Today's Agenda

Using OLS regressions to analyze the stock market

Download the stock market data from Moodle

Justin Leinaweaver (Spring 2022)

What does the 'beta' tell us about a stock?

KEY TAKEAWAYS

- Beta indicates how volatile a stock's price is in comparison to the overall stock market.
- A beta greater than 1 indicates a stock's price swings more wildly (i.e., more volatile) than the overall market.
- A beta of less than 1 indicates that a stock's price is less volatile than the overall market.
- A beta of 1 indicates the stock moves identically to the overall market.

What does the 'alpha' tell us about a stock?

KEY TAKEAWAYS

- Alpha refers to excess returns earned on an investment above the benchmark return.
- Active portfolio managers seek to generate alpha in diversified portfolios, with diversification intended to eliminate unsystematic risk.
- Because alpha represents the performance of a portfolio relative to a benchmark, it is often considered to represent the value that a portfolio manager adds to or subtracts from a fund's return.

- Calculate the rate of return for the stock you are analyzing (e.g. BIG) AND the market (e.g S&P 500)
 - \bullet = (Current / Last) 1

Regress the returns of the stock (the outcome) on the returns of the market (the predictor)

Market: S&P 500

Analyze: Walmart, Disney, Zoom and Big Lots

For Each Stock:

- Fit regressions and format in a table
- Line plot: Market vs Stock Returns
- \$100 investment in 2020?

	ZM	WMT	DIS	BIG
	(1)	(2)	(3)	(4)
SP500	-0.18 (0.16)	0.51* (0.05)	1.05* (0.06)	1.42* (0.15)
Constant	0.01* (0.003)	0.001 (0.001)	0.0005 (0.001)	0.003 (0.003)
Observations	251	251	251	251
Adjusted R ²	0.001	0.31	0.54	0.26
Residual Std. Error ($df = 249$)	0.05	0.02	0.02	0.05
F Statistic (df = 1; 249)	1.27	114.21*	292.83*	86.89*

Note:

*p<0.05

	ZM	WMT	DIS	BIG
	(1)	(2)	(3)	(4)
SP500	-0.18	0.51*	1.05*	1.42*
	(0.16)	(0.05)	(0.06)	(0.15)
Constant	0.01*	0.001	0.0005	0.003
	(0.003)	(0.001)	(0.001)	(0.003)
Observations	251	251	251	251
Adjusted R ²	0.001	0.31	0.54	0.26
Residual Std. Error $(df = 249)$	0.05	0.02	0.02	0.05
F Statistic (df = 1; 249)	1.27	114.21*	292.83*	86.89*

Note:

*p<0.05

invest_sp500	invest_wmt	invest_dis	invest_zm	invest_big
\$114.56	\$123.24	\$122.25	\$514.26	\$166.08