Contents

Pref	ace		page xvii	
Part	A: The F	undamentals of MHD	1	
Intro	oduction:	The Aims of Part A	1	
1	A Quali	tative Overview of MHD	3	
1.1	What is	MHD?	3	
1.2	A Brief	History of MHD	6	
1.3	From E	lectrodynamics to MHD: A Simple Experiment	8	
	1.3.1	Some important parameters in electrodynamics		
		and MHD	8	
	1.3.2	A brief reminder of the laws of electrodynamics	9	
	1.3.3	A familiar high-school experiment	11	
	1.3.4	A summary of the key results for MHD	18	
1.4	Some Si	mple Applications of MHD	18	
2	The Gov	verning Equations of Electrodynamics	27	
2.1	The Elec	ctric Field and the Lorentz Force	27	
2.2	Ohm's I	Law and the Volumetric Lorentz Force	29	
2.3	Ampère's Law		31	
2.4	Faraday	's Law in Differential Form	32	
2.5	The Rec	duced Form of Maxwell's Equations for MHD	34	
2.6	A Trans	sport Equation for B	37	
2.7	On the Remarkable Nature of Faraday and of			
	Faraday's Law			
	2.7.1	An historical footnote	37	
	2.7.2	An important kinematic equation	40	

x Contents

	2.7.3	The full significance of Faraday's law	42
	2.7.4	Faraday's law in ideal conductors: Alfvén's theorem	44
3 Part		overning Equations of Fluid Mechanics Flow in the Absence of Lorentz Forces	47 47
3.1	Elemen	tary Concepts	47
	3.1.1	Different categories of fluid flow	47
	3.1.2	The Navier-Stokes equation	59
3.2	Vorticit	ty, Angular Momentum and the Biot-Savart Law	61
3.3	Advecti	ion and Diffusion of Vorticity	64
	3.3.1	The vorticity equation	64
	3.3.2	Advection and diffusion of vorticity: temperature	
		as a prototype	66
	3.3.3	Vortex line stretching	70
3.4	Kelvin'	s Theorem, Helmholtz's Laws and Helicity	71
	3.4.1	Kelvin's Theorem and Helmholtz's Laws	71
	3.4.2	Helicity	74
3.5	The Pra	andtl-Batchelor Theorem	77
3.6	Bounda	ary Layers, Reynolds Stresses and Turbulence Models	81
	3.6.1	Boundary layers	81
	3.6.2	Reynolds stresses and turbulence models	83
3.7	Ekman	Pumping in Rotating Flows	90
Part	2: Incor	porating the Lorentz Force	95
3.8	The Fu	all Equations of MHD and Key Dimensionless	
	Groups		95
3.9	Maxwe	ell Stresses	97
4	Kinema	atics of MHD: Advection and Diffusion	
•		agnetic Field	102
4.1	The Ar	nalogy to Vorticity	102
4.2		on of a Magnetic Field	103
4.3		ion in Ideal Conductors: Alfvén's Theorem	104
	4.3.1	Alfvén's theorem	104
	4.3.2	An aside: sunspots	106
4.4	Magne	tic Helicity	108
4.5	_	ion plus Diffusion	109
	4.5.1	Field sweeping	109
	4.5.2	Flux expulsion	110

