# Proves d'Accés a la Universitat. Curs 2011-2012

# Tecnologia industrial Sèrie 3

La prova consta de dues parts que tenen dos exercicis cadascuna. La primera part és comuna i la segona té dues opcions (A i B), de les quals cal triar-ne UNA.

### PRIMERA PART

### Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada: 0,5 punts; qüestió mal contestada: -0,16 punts; qüestió no contestada: 0 punts.]

### Qüestió 1

Un tren de fira té una capacitat nominal de 48 passatgers. L'interval entre sortides consecutives és 15 minuts i el temps de trajecte, 5 minuts. Quin nombre màxim de passatgers pot transportar el tren en una hora?

- **a**) 96
- **b**) 576
- c) 288
- **d**) 192

### Qüestió 2

En un circuit elèctric es connecten en sèrie dues resistències de tolerància  $\pm 5\%$  i valors nominals 1,1 k $\Omega$  i 3,3 k $\Omega$ . La resistència equivalent d'aquest circuit és

- a)  $(4,4\pm0,055)$  kΩ.
- **b**)  $(4,4\pm0,11)$  kΩ.
- c)  $(4,4\pm0,22) k\Omega$ .
- **d**)  $(4,4\pm0,44)$  kΩ.

### Qüestió 3

La tensió de ruptura del titani comercial sense aliar és  $\sigma_r$  = 75 MPa. Si apliquem una força axial de 750 N a una barra d'aquest titani, quina secció mínima ha de tenir perquè no es trenqui?

- $a) 1 \text{ mm}^2$
- **b**) 10 mm<sup>2</sup>
- c) 100 mm<sup>2</sup>
- $d) 1000 \,\mathrm{mm}^2$

### Qüestió 4

En un estudi sobre les emissions de  $CO_2$  a l'atmosfera provinents dels vehicles privats, es considera que la quantitat emesa d'aquest gas és independent del nombre de viatgers a partir d'una velocitat de circulació de  $100 \, \text{km/h}$ . Un cotxe alimentat amb una benzina que produeix 2,45 kg de  $CO_2$  per litre consumeix, de mitjana, 7,1 L per cada  $100 \, \text{km/h}$ , de recorregut. En un viatge de  $925 \, \text{km}$ , recorreguts a una velocitat mitjana de  $100 \, \text{km/h}$ , quina quantitat de  $CO_2$  emet el vehicle a l'atmosfera?

- a) 1609 kg
- **b**) 160,9 kg
- c) 188,1 kg
- **d**) 1881 kg

### Qüestió 5

La fiabilitat d'un artefacte, entesa com la probabilitat que funcioni sense avaries durant un cert temps, és del 92 % per a 2 400 h. D'un lot inicial de 1 400 unitats, quants artefactes és probable que continuïn funcionant al cap de 2 400 h?

- *a*) 1288
- **b**) 1260
- **c**) 192
- **d**) 112

### Exercici 2

[2,5 punts]

En una explotació vinícola es controla regularment el grau alcohòlic i l'acidesa de les vinyes. La mesura de l'acidesa indica el moment idoni per a iniciar la verema i el grau alcohòlic indica si el raïm és apte per a l'elaboració de vi. Per a elaborar un vi negre de qualitat cal que tingui un grau alcohòlic entre el 12 % i el 15 % vol. Utilitzant les variables d'estat següents:

acidesa: 
$$ac = \begin{cases} 1: \text{ ra\"{i}m veremat} \\ 0: \text{ ra\"{i}m no veremat} \end{cases}$$
; grau alcohòlic:  $g_{12} = \begin{cases} 1: \text{ superior al } 12 \% \text{ vol.} \\ 0: \text{ inferior al } 12 \% \text{ vol.} \end{cases}$ 

grau alcohòlic: 
$$g_{15} = \begin{cases} 1: \text{ superior al } 15 \% \text{ vol.} \\ 0: \text{ inferior al } 15 \% \text{ vol.} \end{cases}$$
; raïm:  $r = \begin{cases} 1: \text{ raïm per a vi de qualitat} \\ 0: \text{ altres usos} \end{cases}$ 

- a) Escriviu la taula de veritat del sistema i indiqueu els casos que no són possibles.
  - [1 punt]
- **b**) Determineu la funció lògica entre aquestes variables i, si escau, simplifiqueu-la.

