# Верификация искусственно сгенерированных текстовых фрагментов

#### Г. М. Грицай

Научный руководитель: к. ф.-м. н. А.В. Грабовой

Кафедра интеллектуальных систем ФПМИ МФТИ Специализация: Интеллектуальный анализ данных Направление: 09.04.01 Информатика и вычислительная техника

# Поиск сгенерированных текстовых фрагментов

Исследуется проблема верификации текстовых последовательностей.

#### Цель исследования —

построение методов поиска, верификации и интерпретации сгенерированных текстовых последовательностей.

#### Требуется предложить

Метод детектирования машинно-сгенерированных текстовых последовательностей, основанный на паттернах присущих искусственно созданным фрагментам, а также метод их интерпретации и обоснования.

#### Метод решения

Предлагаемый метод основан на контроле длины входной последовательности, множественном тестировании сегментов исходного текста, классификации и мультизадачной регуляризации.

# Задача классификации текстовых последовательностей

Пусть задан W — алфавит и множество документов:

$$\mathbb{D} = \{ [t_j]_{j=1}^n \mid t_j \in \mathbf{W}, n \in \mathbb{N} \}.$$

Задана выборка из *N* документов:

$$\mathbf{D} = igcup_{i=1}^N D^i, D^i \in \mathbb{D}.$$

#### 1. Детекция автора всего документа:

$$\phi: \mathbb{D} \to \mathbf{C},$$

где  $\mathbf{C} = \{0,1\}$  для бинарной постановки или  $\mathbf{C} = \{0,...,k-1\}$  для многоклассовой детекции и k языковых моделей-авторов.

## Задача детекции фрагментов в текстовых последовательностях

#### 2. Детекция фрагментов с генерацией:

Задано множество непересекающихся фрагментов документа:

$$\mathbf{T^*} = \{[t_{s_j}, t_{f_j}]_{j=1}^J \mid t_{s_j} = t_{f_{j-1}}, s_j \in \mathbb{N}_0, f_j \in \mathbb{N}\},$$

где  $t_{s_j}$  и  $t_{f_j}$  — стартовый и завершающий индекс j-ого фрагмента,  $\mathsf{J}$  — количество фрагментов документа.

Представим модель в виде суперпозиции двух преобразований:

$$\begin{split} \mathbf{f}:\mathbb{D}\to\mathbf{T^*}, &\quad \mathbf{g}:\mathbf{T^*}\to\mathbf{C},\\ \phi:\mathbb{D}\to\mathbb{T}, &\quad \mathbb{T}=\{[t_{s_j},t_{f_j},c_j]_{j=1}^J \quad | \quad t_{s_j}=t_{f_{j-1}}, \quad s_j\in\mathbb{N}_0, \quad f_j\in\mathbb{N}, \quad c_j\in\mathbf{C}\}, \end{split}$$

 $\phi = \mathbf{g} \circ \mathbf{f}$ .

где f — разделитель текста на непересекающиеся фрагменты, g — бинарная классификация каждого текстового фрагмента.

# Бинарная классификация фрагментов

Минимизируем эмпирический риск в наборе данных **D**:

$$\hat{g} = \mathop{\mathsf{argmin}}_{g \in \mathfrak{F}} \sum_{D^i \in \mathbf{D}} \sum_{x_i, c_i \in D^i} [g(t(x_j)) 
eq c_j], \qquad t: \mathbf{T^*} o (V)^n,$$

где  $x_j$  фрагмент документа  $D^i$ , t - токенизатор, V - словарь всевозможных токенов предобученной модели, n - фикс. длина входного вектора, а  $\mathfrak F$  набор всех рассмотренных алгоритмов для классификации.

Функция потерь задачи классификации:

$$\mathcal{L}_{\mathsf{BCE}}(g, \mathbf{D}) = -rac{1}{|\mathbf{D}|} \sum_{D^i \in \mathbf{D}} \sum_{(x_j, c_j) \in D^i} \left[ c_j \cdot \log(\hat{g}(t(x_j))) + (1 - c_j) \cdot \log(1 - \hat{g}(t(x_j))) 
ight],$$

Отслеживаемые метрики качества: precision, recall,  $F_1$ -score.

