CT60 HARDWARE GUIDE

Rev 6.3 – October 2000 – May 2009 (c) Rodolphe Czuba

Try to use this file on screen and not print it on paper! Remember that paper is produced with trees!!

SUMMARY

<u> 1 - FUNCTIONAL BLOCK DIAGRAM</u>	1	<u> - F</u>	UN	CT	ON.	<u>AL I</u>	<u>BLO</u>	CK	DIA(<u>GRA</u>	M
--------------------------------------	---	-------------	----	----	-----	-------------	------------	----	------	------------	---

- 2 ADDRESSES & REGISTERS
- 3 060 BUS SLOT
- 4 EXPANSION BOARDS STACKING
- **5 CHIPS & REGISTERS EMULATION**
- **6 THERMAL SENSOR**
- 7 DIMM EEPROM
- 8 DIMM SDRAM for CT60
- 9 BURST with SDRAM
- <u>10 INTERRUPTS</u>
- 11 CHIPSET pinouts

FUNCTIONAL BLOCK DIAGRAM

CT60 FUNCTIONAL BLOCK DIAGRAM

(c) Rodolphe Czuba October, 2000

ADDRESSES & REGISTERS

68030 VIEW 24-Bit MAP

\$xxE00000 \$xxEFFFF \$xxE00000 \$xxEFFFF \$xxF00000 \$xxF0FFF \$xxF10000 \$xxF9FFF 5 \$xxFA0000 \$xxFBFFF 11 \$xxFC0000 \$xxFEFFF 11	1 MB 1 MB 64 KB 76 KB	ST-RAM TOS 4.0x ROM - BOOT CT60 FLASH - CPU SPACE #3 I/O IDE F030 BUS SLOT CARTRIDGE SLOT Unused I/O
--	--	--

68060 VIEW 32-Bit MAP

00000 T.E		•		
\$0000000	\$00DFFFFF	14 MB	ST-RAM	CACHE - NO BURST
\$00E00000	\$00EFFFFF	1 MB	CT60/63 FLASH	CACHE - NO BURST
\$00F00000	\$00F0FFFF	64 KB	IDE Port	NO CACHE - NO BURST
\$00F10000	\$00F9FFFF	576 KB	F030 BUS Port	NO CACHE - NO BURST
\$00FA0000	\$00FBFFFF	128 KB	CARTRIDGE Port	NO CACHE - NO BURST
\$00FC0000	\$00FEFFFF	192 KB	Unused	NO CACHE - NO BURST
\$00FF0000	\$00FFFFF	64 KB	I/O	NO CACHE - NO BURST
SDRAM - CA	ACHE & BURST			
\$01000000	\$04FFFFF	64 MB	SDRAM (TT-RAM)	CACHE - BURST
\$01000000	\$08FFFFF	128 MB	SDRAM (TT-RAM)	CACHE - BURST
\$01000000	\$10FFFFF	256 MB	SDRAM (TT-RAM)	CACHE - BURST
\$01000000	\$20FFFFF	512 MB	SDRAM (TT-RAM)	CACHE - BURST
CT60 SLOT - CACHE & BURST				
\$21000000	\$2FFFFFF	240 MB	Reserved	
\$30000000	\$3FFFFFF	256 MB	SUPERVIDEL DDR SDRAM	
\$40000000	\$7FFFFFF	1 GB	CTPCI : PCI MEM Space	
CT60 SLOT	- NO CACHE &			
\$80000000	\$8000003F	256 B	EtherNAT	INT. Vectors \$C4 & \$C5
\$80000040	\$8FFFFFF	255 MB	Reserved	
\$90000000	\$CFFFFFF	1 GB	Reserved	
\$D0000000	\$DFFFFFF	256 MB	CTPCI : PCI I/O Space	
\$E0000000	\$E7FFFFF	128 MB	CTPCI : CPLD Registers	
\$E8000000	\$EFFFFFF	128 MB	CTPCI : PLX Registers	
	CHE & NO BUR			
\$F0000000	\$FBFFFFF	192 MB	CT60/63 Registers	
\$FCF00000	\$FCF0FFFF	64 KB	Second IDE port	
\$FD000000	\$FEFFFFF	32 MB	Reserved	
\$FF000000	\$FFFFFFF	16 MB	FALCON 24-Bit SHADOW	

TOS:

From the 030, the FLASH chip is accessible (to program and read it) by the 030 ADDRESS SPACE #3.

From the 060, the TOS chip is NOT accessible.

The FLASH is seen at the TOS addresses when booting.

