Modular Arithmetic, Chinese Remainder Theorem

Plan

In this note, we shall study some more elementary number theory.

These basics of number theory are very powerful tools in computer science.

- Modular arithmetic
 - Modular addition, multiplication
 - Applications
 - Multiplicative inverses
 - Fermat's little theorem, Wilson's theorem
- · Chinese remainder theorem

12-hour clock

But this could be also 6 o'clock in the morning, when we should have breakfast.

In this case, we actually view two 6 o'clocks as one single value in a clock.

This is the idea of modular arithmetic!

Partition of Integers

Given any b>0, we can partition the integers into blocks of b numbers.

For any a, there is a unique "position" for this number.

Grouping the integers that are in the same "position" of each b-block forms a partition of integers.

Congruence class of a modulo b: $[a]_b = \{a+kb \mid k \in \mathbb{Z}\}$

 $\mathbb{Z} = [0]_3 \cup [1]_3 \cup [2]_3$ E.g.

Denoted by $\mathbb{Z}_3 = \{[0]_3, [1]_3, [2]_3\}$

Modular Arithmetic

Definition. $a \equiv b \pmod{n}$ iff $n \mid (a - b)$.

e.g.
$$12 \equiv 2 \pmod{10}$$

 $107 \equiv 207 \pmod{10}$
 $7 \equiv 1 \pmod{2}$
 $1 \equiv -1 \pmod{2}$
 $13 \equiv -1 \pmod{7}$
 $-15 \equiv 0 \pmod{5}$

Modular Arithmetic

Claim: $a \equiv b \pmod{n} \Leftrightarrow a \mod n = b \mod n$

Definition. a mod b = r if r is the unique remainder given by the Quotient-Remainder Theorem when a is divided by b > 0.

That is,

$$a \equiv b \pmod{n}$$

iff a and b leave the same non-negative remainder when divided by n

e.g. $25 \equiv 5 \pmod{4}$ is true since $4 \mid 20$

25 = 5 mod 4 is false since this means 25 = 1

Modular Arithmetic

Claim: $a \equiv b \pmod{n} \Leftrightarrow a \mod n = b \mod n$

Proof First, let $a \equiv b \pmod{n}$, so that a = b + kn for some integer k. Upon division by n, b leaves a certain remainder r; i.e. b = qn + r, where $0 \le r < n$. Therefore a = b + kn = qn + r + kn = (q + k)n + r,

which indicates a has the same remainder as b.

On the other hand, suppose a and b have the same remainder, and we write

$$a = q_1 n + r$$
, $b = q_2 n + r$.

Then

$$a-b = (q_1n + r) - (q_2n + r) = (q_1 - q_2)n,$$

Showing that $n \mid (a-b)$, or $a \equiv b \pmod{n}$, completing the proof of the Claim.

Modular Addition

Lemma. If
$$a \equiv c \pmod{n}$$
, and $b \equiv d \pmod{n}$ then $a+b \equiv c+d \pmod{n}$.

Example 1
$$12 \equiv 2 \pmod{10}$$
, $25 \equiv 5 \pmod{10}$
=> $12 + 25 \pmod{10}$
= $2 + 5 \pmod{10} \equiv 7 \pmod{10}$

Example 2
$$87 \equiv 2 \pmod{17}$$
, $222 \equiv 1 \pmod{17}$
 $\Rightarrow 87 + 222 \pmod{17}$
 $\equiv 2 + 1 \pmod{17}$
 $\equiv 3 \pmod{17}$

Example 3
$$101 \equiv 2 \pmod{11}$$
, $141 \equiv -2 \pmod{11}$ => $101 + 141 \pmod{11} \equiv 0 \pmod{11}$

Modular Addition

Lemma: If
$$a \equiv c \pmod{n}$$
, and $b \equiv d \pmod{n}$ then $a+b \equiv c+d \pmod{n}$.

Proof

 $a \equiv c \pmod{n} \implies a = c + nx \text{ for some integer } x$

 $b \equiv d \pmod{n} \Rightarrow b = d + ny \text{ for some integer } y$

To show $a+b \equiv c+d \pmod{n}$, it is equivalent to showing that $n \mid (a+b-c-d)$.

Consider a+b-c-d.

a+b-c-d = (c+nx) + (d+ny) - c - d = nx + ny.

It is clear that $n \mid nx + ny$.

