Décima Lista de Exercícios GEOMETRIA ANALÍTICA - Camargo-Boulos Quádricas

- 1. (Coordenadas polares) Seja $\Sigma = \{O, \vec{x}, \vec{y}\}$ um sistema de coordenadas ortonormal de um plano π .
 - (a) Seja r um número real não negativo. Mostre que para todo θ real, o ponto o ponto $P = (r\cos\theta, r \sin\theta)$ de π pertence à circunferência de centro em O e raio r.
 - (b) Mostre que todo ponto P do plano π pode ser escrito na forma $(r\cos\theta, r \sin\theta)$, com $r \geq 0$ e $0 \leq \theta \leq 2\pi$; (r, θ) são chamadas de coordenadas polares do ponto P.
- 2. (Coordenadas cilíndricas) Seja $\Sigma = \{O, \vec{x}, \vec{y}, \vec{z}\}$ um sistema de coordenadas ortonormal. Mostre que todo ponto P de \mathbb{R}^3 pode ser escrito na forma $(r\cos\theta, r \sin\theta, h)$, com $\rho \geq 0$, $0 \leq \theta \leq 2\pi$, e $h \in \mathbb{R}$; (r, θ, h) são chamadas de coordenadas cilíndricas do ponto P.
- 3. (Coordenadas esféricas) Seja $\Sigma = \{O, \vec{x}, \vec{y}, \vec{z}\}$ um sistema de coordenadas ortonormal.
 - (a) Seja ρ um número real não negativo. Mostre que, para todo ϕ e todo θ reais, o ponto $P = (\rho \operatorname{sen} \phi \cos \theta, \rho \operatorname{sen} \phi \operatorname{sen} \theta, \rho \cos \phi)$ pertence à esfera de centro em O e raio ρ .
 - (b) Mostre que todo ponto P pode ser escrito na forma $(\rho \operatorname{sen} \phi \cos \theta, \rho \operatorname{sen} \phi \operatorname{sen} \theta, \rho \cos \phi)$, com $\rho \geq 0$, $0 \leq \phi \leq \pi$ e $0 \leq \theta \leq 2\pi$; (ρ, ϕ, θ) são chamadas de coordenadas esféricas do ponto P.
- 4. Mostre que se d < 0, a equação $x^2 + y^2 + z^2 + ax + by + cz + d = 0$ descreve uma esfera, quaisquer que sejam os números reais a, b, c.
- 5. Nos casos em que a equação dada descreve uma superfície esférica, determine o centro e o raio.

(a)
$$(x-2)^2 + (y+6)^2 + z^2 = 25$$

(b)
$$x^2 + y^2 + z^2 - 4x + 6y + 2z - 2 = 0$$

(c)
$$x^2 + y^2 + z^2 - 2x - 4y + 10 = 0$$

(d)
$$x^2 + y^2 + z^2 - 2x + 2y = 0$$

(e)
$$x^2 + y^2 + z^2 - 2x - 4y - 6z + 16 = 0$$

(f)
$$2x^2 + 2y^2 + 2z^2 - 6x + 2y - 4z + 7 = 0$$

(g)
$$4x^2 + 4y^2 + 4z^2 - 8x - 8y - 8z + 10 = 0$$

(h)
$$x^2 + y^2 + z^2 - 2x + 4y + 15 = 0$$

(i)
$$x^2 + y^2 + z^2 - 2x + 4y + 5 = 0$$

- 6. Obtenha uma equação da esfera de centro C=(1,1,2) que contém o ponto P=(1,1,3).
- 7. Obtenha uma equação da esfera, conhecendo as extremidades de um diâmetro: A = (2, -3, -5) e B = (4, 1, -3).
- 8. Determine o diâmetro da esfera S : $x^2 + y^2 + z^2 + 2x 2y = 0$ que é perpendicular ao plano $\pi : x y 2 = 0$.
- 9. Obtenha uma equação da esfera que contém os pontos P = (0, 2, -1), Q = (1, 1, -1), R = (1, -1, 1) e S = (-1, 1, 1).
- 10. Obtenha uma equação da esfera que contém os pontos (0,0,1), (1,0,0), (0,1,0), cujo centro pertence ao plano $\pi: x+y-z=0$.
- 11. Nos casos em que a interseção do plano π com o elipsóide Ω for uma elipse, determine seu centro, focos e vértices. Se for uma circunferência, determine o centro e o raio.

(a)
$$\Omega: \frac{x^2}{64} + \frac{y^2}{100} + \frac{z^2}{4} = 1$$
 $\pi: y - 5 = 0$

(b)
$$\Omega: x^2 + 9y^2 + 4z^2 = 36$$
 $\pi: x + 2\sqrt{5} = 0$

(c)
$$\Omega: 4x^2 + 4y^2 + 9z^2 - 2 = 0$$
 $\pi: z + \frac{1}{3} = 0$

- 12. Sejam A=(1,0,0) e B=(-1,0,0). Determine a equação do lugar geométrico dos pontos X tais que d(X,A) + d(X,B) = 2.
- 13. Descreva a curva interseção do hiperbolóide Ω com o plano π e determine, quando for o caso: centro, focos, assíntotas, raio.

