සියලු ම සිමිකම් ඇවිරිණි 003 CACAL CARCAMANACE OF All Rights Reserved බස්නාහිර පළාත් අධාාපන දෙපාර්තමේන්තුව and of Education - Western Province: Department on Education 2 of the 12-bit control of the 2-bit control of the 2 மேல் மாகாணக் கல்வித் திணைக்களம் Department of Education - Western Province . - අවසාන වාර ඇගයීම - 2020 ஆண்டிறுதி மதிப்பீடு Third Term Evaluation විෂයය (ලේණිය) පතුය කාලය` 10 ගණිතය தரம் பாடம் வினாத்தாள் } [පැය 02 காலம் Grade Subject . Paper Time නම / විභාග අංකය නිවැරදි බවට නිරීක්ෂකගේ අත්සන පරීක්ෂකවරයාගේ පුයෝජනය සඳහා පමණි වැදගත් : මෙම පුශ්න පතුය පිටු 8කින් සමන්විත ය. මෙම පිටුවේත් තුන්වැනි පිටුවේත් නියමිත

- ස්ථානවල ඔබේ විභාග අංකය නිවැරදිව ලියන්න.
- පුශ්න සියල්ලට ම පිළිතුරු මෙම පුශ්න පතුයේ ම සපයන්න.
- 💠 පිළිතුරත් එම පිළිතුර ලබාගත් ආකාරයත් දැක්වීමට ඒ ඒ පුශ්නය යටින් තබා ඇති ඉඩ පුමාණය පුයෝජනයට ගන්න.
- පිළිතුරු සැපයීමේ දී අදාළ පියවර සහ නිවැරදි ඒකක දැක්වීම අවශා ය.
- A කොටසෙහි අංක I සිට 25 තෙක් එක් එක් පුශ්නයට ලකුණු 02 බැගින් ද B කොටසෙහි එක් එක් පුශ්නයට ලකුණු 10 බැගින් ද ලැබේ.
- කටුවැඩ සඳහා හිස් කඩදාසි ලබා ගත හැකිය.

	පුශ්ත අංක	ලකුණු					
A	1 - 25						
	1						
	2						
В	3						
•	4						
	5						
	මුළු එකතුව						
ලකුණු කළේ							

A කොටස

පුශ්ත සියල්ලට ම මෙම පතුයේ ම පිළිතුරු සපයන්න.

- (01) ම්නිසුත් හතර දෙනෙකුට දින 6කට පුමාණවත් වන ආහාර මිනිසුන් 12 දෙනෙකුට් දින කීයකට පුමාණවත් ද?
- (02) සංඛාහ දෙකක කුඩා පොදු ගුණාකාරය $12x^2y$ වේ. ඉන් එක් සංඛාහවක් $4x^2$ නම් අේනක් සංඛාහව විය හැකි සංඛාහව තෝරා යටින් ඉරක් අඳින්න.
 - (i) $6x^2y$
- (ii) $3x^2y^2$
- (iii) $12y^2$
- (iv) 8xy

(03) මෙහි දක්වෙන වෙන් රූපයේ $(A \cap B)'$ මගින් දක්වෙන පුදේශය අඳුරු කරන්න.

(04) සුළු කරන්න. $\frac{1}{2y} + \frac{1}{3y}$

(05) මෙම රූපයේ $a+b=160^{\circ}$ ක් නම් b හි අගය සොයන්න.

(06) හිස්තැන් පුරවන්න.

$$\frac{1}{32} = 2$$

$$\log_{2} 32 =$$

(07) එක්තරා සංඛාාවක වර්ගමූලයේ පළමු සන්නිකර්ෂණය 5.4 නම් එම සංඛාාව කවර පූර්ණ වර්ග සංඛාා දෙක අතර පිහිටයි ද? (03) රූපයේ දක්වෙන්නේ සෘජුකෝණාසුාකාර පිහිනුම් නිටාකයක සහ කේන්දික ඛණ්ඩ හැඩති වේදිකාවක දල සටහනකි. පිහිනුම් තටාකයේ දිග එහි පළල 7m මෙන් තුන් ගුණයක් වේ.

