

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07D 211/58, A61K 31/435, 31/41, C07D 207/14, 211/56, 211/26, 207/09, 401/12, 405/12, 409/12, 413/06, 413/14, 409/06, 405/06

(11) International Publication Number:

WO 99/25686

(43) International Publication Date:

27 May 1999 (27.05.99)

(21) International Application Number:

PCT/US98/23254

A1

(22) International Filing Date:

17 November 1998 (17.11.98)

(30) Priority Data:

08/972,484 18 November 1997 (18.11.97) US 09/055,285 6 April 1998 (06.04.98) US 09/133,434 13 August 1998 (13.08.98) US Hino-shi, Tokyo 191 (JP). FURUYA, Monoru [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). ENDO, Noriaki [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). TARBY, Christine, M. [US/US]; CombiChem, Inc., 9050 Camino Santa Fe. San Diego, CA 92121 (US). MOREE, Wilna [NL/US]; CombiChem, Inc., 9050 Camino Santa Fe, San Diego, CA 92121 (US). TEIG, Steven, L. [US/US]; CombiChem North, Suite 201, 1804 Embarcadero Road, Palo Alto, CA 94303 (US).

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications

US 08/972,484 (CIP)
Filed on 18 November 1997 (18.11.97)
US 09/055,285 (CIP)
Filed on 6 April 1998 (06.04.98)
US 09/133,434 (CIP)
Filed on 13 August 1998 (13.08.98)

(71) Applicants (for all designated States except US): TEIJIN LIM-ITED [JP/JP]; 6-7, Minamihommachi 1-chome, Chuo-ku, Osaka-shi, Osaka 541-0054 (JP). COMBICHEM, INC. [US/US]; 9050 Camino Santa Fe, San Diego, CA 92121

(72) Inventors; and

(US).

(75) Inventors/Applicants (for US only): SHIOTA, Tatsuki [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). KATAOKA, Ken-ichiro [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). IMAI, Minoru [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). TSUTSUMI, Takaharu [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). SUDOH, Masaki [JP/JP]; Teiiin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). SOGAWA, Ryo [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). MORITA, Takuya [JP/JP]; Teiiin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). HADA, Takahiko [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). MUROGA, Yumiko [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). TAKENOUCHI, Osami [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka,

(74) Agents: BIGGART, Waddell, A. et al.; Sughrue, Mion, Zinn, MacPeak & Seas, PLLC, Suite 800, 2100 Pennsylvania Avenue, N.W., Washington, DC 20037-3202 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: CYCLIC AMINE DERIVATIVES AND THEIR USE AS DRUGS

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array}$$
(I)

(57) Abstract

A compound represented by general formula (I), a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 – C_6 alkyl addition salt thereof, and their medical applications. Since these compounds inhibit the action of chemokines such as MIP– 1α and/or MCP–1 on target cells, they may be useful as a therapeutic drug and/or preventative drug in diseases, such as atherosclerosis, rheumatoid arthritis, and the like where blood monocytes and lymphocytes infiltrate into tissues.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AΤ	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	18	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ.	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	. NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Li	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

SPECIFICATION

Cyclic Amine Derivatives and Their Use as Drugs

5 Field of the Invention

10

15

20

25

30

35

This invention relates to novel cyclic amine derivatives.

This invention also relates to chemokine receptor antagonists that may be effective as a therapeutic agent and/or preventive agent for diseases such as atherosclerosis, rheumatoid arthritis, psoriasis, asthma, ulcerative colitis, nephritis (nephropathy), multiple sclerosis, pulmonary fibrosis, myocarditis, hepatitis, pancreatitis, sarcoidosis, Crohn's disease, endometriosis, congestive heart failure, viral meningitis, cerebral infarction, neuropathy, Kawasaki disease, and sepsis in which tissue infiltration of blood leukocytes, such as monocytes and lymphocytes, play a major role in the initiation, progression or maintenance of the disease.

Description of related art

Chemokines are a group of inflammatory/immunomodulatory polypeptide factors which have a molecular weight of 6-15 kD and are produced by a variety of cell types, such as macrophages, monocytes, eosinophils, neutrophiles, fibroblasts, vascular endotherial cells, smooth muscle cells, and mast cells, The chemokines can be classified into two major at inflammatory sites. subfamilies, the CXC chemokines (or α -chemokines) and CC chemokines (or β chemokines), by the common location of the four conserved cysteine residues and by the differences in the chromosomal locations of the genes encoding them. first two cysteines of CXC chemokines are separated by one amino acid and those of CC chemokines are adjacent. For example IL-8 (abbreviation for interleukin-8) is a CXC chemokine, while the CC chemokines include MIP-1lpha/eta (abbreviation for macrophage inflammatory protein- $1\alpha/\beta$), MCP-1 (abbreviation for monocyte chemoattractant protein-1), and RANTES (abbreviation for regulated upon activation, normal T-cell expressed and secreted). There also exist chemokines which do not fall into either chemokine subfamily. They are lymphotactin, which has only two cysteines and defines the C chemokine, and fractalkine that has a chemokine-like domain in the mucin structure in which the first two cysteines are separated by three amino acids and hence defines CX3C chemokine. These chemokines promote chemotaxis, cell migration, increase the expression of cellular adhesion molecules such as integrins, and cellular adhesion, and are

thought to be the protein factors intimately involved in the adhesion and infiltration of leukocytes into the pathogenic sites in such as inflammatory tissues (for references, see for example, Vaddi, K., et al., The Chemokine Facts Book, Academic Press, 1997; Chemoattractant Ligand and Their Receptors, Horuk, R., Ed., CRC Press, 1996; Ward, G.W., et al., Biochem. J., 1998, 333, 457; Luster, A.D., New Engl. J. Med., 1998, 338, 436; Baggiolini, M., Nature, 1998, 392, 565; Rollins, B.J., Blood, 1997, 90, 909; Alam, R., J. Allergy Clin. Immunol., 1997, 99, 273; Hancock, W.W., Am. J. Pathol., 1996, 148, 681; Taub, D.D., Cytokine & Growth Factor Rev., 1996, 7, 335; Strieter, R.M., et al., J. Immunol., 1996, 156, 3583; Furie, M.B., et al., Am. J. Pathol., 1995, 146, 1287; Schall, T.J., et al., Current Opinion in Immunology, 1994, 6, 865; Edginton, S.M., Biotechnology, 1993, 11, 676).

5

10

30

35

For example, MIP- 1α causes a transient increase in intracellular calcium ion concentration levels and induces migration of T lymphocytes, B lymphocytes (see for example, Taub, D.D., et al., Science, 1993, 260, 355; Schall, T.J., 15 et al., J. Exp. Med., 1993, 177, 1821), and eosinophiles (see for example, Rot, A., et al., J. Exp. Med., 1992, 176, 1489), chemotaxis of natural killer cells (see for example, Maghazachi, A.A., et al., J. Immunol., 1994, 153, 4969), expression of integrins (see for example, Vaddi, K., et al., J. Immunol., 1994, 153, 4721), and osteoclast differentiation (see for example, Kukita, T., et al., 20 Lab. Invest., 1997, 76, 399). MIP- 1α also enhances IgE and IgG4 production in B cells (see for example, Kimata, H., et al., J. Exp. Med., 1996, 183, 2397) and inhibits hematopoietic stem cell proliferation (see for example, Mayani, H., et al., Exp. Hematol., 1995, 23, 422; Keller, J.R., et al., Blood, 1994, 2584, 2175; Eaves, C.J., et al., Proc. Natl. Acad. Sci. USA, 1993, 90, 12015; Bodine, D.M., et al., Blood, 1991, 78, 914; Broxmeyer, H.E., et al., Blood, 1990, 76, 1110).

With respect to the activity of MIP-lα in vivo and its role in the pathogenesis of disease, it has been reported that it is a pyrogen in rabbits (see for example Davatelis, G., et al., Science, 1989, 243, 1066); that MIP-lα injection into mouse foot pads results in an inflammatory reaction such as infiltration by neutrophils and mononuclear cells (see for example Alam, R., et al., J. Immunol., 1994, 152, 1298); that MIP-lα neutralizing antibody has an inhibitory effect or a therapeutic effect in animal models of granuloma (see for example Lukacs, N.W., et al., J. Exp. Med., 1993, 177, 1551), asthma (see for example Lukacs, N.W., et al., Eur. J. Immunol., 1995, 25, 245; Lukacs, N.W., et al., J. Immunol., 1997, 158, 4398), multiple sclerosis (see for example Karpus,

W.J., et al., J. Immunol., 1995, 155, 5003; Karpus, W.J., et al., J. Leukoc. Biol., 1997, 62, 681), idiopathic pulmonary fibrosis (see for example Smith, R.E., et al., J. Immunol., 1994, 153, 4704; Smith, R.E., Biol. Signals, 1996, 5, 223), acute lung injury (see for example Shanley, T.P., et al., J. Immunol., 1995, 154, 4793; Standiford, T.J., et al., J. Immunol., 1995, 155, 1515), and rheumatoid arthritis (see for example Kasama, T., et al., J. Clin. Invest., 1995, 95, 2868); that coxsackie virus induced myocarditis and herpes stromal keratitis are inhibited in mice with a disrupted MIP-1lpha gene (see for example Cook, D.N. et al., Science, 1995, 269, 1583; Tumpey, T.M., et al., J. Virology, 1998, 72, 3705); and that significant expression of MIP-l α is observed in patients with 10 chronic inflammatory diseases of lung (see for example Standiford, T.J., et al., J. Immunol., 1993, 151, 2852), hypersensitivity pneumonitis (see for example Denis, M., Am. J. Respir. Crit. Care Med., 1995, 151, 164), rheumatoid arthritis (see for example Koch, A.E., et al., J. Clin. Invest., 1994, 93, 921), infectious meningitis (see for example Lahrtz, F., et al., J. Neuroimmunol., 1998, 85, 33), 15 and chronic inflammation of muscle (see for example Adams, E.M., et al., Proc. Assoc. Am. Physicians, 1997, 109, 275). These studies indicate that MIP-1lpha is deeply involved in the local attraction of various subtypes of leukocytes and the initiation, progression and maintenance of resulting inflammatory response.

20

25

30

35

MCP-1 (also known as MCAF (abbreviation for macrophage chemotactic and activating factor) or JE) is a CC chemokine produced by monocytes/macrophages, smooth muscle cells, fibroblasts, and vascular endothelial cells and causes cell migration and cell adhesion of monocytes (see for example Valente, A.J., et al., Biochemistry, 1988, 27, 4162; Matsushima, K., et al., J. Exp. Med., 1989, 169, 1485; Yoshimura, T., et al., J. Immunol., 1989, 142, 1956; Rollins, B.J., et al., Proc. Natl. Acad. Sci. USA, 1988, 85, 3738; Rollins, B.J., et al., Blood, 1991, 78, 1112; Jiang, Y., et al., J. Immunol., 1992, 148, 2423; Vaddi, K., et al., J. Immunol., 1994, 153, 4721), memory T lymphocytes (see for example Carr, M.W., et al., Proc. Natl. Acad. Sci. USA, 1994, 91, 3652), T lymphocytes (see for example Loetscher, P., et al., FASEB J., 1994, 8, 1055) and natural killer cells (see for example Loetscher, P., et al., J. Immunol., 1996, 156, 322; Allavena, P., et al., Eur. J. Immunol., 1994, 24, 3233), as well as mediating histamine release by basophils (see for example Alam, R., et al., J. Clin. Invest., 1992, 89, 723; Bischoff, S.C., et al., J. Exp. Med., 1992, 175, 1271; Kuna, P., et al., J. Exp. Med., 1992, 175, 489).

In addition, high expression of MCP-1 has been reported in diseases where accumulation of monocyte/macrophage and/or T cells is thought to be important

in the initiation or progression of diseases, such as atherosclerosis (see for example Hayes, I.M., et al., Arterioscler. Thromb. Vasc. Biol., 1998, 18, 397; Takeya, M., et al., Hum. Pathol., 1993, 24, 534; Yla-Herttuala, S., et al., Proc. Natl. Acad. Sci. USA, 1991, 88, 5252; Nelken, N.A., J. Clin. Invest., 1991, 88, 1121), rheumatoid arthritis (see for example Koch, A.E., et al., J. Clin. Invest., 5 1992, 90, 772; Akahoshi, T., et al., Arthritis Rheum., 1993, 36, 762; Robinson, E., et al., Clin. Exp. Immunol., 101, 398), nephritis (see for example Noris, M., et al., Lab. Invest., 1995, 73, 804; Wada, T., at al., Kidney Int., 1996, 49, 761; Gesualdo, L., et al., Kidney Int., 1997, 51, 155), nephropathy (see 10 for example Saitoh, A., et al., J. Clin. Lab. Anal., 1998, 12, 1; Yokoyama, H., et al., J. Leukoc. Biol., 1998, 63, 493), pulmonary fibrosis, pulmonary sarcoidosis (see for example Sugiyama, Y., et al., Internal Medicine, 1997, 36, 856), asthma (see for example Karina, M., et al., J. Invest. Allergol. Clin. Immunol., 1997, 7, 254; Stephene, T.H., Am. J. Respir. Crit. Care Med., 1997, 156, 1377; Sousa, A.R., et al., Am. J. Respir. Cell Mol. Biol., 1994, 10, 142), 15 multiple sclerosis (see for example McManus, C., et al., J. Neuroimmunol., 1998, 86, 20), psoriasis (see for example Gillitzer, R., et al., J. Invest. Dermatol., 1993, 101, 127), inflammatory bowel disease (see for example Grimm, M.C., et al., J. Leukoc. Biol., 1996, 59, 804; Reinecker, H.C., et al., Gastroenterology, 1995, 106, 40), myocarditis (see for example Seino, Y., et al., Cytokine, 1995, 20 7, 301), endometriosis (see for example Jolicoeur, C., et al., Am. J. Pathol., 1998, 152, 125), intraperitoneal adhesion (see for example Zeyneloglu, H.B., et al., Human Reproduction, 1998, 13, 1194), congestive heart failure (see for example Aurust, P., et al., Circulation, 1998, 97, 1136), chronic liver disease (see for example Marra, F., et al., Am. J. Pathol., 1998, 152, 423), viral 25meningitis (see for example Lahrtz, F., et al., Eur. J. Immunol., 1997, 27, 2484), Kawasaki disease (see for example Wong, M.; et al., J. Rheumatol., 1997, 24,1179) and sepsis (see for example Salkowski, C.A.; et al., Infect. Immun., 1998, 66, 3569). Furthermore, anti-MCP-1 antibody has been reported to show an inhibitory 30 effect or a therapeutic effect in animal models of rheumatoid arthritis (see for example Schimmer, R.C., et al., J. Immunol., 1998, 160, 1466; Schrier, D.J., J. Leukoc. Biol., 1998, 63, 359; Ogata, H., et al., J. Pathol., 1997, 182, 106), multiple sclerosis (see for example Karpus, W.J., et al., J. Leukoc. Biol., 1997, 62, 681), nephritis (see for example Lloyd, C.M., et al., J. Exp. Med., 1997, 185, 1371; Wada, T., et al., FASEB J., 1996, 10, 1418), Asthma (see for example 35 Gonzalo, J.-A., et al., J. Exp. Med., 1998, 188, 157; Lukacs, N.W., J. Immunol., 1997, 158, 4398), atherosclerosis (see for example Guzman, L.A., et al.,

Circulation, 1993, 88 (suppl.), I-371), delayed type hypersensitivity (see for example Rand, M.L., et al., Am. J. Pathol., 1996, 148, 855), pulmonary hypertension (see for example Kimura, H., et al., Lab. Invest., 1998, 78, 571), and intraperitoneal adhesion (see for example Zeyneloglu, H.B., et al., Am. J. Obstet. Gynecol., 1998, 179, 438). A peptide antagonist of MCP-1, MCP-1(9-76), has been also reported to inhibit arthritis in the mouse model (see Gong, J.-H., J. Exp. Med., 1997, 186, 131), as well as studies in MCP-1-deficient mice have shown that MCP-1 is essential for monocyte recruitment in vivo (see Lu, B., et al., J. Exp. Med., 1998, 187, 601; Gu, L., et al., Moll. Cell, 1998, 2, 275).

These data indicate that chemokines such as MIP-1 α and MCP-1 attract monocytes and lymphocytes to disease sites and mediate their activation and thus are thought to be intimately involved in the initiation, progression and maintenance of diseases deeply involving monocytes and lymphocytes, such as atherosclerosis, rheumatoid arthritis, psoriasis, asthma, ulcerative colitis, nephritis (nephropathy), multiple sclerosis, pulmonary fibrosis, myocarditis, hepatitis, pancreatitis, sarcoidosis, Crohn's disease, endometriosis, congestive heart failure, viral meningitis, cerebral infarction, neuropathy, Kawasaki disease, and sepsis (see for example Rovin, B.H., et al., Am. J. Kidney. Dis., 1998, 31, 1065; Lloyd, C., et al., Curr. Opin. Nephrol. Hypertens., 1998, 7, 281; Conti, P., et al., Allergy and Asthma Proc., 1998, 19, 121; Ransohoff, R.M., et al., Trends Neurosci., 1998, 21, 154; MacDermott, R.P., et al., Inflammatory Bowel Diseases, 1998, 4, 54). Therefore, drugs which inhibit the action of chemokines on target cells may be effective as a therapeutic and/or preventive drug in the diseases.

Genes encoding receptors of specific chemokines have been cloned, and it is now known that these receptors are G protein-coupled seven-transmembrane receptors present on various leukocyte populations. So far, at least five CXC chemokine receptors (CXCR1-CXCR5) and eight CC chemokine receptors (CCR1-CCR8) have been identified. For example IL-8 is a ligand for CXCR1 and CXCR2, MIP-1α is that for CCR1 and CCR5, and MCP-1 is that for CCR2A and CCR2B (for reference, see for example, Holmes, W.E., et al., Science 1991, 253, 1278-1280; Murphy P.M., et al., Science, 253, 1280-1283; Neote, K. et al., Cell, 1993, 72, 415-425; Charo, I.F., et al., Proc. Natl. Acad. Sci. USA, 1994, 91, 2752-2756; Yamagami, S., et al., Biochem. Biophys. Res. Commun., 1994, 202, 1156-1162; Combadier, C., et al., The Journal of Biological Chemistry, 1995, 270, 16491-16494, Power, C.A., et al., J. Biol. Chem., 1995, 270, 19495-19500; Samson, M., et al.,

Biochemistry, 1996, 35, 3362-3367; Murphy, P.M., Annual Review of Immunology, 1994, 12, 592-633). It has been reported that lung inflammation and granuroma formation are suppressed in CCR1-deficient mice (see Gao, J.-L., et al., J. Exp. Med., 1997, 185, 1959; Gerard, C., et al., J. Clin. Invest., 1997, 100, 2022), and that recruitment of macrophages and formation of atherosclerotic lesion decreased in CCR2-deficient mice (see Boring, L., et al., Nature, 1998, 394, 894; Kuziel, W.A., et al., Proc. Natl. Acad. Sci., USA, 1997, 94, 12053; Kurihara, T., et al., J. Exp. Med., 1997, 186, 1757; Boring, L., et al., J. Clin. Invest., 1997, 100, 2552). Therefore, compound which inhibit the binding of chemokines such as MIP-1α and/or MCP-1 to these receptors, that is, chemokine receptor antagonist, may be useful as drugs which inhibit the action of chemokines such as MIP-1α and/or MCP-1 on the target cells, but there are no drugs known to have such effects.

The cyclic amine derivatives provided by the present invention is quite novel. Recently, it has been reported that the diphenylmethane derivatives (WO9724325; Hesselgesser, J., et al., J. Biol. Chem., 1998, 273, 15687), piperidine derivatives (JP9-249566), imidazobenzodiazepine derivatives (JP9-249570), benzazocine derivatives (JP9-255572), tricyclic compounds with cyclic amino group (W09804554), phenothiazine derivatives (Bright, C., et al., Bioorg. Med. Chem. Lett., 1998, 8, 771), pieprazine derivatives (WO9744329), benzimidazole derivatives (WO9806703), distamycin analogues (Howard, O.M.Z., et al., J. Med. Chem., 1998, 41, 2184), bis-acridine derivatives (W09830218), spiro-substituted azacycles (WO9825604; WO9825605), substituted aryl piperazines (WO9825617), aminoquinoline derivatives (WO9827815), arylpiperidine derivatives (WO9831364), hexanoic amide derivatives (WO9838167), and other small molecules (W09744329; W09802151; W09804554) have antagonistic activity of chemokine receptor, such as CXCR1, CXCR4, CCR1, CCR2, CCR3, and CCR5. However, these compounds differ from the compound of the present invention.

30 Summary of the Invention

5

10

15

20

25

35

Therefore, it is an object of the present invention to provide small molecule compound which inhibits the binding of chemokines such as MIP-1 α and/or MCP-1 to their receptors on the target cells.

It is another object of the present invention to establish a method to inhibit the binding to the receptors on the target cells and/or effects on target cells of chemokines such as MIP- 1α and/or MCP-1.

It is an additional object of the present invention to propose a method

for the treatment of diseases for which the binding of chemokines such as MIP-l α and/or MCP-l to the receptor on the target cell is one of the causes.

WO 99/25686

5

10

15

20

25

30

As a result of intensive studies, the present inventors discovered that a cyclic amine derivative having a arylalkyl group, its pharmaceutically acceptable C_1 - C_6 alkyl addition salt or its pharmaceutically acceptable acid addition salt has an excellent activity to inhibit the binding of chemokines such as MIP- 1α and/or MCP-1 and the like to the receptor of a target cell, which has led to the completion of this invention.

That is, the present invention is a compound of the formula (I) below:

$$\begin{array}{c}
R_{1}^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6} \\
R^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array}$$
(I)

, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable $C_1\text{--}C_6$ alkyl addition salt thereof (Invention 1),

wherein R1 is a phenyl group, a C3-C2 cycloalkyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, $C_5 - C_8$ cycloalkyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a C₁-C₆ alkyl group, a C₃-C₉ cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_5 alkoxy group, a C_1 - C_6 alkylthio group, a C_3-C_5 alkylene group, a C_2-C_4 alkylenoxy group, a C_1-C_3 alkylenedioxy . group, a phenyl group, a phenoxy group, a phenylthio group, a benzyl group, a benzyloxy group, a benzoylamino group, a C_2-C_7 alkanoýl group, a C_2-C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2-C_7 N-alkylcarbamoyl group, a C_4-C_9 N-cycloalkylcarbamoyl group, a C_1-C_6 alkylsulfonyl group, a C_3-C_8 (alkoxycarbonyl) methyl group, a N-phenylcarbamoyl group, a piperidinocarbonyl group, a morpholinocarbonyl group, a 1pyrrolidinylcarbonyl group, a divalent group represented by the formula: -NH(C=0)O-, a divalent group represented by the formula: -NH(C=S)O-, an amino

group, a mono $(C_1-C_6$ alkyl) amino group, or a di $(C_1-C_6$ alkyl) amino group, wherein the substituent for the phenyl group, C_3-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen atom, a hydroxy group, an amino group, a trifluoromethyl group, a C_1-C_6 alkyl group, or a C_1-C_6 alkoxy group;

 R^2 is a hydrogen atom, a C_1 - C_6 alkyl group, a C_2 - C_7 alkoxycarbonyl group, a hydroxy group, or a phenyl group, in which the C_1 - C_6 alkyl or phenyl group may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_7 alkyl group, or a C_1 - C_6 alkoxy group, and when j=0, R^2 is not a hydroxy group;

j represents an integer of 0-2; k represents an integer of 0-2; m represents an integer of 2-4; n represents 0 or 1;

5

10

15

20

25

30

 R^5 is a hydrogen atom or a C_1 - C_6 alkyl group optionally substituted with one or two phenyl groups each of which may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_5 alkoxy group;

 R^4 and R^5 are the same or different from each other and are a hydrogen atom, a hydroxy group, a phenyl group, or a C_1 - C_6 alkyl group, in which the C_1 - C_6 alkyl group is optionally substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a mercapto group, a guanidino group, a C_3 - C_8 cycloalkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a phenyl group optionally substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_2 - C_6 alkoxy group, or a benzyloxy group, a phenoxy group, a benzyloxy group, a benzyloxycarbonyl group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoylamino group, a manino group, a mono $(C_1$ - C_6 alkyl) amino group, a di $(C_1$ - C_6 alkyl) amino group, or an aromatic heterocyclic group having 1-3 of heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof and optionally condensed with benzene ring, or R^4 and R^5 taken together form a 3 to 6 membered cyclic hydrocarbon;

- p represents 0 or 1;
- q represents 0 or 1;
- G is a group represented by -CO-, -SO₂-, -CO-O-, -NR⁷-CO-, -CO-NR⁷-, -NH-CO-NH-, -NH-CS-NH-, -NR⁷-SO₂-, -SO₂-NR⁷-, -NH-CO-O-, or -O-CO-NH-, wherein R⁷ is a hydrogen atom or a C_1 - C_6 alkyl group, or R⁷ taken together with R⁵ represents C_2 - C_5 alkylene group;

5

10

15

20

25

 R^{δ} is a phenyl group, a C_3-C_8 cycloalkyl group, a C_3-C_8 cycloalkenyl group, a benzyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl, benzyl, or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C_3-C_8 cycloalkyl group, C_3-C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a mercapto group, a cyano group, a nitro group, a thiocyanato group, a carboxy group, a carbamoyl group, a trifluoromethyl group, a C_1 - C_6 alkyl group, a C_3 - C_6 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_3 - C_8 cycloalkyloxy group, a C_1 - C_6 alkylthio group, a C_1-C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylamino group, a benzyl group, a benzoyl group, a phenylsulfinyl group, a phenylsulfonyl group, a 3-phenylureido group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 N-alkylcarbamoyl group, a C_1 - C_6 alkylsulfonyl group, a phenylcarbamoyl group, a $N, N-\text{di}(C_1-C_6 \text{ alkyl})$ sulfamoyl group, an amino group, a mono(C_1-C_6 alkyl) amino group, a di $(C_1-C_6$ alkyl) amino group, a benzylamino group, a C_2-C_7 (alkoxycarbonyl) amino group, a C_1-C_6 (alkylsulfonyl) amino group, or a bis (C_1-C_6) alkylsulfonyl) amino group, wherein the substituent for the phenyl group, $C_3 - C_9$ cycloalkyl group, C_3 - C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen atom, a cyano group, a hydroxy group, an amino group, trifluoromethyl group, a C_1 - C_6 alkyl group, a C_1 - C_ϵ alkoxy group, a C_1 - C_6 alkylthio group, a mono(C_1 - C_ϵ alkyl) amino group, or a di(C_1 - C_{ϵ} alkyl) amino group.

Also the present invention is a method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell using a pharmaceutical preparation containing a therapeutically effective amount of a compound represented by the above formula (I), a pharmaceutically acceptable acid addition salt thereof, or a pharmaceutically acceptable C_1 - C_6 alkyl addition salt thereof (Invention 2).

35

30

Here, the compound represented by the above formula (I) have activities to inhibit the binding of chemokines such as MIP-l α and/or MCP-l and the like

to the receptor of a target cell and activities to inhibit physiological activities of cells caused by chemokines such as MIP-1 α and/or MCP-1 and the like.

5 Description of the Preferred Embodiments

(1) On Invention 1

10

15

20

25

30

35

In the above formula (I), R^1 is a phenyl group, a C_3 - C_8 cycloalkyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a C1-C6 alkyl group, a C3-C3 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a C₃-C₅ alkylene group, a C₂-C₄ alkylenoxy group, a C₁-C₃ alkylenedioxy group, a phenyl group, a phenoxy group, a phenylthio group, a benzyl group, a benzyloxy group, a benzoylamino group, a C_2-C_7 alkanoyl group, a C_2-C_7 alkoxycarbonyl group, a C₂-C₇ alkanoyloxy group, a C₂-C₇ alkanoylamino group, a C_2-C_7 N-alkylcarbamoyl group, a C_4-C_9 N-cycloalkylcarbamoyl group, a C_1-C_6 alkylsulfonyl group, a C_3-C_8 (alkoxycarbonyl) methyl group, a N-phenylcarbamoyl group, a piperidinocarbonyl group, a morpholinocarbonyl group, a 1pyrrolidinylcarbonyl group, a divalent group represented by the formula: -NH(C=O)O-, a divalent group represented by the formula: -NH(C=S)O-, an amino group, a mono(C_1 - C_6 alkyl) amino group, or a di(C_1 - C_6 alkyl) amino group.

The " C_3 - C_8 cycloalkyl group" for R^1 means a cyclic alkyl group such as a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cycloctyl group, specifically including a cyclopropyl, cyclopentyl, and cyclohexyl group.

The "aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof" for R¹ is specifically, for example, thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyridyl, pyrimidinyl, triazinyl, triazolyl, oxadiazolyl (furazanyl),

thiadiazolyl group and the like, preferably including a thienyl, furyl, pyrrolyl, isoxazolyl, and pyridyl group.

The "condensed ring" for R¹ means a ring obtained by the condensation with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom of a phenyl group or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom and/or a nitrogen atom, at any possible sites, suitably and specifically for example, naphthyl, indolyl, benzofuranyl, benzothienyl, quinolyl, benzimidazolyl, benzoxazolyl, benzotriazolyl, benzoxadiazolyl (benzofurazanyl), and benzothiadiazolyl group.

Among them, a phenyl group and an isoxazolyl group can be listed as a preferred specific example for \mathbb{R}^1 .

10

20

25

30

35

The "halogen atom" as a substituent for the phenyl group, C₃-C₈ cycloalkyl group, aromatic heterocyclic group, or condensed ring in R¹ includes a fluorine atom, chlorine atom, bromine atom, and iodine atom, suitably including a fluorine atom, chlorine atom, and bromine atom.

The " C_1 - C_6 alkyl group" as a substituent for R^1 means a C_1 - C_6 straight-chain or a branched alkyl group such as a methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, isohexyl, 2-methylpentyl, 1-ethylbutyl group, and the like, suitably specifically including a methyl, ethyl, propyl, and isopropyl group.

The " C_3 - C_6 cycloalkyl group" as a substituent for R^1 is the same as defined for the aforementioned " C_3 - C_2 cycloalkyl group" for R^1 , where the same examples can be given for the preferred specific examples.

The " C_2 - C_6 alkenyl group" as a substituent for R^1 means a C_2 - C_6 straight-chain or a branched alkenyl group such as a vinyl, allyl, 1-propenyl, 2-butenyl, 3-butenyl, 2-methyl-1-propenyl, 4-pentenyl, 5-hexenyl, 4-methyl-3-pentenyl group, and the like, suitably specifically including a vinyl and 2-methyl-1-propenyl group.

The " C_1 - C_6 alkoxy group" as a substituent for R^1 means group consisting of the aforementioned C_1 - C_6 alkyl group and oxy group, specifically, for example, a methoxy and ethoxy group.

The " C_1 - C_6 alkylthio group" as a substituent for R^1 means group consisting of the aforementioned C_1 - C_6 alkyl group and thio group, specifically, for example,

a methylthio and ethylthio group.

5

10

15

20

25

30

35

The " C_3 - C_5 alkylene group" as a substituent for R^1 means the C_2 - C_5 divalent alkylene group such as a trimethylene, tetramethylene, pentamethylene, and 1-methyltrimethylene group, specifically, for example, a trimethylene and a tetramethylene group.

The " C_2-C_4 alkylenoxy group" as a substituent for R^1 means group consisting of the aforementioned C_2-C_4 divalent alkylene group and oxy group such as a ethylenoxy ($-CH_2CH_2O_-$), trimethylenoxy ($-CH_2CH_2CH_2O_-$), tetramethylenoxy ($-CH_2CH_2CH_2CH_2O_-$), and 1,1-dimethylethylenoxy ($-CH_2C(CH_3)_2O_-$) group, specifically, for example, a ethylenoxy and trimethylenoxy group.

The " C_1-C_3 alkylenedioxy group" as a substituent for R^1 means group consisting of C_1-C_3 divalent alkylene group and two oxy groups such as a methylenedioxy (-OCH₂O-), ethylenedioxy (-OCH₂CH₂O-), trimethylenedioxy (-OCH₂CH₂CH₂O-), and propylenedioxy (-OCH₂CH(CH₃)O-) group, specifically, for example, a methylenedioxy and ethylenedioxy group.

The " C_2-C_7 alkanoyl group" as a substituent for R^1 means C_2-C_7 straight-chain or branched alkanoyl group such as an acetyl, propanoyl, butanoyl, pentanoyl, hexanoyl, heptanoyl, isobutyryl, 3-methylbutanoyl, 2-methylbutanoyl, pivaloyl, 4-methylpentanoyl, 3,3-dimethylbutanoyl, 5-methylhexanoyl group, and the like, where the preferred and specific example includes an acetyl group.

The " C_2 - C_7 alkoxycarbonyl group" as a substituent for R^1 means group consisting of the aforementioned C_1 - C_6 alkoxy group and carbonyl group, preferably and specifically for example, a methoxycarbonyl and ethoxycarbonyl group.

The " C_2-C_7 alkanoyloxy group" as a substituent for R^1 means group consisting of the aforementioned C_2-C_7 alkanoyl group and oxy group, specifically, for example, an acetyloxy group.

The " C_2 - C_7 alkanoylamino group" as a substituent for R^1 means group consisting of the aforementioned C_2 - C_7 alkanoyl group and amino group, specifically, for example, an acetylamino group.

The " C_2 - C_7 N-alkylcarbamoyl group" as a substituent for R^1 means group consisting of the aforementioned C_1 - C_6 alkyl group and carbamoyl group, specifically, for example, a N-methylcarbamoyl and N-ethylcarbamoyl group.

The " C_4-C_5 N-cycloalkylcarbamoyl group" as a substituent for R^1 means group consisting of the aforementioned C_5-C_5 cycloalkyl group and carbamoyl group, specifically, for example, a N-cyclopentylcarbamoyl and N-cyclohexylcarbamoyl group.

The " C_1 - C_6 alkylsulfonyl group" as a substituent for R^1 means group

consisting of the aforementioned C_1 - C_5 alkyl group and sulfonyl group, preferably and specifically, for example, a methylsulfonyl group.

The " C_3-C_8 (alkoxycarbonyl)methyl group" as a substituent for R^1 means group consisting of the aforementioned C_2-C_7 alkoxycarbonyl group and methyl group, preferably and specifically for example, a (methoxycarbonyl)methyl and (ethoxycarbonyl)methyl group.

The "mono(C_1 - C_6 alkyl) amino group" as a substituent for R^1 means amino group substituted with one of the aforementioned C_1 - C_6 alkyl group, preferably and specifically, for example, a methylamino and ethyl amino group.

The "di(C_1 - C_6 alkyl) amino group" as a substituent for R^1 means amino group substituted with the same or different two C_1 - C_6 alkyl group aforementioned, preferably and specifically, for example, a dimethylamino, diethylamino, and N-ethyl-N-methylamino group.

Among them, a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a C_2 - C_4 alkylenoxy group, a methylenedioxy group, a N-phenylcarbamoyl group, an amino group, a mono $(C_1$ - C_6 alkyl) amino group, and a di $(C_1$ - C_6 alkyl) amino group can be listed as a preferred specific example for substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 .

Furthermore above substituent for the phenyl group, C_3 - C_6 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 are optionally substituted with one or more of a halogen atom, a hydroxy group, an amino group, a trifluoromethyl group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group. The halogen atom, C_1 - C_6 alkyl group, and C_2 - C_6 alkoxy group are the same as defined for the aforementioned substituents for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

30

35

25

5

10

In the above formula (I), R^2 represents a hydrogen atom, a C_1 - C_6 alkyl group, a C_2 - C_7 alkoxycarbonyl group, a hydroxy group, or a phenyl group, in which the C_1 - C_6 alkyl or phenyl group may be substituted with one or more of a halogen atom, a hydroxy group, a C_2 - C_6 alkyl group, or a C_1 - C_6 alkoxy group, and when j=0, R^2 is not a hydroxy group.

The C_1-C_6 alkyl group and C_2-C_7 alkoxycarbonyl group for R^2 are the same as defined for the aforementioned substituent for the phenyl group, C_3-C_8

cycloalkyl group, aromatic heterocyclic group, or condensed ring in R , and the same examples can be listed as preferred specific examples.

The halogen atom, C_1 - C_6 alkyl group, and C_1 - C_6 alkoxy group as substituents for the C_1 - C_6 alkyl or phenyl group in R^2 are the same as defined for the aforementioned substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

5

15

25

30

35

Among them, a hydrogen atom is a preferred specific example for R^2 .

In the above formula (I), j represents an integer of 0-2. It is particularly preferred for j to be 0.

In the above formula (I), k represents an integer of 0-2 and m represents an integer of 2-4. It is preferred to use a 2-substituted pyrrolidine in which k is 0 and m is 3, a 3-substituted pyrrolidine in which k is 1 and m is 2, a 3-substituted piperidine in which k is 1 and m is 3, a 4-substituted piperidine in which k is 2 and m is 2, or 3-substituted hexahydroazepine in which k is 1 and m is 4.

n in the above formula (I) represents 0 or 1.

Especially, 3-amidopyrrolidines in which k is 1, m is 2, and n is 0 and 4-(amidomethyl)piperidines in which k is 2, m is 2, and n is 1 can be listed as a particularly preferred example.

 R^3 in the above formula (I) represents a hydrogen atom or a C_1 - C_ϵ alkyl group optionally substituted with one or two phenyl groups each of which may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_ϵ alkoxy group.

The C_1 - C_6 alkyl group for R^3 is the same as defined for the aforementioned substituents for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , specifically, for example, a methyl, ethyl and propyl group.

The halogen atom, C_1-C_6 alkyl group, and C_1-C_6 alkoxy group as substituents for the phenyl group, which is a substituent for C_1-C_6 alkyl group in R^3 , are the same as defined for the aforementioned substituents for the phenyl group, C_3-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

Among them, a hydrogen atom is a preferred specific example for R³.

In the above formula (I), R^4 and R^5 are the same or different from each other and are a hydrogen atom, a hydroxy group, a phenyl group, or a C_1 - C_6 alkyl group, in which the C_1 - C_6 alkyl group is optionally substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a mercapto group, a guanidino group, a C_3 - C_6 cycloalkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a phenyl group optionally substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, or a benzyloxy group, a phenoxy group, a benzyloxy group, a benzyloxy group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 alkanoyloxy group, a an amino group, a mono $(C_1$ - C_6 alkyl) amino group, a di $(C_1$ - C_6 alkyl) amino group, or an aromatic heterocyclic group having 1-3 of heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof and optionally condensed with benzene ring, or R^4 and R^5 taken together form a 3 to 6 membered cyclic hydrocarbon.

5

10

15

20

25

30

35

The C_1 - C_6 alkyl group for R^4 and R^5 is the same as defined for the aforementioned substituent for the phenyl group, C_3 - C_2 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

The halogen atom, C_1 - C_6 alkoxy group, C_1 - C_5 alkylthio group, C_2 - C_7 alkanoyl group, C_2 - C_7 alkoxycarbonyl group, C_2 - C_7 alkanoyloxy group, C_2 - C_7 alkanoylamino group, C_2 - C_7 N-alkylcarbamoyl group, C_1 - C_6 alkylsulfonyl group, mono $(C_1$ - C_6 alkyl) amino group, and di $(C_1$ - C_6 alkyl) amino group as a substituent for the C_1 - C_6 alkyl group in R^4 and R^5 are the same as defined for the aforementioned substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^4 , and the same examples can be listed as preferred specific examples.

The C_3 - C_8 cycloalkyl group and aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof as substituent for the C_1 - C_6 alkyl group in R^4 and R^5 are the same as defined for the aforementioned group for R^1 , and the same examples can be listed as preferred specific examples.

The halogen atom, C_1 - C_6 alkyl group, and C_1 - C_6 alkoxy group for the substituent for the phenyl group which is substituent for the C_1 - C_6 alkyl group in R^4 and R^5 are the same as defined for the aforementioned substituent for the phenyl group, C_2 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed

ring in R1, and the same examples can be listed as preferred specific examples.

The "3 to 6 membered cyclic hydrocarbon" consisting of R⁴, R⁵, and the adjacent carbon atom includes a cyclopropane, cyclobutane, cyclopentane, and cyclohexane.

Among them, a hydrogen atom and a C_1-C_6 alkyl group can be listed as a preferred specific example for R^4 and R^5 .

In the above formula (I), p represents 0 or 1, and q represents 0 or 1. It is particularly preferred for both p and q to be 0.

10

15

20

25

30

35

5

In the above formula (I), G is a group represented by -CO-, -SO₂-, -CO-O-, -NR⁷-CO-, -CO-NR⁷-, -NH-CO-NH-, -NH-CS-NH-, -NR⁷-SO₂-, -SO₂-NR⁷-, -NH-CO-O-, or -O-CO-NH-, wherein R⁷ is a hydrogen atom or a C_1 - C_6 alkyl group, or R⁷ taken together with R⁵ represents a C_2 - C_5 alkylene group.

In the above formula, -CO- means a carbonyl group, -SO₂- means a sulfonyl group, and -CS- means a thiocarbonyl group. Preferred G group is specifically, for example, those represented by the formula $-NR^7$ -CO- and -NH-CO-NH-.

The C_1 - C_6 alkyl group for R^7 are the same as defined for the aforementioned substituent for the phenyl group, C_5 - C_6 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

The " C_2 - C_5 alkylene group" consisting of R^5 and R^7 means C_2 - C_5 straight-chain or branched alkylene group such as a methylene, ethylene, propylene, trimethylene, tetramethylene, 1-methyltrimethylene, pentamethylene group, and the like, suitably and specifically including a ethylene, trimethylene and tetramethylene group.

A hydrogen atom is a preferred specific example for R^7 .

In the above formula (I), R^6 is a phenyl group, a C_3 - C_8 cycloalkyl group, a C_3 - C_8 cycloalkenyl group, a benzyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl, benzyl, or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C_3 - C_8 cycloalkyl group, C_2 - C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed

ring may be substituted with one or more of a halogen atom, a hydroxy group, a mercapto group, a cyano group, a nitro group, a thiocyanato group, a carboxy group, a carbamoyl group, a trifluoromethyl group, a C_1 - C_6 alkyl group, a C_3 - C_6 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_3 - C_8 cycloalkyloxy group, a C_1 - C_6 alkylthio group, a C_1 - C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylamino group, a benzyl group, a benzoyl group, a phenylsulfinyl group, a phenylsulfonyl group, a 3-phenylureido group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 alkylcarbamoyl group, a C_1 - C_6 alkylsulfonyl group, a phenylcarbamoyl group, a C_1 - C_6 alkyl) sulfamoyl group, an amino group, a mono $(C_1$ - C_6 alkyl) amino group, a di $(C_1$ - C_6 alkyl) amino group, a coup, a cou

5

10

15

20

25

30

35

The C_3 - C_8 cycloalkyl group, aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, and the condensed ring for R^6 are the same as defined for the aforementioned R^1 , and the same examples can be listed as preferred specific examples.

The " C_3 - C_8 cycloalkenyl group" for R^6 means a cyclic alkenyl group such as a cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, and cyclooctenyl group, specifically including a 1-cyclopentenyl and 1-cyclohexenyl group.

Among them, a phenyl group, a furyl group, and a thienyl group can be listed as a preferred specific example for $R^{\hat{\epsilon}}.$

The halogen atom, C_1 - C_6 alkyl group, C_2 - C_6 alkenyl group, C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, C_1 - C_3 alkylenedioxy group, C_2 - C_7 alkanoyl group, C_2 - C_7 alkoxycarbonyl group, C_2 - C_7 alkanoyloxy group, C_2 - C_7 alkanoylamino group, C_2 - C_7 alkylcarbamoyl group, C_1 - C_6 alkylsulfonyl group, mono(C_1 - C_6 alkyl) amino group, and di(C_1 - C_6 alkyl) amino group as a substituent for the phenyl group, C_3 - C_8 cycloalkyl group, C_3 - C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R^5 are the same as defined for the aforementioned substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

The C_3 - C_2 cycloalkyl group as a substituent for R^6 is the same as defined for the aforementioned C_3 - C_2 cycloalkyl group for R^1 , where the same examples

can be given for the preferred specific examples.

5

10

15

20

25

30

35

The " C_3-C_6 cycloalkyloxy group" as a substituent for R^6 means group consisting of the aforementioned C_3-C_8 cycloalkyl group and oxy group, specifically, for example, a cyclopropyloxy, cyclopentyloxy, and cyclohexyloxy group.

The " $N, N-di(C_1-C_6 \text{ alkyl})$ sulfamoyl group" as a substituent for R^2 means sulfamoyl group substituted with the same or different two C_1-C_6 alkyl group aforementioned, preferably and specifically, for example, a N, N-diethylsulfamoyl, N, N-diethylsulfamoyl, and N-ethyl-N-methylsulfamoyl group.

The " C_2 - C_7 (alkoxycarbonyl) amino group" as a substituent for R^6 means group consisting of the aforementioned C_2 - C_7 alkoxycarbonyl group and amino group, specifically, for example, a (methoxycarbonyl) amino and (ethoxycarbonyl) amino group.

The " C_1 - C_6 (alkylsulfonyl) amino" group as a substituent for R^6 means group consisting of the aforementioned C_1 - C_6 alkylsulfonyl group and amino group, specifically, for example, a (methylsulfonyl) amino group.

The "bis $(C_1-C_6 \text{ alkylsulfonyl})$ amino" group as a substituent for R^6 means amino group substituted with the same or different two C_1-C_6 alkylsulfonyl group aforementioned, preferably and specifically, for example, a bis (methylsulfonyl) amino group.

Among them, a halogen atom, a mercapto group, a nitro group, a thiocyanato group, a trifluoromethyl group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a phenyl group, a phenylsulfonyl group, a C_2 - C_7 alkanoylamino group, or an amino group can be listed as preferred specific example for substituent for the phenyl group, C_3 - C_8 cycloalkyl group, C_3 - C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R^6 .

Furthermore above substituents for the phenyl group, C_3-C_8 cycloalkyl group, C_3-C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R^6 are optionally substituted with one or more of a halogen atom, a cyano group, a hydroxy group, an amino group, trifluoromethyl group, a C_1-C_6 alkyl group, a C_1-C_6 alkyl group, a C_1-C_6 alkyl group, or a di $(C_1-C_6$ alkyl)amino group, or a di $(C_1-C_6$ alkyl)amino group.

The halogen atom, C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, mono(C_2 - C_6 alkyl) amino group, and di(C_1 - C_6 alkyl) amino group are the same as defined for the aforementioned substituents for the phenyl group, C_3 - C_6 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the

same examples can be listed as preferred specific examples.

(2) On Invention 2

5

10

20

25

30

The compound represented by the formula (I) above, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 - C_2 alkyl addition salt can be used to prepare a chemokine receptor antagonist preparation of the present invention by formulating the therapeutically effected amount and a carrier and/or diluent into a pharmaceutical composition. Thus, the cyclic amine derivatives shown by the above formula (I), a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 - C_6 alkyl addition salt can be administered orally or by parenterally, for example, intravenously, subcutaneously, intramuscularly, percutaneously or intrarectally.

The oral administration can be accomplished in the form of tablets, pills, granules, powder, solution, suspension, capsules, etc.

The tablets for example can be prepared using a vehicle such as lactose, starch and crystallized cellulose; binder such as carboxymethylcellulose, methylcellulose, and polyvinylpyrrolidone; disintegrator such as sodium alginate, sodium bicarbonate and sodium lauryl sulfate, etc.

Pills, powder and granule preparations can be prepared by a standard method using the vehicles mentioned above. Solution or suspension can be prepared by a standard method using glycerin ester such as tricaprylin and triacetin or alcohols such as ethanol. Capsules can be made by charging granules, powder or solution in gelatin, etc.

Subcutaneous, intramuscular or intravenous preparations can be prepared as an injection using aqueous or nonaqueous solution. Aqueous solution for example may include isotonic sodium chloride solution. Nonaqueous solutions may include for example, propyleneglycol, polyethyleneglycol, olive oil, ethyl oleate, etc., and optionally, one can add antiseptics and stabilizers. For injection, one can be sterilized by filtration through a bacterial filter or combination of disinfectant.

35

Percutaneous administration may be in the form of an ointment or cream, and ointment can be prepared in the standard manner using fatty oils such as

castor oil and olive oil, or Vaseline, while creams can be made using fatty oils or emulsifying agent such as diethyleneglycol and sorbitan esters of fatty acid.

The cyclic amine derivatives of the present invention, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 - C_6 alkyl addition salt is administered at a dose that varies depending on the type of disease, route of administration, age and sex of patient, and severity of disease, but is likely to be 1-500 mg/day in an average adult.

(3) Matter common throughout Invention 1 and Invention 2

Preferred specific examples for the cyclic amine compound in the above formula (I) include compound having each substituent as shown in the following Tables 1.1-1.201.

In the Tables 1.1-1.201, "chirality" means configuration of the asymmetric carbon atom on the cyclic amine. "R" shows that the asymmetric carbon atom has a R configuration, "S" shows that the asymmetric carbon atom has a S configuration, and "-" means racemate or that the compound do not have a asymmetric carbon atom on the nitrogen containing ring.

[Table 1.1 - Table 1.201]

10

15

20

Table 1.1

			•				
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R [€]
1	C├ - CH ₂ -	1	2	0	-	н	- CH ₂ - N- C-
2	C├ - CH ₂ -	1	2	0	• • • • • • • • • • • • • • • • • • •	н	-CH ₂ -N-C-CH ₃
3	C├ ~ CH ₂ -	1	2	.0	•	H ·	-CH ₂ -N-C-\(\bigc\)
4	CHCH ₂ -	1	2	0	-	н	CH ₂ - N- C- CF ₃
5	CHCH ₂ -	1	2	0	S	Н	O CF ₃ -CH ₂ -N-C-CF ₃
6	CHCH2-	1	2	0	S	H	$-CH_2-N$ C F_3C
7.	CHCH2-	1	2	0	S	. н	-CH ₂ -N C-
8	CHCH ₂ -	1	2	0	S	н	-CH ₂ -N-C
9	CH-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CI
10	CHCH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-✓OCH ₃
11	CH-2-	1	2	0	S	н	OCH ₃

Table 1.2

$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
13 $C \mapsto C $	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
14 $C \mapsto C $	12	С⊢-{Сн₂-	1	2	0	S	н	-CH ₂ -N-C-OCH ₃
15 $CH \longrightarrow CH_{2^{-}}$ 1 2 0 S H $-CH_{2^{-}} \stackrel{\circ}{H} \stackrel{\circ}{C} \longrightarrow CCI$ 16 $CH \longrightarrow CH_{2^{-}}$ 1 2 0 S H $-CH_{2^{-}} \stackrel{\circ}{H} \stackrel{\circ}{C} \longrightarrow CCH_{3}$ 17 $CH \longrightarrow CH_{2^{-}}$ 1 2 0 S H $-CH_{2^{-}} \stackrel{\circ}{H} \stackrel{\circ}{C} \longrightarrow CCH_{3}$ 18 $CH \longrightarrow CH_{2^{-}}$ 1 2 0 S H $-CH_{2^{-}} \stackrel{\circ}{H} \stackrel{\circ}{C} \longrightarrow CCI$ 19 $CH \longrightarrow CH_{2^{-}}$ 1 2 0 S H $-CH_{2^{-}} \stackrel{\circ}{H} \stackrel{\circ}{C} \longrightarrow CCI$ 20 $CH \longrightarrow -CH_{2^{-}}$ 1 2 0 S H $-CH_{2^{-}} \stackrel{\circ}{H} \stackrel{\circ}{C} \longrightarrow CCI$ 21 $CH \longrightarrow -CH_{2^{-}}$ 1 2 0 S H $-CH_{2^{-}} \stackrel{\circ}{H} \stackrel{\circ}{C} \longrightarrow CCI$	13	CHCH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
16 $C \mapsto CH_{2^{-}} + CH_{2^{-}$	14	C├ - CH ₂ -	1	2	0	S	Н	- CH ₂ - N- C-
17 $CH_{2}-CH_{2}-1$ 2 0 S H $-CH_{2}-\frac{O}{H}C-\frac{CI}{CI}$ 18 $CH_{2}-CH_{2}-1$ 2 0 S H $-CH_{2}-\frac{O}{H}C-\frac{CN}{CI}$ 19 $CH_{2}-CH_{2}-1$ 2 0 S H $-CH_{2}-\frac{O}{H}C-\frac{O}{CI}$ 20 $CH_{2}-CH_{2}-1$ 2 0 S H $-CH_{2}-\frac{O}{H}C-\frac{O}{CI}$ 21 $CH_{2}-CH_{2}-1$ 2 0 S H $-CH_{2}-\frac{O}{H}C-\frac{O}{C}$	15	CH₂-	1	2	0	S	н	-CH ₂ -N-C
18 $CH \longrightarrow CH_{2^{-}}$ 1 2 0 S H $-CH_{2^{-}} \stackrel{\circ}{H} \stackrel{\circ}{C} \stackrel$	16	C⊢√CH₂-	1	2	0	S	н	-CH₂-N-C
19 $CH - CH_{2}$ 1 2 0 S H $-CH_{2} - N C - CH_{2}$ 1 2 0 S H $-CH_{2} - N C - CH_{3}$ 20 $CH - CH_{2}$ 1 2 0 S H $-CH_{2} - N C - CH_{3}$ 21 $CH - CH_{2}$ 1 2 0 S H $-CH_{2} - N C - CF_{3}$	17	CHCH ₂ -	1	2	0	S	н	- CH ₂ -N-C-CI
20 CH_{2}^{-} 1 2 0 S H $-CH_{2}^{-}$ N CF_{3} 21 CH_{2}^{-} 1 2 0 S H $-CH_{2}^{-}$ N CF_{3}	18	C├ \ CH ₂ -	1	2	0	S	Н	- CH ₂ -N-C-CN
21 CH ₂ - 1 2 0 S H -CH ₂ - NCF ₃	19	CH-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C
	20	CH-CH2-	1	2	0	S	н ,	- CH ₂ -N-C-CF ₃
22 CH2- 1 2 0 S H -CH2-NC-S	21	С⊢СН₂-	1	2	0			
	22	C├ - CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-S

Table 1.3

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
23	C├ - CH ₂ -	1	2	0	S	н	-CH ₂ -N-C- H C- F
24	C├ - ⟨}-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-OCF ₃
25	C⊢-{}-CH₂-	1	2	0	S	н	-CH ₂ -N-C
26	С⊢—СН₂-	1	2	0	S	н	- CH ₂ -N-C
27	C⊢—CH₂-	1	2	: 0	S	н	- CH ₂ - N- C- NO ₂
28	CH₂-	1	2	0	S	н	- CH ₂ - N C NO ₂
29	C⊢(CH ₂ -	. 1	2	0	R	н	- CH ₂ -N-C-CF ₃
	CHCH ₂ -						-CH ₂ -N-C
31	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
32	CI-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
33	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CI

Table 1.4

Compd. No.	R ¹ (CH ₂)j-	k n	n n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
34	CH2−	1 2	2 0	R	Н	-CH ₂ -N-C- OCH ₃
35	CI-CH ₂ -	1 2	2 0	R	н	-CH ₂ -N-C- OCH ₃
36	C⊢√CH ₂ -	1 2	0	R	н	-CH ₂ -N-COCH ₃
37	C├ ─ _CH ₂ -	1 2	0	R	н	- CH ₂ -N-C-CF ₃
38	CH-CH ₂ -	1 2	0	R	н	-CH ₂ -N-C-CH ₃
39	CHCH ₂ -	1 2	0	R	н	- CH ₂ -N-C-CI
40	CH-CH ₂ -	1 2	0	R	н	-CH ₂ -N-C- CH ₃
41	CHCH ₂ -	1 2	0	R	н	- CH ₂ - N- C- CI
	CH-CH ₂ -					- CH ₂ - N- C-CN
43	CH-CH ₂ -	1 2	0	R	Н	· - CH ₂ -N-C-
44	C⊢-CH₂-	1 2	0	R	н	$-CH_2-NC$ C CF_3

Table 1.5

Compd.	R ¹ (CH ₂) _j -	k	m	'n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
45	C├ \ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
46	CH-€	1	2	. 0	R	н	- CH ₂ -N-C
47	CI—CH₂-	1	2	0	R	Н	-CH ₂ -N-C-OCF ₃
48	CHCH ₂ -	1	2	0	R	H	-CH₂-N-CF
49	C├ (CH ₂ -	1	2	0	R	 	- CH ₂ - N- C
50	CH-CH ₂ -	1	2	0	R	н	- CH ₂ -N-C-CF ₃
51	CHCH ₂ -	1	2	0	R _.	H	-CH ₂ -N-C
52	CI-CH ₂ -	1	2	0	R .	Ή	-CH ₂ -N-C- H
53	CH-CH ₂ -	1 :	2	0	R	н	- CH ₂ -N-C-CI
54	CH-2-	1 :	2	0	R	н	- CH ₂ - N- C
55	C⊢-{CH₂-	1 2	2	0	R	н	-CH ₂ -N-CI

Table 1.6

Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
56	CH2−	1	2	0	· R	 H	- CH ₂ - N- C - H ₃ C
57	C⊢√CH₂-	1	2	0	R	Н	-CH ₂ -N-C-
58	C⊢————————————————————————————————————	1	2	0	R	H	- CH ₂ -N-C-
59	CH-CH ₂ -	1	2	0	R	н	- CH ₂ - N-C
60	CHCH ₂ -	1	2	0	R	H	-CH ₂ -NC-
61	CHCH ₂ -	1	2	. 0 ′	·R	н	-CH ₂ -N-CF ₃
62	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
63	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-CH ₂ CH ₃
64	CHCH ₂ -	1	2	0	R	н	-CH2-N-C
65	CHCH ₂ -	1	2	0	R	Н	- CH ₂ - N- C-
66	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-

Table 1.7

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
67	CI—(CH ₂ -	1	2	0	R	Н	- CH ₂ - N- C
68	CH-CH ₂ -	. 1	2	0	R	Н.	-CH ₂ -N-C
69	CH	1	2	0	R	Н	-CH ₂ -N-C
70	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
71	CH-CH ₂ -	1	2	0	R	H.	$-CH_2-N+C-$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$
72	CH-2-	1	. 2	0	R	Н	-CH ₂ -N-C
73	C⊢-€	1	2	0	R	Н	-CH ₂ -N-C
74	CI—CH₂-	1	2	0	R	н	-CH ₂ -N-CO ₂ CH ₃
75	CI—CH₂-	1	2	0	R		$-CH_2-NC$ F_3C
76	C⊢√_CH₂-	1.	2	0	R	н	-CH ₂ -N-C
77	C⊢-() CH₂-	1	2	0	R		- CH ₂ -N-C-F

Table 1.8

	р 1 .			<u> </u>			R ⁴
No.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
78	CHCH ₂ -	1	2	0	R	· H	-CH ₂ -N-C-F
79	CHCH ₂ -	1	2	0	R	н	$-CH_2-N C - CF_3$ F_3C
80	C⊢CH₂-	1	2	0	R	н	$-CH_2-NC$ F_3C
81	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
82	CI—CH ₂ -	1	⁽ 2	0	-	—СH ₃	-CH ₂ -N-C-CF ₃
83	CH-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-NO ₂
84	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
85	C├─ \	1	2	0	-	н	-(CH ₂) ₂ -N-C-
86	CH-CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -N-C-NO ₂
87	C├ - CH₂-	1	2	Ó	S	н	$-(CH_2)_2-N-C CF_3$ CF_3
88	C⊢√CH₂-	1	2	0	S	Н	-(CH ₂) ₂ -N-C

Table 1.9

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G-R ⁶ R ⁵
89	CH-CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-
90	CH-2-	1	2	0	S	Н	-(CH ₂) ₂ -N-C
91	C⊢√ CH₂-	1	2	0	S	. Н	-(CH ₂) ₂ -N-C-CI
92	C	. 1	2	0	S	н	-(CH ₂) ₂ -N-C-OCH ₃
93	C⊢√ CH₂-	1	.2	0	S	н	-(CH ₂) ₂ -N-C- OCH ₃
94	CH2-	1	2	0	S .	н	-(CH ₂) ₂ -N-C-OCH ₃
95	CHCH ₂ -	1	- 2	0	S	Н	-(CH ₂) ₂ -N-C-CF ₃
96	CI—CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-CH ₃
97	C├ \ CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-CI
98	C├-{	1	2	0	S	н	O -(CH ₂) ₂ -N-C
99	CH-CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CI

Table 1.10

<u> </u>	RI				· · · · · · · · · · · · · · · · · · ·		R ⁴
No.	R ¹ (CH ₂) _j	k	m	n	chirality	' R³	ー(CH ₂) _{p i} (CH ₂)q G-R ⁶ R ⁵
100	C├ - CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-CN
101	CHCH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-O
102	C⊢√_CH₂-	1	2	0	S	H	-(CH ₂) ₂ -N-C-CF ₃
103	C	1	2	0	S	Н	-(CH ₂) ₂ -N-CF ₃
104	C├ \ CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-F ₃
105	CH-2-	1	2	0	S	н	-(CH ₂) ₂ -N-C
106	CH-2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-
107	CH-CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-CF ₃
108	CH-CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-O-O ₂ N
109	C├ \ CH ₂ -	1	2	0	S	H	-(CH ₂) ₂ -N-C-NO ₂
110	C├ \ CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-NO ₂

Table 1.11

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p
111	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
112	C├ - CH ₂ -	1	2	0	R.	Н	-(CH ₂) ₂ -N-C
113	C⊢————————————————————————————————————	1	2	0	R	н	-(CH ₂) ₂ -N-C-Br
114	C├ ~ CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
115	C⊢√ CH₂-	1	2	0	R	H	-(CH ₂) ₂ -N-CI
116	CI—CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
	CHCH ₂ -					н	-(CH ₂) ₂ -N-C-OCH ₃
118	C├ \ CH ₂ -	1	2	0	R	н	$-(CH_2)_2 - N - C \longrightarrow OCH_3$ OCH_3
119	CHCH2-	1	⁻ 2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
120	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
121	CHCH2-	1	2	0	R .	н	-(CH ₂) ₂ -N-CI

Table 1.12

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
122	C├ - CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-OCH ₃
123	C├─ \ CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ - N- CI
	CHCH2-					Н	-(CH ₂) ₂ - N- C-
125	CHCH2-	1	2	0	R .	н	-(CH ₂) ₂ -N-C
126	C├ - CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C-CF ₃
127	CH_CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-CF ₃
128	C⊢(T)-CH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CF ₃
	CHCH ₂ -					*	-(CH ₂) ₂ -N-C-CF ₃
130	CHCH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
131	CH-CH ₂ -	1	2	0	R		-(CH ₂) ₂ -N-C
132	C⊢-{CH₂-	1	2	0 .	R	н	$-(CH2)2-N-C-$ O_{2} O_{2} O_{2}

Tabl 1.13

Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
133	CI—CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NO ₂
134	CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-NO ₂
135	C⊢————————————————————————————————————	1	2	0	R	· н	$-(CH_2)_2 - NC C \longrightarrow Br$
136	C⊢-€ CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
137	C⊢-{¯¯}-CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
138	C⊢€ CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
139	C├ ~ CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-CI
							-(CH ₂) ₂ -N-C
141	CH-2-	1	2	0	R	н	H ₃ CO O -(CH ₂) ₂ -NC- H ₃ CO
	CH-2-					н	-(CH ₂) ₂ -N-C-
143	CH-€ CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-Br

Table 1.14

	···						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	—(CH ₂) p G (CH ₂) q G−R [€]
144	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
145	C├ - ⟨}-CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
146	CH-CH ₂ -	1	2.	0	R	H .	-(CH ₂) ₂ - N- C- CH ₃
147	CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ - N C-CH ₂ CH ₃
148	CH-2-	1	2	0	·R	H	-(CH ₂) ₂ -N-C-CN
149	C ├── CH ₂ -	1	2 .	0	R	н	-(CH ₂) ₂ -N-C-
150	C├ \ CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C-
151	C⊢—CH₂-	1.	2	0	R	н	-(CH ₂) ₂ -N-C
152	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
153	CH-()- CH ₂ -	1.	2	0	R	н	-(CH ₂) ₂ -N-C
154	CH-2-	1	2	0	R	н	~(CH ₂) ₂ ~N·C~~F

Table 1.15

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
155	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
156	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
157	C⊢—CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
158	C⊢√CH₂-	. 1	2	0	R	Н	-(CH ₂) ₂ -N-C-______\\
159	CHCH ₂ -	1	.2	0	R	H [']	-(CH2)2-N-C-F $F3C$
160	CI—()- CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
161	CHCH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-F
162	CHCH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
	CH-CH2-						-(CH2)2-N-C - CF3 $F3C$
164	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C- H F ₃ C
165	СН-СН2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃

Table 1.16

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
166	CH-2-					Н	(S) O CF ₃ -CH-N-C-CF ₃ CH ₃
167	C⊢√_CH₂-	′1	2	0	R	н ′	CH ₃
168	CHCH ₂ -	1	2	0	R	H	(S) PCI -CH-N-C-C
169	CH-CH ₂ -	1	2	0	R	Н	(S) O CI -CH-N-C-CI CH ₃
170	CH2-	1	2	0	R	Н	(S) P CF ₃ -CH-N-C F
171	CH-€-CH ₂ -	1	2	0	R	Н	CH3 CH3
172	C⊢—CH₂-	1	2	0	R	Н	(S) (P) (CH ₃ (CH ₃)
	C						CH₃
174	C├─ (CH ₂ -	1	2	0	. R	H .	(F) O CF3 -CH-N-C-CF3 CH3
175	C├ ~ CH ₂ -	. 1	2	0	R	н	-CHN-C-CH3
176	С⊢СН₂-	1	2	0	R	Н	

Table 1.17

Compd.	R ¹ (CH ₂),—	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
177	CH-2-	1	2	0	R	н	i H ► CH₃
178	CH2-	1	2	0	R	н .	(F) O CF ₃ -CH-N-C-CF ₃ CH ₃ F
179 .	CH-2-	. 1	2	0	R	Н	(R) O CI -CHN-C-C-CI CH ₃
180	C├ - CH ₂ -	1	2	0	R	н	(R) P -CH-N-C- CH ₃
181	C⊢(CH ₂ -	1	2	0	R	н	(R) PNO₂ -CHN-C- H CH₃
182	CH ₂ -	1	2	0	R _.	н	CH ₃ O CF ₃ -CH N C
183	C├ \ CH ₂ -	1	2	0	R	н	CH ₃ O Br CH ₃ C
184	СН-СН2-	1	2	0	R	Н	CH ₃ O CI -CH-N-C-CI CH ₃
185	CI-CH ₂ -	1	2	0	R	Н	ÇH ₃ O CI - CH N C CI CH ₃
	СН-СН2-						CF3
187	CH-2-	1	2	0	R	н	CH3 O -CHN C-CI

Table 1.18

Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
. 188	CH2-	1	2	0	R	н	CH ₃ O -CH-N-C- CH ₃
189	CH2-	1	2	0	R	н	CH ₃ O NO ₂ -CH-N-C- CH ₃
190	CH2-	1	2	0	Ŗ	H .	(A) PCF3 -CHNC-CF3 CH2-S
191	CH2−	1	2	0	R	н	CH ₂ -S
192	CI—CH ₂ -	1	2	0	R	Н	CH ₂ -S
193	CHCH ₂ -	1	2	0	R	Н	(A) CI
194	CHCH ₂ -	1	2	0	R	н	CHNC-CF3 CH ₂ -CF ₃ F
195	CH-2-	1	2	0	R	. H	CHN-C-CI CH ₂ -S
	C├ - CH ₂ -						-
197	CH ₂ -	1	2	0	R	Н	(A) -CH+N-C- CH ₂ -S
198	CICH ₂ -	1	2	0	R	н	(S) P CF ₃ -CH ₂ -CF ₃

Table 1.19

Tubic .							
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}^{\overline{R}^4}(CH_2)_{\overline{q}}G^-R^6$
199	C⊢(CH ₂ -	1	2	0	R	н	(S) P -CH-N-C- CH ₂ -S
200	C⊢-()- CH₂-	1	2	0	R	н	(S) P C C C C C C C C C C C C C C C C C C
201	C⊢—CH₂-	1	· 2	. 0	R	н	(S) P CI -CH N-C- C
202	C⊢-(CH ₂ -	1	2	0	R ,	н	(S) CF ₃ -CH-N-C-F
203	C⊢-{CH ₂ -	1	2	0	R	н	(S) -CHN-C-C-CI CH2-S
204	C	1	2	0	R	н	(S) P -CHN-C- CH2-S
205	CH-€	1	2	0	R	н	(S) P NO 2 -CH ₂ CH ₂
206	C⊢-{CH ₂ -	1	2	0	R	н	(S) (CH ₂) ₂ - S-CH ₃
207	C	1	2	0	R	н	(S) OF CH3 (CH2)2-\$-CH3
208	CH-2-	1	2	0	R	н	(O ₂) ₂ -9-O ₃
209	C├ - CH ₂ -	1	2	0	R	н	(S) CI -CH-N-C-CI H O CH ₃ (CH ₂) ₂ -S-CH ₃

Table 1.20

Compd. No.	· R ¹ (CH ₂)	k	m	'n	chirality	Ŕ³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
210	CH-€-CH ₂ -	1	2	0	R	н	(S) OF ₃ -CH-N-C- H O (CH ₂) ₂ -S-CH ₃ F
211	C├ - CH₂-	1	2	0	R	н	(S) P CI -CH-N-C
212	CH-CH ₂ -	1	2	0	R	Н	(S) P -CH N C- (CH ₂) ₂ -3-CH ₃
213	C├ - CH ₂ -	1	2	0	R	Н	(S) NO ₂ -CH-N-C
214	CH2−	1	2	0	-	Н	-(CH ₂) ₃ -C-
215	C⊢√CH₂-	1	2	0	· -	н	-(CH ₂) ₃ -C-\(\sigma\)-OCH ₃
216	CICH ₂ -	1	2	0	-	Н	-(CH ₂) ₃ -C-
217	CI—CH ₂ -	1	2	0	• •	н	$-(CH_2)_2$ - C
	CH-CH ₂ -						
219	CH-CH ₂ -	1	2	0	-	Н	$-(CH_2)_2-C$ F OCH_3
220	CI-CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -C-CH ₃

Table 1.21

Table .							
Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R ³	$-(CH_2)^{\frac{R^4}{p+1}}(CH_2)^{\frac{1}{q}}G^{-R^6}$
221	C├ - CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -C-
222	C├ - CH ₂ -	1	2	0	- .	н	-(CH ₂) ₂ -C-CI
223	C⊢-{	1	2	0	-	н	O -(CH ₂) ₂ -C
224	C├ - CH ₂ -	1	2	0	-	н	$-CH_2-\ddot{S} \longrightarrow CH_3$
225	C⊢√ CH₂-	1	2	0	-	н	-(CH ₂) ₃ -C-N-
226	C├ - CH ₂ -	1	2	0	- .	н	-(CH ₂) ₃ -C-N-COCH ₃
227	CH-CH₂-	1	2	0	-	н	-(CH ₂) ₃ -C-N-CI
228	C⊢-(CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C-N
229	CH-(1	2	0	-	н	- CH ₂ -Ç-CH ₂ -C·N- CH ₃ CH ₃
230	CH-CH₂-	1	2	0	-	Н	-CH ₂ -CH ₂ -C-N-F
231	C	1	2	0	-	Н	-(CH ₂) ₃ -C-N-C-CH ₃

Table 1.22

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
232	C⊢-€	1	2	0	-	H	-(CH ₂) ₃ -C-N-
233	C⊢√CH ₂ -	1	2	0	- -	Н	-(CH ₂) ₃ -C-N-CH ₂ -
234	C⊢√CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C-N-CH ₃
235	C⊢-{	1	2	0	-	н .	- CH ₂ - CH- CH ₂ - C- N- CH ₂ - CH ₂ - CH ₃
236	CH-€ CH ₂ -	1	. 2	0	-	H .	-CH ₂ -N-S-CH ₃
237	C⊢—CH₂-	1	2	0	-	н	- CH ₂ - N- C- O- CH ₂ -
238	C⊢-{CH₂-	1.	2	0	-	н .	-¢H0-¢-N-
239	(CH₂-	1	2	0	S	н	-CH ₂ -N-C- CF ₃ -CH ₂ -N-C-
240	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
241	CI —CH ₂ —	1	2	0	S	н	-CH ₂ -N-C- CF ₃ -CH ₂ -N-C-
242	CI CH ₂ -	1	2	0	S	н	-CH ₂ -N-C- CF ₃ .

