Cahier de texte

Semaine du 02/09/2021

Chapitre 0 - Analyse dimensionnelle

- I Dimensions et unités
 - I.1 Définitions
 - I.2 Déterminer la dimension d'une grandeur
- II Utiliser l'analyse dimensionnelle
 - II.1 Vérifier une équation
 - → Contrôler l'homogénéité d'une expression, notamment par référence à des expressions connues.
 - II.2 Un moyen mnémotechnique
 - II.3 Estimer un résultat
 - \rightarrow Déterminer les exposants d'une expression de type monôme $E=A^{\alpha}B^{\beta}C^{\gamma}$ par analyse dimensionnelle

Semaine du 06/09/2021

Chapitre 1 – Optique géométrique

I Description de la lumière

- I.1 Différentes sources de lumière
 - → Caractériser une source lumineuse par son spectre.
 - \rightarrow Relier la longueur d'onde dans le vide et la couleur.
- I.2 Source ponctuelle monochromatique
- I.3 Milieux optiques
- I.4 Modèle de l'optique géométrique
 - → Définir le modèle de l'optique géométrique.
 - → Indiquer les limites du modèle de l'optique géométrique.

II Réflexion, réfraction

- II.1 Lois de Snell-Descartes
- II.2 Réflexion totale
 - \rightarrow Établir la condition de réflexion totale.
- II.3 Fibre à saut d'indice
 - → Établir les expressions du cône d'acceptance et de la dispersion intermodale d'une fibre à saut d'indice.

TD1 - Réfractométrie

TP0 - Mesures et incertitudes

Semaine du 13/09/2021

Chapitre 2 – Formation d'images

I Image d'un objet par un miroir plan

- I.1 Miroir plan
 - → Construire l'image d'un objet par un miroir plan.
- I.2 Vocabulaire
- II Lentilles minces
 - **II.1** Description d'une lentille mince

Simulation Python : de la lentille demi-boule vers la lentille mince

- II.2 Construction de l'image d'un objet
 - \rightarrow Exploiter les propriétés du centre optique, des foyers principaux et secondaires, de la distance focale, de la vergence.
 - \rightarrow Construire l'image d'un objet situé à distance finie ou infinie à l'aide de rayons lumineux, identifier sa nature réelle ou virtuelle.
- II.3 Relations de conjugaison
 - \rightarrow Exploiter les formules de conjugaison et de grandissement transversal de Descartes et de Newton.
 - \rightarrow Établir et utiliser la condition de formation de l'image réelle d'un objet réel par une lentille convergente.

TD1 - Fibre optique

Animation: trajet des rayons lumineux dans une fibre optique

TP1 - Focométrie

→ Former l'image d'un objet dans des situations variées

Semaine du 20/09/2021

Chapitre 2 – Formation d'images

III Exemple de systèmes optiques

III.1 L'œil

- \rightarrow Modéliser l'œil comme l'association d'une lentille de vergence variable et d'un capteur plan fixe.
- → Citer les ordres de grandeur de la limite de résolution angulaire et de la plage d'accommodation.

III.2 La lunette astronomique

- \rightarrow Représenter le schéma d'une lunette afocale modélisée par deux lentilles minces convergentes; identifier l'objectif et l'oculaire.
- \rightarrow Représenter le faisceau émergent issu d'un point objet situé « à l'infini » et traversant une lunette afocale.
- → Établir l'expression du grossissement d'une lunette afocale.
- → Exploiter les données caractéristiques d'une lunette commerciale.

Chapitre 3 - Circuits électriques

- I Description d'un circuit électrique
- II Grandeurs électriques
 - II.1 Charge et courant électrique
 - → Relier l'intensité d'un courant électrique au débit de charges.
 - $\rightarrow~$ Utiliser la loi des nœuds.
 - II.2 Potentiel électrique et tension
 - \rightarrow Utiliser la loi des mailles.
 - II.3 Puissance et énergie
 - \rightarrow Algébriser les grandeurs électriques et utiliser les conventions récepteur et générateur.
 - \rightarrow Citer les ordres de grandeur d'intensités, de tensions et de puissances dans différents domaines d'application.

TD2 – Lunette de Galilée

TP2 - Mesure du grossissement d'une lunette astronomique

 \rightarrow Étudier une maquette de lunette astronomique ou une lunette commerciale pour en déterminer le grossissement

Semaine du 27/09/2021

Chapitre 3 - Circuits électriques

III Dipôles électriques

III.1 Conducteur ohmique : comportement résistif

- \rightarrow Exprimer la puissance dissipée par effet Joule dans une résistance.
- \rightarrow Remplacer une association série ou parallèle de deux résistances par une résistance équivalente.
- \rightarrow Exploiter des ponts diviseurs de tension ou de courant.

