Chương 1 (tt): ĐỊNH THỨC

Định thức của một ma trận vuông A kí hiệu là |A| hoặc det(A)

* Ma trận vuông cấp 1: định thức cấp 1

$$A = (a_{ij})_{1 \times 1} = (a_{11}) \implies \det(A) = a_{11}$$

* Ma trận vuông cấp 2: định thức cấp 2

$$A = (a_{ij})_{2\times 2} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

$$\Rightarrow \det(A) = a_{11}a_{22} - a_{12}a_{21}$$

$$\Rightarrow \det(A) = a_{11}a_{22} - a_{12}a_{21}$$

* Ma trận vuông cấp 3: định thức cấp 3

$$A = \left(a_{ij}\right)_{3\times 3} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\Rightarrow \det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$
$$-a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{pmatrix}$$

11

Định lý Laplace

Định thức của một ma trận vuông A cấp n được tính theo các công thức sau

Khai triển theo dòng

$$\det(A) = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} M_{ik}$$

Khai triển theo cột

$$\det(A) = \sum_{k=1}^{n} (-1)^{k+j} a_{kj} M_{kj}$$

 \mathcal{Q}_{ij} : là những phần tử của ma trận A

$$\left(-1
ight)^{i+j} M_{ij}$$
: là phần bù đại số

$$M_{ij} = \det(A_{ij})$$

 A_{ii} : là những ma trận con của ma trận A

$$\begin{array}{cccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}$$

$$A_{ij} = A_{13} = \begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{232} \end{pmatrix}$$

levansang, 9/14/2022

*
$$A = \begin{pmatrix} \frac{1}{1} & -\frac{3}{2} \\ 2 & 5 \end{pmatrix} \rightarrow \det(A) = (-1)^{1+1} \cdot 1 \cdot \det(5) + (-1)^{1+2} \cdot (-3) \cdot \det(2) = 11$$

*
$$A = \begin{pmatrix} 1 & -3 \\ 2 & 5 \end{pmatrix} \rightarrow \det(A) = (-1)^{2+1} \cdot 2 \cdot \det(-3) + (-1)^{2+2} \cdot (5) \cdot \det(1) = 11$$

*
$$A = \begin{pmatrix} 1 & -3 \\ 2 & -5 \end{pmatrix} \rightarrow \det(A) = (-1)^{1+1} \cdot 1 \cdot \det(5) + (-1)^{2+1} \cdot 2 \cdot \det(-3) = 11$$

*
$$A = \begin{pmatrix} 1 & -3 \\ -2 & -5 \end{pmatrix} \rightarrow \det(A) = (-1)^{1+2} \cdot (-3) \cdot \det(2) + (-1)^{2+2} \cdot 5 \cdot \det(1) = 11$$

$$A = \begin{pmatrix} -1 & 2 & 3 & 1 & 2 \\ 4 & 5 & -5 & 3 & 2 \end{pmatrix} \longrightarrow det(A) = (-1).(-5).1 + 2.(-6).3 + 3.4.(-2) \\ -3.(-5).3 - (-1).(-6)(-2) - 2.4.1 \\ = 5 - 36 - 24 + 45 + 12 - 8 \\ = -6$$

* det
$$(A) = \begin{vmatrix} 1 & 2 & 3 \\ 4 & -5 & -6 \\ 3 & -2 & 1 \end{vmatrix} = (-1)^{1+1} \cdot (-1) \cdot \begin{vmatrix} -5 & -6 \\ -2 & 1 \end{vmatrix} + (-1)^{1+2} \cdot 2 \cdot \begin{vmatrix} 4 & -6 \\ 3 & 1 \end{vmatrix} + (-1)^{1+3} \cdot 3 \cdot \begin{vmatrix} 4 & -5 \\ 3 & -2 \end{vmatrix} = -6$$

