

An Introduction to Risk and Reliability Analysis in Coastal Engineering Designs

Dr. Soheil Radfar

Postdoctoral Fellow, The University of Alabama

References:

- Jonkman, S. N., Steenbergen, R. D. J. M., Morales-Nápoles, O., Vrouwenvelder, A. C. W. M., & Vrijling, J. K. (2015). Probabilistic design: risk and reliability analysis in civil engineering. Delft university of technology, Lecture notes CIE4130.
- Moustapha, M., Marelli, S., & Sudret, B. (2019). **UQLab user manual–Reliability-based design optimization**. Technical report, Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich. Report# UQLab-V1. 2-114.
- Li, L. (2012). Sequential Design of Experiments to Estimate a Probability of Failure (Doctoral dissertation, Supélec).

Risk

 Risk refers to the combination of probability and consequences of undesired events.

 Almost all activities in life are characterized by some level of

risk.

Load

Probabilistic design

- General definition: the relationship between <u>safety</u> standards and engineering <u>design</u>.
- Overall objective: to design (and maintain) systems with an acceptable risk level in an optimal way.

Schematic view of steps in risk assessment and risk management

Qualitative analysis

- **Goal:** gain insight, as complete as possible, into all possible undesired events and their consequences.
- Failure: when a system or part of it no longer fulfils one or more desired functions.
- Limit state: a condition of a structure beyond which it no longer fulfils the relevant design criteria.
- **Ultimate limit state (ULS):** if exceeded, failure or collapse of a system or structure occurs.
- Serviceability limit state (SLS): if exceeded, leads to temporary and/or partial failure.

Quantitative analysis

- The **probabilities** and **consequences** of the defined undesired events are determined in this step.
- Limit state **Z** (by considering the resistance **R** and the loads **S**):

- Failure occurs when **R < S**, so when **Z < 0**.
- Failure probability:

$$P(Z<0)=P(S>R)$$

There are several techniques for computing the probability of failure.

Formulation for limit state design

General formulation:

$$g(\underline{X}) = Z = 0$$

- where the vector \underline{X} consists of n basic variables such as:
 - material properties
 - actions (loads)
 - geometrical properties
 - model uncertainties.
- For all basic variables one has to consider an appropriate probabilistic model.
- Negligible variation in time or space: one can consider that variable as deterministic.

Failure probability

$$P_f = \Pr[G < 0] = \iint_{D_f} f_{x_1, x_2}(x_1, x_2) dx_1 dx_2 \Rightarrow \boxed{P_f = \Phi(-\beta)}$$

• β : reliability index

 The probability of survival (or the reliability) is defined as:

$$P_s = 1 - P_f$$

Level 0 methods:

Deterministic design

Level I methods (semiprobabilistic design):

- The uncertain parameters are modelled by one characteristic value for load and resistance.
- for example in codes based on the partial coefficients (γ 's) concept.

Level II methods (approximation):

- The uncertain parameters are modelled by the mean values and the standard deviations, and by the correlation coefficients between the stochastic variables.
- The stochastic variables are implicitly assumed to be normally distributed.

Level III methods (numerical):

- The uncertain quantities are modelled by their joint distribution functions.
- The probability of failure calculated exactly, e.g. by numerical integration.

Level IV methods (risk-based):

- In these methods the consequences (cost) of failure are also taken into account and the **risk (consequence multiplied by the probability of failure**) is used as a measure of the reliability.
- In this way different designs can be compared on an economic basis taking into account uncertainty, costs and benefits.

Level III Methods

Methods of level III evaluate the following integral explicitly:

$$P_f = \int_{g(\underline{X})<0} f_{\underline{X}}(\underline{x}) d\underline{x}$$

- Direct calculation of this integral is rather difficult in n > 2.
- In these case, we use simulation-based techniques, like Monte-Carlo Simulation (MCS)

Monte-Carlo Simulation (MCS)

 Drawing random numbers from a uniform probability density function between zero and one.

Monte-Carlo Simulation (MCS)

Drawing samples from joint probability distribution function:

$$F_{\overrightarrow{X}}(\overrightarrow{X}) = F_{X_1}(X_1)F_{X_2|X_1}(X_2 \mid X_1) \dots F_{X_m|X_1,X_2,\dots,X_{m-1}}(X_m \mid X_1,X_2,\dots,X_{m-1})$$

$$X_1 = F_{X_1}^{-1}(X_{u_1})$$

$$X_{2} = F_{X_{2}|X_{1}}^{-1} \left(X_{u_{2}} | X_{1} \right)$$

Independent variables:

$$X_{i} = F^{-1}(X_{u_{i}})$$

•

•

$$X_{m} = F_{X_{m}|X_{1}, X_{2}, \dots, X_{m-1}}^{-1} \left(X_{u_{m}} | X_{1}, X_{2}, \dots, X_{m-1} \right)$$

