Statistics [Q.1] [20 marks]

a) [6 Marks]

- i) $X = \text{number of yellow cars in 15 min period} \sim \text{Poisson}(4.8/4) = \textbf{Poisson}(\textbf{1.2}) \ [\textbf{1 mark}]$ $P(X \ge 1) = 1 - P(X = 0) = 1 - 1.2^0 \exp{-1.2/0!} = \textbf{0.6988}. \ [\textbf{1 mark}]$
- ii) $Y = \text{number of times "S or S!" declared in 10 breaks } \sim \text{Binomial(10,0.6988)} [1 \text{ mark}]$ $P(Y \ge 9) = P(Y = 9) + P(Y = 10) = 0.1197 + 0.0278 = 0.1474 [1 \text{ mark}]$
- iii) Z = 5Y [1 mark] $E(Z) = 5E(Y) = 5n\pi = 5*10*0.6988 = 34.94$ minutes [1 mark] $Var(Z) = 25Var(Y) = 25n\pi(1-\pi) = 25*10*0.6988*(1-0.6988) = 52.61$ minutes $sd(Z) = \sqrt{52.51} = 7.25$ minutes [1 mark]

b) [7 marks]

i) [3 marks] $\hat{\pi} = 0.27$ [1 mark], $z_{0.95} = 1.645$ [1 mark] and so standard error $= z_{0.95} \sqrt{\hat{\pi}(1-\hat{\pi})/n} = 0.07303$ giving a 90% CI for π of $\hat{\pi} \pm z_{0.95} \sqrt{\hat{\pi}(1-\hat{\pi})/n} = (0.1970, 0.3430)$ [1 mark].

ii) [3 marks]

[1 mark per correct assumption, 1/2 mark for reasonable attempt to check]

- CLT empirical rule $n\hat{\pi}(1-\hat{\pi}) > 5$ (here 100*0.27*(1-0.27)=19.71>5 is ok)
- independent observations with the same probability π (may not be reasonable as the tweets may be on related or different subjects, and be close or distant in time)

c) [**7 marks**]

- i) Hypothesis: $H_0: \mu = 100 (= \mu_0)$ versus $H_1: \mu > 100$ [1 mark]
- ii) If H_0 is true then $t_0 = (\bar{x} \mu_0)/(s/\sqrt{n}) \sim t_{n-1} = t_{49}$ [1 mark]
- iii) $t_0 = (105.3 100)/(15.3/\sqrt{50}) = 2.45$ [1 mark]
- iv) $p = P(t_{n-1} > t_0) = P(t_{49} > 2.45)$ [1 mark]
- v) Using t_{50} on tables we have 0.005 [1 mark]
- vi) p < 0.01 therefore we reject H_0 in favour of H_1 [1 mark]
- vii) i.e. The true mean battery duration is greater than 100 hours. [1 mark]

Note: The above marks for a "p-value" solution. If doing a "test statistic/rejection region" solution then replace iv)—vi) with:

- iv) For a 1% significance level reject if $t_0 > F_{crit}$ where $F_{crit} = F_{n-1,0.99}$ [1 mark]
- v) From tables $F_{49,0.99} \approx F_{50,0.99} = 2.403$ [1 mark]
- vi) $t_0 > F_{crit}$ therefore we reject H_0 in favour of H_1 [1 mark]

Q2. [20 marks]

- (a) [3 marks, 1 mark for each point.]
 - Comment about location: The scores are highest for temperatures $120^{\circ}C$ and $140^{\circ}C$; in the middle for $100^{\circ}C$; and lowest for $160^{\circ}C$.
 - Comment about spread: The observed variability is quite similar for all four temperatures.
 - Comment about shape/outliers: The distribution of scores for each temperature is fairly symmetrical and no outliers are present.

[Note: the sample size is quite small here.]

- (b) [3 marks, 1/2 mark for each assumption and 1/2 mark for an appropriate comment.]
 - The observations for the scores for each temperature were drawn from Normal distributions; there is no way of checking this here (a quantile/qq-plot would be needed, a symmetrical boxplot does not tell anything about normality).
 - The observations are independent; there is no way of checking this here.
 - The variances of the scores of each temperature are the same; using the rule-of-thumb (i.e., the ratio of the largest sample standard deviation to the smallest one is smaller than 2), this assumption is not-acceptable here, although the sample size is very small.

(c) [3 marks, 1/2 mark for each missing value in the table.]

$$(1) = k - 1 = 3$$

 $(2) = 484.25 - (5) = 434.25$

$$(3) = (2)/(1) = 144.75$$

$$(4) = (6) - (1) = 8$$

$$(5) = (4) \times 6.25 = 50.00$$

$$(6) = n - 1 = 11$$

This yields the full table:

Source	df	SS	MS	\mathbf{F}
Treatment	(1) = 3	(2) = 434.25	(3) = 144.75	23.16
Error	(4) = 8	(5) = 50.00	6.25	
Total	(6) = 11	484.25		

[Note: please pay attention to carry-over mistake and rounding errors. For example, if (1) is wrong but (3) is calculated as 434.25/(1), the 1/2 mark for (3) should be granted.]

- (d) [5 marks, 1 mark for each of the following points.]
 - $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$ vs. $H_a:$ not all the means are equal (an alternative hypothesis stated as $H_a: \mu_1 \neq \mu_2 \neq \mu_3 \neq \mu_4$ is obviously not correct).
 - Rejection criterion: reject H_0 if $f_0 > f_{3,8;0.95} = 4.066$ (MAT-LAB), from the stats table, $f_{3,8;0.95} = 4.07$.
 - The observed value of the test statistic is $f_0 = 23.16$, which is larger than $4.066 \rightarrow \text{reject } H_0$.
 - The p-value is $p = P(F_{3,8} > 23.16)$. From the table, it can be concluded that p < 0.005.
 - Conclusion: there is very strong evidence that the scores for each temperature are not all the same.