When programming the Flash in 060 mode, the ALTERNATE SPACE #3 must be used.

REGISTERS SUMMARY

SDR-60 chip

EE EECL \$F0000000 I2C port for Clock setting & DIMM.

EEDA \$F0800000

TH THCS \$F1000000 THermal sensor of the 060 (not implemented on CT63).

THCK \$F1800000

THDA \$F1000000

SDCNF \$F2000000 SDram CoNFiguration.

IDESWA1 \$F3000000 Swap the primary & secondary IDE ports.

ABE-60 chip

IDESWA2 \$F8000000 Swap the primary & secondary IDE ports.

SLP \$FA000000 Sleep = Turn OFF the ATX power supply.

REGISTERS DETAIL

SDRAM EEPROM I2C Port:

With ABE & SDR code V6 and superior, the I2C bus (EECL & EEDA lines) is accessible from 030 mode using the ADDRESS SPACE #3 like with Flash programming.

EECL (EEprom serial CLock)

Write at $F0000000 \rightarrow WRITE 0$ to EECL line.

Write at \$F0400000 → WRITE 1 to EECL line

Read at \$F0000000 → READ from the EECL line on the D1 CPU data line.

EEDA (EEprom serial DAta)

Write at \$F0800000 → WRITE 0 to EEDA line.

Write at $FOC00000 \rightarrow WRITE 1$ to EEDA line.

Read at \$F0000000 → READ from the EEDA line on the D0 CPU data line.

060 THERMAL 3-wires Port (Not used on CT63) :

THCS (THermal Chip Select)

Write at $F1000000 \rightarrow WRITE 0$ to CS line.

Write at \$F1400000 → WRITE 1 to CS line.

THCK (THermal Clock)

Write at \$F1800000 → WRITE 0 to CLK line.

Write at \$F1C00000 → WRITE 1 to CLK line.

THDA (THermal DAta)

Read at \$F1000000 → Read from the DO line on the D0 CPU data line.

SDRAM CONTROLLER

SDCNF (SDram CoNFiguration)

Write a long at F2xx0000 with xx = [A23..A16]

Chip DensitY (EEPROM Byte #3 & #4)

A23 = cdy2A22 = cdy1

			Byte#3	Ryte#4
[cdy2,cdy2]	= 0.0	> 8Mx8; 8x16	\$0C	\$09
. , , , ,	= 0,1	> 16Mx8	\$0C	\$0A
	= 1,0	> 16Mx16	\$0D	\$09
	= 1,1	> 32Mx8; 32Mx16	\$0D	\$0A

NumbeR of DIMM Banks (EEPROM Byte #5)

A20 = nrb

$$[nrb] = 0$$
 --> 1 bank
= 1 --> 2 banks

Module DensitY (EEPROM Byte #31 * EEPROM Byte #5)

A19 = mdy2A18 = mdy1

$$[mdy2,mdy1] = 0,0 --> 64MB = 0,1 --> 128MB = 1,0 --> 256MB = 1,1 --> 512MB$$

ReFresh RaTe (EEPROM Byte #12)

A16 = rfrt

IDE CONTROL

IDESWA 1 & 2

Write at \$F3800000 & \$F8800000 to set 1 Write at \$F3000000 & \$F8000000 to set 0

0 = F30_IDE is at \$00F00000 & CT_IDE is at \$FCF00000 (default after reset).

1 = CT_IDE is at \$00F00000 & F30_IDE is at \$FCF00000.

POWER CONTROL

SLP (SleeP)

Write at \$FA800000 → Turn OFF the power supply.

CT Boards stacking

Here is the stacking of the daughter boards of the CT60/63 serie.

Top: EtherNAT

SuperVidel

Falcon 030

CTPCI

Bottom: CT60/63

060 BUS SLOT

A 060 bus Slot is present on the CT60 for some daughter cards: CTPCI, EtherNAT, SuperVidel.

The connector has 100 pins (2 connectors of 2x25 pins) and furnishes the following signals and power lines:

ADDRESS & DATA

A31-A0 Address Bus D31-D0 Data Bus

TRANFER CONTROL

/TS Transfer Start R/W Read Write

/BS0, BS1/, /BS2, /BS3 **B**yte **S**elect (BS0 is for D31-D24 lane)

SIZ1, SIZ0 SIZe

TT1, TT0, TM2, TM1, TM0 Transfer Type & Transfer Modifier

/TA Transfer Acknowledge

ARBITRATION

/BR Bus Request
/BG Bus Grant
/BB Bus Busy

INTERRUPTS

/TEA Transfer Error Acknowledge

/RST ReSeT

/I6 Interrupt **6**: Sent by the daughter card to the CT60

MISC

/IDE IDE decoding signal (\$00F0xxxx & \$FFF0xxxx).