- (i) කේන්දුික ඛණ්ඩ කොටසේ චාප දිග සොයන්න.
- (ii) ඉහත පිහිනුම් තටාකය හා වේදිකාව වටා විසිතුරු බල්බ වැලක් සවිකිරීම සඳහා මිල දී ගත යුතු බල්බ වැලේ අවම දිග කොපමණ ද?
- (iii) BCD වේදිකාවේ වර්ගඵලය සොයන්න.
- (iv) වේදිකාවේ වර්ගඵලයට සමාන වර්ගඵලයෙන් යුත් AEFG නම් සෘජුකෝණාසු හැඩැති වේදිකාවක් ඉදි කලහොත් EF දිග කොපමණ ද?

(04) පහත වගුවේ දක්වෙන්නේ ඇගයීමක් සඳහා පන්තියක සිසුන් පිරිසක් ලබාගත් ලකුණු හා සිසුන් සංඛාහව පිළිබඳ නොරතුරු වේ.

ලකුණු ගණන	සිසුන් සංඛාාව	කේන්දික ඛණ්ඩයේ කෝණය
11 - 20	8	
21 - 30	10	***************************************
31 - 40	12	***************************************
41 - 50	15	•••••

- (i) පත්තියේ සිටින මුළු සිසුන් ගණන කොපමණ ද?
- (ii) ඉහත තොරතුරු වට පුස්තාරයක දක්වීමට එක් සිසුවෙකුනිරූපණය කල යුතු කේන්දික ඛණ්ඩයේ කෝණය ගණනය කරන්න.
- (iii) ඉහත වගුවේ හිස්තැන් සම්පූර්ණ කරන්න.
- (iv) එම තොරතුරු ඉහත දී ඇති වෘත්තය මත නිරූපණය කරන්න.

- (05) (a) මල්ලක් තුල රතුපාට බැලුම් බෝල 3ක් සහ නිල්පාට බැලුම්බෝල 2ක් ඇත. අමල් අහඹු ලෙස මල්ලෙන් ඉවතට බැලුමක් ගෙන බලා එය ආපසු දමා තවත් බැලුමක් මල්ලෙන් ඉවතට ගනු ලබයි.
 - (i) මෙම පරීක්ෂණයෙන් ලැබිය හැකි සියළු පුතිඵල ඇතුලත් නියැදි අවකාශය පහත කොටු දල තුල නිරූපණය කරන්න.

පළමු ගැනීම

- (ii) ඉවතට ගනු ලබන බැලුම් බෝල දෙකම් එකම වර්ණය වීමේ සිදුවීම ඉහත කොටු දල තුල වටකොට දක්වන්න.
- (iii) එම සිදු වීමේ සම්භාවිතාව සෝයන්න.
- (b) ඉහත අමල් විසින් කරන ලද පරීක්ෂණයෙන් ලැබිය හැකි සියළු පුතිඵල ඇතුලත් නියැදි අවකාශය නිරූපණය කිරීම සඳහා අඳින ලද අසම්පූර්ණ රුක් සටහනක් පහතු දක්වේ.

- (i) ඉහත රුක් සටහනේ අතු මත අදාල සම්භාවිතා ලියා දක්වන්න.
- (ii) ඉවතට ගත් බැලුම් බෝල දේක වෙනස් වර්ණ වලින් ලැබීමේ සම්භාවිතාව රුක් සටහන ඇසුරින් සොයන්න.

(08)	විසඳන්න.	1 -	1 = 2
-	- 00.40000	a	

(09) රූපයේ දී ඇති තොරතුරු ඇසුරින් x හි අගය සොයන්න.

- (10) මල්ලක එක සමාන රතුපාට, නිල්පාට හා කොලපාට වීදුරු බෝල සමාන ගණනක් ඇත. මල්ලේ ඇති මුළු වීදුරු බෝල ගණන 9 ක් නම් මල්ලෙන් ඉවතට ගන්නා බෝලයක් රතු පාට එකක් වීමේ සම්භාවිතාව සොයන්න.
- (11) රූපයේ දක්වෙන ඝනකයේ පැත්තක දිග 5cm ක් නම් ඝනකයේ මුළු පෘෂ්ඨ වර්ගඵලය සොයන්න.

