Einführung in die Plasmaphysik

Gasentladungen

Wolfgang Suttrop, Max-Planck-Institut für Plasmaphysik, Garching

Bild: A. C. M. de Quiroz, COPPE/UFRJ

http://www.coe.ufrj.br/~acmq/electrostatic.html

Gasentladungen

Vakuumdiode:

Ladungsträger: Elektronen.

Erzeugung:

Thermische Emission aus der Kathode

Gasentladung:

Ladungsträger: Elektronen und Ionen.

Erzeugung:

- 1. Thermische Emission aus der Kathode (Elektronen)
- 2. Elektronenstoßionisation im Neutralgas
- 3. Sekundäremission von Elektronen aus der Kathode (durch auftreffende Ionen)
- 4. Ionisierende Strahlung

Klassifizierung der Gasentladungen

Mit steigender Stromdichte:

- 1. **Unselbständige** ("Dunkel"-) **Entladung**: Elektronenstrom aus (heißer) Kathode bzw. Ionisation durch Strahlung, verstärkt durch Stoßionisation
- 2. **Glimmentladung**: Elektrischer **Durchbruch** = "unbegrenzte" Ladungsvervielfachung
- 3. Bogen: Kathodenheizung durch Ionenstrom unterhält thermionische Elektronen-Emission

Unselbständige Entladungen (Dunkelentladung)

Ladungsträger werden durch ionisierende Strahlung erzeugt:

- Kosmische Strahlung
- Radioaktives Gestein
- Technische Strahlungsquellen

Max. Strom (Sättigungsstrom):

Alle erzeugten Ladungsträger werden durch die anliegende Spannung abgesaugt (=Rekombination unbedeutend)

$$I_S = \underbrace{A \cdot L}_{\text{Volumen}} \cdot e \cdot \underbrace{S}_{\text{Ionisations rate}}$$

Ionisationsrate:

$$S = \frac{\mathrm{d}n_e}{\mathrm{d}t} \approx 10^{14} \dots 10^{17} \mathrm{m}^{-3} \mathrm{s}^{-1}$$

Unterhalb I_s wird die Ladungsträgerdichte durch konkurrierende Rekombination reduziert.

John Sealy Edward Townsend 1868 - 1957

Townsend-Regime

Ladungsträger-Vervielfachung durch Elektronenstoß-Ionisation

Zahl der Ionisationsvorgänge pro Volumen und Zeiteinheit:

$$S_e = n_e n_0 < \sigma v >_{\text{ne}}$$

 $<\sigma v>_{\rm ne}$: Ratenkoeffizient

Elektronenstoß-Ionisation

Beispiel: Neutrales Helium (He I)

Wirkungsquerschnitt für die

Elektronenstoßionisation Neutral Helium Total Ionization Cross-Section

Quelle: NIST, http://physics.nist.gov

Erster Townsend-Koeffizient α

Zahl der ionisierenden Stöße pro Weglänge und Elektron:

$$\alpha \propto \frac{1}{\lambda_{\text{ne}}} = \frac{\nu_{\text{ne}}}{\overline{\nu_{\text{e}}}} = \frac{n_0 < \sigma \nu >_{\text{ne}}}{\overline{\nu_{\text{e}}}}$$

 λ_{ne} : Mittlere freie Weglänge für Elektronen zwischen ionisierenden Stößen mit Neutralen

ν_{ne}: Stoßfrequenz

 $\overline{v_e}$: Mittlere thermische Elektronengeschwindigkeit

Townsend-Theorie

Betrachte 1-dim. Gasentladungsröhre.

Sei $\Gamma_e(x)$ der Elektronenfluss am Ort x

Erhöhung des Elektronenflusses im Orts-Intervall $x \dots x + dx$:

$$d\Gamma_e = \alpha \Gamma_e dx$$

Integrieren \rightarrow Gesamtfluss am Ort x:

$$\int_{\Gamma_{e0}}^{\Gamma_{e}} \frac{\mathrm{d}\Gamma_{e}}{\Gamma_{e}} = \int_{0}^{x} \alpha \mathrm{d}x'$$

Falls α räumlich konstant,

$$\ln \Gamma_e - \ln \Gamma_{e0} = \alpha x$$

ergibt sich ein räumlich exponentieller Anstieg:

$$\Gamma_e(x) = \Gamma_{e,0} \exp(\alpha x)$$

Messung Räumliche Verteilung der Anregung (∞ Ionisation)

