```
data process spark.ipynb - Colab
        *Problem Statement - Implement data processing tasks using Spa Problem Statement - Implement data processing tasks using Spark
                                                       DataFrame API.**** github link:
*** github link :
import pandas as pd
import matplotlib.pyplot as plt

    1. Utilize PySpark DataFrame API for tasks like filtering, grouping, and aggregation.

   1. *Installing PySpark *:
```

```
!pip install pyspark
         Requirement already satisfied: pyspark in /usr/local/lib/python3.11/dist-packages (3.5.1)
            Requirement already \ satisfied: \ py4j==0.10.9.7 \ in \ /usr/local/lib/python 3.11/dist-packages \ (from \ pyspark) \ (0.10.9.7) \ bullet \ (0.10.9.7) 
       2. Creating a Spark Session:
from pyspark.sql import SparkSession
# Create a SparkSession
spark = SparkSession.builder.appName("SparkSession").getOrCreate()
       3. Loading Dataset:
# Import necessary libraries
from pyspark.sql.functions import col
# Load the dataset into a DataFrame
file path = "bank.csv"
df = spark.read.csv(file_path, header=True, inferSchema=True)
# Show the schema of the DataFrame
df.printSchema()
→ root
               |-- age: integer (nullable = true)
                -- job: string (nullable = true)
                -- marital: string (nullable = true)
               |-- education: string (nullable = true)
               |-- default: string (nullable = true)
|-- balance: integer (nullable = true)
                |-- housing: string (nullable = true)
                |-- loan: string (nullable = true)
                -- contact: string (nullable = true)
               |-- day: integer (nullable = true)
                |-- month: string (nullable = true)
                -- duration: integer (nullable = true)
                |-- campaign: integer (nullable = true)
                -- pdays: integer (nullable = true)
               |-- previous: integer (nullable = true)
                |-- poutcome: string (nullable = true)
               |-- y: string (nullable = true)
```

Display the first few rows of the DataFrame df.show()

→	++		+-	+-	+	+-	+	-++	+	+	
	age	job marital education de	efault b	alance h	ousing	loan contact da	ay mont	h duration	campaign	pdays	previous po
	1 301	unemployed married primary	nol	+- 1787	no l	no cellular	19 l oc	-++ tl 791	11	+ 11-	0 l u
	33	services married secondary	no	4789	yes	yes cellular		!:!	1	339	4 f
	35	management single tertiary	no	1350	yes	no cellular	16 ap	r 185	1	330	1 f
	30	management married tertiary	no	1476	yes	yes unknown	3 ju	n 199	4	-1	0 u
	59	blue-collar married secondary	no	0	yes	no unknown	5 ma	y 226	1	-1	0 u
	35	management single tertiary	no	747	no	no cellular 2	23 fe	b 141	2	176	3 f
	36	self-employed married tertiary	no j	307	yes	no cellular :	14 ma	yj 341 j	1	330	2
	39	technician married secondary	no j	147	yes	no cellular	6 ma	y 151	2 j	-1	0 j u
	41	entrepreneur married tertiary	noj	221	yes	no unknown 1	14 ma	y 57	2 j	-1	0 j u
	43	services married primary	no j	-88	yes	yes cellular :	17 j ap	r 313	1	147	2 f
	39	services married secondary	no j	9374	yes	no unknown 2	20 ma	y į 273 į	1	-1	0 j u

	43	admin. married secondary	no	264	yes	no cellular 1	7 apr	113	2	-1	0 u
Ì	36	technician married tertiary	no	1109	no	no cellular 1	3 aug	328	2	-1	0 u
	20	student single secondary	no	502	no	no cellular 3	0 apr	261	1	-1	0 u
Ì	31	blue-collar married secondary	no	360	yes	yes cellular 2	9 jan	89	1	241	1 f
	40	management married tertiary	no	194	no	yes cellular 2	9 aug	189	2	-1	0 u
	56	technician married secondary	no	4073	no	no cellular 2	7 aug	239	5	-1	0 u
	37	admin. single tertiary	no	2317	yes	no cellular 2	0 apr	114	1	152	2 f
	25	blue-collar single primary	no	-221	yes	no unknown 2	3 may	250	1	-1	0 u
Ì	31	services married secondary	no	132	no	no cellular	7 jul	148	1	152	1

only showing top 20 rows

Task 1: Filtering

```
import matplotlib.pyplot as plt

# Task 1: Filtering
# Filter the DataFrame to select rows where the 'Education' column is 'primary'
primary_df = df.filter(col("education") == "primary")
primary_df.show()

# Convert the filtered DataFrame to Pandas
primary_pandas_df = primary_df.toPandas()
```


