What Is Claimed Is:

1. A protease inhibitor comprising the sequence:

 X^1 -Val-Cys-Ser-Glu-Gln-Ala-Glu- X^2 -Gly- X^3 -Cys-Arg-Ala- X^4 - X^5 - X^6 - X^7 -Trp-Tyr-Phe-Asp-Val-Thr-Glu-Gly-Lys-Cys-Ala-Pro-Phe- X^8 -Tyr-Gly-Gly-Cys- X^9 - X^{10} - X^{11} - X^{12} -Asn-Asn-Phe-Asp-Thr-Glu-Glu-Tyr-Cys-Met-Ala-Val-Cys-Gly-Ser-Ala-Ile,

wherein:

 ${\tt X}^{\tt l}$ is selected from Glu-Val-Val-Arg-Glu-, Asp, or Glu;

X² is selected from Thr, Val, Ile and Ser;

X³ is selected from Pro and Ala;

X4 is selected from Arg, Ala, Leu, Gly, or Met;

X⁵ is selected from Ile, His, Leu, Lys, Ala, or Phe;

 X^6 is selected from Ser, Ile, Pro, Phe, Tyr, Trp, Asn, Leu, His, Lys, or Glu;

 X^7 is selected from Arg, His, or Ala;

X8 is selected from Phe, Val, Leu, or Gly;

 \mathbf{X}^9 is selected from Gly, Ala, Lys, Pro, Arg, Leu, Met, or Tyr;

X10 is selected from Ala, Arg, or Gly;

X¹¹ is selected from Lys, Ala, or Asn;

 ${\rm X}^{12}$ is selected from Ser, Ala, or Arg; provided that:

when X^4 is Arg, X^6 is Ile;

when X^9 is Arg, X^4 is Ala or Leu; when X^9 is Tyr, X^4 is Ala or X^5 is His; and

either X^5 is not Ile; or X^6 is not Ser; or X^9 is not Leu, Phe, Met, Tyr, or Asn; or X^{10} is not Gly; or X^{11} is not Asn; or X^{12} is not Arg.

2. A protease inhibitor comprising the sequence:

X¹-Val-Cys-Ser-Glu-Gln-Ala-Glu-Thr-Gly-Pro-Cys-Arg-Ala-X²-X³-X⁴-Arg-Trp-Tyr-Phe-Asp-Val-Thr-Glu-Gly-Lys-Cys-Ala-Pro-Phe-Phe-Tyr-Gly-Gly-Cys-X⁵-Gly-Asn-Arg-Asn-

Asn-Phe-Asp-Thr-Glu-Glu-Tyr-Cys-Met-Ala-Val-Cys-Gly-Ser-Ala-Ile,

wherein:

 \mathbf{X}^{1} is selected from Glu-Val-Arg-Glu-, Asp, or Glu;

X² is selected from Ala, Leu, Gly, or Met;

X³ is selected from Ile, His, Leu, Lys, Ala, or Phe;

 ${\tt X}^4$ is selected from Ser, Ile, Pro, Phe, Tyr, Trp, Asn, Leu, His, Lys, or Glu;

 ${\tt X}^{\tt 5}$ is selected from Gly, Ala, Lys, Pro, Arg, Leu, Met, or Tyr;

provided that:

when X^5 is Arg, X^2 is Ala or Leu; when X^5 is Tyr, X^2 is Ala or X^3 is His; and

either X^3 is not Ile; or X^4 is not Ser; or X^5 is not Leu, Phe, Met, Tyr, or Asn.

3. A protease inhibitor comprising the sequence:

Glu-Val-Val-Arg-Glu-Val-Cys-Ser-Glu-Gln-Ala-Glu-Thr-Gly-Pro-Cys-Arg-Ala-X¹-X²-X³-Arg-Trp-Tyr-Phe-Asp-Val-Thr-Glu-Gly-Lys-Cys-Ala-Pro-Phe-Phe-Tyr-Gly-Gly-Cys-X⁴-Gly-Asn-Arg-Asn-Asn-Phe-Asp-Thr-Glu-Glu-Tyr-Cys-Met-Ala-Val-Cys-Gly-Ser-Ala-Ile,

wherein:

X1 is selected from Ala, Leu, Gly, or Met;

X² is selected from Ile, His, Leu, Lys, Ala, or Phe;

X³ is selected from Ser, Ile, Pro, Phe, Tyr, Trp, Asn, Leu, His, Lys, or Glu;

 ${\tt X}^4$ is selected from Gly, Arg, Leu, Met, or Tyr; provided that:

when X^1 is Ala, X^2 is Ile, His, or Leu;

when X^1 is Leu, X^2 is Ile or His;

when X^1 is Leu and X^2 is Ile, X^3 is not Ser;

when X^1 is Gly, X^2 is Ile;

when X^4 is Arg, X^1 is Ala or Leu;

when X^4 is Tyr, X^1 is Ala or X^2 is His; and

either X^1 is not Met, or X^2 is not Ile, or X^3 is not Ser, or X^4 is not Gly.