Quelle: U Belgrad, Institute of Physics, Centre for Non-equibrium processes

http://mail.ipb.ac.rs/~cep/ipb-cnp/Research/swarmexperiments.htm

N.B.: Bei hohem el. Feld/Neutralasdichte (E/N) erfolgt auch Ionenstoß-Ionisation

Korrektur für konkurrierende nicht-ionisierende Stöße

Ionisationslänge $x_i >$ mittl. freie Weglänge λ (zusätzliche, nicht-ionisierende Streuprozesse)

Zahl der (Primär-) Elektronen, die die Ionisationslänge erreichen:

$$n(x_i) = n_{e,0} \exp\left(-\frac{x_i}{\lambda_e}\right)$$

Zahl Ionisations-Stöße pro Weg

- = Zahl I.-S. pro freie Weglänge
- × Zahl freier Weglängen pro Weg:

$$\alpha = \exp\left(-\frac{x_i}{\lambda_e}\right) \times \frac{1}{\lambda_e}$$

In elektrischer Feldstärke E durchläuft Elektron auf Distanz x_i das Potential:

$$V^* = x_i E$$

"effektives Ionisationspotential"

 V^* ist grösser als die Ionisierungsenergie des Atoms bzw. Moleküls, da andere Streuprozesse (elastisch oder inelastisch) konkurrieren.

Skalierung des 1. Townsend-Koeffizienten

Neutralgasdruck $p \propto n_0$:

$$\frac{1}{\lambda} = \frac{n_0 < \sigma v >_{\text{ne}}}{\overline{v_e}} \equiv A(T_e, \dots) \times p$$

Konstante A hängt von der

Elektronentemperatur (wg. \overline{v}) und von der Gasart ab.

Damit

$$\alpha = A p \exp\left(-A p \frac{V^*}{E}\right)$$

Def. $C \equiv A V^*$ (ebenfalls gasabhängige Konstante)

→ "Universelle" Form:

$$\frac{\alpha}{p} = A \exp\left(-\frac{C}{E/p}\right) = f\left(\frac{E}{p}\right)$$

Stoletov-Punkt

Bei welchem Druck ist die

Elektronenvervielfachung (α) maximal?

$$\frac{\mathrm{d}\alpha}{\mathrm{d}p} = A \left[1 - \frac{C \, p}{E} \right] \exp\left(-\frac{C}{E/p} \right) = 0$$

$$\Rightarrow p_{\text{opt}} = \frac{E}{C}, \quad \alpha_{\text{opt}} = \frac{EA}{C} \exp(-1)$$

"Stoletov-Punkt"

(Aleksandr Stoletov, Moskau, 1839-1896)

Quelle: Wikipedia

Stoletov-Punkt einiger Gase

Gas	A	V^*	V_i	$(E/p)_{\mathrm{opt}}$	$(\alpha/p)_{\mathrm{opt}}$
	1/Pa	[eV]	[eV]	$[V/(m \cdot Pa)]$	1/Pa
H_2	8.0	33	15.4	264	2.93
Luft	9.2	30		274	3.37
N_2	8.0	32	15.5	256	2.93
Не	1.37	28	24.5	38	0.50
Ne	3.0	25	21.5	75	1.10
Ar	9.0	16.7	15.7	150	3.32
Kr	10.9	15.2	14.0	165	3.99
Xe	16.7	14	12.1	233	6.14

Zitiert nach: J Reece Roth, Industrial Plasma Engineering, IoP 1995

"Durchbruch" der Gasentladung

Sei $\Gamma = j/q$ und:

 $\Gamma_{ek} = \Gamma_{e0} + \Gamma_{se}$: Elektronenfluß an der Kathode

 Γ_{e0} : Photoemission, therm. Emission etc.

