

தேசிய வெளிக்கள நிலையம் தொண்டைமானாறு மூன்நாம் தவணைப் பரீட்சை - 2023 National Field Work Centre, Thondaimanaru. 3rd Term Examination - 2023

இணைந்த கணிதம் $-{f A}$	Three Hours	10	$ \overline{ \mathbf{T} } $	$\bigcap_{\mathbf{A}}$
Combined mathematics -A	Gr -12 (2023)			

	சுட்டெண்			
அறிவுறுத்தல்கள்:				

- பகுதி A இன் எல்லாவினாக்களுக்கும் விடைஎழுதுக. ஒவ்வொரு வினாவுக்கும் விடைகளைத் தரப்பட்ட இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- பகுதி B இல் உள்ள 7 வினாக்களில் விரும்பிய 5 வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- ஒதுக்கப்பட்ட நேரம் முடிவடைந்ததும் பகுதி A ஆனது பகுதி B யிற்கு மேலே இருக்கக் கூடியதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

	இணைந்த கணி	தம் I
பகுதி	வினா எண்	கிடைத்த புள்ளிகள்
	1	
	2	
	3	
	4	
A	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
வினாத்தா	ர் I இன் மொத்தம்	

இணைந்த கணிதம் I	
இணைந்த கணிதம் II	
இறுதிப் புள்ளிகள்	

www.beeon.org

(All Rights Reserved/ முழுப்பதிப்புரிமை உடையது)

2			Ц@	ததி A			
3 <i>x</i> (<i>x</i> -1)(<i>x</i> +2) பகுதிப்பின்ன	ஐப் எங்களில்		ன்னங்களில்	எடுத்துரைக்க.	இதிலிருந்து	$\frac{3}{(x-1)(2x+1)}$	ஐயும்
• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	
					• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •				
					• • • • • • • • • • • • • • • • • • • •		
					A		
						Д	
			• • • • • • • • • • • • • • • • • • • •				
				(,7,			
				<i></i>			••••
இதிலிருந்து	டத்தில் <i>ງ</i> அல்லத	y = 3 <i>x</i> – த வேறு எ		ஆகியவந்நின் வ தனிலி 3 x — 2 <u>:</u>			
இதிலிருந்து	டத்தில் <i>ງ</i> அல்லத	y = 3 <i>x</i> – த வேறு எ	விதமாக, சம	oனിலി $3 x-2 $:			
இதிலிருந்து	டத்தில் <i>ງ</i> அல்லத	y = 3 <i>x</i> – த வேறு எ	விதமாக, சம	oனിலി $3 x-2 $:			
இதிலிருந்து	டத்தில் <u>ງ</u> அல்லது ப்ப் பெறுட	y = 3x — து வேறு எ மானங்களை	விதமாக, சம	oனിலി $3 x-2 $:			
இதிலிருந்து	டத்தில் <i>ງ</i> அல்லத	y = 3x — து வேறு எ மானங்களை	விதமாக, சம	oனിலി $3 x-2 $:			
இதிலிருந்து	டத்தில் <u>ງ</u> அல்லது ப்ப் பெறுட	y = 3x — து வேறு எ மானங்களை	விதமாக, சம	oனിலി $3 x-2 $:			
இதிலிருந்து	டத்தில் <u>ງ</u> அல்லது ப்ப் பெறுட	y = 3x — து வேறு எ மானங்களை	விதமாக, சம	oனിலി $3 x-2 $:			
இதிலிருந்து	டத்தில் <u>ງ</u> அல்லது ப்ப் பெறுட	y = 3x — து வேறு எ மானங்களை	விதமாக, சம	oனിலി $3 x-2 $:			
இதிலிருந்து	டத்தில் <u>ງ</u> அல்லது ப்ப் பெறுட	y = 3x — து வேறு எ மானங்களை	விதமாக, சம	oனിலി $3 x-2 $:			
இதிலிருந்து	டத்தில் <u>ງ</u> அல்லது ப்ப் பெறுட	y = 3x — து வேறு எ மானங்களை	விதமாக, சம	oனിலി $3 x-2 $:			
இதிலிருந்து	டத்தில் <u>ງ</u> அல்லது ப்ப் பெறுட	y = 3x — து வேறு எ மானங்களை	விதமாக, சம	oனിலി $3 x-2 $:			
இதிலிருந்து	டத்தில் <u>ງ</u> அல்லது ப்ப் பெறுட	y = 3x — து வேறு எ மானங்களை	விதமாக, சம	oனിலി $3 x-2 $:			
இதிலிருந்து	டத்தில் <u>ງ</u> அல்லது ப்ப் பெறுட	y = 3x — து வேறு எ மானங்களை	விதமாக, சம	oனിலി $3 x-2 $:			
இதிலிருந்து	டத்தில் <u>ງ</u> அல்லது ப்ப் பெறுட	y = 3x — து வேறு எ மானங்களை	விதமாக, சம	oனിலി $3 x-2 $:			
இதிலிருந்து	டத்தில் <u>ງ</u> அல்லது ப்ப் பெறுட	y = 3x — து வேறு எ மானங்களை	விதமாக, சம	oனിலി $3 x-2 $:			
இதிலிருந்து	டத்தில் <u>ງ</u> அல்லது ப்ப் பெறுட	y = 3x — து வேறு எ மானங்களை	விதமாக, சம	oனിலി $3 x-2 $:			