# Постановка подхода мультизадачного обучения

Пусть М задачам классификации соответствует множество датасетов  $\mathbb{D}=\{d_1,d_2,...,d_M\}$ . Модель мультизадачного обучения (MTL) с сильным совместным использованием параметров (HPS) состоит из общей подсети  $h_{\theta_s}$  с параметрами  $\theta_s$  и T специфичных сетей под конкретную задачу  $g_{\theta_1},\ldots,g_{\theta_T}$  с параметрами  $\{\theta_i\}$ , все параметры MTL:  $\theta=\theta_s\cup\bigcup_{i\in[T]}\theta_i$ . Обозначим  $L_1,L_2,\ldots,L_T$  функции потерь каждой задачи. В подходе с MTL будем оптимизировать:

$$\mathcal{L}(\theta) = \sum_{x_j \in \mathbb{D}} \sum_{t \in [T]} L_t(g_{\theta_t} \circ h_{\theta_s}(x_j), c_t).$$

Определение. Эмпирическая сложность Радемахера.

Пусть  $G:=\{g:Z\to\mathbb{R}\}$  — класс функций, а  $S:=\{z_1,\ldots,z_n\}$  — выборка из распределения P, тогда эмпирическая сложность Радемахера класса G определяется как:

$$\widehat{\mathfrak{R}}_{\mathrm{G}}(n) := \mathbb{E}_{\sigma} \left[ \sup_{g \in G} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} g(z_{i}) \right],$$

где  $\sigma_i$  — независимые случайные величины, равномерно распределённые на  $\{\pm 1\}$ .

# Сложность мультизадачного и однозадачного подходов

Рассмотрим функциональные классы для трансформер-модели в задаче классификации:

$$\begin{split} \mathcal{F}_{\mathrm{STL}} &= \left\{ x \mapsto w_{\mathrm{head}}^{\top} \phi(x; w_{\mathrm{enc}}) \, \middle| \, w_{\mathrm{enc}} \in \mathcal{W}_{\mathrm{enc}}, w_{\mathrm{head}} \in \mathcal{W}_{\mathrm{head}} \right\}, \\ \mathcal{F}_{\mathrm{MTL}} &= \left\{ \left( x \mapsto w_{t}^{\top} \phi(x; w_{\mathrm{shared}}) \right)_{t=1}^{T} \, \middle| \, w_{\mathrm{shared}} \in \mathcal{W}_{\mathrm{shared}}, w_{t} \in \mathcal{W}_{\mathrm{head}} \right\}. \end{split}$$

**Теорема (Грицай, 2025).** Пусть для решения задачи классификации  $f \in \mathcal{F}_{\mathrm{STL}}$  и  $g \in \mathcal{F}_{\mathrm{MTL}}$ , где MTL охватывает T задач, T-1 из которых связаны с целевой. Объем выборки: nT для STL и n на задачу для MTL. Дополнительные ограничения:

$$\|w_{\mathrm{enc}}\| \le B_{\mathrm{enc}}, \quad \|w_{\mathrm{shared}}\| \le B_{\mathrm{shared}} \le \frac{B_{\mathrm{enc}}}{\sqrt{T}}, \quad \|w_t\| \le B_{\mathrm{head}}, \ \forall t \in [T],$$

$$\|\phi(x; w)\|_2 \le L \cdot \|w\| \cdot \|x\|_2, \quad \|x\|_2 \le R \ \forall x \in \mathcal{X}.$$

Тогда для каждой задачи t в MTL выполняется:

$$\widehat{\mathfrak{R}}_{\mathrm{MTL}}^{(1)}(n) \leq \widehat{\mathfrak{R}}_{\mathrm{STL}}^{(1)}(nT).$$

Если  $B_{\rm shared} < \frac{B_{\rm enc}}{\sqrt{T}}$ , то неравенство становится строгим.

# Проблемы множественных сравнений

Ранее был получен классификатор  $\hat{g}$ , минимизирующий эмпирический риск.

Проверка гипотез:  $H_0: \hat{g}(\textit{fragment}) = 0,$ 

 $H_1$ :  $\hat{g}(fragment) = 1$ .