(Kathode)

 Γ_{se} : Sekundärelektronenemission an der Kathode durch auftreffende Ionen

 Γ_{ea} : Elektronenfluß an der Anode

 $\Gamma_{ia/k}$: Ionenfluß an der Anode/Kathode

Strombilanz: (Anode-Kathode)

$$\Gamma_{ea} - \Gamma_{ek} = \Gamma_{ik} - \underbrace{\Gamma_{ia}}_{=0} = \Gamma_{ik} = \frac{1}{\gamma} \Gamma_{se}$$

 γ : Sekundäremissionskoeffizient ($\gamma = \Gamma_{se}/\Gamma_{ik}$) Mit $\Gamma_{ea} = \Gamma_{ek} e^{\alpha d}$:

$$\gamma \Gamma_{ek}(e^{\alpha d}-1) = \Gamma_{se} = \Gamma_{ek}-\Gamma_{e0}$$

bzw.

$$\Gamma_{ek} = \frac{\Gamma_{e0}}{1 - \gamma(e^{\alpha d} - 1)}$$

Damit an der Anode:

$$\Gamma_{ea} = \frac{\Gamma_{e0}(e^{\alpha d})}{1 - \gamma(e^{\alpha d} - 1)}$$

Nenner $\rightarrow 0 \Rightarrow \Gamma_{ea} \rightarrow \infty$!

⇒ "Townsend-Kriterium" für Durchbruch

Paschen-Kurve

Elektrischer Durchbruch:

"Unendliche" Ladungsvervielfachung.

Townsend-Kriterium: $\gamma(e^{\alpha d} - 1) = 1$

$$\Rightarrow \alpha d = \ln \left[\frac{1}{\gamma} + 1 \right]$$

Vorherige Form für α einsetzen; $U_b \equiv E_b d$:

$$U_b = \frac{Cpd}{\ln\left[Apd/\ln(1+\frac{1}{\gamma})\right]}$$

Für ein bestimmtes Gas hängt die Durchbruchspannung U_b nur vom Produkt $p \cdot d$ ab!

Friedrich Paschen (1865-1947)
Ueber die zum Funkenübergang in Luft,
Wasserstoff und Kohlensäure bei verschiedenen
Drucken erforderliche Potentialdifferenz
Dissertation U Strassburg,
Annalen der Physik **273** (1889) 69

Quelle: Wikipedia

Dimensionslose Form der Paschen-Kurve

$$U_b = \frac{Cpd}{\ln\left[Apd/\ln(1+\frac{1}{\gamma})\right]}$$

Punkt kleinster Durchbruchspannung:

$$(pd)_{\min} = \frac{1}{A}\ln(1 + \frac{1}{\gamma})$$

$$U_{b,\min} = e\frac{C}{A}\ln(1+\frac{1}{\gamma})$$

Def.:

$$X = \frac{pd}{(pd)_{\min}}; \quad Y = \frac{U_b}{U_{b,\min}}$$

Universelle Form:

$$Y = \frac{X}{1 + \ln X}$$

Durchbruch-Parameter einiger Gase

Gas	Kathoden-	$U_{ m b,min}$	$(p \cdot d)_{\min}$	Ref.
	material	[V]	[Pa·m]	
H_2	Pt	275	1.7	1
Luft		360	0.76	2
N_2	Fe	275	1.0	1
Не	Fe	150	3.3	1
Ar	Fe	265	2.0	1

Zitiert nach: J Reece Roth, Industrial Plasma Engineering, IoP 1995;

Referenzen:

— sowie umfangreiche weitere Literatur!

¹ J D Cobine, Gaseous Conductors, Dover Publications (1958)

² S C Brown, Introduction to Electrical Discharges in Gases, John Wiley (1966)

Korona-Entladungen

Bei hohem Gasdruck findet Durchbruch nur in räumlich begrenzten Zonen statt.

Bsp. trockene Luft, 1 atm:

$$U_b = 3\text{MV/m} \times d + 1.35 \text{ kV}$$

Der Durchbruch beginnt in Regionen höchsten elektrischen Feldes, speziell nahe Oberflächen mit kleinem Krümmungsradius

Feldüberhöhung an Leiterspitzen

Poisson-Gleichung:

$$abla \cdot ec{E} = -rac{
ho}{arepsilon_0}$$

Betrachte kugelsymmetrischen Aufbau.