/EMU : close access to Falcon. Used to emulate some Falcon chips or registers.

Open-drain signal.

CLOCK

CLocK (CT60 clock : 64MHz or more)

POWER

-12V, +12V Power supplies : used by some PCI cards and the fans (+12). +3.3V, +5V Power supplies : used by components and processors.

Each pin can drive up to 6 Amperes.

GND (9) GrouND pins.

Pinout

Add C	connector	Data (Connector
#A1	#A2	#D1	#D2
GND	GND	GND	GND
+5V	/BR	TM0	+12V
/TS	/BG	TM1	-12V
R/W	/BB	TM2	+3.3V
SIZ0	SIZ1	TT0	TT1
/TA	/TEA	/BS0	/BS1
/EMU	CLK	/BS2	/BS3
/RST	GND	/16	/IDE
A30	A31	D0	D1
-	-	-	-
-	-	-	-
A0	A1	D30	D31
GND	GND	GND	GND
#A49	#A50	#D49	#D50

CHIPS & REGISTERS EMULATION

The CT60 allows a Falcon hardware emulation.

With this Hardware Emulation, it is easy to implement a new chip replacing the old one of the Falcon motherboard and this at the same address(es)!

Examples:

- SUPER-VIDEL chip.
- SDRAM replacement of a part of the ST-RAM at the same addresses.
- ACIA for new PS/2 ports with a CPLD/FPGA.
- ACIA MIDI with a CPLD/FPGA.
- DSP56301 replacing 56001 at same addresses!
- FPGA emulating serial & parallel port of the Falcon (Zilog 85C30 and Yamaha).
- new SDMA for Audio.

There are 2 methods to emulate some new chips/registers on daughter boards :

1 - Signal method

The daughter board sends the EMU/ signal (open-drain) to the CT60/63 and the current access to the falcon address is stopped and cannot touch the falcon. Note that the ABE chip must use V6 code and the DTKCMB wire must be cut on CT60 + boosted motherboards configurations.

2- Timing window method

There is a time window from the start of the 060 access to the Falcon addresses (\$00xxxxxx and \$FFxxxxxx) up to the start (rising edge) of the 7th cycle of the CLK (bus and 060 clock). This method is only recommended for fast response new hardware on daughter board.

When the 060 inserts the address and TS to validate an access, a counter into ABE starts if the address is somewhere in the Falcon address space.

Until the end of the 6 th cycle, a card on the 060 slot bus of the CT60 can answer to terminate the access instead of a chip of the Falcon mb (with TA/ or TEA/ or both TA/ & TEA/ for a RETRY).

This termination of the access terminates and invalidates the Falcon access that was started.

At the begining of the 7th cycle the Falcon READ access continues and cannot be stopped. ABE drives data on the CT60 bus

The time limit for the termination signal sampling is the end of 6 th cycle.

If you want to use SDRAM on a daughter card :

For 66 MHz SDRAM BURST READ you need 5-1-1-1 cycles.

The TA arrives the 5th cycle (first data) up to 8th (fourth data). This TA arrives before the end of the 6th cycle and the F30 access start is cancelled.

For 66MHz SDRAM BURST WRITE you need 3-1-1-1 cycles.

The TA arrives the 3rd cycle (first data) up to 6th (fourth data). This TA arrives before the end of the 6th cycle and the F30 access start is cancelled.

For registers accesses on a daughter card, you need 2 or 3 cycles.

If you want to write both to F030 mb AND your daughter card (an adress that is present on the two boards), don't send TA from the daughter card and the TA from mb will terminate the write access for you.

By example, this technic allows to write all VIDEL and SUPER VIDEL registers in the same time. The emulation is total! The only thing there is to do is to implement a bit in the daughter board to **switch ON/OFF the emulation**.

If the switch is ON:

- the daughter card address registers are at the same addresses than the F030 mb and :
- the TA must not be sent when writting these registers that are common to F030 and the daughter card.
- the TA must be sent before the 7th cycle when reading from register that is a common to F030 & daughter card.

If the switch is OFF:

- the daughter card address registers must be present at some specific addresses (not the same than the F030) and the TA is sent as usual byt the daughter card for all read & write accesses.

