Statistics for Machine Learning

"Statistics is the grammar of science." — Karl Pearson

What is Statistics?

Statistics is the discipline that *collects, organises, summarises, analyses, and draws conclusions* from data. In machine–learning (ML) it underpins model building, uncertainty quantification, and validation.

- **Population**: the full set we care about.
- **Sample**: a subset used to infer about the population.
- **Parameter** (Greek, e.g. μ , σ): a population measure (unknown).
- **Statistic** (Latin, e.g. \bar{x}, s): computed from a sample.

Types of Data

Category	Subtype	Description	Examples	ML Encoding
Qualitative	Nominal	Unordered labels	Browser {Chrome, Safari}	One–hot
	Ordinal	Ordered labels	Likert {Poor→Excellent}	Ordinal / Target
Quantitative	Discrete	Integer counts	Clicks per session	(Scaled) integer
	Continuous	Real-valued	Temperature °C	Normalisation

\square Why it matters

Choosing the wrong encoding can break distance-based models (e.g. k-NN treats encoded categories as numeric).

Common Encoding Tricks

- Label Encoding ordinal only.
- One-Hot / Dummy nominal default.
- Frequency Encoding map category → empirical probability.
- **Target Encoding** replace with mean target (beware leakage).

Two Main Branches of Statistics

Branch	Goal	Typical ML Question
Descriptive	Condense & visualise existing data	"What is the average click-through-rate?"
Inferential	Generalise and quantify uncertainty	"Will the new UI raise CTR across all users?"

Descriptive Statistics

1. Measures of Central Tendency (MCT)

Symbol	Name	Formula	Derivation Idea
\bar{x}	Mean	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	Minimise $\sum (x_i - c)^2$ w.r.t. c
$ ilde{x}$	Median	Middle value (or average of two middles)	Minimise $\sum x_i - c $
_	Mode	Most frequent value	Useful for categorical data

2. Measures of Dispersion (MD)

Symbol	Name	Formula	Interpretation
s^2	Sample Variance	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$ $s = \sqrt{s^{2}}$	Avg. squared deviation (Bessel correction)
s	Std. Dev.	$s = \sqrt{s^2}$	Back to original units
IQR	Inter-Quartile Range	$Q_3 - Q_1$	Robust spread (box □ plot)

ML tie-in

- Z-score scaling uses mean & std-dev.
- Robust scaling uses median & IQR.

3. Distribution Shape

Skewness
$$\gamma_1 = \frac{\mu_3}{\sigma^3}$$
, Kurtosis $\gamma_2 = \frac{\mu_4}{\sigma^4} - 3$.

4. Visual Tools

Histogram, box-plot, pair-plot, correlation heat-map.

Inferential Statistics

1. Estimation

Type	Output	Formula / Method	ML Context
Point		MLE: maximise $L(\theta) = \prod f(x_i \theta)$	Fit model weights by MLE
CI	$[\hat{\theta} \pm z_{\alpha/2} SE]$	$SE = \frac{s}{\sqrt{n}}$ (for mean)	Report $\pm 1.96SE$ around accuracy

2. Hypothesis Testing

- State H_0 vs H_1 .
- Compute test-statistic (t, z, χ^2, F) .
- p-value = Prob. of statistic ≥ observed if H_0 true.
- Reject if $p < \alpha$.

Common tests: t-test, z-test, χ^2 , ANOVA.

3. Resampling & CLT

Bootstrap for CIs; k-fold cross-validation for generalisation error.

4. Bias-Variance Trade-off

$$\mathbb{E}\big[(y-\hat{f}(x))^2\big] = \underbrace{\left(\mathrm{Bias}[\hat{f}(x)]\right)^2}_{\mathrm{under-fit}} + \underbrace{\mathrm{Var}[\hat{f}(x)]}_{\mathrm{over-fit}} + \sigma_{\mathrm{irreducible}}^2$$

2

High bias \Rightarrow under-fit; High variance \Rightarrow over-fit.

Real-World ML Use-Cases

- **EDA**: detect skewness \Rightarrow log-transform.
- A/B Testing: hypothesis test on conversion rates.
- **Early stopping**: monitor CV error to balance variance.
- Ensembles: bagging (Random Forest) lowers variance.

