OBJECTIFS 👌

- Connaître les lignes trigonométriques dans le triangle rectangle : cosinus, sinus, tangente.
- Mener des raisonnements et s'initier à la démonstration en utilisant les propriétés des figures, des configurations et des transformations.

I

Les fonctions trigonométriques

1. Définitions

INFORMATION |

On peut retenir ces définitions à l'aide du mnémotechnique « CAH-SOH-TOA » :

$$cos(angle) = \frac{adjacent}{hypoténuse}$$
 $sin(angle) = \frac{opposé}{hypoténuse}$ $tan(angle) = \frac{opposé}{adjacent}$

EXERCICE 1

On considère le triangle DEF ci-contre. Effectuer les calculs suivants.

1.
$$cos(\widehat{EFD}) = \dots$$

2.
$$\sin(\widehat{EFD}) = \dots$$

3.
$$tan(\widehat{EFD}) = \dots$$

2. Propriétés

EXERCICE 2	ý

L'objectif de cet exercice est de prouver la dernière propriété. Soit *ABC* un triangle rectangle en *A*.

1. Que vaut $\sin(\widehat{ABC})$?

 $\sin(\widehat{ABC}) = \dots$

2. Que vaut $\cos(\widehat{ABC})$?

 $\cos(\widehat{ABC}) = \dots$

3. Simplifier le quotient $\frac{\sin(\widehat{ABC})}{\cos(\widehat{ABC})}$.

4. Conclure.

Utilisation dans un triangle rectangle

1. Calculer la longueur d'un côté

EXEMPLE •

Le triangle *GHI* ci-contre est rectangle en *H*. Calculons *IG*.

$$\cos(\widehat{IGH}) = \frac{GH}{IG}$$

$$\cos(60^\circ) = \frac{1,5}{IG}$$

$$IG = \frac{1,5}{\cos(60^\circ)} = 3$$

EXERCICE 3

On considère le triangle JKL ci-contre. Calculer une valeur approchée de KL.

Voir la correction: https://mes-cours-de-maths.fr/cours/troisieme/trigonometrie/#correction-3.

2. Calculer la mesure d'un angle

EXEMPLE 🔋

Le triangle MNO ci-contre est rectangle en M. Calculons une valeur approchée de \widehat{MNO} .

$$\tan(\widehat{MNO}) = \frac{OM}{MN}$$

$$\tan(\widehat{MNO}) = \frac{5}{12}$$

$$\widehat{MNO} = \arctan\left(\frac{5}{12}\right) \approx 23^{\circ}$$

INFORMATION |

Remarque

Les fonctions arccos, arcsin et arctan permettent d'inverser respectivement cos, sin et tan. Ainsi, si α désigne la mesure d'un angle aigu :

$$\arccos(\cos(\alpha)) = \alpha$$
 $\arcsin(\sin(\alpha)) = \alpha$ $\arctan(\tan(\alpha)) = \alpha$

iniamo/twignomotwio/#compostion_A