Example with \$FFFF820E:

Switch is ON --> Write at \$FFFF820E write to daughter card and F030 mb and this access is terminated by the TA from Falcon mb (ABE). The card don't send TA.

Switch is OFF --> Write at \$FFFF820E write only to Falcon mb. You need to write to a 'new' address on the card to access the same register.

THERMAL SENSOR

The 68060 contains a Die Temperature Sensor with two external pins THERM0 & THERM1. The sensor is done with a temperature sensitive resistor which has a 780 ohms value at $25\,^{\circ}$ C and increases/decreases by steps of 2.8 ohms per $^{\circ}$ C unit. By example, a 060 core at 80 $^{\circ}$ C gives a resistance of 934 ohms between the two THERMx pins.

Equations: $R60 = 780 + 2.8 \times (TEMP - 25)$ or TEMP = (R60 - 710) / 2.8

The CT60 uses a small slow Analog/Digital converter (TI TLV0831) to obtain a 8-Bit value of the voltage between the THERMs pins.

The equation is: $U60 = (3.34 \times R60) / (1000 + R60)$ where R60 is the value of the core sensor resistor; 3.34 is the power supply and 1000 is the value of the resistor connected between the 3.34V and the positive THERMO/IN+ line. **TOLERANCES**:

- Power supply: 3.3V +/- 4% → From 3.168V to 3.432V. <u>Curently, it is 3.30 to 3.34</u>.
- Resistor: 1K +/-1% → From 990 to 1010 Ohms. Curently, it is from 995 to 1005 ohms.

The AD converter uses a **REF voltage of 1.800 V**. With 0 to 0.007 V between the two pins of the AD converter, the digital result is 0. With 1.794 to 1.800 V, the result is 255. The value increases/decreases by **steps of 0.007 V**.

The equation is: Data = INT [U60/0.007].

At	0℃:	Vin+ = 1.387 V	Data = 197	R60=710
At 2	25℃:	Vin+ = 1.464 V	Data = 208	R60=780
At 5	: ℃0	Vin+ = 1.535 V	Data = 218	R60=850
At 10	00℃:	Vin+ = 1.662 V	Data = 236	R60=990

ATTENTION: The varation of the data is not linear!!

The CPU must access the TLV831 by a basic bit-by-bit protocol. It is the software responsibility to respect the protocol & timings of the following chronogram, and assemble the bits.

f : Clock frequency

tsu: Setup time, CS LOW before CLK goes HIGH

tpd: Propagation delay time: output data after CLK goes HIGH

twh: Pulse duration, CS HIGH

tconv : Conversion Time (at 250kHz)

10 to 600 kHz (typical = 250)

350 ns MIN

500 ns MAX (typical = 200)

220 ns MIN

32 us

Three registers are present in the SDR60 chip.

The 060 CPU must drive THCS & THCK and read THDA by these registers.

The address \$F1000000, \$F1800000 & \$F1000000 are used respectively for THCS, THCK & THDA.

THCS (Chip Select)

LONG WRITE at \$F1000000 WRITE 0 to CS Rising edge of CS (removed)
LONG WRITE at \$F1400000 WRITE 1 to CS Falling edge of CS (active)

THCK (Clock)

LONG WRITE at \$F1800000 WRITE 0 to CLK Falling edge of CLK LONG WRITE at \$F1C00000 WRITE 1 to CLK Rising edge of CLK

THDA (Data Output)

LONG READ at \$F1000000 READ from DO – Value is available on D0 of the CPU data bus.

For an example, see the example in the DIMM EEPROM chapter.

DIMM EEPROM

EEPROM DATA

The DIMM standard allows the loading of the manufacturer informations from a small 128 or 256 bytes EEPROM on the DIMM. Some of these informations are needed to configure the SDRAM controller of the CT60.

The following bytes are uses by the CT60:

- **Bold** are used by the boot software to configure the SDRAM controller.
- Others are used only as user information in a SET UP menu.