Sampling Techniques

Why Sampling?

- Cost & Time: measuring an entire population (N units) is often impractical.
- Feasibility: some units may be inaccessible or destroyed by measurement (e.g. crash-testing).

- **Precision**: a well-designed sample can achieve *lower variance* than a poorly executed census.

Key Terminology

Population (N) Entire set of interest (all transactions, voters, etc.) **Sample** (n) Subset drawn from the population, $n \ll N$.

Sampling Frame List or mechanism that identifies every population unit.

Parameter Fixed but unknown value (e.g. μ , σ).

Estimator Rule that maps the sample to an estimate $\hat{\theta}$.

Sampling Error $\theta - \hat{\theta}$ (random, has variance).

Notation & Basic Formulas

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2, \quad SE(\bar{X}) = \sqrt{\frac{\sigma^2}{n}} \times \sqrt{\frac{N-n}{N-1}}$$
 (fpc)

where the last factor is the finite-population correction.

Probability Sampling (each unit has known p > 0)

1. Simple Random Sampling (SRS) Choose n units with equal probability $1/\binom{N}{n}$.

$$SE_{\rm SRS}(\bar{X}) = \sqrt{\frac{S^2}{n}}$$

- 2. Systematic Sampling Pick every k-th unit after a random start; k = N/n.
- 3. Stratified Sampling Partition into H strata, sample n_h per stratum.

$$\bar{X}_{\text{str}} = \sum_{h=1}^{H} W_h \, \bar{X}_h, \quad SE^2 = \sum_{h=1}^{H} W_h^2 \, \frac{S_h^2}{n_h}$$

where $W_h = N_h/N$.

- 4. Cluster Sampling Sample g entire clusters (e.g. schools) out of G. Use cluster means to estimate population mean; design effect DEFF = $1 + \rho(m-1)$ where ρ is intra-cluster correlation.
- 5. **Multi-stage Sampling** Combine stages (e.g. clusters \rightarrow households \rightarrow individuals).

Non-Probability Sampling (selection p unknown)

Convenience

Grab units that are easy to reach (e.g. street survey).

Judgment / Purposive

Expert chooses 'typical' cases.

Ouota

Ensure sample proportions match some traits (age, gender).

Snowball

Existing subjects recruit future ones (common in hidden populations).

These methods can introduce selection bias; inferential statistics (e.g. confidence intervals) are generally invalid without strong assumptions.

Design Effect & Effective Sample Size

$$\text{DEFF} = \frac{\text{Var}_{\text{actual}}(\hat{\theta})}{\text{Var}_{\text{srs}}(\hat{\theta})}, \qquad n_{\text{eff}} = \frac{n}{\text{DEFF}}$$

A complex design with DEFF = 2 cuts precision in half relative to an SRS.

ML Use-Cases of Sampling

- Mini-batch SGD: treats each mini-batch as an SRS from data.
- Stratified train/test split: maintain class balance to stabilise metrics.
- **Negative sampling**: randomly sample negative pairs in word2vec.

Probability Basics

Definition

For an experiment with sample space Ω , a *probability measure* $P \colon \mathcal{F} \to [0,1]$ assigns numbers to events (σ -algebra \mathcal{F}) such that $P(\Omega) = 1$ and countable additivity holds.

Types of Events

- Mutually Exclusive: $A \cap B = \emptyset$.
- Exhaustive: $A_1 \cup \cdots \cup A_k = \Omega$.
- Independent: $P(A \cap B) = P(A)P(B)$.
- Complementary: $A^c = \Omega \setminus A$, $P(A^c) = 1 P(A)$.

Addition & Complement Rules

$$P(A \cup B) = P(A) + P(B) - P(A \cap B), \qquad P(A^c) = 1 - P(A).$$

Cumulative Probability

For a real r.v. X the cumulative distribution function (cdf) is

$$F_X(x) = P(X \le x)$$
 (non-decreasing, $0 \le F_X \le 1$).

