Homogeneous bi-Hamiltonian structures and integrable contact systems

Leonardo Colombo, Manuel de León, María Emma Eyrea Irazú, and Asier López-Gordón

7th International Conference on Geometric Science of Information

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

Contact geometry

Definition

A (co-oriented) **contact manifold** is a pair (M, η) , where M is an (2n + 1)-dimensional manifold and η is a 1-form on M such that the map

$$b_{\eta} \colon \mathfrak{X}(M) \to \Omega^{1}(M)$$
$$X \mapsto \iota_{X} d\eta + \eta(X)\eta,$$

is an isomorphism of $\mathscr{C}^{\infty}(M)$ -modules.

• There exists a unique vector field R on (M, η) , called the **Reeb** vector field, given by $R = b_{\eta}^{-1}(\eta)$, or, equivalently,

$$\iota_R d\eta = 0$$
, $\iota_R \eta = 1$.

Contact geometry

• The Hamiltonian vector field of $f \in \mathscr{C}^{\infty}(M)$ is given by

$$X_f = b_{\eta}^{-1}(\mathrm{d}f) - (R(f) + f) R$$
,

• Around each point on M there exist **Darboux coordinates** (q^i, p_i, z) such that

$$\begin{split} \eta &= \mathrm{d}z - p_i \mathrm{d}q^i \,, \\ R &= \frac{\partial}{\partial z} \,, \\ X_f &= \frac{\partial f}{\partial p_i} \frac{\partial}{\partial q^i} - \left(\frac{\partial f}{\partial q^i} + p_i \frac{\partial f}{\partial z} \right) \frac{\partial}{\partial p_i} + \left(p_i \frac{\partial f}{\partial p_i} - f \right) \frac{\partial}{\partial z} \,. \end{split}$$

Contact geometry

• The **Jacobi bracket** is given by

$$\{f,g\} = X_f(g) + gR(f).$$

- This bracket is bilinear and satisfies the Jacobi identity.
- However, unlike a Poisson bracket, it does not satisfy the Leibniz identity:

$${f,gh} \neq {f,g}h + {f,h}g.$$

Contact Hamiltonian dynamics

Contact Hamiltonian vector fields allow modelling certain dissipative mechanical systems, as well as some thermodynamic systems.

In a Darboux chart, the integral curves $c(t) = (q^i(t), p_i(t), z(t))$ of X_h are determined by the **contact Hamilton equations**:

$$\frac{dq^{i}(t)}{dt} = \frac{\partial h}{\partial p_{i}} \circ c(t),$$

$$\frac{dp_{i}(t)}{dt} = -\frac{\partial h}{\partial q^{i}} \circ c(t) - p_{i}(t) \frac{\partial h}{\partial z} \circ c(t),$$

$$\frac{dz(t)}{dt} = p_{i}(t) \frac{\partial h}{\partial p_{i}} \circ c(t) - h \circ c(t).$$

Exact symplectic manifolds

Definition

An exact symplectic manifold is a pair (M,θ) , where θ is a symplectic potential on M, i.e., $\omega = -\mathrm{d}\theta$ is a symplectic form on M. The Liouville vector field $\nabla \in \mathfrak{X}(M)$ is given by

$$\iota_{\nabla}\omega = -\theta$$
.

A tensor field A on P is called k-homogeneous (for $k \in \mathbb{Z}$) if

$$\mathcal{L}_{\nabla}A = kA$$
.

Trivial symplectisation

Definition

Let (M, η) be a co-oriented contact manifold. Then, the trivial bundle $\pi_1: M^{\text{symp}} = M \times \mathbb{R}_+ \to M$, $\pi_1(x,r) = x$ can be endowed with the symplectic potential $\theta(x,r) = r\eta(x)$. The Liouville vector field reads $\nabla = r\partial_r$.

We will refer to $(M^{\text{symp}}, \theta)$ as the **trivial symplectisation** of (M, η) .

