Mat 对象

Mat对象构造函数与常用方法

Mat ()

Mat (int rows, int cols, int type)

Mat (Size size, int type)

Mat (int rows, int cols, int type, const Scalar &s)

Mat (Size size, int type, const Scalar &s)

Mat (int ndims, const int *sizes, int type)

Mat (int ndims, const int *sizes, int type, const Scalar &s)

常用方法:

void copyTo(Mat mat)

void convertTo(Mat dst, int type)

Mat clone()

int channels()

int depth()

bool empty();

uchar* ptr(i=0)

Mat对象使用

部分复制:一般情况下只会复制Mat对象的头和指针部分,不会复制数据部分

Mat A= imread(imgFilePath);

Mat B(A) // 只复制

完全复制:如果想把Mat对象的头部和数据部分一起 复制,可以通过如下两个API实现

Mat F = A.clone(); 或 Mat G; A.copyTo(G);

读取像素

读写像素

• 读一个GRAY像素点的像素值(CV_8UC1)

Scalar intensity = img.at<uchar>(y, x);

或者 Scalar intensity = img.at<uchar>(Point(x, y));

• 读一个RGB像素点的像素值

Vec3f intensity = img.at<Vec3f>(y, x);

float blue = intensity.val[0];

float green = intensity.val[1];

float red = intensity.val[2];

Vec3b与Vec3F

- Vec3b对应三通道的顺序是blue、green、red的uchar类型数据。
- Vec3f对应三通道的float类型数据
- 把cv_8uc1转换到cv32F1实现如下:

src.convertTo(dst, CV_32F);

addWeighted

理论-线性混合操作

$$g(x) = (1 - \alpha) f_0(x) + \alpha f_1(x)$$

其中 α 的取值范围为0~1之间

相关API (addWeighted)

```
void cv::addWeighted ( InputArray src1,
double alpha,
InputArray src2,
double beta,
double gamma,
OutputArray dst,
int dtype = -1
)
```

 $\mathtt{dst}(I) = \mathtt{saturate}(\mathtt{src1}(I) * \mathtt{alpha} + \mathtt{src2}(I) * \mathtt{beta} + \mathtt{gamma})$

参数1:输入图像Mat-src1 参数2:输入图像src1的alpha值 参数3:输入图像Mat-src2 参数4:输入图像src2的alpha值

参数5:gamma值 参数6:输出混合图像

注意点: 两张图像的大小和类型必须一致才可以

理论

- 图像变换可以看作如下:
- 像素变换 点操作
- 邻域操作-区域

调整图像亮度和对比度属于像素变换-点操作

$$g(i,j) = \alpha f(i,j) + \beta$$
其中 $\alpha > 0$, β 是增益变量

绘制形状和文字

使用cv::Point与cv::Scalar

Point表示2D平面上一个点x.v

```
Point p;
p.x = 10;
p.y = 8;
p = Pont(10,8);
```

Scalar表示四个元素的向量 Scalar(a, b, c);// a = blue, b = green, c = red表示RGB三个通道

绘制线、矩形、园、椭圆等基本几何形状

- 画线cv::line(LINE_4\LINE_8\LINE_AA)
- 画椭圆cv::ellipse
- 画矩形cv::rectangle
- 画圆cv::circle
- 画填充cv::fillPoly

模糊图像 (卷积操作)

模糊原理

- Smooth/Blur是图像处理中最简单和常用的操作之一
- 使用该操作的原因之一就为了给图像预处理时候减低噪声
- 使用Smooth/Blur操作其背后是数学的卷积计算

$$g(i,j) = \sum_{k,l} f(i+k, j + l)h(k, l)$$

 $g^{(i,j)} = \sum_{k} f^{(i+k,j)} f^{(i+k,j+1)h(k,l)}$ 通常这些卷积算子计算都是线性操作,所以又叫线性滤波

模糊原理

• 归一化盒子滤波(均值滤波)

$$\begin{array}{l} \bullet_{K}^{\bullet}K = \frac{1}{K_{width} \cdot K_{height}} \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \dots & 1 \\ \vdots & \vdots & \ddots & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ \end{array}$$

• 高斯滤波

$$G_0(x,y) = Ae^{\dfrac{-(x-\mu_x)^2}{2\sigma_x^2}} + \dfrac{-(y-\mu_y)^2}{2\sigma_y^2}$$

相关API

• 均值模糊

- blur(Mat src, Mat dst, Size(xradius, yradius), Point(-1,-1));

$$\mathtt{dst}(x,y) = \sum_{0 \leq y' < \mathtt{lermal.rolls}, \\ 0 \leq y' < \mathtt{kernel.rows}} \mathtt{kernel}(x',y') * \mathtt{src}(x+x'-\mathtt{anchor.x}, y+y'-\mathtt{anchor.y})$$

● 高斯模糊

- GaussianBlur(Mat src, Mat dst, Size(11, 11), sigmax, sigmay); 其中Size (x, y) , x, y 必须是正数而且是奇数

中值滤波

- 统计排序滤波器
- 中值对椒盐噪声有很好的抑制作用

3x3邻域像素排序如下:

115, 119, 120, 123, 124, 125, 126, 127, 150

> 中值等于:124 均值等于:125.33

双边滤波

- 均值模糊无法克服边缘像素信息丢失缺陷。原因是均值滤波是基于平均权重
- 高斯模糊部分克服了该缺陷,但是无法完全避免,因为没有考虑像素值的不同
- 高斯双边模糊-是边缘保留的滤波方法,避免了边缘信息丢失,保留了图像轮廓不变