only showing top 20 rows

Task 2: Grouping and Aggregation

```
# Task 2: Grouping and Aggregation
# Group the DataFrame by 'marital' and 'job', then calculate the average the 'duration' for each group
grouped_df = df.groupBy("marital", "job").agg({"duration": "sum"})
grouped_df.show()

# Convert the grouped DataFrame to Pandas
grouped_pandas_df = grouped_df.toPandas()

# Pivot the DataFrame for easy plotting
pivot_df = grouped_pandas_df.pivot(index='marital', columns='job', values='sum(duration)')

# Plot a grouped bar chart
ax = pivot_df.plot(kind='bar', figsize=(12, 8), rot=45)
ax.set_xlabel('month')
ax.set_ylabel('Sum of Campaign')
ax.set_title('Campaign Count Grouped by housing loan and Month')
plt.legend(title='Month')
plt.show()
```

→	+	·	++
_	marital	job	sum(duration)
	+	·	++
	married	self-employed	29055
	divorced	management	30232
	divorced	self-employed	3880
	single	self-employed	15400
	married	entrepreneur	35516
	divorced	unknown	385
	married	admin.	58628
	divorced	admin.	19885
	married	unemployed	24440
	single	management	70045
	married	services	63662
	single	services	29541
	married	blue-collar	178968
	divorced	services	16254
	married	technician	95281
	divorced	entrepreneur	6306
	single	housemaid	5081
	single	retired	3328
	single	admin.	33659
	divorced	technician	20328
	+	+	++
	only showi	ing top 20 rows	5

3. Handle missing data and outliers using Spark's data preprocessing capabilities.

1. Fill Missing Values:

For numeric columns, you can fill missing values with mean, median, or any other statistical measure.

df.show()

\rightarrow	++	+ +	+-	+-	+	+-	+	++	+	+-	+
]	age	job marital education de	fault b	alance ho	ousing	loan contact d	day month	duration	campaign	pdays r	revious po
	++	+ + +	+-		+	+-	+	++	+	+-	+
	30	unemployed married primary	nol	1787	no	no cellular	19 oct	: 79	1	-1	0 u
	j 33 j	services married secondary	no j	4789	yes j	yes cellular	11 may	/j 220 j	1	339	4 j f
	35	management single tertiary	no j	1350	yes	no cellular	16 apr	185	1	330	1 f
	j 30 j	management married tertiary	no i	1476	yes	yes unknown	3 jur	nj 199 j	4	-1	0 j u

١	59	blue-collar married	secondary	no	0	yes	no unknown	5	may	226	1	-1	Θ	u
ĺ	35	management single	tertiary	no	747	no	no cellular	23	feb	141	2	176	3	f
	36	self-employed married	tertiary	no	307	yes	no cellular	14	may	341	1	330	2	
	39	technician married	secondary	no	147	yes	no cellular	6	may	151	2	-1	0	u
	41	entrepreneur married	tertiary	no	221	yes	no unknown	14	may	57	2	-1	0	u
	43	services married	primary	no	-88	yes	yes cellular	17	apr	313	1	147	2	f
	39	services married	secondary	no	9374	yes	no unknown	20	may	273	1	-1	0	u
	43	admin. married	secondary	no	264	yes	no cellular	17	apr	113	2	-1	0	u
	36	technician married	tertiary	no	1109	no	no cellular	13	aug	328	2	-1	0	u
	20	student single	secondary	no	502	no	no cellular	30	apr	261	1	-1	0	u
	31	blue-collar married	secondary	no	360	yes	yes cellular	29	jan	89	1	241	1	f
	40	management married	tertiary	no	194	no	yes cellular	29	aug	189	2	-1	0	u
	56	technician married	secondary	no	4073	no	no cellular	27	aug	239	5	-1	0	u
	37	admin. single	tertiary	no	2317	yes	no cellular	20	apr	114	1	152	2	f
	25	blue-collar single	primary	no	-221	yes	no unknown	23	may	250	1	-1	0	u
	31	services married	secondary	no	132	no	no cellular	7	jul	148	1	152	1	

only showing top 20 rows

Implement a Classification AI Model using Spark

```
# import pyspark ml
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import RandomForestClassifier
from pyspark.ml.evaluation import MulticlassClassificationEvaluator

# train test split
train_df, test_df = df.randomSplit([0.7, 0.3], seed=42)
# train the random forest classifier
```

Task

Use spark ml randomforestclassifier to train the model with train_df and test_df. Explain the selected code. Explain the error in the selected code. If possible, fix the error and incorporate the changes into the existing code. Otherwise, try to diagnose the error.

Identify categorical columns

Subtask:

Determine which columns in the DataFrame are of string type and need to be converted.

Reasoning: Iterate through the columns and check their data types to identify string columns.