Trivial symplectisation

Proposition,

There is a one-to-one correspondence between functions f(x) on M and 1-homogeneous functions $f^{\text{symp}}(x,r) = -rf(x)$ on M^{symp} such that the symplectic $X_{f^{\text{symp}}}$ and contact X_{f} Hamiltonian vector fields are related as follows:

$$T\pi_1(X_{f^{\text{symp}}}) = X_f.$$

Moreover, the Poisson $\{\cdot,\cdot\}_{\theta}$ and Jacobi $\{\cdot,\cdot\}_{\eta}$ brackets have the correspondence

$${f^{\text{symp}}, g^{\text{symp}}}_{\omega} = \left({f, g}_{\eta} \right)^{\text{symp}}.$$

Definition

A homogeneous Hamiltonian system (M, θ, H) consists of a 2n-dimensional exact symplectic manifold (M, θ) and a 1-homogeneous Hamiltonian function H. It is called a homogeneous integrable system if there exist n 1-homogeneous functions f_1, \ldots, f_n such that

$$\{f_i, H\} = 0 = \{f_i, f_j\}, \quad 1 \le i, j \le n.$$

Definition

A **completely integrable contact system** is a co-oriented contact manifold (M, η) endowed with a Hamiltonian function $h \in \mathscr{C}^{\infty}(M)$ such that its trivial symplectisation $(M^{\text{symp}}, \theta, h^{\text{symp}})$ is a homogeneous integrable system.

Our Liouville–Arnol'd theorem permits constructing action-angle coordinates for completely integrable contact systems.

Compatible Poisson structures

Definition

Let M be a manifold. Two Poisson tensors are Λ and Λ_1 on M are said to be **compatible** if $\Lambda + \Lambda_1$ is also a Poisson tensor on M.

Definition

A vector field $X \in \mathfrak{X}(M)$ is called **bi-Hamiltonian** if it is a Hamiltonian vector field w.r.t. two compatible Poisson structures, namely,

$$X = \Lambda(\cdot, dh) = \Lambda_1(\cdot, dh_1),$$

for two functions $h, h_1 \in \mathscr{C}^{\infty}(M)$.

Poisson - Nijehuis structures

- The linear map $\sharp_{\Lambda} \colon \mathsf{T}_{\mathsf{X}}^* M \ni \alpha \mapsto \Lambda(\cdot, \alpha) \in \mathsf{T}_{\mathsf{X}} M$ is an isomorphism iff Λ comes from a symplectic structure ω . In that case, $\flat_{\omega} := \sharp_{\Lambda}^{-1}(v) = \iota_{v}\omega$.
- In that situation, we can define the (1, 1)-tensor field

$$N = \sharp_{\Lambda_1} \circ \sharp_{\Lambda}^{-1} = \sharp_{\Lambda_1} \circ \flat_{\omega}$$
.

Poisson – Nijehuis structures

Theorem (Magri and Morosi, 1984)

Let (M, ω) be a symplectic manifold and Λ_1 a bivector. If Λ_1 is a Poisson tensor compatible with $\Lambda = \omega^{-1}$, then the eigenvalues of the (1, 1)-tensor field

$$N = \sharp_{\Lambda_1} \circ \flat_{\omega}$$

are functions in involution w.r.t. both Poisson brackets.

Corollary

If a vector field $X \in \mathfrak{X}(M)$ is bi-Hamiltonian w.r.t. to ω and Λ_1 (i.e., $X = \sharp_{\omega} dh = \sharp_{\Lambda_1} dh_1$, then the eigenvalues of N form a family of conserved quantities in involution w.r.t. both Poisson brackets.

Compatible Jacobi structures

- The theory of compatible Jacobi structures and Jacobi-Nijenhuis manifolds was developed by Iglesias, Monterde, Marrero, Nunes da Costa. Padrón and Petalidou in the 1990s and 2000s.
- Two Jacobi structures (Λ, E) and (Λ_1, E_1) on a manifold M are called compatible if $(\Lambda + \Lambda_1, E + E_1)$ is also a Jacobi structure on M.
- Given a Jacobi structure (Λ, E) on M, one can construct an associated Poisson structure $\tilde{\Lambda} = 1/r\Lambda + \partial_r \wedge E$ on $M \times \mathbb{R}_+$, which by construction is homogeneous of degree –1 w.r.t. $\nabla = r\partial_r$.
- Nunes da Costa (1998) showed that (Λ, E) and (Λ_1, E_1) are compatible Jacobi structures iff $\tilde{\Lambda}$ and $\tilde{\Lambda}_1$ are compatible Poisson structures.

