Permutation Models: Staring into the Formless Void

Thomas Kern

Assume ZFC is consistent.

Axioms of ZF

- Extensionality: two sets are = iff they have the same elements
- Foundation: every nonempty set has an ∈-minimal element
- ullet Comprehension: can filter a set using a formula ϕ
- ullet Pairing: closed under constructing pairs $\{x,y\}$
- Union: closed under unary union operation
- ullet Replacement: closed under definable functions ϕ
- Infinity: ω exists
- ullet Power Set: closed under ${\mathcal P}$

Axiom of Choice

AC

Given a set of nonempty sets X, there is a function

$$f: X \to \bigcup X$$

with

$$f(x) \in x$$
.

Minimal Counterexample for AC

Any finite set can be shown to have a choice function (manually make the choices and combine them with pairing/union).

We're looking to produce a countable set of pairs with no choice function.

ZFA

In line with the naive uses of set theory notation, we can add extra objects to our set theory called <u>urelements</u> or <u>atoms</u>, which aren't sets, but can be contained in sets.

- Atoms are exempt from extensionality
- Atoms don't contain anything
- There is a set A of atoms (optional)

For now, let

$$A = \{a_0, b_0, a_1, b_1, a_2, b_2, \ldots\}.$$

Our set of pairs with no choice function will be:

$$F = \{\{a_0, b_0\}, \{a_1, b_1\}, \{a_2, b_2\}, \ldots\}.$$

Context

Fooling Models

A model may see things differently than we do.

- A model may contain a set that has no choice function in the model.
- What we think is countable and what the model thinks is countable could be different.
 - ullet Model might not be aware of the bijection between ω and the set
 - ullet May have a different notion of ω
- ullet May have a different notion of ${\mathcal P}$
- A model may have an infinite descending chain $\cdots x_2 \in x_1 \in x_0$, but not contain the set $\{x_0, x_1, x_2, \ldots\}$, thus still satisfying the foundation axiom.

Context

There is a structure (\mathcal{M}', \in') which forms a model of ZFA + C, with our particular choice of atoms A. We are going to find a substructure $\mathcal{N} \subseteq \mathcal{M}'$ so that (\mathcal{N}, \in') is also a model of ZFA, contains

$$F = \{\{a_0, b_0\}, \{a_1, b_1\}, \{a_2, b_2\}, \ldots\},\$$

and doesn't have a choice function on F.

We want our model to contain our atoms, and be closed under basic set-theoretic constructions (nested finite set construction).

Keep in ${\cal N}$ any set such that the set of atoms that are contained (at any depth) in that set is finite.

Example

$${a_0, b_0, \{a_1, \{b_3\}\}, \{\{\{b_4\}\}\}\}, \omega, \{\emptyset\}\}}$$

Refers to: a_0, b_0, a_1, b_3, b_4 .

Any set

Keep in ${\cal N}$ any set such that the set of atoms that are contained (at any depth) in that set is finite.

- Extensionality: two sets are = iff they have the same elements
- Foundation: every nonempty set has an ∈-minimal element
- ullet Comprehension: can filter a set using a formula ϕ
- Pairing: closed under constructing pairs $\{x,y\}$
- Union: closed under unary union operation
- ullet Replacement: closed under definable functions ϕ
- Infinity: ω exists
- ullet Power Set: closed under ${\cal P}$

But F (and A) don't exist.

Allowing Infinitely Many Atoms

$$F = \{\{a_0, b_0\}, \{a_1, b_1\}, \{a_2, b_2\}, \ldots\}.$$

- a_i, b_i occurring in the same set is OKAY
- a_i not paired with a b_i is LESS OKAY

Permuting the Atoms

Given a function $f: A \to A$, we can extend it to all sets via:

$$f(X) = \{f(x) | x \in X\}$$

For instance, if f is the identity, except swapping a_1 and b_1 , then:

$$f(\{a_0, a_1, b_3, \{a_0, \{b_1, b_2\}\}\}))$$

$$= \{a_0, b_1, b_3, \{a_0, \{a_1, b_2\}\}\}$$

We will focus for now on the group of permutations f which either swap or don't swap each pair (a_i, b_i) .

Keep in ${\mathcal N}$ any set which is closed under all swapping permutations.

- Extensionality: two sets are = iff they have the same elements
- Foundation: every nonempty set has an ∈-minimal element
- ullet Comprehension: can filter a set using a formula ϕ
- Pairing: closed under constructing pairs $\{x, y\}$
- Union: closed under unary union operation
- ullet Replacement: closed under definable functions ϕ
- Infinity: ω exists
- ullet Power Set: closed under ${\cal P}$

Keep in $\mathcal N$ any set, for which there is a finite collection $I\subset\omega$ of indices, so that any permutation that fixes those indices fixes the set. In this case, we say the set has finite support.

- Extensionality: two sets are = iff they have the same elements
- Foundation: every nonempty set has an ∈-minimal element
- ullet Comprehension: can filter a set using a formula ϕ
- Pairing: closed under constructing pairs $\{x,y\}$
- Union: closed under unary union operation
- ullet Replacement: closed under definable functions ϕ
- Infinity: ω exists
- ullet Power Set: closed under ${\mathcal P}$

Extensionality Woes

Suppose \mathcal{M}' contains the sets:

$$\{a,b,c,d,\ldots,z\}$$
 $\{a,c,d,\ldots,z\}$

But, in filtering down to \mathcal{N} , we remove b.

By extensionality, these two sets should now be equal.

Keep in $\mathcal N$ any set, for which there is a finite collection $I\subset\omega$ of indices, so that any permutation that fixes those indices fixes the set. In this case, we say the set has finite support.

- ullet $\mathcal{P}(A)$, the set of subsets of the atoms needs zero support!
- But it contains tons of elements that don't have finite support, like $\{a_i|i\in\omega\}$

Keep in $\mathcal N$ any set with hereditary finite support.

- Extensionality: two sets are = iff they have the same elements
- Foundation: every nonempty set has an ∈-minimal element
- ullet Comprehension: can filter a set using a formula ϕ
- Pairing: closed under constructing pairs $\{x, y\}$
- Union: closed under unary union operation
- ullet Replacement: closed under definable functions ϕ
- Infinity: ω exists
- ullet Power Set: closed under ${\cal P}$

Counterexample to the Axiom of Choice

$$F = \{\{a_0, b_0\}, \{a_1, b_1\}, \{a_2, b_2\}, \ldots\},\$$

This model \mathcal{N} contains A and F, but no choice function on F.

- A has no well-ordering
- F witnesses that a countable union of countable sets isn't countable
- With $a_i = -b_i$, (and $b_i = -a_i$) can use to construct a vector space without a basis

More General Permutation Model

- Let $A = \{a_0, a_1, a_2, \ldots\}$
- Construct a model \mathcal{M}' of ZFA+C with atoms A
- A set X has finite support if there is a finite collection of indices I such that if a permutation on A fixes all a_i with $i \in I$, then it fixes X.
- Create a submodel $\mathcal{N} \subseteq \mathcal{M}'$ consisting of the sets with hereditary finite support.
- In \mathcal{N} , A has only finite or cofinite subsets (amorphous set).