Vor Durchbruch ($\rho = 0$),

zwischen Elektroden (a < r < b):

$$\nabla \cdot \vec{E} = \frac{1}{r^2} \frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 E_r(r) \right) = 0$$

$$\Rightarrow$$
 $(r^2E_r(r)) = \text{const.}$

Kugelsymmetrie: Feldüberhöhung $\propto r^2$!

$$\underbrace{a^2 E_r(a)}_{\text{Anode}} = \underbrace{b^2 E_r(b)}_{\text{Kathode}}$$

Axisymmetrie (langer Draht): $E \propto 1/r$

Xerographie

1. Reinigen, Vorlage justieren 4. Dunkle Stellen geladen

7. Papier aufladen

2. Elektrostatisch aufladen

5. Toner aufbringen

8. Abdruck

3. Belichten

6. Dunkle Stellen sind mit Toner bedeckt

9. Fixieren

Elektrostatischer "Lifter"

Koronaentladung in Luft Abwärts strömende Ionen (O^+) reiben mit neutralen Molekülen

⇒ Auftrieb durch Luftströmung

Zusammenfassung: Unselbständige Entladungen

Ladungsträger werden erzeugt durch:

(a) Ionisierende Strahlung (b) Thermische Emission aus der Kathode (c) Stoßionisation

- **A-B** Ein Teil der Ladungen rekombiniert im Volumen
- **B-C** Sättigungsbereich: Alle Ladungsträger werden abgesaugt
- **C-D** Townsend-Regime: *E* hoch genug zur Ladungsvervielfachung durch Stöße
- **D-E** Einsetzendes Korona-Regime: Elektrischer Durchbruch an Spitzen (Feldüberhöhung)

Glimmentladung (Übersicht)

 $(p \cdot L) > (p \cdot d)_{\min} \text{ und } U > U_{b,\min}$

→ Glimmentladung

+ Ladungsträgervervielfachung auf begrenztem Raum nahe Kathode (Breite d_c) Spannungsabfall $U_b(p \cdot d_c)$: "Kathodenfall"

 $\mathsf{d}_{\,\mathsf{c}}$

Positive Säule:

Ladungsträgerdichte (e^-, i^+) hoch, quasi-neutrales Plasma

- \rightarrow Rekombination $e^- + i^+ \rightarrow n$
- → Rekombinationsstrahlung (Licht)
- → Plasmadichte räumlich konstant

$$(p \cdot d_c) \approx (p \cdot d)_{\min}, \quad U_c \approx U_{b,\min} \quad \text{(stabil!)}$$

Glimmentladung (Details)

Aston'scher Dunkelraum:

Wenige Elektronen, zu langsam zur Anregung

Glimmhaut: Hohe Ionendichte, Elektronenenergie reicht zur *Anregung* (nicht Ionisation)

Hittorf'scher (Crook'scher) Dunkelraum: Elektronen werden weiter beschleunigt bis zur Ionisationsenergie

Negative Säule (Glimmlicht): Ionisationsfront, Licht durch Rekombinationsstrahlung

Faraday'scher Dunkelraum:

Geringe Elektronenenergie als Folge inelastischer Stöße an der Ionisationsfront, freie Weglänge kurz, Feld klein und nicht zur Anregung ausreichend

Positive Säule:

Quasineutrales Plasma ($Zn_i = n_e$), kleines elektrisches Feld, Spannungsabfall durch elektrischen Widerstand

Anodenfall: Negative Raumladung

(elektrostische Randschicht, s. gesonderte Vorlesung)

Beispiel einer Glimmentladung

Kathode Anode

Quelle: http://w5jgv.com/rife

Messung des elektrischen Feldes im Kathodenfall

Francis William Aston (1877-1945)

F W Aston, Proc. Roy. Soc. **A84** (1911) 526

Abb.: Wikipedia

Nobelpreis Chemie 1922

"for his discovery, by means of his mass spectrograph, of isotopes, in a large number of non-radioactive elements, and for his enunciation of the whole-number rule"

Ladungsdichte im Kathodenfall

- Länge der Kathodenregion = d_c so, daß $(p \cdot d_c) \approx (p \cdot d)_{\min}$
- \Rightarrow Spannung am Kathodenfall: $U_c \approx U_{b, \min}$
- Elektrisches Feld \approx räumlich linear (Messung Aston 1911)
- geringe Ionisationsrate, Ionendichte \approx konstant, Elektronendichte klein

$$E = C(d_c - x)$$

$$U(x) = \int_0^x E dx = C\left(xd_c - \frac{x^2}{2}\right)$$

Randbedingung: $U(d_c) = U_c \implies C = 2U_c/d_c^2$

$$U(x) = \frac{U_c x}{d_c^2} (2d_c - x), \quad E(x) = \frac{2U_c}{d_c^2} (d_c - x), \quad \rho(x) = \frac{2\varepsilon_0 U_c}{d_c^2}$$