Оценка вероятности того, что хотя бы один из них будет неверным и контроль ошибок:

$$P(\textit{false positive}) = 1 - (1 - \alpha)^m, \quad \textit{FWER} = P(V > 0), \quad \textit{FDR} = \mathbb{E}(\frac{V}{V + S}),$$

где V — число ложно положительных результатов, а S — число истинно положительных. В текущей задаче используется метод контроля групповой вероятности ошибки:  $p-value=1-\hat{g}(t(x_i))$ 



#### Бинарная классификация на основе оценки перплексии

Документ задан последовательностью токенов  $D^i = [t_j]_{j=1}^{|D^i|}$ , где  $t_j \in \mathbf{W}$ , а  $|D^i|$  — количество токенов в документе  $D^i$ .

$$extit{PPL}(D^i) = \exp\left(-rac{1}{|D^i|}\sum_{j=1}^{|D^i|}\log P(t_j\mid t_1,t_2,\ldots,t_{j-1})
ight),$$

**Гипотеза**. Значение перплексии LLM может быть аппроксимировано статистической языковой моделью с помощью словаря N-грамм, составленному по выходам данной большой языковой модели.

$$PPL_{\mathsf{approx}}(D^i) = \exp\left(-rac{1}{K}\sum_{j=1}^K \log P(t_{\mathsf{after}\;\mathsf{n-gram}}\mid \mathsf{n-gram}_j)
ight),$$

где суммирование производится по количеству N-грамм входного текста, общее количество суммирований обозначается K.

# Интерпретация сгенерированных текстовых фрагментов



Архитектура настройки подхода, выделяющего пары текстов с совпадающими паттернами.

#### Этап проверки:

$$x_j \xrightarrow{\mathsf{KMeans}(a_{\mathsf{new},l})} \mathbf{c}_{\mathsf{new}} \xrightarrow{s_j = \frac{1}{L} \sum_{l=1}^L \delta(c_{\mathsf{new},l},c_{j,l})} \{ \mathbf{c}_j \in \mathsf{Индекс} \mid s_j > m \} \xrightarrow{\mathsf{LLM-признаки}} \mathsf{Рел.}$$
 признаки.

## Вычислительный эксперимент: архитектура





На рисунке (a) точность классификатора основанного на архитектуре трансформер возрастает с увеличением длины последовательностей, на (b) архитектура подхода детекции фрагментов с варьируемой длиной.

## Вычислительный эксперимент: мультизадачное обучение



Архитектура MTL и разложение по двум главным компонентам текстов на основе векторного представления. На рисунке (a) структура векторного пространства для модели deberta-v3-base, настроенной в однозадачном режиме, на рисунке (b) - та же модель, но настроенная в режиме MTL.

## Результаты вычислительного эксперимента

| Язык | Эксперимент               | F1-score | Precision | Recall |
|------|---------------------------|----------|-----------|--------|
| ru   | базовое решение           | 0.955    | 0.958     | 0.955  |
|      | мультиязычное обучение    | 0.964    | 0.964     | 0.966  |
|      | перевод текстов 50%       | 0.966    | 0.968     | 0.966  |
|      | парафраз предложений 100% | 0.968    | 0.970     | 0.968  |
| en   | базовое решение           | 0.796    | 0.855     | 0.802  |
|      | мультиязычное обучение    | 0.823    | 0.867     | 0.828  |
|      | перевод текстов 50%       | 0.825    | 0.868     | 0.830  |
|      | парафраз предложений 100% | 0.822    | 0.866     | 0.827  |

Эксперимент с детекцией фрагментов фиксированной длины.

| Модель          | F1-score |
|-----------------|----------|
| TF-IDF + LogReg | 60.93    |
| DeBERTa v3 base | 78.52    |
| MTL             | 83.07    |

Эксперимент с детекцией при помощи мультизадачного обучения.

| Модель           | F1-score |
|------------------|----------|
| DistilBERT       | 0.84     |
| Mistral w. QLoRA | 0.91     |
| XLNet            | 0.95     |
| SciBERT          | 0.96     |

Эксперимент с детекцией фрагментов варьируемой длины.

| Модель       | F1-score | Время (с) |
|--------------|----------|-----------|
| TD-IDF       | 0.90     | 0.36      |
| DetectGPT    | 0.37     | 471       |
| Binoculars   | 0.92     | 236       |
| KenLM + ARPA | 0.91     | 0.27      |

Эксперимент с детекцией при помощи статистических языковых моделей.