III.2 Condensateur idéal : comportement capacitif

- $\rightarrow~$ Établir l'expression de l'énergie stockée dans un condensateur.
- \rightarrow Exploiter l'expression fournie de la capacité d'un condensateur en fonction de ses caractéristiques.

III.3 Bobine idéale : comportement inductif

Expérience : étincelle de rupture dans un circuit inductif

→ Établir l'expression de l'énergie stockée dans une bobine.

III.4 Générateur

→ Modéliser une source en utilisant la représentation de Thévenin.

TD3 - Circuits électriques et interrupteurs

TP3 - Mesure de l'impédance de sortie d'un GBF

 \rightarrow Évaluer la résistance de sortie d'une source de tension réelle

Semaine du 04/10/2021

Chapitre 4 - Circuits du premier ordre

I Approche expérimentale

Expérience : régime transitoire du premier ordre Simulation Python : régime transitoire du premier ordre

II Décharge du condensateur

- II.1 Équation différentielle
 - \rightarrow Établir l'équation différentielle vérifiée par la tension aux bornes du condensateur.
- II.2 Évolution de la tension aux bornes du condensateur
 - \rightarrow Déterminer en fonction du temps la tension aux bornes d'un condensateur dans le cas de sa charge et de sa décharge.
- II.3 Temps caractéristique
 - $\rightarrow~$ Déterminer un ordre de grandeur de la durée du régime transitoire.
- II.4 Bilan énergétique
 - \rightarrow Réaliser un bilan énergétique sur le circuit RC série.

TD3 - Charge d'une batterie

TP4 - Résistance d'entrée d'un voltmètre

 \rightarrow Mettre en évidence l'influence de la résistance d'entrée d'un voltmètre ou d'un ampèremètre sur les valeurs mesurées

Semaine du 11/10/2021

Chapitre 4 - Circuits du premier ordre

III Charge du condensateur

- III.1 Évolution de la tension aux bornes du condensateur
- III.2 Bilan énergétique

IV Cas du circuit RL

- → Établir et résoudre l'équation différentielle vérifiée par l'intensité du courant dans un circuit RL.
- \rightarrow Déterminer un ordre de grandeur de la durée du régime transitoire.
- \rightarrow Réaliser un bilan énergétique sur le circuit RL série.

TD4 - Clôture électrique, comportement aux limites

Méthode d'Euler explicite

TP5 - Régime transitoire du premier ordre

 \rightarrow Réaliser l'acquisition d'un régime transitoire pour un circuit linéaire du premier ordre dans un circuit comportant une ou deux mailles et analyser ses caractéristiques

Semaine du 18/10/2021

Chapitre 5 - Circuits du deuxième ordre

I Approche numérique

Simulation Python : Régime transitoire du deuxième ordre

II Circuit LC : modèle de l'oscillateur harmonique

II.1 Équation différentielle

 $\rightarrow\,$ Établir l'équation différentielle qui caractérise l'évolution d'une grandeur électrique dans un circuit LC.

II.2 Résolution

 $\rightarrow~$ La résoudre compte-tenu des conditions initiales.

II.3 Conservation de l'énergie

 \rightarrow Réaliser un bilan énergétique pour le circuit LC.

TD4 – Condensateur alimenté par deux générateurs

TP6 – Capteur capacitif

 \rightarrow Mettre en œuvre un capteur capacitif à l'aide d'un microcontrôleur.

Semaine du 08/11/2021

Chapitre 5 - Circuits du deuxième ordre

III Circuit RLC, modèle de l'oscillateur amorti

- II.1 Équation différentielle
 - → Écrire sous forme canonique l'équation différentielle qui caractérise l'évolution d'une grandeur électrique dans un circuit RLC afin d'identifier la pulsation propre et le facteur de qualité.
- II.2 Différents régimes de fonctionnement
 - ightarrow Identifier la nature de la réponse libre en fonction de la valeur du facteur de qualité.
- II.3 Résolution d'une équation différentielle du second ordre
 - → Déterminer la réponse dans le cas d'un régime libre ou indiciel en recherchant les racines du polynôme caractéristique et en tenant compte des conditions initiales.
 - ightarrow Déterminer un ordre de grandeur de la durée du régime transitoire selon la valeur du facteur de qualité.
- II.4 Bilan énergétique
 - \rightarrow Réaliser un bilan énergétique pour un circuit RLC série.

