Lecture 29

Dynamic Linear Model: Part 2

Arnab Hazra

DLM: State equation (Recap)

▶ DLM in its basic form, employs an order one, *p*-dimensional vector autoregression as the state equation,

$$\mathbf{X}_t = \mathbf{\Phi} \mathbf{X}_{t-1} + \mathbf{W}_t,$$

where $\boldsymbol{W}_{t} \stackrel{\textit{IID}}{\sim} \mathcal{N}_{p}(\boldsymbol{0}, \boldsymbol{Q})$.

- In the DLM, we assume the process starts with a normal vector \mathbf{X}_0 , such that $\mathbf{X}_0 \sim \mathcal{N}_p(\mu_0, \Sigma_0)$.
- ► Here *p* is called state dimension.

DLM: Observation equation (Recap)

- We do not observe the state vector \mathbf{X}_t directly, but only a linear transformed version of it with noise added, say $\mathbf{Y}_t = \mathbf{A}_t \mathbf{X}_t + \mathbf{V}_t$, where \mathbf{A}_t is a $q \times p$ measurement or observation matrix; this equation is called the observation equation.
- The observed data vector, \mathbf{Y}_t , is q-dimensional, which can be larger than or smaller than p, the state dimension. The additive observation noise is $\mathbf{V}_t \stackrel{\textit{IID}}{\sim} \mathcal{N}_q(\mathbf{0}, \mathbf{R})$.
- ▶ For simplicity, we initially assume X_0 , $\{W_t\}$, and $\{V_t\}$ are uncorrelated.

Regression with Autocorrelated Errors (Recap)

- We discuss the modifications to the regression model when the errors are correlated.
- ► That is, consider the regression model

$$Y_t = \sum_{j=1}^r \beta_j u_{tj} + X_t$$

- ▶ Here X_t is a process with some covariance function $\gamma_X(s, t)$.
- In ordinary least squares, the assumption is that X_t is white Gaussian noise, in which case $\gamma_X(s,t)=0$ for $s\neq t$ and $\gamma_X(t,t)=\sigma^2$, independent of t.
- If this is not the case, then weighted least squares should be used.

Multivariate ARMAX models

- Suppose we have a multivariate time series Y_t , t = 1, 2, ...
- ▶ That is, consider the regression model

$$Y_{it} = \sum_{j=1}^r \beta_{ij} u_{tj} + X_{it}, \quad i = 1, \ldots, q.$$

In vector-matrix notation

$$\mathbf{Y}_t = \mathbf{B}\mathbf{u}_t + \mathbf{X}_t.$$

- ► Here X_t is a multivariate ARMA process with some covariance function matrix $\Gamma_X(s,t)$.
- We have not covered multivariate ARMA but have discussed multivariate time series and univariate ARMA separately; this is a combination of the concepts.

DLM with covariates

► The ARMAX model involves covariates that may enter into the states or into the observations.

▶ In this case, we suppose we have an $r \times 1$ vector of inputs \mathbf{u}_t , and write the model as

$$egin{aligned} oldsymbol{X}_t &= \Phi oldsymbol{X}_{t-1} + \gamma oldsymbol{u}_t + oldsymbol{W}_t \ oldsymbol{Y}_t &= oldsymbol{A}_t oldsymbol{X}_t + \Gamma oldsymbol{u}_t + oldsymbol{V}_t \end{aligned}$$

▶ Here γ is $p \times r$ and Γ is $q \times r$; either of these matrices may be the zero matrix.

Example of DLM (Global temperature data)

Fig. 6.3. Annual global temperature deviation series, measured in degrees centigrade, 1880–2015. The series differ by whether or not ocean data is included.

Example of DLM (Global temperature data, contd.)

► They show two different estimators for the global temperature series from 1880 to 2015.

- First series are the global mean land-ocean temperature index data.
- ► The second series are the surface air temperature index data using only meteorological station data.
- Conceptually, both series should be measuring the same underlying climatic signal, and we may consider the problem of extracting this underlying signal.

Example of DLM (Global temperature data, contd.)

We suppose both series are observing the same signal with different noises; that is, $Y_{t1} = X_t + V_{t1}$ and $Y_{t2} = X_t + V_{t2}$ or more compactly as

$$(Y_{t1}, Y_{t2})' = (1, 1)'X_t + (V_{t1}, V_{t2})',$$

where $\mathbf{R} = \text{Var}[(V_{t1}, V_{t2})'].$

It is reasonable to suppose that the unknown common signal X_t can be modeled as a random walk with drift of the form

$$X_t = \delta + X_{t-1} + W_t,$$

with $Q = Var(W_t)$.

▶ In this example, p = 1, q = 2, $\Phi = 1$, and $\gamma = \delta$ with $u_t = 1$.

An AR(1) Process with Observational Noise

Consider a univariate state-space model where the observations are noisy,

$$Y_t = X_t + V_t$$

► The signal (state) is an AR(1) process,

$$X_t = \phi X_{t-1} + W_t$$

- ► Here $V_t \stackrel{\text{IID}}{\sim} \mathcal{N}(0, \sigma_V^2)$, $W_t \stackrel{\text{IID}}{\sim} \mathcal{N}(0, \sigma_W^2)$, and $X_0 \sim \mathcal{N}(0, (1 \phi^2)^{-1} \sigma_W^2)$
- ▶ Besides, X_0 , $\{W_t\}$, and $\{V_t\}$ are independent.

An AR(1) Process with Observational Noise (contd.)

ightharpoonup The autocovariance function of X_t is

$$\gamma_X(h) = (1 - \phi^2)^{-1} \sigma_W^2 \phi^h, \quad h = 0, 1, 2, \dots$$

ightharpoonup The marginal variance of Y_t is

$$\gamma_{Y}(0) = \text{Var}(X_t + V_t) = \text{Var}(X_t) + \text{Var}(V_t) = (1 - \phi^2)^{-1} \sigma_W^2 + \sigma_V^2$$

ightharpoonup The autocovariance function of Y_t is

$$\gamma_{Y}(h) = \text{Cov}(X_{t+h} + V_{t+h}, X_t + V_t) = \text{Cov}(X_{t+h}, X_t) = (1 - \phi^2)^{-1} \sigma_W^2 \phi^h, \ h = 1, 2, ...$$

ightharpoonup The ACF of Y_t is

$$\rho_Y(h) = \gamma_Y(h)/\gamma_Y(0) = (1 + \sigma_V^2/\sigma_W^2(1 - \phi^2))^{-1}\phi^h, \ h = 1, 2, \dots$$

▶ The ACF of Y_t is identical to the ACF of an ARMA(1,1) process.

Things to cover

- We will cover the concepts of
 - prediction

filtering

smoothing

state space models and include their derivations.

Thank you!