Monte-Carlo Simulation (MCS)

$$P_f = \frac{N_f}{N}$$

- N_f number of failure (g < 0)
- N number of simulations
- In case $N \to \infty$ one obtains the failure probability P_f .
- Criterion for the proper selection of *N*:

$$N \cong \frac{1}{\delta^2 P_f} \qquad \delta = \sqrt{\frac{1 - P_f}{N P_f}}$$

 ullet δ is the target coefficient of variation (relative error)

Level II Methods

Level II Methods FORM method

Level II Methods FORM method

- Proposed by Hasofer and Lind (1974)
- Consider uncorrelated normally distributed variables
- First, normalize the basic variables X_i using:

$$U_i = \frac{X_i - \mu_i}{\sigma_i}$$
 $\mu_i = E[X_i] \text{ and } \sigma_i^2 = Var[X_i]$

- In case of normalized basic variables U_i it holds that $E[U_i] = 0$, and $Var[U_i] = 1$.
- The limit state equation becomes $g(\underline{U}) = 0$ in the n-dimensional U-space.

• The reliability index β is equal to the **shortest distance** from the **origin** to the **surface described by g(U) = 0** in the space of the normalized basic variables.

• The definition of the reliability index according to Hasofer and Lind (1974) does not depend on whether or not the reliability function is **linear**.

$$\beta = \min_{Z=0} \left(\sqrt{U_1^2 + U_2^2} \right)$$

- The closest point to the origin is called design point.
- The design point is the point of the limit state equation with the highest probability density, hence in literature one often mentions this as the "most probable failure point".
- Finding the design point is an iterative process, for which several methods are available. Two methods are:
 - 1. Method 1: transformation to normal variables
 - 2. Method 2: direct iteration based on the limit state function

- The independent non-normally distributed base variables have to be transformed to normally distributed base variables.
- Apply Rackwitz-Fiessler algorithm (1977).
- This transformation assumes that the values of the <u>real and the</u> approximated probability density function and probability distribution function are equal in the design point.

- Dependent random base variables:
- Have to be transformed to independent variables.
- If there is a **clear functional relation** between the variables, it is often possible to formulate the reliability function in such a way that variables are eliminated.
- In many cases the relation between the variables is not known exactly and statistical dependence is involved. In this case the base variables can be transformed. A general transformation method is the Rosenblatt-transformation.

Reliability of systems

• Within a **series** system, failure of a single element will always lead to the failure of the entire system.

Within a parallel system, failure of one element can be compensated by

another element.

Type	System representation	Simple example (structural engineering)
Series	1 2	→
Parallel	2	Js

Reliability of systems

• Examples of a series and parallel system: a **bridge** (series system; left); and a **pile foundation** (parallel system, right)

Case	Mutually exclusive	Independent	Dependent
Correlation coefficient. $\rho_{Z1,Z2}$ =	-1	0	1
Venn diagram	F1 F2	F1 F2	F1, F2
System failure probability $P(F)$	$P(F_1) + P(F_2)$	$P(\mathbf{F}_1) + P(\mathbf{F}_2) - P(\mathbf{F}_1) \cdot \mathbf{P}(\mathbf{F}_2)$	$Max(P(F_1, P(F_2))$

Bounds proposed by Ditlevsen (1977)

$$Max(\Phi(-\beta_1)\Phi(-\beta_2^*);\Phi(-\beta_1^*)\Phi(-\beta_2)) \le P(F_1 \cap F_2) \le \Phi(-\beta_1)\Phi(-\beta_2^*) + \Phi(-\beta_1^*)\Phi(-\beta_2)$$

in which:

$$\beta_1 = -\Phi^{-1}(P(F_1))$$
, so $P(F_1) = \Phi(-\beta_1)$

$$\beta_2 = -\Phi^{-1}(P(F_2))$$

$$\beta_1^* = \frac{\beta_1 - \rho \beta_2}{\sqrt{1 - \rho^2}}$$

$$\beta_2 * = \frac{\beta_2 - \rho \beta_1}{\sqrt{1 - \rho^2}}$$

 ρ is the correlation coefficient between F_1 and F_2 .

Three failure mechanisms

Lower bound:

$$P(F) = P(F_1) + P(F_2) - P(F_1 \cap F_2) + P(F_3) - P(F_1 \cap F_1) - P(F_2 \cap F_3)$$

Upper bound:

$$P(F) = P(F_1) + P(F_2) - P(F_1 \cap F_2) + P(F_3) - Max\{P(F_1 \cap F_3), P(F_2 \cap F_3)\}$$

n failure mechanisms

$$P(F) \le \sum_{i} P_{i} - \sum_{i \ge 2} \max_{j < i} P_{ij}$$
$$P(F) \ge \sum_{i} P_{i} - \sum_{i \ge 2} \sum_{j < i} P_{ij}$$

In which:

$$P_{ij} = P\{Z_i < 0\} = \Phi(-\beta_i)$$

$$P_{ij} = P\{Z_i < 0 \text{ and } Z_j < 0\} = \Phi(-\beta_i)\Phi(-\beta_j^*) + \Phi(-\beta_i^*)\Phi(-\beta_j)$$

Parallel system

• The bounds for a system with multiple identical elements with each failure probability P_i are as follows:

$$0 \le P_f \le Min(P_i)$$

- The lower bound is found for a situation in which failures are mutually exclusive.
- The upper bound is valid for a case in which the failure are fully dependent.