Chapitre 6 – Cinématique du point matériel

I Description classique du mouvement d'un point matériel

- I.1 Référentiel
 - → Citer une situation où la description classique de l'espace ou du temps est prise en défaut. Simulation Python : mouvement de la Terre et Venus dans les référentiels géocentrique et héliocentrique
- **I.2** Relativité du mouvement
- I.3 Position, vitesse et accélération

TD5 - Circuit RLC série

Résolution numérique d'équations différentielles avec odeint

TP7 – Régime transitoire d'un circuit RLC

→ Réaliser l'acquisition d'un régime transitoire du deuxième ordre et analyser ses caractéristiques

Semaine du 15/11/2021

Chapitre 6 – Cinématique du point matériel

II Systèmes de coordonnées

- → Exprimer à partir d'un schéma le déplacement élémentaire dans les différents systèmes de coordonnées, construire le trièdre local associé et en déduire géométriquement les composantes du vecteur vitesse en coordonnées cartésiennes et cylindriques.
- → Établir les expressions des composantes des vecteurs position, déplacement élémentaire, vitesse et accélération dans les seuls cas des coordonnées cartésiennes et cylindriques.
- II.1 Coordonnées cartésiennes
- II.2 Coordonnées cylindriques
- II.3 Coordonnées sphériques

III Exemples de mouvements

III.1 Mouvement rectiligne

 \rightarrow Caractériser le vecteur accélération pour les mouvements suivants : rectiligne, rectiligne uniforme, rectiligne uniformément accéléré.

III.2 Mouvement à vecteur d'accélération constant

→ Exprimer le vecteur vitesse et le vecteur position en fonction du temps et établir l'expression de la trajectoire en coordonnées cartésiennes dans le cas où le vecteur accélération est constant.

III.3 Mouvement circulaire

- → Exprimer les composantes du vecteur position, du vecteur vitesse et du vecteur accélération en coordonnées polaires planes dans le cas d'un mouvement circulaire.
- \rightarrow Repère de Frenet : caractériser le vecteur accélération pour les mouvements suivants : circulaire, circulaire uniforme et faire le lien avec les composantes polaires de l'accélération.

TD6 – Mouvement à vecteur accélération constant

Simulation Python: lancer de poids

TP8 – Analyse vidéo d'un mouvement

 \rightarrow Réaliser et exploiter quantitativement un enregistrement vidéo d'un mouvement : évolution temporelle des vecteurs vitesse et accélération

Semaine du 22/11/2021

Chapitre 7 – Dynamique du point matériel

I Quantité de mouvement

- I.1 Masse d'un système
 - → Justifier qualitativement la position du centre de masse d'un système, cette position étant donnée.
- I.2 Quantité de mouvement
 - \rightarrow Utiliser la relation entre la quantité de mouvement d'un système et la vitesse de son centre de masse.

II Lois de Newton

- II.1 Première loi : principe d'inertie
 - → Décrire le mouvement relatif de deux référentiels galiléens.
 - \rightarrow Discuter qualitativement du caractère galiléen d'un référentiel donné pour le mouvement étudié.
- II.2 Troisième loi : principe des actions réciproques
 - \rightarrow Établir un bilan des forces sur un système ou sur plusieurs systèmes en interaction et en rendre compte sur un schéma.
- II.3 Deuxième loi : principe fondamental de la dynamique
 - → Utiliser la deuxième loi de Newton dans des situations variées.

TD7 - Chute libre 1D, 2D et/ou parabole de sûreté

Chute d'une plume et d'un marteau sur la Lune

TP9 - Viscosimétrie

 \rightarrow Mettre en œuvre un protocole expérimental de mesure de frottements fluides

Semaine du 29/11/2021

Chapitre 7 – Dynamique du point matériel

III Exemples classiques

III.1 Chute libre dans le vide

→ Mouvement dans un champ de pesanteur uniforme : établir et exploiter les équations horaires du mouvement, établir l'équation de la trajectoire.

III.2 Chute libre dans un fluide

→ Exploiter une équation différentielle sans la résoudre analytiquement, par exemple : analyse en ordres de grandeur, existence d'une vitesse limite, écriture adimensionnée, utilisation des résultats obtenus par simulation numérique.

III.3 Système masse-ressort : l'oscillateur harmonique

 \rightarrow Système masse-ressort sans frottement : déterminer et résoudre l'équation différentielle du mouvement, exploiter les analogies avec un oscillateur harmonique électrique.

