ЛАБОРАТОРНАЯ РАБОТА (ВАРИАТИВ)

Электронные таблицы

ВНИМАНИЕ! Работа выполняется на компьютере в электронных таблицах, например, MS Excel. Вся работа делается в **одной** книге (файле). При необходимости можно добавить в книгу новый лист. Файл отчета в формате rtf со скриншотами выполненных заданий и комментариями к ним отправляется через ILIAS.

ЗАДАНИЯ

Задание 1. Создание формул

Задание 2. Статистический анализ данных

Задание 3. Поиск и подстановка данных

В процессе выполнения лабораторной работы формируются следующие умения:

- 1. Создавать рекурсивные формулы.
- 2. Использовать именованные формулы.
- 3. Конструировать сложносоставные формулы с вложенными функциями.
- 4. Применять статистические функции для анализа данных.
- 5. Выполнять поиск данных по алгоритму вертикального просмотра

Вопросы для самоконтроля

- 1. Сколько аргументов у функции ЕСЛИ?
- 2. Что можно указывать в качестве аргументов функции?
- 3. Как вычислить степень в формуле?
- 4. Какие функции относятся к логическим?
- 5. Какие функции относятся к статистическим?
- 6. Способы поиска нужной функции при работе с Мастером функций?
- 7. В чем особенность функции ВПР в отличие от ГПР?
- 8. Можно ли в качестве одного аргумента функции указать несколько данных? Если ДА, то как?
- 9. Чем в формуле отделяются аргументы функции?
- 10. Требуется проверить содержимое ячейки A1 по двум условиям: A1< условие 1 и A1> условие 2. Как будет выглядеть формула анализа?

Пояснения к работе

- 1. Работа выполняется в табличном процессоре.
- 2. Часть заданий выполняется с использованием возможностей *Мастера функций*. В диалоге *Мастера функций* следует выбрать соответствующую заданию категорию или воспользоваться режимом поиска функции.
- 3. Каждое задание выполняется на отдельном листе одной книги. Листы переименовать по смыслу задания.

Задание 1.1 Создание формул (рекурсивные формулы)

- 1. Щелкнуть кнопку «Office», *Параметры Excel*, слева выбрать Формулы, справа в группе *Параметры вычислений* установить флажок Включить итерационные вычисления.
 - 2. Задать количество итераций, равное 10.
 - 3. В ячейку A1 ввести формулу: =A1 + 5.
 - 4. Задать количество итераций, равное 1.
 - 5. В ячейку A2 ввести формулу: =A2 + 5.
 - 6. Для пересчета листа нажать Shift + F9.

Задание 1.2 Создание формул (именованные формулы)

- 1. Создать именованную формулу *Оценки*. Для этого на вкладке *Формулы* в разделе *Определенные имена*, в списке *Присвоить имя* выбрать *Создание имени* (*Присвоить имя*). В поле *Диапазон* ввести формулу: =СЧЁТЕСЛИ(\$A\$1:\$A\$10;\$B\$1:\$B\$3). Добавить *Примечание* всплывающую подсказку.
- 2. Заполнить ячейки A1:A10 произвольными числовыми значениями в интервале от 3 до 5 это исходные данные.
- 3. Заполнить ячейки B1:B3 значениями 3, 4, 5 это критерии проверки.
- 4. В ячейку C1 ввести формулу: = Omлично и скопировать ее на ячейки C2:C3.

Задание 1.3 Создание формул (сложносоставные формулы)

1. Создать таблицу по образцу:

	A	В	C	D	E	F
1	№ n/n	Фамилия	Оценки по четвертям			
2			Ι	II	III	IV
3	1	Ученик 1	4	4	3	4
4	2	Ученик 2	5	5	5	5
5	3	Ученик 3	4	4	4	4
6	4	Ученик 4	5	4	5	4
7	5	Ученик 5	4	3	3	3

Пример конструирования сложносоставной формулы из двух простых.

Задача. Проанализировать оценки учащихся. Если ученик не имеет троек, то выдать сообщение, что он "молодец", иначе выдать сообщение "3!".

