A robust section identification method for scanned electronic health records

Anand Subramanian Praveen Kumar Suresh Sudarsun Santhiappan

07-01-2023

Outline

Introduction

Contributions

Weakly Supervised Labeling Process

Model Training

Character Augmentation

Evaluation

Conclusion and Future Work

References

An Introduction to EHR Processing

- Electronic Health Records (EHRs): Narrate and document all the clinical aspects of a patient's visit to a doctor or hospital.
- Usually created and stored in different formats such as free-text files, scanned images, and audio dictations.
- Many downstream clinical activities process EHRs as text. Thus, we use **Optical Character Recognition (OCR)** to extract text from scanned images.

Problems with OCR Processing

- However, OCR engines are sensitive to the quality of documents and images.
- Noise artifacts such as poor brightness, motion blurs, and other image issues are present in scanned EHRs.

Problems with OCR Processing

Figure 1: Sample OCR corrupted sections

What is Section Identification?

- EHRs document information such as diagnosed conditions and procedures performed under specific sections.
- ► The start of such sections is often clearly indicated by specific headers in the text.
- Section Identification: Identification of lines that indicate the start of a section.

Why is Section Identification important?

- Section Identification is crucial for downstream clinical activities such as medical coding, diagnosis identification, and medication extraction.
- Named Entity Recognition (NER) and Relation Extraction (RE) are some essential downstream services for enriching the information in an EHR.

Problems with Section Identification under OCR errors

- OCR errors are characterized by character and word-level errors in text.
- ► Traditionally, we use systems that employ lookup-based term matching logic for section identification.

Problems with Section Identification under OCR errors

- Updating term-based lookups variations with OCR corrupted section headers is infeasible due to the vast space of variations possible.
- ▶ Adding all possible variants leads to an inflated and non-generic lookup. Regularly updating systems deployed in production involve significant system downtime.

Considerations

- We hypothesize that sequence models with a character-level component may be robust in tackling such issues.
- Training deep-learning models require large amounts of annotated data, which involves significant human labor and cost.
- In contrast, lookup-based systems are more straightforward to update.

Contributions

- A simple weakly-supervised method of labeling data using a lookup-based module.
- Development of character-level word sequence models for section identification that are robust to OCR errors.
- Application of a character-augmentation scheme inspired by techniques from existing literature to improve the robustness of the character-level word sequence models on OCR errors.

- Annotation of documents in the clinical domain can be prohibitively expensive regarding human resources and capital.
- Annotation workflows involve deidentifying documents, assessing the quality of annotations, and annotating significant amounts of data.

Figure 2: Representation of the Weakly Supervised Labeling Process.

- We exploit the fact that specific headers denote the start of sections, as a source of supervision.
- We leverage a lookup-based system that relies on external lookups curated by subject matter experts (SMEs) and uses a regex-based approach to label sections.

- We label 10000 clean documents from the Ambulatory Surgery specialty from which the Personal Health Information (PHI) is de-identified.
- We partition this corpus into a train set comprising 8000 documents and a validation set containing 2000 documents and utilize this corpus for training and tuning our models.

Model Training

- Formally, we define the task of section identification as a multi-class text classification problem.
- ▶ We implement two architectures, where the first block is a character-level module that learns a contextualized representation of a word from its characters.
- ► The second block uses the representations from the first block, to learn a contextualized representation of the sentences from its words.

Model Overview

Figure 3: High level model overview

Model Architectures

- ▶ The first architecture utilizes a Bidirectional-LSTM [1, 2] at the character level followed by a Bidirectional-LSTM at the word level.
- ► The second architecture utilizes a 1D-CNN, followed by a MaxPooling layer at the character level followed by a Bidirectional-LSTM at the word level.

Character Augmentation

- ➤ Since OCR errors comprise errors at the character level, we introduce character augmentation to improve the model's robustness to OCR issues.
- ► Character augmentation schemes in previous literature have been shown to improve the performance of NLP systems in the presence of character and word errors [3].

Character Augmentation

- ► We define an augmentation scheme that applies one of the following transformations:
 - 1. Character Substitution
 - 2. Character Insertion
 - 3. Character Deletion
 - 4. No Augmentation

Evaluation

- ▶ We benchmark the performance on a corpus of 1000 documents from the Ambulatory Surgery specialty containing OCR errors with the Personal Health Information de-identified from the charts.
- ▶ We compare our models against two baselines:
 - 1. Lookup-based Module
 - 2. Word-Level Bidirectional LSTM
- We examine the macro-average f1 score to assess how well the systems fare across all sections.

Results

Method	Macro Average F1
Lookup System	0.716
Word LSTM	0.735
Char LSTM	0.778
Char CNN	0.758
Char LSTM (Aug)	0.781
Char CNN (Aug)	0.780

Table 1: Results of the models on the test set

Findings

- We observe that the char-LSTM and char-CNN based models outperform both baselines.
- Outperforming the lookup-based method intuitively makes sense as the system would not fare well in the presence of OCR errors.

Findings

- ▶ We observe that the character models, even without augmentation, perform strongly in the presence of OCR error compared to the word level model.
- ► Training the character-level models with augmentation results in an improved performance on the OCR corrupted test set.

Conclusion and Future Work

- We introduce character-level word models with character augmentation for section identification that are robust to OCR errors.
- We empirically demonstrate that these models significantly outperform baseline approaches on documents with character errors.
- ► Future extensions to this work could explore different model architectures or document-level modeling approaches.

References

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

M. Schuster and K.K. Paliwal.
Bidirectional recurrent neural networks.

IEEE Transactions on Signal Processing, 45(11):2673–2681, 1997

Yonatan Belinkov and Yonatan Bisk.

Synthetic and natural noise both break neural machine translation.

arXiv preprint arXiv:1711.02173, 2017.