高斯双边模糊

保证值域在多少范围之内去模糊、除此之外保留不模糊

中值模糊对椒盐噪声的降噪很有效果

相关API

- 中值模糊medianBlur (Mat src, Mat dest, ksize)
- 双边模糊bilateralFilter(src, dest, d=15, 150, 3);
 - -15-计算的半径, 半径之内的像数都会被纳入计算, 如果提供-1 则根据sigma space参数取值
 - 150-sigma color 决定多少差值之内的像素会被计算
 - -3-sigma space 如果d的值大于0则声明无效,否则根据它来计算d值

中值模糊的ksize大小必须是大于1而且必须是奇数。

腐蚀与膨胀

形态学操作(morphology operators)-膨胀

- 图像形态学操作-基于形状的一系列图像处理操作的 合集,主要是基于集合论基础上的形态学数学
- 形态学有四个基本操作:腐蚀、膨胀、开、闭
- 膨胀与腐蚀是图像处理中最常用的形态学操作手段

形态学操作-膨胀

跟卷积操作类似,假设有图像A和结构元素B,结构元素B在A上面移动,其中B定义其中心为锚点,计算B覆盖下A的最大像素值用来替换锚点的像素,其中B作为结构体可以是任意形状

形态学操作-腐蚀

腐蚀跟膨胀操作的过程类似,唯一不同的是以最小值替换锚点重叠下图像的像素值

相关API

- getStructuringElement(int shape, Size ksize, Point anchor)
- 形状 (MORPH_RECT \MORPH_CROSS \MORPH_ELLIPSE)
- 大小
- 锚点 默认是Point(-1, -1)意思就是中心像素
- dilate(src, dst, kernel)

$$\mathtt{dst}(x,y) = \max_{(x',y') \in \mathtt{element}(x',y') \neq \emptyset} \mathtt{src}(x+x',y+y')$$

erode(src, dst, kernel)

$$\mathtt{dst}(x,y) = \min_{(x',y') \in \mathtt{element}(x',y') \neq 0} \mathtt{src}(x+x',y+y')$$

动态调整结构元素大小

 <u>TrackBar</u> – <u>createTrackbar</u>(constString & <u>trackbarname</u>, constString <u>winName</u>, <u>int</u>* value, <u>int</u> count, <u>Trackbarcallback func</u>, void* <u>userdata=0</u>)

其中最中要的是 callback 函数功能。如果设置为NULL就是说只有值update,但是不会调用callback的函数。

形态学操作

- 先腐蚀后膨胀 dst = open(src, element) = dilate(erode(src, element))
- 可以去掉小的对象,假设对象是前景色,背景是黑色

闭操作-close

- 先膨胀后腐蚀 (bin2) dat = close(arc, element) = erode(dilate(arc, element))

形态学操作应用-提取水平与垂直线

形态学梯度- Morphological Gradient

- 膨胀减去腐蚀
 dst = morph_{grad}(src, element) = dilate(src, element) erode(src, element)
- 又称为基本梯度(其它还包括-内部梯度、方向梯度)

顶帽 - top hat

• 顶帽是原图像与开操作之间的差值图像

黑帽

• 黑帽是闭操作图像与源图像的差值图像

相关API

- morphologyEx(src, dest, CV_MOP_BLACKHAT, kernel);
- Mat src 输入图像
- Mat dest 输出结果
- int OPT CV_MOP_OPEN/ CV_MOP_CLOSE/ CV_MOP_GRADIENT / CV_MOP_TOPHAT/ CV_MOP_BLACKHAT 形态学操作类型
- Mat kernel 结构元素
- int Iteration 迭代次数,默认是1

原理方法

图像形态学操作时候,可以通过自定义的结构元素实现结构元素 对输入图像一些对象敏感、另外一些对象不敏感,这样就会让敏 感的对象改变而不敏感的对象保留输出。通过使用两个最基本的 形态学操作-膨胀与腐蚀,使用不同的结构元素实现对输入图像 的操作、得到想要的结果。

- 膨胀,輸出的像素值是结构元素覆盖下输入图像的最大像素值
- 腐蚀, 输出的像素值是结构元素覆盖下输入图像的最小像素值

二值图像与灰度图像上 的膨胀操作

二值图像与灰度图像上 的腐蚀操作

提取步骤

- 輸入图像彩色图像imread
- 转换为灰度图像-cvtColor
- 转换为二值图像 adaptive Threshold
- 定义结构元素
- 开操作(腐蚀+膨胀)提取水平与垂直线

转换为二值图像 - adaptiveThreshold

图像金字塔概念

- 高斯金子塔-用来对图像进行降采样
- 拉普拉斯金字塔-用来重建一张图片根据它的上层降 采样图片

图像金字塔概念 - 高斯金字塔

- 高斯金子塔是从底向上,逐层降采样得到。
- 降采样之后图像大小是原图像MxN的M/2×N/2,就是对原图像删除偶数行与列,即得到降采样之后上一层的图片。I
- 高斯金子塔的生成过程分为两步;
 - 对当前层进行高斯模糊
 - 删除当前层的偶数行与列

即可得到上一层的图像,这样上一层跟下一层相比,都只有它的1/4大小。

```
1 4 6 4 1 4 16 24 16 4 6 24 36 24 6 4 16 24 16 4 1 4 6 4 1
```

高斯不同(Difference of Gaussian-DOG)