Даны простые формулы

	G	Н
3	= <i>U</i> (<i>C</i> 3>3; <i>D</i> 3>3; <i>E</i> 3>3; <i>F</i> 3>3)	=ECЛИ(G3;"молодец";"3!")
	Проверяет ячейки на наличие тройки.	Использует результат формулы из ячейки G3 в
	Результат — логический (ИСТИНА/ЛОЖЬ)	качестве первого аргумента: если ИСТИНА, то «молодец», если ЛОЖЬ, то «3!»

Сложносоставная формула с вложенной функцией U:

Задача 1. Для всего класса вывести фамилии учеников, имеющих все 5.

Задача 2. Для всего класса выполнить проверку: если ученик не имеет троек, то выдать его средний балл, иначе выдать сообщение "***"

- 2. Для решения задач 1–2 создать несколько вариантов формул с вложенными функциями *СУММ*, *СЧЁТЕСЛИ*, *СРЗНАЧ*.
- 3. Заполнить формулами диапазон 3 7 строка, начиная со столбца G (каждый вариант формулы в своем столбце).

Работать в режиме Мастера функций. Для выбора вложенной функции использовать список в левой части строки формул.

Задание 2. Статистический анализ данных

1. Заполнить табличную форму по образцу, приведенному ниже.

2. Выполнить вычисления с использованием статистических функций (*СРЗНАЧ*, *МИН*, *МАКС*, *СУМЕСЛИ*, *СЧЕТЕСЛИ*). Функция выбирается, исходя из конкретного задания.

Фамилия	I четв	II четв	III четв	IV четв
Ученик 1	Н	4	3	4
Ученик 2	5	4	5	5
Ученик 3	4	4	4	4
Ученик 4	5	4	5	4
Ученик 5	Н	3	Н	3
Ученик 6	4	5	4	4
Ученик 7	3	3	3	3
Ученик 8	4	5	5	4
Ученик 9	3	4	3	Н
Ученик 10	5	5	5	5

- 1. Найти среднечетвертные баллы класса.
- 2. Определить четверть с максимальным значением среднего балла.
 - 3. Определить ученика с минимальным среднегодовым баллом.
- 4. Определить оценку, которая чаще других встречается в первой четверти.
 - 5. Посчитать количество отличников в третьей четверти.

Задание 3. Поиск и подстановка данных

Функция ВПР работает с вертикальными таблицами, в которых поля значений располагаются в столбцах.

Синтаксис функции:

ВПР(что искать; где искать; номер столбца; ЛОЖЬ)

Что искать — адрес ячейки со значением, которое должно быть найдено в первом столбце диапазона Γde искать.

Где искать — диапазон данных (вся таблица), в котором производится поиск.

Номер столбца — номер столбца, в котором ищется значение. ЛОЖЬ(0) — критерий поиска для точного сопоставления данных.

Задача. Требуется оформить покупку товаров клиентом с использованием данных прайс-листа.

1. На двух листах книги создать исходные таблицы «Toвар» и «3аказы».

Лист «Товар»

	A	В	C
1	Код	Наименование	Цена
	Товара	Товара	
2			

Лист «Заказы»

	A	В	C	D	E	F	G
1	Код	Код	Дата	Код	Коли-чество	Цена	Сумма
	Заказа	Клиента	Заказа	Товара			
2							

- 2. Заполнить таблицу Товар исходными данными в количестве 5 записей.
- 3. Данные в столбце *Код Товара* на листе *Товар* отсортировать в порядке возрастания.
 - 4. В ячейку F2 таблицы Заказы ввести формулу:
 - =ВПР(D2;Товар!\$А\$1:\$С\$6;3;0)
 - 5. В ячейку G2 таблицы «Заказы» ввести формулу: =E2*F2
 - 6. Заполнить таблицу Заказы исходными данными в количестве 3 записей.
 - 7. Добавить в таблицу Заказы столбец Наименование товара.
- 8. С помощью функции $B\Pi P$ заполнить столбец данными из таблицы To eap.