Therefore, n | a+b-c-d.

We conclude that $a+b \equiv c+d \pmod{n}$.

Modular Multiplication

Lemma. If $a \equiv c \pmod{n}$, and $b \equiv d \pmod{n}$ then $ab \equiv cd \pmod{n}$.

Example 1
$$9876 \equiv 6 \pmod{10}$$
, $17642 \equiv 2 \pmod{10}$
 $\Rightarrow 9876 * 17642 \pmod{10}$
 $\equiv 6 * 2 \pmod{10}$
 $\equiv 2 \pmod{10}$

Example 2
$$10987 \equiv 1 \pmod{2}$$
, $28663 \equiv 1 \pmod{2}$ => $10987 * 28663 \pmod{2} \equiv 1 \pmod{2}$

Example 3
$$999 \equiv 5 \pmod{7}$$
, $674 \equiv 2 \pmod{7}$
=> $999 * 674 \pmod{7} \equiv 5 * 2 \pmod{7} \equiv 3 \pmod{7}_{10}$

Modular Multiplication

Lemma: If $a \equiv c \pmod{n}$, and $b \equiv d \pmod{n}$ then $ab \equiv cd \pmod{n}$.

Proof

```
a \equiv c \pmod{n} \implies a = c + nx \text{ for some integer } x
```

 $b \equiv d \pmod{n} \Rightarrow b = d + ny \text{ for some integer } y$

To show $ab \equiv cd \pmod{n}$, it is equivalent to showing that $n \mid (ab-cd)$.

Consider ab-cd.

$$ab-cd = (c+nx) (d+ny) - cd$$

= $cd + dnx + cny + n^2xy - cd = n(dx + cy + nxy)$.

It is clear that $n \mid n(dx + cy + nxy)$. Therefore, $n \mid ab-cd$.

We conclude that $ab \equiv cd \pmod{n}$.

Exercise

```
144<sup>4</sup> (mod 713)
```

= 94032 (mod 713)

 $= 629 \pmod{713}$

20736 * 20736 (mod 713)

= 59 * 59 (mod 713)

 $= 3481 \pmod{713}$

= 629 (mod 713)

Make a smart use of the modular arithmetic will significantly reduce the complexity!

Modular Exponentiation

```
If a \equiv c \pmod n, and if m \ge 0 is an integer, then 

(i) a^m \equiv c^m \pmod n, 

(ii) f(a) \equiv f(c) \pmod n for all polynomials f(x) with integer coefficients. 

(where a polynomial is f(x) = b_m x^m + b_{m-1} x^{m-1} + ... + b_1 x + b_0)
```

Proof:

We prove (i) by induction, which certainly holds for k=1. Assume $a^k \equiv c^k \pmod{n}$, then $aa^k \equiv cc^k \pmod{n} \Rightarrow a^{k+1} \equiv c^{k+1} \pmod{n}$, completing the induction.

As for (ii), we have from (i), $a^k \equiv c^k \pmod{n} \Rightarrow b_k a^k \equiv b_k c^k \pmod{n}$. Adding up these congruences, the result follows.

Plan

- Modular arithmetic
 - Modular addition, multiplication
 - Applications
 - Multiplicative inverses
 - Fermat's little theorem, Wilson's theorem
- · Chinese remainder theorem

Application

A number is divisible by 9 if and only if the sum of its digits is divisible by 9?

Example 1. 9333234513171 is divisible by 9.

$$9+3+3+3+2+3+4+5+1+3+1+7+1 = 45$$
 is divisible by 9.

Example 2. 128573649683 is not divisible by 9.

$$1+2+8+5+7+3+6+4+9+6+8+3=62$$
 is not divisible by 9.

A coincidence?

NO

This can be proved easily using modular arithmetic.

Application: Divisibility Test for 9 and 3

Claim. A number is divisible by 9 if and only if the sum of its digits is divisible by 9.

Hint:
$$10 \equiv 1 \pmod{9}$$
.

Let the decimal representation of n be $d_k d_{k-1} d_{k-2} ... d_1 d_0$.