- 定义:就是把同一张图像在不同的参数下做高斯模糊之后的结果相减,得到的输出图像。称为高斯不同(DOG)
- 高斯不同是图像的内在特征,在灰度图像增强、角点 检测中经常用到。

采样相关API

- 上采样(cv::pyrUp) zoom in 放大
- 降采样 (cv::pyrDown) zoom out 缩小

pyrUp(Mat src, Mat dest, Size(src.cols*2, src.rows*2)) 生成的图像是原图在宽与高各放大两倍 pyrDown(Mat src, Mat dest, Size(src.cols/2, src.rows/2)) 生成的图像是原图在宽与高各缩小1/2

阈值

阈值类型一阈值二值化(threshold binary)

左下方的图表示图像像素点Src(x,v)值分布情况,蓝色水平线表示阈值

$$dst(x, y) = \begin{cases} ma_1^* & \text{if } src(x, y) > \text{thresh} \\ 0 & \text{otherwise} \end{cases}$$

阈值类型一阈值反二值化(threshold binary Inverted)

左下方的图表示图像像素点Src(x,v)值分布情况,蓝色水平线表示阈值

$$dst(x, y) = \begin{cases} 0 & \text{if } src(x, y) > \text{thresh} \\ max \forall al & \text{otherwise} \end{cases}$$

阈值类型一截断 (truncate)

左下方的图表示图像像素点Src(x,y)值分布情况,蓝色水平线表示阈值

$$dst(x,y) = \begin{cases} threshold & if src(x,y) > thresh \\ src(x,y) & otherwise \end{cases}$$

阈值类型一阈值取零 (threshold to zero)

左下方的图表示图像像素点Src(x,v)值分布情况,蓝色水平线表示阈值

$$dat(x, y) = \begin{cases} src(x, y) & \text{if } src(x, y) > \text{thresh} \\ 0 & \text{otherwise} \end{cases}$$

阈值类型一阈值反取零 (threshold to zero inverted)

左下方的图表示图像像素点Src(x,v)值分布情况,蓝色水平线表示阈值

$$\mathtt{dst}(x,y) = \left\{ \begin{aligned} 0 & \text{if } \mathtt{src}(x,y) > \mathtt{thresh} \\ \mathtt{src}(x,y) & \text{otherwise} \end{aligned} \right.$$

Enumerator		
THRESH_BINARY	$dst(x, y) = \begin{cases} maxval \\ 0 \end{cases}$	$\operatorname{if}\operatorname{src}(x,y)>\operatorname{thresh}$ otherwise
THRESH_BINARY_INV	$dst(x, y) = \begin{cases} 0 \\ maxval \end{cases}$	$if \operatorname{src}(x,y) > thresh$ otherwise
THRESH_TRUNC	$dst(x, y) = \begin{cases} threshold \\ src(x, y) \end{cases}$	$\begin{array}{l} \text{if } \mathtt{src}(x,y) > \mathtt{thresh} \\ \text{otherwise} \end{array}$
THRESH_TOZERO	$\mathtt{dst}(x,y) = \left\{ \begin{array}{l} \mathtt{src}(x,y) \\ 0 \end{array} \right.$	$\begin{array}{l} \text{if } \mathrm{src}(x,y) > \mathrm{thresh} \\ \text{otherwise} \end{array}$
THRESH_TOZERO_INV	$\mathtt{dst}(x,y) = \left\{ \begin{array}{l} 0 \\ \mathtt{src}(x,y) \end{array} \right.$	$\begin{array}{l} \text{if} \text{src}(x,y) > \text{thresh} \\ \text{otherwise} \end{array}$
THRESH_MASK		
THRESH_OTSU	flag, use Otsu algorithm to choose	the optimal threshold value
THRESH_TRIANGLE	flag, use Triangle algorithm to cho	oose the optimal threshold value

自定义线性滤波

卷积概念

- 卷积是图像处理中一个操作,是kernel在图像的每个像素上的操作。
- Kernel本质上一个固定大小的矩阵数组,其中心点称为锚点(anchor point)

1 -2 1 2 2 2 1 -2 1

卷积如何工作

把kernel放到像素数组之上,求锚点周围覆盖的像素乘积之和(包括锚点),用来替换锚点覆盖下像素点值称为卷积处理。数学表达如下:

$$H(x,y) = \sum_{i=0}^{M_i-1} \sum_{j=0}^{M_j-1} I(x+i-a_i,y+j-a_j) K(i,j)$$

还可以上网搜索哪些算子好用(比方说 canny 算子具有强大的边缘检测功能)

处理边缘

处理边缘

在卷积开始之前增加边缘像素,填充的像素值为0或者RGB黑色,比如3x3在四周各填充1个像素的边缘,这样就确保图像的边缘被处理,在卷积处理之后再去掉这些边缘。openCV中默认的处理方法是: BORDER_DEFAULT,此外常用的还有如下几种:

- BORDER_CONSTANT 填充边缘用指定像素值
- BORDER_REPLICATE 填充边缘像素用已知的边缘像素值。
- BORDER WRAP 用另外一边的像素来补偿填充

API说明 - 给图像添加边缘API

- copyMakeBorder (
- Mat src, // 输入图像
- Mat dst, // 添加边缘图像
- int top, // 边缘长度, 一般上下左右都取相同值,
- -int bottom,
- int left,
- int right,
- int borderType // 边缘类型
- Scalar value

卷积应用-图像边缘提取

- 边缘是什么-是像素值发生跃迁的地方,是图像的显著特征之一,在图像特征提取、对象检测、模式识别等方面都有重要的作用。
- 如何捕捉/提取边缘 对图像求它的一阶导数 delta = f(x) – f(x-1), delta越大,说明像素在X方向变化越大, 边缘信号越强,
- 我已经忘记啦,不要担心,用Sobel算子就好!卷积操作!