* det
$$(A)$$
 = $\begin{vmatrix} -1 & 2 & 3 \\ 4 & -5 & -6 \\ 3 & -2 & 1 \end{vmatrix}$ = $(-1)^{2+1} \cdot 4 \cdot \begin{vmatrix} 2 & 3 \\ -2 & 1 \end{vmatrix} + (-1)^{2+2} \cdot (-5) \cdot \begin{vmatrix} -1 & 3 \\ 3 & 1 \end{vmatrix} + (-1)^{2+3} \cdot (-6) \cdot \begin{vmatrix} -1 & 2 \\ 3 & -2 \end{vmatrix} = -6$

* det
$$(A) = \begin{vmatrix} -1 & -2 & 3 \\ 4 & -5 & -6 \\ 3 & -2 & 1 \end{vmatrix} = (-1)^{1+2} \cdot 2 \cdot \begin{vmatrix} 4 & -6 \\ 3 & 1 \end{vmatrix} + (-1)^{2+2} \cdot (-5) \cdot \begin{vmatrix} -1 & 3 \\ 3 & 1 \end{vmatrix} + (-1)^{3+2} \cdot (-2) \cdot \begin{vmatrix} -1 & 3 \\ 4 & -6 \end{vmatrix} = -6$$

Ma trận nghịch đảo

$$A.B = B.A = I \begin{cases} A \text{ là ma trận khả nghịch} \\ A \text{ là không suy biến} \\ B \text{ là ma trận nghịch đảo của A} \\ B \text{ là ma trận duy nhất} \end{cases}$$

$$A^{-1} = \frac{1}{\det(A)} C^{T}_{c_{ij} = (-1)^{i+j} M_{ij}}$$

$$A = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix} \Rightarrow (A|I) = \begin{pmatrix} 1 & 3 & 1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix} \xrightarrow{h_2 - 2h_1 \to h_2} \begin{pmatrix} 1 & 3 & 1 & 0 \\ 0 & -7 & -2 & 1 \end{pmatrix} \xrightarrow{h_2 \to -\frac{1}{7}h_2} -1 \begin{pmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & 2 & 7 & -1 & 7 \end{pmatrix}$$
$$\xrightarrow{h_1 - 3h_2 \to h_1} \begin{pmatrix} 1 & 0 & 1 & 7 & 3 & 7 \\ 0 & 1 & 2 & 7 & -1 & 7 \end{pmatrix} = (I|A^{-1}) \Rightarrow A^{-1} = \begin{pmatrix} 1/7 & 3/7 \\ 2/7 & -1/7 \end{pmatrix}; A.A^{-1} = I$$

$$A = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix} \rightarrow \det(A) = -7 \neq 0 \Rightarrow \exists A^{-1} \qquad A^{-1} = \begin{pmatrix} 1/7 & 3/7 \\ 2/7 & -1/7 \end{pmatrix}$$

$$c_{11} = (-1)^{1+1} \det(-1) = -1, \quad c_{12} = (-1)^{1+2} \det(2) = -2 \\ c_{21} = (-1)^{2+1} \det(3) = -3, \quad c_{22} = (-1)^{2+2} \det(1) = 1$$

$$A = \begin{pmatrix} 1 & 3 \\ 2/7 & -1/7 \end{pmatrix}; \quad A.A^{-1} = \begin{pmatrix} 1/7 & 3/7 \\ 2/7 & -1/7 \end{pmatrix}$$

$$C = \begin{pmatrix} -1 & -2 \\ -3 & 1 \end{pmatrix} \rightarrow C^{T} = \begin{pmatrix} -1 & -3 \\ -2 & 1 \end{pmatrix}$$

$$(A|I) = \begin{pmatrix} 2 & 0 & 1 & 1 & 0 & 0 \\ 3 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{b_1 \leftrightarrow b_1} \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 3 & 1 & 0 & 0 & 1 & 0 \\ 2 & 0 & 1 & 1 & 0 & 0 \end{pmatrix} \xrightarrow{b_1 \to b_1 \to b_1} \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 3 & 1 & 0 & 0 & 1 & 0 \\ 2 & 0 & 1 & 1 & 0 & 0 \end{pmatrix} \xrightarrow{b_1 \to b_1 \to b_1} \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & -3 & 0 & 1 & -3 \\ 0 & 0 & 1 & -1 & 0 & 2 \end{pmatrix} \xrightarrow{b_1 \to b_1 \to b_1} \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & -3 & 1 & 3 \\ 0 & 0 & 1 & -1 & 0 & 2 \end{pmatrix} = (I|A^{-1}) \longrightarrow \begin{pmatrix} 1 & 0 & -1 \\ -3 & 1 & 3 \\ -1 & 0 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \xrightarrow{b_1 \to b_1 \to b_1} \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & -3 & 1 & 3 \\ 0 & 0 & 1 & -1 & 0 & 2 \end{pmatrix} = (I|A^{-1}) \longrightarrow \begin{pmatrix} 1 & 0 & -1 \\ -3 & 1 & 3 \\ -1 & 0 & 2 \end{pmatrix}$$

