Art Unit: 2853

DETAILED ACTION

Information Disclosure Statement

Acknowledgement is made of the information disclosure statement (IDS) submitted on 5/1/07 and 1/28/08. The submission is in compliance with the provisions of 37 CFR 1.97.

Election/Restrictions

Claims 1-34 are allowable. The restriction requirement between species I and species II, as set forth in the Office action mailed on 4/10/08, has been reconsidered in view of the allowability of claims to the elected invention pursuant to MPEP § 821.04(a). The restriction requirement is hereby withdrawn as to any claim that requires all the limitations of an allowable claim. Claim 25-34, directed to an ink jet recording method of using an ink including an oil-soluble dye, a photopolymerizable monomer, and a compound, are no longer withdrawn from consideration because the claim(s) requires all the limitations of an allowable claim.

In view of the above noted withdrawal of the restriction requirement, applicant is advised that if any claim presented in a continuation or divisional application is anticipated by, or includes all the limitations of, a claim that is allowable in the present application, such claim may be subject to provisional statutory and/or nonstatutory double patenting rejections over the claims of the instant application.

Art Unit: 2853

Once a restriction requirement is withdrawn, the provisions of 35 U.S.C. 121 are no longer applicable. See *In re Ziegler*, 443 F.2d 1211, 1215, 170 USPQ 129, 131-32 (CCPA 1971). See also MPEP § 804.01.

Allowable Subject Matter

Claims 1-34 are allowed.

The following is a statement of reasons for the indication of allowable subject matter: prior art does not teach or suggest a compound represented by the following general formula (I): R-X-(Y)_n-H, wherein the general formula (I), R represents a hydrophobic group, or a group derived from a hydrophobic polymer; n is an integer from 10 to 3500 (claims 9 and 13); and structural units of repeated Y comprise at least one structural unit represented by A, C, or D, and further comprise 0-40% by mole of structural units represented by B:

$$A: -(CH_2 \xrightarrow{R^1} O) \\ O = CH_2 \xrightarrow{R^1} O = CH$$

wherein in structural units A through D, R¹ represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; R² represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms; R³ represents a hydrogen atom or a methyl group;

Art Unit: 2853

 R^4 represents a hydrogen atom, -CH₃, -CH₂COOH, or an ammonium salt thereof or an alkali metal salt thereof or -CN; Z^1 (X) represents a hydrogen atom, -COOH, or an ammonium salt thereof or alkali metal salt thereof, or -CONH₂; and Z^2 (Y) represents - COOH or an ammonium salt thereof or alkali metal salt thereof, SO3H or an ammonium salt thereof or alkali metal salt thereof, -CONHC(CH₃)₂CH₂SO₃H or an ammonium salt thereof or alkali metal salt thereof, or -CONHC(CH₃)₂CH₂SO₃H or an ammonium salt thereof or alkali metal salt thereof, or -CONHCH₂CH₂CH₂N⁺(CH₃)₃Ci⁻.

The prior art disclosed in the Japanese Office action dated 10/30/2007 teach references that disclose the polymer "R" in the formula "R-X-(Y)_n-H"; however, it does not disclose the entire formula. Prior art does not disclose the formula as claimed in the independent claims.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to LAURA E. MARTIN whose telephone number is (571)272-2160. The examiner can normally be reached on Monday - Friday, 7:00 - 3:30

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Stephen D. Meier can be reached on (571) 272-2149. The fax phone

Art Unit: 2853

number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/L. E. M./ Examiner, Art Unit 2853

Laura E. Martin

/Manish S. Shah/ Primary Examiner, Art Unit 2853