In [1]: import pandas as pd
 df =pd.read_csv('https://raw.githubusercontent.com/jackiekazil/data-wrangling/mast
 df.head(2)
 df1 =pd.read_csv('https://raw.githubusercontent.com/kjam/data-wrangling-pycon/mast
 df1.head(2)

Out[1]:

	STATION	STATION_NAME	DATE	PRCP	SNWD	SNOW	TMAX	TMIN	WDFG	F
0	GHCND:GME00111445	BERLIN TEMPELHOF GM	19310101	46	-9999	-9999	-9999	-11	-9999	_
1	GHCND:GME00111445	BERLIN TEMPELHOF GM	19310102	107	-9999	-9999	50	11	-9999	

2 rows × 21 columns

```
In [2]: # Get the Metadata from the above files.
        df.info()
        df1.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 4656 entries, 0 to 4655
           Data columns (total 12 columns):
           Indicator
                                       4656 non-null object
           PUBLISH STATES
                                       4656 non-null object
                                       4656 non-null int64
           Year
           WHO region
                                       4656 non-null object
           World Bank income group
                                       4656 non-null object
           Country
                                       4656 non-null object
           Sex
                                       4656 non-null object
           Display Value
                                       4656 non-null int64
           Numeric
                                       4656 non-null float64
           Low
                                       0 non-null float64
           High
                                       0 non-null float64
                                       0 non-null float64
           Comments
           dtypes: float64(4), int64(2), object(6)
           memory usage: 436.6+ KB
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 117208 entries, 0 to 117207
           Data columns (total 21 columns):
           STATION
                            117208 non-null object
           STATION NAME
                            117208 non-null object
           DATE
                            117208 non-null int64
           PRCP
                            117208 non-null int64
           SNWD
                            117208 non-null int64
                            117208 non-null int64
           SNOW
           TMAX
                            117208 non-null int64
                            117208 non-null int64
           TMIN
           WDFG
                            117208 non-null int64
                            117208 non-null int64
           PGTM
           WSFG
                            117208 non-null int64
           WT09
                            117208 non-null int64
           WT07
                            117208 non-null int64
                            117208 non-null int64
           WT01
           WT06
                            117208 non-null int64
           WT05
                            117208 non-null int64
           WT04
                            117208 non-null int64
                            117208 non-null int64
           WT16
           WT08
                            117208 non-null int64
           WT18
                            117208 non-null int64
                            117208 non-null int64
           WT03
           dtypes: int64(19), object(2)
           memory usage: 18.8+ MB
In [3]: # Get the row names from the above files.
        df.index.values
Out[3]: array([
                               2, ..., 4653, 4654, 4655], dtype=int64)
                   0,
                         1,
```

```
In [4]: df1.index.values
Out[4]: array([ 0,  1,  2, ..., 117205, 117206, 117207], dtype=int64)
In [5]: # Change the column name from any of the above file.
    df.rename(columns = {'Indicator' : 'Indicator_ID'}, inplace=False)
    df.head()
```

Out[5]:

	Indicator	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low	н
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	N
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN	١
2	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Andorra	Female	28	28.0	NaN	١
3	Life expectancy at age 60 (years)	Published	2000	Europe	High- income	Andorra	Both sexes	23	23.0	NaN	١
4	Life expectancy at birth (years)	Published	2012	Eastern Mediterranean	High- income	United Arab Emirates	Female	78	78.0	NaN	١
<											>

In [6]: # Change the column name from any of the above file and store the changes made per

df.rename(columns = {'Indicator' : 'Indicator_ID'}, inplace=True)

df.head()

Out[6]:

	Indicator_ID	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN
2	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Andorra	Female	28	28.0	NaN
3	Life expectancy at age 60 (years)	Published	2000	Europe	High- income	Andorra	Both sexes	23	23.0	NaN
4	Life expectancy at birth (years)	Published	2012	Eastern Mediterranean	High- income	United Arab Emirates	Female	78	78.0	NaN
<										>

In [7]: # Change the names of multiple columns.

df.rename(columns = {'PUBLISH STATES' : 'Publication Status', 'WHO region' : 'WHO
 df.head()

Out[7]:

	Indicator_ID	Publication Status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric	Low
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN
2	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Andorra	Female	28	28.0	NaN
3	Life expectancy at age 60 (years)	Published	2000	Europe	High- income	Andorra	Both sexes	23	23.0	NaN
4	Life expectancy at birth (years)	Published	2012	Eastern Mediterranean	High- income	United Arab Emirates	Female	78	78.0	NaN
<										>

In [8]: # Arrange values of a particular column in ascending order.

df.sort_values(by=['Year'], ascending=True)

Out[8]:

	Indicator_ID	Publication Status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeri	
	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.	
12	Life expectancy at birth (years)	Published	1990	Europe	High- income	Germany	Male	72	72.	
31	expectancy at birth (years)	Published	1990	Europe	Lower- middle- income	Republic of Moldova	Male	65	65.	
										144

In [9]: # Arrange multiple column values in ascending order. df.sort_values(by=['Indicator_ID', 'Country', 'Year', 'WHO Region', 'Publication St Out[9]:

	Indicator_ID	Publication Status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeri	
2426	Healthy life expectancy (HALE) at birth (years)	Published	2000	Africa	Low- income	Zimbabwe	Male	37	37.	
2797	Healthy life expectancy (HALE) at birth (years)	Published	2000	Africa	Low- income	Zimbabwe	Female	36	36.	
3886	Healthy life expectancy (HALE) at birth (years)	Published	2000	Africa	Low- income	Zimbabwe	Both sexes	37	37.	
	Healthy life				Low		Roth			V
									>	

In []:

In [10]: # Make country as the first column of the dataframe.

df[pd.unique(['Country']+ df.columns.values.tolist())]

Out[10]:

		Country	Indicator_ID	Publication Status	Year	WHO Region	World Bank income group	Sex	Display Value	Numeri
	0	Andorra	Life expectancy at birth (years)	Published	1990	Europe	High- income	Both sexes	77	77.
	1	Andorra	Life expectancy at birth (years)	Published	2000	Europe	High- income	Both sexes	80	80.
	2	Andorra	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Female	28	28.
<			Life				Hiah-	Roth		>

```
In [11]:
           # Get the column array using a variable Expected Output:
           col1 = 'Country'
           df[[col1]].values[:, 0]
Out[11]: array(['Andorra', 'Andorra', 'Andorra', ..., 'South Africa', 'Zambia',
                    'Zimbabwe'], dtype=object)
In [12]:
           # Get the subset rows 11, 24, 37
           df.iloc[[11, 24, 37]]
Out[12]:
                                                          World
                                                  WHO
                             Publication
                                                           Bank
                                                                                      Display
                Indicator_ID
                                          Year
                                                                    Country
                                                                                Sex
                                                                                               Numeric Low
                                  Status
                                                Region
                                                                                       Value
                                                        income
                                                          group
                        Life
                  expectancy
                                                           High-
            11
                               Published 2012
                                                                             Female
                                                                                          83
                                                                                                  83.0 NaN
                                                Europe
                                                                     Austria
                     at birth
                                                         income
                     (years)
                        Life
                  expectancy
                                               Western
                                                           High-
                                                                      Brunei
            24
                               Published 2012
                                                                             Female
                                                                                          21
                                                                                                  21.0 NaN
                   at age 60
                                                 Pacific
                                                         income
                                                                 Darussalam
                     (years)
                        Life
                  expectancy
                                                           High-
            37
                               Published 2012
                                                Europe
                                                                     Cyprus Female
                                                                                          26
                                                                                                  26.0 NaN
                   at age 60
                                                         income
                     (years)
           <
In [13]:
           # Get the subset rows excluding 5, 12, 23, and 56
           df.drop([5, 12, 23, 56], axis= 0)
Out[13]:
                                                                 World
                               Publication
                                                                  Bank
                                                                                             Display
                  Indicator_ID
                                            Year
                                                  WHO Region
                                                                           Country
                                                                                        Sex
                                                                                                      Numeri
                                    Status
                                                                                               Value
                                                                income
                                                                 group
                          Life
                    expectancy
                                                                  High-
                                                                                       Both
               0
                                                                                                  77
                                 Published 1990
                                                        Europe
                                                                            Andorra
                                                                                                          77.
                       at birth
                                                                 income
                                                                                      sexes
                       (years)
                          Life
                    expectancy
                                                                  High-
                                                                                       Both
               1
                                 Published 2000
                                                        Europe
                                                                            Andorra
                                                                                                  80
                                                                                                          80.
                       at birth
                                                                 income
                                                                                      sexes
                       (years)
                          Life
                    expectancy
                                                                  High-
               2
                                 Published 2012
                                                        Europe
                                                                            Andorra Female
                                                                                                  28
                                                                                                          28.
                     at age 60
                                                                 income
                       (years)
                          Life
                                                                  Hiah
                                                                                       Roth
                    avnactancu
```

