

$$\vec{u}(x(t), y(y)) = \frac{d\vec{r}}{dt} \quad \begin{cases} \frac{dx}{dt} = y^3 - 9y \\ \frac{dy}{dt} = x^3 - 9x \end{cases}$$

$$\vec{r}_3 = x(t_3)\hat{e}_x + y(t_3)\hat{e}_y$$

$$\vec{u} = \vec{u}(\vec{r}_3) \qquad t = t_3$$
Path line
$$\vec{r}_2 = x(t_2)\hat{e}_x + y(t_2)\hat{e}_y$$

$$\vec{u} = \vec{u}(\vec{r}_2)$$

$$t = t_2$$

$$\vec{u} = \vec{u}(\vec{r}_1)$$

$$\vec{r}_1 = x(t_1)\hat{e}_x + y(t_1)\hat{e}_y$$

