MULTIPLE LINEAR REGRESSION

Dataset taken fom kaggle -

https://www.kaggle.com/datasets/hellbuoy/cprice-prediction?resource=download

Problem statement : The price of the american cars are different from the price from Chinese cars

To know the varibales that significantly effects the dependent variable.

To know how those variables describes the price of the car.

Let's import the all necassary Libraries!!!!

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
import plotly.express as px
import statsmodels.api as sm
from scipy.stats import boxcox
from statsmodels.formula.api import ols
from statsmodels.stats.outliers_influence import variance_inflation_factor
```

let's load the dataset!!!!!!!!!!

```
In [2]: df=pd.read_csv("CarPrice_Assignment.csv")
In [3]: df.head(10)
```

Out[3]:		car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	eng
	0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	
	1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	
	2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	
	3	4	2	audi 100 ls	gas	std	four	sedan	fwd	
	4	5	2	audi 100ls	gas	std	four	sedan	4wd	
	5	6	2	audi fox	gas	std	two	sedan	fwd	
	6	7	1	audi 100ls	gas	std	four	sedan	fwd	
	7	8	1	audi 5000	gas	std	four	wagon	fwd	
	8	9	1	audi 4000	gas	turbo	four	sedan	fwd	
	9	10	0	audi 5000s (diesel)	gas	turbo	two	hatchback	4wd	

10 rows × 26 columns

•									•	
In [4]:	<pre>df.describe().T</pre>									
Out[4]:		count	mean	std	min	25%	50%	75%	ma	
	car_ID	205.0	103.000000	59.322565	1.00	52.00	103.00	154.00	205.00	
	symboling	205.0	0.834146	1.245307	-2.00	0.00	1.00	2.00	3.00	
	wheelbase	205.0	98.756585	6.021776	86.60	94.50	97.00	102.40	120.90	
	carlength	205.0	174.049268	12.337289	141.10	166.30	173.20	183.10	208.10	
	carwidth	205.0	65.907805	2.145204	60.30	64.10	65.50	66.90	72.30	
	carheight	205.0	53.724878	2.443522	47.80	52.00	54.10	55.50	59.80	
	curbweight	205.0	2555.565854	520.680204	1488.00	2145.00	2414.00	2935.00	4066.00	
	enginesize	205.0	126.907317	41.642693	61.00	97.00	120.00	141.00	326.00	
	boreratio	205.0	3.329756	0.270844	2.54	3.15	3.31	3.58	3.94	
	stroke	205.0	3.255415	0.313597	2.07	3.11	3.29	3.41	4.1	
	compression ratio	205.0	10.142537	3.972040	7.00	8.60	9.00	9.40	23.00	
	horsepower	205.0	104.117073	39.544167	48.00	70.00	95.00	116.00	288.00	
	peakrpm	205.0	5125.121951	476.985643	4150.00	4800.00	5200.00	5500.00	6600.00	
	citympg	205.0	25.219512	6.542142	13.00	19.00	24.00	30.00	49.00	
	highwaympg	205.0	30.751220	6.886443	16.00	25.00	30.00	34.00	54.00	
	price	205.0	13276.710571	7988.852332	5118.00	7788.00	10295.00	16503.00	45400.00	
									•	
In [5]:	df.info()									

<class 'pandas.core.frame.DataFrame'> RangeIndex: 205 entries, 0 to 204 Data columns (total 26 columns): Column Non-Null Count Dtype _ _ _ ---------car_ID 0 205 non-null int64 205 non-null int64 1 symboling CarName 205 non-null object 3 fueltype 205 non-null object 205 non-null 4 aspiration object doornumber 5 205 non-null object carbody 205 non-null object 6 drivewheel 7 205 non-null object enginelocation 205 non-null object 8 9 wheelbase 205 non-null float64 10 carlength 205 non-null float64 205 non-null 11 carwidth float64 12 carheight 205 non-null float64 13 curbweight14 enginetype 205 non-null int64 205 non-null object 15 cylindernumber 205 non-null object 205 non-null 16 enginesize int64 17 fuelsystem 205 non-null object 18 boreratio 205 non-null float64 19 stroke 205 non-null float64 20 compressionratio 205 non-null float64 205 non-null int64 21 horsepower 205 non-null int64 22 peakrpm 23 citympg int64 205 non-null int64 24 highwaympg 205 non-null 25 price 205 non-null float64 dtypes: float64(8), int64(8), object(10)

memory usage: 41.8+ KB Let's summarize about dataset (Data Understanding)

Dependent variable - price(float) [price starts from : 5118.00 to 45400.00 and mean - 13276.710571 std from mean - 7988.852332 on average, about 7988.852332 i.e away from the mean of 13276.710571.]

Independent variables - the count is same for all variables which means that there is no missing values. we need to use standardscaler to standardscaler to variables as there is not normally distributed.

Let's know more about Price variable