Sobel算子

- 是离散微分算子(discrete differentiation operator),
 用来计算图像灰度的近似梯度
- Soble算子功能集合高斯平滑和微分求导
- 又被称为一阶微分算子,求导算子,在水平和垂直两个方向上求导,得到图像x方法与y方向梯度图像

Sobel算子 水平梯度 $G_x = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -3 & 0 & +1 \end{bmatrix} \cdot 1$ $G_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ +1 & +2 & +1 \end{bmatrix} \cdot 1$ 垂直梯度 最终图像梯度

$$G = |G_x| + |G_y|$$

Sobel 容易受到噪声影响,因此处理之前应该先进行高斯模糊(高斯平滑-转灰度-求梯度 X 和 Y-混合两个方向的图片得到振幅图像)

Sobel算子

 求取导数的近似值, kernel=3时不是很准确, OpenCV 使用改进版本Scharr函数,算子如下:

$$G_x = \begin{bmatrix} -3 & 0 & +3 \\ -10 & 0 & +10 \\ -3 & 0 & +3 \end{bmatrix}$$

$$G_y = \begin{bmatrix} -3 & -10 & -3 \\ 0 & 0 & 0 \\ +3 & +10 & +3 \end{bmatrix}$$

API说明cv::Sobel

cy::Sobel (
InputArray Src // 输入图像
OutputArray dst// 输出图像,大小与输入图像一致
int dipth // 输出图像深度。
Int dx. // X方向,几阶导数
int dy // Y方向,几阶导数。
int ksize, SOBEL 算子kernel大小,必须是1、3、5、7、double scale = 1
double delta = 0
int borderType = BORDER_DEFAULT

Input depth ()	Output depth (ddepth)
CV_8U	-1/CV_16S/CV_32F/CV_64F
CV_16U/CV_16S	-1/CV_32F/CV_64F
CV_32F	-1/CV_32F/CV_64F
CV_64F	-1/CV_64F

API说明cv::Scharr

```
cv::Scharr (
InputArray Src // 输入图像
OutputArray dst// 输出图像,大小与输入图像一致
int depth // 输出图像深度。
Int dx. // X方向,几阶导数
int dy // Y方向,几阶导数。
double scale = 1
double delta = 0
int borderType = BORDER_DEFAULT
)
```

Laplance 算子

理论

解释:在二阶导数的时候,最大变化处的值为零即边缘是零值。通过二阶导数计算,依据此理论我们可以计算图像二阶导数,提取边缘。

Laplance算子

- 二阶导数我不会,别担心->拉普拉斯算子(Laplance operator)
- Opencv已经提供了相关API-cv::Laplance

处理流程

- 高斯模糊 去噪声GaussianBlur()
- 转换为灰度图像cvtColor()
- 拉普拉斯-二阶导数计算Laplacian()
- 取绝对值convertScaleAbs()
- 显示结果

Canny 算法

Canny算法介绍 - 五步 in cv::Canny

- 1. 高斯模糊 GaussianBlur
- 2. 灰度转换-cvtColor
- 3. 计算梯度-Sobel/Scharr
- 4. 非最大信号抑制
- 5. 高低阈值输出二值图像

Canny算法介绍 - 非最大信号抑制

$$\begin{split} G_x &= \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix} \\ G_y &= \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ +1 & +2 & +1 \end{bmatrix} \end{split}$$

$$G = \sqrt{G_x^2 + G_y^2}$$

 $\theta = \arctan(\frac{G_y}{C})$

其中黄色区域取值范围为0~22.5 与157.5~180

绿色区域取值范围为22.5~67.5

蓝色区域取值范围为67.5~112.5

红色区域取像范围为112.5~157.5

Canny算法介绍-高低阈值输出二值图像

- T1,T2为阈值,凡是高于T2的都保留,凡是小于T1都 丢弃,从高于T2的像素出发,凡是大于T1而且相互连 接的,都保留。最终得到一个输出二值图像。
- 推荐的高低阈值比值为T2:T1 = 3:1/2:1其中T2为高阈值,T1为低阈值

API - cv::Canny

Canny (
InputArray src, // 8-bit的输入图像
OutputArray edges,// 输出边缘图像,一般都是二值图像,背景是黑色double threshold1,// 低阈值,常取高阈值的1/2或者1/3double threshold2,// 高阈值int aptertureSize,// Soble算子的size,通常3x3,取值3bool L2gradient // 选择 true表示是L2来归一化,否则用L1归一化)

$$L_2$$
 norm = $\sqrt{(dI/dx)^2 + (dI/dy)^2}$:

 L_1 norm = |dI/dx| + |dI/dy|

默认情况一般选择是L1,参数设置为false

霍夫直线变换

先进行边缘检测,再进行霍夫直线检测

霍夫直线变换介绍

- Hough Line Transform用来做直线检测
- 前提条件-边缘检测已经完成
- 平面空间到极坐标空间转换

x=pcos0,y=psin0

p^2=x^2+y^2, tanθ=y/x (x≠0)