  [1 punt]
- c) Dibuixeu l'esquema de portes lògiques equivalent. [0,5 punts]

### **S**EGONA PART

### OPCIÓ A

### Exercici 3

[2,5 punts]

Un ascensor hidràulic d'acció directa funciona mitjançant un cilindre hidràulic connectat directament a la cabina de l'ascensor. El cilindre té un diàmetre interior  $d_{\text{int}} = 94 \,\text{mm}$  i el diàmetre de la tija és  $d_{\text{tija}} = 60 \,\text{mm}$ . La massa de la cabina, la tija i la càrrega és  $m = 980 \,\text{kg}$ . Si el cilindre hidràulic manté en repòs la cabina, determineu:

a) La pressió relativa,  $p_{int}$ , a l'interior del cilindre.

[1 punt]

**b**) La tensió normal a compressió,  $\sigma_{tiia}$ , de la tija.

[0,5 punts]

Si una bomba subministra un cabal d'oli q = 2.3 L/s al cilindre, a una pressió p = 1.7 MPa, i l'ascensor puja a una velocitat constant v = 0.33 m/s, determineu:

c) La potència, P<sub>h</sub>, proporcionada per la bomba.

[0,5 punts]

**d**) El rendiment,  $\eta$ , del cilindre.

[0,5 punts]

# Exercici 4

[2,5 punts]



$$a = 3,2 \text{ m}$$
  $h = 2,2 \text{ m}$   
 $\sigma = 12 \text{ kg/m}^2$   
 $U = 230 \text{ V}$   $I = 1,7 \text{ A}$   
 $n = 12 \text{ min}^{-1}$   $P_s = 100 \text{ W}$ 

Una persiana d'amplària  $a=3,2\,\mathrm{m}$  i alçària  $h=2,2\,\mathrm{m}$  és feta d'un material de densitat superficial  $\sigma=12\,\mathrm{kg/m^2}$ . La persiana s'acciona mitjançant un motor reductor elèctric que s'alimenta a  $U=230\,\mathrm{V}$  i pel qual circula un corrent  $I=1,7\,\mathrm{A}$ . En règim de funcionament nominal, el motor reductor proporciona una potència  $P_s=100\,\mathrm{W}$  a l'eix de sortida, que gira a  $n=12\,\mathrm{min^{-1}}$ . Determineu:

*a*) La massa, *m*, de la persiana.

[0,5 punts]

**b**) El parell,  $\Gamma_s$ , a l'eix de sortida.

[0,5 punts]

c) El rendiment electromecànic,  $\eta$ , del motor reductor.

[0,5 punts]

d) L'energia elèctrica consumida,  $E_{\text{elèctr}}$ , i l'energia dissipada en el motor,  $E_{\text{diss}}$ , si funciona durant un temps  $t=20\,\text{s}$  en règim nominal. [1 punt]

### OPCIÓ B

### Exercici 3

[2,5 punts]



Un aerogenerador consta, bàsicament, d'un rotor amb pales, d'un multiplicador de la velocitat de gir i d'un generador. Considerem que el rendiment del multiplicador,  $\eta_{\text{mult}}$ , i el del generador,  $\eta_{\text{gen}}$ , són constants.

L'aerogenerador de la figura té una relació de transmissió  $\tau = \omega_2/\omega_1 = 73$  i un sistema de control que permet que la potència elèctrica generada es mantingui constant en  $P_{\text{elèctr}} = 750 \,\text{kW}$  per a una velocitat de gir del rotor  $15 \,\text{min}^{-1} \le n \le 35 \,\text{min}^{-1}$ . Determineu:

- a) La potència subministrada,  $P_1$ , pel rotor al multiplicador. [0,5 punts]
- **b**) El parell màxim a l'eix d'entrada,  $\Gamma_1$ , i a l'eix de sortida,  $\Gamma_2$ , del multiplicador.
- c) La potència dissipada en el multiplicador,  $P_{\mathrm{mult}}$ , i en el generador,  $P_{\mathrm{gen}}$ . [1 punt]

### Exercici 4

[2,5 punts]

Una cafetera elèctrica escalfa l'aigua en dues fases. En la primera fase, escalfa l'aigua fins a  $T_1$ =105 °C mitjançant dues resistències que proporcionen una potència  $P_1$ =850 W. En la segona fase, es desconnecta una de les resistències per a obtenir una potència  $P_2$ =500 W i escalfa l'aigua fins a  $T_2$ =125 °C. Un cop el cafè ja està fet, una tercera resistència proporciona una potència mitjana  $P_3$ =250 W per a mantenir-lo calent. La cafetera escalfa mig litre d'aigua, que inicialment està a temperatura  $T_0$ =25 °C.

