

Continuité (étude globale). Diverses fonctions

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1 **I

Soit A une partie non vide de \mathbb{R} . Pour x réel, on pose $f(x) = d(x,A) = \text{Inf}\{|y-x|, y \in A\}$. Montrer que f est Lipschitzienne.

Correction ▼ [005392]

Exercice 2 **I

Soit f continue sur [a,b] à valeurs dans [a,b]. Montrer que f a un point fixe.

Correction ▼ [005393]

Exercice 3 **I

Soit f définie sur $[0, +\infty[$ à valeurs dans $[0, +\infty[$, continue sur $[0, +\infty[$ telle que $\frac{f(x)}{x}$ a une limite réelle $\ell \in [0, 1[$ quand x tend vers $+\infty$. Montrer que f a un point fixe.

Correction ▼ [005394]

Exercice 4 ***

Soit f croissante de [a,b] dans lui-même. Montrer que f a un point fixe.

Correction ▼ [005395]

Exercice 5 ****

Soit f croissante sur [a,b] telle que f([a,b]) = [f(a),f(b)]. Montrer que f est continue sur [a,b].

Correction ▼ [005396]

Exercice 6 ***

Soit f continue sur \mathbb{R}^+ telle que, pour tout réel positif x, on ait $f(x^2) = f(x)$. Montrer que f est constante sur \mathbb{R}^+ . Trouver un exemple où f n'est pas constante.

Correction ▼ [005397]

Exercice 7 ***IT

Soit f continue sur \mathbb{R}^+ à valeurs dans \mathbb{R} admettant une limite réelle quand x tend vers $+\infty$. Montrer que f est uniformément continue sur \mathbb{R}^+ .

Correction ▼ [005398]

Exercice 8 ***I

Trouver tous les morphismes continus de $(\mathbb{R}, +)$.

Correction ▼ [005399]

Exercice 9 ***

Soient a et b deux réels tels que 0 < a < b. Montrer que $\bigcup_{k \ge 1}]ka, kb[$ contient un intervalle de la forme $]A, +\infty[$ puis déterminer la plus petite valeur possible de A.

Correction ▼ [005400]

Exercice 10 ***

Soit f périodique et continue sur \mathbb{R} . Montrer que f est bornée et uniformément continue sur \mathbb{R} .

Correction ▼ [005401]

Exercice 11 *** Théorème d'homéomorphie

Soit f une application continue sur un intervalle I de \mathbb{R} à valeurs dans \mathbb{R} . Montrer que f est injective si et seulement si f est strictement monotone et que dans ce cas f(I) est un intervalle de même nature que I (ouvert, semi-ouvert, fermé).

Correction ▼ [005402]

Exercice 12 ***

Trouver un exemple de fonction pèriodique dont le groupe des pèriodes est dense dans \mathbb{R} mais pas \mathbb{R} .

Correction ▼ [005403]

Exercice 13 **

Soit f de [0,1] dans lui-même telle que $\forall (x,y) \in ([0,1])^2$, $|f(y) - \overline{f(x)}| \ge |x-y|$. Montrer que f = Id ou f = 1 - Id.

Correction ▼ [005404]

Exercice 14 ***

Trouver les fonctions bijectives de [0,1] sur lui-même vérifiant $\forall x \in [0,1], f(2x-f(x)) = x$.

Correction ▼ [005405]

Exercice 15 ***I

Soit f une application de [0,1] dans \mathbb{R} , continue sur [0,1] et vérifiant f(0)=f(1).

- 1. Soit *n* un entier naturel non nul et soit $a = \frac{1}{n}$. Montrer que l'équation f(x+a) = f(x) admet au moins une solution.
- 2. Montrer (en fournissant une fonction précise) que, si a est un réel de]0,1[qui n'est pas de la forme précédente, il est possible que l'équation f(x+a) = f(x) n'ait pas de solution.
- 3. Application. Un cycliste parcourt 20 km en une heure.
 - (a) Montrer qu'il existe au moins un intervalle de temps de durée une demi-heure pendant lequel il a parcouru 10 km.
 - (b) Montrer qu'il existe au moins un intervalle de temps de durée 3 min pendant lequel il a parcouru 1 km.
 - (c) Montrer qu'il n'existe pas nécessairement un intervalle de temps de durée 45 min pendant lequel il a parcouru 15 km.