霍夫直线变换介绍

霍夫直线变换介绍

- 对于任意一条直线上的所有点来说
- 变换到极坐标中,从[0~360]空间,可以得到r的大小
- 属于同一条直线上点在极坐标空(r, theta)必然在一个点上有最强的信号出现,根据此反算到平面坐标中就可以得到直线上各点的像素坐标。从而得到直线

相关API学习

- 标准的霍夫变换 cv::HoughLines从平面坐标转换到霍夫空间,最终输出是 (θ, r_e) 表示极坐标空间
- 霍夫变换直线概率 cv:: Hough Lines P最终输出是直线的两个点 (x₀, y₀, x₁, y₁)

相关API学习

cv::HoughLines(

InputArray src, // 输入图像,必须8-bit的灰度图像
OutputArray lines, // 输出的极坐标来表示直线
double rho, // 生成极坐标时候的像素扫描步长
double theta, //生成极坐标时候的角度步长,一般取值CV_PI/180
int threshold, // 阈值,只有获得足够交点的极坐标点才被看成是直线
double srn=0;// 是否应用多尺度的霍夫变换,如果不是设置0表示经典霍夫变换
double stn=0;//是否应用多尺度的霍夫变换,如果不是设置0表示经典霍夫变换
double min_theta=0;// 表示角度扫描范围 0~180之间,默认即可
double max_theta=CV_PI

) // 一般情况是有经验的开发者使用,需要自己反变换到平面空间

相关API学习

cv::HoughLinesP

InputArraysrc, // 输入图像,必须8-bit的灰度图像
OutputArraylincs, // 输出的极坐标来表示直线
double rho, // 生成极坐标时候的像素扫描步长
double theta, //生成极坐标时候的角度步长,一般取值CV_PI/180
int threshold, // 阈值,只有获得足够交点的极坐标点才被看成是直线
double minLineLength=0;//最小直线长度
double maxLineGap=0;//最大间隔

霍夫圆检测原理

霍夫圆检测原理

 $x = a + R\cos(\theta)$ $y = b + R\sin(\theta)$ Hough[theta][a][b]++

霍夫圆变换原理

- 从平面坐标到极坐标转换三个参数 C(x₀, y₀, r)其中x₀, y₀是圆心
- 假设平面坐标的任意一个圆上的点,转换到极坐标中:
 C(x₀, y₀, r) 处有最大值,霍夫变换正是利用这个原理实现圆的检测。

相关API cv::HoughCircles

- 因为霍夫圆检测对噪声比较敏感,所以首先要对图像 做中值滤波。
- 基于效率考虑,Opency中实现的霍夫变换圆检测是基于图像梯度的实现,分为两步:
 - 1. 检测边缘,发现可能的圆心
 - 2. 基于第一步的基础上从候选圆心开始计算最佳半径大小

HoughCircles参数说明

```
| HoughCircles | Hou
```

上图的 dp: 如果是1则按照原图寻找,如果是2则按照原图宽高各一半寻找

像素重映射

什么是像素重映射

简单点说就是把输入图像中各个像素按照一定的规则映射 到另外一张图像的对应位置上去,形成一张新的图像。

$$g(x,y) = f(h(x,y))$$

g(x,v)是重映射之后的图像, h(x,v)是功能函数, f是源图像

什么是像素重映射

假设有映射函数

API介绍cv::remap

```
Remap(
InputArray src,// 输入图像
OutputArray dst,// 输出图像
InputArray map1,//x映射表CV 32FC1/CV 32FC2
InputArray map2,// y 映射表
int interpolation,// 选择的插值方法,常见线性插值,可选择立方等
int borderMode,// BORDER_CONSTANIT
const Scalar borderValue// color
```

```
if (x > src.cols*0.25 && x < src.cols*0.75 && y > src.rows*0.25 && y < src.rows*0.75) {
     map_x.at<float>(y, x) = 2 * (x - src.cols*0.25f) + 0.5f;
map_y.at<float>(y, x) = 2 * (y - src.rows*0.25f) + 0.5f;
                                                                                                       缩小卡半
 | else [
     map_x.at<float>(y, x) = 0;
     map_y. at \langle float \rangle (y, x) = 0;
map_x.at < float > (y, x) = (float)x;
                                                           Y方向对调
map_y.at<float>(y, z) = (float)(src.rows - y);
map_x.at<float>(y, x) = (float)(src.cols - x);
map_y.at<float>(y, x) = (float)y;
                                                          X方向对调
map_x.at<float>(y, x) = (float)(src.cols - x);
                                                        XY方向同时对调
```

直方图均衡比

map_y.at<float>(y, x) = (float)(src.rows - y);

什么是直方图

1	2	3	5	6	7	9	4
2	3	4	1	0	0	0	9
3	3	3	9	1	11	3	3
8	8	8	9	12	13	8	8
8	8	8	9	1	6	8	8
7	7	7	9	4	5	7	7
9	9	9	9	14	9	9	9
9	9	9	9	9	11	9	9

假设有图像数据8x8,像素值范围 0~14共15个灰度等级,统计得到 各个等级出现次数及直方图如右 侧所示

什么是直方图

图像直方图,是指对整个图像像在灰度范围内的像素值(0~255)统计出现频率次数,据此生成的直方图,称为图像直方图-直方图。直方图反映了图像灰度的分布情况。是图像的统计学特征。

