Collecting Data to Extract Insights

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Standardization and normalization

Binning and sampling

Big data

Batch vs. streaming data

Event time and processing time

Two Hats of a Data Professional

Find the Dots

Identify important elements in a dataset

Connect the Dots

Explain those elements via relationships with other elements

Processing Data for Use in Models

Building and Refining Models

Incorporating Realworld Data into Models

Processing Data for Use in Models Building and Refining Models

Incorporating Realworld Data into Models

Not in scope in this course

Processing Data for Use in Models

Incorporating Real-world
Data into Models

Processing Data for Use in Models

Incorporating Real-time Data into Models

$$\frac{x_{11} - avg(X_1)}{stdev(X_1)}$$

$$\frac{x_{1k} - avg(X_k)}{stdev(X_k)}$$

$$\frac{x_{11} - avg(X_1)}{stdev(X_1)}$$

$$\frac{x_{1k} - avg(X_k)}{stdev(X_k)}$$

Each column of the standardized data has mean 0 and variance 1

$$z = \frac{x_i - mean(x)}{stdev(x)}$$

Standardization operates column-by-column and yields features with zero mean and unit variance

Before After

$$z = \frac{x_i - mean(x)}{stdev(x)}$$

Mean is a measure of central tendency and standard deviation is a measure of dispersion

Robust Standardization

Median is also a measure of central tendency and inter-quartile range is also measure of dispersion

Robust Standardization

Output does not change much due to outliers

Robust Standardization

Before After

Normalizing Data

Normalization

Process of scaling input vectors individually to unit norm (unit magnitude), often in order to simplify cosine similarity calculations.

Cosine Similarity

Cosine similarity is a measure of similarity between two non-zero vectors, widely used in ML algorithms - especially in document modeling applications.

Orthogonal Vectors

Vectors A and B are at 90 degrees

Orthogonal vectors represent uncorrelated data

A and B are unrelated, independent

Cosine of 90 degrees = 0

Aligned Vectors

Vectors A and B are parallel

Angle between them is 0 degrees

Perfectly aligned

Correlation of 1 (highest possible)

Cosine of O degrees = 1

Opposite Vectors

Vectors A and B point in opposite directions

Angle between them is 180 degrees

Perfectly opposed

Correlation of -1 (lowest possible)

Cosine of 180 degrees = -1

Cosine Similarity

Quick and intuitive way to express alignment between two vectors

Each vector represents a single point

In three dimensions, a point is represented as

 (x_i, y_i, z_i)

Cosine Similarity

$$\cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

$$\|A\|^{2} = x_{A^{2}} + y_{A^{2}} + z_{A^{2}}$$

$$\|B\|^{2} = x_{B^{2}} + y_{B^{2}} + z_{B^{2}}$$

$$A \cdot B = x_{A}x_{B} + y_{A}y_{B} + z_{A}z_{B}$$

Normalization

Pre-convert A and B to unit norm vectors to simplify calculation

$$a = \frac{A}{||A||} = \frac{(X_A, Y_A, Z_A)}{sqrt(X_A^2 + Y_A^2 + Z_A^2)}$$

$$b = \frac{B}{||B||} = \frac{(x_B, y_B, z_B)}{sqrt(x_B^2 + y_B^2 + z_B^2)}$$

Normalization

Before Normalization

After Normalization

Normalizing is a row-wise operation, while scaling is a column-wise operation

Different Norms

L1

Sum of absolute values of components of vector

L2

Traditional definition of vector magnitude

max

Largest absolute value of elements of vector

L1-norm

$$x_{new} = \frac{x}{|x| + |y| + |z|}$$

L2-norm

$$x_{new} = \frac{x}{sqrt(x^2 + y^2 + z^2)}$$

max norm

$$x_{new} = \frac{x}{max(x)}$$

Binning Data

Data Binarization

Converts continuous variable into a binary categorical variable based on a threshold specified by user.

Binarizing Data

Continuous Input Binary Categorical Output

Discretizing Data

Generalizes idea of binarization; converts continuous data into categorical data arranged into a specified number of bins.