$$C_{11} = (-1)^{1+1} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1, \ c_{12} = (-1)^{1+2} \begin{vmatrix} 3 & 0 \\ 1 & 1 \end{vmatrix} = -3, \ c_{13} = (-1)^{1+3} \begin{vmatrix} 3 & 1 \\ 1 & 0 \end{vmatrix} = -1$$

$$c_{21} = (-1)^{2+1} \begin{vmatrix} 0 & 1 \\ 0 & 1 \end{vmatrix} = 0, \ c_{22} = (-1)^{2+2} \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = 1, \ c_{23} = (-1)^{2+3} \begin{vmatrix} 2 & 0 \\ 1 & 0 \end{vmatrix} = 0$$

$$c_{31} = (-1)^{3+1} \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = -1, \ c_{32} = (-1)^{3+2} \begin{vmatrix} 2 & 1 \\ 3 & 0 \end{vmatrix} = 3, \ c_{33} = (-1)^{3+3} \begin{vmatrix} 2 & 0 \\ 3 & 1 \end{vmatrix} = 2$$

$$C = \begin{pmatrix} 1 & -3 & -1 \\ 0 & 1 & 0 \\ -1 & 3 & 2 \end{pmatrix}$$

Các tính chất (hệ quả) cơ bản của ma trận

Nếu A và B là khả nghịch thì

$$(kA)^{-1} = \frac{1}{k} A^{-1}, \ k \neq 0$$

$$(A^{-1})^{-1} = A$$

$$(AB)^{-1} = B^{-1} A^{-1}$$

Các tính chất (hệ quả) cơ bản của định thức

- 1. Một tính chất đã đúng khi phát biểu về hàng của định thức thì nó vẫn còn đúng khi trong phát biểu ta thay hàng bằng cột.
- 2. Một định thức có một hàng (cột) toàn là số 0 thì bằng không.
- 3. Một định thức có hai hàng (cột) như nhau thì bằng không.
- 4. Một định thức có hai hàng (cột) tỉ lệ thì bằng không.
- 5. Định thức của một ma trận tam giác bằng tích các phần tử chéo.
- 6. Khi đổi chỗ hai hàng (cột) của một định thức ta được một định thức mới bằng định thức cũ đổi dấu.
- 7. Khi các phần tử của một hàng (cột) có một thừa số chung, ta có thể đưa thừa số chung đó ra ngoài định thức.
- 8. Khi nhân các phần tử của một hàng (cột) với cùng một số *k* thì được một định thức mới bằng định thức cũ nhân với *k*.
- 9. Khi ta cộng một hàng (cột) vào bội k của một hàng (cột) khác ta được một định thức mới bằng định thức cũ.
- 10.Khi tất cả các phần tử của một hàng (cột) có dạng tống của hai số hạng thì định thức có thế phân tích thành tổng hai định thức.
- 11. $det(A) = det(A^T)$.
- 12. det(AB) = det(A)det(B), A và B là hai ma trận vuông cùng cấp.