直方图均衡化

是一种提高图像对比度的方法,拉伸图像灰度值范围。

直方图均衡化

如何实现,通过上一课中的remap我们知道可以将图像灰度分布从一个分布映射到另外一个分布,然后在得到映射后的像素值即可。

$$H^{'}(i) = \sum_{0 \leq j < i} H(j)$$

 $equalized(x,y) = H^{'}(src(x,y))$

API说明cv::equalizeHist

equalizeHist(

InputArray src,//输入图像,必须是8-bit的单通道图像OutputArray dst//输出结果

直方图计算

直方图概念

直方图概念

- 上述直方图概念是基于图像像素值,其实对图像梯度、每个像素的角度、等一切图像的属性值,我们都可以建立直方图。这个才是直方图的概念真正意义,不过是基于图像像素灰度直方图是最常见的。
- 直方图最常见的几个属性:
- dims 表示维度,对灰度图像来说只有一个通道值dims=1
- bins 表示在维度中子区域大小划分, bins=256, 划分为256个级别
- range 表示值得范围,灰度值范围为[0~255]之间

API学习

split(//把多通道图像分为多个单通道图像 const Mat &src, //输入图像 Mat* mybegin) // 输出的通道图像数组

calcHist(

const Mat* images,/输入图像指针 int images,//图像数目 const int* channels,//通道数 InputArray mask,//输入mask,可选,不用 OutputArray hist,//输出的直方图数据 int dims,// 维数 const int* histsize,//直方图级数 const float* ranges,//值域范围 bool uniform,// true by defaut bool accumulate// false by defaut)

直方图比较

直方图比较方法-概述

对输入的两张图像计算得到直方图H1与H2,归一化到相同的尺度空间 然后可以通过计算H1与H2的之间的距离得到两个直方图的相似程度进 而比较图像本身的相似程度。Opency提供的比较方法有四种:

- -Correlation 相关性比较
- -Chi-Square 卡方比较
- -Intersection 十字交叉性
- -Bhattacharyya distance 巴氏距离

直方图比较方法-相关性计算(CV_COMP_CORREL)

 $d(H_1,H_2) = \frac{\sum_I (H_1(I) - \vec{H}_1)(H_2(I) - \vec{H}_2)}{\sqrt{\sum_I (H_1(I) - \vec{H}_1)^2 \sum_I (H_2(I) - \vec{H}_2)^2}} \\ \qquad \qquad \not \boxplus \dot \bigoplus \qquad \qquad \vec{H}_k = \frac{1}{N} \sum_I H_k(J)$

D

其中N是直方图的BIN个数, IR是均值

直方图比较方法-卡方计算(CV_COMP_CHISQR)

$$d(H_1,H_2) = \sum_{I} \frac{(H_1(I) - H_2(I))^2}{{}^4 f_{\infty}^2 H_1(I)}$$

H1,H2分别表示两个图像的直方图数据

直方图比较方法-十字计算(CV COMP INTERSECT)

$$d(H_1,H_2) = \sum_I \min(H_1(I),H_2(I))$$

H1,H2分别表示两个图像的直方图数据

直方图比较方法-巴氏距离计算(CV COMP BHATTACHARYYA)

H1,H2分别表示两个图像的直方图数据

相关API

- 首先把图像从RGB色彩空间转换到HSV色彩空间 cvtColor
- 计算图像的直方图,然后归一化到[0~1]之间calcHist和 normalize;
- 使用上述四种比较方法之一进行比较compareHist

相关API cv::compareHist

```
compareHist(
InputArray h1, // 直方图数据,下同
InputArray H2,
int method//比较方法,上述四种方法之一
```

直方图反向投影

反向投影

- 反向投影是反映直方图模型在目标图像中的分布情况
- 简单点说就是用直方图模型去目标图像中寻找是否有相似的对象。通常用HSV色彩空间的HS两个通道直方图模型

反向投影 - 步骤

- 1.建立直方图模型
- 2.计算待测图像直方图并映射到模型中
- 3.从模型反向计算生成图像 I

实现步骤与相关API

- 加载图片imread
- 将图像从RGB色彩空间转换到HSV色彩空间cvtColor
- 计算直方图和归一化calcHist与normalize
- Mat与MatND其中Mat表示二维数组,MatND表示三维 或者多维数据,此处均可以用Mat表示。
- 计算反向投影图像 calcBackProject

模板匹配

模板匹配介绍

- 模板匹配就是在整个图像区域发现与给定子图像匹配的小块区域。
- 所以模板匹配首先需要一个模板图像T(给定的子图像)
- 另外需要一个待检测的图像-源图像s
- 工作方法,在带检测图像上,从左到右,从上向下计 算模板图像与重叠子图像的匹配度,匹配程度越大, 两者相同的可能性越大。

模板匹配介绍 - 匹配算法介绍

OpenCV中提供了六种常见的匹配算法如下:

- 1. 计算平方不同 $R(x,y) = \sum_{x',y'} (T(x',y') I(x+x',y+y'))^2$
- 2. 计算相关性 $R(x,y) = \sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))$
- 3. 计算相关系数

$$R(x,y) = \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))$$

$$\begin{split} T'(x',y') &= T(x',y') - 1/(w \cdot h) \cdot \sum_{x'',y''} T(x'',y'') \\ I'(x+x',y+y') &= I(x+x',y+y') - 1/(w \cdot h) \cdot \sum_{x'',v''} I(x+x'',y+y'') \end{split}$$

模板匹配介绍 – 匹配算法介绍

计算归一化平方不同

$$R(x,y) = \frac{\sum_{x',y'} (T(x',y') - I(x+x',y+y'))^2}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}$$