In [14]: # Load into users dataframe users = pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/master users.head()

Out[14]:

	UserID	User	Gender	Registered	Cancelled
0	1	Charles	male	2012-12-21	NaN
1	2	Pedro	male	2010-08-01	2010-08-08
2	3	Caroline	female	2012-10-23	2016-06-07
3	4	Brielle	female	2013-07-17	NaN
4	5	Benjamin	male	2010-11-25	NaN

In [16]: # Load into sessions dataframe

sessions =pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/mast sessions.head()

Out[16]:

	SessionID	SessionDate	UserID
0	1	2010-01-05	2
1	2	2010-08-01	2
2	3	2010-11-25	2
3	4	2011-09-21	5
4	5	2011-10-19	4

In [17]: # Load into products dataframe

products = pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/mas products.head()

Out[17]:

	ProductID	Product	Price
0	1	А	14.16
1	2	В	33.04
2	3	С	10.65
3	4	D	10.02
4	5	Е	29.66

Out[18]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity
0	1	2010-08-21	7.0	2	1
1	2	2011-05-26	3.0	4	1
2	3	2011-06-16	3.0	3	1
3	4	2012-08-26	1.0	2	3
4	5	2013-06-06	2.0	4	1

```
In [19]: print(users['Registered'].dtype)
    print(users['Cancelled'].dtype)
    print(sessions['SessionDate'].dtype)
    print(transactions['TransactionDate'].dtype)
```

datetime64[ns]
datetime64[ns]
object
object

```
In [20]: #converting to datetime values using to_datetime method in pandas as these column

users['Registered'] = pd.to_datetime(users['Registered'])
users['Cancelled'] = pd.to_datetime(users['Cancelled'])
sessions['SessionDate'] = pd.to_datetime(sessions['SessionDate'])
transactions['TransactionDate'] = pd.to_datetime(transactions['TransactionDate'])
```

Out[21]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered	Canc
0	1	2010-08-21	7.0	2	1	NaN	NaN	NaT	
1	2	2011-05-26	3.0	4	1	Caroline	female	2012-10-23	201
2	3	2011-06-16	3.0	3	1	Caroline	female	2012-10-23	201
3	4	2012-08-26	1.0	2	3	Charles	male	2012-12-21	
4	5	2013-06-06	2.0	4	1	Pedro	male	2010-08-01	201
5	6	2013-12-23	2.0	5	6	Pedro	male	2010-08-01	201
6	7	2013-12-30	3.0	4	1	Caroline	female	2012-10-23	201
7	8	2014-04-24	NaN	2	3	NaN	NaN	NaT	
8	9	2015-04-24	7.0	4	3	NaN	NaN	NaT	
9	10	2016-05-08	3.0	4	4	Caroline	female	2012-10-23	201
<									>

In [22]: # Which transactions have a UserID not in users?
transactions[~transactions['UserID'].isin(users['UserID'])]

Out[22]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity
0	1	2010-08-21	7.0	2	1
7	8	2014-04-24	NaN	2	3
8	9	2015-04-24	7.0	4	3

In [23]: # Join users to transactions, keeping only rows from transactions and users that m

df_Inner_trans_users = pd.merge(transactions,users,how="inner", on="UserID")

df_Inner_trans_users

Out[23]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered	Canc
0	2	2011-05-26	3.0	4	1	Caroline	female	2012-10-23	201
1	3	2011-06-16	3.0	3	1	Caroline	female	2012-10-23	201
2	7	2013-12-30	3.0	4	1	Caroline	female	2012-10-23	201
3	10	2016-05-08	3.0	4	4	Caroline	female	2012-10-23	201
4	4	2012-08-26	1.0	2	3	Charles	male	2012-12-21	
5	5	2013-06-06	2.0	4	1	Pedro	male	2010-08-01	201
6	6	2013-12-23	2.0	5	6	Pedro	male	2010-08-01	201
<									>