Apply string indexing

Subtask:

Use StringIndexer to convert each categorical string column into a numerical index column.

Reasoning: Convert the categorical string columns to numerical indices using StringIndexer as identified in the previous step.

```
from pyspark.ml.feature import StringIndexer
string_cols = [col_name for col_name, col_type in df.dtypes if col_type == 'string']
indexed cols = [col name + " indexed" for col name in string cols]
indexer = StringIndexer(inputCols=string_cols, outputCols=indexed_cols)
indexed df = indexer.fit(df).transform(df)
indexed_df.printSchema()
→ root
      |-- age: integer (nullable = true)
      -- job: string (nullable = true)
      |-- marital: string (nullable = true)
      -- education: string (nullable = true)
      -- default: string (nullable = true)
      |-- balance: integer (nullable = true)
      |-- housing: string (nullable = true)
      |-- loan: string (nullable = true)
      |-- contact: string (nullable = true)
|-- day: integer (nullable = true)
      |-- month: string (nullable = true)
      |-- duration: integer (nullable = true)
      |-- campaign: integer (nullable = true)
      -- pdays: integer (nullable = true)
      -- previous: integer (nullable = true)
      -- poutcome: string (nullable = true)
      |-- y: string (nullable = true)
      -- job indexed: double (nullable = false)
      -- marital_indexed: double (nullable = false)
      |-- education_indexed: double (nullable = false)
      -- default_indexed: double (nullable = false)
      -- housing_indexed: double (nullable = false)
      |-- loan_indexed: double (nullable = false)
      -- contact_indexed: double (nullable = false)
      |-- month_indexed: double (nullable = false)
      -- poutcome_indexed: double (nullable = false)
      |-- y_indexed: double (nullable = false)
```

Apply one-hot encoding

Subtask:

Use OneHotEncoder to convert the indexed columns into one-hot encoded vector columns.

Reasoning: Import OneHotEncoder and apply it to the indexed columns to create one-hot encoded vector columns as per the instructions.

```
from pyspark.ml.feature import OneHotEncoder
indexed_cols = [col_name + "_indexed" for col_name, col_type in df.dtypes if col_type == 'string']
encoded_cols = [col_name + "_vec" for col_name in indexed_cols]
encoder = OneHotEncoder(inputCols=indexed_cols, outputCols=encoded_cols)
encoded_df = encoder.fit(indexed_df).transform(indexed_df)
encoded_df.printSchema()
       |-- age: integer (nullable = true)
       |-- job: string (nullable = true)
       |-- marital: string (nullable = true)
       |-- education: string (nullable = true)
       |-- default: string (nullable = true)
|-- balance: integer (nullable = true)
       |-- housing: string (nullable = true)
       -- loan: string (nullable = true)
       -- contact: string (nullable = true)
       |-- day: integer (nullable = true)
       -- month: string (nullable = true)
       |-- duration: integer (nullable = true)
|-- campaign: integer (nullable = true)
       -- pdays: integer (nullable = true)
       |-- previous: integer (nullable = true)
       -- poutcome: string (nullable = true)
       |-- y: string (nullable = true)
       -- job_indexed: double (nullable = false)
       |-- marital_indexed: double (nullable = false)
       -- education_indexed: double (nullable = false)
        -- default indexed: double (nullable = false)
```

```
|-- housing indexed: double (nullable = false)
|-- loan_indexed: double (nullable = false)
|-- contact_indexed: double (nullable = false)
-- month_indexed: double (nullable = false)
|-- poutcome_indexed: double (nullable = false)
|-- y_indexed: double (nullable = false)
|-- job indexed vec: vector (nullable = true)
|-- marital indexed vec: vector (nullable = true)
-- education indexed vec: vector (nullable = true)
|-- default_indexed_vec: vector (nullable = true)
-- housing_indexed_vec: vector (nullable = true)
-- loan_indexed_vec: vector (nullable = true)
-- contact_indexed_vec: vector (nullable = true)
|-- month_indexed_vec: vector (nullable = true)
-- poutcome_indexed_vec: vector (nullable = true)
|-- y_indexed_vec: vector (nullable = true)
```

Update vectorassembler

Subtask:

Include the newly created one-hot encoded columns in the VectorAssembler input columns.