Ähnliche Entladungen (bzgl. Kathodenfall)

Geometrisch ähnliche Entladungen:

Sei: $L_1 = a \cdot L_2$, $d_{c,1} = a \cdot d_{c,2}$

Durchbruch: $(p \cdot d)_{\min} = \text{const.}$

$$\Rightarrow p_1 \cdot d_{c,1} = p_2 \cdot d_{c,2} \quad \Rightarrow p_1 = \frac{1}{a}p_2$$

Townsend-Kriterium: $\gamma(e^{\alpha d} - 1) = 1$

$$\Rightarrow \alpha_1 \cdot d_{c,1} = \alpha_2 \cdot d_{c,2} \quad \Rightarrow \alpha_1 = \frac{1}{a}\alpha_2$$

Wegen

$$\frac{\alpha}{p} = A \exp\left(-\frac{C}{E/p}\right)$$

und $\alpha_1/p_1 = \alpha_2/p_2$ ist

$$E_1/p_1 = E_2/p_2 \qquad \Rightarrow E_1 = \frac{1}{a}E_2$$

$$Da E = U/d \quad \Rightarrow \quad \boxed{U_1 = U_2}$$

Stromdichte $j \propto \rho$ und $\rho \propto U_c/d_c^2$

Querschnittsfläche $A \propto a^2$

$$\Rightarrow I = A \cdot j = \text{const.}$$

$$\Rightarrow I_1 = I_2$$

Zusammenfassung: Glimmentladungen

Ladungsträger werden vornehmlich erzeugt durch:

(a) Stoßionisation (b) Sekundäremission an der Kathode

- E Elektrischer Durchbruch: Ladungsträger "beliebig" vervielfacht
- F-G "Normaler Glimmbereich": Benetzte Fläche steigt mit Strom
- G-H "Abnormer Glimmbereich": el. Widerstand bestimmt Spannungsabfall

Bogenentladungen

- Einschnüren der Entladung an den Elektroden (hoher Gasdruck)
- Kathode: Thermionische Emission, evtl. Feldemission (an scharfen Kanten)
- Hohe Plasmadichte bereits an den Elektroden, Ladungsträgervervielfachung in der Randschicht
- Kathodenfall verschwindet, niedriger Spannungsabfall in der dichten Säule
- Neutralgas-"JET" von der Kathode zur Anode
 - → thermische Belastung auch der Anode
- Wärmestrahlung aus thermischem Bogen (Energieverlust)

Plasma Torch

Anwendungen: Trennen von Werkstücken, Schweissen, Beschichten von Oberflächen (mit/ohne Schutzgas)

Strom-Spannungs-Kennlinie von Bogenentladungen

Ladungsträger werden erzeugt durch:

(a) Thermische Emission aus der Kathode (b) Stoßionisation

- H- Thermische Emission aus der Kathode aufgrund hohen Stroms
- I-J "Nicht-thermalisierter" Bogen: Kathoden-Temperatur steigt mit Strom
- J-K "Thermalisierter Bogen": Kathoden-Temperatur sättigt

Zusammenfassung

- In einer Gasentladung werden Ladungsträger vornehmlich durch Emission aus der Kathode (Elektronen), Stoßionisation im Volumen (Elektronen-Ionen-Paare) und Sekundäremission (Elektronen durch Auftreffen von Ionen auf der Kathode) erzeugt
- Wenn durch Elektronenstoßionisation die Entladung aufrecht erhalten werden kann, spricht man vom elektrischen "Durchbruch". Kriterien für den Durchbruch ergeben sich aus der Townsend-Beschreibung.
- Man unterscheidet:
 - "Unselbständige" Entladungen (Townsend-Regime): Strom durch Primärionisation und Ladungsvervielfachung begrenzt
 - "Korona"-Entladungen (bei hohem Gasdruck): Elektrischer Durchbruch bewirkt Ladungsvervieldfachung, aber Entladung bleibt auf Nähe der Elektroden begrenzt
 - Glimmentladungen: Elektrischer Durchbruch erzeugt "beliebig" viele Ladungsträger,
 Strom durch elektrische Leitfähigkeit in der "positiven Säule" begrenzt
 - Bögen: Hoher Strom wird durch thermische Emission aus Kathode aufrechterhalten (Kathode wird durch auftreffende Ionen geheizt).