《Python数据分析》 课程总结与回顾 (21年春季学期)

内容回顾

- 基础篇
 - · 数据分析基础(Numpy, pandas等)
 - 数据可视化(matplotlib, seaborn)
- 应用篇
 - 探索式数据分析
 - 机器学习基础
 - 图像数据分析
 - 社会网络分析
 - 时间序列分析
 - 文本数据分析

- •数据分析能干什么?
- •Python语法回顾
 - •四种数据结构(set, list, tuple, dict)
 - •两种表达形式(列表推导式、生成器表达式)
 - ·两种函数(普通函数、匿名函数lambda)
 - •模块化

- •列表推导式和生成器表达式有何区别?
 - •括号的形式
 - •遍历的次数

•赋值、浅拷贝、深拷贝

b = a: 赋值引用, a 和 b 都指向同一个对象。

b = a.copy(): 浅拷贝, a 和 b 是一个独立的对象,但他们的子对象还是指向统一对象(是引用)。

b = copy.deepcopy(a): 深度拷贝, a 和 b 完全拷贝了父对象及其子对象,两者是完全独立的。

•匿名函数

```
sum = lambda arg1, arg2: arg1 + arg2
```

```
print("运行结果: ", sum(10,20))
```

print("运行结果: ", sum(20,20))

•Numpy简介

- •创建与打印数组 (np.array())
- •基本运算(+、-、两种乘法、通用函数)
- •索引、切片和迭代
- •数组的形状操作、分割和组合

- •pandas基本数据结构的生成
 - ·Series: 传list或dict进去
 - •DataFrame: dict套list、dict套dict
- •索引是不可变的,但可以重新索引reindex(),填补方式有ffill()和mfill()
- •从坐标轴删除条目: drop(), 注意有inplace()

- •pandas索引、选择和过滤
 - ·Series: 用整数下标索引切片、标签切片(包含end)索引
 - •DataFrame:
 - •df['列名'], df[['列名1','列名2']]
 - •df[行整数下标或下标切片]
 - •通过轴标签: df.loc[label], df.loc[:, label], df.loc[label_1, label_2]
 - •通过整数下标: df.iloc[where], df.iloc[:, where], df.iloc[where _1, where _2]

- •pandas算术和数据对齐
 - •NA值会传播
 - •add, sub, div... (fill_value可以设置)
- •DataFrame和Series之间的操作
 - ·默认地: DataFrame和Series间的算术运算Series的索引将匹配DataFrame的列,并在行上扩展
- •函数应用和映射:
 - •Series: map方法
 - •DataFrame: apply用于某一行或列、applymap用于 每一个元素

- •排序
 - •sort_index() vs. sort_values(), 默认升序
- •排名
 - •rank()方法,可以指定行或列

- •pandas描述性统计
 - •汇总: count(), describe(), max()...
 - •唯一值: unique(), value_counts()...
 - •成员判断: isin()

- •pandas缺失值处理
 - •dropna(): 默认剔除所有包含缺失值的行
 - •参数可调: how='all'只剔除全部NAN的行, thresh设置阈值
 - •fillna(): 可对每列填充不同值, 可指定原地修改
 - •注意inplace, axis, method, value等参数
 - •isnull(), notnull()

- •数据读写
 - •read()简单顺序读取, readline()每次读取一行, readlines() 按行读取所有内容
 - •使用pandas读文件
 - •表头、跳几行、缺失值...
 - •使用pandas写文件
 - •to_csv, to_json, ...

