Anatomia degli LLMs

3. Pipeline di un Transformer

Alessio Miaschi

ItaliaNLP Lab, Istituto di Linguistica Computazionale (CNR-ILC), Pisa alessio.miaschi@ilc.cnr.it https://alemiaschi.github.io/

http://www.italianlp.it/alessio-miaschi/

BERT (Devlin et al., 2019)

Encoder Transformer model (12/24 layers)

 Addestrato per approssimare la funzione di Masked Language Modeling (MLM)

- Il modello può poi essere ri-addestrato (fine-tuning) per risolvere svariati task di NLP:
 - Sentiment analysis;
 - Question answering;
 - Textual entailment;
 - o etc.

Transfer Learning

Transfer Learning

Pre-training

• Durante la fase di "*Pre-training*", il modello viene addestrato in maniera unsupervised (e.g. LM, MLM) su una grande quantità di dati grezzi

- Alcuni esempi:
 - Training di BERT: BookCorpus (800M di parole) e Wikipedia Inglese (2500M di parole)
 - Training di GPT-3: CommonCrawl + WebText2 + Books1 + Books2 + Wikipedia (circa 500B di parole)

Pre-training

Transfer Learning

The State of Transfer Learning in NLP: https://ruder.io/state-of-transfer-learning-in-nlp/

Fine-tuning (Adaptation)

- Durante la fase di "Fine-tuning", si va a specializzare il modello su un determinato task
 - In altri termini, si prende il modello pre-trainato e si continua l'addestramento su un nuovo dataset e modificando la sua funzione obiettivo (e.g. sentiment analysis, textual entailment, sentence complexity, etc.)

(b) Single Sentence Classification Tasks: SST-2, CoLA

- Negli ultimi anni, lo sviluppo dei NLMs si è spostato verso la creazione di modelli generativi:
 - Scopo principale: considerarsi qualsiasi task (e.g. classificazione, translation, question answering,
 etc) come task di generazione

- Negli ultimi anni, lo sviluppo dei NLMs si è spostato verso la creazione di modelli generativi:
 - Scopo principale: considerarsi qualsiasi task (e.g. classificazione, translation, question answering,
 etc) come task di **generazione**

Prompting

"A prompt is a piece of text inserted in the input examples, so that the original task can be formulated as a (masked) language modeling problem."

(Prompting: Better Ways of Using Language Models for NLP Tasks, The Gradient)

(c) Prompt-based fine-tuning with demonstrations (our approach)

T5 (Raffel et al., 2020)

- Encoder-Decoder Transformer model
- Pensato con l'intenzione di riformulare tutti i task di NLP in un formato di tipo "text-to-text", dove input e output sono quindi sempre stringhe di testo

T5 (Raffel et al., 2020) Pre-training

T5 (Raffel et al., 2020) Pre-training

Pipeline di un Transformer

Pipeline di un Transformer Model

Pipeline di un Transformer Model

Definizione del dataset/task e del modello

 È importante avere prima definito il dataset/task su cui addestrare il modello, poiché la scelta del dato/task influenzerà la scelta del modello

Alcuni esempi:

- Generazione (e.g. Text Summarization) → Generative Model (e.g. GPT, T5);
- Classificazione (e.g. Sentiment Analysis) → Modello per la classificazione (e.g. BERT, RoBERTa)
 - Classificazione binaria, multi-classe, regressione?

Una tassonomia dei Task

- Text Classification
 - E.g. sentiment analysis, topic classification

- Token Classification
 - o E.g. Named-entity Recognition

Sentence/Document Similarity

Question Answering

Una tassonomia dei Task

- Text Classification
 - E.g. sentiment analysis, topic classification

- Token Classification
 - E.g. Named-entity Recognition

Sentence/Document Similarity

Question Answering

CoNLL-2003 NER

SQuAD v1.1

Text Classification

- La Text Classification è il compito di assegnare un'etichetta o una classe a un dato testo
- Alcuni casi d'uso sono la sentiment analysis, la natural language inference (NLI) e la valutazione della correttezza grammaticale

Text Classification

Sentiment Analysis

Example

Text: Read the book, forget the movie!