Byte #2	Memory Type	FPM; EDO; NIBBLE; SDRAM=\$04
Byte #3	Number of Row Addresses	12=\$0C; 13=\$0D
Byte #4	Number of Column Addresses	8=\$08; 9=\$09; 10=0A ; 11=\$0B
Byte #5	Number of DIMM Banks	1=\$01; 2=\$02
Byte #6 & 7	Module Data Width	64=\$4000; 72; 80
Byte #8	Voltage Interface Level of this assembly	TTL; LVTTL=\$01; HSTL; SSTL3; SSTL2
Byte #9	SDRAM Cycle Time (tCYC)	
Byte #10	SDRAM Access from Clock (tAC)	
Byte #11	SDRAM Configuration Type	None=\$00; Parity; ECC
Byte #12	Refresh Rate	15.625uS=\$80; 7.81uS=\$82
Byte #17	Number of Banks on SDRAM Device	2; 4=\$04
Byte #27	Minimum ROW Precharge Time (tRP)	
Byte #28	Minimum ROW Active to Active Delay (tRRD)	
Byte #29	Minimum RAS to CAS Delay (tRCD)	
Byte #31	Module Bank Density	32=\$08; 64=\$10; 128=\$20; 256=\$40; 512=\$80
Byte 64-71	Module Manufacturer's JEDEC ID Code	EX : \$A4000000 = IBM
Byte 73-90	Module Part Number	
Byte 93-94	Module Manufacturing Date	
Byte 95-98	Module Serial Number	

Some features are initialized by the logic chip into the DIMM module when booting :

- **BURST Length** 1, 2, 4, 8, Page 4 is for **060**, **PPC**, **X86** processors

- **CAS Latency** 2, 3, 4, ... 2 is possible with **PC100** at 66 up to 80 MHz!

Remarks:

- Don't confuse SDRAM banks (2 or 4) with DIMM banks (1 or 2)!
- Bytes 128-255 are open for Customer Use and can be written Not used with CT60.
- DIMM Density = Module Bank Density * Number of DIMM Banks (1 or 2).

I2C 2-wire PROTOCOL

The EEPROM device conforms to the I2C 2-wire protocol. CT60 uses only the **random read operations** with the EEPROM.

During data input, the EEPROM samples the SDA signal on the rising edge of the clock (SCL). For correct device operation, the SDA signal must be stable during the clock low to high transition and data must change only when the clock (SCL) line is low.

RANDOM READ PROTOCOL & SOFTWARE

The slave address is 1010000. The eight bit is the R/W bit.

Random read operations allow the master to access any memory location in a random manner. Before issuing the slave address with the R/W bit set to one (Read), the master must first perform a dummy write operation. The master issues the start condition, slave address and then the word address it is to read. After the word address ACK, the master immediately re-issues the start condition and the slave address with the R/W bit set to one. This will be followed by an ACK from the slave and then by the eight bit word. The master will not ACK the transfer but will issue a stop and the slave stops transmission and goes into standby.

The device that controls the transfer is referred to as the master (SDR60 chip) and the device that receives the data (EEPROM) is referred to as the slave device. The master will always start a data transfer (SDA line) and will provide the serial clock (SCL line) for synchronization.

The 060 CPU must drive the SCL and SDA lines. These lines are connected to 2 pins of the logic chip. The address \$F00xxxxx is used for SCL and \$F08xxxxx is used for SDA signal.

SCL (Clock)

LONG WRITE at \$F0000000	WRITE 0 to SCL	Falling edge of SCL
LONG WRITE at \$F0400000	WRITE 1 to SCL	Rising edge of SCL

SDA (Data)

WRITE 0 to SDA LONG WRITE at \$F0800000 LONG WRITE at \$F0C00000 WRITE 1 to SDA

LONG READ at \$F0800000 READ from SDA - Value is available on D0 of the CPU data bus.

EXAMPLE

If you want to read the Byte #3 from the EEPROM:

START condition

LONG WRITE at \$F0800000	WRITE 0 to SDA	
LONG WRITE at \$F0000000	WRITE 0 to SCL	Falling edge of SCL

SLAVE ADDRESS (Write at 1010000)

٠.			
V١	/rite	- 1	

LONG WRITE at \$F0C00000	WRITE 1 to SDA	
LONG WRITE at \$F0400000	WRITE 1 to SCL	Rising edge of SCL
LONG WRITE at \$F0000000	WRITE 0 to SCL	Falling edge of SCL
Write '0'		
LONG WRITE at \$E0800000	WRITE 0 to SDA	

LONG WRITE at \$F0400000 WRITE 1 to SCL Rising edge of SCL LONG WRITE at \$F0000000 WRITE 0 to SCL Falling edge of SCL

Repeat for the values 10000 (the last 0 is for 'write')

ACK condition

LONG WRITE at \$F0400000	WRITE 1 to SCL	Rising edge of SCL
LONG READ at \$F0800000	READ from SDA	If =0, it's an ACK
LONG WRITE at \$F0000000	WRITE 0 to SCL	Falling edge of SCL

