생존분석의 추정과 비교 : 보충자료

이용희

December 12, 2018

Contents

1	생존	함수와 위험함수	2
	1.1	생존함수와 위험함수	2
	1.2	예제: 지수분포	3
	1.3	예제: 와이블분포	3
	1.4	모수의 최대가능도 추정	4
2	생명	표방법을 이용한 생존함수 추정	5
3	누적	한계추정법에 의한 생존함수 추정	6
4	비모	수적 방법을 이용한 생존함수의 비교	7
	4.1	2 × 2 분할표에서 두 비율의 비교	7
	4.2	코크란-맨텔-핸젤 검정	8
	4.3	비모수적 방법을 이용한 생존함수의 비교	9

1 생존함수와 위험함수

1.1 생존함수와 위험함수

확률변수 T를 생존시간이라고 하고 f(t)를 확률밀도함수라고 하자. T의 누적분포함수(cumulative distribution function; CDF)는 다음과 같이 정의된다.

$$F(t) = P(T \le t) = \int_0^t f(t)dt$$

또한 생존함수(Survival function)은 다음과 같이 정의된다.

$$S(t) = P(T > t) = 1 - F(t)$$

위험함수(hazrd function)의 정의는 다음과 같으며 만약 생존시간이 t 보다 클때 바로 사망할 확률을 의미하며 수간위험율이다..

$$h(t) = \lim_{dt \to 0} \frac{P(t < T \le t + dt | T \ge t)}{dt}$$
$$= \frac{f(t)}{S(t)}$$

생존함수와 위험함수는 다음과 같은 관계를 가지고 있다.

$$h(t) = \frac{f(t)}{S(t)}$$

$$= \frac{f(t)}{1 - F(t)}$$

$$= -\frac{\partial}{\partial t} \log[1 - F(t)]$$

$$= -\frac{\partial}{\partial t} \log S(t)$$

따라서 다음의 관계가 성립한다.

$$S(t) = exp[-H(t)]$$

여기서

$$H(t) = \int_0^t h(t)dt$$

이며 H(t)를 누적위험함수라고 한다.

1.2 예제: 지수분포

만약 생존시간 T가 지수분포(Exponential distribution)을 따른다고 하자.

$$f(t;\lambda) = \lambda e^{-\lambda t}$$

위에서 λ 는 흔히 사망률, 실패율(failure rate)라고 부르며 $E(T)=1/\lambda$ 이다. 생존함수(survaival function)와 위험함수(hazard function)은 다음과 같이 주어진다. 만약 생존시간이 지수분포를 따른다면 위험함수는 상수 λ 이므로

$$S(t) = P(T > t) = 1 - P(T \le t)$$

$$= 1 - \int_0^t \lambda e^{-\lambda t}$$

$$= 1 - (1 - e^{-\lambda t})$$

$$= e^{-\lambda t}$$

$$h(t) = \frac{f(t)}{S(t)}$$

$$= \lambda e^{-\lambda t} / e^{-\lambda t}$$

$$= \lambda$$

누적위험함수는 아래와 같다.

$$H(t) = \int_0^t h(t)dt = \lambda t$$

1.3 예제: 와이블분포

만약 생존시간이 와이블 분포(Weibull distribution)를 따른다면 확률밀도함수는 다음과 같다.

$$f(t) = \frac{\lambda t^{\lambda - 1}}{\theta^{\lambda}} \exp\left[-\left(\frac{t}{\theta}\right)^{\lambda}\right], \quad \theta, \lambda > 0, t \ge 0.$$

평균은 $E(T)=\theta\Gamma(1+1/\lambda)$ 이다. 여기서 $\lambda=1$ 이면 지수분포가 된다. 이때 생존 함수는 다음과 같다.

$$S(t) = 1 - \int_0^t \frac{\lambda t^{\lambda - 1}}{\theta^{\lambda}} \exp\left[-\left(\frac{t}{\theta}\right)^{\lambda}\right] dt$$
$$= \exp\left[-\left(\frac{t}{\theta}\right)^{\lambda}\right].$$