Label: Negative

Natural Language Inference

Example

Text: A soccer game with multiple males playing.

Hypothesis: Some men are playing sport.

Label: Entailment

Text Classification

Sentiment Analysis

Natural Language Inference

Example

Text: A soccer game with multiple males playing.

Hypothesis: Some men are playing sport.

Label: Entailment

Token Classification

- La Token Classification è il task in cui viene assegnata un'etichetta ad alcuni token di un testo.
- Tra i vari task di Token Classification vi sono la Named Entity Recognition (NER) e il Part-of-Speech (PoS) tagging

NER e POS Tagging

Token	POS tag	NER tag
The	DT	О
FAA	NNP	B-ORG
is	VBZ	О
headquartered	VBN	О
in	IN	О
Washington	NNP	B-LOC
DC	NNP	I-LOC

NER e POS Tagging

Token	POS tag	NER tag
The	DT	О
FAA	NNP	B-ORG
is	VBZ	О
headquartered	VBN	О
in	IN	О
Washington	NNP	B-LOC
DC	NNP	I-LOC

Sentence/Document Similarity

- La **sentence similarity** è il task di determinare la somiglianza tra due testi.
- I modelli/sistemi di sentence similarity convertono i testi in ingresso in vettori (embeddings) che catturano le informazioni semantiche e calcolano quanto sono vicini (simili) tra loro

Sentence/Document Similarity

Sentence/Document Similarity

BERT

SentenceBERT

Question Answering

- Il Question Answering (QA) è il task di recupero di una risposta a una domanda da un testo dato
- **Extractive QA**: Il modello estrae la risposta dal contesto (e.g. testo, tabella, ecc). Questo problema viene solitamente risolto con BERT-based models

Question Answering

Question: How many parameters does BERT-large have?

Reference Text:

BERT-large is really big... it has 24 layers and an embedding size of 1,024, for a total of 340M parameters! Altogether it is 1.34GB, so expect it to take a couple minutes to download to your Colab instance.

Question Answering

Question: How many parameters does BERT-large have?

Reference Text:

BERT-large is really big... it has 24 layers and an embedding size of 1,024, for a total of 340M parameters! Altogether it is 1.34GB, so expect it to take a couple minutes to download to your Colab instance.

Pipeline di un Transformer Model

Preprocessing dei dati

 Prima di poter passare una sequenza (e.g. frase, documento) ad un NLM, è necessario passare precedentemente da una fase di tokenizzazione

- A seconda della tipologia di modello utilizzato, esistono diversi tokenizzatori in grado di segmentare il testo
 - o Byte-Pair Encoding (BPE); WordPiece

- I principi dietro ai tokenizzatori maggiormente utilizzati con i recenti NLM sono:
 - Parole di uso frequente non devono essere suddivise in sottoparole più piccole
 - o Parole rare (meno frequenti) devono essere scomposte in sottoparole significative

Byte-Pair Encoding (BPE) Tokenization

• Il **Byte-Pair Encoding** (**BPE**) è stato inizialmente sviluppato come algoritmo per comprimere i testi e poi utilizzato da OpenAI per la tokenizzazione durante il pre-training del primo GPT

Algoritmo:

- 1. Ogni parola viene suddivisa in singoli caratteri
- 2. Calcolo della coppia di caratteri adiacenti più frequente nel testo
- 3. Unione della coppia in un nuovo "subtoken" da aggiungere al vocabolario
- 4. Ripetizione dei passaggi 2-3 finché non si raggiunge il numero desiderato di token

Training corpus: low low low low lowest lowest newer n

Training corpus: low low low low low lowest lowest newer new

	Corpus	Vocabulary
9 times	5	, d, e, i, l, n, o, r, s, t, w Vocabulary , d, e, i, l, n, o, r, s, t, w, e

Training corpus: low low low low low lowest lowest newer new

	Corpus	Vocabulary
9 times	5	, d, e, i, l, n, o, r, s, t, w, er Vocabulary , d, e, i, l, n, o, r, s, t, w, er, er