计算归一化相关性

$$R(x,y) = \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}$$

计算归一化相关系数

$$R(x,y) = \frac{\sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))}{\sqrt{\sum_{x',y'} T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2}}$$

TM_SQDIFF	$R(x,y) = \sum_{x',y'} (T(x',y') - I(x+x',y+y'))^2$
TM_SQDIFF_NORMED	$R(x,y) = \frac{\sum_{x',y'} (T(x',y') - I(x+x',y+y'))^2}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}$
TM_CCORR	$R(x,y) = \sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))$
TM_CCORR_NORMED	$R(x,y) = \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}$
TM_CCOEFF	$R(x,y) = \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))$ where $T'(x',y') = T(x',y') - 1/(w \cdot h) \cdot \sum_{x'',y''} T(x'',y'')$ $I'(x+x',y+y') = I(x+x',y+y') - 1/(w \cdot h) \cdot \sum_{x'',y''} I(x+x'',y+y'')$
TM_CCOEFF_NORMED	$R(x,y) = \frac{\sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))}{\sqrt{\sum_{x',y'} T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2}}$

相关API介绍cv::matchTemplate

```
matchTemplate(
InputArray image,//源图像,必须是8-bit或者32-bit浮点数图像
InputArray templ,// 模板图像,类型与输入图像一致
OutputArray result,// 输出结果,必须是单通道32位浮点数,假设源图像WxH,模板图像wxh,
               则结果必须为W-w+1, H-h+1的大小。
int method,//使用的匹配方法
InputArray mask=noArray()//(optional)
```

相关API介绍cv::matchTemplate

```
enum cv::TemplateMatchModes {
       cv::TM SQDIFF = 0.
       cv::TM SQDIFF NORMED = 1,
       cv::TM CCORR = 2.
       cv::TM CCORR NORMED = 3,
       cv::TM CCOEFF = 4,
       cv::TM CCOEFF NORMED = 5
      }
```

轮廓发现

轮廓发现(find contour)

- 轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法。 所以边缘提取的阈值选定会影响最终轮廓发现结果
- API介绍
- findContours发现轮廓
- drawContours绘制轮廓

轮廓发现(find contour)

在二值图像上发现轮廓使用API cv::findContours(

InputOutputArray binImg, // 输入图像,非0的像素被看成1,0的像素值保持不变,8-bit OutputArrayOfArrays contours,// 全部发现的轮廓对象

OutputArray, hierachy// 图该的拓扑结构,可选,该轮廓发现算法正是基于图像拓扑结构实现。 int mode, // 轮廓返回的模式

int method,// 发现方法

Point offset=Point()// 轮廓像素的位移, 默认 (0,0) 没有位移

轮廓绘制(draw contour)

在二值图像上发现轮廓使用API cv::findContours之后对发现的轮廓数据进行绘制显示 drawContours(

InputOutputArray binImg, // 输出图像

OutputArrayOfArrays contours,// 全部发现的轮廓对象

Int contourIdx// 轮廓索引号

const Scalar & color,// 绘制时候颜色

int thickness,// 绘制线宽

int lineType ,// 线的类型LINE 8

InputArray hierarchy,// 拓扑结构图

int maxlevel,// 最大层数, 0只绘制当前的,1表示绘制绘制当前及其内嵌的轮廓 Point offset=Point()// 轮廓位移,可选

演示代码

- 輸入图像转为灰度图像cvtColor
- 使用Canny进行边缘提取,得到二值图像
- 使用findContours寻找轮廓
- 使用drawContours绘制轮廓

凸包(发现轮廓之后更进一步)

概念介绍

 什么是凸包(Convex Hull),在一个多变形边缘或者内部任 意两个点的连线都包含在多边形边界或者内部。

正式定义:

包含点集合s中所有点的最小凸多边形称为凸包

- 检测算法
- Graham扫描法

概念介绍-Graham扫描算法

- 首先选择Y方向最低的点作为起始点p0
- 从p0开始极坐标扫描,依次添加p1....pn (排序顺序是根据极坐标的角度大小,逆时针方向)
- 对每个点pi来说,如果添加pi点到凸包中导致一个左转向(逆时针方法)则添加该点到凸包,反之如果导致一个右转向(顺时针方向)删除该点从凸包中

概念介绍-Graham扫描算法

 No worry,我们只是需要了解, OpenCV已经实现了凸包发现 算法和API提供我们使用。

API说明cv::convexHull

convexHull(

InputArray points,// 输入候选点,来自findContours

OutputArray hull,// 凸包

<u>bool</u> clockwise,// default true, 顺时针方向

bool returnPoints) // true 表示返回点个数,如果第二个参数是 vector<Point>则自动忽略

代码演示

- 首先把图像从RGB转为灰度
- 然后再转为二值图像
- 在通过发现轮廓得到候选点
- 凸包API调用
- 绘制显示。

轮廓周围绘制矩形框和圆形框

轮廓周围绘制矩形 -API

approxPolyDP(InputArray curve, OutputArray approxCurve, double epsilon, bool closed)

基于RDP算法实现,目的是减少多边形轮廓点数

```
void cv::approxPolyDP ( InputArray curve,
OutputArray approxCurve,
double epsilon,
bool closed
)
```

轮廓周围绘制矩形-API

- cv::boundingRect(InputArray points)得到轮廓周围最小矩形 左上交点坐标和右下角点坐标,绘制一个矩形
- cv::minAreaRect(InputArray points)得到一个旋转的矩形,
 返回旋转矩形

