Voting Loss function

Zekun zhao

MSE loss [mean square error]

- 1. take the **difference** between your predictions and the ground truth
- 2. square it
- 3. average it out across the whole dataset

Why it is not good enough?

Abnormal data affect normal data decision.

Not smooth; Bias Introduced.

Motivation

Rich set features:

- 1, Classification
- 2, Localization

Parks, D., Prochaska, J. X., Dong, S., & Cai, Z. (2017). Deep Learning of Quasar Spectra to Discover and Characterize Damped Lya Systems. *arXiv* preprint arXiv:1709.04962.

Motivation

Regularization:

$$\sum_{i=1}^n \Biggl(y_i - \sum_{j=1}^p x_{ij}eta_j\Biggr)^{\!\!\!2} \! + \! \lambda \sum_{j=1}^p eta_j^2$$

3, Batch Normal Regularization

Motivation

MSE Voting loss

Experiment result from David Park's current work.

True VS Preds

Basic Idea: Convert label to a high dimension

How voting works?

Giving one Apple to only one of N people;

Each people to give a vote for who they think which one people has the Apple;

-1 votes for his/her right 1 position; +1 votes for his/her left 1 position

Voting_Value 0 -3 -2 -1 0 +1 +2 +3 0 0

Index_People 1 2 3 4 5 6 7 8 9 10

Voting Result

Fitting

compare

Techniques:

1. Different Voting Strategy(linear or non-linear)

- 2. Model Fitting Method (GMM)
- 3. Multi-label for one element(assign two Apple to two people or more Apple)
- 4. Adapted Parameters (mask, length)

Techniques:

1. Different Voting Strategy(linear or non-linear)

2. Model Fitting Method (GMM)

3. Multi-label for one element(assign two Apple to two people or more Apple)

4. Adapted Parameters (mask, length)

Model Fitting Method (GMM)

Techniques:

- 1. Different Voting Strategy(linear or non-linear)
- 2. Model Fitting Method (GMM)
- 3. Multi-label for one element(assign two Apple to two people or more Apple)

4. Adapted Parameters (mask, length)

Adapted Parameters (mask, length)

$$L = (y' - y)^2 * \text{mask}$$

Speed up in loss calculation

cons

Distribution of dataset, abnormal data;

Difficult problem.

Special signal detection from sequence signal

saliency eye tracking

Thank you!