Correction ▼ [005406]

Correction de l'exercice 1 A

Voir la correction de l'exercice ??.

Correction de l'exercice 2 A

Pour $x \in [a,b]$, posons g(x) = f(x) - x. g est continue sur [a,b] puisque f l'est. De plus, $g(a) = f(a) - a \ge 0$ et $g(b) = f(b) - b \le 0$. D'après le théorème des valeurs intermédiaires, g s'annule au moins une fois sur [a,b] ou encore, l'équation f(x) = x admet au moins une solution dans [a,b].

Correction de l'exercice 3 A

Puisque $\frac{f(x)}{x}$ tend vers $\ell \in [0,1[$, il existe A>0 tel que pour $x \ge A$, $\frac{f(x)}{x} \le \frac{\ell+1}{2} < 1$. Mais alors, f(A) < A (et $f(0) \ge 0$) ce qui ramène à la situation de l'exercice 2: pour $x \in [0,A]$, soit g(x) = f(x) - x...

Correction de l'exercice 4 A

Soit $E = \{x \in [a,b]/ f(x) \ge x\}$. E est une partie non vide de \mathbb{R} (car a est dans E) et majorée (par b). Donc, E admet une borne supèrieure c vérifiant $a \le c \le b$.

Montrons que f(c) = c.

Si c = b, alors $\forall n \in \mathbb{N}^*$, $\exists x_n \in E / b - \frac{1}{n} < x_n \le b$. Puisque f est à valeurs dans [a,b] et que les x_n sont dans E, pour tout entier naturel non nul n, on a

$$x_n \le f(x_n) \le b$$
 (*).

Quand n tend vers $+\infty$, la suite (x_n) tend vers b (théorème des gendarmes) et donc, f étant croissante sur [a,b], la suite $(f(x_n))$ tend vers $f(b^-) \le f(b)$. Par passage à la limite quand n tend vers $+\infty$ dans (*), on obtient alors $b \le f(b^-) \le f(b) \le b$ et donc f(b) = b. Finalement, dans ce cas, b est un point fixe de f.

Si $c \in [a,b[$, par définition de c, pour x dans]c,b[, f(x) < x (car x n'est pas dans E) et par passage à la limite quand x tend vers c par valeurs supérieures et d'après les propriétés usuelles des fonctions croissantes, on obtient : $f(c)(\le f(c+)) \le c$.

D'autre part, $\forall n \in \mathbb{N}^*$, $\exists x_n \in E/c - \frac{1}{n} < x_n \le c$. x_n étant dans E, on a $f(x_n) \ge x_n$. Quand n tend vers $+\infty$, on obtient : $f(c) \ge f(c^-) \ge c$. Finalement, f(c) = c et dans tous les cas, f admet au moins un point fixe.

Correction de l'exercice 5 A

Puisque f est croissante sur [a,b], on sait que f admet en tout point x_0 de]a,b[une limite à gauche et une limite à droite réelles vérifiant $f(x_0^-) \le f(x_0) \le f(x_0^+)$ puis une limite à droite en a élément de $[f(a), +\infty[$ et une limite à gauche en b élément de $]-\infty, f(b)]$.

Si f est discontinue en un x_0 de]a,b[, alors on a $f(x_0^-) < f(x_0)$ ou $f(x_0) < f(x_0^+)$. Mais, si par exemple $f(x_0^-) < f(x_0)$ alors, $\forall x \in [a,x_0[\ (\neq \emptyset), \ f(x) \le f(x_0^-) \ et \ \forall x \in [x_0,b], \ f(x) \ge f(x_0)$.

Donc $]f(x_0^-), f(x_0)[\cap f([a,b]) = \emptyset]$ ce qui est exclu puisque d'autre part $]f(x_0^-), f(x_0)[\neq \emptyset]$ et $]f(x_0^-), f(x_0)[\subset [f(a), f(b)]]$ (la démarche est identique si $f(x_0^+) > f(x_0)$). Donc, f est continue sur]a, b[. Par une démarche analogue, f est aussi continue en f ou f et donc sur [f] est aussi continue en f ou f est aussi continue en f

Correction de l'exercice 6 ▲

Soit x > 0. Pour tout naturel n, $f(x) = f(\sqrt{x}) = f(x^{1/4}) = \dots = f(x^{1/2^n})$. Or, à x fixé, $\lim_{n \to +\infty} x^{1/2^n} = 1$ et, f étant continue en 1, on a :

$$\forall x > 0, \ f(x) = \lim_{n \to +\infty} f(x^{1/2^n}) = f(1).$$

f est donc constante sur $]0, +\infty[$, puis sur $[0, +\infty[$ par continuité de f en 0.

