Astroinformatics aam

Riccardo Gatti ¹⁰

¹AAM, Associazione Astrofili Mantovani, Str. Gorgo, 36, 46027, San Benedetto Po, Mantova, Italy

Abstract

Con la presente proposta si intende avviare un nuovo filone di ricerca all'interno dell'Associazione Astrofili Mantovani, basato sull'impiego di tecniche avanzate di elaborazione dati per l'analisi automatica e semi-automatica di fenomeni astrofisici transitori. In particolare, proponiamo l'utilizzo dell'OF (OF) come strumento computazionale per rilevare variazioni spaziali e temporali in sequenze di immagini astronomiche. L'obiettivo è potenziare la capacità di rilevamento di asteroidi, stelle variabili, supernovae e altri eventi transienti, aprendo l'associazione a un approccio interdisciplinare tra astrofisica e data science.

1 Introduzione e obiettivi di ricerca

L'OF è una tecnica di analisi del movimento utilizzata in ambito computer vision per tracciare variazioni fra fotogrammi consecutivi. In ambito astronomico, può essere sfruttata per:

- 1. Rilevare movimenti coerenti tra fotogrammi notturni (es. asteroidi in movimento)
- 2. Individuare variazioni di luminosità non attribuibili al rumore (es. stelle variabili)
- 3. Evidenziare transienti come esplosioni di supernova.

Obiettivo generale: creare una pipeline di analisi basata su OF, adattata a immagini astronomiche da piccoli osservatori amatoriali, con validazione incrociata su dataset pubblici (es. ZTF, Pan-STARRS).

2 Architettura del progetto

- 1. Raccolta dati
 - (a) Utilizzo di camere CCD/CMOS su montature equatoriali
 - (b) Acquisizioni time-lapse di campo stellare fisso

2. Preprocessing

- (a) Allineamento e calibrazione (bias, dark, flat)
- (b) Riduzione del rumore e normalizzazione

3. OF

- (a) Applicazione di algoritmi di OF (es. Lucas-Kanade (LK), Farneback, RAFT)
- (b) Costruzione di mappe vettoriali del movimento

4. Post-processing

- (a) Filtraggio dei vettori non significativi
- (b) Isolamento di pattern riconducibili a oggetti in movimento o variazione

5. Validazione scientifica

- (a) Confronto con database noti (es. MPC, AAVSO)
- (b) Eventuale comunicazione di scoperte (es. nuovi asteroidi, nova)

3 Programma operativo

- 1. Setup tecnico
- 2. (a) Installazione di software open source (OpenCV, AstroImageJ, Astrometry.net)
 - (b) Test su dataset simulati
- 3. Prima applicazione reale
 - (a) Campagna osservativa su campi noti per asteroidi e variabili
 - (b) Primo ciclo di OF e confronto con pipeline tradizionali

4. Ottimizzazione

- (a) Miglioramento della precisione con tecniche di machine learning
- (b) Riduzione falsi positivi e affinamento parametri
- 5. Divulgazione e citizen science
 - (a) Coinvolgimento dei soci tramite workshop pratici
 - (b) Condivisione dei risultati e dei tool con altre associazioni
 - (c) Pubblicazione su arXiv e riviste divulgative

4 Nota sulla citizen science in astronomia

La citizen science, ovvero il coinvolgimento di volontari non professionisti in progetti di ricerca, si è evoluta fino a diventare uno strumento chiave per gestire grandi moli di dati scientifici e per avvicinare la cittadinanza al metodo scientifico ¹. Progetti quali Galaxy Zoo e Supernova Hunters hanno dimostrato che, con un'opportuna progettazione e formazione dei partecipanti, la qualità dei dati raccolti può avvicinarsi o eguagliare quella dei professionisti ². Inoltre, la partecipazione diretta aumenta la conoscenza scientifica dei volontari e rafforza il legame tra scienza e società.

Il concetto di citizen science è formalizzato da Bonney et al. (2009) ³ come "ricerca condotta in collaborazione tra scienziati e cittadini, finalizzata sia alla produzione di dati sia all'alfabetizzazione scientifica". Successivi studi hanno classificato i progetti in base a obiettivi e modelli organizzativi, dalla semplice raccolta dati (crowdsourcing) alla coprogettazione partecipata. Trend recenti, evidenziano la crescente diversificazione dei campi applicativi, dall'ambiente alla salute fino all'astronomia ⁴.

- Galaxy Zoo: oltre 900.000 galassie classificate da 150.000 volontari, con motivazioni basate principalmente sul desiderio di contribuire alla scienza.
- Supernova Hunters: individuazione di transienti ottici con successo comparabile a pipeline automatiche, grazie a 2.500 volontari che hanno analizzato 14.000 candidature in poche settimane.
- Zooniverse: piattaforma polivalente che ospita decine di progetti astronomici, garantendo infrastruttura stabile e strumenti di formazione.

Una review quantitativa evidenzia che, pur con qualche falso positivo, la qualità media dei dati citizen science raggiunge livelli accettabili se affiancata a controlli di qualità e training. Strategie di QA/QC includono validazione incrociata, aggregazione multipla delle stime volontarie e uso di algoritmi di machine learning per filtrare i contributi meno affidabili.

5 Conclusioni

Il progetto mira a unire osservazione astronomica e analisi computazionale, rendendo l'Associazione protagonista di una nuova frontiera della ricerca amatoriale. OF rappresenta una delle tecnologie più promettenti per rilevare variazioni sottili nei dati astronomici e potrà aprire la strada a collaborazioni interdisciplinari e internazionali.

¹Bonney, Rick, et al. "Next steps for citizen science." Science 343.6178 (2014): 1436-1437.
²Aceves-Bueno, Eréndira, et al. "The accuracy of citizen science data: a quantitative review." Bulletin of the Ecological Society of America 98.4 (2017): 278-290.

³Bonney, Rick, et al. "Citizen science: a developing tool for expanding science knowledge and scientific literacy." BioScience 59.11 (2009): 977-984.

⁴Finger, Lena, et al. "The science of citizen science: a systematic literature review on educational and scientific outcomes." Frontiers in Education. Vol. 8. Frontiers Media SA, 2023