COMP10001 Foundations of Computing

Project 1 Biodiversity and Birdwatching

Due: 27 April 2020

What is biodiversity?

Biological + diversity

The variety of all living things

Why is biodiversity important?

Ecosystems with a more diverse range of species are:

- more productive: they support a greater volume and variety of life
- more robust: they recover from natural disasters more rapidly
- more enjoyable: offering opportunities for recreation

How do we measure biodiversity?

We can typically only observe and sample part of our environment.

Birds are a useful indicator species:

- Widespread across the world
- Relatively easy to observe, and lots of (visible) variety
- Highly mobile, if they don't like their environment they will move
- Different bird species rely on different features of their environment (eg, specific tree species, waterways, etc), therefore they can provide a rich view of environmental quality

Question 1: Species Richness

Question 1: Species Richness

Question 1: Species Richness

5

Counts:

6

3

Total observations: 15

1

2

3

Droportiona

Proportions:

0.4

0.2

)

0.07

0.13

0

0.2

Simpson's index:

$$\gamma = \Sigma_i p_i^2$$

$$= 0.4^2 + 0.2^2 + 0.07^2 + 0.13^2 + 0.2^2$$

$$= 0.28$$

Simpson's inverse index:

$$1/\gamma = 1/0.28$$

= 3.57

Question 3: Comparing habitats

Question 4: Optimal sampling of habitats

1:

5

6

When should we stop sampling?

Stopping rule: stop when we have completed x visits in which we haven't seen at least y new species.

eg, if x=1 and y=1, we would stop after visit 4, as we would have completed 1 visit in which we didn't observe at least 1 new species.

Question 4: Optimal sampling of habitats

1:

3:

4:

5

6:

When should we stop sampling?

After visit 4, we have observed 4 different species, out of 5 that we would have observed had we completed *all* visits.

Therefore we observed 4/5 (0.8) of the actual species diversity present.

Question 5 (Bonus Question!) Predicting species

100111	100111	111100	101110	110101
M Y W	M Y W	M	M Y	M W
101011	111100	101110	110011	111010
Y	M	M Y	Y	Y
011011	111100	101011	100111	100111
?	M	Y	M Y W	M Y W
100111	101011	111100	101101	111001
Y	?	M	M W	?
110101	011101	110110	010111	111100
M W	W	?	W	M