Глава 5.

Задача 1.

 $\forall n$ будет существовать пораждающий полином g(x)=1, (n,n), R=1, d=1, $\nexists g^{\perp}(x)$.

А также
$$g(x)=x^{n-1}+x^{n-2}+\cdots+1$$
, $(n,1)$, $R=\frac{1}{n}$, $d=n$, $g^{\perp}(x)=x+1$.

$$\mathsf{M} \; g(x) = x+1, \; (n,n-1), R = \frac{n-1}{n}, d = 2, g^{\perp}(x) = \; x^{n-1} + x^{n-2} + \dots + 1.$$

1)
$$n = 3$$

$$x^3 + 1 = (x + 1)(x^2 + x + 1)$$

Все возможные порождающие полиномы приведены выше в общем виде.

2)
$$n = 4$$

$$x^4 + 1 = (x + 1)(x^3 + x^2 + x + 1) = (x + 1)^2(x^2 + 1)$$

g(x)	(n, k)	R	d	$g^{\perp}(x)$
$x^2 + 1$	(4,2)	$\frac{1}{2}$	2	$x^2 + 1$

3)
$$n = 5$$

$$x^5 + 1 = (x + 1)(x^4 + x^3 + x^2 + x^1 + 1)$$

Все возможные порождающие полиномы приведены выше в общем виде.

4)
$$n = 6$$

$$x^6 + 1 = (x+1)(x^5 + x^4 + x^3 + x^2 + x + 1) = (x+1)^2(x^4 + x^2 + 1) = (x+1)^2(x^2 + x + 1)^2$$

g(x)	(n,k)	R	d	$g^{\perp}(x)$
$x^4 + x^2 + 1$	(6,2)	$\frac{1}{3}$	3	$x^2 + 1$
$x^2 + x + 1$	(6,4)	$\frac{2}{3}$	2	$x^4 + x^3 + x + 1$
$x^2 + 1$	(6, 4)	$\frac{2}{3}$	2	$x^4 + x^2 + 1$
$x^3 + 1$	(6,3)	$\frac{1}{2}$	2	$x^3 + 1$
$x^4 + x^3 + x + 1$	(6, 2)	$\frac{1}{3}$	4	$x^2 + x + 1$

5)
$$n = 7$$

$$x^7 + 1 = (x + 1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1) = (x + 1)(x^3 + x^2 + 1)(x^3 + x + 1)$$

g(x)	(n,k)	R	d	$g^{\perp}(x)$
$x^3 + x^2 + 1$	(7,4)	$\frac{4}{7}$	3	$x^4 + x^3 + x^2 + 1$
$x^3 + x + 1$	(7,4)	$\frac{4}{7}$	3	$x^4 + x^2 + x + 1$
$x^4 + x^2 + x + 1$	(7,3)	$\frac{3}{7}$	4	$x^3 + x + 1$
$x^4 + x^3 + x^2 + 1$	(7,3)	$\frac{3}{7}$	4	$x^3 + x^2 + 1$

6)
$$n = 8$$

$$x^{8} + 1 = (x + 1)(x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1) = (x + 1)^{2}(x^{6} + x^{4} + x^{2} + 1) = (x + 1)^{2}(x^{3} + x^{2} + x + 1)^{2} = (x + 1)^{6}(x^{2} + 1)$$

g(x)	(n,k)	R	d	$g^{\perp}(x)$
$x^2 + 1$	(8,6)	$\frac{3}{4}$	2	$x^6 + x^4 + x^2 + 1$
$x^3 + x^2 + x + 1$	(8,5)	$\frac{5}{8}$	2	$x^5 + x^4 + x + 1$
$x^4 + 1$	(8,4)	$\frac{1}{2}$	2	$x^4 + 1$
$x^5 + x^4 + x + 1$	(8,3)	$\frac{3}{8}$	4	$x^3 + x^2 + x + 1$
$x^6 + x^4 + x^2 + 1$	(8,2)	$\frac{1}{4}$	4	$x^2 + 1$

