四川大学期末考试试题(闭卷)

(2014~2015 学年第1学期)

课程号: **311076040** 课程名称: **数据结构与算法(A卷)** 任课教师: _____

适用专业年纪	吸: 软件工程 2012	级	学号:	姓名:	
		考试			
学考场规则》 四川大学	学学生参加由学校组织或E 。有考试违纪作弊行为的 学各级各类考试的监考人员 责》。有违反学校有关规定	,一律按照《四川大学 员,必须严格执行《四川	学生考试违纪作弊处罚条 大学考试工作管理办法》	例》进行处理。 、《四川大学考场规则》	
题 号	一(30%)	二(16%)	三(34%)	四(20%)	卷面成绩
得 分					
阅卷时间					
3	. 请务必将本人所在学 2. 请将答案全部填写在 3. 考试结束,请将试题	答题纸上; 纸、添卷纸和草稿纸	一并交给监考老师。		
评阅教师	提示: 在每		专15 小题,每小是 选项中只有一个是符 无分。		其代码填写在
• •	tic analysis refers to: cost of an algorithm	· ·	or average case.		
	growth in cost of an		_	ards infinity.	
(C) The	size of a data structu	are.			
(D) The	cost of an algorithm	n for small input siz	es.		
2. For a list	of length n, the linke	d-list implementati	on's prev function re	equires worst-case t	ime:()
(A) O(, , , , ,	` ´ ` ` `	(D) $O(n^2)$.		
	gly linked list with a	head node pointer	r, The condition to o	determine whether i	it is empty is
()	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	. (0)	1 1 001 1	
	ad = NULL (B) h				!= NULL
•	t of a stack is abcde , acb (B) bcdae	(C) bcade	(D) aedcb).	
(A) ed 5. If a binar	ry tree has 13 nodes	` '	` /	ne degree how ma	ny nodes are
	ero degree? ()	with two degrees	and o nodes with or	ne degree, now ma	ny nodes are
(A) 7	(B) 15 (C) 14	(D) uncertain			
` /	n is generally implen	` ')		
	orted list (B) As		,		

注: 试题字迹务必清晰,书写工整。 本题共 **4** 页,本页为第 **1** 页 教务处试题编号: **311**-11

课程名称: 数据结构与算法 任课教师: 孙界平 张卫华 李晓华 程艳红 杨秋辉 学号: 姓名:

7. Which of the following is a true statement: ()				
(A) In a BST, the left child of any node is less than the right child, and in a heap, the left child of				
any node is less than the right child.				
(B) In a BST, the left child of any node is less than the right child, but in a heap, the left child of any				
node could be less than or greater than the right child.				
(C) In a BST, the left child of any node could be less or greater than the right child, but in a heap,				
the left child of any node must be less than the right child.				
(D) In both a BST and a heap, the left child of any node could be either less than or greater than the				
right child.				
8. Huffman coding provides the optimal coding when:()				
(A) The messages are in English.				
(B)The messages are binary numbers.				
(C) Skewed so that there is a great difference in relative frequencies for various letters.				
(D) none of the above				
9. We use the parent pointer representation for general trees to solve which problem? ()				
(A) Shortest paths (B) General tree traversal				
(C)Equivalence classes (D)Exact-match query				
10. When sorting n records, Quicksort has average-case cost: ()				
(A) $O(\log n)$. (B) $O(n)$. (C) $O(n^2)$ (D) $O(n \log n)$.				
11. The basic unit of I/O when accessing a disk drive is: ()				
(A) A byte. (B) A sector. (C) A cluster. (D) A track.				
12. Breadth-first search in graph is best implemented using: ()				
(A) A stack or recursion. (B) A queue. (C) A tree. (D)none of the above				
13. Self-organizing lists attempt to keep the list sorted by: ()				
(A) Value (B) frequency of record access				
(C) size of record (D)None of the above				
14. The primary difference between a B-tree and a B+-tree is ().				
(A) The B+-tree store records only at the leaf nodes.				
(B) The B+-tree has a higher branching factor.				
(C) The B+-tree is hight balanced.				
(D) The B+-tree is smaller.				
15. The goal of a topological sort is to: ()				
(A)Sort all of the graph vertices by value.				
(B)Sort all of the graph vertices so that each vertex is listed prior to any others that depend on it.				
(C)Sort all of the graph vertices by distance from the source vertex.				
(D)None of the above.				

注: 试题字迹务必清晰, 书写工整。 本题共 4 页, 本页为第 2 页

评阅教师	得分

二、名词解释题(本大题共 4 小题,每小题 4 分,共 16 分)。提示:解释每小题所给名词的含义,若解释正确则给分,若解释错误则无分,若解释不准确或不全面,则酌情扣分。

- 1. growth rate
- 2. priority queue
- 3. external sorting
- 4. connected component

评阅教师	得分

三、应用题(本大题共 4 小题,1-2 每小题 8 分,3-4 每小题 9 分,共 34 分)

提示:有求解过程的要尽量给出解题步骤,只有最终答案会酌情扣分。

1. Please show the pre-order traversal and In-order traversal results of the BT bellow.

- 2. Given the Adjacency List representation of a directed graph as following,
 - 1) Draw the graph.
 - 2) Show the Adjacency Matrix representation of the graph.

- 3. Please show the process of constructing a 2-3 tree by inserting the records in following order: 8, 85, 23, 45, 58, 67, 40, 30, 26, 5, 72, 98.
- 4. Assume that you have a twelve-slot closed hash table (the slots are indexed 0 through 11).
- 1) Show the final hash table that would result if you used the hash function $H(k) = k \mod 12$ and the simple linear probing P(K,i)=i on this list of numbers: 2, 14, 18, 15, 59, 75, 93, 25
- 2) After inserting the above numbers, calculate the probability for each empty slot that will be the next one filled.

注: 试题字迹务必清晰,书写工整。 本题共 **4** 页,本页为第 **3** 页 教务处试题编号: **311-11**

课程名称: 数据结构与算法 任课教师: 孙界平 张卫华 李晓华 程艳红 杨秋辉 学号: 姓名:

评阅教师 得分	四、	编程、	设计及分析题	(本大题共	2 小题,	1小题8分,	2小题12分,
	" 共2	共20分)。					
	提示	: 请按照	R要求写出源程序/	代码, 如果源	代码中出	现语法或逻辑错	误,则酌情扣分。

- 1. Write an algorithm that counts the number of leaves in a binary tree.
- 2. Assume there are two **ascending** ordered lists L1 and L2, please merge L1 and L2 into a new **ascending** ordered list L3. There will be **no duplicate** items in L3.

注: 试题字迹务必清晰,书写工整。 本题共 4 页,本页为第 4 页 教务处试题编号: 311-11