Table 1.23

Compd. No.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
243	CI CH₂− CI	1	2	Ó	S	н	-CH ₂ -N-C-CF ₃
244	CH₃ —CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
245	F_CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-⟨CF ₃
246	CICH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
247	CICH ₂ -	· 1	2	0	S	H	-CH ₂ -N-C-CF ₃
248	H ₃ CQ —CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
249	F ₃ C —CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
250	H ₃ C ————————————————————————————————————	1 -	2	0	S	н	-CH ₂ -N-C-CF ₃
	F-CH ₂ -					н	-CH ₂ -N-C-✓
252	H₃CO-{}-CH₂-	1	2	0	S	H	-CH ₂ -N-C-CF ₃
253	H ₃ C-()-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃

Table 1.24

Compd.	R ¹ (CH ₂) –	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
254	NO ₂	. 1	2	0	S	н	-CH ₂ -N-C-CF ₃
255	O ₂ N —CH ₂ -	1	2	, 0	S	H .	-CH ₂ -N-C-CF ₃
256	O ₂ N-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
257 ⁻	CF_3 $-CH_2$	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
258	CO ₂ CH ₂ CH ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
259	CH ₃	1	2	0.	S	Н	-CH ₂ -N-C-CF ₃
260	CI CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
261	F ₃ C-CH ₂ -	1	2	0	S	. Н	-CH ₂ -N-C-CF ₃
							-CH ₂ -N-C-CF ₃
263	Br CH ₂ -	1	2	0	S	н	-CH₂-N-C-CF3
264	OH ₂ -	1	2	0	S	н .	-CH ₂ -N-C- CF ₃

Tabl 1.25

labi	1.20						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
265	Br—€ CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
266	CH ₂ -	1	2	0	S	н	-CH₂-N-C-CF₃
267	OCH₃ —CH₂-	. 1	2	0	S	н	-CH ₂ -N-C-⟨S
268	4°C-C-H-(2)-CH ₹	1	2	0	S	н	-CH ₂ -N-C-⟨CF ₃
269	H ₃ C-\$\frac{\text{O}}{\text{O}} \text{CH}_2-	1	2	0	S	н	-CH₂-N-C-CF3
270	H ₃ CO ₂ C ————————————————————————————————————	1	2	0	S	н	-CH ₂ -N-C-CF ₃
271	F CH₂-	1	· 2	0	S .	н	-CH ₂ -N-C-CF ₃
272	HO-{	1	2	0	S	н	-CH ₂ -N-C-CF ₃
							-CH ₂ -N-C-CF ₃
274	NC CH₂-	1	2	0	S	Н	-СH ₂ -N-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-
275	NC-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-⟨CF ₃

Table 1.26

				_			
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
276	F-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
277	OH2-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
278	H₃∞₂C-{CH₂-	1	2	0	S	н	-CH ₂ -N-C-
279	F ₃ CO-\(\bigcirc\)-CH ₂ -	1	2	0	s ^ʻ	н	CF ₃
280	F ₃ CO —CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
281	HO ₂ C-CH ₂ -	1	2	0	• S	н	-CH ₂ -N-C-CF ₃
282	(H ₃ C) ₃ C-\(\bigc\)-CH ₂ -	1	2	0	S	H	-CH ₂ -N-C-CF ₃
283	CH₃ CH₂− CH₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
284	CH CH	1	2	0	S	н	-CH ₂ -N-C-CF ₃
285	—CH₂-	1	2	0	R	H	-CH ₂ -N-C-CF ₃
286	CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.27

, abic .							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
287	CI CH₂−	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
288	CH_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
289	CI CH₂− CI	1	2	0	R.	H	-CH ₂ -N-C- CF ₃ CF ₃
290	CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
291	F_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
292	CICH ₂ -	1	2 .	0	R	н	-CH ₂ -N-C-CF ₃
293	CI CH2−	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
294	H ₃ CO —CH ₂ —	1	2	0	R R	Н	-CH ₂ -N-C-CF ₃
295	F ₃ C ————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
296	H ₃ C ————————————————————————————————————	1	2	0	R	H	-CH ₂ -N-C-CF ₃
297	F-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.28

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
298	H₃CO-{}-CH₂-	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
299	H ₃ C-CH ₂ -	· 1	2	. 0	· R	н	-CH ₂ -N-C-CF ₃
300	NO ₂	1	2	0	R .	H · ·	-CH ₂ -N-C- CF ₃
301	O ₂ N ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
302	O ₂ N-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
303	CF ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	CO ₂ CH ₂ CH ₃					н	-CH ₂ -N-C-CF ₃
305	СН- СН₃	1	2	0	Ŗ	Н	-CH ₂ -N-C-CF ₃
306	CI CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
307	F ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
308	. Br CH₂−	1 ,	, 2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.29

, 45.5	.,						·
Compd.	R ¹ (CH ₂) _j	k '	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
309	Br CH ₂ -	1	2	0	R	Н	-CH2-N-C-CF3
310	Q-Q-QH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
311	Br—CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
312	CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3
313	OCH ₃	1	2	0	R	н	-CH ₂ -N-C- CF ₃
314	rpc-c-N-(C)-a+z-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
315	H ₂ C-S-CH ₂ -	1	. 2	0	R .	. н	-CH ₂ -N-C-CF ₃
	H ₃ CO ₂ C —CH ₂ —					•	-CH ₂ -N-C-CF ₃
317	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
318	· HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
319	CN CH₂−	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.30

Compd. No.	R ¹ R ² (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
320	NC CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
321	NC-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
322	F-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CF ₃
323	CH ₂ −	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
324	H₃∞₂C{	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
325	F ₃ CO-⟨CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
326	F ₃ CO —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
327	HO ₂ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
328	(H ₃ C) ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CF ₃ CF ₃
329	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	-CH ₂ -N-C-CF ₃
330	CICH ₂ -	0	3	1	-	н	- CH ₂ -N-C-

Table 1.31

Compd. No.	R ¹ (CH ₂)j	k	m	n	chirality	. R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
331	CH-CH ₂ -	0	3	1	-	Н ·	- CH ₂ - N- C- CH ₃
332	C⊢√CH₂-	0	3	1	· •	н	-CH ₂ -N-C-OCH ₃ OCH ₃ OCH ₃
333	C⊢√ CH₂-	0	3	1	-	н	- CH ₂ -N-C-\(\bigc\)
334	C├ ~ CH ₂ -	0	3	. 1	-	н	- CH ₂ -N-C-CH ₃
335	CCH₂-	0	3	1		н	-CH ₂ -N-C-\(\sigma\)
336	C├ - CH ₂ -	0	3	1	-	н	-CH ₂ -N-C-CF ₃
337	CH-€-CH ₂ -	0	3	1	-	н	$-CH_2-N-C-$
338	C├ - CH ₂ -	0	3	1	-	н	-CH ₂ -N-C-
339	CH2−	0	3	1	R	н	- CH ₂ -N-C-CF ₃
340	CH2 ⁻	0	3	1	S	н	- CH ₂ - N- C- CF ₃
341	CH2-	0	3	1	-	н	-(CH ₂) ₂ -N-C-

Table 1.32

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} + G - R^6$
342	CH-€	0	3,	1	-	н	CH N- C-
343	C⊢-{	0	3	1	-	н	O - CH N- C- H CH(CH ₃) ₂
344	CH-CH₂-	0	3	1	-	Н	- CH N- C- H H CH ₂ CH(CH ₃) ₂
345	C⊢√CH₂-	0	3	1	-	Н	-(CH ₂) ₃ -C-
346	CHCH ₂ -	0	. 3	1.	-	Ĥ	-(CH ₂) ₂ -C-C-OCH ₃
347	с⊢{	0 ·	3	1	•	н	$-(CH_2)_2 - CH_3$
348	C⊢√ CH₂-	0	3	1	-	H	-(CH ₂) ₂ -C-(CH ₃
349	C├ - CH ₂ -	0	3	1	-	Н	- CH ₂ -\$-CH ₃
350	C⊢√ CH₂-	0 .	3	1	-	н	-CH ₂ -N-S-CH ₃
351	C├ - CH ₂ -	0	3	1		H .	- CH ₂ -N-C-O-CH ₂ -
352	C⊢-{	0	3	1	•	н	- CH O C N C H

Table 1.33

Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
353	CH-€CH ₂ -	1	2	1	-	Н	-CH ₂ -N-C-
354	CH-€	1	3	0	-	н	-CH ₂ -N-C-
355	CH-√_CH ₂ -	1	3	0	-	н	- CH ₂ -N-CH ₃
356	CH2−	1	3	0	-	H .	- CH ₂ - N- C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
357	CH-CH₂-	1	3	0	-	н	-CH ₂ -N-C-
358	СН2−	1	3	0	-	н	-CH ₂ -N-C-CF ₃
359	CH2−	1	3	0	-	н	-(CH ₂) ₂ -N-C-
360	C⊢√CH₂-	1	3	0	-	н	-(CH ₂) ₂ -N-C-\\ H
361	C├-{} CH ₂ -	1	3	0		Н	-(CH ₂) ₃ -C-
362	C⊢(1	3	0	-	Н	-(CH ₂) ₃ -C
363	C├ - CH ₂ -	1	3	0	-	н	-(CH ₂) ₃ -C

Table 1.34

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
364	C├ - CH₂-	1	3	0	-	н	$-(CH_2)_2 - C \longrightarrow OCH_3$ H_3CO
365	CH ₂ -	1	3	. 0	-	н	-(CH2)2-CH3 $H3C$
366	CH2−	1	3	Ö	-	H	-(CH ₂) ₂ -C
367	C⊢(1	3	0	- -	Н .	-(CH ₂) ₂ -CH ₃
368	CHCH ₂ -	1	3	0	-	н	-(CH ₂) ₂ -C-
369	CH2−	1	3	0	-	н	-(CH ₂) ₂ -C-
370	C⊢√CH₂−	1	3	0	-	H	O -(CH ₂) ₂ -C-C-CCH ₂) ₃ CH ₃
371	CH-{	1	3	0	-	н	-(CH ₂) ₂ -C-\(\sigma\) \(\sigma\) \(\sigma
372	· C⊢————————————————————————————————————	1	3	0	<u>.</u> :	∵ Н	$-CH_2$ - S - CH_3
373	C⊢————————————————————————————————————	1	3	0		н	-(CH ₂) ₃ -C-N-
374	CH-√CH ₂ -	1	3	0	-	. Н	-(CH ₂) ₃ -C-N-

Table 1.35

Compd. No.	R ¹ (CH ₂)j-	k m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - G - R^6$
375	CH-CH₂-	1 3	0	•	Н	-(CH ₂) ₃ -C-N-CI
376	CH-{	1 3	0	-	Н	-(CH ₂) ₃ -C-N-OCH ₃
377	C⊢(1 3	0	-	Н	-CH ₂ -C-CH ₂ -C-N-CI
378	CH-CH₂-	1 3	0	-	н	- CH ₂ -CH ₂ -C-N-F
379	CH2−	1 3	0	-	н	-(CH ₂) ₃ -C-N
380	C├────────────────────────────	1 3	0	-	н	-(CH ₂) ₃ - C- N- CH ₂ -
381	C⊢√CH₂-	1 3	0	-	Н	- CH ₂ -N-S-CH ₃
382	CH-2-	1 3	0	-	» Н	- CH ₂ - N- C- O- CH ₂ -
383	CHCH ₂ -	1 3	0	-	H	- CH O C N CI
384	CH2-					-CH ₂ -N-C-CH ₃
385	C	2 2	0	-	H	-CH ₂ -N-C-\(\sigma\)

Table 1.3.6

10010							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
386	CH₂-	2	2	0	<u>-</u>	H .	-CH ₂ -N-C-
387	CH ₂ -	2	2	0	-	. н	-CH ₂ -N-C-
388	-CH ₂ -	2	2	0	-	н	-CH ₂ -N-C-\(\sigma\)
389	CH ₂ -	2	2	0	· 	. н	-CH ₂ -N-C
390	-CH ₂ -	2	2	0	-	н	-CH ₂ -N-C-CF ₃
391	CH ₂ -	2	2 -	0	• -	H	-CH ₂ -N-C-CF ₃
392	CH₂-	. 2	2	0	-	н	-CH ₂ -N-C-
393	CH₂-	2	2	0	, • <u> </u>	н	-CH ₂ -N-C-
394	CH₂-	2	2	0	-	н	-CH ₂ -N-C-
395	—CH₂-	2	2	0	· •	н	-CH ₂ -N-C-⟨D-Br
396	~ CH₂-	2	2	0	-	н	-CH2-N-C

Table 1.37

Table 1	.3 /						
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
397	CH ₂ -	2	2	0	-	н	-CH ₂ -N-C-CI
398	- CH₂-	2	2	0	- .	н .	-(CH ₂) ₂ -N-C-
399	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-
400		2	2	0		. н	-(CH ₂) ₂ -N-C
401	—CH ₂ -	2	2	0	•	H	-(CH ₂) ₂ -N-C
402	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-CF ₃
403		2	2	0	-	Н	-(CH ₂) ₂ -N-C
404		2	2	0	-	Н	-(CH ₂) ₂ -N-C
405	—CH₂−	2	2	0	-		-(CH ₂) ₂ -N-C-
406		2	2	0	•	н	-(CH ₂) ₂ -N-C-
407	CH₂-	2	2	0	-		-(CH ₂) ₂ -N-C-Br
407	~ CH₂−	2	2	0	-		

Table 1.38

R ² (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
CH₂-	2	2	0	- ·	н	-(CH ₂) ₂ -N-C-F
CH₂-	2	2	0	· -	Н	-(CH ₂) ₂ -N-C-CI
CH₂-	2	2	0	-	н	(S) -CH-N-C- CH ₂ CH(CH ₃) ₂ :
CH₂-	2	2	0	·_	Н	(S) P -CH-N-C- CH ₂ CH(CH ₃) ₂
—CH₂—	2	2	0	-	Н	(S) P NO ₂ -CH-N-C-
CH₂-	2	2	0	-	H	(S) O -CH-N-C-C-CO ₂ CH ₃ CH ₂ CH(CH ₃) ₂
—CH₂-	2	2	0	•	н	(S) CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
CH₂-	2	2	0	-	Н	(S) CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ F
—CH₂-	2	2	0	-	H	(S) QCF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
CH₂-	2	2	0	-	H	(S) −CH−N−C− H CH ₂ CH(CH ₃) ₂
—CH₂-	2	2	0	-	н	(S) (CI -CH-N-C- H CH ₂ CH(CH ₃) ₂
	CH_{2} - $CH_{$					

Table 1.39

, 42.0							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	'R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
419	(CH₂-	2	2	0	-	н	(S) P -CH-N-C-Br CH ₂ CH(CH ₃) ₂
420	CH₂-	2	2	. 0	• ·	н	(S) F -CH-N-C
421	CH₂-	2	2	0	- ,	н	(S) CI -CH-N-C- CI H CH₂CH(CH₃)₂
422	CH₂-	2	2	0	-	H .	(F) 0 -CH-N-C- H CH ₂ CH(CH ₃) ₂
423	CH ₂ -	. 2	2	0	-	н	(R) II -CH-N-C- H H CH ₂ CH(CH ₃) ₂
424	CH₂-	2	2	0	-	н	(A) NO ₂ -CH-N-C- CH ₂ CH(CH ₃) ₂
425	CH2-	2	2	0	-	н	(<i>H</i>)
426	CH2-	2	2	0		н	(R) -CH-N-C-CF3 CH ₂ CH(CH ₃) ₂
427	CH ₂ -	2	2	0	-	н	CH-N-C-CF3 CH ₂ CH(CH ₃) ₂ F
428	CH ₂ -	2	2	0	-	н	(<i>H</i>) -CH-N-C- -CH ₂ CH(CH ₃) ₂
429	(C H ₂ −	2	2	0		н	(R) II -CH-N-C-S I H CH ₂ CH(CH ₃) ₂

Table 1.40

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	Ħ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
430	CH₂-	2	2	0	-	н	(H) -CH-N-C- -CH2CH(CH3)2
431	CH ₂ -	2	2	0	- , .	н	(<i>H</i>) (<i>P</i>)
432	CH₂-	2	2	Ŏ	- 	Н	(R) F -CH-N-C-F -CH ₂ CH(CH ₃) ₂
433	€ CH2-	2	2	0	-	н .	(R) -CH-N-C-CI H CH₂CH(CH₃)₂
434	с⊢—СН₂-	1	3	1		H	-CH ₂ -N-C-
435	C├ - CH₂-	1	3	_. ,1	·	н	-CH ₂ -N-C-
436	C⊢√CH₂-	1	3	1	*	Н	-CH ₂ -N-C-\bigs\text{NO}2
437	CH-2-	1	3	1	. -	Н	-сн ₂ -N-с
438	CH2-	1,	3	1	-	Н	-CH ₂ -N-C-C-CF ₃
439	C⊢-⟨¯¯}-CH₂-	1	3	1	-		-CH ₂ -N-C
440	C⊢√CH₂-	1	3	1	-	Н	-CH ₂ -N-C-COCF ₃

Table 1.41

idbic							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
441	с⊷()—сн₂-	1	3	1	-	н	-CH ₂ -N-C-
442	C⊢√_CH₂-	1	3	1	-	н	-CH₂-N-C-CI
443	CH_CH2-	1	3	1	-	н	-CH ₂ -N-C-⟨Br
444	CHCH2	1	3	1	-	н	-CH ₂ -N-C
445	C⊢√CH₂-	1	3	1	-	н.	-CH ₂ -N-C-CI
446	с⊢{_}СН₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C-
447	C├ \ CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C-
448	CH2-	1	3	1	- .	Н	-(CH ₂) ₂ -N-C
449	C	1	3	1		н	-(CH ₂) ₂ -N-C-√
450	C├ - CH ₂ -	1	3	1	-	Н	-(CH ₂) ₂ -N-C-CF ₃
451	C├ - CH₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C

Table 1.42

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
452	CHCH ₂ -	1	3		-	н	-(CH ₂) ₂ -N-C
453	C├ - CH ₂ -	1	3	1	-	H ·	-(CH ₂) ₂ -N-C-
454	C⊢-{	1	3	1	- ·	Н	-(CH ₂) ₂ -N-C-
455	С⊢√СН₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C
456	C⊢-{}-CH₂-	ı	3	1	-	H.	-(CH ₂) ₂ -N-C-F
457	C⊢√ CH₂-	1	3	1	. · -	н	-(CH ₂) ₂ -N-C-CI
458 ·	CI—(¯¯) CH₂-	2	2	1.	-	н	- CH ₂ - N- C-
459	CI—(CH₂-	2	2	1	-	н	- CH ₂ -N-C-CH ₃
460	CI—⟨□ CH₂-	2	2	1	-	H	- CH ₂ - N- C- CH ₃
461	C⊢(CH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
462	C├ \ }-CH₂-	2	2	1	<u>-</u> ·	н	-CH ₂ -N-C- H ₃ C

Table 1.43

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
463	CH2-	2	2	1	-	. н	-CH ₂ -N-C-
464	CH-€CH ₂ -	2	2	1	<u>.</u>	н	$-CH_2-N-C \longrightarrow OCH_3$ $-CH_3$ OCH_3
465	CH2-	· 2	2	1	-	н	-CH2-N-C-
466	CH-CH₂-	2	2	1	-	·H	- CH ₂ -N-C-NO ₂
467	C⊢√CH₂-	2	2	1	-	н	- CH ₂ - N- C-
468	C⊢√-CH₂-	. 2	2	1	· -	н	-CH ₂ -N-C-N(CH ₃) ₂
469	C⊢-CH₂-	2	2	1	-	н	-CH ₂ -N-C
470	C⊢√CH₂-	2	2	1	-	н	-CH ₂ -N-C- H
471	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H C- CO ₂ CH ₃
472	CH-(2	2	1	-	н	- CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
473	CH2-	2	2	1	-	н	-CH ₂ -N-C- C-CH ₃

Table 1.44

	• • •						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ř³	$-(CH_2)_p + (CH_2)_{\overline{q}} G - R^6$
474	C⊢√CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
475	C⊢√CH₂-	2	2	.1		H	- CH ₂ -N-C-(CH ₃) ₂
476	CH-CH₂-	2	2	·1	-	Н	- CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
477	C⊢-()CH ₂ -	2	2	1	<u>.</u>	H	- cH ₂ -N-с
478.	C⊢-(¯¯)CH ₂	2	2	1	- 	н	-CH₂-N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
479	CH-√CH ₂ -	2	2	1	•	Н	-CH2-N-C-
480	CH-CH ₂ -	2	2	1	<u>-</u>	Н	- CH ₂ -N-C-O Br
481	CH2-	2	2	1	. . ,	Н	-CH2-NC-S
	C├ - CH ₂ -						-CH ₂ -N-C-S
483	CH2 ⁻	2	. 2	1	-	н	-CH ₂ -N-C-S CH ₃
484	C├ \	2	2	1	<u>.</u> ·	H	-CH ₂ -N-C-N-H

Table 1.45

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
485	С⊢—СН₂-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
486	С⊢—СН₂-	2	2	1	-	н	- CH ₂ -N-C-
487	C├ - CH₂-	2	2	1	-	н	-CH ₂ -N-C-CI
488	CH-€	2	2	1	-	н	-CH ₂ -N-C
489	C├─ \ CH ₂ -	2	2	1	-	H	$-CH_2-NC$ F_3C
490	C├─ \ CH ₂ -	2	,2	1	<u>-</u>	н	-CH2-N-C
491	CH2 ⁻	2	2	1	-	н	-CH ₂ -N-C-CF ₃
492	CHCH2-	2	2	1	-	н	-CH ₂ -N-C-OCF ₃
493	CH2−	2	2	1	-	н	- CH ₂ -N-C-
494	CH2-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
495	C├ ─ CH ₂ -	2	2	1	-	Н	- CH2- H C ← CF3

Table 1.46

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
496	CH-CH ₂ -	2	2	1	-	Н	- CH ₂ - N- C
497	CHCH ₂ -	2	2	1	- -	н	-CH ₂ -N-C-CH(CH ₃) ₂
498	C⊢√CH₂-	2	2	1	-	н	- CH ₂ - N- C-
499	C⊢√CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-\(\times\)-N(CH ₃) ₂
500	CH-2-	2	2	1	-	н	-CH ₂ -N-C- OCH ₃
501	СI—СН₂-	2	2	1	•	н	- CH ₂ - N- C- NO ₂
502	CH2-	2	2	1	-	н	O NO ₂ - CH ₂ - N- C - F
503	CH-{}-CH ₂ -	2	2	1		:. Н	- CH ₂ - N- C- NO ₂ NO ₂ CI
504	C⊢(CH ₂ -	2	2	1	•	н	- CH ₂ -N-C-OCH ₃
505	C ⊢ CH ₂ -	2	2	1	-		O NO ₂ -CH ₂ -N-C
506	C⊢√CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-\ NO ₂

Table 1.47

	_						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ř³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
507	CI()- CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-O
508	C├-{}-CH ₂ -	2	2	1	-	н.	-CH ₂ -N-C-S
509	CH2 ⁻	2	2	1	-	Н	- CH ₂ -N-C-S
510	CI—CH₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₃
511	CHCH ₂ -	2	2	1	-	н	- CH ₂ -N-C-O C(CH ₃) ₃
512	C⊢√CH ₂ -	2	2	1	, -	н	CHCH ₃ - CH ₂ - N- C-
513	CH-2-	2	2	1	-	Н	- CH ₂ - N- C- CH ₃
514	CH-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-C(CH ₃) ₃
515	СНСН₂-	2	2	1	-	н	- CH ₂ -N-C
516	H ₂ N(CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C-CF ₃
517	H ₂ N CH ₂ -	2	2	1	•	н	-CH ₂ -N-C-CF ₃

Table 1.48

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
518	NH ₂	2	2	1	-	н	-CH ₂ -N-C-
519	Q-C-N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
520	CHCH ₂ -	2	2	1	•	—СH ₃	-CH ₂ -N-C-CF ₃
521	CHCH2-	2	2	1	- , -	-(CH ₂) ₂ CH-	-CH2-N-C-CF3
522	CH2-	2	2	1	-	-CH ₂ CH-	-CH ₂ -N-C-CF ₃
523	CH2-	2	2	1		-(CH ₂) ₂ CH-	-CH ₂ -N-C-
524	CH-CH ₂ -	2	2	1	-	-CH ₂ CH-	-CH ₂ -N-C-
525	CH-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
526	CH-CH ₂ -	2	2	1		н	-CH2-N-C-
527	CHCH ₂ -	2	2	1	-	. н	-CH ₂ -N-C-√S
528	C├ - CH ₂ -	2	2	1	, <u>-</u>	н	-CH ₂ -N-C-CH ₃ F ₃ C

Table 1.49

Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
529	Ċ⊢√¯}–CH₂-	2	2	1	-	н	-CH ₂ -N-C-\(\frac{0}{0}\) NO ₂
530	С⊢—СН2-	2	2	1		н	-CH ₂ -N-C-
531	CI—CH₂-	2	2.	1	-	н	-CH ₂ -N-C-S
532	C├ - CH ₂ -	2	2	1	-	H .	$-CH_2-N-C-VOO$ H_3C
533	C⊢-()-CH₂-	2	2	1	<u>-</u>	н	-CH ₂ -N-C-C-O
534	C	2	2	1	· •	н	-CH ₂ -N-C-NO ₂
535	C⊢-()- CH ₂ -	2	2	1	-	H	-CH2-N-CS H3C-G0
536	C⊢-{}-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-CH ₃
537	C⊢————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-C(CH ₃) ₃ H ₃ C
538	CH2-	. 2	2	1	-	н	-CH ₂ -N-C-VO
539	CH2-	2	2	1	-	н.	-CH ₂ -N-C-O H ₃ C -CH ₂ -N-C-O F ₃ C

Table 1.50

Compd. No.	R ¹ (CH ₂)j-	k	m	n (chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
540	C ⊢ CH ₂ -	2	2	1	. -	н	-CH ₂ -N-C-N-CH ₃
541	C⊢√_CH ₂ -	2	2	1	- · .	н	$-CH_2-N-C-$ H_2N
542	C⊢—CH₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₂ CH ₃
543	C├ - CH ₂ -	2	2	1	-	H.	-CH ₂ -N-C-_>-CH ₂ CH ₃
544	CH-2-	2	2	1	-	H .	CH ₂ -N-C-
545	C⊢√_CH₂-	2	2	1	•	Н	-CH ₂ -N-C-
.546	CH-CH₂-	2	2	1	-	Н .	-CH ₂ -N-C-CI
547	C⊢√_CH₂-	. 2	2	1	-	Н	-CH ₂ -N-C-CI
548	CH-2-	2	2	1	-	н	-CH ₂ -N-C-CI
549	CH-2-	2	2	1	-	Н	$-CH_2-N-C-$ O_2N
550	CH2−	2	2	1	-	Н	-CH ₂ -N-C-

Table I							
Compd.	R ¹ (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
551	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CH ₃
552	CH_CH₂-	2	2	1		н	-CH ₂ -N-C-CH ₂ -CF ₃
553	CH-€ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CF ₃
554	CH-√CH₂-	2	2	1	- .	н	-CH ₂ -N-C-N-H
555	CH-{	2	2	.1	-	H.	-CH ₂ -N-C-N-H
556	CH-€T-CH2-	2	2	1		Н	-CH ₂ -N-C-N-H
557	CH2 [−]	2	2	1	-	Н	-(CH ₂) ₂ -N-C-
558	CH2-	2	2	1	-	н	CH ₃ O -CHN-C-
559	CH-CH ₂ -	2	2	1	-	H ′	-CHNC-CF3
560	CH-CH ₂ -	2	2	1	-	н	-CHN-C-CN CH₃
561	CH-2-	2	2	_. 1	•	н .	-CHNC-Br
							·

Table 1.52

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
562	CHCH ₂ -	2	2	1	-	Н	-CHNC-CI
563	CI-CH ₂ -	2	2	1	· <u>-</u>	H-	$ \begin{array}{ccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & &$
564	C⊢√CH ₂ -	2	2	1	•	H	-CHNC-CH3 CH3
565	CI—CH₂-	2	2	1	-	Н	-CHNC-CF3
566	CI-CH ₂ -	2	2	1	-	н	- CH N C- OCF3 - CH3
567	CI—CH₂-	2	2	1	-	H	- CH N C-CF3
568	CI—CH₂-	2	2	1	· <u>-</u>	н	-CHNC- H CH ₃ CF ₃
569	CH—CH₂-	2	2	1	-	, н	-CHNC-CF3
570	CHCH ₂ -	2	2	1	•	Н	-CHNC-F CH ₃
571	CI-CH ₂ -	2	2	1	-	н	-CH N C- CH3)2
572	С⊢—СН₂-	2	2	1	•	н	-CHN-C-CH3 -CH3
572	C⊢()−CH ₂ −	2	2	1	•	H .	-CH3-C-()

Table 1.53

Compd.	R ¹ (CH ₂)	k	m	n. n	chirality	'R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
573	C⊢-{}-CH₂-	2	2	1	-	н	-CHNC-S
574	C⊢-(2	2	1	-	Н	-CHNC-S Br
575	CH2−	2	2.	. 1	-	н	-CHNC-(CH ₃) ₃
576	CH-CH ₂ -	2	2	1	· <u>-</u>	н	-CHHC-OSCH3
577	CH-2-	2	2	1	<u>-</u> ·	н	-CHNC-O
578	C⊢√CH₂-	2	2	1	· -	н	-CHNC-S
579	CH-{CH₂-	2	2	, 1	-	н	-CH-N-C-N-H
580	C⊢√CH₂-	2	2	1	* <u>-</u>	H *	-CHNC-S CH3
581	C├ - CH ₂ -	2	2	1		Н	-CHNC-S -CH3
582	C⊢√CH ₂ -	2	2	1	-	н .	- CH N C S
583	CH2-	2	2	1	-	Н	-CH N C-N CH3 CH3

Table 1.54

	Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶ R ⁵
•	584	CH2-	2	2	1	-	н	-CHNC
	585	CHCH ₂ -	2	2	1	-	Н	- CH N C - CN
	586	CH-CH ₂ -	2	2	1	•	н	-CHNC-CI
	587	CHCH ₂ -	2	2	1	-	Н	-СН N С - СF ₃ СН ₃
	588	CH-CH ₂ -	2	2	1	-	Н	$-CHNC-NH_2$ CH_3
	589	CH-CH ₂ -	2	.2	1	-	н	-CHN-C
	590	CH-2-	2	2	1	-	H	- CH N C - CH(CH ₃) ₂ CH ₃
	591	CH-CH ₂ -	2	2	1	-	н	-CHN C- N(CH ₃) ₂ CH ₃
	592	CI—CH ₂ -	2	2	1	- -	н	-СН N-С—— ОСН ₃ СН ₃
•	593	CH-€ CH₂-	2	2	1	-	, н	- СН- № С- Н Н СН ₃
	594	C⊢—CH₂-	2	2	1	•	H	- СН И С- СН3

Table 1.55

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	'R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
595	CI—CH₂-	2	2	1	-	Н	O -CHN C- H CH3
596	C⊢(CH ₂ -	2	2	1	•	н	- CH N C - C CH ₃
597	C⊢√CH₂-	2	2	1	•	Н	-CH N C-C C+13
598	C⊢—CH₂-	2	2	1	-	н	-CH N C-() CH3
599	C⊢√_CH₂-	2	.2	1	-·	Н	-CH N C- H N CH ₃ CH ₃
600.	C€	2	2	1	-	Н	-CHNC-OBr
601	C├ - CH ₂ -	2	. 2	1	-	H ·	-CHNC-CH3
602	CH2-	2	2	1	-	Н	- CH N C - N(CH ₃) ₂ - CH ₃ - CH ₃
603	CHCH ₂ -	2	2	1	-	н	- CH N C - NH2 CH3
604	CH-2-	2	2	1	-	。 H	-CH-N-C-
605	CH	2	2	1	-	н	-CH-N-C-CO

Table 1.56

Compd.	R ¹ (CH ₂)	k	m	n	chirality	· R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
606	CI-CH ₂ -	2	2	1	•	н	-CH-N-C-CS
607	CI-CH2-	2	2	1	-	Н	-CH-N-C-S CH ₃
608	CI-CH ₂ -	2	2	1	-	. н	CH ₃ H ₃ C
609	CH-2-	2	2	1	-	н	-CH-N-C
610	CI————————————————————————————————————	2	2	1	-	H	-CH-N-C-S CH ₃ O=CCH ₃
611	CI—(CH₂-	2	2	1		н	-CH-N-C-C(CH ₃) ₃ -CH ₃ H ₃ C
612					-	Н	-CH-NC-CO
613	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-CH ₃ -CH ₃ -C
614	CHCH ₂ -	2	2	1	-	Н	-CH-N-C
615	C├ - CH ₂ -	2	ş	1	-	H	-CH-V-C-NH
616	CH-CH ₂ -	2	2	1	-	н	-CH-N-CN

Table 1.57

Table	1.07						
Compd.	R ¹ (CH ₂),	k	m	n	chirality	⁻ R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
617	C├ - CH ₂ -	2	2	1	-	Н	-CHNC-CF3
618	C├ - CH ₂ -	2	2	1		H	-CH-N-C- H CH(CH ₃) ₂
619	C⊢-{	2	2	1	-	H	- CH N C - CN - CH (CH ₃) ₂
620	CH-CH₂-	2	2	. 1	-	н	-CHNC-Br -CH(CH ₃) ₂
621	C├	2	2	1	-	н	O CI - CH- N- C - C H CH(CH ₃) ₂
622	C⊢-()CH ₂ -	2	2	1	-	н	-CHNC-N(CH ₃) ₂ -CH(CH ₃) ₂ -CH(CH ₃) ₂
623	C├ - CH ₂ -	2	2	1	-	н	-CHNCH3)2
624	CH2-	2	2	1	-	н	O NO ₂ - CH N C C
625	C├ ~ CH ₂ -	2	2	1	-	н	- CH N C NH ₂ - CH (CH ₃) ₂
626	C⊢√CH ₂ -	2	2	1	· . · <u>-</u>	н	-CH-N-C
627	CH2-	2	2	1	-	н	O OCH ₂ CH ₃ - CH N C O OCH ₂ CH ₃ CH(CH ₃) ₂

Table 1.58

Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
628	CHCH2-	2	2	1	· -	н .	CH N C CO ₂ CH ₃
629	CH2-	2	2	1		Н	-CH N C - CF ₃ -CH(CH ₃) ₂
630	CH2−	2	2	1	- -	н	O OCF ₃ - CH N C OCF ₃ - CH(CH ₃) ₂
631	CHCH2-	2	2	1	÷ <u>-</u>	н	-CHNC- -CHNC- H CH(CH ₃) ₂ CF ₃
632	CH2-	2	2	1	-	н	OF -CH-N-C- -CH(CH ₃) ₂ CF ₃
633	C⊢√CH ₂ -	2	2	1	· <u>-</u>	H	CF ₃ -CHNC-CF ₃ -CH(CH ₃) ₂ F
634	C├	2	2	1	-	H	- CH-N-C
635	CH2-	2	2	1	•	H =	-CHN C
636	CH2-	2	2	1	• •	Н	- CH N C CH ₃ - CH (CH ₃) ₂
637	C⊢CH₂-	2	2	1	-	н	- CH-N-C
638	CH2-	2	2	1	-	Н	O - CH-N-C

Table 1.59

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
639	CI—()— CH₂-	2	2	1	-	H	O - CH N C - N(CH ₃) ₂ CH(CH ₃) ₂
640	C⊢—CH₂-	2	2	1	-	H.	- CH-N-C
641	CH-CH₂-	2	2	1	-	н .	-CH N-C-CO ₂ CH ₃ -CH(CH ₃) ₂
642	C⊢√ CH₂-	2	2	1	-	н	- CH N C - C - C - C - C - C - C - C - C - C
643	C├ - CH ₂ -	2	2	1	-	н .	O - CH N C - CF ₃ - CH(CH ₃) ₂
644	CH-€	2	2	1	-	н	$\begin{array}{c} O \\ - C + N C C (C H_3)_3 \\ I H \\ C + C (C H_3)_2 \end{array}$
645	C⊢CH₂-	2	-2	1	-	H	- CH N C - NH ₂ - CH(CH ₃) ₂
646	CH2-	2	2	1	-	Н	- CH- N- C- - CH- N- C- - CH ₂ OH - CH(CH ₃) ₂
647	CH2-	2	2	1	-	Н	O O O O O CH(CH ₃) ₂ O O O O O O O O O O O O O O O O O O O
648	C├ \ CH ₂ -	2	2	1	-	Н	- CH N C - CH(CH ₃) ₂ CH(CH ₃) ₂
649	C├─ \ CH ₂ -	. 2	2	1	-	н	- CH N C — ОСН(СН ₃) ₂ СН(СН ₃) ₂

Table 1.60

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ŕ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
650	CI-CH ₂ -	2	2	1	· · •	H	-CH-N-C
651	CH2-	2	2	1	-	H	СH-N-С-СНСН ₃
652	CI—CH₂-	2	2	1	<u>.</u> .	н	-CH-N-C
653	C├ - CH ₂ -	2	2	1	<u>-</u>	• H ·	-CH-N-C
654	CI—(2	2	1	÷	H	-CH-N-C-CH ₃
655	CI—CH₂-	. 2	2	.1	· . -	, Н	-CH-N-C-CHCH ₃) ₂
656	CI—CH₂-	2	2	1	-	Н	-CH-N-C
657	CI—CH₂-	2	2	1	-	H.	-CH-N-C- H CH(CH ₃) ₂
658	C⊢(¯¯)−CH₂−	2	2.	1	-	Н	-CH-N-C-NH CH(CH ₃) ₂
659	C⊢(2	2	1	-	H	-CH-N-C- H CH(CH ₃) ₂ NO ₂
660	CI—CH₂-	2	2	1	-	н	-CH-N-C-N CH(CH ₃) ₂

Tabl 1.61

iabi	.0 1						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
661	CH-(CH ₂ -	2	2	1	-	н	-CH-N-C- H CH(CH ₃) ₂ OCH ₃
662 ~	CH-(CH ₂ -	2	2	1	- ,	н	-CH-N-C
663	C├ - CH ₂ -	2	2	1	-	н	-CHN-C-O H CH(CH ₃) ₂
664	CH- (_)-CH ₂ -	2	2	1	-	н	-CH-N-C
665	C├ - CH ₂ -	2	2	1	-	н	- CH- N- C- CH ₃ - CH(CH ₃) ₂
666	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C
667	CH-2-	2	2	1	-	Н	-CH-N-C
668	CH-2-	2	2	1	-	Н	-CH-N-C-CH ₃ CH(CH ₃) ₂ CCF ₃ CCH ₃
. 669	CI—(2	2	1	-	Н	-CH-N-C-() H N CH(CH ₃) ₂ CH ₃
670	CH-CH ₂ -	2	2	1	-	н	-CH-N-C- H CH(CH ₃) ₂
671	CH-{CH₂-	. 2	2	1	<u>.</u> ·	н	-CH-N-C- NO ₂

Table 1.62

					•		
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ G $-R^6$
672	C⊢√CH ₂ -	2	2	1	-	н	-CH-N-C-
673	C⊢CH₂-	2	2	1	-	Н.,	-CH-N-C-S
674	CH—CH₂-	2	2	1	•	н	-CHNC-S -CH(CH ₃) ₂
675	С⊢—СН₂-	2	2	1	-	H	-CH-N-C- H S CH ₃
676	C├ - CH ₂ -	2	2	1	-	Н	-CH-N-C-N-CH(CH ₃) ₂ H
677	C├ - CH ₂ -	2	2	1	-	Н	-CH-N-C-N-C-N-CH(CH ₃) ₂ CH ₃
678	C⊢-{	2	2	1	• ·	H .	-CH-N-C- CH(CH ₃) ₂
679	CH-CH ₂ -	2	2	1	-	Н	-CH-N-C- CH(CH ₃) ₂
680	CH-CH ₂ -	.2	2	1	-	н	-CHN-C- H S Br CH(CH ₃) ₂
681	CH-{	2	2	1	-	н	-CH-N-C-CH ₃ -CH(CH ₃) ₂ -CH ₃
682	C(CH₂-	2	2	1	-	н	-CH-N-C

Table 1.63

, abic							
Compd.	R ¹ (CH ₂),	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
683	C├ - CH₂-	2	2	1	-	н	-CH-N-C- H S SCH ₃ CH(CH ₃) ₂
684	С⊢—СН₂-	2	2	1	-	н	-CH-N-C
685	C⊢√_CH₂-	2	2	1	-	н	-CH-N-C-(S) CH ₃ CH ₃
686	C├ - CH ₂ -	2	2	1	-	н	- CH N- C- H CH ₂ CH(CH ₃) ₂
687	CI————————————————————————————————————	. 2	2	1	-	н	-CH N-C-
688	C├ - CH₂-	2	2	1		н	-CHNC
689	СЊ_СН₂-	2	2	1		н	-c+ v-c-
690	C├ - CH ₂ -	2	2	1	-	Н	-CHN-C-Br
691	CH ₂ -	2	2	1	-	н	-CHN-C-
692	C├ \ _CH ₂ -	2	2	1	-	н	- CH N-C-
	C├ \ CH ₂ -						-CH N-C

Table 1.64

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
694	CH-CH ₂ -	2	2	1	-	н .	-CHNC-OCH2CH3
695	CH-2-	2	2	.1	, <u>-</u>	н	-CH N-C
696	C⊢————————————————————————————————————	2	2	1	<u>.</u>	н	-CHN-C-OCF3
697	C⊢-{CH ₂ -	2	2	ä	-	Н	-CH-N-C-CN
698	C⊢-{	2	2	1	-	н ^г	-CHN-C- N(CH ₃) ₂
699	C⊢(2	2	1	-	н	-сн и с- О О
700	C⊢(2	2	1	-	н .	-CHN-C
701	C⊢————————————————————————————————————	2	. 2	1	-	н	-CH N-C-(C-CH3
702	CI⟨	2	2	1	-	Н	-CHN-C-CF3
703	CI—()— CH₂-	2	2	1	-	н	-CHN-C-CH(CH3)2
							-CH N-C

Table 1.65

Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
705	CHCH ₂ -	·2	2	1	-	н	-CH-N-C-S H ₃ C
706	CH-CH ₂ -	2	2	1		н	-CHNC-STCH3
707	СН-СН2-	2	2	1	-	н	-c+n-c
708	CI-CH ₂ -	. 2	2	1	-	* * * H	-CHNC-S Br
709	CH-(CH ₂ -	2	2	1	- ·	н	-CH-N-C-SCH3
710	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-S Br
711	C⊢√CH ₂ -	2	2	1	-	Н	-CH-N-C-CH3
712	C├ - CH ₂ -	2	2	1	-	н	-chyc-s
713	CH-CH ₂ -	2	2	1	-	н	-c++n-c- +3c
714	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C-N CH3
715	C	2	2	1	•	н .	-c+n-c-(\$)

Table 1.66

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + G^4 + G^$
716	CH-CH2-	2	2	1	· -	н	-c+n-c-N
717	CI—CH₂-	2	2	1	•	H·	-CH-N-C-() NO2
718	CH-CH ₂ -	2	2	1	- -	Н	-CHN-C-\N
719	CH-CH ₂ -	2	2	1	-	н	-c+n-c-
720	C	2	2	1	-	н	-CH-N-C- Br
721	C⊢√CH₂-	2	2	1		н	-c+v-c-\n\ch ₃
722	C├────────────────────────────────────	2	2	1	-	H ,	-CHN-C-⟨_>-CH ₂ OH
723	C├ - CH ₂ -	2	2	1	-	н	-CHN-C-_NH2
724	CH-2-	2	2	1	-	н	-CH-N-C
725	CHCH_2-	2	2	1	÷	H	-CHN-C-()-C-()
726	CH ₂ -	2	2	1	-	н	-CH-N-C-CH3

Table 1.67

						•	
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
727	CH-€-	2	2	1	-	н	-c+n-c-C-c1
728	CH-{CH ₂ -	2	2	1		н	-CHN-C-
729	CH2-	2	2	1	-	. н	-CH-N-C-\(\bigc\)NO2
730	C├ - CH ₂ -	2	2	1	-	н.	-c+n-c-CI
731	CH-2-	2	2	1	-	н	-CH-W-C-CH3
732	C├─ \ CH ₂ -	2	2	1	· -	н	-CH-N-C-CF ₃
733	СНСН2-	2	2	1	-	Ĥ	-CH-N-C- HO CH(CH ₃) ₂
734	CH	2	2	1	-	H	-CH-N-CF
735	CHCH ₂ -	2	2	1	-	Н	-CHNC-CF3
736	CH2−	2	2	1	-	н	$-CH-N-C-$ H_2N CF_3
737	С├-{}СН₂-	2	2	1	-	H [.]	-CHNC-F

Table 1.68

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
738	С⊢(СН₂-	2	2	1	-	н .	-CH-N-C
739	CH2−	2	2	.1	· <u>-</u> -	H	-CH-N-CNH
740	C⊢√CH ₂ -	2	2	1	-	н	-CH-N-C-\O H ₃ C
741	CH-(2	2	1	-	н	-CHN-C-\(\sigma\)S
742	CH2 ⁻	2	2	1		н .	-chn-c-s
743	CH2-	2	2	1	-	H	-chn-c-Co
744	CH-CH ₂ -	2	2	1	- ·	н ,	-chhc-c-CH3
745	CH-2-	2	2	1	.	н	-CH-N-C-\(\text{C}(CH_3)_3\)
	C⊢√CH ₂ -						-CH-N-C
, 747	CH2-	2	2	1	-	Н	-CH-N-C-CH-3 F ₃ C
748	CH2⁻	2	2	1	-	н	-CH-N-C-C's

Table 1.69

R ² (CH ₂);	k	m	n	chirality	Ĥ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
CH—CH₂-	2	2	1	•	н	-CH-N-CN
CH-CH₂-	2	2	1	. -	н	-CHN-C
CH√_CH ₂ -	2	2	1	-	H	-CH-N-C-CH ₃ -CH ₂ OH
CH√CH₂-	2	2	1	-	н	-CH-N-C-CF ₃ -CH ₂ OH CF ₃
CI—CH₂-	2	2	1	-	н	-ÇH-N-C- CH₂OH
C⊢√ CH₂-	2	2	1	-	н	-CH-N-C- H CH ₂ OH
CI—CH₂-	2	2	1	-	H ,	OCH ₃ -CH-N-C- H CH ₂ OH
CI—⟨□ CH ₂ -	2	2	1	-	Н	CH ₂ OH O NO₂ -CH-N-C- CH ₂ OH
CH-CH ₂ -	2	2	1	-	Н	OCH ₂ CH ₃ −CH-N-C− H CH ₂ OH
CH2-	2	2	1	-	H	CH ₂ OH
CH2-	2	2	1	-	Н	OCF ₃ -CH-N-C- H CH ₂ OH
	$C \vdash - CH_2 - C$	$CH - CH_2 - 2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$CH - CH_{2} - 2 2 1$	$CH - CH_{2} - CH_{2} - 2 2 1 -$ $CH - CH_{2} - 2 2 1 -$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 1.70

	•						
Compd.	R ² (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
760	CH-2-	2	2	.1	-	Н	CF ₃ −CH-N-C− CH ₂ OH F
761 ,	CH2−	2	2	1	-	H	CF ₃ −CH-N-C−−F H CH ₂ OH
762	CH2−	2	2	. 1	-	Н	-CH-N-C-CF3 -CH ₂ OH
763	C├ - CH ₂ -	2	2	1	-	. н	-CH-N-C- H - CH₂OH
764	CH-CH ₂ -	2	2	1	- .	н	CH ₃ O -C-N-C- CH ₃
765	CH2-	2	2	- 1	. .	н	CH ₃ O CH ₃ -C-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C
766	CI-CH ₂ -	2 ,	2	1	•	н	CH ₃ O CF ₃ -C-N-C-C-C CH ₃
767	CH-CH ₂ -	2	2	1		н	CH ₃ O CH ₃ -C-N-C-C-O
	CHCH ₂ -					н	CH ₃ O Br CH ₃ CH ₃
	C⊢-(CH ₃ O Br CH ₃ O OCF ₃ CH ₃ O OCF ₃ CH ₃ O OCF ₃ CH ₃ O OCF ₃
770	C⊢-{CH ₂ -	2	2	1	-	н	CH C CF₃

Table 1.71

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p+5}^{R^4}(CH_2)_{q}^{-}G^{-}R^6$
771	C├	2	2	1	-	н	CH ₃ O CF ₃ -C-N-C-F CH ₃
772	C├ - CH ₂ -	2	2	1	-	н	CH ₃ P -C-N-C-C-CF ₃ CH ₃
773	CH-()- CH₂-	2	2	1	-	н	CH ₃ P -C-N-C- H CH ₃ C(CH ₃) ₃
774	CH2-	2	2	1		Н	CH ₃ P CH ₃ P CH ₃ SCH ₃
775	CI—(2	2	1	-	н	CH ₃ O CH ₃ -C-N-C- O C(CH ₃) ₃
776	CI—CH₂-	2	2	1	-	Н	CH ₃ O CH ₃ -C-N-C-
777	C⊢√CH₂-	2	2	1		н	CH ₃ O CF ₃ -C-N-C-CH ₃ CH ₃
778	CH2-	2	2	1	-	н	CH ₃ O NO ₂ -C-N-C-C-CI CH ₃
779	CH-2-	2	2	1	-		CH ₃ P -C-N-C- CH ₃ CI
780	CI—CH ₂ -	2	2	. 1	-	н	CH ₃ O NO₂ -C-N-C- NO₂ -CH ₃
781	CHCH ₂ -	2	2	1	-	н	CH ₃ P -C-N-C-N-C-N CH ₃ H

Table 1.72

						•	\
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
782	CH-CH2-	2	2	1	-	н	СН3 О ОСН3 -С-N-С-ОСН3 СН3
783	CH-2-	2	2	-1	-	н	CH ₃ O OCH ₂ CH ₃ -C-N-C- CH ₃
784	CH-€-CH ₂ -	2	2	1	-	H .	CH ₃ Q -C-N-C-CH ₂ CF ₃ -CH ₃
785	CHCH ₂ -	2	2	1	- :	Н	CH ₃ O OCH ₃ -C-N-C-OCH ₃ OCH ₃
786	C⊢-(¯)CH ₂ -	2	2	1	~	Н	-C-N-C- H ₂ C-CH ₂
787	C⊢—CH₂-	2	2	1	-	H .	-C-N-C-CH ₃ H ₂ C-CH ₂
788	CH-CH₂-	2	2	1	,	Н	$ \begin{array}{c} O \\ -C - N - C - \end{array} $ $ \begin{array}{c} O \\ +C - C - \end{array} $ $ \begin{array}{c} CF_3 \\ +C - C - \end{array} $ $ \begin{array}{c} CF_3 \\ +C - C - \end{array} $
	C├ - CH ₂ -					Н	H ₂ C—CH ₂ -C—N-C—CI -C—N-C—CI
790	CH-CH ₂ -	2	2	1	-	н	H ₂ C—CH ₂
791	CH-2-	2	2	1	-	н	H_2C-CH_2 NO_2 H_2C-CH_2 OCF_3
792	C├ - CH ₂ -	2	2	1	, -	н	H ₂ C—CH ₂ OCF ₃

Table 1.73

	•						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
793	C├ - CH ₂ -	2	2	1	-	Н	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
794	C├ - CH ₂ -	2	2	1	-	H _{.,,}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
795	CH-CH₂-	_ 2	2	1	-	н	$-C - N - C - C - CF_3$ $H_2C - CH_2$
796	C⊢√CH₂-	2	2	1	-	н	H ₂ C-CH ₂
797	CI—CH₂-	2	2	1	-	н	-C-N-C-CH ₃ C(CH ₃) ₃
798	CI—CH₂-	2	2	1	-	н	
799	CH-CH ₂ -	2	2	1	-	_. H	H ₂ C-CH ₂ CF ₃ CH ₃ CH ₃
	CH ₂ -					Н	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
801	C├ ~ CH₂-	2	2	1	-	н	H ₂ C—CH ₂
802	CH-CH2-	2	2	1	-	Н .	H ₂ C—CH ₂
803	C├ ~ CH₂-	2	2	. 1	-	н	H ₂ C-CH ₂ OCH ₃ OCH ₃ OCH ₂ CH ₃ OCH ₂ CH ₃ OCH ₂ CH ₃

Table 1.74

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
804	CH-2-	2	2	1	-	н	-C-N-C-CH ₂ -CF ₃
805	C├ - CH ₂ -	2	2	1	* <u>-</u>	н	H_2C-CH_2 OCH ₃ OCH ₃ OCH ₃
806	CHCH ₂ -	2	2	1	•	н	$\begin{array}{c} O \\ O \\ H \end{array}$ $H_2C - CH_2$ $H_2 - CH_2$
807	CI—CH₂-	2	2	1	. -	H	-CH-H-C-NH ₂
808	CH_2-	2	,2	1	-	н	-CH-N-C-CH3 (CH ₂) ₂ -C-NH ₂
809	C⊢√CH₂-	2	2	1	- -	н	-CH-N-C-CI (CH ₂) ₂ -C-NH ₂
810	C├ - CH ₂ -	2	2	1	•	н	- CH-N-C
811	C├ - CH ₂ -	2	2	1	-	Н	-CH-N-C-NO ₂ -CH-N-C-NO ₂ -CH-N-C-NH ₂ -CH-N-C-NH ₂
812	C├ - CH ₂ -	2	2	1	.· -	н	-CH-N-C-S (CH ₂) ₂ -C-NH ₂
813	C├ ~ CH ₂ -	2	2	1	-	н	-CH-N-C
814	C├ - ⟨ - ⟩- CH ₂ -	2	2	1	-	н	-CH-N-C

Table 1.75

Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
815	CI—(2	2	1	-	Н	· - CH-N-C- CF3 (CH2)2-C-NH2 F
816	C⊢√CH₂-	2	2	1	-	н	-CH-N-CCF3 (CH ₂) ₂ -C-NH ₂
817	C	2	2	1	-	н	-CH-N-C
818	C⊢————————————————————————————————————	2 [.]	2	1	-	н	
819	C⊢-{	2	2	1	-	H	CF ₃ -CH-N-C- H (CH ₂) ₂ -C-NH ₂ CF ₃
820	C⊢√CH ₂ -	2	2	1	· -	н	$ \begin{array}{c} O \\ -CH \\ H \end{array} $ $ \begin{array}{c} O \\ CH_2 \end{array} $ $ \begin{array}{c} O \\ CH_2 \end{array} $ $ \begin{array}{c} O \\ CH_2 \end{array} $
821	CI—(CH ₂ -	2	2	1	-	H	-CH-N-C
822	CH-2-	2	2	1	-	н	-CH-N-C-SSCH ₃ -CH ₂ OCH ₃
823	CH2-	2	2	1	-	H	-CH-N-C-
824	CH	2	2	1	-	н	-CH-N-C
825	CHCH ₂ -	2	2	1	-	н	-CH-N-C
							•

Table 1.76

	•						r
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
826	CHCH2-	2	2	1	-	н	-CH-N-C-CH3 CH2OCH3
827	CHCH ₂ -	.2	2	1	- ·	н	-CH-N-C- H CH2OCH3
828	CH2−	2	2	1		н	OCF ₃ -CH-N-C- H CH ₂ OCH ₃
829	C├ - CH₂-	2	2	1	-	н	CF ₃ -CH-N-C- H CH ₂ OCH ₃ .F
830	C├ - CH ₂ -	2	2	1	-	H	-CH-N-C-F CH ₂ OCH ₃
831	CH2-	2	2	1	· •	Н	-CH-N-C- H CH2OCH3
832	C├ - CH ₂ -	2	2	1	-	Н	-ÇH-N-C- CH₂OCH3
833	C├ - CH ₂ -	2	2	1		Н	-CH-N-C-NO ₂
834	CH	2	2	1	-	Н	-CH-N-C
835	C├ ~ CH ₂ -	2	2	1	- '	н	-CH-N-C- H CH2OCH3
836	CI—CH₂-	2	2	1	-	Н	CH ₂ OCH ₃ CH ₂ OCH ₃
•							

Table 1.77

Table I							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
837	CH-€ CH ₂ -	2	2	1	- -	Н	CF ₃ −CH−N-C− CH ₂ OCH ₃
838	CH-CH ₂ -	2	2	1	, -	н	OCH ₂ CH ₃ -CH-N-C- H CH ₂ OCH ₃
839	CH2-	2	2	1	-	н	$\begin{array}{c c} & O \\ & O \\ $
840	CH2-	2	2.	1	- :	н	-(CH ₂) ₃ -C-
841	CH√CH₂-	2	2	1	<u>-</u>	н	-(CH ₂) ₂ -C-
842	CH2−	2	2	1	-	н	-(CH ₂) ₂ -C-CI
843	C├ - CH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -CH ₃
844	CH2-	2	2	1	-	н	O -(CH ₂) ₂ -C-CH ₃
845	CHCH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -C
846	CHCH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -C-C-C
847	CH2-	2	2	1	-	Н	$-(CH_2)_2 - C - \bigcirc F$ $-CH_3$

Table 1.78

Idbic	1.70						
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
848	CH2-	. 2	2	1	-	H	-(CH2)2-C - CH3 $H3C$
849	CHCH ₂ -	2	2	- 1	•	H	-(CH ₂) ₂ -C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C
850	C⊢√CH₂-	2	2	1	,. -	H .	- CH ₂ -S-CH ₃
851	C⊢√ CH₂-	2	2	1	-	н	-CH ₂ -N-C-N-CF ₃
852	CH2-	2	2	1	-	H _.	-CH ₂ -N-C·N-CF ₃
853 ·	CH-{	2	2	1		Н	- CH ₂ - N- C- N-
854	C⊢—CH₂-	2	2	1	-	H	- CH ₂ - N- C- N- CH ₃
							-CH ₂ -N-C-N-CH ₃
856	C├ - CH ₂ -	2	2	1	-	н	Q C-CH ₃ −CH ₂ −N-C-N-C-H
857	C├ - CH₂-	2	2	1	•	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
858	C⊢-{	2	2	ï	-	, н _	-CH ₂ -N-C-N-C-OCH ₃
							;

Tabl 1.79

	n1						D4
Compd. No.	R ¹ (CH ₂)j	k	m 	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
859	С⊢СТУ-СН₂-	2	2	1	-	н	-CH2-NC-N
860	C⊢————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-N-CN
861	CH-2-	2	2	1	-	н	- CH ₂ -N-C-N-
862	СН2-	2	2	1	· •	Н	-CH ₂ -N-CH ₃
863	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
864	C├ - CH ₂ -	2	2	1	-	Н	-CH2-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
865	C⊢(-	•	-CH ₂ -N-S-CH ₃
866	CH2-	2	2	1	<u>-</u>	н	- CH ₂ -N-S-CF ₃
867	C⊢√CH₂-	2	2	1	- -	Н	- CH ₂ -N-S-CF ₃
868	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-S-CH ₂ CH ₃
869	CH2-	2	2	1	-	н	-CH ₂ -N-S-CH(CH ₃) ₂

Table 1.80

	.00						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
870	C├ -	2	2	1	-	н	- CH ₂ -N-S-CH ₃
871	C	2	2	1	-	H	- CH ₂ -N-S(CH ₂) ₃ CH ₃
872	CHCH ₂ -	2	2	1	- ·	н	- CH ₂ -N-S-
873	C	2	2	1	- ·	Н	- CH ₂ -N-C-O CH ₂
874	CH-{}-CH₂-	2	2	. 1	- "	Н	- CH O C N CI
875	CH ₂ -	2	2	1	· .	Н	- CH ₂ -N-C-CF ₃
876	Br—CH ₂ -	2	2	1	-	H	- CH ₂ - N- C- CF ₃
877	NC-CH ₂ -	2	2	1	- · •	н	- CH ₂ -N-C-CF ₃
878	O ₂ N-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-CF ₃
879	O CH ₂ -	2	2	1	- .	н	- CH ₂ -N-C-CF ₃
880	0^0 CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃

Table 1.81

lable	.01						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
881	Br CH ₂ -	2	2	1	-	Н	- CH ₂ - N- C- CF ₃
882	O-O-OH ₂ -	2	2	1	-	н	- CH ₂ - N- C-
883	CI CH ₂ -	2	2	1	-	н	-CH ₂ -N-CF ₃
884	њс.с-Й——— сн⁵-	2	2	1	-	н	- CH ₂ -N-CF ₃
885	H ₃ C-S-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
886	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
887	F ₃ C-CH ₂ -	2	2	1	-	н	- CH ₂ - N-C-CF ₃
888	HO-CH ₂ -	2	2	1		н	-CH ₂ -N-C-CF ₃
·889 ·	CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
890	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
891	CH_2^-	2	2	1	. -	Н	- CH ₂ -N-C

Table 1.82

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
892	H ₃ CO CH ₂ -	2	2	1	÷	н	- CH ₂ - N- C
	O ₂ N CH ₂ -					н	-CH ₂ -N-C-CF ₃
894	$\begin{array}{c} \text{HO} \qquad \text{CH}_3 \\ \text{H}_3\text{C} \longrightarrow \begin{array}{c} \text{CH}_2 \\ \text{CH}_3 \end{array}$	2	2	1	-	н	-CH ₂ -N-C
895	(CH ₂) ₂ -	2	2	1	-	н	- CH ₂ -N-C- CF ₃
896	CN CH₂-	2 ^	2	1	- -	н	- CH ₂ -N-C-CF ₃
897	HO ₂ C CH ₂ -	2	2	1	-	н [.]	- CH ₂ -N-C-CF ₃
898	HO ₂ C-CH ₂ -	2	2	1		н	-CH ₂ -N-C-CF ₃
899	OCH ₃	2	2	1	- .	Н :	-CH ₂ -N-C-CF ₃
900	H ₃ ∞ ₂ C-√ CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C
901	○-c+-	2	2	1	-	н	-CH ₂ -N-C-✓
.902	O_2N CH_2 O_2N	2	2	i	-	н	-CH ₂ -N-C-CF ₃

Table 1.83

Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
903	H ₃ CO — CH ₂ - OCH ₃	2	2	1	-	H	- CH ₂ - N- C- CF ₃
904	HO → CH ₂ -	2	2	1	÷. ·	н	- CH ₂ -N-C-
905	O ₂ N CH ₂ -	2	2	1	-	H	- CH ₂ - N- C- CF ₃
906	(CH ₂) ₃ -	2	2	1	-	н	- CH ₂ -N-CF ₃
907	CH(CH ₂) ₂ -	2	2	·1	- 11	н	- CH ₂ -N-CF ₃
908	O H C' H C' - CH ₂ -	2	2	· 1		н	- CH ₂ -N-C-
909	N C-⟨ CH₂-	2	2	1	-	н	- CH ₂ -N-C-
910	CICH ₂ -	2	2	1	-	н	- CH ₂ - N- C-
911	CICH ₂ -	2	2	1	-	H	- CH ₂ -N-C-CF ₃
912	Br CH ₂ -	2	2	1	-	. н	- CH ₂ -N-C-CF ₃
913	H ₃ CO-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃

Table 1.84

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+ (CH_2)_{\overline{q}}$ $+ (CH_2)_{\overline{q}}$ $+ (CH_2)_{\overline{q}}$ $+ (CH_2)_{\overline{q}}$ $+ (CH_2)_{\overline{q}}$ $+ (CH_2)_{\overline{q}}$
914	CH2-CH2-	2	2	.1		Н	- CH ₂ - N- C-
915	OH I CHCH₂-	2	2	1	- -	Н	- CH ₂ - N-C-
916	N CH₂-	2	2	1	, -	н	- CH ₂ - N- C-CF ₃
917	N—CH₂-	2	2	1	· _	н	- CH ₂ -N-C-CF ₃
918	н ₃ со ₂ с ан ₂ ——— ан ₂ -	2	2	1	· -	н	- CH ₂ - N- C- CF ₃
919	H ₃ C-CH ₂ -	2	2	1		Н	- CH ₂ - N- C- CF ₃
920	OCF ₃ CH ₂ -	2	2	1	-	H	- CH ₂ -N-C-CF ₃
921	CH ₂ -	2	2 .	1	-	н	- CH ₂ -N-C-CF ₃ - CH ₂ -N-C-CF ₃ - CH ₂ -N-C-CF ₃
922	D-CH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
923	CI—CI—	2	2	1	-	н Н	-CH ₂ -N-C-CF ₃
924	H ₂ N-C	2	2	1	•	н	-CH ₂ -N-C- CF₃

Table 1.85

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
925	H ₂ N-C-(-)-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
926	CH2-CH2-	2	2	1	- -	Н	-CH ₂ -N-C-CF ₃
927	F ₃ CQ ————————————————————————————————————	2	2	1	;	н	-CH ₂ -N-C-CF ₃
928	F ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
929	н₃сѕ-{}-сн₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
930	CH ₃ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
	NC ————————————————————————————————————					н	-CH ₂ -N-C-CF ₃
932	NO ₂	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
	CH- CH−						-CH ₂ -N-C-CF ₃
934	~~CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
935	O ₂ N —CH ₂ -	2	2	1	-	H	-СH ₂ -N-С-С

Table 1.86

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
936	NO ₂	2	2	1	-	· H	-CH ₂ -N-C- H
937	(H ₃ C) ₂ N-√CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
938	CHFCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
939	O ₂ N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
940	OH CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
941	F ₃ C CH2-	2	2	1	-	Н.	-CH ₂ -N-C-CF ₃
942	CH-2-	2	2	1	-	Н	$\begin{array}{ccc} & & & \text{CF}_3 \\ -\text{CH-N-C-} & & & \\ & & \text{H} & & \\ & & \text{CH(CH}_3)_2 & & \text{CF}_3 \end{array}$
943	CH-CH ₂ -	1	4	0	-	H .	-CH ₂ -N-C-CF ₃
944	CH2-	1	4	0	-	Н	-CH ₂ -N-C-CH ₃
945	CH-CH ₂ -	1	4	0	•		-CH ₂ -N-C-\(\bigc\)NO ₂
946	CI-CH ₂ -	1	4	0	-	Н	-(CH ₂) ₂ -N-C-\\ H

Table 1.87

Compd.	R ¹ (CH ₂)j	k	m	n	chirality	ij	-(CH ₂) _p + (CH ₂) _q G-R ⁶
947	C├	1	4	0	•	н	-(CH ₂) ₂ -N-C
948	C├ - CH ₂ -	1	4	0	· · • ,	н	-(CH ₂) ₃ -C-N-CI
949	C⊢-(1	4	0	-	н	-(CH ₂) ₃ -C-N-CH ₂ -
950	C⊢————————————————————————————————————	0	4	1	-	н	- CH ₂ - N- C-
951	CH2-	1	2	0	R	HÌ,	-CH ₂ -N-C
952	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-√N(CH ₃) ₂
953	CH-√_CH ₂ -	1	2	0	R ·	н	-(CH ₂) ₂ -N-CN(CH ₃) ₂
954	C├ \ CH ₂ -	1	2	0	R [.]	н	-CH2-N-C- H3C-NH
955	CI-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C- H H ₃ C-NH
956	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
957	C⊢-(¯¯)- CH₂-	1	2	0	R	Н	CH2-N-C-OH

Table 1.88

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
958	C⊢-CH ₂ -	1	2	0	R	н :	-(CH ₂) ₂ -N-C-
959	CH-€-	1	2	0	R	н	-CH ₂ -N-C-CH ₃
960	CH-€	1	2	0	R	H	-(CH ₂) ₂ -N-C-CH ₃
961	CHCH ₂ -	1	2	0	R	Н	-СH ₂ -N-С
962	CI-CH ₂ -	1	2	0	R	H ,	-(CH ₂) ₂ -N-C-\ H
963	CHCH ₂ -	1	2	0	R	Н	-(CH₂)₂-N-C-⟨OH
964	CHCH ₂ -	1 ·	2	0	R	H	-CH ₂ -N-C
965	CI-CH ₂ -	· 1	2	0	Ŗ	Н	-(CH ₂) ₂ -N-C-\(\bigcup_{H}\) -\(\omega_{2}\)CH ₃
966	C├ - CH ₂ -	1	2	0	. R	H	-CH ₂ -N-C-CH ₃
967	CH ₂ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
968	C⊢(CH₂-	1	2	0	R	н	-CH2-N-C-NH

Table 1.89

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
969	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH
970	С⊢СН₂-	1	2	0	R	.H	-CH ₂ -N-C-N(CH ₃) ₂
971	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-N(CH ₃) ₂
972	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\(\sigma\) NH ₂
973	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH ₂
974	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-√NH ₂
	C├ - CH ₂ -					H	-(CH ₂) ₂ -N-C-\(\bigcup_N+C-\(\bigcup_N+C-\bigcup_N+C-\\bigcup_N+C-\bigcup_N+C-\bigcup_N+C-\bigcup_N+C-\\bigcup_N+C-\bigcup_N+C-\bigcup_N+C-\bigcup_N+C-\bigcup_N+C-\bigcup_N+C-\bigcup_N+C-\bigcup_N+C-\bigcup_N+C
976	CH-2-	. 1	2	. 0	R .	н	-CH ₂ -N-C- H NH
977	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
978	CH-2-	1	2	0	R	н .	-CH2-H-C-NH
979	CH-€	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH

Table 1.90

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
980	С⊢√СН₂-	1	2	0	R	Н	-CH2-N-C-CH3
981	CI-CH ₂ -	1	. 2	0	R	н .	-(CH ₂) ₂ -N-C
982	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H (H ₃ C) ₂ N
983	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-\(\sigma\) (H ₃ C) ₂ N
984	C├ - CH ₂ -	1	2	Ó	R	H:	-СН ₂ -N-С-{СН ₂ ОН
985·	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-С-СН ₂ ОН
986	CH-CH-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
987	CH−CH₂−	2	2	1	-	H	-CH ₂ -N-C-CF ₃
988	C├ - CH ₂ -	1	4	0	-	H	-CH ₂ -N-C-CF ₃
989	C├ - CH ₂ -	1	4	0	-	н	-CH ₂ -N-C-O-CH ₂ -
990	C⊢√CH₂-	1	4	0	-	н	-CH ₂ -N-C-

Table 1.91

Table 1							
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
991	CH2-	1	4	0	-	H	-(CH ₂) ₂ -C-
992	CH-CH ₂ -	1	4	0	÷ .	н	OCH_3 $-(CH_2)_2-C OCH_3$
993	C├ - CH ₂ -	1	4	0	-	н	O CH_3 H_3C
994	C├ - CH ₂ -	1	4	0	-	н	-(CH ₂) ₃ -C-
995	CI—CH₂-	1	4	0	-	н	-(CH ₂) ₃ -C-\OCH ₃
996	CH2-	1	4	0	-	н	-(CH ₂) ₃ -C-N-CH ₃
997	CH-CH ₂ -	2	2	1	·	, н	-CH-N-C- H CH ₂ CH(CH ₃) ₂
998	CH-CH2-	2	2	1	-	н	-CH-N-C-(CH ₃) ₂ -CH ₂ CH(CH ₃) ₂
999	CHCH2-	2	2	1	-	Н	-CH-N-C-CH ₃ -CH ₂ CH(CH ₃) ₂
1000	CI─CH₂-	2	2	1	-	Н .	-CH-N-C
1001	CH-CH2-	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C

Table 1.92

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1002	C├ - CH ₂ -	2	2	1	-,	н	OCF ₃ -CH-N-C H CH ₂ CH(CH ₃) ₂
1003	C	2	2	1	-	н	CH ₂ CH(CH ₃) ₂
1004	C⊢—CH₂-	2	2	1	-	н	OCH ₃ -CH-N-C
1005	CH-€ CH₂-	2	2	' 1	-	н	OCH ₃ -CH-N-C
1006	CI—CH₂-	2	2	1	-	: H	OCH ₂ CH ₃ -CH-N-C-(
1007	CH-CH ₂ -	2	2	1	- -	H	ОСН2СН3 — СН N-С- С — ОСН2СН3 Н СН2СН(СН3)2 ОСН2СН3
1008	C├ - CH ₂ -	2	2	1	-	н	- CHN-C
1009	C├ ─ CH ₂ -	2	2 ·	1	-	н	CH ₂) ₂ -C-NH ₂
1010	C⊢—CH₂-	2	2	1	-	H	- CH-N-C
1011	C⊢-{CH ₂ -	2	2	1	-	н	- CHN-C-CH2CH3 (CH2)2-G-NH2
1012	C├ - CH ₂ -	2	2	. 1	-	н	-CH+N-C
							·

Table 1.93

Compd.	R ¹ (CH ₂) _j	k ·	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
1013	С⊢(СН₂-	2	2	1	-	Н	(CH2)2-C-NH2 OCH3
1014	CI—CH₂-	2	2	1	- .	Н	OCH ₂ CH ₃ CHN-C
1015	CH2-	2	2	1	-	н	OCH ₂ CH ₃ -CH ₁ C-C-OCH ₂ CH ₃ (CH ₂) ₂ -C-NH ₂ OCH ₂ CH ₃
1016	CH2 ⁻¹	2	2	0	-	Н	-CH _Z -N-C-CF ₃
1017	C	2	2	0	· -	н	-CH ₂ -N-C-
1018	С⊢—СН₂-	2	2	1	•	Н	-CH ₂ -N-C
1019	С⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C-OCH ₂ CH ₃ OCH ₂ CH ₃ OCH ₂ CH ₃
1020	CH-2-	2	2	1	-		-CH ₂ -N-C-CH ₂ CH ₃
1021						Н	OCH ₂ CF ₃ -CH ₂ -N-C
1022	CH2−	2	2	1	-	н	(S) OCH ₃ -CH-N-C-OCH ₃ CH ₃ OCH ₃
1023	CI————————————————————————————————————	2	2	1		н	(S) O CH ₂ CH ₃ -CH ₃ N-C-CH ₃

Table 1.94

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1024	CH-2-	2	2	1	-	н	(S) O OCH_3 OCH_3 OCH_3 OCH_3
1025	C⊢√CH₂-	2	2	, 1	-	н	$ \begin{array}{c c} (S) & \bigcirc & \bigcirc \\ -CH-N-C & \bigcirc & \bigcirc \\ CH_3 & & \bigcirc \\ CH_3 & & \bigcirc \\ \end{array} $
1026	CH2-	2	2	1	-	н	$(S) \qquad \bigcirc CCH_2CH_3$ $-CH-N-C \longrightarrow -OCH_2CH_3$ $CH_3 \qquad OCH_2CH_3$
1027	C⊢(CH₂-	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1028	C├ - CH ₂ -	2	2	1	- '	Н	(S) OCH ₂ CF ₃ -CH-N-C
1029	CH-CH ₂ -	2	2	1	-	Н	(S) OCH ₂ CH ₃ -CH-N-C
1030	CHCH ₂ -	2	2	1	· -	H	(S) OCF ₃ -CHN-C-C
	C├─ੑੑੑि}-CH ₂ -						(S) OCH ₃ -CH-N-C-C
1032	CH-CH ₂ -	2	2	1	-	н	(R) OCH ₃ -CH-N-C-OCH ₃ CH ₃ OCH ₃
1033	CH-2-	2	2	1	-	H	(R) CH ₂ CH ₃ -CH+N-C-C
1034	C⊢() CH₂-	2	2	1	-	н	(R) OCH ₃ -CH-N-C-OCH ₃ CH ₃ OCH ₃

Table 1.95

I able							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1035	CH-2 ⁻	2	2	1	-	н	(F) OCH₂CH₃ -CH-N-C CH₂CH₃ H CH₃
1036	C├ - CH ₂ -	2	2	1	-	н	$(H) \qquad \bigcirc OCH_2CH_3$ $-CH-N-C- \bigcirc OCH_2CH_3$ $-CH_3 \qquad OCH_2CH_3$
1037	CH2 ⁻	2	2	1	-	H . ,	(A) OCH ₂ CH ₃ -CH-N-C
1038	CH2 ⁻	2	2	1	 .	н	(FI) OCH ₂ CF ₃ -CH-N-C- H CH ₃ OCH ₂ CF ₃
1039	C├ - CH ₂ -	2	.2	11	· -	н	(FI) OCH ₂ CH ₃ -CH-N-C-CH ₃ CH ₃
1040	CHCH2-	2,	2	1	-	н	(A) POCF3 -CH-N-C-CH-CH3
1041	CH2-	2	2	1	-	H	(F) OCH ₃ -CH-N-C-
1042	CHCH_2-	2	2	1	•	Н	$-CH_2-N-C$ H_2N CI
1043	ССН2-	2	2	1	-	н	-CH ₂ -N-C-
1044	C├ - CH ₂ -	2	2	1	-	н	$-CH_2-N+C-$ H_2N
1045	с⊢С сн₂-	2	2	1	· -	н	-CH ₂ -N-C

Table 1.96

, , , , , ,							
Compd.	R^2 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
1046	CH2-	2	2	1	-	н	-CH ₂ -N-C
1047	C⊢√CH₂-	2	2	1	-	н	$-CH_2-N-C-$ H_2N CH_3 H_2N CH_3
. 1048	C├ - CH₂-	. 2	2	1	-	H _.	$-CH_2-N-C- \longrightarrow OCH_3$ $-CH_2-N-C- \longrightarrow OCH_3$ $H_2N $
1049	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1050	C├ - CH ₂ -	2	2	1	-	, Н	(S) OCH ₃ -CH-N-C
1051	CH ₂ -	2	2	. 1		H	$(S) \qquad CH_2CH_3$ $-CH_1C-CH_2CH_3$ $CH_2CH(CH_3)_2$
1052	CH-CH ₂ -	2	2	1	•	Н	$(S) \qquad OCH_3$ $-CH_1 C - CH_3$ $CH_2 CH(CH_3)_2 OCH_3$
1053	CHCH ₂ -	2	2	1	-	н	$(S) \qquad \bigcirc OCH_2CH_3$ $-CH-N-C- \bigcirc -OCH_2CH_3$ $-CH_2CH(CH_3)_2$
1054	CH-€ CH ₂ -	2	2	1	-	н	$(S) \qquad \bigcirc OCH_2CH_3$ $-CH-N-C- \bigcirc OCH_2CH_3$ $-CH_2CH(CH_3)_2 OCH_2CH_3$
1055	C⊢√CH₂-	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1056	CH-€ CH₂-	2	2	1 .	-	н	(S) OCH ₂ CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃

Table 1.97

lable 1	.97						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1057	CH-CH₂-	2	2	1	•	-H	(H) OCH ₂ CH ₃ -CH-N-C-CH CH ₂ CH(CH ₃)
1058	CH-()-CH ₂ -	2	2	1	-	н	(S) OCH ₃ -CH-N-C
1.059	C├ - CH ₂ -	2	2	1	-	н	(S) OCF ₃ -CH-N-C- CH ₂ CH(CH ₃) ₂
1060	C├─ (CH ₂ -	2	2	1	-	Н	(H) O OCH_2CH_3 $-CH-N-C -OCH_3$ H $CH_2CH(CH_3)_2$
1061	C⊢√_CH₂-	2	2	1	-	н .	(F) (F)
1062	CH-CH₂- ·	2	2	1	-	Н	(S) OCH ₂ CH ₃ -CH-N-C
1063	CH-CH ₂ -	2	2	1	-	Н	(A) OCH ₃ -CH-N-C
1064	CH-2-	2	2	1	-	н	(<i>H</i>) 0 OCF ₃ -CH-N-C- H H CH ₂ CH(CH ₃) ₂
1065	CH-CH2-	2	2	1	-	н	(H) OCH ₃ -CH-N-C
1066	CHCH ₂ -	2	2	1	-	н	(A) CH ₂ CH ₃ -CH-N-C
1067	C⊢-{	2	2	1	-	н	(A) OCH3 -CH-N-C OCH3 CH2CH(CH3)2 OCH3
						•	

Table 1.98

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1068	CH-2-	2	2	1	-	Ĥ	(A) OCH ₂ CH ₃ -CH-N-C
1069	С⊢√СН₂-	2	2	1	•	H	$(H) \qquad OCH_2CH_3$ $-CH-N-C$
1070	CH-CH₂-	2	2	1	-	» Н	CH2OCH2
1071	CH⊋-	2	2	1	-	Н	-CH-NC-
107.2	C├ - CH ₂ -	2	2	1	· -	н	-CH-NC-C(CH ₃) ₃
1073	CH-CH ₂ -	2	2	1	• •	Н	-CH-N-C-CH ₂ OCH ₂
1074	CH-2-	2	2	1	•	H . ,	-CH-N-C-CF3 OH ₂ O CH ₂ -COH ₃
1075	CH₂-	2	2	1	-	н	-CH-N-C
1076	CH ₂ -	2	2	1	. •	н	-CH-N-C
1077	C├ - CH ₂ -	2	2	1		н	-CH-N-C-CF3 CH2OCH2-CF3
1078	CH-2-	2	2	1	-	н	-CH-N-C-C

Table 1.99

Table 1	*						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	· R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1079	C├────────────────────────────────────	2	2	1	-	н	-CH-N-C-CH ₃ -CH ₂ OCH ₂ -CH ₃
1080	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
1081	CH-2-	2	2	1	-	н	OCH3 -CH-N-C
1082	CH-CH ₂ -	2	2	1	-	, H	(S) P C-(S) CH3
1083	CH-CH ₂ -	2	2	1	-	Н	(A) O O O O O O O O O O O O O O O O O O O
1084	CH—CH₂-	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1085	CI—(CH₂-	1	. 2	0	R	н	-CH ₂ -N-C
1086	CH-CH ₂ -	1	2	0	R		-CH ₂ -N-C
1087	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-NH
1088	CH_CH2-	1	2	0	R	н	-сн ₂ -м-с-
1089	CI—CH ₂ -	1	2	C) R	н	-CH ₂ -N-C-N-H
					-		

Table 1.100

Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1090	CH2−	1	2	0	R	н	-CH ₂ -N-C
1091	CH-CH₂-	1	2	0	R	H a	-CH ₂ CH ₂ -N-C
1092	CH-2-	1	2	0	R	Н	$-CH_{2}CH_{2}-NC_{2}$ $H_{2}N$
1093	CH ₂ -	1	2	0	R	н	$-CH_{2}CH_{2}-NC-$ $H_{2}N$
1094	CH-€	. 1	2	0	R	н	-CH ₂ CH ₂ -N-C-N-H
1095	CH-2-	1	2	. 0	R	н	-CH2CH2-N-C-
1096	C├ \	1	2	0	R	н	-CH ₂ CH ₂ -N-C-N-H
1097	C├ ─ CH ₂ -	1	2	0	, R	H	-CH2CH2-N-C
1098	CI-CH ₂ -	1	2	0	R	н	−CH ₂ −N-C−−CH ₃
1099	CH2-	1	2	0	R	н	-CH ₂ -N-CF
1100	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-CF

Table 1.101

lable i	.101						
Compd.	R ² (CH ₂)	k	m	n	chirality	. R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - G - R^6$
1101	CH-√CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1102	C⊢√CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1103	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1104	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1105	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF
1106	H ₃ C-\CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1107	H ₃ C-CH ₂ -	1	2	0	R	н .	$-CH_2-N-C- \longrightarrow NO_2$
1108	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N-C$ $-CH_3$
1109	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1110	CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1111	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C

Tabl 1.102

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1112	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	-CH ₂ -N-CNO ₂
1113	с⊢СН₂-	2	2	, 1	· -	H	-CH ₂ -N-C
1114	CH_CH2-	2	2	1	-	H	-CH ₂ -N-C
1115	CH2-	2	2	1	-	Н	-CH ₂ -N-CF
1116	CHCH ₂ _	2	2	.1	-	н	-CH ₂ -N-C-⟨S-CH ₃
1117	CH_CH ₂ -	2	2	1	-	. H	-CH ₂ -N-CNO ₂
1118		1	2	0	R	H	-CH ₂ -N-C-CF ₃
1119	H₃CS-CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1120	H ₃ CQ —CH ₂ - OCH ₃	1	2	0	R	. Н	-CH ₂ -N-C-CF ₃
1121	H ₃ C O ₂ N————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C CF ₃
1122	. H₃C (H₃C)2CH- CH2- CH(CH3)2	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.103

lable							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1123	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1124	O ₂ N_O-CH ₂ -	1	2	0	R	H .	-CH ₂ -N-C-CF ₃
1125	CHCH ₂ -	2	2	1	· -	н	- CH- N- C CI H - CI OH ₂ O CH ₂
1126	C├ - CH₂-	2	2	1	-	н	- CH+ N-C
1127	CH	2	2	1	-	н	-CH-N-C-NH CH2OCH2
1128	CHCH2-	2	2	1	-	н	-CH-N-C-CF ₃
1129	C├ \ CH ₂ -	2	2	1	-	H .	-CH-N-C
1130	C⊢(CH₂-	2	2	1	-	н	-CH-N-C
1131	C├ \ CH ₂ -	2	2	1	-	н	OH-N-C
1132	CHCH ₂ -	2	2	1	-	. Н	-CH-N-C
1133	H₃CQ H₃CO-⟨}-CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.104

