Trygonometria 1

Definicja.

Niech α będzie kątem ostrym w trójkącie prostokątnym. Wtedy:

Matematyka – Klasa 1

- Sinusem kąta α nazywamy stosunek długości przyprostokątnej przeciw
ległej do kąta α do przeciw-prostokątnej, czyli sin
 $\alpha:=\frac{y}{r}$.
- Cosinusem kąta α nazywamy stosunek długości przyprostokątnej przyległej do kąta α do przeciwprostokątnej, czyli $\cos \alpha := \frac{x}{r}$.
- Tangensem kąta α nazywamy stosunek długości przyprostokątnej przeciwległej do kąta α do przyprostokątnej przyległej do kąta α , czyli tg $\alpha := \frac{y}{x}$.
- Cotangensem¹ kąta α nazywamy stosunek długości przyprostokątnej przyległej do kąta α do przyprostokątnej przeciwległej do kąta α , czyli ctg $\alpha := \frac{x}{y}$.

Wartości dla kątów $30^{\circ}, 45^{\circ}, 60^{\circ}$

α	0 °	30°	45°	60°	90°
$\sin lpha$		$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	
$\cos \alpha$		$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	
$\operatorname{tg} lpha$		$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	
$\operatorname{ctg} lpha$		$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	

¹Nazwy funkcji trygonometrycznych pochodzą z łaciny: sinus oznacza zatokę, zagłębienie, zakrzywienie; cosinus pochodzi od complementi sinus, czyli sinus dopełnienia. Tangens oznacza styczną, zaś cotangens pochodzi od complementi tangens, czyli tangens dopełnienia. Na przełomie XVIII i XIX wieku Jan Śniadecki próbował wprowadzić całkowicie polskie odpowiedniki nazw funkcji trygonometrycznych: wstawa na sinus; dostawa na cosinus; styczna na tangens oraz dostyczna na cotangens. Nazwy jednak nie przyjęły się na stałe.

Twierdzenie (własności).

Niech α będzie kątem ostrym. Wtedy:

- 1) $\sin^2 \alpha + \cos^2 \alpha = 1$, (jedynka trygonometryczna)
- 2) $\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}$,
- 3) $\operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha}$,
- 4) $tg \alpha \cdot ctg \alpha = 1$.

 $Dow \acute{o}d.$

1)
$$L = \left(\frac{y}{r}\right)^2 + \left(\frac{x}{r}\right)^2 = \frac{y^2 + x^2}{r^2} \stackrel{\text{tw.}}{=} \frac{r^2}{r^2} = 1 = P$$

2)-4) - Ćwiczenie

Twierdzenie (wzory redukcyjne).

Niech α będzie kątem ostrym. Wtedy:

- 1) $\sin \alpha = \cos (90^{\circ} \alpha)$
- 2) $\cos \alpha = \sin (90^{\circ} \alpha)$
- 3) $tg \alpha = ctg (90^{\circ} \alpha)$
- 4) $\operatorname{ctg} \alpha = \operatorname{tg} (90^{\circ} \alpha)$.

Załóżmy, że mamy dowolny kąt α umieszczony w układzie współrzędnych, przy czym umieszczony jest on tak, że jego wierzchołek jest w początku układu współrzędnych, ramię początkowe znajduje się na dodatniej półosi Ox, a ramię końcowe w pierwszej, drugiej, trzeciej lub czwartej ćwiartce układu współrzędnych. Wybierzmy punkt P(x,y) na końcowym ramieniu kąta (różny od (0,0)).

Definicja.

Przy powyższych założeniach:

- $\sin \alpha \coloneqq \frac{y}{r}$,
- $\cos \alpha \coloneqq \frac{x}{r}$,
- $\operatorname{tg} \alpha \coloneqq \frac{y}{x}, \quad x \neq 0,$
- $\operatorname{ctg} \alpha \coloneqq \frac{x}{y}, \quad y \neq 0,$

gdzie
$$r = \sqrt{x^2 + y^2}$$
.

Znaki wartości funkcji trygonometrycznych zależą od tego, w której ćwiartce znajduje się kąt. Nauczenie się ich ułatwia wierszyk:

- W pierwszej wszystkie sa dodatnie,
- W drugiej tylko sinus,
- W trzeciej tangens i cotangens,
- W czwartej zaś cosinus.

Twierdzenie.

Zachodzą poprzednie 4 własności oraz:

- $\sin \alpha \in [-1,1]$,
- $\cos \alpha \in [-1, 1]$.

Definicja.

Kątem skierowanym nazywamy uporządkowaną parę półprostych o wspólnym początku. Pierwszą półprosta nazywamy ramieniem początkowym, a druga ramieniem końcowym.

Rozpatrzmy teraz kąt z "ruchomym" ramieniem końcowym. Załóżmy, że końcowe ramię kąta obróciło się o 360°, a następnie jeszcze o 45°. Otrzymujemy kąt o mierze $360^\circ + 45^\circ = 405^\circ$.

Gdybyśmy obracali dalej o wielokrotności 360° , to będziemy dostawać takie same kąty (przystające). Tak więc przyjmujemy, że kąt skierowany ma nieskończenie wiele miar, a tę z przedziału $[0^{\circ}, 360^{\circ})$ nazywamy miarą główną.

