Вскипятим воду плутонием!

Энергия радиоактивного распада очень Простой способ перспективный вид энергии. продемонстрировать eë возможности показан фотографии: ней на кусочек металлического плутония-239 помещен в стакан с водой, которая вскипает в результате нагревания выделяющейся из плутония энергией.

В дальнейших расчетах считайте, что вода нагревается равномерно, а скорость распада плутония постоянна и составляет $5.48\cdot10^{11}$ атомов/с на каждый моль 239 Pu. Объём воды в стакане равен 2.0 л.

1. Определите продукт $_{n}^{m}$ **X** распада плутония-239, согласно уравнению:

$$^{239}_{94}\,\mathrm{Pu} o {^m_n}\mathbf{X} + {^4_2}\,\mathrm{He} + 506.0\,\Gamma$$
Дж/ моль

- 2. Рассчитайте количество теплоты, выделяющейся каждую секунду из плутониевого цилиндра высотой 15 см и радиусом 2 см.
- 3. Рассчитайте, сколько часов понадобится для нагрева воды в стакане от 20°C до температуры кипения. Считайте, что на нагрев воды идёт 90% всей выделяющейся теплоты.
- 4. Энергии радиоактивного распада достаточно и для химических превращений: 3% выделяющейся теплоты тратится на радиолиз воды по уравнению $2H_2O(ж.) \rightarrow 2H_2(r.) + O_2(r.)$. Рассчитайте энтальпию этой реакции, если также известные энтальпии процессов с участием кислорода и водорода:

$$H_2(\Gamma) \to 2H(\Gamma)$$
 $\Delta_r H_1 = +436.0 \text{ кДж/моль}$ $2O(\Gamma) \to O_2(\Gamma)$ $\Delta_r H_2 = -498.4 \text{ кДж/моль}$ $H_2O(\Gamma) \to H(\Gamma) + OH(\Gamma)$ $\Delta_r H_3 = +498.9 \text{ кДж/моль}$ $H(\Gamma) + O(\Gamma) \to OH(\Gamma)$ $\Delta_r H_4 = -428.2 \text{ кДж/моль}$

5. Какие количества (моль) гелия, водорода, кислорода и паров воды выделяются за час кипячения воды плутонием в описанном экс перименте?

Справочная информация:

- плотность плутония р = 19.84 г/см³;
- 1 ГДж = 10⁹ Дж;
- постоянная Авогадро $N_A = 6.02 \cdot 10^{23} \text{ моль}^{-1}$;
- теплоемкость воды $c = 4.184 \, \text{Дж/(} \text{г} \cdot ^{\circ}\text{C}\text{)};$
- энтальпия испарения воды $\Delta H_{\text{исп}} = +44.0 \text{ кДж/моль};$
- объём цилиндра $V = \pi r^2 l$, где l высота, r радиус основания.

Решение задачи 9-1 (автор: Курамшин Б.К.)

Исходя из закона сохранения массы, масса неизвестного ядра равна 235.
 А из закона сохранения заряда, заряд ядра равен 92 (это уран):

$$^{239}_{94}$$
 Pu $ightarrow$ $^{235}_{92}$ U + $^{4}_{2}$ He + 506.0 ГДж/ моль

2. Объём цилиндра равен $V = \pi r^2 l = 3.14 \cdot 2^2 \cdot 15 = 188.4 \text{ см}^3$

Масса плутония равна $m = V \rho = 188.4 \cdot 19.84 = 3737.856$ г

Количество плутония-239: n = 3737.856 / 239 = 15.640 моль

Значит, каждую секунду в цилиндре распадается

$$5.48 \cdot 10^{11} \cdot 15.640 = 8.570 \cdot 10^{12}$$
 атомов плутония.

Количество плутония, распадающегося каждую секунду:

$$n_0 = N/N_A = 1.424 \cdot 10^{-11}$$
 моль.

Теплота, выделяющаяся каждую секунду $Q_0 = 506 \cdot 10^9 \cdot 1.424 \cdot 10^{-11} = 7.20$ Дж.

