Задача А. Следующий

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Реализуйте структуру данных, которая поддерживает множество S целых чисел, с котором разрешается производить следующие операции:

- 1. add(i) добавить в множество S число i (если он там уже есть, то множество не меняется)
- 2. next(i) вывести минимальный элемент множества, не меньший i. Если искомый элемент в структуре отсутствует, необходимо вывести -1.

Заметьте, что в этой задаче необычные операции ввода. Операция, которую вам задает тест, может зависеть от того, правильно ли вы ответили на предыдущий запрос. Внимательно прочитайте формат ввода. Операция mod означает взятие остатка.

Формат входных данных

Исходно множество S пусто. Первая строка входного файла содержит n – количество операций ($1 \le n \le 300\,000$). Следующие n строк содержат операции. Каждая операция имеет вид либо «+ i», либо «? i». Операция «? i» задает запрос next(i).

Если операция **«+ i»** идет во входном файле в начале или после другой операции **«+»**, то она задает операцию add(i). Если же она идет после запроса **«?»**, и результат этого запроса был у, то выполняется операция add((i+y)) mod add((i+y))

Во всех запросах и операциях добавления параметры лежат в интервале от 0 до 10^9 .

Формат выходных данных

Для каждого запроса выведите одно число – ответ на запрос.

Пример

ный вывод

Задача В. Два-Три-Де... Дерево

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2.3 секунд Ограничение по памяти: 256 мегабайт

В этой задаче от вас требуется реализовать добавление элемента в структуру данных «2-3 дерево». Для того, чтобы построение дерева было однозначным, корректно определим операцию добавления листа. А именно, если мы добавляем значение x, и находимся в вершине v, у которой есть два соседних сына u_1 и u_2 , то тогда, если $\max(subtree(u_1)) < x < \min(subtree(u_2))$ (то есть, новый лист может быть самым правым в левом поддереве или самым левым в правом), мы добавляем лист в правое поддерево.

После того, как вы построите 2-3 дерево, сделайте рекурсивную процедуру обхода, чтобы вывести его.

Формат входных данных

В первой строке вводится натуральное число n ($1 \le n \le 10^6$) — количество запросов на добавление в 2-3 дерево. Во второй строке вводится n различных натуральных чисел a_i ($1 \le a_i \le n$) — запросы добавления. Обратите внимание, что выполнять запросы нужно именно в этом порядке.

Формат выходных данных

Выведите все листья дерева в отсортированном порядке. Разделяйте два соседних числоа латинской буквой, которая будет соответствовать глубине LCA этих вершин. Будем считать, что корню соответствует символ 'A', вершинам на глубине 1 соответствует символ 'B', и так далее. В вашем выводе должно оказаться n чисел и n-1 латинский символ.

Примеры

стандартный ввод	стандартный вывод
10 1 2 3 4 5 6 7 8 9 10	1 C 2 B 3 C 4 A 5 C 6 B 7 C 8 B 9 C 10
2 1 2	1 A 2

Задача С. К-ый максимум

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.5 секунд Ограничение по памяти: 64 мегабайта

Напишите программу, реализующую структуру данных, позволяющую добавлять и удалять элементы, а также находить k-й максимум. Вам достаточно поддерживать в вершине количество элементов в ее поддереве, обновлять эту величину при каждом обновлении вершины, а затем делать спуск.

Формат входных данных

Первая строка входного файла содержит натуральное число n — количество команд $(n \le 100\,000)$. Последующие n строк содержат по одной команде каждая. Команда записывается в виде двух чисел c_i и k_i — тип и аргумент команды соответственно $(|k_i| \le 10^9)$.

Поддерживаемые команды:

- +1 (или просто 1): Добавить элемент с ключом k_i .
- 0: Найти и вывести k_i -й максимум.
- -1: Удалить элемент с ключом k_i .

Гарантируется, что в процессе работы в структуре не требуется хранить элементы с равными ключами или удалять несуществующие элементы. Также гарантируется, что при запросе k_i -го максимума, он существует.

Формат выходных данных

Для каждой команды нулевого типа в выходной файл должна быть выведена строка, содержащая единственное число — k_i -й максимум.

Пример

стандартный ввод	стандартный вывод
11	7
+1 5	5
+1 3	3
+1 7	10
0 1	7
0 2	3
0 3	
-1 5	
+1 10	
0 1	
0 2	
0 3	

Задача D. И снова сумма...

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Реализуйте структуру данных, которая поддерживает множество S целых чисел, с котором разрешается производить следующие операции:

- add(i) добавить в множество S число i (если он там уже есть, то множество не меняется);
- sum(l,r) вывести сумму всех элементов x из S, которые удовлетворяют неравенству $l \leqslant x \leqslant r$.

Обратите внимание, что ответ на запрос зависит от ответа на предыдущий запрос

Формат входных данных

Исходно множество S пусто. Первая строка входного файла содержит n — количество операций ($1\leqslant n\leqslant 300\,000$). Следующие n строк содержат операции. Каждая операция имеет вид либо «+ i», либо «? l r». Операция «? l r» задает запрос sum(l,r).

Если операция «+ i» идет во входном файле в начале или после другой операции «+», то она задает операцию add(i). Если же она идет после запроса «?», и результат этого запроса был y, то выполняется операция $add((i+y) \bmod 10^9)$.

Во всех запросах и операциях добавления параметры лежат в интервале от 0 до 10^9 .

Формат выходных данных

Для каждого запроса выведите одно число — ответ на запрос.

Пример

стандартный ввод	стандартный вывод
6	3
+ 1	7
+ 3	
+ 3	
? 2 4	
+ 1	
? 2 4	