Lecture 11 - Expectation and Variance

Defn: Expected Valve/Expectation/Mean

 $\mathbb{E}[X] = \begin{cases} \sum_{\chi} \chi f(\chi) \\ \chi \\ \int_{X} \chi f(\chi) d\chi \end{cases}$

(discret)

(continual)

Balanciz Print

EX. X~Bin(n,p) independently

If I flip a coin n times w/ a prob. p

of H X = # of heads

Support(X) = {0,1,2,..., h}

 $f(x) = P(x = x) = \binom{n}{x} p^{x} (1-p)^{n-x}$

aside: $f(x) \ge 0$, $\sum_{x} f(x) = 1$? Binomial Theorem (X+Y)

 $\frac{n}{2}$ χ $\left(\frac{n}{2}\right)$ χ $\left(\frac{n-\chi}{2}\right)$

$$= \sum_{x=0}^{n} x f(x) = \sum_{x=0}^{n} x \binom{n}{x} p^{x} (1-p)$$

$$= \sum_{x=0}^{n} x f(x) = x \frac{n!}{x!(n-x)!}$$

$$= \frac{n!}{(x-1)!(n-x)!}$$

$$= \frac{(n-1)!}{(x-1)!}$$

$$= \frac{$$

Lectures 2 Page 2

= np | = (# of trials)(pros of a success) Note: If X then any function of that random variable is also a r.V. ef. if X = # of successes $g(x) = x^2$ Cald consider $X^2 = S_g vare$ of # of successes Sol=g(x) is a 1.V. for any functions. Theorem: Law of the Unconsides Statisticians $E[g(X)] = Ig(x) f(x) dx \quad (continvas)$ $E[g(X)] = Ig(x) f(x) dx \quad (discrete)$ $\frac{\xi_{\chi}}{\chi} = \chi_{\chi} = \chi_{\chi}$ Recall: E[X]=/)

$$\begin{array}{lll}
\textcircled{P: } & E[X^2] \neq E[X]^2 \\
& (g(x) = X^2) \\
& ($$

Lectures 2 Page 4

Lectures 2 Page 5

a Expectation is linear

$$E[aX+b] = aE[X] + b.$$

PL: (cts case)

$$E[aX+b] = \int (ax+b)f(x)dx$$

$$= \int (ax+b)f(x)dx$$

$$= \int (ax+b)f(x)dx$$

$$= aE[X] + b$$

b) If $X > 0$ then $E[X] > 0$

PL: $X > 0$ I mean support is non-negative.

So $E[X] = \int x f(x)dx \ge 0$ by Integrating non-neg. In.

C) If g_1 and g_2 are function then

$$E[g_1(X) + g_2(X)] = E[g_1(X)] + E[g_2(X)]$$

and if $g_1(X) \le g_2(X)$ then

$$E[g_1(X)] \le E[g_2(X)]$$

tf. $g_1(X)$ and $g_2(X)$ are themselves $x \in X$.

So we can apply (a) and (b)

ex, $x \sim Exp(\lambda)$ $exp(\lambda)$ $exp(\lambda)$ $exp(\lambda)$

m - LALM Recall: E[X] = 1/2 ad E[X2] = 1/2 $Var(X) = E[(X-u)^2] = ((x-u)^2 + (x) dx$ $= \int_{-\infty}^{\infty} (\chi^2 - 2\mu \chi + \mu^2) f(\chi) d\chi$ $= \int_{0}^{\infty} \chi^{2} f(x) dx - 2\mu \int_{0}^{\infty} \chi f(x) dx + \mu^{2} \int_{0}^{\infty} f(x) dx$ $E[x^{2}] = \frac{3}{2} = \frac{2}{2} = \frac{2$ real >> $=\frac{2}{\sqrt{2}}\frac{2}{\sqrt{2}}+\sqrt{2}$ $=\frac{1}{2}$

Theorem: Short-cot formla for Varionce $\sqrt{Var(X)} = E[X^2] - E[X]^2$

Pf $Var(X) = E[(X-\mu)^2] = E[X^2 - 2\mu X + \mu^2]$ $Jefo : \mu = E[X] = E[X] - 2\mu E[X] + \mu^2$ $= E[X] - 2\mu^2 + \mu^2$

$$= \mathbb{E}[X^2] - \mu^2 = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

$$\frac{\mathcal{E}_{X}}{\sqrt{2}} = \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2}$$

$$= \frac{2}{\sqrt{2}} - \left(\frac{1}{\sqrt{2}}\right)^{2}$$

$$= \frac{1}{\sqrt{2}}$$

Theorem:

$$Var(aX+b) = a^2 Var(X)$$

Short-cut formula
$$\int ar(aX+b) = E[(aX+b)^{2}] - E[aX+b]^{2}$$

$$= E[a^{2}X^{2} + 2abX + b^{2}] - (aE(X)+b)^{2}$$

$$= a^{2}E[X^{2}] + 2abE[X] + b^{2} - (a^{2}E[X]^{2} - 2abE[X] + b^{2})$$

$$= a^{2}(E[X^{2}] - E[X]^{2})$$

$$= a^{2} \int ar(X).$$