Conditional Probability and Bayes' Theorem

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}, \quad P(B \mid A) = \frac{P(A \mid B)P(B)}{\sum_{i} P(A \mid B_{i})P(B_{i})}.$$

Probability Distributions

Discrete Distributions

Dist.	When to Use	pmf $p(k)$	E[X]	Var(X)
$\overline{\mathrm{Bernoulli}(p)}$	Single 0/1 trial	$p^k(1-p)^{1-k}$	p	p(1-p)
Binomial(n, p)	# successes in n iid trials	$\binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)
Geometric(p)	Trials until 1st success	$(1-p)^{k-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$Poisson(\lambda)$	Rare events per interval	$\frac{e^{-\lambda}\lambda^k}{k!}$	λ	λ

Continuous Distributions

Dist.	When to Use	$\mathbf{pdf}\ f(x)$	E[X]	Var(X)
$\overline{\text{Uniform}(a,b)}$	Equal likelihood in $[a, b]$	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$\mathrm{Normal}(\mu,\sigma^2)$	Sum of many effects	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $\lambda e^{-\lambda x} \ (x \ge 0)$	μ	σ^2
$\operatorname{Exponential}(\lambda)$	Waiting time between Poisson events	$\lambda e^{-\lambda x} (x \ge 0)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$\operatorname{Gamma}(k,\theta)$	Sum of k Expo. vars	$\frac{x^{k-1}e^{-x/\theta}}{\Gamma(k)\theta^k}$	$k\theta$	$k\theta^2$

The Bell Curve and the Central Limit Theorem

$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} \mathcal{N}(0,1) \qquad (n \to \infty),$$

i.e. the standardized sample mean of iid variables converges in distribution to the Normal—explaining why the "bell curve" appears so often in practice.

Figure 1: Standard Normal ("bell curve") density

Skewness: Definition, Concept, and Effects

Population Definition. The *skewness* of a random variable X with mean μ and standard deviation σ is the **third** standardised moment

$$\gamma_1 \; = \; \frac{E[(X-\mu)^3]}{\sigma^3} \quad \Big(\text{dimensionless} \Big).$$

Sample Estimator. For observations x_1, \ldots, x_n with sample mean \bar{x} and sample standard deviation s:

$$g_1 = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^3}{\left(\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2\right)^{3/2}}$$
 (bias \square corrected: $G_1 = \frac{n}{(n-1)(n-2)}g_1$).

5

Conceptual Meaning.

- $-\gamma_1 > 0$: **right** \square **skew**. Mass piles to the left, long tail to the right; typically mean > median > mode.
- $-\gamma_1 < 0$: **left** \square **skew**. Long tail to the left; relation reverses.
- $-|\gamma_1| \lesssim 0.5$: practically symmetric for many analyses.

Why it matters in practice.

- Many parametric tests (e.g. *t*-test) assume near □ normality; heavy skew may inflate Type-I error.
- In regression, skewed residuals violate homoscedasticity and influence coefficients.
- Transformations (log, Box-Cox) often aim to reduce skewness before modelling.

Quick sanity check (rule of thumb). If mean—median > 0 the distribution is likely right-skewed, and vice-versa; the magnitude divided by the standard deviation approximates γ_1 for moderate skew.

Skewness and Kurtosis

1. Skewness

$$\gamma_1 = \frac{\mu_3}{\sigma^3} = \frac{E[(X-\mu)^3]}{(E[(X-\mu)^2])^{3/2}}$$

- $-\gamma_1 > 0$: right \square skewed (long tail to the right).
- γ_1 < 0: *left* □ *skewed*.
- $\gamma_1 = 0$: symmetric (e.g. Normal).

2. Kurtosis

$$\gamma_2 = \frac{\mu_4}{\sigma^4} \implies \text{excess kurtosis} = \gamma_2 - 3$$

Type	Shape	Excess Kurtosis	
Leptokurtic	Sharp peak, heavy tails	> 0	
Mesokurtic	Normal reference	=0	
Platykurtic	Flat peak, light tails	< 0	

Interpretation. Higher kurtosis signals more probability in the tails *and* the centre, implying outlier prone data; lower kurtosis indicates a flatter, "short tailed" distribution.

3. Illustrative Shapes

Figure 2: Relative shapes of leptokurtic, mesokurtic, and platykurtic curves (all areas = 1).