This means that
$$n = d_k 10^k + d_{k-1} 10^{k-1} + ... + d_1 10 + d_0$$

From the modular exponentiation property

$$\begin{split} n &= d_k 10^k + d_{k-1} 10^{k-1} + ... + d_1 10 + d_0 \equiv d_k 1^k + d_{k-1} 1^{k-1} + ... + d_1 1 + d_0 \text{ (mod 9)}. \\ &\equiv d_k + d_{k-1} + ... + d_1 + d_0 \text{ (mod 9)}. \end{split}$$

By noting that $10 \equiv 1 \pmod{3}$, this also implies that a number is divisible by 3 if and only if the sum of its digits is divisible by 3.

16

Application: Divisibility Test for 11

Hint:
$$10 \equiv -1 \pmod{11}$$
.

From the modular exponentiation property

$$\begin{aligned} n &= d_k 10^k + d_{k-1} 10^{k-1} + ... + d_1 10 + d_0 \equiv d_k (-1)^k + d_{k-1} (-1)^{k-1} + ... + d_1 (-1) + d_0 \text{ (mod 11)}. \\ &\equiv d_0 - d_1 + d_2 - d_3 \text{ ... (mod 11)}. \end{aligned}$$

E.g.
$$n = 11 \times 1024 = 11264 = 1 - 1 + 2 - 6 + 4 = 0$$

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

Rule: can move a numbered square to the empty one when they are adjacent.

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

Initial configuration

Target configuration

Is there a sequence of moves that allows you to change the initial configuration to the target configuration?

Invariant Method

- Find properties (the invariants) that are satisfied throughout the whole process.
- 2. Show that the target do not satisfy the properties.
- 3. Conclude that the target is not achievable.

What is the invariant in this game??

This is usually the hardest part of the proof.

Hint

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

Initial configuration

Target configuration

Hint: the two states have different parity.

Parity

Given a sequence, a pair is "disorder" if the first element is larger.

More formally, given a sequence $(a_1, a_2, ..., a_n)$, a pair (i,j) is <u>disorder</u> if i<j but $a_i > a_j$.

For example, the sequence (1,2,4,5,3) has two disorder pairs, (4,3) and (5,3).

Given a state $S = ((a_1, a_2, ..., a_{15}), (i, j))$

Parity of S = (number of disorder pairs + i) mod 2

row number of the empty square

Hint

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

Initial configuration

Target configuration

Parity of S = (number of disorder pairs + i) mod 2

Clearly, the two states have different parity.

Invariant Method

Parity is even

- 1. Find properties (the **invariants**) that are satisfied throughout the whole process.
- 2. Show that the target do not satisfy the properties.
- 3. Conclude that the target is not achievable.

Parity is odd

Invariant = parity of state

Claim. Any move will preserve the parity of state.

Proving the claim will finish the infeasibility proof.

Parity of S = (number of disorder pairs + i) mod 2

Claim. Any move will preserve the parity of state.

?	?	?	?
?	a		?
?	?	?	?
?	?	?	?

?	?	?	?
?		a	?
?	?	?	?
?	?	?	?

Horizontal movement does not change anything...

Parity of S = (number of disorder pairs + i) mod 2

Claim. Any move will preserve the parity of state.

To count the change on #disorder pairs, we need to discuss 4 cases, depending on the relative order of a among $\{a,b_1,b_2,b_3\}$.

- 1) If a is the largest, then the #disorder pairs will decrease by three.
- 2 If a is the second largest, then #disorder pairs will decrease by one.
- 3 If a is the second smallest, then #disorder pairs will increase by one.
- 4 If a is the smallest, then #disorder pairs will increase by three.

Parity of S = (number of disorder pairs + i) mod 2

Claim. Any move will preserve the parity of state.

If there are 3/2/1/0 disorder pairs in the current state, there will be 0/1/2/3 disorder pairs in the next state.

Difference is 1 or 3.

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

Initial configuration

Target configuration

Is there a sequence of moves that allows you to change the initial configuration to the target configuration?

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

15	14	13	12
11	10	9	8
7	6	5	4
3	2	1	

Initial configuration

#disorder pairs = 0

Row of empty square = 4

Parity is even.

Target configuration

#disorder pairs = 14 + 13 + 12 + ... + 1 $= (14+1)\cdot 14/2 = 105$

Row of empty square = 4

Parity is odd.

Impossible!

If two configurations have the same parity, is it true that we can always move from one to the other?

YES!

The <u>solution</u> however requires considerably more sophisticated mathematics.

