STAT115: Introduction to Biostatistics

University of Otago Ōtākou Whakaihu Waka

Lecture 21: Checking the Assumptions of the Linear Regression Model

Previous:

Outline

- ► Fitting a statistical model
- Method of least squares
- Today:
 - Assumptions underlying linear regression
 - What are the assumptions?
 - How do we check the assumptions?

Motivation

- Exploring relationship between total length (mm) and head length (mm) of brushtail possums
- Recall: fitting linear model

```
m_possum = lm(head_1 ~ total_1, data = possum) # possum data
```

- Linear regression model allows us to:
 - ► Estimate the effect of x (total length) on y (head length)
 - \blacktriangleright Estimate the mean response of y (head length) given x (total length)
 - E.g. estimate mean head length of possums that have total length $x=820~\mathrm{mm}$
- Problem: the model relies on assumptions
 - ▶ Interpretations and conclusions may be invalid if assumptions are badly wrong
- We need to test the model assumptions (so far as possible)

Assumptions for Simple Linear Regression

Recall that the linear regression model is

$$y = \underbrace{\beta_0 + \beta_1 x}_{\mu_y} + \varepsilon$$

- The underlying assumptions are:
 - **Linearity:** The mean response μ_y is described by a straight line
 - ▶ Independence: The errors $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ are independent
 - **Normality:** The error terms ε are normally distributed
 - **Equal variance:** The errors terms all have the same variance, σ_{ε}^2 ('homoscedastic')
- These are often remembered using the mnemonic LINE.

Tools for checking assumptions

- Fitted line plot: compare the observed data to the fitted model
 - Useful, but not extensively used for checking assumptions
- Show code for plotting data and fitted model

plot(possum\$total_l, possum\$head_l) # plot(x,y): x gives x values, y gives y values abline(m_possum) # draws the fitted regression line

Residual plots

- It is more common to use a residual plot
 - ightharpoonup Residuals $\hat{\varepsilon}$ are on the y-axis
 - Recall: $\hat{\varepsilon} = y \hat{y}$
- Look at a small example

Lecture 21 X Fitted value Slide 6

More on residuals: $\hat{\varepsilon} = y - \hat{y}$

- The residual is $\hat{\varepsilon} = y \hat{\beta}_0 \hat{\beta}_1 x$
- Residuals are estimates of error terms (ε)
 - ightharpoonup Can be used to check assumptions about error terms (ε)
- The residual $\hat{\varepsilon}$ is often called a raw residual
 - Standardised or studentised residuals are often preferred
 - We will use studentised residuals in this course
 - What are studentised (or standardised) residuals?
 - Transformed to have standard deviation pprox 1
 - (Mathematical) details are beyond the scope of the course
 - ▶ Find them in R using function rstudent
 - e.g. for model object m_possum we find studentised residuals using rstudent(m_possum)

Plotting residuals in R

```
poss_fit = fitted(m_possum) # finds the fitted values of the model m_possum
poss_resid = rstudent(m_possum) # finds the studentized residuals of the model m_possum
plot(poss_fit, poss_resid) # plots residuals against fitted values
abline(h=0) # draws a horizontal line at O
```


Checking the linearity assumption

- Looking for clear departure for linearity in trend of data.
 - ▶ Look for patterns in plot of residuals against fitted values
- Plots below illustrate failure of linearity assumption (bad)

Checking the linearity assumption

- Looking for clear departure for linearity in trend of data.
 - ▶ Look for patterns in plot of residuals against fitted values
- Plots below: no evidence of failure of linearity assumption (good)

The independence assumption

- Independence assumption: errors $\varepsilon_1, \ldots, \varepsilon_n$ are independent
- What does it mean that errors ε_1 and ε_2 are independent?
 - ▶ Knowing ε_1 tells us nothing about ε_2

$$-\varepsilon_i = y_i - (\beta_0 + \beta_1 x_i)$$

- For the possum example, independence means
 - ▶ Knowing how much above average one possum's head length is, gives no information about how far above average another possum's head length is.

