In Class Problem—Fish Kill Acid—Base Chemistry

CENG 340-Introduction to Environmental Engineering Instructor: Deborah Sills September 11, 2013

Concentrations of NH_3 (a weak acid) that are higher than 0.2 mg/L are toxic to fish.

Effluent from a wastewater treatment plant (WWTP)—with pH = 7 and a total ammonia concentration of 5 mg-N/L—is discharged to a stream that is popular with fisherman. Ammonia consists of two species: NH₄⁺ (a weak acid) and NH₃ (its conjugate base). The concentrations of NH₄⁺ and NH₃ are related to each other through the following equilibrium reaction:

$$[\mathrm{NH}_{4}^{+}] \stackrel{K_{a}}{\longleftrightarrow} [\mathrm{NH}_{3}] + [\mathrm{H}^{+}]$$

where $K_a = 10^{-9.3}$, or $pK_a = 9.3$.

1. You've been asked to use the total ammonia data reported above to calculate the concentration of NH_3 in the WWTP effluent to ensure that $[NH_3]$ is lower than 0.2 mg/L.