Plan

- Modular arithmetic
 - Modular addition, multiplication
 - Applications
 - Multiplicative inverses
 - Fermat's little theorem, Wilson's theorem
- · Chinese remainder theorem

The multiplicative inverse of $a \not\equiv 0 \pmod{n}$ is another integer a' such that: $a \cdot a' \equiv 1 \pmod{n}$

In modular arithmetic, a special property is that there are multiplicative inverses for integers.

For example,

$$2 * 5 = 1 \pmod{3}$$
,

so 5 is a multiplicative inverse of 2 modulo 3 (and vice versa).

Does every integer have a multiplicative inverse in modular arithmetic?

Does every integer have a multiplicative inverse in modular arithmetic?

Z_5									
1	1	2 4 1 3	3	4	$-\frac{a}{a'}$	$\parallel 1$	2	3	4
2	2	4	1	3	 $\overline{a'}$	1	3	2	4
3	3	1	4	2		+		_	*
4	4	3	2	1					

Z_6	1	2	3	4	5							
1	1	2	3	4	5				ı			
2	2	4	0	2	4		a	1	2	3	4	5
3	3	0	3	0	3		a'	1	Χ	Х	Χ	5
4	4	2	0	4	2		ı	I		l		1
5	5	4	3	2	1							denotes inverse

 Z_5 :

a	1	2	3	4
a'	1	3	2	4

What is the pattern?

 Z_6 :

a	1	2	3	4	5
a'	1	X	X	X	5

 Z_7 :

a	1	2	3	4	5	6
a'	1	4	5	2	3	6

 Z_8 :

a	1	2					7
a'	1	Χ	3	Χ	5	Χ	7

 \mathbb{Z}_9 :

a								
a'	1	5	X	7	2	Χ	4	8

Why 2 does not have a multiplicative inverse under modulo 6?

Suppose it has a multiplicative inverse y.

$$2y \equiv 1 \pmod{6}$$

=>
$$2y = 1 + 6x$$
 for some integer x

$$\Rightarrow$$
 2y - 6x = 1

This is a contradiction as LHS is even while RHS is odd.

Claim. If integers k,n are not coprime (i.e. $gcd(k,n) \ge 2$), then k does not have a multiplicative inverse modulo n.

Proof. Same as above. Leave as an exercise.

Multiplicative Inverse

What if gcd(k,n)=1?

Would k always have a multiplicative inverse under modulo n?

Theorem. If gcd(k,n)=1, then have k' such that

 $k \cdot k' \equiv 1 \pmod{n}$

where k' is an inverse of k (mod n).

gcd(k,n)=spc(k,n)

<u>Proof:</u> Since gcd(k,n)=1, there exist s and t so that sk + tn = 1.

So tn = 1 - sk

This means $n \mid 1 - sk$.

This means $1 - sk \equiv 0 \pmod{n}$.

This means $1 \equiv sk \pmod{n}$.

So k' = s is a multiplicative inverse of $k \pmod{n}$.

Cancellation

```
Note that \equiv \pmod{n} behaves similarly to \equiv.

If a \equiv b \pmod{n}, then a+c \equiv b+c \pmod{n}.

If a \equiv b \pmod{n}, then ac \equiv bc \pmod{n}

However, if ac \equiv bc \pmod{n} and c \not\equiv 0 \pmod{n}, it is not necessarily true that a \equiv b \pmod{n}.

For example, 4\cdot 2 \equiv 1\cdot 2 \pmod{6}, but 4 \not\equiv 1 \pmod{6}
```

There is no general cancellation in modular arithmetic.

Cancellation

What makes $a \cdot k \equiv b \cdot k \pmod{n}$ possible when $a \neq b$?

Without loss of generality, assume $0 \le a$, b, k < n. This is because if $a \cdot k \equiv b \cdot k \pmod{n}$, then $(a \mod n) \cdot (k \mod n) \equiv (b \mod n) \cdot (k \mod n)$.

smaller than n.

This means $(a-b)k = ak - bk \equiv 0 \pmod{n}$.

So (a-b)k is divisible by n.

Since $0 \le a$, b < n and a \ne b, it implies that 0 < |a-b| < n.

Since both components of the dividend is less than the divisor, this is possible only when n and k share a common divisor; that is,

$$gcd(n,k) \ge 2$$
!

Okay, so, can we say something when gcd(n,k)=1?

