Discriptive Statistics

Dr. Siddiqua Mazhar

Mid Michigan College

Sep 9, 2021

Charateristics

- Center
- Variation
- Distribution
- Outliers
- Changes over time

Central Tendency

Centre: The Middle of the data set. There are three ways.

Mean: (Arithmetic Average) Add all the values and divide by the number of values you added.

$$Mean = \frac{\sum X}{No. of Values}$$

Sample Mean

$$\overline{X} = \frac{\sum X}{n}$$

Population Mean

$$\mu = \frac{\sum X}{N}$$

Symbols

- $\mathbf{0} \sum = \mathsf{Sum}$
- $oldsymbol{0}$ n= No. of items in a Sample.
- N= No. of items in a Population
- X = Data Value
- \bullet \overline{X} = Sample Mean
- \bullet μ = Population Mean

 $\textbf{Sample Data:}\ \{5.40,\ 1.10,\ 0.42,\ 0.73,\ 0.48,\ 1.10\}$

Median: The Middle of the data set.

Note:

- Data values must be in order.
- Find middle value.
 - If Odd number of values, the measure is the middle number.
 - If Even number of values, The median is the mean of the two middle numbers.

- **1** {1, 3, 4, 5, 6, 7}, M= 4.5
- 2 {8, 3, 5, 11, 13, 4, 6}, Find median?

3 {3, 4, 5, 6, 8, 11, 13, 412}, Find median?

• {5.40, 1.10, 0.42, 0.73, 0.48, 1.10}, Find median?

Note: Mean is effected by the outlier value but median does not.

Mode: The most commonly occuring data value.

- $\{5.40, 1.10, 0.42, 0.73, 0.48, 1.10\}$, Mode = 1.10
- {27, 27, 27, 55, 55, 55, 88, 88, } Mode =
- $\{1, 2, 4, 7, 9, 10, 12\}$ Mode $=\phi$

Midrange: Midway between highest and lowest point.

- {5.40, 1.10, 0.42, 0.73, 0.48, 1.10}
- {27, 27, 27, 55, 55, 55, 88, 88, }
- {1, 2, ,4, 7, 9, 10, 12}

Expand your knowledge: Grouped Data

When data are grouped, such as frequency table, we can estimate the mean by the following formula.

Sample Mean for a Frequency Distribution

$$\overline{x} = \frac{\sum xf}{n}$$

where

x is the midpoint of a class.

Mean of a Freq. Distribution

Age	f	X	f.X
21-30	28	25.5	714
31-40	30	35.5	1065
41-50	12	45.5	546
51-60	2	55.5	111
61-70	2	65.5	131
71-80	2	75.5	151

Weighted Mean

Weighted average =
$$\frac{\sum xw}{\sum w}$$

where x is a data value and w is the weight assigned to that data value. The sum is taken over all data values.

	W	X	X.w
H.W.	15 %	70	10.5
T_1	20 %	90	18
T_2	20 %	68	13.6
T_3	20 %	85	17
F	25 %	95	23.75

Practice Question

The following table shows the grouped data, in classes, for the heights of 50 people.

height in cm	f
120-129.	2
130-139	5
140-149	25
150-159	10
160-169	8

Calculate the mean of the height of 50 people.

How to find Central Tendancy on a calculator

```
Step 1: Press STAT
```

Step2: Press 1 Edit — Enter

Step3: Enter the values of L1

Step 4: Press STAT

Step 5: Select CALC (Moved by the curser sign) and press enter

on option 1: 1-Var Stats

Step 6: Hit the Yellow button '2nd' and press 1 to get L1 and then

enter

DONE!

How to find Central Tendancy on a calculator

Important Numbers: One Variable

We can find the minimum, maximum, median, quartiles, standard deviation, and mean all in the same place.

- Press STAT
- Press Enter
- Enter the data into L1. Press enter after each number
- 4. Press STAT
- Go over (with the arrow) to Calc
- 6. Press enter (or hit number 1) for 1-
- 7. Press Enter again
- The important numbers appear. To see more, scroll down with the down arrow.

For details on what everything means in 1-var stats, see next page.

L1	L2	L3 1
567514		
L1(7)=		

How to find Central Tendancy on a calculator

1-Var Stats continued

Data Distribution

A histogram can look many ways but the shape of a histogram means something.

Normal Distribution

Bell curved shape / symmetric . (median = mean)

Left skewed

Tail to the left. (mean < median)

Right skewed

Tail to the right. (median < mean)

Variation

Variation means how the data is spread.

The number of customers in the bank waiting in three different lines.

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	Mean
6	6	6	$\overline{X} =$
4	7	7	$\overline{X} =$
1	3	14	$\overline{X} =$

Measures of Variation

Range

The is range is the difference between the largest and smallest values of a data distribution.

Note:

- Easy to find.
- Does not consider all values except maximum and minimum value.

For these sets $S_1=\{17,22,22,22,27\}$ $S_2=\{17,19,20,27,27\}$ Range is the same $R_1=27-17=10$, and $R_2=27-17=10$, How do they differ?

Standard Deviation

It measures the average distance your data values are from the mean.

Note:

- It can never be negative or Zero, unless all entries are the same.
- Generally effected by Outliers.

Sample standard deviation is denoted by S.

$$S = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$$

OR

$$S = \sqrt{\frac{n \sum (X^2) - (\sum (X))^2}{n(n-1)}}$$

Explanation

Find Standard Deviation of $\{1, 3, 14\}$

X	$X - \overline{X}$	$(X-\overline{X})^2$

Find Standard Deviation of $\{1, 3, 14\}$

Χ	X ²	

Find Standard Deviation of $\{4,7,7\}$

X	$X - \overline{X}$	$(X-\overline{X})^2$

Standard Deviation for a population

$$\sigma = \sqrt{\frac{\sum (X - \mu)^2}{N}}$$

Standard Deviation for a Grouped Data

Sample Standard Deviation for a Frequency Distribution

$$s = \sqrt{\frac{\sum (x - \overline{x})^2 f}{n - 1}}$$

where

x is the midpoint of a class.

Standard Deviation for a Grouped Data

Question

The following table shows the grouped data, in classes, for the heights of 50 people.

height in cm	f
120-129.	2
130-139	5
140-149	25
150-159	10
160-169	8

Calculate the standard deviation of the height of 50 people.

Variance

- Sample Variance: S^2
- Population Variance: σ^2

Note:

- Closely grouped data will have a small standard deviation.
- Spread-out data will have a large standard deviation.

Class Exercise

 Given the following frequency distribution, find the following things.

Class	frequency
0-4	2
5-9	3
10-14	6
15-19	9
20-24	7
25-29	2
30-24	1

- Mean
- Median
- Mode
- Standard Deviation
- Variance