Đưa ma trận về dạng chéo để tính định thức

$$\begin{vmatrix} 1 & -3 \\ 2 & 5 \end{vmatrix} = \begin{vmatrix} 1 & -3 \\ 0 & 11 \end{vmatrix} = 11$$

$$\begin{vmatrix} -1 & 2 & 3 \\ 4 & -5 & -6 \\ 3 & -2 & 1 \end{vmatrix} = \begin{vmatrix} -1 & 2 & 3 \\ 0 & 3 & 6 \\ 0 & 4 & 10 \end{vmatrix} = \begin{vmatrix} -1 & 2 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 6/3 \end{vmatrix} = -6$$

$$\begin{vmatrix}
-1 & 2 & 3 \\
4 & -5 & -6 \\
3 & -2 & 1
\end{vmatrix} = 4.3 \begin{vmatrix}
-1 & 2 & 3 \\
1 & -5/4 & -6/4 \\
1 & -2/3 & 1/3
\end{vmatrix} = 4.3 \begin{vmatrix}
-1 & 2 & 3 \\
0 & 3/4 & 6/4 \\
0 & 4/3 & 10/3
\end{vmatrix}$$

$$= 4.3 \cdot \frac{3}{4} \cdot \frac{4}{3} \begin{vmatrix}
-1 & 2 & 3 \\
0 & 1 & 24/12 \\
0 & 1 & 30/12
\end{vmatrix} = 4.3 \cdot \frac{3}{4} \cdot \frac{4}{3} \begin{vmatrix}
-1 & 2 & 3 \\
0 & 1 & 24/12 \\
0 & 0 & 6/12
\end{vmatrix} = -6$$

Chương 2: HỆ PHƯƠNG TRÌNH TUYẾN TÍNH

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots & \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases} \longleftrightarrow \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \Leftrightarrow AX = B$$

*Tất cả $x_i = 0$: Nghiệm tầm thường

*Có ít nhất một x_i ≠ 0: Nghiệm không tầm thường

Gauss-Jordan

Sử dụng phép biến đối dòng (ma trận vuông, hình chữ nhật)

Phương pháp giải

Cramer

Sứ dụng định thức (chỉ ma trận vuông)

Lập ma trận mở rộng, đưa về dạng bậc thang, tìm hạng

$$\overline{A} = (A|B) = \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & \dots & \vdots \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix} \rightarrow \begin{cases} \rho(A) \\ \rho(\overline{A}) \\ \vdots \\ \rho(\overline{A}) \end{cases}$$

Hệ có nghiệm khi và chỉ khi $\rho(\overline{A}) = \rho(A)$ (đinh lí Kronecker-Capelli)

- + Vô nghiệm $\rho(\overline{A}) \neq \rho(A)$
- + Nghiệm duy nhất $\rho(\overline{A}) = \rho(A) = n$
- + Vô số nghiệm $\rho(\overline{A}) = \rho(A) < n$

Giải hptt bằng pp Gauss-Jordan

$$AX = B \longrightarrow x_{j} = \frac{|A_{j}|}{|A|}$$

$$B \quad B \quad B \quad B$$

$$|a_{11} \quad a_{12} \quad \dots \quad a_{1j} \quad \dots \quad a_{1n}$$

$$|a_{21} \quad a_{22} \quad \dots \quad a_{2j} \quad \dots \quad a_{2n}$$

$$|A| = \begin{vmatrix} a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nj} & \dots & a_{nn} \end{vmatrix}$$

$$|A_{1}| \quad |A_{2}| \quad |A_{j}| \quad |A_{n}|$$

 $|A| \neq 0$ hệ phương trình tuyến tính là hệ Cramer

Giải hptt bằng pp Cramer

$$\begin{vmatrix} A_1 & A_2 & A_j & A_n \\ A_j & A_n \end{vmatrix} \Rightarrow 0 \text{ hệ phương trình tuyến tính là hệ Cramer} \\ \begin{vmatrix} A & 0 & 0 & 0 \\ A & 0 & 0 \\ A & 0 & 0 & 0 \\ A & 0$$

