Diskrete Modellierung

Wintersemester 2017/18

Mario Holldack, M. Sc. Prof. Dr. Georg Schnitger Hannes Seiwert, M. Sc.

Institut für Informatik AG Theoretische Informatik

Übungsblatt 2

Ausgabe: 26.10.2017 Abgabe: 02.11.2017

Aufgabe 2.1 Rechnen mit Mengen und Potenzmengen

(12 + 12 = 24 Punkte)

- a) Gegeben sei das Universum $U := \mathbb{N}$. Für alle $i \in \mathbb{N}$ sei $M_i := \{n \in \mathbb{N} : n \leq i\} = \{0, 1, \dots, i\}$. Geben Sie jede der folgenden Mengen in extensionaler (bzw. expliziter) Form an. Sie brauchen Ihre Antworten nicht zu begründen.
 - i) $M_2 \oplus M_3 \oplus M_4$
- ii) $\mathcal{P}(M_0 \cup M_1)$
- iii) $\bigcap_{i\in\mathbb{N}} \overline{M_i}$
- b) Seien A und B zwei beliebige Mengen. Welche der folgenden Aussagen sind richtig, welche falsch? Begründen Sie Ihre Antworten bzw. geben Sie Gegenbeispiele an.
 - i) $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$

ii) Wenn $|\mathcal{P}(A)| = 1$, dann $A = \emptyset$

Aufgabe 2.2 Eigenschaften von Funktionen

(12 + 12 = 24 Punkte)

- a) Betrachten Sie folgende Funktionen:
 - i) $f_1: \mathbb{N} \to \mathbb{N}_{>0}$ mit $n \mapsto 2n + n^2 + 1$

ii)
$$f_2: \mathbb{Z} \to \mathbb{N}$$
 mit $z \mapsto \begin{cases} 2z, & z \ge 0 \\ -2z - 1, & z < 0 \end{cases}$

iii)
$$f_3: \mathcal{P}(\{1, 2, 4, 8\}) \to \{0, 1, \dots, 15\}$$
 mit $A \mapsto \sum_{a \in A} a$

Geben Sie für jede der obigen Funktionen f_i an, ob sie injektiv, surjektiv und/oder bijektiv ist. Geben Sie für jede nicht-injektive Funktion f_i zwei Elemente $x, y \in \text{Def}(f_i)$, sodass $x \neq y$ und $f_i(x) = f_i(y)$ gilt. Geben Sie für jede nicht-surjektive Funktion f_i ein Element x aus dem Bildbereich an, sodass $x \notin \text{Bild}(f_i)$ gilt.

Sie brauchen Ihre Antworten nicht zu begründen.

- b) Sei $g:A\to B$ eine Funktion und sei $b\in B$ beliebig. Was können Sie über das Urbild $g^{-1}(\{b\})$ folgern, wenn
 - i) g injektiv ist?
- ii) g surjektiv ist?
- iii) g bijektiv ist?

Seit einigen Jahren sieht man in Frankfurt viele Leute konzentriert bunte Kügelchen auf ihrem Smartphone herumwischen. Man spielt $Candy\ Crush^2$.

Verschiedenfarbige Bonbons liegen auf einem quadratischem Spielbrett. Ziel ist es, durch Vertauschen zweier benachbarter Bonbons drei oder mehr gleichfarbige Bonbons in einer Reihe zu erhalten. Dafür erhält man Punkte, die Bonbons lösen sich auf und lassen neue nachrücken.

Wir wollen hier einige Aspekte des Spiels mithilfe von Mengen modellieren. Sie dürfen die Menge

$$\mathbf{F} = \{1, 2, \dots, 9\} \times \{1, 2, \dots, 9\}$$

aller Felder des Spielbretts als gegeben voraussetzen. Dabei bezeichnet $(i, j) \in \mathbf{F}$ das Feld in Zeile i und Spalte j.

- a) Welches Element aus **F** bezeichnet das zweitunterste Feld ganz links?
- b) Jedes Feld enthält genau ein Candy, dabei handelt es sich entweder um ein Bonbon oder eine Spezialsüßigkeit (z. B. Farbbombe, Kokoskonfekt, etc.). Jedes Bonbon wird charakterisiert durch seine Farbe (gelb, rot, blau, grün, orange, lila) und seine Art (normal, gestreift oder eingewickelt). Sei Farb die Menge aller Farben, Ar die Menge aller Arten und Spez die Menge aller Spezialsüßigkeiten. Definieren Sie die Menge Bon aller Bonbons sowie die Menge Can aller Candys.
- c) Zusätzlich zu einem Candy kann sich auf einem Feld auch Gelee befinden. (Gelee zählt nicht als Candy!) Eine Funktion hier_liegt: X → Y gebe für jedes Feld an, welches Candy sich darauf befindet und ob das Feld Gelee enthält.
 - i) Geben Sie für diese Funktion geeignete Mengen X und Y an.
 - ii) Welcher Funktionswert drückt aus, dass sich auf dem Feld (2, 2) ein gelbes normales Bonbon, aber kein Gelee befindet?
- a) Manche Candys haben einen bestimmten Effekt, wenn man sie aktiviert:
 - i) Ein gestreiftes Bonbon lässt alle Candys in derselben Zeile verschwinden. Geben Sie die Menge ${\bf Zei}_i$ aller Felder in Zeile i an.
 - ii) Eine Farbbombe mit Farbe f lässt alle Bonbons auf dem Spielbrett mit derselben Farbe verschwinden.
 - Definieren Sie mithilfe der Funktion hier_liegt die Menge \mathbf{F}_{rot} aller Felder auf dem Spielbrett, die ein rotes Bonbon enthalten.
- e) Im Laufe des Spiels lassen sich Booster freischalten (z. B. der Lollipop-Hammer oder der Kaugummi-Troll). Sei Boost die Menge aller im Spiel vorkommender Booster.