Tenint en compte que la calor específica de l'aigua és  $c_e$  = 4,18 kJ/(kg °C) i el cost de l'energia elèctrica és  $c_{elèctr}$  = 0,125 €/(kW h), determineu:

- a) Les energies,  $E_1$  i  $E_2$ , necessàries per a escalfar l'aigua en les dues fases. [1 punt]
- **b**) Els temps de durada,  $t_1$  i  $t_2$ , de cadascuna de les dues fases. [0,5 punts]
- c) L'energia elèctrica consumida,  $E_{\text{elèctr}}$ , en kWh, i el cost econòmic,  $c_{\text{econ}}$ , de tot el procés si, un cop fet, el cafè es manté calent durant  $t_3 = 4$ h. [1 punt]



# Proves d'Accés a la Universitat. Curs 2011-2012

# Tecnologia industrial Sèrie 1

La prova consta de dues parts que tenen dos exercicis cadascuna. La primera part és comuna i la segona té dues opcions (A i B), de les quals cal triar-ne UNA.

#### PRIMERA PART

### Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada: 0,5 punts; qüestió mal contestada: -0,16 punts; qüestió no contestada: 0 punts.]

### Qüestió 1

En un plànol s'especifica que la longitud d'una peça ha de ser  $(146\pm0.8)\,\mathrm{mm}$ . S'acceptaran totes les peces de longitud

- *a*) superior a 146,8 mm.
- b) compresa entre 146 mm i 146,8 mm.
- c) compresa entre 145,6 mm i 146,4 mm.
- *d*) compresa entre 145,2 mm i 146,8 mm.

### Qüestió 2

Un fil de coure de 5 mm<sup>2</sup> de secció té una resistència de 0,05  $\Omega$ . La resistivitat del coure és  $\rho$ =0,017 1  $\mu\Omega$  · m. Quina és la longitud del fil?

- a) 0,324 m
- **b**) 14,62 m
- c) 45,93 m
- **d**) 2,92 m

### Qüestió 3

L'acer inoxidable AISI 316 que s'utilitza en pròtesis mèdiques té una tensió de ruptura  $\sigma_r$  = 620 MPa. Quina és la força axial màxima que es pot aplicar a una barra massissa de 12 mm de diàmetre sense que es trenqui?

- *a*) 70,12 kN
- **b**) 140,8 kN
- c) 80,5 kN
- d) 56,10kN

# Qüestió 4

Un cilindre hidràulic, d'una sola tija, ha d'exercir una força de 20 kN en la cursa d'avanç. Si el diàmetre del cilindre és 50 mm i el de la tija, 32 mm, quina pressió ha de proporcionar el grup hidràulic?

- a) 3,79 MPa
- **b**) 10,19 MPa
- c) 17,25 MPa
- **d**) 24,87 MPa

### Qüestió 5

Un sistema de pintatge automatitzat permet obtenir un màxim de 130 unitats per hora. Sobre cada unitat es realitzen dues operacions simultànies de  $t_1$  = 23 s i  $t_2$  = 15 s de durada. Quin és el temps mitjà que transcorre entre que s'acaba una unitat i que la unitat següent està preparada per a ser pintada?

- *a*) 4,69 s
- **b**) 12,70 s
- *c*) 8,70 s
- **d**) 9,20 s

### Exercici 2

[2,5 punts]

Una premsa hidràulica es controla amb dos polsadors i un pedal. El motor de la premsa es posa en marxa si s'acciona el pedal i es prem, com a mínim, un dels polsadors. Utilitzant les variables d'estat següents:

polsadors: 
$$p_1, p_2 = \begin{cases} 1: \text{ premut} \\ 0: \text{ no premut} \end{cases}$$
; pedal:  $p_e = \begin{cases} 1: \text{ accionat} \\ 0: \text{ no accionat} \end{cases}$ 

motor: 
$$m = \begin{cases} 1 : \text{ en marxa} \\ 0 : \text{ aturat} \end{cases}$$

a) Escriviu la taula de veritat del sistema.

- [1 punt]
- b) Determineu la funció lògica entre aquestes variables i, si escau, simplifiqueu-la.

[1 punt]

c) Dibuixeu l'esquema de portes lògiques equivalent.

[0,5 punts]

### **OPCIÓ A**

### Exercici 3

[2,5 punts]

Un vehicle de massa  $m=1725\,\mathrm{kg}$  accelera, en una superfície horitzontal, de  $v_1=0\,\mathrm{km/h}$  a  $v_2=100\,\mathrm{km/h}$ . El combustible que fa servir és gasoil, de poder calorífic  $p_c=43,25\,\mathrm{MJ/kg}$ . El rendiment mitjà del motor, entès com la relació entre l'energia mecànica i l'energia que proporciona el combustible, és  $\eta=20,8\,\%$ . Durant l'etapa d'acceleració, determineu:

 $m{a}$ ) L'energia mecànica,  $E_{
m m}$ , que adquireix el vehicle.

