## Inhalt der mathematischen Ergänzung zur Physik B2:

- Wiederholung Divergenz, Gauß-Integralsatz
- Rotation, Stokes-Integralsatz, Anwendungen
- Ladungen in elektrischen und magnetischen Feldern
- Kondensator und Induktivität im Stromkreis
- Berechnung von Wechselstromnetzwerken
- Zusammenfassung der Maxwell-Gleichungen
- Die Kontinuitätsgleichung
- Berechnungen zur Wellenoptik
- Zusammenfassung der klassischen Physik
- Mathematische Wiederholung zu Wellen
- Die Schrödinger-Gleichung
- Die Mathematik des Wasserstoff-Atoms
- Der Aufbau des Periodensystems

## Ladungen in elektrischen und magnetischen Feldern

**Zur Erinnerung:** Felder (etwa *E*, *B*, aber auch die Gravitation) sind reine Hilfsgrößen, die über die Kraftwirkung auf Probeteilchen (Ladungen q bzw. Massen m definiert sind:

Gravitation: 
$$\vec{F}_G = m\vec{G}$$

Elektrisches Feld:  $\vec{F}_E = q \cdot \vec{E}$ 

Magnetisches Feld:  $\vec{F}_{\scriptscriptstyle B} = q\vec{v} \times \vec{B}$ 



## Beispiel: Braunsche Röhre (Oszillograph)



Bewegungsgleichung der Elektronen zwischen Kathode und Anode:

$$F = m_{\rm e}a_{\rm e} = m_{\rm e}\dot{v} = eE_{\rm a}$$
 mit  $E_{\rm a} = \frac{U_{\rm a}}{d}$ 

Beschleunigung:

$$a_{\rm e} = \frac{e}{m_{\rm e}} \frac{U_{\rm a}}{d}$$

Ladung des Elektrons:

$$q = -e = -1.602 \cdot 10^{-19} C$$

Masse des Elektrons:

$$m_e = 9.11 \cdot 10^{-31} kg$$

Nach der Zeit *t* ist die Anode erreicht, also

$$d = \frac{1}{2}a_{\rm e}t^2 \quad \Rightarrow \quad t = \sqrt{\frac{2m_{\rm e}d}{eE_{\rm a}}}$$

und

$$t = \sqrt{\frac{2 \quad m_e d^2}{e \quad U_a}} = d\sqrt{\frac{2 \quad m_e}{e \quad U_a}}$$

Aus der Bewegungsgleichung folgt durch Integration

$$v_{\rm e} = \frac{e}{m_{\rm e}} E_{\rm a} \int dt = \frac{e}{m_{\rm e}} E_{\rm a} t$$
und damit:

$$v_{\rm e} = \frac{e}{m_{\rm e}} U_{\rm a} \sqrt{\frac{2m_{\rm e}}{eU_{\rm a}}} = \sqrt{\frac{2eU_{\rm a}}{m_{\rm e}}}$$

In den Platten wirkt die transversale Kraft ( $a_p$  = Transversalbeschleunigung)

$$F_{\rm p} = e E_{\rm p} = e \frac{U_{\rm p}}{h} \implies a_{\rm p} = \frac{e U_{\rm p}}{m_{\rm e} h}$$

Die Platten werden in der Zeit  $t_p$  durchflogen. Dann ist die Ablenkung

$$z = \frac{1}{2}a_{\rm p}t_{\rm p}^2$$

Flugzeit durch die Platten:

$$t_{\rm p} = \frac{l}{v_{\rm e}} = l \sqrt{\frac{m_{\rm e}}{2eU_{\rm a}}}$$

dann folgt für die Ablenkung

$$z = \frac{1}{2} \frac{eU_{p}}{m_{e}h} l^{2} \frac{m_{e}}{2eU_{a}} = \frac{1}{4} \frac{U_{p}}{U_{a}} \frac{l^{2}}{h}$$

#### Beispiel:

$$U_{\rm a} = 100 \text{ V}, m_{\rm e} = 9.1 \cdot 10^{-31} \text{ kg}$$
  
 $\Rightarrow v_{\rm e} = 5.9 \cdot 10^6 \text{ m/s}$   
 $U_{\rm p} = 5 \text{ V}, l = 5 \text{ cm}, h = 1 \text{ cm}$   
 $\Rightarrow z = 3.1 \text{ mm}$ 

# Magnetische Kräfte auf ein geladenes Teilchen

Im elektrischen Feld wirkt auf eine Ladung immer eine Kraft, dagegen ist im Magnetfeld

$$\vec{F}_{\text{mag}} = 0$$
 wenn  $\vec{v}_{\text{Ladung}} = 0$ 

Wenn sich die Ladung bewegt, d.h.  $\vec{v} \neq 0$ , dann ergibt sich eine Kraft

$$ec{F}_{
m mag} \; \perp \; ec{v} \; {
m und} \; ec{F}_{
m mag} \; \perp \; ec{B}$$

Das Experiment zeigt folgendes Kraftgesetz ("Lorentzkraft")

$$\vec{F}_{\text{mag}} = q \cdot \vec{v} \times \vec{B}$$

 $\vec{B}$  ist die magnetische Feldstärke, genauer: die magnetische Induktion



Im Magnetfeld gilt die wichtige Eigenschaft:

$$|\vec{v}(t)| = \text{const.}$$

d.h. die Ladung wird zwar abgelenkt, ändert dabei aber nicht den Betrag der Geschwindigkeit.

