

Introduction to GWAS Common Data Types and Formats

Christian Werner

(Quantitative geneticist and biostatistician) EiB, CIMMYT, Texcoco (Mexico)

Filippo Biscarini

(Biostatistician, bioinformatician and quantitative geneticist) CNR-IBBA, Milan (Italy)

Oscar González-Recio

(Computational biologist and quantitative geneticist) INIA-UPM, Madrid (Spain)

Genotyping and Sequencing

A very brief overview

The first steps – Biomarkers

A MOLECULAR APPROACH TO THE STUDY OF GENIC HETEROZYGOSITY IN NATURAL POPULATIONS. I. THE NUMBER OF ALLELES AT DIFFERENT LOCI IN DROSOPHILA PSEUDOOBSCURA¹

J. L. HUBBY AND R. C. LEWONTIN

Department of Zoology, University of Chicago, Chicago, Illinois

Received March 30, 1966

³ The work reported here was supported in part by grants from the National Science Foundation (GB 5013) and the Public Health Service (GB6 15105).

Genetics \$4: 517-514 August 1966.

)

J. L. HUBBY AND R. C. LEWONTIN

FIGURE 1.—Gel illustrating sample placement and typical results of strain analysis for Exterise-5. The first and the last samples were derived from the standard reference strain (E-51-09), while positions 2 through 6 were obtained from five individuals of one strain and positions 7 through 11 are from five individuals of a second strain. Positions 2, 3, and 6 contain Exterase-5-9, position 5 contains Exterase-5-1-12, and position 4 contains Exterase-5-9. Exterase-5-1-12 and a site of activity between them. Positions 7, 8, and 9 contain Exterase-5-1-10 positions 10 and 11 contain Exterase-5-1-0 and Exterase-5-1-12. A site of activity midway between the latter two is barely discernible. In all the figures the direction of migration of the protein is down toward the anode.

From few to many markers – Molecular markers (DNA markers)

- arise from different classes of DNA mutations such as substitution mutations (point mutations), rearrangements (insertions or deletions) or errors in replication of tandemly repeated DNA
- are usually located in non-coding regions of DNA
- are practically unlimited in number and are not affected by environmental factors and/or the developmental stage of the plant
- RFLP, AFLP, RAPD, SSR (microsatellites), SNP

From few to many markers – Molecular markers (DNA markers)

Euphytica (2005) 142: 169-196

DOI: 10.1007/s10681-005-1681-5

© Springer 2005

An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts

B.C.Y. Collard^{1,4,*}, M.Z.Z. Jahufer², J.B. Brouwer³ & E.C.K. Pang¹

¹Department of Biotechnology and Environmental Biology, RMIT University, P.O. Box 71, Bundoora, Victoria 3083, Australia; ²AgResearch Ltd., Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, New Zealand; ³P.O. Box 910, Horsham, Victoria, Australia 3402; ⁴Present address: Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines; (*author for correspondence: e-mail: bcycollard@hotmail.com)

Received 11 July 2004; accepted 2 February 2005

Genotyping Systems

Marker gel

(a few markers)

SNP array (or GBS)

(100s -1,000,000s)

Genome sequencer

(1,000,000s +)

SNP array genotyping

Genotype calling 3 genotypes: AA, AG, GG

Reduced representation sequencing – Genotyping-by-Sequencing (GBS)

doi: https://doi.org/10.1371/journal.pone.0019379.g002

The Next Generation Sequencing Revolution

Hmmm...now the data is here....so what now?

Assembly!

The Next Generation Sequencing Revolution

Millions of polymorphisms in the genome sequences...

Genotyping formats

Two major genotyping formats (but there are many...)

Plink format ped/map files

https://www.cog-genomics.org/plink2/

Variant calling format vcf files

https://www.internationalgenome.org/wiki/Analysis/vcf4.0/

https://vcftools.github.io/index.html

PLINK - the .ped file

Column 1 = Family ID

Column 2 = Individual ID

Column 3 = Paternal ID (zero for missing)

Column 4 = Maternal ID (zero for missing)

Column 5 = Sex

Column 6 = Phenotype (1=unaffected, 2=affected, and 0=missing)

Column 7, 8 = genotype pair of the first SNP1 (zero for missing)

Column 9, 10 = genotype pair of the second SNP2 (zero for means missing)

...

Column 457393, 457394 = genotype pair of the last SNP228694

Kim J.H. (2019) GWAS Data Analysis. In: Genome Data Analysis. Learning Materials in Biosciences. Springer, Singapore

PLINK - the .map file

Column 1 = chromosome number

Column 2 = SNP ID

Column 3 = Genetic Distance (morgans)

Column 4 = physical base-pair position (bp)

Kim J.H. (2019) GWAS Data Analysis. In: Genome Data Analysis. Learning Materials in Biosciences. Springer, Singapore

Variant calling format - the .vcf file


```
Data info
```

```
##fileformat=VCFv4.3
##fileDate=20090805
##source-myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20.length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS.Number=1.Type=Integer.Description="Number of Samples With Data">
##INFO-<ID-DP.Number=1.Type=Integer.Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10.Description="Quality below 10">
##FILTER=<ID=s50, Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT-<ID-GQ,Number-1,Type-Integer,Description-"Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ.Number=2.Type=Integer.Description="Haplotype Quality">
#CHROM POS
                                        QUAL FILTER INFO
                                                                                                                                 NA00003
      14370 rs6054257 G
                                             PASS
                                                    NS-3:DP-14:AF-0.5:DB:H2
                                                                                      GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:...
      17330
                                                    NS-3:DP-11:AF-0.017
                                                                                      GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3
                                                                                                                                 0/0:41:3
      1110696 rs6040355 A
                                             PASS
                                                    NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2
                                                                                                                                 2/2:35:4
                                             PASS
                                                    NS=3:DP=13:AA=T
                                                                                      GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
      1234567 microsat1 GTC
                                G,GTCT
                                             PASS
                                                    NS=3:DP=9:AA=G
                                                                                      GT:GQ:DP 0/1:35:4
                                                                                                                  0/2:17:2
                                                                                                                                 1/1:40:3
```

CHROM → chromosome/contig

POS → position on chr/contig

 $ID \rightarrow SNP name/ID$

REF → reference genome allele

ALT \rightarrow alternative allele (. / 1 or more)

QUAL → Phred scaled quality

-10log10 (call in Alt is wrong)

E.g. 1/10 chance of mistake $\rightarrow 10$

FILTER \square quality filter (q10 \rightarrow quality < 10)

INFO \square further information

0/1 is not the same as **0|1**!! (unphased / phased)