또한 위험함수는 다음과 같다.

$$h(t) = \frac{f(t)}{S(t)}$$

$$= \frac{\frac{\lambda t^{\lambda-1}}{\theta^{\lambda}} \exp\left[-\left(\frac{t}{\theta}\right)^{\lambda}\right]}{\exp\left[-\left(\frac{t}{\theta}\right)^{\lambda}\right]}$$

$$= \left(\frac{\lambda}{\theta^{\lambda}}\right) t^{\lambda-1}.$$

위에서 볼 수 있듯이 $\lambda=1$ 이면 지수분포가 되고 위험함수는 상수이다. 만약에 $\lambda>1$ 이면 위험함수는 시간에 따라 증가하며 $\lambda<1$ 이면 위험함수는 감소한다.

누적위험함수는 아래와 같다.

$$H(t) = \int_0^t h(t)dt = (t/\theta)^{\lambda}$$

1.4 모수의 최대가능도 추정

생존시간 T_1, T_2, \ldots, T_n 을 독립적으로 분포 $f_{\theta}(t)$ 에서 추출하였다고 가정하고 중도절단시간 C_1, C_2, \ldots, C_n 도 독립적으로 분포 g(c)에서 추출하였다고 가정하자.

생존시간 T와 중도절단시간 C가 서로 독립이라고 가정하며 이러한 가정을 임의중도절단(random censoring)이라고 한다.

이제 관측한 생존시간 X;는 다음과 같이 정의한다.

$$X_i = \min(T_i, C_i)$$
 $i = 1, 2, \ldots, n$

또한 절단 표시변수 δ_i 는 다음과 같이 정의한다.

$$\delta_i = \begin{cases} 1 & T_i < C_i \\ 0 & T_i > C_i \end{cases}$$

이제 생존시간 T의 분포 $F_{\theta}(t)$ 가 주어졌을 때 표본 X_1, X_2, \ldots, X_n 의 가능도 함수 L 는 다음과 같이 나타낼 수 있다.

$$L(\theta; x, \delta) = \prod_{i \in UC} P_{\theta}(T_i = x_i) \prod_{i \in C} P_{\theta}(T_i > x_i) = \prod_{i \in UC} f_{\theta}(x_i) \prod_{i \in C} [1 - F_{\theta}(x_i)]$$

여기서 집합 UC는 실제 생존시간이 관측된 자료들, 집합 C는 중도절단된 자료을 의미한다. 모수의 최대가능도 추정은 $L(\theta;x,\delta)$ 를 최대로 하는 θ 를 찾는 방법이다. 이제 예제로서 생존시간의 분포가 지수분포를 따른다고 가정하고 가능도함수를 구해보자.

$$L(\lambda; x, \delta) = \prod_{i \in UC} P_{\lambda}(T_i = x_i) \prod_{i \in C} P_{\lambda}(T_i > x_i)$$

$$= \prod_{i \in UC} f_{\lambda}(x_i) \prod_{i \in C} [1 - F_{\lambda}(x_i)]$$

$$= \prod_{i=1}^{n} \left[\lambda e^{-\lambda x_i} \right]^{\delta_i} \left[e^{-\lambda x_i} \right]^{1 - \delta_i}$$

$$= \prod_{i=1}^{n} \lambda^{\delta_i} e^{-\lambda x_i}$$

$$= \lambda^{\sum_{i=1}^{n} \delta_i} e^{-\lambda \sum_{i=1}^{n} x_i}$$

이제 위의 가능도함수를 최대화하는 모수를 찾기위하여 로그가능도함수를 고려하고

$$\ell(\lambda; x, \delta) = \log L(\lambda; x, \delta) = \log \lambda \sum_{i=1}^{n} \delta_i - \lambda \sum_{i=1}^{n} x_i$$