		Contents	xi
	4.5.3 4.5.4	Azimuthal field generation by differential rotation Magnetic reconnection	114 115
5	Dynami	cs at Low Magnetic Reynolds Numbers	117
5.1	The Lo	w- R_m Approximation in MHD	118
Part	1: Suppr	ression of Motion	119
5.2	Magnet	ic Damping	119
	5.2.1	The destruction of mechanical energy via	
		Joule dissipation	120
	5.2.2	The damping of a two-dimensional jet	121
	5.2.3	Damping of a vortex	122
5.3	A Glim	pse at MHD Turbulence	128
5.4	Natural	Convection in the Presence of a Magnetic Field	132
	5.4.1	Rayleigh-Bénard convection	132
	5.4.2	The governing equations	133
	5.4.3	An energy analysis of the Rayleigh-Bénard	
		instability	134
	5.4.4	Natural convection in other configurations	137
Part	2: Gener	ration of Motion	139
5.5	Rotatin	g Fields and Swirling Motions	139
	5.5.1	Stirring of a long column of metal	139
	5.5.2	Swirling flow induced between two parallel plates	142
5.6	Motion	Driven by Current Injection	145
	5.6.1	A model problem	145
	5.6.2	A useful energy equation	146
	5.6.3	Estimates of the induced velocity	148
	5.6.4	A paradox	149
Part	3: Bound	dary Layers	151
5.7	Hartma	nn Boundary Layers	151
	5.7.1	The Hartmann Layer	151
	5.7.2	Hartmann flow between two planes	152
5.8		les of Hartmann and Related Flows	154
-	5.8.1	Flow-meters and MHD generators	154
	5.8.2	Pumps, propulsion and projectiles	155

157

5.9 Conclusion

xii Contents

6	Dynamics at Moderate to High Magnetic		
	Reynol	lds' Number	159
6.1	Alfvén	Waves and Magnetostrophic Waves	160
	6.1.1	Alfvén waves	160
	6.1.2	Magnetostrophic waves	163
6.2	Eleme	nts of Geo-Dynamo Theory	166
	6.2.1	Why do we need a dynamo theory for the earth?	166
	6.2.2	A large magnetic Reynolds number is needed	171
	6.2.3	An axisymmetric dynamo is not possible	174
	6.2.4	The influence of small-scale turbulence: the α -effect	177
	6.2.5	Some elementary dynamical considerations	185
	6.2.6	Competing kinematic theories for the geo-dynamo	197
6.3	A Qua	alitative Discussion of Solar MHD	199
	6.3.1	The structure of the sun	200
	6.3.2	Is there a solar dynamo?	201
	6.3.3	Sunspots and the solar cycle	201
	6.3.4	The location of the solar dynamo	203
	6.3.5	Solar flares	203
6.4	Energy	y-Based Stability Theorems for Ideal MHD	206
	6.4.1	The need for stability theorems in ideal MHD:	
		plasma containment	207
	6.4.2	The energy method for magnetostatic equilibria	208
	6.4.3	An alternative method for magnetostatic equilibrium	213
	6.4.4	Proof that the energy method provides both necessar	·y
		and sufficient conditions for stability	215
	6.4.5	The stability of non-static equilibria	216
6.5	Concl	usion	220
7	MHD	Turbulence at Low and High Magnetic	
•		lds Number	222
7.1	Δ Sur	vey of Conventional Turbulence	223
7.1	7.1.1	A historical interlude	223
	7.1.2		227
	7.1.2	The structure of turbulent flows: the Kolmogorov	221
	1.1.3	picture of turbulence	229
	7.1.4	Velocity correlation functions and the Karman–	443
	7.1.4	Howarth equation	235
		HOWAITH OQUATION	40

		Contents	xiii
	7.1.5	Decaying turbulence: Kolmogorov's law, Loitsyansky's integral, Landau's angular momentum	
		and Batchelor's pressure forces	240
	7.1.6	On the difficulties of direct numerical simulations	247
7.2	MHD	Turbulence	249
	7.2.1	The growth of anisotropy at low and high R_m	249
	7.2.2	Decay laws at low R_m	252
	7.2.3	The spontaneous growth of a magnetic field at	
		high R_m	256
7.3		imensional Turbulence	260
	7.3.1	Batchelor's self-similar spectrum and the inverse	
		energy cascade	260
	7.3.2	Coherent vortices	263
	7.3.3	The governing equations of two-dimensional	
		turbulence	264
	7.3.4	Variational principles for predicting the final state	
		in confined domains	267
Part	B: Appl	lications in Engineering and Metallurgy	273
Intro	oduction	: An Overview of Metallurgical Applications	273
8	Magnet	tic Stirring Using Rotating Fields	285
8.1	Casting	g, Stirring and Metallurgy	285
8.2	-	Models of Stirring	289
8.3	•	ominance of Ekman Pumping in the Stirring	
		fined Liquids	294
8.4		irring of Steel	298
9	Magne	tic Damping Using Static Fields	301
	_		
9.1		urgical Applications	301
9.2		rvation of Momentum, Destruction of Energy	
0.0		e Growth of Anisotropy	304
9.3	_	etic Damping of Submerged Jets	308
9.4	_	etic Damping of Vortices	312
	9.4.1	General considerations	312
	U /I /	Liamping of francuerce vortices	41/

