Web-technológia I.

A Web története Legfontosabb tulajdonságok és alkalmazott technológiák áttekintése

Hatwágner F. Miklós

Széchenyi István Egyetem, Győr

2015. szeptember 10.

- Nagy mennyiségű információ rendszerezése: szótárak, enciklopédiák, lexikonok
- Vannevar Bush
 - "As We May Think" \rightarrow agy működése, Atlantic folyóirat, 1945
 - Memex
 - Üveg borítás, erre vetítené alulról a képet, szöveget
 - Mechanikus szerkezettel kereshető és vihető be az információ.
 - Az információk összekapcsolhatóak
 - Hiperszöveg, hiperhivatkozás (hyperlink)
 - Korlátlan kapacitás

(a) V. Bush

Theodor Holm Nelson

- hypertext, hypermedia: "Complex Information Processing: A File Structure for the Complex, the Changing, and the Indeterminate", ACM, 1965
- Project Xanadu: 1960 ?
- "HTML is precisely what we were trying to PREVENT—
 ever-breaking links, links going outward only, quotes you can't
 follow to their origins, no version management, no rights
 management."

 Douglas Engelbart: NLS, 1968 (hiperszöveg, egér, raszteres grafika, ablakkezelés)

Korai alkalmazások:

- Aspen Movie Map, MIT, 1977
- Tim Berners-Lee: ENQUIRE, 1980 (Wiki-szerű hiperszöveg adatbázis)
- Guide, 1982 (hiperszöveg személyi számítógépen)
- Bill Atkinson: HyperCard, Apple Inc., 1985

Tim Berners-Lee , R. Cailliau. 12 November 1990, CERN

"HyperText is a way to link and access information of various kinds as a web of nodes in which the user can browse at will. It provides a single user-interface to large classes of information (reports, notes, data-bases, computer documentation and on-line help). We propose a simple scheme incorporating servers already available at CERN... A program which provides access to the hypertext world we call a browser..."

- Tim Berners-Lee: World Wide Web (WWW), 1990
 - 1990, CERN httpd prototípus implementáció, WYSIWYG böngészés és tartalomszerkesztés (WorldWideWeb, Nexus)
 - 1992, új böngészők: Line Mode Browser, ViolaWWW, Erwise, MidasWWW, . . .
 - 1993, NCSA (National Center for Supercomputing Applications) Mosaic
 - 1994, a W3C megalapítása, Marc Andreesen → Netscape Communications Corporation, Netscape Navigator
 - 1995, Internet Explorer 1.0

Böngésző háborúk

Böngészők piaci részesedése az első böngészőháború idején

Böngésző háborúk

Böngészők piaci részesedése napjainkban

A Web megoldása

A web legfontosabb technológiái:

- URL (Uniform Resource Locator), a hiperhivatkozások megvalósítása
- HTTP (HyperText Transport Protocol), a webet felépítő oldalak hálózaton keresztüli továbbítása
- HTML (HyperText Markup Language), az oldalak leírására

Kliens-szerver architektúra (böngésző, webkiszolgáló)

Tim Berners-Lee

URL: egységes erőforrás-meghatározó

Az URL felépítése

 $scheme://username:password@domain:port/path?query_string\#fragment_id\\$

```
Részei:
```

```
scheme Séma, vagy protokoll. Pl. http, ftp, mailto, ...
   username felhasználónév
   password jelszó
     domain a tartomány, annak a gépnek a neve, amin az oldal
              megtalálható
        port portszám, szolgáltatás-azonosító (web: 80, 443)
        path az oldal elérési útja és neve a kiszolgálón (lehet
              virtuális)
query string lekérdező karakterlánc, különféle paraméterek átadása
fragment id oldalon belüli hivatkozás, horgony
```

URL: egységes erőforrás-meghatározó

Név	Rendeltetés	Pél da
http	Hiperszöveg (HTML)	http://rs1.sze.hu/~hatwagnf/
https	Hiperszöveg biztonságos átvitele	https://www.otpbank.hu/
ftp	Fájlátvitel (FTP)	ftp://ubuntu.sth.sze.hu/ubuntu/
file	Helyi állomány	file:///home/hatwagnf/WWW/index.html
mailto	E-mail	mailto:miklos.hatwagner@sze.hu
rtsp	Valós idejű média letöltés	rtsp://youtube.com/montypython.mpg
sip	Multimédia hívás	sip:eve@adversary.com
about	Böngésző információ	about:plugins

