

RNA-Seq Controle de Qualidade

Vagner Okura

LaCTAD

vagnerko@unicamp.br

RNA-Seq

Desenho Experimental

Sequenciamento

Controle de Qualidade

Cálculo da expressão dos Transcritos

Montagem dos transcritos

Mapeamento

Expressão diferencial

Controle de Qualidade

- ✓ Motivação
 - ✓ Reads contém erros;
 - ✓ Sequências com qualidade ruim afetam os passos posteriores mapeamento, montagem de transcritos;
 - ✓ Correção de erros aumenta a taxa de reads mapeados e diminui o uso de memória RAM em montagens.
- ✓ O controle de qualidade envolve dois passos:
 - ✓ Análise e identificação FASTQC
 - ✓ Limpeza Trimmomatic
 - ✓ Dica: FASTQC Trimmomatic FASTQC


```
>SEQ1 ID
```

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

>SEQ2 ID

TTAATTGGTAAATATAGTTTCTTGAGATTTGTTGGGGGGAGACATTTTTTGTGATTGCCTTGA

>SEQ3 ID

TAGCGATGCGTCACGACTCGTCAGCTCGCCTTCGAGACCGCCTACGCATCGCCT

>SEQ4 ID

CCGCTAGCCATCAGCGCAGTCGCTCGACATCGATGCGCGGGAAAGAGAGACATCGCAG

Extensões: fasta, fa, fna.


```
@HWUSI:155:C6013ACXX:6:73:941:1973 1:Y:0:CGATGT
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCC65
@HWUSI:155:C6013ACXX:6:73:941:1988 1:Y:0:CGATGT
TTAATTGGTAAATATAGTTTCTTGAGATTTGTTGGGGGAGACATTTTTGTGATTGCCTTGA
+
efcfffffcfeefffcfddf`feed]`]_Ba_^_[YBBBBBBBBBBTT\]][]dddd`d
```

Extensões: fastq, fq.

@HWUSI:155:C6013ACXX:6:73:941:1973 1:Y:0:CGATGT

Versão Illumina 1.8

HWUSI Identificador único da máquina

155 ID da corrida

C6013ACXX ID da flowcell

6 Lane

73 Número do bloco da lane

941 Coordenada X no bloco

1973 Coordenada Y no bloco

1 Reads pareados: 1 ou 2 (paired-end ou mate-pair)

Y para read filtrado, ou N, caso contrário.

O Usado para bits de controle. 0=desligado

CGATGT Sequência do index (multiplexing)