7)
$$n = 9$$

$$x^9 + 1 = (x+1)(x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1) = (x+1)(x^2 + x + 1)(x^6 + x^3 + 1)$$

g(x)	(n,k)	R	d	$g^{\perp}(x)$
$x^2 + x + 1$	(9,7)	$\frac{7}{9}$	2	$x^7 + x^6 + x^4 + x^3 + x + 1$
$x^6 + x^3 + 1$	(9,3)	$\frac{1}{3}$	3	$x^3 + 1$
$x^3 + 1$	(9,6)	$\frac{2}{3}$	2	$x^6 + x^3 + 1$
$x^7 + x^6 + x^4 + x^3 + x + 1$	(9,2)	$\frac{2}{9}$	6	$x^2 + x + 1$

Задача 2.

Построим все поля $GF(2^3)$. Для этого необходимо найти все простые полиномы p(x). Таких полиномов всего два: x^3+x^2+1 и x^3+x+1 .

	$p(x) = x^3 + x^2 + 1$	$p(x) = x^3 + x + 1$
-∞	0	0
x^0	1	1
x	$x^2 + 1$	x
x^2	$x^2 + x$	x^2
<i>x</i> ³	x^2	x + 1
<i>x</i> ⁴	x + 1	$x^2 + x$
<i>x</i> ⁵	x	$x^2 + x + 1$
<i>x</i> ⁶	$x^2 + x + 1$	$x^2 + 1$

Генерирующие элементы

Пусть $f: F_1 \to F_2$ — изоморфизм, сопоставляющие одинаковые степени генератора. Покажем, что $f(x_i) + f(x_j) = f(x_i + x_j)$ и $f(x_i) f(x_j) = f(x_i \cdot x_j)$.

$$f(x_i + x_j) = f(x_i + x_i x_{j-i}) = f(x_i \cdot (1 + x_{j-i})) = f(x_i) f(1 + x_{j-i}) = f(x_i) f(1 + x_{j-i})$$

	$f(1) + f(x_i)$	$f(1+x_i)$
0	1 + 0 = 1	1
1	1 + 1 = 0	0
$x^2 + 1$	1 + x = 1 + x	x + 1
$x^2 + x$	$1 + x^2 = 1 + x^2$	$x^2 + 1$
x^2	1 + (x+1) = x	x
x + 1	$1 + (x^2 + x) = 1 + x + x^2$	$x^2 + x + 1$
x	$1 + (x^2 + x + 1) = x^2 + x$	$x^2 + x$
$x^2 + x + 1$	$1 + (x^2 + 1) = x^2$	x^2

$$= f(x_i) \left(f(1) + f(x_{j-i}) \right) = f(x_i) \left(1 + f(x_{j-i}) \right) = f(x_i) + f(x_i) f(x_{j-i}) = f(x_i) + f(x_j)$$

Последний переход докажем, с помощью доказательства второго свойства изоморфизма. Что тривиально, так как произведение элементов поля эквивалентно произведению степеней генерирующего элемента в данном поле.

Задача 3.

1) GF(2)

Элемент поля	Порядок
0	
1	1

2) GF(3)

Элемент поля	Порядок
0	
1	1
2	2

3)
$$GF(2^2), p(x) = x^2 + x + 1$$

	Элемент поля	Порядок
$-\infty$	0	

x^0	1	1
x^1	x	3
x^2	x + 1	3

$$x^3 = (x+1) \cdot x = x^2 + x = 2x + 1 = 1$$

 $(x+1)^3 = (x^2+1)(x+1) = x(x+1) = x^2 + x = x + x + 1 = 1$

4) *GF*(5)

Элемент поля	Порядок
0	
1	1
2	4
3	4
4	2

5) GF(7)