Discretizing Data

Before

After (3 Bins)

Binning Strategies

Uniform

Bin widths are constant in each feature

Quantile

All bins in each feature have approximately the same number of samples

K-means

Bins based on the centroids of a K-means clustering procedure

Big Data

Essential Steps in Connecting the Dots

Processing Data for Use in Models

Incorporating Real-world
Data into Models

Essential Steps in Connecting the Dots

Processing Data for Use in Models Incorporating Real-world
Data into Models

John is responsible for tracking and delivering orders on time

Revenue Analyst

Anna is responsible for tracking and monitoring revenues

Order Management Support

20 deliveries in Kent, WA are delayed

The courier company has had a computer outage

John assigns the orders to another courier company in the region

Revenue Analyst

Her manager wants an update on last month's revenues

Last month was an unusually slow one

Anna pulls up data for the last 5 years to check for seasonal effects

Transactional Processing

Analytical Processing

Transactional Processing

Ensure correctness of individual entries

Access to recent data, from the last few hours or days

Updates data

Fast real-time access

Usually a single data source

Analytical Processing

Analyzes large batches of data

Access to older data going back months, or even years

Mostly reads data

Long running jobs

Multiple data sources

Small Data

Both these objectives could be achieved using the same database system

Small Data

Single machine with backup

Structured, well-defined data

Can access individual records or the entire dataset

No replication, updated data available instantaneously

Different tables store data from different sources

Big Data

Very hard to meet all requirements with the same database system

Big Data

Data distributed on a cluster with multiple machines

Semi-structured or unstructured data

No random access to data

Data replicated, propagation of updates take time

Different sources may have different unknown formats

Transactional Processing

Traditional RDBMS

Analytical Processing

Data Warehouse

3 Vs of Big Data

Volume: Amount of data

Variety: Number and type of sources

Velocity: Batch and streaming

Vertical

Monolithic architecture

No need for orchestration

No need to shard data

No need to replicate data

No replication delay

Horizontal

Distributed architecture
Orchestration required
Need to shard data
Need to replicate data
Incur replication delay

Vertical

Easy to ensure consistency

Can offer strong consistency fairly easily

ACID support easy to provide

So, usually used in OLTP applications

Horizontal

Hard to ensure consistency

Usually offer only eventual consistency

ACID support hard to provide

So, usually used in OLAP applications

Vertical

Easy to ensure consistency

Can offer strong consistency fairly easily

ACID support easy to provide

So, usually used in OLTP applications

Horizontal

Hard to ensure consistency

Usually offer only eventual consistency

ACID support hard to provide

So, usually used in OLAP applications

Consistency Guarantees

Strong Eventual Update Request **Update** Request request returns request returns Replica **Data Master** updated later updated updated

Batch and Stream Processing

Bounded datasets are processed in batches

Unbounded datasets are processed as streams

Batch vs. Stream Processing

Batch

Bounded, finite datasets

Slow pipeline from data ingestion to analysis

Periodic updates as jobs complete

Stream

Unbounded, infinite datasets

Processing immediate, as data is received

Continuous updates as jobs run constantly

Batch vs. Stream Processing

Batch

Order of data received unimportant

Single global state of the world at any point in time

Stream

Order important, out of order arrival tracked

No global state, only history of events received

Data is received as a stream

- Log messages
- Tweets
- Climate sensor data

- Find references to the latest movies
- Track weather patterns

- Show trending graphs
- Warn of sudden squalls

Streaming data

Stream-first Architecture

Stream

Stream-first Architecture

Stream

Event Time and Processing Time

Time

Event Time

Ingestion Time

Processing Time

Event Time

The time at which the event occurred at its original source

- Mobile phone, sensor, website

Usually embedded within records

Gives correct results in case of out of order or late events

Ingestion Time

The time at which the event enters the processing system via a source

Timestamp given by system chronologically after the event time

Cannot handle out of order events

Processing Time

The system time of the machine processing entities

Chronologically after event time and ingestion time

Non-deterministic, depends on when data arrives, how long operations take

Simple, no coordination between streams and processors

How Late is Late?

Class At 9 am

Class starts when clock strikes 9

Is 9:01 Late?

Realistically, at least some folks are going to be a minute late Is 10:10 late?

A student is an hour late - allow in or send back?

Late Data

The professor "knows" what lateness is reasonable

Students entering within this reasonable lateness are late but OK

Students entering after this reasonable lateness are too late

"Allowed Lateness"

Watermarks and Late Data

The system "knows" what lateness is reasonable

Data entering within this reasonable lateness is late but OK

Data entering after this reasonable lateness is too late

Watermarks and Late Data

Watermark

Threshold of allowed lateness (event time)

Late Data

Data within watermark is processed

Dropped Data

Data outside watermark is dropped

Summary

Standardization and normalization

Binning and sampling

Big data

Batch vs. streaming data

Event time and processing time