	CS 577 AS3
1)	$\frac{\text{Loss}}{\text{L1}} = \frac{1}{\text{L}_{2}(0)} = \frac{1}{\text{S}} \left[\frac{g(1)}{g(1)} - g(1) \right]$
	Used in regression problem. Finds the absolute difference between the predicted value and the average value L2: Li(0) = \(\frac{1}{2} \left(\frac{9}{3} \right)^2 \)
	Used in regression problem. Finds the squared difference between 9 and 9. Trains Foster than UI but more sonsitive to outhors. S'/od if Id! & & Huber: Sold = 20(5-1/28) 0.00
	Used in regression problem. Less sensitive a to outliers thanks but trains slower than L2.
	Log-cosh. L.(0) = \(\(\subseteq \) (cosh (\(\mathcal{G}^{(i)} - \mathcal{Y}^{(i)} \) Reduce sensitivity to coutliers
2)	First convert to probabilities 5; = p(9=3 x(1)) de [1]x] Likelihood : L(0) = # # (p(y=3 x(1))) 3;(0)
	We want to maximize likelihood therefore minimize log likelihood. $1(0) = -\log L(0) \frac{2}{5} \frac{\kappa}{5} \cdot \frac{1}{5} \cdot \frac{\log P(y=j \chi^{(i)})}{\log \mathcal{G}_{j}^{(i)} }$ $= - \frac{\kappa}{5} \frac{\kappa}{5} \cdot \frac{1}{5} \cdot \frac{\log \mathcal{G}_{j}^{(i)} }{\log \mathcal{G}_{j}^{(i)} }$
	: sample loss: L(10) = - & y (i) log(9)
	Probability with 16 classes is 1/k in us orst lost for random assignent: log(K)

3)	For softmax loss, use softmax activation in the output
	layer and use cooss entropy for loss.
	Softmax (20) = exeltal -> outputs vector of probabilities * Exp(2) for each class (1) (20)
	* Z exp(Zi) for each class
	then, cross-entropy [oss E(10) = - & y; log(9;)
	0-21
	Used For multi-class classification
4)	Kn Ilback-Lieblet loss divergence measure similarity
	between distributions: L(0) = -\vec{z} \vec{z} \ J_0 \ log \left(\frac{3i}{3i}\tag{ii}\right)
	L(0) = - \(\varepsilon\) \(\lambda\) \(\lambda\)
	d=1 t (1) (y.(i))
	Sample loss: (10) = \(\frac{\xi}{2}\) \(\frac{1}{9}\) (0)
	$KL(P119) = EP(x,1)\log\left(\frac{P(x,1)}{2(x,1)}\right)$
	FR() (03) F (0) (9 (2)
100	= ZP(x,) logP(x,) - Ep(x,) log 9 (x;) - entropy cross entropy
	when $P(x_i) = y^{(i)}$ and $T(x_i) = \hat{Y}^{(i)}$, there is no
	difference Setween cross-entropy or Kullback-Leibler.
	Willette Servery Cross thropy or Milback-Lower
-	Hinge loss gives a higher penalty as the distance
3)	from the decision boundary increases.
	Li (0) = max (0, 1- y(1)g(1))
	The Control of the Co
A. 480	

Sur over incorrect class labels. For categorical hinge (055, L1(0) = & Max(0, 9 () - 9, 41) The worst value before learing is k-1 since we sum k-1 numbers together square hinge loss: Lile) = { & max(0,9; -9; +1)2 squared hinge loss. n' n2 23 using I as margin 5, 0.5 0.4 0.3 Li = max (0, 1.3-0.5+1) + max (0, 1.4-0.5+1) =3.7 9, 1-3 (0.8) -0.6 Lz= man 1 0, 0-4-0-8+1) + maz(0, -0.4-0.8+1) = 0.6 J, 1.4 -0.4 (2.7) L3= max (0,0.3-2.7+1)+max(0, -0.6-2.7+1)=0 7) Regulization is used to lower the coefficients of the weights to make a more stable solution that will generalize better. Li ma lees weights sparse (concentrate weights) while Lz makes weights smaller while spreading them L1-> R(0) = 5 1-0;;; 12-> R(0) = \ 0in The larger lambda (regulization term coefficient), the more important the regulization compared to the loss term Tune lambda to find the best value for the model If the model overfits, increase lambda.