로그가능도함수를 모수 λ 에 대하여 미분하고 0으로 놓고 풀면 최대가능도 추정량을 구할 수 있다.

$$\frac{\partial}{\partial \lambda} \ell(\lambda; x, \delta) = \frac{\sum_{i=1}^{n} \delta_i}{\lambda} - \sum_{i=1}^{n} x_i = 0$$

따라서 최대가능도 추정량은 다음과 같이 주어진다.

$$\hat{\lambda}_{ML} = \frac{\sum_{i=1}^{n} \delta_i}{\sum_{i=1}^{n} x_i}$$

만약 중도절단자료가 없다면 최대가능도 추정량은 일반적인 경우와 같이 다음과 같다.

$$\hat{\lambda}_{ML} = \frac{n}{\sum_{i=1}^{n} x_i}$$

2 생명표방법을 이용한 생존함수 추정

시간 $(0,\infty)$ 구간을 다음과 같은 경계선을 이용하여 k+1 개의 구간으로 나누었다고 가정하자. $(t_0=0)$

$$(t_0, t_1]$$
 $(t_1, t_2]$... $(t_{k-1}, t_k]$ (t_k, ∞)

생존함수는 다음과 같은 조건부 확률의 축차식으로 구할 수 있다.

$$S(t_{i}) = p(T > t_{i})$$

$$= P(T > t_{i}|T > t_{i-1})P(T > t_{i-1})$$

$$= P(T > t_{i}|T > t_{i-1})P(T > t_{i-1}|T > t_{i-2})P(T > t_{i-2})$$

$$= \cdots$$

$$= P(T > t_{i}|T > t_{i-1})P(T > t_{i-1}|T > t_{i-2})P(T > t_{i-2}) \dots P(T > t_{2}|T > t_{1})P(T > t_{1})$$

생명표방법을 이용한 생존함수 추정은 표를 이용하면 편리하다. 다음은 표를 생명표방법을 이용하여 생존함수를 추정하는 예를 보여준다.

구간	위험그룹인원수	사망자 수	중도절단 수	유효인원수	사망율	생존율	생존함수 추정
I_i	n_i	d_i	c_i	n_i'	$\frac{d_i}{n'_i}$	$1-\frac{d_i}{n_i'}$	$\hat{S}(t_i)$
0-1	126	47	19	116.5	0.40	0.60	0.60
1-2	60	5	17	51.5	0.10	0.90	0.54
2-3	38	2	15	30.5	0.07	0.93	0.50
3-4	21	2	9	16.5	0.12	0.88	0.44
4-5	10	0	6	7.0	0.00	1.00	0.44

위에서 유효인원수는 다음과 같이 계산한다.

$$n_i'=n_i-\frac{c_i}{2}$$

또한 생존함수의 추정식은는 조건부 확률의 축차식을 이용하여 다음과 같이 계산한다.

$$\hat{S}(t_i) = \prod_{k=1}^i \hat{p}_k = \prod_{k=1}^i \left(1 - rac{d_i}{n_i'}
ight)$$

3 누적한계추정법에 의한 생존함수 추정

표본으로 추출한 생존시간들을 순서대로 나열한 다음 누적한계추정법은 생존함수를 다음의 식으로 추정한다.

$$\hat{S}(t) = \prod_{t_i < t} \left(1 - \frac{d_k}{n_k} \right)^{\delta_i} = \prod_{t_i < t} \left(\frac{n_k - d_k}{n_k} \right)^{\delta_i}$$

다음 주어진 자료로부터 생존함수를 추정하는 방법을 알아보자. +는 중도절단된 자료를 표시한다.

