Evolution of galaxy dynamics over the last 10 Gyrs with MUSE/VLT

de Paris

Author: Mercier Wilfried

Supervisor: Contini Thierry (IRAP) Co-Supervisor: Epinat Benoit (LAM)

June 12, 2019

Galaxy evolution

Morphology at z>0.5 different from the local Universe. Kinematics more disturbed. Why ?

- ▶ Impact of the environment on the kinematics? On the morphology? How do they scale with each other?
- - · Which is/are dominant?
 - · How to identify them?
- ▷ Origin of quenching ?

Integral Field Spectroscopy & MUSE

IFS:

- > 3D cubes (2D spatial + 1D spectral)
- \triangleright photometry + kinematics

MUSE:

- $\triangleright 1 \times 1 \operatorname{arcmin}^2 \text{ FoV}$
- \triangleright 0.2 arcsec spatial sampling
- \triangleright spectral range [4650 Å, 9300 Å]
- > seeing-limited or AO observations

MUSE instrument. Credit: Contini Thierry (IRAP)

Our sample

HST image of COSMOS group CGr30

- > 16 MUSE fields in COSMOS area
- $> {
 m exposures~from~1~to~10\,hr}$
- ightharpoonup seeing-limited (FWHM $\lesssim 0.7$ ") or AO (FWHM $\lesssim 0.5$ ")
 - · deep and best_seeing observations
- $ightharpoonup \sim 500$ field galaxies with [OII] detection
 - · HST-ACS counterparts
 - 0.4 < z < 1.4

Methodology

- I. Morphological information
 - \triangleright half-light radius $R_{1/2}$ to select resolved galaxies
 - · Cassata, Tasca and Zurich catalogues
 - ▷ ellipticitiy to compute the inclination
 - \cdot fixed input for the kinematical model

- II. Kinematical modelling
 - \triangleright recover $V_{\rm max}$ and $\sigma_{\rm v}$

III. Tully-Fisher relation

Checking morphological parameters Half-light radius

GALFIT run by V. Abril-Melgajero (LAM) on structure galaxies

spheroidal disk-like irregulars

Checking morphological parameters Ellipticity

> values are consistent between catalogues

 ⊳ scatter is due to bulge dominated (spherically symmetric) systems

Characteristics of our sample Redshift distribution

The total number corresponds to galaxies with photometric data in Cassata and/or Zurich catalogues.

ightharpoonup sample of 103 galaxies with $R_{1/2} > 0.35$ " and SNR > 5

- > we loose galaxies at $z \approx 1.4$
- > redshift distribution is not drastically changed

Characteristics of our sample Mass-SFR relation

massive quiescent (low [OII]) and very low mass galaxies

are lost

 $-1.74 \log_{10}(rac{1+z}{1+z}$ 1.4 1.2 $\log_{10}(SFR/(M_{\odot}\,yr^{-1}))$ 0 0 0 8.0 0 0.6 0.4 8 10 11 $log_{10}(M/M_{\odot})$

1.6

Kinematical modelling Cleaning galaxies

Kinematical modelling Fitting a model

First results $V_{
m max}/\sigma_{
m v}$ distribution

First results Tully-Fisher relation

