Relátorio 09

Erika Costa Alves

30 de Setembro de 2019

1 Introdução

Nesse relatorio será mostrado como foi projetado o cicuito da **Figura 1**. O Circuito abaixo tem como objetivo de projetar um circuito logico para um pequeno sinalizador iluminoso de 5 LEDS, tal que os 5 LEDS vão alterando de valor ao longo dos pulsos de Clock's. No total há 10 variações até retornar aos valores iniciais. E por fim uma entrada chamada **Enable** para ativar o funcionamento.

Figura 1: Circuito á ser Projetado.

Este circuito, após projetado, foi montado em uma protboard utilizando circuitos integrados e equipamentos do laboratório de eletrônica.

2 Design do Circuito

O Design do circuito foi feito baseado numa tecnica que é bastanqte conhecida em circuitos digitais, ela se chama **Maquina de Estado**. Na maquina de estado, cada estado representa um estado unico, no qual tem uma saída e uma entrada -Dependendo do projeto, pode ser que nem precise de uma entrada-.

No caso desse projeto que está sendo implementado, há uma entrada chamada **Enable**, na qual serve apenas para parar o circuito, não haver a troca de estado, e manter o circuito no estado que estava. Logo abaixo está a **Figura 2** que é a representação da nossa maquina de estado.

(1).jpg

Figura 2: Maquina de Estado.

O projeto em questão possui duas partes, a combinação logica para fazer a mudança de estados e um registrador no qual vai receber as saidas da combinação logica para armazenar os valores dos estados. Note que a saída do registrador vai para a o circuito logico, e a saída do circuito logico vai para o registrador. Um depende do outro. Ver **Figura 3**.

Para implementar o **Enable** foi feito apenas uma **AND** com o Clock.

2.1 Registrador de Estados

O registrador de estados foi feito baseado em um **Flip Flop D**. Então, usando a **Tabela 1**, a tabela verdade para a Figura 2, é possivel fazer uma tabela verdade para as entradas do flip flop D **Tabela 3**. Mas para fazer uma tabela verdade para as entradas do flip flop D temos que utilizar a **Tabela 2**, a tabela para o estado futuro do flip flop D.

S 3	S2	S1	S0	N3	N2	N1	N0	L4	L3	L2	L1	L0
0	0	0	0	0	0	0	1	0	0	0	1	1
0	0	0	1	0	0	1	0	0	0	1	1	0
0	0	1	0	0	0	1	1	0	1	1	0	0
0	0	1	1	0	1	0	0	1	1	0	0	0
0	1	0	0	0	1	0	1	1	0	0	0	0
0	1	0	1	0	1	1	0	0	1	0	0	0
0	1	1	0	0	1	1	1	0	0	1	0	0
0	1	1	1	1	0	0	0	0	0	0	1	0
1	0	0	0	1	0	0	1	0	0	0	0	1
1	0	0	1	0	0	0	0	1	1	1	1	1

Tabela 1: Tabela verdade para o Estado Presente e Futuro

Q	Qn	D
0	0	0
0	1	1
1	0	0
1	1	1

Tabela 2: Flip Flop Next State

Por fim, após montar as tabelas, foi feitas as equações de cada entrad do ffd. Vale ressaltar que no **Don't care** foi colocado '0' para evitar erros, entretanto, as equações ficaram muito longas.

D3	D2	D1	D0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
0	0	0	0

Tabela 3: Tabela verdade para as entradas D

2.2 Circuito Logico

Para fazer o circuito lógico foi feita a mesma ideia que para o Registrador de estados. A partir da tabela gerada, tabela 2, foi feita as equações para cada LED.

3 Montagem e Execução

A montagem foi feita em protoboard utilizando os esquipamentos e circuitos integrados do laboratório de eltrônica. Como é possivel ver nas imagens logo abaixo. A primeria protoboard se refere ao circuito da logica do registrador, e a segunda protoboard se refere as lógicas para cada LED do circuito. E por fim temos uma imagem dos dois circuitos juntos funcionando.

No projeto foi visto que houve um erro, foi implmentado o Enable com AND com o Clock. Apesar de ser pratico a ideia, dependendo de quando o enable for ativado em relação a borda de subida do clock pode gerar problemas durante o funcionamento do circuito.

É bastante complicado trabalhar com circuitos grandes, pois, podem conter bastante erros, durante o processo tiveram algumas **CI** defeituosas.

Figura 3: Logica para o Registrador.

Figura 4: Logica para os LED'S.

Figura 5: Circuito Junto.