KF17. A toy train moves along a circular rail. The train is equipped with wheel encoders, which provide a measurement of the longitudinal displacement. It is also equipped with a compass which measures the north referenced orientation. There is a beacon located at a known position ${}^{C}\mathbf{b}$ in the plane, being $\{C\}$ its reference frame being at the centre of the circular rail.

Answer the following questions:

- 1. If we want to estimate the train position in polar coordinates $[\rho \ \theta]^T$ using a KF/EKF, and taking into account that the radius of the rail is perfectly known a priori, what parameter should we place in the state vector?
- 2. Write the prediction equation if the train displacement, measured with the encoders, is given by the deterministic variable u_k and its uncertainty is given by the stochastic variable $w_k = N(0, \sigma_w^2)_k$. In particular you are requested to write first the stochastic equation and then equation for the mean and the equation for the covariance.
- 3. Write the observation equation for a train location measurement $z_{c,k}$ coming from a compass sensor assuming that the uncertainty in the compass measurement is given by an stochastic variable $v_k = N(0, \sigma^2_{vk})$. In particular you are requested to write the stochastic equation $z_k = h(x_k) + v_k$. Underline the involved stochastic.
- 4. Is the previous observation equation linear or nonlinear? Write the corresponding H_k matrix if it is linear or the linearizing Jacobian with respect to the state H_k otherwise.
- 5. Write the observation equation for a train-to-beacon distance measurement $z_{d,k}$, assuming that the uncertainty in the distance measurement is given by an stochastic variable $v_k = N(0, \sigma^2_{vk})$. In particular you are requested to write the stochastic equation $z_k = h(x_k) + v_k$. Underline the involved stochastic.