FUNDAMENTOS

Grados de Alcoholemia, según la ley 1548 de 2012, Articulo 152.

Ley 1548 de 2012

 $\underline{https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/ley-1548-de-2012.pdf}$

Grado	mg de etanol por cada 100 ml de sangre	PPM = mg/L	Correspondencia con copas
Grado 0 de ALCOHOLEMIA	20-39 mg/100 ml	200 - 390 ppm	una copa de vino o una cerveza
Primer grado de EMBRIAGUEZ	40- 99 mg/100 ml	400 -990 ppm	un par de copas de vino o cervezas
Segundo grado de EMBRIAGUEZ	100-149 mg/100 ml	1000 - 1490 ppm	4 cervezas o 2 combinados (vodka, ron, whisky)
Tercer grado de EMBRIAGUEZ	150 mg o más mg/100 ml	1500 ppm o más	más de 8 cervezas o más de 3 combinados (vodka, whisky, ron)

Sensor de alcohol TGS2620

Model number			TGS2620-C00	
Sensing principle			MOS-type	
Standard package			TO-5 metal can	
Target gases			Alcohol, Solvent apors	
Typical detection range			50 ~ 5,000ppm EtOH	
	Heater voltage	Vн	5.0±0.2V AC/DC	
Standard circuit conditions	Circuit voltage	Vc	5.0±0.2V DC	Ps≤15mW
	Load resistance	RL	variable	0.45kΩ min.
Electrical characteristics under standard test conditions	Heater resistance	Rн	83Ω at room temp. (typical)	
	Heater current	lH	42±4mA	
	Heater power consumption	Рн	210mW (typical)	
	Sensor resistance	Rs	1kΩ ~ 5kΩ in 300ppm ethanol	
	Sensitivity (change ratio of Rs)		0.3~0.5 in ethanol	Rs (300ppm) Rs (50ppm)
Standard test conditions	Test gas conditions		Ethanol vapor in air at 20±2°C, 65±5%RH	
	Circuit conditions		Vc = 5.0±0.01V DC VH = 5.0±0.05V DC	
	Conditioning period before test		7 days	

El sensor mide la concentración de alcohol en PPM y la norma se mide por mg/100ml. Por lo que se requiere una conversión para manejar los mismos valores de la tabla.

1 mg/ml = 1000 ppm

1mg/100ml = 10ppm

Grado	mg de etanol por cada 100 ml de sangre	ppm de etanol
-------	---	---------------

Grado 0 de ALCOHOLEMIA	20-39 mg/100 ml	200-390 ppm
Primer grado de EMBRIAGUEZ	40- 99 mg/100 ml	400-990 ppm
Segundo grado de EMBRIAGUEZ	100-149 mg/100 ml	1000-1490 ppm
Tercer grado de EMBRIAGUEZ	150 mg o más mg/100 ml	1500 ppm o más

Con un resolución de 50 - 5000 ppm el sensor cumple con el rango de medición necesario para detectar los grados de alcohol.

Acelerómetro MPU-6050

EL **MPU6050** es una unidad de medición inercial o IMU (Inertial Measurment Units) de 6 grados de libertad (DoF) pues combina un acelerómetro de 3 ejes y un giroscopio de 3 ejes. Este sensor es muy utilizado en navegación, goniometría, estabilización, etc.

Acelerómetro

Los acelerómetros se utilizan en mediciones de aceleración gravitacional estática, lo que le permite determinar el ángulo de desviación del objeto medido de la vertical, así como en mediciones de aceleración dinámica debido a golpes, movimiento, impacto o vibración, es decir, vibraciones de baja amplitud y baja frecuencia, que alcanzan varias docenas de Hz.

- ¿Cómo funciona un acelerómetro mientras se mide la vibración? Este dispositivo se implementa directamente en el objeto que vibra, lo que le permite convertir la energía de vibración en una señal eléctrica que es proporcional a la aceleración momentánea del objeto.
- ¿Qué hace un acelerómetro? La medición de la vibración se usa generalmente para diagnosticar el funcionamiento de máquinas, dispositivos o estructuras sometidas a altos esfuerzos, por ejemplo, estructuras de acero de mástiles, puentes o estructuras de edificios. También se utilizan acelerómetros, entre otros. para proteger los discos duros contra daños, en equipos médicos y deportivos, en cámaras y videocámaras, en teléfonos inteligentes, controles remotos, controladores o en sistemas de navegación.
- ¿Qué es un acelerómetro? No es más que un transductor de aceleración que mide su propio movimiento en el espacio.

El principio de los aceleradores es medir la fuerza de aceleración en la unidad g y puede medir en uno, dos o tres planos. Actualmente, los acelerómetros de 3 ejes más utilizados, cuya construcción consiste en un sistema de tres acelerómetros, cada uno de los cuales mide la aceleración en una dirección diferente, en los planos X, Y y Z.

Si la aceleración en cualquier plano actúa en la dirección opuesta a la dirección del sensor, el acelerómetro medirá la aceleración con un valor negativo. De lo contrario, la aceleración se medirá con un valor positivo.

Si el acelerómetro no se ve afectado por ninguna aceleración externa, el dispositivo solo medirá la aceleración gravitacional, es decir, la fuerza de la gravedad. Suponiendo que el acelerómetro de 3 ejes está posicionado de tal manera que el sensor en el eje X se dirige hacia la izquierda, el sensor en el eje Y está hacia abajo Y0 el sensor en el eje Y2 está hacia adelante Y1 no actúan fuerzas sobre él, entonces el acelerómetro devolverá valores: Y1 el Y2 el Y3 el Y4 el Y5 el mismo acelerómetro está inclinado hacia la izquierda, sus lecturas mostrarán: Y3 el Y4 el Y5 el Y6 el mismo modo, cuando la desviación se produce a la derecha, el plano Y5 devuelve el resultado Y5 el Y6 el Y7 el Y8. Las dependencias de medición de aceleración dadas son utilizadas por los algoritmos de los sistemas que supervisan el acelerador.

Giroscopio

Los giroscopios, o girómetros, son dispositivos que miden o mantienen el movimiento de rotación. MEMS (sistemas microelectromecánicos) giroscopios son pequeños sensores, de bajo costo para medir la velocidad angular. Las unidades de velocidad angular se miden en grados por segundo (° / s) o revoluciones por segundo (RPS). La velocidad angular es simplemente una medida de la velocidad de rotación.

¿Cómo funciona un girómetro?.

Cuando un objeto gira alrededor de un eje obtiene algo llamado velocidad angular. Una rueda que gira puede ser medida en revoluciones por segundo (RPS) o grados por segundo ($^{\circ}$ / $^{\circ}$).

Un giroscopio MEMS de 3 ejes , puede medir la rotación en torno a tres ejes : X, Y , y Z . Algunos giroscopios vienen en variedades de eje simple y doble, pero el giroscopio de tres ejes en un solo chip son cada vez más pequeño, menos costoso y más popular.

Los giroscopios se utilizan a menudo en los objetos que no están girando muy rápido del todo. Las aeronaves (con suerte) no giran. En se lugar giran unos pocos grados en cada eje . Mediante la detección de estos pequeños cambios los giroscopios ayudan a estabilizar el vuelo de la aeronave. Además, tenga en cuenta que la aceleración o la velocidad lineal de la aeronave no afecta a la medición del giróscopo. Los giroscopios sólo miden la velocidad angular.

En tal caso, se eligió el mpu-6050 con ambas funcionalidades (acelerómetro y giroscopio) con el fin de tener mayor cantidad de datos y determinar con mayor precisión una caída lateral o una colisión en un vehículo.