@HWUSI:6:73:941:1973#0/1

Versões anteriores

#0: index para amostras multiplexadas (ou 0); /1 reads pareados

Codificação para valores de qualidade

```
......
   !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefghijklmnopqrstuvwxyz{|}~
33
           59
                               104
                                         126
-5....9.......40
              3....9......40
S - Sanger Phred+33, raw reads typically (0, 40)
X - Solexa Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
 with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
 (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```


O que significa esses valores de qualidade?

É um valor inteiro associado à probabilidade de que a base correspondente está incorreta.

- ✓ Usualmente, valor de qualidade ≥ 20 ;
- ✓ Quando a qualidade é 0, a base é substituida pela letra N.

$$Q_{phred} = -10 \log_{10} (p)$$

$$Q_{solexa} = -10 \log_{10} \frac{p}{1-p}$$

Score 10	p _{error} 0.01
20	0.01
30	0.0001

- ✓ Os sequenciadores geram relatórios de controle de qualidade direcionados a para identificação de problemas com a corrida (números gerais, por lane);
- ✓ FastQC fornece um relatório que proporciona analisar base a base problemas relacionados ao sequenciamento das bibliotecas (amostras).
- ✓ Possui interface gráfica, ou pode ser executado por linha de comando, permitindo processamento de um grande número de arquivos.

№FastQC Report

Summary

Basic Statistics

Per base sequence quality

Per tile sequence quality

Per sequence quality scores

Per base sequence content

Per sequence GC content

Per base N content

Sequence Length Distribution

Basic Statistics

Measure	Value	
Filename	good_sequence_short.txt	
File type	Conventional base calls	
Encoding	Illumina 1.5	
Total Sequences	250000	
Sequences flagged as poor quality	0	
Sequence length	40	
%GC	45	

Illumina, 454 e PacBio

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Measure	Value	
Filename	s_1_sample_1A	
File type	Conventional base calls	
Encoding	Sanger / Illumina 1.9	
Total Sequences	35446174	
Sequences flagged as poor quality	0	
Sequence length	100	
%GC	49	

Qualidade boa

Per base sequence quality

Qualidade ruim

@Per base sequence quality

Qualidade boa

Qualidade ruim

Per tile sequence quality

Position in read (bp)

Per tile sequence quality

Qualidade boa

Qualidade ruim

Per Base Sequence Content

Proporção esperada entre bases

Proporção não balanceada pode indicar contaminação ou bias da biblioteca, ou problema no sequenciamento.

Per Sequence GC Content

Distribuição normal observada é similar a distribuição modelada.

Distribuição diferente pode indicar contaminação da biblioteca, ou outro bias.

Overrepresented sequences

verrepresented sequences			
Sequence	Count	Percentage	Possible Source
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGATGTATCTCGTATGC	2295719	47.036867813501395	TruSeq Adapter, Index 2 (100% over 50bp)
${\tt categgaagagcacacgtetgaactccagtcaccgatgtatetegtatgc}$	115042	2.3570895858773775	TruSeq Adapter, Index 2 (98% over 50bp)
${\tt GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGATGTATCTCGTTTGC}$	70115	1.4365826073416	TruSeq Adapter, Index 2 (98% over 50bp)
${\tt GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGATGCATCTCGTATGC}$	65650	1.3450994533548604	TruSeq Adapter, Index 2 (98% over 50bp)
NATEGGAAGAGCACACGTETGAACTCCAGTCACCGATGTATCTCGTATGC	63095	1.2927501905472187	TruSeq Adapter, Index 2 (98% over 50bp)
${\tt GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGATGTATTTCGTATGC}$	50134	1.0271929321324078	TruSeq Adapter, Index 2 (98% over 50bp)
${\tt AATCGGAAGAGCACACGTCTGAACTCCAGTCACCGATGTATCTCGTATGC}$	49997	1.0243859462206086	TruSeq Adapter, Index 2 (98% over 50bp)
${\tt GACCGGARGAGCACACGTCTGARCTCCAGTCACCGATGTATCTCGTATGC}$	36977	0.7576198398583804	TruSeq Adapter, Index 2 (98% over 50bp)
GATCGGAAGAGCACACGTCTGAACTCCAGTCACTGATGTATCTCGTATGC	29030	0.5947941680257669	TruSeq Adapter, Index 2 (98% over 50bp)
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTATGTATCTCGTATGC	26354	0.5399657424785071	TruSeq Adapter, Index 2 (98% over 50bp)
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGCTGTATCTCGTATGC	24414	0.5002171828515698	TruSeq Adapter, Index 2 (98% over 50bp)
${\tt GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGATGTATCTTGTATGC}$	24074	0.4932509404427252	TruSeq Adapter, Index 2 (98% over 50bp)
${\tt GATCGGAAGAGCACACGTCTGAACTCCAGTCACAGATGTATCTCGTATGC}$	21536	0.4412499897555259	TruSeq Adapter, Index 2 (98% over 50bp)
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGACGTATCTCGTATGC	20529	0.4206176188563888	TruSeq Adapter, Index 2 (98% over 50bp)
${\tt TATEGGAAGAGCACACGTETGAACTCCAGTCACCGATGTATCTCGTATGC}$	13555	0.27772769368202793	TruSeq Adapter, Index 2 (98% over 50bp)
${\tt GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGATGTATCTCGTATGT}$	13502	0.27664177942417856	TruSeq Adapter, Index 2 (97% over 49bp)
${\tt GTTCGGARGAGCACACGTCTGARCTCCAGTCACCGATGTATCTCGTATGC}$	13333	0.27317914716801756	TruSeq Adapter, Index 2 (98% over 50bp)
${\tt GATCGGAAGAGCACACGTCTGAACTCCAGTCATCGATGTATCTCGTATGC}$	10130	0.20755304588704854	TruSeq Adapter, Index 2 (98% over 50bp)
${\tt GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGATCTATCT$	10034	0.20558610685396297	TruSeq Adapter, Index 2 (98% over 50bp)
${\tt GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGTTGTATCTCGTATGC}$	9798	0.20075071506429434	TruSeq Adapter, Index 2 (98% over 50bp)
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGATGTATCTCGTATTC	9550	0.19566945589548998	TruSeq Adapter, Index 2 (98% over 50bp)
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGATGTATCTCTTATGC	8668	0.17759820352901645	TruSeq Adapter, Index 2 (98% over 50bp)
${\tt GATCGGAAGAGCACACGTCTGAACTCCAGTCACTGACGTATCTCGTATGC}$	8378	0.17165640853323716	TruSeq Adapter, Index 4 (97% over 37bp)
${\tt GARCGGARGAGCRCACGTCTGARCTCCRGTCRCCGATGTATCTCGTRTGC}$	8266	0.16936164632797068	TruSeq Adapter, Index 2 (98% over 50bp)

Busca por possíveis fontes: contaminações ou adaptadores.

http://www.usadellab.org/cms/?page=trimmomatic

ILLUMINACLIP: corta os adaptadores ou outra sequências específicas dos reads.

> Passa o arquivo contendo adaptadores; número máximo de mismatches; simples ou palindrômico.

SLIDINGWINDOW: corte usando janela deslizante;

Passa o tamanho da janela e a qualidade média

ACTTAGCTAGAGATCGTATAGCTTCTACGCATAGA
TCAGACGTAAG

LEADING: corta bases com qualidade abaixo de x (parâmetro) no começo da sequência.

TRAILING: corta bases com qualidade abaixo de x (parâmetro) no final da sequência.

CROP: corta o read em um tamanho específico (corta no final)

Passa o tamanho que a sequência deve ficar

HEADCROP: corta o read em um tamanho específico (corta no começo)

Passa o tamanho que deve ser cortado da sequência

MINLEN: descarta reads com tamanho menos que x (parâmetro)

Passa o tamanho mínimo para manter o read

