) - k = 91 ₱(4-1/T)

 $\frac{f_{0}}{\sqrt{K}} = \frac{\ln\left(\frac{S_{0}}{K}\right) + \left(\pi - \frac{\sigma^{2}}{2}\right)T}{\sqrt{T}} = f_{0} - \sigma\sqrt{T}$

 $J_{S_0} = \frac{1}{\sqrt{17}}, \quad Q'(3) = \beta/3; = \frac{1}{\sqrt{27}} e^{-5/2}$

 $\Delta = \partial_{S}C = \Phi(h) + S_{o}\Phi(h)\partial_{S}h - ke^{-91}\Phi(h-\sigma F)$

× dst.

T/m. $I = -t^2/2 + -(t_- + \sqrt{T})^2/3$

$$= \mathfrak{P}(h) + \frac{e^{-h^2/2}}{\sqrt{1}\sqrt{1}\sqrt{2\pi}} \left[1 - \frac{k}{S_0} e^{h\sqrt{1}} - \frac{e^{-\sqrt{2}T/2}}{\sqrt{1}\sqrt{2\pi}} \right]$$

$$= \mathfrak{P}(h) + \frac{e^{-h^2/2}}{\sqrt{1}\sqrt{2\pi}} \left[1 - \frac{1}{S_0} e^{h\sqrt{1}} - \frac{e^{-\sqrt{2}T/2}}{\sqrt{2}} \right]$$

$$= \mathfrak{P}(h) + \frac{e^{-h^2/2}}{\sqrt{1}\sqrt{2\pi}} \left[1 - 1 \right] = \mathfrak{P}(h)$$

$$\therefore \Gamma = \partial_{S_0S_0} C = \partial_{S_0} \mathfrak{P}(h) = \mathfrak{P}(h) \partial_{S_0} h$$

$$= \frac{\mathfrak{P}(h)}{\sqrt{1}\sqrt{1}} \int_{S_0} d^{-1} d^{-$$

owner allian to exercise the year, while
vivue of put should be able to abmos
purcharing the stock.
$\overset{\leftarrow}{}\times$ $-$
Value at Risk (VAR):
Var Var - Lov. approch
late a finite of
historical simulation approach
9 Monte - Carlo Simulation method
Var, - cov. approved (delta -normal method)
Assumption: return don each of the institutions
. Is proofers returns
Vai(R) - 5 5 VI W. T. ==
$Var(\hat{R}) = \sum_{i} \sum_{j} V_{i} W_{j} \sigma_{ij} = \sum_{i} \sum_{j} W_{i} W_{j} \sigma_{i} \sigma_{j} S_{ij}$
Where W; hadres of total partfels value consisting of
and i sd Z Wi = 1
Tij i car. of and is return with and ji
On : so it asset i's returns
Sij : corr of agret i's return with aust jirula
Considu a partfelio consisting of them there and
a. A currency swap, Because of change in the

exchange rate since the swap was first entered risto, the swap now has a value of \$2 million, Or 8,7% of the portfolios todal value

5. About. The market value of the bond i \$17 million, which is 73.9% of the partials total value C. Ashick. The 19000 share are worth \$4 million

Or 17,4%. of the partfalo's total value

Assum the van-con matrix of the anet

Swap bond Stall
Swap 0.0090 -0.0008 0.00007

bond 0.00090 -0.00000

Stacle 0,00300

Van of previolen's desirty return dish is simily $Van(R) = W_1^2 G_1^2 + W_2^2 G_2^2 + W_3^2 G_3^2 + 2W_1 W_2 G_{12} + 2W_1 W_3 G_{13}$

E 0,0002822

+2 W2 W3 G23

 $= (0.087)^{2} \times 0.009 + (0.739)^{2} \times 0.009 + (0.174)^{2} \times 0.009 + (0.174)^{2} \times 0.009 + (0.174)^{2} \times 0.009 + (0.174)^{2} \times 0.0008 + (0.174)^{2} \times 0.0009 + (0.174)^{2} \times 0.0000 + (0.174)^{2} \times 0.00009 + (0.174)^{2} \times 0.000009 + (0.174)^{2} \times 0.00009 + (0.174)^{2} \times 0.00009 + (0.174)^{2} \times 0.00009 +$

Sid, of daily return dish & \$0.0002822

= 0.0168 on 1.68%

1 Sid of \$ loss from the partfolio value of \$23 millon is \$386375 (1.68% of \$23 millon is \$386375)

Var = 32 × 11d of \$ loss from pertablis value

Thus then is 5% prob. that a one -day loss of 1.645 × \$386375 = \$635587 mill be realized

There is a 1% prob. that a one -day loss of 2.327 × \$386375 = \$899095 mill be realized