For L1, $R(0) = \Xi[0,1] = \Xi[0,1] = \Xi[0,1] = Sign(0)$ subtract π sign(0) during gradient descent For L2, $R(0) = \Xi[0,2] = \Xi[0,2] = \Xi[0,2]$ Subtract 20 during gradient descent 9 = 5 (Wn+b) Kernel regulizes was most comon bins regulites b - of Function emperted to sutput small activity regulizes 9 so wand b. if Function expected to output very dose to zero Optimization If the derrivative of a loss is not linear, it is hard to find an explict solution sising direct computation of gradients and therefore, back propagation can be used. Black propagation is easier to compute numerical computation of gradients is used for verification on simplified network 2) In gradient descent, you update the weights after processing all examples whereas in Stochastic Gradient Descent, the weights are updated after every example 500D is expected to converge Faster since the weights are updated more Frequently The smaller the batch site, the faster process but the larger the batch size the more accurate the next weights are-

Find a such that fla)=0 For Newton's method, start with guess no, update Dx such that f(No+ Dx) = 0. Dn = FCNO C'(20) Heissian matrix: D(DJ(OD)) H= [2000 - 20] The condition number: SV, & largest singular Value of Hessian SVm < smallest SV. matrix (SV) when there is poor conditionning the condition numbers are high making the problem more difficult. Replace Hessian matrix with B(1) = diag(= VJ(6") VJ(6) TE (SO.)2 The problem with Adagrad is that the step size becomes smaller as iteratives progress since we normalize by elementwise sum of square gradients.
RMS Prop uses a decay factor when adding new gradients to the gradient sum.

Adam combines RMs prop (scale by sum of gradient elements) with momentum. First moment is the velocity with momentum. Second moment is the element wise Step size scale. Line search: Finds the hest step size instead of a fixed step size It comes with the cost of another optimization problem at each step.

Best step size: \mathcal{D}^* = argnin $f(A + \mathcal{D}_M)$ To solve for n^* , find the explicit computation or use gradient descent or perform simple line search.

Bracketing: 1855 costly than gradient than gradient descent but does not guarantee optimal solution Griven bracket [a,b,c] continue with eff(n) & f(b) =) [b, n, c] Ze smaller bracket if f(21) > f(b) =) [a,b, 20] Juntil the bracket is small enough Alternative : gradient descent which is more expensive but ensures optimal solution. Quasi-Newton approximate the Hessian inverse using gradient evaluation (less expensive). A BFGs algorithm is less expensive than Newton. The disadvantages of BFGs compared to Adam is that it requires a large set of examples and the advantage is that it computes the inverse cost in O(n2)

Regulization 1) Weight decay is equivalent to adding regulieration term to loss function. It is done by multiplying each coefficient by PGEO. 13 and as iterations progress, weights that are not reinforced decay to O. Early stopping stops when validation error increases instad of when training error stop claressing. This helps prevent overfitting. There are 2 strategies to reuse validation data: Dretrain or all data using the number of iterations determined from validation Step I: How many steps to train step 2: Train for # steps D continue training from previous weights with entre data while validation loss is bigger than train loss. Step 1: what is desired loss step2 - Train till foss is reached By adding synthetic data to increase variability in training which leads to better generalization. Augment by adding features, data domain, noise, or by transforming data 4) At each training stuge, drop out units in fully connected lougers with probability (1-P), where p is a hyperparameter Removed nodes are reinstated with original weights in the subsequent stage. The advantages is that it reduces co-adaptation, over Fitting, dependency of a single node It increases training speed. The disadvantage is that it causes longer training since not units are available at each st

By multiplying the output at each node by P. This is equivalent (-o computing expected value for 2nd dropped -out networks.

S = E. [f(a,D) = [P(D)f(x,D) dp It does the same input normalization inside the network: 20 = 20 - 11: Uj=mean 5; = stol. output of J-th unit for i-th batch During training , because batches are random, BN add's sandomness into the training and so reduces overfitting 2203 -> 82103 -> 22003 in D'scale 1=1

2: = 1:2: + 3; -> swff. Ti and Bj, are learned. The network can learn to cancel BN if there is no need for it is to = or and Bi = Uj. They are used to help network converge better. Good initial values: B = 0, 8 = Ensemble classifier train multiple independent models and use majority vote or average during testing. This reduces overfitting. Possible strategies: - Change data - Change parameters - Record multiple snapshots of the model cluring training (varying fearning rate).