Theorem (Fernandes, 1994)

Consider a 2n-dimensional completely integrable Hamiltonian system (M, ω, H) with action-angle coordinates (s_i, φ^i) satisfying the following conditions:

- (ND) The Hessian matrix $\left(\frac{\partial^2 H}{\partial s_i \partial s_j}\right)$ of the Hamiltonian w.r.t. the action variables is non-degenerate in a dense subset of M.
- (BH) The system is bi-Hamiltonian and the recursion operator N has n functionally independent real eigenvalues $\lambda_1, \ldots, \lambda_n$.

Then, the Hamiltonian function can be written as

$$H(\lambda_1,\ldots,\lambda_n)=\sum_{i=1}^n H_i(\lambda_i),$$

where each H_i is a function that depends only on the corresponding λ_i .

Proposition

Let (M, θ, H) be a homogeneous integrable Hamiltonian system satisfying the assumption (ND). Denote by Λ the Poisson structure defined by $\omega = -\mathrm{d}\theta$, and by ∇ the Liouville vector field corresponding to θ . If there is a Poisson structure Λ_1 on M compatible with Λ , it cannot be simultaneously (-1)-homogeneous (i.e., $\mathcal{L}_\nabla \Lambda_1 = -\Lambda_1$) and satisfying (BH).

Proof

If N has n functionally independent eigenvalues, then $H = \sum_i H_i(\lambda_i)$. If Λ_1 is (-1)-homogeneous, then N is 0-homogeneous, so its eigenvalues are 0-homogeneous as well. Hence,

$$H = \nabla(H) = \sum_{i=1}^{n} H'_{i}(\lambda_{i}) \nabla(\lambda_{i}) = 0.$$

Proposition

Let (M, θ, H) be a homogeneous integrable Hamiltonian system satisfying the assumption (ND). Denote by Λ the Poisson structure defined by $\omega = -\mathrm{d}\theta$, and by ∇ the Liouville vector field corresponding to θ . If there is a Poisson structure Λ_1 on M compatible with Λ , it cannot be simultaneously (-1)-homogeneous (i.e., $\mathcal{L}_{\nabla}\Lambda_1 = -\Lambda_1$) and satisfying (BH).

Proof.

If N has n functionally independent eigenvalues, then $H = \sum_i H_i(\lambda_i)$. If Λ_1 is (–1)-homogeneous, then N is 0-homogeneous, so its eigenvalues are 0-homogeneous as well. Hence,

$$H = \nabla(H) = \sum_{i=1}^{n} H'_{i}(\lambda_{i}) \nabla(\lambda_{i}) = 0.$$

Corollary

Let (M, η, H) be a (2n + 1)-dimensional integrable contact Hamiltonian system. If there is a second Jacobi structure (Λ_1, E_1) compatible with the Jacobi structure (Λ, E) defined by η , then the recursion operator $N = \sharp_{\tilde{\Lambda}_1} \circ \sharp_{\tilde{\Lambda}}^{-1}$ relating the associated Poisson structures on $M \times \mathbb{R}_+$ cannot have (n + 1) functionally independent real eigenvalues.

- Consequently, compatible Jacobi structures cannot be utilised to construct a set of independent functions in involution for a contact Hamiltonian system.
- Nevertheless, we can symplectise the contact Hamiltonian system and obtain a second Poisson structure compatible with the one defined by the exact symplectic structure.
- If N is 1-homogeneous and satisfies (BH), then its eigenvalues are n functionally independent and 1-homogeneous functions in involution, so they will project into *n* functions in involution w.r.t. the Jacobi bracket.

