

Lecture Nineteen Practice

Practice problems

mac2311keeran / Lecture Fifteen / Lecture Nineteen Practice

Abstract. Practice problems for Lecture Nineteen Content

Problem. 1: Compute the differential of the function $y = -\frac{5}{(x+3)^2}$.

$$dy =$$

Problem. 2: Compute dy using the function $y = -\frac{4}{x-2}$ as x goes from 3 to 2.9.

$$dy =$$

Problem. 3: Compute dy using the function $y = 4x^2$ as x goes from -1 to -1.1.

$$dy =$$

Problem. 4: Compute Δy using the function $y = 5 x^3$ as x goes from -2 to 1.

$$\Delta y =$$

Problem. 5: Compute the differential of the function $y = \cos(x+1)$.

$$dy =$$

Problem. 6: Compute dy and Δy of the function $y = \sqrt{x-4}$ as x goes from 5 to 5.2.

$$dy =$$

$$\Delta y =$$

Problem. 7: Find the linear approximation of the function $f(x) = \sqrt{x+3}$ at a=22 and use it to approximate the numbers $(24.9)^{\frac{1}{2}}$ and $(25.01)^{\frac{1}{2}}$.

$$L(x) =$$

Problem. 8: Find the linear approximation of the function $f(x) = \sqrt{x-3}$ at a=4 and use it to approximate the numbers $(0.900)^{\frac{1}{2}}$ and $(1.010)^{\frac{1}{2}}$.

$$L(x) =$$

Problem. 9: Approximate $e^{0.2}$ by letting $f(x) = e^x$ and a = 0.

$$e^{0.2}pprox$$