- •数据清洗
 - •去重
 - •利用函数或映射进行转换
- •数据聚合和分组
 - •Groupby(): 最简单的分组法、使用字典或Series分组、使用函数分组、使用索引级别分组

基础篇:数据可视化

Matplotlib

- 基本函数, 如plot, scatter, xlim, xlabel, grid, annotate, text, title, legend
- 统计图形的绘制: 柱状图(+堆积,多数据并列,条形)、直方图、阶梯图、饼图、极线图、气泡图、箱线图
- 完善统计图形: 图例、标题、刻度(刻度定位器、刻度格式器)、标签、子图

基础篇:数据可视化

seaborn

- 单变量分布可视化: 直方图、密度分布、累积分布...
- · 多变量间关系的可视化: 散点图、折线图(含分面)、 热力图、等高线、jointplot、散点矩阵图...
- 定类变量的可视化: 定类散点图、定类箱线图、定类 小提琴图...
- 可视化中的美学因素

应用篇:探索式数据分析

•探索式数据分析 vs. 验证式数据分析

EDA	CDA
 No hypothesis at first 	Start with hypothesis
Generate hypothesis	Test the null hypothesis
Uses graphical methods (mostly)	Uses statistical models

- •一个变量的分析
- •两个变量的分析
- •三个或三个以上变量的分析

-	
5	CLA

比较项目	参数检验	非参数检验
检验对象	总体参数	总体分布和参数
总体分布	正态分布	未知
数据类型	连续数据	连续数据或离散数据
检验效能	较高	较低

•探索式数据分析 vs. 验证式数据分析

•一个变量的分析

- 描述性统计: 最值、均值、百分位数、众数
- 分布
 - 表格或柱状图
 - 直方图
 - 密度分布
 - 累积分布
 - 正态分布如何检验:数值法、图示法、统计检验法(SW检验、AD 检验)
- 对于同一个变量的多组样本
 - 参数检验
 - 非参数检验
- •两个变量的分析、三个或三个以上变量的分析

应用篇:探索式数据分析

- •探索式数据分析 vs. 验证式数据分析
- •一个变量的分析
- •两个变量的分析
 - •散点图
 - •相关系数
 - •分组
- •三个或三个以上变量的分析

应用篇:探索式数据分析

- •探索式数据分析 vs. 验证式数据分析
- •一个变量的分析
- •两个变量的分析
- •三个或三个以上变量的分析
 - •只能用于3个变量:珍珠图/气泡图、热力图等
 - •可以用于3个或以上变量:
 - •两两分别看(相关系数图、散点图矩阵等)
 - •因子分析
 - •聚类分析
 - •判别分析
 - •回归分析

因子分析的步骤

- · 分析KMO和巴特球形检验
 - 分析KMO值;如果此值高于0.8,则说明非常适合进行因子分析;如果此值介于0.7~0.8之间,则说明比较适合进行因子分析;如果此值介于0.6~0.7,则说明可以进行因子分析;如果此值小于0.6,说明不适合进行因子分析
 - 如果Bartlett检验对应p值小于0.05也说明适合进行因子分析。
- 描述因子提取情况和方差解释率等
 - 特征值 (Eigenvalue) >1的因子一般可以保留。
 - 描述总共提取的因子个数;分析每个因子旋转后的方差解释率和累积总共方差解释率。
- 分析loading载荷系数值
 - 通过因子载荷系数值(经验阈值0.3),分析出每个因子与题项的对应关系情况;结合因子与题项对应关系,对各个因子进行命名。

应用篇: 机器学习基础

- 机器学习的概念。
- 三个关键词: 算法、经验、性能
- 机器学习的基本流程。

应用篇: 机器学习基础

•人工智能、机器学习及深度学习的关系

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

应用篇: 机器学习基础

- 机器学习的经典问题
 - 概念、适用场景及常用算法
 - 分类、回归、聚类
- 利用scikit-learn进行预处理
 - 标准化、归一化、离散化、标称特征编码
- 利用scikit-learn进行机器学习
 - 分类、回归、聚类
 - 模型评价指标
- 关联规则挖掘
 - 支持度、置信度

应用篇: 图像数据分析

- 图像基础知识
 - 图像处理技术:
 - 形成、存储和显示
 - 图像处理
 - 图像处理技术路径
 - 图像的种类:
 - 位图、矢量图
 - 彩色图、灰度图
 - 图像分辨率
 - 位图的表示方式