```
In [6]: df.price.describe()
                    205.000000
        count
Out[6]:
        mean
                 13276.710571
        std
                  7988.852332
        min
                  5118.000000
        25%
                  7788.000000
        50%
                 10295.000000
        75%
                 16503.000000
        max
                 45400.000000
        Name: price, dtype: float64
        plt.figure(figsize=(20,5))
        sns.histplot(df["price"],kde=True,color="red")
        <AxesSubplot:xlabel='price', ylabel='Count'>
Out[7]:
```


Price is not normally distributed.

```
In [8]: plt.figure(figsize=(20,5))
sns.boxplot(df.price,color="blue")
```

C:\Users\Dayana Vincent\anaconda3\lib\site-packages\seaborn_decorators.py:36: Fut
ureWarning: Pass the following variable as a keyword arg: x. From version 0.12, th
e only valid positional argument will be `data`, and passing other arguments witho
ut an explicit keyword will result in an error or misinterpretation.
warnings.warn(

Out[8]: <AxesSubplot:xlabel='price'>

As there is high price from the mean price

Residual 5.864709e+08

Selection the variables

Performing ANOVA to choose categorical variable

58.0

NaN

• CarName is 1.243317e+10, which indicates that the CarName variable explains a large amount of the variability in the data.

NaN

- There are 146 degrees of freedom, indicating that there are 146 groups in the dataset.
- F-value is 8.421908, which is quite large and indicates that there is likely a significant difference between the means of the groups.
- PR(>F), the p-value is 6.414987e-16, which is much smaller than the significance level (usually 0.05), indicating that there is strong evidence against the null hypothesis and that the CarName variable is a significant predictor of the outcome.

• Residual represents the sum of squares for the residual or error term, which is the variability in the data that is not explained by the independent variable (CarName). In this case, the residual sum of squares is 5.864709e+08, which indicates that there is still a significant amount of unexplained variability in the data.

p-value of 6.414987e-16. This suggests that the "CarName" variable has a significant effect on the outcome variable you are analyzing.

- sum_sq indicates that it explains small amount of variabilty in the model
- F value is signifiveantly less there is no significant difference between the group.
- p value is 0.131536 which is high

There is no need to consider the variable fueltype in the analysis.

p-value is less than the typical significance level of 0.05 therefor we can consider "aspiration" in our study.

Don't need to consier the variable doornumber

Yes we can consider this variable because of the above

```
In [14]: model = ols('price ~ drivewheel', data=df).fit()
  anova_table = sm.stats.anova_lm(model, typ=2)
  print(anova_table)
```

```
sum_sq df F PR(>F)
drivewheel 5.344065e+09 2.0 70.320553 6.632887e-24
Residual 7.675574e+09 202.0 NaN NaN
```

Yes we can consider this variable because of the above 📦

```
In [15]: model = ols('price ~ enginelocation', data=df).fit()
  anova_table = sm.stats.anova_lm(model, typ=2)
  print(anova_table)
```

```
sum_sq df F PR(>F)
enginelocation 1.374973e+09 1.0 23.96974 0.000002
Residual 1.164467e+10 203.0 NaN NaN
```

Yes we can consider this variable enginelocation because of the above 😁

```
In [16]: model = ols('price ~ enginetype', data=df).fit()
  anova_table = sm.stats.anova_lm(model, typ=2)
  print(anova_table)
```