Pour $x \ge 0$, posons f(x) = 0 si $x \ne 1$ et f(x) = 1 si x = 1. Pour $x \ge 0$, on a $x^2 = 1 \Leftrightarrow x = 1$. f vérifie donc : $\forall x \ge 0$, $f(x^2) = f(x)$, mais f n'est pas constante sur \mathbb{R}^+ .

Correction de l'exercice 7

Posons $\ell = \lim_{x \to +\infty} f(x)$.

Soit $\varepsilon > 0$. $\exists A > 0 / \forall x \in \mathbb{R}^+, (x \ge A \Rightarrow |f(x) - \ell| < \frac{\varepsilon}{3}$.

Soit $(x,y) \in [A,+\infty[^2]$. Alors, $|f(x)-f(y)| \le |f(x)-\ell|+|\ell-f(y)| < \frac{2\varepsilon}{3}(<\varepsilon)$. D'autre part, f est continue sur le segment [0,A] et donc est uniformément continue sur ce segment d'après le théorème de HEINE. Donc, $\exists \alpha > 0 / \forall (x,y) \in [0,A]^2, |x-y| < \alpha \Rightarrow |f(x)-f(y)| < \frac{\varepsilon}{3}(<\varepsilon)$.

Résumons. $\alpha > 0$ étant ainsi fourni, soient x et y deux réels de $[0, +\infty[$ vérifiant $|x-y| < \alpha$.

Si $(x,y) \in [0,A]^2$, on a $|f(x) - f(y)| < \frac{\varepsilon}{3} < \varepsilon$.

Si $(x,y) \in [A, +\infty[^2, \text{ on a } |f(x) - f(y)| < \frac{2\varepsilon}{3} < \varepsilon.$

Si enfin on a $x \le A \le y$, alors, puisque $|A - x| \le |x - y| < \alpha$, on a $|f(x) - f(A)| < \frac{\varepsilon}{3}$ et puisque A et y sont dans $[A, +\infty[$, on a $|f(y) - f(A)| < \frac{2\varepsilon}{3}$. Mais alors,

$$|f(x)-f(y)| \le |f(x)-f(A)|+|f(y)-f(A)| < \frac{\varepsilon}{3} + \frac{2\varepsilon}{3} = \varepsilon.$$

On a montré que $\forall \varepsilon > 0, \ \exists \alpha > 0/\ \forall (x,y) \in [0,+\infty[^2,\ (|x-y|<\alpha \Rightarrow |f(x)-f(y)|<\varepsilon).$ f est donc uniformément continue sur $[0,+\infty[$.

Correction de l'exercice 8 ▲

Soit f un morphisme de $(\mathbb{R},+)$, c'est-à-dire que f est une application de \mathbb{R} dans $\overline{\mathbb{R}}$ vérifiant

$$\forall (x, y) \in \mathbb{R}^2, \ f(x+y) = f(x) + f(y).$$

On sait déjà f(0) = f(0+0) = f(0) + f(0) et donc f(0) = 0. Puis, pour x réel donné, f(-x) + f(x) = f(-x+x) = f(0) = 0 et donc, pour tout réel x, f(-x) = -f(x) (f est donc impaire). On a aussi $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, f(nx) = f(x) + ... + f(x) = nf(x). De ce qui précède, on déduit :

$$\forall x \in \mathbb{R}, \ \forall n \in \mathbb{Z}, \ f(nx) = nf(x).$$

Soit a=f(1). D'après ce qui précède, $\forall n\in\mathbb{Z},\ f(n)=f(n.1)=nf(1)=an$. Puis, pour $n\in\mathbb{N}^*,\ nf(\frac{1}{n})=f(n\frac{1}{n})=f(1)=a$ et donc $\forall n\in\mathbb{N}^*,\ f(\frac{1}{n})=a\frac{1}{n}$. Puis, pour $p\in\mathbb{Z}$ et $q\in\mathbb{N}^*,\ f(\frac{p}{q})=pf(\frac{1}{q})=pa\frac{1}{q}=a\frac{p}{q}$. Finalement,

$$\forall r \in \mathbb{Q}, f(r) = ar.$$

Maintenant, si l'on n'a pas l'hypothèse de continuité, on ne peut aller plus loin. Supposons de plus que f soit continue sur \mathbb{R} .