(e) [4 marks; 1 mark for a correct expression of the CI, 2 marks for the correct values and 1 mark for a correct conclusion on H_0 : $\mu_1 = \mu_2$.]

A 95% confidence interval for $\mu_1 - \mu_2$ is:

$$\left[(\bar{x}_1 - \bar{x}_2) \pm t_{n-k;1-\alpha/2} \sqrt{\text{ms}_{\text{Er}} \left(\frac{1}{n_1} + \frac{1}{n_2} \right)} \right]$$

$$= \left[(44.33 - 54.33) \pm 2.306 \sqrt{6.25 \times \left(\frac{1}{3} + \frac{1}{3} \right)} \right]$$

$$= [-14.70, -5.29].$$

[Note: in the ANOVA context, students were asked to always use ms_{Er} as estimate of the common standard deviation σ , that's why $t_{n-k;1-\alpha/2} = t_{8;0.975} = 2.306$ is used as critical value.

Consequently, answers using a classical two-sample t-confidence interval (hence based on a $t_{n_1+n_2-2}$ sampling distribution) are not totally correct. Half marks (1/2) may still be granted if all but this is correct.]

Conclusion: 0 does <u>not</u> belong to that 95% confidence interval for $\mu_1 - \mu_2$, which indicates that there is a significant difference (at 5% significance level) between μ_1 and μ_2 .

(f) [2 marks, 1 mark for mentioning (or effectively using) a Bonferonni adjustment and 1 mark for a correct conclusion.]

To relate this to an overall test for $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$ at significance level $\alpha = 0.05$, we should compare that *p*-values to $\alpha/6 = 0.00833$ (Bonferonni adjustment).

Some p-values from the table are obviously smaller than $\alpha/6 = 0.00833$ and so we would reject the null hypothesis that they are

the same. Others (such as $100^{\circ}C$ vs $140^{\circ}C$, $100^{\circ}C$ vs $160^{\circ}C$ and $120^{\circ}C$ vs $140^{\circ}C$) have *p*-values that > 0.00833, so we would not reject the null hypothesis and so the conclusion will be different from (d).

Statistics

Q3. [20 marks]

- (a) i. [1 mark] Number of Foals = -1.91793 + 0.15862(Number of Adults) ii. [1 mark] $r^2 = 0.862$
- (b) $[1 \text{ mark}] \hat{\beta}_1 = 0.15862$
- (c) $[1 \text{ mark}] r = \sqrt{r^2} = \sqrt{0.862} = 0.928$
- (d) $[1 \text{ mark}] s = \hat{\sigma} = 4.487$
- (e) [6 marks total: 2 marks for hypotheses, 1 mark for df, 2 marks for rejection region (or 1 mark for observed test statistic, 1 mark for p-value), 1 mark for conclusion (deduct 0.5 mark if the conclusion is not related to the original problem)]
 - $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$ [2 marks: 1 mark for H_0 and 1 mark for H_a]
 - $t_{40,0.975} = 2.021$. Rejection criterion: Reject H_0 if

$$\hat{\beta}_1 \notin \left[-t_{40,0.975} \frac{s}{\sqrt{s_{xx}}}, t_{40,0.975} \frac{s}{\sqrt{s_{xx}}} \right] = \left[-2.021 \times 0.01004, 2.021 \times 0.01004 \right] = \left[-0.0203, 0.0203 \right].$$

Or,
$$t = \frac{0.15862}{0.01004} = 15.807$$
, $df = 40$. $p - value = 2P(T > 15.807) = 8.44e - 19$. (or $p - value = 2P(T > 15.807) < 0.001$ from the table)

- Reject H_0 . Number of Adults is significantly associated with Number of Foals (or something similar that ties original problem with statistical results)
- (f) [2 marks: 1 mark for correct t quantile, 1 mark for correct interval] $t_{40,0.95} = 1.684$

$$0.15862 \pm 1.684 \times 0.01004 = [0.1417, 0.1755]$$

(Alternatively, $z_{0.95} = 1.645$. By CLT (large n), the approximate CI is $0.15862 \pm 1.645 \times 0.01004 = [0.1421, 0.1751]$. However, to use the approximate CI, **CLT** must be mentioned. If **CLT** is mentioned, award 2 marks. Otherwise, award 0 mark.)

- (g) [4 marks: 1 mark for $\hat{y}(x_0)$, 1 mark for t quantile, 1 mark for correct equation, 1 mark for correct interval]
 - i. $\hat{y}(x_0) = -1.91793 + 0.15862(120) \approx 17$ [1 mark]
 - ii. $t_{40,0.995} = 2.704$

$$\hat{y}(x_0) \pm st_{n-2,1-\alpha/2} \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{s_{xx}}}$$

$$= 17 \pm 4.487 \times 2.704 \sqrt{1 + \frac{1}{42} + \frac{(120 - 4738/42)^2}{199970.5}}$$

$$= [4.722, 29.278]$$

- (h) i. [2 marks: 1 mark if one assumption is correct, 1.5 marks if two assumptions are correct]
 - $e_i's$ have been drawn independently of one another
 - \bullet $e'_i s$ have the same variance
 - $\bullet \ e_i's$ have been drawn from a normal distribution
 - ii. [1 mark: 0.5 mark for comment on residual plot, 0.5 mark for comment on residual plot] Residual plot does not show obvious pattern. QQ plot is closed to a straight line.