

Memory Management - 6

Nitin V Pujari Faculty, Computer Science Dean - IQAC, PES University

Course Syllabus - Unit 3

Unit-3:Unit 3: Memory Management: Main Memory

Hardware and control structures, OS support, Address translation, Swapping, Memory Allocation (Partitioning, relocation), Fragmentation, Segmentation, Paging, TLBs context switches Virtual Memory – Demand Paging, Copy-on-Write, Page replacement policy – LRU (in comparison with FIFO & Optimal), Thrashing, design alternatives – inverted page tables, bigger pages. Case Study: Linux/Windows Memory

Course Outline

Topic Outline

- Page Table Structure
- Hierarchical Page Table Two Level Page table
- Two Level Paging Example
- Address Translation Scheme
- 64 Bit Logical Address Space
- Three Level Paging Scheme

Page Table Structure

- Memory structures for paging can get huge using regular methods
 - Consider a 32-bit logical address space as on modern computers
 - Page size of 4 KB (2^{12})
 - Page table would have 1 million entries $(2^{32} / 2^{12})$
 - If each entry is 4 bytes -> 4 MB of physical address space or memory for page table alone
 - That amount of memory used to cost a lot
 - Don't want to allocate that contiguously in main memory

Page Table Structure

Hierarchical Paging

Hashed Page Tables

Inverted Page Tables

Hierarchical Page Table – Two Level Page table

- Break up the logical address space into multiple page tables
- A simple technique is a two-level page table
- We then page the page table

Two Level Paging Example

- A logical address (on 32-bit machine with 1K page size) is divided into:
 - a page number consisting of 22 bits
 - a page offset consisting of 10 bits

- Since the page table is paged, the page number is further divided into:
 - a 12-bit page number
 - a 10-bit page offset
- It is also Known as forward-mapped page table
- where p1 is an index into the outer page table, and p2 is the displacement within the page of the inner page table

Two level Address Translation Scheme

Two level Address Translation Scheme - For a 32 bit Logical address space and page size of 1024 bytes

32 bit Logical address space - 2³²

2²² bits for Page Number

2¹⁰ bits for Page offset

P1=> 2¹² bits for Outer Page Table

P2=> 2¹⁰ bits for displacement within the Inner page table

2¹⁰ bits for Page offset

Two Level Paging Example - 64 Bit Logical Address Space

- Even two-level paging scheme not sufficient
- If page size is 4 KB (2¹²)
 - Then page table has 2⁵² entries
 - If two level scheme, inner page tables could be 2¹⁰ 4-byte entries
- Address would look like

out	ter page	inner page	page offset	
	<i>p</i> ₁	p_2	d	
	42	10	12	

- Outer page table has 2⁴² entries or 2⁴⁴ bytes
- One solution is to add a 2nd outer page table
- But in the following example the 2nd outer page table is still 2³⁴ bytes in size
 - And possibly 4 memory access to get to one physical memory location

Three Level Paging Scheme

2nd outer page	outer page	inner page	offset
p_1	p_2	p_3	d
32	10	10	12

THANK YOU

Nitin V Pujari Faculty, Computer Science Dean - IQAC, PES University

nitin.pujari@pes.edu

For Course Deliverables by the Anchor Faculty click on www.pesuacademy.com and complete reading assignments provided by the Anchor on Edmodo