Handle Acknowledge Failure

24.6.6 I²C status register 1 (I2C_SR1)

Address offset: 0x14 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMB ALERT	TIMEO UT	Res.	PEC ERR	OVR	AF	ARLO	BERR	TxE	RxNE	Res.	STOPF	ADD10	BTF	ADDR	SB
rc_w0	rc_w0		rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	r	r		r	r	r	r	r

Bit 10 AF: Acknowledge failure

- 0: No acknowledge failure
- 1: Acknowledge failure
- Set by hardware when no acknowledge is returned.
- Cleared by software writing 0, or by hardware when PE=0.

Generate STOP Condition

24.6.1 I²C control register 1 (I2C_CR1)

Address offset: 0x00 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SW RST	Res.	ALERT	PEC	POS	ACK	STOP	START	NO STRET CH	ENGC	ENPEC	ENARP	SMB TYPE	Res.	SM BUS	PE
rw		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		rw	rw

Bit 9 STOP: Stop generation

The bit is set and cleared by software, cleared by hardware when a Stop condition is detected, set by hardware when a timeout error is detected.

In Master Mode:

- 0: No Stop generation.
- 1: Stop generation after the current byte transfer or after the current Start condition is sent.
- In Slave mode:
- 0: No Stop generation.
- 1: Release the SCL and SDA lines after the current byte transfer.

Enable Clock I2C2

6.3.13 RCC APB1 peripheral clock enable register (RCC_APB1ENR)

Address offset: 0x40

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	DAC EN	PWR EN	CEC EN	CAN2 EN	CAN1 EN	FMPI2C1 EN	I2C3 EN	I2C2 EN	I2C1 EN	UART5 EN	UART4 EN	USART3 EN	USART2 EN	SPDIFRX EN
		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SPI3 EN	SPI2 EN	Res.	Res.	WWDG EN	Res.	Res.	TIM14 EN	TIM13 EN	TIM12 EN	TIM7 EN	TIM6 EN	TIM5 EN	TIM4 EN	TIM3 EN	TIM2 EN
rw	rw			rw			rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit 22 I2C2EN: I2C2 clock enable

This bit is set and cleared by software.

0: I2C2 clock disabled 1: I2C2 clock enabled

Reset I2C2

I2C CR1 SWRST + Clear the SWRST bit

24.6.1 I²C control register 1 (I2C_CR1)

Address offset: 0x00 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SW RST	Res.	ALERT	PEC	POS	ACK	STOP	START	NO STRET CH	ENGC	ENPEC	ENARP	SMB TYPE	Res.	SM BUS	PE
rw		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		rw	rw

Bit 15 SWRST: Software reset

When set, the I2C is under reset state. Before resetting this bit, make sure the I2C lines are released and the bus is free.

0: I²C Peripheral not under reset

1: I²C Peripheral under reset state

Note: This bit can be used to reinitialize the peripheral after an error or a locked state. As an example, if the BUSY bit is set and remains locked due to a glitch on the bus, the SWRST bit can be used to exit from this state.

Setting F/S bit for Fast Mode

24.6.8 I²C clock control register (I2C_CCR)

Address offset: 0x1C Reset value: 0x0000

Note: f_{PCLK1} must be at least 2 MHz to achieve Sm mode I²C frequencies. It must be at least 4

MHz to achieve Fm mode I²C frequencies

The CCR register must be configured only when the I2C is disabled (PE = 0).

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
F/S	DUTY	Res.	Res.	CCR[11:0]											
rw	rw			rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit 15 F/S: I2C master mode selection

0: Sm mode I2C 1: Fm mode I2C

Set APB1 clock frequency in 32 MHz

24.6.2 I²C control register 2 (I2C_CR2)

Address offset: 0x04 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Res.	Res.	Res.	LAST	DMA EN	ITBUF EN	ITEVT EN	ITERR EN	Res.	Res.	FREQ[5:0]						
			rw	rw	rw	rw	rw			rw	rw	rw	rw	rw	rw	

Bits 5:0 FREQ[5:0]: Peripheral clock frequency

The FREQ bits must be configured with the APB clock frequency value (I2C peripheral connected to APB). The FREQ field is used by the peripheral to generate data setup and hold times compliant with the I2C specifications. The minimum allowed frequency is 2 MHz, the maximum frequency is limited by the maximum APB frequency (45 MHz) and cannot exceed 50 MHz (peripheral intrinsic maximum limit).

0b000000: Not allowed 0b000001: Not allowed 0b000010: 2 MHz

...

0b110010: 50 MHz

Higher than 0b101010: Not allowed

Check if I2C is in master mode or slave mode (observe SR2 register)

24.6.7 I²C status register 2 (I2C_SR2)

Address offset: 0x18 Reset value: 0x0000

Note:

Reading I2C_SR2 after reading I2C_SR1 clears the ADDR flag, even if the ADDR flag was set after reading I2C_SR1. Consequently, I2C_SR2 must be read only when ADDR is found set in I2C_SR1 or when the STOPF bit is cleared.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			PEC	[7:0]				DUALF	SMB HOST	SMB DEFAU LT	GEN CALL	Res.	TRA	BUSY	MSL
r	r	r	r	r	r	r	r	r	r	r	r		r	r	r

Bit 0 MSL: Master/slave

- 0: Slave Mode
- 1: Master Mode
- Set by hardware as soon as the interface is in Master mode (SB=1).
- Cleared by hardware after detecting a Stop condition on the bus or a loss of arbitration (ARLO=1), or by hardware when PE=0.