WORD ADDRESS DATA (# 3 in this example) Write '0'						
LONG WRITE at \$F0800000 LONG WRITE at \$F0400000 LONG WRITE at \$F0000000	WRITE 0 to SDA WRITE 1 to SCL WRITE 0 to SCL	Rising edge of SCL Falling edge of SCL				
Repeat 5 times						
Write '1' LONG WRITE at \$F0C00000 LONG WRITE at \$F0400000 LONG WRITE at \$F0000000	WRITE 1 to SDA WRITE 1 to SCL WRITE 0 to SCL	Rising edge of SCL Falling edge of SCL				
Repeat 1 time						
ACK condition LONG WRITE at \$F0400000 LONG READ at \$F0800000 LONG WRITE at \$F0000000	WRITE 1 to SCL READ from SDA WRITE 0 to SCL	Rising edge of SCL If =0, it's an ACK Falling edge of SCL				
START condition immediately after A LONG WRITE at \$F0C00000	ACK WRITE 1 to SDA					
LONG WRITE at \$F0400000	WRITE 1 to SCL	Rising edge of SCL				
LONG WRITE at \$F0800000 LONG WRITE at \$F0000000	WRITE 0 to SDA WRITE 0 to SCL	Falling edge of SCL				
SLAVE ADDRESS (Read at 1010000) Write '1'						
LONG WRITE at \$F0C00000 LONG WRITE at \$F0400000 LONG WRITE at \$F0000000 Write '0'	WRITE 1 to SDA WRITE 1 to SCL WRITE 0 to SCL	Rising edge of SCL Falling edge of SCL				
LONG WRITE at \$F0800000 LONG WRITE at \$F0400000 LONG WRITE at \$F0000000	WRITE 0 to SDA WRITE 1 to SCL WRITE 0 to SCL	Rising edge of SCL Falling edge of SCL				
Repeat same procedure for the value	es 10001 (the last 1 is fo	or 'read')				
ACK condition LONG WRITE at \$F0400000 LONG READ at \$F0800000 LONG WRITE at \$F0000000	WRITE 1 to SCL READ from SDA WRITE 0 to SCL	Rising edge of SCL If =0, it's an ACK Falling edge of SCL				
READ WORD DATA Bit#7						
LONG WRITE at \$F0400000 LONG READ at \$F0800000 LONG WRITE at \$F0000000 Bit#6	WRITE 1 to SCL READ from SDA WRITE 0 to SCL	Rising edge of SCL DATA Bit#7 Falling edge of SCL				
LONG WRITE at \$F0400000 LONG READ at \$F0800000 LONG WRITE at \$F0000000	WRITE 1 to SCL READ from SDA WRITE 0 to SCL	Rising edge of SCL DATA Bit#6 Falling edge of SCL				
Repeat 6 times						
Clock cycle (NO ACK) LONG WRITE at \$F0400000 LONG WRITE at \$F0000000	WRITE 1 to SCL WRITE 0 to SCL	Rising edge of SCL Falling edge of SCL				
STOP condition LONG WRITE at \$F0800000 LONG WRITE at \$F0400000 LONG WRITE at \$F0C00000	WRITE 0 to SDA WRITE 1 to SCL WRITE 1 to SDA	Rising edge of SCL				

DIMM SDRAM for CT60

The CT60 supports the PC100/133 standard SDRAM DIMMs, but some obsolet/uneeded are not accepted.

GOOD SDRAM DIMMs for CT60

- PC-100 & PC-133.
- Must be **UNBUFFURED** type.
- Must be 64-bits (no parity or ECC = 72 / 80 bits).

Module Config.	CHIPS / Side	SIDES (1=single) (2=double)	CHIPS Archit.		CAS . Addr.	PAGE Lentgh (4 banks)	Refresh Rate (uS)	
64 MB	8	1	8Mx8b	12	9	8 KB	15.625	
64 MB	4	1	8Mx16b	12	9	8 KB	15.625	
128 MB	8	2	8Mx8b	12	9	8 KB	15.625	
128 MB	4	2	8Mx16b	12	9	8 KB	15.625	
128 MB	8	1	16Mx8b	12	10	16 KB	15.625	
128 MB	4	1	16Mx16b	13	9	8 KB	7.8125	
256 MB	8	2	16Mx8b	12	10	16 KB	15.625	
256 MB	4	2	16Mx16b	13	9	8 KB	7.8125	
256 MB	8	1	32Mx8b	13	10	16 KB	7.8125	
512 MB	8	2	32Mx8b	13	10	16 KB	7.8125	
512 MB	4	2	32Mx16b	13	10	16 KB	7.8125	

NOT SUPPORTED SDRAM DIMMs

- All DIMM with chips density < 64Mbits :
 - 8MB, 16MB & 32MB DIMMs.
 - 64MB DIMMs with 16 CHIPS and / or with chips on the 2 sides.
 - All DIMMs with **2 logical banks chips** = obsolet (CT60 needs 4 logical banks chips).
- REGISTERED / BUFFURED DIMMs (generally for Work Stations & Servers, not PC).
- 512 MB DIMM with one physical bank (only 1 side populated).