Cancellation

```
Claim. If i \cdot k \equiv j \cdot k \pmod{n} and gcd(k,n) = 1,
then i \equiv j \pmod{n}.
```

For example, multiplicative inverse always exists if n is a prime!

```
Proof. Since gcd(k,n) = 1, there exists k' such that kk' \equiv 1 \pmod{n}.

i \cdot k \equiv j \cdot k \pmod{n}

\Rightarrow i \cdot k \cdot k' \equiv j \cdot k \cdot k' \pmod{n}

\Rightarrow i \equiv j \pmod{n}
```

This makes arithmetic modulo prime a field, a structure that "behaves like" real numbers.

Arithmetic modulo prime is very powerful in coding theory.

Plan

- Modular arithmetic
 - Modular addition, multiplication
 - Applications
 - Multiplicative inverses
 - Fermat's little theorem, Wilson's theorem
- · Chinese remainder theorem

Fermat's Little Theorem

If p is a prime and gcd(k,p) = 1, then we can cancel k. So k (mod p), 2k (mod p), ..., (p-1)k (mod p) are all different (since i·k \equiv j·k (mod p) \Rightarrow i \equiv j (mod p) \Rightarrow i \equiv j for i, j < p)

This yields that

Fermat's Little Theorem

Theorem. Let p be a prime and gcd(k,p) = 1. Then

$$k^{p-1} \equiv 1 \pmod{p}$$
.

Proof.

A permutation

$$1\cdot 2\cdots (p-1) \equiv (k \mod p) \cdot (2k \mod p) \cdots ((p-1)k \mod p)$$

$$\equiv (k\cdot 2k \cdots (p-1)k) \pmod p$$

$$\equiv (k^{p-1})\cdot 1\cdot 2 \cdots (p-1) \pmod p$$

Since 1, 2, \cdots , (p-1) are coprime with p, they can be cancelled on both sides, we have

$$1 \equiv k^{p-1} \pmod{p}$$

Theorem. p is a prime if and only if

$$(p-1)! \equiv -1 \pmod{p}.$$

We first consider the converse.

W.l.o.g, suppose p is not a prime and $p \ge 6$. (Why?)

Then p=qr for some $2 \le q$, r < p.

If $q \neq r$, then both q and r appear in (p-1)!, hence p|(p-1)! and so $(p-1)! \equiv 0 \pmod{p}$.

If q = r, then $p = q^2 > 2q$ (since $p \ge 6$). then both q and 2q are in (p-1)!, and so again $(p-1)! \equiv 0 \pmod{p}$.

Theorem. p is a prime if and only if

$$(p-1)! \equiv -1 \pmod{p}.$$

To prove the forward direction, we will need a lemma.

Lemma. Let p be a prime number. Then $x^2 \equiv 1 \pmod{p}$ if and only if $x \equiv 1 \pmod{p}$ or $x \equiv -1 \pmod{p}$.

Proof. $x^2 \equiv 1 \pmod{p}$

$$\Leftrightarrow$$
 p | $x^2 - 1 = (x - 1)(x + 1)$

 \Leftrightarrow p | (x - 1) or p | (x+1) Recall p prime and p ab implies p a or p b.

$$\Leftrightarrow x \equiv 1 \pmod{p}$$
 or $x \equiv -1 \pmod{p}$

Theorem. p is a prime if and only if

$$(p-1)! \equiv -1 \pmod{p}.$$

Let's get the proof idea by considering a concrete example of p=11.

```
10!

\equiv 1.2.3.4.5.6.7.8.9.10 \pmod{11}

\equiv 1.10.(2.6).(3.4).(5.9).(7.8) \pmod{11}

\equiv 1.(-1).(1).(1).(1).(1) \pmod{11}

\equiv -1 \pmod{11}
```

Except for 1 and 10, the remaining are paired up into multiplicative inverses!

Theorem. p is a prime if and only if

$$(p-1)! \equiv -1 \pmod{p}.$$

Proof. Consider an (odd) prime p. Each k from 1 to p-1 has a multiplicative inverse. In particular, each k between 2 and p-2 has an inverse k' different from itself (i.e. $k' \neq k$) by the lemma, so that they can be paired up; however, 1 and p-1 = -1 (mod p), each is its own inverse and can't be paired up.