Compd.	R ¹ (CH ₂);	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}}$ $+ (CH_2)_{\overline{q}}$ $+ (CH_2)_{\overline$
1134	H₃CO					н	-CH ₂ -N-C-CF ₃
1135	O CH ₂ - NO ₂	1	2	. 0	R	Н	-CH ₂ -N-C-CF ₃
1136	O-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1137	CH ₂ -	1	. 2	0	R	Н.	-CH ₂ -N-C-CF ₃
1138	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1139	(CH ₂) ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1140	O ₂ N ————————————————————————————————————	1	.2	0	R	H	-CH ₂ -N-C-CF ₃
1141	CH₂-	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1142	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1143	Charles CH2-	1	2	0	R	н	-CH₂-N-C-CF3
1144	H₃CO —CH₂- H₃CO	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.105

labic							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1145	H ₃ CO CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1146		1	2	0	R	н	-CH ₂ -N-C-CF ₃
:	н°с-с-Й-(ан≥					н	-CH ₂ -N-C-CF ₃
1148	CH ₂ -	1	2	. 0	R	н	-CH ₂ -N-C-CF ₃
1149	CH₃ N—CH₂- CH₃	1	.2	0	R	н	-CH ₂ -N-C
1150	CH ₃ N CH₂−	1	2	0	R	н	-CH ₂ -N-C-CH ₂ CH ₃
1151	CH ₃ CH ₂ - CH ₃	1	2	0	R	.	-CH ₂ -N-C-CH ₂ -CF ₃
1152	CH₃ N—CH₂- CH₃	1	2	0	R	H	-CH ₂ -N-C-N-H
1153	CH ₃ CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-N-H
							-CH ₂ -N-C-N-CH ₃
1155	CH ₃ N CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃ F ₃ C

Table 1.106

Compd. No.	R^{2}	_					
1156	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1157	CH ₃ CH ₂ CH ₃	1	2	0	R		-CH ₂ -N-C-SCH ₃
1158	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C- H ₂ N CI
1159	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	$-CH_2-N-C-V-CH_3$ $H_2N OCH_3$
1160	CH ₃ N→CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N H_3
	H ₃ CO—CH ₂ -					Н	-CH ₂ -N-C
1162	H_3CO CH_3 CH_2 CH_2	1	2	0	R	Н	-CH ₂ -N-C-⟨CF ₃
	H ₃ CO—CH ₂ -					Н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CF_{3}$
1164	H ₃ C H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1165	O-CH₂-	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1166	H ₃ CO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.107

				_			
Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	'R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1167	С⊢—СН₂-	2	2	1 .	<u>-</u>	H	-CH ₂ -N-C-
1168	CL N CH2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	H ₃ C-C-N N CH ₂ -					H	-CH ₂ -N-C-CF ₃
1170	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1171	CHCH2-	1	2	0	R	н	-CH ₂ -N-C- Br
	CHCH ₂ -					н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1173	CHCH2-	1	2	0	R	н	-CH ₂ -N-C-N-H-N-H-N-H-N-H-N-H-N-H-N-H-N-H-N-H
							-CH ₂ -N-C
1175	H₃C-()-CH₂-	1	2	0	R .	н	-CH ₂ -N-C
1176^	H ₃ C-\(\bigcirc\)-CH ₂ -	1	2	0	R·	н .	-CH ₂ -N-C-N-H
1177	H₃C-⟨¯¯⟩-CH₂-	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃

Table 1.108

					_		
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1178	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	H .	$-CH_2-N-C-$ H_2N
1179	H ₃ C-CH ₂ -	1	. 2	, 0	R	н	$-CH_2-N-C$ H_2N
1180	H ₃ C-CH ₂ -				R	н	-CH ₂ -N-C-N-H
1181	CH ₃ CH ₂ − CH ₃	1	2	0	R	н .	-CH ₂ -N-CBr
1182	CH ₃ CH ₂ - CH ₃					H ·	-CH ₂ -N-C-N-H
1183	CH₃ N—CH₂- CH₃	1	2	0	, R	H .	-CH ₂ -N-C-N-H
1184	CH_3 CH_2 CH_3				•		$-CH_2-N-C$ H_2N
1185	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1186	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	-CH ₂ -N-C-N
1187	C	2	2	1	-	н	$-CH_{2}-N-C-\longrightarrow DH$ $-CH_{2}-N-C-\longrightarrow H$
1188	C├ - CH₂-	2	2	1	-	н	-CH ₂ -N-C-N-H

Table 1.109

i abic	1.100						
Compd.	R ¹ (CH ₂),	k	m	n	chirality	·R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1189	С⊢СН₂-	2	2	. 1	-	н	-CH ₂ -N-C-N-OCH ₃
1190	C⊢√CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
	CH ₃ CH ₂ -					H	-CH ₂ -N-C-CF ₃
1192	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1193	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C-C
1194	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	$-CH_2-N-C$ F_3C
1195	CH ₃ CH ₂ − CH ₃	1	.2	0	R	Н	-CH₂-N-C-
1196	CH ₃ CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
1197	N CH₂-	,1	2	0	R	Н	-CH ₂ -N-C-
1198	CH ₃	1	2	0	R	H	-CH ₂ -N-C-CI
1199	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н	-СH ₂ -N-С-СН ₃
							•

Table 1.110

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1200	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CI
1201	CH₃ CH₂− CH₃	1	2	0	R	H .	-CH ₂ -N-CF
1202	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1203	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-COCF ₃
1204	H ₃ C-(-CH ₂ -	1	2	0	R .	н .	$-CH_2-N-C \xrightarrow{CF_3}$ F_3C
1205	H ₃ C-CH ₂ -	1	2	0	. R	н	-CH ₂ -N-C-Br
1206	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1207	H ₃ C(T)CH ₂ -	1	2	0	R	Н,	-CH ₂ -N-C- H
1208	H₃C{}CH₂-	1	2	0	R	H _.	-CH ₂ -N-C-CI
1209	H ₃ C-CH ₂ -	1	2	0 -	R	Н	-CH ₂ -N-C-CH ₃
1210	H₃C-⟨CH₂-	1	2	0	R	Н	-CH₂-N-C

Table 1.111

lable	1.11						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1211	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F
1212	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1213	C├ - CH ₂ -	2	2	1	- ,	н	$-CH_2-N-C \xrightarrow{F_3}$
1214	С⊢√СН₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1215	с⊢—СН₂-	2	2	1	-	н	-CH2-N-C-CI
1216	C├ \ CH₂-	2	2	1	. <u>-</u>	Н	-CH ₂ -N-C
	C⊢√CH ₂ -					Н	-CH ₂ -N-C-CF ₃
1218	CH2-	1	2	0	R	Н	-CH ₂ -N-C- H F
1219	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CI
1220	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1221	ССН2-	1	2	0	R	н	-CH ₂ -N-C

Table 1.112

Compd.	R ¹ R ² (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1222	C├ - CH ₂ -	1	2	0	R	н	-CH₂-N-C-N-CH₃
1223	C├ - CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-
1224	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1225	H ₃ C-CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3
1226	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
1227	H ₃ C-CH ₂ -	1	2	.0	R	H	-CH ₂ -N-C-CI
1228	H ₃ C-CH ₂ -	1	2	0	R	H	$-CH_2-NC-$ H_2N
1229	H₃C-⟨¯¯⟩-CH₂-	1	2	0	R	н	-CH ₂ -N-C
1230	H₃C-{	1	2	Ó	R	н	-CH ₂ -N-C-\ H H
1231	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1232	H₃C- \ CH₂-	1	2	0	R	н	-CH ₂ -N-C-NO ₂

Tabl 1.113

Tabl 1	.113						
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1233	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C-CF ₃
1234	CH ₃ N CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
1235	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CI
1236	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N-C$ H_2N
1237	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	$-CH_2-N-C$ H_2N
1238	CH ₃ N→CH ₂ - CH ₃	1	2	0 ,	R	н	-CH ₂ -N-C-()
1239	CH₃ N—CH₂- CH₃					H	-CH ₂ -N-C-
	CH₃ CH₂− CH₃					н	-CH ₂ -N-C-NO ₂
1241	CI—CH ₂ -	2	2	1	•	Н .	-CH ₂ -N-C-C-CF ₃
1242						н	-CH ₂ -N-C-
1243	CH-CH ₂ -	2	2	1		н	-CH ₂ -N-C-CH ₃

Table 1.114

Compd.	R ¹ (CH ₂) _j -	k	m	n, c	hirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1244	C├ - CH ₂ -	2	2	1	-	H .	$-CH_2-NC \longrightarrow H_2N$
1245	с⊢(СН₂-	2	2	.1	- 3	Н	-CH ₂ -N-C-F H H ₂ N
1246	с⊢{сн₂-	2	2	1	-	Н	-CH ₂ -N-C-N
1247	CH_CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1248	CH_CH2-	2	2	1	- ·	н	-CH ₂ -N-CNO ₂
1249	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1250	H ₃ C-CH ₂ -					H .	-CH ₂ -N-C
1251	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1252	С⊢—СН₂-	. 1	2	0	R	H	-CH ₂ -N-C-⟨CH ₃) ₂
1253	H₃C-⟨¯¯)CH₂-	1	2	0	R	H	-CH ₂ -N-C
							-CH ₂ -N-C-(CH ₃) ₂

Table 1.115

Table I	.113						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1255	CH-CH ₂ -	1	2	0	R	н	$-CH_2-NC \longrightarrow Br$ H_2N
1256	H ₃ C-CH ₂ -	1	2	Ò	R	H .	-CH ₂ -N-C
1257	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1258	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1259	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1260	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1261	С⊢СН2−	1	2	0	R	.	-CH ₂ -N-C-C(CH ₃) ₃ H ₃ C
1262	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃ H ₃ C
1263	CH₃ CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
.1264	C├ ─ _CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
1265	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-

Table 1.116

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1266	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1267	CH2−	1	2	0	R	H	-CH ₂ -N-C-N-C-N-H-H-C-N-C-N-C-N-C-N-C-N-C-N-C
1268	C├ ~ CH₂-	1	2	0	R	н	-CH ₂ -N-C
1269	C	1	2	0	R	н	-CH ₂ -N-C
1270	CH2-	1	2	0	R	H	-CH ₂ -N-C- HO
1271	C├ - CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1272	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-H
	H ₃ C-CH ₂ -						-CH ₂ -N-C
1274	H ₃ C-(CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1275	H ₃ C	1	2	0	R		-CH₂-N-C- HO
1276	H ₃ C-\(\bigcirc\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.117

	·						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	[*] R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
1277	CH ₉ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-H-OCF ₃
1278	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1279	CH₃ N CH₂− CH₃	1	2	0	R	Н .	-CH ₂ -N-C-→Br
1280	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C- HO
1281	CH ₃ CH ₂ − CH ₃	1	.2	0	R	Н	-CH ₂ -N-CF
1282	С⊢√_СН₂-	2	2	1	· <u>-</u>	Н	-CH ₂ -N-C-N-H
1283	CH-()-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1284	CHCH2-	2	2	1	-	Н	-CH ₂ -N-C-Br
1285	C⊢———CH₂-	2	2	1	-		-CH ₂ -N-C
1286	H ₃ ¢ N(OH ₂) ₃ O	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1287	NO ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.118

Compd. No.	R ² (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1288	HQ H₃CO————————————————————————————————————	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1289	CH₃ N CH₂- CH₃	1	2	0	R	H	-CH ₂ -N-C
1290	CH₃ N—CH₂− CH₃	1	2	0	R	н	$-CH_2-N-C-$ $H_2N CH_3$
1291	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-CH ₃
1292	H ₃ C-(CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1293	H ₃ C-CH ₂ -	1 .	2	0	R	· H	-CH ₂ -N-C-CF ₃
1294	H₃C-{CH₂-	1	2	. 0	R	H	-CH ₂ -N-C
1295	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1296	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S-SCH ₃
1297	H ₃ C(1	2	0	R	н	-CH ₂ -N-C-CH ₃ F ₃ C
1298	H ₃ CO————————————————————————————————————	1	2	0	R	H	-CH ₂ -N-C-CF ₃

Table 1.119

lable	1.119						
Compd.	R ² (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1299	H ₃ CO — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1300	OCH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1301	OCH ₃ H ₃ CO — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1302	H_3C CH_3 CH_2	1	2	0	R	н	-CH ₂ -N-C- H CF ₃
, 1303	H ₃ CQ H ₃ CO—CH ₂ -	1	.2	0	R	Н	-сн ₂ -N-с-СF ₃
1304	H ₂ CQ CH ₂ O-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1305	H ₃ CO-CH ₂ -	1	···2	0	R	н	-CH ₂ -N-C-CF ₃
1306	H₃CCH₂Q H₃CO—CH₂−	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1307	H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1308	CH₂-	1	2	Ò	R	н	-CH ₂ -N-C-CF ₃
1309	H₃CQ H₃CO————————————————————————————————————	1	2	C) R	н .	-CH ₂ -N-C-CF ₃

Table 1.120

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1310	H ₃ CQ HO—CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1311	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1312	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1313	Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1314	O ₂ NCH ₂ -	1	2	0	R	Н	-CH₂-N-C-CF3
1315	H₃C O CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1316	F ₃ C CH-CH ₂ -	. 1	2	0	R .	н	-CH ₂ -N-C-CF ₃
1317	O ₂ N CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1318	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1319	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1320	Br—CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Tabl 1.121

labi i	.121						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1321	CHCH2-	1	2	0	R	н	-CH ₂ -N-CBr
1322	CHCH_2-	1	2	0	R _.	н	-CH ₂ -N-C-CH ₃
1323	CH-CH2-	. 1	2	0	R	н	-CH ₂ -N-C
1324	CH-{	1	2	0	R	н	-CH ₂ -N-C- HO
1325	С├-{	1	2	0	R	н	-CH ₂ -N-C
1326	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1327	C├ \ CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1328	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1329	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1330	. H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1331	H ₃ C-(1	2	0	R	н	-CH ₂ -N-C- H HO

Table 1.122

							· /
Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q G - R^6$
1332	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C-C-C
1333	H ₃ C⟨□ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1334	H ₃ C-()-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C
1336	CH ₃ N CH ₂ - CH ₃	1	2	0	R	. н	-CH ₂ -N-C- CH ₃
1337	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1338	CH ₃ CH ₂ -					H .	-CH ₂ -N-C
1339	CH ₃ CH ₂ - CH ₃	. 1	2 ·	0	R	н	-CH ₂ -N-C
1340	CH ₂ -	. 1	2	0	R	Н	-CH ₂ -N-C-
1341	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1342	CHCH ₂ -	2	2	1	-	H	-CH ₂ -N-C- H C- Br CI

Table 1.123

lable 1							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} + G - R^6$
1343	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1344	CH-()-CH ₂ -	2	2	1	.	н	-CH ₂ -N-C
1345	CHCH ₂ -	2	2	1	. -	н	-CH ₂ -N-C
1346	С⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C
1347	C├ ~ CH₂-	1	2	0	R	• н	-CH ₂ -N-C-S CH ₃
	H ₃ C-CH ₂ -					Н	-CH ₂ -N-C-S CH ₃
1349	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-SCH ₃
1350	CH2-	2	2	1	-	Н	-CH ₂ -N-C-SCH ₃
	C├ - CH ₂ -					н	-c+5-H.c-c+3
1352	H ₃ C	1	2	0	R ·	н	-045-Hc-043
1353	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-OH2-N-C-OH3

Table 1.124

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1354	с⊢{_}СН₂-	2	2	1	-	н .	-042-17. C-043
1355	С⊢СН2−	1	2	. 0	R	н .	$-CH_2-N-C$ $H_2 N$
1356	H ₃ C	1	2	0	R	н .	$-CH_2-N-C$ H_2N
1357	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N-C$ H_2N
1358	С⊢{СН₂-	2	2	1.		н	-CH ₂ -N-C-CN
	CH ₃ CH ₂ - CH ₃					H	-CH ₂ -N-C-
1360	CH ₃ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1361	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C- H C- OCH ₃
	Ung						-CH ₂ -N-C- H
							$-CH_{2}-N-C- CH_{3}$ $-CH_{2}-N-C- CH_{3}$ $-CH_{3}$
1364	H₃C-CH₂-	1	2	0	R	H	-CH ₂ -N-C-CH ₃

Table 1.125

lable	.125						
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
1365	CH ₃ CH ₂ - CH ₃	1	2	0	R ·	н	$-CH_2-NC-$ H_3C
1366	CH₃ N—CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1367	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H
1368	C⊢-(CH ₂ -	1	2	0	, R	н	-CH ₂ -N-C-CI
1369	C├ - CH ₂ -	1	. 2	0	R	H	-CH ₂ -N-C- H F ₃ CCH ₂ O
1370	C⊢√_CH₂-	1	2	0	R	н	-CH ₂ -N-C-(S) Br
1371	C⊢√_CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1372	CH2 ⁻	1	2	0	R	н	-CH2-N-C-
1373	H ₃ C-CH ₂ -	1	2	. 0	R	н	-CH₂-N-C-CF3
1374	H ₃ C-()-CH ₂ -	1	2	0	R	н	OCH ₂ CF ₃ -CH ₂ -N-C- H F ₃ CCH ₂ O
1375	H ₃ C-()-CH ₂ -	1	2	. 0	R	н	-CH ₂ -N-C-S Br

Table 1.126

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
1376	H₃C-⟨□⟩-CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1377	H₃C{CH₂-	1	2	0	R	н	- CH ₂ -N-C-
	CH ₃ CH ₂ − CH ₃					н	-CH ₂ -N-C-CF ₃
1379	CH ₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C- H F ₃ CCH ₂ O
1380	CH ₃ CH ₂ − CH ₃					· H	-CH ₂ -N-C-S Br
1381	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1382	CH₃ CH₂− CH₃	.1	2	0	R	Н.	-CH ₂ -N-C-
1383	С⊢(СН₂-	2	2	1	. •	н	-CH ₂ -N-C-CI
1384	CCH ₂ -	2	2	1			-CH ₂ -N-C-S Br
1385	CH2-	2	2	1	-	н	-CH ₂ -N-C-
138 ⁶	C├ - CH ₂ -	2	2	1		н	-a12-Hc-

Table 1.127

					· · · · · · · · · · · · · · · · · · ·		
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1387	CH ₃ N—CH ₂ — CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1388	CH₃ N—CH₂- CH₃	1	2	0	R	H .	-CH ₂ -N-C-(CH ₃) ₃ -CH ₂ -N-C-(CH ₃) ₃ -CH ₃
1389	CH ₃ CH₂− CH ₃	1	2	0	R	н	-CH2-HC-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1390	H_3C CH_3 H_3C CH_2 CH_3	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1391	H ₃ C H ₃ C−CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1392	CL H ₃ C−CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1393	H3CCH2-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1394	O ₂ N H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1395	H ₂ C=CH-CH ₂ -	1	2	0	R	Н	-CH₂-N-C-CF3
1396	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1397	Br—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.128

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1398	CH-CH-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1399	CH-CH-CH	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1400	C⊢—CH—	1	2	0	R	Н	-CH ₂ -N-C- H CF ₃
1401	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-CI
1402	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C- OCH_3$ $+_2N OCH_3$
1403	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-√N
1404	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1405	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1406	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1407	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH₂-N-C- H H₃CCH₂S
1408	H₃C-(CH₂-	1	2	0	R	Н	-CH2-N-C-

Table 1.129

labic							
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	· R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1409	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1410	CH ₃ N CH ₂ − CH ₃	1	2	. 0	R	н	-CH ₂ -N-C-
1411	С⊢—СН₂-	1	2	0	R	н	-CH2-N-C-VH
1412	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H ₃ C-C-NH
1413	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C- H ₃ C-C-NH
1414	C⊢-{CH₂-	2	2	1	<u>-</u>	н	-CH ₂ -N-C-C-NH
1415	C⊢-{¯}-CH₂-	1	-2	0	R	Н	-CH ₂ -N-C-SCN
1416	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCN
1417	CH₃ CH₂-	1	2	0	R		-CH ₂ -N-C-SCN H ₂ N
1418	С⊢—СН₂-	2	2	1	-	Н	-CH ₂ -N-C-SCN H ₂ N
1419	C├ \ CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N H_2N

Table 1.130

Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
1420	H₃C-CH₂-	1	2	0	R	н	-CH ₂ -N-C-SH H ₂ N
1421	CH ₃ CH ₂ -	1	2	0	R	H ·	-CH ₂ -N-C-SH H ₂ N
1422	СН2-	2	2	1	-	Н	-CH ₂ -N-C-SH H ₂ N
1423	С⊢СН₂-	1	2	0	R	Н	-CH ₂ -N-C-
1424	H ₃ C-CH ₂ -					H + 4.	-CH ₂ -N-C
1425	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1426	СН ₂	2	2	1		н	-CH ₂ -N-C-
1427	CHCH ₂ -	2	2	1	- 	н	-CH ₂ -N-C-Sr H H ₃ C-NH
1428	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C
1429	ңссн₂о-{_}-сн₂-	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1430	O-CH ₂ -	2	2	1	-	Н	$-CH_2-NC-$ H_2N

Table 1.131

							·
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1431	ңссн₂о-{¯}-сн₂-	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N Br
1432	CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
1433	H ₆ CCH 2O-{}-CH2-	2	2	1	-	н	-CH2-N-C- HN CH2-OCH2CH
1434	H₃CCH2O-(2	2	1	. -	н	-CH2-N-C- HN CH2-CH2CH
1435	H3CCH2-CH2-	2	2	1	-	н	$-CH_2-N$ H_2N
1436	(H ₆ C)₂CH-{}-CH₂-	2	2	1		н	$-CH_2-N-C-$ H_2N
1437	H ₃ C(CH ₂) ₂ O-(CH ₂ -	2	2	1	-	' Н	$-CH_2-N-C-$ H_2N
1438	н₃ссн₂—Сн₂-	2	2	1	-	Н	$-CH_2-NC$ H_2N H_2N
1439	(H ₆ C) ₂ CH-(T)-CH ₂ -	2	2	1	-	н	$-CH_2-NC-$ H_2N H_2N
1440	H3C(CH2)2O-(-)-CH2-	2	2	1	~	н	$-CH_2-N$ C H_2N H_2N
1441	H ₃ CS—CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N

Table 1.132

Comp No.	d. R^1 (CH ₂)	k	m	n	chirality	R ³	—(CH ₂) _p + (CH ₂) _q G−R ⁶ R ⁵
1442	H₃CCH2—CH2-	2	2	1	-	н	-CH2-NC-CH2CH
1443	(H ₆ C)₂CH-CH₂-	2	2	1	-	Н	-CH2-N-C
1444	H ₃ C(CH ₂) ₂ O	2	2	1	-	н	-CH2-N-C
1445	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	н	-CH2-N-C
1446	(H ₀ C) ₂ CH-(-)-CH ₂ -	2	2	1	-	Н	-CH2-NC
1447	H3C(CH2)2O-CH2-	2	2	1	-	н	-012-1-0(012) 2CH
1448	H₃CS—()—CH₂-	2	2.	1	-	H ·	-CH2-N-CSCH
1449	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1450	(H ₃ C) ₂ CH-⟨ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1451	(H3CCH2)2N-CH2-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1452	HQ H ₃ CO—CH ₂ -	2	2	1	-	Н	-СH ₂ -N-С-СF ₃

Table 1.133

					<u>.</u>		
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
1453	н ₃ с(сн ₂) ₂ о-{ сн ₂ -	2	2	. 1	-	н	-CH ₂ -N-C-⟨CF ₃
1454	ң,сан 20-{}_ан2-	2	2	1	. - ·	Н	-CH ₂ -N-C-CF ₃
1455	H ₃ CQ HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1456	CH ₂ -	2	2	1	_	н	-CH ₂ -N-C-CF ₃
1457	(CH ₃) ₂ N-\(\bigcirc)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1458	H ₃ CO HO—CH ₂ -	2	2	1:		Н	-CH ₂ -N-C
1459	(H ₃ C) ₂ N-\(\bigc\)-CH ₂ -	2	2	1	- , .	Н	$-CH_2-N$ H_2N H_2N
1460	H ₃ CO HO—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N H_2N H_3N
1461	H ₃ CO HO—CH ₂ -	2	2	1	-	Н	-CH2-N-C
1462	H ₃ CO HO—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1463	с⊢—СН₂-	2	1	1	- **	Н	-CH ₂ -N-C-CF ₃

Table 1.134

Con N	npd. o.	R ² (CH ₂) _j	- k	: m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
146	4	сн-СН2	- 2	1	1	-	Н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
146	5	СН-СН2	- 2	1	. 1	·	н	$-CH_2-N-C F_3C$ CF_3
146	6	с⊢⟨у−сн₂-	- 2	1	1		н	-CH ₂ -N-C-
1467	7	С⊢СТ}—СН₂-	2	1	1	-	н	-CH2-N-C-
1468	3	C⊢√CH ₂ -	· 2	1	-1	. -	н	-CH ₂ -N-C-\ H
1469)	С⊢—СН₂-	2	1	1	-	н .	-CH ₂ -N-C-CF ₃
1.470), (CH-{	2	.1	1	-	Н	-CH ₂ -N-C
1471	,	С⊢—СН₂∸	2	1	1	-	Н	-CH ₂ -N-C
1472		CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1473		Br S CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1474		CH₂-	1	2	0	R.	Н	-CH ₂ -N-C-CF ₃

Table 1.135

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1475	CL CH2-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1476	Br S CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1477	Br CH2-	1	2	0	R	H .	-CH₂-N-C-CF3
1478	Br Q CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1479	CH_3 CH_2 CH_3	1	2	0	R _.	° н	-CH ₂ -N-C-CF ₃
1480	H_3C CH_3 CH_2	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1481	H ₃ C — CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1482	Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1483	H ₃ C CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1484	cr O S C - CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1485	H ₃ C—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-S

Table 1.136

R ² (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
H ₃ CCH ₂ -	1	2	. 0	R	Н	-CH ₂ -N-C-SOCH ₃
H₃C—()—CH₂-	1	2	0	R	Н	$-CH_2-N-C$ H_2N CI
H₃C-{}CH₂-	1	2	0	R	н	-сн ₂ -N-с(
H ₃ C-CH ₂ -	1	2	0.	R	Н	-CH ₂ -N-C
H ₃ C-\CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
H ₃ C-CH ₂ -	1	2	0	R	н	NH ₂
					н	-CH ₂ -N-C-\ N-\ N-\ N-\ N-\ N-\ N-\ N-\ N-\ N-\ N
					·	-012-HC-00
Ong						-CH ₂ -N-Cm
						$-CH_2-N-C-V$ H_3C
CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
	$H_{3}C$ CH_{2} $H_{3}C$ CH_{2} CH_{2} CH_{2} CH_{3} CH_{2} CH_{2} CH_{3} CH_{2} CH_{3}	$H_{3}C - CH_{2} - 1$	$H_3C - CH_2 - 1 2$	$H_3C - \bigcirc - CH_2 - 1 2 0$ $H_3C - \bigcirc - CH_2 - 1 2 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_3C- \bigcirc -CH_2- 1 2 0 R H$ $CH_3 CH_3 C$

Tabl 1.137

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1497	CH₃ N—CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C
1498	CH ₃ CH ₂ − CH ₃	1	2	0	R.	Н	-CH ₂ -N-C✓
1499	CH₃ N—CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C ☐
1500	CH ₃ CH ₂ - CH ₃					н	-CH₂-N-C CH₃
1501	CH ₃ N—CH ₂ − CH ₃					н	-CH2-N-C-
1502	CH ₃ CH ₂ − CH ₃					н	-CH ₂ -N-C-⟨CF ₃ F
1503	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
	H ₂ N-CH ₂ -					Н	-CH ₂ -N-C-CF ₃
1505	CH ₂ Q CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1506	CH	2	1	1	-	н	-CH ₂ -N-C-Br H ₂ N
1507	CH	2	1	1	•	н	-CH ₂ -N-C

Table 1.138

Compd No.	. R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1508	CH-CH ₂ -	2	1	1	-	н	-CH ₂ -N-C
1509	CH2-	2	1	1	<u>-</u>	н	-a+2-N+C-
1510	CHCH2-	2	1	1	• •	H .	$-CH_2-NC-$ H_2N
1511	C	2	1	1	-	Н	-CH ₂ -N-C-S Br
1512	С⊢Сту−СН₂−	2	. 1	1	<u>-</u>	н	-CH ₂ -N-C-CI
1513	C⊢√CH₂-	2	1	1	• •	Н	-CH ₂ -N-C
1514	(H ₃ CCH ₂) ₂ N	2	2	1	-	Н	-CH ₂ -N-C
1515	HQ H ₃ CO————————————————————————————————————	2	2	1	-	H .	-CH ₂ -N-C-
1516	(H ₃ CCH ₂) ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1517	HQ . H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
1518	HQ H ₃ CO—CH ₂ -	2	2	1	<u>-</u>	н	-CH2-NC-CH2-OCH

Table 1.139

Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1519	HQ H₃CO-CH₂-	2	2	1	-	Ħ.	-сн ₂ -м-сн ₂ -осн
1520	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
	H ₃ CO-CH ₂ -	•				н	-CH ₂ -N-C-
1522	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1523	H ₃ CO — CH ₂ -	1	2	0	R	н	-CH₂-N-C-
1524	H ₃ CQ HO—CH₂-	1	2	0	R	Н .	-CH₂-N-C-S
1525	Br—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C
1526	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1527	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
1528	H ₃ CO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
1529	H ₃ CQ HO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-C-C-S

Table 1.140

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
1530	Br-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1531	H ₃ CO-()-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1532	O ← CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H
1533	H ₃ CQ H ₃ CO————————————————————————————————————	1	2	0	R .	н	-CH ₂ -N-C- H
1534	H ₃ CQ HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1535	Br—CH ₂ —	. 1	2	0	R	Н	-CH ₂ -N-CF
1536	H ₃ CO	1	2	0	R	Н	-CH ₂ -N-CF
1537	CH₂-	1	2	0	R	H .	-CH ₂ -N-C-CF ₃
1538	H ₃ CO H ₃ CO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C CF_3$ $-CH_2-N-C-$
1539	H ₃ CQ HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1540	Br—CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-F

Table 1.141

Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1541	H₃CO-€ CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃ F
1542	CH₂-	1	2	0	Ŗ	н	$-CH_2-N-C F$ F
1543	H ₃ CQ H ₃ CO—C——C———————————————————————————————	1	2	0	R	, H	-CH ₂ -N-C-CF ₃ F
1544	H ₃ CQ HO—CH ₂ -	1	2	0	R .	н .	-CH ₂ -N-C-CF ₃ F
1545	CI_S CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1546	H ₃ CO-FFCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1547	H ₃ CO-Br	1	2	0	R		-CH ₂ -N-C-CF ₃
1548	H ₃ C-\(\bigcirc\)-CH ₂ -	1	2	0	R	н	-CH2-N-C $H3C$ $CH3$ $CH3$
1549	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1550	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	- 042-H-C-H-2-OCH3
1551	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-HC

Table 1.142

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1552	H ₃ C-CH ₂ -	1.	2	0	R	н	-CH ₂ -N-C-
1553	H₃C-⟨CH₂-	1	2	0	R	н	-a+3-H-c
1554	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1555	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-V$ H_3C H_3C
1556	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C- \bigcirc N$ H_3C
1557	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NN H ₃ C
1558	H ₃ C-\(\bigce\)-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-CH ₃
1559	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃ H ₃ C
1560	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-O
1561	H ₃ C-CH ₂ -	1	2	0	, R	н	$-CH_2-N-C$
1562	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.143

	,,,,						
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	· R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1563	H ₃ C-()-CH ₂ -	1	2	0	R	н	-CH2-HC
1564	H ₃ C-\	1	2	0	R	н	-CH2-HC
1565	CH_3 . CH_2 - CH_3	1	2	0	R	н .	-CH ₂ -N-C- H H₃CO
1566	CH ₃ N→CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N-C O_2N$ OCH_3
1567	CH ₃ N −CH ₂ − CH ₃	1	2	0	R	н	-CH2-HC-CH2
1568	CH ₃ N CH₂- CH₃	1	2	0	R	н	-cH2-Hc
1569	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	-CH2-H-C
	H₃CS—CH₂−					Н	-CH ₂ -N-C-CI
1571	H₃CS-{CH₂-	2	2	1	-	Н	-CH2-N-C
	ON-C-C-CH2-CH2-						-CH ₂ -N-C-CF ₃
1573	н³со-{}-Йс-{}-Оч³-	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.144

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	_(CH ₂) _p + (CH ₂) _q G-R ⁶
1574	H C CH2-CH2-CH2-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1575	C	2	. 2	· 1		Н.	-CH₂-N-C-CF₃
1576	Q_N-C	2	2	1	-	H	−CH ₂ −N-C−√CF ₃
1577	но(сн) 5 н с Ст-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1578	H ₃ C	2	2	1		Н	-CH ₂ -N-C-CF ₃
1579	CH ₃ P N°C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1580	O-N-C	2	. 2	1	-	Н	-CH ₂ -N-C-CF ₃
1581	CH2-	2	2.	1		Н	-CH ₂ -N-C-SP NH
1582	C	2	2	1	-	H	-c+z-H-c
1583	с⊢—СН₂-	1	2	0	R	Н	-CH₂-N-C-SCF3
1584	с⊢—СН₂-	1	2	0	R	Н	$-CH_2-N$ H_2N $-CH_2-N$ H_2N

Table 1.145

Compd. No.	R ¹ (CH ₂)j	k	m	n	chirality	R ³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1585	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1586	CHCH2-	1	2	0	R	Н	-CH ₂ -N-C-N-CI
1587	CHCH ₂ -	1	2	0	R	H	-CH ₂ -N-C-
1588	СНСН2-	1	2	0	R	Н	-CH₂-N-C-
1589	H ₃ C	1	2	0	R	Н	$-CH_2-N-C H_2N$
1590	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1591	H₃CCH₂-	1	2 ·	0	R	Ή	-CH ₂ -N-C-\Br
1592	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N
1593	H ₃ C-CH ₂ -	1	2	0	R	. H	-CH ₂ -N-C-
1594	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+CF_{3}$ $+CH_{2}-N-C$ $+CF_{3}$
							$-CH_2-N-C-$ H_2N

Table 1.146

	•						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - (CH_2)_{q$
1596	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1597	CH ₃ N—CH ₂ − CH ₃	1	2	0	R	H:	-CH ₂ -N-C-\(\sigma\)
1598	CH ₃ CH ₂ - CH ₃				R	H	-CH ₂ -N-C-
1599	CH ₃ CH ₂ - CH ₃	1	2	0	R	н .	-CH ₂ -N-C-CH ₃
1600	CH	2	2	1	-	н .	$-CH_2-N-C$ H_2N
1601	CH2-	2	2	.1	· -	н .	$-CH_2-N-C-$ H_2N
1602	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-⟨N
1603	CH2-	2	2	1	- · .	н	-CH ₂ -N-C-
1604	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1605	С⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C-\(\)
1606	C├ - ⟨}-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃

Table 1.147

lable	1.14/						
Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1607	H ₃ C-CH ₂ -	1	2	0	Ŗ	н	-CH ₂ -N-C-SCF ₃
1608	CH ₃ N − CH ₂ − CH ₃	1	2	0	,R	Н	-CH ₂ -N-C-SCF ₃
1609	C⊢(CH₂-	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1610	CF ₃ P N+ C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1611	CH2-NC-CH2-	2	2	1	-	• .Н	-CH ₂ -N-C-CF ₃
1612	н ² со(сн ³⁾² - ^Н с-	2	2	1.	· •	н	-CH₂-N-C-CF3
1613	H3 C-C	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1614	F3CS-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1615	F ₃ CS-CH ₂ -	2	2	1	-	Н .	-CH ₂ -N-C-CF ₃
	F ₃ CSCH ₂ -						$-CH_2-N-C$ H_2N
1617	F ₃ CS	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N

Table 1.148

Compd.	R ¹ (CH ₂) _j -	k	m (n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- GR^6$
1618	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH₂-N-C-
1619	HQ H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1620	HQ H₃CO-CH ₂ -	1	2	0	R	. H .	-CH ₂ -N-C-CF ₃
1621	HQ H₃CO-CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1622	HQ H₃CO————————————————————————————————————	1	2	0	R.	н	-CH ₂ -N-C-CF ₃
1623	HO- √ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1624	HOCH ₂ -	. 1	2	0	R	Н	-CH ₂ -N-C-C
1625	HO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1626	HO{}CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
							-CH ₂ -N-C- H F
1628	H₃CS—CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.149

Table	1.145					<u> </u>	
Compd.	R ¹ (CH ₂) _i	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^-R^6$
1629	H ₃ CS-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1630	H ₃ C O-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1631	H ₂ NCH ₂ —CH ₂ -	1	2	0	R ·	Н «	-CH ₂ -N-C-CF ₃
1632	CF ₃ —CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1633	H ₃ CS NC———————————————————————————————————	1	2	0	R	·H	-CH ₂ -N-C-CF ₃
1634	(H ₂ C) ₂ CH-⟨-CH ₂ -	1	.2	0~	R	Н	-CH ₂ -N-C-CF ₃
	H ₃ C-\(\bigce\)-CH ₂ -						
1636	H ₃ C-(CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-H ₃ C-CH ₃
1637	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	-CH ₂ -N-C-(CH ₂) ₄ CH ₃
							-CH ₂ -N-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-
1639	CH₃ N CH₂- CH₃	1	2	0	R	H .	-CH3-H-C-A-H-C-OCH3CH3

Table 1.150

						•		
	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q - G-R^6$
•	1640	CH_3 CH_2 CH_3	1	2	0	R	н	-CH ₂ -N-C-⟨CH ₂) ₃ CH ₃
	1641	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	-CH2-N-C
		CH ₃						-CH ₂ -N-C-N
	1643	CH ₃ N CH ₂ − CH ₃	1	2	0	R	, н	-CH ₂ -N-C-
	1644	CH ₃ CH ₂ -	1	2	,0	R	Н	-CH ₂ -N-C
	1645	CI CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	1646	Br CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	1647	H ₃ C(CH ₂) ₃ ———————————————————————————————————	2,	2	1	•	H·	-CH ₂ -N-C-CF ₃
	1648	H ₃ C(CH ₂) ₃ —()—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	1649	H ₃ C(CH ₂) ₂ —CH ₂ -	2	2	1	-	н	−CH ₂ −N-C−√CF ₃
	1650	H ₃ C(CH ₂) ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.151

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p G (CH ₂)q G-R ⁶
1651	H ₃ C(CH ₂) ₃ ———————————————————————————————————	2	2	1	•	н	-CH ₂ -N-C-H ₂ -(CH ₂) ₃ C H ₃
1652	H ₃ C(CH ₂) ₃	2	2	1	- ,	н .	$-CH_2-N-C H_2N$ H_2N Br
1653	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1654	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	$-CH_2-N-C-\longrightarrow H_2N$
1655	H ₃ C(CH ₂) ₃	2	2	1	-	Н	-CH2-N-CH2-)3C Ha
1656	H ₃ C(CH ₂) ₃ ———————————————————————————————————	2	2	1	•	Н	-CH ₂ -N-C
1657	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	Н	-CH2-N-C
1658	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C
1659	CHCH2-	2	2	1	-	Н	$-CH_2-N-C-$ H_2N CI
1660	Br—CH ₂ -	1	2	0	.R	н	$-CH_2-N-C-$ H_2N CF_3 H_2N
1661	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.152

	•						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1662	ВгСН2-	1	2	0	R.	Н	-CH ₂ -N-C-F
1663	Br—CH ₂ -	1	2	0	R	H [.]	-CH ₂ -N-C
1664	н₃сѕ-{}сн₂-	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1665	H ₃ CS-CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N H_2N
1666	H ₃ CS-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
1667	н₃ссн₂——————————————————————————————————	2	2	1	· <u>-</u>	H	-CH₂-N-CBr
1668	H₃CCH₂—CH₂-	2	2	1	-	·H	$-CH_2-N$ C H H_2N
	H ₃ CCH ₂ ————————————————————————————————————					н	$-CH_2-N-C$ H_2N
1670	H ₃ CCH ₂ СН ₂ -	2	2	1	-	н	-CH ₂ -N-C
1671	H ₃ CCH ₂	2	2	1	-	н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ CF
1672	н₃ссн₂-{_}-сн₂-	2	2	1	-	н	$-CH_2-N-C-$ H_2 H_2 H_2 H_3

Table 1.153

Compd.	R^1 (CH ₂),	k	m	n	chirality	· R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
1,673	H ₃ CCH ₂ —CH ₂ -				-	н	-CH ₂ -N-C
1674	F-CH ₂ -	2	2	1		н	-CH ₂ -N-C
1675	F-CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1676	F—CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1677	F-CH2-	2	2	1	-	н	$-CH_2-N-C-$ H_2N H_2N
1678	F-CH ₂ -	2	2	1	•	н	$-CH_2-N-C-$ H_2N
1679		2		1	-	н	-CH ₂ -N-C-
1680	F-CH ₂ -	2	2	1	.	н	$-CH_{2}-N-C$ $H_{2}N$ CF_{3} CF_{3}
1681	F-CH ₂ -	2	2	1		Н	$-CH_{2}-N$ $H_{2}N$ CF_{3}
1682	F-CH ₂ -	2	2	1	-	н	-CH ₂ −N-C− H
1683		2	2	1	-	н	-CH ₂ -N-C-(Br

Table 1.154

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1684	O-N-C	2	2	1	-	н	-CH ₂ -N-C
1685	O-N-O-CH ₂ -	2	2	1	- -	н	-CH ₂ -N-C
1686	O-N-O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
1687	N-0-CH ₂ -	2	2	1	-	н ,	$-CH_2-NC-$ H_2N
1688	N-CH2-	2	2	1	-	H	$-CH_2-NC-$ H_2N
1689	O-N-C	2	2	1		H	$-CH_2-N-C H_2N$ OCF_3 H_2N
1690		2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1691	₩ C	2	2	1	-	Ĥ	-CH ₂ -N-C
1692	H_3C CH_3 $-CH_2$	1	2	0	R	н	-CH ₂ -N-C-√Br
1693	CH ₃ -CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
	CH ₃ -CH ₂ -						-CH ₂ -N-C

Table 1.155

Table 1							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1695	CH ₃	1	2	0	R	н	$-CH_2-N$ C H_2N H_2N
1696	H_3C CH_3 $-CH_2$	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1697	CH ₃ -CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1698	H_3C — CH_2 — CH_2 —	1	2	0	R	Н	-CH ₂ -N-C
1699	CH ₃ H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1700	CH ₃	1	2	0	R	Н	-CH ₂ -N-C- Br
1701	H ₂ C=CH-CH ₂ -	1	2	0	R	. н	$-CH_2-N$ CF_3 H_2N
1702	H ₃ CO-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N CF_3
1703	CH₂-	1	2	0	R		-CH ₂ -N-C
1704	HO-CH ₂ -	1	2	0	R	н	$-CH_2-N$ CF_3 H_2N
1705	CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
					•		

Table 1.156

lable						<u> </u>	
Compd.	R ¹ (CH ₂);	k	m	n	chirality	. K3	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (C$
1706	-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1707	H₃CS{}CH₂-	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1708	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1709	(HgC)2CH-⟨}CH2F	1	2	0	R	H	$-CH_2-NC-$ H_2N
1710	H_3C B_1 CH_2 H_3C	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1711	CH ₃ ←CH ₂ -	1	2	0	R	. Н	-CH ₂ -N-C-CF ₃
1712	H ₃ CCH ₂ Q HO—CH ₂ —					н	-CH ₂ -N-C-CF ₃
1713	H ₃ C HO—CH₂−	. 1	2	0	R	н	-CH ₂ -N-C-CF ₃
1714	HQ . H₃CO-CH₂-	1	2	Ċ	î R	H	-CH ₂ -N-C-CF ₃
1715	N CH ₂ -	1	2	C) R	н	-CH ₂ -N-C-CF ₃
1716	CH ₂ -	1	2	() R	н .	-CH ₂ -N-C-CF ₃

Table 1.157

	1.137						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
1717	H ₃ CO-(N-)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1718	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1719	СУ-сн₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1720	H ₃ CO-C H ₃ C-CH ₂ - CH ₃	1	. 2	0	R	H	-CH ₂ -N-C-CF ₃
1721	н₃ссн ₂ ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1722	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	-CH ₂ -					н	-CH ₂ -N-C-CF ₃
1724	CH ₃ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1725	H_3C CH_3 CH_2 CH_2	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1726	н₃ссн ₂ —Сн ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-F
1727	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.158

Compo No.	I. R^1 (CH ₂);	k	m	n	chirality	 R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
1728	CH₂-	. 1	2	0	R	н	-CH ₂ -N-C
1729	CH ₃ -CH ₂ -	1	2	. 0	R	н .	-CH ₂ -N-CF
1730	H ₃ C	1	2	0	R	н	-CH₂-N-C-CF3
1731	H ₃ COH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1732	носн ₂ —Сн ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1733	-CH ₂ -	1	2	0	R	н	$-CH_2-N-C F$
1734	H₃CS-{}-CH₂-	1	2	0	R	H :	-CH ₂ -N-C-CF ₃
1735	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1736	CH ₂ -	1	2	0	R		$-CH_2-NC F$
1737	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1738	H ₃ C− CH ₂ − CH ₂ −	1	2	0	R	H.	-CH ₂ -N-C-⟨F ₃

Table 1.159

Table	1.133						
Compd.	R ¹ (CH ₂),—	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1739	(H ₀ C)₂CH-⟨C)-CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1740	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1741	H₃CS—()—CH₂–	1	2	0	R	н	-CH ₂ -N-C-
1742	н ₃ ссн ₂ ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-
1743	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S
	H_3C- C H_2 -					H	-CH ₂ -N-C-Br
1745	CH ₃ -CH ₂ -	1	2	0	R	H ,	-CH ₂ -N-C-✓
	(H ₃ C) ₂ CH————————————————————————————————————					Н	-CH ₂ -N-C-Br
1747	-CH ₂ -	1	2	0	R	н	$-CH_2-NC H_2N$ H_2N
1748	H ₃ CCH ₂ —CH ₂ -	1	2	0	R		$-CH_2-NC-$ H_2N
1749	CH ₃ · CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-\longrightarrow_{H_2N}^{O}$
					-		

Table 1.160

						<u> </u>	
Compd No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p G-R ⁶
1750	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1751	H₃CS—CH₂-	1	2	0	R	н .	-CH ₂ -N-C-OCF ₃
1752	н ₃ ссн ₂ —Сн ₂ -	1	2	0	R.	н	-CH ₂ -N-C-C
1753	0-СН₂-	1	2	0	R	H	-CH ₂ -N-C-OCF ₃
1754	H ₃ C—CH ₂ —CH ₂ —	1	2	0	R	H	-CH ₂ -N-C
1755	H_3C CH_3 CH_2 CH_2	1	2	0	R	н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
1756	(ЊС)₂СН-СОН 2-	1	2	0	R	Н	-CH ₂ -N-C-OCF ₃
	Br Br CH ₂ -					н	-CH ₂ -N-C-CF ₃
1758	H ₃ CO-Br CH ₂ -	1	2	0	R .	Н	-CH ₂ -N-C-CF ₃
1759	H ₃ C-\CH ₂ -	1	2	0	R	н .	-01-2-N-C
1760	H ₃ C-\CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ $-CH_$

Table 1.161

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	· R³	$-(CH_2)_p + \frac{R^4}{R^5}(CH_2)_q - G^-R^6$
1761	Н ₃ С-{	1	2	0	R	Н	-CH2-HC-N-C-H-CI
1762	CH₃ CH₂− CH₃	1	2	0	R	H	-CH ₂ -N-C-N-C1
1.763	CH₂-	2	2	0	-	Н	-CH ₂ -N-C
1764	CH₂-	2	2	0	- -	н	-CH2CH2-N-C
1765	CH₂-	2	2	0		н	(S) OCH ₂ CH ₃ -CH-N-C-CH ₂ CH ₂ CH ₃
1766	CH₂-	2	2	0	· •	H	(H) CH_2CH_3 $CH_2CH(CH_3)_2$
1767	C├ - CH ₂ -	1	3	1	-	Н	-CH ₂ -N-C-OCH ₂ CH ₃
	C⊢√_CH₂-						-CH2CH2-N-C-
1769	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH2-N-C-OCH3 CH-CHCF2O
							-CH2-H-C-N-CI
	CH ₃ N CH ₂ - CH ₃						-сн ₂ - ү с - С (H ₃ C) ₃ C- С н ү с н ₃ С о

Table 1.162

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1772	CH ₃ N CH ₂ - CH ₃	1	2	· 0	R	Н	-CH7-N-C H3C H
1773	CH ₃ N CH₂- CH₃	1	2	0	R ·	Н	H ₃ C - N+ C - N
1774	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1775	HO————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C \xrightarrow{O} CF_3$ $-CH_2-N-C \xrightarrow{H_2N}$
1776	H ₃ CO—CH₂—	1	2	0	R	Н	$-CH_2-N-C \longrightarrow H_2N$
1777	C⊢CH₂−	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1778	H ₃ C	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1779	CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C$ $H_{2}N$ CF_{3} $H_{2}N$
1780	Br—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1781	HO-{	2	2	1	-	н	$-CH_2-N-C$ H_2N
1782	H ₂ C=CH-\(\bigc\)-CH ₂ -	2	2	1	-	Н	$-CH_2-N$ H_2N CF_3 H_2N

Table 1.163

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
1783	NC-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 H_2 H_2
1784	CH ₂ -	2	2	1	•	н	$-CH_2-N-C-$ H_2N
1785	CH ₃ (CH ₂) ₂	2	2	1	•	н	$-CH_2-N-C-$ H_2N
1786	CH ₂ -	2	2	1	•	н	$-CH_2-N-C$ H_2N
1787	CH ₃ (CH ₂) ₂ —CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
1788	H_3C CH_3 CH_2	2	2	1	-	н	-CH ₂ -N-C
1789	H ₃ CO-()-CH ₂ -	2	2	1	-	H	$-CH_2-N-C-$ H_2N
1790	CI(CH ₂	1	2	0		Н	$-CH_2-N-C-$ H_2N
1791	O-CH2-	1	2	0	S	Н	$-CH_2-N-C$ H_2N
1792	CH ₃ CH ₂ CH ₂	2	2	1		Н	$-CH_2-N-C$ H_2N
1793	CI—CH ₂ —	2	2	1		Н	$-CH_2-N-C$ H_2N

Table 1.164

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	[.] R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1794	H ₃ C-\(\bigc\)-CH ₂ -	2	2	1	<u>-</u>	Н	-CH ₂ -N-C
1795	CH ₂ -	2	2	1	· -	H	$-CH_2-N-C-F$ H_2N
1796	Br—CH ₂ —	2	2	1		'H	$-CH_2-N-C$ H_2N
1797	HO-CH ₂ -	2	2	1	- ,	H	$-CH_2-N-C-$ H_2N
1798	H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 N
1799	H ₂ C=C H-\(\bigc\)-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C H_2N$
1800	NC-CH ₂ -	2	2	1		н Н	$-CH_2-N-C$ H_2N
1801	CH₂-	2	2	1	-	H .	$-CH_2-N-C$ H_2N H_2N
1802	HO-CH ₂ -CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2N$
1803	HO-CH ₂ -	1	2	0	R	н	$-CH_{2}-NC - CF_{3}$ $-CH_{2}-NC - CF_{3}$ $-CH_{2}-NC - CF_{3}$ $-CH_{2}-NC - CF_{3}$ $+2N$
1804	H ₃ C(CH ₂) ₂ —CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N

Table 1.165

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
1805	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1806	H ₃ CO-CH ₂ -		2	0	R	Н	-CH ₂ -N-C-SCF ₃
1807	H ₃ CQ HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1808	HO	1	2	0	R ´	Н	-CH ₂ -N-C-SCF ₃
1809	HO-{	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1810	CH₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1811	CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1812	H₃CS-{}CH₂-	1	2	0	R	H	-CH ₂ -N-C-SCF ₃
1813	н₃ссн ₂ —{	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1814	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1815	H_3 C- CH_2 -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃

Table 1.166

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	·R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1816	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-SCF ₃
1817	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1818	Br—CH ₂ -	1	2	0	Ŕ	н	-CH ₂ -N-C-
1819	H₃CO-()-CH2-	1	2	` 0	R	н	-CH ₂ -N-C-OCHF ₂
1820	H ₃ CO HO—CH ₂ —	1	2	0	R	H	-CH ₂ -N-C
1821	HO H ₃ CO—CH ₂ —	1	2	0	R	H	-CH ₂ -N-C-C
1822	HOCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C
1823	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1824	-CH ₂ -	1	2	0	R	, н	-CH ₂ -N-C
1825	H3CS-CH2-	1	2	0	R	н	-CH ₂ -N-C
1826	H₃ССН₂—СН₂-	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂

Table 1.167

Compd.	R ¹ (CH ₂) _j -	k	m	'n	chirality	R³	$-(CH_2)_p + (CH_2)_{\overline{q}} G - R^6$
1827	CH₂-	1	2	0	R	• н	-CH ₂ -N-C-
	H_3 C- CH_2 -				•	H .	OCHF ₂ -CH ₂ -N-C-
1829	H_3C CH_3 CH_2 CH_2	1	2	0	R	н	-CH ₂ -N-C-C
1830	(CH ₃) ₂ CH− ()−CH ₂ −	1	2	0	R	Н	-CH ₂ -N-C-
1831	Br—CH ₂ —	1	2	0	R	Н.;	-CH ₂ -N-C-(CH ₃) ₃
1832	H ₃ CO-()CH ₂ -	1	2	0	·R	н	-CH ₂ -N-C-(CH ₃) ₃
1833	H ₃ CQ HO————————————————————————————————————	1	2	0	R·	н	-CH ₂ -N-C-(CH ₃) ₃
1834	HQ H ₃ CO-CH ₂ -	1	2	0	R	H ·	-CH ₂ -N-C-C(CH ₃) ₃
1835	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1836	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1837	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃

Table 1.168

Compd.	R ¹ (CH ₂) –	k	m	n	chirality	R³	—(CH ₂) p G (CH ₂) q G−R ⁶
1838	H3CS-CH2-	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1839	H ₃ CCH ₂ —CH ₂ -	1	2	0	· R	н	-CH ₂ -N-C-(CH ₃) ₃
1840	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1841	H_3C — CH_2 — CH_2 — C	1	2	, O ,	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1842	H_3C CH_3 CH_2 CH_2	1.	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1843	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1844	(CH ₃) ₃ C————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1845	H₃ССН ₂ ——СН ₂ -	1.	2	0	R	Н	-CH ₂ -N-C- HN CH ₂ -CH ₂ CH ₃
1846	H_3C CH_3 CH_2 CH_2	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1847	(CH ₃) ₃ C—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-OCHF ₂
1848	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH2-NC-

Table 1.169

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1849	CH ₂ -					Н	-CH ₂ -N-C-
1850	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N C-
1851	H_3C CH_3 CH_2	1	2	0	R	н	-CH ₂ -N-C-
1852	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N C-
1853	H ₃ CQ HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1854	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1855					R	н	-CH ₂ -N-C-
1856	CH ₃ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1857	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
	Br—⟨¯)—CH₂−						$-CH_2-N-C \xrightarrow{O} \xrightarrow{Br} H_2N$
1859	H₃CO-⟨¯_}-CH₂-	1	2	0	R	н .	$-CH_2-N-C-$ H_2N H_2N

Table 1.170

Compd No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1860	H ₃ CQ HO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-Br
1861	HQ H ₃ CO-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C \longrightarrow Br$ H_2N
1862	HO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1863	CH₂-	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1864	H₃CS-CH₂-	1	2	0	R	Н ,	$-CH_2-N-C$ H_2N H_2N
1865	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1866	CH_3 CH_2 CH_2	1	2	0	R	Ĥ,	$-CH_2-N-C$ H_2 H_2 N
1867	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R	H .	$-CH_2-N-C$ H_2 H_2 N
1868	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N
1869	BrCH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$
1870	H ₃ CO-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2 H_2 N

Table 1.171

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1871	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1872	HQ H ₃ CO—CH ₂ —	1	2	0	, R	H	$-CH_2-N-C$ $H_2 N$
1873	НО—{	1	2	0	R	Н	$-CH_2-N-C$ $H_2 N$
1874	CH₂-	1	2	0	R	H	$-CH_2-N-C-$ H_2N
1875	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2 H_2 N
1876	H3CS-CH2-	1	2	0	R	н	$-CH_2-N-C$ H_2 H_2 N
1877	H₃CCH₂——————————————————————————————————	1	2	0	R	н	$-CH_2-N-C$ H_2 H_2 H_2 H_3
1878	O ← CH₂	1	2	0	R	н	$-CH_2-N-C$ H_2 H_2 N
1879	H_3C CH_3 CH_2 CH_2	1	2	0	R	н	$-CH_2-N-C$ H_2 H_2 H_2
1880	(CH ₃) ₂ C H—√ — CH ₂ —	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1881	(CH ₃) ₃ C-CH ₂ -	1	2	0	R		-CH ₂ -N-C

Tabl 1.172

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1882	Br—€CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-NO ₂
1883	H ₃ CO-CH ₂ -	1	2	0	R	. н	$-CH_2-N-C$ H_2N H_2N
1884	H ₃ CQ HO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1885	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1886	HO- (CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1887	-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-NO ₂
1888	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
1889	H₃CS—()—CH₂-	1	2	0	R	н	$-CH_2-N$ C H_2 H_2 NO_2
1890	H₃CCH₂—⟨}—CH₂–	1	2	0	R		$-CH_2-N-C$ H_2 H_2 NO_2 H_2
1891	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1892	CH ₃	1	2	0	R .		$-CH_2-N-C$ $H_2 N$ $H_2 N$

Table 1.173

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1893	CH ₃ -CH ₂ - H ₃ C	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1894	(CH ₃) ₂ CH-CH ₂ -	1	2	. 0	R	H	$-CH_2-N$ C H_2N NO_2
1895	(CH ₃) ₃ C————————————————————————————————————	1	2	, - 0	R	Н	$-CH_2-N-C \longrightarrow H_2N$
1896	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3 H_2N
1897	H₃CS—CH₂-	1	2	0	R	н	$-CH_2-N-C-$ H_2N OCF_3 H_2N
1898	н ₃ ссн ₂ ————————————————————————————————————	1	2	0	·R	H	$-CH_2-N-C$ H_2N OCF_3 H_2N
1899	(CH ₃) ₂ CH-CH ₂ -			0	R	Н	$-CH_2-N-C$ H_2N OCF
1900	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	$-CH_{2}-N-C$ $H_{2}N$ OCF_{3} OCF_{3}
1901	H ₃ C(CH ₂) ₂ —————————————————————————————————	1	2	0	R	H	$-CH_2-N$ H_2N OCF_3 H_2N
1902	O————————————————————————————————————	1	. 2	0		Н	$-CH_2-N-C$ H_2N OCF_3 H_2N
1903	(CH ₃) ₂ C H-√-CH ₂ -	2	2	1	-		$-CH_2-N-C H_2N$ OCF_3

Table 1.174

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
1904	H ₃ C(CH ₂) ₂ —CH ₂ -	2	2	1	-	. Н	-CH ₂ -N-C
1905	CH ₂ -	1	2	0	R	н	$-CH_2-N$ C H_2 H_2 N
1906	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2 H_2 N C
1907	HO-{	1	2	0	R	H .	$-CH_2-N$ C H_2 H_2 N C
1908	H ₃ CO-()-CH ₂ -	1	2	0	R	н	$-CH_2-N-C H$ H_2N CCF_3
1909	H ₂ C=CH-CH ₂ -	1 '	2	0 .	R	н	$-CH_2-N-C$ H_2N OCF_3 H_2N
1910	Br(CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
1911	CH ₂ -	2	2	1		Н	$-CH_2-N$ H_2N CCF_3 H_2N
1912	HO-CH ₂ -	2	2	1	÷ .		$-CH_2-NC-$ H_2N
1913	CH ₃ -CH ₂ -	2	2	, 1	-	H	$-CH_2-N-C$ H_2N OCF_3
1914	H ₃ CCH ₂ -	2	2	1	-	Н	$-CH_2-N-C H_2N$

Table 1.175

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	₽3	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1915	H3CCH2Q H0	1	2	0	R	Н	$-CH_2-N-C$ H_2N OCF_3 H_2N
1916	H ₃ C HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
1917	H ₃ CCH ₂ Q HO—CH ₂ —	2	2	1	•	н	-CH ₂ -N-C
1918	H ₃ C HO-CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C
1919	CH-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1920	NH ₂	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2 H_3
1921	CH-CH ₂ -	1	2	0	R	H	$-CH_2-N-C-$ H_2N OCF_3 H_2N
1922	CH-CH ₂ -	2	2	1	-	H	$-CH_2-NC \longrightarrow OCF_3$ $+_2N$
1923	Br—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-✓SCF ₃
1924	H ₃ CO-CH ₂ -	2	2	1		Н	-CH ₂ -N-C-SCF ₃
1925	FCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃

Table 1.176

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	˳	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} G - R^6$
1926	F—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1927	HO	2	2	1		н	-CH ₂ -N-C-SCF ₃
1928	CH ₂ -	2	2	1	- .	н	-CH ₂ -N-C-SCF ₃
1929	-CH ₂ -	2	. 2	1	· -	н	-CH ₂ -N-C-SCF ₃
1930	H₃CS{}-CH₂-	2	. 2	1	-	н	SCF ₃
1931	H₃CCH ₂ ————————————————————————————————————	2	2	1	· <u>-</u>	Н .	-CH ₂ -N-C-SCF ₃
1932	O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1933	CH ₃ H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
193 <u>4</u>	H_3C CH_3 CH_2 CH_2	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1935	O ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1936	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃

Table 1.177

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1937	(CH ₃) ₂ CH-⟨)−CH ₂ −	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1938	Br—CH ₂ -	2	2	1	· -	н	-CH ₂ -N-C
1939	H ₃ CO-(2	2	1	-	н	-CH ₂ -N-C
1940	F{CH ₂ -	2	2	1	·	н	$-CH_2-N$ C $-CH_3$
1941	F-CH ₂ -	2	2	1	<u>.</u>	н	-CH ₂ -N-C-Br
1942	HO-(2	2	1		, н	-CH ₂ -N-C
1943	CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
1944	CH ₂ -	2	2	1	-	H .	-CH ₂ -N-C-Sr CH ₃
1945	H ₃ CS-()-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-Shr CH ₃ -CH ₃
1946	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C
1947	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-⟨Sr CH ₃

Tabl 1.178

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1948	CH ₃	2	2	1	-	Н	-CH ₂ -N-C- Br CH ₃
1949	H_3C CH_3 CH_2 CH_2	2	2	1	· -	н	-CH ₂ -N-C
1950	O ₂ N-CH ₂ -	2	2.	1	-	H	-CH ₂ -N-C
1951	H ₃ C-CH ₂ -	2	2	.1	-	н	-CH ₂ -N-C
1952	Br—CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-✓-F
1953	H₃CO	2	2	1.	. -	н	-CH ₂ -N-C- H
1954	FCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-√S-F
1,955	F—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1956	HO-CH ₂ -	2	2	1	<u>.</u>	н	-CH ₂ -N-C
1957	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1958	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C

Table 1.179

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	—(CH ₂) p (CH ₂) q G−R ⁶ R ⁵
1959	H₃CS—CH₂-	2	2	1	-	н	-CH ₂ -N-C
1960	н₃ссн₂{СН₂-	2	2	.1	-	Н	-CH ₂ -N-C
1961	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1962	CH ₃ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1963	H_3C CH_3 CH_2 CH_2	2	2	1	<u>:</u> 	н	-CH ₂ -N-C
1964	O ₂ N-CH ₂ -	2	2	1	•	Н	-CH ₂ -N-C
1965	H₃C-⟨CH₂-	2	2	1	- -	н	-CH ₂ -N-C
1966	(CH ₃) ₂ CH	2	2	1	-	н	-CH ₂ -N-C
1967	Br—€ CH ₂ -	2	2	1	· •	н	-CH ₂ -N-C
1968	H ₃ CO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
1969	HO-{	2	2	1	-	н	$-CH_2-N$ H_2N

Table 1.180

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)^{\frac{R^4}{p+1}}(CH_2)^{\frac{1}{q}}G-R^6$
1970	CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
1971	-CH ₂ -	2	2	1	- - -	H .	$-CH_2-N-C$ H_2N
1972	H₃CS-{}CH₂-	2	2	1	•	н	$-CH_2-N$ H_2N
1973	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	H	$-CH_2-N$ H_2N
1974	CH ₃	2	2	1	. • • • • • • • • • • • • • • • • • • •	H	$-CH_2-N-C$ H_2N
1975	O ₂ N-(CH ₂ -	2	2	1	•	Н	$-CH_2-N-C$ H_2N
1976	H ₃ C-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1977	NC-⟨}-CH ₂ -	2	2	1	-	H .	$-CH_2-N-C$ $H_2 N$
1978	(CH ₃) ₂ CHCH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 N
1979	CH ₂ -	2	2	,1	-		$-CH_2-N-C H_2N$
1980	CH ₂ -	2	2	1	-	H	$-CH_2-N-C$ H_2 H_2 N

Tabl 1.181

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	˳	-(CH ₂) _p
1981	O ₂ N-(-)-CH ₂ -	2 .	2	1	-	н	$-CH_2-N-C$ H_2N
1982	NC-CH ₂ -	2	2	1	-	н	$-CH_2-N-C H_2N$
1983	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1984	Br—CH₂−	2	2	1	-	н .	$-CH_2-N-C$ H_2N
1985	H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 N
1986	HO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2
1987	CH₂-	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 N
1988	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1989	H ₃ CS-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1990	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
1991	O—CH ₂ —	2	2	1		н	$-CH_2-NC \longrightarrow H_2N$

Table 1.182

Compd No.	R^{1} (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- \frac{R^6}{R^6}$
1992	CH ₃ H ₃ C-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1993	0 ₂ N-CH ₂ -	2	2	1	· -	Н .	$-CH_2-N-C-$ $H_2 N$
1994	H ₃ C-\CH ₂ -	2	2	1	- ·	Ĥ·	-CH ₂ -N-C
1995	NC-CH2-	2	2	. 1	-	Н	-CH ₂ -N-C
1996	(CH ₃) ₂ CH-CH ₂ -		2	1	-	H	-CH ₂ -N-C
1997	H_3C CH_3 CH_2 CH_2	2	2	1	-	Ĥ	$-CH_2-N-C$ H_2 H_2 N
1998	Br—CH₂-	2	2	1	-	H	-CH ₂ -N-C-CI
1999	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
2000	F-CH ₂ -	2	2	1	- ·.	Н	-CH ₂ -N-C-
2001	HO-{	2	2	1	-	Н	-CH ₂ -N-C-CI
2002	CH₂-	2.	2	1	-	н	-CH ₂ -N-C-CI

Table 1.183

· ubio							
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2003	-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CI
2004	H₃CS-{}-CH₂-	2	2	1	-	н	-CH ₂ -N-C-
2005	H₃CCH₂—CH₂-	2	2	1	-	н	-CH₂-N-C-CI
2006	H_3C CH_3 CH_2	2	2	1	-	н	-CH ₂ -N-C-CI
2007	O ₂ N-CH ₂ -	2	2	1	- ,	Н	-CH ₂ -N-C-CI
2008	H ₃ C-CH ₂ -	2	2	1		н	-CH ₂ -N-C-
2009	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-C
2010	(CH ₃) ₂ CH-{}CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CI
2011	H_3C CH_3 CH_2 CH_2	2	2	1	-	Н	-CH ₂ -N-C-C
2012	Br—€CH ₂ -	2	2	1	-	н	-CH2-N-C-SPr H
2013	H₃CO-⟨CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H

Table 1.184

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - G - R^6$
2014	HO-CH ₂ -	2	2	1		н	-CH ₂ -N-C-
2015	CH₂-	2	2	1	•	Н	-CH ₂ -N-C- H
2016	-CH ₂ -	2	2	1	· •	н	-CH ₂ -N-C- H
2017	H ₃ CS-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C- H
2018	H₃CCH₂—CH₂-	2	2	1	-	Н	-CH ₂ -N-C- H
2019	0—CH₂-	2	2	1	-	н	-CH ₂ -N-C
2020	H ₃ C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2021	O ₂ N-CH ₂ -	2	2	1	. -	Н	-CH ₂ -N-C
2022	H ₃ C-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
2023	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2024	(CH ₃) ₂ C H− (− CH ₂ −	2	2	1		Н	-CH ₂ -N-C

Table 1.185

Compd.	R ¹ (CH ₂) _j -	k	m	n _.	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
2025	H_3C CH_3 CH_2 CH_2	2	2	1	-	н	-CH ₂ -N-C- H
2026	F-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-Br
20 <u>.</u> 27	Br—CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
2028	H₃CO-(2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
2029	HO-CH ₂ -	2	2	1	•	н	$-CH_2-N-C$ H_2N H_2N
2030	CH ₂ -	2	2	1	•	н	$-CH_2-N-C$ H_2N
2031	CH ₂ -	2	2	1	-	. н	$-CH_2-N-C \xrightarrow{\text{Pl}} H_2 N$
2032	CH ₂ -	2	2	1	2	H	$-CH_2-N-C \xrightarrow{O} Br$ $H_2 N$
2033	H_3C CH_3 CH_2	2	2	1		н	$-CH_2-N-C \xrightarrow{Q} Br$ H_2N
2034	O ₂ N-{-}-CH ₂ -	2	2	1	.	н	$-CH_2-N$ H_2N H_2N
2035	H ₃ C-\CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Tabl 1.186

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + CH_2)_{q} - G-R^6$
2036	NC-CH ₂ -		<u></u>		· -	Н	-CH ₂ -N-C
2037	H_3 C H_3 H_3 C H_2	2	2	1	-	н .	-CH ₂ -N-C-Br
2038	F-CH ₂ -	. 2	2	1	•	н	$-CH_2-N-C-$ H_2 H_2 H_2
2039	H ₃ C-\(\bigc\)-CH ₂ -	. 2	2	1	-	Н	-CH ₂ -N-C- H CN
2040	H ₃ C-(1	2	0	R	H	-CH ₂ -N-C-CH-
2041	H ₃ C-CH ₂ -	1	2	0	R	н ′	O OCH3 -CH2-N-C-CH
2042	H ₃ C-CH ₂ -	1	. 2	0	R	H	$-CH_2-N-C$ H_3C H_3C
2043	H ₃ C-()-CH ₂ -	1	2	0	R	Н	-CH2-N-C-CH2-CH3
2044	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
2045	CH ₃ CH ₂ - CH ₃	1	2	0	R	, н	-CH ₂ -N-C-N-CI
2046	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-CH ₃

Table 1.187

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2047	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	- CH ₂ -H ₂ -CH ₃
2048	CH_3 CH_2 - CH_3	1	2	0	R	н	-CH ₂ -N-C
2049	CH_3 CH_2 CH_3	1	2	0	R	н	-CH ₂ -N-C-CH ₃
2050	H ₃ C S CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2051	H ₃ C =N -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2052	Br —CH ₂ — OCH ₂ CH ₃	2	2	1	-	н	$-CH_2-N-C H_2N$
2053	H ₃ CQ CH ₂ O-CH ₂ -CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2054	H ₃ CO-CH ₂ -	2	2	1	-	H ·	CH ₂ -N-C
2055	H₃CQ —CH₂- OH	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2056	Br CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2 H_2 N
	Br H ₃ CO-CH ₂ -						$-CH_2-N-C-$ H_2N

Table 1.188

Compd.	R ¹ R ² (CH ₂)j-	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2058	H ₃ CO_OCH ₃ —CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2059	O-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2060	H_3CO CH_2 CCH_3	2	2	1	-	н .	$-CH_2-N-C$ H_2 H_2 H_2 H_3
2061	F_CH ₃	2	2	1	-	н	$-CH_2-N-C-$ H_2N
2062	H ₃ CO-CH ₂ -	2	2	1	-	H _.	$-CH_2-N-C$ H_2N F
2063	H_3CO H_3CO CH_2	2	2	1	• • • • • • • • • • • • • • • • • • •	н	$-CH_2-N-C H_2N$
2064	Br CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
2065	H₃CCH₂Q H₃CCH₂O———CH₂-	2	2	1	-	н	$-CH_2-N-C$ H_2N
2066	OCH ₂ -CH ₂ -	2	2	1	-		-CH ₂ -N-C
2067	(H ₃ C) ₂ CHCH ₂ ————————————————————————————————————	2	2	1	· -	н	CH ₂ N C
2068	CI, F—CH ₂ —	2.	2	1	-	Н	$-CH_2-N-C$ H_2N

Table 1.189

Tubic						<u> </u>	
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2069	H ₃ C H ₃ CO—CH ₂ —	2	2	1	-	н	$-CH_2-N-C$ H_2N
2070	Br CH₂- OCH₃	2	2	1	-	н	$-CH_2-N-C-$ H_2N
2071	H₃CO-CH₂- OCH₃	2	2	1	-	н .	$-CH_2-N-C$ H_2N
2072	(H₃C)2CHO-{}-CH2-	2	2	1	-	н	$-CH_2-N-C-$ H_2-N H_2-N
2073		2	2	1	-	. н	$-CH_2-N-C$ H_2 H_2 N
2074	H₃CO	2	2	1	- -	н	$-CH_2-N-C$ H_2 H_2 H_2
2075	H ₃ CQ CH ₂ −	2	2	1		, H	$-CH_2-N$ C H_2N
2076	F—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2077	CI CH ₂ - OH	2	2	1	-	н	$-CH_2-N-C-$ H_2N
2078	H ₃ CCH ₂ Q OH CH ₂ -	2	2	. 1	. -	н	$-CH_2-N-C-$ H_2 H_2 H_2
	CH ₂ Q H ₃ CO-CH ₂ -						$-CH_2-N-C$ H_2 H_2 N

Table 1.190

Compd.	R ¹ R ² (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2080	CH ₂ Q H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2081	CI HO—CH ₂ —	2	2	1	- <u>-</u> ,	Н	-CH ₂ -N-C
2082	OH H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C H_2N$
2083	H ₃ CQ HO————————————————————————————————————	1	2	0	R	ч	$-CH_2-N-C H_2N$
2084	H ₃ CO HO———————————————————————————————————	1	2	0	R	н	$-CH_2-N-C H_2N$
2085	OH H ₃ CO-CH ₂ -	1	2	Ō	R	Н	$-CH_2-N-C H_2N$
2086	HO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2087	(H ₃ C) ₂ N-CH ₂ -	1	2	0	R	H	$-CH_2-N-C \xrightarrow{C} CF_3$ H_2N CF_3
2088	(H ₃ CCH ₂) ₂ N-\CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2089	F-CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2N$
2090	CH₂-	1	2	0	R	Н	$-CH_2-N-C H_2N$

Table 1.191

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G^-R^6$
2091	CH_CH ₂ -	2	2	1	-	Н	OCH ₂ CH ₃ -CH-N-C
2092	CH-CH ₂ -	2	2	1	• .	н	(A) OCH ₂ CH ₃ -CH-NC-
2093	CH-CH2-	2	2	1	-	H	(A) OCH ₂ CH ₃ -CH-N-C- H CH ₂ CH ₂ SCH ₃
2094	CHCH ₂ -	2	2	1	. -	Н	(A OCH ₂ CH ₃ -CH-N-C-CH-CH ₂ CH ₃ CH ₂ CH ₂ CH ₃
2095	CHCH ₂ -	2	2	1		н	(R) OCH ₂ CH ₃ -CH-N-C
2096	CH2-	2	2	1	-	н	(R O OCH ₂ CH ₃ -CH N C CH ₂ CH ₃
2097	, CH2-	2	2	1	-	н	(R) OCH ₂ CH ₃ -CH-N-C-CH ₂ CH ₃ CH ₂ CH ₂ CH ₃
2098	CH-CH2-	2	2	1	-	н	(R O OCH ₂ CH ₃ -CH-N-C- H CH ₂ CH ₂ CH ₃
2099	CHCH ₂ -	2	2	1	-	н	-CHN-C-COCH2CH3
2100	C	. 2	2	1	-	н	(R OCH ₂ CH ₃ -CH-N C-CH ₂ CH ₃ CH ₂ -CCH ₃
2101	C	. 2	2	1	-	н	(R O OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₂ -CH ₂ -OCH ₂ -

Table 1.192

Compd. No.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
2102	C⊢√CH₂-	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C- H CH ₂ CH ₂ -C-OCH ₂ - D
2103	CH-2-	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C-
2104	CI(CH ₂ -	2	2	1 .	-	н	O OCH ₂ CH ₃ -CHN-C- H CH ₂ CH ₂ C-OCH ₃ Ö R
2105	H ₃ CO OH CH ₂ -	2	2	1	-	H	$-CH_2-N-C H_2N$
2106	H ₃ C OH CH ₂ -	2	2	1	. -	Н	$-CH_2-N-C H_2N$
2107	Br CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
2108	CH ₃ CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 H_2
2109	Br O CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 H_2 H_3
2110	H ₃ CCH ₂ CH ₂ CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N
	CH2-						$-CH_2-N-C$ H_2N
2112	H ₃ CO—CH ₂ —	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 N

Tabl 1.193

Compd.	R^1 (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2113	H ₂ N H ₃ CO—CH ₂ —	2	2	1	•	н	$-CH_2-N-C H_2N$
2114	H_2N H_3C — CH_2 —	2	2	1	- .	н	$-CH_2-N-C$ H_2N
2115	C├─ ⟨ ¯⟩-CH ₂ -	2	2	1	-	н	(R) OCH ₂ CH ₃ -CH+N-C-CH H CH(CH ₃) ₂
2116	CH-{	2	2	.	-	Н	(<i>H</i>) OCH ₂ CH ₃ -CH+N-C
2117	CI—CH₂-	2	.2	1	-	Н	CH ₂ CH ₃ OCH ₂ CH ₃ OCH ₂ CH ₃
2118	HQ HO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2N$ CF_3
2119	OH HO—CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2120	Br—CH ₂ —	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2121	OCH ₃ HO	1	2	0	R		$-CH_2-N-C-$ H_2N
2122	C⊢√ CH₂-	1	2	0	R	н	CH ₂ -N-C
2123	CH ₂ - NO ₂	1	2	0	,R		$-CH_2-N-C-$ H_2N

Tabl _ 1.194

						•	
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2124	O ₂ N CI—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2125	O ₂ N H ₃ CO————————————————————————————————————	1	2	0	R	н .	-CH ₂ -N-C
2126	O ₂ N H ₃ C—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
2127	O CH ₂ -	. 1	2	0	R	н	$-CH_{2}-N-C-$ $H_{2}N$ CF_{3} $H_{2}N$
2128	H ₂ N H ₃ CO—CH ₂ —	1	2	0	R	н .	$-CH_2-N-C H_2N$ CF_3
2129	H ₂ N H ₃ C-CH ₂ -	1	2	. 0	R	. н	$-CH_2-N-C H_2N$ CF_3
2130	O- N					H	$-CH_2-N-C$ H_2N
2131	CH ₃ CH ₂ CH ₃	2	2	1	-		-CH ₂ -N-C-F H ₂ N
2132	H ₂ N CI————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C$ H_2N CF_3
2133	(H ₃ C) ₂ N CH2-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2134	CH ₂ - N(CH ₃) ₂	1	2	0	R	н	$-CH_2-N-C$ H_2N

Table 1.195

labic	1.130						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2135	(H ₃ C) ₂ N H ₃ CO————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2136	(H ₃ C) ₂ N H ₃ C————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C H_2N$
	CH ₃ -CH ₂ -				R	н	$-CH_2-N-C-$ H_2N
2138	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2139	H ₃ C, CI N CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N-C$ H_2N
2140	O-CH ₂ -NH ₂	. 2	2	1	-	Н	$-CH_2-N-C$ H_2N
2141	H ₂ N HO————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-F H ₂ N
2142	H ₂ N CH ₂ -	2	2	1	-	Н	$-CH_2-N-C +$ H_2N
2143	HN-C-CH3	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2144	H_2N H_3CO — CH_2 —	2	2	1	-	н	$-CH_2-N-C-$ H_2N
2145	H ₂ N HO—CH ₂ -	2	2	, 1	· •	н	-CH ₂ -N-C

Table 1.196

	•						
Compd.	R ¹ (CH ₂) _j -	ķ	m	n	chirality	R ³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2146	CH ₂ -NH ₂	2	2	1	<u>-</u>	н	$-CH_2-N-C- \begin{picture}(20,10) \put(0,0){\line(1,0){100}} \put(0,0){\l$
2147	H ₃ C-C-NH H ₃ CO-CH ₂ -	2	2	1	- .*	н	$-CH_{2}-N-C$ $H_{2}N$
2148	. О Н ₃ C-C-NH НО-СН ₂ -	2	2	1	<u>-</u>	н	-CH ₂ -N-C
2149	O ₂ N HO—CH ₂ -	1	2	0	R	, H	$-CH_2-N$ CF_3 H_2N
2150	Q H ₃ C-C−NH CI—CH ₂ −	1	2	0	R	н	$-CH_2-N-C-$ H H_2N
2151	CH ₂ - HMC-CH ₃	1	2	0	R	` . Н	$-CH_2-N-C H_2N$ CF_3
2152	Q H ₃ C-C-NH H ₃ CO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2153	H ₃ C-C-NH H ₃ C-C-NH	1	2	0	R	н .	$-CH_2-NC-$ H_2N
2154	Q H ₃ C-C−NH H ₃ CO− C H ₂ −	2	2	1	• ,	н	$-CH_{2}-N-C-$ $H_{2}N$ $H_{2}N$ CF_{3} $H_{2}N$
							$-CH_2-N-C \longrightarrow H_2N$
2156	HNC-CH ₃	2	.2	1	- -	H	$-CH_2-N-C \longrightarrow H_2N$

Table 1.197

						···	
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2157	CH ₃	1	2	0	R	н	$-CH_2-N-C H_2N$
2158	H ₃ C-NH HO-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2 H_2 N
2159	$H_3CO CH_2-$	2	2	1	-	Н	$-CH_{2}-N-C$ $H_{2}N$
2160	H ₃ C-NH HO—CH ₂ —	2	2	1	-	Н	$-CH_2-N-C$ H_2 N
2161	H ₃ C-NH CH—————CH ₂ -	2	2	1	-	H :	$-CH_2-N-C-$ H_2N
2162	H_3C-NH H_3CO-CH_2-	2	2	1		н	$-CH_{2}-N\cdot C$ $H_{2}N$
2163	H ₃ C-NH HO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C \longrightarrow CF_3$ H_2N
2164	CH ₃ CH₂−	1	2	0	R	. н	$-CH_2-N-C \longrightarrow H_2N$
2165	HN CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2 H_2 N
2166	S-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2 H_2 N
2167	H N CH ₂ -	1	2	C) R	Н	$-CH_{2}-N-C-$ $H_{2}N$

Table 1.198

Compd.	R ¹ (CH ₂) _j -					R³	$-(CH_2)_p$ $+ \frac{R^4}{R^5}(CH_2)_q$ $-G-R^6$
2168	H ₃ C CH ₂ - CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N+C-$ H_2N
2169	H_3C CH_3 CH_3 CH_3	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
2170	CI					H ₂	$-CH_2-N-C-$ H_2N
2171	H ₃ C N CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2 H_2 H_2
2172	F ₃ C CH ₂ -CH ₂ -	1	2	0	R	, H	$-CH_2-N-C-$ H_2N
2173	CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-NC- CF_3$ H_2N
2174	H ₃ C CH ₃ Br S CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
2175	OC H ₃	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
2176	H ₃ C - N - CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2N$
2177	H ₃ C OH N − CH ₂ − CH ₂ OH	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
2178	H ₃ CO-C HN CH ₂ -	1	2	0	R	Н	$-CH_2-N-C \longrightarrow H_2N$

Table 1.199

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
2179	H ₃ C-C-CH ₂ -	1	2	0	R	н	$-CH_2-N+C-$ H_2N
2180	CI—(CH ₂) ₂ —	1	2	0	R	Н	$-CH_2-NC- \longrightarrow_{H_2N}^{CF_3}$
2181	H ₃ CO N CH ₂ -	1	2	0	R	н	$-CH_2-NC-$ H_2N
2182	H ₃ C N CH ₂ -	1	2	0	R .	н	$-CH_2-NC-$ H_2N CF_3
2183	\$-N N= CH ₂ -	1	2	0	R	Н	$-CH_2-NC-$ H_2N H_2N
2184	S-N N=CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2185	S-N N=CH ₂ -	2	2	1	-	, н	$-CH_2-N-C-$ H_2N
2186	H N CH ₂ -	2	2	1	-	н	$-CH_{2}-N$ $H_{2}N$ CF_{3} $H_{2}N$
2187	H ₂ N HO—CH ₂ —	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2188	CH ₂ -	2	2	1	-	н	$-CH_{2}-N$ $H_{2}N$ CF_{3} $H_{2}N$
2189	CH₂-	1	2	C) R		$-CH_2-N$ CF_3 H_2N

Table 1.200

	0 0						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2190	CH ₂ -	2	2	1	·	Н	$-CH_2-N-C$ H_2N
2191	O H CH ₂ -	2	2	1	- 12 -	H	$-CH_2-N-C- \longrightarrow CF_3$ H_2N
2192	S H CH ₂ -	2	2	1	-	Н	$-CH_2-N-C \xrightarrow{CF_3} \\ H_2N$
2193	S H CH ₂ -	2	2	1	-	н .	$-CH_2-N-C H_2N$
2194	H ₂ N H ₃ C-CH ₂ - ·	2	2	1 ·	- '	н ,	-CH ₂ -N-C-CF ₃
2195	H ₂ N CH ₂ -	2	2	1	· <u>:</u>	Н	-CH ₂ -N-C-CF ₃ ·H ₂ N
2196	1,30 0112		2		R	н	$-CH_2-N-C H_2N$
2197	H ₃ C-NH H ₃ CO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2N$
2198	H ₃ C-NH CH2−						$-CH_2-N-C H_2N$
2199	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1			$-CH_2-N-C$ H_2N
2200	H ₃ C-NH CH2−	2	2	1	. . .	н	-CH ₂ -N-C

Table 1.201

				_			
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2201	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2202	H CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2203	CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N
2204	CH ₂ -CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N
2205	CH₃ CH₂−	2	2	1	-	н	-CH ₂ -N-C
2206	CH_3	2	2	. 1	-	н	-CH ₂ -N-C
2207	CH ₃	2	2	1	-	н	-CH ₂ -N-C
2208	HN-CH ₃	2	2	1	-	Н	$-CH_2-N-C \longrightarrow H_2N$
2209	HN-CH ₃	2	2	1	-	Н	$-CH_2-N-C$ H_2N

The present invention can also use acid addition salt of the cyclic amine compound where such acids include, for example, mineral acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, carbonic acid, and the like, as well as organic acids such as maleic acid, citric acid, malic acid, tartaric acid, fumaric acid, methanesulfonic acid, trifluoroacetic acid, formic acid, and the like.