Soit x un réel. Puisque \mathbb{Q} est dense dans \mathbb{R} , il existe une suite $(r_n)_{n\in\mathbb{N}}$ de rationnels, convergente de limite x. f étant continue en x, on a :

$$f(x) = f(\lim_{n \to +\infty} r_n) = \lim_{n \to +\infty} f(r_n) = \lim_{n \to +\infty} ar_n = ax.$$

Donc, si f est un morphisme continu de $(\mathbb{R},+)$, f est une application linéaire de \mathbb{R} dans \mathbb{R} . Réciproquement, les applications linéaires conviennent.

Correction de l'exercice 9 ▲

Soient a et b deux réels fixés tels que 0 < a < b. Trouvons les entiers naturels non nuls k tels que $[ka,kb] \cap (k+1)a,(k+1)b \neq \emptyset$. Pour k dans \mathbb{N}^* , posons [k=ka,kb].

$$I_k \cap I_{k+1} \neq \emptyset \Leftrightarrow ka < (k+1)a < kb < (k+1)b \Leftrightarrow k > \frac{a}{b-a} \Leftrightarrow k \geq E(\frac{a}{b-a}) + 1.$$

Posons $k_0 = E(\frac{a}{b-a}) + 1$. Pour $k \ge k_0$, on a donc $I_k \cap I_{k+1} \ne \emptyset$ et donc $\bigcup_{k \ge k_0}]ka, kb[=]k_0a, +\infty[$.

Maintenant, si $k_0=1$, $\bigcup_{k\geq k_0}]ka,kb[=]a,+\infty[$ et si $k_0>1$, $\bigcup_{k\geq k_0}]ka,kb[=(\bigcup_{k=1}^{k_0-1}]ka,kb[)\cup]k_0a,+\infty[$. Mais, si x est dans $\bigcup_{k=1}^{k_0-1}]ka,kb[$, alors $x<(k_0-1)b< k_0a$ et donc, $(\bigcup_{k=1}^{k_0-1}]ka,kb[)\cap]k_0a,+\infty[=\emptyset.$ La plus petite valeur de A est donc $(E(\frac{a}{b-a})+1)a$.

Correction de l'exercice 10 ▲

Soit T une pèriode strictement positive de f. f est continue sur le segment [0,T] et donc est bornée sur ce segment. f est par suite bornée sur \mathbb{R} par T-périodicité. Soit $\varepsilon > 0$.

f est continue sur le segment [0,T] et donc, d'après le théorème de HEINE, f est uniformément continue sur ce segment. Donc,

$$\exists \alpha \in]0, T[/\forall (x,y) \in [0,T], (|x-y| < \alpha \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{2}.$$

Soient x et y deux réels tels que $|x-y| < \alpha$. Si il existe un entier naturel k tel que $(x,y) \in [kT,(k+1)T]$, alors $x-kT \in [0,T]$, $y-kT \in [0,T]$, puis $|(x-kT)-(y-kT)|=|y-x|<\alpha$ et donc $|f(x)-f(y)|<\frac{\varepsilon}{2}<\varepsilon$. Sinon, en supposant par exemple que $x \le y$, puisque l'on a choisi $\alpha < T$,

$$\exists k \in \mathbb{Z}/(k-1)T \le x \le kT \le y \le (k+1)T.$$

Mais alors, $|x - kT| = |y - x| < \alpha$ et $|y - kT| \le |y - x| < \alpha$. Par suite,

$$|f(x)-f(y)| \le |f(x)-f(kT)| + |f(y)-f(kT)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Dans tous les cas, si $|x-y| < \alpha$, alors $|f(x) - f(y)| < \varepsilon$. On a montré que

$$\forall \varepsilon > 0, \ \exists \alpha > 0/ \ \forall (x,y) \in \mathbb{R}^2, \ (|x-y| < \alpha \Rightarrow |f(x) - f(y)| < \varepsilon).$$

f est donc uniformément continue sur \mathbb{R} .

Correction de l'exercice 11 ▲

Si f est strictement monotone sur I, on sait que f est injective.

Réciproquement, supposons f injective et continue sur I et montrons que f est strictement monotone.