317

323

324

Damping of parallel vortices

9.5 Damping of Natural Convection

Implications for low- R_m turbulence

9.4.3

9.4.4

xiv Contents

	9.5.1	Natural convection in an aluminium ingot	324	
	9.5.2	Magnetic damping in an aluminium ingot	329	
10	Axisym	metric Flows Driven by the Injection		
	of Curr	•	332	
10.1	The VA	AR Process and a Model Problem	332	
	10.1.1	The VAR process	332	
	10.1.2	Integral constraints on the flow	336	
10.2	The W	ork Done by the Lorentz Force	338	
10.3	Structu	re and Scaling of the Flow	340	
	10.3.1	Differences between confined and unconfined flows	340	
	10.3.2	Shercliff's self-similar solution for unconfined flows	342	
	10.3.3	Confined flows	344	
10.4	The Inf	fluence of Buoyancy	346	
10.5	Stabilit	y of the Flow and the Apparent Growth of Swirl	348	
	10.5.1	An extraordinary experiment	348	
	10.5.2	There is no spontaneous growth of swirl!	350	
10.6	Flaws i	in the Traditional Explanation for the Emergence		
	of Swir	1	351	
10.7	The Ra	The Rôle of Ekman Pumping in Establishing the Dominance		
	of Swir	1	353	
	10.7.1	A glimpse at the mechanisms	353	
		A formal analysis	356	
	10.7.3	Some numerical experiments	358	
11	MHD 1	Instabilities in Reduction Cells	363	
11 1	Interfa	cial Waves in Aluminium Reduction Cells	363	
11.1	11.1.1		363	
	11.1.2		364	
11.2		ple Mechanical Analogue for the Instability	368	
		fying Assumptions	372	
	A Shallow-Water Wave Equation and Key Dimensionless			
11				
	11.4.1	A shallow-water wave equation	374 374	
	11.4.2	Key dimensionless groups	378	
11.5		ling Wave and Standing Wave Instabilities	379	
11.5	11.5.1	Travelling waves	379	
	11.5.2	Standing waves in circular domains	380	
	11.5.3	Standing waves in rectangular domains	381	
			~~,	

		Contents	XV
11.6	Implicati	ons for Reduction Cell Design	385
12	_	quency Fields: Magnetic Levitation	•0=
	and Indu	ction Heating	387
12.1	The Skin	1 Effect	388
12.2	Magnetic	c Pressure, Induction Heating and High-	
	Frequenc	cy Stirring	390
12.3	Applicati	ions in the Casting of Steel, Aluminium and	
	Super-Al	lloys	394
	12.3.1	The induction furnace	394
		The cold crucible	397
		Levitation melting	398
		Processes which rely on magnetic repulsion EM	
	•	valves and EM casters	403
Appe	endices		
1 V	ector Iden	ntities and Theorems	405
2 S	ability Cr	riteria for Ideal MHD Based on the Hamiltonian	407
3 P	hysical Pr	operties of Liquid Metals	417
4 M	IHD Turb	bulence at Low R_m	418
Bibli	ography		422
Sugg	ested Boo	oks on Fluid Mechanics	422
		oks on Electromagnetism	422
		oks on MHD	423
	•	ences for Part B and Appendix 2	423
Subj	ect Index		427