```
sum_sq df F PR(>F)
enginetype 2.880743e+09 6.0 9.37622 4.692665e-09
Residual 1.013890e+10 198.0 NaN NaN
```

Yes we can consider this variable enginetype because of the above 😁

```
In [17]: model = ols('price ~ cylindernumber', data=df).fit()
    anova_table = sm.stats.anova_lm(model, typ=2)
    print(anova_table)
```

```
sum_sqdfFPR(>F)cylindernumber8.275757e+096.057.5688818.065780e-41Residual4.743882e+09198.0NaNNaN
```

We include cylindernumber in study

```
In [18]: model = ols('price ~ fuelsystem', data=df).fit()
  anova_table = sm.stats.anova_lm(model, typ=2)
  print(anova_table)
```

```
sum_sq df F PR(>F)
fuelsystem 4.651199e+09 7.0 15.641865 2.990386e-16
Residual 8.368441e+09 197.0 NaN NaN
```

We have to include the fuelsystem in the study

Therefore using ANOVA we need to consider all categorical variables except the fueltype ...

But the probelm there comes is Multicollinearity.

```
In [19]: df=df.drop(["fueltype"],axis=1)
In [20]: df
```

Out[20]

]:		car_ID	symboling	CarName	aspiration	doornumber	carbody	drivewheel	enginelocat
	0	1	3	alfa-romero giulia	std	two	convertible	rwd	fı
	1	2	3	alfa-romero stelvio	std	two	convertible	rwd	fı
	2	3	1	alfa-romero Quadrifoglio	std	two	hatchback	rwd	fı
	3	4	2	audi 100 ls	std	four	sedan	fwd	fı
	4	5	2	audi 100ls	std	four	sedan	4wd	fı
	200	201	-1	volvo 145e (sw)	std	four	sedan	rwd	fı
	201	202	-1	volvo 144ea	turbo	four	sedan	rwd	fı
	202	203	-1	volvo 244dl	std	four	sedan	rwd	fı
	203	204	-1	volvo 246	turbo	four	sedan	rwd	fı
	204	205	-1	volvo 264gl	turbo	four	sedan	rwd	fı

205 rows × 25 columns

Multicollinearity

```
label=LabelEncoder()
In [21]:
         df["CarName"]=label.fit_transform(df["CarName"])
         label=LabelEncoder()
In [22]:
         df["cylindernumber"]=label.fit_transform(df["cylindernumber"])
         label=LabelEncoder()
In [23]:
         df["enginelocation"]=label.fit_transform(df["enginelocation"])
In [24]:
         label=LabelEncoder()
         df["drivewheel"]=label.fit_transform(df["drivewheel"])
         label=LabelEncoder()
In [25]:
         df["carbody"]=label.fit_transform(df["carbody"])
         label=LabelEncoder()
In [26]:
         df["doornumber"]=label.fit_transform(df["doornumber"])
         label=LabelEncoder()
In [27]:
         df["aspiration"]=label.fit_transform(df["aspiration"])
         label=LabelEncoder()
In [28]:
         df["drivewheel"]=label.fit_transform(df["drivewheel"])
         label=LabelEncoder()
In [29]:
         df["enginetype"]=label.fit_transform(df["enginetype"])
```