Slide 11 Lecture 21

Checking the independence assumption

- In general: difficult to assess
 - ▶ We are unable to check it by looking at fitted line or residual plots.
- In certain situations, we may be able to check it
 - If the data are collected in time (time series)
 - Expect observations close together in time to be correlated
 - If the data are collected in space (spatial data)
 - Expect observations close together in space to be correlated
 - ▶ If there are multiple measurements from each participant (repeated measures)
 - Expect observations from a given participant to be correlated
- We can look at more complex statistical models for each of the cases above

Outside the scope of this course

Checking the normality assumption

- Assumption: errors ε are normally distributed
- The importance of the normality assumption depends on sample size
 - Sample size small: important, but hard to check
 - As sample size increases (say n > 50) it becomes increasingly less important
 - Looking for large violations of normality
- An example of such a violation are outliers / extreme observations

Checking for outliers

- Studentized residuals should be approximately normal with standard deviation 1:
 - ▶ Most (approx 95%) within ± 2
 - ▶ Nearly all (> 99%) within ± 3
 - \blacktriangleright Values exceeding ± 4 are unusual: outliers

Checking equal variance assumption (homoscedasticity)

- Assumption: error terms $\varepsilon_1, \varepsilon_2, \dots, \epsilon_n$ have the same variance
 - lacktriangle The magnitude of spread of data about regression line should not change too much with x
- In contrast, if (say) variance of error terms increases with x
 - lacktriangle We would expect to see data more dispersion as x increases.
- Best seen with residual plot against fitted values.

Checking equal variance

- Example where there is evidence of non-constant variance
 - Variance of residuals increases with fitted value

What to do when assumptions fail: linearity

- Failure of the linearity assumption is critical
 - ► Conclusions drawn from the model will be invalid
- Paths forward include
 - Consider transforming outcome or predictor variables (where appropriate)
 - Explore more sophisticated models
 - Move beyond a simple linear regression model
- Both of these are outside the scope of the course
 - ► Considered further in STAT 210, 310

What to do when assumptions fail: independence or equal variance

- When independence or equal variance assumptions fail
 - ▶ Estimates of parameters remain valid
 - Estimates can be inefficient
 - They can be improved
- Follows that fitted regression line is useable
- Confidence intervals and hypothesis tests will be invalid.
- Failure of assumptions can be rectified by sophisticated modelling techniques.

Details beyond this course.

What to do when assumptions fail: normality / outliers

- · Outliers can have a dramatic effect on the estimated regression
- If outliers are present: check that the data are correctly recorded
- If outliers remain we may consider removing them, however:
 - ► Think carefully first
 - Often outliers (or unexpected values in general) are the most interesting
 - They could be revealing something important about what we are studying
 - ▶ If we do remove observations, we must be transparent
 - It should clear and obvious that values were removed and why
- Look at an example

Scottish hill racing

- Data are the record times in 1984 for 35 Scottish hill races (running)
- Interested in the relationship between distance and record time
 - ► Outcome variable (y): record time (in minutes)
 - ► Predictor variable (x): distance (in km)

Lecture 21 Distance (km) Fritted Value Slide 20

Scottish hill races: Investigate the outliers

- Knock Hill: record incorrectly recorded
 - ► Recorded as 78 minutes 39 seconds
 - ▶ It should have been 18 minutes 39 seconds.
- Bens of Jura: other important information?
 - ► This race has the largest climb by over 700 m
 - Consider (extended) model that includes climb?

Residuals: possum data

- Linearity: no evidence of a trend
- Outliers: no apparent outliers
- Constant variance: no obvious change in magnitude of spread of residuals

Summary

- Assumptions of linear regression
 - ► LINE
 - Linearity
 - Independence
 - Normality
 - Equal variance
- Introduced residual plots
 - ► Can be used to check assumptions of linear regression model