Supposons par l'absurde que f n'est pas strictement monotone. On peut alors trouver trois réels a, b et c dans l'intervalle I tels que

$$a < b < c$$
 et $((f(b) \ge f(a))$ et $f(b) \ge f(c))$ ou $(f(b) \le f(a))$ et $f(b) \le f(c))$.

Quitte à remplacer f par -f, on supposer que a < b < c et $f(b) \ge f(a)$ et $f(b) \ge f(c)$.

Puisque f est injective, on a même a < b < c et f(b) > f(a) et f(b) > f(c). Soit $M = \text{Max}\{f(a), f(c)\}$. On a M < f(b). M est élément de [f(a), f(b)] et, puisque f est continue sur [a,b], le théorème des valeurs intermédiaires permet d'affirmer qu'il existe $\alpha \in [a,b]$ tel que $f(\alpha) = M$. De plus, on ne peut avoir $\alpha = b$ car $f(\alpha) = M \neq f(b)$ (et f injective). Donc,

$$\exists \alpha \in [a,b[/f(\alpha)=M].$$

De même, puisque M est élément de [f(c), f(b)], $\exists \beta \in]b, c]/f(\beta) = M$. Ainsi, on a trouvé dans I deux réels α et β vérifiant $\alpha \neq \beta$ et $f(\alpha) = f(\beta)$ ce qui contredit l'injectivité de f. Donc, f est strictement monotone sur I.

Correction de l'exercice 12 A

Soit f la fonction caractéristique de Q. Le groupe des périodes de f est \mathbb{Q} . En effet,

$$\forall x \in \mathbb{R}, \ \forall r \in \mathbb{Q}, \ x + r \in \mathbb{Q} \Leftrightarrow x \in \mathbb{Q},$$

et donc

 $\forall x \in \mathbb{R}, \ \forall r \in \mathbb{Q}, \ f(x+r) = f(x)$. Mais on a aussi

$$\forall x \in \mathbb{R}, \ \forall r \in (\mathbb{R} \setminus \mathbb{Q}), \ x + r \in \mathbb{Q}, \Leftrightarrow x \notin \mathbb{Q},$$

et donc $\forall x \in \mathbb{R}, \ \forall r \in (\mathbb{R} \setminus \mathbb{Q}), \ f(x+r) \neq f(x).$

Correction de l'exercice 13

On a $0 \le f(0) \le 1$ et $0 \le f(1) \le 1$. Donc $|f(1) - f(0)| \le 1$. Mais, par hypothèse, $|f(1) - f(0)| \ge 1$. Par suite, |f(1) - f(0)| = 1 et nécessairement, $(f(0), f(1)) \in \{(0, 1), (1, 0)\}$.

Supposons que f(0) = 0 et f(1) = 1 et montrons que $\forall x \in [0, 1], f(x) = x$.

Soit $x \in [0,1]$. On a $|f(x) - f(0)| \ge |x - 0|$ ce qui fournit $f(x) \ge x$. On a aussi |f(x) - f(1)| = |x - 1| ce qui fournit $1 - f(x) \ge 1 - x$ et donc $f(x) \le x$. Finalement, $\forall x \in [0,1], f(x) = x$ et f = Id.

Si f(0) = 1 et f(1) = 0, posons pour $x \in [0, 1]$, g(x) = 1 - f(x). Alors, g(0) = 0, g(1) = 1 puis, pour $x \in [0, 1]$, $g(x) \in [0, 1]$. Enfin,

$$\forall (x,y) \in [0,1]^2, |g(y) - g(x)| = |f(y) - f(x)| \ge |y - x|.$$

D'après l'étude du premier cas, g = Id et donc f = 1 - Id. Réciproquement, Id et 1 - Id sont bien bien solutions du problème.

Correction de l'exercice 14 ▲

Id est solution.

