NUMERICAL ANALYSIS QUALIFYING EXAM Fall, 1996

(do at lest 3 problems from problems 1-4, and do at least 3 problems from problems 5-8, you may do as many as you can)

- 1. Prove the following theorem: If $f \in C^2(a,b)$, $f'(x)f''(x) \neq 0$, and f(x) has a zero in (a,b), then the zero is unique in (a,b), and the Newton iteration will converge to it if the starting value x_0 and the first approximation x_1 are both in (a,b). (You may just do a special case where f'(x) < 0, f''(x) < 0 in (a,b))
- 2. Suppose a numerical integration formula I_n using n subintervals to approximate the definite integral $I = \int_a^b f(x)dx$ has an error given by $I I_n \doteq \frac{c}{n^p}$ where c, p are constants. Derive the computable estimate

$$\frac{I_{2n}-I_n}{I_{4n}-I_{2n}} \doteq 2^p$$

This gives a practical means of checking the value of p, using three successive values I_n , I_{2n} , and I_{4n} .

3. By **considering the proof** of

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)}(x - x_0)(x - x_1)\dots(x - x_n),$$

where $p_n(x)$ is the polynomial of degree less than or equal to n, which interpolates f(x) at n+1 nodes x_0, x_1, \ldots, x_n . Find that the error formula for

$$f(x) - p_m(x),$$

where $p_m(x)$ is a polynomial of degree greater than n, which interpolates f(x) at n+1 nodes x_0, x_1, \ldots, x_n .

4. Prove the following theorem: Define a set of functions

$$P_M^n \equiv \{ p \in P^n | \max_{x \in [a,b]} |p(x)| \le M \}$$

where P^n is the linear space of the polynomials of degree less than or equal to n. Then there is a constant C > 0 such that for every $p \in P_M^n$ and $x \in [a, b]$ and any positive integer k,

$$\left|\frac{d^k p(x)}{dx^k}\right| \le C.$$

(Hint: Chebyshev polynomials of degree $0, 1, \dots, n$ form a basis for P^n)

5. A matrix norm is defined as

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

Prove or disprove: $||AB||_{\infty} = ||A||_{\infty} ||B||_{\infty}$. What about the special case: $||A^2||_{\infty} = ||A||_{\infty} ||A||_{\infty}$?

1

6. Find the explicit form for the iterative matrix in the Gauss-Seidel iterative method for solving a linear system $A\mathbf{x} = \mathbf{b}$ when

7. Suppose A is an invertible matrix and that B is a matrix with $||B - A^{-1}|| \le \delta ||A^{-1}||$. Let $\{\mathbf{x}_n\}_{n=0}^{\infty}$ be the sequence of vectors generated by the algorithm

(i)
$$\mathbf{r}_n = \mathbf{b} - A\mathbf{x}_n$$

(ii)
$$\mathbf{x}_{n+1} = \mathbf{x}_n + B\mathbf{r}_n$$

with a given starting value \mathbf{x}_0 . Give a sufficient condition on the size of δ for the sequence to converge to the solution of the linear system $A\mathbf{x} = \mathbf{b}$ for arbitrary starting value \mathbf{x}_0 . Prove that your condition is correct.

8. Describe an algorithm that reduces a square real matrix to a lower Hessenberg matrix without changing its eigenvalues. (A matrix A is lower Hessenberg if $a_{ij} = 0$ provided j - i > 1.)