누적한계추정법은 생존함수를 다음과 같이 축차적으로 구할 수 있다.

$$\hat{S}(0) = 1$$

$$\hat{S}(9) = \hat{S}(0) \times \frac{10}{11} = 0.91$$

$$\hat{S}(13) = \hat{S}(9) \times \frac{9}{10} = 0.82$$

$$\hat{S}(18) = \hat{S}(13) \times \frac{7}{8} = 0.72$$

$$\hat{S}(23) = \hat{S}(18) \times \frac{6}{7} = 0.61$$

$$\hat{S}(31) = \hat{S}(23) \times \frac{4}{5} = 0.49$$

$$\hat{S}(34) = \hat{S}(31) \times \frac{3}{4} = 0.37$$

$$\hat{S}(48) = \hat{S}(34) \times \frac{1}{2} = 0.18$$

4 비모수적 방법을 이용한 생존함수의 비교

4.1 2 imes 2 분할표에서 두 비율의 비교

다음과 같은 2 × 2 분할표에서 두 비율을 비교한다고 가정하자.

처리/반응여부	반응	반응 안함	합계
1	а	b	n_1
2	С	d	n_2
합계	m_1	m_2	n

처리 1과 2가 서로 독립인 집단에 적용되었다면 두 집단의 반응 비율이 같다는 가설 $H_0: p_1 = p_2$ 를 다음과 같은 통계량으로 검정할 수 있다.

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})(1/n_1 + 1/n_2)}}$$

위에서

$$\hat{p}_1 = \frac{a}{n_1}$$
 $\hat{p}_2 = \frac{c}{n_2}$ $\hat{p} = \frac{m_1}{n}$

n이 충분히 크면 귀무가설 하에서 통계량 z는 정규분포를 따르므로 $|z|>z_{lpha/2}$ 이면 귀무가설을 기각한다.

카이제곱 분포의 정의에 의하여 통계량 z의 제곱 $\chi^2=z^2$ 은 자유도가 1인 카이제곱분포를 따른다.

이때 통계량 z의 제곱은 2×2 분할표에서 동일성 검정에 대한 카이제곱 통계량(교과서 46 페이지) 과 동일하다.

$$\chi^2 = z^2 = \frac{n(ad - bc)^2}{n_1 n_2 m_1 m_2}$$

만약에 귀무가설이 참이고 주변합 n_1, n_2, m_1, m_2 가 고정되어 있다고 가정하면 첫번째 행, 첫번째 열의 값 A=a의 분포는 다음과 같은 초기하분포(Hypergeometric distribution)를 따른다.

$$P(A = a) = \frac{\binom{n_1}{a} \binom{n_2}{m_1 - a}}{\binom{n}{m_1}}$$

위의 초기하분포에서 A = a의 기대값과 분산은 다음과 같다.

$$E_0(A) = \frac{n_1 m_2}{n}, \quad Var_0(A) = \frac{n_1 n_2 m_1 m_2}{n^2 (n-1)}$$

따라서 다음이 성립하며

$$ad - bc = n[a - E_0(A)], \quad n_1n_2m_1m_2 = n^2(n-1)Var_0(A)$$

이제 2×2 분할표에서 동일성 검정에 대한 카이제곱 통계량은 초기하분포와 다음과 같은 관계를 가진다.

$$\chi^{2} = z^{2} = \frac{n(ad - bc)^{2}}{n_{1}n_{2}m_{1}m_{2}} = \frac{n}{n - 1} \left[\frac{a - E_{0}(A)}{\sqrt{var_{0}(A)}} \right]^{2}$$

4.2 코크란-맨텔-핸젤 검정

교과서 53-55 페이지 참조

전체 자료가 다음과 같이 K 개의 2 × 2 분할표로 나누어 진다면

처리/반응여부	반응	반응 안함	합계
1	n_{k11}	n_{k12}	n_{k1+}
2	n_{k21}	n_{k22}	n_{k2+}
합계	n_{k+1}	n_{k+2}	n_k

전체 자료에 대하여 처리의 반응률에 대한 다음과 같은 가설검정을

$$H_0: p_{k1} = p_{k2}, k = 1, 2, ..., K \text{ vs. } H_0: not H_0$$

다음과 같은 코크란-맨텔-핸젤 검정 통계량(CMH 검정 통계량)으로 검정할 수 있다.

