DEEP LEARNING AND ITS APPLICATIONS PROJECT PRESENTATION ON EGO-MOTION COMPUTATION GROUP-11

Kushagra Singhal, Mamta Bhagia, Mehul Raj Kumawat

April 03, 2018

- Introduction
 - What is ego motion
 - Need for egomotion estimation
 - Challenges faced in egomotion estimation
 - Basic Ego motion concepts

- 2 Tentative Work Plan
 - Real-Time Segmentation
 - Modifying the image frame
 - Estimation of Egomotion

Ego Motion

- Generally, ego-motion is defined as the cameras motion within an environment, where the movement of the camera can be in 3D.
- With respect to our project, ego-motion is limited to the motion of a human head-mounted camera.

Need for Egomotion estimation

- Augmented reality
- Indoor localization [2]
 - GPS sensors are incapable of working indoors or under tree shelters
 - Object has to be in line of sight of Satellite
- Autonomous navigation
 - Advanced driving assistance systems.
 - Determining behavioral patterns of the driver.
- Visual Odometry
 - IMU sensors, Rotary encoders use the rotation of wheels to find motion.
 - fails when wheels slip or when human/humanoid.

Image sensor is compact, low-cost and self-contained devices, and can be very useful for high-precision applications.

Challenges faces in egomotion estimation

Occlusion

- can be caused by depth discontinuities
- self occlusion occurs in forward motion when the shape of the scene is affected and scale changes in domain.

Noise

- Affects stereo and feature tracking performances.
- Affects ability to compute translational parameters.

Camera Calibration

- Join the image plane coordinates to absolute coordinates,
- Orientation, camera position and camera constant must be determined.

Basic motion estimation concepts

- Independent moving objects
 - objects in the scene that are non-static
 - detecting moving objects is key information when estimating egomotion
 - frame differencing algorithm not applicable when egomotion present
- Focus of expansion
 - image features seem to diverge from a specific image location
 - intersection point of translation vector with the image plane
- Motion Field
 - projection of 3D scene points onto camera surface.
 - each pixel in image is assigned with a velocity vector.
 - Location of projection of a fixed point may vary with time.
- Optical Flow [1]

Tentative Work Plan

Real-Time Segmentation

Real-Time Segmentation

Figure: Trajectory

Figure: Results

Modifying the image frame

Once we have segmented the foreground from the background, we can blacken the foreground pixels in order to get a static background with no IMOs.

Geometric methods

- Salient feature extraction
- Fails in case of low texture background or blurred images

Learning methods

Learning methods Contd

- Learn how the images transform after all possible egomotions
- Create a feature map which takes in a frame as input and gives us all the possible frames after rotational or translational motion.

- R. Roberts, H. Nguyen, N. Krishnamurthi, and T. Balch, "Memory-based learning for visual odometry," in *2008 IEEE International Conference on Robotics and Automation*, pp. 47–52, May 2008.
- - G. Costante, M. Mancini, P. Valigi, and T. A. Ciarfuglia, "Exploring representation learning with cnns for frame-to-frame ego-motion estimation," *IEEE Robotics and Automation Letters*, vol. 1, pp. 18–25, Jan 2016.