www.beeon.org

(All Rights Reserved/ முழுப்பதிப்புரிமை உடையது)

3.	$\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{3} - \sqrt{2 + \sin x}}{\left(\frac{\pi}{2} - x\right)\cos x} = \frac{1}{4\sqrt{3}}$ எனக் காட்டுக.
	π
1	- $ -$
4.	ஒரு வளையி C ஆனது $0< heta<rac{\pi}{2}$ இந்கு $x=4\sin 2 heta$, $y=2+\cos 4 heta$ என்னும் பரமானச்
4.	சமன்பாடுகளினால் தரப்படுகின்றது. $rac{dy}{dx} = -\sin 2 heta$ எனக் காட்டுக. $ heta = rac{\pi}{8}$ இல் வளையி $ heta$ இந்கு
4.	ஒரு வளையி C ஆனது $0<\theta<\frac{\pi}{2}$ இந்கு $x=4\sin2\theta$, $y=2+\cos4\theta$ என்னும் பரமானச் சமன்பாடுகளினால் தரப்படுகின்றது. $\frac{dy}{dx}=-\sin2\theta$ எனக் காட்டுக. $\theta=\frac{\pi}{8}$ இல் வளையி C இற்கு வரையப்பட்ட தொடலிக் கோட்டின் சமன்பாடு $x+\sqrt{2}y-4\sqrt{2}=0$ எனக் காட்டுக.
4.	சமன்பாடுகளினால் தரப்படுகின்றது. $rac{dy}{dx} = -\sin 2 heta$ எனக் காட்டுக. $ heta = rac{\pi}{8}$ இல் வளையி $ heta$ இந்கு
4.	சமன்பாடுகளினால் தரப்படுகின்றது. $rac{dy}{dx} = -\sin 2 heta$ எனக் காட்டுக. $ heta = rac{\pi}{8}$ இல் வளையி $ heta$ இந்கு
4.	சமன்பாடுகளினால் தரப்படுகின்றது. $rac{dy}{dx} = -\sin 2 heta$ எனக் காட்டுக. $ heta = rac{\pi}{8}$ இல் வளையி $ heta$ இந்கு
4.	சமன்பாடுகளினால் தரப்படுகின்றது. $rac{dy}{dx} = -\sin 2 heta$ எனக் காட்டுக. $ heta = rac{\pi}{8}$ இல் வளையி $ heta$ இந்கு
4.	சமன்பாடுகளினால் தரப்படுகின்றது. $rac{dy}{dx} = -\sin 2 heta$ எனக் காட்டுக. $ heta = rac{\pi}{8}$ இல் வளையி $ heta$ இந்கு
4.	சமன்பாடுகளினால் தரப்படுகின்றது. $rac{dy}{dx} = -\sin 2 heta$ எனக் காட்டுக. $ heta = rac{\pi}{8}$ இல் வளையி $ heta$ இந்கு
4.	சமன்பாடுகளினால் தரப்படுகின்றது. $rac{dy}{dx} = -\sin 2 heta$ எனக் காட்டுக. $ heta = rac{\pi}{8}$ இல் வளையி $ heta$ இந்கு
4.	சமன்பாடுகளினால் தரப்படுகின்றது. $rac{dy}{dx} = -\sin 2 heta$ எனக் காட்டுக. $ heta = rac{\pi}{8}$ இல் வளையி $ heta$ இந்கு
4.	சமன்பாடுகளினால் தரப்படுகின்றது. $rac{dy}{dx} = -\sin 2 heta$ எனக் காட்டுக. $ heta = rac{\pi}{8}$ இல் வளையி $ heta$ இந்கு
4.	சமன்பாடுகளினால் தரப்படுகின்றது. $rac{dy}{dx} = -\sin 2 heta$ எனக் காட்டுக. $ heta = rac{\pi}{8}$ இல் வளையி $ heta$ இந்கு
4.	சமன்பாடுகளினால் தரப்படுகின்றது. $rac{dy}{dx} = -\sin 2 heta$ எனக் காட்டுக. $ heta = rac{\pi}{8}$ இல் வளையி $ heta$ இந்கு
4.	சமன்பாடுகளினால் தரப்படுகின்றது. $rac{dy}{dx} = -\sin 2 heta$ எனக் காட்டுக. $ heta = rac{\pi}{8}$ இல் வளையி $ heta$ இந்கு
4.	சமன்பாடுகளினால் தரப்படுகின்றது. $rac{dy}{dx} = -\sin 2 heta$ எனக் காட்டுக. $ heta = rac{\pi}{8}$ இல் வளையி $ heta$ இந்கு
4.	சமன்பாடுகளினால் தரப்படுகின்றது. $rac{dy}{dx} = -\sin 2 heta$ எனக் காட்டுக. $ heta = rac{\pi}{8}$ இல் வளையி $ heta$ இந்கு

