Algebra Lineare

Enrico Bragastini

 $21~\mathrm{marzo}~2021$

Indice

1	Matrici e sistemi lineari			1
	1.1	Matrici		1
		1.1.1	Dimensioni di una matrice (forma)]
		1.1.2	Vettore riga e Vettore colonna	-
		1.1.3	Matrice quadrata	4
		1.1.4	Posto in una matrice	4
		1.1.5	Notazione generica	4
		1.1.6	Matrici uguali	•
		1.1.7	Operazioni	٤

Matrici e sistemi lineari

1.1 Matrici

Una **Matrice** è una tabella numerica a doppia entrata con i coefficienti ordinati per righe e per colonne

1.1.1 Dimensioni di una matrice (forma)

Si dice che una matrice è $m \times n$ se ha m righe e n colonne. Per esempio, date le seguenti due matrici:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

La matrice A è 2×3 equation* ha 2 righe e 3 colonne. La matrice B è 2×2 perché ha 2 righe e 2 colonne

1.1.2 Vettore riga e Vettore colonna

Esistono due particolari tipologie di matrici distinte dalla loro forma:

• Vettore Riga

Si tratta di una matrice composta da una sola riga. Un vettore riga è quindi una matrice di forma $1 \times n$.

$$A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

• Vettore Colonna

Si tratta di una matrice composta da una sola colonna. Un vettore colonna è quindi una matrice di forma $m \times 1$.

$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

1.1.3 Matrice quadrata

Una Matrice si dice **quadrata** quando il numero delle righe è uguale al numero delle colonne, ovvero quando m = n. In tale caso, n è chiamato **ordine** della matrice.

Esempio

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

La matrice A è *quadrata* di *ordine* pari a 2. Gli elementi della matrice in rosso fanno parte della **diagonale principale**. Gli elementi della matrice in blu fanno parte della **diagonale secondaria**

1.1.4 Posto in una matrice

Ogni elemento di una matrice è univocamente determinato dal posto che occupa nella tabella. L'unico elemento di posto (i, j) è l'elemento che si trova nella i-esima riqa e nella j-esima colonna.

Esempio:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

Nella matrice A:

- 1 è l'elemento di posto (1, 1)
- 2 è l'elemento di posto (1, 2)
- 6 è l'elemento di posto (2, 3)

1.1.5 Notazione generica

Una matrice A di forma $m \times n$, ovvero una matrice del tipo:

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix}$$

può essere indicata mediante la sua **notazione generica**:

$$A = [a_{ij}] 1 \le i \le m$$
$$1 \le j \le n$$

1.1.6 Matrici uguali

Due matrici si dicono **uguali** se hanno:

- 1. Stessa forma: stesso numero di righe e stesso numero di colonne
- 2. Stessi coefficienti

Esempio:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \neq \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

Le due matrici sono diverse perché la prima è 2×3 mentre la seconda è 3×2 .

Esempio:

$$A = \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix} \neq \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} = B$$

Le due matrici sono diverse perché $A_{2,2} \neq B_{2,2}$.

1.1.7 Operazioni

Somma tra matrici

Se A e B sono due matrici $m \times n$, allora si può definire la loro somma, che viene denotata con A + B.

$$A = [a_{i,j}] \quad 1 \le i \le m$$

$$1 \le j \le n$$

$$A + B = [c_{i,j}] \quad 1 \le i \le m$$

$$1 \le i \le m$$

$$1 \le i \le m$$

$$1 \le j \le n$$

$$1 \le j \le n$$
dove $c_{i,j} = a_{i,j} + b_{i,j}$

$$1 \le j \le n$$

La somma di due matrici (con la stessa forma) si fa **posto per posto**.

Esempio:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} B = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 0 \end{bmatrix}$$
$$A + B = \begin{bmatrix} 2 & 2 & 6 \\ 6 & 6 & 6 \end{bmatrix}$$

Moltiplicazione per uno scalare

Sia $\alpha \in \mathbb{R}$ uno scalare. Consideriamo $A = [a_{i,j}]$ $\begin{cases} 1 \leq i \leq m \\ 1 \leq j \leq n \end{cases}$ allora αA denota la matrice con la stessa forma di A (ovvero $m \times n$) e con termine generico $b_{i,j} = \alpha a_{i,j}$

Esempio:

$$\alpha = 2$$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad 2 \times 2$$

$$\alpha A = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} \quad 2 \times 2$$

Data $A = [a_{i,j}]$ $\begin{cases} 1 \leq i \leq m \\ 1 \leq j \leq n \end{cases}$, allora ci sono 3 casi particolari:

- $0 \cdot A = O_{m,n} \ (matrice \ nulla)$
- $1 \cdot A = A$
- $(-1) \cdot A = -A \ (matrice \ inversa)$