Der *Spielzustand* wird charakterisiert durch die Anzahl der Punkte, die Menge der freigeschalteten Booster sowie das höchste absolvierte Level (1 bis 2855).

- i) Definieren Sie die Menge **SZ** aller Spielzustände.
- ii) Welches Element aus **SZ** gibt an, dass 110 110 Punkte erreicht wurden, ein Lollipop-Hammer freigeschaltet und das Level 20 absolviert wurde?

Bitte wenden!

2224

¹Ein Goldbarren \checkmark entspricht 1 Punkt.

²Hier können Sie selbst in das Abenteuer eintauchen: https://king.com/de/play/candycrush

Relationale Datenbanken sind in der Praxis weit verbreitet. Intuitiv gesprochen werden dabei Daten in Tabellen gespeichert, wobei jede Zeile einer Tabelle einem Datensatz entspricht. Mithilfe von SQL-Befehlen (Structured Query Language) können die Inhalte einer Datenbank abgefragt werden. Formal handelt es sich bei den Tabellen um Relationen und bei den Datensätzen um alle Tupel, die zur Relation gehören.

Definition. Für ein Tupel $x := (x_1, \ldots, x_n)$ bezeichne x_i die *i*-te Komponente von x. Für eine Teilmenge $I \subseteq \{1, \ldots, n\}$ entsteht das Tupel $(x_i : i \in I)$ aus x, indem alle Komponenten x_j mit $j \notin I$ gelöscht werden.

Seien R_1, R_2 und R_3 Relationen mit Stelligkeiten k, ℓ bzw. ℓ . Wir betrachten folgende Operatoren:

$$S_E(R_1) := \{x \in R_1 : E(x) \text{ ist wahr}\} \subseteq R_1 \qquad \text{"Selektion nach Eigenschaft } E``$$

$$R_1 \otimes R_2 := \{(x_1, \dots, x_k, x_{k+1}, \dots, x_{k+\ell}) : \qquad \text{"Kartesisches Produkt"}^3$$

$$(x_1, \dots, x_k) \in R_1 \text{ und } (x_{k+1}, \dots, x_{k+\ell}) \in R_2\}$$

$$R_2 \cup R_3 := \{x : x \in R_2 \text{ oder } x \in R_3\} \qquad \text{"Vereinigung"}^4$$

$$\pi_I(R_1) := \{(x_i : i \in I) : x \in R_1\} \qquad \text{"Projektion auf } I \subseteq \{1, \dots, k\}$$
"

- a) Die Relationen *User*, *Follower* und *Messages* sind unten gegeben. Bestimmen Sie die Relationen, die durch die folgenden Ausdrücke gegeben sind, in extensionaler Notation.
 - i) $S_{x_2=\text{fakeblues}}$ (Follower)
 - ii) $\pi_{\{1,3\}}(S_{x_2=20.10.2017}(\text{Messages}) \cup S_{x_1=\text{admin}}(\text{Messages}))$
 - iii) $\pi_{\{6\}}(S_{x_1=\text{schniddyGee und }x_1=x_4}(\text{User} \otimes \text{Messages}))$
- b) Seien R_1 und R_2 beliebige 2-stellige Relationen. Wie können Sie den Schnitt

$$R_1 \cap R_2 := \{x : x \in R_1 \text{ und } x \in R_2\}$$

von R_1 und R_2 mithilfe von Selektion, kartesischem Produkt und Projektion ausdrücken? Hinweis: Wenden Sie geeignete Selektionen und Projektionen auf $R_1 \otimes R_2$ an.

Kommentar: In SQL werden die Operatoren S, \otimes , \cup und π durch die Schlüsselwörter WHERE (Selektion), FROM (kartesisches Produkt), UNION (Vereinigung) und SELECT (Projektion) dargestellt.

Relation "User"			Relation "Follower"	
1: Username	2: Passwort	3: E-Mail-Adresse	1: Username	2: folgt_Username
admin realdonaldduck cybert helldog schniddyGee fakeblues stud2017	Ea4%!3x2* 12345 sfdakl23 geheim123 plsplspls 12345 stud2017	admin@dismodder.com thedonald@duck.com cybert@jmail.com helldog@jmx.de schn@iddy.com thedonald@duck.com stu@d2017.org	cybert cybert helldog helldog stud2017 admin realdonaldduck	schniddyGee stud2017 cybert realdonaldduck admin fakeblues fakeblues

Relation "Messages"

1: Username	2: Datum	3: Text
admin	01.01.1970	test test test
admin realdonaldduck	$01.01.1970 \\ 04.03.2010$	test2 Wo ist meine
realdonaldduck cybert	$04.03.2010 \\ 20.06.2013$	Hose? #fakeblues Gravitationswellenreiten #urlaub
stud2017 $ stud2017$	20.10.2017 21.10.2017	Wololoooo! Regenschirmstand 3 ist sein Geld wirklich wert!
stud2017	22.10.2017	Wir brauchen Silos!
schniddyGee schniddyGee	17.10.2017 17.10.2017	BITTE BITTE #übungsbetrieb Plan 2018: 50% und mehr!

³Wir haben hier ein anderes Symbol für das kartesische Produkt ⊗ verwandt. Beachten Sie den formalen Unterschied: $R_1 \times R_2 = \{((x_1, \ldots, x_k), (x_{k+1}, \ldots, x_{k+\ell})) : (x_1, \ldots, x_k) \in R_1 \text{ und } (x_{k+1}, \ldots, x_{k+\ell}) \in R_2\} \neq R_1 \otimes R_2.$