Wzory redukcyjne (schemat)

- 1) Zakładamy, że α jest kątem ostrym.
- 2) Sprawdzamy w której ćwiartce jest kat².
- 3) Ustalamy znak danej funkcji trygonometrycznej (wierszyk).
- 4) Jeśli przed $+\alpha$ (lub $-\alpha$) jest nieparzysta wielokrotność 90°, to funkcję zmieniamy na kofunkcję; jeśli jest parzysta, to funkcja pozostaje bez zmian.

Przykład.

•
$$\sin 240^{\circ} = \sin(180^{\circ} + 60^{\circ})^{III} \stackrel{\text{cw}}{=} - \sin 60^{\circ} = -\frac{\sqrt{3}}{2}$$

•
$$\sin 240^{\circ} = \sin(\frac{3.90^{\circ}}{270^{\circ}} - 30^{\circ})^{III} \stackrel{\text{cw}}{=} -\cos 30^{\circ} = -\frac{\sqrt{3}}{2}$$

 $^{^2{\}rm Mamy}$ na myśli oczywiście końcowe ramię kąta.

Do tej pory mierzyliśmy kąty przy pomocą stopni. Okazuje się, że można inaczej.

Definicja.

Stosunek długości łuku będącego częścią wspólną okręgu i kąta, do promienia (czyli $\frac{l}{r}$) nazywamy **miarą** łukową kąta.

Definicja.

Kąt, którego miara łukowa wynosi 1 nazywamy **radianem**³.

Miara łukowa kąta 360° to: $\frac{l}{r} = \frac{2\pi r}{r} = 2\pi$, zaś kąta 180° to: $\frac{l}{r} = \frac{\pi r}{r} = \pi$. Pozostałe kąty wyznaczamy z proporcji.

Ćwiczenie.

- wyznaczyć miarę łukową kątów: 30°, 45°, 90°,
- wyznaczyć miarę stopniową (w przybliżeniu) kąta o mierze 1 [rad].

Uwaga.

Dzięki wprowadzeniu miary łukowej, każda liczba rzeczywista jest miarą pewnego kąta oraz każdy kąt wyraża się liczbą rzeczywistą. Możemy zatem uogólnić definicję funkcji trygonometrycznych na liczby rzeczywiste.

 $^{^3{\}rm Jednostkę}\ radian$ zazwyczaj się pomija.

Wykresy funkcji trygonometrycznych

 $1) \ f(x) = \sin x$

Własności:

- $D = \mathbb{R}$
- ZW = [-1, 1]
- funkcja okresowa, $T_0 = 2\pi$
- funkcja nieparzysta
- miejsca zerowe: $k\pi$, $k \in \mathbb{Z}$
- $f_{\text{max}} = 1$ dla $x \in \{\frac{\pi}{2} + 2k\pi : k \in \mathbb{Z}\}$
- $f_{\min} = -1 \text{ dla } x \in \{-\frac{\pi}{2} + 2k\pi : k \in \mathbb{Z}\}$
- fjest rosnąca w każdym z przedziałów $\left[-\frac{\pi}{2}+2k\pi,\frac{\pi}{2}+2k\pi\right],k\in\mathbb{Z}$
- fjest malejąca w każdym z przedziałów $\left[\frac{\pi}{2}+2k\pi,\frac{3\pi}{2}+2k\pi\right],k\in\mathbb{Z}$
- $\bullet \ f$ nie jest różnowartościowa
- $2) \ f(x) = \cos x$

Własności:

- $D = \mathbb{R}$
- ZW = [-1, 1]

• funkcja okresowa, $T_0=2\pi$

• funkcja parzysta

• miejsca zerowe: $\frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$

• $f_{\text{max}} = 1$ dla $x \in \{2k\pi : k \in \mathbb{Z}\}$

• $f_{\min} = -1$ dla $x \in \{\pi + 2k\pi : k \in \mathbb{Z}\}$

• fjest rosnąca w każdym z przedziałów $[-\pi+2k\pi,2k\pi]\,,k\in\mathbb{Z}$

• fjest malejąca w każdym z przedziałów $\left[2k\pi,\pi+2k\pi\right],k\in\mathbb{Z}$

 $\bullet \ f$ nie jest różnowartościowa

$3) \ f(x) = \operatorname{tg} x$

Własności:

• $D = \mathbb{R} \setminus \left\{ x : x = \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\}$

• $ZW = \mathbb{R}$

• funkcja okresowa, $T_0=\pi$

• funkcja nieparzysta

• miejsca zerowe: $k\pi$, $k \in \mathbb{Z}$

• fjest rosnąca w każdym z przedziałów $\left(-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi\right),k\in\mathbb{Z}$

 $\bullet \ f$ nie jest różnowartościowa

 $4) \ f(x) = \operatorname{ctg} x$

Własności:

- $D = \mathbb{R} \setminus \{x : x = k\pi, k \in \mathbb{Z}\}$
- $ZW = \mathbb{R}$
- $\bullet \;$ funkcja okresowa, $T_0=\pi$
- funkcja nieparzysta
- miejsca zerowe: $\frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$
- fjest malejąca w każdym z przedziałów $\left(k\pi,\pi+k\pi\right),k\in\mathbb{Z}$
- $\bullet \ f$ nie jest różnowartościowa