Training corpus: low low low low lowest lowest newer n

	Corpus	Vocabulary
8 times	5	, d, e, i, l, n, o, r, s, t, w, er, er Vocabulary , d, e, i, l, n, o, r, s, t, w, er, er, ne

Training corpus: low low low low low lowest lowest newer new

	Corpus	Vocabulary
8 times	5 low_ 2 lowest_	, d, e, i, l, n, o, r, s, t, w, er, er, ne
	6 newer_ 3 wider	Vocabulary
	2 (n e w)	, d, e, i, l, n, o, r, s, t, w, er, er, ne, new

Corpus

Using BPE for tokenization:

```
Input: newer__\rightarrow Tokens: newer__Merge based on the order we learned:<br/>er \rightarrow er__\rightarrow ne \rightarrow new \rightarrow newer__Input: lower\rightarrow Tokens: low, erer \rightarrow er__\rightarrow lo \rightarrow low
```

- WordPiece è l'algoritmo di tokenizzazione sviluppato da Google per il pretraining di BERT
- Simile a BPE in termini di addestramento, ma la tokenizzazione vera e propria avviene in modo diverso
- Come BPE, ogni parola viene suddivisa in caratteri, aggiungendo un prefisso per identificare tutti i caratteri all'interno della parola
 - o word → w #o #r #d
- La differenza principale con BPE è il modo in cui vengono selezionate le coppie da unire. Invece di selezionare la coppia più frequente, WordPiece calcola un punteggio:

score=(freq_of_pair)/(freq_of_first_element×freq_of_second_element)

Pipeline di un Transformer Model

- Dopo aver tokenizzato il testo, è possibile passarlo in input al modello e iniziare la fase di addestramento:
 - Pre-training: addestramento del modello da zero, usando come funzione obiettivo il task di LM o una sua variante (e.g. MLM) → necessaria grande quantità di dati e di risorse computazionali
 - Fine-tuning: specializzazione del modello su un task, a partire dai pesi già addestrati durante la fase di pre-training

- Dopo aver tokenizzato il testo, è possibile passarlo in input al modello e iniziare la fase di addestramento:
 - Pre-training: addestramento del modello da zero, usando come funzione obiettivo il task di LM o una sua variante (e.g. MLM) → necessaria grande quantità di dati e di risorse computazionali
 - Fine-tuning: specializzazione del modello su un task, a partire dai pesi già addestrati durante la fase di pre-training

- Dopo aver tokenizzato il testo, è possibile passarlo in input al modello e iniziare la fase di addestramento:
 - Pre-training: addestramento del modello da zero, usando come funzione obiettivo il task di LM o una sua variante (e.g. MLM) → necessaria grande quantità di dati e di risorse computazionali
 - Fine-tuning: specializzazione del modello su un task, a partire dai pesi già addestrati durante la fase di pre-training

- Alcune avvertenze:
 - Per addestrare un Transformer model in maniera ottimale è consigliato (<u>se non necessario</u>) ricorrere all'utilizzo di una (o più) **GPU** (Graphics Processing Unit)
 - La complessità del modello dipende anche dalla dimensione delle sequenze in input → +testo = +pesi da addestrare

$$p^*=(0,\dots,0,1,0,\dots)$$
 distribuzione target $p=(p_1,\dots,p_K)$ distribuzione del modello $Loss(p^*,p)=-p^*\log(p)=-\sum_{i=1}^K p_i^*\log(p_i)$

$$p^*=(0,\dots,0,1,0,\dots)$$
 distribuzione target $p=(p_1,\dots,p_K)$ distribuzione del modello $Loss(p^*,p)=-p^*\log(p)=-\sum_{i=1}^K p_i^*\log(p_i)$

La libreria *Transformers* 🤗

 La libreria <u>Transformers</u> (di <u>Huggingface</u>) è, ad oggi, la risorsa open source più utilizzata per poter scaricare, modificare e addestrare facilmente i Transformer models

- Natural Language Processing: text classification, named entity recognition, question answering, language modeling, summarization, translation, multiple choice, and text generation.
- Computer Vision: image classification, object detection, and segmentation.
- Audio: automatic speech recognition and audio classification.
- **Multimodal**: table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.