Chapitre 24

Comparaison locale des suites

$\bf 24$	Comparaison locale des suites	1
	24.18Caractérisation de l'équivalence par la négligabilité	2
	24.20Equivalent d'un polynôme	2

Caractérisation de l'équivalence par la négligabilité 24.18

On a:

$$u_n \sim v_n \Leftrightarrow u_n = v_n + o(v_n)$$

 \Longrightarrow Si $u_n \sim v_n$ à partir d'un certain rang :

$$u_n = a_n v_n \text{ avec } a_n \xrightarrow[n \to +\infty]{} 1$$

Ainsi:

$$u_n = \underbrace{(a_n - 1)}_{=o(1)} v_n + v_n$$
$$= \underbrace{(a_n - 1)}_{=o(1)} v_n + o(v_n)$$

Si $u_n = v_n + o(v_n)$, alors à partir d'un certain rang :

$$u_n = v_n + \epsilon_n v_n \text{ avec } \epsilon_n = o(1)$$

= $\underbrace{(1 + \epsilon_n)}_{n \to +\infty} v_n$

Donc:

$$u_n \sim v_n$$

Equivalent d'un polynôme 24.20

Soit P un polynôme de monôme dominant a_dX^d . Alors $P(n) \sim a_dn^d$.

On note $P = \sum_{k=0}^{d} a_k X^k$. Pour $k \in [0, d-1]$:

$$n^k =_{n \to +\infty} o(n^d)$$
 et $a_k n^k =_{n \to +\infty} o(a_d n^d)$

Donc:

$$\sum_{k=0}^{d-1} a_k n^k =_{n \to +\infty} o(a_d n^d)$$

Donc:

$$P(n) = a_d n^d + o(a_d n^d)$$
$$\sim a_d n^d$$