PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS <u>DEPARTAMENTO DE MATEMÁTICA</u>

Primer Semestre 2015

MAT1203 - Álgebra Lineal Interrogación 2 - miércoles 29 de abril - solución

 Sea A una matriz de 3 × 3. Si se suma a la tercera fila de A dos veces la segunda fila, luego se cambian los elementos de la primera columna por sus inversos aditivos, y finalmente se intercambia la primera y la segunda fila; se obtiene entonces la matriz B dada por

 $B = \left[\begin{array}{rrr} 0 & 1 & 2 \\ -1 & 2 & 1 \\ -1 & 5 & 6 \end{array} \right]$

a) Escriba la relación entre A y B usando matrices elementales.

Solución:

$$\left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right] \cdot \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{array}\right] \cdot A \cdot \left[\begin{array}{ccc} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] = B.$$

0,5p % (matrit demental) 1,5p relation escrita en el orden correcto. b) Encuentre la descomposición A=LU y resolviendo sistemas determine la primera columna de la inversa de A.

Solución:

Del enunciado
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 3 & 2 \end{bmatrix}$$
.

La descomposición
$$A = LU$$
 es $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{bmatrix}$.

El sistema que hay que resolver es $Ax = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

Utilizando el cambio Ax = LUx = Ly.

$$Ly = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 implica que $y = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.

$$Ux = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
 implica que $x = \begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix}$.

obtener A 0,5p

salu que el sonterna es AX=E1 95p utilitan candio de variable 95p emontran y 95p emontran x 95p

Cuarquier étres métodes NO tiene puntage.

- 2. Sea A matriz de 2×3 y B matriz de 3×3 .
 - a) Si A es sobreyectiva y B es invertible, demuestre que AB es sobreyectiva.

Solución:

Demostrar que AB es sobreyectiva significa que hay que demostrar que para todo $b \in \mathbb{R}^2$ el sistema ABx = b tiene solución.

Como A es sobreyectiva, entonces el sistema Ax = b tiene solución.

Sea u tal que Au = b.

Como B es invertible basta tomar $x = B^{-1}u$ y se tiene que: $ABx = ABB^{-1}u = Au = b.$

b) Demuestre que $Ker(A^tA) = Ker(A)$.

Solución:

Primero: Si $u \in \text{Ker}(A)$, entonces $Au = \vec{0}$, multiplicando por A^t se tiene $A^tAu = \vec{0}$. Por lo tanto $u \in \text{Ker}(A^tA)$.

Segundo: Si $v \in \text{Ker}(A^t A)$, entonces $A^t A v = \vec{0}$, multiplicando por v^t se tiene $v^t A^t A v = 0$. Por lo tanto el producto punto de Av con Av es cero, $Av = \vec{0}$ y $v \in \text{Ker}(A)$.

3. a) Sean M y N matrices invertibles de 3×3 tales que $N^{-1}MN = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 8 \end{bmatrix}$. Demuestre que existe una matriz T tal que $T^3 = M$.

Solución:

b) Sea $q:\mathbb{R}^2 \to \mathbb{R}$ una forma cuadrática tal que $q \left[\begin{array}{c} 1 \\ 0 \end{array} \right] = 1, \; q \left[\begin{array}{c} 0 \\ 1 \end{array} \right] = 7$ y $q \mid \begin{array}{c} 1 \\ 1 \end{array} \mid = 12.$

Demuestre que $q \begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$ es positiva definida y escríbala como una suma ponderada de cuadrados.

Solución:

Sea
$$q = ax_1^2 + 2bx_1x_2 + cx_2^2$$
 asociada a la matriz $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$.

Del enunciado se tiene que $a=1,\ c=7$ y a+2b+c=12, por lo tanto b=2.

$$q$$
 es positiva definida pues $\begin{bmatrix} a & b \\ b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, con $1 > 0$ y $3 > 0$.

Luego $q = 1 \cdot (x_1 + 2x_2)^2 + 3 \cdot (x_2)^2$

obtener
$$9 = x_1^2 + 4x_1x_2 + 7x_2^2$$
 } Ip

dem. pos del 1p vouvor la como sama de 032

- 4. Decida justificadamente si las siguientes afirmaciones son verdaderas o falsas:
- Λ_1 Si A es una matriz de 3×4 , entonces A no es inyectiva.

Solución:

Verdadero.

Si A es inyectiva, sus columnas son L.I. y el rango 4. Pero por tamaño el rango máximo de A es 3. Por lo tanto A no es inyectiva.

1 Si E de 2×2 es una matriz elemental que representa la operación de multiplicar una fila por un escalar no nulo, entonces E^2 es positiva definida.

Solución:

Verdadero.

Hay dos casos:

Si
$$E = \begin{bmatrix} \alpha & 0 \\ 0 & 1 \end{bmatrix}$$
 con $\alpha \neq 0$, entonces $E^2 = \begin{bmatrix} \alpha^2 & 0 \\ 0 & 1 \end{bmatrix}$ con la diagonal positiva.

Luego E^2 es positiva definida.

Si
$$E = \begin{bmatrix} 1 & 0 \\ 0 & \alpha \end{bmatrix}$$
 con $\alpha \neq 0$, entonces $E^2 = \begin{bmatrix} 1 & 0 \\ 0 & \alpha^2 \end{bmatrix}$ con la diagonal positiva.

Luego E^2 es positiva definida.

4) b) deben er tan los des comos
$$\alpha = 1$$
 $\alpha = 1$ $\alpha = 1$

c) Si A es una matriz simétrica de 2×2 con elementos positivos en la diagonal, entonces A es positiva definida.

Solución:

Falso.

Por ejemplo $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ tiene elementos positivos en la diagonal pero no es positiva definida pues $\begin{bmatrix} 1 \\ -1 \end{bmatrix}^t \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = -2 < 0.$

Solución:

Falso.

Por ejemplo si $u = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ se tiene que $uu^t = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ es no invertible (fila nula).