REMARKS:

- Don't confuse logical banks (2 or 4) with physical banks (1=Single Side or 2=Double Side)!

PERFORMANCES:

The better system performances is obtained with 16 KB page lentgh DIMMs.

060 BURST with SDRAM

The CT60 bus clock = the 060 clock (060 in 'Full Bus mode').

The 060 uses **LINE BURST** to & from the system memory. SDRAM is well adapted for a such processor! A BURST LINE is a length of **4 LONG-WORDs (16 Bytes)** that are transferred with only:

PAGE HIT (access to a logical SDRAM page already open):

3,1,1,1 = 6 cycles for Burst Writes. Rate is 16 Bytes / 6 cycles = 178 MBytes/s (Each access in the same page).

5,1,1,1 = 8 cycles for Burst Reads. Rate is 16 Bytes / 8 cycles = 132 MBytes/s (Each access in the same page).

PAGE MISS (access to a new logical SDRAM page (must be precharged and open):

7,1,1,1 = 10 cycles for Burst Writes. Rate is 16 Bytes / 10cycles = 107 MBytes/s (Each access in a new page). 9,1,1,1 = 12 cycles for Burst Reads. Rate is 16 Bytes / 12cycles = 89 MBytes/s (Each access in a new page).

The CT60 uses the 060 at the top of the possible performances with the mighty **COPYBACK** mode! Instead of the WRITETROUGH mode like other TOS machines!

Copyback mode is active for all SDRAM memory area.

Copyback mode allows the 060 to write into the cache without writting into the SDRAM, what is so more performant! The cache lines are pushed into SDRAM only when needed (060 needs place by example). With **two 8Kbytes caches**, it gives to coders the possibility to do some incredibly speedy routs residing at 100% into the caches!

The 060 uses BURST transfers with SDRAM in 99% of the cases. Here are the cases when the 060 don't burst, this means, transfers Bytes, Words & Long-Words:

Byte, Word, and Long-Word READ Transfer Cycles from SDRAM

Accesses that are implicitly NONCACHABLE:

- Locked Read-Modify-Write accesses.
- Table Searches.

Accesses that are not allocate in the data cache on a read miss:

- Exception Vector Fetches.
- Exception stack Deallocation for an RTE Instruction.

Byte, Word, and Long-Word WRITE Transfer Cycles to SDRAM

Accesses that are implicitly NONCACHABLE:

- Locked Read-Modify-Write accesses.
- Table Searches.

Accesses that are not allocate in the data cache on a write miss :

- Exception stacking.

Cache Line pushes for lines containing a single dirty Long-word.

Write to WRITETHROUGH pages (ST-RAM!).

Remark:

For those of you who are a bit familiar with 64-bit processors like PPC or X86, don't forget that the syntax for data size is not the same :

With 32-Bit processors:

- A WORD designates a 16-Bit entity.
- LONG-WORD designates a 32-Bit entity.

With 64-Bit processors:

- A HALF-WORD designates a 16-Bit entity.
- A WORD designates a 32-Bit entity.
- A DOUBLE-WORD designates a 64-Bit entity.

INTERRUPTS

CT60 adds a new interrupt for the 060 Bus Slot: I6 (active low)

I6 is the interrupt from the 060 BUS SLOT and is merged with the others from the Falcon. See table below for the priority position.

060 INTERRUPTS PRIORITY TABLE

NAME	LEVEL	ACTIVE	TYPE	SOURCE	PRIORITY
16 16	6 6	Low	Software Software	CTPCI SuperVidel	Highest
I6	6	Low Low	Software	SuperVidel EtherNAT	Ī
INT6	6	Low	Software	F030 Bus Slot	
MFPINT	6	Low	Software	F030 MFP	
DSPREQ	6	Low	Software	F030 DSP	
INT5	5	Low	Software	F030 SCC	
VBL	4	Low	Auto	F030 VIDEL VSync	
INT3	3	High	Software	F030 Bus Slot	
HBL	2	Low	Auto	F030 VIDEL HSync	lack
INT1	1	High	Software	F030 Bus Slot	Lowest

INT1 & INT3 are NO MORE SUPPORTED with CT60!