•	$0 \leq \theta \leq \pi$ இந்கு சமன்பாடு $(2\sin\theta - \cos\theta)(1+\cos\theta) = \sin^2\theta$ ஐத் தீர்க்குக.
	கிடைத்தரையில் இருந்து புவியீர்ப்பின் கீழ் நிலைக்குத்தாக மேல் நோக்கி $\sqrt{2gh}$ வேகத்துடன் துணிக்கை ஒன்று எறியப்படும் கணத்தில் கிடைத் தரையில் இருந்து h உயரத்தில் உள்ள புள்ளியில் இருந்து புவியீர்ப்பின் கீழ் ஒய்வில் இருந்து ஒரு
	கிடைத்தரையில் இருந்து புவியீரப்பின் கீழ் நிலைக்குத்தாக மேல் நோக்கி $\sqrt{2gh}$ வேகத்துடன் துணிக்கை ஒன்று எறியப்படும் கணத்தில் கிடைத் தரையில் இருந்து h உயரத்தில் உள்ள புள்ளியில் இருந்து புவியீரப்பின் கீழ் ஓய்வில் இருந்து ஒரு துணிக்கை விழவிடப்படுகின்றது இரு துணிக்கைகளின் கதிகள் சமனாவதற்கு எடுக்கும்
	கிடைத்தரையில் இருந்து புவியீர்ப்பின் கீழ் நிலைக்குத்தாக மேல் நோக்கி $\sqrt{2gh}$ வேகத்துடன் துணிக்கை ஒன்று எறியப்படும் கணத்தில் கிடைத் தரையில் இருந்து h உயரத்தில் உள்ள புள்ளியில் இருந்து புவியீர்ப்பின் கீழ் ஓய்வில் இருந்து ஒரு
	கிடைத்தரையில் இருந்து புவியீரப்பின் கீழ் நிலைக்குத்தாக மேல் நோக்கி $\sqrt{2gh}$ வேகத்துடன் துணிக்கை ஒன்று எறியப்படும் கணத்தில் கிடைத் தரையில் இருந்து h உயரத்தில் உள்ள புள்ளியில் இருந்து புவியீரப்பின் கீழ் ஓய்வில் இருந்து ஒரு துணிக்கை விழவிடப்படுகின்றது இரு துணிக்கைகளின் கதிகள் சமனாவதற்கு எடுக்கும்
	கிடைத்தரையில் இருந்து புவியீரப்பின் கீழ் நிலைக்குத்தாக மேல் நோக்கி $\sqrt{2gh}$ வேகத்துடன் துணிக்கை ஒன்று எறியப்படும் கணத்தில் கிடைத் தரையில் இருந்து h உயரத்தில் உள்ள புள்ளியில் இருந்து புவியீரப்பின் கீழ் ஓய்வில் இருந்து ஒரு துணிக்கை விழவிடப்படுகின்றது இரு துணிக்கைகளின் கதிகள் சமனாவதற்கு எடுக்கும்
	கிடைத்தரையில் இருந்து புவியீரப்பின் கீழ் நிலைக்குத்தாக மேல் நோக்கி $\sqrt{2gh}$ வேகத்துடன் துணிக்கை ஒன்று எறியப்படும் கணத்தில் கிடைத் தரையில் இருந்து h உயரத்தில் உள்ள புள்ளியில் இருந்து புவியீரப்பின் கீழ் ஓய்வில் இருந்து ஒரு துணிக்கை விழவிடப்படுகின்றது இரு துணிக்கைகளின் கதிகள் சமனாவதற்கு எடுக்கும்
	கிடைத்தரையில் இருந்து புவியீரப்பின் கீழ் நிலைக்குத்தாக மேல் நோக்கி $\sqrt{2gh}$ வேகத்துடன் துணிக்கை ஒன்று எறியப்படும் கணத்தில் கிடைத் தரையில் இருந்து h உயரத்தில் உள்ள புள்ளியில் இருந்து புவியீரப்பின் கீழ் ஓய்வில் இருந்து ஒரு துணிக்கை விழவிடப்படுகின்றது இரு துணிக்கைகளின் கதிகள் சமனாவதற்கு எடுக்கும்
	கிடைத்தரையில் இருந்து புவியீரப்பின் கீழ் நிலைக்குத்தாக மேல் நோக்கி $\sqrt{2gh}$ வேகத்துடன் துணிக்கை ஒன்று எறியப்படும் கணத்தில் கிடைத் தரையில் இருந்து h உயரத்தில் உள்ள புள்ளியில் இருந்து புவியீரப்பின் கீழ் ஓய்வில் இருந்து ஒரு துணிக்கை விழவிடப்படுகின்றது இரு துணிக்கைகளின் கதிகள் சமனாவதற்கு எடுக்கும்
	கிடைத்தரையில் இருந்து புவியீரப்பின் கீழ் நிலைக்குத்தாக மேல் நோக்கி $\sqrt{2gh}$ வேகத்துடன் துணிக்கை ஒன்று எறியப்படும் கணத்தில் கிடைத் தரையில் இருந்து h உயரத்தில் உள்ள புள்ளியில் இருந்து புவியீரப்பின் கீழ் ஓய்வில் இருந்து ஒரு துணிக்கை விழவிடப்படுகின்றது இரு துணிக்கைகளின் கதிகள் சமனாவதற்கு எடுக்கும்
	கிடைத்தரையில் இருந்து புவியீரப்பின் கீழ் நிலைக்குத்தாக மேல் நோக்கி $\sqrt{2gh}$ வேகத்துடன் துணிக்கை ஒன்று எறியப்படும் கணத்தில் கிடைத் தரையில் இருந்து h உயரத்தில் உள்ள புள்ளியில் இருந்து புவியீரப்பின் கீழ் ஓய்வில் இருந்து ஒரு துணிக்கை விழவிடப்படுகின்றது இரு துணிக்கைகளின் கதிகள் சமனாவதற்கு எடுக்கும்
	கிடைத்தரையில் இருந்து புவியீரப்பின் கீழ் நிலைக்குத்தாக மேல் நோக்கி $\sqrt{2gh}$ வேகத்துடன் துணிக்கை ஒன்று எறியப்படும் கணத்தில் கிடைத் தரையில் இருந்து h உயரத்தில் உள்ள புள்ளியில் இருந்து புவியீரப்பின் கீழ் ஓய்வில் இருந்து ஒரு துணிக்கை விழவிடப்படுகின்றது இரு துணிக்கைகளின் கதிகள் சமனாவதற்கு எடுக்கும்
	கிடைத்தரையில் இருந்து புவியீரப்பின் கீழ் நிலைக்குத்தாக மேல் நோக்கி $\sqrt{2gh}$ வேகத்துடன் துணிக்கை ஒன்று எறியப்படும் கணத்தில் கிடைத் தரையில் இருந்து h உயரத்தில் உள்ள புள்ளியில் இருந்து புவியீரப்பின் கீழ் ஓய்வில் இருந்து ஒரு துணிக்கை விழவிடப்படுகின்றது இரு துணிக்கைகளின் கதிகள் சமனாவதற்கு எடுக்கும்
	கிடைத்தரையில் இருந்து புவியீரப்பின் கீழ் நிலைக்குத்தாக மேல் நோக்கி $\sqrt{2gh}$ வேகத்துடன் துணிக்கை ஒன்று எறியப்படும் கணத்தில் கிடைத் தரையில் இருந்து h உயரத்தில் உள்ள புள்ளியில் இருந்து புவியீரப்பின் கீழ் ஓய்வில் இருந்து ஒரு துணிக்கை விழவிடப்படுகின்றது இரு துணிக்கைகளின் கதிகள் சமனாவதற்கு எடுக்கும்
	கிடைத்தரையில் இருந்து புவியீரப்பின் கீழ் நிலைக்குத்தாக மேல் நோக்கி $\sqrt{2gh}$ வேகத்துடன் துணிக்கை ஒன்று எறியப்படும் கணத்தில் கிடைத் தரையில் இருந்து h உயரத்தில் உள்ள புள்ளியில் இருந்து புவியீரப்பின் கீழ் ஓய்வில் இருந்து ஒரு துணிக்கை விழவிடப்படுகின்றது இரு துணிக்கைகளின் கதிகள் சமனாவதற்கு எடுக்கும்
	கிடைத்தரையில் இருந்து புவியீரப்பின் கீழ் நிலைக்குத்தாக மேல் நோக்கி $\sqrt{2gh}$ வேகத்துடன் துணிக்கை ஒன்று எறியப்படும் கணத்தில் கிடைத் தரையில் இருந்து h உயரத்தில் உள்ள புள்ளியில் இருந்து புவியீரப்பின் கீழ் ஓய்வில் இருந்து ஒரு துணிக்கை விழவிடப்படுகின்றது இரு துணிக்கைகளின் கதிகள் சமனாவதற்கு எடுக்கும்
	கிடைத்தரையில் இருந்து புவியீரப்பின் கீழ் நிலைக்குத்தாக மேல் நோக்கி $\sqrt{2gh}$ வேகத்துடன் துணிக்கை ஒன்று எறியப்படும் கணத்தில் கிடைத் தரையில் இருந்து h உயரத்தில் உள்ள புள்ளியில் இருந்து புவியீரப்பின் கீழ் ஓய்வில் இருந்து ஒரு துணிக்கை விழவிடப்படுகின்றது இரு துணிக்கைகளின் கதிகள் சமனாவதற்கு எடுக்கும்