In [24]: # Join users to transactions, displaying all matching rows AND all non-matching ro

df_Outer_trans_users = pd.merge(transactions,users,how="outer", on="UserID")

df_Outer_trans_users

Out[24]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered	Са
0	1.0	2010-08-21	7.0	2.0	1.0	NaN	NaN	NaT	
1	9.0	2015-04-24	7.0	4.0	3.0	NaN	NaN	NaT	
2	2.0	2011-05-26	3.0	4.0	1.0	Caroline	female	2012-10-23	2
3	3.0	2011-06-16	3.0	3.0	1.0	Caroline	female	2012-10-23	2
4	7.0	2013-12-30	3.0	4.0	1.0	Caroline	female	2012-10-23	2
5	10.0	2016-05-08	3.0	4.0	4.0	Caroline	female	2012-10-23	2
6	4.0	2012-08-26	1.0	2.0	3.0	Charles	male	2012-12-21	
7	5.0	2013-06-06	2.0	4.0	1.0	Pedro	male	2010-08-01	2
8	6.0	2013-12-23	2.0	5.0	6.0	Pedro	ma l e	2010-08-01	2
9	8.0	2014-04-24	NaN	2.0	3.0	NaN	NaN	NaT	
10	NaN	NaT	4.0	NaN	NaN	Brielle	female	2013-07-17	
11	NaN	NaT	5.0	NaN	NaN	Benjamin	male	2010-11-25	
<									>

In [25]: # Determine which sessions occurred on the same day each user registered
Using Panda Merge
pd.merge(left=users,right=sessions,how="inner", left_on=['UserID','Registered'], r

Out[25]:

	UserID	User	Gender	Registered	Cancelled	SessionID	SessionDate
0	2	Pedro	male	2010-08-01	2010-08-08	2	2010-08-01
1	4	Brielle	female	2013-07-17	NaT	9	2013-07-17

```
In [31]: # Build a dataset with every possible (UserID, ProductID) pair (cross join)
#create two different dataframes with unique UserID and ProductID from users and t

df_userid = pd.DataFrame({"UserID":users["UserID"]})

df_Tran = pd.DataFrame({"ProductID":products["ProductID"]})

#create new column Key with value as 1 for both the dataframe as this would become

df_userid['Key'] = 1

df_Tran['Key'] = 1
```

```
In [32]: #do a outer join on df_userid and df_Tran dataframe

df_out = pd.merge(df_userid,df_Tran,how='outer',on="Key")[['UserID','ProductID']]
```

Out[33]:

	UserID	ProductID
0	1	1
1	1	2
2	1	3
3	1	4
4	1	5
5	2	1
6	2	2
7	2	3
8	2	4
9	2	5
10	3	1
11	3	2
12	3	3
13	3	4
14	3	5
15	4	1
16	4	2
17	4	3
18	4	4
19	4	5
20	5	1
21	5	2
22	5	3
23	5	4
24	5	5

In [34]: # Determine how much quantity of each product was purchased by each user
 #do a left join on the output table df_out from previous step with transactions ta
 df_user_prod_quant = pd.merge(df_out,transactions,how='left',on=['UserID','Product
 #Groupby the table on ['UserID','ProductID] and calculate the sum of Qunatity enti
 df_user_quantity = df_user_prod_quant.groupby(['UserID','ProductID'])['Quantity'].
 #reset index so that the index column will have consecutive default numbers and fi
 df_user_quantity.reset_index().fillna(0)

Out[34]:

	UserID	ProductID	Quantity
0	1	1	0.0
1	1	2	3.0
2	1	3	0.0
3	1	4	0.0
4	1	5	0.0
5	2	1	0.0
6	2	2	0.0
7	2	3	0.0
8	2	4	1.0
9	2	5	6.0
10	3	1	0.0
11	3	2	0.0
12	3	3	1.0
13	3	4	6.0
14	3	5	0.0
15	4	1	0.0
16	4	2	0.0
17	4	3	0.0
18	4	4	0.0
19	4	5	0.0
20	5	1	0.0
21	5	2	0.0
22	5	3	0.0
23	5	4	0.0
24	5	5	0.0

In [36]: # For each user, get each possible pair of pair transactions (TransactionID1,Trans
pd.merge(transactions,transactions,how='outer',on='UserID')

Out[36]:

	TransactionID_x	TransactionDate_x	UserID	ProductID_x	Quantity_x	TransactionID_y	Transact
0	1	2010-08-21	7.0	2	1	1	2
1	1	2010-08-21	7.0	2	1	9	2
2	9	2015-04-24	7.0	4	3	1	2
3	9	2015-04-24	7.0	4	3	9	2
4	2	2011-05-26	3.0	4	1	2	2
5	2	2011-05-26	3.0	4	1	3	2
6	2	2011-05-26	3.0	4	1	7	2
7	2	2011-05-26	3.0	4	1	10	2
8	3	2011-06-16	3.0	3	1	2	2
9	3	2011-06-16	3.0	3	1	3	2
10	3	2011-06-16	3.0	3	1	7	2
11	3	2011-06-16	3.0	3	1	10	2
12	7	2013-12-30	3.0	4	1	2	2
13	7	2013-12-30	3.0	4	1	3	2
14	7	2013-12-30	3.0	4	1	7	2
15	7	2013-12-30	3.0	4	1	10	2
16	10	2016-05-08	3.0	4	4	2	2
17	10	2016-05-08	3.0	4	4	3	2
18	10	2016-05-08	3.0	4	4	7	2
19	10	2016-05-08	3.0	4	4	10	2
20	4	2012-08-26	1.0	2	3	4	2
21	5	2013-06-06	2.0	4	1	5	2
22	5	2013-06-06	2.0	4	1	6	2
23	6	2013-12-23	2.0	5	6	5	2
24	6	2013-12-23	2.0	5	6	6	2
25	8	2014-04-24	NaN	2	3	8	2
<							>

```
In [38]: # Join each user to his/her first occuring transaction in the transactions table

df_usertran = pd.merge(users,transactions,how='left',on='UserID')

# craete a new dataframe df_ with all duplicates on UserID being dropped , only ke

df_ = df_usertran.drop_duplicates(subset='UserID')

#reset the index to the default integer index.

df_ = df_.reset_index(drop=True)

#display the contents of the dataframe df_

df_
```

Out[38]:

	UserID	User	Gender	Registered	Cancelled	TransactionID	TransactionDate	ProductID	Qu
0	1	Charles	male	2012-12-21	NaT	4.0	2012-08-26	2.0	
1	2	Pedro	male	2010-08-01	2010-08- 08	5.0	2013-06-06	4.0	
2	3	Caroline	female	2012-10-23	2016-06- 07	2.0	2011-05-26	4.0	
3	4	Brielle	female	2013-07-17	NaT	NaN	NaT	NaN	
4	5	Benjamin	male	2010-11-25	NaT	NaN	NaT	NaN	
<									>

In [39]: # Test to see if we can drop columns

```
In [40]: # #Retieve the column list for the dataframe df_ created in problem statement 20
my_columns = list(df_.columns)
print(my_columns)
```

['UserID', 'User', 'Gender', 'Registered', 'Cancelled', 'TransactionID', 'TransactionDate', 'ProductID', 'Quantity']

Out[43]: ['UserID', 'User', 'Gender', 'Registered']

```
In [44]: missing_info = list(df_.columns[df_.isnull().any()])
    missing_info
```

Out[44]: ['Cancelled', 'TransactionID', 'TransactionDate', 'ProductID', 'Quantity']

```
In [45]:
         for col in missing info:
             num missing = df_[df_[col].isnull() ==True].shape[0]
             print('number missing for column {}: {}'.format(col, num missing))
            number missing for column Cancelled: 3
            number missing for column TransactionID: 2
            number missing for column TransactionDate: 2
            number missing for column ProductID: 2
            number missing for column Quantity: 2
In [46]:
         for col in missing info:
             num_missing = df_[df_[col].isnull() ==True].shape[0]
             print('number missing for column {}: {}'.format(col, num missing))
         for col in missing info:
             percent_missing = df_[df_[col].isnull() ==True].shape[0] / df_.shape[0]
             print('percent missing for column {}: {}'.format(col, percent missing))
            number missing for column Cancelled: 3
            number missing for column TransactionID: 2
            number missing for column TransactionDate: 2
            number missing for column ProductID: 2
            number missing for column Quantity: 2
            percent missing for column Cancelled: 0.6
            percent missing for column TransactionID: 0.4
            percent missing for column TransactionDate: 0.4
            percent missing for column ProductID: 0.4
            percent missing for column Quantity: 0.4
```