- 4. A protease inhibitor according to claim 1, wherein at least two amino acid residues selected from the group consisting of X^4 , X^5 , X^6 , and X^7 differ from the residues found in the naturally occurring sequence of KPI.
- 5. A protease inhibitor according to claim 1, wherein X^1 is Asp or Glu, X^2 is Thr, X^3 is Pro, and X^{12} is Ser.
- 6. A protease inhibitor according to claim 5, wherein X^1 is Glu, X^2 is Thr, X^3 is Pro, X^4 is Met, X^5 is Ile, X^6 is Ser, X^7 is Arg, x^8 is Phe, X^9 is Gly, X^{10} is Gly, and X^{11} is Asn.
- 7. A protease inhibitor according to claim 5, wherein X^1 is Asp, X^2 is Thr, X^3 is Pro, X^4 is Arg, X^5 is Ile, X^6 is Ile, X^7 is Arg, x^8 is Val, X^9 is Arg, X^{10} is Ala, and X^{11} is Lys.
- 8. A protease inhibitor according to claim 1, wherein X^1 is Glu-Val-Val-Arg-Glu-, X^2 is Thr, X^3 is Pro, X^4 is Met, X^5 is Ile, X^6 is Ser, X^7 is Arg, x^8 is Phe, X^9 is Gly, X^{10} is Gly, X^{11} is Asn, and X^{12} is Ala.
- 9. A protease inhibitor according to claim 1, wherein X^1 is Glu-Val-Val-Arg-Glu-, X^2 is Thr, X^3 is Pro, X^4 is Met, X^5 is Ile, X^6 is Ser, X^7 is Arg, x^8 is Phe, X^9 is Gly, X^{10} is Gly, X^{11} is Ala, and X^{12} is Arg.
- 10. A protease inhibitor according to claim 1, wherein X^1 is Glu, X^2 is Thr, X^3 is Pro, X^4 is Met, X^5 is Ile, X^6 is Ser, X^7 is Arg, x^8 is Phe, X^9 is Gly, X^{10} is Ala, X^{11} is Asn, and X^{12} is Arg.
- 11. A protease inhibitor according to claim 1, wherein X^1 is Glu-Val-Val-Arg-Glu-, X^2 is Thr, X^3 is Pro, X^4 is Met, X^5 is Ile, X^6 is Ser, X^7 is Arg, x^8 is Phe, X^9 is Gly, X^{10} is Arg, X^{11} is Asn, and X^{12} is Arg.

- 12. A protease inhibitor according to claim 1, wherein X^1 is Glu-Val-Val-Arg-Glu-, X^2 is Thr, X^3 is Pro, X^4 is Met, X^5 is Ile, X^6 is Ser, X^7 is Arg, x^8 is Val, Leu, or Gly, X^9 is Gly, X^{10} is Gly, X^{11} is Asn, and X^{12} is Arg.
- 13. A protease inhibitor according to claim 1, wherein X^1 is Glu-Val-Val-Arg-Glu-, X^2 is Thr, X^3 is Pro, X^4 is Met, X^5 is Ile, X^6 is Ser, X^7 is Ala, X^8 is Phe, X^9 is Gly, X^{10} is Gly, X^{11} is Asn, and X^{12} is Arg.
- 14. A protease inhibitor according to claim 1, wherein X^1 is Glu-Val-Val-Arg-Glu-, X^2 is Thr, Val, or Ser, X^3 is Pro, X^4 is Ala or Leu, X^5 is Ile, X^6 is Tyr, X^7 His, X^8 is Phe, X^9 is Gly, X^{10} is Gly, X^{11} is Ala, and X^{12} is Arg.
- 15. A protease inhibitor according to claim 14, wherein \mathbf{X}^2 is Thr, and \mathbf{X}^4 is Ala.
- 16. A protease inhibitor according to claim 14, wherein X^2 is Thr, and X^4 is Leu.
- 17. A protease inhibitor according to claim 14, wherein X^2 is Val, and X^4 is Ala.
- 18. A protease inhibitor according to claim 14, wherein X^2 is Ser, and X^4 is Ala.
- 19. A protease inhibitor according to claim 14, wherein X^2 is Val, and X^4 is Leu.
- 20. A protease inhibitor according to claim 14, wherein X^2 is Ser, and X^4 is Leu.
- 21. A protease inhibitor according to claim 1, wherein X^1 is Glu-Val-Val-Arg-Glu-, X^2 is Thr, X^3 is Pro, X^4 is Leu, X^5 is Phe, X^6 is Lys, X^7 is Arg, X^8 is Phe, X^9 is Gly, X^{10} is Gly, X^{11} is Ala, and X^{12} is Arg.