7.	$\sqrt{3ag}$ в	நரயில் இருந்து a உயரமான புள்ளியில் இருந்து கிடையுடன் 30^{o} மேல் நோக்கி u வேகத்துடன் எறியப்படும் துணிக்கை கிடைத்தரையை தியில் அடிப்பின் துணிக்கையின் எறியல் கதி \sqrt{ag} எனக் காட்டுக. தரையை அடிக்கும் திசையைக் காண்க.
8.		ஒரு இலேசான நீளா இழையின் நுனிகளுக்கு <i>P, Q</i> ஆகிய
		துணிக்கைகள் இணைக்கப்பட்டு படத்தில் காட்டப்பட்டவாறு ஒரு ஒப்பமான இலேசான கப்பியின் மேலாக இழையானது சென்று இறுக்கமாகவும் கப்பியுடன் தொடுகையுறாத இழையின் பகுதிகள் நிலைக்குத்தாகவும் இருக்க தொகுதி ஓய்வில் இருந்த விடப்படுகின்றது.
Р		P, Q ஆகிய துணிக்கைகளின் திணிவுகளுக்கிடையிலான விகிதம் 2:3
		ஆகவும் இழையில் உள்ள இழுவை $24mg$ ஆகவும் இருப்பின் துணிக்கைகளின் ஆர்முடுகலையும் அவற்றின் திணிவுகளையும் காண்க.