(a)
$$\Omega: x^2 - 4y^2 + 5z^2 = 1$$
 $\pi: z + 1/\sqrt{5} = 0$

(b)
$$\Omega: -3x^2 - 4z^2 + 5y^2 = -43$$
 $\pi: y = 1$

(c)
$$\Omega: \frac{x^2}{2} - \frac{y^2}{2} - z^2 = 1$$
 $\pi: y + 2 = 0$

- 14. Sendo $\Omega: 2x^2-y^2+4z^2=1$, determine os planos paralelos aos planos coordenados que intersectam Ω em uma cônica de distância focal $\sqrt{6}$.
- 15. Seam A = (0, 3, 0) e B = (0, -3, 0). Determine uma equação do lugar geométrico dos pontos X tais que d(X, A) d(X, B) = 6.

- 16. Seja Ω a quádrica de equação $9x^2 + 36y^2 4z^2 18x + 72y + 16z 7 = 0$. Complete os quadrados e faça uma translação do sistema de coordenadas para eliminar os termos de primeiro grau e concluir que se trata de um hiperbolóide de uma folha.
- 17. Prove que as equações abaixo descrevem parabolóides elípticos e esboceos.

$$x = y^2/a^2 + z^2/b^2$$
 $y = x^2/a^2 + z^2/b^2$ $z = -x^2/a^2 - y^2/b^2$ $x = -y^2/a^2 - z^2/b^2$ $y = -x^2/a^2 - z^2/b^2$

- 18. Descreva a curva interseção d parabolóide Ω com o plano π e determine, quando for o caso, centro, focos, vértices, assíntotas, raio.
 - (a) $\Omega: z + x^2 + 3y^2 = 0$ $\pi: z + 9 = 0$
 - (b) $\Omega: 4y 4x^2 z^2 = 0$ $\pi: z 1 = 0$
 - (c) $\Omega: x + y^2 + 2z^2 = 0$ $\pi: x 1 = 0$
- 19. Obenha uma equação do lugar geométrico dos pontos que são equidistantes do plano $\pi: x=2$ e do ponto P=(-2,0,0), e identifique-o.
- 20. Seja Ω a quádrica de equação $x^2 + 6z^2 4x + y 12 = 0$. Faça uma translação do sistema de coordenadas para eliminar os termos de primeiro grau e identifique a quádrica.
- 21. Prove que $\Omega: z=8x^2-2xy+8y^2$ é um parabolóide elíptico e faça um esboco.
- 22. Prove que são selas (parabolóides hiperbólicos) as quádricas descritas pelas equações.

$$x = y^2/a^2 - z^2/b^2$$
 $y = x^2/a^2 - z^2/b^2$ $z = x^2/a^2 - y^2/b^2$
 $x = -y^2/a^2 + z^2/b^2$ $y = -x^2/a^2 + z^2/b^2$

- 23. Seja Ω a quádrica de equação $y^2 4z^2 + x 2y + 16z 15 = 0$. Faça uma translação do sistema de coordenadas para eliminar os termos de primeiro grau e identifique a quádrica.
- 24. Faça uma mudança de coordenadas conveniente para concluir que Ω : z = xy é um parabolóide hiperbólico, e esboce-o.
- 25. Obtenha uma equação do lugar geométrico dos pontos que são equidistantes das retas $r: X = (0, -1/2, 0) + \lambda(1, 0, 0)$ e $s: X = (0, -1/2, 0) + \lambda(0, 0, 1)$, e identifique-o.
- 26. Identifique, em cada caso, a quádrica cilíndrica descrita pela equação dada e comente a posição das geratrizes em relação aos eixos coordenados.

- (a) $y^2/a^2 + z^2/b^2 = 1$
- (b) $z^2/a^2 y^2/b^2 = 1$
- (c) $z^2 = cx$
- (d) $x^2/a^2 + z^2/b^2 = 1$
- (e) $y^2 = cz$
- (f) $x^2/a^2 z^2/b^2 = 1$
- 27. Identifique a quádrica descrita pela equação dada.
 - (a) $x^2 + 2xy y^2 + 6x 2y 3 = 0$
 - (b) $3x^2 + y^2 2xy 6x + 2y 1 = 0$
 - (c) $-10 + 8x 8z x^2 + 6xz z^2 = 0$
 - (d) $y^2 + 2yz + z^2 + y z 2 = 0$
 - (e) $x^2 2xy + y^2 = 0$
 - (f) $x^2 + 4xy + 4y^2 + 6x + 12y + 5 = 0$
- 28. Obtenha uma equação do lugar geométrico dos pontos que são equidistantes de O e $r: X = (1,0,0) + \lambda(0,1,0)$, e identifique-o.
- 29. Prove, em cada caso, que a equação dada descreve uma quádrica cônica.
 - (a) $y^2 = x^2/a^2 + z^2/b^2$ $x^2 = y^2/a^2 + z^2/b^2$
- 30. Prove, em cada caso, que a equação dada descreve uma quádrica cônica.
 - (a) $x^2 y^2 + z^2 4x 6y 2z 4 = 0$
 - (b) $2xy + y^2 = 0$
- 31. Obtenha uma equação do lugar geométrico dos pontos que equidistam da reta r: x-y=z=0 e do plano $\pi: x+y=0$.