Furthermore, the present invention can also use a C_1 - C_6 alkyl addition salt of the cyclic amine compound, such as $1-(4-\text{chlorobenzyl})-1-\text{methyl}-4-[\{N-(3-\text{trifluoromethylbenzoyl})\text{glycyl}\}$ aminomethyl]piperidinium iodide, where such alkyl include, for example, a methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, 2-methylpentyl, 1-ethylbutyl, and the like, suitably specifically including, a methyl and ethyl group. As preferred specific examples for counter anion of the ammonium cation, a halide anion such as fluoride, chloride, bromide or iodide can be listed.

The present invention may use racemates and all possible optically active forms of the compound represented by the above formula (I).

Compound represented by the above general formula (I) can be synthesized by any of the general preparations given below.

(Preparation 1)

10

15

20

25

A preparation which call for treating one equivalent of a compound represented by the formula (II) below:

$$\begin{array}{c}
R^{1} \\
 \longrightarrow (CH_{2})_{j} - N \\
R^{2} \\
 (CH_{2})_{m}
\end{array}$$

$$\begin{array}{c}
(CH_{2})_{n} - NH \\
 R^{3}
\end{array}$$

$$(II)$$

{where R^1 , R^2 , R^3 , j, k, m, and n are the same as defined respectively in the above formula (I)} with 0.1-10 equivalents of a carboxylic acid represented by the formula (III) below:

$$\begin{array}{c} O \\ HO - C - (CH_2)_p - \frac{R^4}{R^5} (CH_2)_q - G - R^6 \end{array}$$
 (III)

(where R^4 , R^5 , R^6 , G, p, and q are the same as defined respectively in the above formula (I)), or its reactive derivative, either in the absence or presence of solvent.

The reactive derivative for the carboxylic acid in the above formula (III) include highly reactive carboxylic acid derivatives, which are usually used in synthetic organic chemistry, such as acid halides, acid anhydrides, mixed acid anhydrides.

Such reactions can be more smoothly run by using suitable amounts of a dehydrating agent such as molecular sieve, coupling reagent such as N-ethyl-N'-(3-(DCC), dicyclohexylcarbodiimide dimethylaminopropyl)carbodiimide (EDCI or WSC), carbonyldiimidazole (CDI), N-hydroxysuccinimide (HOSu), N-hydroxybenzotriazole (HOBt), benzotriazol-1-(PyBOP®), hexafluorophosphate yloxytris(pyrrolidino)phosphonium benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU), 15 2-(5-norbornene-2,3-dicarboxyimido)-1,1,3,3-tetramethyluronium O-(N-succinimidyl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TNTU), tetrafluoroborate (TSTU), bromotris(pyrrolidino)phosphonium hexafluorophosphate (PyBroP $^{\circ}$), and the like, or base including inorganic salts such as potassium carbonate, sodium carbonate, sodium hydrogencarbonate, and the like, amines such 20 as triethylamine, diisopropylethylamine, and pyridine, and the like, or polymer (piperidinomethyl)polystyrene, bases supported poly(4-(diethylaminomethyl)polystyrene, (morpholinomethyl)polystyrene, vinylpyridine), and the like.

(Preparation 2)

A preparation which calls for treating 1 equivalent of an alkylating reagent given by the formula (IV) below:

$$\begin{array}{c}
R^1 \\
 \longrightarrow (CH_2)_j \longrightarrow X
\end{array} (IV)$$

(where R^1 , R^2 , and j are the same as defined respectively in the above formula (I)); X represents a halogen atom, alkylsulfonyloxy group, or arylsulfonyloxy group), with 0.1-10 equivalents of a compound represented by the formula (V) below:

35

30

25

5

$$\begin{array}{c} (CH_{2})_{k} \\ HN \\ (CH_{2})_{m} \end{array} - (CH_{2})_{n} - N - C - (CH_{2})_{p} - H \\ R^{3} \\ (CH_{2})_{p} - R^{5} \end{array}$$
 (V)

{where R^3 , R^4 , R^5 , R^6 , G, k, m, n, p, and q are the same as defined respectively in the above formula (I)} either in the absence or presence of solvent.

Such reactions can be more smoothly run if a base similar to that used in the above preparation 1 is present. In addition, the reactions in these preparations can also be promoted by iodide such as potassium iodide, sodium iodide, and the like.

In the above formulas (IV), X represents a halogen atom, alkylsulfonyloxy group, arylsulfonyloxy group. Such halogen atoms include preferably chlorine, bromine, and iodine atoms. Suitable specific examples for the alkylsulfonyloxy groups include methylsulfonyloxy, trifluoromethylsulfonyloxy group, and the like. A preferred specific example for the arylsulfonyloxy group includes a tosyloxy group.

15 (Preparation 3)

5

10

30

A preparation which calls for treating 1 equivalent of an aldehyde represented by the formula (VI) below:

$$R^1$$
 \rightarrow
 $(CH_2)_{j-1}$
 \rightarrow
 (VI)

20 {where R^1 and R^2 are the same as defined respectively in the above formula (I); j represents 1 or 2} or the formula (VII) below:

25 {where R^1 is the same as defined in the above formula (I); j represents 0), with 0.1-10 equivalents of a compound represented by the formula (V) either in the absence or presence of solvent under reductive conditions.

Such reactions are in general called reductive amination reactions and such reductive conditions may be generated by catalytic hydrogenation using a catalyst containing a metal such as palladium, platinum, nickel, rhodium, or the like, using complex hydrides, such as lithium aluminum hydride, sodium borohydride, sodium cyanoborohydride, sodium triacetoxyborohydride, and the

like, boranes, or electrolytic reduction, and the like.

(Preparation 4)

10

15

20

A preparation which call for treating one equivalent of a compound 5 represented by the formula (VIII) below:

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} \longrightarrow (CH_{2})_{k} \longrightarrow (CH_{2})_{n} \longrightarrow (CH_{2})_{n} \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{q} \longrightarrow (CH_{$$

(where R^1 , R^2 , R^3 , R^4 , R^5 , R^7 , j, k, m, n, p and q are the same as defined respectively in the above formula (I)) with 0.1-10 equivalents of a carboxylic acid or sulfonic acid represented by the formula (IX) below:

$$HO-A-R^6$$
 (IX)

(where R⁶ is the same as defined in the above formulas (I); "A" represents a carbonyl group or sulfonyl group), or its reactive derivative, either in the absence or presence of solvent.

The reactive derivative for the carboxylic acid or sulfonic acid in the above formula (IX) include highly reactive carboxylic acid or sulfonic acid derivative, which are usually used in synthetic organic chemistry, such as acid halides, acid anhydrides, mixed acid anhydrides.

Such reactions can be more smoothly run by using suitable amounts of a dehydrating agent, coupling reagent, or base which are similar to those used in the above preparation 1.

25 (Preparation 5)

A preparation which calls for treating 1 equivalent of a compound represented by the above formula (VIII) with 0.1-10 equivalents of a isocyanate or isothiocyanate represented by the formula (X) below:

$$30 Z=C=N-R^6 (X)$$

(where R^{ϵ} is the same as defined in the above formulas (I)); Z represents a oxygen atom or sulfur atom), either in the absence or presence of solvent.

(Preparation 6)

5

15

20

25

30

A preparation which calls for treating 1 equivalent of a compound represented by the formula (XI) below:

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{n} \longrightarrow (CH_{2})_{n} - N - C \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - A - OH \quad (XI)
\end{array}$$

{where R^1 , R^2 , R^3 , R^4 , R^5 , j, k, m, n, p and q are the same as defined respectively in the above formula (I)); "A" represents a carbonyl group or sulfonyl group) with 0.1-10 equivalents of an amine represented by the formula (XII) below:

$$R^6-NH_2 \tag{XII}$$

(where R^6 is the same as defined in the above formula (I)}, either in the absence or the presence of solvent.

Such reactions can be more smoothly run by using suitable amounts of a dehydrating agent, coupling reagent, or base which are similar to those used in the above preparation 1.

If the substrates submitted to each of the above preparations contains a substituent which reacts under each reaction condition or is thought to adversely affect the reaction in general in synthetic organic chemistry, that functional group can be protected by a known suitable protecting group followed by the reaction of the above preparations and deprotection using a known procedure to obtain the desired compound.

Furthermore, a compound of the present invention can be prepared by the further conversion of the substituent(s) of the compound, prepared with the above preparations 1-6, using known reactions which are usually used in synthetic organic chemistry, such as alkylation, acylation, reduction, and so on.

Each of the above preparations may use solvents for the reaction such as halogenated hydrocarbons such as dichloromethane, chloroform, and the like, aromatic hydrocarbons such as benzene, toluene, and the like, ethers such as diethyl ether, tetrahydrofuran, and the like, esters such as ethyl acetate, aprotic polar solvents such as dimethylformamide, dimethyl sulfoxide, acetonitrile, and the like, alcohols such as methanol, ethanol, isopropyl alcohol, and the like.

The reaction temperature in either of the preparations should be in the range of -78 °C - ± 150 °C, preferably 0 °C - ± 100 °C. After completion of the reaction, the usual isolation and purification operations such as concentration, filtration, extraction, solid-phase extraction, recrystallization, chromatography, and the like may be used, to isolate the desired cyclic amine compound represented by the above formula (I). These can be converted into pharmaceutically acceptable acid addition salt or C_1-C_6 alkyl addition salt by the usual method.

10 Potential Industrial Utilities

5

15

20

The chemokine receptor antagonist, which contain the cyclic amine compound, its pharmaceutically acceptable acid addition salt or a pharmaceutically acceptable C_1 - C_{ε} alkyl addition salt of this invention, which inhibits chemokines such as MIP-l α and/or MCP-l and the like from action on target cells, are useful as therapeutic agents and/or preventive preparation for diseases such as atherosclerosis, rheumatoid arthritis, psoriasis, asthma, ulcerative colitis, nephritis (nephropathy), multiple sclerosis, pulmonary fibrosis, myocarditis, hepatitis, pancreatitis, sarcoidosis, Crohn's disease, endometriosis, congestive heart failure, viral meningitis, cerebral infarction, neuropathy, Kawasaki disease, sepsis, and the like, in which tissue infiltration of blood monocytes, lymphocytes, and the like plays a major role in the initiation, progression, and maintenance of the disease.

Examples

5

The present invention is now specifically described by the following examples. However, the present invention is not limited to these compounds described in these examples. Compound numbers in these examples represent numbers attached to these compounds listed as suitable specific examples in Tables 1.1-1.201.

Reference Example 1: Preparation of 3-Amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride.

- 4-Chlorobenzyl chloride (4.15 g, 25.8 mmol) and ³Pr₂NEt (6.67 g, 51.6 mmol) were added to a solution of 3-{(tert-butoxycarbonyl) amino}pyrrolidine (4.81 g, 25.8 mmol) in DMF (50 mL). The reaction mixture was stirred at 70 °C for 15 h and the solvent was removed under reduced pressure. Recrystallization (CH₃CN, 50 mL) provided the desired material, 3-(tert-butoxycarbonyl) amino-1-(4-chlorobenzyl)pyrrolidine as a pale yellow solid (6.43 g, 80.2%): ³H NMR (CDCl₃, 300 MHz) δ 1.37 (s, 9 H), 1.5-1.7 (br, 1 H), 2.1-2.4 (m, 2 H), 2.5-2.7 (m, 2 H), 2.83 (br, 1 H), 3.57 (s, 2 H), 4.1-4.3 (br, 1 H), 4.9-5.1 (br, 1 H), 7.15-7.35 (br, 4 H); The purity was determined by RPLC/MS (98%); ESI/MS m/e 311.0 (M*+H, C₁₆H₂₄ClN₂O₂).
- 20 A solution of 3-(tert-butoxycarbonyl) amino-1-(4-chlorobenzyl) pyrrolidine (6.38 g, 20.5 mmol) in CH₃OH (80 mL) was treated with 1 N HCl-Et₂O (100 mL) and was stirred at 25 °C for 15 h. The solvent was removed under reduced pressure to afford a solid which was purified by recrystallization (1:2 CH₃OH-CH₃CN, 150 mL) to give 3-amino-1-(4-chlorobenzyl) pyrrolidine dihydrochloride as a white powder (4.939 g, 84.9%): ¹H NMR (d₆-DMSO, 300 MHz) δ 3.15 (br, 1 H), 3.3-3.75 (br-m, 4 H), 3.9 (br, 1 H), 4.05 (br, 1 H), 4.44 (br, 1 H), 4.54 (br, 1 H), 7.5-7.7 (m, 4 H), 8.45 (br, 1 H), 8.60 (br, 1 H); The purity was determined by RPLC/MS (>99%); ESI/MS m/e 211.0 (M*+H, C₁₁H₁₆ClN₂).
- Optically active (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride and (S)-3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride were also prepared pursuant to the above method using the corresponding reactant respectively. The products showed the same $^1\mathrm{H}$ NMR with that of the racemate.
- 35 Example 1: Preparation of 3-(N-Benzoylglycyl)amino-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1).

N-Benzoylglycine (9.9 mg, 0.055 mmol), $3-ethyl-1-\{3-(dimethylaminopropyl\}carbodiimide hydrochloride (EDCI) (10.5 mg) and 1-$

5

15

hydroxybenzotriazole hydrate (HOBt) (7.4 mg) were added to a solution of 3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride (14.2 mg, 0.050 mmol) and Et₃N (15.2 mg) in CHCl₃ (2.5 mL). The reaction mixture was stirred at 25 °C for 16 h, washed with 2 N aqueous NaOH (2 mL x 2) and brine (1 mL). After filtration through a PTFE membrane filter, the solvent was removed under reduced pressure to afford 3-(N-benzoylglycyl)amino-1-(4-chlorobenzyl)pyrrolidine (compound No. 1) as a pale yellow oil (17.7 mg, 95%): The purity was determined by RPLC/MS (95%); ESI/MS m/e 372.0 (M^T+H, $C_{20}H_{22}ClN_3O_2$).

10 Examples 2-32.

The compounds of this invention were synthesized pursuant to methods of Example 1 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 2.

Table 2

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 2	2	C21 H24 Cl N3 O2	386	16.4	85
Example 3	3	C19 H21 Cl N4 O2	373	18.7	100
Example 4	4	C21 H21 Cl F3 N3 O2	440	57.2	69
Example 5	82	C22 H23 C1 F3 N3 O2	454	5.6	11
Example 6	85	C21 H24 Cl N3 O2	386	22.6	59
Example 7	86	C21 H23 Cl N4 O4	431	21.2	98
Example 8	214	C22 H25 Cl N2 O2	385	23.9	62
Example 9	215	C23 H27 Cl N2 O3	415	17.4	84
Example 10	216	C20 H23 C1 N2 O2 S	391	21.6	quant
Example 11	217	C23 H27 C1 N2 O4	431	15.3	66
Example 12	218	C23 H27 C1 N2 O2	399	12.8	64
Example 13	219	C22 H24 C1 F N2 O3	419	18.1	86
Example 14	220	C22 H25 Cl N2 O2	385	16.4	85
Example 15	221	C21 H23 C1 N2 O2	371	14.9	80
Example 16	222	C21 H22 C12 N2 O2	405	13.3	65
Example 17	223	C25 H31 C1 N2 O3	443	18.4*	63
Example 18	224	C20 H23 Cl N2 O3 S	407	11.2	· 28
Example 19	225	C22 H26 Cl N3 O2	400	22.7	quant
Example 20	226	C23 H28 Cl N3 O3	430	21.0	98
Example 21	227	C22 H25 C12 N3 O2	434	21.9	100
Example 22	228	C23 H28 C1 N3 O3	430	20.8	97

Example 23	. 229	C25 H32 C1 N3 O2	462	25.4	quant
Example 24	230	C26 H31 C1 F N3 O2	472	26.0	quant
Example 25	231	C24 H28 C1 N3 O3	442	30.3*	quant
Example 26	232	C22 H32 C1 N3 O2	406	3.9	19 .
Example 27	233	C23 H28 C1 N3 O2	414	8.5	41
Example 28	234	C22 H27 Cl N4 O2	415	7.3	35
Example 29	235	C24 H29 C12 N3 O2	462	9.0	39
Example 30	236	C25 H29 C1 N4 O3 S	501	17.4	69
Example 31	237	C21 H24 C1 N3 O3	402	14.2	71
Example 32	238	C21 H23 C12 N3 O3	436	23.4	quant.

^{*}Yield of TFA salt.

5

10

15

20

25

Reference Example 2: Preparation of (R)-3-(N-(text-Butoxycarbonyl)glycyl)amino-1-(4-chlorobenzyl)pyrrolidine.

A mixture of (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride (4.54 g, 16.0 mmol), 2 N NaOH solution (80 mL), and ethyl acetate (80 mL) was shaken, the organic layer was separated, and the aqueous layer was extracted with ethyl acetate (80 mL x 2). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and evaporated to give free (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine (3.35 g, 99%).

A solution of (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine (3.35 g, 16 mmol) in CH_2Cl_2 (80 mL) was treated with Et₃N (2.5 mL, 17.6 mmol), N-tert-butoxycarbonylglycine (2.79 g, 16.0 mmol), EDCI (3.07 g, 16.0 mmol) and HOBt (2.16 g, 16 mmol). After the reaction mixture was stirred at 25 °C for 16 h, 2 N NaOH solution (80 mL) was added. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (100 mL x 3). The combined organic layer was washed with water (100 mL x 2) and brine (100 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO₂, ethyl acetate) afforded the desired (R)-3-(N-(tert-butoxycarbonyl)glycyl)amino-1-(4-chlorobenzyl)pyrrolidine (5.40 g, 92%).

Reference Example 3: Preparation of (R)-1-(4-Chlorobenzyl)-3-(glycylamino)pyrrolidine.

To a solution of $(R)-3-\{N-(tert-butoxycarbonyl)glycyl\}$ amino-1-(4-chlorobenzyl)pyrrolidine (5.39 g, 14.7 mmol) in methanol (60 mL) was added 4 N HCl in dioxane (38 mL). The solution was stirred at room temperature for 2 h. The reaction mixture was concentrated and 2 N NaOH solution (80 mL) was added. The mixture was extracted with dichloromethane (80 mL x 3), and the combined

```
extracts were dried over sodium sulfate and concentrated. Column chromatography (SiO<sub>2</sub>, AcOEt/EtOH/Et<sub>3</sub>N = 90/5/5) gave (R)-3-(glycyl)amino-1-(4-chlorobenzyl)pyrrolidine (3.374 g, 86%): ^{1}H NMR (CDCl<sub>3</sub>, 270 MHz) \delta 1.77 (dd, J = 1.3 and 6.9 Hz, 1 H), 2.20-3.39 (m, 2 H), 2.53 (dd, J = 3.3 and 9.6 Hz, 1 H), 2.62 (dd, J = 6.6 and 9.6 Hz, 1 H), 2.78-2.87 (m, 1 H), 3.31 (s, 2 H), 3.57 (s, 2 H), 4.38-4.53 (br, 1 H), 7.18-7.32 (m, 4 H), 7.39 (br. s, 1 H).
```

Other 3-acylamino-1-(4-chlorobenzyl)pyrrolidines were also synthesized pursuant to methods of Reference Example 2 and 3 using the corresponding reactants respectively.

- (S)-1-(4-Chlorobenzyl)-3-(glycylamino) pyrrolidine: 3.45 g, 79% (2 steps).
- $(R)-3-(\beta-Alanylamino)-1-(4-chlorobenzyl)$ pyrrolidine: 3.79 g, 85% (2 steps).
- 15 (S)-3-(β -Alanylamino-)1-(4-chlorobenzyl)pyrrolidine: 3.72 g, 86% (2 steps).
 - $(R)-3-\{(S)-Alanylamino\}-1-(4-chlorobenzyl)$ pyrrolidine: 368 mg, 65% (2 steps).
 - $(R)-3-\{(R)-Alanylamino\}-1-(4-chlorobenzyl)$ pyrrolidine: 425 mg, 75% (2 steps).
 - $(R)-3-\{(2S)-2-A\min o-3-thienylpropanoyl\}\\ amino-1-(4-chlorobenzyl)pyrrolidine: 566 mg, 78% (2 steps).$
 - $(R)-3-\{(2R)-2-Amino-3-thienylpropanoyl\}$ amino-1-(4-
 - chlorobenzyl)pyrrolidine: 585 mg, 81% (2 steps).
- 25 (R)-3-(2-Amino-2-methylpropanoyl)amino-1-(4-chlorobenzyl)pyrrolidine: 404 mg, 66% (2 steps).

10

20

- $(R)-3-\{\ (2S)-2-A\min o-4-(methylsulfonyl)\ butanoyl\}\ amino-1-(4-chlorobenzyl)\ pyrrolidine: 535\ mg, 72\% \ (2\ steps).$
- Furthermore (R)-3-(glycylamino)-1-(4-methylbenzyl)pyrrolidine, (R)-1-(4-bromobenzyl)-3-(glycylamino)pyrrolidine, (R)-1-(2,4-dimethylbenzyl)-3-(glycylamino)pyrrolidine, and (R)-1-(3,5-dimethylisoxazol-4-ylmethyl)-3-(glycylamino)pyrrolidine were also synthesized pursuant to methods of Reference Example 1, 2 and 3 using the corresponding reactants respectively.
- 35 (R)-3-(Glycylamino)-1-(4-methylbenzyl)pyrrolidine: 4.65 g, 62% yield from 3-{(tert-butoxycarbonyl)amino}pyrrolidine.
 - (R)-1-(4-Bromobenzyl)-3-(glycylamino)pyrrolidine: 2.55 g, 68% yield from (R)-3-amino-1-(4-bromobenzyl)pyrrolidine; 1 H NMR (CDCl₃, 270 MHz) δ

1.37-1.78 (m, 3 H), 2.23-2.39 (m, 2 H), 2.50-2.67 (m, 2 H), 2.80-2.89 (m, 1 H), 3.32 (s, 2 H), 3.58 (s, 2 H), 4.39-4.55 (m, 1 H), 7.21 (d, J = 6.5 Hz, 2 H), 7.45 (d, J = 6.5 Hz, 2 H).

(R)-1-(2,4-Dimethylbenzyl)-3-(glycylamino) pyrrolidine: 1.56 g, 58% yield from 3- $\{(\text{tert-butoxycarbonyl})$ amino}pyrrolidine; ¹H NMR (CDCl₃, 270 MHz) δ 1.55-1.78 (m, 3 H), 2.30(s, 3 H), 2.23-2.31 (m, 2 H), 2.33(s, 3 H), 2.51-2.63 (m, 2 H), 2.78-2.87 (m, 1 H), 3.30 (s, 2 H), 3.55 (s, 2 H), 4.38-4.60 (m, 1 H), 6.95 (d, J = 7.6 Hz, 1 H), 6.97 (s, 1 H), 7.13 (d, J = 7.6 Hz, 1 H), 7.43 (br-s, 1 H).

(R)-1-(3,5-Dimethylisoxazol-4-ylmethyl)-3-(glycylamino)pyrrolidine:
3.14 g, 45% yield from 3-{(tert-butoxycarbonyl)amino)pyrrolidine.

Example 33: Preparation of (S)-3-[N-{3,5-Bis(trifluoromethyl)benzoyl)glycyl]amino-1-(4-chlorobenzyl)pyrrolidine (Compound No. 5).

A solution of 3,5-bis(trifluoromethyl)benzoyl chloride (0.060 mmol) in chloroform (0.4 mL) was added to a solution of (S)-1-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine (0.050 mmol) and triethylamine (0.070 mmol) in chloroform (1.0 mL). After the reaction mixture was agitated at room temperature for 2.5 h, (aminomethyl)polystyrene resin (1.04 mmol/g, 50 mg, 50 mmol) was added and the mixture was agitated at room temperature for 12 h. The reaction mixture was filtered and the resin was washed with dichloromethane (0.5 mL). The filtrate and washing were combined, dichloromethane (4 mL) was added, and the solution was washed with 2 N aqueous NaOH solution (0.5 mL) to give (S)-3- $\{N$ - $\{3,5$ -bis(trifluoromethyl)benzoyl)glycyl]amino-1-(4-chlorobenzyl)pyrrolidine (compound No. 5) (14.4 mg, 57%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 508.0 (M*+H, $C_{22}H_{20}ClF_6N_3O_2$).

Examples 34-239.

The compounds of this invention were synthesized pursuant to methods of Example 33 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 3.

Table 3

35

5

10

15

20

25

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 34	5	$C_{22}H_{23}ClF_6N_3O_2$	508.0	14.4	57 .

Example 39 10 $C_{21}H_{24}C1N_3O_3$ 402.5 23.5 Q Example 40 11 $C_{22}H_{26}C1N_3O_4$ 432.5 22.4 Q Example 41 12 $C_{22}H_{26}C1N_3O_4$ 432.5 15.9 Example 42 13 $C_{21}H_{21}C1F_3N_3O_2$ 440.0 13.1 Example 43 14 $C_{21}H_{24}C1N_3O_2$ 386.0 16.4 Example 44 15 $C_{20}H_{21}C1_2N_3O_2$ 406.0 15.7 Example 45 16 $C_{21}H_{24}C1N_3O_2$ 402.0 28.2 Q Example 46 17 $C_{20}H_{20}C1_3N_3O_2$ 442.0 35.6 Q Example 47 18 $C_{21}H_{21}C1N_4O_2$ 397.5 22.8 Q Example 48 19 $C_{21}H_{22}C1N_3O_4$ 416.0 16.3	79 65 quant quant 74 60 85 77 quant
Example 37 8 $C_{20}H_{21}C1FN_3O_2$ 390.0 12.7 Example 38 9 $C_{20}H_{20}C1_3N_3O_2$ 440.0 39.0 G_{20} $G_{20}H_{20}C1_3N_3O_2$ 402.5 23.5 G_{20} $G_{20}H_{20}C1N_3O_3$ 402.5 23.5 G_{20} $G_{20}H_{20}C1N_3O_4$ 432.5 22.4 G_{20} $G_{20}H_{20}G1N_3O_4$ 432.5 15.9 $G_{20}H_{20}G1N_3O_4$ 432.5 15.9 $G_{20}H_{20}G1N_3O_4$ 432.5 15.9 $G_{20}H_{20}G1N_3O_2$ 440.0 13.1 $G_{20}H_{20}G1N_3O_2$ 406.0 15.7 $G_{20}H_{20}G1N_3O_2$ 406.0 15.7 $G_{20}H_{20}G1N_3O_2$ 406.0 15.7 $G_{20}H_{20}G1N_3O_2$ 402.0 28.2 $G_{20}H_{20}G1N_3O_2$ 402.0 28.2 $G_{20}H_{20}G1N_3O_2$ 402.0 35.6 $G_{20}H_{20}G1N_3O_2$ 402.0 35.6 $G_{20}H_{20}G1N_3O_2$ 406.0 16.3 $G_{20}H_{20}G1N_3O_2$ 406.0 16.4 $G_{20}H_{20}G1N_3O_2$ 406.0 $G_{20}H_{2$	quant quant 74 60 85
Example 38 9 $C_{20}H_{20}Cl_3N_3O_2$ 440.0 39.0 9 Example 39 10 $C_{21}H_{24}ClN_3O_3$ 402.5 23.5 9 Example 40 11 $C_{22}H_{26}ClN_3O_4$ 432.5 22.4 9 Example 41 12 $C_{22}H_{26}ClN_3O_4$ 432.5 15.9 Example 42 13 $C_{21}H_{21}ClF_3N_3O_2$ 440.0 13.1 Example 43 14 $C_{21}H_{24}ClN_3O_2$ 386.0 16.4 Example 44 15 $C_{20}H_{21}Cl_2N_3O_2$ 406.0 15.7 Example 45 16 $C_{21}H_{24}ClN_3O_2$ 402.0 28.2 9 Example 46 17 $C_{20}H_{20}Cl_3N_3O_2$ 442.0 35.6 9 Example 47 18 $C_{21}H_{21}ClN_3O_2$ 422.0 35.6 9 Example 48 19 $C_{21}H_{22}ClN_3O_4$ 416.0 16.3 Example 48 19 $C_{21}H_{22}ClN_3O_4$ 416.0 16.3 Example 50 21 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 24.9 Example 50 21 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 9.4 Example 51 22 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 9.4 Example 52 23 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 15.4	quant 74 60 85
Example 39 10 $C_{21}H_{24}ClN_3O_3$ 402.5 23.5 Q Example 40 11 $C_{22}H_{26}ClN_3O_4$ 432.5 22.4 Q Example 41 12 $C_{22}H_{26}ClN_3O_4$ 432.5 15.9 Example 42 13 $C_{21}H_{21}ClF_3N_3O_2$ 440.0 13.1 Example 43 14 $C_{21}H_{24}ClN_3O_2$ 386.0 16.4 Example 44 15 $C_{20}H_{24}ClN_3O_2$ 406.0 15.7 Example 45 16 $C_{21}H_{24}ClN_3O_2$ 402.0 28.2 Q Example 46 17 $C_{20}H_{20}Cl_3N_3O_2$ 442.0 35.6 Q Example 47 18 $C_{21}H_{21}ClN_4O_2$ 397.5 22.8 Q Example 48 19 $C_{21}H_{22}ClN_3O_4$ 416.0 16.3 Example 49 20 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 24.9 Q Example 50 21 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 9.4 Example 51 22 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 9.4 Example 52 23 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 15.4	74 60 85
Example 40 11 $C_{22}H_{26}ClN_3O_4$ 432.5 22.4 9 Example 41 12 $C_{22}H_{26}ClN_3O_4$ 432.5 15.9 Example 42 13 $C_{21}H_{21}ClF_3N_3O_2$ 440.0 13.1 Example 43 14 $C_{21}H_{24}ClN_3O_2$ 386.0 16.4 Example 44 15 $C_{20}H_{21}Cl_2N_3O_2$ 406.0 15.7 Example 45 16 $C_{21}H_{24}ClN_3O_2$ 402.0 28.2 9 Example 46 17 $C_{20}H_{20}Cl_3N_3O_2$ 442.0 35.6 9 Example 47 18 $C_{21}H_{21}ClN_4O_2$ 397.5 22.8 9 Example 48 19 $C_{21}H_{22}ClN_3O_4$ 416.0 16.3 Example 49 20 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 24.9 9 Example 50 21 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 9.4 Example 51 22 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 9.4 Example 52 23 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 15.4	74 60 85 77
Example 41 12 $C_{22}H_{26}ClN_3O_4$ 432.5 15.9 Example 42 13 $C_{21}H_{21}ClF_3N_3O_2$ 440.0 13.1 Example 43 14 $C_{21}H_{24}ClN_3O_2$ 386.0 16.4 Example 44 15 $C_{20}H_{21}Cl_2N_3O_2$ 406.0 15.7 Example 45 16 $C_{21}H_{24}ClN_3O_2$ 402.0 28.2 6 Example 46 17 $C_{20}H_{20}Cl_3N_3O_2$ 442.0 35.6 6 Example 47 18 $C_{21}H_{21}ClN_4O_2$ 397.5 22.8 Example 48 19 $C_{21}H_{21}ClN_4O_2$ 397.5 22.8 Example 49 20 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 24.9 Example 50 21 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 17.9 Example 51 22 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 9.4 Example 52 23 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 15.4	60 85 77
Example 42 13 $C_{21}H_{21}C1F_3N_3O_2$ 440.0 13.1 Example 43 14 $C_{21}H_{24}C1N_3O_2$ 386.0 16.4 Example 44 15 $C_{20}H_{21}C1_2N_3O_2$ 406.0 15.7 Example 45 16 $C_{21}H_{24}C1N_3O_2$ 402.0 28.2 6 Example 46 17 $C_{20}H_{20}C1_3N_3O_2$ 442.0 35.6 6 Example 47 18 $C_{21}H_{21}C1N_4O_2$ 397.5 22.8 6 Example 48 19 $C_{21}H_{22}C1N_3O_4$ 416.0 16.3 Example 49 20 $C_{21}H_{20}C1F_4N_3O_2$ 458.0 24.9 Example 50 21 $C_{21}H_{20}C1F_4N_3O_2$ 458.0 17.9 Example 51 22 $C_{21}H_{20}C1F_4N_3O_2$ 458.0 9.4 Example 52 23 $C_{21}H_{20}C1F_4N_3O_2$ 458.0 15.4	85 77
Example 44 15 $C_{20}H_{21}Cl_2N_3O_2$ 406.0 15.7 Example 45 16 $C_{21}H_{24}ClN_3O_2$ 402.0 28.2 9 Example 46 17 $C_{20}H_{20}Cl_3N_3O_2$ 442.0 35.6 9 Example 47 18 $C_{21}H_{21}ClN_4O_2$ 397.5 22.8 9 Example 48 19 $C_{21}H_{22}ClN_3O_4$ 416.0 16.3 Example 49 20 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 24.9 9 Example 50 21 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 17.9 Example 51 22 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 9.4 Example 52 23 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 15.4	77
Example 45 16 $C_{21}H_{24}ClN_3O_2$ 402.0 28.2 9 Example 46 17 $C_{20}H_{20}Cl_3N_3O_2$ 442.0 35.6 9 Example 47 18 $C_{21}H_{21}ClN_4O_2$ 397.5 22.8 9 Example 48 19 $C_{21}H_{22}ClN_3O_4$ 416.0 16.3 9 Example 49 20 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 24.9 9 Example 50 21 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 17.9 9 Example 51 22 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 9.4 9 Example 52 23 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 15.4	
Example 46 17 $C_{20}H_{20}Cl_3N_3O_2$ 442.0 35.6 GEXAMPLE 47 18 $C_{21}H_{21}ClN_4O_2$ 397.5 22.8 GEXAMPLE 48 19 $C_{21}H_{22}ClN_3O_4$ 416.0 16.3 Example 49 20 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 24.9 GEXAMPLE 50 21 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 17.9 Example 51 22 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 9.4 Example 52 23 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 15.4	quant
Example 47 18 $C_{21}H_{21}C1N_4O_2$ 397.5 22.8 9 Example 48 19 $C_{21}H_{22}C1N_3O_4$ 416.0 16.3 Example 49 20 $C_{21}H_{20}C1F_4N_3O_2$ 458.0 24.9 9 Example 50 21 $C_{21}H_{20}C1F_4N_3O_2$ 458.0 17.9 Example 51 22 $C_{21}H_{20}C1F_4N_3O_2$ 458.0 9.4 Example 52 23 $C_{21}H_{20}C1F_4N_3O_2$ 458.0 15.4	
Example 48 19 $C_{21}H_{22}ClN_3O_4$ 416.0 16.3 Example 49 20 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 24.9 Example 50 21 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 17.9 Example 51 22 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 9.4 Example 52 23 $C_{21}H_{20}ClF_4N_3O_2$ 458.0 15.4	quant
Example 49 20 $C_{21}H_{20}C1F_4N_3O_2$ 458.0 24.9 CExample 50 21 $C_{21}H_{20}C1F_4N_3O_2$ 458.0 17.9 Example 51 22 $C_{21}H_{20}C1F_4N_3O_2$ 458.0 9.4 Example 52 23 $C_{21}H_{20}C1F_4N_3O_2$ 458.0 15.4	quant
Example 50 21 $C_{21}H_{20}C1F_4N_3O_2$ 458.0 17.9 Example 51 22 $C_{21}H_{20}C1F_4N_3O_2$ 458.0 9.4 Example 52 23 $C_{21}H_{20}C1F_4N_3O_2$ 458.0 15.4	78
Example 51 22 $C_{21}H_{20}C1F_4N_3O_2$ 458.0 9.4 Example 52 23 $C_{21}H_{20}C1F_4N_3O_2$ 458.0 15.4	quant
Example 52 23 $C_{21}H_{20}C1F_4N_3O_2$ 458.0 15.4	78
Example 32	41
Example 53 24 C ₂₁ H ₂₁ ClF ₃ N ₃ O ₃ 456.0 20.7	67
	91
Example 54 25 C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂ 458.0 18.5	81
Example 55 26 $C_{20}H_{21}ClN_4O_4$ 417.0 21.9	quant
Example 56 27 C ₂₀ H ₂₁ ClN ₄ O ₄ 417.0 16.8	81
Example 57 28 C ₂₀ H ₂₁ ClN ₄ O ₄ 417.0 6.8	33
Example 58 29 C ₂₂ H ₂₆ ClF ₆ N ₃ O ₂ 508.0 20.8	82
Example 59 30 C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂ 440.0 15.2	69
Example 60 31 C ₂₀ H ₂₁ BrClN ₃ O ₂ 450.0 15.6	69
Example 61 32 C ₂₀ H ₂₁ ClFN ₃ O ₂ 390.0 11.8	61
Example 62 33 C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂ 440.0 15.8	72
Example 63 34 $C_{21}H_{24}C1N_3O_3$ 402.5 33.8	quant
122-20-1 5 T	quant
	quant
Example 66 37 $C_{21}H_{21}C1F_3N_3O_2$ 440.0 12.6	57
Example 67 38 $C_{21}H_{24}ClN_3O_2$ 386.0 12.3	64
Example 68 39 C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂ 406.0 15.9	78
Example 69 40 C ₂₁ H ₂₄ ClN ₃ O ₂ 402.0 11.6	58
Example 70 41 C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂ 442.0 17.8	81
Brand 12	quant
2.1.1.	
Example 73 44 $C_{21}H_{26}C1F_4N_3O_2$ 458.0 13.4	quant
Example 74 45 $C_{21}H_{20}C1F_4N_3O_2$ 458.0 13.2	quant 59

Example 75	46	$C_{21}H_{20}ClF_4N_3O_2$	458.0	14.4	63
Example 76	47	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₃	456.0	16.4	72
Example 77	48	$C_{21}H_{20}ClF_4N_3O_2$	458	16.5	72
Example 78	49	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	12.5	60
Example 79	50	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	26.3	quant.
Example 80	51	C ₂₀ H ₂₁ BrClN ₃ O ₂	450.0	8.6	38
Example 81	52	C ₂₀ H ₂₁ ClFN ₃ O ₂	390.5	4.1	21
Example 82	53	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂	406.0	5.4	27
Example 83	54	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	440.0	8.8	40
Example 84	5 5	C20H20BrCl4N3O2	440.0	7.7	35
Example 85	56	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	4.8	25
Example 86	57	C ₂₂ H ₂₆ ClN ₃ O ₄	429.5	4.9	23
Example 87	58	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂	406.0	4.1	20
Example 88	59	C ₂₀ H ₂₁ BrClN ₃ O ₂	452.0	3.5	16
Example 89	. 60	C ₂₆ H ₂₆ ClN ₃ O ₂	448.5	7.3	33
Example 90	61	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	7.1	32
Example 91	62	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	10.4	54
Example 92	63	C ₂₂ H ₂₆ ClN ₃ O ₂	400.5	6.0	30
Example 93	64	C ₂₁ H ₂₁ ClN ₄ O ₂	397.0	7.0	35
Example 94	65	C24H24ClN3O2	422.0	7.7	3€
Example 95	66	C24H24ClN3O2	422.0	6.3	30
Example 96	67	C20H20ClF2N3O2	408.0	4.7	23
Example 97	68	C20H20ClF2N3O2	408.0	7.8	38
Example 98	69	C20H20C1F2N3O2	408.0	7.3	36
Example 99	70	C20H20ClF2N3O2	408.0	9.1	45
Example 100	71	C22H26ClN3O4	429.0	5.6	26
Example 101	72	C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂	456.0	6.2	27
Example 102	73	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	456.5	16.8 .	74
Example 103	74	C22H24ClN3O4	430.0	16.4	76
Example 104	75	C21H20ClF4N3O2	458.0	16.1	70
Example 105	76	C21H20ClF4N3O2	458.0	17.0	74
Example 106	77	$C_{20}H_1$ \circ $C1F_3N_3O_2$	426.0	16.2	76
Example 107	78	$C_{20}H_{19}ClF_3N_3O_2$	426.0	18.0	85
Example 108	79	C ₂₂ H ₂₀ ClF ₆ N ₃ O ₂	508.0	18.8	74
Example 109	80	C ₂₂ H ₂₀ ClF ₆ N ₃ O ₂	508.0	16.4	65
Example 110	81	C ₂₂ H ₂₆ ClN ₃ O ₂	400.0	13.9	70
Example 111	83	C20H21C1N4O4	417.0	16.0	77
Example 112	84	C20H21ClN4O4	417.0	21.6	quant
Example 113	87	C23H22ClF6N3O2	522.0	17.5	67
Example 114	. 88	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂	454.0	13.9	61
•		ı	1 1		

Example 115	89	C ₂₁ H ₂₅ BrClN ₃ O ₂	466.0	15.4	66
Example 116	90	C ₂₁ H ₂₅ C1FN ₃ O ₂	404.0	10.7	53
Example 117	91	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	456.0	13.7	60
Example 118	92	C ₂₂ H ₂₆ ClN ₃ O ₃	416.0	38.4	quant
Example 119	93	C23H2EClN3O4	446.0	25.2	quant
Example 120	94	C ₂₃ H ₂₂ ClN ₃ O ₄	446.0	16.5	74
Example 121	<u>95</u>	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.0	16.3	72
Example 122	96	C22H26ClN3O2	400.5	16.7	84
Example 123	97	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	11.2	. 53
Example 124	98	C ₂₂ H ₂₆ ClN ₃ O ₂	416.5	11.8	57
Example 125	99	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	14.8	65
Example 126	100	C ₂₂ H ₂₃ ClN ₄ O ₂	411.0	9.5	4€
Example 127	101	C ₂₂ H ₂₄ ClN ₃ O ₄	430.5	13.2	61
Example 128	102	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	13.1	56
Example 129	103	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	36.5	quant
Example 130	104	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	22.8	97
Example 131	105	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	20.1	85
Example 132	106	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₃	470.0	27.4	quant
Example 133	107	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	18.5	78
Example 134	108	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	11.9	55
Example 135	109	C21H25ClN4O4	431.0	23.9	quant
Example 136	110	C ₂₁ H ₂₅ ClN ₄ O ₄	431.0	24.4	quant
Example 137	111	C ₂₃ H ₂₂ ClF ₆ N ₃ O ₂	522.0	9.5	36
Example 138	112	$C_{22}H_{23}C1F_3N_3O_2$	454.0	3.9	17
Example 139	113	C ₂₁ H ₂₅ BrClN ₃ O ₂	466.0	7.5	32
Example 140	114	C ₂₁ H ₂₃ C1FN ₃ O ₂	404.0	6.1	30
Example 141	115	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	456.0	6.6	29
Example 142	116	$C_{22}H_{26}ClN_3O_3$	416.0	4.8	23
Example 143	117	C ₂₃ H ₂₈ ClN ₃ O ₄	446.0	6.4	29
Example 144	118	C ₂₃ H ₂₂ ClN ₃ O ₄	446.0	24.6	quant
Example 145	119	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂	454.0	5.2	23
Example 146	120	C ₂₂ H ₂₆ ClN ₃ O ₂	400.5	4.4	22
Example 147	121	$C_{21}H_{23}Cl_2N_3O_2$	420.0	7.8	37
Example 148	122	C22H26ClN3O2	416.5	14.1	68
Example 149	123	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	5.4	24
Example 150	124	C22H22ClN4O2	411.0	34.0	quant
Example 151	125	C22H24ClN3O4	430.5	32.0	quant
Example 152	126	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	4.6	19
Example 153	127	C22H22ClF4N3O2	472.0	10.4	44
Example 154	128	C22H22ClF4N3O2	472.0	7.3	31

Example 155	129	C22H22C1F4N3O2	472.0	13.5	57
Example 156	130	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₃	470.0	15.1	64
Example 157	131	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	8.6	36
Example 158	132	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	4.4	20
Example 159	133	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	32.0	quant
Example 160	134	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	6.9	32
Example 161	135	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	7.8	34
Example 162	136	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.0	13.7	68
Example 163	137	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.5	14.6	69
Example 164	138	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	17.7	78
Example 165	139	C ₂₁ H ₂₂ BrCl ₄ N ₃ O ₂	454.0	17.2	76
Example 166	140	C22H26ClN3O2	400.0	15.0	75
Example 167	141	C ₂₃ H ₂₈ ClN ₃ O ₄	443.5	13.9	62
Example 168	142	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	13.7	65
Example 169	143	C ₂₁ H ₂₃ BrClN ₃ O ₂	464.0	16.1	69
Example 170	144	C ₂₇ H ₂₉ ClN ₃ O ₂	462.0	17.6	76
Example 171	145	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂	454.0	16.0	71
Example 172	146	C ₂₂ H ₂₆ ClN ₃ O ₂	400.0	14.9	75
Example 173	147	$C_{23}H_{28}ClN_3O_2$	414.0	16.2	78
Example 174	148	C ₂₂ H ₂₃ ClN ₄ O ₂	411.0	14.9	73
Example 175	149	C ₂₅ H ₂₆ ClN ₃ O ₂	436.0	17.1	78
Example 176	150	C ₂₅ H ₂₆ ClN ₃ O ₂	436.0	13.1	60
Example 177	151	$C_{21}H_{22}C1F_2N_3O_2$	422.0	14.8	70
Example 178	152	$C_{21}H_{22}C1F_2N_3O_2$	422.0	15.3	73
Example 179	1 53	C ₂₁ H ₂₂ C1F ₂ N ₃ O ₂	422.0	15.3	73
Example 180	154	$C_{21}H_{22}ClF_2N_3O_2$	422.0	16.4	78
Example 181	155	C ₂₃ H ₂₈ ClN ₃ O ₄	443.0	16.9	76
Example 182	156	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	470.5	12.6	54
Example 183	157	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	470.0	20.0	85
Example 184	158	C ₂₃ H ₂₆ ClN ₃ O ₄	444.0	17.4	78
Example 185	159	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	18.4	78
Example 186	160	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	19.6	83
Example 187	161	$C_{21}H_{21}ClF_3N_3O_2$	440.0	17.0	77
Example 188	162	C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂	440.0	17.1	78
Example 189	163	C ₂₃ H ₂₂ ClF ₆ N ₃ O ₂	522.0	20.8	80
Example 190	164	C ₂₃ H ₂₂ C1F ₆ N ₃ O ₂	522.0	2.7	10
Example 191	165	$C_{23}H_{28}ClN_3O_2$	414.0	16.4	79
Example 192	166	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂	454.0	8.6	38
Example 193	167	C ₂₁ H ₂₃ BrClN ₃ O ₂	464.0	11.6	50
Example 194	168	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	11.5	55

Example 195	169	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	10.0	44
Example 196	170	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	10.4	44
Example 197	171	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	8.9	42
Example 198	172	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	10.3	53
Example 199	173	C ₂₁ H ₂₅ ClN ₄ O ₄	431.0	14.6	68
Example 200	174	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.0	10.4	46
Example 201	175	C ₂₁ H ₂₅ BrClN ₃ O ₂	464.0	13.4	58
Example 202	176	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	12.7	60
Example 203	177	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	13.2	58
Example 204	178	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	12.9	55
Example 205	179	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	13.3	63
Example 206	180	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	24.2	quant
Example 207	181	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	1.0	1
Example 208	182	C ₂₃ H ₂₅ ClF ₃ N ₃ O ₂	468.0	15.1	65
Example 209	183	C ₂₂ H ₂₅ BrClN ₃ O ₂	478.0	18.0	75
Example 210	184	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₂	434.0	16.3	75
Example 211	185	C ₂₂ H ₂₄ Cl ₃ N ₃ O ₂	468.0	18.6	79
Example 212	186	C ₂₃ H ₂₄ ClF ₄ N ₃ O ₂	486.0	16.5	68
Example 213	187	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₂	434.0	14.4	66
Example 214	188	C22H26ClN3O2	400.0	14.0	70
Example 215	189	C ₂₂ H ₂₅ ClN ₄ O ₄	445.0	16.8	76
Example 216	190	C ₂₆ H ₂₅ C1F ₃ N ₃ O ₂ S	536.0	17.7	66
Example 217	191	C25H25BrClN3O2S	546.0	20.4	75
Example 218	192	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	16.9	67
Example 219	193	C ₂₅ H ₂₄ Cl ₃ N ₃ O ₂ S	536.0	18.3	68
Example 220	194	C26H24ClF4N3O2S	554.0	19.4	70
Example 221	195	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	19.1	76
Example 222	196	C ₂₅ H ₂₆ ClN ₃ O ₂ S	468.0	16.0	68
Example 223	197	C ₂₅ H ₂₅ ClN ₄ O ₄ S	513.0	18.4	72
Example 224	198	C ₂₆ H ₂₅ ClF ₃ N ₃ O ₂ S	536.0	13.9	52
Example 225	199	C ₂₅ H ₂₅ BrClN ₃ O ₂ S	546.0	12.9	47
Example 226	200	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	15.6	62
Example 227	201	C ₂₅ H ₂₄ Cl ₃ N ₃ O ₂ S	536.0	17.3	64
Example 228	202	C ₂₆ H ₂₄ ClF ₄ N ₃ O ₂ S	554.0	15.4	56
Example 229	203	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	13.5	54
Example 230	204	C ₂₅ H ₂₅ ClN ₃ O ₂ S	468.0	13.7	59
Example 231	205	C ₂₅ H ₂₅ ClN ₄ O ₄ S	513.0	13.9	54
Example 232	206	C24H27C1F3N3O4S	546.0	10.0	37
Example 233	207	C ₂₃ H ₂ -BrClN ₃ O ₄ S	558.0	17.1	61
Example 234	208	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₄ S	512.0	17.0	66

Example 235	209	C ₂₃ H ₂₆ Cl ₃ N ₃ O ₄ S	546.0	7.3	27
Example 236	210	C24H26ClF4N3O4S	564.0	19.2	68
Example 237	211	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₄ S	512.0	7.9	31
Example 238	212	C23H2EClN3O4S	478.0	13.7	57
Example 239	213	C ₂₃ H ₂₇ ClN ₄ O ₄ S	523.0	5.5	21

Example 240: Preparation of (R)-3-[N-{3-Fluoro-5-(trifluoromethyl)benzoyl}glycyl]amino-1-(3,5-dimethylisoxazol-4-ylmethyl)pyrrolidine (Compound No. 1191).

A solution of 3-fluoro-5-(trifluoromethyl) benzoyl chloride (0.058 mmol) in dichloromethane (1 mL) was added to a mixture of (R)-1-(3,5-dimethylisoxazol-4-ylmethyl)-3-(glycylamino) pyrrolidine (0.050 mmol) and piperidinomethylpolystyrene (58 mg) in chloroform (0.2 mL) and dichloromethane (0.75 mL). After the reaction mixture was stirred at room temperature for 2 h, methanol (1.0 mL) was added and the mixture was stirred at room temperature for 30 min. The reaction mixture was loaded onto VarianTM SCX column, and washed with CH₃OH (16 mL). Product was eluted off using 2 N NH₃ in CH₃OH (6 mL) and concentrated to afford (R)-3-[N-(3-fluoro-5-(trifluoromethyl) benzoyl) glycyl] amino-1-(3,5-dimethylisoxazol-4-ylmethyl) pyrrolidine (Compound No. 1191) (19.5 mg, 88%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 443.2 (M^* +H, C_{20} H₂₂F₄N₄O₅).

Examples 241-265.

5

10

15

The compounds of this invention were synthesized pursuant to methods of 20 Example 240 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 4.

Table 4

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 241	1192	C20 H22 F4 N4 O3	443.2	19.2	87
Example 242	1193	C20 H23 F3 N4 O4	441.0	17.5	79
Example 243	1194	C21 H22 F6 N4 O3	493.0	20.4	83
Example 244	1195	C19 H23 Br N4 O3	435.1	16.8	77
Example 245	1196	C19 H23 N5 O5	402.2	16.2	81
Example 246	1197	C20 H22 F4 N4 O3	443.2	17.6	80
Example 247	1198	C19 H23 Cl N4 O3	391.0	16.5	84
Example 248	1199	C20 H26 N4 O3	371.0	16.1	87

Example 249	1200	C19 H22 C12 N4 O3	425.0	18.0	85
Example 250	1201	C19 H22 F2 N4 O3	393.0	16.6	85
Example 251	1202	C20 H22 F4 N4 O3	443.2	16.8	76
Example 252	1203	C22 H24 F3 N3 O3	436.2	17.1	79
Example 253	1204	C23 H23 F6 N3 O2	488.2	18.1	74
Example 254	1205	C21 H24 Br N3 O2	430.0	17.5	81
Example 255	1206	C21 H24 N4 O4	397.0	16.2	82
Example 256	1207	C22 H23 F4 N3 O2	438.2	17.5	80
Example 257	1208	C21 H24 C1 N3 O2	386.0	15.8	82
Example 258	1209	C22 H27 N3 O2	366.0	15.7	86
Example 259	1210	C21 H23 C12 N3 O2	420.0	17.8	85
Example 260	1211	C21 H23 F2 N3 O2	388.0	16.3	84
Example 261	1212	C22 H23 F4 N3 O2	438.2	17.4	80
Example 262	1213	C24 H24 C1 F6 N3 O2	536.2	24.0	90 .
Example 263	1214	C23 H24 C1 F4 N3 O3	486.2	22.2	91
Example 264	1215	C22 H24 C13 N3 O2	467.9	20.9	89 .
Example 265	1216	C22 H24 C1 F2 N3 O2	436.0	19.3	89

Example 266: Preparation of $(R)-1-(4-Chlorobenzyl)-3-[{N-(4-(dimethylamino)benzoyl)glycyl}amino]pyrrolidine (Compound No. 952).$

A solution of (R)-1-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine (13.8 mg, 0.052 mmol) in CHCl₃ (2 mL) was treated with Et₃N (0.021 mL, 0.15 mmol), 4-(dimethylamino)benzoic acid (10 mg, 0.061 mmol), EDCI (10.2 mg, 0.053 mmol) and HOBt (7.5 mg, 0.055 mmol). The reaction mixture was stirred at room temperature for 16 h. The solution was washed with 2 N aqueous NaOH solution (2 mL x 2) and brine (2 mL), and dried by filtration through a PTFE membrane using CH_2Cl_2 (3 mL). Concentration afforded the desired material (compound No. 952) (24.9 mg, quant): The purity was determined by RPLC/MS (91%); ESI/MS m/e 415.0 (M*+H, $C_{22}H_{27}ClN_4O_2$).

Examples 267-347.

5

10

15

The compounds of this invention were synthesized pursuant to methods of Example 266 using the corresponding reactant respectively. Solid-phase extraction (Varian SCX column) or chromatography (HPLC- C_{16}), if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 5.

20 Table 5

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 267	951	C22 H24 C1 N3 O4	430.0	26.3	quant
Example 268	953	C23 H29 C1 N4 O2	429.0	28.8	quant
Example 269	954	C21 H25 Cl N4 O2	401.0	27.9	quant
Example 270	955	C22 H27 Cl N4 O2	415.0	26.8	quant
Example 271	956	C21 H24 Cl N3 O3	402.0	10.3	51
Example 272	957	C20 H22 C1 N3 O3	388.0	1.4	7
Example 273	958	C21 H24 Cl N3 O3	402.5	1.2	6
Example 274	959	C22 H25 Cl N4 O3	429.5	4.7	22
Example 275	960	C23 H27 C1 N4 O3	443.0	10.9	49
Example 276	961	C21 H25 Cl N4 O2	401.0	28.4	quant
Example 277	962	C22 H27 Cl N4 O2	415.0	24.9	quant
Example 278	963	C21 H24 C1 N3 O3	402.0	4.4	22
Example 279	964	C22 H24 C1 N3 O4	430.0	29.5	quant
Example 280	965	C23 H26 Cl N3 O4	444.0	27.2	quant
Example 281	966	C22 H24 C1 N3 O3	414.0	27.0	quant
Example 282	967	C23 H26 Cl N3 O3	428.0	27.0	quant
Example 283	968	C22 H23 C1 N4 O2	411.0	21.4	quant
Example 284	969	C23 H25 Cl N4 O2	425.0	27.6	quant
Example 285	970	C22 H27 Cl N4 O2	415.0	28.6	quant
Example 286	971	C23 H29 C1 N4 O2	429.0	27.9	quant
Example 287		C20 H23 C1 N4 O2	387.0	26.2	quant
Example 288		C21 H25 Cl N4 O2	401.0	26.8	quant
Example 289		C20 H23 C1 N4 O2	387.0	26.6	quant
Example 290		C21 H25 Cl N4 O2	401.0	28.2	quant
Example 291		C22 H23 Cl N4 O2	411.0	29.2	quant
Example 292		C23 H25 Cl N4 O2	425.0	29.5	quant
Example 293		C20 H21 C1 N6 O2	413.0	2.2	11
Example 294		C21 H23 C1 N6 O2	427.0	10.2	48
Example 295		C22 H25 C1 N4 O3	429.0	28.8	quant
Example 296	1	C23 H27 C1 N4 O3	443.0	11.9	54
Example 297		C22 H27 Cl N4 O2	415.0	27.4	quant
Example 298		C23 H29 C1 N4 O2	429.5	28.1	quant
Example 299		C21 H24 Cl N3 O3	402.0	27.7	quant
Example 300		C22 H26 C1 N3 O3	416.0	28.6	quant
Example 301		C21 H28 N4 O4	401	15.5*	38
Example 302		C21 H28 N4 O3	385	10.9*	28
Example 303		C21 H25 F3 N4 O3	439	17.3*	39
Example 304	1152	C21 H24 F N5 O3	415	12.7*	30

Example 305	1153	C21 H24 C1 N5 O3	430	17.5*	41
Example 306	1154	C22 H27 N5 O3	410	20.6*	50
Example 307	1155	C19 H23 F3 N4 O4	429	13.8*	32
Example 308	1156	C21 H30 N4 O4	403	17.7*	43
Example 309	1157	C18 H24 N4 O3 S2	409	12.6*	30
Example 310	1158	C19 H23 C12 N5 O3	440	16.9*	38
Example 311	1159	C22 H31 N5 O6	462	38.6*	85
Example 312	1160	C20 H26 Br N5 O3	464	20.4	45
Example 313	1289	C20 H27 N5 O4	403	5.8*	14
Example 314	1290	C21 H29 N5 O3	400	6.9*	17
Example 315	1291	C24 H28 N4 O2	405	22.4	· 68
Example 316	1292	C22 H27 Br N4 O2	461	23.8	15
Example 317	1293	C22 H23 F4 N3 O2	: 438	20.9	59 .
Example 318	1294	C22 H23 F4 N3 O2	438	20.8	59
Example 319	1295	C23 H31 N3 O3	398	17.5	54
Example 320	1296	C20 H25 N3 O2 S2	404	18.8	58
Example 321	1297	C21 H24 F3 N3 O3	424	18.1	53
Example 322	1388	C21 H32 N6 O3	417	7.4*	24
Example 323	1389	C19 H22 N6 O4	399	15.2	48
Example 324	1401	C23 H25 Cl N4 O2	425	8.3*	16
Example 325	1402	C24 H32 N4 O5	457	8.3*	15
Example 326	1403	C20 H24 N4 O2	353	14.8	52
Example 327	1404	C20 H24 N4 O2	353	17.0	60
Example 328	1405	C21 H26 N4 O2 S	399	17.3	54
Example 329	1407	C22 H28 N4 O2 S	413	19.1	57
Example 330	1410	C19 H24 N4 O3	357	9.7*	59
Example 331	1769	C22 H26 Cl F3 N4 O5	519	11.6*	20
Example 332	1770	C26 H28 C12 N6 O4	559	13.1*	21
Example 333	1771	C26 H37 N5 O4	484	12.7*	23
Example 334	1772	C28 H39 N5 O4	510	5.5*	9
Example 335	1773	C28 H37 N5 O4	509	6.2*	11
Example 336	1774	C28 H34 N6 O6	551	13.6*	22
Example 337	2039	C19 H24 N4 O2	341	5.2*	14
Example 338	2040	C22 H27 N3 O4	398	2.0*	5
Example 339	2041	C23 H29 N3 O3	396	6.2*	15
Example 340	2042	C25 H37 N3 O2	413	2.6*	6
Example 341	2043	C24 H31 N3 O2	394	6.8*	17
Example 342	2044	C25 H28 N4 O4	449	8.7*	16
Example 343	2045	C26 H29 Cl N6 O4	525	11.4*	19
Example 344	2046	C27 H32 N6 O4	505	7.7*	13

Example	345	2047	C28 H32 N4 O4	489 `	10.0*	18
Example	346	2048	C28 H37 N5 O5	524	3.7*	ε
Example	347	2049	C28 H37 N5 O4	509	5.3*	g

^{*}Yield of TFA salt.

5

10

15

20

Example 348: Preparation of $(R)-1-(4-\text{Chlorobenzy1})-3-[\{N-(2-\text{amino}-5-\text{chlorobenzoy1})\text{ glycyl}\}$ amino]pyrrolidine (Compound No. 1084).

A solution of (R)-1-(4-chlorobenzyl)-3-(glycylamino) pyrrolidine (0.050 mmol) in CHCl₃ (2 mL) was treated with 2-amino-5-chlorobenzoic acid (0.060 mmol) and disopropylcarbodiimide (0.060 mmol). The reaction mixture was stirred at room temperature for 15 h. The mixture was loaded onto VarianTM SCX column, and washed with CH₃OH (15 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford $(R)-1-(4-\text{chlorobenzyl})-3-\{N-(2-\text{amino-5-chlorobenzoyl})\text{ glycyl}\}$ amino]pyrrolidine (Compound No. 1084) (12.7 mg, 60%): The purity was determined by RPLC/MS (87%); ESI/MS m/e 421.0 $(M^+\text{H}, C_{20}\text{H}_{22}\text{Cl}_2\text{N}_4\text{O}_2)$.

Examples 349-361.

The compounds of this invention were synthesized pursuant to methods of Example 348 using the corresponding reactant respectively. If the starting amine remained, treatment with isocyanatomethylated polystyrene (50 mg) in CHCl; (1 mL) at room temperature, filtration and concentration afforded the desired material. The ESI/MS data and yields are summarized in Table 6.

Table 6

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 349	1085	C ₂₀ H ₂₂ ClN ₅ O ₄	432.0	4.1	19
Example 350	1086	C ₂₀ H ₂₃ ClN ₄ O ₂	387.0	7.9	41
Example 351	1087	C ₂₂ H ₂₃ ClN ₄ O ₂	411.0	15.0	. 73
Example 352	1088	$C_{18}H_{20}ClN_3O_3$	362.0	12.9	7.1
Example 353	1089	C22H22C1FN4O2	429.0	16.0	75
Example 354	1090	C ₂₂ H ₂₆ ClN ₃ O ₃	416.0	15.8	76
Example 355	1091	C ₂₁ H ₂₄ Cl ₂ N ₄ O ₂	435.0	10.9	50
Example 356	1092	C ₂₁ H ₂₄ ClN ₅ O ₄	446.0	7.9	35
Example 357	1093	C ₂₁ H ₂₅ ClN ₄ O ₂	401.0	9.5	47
Example 358	1094	C ₂₃ H ₂₅ ClN ₄ O ₂	425.0	15.8	74
Example 359	1095	C _{1e} H ₂₂ ClN ₃ O ₃	376.0	13.5	72
Example 360	1096	C23H24ClFN4O2	443.0	11.8	53

5

10

25

					4	7.0
	361	1097	$C_{23}H_{28}C1N_3O_3$	430.0	15.1	/U
Example	301	1057	C231128CT143O3	1		
			1			

Example 362: Preparation of (R)-1-(4-Chlorobenzyl)-3-[{N-(3-bromo-4methylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 1098).

A solution of (R)-1-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine (0.050 mmol) in $CHCl_3$ (1.35 mL) and tert-butanol (0.15 mL) was treated with 3bromo-4-methylbenzoic acid (0.060 mmol), diisopropylcarbodiimide (0.060 mmol), and HOBt (0.060 mmol). The reaction mixture was stirred at room temperature for 15 h. The mixture was loaded onto Varian TM SCX column, and washed with $CH_3OH/CHCl_3$ 1:1 (12 mL) and CH_3OH (12 mL). Product was eluted off using 2 N NH_3 in CH_3OH (5 mL) and concentrated to afford (R)-1-(4-chlorobenzyl)-3-[{N-(3-mu)}] bromo-4-methylbenzoyl)glycyl)amino)pyrrolidine (Compound No. 1098) (11.6 mg, The purity was determined by RPLC/MS (94%); ESI/MS m/e 466.0 $(C_{21}H_{23}BrClN_3O_2)$.

Examples 363-572. 15

The compounds of this invention were synthesized pursuant to methods of Example 362 using the corresponding reactant respectively. Preparative TLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 7.

The following 3 compounds were obtained as byproduct of Compound Nos. 20 1415, 1416, and 1417, respectively.

1419: 7.9 mg, 38% yield; ESI/MS m/e 419.0 ($C_{20}H_{23}ClN_4O_2S$).

1420: 7.1 mg, 36% yield; ESI/MS m/e 399.2 ($C_{21}H_{26}N_4O_2S$).

1421: 7.4 mg, 37% yield; ESI/MS m/e 404.2 ($C_{19}H_{25}N503S$).