应用篇:图像数据分析

- 图像数据基本操作
 - 图像读写
 - 图像切片
 - 改变图像大小
 - 图像旋转
 - 对比度调节
 - 图像颜色直方图
- 高级任务
 - 边缘检测
 - 基于神经网络的图像识别
 - 卷积神经网络的原理与典型结构

应用篇: 社会网络分析

- 社会网络的表示: 边列表、邻接矩阵
- 社会网络的重要理论: 六度分割理论
- 社会网络的常用指标:
 - · 微观层面:中心性(点度中心性、中介中心性、接近中心性)、PageRank...
 - 中观层面: 聚类系数...
 - 宏观层面: 直径、密度...

应用篇: 社会网络分析

- 社会网络中的一些现象:偏好连接性、同质性、传递性、核心-边缘结构
- 社会网络分析的应用
 - 链路预测
 - 排名
 - 社区探测
 - 分类/聚类
 - 恢复能力
 - 结构分析
 - 信息级联
 - 传染病模型

应用篇: 时间序列分析

- 时间序列数据(Time series data),是一批按照 时间先后顺序排列的统计数据
- 截面数据(Cross-section data),是一批发生在 同一时间截面上的数据
 - 工业普查数据、人口普查数据、家庭调查数据等
- 面板数据(Panel data),是时间序列数据与截面数据的合成体。
 - 1978-1999年我国各省市城镇居民消费结构的调查资料

应用篇: 时间序列分析

- Python中时间和日期的处理
- 时间序列基础
- 日期的范围、频率和转化
- 时间区间和区间算术
 - 时间区间 (Period) 和时间戳 (Timestamp) 有何差别?
- 时间序列的重采样
 - 上采样: 插值
 - 下采样: Groupby
 - 其他采样
- 移动窗口函数

应用篇: 文本数据分析

- Python中文本/字符串的处理
 - 通用序列操作
 - 字符串格式化与转义
 - 字符串函数 (方法)
 - 正则表达式
- 文本数据分析及其任务
 - 词性标注、词义标注、分词/切词(中文:最大匹配法)、信息抽取、自动文摘、信息检索、情感分析、表示学习、机器翻译、人机对话
 - 难点:知识体系缺乏->歧义

期末考试

• 时间: 6月28日14:00-16:00

• 地点: 待定

•形式: 闭卷考试

• 题目:基础篇(约30分)+应用篇(约70分), 简答题为主,含10分代码题,给代码备忘录 Cheet sheet

• 要求:《北京大学本科考试工作与学习纪律管理规定》

http://www.dean.pku.edu.cn/web/rules_info.php?id=8

小组作业

所有作业必须在规定上课日期的课前提交(如上课时间为某天下午 15:10,则必须在当天 15:09 前提交到指定位置)。除遇不可抗力(不包括时间管理不善、课程冲突、数据或文档丢失等问题),如作业迟交在 24 小时以内,总分扣除 20%; 迟交在 48 小时以内,总分扣除 40%; 迟交在 72 小时内,总分扣除 60%; 迟交在 96 小时内,总分扣除 80%; 迟交 96 小时以上,该次作业不计入总分。↩

- 5月24日15:09前: 提交小组选题给助教
- 6月7日:课堂汇报
 - 每组10min,额外≤5min的Q&A,小组全体(线下)成员都要上台
 - 教室: 7-8节: 二教301, 10-11节: 二教304
 - 请务必确认汇报人的电脑可以正常连接投影
- 7月3日(周六)晚上11:59
 - 上交小组作业全部内容(小组报告、PPT、代码[如有]等),每组只需要组长提交即可,注明组号

小组作业:远程同学的汇报

- 如果组内有至少一位线下同学, 由线下同学展示
- 如果组内全部为线上同学:
 - 使用"腾讯会议"远程连线

欢迎对本课程提出建议!

• 🙂

谢谢!