Reliability-based Design Optimization

Sources and types of uncertainties

Ref.: PROVERBS

Why RBDO?

- Design under uncertainties
- Optimal balance between performance and cost
- Increasing safety
- The RBDO solution is basically achieved by jointly performing a reliability analysis and solving an optimization problem.

General formulation of a RBDO problem

$$\boldsymbol{d}^* = \operatorname*{arg\,min}_{\boldsymbol{d} \in \mathbb{D}} \boldsymbol{c}(\boldsymbol{d}) \quad \text{subject to: } \left\{ \begin{array}{l} \mathbf{f}_j\left(\boldsymbol{d}\right) \leq 0, \quad \text{Soft constraints} \\ \mathbb{P}\left(g_k\left(\boldsymbol{X}\left(\boldsymbol{d}\right), \boldsymbol{Z}\right) \leq 0\right) \leq \bar{P}_{f_k}, \quad \{k = 1, \dots, n\}. \end{array} \right.$$

- Design variables (d): to be optimized
- $oldsymbol{X}$: a set of random variables indexed on the <u>design variables</u> which may represent **manufacturing tolerances**
- Z: environmental variables which are parameters that may be random but cannot be controlled by the designer, e.g. the loading

General formulation of a RBDO problem

- Soft constraints: are simple functions that bound the design space.
- Hard constraints: are limit-state functions which describe the performance of the system.

An alternative formulation using the reliability index

$$\boldsymbol{d}^{*} = \operatorname*{arg\,min}_{\boldsymbol{d} \in \mathbb{D}} \mathfrak{c}\left(\boldsymbol{d}\right) \quad \text{subject to: } \left\{ \begin{array}{l} \underline{\mathfrak{f}_{j}}\left(\boldsymbol{d}\right) \leq 0, \\ \overline{\beta}_{k} - \beta_{k}\left(\boldsymbol{X}\left(\boldsymbol{d}\right), \boldsymbol{Z}\right) \leq 0, \end{array} \right. \quad \left\{ \begin{aligned} j = 1, \dots, s \right\}, \\ \left\{k = 1, \dots, n \right\}, \end{aligned} \right.$$

$$\bar{\beta}_k = \Phi^{-1} \left(1 - \bar{P}_{f_k} \right) \text{ and } \beta_k = \Phi^{-1} \left(1 - P_{f_k} \right)$$

- are the target and structural reliability indices of the k-th limit-state

Solution of a RBDO problem

Two-level approach

- Nested loops
- The outer loop explores the design space
- The inner one computes the corresponding failure probability
- Two classical approaches:
- 1. Reliability index approach
- 2. Performance measure approach

- RIA: uses FORM in the inner loop
 - Hasofer-Lind-Rackwitz-Fiessler (HLRF) and its improved version (iHLRF)
 - low numerical efficiency
 - easy to implement.
- PMA: inner loop consists of an inverse FORM analysis
 - searches for minimum performance target point (MPTP).

Solution of a RBDO problem

Mono-level approach

- Avoiding the reliability analysis at each iteration of the optimization process
- The problem is converted into an equivalent single loop deterministic process
- Enforcing the Karush-Kuhn-Tucker optimality conditions of the reliability analysis as additional constraints

Decoupled approach

- Sequentially solving a deterministic optimization problem followed by a reliability analysis
- Sequential Optimization and Reliability Assessment (SORA)
- Converts the probabilistic constraint into an equivalent deterministic constraint using the minimum performance target point

RBDO solution using surrogate models

- Avoid expensive model evaluations
- For highly non-linear or when multiple design points exist
- For real-world problems using time-consuming high-fidelity computational models (e.g. finite element).

- Gaussian process a.k.a. Kriging
- Polynomial chaos expansions
- Polynomial chaos-Kriging
- Low-rank approximation
- Support vector machines

Optimization algorithms

- Interior-point (see fmincon in MATLAB);
- Sequential quadratic programming (see fmincon in MATLAB);
- Genetic algorithm (see ga in MATLAB);
- Constrained (1 + 1)-CMA-ES (Arnold and Hansen (2012);
- Hybrid algorithms, which refine the solution identified by a genetic algorithm or (1+1)-CMA-ES by an additional gradient-based minimization.

UQLab intro

- MATLAB®-based Uncertainty Quantification framework
- Highly optimized open source algorithms
- Fast learning curve for beginners
- Modular structure, easy to extend
- Academic/ Commercial/ Group
- More that 3000 academic users

UQWorld

- Connect with fellow uncertainty quantification (UQ) practitioners.
- Discuss the practice of UQ in science and engineering, use cases, and best practices.
- Share and discuss your problem, experience, and expertise.
- News, updates, and other resources.

- www.uqworld.org
- Sign up using any email address.

UQLab modules

Soheil Radfar, Ph.D. Postdoctoral Fellow Coastal Hydrology Lab

Department of Civil, Construction, and Environmental Engineering The University of Alabama