- (12) $x^2 5x 14$ ද්වීපද සාධක දෙකක ගුණිතයක් ලෙස ලියා දක්වන්න.
- (13) රූපයේ දක්වෙන වෘත්තයේ කේන්දුය O වේ. $\stackrel{\wedge}{AOB} = 100^{\circ}$ නම් $\stackrel{\wedge}{OAB}$ හි අගය සොයන්න.

(14) රූපයේ දක්වෙන අර්ධ වෘත්තයේ පරිමිතිය 36cm කි. එහි අරය 7cmක් නම් එහි චාප කොටසේ දිග සොයන්න.

(15)	පහත සඳහන් වාකා නිවැරදි නම් ඉදිරිගේ ද යොදන්න.	් ඇති කොටුව තුල (✔) ලකුණ ද වැරදි තම් (ㅂ) ලකුණ
	(i) සමාන්තරාසුයක සියළුම පාද සමාන	@B
	(ii) රොම්බසයක විකර්ණ එකිනෙක ලම	· ; ,
	. (1)	
(16)	සිසුන් තිදෙනෙකුගේ ස්කන්ධ පිළිවෙලින් ස්කන්ධය සොයන්න.	42kg, 45kg හා 39kg වේ. ඔවුන් තිදේනාගේ මධානාය
1		
ŀ		
	•	
	<u> </u>	
(17)	endered advantage	,
(17)	දක්වේ. ඔහුගේ මධාක වේගය ගණනය ක	සඳහා අඳින ලද දුර කාල පුස්තාරය් රූප සටහනේ
	දැක්පට. සසුගේ මහායක් මෙමය හිණිනය ක	
		80
		60
		40
	_	20
		0
		, 1 2 3 කාලය (පැය)
<u> </u>		(Ο(ω)
(18)	රූපයේ දී ඇති තොරතුරු අනුව x හි අගය	සොයන්න.
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	•	/
]		70"\
	•	٠. ﴾
(19)	රූපයේ දැක්වෙන වෘත්තයේ කේන්දුය O ල	
i	$OAC = 50^{\circ}$ නම් x හා y අගයන් සොයන්න	
7-		
		_{50}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		A B
	· ·	
(20)	් රූපයේ දක්වෙන සරල රේඛීය පුස්තාරයෙ	У 🛧 👢
	අනුකුමණය සොයන්න.	
-	•	$0 \longrightarrow X$
,		
		<u> </u>

-04-

. 10 ලෝණිය - ගණිතය 🏿 - බස්තාහිර පළාත

1

(21) ධාරිතාව $1540~{
m cm}^3$ ක් වූ සෘජු වෘත්ත සිලින්ඩරයක හරි අඩක් ජලය පිරි ඇත. එහි හරස්කඩ වර්ගඵලය $154{
m cm}^2$ ක් නම් ජල කඳේ උස සොයන්න.

(22) රූපයේ දක්වෙන වෘත්තයේ කේන්දුය O වේ. O සිට AB ට ඇඳි ලම්බය OD වේ. රූපයේ දක්නට ඇති අංගසම නිකෝණ යුගලයක් නම්කර අංගසම වන අවස්ථාව ලියා දක්වන්න.

(23) $-\frac{2}{3} \times \le 4$ අසමානතාව විසඳන්න.

(24) ආනයනික විදුලි උපකරණයක් සඳහා 12%ක තීරු බදු පුතිශතයක් අය කිරීමෙන් පසු භාණ්ඩයේ වටිනාකම රු. 4200කින් ඉහල ගියේ නම් භාණ්ඩයේ ආනයනික වටිනාකම කීය ද?

(25) AB සහ AC රේඛාවලට සමදුරින් අර්ධ වෘත්තය මත පිහිටන්නා වූ ලක්ෂාය සොයා ගැනීමට අදාල නිර්මාණවල දල සටහන ඇඳ අදාල ලක්ෂාය P ලෙස සලකුණු කරන්න.