Khi hệ có vô số nghiệm, ta sử dụng phương pháp Gauss-Jordan để giải

Hệ nghiệm cơ bản

AX=0 có nghiệm không tầm thường $extbf{ o}$ số ẩn tự do nho(A)

$$\begin{array}{c} \text{nghiệm tổng quát} \\ (x_1, x_2, x_3, -x_1 - x_2 + 2x_3) \end{array} \xrightarrow{ \begin{array}{c} *x_1 = 1, \ x_2 = x_3 = 0 \rightarrow (1, 0, 0, -1) \\ *x_2 = 1, \ x_1 = x_3 = 0 \rightarrow (0, 1, 0, -1) \\ *x_3 = 1, \ x_1 = x_2 = 0 \rightarrow (0, 0, 1, 2) \end{array} \xrightarrow{ \begin{array}{c} *x_1 = 1, \ x_2 = x_3 = 0 \rightarrow (1, 0, 0, -1) \\ *x_2 = 1, \ x_1 = x_2 = 0 \rightarrow (0, 1, 0, -1) \\ *x_3 = 1, \ x_1 = x_2 = 0 \rightarrow (0, 0, 1, 2) \end{array} } \xrightarrow{ \begin{array}{c} *x_1 = 1, \ x_2 = x_3 = 0 \rightarrow (1, 0, 0, -1) \\ *x_2 = 1, \ x_1 = x_2 = 0 \rightarrow (0, 1, 0, -1) \\ *x_3 = 1, \ x_1 = x_2 = 0 \rightarrow (0, 0, 1, 2) \end{array} } \xrightarrow{ \begin{array}{c} *x_1 = 1, \ x_2 = x_3 = 0 \rightarrow (0, 1, 0, -1) \\ *x_2 = 1, \ x_1 = x_2 = 0 \rightarrow (0, 0, 1, 2) \end{array} } \xrightarrow{ \begin{array}{c} *x_1 = 1, \ x_2 = x_3 = 0 \rightarrow (0, 1, 0, -1) \\ *x_2 = 1, \ x_1 = x_2 = 0 \rightarrow (0, 0, 1, 2) \end{array} } \xrightarrow{ \begin{array}{c} *x_1 = 1, \ x_2 = x_3 = 0 \rightarrow (0, 1, 0, -1) \\ *x_2 = 1, \ x_1 = x_2 = 0 \rightarrow (0, 0, 1, 2) \end{array} } \xrightarrow{ \begin{array}{c} *x_1 = 1, \ x_2 = x_3 = 0 \rightarrow (0, 1, 0, -1) \\ *x_2 = 1, \ x_1 = x_2 = 0 \rightarrow (0, 0, 1, 2) \end{array} } \xrightarrow{ \begin{array}{c} *x_1 = 1, \ x_2 = x_3 = 0 \rightarrow (0, 1, 0, -1) \\ *x_2 = 1, \ x_1 = x_2 = 0 \rightarrow (0, 0, 1, 2) \end{array} } \xrightarrow{ \begin{array}{c} *x_1 = 1, \ x_2 = x_3 = 0 \rightarrow (0, 1, 0, -1) \\ *x_2 = 1, \ x_1 = x_2 = 0 \rightarrow (0, 0, 1, 2) \end{array} } \xrightarrow{ \begin{array}{c} *x_1 = 1, \ x_2 = x_3 = 0 \rightarrow (0, 1, 0, -1) \\ *x_3 = 1, \ x_1 = x_2 = 0 \rightarrow (0, 0, 1, 2) \end{array} } \xrightarrow{ \begin{array}{c} *x_1 = 1, \ x_2 = x_3 = 0 \rightarrow (0, 1, 0, -1) \\ *x_3 = 1, \ x_1 = x_2 = 0 \rightarrow (0, 0, 1, 2) \end{array} } \xrightarrow{ \begin{array}{c} *x_1 = 1, \ x_2 = x_3 = 0 \rightarrow (0, 1, 0, -1) \\ *x_3 = 1, \ x_1 = x_2 = 0 \rightarrow (0, 0, 1, 2) \end{array} } \xrightarrow{ \begin{array}{c} *x_1 = 1, \ x_2 = x_3 = 0 \rightarrow (0, 1, 0, -1) \\ *x_3 = 1, \ x_1 = x_2 = 0 \rightarrow (0, 0, 1, 2) \end{array} } \xrightarrow{ \begin{array}{c} *x_1 = x_2 = 0, \ x_1 = x_2 = 0, \ x_2 = x_1, \ x_1 = x_2 = 0, \ x_2 = x_2 = 0, \ x_1 = x_2 = x_2 = 0, \ x_2 = x_1, \ x_1 = x_2 = x_2 = 0, \ x_2 = x$$

