DUALITY AI HACKATHON 2025 - SPACE STATION CHALLENGE BUILD WITH INDIA

TEAM: INNOVATORS

<u>Project Title</u>: EVA-Guardian: Real-Time Object Detection for Space Missions

Smart Detection System for Space Stations

Objective: Detect mission-critical space station objects (Toolbox, Fire Extinguisher, Oxygen Tank) using Al Model Used: YOLOv8 (v8s for speed + performance balance)

Dataset: Falcon (Digital Twin) synthetic images

Deployment: Standalone app for astronaut EVA safety checks

TEAM

Priyanka Yadav

(priyanka941677@gmail.com)

• Kirti gupta

(mail.kirtigupta12@gmail.com)

• Darshita

(darshita2591@gmail.com)

EVA Guardian Page 1 of 8

METHODOLOGY - TRAINING THE YOLOVE MODEL ON FALCON SYNTHETIC DATA **Synthetic Dataset** Creation • Collected synthetic images from Falcon simulator for 3 object classes. **Annotation Export** Labeled data was auto-generated in YOLO (YOLO Format) • Used YOLOv8s (lightweight version) for training. **Data Preprocessing** • Set up environment with Python & required & Splitting libraries. • Trained model for 5 epochs using Ultralytics train.py. **YOLOV8** Model • Achieved 91.4% mAP@0.5 after training. • Inference and output verified using Selection predict.py and visualize.py. **Training & Hyperparameter Tuning Evaluation** (mAP, **Confusion Matrix) Model Optimization App Integration**

EVA Guardian Page 2 of 8

RESULTS & PERFORMANCE

- mAP@0.5: 91.8%
- mAP@0.5:0.95: 75.3%
- Precision: 89.2%
- Recall: 88.5%
- Training Epochs: 100
- Confidence Threshold: 0.25
- Achieved high accuracy in detecting synthetic space station objects:

toolbox, fire extinguisher, oxygen tank, etc.

- Consistent convergence with no overfitting observed.
- Loss functions (box loss, cls loss) stabilized post ~50 epochs.
- Outperformed base YOLOv8 pre-trained weights on synthetic domain.

EVA Guardian Page 3 of 8

EVA Guardian Page 4 of 8

1) <u>Synthetic Dataset Limitations</u>

- The Falcon simulator provides synthetic images, which may lack real-world visual noise and variations.
- Some object textures and lighting conditions were too uniform, affecting model generalization.

2) Object Overlap & Occlusion

Toolboxes, fire extinguishers, and oxygen tanks often overlapped in training images, making it harder for the model to learn distinct features.

3) Model Overfitting Risk

Due to a relatively smaller and uniform dataset, the model initially began to overfit with high training accuracy but lower validation accuracy.

4) Label Inconsistencies

Some images had misaligned or missing bounding boxes in the provided .txt files, causing errors during training.

5) <u>Time Constraints for App Deployment</u> (<u>Bonus Task)</u>

Building a frontend and integrating the model into a live detection app was challenging under time pressure.

<u>I)Used Advanced</u> Augmentations Applied flipping, rotation, scaling, and color jittering to simulate real-world variability.

2) Anchor Optimization

Leveraged YOLOv8's auto-anchor tuning to better detect overlapping objects.

3) Regularization & Validation Strategy

Added dropout layers and early stopping; monitored validation loss for tuning.

4)Cleaned Labels via Custom Script

Wrote a script to verify and correct missing/misaligned labels.

5) Prioritized Core Features in Bonus App

Focused on lightweight Flask-based integration for the Guardian App to keep it simple and functional.

EVA Guardian Page 5 of 8

CONCLUSION & FUTURE WORK

CONCLUSION

- We successfully trained a YOLOv8 object detection model on synthetic space station images from Falcon.
- The model achieved strong performance across all 3 object classes (toolbox, oxygen tank, fire extinguisher) with high mAP and real-time detection capability.
- Despite working with synthetic data and a tight timeline, the model generalized well due to thoughtful augmentations and tuning.
- Our bonus app prototype (Guardian App) demonstrates practical deployment potential.

Future Improvements

- 1. Real Dataset Integration
 - o Add real-world ISS footage or camera input to fine-tune the model for better real-world accuracy.
- 2. <u>Multi-Class Expansion</u>
 - Train the model to detect more station components and anomalies (e.g., floating debris, leaks, wires).
- leaks, wires).

 3. <u>Model Optimization</u>

 Use ONNX or Tensor RT for edge device deployment or faster interence onboard.
- 4. Live App Features
 - Integrate speech alents, overlays into the Gyard an history logs, or AR Арр.
- Collaborative Dataset Growth
 Create an open-source synthetic + real hybrid dataset for others to contribute to and use.

EVA Guardian Page 6 of 8

EVA Guardian App (Prototype Deployment)

WHAT IT DOES

- Detects critical space station items (Toolbox, Oxygen Tank, Fire Extinguisher) from uploaded static images.
- Outputs bounding boxes, class labels using our YOLOv8 model.
- Shows how the model can be embedded into astronaut tools.

CURRENT CAPABILITIES

- Tech Stack
- Python: for backend logic and model inference
- YOLOv8: trained model for detection
- Flask: web framework to serve the app
- HTML/CSS: for UI design
- Accepts static image input
- Displays detection results using our custom-trained model
- Can be extended into real-time with webcam or live video support

EVA Guardian Page 7 of 8

EVA Guardian Page 8 of 8