A HTTP protokoll elhelyezkedése az OSI és TCP/IP modellekben

- Eredeti cél: információcsere webszerver és kliens között
- HTTP 1.1: RFC2616
- ASCII-alapú, kérés-válasz protokoll, tipikusan TCP felett, tartalom típusa MIME-mal adott
- Új cél: "szállítási protokoll", pl.
 - médialejátszó információkat kér le
 - víruskereső frissítése
 - szoftverfejlesztők projektállományokat töltenek le
 - SOAP (távoli eljáráshívás HTTP felett)

Kapcsolatok

- HTTP 1.0: egy összeköttetésben egy kérés-válasz pár ightarrow átlagosan 40 további objektum oldalanként!
- HTTP 1.1:
 - tartós kapcsolatok (persistent connection) / kapcsolat újrahasználás (connection reuse)
 - csővezeték (pipeline) módszer
 - gyorsulás okai:
 - új összeköttetés kiépítése időigényes
 - kevesebb lassú TCP indítás (torlódáskezelés)
 - kapcsolat lezárása:
 - időkorlát
 - túl sok nyitott kapcsolat
- HTTP 1.1 előtt: párhuzamos összeköttetés (parallel connection)
 - késleltetési idő jelentős részét elrejti, de
 - ullet torlódáskezelés o versengő kapcsolatok, csomagvesztés

HTTP a) több összeköttetéssel és egymást követő kérésekkel b) tartós kapcsolat és egymást követő kérések c) tartós kapcsolat és csővezeték módszerrel küldött kérések

Metódusok

- a protokoll műveletei
- kis- és nagybetűs alakra érzékenyek
- kérés első szavai

```
http://xenia.sze.hu/index.html
wajzy@wajzy-laptop:~$ telnet xenia.sze.hu 80
Trying 193.224.129.115...
Connected to venia sze hu
Escape character is '^]'.
GET /index.html HTTP/1.1
Host: venia sze hu
HTTP/1.1 200 DK
Date: Tue, 03 Sep 2013 06:43:34 GMT
Server: Apache/2.2.16 (Debian) PHP/5.3.3-7+squeeze14 with Suhosin-Patch mod_python/3.3.1 ...
Per1/v5.10.1
Last-Modified: Wed, 13 Feb 2013 09:28:48 GMT
ETag: "1fa02-b1-4d597c4f4d400"
Accept-Ranges: bytes
Content-Length: 177
Vary: Accept-Encoding
Content-Type: text/html
<html><body><h1>It works!</h1>
This is the default web page for this server.
The web server software is running but no content has been added, yet.
</body></html>
Connection closed by foreign host.
wajzy@wajzy-laptop:~$
```

Metódus	Leírás
GET	Weboldal olvasása
HEAD	Weboldal fejlécének olvasása
POST	Weboldalhoz történő "hozzáfűzés"
PUT	Weboldal tárolása
DELETE	Weboldal eltávolítása
TRACE	Bejövő kérés visszaküldése
CONNECT	Kapcsolódás proxy-n keresztül
OPTIONS	Egy oldal opcióinak lekérdezése

Beépített HTTP-kérés metódusok

Kód	Jelent ése	Példák
1xx	Információ	100 = a kiszolgáló jóváhagyja az ügyfél kérését
2xx	Siker	200 = sikeres kérés
3xx	Átirányítás	301 = az oldal elköltözött
4xx	Ügyfél hibája	404 = az oldal nem található
5xx	Kiszolgáló hibája	500 = belső hiba a kiszolgálóban

A válasz állapotkódok csoportjai

A HTTP fejlécek listája itt érhető el.

Weboldalak letöltése

- Böngésző beolvassa az URL-t (pl. http://xenia.sze.hu/index.html)
- Megkérdezi a xenia sze hu IP-címét a DNS-től
- 3 Válasz: 193.224.129.115
- Böngésző TCP kapcsolatot létesít a webkiszolgáló 80-as portjával
- 6 Lekéri az /index html oldalt
- Kiszolgáló HTTP válaszban küldi az oldalt
- Ha az oldal további megjelenítendő tartalmak URL-jeit tartalmazza, azokat is hasonlóan lekéri
- Böngésző megjeleníti az oldalt
- A TCP összeköttetést lebontják

