

Bayesian Latent Class Approach for Causal Estimation with Multiple Cognitive Outcomes Dalla Lana

School of Public Health

Yiming (Emmett) Peng¹, Zihang Lu², Kuan Liu¹

- 1. Dalla Lana School of Public Health, University of Toronto
- 2. Department of Public Health Sciences, Queen's University

BACKGROUND

- Estimating causal effects with multiple outcomes in the presence of unobserved latent subgroups is challenging; treatment effects may differ by latent class, but class membership is unobserved 1,2 .
- Advantages of Bayesian joint modeling include:
 - ✓ general framework with straightforward uncertainty quantification and sensitivity analysis;
 - ✓ an interpretable way to handle multiple outcomes in causal inference;
 - ✓ extends easily to handle missing data.
- Most latent-class causal methods are two-step frequentist: classes first, effects second, complicating sensitivity analysis for unmeasured confounding and class-number selection¹.

OBJECTIVES

Extending causal latent-class approaches

- Propose a Bayesian joint latent-class model (Bayesian Joint) beyond a two-step frequentist causal latent-class model (Two-step Freq) 1,3 .
- Compare model performance under different simulation scenarios.

1. NOTATIONS

• n subjects indexed by i, $i = 1, \ldots, n$, with a single timepoint outcome measurement.

CAUSAL LATENT CLASS FRAMEWORK

- X_i and A_i are random variables representing the baseline confounder vector and exposure for subject i. Y_{ip} denotes the p cognitive outcomes for subject i observed at the end of the study.
- C_i is introduced as the latent class membership for subject *i*, capturing heterogeneity in the cognitive population with K latent classes.

2. DAG

Figure 1. Causal latent-class framework among baseline confounders, treatment, and multiple outcomes.

3. ASSUMPTIONS

- SUTVA and Positivity.
- Latent unconfoundedness: $A_i \perp \!\!\! \perp C_i^a \mid X_i$.
- Conditional independence: Given C_i , outcomes are independent, $P(Y_{i1}, ..., Y_{ip} | C_i) = \prod_{m=1}^{p} P(Y_{im} | C_i)$.

4. CAUSAL PARAMETER

- For each class c = 1, ..., K, define the potential indicator $Z_i^a(c) = \mathbf{1}\{C_i^a = c\}$ with average potential class probability $E[Z_i^a(c)]$.
- Causal estimand: Average treatment effect on class probabilities, $ATE_c = E[Z_i^1(c)] - E[Z_i^0(c)]$.

5. PARAMETERIZATION

- Outcome model, For m = 1, ..., p, $P(Y_{im} \mid C_i = c, \theta)$.
- Latent class membership model, $P(C_i = c \mid A_i, X_i, \alpha)$.
- Baseline exposure assignment model, $P(A_i \mid X_i, \gamma)$.
- Covariates model, $P(X_i \mid \beta)$.
- $\Lambda = \{\theta, \alpha, \beta, \gamma\}.$