```
df.fuelsystem.unique()
In [30]:
          array(['mpfi', '2bbl', 'mfi', '1bbl', 'spfi', '4bbl', 'idi', 'spdi'],
Out[30]:
                 dtype=object)
          df["fuelsystem"]=df["fuelsystem"].map({"mpfi":1,"2bbl":2,"1bbl":3,"4bbl":4,"spdi":
In [31]:
          df=df.drop(["fuelsystem"],axis=1)
In [32]:
          df
In [33]:
               car_ID symboling CarName aspiration doornumber carbody drivewheel enginelocation
Out[33]:
            0
                    1
                              3
                                        2
                                                   0
                                                                1
                                                                         0
                                                                                    2
                                                                                                   0
                    2
                               3
                                        3
                                                                         0
                                                                                    2
            1
                                                   0
                                                                                                   0
                    3
                                                                         2
                                                                                    2
            2
                              1
                                        1
                                                   0
                                                                1
                                                                                                   0
            3
                    4
                              2
                                        4
                                                   0
                                                                0
                                                                         3
                                                                                    1
                                                                                                   0
                    5
                              2
                                        5
                                                   0
                                                                0
                                                                         3
                                                                                    0
                                                                                                   0
            4
          200
                                                   0
                                                                0
                                                                         3
                                                                                    2
                  201
                              -1
                                       139
                                                                                                   0
          201
                  202
                              -1
                                       138
                                                   1
                                                                0
                                                                         3
                                                                                    2
                                                                                                   0
          202
                  203
                                                                0
                                                                         3
                                                                                    2
                              -1
                                       140
                                                   0
                                                                                                   0
          203
                  204
                                       142
                                                                         3
                                                                                    2
                              -1
                                                   1
                                                                0
                                                                                                   0
          204
                                                   1
                                                                0
                                                                         3
                                                                                    2
                  205
                                       143
                                                                                                   0
                              -1
         205 rows × 24 columns
          plt.figure(figsize=(30,30))
In [34]:
          sns.heatmap(df.corr(),cmap="coolwarm",annot=True)
```

```
<AxesSubplot:>
```

Out[34]:

Through correlation map: there is stron relation between

- CarName and CarID
- curbweight and carlength and carweight
- curbweight with enginesize
- highwaympg and citympg
- co enginesize with price

Use if VIF (variation inflation factor)

```
In [35]: #drop price (dependent variable to check multicolliearity)
vif_df=df.drop("price",axis=1)
In [36]: vif_df
```

Out[36]:		car_ID	symboling	CarName	aspiration	doornumber	carbody	drivewheel	enginelocation
	0	1	3	2	0	1	0	2	0
	1	2	3	3	0	1	0	2	0
	2	3	1	1	0	1	2	2	0
	3	4	2	4	0	0	3	1	0
	4	5	2	5	0	0	3	0	0
	•••								
	200	201	-1	139	0	0	3	2	0
	201	202	-1	138	1	0	3	2	0
	202	203	-1	140	0	0	3	2	0
	203	204	-1	142	1	0	3	2	0
	204	205	-1	143	1	0	3	2	0

205 rows × 23 columns

```
In [37]: vif_data = pd.DataFrame()
    vif_data['feature'] = vif_df.columns
    vif_data['VIF'] = [variance_inflation_factor(vif_df.values, i) for i in range(vif_ovif_data)
```

\sim	- 1	L >	1
())	17	1 4 /	
\cup \cup	<i>1</i> L	12/	

	feature	VIF
0	car_ID	107.995455
1	symboling	3.966694
2	CarName	123.933712
3	aspiration	2.907535
4	doornumber	5.024581
5	carbody	28.761413
6	drivewheel	17.174009
7	enginelocation	1.750043
8	wheelbase	2777.239608
9	carlength	2311.173735
10	carwidth	4299.425315
11	carheight	1163.346110
12	curbweight	449.827414
13	enginetype	15.147461
14	cylindernumber	15.012311
15	enginesize	137.311365
16	boreratio	347.252599
17	stroke	153.384730
18	compressionratio	20.164384
19	horsepower	108.093329
20	peakrpm	279.347593
21	citympg	506.939637
22	highwaympg	596.062703

```
In [38]: df=df.drop(["car_ID","curbweight","citympg","enginesize"],axis=1)
In [39]: df
```

Out[39]:		symboling	CarName	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelba
	0	3	2	0	1	0	2	0	8
	1	3	3	0	1	0	2	0	8
	2	1	1	0	1	2	2	0	9
	3	2	4	0	0	3	1	0	9
	4	2	5	0	0	3	0	0	9
	•••								
	200	-1	139	0	0	3	2	0	10
	201	-1	138	1	0	3	2	0	10
	202	-1	140	0	0	3	2	0	10
	203	-1	142	1	0	3	2	0	10
	204	-1	143	1	0	3	2	0	10

205 rows × 20 columns

```
In [40]: #drop price (dependent variable to check multicolliearity)
  vif_df1=df.drop("price",axis=1)