B කොටස පුශ්ත සියල්ලට ම මෙම පතුයේ ම පිළිතුරු සපයන්න. (01) භාජනයක් සම්පූර්ණයෙන් ජලයෙන් පිරි ඇත. ඉන් $\frac{3}{6}$ ක් ස්නානය සඳහා දේශාදා ගන්නා ලදී. ඉතිරියෙන් 🚽 ක් රෙදි සේදීමට භාවිතා කරන ලදී. (i) ස්නානයෙන් පසු ඉතිරි වූ ජල පුමාණ්ය භාජනයෙන් කවර භාගයක් ද? (ii) රෙදි සේදීමට භාවිතා කල ජල පුමාණය භාජනයේ මුළු ධාරිතාවෙන් කෝපමණ කොටසක් ද? (iii) ස්නානයෙන් හා රෙදි සේදීමෙන් පසු භාජනයේ ඉතිරි වූ ජල පුමාණය ් භාජනයේ මුළු ධාරිතාවෙන් කොපමණ කොටසක් ද්? (iv) භාජනයේ ඉතිරි වූ ජල පුමාණය 18ℓ ක් නම් රෙදි සේදීමට යොදාගත් ජල පුමාණය ලීවර කීය ද? (02) (a) පළාත් පාලන ආයතනයක් එම බල පුදේශය තුල පිහිටි වාර්ෂික වටිනාකුම් රු. 120 000ක් ලෙස තක්සේරු කර ඇති ගොඩන්ැගිල්ලක් සඳහා කාර්තුවකට රු. 1200ක වරිපනම් බදු මුදලක් අය කරයි. ගොඩනැගිල්ල සඳහා වසරකුව ගෙවිය යුතු වරිපනම් බදු මුදල කොපමණ ද? (i) (ii) අයකර ඇති වරිපනම් බදු පුතිශතය කොපමණ ද? (iii) වර්ෂයක ජනවාරි මස 31 දින්ට පෙර වාර්ෂික වරිපනම් බදු මුදල එකවර ගෙවූ විට 10%ක වට්ටමක් හිමි වේ නම් එසේ එකවර ගෙවීමට සිදුවන වරිපනම් බදු මුදල

මිනිසුන් දෙදෙනකු අඩුවෙන් එම කාර්යය නිම කිරීමට දින කීයක් ගත වේ ද?්

(b) කාණුවක් කැපීම සඳහා මිනිසුන් 6 දෙනෙකුට දින 8ක් ගත වේ යැයි ඇස්තම්මන්තු කර ඇත.

කොපමණ ද?

සියලු ම සිම්සම ඇවරියි ලදදර *පමුරදා*ණයදාද පුදු All Rights Reserved

retinated and it contains construction of extension and conditions are supported by the containing fraction of the containing fraction of the containing c

බස්නාහිර පළාත් අධ්නපන දෙපාර්තමේන්තුව மேல் மாகாணக் கல்வித் திணைக்களம் Department of Education - Western Province

to general anticles of content of the property of the content of t

අවසාන වාර ඇගයීම ஆண்டிறுதி மதிப்பீடு Third Term Evaluation

- 2020

(ogj வெ தரம் Grade විෂයය பாடம் Subject

ගණිතය

පතුය வினாத்தாள் Paper mාලය anou Time

පැය 03

- A කොටසින් ප්‍රශ්න පහකුත් B කොටසින් ප්‍රශ්න පහකුත් තෝරාගෙන ප්‍රශ්න දහයකට පිළිතුරු සපයන්න.
- 💠 එක් එක් පුශ්නයකට ලකුණු 10 බැගිත් මෙම පුශ්න පතුයට ලකුණු 100ක් හිමිවේ.
- 💠 අරය r ද උස h ද වූ සිලින්ඩරයක පරිමාව πr²h වේ.

A කොටස

පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

- (01) (a) සුළු කරන්න. $2\frac{1}{3} \div 1\frac{3}{5}$ න් $1\frac{1}{4}$
 - (b) මෝටර් රථයක් ආනයනයේ දී 60%ක තීරු බදු මුදලක් ගෙවීමට ආනයනකරුට සිදු වූ අතර ඔහු විසින් 15%ක ලාභයක් ලැබෙන සේ මෝටර් රථය විකිණීමට අදහස් කර ඇත. මෝටර් රථයේ ආනයනික මිල රු. 2 500 000 ක් වූයේ නම් ආනයනකරු විසින් මෝටර් රථය විකිණීමට ලකුණු කල මිල කීය ද?
- (02) $y=3-x^2$ ශිුතයේ පුස්තාරය ඇඳීම සඳහා සකස් කරන ලද අසම්පූර්ණ අගය වගුවක් පහත දක්වේ.

