```
In[2]:= ? BesselJ
```

Out[2]= Symbol BesselJ
$$[n, z]$$
 gives the Bessel function of the first kind J $_{\rm n}(z)$.

In[10]:= Limit
$$\left[D \left[D \left[BesselJ \left[0, k \sqrt{(x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2} \right], x1 \right], x2 \right],$$
 $\{x1 \to 0, x2 \to 0, y1 \to 0, y2 \to 0, z1 \to d, z2 \to d\} \right]$

Out[10]=
$$\frac{k^2}{2}$$

$$In[11] := D \left[D \left[BesselJ \left[0, k \sqrt{(x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2} \right], x1 \right], x2 \right]$$

$$\text{Out[11]= } -\frac{\text{k } (\text{x1}-\text{x2})^{\,2} \, \text{BesselJ} \Big[\text{1, k} \, \sqrt{(\text{x1}-\text{x2})^{\,2} + (\text{y1}-\text{y2})^{\,2} + (\text{z1}-\text{z2})^{\,2}} \, \Big] }{ \left((\text{x1}-\text{x2})^{\,2} + (\text{y1}-\text{y2})^{\,2} + (\text{z1}-\text{z2})^{\,2} \right)^{\,3/2} } \, + \, \left(\text{x1}-\text{x2} + (\text{y1}-\text{y2})^{\,2} +$$

$$\frac{\text{k BesselJ} \bigg[1, \, k \, \sqrt{ \left(x1 - x2 \right)^2 + \, \left(y1 - y2 \right)^2 + \, \left(z1 - z2 \right)^2 \, \bigg] }{\sqrt{ \left(x1 - x2 \right)^2 + \, \left(y1 - y2 \right)^2 + \, \left(z1 - z2 \right)^2 }} \, + \\$$

$$\left(k^2 \left(x1 - x2 \right)^2 \left(\text{BesselJ} \left[0 \text{, } k \sqrt{ \left(x1 - x2 \right)^2 + \left(y1 - y2 \right)^2 + \left(z1 - z2 \right)^2} \, \right] - \text{BesselJ} \left[2 \text{,} k \sqrt{ \left(x1 - x2 \right)^2 + \left(y1 - y2 \right)^2 + \left(z1 - z2 \right)^2} \, \right] \right) \right) / \left(2 \left(\left(x1 - x2 \right)^2 + \left(y1 - y2 \right)^2 + \left(z1 - z2 \right)^2 \right) \right)$$

$$\begin{aligned} & \text{In[12]:= Limit} \Big[\text{BesselJ} \Big[0 \text{, k } \sqrt{ \left(\text{x1} - \text{x2} \right)^2 + \left(\text{y1} - \text{y2} \right)^2 + \left(\text{z1} - \text{z2} \right)^2 } \, \Big] \text{,} \\ & \left\{ \text{x1} \to 0 \text{, x2} \to 0 \text{, y1} \to 0 \text{, y2} \to 0 \text{, z1} \to \text{d}, \text{z2} \to \text{d} \right\} \Big] \end{aligned}$$

 $\mathsf{Out}[\mathsf{12}] = \ 1$