9.	புள்ளி O குறித்து தளம் ஒன்றில் A , B ஆகிய புள்ளிகளின் தானக் காவிகள்
	முறையே $2\underline{a}$, $3\underline{b}$ ஆகும். நேர்கோடு AB இல் உள்ள எந்த ஒரு புள்ளி ${\cal C}$ இன்
	தானக்காவி ஆனது $3lpha \underline{b} + 2(1-lpha) \underline{a}$ என்னும் வடிவில் எடுத்துரைக்கப்படலாம்
	எனக் காட்டுக. $\left \underline{a}\right =3$, $\left \underline{b}\right =2$ எனில் OC செங்குத்து AB ஆகுமாறு AB இல்
	உள்ள புள்ளி ${\cal C}$ இன் தானக்காவியை குற்றுப்பெருக்கத்தை பயன்படுத்திக் காண்க.
10	. W நிறையும் $4a$ நீளமும் உடைய ஒரு சீரான கோல் AB இன் ஒரு முனை A ஆனது
	ஒரு ஒப்பமான நிலைக்குத்து சுவரை தொட்டுக்கொண்டும் $\mathit{AC}:\mathit{CB}=1:3$
	ஆகுமாறு கோலில் உள்ள புள்ளி ${\mathcal C}$ இற்கு ஒரு இலேசான நீளா இழையின் ஒரு
	நுனி இணைக்கப்பட்டு இழையின் மறு நுனி A இற்கு மேலே சுவரில் உ்ள்ள
	புள்ளி D இந்கு இணைக்கப்பட்டும் கோலானது சமனிலையில் உள்ள போது
	இழையில் உள்ள இழுவை $2W$ எனில் சுவரினால் கோலில் ஏற்படுத்தப்படும்
	மறுதாக்கம், கோல் கிடையுடன் ஆக்கும் கோணம், இழையின் நீளம்
	ஆகியவற்றைக் காண்க.
Ì	