HTTP/2

- Miért van rá szükség?
 - Egyre több forrásból származó információ építi fel az egyre nagyobb weboldalakat
 - TCP: egyszerre egy kérést tud hatékonyan kiszolgálni, a probléma megkerülése nem elég hatékony (egymással versengő TCP-összeköttetések, erőforrásokkal visszaélés, csővezeték blokkolódása, duplikált forgalom, stb.). "Hackelésre" többé semmi szükség.
- A SPDY/2 (Google) alapján hozta létre az IETF egyik munkacsoportja (httpbis)
- Fő eltérések az 1.x-hez képest:
 - bináris formátum (1.x: szöveges)
 - teljesen multiplexelt (1.x: blokkok, sorba rendezés) → egy kapcsolattal is lehetséges a párhuzamos letöltés
 - fejlécek tömörítettek (HPACK, Huffmann-kód)
 - szerver olyan tartalmat is küldhet a kliensnek, amiről az még nem is tudja, hogy hamarosan szüksége lesz rá (push)

HTTP/2

- Titkosítás elvileg nem kötelező, de a böngészők gyakorlatilag csak TLS felett engedik a HTTP/2 használatát
- A titkosítás miatt a nyomkövetés nehézkes, de megoldható
- Specifikáció, FAQ, teszt

Gyorstárazás (caching)

- ullet Azonos oldal sokszori újraletöltése pazarló o mentsük le!
- Változások detektálása
 - URL nem alkalmas (pl. híroldal)
 - 1. mo.: oldal érvényesítés (Expires fejléc, ha van, különben heurisztika Last-Modified felhasználásával; veszélyes, pl. tőzsde)
 - 2. mo.: feltételes GET (Last-Modified és If-Modified-Since, vagy ETag és If-None-Match \rightarrow jó pl. többnyelvű oldalaknál)
 - De a Cache-Control direktívái mindent felülírnak

Helyettes gyorstárazás (Proxy cache)

Cookie (süti)

- Probléma: egymástól független oldalletöltések
- Fizetős oldalak, testre szabható portálok, ...?
- IP-cím figyelés nem megoldás: DHCP, NAT
- Megoldás: süti (NetScape, 1994, RFC2109)

Tulajdonságok:

- a kért oldallal együtt küldi a kiszolgáló
- max. 4kB méretű karakterlánc, max. 20 süti/tartomány/felhasználó
- korlátozott idejű megőrzés (tartós/nem tartós süti)
- biztonságos átvitel támogatott (SSL/TLS)
- legközelebbi letöltésnél a böngésző mellékeli a tartomány sütijeit

Cookie (süti)

Tartomány	Útvonal	Tartalom	Lejárat	Biztonság
toms-casino.com	/	Customer D=297793521	15-10-10 17:00	igen
jills-store.com	/	Cart = 1-00501; 1-07031; 2-13721	11-1-11 14 22	n em
aportal.com	/	User D=4627239101	31-12-19 23:59	nem

Új probléma: webes nyomkövetés

Kérés előállítás folyamata

Válasz feldolgozása

MIME-típusok

Különféle típusú dokumentumok kezeléséhez:

application/vnd.ms-powerpoint

Alkalmazás, gyártóspecifikus formátum, PowerPoint

application/pdf

PDF-dokumentum

image/x-photoshop

PhotoShop kép

video/mpeg

MPEG videó, stb.

A böngésző ezeket

- közvetlenül kezeli (HTML, XML, CSS)
- beépülő modullal (plug-in)
- segédalkalmazással (helper application)

Böngészők felépítése

Webböngészők fontosabb komponensei

Renderelés folyamata

Böngészők felépítése

WebKit motor működésének vázlata

Mozilla Gecko motor működésének vázlata

Webszerverek piaca

Weboldalak számának alakulása

Webszerverek piaci részesedése Forrás: Netcraft

Webszerverek piaca

Webszerverek aránya az aktív weboldalak között

Webszerverek aránya az 1 000 000 legforgalmasabb oldal között Forrás: Netcraft

Az Apache webszerver architektúrája

- Apache 1.3
 - folyamat alapú (stabilitás ↔ teljesítmény)
 - Windows támogatás (nem hatékony)
 - moduláris (további funkciókkal bővíthető)
- Apache 2.0
 - Multi Processing Modules, MPM (tisztán folyamat alapú ↔ tisztán szál alapú)
 - protokoll modulok (pl. POP3 felhasználók azonosíthatók a webes hitelesítő rendszerrel)
 - kompatibilitási problémák
 - hordozható (Apache Portable Runtime → Windows-on is hatékony)

