Exercise Sheet

Functions of Complex Variables

"All the world's a differential equation, and the men and women are merely variables."

-Ben Orlin

[1] Show that:

- (a) $u = \frac{y}{x^2 + y^2}$ is harmonic and find its conjugate "v" and then **find** the analytic function f(z) = u + iv in terms of "z".
- (b) $v = \frac{x}{x^2 + y^2}$ is harmonic and find its conjugate "u" and then **find** the analytic function f(z) = u + iv in terms of "z".
- (c) $v = \ln \sqrt{x^2 + y^2}$ is harmonic and find its conjugate "u" and then **find** the analytic function f(z) = u + iv in terms of "z".
- (d) $u=2\tan^{-1}\left(\frac{y}{x}\right)$ is harmonic and find its conjugate " \mathbf{v} " and then **find** the analytic function f(z)=u+iv in terms of " \mathbf{z} ".
- (e) $f(z) = e^{(x^2 y^2)}(\cos 2x \, y + i \sin 2x y)$ is an entire function. Hence, **find its derivative** in terms of z.
- (f) $u = \frac{x}{x^2 + y^2}$ is harmonic and find its conjugate "v" and then **find** the analytic function f(z) = u + iv in terms of "z".

[2] Find & Solve:

i.
$$e^{2z} = 1 + \sqrt{3}i$$

ii.
$$cos z = cosh 5$$

iii.
$$cosh z = -2$$
 (all the roots)

iv.
$$\sin z = 4$$

v.
$$\left(\frac{e}{2}(1+\sqrt{3}i)\right)^{3\pi i}$$
 (hence find its principal value) vi. $(\sqrt{3}+i)^{5\pi i}$

vi.
$$(\sqrt{3} + i)^{5\pi i}$$

vii.
$$\left(1+\sqrt{3}i\right)^{2+i}$$

viii.
$$e^{\sin(z)} = i$$

ix.
$$sin z = cosh 4$$
 (all the roots)

$$x. e^{3z-1} = 1 + i$$

xi. $(1-i)^i$ (all the values & hence find its principle value and represent it in the complex plane)

[3] Find the image of the semi-infinite strip $0 \le y \le \frac{1}{4}$, $x \ge 0$ under the reciprocal transformation $w = \frac{1}{7}$. (Show the regions graphically)

[4] Find the image of the semi-infinite strip $1 \leq x \leq 2$, $y \geq 0$ under the reciprocal transformation $w = \frac{1}{7}$. (Show the regions graphically)

[5] Find the image of the triangular region bounded by x=0 , y=0 & x+y=1

under the reciprocal transformation $w = \frac{1}{7}$. (Show the regions graphically)

[6] Find the image of the region $G = \{z: |z| \le 2, 0 \le arg(z) \le \frac{\pi}{2} \}$ in the w-plane under mapping w = (1 - i)z + 1. (Sketch both regions)

[7] Find the image of the semi-infinite strip $0 \le y \le \frac{1}{2}$, $x \ge 0$ under the reciprocal transformation $w = \frac{1}{z}$. (Show the regions graphically)

[8] Starting with $f'(z) = (u_x + iv_x)$ prove that $f'(z) = \frac{r}{z}(u_r + iv_r)$ and then use it to Find the derivative of $\ln z$ for $z \neq 0$

[9] Starting with $f'(z)=(u_x+iv_x)$ Find the polar form of the derivative in terms of u_r and v_r only.

[10] Given $v=e^x\sin y+2xy$, show that v is harmonic and find the corresponding analytic function: $f(z)=u_{(x,y)}+iv_{(x,y)}$

[11] Use the transformation w=(1+i)z+(2+i) to find the image of the rectangle bounded by the lines x=0,y=0,x=3 & y=2. (Show the regions graphically and comment on your answer)

[4] Show that if "v" is a harmonic conjugate of "u" is a domain D, the "uv" is also harmonic in the same domain D.

[12] Show that Laplace's equation in the polar form is given by $u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$

[Fall 2016] [Fall 2017] [Summer 2015]