Reasoning: Identify the numerical and one-hot encoded columns and update the VectorAssembler.

```
# Apply the assembler transformation to the encoded_df
assembled_df = assembler.transform(encoded_df)
# Split the assembled_df into training and testing sets
train_data, test_data = assembled_df.randomSplit([0.7, 0.3], seed=42)
train_data.printSchema()
test data.printSchema()
→ root
      |-- age: integer (nullable = true)
      |-- job: string (nullable = true)
      |-- marital: string (nullable = true)
      |-- education: string (nullable = true)
      -- default: string (nullable = true)
      |-- balance: integer (nullable = true)
      |-- housing: string (nullable = true)
      |-- loan: string (nullable = true)
      -- contact: string (nullable = true)
      |-- day: integer (nullable = true)
      |-- month: string (nullable = true)
      |-- duration: integer (nullable = true)
      -- campaign: integer (nullable = true)
      -- pdays: integer (nullable = true)
      -- previous: integer (nullable = true)
      |-- poutcome: string (nullable = true)
      -- y: string (nullable = true)
      |-- job_indexed: double (nullable = false)
      -- marital_indexed: double (nullable = false)
      |-- education_indexed: double (nullable = false)
      -- default_indexed: double (nullable = false)
      |-- housing_indexed: double (nullable = false)
      -- loan_indexed: double (nullable = false)
      -- contact_indexed: double (nullable = false)
      -- month_indexed: double (nullable = false)
      -- poutcome_indexed: double (nullable = false)
      |-- y indexed: double (nullable = false)
      -- job_indexed_vec: vector (nullable = true)
      |-- marital_indexed_vec: vector (nullable = true)
       -- education_indexed_vec: vector (nullable = true)
      -- default_indexed_vec: vector (nullable = true)
      -- housing_indexed_vec: vector (nullable = true)
      -- loan_indexed_vec: vector (nullable = true)
      -- contact_indexed_vec: vector (nullable = true)
      |-- month_indexed_vec: vector (nullable = true)
      |-- poutcome_indexed_vec: vector (nullable = true)
      |-- y indexed vec: vector (nullable = true)
      |-- features: vector (nullable = true)
      |-- age: integer (nullable = true)
      |-- job: string (nullable = true)
      |-- marital: string (nullable = true)
      |-- education: string (nullable = true)
      |-- default: string (nullable = true)
      |-- balance: integer (nullable = true)
      |-- housing: string (nullable = true)
      |-- loan: string (nullable = true)
```

```
|-- contact: string (nullable = true)
|-- day: integer (nullable = true)
|-- month: string (nullable = true)
|-- duration: integer (nullable = true)
|-- campaign: integer (nullable = true)
|-- previous: integer (nullable = true)
|-- poutcome: string (nullable = true)
|-- v: string (nullable = true)
```

Train the model

Subtask:

Retrain the RandomForestClassifier with the transformed data.

Reasoning: Retrain the RandomForestClassifier model with the transformed data.

```
# Initialize and train the RandomForestClassifier model

# Use 'y_indexed' as the label column as it's the numerical representation of the target variable

rf_model = RandomForestClassifier(labelCol="y_indexed", featuresCol="features", numTrees=10)

rf_model = rf_model.fit(train_data)

# Make predictions on the test data

predictions = rf_model.transform(test_data)

# Evaluate the model

# Use 'y_indexed' as the label column for evaluation

evaluator = MulticlassClassificationEvaluator(labelCol="y_indexed", predictionCol="prediction", metricName="accuracy")

accuracy = evaluator.evaluate(predictions)

print(f"Test Accuracy = {accuracy}")

Test Accuracy = 0.9968944099378882
```

Summary:

Data Analysis Key Findings

- The categorical string columns in the dataset were identified as: job, marital, education, default, housing, loan, contact, month, poutcome, and y.
- These string columns were successfully converted into numerical indexed columns using StringIndexer, adding columns with a _indexed suffix (e.g., job_indexed).
- The indexed columns were further transformed into one-hot encoded vector columns using <code>OneHotEncoder</code>, resulting in columns with a <code>_vec</code> suffix (e.g., <code>job_indexed_vec</code>).
- The VectorAssembler was updated to include both the numerical columns and the newly created one-hot encoded vector columns as features.
- The data was successfully split into training and testing sets *after* applying the VectorAssembler transformation to the DataFrame containing the one-hot encoded features.
- $\bullet \ \ A \ Random Forest Classifier \ model \ was \ initialized \ with \ y_indexed \ as \ the \ label \ column \ and \ features \ as \ the \ features \ column.$
- $\bullet \ \ \, \text{The model was successfully trained on the } \, \text{train_data} \,\, \text{and used to make predictions on the } \, \text{test_data} \,.$
- The model's performance was evaluated using MulticlassClassificationEvaluator, yielding a test accuracy of approximately 0.997.

Insights or Next Steps

- The high accuracy suggests the model is performing very well on the test set; further investigation into potential overfitting or
 evaluation with different metrics (like precision, recall, F1-score) on a validation set would be beneficial.
- Consider exploring hyperparameter tuning for the RandomForestClassifier (e.g., numTrees, maxDepth, maxBins) to potentially improve performance further or address overfitting.