Homework 32 (Chap. 14.6), 59.00/110.00 (53.64%)

May 7, 2020

Problem 4 score: $0/10^1$

Directional derivative should be a single number. You have an expression. Moreover, f_x is wrong (should be $y^3 - 2x$).

Problem 8 score: 10/10

- (a) good
- (b) good
- (c) good

Problem 14 score: $4/10^2$

Directional derivative should be a single number. You have a vector.

To indicate the error more precisely, the one-before-the-last expression you wrote is

 $(6\mathbf{i} - 9\mathbf{j}) \left(\frac{3}{5}\mathbf{i} + \frac{4}{5}\mathbf{j} \right)$

this should indicate a *scalar product*, which would indeed give you a single number. However, you have interpreted this expression rather strangely...

Problem 22 score: $0/10^3$

 f_t is computed wrongly. Also, when you cite the Theorem (i.e. "According to the Theorem");++;, please indicate the number of Theorem and/or page of textbook.

¹similar problems: 5,6

 $^{^2}$ similar problems: 15,16

³similar problems: 23,24

Problem 27 score: 10/10

(a) good

(b) good

Problem 38 score: $0/10^4$

cannot find the solution

Problem 41 score: 10/10

good

Problem 51 score: 10/10

good

Problem 61 score: 10/10

good

Problem 65 score: $0/10^5$

You compute angle between plane and line in a wrong way.

Problem 68 score: $5/10^6$

(a) good

(b) you were asked to graph the function, not its level curves.

 $^{^4}$ similar problems: 39,40

⁵similar problems: 66,67 ⁶similar problems: 69,70