3. Теплота, необходимая для нагрева воды:

$$Q = cm(T_{\text{кип}} - T_0) = 4.184 \cdot 2000 \cdot (100 - 20) = 669440$$
 Дж

Время в секундах найдем, используя теплоту Q_0 , выделяющуюся в секунду, не забыв учесть, что только 90% теплоты идет на нагрев воды.

$$Q = 0.9Q_0t$$
 $t = Q/0.9Q_0 = 669440 / (0.9.7.20) = 103309 c = 28.7 ч$

4. Сложим удвоенную обратную реакцию (1), одну реакцию (2), удвоенную реакцию (3) и удвоенную обратную реакцию (4):

$$4H_{(r.)} + 2O_{(r.)} + 2 \ H_2O_{(r.)} + 2 \ OH_{(r.)} \rightarrow 2H_{2(r.)} + O_{2(r.)} + 2H_{(r.)} + 2OH_{(r.)} + 2H_{(r.)} + 2O_{(r.)}$$

После сокращений:

$$2 \text{ H}_2\text{O}_{(r)} \rightarrow 2\text{H}_{2(r)} + \text{O}_{2(r)}$$
 $\Delta_r H = -2\Delta_r H_1 + \Delta_r H_2 + 2\Delta_r H_3 - 2\Delta_r H_4$

Разложению подвергается жидкая вода, поэтому добавим дважды «реакцию» испарения воды $(H_2O_{(ж.)} \to H_2O_{(r.)})$:

$$2 H_2O_{(r.)} + 2H_2O_{(w.)} \rightarrow 2H_{2(r.)} + O_{2(r.)} + 2H_2O_{(r.)}$$

После сокращений:

$$2H_2O_{(ж.)} \rightarrow 2H_{2(r.)} + O_{2(r.)}$$
 $\Delta_r H = -2\Delta_r H_1 + \Delta_r H_2 + 2\Delta_r H_3 - 2\Delta_r H_4 + 2\Delta H_{ucn} =$ =+571.8 кДж/моль

 Каждую секунду распадается 1.424·10⁻¹¹ моль плутония, значит, образуется такое же количество гелия.

За час выделится $n(\text{He}) = 1.424 \cdot 10^{-11} \text{ моль} \cdot 3600 = 5.13 \cdot 10^{-8} \text{ моль}$ гелия.

Каждый час $7.2 \cdot 0.9 \cdot 3600 = 23328$ Дж теплоты идёт на испарение воды, значит, испарится 23328/44000 = 0.53 моль воды.

Наконец, каждый час 7.2·0.03·3600 = 777.6 Дж идёт на радиолиз воды. На разложение 2 моль воды требуется 571800 Дж, значит, количество разложившейся воды за час составит:

$$n(H_2O) = 777.6 \cdot 2 / 571800 = 2.72 \cdot 10^{-3}$$
 моль

Значит, выделится:

$$n({
m H}_2)={f 2.72\cdot 10^{-3}}$$
 моль водорода;
$$n({
m O}_2)=0.5\cdot 2.72\cdot 10^{-3}={f 1.36\cdot 10^{-3}}$$
 моль кислорода.

Система оценивания:

1	Верное заполнение пропусков – 1.5 балла	
	(за каждое неверно заполненное «» - минус 0.5 балла, в	1.5 балла
	сумме не менее 0 б.)	
2	Расчет теплоты за секунду – 4 баллов	
	(Верно рассчитан объём, но дальнейшие значения неверны –	
	0.5 балла;	
	Верно рассчитана масса, но дальнейшие значения неверны –	
	1 балл;	
	Верно рассчитано количество Ри в цилиндре, но дальнейшие	4 баллов
	значения неверны – 2 балла;	4 0031310B
	Верно рассчитано число атомов, распадающихся в секунду, но	
	дальнейшие значение неверны – 2.5 балла;	
	Верно рассчитано число моль Ри, распадающегося в секунду,	
	но значение теплоты неверно – 3 балла	
	Все иные случаи – 0 баллов)	
3	Верный расчет времени – 1.5 балла	
	(Верный расчёт для неверного значения из п.1 – 1.5 балла	
	Верно рассчитано количество необходимой для нагрева	1.5 балла
	теплоты, но неверно рассчитано время – 1 балл	
	Все иные случаи – 0 баллов)	

4	Верный расчёт энтальпии реакции – 4 балла		
	(Верное итоговое выражение и арифметическая ошибка – 3		
	балла,		
	Верное выражение для реакции с газообразной Н ₂ О, но в	4 балла	
	дальнейшем не учтено испарение воды – 2 балла	4 Uajijia	
	Расчет проведен для реакции с коэффициентом 1 перед H ₂ O –		
	ещё минус 1 балл;		
	Все иные случаи – 0 баллов)		
5	Верный расчет количества гелия – 1 балл		
	Верный расчет количества паров воды – 1 балл		
	Верный расчет количества водорода и кислорода – по 1 баллу		
	(Если какое-либо количество не пересчитано с 1 с на 1 ч и		
	ответ отличается в 3600 раз от верного – минус 1 балл за	4 балла	
	каждый такой случай;	4 Ualila	
	Если рассчитано количество теплоты, идущей на процесс		
	испарения или радиолиза, но не рассчитано количество		
	соответствующего вещества – половина от возможного		
	количества баллов)		
	ИТОГО: 15 баллов		