## 1 Билет 1

**Утверждение 1.1.** Пусть M – одноленточная MT, которая распознает язык бинарных палиндромов. Тогда существует константа  $C: \exists n_o: \forall n > n_0$  существует вход длины n, на котором M(x) делает  $\geq Cn^2$  шагов.

Доказательство. В начале очевиден принцип несжимаемости, нельзя инъективно перевести строки из  $\{0,1\}^n$  в  $\{0,1\}^*$  так, чтобы все образы по длине были меньше чем n.

Будем доказывать для входов, длина которых кратна 3. По  $x \in \{0,1\}^n$  строим вход  $x0^n x^{rev}$  и скармливаем МТ все такие входы. Возьмем все перегородки после нулей, их всего n, существует перегородку, через которую МТ прошла  $\leq \frac{T(x)}{n}$  раз. Теперь строим отображение  $f:\{0,1\}^n \to \{0,1\}^*$ , переводим строку x в протокол работы МТ на

Теперь строим отображение  $f: \{0,1\}^n \to \{0,1\}^*$ , переводим строку x в протокол работы МТ на строке  $x0^n rev(x)$ . Для этого выпишем набор состояний, в которые переодила МТ, переходя через "хорошую" перегородку и номер этой перегородки.

Утверждается, что такая f – инъекция, чтобы доказать, предположите обратное и рассмотрите работу на строке  $x0^n y^{rev}$ .

Пусть |x|=n, тогда  $f(x)\leq \log n+\frac{T(x)}{n}C$ , но при этом существует |y|=n, такой что  $f(y)\geq n$ . Получаем, что

$$n \le logn + \frac{T(x)}{n}C$$

 $T(x) = \omega(n^2)$  на таких входах.

Для некратных 3 входов делаем также, но по-середине пишем вместо n нулей, на один ноль больше или меньше — это не влияет на оценки.

## 2 Билет 2

**Определение 2.1.** k – ленточная машина Тьюринга. (Добавляется куча лент и функция перехода теперь действует по всем лентам).

**Утверждение 2.1.** Для любой k – ленточной MT, которая на входе x работает время T(x), существует 1 ленточная MT, которая работает  $O(T(x)^2)$ .

Доказательство. Будем хранить в одном символе МТ символы всех лент (а также спец символы, помеченные головкой). На каждом шаге будем идти вправо и делать все изменения, которые нужны на лентах. ■

Определение 2.2. Универсальная МТ – эмулирует МТ по описанию.

**Утверждение 2.2.** Для любой k-ленточной MT существует универсальная k-ленточная MT с линейным замедлением.

Доказательство. Понятно как получить квадратичное замедление, нужно положить описание в начало, например, первой ленты. Далее постоянно возвращаться, чтобы узнать, какой шаг сделать. Если же хотим линейного – давайте возить описание с собой, это будет давать O(1) действий из-за его константного размера, при этом эмуляция будет работать за линейное время.

**Утверждение 2.3.** k ленточную MT можно эмулировать на 2-ленточной c логарифмическим замедлением.

Доказательство. ТООО

## 3 Билет 3

Основная модель вычислений – многоленточная МТ.

**Определение 3.1.**  $f: \mathbb{N} \to R_+$ , тогда  $L \in DTime[f(n)]$ , если существует многоленточная MT, такая что

- 1.  $\forall x \in L \Rightarrow M(x) = 1$ .
- 2.  $\forall x \notin L \Rightarrow M(x) = 0$ .
- 3.  $\forall x \ MT \ pabomaem \ O(f(|x|) \ masob.$

Определение 3.2.  $P = \bigcup_{i>0} DTime[n^i]$ .

Определение 3.3. Про семейство схем, распознающих язык.

**Определение 3.4.**  $L \in Size[f(n)]$ , если есть последовательность схем, распознающих L и для достаточно больших n выполнено  $|C_n| \le f(n)$ .

Определение 3.5.  $P/Poly = \bigcup_{i>0} Size[n^i].$ 

**Пример 3.1.** Неразрешимый язык может лежат в P/Poly. Например  $1^H = \{1^n | n \in H\}$ , для некоторого языка тоже является разрешимым и лежит в P/Poly, так как на каждую длину мы можем предоставить схему.

**Утверждение 3.1.** Существует такой алгоритм A, который получает на вход T, n, m u

- 1. A pabomaem poly(n+T+|m|) waros.
- 2. Если MT m на всех входах из  $\{0,1\}^*$  выдает ответ за  $\leq T$  шагов, то алгоритм A выдает схему C, которая имеет n входов и 1 выход и распознает на входах длины n также как m.

Доказательство. Будем возвращать схему размера  $T \times T \cdot O(1)$ .

На уровне i будет T ячеек, в каждой из которых будет вычисляться некоторая информация: сивмол, написанный в этой ячейке, есть ли тут головка в момент i, а также, если есть головка, то состояние, в которой МТ сейчас находится. Понятно, что для пересчета этих параметров нужно обратиться к нескольким соседним ячейкам предыдущей строки. Для того, чтобы узнать ответ, посмотрим, принималось ли где-нибудь состояние  $q_{yes}$ .

Утверждение 3.2.  $P \subseteq P/Poly$ .

Таким образом хотели доказывать, что  $P \neq NP$ , взять, к примеру, SAT и показать, что он не лежит в P/Poly, однако доказывать нижние оценки на схемы пока что не научились.