INT6 is also named MFPINT on atari documents because it is daisy chained with the MFP.

CHIPSET PIN-OUT

SDR-60 ABE-60

1 VCC	73 VCC	1 VCC	73 VCC
2 rstf	74 cs1	2 avec	74 d28
3 PGND	75 cs0	3 a13	75 d27
4 ta	76 cas	4 ct60	76 d26
5 PGND	77 we	5 a14	77 d25
6 PGND	78 a31	6 a15	78 d24
7 PGND	79 a30	7 ta	79 d23
8 VCC	80 a29	8 VCC	80 d22
9 PGND	81 a28	9 bs0	81 d21
10 a10	82 a27	10 flhoe	82 d20
11 a11	83 a26	11 flhwe	83 d19
12 a12	84 VCC	12 dtkcmb-EMU/	84 VCC
13 a13	85 a25	13 halt	85 d18
14 a14	86 a24	14 a2	86 d17
15 a15	87 a23	15 a3 16 tt0	87 d16 88 d15
16 a2	88 a22	17 tm0	89 GND
17 a3	89 GND	18 GND	90 GND
18 GND	90 GND	19 bg1	91 d14
19 a4	91 a21	20 tm1	92 d13
20 a5	92 a20	21 bg2	93 d12
21 a6	93 a19	22 ts	94 d11
22 a7	94 a18	23 bg0	95 d10
23 a8	95 a17	24 tt1	96 d9
24 a9	96 a16	25 exp/ - TEST ABE	97 d8
25 dm3	97 tbi	26 exp2/ - TEST ABE	98 d7
26 dm1	98 rst60	27 tm2	99 GND
27 dm2	99 GND	28 as	100 d6
28 dm0	100 TEST SDR	29 GND	101 d5
29 GND	101 TEST SDR	30 clk500	102 d4
30 clk500	102 tci	31 bs1	103 d3
31 cs3 32 clk	103 PGND 104 PGND	32 clk	104 d2
33 PGND	105 PGND	33 bs2	105 d1
34 PGND	106 IDE	34 i6	106 br2
35 cs2	107 PGND	35 dtk	107 d0
36 GND	108 GND	36 GND	108 GND
37 VCC	109 VCC	37 VCC	109 VCC
38 PGND	110 PGND	38 clkf	110 fd15
39 ideled	111 ipl2f	39 a2f	111 fd14
40 d2	112 ipl1	40 fc2	112 fd13
41 d1	113 i6	41 slp	113 fd12
42 VCC	114 GND	42 VCC	114 GND
43 d0	115 ipl2	43 bs3 44 a3f	115 fd11 116 fd10
44 PGND	116 bs1	45 bb	117 fd9
45 PGND	117 ts	46 fc1	117 fd3
46 ma12	118 tt1	47 GND	119 fd7
47 GND	119 PGND	48 a16	120 fd6
48 ma11	120 PGND	49 a17	121 fd5
49 ba1	121 ipl0	50 a18	122 TDO
50 ba0	122 TDO	51 a19	123 GND
51 ma10	123 GND	52 a20	124 fd4
52 ma9	124 siz1	53 a21	125 fd3
53 ma8 54 ma7	125 rsto	54 a22	126 fd2
55 VCC	126 eeda 127 VCC	55 VCC	127 VCC
56 ma6	127 VCC 128 thcs	56 a23	128 fd1
57 ma5	129 rw	57 a24	129 fd0
58 ma4	130 siz0	58 a25	130 bg30
59 ma3	131 Reserved	59 a26	131 uds
60 ma2	132 PGND	60 a27	132 lds
61 ma1	133 PGND	61 a28	133 a1f
62 GND	134 eecl	62 GND	134 berr
63 TDI	135 bs0	63 TDI	135 br0
64 ma0	136 bs2	64 a29	136 rw
65 TMS	137 bs3	65 TMS	137 fc0
66 PGND	138 thck	66 a30	138 br1
67 TCK	139 ipl0f	67 TCK	139 abdir
68 PGND	140 ipl1f	68 a31 69 d31	140 bgk 141 VCC
69 PGND	141 VCC	70 d30	141 VCC 142 tea
70 PGND	142 thdi	70 d30 71 d29	142 tea 143 rst
71 ras	143 rst	72 GND	144 GND
72 GND	144 GND	. = •=	