Table 7

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 363	1099	C ₂₀ H ₂₀ BrClFN ₃ O ₂	470.0	3.1	13
Example 364	1100	C ₂₀ H ₂₆ Cl ₂ FN ₃ O ₂	424.0	3.1	15
Example 365	1101	C ₂₁ H ₂₃ ClIN ₃ O ₂	512.0	12.5	49
Example 366	1102	C ₂₁ H ₂₃ ClN ₄ O ₄	431.2	7.7	36
Example 367	1103	C ₂₂ H ₂₆ BrN ₂ O ₂	446.0	13.8	62
Example 368		C ₂₁ H ₂₃ BrFN ₅ O ₂	450.0	16.5	74
Example 369	ļ	C ₂₁ H ₂₃ C1FN ₃ O ₂	404.2	14.7	73
Example 370		C ₂₂ H ₂₆ IN ₂ O ₂	492.0	18.5	75

Example 371	1107	C ₂₂ H ₂₆ N ₄ O ₄	411.2	15.2	74
Example 372	1108	C ₂₀ H ₂₅ BrN ₄ O ₃	449.0	12.8	57
Example 373	1109	C ₁₉ H ₂₂ BrFN ₄ O ₃	455.0	16.2	71
Example 374	1110	C ₁₉ H ₂₂ C1FN ₄ O ₃	409.2	14.4	70
Example 375	1111	C20H25IN4O3	497.0	17.9	72
Example 376	1112	C ₂₀ H ₂₅ N5O ₅	416.2	14.9	72
Example 377	1113	C ₂₃ H ₂₇ BrClN ₃ O ₂	494.0	16.1	65
Example 378	1114	C ₂₂ H ₂₄ BrClFN ₃ O ₂	498.0	20.2	81
Example 379	1115	C ₂₂ H ₂₄ Cl ₂ FN ₃ O ₂	452.2	18.6	82
Example 380	1116	C ₂₃ H ₂₇ ClIN ₃ O ₂	539.1	21.9	81
Example 381	1117	C ₂₃ H ₂₇ ClN ₄ O ₄	459.2	18.7	81
Example 382	1171	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	4.9	21
Example 383	1172	C ₂₂ H ₂₃ ClN ₄ O ₃	427.2	16.1	75
Example 384	1173	C ₂₃ H ₂₅ ClN ₄ O ₃	441.2	22.8	quant
Example 385	1174	C ₂₀ H ₂₂ ClFN ₄ O ₂	405.2	21.4	quant
Example 386	1175	C ₂₂ H ₂₆ BrN ₃ O ₂	446.0	15.8	71
Example 387	1176	C ₂₃ H ₂₆ N ₄ O ₃	407.2	17.6	87
Example 388	1177	C ₂₄ H ₂₈ N ₄ O ₃	421.2	20.2	96
Example 389	1178	C ₂₁ H ₂₅ FN ₄ O ₂	385.0	16.2	84
Example 390	1179	C ₂₁ H ₂₅ N ₅ O ₄	412.2	2.3	11
Example 391	1180	C ₂₃ H ₂₆ N ₄ O ₂	391.0	21.6	quant
Example 392	1181	C ₂₀ H ₂₅ BrN ₄ O ₃	451.0	20.1	89
Example 393	1182	C ₂₁ H ₂₅ N ₅ O ₄	412.2	13.3	65
Example 394	1183	C ₂₂ H ₂₇ N ₅ O ₄	426.2	20.9	98
Example 395	1184	C ₁ ¢H ₂₄ FN ₅ O ₃	390.0	20.0	quant
Example 396	1185	C1cH24N6O5	417.2	18.2	87
Example 397	1186	C ₂₁ H ₂₅ N ₅ O ₃	396.2	17.6	89
Example 398	1187	C ₂₃ H ₂₇ BrClN ₃ O ₂	494.0	22.1	90
Example 399	1188	C ₂₄ H ₂₇ ClN ₄ O ₃	455.2	17.2	76
Example 400	1189	C ₂₅ H ₂₅ ClN ₄ O ₃	469.2	21.1	90
Example 401	`1190	C ₂₂ H ₂₆ ClFN ₄ O ₂	433.2	20.4	94
Example 402	1217	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	38.5	81
Example 403	1218	C ₂₁ H ₂₃ C1FN ₃ O ₂	404.2	35.6	88
Example 404	1219	$C_{21}H_{23}Cl_2N_3O_2$	420.0	3.7	9
Example 405	1220	C ₂₀ H ₂₂ ClIN ₄ O ₂	513.0	53.0	quant
Example 406	1221	$C_{20}H_{21}ClF_2N_4O_2$	423.0	38.7	92
Example 407	1222	$C_{19}H_{23}ClN_4O_2$	375.2	33.6	90
Example 408	1223	$C_{26}H_{26}ClN_3O_2S$	496.0	43.7	88
Example 409	1224	C20H21ClN4O5	433.0	40.6	94
Example 410	1225	$C_{22}H_{23}C1F_3N_3O_2$	454.2	18.4	41
			·		

Example 411	1226	C U EN O	384.0	17.1	45
	1220	$C_{22}H_{26}FN_3O_2$	304.0	17.1	43
Example 412	1227	$C_{22}H_{26}ClN_3O_2$	400.2	17.5	44
Example 413	1228	C ₂₁ H ₂₅ IN ₄ O ₂	493.0	23.3	47
Example 414	1229	C ₂₁ H ₂₄ F ₂ N ₄ O ₂	403.2	18.4	46
Example 415	1230	C ₂₀ H ₂₆ N ₄ O ₂	355.2	15.7	44
Example 416	1231	C ₂₇ H ₂ eN ₃ O ₂ S	476.0	20.9	88
Example 417,	1232	C ₂₁ H ₂₄ N ₄ O ₅	413.0	19.9	96
Example 418	1233	C ₂₀ H ₂₂ ClF ₃ N ₄ O ₃	459.0	19.4	· 85
Example 419	1234	C ₂₀ H ₂₅ FN ₄ O ₃	389.0	17.8	92
Example 420	1235	C ₂₀ H ₂₅ ClN ₄ O ₃	405.2	18.7	92
Example 421	1236	$C_{19}H_{24}IN_5O_3$	498.0	23.9	96
Example 422	1237	C ₁₉ H ₂₃ F ₂ N ₅ O ₃	408.2	19.0	93
Example 423	1238	C ₁₈ H ₂₅ N ₅ O ₃	360.0	16.3	91
Example 424	1239	C ₂₅ H ₂₈ N ₄ O ₃ S	481.2	21.4	89
Example 425	1240	C ₁ H ₂₃ N ₅ O ₆	418.0	19.9	95
Example 426	1241	C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂	502.0	22.5	90
Example 427	1242	C ₂₃ H ₂₇ ClFN ₃ O ₂	432.2	21.2	98
Example 428	1243	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.6	96
Example 429	1244	C ₂₂ H ₂₆ ClIN ₄ O ₂	541.0	26.4	98
Example 430	1245	C ₂₂ H ₂₅ ClF ₂ N ₄ O ₂	451.0	21.3	94
Example 431	1246	C ₂₁ H ₂₇ ClN ₄ O ₂	403.2	19.4	96
Example 432	1247	$C_{28}H_{30}ClN_3O_2S$	524.0	24.7	94
Example 433	1248	C ₂₂ H ₂₅ ClN ₄ O ₅	461.0	20.7	90
Example 434	1249	C20 H20 C12 N4 O4	451.0	7.4	33
Example 435	1250	C21 H23 Cl N4 O4	431.2	15.5	72
Example 436	1251	C19 H22 C1 N5 O5	436.0	22.9	quant
Example 437	1252	C23 H28 C1 N3 O2	414.2	17.9	86
Example 438	1253	C24 H31 N3 O2	394.2	15.8	80
Example 439	1254	C22 H30 N4 O3	399.2	17.3	87
Example 440	1255	C20 H22 Br Cl N4 O2	467.0	21.3	91
Example 441	1256	C21 H25 Br N4 O2	445.0	20.7	93
Example 442	1257	C19 H24 Br N5 O3	450.0	21.8	97
Example 443	1258	C21 H25 C1 N4 O2	401.2	18.1	90
Example 444	1259	C19 H24 C1 N5 O3	406.0	20.1	99
Example 445	1260	C23 H29 N3 O3	396.2	16.8	85
Example 446	1261	C23 H30 C1 N3 O3	432.2	19.8	92
Example 447	1262	C24 H33 N3 O3	412.2	17.4	85
Example 448	1263	C22 H32 N4 O4	417.2	18.7	90
Example 449	1264	C25 H26 C1 N3 O3	452.2	29.1	quant
Example 450	1265	C26 H29 N3 O3	432.2	18.1	84

Example 451	1266	C24 H28 N4 O4	437.2	19.3	88
Example 452		C ₂₃ H ₂₂ ClF ₃ N ₄ O ₃	495.2	20.6	83
Example 453		C ₂₁ H ₂₃ Cl ₂ N ₃ O ₃	436.0	17.5	80
Example 454		C ₂₀ H ₂₁ BrClN ₃ O ₃	468.0	19.2	82
Example 455		C ₂₀ H ₂₁ Cl ₂ N ₃ O ₃	422.2	17.3	82
Example 456		C ₂₀ H ₂₀ C1FN ₄ O ₄	435.0	17.1	79
Example 457		C ₂₄ H ₂₅ F ₃ N ₄ O ₃	475.2	21.7	91
Example 458		C ₂₂ H ₂₆ ClN ₃ O ₃	416.2	17.8	86
Example 459		C ₂₁ H ₂₄ BrN ₃ O ₃	448.0	19.5	87
Example 460	1	C ₂₁ H ₂₄ ClN ₃ O ₃	402.2	16.7	83
Example 461		C ₂₁ H ₂₃ FN ₄ O ₄	415.2	18.1	87
Example 462		C ₂₂ H ₂₄ F ₃ N ₅ O ₄	480.2	20.3	85
Example 463	<u> </u>	C ₂₀ H ₂₅ ClN ₄ O ₄	421.2	18.6	88
Example 464		C ₁₉ H ₂₃ BrN ₄ O ₄	451.0	21.3	94
Example 465		C ₁₉ H ₂₃ ClN ₄ O ₄	407.2	19.1	94
Example 466		C ₁₉ H ₂₂ FN ₅ O ₅	420.2	19.1	91
Example 467	1282	C ₂₅ H ₂₆ ClF ₃ N ₄ O ₃	523.2	25.0	96
Example 468	1283	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₃	464.2	12.2	53
Example 469	1284	C ₂₂ H ₂₅ BrClN ₃ O ₃	496.0	24.1	97
Example 470	1285	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₃	450.2	21.8	97
Example 471	1321	C ₂₀ H ₂₀ BrCl ₂ N ₃ O ₂	486.0	5.1	21
Example 472	1322	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	10.5	50
Example 473	1323	C ₂₀ H ₂₀ Cl ₂ IN ₃ O ₂	532.0	7.1	27
Example 474	1324	C ₂₁ H ₂₄ ClN ₃ O ₃	402.2	22.2	quant
Example 475	1325	C ₂₇ H ₂₆ ClN ₃ O ₃	476.0	22.2	93
Example 476	1326	C ₂₀ H ₂₁ ClIN ₃ O ₃	514.0	26.9	quant
Example 477	1327	C ₂₁ H ₂₅ ClN ₄ O ₂	401.2	24.2	quant
Example 478	1328	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	23.1	99.
Example 479	1329	$C_{22}H_{26}ClN_3O_2$	400.2	16.4	82
Example 480	1330	C ₂₁ H ₂₃ ClIN ₃ O ₂	512.2	20.8	81
Example 481	1331	C ₂₁ H ₂₄ N ₃ O ₃	382.2	19.6	quant
Example 482	1332	C ₂₈ H ₂₉ N ₃ O ₃	456.2	21.1	93
Example 483	1333	C ₂₁ H ₂₄ IN ₃ O ₃	494.0	25.3	quant
Example 484	1334	C ₂₂ H ₂₈ N ₄ O ₂	381.2	19.0	quant
Example 485	1335	C ₁₉ H ₂₂ BrClN ₄ O ₃	471.0	25.8	quant
Example 486	1336	C ₂₀ H ₂₅ ClN ₄ O ₃	405.2	18.5	91
Example 487	1337	C ₁₆ H ₂₂ ClIN ₄ O ₃	517.0	23.1	89
Example 488	1338	C ₂₀ H ₂₆ N ₄ O4	387.2	20.6	quant `
Example 489	1339	C ₂₆ H ₂₃ N ₄ O ₄	461.2	23.7	quant
Example 490	1340	C19H23IN4O4	499.0	28.2	quant
L		<u> </u>	<u> </u>		

Example 491	1341	C ₂₀ H ₂₆ N ₄ O ₄	386.0	20.5	quant
Example 492	1342	C ₂₂ H ₂₄ BrCl ₂ N ₃ O ₂	514.0	27.2	quant
Example 493	1343	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.4	95
Example 494	1344	C ₂₂ H ₂₄ Cl ₂ IN ₃ O ₂	560.0	27.0	96
Example 495	1345	C ₂₃ H ₂₈ ClN ₃ O ₃	430.2	23.8	quant
Example 496	1346	C ₂₂ H ₂₅ ClIN ₃ O ₃	542.0	29.4	quant
Example 497	1347	C ₁₉ H ₂₂ ClN ₃ O ₂ S	392.0	16.9	43 ·
Example 498	1348	C ₂₀ H ₂₅ N ₃ O ₂ S	372.2	6.9	19
Example 499	1349	C ₁₈ H ₂₄ N ₄ O ₃ S	377.2	8.1	43
Example 500	1350	C ₂₁ H ₂₆ ClN ₃ O ₂ S	420.0	13.0	62
Example 501	1351	C ₂₂ H ₂₄ BrClN ₄ O ₃	509.2	5.0	10
Example 502	1352	C ₂₃ H ₂₇ BrN ₄ O ₃	489.2	3.6	15
Example 503	1353	C ₂₁ H ₂₆ BrN ₅ O ₄	494.0	2.8	11
Example 504	1354	C ₂₄ H ₂₈ BrClN ₄ O ₃	537.2	5.2	19
Example 505	1355	C21 H22 Cl N5 O2	412.0	25.5	quant
Example 506	1356	C22 H25 N5 O2	392.0	16.5	84
Example 507	1357	C20 H24 N6 O3	397.2	19.9	quant
Example 508	1358	C23 H26 Cl N5 O2	440.2	21.8	99
Example 509	1368	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂ .	474.0	18.4	78
Example 510	1369	C ₂₄ H ₂₄ ClF ₆ IN ₃ O ₄	568.0	24.1	85
Example 511	1370	C ₁₈ H ₁₉ BrClN ₃ O ₂ S	458.0	19.4	85
Example 512	1371	C ₂₆ H ₂₆ ClN ₃ O ₄ S	512.2	22.1	86
Example 513	1372	C26H26C1N3O2	448.0	19.1	85
Example 514	1373	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂	454.2	16.2	71
Example 515	1374	C ₂₅ H ₂₇ F ₆ IN ₃ O ₄	548.2	22.1	61
Example 516	1375	C ₁₉ H ₂₂ BrN ₃ O ₂ S	436.0	17.1	78
Example 517	1376	C ₂₇ H ₂₉ N ₃ O ₄ S	492.0	19.4	79
Example 518	1377	C ₂₇ H ₂₉ N ₃ O ₂	428.2	18.1	85
Example 519	1378	C ₂₀ H ₂₂ ClF ₃ N ₄ O ₃	459.0	17.3	75
Example 520	1379	C ₂₃ H ₂₆ F ₆ IN ₄ O ₅	553.2	21.0	76
Example 521	1380	C ₁₇ H ₂₁ BrN ₄ O ₃ S	443.0	16.4	74
Example 522	1381	C ₂₅ H ₂₈ N ₄ O ₅ S	497.0	18.4	74
Example 523	1382	C ₂₅ H ₂₈ N ₄ O ₃	433.2	17.3	80
Example 524	1383	C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂	502.0	20.0	80
Example 525		C ₂₀ H ₂₃ BrClN ₃ O ₂ S	486.0	21.0	87
Example 526		C ₂ eH ₃₀ ClN ₃ O ₄ S	540.2	· 23.8	88
Example 527	<u> </u>	C28H30ClN3O2	476.0	20.0	84
Example 528	1411	C ₂₂ H ₂₄ Cl ₂ N ₄ O ₃	463.0	0.4	2
	<u> </u>	C ₂₃ H ₂₇ C1N ₄ O ₂	443.0	1.3	6
Example 529	0 1413 C ₂₁ H ₂₆ ClN ₅ O ₄				

Example 531	1414	C ₂₄ H ₂₈ Cl ₂ N ₄ O ₃	491.0	0.8	3
Example 532	1415	C ₂₁ H ₂₂ ClN ₅ O ₂ S	444.0	6.8	31
Example 533	1416	C ₂₂ H ₂₅ N ₅ O ₂ S	424.0	4.8	23
Example 534	1417	C ₂₀ H ₂₄ N ₆ O ₃ S	429.2	4.5	21
Example 535	1418	C ₂₃ H ₂₆ ClN ₅ O ₂ S	472.0	10.4	44
Example 536	. 1423	C27 H26 Cl N3 O3	476.0	23.9	quant
Example 537	1424	C27 H29 N3 O4 S	456.2	28.0	quant
Example 538	1425	C26 H28 N4 O4	461.2	22.3	97
Example 539	1426	C29 H30 C1 N3 O3	504.2	26.8	quant
Example 540	1583	C21 H22 C1 F3 N4 O2	455.0	14.6	64
Example 541	1584	C21 H22 C1 F3 N4 O3	471.0	17.4	74
Example 542	1585	C19 H20 Br Cl N4 O2	453.0	15.6	69
Example 543	1586	C19 H20 C12 N4 O2	407.2	2.3	11
Example 544	1587	C26 H26 C1 N3 O3	464.0	15.4	66
Example 545	. 1588	C20 H23 C1 N4 O2	387.0	14.8	77
Example 546	1589	C22 H25 F3 N4 O2	435.2	11.1	51
Example 547	1590	C20 H25 F3 N4 O3	451.2 .	16.3	72
Example 548	1591	C20 H23 Br N4 \ O2	433.0	15.4	71
Example 549	1592	C20 H23 C1 N4 O2	387.0	15.6	81
Example 550	1593	C27 H29 N3 O3	444.2	14.8	67
Example 551	1594	C20 H24 F3 N5 O3	440.2	16.2	74
Example 552	1595	C20 H24 F3 N5 O4	456.2	15.4	68
Example 553	1596	C18 H22 Br N5 O3	436.0	15.6	72
Example 554	1597	C18 H22 Cl N5 O3	391.8	14.4	73
Example 555	1598	C25 H28 N4 O4	449.2	15.9	71
Example 556	1599	C19 H25 N5 O3	372.2	15.8	85
Example 557	1606	C21 H21 C1 F3 N3 O2 S	472.0	17.0	72
Example 558	1607	C21 H21 C1 F3 N3 O2 S	452.2	15.3	68
Example 559	1608	C20 H23 F3 N4 O3 S	457.2	15.9	70
Example 560	1660	C21 H22 Br F3 N4 O2	501.0	19.0	76
Example 561	1661	C21 H22 Br F3 N4 O3	517.0	16.2	63
Example 562	1662	C20 H21 Br F2 N4 O2	469.0	15.1	65
Example 563	1663	C20 H22 Br Cl N4 O2	467.0	14.5	62
Example 564	1692	C20 H23 Br2 N3 O3	514	7.3	28
Example 565	1693	C22 H26 F2 N4 O2	417	16.2	78
Example 566	1694	C22 H27 F N4 O2	399	21.8	quant
Example 567	1695	C22 H27 Br N4 O2	459	24.5	quant
Example 568	1696	C22 H27 I N4 O2	507	27.4	quant
Example 569	1697	C22 H27 C1 N4 O2	415	22.1	quant
Example 570	1698	C23 H27 F3 N4 O3	465	24.3	quant

Example 571	1699	C23 H27	F3 N4 O2	449	25.3	quant
Example 572	1700	C22 H25	Br Cl N3 O2	480	17.8	74

For example, Compound No. **1583** showed the following NMR spectra: ^1H NMR (400 MHz, CD₃OD) δ 1.64-1.72 (m, 1 H), 2.20-2.30 (m, 1 H), 2.41-2.51 (m, 2 H), 2.71-2.78 (m, 2 H), 3.59 (dd, J = 15.4, 12.9 Hz, 2 H), 3.94 (s, 2 H), 4.35-4.41 (m, 1 H), 6.82 (d, J = 8.6 Hz, 1 H), 7.29 (s, 4 H), 7.40 (dd, J = 8.6, 1.7 Hz, 1 H), 7.85 (d, J = 0.96 Hz, 1 H).

5

10

15

20

25

Reference Example 4: Preparation of $(S)-3-[N-\{3-(trifluoromethyl)benzoyl\}glycyl]$ aminopyrrolidine.

 $(S)-1-(4-chlorobenzyl)-3-[N-{3-}$ of suspension Α (trifluoromethyl)benzoyl}glycyl]aminopyrrolidine (2.93 g, 6.66 mmol) and Pd(OH)2 in 5% HCO2H/methanol (70 mL) was stirred at 60 °C for 3 h. The Pd catalyst was filtered off through Celite, and the filtrate was concentrated. To the residue was added 2N aqueous NaOH solution (100 mL) and the mixture was extracted with ethyl acetate (100 mL x 3). The combined extracts were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. chromatography (SiO₂, AcOEt/MeOH/Et₃N = 85/10/5-60/30/5) gave (S)-3-[N-{3-(trifluoromethyl)benzoyl}glycyl]aminopyrrolidine (1.70 g, 81%) as an oil: 1H NMR (CDCl₃, 270 MHz) δ 1.76 (d, J = 7.3 Hz, 1 H), 2.07-2.25 (m, 1 H), 2.81-2.98 (m, 2 H), 3.02-3.11 (m, 2 H), 4.12 (s, 2 H), 4.41 (br, 1 H), 6.90 (br, 1 H), 7.45 (br, 1 H), 7.58 (dd, J = 7.3 and 7.3 Hz, 1 H), 7.77 (d, J = 7.3 Hz, 1 H), 8.02 (d, J = 7.3 Hz, 1 H), 8.11 (s, 1 H); ESI/MS m/e 316.0 (M^T+H, $C_{14}H_{16}F_3N_3O_2$).

- $(R)-3-[N-\{3-(Trifluoromethyl)benzoyl\}glycyl]$ aminopyrrolidine was also prepared pursuant to the above method using the corresponding reactant: 1.49 g, 68%; The product showed the same ¹H NMR and ESI/MS with those of (S)-isomer.
- $(R)-3-[N-\{2-Amino-5-(trifluoromethyl)benzoyl\}glycyl]aminopyrrolidine$ was also prepared pursuant to the above method using the corresponding reactant: 316 mg, 93%; ESI/MS m/e 331.2 (M*+H, $C_{14}H_{17}F_3N_4O_2$).
- 30 $(R)-3-[N-\{2-(tert-Butoxycarbonylamino)-5-(trifluoromethoxy)benzoyl\}glycyl]aminopyrrolidine was also prepared pursuant to the above method using the corresponding reactant: quant; <math>^1H$ NMR (CDCl₃, 400 MHz) δ 1.51 (s, 9 H), 1.60-1.70 (m, 2 H), 2.10-2.25 (m, 1 H), 2.80-2.88 (m, 1 H), 2.89-2.98 (m, 1 H), 3.04-3.18 (m, 2 H), 4.05 (d, J = 4.9 Hz, 2 H), 4.43 (br, 1 H), 6.15 (br, 1 H), 7.03 (br, 1 H), 7.32 (d, J = 9.3 Hz, 1 H), 7.38 (s, 1 H), 8.42 (d, J = 9.3 Hz, 1 H).

Example 573: Preparation of (R)-3- $[{N-(2-(tert-Butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]-1-(4-chlorobenzyl)pyrrolidine.$

A solution of (R)-1-(4-chlorobenzyl)-3-(glycylamino) pyrrolidine $(5.0\,\text{g}, 18.7\,\text{mmol})$ in dichloromethane $(100\,\text{mL})$ was treated with Et₃N $(2.9\,\text{mL}, 20.5\,\text{mmol})$, 2-(tert-butoxycarbonylamino)-5-(trifluoromethyl) benzoic acid $(6.27\,\text{g}, 20.5\,\text{mmol})$, EDCI $(3.9\,\text{g}, 20.5\,\text{mmol})$ and HOBt $(2.8\,\text{g}, 20.5\,\text{mmol})$. The reaction mixture was stirred at room temperature overnight. To the reaction mixture was added 2 N aqueous NaOH solution $(80\,\text{mL})$ and the mixture was extracted with dichloromethane. The extract was dried over anhydrous Na₂SO₄, filtered, and evaporated. Column chromatography $(SiO_2, \text{hexane/ethyl})$ acetate = 1/1-1/4) afforded $(R)-3-[\{N-(2-(\text{tert-butoxycarbonylamino})-5-\text{trifluoromethylbenzoyl})$ glycyl) amino)-1-(4-chlorobenzyl) pyrrolidine $(9.41\,\text{g}, 91\%)$ as a white amorphous solid: ESI/MS m/e 555.2 $(M^*+H, C_{26}H_{30}C1F_3N_4O_4)$.

15

20

35

10

5

Reference Example 5: Preparation of (R)-3-[{N-(2-(text-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine.

A mixture of $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]-1-(4-chlorobenzyl)pyrrolidine (6.3 g, 11.4 mmol), <math>Pd(OH)_2$ (1.68 g), HCO_2H (3.7 mL), and methanol (80 mL) was stirred at 50 °C overnight. After the mixture was cooled to room temperature, the Pd catalyst was filtered off through Celite and the filtrate was concentrated. Column chromatography (SiO₂, AcOEt, AcOEt/MeOH = 5/1-4/1) gave $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-$

trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (4.42 g, 90%) as a white solid: $^{1}\text{H NMR (CDCl}_{3},\ 400\ \text{MHz})\ \delta\ 1.48\ (\text{s, 9 H}),\ 2.0-2.4\ (\text{m, 2 H}),\ 3.42-3.71\ (\text{m, 5 H}),$ $4.00-4.22\ (\text{m, 2 H}),\ 4.56\ (\text{br, 1 H}),\ 7.48\ (\text{d, J}=9.0\ \text{Hz, 1 H}),\ 7.93\ (\text{s, 1 H}),$ $8.17\ (\text{br, 1 H}),\ 8.33\ (\text{d, J}=9.0\ \text{Hz, 1 H}),\ 8.45\ (\text{br, 1 H}).$

30 Example 574: Preparation of (S)-1-Benzyl-3-[N-(3-(trifluoromethyl)benzoyl)glycyl]aminopyrrolidine (Compound No. 239).

A solution of (S)-3-[N-(3-(trifluoromethyl)benzoyl)glycyl]aminopyrrolidine (0.060 mmol) in CH₃CN (1.1 mL) and (piperidinomethyl)polystyrene (2.6-2.8 mmol/g, 30 mg) were added to a solution of benzyl bromide (0.050 mmol) in CH₃CN (0.4 mL). The reaction mixture was stirred at 45 °C for 5 h. After the mixture was cooled to room temperature, the resin was removed by filtration and the filtrate was concentrated. The residue was resolved in CH₃CN (1.0 mL) and phenyl isocyanate (0.008 mL, 0.05

mmol) was added. The mixture was stirred at room temperature for 1 h, loaded onto VarianTM SCX column, and washed with CH₃OH (15 mL). Product was eluted off using 2 N NH₃ in CH₃OH (6 mL) and concentrated to afford (S)-1-benzyl-3-[N-{3-(trifluoromethyl)benzoyl}glycyl]aminopyrrolidine (compound No. 239) (9.0 mg, 44%): The purity was determined by RPLC/MS (99%); ESI/MS m/e 406.0 (M+H, $C_{21}H_{22}F_3N_3O_2$).

Example 575: Preparation of (R)-1-(4-Butylbenzyl)-3-[{N-(3-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 1648).

 $(R) - 3 - [N - {3$ of mixture (0.050 (trifluoromethyl)benzoyl}glycyl]aminopyrrolidine mmol). butylbenzaldehyde (0.18 mmol), NaBH3CN (0.23 mmol), and methanol (1.85 mL) was added acetic acid (0.060 mL). The reaction mixture was stirred at 60 $^{\circ}\text{C}$ for 12 h. The mixture was cooled to room temperature, loaded onto Varian $^{\text{TM}}$ SCX column, and washed with CH_3OH (15 mL). Product was eluted off using 2 N NH_3 in CH_3OH $(R) -1 - (4-butylbenzyl) -3 - [{N-(3$ afford and concentrated to trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (Compound No. 1648) (20.6 mg, 89%): The purity was determined by RPLC/MS (91%); ESI/MS m/e 462.2 ($M^{+}+H$, $C_{25}H_{30}F_3N_3O_2$).

_

5

10

15

20

25

Examples 576-738.

The compounds of this invention were synthesized pursuant to methods of Examples 574or 575 using the corresponding reactant respectively. Preparative TLC or chromatography (HPLC- C_{18}), if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 8.

Table 8

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 576	240	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	10.2	48
Example 577	241	$C_{21}H_{21}C1F_3N_3O_2$	440.0	12.1	55
Example 578	242	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	13.9	59
Example 579	243	C ₂₁ H ₂₉ Cl ₂ F ₃ N ₃ O ₂	474.0	13.8	58
Example 580	244	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	13.1	62
Example 581	245	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	11.9	56
Example 582	246	C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂	440.0	8.5	39
Example 583		$C_{21}H_{29}Cl_2F_3N_3O_2$	474.0	10.5	44
Example 584		C22H24CF3N3O2	436.0	11.0	51

Example 585	249	C22H21ClF6N3O2	474.0	12.8	54
Example 586	•	<u> </u>	420.0	11.0	52
		C ₂₂ H ₂₄ F ₃ N ₃ O ₂	424.0		
Example 587		C ₂₁ H ₂₁ F ₄ N ₃ O ₂		13.5	64
Example 588		C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	11.8	54
Example 589		C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	11.1	53
Example 590	254	C ₂₁ H ₂₀ ClF ₃ N ₄ O ₄	485.0	2.4	10
Example 591	255	C ₂₁ H ₂₁ F ₃ N ₄ O ₄	451.0	12.2	54
Example 592		C ₂₁ H ₂₁ F ₃ N ₄ O ₄	451.0	11.4	51
Example 593	257	$C_{22}H_{21}F_6N_3O_2$	474.0	11.1	47
Example 594	258	C ₂₄ H ₂₆ F ₃ N ₃ O ₄	478.0	15.3	64
Example 595	259	$C_{22}H_{23}ClF_3N_3O_2$	420.0	6.4	31
Example 596	260	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	12.1	51
Example 597	261	C ₂₂ H ₂₁ ClF ₆ N ₃ O ₂	474.0	13.6	57
Example 598	262	$C_{21}H_{21}BrF_3N_3O_2$	484.0	15.2	63
Example 599	263	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	14.5	60
Example 600	264	C ₂₇ H ₂₆ F ₃ N ₃ O ₃	498.0	9.3	37
Example 601	265	$C_{21}H_{21}BrF_3N_3O_2$	484.0	11.6	48
Example 602	266	C ₂₂ H ₂₂ F ₃ N ₃ O ₄	450.0	8.9	40
Example 603	267	C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	10.3	47
Example 604	268	C ₂₃ H ₂₅ F ₃ N ₄ O ₃	463.0	6.3	27
Example 605	269	C ₂₂ H ₂₄ F ₃ N ₃ O ₄ S	484.0	8.0	33
Example 606	270	C ₂₃ H ₂₄ F ₃ N ₃ O ₄	464.0	8.9	38
Example 607	271	C ₂₁ H ₂₀ F ₅ N ₃ O ₂	442.0	6.1	28
Example 608	272	C ₂₁ H ₂₂ F ₃ N ₃ O ₃	422.0	13.6	59
Example 609	273	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	12.6	. 59
Example 610	274	C ₂₂ H ₂₁ F ₃ N ₄ O ₀	431.0	7.7	36
Example 611	275	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	12.7	59
Example 612	276	C ₂₁ H ₂₀ F ₅ N ₃ O ₂	442.0	11.7	53
Example 613	277	C ₂₇ H ₂₆ F ₃ N ₃ O ₂	482.0	9.5	39
Example 614	278	C ₂₃ H ₂₄ F ₃ N ₃ O ₄	464.0	13.0	56
Example 615	279	C ₂₂ H ₂₁ F ₆ N ₃ O ₃	490.0	10.4	42
Example 616	280	C ₂₂ H ₂₁ F ₆ N ₂ O ₃	490.0	12.0	49
Example 617	281	C ₂₂ H ₂₂ F ₃ N ₃ O ₄	450.0	4.9	22
Example 618	282	C ₂₅ H ₃₀ F ₃ N ₅ O ₂	462.0	12.0	52
Example 619	283	$C_{20}H_{23}F_3N_4O_3$	425.0	8.1	38
Example 620	284	C ₂₇ H ₂₅ ClF ₃ N ₃ O ₂	516.0	4.8	19
Example 621	285	C ₂₁ H ₂₂ F ₃ N ₃ O ₂	406.0	4.8	24
Example 622	286	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	4.5	21
Example 623	287	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	5.8	26
Example 624	288	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	8.1	34
L	L	<u> </u>			

Example 625	289	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	8.0	34
Example 626	290	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	6.0	29
Example 627	291	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	6.2	29
Example 628	292	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	4.5	20
Example 629	293	$C_{21}H_{2\psi}Cl_{2}F_{3}N_{3}O_{2}$	474.0	5.1	22
Example 630	294	C ₂₂ H ₂₄ CF ₃ N ₃ O ₃	436.0	4.2	19
Example 631	295	C ₂₂ H ₂₁ C1F ₆ N ₃ O ₂	474.0	6.0	25
Example 632	296	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	4.3	21
Example 633	297	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	8.2	39
Example 634	298	C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	12.2	56
Example 635	299	C22H24F3N3O2	420.0	8.1	39
Example 636	300	C21H20C1F3N4O4	485.0	13.7	57
Example 637	. 301	C ₂₁ H ₂₁ F ₃ N ₄ O ₄	451.0	15.1	67
Example 638	302	C ₂₁ H ₂₁ F ₃ N ₄ O ₄	451.0	16.6	74
Example 639	303	C ₂₂ H ₂₁ F ₆ N ₃ O ₂	474.0	12.6	53
Example 640	304	C ₂₄ H ₂₆ F ₃ N ₃ O ₄	478.0	14.5	61
Example 641	305	C22H23ClF3N3O2	420.0	8.4	37
Example 642	306	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	13.5	57
Example 643	307	C ₂₂ H ₂₁ C1F ₆ N ₃ O ₂	474.0	3.7	.16
Example 644	308	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	7.2	30
Example 645	309	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	6.7	28
Example 646	310	C ₂₇ H ₂₆ F ₃ N ₃ O ₃	498.0	4.2	17
Example 647	311	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	6.3	26
Example 648	312	C22H22F3N3O4	450.0	2.4	11
Example 649	313	C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	1.9	9
Example 650	314	C23H25F3N4O3	463.0	5.0	22
Example 651	315	C ₂₂ H ₂₄ F ₃ N ₃ O ₄ S	484.0	2.5	10
Example 652	316	C23H24F3N3O4	464.0	3.3	14
Example 653	317	C21H25F5N3O2	442.0	4.5	20
Example 654	318	C ₂₁ H ₂₂ F ₃ N ₃ O ₃	422.0	7.9	34
Example 655	319	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	6.5	30
Example 656	320	C22H21F3N4O2	431.0	14.2	66
Example 657	321	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	14.9	69
Example 658	322	$C_{21}H_{2}$, $F_{5}N_{3}O_{2}$	442.0	13.6	62
Example 659	323	$C_{27}H_{26}F_3N_3O_2$	482.0	3.9	16
Example 660	324	C ₂₃ H ₂₄ F ₃ N ₃ O ₄	464.0	15.2	66
Example 661	325	C22H2:F6N3O3	490.0	16.1	66
Example 662	326	C ₂₂ H ₂₁ F ₆ N ₃ O ₃	490.0	13.6	56
Example 663	327	C ₂₂ H ₂₂ F ₃ N ₃ O ₄	450.0	5.4	24
Example 664	328	C ₂₅ H ₃₁ F ₃ N ₃ O ₂	462.0	10.9	47

Example 665	329	C ₂₀ H ₂₃ F ₃ N ₄ O ₃	425.0	12.0	57
Example 666	986	C27 H25 C1 F3 N3 O2	516.0	1.5	6
Example 667	1118	C28 H27 F3 N4 O3	525	21.5	62
Example 668	1119	C22 H24 F3 N3 O2 S	452	16.9	57
Example 669	1120	C23 H26 F3 N3 O4	466	20.5	67
Example 670	1121	C22 H23 F3 N4 O4	465	16.8	55
Example 671	1122	C28 H36 F3 N3 O2	504	21.0	63
Example 672	1123	C25 H23 Br F3 N3 O2	534	26.6	75
Example 673	1124	C19 H19 F3 N4 O5	441	21.3	73
Example 674	1133	C23 H26 F3 N3 O4	467	33.6	84
Example 675	1134	C24 H28 F3 N3 O5	496	34.8	82
Example 676	1135	C22 H21 F3 N4 O6	495	32.6	77
Example 677	1136	C23 H24 F3 N3 O5	480	36.6	89
Example 678	1137	C22 H21 Br F3 N3 O4	529	30.8	69
Example 679	1138	C24 H26 F3 N3 O2	446	32.7	86
Example 680	1139	C22 H24 F3 N3 O2	420	18.6	51
Example 681	1140	C21 H20 F3 N5 O6	496	20.5	49
Example 682	1141	C25 H24 F3 N3 O2	456	22.5	58
Example 683	1142	C25 H24 F3 N3 O2	456	21.6	55
Example 684	1143	C35 H34 F3 N3 O4	618	27.3	53
Example 685	1144	C23 H26 F3 N3 O4	466	25.5	64
Example 686	1145	C23 H25 F3 N4 O6	511	38.0	88
Example 687	1146	C28 H28 F3 N3 O3	512	38.3	89
Example 688	1147	C23 H25 F3 N4 O3	463	27.1	62
Example 689	1148	C27 H26 F3 N3 O2	482	22.4	57
Example 690	1161	C22 H24 F3 N3 O4	452	13.5	58
Example 691	1162	C24 H28 F3 N3 O3	464	16.7	70
Example 692	1163	C22 H23 F4 N3 O3	454	15.8	68
Example 693	1164	C23 H26 F3 N3 O3	450	15.7	68
Example 694	1165	C23 H24 F3 N3 O4	464	16.3	68
Example 695	1166	C22 H23 Br F3 N3 O3	513	15.0	57
Example 696	1168	C17 H17 C1 F3 N5 O2 S		6.9*	23
Example 697	1169	C20 H22 F3 N5 O3 S	470	1.7*	6
Example 698	1170	C22 H22 F3 N5 O2	446	2.3*	8
Example 699	1286	C26 H33 F3 N4 O3	507	25.3*	51
Example 700	1287	C21 H20 F3 N5 O6	496	4.0*	8
Example 701	1288	C22 H24 F3 N3 O4	452	3.6*	13
Example 702	1298	C23 H25 Br F3 N3 O4	544	28.4	quant
Example 703	1299	C24 H28 F3 N3 O5	496	1.4	6
Example 704	1300	C23 H26 F3 N3 O4	466	7.3	33

		was 72 N2 OF	496	12.6	53
Example 705	1301	C24 H28 F3 N3 O5			
Example 706	1302	C24 H28 F3 N3 O3	464	24.5	quant
Example 707	1303	C23 H25 Br F3 N3 O4	544	22.2	86
Example 708	1304	C29 H30 F3 N3 O4	542	28.6	quant
Example 709	1305	C26 H26 F3 N3 O3	486	35.4	quant
Example 710	1306	C24 H28 F3 N3 O4	480	8.1	35
Example 711	1307	C23 H26 F3 N3 O5	482	27.9	quant
Example 712	1308	C23 H24 F3 N3 O3	448	5.9	28
Example 713	1309	C23 H25 F3 I N3 O4	592	24.0	85
Example 714	1310	C22 H24 F3 N3 O4	452	3.4	16
Example 715	1311	C22 H22 F3 N3 O4	450	3.4	16
Example 716	1312	C21 H21 F3 I N3 O2	532	18.1	72
Example 717	1313	C21 H21 Br F3 N3 O2	484	17.4.	76
Example 718	1314	C19 H19 F3 N4 O4 S	457	16.8	77
Example 719	1315	C20 H22 F3 N3 O3	410	13.6	70
Example 720	1316	C22 H20 Cl F6 N3 O2	508	18.6	77 .
Example 721	1317	C21 H20 Cl F3 N4 O4	485	17.0	74
Example 722	1318	C21 H20 Cl F4 N3 O2	458	17.0	78
Example 723	1319	C21 H20 Cl F4 N3 O2	458	17.6	81
Example 724	1320	C21 H20 Br F4 N3 O2	502	18.5	77
Example 725	1390	C26 H32 F3 N3 O2	476	16.1	51
Example 726	1391	C23 H26 F3 N3 O2	434	20.0	76
Example 727	1392	C22 H23 Cl F3 N3 O2	454	20.0	67
Example 728	1393	C23 H26 F3 N3 O2	434	20.1	70
Example 729	1394	C22 H23 F3 N4 O4	465	18.4	60
Example 730	1395	C23 H24 F3 N3 O2	432	21.4	75
Example 731	1396	C26 H26 F3 N3 O2	470	20.4	66
Example 732	1397	C21 H20 Br2 F3 N3 O2	562	14.5	54
Example 733	1398	C22 H22 C12 F3 N3 O2	488	10.8	47
Example 734	1399	C22 H22 C12 F3 N3 O2	488	9.4	40
Example 735	1400	C22 H23 C1 F3 N3 O2	454	19.1	88
Example 736	1614	C22 H21 F6 N3 S	506.0	24.2	96
Example 737	2050	C20 H22 F3 N3 O2 S	426	6.0	30
Example 738	l	C21 H23 F3 N4 O2	421	6.5	32
	<u> </u>		L		

^{*}Yield of TFA salt.

Examples 739-748.

The compounds of this invention were synthesized pursuant to methods of Example 738 using the corresponding reactant respectively. Preparative TLC,

if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 9.

Table 9

5

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 739	1650	C24 H28 F3 N3 O2	448.0	20.4	91
Example 740	1706	C23 H25 F3 N4 O3	463.2	3.7	11
Example 741	1707	C22 H25 F3 N4 O2 S	467.0	10.3	29
Example 742	1708	C23 H27 F3 N4 O2	449.2	11.4	34
Example 743	1709	C24 H29 F3 N4 O2	463.2	15.2	44
Example 744	1775	C22 H25 F3 N4 O4	467.2	9.2	26.3
Example 745	1776	C22 H25 F3 N4 O4	467.2	8.9	25.4
Example 746	1787	C24 H29 F3 N4 O2	463.2	5.6	16.1
Example 747	1802	C23 H27 F3 N4 O4	481.2	11.7	32.5
Example 748	1803	C22 H25 F3 N4 O3	451.2	9.6	28.4

Example 749: Preparation of $(R)-3-[\{N-(2-A\min o-5-trifluoromethoxybenzoy1)glycyl\}amino]-1-(3-hydroxy-4-methoxybenzyl)pyrrolidine (Compound No. 1896).$

10 $(R) -3 - [N - \{2 - (tert-butoxycarbonylamino) -5 -$ То mixture (trifluoromethoxy)benzoyl)glycyl]aminopyrrolidine (0.050 mmol), 3-hydroxy-4-methoxybenzaldehyde (0.060 mmol), NaBH3CN (0.15 mmol), and methanol (1.3 mL) was added acetic acid (0.050 mL). The reaction mixture was stirred at 60 $^{\circ}\text{C}$ for 8 h. The mixture was cooled to room temperature, loaded onto $Varian^{TM}$ SCX 15 column, and washed with CH_3OH (10 mL). Product was eluted off using 2 N NH_3 in CH_3OH (5 mL) and concentrated. To the resulting material was added 4 N HCl in 1,4-dioxane and the solution was stirred overnight at room temperature. Concentration and preparative gave $(R)-3-[{N-(2-amino-5$ trifluoromethoxybenzoyl)glycyl)amino]-1-(3-hydroxy-4-

methoxybenzyl)pyrrolidine (Compound No. 1896) (9.1 mg, 38%): The purity was determined by RPLC/MS (93%); ESI/MS m/e 483 (M^{\dagger} +H, $C_{22}H_{25}F_3N_4O_5$).

Examples 750-757.

The compounds of this invention were synthesized pursuant to methods of Example 749 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 10.

Table 10

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 750	1897	C22 H25 F3 N4 O3 S	483	22.7	94.1
Example 751	1898	C23 H27 F3 N4 O3	465	12.2	52.5
Example 752	1899	C24 H29 F3 N4 O3	479	14.4	60.2
Example 753	1900	C22 H25 F3 N4 O5	483	2.6	10.8
Example 754	1901	C24 H29 F3 N4 O3	479	14.5	60.6
Example 755		C23 H25 F3 N4 O4	479	12.0	50.2
Example 756	1915	C23 H27 F3 N4 O5	467.2	2.5	6.7
Example 757	1916	C22 H25 F3 N4 O4	467.2	3.1	8.9

Example 758: Preparation of (R)-3-[{N-(2-Amino-5-(trifluoromethyl)benzoyl)glycyl}amino]-1-(4-vinylbenzyl)pyrrolidine (Compound No. 1701).

A mixture of $(R)-3-[\{N-(2-a\min o-5-(trifluoromethyl) benzoyl) glycyl\} amino]$ pyrrolidine (0.050 mmol), 4-vinylbenzyl chloride (9.9 mg, 0.065 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (1.0 mL) and chloroform (0.30 mL) was stirred at 50 °C for 12 h. The reaction mixture was cooled, loaded onto Varian SCX column and washed with CH₂OH (15 mL). Product was eluted using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford $(R)-3-[\{N-(2-a\min o-5-(trifluoromethyl) benzoyl) glycyl\} amino]-1-<math>(4-\text{vinylbenzyl})$ pyrrolidine (Compound No. 1701) (19.6 mg, 88%): The purity was determined by RPLC/MS (92%); ESI/MS m/e 547.2 $(M^4+H, C_{23}H_{25}\text{ClF}_3N_4O_2)$.

Examples 759-762

5

10

15

20

The compounds of this invention were synthesized pursuant to methods of Example 758 using the corresponding reactant respectively. Preparative TLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 11.

Table 11

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	
Example 759	1702	C22 H25 F3 N4 O3	451.2	5.3	24
Example 760	1703	C22 H23 F3 N4 O4	465.2	5.0	22
Example 761	1704	C21 H23 F3 N4 O3	437.2	20.9	96
Example 762	<u> </u>	C21 H21 C12 F3 N4 O2	489.2	9.3	38

Example 763: Preparation of (R)-3-[{N-(2-Amino-5-(trifluoromethoxy)benzoyl)glycyl}amino]-1-(2,4-dichlorobenzyl)pyrrolidine (Compound No. 1905).

mixture Α of $(R) -3 - [{N - (2-amino-5-$ (trifluoromethoxy)benzoyl)glycyl)amino]pyrrolidine (0.050 mmol), 2,4dichlorobenzyl chloride (0.060 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (0.8 mL) and chloroform (0.5 mL) was stirred at 60 °C for 12 h. The reaction mixture was cooled, loaded onto Varian $^{ exttt{TM}}$ SCX column and washed with 50% $CHCl_3/CH_3OH$ (10 mL) and CH_3OH (10 mL). Product was eluted using 2 N NH_3 in CH₃OH (5 mL) and concentrated. To the resulting material was added 4 N HCl in 1,4-dioxane (2 mL), and the solution was stirred overnight at room temperature. Concentration and preparative TLC afforded $(R) -3 - [\{N - (2 - amino - 5 - amino -$ (trifluoromethoxy)benzoyl)glycyl}amino]-1-(2,4-dichlorobenzyl)pyrrolidine (Compound No. 1905) (17.6 mg, 70%): The purity was determined by RPLC/MS (93%); ESI/MS m/e 505 (M^++H , $C_{21}H_{21}Cl_2F_3N_4O_3$).

Examples 764-770

The compounds of this invention were synthesized pursuant to methods of Example 763 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 12.

are summarized in Table 12.

Table 12

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 764	1906	C22 H23 F3 N4 O5	481	9.4	39.1
Example 765	1907	C21 H23 F3 N4 O4	453	7.5	33.2
Example 766	1908	C22 H25 F3 N4 O4	467	7.7	33.0
Example 767	2180	C22 H24 Cl F3 N4 O2	469	1.3	26
Example 768	2181	C23 H25 F3 N6 O3	491	4.3	52
Example 769	2182	C19 H22 F3 N5 O2 S	442	7.0	51
Example 770	1909	C23 H25 F3 N4 O3	463	8.7	37.6

25

30

5

10

15

Example 771: Preparation of $(R)-3-[\{N-(2-A\min o-5-trifluoromethoxybenzoyl)glycyl\}amino]-1-(2-amino-4-chlorobenzyl)pyrrolidine (Compound No. 1921).$

A mixture of $(R) - 3 - [\{N - (2 - amino - 5 - amino$

trifluoromethoxybenzoyl)glycyl)amino]pyrrolidine (0.050 mmol), 4-chloro-2-

nitrobenzyl chloride (0.050 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (1.0 mL) and chloroform (0.7 mL) was stirred overnight at 50 °C. The reaction mixture was cooled, loaded onto Varian SCX column and washed with 50% CHCl₃/CH₃OH (10 mL) and CH₃OH (10 mL). Product was eluted using 2 N NH₃ in CH₃OH (5 mL) and concentrated. To the resulting material was added ethanol (3 mL) and 10% Pd-C (15 mg), and the mixture was stirred under H₂ at room temperature for 1.5 h. Filtration, concentration, and preparative TLC afforded (R)-3-[(N-(2-amino-5-trifluoromethoxybenzoyl)glycyl)amino]-1-(2-amino-4-chlorobenzyl)pyrrolidine (Compound No. 1921) (2.2 mg, 6%): The purity was determined by RPLC/MS (81%); ESI/MS m/e 486.2 (M*+H, C₂₁H₂₃ClF₃N₅O₃).

Example 772: Preparation of $(R)-3-[\{N-(2-A\min o-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(4-bromo-2-fluorobenzyl)pyrrolidine (Compound No. 2120).$

 $(R)-3-[{N-(2-(tert-butoxycarbonylamino)-5-}]$ οf mixture To а trifluoromethylbenzoyl)glycyl}amino}pyrrolidine (0.050 mmol), 4-bromo-2fluorobenzaldehyde (0.15 mmol), methanol (1.5 mL), and acetic acid (0.016 mL) was added NaBH $_3$ CN (0.25 mmol) in methanol (0.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto VarianTM SCX column, and washed with CH₃OH (5 mL x 2). Product was eluted off using 2 N NH_3 in CH_3OH (5 mL) and concentrated. The residue was dissolved in methanol (0.25 mL) and 4 N HCl in dioxane (0.50 mL) was added. The solution was stirred at room temperature for 5 h and concentrated. The residue was dissolved in methanol, loaded onto Varian $^{ extsf{TM}}$ SCX column, and washed with CH $_3$ OH (5 mL x 2). Product was eluted off using 2 N NH $_3$ in CH $_3$ OH (5 mL) and concentrated. The resulting material was dissolved into ethyl acetate (0.5 mL), loaded onto VarianTM Si column, eluted off using ethyl acetate/methanol = 5:1 (6 mL), and $(R) - 3 - [\{N - (2 - amino - 5 - amino$ afford concentrated trifluoromethylbenzoyl)glycyl}amino]-1-(4-bromo-2-fluorobenzyl)pyrrolidine (Compound No. 2120) (16.0 mg, 31%): The purity was determined by RPLC/MS (99%); ESI/MS m/e 517.0 (M $^{+}$ +H, C₂₁H₂₁BrF₄N₄O₂).

Examples 773-793.

5

10

15

20

25

30

The compounds of this invention were synthesized pursuant to methods of Example 772 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 13.

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 773	2083	C22 H24 Br F3 N4 O4	545.2	2.9	11
Example 774	2084	C23 H27 F3 N4 O5	497.2	5.1	21
Example 775	2085	C22 H25 F3 N4 O4	467.2	3.1	13
Example 776	2086	C21 H22 C1 F3 N4 O3	471.0	4.6	20
Example 777	2087	C23 H28 F3 N5 O2	464.2	5.6	24
Example 778	2088	C25 H32 F3 N5 O2	492.2	5.9	2.4
Example 779	2089	C21 H21 F5 N4 O2	457.2	4.5	20
Example 780	2090 .	C27 H27 F3 N4 O3	513.2	8.0	31
Example 781	2118	C21 H23 F3 N4 O4	453.1	2.7	12
Example 782	2119	C21 H23 F3 N4 O4	453.1	4.3	19
Example 783	2121	C22 H25 F3 N4 O4	467.0	1.2	2
Example 784	2122	C21 H21 C1 F4 N4 O2	472.9	13.1	28
Example 785	2123	C22 H22 F3 N5 O6	510.1	13.1	51
Example 786	2124	C21 H21 C1 F3 N5 O4	500.1	15.6	62
Example 787	2125	C22 H24 F3 N5 O5	496.0	16.0	65
Example 788	2126	C22 H24 F3 N5 O4	480.1	15.6	65
Example 789	2137	C22 H24 Cl F3 N4 O2	469.2	2.6	11
Example 790	2138	C26 H29 F3 N6 O2	515.3	25.1	98
Example 791	2139	C20 H24 C1 F3 N6 O2	473.2	25.0	98
Example 792	2149	C21 H22 F3 N5 O5	482.3	4.9	34
Example 793	2157	C22 H25 F3 N4 O3	451.2	15.5	70

Example 794: Preparation of $(R)-3-[\{N-(2-A\min o-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(2,4-dimethoxypyrimidin-5-ylmethyl)pyrrolidine (Compound No. 2175).$

5

10

15

 $(R)-3-\{\{N-(2-\text{Amino-}5-\text{trifluoromethylbenzoyl})\,\text{glycyl}\}\,\text{amino}\}\,\text{pyrrolidine}$ (17.2 mg, 0.04 mmol) was dissolved in THF (1 mL) and 2,4-dimethoxy-5-pyrimidine carboxaldehyde (6.7 mg, 0.04 mmol) was added followed by sodium triacetoxyborohydride (12.7 mg, 0.06 mmol) and glacial acetic acid (2.4 mg, 0.04 mmol). The mixture was stirred at room temperature for 24 h and evaporated. The residue was then dissolved in dichloromethane (1 mL) and washed with 1 N NaOH solution (1 mL). The organic phase was recovered and evaporated then treated with 25% trifluoroacetic acid in dichloromethane (1 mL) for 1 h at room temperature and evaporated. The residue was purified using LC/MS to afford $(R)-3-[\{N-(2-\text{amino-}5-\text{trifluoromethylbenzoyl})\,\text{glycyl}\}\,\text{amino}]-1-(2,4-\text{dimethoxypyrimidin-}5-\text{ylmethyl})\,\text{pyrrolidine}$ (Compound No. 2175) (18.6 mg, 78%): The purity was determined by RPLC/MS (98%); ESI/MS m/e 483 (M*+H, C21H25F3N6O4).

Examples 795-803.

The compounds of this invention were synthesized pursuant to methods of Example 794 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 14.

5

15

20

 $C_{22}H_{24}F_3N_5O_4$).

Table 14

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 795	2165	C18 H21 F3 N6 O2	411	2.0	27
Example 796	2166	C18 H20 F3 N5 O2 S	428	9.9	66
Example 797		C24 H25 F3 N6 O2	487	15.1	73
Example 798		C24 H29 F3 N4 O2	463	1.2	24
Example 799		C26 H25 C1 F3 N5 O2	520	6.0	40
Example 800		C19 H23 F3 N6 O2	425	16.8	88
Example 801		C23 H24 Br F3 N4 O2 S2	591	5.3	53
Example 802		C25 H28 F3 N5 O4	518	5.4	62
Example 803		C25 H28 F3 N5 O3	502	6.3	60

Example 804: Preparation of (R)-1-(2-Amino-4,5-

10 methylenedioxybenzyl) -3-[{N-(2-amino-5-

trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 2127).

A mixture of (R)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(4,5-methylenedioxy-2-nitrobenzyl)pyrrolidine (30.5 mg), 10% Pd-activated carbone (6 mg), and methanol (3 mL) was stirred under a hydrogen atmosphere at room temperature for 10 h. The Pd catalyst was filtered off through Celite, and the filtrate was concentrated. Solid phase extraction (Bond Elut™ SI, 20% methanol/AcOEt) afforded (R)-1-(2-amino-4,5-methylenedioxybenzyl)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 2127) (21.9 mg, 76%): The purity was determined by RPLC/MS (95%); ESI/MS m/e 480.1 (M*+H,

Examples 805 and 806.

The compounds of this invention were synthesized pursuant to methods of Example 804 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 15.

Table 15

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (+)
Example 805	2128	C22 H26 F3 N5 O3	466.0	8.6	30
Example 806	2129	C22 H26 F3 N5 O2	450.1	13.1	37

Example 807: Preparation of $(R)-1-(3-A\min o-4-chlorobenzyl)-3-[(N-(2-a\min o-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (Compound No. 2132).$

5

10

15

20

25

30

A mixture of $(R)-3-[\{N-(2-a\min o-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(4-chloro-3-nitrobenzyl)pyrrolidine (32.6 mg), 10% Pd-activated carbone (8 mg), ethyl acetate (2.7 mL) and methanol (0.3 mL) was stirred under a hydrogen atmosphere at room temperature for 15 h. The Pd catalyst was filtered off, and the filtrate was concentrated. Solid phase extraction (Bond ElutTM SI, 20% methanol/AcOEt) afforded <math>(R)-1-(3-a\min o-4-chlorobenzyl)-3-[\{N-(2-a\min o-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (Compound No. 2132) (10.5 mg, 34%): The purity was determined by RPLC/MS (84%); ESI/MS m/e 470.2 (M*+H, <math>C_{21}H_{23}C1F_3N_5O_2$).

Example 808: Preparation of $(R)-1-(2-A\min -4,5-methylenedioxybenzyl)-3-[{N-(2-(text-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine.$

To a mixture of $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine <math>(0.150 \text{ mmol})$, 4,5-methylenedioxy-2-nitrobenzaldehyde <math>(0.45 mmol), methanol (4.5 mL), and acetic acid (0.048 mL) was added NaBH₃CN (0.75 mmol) in methanol (1.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto VarianTM SCX column, and washed with CH₃OH. Product was eluted off using 2 N NH₃ in CH₃OH and concentrated to afford $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]-1-<math>(4,5-methylenedioxy-2-nitrobenzyl)pyrrolidine$.

A mixture of $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]-1-(4,5-methylenedioxy-2-nitrobenzyl)pyrrolidine prepared above, 10% Pd-activated carbone (22 mg), and methanol (3.0 mL) was stirred under a hydrogen atmosphere at room temperature overnight. The Pd catalyst was filtered off, and the filtrate was concentrated to afford <math>(R)-1-(2-amino-4,5-methylenedioxybenzyl)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine$

(87.1 mg, quant.): Any remarkable by-products were not detected in TLC.

 $(R)-1-(3-{\rm Amino}-4-{\rm methoxybenzyl})-3-\{\{N-(2-(tert-{\rm butoxycarbonylamino})-5-{\rm trifluoromethylbenzoyl})\,{\rm glycyl}\}\,{\rm amino}\}\,{\rm pyrrolidine}\quad{\rm and}\quad (R)-1-(3-{\rm amino}-4-{\rm methylbenzyl})-3-\{\{N-(2-(tert-{\rm butoxycarbonylamino})-5-{\rm trifluoromethylbenzoyl})\,{\rm glycyl}\}\,{\rm amino}\}\,{\rm pyrrolidine}\,{\rm were}\,{\rm also}\,{\rm synthesized}\,{\rm pursuant}\,{\rm to}\,{\rm methods}\,{\rm of}\,{\rm Example}\,{\rm 808}\,{\rm using}\,{\rm the}\,{\rm corresponding}\,{\rm reactant}\,{\rm respectively}.$

5

10

15

20

25

30

35

- $(R)-1-(3-A\min o-4-methoxybenzyl)-3-[{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine: 101 mg, quant.; Any remarkable by-products were not detected in TLC.$
- (R)-1-(3-amino-4-methylbenzyl)-3-[(N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine: 97.2 mg, quant.; Any remarkable by-products were not detected in TLC.
- Example 809: Preparation of $(R)-1-(3-A\min o-4-chlorobenzyl)-3-[{N-(2-(text-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine.$
 - To a mixture of $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine (0.150 mmol), 4-chloro-3-nitrobenzaldehyde (0.45 mmol), methanol (4.5 mL), and acetic acid (0.048 mL) was added NaBH₃CN (0.75 mmol) in methanol (1.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto VarianTM SCX column, and washed with CH₃OH. Product was eluted off using 2 N NH₃ in CH₃OH and concentrated to afford <math>(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(4-chloro-3-nitrobenzyl)pyrrolidine.$
 - A mixture of $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(4-chloro-3-nitrobenzyl)pyrrolidine prepared above, 10% Pd-activated carbone (22 mg), ethyl acetate (2.7 mL) and methanol (0.3 mL) was stirred under a hydrogen atmosphere at room temperature for 15 h. The Pd catalyst was filtered off, and the filtrate was concentrated to afford <math>(R)-1-(3-a\min no-4-chlorobenzyl)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine (89.7 mg, quant.): Any remarkable by-products were not detected in TLC.$

Example 810: Preparation of (R)-1-(3-Amino-4-hydroxybenzyl)3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 2187).

A solution of $(R)-1-(3-amino-4-hydroxybenzyl)-3-({N-(2-(tert-infty))})$

butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (20 mg), prepared pursuant to methods of Example 808, in 4 N HCl in dioxane (2.0 mL) was stirred at room temperature overnight. After the solution was concentrated, the residue was dissolved in methanol, loaded onto VarianTM SCX column, washed with CH₃OH, and eluted off using 2 N NH₃ in CH₃OH. Concentration and preparative TLC (SiO₂, AcOEt/MeOH = 4:1) afforded (R)-1-(3-amino-4-hydroxybenzyl)3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (Compound No. 2187) (9.6 mg,

trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (Compound No. 2187) (9.6 mg, 59%): The purity was determined by RPLC/MS (86%); ESI/MS m/e 452.3 ($M^{+}+H$, $C_{21}H_{24}F_{3}N_{5}O_{3}$).

Example 811: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-{4-chloro-3-(dimethylamino)benzyl}pyrrolidine (Compound No. 2133).

 $(R)-1-(3-amino-4-chlorobenzyl)-3-[{N-(2-(tert$ mixture of butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (44.9 mg), methanol (0.95 mL), acetic acid (0.05 mL), and 37% aqueous HCHO solution (0.15 mL) was added NaBH $_3$ CN (38 mg). The reaction mixture was stirred at 50 $^{\circ}\text{C}$ overnight. The mixture was cooled to room temperature and evaporated. To the residue was added 2 N aqueous NaOH solution and ethyl acetate, the organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried and concentrated, and the residue was loaded onto Varian TH SCX column and washed with CH_3OH . Product was eluted off using 2 N NH $_3$ in CH $_3$ OH and concentrated. The residue was dissolved in 50% conc. HCl/dioxane and the solution was stirred at room temperature for 1 h. The reaction mixture was adjusted to pH 10 with 5 N aqueous NaOH solution and extracted with ethyl acetate (2 times). The combined extracts were dried over Na₂SO₄, filtered, and evaporated. Preparative TLC (SiO_2 , 20% MeOH/AcOEt) gave (R)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-{4-chloro-3-(dimethylamino)benzyl}pyrrolidine (Compound No. 2133). (10.9 mg, 28%): The purity was determined by RPLC/MS (95%); ESI/MS m/e 498.3 (M'+H, $C_{23}H_{27}C1F_3N_5O_2$).

Examples 812-814.

5

10

15

20

25

30

The compounds of this invention were synthesized pursuant to methods of Example 811 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 16.

	Compound No.	Molecular Formula	ESI/MS m/e	Yield · (mg)	Yield (%)
Example 812	2134	C ₂₄ H ₂₈ F ₃ N ₅ O ₄	508.4	19.0	50
Example 813	2135	C ₂₄ H ₃₀ F ₃ N ₅ O ₃	494.4	21.8	50
Example 814	2136	C ₂₄ H ₃₀ F ₃ N ₅ O ₂	478.4	29.2	69

Example 815: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(3-methylamino-4-hydroxybenzyl)pyrrolidine (Compound No. 2158).

5

10

15

20

25

30

To a mixture of $(R)-1-(3-\text{amino}-4-\text{hydroxybenzyl})-3-[\{N-(2-(\text{tert-butoxycarbonylamino})-5-\text{trifluoromethylbenzoyl})\,\text{glycyl}\,\text{amino}]\,\text{pyrrolidine}$ (27.3 mg, 0.049 mmol), 37% HCHO solution (4.0 mg, 0.049 mmol), acetic acid (0.10 mL) and methanol (1.3 mL) was added NaBH₃CN (9.2 mg) in methanol (0.2 mL). The reaction mixture was stirred at 60 °C overnight. The mixture was cooled to room temperature, loaded onto VarianTM SCX column, and washed with CH₃OH (5 mL x 2). Product was eluted off using 2 N NH₃ in CH₃OH (8 mL) and concentrated.

The resulting material was dissolved in methanol (1 mL) and 4 N HCl in dioxane (1.0 mL) was added. The solution was stirred at room temperature for 3 h. After the solution was concentrated, the residue was dissolved in methanol (1 mL), loaded onto VarianTM SCX column, washed with CH₃OH (5 mL x 2), and eluted off using 2 N NH₃ in CH₃OH (8 mL). Concentration and preparative TLC (SiO₂) afforded (R)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(3-methylamino-4-hydroxybenzyl)pyrrolidine (Compound No. **2158**) (4.3 mg, 19%): The purity was determined by RPLC/MS (71%); ESI/MS m/e 480.3 (M⁷+H, C₂₂H₂₆F₃N₅O₃).

Example 816: Preparation of $(R)-1-(3-Acetylamino-4-methoxybenzyl)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino}pyrrolidine (Compound No. 2152).$

To a solution of $(R)-1-(3-\text{amino}-4-\text{methoxybenzyl})-3-[\{N-(2-(\text{tert-butoxycarbonylamino})-5-\text{trifluoromethylbenzoyl})\,\text{glycyl}\}\,\text{amino}]\,\text{pyrrolidine}$ (50.5 mg) in pyridine (1 mL) was added acetic anhydride (1 mL). The reaction mixture was stirred at room temperature overnight and methanol was added. The mixture was evaporated, and 1 N NaOH solution was added. The mixture was extracted with ethyl acetate and the organic layer was concentrated. Preparative TLC gave $(R)-1-(3-\text{acetylamino}-4-\text{methoxybenzyl})-3-[\{N-(2-(\text{tert-butoxycarbonylamino})-5-\text{trifluoromethylbenzoyl})\,\text{glycyl}\}\,\text{amino}]\,\text{pyrrolidine}.$

The resulting (R)-1-(3-acetylamino-4-methoxybenzyl)-3-[(N-(2-(tert-1))-3-(N-(2-(tert-1)))-3-(N-(2-(tert-1)))]

butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine was dissolved in 50% 6 N hydrochloric acid in dioxane and the solution was stirred at room temperature for 2 h. The mixture was adjusted to pH 10 with 5 M NaOH solution, and extracted with ethyl acetate. The organic layer was evaporated and preparative TLC (SiO_2 , AcOEt/MeOH = 4:1) afforded (R)-1-(3-acetylamino-4-methoxybenzyl)-3-[{N-(2-amino-5-

trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (Compound No. 2152) (3.7 mg, 8%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 508.3 (M'+H, $C_{24}H_{28}F_3N_5O_4$).

10

5

Examples 817-819.

The compounds of this invention were synthesized pursuant to methods of Example 816 using the corresponding reactants respectively. The ESI/MS data and yields are summarized in Table 17.

15

20

25

Table 17

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (÷)
Example 817	2150	C23H25C1F3N5O3	512.3	3.8	CJ
Example 818	2151	C24H26F3N5O5	522.2	3.1	8
Example 819	2153	C24H28F3N5O3	492.3	4.3	10

Example 820: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(benz[d]oxazol-5-yl)pyrrolidine (Compound No. 2189).

A solution of $(R)-1-(3-\text{amino-4-hydroxybenzyl})-3-[\{N-(2-(\text{tert-butoxycarbonylamino})-5-\text{trifluoromethylbenzoyl})\,\text{glycyl}\}\,\text{amino}]\,\text{pyrrolidine}$ (20 mg), prepared pursuant to methods of Example 808, in THF (2 mL) was treated with triethyl orthoformate (0.020 mL, 3.3 eq) and pyridinium p-toluenesulphonate (1.2 mg, 0.4 eq). The reaction mixture was stirred overnight under reflux. After cooling to room temperature, the mixture was concentrated. The residue was dissolved in AcOEt, loaded onto BondElut^{TN} Si column, eluted off using ethyl acetate/methanol = 4/1, and concentrated.

30

The resulting material was dissolved into AcOEt (1.5 mL), and 4 N HCl in dioxane (0.5 mL) was added. The solution was stirred at room temperature overnight, adjusted to pH 10 with 5 M NaOH aqueous solution, and extracted with AcOEt. The extract was concentrated and purified by PTLC $(SiO_7, AcOEt/MeOH =$

4:1) to afford (R)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(benz[d]oxazol-5-yl)pyrrolidine (Compound No. 2189) (0.5 mg, 3%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 462.3 (M*+H, $C_{22}H_{22}F_5N_5O_3$).

Example 821: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(benzo[c]thiadiazol-5-yl)pyrrolidine (Compound No. 2183).

5

10

15

20

25

30

35

To a mixture of 5-(hydroxymethyl) benzo[c]thiadiazole (8.3 mg, 0.050 mmol), (piperidinomethyl) polystyrene (86 mg), and chloroform (1 mL) was added methanesulfonyl chloride (0.0042 mL) and the mixture was stirred at room temperature for 1.5 h. Acetonitrile (1 mL) and (R)-3-[$\{N$ -(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl) glycyl}amino] pyrrolidine (0.060 mmol) was added and the reaction mixture was stirred at 50 °C for 3 h. After cooling to room temperature, phenyl isocyanate (30 mg) was added, and the mixture was stirred at room temperature for 1 h, loaded onto Varian SCX column and washed with CH₃OH (5 mL) and CHCl₃ (5 mL). Product was eluted using 2 N NH₃ in CH₃OH (3 mL) and concentrated.

The resulting material was dissolved into dichloromethane (1 mL), and 1 M chlorotrimethylsilane and 1 M phenol in dichloromethane (1 mL) was added. The solution was stirred at room temperature for 5 h, loaded onto Varian SCX column and washed with CH₃OH and dichloromethane. Product was eluted using 2 N NH₃ in CH₃OH and concentrated. Preparative TLC (SiO₂, AcOEt/MeOH = 3:1) afforded (R)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]-1- (benzo[c]thiadiazol-5-yl)pyrrolidine (Compound No. 2183) (11.5 mg, 48%): The purity was determined by RPLC/MS (86%); ESI/MS m/e 479.2 (M*+H, C₂₁H₂₁F₃N₅O₂S).

Reference Example 6: Preparation of $4-[N-(1-(9-1)\log n)]$ fuluorenylmethoxycarbonyl) pyrrolidin-3-yl) carbamoylmethyl) aminomethyl]-3-methoxyphenyloxymethyl-polystyrene.

To a solution of (R)-1-(9-fuluorenylmethoxycarbonyl)-3-glycylamino-pyrrolidine hydrochloride (4.38 g, 10 mmol) in DMF (65 mL) were added acetic acid (0.3 mL), sodium triacetoxyborohydride (1.92 g), and 4-formyl-3-(methoxyphenyloxymethyl)-polystyrene (1 mmol/g, 200 g). The mixture was shaken for 2 h and filtered. The resin was washed with MeOH, DMF, CH_2Cl_2 , and methanol, and dried to afford the desired material (2.73 g).

Examples 822-912: General Procedure for Solid-Phase Synthesis of 3-Aminopyrrolidines.

To a mixture of the corresponding acid (1.6 mmol), HBTU (1.6 mmol), and DMF (6 mL) was added diisopropylethylamine (3.6 mmol), and the mixture was shaken for 2 min. $4-[\{N-(1-(9-\text{fuluorenylmethoxycarbonyl})\text{pyrrolidin-3-yl})\text{ carbamoylmethyl}]-3-methoxyphenyloxymethyl-polystyrene (400 mg, 0.4 mmol) was added and the mixture was shaken for 1 h and filtered. The resin was rinsed with DMF and CH₂Cl₂, and dried.$

A mixture of the resulting resin, piperidine (3.2 mL), and DMF (12.8 mL) was shaken for 10 min and filtered. The resin was washed with DMF and CH_2Cl_2 , and dried.

To the dry resin (0.05 mmol) was added a mixture of NaBH(OAc)₃ (0.25 mmol), AcOH (0.025 mL) and DMF (1 mL). The corresponding aldehyde (2.5 mmol) was added, and the mixture was shaken for 2 h, then filtered and washed with CH₃OH, 10% diisopropylethylamine in DMF, DMF, CH₂Cl₂, and CH₃OH. A mixture of the resin, water (0.050 mL), and trifluoroacetic acid (0.95 mL) was shaken for 1 h and filtered. The resin was washed with CH_2Cl_2 and CH_3OH . The filtrate and washings were combined and concentrated. The crude material was loaded onto VarianTM SCX column and washed with CH_3OH (15 mL). Product was eluted using 2 N NH₃ in CH_3OH (5 mL) and concentrated. Preparative TLC or HPLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 18.

20

5

10

15

Table 18

	Compound No.	Molecular Form	ıla	ESI/MS m/e	Yield (mg)	Yield (%)
Example 822	1805	C21 H21 Br F3 N3	02 S	516	13.3	76
Example 823	1806	C22 H24 F3 N3 O3	S	468	12.8	81
Example 824	1807	C22 H24 F3 N3 O4	S	484	13.7	83
Example 825	1808	C22 H24 F3 N3 O4	S	484	14.9	91
Example 826	1809	C21 H22 F3 N3 O3	S	454	12.9	84
Example 827	1810	C22 H22 F3 N3 O4	S	482	12.9	79
Example 828	1811	C24 H26 F3 N3 O2	S	478	12.9	79
Example 829	1812	C22 H24 F3 N3 O2	S2	484	5.3	32
Example 830	1813	C23 H26 F3 N3 O2	S	466	12.8	81
Example 831	1814	C23 H24 F3 N3 O3	S	480	9.7	59
Example 832	1815	C23 H26 F3 N3 O2	S	466	12.7	80
Example 833	1816	C24 H28 F3 N3 O2	S	480	14.4	88
Example 834	1817	C25 H30 F3 N3 O2	S	494	14.1	84
Example 835	1818	C21 H22 Br F2 N3	03	482	13.4	82
Example 836	1819	C22 H25 F2 N3 O4		434	11.7	79

Example 837	1820	C22 H25 F2 N3 O5	450	11.8	. 77
Example 838	1821	C22 H25 F2 N3 O5	450	13.3	87
Example 839	1822	C21 H23 F2 N3 O4	420	11.9	83
Example 840	1823	C22 H23 F2 N3 O5	448	11.9	78
Example 841	1824	C24 H27 F2 N3 O3	444	9.1	60
Example 842	1825	C22 H25 F2 N3 O3 S	450	11.3	74
Example 843	1826	C23 H27 F2 N3 O3	432	10.8	74
Example 844	1827	C23 H25 F2 N3 O4	446	12.7	84
Example 845	1828	C23 H27 F2 N3 O3	432	11.7	80
Example 846	1829	C24 H29 F2 N3 O3	446	14.3	- 94
Example 847	1830	C24 H29 F2 N3 O3	446	10.0	66
Example 848	1831	C22 H28 Br N3 O3	462	4.8	31
Example 849	1832	C23 H31 N3 O4	414	10.4	74
Example 850	1833	C23 H31 N3 O5	430	12.1	. 83
Example 851	1834	C23 H31 N3 O5	430	12.0	82
Example 852	1835	C22 H29 N3 O4	400	7.9	58
Example 853	1836	C23 H29 N3 O5	428	11.1	76
Example 854	1837	C25 H33 N3 O3	424	13.3	92
Example 855	1838	C23 H31 N3 O3 S	430	8.7	60
Example 856	1839	C24 H33 N3 O3	412	11.3	81
Example 857	1840	C24 H31 N3 O4	426	12.9	89
Example 858	1841	C24 H33 N3 O3	413	12.8	91
Example 859	1842	C25 H35 N3 O3	426	8.7	60
Example 860	1843	C25 H35 N3 O3	426	12.2	84
Example 861	1844	C26 H37 N3 O3	440	11.3	76
Example 862	1845	C31 H37 Br N4 O2	577	6.4	30
Example 863	1846	C23 H28 F3 N3 O2 S	480	12.8	81
Example 864	1847	C25 H31 F2 N3 O3	460	12.2	78
Example 865	1848	C27 H29 N3 O4	460	6.1	39
Example 866	1849	C29 H31 N3 O2	454	15.1	98
Example 867	1850	C28 H31 N3 O2	442	12.7	85
Example 868	1851	C28 H31 N3 O2	442	14.3	95
Example 869	1852	C28 H29 N3 O3	456	3.4	22
Example 870	1853	C27 H29 N3 O6 S	524	15.4	87
Example 871	1854	C29 H31 N3 O4 S	518	15.8	90
Example 872	1855	C28 H31 N3 O4 S	506	17.0	99
Example 873	1856	C28 H31 N3 O4 S	506	3.0	17
Example 874	1857	C28 H29 N3 O5 S	520	10.0	57
Example 875	1858	C20 H22 Br2 N4 O2	511	9.3*	37
Example 876	1859	C21 H25 Br N4 O3	461	6.7*	29
L			<u> </u>		

Example 877	1860	C21 H25 Br N4 O4	477	9.5*	40
Example 878	1861	C21 H25 Br N4 O4	477	10.0*	42
Example 879	1862	C20 H23 Br N4 O3	447	7.8*	34
Example 880	1863	C21 H23 Br N4 O4	475	3.4*	14
Example 881	1864	C21 H25 Br N4 O2 S	477	3.9*	1€
Example 882	1865	C22 H25 Br N4 O3	473	6.4*	27
Example 883.	1866	C23 H29 Br N4 O2	472	7.0*	29
Example 884	1867	C23 H29 Br N4 O2	473	7.6*	32
Example 885	1868	C24 H31 Br N4 O2	487	9.1*	37
Example 886	1869	C20 H22 Br I N4 O2	557	8.9*	33
Example 887	1870	C21 H25 I N4 O3	509	9.2*	37
Example 888	1871	C21 H25 I N4 O4	525	6.3*	25
Example 889	1872	C21 H25 I N4 O4	525	5.9*	23
Example 890	1873	C20 H23 I N4 O3	495	7.7*	. 31
Example 891	1874	C21 H23 I N4 O4	523	8.2*	32
Example 892	1875	C23 H27 I N4 O2	519	6.7*	26
Example 893	1876	C21 H25 I N4 O2	525	4.3*	17
Example 894	1877	C22 H27 I N4 O2	507	7.9*	32
Example 895	1878	C22 H25 I N4 O3	521	8.4*	33
Example 896	1879	C23 H29 I N4 O2	521	8.2*	32
Example 897	1880	C23 H29 I N4 O2	521	8.1*	32
Example 898	1881	C24 H31 I N4 O2	535	8.6*	33
Example 899	1882	C20 H22 Br N5 O4	476	5.3*	22
Example 900	1883	C21 H25 N5 O5	428	5.7*	26
Example 901	1884	C21 H25 N5 O6	444	8.2*	36
Example 902	1885	C21 H25 N5 O6	444	5.0*	22
Example 903	1886	C20 H23 N5 O5	414	8.7*	40
Example 904	1887	C21 H23 N5 O6	442	7.8*	34
Example 905	1888	C23 H27 N5 O4	438	5.6*	25
Example 906	1889	C21 H25 N5 O4 S	444	13.2*	58
Example 907	1890	C22 H27 N5 O4	426	11.3*	51
Example 908	1891	C22 H25 N5 O5	440	7.4*	33
Example 909	1892	C22 H27 N5 O4	426	5.5*	25
Example 910	1893	C23 H29 N5 O4	440	5.7*	25
Example 911	1894	C23 H29 N5 O4	440	9.4*	41
Example 912	1895	C24 H31 N5 O4	455	8.5*	37

^{*}Yield of TFA salt.

Reference Example 7: Preparation of 2-Carbamoyl-1-(4-

chlorobenzyl)pyrrolidine.

A solution of dl-prolinamide hydrochloride (2.5 g, 21.8 mmol) in CH₃CN (35 mL) was treated with Et₃N (7.45 mL) and 4-chlorobenzyl chloride (3.88 g, 24.1 mmol). The reaction mixture was stirred at 70 °C for 4 h and then at 25 °C for 16 h. The resulting mixture was diluted with CH₂Cl₂ (20 mL) and was washed with water (3 x 30 mL). The organic phase was dried (MgSO₄) and concentrated. Chromatography (SiO₂, 1% CH₃OH-CH₂Cl₂) afforded 2-carbamoyl-1-(4-chlorobenzyl)pyrrolidine (5.21 g, 81%).

Reference Example 8: Preparation of 2-(Aminomethyl)-1-(4-chlorobenzyl)pyrrolidine.

2-carbamoyl-1-(4-chlorobenzyl)pyrrolidine was dissolved in 1M BH₃-THF (9.4 mL) and heated to 70 °C. After 16 h and 25 h, additional 0.5 equiv. of 1M BH₃-THF were added. After 40 h, 1 N aqueous HCl solution (14 mL) was added and the reaction was heated to reflux for 3 h, 3 N aqueous HCl solution (6 mL) was added and the reaction was heated for an additional 3 h. The reaction mixture was cooled to 25 °C, basicified with 4 N aqueous NaOH solution and extracted with CH_2Cl_2 (4 x 15 mL). Chromatography (SiO₂, 8:1:1 $^{\frac{1}{2}}$ PrOH-H₂O-NH₄OH) afforded 2-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (1.21 g, 86%).

20

25

10

15

Optically active (S)-2-(aminomethyl)-1-(4-chlorobenzyl) pyrrolidine and (R)-2-(aminomethyl)-1-(4-chlorobenzyl) pyrrolidine were also prepared pursuant to the above method using the corresponding reactant respectively.

 $(S)-2-(aminomethyl)-1-(4-chlorobenzyl) \ pyrrolidine: \ ^1H \ NMR \ (CDCl_3, \ 400 \ MHz) \ \delta \ 1.40-1.80 \ (m, \ 5 \ H), \ 1.80-1.95 \ (m, \ 1 \ H), \ 2.12-2.21 \ (m, \ 1 \ H), \ 2.48-2.65 \ (m, \ 1 \ H), \ 2.66-2.78 \ (m, \ 2 \ H), \ 2.85-2.95 \ (m, \ 1 \ H), \ 3.26 \ (d, \ J=13.2 \ Hz, \ 1 \ H), \ 3.93 \ (d, \ J=13.2 \ Hz, \ 1 \ H), \ 7.20-7.40 \ (m, \ 4 \ H).$

(R)-2-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine showed the same ^{1}H NMR with that of (S)-isomer.

30

35

Example 913: Preparation of 2-{(N-benzoylleucyl)aminomethyl}-1-(4-chlorobenzyl)pyrrolidine (Compound No. 344).

A solution of 2-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (22.5 mg, 0.10 mmol) and dl-benzoylleucine (0.12 mmol) in CHCl₃ (1 mL) was treated with EDCI (23 mg), HOBt (16.2 mg) and Et₃N (15.2 μ L), and stirred at 25 °C for 16 h. The reaction mixture was diluted with CH₂Cl₂ (0.5 mL), washed with 2 N aqueous NaOH solution (2 x 0.75 mL), dried by filtration through a PTFE membrane and concentrated to afford 2-{(N-benzoylleucyl)aminomethyl}-1-(4-

chlorobenzyl)pyrrolidine (compound No. 344) (74 mg, quant) : The purity was determined by RPLC/MS (85%); ESI/MS m/e 442 ($M^{+}H$, $C_{25}H_{32}ClN_3O_2$).

Examples 914-935.

5

The compounds of this invention were synthesized pursuant to methods of Example 913 using the corresponding reactant respectively. Chromatography, if needed, (HPLC- C_{18} , $CH_3CN/H_2O/TFA$) afforded the desired material as the TFA salt. The ESI/MS data and yields are summarized in Table 19 and compound No. 339 and 340 showed the following ¹H NMR spectra respectively.

10

Table 19

	Compound	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
<u> </u>	No.			(4.19)	11010 (0)
Example 914	330	C21 H24 C1 N3 O2	386	75*	quant
Example 915	331	C22 H26 Cl N3 O2	400	44*	70.
Example 916	332	C24 H30 Cl N3 O5	476	57	quant
Example 917	333	C20 H23 Cl N4 O2	387	40	quant
Example 918	334	C22 H26 Cl N3 O2	400	. 68	quant
Example 919	335	C21 H23 C1 N4 O4	431	73	quant
Example 920	336	C22 H23 C1 F3 N3 O2	454	75	quant
Example 921	337	C22 H26 C1 N3 O2	400	68	quant
Example 922	338	C22 H26 Cl N3 O2	400	70	quant
Example 923	341	C22 H26 Cl N3 O2	400	80*	quant
Example 924	342	C22 H26 Cl N3 O2	400	68	quant
Example 925	343	C24 H30 Cl N3 O2	428	63	quant
Example 926	345	C23 H27 Cl N2 O2	399	68*	quant
Example 927	346	C23 H26 C1 F N2 O3	433	51	quant
Example 928	347	C24 H29 Cl N2 O2	413	47,	quant
Example 929	348	C23 H27 C1 N2 O2	399	26	quant
Example 930	349	C21 H25 C1 N2 O3 S	421	42	quant
Example 931	350	C26 H33 Cl N2 O3	457	12.4	54
Example 932	351	C22 H26 Cl N3 O3	416	34	81
Example 933	352	C22 H25 Cl2 N3 O3	450	51	quant

^{*}Yield of TFA salt.