Forrás: TLDP

Webszerverek működése

Szerverfarmok

Egyetlen logikai gépnek kell tűnnie

- DNS, IP-címek körbeforgó listája
- Előtét-berendezés (front end) használata
 - Ált. adatkapcsolati rétegbeli kapcsoló vagy IP útválasztó
 - Magasabb szintű protokollok fejléceit használja, hogy a webkérés minden minden csomagját ua. a kiszolgáló kaphassa meg \rightarrow veszélyes, de hasznos
 - 1 üzenetszórás: a szerver eldönti, mire válaszol
 - 2 terhelés-kiegyenlítés (load balancing)
 - Miért kukucskálunk? Pl. gyorstárazás, terheléskiegyenlítés (TCP), felhasználó azonosítás, munkamenetek (HTTP, sütik) miatt

Webhelyettesek (web proxy)

- sokak által lekért tartalmakat érdemes (forgalom csökkentés → költségcsökkentés, válaszidő csökk.) közös helyen tárolni, pl. képek
- több szint is kialakítható
- kb. 100 főig hatásos, ált. egy szint elég
- tartalomszűrés
- anonimitás
- de hasztalan: titkosított forgalom, hitelesítést igénylő oldalak, állandóan frissülő tartalom esetén

Web szerkezete

- Link / URL (tartomány, könyvtár) szerkezet
- Skálafüggetlen gráf (≈viszonylag sok nagy fokszámú csomópontjuk van, és a csomópontok fokszámeloszlása méretfüggetlen)
- Kis (átmérőjű) világok, lokalitás
- ullet Kapcsolódások dinamikusak (népszerűség o hatványfüggvény)
- Irányított kapcsolatok

Normál és hatványfv. szerinti eloszlás (forrás)

A Web, mint információs munkatér

- Tudás hasznosítás
 - információ visszakeresés,
 - újra elrendezés,
 - nyújtás
- Navigáció
 - böngészés
 - célzott keresés (a kereső az "új URL")

A Web felhasználása

Term'ekt'amogat'as

Hírportál

E-learning oldal

A Web felhasználása

Beágyazott rendszerek

E-kereskedelem

Vállalati jelenlét a Weben

- Hirdetési felület
- Kereskedelmi csatorna (biztonság)
- Kommunikációs megoldás (\rightarrow E-mail, Facebook, Twitter, stb.)
- Szórakoztatás (interaktív játékok, webcast, podcast, stb.)

Intranet

- Web-technológia belső vállalati célokra
 - tűzfalak
 - azonosított felhasználók
- Alkalmazás
 - üzleti kapcsolattartás, oktatás (→ extranet)
 - tudás menedzsment
 - információ szigetek összekapcsolása
 - portálok
 - előtét vállalati alkalmazásokhoz

Webalkalmazások

Hagyományos kliens-szerver alkalmazások (vastag kliens, fat client)

Webalkalmazások (vékony kliens, thin client)

Több rétegű (multi-tier) webalkalmazások

Új web-modell

- Elosztott számítógépes környezet
- Automatikusan indított tranzakciók nem csak böngészőkből
- Intelligens ügynökök, piacterek, árverések, . . .
 - ightarrow nyílt rendszerek
 - \rightarrow webszolgáltatások (web service)

Webalkalmazások

- Összetett üzleti információk
 - időjárás, hírek, menetrendek, árfolyamok
 - csekk és kártya ellenőrzés, árverés
- Tranzakciós szolgáltatások
 - helyfoglalások, bérlések, megrendelések
 - beszállítói láncok
- Üzleti folyamatok megnyitása
 - munkafolyamat szintű összekapcsolás
 - folyamat szintű integráció

Nyílt rendszerek

- az elvárt szolgáltatást nyújtja
- interfész specifikációi
 - teljesek, jól definiáltak
 - publikusan hozzáférhetőek és
 - közmegegyezéssel karbantartottak
- az implementációja megfelel a specifikációinak

Nyílt rendszerek előnyei

- Interoperábilitás (gépek, nyelvek, operációs rendszerek között)
- Heterogén elosztott rendszerek megvalósítása
- ullet Skálázhatóság (egy o több gép, kis o nagy teljesítményű rendszer)

Felhasznált irodalom

Andrew S. Tanenbaum, David J. Wetherall Számítógép-hálózatok Panem, Bp., 2013.

HTML5 Rocks Tutorials
How Browsers Work: Behind the scenes of modern web browsers