[0,5 punts]

**b**) La quantitat de combustible,  $m_{\text{comb}}$ , consumida.

[1 punt]

Se suposa que el motor proporciona un parell  $\Gamma_{\text{mot}} = 320 \,\text{N} \cdot \text{m}$  constant entre  $n_1 = 2\,000 \,\text{min}^{-1}$  i  $n_2 = 3\,000 \,\text{min}^{-1}$ :

c) Representeu, de manera aproximada i indicant les escales, la corba de la potència,  $P_{\rm m}$ , que proporciona el motor per a 2000 min<sup>-1</sup>  $\leq$   $n \leq$  3 000 min<sup>-1</sup>. [1 punt]

## Exercici 4

[2,5 punts]



 $b = 625 \,\text{mm}$   $h = 400 \,\text{mm}$   $r_1 = 100 \,\text{mm}$   $r_2 = 5 \,\text{mm}$   $e = 12 \,\text{mm}$   $\rho = 7900 \,\text{kg/m}^3$   $v = 5 \,\text{m/min}$  $n = 1060 \,\text{min}^{-1}$ 

La peça de la figura s'ha obtingut a partir d'una planxa d'acer inoxidable de gruix  $e=12 \,\mathrm{mm}$  i densitat  $\rho=7\,900 \,\mathrm{kg/m^3}$ . El tall s'ha fet, amb una màquina de tall per doll d'aigua, a una velocitat  $v=5\,\mathrm{m/min}$  i els quatre forats de radi  $r_2$ , amb un trepant que gira a  $n=1\,060\,\mathrm{min^{-1}}$ . Determineu:

a) La longitud del contorn exterior,  $L_{\text{ext}}$ .

[0,5 punts]

**b**) El temps, *t*, de tall del perfil.

[0,5 punts]

c) La velocitat de tall de la broca,  $v_{tall}$  (velocitat lineal de la perifèria de la broca).

[0,5 punts]

d) La massa, m, de la peça.

[1 punt]

### OPCIÓ B

### Exercici 3

[2,5 punts]



En la figura es mostra el circuit elèctric d'una cafetera. Quan es connecta la cafetera, els dos interruptors termostàtics estan tancats. L'interruptor 1 s'obre quan la temperatura de l'aigua arriba als 105 °C i l'interruptor 2, quan la temperatura arriba als 125 °C. La resistència  $R_3$ , que és variable, serveix per a mantenir el cafè calent. Les altres dues resistències tenen valors  $R_1 = 145 \Omega$  i  $R_2 = 100 \Omega$ , i el circuit s'alimenta a una tensió U = 230 V. Determineu:

- a) La resistència inicial del circuit,  $R_{in}$ , quan es connecta la cafetera. [0,5 punts]
- **b**) El corrent, *I*, consumit quan es connecta la cafetera. [0,5 punts]
- c) El valor de les dues potències,  $P_1$  i  $P_2$ , que consumeix la cafetera quan els interruptors 1 i 2 estan tancats i quan només ho està l'interruptor 2. [1 punt]
- d) El valor que ha de tenir la resistència  $R_3$  perquè la potència consumida quan es manté el cafè calent sigui  $P_3 = 300 \,\text{W}$ . [0,5 punts]

### Exercici 4

[2,5 punts]

Un ariet hidràulic és una bomba d'aigua que aprofita l'energia que proporciona un dipòsit subministrador, situat a una altura  $h_1 = 3$  m, per a elevar una part de l'aigua a un dipòsit receptor, situat a una altura  $h_2 = 25$  m. La bomba funciona per mitjà del tancament sobtat i periòdic d'una vàlvula de descàrrega. El dipòsit subministrador proporciona un cabal  $q_1 = 5$  L/s i el dipòsit receptor rep un cabal  $q_2 = 0.35$  L/s. Determineu:

- a) La potència hidràulica,  $P_{h_1}$ , que proporciona el dipòsit subministrador. [1 punt]
- **b**) El rendiment,  $\eta$ , de la bomba.

[1 punt]

c) El volum d'aigua, V, que ha deixat anar la vàlvula de descàrrega en  $t=4\,\mathrm{h}$  de funcionament. [0,5 punts]