- 22. A protease inhibitor according to claim 1, wherein X^1 is Glu-Val-Val-Arg-Glu-, X^2 is Thr, X^3 is Pro, X^4 is Leu, X^5 is Phe, X^6 is Lys, X^7 is Arg, X^8 is Phe, X^9 is Tyr, X^{10} is Gly, X^{11} is Ala, and X^{12} is Arg.
- 23. A protease inhibitor according to claim 1, wherein X^1 is Glu-Val-Val-Arg-Glu-, X^2 is Thr, X^3 is Pro, X^4 is Leu, X^5 is Phe, X^6 is Lys, X^7 is Arg, X^8 is Phe, X^9 is Leu, X^{10} is Gly, X^{11} is Ala, and X^{12} is Arg.
- 24. A protease inhibitor according to claim 2, wherein X^1 is Glu, X^2 is Met, X^3 is Ile, X^4 is Ile, and X^5 is Gly.
- 25. A protease inhibitor according to claim 3, wherein X^1 is Met, X^3 is Ser, and X^4 is Gly.
- 26. A protease inhibitor according to claim 25, wherein X^2 is selected from His, Ala, Phe, Lys, and Leu.
- 27. A protease inhibitor according to claim 26, wherein X^2 is His.
- 28. A protease inhibitor according to claim 27, wherein \mathbf{X}^2 is Ala.
 - 29. A protease inhibitor according to claim 27, wherein \mathbf{X}^2 is Phe.
 - 30. A protease inhibitor according to claim 27, wherein \mathbf{X}^2 is Lys.
 - 31. A protease inhibitor according to claim 27, wherein X^2 is Leu.
 - 32. A protease inhibitor according to claim 3, wherein X^1 is Met, X^2 is Ile, and X^4 is Gly.

- 33. A protease inhibitor according to claim 32, wherein X^3 is Ile.
- 34. A protease inhibitor according to claim 32, wherein X^3 is Pro.
- 35. A protease inhibitor according to claim 32, wherein X^3 is Phe.
- 36. A protease inhibitor according to claim 32, wherein \mathbf{X}^3 is Tyr.
- 37. A protease inhibitor according to claim 32, wherein \mathbf{X}^3 is Trp.
- 38. A protease inhibitor according to claim 32, wherein \mathbf{X}^3 is Asn.
- 39. A protease inhibitor according to claim 32, wherein \mathbf{X}^3 is Leu.
- 40. A protease inhibitor according to claim 32, wherein \mathbf{X}^3 is Lys.
- 41. A protease inhibitor according to claim 32, wherein \mathbf{X}^3 is His.
- 42. A protease inhibitor according to claim 32, wherein \mathbf{X}^3 is Glu.
- 43. A protease inhibitor according to claim 3, wherein \mathbf{X}^1 is Ala.
- 44. A protease inhibitor according to claim 43, wherein \mathbf{X}^2 is Ile.
- 45. A protease inhibitor according to claim 44, wherein \mathbf{X}^3 is Phe, and \mathbf{X}^4 is Gly.

- 46. A protease inhibitor according to claim 44, wherein X^3 is Tyr, and X^4 is Gly.
- 47. A protease inhibitor according to claim 44, wherein X^3 is Trp, and X^4 is Gly.
- 48. A protease inhibitor according to claim 44, wherein X^3 is Ser or Phe, and X^4 is Arg or Tyr.
- 49. A protease inhibitor according to claim 43, wherein X^2 is His or Leu, X^3 is Phe, and X^4 is Gly.
- 50. A protease inhibitor according to claim 3, wherein \mathbf{X}^1 is Leu.
- 51. A protease inhibitor according to claim 50, wherein X^2 is His, X^3 is Asn or Phe, and X^4 is Gly.
- 52. A protease inhibitor according to claim 50, wherein X^2 is Ile, X^3 is Pro, and X^4 is Gly.
- 53. A protease inhibitor according to claim 3, wherein X^1 is Gly, X^2 is Ile, X^3 is Tyr, and X^4 is Gly.
- 54. A protease inhibitor according to claim 3, wherein X^1 is Met, X^2 is His, X^3 is Ser, and X^4 is Tyr.
- 55. An isolated DNA molecule comprising a DNA sequence encoding a protease inhibitor according to claim 1.
- 56. An isolated DNA molecule according to claim 55, operably linked to a regulatory sequence that controls expression of the coding sequence in a host cell.
- 57. An isolated DNA molecule according to claim 56, further comprising a DNA sequence encoding a secretory signal peptide.