A toy example

- Let $M = \mathbb{R}^2$, and consider its cotangent bundle $T^*M \simeq \mathbb{R}^4$ endowed with the canonical one-form $\theta_{\mathbb{R}^2}$.
- In bundle coordinates (x^1, x^2, p_1, p_2) ,

$$\theta_{\mathbb{R}^2} = p_1 dx^1 + p_2 dx^2 \rightsquigarrow \Lambda = \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial p_1} + \frac{\partial}{\partial x^2} \wedge \frac{\partial}{\partial p_2}.$$

- In this case, the Liouville vector field is $\nabla_M = p_i \partial_{p_i}$, the infinitesimal generator of homotheties on the fibers.
- A Poisson structure compatible with Λ is

$$\Lambda_1 = p_1 \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial p_1} + p_2 x^2 \frac{\partial}{\partial x^2} \wedge \frac{\partial}{\partial p_2}.$$

A toy example

• The Nijenhuis tensor $N = \sharp_{\Lambda_1} \circ \sharp_{\Lambda}^{-1}$ reads

$$N = p_1 \left(\frac{\partial}{\partial x^1} \otimes \mathrm{d} x^1 + \frac{\partial}{\partial p_1} \otimes \mathrm{d} p_1 \right) + p_2 x^2 \left(\frac{\partial}{\partial x^2} \otimes \mathrm{d} x^2 + \frac{\partial}{\partial p_2} \otimes \mathrm{d} p_2 \right) \; ,$$

with eigenvalues $\lambda_1 = p_1$ and $\lambda_2 = p_2 x^2$.

The vector field

$$X = \frac{\partial}{\partial x^1} + x^2 \frac{\partial}{\partial x^2} - p_2 \frac{\partial}{\partial p_2}$$

is bi-Hamiltonian, it is the Hamiltonian vector field of $H = p_1 + p_2 x^2$ w.r.t. Λ , and the Hamiltonian vector field of $H_1 = \log(p_1p_2x^2)$ w.r.t. Λ_1 . Moreover, λ_1 and λ_2 are first integrals of X.

A toy example bis

- Consider the contact Hamiltonian system ($M = \mathbb{R}^3$, η , h), with η the canonical contact form, $\eta = dz pdq$, and h = p z.
- In bundle coordinates (q, p, z, r), the trivial symplectisation $(\mathbb{R}^4, \theta, H)$ of (M, η, h) reads

$$\theta = rdz - rpdq$$
, $H = rz - rp$,

and Liouville vector field is $\nabla = r\partial_r$.

 This is the system from the previous example, as it becomes evident by performing the coordinate change

$$x^1 = q$$
, $x^2 = z$, $p_1 = -rp$, $p_2 = r$.

- Thus, we have the functions $\lambda_1 = p_1 = -rp$ and $\lambda_2 = p_2 x^2 = rz$, which are homogeneous of degree 1, in involution, and functionally independent on a dense subset.
- Projecting them to M, we obtain $\bar{\lambda}_1 = p$ and $\bar{\lambda}_2 = -z$, which are functionally independent and $\{\bar{\lambda}_1, \bar{\lambda}_2\} = \{\bar{\lambda}_1, h\} = \{\bar{\lambda}_2, h\} = 0$.

Main references

- [1] V. I. Arnol'd. *Mathematical Methods of Classical Mechanics*. Graduate Texts in Mathematics. Springer-Verlag: New York, 1978.
- [2] L. Colombo, M. de León, M. Lainz, and A. López-Gordón. "Liouville–Arnold Theorem for Homogeneous Symplectic and Contact Hamiltonian Systems". *Geom. Mech.*, **02**(03) (2025).
- [3] K. Grabowska and J. Grabowski. "A Geometric Approach to Contact Hamiltonians and Contact Hamilton–Jacobi Theory". J. Phys. A: Math. Theor., 55(43) (2022).
- [4] F. Magri, P. Casati, G. Falqui, and M. Pedroni. "Eight Lectures on Integrable Systems". In: *Integrability of Nonlinear Systems*. Ed. by Y. Kosmann-Schwarzbach, B. Grammaticos, and K. M. Tamizhmani. Lecture Notes in Physics. Springer: Berlin, Heidelberg, 1997.
- [5] J. M. Nunes da Costa. "Compatible Jacobi Manifolds: Geometry and Reduction". J. Phys. A: Math. Gen., 31(3) (1998).

Merci pour votre attention!

- ☑ Feel free to contact me at alopez-gordon@impan.pl
- These slides are available at www.alopezgordon.xyz