Ví dụ: Định thức, Ma trận ngịch đảo, giải hệ pttt, hệ nghiệm cơ bản

1. Tính/chứng minh các định thức

f)
$$\begin{vmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ 1 & 0 & 3 & \dots & n-1 & n \\ 1 & 2 & 0 & \dots & n-1 & n \\ 1 & 2 & 3 & \dots & n-1 & n \\ 1 & 2 & 3 & \dots & n-1 & 0 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ a & a' & a & a' \\ b & b & b' & b' \\ ab & a'b & ab' & a'b' \end{vmatrix}$$

$$\begin{vmatrix} b+c & c+a & a+b \\ b'+c' & c'+a' & a'+b' \\ b''+c'' & c''+a'' & a''+b'' \end{vmatrix} = 2\begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix}$$

$$\begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix}$$

g)
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ a & a' & a & a' \\ b & b & b' & b' \\ ab & a'b & ab' & a'b' \end{vmatrix}$$

h)
$$\begin{vmatrix} b+c & c+a & a+b \\ b'+c' & c'+a' & a'+b' \\ b"+c" & c"+a" & a"+b" \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ a' & b' & c' \\ a" & b" & c" \end{vmatrix}$$

2. Giải hệ pttt bằng pp Gauss-Jordan, Cramer, ma trận nghịch đảo (X=A-1 B)

a)
$$\begin{cases} x_1 + x_2 = 36 \\ 2x_1 + 4x_2 = 100 \end{cases}$$

b)
$$\begin{cases} 3x + y = 5 \\ 2x - 5y = -8 \end{cases}$$

c)
$$\begin{cases} x_1 + x_3 = 1 \\ 3x_1 + x_2 = 0 \\ 2x_1 + x_3 = 0 \end{cases}$$
 d)
$$\begin{cases} -2x + y - 3z = 1 \\ 3x - 4y + 2z = 3 \\ 5x + 2y + z = -2 \end{cases}$$

d)
$$\begin{cases} -2x + y - 3z = 1 \\ 3x - 4y + 2z = 3 \\ 5x + 2y + z = -2 \end{cases}$$

e)
$$\begin{cases} x - y + 2z + t = 7 \\ 2x + y - z - t = -4 \\ -x + 2y + z + 2t = 5 \\ 3x + 3y - 2z - t = -7 \end{cases}$$

3. Giải và biện luận hệ pttt theo tham số

a)
$$\begin{cases} x + y -3z = 1 \\ 2x + y + mz = 3 \\ x + my +3z = 2 \end{cases}$$

$$\mathbf{b}) \begin{cases}
2x & -y & +3z & = 1 \\
x & +y & +z & = 2m \\
x & -3y & = m
\end{cases}$$

$$\mathbf{c}) \begin{cases} mx + y + z = 1 \\ x + my + z = m \\ x + y + mz = m^2 \end{cases} \quad \mathbf{d}) \begin{cases} x_1 -2x_2 + x_3 +2x_4 = 1 \\ x_1 + x_2 -x_3 +x_4 = m \\ x_1 +7x_2 -5x_3 -x_4 = 4m \end{cases}$$

4. Tìm hệ nghiệm cơ bản

a)
$$\begin{cases} 3x_1 - 4x_2 + x_3 - x_4 = 0 \\ 6x_1 - 8x_2 + 2x_3 + 3x_4 = 0 \end{cases}$$

b)
$$\begin{cases} x_1 - 2x_2 + 3x_3 - x_4 = 0 \\ x_1 + x_2 - x_3 + 2x_4 = 0 \\ 4x_1 - 5x_2 + 8x_3 + x_4 = 0 \end{cases}$$

c)
$$\begin{cases} 2x_1 - x_2 + x_3 + 3x_4 = 0 \\ x_1 + x_2 + 3x_3 + x_4 = 0 \\ 4x_1 + x_2 + 7x_3 + 5x_4 = 0 \\ 5x_1 - x_2 + 5x_3 + 7x_4 = 0 \end{cases}$$