MAC 4722 - Linguagens, Autômatos e Computabilidade

Rodrigo Augusto Dias Faria - NUSP 9374992 Departamento de Ciência da Computação - IME/USP

10 de maio de 2016

Lista 4

L4.1 Complete a demonstração formal do lema 2.21, a primeira parte do teorema 2.20. A saber, primeiro demonstre que, para toda palavra w derivada pela gramática A, uma computação que aceite a palavra w no autômato construído P pode conduzir do estado q_{inicio} para o estado q_{aceita} . Em seguida, demonstre que toda palavra w aceita por uma computação de P admite uma derivação pela gramática A.

Resposta: TODO

L4.2 (Sipser 2.9) Dê uma gramatica livre-do-contexto que gere a linguagem

$$A = \{a^i b^j c^k \mid i = j \text{ ou } j = k \text{ onde } i, j, k \ge 0\}$$

Resposta: A GLC que gera a linguagem $A \notin G = (\{S, S_1, S_2, A, C\}, \{a, b, c\}, R, S)$, onde $S \notin$ a variável inicial e $R \notin$ o conjunto de regras:

$$S \to AS_2 \mid S_1C$$

$$S_1 \to aS_1b \mid \epsilon$$

$$S_2 \to bS_2c \mid \epsilon$$

$$A \to aA \mid \epsilon$$

$$C \to cC \mid \epsilon$$

Sua gramática é ambígua? Por que ou por que não?

Sim, ela é ambígua, pois G gera uma mesma cadeia, digamos w, ambiguamente, ou seja, w tem duas árvores sintáticas distintas. A derivação da cadeia w = abc, por exemplo, produz duas árvores sintáticas diferentes.

L4.3 (Sipser 2.11) Converta a GLC G_4 do exercício 2.1 para um AP equivalente, usando o teorema 2.20.

$$\begin{split} E &\to E + T \mid T \\ T &\to T \times F \mid F \\ F &\to (E) \mid a \end{split}$$

Resposta: TODO

L4.4 (Sipser 2.14) Converta a seguinte GLC numa GLC equivalente na forma normal de Chomsky, usando o procedimento dado no Teorema 2.9.

$$\begin{array}{c|c} A \rightarrow BAB \mid B \mid \epsilon \\ B \rightarrow 00 \mid \epsilon \end{array}$$

Resposta: Seguem os passos de acordo com o teorema.

1. Nova variável inicial

$$S_0 \to A$$

$$A \to BAB \mid B \mid \epsilon$$

$$B \to 00 \mid \epsilon$$

2. Removendo a regra $A \to \epsilon$

$$S_0 \to A \mid \epsilon$$

$$A \to BAB \mid B \mid BB$$

$$B \to 00 \mid \epsilon$$

3. Removendo a regra $B \to \epsilon$

$$S_0 \rightarrow A \mid \epsilon$$

 $A \rightarrow BAB \mid B \mid BB \mid AB \mid BA$
 $B \rightarrow 00$

4. Removendo a regra unitária $A \rightarrow B$

$$S_0 \rightarrow A \mid \epsilon$$

 $A \rightarrow BAB \mid 00 \mid BB \mid AB \mid BA$
 $B \rightarrow 00$

5. Removendo a regra unitária $S_0 \to a$

$$S_0 \rightarrow BAB \mid 00 \mid BB \mid AB \mid BA \mid \epsilon$$

 $A \rightarrow BAB \mid 00 \mid BB \mid AB \mid BA$
 $B \rightarrow 00$

6. Simplificando, tomando $X \to AB \in Y \to 0$

$$S_0 \rightarrow BX \mid YY \mid BB \mid AB \mid BA \mid \epsilon$$

 $A \rightarrow BX \mid YY \mid BB \mid AB \mid BA$
 $B \rightarrow YY$
 $X \rightarrow AB$
 $Y \rightarrow 0$

L4.5 (Sipser 2.25) Para qualquer linguagem A, seja $SUFIXO(A) = \{v \mid uv \in A \text{ para alguma cadeia } u\}$. Mostre que a classe de linguagens livres-do-contexto é fechada sob a operação SUFIXO.

Resposta: Seja A uma linguagem livre de contexto. Existe um autômato a pilha (AP) $P = (Q_1, \Sigma, \Gamma, \delta_1, q_1, F_1)$ que aceita as cadeias de A. Vamos construir um novo autômato a pilha $M = (Q, \Sigma, \Gamma, \delta, q, F)$ que reconhece a linguagem SUFIXO(A). Para tanto, precisamos, inicialmente, criar uma cópia de P, digamos, $P' = (Q_{1'}, \Sigma, \Gamma, \delta_{1'}, q_{1'}, F_{1'})$. Devemos, também, alterar as entradas das transições de δ_1 para vazio, ou seja, para cada transição $a, b \to c$ de δ_1 , teremos $\epsilon, b \to c$.

Logo, podemos escrever M formalmente como:

- 1. $Q = Q_1 \cup Q_{1'}$
- **2.** Σ é o alfabeto de entrada,
- 3. Γ é o alfabeto de pilha,
- **4.** $\delta = \delta_1 \cup \delta_{1'}$ e $(q_{i'}, \epsilon) \in \delta(q_i, \epsilon, \epsilon)$ para todo i, tal que $q_i \in Q_1$ e $q_{i'} \in Q_{1'}$,
- 5. $q_0 = q_1$
- **6.** $F = F_{1'}$

Demonstração. Para demonstrar que a construção está correta, devemos provar que $\forall w \in \Sigma^*$, $w \in SUFIXO(A) \iff w \in L(M)$, onde L(M) é a linguagem do autômato M.

 \Rightarrow Se $w \in SUFIXO(A)$, então $w \in L(M)$ Seja $v = x_1x_2 \dots x_n$ uma cadeia em SUFIXO(A). Logo, existe uma cadeia $uv \in A$ e um passeio $X = q_1q_2 \dots q_m$ em P (autômato que reconhece as cadeias de A) tal que q_1 é o estado inicial de P e q_m é um estado final de P. Seja $X' = q_jq_{j+1}\dots q_m$ o trecho de X que consome v. No autômato M alteramos as transições de A para que estas não consumam a cadeia, mas atualizem apropriadamente a pilha. Logo, ao ler a cadeia v, o autômato M simulará o passeio de $q_1q_2\dots q_j$ sem consumir a cadeia e, então, através de uma transição ϵ irá para o estado $q_{j'}$ de A que consumirá e percorrerá o passeio $q_{j'}q_{j+1'}\dots q_{m'}$ equivalente ao passeio $X' = q_jq_{j+1'}\dots q_m$, levando a $q_{m'}$ que é um estado final de M.

 \Leftarrow Se $w \in L(M)$, então $w \in SUFIXO(A)$ Seja $w = x_1x_2 \dots x_n$ uma cadeia reconhecida pelo autômato M. Logo, existe um passeio $X = q_1q_2 \dots q_m$ que reconhece w em M, tal que q_1 é o estado inicial de P e q_m é um estado final de P'. A porção de M proveniente de P não consome a cadeia de entrada e, portanto, ela é consumida na porção de M proveniente de P'. Para que w esteja em SUFIXO(A), precisamos encontrar uma cadeia w tal que $w \in A$. to be completed

$L4.6 \operatorname{Sipser}(2.27)$

a. Mostre que G é uma gramática ambígua.

Resposta: Podemos mostrar que G é ambígua quando em uma derivação ela produz duas árvores sintáticas distintas para uma mesma cadeia. Seja w =if condition then if condition then a := 1 else a := 1.

