#Importing the necessary Libraries

```
import pandas as pd
import matplotlib.pyplot as plt
```

Import the requried dataset

```
In [2]: df=pd.read_csv('C:/Users/abhis/Documents/diabets.csv')
        df
```

```
Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
Out[2]:
                       6
                              148
                                             72
                                                          35
                                                                   0 33.6
                                                                                            0.627
                                                                                                   50
                                                                                                             1
                               85
                                             66
                                                          29
                                                                   0 26.6
                                                                                            0.351
                                                                                                             0
                       1
                                                                                                   31
           2
                       8
                              183
                                                           0
                                                                   0 23.3
                                                                                            0.672
                                                                                                   32
                                                                                                              1
           3
                                                          23
                                                                                                             0
                       1
                               89
                                             66
                                                                  94 28.1
                                                                                            0.167
                                                                                                   21
           4
                       0
                              137
                                             40
                                                          35
                                                                 168 43.1
                                                                                            2.288
                                                                                                   33
                                                                                                             1
         763
                      10
                              101
                                             76
                                                          48
                                                                 180 32.9
                                                                                            0.171
                                                                                                   63
                                                                                                             0
                              122
                                             70
                                                                                                   27
                                                                                                             0
         764
                                                          27
                                                                   0 36.8
                                                                                            0.340
         765
                       5
                              121
                                             72
                                                          23
                                                                 112 26.2
                                                                                            0.245
                                                                                                   30
                                                                                                             0
                                             60
                                                                                            0.349
         766
                              126
                                                           0
                                                                   0 30.1
                                                                                                   47
                       1
                                                                                                             1
         767
                                             70
                                                          31
                                                                   0 30.4
                                                                                            0.315
                                                                                                  23
                                                                                                              0
```

768 rows × 9 columns

```
In [4]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 768 entries, 0 to 767
        Data columns (total 9 columns):
                                       Non-Null Count Dtype
         #
             Column
         0
             Pregnancies
                                       768 non-null
                                                       int64
             Glucose
                                       768 non-null
         1
                                                       int64
         2
             BloodPressure
                                       768 non-null
                                                       int64
                                       768 non-null
         3
             SkinThickness
                                                       int64
                                       768 non-null
         4
             Insulin
                                                       int64
         5
                                       768 non-null
             BMI
                                                       float64
         6
             DiabetesPedigreeFunction
                                      768 non-null
                                                       float64
         7
                                       768 non-null
                                                       int64
             Age
                                       768 non-null
                                                       int64
             Outcome
        dtypes: float64(2), int64(7)
```

In [5]: df.isnull().sum()

Pregnancies 0 Out[5] Glucose 0 BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction 0 Age 0 Outcome 0 dtype: int64

memory usage: 54.1 KB

In [23]: plt.hist(df["Outcome"]) plt.show()

In [7]: x=df.drop(['Outcome'],axis=1)

Out[7]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age
	0	6	148	72	35	0	33.6	0.627	50
	1	1	85	66	29	0	26.6	0.351	31
	2	8	183	64	0	0	23.3	0.672	32
	3	1	89	66	23	94	28.1	0.167	21
	4	0	137	40	35	168	43.1	2.288	33
	763	10	101	76	48	180	32.9	0.171	63
	764	2	122	70	27	0	36.8	0.340	27
	765	5	121	72	23	112	26.2	0.245	30
	766	1	126	60	0	0	30.1	0.349	47
	767	1	93	70	31	0	30.4	0.315	23

768 rows × 8 columns

```
In [9]: y=df.Outcome
        763
        764
        765
        766
        767
        Name: Outcome, Length: 768, dtype: int64
```

Split the dataset

In [10]: from sklearn.model_selection import train_test_split xtrain, xtest, ytrain, ytest=train_test_split(x, y, test_size=0.15, random_state=100)

In [12]: print("xtrain:", xtrain.shape) print("xtest:", xtest.shape) print("ytrain:", ytrain.shape) print("ytest:", ytest.shape) xtrain: (652, 8) xtest: (116, 8) ytrain: (652,) ytest: (116,)

Decision Tree Classifier

In [13]: from sklearn.tree import DecisionTreeClassifier model=DecisionTreeClassifier() model.fit(xtrain,ytrain) y_pred=model.predict(xtest)

In [14]: train_score=model.score(xtrain,ytrain) print("train_score", train_score) test_score=model.score(xtest,ytest) print("test_score", test_score)

> train_score 1.0 test_score 0.6551724137931034

In [15]: model1=DecisionTreeClassifier(min_samples_split=10, min_impurity_decrease=0.005) model1.fit(xtrain,ytrain) print("train_accuracy=", model1.score(xtrain, ytrain)) print("test_accuracy=", model1.score(xtest, ytest))

> train_accuracy= 0.8328220858895705 test_accuracy= 0.7327586206896551

RANDOM FOREST CALSSIFIER

In [17]: **from** sklearn.ensemble **import** RandomForestClassifier model=RandomForestClassifier() model.fit(xtrain,ytrain) y_pred=model.predict(xtest)

In [18]: train_score=model.score(xtrain,ytrain) print("train_score", train_score) test_score=model.score(xtest,ytest) print("test_score", test_score)

test_score 0.7327586206896551

train_score 1.0

In [19]: model1=DecisionTreeClassifier(min_samples_split=10, min_impurity_decrease=0.005) model1.fit(xtrain,ytrain) print("train_accuracy=", model1.score(xtrain, ytrain)) print("test_accuracy=", model1.score(xtest, ytest))

train_accuracy= 0.8328220858895705 test_accuracy= 0.7327586206896551

confusion matrix

In [21]: from sklearn.metrics import confusion_matrix confusion_matrix(ytest,y_pred)

array([[64, 11],

[20, 21]], dtype=int64)