Thus, since p is odd, the numbers from 2 to p-2 can be grouped into pairs $\{a_1,b_1\},\{a_2,b_2\},...,\{a_{(p-3)/2},b_{(p-3)/2}\}$ so that $a_ib_i\equiv 1 \pmod{p}$.

Therefore,
$$(p-1)! \equiv 1 \cdot (p-1) \cdot 2 \cdot 3 \cdot \cdots \cdot (p-3) \cdot (p-2) \pmod{p}$$

$$\equiv 1 \cdot (p-1) \cdot (a_1b_1) \cdot (a_2b_2) \cdot \cdots \cdot (a_{(p-3)/2}b_{(p-3)/2}) \pmod{p}$$

$$\equiv 1 \cdot (-1) \cdot (1) \cdot (1) \cdot \cdots \cdot (1) \pmod{p}$$

$$\equiv -1 \pmod{p}.$$

Plan

- Modular arithmetic
 - Modular addition, multiplication
 - Applications
 - Multiplicative inverses
 - Fermat's little theorem, Wilson's theorem
- · Chinese remainder theorem

Chinese Remainder Theorem

Picture from http://img5.epochtimes.com/i6/801180520191974.jpg

How to solve the following equation?

$$ax \equiv b \pmod{n}$$

$$2x \equiv 3 \pmod{7}$$
 $x = 5 + 7v \text{ for any integer } v$
 $5x \equiv 6 \pmod{9}$ $x = 3 + 9v \text{ for any integer } v$
 $4x \equiv -1 \pmod{5}$ $x = 1 + 5v \text{ for any integer } v$
 $4x \equiv 2 \pmod{6}$ $x = 2 + 3v \text{ for any integer } v$
 $10x \equiv 2 \pmod{7}$ $x = 3 + 7v \text{ for any integer } v$
 $3x \equiv 1 \pmod{6}$ no solutions

$$ax \equiv b \pmod{n}$$

Case 1:
$$gcd(a,n) = 1$$
.

Note that a can be replaced by a mod n, so we may assume 0 < a < n.

e.g.
$$103x \equiv 6 \pmod{9} \Leftrightarrow 4x \equiv 6 \pmod{9}$$
.

Since gcd(a,n) = 1, there exists a multiplicative inverse a' for a. Hence we can multiply a' on both sides of the equation to obtain

$$x \equiv a'b \pmod{n}$$

Therefore, a solution always exists when a and n are coprime.

$$ax \equiv b \pmod{n}$$

Case 2:
$$gcd(a,n) = c > 1$$
.

Case 2a: c divides b.

$$ax \equiv b \pmod{n}$$

 \Leftrightarrow ax = b + nk for some integer k

 $\Leftrightarrow a_1cx = b_1c + n_1ck$ (since c divides a, n, b)

 $\Leftrightarrow a_1x = b_1 + n_1k$

 $\Leftrightarrow a_1 x \equiv b_1 \pmod{n_1}$ (note: $n_1 = n/gcd(a,n)$)

Therefore, we can reduce to **Case 1**.

$$ax \equiv b \pmod{n}$$

Case 2:
$$gcd(a,n) = c > 1$$
.

Case 2b: c does not divide b.

$$ax \equiv b \pmod{n}$$

 \Leftrightarrow ax = b + nk for some integer k

$$\Leftrightarrow$$
 $a_1cx = b + n_1ck$

$$\Leftrightarrow$$
 b = $(a_1x - n_1k)c$

This is a contradiction as RHS is divisible by c while LHS is not.

So there is no solutions in this case.

 $ax \equiv b \pmod{n}$

Theorem. Given integers a, b, n, the above equation has a solution if and only if $gcd(a,n) \mid b$. Moreover, the solutions are all of the form $y \pmod{n/gcd(a,n)}$.

Proof. First, divide b by gcd(a,n).

If not divisible, then there is no solutions by Case (2b).

If divisible, then we can simplify the equation as Case (2a).

Then we proceed as **Case 1** to compute the solution.

In Ancient China, there was a General named Han Xin, who led an army of 1500 soldiers in a battle. An estimated 400-500 soldiers died in the battle. When the soldiers stood 3 in a row, there were 2 soldiers left over. When they lined up 5 in a row, there were 4 soldiers left over. When they lined up 7 in a row, there were 6 soldiers left over. Han Xin immediately said, "There are 1049 soldiers."