х	-3	- 2	-1	0	1	2	· 3
у	-6	-1	2	3		-1	-6

- (a) (i) වගුවේ හිස්තැන් පුරවන්න.
 - (ii) සම්මත අක්ෂ පද්ධතිය මත සුදුසු පරිමාණයක් යොදා ගනිමින් ඉහත වර්ගජ ශිුතයේ පුස්තාරය පුස්තාර කඩදාසියක් මත අඳින්න.
- (b) පුස්තාරය ඇසුරින්...
 - (i) ශිුතයේ උපරිම අගය සොයන්න.
 - (ii) y = 0 වන සමීකරණයේ මූල සොයන්න.
 - (iii) ශුිතය ධනව වැඩිවනx හි පරාසය ලියන්න.
 - (iv) ඉහත ශි්තය ඒකක එකකින් පහලට විස්ථාපනය කලවිට ලැබෙන ශි්තයේ සමීකරණය ලියන්න.

- (03) (i) $x^2 + 4x 12$ හි සාධක සොයන්න.
 - (ii) $x^2 4$ හා $x^2 + 4x 12$ යන ජුකාශනවල කුඩා පොදු ගුණාකාර්ය සොයන්න.
 - (iii) සුළු කරන්න. $\frac{1}{x^2-4} \frac{1}{x^2+4x-12}$
- (04) (a) විසඳන්න.

$$5x - 2y = 10$$

$$2x + 3y = 23$$

- (b) (i) රූපයේ දක්වෙන නිකෝණයේ වර්ගඵලය 33cm² ක් නම් දී ඇති මිනුම් ඇසුරින් වර්ගජ සමීකරණයක් ගොඩ නගන්න.
 - (ii) වර්ගජ සමීකරණය විසඳීමෙන් නිකෝණයේ ලම්බ උස සොයන්න.

- (05) (a) ගොඩනැගිල්ලක පාමුල සිට 10m ක් ඇතින් සිටින පුද්ගලයකුට ගොඩනැගිල්ල මුදුනේ ආරෝහණ කෝණය 60° ක් ලෙස පෙනුනි. පුද්ගලයාගේ උස නොසලකා හැර පරිමාණ රූපයක් ඇඳීමෙන් ගොඩනැගිල්ලේ උස සොයන්න.
 - (b) 60kmh ක වේගයෙන් ගමන් ගන්නා දුම්රියකට 80m ක් දිග පාලමක් පසු කිරීමට තත්පර 12ක් ගත වූයේ නම් දුම්රියේ දිග ගණනය කරන්න.
- (06) පසුගිය මාසය තුල එක්තරා වසංගත රෝගයකට ගොදුරු වුන රෝගීන් සමූනයකගේ වයස පිළිබඳ රැස්කරන ලද තොරතුරු පහත වගුවේ දක්වේ.

						,	!!
වයස (අවු)	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	0 - 70
රෝගීන් ගණන	2	5	9	15	10	6	3

- (i) මෙම වාහප්තියේ මාත පන්තිය කුමක් ද?
- (ii) (30 40) පන්තියේ මධා අගය උප්කල්පිත මධානා ලෙස ගෙන රෝග්සට ගොදුරු වූ රෝගියකුගේ මධානා වයස ගණනය කරන්න.
- (iii) මෙම සමික්ෂණයට අනුව රෝගයට ගොදුරු වූ වයස අවුරුදු 40ට වැඩි අයගේ පුතිශනය සොයන්න.