Элемент поля	Порядок	
0		
1	1	
2	3	
3	6	
4	3	
5	6	
6	2	

6) $GF(2^3), p(x) = x^3 + x + 1$

	• • •	
	Элемент поля	Порядок
-∞	0	
<i>x</i> ⁰	1	1
<i>x</i> ¹	x	7
<i>x</i> ²	<i>x</i> ²	7
<i>x</i> ³	x + 1	7
<i>x</i> ⁴	$x^2 + x$	7
<i>x</i> ⁵	$x^2 + x + 1$	7
<i>x</i> ⁶	$x^2 + 1$	7

$$(x^2)^7 = (x^2 + 1)^2 x^2 = (x^4 + 1)x^2 = (x^2 + x + 1)x^2 = x^4 + x^3 + x^2 = x^2 + x + x + 1 + x^2 = 1$$

$$(x + 1)^7 = (x^2 + 1)^3 (x + 1) = (x^4 + 1)(x^3 + x + x^2 + 1) = (x^2 + x + 1)(x + 1 + x + x^2 + 1) = x^4 + x^3 + x^2 = x^2 + x + x + 1 + x^2 = 1$$

•••

7)	GF	(3^2)	n(x)	:) =	χ^2	+	x	+	1
,,	uı ı	J)	$, \nu (\lambda$, , —	$\boldsymbol{\mathcal{A}}$		л		_

	Элемент поля	Порядок
-∞	0	
x ⁰	1	1
<i>x</i> ¹	x	8
x^2	x + 1	4
<i>x</i> ³	2x + 1	8
x ⁴	2	2
<i>x</i> ⁵	2 <i>x</i>	8
<i>x</i> ⁶	2x + 2	4
<i>x</i> ⁷	x + 2	8

Задача 4.

$$GF(2^4), p(x) = 1 + x + x^4$$

	Элемент поля	Обратный элемент
-∞	0	
<i>x</i> ⁰	1	1
χ^1	x	$x^3 + 1$
<i>x</i> ²	χ^2	$x^3 + x^2 + 1$
x^3	x^3	$x^3 + x^2 + x + 1$
x^4	x + 1	$x^3 + x^2 + x$
x^5	$x^2 + x$	$x^2 + x + 1$
<i>x</i> ⁶	$x^3 + x^2$	$x^3 + x$
x^7	$x^3 + x + 1$	$x^2 + 1$
<i>x</i> ⁸	$x^2 + 1$	$x^3 + x + 1$
<i>x</i> ⁹	$x^3 + x$	$x^3 + x^2$
x ¹⁰	$x^2 + x + 1$	$x^2 + x$
x^{11}	$x^3 + x^2 + x$	x + 1
x^{12}	$x^3 + x^2 + x + 1$	χ^3
x^{13}	$x^3 + x^2 + 1$	χ^2
x ¹⁴	$x^3 + 1$	x

Задача 5.

$$GF(2^4), p(x) = 1 + x + x^2 + x^3 + x^4$$

	Элемент поля	Обратный элемент
$-\infty$	0	
<i>x</i> ⁰	1	1
x^1	x + 1	$x^3 + x$
x^2	$x^2 + 1$	$x^2 + x$
<i>x</i> ³	$x^3 + x^2 + x + 1$	x
<i>x</i> ⁴	$x^3 + x^2 + x$	$x^3 + x + 1$
<i>x</i> ⁵	$x^3 + x^2 + 1$	$x^3 + x^2$
<i>x</i> ⁶	χ^3	χ^2
<i>x</i> ⁷	$x^2 + x + 1$	$x^3 + 1$

<i>x</i> ⁸	$x^3 + 1$	$x^2 + x + 1$
<i>x</i> ⁹	χ^2	χ^3
x ¹⁰	$x^3 + x^2$	$x^3 + x^2 + 1$
x^{11}	$x^3 + x + 1$	$x^3 + x^2 + x$
x ¹²	x	$x^3 + x^2 + x + 1$
x^{13}	$x^2 + x$	$x^2 + 1$
x ¹⁴	$x^3 + x$	x + 1