Réciproquement, soit f une bijection de [0,1] sur lui-même vérifiant $\forall x \in [0,1], \ f(2x-f(x)) = x$. Nécessairement, $\forall x \in [0,1], \ 0 \le 2x - f(x) \le 1$ et donc $\forall x \in [0,1], \ 2x - 1 \le f(x) \le 2x$. Soit f^{-1} la réciproque de f.

$$\forall x \in [0,1], \ f(2x - f(x)) = x \Leftrightarrow \forall x \in [0,1], \ 2x - f(x) = f^{-1}(x)$$
$$\Leftrightarrow \forall y \in [0,1], \ f(f(y)) - 2f(y) + y = 0 \ (\text{car} \ \forall x \in [0,1], \ \exists ! y \ [0,1] / \ x = f(y))$$

Soit $y \in [0,1]$ et $u_0 = y$. En posant $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$, on définit une suite de réels de [0,1] (car [0,1] est stable par f). La condition $\forall y \in [0,1]$, f(f(y)) - 2f(y) + y = 0 fournit $\forall n \in \mathbb{N}$, $u_{n+2} - 2u_{n+1} + u_n = 0$, ou encore $\forall n \in \mathbb{N}$, $u_{n+2} - u_{n+1} = u_{n+1} - u_n$. La suite $(u_{n+1} - u_n)_{n \in \mathbb{N}}$ est constante ou encore u est arithmétique. Mais, u est également bornée et donc u est constante.

En particulier, $u_1 = u_0$ ce qui fournit f(y) = y. On a montré que $\forall y \in [0,1], f(y) = y$ et donc f = Id.

Correction de l'exercice 15

1. Soit *n* un entier naturel non nul donné. Pour *x* élément de $[0, 1 - \frac{1}{n}]$, posons $g(x) = f(x + \frac{1}{n}) - f(x)$. g est définie et continue sur $[0, 1 - \frac{1}{n}]$. De plus,

$$\sum_{k=0}^{n-1} g(\frac{k}{n}) = \sum_{k=0}^{n-1} (f(\frac{k+1}{n}) - f(\frac{k}{n})) = f(1) - f(0) = 0.$$

Maintenant, s'il existe un entier k élément de $\{0,...,n-1\}$ tel que $g(\frac{k}{n})=0$, on a trouvé un réel x de [0,1] tel que $f(x+\frac{1}{n})=f(x)$ (à savoir $x=\frac{k}{n}$).

Sinon, tous les $g(\frac{k}{n})$ sont non nuls et, étant de somme nulle, il existe deux valeurs de la variable en lesquels g prend des valeurs de signes contraires. Puisque g est continue sur $[0,1-\frac{1}{n}]$, le théorème des valeurs intermédiares permet d'affirmer que g s'annule au moins une fois dans cet intervalle ce qui fournit de nouveau une solution à l'équation $f(x+\frac{1}{n})=f(x)$.

2. Soit $a \in]0,1[$ tel que $\frac{1}{a} \notin \mathbb{N}^*$. Soit, pour $x \in [0,1]$, $f(x) = |\sin \frac{\pi x}{a}| - x |\sin \frac{\pi}{a}|$. f est continue sur [0,1], f(0) = f(1) = 0 mais,

$$\forall x \in \mathbb{R}, \ f(x+a) - f(x) = (|\sin\frac{\pi(x+a)}{a}| - |\sin\frac{\pi x}{a}|) - ((x+a) - x)|\sin\frac{\pi}{a}| = -a|\sin\frac{\pi}{a}| \neq 0.$$

- 3. (a) et b)) Soit g(t) la distance, exprimée en kilomètres, parcourue par le cycliste à l'instant t exprimé en heures, $0 \le t \le 1$, puis, pour $t \in [0,1]$, f(t) = g(t) 20t. f est continue sur [0,1] (si le cycliste reste un tant soit peu cohérent) et vérife f(0) = f(1) = 0.
 - D'après 1), $\exists t_1 \in [0, \frac{1}{2}], \exists t_2 \in [0, \frac{19}{20}]$ tels que $f(t_1 + \frac{1}{2}) = f(t_1)$ et $f(t_2 + \frac{1}{20}) = f(t_2)$ ce qui s'écrit encore $g(t_1 + \frac{1}{2}) g(t_1) = 10$ et $g(t_2 + \frac{1}{20}) g(t_2) = 1$.
 - c) Posons pour $0 \le t \le 1$, $f(t) = |\sin \frac{4\pi t}{3}| \frac{t\sqrt{3}}{2}$ et donc, $g(t) = |\sin \frac{4\pi t}{3}| + (20 \frac{\sqrt{3}}{2})t$. $\forall t \in [0, \frac{1}{4}], f(t + \frac{3}{4}) f(t) \ne 0$ ou encore $g(t + \frac{3}{4}) g(t) \ne 15$.