轮廓周围绘制圆和椭圆-API

- cv::minEnclosingCircle(InputArray points, //得到最小区域圆形 Point2f& center, // 圆心位置 float& radius)// 圆的半径
- cv::fitEllipse(InputArray points)得到最小椭圆

演示代码-步骤

- 首先将图像变为二值图像
- 发现轮廓, 找到图像轮廓
- 通过相关API在轮廓点上找到最小包含矩形和圆,旋转 矩形与椭圆。
- 绘制它们。

图像矩

矩的概念介绍

- 几何矩
- **几何矩** $M_{ji} = \sum_{x,y} (P(x,y) \cdot x^j \cdot y^i)$ 其中(i+j)和等于几就叫做几阶距
- 中心距 $mu_{ji} = \sum_{x,y} (P(x,y) \cdot (x-\bar{x})^j \cdot (y-\bar{y})^i)$ 其中 x, \bar{y} 表示它的中心质点
- 中心児 $\operatorname{nu}_{ji} = \frac{\operatorname{mu}_{ji}}{\operatorname{m}_{00}^{(i+j)/2+1}}$.

矩的概念介绍

图像中心Center(x0, y0)

$$\mathbf{X}_0 = \frac{m_{10}}{m_{00}} \ \mathbf{y}_0 = \frac{m_{01}}{m_{00}}$$

API介绍与使用 - cv::moments 计算生成数据

spatial moments	central momen
double m00	double mu20
double m10	double mu11
double m01	double mu02
double m20	double mu30
double m11	double mu21
double m02	double mu12
double m30	double mu03
double m21	
double m12	
double m03	

centra	normalized moments
double	nu20
double	nu11
double	nu02
double	nu30
double	nu21
double	nu12
double	nu03

API介绍与使用-计算矩cv::moments

moments(

InputArray array,//輸入数据 bool binaryImage=false // 是否为二值图像)

contourArea(

InputArray contour,//输入轮廓数据 bool oriented// 默认false、返回绝对值)

arcLength(

InputArray curve,//输入曲线数据bool closed// 是否是封闭曲线)

演示代码-步骤

- 提取图像边缘
- 发现轮廓
- 计算每个轮廓对象的矩
- 计算每个对象的中心、弧长、面积

点多边形测试

概念介绍 - 点多边形测试

- 测试一个点是否在给定的多边形内部, 边缘或者外部

API介绍 cv::pointPolygonTest

pointPolygonTest(

InputArray contour,// 输入的轮廓 Point2f pt, //测试点

bool measureDist // 是否返回距离值,如果是false,1表示在内面,0表示在边界上,-1表示在外部,true返回实际距离)

返回数据是double类型

演示代码-步骤

- 构建一张400x400大小的图片, Mat::Zero(400, 400, CV_8UC1)
- 画上一个六边形的闭合区域line
- 发现轮廓
- 对图像中所有像素点做点多边形测试,得到距离,归一化后显示。

演示代码-细节

double minValue, maxValue;
minMaxLoc(raw_dist, &minValue, &maxValue, 0, 0, Mat());

• 内部

drawImg.at<Vec3b>(row, col)[0] = (uchar)((abs(distance)/maxValue)*255);

• 外部

drawImg.at<Vec3b>(row, col)[1] = (uchar)(255*(abs(distance)/minValue));

边缘线

```
drawIng.at<Vec3b>(row, col)[0] = 255;
drawIng.at<Vec3b>(row, col)[1] = saturate_cast<uchar>(minValue);
drawIng.at<Vec3b>(row, col)[2] = saturate_cast<uchar>(minValue);
```

距离变换与分水岭

什么是图像分割(Image Segmentation)

什么是图像分割

- 图像分割(Image Segmentation)是图像处理最重要的处理手段之一
- 图像分割的目标是将图像中像素根据一定的规则分为 若干(N)个cluster集合,每个集合包含一类像素。
- 根据算法分为监督学习方法和无监督学习方法,图像 分割的算法多数都是无监督学习方法 - KMeans

距离变换与分水岭介绍

还记得上节课的内容,测试点多边形得到结果跟距离变换相似

距离变换与分水岭介绍

距离变换与分水岭介绍

- 距离变换常见算法有两种
- 不断膨胀/ 腐蚀得到
- 基于倒角距离
- 分水岭变换常见的算法
- 基于浸泡理论实现

相关API

 cv::distanceTransform(InputArray src, OutputArray dst, OutputArray labels, int distanceType, int maskSize, int labelType=DIST_LABEL_CCOMP)

distanceType = DIST_L1/DIST_L2,

maskSize = 3x3,最新的支持5x5,推荐3x3、

labels离散维诺图输出

dst输出8位或者32位的浮点数,单一通道,大小与输入图像一致

cv::watershed(InputArray image, InputOutputArray markers)

处理流程

- 1.将白色背景变成黑色-目的是为后面的变换做准备
- 2. 使用filter2D与拉普拉斯算子实现图像对比度提高, sharp
- 3. 转为二值图像通过threshold
- 4. 距离变换
- 5. 对距离变换结果进行归一化到[0~1]之间
- 6. 使用阈值,再次二值化,得到标记
- 7. 腐蚀得到每个Peak erode
- 8.发现轮廓 findContours
- 9. 绘制轮廓- drawContours
- 10.分水岭变换 watershed
- 11. 对每个分割区域着色输出结果