#### Выносится на защиту

- 1. Предложены методы поиска и детектирования машинно-сгенерированных фрагментов в текстовых последовательностях, основанные на фиксированной и варьирумеой фрагментации, множественном тестировании и классификации сегментов.
- 2. Выявлена зависимость качества классификации от длины входной последовательности в моделях классификации с архитектурой трансформер.
- 3. Показано, что мультизадачное обучение повышает обобщающую способность модели, формирует кластерную структуру и улучшает заданные метрики качества бинарных задач.
- 4. Описан подход формирования обоснований срабатывания модели детекции на основе фигурирующих паттернов текста.
- 5. Проведена серия вычислительных экспериментов, которые показывают применимость предложенных методов.

# Список работ по теме диссертации

#### Публикации по итогам конференций, индексируемые в международных базах данных

- Gritsay G., Grabovoy A., Chekhovich Y. Automatic Detection of Machine Generated Texts: Need More Tokens // 2022 Ivannikov Memorial Workshop (IVMEM). – IEEE, 2022.
- Gritsay G., Grabovoy A., et all Automated Text Identification: Multilingual Transformer-based Models Approach // CEUR Workshop Proceedings of SEPLN, 2023.
- 3. Boeva G., Gritsai G., Grabovoy A., et all Team ap-team at PAN: LLM Adapters for Various Datasets // CEUR Workshop Proceedings of CLEF, 2024.
- 4. <u>Gritsai G.</u>, Grabovoy A. Automated Text Identification on Languages of the Iberian Peninsula: LLM and BERT-based Models Aggregation // CEUR Workshop Proceedings of SEPLN, 2024.
- Chekhovich Y., Grabovoy A., Gritsai G. Generative AI Models with Their Full Reveal // International Conference on Technology Enhanced Learning in Higher Education, 2024.
- Gritsai G., Grabovoy A., Khabutdinov I. Multi-head Span-based Detector for Al-generated Fragments in Scientific Papers // Workshop on Scholarly Document Processing @ ACL, 2024.
- Gritsai G., Voznyuk A., Khabutdinov I., Grabovoy A. Advacheck at GenAl Detection Task 1: Al Detection Powered by Domain-Aware Multi-Tasking // Workshop on Detecting Al Generated Content @ COLING, 2025.
- 8. Gritsai G., Voznyuk A., Grabovoy A, Chekhovich Y. Are Al Detectors Good Enough? A Survey on Quality of Datasets With Machine-Generated Texts // Workshop on Preventing and Detecting LLM Misinformation @ AAAI, 2025.

#### Выступления с докладом

- 1. Автоматическая детекция машинно-сгенерированных текстов: нужно больше токенов, Международная конференция «Иванниковские чтения», 2022.
- 2. Многозадачное обучение для распознавания машинно-сген. текстов «65-я научная конференция МФТИ», 2023.
- 3. Automated Text Identification: Multilingual Transformer-based Models Approach, IberLEF @ SEPLN, 2023.
- 4. Внимание, документ подозрительный! Жизнь с машинной генерацией в научном сообществе, RuCode, 2024.
- 5. Multi-head Span-based Detector for Al-generated Fragments in Scientific Papers, SDP @ ACL, 2024.
- 6. LLM Adapters for Various Datasets, PAN @ CLEF, 2024.
- 7. Automated Text Identification on Languages of the Iberian Peninsula, IberLEF @ SEPLN, 2024.
- 8. Al Detection Powered by Domain-Aware Multi-Tasking, DetectGenAl @ COLING, 2025.
- 9. Выравнивание представлений в многозадачном обучении для сген. текстов «67-я научная конференция МФТИ», 2025.

#### Список работ по теме диссертации

#### Публикации в журналах из списка ВАК

- 1. Г. М. Грицай, А. В. Грабовой и др. Поиск искусственно сгенерированных текстовых фрагментов в научных документах // Докл. РАН. Матем., информ., проц. упр., 541, 2023.
- 2. Avetisyan K., Gritsay G., Grabovoy A. Cross-Lingual Plagiarism Detection: Two Are Better Than One // Programming and Computer Software. 2023.
- Г. М. Грицай, И. А. Хабутдинов, А. В. Грабовой Stack More LLM's: Эффективное обнаружение
  машинно-сгенерированных текстов с помощью аппроксимации значений перплексии // Докл. РАН. Матем., информ.,
  проц., упр., 520, 2024.

#### Программные модули разработанные в рамках диссертационной работы

 Программная система для распознавания текстовых материалов, созданных при помощи искусственного интеллекта // Свидетельство №202561749, дата регистрации в Реестре государственных программ 26.03.2025.