In [41]: vif_data = pd.DataFrame()
  vif_data['feature'] = vif_df1.columns
  vif_data['VIF'] = [variance_inflation_factor(vif_df1.values, i) for i in range(vif_vif_data)
```

Out[41]

		feature	VIF
	0	symboling	3.791713
	1	CarName	5.820628
	2	aspiration	1.866386
	3	doornumber	4.807985
	4	carbody	28.333542
	5	drivewheel	16.550477
	6	enginelocation	1.687555
	7	wheelbase	2581.076500
	8	carlength	2055.289098
	9	carwidth	4126.692673
	10	carheight	1123.439200
	11	enginetype	13.208384
	12	cylindernumber	11.305128
	13	boreratio	342.234667
	14	stroke	131.433165
	15	compressionratio	15.706597
	16	horsepower	39.354194
	17	peakrpm	192.212943
	18	highwaympg	89.999288

we dropped some variables but still multicollinerity effects the data....so we can use transformation method to reduce.

we can combine carwidth and carheight and create new variable cararea (linear transformation)

```
In [42]: #drop price (dependent variable to check multicolliearity)
vif_df2=df.drop("price",axis=1)

In [43]: #drop price (dependent variable to check multicolliearity)
vif_df2=df.drop(["price"],axis=1)

In [44]: vif_data = pd.DataFrame()
vif_data['feature'] = vif_df2.columns
vif_data['VIF'] = [variance_inflation_factor(vif_df2.values, i) for i in range(vif_vif_data)
```

10.41110			LINLANTILO
Out[44]:		feature	VIF
	0	symboling	3.791713
	1	CarName	5.820628
	2	aspiration	1.866386
	3	doornumber	4.807985
	4	carbody	28.333542
	5	drivewheel	16.550477
	6	enginelocation	1.687555
	7	wheelbase	2581.076500
	8	carlength	2055.289098
	9	carwidth	4126.692673
	10	carheight	1123.439200
	11	enginetype	13.208384
	12	cylindernumber	11.305128
	13	boreratio	342.234667
	14	stroke	131.433165
	15	compressionratio	15.706597
	16	horsepower	39.354194
	17	peakrpm	192.212943

highwaympg

89.999288

18

In [45]: df=df.drop(["symboling","aspiration","carheight","boreratio","peakrpm","carlength"]
In [46]: df

file:///C:/Users/Dayana Vincent/Downloads/LINEAR REGESSION MEACHINE LEARNING TOWARDS DATA SCIENCE.html

Out[46]:

		CarName	carbody	enginelocation	carwidth	enginetype	horsepower	price
	0	2	0	0	64.1	0	111	13495.0
	1	3	0	0	64.1	0	111	16500.0
	2	1	2	0	65.5	5	154	16500.0
	3	4	3	0	66.2	3	102	13950.0
	4	5	3	0	66.4	3	115	17450.0
	•••							
2	200	139	3	0	68.9	3	114	16845.0
2	201	138	3	0	68.8	3	160	19045.0
2	202	140	3	0	68.9	5	134	21485.0
2	203	142	3	0	68.9	3	106	22470.0
2	204	143	3	0	68.9	3	114	22625.0

205 rows × 7 columns


```
In [48]: #for i in df.columns:
    #df[i]=np.log(df[i]+1)
    #sns.histplot(df1[i],kde=True,color="violet")
    #plt.show()
```

Log transformation didn't helped us!!!!!! 😧 🕡 🕡

Outlier Detection

C:\Users\Dayana Vincent\anaconda3\lib\site-packages\seaborn_decorators.py:36: Fut ureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='price'>

Model Buiding