¹⁵ · Example 934. Compound No. 339: 82%; 1 H NMR (CDCl₃) δ 1.52-1.75(m, 4 H), 1.84-1.95 (m, 1 H), 2.10-2.20 (m, 1 H), 2.67-2.78 (m, 1 H), 2.80-2.90 (m, 1 H), 3.10-3.20 (m, 1 H), 3.25 (d, J = 13.1 Hz, 1 H), 3.50-3.60 (m, 1 H), 3.89 (d,

PCT/US98/23254

J = 13.1 Hz, 1 H), 4.28-4.20 (m, 2 H), 7.00-7.05 (m, 1 H), 7.12-7.29 (m, 4 H), 7.51 (t, J = 7.8 Hz, 1 H), 7.74 (d, J = 7.8 Hz, 1 H), 7.99 (d, J = 7.8 Hz, 1 H), 8.10-8.27 (m, 2 H).

Example 935. Compound No. **340**: 68%; ¹H NMR (CDCl₃) δ 1.55–1.73 (m, 4 H), 1.86–1.97 (m, 1 H), 2.12–2.21 (m, 1 H), 2.67–2.76 (m, 1 H), 2.86–2.93 (m, 1 H), 3.14–3.21 (m, 1 H), 3.27 (d, J = 13.1 Hz, 1 H), 3.52–3.59 (m, 1 H), 3.89 (d, J = 13.1 Hz, 1 H), 4.09–4.21 (m, 2 H), 7.00–7.07 (m, 1 H), 7.12–7.30 (m, 4 H), 7.50 (t, J = 7.8 Hz, 1 H), 7.73 (d, J = 7.8 Hz, 1 H), 8.01 (d, J = 7.8 Hz, 1 H), 8.10–8.25 (m, 2 H).

10

15

20

5

WO 99/25686

Reference Example 9: Preparation of 3-(Aminomethyl)-1-(4-chlorobenzyl)pyrrolidine.

To a mixture of 4-carboxy-1-(4-chlorobenzyl)pyrrolidin-2-one (5.05 g, 20 mmol), EDCI (2.85 g, 22 mmol), HOBt (2.97 g, 22 mmol) and dichloromethane (100 mL) was added 0.5 M ammonia in dioxane (60 mL, 30 mmol). The reaction mixture was stirred at room temperature for 15 h and washed with 2N HCl (3 times) and 2 N NaOH aqueous solution (100 mL x 4). The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated to afford 3-carbamoyl-1-(4-chlorobenzyl)pyrrolidin-2-one (1.49 g) as a colorless solid.

To a solution of 3-carbamoyl-1-(4-chlorobenzyl)pyrrolidin-2-one (1.45 g) in THF (15 mL) was added 1.0 N BH₃ in THF (25 mL). The reaction mixture was stirred at 65 °C for 15 h. After cooling to room temperature, the solvent was removed under reduced pressure. Water (30 mL) and conc. HCl (10 mL) were added and the mixture was stirred at 100 °C for 2 h and room temperature for 1 h. 2 N NaOH aqueous solution (100 mL) was added and the mixture was extracted with AcOEt (50 mL x 3). The combined organic layers were dried over K_2CO_3 , filtered and concentrated. Column chromatography (SiO₂, 15% CH₃OH-5% Et₃N in CH₂Cl₂) afforded 3-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (860 mg, 19%) as a colorless oil.

30

35

25

Reference Example 10: Preparation of 1-(4-Chlorobenzyl)-3-{ (glycylamino)methyl}pyrrolidine.

A mixture of 3-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (860 mg, 3.8 mmol), Et₃N (5.7 mmol), N-tert-butoxycarbonylglycine (704 mg), EDCI (594 mg), HOBt (673 mg), and dichloromethane (20 mL) was stirred at room temperature for 15 h. Dichloromethane (50 mL) was added and the solution was washed with 2 N NaOH solution (50 mL x 2), dried over anhydrous sodium sulfate, filtered, and concentrated to afford 3-[{N-(tert-butoxycarbonyl)glycyl}aminomethyl]-1-(4-

chlorobenzyl)pyrrolidine (1.31 q, 90%).

To a solution of 3-[(N-(tert-butoxycarbonyl)glycyl)aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (804 mg, 2.11 mmol) in methanol (10 mL) was added 4 N HCl in dioxane (5 mL). The solution was stirred at room temperature for 3.5 h. The reaction mixture was concentrated and 1 N NaOH solution (20 mL) was added. The mixture was extracted with dichloromethane (20 mL x 3), and the combined extracts were dried over sodium sulfate and concentrated to give desired <math>1-(4-chlorobenzyl)-3-((glycylamino)methyl)pyrrolidine (599 mg, 100%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 282.2 (M+H, C14H20ClN3O).

10

15

20

5

Example 936: Preparation of 3-[{N-(3-Trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1463).

A solution of 3-(trifluoromethyl)benzoyl chloride (0.058 mmol) in dichloromethane (0.2 mL) was added to a mixture of 1-(4-chlorobenzyl)-3-{(glycylamino)methyl)pyrrolidine (0.050 mmol) and piperidinomethylpolystyrene (60 mg) in chloroform (0.2 mL) and dichloromethane (1 mL). After the reaction mixture was stirred at room temperature for 2.5 h, methanol (0.30 mL) was added and the mixture was stirred at room temperature for 1 h. The reaction mixture was loaded onto Varian SCX column, and washed with CH₃OH (15 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford (3-[{N-(3-trifluoromethylbenzoyl)glycyl}aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1463) (22.4 mg, 99%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 454.2 (MTH, $C_{22}H_{22}ClF_3N_3O_2$).

25

Examples 937-944.

The compounds of this invention were synthesized pursuant to methods of Example 936 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 20.

30

Table 20

·	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 937	1464	C22 H23 C1 F3 N3 O3	470.0	21.0	89
Example 938	1465	C23 H22 C1 F6 N3 O2	522.0	24.5	94
Example 939	1466	C21 H23 Br Cl N3 O2	466.0	20.8	90
Example 940	1467	C21 H23 C12 N3 O2	420.0	19.6	93

Example 941	1468	C21 H23 C1 N4 O4	431.2	19.5	91
Example 942	1469	C22 H22 Cl F4 N3 O2	472:0	21.8	92
Example 943	1470	C21 H22 C13 N3 O2	456.0	22.1	97
Example 944	1471	C21 H22 C1 F2 N3 O2	422.0	20.9	99

Example 945: Preparation of 3-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1506).

A solution of $1-(4-\text{chlorobenzyl})-3-\{(\text{glycylamino})\ \text{methyl}\}\ \text{pyrrolidine}$ (0.050 mmol) in CHCl₃ (1.35 mL) and tert-butanol (0.05 mL) was treated with 2-amino-4,5-difluorobenzoic acid (0.060 mmol), diisopropylcarbodiimide (0.060 mmol), and HOBt (0.060 mmol). The reaction mixture was stirred at room temperature for 19 h. The mixture was loaded onto VarianTM SCX column, and washed with CH₃OH/CHCl₃ 1:1 (10 mL) and CH₃OH (10 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford $3-[\{N-(2-\text{amino-4},5-\text{difluorobenzoyl})\ \text{glycyl}\}\ \text{aminomethyl}]-1-(4-\text{chlorobenzyl})\ \text{pyrrolidine}$ (Compound No. 1506) (22.0 mg, quant): The purity was determined by RPLC/MS (92%); ESI/MS m/e 437 ($C_{21}H_{23}C1F_2N_4O_2$).

Examples 946-952.

5

10

15

20

25

The compounds of this invention were synthesized pursuant to methods of Example 945 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 21.

Table 21

		Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example	946	1506	C21 24 Br Cl N4 O2	481	20.6	86
Example	947	1507	C21 H24 F Cl N4 O2	419	21.7	quant
Example	948	1509	C27 H28 C1 N3 O2	462	26.5	quant
Example	949	1510	C21 H24 C1 I N4 O2	527	22.0	84
Example	950	1511	C19 H21 Br Cl N3 O2 S	472	23.7	quant
Example	951	1512	C21 H24 C12 N4 O2	435	22.3	quant
Example	952	1513	C27 H28 Cl N3 O4 S	526	24.6	94

Reference Example 11: Preparation of 1-(4-Chlorobenzyl) nipecotic acid. 4-Chlorobenzyl chloride (6.42 g, 39.9 mmol) and Pr₂NEt (7.74 g, 40.0 mmol)

were added to a solution of ethyl nipecotate (6.29 g, 40.0 mmol) in CH_CN (15 mL). The reaction mixture was stirred at 70 °C for 1.5 h. The solvent was removed under reduced pressure. Saturated aqueous NaHCO $_3$ (50 mL) was added to the residue and the mixture was extracted with EtOAc (100 mL). The organic phase was washed with saturated aqueous NaHCO $_3$ and brine, and dried over Na $_2$ SO $_4$. The solvent was removed under reduced pressure to afford ethyl 1-(4-chlorobenzyl)nipecotate as a red yellow oil (11.025 g, 97.8%) used without further purification. The purity was determined by RPLC/MS (97%); ESI/MS m/e 382.2 (M $^+$ +H, C $_{15}$ H $_{21}$ ClNO $_2$).

5

10

15

20

25

30

A solution of LiOH (1.66 g) in H_2O (25 mL) was added to the solution of ethyl 1-(4-chlorobenzyl)nipecotate in THF (60 mL) and CH₃OH (20 mL). The reaction mixture was stirred at room temperature for 15 h. The solvent was removed under reduced pressure to afford an amorphous solid which was purified by column chromatography (SiO₂, 50% CH₃OH-CH₂Cl₂) to yield 1-(4-chlorobenzyl)nipecotic acid (9.75 g, 98.2%) as a pale yellow amorphous solid. The purity was determined by RPLC/MS (>95%); ESI/MS m/e 254.0 (M*+H, C₁₃H₁₇ClNO₂).

Reference Example 12: Preparation of 1-(4-Chlorobenzyl)-3-{(tert-butoxycarbonyl)amino}piperidine.

A solution of 1-(4-chlorobenzyl)nipecotic acid (7.06 g, 27.8 mmol) in t BuOH (500 mL) was treated with Et₃N (3.38 g) and activated 3 Å molecular sieves (30 g). Diphenylphosphoryl azide (8.58 g) was added, and the reaction mixture was warmed at reflux for 18 h. The mixture was cooled and the solvent was reflux for 18 h. The mixture was cooled and the solvent was remove under vacuum. The residue was dissolved in EtOAc (500 mL), and the organic phase was washed with saturated aqueous NaHCO₃ (2 x 100 mL) and brine (50 mL), dried (Na₂SO₄), and concentrated in vacuo. Chromatography (SiO₂, 25% EtOAc-hexane) afforded 1-(4-chlorobenzyl)-3-{(tert-butoxycarbonyl)amino}piperidine (2.95 g, 32.6%) as a white crystalline solid: 1 H NMR (CDCl₃, 300 MHz) δ 1.4-1.75 (br, 4 H), 2.2-2.7 (br, 4 H), 3.5 (br, 2 H), 3.8 (br, 1 H), 7.3 (br, 4 H); The purity was determined by RPLC/MS (>99%); ESI/MS m/e 269.2 (M*+H-56, C₁₇H₂₆ClN₂O₂).

Reference Example 13: Preparation of 3-Amino-1-(4-chlorobenzyl)piperidine.

A solution of $1-(4-\text{chlorobenzyl})-3-\{(\text{tert-35} \text{ butoxycarbonyl}) \text{ amino}\}$ piperidine (2.55 g, 7.85 mmol) in CH₂OH (25 mL) was treated with 1 N HCl-Et₂O (50 mL). The reaction mixture was stirred at 25 °C for 15 h. The solvent was removed under reduced pressure to afford 3-amino-1-(4-chlorobenzyl)piperidine dihydrochloride as an amorphous solid (2.49 g, quant).

The purity was determined by RPLC/MS (>95%),; ESI/MS m/e 225.2 (M+H, $C_{12}H_{10}ClN_2$).

Example 953: Preparation of 1-(4-Chlorobenzyl)-3-{{N-(3-methylbenzoyl)glycyl}amino]piperidine (Compound No. 355).

N-(3-Methylbenzoyl)glycine (10.6 mg, 0.055 mmol), EDCI (10.5 mg) and 1-hydroxybenzotriazole hydrate (7.4 mg) were added to a solution of 1-(4-chlorobenzyl)-3-aminopiperidine dihydrochloride (14.9 mg, 0.050 mmol) and Et₃N (15.2 mg) in CHCl₃ (2.5 mL). The reaction mixture was stirred at 25 °C for 16 h, washed with 2 N aqueous NaOH (2 mL x 2) and brine (1 mL). After filtration through PTFE membrane filter, the solvent was removed under reduced pressure to afford 1-(4-chlorobenzyl)-3-[$\{N$ -(3-methylbenzoyl)glycyl)amino]piperidine (compound No. 355) as a pale yellow oil (17.4 mg, 87%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 400.0 (M $^+$ +H, C₂₂H₂₆ClN₃O₂).

Examples 954-982.

The compounds of this invention were synthesized pursuant to methods of Example 953 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 22 and compound No. 358 showed the following ¹H NMR spectra.

20

5

10

15

Table 22

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 954	354	C21 H24 Cl N3 O2	386	16.1	83
Example 955	356	C20 H23 Cl N4 O2	387 .	19.4	100
Example 956	357	C22 H26 Cl N3 O2	400	16.8	84
Example 957	359	C22 H26 Cl N3 O2	400	8.9	17
Example 958	360	C22 H25 Cl N4 O4	445	25.6	quant
Example 959	361	C23 H27 Cl N2 O2	399	15.5	29
Example 960	362	C24 H29 C1 N2 O3	429	12.4	58
Example 961	363	C21 H25 C1 N2 O2 S	405	22.2	quant
Example 962	364	C24 H29 Cl N2 O4	445	20.7	93
Example 963	365	C24 H29 C1 N2 O2	413	15.6	75
Example 964	366	C23 H26 Cl F N2 O3	433	21.6	100
Example 965	367	C23 H27 C1 N2 O2	399	11.9	60
Example 966	368	C22 H25 Cl N2 O2	385	16.0	83
Example 967	369	C22 H24 C12 N2 O2	419	13.9	60
Example 968	370	C26 H33 C1 N2 O3	457	15.9	54

Example 969	371	C25 H31 C1 N2 O3	443	19.6	84
Example 970	372	C21 H25 C1 N2 O3 S	421	23.0	quant
Example 971	373	C23 H28 C1 N3 O2	414	19.1	92
Example 972	374	C24 H30 Cl N3 O3	444 .	18.6	84
Example 973	375	C23 H27 C12 N3 O2	448	18.0	80
Example 974	376	C24 H30 Cl N3 O3	444	. 19.6	88
Example 975	377	C25 H31 C12 N3 O2	476	20.7	87
Example 976	378	C27 H33 C1 F N3 O2	486	23.9	98
Example 977	379	C25 H30 C1 N3 O3	456	33.3	quant
Example 978	380	C24 H30 Cl N3 O2	428	9.8	46
Example 979	381	C21 H26 Cl N3 O3 S	436	10.3	47
Example 980	382	C22 H26 C1 N3 O3	416	24.4	quant
Example 981	383	C22 H25 C12 N3 O3	450	27.5	quant

Example 982. Compound No. **358**: 88%; 1 H NMR (CDCl₃) δ 1.53-1.75 (m, 4 H), 2.12-2.20 (m, 1 H), 2.37-2.50 (m, 2 H), 2.53-2.61 (m, 1 H), 3.38-3.50 (m, 2 H), 2.53-2.61 (m, 1 H), 3.38-3.50 (m, 2 H), 4.06-4.20 (m, 3 H), 7.10-7.13 (m, 1 H), 7.18-7.30 (m, 4 H), 7.59 (t, J = 7.8 Hz, 1 H), 7.79 (d, J = 7.8 Hz, 1 H), 8.01 (d, J = 7.8 Hz, 1 H), 8.11 (s, 1 H).

Reference Example 14: Preparation of 1-benzyl-4-[{N-(tert-butoxycarbonyl)glycyl}amino]piperidine.

A solution of 4-amino-1-benzylpiperidine (3.80 g, 20 mmol) in CH₂Cl₂ (40 mL) was treated with N-(tert-butoxycarbonyl)glycine (3.48 g, 20 mmol), EDCI (4.02 g, 21 mmol) and HOBt (2.83 g, 21 mmol). After the reaction mixture was stirred at room temperature for 12 h, 2 N NaOH solution (20 mL) was added. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (20 mL x 2). The combined organic layers were washed with water (20 mL) and brine (20 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO₂, ethyl acetate/MeOH/Et₂N = 85/12/3) afforded 1-benzyl-4-(N-(tert-butoxycarbonyl)glycyl)aminopiperidine (6.59 g, 95%).

20 Reference Example 15: Preparation of 1-(4-Chlorobenzyl)-4-(glycylamino)piperidine.

25

To a solution of 1-benzyl-4- $\{N-(tert-butoxycarbonyl)glycyl\}$ aminopiperidine (6.59 g) in methanol (80 mL) was added 4 N HCl in dioxane (19 mL). The solution was stirred at room temperature for 2 h. The reaction mixture was concentrated and 2 N aqueous NaOH solution (20

mL) was added. The mixture was extracted with dichloromethane (40 mL x 3), and the combined extracts were dried over anhydrous sodium sulfate and concentrated. Column chromatography (SiO₂, AcOEt/MeOH/Et₃N = 85/12/3) gave 1-(4-chlorobenzyl)-4-(glycylamino)piperidine (3.91 g, 83%): 1 H NMR (CDCl₃, 400 MHz) d 1.47-1.59 (m, 2 H), 1.59 (br, 2 H), 1.76-1.96 (m, 2 H), 2.10-2.19 (m, 2 H), 2.75-2.87 (m, 2 H), 3.29 (s, 2 H), 3.50 (s, 2 H), 3.65-3.89 (m, 1 H), 7.15-7.23 (m, 1 H), 7.23-7.33 (m, 5 H).

Other 4-acylamino-1-benzylpiperidines were also synthesized pursuant to methods of Reference Example 13 and 14 using the corresponding reactant respectively.

```
4-(\beta-alanylamino)-1-benzylpiperidine: 2.46 g, 51% (2 steps). 1-benzyl-4-((S)-leucylamino)piperidine: 1.78 g, 74% (2 steps). 1-benzyl-4-((R)-leucylamino)piperidine: 1.48 g, 61% (2 steps).
```

Example 983: Preparation of 4-(N-benzoylglycyl)amino-1-benzylpiperidine (Compound No. 386).

A solution of benzoyl chloride (0.060 mmol) in chloroform (0.4 mL) was added to a solution of 1-(4-chlorobenzyl)-4-(glycylamino)piperidine (0.050 mmol) and triethylamine (0.070 mmol) in chloroform (1.0 mL). After the reaction mixture was agitated at room temperature for 2.5 h, (aminomethyl)polystyrene resin (1.04 mmol/g, 50 mg, 50 mmol) was added and the mixture was agitated at room temperature for 12 h. The reaction mixture was filtered and the resin was washed with dichloromethane (0.5 mL). The filtrate and washing were combined, dichloromethane (4 mL) was added, and the solution was washed with 2 N aqueous NaOH solution (0.5 mL) to give 4-(N-benzoylglycyl)amino-1-benzylpiperidine (compound No. 386) (11.3 mg, 64%): The purity was determined by RPLC/MS (94 %); ESI/MS m/e 352.0 (M*+H, $C_{21}H_{25}N_3O_2$).

30 Examples 984-1034.

The compounds of this invention were synthesized pursuant to methods of Example 983 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 23.

35

15

20

25

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 984	384	C22 H26 C1 N3 O2	400	60.0	quant
Example 985	385	C21 H23 C1 N4 O4	431	58.7	91
Example 986	387	C25 H27 N3 O2	402.5	15.5	77
Example 987	388	C21 H24 N4 O4	397.0	16.2	82
Example 988	389	C23 H27 N3 O4	410.0	16.2	79
Example 989	390	C22 H24 F3 N3 O2	420.0	17.4	83
Example 990	391	C22 H23 F4 N3 O2	438.0	18.4	84
Example 991	392	C22 H24 F3 N3 O3	436.0	17.1	79
Example 992	393	C21 H24 Br N3 O2	430.0	18.0	84
Example 993	394	C21 H24 Cl N3 O2	386.0	16.4	85
Example 994	395	C21 H24 Br N3 O2	430.0	17.2	80
Example 995	396	C21 H23 F2 N3 O2	388.0	15.1	78
Example 996	397	C21 H23 C12 N3 O2	420.0	11.7	56
Example 997	398	C22 H27 N3 O2	366.0	13.1	72
Example 998	399	C26 H29 N3 O2	416.0	15.8	76
Example 999	400	C22 H26 N4 O4	411.0	17.4	85
Example 1000		C24 H29 N3 O4	424.0	16.9	80
Example 1001		C23 H26 F3 N3 O2	434.0	17.7	82
Example 1002		C23 H25 F4 N3 O2	452.0	18.6	82
Example 1003		C23 H26 F3 N3 O3	450.0	17.8	79
Example 1004		C22 H26 Br N3 O2	444.0	17.9	81
Example 1005		C22 H26 C1 N3 O2	400.0	15.5	78
Example 1006		C22 H26 Br N3 O2	444.0	17.8	80
Example 1007		C22 H25 F2 N3 O2	402.0	15.6	78
Example 1008		C22 H25 C12 N3 O2	434.0	17.6	81
Example 1009		C25 H33 N3 O2	408.0	16.2	79
Example 1010		C29 H35 N3 O2	458.5	18.8	82
Example 1011		C25 H32 N4 O4	453.0	19.4	86
Example 1012		C27 H35 N3 O4	466.0	19.8	85
Example 1013		C26 H32 F3 N3 O2	476.0	20.2	85
Example 1014		C26 H31 F4 N3 O2	494.0	20.5	83
Example 1015		C26 H32 F3 N3 O3	492.0	19.5	79
Example 1016		C25 H32 Br N3 O2	486.0	19.1	79
Example 1017		C25 H32 C1 N3 O2	442.0	17.7	80
Example 1018		C25 H32 Br N3 O2	486.0	20.3	83
Example 1019		C25 H31 F2 N3 O2	444.0	18.6	84
Example 1020		C25 H31 C12 N3 O2	476.0	19.4	81
Example 1021	422	C25 H33 N3 O2	408.0	14.4	71

Example 1022	423	C29 H35 N3 O2	458.0	16.4	72
Example 1023	424	C25 H32 N4 O4	453.0	18.1	80
Example 1024	425	C27 H35 N3 O4	466.0	16.4	70
Example 1025	426	C26 H32 F3 N3 O2	476.0	17.3	73
Example 1026	427	C26 H31 F4 N3 O2	494.0	18.8	76
Example 1027	428	C26 H32 F3 N3 O3	492.0	18.4	75
Example 1028		C25 H32 Br N3 O2	486.0	17.9	74
Example 1029		C25 H32 C1 N3 O2	442.0	15.7	71
Example 1030		C25 H32 Br N3 O2	486.0	17.7	73
Example 1031		C25 H31 F2 N3 O2	444.0	16.6	75
Example 1032		C25 H31 C12 N3 O2	476.0	18.7	78
Example 1033		C22 H23 C1 F3 N3 O2	454	32.5*	53
Example 1034		C21 H24 Cl N3 O2	386	55.2*	quant
_			l		

^{*}Yield of TFA salt.

5

10

15

20

25

Reference Example 16: Preparation of 3-Carbamoyl-1-(4-chlorobenzyl)piperidine.

A solution of nipecotamide (6.40 g, 50 mmol) in CH₃CN (150 mL) and ethanol (20 mL) was treated with Et₃N (7.0 mL, 50 mmol) and 4-chlorobenzyl chloride (8.05 g, 50 mmol). The reaction mixture was stirred at 50 °C for 16 h. After cooling to room temperature, saturated aqueous NaHCO₃ (50 mL) and water (150 mL) was added to the reaction mixture. The mixture was extracted with ethyl acetate (150 mL x 3) and the combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated to give a pale red solid. The crude solid was washed with ether (100 mL) to afford 3-carbamoyl-1-(4-chlorobenzyl)piperidine (6.98 g, 54%).

Reference Example 17: Preparation of 3-(Aminomethyl)-1-(4-chlorobenzyl)piperidine.

3-Carbamoyl-1-(4-chlorobenzyl)piperidine (3.80 g, 15 mmol) was dissolved in THF (30 mL) and 1 M BH₃-THF (9.4 mL) was added to the solution. The reaction mixture was stirred at 70 °C for 15 h. After the mixture was cooled to 0 °C, 2 N aqueous HCl solution (50 mL) was added and the mixture was stirred at room temperature for additional 3 h, basicified with 4 N aqueous NaOH solution, and extracted with ethyl acetate (100 mL x 3). The combined extracts were washed with brine, dried over anhydrous Na_2SO_4 , filtered and concentrated. Column chromatography (SiO₂, ethyl acetate/EtOH/Et₃N = 80/15/5) afforded 3-(aminomethyl)-1-(4-chlorobenzyl)piperidine (2.05 g, 55%): H NMR (CDCl₃, 400 MHz) δ 1.00-1.09 (m, 1 H), 1.50-1.87 (m, 7 H), 1.97-2.06 (m, 1 H), 2.65-2.77

(m, 2 H), 3.16-3.26 (m, 2 H), 3.32 (s, 2 H), 3.40 (d, J = 13.3 Hz, 1 H), 3.49 (d, J = 13.3 Hz, 1 H), 7.22-7.33 (m, 5 H).

Example 1035: Preparation of 3-{(N-Benzoylglycyl)amino}methyl-1-(4-chlorobenzyl)piperidine (Compound No. 434).

A solution of benzoyl chloride (0.060 mmol) in chloroform (0.4 mL) was added to a solution of 3-(aminomethyl)-1-(4-chlorobenzyl)piperidine (0.050 mmol) and triethylamine (0.070 mmol) in chloroform (1.0 mL). After the reaction mixture was agitated at room temperature for 2.5 h, (aminomethyl)polystyrene resin (1.04 mmol/g, 50 mg, 50 mmol) was added and the mixture was agitated at room temperature for 12 h. The reaction mixture was filtered and the resin was washed with dichloromethane (0.5 mL). The filtrate and washing were combined, dichloromethane (4 mL) was added, and the solution was washed with 2 N aqueous NaOH solution (0.5 mL) to give $3-\{(N-\text{benzoylglycyl}) \text{amino}\} \text{methyl-1-}(4-\text{chlorobenzyl}) \text{piperidine (compound No. 434) (14.7 mg, 74%): The purity was determined by RPLC/MS (91%); ESI/MS m/e 400 (M*+H, C22H26ClN3O2).$

Examples 1036-1058.

5

10

15

The compounds of this invention were synthesized pursuant to methods of 20 Example 1035 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 24.

Table 24

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1036	435	C26 H28 Cl N3 O2	450	16.0	71
Example 1037	436	C22 H25 Cl N4 O4	445	18.9	85
Example 1038	437	C24 H28 Cl N3 O4	458	18.2	79
Example 1039	438	C23 H25 Cl F3 N3 O2	468	19.0	81
Example 1040	439	C23 H24 C1 F4 N3 O2	4.86	20.2	83
Example 1041	440.	C23 H25 Cl F3 N3 O3	484	18.9	78
Example 1042	441	C22 H25 Br Cl N3 O2	478	19.2	80
Example 1043	442	C22 H25 C12 N3 O2	434	17.3	80
Example 1044	443	C22 H25 Br Cl N3 O2	478	18.8	79
Example 1045	444	C22 H24 C1 F2 N3 O2	436	16.7	77
Example 1046	445	C22 H24 C13 N3 O2	468	17.9	76
Example 1047	446	C23 H28 Cl N3 O2	414	14.6	71
Example 1048	447	C27 H30 C1 N3 O2	464	17.0	73

Example 1049	448	C23 H27 C1 N4 O4	459	19.5	85
Example 1050	449	C25 H30 Cl N3 O4	472	17.1	72
Example 1051	450	C24 H27 C1 F3 N3 O2	482	19.4	81
Example 1052	451	C24 H26 Cl F4 N3 O2	500	18.2	73
Example 1053	452	C24 H27 Cl F3 N3 O3	498	18.8	76
Example 1054	453	C23 H27 Br Cl N3 O2	492	19.4	79
Example 1055	454	C23 H27 C12 N3 O2	448	16.5	74
Example 1056	455	C23 H27 Br Cl N3 O2	492	19.3	78
Example 1057	456	C23 H26 Cl F2 N3 O2	450	17.1	76
Example 1058	457	C23 H26 C13 N3 O2	482	16.9	70

Reference Example 18: Preparation of 4-(Aminomethyl)-1-(4-chlorobenzyl)piperidine.

A solution of 4-(aminomethyl)piperidine (7.00 g, 61.3 mmol) in CH₂CN (100 mL) was treated sequentially with K_2CO_3 (3.02 g) and 4-chlorobenzyl chloride (3.52 g, 21.8 mmol). The reaction mixture was heated to 60 °C for 16 h, cooled to 25 °C and concentrated. The residue was partitioned between CH_2Cl_2 (75 mL) and water (50 mL), and was washed with water (2 x 50 mL) and brine (1 x 50 mL). The organic phase was dried (MgSO₄) and concentrated. Chromatography (SiO₂, 4% H_2O^{-1} PrOH) afforded 4-(aminomethyl)-1-(4-chlorobenzyl)piperidine (3.58 g, 69%).

Example 1059: Preparation of 4-{(N-Benzoylglycyl)amino)methyl-1-(4-chlorobenzyl)piperidine (Compound No. 458).

A solution of 4-(aminomethyl)-1-(4-chlorobenzyl)piperidine (50 mg, 0.21 mmol) in CH_2Cl_2 (1 mL) was treated with hippuric acid (38 mg, 0.21 mmol), EDCI (48 mg, 0.24 mmol), HOBt (31 mg, 0.23 mmol) and Et_3N (38 μL , 0.27 mmol). The reaction mixture was stirred for 16 h at 25 °C, diluted with 1 mL of CH_2Cl_2 , washed with 2 N aqueous NaOH solution (2 x 0.75 mL), dried (MgSO₄) and concentrated. Chromatography (SiO₂, 6 to 8% CH_3OH/CH_2Cl_2 gradient elution) afforded 4-((N-benzoylglycyl)amino)methyl-1-(4-chlorobenzyl)piperidine (compound No. 458) which was treated with TFA to give a TFA salt(105 mg, 97%): The purity was determined by RPLC/MS (85%); ESI/MS m/e 400 (M*+H, $C_{22}H_{26}ClN_3O_2$).

Examples 1060-1086.

5

10

15

20

25

The compounds of this invention were synthesized pursuant to methods of Example 1059 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 25.

Table 25

	Compound	Molecular Formula	FST/MS m/o	Yield (mg)	22:-11 (0)
	No.	Morecular Tormara	ESI/MS M/e		Yield (%)
Example 1060	459	C23 H28 C1 N3 O2	414	86*	78
Example 1061	460	C23 H28 C1 N3 O2	414	55	quant
Example 1062	461	C23 H25 C1 F3 N3 O2	468	65	quant
Example 1063	462	C23 H28 C1 N3 O2	414	61	quant
Example 1064	463	C23 H28 Cl N3 O2	414	54	quant
Example 1065	464	C25 H32 Cl N3 O5	490	56	quant
Example 1066	465	C21 H 25 Cl N4 O2	401	38	96
Example 1067	466	C22 H25 Cl N4 O4	445	15	34
Example 1068	557	C23 H28 Cl N3 O2	414	58*	66
Example 1069	558	C23 H 28 Cl N3 O2	414	55	quant
Example 1070	618	C25 H32 Cl N3 O2	442	58	quant
Example 1071	686	C26 H34 Cl N3 O2	456	62	quant
Example 1072	749	C34 H37 Cl N4 O2	569	7.2*	18
Example 1073	750	C24 H30 Cl N3 O3	444	4.7*	14
Example 1074	840	C24 H29 Cl N2 O2	413	52*	58
Example 1075	841	C23 H27 Cl N2 O2	399	52	quant
Example 1076	842	C23 H26 C12 N2 O2	433	55	quant
Example 1077	843	C25 H31 C1 N2 O2	427	58	quant
Example 1078	844	C24 H29 Cl N2 O2	413	56	quant
Example 1079	845	C24 H29 C1 N2 O4 S	477	62	quant
Example 1080	846	C29 H31 Cl N2 O3	491	43	88
Example 1081		C24 H28 Cl F N2 O3	447	54	quant
Example 1082	848	C25 H31 Cl N2 O2	427	47	quant
Example 1083		C25 H31 C1 N2 O4	459	55	quant
Example 1084		C22 H27 C1 N2 O3 S	435	46	quant
Example 1085		C20 H28 C1 N3 O2	378	44.8	quant
Example 1086	874	C23 H27 C12 N3 O3	464	51	quant

^{*}Yield of TFA salt. '

10

Reference Example 19: Preparation of $1-(4-\text{Chlorobenzyl})-4-\{N-(3,3-\text{diphenylpropyl})\}$ aminomethyl)piperidine.

4-(Aminomethyl)-1-(4-chlorobenzyl)piperidine (120 mg) was alkylated with 3,3-diphenylpropyl methanesulfonate (1.0 equiv.) in the presence of NaI (2.6 equiv.) in CH₂CN at 70 °C for 16 h. General workup and column chromatography (SiO₂) afforded $1-(4-chlorobenzyl)-4-\{N-(3,3-4)\}$

diphenylpropyl)aminomethyl)piperidine (118 mg, 54%): The purity was determined by RPLC (98%).

Reference Example 20: Preparation of $1-(4-\text{Chlorobenzyl})-4-\{N-(2,2-\text{diphenylethyl})\}$ aminomethyl) piperidine.

Reductive amination of 4-(aminomethyl)-1-(4-chlorobenzyl)piperidine (120 mg) with 2,2-diphenylacetaldehyde (0.66 equiv.) and polymer-supported borohydride in methanol at 25 °C for 16 h, followed by general workup and column chromatography (SiO₂) afforded 1-(4-chlorobenzyl)-4-(N-(2,2-diphenylethyl)aminomethyl)piperidine (70 mg, 49%): The purity was determined by RPLC (98%).

Example 1087: Preparation of $4-\{N-(N-\text{Benzoylglycyl})-N-(2,2-\text{diphenylethyl}) aminomethyl}-1-(4-chlorobenzyl) piperidine (Compound No. 524).$

A solution of $1-(4-\text{chlorobenzyl})-4-\{N-(2,2-\text{diphenylethyl})\}$ aminomethyl}piperidine (0.084 mmol) in CH_2Cl_2 was treated with hippuric acid (1.1 equiv.), HBTU (1.1 equiv.), HOBt (1.1 equiv.). The reaction mixture was stirred at 40 °C for 24 h. General workup and preparative TLC (SiO₂) afforded $4-\{N-(N-\text{benzoylglycyl})-N-(2,2-\text{diphenylethyl})\}$ aminomethyl-1-(4-chlorobenzyl) piperidine (Compound No. 524) (8.5 mg, 17%): The purity was determined by RPLC/MS (98%); ESI/MS m/e 580 (M $^+$ H, C36H38ClN3O2).

Examples 1088-1090.

5

10

15

20

30

The compounds of this invention were synthesized pursuant to methods of Example 1087 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 26.

Table 26

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1088	521	C38 H39 Cl F3 N3 O2	662	5.5	10
Example 1089	522	C37 H37 Cl F3 N3 O2	648	8.6	16
Example 1090	523	C37 H40 Cl N3 O2	594	4.8	10

Reference Example 21: Preparation of 1-(4-Chlorobenzyl)-4-{ (valylamino)methyl}piperidine.

A solution of 4-(aminomethyl)-1-(4-chlorobenzyl)piperidine (1.0 g, 4.2

mmol) in CH_2Cl_2 (21 mL) was treated with Et_3N (0.76 mL, 5.44 mmol), dl-N-(tert-butoxycarbonyl) valine (1.09 g, 5.03 mmol), EDCI (883 mg, 4.61 mmol) and HOBt (623 mg, 4.61 mmol). The reaction mixture was stirred at 25 °C for 16 h. The resulting solution was diluted with CH_2Cl_2 (20 mL), and washed with 2 N NaOH solution (2 x 20 mL), brine (1 x 20 mL) and dried (MgSO₄). Concentration and chromatography (SiO₂, 3% CH_3OH/CH_2Cl_2) afforded 1-(4-chlorobenzyl)-4-[(N-Boc-valyl)amino)methyl]piperidine (1.1 g, 60%) as a pale amber oil: ESI/MS m/e 438 (M⁺+H).

5

25

1-(4-Chlorobenzyl)-4-[{(N-Boc-valyl)amino}methyl]piperidine (1.1 g, 2.51 mmol) was dissolved in 3 M HCl-CH₃OH solution (25 mL) and stirred at 25 °C for 1 h. The reaction mixture was concentrated and the resulting salt was dissolved in 3:1 ^tBuOH-H₂O (25 mL). Anion (OH) exchange resin was added until the solution was slightly basic. Filtration and concentration afforded 1-(4-chlorobenzyl)-4-{(valylamino)methyl)piperidine (819 mg, 97%) which required no further purification: RPLC (97%); ESI/MS 338.1 (M+H, C₁₈H₂₈ClN₃O).

Other 4-{(acylamino)methyl}-1-(4-chlorobenzyl)piperidines were also synthesized pursuant to methods of Reference Example 20 using the corresponding reactant respectively.

 $1-(4-chlorobenzyl)-4-\{(serylamino)methyl\}piperidine: 0.286 g, 20\% (2 steps); ESI/MS 326 (M*+H).$

4-{(alanylamino)methyl}-1-(4-chlorobenzyl)piperidine: 1.20 g, 65% (2 steps); ESI/MS 310 ($M^{\dagger}+H$).

l-(4-chlorobenzyl)-4-{(prolylamino)methyl}piperidine: 1.48 g, 86% (2 steps); ESI/MS 336 (M^++H).

1-(4-chlorobenzyl)-4-{(glutaminylamino)methyl}piperidine: 0.830 g, 27% (2 steps); ESI/MS 367 (M^+H).

 $1-(4-chlorobenzyl)-4-\{((\textit{O-methylseryl})\,amino)\,methyl\}\,piperidine: \\ ,0.686~g,~38\%~(2~steps);~ESI/MS~340~(M^++H).$

1-(4-chlorobenzyl)-4-{((1-

aminocyclopropylcarbonyl)amino)methyl}piperidine: 2.03 g, 82% (2 steps); ESI/MS 322 (M*+H).

l-(4-chlorobenzyl)-4-{(leucylamino)methyl}piperidine: 1.30 g, 58% (2 steps); ESI/MS 352 ($M^{+}H$).

 $1-(4-chlorobenzyl)-4-\{((O-benzylseryl)amino)methyl\}piperidine: 1.34$ g, 56% (2 steps); ESI/MS 416 (M*+H).

Reference Example 22: Preparation of 1-(tert-Butoxycarbonyl)-4-[{N-(9-fluorenylmethyloxycarbonyl)glycyl}aminomethyl]piperidine.

A solution of 4-(aminomethyl)-1-(tert-butoxycarbonyl)piperidine (5.72 g) in CH_2Cl_2 (150 mL) was treated with Et_3N (3.51 g), N-(9-fluorenylmethyloxycarbonyl)glycine (7.93 g, 26.7 mmol), EDCI (3.80 g) and HOBt (4.33 g). After the reaction mixture was stirred at room temperature for 5 h, the mixture was washed with water (100 mL x 3) and brine (100 mL x 2), dried over anhydrous sodium sulfate, filtered, and concentrated. Recrystallization from CH_3CN/CH_3OH (150 mL/1 mL) at 0 °C afforded 1-(tert-Butoxycarbonyl)-4-[{N-(9-fluorenylmethyloxycarbonyl)glycyl}aminomethyl]piperidine (5.75 g, 44%) as pale yellow crystals.

15

20

25

30

35

10

5

Reference Example 23: Preparation of 4-[{N-(9-Fluorenylmethyloxycarbonyl)glycyl}aminomethyl]piperidine.

fluorenylmethyloxycarbonyl)glycyl}aminomethyl]piperidine (3.17 g, 6.42 mmol) was added 4 N HCl in dioxane (50 mL). The solution was stirred at room temperature for 5 h. The reaction mixture was concentrated to give $4-[\{N-(9-fluorenylmethyloxycarbonyl)glycyl\}aminomethyl]piperidine (3.85 g) as a white solid. The product was used without further purification.$

Reference Example 24: Preparation of 4-[{N-(9-Fluorenylmethyloxycarbonyl)glycyl}aminomethyl]-1-(4-methylthiobenzyl)piperidine.

of 4-[{N-(9solution Α fluorenylmethyloxycarbonyl)glycyl}aminomethyl]piperidine (1.00 g, 2.33 mmol) in 1% AcOH/DMF (15 mL) were added 4-methylthiobenzaldehyde (1.24 g) and NaBH(OAc) (2.56 g). The reaction mixture was stirred at 60 $^{\circ}\text{C}$ for 1 h, cooled to room temperature, and concentrated. Saturated aqueous NaHCO3 solution (50 mL) was added and the mixture was extracted with AcOEt (50 mL x 2). The combined extracts were dried over anhydrous sodium sulfate, filtered, and concentrated. Column afforded 5%-10% CH₃OH/CH₂Cl₂) (SiO2, chromatography fluorenylmethyloxycarbonyl)glycyl)aminomethyl]-1-(4methylthiobenzyl)piperidine (602 mg) as a colorless oil.

Reference Example 25: Preparation of $.1-(4-\text{Ethylbenzyl})-4-[\{N-(9-\text{fluorenylmethyloxycarbonyl})]$ glycyl}aminomethyl]piperidine.

fluorenylmethyloxycarbonyl)glycyl)aminomethyl]piperidine (1.00 g, 2.33 mmol) in 2.5% AcOH/CH₃OH (80 mL) were added 4-ethylbenzaldehyde (1.09 g, 8.16 mmol) and NaBH₃CN (6.59 g, 10.5 mmol). The reaction mixture was stirred at 60 °C for 13 h. After the mixture was cooled to room temperature, 1 N aqueous NaOH solution (50 mL) and dichloromethane (50 mL) were added. The organic layer was separated and the aqueous layer was extracted with dichloromethane (50 mL x 3). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO2, CH₃OH/AcOEt 2 : 8) afforded 1-(4-ethylbenzyl)-4-[{N-(9-fluorenylmethyloxycarbonyl)glycyl}aminomethyl]piperidine (740 mg, 62%).

5

10

20

25

Reference Example 26: Preparation of 4-{(Glycylamino)methyl}-1-(4-methylthiobenzyl)piperidine.

A solution of 4-[N-(9-1)] fluorenylmethyloxycarbonyl)glycyl)aminomethyl]-1-(4-

methylthiobenzyl)piperidine (590 mg) and piperidine (1 mL) in DMF (4 mL) was stirred at room temperature for 2 h. Concentration and column chromatography (SiO₂, Et₃N : CH₃OH : CH₂Cl₂ = 1 : 1 : 9) afforded 4-{(glycylamino)methyl}-1-(4-methylthiobenzyl)piperidine (365 mg) as a white solid: 1 H NMR (CDCl₃, 270 MHz) δ 1.25(dd, J = 12 Hz, 4.1 Hz, 2 H), 1.34(dd, J = 12 Hz, 4.1 Hz, 2 H), 1.51 (br-s, 2 H), 1.66 (d, J = 12 Hz, 2 H), 1.77 (d, J = 7.3 Hz, 1 H), 1.94 (t, J = 9.5 Hz, 2 H), 2.48 (s, 3 H), 2.80 (d, J = 12 Hz, 2 H), 3.18 (t, J = 6.2 Hz, 2 H), 3.35 (s, 2 H), 3.45 (s, 2 H), 7.18-7.29 (m, 4 H), 7.35 (br-s, 1 H).

1-(4-Ethylbenzyl)-4-{(glycylamino)methyl}piperidine was also synthesized pursuant to methods of Reference Example 25 using the corresponding reactant: 333 mg, 79%.

Reference Example 27: Preparation of 4-{(glycylamino)methyl}-1-(4-fluorobenzyl)piperidine.

A solution of 4-[N-(9-

fluorenylmethyloxycarbonyl)glycyl)aminomethyl]piperidine (1.50 g, 3.49 mmol), 4-fluorobenzyl bromide (0.478 mL, 3.84 mmol), and Et₃N (1.47 mL, 10.5 mmol) in CH₃CN (200 mL) was stirred at room temperature for 13 h and concentrated. Column chromatography (SiO2, 10% CH₃OH/CH₂Cl₂) afforded 4-[{N-(9-

fluorenylmethyloxycarbonyl)glycyl}aminomethyl]-1-(4-fluorobenzyl)piperidine.

WO 99/25686

5

10

15

20

25

30

35

A solution of the $4-[\{N-(9-1)\}]$ fluorenylmethyloxycarbonyl)glycyl}aminomethyl]-1-(4-fluorobenzyl)piperidine and piperidine (5 mL) in DMF (5 mL) was stirred at room temperature for 17 h. Concentration and column chromatography (SiO₂, Et₃N : CH₃OH : CH₂Cl₂ = 0.5: 2: 8) afforded $4-\{(glycylamino)methyl\}-1-(4-fluorobenzyl)piperidine (453 mg, 468).$

Reference Example 28: Preparation of 4-{(glycylamino)methyl}-1-{4-(N-phenylcarbamoyl)benzyl}piperidine.

Example 1091: Preparation of 1-(4-Chlorobenzyl)-4-[{N-(3-cyanobenzoyl)valyl}aminomethyl]piperidine (Compound No. 619).

A solution of $1-(4-\text{chlorobenzyl})-4-\{(\text{valylamino})\text{ methyl}\}\text{piperidine}$ (20 mg, 0.059 mmol) in CH_2Cl_2 (0.60 mL) was treated with Et_3N (0.011 mL, 0.077 mmol), m-cyanobenzoic acid (28 mg, 0.071 mmol), EDCI (13 mg, 0.065 mmol) and HOBt (9 mg, 0.065 mmol). The reaction mixture was stirred at 25 °C for 16 h. The resulting solution was diluted with CH_2Cl_2 (0.75 mL), washed with 2 N aqueous NaOH solution (2 x 0.75 mL) and dried by filtration through a PTFE membrane. Concentration afforded the $1-(4-\text{chlorobenzyl})-4-[\{\text{N}-(3-\text{cyanobenzoyl})\text{valyl}\}$ aminomethyl]piperidine (compound No. 619) (24.2 mg, 88%) which required no further purification: The purity was determined by RPLC/MS (85%); ESI/MS m/e 467 (M*+H, C26H31ClN4O2).

Examples 1092-1543.

The compounds of this invention were synthesized pursuant to methods of Example 1091 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 27.

Table 27

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1092	467	C22 H25 Br Cl N3 O2	478	11	46
Example 1093	468	C24 H31 Cl N4 O2	443	9	41
Example 1094	469	C23 H28 C1 N3 O3	430	7*	27
Example 1095	470	C23 H25 C1 N4 O2	425	21	quant
Example 1096	471	C24 H28 C1 N3 O4	458	7	29
Example 1097	472	C29 H31 N3 O3	. 504	5*	21
Example 1098	473	C24 H28 C1 N3 O3	442	16	71
Example 1099	474	C23 H25 C1 F3 N3 O2	468	14	60
Example 1100	475	C25 H32 Cl N3 O2	442	5 .	22
Example 1101	476	C22 H25 C1 N4 O4	445	4	17
Example 1102	477	C25 H32 C1 N3 O3	458	10*	36
Example 1103	478	C21 H27 C1 N4 O2	403	9	47
Example 1104	479	C20 H24 C1 N3 O3	390	17	87
Example 1105	480	C20 H23 Br Cl N3 O3	470	23	quant
Example 1106	481	C20 H24 Cl N3 O2 S	406	.7	33
Example 1107	482	C21 H26 Cl N3 O2 S	420	9	. 45
Example 1108	483	C21 H26 C1 N3 O2 S	420	8	40
Example 1109	484	C24 H27 Cl N4 O2	439	9*	34
Example 1110	485	C24 H24 Cl F6 N3 O2	536	13 .	49
Example 1111	486	C23 H25 Cl N4 O2	425	16	74
Example 1112	487	C22 H25 C12 N3 O2	434	5	24
Example 1113	488	C22 H27 Cl N4 O2	415	7	32
Example 1114	489	C24 H24 Cl F6 N3 O2	536	21	78
Example 1115	490	C24 H30 Cl N3 O3	444	8	35
Example 1116	491	C23 H24 C1 F4 N3 O2	486	19	79
Example 1117		C23 H25 Cl F3 N3 O3	484	18	76
Example 1118	493	C23 H24 C12 F3 N3 O2	502	23	92
Example 1119		C23 H24 C1 F4 N3 O2	486	19	79
Example 1120		C23 H24 Cl F4 N3 O2	486	20	83
Example 1121		C23 H24 Cl F4 N3 O2	486	12	48
Example 1122		C25 H32 C1 N3 O3	458	4	16
Example 1123		C23 H26 C1 F3 N4 O2	483	13	52
Example 1124		C24 H31 Cl N4 O2	443	8	36
Example 1125		C23 H28 C1 N3 O3	430	10	48
Example 1126		C22 H24 Br Cl N4 O4	523	10	39
Example 1127	502	C22 H24 Cl F N4 O4	463	4	17

Example 1128	503	C22 H24 C12 N4 O4	479	12	52
Example 1129	504	C24 H30 Cl N3 O4	460	11	43
Example 1130	505	C22 H24 Br Cl N4 O4	523	2	8
Example 1131	506	C20 H23 C1 N4 O5	435	2	10
	507	C21 H26 C1 N3 O3	404	9	44
Example 1132	508	C24 H26 C1 N3 O3	456	1	5
Example 1133		C20 H23 Br Cl N3 O2 S	484	12	48
Example 1134	509		418	9	44
Example 1135	510	C22 H28 C1 N3 O3		9	
Example 1136	511	C24 H32 C1 N3 O3	446		40
Example 1137	512	C25 H29 C1 N4 O2	453	10	45
Example 1138	513	C24 H28 C1 N3 O3	442	9	41
Example 1139	514	C26 H34 C1 N3 O2	456	11	49
Example 1140	515	C23 H28 C1 N3 O3	430	5 ·	24
Example 1141	525	C23 H28 C1 N3 O4 S	478	20	85
Example 1142	526	C20 H24 C1 N3 O3	390	6	31
Example 1143	527	C20 H24 C1 N3 O2 S	406	8	39
Example 1144	528	C25 H30 C1 F3 N4 O4	543	28.2	95
Example 1145	529	C20 H23 C1 N4 O4 S	451	9	39
Example 1146	530	C31 H33 Cl N4 O2	529	5	17 .
Example 1147	531	C21 H26 Cl N3 O3 S	436	8	37
Example 1148	532	C22 H28 Cl N3 O3	418	8	40
Example 1149	533	C21 H26 Cl N3 O3	404	6	32
Example 1150	534	C21 H25 Cl N4 O5	449	5	20
Example 1151	535	C22 H26 C1 N3 O3 S	448	8	37
Example 1152	536	C23 H31 Cl N4 O2	431	6	28
Example 1153	537	C25 H34 C1 N3 O3	460	8	34
Example 1154	538	C27 H30 C1 N3 O3	480	9	36
Example 1155	539	C22 H25 C1 F3 N3 O3	472	18	75
Example 1156	540	C25 H29 Cl N4 O2	453	8	36
Example 1157	541	C22 H26 Cl N5 O4	460	2.4	10
Example 1158	542	C24 H30 Cl N3 O2	428	4.6*	51
Example 1159	543	C24 H30 Cl N3 O2	428	20.6*	71
Example 1160	544	C22 H25 Cl F N3 O2	418	15.8*	56
Example 1161	545	C22 H24 C13 N3 O2	468	7.3*	23
Example 1162	546	C22 H24 C13 N3 O2	468	17.4*	55
Example 1163	547	C22 H24 C13 N3 O2	468	14.1*	44
Example 1164	548	C22 H24 C13 N3 O2	468	6.8*	22
Example 1165	549	C22 H24 C12 N4 O4	479	5.7*	18
Example 1166	550	C22 H24 C12 N4 O4	479	18.9*	58
Example 1167	551	C24 H30 Cl N3 O2	428	14.2*	49
L	<u> </u>	<u> </u>	L	L	l

Example 1168	552	C24 H27 C1 F3 N3 O2	482	30.6*	94
Example 1169	553	C25 H26 C1 F6 N3 O2	550	38.0*	quant
Example 1170	554	C24 H26 C1 F N4 O2	457	0.9*	3
Example 1171	555	C24 H26 Cl2 N4 O2	473	11.1*	35
Example 1172	556	C25 H29 Cl N4 O2	453	12.5*	41
Example 1173	559	C25 H26 Cl F6 N3 O2	550	15	72
Example 1174	560	C24 H27 C1 N4 O2	439	12	68
Example 1175	561	C23 H27 Br Cl N3 O2	494	14	73
Example 1176	562	C23 H27 C12 N3 O2	448	13	75
Example 1177	563	C25 H26 C1 F6 N3 O2	550	14	66
Example 1178	564	C25 H32 C1 N3 O3	458	5	28
Example 1179	565	C24 H26 Cl F4 N3 O2	500	12	61
Example 1180	566	C24 H27 Cl F3 N3 O3	498	12	62
Example 1181	567	C24 H26 C12 F3 N3 O2	516	12	61
Example 1182	568	C24 H26 C1 F4 N3 O2	500	15	77
Example 1183	569	C24 H26 C1 F4 N3 O2	500	11	59
Example 1184	570	C24 H26 Cl F4 N3 O2	500	16	84
Example 1185	571	C26 H34 Cl N3 O3	472	14	77
Example 1186	572	C24 H28 Cl F3 N4 O2	497	11	55
Example 1187	573	C21 H25 Br Cl N3 O2 S	500	12	64
Example 1188	574	C21 H25 Br Cl N3 O2 S	500	15	75
Example 1189	575	C25 H34 C1 N3 O3	460	16	87
Example 1190	576	C22 H28 C1 N3 O2 S2	466	13	71
Example 1191	577	C22 H28 C1 N3 O3	418	12	72
Example 1192	578	C25 H28 C1 N3 O2 S	470	15 '	81
Example 1193	579	C25 H29 Cl N4 O2	453	17	94
Example 1194	580	C22 H28 C1 N3 O2 S	434	15	91
Example 1195	581	C21 H26 Cl N3 O2 S	420	13	80
Example 1196	582	C22 H28 C1 N3 O2 S	434	10	59
Example 1197	583	C26 H31 C1 N4 O2	. 467	6	31
Example 1198	584	C30 H32 C1 N3 O3	518	18	92
Example 1199	585	C24 H27 C1 N4 O2	439	14	85
Example 1200	586	C23 H27 C12 N3 O2	448	17	97
Example 1201	587	C24 H27 C1 F3 N3 O2	482	17	91
Example 1202	588	C23 H29 Cl N4 O2	429	5	29
Example 1203	589	C27 H36 Cl N3 O2	470	4	24
Example 1204	590	C26 H34 C1 N3 O2	456	6	36
Example 1205	591	C25 H33 C1 N4 O2	457	7	38
Example 1206	592	C24 H30 Cl N3 O3	444	4	20
Example 1207	593	C24 H30 Cl N3 O3	444	2	14

			430		25
Example 1208	594	C23 H28 C1 N3 O3		4	
Example 1209	595	C25 H30 Cl N3 O4	472	7	38
Example 1210	596	C25 H30 Cl N3 O3	456	7	40
Example 1211	597	C25 H30 C1 N3 O3	456	15	85
Example 1212	598	C21 H26 C1 N3 O3	404	15	94
Example 1213	599	C22 H29 Cl N4 O2	417	5	30
Example 1214	600	C21 H25 Br Cl N3 O3	484	6	34
Example 1215	601	C24 H30 Cl N3 O3	444	5	28
Example 1216	602	C25 H33 Cl N4 O2	457	5	28
Example 1217	603	C23 H29 Cl N4 O2	429	4	22
Example 1218	604	C21 H27 Cl N4 O2	403	9	58
Example 1219	605	C21 H26 Cl N3 O3	404	17	87
Example 1220	606	C21 H26 Cl N3 O2 S	420	15	74
Example 1221	607	C22 H28 Cl N3 O3 S	450	31	quant
Example 1222	608	C23 H30 Cl N3 O3	432	17	80
Example 1223	609	C22 H28 C1 N3 O3	418	18	89
Example 1224	610	C23 H28 Cl N3 O3 S	462	20	86
Example 1225	611	C26 H36 C1 N3 O3	474	21	90
Example 1226	612	C28 H32 C1 N3 O3	494	20	84
Example 1227	613	C23 H27 C1 F3 N3 O3	486	19	81
Example 1228	614	C24 H33 Cl N4 O2	445	23	quant
Example 1229	615	C25 H29 Cl N4 O2	453	4	20
Example 1230	616	C32 H35 Cl N4 O2	543	11	40
Example 1231	617	C25 H27 Cl F3 N3 O2	482	6.7	37
Example 1232	620	C25 H31 Br Cl N3 O2	520	15	49
Example 1233	621	C25 H31 C12 N3 O2	476	18	64
Example 1234	622	C27 H37 Cl N4 O2	485	14	50
Example 1235	623	C26 H34 C1 N3 O3	472	19	69
Example 1236	624	C25 H31 Cl N4 O4	487	21	73
Example 1237	625	C25 H33 C1 N4 O2	457	19	69
Example 1238	626	C27 H30 Cl F6 N3 O2	578	8	25
Example 1239	627	C27 H36 C1 N3 O3	486	16	55
Example 1240	628	C27 H34 Cl N3 O4	500	24	80
Example 1241	629	C26 H30 Cl F4 N3 O2	528	18	56
Example 1242	630	C26 H31 C1 F3 N3 O3	526	21	68
Example 1243	631	C26 H30 C12 F3 N3 O2	544	15	48
Example 1244	632	C26 H30 Cl F4 N3 O2	528	13	41
Example 1245	633	C26 H30 C1 F4 N3 O2	528	20	63
Example 1246	634	C26 H30 C1 F4 N3 O2	528	19	62
Example 1247		C28 H38 C1 N3 O3	500	11	36

In	626	[00.5 **0.4 =1 **0.5			
Example 1248	I	C26 H34 C1 N3 O2	456	21	89
Example 1249		C26 H31 Cl F3 N3 O2	510	20	95
Example 1250		C26 H31 C1 N4 O2	467	15	54
Example 1251		C27 H37 C1 N4 O2 .	485	19	66
Example 1252		C26 H34 Cl N3 O3	472	16	56
Example 1253		C27 H34 C1 N3 O4	500	18	59
Example 1254	642	C32 H36 C1 N3 O3	546	24	73
Example 1255	643	C26 H31 Cl F3 N3 O2	510	16	54
Example 1256	644	C29 H40 C1 N3 O2	498	18	61
Example 1257	645	C25 H33 C1 N4 O2	457	22	78
Example 1258	646	C26 H34 Cl N3 O3	472	13	47
Example 1259	647	C27 H34 Cl N3 O3 .	500	13	46
Example 1260	648	C28 H38 C1 N3 O2	484	17	60
Example 1261	649	C28 H38 C1 N3 O3	500	12.5	42
Example 1262	650	C32 H36 C1 N3 O3	546	1*	2
Example 1263	651	C28 H35 C1 N4 O2	495	4 *	12
Example 1264	652	C25 H31 Cl N4 O4	487	5*	14
Example 1265	653	C30 H42 C1 N3 O3	528	1*	3
Example 1266	654	C27 H34 Cl N3 O3	484	7*	21
Example 1267	655	C26 H32 Cl F3 N4 O2	525	6*	16
Example 1268	656	C23 H30 Cl N3 O3	432	6*	18
Example 1269	657	C23 H30 Cl N3 O2 S	448	4*	13.
Example 1270	658	C27 H33 C1 N4 O2	48	1*	4
Example 1271	659	C23 H29 Cl N4 O4 S	493	4*	10
Example 1272	660	C34 H39 C1 N4 O2	571	3*	7
Example 1273	661	C24 H32 C1 N3 O3 S	478	3*	7
Example 1274	662	C25 H34 Cl N3 O3	460	2*	6
Example 1275	663	C24 H32 C1 N3 O3	446	2*	5
Example 1276	664	C24 H31 C1 N4 O5	491	2*	5
Example 1277	665	C25 H32 C1 N3 O3 S	490	1*	3
Example 1278	666	C26 H37 C1 N4 O2	473	3*	7
Example 1279	667	C30 H36 C1 N3 O3	522	3*	7
Example 1280	668	C25 H31 C1 F3 N3 O3	514	2*	6
Example 1281	669	C24 H33 C1 N4 O2	445	15*	45
Example 1282	670	C23 H29 Br Cl N3 O3	510	3*	7
Example 1283	671	C23 H29 C1 N4 O5	477	2*	5
Example 1284	672	C23 H31 C1 N4 O2	431	2*	- i
Example 1285	673	C23 H30 C1 N3 O2 S	448	2*	6
Example 1286	674	C24 H32 C1 N3 O2 S	462	3*	9
Example 1287	675	C24 H32 C1 N3 O2 S	462	1*	4
		<u> </u>			

m 1 - 1000L					
Example 1288	-	C27 H33 Cl N4 O2	482	2*	6
Example 1289		C28 H35 Cl N4 O2	495	2*	6
Example 1290	1	C24 H32 Cl N3 O3	446	3*	9
Example 1291	679	C27 H32 Cl N3 O2 S	498	1*	3
Example 1292	680	C23 H29 Br Cl N3 O2 S	526	2*	6
Example 1293	681	C25 H34 C1 N3 O3	460	2*	5
Example 1294	682	C27 H38 Cl N3 O3	488	2*	4
Example 1295	683	C24 H32 Cl N3 O2 S2	494	1*	4
Example 1296	684	C26 H36 Cl N3 O4 S2	554	2* .	5
Example 1297	685	C24 H32 Cl N3 O4 S2	526	3*	7
Example 1298	687	C25 H30 C1 N3 O2	440	24	quant
Example 1299	688	C27 H28 Cl F6 N3 O2	576	28	98
Example 1300	689	C26 H29 Cl N4 O2	465	23	99
Example 1301	690	C25 H29 Br Cl N3 O2	518	26	99
Example 1302	691	C27 H35 Cl N4 O2	483	24	97
Example 1303	692	C26 H32 C1 N3 O3	470	24	quant
Example 1304	693	C27 H28 C1 F6 N3 O2	576	16	55
Example 1305	694	C27 H34 Cl N3 O3	484	25	quant
Example 1306	695	C27 H32 Cl N3 O4	498	12	47
Example 1307	696	C26 H29 Cl F3 N3 O3	524	25	95
Example 1308	697	C26 H29 Cl N4 O2 ·	465	15	64
Example 1309	698	C27 H35 Cl N4 O2	483	24	quant
Example 1310	699	C26 H32 Cl N3 O3	470	26	quant
Example 1311	700	C27 H32 Cl N3 O4	498	15	62
Example 1312	701	C27 H32 Cl N3 O3	482	11	44
Example 1313	702	C26 H29 C1 F3 N3 O2	508	23	94
Example 1314	703	C28 H36 Cl N3 O2	482	26	quant
Example 1315	704	C25 H29 Cl N4 O4	485	11	43
Example 1316	705	C24 H30 C1 N3 O2 S	460	25	quant
Example 1317	706	C24 H30 Cl N3 O2 S	460	25	quant
Example 1318	707	C26 H29 C1 F3 N3 O2	508	15	55
Example 1319	708	C23 H27 Br Cl N3 O2 S	526	25	92
Example 1320	709	C24 H30 Cl N3 O2 S2	492	26	quant
Example 1321	710	C23 H27 Br Cl N3 O2 S	526	25	94
Example 1322	711	C25 H32 C1 N3 O3	458	26	quant
Example 1323	712	C27 H30 Cl N3 O2 S	496	26	quant
Example 1324	713	C24 H30 Cl N3 O3	444	26	quant
Example 1325	714	C28 H33 Cl N4 O2	493	. 12	50
Example 1326	715	C23 H28 C1 N3 O2 S	446	24	quant
Ziiainput 2020			L		

			 _		
Example 1328		C23 H27 C1 N4 O5	475	23	95
Example 1329		C23 H29 Cl N4 O2	429	24	quant
Example 1330		C23 H28 C1 N3 O3	430	24	quant
Example 1331	720	C23 H27 Br Cl N3 O3	510	24	95
Example 1332		C24 H31 Cl N4 O2	443	22	98
Example 1333		C26 H32 C1 N3 O3	470	9	37
Example 1334	723	C25 H31 C1 N4 O2	455	10	44
Example 1335	724	C29 H38 C1 N3 O2	496	28	quant
Example 1336	725	C32 H34 C1 N3 O3	544	26	95
Example 1337	726	C27 H33 C1 N4 O3	497	3	11
Example 1338	727	C25 H29 C12 N3 O2	474	25	quant
Example 1339	728	C25 H31 Cl N4 O2	455	21	92
Example 1340	729	C25 H29 C1 N4 O4	485	26	quant
Example 1341	730	C25 H29 C12 N3 O2	474	21	90
Example 1342	731	C27 H32 C1 N3 O3	482	10	41.
Example 1343	732	C26 H28 C1 F4 N3 O2	526	27	quant
Example 1344	733	C28 H36 C1 N3 O3	498	22	89
Example 1345	734	C26 H28 Cl F4 N3 O2	526	25	94
Example 1346	735	C26 H28 Cl F4 N3 O2	526	23	87
Example 1347	736	C26 H30 C1 F3 N4 O2	523	24	78
Example 1348	737	C26 H28 C1 F4 N3 O2	526	2.1	66
Example 1349	738	C25 H32 C1 N3 O3	458	23	84
Example 1350	739	C27 H31 Cl N4 O2	479	19	66
Example 1351	740	C24 H31 C1 N4 O5	489	23	77
Example 1352	741	C23 H27 C1 N4 O4 S	491	26	8.8
Example 1353	742	C24 H30 Cl N3 O3 S	476	23	82
Example 1354	743	C23 H28 Cl N3 O3	430	21	81
Example 1355	744	C26 H32 Cl N3 O2	454	25	91
Example 1356	745	C27 H36 Cl N3 O3	486	23	80
Example 1357	746	C26 H35 Cl N4 O2	471	27	96
Example 1358	747	C25 H29 C1 F3 N3 O3	512	23	74
Example 1359	748	C23 H28 Cl N3 O2 S	446	22	82
Example 1360	751	C24 H30 C1 N3 O3	444	3	11
Example 1361	752	C25 H26 Cl F6 N3 O3	566	7	20
Example 1362	753	C24 H27 C1 N4 O3	455	6	22
Example 1363	754	C23 H27 C12 N3 O3	464	8	29
Example 1364	755	C24 H30 Cl N3 O4	460	6	22
Example 1365	756	C23 H27 C1 N4 O5	475	5	18
Example 1366	757	C25 H32 C1 N3 O4	474	5	18
Example 1367	758	C25 H30 C1 N3 O5	488	5	18

Example 1368	759	C24 H27 Cl F3 N3 O4	514	6	20
Example 1369	760	C24 H26 Cl F4 N3 O3	516	6	18
Example 1370	761	C24 H26 Cl F4 N3 O3	516	3	10
Example 1371	762	C24 H27 Cl F3 N3 O3	498	2	95
Example 1372	763	C23 H28 Cl N3 O3	430	4	95
Example 1373	764	C24 H30 Cl N3 O2	428	. 9	42
Example 1374	765	C25 H32 C1 N3 O2	442	10	47
Example 1375	766	C25 H29 Cl F3 N3 O2	496	10	42
Example 1376	767	C25 H32 Cl N3 O4 S	506	8	32
Example 1377	768	C24 H29 Br Cl N3 O2	506	9	35
Example 1378	769	C25 H29 Cl F3 N3 O3	512	, 6	22
Example 1379	770	C25 H28 Cl F4 N3 O2	514	3	10
Example 1380	771	C25 H28 Cl F4 N3 O2	514	10	37
Example 1381	772	C25 H29 C1 F3 N3 O2	496	8 .	33
Example 1382	773	C26 H36 C1 N3 O3	474	10	41
Example 1383	774	C23 H30 C1 N3 O2 S2	480	12	50
Example 1384	775	C27 H38 C1 N3 O3	488	14	57
Example 1385	776	C29 H34 Cl N3 O3	508	12	49
Example 1386	777	C24 H29 Cl F3 N3 O3	500	22 ·	87
Example 1387	778	C24 H28 Cl2 N4 O4	507	6	22
Example 1388	779	C24 H29 C12 N3 O2	462	10	46
Example 1389	780	C24 H29 Cl N4 O4	473	15	65
Example 1390	781	C26 H31 Cl N4 O2	467	7*	20
Example 1391	782	C25 H32 C1 N3 O3	458	8*	23
Example 1392	783	C26 H34 Cl N3 O3	472	7+	19
Example 1393	784	C26 H31 Cl F3 N3 O2	510	7*	17
Example 1394	785	C26 H34 C1 N3 O4	488	6*	17
Example 1395	786	C24 H28 C1 N3 O2	426	22	9
Example 1396	787	C25 H30 Cl N3 O2	440	21	94
Example 1397	788	C25 H27 Cl F3 N3 O2	494	4*	14
Example 1398	789	C25 H30 C1 N3 O4 S	504	9	35
Example 1399	790	C24 H27 C12 N3 O2	460	5*	16
Example 1400	791	C24 H27 C1 N4 O4	471	3*	10
Example 1401	792	C25 H27 C1 F3 N3 O3	510	5*	16
Example 1402	793	C25 H26 C1 F4 N3 O2	511	5*	16
Example 1403	794	C25 H26 C1 F4 N3 O2	512	5*	16
Example 1404	795	C25 H27 C1 F3 N3 O2	494	6*	21
Example 1405	796	C23 H28 C1 N3 O2 S2	478	4 *	14
Example 1406	797	C27 H36 C1 N3 O3	486	7*	29
Example 1407	798	C29 H32 Cl N3 O3	506	3	13

Example 1408	799	C24 H27 C1 F3 N3 O3	498	3*	11
Example 1409	l	C24 H26 C12 N4 O4	505	5*	15
Example 1410		C26 H29 C1 N4 O2	465	12	41
Example 1411		C25 H30 C1 N3 O3	456	5*	15
Example 1412		C26 H32 C1 N3 O3	470	5* 6*	
Example 1412		C26 H29 C1 F3 N3 O2		6* 8*	16
Example 1413		C26 H32 C1 N3 O4	508		20
Example 1414 Example 1415		C24 H27 Br C1 N3 O2	486	6*	15
			506	5*.	14
Example 1416		C27 H32 C1 N5 O3	510	29.7	quant
Example 1417		C26 H33 Cl N4 O3	485	29.9	quant
Example 1418		C25 H30 C12 N4 O3	505	30.2	quant
Example 1419		C30 H35 C1 N4 O4	551	31.0	quant
Example 1420		C25 H29 C12 N5 O5	550	30.4	quant
Example 1421	812	C24 H31 C1 N4 O3 S2	523	25.0	88
Example 1422		C26 H30 C1 F3 N4 O3	539	20.5	70
Example 1423		C26 H30 Cl F3 N4 O4	555	22.7	75
Example 1424	815	C26 H29 Cl F4 N4 O3	557	25.8	85
Example 1425		C26 H30 Cl F3 N4 O3	539	25.3	86
Example 1426		C26 H29 C1 F4 N4 O3	557	26.8	88
Example 1427	818	C25 H30 Br Cl N4 O3	551	27.1	90
Example 1428		C27 H29 C1 F6 N4 O3	607	13.9	42
Example 1429	820	C25 H30 C1 N5 O5	516	14.1	51
Example 1430		C24 H28 C12 N4 O5	523	40	86
Example 1431	822	C23 H30 C1 N3 O3 S2	496	41	93
Example 1432	823	C26 H31 C1 N4 O3	483	43	quant
Example 1433	824	C27 H38 C1 N3 O4	503	37	83
Example 1434	825	C29 H34 C1 N3 O4	524	28	61
Example 1435		C24 H29 C1 F3 N3 O4	516	40	87
Example 1436		C26 H31 Cl N4 O3	483	31	72
Example 1437	828	C25 H29 C1 F3 N3 O4	528	40	86
Example 1438	829	C25 H28 C1 F4 N3 O3	530	45	97
Example 1439	830	C25 H28 C1 F4 N3 O3	530	. 35	74
Example 1440	831	C24 H29 Br Cl N3 O3	523	45	98
Example 1441	832	C24 H29 C12 N3 O3	478	38	91
Example 1442	833	C24 H29 Cl N4 O5	488	38	87
Example 1443	834	C25 H29 C1 F3 N3 O3	512	42	93
Example 1444	835	C24 H30 C1 N3 O3	444	43	quant
Example 1445	836	C25 H32 C1 N3 O3	458	37	91
Example 1446	837	C25 H29 C1 F3 N3 O3	512	41	91
Example 1447	838	C26 H34 Cl N3 O4	488	34	78

WO 99/25686

Example 1448	839	C27 H36 C1 N3 O6	534	37	71
Example 1449	942	C27 H30 Cl F6 N3 O2	578	17	48
Example 1450	997	C26 H34 Cl N3 O2	456	7.6*	23
Example 1451	998	C27 H33 Cl F3 N3 O2	524	6	15
Example 1452	999	C27 H36 C1 N3 O2	470	. 8	24 .
Example 1453	1000	C27 H36 Cl N3 O3	486	9	24
Example 1454	1001	C28 H38 Cl N3 O3	500	4	10
Example 1455	1002	C27 H33 Cl F3 N3 O3	540	9	23
Example 1456	1003	C28 H38 C1 N3 O2	484	7	21
Example 1457	1004	C28 H38 Cl N3 O4	516	11	30
Example 1458	1005	C29 H40 Cl N3 O5	547	9	23
Example 1459	1006	C30 H42 Cl N3 O4	544	8	. 21
Example 1460	1007	C32 H46 Cl N3 O5	589	7	17
Example 1461	1008	C25 H31 Cl N4 O3	471	25	, 79
Example 1462	1009	C26 H33 Cl N4 O4	501	35	97
Example 1463	1010	C27 H35 Cl N4 O4	515	. 35	9
Example 1464	1011	C27 H35 Cl N4 O3	499	32	54
Example 1465	1012	C27 H35 Cl N4 O5	531	27	77
Example 1466	1013	C28 H37 Cl N4 O6	561	14	37
Example 1467	1014	C29 H39 C1 N4 O5	559	24	66
Example 1468	1015	C31 H43 Cl N4 O6	603	25	65
Example 1469	1018	C26 H34 C1 N3 O4	488	13.0*	39
Example 1470	1019	C28 H38 Cl N3 O5	532	13.4*	37
Example 1471	1020	C25 H32 C1 N3 O4	474	12.7*	40
Example 1472	1021	C26 H28 Cl F6 N3 O4	596	13.8*	34
Example 1473	1022	C25 H32 C1 N3 O4	474	14.2*	37
Example 1474	1023	C25 H32 C1 N3 O2	442	11.5*	32
Example 1475	1024	C26 H34 Cl N3 O5	504	12.0*	30
Example 1476	1025	C27 H36 Cl N3 O4	502	14.7*	37
Example 1477	1026	C29 H40 C1 N3 O5	546	13.5*	32
Example 1478	1027	C26 H34 C1 N3 O4	488	11.9*	31
Example 1479	1028	C27 H30 Cl F6 N3 O4	610	14.6*	31
Example 1480	1029	C25 H32 C1 N3 O3	458	14.0*	38
Example 1481	1030	C24 H27 Cl F3 N3 O3	498	14.0*	35
Example 1482	1031	C24 H30 Cl N3 O3	444	10.4*	29
Example 1483	1032	C25 H32 Cl N3 O4	474	14.9*	39
Example 1484	1033	C25 H32 C1 N3 O2	442	13.3*	37
Example 1485	1034	C26 H34 Cl N3 O5	504	13.7*	34
Example 1486	1035	C27 H36 C1 N3 O4	502	16.7*	42
Example 1487	1036	C29 H40 C1 N3 O5	547	15.5*	36

Example 1488	1037	C26 H34 C1 N3 O4	1 400		T
-		<u> </u>	488	14.1*	36
Example 1489		C27 H30 C1 F6 N3 O4	610	17.5*	37
Example 1490		C25 H32 C1 N3 O3	458	15.1*	4.1
Example 1491		C24 H27 C1 F3 N3 O3	498	15.4*	35
Example 1492		C24 H30 C1 N3 O3	444	12.7*	35
Example 1493	1042	C22 H26 Br Cl N4 O2	495	10.4*	25
Example 1494	1043	C22 H26 C12 N4 O2	449	11.1*	29
Example 1495	1044	C23 H29 Cl N4 O2	429	5.2*	14
Example 1496	1045	C23 H29 Cl N4 O3	445	12.4*	33
Example 1497	1046	C22 H25 C13 N4 O2	483	10.0*	25
Example 1498	1047	C24 H31 Cl N4 O2	443	12.1*	32
Example 1499	1048	C25 H33 C1 N4 O5	505	16.1*	39
Example 1500	1049	C23 H28 Br Cl N4 O2	507	12.0*	29
Example 1501	1050	C28 H38 Cl N3 O4	516	39.2*	quant
Example 1502	1051	C28 H38 C1 N3 O2	484	34.0*	quant
Example 1503	1052	C29 H40 Cl N3 O5	546	14.5*	39
Example 1504	1053	C30 H42 Cl N3 O4	544	11.8*	32
Example 1505	1054	C32 H46 Cl N3 O5	588	12.2*	31
Example 1506	1055	C29 H40 Cl N3 O4	530	44.5*	quant
Example 1507	1056	C30 H36 Cl F6 N3 O4	652	46.0*	quant
Example 1508	1057	C28 H38 C1 N3 O3	500	11.2*	32
Example 1509	1058	C27 H36 C1 N3 O3	486	35.5*	quant
Example 1510	1059	C27 H33 C1 F3 N3 O3	540	41.4*	quant
Example 1511	1060	C29 H40 Cl N3 O4	530	13.6*	37
Example 1512	1061	C30 H36 C1 F6 N3 O4	652	44.2*	quant
Example 1513	1062	C28 H38 C1 N3 O3	500	39.9*	quant
Example 1514	1063	C27 H36 C1 N3 O3	486	12.0*	35
Example 1515	1064	C27 H33 C1 F3 N3 O3	540	37.8*	quant
Example 1516	1065	C28 H38 C1 N3 O4	516	12.3*	34
Example 1517	1066	C28 H38 Cl N3 O2	484	30.7*	90
Example 1518	1067	C29 H40 Cl N3 O5	546	13.8*	37
Example 1519	1068	C30 H42 C1 N3 O4	544	13.1*	35
Example 1520	1069	C32 H46 C1 N3 O5	589	14.1*	35
Example 1521	1070	C29 H34 C1 N3 O3 S2	572	38.3	93
Example 1522	1071	C32 H35 Cl N4 O3	559	39.6	98
Example 1523	1072	C33 H42 C1 N3 O4 .	580	40.9	98
Example 1524	1073	C35 H38 Cl N3 O4	600	40.5	94
Example 1525	1074	C30 H33 C1 F3 N3 O4	592	38.7	91
Example 1526	1075	C31 H33 C1 F3 N3 O4	604	38	87
Example 1527	1076	C30 H33 C1 N4 O5	565	38.5	94
		1	. <u> </u>		

		,			
Example 1528	1077	C31 H33 C1 F3 N3 O3	588	35.8	84
Example 1529	1078	C30 H34 Cl N3 O3	520	34.7	93
Example 1530	1079	C31 H36 C1 N3 O3	534	38.4	quant
Example 1531	1080	C32 H38 C1 N3 O4	564	39.3	97
Example 1532	1081	C33 H40 Cl N3 O6	610	45.5	quant
Example 1533	1082	C28 H36 Cl N3 O3	498	4.1*	10
Example 1534	1083	C28 H36 Cl N3 O3	498	6.4*	16
Example 1535	1125	C30 H32 Cl2 N4 O5	599	3.4*	8
Example 1536	1126	C30 H32 Br Cl N4 O5	644	3.4*	7
Example 1537	1127	C32 H35 Cl N4 O3	559	1.6*	4
Example 1538	1128	C31 H32 C1 F4 N3 O3	606	4.3*	10
Example 1539	1129	C31 H32 Cl F4 N3 O3	606	5.9*	14
Example 1540	1130	C30 H33 Br Cl N3 O3	599	5.7*	13
Example 1541	1131	C30 H33 C12 N3 O3	554	6.4*	16
Example 1542	1132	C31 H33 C1 F3 N3 O3	588	6.3*	15
Example 1543	1167	C27 H34 Cl N3 O3	484	1.8*	4
		<u></u>			

^{*}Yield of TFA salt.

