Croisement d'une variable quantitative et d'une variable qualitative

Anas KNEFATI

Université Rennes 2

- Données
- 2 Représentation graphique Distribution Conditionnelle
- Formules de décompositions
- Rapport de corrélation

- Données
- 2 Représentation graphique Distribution Conditionnelle
- Formules de décompositions
- Rapport de corrélation

Données

Présentation des données

- X : Variable qualitative avec ℓ modalités : $x_1, x_2, ..., x_\ell$
- Y : Variable quantitative (discrète ou continue) avec c classes.

Notes des étudiants pour trois groupes

Groupe Note	А	В	С
	13	1	18.7
	2	1.5	14.5
	7.8	15	3
	19	12.5	11
	13.5	18.2	15
	8.5	20	7.5
	18.5	9.3	20
		19	

- Données
- 2 Représentation graphique Distribution Conditionnelle
- Formules de décompositions
- Rapport de corrélation

Représentation graphique - Distribution Conditionnelle

Représentation graphique

On peux tracer pour chaque classe:

- l'histogramme de Y(ou le diagramme en bâton selon le type de Y)
- le "box-plot" de Y.

Distribution conditionnelle

La moyenne (ou la variance) conditionnelle de Y sachant que l'on est dans la $i^{\text{ème}}$ classe de X : C'est la moyenne (ou la variance) de Y dans cette classe

Notations

- n_i : Effectif total de Y dans la $i^{\text{ème}}$ classe de X
- n: Effectif total de Y (toutes classes confondues, $n = \sum_{i=1}^{c} n_i$)
- \bar{y} : Moyenne globale de Y et σ^2 : Variance globale de Y
- $\bar{y}_1, \bar{y}_2, ..., \bar{y}_\ell$: Moyennes conditionnelles de Y
- $\sigma_1^2, \sigma_2^2, ..., \sigma_\ell^2$: Ses variances conditionnelles

Exemple:

Note	Groupe	А	В	С
		13	1	18.7
		2	1.5	14.5
		7.8	15	3
		19	12.5	11
		13.5	18.2	15
		8.5	20	7.5
		18.5	9.3	20
			19	

	Α	В	C
min	2	1	3
Q_1	7.8	1.5	7.5
Q_2	13	13.75	14.5
Q_3	18.5	18.2	18.7
max	19	20	20

Figure: Box-plots

Exemple

Notes des étudiants pour trois groupes - Y : Note et X : Groupe

Groupe	А	В	С	pop. globale
	13	1	18.7	
	2	1.5	14.5	
	7.8	15	3	
	19	12.5	11	
	13.5	18.2	15	
	8.5	20	7.5	
	18.5	9.3	20	
		19		
Effectifs	7	8	7	22
Moyennes \bar{y}_i	11.8	12.1	12.8	$\bar{y} = 12.2$
conditionnelles				
Variance σ_i^2 conditionnelles	32	49.9	31.7	$\sigma^2 = 38.6$

- Données
- 2 Représentation graphique Distribution Conditionnelle
- 3 Formules de décompositions
- Rapport de corrélation

Formules de décompositions

Formule de la moyenne

$$\bar{y} = \frac{\frac{1}{n} \sum_{i=1}^{c} n_i \bar{y}_i}{\text{Moyenne totale}} = \text{Moyenne des représentants (c-à-d : } \bar{y}_i)$$

Formule de la variance

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{c} n_i \sigma_i^2 + \frac{1}{n} \sum_{i=1}^{c} n_i (\bar{y}_i - \bar{y})^2$$
Variance totale = Variance intra-groupe + Variance inter-groupe

Notations

- $V_{\text{intra}} = \frac{1}{n} \sum_{i=1}^{c} n_i \sigma_i^2$: Variance intra-groupe qui regard la dispersion à l'intérieur de chaque groupe.
- $V_{\text{inter}} = \frac{1}{n} \sum_{i=1}^{c} n_i (\bar{y}_i \bar{y})^2$: Variance inter-groupe qui regard la dispersion des représentants.
- $\sigma^2 = V_{\text{intra}} + V_{\text{inter}}$ On a donc :

- Données
- 2 Représentation graphique Distribution Conditionnelle
- Formules de décompositions
- Rapport de corrélation

Rapport de corrélation

Définition

- Il s'agit d'un indice de liaison entre X et Y
- Il est noté comme $\eta^2_{Y/X}$ ou simplement η^2
- Le Rapport de corrélation est défini comme la part de V_{inter} dans la variance totale :

$$\eta^2 = \frac{V_{\text{inter}}}{V_{\text{totale}}} = \frac{V_{\text{inter}}}{\sigma^2}$$

Propriétés et intérprétation

- η^2 n'est pas symétrique et il est sans unité.
- $0 \le \eta^2 \le 1$
- $\eta^2 = 0$: Pas de liaison entre X et Y.
- $\eta^2 = 1$: If y a une liaison totale entre X et Y
- Plus η^2 est grand, plus la liaison entre la variable qualitative X et la variable quantitative y est forte.

Exemple:

- $V_{\text{intra}} = \frac{1}{n} \sum_{i=1}^{c} n_i \sigma_i^2 = 38.41$
- $V_{\text{inter}} = \frac{1}{n} \sum_{i=1}^{c} n_i (\bar{y}_i \bar{y})^2 = 0.19$
- $V = V_{\text{intra}} + V_{\text{inter}} = 38.41 + 0.19 = 38.6$
- $\eta^2 = \frac{V_{\text{inter}}}{V_{\text{totale}}} = \frac{V_{\text{inter}}}{\sigma^2} = \frac{0.19}{38.6} = 0.005$
- Comme η^2 est presque nul, alors les notes des étudiants ne changent pas trop selon groupe