- 58. An isolated DNA molecule according to claim 57, wherein said secretory signal peptide comprises the signal sequence of yeast alpha-mating factor.
- 59. A host cell transformed with a DNA molecule according to claim 55.
- 60. A host cell according to claim 59, wherein said host cell is *E. coli* or a yeast cell.
- 61. A host cell according to claim 60, wherein said host cell is Saccharomyces cerevisiae.
- 62. A method for producing a protease inhibitor, comprising the steps of culturing a host cell according to claim 59 and isolating and purifying said protease inhibitor.
- 63. A pharmaceutical composition, comprising a protease inhibitor according to claim 1, together with a pharmaceutically acceptable sterile vehicle.
- 64. A method of treatment of a clinical condition associated with increased activity of one or more serine proteases, comprising administering to a patient suffering from said clinical condition an effective amount of a pharmaceutical composition according to claim 63.
- 65. The method of treatment of claim 64, wherein said clinical condition is blood loss during surgery.
- 66. A method for inhibiting the activity of serine proteases of interest in a mammal comprising administering a therapeutically effective dose of a pharmaceutical composition according to claim 63.
- 67. The method of claim 66, wherein said serine proteases are selected from the group consisting of:

kallikrein; chymotrypsins A and B; trypsin; elastase; subtilisin; coagulants and procoagulants, particularly those in active form, including coagulation factors such as factors VIIa, IXa, Xa, XIa, and XIIa; plasmin; thrombin; proteinase-3; enterokinase; acrosin; cathepsin; urokinase; and tissue plasminogen activator.

68. A protease inhibitor comprising the sequence:

X¹-Val-Cys-Ser-Glu-Gln-Ala-Glu-X²-Gly-ProCys-Arg-Ala-X³-X⁴-X⁵-X⁶-Arg-Trp-Tyr-PheAsp-Val-Thr-Glu-Gly-Lys-Cys-Ala-Pro-PhePhe-Tyr-Gly-Gly-Cys-X²-Gly-Asn-Arg-AsnAsn-Phe-Asp-Thr-Glu-Glu-Tyr-Cys-Met-AlaVal-Cys-Gly-Ser-Ala-Ile,

wherein:

 ${\tt X}^1$ is selected from Glu-Val-Val-Arg-Glu-, Asp, or Glu;

 X^2 is selected from Thr, Val, Ile and Ser;

X³ is selected from Arg, Ala, Leu, Gly, or Met;

X4 is selected from Ile, His, Leu, Lys, Ala, or Phe;

 ${\tt X}^{\tt 5}$ is selected from Ser, Ile, Pro, Phe, Tyr, Trp, Asn, Leu, His, Lys, or Glu;

X⁶ is selected from Arg, His, or Ala; and

 ${\tt X}^7$ is selected from Gly, Ala, Lys, Pro, Arg, Leu, Met, or Tyr.

- 69. A protease inhibitor according to claim 68, wherein at least two amino acid residues selected from the group consisting of X^3 , X^4 , X^5 , and X^6 differ from the residues found in the naturally occurring sequence of KPI.
- 70. A protease inhibitor according to claim 68, wherein X^1 is $G\tilde{lu}$ -Val-Val-Arg-Glu-, X^2 is Thr, Val, or Ser, X^3 is Ala or Leu, X^4 is Ile, X^5 is Tyr, X^6 is His and X^7 is Gly.
- 71. A protease inhibitor according to claim 70, wherein \mathbf{X}^2 is Thr, and \mathbf{X}^3 is Ala.

- 72. A protease inhibitor according to claim 70, wherein X^2 is Thr, and X^3 is Leu.
- 73. A protease inhibitor according to claim 70, wherein \mathbf{X}^2 is Val, and \mathbf{X}^3 is Ala.
- 74. A protease inhibitor according to claim 70, wherein X^2 is Ser, and X^3 is Ala.
- 75. A protease inhibitor according to claim 70, wherein X^2 is Val, and X^3 is Leu.
- 76. A protease inhibitor according to claim 70, wherein \mathbf{X}^2 is Ser, and \mathbf{X}^3 is Leu.
- 77. A protease inhibitor according to claim 68, wherein X^1 is Glu-Val-Val-Arg-Glu-, X^2 is Thr, X^3 is Leu, X^4 is Phe, X^5 is Lys, X^6 is Arg and X^7 is Gly.
- 78. A protease inhibitor according to claim 68, wherein X^1 is Glu-Val-Val-Arg-Glu-, X^2 is Thr, X^3 is Leu, X^4 is Phe, X^5 is Lys, X^6 is Arg and X^7 is Tyr.
- 79. A protease inhibitor according to claim 68, wherein X^1 is Glu-Val-Val-Arg-Glu-, X^2 is Thr, X^3 is Leu, X^4 is Phe, X^5 is Lys, X^6 is Arg and X^7 is Leu.