(from https://chinesetuition88.com/2015/04/25/chinese-remainder-theorem-history-韩信点兵/)

Starting from 1500 soldiers, about 400-500 soldiers died at a battle.

Now we want to know how many soldiers are left.

Form groups of 3 soldiers

Han Xin (韓信)

There are 2 soldiers left.

Form groups of 5 soldiers

Han Xin (韓信)

There are 4 soldiers left.

Form groups of 7 soldiers

Han Xin (韓信)

There are 6 soldiers left.

We have 1049 soldiers.

Han Xin (韓信)

How did he figure this out?!

The Question

$$x \equiv 2 \pmod{3}$$

$$x \equiv 4 \pmod{5}$$

$$x \equiv 2 \pmod{3}$$

 $x \equiv 4 \pmod{5}$
 $x \equiv 6 \pmod{7}$

$$x = 1049$$

How to solve this system of modular equations?

Two Equations

Find a solution to satisfy both equations simultaneously.

$$c_1 \times \equiv d_1 \pmod{m_1}$$

 $c_2 \times \equiv d_2 \pmod{m_2}$

First we can reduce each equation to its simple form when possible.

$$x \equiv a_1 \pmod{n_1}$$

 $x \equiv a_2 \pmod{n_2}$

Of course, there may be no solutions sometimes. For example, consider

$$x \equiv 1 \pmod{3}$$
 together with $x \equiv 2 \pmod{3}$

$$x \equiv 1 \pmod{6}$$
 together with $x \equiv 2 \pmod{4}$

Two Equations

Case 1: n_1 and n_2 are coprime.

$$x \equiv 2 \pmod{3}$$

 $x \equiv 4 \pmod{7}$

Then x = 2+3u and x = 4+7v for some integers u, v.

$$2+3u = 4+7v \implies 3u = 2+7v$$

=> $3u \equiv 2 \pmod{7}$

Note that 5 is a multiplicative inverse for 3 modulo 7.

We multiply 5 on both sides to get:

$$u \equiv 5.2 \equiv 3 \pmod{7}$$

=> $u = 3 + 7w$

Therefore, x = 2+3u = 2+3(3+7w) = 11+21w.

So any $x \equiv 11 \pmod{21}$ is a solution.

Where did we use the assumption that n_1 and n_2 are coprime?

Two Equations

Case 1: n_1 and n_2 are coprime.

$$x \equiv 2 \pmod{3}$$

 $x \equiv 4 \pmod{7}$

In fact, we can construct such an \times directly.

Set
$$x = 3 \cdot a + 7 \cdot b$$

When \times is divided by 3, the remainder is determined by the second term. And when \times is divided by 7, the remainder is determined by the first term.

How do we choose a so that 3a has remainder 4 when divided by 7?

This is just asking
$$3a \equiv 4 \pmod{7} \implies a \equiv 5.4 \equiv 6 \pmod{7}$$
.

Similarly, we have
$$7b \equiv 2 \pmod{3}$$
 $\Rightarrow b \equiv 2 \pmod{3}$.

So the answer is $x = 3a+7b \equiv 3.6 + 7.2 \pmod{21} \equiv 32 \pmod{21} \equiv 11 \pmod{21}$.

Three Equations

$$x \equiv 2 \pmod{3}$$

 $x \equiv 4 \pmod{5}$
 $x \equiv 6 \pmod{7}$
Set $x = 5.7.a + 3.7.b + 3.5.c$

Then the first (second, third) term is determined by the first (second, third) equation.

Now we just need to solve the following equations separately.

```
35a \equiv 2 \pmod{3}, 21b \equiv 4 \pmod{5}, 15c \equiv 6 \pmod{7}.

\Rightarrow 2a \equiv 2 \pmod{3}, b \equiv 4 \pmod{5}, c \equiv 6 \pmod{7}.

\Rightarrow a \equiv 1 \pmod{3}, b \equiv 4 \pmod{5}, c \equiv 6 \pmod{7}.
```

Then $x = 35a + 21b + 15c \equiv 35\cdot 1 + 21\cdot 4 + 15\cdot 6 \pmod{3\cdot 5\cdot 7} \equiv 209 \pmod{105}$.

Since Han Xin (韓信) knew that $1000 \le x \le 1100$, he concluded that x = 1049.

Wait, but how did he know that there was no other solutions?