5

10

20

Example 1544: Preparation of 1-(4-Chlorobenzyl)-4-[{N-(3,5-bis(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 1213).

A solution of 3,5-bis(trifluoromethyl)benzoyl chloride (0.058 mmol) in dichloromethane (1 mL) was added to a mixture of $1-(4-\text{chlorobenzyl})-4-\{(\text{glycylamino})\,\text{methyl}\}$ piperidine (0.050 mmol) and piperidinomethylpolystyrene (58 mg) in chloroform (0.2 mL) and dichloromethane (0.75 mL). After the reaction mixture was stirred at room temperature for 2 h, methanol (1.0 mL) was added and the mixture was stirred at room temperature for 30 min. The reaction mixture was loaded onto Varian SCX column, and washed with CH₃OH (16 mL). Product was eluted off using 2 N NH₃ in CH₃OH (6 mL) and concentrated to afford 1-(4-chlorobenzyl)-4-[{N-(3,5-

bis (trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (Compound No. 1213) (24.0 mg, 90%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 536.2 (M^{+} +H, $C_{24}H_{24}ClF_6N_3O_2$).

Examples 1545-1547.

The compounds of this invention were synthesized pursuant to methods of Example 1544 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 28.

Table 28

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1545	1214	C23 H24 Cl F4 N3 O3	486.2	22.2	91
Example 1546	1215	C22 H24 C13 N3 O2	467.9	20.9	89
Example 1547	1216	C22 H24 C1 F2 N3 O2	436.0	19.3	89

Example 1548: Preparation of 4-[{N-(3-Bromo-4-methylbenzoyl)glycyl}aminomethyl]-1-(4-chlorobenzyl)piperidine (Compound No. 1113).

A solution of 1-(4-chlorobenzyl)-4-{(glycylamino)methyl}piperidine (0.050 mmol) in CHCl₃ (1.35 mL) and tert-butanol (0.15 mL) was treated with 3-bromo-4-methylbenzoic acid (0.060 mmol), diisopropylcarbodiimide (0.060 mmol), and HOBt (0.060 mmol). The reaction mixture was stirred at room temperature for 15 h. The mixture was loaded onto VarianTM SCX column, and washed with CH₃OH/CHCl₃ 1:1 (12 mL) and CH₃OH (12 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford 4-[{N-(3-bromo-4-methylbenzoyl)glycyl}aminomethyl]-1-(4-chlorobenzyl) piperidine (Compound No. 1113) (16.1 mg, 65%): The purity was determined by RPLC/MS (95%); ESI/MS m/e 494.0 (C₂₃H₂₇BrClN₃O₂).

Examples 1549-1619.

5

10

15

The compounds of this invention were synthesized pursuant to methods of Example 1548 using the corresponding reactant respectively. Preparative TLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 29.

Compound No. 1422 was obtained as byproduct of Compound No. 1418: 5.6 mg, 25% yield; ESI/MS m/e 447.2 ($C_{22}H_{27}ClN_4O_2S$).

Table 29

·	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1549	1114	C ₂₂ H ₂₄ BrClFN ₃ O ₂	498.0	20.2	81
Example 1550	1115	C ₂₂ H ₂₄ Cl ₂ FN ₃ O ₂	452.2	18.6	82
Example 1551	1116	C23H27ClIN3O2	539.1	21.9	81
Example 1552	1117	C ₂₃ H ₂₇ ClN ₄ O ₄	459.2	18.7	81

Example 1553 Example 1554 Example 1555	1187	C ₂₃ H ₂₇ BrClN ₃ O ₂	494.0	22.1	90
	1100				
Evample 1555	1100	C ₂₄ H ₂₇ ClN ₄ O ₃	455.2	17.2	76
Example 1999	1189	C ₂₅ H ₂₉ ClN ₄ O ₃	469.2	21.1	90
Example 1556	1190	C ₂₂ H ₂₆ ClFN ₄ O ₂	433.2	20.4	94
Example 1557	1241	C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂	502.0	22.5	90
Example 1558	1242	C ₂₃ H ₂₇ ClFN ₃ O ₂	432.2	21.2	98
Example 1559	1243	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.6	96
Example 1560	1244	C ₂₂ H ₂₆ ClIN ₄ O ₂	541.0	26.4	98
Example 1561	1245	C ₂₂ H ₂₅ ClF ₂ N ₄ O ₂	451.0	21.3	94
Example 1562	1246	C ₂₁ H ₂₇ ClN ₄ O ₂	403.2	19.4	96
Example 1563	1247	C ₂₈ H ₃₀ ClN ₃ O ₂ S	524.0	24.7	94
Example 1564	1248	C ₂₂ H ₂₅ ClN ₄ O ₅	461.0	20.7	90
Example 1565	1282	C ₂₅ H ₂₆ ClF ₃ N ₄ O ₃	523.2	25.0	96
Example 1566	1283	C ₂₃ H ₂₇ C1 ₂ N ₃ O ₃	464.2	12.2	53
Example 1567	1284	C ₂₂ H ₂₅ BrClN ₃ O ₃	496.0	24.1	9.7
Example 1568	1285	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₃	450.2	21.8	97
Example 1569	1342	C ₂₂ H ₂₄ BrCl ₂ N ₃ O ₂	514.0	27.2	quant
Example 1570	1343	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.4	95
Example 1571	1344	C ₂₂ H ₂₄ Cl ₂ IN ₃ O ₂	560.0	27.0	96
Example 1572	1345	$C_{23}H_{28}ClN_3O_2$	430.2	23.8	quant
Example 1573	1346	C ₂₂ H ₂₅ ClIN ₃ O ₃	542.0	29.4	quant
Example 1574	1350	$C_{21}H_{26}ClN_3O_2S$	420.0	13.0	62
Example 1575	1354	C ₂₄ H ₂₈ BrClN ₄ O ₃	537.2	5.2	19
Example 1576	1358	C23H26ClN5O2	440.2	21.8	99
Example 1577	1383	C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂	502.0	20.0	80
Example 1578	1384	C ₂₀ H ₂₃ BrClN ₃ O ₂ S	486.0	21.0	87
Example 1579	1385	C ₂₈ H ₃₀ ClN ₃ O ₄ S	540.2	23.8	88
Example 1580	1386	C ₂₈ H ₃₀ ClN ₃ O ₂	476.0	20.0	84
Example 1581	1414	C ₂₄ H ₂₈ Cl ₂ N ₄ O ₃	491.0	0.8	3
Example 1582	1418	C ₂₃ H ₂₆ ClN ₅ O ₂ S	472.0	10.4	44
Example 1583	1436	C29 H30 Cl N3 O3	504.2	26.8	quant
Example 1584	1600	C23 H26 C1 F3 N4 O2	483.2	16.5	68
Example 1585	1601	C23 H26 Cl F3 N4 O3	499.0	20.0	80
Example 1586	1602	C21 H24 Br Cl N4 O2	481.0	18.1	75
Example 1587	1603	C21 H24 C12 N4 O2	435.0	5.5	25
Example 1588	1604	C27 H30 C1 N3 O3	492.0	18.6	76
Example 1589	1605	C21 H27 C1 N4 O2	415.2	18.1	87
Example 1590	1609	C23 H25 N3 O2 S	500.0	18.3	73
Example 1591	1659	C22 H26 C12 N4 O2	449.0	366.0	83
Example 1592	1664	C24 H29 F3 N4 O2 S	495.2	13.7	55

					•
Example 1593		C24 H29 F3 N4 O3 S	511.2	14.9	58
Example 1594	1666	C23 H28 F2 N4 O2 S	463.2	12.9	56
Example 1595	1667	C22 H27 Br2 N3 O3	542	26.1	96
Example 1596	1668	C24 H30 F2 N4 O2	445	22.9	quant
Example 1597	1669	C24 H31 F N4 O2	427	24.0	quant
Example 1598	1670	C24 H31 I N4 O2	535	28.1	quant
Example 1599	1671	C25 H31 F3 N4 O3	493	26.8	quant
Example 1600	1672	C25 H31 F3 N4 O2	. 478	24.7	quant
Example 1601	1673	C24 H29 Br Cl N3 O2	508	24.9	98
Example 1602	1674	C20 H22 Br2 F N3 O3	532	25.6	96
Example 1603	1675	C22 H25 F3 N4 O2	435	21.5	99
Example 1604	1676	C22 H26 F2 N4 O2	417	21.4	quant
Example 1605	1677	C22 H26 Br F N4 O2	479	23.4	98
Example 1606	1678	C22 H26 F I N4 O2	525	27.4	quant
Example 1607	1679	C22 H26 C1 F N4 O2	433	22.4	quant
Example 1608	1680	C23 H26 F4 N4 O3	483	25.5	quant
Example 1609	1681	C23 H26 F4 N4 O2	467	23.2	99
Example 1610	1682	C23 H26 Br Cl F N3 O	498	24.2	98
Example 1611	1683	C27 H28 Br2 N4 O4	633	31.8	quant
Example 1612	1684	C29 H31 F2 N5 O3	536	28.3	quant
Example 1613	1685	C29 H32 F N5 O3	518	31.1	quant
Example 1614	1686	C29 H32 Br N5 O3	578	29.6	quant
Example 1615	1687	C29 H32 I N5 O3	626	32.4	quant
Example 1616	1688	C29 H32 Cl N5 O3	534	28.2	quant
Example 1617	1689	C30 H32 F3 N5 O4	584	31.7	quant
Example 1618	1690	C30 H32 F3 N5 O3	568	30.6	quant
Example 1619	1691	C29 H30 Br Cl N4 O3	599	31.4	quant

For example, Compound 1245 and 1600 showed the following NMR spectra. Compound No. 1245: ^1H NMR (270 MHz, CDCl₃) δ 1.20-1.97 (m, 7 H), 2.80-2.86 (m, 2 H), 3.19 (t, J = 6.5 Hz, 2 H), 3.43 (s, 2 H), 4.02 (d, J = 5.3 Hz, 2 H), 5.52 (br s, 2 H), 6.44 (d, J = 11.9, 6.6 Hz, 1 H), 7.02 (br s, 1 H), 7.21-7.32 (m, 5 H).

Compound No. 1600: 1 H NMR (270 MHz, CDCl₃) 1 1 1 2 1 2 2 2 2 2 3 4

Example 1620: Preparation of 1-(4-Chlorobenzyl)-4-[{N-(4-

isopropylphenylsulfonyl)glycyl}aminomethyl]piperidine (Compound No. 869).

A solution of 1-(4-chlorobenzyl)-4-{(glycylamino)methyl)piperidine CHCl₃ (2 mL) was treated with 0.05 mmol) (14.8 resin (28 2.8 mmol/g),4-(piperidinomethyl) polystyrene mg, isopropylbenzenesulfonyl chloride (1.5 equiv.) and stirred at 25 °C for 16 h. (Aminomethyl) polystyrene was added to scavenge the residual sulfonyl chloride and the reaction mixture was stirred at 25 °C for 16 h. Filtration and 1-(4-chlorobenzyl)-4-[{(4afforded concentration isopropylphenylsulfonyl)glycyl)aminomethyl]piperidine (compound No. 869) (22.1 mg, 92%): The purity was determined by RPLC/MS (86%); ESI/MS m/e 478 (M^{+} +H, $C_{24}H_{32}ClN_3O_3S)$.

Examples 1621-1627.

The compounds of this invention were synthesized pursuant to methods of Example 1620 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 30.

Compound Yield (%) Molecular Formula ESI/MS m/e Yield (mg) No. 72 C22 H28 Cl N3 O3 S 450 16.2 865 Example 1621 C22 H25 Cl F3 N3 O3 S 504 8.8 35 Example 1622 866 8.0 28 C23 H24 Cl F6 N3 O3 S 572 867 Example 1623 C23 H30 Cl N3 O3 S 464 9.6 41 Example 1624 868 C22 H28 C1 N3 O3 S 450 39 8.8 Example 1625 870 C25 H34 Cl N3 O3 S 492 11.1 45 871 Example 1626 C21 H26 Cl N3 O3 S 436 9.6 44 872 Example 1627

Table 30

20

5

10

Example 1628: Preparation of 1-(4-Chlorobenzyl)-4-[{2-(3-(4-trifluoromethylphenyl)ureido)acetylamino}methyl]piperidine (Compound No. 852).

A solution of 1-(4-chlorobenzyl)-4-{(glycylamino)methyl}piperidine treated CHCla mL) was with 25 (2 (14.8 0.05 in mq, (piperidinomethyl)polystyrene resin 128 mg, 2.8 mmol/q), 3-(trifluoromethyl)phenyl isocyanate (1.3 equiv.) and stirred at 25 °C for 16 h. (Aminomethyl) polystyrene was added to scavenge the residual isocyanate and the reaction mixture was stirred at 25 °C for 16 h. Filtration and concentration

afforded

1-(4-chlorobenzyl)-4-[(2-(3-(4-

trifluoromethylphenyl)ureido)acetylamino}methyl]piperidine (19 mg, 78%) (compound No. **852**): The purity was determined by RPLC/MS (92%); ESI/MS m/e 483 (M^{+} +H, $C_{23}H_{26}ClF_3N_4O_2$).

5

Examples 1629-1641.

The compounds of this invention were synthesized pursuant to methods of Example 1628 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 31.

10

15

20

Table 31

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1629	851	C23 H26 C1 F3 N4 O2	483	13.2	55
Example 1630	853	C22 H27 C1 N4 O2	416	8.5*	32
Example 1631	854	C23 H29 Cl N4 O2	429	11.4*	42
Example 1632	855	C23 H29 Cl N4 O2	429	10.1*	37
Example 1633	856	C24 H29 Cl N4 O3	457	10.3*	36
Example 1634	857	C23 H29 Cl N4 O3	445	10.9*	39
Example 1635	858	C23 H29 C1 N4 O3	445	8.6*	31
Example 1636	859	C22 H26 C12 N4 O2	449	11.0*	39
Example 1637	860	C23 H26 C1 N5 O2	440	9.2*	33
Example 1638	861	C22 H27 C1 N4 O S	431	13.3	62
Example 1639	862	C23 H29 C1 N4 O S	445	15.3	69
Example 1640	863	C23 H29 C1 N4 O2 S	461	14.7	64
Example 1641	864	C23 H29 C1 N4 O2 S	461	13.1	57

^{*}Yield of TFA salt.

Example 1642: Preparation of 1-(4-Chlorobenzyl)-4-[{N-(3-ethoxybenzoyl)-n-phenylalanyl}aminomethyl]piperidine (Compound No. 2091).

A solution of 1-(4-chlorobenzyl)-4-(aminomethyl)piperidine (100 mg) in CHCl₃ (3 mL) was treated with Et₃N (0.090 mL), N-(tert-butoxycarbonyl)-D-phenylalanine (122 mg), EDCI (89 mg) and HOBt (62 mg). The reaction mixture was stirred at room temperature for 17 h. The reaction mixture was washed with 1 N aqueous NaOH solution (2 mL x 2) and brine (2 mL). The organic layer was dried and concentrated to afford 1-(4-chlorobenzyl)-4-[(N-(tert-butoxycarbonyl)-D-phenylalanyl)aminomethyl]piperidine.

The resulting 1-(4-chlorobenzyl)-4-[(N-(tert-butoxycarbonyl)-p-

phenylalanyl)aminomethyl]piperidine was dissolved in methanol (5 mL) and 4 N $\,$ HCl in dioxane (1.5 mL) was added. The solution was stirred at room temperature for 19 h and concentrated.

A solution of the resulting material and 3-ethoxybenzoic acid (80 mg, 0.48 mmol) in CHCl₃ (1 mL) was treated with Et₃N (0.090 mL), EDCI (90 mg) and HOBt (68 mg). The reaction mixture was stirred at room temperature for 11 h. The reaction mixture was washed with 1 N aqueous NaOH solution (1.5 mL x 2) and brine (1.5 mL). The organic layer was dried and concentrated. Column chromatography (SiO₂, CH₂Cl₂/MeOH = 95 : 5) afforded 1-(4-chlorobenzyl)-4-[{N-(3-ethoxybenzoyl)-D-phenylalanyl}aminomethyl]piperidine (Compound No. 2091) (183.5 mg, 82%): The purity was determined by RPLC/MS (99%); ESI/MS m/e 534.0 (M*+H, C₃₁H₃₆ClN₃O₃).

Examples 1643-1657.

The compounds of this invention were synthesized pursuant to methods of Example 1642 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 32.

Table 32

20

5

10

15

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1643		C33 H37 Cl N4 O3	572.8	152.9	64
Example 1644	2093	C27 H36 C1 N3 O3 S	518.0	177.4	82
Example 1645	2094	C29 H34 C1 N3 O3 S	539.9	164.4	73
Example 1646	2095	C28 H38 Cl N3 O3	500.0	139.1	66
Example 1647	2096	C31 H42 Cl N3 O3	540.0	161.7	71
Example 1648	2097	C27 H36 C1 N3 O3	485.8	157.8	78
Example 1649	2098	C31 H35 Cl2 N3 O3	567.9	172.2	72
Example 1650	2099	C30 H34 Cl N3 O3	519.8	144.7	66
Example 1651	2100	C32 H38 Cl N3 O4	564.0	181.5	77
Example 1652	2101	C38 H42 C1 N3 O4	639.9	192.3	72
Example 1653	2103	C33 H40 Cl N3 O4	577.8	159.9	66
Example 1654	2104	C28 H36 C1 N3 O5	530.1	99.7	45
Example 1655	2115	C27 H36 C1 N3 O3	486.2	122.9	60
Example 1656	2116	C28 H38 Cl N3 O3	500.1	118.3	57
Example 1657	2117	C28 H34 Cl N5 O3	524.1	98.3	45

Reference Example 29: Preparation of 1-(tert-Butoxycarbonyl)-4-[{N-

(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine.

5

10

15

35

 $N-\{3-({\rm Trifluoromethyl})\,{\rm benzoyl}\}\,{\rm glycine}$ (4.22 g, 17.0 mmol), EDCI (4.25 g, 22.1 mmol), 1-hydroxybenzotriazole hydrate (2.99 g, 22.1 mmol) and Et₃N (1.72 g) were added to a solution of 1-(tert-butoxycarbonyl)-4-(aminomethyl)piperidine (4.03 g) in dry ${\rm CH_2Cl_2}$ (200 mL). The reaction mixture was stirred at 25 °C for 20 h. ${\rm H_2O}$ (100 mL) was added to the reaction mixture and the mixture was extracted with ${\rm CH_2Cl_2}$ (2 x 50 mL). The combined extracts were washed with ${\rm H_2O}$ (2 x 50 mL), brine (50 mL) and dried (MgSO₄). The solvent was removed under reduced pressure to afford an yellow oil which was purified by column chromatography (SiO₂, 70% EtOAc-hexane) to give 1-(tert-butoxycarbonyl)-4-[{N-(3-

(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine as a white solid (6.39 g, 85%): $^{1}\text{H-NMR}$ (CDCl₃, 300 MHz) δ 1.4 (s, 9 H), 1.0-1.8 (m, 5 H), 2.6-2.8 (m, 2 H), 3.15-3.3 (m, 2 H), 4.0-4.3 (m, 4 H), 6.6-6.7 (m, 1H), 7.64 (s, 1 H), 7.60 (dd, 1 H, J = 7.2, 7,2 Hz), 7.79 (d, 1 H, J = 7,2 Hz), 8.0 (d, 1 H, J = 7.2 Hz), 8.11 (s, 1 H); The purity was determined by RPLC/MS (97%); ESI/MS m/e 444.3 (M⁺+H, C₂₁H₂₈F₃N₃O₄).

Reference Example 30: Preparation of 4-[{N-(3-20 (Trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine.

solution of 1-(tert-butoxycarbonyl)-4-[{N-(3 -(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (2.29 g, 5.16 mmol) in $\mathrm{CH_{3}OH}$ (40 mL) was treated with 1 N $\mathrm{HCl-Et_{2}O}$ (55 mL). The reaction mixture was stirred at 25 °C for 15 h and the solvent was removed under reduced pressure. 25 2 N aqueous NaOH solution (100 mL) was added to the reaction mixture and the mixture was extracted with EtOAc (3 \times 100 mL). The combined extracts were washed with brine and dried (K_2CO_3) . The solvent was removed under reduced pressure to afford a white solid which was purified by column chromatography (SiO2, CH₃OH/CH₂Cl₂/Et₃N 7/6/1)) give $4 - [\{ N - (3 -$ 30 (trifluoromethyl)benzoyl)glycyl)aminomethyl)piperidine as a white solid (1.27 g, 72%): The purity was determined by RPLC/MS (98%); ESI/MS m/e 344.1 (M*+H, $C_{16}H_{20}F_3N_3O_2$).

Example 1658: Preparation of 1-{3-(Trifluoromethoxy)benzyl}-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 927).

A solution of $4-[{N-(3-(1.0 \, \text{mL}) \, \text{mg}, \, 0.058 \, \text{mmol}})]$ (trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (19.9 mg, 0.058 mmol) in CH₃CN (1.0 mL) and (piperidinomethyl)polystyrene (55 mg, 2.7 mmol base/g resin)

were added to a solution of 3-(trifluoromethoxy) benzyl bromide (12.3 mg, 0.048 mmol) in CH₃CN (1.0 mL). The reaction mixture was stirred at 60 °C for 2.5 h. Phenyl isocyanate (6.9 mg, 0.048 mmol) was added to the cooled reaction mixture and the mixture was stirred at 25 °C for 1 h. The reaction mixture was loaded onto Varian SCX column and washed with CH₃OH (20 mL). Product was eluted off using 2 N NH₃ in CH₃OH (6 mL) and concentrated to afford 1-{3-(trifluoromethoxy)benzyl}-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (compound No. 927) (22.8 mg, 91%) as a pale yellow oil: The purity was determined by RPLC/MS (99%); ESI/MS m/e 518.1 (M⁺+H, C₂₄H₂₅F₆N₃O₃).

Examples 1659-1710.

5

10

15

The compounds of this invention were synthesized pursuant to methods of Example 1658 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 33.

Table 33

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1659	875	C23 H26 F3 N3 O2	434	6.3	40
Example 1660	876	C23 H25 Br F3 N3 O2	512	4.3	23
Example 1661	877	C24 H25 F3 N4 O2	459	11.3	68
Example 1662	878	C23 H25 F3 N4 O4	479	8.3	48
Example 1663	884	C25 H29 F3 N4 O3	491	10.8	61
Example 1664	885	C24 H28 F3 N3 O4 S	512	9.0	49
Example 1665	886	C23 H25 F4 N3 O2	452	12.7	78
Example 1666	887	C24 H25 F6 N3 O2	502	13.9	77
Example 1667	888	C23 H26 F3 N3 O3	450	11.5	71
Example 1668	889	C29 H30 F3 N3 O2	510	12.4	68
Example 1669	890	C27 H28 F3 N3 O2	484	12.0	69
Example 1670	891	C23 H24 C12 F3 N3 O2	502	11.4	63
Example 1671	892	C24 H28 F3 N3 O3	464	11.7	70
Example 1672	893	C24 H26 F3 N5 O5	522	13.9	74
Example 1673	894	C26 H32 F3 N3 O3	492	11.3	64
Example 1674	895	C24 H28 F3 N3 O2	448	4.8	30
Example 1675	896	C24 H25 F3 N4 O2	459	17.5	quant
Example 1676	897	C24 H26 F3 N3 O4	478	9.2	57
Example 1677	898	C24 H26 F3 N3 O4	478	8.9	55

Example 1678	899	C24 H28 F3 N3 O3	464	13.7	82
Example 1679	900	C25 H28 F3 N3 O4	492	18.6	quant
Example 1680	901	C29 H30 F3 N3 O2	510	13.7	75
Example 1681	902	C23 H24 F3 N5 O6	524	12.6	67
Example 1682	903	C25 H30 F3 N3 O4	494	14.0	79
Example 1683	906	C25 H30 F3 N3 O2	462	11.2	67
Example 1684	907	C31 H34 F3 N3 O2	538	19.6	75
Example 1685	908	C30 H31 F3 N4 O3	553	30.4	76
Example 1686	909	C30 H31 F3 N4 O3	553	12.6	63
Example 1687	910	C23 H24 Cl2 F3 N3 O2	502	11.0	61
Example 1688	911	C23 H25 C1 F3 N3 O2	468	20.2	89
Example 1689	912	C23 H24 Br2 F3 N3 O2	590	20.2	95
Example 1690	913	C24 H28 F3 N3 O3	464	12.6	76
Example 1691	914	C30 H32 F3 N3 O3	540	13.9	72
Example 1692	915	C24 H28 F3 N3 O3	464	8.3	25
Example 1693	916	C22 H25 F3 N4 O2	435	2.5	8
Example 1694	917	C22 H25 F3 N4 O2	435	2.7	9
Example 1695	918	C26 H30 F3 N3 O4	506	3.9	22
Example 1696	919	C24 H28 F3 N3 O2	448	15.9	99
Example 1697	920	C24 H25 F6 N3 O3	518	20.3	81
Example 1698	921	C27 H28 F3 N3 O2	484	15.5	89
Example 1699	922	C20 H26 F3 N3 O2	398	7.3	51
Example 1700	923	C29 H29 C1 F3 N3 O2	544	12.5	48
Example 1701	928	C24 H25 F6 N3 O3	518	21.4	8 E·
Example 1702	929	C24 H28 F3 N3 O2 S	480	23.7	quant
Example 1703	930	C24 H28 F3 N3 O2	448	21.3	99
Example 1704	931	C24 H25 F3 N4 O2	459	21.4	97
Example 1705	932	C23 H24 Cl F3 N4 O4	513	15.6	63
Example 1706	933	C24 H28 F3 N3 O2	448	16.6	77
Example 1707	934	C22 H25 F3 N4 O2	435	18.0	43
Example 1708	935	C23 H25 F3 N4 O4	479	15.1	65
Example 1709	936	C23 H25 F3 N4 O4	479	15.4	67
Example 1710	1615	C24 H25 F6 N3 O2 S	534.2	26.3	99

Example 1711: Preparation of 1-{4-(Dimethylamino)benzyl}-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 937).

A solution of $4-[\{N-(3-5)\}]$ (trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (20.0 mg, 0.058 mmol) in CH₃OH (1.0 mL) and NaBH₃CN (16.5 mg) were added to a solution of 4-

(dimethylamino) benzaldehyde (30.4 mg, 0.204 mmol) in 5 % CH₃COOH/CH₃OH (1.0 mL). The reaction mixture was stirred at 60 °C for 19 h. The solvent was evaporated to afford a solid. CH₃CN (2.0 mL) and phenyl isocyanate (6.9 mg, 0.048 mmol) were added to the solid and the mixture was stirred at 25 °C for 1 h. The reaction mixture was loaded onto VarianTM SCX column and washed with CH₃OH (20 mL). Product was eluted using 2 N NH₃-CH₃OH (6 mL) and the eluant was concentrated to afford 1-(4-(dimethylamino)benzyl)-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (compound No. 937) as a pale yellow oil (13.5 mg, 49%): The purity was determined by RPLC/MS (87%); ESI/MS m/e 477.3 (M⁺+H, C₂₅H₃₁F₃N₄O₂).

Examples 1712-1729.

5

10

15

The compounds of this invention were synthesized pursuant to methods of Example 1711 using the corresponding reactant respectively. Preparative TLC (SiO_2) , if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 34.

Table 34

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1712	879	C24 H26 F3 N3 O4	478	13.0	62
Example 1713	880	C24 H26 F3 N3 O4	478	16.3	78
Example 1714	881	C23 H25 Br F3 N3 O2	512	11.4	51
Example 1715	882	C29 H30 F3 N3 O3	526	13.4	58
Example 1716	883	C23 H25 Cl F3 N3 O2	468	7.9	39
Example 1717	904	C23 H26 F3 N3 O3	450	3.3	17
Example 1718	905	C21 H23 F3 N4 O4 S	485	27.7	9.8
Example 1719	938	C23 H24 Cl F4 N3 O2	486	8.6	30
Example 1720	939	C23 H24 Cl F3 N4 O4	513	11.0	37
Example 1721	940	C23 H26 F3 N3 O3	450	5.5	21
Example 1722	941	C24 H24 Cl F6 N3 O2	536	11.2	36
Example 1723	987	C30 H32 F3 N3 O2	524	17.5	76
Example 1724	1449	C25 H30 F3 N3 O2	462	21.6	80
Example 1725	1450	C26 H32 F3 N3 O2	476	23.5	85
Example 1726	1452	C27 H35 F3 N4 O2	505	5.1	17
Example 1727	1453	C26 H32 F3 N3 O3	492	22.0	77
Example 1728	1454	C25 H30 F3 N3 O3	478	21.4	77
Example 1729	1456	C25 H28 F3 N3 O4	492	23.8	83

Example 1730: Preparation of 1-{3-Hydroxy-4-methoxybenzyl}-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 1452).

(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (20.0 mg, 0.058 mmol) and 3-hydroxy-4-methoxybenzaldehyde (33 mg)in 5 % CH₃COOH/CH₃OH (1.0 mL) was added NaBH₃CN (16.5 mg)in 5 % CH₃COOH/CH₃OH (1.0 mL). The reaction mixture was stirred at 60 °C for 15 h. The reaction mixture was loaded onto Varian SCX column and washed with CH₃OH (15 mL). Product was eluted using 2 N NH₃-CH₃OH (5 mL) and the eluant was concentrated to afford 1-{3-hydroxy-4-methoxybenzyl}-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound Nc. 1452) (25.8 mg, 92%): The purity was determined by RPLC/MS (91%); ESI/MS m/e 480 (M'+H, $C_{24}H_{28}F_3N_3O_4$).

15 Examples 1731-1733.

The compounds of this invention were synthesized pursuant to methods of Example 1730 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 35.

20

25

30

5

10

Table 35

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1731	1455	C24 H28 F3 N3 O4	480	24.0	86
Example 1732	1647	C27 H34 F3 N3 O2	490.2	23.6	96
Example 1733	1649	C26 H32 F3 N3 O2	476.2	23.1	97

Example 1734: Preparation of 1-(4-Benzylbenzyl)-4-[(N-(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (Compound No. 926).

A solution of methanesulfonyl chloride (4.2 mg, 0.037 mmol) in CHCl $_3$ (1.0 mL) and (piperidinomethyl)polystyrene (54 mg, 2.7 mmol base/g resin) were added to a solution of 4-(benzyl)benzyl alcohol (8.7 mg, 0.044 mmol) in CHCl $_3$ (1.0 mL). The reaction mixture was stirred at 25 °C for 15 h. A solution of 4-[(N-(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl)piperidine (15.1 mg, 0.044 mmol) in CH $_3$ CN (1.0 mL) and KI (2 mg) were added to the reaction mixture and the mixture was stirred at 65 °C for 5 h. Phenyl isocyanate (5.2 mg) was added to the cooled reaction mixture and the mixture was stirred at 25 °C for 1 h. The reaction mixture was loaded onto Varian SCX column and washed with CH $_3$ OH

(20 mL). Product was eluted off using 2 N NH₃ in CH₃OH (6 mL) and concentrated to afford 1-(4-benzylbenzyl)-4-[(N-(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl)piperidine (compound No. 926) as a pale yellow oil (5.6 mg, 29%): The purity was determined by RPLC/MS (94%); ESI/MS m/e 524.1 (M⁺+H, C₃₀H₃₂F₃N₃O₂).

5

25

35

Reference Example 31: Preparation of 4-[{(N-(Benzyloxycarbonyl)glycyl)amino}methyl]-1-(tert-butoxycarbonyl)piperidine.

A solution of 4-(aminomethyl)-1-(tert-butoxycarbonyl)piperidine (3.54 10 g, 16.5 mmol) in CH₂Cl₂ (80 mL) was treated with Et₃N (2.8 mL, 20 mmol), N-(benzyloxycarbonyl)glycine (3.77 g, 18 mmol), EDCI (3.45 g, 18 mmol) and HOBt (2.43 g, 18 mmol). After the reaction mixture was stirred at room temperature for 15 h, 2 N aqueous NaOH solution (100 mL) was added. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (100 mL x 3). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO₂, ethyl acetate) afforded the desired 4-[{(N-(Benzyloxycarbonyl)glycyl)amino)methyl}-1-(tert-butoxycarbonyl)piperidine (6.27 g, 94%) as an amorphous solid.

20 Reference Example 32: Preparation of 4-{(Glycylamino)methyl)-1-(tert-butoxycarbonyl)piperidine.

A solution of 4-[{(N-(benzyloxycarbonyl)glycyl)amino)methyl]-1-(tert-butoxycarbonyl)piperidine (6.26 g, 15.4 mmol) in methanol (100 mL) was hydrogenated at 1 atm in the presence of 5% palladium on charcoal (620 mg) at room temperature for 7 h. The catalyst was removed by filtration through Celite and the combined filtrate was concentrated to afford 4-{(glycylamino)methyl}-1-(tert-butoxycarbonyl)piperidine (3.84 g, 92%) as a solid.

Reference Example 33: Preparation of 4-[{(N-(2-Amino-5-chlorobenzoyl)glycyl)amino}methyl]-1-(tert-butoxycarbonyl)piperidine.

A solution of $4-\{(glycylamino)methyl\}-1-(tert-butoxycarbonyl)$ piperidine (1.33 g, 4.90 mmol) in CH_2Cl_2 (25 mL) was treated with Et_3N (0.75 mL, 5.4 mmol), 2-amino-5-chlorobenzoic acid (840 mg, 4.9 mmol), EDCI (940 mg, 4.9 mmol) and HOBt (660 mg, 4.9 mmol). After the reaction mixture was stirred at room temperature for 3 h, 2 N aqueous NaOH solution (20 mL) was added. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (20 mL x 3). The combined organic layers were dried over

anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO₂, ethyl acetate) afforded the desired $4-[{(N-(2-amino-5-chlorobenzoyl)glycyl)amino}methyl]-1-(tert-butoxycarbonyl)piperidine (1.63 g, 78%) as a solid.$

5

10

15

Reference Example 34: Preparation of 4-[{(N-(2-Amino-5-chlorobenzoyl)glycyl)amino}methyl]piperidine.

solution of 4-[{(N-(2-amino-5chlorobenzoyl)glycyl)amino)methyl]-1-(tert-butoxycarbonyl)piperidine (1.63 g, 3.84 mmol) in methanol (20 mL) was added 4 N HCl in dioxane (9.5 mL). The solution was stirred at room temperature for 6 h. The reaction mixture was concentrated and 2 N aqueous NaOH solution (20 mL) was added. The mixture was extracted with dichloromethane (20 mL x 3), and the combined extracts were dried over sodium sulfate, filtered and concentrated to give $4-[{(N-(2-amino-5$ chlorobenzoyl)glycyl)amino}methyl]piperidine (1.19 g, 95%): 1H NMR (CDCl3, 270 MHz) δ 1.10-1.76 (m, 4 H), 2.55 (td, J = 2.4 and 12.2 Hz, 2 H), 3.00-3.10 (m, 2 H), 3.17 (t, J = 6.2 Hz, 2 H), 3.48 (s, 2 H), 4.03 (d, J = 4.9 Hz, 2 H), 5.50(br. s, 2 H), 6.11-6.23 (m, 1 H), 6.60 (d, J = 8.8 Hz, 1 H), 6.85-7.02 (m, 1 H), 7.15 (dd, J = 2.7 and 8.8 Hz, 1 H), 7.38 (d, J = 2.4 Hz, 1 H); ESI/MS m/e 325.2 $(C_{15}H_{21}ClN_4O_2)$.

 $4-[{(N-(2-Amino-5-bromobenzoyl)glycyl)amino}]$ methyl]piperidine was also synthesized pursuant to methods of Reference Examples 32 and 33 using the corresponding reactant: 951 mg, 64% (2 steps).ESI/MS m/e 369.2 ($C_{15}H_{21}BN_4O_2$).

25

30

35

20

Example 1735: Preparation of 4-[{(N-(2-(text-Butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl)amino}methyl]-1-(4-chlorobenzyl)piperidine.

A solution of 1-(4-chlorobenzyl)-4-{(glycylamino)methyl}piperidine dihydrochloride (738 mg, 2 mmol) in CH_2Cl_2 (20 mL) was treated with Et_3N (1.1 mL, 8 mmol), 2-(tert-butoxycarbonylamino)-4,5-difluorobenzoic acid (607 mg, 2.2 mmol), EDCI (422 mg, 2.2 mmol) and HOBt (337 mg, 2.2 mmol). After the reaction mixture was stirred at room temperature for 14 h, 0.6 N aqueous NaOH solution (50 mL) was added, and the mixture was extracted with dichloromethane (3 times). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO_2 , ethyl acetate then ethyl acetate/methanol 92/8) afforded the desired 4-[{(N-(2-(tertbutoxycarbonylamino)-4,5-difluorobenzoyl)glycyl)amino)methyl]-1-(4chlorobenzyl) piperidine (1.01 g, 92%): ESI/MS m/e 551.3 (M^++H , $C_{27}H_{33}ClF_2N_4O_4$).

5

 $4-[\{(N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino\}methyl]-1-(4-chlorobenzyl)piperidine was also prepared pursuant to the above method using the corresponding reactant: 3.03 g, 82%; ESI/MS m/e 583.2 (M⁺+H, C₂₈H₃₄ClF₃N₄O₄).$

Reference Example 35: Preparation of 4-[{(N-(2-Amino-5-trifluoromethylbenzoyl)glycyl)amino}methyl]piperidine.

trifluoromethylbenzoyl)glycyl)amino}methyl]piperidine (447 mg, 0.93 mmol) and Pd(OH)₂ (60 mg, 0.23 mmol) in 5% HCO₂H/methanol (10 mL) was stirred at 50 °C for 14 h. The Pd catalyst was filtered off through Celite, and the filtrate was concentrated. To the residue was added 1N aqueous NaOH solution (15 mL) and the mixture was extracted with ethyl acetate (30 mL x 3). The combined extracts were dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO₂, AcOEt/MeOH/Et₃N = 70/25/5) gave 4-[{(N-(2-amino-5-trifluoromethylbenzoyl)glycyl)amino}methyl]piperidine (284 mg, 86%): ESI/MS m/e 359.0 (M*+H, C₁₆H₂₁F₃N₄O₂).

- 4-[{(N-(2-Amino-4,5-difluorobenzoyl)glycyl)amino}methyl]piperidine,
 4-[{N-(2-(tert-Butoxycarbonylamino)-5trifluoromethoxybenzoyl)glycyl}aminomethyl]piperidine,
 4-[{(N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl)amino}methyl]piperidine,
 and
 4-[{(N-(2-(tert-butoxycarbonylamino)-5trifluoromethylbenzoyl)glycyl)amino}methyl]piperidine were also prepared
 pursuant to the above method using the corresponding reactant, respectively.
 - $4-[\{(N-(2-amino-4,5-difluorobenzoyl)glycyl)amino\}methyl]piperidine: 564 mg, 89%; ESI/MS m/e 327.2 (M+H, <math>C_{15}H_{20}F_2N_4O_2$).
 - 4-[{N-(2-(tert-Butoxycarbonylamino)-5-
- 30 trifluoromethoxybenzoyl)glycyl}aminomethyl)piperidine: quant; 1 H NMR (CDCl₃, 400 MHz) δ 1.10-1.25 (m, 2 H), 1.45-1.73 (m, 3 H), 1.51 (s, 9 H), 2.53-2.64 (m, 2 H), 3.04-3.13 (m, 2 H), 3.22 (t, J = 6.3 Hz, 2 H), 4.09 (d, J = 4.6 Hz, 2 H), 5.91 (br. s, 1 H), 7.08 (br. s., 1 H), 7.32 (d, J = 9.0 Hz, 1 H), 7.38 (s, 1 H), 8.43 (d, J = 9.0 Hz, 1 H).
- 35 $4-[\{(N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl)amino\}methyl]piperidine: 310 mg, 40%; ESI/MS m/e 427.3 <math display="block"> (M^{+}+H, C_{20}H_{22}F_2N_4O_4).$
 - 4-[((N-(2-(tert-butoxycarbonylamino)-5-

trifluoromethylbenzoyl)glycyl)amino}methyl]piperidine: 1.35 g, 57:; ESI/MS m/e 459.3 ($M^{\dagger}+H$, $C_{21}H_{22}F_3N_4O_4$).

Sodium cyanoborohydride (140 mmol) in methanol (0.4 mL) was added to a mixture of $4-[\{N-(2-\text{amino}-5-\text{chlorobenzoyl})\,\text{glycyl}\}\,\text{aminomethyl}]\,\text{piperidine}$ (0.10 mmol), 4-ethoxybenzaldehyde (0.10 mmol), acetic acid (0.050 mL), and methanol (1.6 mL). The reaction mixture was stirred at 60 °C for 14 h. The reaction mixture was loaded onto Varian SCX column and washed with CH₃OH (20 mL). Product was eluted using 2 N NH₃ in CH₃OH (6 mL) and concentrated. Preparative TLC (SiO2, AcOEt/CH3OH 5 : 1) afforded $4-[\{N-(2-\text{amino}-5-\text{chlorobenzoyl})\,\text{glycyl}\}\,\text{aminomethyl}]-1-(4-\text{ethoxybenzyl})\,\text{piperidine}$ (Compound No. 1429) and $1-(4-\text{ethoxybenzyl})-4-[\{N-(2-(4-\text{ethoxybenzyl})\,\text{amino}-5-\text{chlorobenzoyl})\,\text{glycyl}\}\,\text{aminomethyl}]\,\text{piperidine}$ (Compound No. 1433).

Compound No. 1429: 4.5 mg, 20%: The purity was determined by RPLC/MS (95%); ESI/MS m/e 459.2 (M'+H, $C_{24}H_{31}ClN_4O_3$).

Compound No. 1433: 8.4 mg, 28%: The purity was determined by RPLC/MS (98%); ESI/MS m/e 593.2 (M^++H , $C_{33}H_{41}ClN_4O_4$).

Examples 1737-1779.

10

15

20

The compounds of this invention were synthesized pursuant to methods of 25 Example 1736 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 36.

Table 36

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1737	1430	C24 H29 Cl N4 O4	473.0	3.1	13
Example 1738	1431	C24 H31 Br N4 O3	505.2	5.8	23
Example 1739	1432	C24 H29 Br N4 O4	517.0	4.1	16
Example 1740	1434	C33 H41 Br N4 O6	637.2	9.7	30
Example 1741	1435	C24 H31 Cl N4 O2	443.2	9.7	44
Example 1742	1436	C25 H33 C1 N4 O2	457.2	12.5	55
Example 1743	1437	C25 H33 C1 N4 O3	473.2	9.4	40

Example 1744	1438	C24 H31 Br N4 O2	489.2	5.9	24
Example 1745	1439	C25 H33 Br N4 O2	503.2	15.2	61
Example 1746	1440	C25 H33 Br N4 O3	519.2	11.0	43
Example 1747	1441	C23 H29 Br N4 O2 S	507.2	9.3	37
Example 1748	1442	C33 H41 Cl N4 O2	561.4	6.8	24
Example 1749	1443	C35 H45 Cl N4 O2	589.4	9.8	33
Example 1750	1444	C35 H45 Cl N4 O4	621.4	9.4	30
Example 1751	1445	C33 H41 Br N4 O2	605.2	6.5	21
Example 1752	1446	C35 H45 Br N4 O2	635.2	10.7	34
Example 1753	1447	C35 H45 Br N4 O4	665.4	12.4	37
Example 1754	1448	C31 H37 Br N4 O2 S2	643.2	7.6	24
Example 1755	1457	C24 H32 C1 N5 O2	458.2	4.5	20
Example 1756	1458	C23 H29 Cl N4 O4	461.2	6.0	. 2€
Example 1757	1459	C24 H32 Br N5 O2	. 504.0	6.8	27
Example 1758	1460	C23 H29 Br N4 O4	505.0	8.0	32
Example 1759	1461	C31 H37 Cl N4 O6	597.2	5.9	20
Example 1760	1462	C31 H37 Br N4 O6	643.2	6.0	19
Example 1761	1514	C26 H36 C1 N5 O2	486.2	5.5	23
Example 1762	1515	C23 H29 C1 N4 O4	463.0	5.8	25
Example 1763	1516	C26 H36 Br N5 O2	530.2	4.2	16
Example 1764	1517	C23 H29 Br N4 O4	505.0	6.5	26
Example 1765	1518	C31 H37 C1 N4 O6	597.2	4.3	14
Example 1766	1519	C31 H37 Br N4 O6	641.2	5.3	17
Example 1767	1570	C23 H29 C1 N4 O2 S	461.0	2.7	12
Example 1768	1571	C31 H37 C1 N4 O2 S2	597.2	4.9	16
Example 1769	1651	C37 H49 Br N4 O2	663.2	5.5	17
Example 1770	1652	C26 H35 Br N4 O2	515.2	6.0	23
Example 1771	1653	C35 H45 Br N4 O2	633.2	5.0	16
Example 1772	1654	C25 H33 Br N4 O2	501.0	6.2	25
Example 1773	1655	C37 H49 Cl N4 O2	617.4	5.6	18
Example 1774	1656	C26 H35 C1 N4 O2	471.2	5.9	25
Example 1775	1657	C35 H45 C1 N4 O2	589.2	4.6	16
Example 1776		C25 H33 C1 N4 O2	457.2	5.3	23
Example 1777	1785	C26 H33 F3 N4 O2	491.2	4.7	12.8
Example 1778	1786	C25 H29 F3 N4 O3	491.2	3.7	10.1
Example 1779	1804	C25 H32 F2 N4 O2	459.2	3.3	9.6

Example 1780: Preparation of 4-[{N-(2-Amino-5-trifluoromethoxybenzoyl)glycyl}aminomethyl]-1-(4-isopropylbenzyl)piperidine

(Compound No. 1903).

To mixture οf 4-[{N-(2-(tert-butoxycarbonylamino)-5trifluoromethoxy)benzoylglycyl}aminomethyl]piperidine (0.050 isopropylbenzaldehyde (0.060 mmol), $NaBH_3CN$ (0.15 mmol), and methanol (1.3 mL) was added acetic acid (0.050 mL). The reaction mixture was stirred at 60 $^{\circ}\text{C}$ for 8 h. The mixture was cooled to room temperature, loaded onto $Varian^{TM}$ SCX column, and washed with CH_3OH (10 mL). Product was eluted off using 2 N NH_3 in CH_3OH (5 mL) and concentrated. To the resulting material was added 4 N HCl in 1,4-dioxane (2 mL) and the solution was stirred overnight at room temperature. Concentration and preparative TLC gave 4-[{N-(2-amino-5-(Compound No. 1903) (6.6 mg, 26%): The purity was determined by RPLC/MS (93%); ESI/MS m/e 507 ($M^{+}+H$, $C_{26}H_{33}F_{3}N_{4}O_{3}$).

15 Examples 1781-1783.

The compounds of this invention were synthesized pursuant to methods of Example 1780 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 37.

20

25

30

5

10

Table 37

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1781	1904	C26 H33 F3 N4 O3	507	9.6	37.9
Example 1782	1917	C25 H31 F3 N4 O5	525.2	1.2	3.1
Example 1783	1918	C24 H29 F3 N4 O4	495.2	2.8	7.5

Example 1784: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(5-bromo-2-ethoxybenzyl)piperidine (Compound No. 2052).

To a mixture of $4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-diffuorobenzoyl)glycyl\}aminomethyl]piperidine (0.050 mmol), 5-bromo-2-ethoxybenzaldehyde (0.15 mmol), methanol (1.2 mL), and acetic acid (0.030 mL) was added NaBH₃CN (0.25 mmol) in methanol (0.50 mL). The reaction mixture was stirred at 50 °C for 13 h. The mixture was cooled to room temperature, loaded onto Varian SCX column, and washed with CH₃OH (5 mL x 3). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated. To the resulting material were added dichloromethane (1 mL) and trifluoroacetic acid (TFA) (0.50 mL) and$

the solution was stirred at room temperature for 10 min. The reaction mixture was concentrated, and the residue was dissolved in methanol, loaded onto VarianTM SCX column, and washed with CH₃OH (5 mL x 2). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated. Preparative TLC (SiO2, ethyl acetate/methanol = 10/1) gave $4-[\{N-(2-\text{amino}-4,5-\text{difluorobenzoyl})\text{glycyl}\}$ aminomethyl]-1-(5-bromo-2-ethoxybenzyl)piperidine (Compound No. 2052) (10.2 mg, 38%): The purity was determined by RPLC/MS (96%); ESI/MS m/e 539.2 (M⁺+H, C₂₄H₂₅BrF₂N₄O₃).

10 Examples 1785-1792.

20

25

The compounds of this invention were synthesized pursuant to methods of Example 1784 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 38.

.15 Table 38

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1785	2053	C30 H34 F2 N4 O4	553.4	12.7	46
Example 1786	2054	C27 H30 F2 N4 O3	497.2	13.7	55
Example 1787	2055	C23 H28 F2 N4 O4	463.2	10.1	44
Example 1788	2056	C22 H24 Br F3 N4 O2	515.2	7.7	30
Example 1789	2057	C23 H27 Br F2 N4 O3	527.0	8.6	33
Example 1790	2058	C24 H30 F2 N4 O4	477.2	6.4	27
Example 1791	2059	C28 H30 F2 N4 O3	509.4	6.7	26
Example 1792	2060	C25 H32 F2 N4 O5	507.2	7.2	28
The state of the s					

Example 1793: Preparation of $4-[{N-(2-Amino-4,5-diffuorobenzoyl)glycyl}aminomethyl]-1-(3,4-diethoxybenzyl)piperidine (Compound No. 2065).$

To a mixture of $4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-diffluorobenzoyl)glycyl\}$ aminomethyl]piperidine (0.050 mmol), 3,4-diethoxybenzaldehyde (0.15 mmol), methanol (1.2 mL), and acetic acid (0.050 mL) was added NaBH₃CN (0.25 mmol) in methanol (0.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto VarianTM SCX column, and washed with CH₃OH (5 mL x 2). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated. To the resulting material were added dichloromethane (2 mL) and phenyl isocyanate (0.10 mL) and the solution was stirred at room temperature for 1 h, loaded onto VarianTM SCX column, and

washed with CH_3OH (5 mL x 2). Product was eluted off using 2 N NH_3 in CH_3OH (5 mL) and concentrated. The residue was dissolved in methanol (0.25 mL) and 4 N HCl in dioxane (0.125 mL) was added. The solution was stirred at room temperature overnight and concentrated. The residue was dissolved in methanol, loaded onto Varian SCX column, and washed with CH_3OH (5 mL x 2). Product was eluted off using 2 N NH_3 in CH_3OH (5 mL) and concentrated to afford 4-[(N-(2-amino-4,5-difluorobenzoyl)glycyl)aminomethyl]-1-(3,4-

diethoxybenzyl)piperidine (Compound No. 2065) (21.2 mg, 84%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 505.2 (M^++H , $C_{26}H_{34}F_2N_4O_4$).

10

. 5

Examples 1794-1808.

The compounds of this invention were synthesized pursuant to methods of Example 1793 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 39.

15

Table 39

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1794	2061	C23 H27 F3 N4 O2	449.2	12.6	56
Example 1795	2062	C23 H27 F3 N4 O3	465.2	19.7	85
Example 1796	2063	C25 H32 F2 N4 O4	491.2	19.8	81
Example 1797	2064	C22 H24 Br F3 N4 O2	515.2	17.5	68
Example 1798	2066	C29 H32 F2 N4 O3	523.2	18.0	69
Example 1799	2067	C26 H34 F2 N4 O2	473.2	21.9	93
Example 1800	2068	C22 H24 C1 F3 N4 O2	469.2	11.2	48
Example 1801	2069	C24 H30 F2 N4 O3	461.4	20.2	88
Example 1802	2070	C23 H27 Br F2 N4 O3	527.2	17.7	67
Example 1803	2071	C24 H30 F2 N4 O4	477.2	10.9	46
Example 1804	2072	C25 H32 F2 N4 O3	475.2	19.3	81
Example 1805	2073	C29 H32 F2 N4 O3	523.2	22.8	87
Example 1806	2074	C29 H32 F2 N4 O4	539.2	22.5	84
Example 1807	2075	C23 H27 F3 N4 O3	465.2	14.9	64
Example 1808	2076	C22 H24 F4 N4 O2	453.2	21.9	97

Example 1809: Preparation of 4-[{N-(2-Amino-4,5-20 difluorobenzoyl)glycyl}aminomethyl]-1-(2-hydroxy-3-methylbenzyl)piperidine (Compound No. 2106).

To a mixture of $4-[(N-(2-(tert-butoxycarbonylamino)-4,5-diffuorobenzoyl)glycyl}aminomethyl]piperidine (0.050 mmol), 2-hydroxy-3-$

methylbenzaldehyde (0.25 mmol), methanol (1.0 mL), and acetic acid (0.040 mL) was added $NaBH_3CN$ (0.40 mmol) in methanol (0.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto Varian TM SCX column, and washed with CH3OH (5 mL x 2). Product was eluted off using 2 N NH_3 in CH_3OH (5 mL) and concentrated. The resulting material was dissolved into ethyl acetate/methanol = 5:1 (1 mL), loaded onto Varian™ Si column, eluted off using ethyl acetate/methanol = 5:1 (5 mL), and concentrated. The residue was dissolved in methanol (2 mL) and 4 N HCl in dioxane (0.50 mL) was added. The solution was stirred at room temperature overnight and concentrated. The residue was dissolved in methanol, loaded onto Varian™SCX column, and washed with CH_3OH (5 mL x 2). Product was eluted off using 2 N NH_3 in CH_3OH (5 mL) and $4-[{N-(2-amino-4,5-$ TLC afforded Preparative concentrated. difluorobenzoyl)glycyl}aminomethyl]-1-(2-hydroxy-3-methylbenzyl)piperidine (Compound No. 2106): The purity was determined by RPLC/MS (97%); ESI/MS m/e 447.0 $(M^++H, C_{23}H_{28}F_2N_4O_3)$.

Examples 1810-1823.

5

10

15

20

The compounds of this invention were synthesized pursuant to methods of Example 1809 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 40.

Table 40

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1810	2077	C22 H25 Cl F2 N4 O3	467.2	3.7	16
Example 1811	2078	C24 H30 F2 N4 O4	477.2	1.9	8
Example 1812	2079	C30 H34 F2 N4 O4	553.4	4.8	17
Example 1813	2080	C22 H25 C1 F2 N4 O3	467.2	13.5	58
Example 1814	2081	C22 H25 Cl F2 N4 O3	467.2	13.8	59
Example 1815	2082	C23 H28 F2 N4 O4	463.2	9.6	42
Example 1816	2105	C23 H28 F2 N4 O4	463.2	ND	ND
Example 1817	2106	C23 H28 F2 N4 O3	447.0	ND	ND
Example 1818	2107	C20 H23 Br F2 N4 O2 S	503.1	ND	ND
Example 1819	2108	C25 H28 F2 N4 O2 S	487.2	ND	ND
Example 1820	2109	C20 H23 Br F2 N4 O3	487.0	ND	ND
Example 1821	2110	C22 H28 F2 N4 O3	435.1	ND	ND
Example 1822	2111	C22 H24 Cl F3 N4 O2	469.0	ND	ND
Example 1823	2112	C24 H29 Br F2 N4 O4	557.0	ND	ND

ND: Not determined.

Example 1824: Preparation of $4-[(N-(2-A\min o-4,5-diffuorobenzoy1)glycyl)aminomethyl]-1-(3-amino-4-methylbenzyl)piperidine (Compound No. 2114).$

5 То 4-[{N-(2-(tert-butoxycarbonylamino)-4,5mixture of difluorobenzoyl)glycyl)aminomethyl]piperidine (0.050 mmol), 4-methyl-3nitrobenzaldehyde (0.25 mmol), methanol (1.2 mL), and acetic acid (0.050 mL) was added NaBH $_3$ CN (0.50 mmol) in methanol (1.0 mL). The reaction mixture was stirred at 50 $^{\circ}\text{C}$ overnight. The mixture was cooled to room temperature, loaded onto Varian TM SCX column, and washed with CH $_3$ OH (5 mL x 2). Product was eluted 10 off using 2 N NH_3 in CH_3OH (5 mL) and concentrated. The resulting material was dissolved into ethyl acetate/methanol = 2/1 (2 mL), loaded onto VarianTM Si column, eluted off using ethyl acetate/methanol = 2/1 (6 mL), and concentrated. The residue was dissolved in methanol (1 mL) and 4 N HCl in dioxane (0.50 mL) was 15 added. The solution was stirred at room temperature overnight and concentrated. The residue was dissolved in methanol, loaded onto Varian™ SCX column, washed with CH_3OH (5 mL x 2), and eluted off using 2 N NH_3 in CH_3OH (5 mL). Concentration afforded 4-[{N-(2-amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(4methyl-3-nitrobenzyl)piperidine.

A mixture of $4-[\{N-(2-\text{amino-4},5-\text{difluorobenzoyl})\,\text{glycyl}\}\,\text{aminomethyl}]-1-(4-\text{methyl-3-nitrobenzyl})\,\text{piperidine prepared above, }5\%\,\,\text{palladium-activated carbon (15 mg), and methanol (2 mL) was stirred under a hydrogen atmosphere at room temperature for 4 h. The Pd catalyst was filtered off through Celite and the filtrate was concentrated. Preparative TLC (<math>\text{SiO}_2$, ethyl acetate/MeOH = 3/1) gave $4-[\{N-(2-\text{amino-4},5-\text{difluorobenzoyl})\,\text{glycyl}\}\,\text{aminomethyl}]-1-(3-\text{amino-4-methylbenzyl})\,\text{piperidine (Compound No. 2114)}$ (2.9 mg, 13%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 446.1 (M+H, $C_{23}H_{25}F_{2}N_{5}O_{2}$).

20

25

30

35

Example 1825: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(3-amino-4-methoxybenzyl)piperidine (Compound No. 2113).

The titled compound, $4-[\{N-(2-amino-4,5-difluorobenzoyl)glycyl\}aminomethyl]-1-(3-amino-4-methoxybenzyl)piperidine (Compound No. 2113), was synthesized pursuant to methods of Example 1824 using the corresponding reactant: 4.6 mg, 20% yield; ESI/MS m/e 462.2 (M<math>^+$ +H, $C_{23}H_{29}F_2N_5O_3$).

Example 1826: Preparation of 1-(3-Amino-4-hydroxybenzyl)-4-[{N-(2-

5

10

15

25

30

35

(tert-butoxycarbonylamino)-4,5difluorobenzoyl)glycyl}aminomethyl]piperidine.

To a mixture of $4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-diffluorobenzoyl)glycyl\}$ aminomethyl]piperidine (0.35 mmol), 4-hydroxy-3-nitrobenzaldehyde (1.22 mmol), methanol (3.8 mL), and acetic acid (0.175 mL) was added NaBH₃CN (1.58 mmol) in methanol (3.2 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto VarianTM SCX column, and washed with CH₃OH. Product was eluted off using 2 N NH₃ in CH₃OH and concentrated. The resulting material was dissolved into ethyl acetate/methanol = 5/1, loaded onto VarianTM Si column, eluted off using ethyl acetate/methanol = 5/1 (10 mL), and concentrated to give $4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl\}$ aminomethyl]-1-(4-hydroxy-3-nitrobenzyl)piperidine (175 mg, 87%).

A mixture of $4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl\}aminomethyl]-1-(4-hydroxy-3-nitrobenzyl)piperidine prepared above, 10% palladium-activated carbon (45 mg), and methanol (5 mL) was stirred under a hydrogen atmosphere at room temperature for 2 h. The Pd catalyst was filtered off and the filtrate was concentrated to afford 1-(3-amino-4-hydroxybenzyl)-4-[<math>\{N-(2-(tert-butoxycarbonylamino)-4,5-different attention of the part of the par$

difluorobenzoyl)glycyl)aminomethyl)piperidine (100 mg, 60%).

Example 1827: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(3-amino-4-hydroxybenzyl)piperidine (Compound No. 2141).

1-(3-amino-4-hydroxybenzyl)-4-[{N-(2-(tertsolution of Тο butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl}aminomethyl]piperidine (20.0 mg, 0.035 mmol) in methanol (1 mL) was added 4 N HCl in dioxane (0.50 mL) and the solution was stirred at room temperature overnight. After the solution was concentrated, the residue was dissolved in methanol, loaded onto Varian $^{\text{TM}}$ SCX column, washed with CH_3OH (5 mL x 2), and eluted off using 2 N NH_3 in CH_3OH $4-[{N-(2-amino-4,5-$ Concentration afforded mL). difluorobenzoyl)glycyl}aminomethyl]-1-(3-amino-4-hydroxybenzyl)piperidine (Compound No. 2141) (17.6 mg, quant.): The purity was determined by RPLC/MS (85%); ESI/MS m/e 448.3 (M $^{+}$ +H, C₂₂H₂₇F₂N₅O₃).

Examples 1828-1831.

The compounds of this invention were synthesized pursuant to methods of Examples 1826 and 1827 using the corresponding reactants respectively.

Preparative TLC (SiO_2) , if needed, afforded the desired material. The ESI/MS data and yields of last step are summarized in Table 41.

Table 41

5

20

25

30

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1828	2140	C23 H27 F2 N5 O4	476.3	6.7	28.4
Example 1829	2144	C24 H30 F3 N5 O3	494.2	18.7	82.0
Example 1830	2145	C23 H28 F3 N5 O3	480.3	19.8	63.7
Example 1831	2146	C24 H28 F3 N5 O4	508.3	13.5	81.7

Example 1832: Preparation of 1-(3-Amino-4-chlorobenzyl)-4-[{N-(2-(tert butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl}aminomethyl]piperidine.

mixture of 4-[{N-(2-(tert-butoxycarbonylamino)-4,5-10 difluorobenzoyl)glycyl)aminomethyl]piperidine (0.14 mmol), nitrobenzaldehyde (0.50 mmol), methanol (1.5 mL), and acetic acid (0.070 mL) was added NaBH3CN (0.63 mmol) in methanol (1.3 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto Varian TM SCX column, and washed with CH $_3$ OH. Product was eluted off using 15 2 N NH₃ in CH₃OH and concentrated. The resulting material was dissolved into ethyl acetate/methanol = 5/1, loaded onto Varian™ Si column, eluted off using ethyl acetate/methanol = 5/1 (6 mL), and concentrated to give $4-[{N-(2-1)}]$ (tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(4chloro-3-nitrobenzyl)piperidine (44 mg, 53%): ESI/MS m/e 596.3 ($M^{+}+H$).

A mixture of $4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl\}$ aminomethyl]-1-(4-chloro-3-nitrobenzyl)piperidine (121 mg, 0.20 mmol), 10% palladium-activated carbon (85 mg), ethyl acetate (10 mL), and methanol (1 mL) was stirred under a hydrogen atmosphere at room temperature for 19 h. The Pd catalyst was filtered off and the filtrate was concentrated to afford 1-(3-amino-4-chlorobenzyl)-4-[$\{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl\}$ aminomethyl]piperidine (78 mg, 68%).

Example 1833: Preparation of 1-(3-Amino-4-chlorobenzyl)-4-[{N-(2-amino-4,5-difluorobenzoyl)glycyl}aminomethyl]piperidine (Compound No. 2142).

The titled compound, $1-(3-amino-4-chlorobenzyl)-4-[{N-(2-amino-4,5-difluorobenzoyl)glycyl}aminomethyl]piperidine (Compound No. 2142) was synthesized pursuant to method of Example 1832 using the corresponding reactant:$

13.7 mg, 98%); The purity was determined by RPLC/MS (83%); ESI/MS m/e 466.2 (M $^{+}$ +H, $C_{22}H_{26}ClF_2N_5O_2$).

Example 1834: Preparation of 1-(3-Acetylamino-4-hydroxybenzyl)-4-5 [{N-(2-amino-4,5-difluorobenzoyl)glycyl}aminomethyl]piperidine (Compound No. 2148).

To a mixture of 1-(3-amino-4-hydroxybenzyl)-4-[$\{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)$ glycyl) aminomethyl]piperidine (27 mg, 0.049 mmol), (piperidinomethyl) polystyrene (2.7 mmol/g, 60 mg, 0.15 mmol) and dichloromethane (2 mL) was added acetic anhydride (0.12 mmol) in dichloromethane (0.12 mL). The reaction mixture was stirred at room temperature for 3 h. The mixture was loaded onto Varian SCX column, and washed with CH₃OH. Product was eluted off using 2 N NH₃ in CH₃OH and concentrated to give 1-(3-acetylamino-4-hydroxybenzyl)-4-[$\{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)$ glycyl) aminomethyl) piperidine (30 mg, quant.): ESI/MS m/e 590.4 (M*+H, C₂₅H₃₁F₂N₅O₆).

To a solution of 1-(3-acetylamino-4-hydroxybenzyl)-4-[$\{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl\}$ aminomethyl]piperidine obtained above in methanol (1 mL) was added 4 N HCl in dioxane (0.50 mL) and the solution was stirred at room temperature overnight. After the solution was concentrated, the residue was dissolved in methanol, loaded onto Varian SCX column, washed with CH₃OH (5 mL x 2), and eluted off using 2 N NH₃ in CH₃OH (5 mL). Concentration and preparative TLC (SiO₂, AcOEt/MeOH = 3:2) afforded 1-(3-acetylamino-4-hydroxybenzyl)-4-[$\{N-(2-amino-4,5-$

difluorobenzoyl)glycyl)aminomethyl)piperidine (Compound No. 2148) (2.3 mg, 9.2%): The purity was determined by RPLC/MS (98%); ESI/MS m/e 490.3 (M^++H , $C_{24}H_{29}F_2N_5O_4$).

Examples 1835-1839.

30 The compounds of this invention were synthesized pursuant to methods of Examples 1826 and 1834 using the corresponding reactants respectively. The ESI/MS data and yields are summarized in Table 42.

35

10

15

20

25

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1835	2143	C25 H29 F2 N5 O5	518.3	4.8	45
Example 1836	2147	C25 H31 F2 N5 O4	504.3	3.0	23
Example 1837	2154	C26 H32 F3 N5 O4	536.4	4.1	66
Example 1838	2155	C25 H30 F3 N5 O4	522.3	5.5	71
Example 1839	2156	C26 H30 F3 N5 O5	550.3	7.0	78

Example 1840: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(3-methylamino-4-hydroxybenzyl)piperidine (Compound No. 2160).

To a mixture of 4-[{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(3-amino-4-hydroxybenzyl)piperidine (20.4 mg, 0.037 mmol), 37% HCHO solution (3.0 mg, 0.037 mmol), acetic acid (0.10 mL) and methanol (1.3 mL) was added NaBH₃CN (7.0 mg) in methanol (0.2 mL). The reaction mixture was stirred at 60 °C overnight. The mixture was cooled to room temperature, loaded onto VarianTM SCX column, and washed with CH₃OH (5 mL x 2). Product was eluted off using 2 N NH₃ in CH₃OH (8 mL) and concentrated to give 4-[{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(3-methylamino-4-hydroxybenzyl)piperidine.

To a solution of $4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl\}$ aminomethyl]-1-(3-methylamino-4-hydroxybenzyl)piperidine obtained above in methanol (1.0 mL) was added 4 N HCl in dioxane (1.0 mL) and the solution was stirred at room temperature for 3 h. After the solution was concentrated, the residue was dissolved in methanol (1 mL), loaded onto VarianTM SCX column, washed with CH₃OH (5 mL x 2), and eluted off using 2 N NH₃ in CH₃OH (8 mL). Concentration and preparative TLC (SiO₂) afforded $4-\{\{N-(2-amino-4,5-difluorobenzoyl)glycyl\}$ aminomethyl]-1-(3-methylamino-4-hydroxybenzyl)piperidine-(Compound No. 2160) (3.4 mg, 20%): The purity was determined by RPLC/MS (96%); ESI/MS m/e 462.4 (M*+H, C₂₃H₂,F₂N₅O₃).

Examples 1841-1844.

The compounds of this invention were synthesized pursuant to methods of Examples 1826 and 1840 using the corresponding reactants respectively. The ESI/MS data and yields are summarized in Table 43.

30

5

10

15

20

25

	Compound No.	Molecular Formula	ESI/MS · m/e	Yield (mg)	Yield (%)
Example 1841	2159	C24 H31 F2 N5 O3	476.3	7.6	48
Example 1842	2161	C23 H28 C1 F2 N5 O2	480.3	7.3	45
Example 1843	2162	C25 H32 F3 N5 O3	508.4	6.0	24
Example 1844	2163	C24 H30 F3 N5 O3	494.3	4.3	15

Example 1845: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(benzo[c]furazan-5-yl)piperidine (Compound No. 2130).

5

10

15

20

25

30

of $4-[{N-(2-(tert-butoxycarbonylamino)-4,5-}]$ mixture Α difluorobenzoyl)glycyl}aminomethyl]piperidine (0.050 mmol), (piperidinomethyl)polystyrene (0.75 mmol), (bromomethyl)benzo[c]furazan (2.6-2.8 mmol/g, 60 mg, 0.15 mmol), methanol (0.2 mL), acetonitrile (1.0 mL), and chloroform (0.50 mL) was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto Varian TM SCX column, and washed with CH $_3$ OH (5 $mL \times 2$). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated. To the resulting material were added chloroform (1.5 mL) and phenyl isocyanate (0.075 mL) and the solution was stirred at room temperature for 1 h, loaded onto $Varian^{TM}$ SCX column, and washed with CH_3OH (5 mL x 2). Product was eluted off using 2 N NH_3 in CH_3OH (5 mL) and concentrated. The residue was dissolved in methanol (1 mL) and 4 N HCl in dioxane (0.50 mL) was added. The solution was stirred at room temperature overnight and concentrated. The residue was dissolved in methanol, loaded onto Varian TM SCX column, washed with CH $_3$ OH (5 mL \times 2), and eluted off using 2 N NH₃ in CH₃OH (5 mL). Concentration and preparative ethyl acetate/MeOH = 5/1) afforded $4-[{N-(2-amino-4,5-mino-4,5$ difluorobenzoyl)glycyl)aminomethyl]-1-(benzo[c]furazan-5-yl)piperidine (Compound No. 2130) (3.6 mg, 16%): The purity was determined by RPLC/MS (87%); ESI/MS m/e 459.3 (M^++H , $C_{22}H_{24}F_2N_6O_3$).

Example 1846: Preparation of 4-[{N-(2-Amino-4,5-diffluorobenzoyl)glycyl}aminomethyl]-1-(3,5-dimethylisoxazol-4-yl)piperidine (Compound No. 2131).

The titled compound, $4-[\{N-(2-amino-4,5-difluorobenzoyl)glycyl\}aminomethyl]-1-(3,5-dimethylisoxazol-4-yl)piperidine (Compound No. 2131), was synthesized pursuant to methods of Example 1845 using the corresponding reactant: 3.8 mg, 18% yield; ESI/MS m/e 436.2 (M⁷+H, <math>C_{21}H_{27}F_2N_5O_3$).

Example 1847: Preparation of $4-[{N-(2-Amino-5-chlorobenzoyl)glycyl}aminomethyl]-1-{4-(trifluoromethylthio)benzyl}piperidine (Compound No. 1616).$

Α mixture of $4 - [\{N - (2 - amino - 5 - a$ chlorobenzoyl)glycyl)aminomethyl]piperidine (16.2 mg, 0.050 mmol). (trifluoromethylthio)benzyl bromide (20.3 mg, 0.075 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (1.0 mL) and chloroform (0.50 mL) was stirred at 60 °C for 15 h. The reaction mixture was cooled, loaded onto $Varian^{TM}$ SCX column and washed with CH_3OH (15 mL). Product was eluted using 2 N NH $_3$ in CH_3OH (5 mL) and concentrated to afford 4-[{N-(2-amino-5chlorobenzoyl)glycyl}aminomethyl]-1-{4-

(trifluoromethylthio)benzyl)piperidine (Compound No. 1616) (21.9 mg, 85%): The purity was determined by RPLC/MS (96%); ESI/MS m/e 545.2 (M^4+H , $C_{23}H_{26}ClF_3N_4O_2S$).

15 Example 1848-1868.

The compound of this invention was synthesized pursuant to methods of Example 1847 using the corresponding reactant. Preparative TLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 44.

20

5

10

Table 44

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1848	1617	C23 H26 Br F3 N4 O2 S	559.0	21.0	75
Example 1849	1777	C23 H25 C12 F3 N4 O2	517.0	16.3	63.0
Example 1850	1778	C24 H29 F3 N4 O2	463.2	9.5	41.1
Example 1851	1779	C24 H27 F3 N4 O4	493.2	12.7	51.6
Example 1852	1780	C23 H26 Br F3 N4 O2	527.0	16.4	62.2
Example 1853	1781	C23 H27 F3 N4 O3	465.2	10.0	28.7
Example 1854	1782	C25 H29 F3 N4 O2	475.2	12.2	34.3
Example 1855	1783	C24 H26 F3 N5 O2	474.2	17.2	48.4
Example 1856	1784	C23 H27 F3 N4 O2	449.2	11.3	33.6
Example 1857	1788	C25 H31 F3 N4 O2	477.2	10.0	42.0
Example 1858	1789	C24 H29 F3 N4 O3	479.2	10.0	27.9
Example 1859	1792	C24 H30 F2 N4 O2	445.2	5.9	26.5
Example 1860	1793	C22 H24 C12 F2 N4 O2	485.2	9.2	37.9
Example 1861	1794	C23 H28 F2 N4 O2	431.2	5.7	26.5
Example 1862	1795	C23 H26 F2 N4 O4	461.2	6.0	26.1

Example 1863	1796	C22 H25 Br F2 N4 O2	497.0	10.5	42.4
Example 1864	1797	C22 H26 F2 N4 O3	433.2	3.5	16.2
Example 1865	1798	C23 H28 F2 N4 O3	447.2	5.6	25.1
Example 1866	1799	C24 H28 F2 N4 O2	443.2	5.5	24.9
Example 1867	1800	C23 H25 F2 N5 O2	442.2	9.4	42.6
Example 1868	1801	C22 H26 F2 N4 O2	417.2	6.5	31.2

Example 1869: Preparation of 4-[{N-(2-Amino-5-trifluoromethoxybenzoyl)glycyl}aminomethyl]-1-(4-bromobenzyl)piperidine (Compound No. 1910).

4-[{N-(2-(tert-butoxycarbonylamino)-5of mixture Α trifluoromethoxybenzoyl)glycyl)aminomethyl]piperidine (0.050 bromobenzyl bromide (0.060 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (0.8 mL) and chloroform (0.5 mL) was stirred at 60 $^{\circ}\text{C}$ for 12 h. The reaction mixture was cooled, loaded onto Varian $^{TM'}$ SCX column and washed with 50% CHCl $_3$ /CH $_3$ OH (10 mL) and CH $_3$ OH (10 mL). Product was eluted using 2 N NH $_3$ in $\mathrm{CH_{3}OH}$ (5 mL) and concentrated. To the resulting material was added 4 N HCl in 1,4-dioxane (2 mL), and the solution was stirred overnight at room temperature. $4 - [{N - (2 - amino - 5 - 6)}]$ TLC afforded preparative Concentration trifluoromethoxybenzoyl)glycyl}aminomethyl]-1-(4-bromobenzyl)piperidine (Compound No. 1910) (6.5 mg, 24%): The purity was determined by RPLC/MS (96%); ESI/MS m/e 545 (M^4+H , $.C_{23}H_{26}BrF_3N_4O_3$).

Examples 1870-1873.

The compounds of this invention were synthesized pursuant to methods of Example 1869 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 45.

Table 45

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	
Example 1870	1911	C23 H25 Cl2 F3 N4 O3	533	10.6	39.7
Example 1871	1912	C23 H27 F3 N4 O4	481	12.5	52.0
Example 1872	1913	C25 H31 F3 N4 O3	493	7.5	30.5
Example 1873	1914	C24 H29 F3 N4 O3	479	11.0	46.0

25

5

10

15

Example 1874: Preparation of 4-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(benz[d]imidazol-5-

yl)piperidine (Compound No. 2186).

5

20

25

30

35

A mixture of 4-[{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}aminomethyl]piperidine (0.060 mmol), 1-(tert-butoxycarbonyl)-6-(bromomethyl)benz[d]imidazole (15.6 mg, 0.050 mmol), (piperidinomethyl)polystyrene (86 mg), and acetonitrile (2 mL) was stirred at 50 °C for 3 h. After cooling to room temperature, phenyl isocyanate (30 mg) was added and the mixture was stirred at room temperature for 1 h, loaded onto VarianTM SCX column and washed with CH₃OH (5 mL) and CHCl₃ (5 mL). Product was eluted using 2 N NH₃ in CH₃OH (3 mL) and concentrated.