```
from sklearn.linear_model import LinearRegression
In [51]:
In [52]:
         x=df.drop(["price"],axis=1)
         y=df["price"]
         from sklearn.preprocessing import StandardScaler
In [53]:
In [54]: scaled=StandardScaler()
         x_scaled=scaled.fit_transform(x)
In [55]: x_scaled[:3]
         array([[-1.83822103, -3.05097525, -0.12186667, -0.84478235, -2.86510549,
Out[55]:
                  0.17448278],
                [-1.81377978, -3.05097525, -0.12186667, -0.84478235, -2.86510549,
                  0.17448278],
                [-1.86266229, -0.71720687, -0.12186667, -0.19056612, 1.88688986,
                  1.26453643]])
In [56]: y[:3]
              13495.0
Out[56]:
         1
              16500.0
              16500.0
         Name: price, dtype: float64
         from sklearn.model_selection import train_test_split
In [57]:
         x_train,x_test,y_train,y_test=train_test_split(x_scaled,y,test_size=0.2)
```

You can also view the documentation for the LinearRegression class by running help(LinearRegression) or by visiting the scikit-learn website.

```
model=LinearRegression(fit_intercept=True)
  In [58]:
             model.fit(x train,y train)
  In [59]:
  Out[59]:
             ▼ LinearRegression
             LinearRegression()
             print('Coefficients:', model.coef_)
             print('Intercept:', model.intercept_)
             Coefficients: [-1312.03047863 -216.46203106 1853.41634306 4051.71539085
                -61.07855823 3155.69010618]
             Intercept: 13167.510419934066
when x=0 the price = 13167.510419934066 therefore the starting price of the car is 13167.510419934066
             y_pred=model.predict(x_test)
  In [61]:
             from sklearn.metrics import r2_score
  In [62]:
             r2 = r2_score(y_test, y_pred)
             print("R-squared value:", r2)
             R-squared value: 0.8890044170241304
             R-squared value of 0.89 or higher is considered to be a good fit for a model, but the
             interpretation of the value depends on the context of the problem and the field of
             application.
             There it can explain 0.73 of total variance in the dependent variable.
             from sklearn.metrics import mean_squared_error
  In [63]:
             mse = mean_squared_error(y_test, y_pred)
             print("Mean squared error:", mse)
             Mean squared error: 7815647.671916967
             plt.figure(figsize=(20,10))
  In [64]:
             plt.scatter(y_test,y_pred)
             plt.plot(y_test,y_test,"r")
             [<matplotlib.lines.Line2D at 0x1e3aa290850>]
  Out[64]:
             35000
             30000
            25000
                              10000
                                                                                           35000
                                          15000
```

Since there is multicollinearity let us go for ridge regression and compare the model.

```
In [65]: from sklearn.linear_model import Ridge
In [66]:
         model=Ridge(alpha=4) #choose bets alpha value
         model.fit(x_train,y_train)
Out[66]:
               Ridge
         Ridge(alpha=4)
In [67]:
         y_pred=model.predict(x_test)
In [68]: from sklearn.metrics import r2_score
         r2 = r2_score(y_test, y_pred)
         print("R-squared value:", r2 )
         R-squared value: 0.8889326092110726
In [69]: from sklearn.metrics import mean_squared_error
         mse = mean_squared_error(y_test, y_pred)
         print("Mean squared error:", mse)
         Mean squared error: 7820703.950301237
         print('Coefficients:', model.coef_)
In [70]:
         print('Intercept:', model.intercept_)
         Coefficients: [-1279.8517459
                                       -211.72396689 1789.44291557 3936.58215236
            -53.12699984 3168.30503263]
         Intercept: 13170.809819055667
         when x=0 the price = 13170.809819055667 therefore the starting price of the car is
         13170.809819055667
In [71]:
         plt.figure(figsize=(20,10))
         plt.scatter(y_test,y_pred)
         plt.plot(y_test,y_test,"r")
         [<matplotlib.lines.Line2D at 0x1e3a8197b50>]
Out[71]:
```



```
In [72]: # Plot the histogram of the error terms
fig = plt.figure()
sns.distplot((y_test - y_pred), bins = 20)
fig.suptitle('Error Terms Analysis', fontsize = 20)
plt.xlabel('Errors', fontsize = 18)
```

C:\Users\Dayana Vincent\anaconda3\lib\site-packages\seaborn\distributions.py:2551:
FutureWarning: `distplot` is a deprecated function and will be removed in a future
version. Please adapt your code to use either `displot` (a figure-level function w
ith similar flexibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[72]: Text(0.5, 0, 'Errors')

Error Terms Analysis