B කොටස පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

- (07) පළමු පදය 7 වූ සමාන්තූර ශ්‍රේධීයක 12 වන පදය 62 වේ.
 - (i) සමාත්තර ශේඪයේ පොදු අත්තරය සොයා එම ශේඨියේ 10 වන පදය සොයන්න.
 - (ii) ශ්‍රේඪියේ මුල් පද 6 හි ඓකාය සොයන්න.
- (08) පහත දක්වෙත නිර්මාණය සඳහා cm/mm පරිමාණයක් සහිත සරල දාරයක් හා කවකටුවක් පමණක් භාවිත කරන්න. නිර්මාණ රේඛා පැහැදිලිව දක්වන්න.
 - (i) $AB = 8 \text{cm} \, \epsilon \, ABC = 90^{\circ} \, \epsilon \, BC = 6 \text{cm} \, \epsilon \, 2$ ABC තිකෝණය නිර්මාණය කරන්න.
 - (ii) AC හා BC රේඛා දෙකට සම දුරින් ගමන් කරන ලක්ෂායක පථය නිර්මාණය කරන්න.
 - (iii) AC රේඛාවේ ලම්බ සමච්ඡේදකය නිර්මාණය කරන්න.
 - (iv) ඉහත (ii) හා (iii) හි නිර්මාන රේඛා ඡේදනය වන ලක්ෂාය O ලෙස නම්කර අරය OC වූ වෘත්තය අඳින්න.
 - (v) එම වෘත්තයේ අරය මැත ලියන්න.
- (09) ABCD සමාන්තරාසුයේ AC විකර්ණයකි. B සහ D සිට AC විකර්ණයට ඇඳි ලම්බ පිළිවෙලින් BP හා DQ වේ.

- (i) රූපය පිටජ්ත් කරගෙන ඉහත දී ඇති දත්ත රූපය තුල ලකුණු කර ADQ හා BCP තිුකෝණ අංගසම වන බව සාධනය කරන්න.
- (ii) හේතු පැහැදිලිව දක්වමින් BPDQ සමාන්තරාසුයක් වන බව සාධනය කරන්න.
- (10) O කේන්දුය වූ වෘත්තයේ පරිධිය මත A,B හා C ලක්ෂා පිහිටා ඇත.
 - (i) AC වෘත්ත චාපය මගින් කේන්දයේ ආපාතිත කෝණය හා වෘත්ත පරිධිය මත ආපාතිත කෝණය නම් කරන්න.
 - (ii) අර්ධ වෘත්තයේ කෝණය නම් කර එහි විශාලත්වය ලියා දක්වත්න.
 - (iii) AOC = 2BCO බව සාධනය කරන්න.
 - (iv) ඉහත සාධනය සඳහා ඔබ විසින් යොදාගත් පුමේයයක් නිවැරදිව ලියා දක්වන්න.

(11) රූපයේ දක්වෙන මිනුම් සහිත ලෝහ පිස්මයක් උණුකර ලෝහ අපතේ නොයන සේ අරය a ද උස h ද වූ සිලින්ඩරයක් තනනු ලැබේ.

- (i) පිස්මයේ පරිමාව a හා b ඇසුරෙන් ලියා දක්වන්න.
- (ii) සිලින්ඩරයේ උස $(h) = \frac{b}{\pi}$ බව පෙන්වන්න.
- (iii) $b = 12 \ {
 m cm} \ \xi \ \pi = 3.142 \ \xi$ ලෙස ගෙන ලසු වගුව ඇසුරෙන් h හි අගය සොයන්න.
- (12) පෞද්ගලික පන්තියක් සඳහා සහභාගි වූ ළමුන් 100ක් අතුරින් 60 දෙනෙක් ගැහැනු ළමුන් වූ අතර පන්ති සඳහා මෝටර්රථවලින් පැමිණි ළමුන් ගණන 32ක් විය. ඔවුන් අතුරින් මෝටර් රථවලින් පැමිණි ගැහැනු ළමුන් ගණන 20ක් නම්,
 - (i) ඉහත තොරතුරු ඇසුරින් පහත වෙන් රූපය සම්පූර්ණ කරන්න.

- (ii) මෝටර් රථවලින් පැමිණි පිරිමි ළමුන් ගණන් සොයන්න
- (iii) මෝටර් රථවලින් නොපැමිණි පිරිමි ළමුන් ගණන දක්වෙන පෙදෙස අඳුරු කර දක්වන්න.
- (iv) මෝටර් රථවලින් පැමිණි සියළුම ළමුන් ගැහැනු ළමුන් වූයේ නම් එම තොරතුරු ඇතුලත් වෙනත් වෙන් රූපයක් අඳින්න.

