Long Read Sequencing

Chris Miller, Ph.D. Washington University in St Louis

How to sequence a human genome: Sanger method

Key points:

- 1) sequencing by synthesis (not degradation)
- 2) primers hybridize to DNA
- 3) polymerase + dNTPS + ddNTP terminators at low concentration
- 4) 1 lane per base, visually interpret ladder

```
5' 32P-TAGCTGACTCAG
DNA polymerase
+ dATP, dGTP, dTTP
+ ddGTP in low concentration

5' 32P-TAGCTGACTCAG3'
3' ATCGACTGAGTCAAGAACTATTGGGCTTAA...

5' 32P-TAGCTGACTCAGTTCTCG3'
3' ATCGACTGAGTCAAGAACTATTGGGCTTAA...

5' 32P-TAGCTGACTCAGTTCTCG3'
3' ATCGACTGAGTCAAGAACTATTGGGCTTAA...

5' 32P-TAGCTGACTCAGTTCTCGGTTAA...
```


Solexa (Illumina) sequencing (2006)

- PCR amplify sample (opt.)
- Immobilize and amplify single molecules on a solid surface
- Reversible terminator sequencing with 4 color dye-labelled nucleotides

Illumina sequencing (2005)

4 different images merged

6 cycles w/ base-calling

Top: CATCGT Bottom: CCCCCC

Pacific Biosciences

Key Points:

- 1 DNA molecule and 1 polymerase in each well (zero-mode waveguide)
- 4 colors flash in real time as polymerase acts
- Methylated cytosine has distinct pattern
- No theoretical limit to DNA fragment length

Pacific Biosciences: long reads. Great for genome assembly

Oxford Nanopore Technologies

Neural networks to translate signal into base calls

- Guppy (many versions)
- Dorado (v0.4, eventual guppy replacement)
- many others

Practically, that means that we can't yet throw away our raw signal intensities. (1 Tb or more per run)

doi.org/10.1016/j.tig.2021.09.001

Nanopore sequencing is extremely portable

Kate Rubins sequencing DNA on the ISS

ONT sequence length distribution

tneir relative amounts

Read length (kb)	Aggregated reads (Mb)
100 - 164	886.98
164 - 228	36.06
228 - 292	4.02
292 - 344	0.35

Recent run of a tumor sample

About \$3,500 for a 30x human genome on a PromethION

Long-read ONT ~5% base error rate Short-read Illumina ~0.3% base error rate

Error rates are contentious and confusing

How do you calculate error?
 Per base?
 Per read?
 Per variant call?
 (after collapsing all of the data?)

PacBio HiFi Sequencing

How are HiFi reads generated? Start with high-quality Circularized DNA double stranded DNA is sequenced in repeated passes Prepare SMRTbell libraries The polymerase reads are trimmed of adapters to yield subreads Consensus and Anneal primers and methylation status are bind DNA polymerase called from subreads HiFi read (99.9% accuracy)

Improved error rates

higher cost/lower throughput

https://www.pacb.com/technology/hifi-sequencing/

ONT Duplex sequencing

b 250 200 Current (pA) 150 100 50 50 100 150 200 250 300 350 Time (s)

viii

iii

Improved error rates
higher cost/lower throughput

https://www.nature.com/articles/nmeth.3290

Genomic DNA advantages

Figure 1: Blue-labeled genomic regions are accessible to long reads but not short, and have functional annotations (e.g. genes or enhancers)

Large Indel detection

Structural variant resolution

TP53-mutated AML

Structural variant resolution

Base modification detection

Can be used for 5mC as well as m6A in direct RNAseq

Phasing of reads/modifications

Genome assembly

 Assembly of personal genomes

sample	hap	metric	value
Presentation	hap1	Number_of_contigs	402
Presentation	hap1	N50	88.3 Mbp

Dave Spencer, Haley Abel

Long-read RNA sequencing

Direct RNA

 No amplification, less bias

 Preserves base modifications (m6a, etc)

Long-read RNA sequencing

- cDNA sequencing
- much higher yields

Pychopper

Pychopper

Pychopper

How to estimate duplication rates

- In short read data, reads at the same position are assumed to be duplicates
- How do we know if we're saturating our libraries?