Chinese Remainder Theorem

Theorem. Let $n_1, n_2, ..., n_k$ be mutually coprime. Then

$$x \equiv a_1 \pmod{n_1}$$

$$x \equiv a_2 \pmod{n_2}$$

$$x \equiv a_k \pmod{n_k}$$

have a **unique** simultaneous solution x modulo n, where $n = n_1 n_2 ... n_k$.

We will give a proof when k=3, but it can be extended easily to any k.

Proof of Chinese Remainder Theorem

Let
$$N_1 = n_2 n_3$$
 $N_2 = n_1 n_3$ $N_3 = n_1 n_2$

Since N_i and n_i are coprime, there exist x_1 , x_2 , x_3 such that

$$N_1x_1 \equiv 1 \pmod{n_1}$$
 $N_2x_2 \equiv 1 \pmod{n_2}$ $N_3x_3 \equiv 1 \pmod{n_3}$

$$N_1 \times 1 = a_1 \pmod{n_1}, N_2 \times 2 = a_2 \pmod{n_2}, N_3 \times 3 = a_3 \pmod{n_3}$$

Let
$$x = N_1(x_1a_1) + N_2(x_2a_2) + N_3(x_3a_3)$$
 (1)

Note that n_1 divides both N_2 and N_3 , so

$$x \equiv N_1(x_1a_1) \equiv a_1 \pmod{n_1}$$

Similarly,
$$x \equiv a_2 \pmod{n_2}$$
 $x \equiv a_3 \pmod{n_3}$

Hence, x given in (1) is a solution to the system

Uniqueness

$$x \equiv a_1 \pmod{n_1}$$

 $x \equiv a_2 \pmod{n_2}$
 $x \equiv a_k \pmod{n_k}$

- Let x, y be solutions to the above system.
- Then $x y \equiv 0 \pmod{n_i}$ for each i.
- Hence $n_i \mid x y$ for each i.
- Since n₁,n₂,...,n_k are mutually coprime,
- it follows that $n_1 n_2 ... n_k \mid x y$. (Why?)
- Therefore, $x \equiv y \pmod{n_1 n_2 ... n_k}$.

General Systems

What if $n_1, n_2, ..., n_k$ are not mutually coprime?

$$x \equiv 3 \pmod{10}$$

$$x \equiv 3 \pmod{2} \equiv 1 \pmod{2}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 8 \pmod{3} \equiv 2 \pmod{3}$$

$$x \equiv 8 \pmod{5} \equiv 3 \pmod{5}$$

$$x \equiv 8 \pmod{5} \equiv 3 \pmod{5}$$

$$x \equiv 8 \pmod{5} \equiv 3 \pmod{5}$$

$$x \equiv 5 \pmod{4} \equiv 1 \pmod{4}$$

$$x \equiv 5 \pmod{4} \equiv 1 \pmod{4}$$

$$x \equiv 5 \pmod{3} \equiv 2 \pmod{3}$$

$$(6)$$

$$x \equiv 5 \pmod{4} \equiv 1 \pmod{4}$$

$$(6)$$

$$x \equiv 5 \pmod{3} \equiv 2 \pmod{3}$$

$$(7)$$

$$(9)$$

So we reduce the problem to the mutually-coprime case.

The answer is 173 (mod 420).

- (e) is stronger than (a), since x satisfying (e) implies it satisfies (a).
- (b) and (d) are the same.
- (c) and (f) are the same.

A Faster Method

There is an alternative way to solve the system of modular equations.

$$x \equiv 3 \pmod{10}$$

 $x \equiv 8 \pmod{15}$
 $x \equiv 5 \pmod{84}$

From the third equation we have x = 5+84u.

Plug it into the second equation gives $5+84u \equiv 8 \pmod{15} \implies 9u \equiv 3 \pmod{15}$.

Solving this gives $u \equiv 2 \pmod{5} \implies u = 2 + 5v$.

Hence, x = 5+84u = 5+84(2+5v) = 173 + 420v.

Next, we still need to show that this solution also satisfies the first equation.

Plug it into the first gives $173+420v \equiv 3 \pmod{10} \implies 420v = -170 \pmod{10}$.

This equation is always true.

So we conclude that x = 173+420v, or equivalently $x \equiv 173 \pmod{420}$.

This method can also be used to prove the Chinese Remainder Theorem. It is much faster (no need to find factorization), solving only k-1 modular equations.