Damit bleibt auch der Betrag des Impulses p und die kinteische Energie unverändert!

Warum ist das so?

**Beweis:** 
$$\vec{F}_{\text{mag}} = m \frac{d\vec{v}}{dt} = q\vec{v} \times \vec{B} \mid \vec{v}$$

$$\Rightarrow m\vec{v} \frac{d\vec{v}}{dt} = q\vec{v} (\vec{v} \times \vec{B}) = 0$$

Nun gilt aber:

$$\frac{d}{dt}(\vec{v} \cdot \vec{v}) = \frac{d\vec{v}}{dt}\vec{v} + \vec{v}\frac{d\vec{v}}{dt} = 2\vec{v}\frac{d\vec{v}}{dt}$$

$$\Rightarrow \frac{1}{2}m\frac{d}{dt}(\vec{v} \cdot \vec{v}) = \frac{d}{dt}E_{kin} = m\vec{v}\frac{d\vec{v}}{dt} = 0$$

$$\frac{d}{dt}E_{kin} = 0 \Rightarrow |\vec{v}| = |\vec{p}| = \text{const.}$$

$$\vec{v}\frac{d\vec{v}}{dt} = 0 \Rightarrow \vec{v} \perp \frac{d\vec{v}}{dt}$$

### Bewegung im homogenen Magnetfeld

#### Lorentzkraft:



$$\vec{v} \times \vec{B} = \begin{vmatrix} \vec{e}_{x} & \vec{e}_{y} & \vec{e}_{z} \\ v_{x} & v_{y} & v_{z} \\ 0 & 0 & B_{z} \end{vmatrix} = \begin{pmatrix} v_{y}B_{z} \\ -v_{x}B_{z} \\ 0 \end{pmatrix}$$

Man erhält folgende Gleichungen:

$$(1) \quad m\ddot{x} = qv_{y}B_{z}$$

(2) 
$$m\ddot{y} = -qv_xB_z$$

(3) 
$$m\ddot{z} = 0$$

Aus (3) folgt sofort

$$z(t) = v_{0z} t + z_0$$

(1) und (2) ergeben das Gleichungssystem (gekoppelte DGL)

$$\dot{v}_{x} = \frac{qB_{z}}{m}v_{y}$$
 und  $\dot{v}_{y} = -\frac{qB_{z}}{m}v_{x}$ 

mit der Zyklotronfrequenz:

$$\omega_{z} = \frac{qB_{z}}{m}$$

Das Gleichungssystem kann durch folgenden Ansatz gelöst werden:

$$v_{x}(t) = v_{0} \cos \omega_{z} t$$

$$v_{y}(t) = -v_{0} \sin \omega_{z} t$$

Es folgt

$$\dot{v}_{x} = -\omega_{z}v_{0}\sin\omega_{z}t = \omega_{z}v_{y}$$

$$\dot{v}_{y} = -\omega_{z}v_{0}\cos\omega_{z}t = -\omega_{z}v_{x}$$

Das ist die Bewegung auf einer Kreisbahn mit konstanter Frequenz

### Zusammenfassung:

Die Bewegung verläuft also in der x,y-Ebene auf Kreisbahnen. Hat das Teilchen eine Anfangsgeschwindigkeit in der Richtung des Magnetfeldes B, also in z-Richtung, so überlagert sich der Kreisbewegung in x,y eine Bewegung mit konstanter Geschwindigkeit in Richtung z.

Das Teilchen führt eine "Art" Schraubenbewegung um die Feldlinien aus.



48



Experiment:

Fadenstrahlrohr

Kreisbahn

Elektronenkanone

B-Feld steht senkrecht auf den Kreisflächen der Spulen.

Die Geschwindigkeit v der Elektronen ist nach oben gerichtet.



## Elektronenstrahl im homogenen Magnetfeld / Oszilloskop / TV

Man kann Elektronenstrahlen natürlich auch magnetisch ablenken.

Im transversalen Magnetfeld beschreiben die Teilchen Kreisbahnen. Die Lorentzkraft ist hier die Zentripetalkraft und es gilt:

$$m\frac{v^2}{R} = m\omega_z^2 R = qvB$$
  
mit  $\omega_z = \frac{qB}{m}$  folgt

$$m\frac{q^2B^2}{m^2}R = \frac{q^2B^2}{m}R = qvB$$

auflösen nach dem Bahnradius R ergibt

$$R = \frac{mv}{qB} = \frac{p}{qB}$$
 Magnetfelder selektieren

nach dem Impuls p



## Anwendung beim "Zyklotron"

### Prinzip:

Ein senkrechtes Magnetfeld zwingt die geladenen Teilchen abhängig von ihrer Energie auf eine Kreisbahn. Zwischen zwei Kupferhalbschalen existiert ein elektrisches Feld im Takt der Synchrotronfrequenz, das die Teilchen beschleunigt.







#### **Historisches**

Ernest Lawrence 1929 in Berkeley, Kalifornien

wesentlicher Meilenstein in der Kern- und Teilchenphysik.

Erzeugung von Teilchenstrahlen hoher Energie.
Möglichkeit zur Erzeugung künstlicher
Kernumwandlungen
Entdeckung des Neutrons durch Chadwick (1932)

#### 50 cm