බස්නාතිර පළාත් අධනපන දෙපාර්තමේන්තුව

අවසාන වාර පරීකෂණය - 2020 ගණිතය - 10 ශුේණිය

I හා II පිළිතුරු පතුය

II පතුය			(iii) $\frac{1}{(x-2)(x+2)} - \frac{1}{(x-2)(x+6)}$	1	
(01) (a) $\frac{7}{3} \div \frac{8}{5}$ $\frac{5}{4}$			$= \frac{(x+6) - (x+2)}{(x-2)(x+6)}$	1	
$= \frac{7}{3} \div \frac{8}{5} \text{ sh} \frac{5}{4} \longrightarrow$	1		$= \frac{x + 6 - x - 2}{(x - 2)(x + 2)(x - 6)}$	1	
$= \frac{7}{3} \times \frac{1}{2}$ $= \frac{7}{6}$	1 1 1		$= \frac{4}{(x-2)(x+2)(x-6)}$	1	4
$= 1\frac{1}{6} \longrightarrow$	1	4			10
(b) $60 \times \frac{60}{100}$	1		$(04) (a) 15x - 6y = 30 \longrightarrow 3 \longrightarrow 4x + 6y = 46 \longrightarrow 4 \longrightarrow 4$	1	
රු. 1 500 000	1		$19x = 76$ $x = 4 \longrightarrow$	1	
	1		$4 \times 4 + 6y = 46$ $y = 5$	1	4
ძ ე. 600 000 →	1		(b)(i) $\frac{1}{2} \times (x+5) \times x = 33 \rightarrow x^2 + 5x = 66$	1	
	1	6	$x^2 + 5x - 66 = 0 \implies$	1	2
		10	(ii) (x - 6) (x + 11) = 0 → x = 6 මහ3 x = - 11	2	
(02) (a) (i) $y = 3 - x^2$ = 3 - 1 ²			ලම්බ උස = 6cm	1	4
= 2	1	1			10
(ii) අක්ෂ ලකුණු කිරීමට → ලක්ෂාය ලකුණු කිරීමට →	1 1		(05)(a) පරිමාණය ලිවීමට තිරස් රේඛාව ඇඳීමට	1	
සුමට වකුය ඇඳීමට>	1	3	60° කෝණය ලකුණු කිරීමට	1	
(b) (i) 3	1	1	රූපය සම්පූර්ණ කිරීමට ගොඩනැගිල්ලේ උස සෙවීමට	1	(5)
(ii) x = 1.7 හා x = -1.7 → (iii) -1.7 ත් 0 ත් අතර	1+1	(2)	$egin{pmatrix} ext{(b)} & \text{දුම්රිය තත් } 12 & \xi \ & & & & & \end{pmatrix} = rac{60 imes 1000 imes 12}{60 imes 60} \ \end{split}$	2	
මහර් -1.7 < x < 0 →	1+1	2	= 200m	1	
(iv) $y = 2 - x^2$	1	1	දුම්රියේ දිග = 200 - 80 = 120m	1	(5)
(02) (i) (v 2) (v + 6)	_	10			10
(03) (i) $(x-2)(x+6)$ (ii) $x^2 - 4 = (x-2)(x+2)$	2 2	2			
$x^{2} + 4x - 12 = (x - 2)(x + 6)$					
කු.පො.ගු = $(x - 2)(x + 2)(x + 6)$	2	4			