SIMULATION STUDY

Conf.	Sep.	Imb.	Bayesian Joint: Coverage (MSE)				Two-step Freq: Coverage (MSE)			
			C1	C2	C3	C4	C1	C2	C3	C4
		balanced	0.94	0.98	0.96	0.94	0.95	0.96	0.98	0.98
			(0.001812)	(0.009183)	(0.001673)	(0.001364)	(0.001969)	(0.001697)	(0.002119)	(0.001187
	low	one_rare	0.94	0.95	0.94	0.97	0.96	0.98	0.97	0.98
weak	10 **		(0.002300)	(0.001797)	(0.001653)	(0.000716)	(0.001836)	(0.001710)	(0.002019)	(0.000664)
		two_rare	0.92	0.91	0.94	0.96	0.95	0.97	1.00	0.95
			(0.002188)	(0.002427)	(0.000990)	(0.000766)	(0.001695)	(0.002760)	(0.002022)	(0.000756
		severe_one	0.98	0.98	0.95	0.98	0.99	0.98	0.97	0.99
			(0.001483)	(0.001694)	(0.001579)	(0.000308)	(0.002228)	(0.002400)	(0.002415)	(0.001670
	high	balanced	0.93	0.99	1.00	0.93	0.95	0.94	0.99	0.94
			(0.002672)	(0.001450)	(0.001456)	(0.003063)	(0.001128)	(0.001083)	(0.000806)	(0.000926
		one_rare	1.00	0.97	0.96	1.00	0.95	0.93	0.92	0.90
			(0.002768)	(0.001638)	(0.001546)	(0.001657)	(0.001056)	(0.001022)	(0.001492)	(0.000550
		two_rare	0.94	0.87	0.85	0.94	0.91	0.89	0.89	0.89
			(0.002867)	(0.002454)	(0.000652)	(0.001282)	(0.001339)	(0.001864)	(0.000632)	(0.000603
		severe_one	0.95	0.94	0.96	0.99	0.88	0.92	0.92	0.91
			(0.002489)	(0.002539)	(0.001399)	(0.000585)	(0.001782)	(0.001260)	(0.001433)	(0.000373
strong	low	balanced	0.95	0.98	0.97	0.94	0.95	0.98	1.00	0.95
			(0.001709)	(0.001460)	(0.001495)	(0.001942)	(0.001946)	(0.002390)	(0.002384)	(0.001803
		one_rare	0.92	0.98	0.97	0.92	0.98	0.97	0.99	0.95
			(0.002315)	(0.001464)	(0.001924)	(0.001342)	(0.002334)	(0.002261)	(0.003310)	(0.001412
		two_rare	0.94	0.99	0.96	0.90	0.97	0.98	0.99	0.96
			(0.002384)	(0.001697)	(0.000897)	(0.001276)	(0.002406)	(0.004481)	(0.004780)	(0.001458
		severe_one	0.98	0.97	0.97	0.97	0.97	0.99	0.98	0.97
			(0.002024)	(0.002413)	(0.001823)	(0.000513)	(0.003661)	(0.002999)	(0.002789)	(0.002514)
	high	balanced	0.94	1.00	0.99	0.94	0.94	0.93	0.89	0.96
			(0.002391)	(0.001190)	(0.012450)	(0.002659)	(0.001424)	(0.001470)	(0.001484)	(0.001169)
		one_rare	0.96	0.98	0.99	0.99	0.97	0.97	0.93	0.98
			(0.003185)	(0.001328)	(0.001103)	(0.001673)	(0.001379)	(0.001141)	(0.001523)	(0.000626
		two_rare	0.97	0.93	0.94	0.98	0.95	0.93	0.94	0.93
			(0.003054)	(0.002021)	(0.000541)	(0.001104)	(0.001656)	(0.002065)	(0.000694)	(0.000706
		severe_one	0.96	0.95	0.98	1.00	0.95	0.92	0.95	0.88
			(0.002053)	(0.002844)	(0.001020)	(0.000683)	(0.002220)	(0.001600)	(0.001222)	(0.000323

2. SIMULATED DATASET

- For each simulation scenario, 100 datasets were generated with n = 800and K = 4. Coverage probability and MSE were computed to assess model performance.
- Uncertainty for the Two-step Freq model was estimated using the bootstrap.
- Data-generating parameters were optimized to achieve the desired simulation scenarios.
- $A \mid X \sim \text{Bernoulli}(\pi), \quad \text{logit}(\pi_i) =$ $\gamma_0 + \gamma^\top X_i$.
- $C_i \mid A_i, X_i \sim \text{Cat}(\pi_{i1}, \dots, \pi_{iK}),$ $\log(\frac{\pi_{ik}}{\pi_{i1}}) = \alpha_{0k} + \alpha_{A,k} A_i + \alpha_{X,k}^{\top} X_i.$
- $Y_{im} \mid C_i = c \sim \mathcal{N}(\theta_{cm}, \sigma^2)$.
- Imb.: Class imbalance; one/two rare one or two small clusters; severe-one – one cluster <5% of subjects.
- C1–C4: Latent cognitive subgroups.
- Conf.: Confounding strength.
- Sep.: Class separation.

