TABELAS HASH TRATAMENTO DE COLISÕES POR ENCADEAMENTO EXTERIOR

Vanessa Braganholo Estruturas de Dados e Seus Algoritmos

ENCADEAMENTO EXTERIOR

Manter m listas encadeadas, uma para cada possível endereço base

A tabela base não possui nenhum registro, apenas os ponteiros para as listas encadeadas

Por isso chamamos de encadeamento exterior: a tabela base não armazena nenhum registro

NÓS DA LISTA ENCADEADA

Cada nó da lista encadeada contém:

- um registro
- um ponteiro para o próximo nó

EXEMPLO: ENCADEAMENTO EXTERIOR

 $h(x) = x \mod 23$

Fonte: Fig. 10.5, pag 240

BUSCA

Busca por um registro de chave x:

- Calcular o endereço aplicando a função h(x)
- 2. Percorrer a lista encadeada associada ao endereço
- 3. Comparar a chave de cada nó da lista encadeada com a chave x, até encontrar o nó desejado
- 4. Se final da lista for atingido, registro não está lá

INSERÇÃO

Inserção de um registro de chave x

- 1. Calcular o endereço aplicando a função h(x)
- Buscar registro na lista associada ao endereço h(x)
- 3. Se registro for encontrado, sinalizar erro
- 4. Se o registro não for encontrado, inserir no final da lista

EXCLUSÃO

Exclusão de um registro de chave x

- 1. Calcular o endereço aplicando a função h(x)
- 2. Buscar registro na lista associada ao endereço h(x)
- 3. Se registro for encontrado, excluir registro
- 4. Se o registro não for encontrado, sinalizar erro

COMPLEXIDADE NO PIOR CASO

É necessário percorrer uma lista encadeada até o final para concluir que a chave não está na tabela

Comprimento de uma lista encadeada pode ser O(n)

Complexidade no pior caso: O(n)

COMPLEXIDADE NO CASO MÉDIO

Assume que função hash é uniforme

Número médio de comparações feitas na busca sem sucesso é igual ao fator de carga da tabela $\alpha = n/m$

Número médio de comparações feitas na busca com sucesso também é igual a $\alpha = n/m$

Se assumirmos que o número de chaves **n** é proporcional ao tamanho da tabela **m**

- $\alpha = n/m = O(1)$
- Complexidade constante!

IMPLEMENTAÇÃO EM MEMÓRIA PRINCIPAL

Ver implementação no site da disciplina

IMPLEMENTAÇÃO EM DISCO

Normalmente, usa-se um arquivo para armazenar os compartimentos da tabela, e outro para armazenar as listas encadeadas

Ponteiros para NULL são representados por -1

USO DE FLAG INDICADOR DE STATUS

Para facilitar a manutenção da lista encadeada, pode-se adicionar um flag indicador de **status** a cada registro (chamaremos esse flag de **ocupado**)

O flag ocupado pode ter os seguintes valores:

- TRUE: quando o compartimento tem um registro
- FALSE: quando o registro que estava no compartimento foi excluído

EXEMPLO

ESTRUTURA DOS ARQUIVOS

Arquivo tabHash.dat (compartimento_hash)

	CodCliente	Nome	Prox	Ocupado
0	49	JOAO	-1	TRUE
1	59	MARIA	3	TRUE
2	103	ANA	-1	TRUE
3	3	JOSE	5	TRUE
4	51	CARLA	-1	TRUE
5	87	BIA	-1	TRUE
6				
7				
••				

REFLEXÃO:

Como seriam os procedimentos para inclusão e exclusão?

IMPLEMENTAÇÃO DE EXCLUSÃO

 Ao excluir um registro, marca-se o flag de ocupado como FALSE (ou seja, marca-se que o compartimento está liberado para nova inserção)

IMPLEMENTAÇÃO DE INSERÇÃO (OPÇÃO 1)

Para inserir novo registro

- Inserir o registro no final da lista encadeada, se ele já não estiver na lista
- De tempos em tempos, re-arrumar o arquivo para ocupar as posições onde o flag de ocupado é FALSE

IMPLEMENTAÇÃO DE INSERÇÃO (OPÇÃO 2)

Para inserir novo registro

- Ao passar pelos registros procurando pela chave, guardar o endereço p do primeiro nó marcado como LIBERADO (flag ocupado = FALSE)
- Se ao chegar ao final da lista encadeada, a chave não for encontrada, gravar o registro na posição p, ou no final da lista, caso não tenha sido encontrado compartimento livre

EXERCÍCIO

Desenhe a tabela hash (em disco) resultante das seguintes operações (cumulativas) usando o algoritmo de inserção em **Tabela Hash com Encadeamento Exterior**.

Considere que a tabela tem **tamanho 7** e a função de hash usa o **método da divisão**.

Inserir as chaves 10, 3, 5, 7, 12, 6, 14, 4, 8

REFERÊNCIA

Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Cap. 10