Expérience: mesure des oscillations d'un système masse ressort avec Phyphox

III.4 Pendule simple

 $\rightarrow\,$ Établir l'équation du mouvement du pendule simple. Justifier le caractère harmonique des oscillations de faible amplitude.

Expérience : « pesée » de la Terre avec un pendule simple

TD7 - Le skieur

TP10 - Loi de Hooke

 \rightarrow Mettre en œuvre un protocole expérimental permettant d'étudier une loi de force à l'aide d'un microcontrôleur ou de l'analyse d'un mouvement enregistré

Semaine du 06/12/2021

Chapitre 8 - Énergie mécanique

- I Théorème de l'énergie cinétique
 - **I.1** Puissance d'une force
 - → Reconnaître le caractère moteur ou résistant d'une force.
 - **I.2** Travail d'une force
 - I.3 Théorème de l'énergie cinétique
 - → Exploiter le théorème de l'énergie cinétique.
- II Énergie potentielle, énergie mécanique
 - II.1 Force conservative et énergie potentielle
 - II.2 Exemples de forces conservatives
 - → Établir et citer les expressions de l'énergie potentielle de pesanteur (champ uniforme), de l'énergie potentielle gravitationnelle (champ créé par un astre ponctuel), de l'énergie potentielle élastique.
 - II.3 Lien entre une énergie potentielle et une force conservative
 - → Déduire qualitativement du graphe d'une fonction énergie potentielle le sens et l'intensité de la force associée pour une situation à un degré de liberté.
 - II.4 Théorème de l'énergie mécanique

TD7 - Oscillation d'un anneau sur un arc de cercle

TP11 - Pendule non linéaire

→ Capacité numérique : à l'aide d'un langage de programmation, résoudre numériquement une équation différentielle du deuxième ordre non-linéaire et faire apparaître l'effet des termes non-linéaires

Semaine du 13/12/2021

Chapitre 8 - Énergie mécanique

III Mouvement conservatif à une dimension

III.1 Mouvement conservatif

→ Exploiter la conservation de l'énergie mécanique pour analyser un mouvement.

III.2 Profil d'énergie potentielle

- \rightarrow Identifier sur un graphe d'énergie potentielle une barrière et un puits de potentiel.
- \rightarrow Déduire d'un graphe d'énergie potentielle le comportement qualitatif : trajectoire bornée ou non, mouvement périodique, positions de vitesse nulle.
 - Simulation Python : évolution d'une particule dans un potentiel de Lennard-Jones

III.3 Approximation harmonique

- ightarrow Déduire d'un graphe d'énergie potentielle l'existence de positions d'équilibre.
- → Analyser qualitativement la nature, stable ou instable, de ces positions.
- \rightarrow Établir l'équation différentielle linéarisée du mouvement au voisinage d'une position d'équilibre. Illustration Python : développement limité de $\cos x$ au voisinage de 0 Simulation Python : oscillations de faible amplitude dans un puis de potentiel (Lennard-Jones et oscillateur de Landau)

TD8 - Masse doublement retenue

TP12 - Goniomètre

→ Mesurer une longueur d'onde optique à l'aide d'un goniomètre à réseau

Semaine du 03/01/2021

Chapitre 9 – Mouvement d'une particule chargée dans un champ électromagnétique

I Force de Lorentz

- I.1 Champ électromagnétique
- I.2 Force de Lorentz
 - \rightarrow Évaluer les ordres de grandeur des forces électrique ou magnétique et les comparer à ceux des forces gravitationnelles.
- **I.3** Puissance de la force de Lorentz
 - \rightarrow Justifier qu'un champ électrique peut modifier l'énergie cinétique d'une particule alors qu'un champ magnétique peut courber la trajectoire sans fournir d'énergie à la particule.

II Mouvement dans un champ électrique

- II.1 Potentiel électrostatique
 - \rightarrow Effectuer un bilan énergétique pour déterminer la valeur de la vitesse d'une particule chargée accélérée par une différence de potentiel.
- II.2 Équation du mouvement
 - \rightarrow Mettre en équation le mouvement et le caractériser comme un mouvement à vecteur accélération constant.

III Mouvement dans un champ magnétique

- III.1 Expérimentations
- III.2 Rayon de la trajectoire
 - ightarrow Déterminer le rayon de la trajectoire sans calcul en admettant que celle-ci est circulaire.

TD9 - Cyclotron

TP13 - Mesure de la vitesse du son

 $\rightarrow~$ Mesurer la vitesse de phase, la longueur d'onde et le déphasage dû à la propagation d'un phénomène ondulatoire

Nous terminerons le semestre avec la propagation des signaux, puis le premier pricnicipe de la thermodynamique.