${
m DM}\,\,1$ mp21 pv

À rendre le vendredi 13 septembre. Obligatoires : questions 1, 2-(a), 2-(b), 3.

Problème. π -systèmes.

Soit E un ensemble et A un ensemble de parties de E. On dit que A est un π -système de E si

$$\forall (A, A') \in \mathcal{A}^2 \quad A \cap A' \in \mathcal{A}.$$

- 0. Un exemple trivial. Soit E un ensemble et $A \in \mathcal{P}(E)$. On pose $\mathcal{S} = \{A\}$. Justifier que \mathcal{S} est un π -système de E.
- 1. Un exemple. On rappelle que si a est un réel, on a $[a, +\infty[=\{x \in \mathbb{R} \mid a \leq x\}]$. Montrer que $\mathcal{A} = \{[a, +\infty[, a \in \mathbb{R}\}] \text{ est un } \pi\text{-système de } \mathbb{R}$.
- 2. Des contre-exemples. Pour un réel a, on note

$$\mathbb{Z}_a = \{a + k \mid k \in \mathbb{Z}\} \quad \text{ et } \quad \mathbb{Q}_a = \{a + r \mid r \in \mathbb{Q}\}.$$

- (a) Montrer que si a est un entier relatif, $\mathbb{Z}_a = \mathbb{Z}$. L'ensemble de parties $\mathcal{B} = \{\mathbb{Z}_a \mid a \in \mathbb{Z}\}$ est-il un π -système de \mathbb{R} ?
- (b) Montrer que $\mathbb{Z} \cap \mathbb{Z}_{1/2} = \emptyset$. L'ensemble de parties $\mathcal{C} = \{\mathbb{Z}_a \mid a \in \mathbb{R}\}$ est-il un π -système de \mathbb{R} ?
- (c) En utilisant l'irrationalité de $\sqrt{2}$, montrer que $\mathbb{Q} \cap \mathbb{Q}_{\sqrt{2}} = \emptyset$. L'ensemble de parties $\mathcal{D} = \{\mathbb{Q}_a \mid a \in \mathbb{R}\}$ est-il un π -système de \mathbb{R} ?

- 3. Stabilité par intersection. Soit E un ensemble et A et B deux π -systèmes de E. Notons $C = A \cap B$. Montrer que C est un π -système de E.
- 4. Et avec l'union? Soit E un ensemble et A et B deux π -systèmes de E. On fait l'hypothèse suivante :

$$\forall (A, B) \in \mathcal{A} \times \mathcal{B} \quad A \cap B = \emptyset.$$

On pose

$$\mathcal{D} = \{ A \cup B \mid A \in \mathcal{A}, B \in \mathcal{B} \}.$$

Montrer que \mathcal{D} est un π -système de E.

5. Et avec le produit cartésien? Soit E un ensemble et A et B deux π -systèmes de E. On pose

$$\mathcal{E} = \{ A \times B \mid A \in \mathcal{A}, B \in \mathcal{B} \}.$$

Montrer que \mathcal{E} est un π -système de $E \times E$.