					1				
(06) (i)	(30 - 40	0)			1	1	(08) (i) AB ජෙකාව ඇඳීමට	1	
(ii)	X	d	f	$f \times d$			90° කෝණය නිර්මාණයට	1	
	5	-30	2	-60			BC රේඛාව නිර්මාණයට →		
	15	-20	5	-100			ABC තිකෝණය නිර්මාණයට	I	$\left \begin{pmatrix} 4 \end{pmatrix} \right $
	25	-10	9	-90			(ii)AĈB හි සමච්ඡේදකය	2	
	35	0	15	0			නිර්මාණයට	2	$ 2\rangle$
	45 55	+10 +20	10 6	+100 +120			(iii) AC රේඛාවේ ලම්බ	1	1
	65	+30	3	+90			සමච්ඡේදකය නිර්මාණයට		
			50	+ 60			(iv) කේන්දුය O ලෙස නම් කිරීමට වෘත්තය ඇඳීමට ————	1	
	x තීරය	ə —			1		(v) අරය මැන ලිවීමට ————	1	1
	d තීරය	ə —			1			1	<u> </u>
1	fd තීරය	o —	Σ	`fd	1				10
මධ) පනපය	වයස =	$A + \frac{2}{3}$	$\frac{\Sigma f}{\Sigma f}$			(09) (i) D		
			a	60 \			P		
		= .	35 + (-	$\left(\frac{50}{50}\right) \rightarrow$	2		1 1	_	
		=	35 + 1.	2	1		$A \xrightarrow{Q} B$	2	
			36.2	2.6	1		_	1	
	10		අවුරුදු	36 →	1	$ 7\rangle$	AD = BC (සම්මුඛ පාද)	1	
(b)	$\frac{19}{50} \times$	100%			1		$D\widehat{A}Q = B\widehat{C}P$ (ඒකාන්තර Δ) \longrightarrow	1	
	38 %				1	2	$A\hat{Q}D = B\hat{P}C$ (ලම්බක) \longrightarrow	1	
	20,0					10	\therefore ADQ $\Delta \equiv$ BCP Δ (කෝ.කෝ.පා)	1	6
(07) (i)	T = a +	(n = 1)	.d _		1		(ii) DQP = BPQ (ලම්බක) →	1	
			u		1		DQ / / BP (ඒකාන්තර ≼)→		
	$T_{12} = a - 62 = 7$				1		DQ = BP (අනුරූප අංග) →		
	55 = 11						∴ BPDQ ं කි. (සම්මුඛ පාද		
	5 = d				1		යුගලයක් සමාන හා		
	$T_{10} = a -$	+ 9d ·			1		සමාන්තර වීම) →	1	(4)
	= 7 -	+ 9 × 5			1				10
	= 7 -	+ 45					$igg(10)\ (i)$ කේන්දුයේ ආපාතිත $= \hat{AOC}$	1	
	= 52				1	6	7		
(ii)	$S_n = -$	$\frac{n}{2}$ {2a	+ (n -	1) d}	1		පරිධිය මත ආපාතිත කෝණය	1	2
	$S_6 = \frac{1}{2}$	$\frac{6}{2}$ {2	\times 7 + 5	\times 5	1		(ii) AĈB	1	
		$\{14+2\}$,			$A\widehat{C}B = 90^{\circ} \longrightarrow$	1	2
		`			1		(iii) OB = OC (අරය) ———	1	
		17 —			1	4	$\hat{\mathrm{OBC}} = \hat{\mathrm{OCB}}$ (සමද්වීපාද Δ)	1	
	1	•		•	1	\vdash	$A\hat{O}C = 2 O\hat{B}C \longrightarrow$	1	
						10	∴AÔC = 2 OĈB වේ. → හෝ සුදුසු වෙනත් සාධනයකට	1	$\left \begin{array}{c} 4 \end{array} \right $
						- 04 -	10 ශේණීය - ගණිතය - බස්නාහිර පළාත - පිළි		

(iv) අදාල පුමේයයක් ලියා දක්වීමට	2	2 10	(12) (i) 100 × මෝටර් රථවලින් ම්වූ		
(11) (i) හරස්කඩ වර්ගඵලය = $\frac{1}{2} \times a \times 2a$ = $a^2 \longrightarrow$ පුස්මයේ පරිමාව = $a^2 \times b$ = $a^2b \longrightarrow$ (ii) $\pi r^2 h = a^2 b$ $h = \frac{b}{\pi}$ (iii) $h = \frac{12}{3.14}$ $\log h = \lg 12 - \lg 3.14 \longrightarrow$ = $1.0792 - 0.4969 \longrightarrow$ = $0.5823 \longrightarrow$	1 1 1	3	වන් රූපය නම් කිරීමට \rightarrow එක් එක් කොටසේ අවයව ලියා දක්වීම \rightarrow (ii) 12 \rightarrow (iii) \sim \sim (iv) \sim \sim (\sim	1 4 1	(5) (1)
h = antilog 0.5823 $h = 3.822$	1	<u>(5)</u>	26 40	3	3