• UMI at the 3' end of the read

TTT GGGCTT GGAATTGGCCTT GGCATTT

UMI at the 3' end of the read

- 30 TTTCACCCTCCACTTCCCGTCTCAGAATT
- 29 TTTGAAACAGCTTCACCTTGAACTTT
- 29 TTTCCAATAAAAAAAATTACAATTT
- 29 TTTCAGCAAAATAAAATTCCGGTTT
- 27 TTTGGAGTTGGGGTTGCGCTTGGGGTTT
- 27 TTTGAGGTTGGAGTTGGGGTTGGCGTTT
- 24 TTTGGAGTTGGCGTTGCGGTTTG
- 23 TTT<mark>GGGG</mark>TT<mark>GGAA</mark>TT<mark>GGCG</mark>TT<mark>GGCA</mark>TTT
- 23 TTTGGGATTAAGATTGGCATTGCGGTTT
- 23 TTTAGGGTTCGCGTTGGGGTTGCAGTTT
- 23 TTTAGGGTTAGCGTTGGAGTTGGGGTTT
- 22 TTTGGCGTTGGGGTTGGCGTTGGCGTTT
- 22 TTTGGCGTTGGAGTTCAGCTTACGGTTT
- 22 TTTGCGGTTGGAGTTGGGCTTT
- 22 TTTACACTTGTGCTCTCCTTAGCCTTT
- 21 TTTGGGGTTGGAGTTGGCGTTGGCATTT
- 21 TTTGGCGTTGGCATTGGCGTTTGGGGTTT
- 21 TTTGGCGTTCGGGTTGGAATTCGCGTTT

- UMI at the 3' end of the read
- Different lengths indicative of high error rate
- only 47% of reads have fully intact UMI
- 7% have no UMI at all

 Even using some error correction with Levenshtein distance, it's ugly

- 30 TTTCACCCTCCACTTCCCGTCTCAGAATT
- 29 TTTGAAACAGCTTCACCTTGAACTTT
- 29 TTTCCAATAAAAAAAATTACAATTT
- 29 TTTCAGCAAAATAAAATTCCGGTTT
- 27 TTTGGAGTTGGGGTTGCGCTTGGGGTTT
- 27 TTTGAGGTTGGAGTTGGGGTTGGCGTTT
- 24 TTTGGAGTTGGCGTTGCGGTTT
- 23 TTT<mark>GGGG</mark>TT<mark>GGAA</mark>TT<mark>GGCGTT</mark>GGCA</mark>TTT
- 23 TTTGGGATTAAGATTGGCATTGCGGTTT
- 23 TTTAGGGTTCGCGTTGGGGTTGCAGTTT
- 23 TTTAGGGTTAGCGTTGGAGTTGGGGTTT
- 22 TTTGGCGTTGGGGTTGGCGTTT
- 22 TTTGGCGTTGGAGTTCAGCTTACGGTTT
- 22 TTTGCGGTTGGAGTTGGGCTTT
- 22 TTTACACTTGTGCTCTCCTTAGCCTTT
- 21 TTTGGGGTTGGAGTTGGCGTTGGCATTT
- 21 TTTGGCGTTGGCATTGGCGTTTGGGGTTT
- 21 TTTGGCGTTCGGGTTGGAATTCGCGTTT

Genomic DNA - standard prep

their relative amounts.

Read length (kb)	Aggregated reads (Mb)
100 - 164	886.98
164 - 228	36.06
228 - 292	4.02
292 - 344	0.35

Estimating transcript abundance – short-read, Stringtie

Estimating transcript abundance – long read

Estimating transcript abundance – long read

Estimating transcript abundance - long read

Estimating transcript abundance - long read

Technical artifacts

Looks like fragmentation of this RNA throughout the long exon. (This is an egregious case - most are more mild)

"Full-length" reads

ESPRESSO:chr1:0:180

ENST00000379236

ESPRESSO transcript assembly

human DNMT3A

ONT

Short-read

human DNMT3A

ONT

Short-read

human DNMT3A

Truncated reads

- Appear to be caused by RNA fragmentation
- assessing RIN values of your samples can help choose clean ones when possible
- When not possible, iteratively assemble transcripts and remove non-full-length reads

Assignment

- Start with some long-read RNAseq data from a cell line
- QC the data, trim adapters
- Align the reads
- Examine a few genes to see how the data looks