$$Q_{CMH} = \frac{\left[\sum_{k=1}^{K} n_{k11} - \sum_{k=1}^{K} E(n_{k11}|H_0)\right]^2}{\sum_{k=1}^{K} Var(n_{k11}|H_0)}$$

위의 통계량에서 각 2 × 2 분할표에 대한 기대값과 분산은 다음과 같이 계산할 수 있다.

$$E(n_{k11}|H_0) = \frac{n_{k1+}n_{k+1}}{n_k} \quad Var(n_{k11}|H_0) = \frac{n_{k1+}n_{k2+}n_{k+1}n_{k+2}}{n_k^2(n_k-1)}$$

CMH 검정 통계량 Q_{CMH} 은 귀무가설 H_0 가 옳은 경우에 자유도 1을 가지는 카이제곱 분포를 따른다.

4.3 비모수적 방법을 이용한 생존함수의 비교

두 개의 독립 집단에 대하여 다음과 같이 생존시간을 관측하였다고 하자.

group 1
$$(X_{11}, \delta_{11}), (X_{12}, \delta_{12}), \dots, (X_{1n_1}, \delta_{1n_1})$$

group 2 $(X_{21}, \delta_{21}), (X_{22}, \delta_{22}), \dots, (X_{2n_2}, \delta_{2n_2})$

두 개의 집단에 대한 생존함수가 동일하다는 다음 가설을 고려하자.

$$H_0: S_1 = S_2$$
 $H_1: S_1 \neq S_2$

위의 가설은 두 집단의 생존시간을 모두 합쳐서 순서대로 나열하고 중도절단이 없는 자료들에서 다음과 같은 2 × 2 분할표를 작성한 다음 CMH-검정 통계량을 이용하여 검정할 수 있다.

처리/반응여부	사망	생존	합계
1	а	b	n_1
2	С	d	n_2
합계	m_1	m_2	n

다음과 같은 예제 자료를 고려해보자

두 표본을 합쳐서 순서대로 놓으면 다음과 같다.

$$3, 5, 7, 9 + 12, 18, 19, 20, 20 + 33 +$$

이제 중도절단이 없는 자료들(3,5,7,12,18,19,20)에 대하여 각각 2×2 분할표를 작성하고 CMH-검정 통계량을 계산할 수 있다. 각 분할표와 관련 통계량을 다음과 같은 표로 정리할 수 있다.

X	n	m_1	n_1	а	$E_0(A)$	$a - E_0(A)$	$m_1m_2/(n-1)$	n_1n_2/n^2
3	10	1	5	1	0.50	0.50	1	0.2500
5	9	1	4	1	0.44	0.56	1	0.2469
7	8	1	3	1	0.38	0.62	1	0.2344
12	6	1	1	0	0.17	-0.17	1	0.1389
18	5	1	1	1	0.20	0.80	1	0.1600
19	4	1	0	0	0	0	1	0
20	3	1	0	0	0	0	1	0

이제 다음과 같이 CMH 통계량을 계산할 수 있다.

CMH
$$\chi^2 = \frac{[\sum (a - E_0(A))]^2}{\sum [m_1 m_2 / (n-1)][n_1 n_2 / n^2]}$$

여기서

$$\sum (a - E_0(A)) = 0.50 + 0.56 + 0.62 - 0.17 + 0.80$$

$$= 2.31$$

$$\sum [m_1 m_2 / (n - 1)][n_1 n_2 / n^2] = (1)(0.2500) + (1)(0.2469) + (1)(0.2344)$$

$$+ (1)(0.1389) + (1)(0.1600) + (1)(0) + (1)(0)$$

$$= 1.0302$$

따라서

$$CMH \chi^2 = \frac{(2.31)^2}{1.0302} = 5.1796$$

유의수준 $\alpha=0.05$ 에서 $\chi^2(1,0.95)=3.84159<5.1796$ 이므로 H_0 를 기각한다. 즉 두 집단의 생존 함수는 같지 않다.