METHODOLOGY (EXTENSIONS)

- 1. Bayesian Causal Latent Class Model (Bayesian Joint)
- Joint likelihood:

$$\prod_{i=1}^{n} P(o_i \mid \Lambda) = \prod_{i=1}^{n} \sum_{c=1}^{K} P(Y_{i1}, \dots, Y_{ip}, A_i, X_i, C_i = c \mid \Lambda)$$

$$\prod_{i=1}^{n} \sum_{c=1}^{K} P(C_i \mid A_i, X_i, \alpha) P(Y_i \mid C_i, \theta) P(A_i \mid X_i, \gamma) P(X_i \mid \beta)$$

• Specify prior $P_0(\Lambda)$ for model parameters; estimate average potential outcomes using posterior predictive inference.

$$E[Z_i^a(c) \mid o_{1:n}] = \int_{\Lambda} E[Z_i^a(c) \mid \Lambda] P(\Lambda \mid o_{1:n}) d\Lambda$$
$$= \int_{\Lambda} \int_{X} P(C_i \mid A_i, X^*, \alpha) P(X^* \mid \beta) P(\Lambda \mid o_{1:n}) dx d\Lambda,$$

where X^* refers to the synthetic covariates generated under the posterior draw of β .

- Compute the distribution of average potential outcomes using Monte Carlo simulation,
- Step 1. Given $\Lambda^{(s)}$, draw synthetic covariates $x^{(s,r)} \sim$ $P(\cdot \mid \beta^{(s)})$, $r = 1, \ldots, M$, and calculate $Z_r^{a,s}(c) =$ $\Pr(C = c \mid A = a, x^{(s,r)}, \alpha^{(s)}).$
- Step 2. Compute the average potential outcome by averaging over synthetic covariates and posterior draws $\frac{1}{S}\sum_{s=1}^{S}\frac{1}{M}\sum_{r=1}^{M}\Pr(C=c\mid A=c)$ $a, x^{(s,r)}, \alpha^{(s)}).$

2. Frequentist Causal Latent-Class Model (Two-step Freq)

- Adapted from Causal Inference in Latent Class Anal $ysis^1$, serves as the baseline:
- Step 1. Perform multiple imputation for missing data.
- Step 2. Estimate propensity scores and compute weights.
- Step 3. Fit latent class analysis using weighted outcomes, with treatment as a predictor.
- Step 4. Estimate causal effects based on logistic regression coefficients.

CONCLUSION & FUTURE WORKS

- The Bayesian Joint model showed slightly better performance than the Two-step Frequentist model in the simulation study in unbalanced class scenarios.
- The Bayesian Joint model offers a more flexible structure, which is advantageous for real-world data applications.
- Future work will extend the framework to longitudinal outcomes and nonparametric covariate models.

ACKNOWLEDGMENTS

- Dr. Geoffrey M. Anderson, University of Toronto.
- Computational resources were supported by Compute Canada.
- This research was funded by the Canadian Institutes

REFERENCES

- 1. Lanza, S. T., Coffman, D. L., Xu, S. (2013). Causal Inference in Latent Class Analysis. Structural equation modeling: a multidisciplinary journal, 20(3), 361–383. https://doi.org/10.1080/10705511.2013.797816
- 2. Zhang, Wei Li, Qizhai Ding, Peng. (2025). Inverse regression for causal inference with multiple outcomes. 10.48550/arXiv.2509.12587.
- 3. Jo, B., Wang, C. P., Ialongo, N. S. (2009). Using latent outcome trajectory classes in causal inference. Statistics and its interface, 2(4), 403–412. https://doi.org/10.4310/sii.2009.v2.n4.a2
- 4. Liu, K., Saarela, O., Tomlinson, G., Feldman, B. M., Pullenayegum, E. (2025). A Bayesian latent class approach to causal inference with longitudinal data. Statistical methods in medical research, 34(1), 55–68. https://doi.org/10.1177/09622802241298704
- Rubin, D. (1978) Bayesian Inference for Causal Effects: The Role of Randomization. The Annals of Statistics, 6, 34-58. http://dx.doi.org/10.1214/aos/1176344064