Mathematics Notes for

Computer Science Information Technology

Hazer-BJTU

2024 / 2 / 16

目录

1	深度学习中的线性代数/概率论		
	1.1	多元函数微分	3
	1.2	线性回归模型的解析解	3

1 深度学习中的线性代数/概率论

1.1 多元函数微分

考虑定义在 \mathbb{R}^n 上的函数f,其输出为一个向量 $\mathbf{y} \in \mathbb{R}^m$,如果存在线性函数L,使得:

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + L(\mathbf{h}) + O(\|\mathbf{h}\|_2)$$

其中线性函数L满足:

$$L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y})$$
$$L(\lambda \cdot \mathbf{x}) = \lambda \cdot L(\mathbf{x}), \lambda \in \mathbb{R}$$

那么我们就认为该函数f是**可微的**,一般来说,我们可以将线性函数L简单理解为线性变换,如果我们限制函数f的输出为一个实数 $y \in \mathbb{R}$,则微分也可以被表示为如下形式:

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + \mathbf{w}^{\mathsf{T}} \mathbf{h} + O(\|\mathbf{h}\|_{2}), \mathbf{w} \in \mathbb{R}^{n}$$

一个基本的事实是可微⇒偏导数存在,因为:

$$\frac{f(\mathbf{x} + \Delta \mathbf{x}_i) - f(\mathbf{x})}{\Delta \mathbf{x}_i} = \frac{\mathbf{w}_i \cdot \Delta \mathbf{x}_i}{\Delta \mathbf{x}_i} + \frac{O(\Delta \mathbf{x}_i)}{\Delta \mathbf{x}_i} = \mathbf{w}_i + \frac{O(\Delta \mathbf{x}_i)}{\Delta \mathbf{x}_i}$$

$$\Rightarrow \lim_{\Delta \mathbf{x}_i \to 0} \frac{f(\mathbf{x} + \Delta \mathbf{x}_i) - f(\mathbf{x})}{\Delta \mathbf{x}_i} = \mathbf{w}_i + \lim_{\Delta \mathbf{x}_i \to 0} \frac{O(\Delta \mathbf{x}_i)}{\Delta \mathbf{x}_i} = \mathbf{w}_i$$

$$\Rightarrow \frac{\partial f}{\partial \mathbf{x}_i} = \mathbf{w}_i$$

由此可见,实际上向量 \mathbf{w} 就是由函数f关于各分量的偏导数构成的:

$$\mathbf{w} = \left(\frac{\partial f}{\partial \mathbf{x}_0}, \frac{\partial f}{\partial \mathbf{x}_1}, \frac{\partial f}{\partial \mathbf{x}_2}, \dots, \frac{\partial f}{\partial \mathbf{x}_n}\right)$$

定义对于向量 $\mathbf{x} \in \mathbb{R}^n$: $d\mathbf{x} = (d\mathbf{x}_0, d\mathbf{x}_1, d\mathbf{x}_2, \dots, d\mathbf{x}_n)$,则根据全微分公式可以得出如下关系:

$$d\mathbf{x}^{\top}\mathbf{x} = 2\mathbf{x}^{\top}d\mathbf{x}$$
$$d(\mathbf{x} + \mathbf{y}) = d\mathbf{x} + d\mathbf{y}$$
$$dA\mathbf{x} = Ad\mathbf{x}$$

留给读者自证。

1.2 线性回归模型的解析解

一般的线性模型可以被描述为以下形式,其中 $\hat{y} \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^d, \mathbf{w} \in \mathbb{R}^d$:

$$\hat{y} = \mathbf{w}^{\mathsf{T}} \mathbf{x} + \mathbf{b}$$

而对于批量的样本数据,使用 $\mathbf{X} \in \mathbb{R}^{n \times d}$ 表示 n 组样本, $\hat{\mathbf{Y}} \in \mathbb{R}^n$ 表示对于数据集上所有样本的 预测结果向量,则可以进行如下矩阵表示:

$$\hat{\mathbf{Y}} = \mathbf{X}\mathbf{w} + \mathbf{B}$$

对于真实的数据Y,线性回归要求我们最小化损失 $\|\hat{\mathbf{Y}} - \mathbf{Y}\|_2$,这是一个十分简单的优化问题,存在解析解,证明如下:

$$\begin{split} \left\|\hat{\mathbf{Y}} - \mathbf{Y}\right\|_2 &= \sqrt{(\hat{\mathbf{Y}} - \mathbf{Y})^\top (\hat{\mathbf{Y}} - \mathbf{Y})} \\ &= \sqrt{(\mathbf{X}\mathbf{w} + \mathbf{B} - \mathbf{Y})^\top (\mathbf{X}\mathbf{w} + \mathbf{B} - \mathbf{Y})} \end{split}$$

故问题转化为最小化 $(\mathbf{X}\mathbf{w} + \mathbf{B} - \mathbf{Y})^{\mathsf{T}}(\mathbf{X}\mathbf{w} + \mathbf{B} - \mathbf{Y})$,这是一个二次型,我们对于 \mathbf{w} 求导:

$$d(\mathbf{X}\mathbf{w} + \mathbf{B} - \mathbf{Y})^{\top}(\mathbf{X}\mathbf{w} + \mathbf{B} - \mathbf{Y}) = 2(\mathbf{X}\mathbf{w} + \mathbf{B} - \mathbf{Y})^{\top}d(\mathbf{X}\mathbf{w} + \mathbf{B} - \mathbf{Y})$$
$$= 2(\mathbf{X}\mathbf{w} + \mathbf{B} - \mathbf{Y})^{\top}\mathbf{X}d\mathbf{w}$$
$$= 0$$

故可以得到:

$$(\mathbf{X}\mathbf{w} + \mathbf{B} - \mathbf{Y})^{\top}\mathbf{X} = \mathbf{O}$$

等式两边同时取转置可知:

$$\begin{split} \mathbf{X}^\top (\mathbf{X} \mathbf{w} + \mathbf{B} - \mathbf{Y}) &= \mathbf{O} \\ \mathbf{X}^\top \mathbf{X} \mathbf{w} &= \mathbf{X}^\top (\mathbf{Y} - \mathbf{B}) \\ \mathbf{w} &= (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top (\mathbf{Y} - \mathbf{B}) \end{split}$$

即可得到参数的最优解,前提是矩阵 $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ 可逆。