The resulting material was dissolved into methanol (1 mL), and 4 N HCl in dioxane (1 mL) was added. The solution was stirred at room temperature overnight, loaded onto Varian™ SCX column and washed with CH₃OH and dichloromethane. Product was eluted using 2 N NH₃ in CH₃OH and concentrated. Preparative TLC (SiO₂, AcOEt/MeOH = 3:1) afforded 4-[(N-(2-amino-5-trifluorobenzoyl)glycyl)aminomethyl]-1-(benz[d]imidazol-5-yl)piperidine (Compound No. 2186) (1.9 mg, 7.8%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 489.4 (M*+H, C₂₄H₂₇F₃N₆O₂).

Example 1875: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(benzo[c]thiadiazol-5-yl)piperidine (Compound No. 2184).

To a mixture of 5- (hydroxymethyl) benzo[c] thiadiazole (8.3 mg, 0.050 mmol), (piperidinomethyl) polystyrene (86 mg), and chloroform (1 mL) was added methanesulfonyl chloride (0.0042 mL) and the mixture was stirred at room temperature for 1.5 h. Acetonitrile (1 mL) and $4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl\}aminomethyl] piperidine (0.060 mmol) was added and the reaction mixture was stirred at 50 °C for 3 h. After cooling to room temperature, phenyl isocyanate (30 mg) was added, and the mixture was stirred at room temperature for 1 h, loaded onto Varian SCX column and washed with CH₃OH (5 mL) and CHCl₃ (5 mL). Product was eluted using 2 N NH₃ in CH₃OH (3 mL) and concentrated.$

The resulting material was dissolved into dichloromethane (1 mL), and 1 M chlorotrimethylsilane and 1 M phenol in dichloromethane (1 mL) was added. The solution was stirred at room temperature for 5 h, loaded onto VarianTM SCX column and washed with CH₃OH and dichloromethane. Product was eluted using 2 N NH₃ in CH₃OH and concentrated. Preparative TLC (SiO₂, AcOEt/MeOH = 3:1) afforded 4-[(N-(2-amino-4,5-difluorobenzoyl)glycyl)aminomethyl]-1-(benzo[c]thiadiazol-5-yl)piperidine (Compound No. 2184) (1.3 mg, 5.5%): The

PCT/US98/23254 WO 99/25686

purity was determined by RPLC/MS (100%); ESI/MS m/e 475.2 (M^++H , $C_{22}H_{24}F_2N_6O_2S$).

4-[{N-(2-Amino-5-Preparation of 1876: Example trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(benzo[c]thiadiazol-5yl)piperidine (Compound No. 2185).

4-[{N-(2-amino-5compound, The titled trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(benzo[c]thiadiazol-5yl)piperidine (Compound No. 2185) was synthesized pursuant to methods of Example 1875 using the corresponding reactant: 7.2 mg, 28% yield; ESI/MS m/e 507.4 ($M^{\dagger}+H$, $C_{23}H_{25}F_3N_6O_2S$).

4-[{N-(2-Amino-5-1877: Preparation of Example trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(2-amino-4chlorobenzyl)piperidine (Compound No. 1919).

mixture

οf

4-[{N-(2-amino-5-

15 trifluoromethylbenzoyl)glycyl)aminomethyl]piperidine mmol), (0.050 chloro-2-nitrobenzyl chloride (0.050 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (1.0 mL) and chloroform (0.7 mL) was stirred overnight at 50 The reaction mixture was cooled, loaded onto Varian ™ SCX column and washed with 50% CHCl $_3$ /CH $_3$ OH (10 mL) and CH $_3$ OH (10 mL). Product was eluted using 2 N 20 NH_3 in CH_3OH (5 mL) and concentrated. To the resulting material was added ethanol (3 mL) and 10% Pd-C (15 mg), and the mixture was stirred under H_2 at room temperature for 1.5 h. Filtration, concentration, and preparative TLC afforded $4-[\{N-1\}]$ (2-amino-5-trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(2-amino-4chlorobenzyl)piperidine (Compound No. 1919) (5.1 mg, 14%): The purity was 25 determined by RPLC/MS (90%); 1 H NMR (400 MHz, CDCl₃) δ 1.09-1.32 (m, 4 H), 1.41-1.59 (m, 1 H), 1.66 (d, J = 12.5 Hz, 2 H), 1.88 (t, J = 11.5 Hz, 2 H), 2.82 (d, J)= 11.5 Hz, 2 H), 3.17 (t, J = 6.5 Hz, 2 H), 3.42 (s, 2 H), 4.05 (d, J = 5.5 Hz, 2 H), 4.85 (br s, 1 H), 5.92 (br s, 2 H), 6.25-6.36 (m, 1 H), 6.55-6.66 (m, 1 H), 6.70 (d, J = 8.5 Hz, 1 H), 6.85 (d, J = 8.5 Hz, 1 H), 7.26 (s, 1 H), 7.4230 (d, J = 8.5 Hz, 1 H), 7.68 (s, 1 H) ;ESI/MS m/e 498.2 (M+H, $C_{23}H_{27}C1F_3N_5O_2$).

Examples 1878 and 1879.

5

10

The compounds of this invention were synthesized pursuant to methods of 35 Example 1877 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 46.

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1878	1920	C22 H26 C1 F2 N5 O2	466.2	3.5	10.0
Example 1879	1922	C23 H27 Cl F3 N5 O3	514.2	1.2	3.1

Example 1880: Preparation of 4-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(benz[d]oxazol-5-yl)piperidine (Compound No. 2188).

5

10

15

20

25

30

A solution of 1-(3-amino-4-hydroxybenzyl)-4-[$\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)$ glycyl}aminomethyl]piperidine (34.8 mg, 0.060 mmol), prepared pursuant to methods of Example 1826, in THF (2 mL) was treated with triethyl orthoformate (0.033 mL, 3.3 eq) and pyridinium p-toluenesulphonate (2 mg, 0.4 eq). The reaction mixture was stirred overnight under reflux. After cooling to room temperature, the mixture was concentrated. The residue was dissolved in AcOEt, loaded onto BondElutTM Si column, eluted off using ethyl acetate/methanol = 4/1, and concentrated.

The resulting material was dissolved into AcOEt (1.5 mL), and 4 N HCl in dioxane (0.5 mL) was added. The solution was stirred at room temperature overnight, adjusted to pH 10 with 5 M NaOH aqueous solution, and extracted with AcOEt. The extract was concentrated and purified by PTLC (SiO₂, AcOEt/MeOH = 4:1) to afford $4-[\{N-(2-amino-5-trifluoromethylbenzoyl)glycyl\}aminomethyl]-1-(benz[d]oxazol-5-yl)piperidine (Compound No. 2188) (1.6 mg, 5%): The purity was determined by RPLC/MS (94%); ESI/MS m/e 490.3 (M*+H, <math>C_{24}H_{26}F_{3}N_{5}O_{3}$).

Example 1881: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(2-oxo-2,3-dihydro-1,3-benzoxazol-5-yl)piperidine (Compound No. 2190).

To a mixture of $1-(3-amino-4-hydroxy)-4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-diffluorobenzoyl)glycyl\}aminomethyl]piperidine (22 mg, 0.040 mmol), NaHCO3 (0.040 mmol), water (0.7 mL), and methanol (1.5 mL) was added phenyl chloroformate (0.046 mmol) and the mixture was stirred at room temperature for 3 h. A 1 N NaOH solution (0.040 mL) was added, and the reaction mixture was stirred for additional 1.5 h. The mixture was extracted with ethyl acetate and evaporated. The residue was dissolved in methanol, loaded onto Varian SCX column and washed with CH3OH (5 mL x 2). Product was eluted using 2 N NH3 in CH3OH (5 mL) and concentrated.$

To the resulting material was added 1 M chlorotrimethylsilane and 1 M $\,$

phenol in dichloromethane (2 mL). The solution was stirred at room temperature for 2 h and evaporated. The residue was dissolved in methanol, loaded onto VarianTM SCX column and washed with CH₃OH (5 mL x 2). Product was eluted using 2 N NH₃ in CH₃OH (5 mL) and concentrated. Preparative TLC (SiO₂, AcOEt/MeOH = 5:2) afforded 4-[(N-(2-amino-4,5-difluorobenzoyl)glycyl)aminomethyl]-1-(2-oxo-2,3-dihydro-1,3-benzoxazol-5-yl)piperidine (Compound No.**2190**) (4.1 mg, 22%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 474.2 (M'+H, C₂₃H₂₅F₂N₅O₄).

10 Examples 1882-1884.

5

15

20

25

30

The compounds of this invention were synthesized pursuant to methods of Example 1881 using the corresponding reactant respectively (phenyl chlorothionoformate was used instead of phenyl chloroformate for preparation of Compounds 2192 and 2193). The ESI/MS data and yields are summarized in Table 47.

Table 47

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (8)
Example 1882	2191	C24 H26 F3 N5 O4	506.3	3.1	10
Example 1883	2192	C23 H25 F2 N5 O3 S	490.2	6.9	35
Example 1884	2193	C24 H26 F3 N5 O3 S	522.2	3.6	11

Reference Example 36: Preparation of 4-[{N-(1-(9-Fuluorenylmethoxycarbonyl)piperidine-4-

ylmethyl)carbamoylmethyl}aminomethyl]-3-methoxyphenyloxymethyl-polystyrene.

To a solution of 1-(9-fuluorenylmethoxycarbonyl)-4-(glycylaminomethyl)piperidine hydrochloride (10 mmol) in DMF (65 mL) were added acetic acid (0.3 mL), sodium triacetoxyborohydride (1.92 g), and <math>4-formyl-3-(methoxyphenyloxymethyl)-polystyrene (1 mmol/g, 200 g). The mixture was shaken for 2 h and filtered. The resin was washed with MeOH, DMF, CH_2Cl_2 , and methanol, and dried to afford the desired material.

Examples 1885-2000: General Procedure for Solid-Phase Synthesis of 4-Aminomethylpiperidines.

To a mixture of the corresponding acid (1.6 mmol), HBTU (1.6 mmol), and DMF (6 mL) was added diisopropylethylamine (3.6 mmol), and the mixture was shaken

for 2 min. $4-[\{N-(1-(9-\text{fuluorenylmethoxycarbonyl})\text{piperidine-}4-y\text{lmethyl})\text{carbamoylmethyl}\}$ aminomethyl]-3-methoxyphenyloxymethyl-polystyrene (0.4 mmol) was added and the mixture was shaken for 1 h and filtered. The resin was rinsed with DMF and CH_2Cl_2 , and dried.

A mixture of the resulting resin, piperidine (3.2 mL), and DMF (12.8 mL) was shaken for 10 min and filtered. The resin was washed with DMF and CH_2Cl_2 , and dried.

To the dry resin (0.05 mmol) was added a mixture of NaBH (OAc) $_3$ (0.25 mmol), AcOH (0.025 mL) and DMF (1 mL). The corresponding aldehyde (2.5 mmol) was added, and the mixture was shaken for 2 h, then filtered and washed with CH $_3$ OH, 10% diisopropylethylamine in DMF, DMF, CH $_2$ Cl $_2$, and CH $_3$ OH. A mixture of the resin, water (0.050 mL), and trifluoroacetic acid (0.95 mL) was shaken for 1 h and filtered. The resin was washed with CH $_2$ Cl $_2$ and CH $_3$ OH. The filtrate and washings were combined and concentrated. The crude material was loaded onto Varian TM SCX column and washed with CH $_3$ OH (15 mL). Product was eluted using 2 N NH $_3$ in CH $_3$ OH (5 mL) and concentrated. Preparative TLC or HPLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 48.

Table 48

20

5

10

15

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1885	1923	C23 H25 Br F3 N3 O2 S	544	15.7	87
Example 1886	1924	C24 H28 F3 N3 O3 S	496	14.6	89
Example 1887	1925 .	C23 H25 F4 N3 O2 S	484	11.7	73
Example 1888	1926	C23 H24 F5 N3 O2 S	502	13.9	84
Example 1889	1927	C23 H26 F3 N3 O3 S	482	10.7	67
Example 1890	1928	C24 H26 F3 N3 O4 S	510	14.3	85
Example 1891	1929	C26 H30 F3 N3 O2 S	506	14.7	88
Example 1892	1930	C24 H28 F3 N3 O2 S2	512	14.4	85
Example 1893	1931	C25 H30 F3 N3 O2 S	494	14.3	88
Example 1894	1932	C25 H28 F3 N3 O3 S	509	7.1*	35
Example 1895	1933	C25 H30 F3 N3 O2 S	494	14.3	88
Example 1896	1934	C26 H32 F3 N3 O2 S	509	14.4	86
Example 1897	1935	C23 H25 F3 N4 O4 S	511	14.9	88
Example 1898	1936	C24 H28 F3 N3 O2 S	480	13.3	84
Example 1899	1937	C26 H32 F3 N3 O2 S	509	11.1	66
Example 1900	1938	C23 H27 Br2 N3 O2	538	5.3*	25
Example 1901	1939	C24 H30 Br N3 O3	488	5.0*	25

Example 1905 1943	C23 H27 Br F N3 O2 C23 H26 Br F2 N3 O2 C23 H28 Br N3 O3 C24 H28 Br N3 O4	476 494 474	4.9* 6.1*	30
Example 1904 1942 Example 1905 1943 Example 1906 1944 Example 1907 1945	C23 H28 Br N3 O3			30
Example 1905 1943 Example 1906 1944 Example 1907 1945	ii	474		
Example 1906 1944 Example 1907 1945	C24 H28 Br N3 O4		1.7*	9
Example 1907 1945		502	6.6*	32
	C26 H32 Br N3 O2	498	7.0*	35
Example 1908 1946	C24 H30 Br N3 O2 S	504	11.1	67
Purumpte 1200 1210	C25 H32 Br N3 O2	488	3.2*	16
Example 1909 1947	C25 H30 Br N3 O3	500	5.7	35
Example 1910 1948	C25 H32 Br N3 O2	486	4.9*	25
Example 1911 1949	C26 H34 Br N3 O2	500	6.7*	33
Example 1912 1950	C23 H27 Br N4 O4	503	5.0*	25
Example 1913 1951	C24 H30 Br N3 O2	472	5.1*	26
Example 1914 1952	C22 H24 Br2 F N3 O2	542	14.9	83
Example 1915 1953	C23 H27 Br F N3 O3	492	13.9	86
Example 1916 1954	C22 H24 Br F2 N3 O2	480	12.5	79
Example 1917 1955	C22 H23 Br F3 N3 O2	498	13.2	80
Example 1918 1956	C22 H25 Br F N3 O3	478	7.0	44
Example 1919 1957	C23 H25 Br F N3 O4	506	4.0*	20
Example 1920 1958	C25 H29 Br F N3 O2	502	14.6	88
Example 1921 1959	C23 H27 Br F N3 O2 S	508	13.1	78
Example 1922 1960	C24 H29 Br F N3 O2	490	13.8	85
Example 1923 1961	C24 H27 Br F N3 O3	504	2.7*	13
Example 1924 1962	C24 H29 Br F N3 O2	490	12.7	78
Example 1925 1963	C25 H31 Br F N3 O2	504	13.5	81
Example 1926 1964	C22 H24 Br F N4 O4	507	14.8	88
Example 1927 1965	C23 H27 Br F N3 O2	476	12.1	77
Example 1928 1966	C25 H31 Br F N3 O2	504	13.4	80
Example 1929 1967	C22 H26 Br F N4 O2	477	4.7*	20
Example 1930 1968	C23 H29 F N4 O3	429	6.9*	32
Example 1931 1969	C22 H27 F N4 O3	415	3.7*	17
Example 1932 1970	C23 H27 F N4 O4	443	5.4*	24
Example 1933 1971	C25 H31 F N4 O2	439	4.3*	20
Example 1934 1972	C23 H29 F N4 O2 S	445	6.2*	28
Example 1935 1973	C24 H31 F N4 O2	427	6.3*	29
Example 1936 1974	C24 H31 F N4 O2	427	4.9*	23
Example 1937 1975	C22 H26 F N5 O4	444	5.9*	27
Example 1938 1976	C23 H29 F N4 O2	413	6.7*	32
Example 1939 1977	C23 H26 F N5 O2	424	5.1*	24
Example 1940 1978	C25 H33 F N4 O2	441	6.3*	29
Example 1941 1979	C25 H30 F2 N4 O2	457	8.0*	35

Eurama 1 - 1040	1980	C24 H28 F2 N4 O3	450	C 04	
Example 1942		1_	459	6.0*	26
Example 1943		C22 H25 F2 N5 O4	462	9.3*	41
Example 1944		C23 H25 F2 N5 O2	442	6.0*	27
Example 1945		C25 H32 F2 N4 O2	459	8.3*	37
Example 1946		C22 H26 Br I N4 O2	585	9.7*	36
Example 1947		C23 H29 I N4 O3	537	9.2*	36
Example 1948		C22 H27 I N4 O3	523	5.8*	23
Example 1949		C23 H27 I N4 O4	551	8.2*	32.
Example 1950		C25 H31 I N4 O2	547	6.7*	26
Example 1951	1989	C23 H29 I N4 O2 S	553	б.4*	25
Example 1952	1990	C24 H31 I N4 O2	535	7.2*	29
Example 1953	1991	C24 H29 I N4 O3	549	5.6*	22
Example 1954	1992	C24 H31 I N4 O2	535	6.2*	25
Example 1955	1993	C22 H26 I N5 O4	552	10.2*	40
Example 1956	1994	C23 H29 I N4 O2	521	7.5*	30
Example 1957	1995	C23 H26 I N5 O2	532	6.8*	27
Example 1958	1996	C25 H33 I N4 O2	549	7.1*	28
Example 1959	1997	C25 H33 I N4 O2	549	3.0*	12
Example 1960	1998	C22 H25 Br Cl N3 O2	478	7.6*	39
Example 1961	1999	C23 H28 C1 N3 O3	430	7.0*	3 9
Example 1962	2000	C22 H25 Cl F N3 O2	418	14.1	102
Example 1963	2001	C22 H26 C1 N3 O3	416	6.3*	36
Example 1964	2002	C23 H26 C1 N3 O4	444	7.1*	39
Example 1965	2003	C25 H30 Cl N3 O2	440	15.3	105
Example 1966	2004	C23 H28 Cl N3 O2 S	446	8.4*	45
Example 1967	2005	C24 H30 Cl N3 O2	428	7.4*	41
Example 1968	2006	C24 H30 Cl N3 O2	428	13.8	98
Example 1969	2007	C22 H25 Cl N4 O4	445	16.0	109
Example 1970	2008	C23 H28 Cl N3 O2	414	14.1	103
Example 1971	2009	C23 H25 C1 N4 O2	425	14.8	106
Example 1972	2010	C25 H32 C1 N3 O2	442	14.5	99
Example 1973	2011	C25 H32 Cl N3 O2	442	14.5	99
Example 1974	2012	C22 H24 Br2 Cl N3 O2	558	12.8*	58
Example 1975	2013	C23 H27 Br Cl N3 O3	508	8.6*	42
Example 1976	2014	C22 H25 Br Cl N3 O3	494	6.0*	30
Example 1977	2015	C23 H25 Br Cl N3 O4	522	8.4*	40
Example 1978	2016	C25 H29 Br Cl N3 O2	518	17.6	103
Example 1979	2017	C23 H27 Br Cl N3 O2 S	524	17.1	99
Example 1980	2018	C24 H29 Br Cl N3 O2	506	14.7	88
Example 1981	2019	C24 H27 Br Cl N3 O3	520	8.0*	38
LL		<u>. </u>			

Example 1982	2020	C24 H29 Br Cl N3 O2	506	14.7	88
Example 1983	2021	C22 H24 Br Cl N4 O4	523	12.0*	57
Example 1984	2022	C23 H27 Br Cl N3 O2	492	8.5*	42
Example 1985	2023	C23 H24 Br Cl N4 O2	503	6.3*	31
Example 1986	2024	C25 H31 Br Cl N3 O2	520	9.6*	46
Example 1987	2025	C25 H31 Br Cl N3 O2	520	15.0	87
Example 1988	2026	C22 H23 Br C1 F2 N3 O2	514	15.8	93
Example 1989	2027	C22 H26 Br2 N4 O2	537	10.7*	42
Example 1990	2028	C23 H29 Br N4 O3	489	8.5*	36
Example 1991	2029	C22 H27 Br N4 O3	475	7.5*	32
Example 1992	2030	C23 H27 Br N4 O4	503	б.8*	28
Example 1993	2031	C25 H31 Br N4 O2	499	6.2*	26
Example 1994	2032	C24 H29 Br N4 O3	501	8.9*	37
Example 1995	2033	C24 H31 Br N4 O2	487	9.1*	39
Example 1996	2034	C22 H26 Br N5 O4	504	6.4*	26
Example 1997	2035	C23 H29 Br N4 O2	473	6.5*	28
Example 1998	2036	C23 H26 Br N5 O2	484	6.3*	. 27
Example 1999	2037	C25 H33 Br N4 O2	501	5.4*	22
Example 2000	2038	C22 H25 Br F2 N4 O2	495	5.4*	23

^{*}Yield of TFA salt.

5

10

15

Example 2001: Preparation of 1-(3-Carbamoylbenzyl)-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 924).

Example 2002: Preparation of 1-(4-Carbamoylbenzyl)-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 925).

Compound No. 925 was synthesized pursuant to methods of Example 2001 using

the corresponding reactant: 14.2 mg, 72%; The purity was determined by RPLC/MS (86%); ESI/MS m/e 447 ($M^{+}+H$, $C_{24}H_{27}F_{3}N_{4}O_{3}$).

Example 2003: Preparation of 1-(4-Aminobenzy1)-4-[N-(3-(trifluoromethyl)benzoyl)glycyl) aminomethyl]piperidine (Compound No. 516).

A solution of $1-(4-\text{nitrobenzy1})-4-[\{N-(3-(1+1))\}]$ (trifluoromethyl) benzoyl) glycyl) aminomethyl] piperidine (22.4 mg, 0.047 mmol) in EtOH (3 mL) was hydrogenated at 1 atm for 1 h in the presence of 5% palladium on charcoal (10 mg) at 25 °C. The catalyst was removed by filtration and washed with EtOH (5 mL). The combined filtrate was evaporated to afford $1-(4-\text{aminobenzy1})-4-[\{N-(3-\text{minobenzy1})-4-[\{N$

(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (compound No. 516) as a pale yellow solid (20.1 mg, 96%). The purity was determined by RPLC/MS (99%); ESI/MS m/e 449.1 (M^*+H , $C_{23}H_{27}F_3N_4O_2$).

15

10

5

Examples 2004 and 2005.

Compounds No. **517** and **518** were synthesized pursuant to methods of Example 2003 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 49.

20

25

30

Table 49

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 2004	517	C23 H27 F3 N4 O2	449	26.5	78
Example 2005	518	C23 H27 F3 N4 O2	449	25.3	71

Example 2006: Preparation of 1-{4-(Benzoylamino)benzyl}-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 519).

EDCI (4.7 mg), 1-hydroxybenzotriazole hydrate (3.3 mg), Et₃N (2.5 mg) and benzoic acid (3.0 mg) were added to a solution of 1-(4-aminobenzyl)-4-[$\{N-(3-(\text{trifluoromethyl})\text{benzoyl})\text{glycyl}\}$ aminomethyl]piperidine (10.1 mg, 0.023 mmol) in CH₂Cl₂ (2.5 mL). The reaction mixture was stirred at 25 °C for 16 h, washed with 2 N aqueous NaOH (2 x 2 mL) and brine (1 mL). After filtration through PTFE membrane filter, the solvent was removed under reduced pressure to afford an yellow oil which was purified by preparative TLC (SiO₂, 10% CH₃OH-CH₂Cl₂) to give $1-\{4-(\text{benzoylamino})\text{benzyl}\}-4-[\{N-(3-(\text{trifluoromethyl})\text{benzoyl})\text{glycyl}\}$ aminomethyl]piperidine (compound No. 519) as

a colorless oil (4.6 mg, 36%): The purity was determined by RPLC/MS (99%); ESI/MS m/e 553.2 (M^4+H , $C_{30}H_{31}F_3N_4O_3$).

Example 2007: Preparation of 1-{4-(Piperidinocarbonyl)benzyl}-4-[{N-5 (3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 1572).

Piperidine (0.048 mmol), diisopropylcarbodiimide (0.45 mmol) in DMF (0.15 mL), 1-hydroxybenzotriazole hydrate (0.45 mmol) in DMF (0.15 mL) were added to a solution of $1-(4-carboxybenzyl)-4-[\{N-(3-(trifluoromethyl)benzoyl)glycyl\}aminomethyl]piperidine (0.040 mmol) in DMF (1.0 mL). The reaction mixture was stirred at room temperature for 17 h, loaded onto Varian SCX column, and washed with CHCl₃/CH₃OH 1 : 1 (5 mL) and CH₃OH (5 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford <math>1-\{4-(piperidinocarbonyl)benzyl\}-4-\{(N-(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (Compound No. 1572) (14.3 mg, 66%): The purity was determined by RPLC/MS (99%); ESI/MS m/e 545 (M⁺+H, C₂₉H₃₅F₃N₄O₃).$

Examples 2008-2015.

The compounds of this invention were synthesized pursuant to methods of Example 2007 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 50.

Table 50

25

10

15

20

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 2008	1573	C31 H33 F3 N4 O4	583	17.6	76
Example 2009	1574	C31 H33 F3 N4 O3	567	18.8	83
Example 2010	1575	C30 H30 Cl F3 N4 O3	587	3.2	14
Example 2011	1576	C28 H33 F3 N4 O4	547	21.1	97
Example 2012	1577	C26 H31 F3 N4 O4	521	5.1	24
Example 2013	1578	C31 H33 F3 N4 O3	567	16.9	75
Example 2014	1579	C31 H33 F3 N4 O3	567	6.0	26
Example 2015	1580	C29 H35 F3 N4 O3	545	15.1	69

Example 2016: Preparation of $1-[4-(Chloroformyl)benzyl]-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine.$

A mixture of $1-(4-\text{carboxybenzyl})-4-\{\{N-\{3-(\text{trifluoromethyl})\text{benzoyl}\}\text{glycyl}\}$ aminomethyl]piperidine (240 mg) and thionyl chloride (1 mL) was stirred at room temperature for 12 h and the excess thionyl chloride was removed under reduced pressure to give desired $1-\{4-(\text{chloroformyl})\text{benzyl}\}-4-[\{N-\{3-(\text{chloroformyl})\text{benzyl}]$

(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine. The acid chloride was used without further purification.

Example 2017: Preparation of 1-[4-{N-(2-

10 Methoxyethyl) carbamoyl | benzyl] -4-[{N-(3-

(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (Compound No. 1612).

Α mixture of $1-[4-(chloroformyl)benzyl]-4-[{N-(3-$ (trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (0.042 mmol), methoxyethylamine (3.8 mg, 0.050 mmol), piperidinomethylpolystyrene (46 mg) and dichloromethane (1.5 mL) was stirred at room temperature for 17 h. Water (0.020 mL) was added and the mixture was stirred for 30 min. Methanol (1 mL) was added and the mixture was loaded onto Varian TM SCX column, and washed with CH:OH (10mL). Product was eluted off using 2 N NH_3 in CH_3OH (5 mL) and concentrated to afford 1-[4-(N-(2-methoxyethyl) carbamoyl)benzyl]-4-[(N-(3-methoxyethyl) carbamoyl)(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (Compound No. 1612) (26.7 mg, 100%): The purity was determined by RPLC/MS (92%); ESI/MS m/e 535.2 $(M^{T}+H, C_{27}H_{33}F_{3}N_{4}O_{4})$.

Examples 2018-2020.

25 The compounds of this invention were synthesized pursuant to methods of Example 2017 using the corresponding reactant respectively. Preparative TLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 51.

30

5

15

20

Table 51

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 2018	1610	C31 H30 F6 N4 O3	621.2	4.4	14
Example 2019	1611	C30 H29 Cl2 F3 N4 O3	621.2	35.7	quant
Example 2020	1613	C32 H35 F3 N4 O3	581.2	29.9	quant

Example

2021:

Preparation

of

4-[N-{5-Bromo-2-

(methylamino) benzoyl}glycyl]aminomethyl-1-(4-chlorobenzyl)piperidine (Compound No. 1427).

A solution of 4-(N-(2-amino-5-bromobenzoyl)glycyl)aminomethyl-1-(4-mino-5-bromobenzoyl)glycylchlorobenzyl)piperidine (Compound No. 1042) (50 mg, 0.10 mmol) in triethyl orthoformate (6.5 mL) was stirred at 150 °C for 17 h. Concentration afforded a yellow solid. To a solution of the yellow solid in ethanol (3 mL) was added sodium borohydride (7.6 mg, 0.2 mmol) and the mixture was stirred at room temperature for 14 h. A resulting white precipitate was resolved in dichloromethane and the solution was washed with 1 N aqueous NaOH (2 mL). organic layer was separated, dried over K2CO3, filtered and evaporated. Column 4-[N-{5-bromo-2-MeOH/CHCl₃) gave (SiO₂,20% chromatography (methylamino)benzoyl}glycyl]aminomethyl-1-(4-chlorobenzyl)piperidine (Compound No. 1427) (40 mg, 80%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 505 ($C_{23}H_{28}BrClF_6N_4O_2$).

15

20

25

10

5

Example 2022: Preparation of 4-[N-{5-Bromo-2-(dimethylamino)benzoyl}glycyl]aminomethyl-1-(4-chlorobenzyl)piperidine (Compound No. 1428).

Sodium cyanoborohydride (26 mg, 0.42 mmol) and acetic acid (14 μL) was of $4 - \{N - (2 - amino - 5 - am$ to а mixture successively added bromobenzoyl)glycyl}aminomethyl-1-(4-chlorobenzyl)piperidine (Compound No. 1042) (67 mg, 0.14 mmol), 37% formaldehyde solution in water (0.112 mL, 1.4 mmol), acetonitrile (2 mL), and methanol (1.5 mL). After the solution was stirred at 50 °C for 30 h, 1 N aqueous NaOH and dichloromethane were added. The aqueous layer was separated and the organic layer was dried over K2CO3, filtered and Column chromatography (SiO₂, 20% MeOH/AcOEt) gave $4-[N-{5-}]$ bromo-2-(dimethylamino)benzoyl}glycyl]aminomethyl-1-(4chlorobenzyl)piperidine (Compound No. 1428) (60 mg, 82%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 523 ($C_{24}H_{30}BrClF_6N_4O_2$).

30

35

Example 2023: Preparation of 4-[(N-(5-Bromo-2-(methylsulfonylamino)benzoyl)glycyl)aminomethyl]-1-(4-chlorobenzyl)piperidine (Compound No. 1581).

A mixture of $4-[\{N-(2-\text{amino}-5-\text{bromobenzoyl})\,\text{glycyl}\}\,\text{aminomethyl}]-1-(4-\text{chlorobenzyl})\,\text{piperidine}$ (25 mg, 0.05 mmol), methanesulfonyl chloride (0.0045 mL), triethylamine (0.026 mL) and dichloromethane (2 mL) was stirred at room temperature for 17 h. The reaction mixture was purified with column chromatography (SiO₂), loaded onto Varian SAX column, and washed with CH₃OH (5

mL). Product was eluted off using 0.1 N HCl in CH_2QH (5 mL) and concentrated to afford $4-[\{N-(5-bromc-2-(methylsulfonylamino)benzoyl)glycyl\}aminomethyl]-1-(4-chlorobenzyl)-piperidine (Compound No.$ **1581** $) (5.4 mg, 19%): ESI/MS m/e 573.0 (M'+H, <math>C_{23}H_{28}BrClN_4O_4S$).

5

20

Example 2024: Preparation of 4-[{N-(5-Bromo-2-(bis(methylsulfonyl)amino)benzoyl)glycyl}aminomethyl]-1-(4-chlorobenzyl)piperidine (Compound No. 1582).

10 1-(4-chlorobenzyl)-4-[{N-(2-amino-5-Α mixture of bromobenzoyl)glycyl)aminomethyl]piperidine (57 mg, 0.10 mmol), methanesulfonyl chloride (0.018 mL, 0.24 mmol), triethylamine (0.068 mL) and dichloromethane (2 mL) was stirred at room temperature for 8 h. Aqueous 1 N NaOH solution (1 mL) was added and the mixture was extracted with dichloromethane (2 mL \times 3). 15 The combined extracts were dried over K2CO3, filtered and evaporated. Column chromatography (SiO₂) qave 4-[{N-(5-bromo-2-(bis (methylsulfonyl) amino) benzoyl) glycyl} aminomethyl]-1-(4chlorobenzyl)piperidine (Compound No. 1582) (40 mg, 62%): ESI/MS m/e 651 (M*+H, $C_{24}H_{30}BrClN_4O_6S_2$).

Example 2025: Preparation of 1-(4-Chlorobenzyl)-1-methyl-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidinium iodide (Methylammonium iodide of Compound No. 461).

Α solution of $4 - [\{ N - (3 - 1) \}]$ 25 (trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (30 mg, 0.087 mmol) in CH₃CN (1.0 mL) and (piperidinomethyl)polystyrene (80 mg, 2.7 mmol base/g resin) were added to a solution of 4-chlorobenzyl chloride (11.7 mg, 0.073 mmol) in CH₃CN (1.0 mL). The reaction mixture was stirred at 60 °C for 2 h. Phenyl isocyanate (10.4 mg, 0.087 mmol) was added to the cooled reaction mixture and 30 the mixture was stirred at 25 °C for 1 h. The reaction mixture was loaded onto . Varian TM SCX column and washed with CH $_3$ OH (20 mL). Product was eluted off using 2 N NH₃ in CH₃OH (6 mL) and concentrated to afford $1-(4-chlorobenzyl)-4-[{N-}]$ (3-(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine as a colorless oil used without purification. Iodomethane (28 mg, 0.20 mmol) was added to a solution 35 of $1-(4-chlorobenzyl)-4-[{N-(3-$ (trifluoromethyl) benzoyl) glycyl) aminomethyl] piperidine in CH_3CN (2.0 mL) and the reaction mixture was stirred at 70 °C for 4 h. The solvent was removed under reduced pressure afford $1-(4-\text{chlorobenzyl})-1-\text{methyl}-4-[{N-(3$ to

(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidinium iodide as a pale yellow oil (31.7 mg, 71%): The purity was determined by RPLC/MS (99%); ESI/MS m/e 482.1 (M^{+} , $C_{24}H_{26}ClF_{3}N_{3}O_{2}$).

Example 2026: Preparation of 1-{4-Chlorobenzyl}-4-[N-methyl-N-{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 520).

5

10

15

20

25

30

Formaldehyde (108 mg, 1.33 mmol, 37% wt solution in H_2O) was added to a solution of 1-(4-chlorobenzyl)-4-(aminomethyl)piperidine (318 mg, 1.33 mmol) and NaBH₃CN (668 mg) in 10% CH₃COOH/CH₃OH (3 mL). The reaction mixture was stirred at 25 °C for 1 h. The reaction mixture was loaded on DOWEXTM 50Wx2 column (10 mL) and washed with CH₃OH (100 mL). Product was eluted off using 2 N NH₃ in CH₃OH (100 mL) and concentrated to afford 173 mg of crude 1-(4-chlorobenzyl)-4-{ (methylamino)methyl)piperidine as a colorless oil used without purification.

EDCI (85 mg), 1-hydroxybenzotriazole hydrate (60 mg) were added to a solution of 1-(4-chlorobenzyl)-4-{ (methylamino) methyl}piperidine (111 mg, 0.44 mmol) in CH_2Cl_2 (4 mL). The reaction mixture was stirred at 25 °C for 1 h and then washed with 2 N aqueous NaOH (2 mL X 2) and brine (1 mL). After filtration through PTFE membrane filter, the solvent was removed under reduced pressure to afford an yellow oil which was purified by preparative TLC (SiO₂, 5% CH_3OH/CH_2Cl_2) to give 1-(4-chlorobenzyl)-4-[N-methyl-N-(N-(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (compound No. 520) as a pale yellow oil (14.0 mg, 3.4%). The purity was determined by RPLC/MS (99%); ESI/MS m/e 482.1 (M*+H, $C_{24}H_{27}ClF_3N_3O_2$).

Reference Example 37: Preparation of 3-Aminohomopiperidine.

A solution of DL- α -amino- ϵ -caprolactam (2 g, 16 mmol) in THF (70 mL) was treated with 1 M BH₃-THF solution (80 mL) and heated to reflux for 3 h. 2 N aqueous HCl solution (50 mL) was added and the reaction was heated to reflux for an additional hour before cooling to 25 °C. The reaction was basicified (pH 10) by the addition of 4 N NaOH solution and extracted with EtOAc (3 x 200 mL). The combined organic phases were washed with saturated aqueous NaHCO₂, dried (MgSO₄) and concentrated to yield the desired material (990 mg, 54%) which was used without any further purification.

Reference Example 38: Preparation of 3-Amino-1-(4-chlorobenzyl)homopiperidine.

A solution of 3-aminohomopiperidine (1.71 g, 15 mmol) in CH_3CN (45 mL) was treated with p-chlorobenzyl chloride (463 mg, 2.9 mmol) and K_2CO_2 (828 g,

6 mmol) and heated to 70 °C for 9 h. The reaction mixture was cooled to 25 °C and concentrated to afford a yellow solid. The residue was partitioned between H_2O (5 mL) and EtOAc (50 mL), and extracted with EtOAc (2 x 50 mL). The combined organic extracts were washed with brine (20 mL), dried (Na_2SO_4) and concentrated. The resulting yellow oil was purified by chromatography (SiO_2 , 5-20% $CH_3OH-CH_2Cl_2$ gradient elution) to afford the desired product as a yellow oil (639 mg, 93%).

Example 2027: Preparation of 1-(4-Chlorobenzyl)-3-{(4-benzoylbutyryl)amino}homopiperidine (Compound No. 994).

A solution of 3-amino-1-(4-chlorobenzyl)homopiperidine (24 mg, 0.10 mmol) and 4-benzoylbutyric acid (1.2 equiv.) in CHCl3 (1 mL) was treated with EDCI (23 mg), HOBt (16.2 mg) and Et₃N (15.2 μ L), and stirred at 25 °C for 16 h. The reaction mixture was diluted with CH₂Cl₂ (0.5 mL), washed with 2 N aqueous NaOH solution (2 x 0.75 mL), dried by filtration through a PTFE membrane and concentrated to afford 1-(4-chlorobenzyl)-3-{(4-benzoylbutyryl)amino}homopiperidine (compound No. 994) (43 mg, 99%): The purity was determined by RPLC/MS (98%); ESI/MS m/e 413 (M*+H, C₂₄H₂₉ClN₂O₂).

Examples 2028-2042.

The compounds of this invention were synthesized pursuant to methods of Example 2027 using the corresponding reactant respectively. Chromatography (HPLC-C18), if needed, afforded the desired material as the TFA salt. The ESI/MS data and yields are summarized in Table 52.

25

5

10

15

Table 52

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 2028	943	C23 H25 Cl F3 N3 O2	468	6	28
Example 2029	944	C23 H28 Cl N3 O2	414	5	29
Example 2030	945	C22 H25 Cl N4 O4	445	6	30
Example 2031	946	C23 H27 Cl N4 O4	459	5	24
Example 2032	947	C25 H31 C1 N2 O4	459	4	20
Example 2033	948	C24 H29 C12 N3 O2	462	6	32
Example 2034	949	C25 H32 C1 N3 O2	442	6	31
Example 2035	988	C23 H25 Cl F3 N3 O2	468	45	92
Example 2036	989	C23 H28 Cl N3 O3	430	44	97
Example 2037	990	C22 H26 C1 N3 O2	400	41	99
Example 2038	991	C23 H27 C1 N2 O2	399	41	97

Example 2039	992	C25 H31 C1 N2 O4	459	47	98
Example 2040	993	C25 H31 Cl N2 O2	427	44	98
Example 2041	995	C25 H31 Cl N2 O3	443	44	95
Example 2042	996	C24 H31 Cl N4 O2	443	5*	11

^{*}Yield of TFA salt.

5

10

20

25

30

Example 2043: Measurement of Inhibition of MIP-1 α Binding to THP-1 Cells by Test Compounds.

Human monocytic leukemia cell line THP-1 was suspended in assay buffer (RPMI-1640 (Gibco-BRL Co.) containing 0.1% BSA and 25 mM HEPES adjusted to pH 7.4) to give a cell suspension of a concentration of 1 x 10^7 cells/mL. The test compound was diluted in the assay buffer and used as the test compound solution. Iodinated human MIP-1 α (DuPont NEN Co.) was diluted in assay buffer to 250 nCi/mL and used as the labeled ligand solution. In a 96 well filter plate (Millipore Co.), 25 μ L of test compound solution, 25 μ L of labeled ligand solution and 50 μ L of cell suspension were aliquoted into each well in this order, stirred (total reaction volume 100 μ L), and incubated for one hour at 18 °C.

After the reaction, the reaction solution was filtered, and the filter was washed twice with 200 μL of cold PBS (200 μL of cold PBS was added and then filtered). The filter was air-dried and 25 μL of liquid scintillator was added into each well. The radioactivity retained by the cells on the filter were measured using TopCount (Packard Instrument Co.).

To calculate the ability of test compounds to inhibit binding of human MIP-l α to THP-l cells, non-specific binding determined by adding 100 ng of unlabeled human MIP-l α (Peprotech Co.) in place of the test compound was subtracted, while the counts with no test compound added was taken as 100%.

Inhibition (%) =
$$\{1 - (A - B)/(C - B)\} \times 100$$

(A, counts with test compound added; B, counts with 100 ng of unlabeled human MIP-1 α added; C, counts with [125I]-labeled human MIP-1 α added).

When inhibition by the cyclic amine derivative of this invention was measured, for example, the following compounds demonstrated 20-50%, 50%-80% and >80% inhibitory activity at 2 μ M or 10 μ M, respectively. These compounds are

```
20%-50% inhibition at 10 µM: Compound Nos. 29, 37, 41, 45, 46, 47, 50, 82, 85,
     107, 120, 134, 214, 217, 218, 220, 222, 225, 226, 227, 228, 229, 230, 231, 233,
     234, 236, 237, 238, 333, 334, 335, 336, 338, 340, 342, 347, 348, 349, 350, 352,
     357, 359, 361, 366, 372, 374, 375, 376, 380, 382, 383, 385, 470, 471, 472, 473,
5
     474, 483, 484, 488, 489, 491, 497, 499, 500, 502, 506, 508, 510, 514, 515, 518,
     524, 543, 553, 554, 555, 556, 563, 571, 575, 576, 578, 579, 580, 583, 586, 587,
     588, 590, 591, 592, 595, 596, 598, 603, 610, 611, 612, 614, 624, 625, 626, 629,
     635, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 652, 653, 658, 659,
     660, 665, 666, 669, 671, 675, 677, 679, 681, 682, 684, 691, 695, 696, 700, 702,
10
     704, 706, 711, 712, 714, 717, 721, 723, 724, 726, 727, 728, 729, 731, 737, 739,
     740, 741, 742, 744, 746, 765, 767, 772, 773, 774, 775, 776, 780, 781, 785, 786,
     787, 788, 790, 791, 792, 793, 795, 796, 797, 798, 805, 806, 807, 810, 813, 820,
     821, 822, 824, 825, 827, 829, 830, 833, 834, 837, 838, 844, 853, 855, 873, 877,
     878, 880, 882, 887, 888, 891, 894, 901, 903, 904, 905, 911, 929, 932, 933, 935,
15
     938, 940, 948, 993, 996, 1006, 1018, 1026, 1028, 1035, 1048, 1053, 1054, 1055,
     1056, 1068, 1070, 1071, 1072, 1073, 1075, 1076, 1081, 1763, 1764.
     50%-80% inhibition at 10 μM: Compound Nos. 1, 2, 3, 4, 7, 13, 22, 23, 24, 25,
     27, 31, 32, 38, 48, 83, 119, 121, 123, 131, 215, 216, 221, 235, 337, 351, 354,
     358, 362, 363, 365, 367, 368, 369, 373, 378, 381, 384, 458, 459, 463, 465, 466,
20
     467, 468, 478, 479, 480, 482, 485, 486, 487, 492, 493, 494, 495, 496, 498, 501,
     503, 504, 507, 511, 512, 513, 520, 523, 527, 529, 530, 531, 532, 533, 534, 535,
     536, 537, 538, 539, 540, 541, 542, 545, 546, 547, 548, 549, 550, 551, 552, 558,
     559, 560, 561, 562, 565, 567, 568, 569, 570, 572, 573, 574, 577, 581, 582, 594,
     597, 599, 600, 602, 604, 606, 607, 608, 609, 613, 615, 616, 618, 619, 620, 621,
25
     628, 630, 631, 632, 633, 634, 636, 637, 645, 651, 654, 655, 657, 661, 662, 664,
     673, 674, 676, 678, 680, 683, 685, 687, 688, 689, 693, 703, 705, 707, 708, 709,
     710, 713, 716, 718, 719, 720, 725, 730, 732, 733, 734, 735, 736, 749, 750, 751,
     752, 753, 754, 756, 758, 760, 762, 763, 764, 766, 768, 769, 770, 771, 777, 778,
     779, 784, 794, 799, 800, 802, 804, 808, 809, 811, 812, 815, 816, 819, 828, 831,
30
     832, 835, 836, 839, 840, 845, 846, 847, 848, 850, 851, 854, 857, 858, 859, 860,
     861, 862, 863, 865, 866, 867, 868, 872, 874, 876, 886, 899, 910, 942, 998, 1004,
     1005, 1007, 1013, 1015, 1016, 1017, 1019, 1020, 1021, 1022, 1024, 1030, 1037,
     1042, 1043, 1044, 1045, 1046, 1047, 1049, 1050, 1052, 1059, 1060, 1061, 1067,
     1069, 1074, 1078, 1079, 1080, 1766.
35
     >80% inhibition at 10 µM: Compound Nos. 461, 464, 469, 481, 490, 505, 509, 521,
     526, 528, 544, 564, 566, 601, 605, 617, 622, 623, 627, 650, 656, 663, 668, 672,
     686, 690, 692, 694, 715, 743, 747, 748, 755, 757, 759, 761, 782, 783, 803, 814,
```

817, 818, 826, 849, 856, 864, 869, 870, 871, 999, 1000, 1001, 1002, 1003, 1008,

PCT/US98/23254 WO 99/25686

1009, 1010, 1011, 1012, 1023, 1029, 1031, 1032, 1033, 1034, 1036, 1038, 1039, 1040, 1041, 1051, 1057, 1058, 1062, 1063, 1064, 1065, 1066, 1082, 1083. 20%-50% inhibition at 2 μM : Compound Nos. 1042, 1043, 1244, 1245, 1416, 1435, 1436, 1438, 1441, 1480, 1570, 1583, 1584, 1589, 1590, 1594, 1595, 1601, 1660, 1672, 1687, 1724, 1779, 1780, 1787, 1795, 1796, 1798, 1799, 1802, 1893, 1894, 1898, 1900, 1915, 1919, 1920, 2092, 2096, 2098, 2100. 50%-80% inhibition at 2 μM : Compound Nos. 1190, 1414, 1600, 2091, 2094, 2095. >80% inhibition at 2 μM : Compound Nos. 2093, 2097, 2099, 2103, 2104.

5

15

- Example 2044: Measurement of Inhibition of MCP-1 Binding to THP-1 Cells. 10
 - Construction of recombinant baculovirus carrying the human MCP-1 gene 1.

Based on the previously published human MCP-1 gene sequence (for example T. Yoshimura et al., FEBS Lett., 1989, 244, 487-493), two synthetic DNA primers (5'-CACTCTAGACTCCAGCATGA-3' and 5'-TAGCTGCAGATTCTTGGGTTG-3') flanked by restriction enzyme sites were used to amplify a DNA fragment from cDNA derived from human endothelial cells (purchased from Kurabow Co.); the amplified fragment was cut with the restriction enzymes (PstI and XbaI), ligated into a transfer vector pVL1393 (Invitrogen Co.), and the resulting vector was co-transfected along with infectious baculovirus into Sf-9 insect cells and the supernatant 20 was plaque assayed to yield human MCP-1 gene baculovirus recombinant.

- Synthesis of [125I]-labeled human MCP-1 expressed in baculovirus
- Using the method of K. Ishii et al. (Biochem Biophys Research 25 Communications, 1995, 206, 955-961), 5×10^6 Sf-6 insect cells was infected with $5 \times 10^7 \, PFU$ (plaque forming units) of the above human MCP-1 recombinant baculovirus and cultured for 7 days in Ex-Cell 401 medium. The culture supernatant was affinity purified using a heparin Sepharose column (Pharmacia Co.) and then further purified using reverse phase HPLC (Vydac C18 column) to prepare purified 30 human MCP-1. The purified human MCP-1 was protein labeled by Amersham Co. using the Bolton Hunter method to yield $[^{125}I]$ -labeled baculovirus expressed human MCP-1 (specific activity 2000 Ci/mmol).
- Measurement of inhibition of binding of [125I]-labeled baculovirus 35 3-1. expressed human MCP-1 to THP-1 cells (Method 1)

Human monocytic leukemia cell line THP-1 was suspended in assay buffer

(RPMI-1640 (Gibco-BRL Co.) containing 0.1% BSA and 25 mM HEPES adjusted to pH 7.4) to give a cell suspension of a concentration of 1 x 10^7 cells/mL. The test compound was diluted in the assay buffer and used as the test compound solution. [125 I]-labeled human MCP-1 described above was diluted in assay buffer to 1 mCi/mL and used as the labeled ligand solution. In a 96 well filter plate (Millipore Co.), 25 μ L of test compound solution, 25 μ L of labeled ligand solution and 50 μ L of cell suspension were aliquoted into each well in this order, stirred (total reaction volume 100 μ L), and incubated for one hour at 18 °C.

After the reaction, the reaction solution was filtered, and the filter was washed twice with 200 μL of cold PBS (200 μL of cold PBS was added and then filtered). The filter was air-dried and 25 μL of liquid scintillator was added into each well. The radioactivity retained by the cells on the filter were measured using TopCount (Packard Instrument Co.).

15

5

To calculate the ability of test compound to inhibit binding of human MCP-1 to THP-1 cells, non-specific binding determined by adding 100 ng of unlabeled human MCP-1 in place of the test compound was subtracted, while the counts with no test compound added was taken as 100%.

20

Inhibition (%) =
$$\{1 - (A - B)/(C - B)\} \times 100$$

(A, counts with test compound added; B, counts with 100 ng of unlabeled human MCP-1 added; C, counts with $[^{125}I]$ -labeled human MCP-1 added).

25

When inhibition by the cyclic amine derivative of this invention was measured, for example, the following compounds demonstrated 20%-50%, 50%-80% and >80% inhibitory activity at 1 μ M, 10 μ M or 100 μ M, respectively. These compounds are

30 20%-50% inhibition at 100 μM: Compound Nos. 3, 6, 11, 15, 16, 19, 28, 44, 88, 92, 94, 104, 111, 112, 124, 125, 133, 219, 220, 224, 228, 236, 338, 343, 346, 347, 348, 349, 362, 363, 367, 368, 371, 373, 381, 618, 847, 849, 850, 866, 867, 869, 870, 871, 872, 873.

50%-80% inhibition at 100 μM: Compound Nos. 1, 8, 10, 12, 18, 21, 26, 30, 33, 35, 39, 84, 89, 90, 91, 96, 97, 98, 99, 100, 101, 103, 106, 108, 109, 110, 116, 122, 126, 216, 218, 221, 225, 226, 231, 330, 332, 333, 334, 337, 341, 342, 350, 352, 354, 356, 359, 360, 361, 364, 366, 374, 375, 379, 382, 462, 463, 464, 557, 686, 840, 841, 842, 843, 844, 845, 846, 848, 862, 863, 864, 865, 868.

```
>80% inhibition at 100 \muM: Compound Nos. 2, 4, 5, 7, 13, 14, 17, 20, 22, 23,
     24, 25, 27, 29, 31, 32, 34, 36, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 83,
     85, 86, 95, 102, 105, 107, 113, 114, 115, 119, 120, 121, 123, 127, 128, 129,
     130, 131, 132, 134, 214, 215, 217, 227, 237, 238, 331, 335, 336, 339, 340, 345,
     351, 355, 357, 358, 383, 458, 459, 460, 466, 558, 851, 852, 861, 874.
    20\%-50\% inhibition at 10 \muM: Compound Nos. 12, 18, 30, 34, 40, 42, 43, 51, 52,
     53, 54, 55, 56, 57, 59, 60, 64, 66, 75, 76, 77, 78, 79, 82, 89, 90, 97, 98, 102,
     103, 116, 127, 128, 129, 130, 132, 135, 136, 140, 141, 144, 156, 157, 159, 160,
     161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179,
     190, 191, 192, 195, 197, 200, 202, 203, 204, 205, 208, 233, 234, 235, 239, 240,
10
     241, 242, 243, 245, 247, 249, 250, 255, 263, 264, 269, 274, 278, 279, 282, 306,
     316, 317, 323, 324, 380, 404, 409, 433, 446, 448, 449, 451, 470, 471, 473, 476,
     479, 486, 488, 489, 497, 498, 499, 501, 504, 507, 508, 509, 510, 512, 514, 516,
     519, 527, 530, 532, 542, 545, 560, 563, 564, 565, 566, 568, 569, 572, 573, 574,
     575, 578, 583, 584, 586, 587, 589, 590, 599, 600, 601, 603, 606, 612, 613, 620,
15
     621, 622, 624, 625, 627, 629, 630, 632, 634, 636, 637, 640, 641, 642, 643, 644,
     645, 646, 647, 648, 649, 658, 678, 682, 687, 692, 694, 764, 775, 856, 857, 860,
     881, 882, 883, 884, 890, 892, 899, 900, 903, 905, 907, 908, 911, 912, 916, 917,
     921, 922, 923, 925, 927, 931, 932, 935, 939, 940, 968, 986, 1039, 1041, 1045,
     1047, 1062, 1063, 1083.
20
     50\$-80\$ inhibition at 10 \mu M\colon Compound Nos. 7, 32, 36, 61, 62, 63, 65, 67, 69,
     70, 71, 72, 73, 74, 81, 91, 105, 114, 121, 123, 134, 137, 138, 139, 146, 147,
     148, 149, 151, 154, 165, 177, 232, 244, 248, 251, 252, 253, 256, 259, 261, 266,
     267, 276, 286, 292, 293, 295, 301, 305, 307, 310, 314, 315, 320, 322, 328, 434,
     435, 436, 437, 439, 440, 443, 447, 450, 452, 453, 454, 455, 456, 468, 469, 472,
25
     474, 475, 477, 478, 480, 481, 482, 483, 485, 490, 493, 494, 500, 505, 511, 517,
     520, 529, 534, 540, 543, 544, 548, 555, 556, 561, 562, 570, 576, 579, 611, 617,
     853, 854, 855, 858, 859, 875, 877, 879, 880, 885, 886, 887, 888, 891, 894, 895,
     904, 906, 909, 910, 913, 914, 918, 928, 930, 933, 937, 938, 945, 970, 1040, 1044,
30
     1046.
     >80% inhibition at 10 \muM: Compound Nos. 31, 45, 46, 48, 58, 68, 80, 83, 113,
     115, 142, 143, 145, 150, 152, 265, 268, 272, 275, 283, 285, 287, 288, 290, 291,
     294, 296, 297, 302, 308, 309, 313, 321, 325, 326, 358, 438, 441, 442, 444, 445,
      457, 466, 467, 484, 487, 491, 492, 495, 496, 503, 518, 537, 538, 547, 554, 876,
      878, 919, 929, 943.
35
      20%-50% inhibition at 1 μM: Compound Nos. 1118, 1121, 1136, 1143, 1146, 1158,
      1159, 1167, 1170, 1359, 1361, 1362, 1363.
```

50%-80% inhibition at 1 μM : Compound Nos. 1133, 1134, 1137, 1141, 1156, 1161,

1162, 1163, 1164, 1166.

10

15

20

25

35

>80% inhibition at 1 μM : Compound No. 1147.

3-2. Measurement of inhibition of binding of $[^{125}I]$ -labeled baculovirus 5 expressed human MCP-1 to THP-1 cells (Method 2)

Human monocytic leukemia cell line THP-1 was suspended in assay buffer (50 mM HEPES, pH 7.4, 1.0 mM CaCl₂, 5.0 mM MgCl₂, 0.5% BSA) to give a cell suspension of a concentration of 1 x 10 $^{\circ}$ cells/mL. The test compound was diluted in the assay buffer and used as the test compound solution. [125 I]-labeled human MCP-1 described above was diluted in assay buffer to 1 mCi/mL and used as the labeled ligand solution. In a 96 well filter plate (Millipore Co.), 25 µL of test compound solution, 25 µL of labeled ligand solution and 50 µL of cell suspension were aliquoted into each well in this order, stirred (total reaction volume 100 µL), and incubated for one hour at 18 °C.

After the reaction, the reaction solution was filtered, and the filter was washed twice with 200 μL of cold PBS (200 μL of cold PBS was added and then filtered). The filter was air-dried and 25 μL of liquid scintillator was added into each well. The radioactivity retained by the cells on the filter were measured using TopCount (Packard Instrument Co.).

To calculate the ability of test compound to inhibit binding of human MCP-1 to THP-1 cells, non-specific binding determined by adding 100 ng of unlabeled human MCP-1 in place of the test compound was subtracted, while the counts with no test compound added was taken as 100%.

Inhibition (%) =
$$\{1 - (A - B)/(C - B)\} \times 100$$

30 (A, counts with test compound added; B, counts with 100 ng of unlabeled human MCP-1 added; C, counts with [125I]-labeled human MCP-1 added).

When inhibition by the cyclic amine derivative of this invention was measured, for example, the following compounds demonstrated 20%-50%, 50%-80% and >80% inhibitory activity at 0.2 μ M, 1 μ M or 10 μ M, respectively. These compounds are

20%-50% inhibition at 10 μM : Compound No. 1560.

50%-80% inhibition at 10 μM : Compound No. 1550.

```
>80% inhibition at 10 \mu M\colon Compound Nos. 541, 1042, 1043, 1559.
    20\%-50\% inhibition at 1 \mu M: Compound Nos. 1098, 1100, 1101, 1104, 1105, 1109,
    1110, 1116, 1174, 1175, 1176, 1178, 1187, 1188, 1189, 1197, 1198, 1199, 1200,
     1201, 1202, 1209, 1210, 1211, 1212, 1222, 1225, 1229, 1230, 1237, 1238, 1243,
    1250, 1259, 1261, 1265, 1266, 1272, 1277, 1282, 1294, 1299, 1302, 1307, 1315,
5
     1318, 1319, 1320, 1329, 1330, 1335, 1336, 1337, 1343, 1344, 1353, 1355, 1356,
     1357, 1358, 1368, 1372, 1385, 1386, 1392, 1400, 1413, 1422, 1423, 1425, 1426,
     1429, 1430, 1432, 1437, 1440, 1445, 1446, 1447, 1448, 1450, 1452, 1453, 1455,
     1458, 1459, 1461, 1463, 1464, 1466, 1468, 1469, 1470, 1471, 1474, 1479, 1482,
     1485, 1507, 1508, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1518, 1519, 1521,
10
     1522, 1524, 1535, 1538, 1540, 1542, 1544, 1571, 1573, 1574, 1575, 1576, 1577,
     1578, 1579, 1580, 1581, 1582, 1585, 1587, 1598, 1602, 1603, 1604, 1609, 1611,
     1612, 1613, 1614, 1615, 1616, 1617, 1618, 1622, 1627, 1630, 1643, 1646, 1662,
     1669, 1716, 1717, 1723, 1728, 1731, 1733, 1736, 1739, 1740, 1747, 1750, 1755,
     1757, 1758, 1759, 1760, 1761, 1762, 1769, 1770, 1771, 1772, 1773, 1774, 1777,
15
     1783, 1784, 1785, 1791, 1793, 1904, 1911, 1917, 2057, 2061, 2063, 2064, 2065,
     2066, 2067, 2068, 2069, 2071, 2072, 2073, 2074, 2075, 2076, 2080, 2081, 2082,
    2110, 2112, 2123, 2130, 2131, 2139.
     50\%-80\% inhibition at 1 \mu M: Compound Nos. 37, 298, 318, 1084, 1091, 1103, 1106,
     1108, 1111, 1113, 1114, 1115, 1138, 1142, 1165, 1179, 1190, 1192, 1193, 1195,
20
     1196, 1204, 1205, 1206, 1207, 1208, 1245, 1246, 1255, 1257, 1258, 1262, 1263,
     1293, 1300, 1342, 1351, 1352, 1354, 1370, 1371, 1373, 1375, 1377, 1378, 1380,
     1381, 1383, 1384, 1391, 1411, 1412, 1414, 1417, 1418, 1419, 1421, 1424, 1431,
     1436, 1439, 1449, 1454, 1456, 1457, 1460, 1462, 1472, 1473, 1487, 1502, 1504,
     1506, 1517, 1525, 1526, 1527, 1529, 1530, 1531, 1532, 1533, 1534, 1536, 1537,
25
     1539, 1541, 1545, 1593, 1600, 1601, 1606, 1608, 1619, 1620, 1621, 1623, 1624,
     1625, 1626, 1628, 1629, 1645, 1650, 1654, 1658, 1663, 1664, 1665, 1670, 1671,
     1672, 1673, 1675, 1678, 1679, 1681, 1684, 1687, 1688, 1689, 1690, 1711, 1712,
     1714, 1718, 1722, 1725, 1726, 1727, 1729, 1730, 1732, 1734, 1735, 1737, 1741,
     1742, 1743, 1744, 1745, 1746, 1748, 1751, 1753, 1754, 1756, 1779, 1781, 1782,
30
     1786, 1788, 1789, 1790, 1792, 1795, 1797, 1798, 1800, 1801, 1804, 1848, 1862,
     1883, 1885, 1886, 1887, 1889, 1893, 1894, 1903, 1905, 1910, 1912, 1913, 1914,
     1918, 1922, 1976, 1985, 2027, 2035, 2062, 2083, 2084, 2088, 2089, 2090, 2111,
     2124, 2125, 2126, 2135.
     >80% inhibition at 1 \muM: Compound Nos. 299, 311, 312, 329, 1042, 1043, 1085,
35
      1119, 1191, 1203, 1220, 1228, 1236, 1244, 1256, 1288, 1295, 1308, 1310, 1376,
      1382, 1393, 1395, 1415, 1416, 1420, 1435, 1438, 1441, 1480, 1481, 1570, 1583,
      1584, 1589, 1590, 1594, 1595, 1607, 1634, 1660, 1661, 1666, 1668, 1695, 1696,
```

1697, 1698, 1699, 1701, 1702, 1703, 1704, 1705, 1706, 1707, 1708, 1709, 1713, 1724, 1749, 1752, 1775, 1776, 1778, 1780, 1787, 1794, 1796, 1799, 1802, 1803, 1841, 1869, 1870, 1871, 1872, 1876, 1877, 1892, 1896, 1897, 1898, 1899, 1900, 1901, 1902, 1906, 1907, 1908, 1909, 1915, 1916, 1919, 1920, 1921, 2085, 2086, 2087, 2113, 2114, 2118, 2119, 2120, 2121, 2122, 2127, 2128, 2129, 2132, 2133, 5 2136, 2137, 2138, 2159, 2161, 2162, 2187, 2189, 2193. 20%-50% inhibition at 0.2 μM: Compound Nos. 1680, 1682, 1686, 1691, 1694, 1700, 1805, 1810, 1811, 1812, 1813, 1815, 1816, 1817, 1818, 1819, 1820, 1824, 1825, 1826, 1827, 1828, 1832, 1833, 1834, 1835, 1836, 1839, 1840, 1842, 1843, 1851, 10 1852, 1853, 1854, 1855, 1856, 1858, 1859, 1860, 1863, 1864, 1865, 1866, 1868, 1874, 1878, 1879, 1880, 1888, 1890, 1891, 1895, 1926, 1927, 1928, 1929, 1930. 1934, 1935, 1937, 1945, 1946, 1951, 1952, 1953, 1954, 1959, 1960, 1961, 1962, 1966, 1969, 1970, 1971, 1972, 1973, 1977, 1978, 1979, 1980, 1981, 1985, 2014, 2027, 2028, 2033, 2035, 2039, 2040, 2041, 2042, 2044, 2045, 2046. 15 50%-80% inhibition at 0.2 μM: Compound Nos. 1677, 1678, 1679, 1681, 1687, 1688, 1689, 1690, 1695, 1697, 1808, 1809, 1841, 1848, 1861, 1862, 1869, 1870, 1871, 1872, 1873, 1876, 1877, 1883, 1884, 1885, 1886, 1887, 1889, 1893, 1894, 1976. >80% inhibition at 0.2 μ M: Compound No. 1696, 1892.

20 Example 2045: Measurement of Inhibition of Binding of [125]-Labeled Human MCP-1 to Cells Expressing the MCP-1 Receptor.

1. Derivation of cells expressing the MCP-1 receptor

25

30

cDNA fragment containing the MCP-1 receptor reported by S. Yamagami et al., Biochemical Biophysical Research Communications 1994, 202, 1156-1162) was cloned into the expression plasmid pCEP4 (Invitrogen Co.) at the NotI site, and the plasmid obtained was transfected into the human kidney epithelial cell line 293-EBNA using the Lipofectamine reagent (Gibco-BRL Co.). The cells were cultured in the presence of the selective agent (Hygromycin), and a stably expressing transfectant line was obtained. The expression of the receptor was confirmed by binding of [125I]-labeled human MCP-1.

2. Measurement of inhibition of binding of $[^{125}I]$ -labeled baculovirus expressed human MCP-1 to the MCP-1 receptor expressing cells

The MCP-1 receptor expressing cells on tissue culture dishes were scraped using a cell scraper and suspended in assay buffer (D-MEM(Gibco-BRL Co.) containing 0.1% BSA and 25 mM HEPES adjusted to pH 7.4) to give a cell suspension of a concentration of 6 x 10^6 cells/mL. The test compound was diluted in the assay buffer. The remainder of the procedure was as described in Example 2044.

When the inhibition by some typical compounds of the present invention was measured, the inhibitory activities were substantially the same as those in Example 2044, respectively.

5

10

15

20

25

Example 2046: Measurement of Inhibition of Cell Chemotaxis.

In order to determine the inhibition of cell chemotaxis by the compounds of this invention, we measured cell chemotaxis caused by monocyte chemotactic factor MCP-1 using the human monocytic leukemia cell line THP-1 as the chemotactic cell according to the method of Fall et al. (J. Immunol. Methods, 190, 33, 239-247). 2×10^6 cells/mL of THP-1 cells (suspended in RPMI-1640 (Flow Laboratories Co.) + 10% FCS) was placed in the upper chamber (200 μ L) of a 96 well micro-chemotaxis chamber (Neuroprobe, registered tradename), and human recombinant MCP-1 in a same solution (Peprotech Co.) at a final concentration of 20 ng/mL was placed in the lower chamber, with a polycarbonate filter (PVP-free, Neuroprobe; registered tradename) placed between the two chambers. These were incubated at 37 °C for 2 hr in 5% CO₂.

The filter was removed, and the cells which had migrated to the underside of the filter was fixed, stained using Diff Quick (Kokusai Shiyaku Co.) and then quantitated using a plate reader (Molecular Device Co.) at a wavelength of 550 nm to determine the index of cell migration as a mean of 3 wells. In addition, test compounds were placed in the upper and lower chambers along with THP-1 and MCP-1, respectively, and the inhibition of cell migration (inhibition IC_{56} (μM)) was determined. Inhibition was defined as {(cells migration induced MCP-1 with no test compound in the upper and lower chambers) - (cells migration with no MCP-1 added in the lower chamber) = 100%}, and the concentration of the test compound which gave 50% inhibition was designated IC_{50} .

When inhibition by the cyclic amine derivative of this invention was measured, for example, the 50% inhibition concentration (IC₅₀) for the following compounds were IC₅₀ < 0.1 μ M. IC₅₀ < 0.1 μ M: Compound Nos. 4, 37, 298, 299, 311, 312, 318, 329, 461, 886, 909, 1042, 1043, 1085, 1119, 1138, 1142, 1165, 1179, 1191, 1203, 1205, 1220, 1228,

1236, 1244, 1245, 1256, 1288, 1293, 1295, 1308, 1310, 1352, 1376, 1382, 1393, 1395, 1416, 1420, 1435, 1436, 1438, 1441, 1480, 1531, 1532, 1570, 1583, 1584, 1589, 1590, 1594, 1595, 1600, 1601, 1607, 1660, 1661, 1664, 1666, 1668, 1698, 1699, 1701, 1702, 1703, 1704, 1706, 1707, 1708, 1709, 1713, 1775, 1776, 1778, 1779, 1787, 1794, 1796, 1799, 1802, 1803, 1896, 1898, 1899, 1900, 1901, 1902,

1906, 1907, 1908, 1909, 1915, 1916, 1919, 1920, 1921, 2087, 2114, 2128, 2129, 2132, 2137, 2141, 2144, 2157, 2158, 2189.

Claims

What is claimed is:

5

10

15

20

25

30

1. A compound of the formula (I) below:

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} \longrightarrow R^{4} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array}$$
(I)

, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable $C_1\text{--}C_6$ alkyl addition salt thereof,

wherein R1 is a phenyl group, a C3-C8 cycloalkyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C_3-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a C_1-C_6 alkyl group, a C_3-C_8 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a C_3 - C_5 alkylene group, a C_2 - C_4 alkylenoxy group, a C_1 - C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylthio group, a benzyl group, a benzyloxy group, a benzoylamino group, a C2-C7 alkanoyl group, a C2-C7 alkoxycarbonyl group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2-C_7 N-alkylcarbamoyl group, a C_4-C_9 N-cycloalkylcarbamoyl group, a C_1-C_6 alkylsulfonyl group, a C_3-C_8 (alkoxycarbonyl) methyl group, a N-phenylcarbamoyl group, a piperidinocarbonyl group, a morpholinocarbonyl group, a 1pyrrolidinylcarbonyl group, a divalent group represented by the formula: -NH(C=0)0-, a divalent group represented by the formula: -NH(C=S)0-, an amino group, a mono $(C_1-C_6 \text{ alkyl})$ amino group, or a di $(C_1-C_6 \text{ alkyl})$ amino group, wherein the substituent for the phenyl group, C3-Ce cycloalkyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen atom, a hydroxy group, an amino group, a trifluoromethyl group, a C_1-C_6 alkyl group, or a C_1-C_6 alkoxy group;

 R^2 is a hydrogen atom, a C_1 - C_6 alkyl group, a C_2 - C_7 alkoxycarbonyl group, a hydroxy group, or a phenyl group, in which the C_1 - C_6 alkyl or phenyl group may

be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_5 alkyl group, or a C_1 - C_6 alkoxy group, and when j=0, R^2 is not a hydroxy group;

j represents an integer of 0-2;

k represents an integer of 0-2;

m represents an integer of 2-4;

n represents 0 or 1;

35

40

50

55

60

65

 R^3 is a hydrogen atom or a C_1 - C_6 alkyl group optionally substituted with one or two phenyl groups each of which may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group;

 R^4 and R^5 are the same or different from each other and are a hydrogen atom, a hydroxy group, a phenyl group, or a C_1 - C_6 alkyl group, in which the C_1 - C_6 alkyl group is optionally substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a phenyl group optionally substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, or a benzyloxy group, a phenoxy group, a benzyloxy group, a carboxy group, a benzyloxy group, a carboxy group, or a benzyloxy group, a phenoxy group, a benzyloxy group, a C_1 - C_6 alkoxy group, a carboxy group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 alkoxycarboxy group, a carboxy gr

- p represents 0 or 1;
- q represents 0 or 1;

G is a group represented by $-CO_-$, $-SO_2_-$, $-CO_-O_-$, $-NR^7_-CO_-$, $-CO_-NR^7_-$, $-NH_-CO_-NH_-$, $-NH_-CS_-NH_-$, $-NR^7_-SO_2_-$, $-SO_2_-NR^7_-$, $-NH_-CO_-O_-$, or $-O_-CO_-NH_-$, wherein R^7 is a hydrogen atom or a $C_1_-C_6$ alkyl group, or R^7 taken together with R^5 represents $C_2_-C_5$ alkylene group;

 R^6 is a phenyl group, a C_3 - C_8 cycloalkyl group, a C_3 - C_8 cycloalkenyl group, a benzyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl, benzyl, or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed

ring, and the phenyl group, C_3-C_6 cycloalkyl group, C_3-C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring may be substituted 70 with one or more of a halogen atom, a hydroxy group, a mercapto group, a cyano group, a nitro group, a thiocyanato group, a carboxy group, a carbamoyl group, a trifluoromethyl group, a C_1 - C_6 alkyl group, a C_3 - C_6 cycloalkyl group, a C_7 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_3 - C_8 cycloalkyloxy group, a C_1 - C_6 alkylthio group, a C_1 - C_3 alkylenedioxy group, a phenyl group, a phenoxy group, 75 a phenylamino group, a benzyl group, a benzoyl group, a phenylsulfinyl group, a phenylsulfonyl group, a 3-phenylureido group, a C_2 - C_7 alkanoyl group, a C_7 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 N-alkylcarbamoyl group, a C_1 - C_6 alkylsulfonyl group, a phenylcarbamoyl group, a $N,N-\text{di}(C_1-C_6 \text{ alkyl})$ sulfamoyl group, an amino group, a mono(C_1-C_6 80 alkyl)amino group, a di $(C_1-C_6$ alkyl)amino group, a benzylamino group, a C_2-C_7 (alkoxycarbonyl) amino group, a C_1-C_6 (alkylsulfonyl) amino group, or a bis (C_1-C_6) alkylsulfonyl) amino group, wherein the substituent for the phenyl group, $C_3 - C_8$ cycloalkyl group, C_3 - C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen 85 atom, a cyano group, a hydroxy group, an amino group, trifluoromethyl group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthic group, a mono(C_1 - C_6 alkyl) amino group, or a $di(C_1-C_6 alkyl)$ amino group.

- 2. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable $C_1\text{--}C_6$ alkyl addition salt as set forth in claim 1, wherein k=1 and m=2 in the above formula (I).
- 3. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 2, wherein n=0 in the above formula (I).
- 4. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein k=0, m=3 and n=1 in the above formula (I).
- 5. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein k=1 and m=3 in the above formula (I).

6. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein k=2 and m=2 in the above formula (I).

- 7. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 6, wherein n=1 in the above formula (I).
- 8. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein k=1 and m=4 in the above formula (I).
- 9. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein j=0 in the above formula(I).
- 10. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1-C_6 alkyl addition salt as set forth in claim 1, wherein p=0, q=0 and G is a group represented by $-NR^7-CO-$ in the above formula (I).
- 11. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein R^2 is a hydrogen atom, R^3 is a hydrogen atom and R^7 is a hydrogen atom in the above formula (I).

5

5

- 12. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 is one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkylthio group, a C_2 - C_4 alkylenoxy group, a methylenedioxy group, a N-phenylcarbamoyl group, an amino group, a mono(C_1 - C_6 alkyl)amino group, or a di(C_1 - C_6 alkyl)amino group in the above formula (I).
- 13. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1,

wherein the substituent for the phenyl group, C_3-C_θ cycloalkyl group, C_3-C_θ cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R^6 is one or more of a halogen atom, a nitro group, a trifluoromethyl group, a C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a phenylsulfonyl group, a C_2-C_7 alkanoylamino group, or an amino group in the above formula (I).

5

5

5

10

15

- 14. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein R^1 is a phenyl group or an isoxazolyl group in the above formula (I).
- 15. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein R^6 is a phenyl group, a furyl group, or a thienyl group in the above formula (I).
- 16. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell using a pharmaceutical preparation containing a therapeutically effective amount of a compound represented by the formula (I) below:

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6} \\
R^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array}$$
(I)

, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable $C_1\text{--}C_6$ alkyl addition salt thereof,

wherein R^1 is a phenyl group, a C_3-C_8 cycloalkyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C_3-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a C_1-C_6 alkyl group, a C_3-C_8 cycloalkyl group, a C_2-C_6 alkenyl group, a C_1-C_6 alkoxy group, a C_1-C_6 alkylenedioxy group, a C_3-C_5 alkylene group, a C_2-C_6 alkylenoxy group, a C_1-C_6 alkylenedioxy group,

a phenyl group, a phenoxy group, a phenylthio group, a benzyl group, a benzyloxy group, a benzoylamino group, a C₂-C₇ alkanoyl group, a C₂-C₇ alkoxycarbonyl group, a C₂-C₇ alkanoyloxy group, a C₂-C₇ alkanoylamino group, a C₂-C₇ N-alkylcarbamoyl group, a C₄-C₉ N-cycloalkylcarbamoyl group, a C₁-C₆ alkylsulfonyl group, a C₂-C₈ (alkoxycarbonyl)methyl group, a N-phenylcarbamoyl group, a piperidinocarbonyl group, a morpholinocarbonyl group, a 1-pyrrolidinylcarbonyl group, an amino group, a mono (C₁-C₆ alkyl)amino group, or a di (C₁-C₆ alkyl)amino group, wherein the substituent for the phenyl group, C₃-C₈ cycloalkyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen atom, a hydroxy group, an amino group, a trifluoromethyl group, a C₁-C₆ alkyl group, or a C₁-C₆ alkoxy group;

 R^2 is a hydrogen atom, a C_1 - C_6 alkyl group, a C_2 - C_7 alkoxycarbonyl group, a hydroxy group, or a phenyl group, in which the C_1 - C_6 alkyl or phenyl group may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group, and when j=0, R^2 is not a hydroxy group;

35 j represents an integer of 0-2;

k represents an integer of 0-2;

m represents an integer of 2-4;

n represents 0 or 1;

40

45

50

55

 R^3 is a hydrogen atom or a C_1 - C_6 alkyl group optionally substituted with one or two phenyl groups each of which may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group;

 R^4 and R^5 are the same or different from each other and are a hydrogen atom, a hydroxy group, a phenyl group, or a C_1 - C_6 alkyl group, in which the C_1 - C_6 alkyl group is optionally substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a mercapto group, a guanidino group, a C_3 - C_6 cycloalkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a phenyl group optionally substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, or a benzyloxy group, a phenoxy group, a benzyloxy group, a benzyloxycarbonyl group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 alkanoylamino group, a mono $(C_1$ - C_6 alkyl) amino group, a di $(C_1$ - C_6 alkyl) amino group, or an aromatic heterocyclic group having 1-3 of heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof and optionally condensed with benzene ring, or R^4 and R^5 taken together form a 3 to 6 membered cyclic hydrocarbon;

p represents 0 or 1; q represents 0 or 1;

60

65

70

75

80

85

90

G is a group represented by $-CO_{-}$, $-SO_{2}_{-}$, $-CO_{-}O_{-}$, $-NR^{7}_{-}CO_{-}$, $-CO_{-}NR^{7}_{-}$, $-NH_{-}CO_{-}NH_{-}$, $-NH_{-}CS_{-}NH_{-}$, $-NR^{7}_{-}SO_{2}_{-}$, $-SO_{2}_{-}NR^{7}_{-}$, $-NH_{-}CO_{-}O_{-}$, or $-O_{-}CO_{-}NH_{-}$, wherein R^{7} is a hydrogen atom or a $C_{1}-C_{6}$ alkyl group, or R^{7} taken together with R^{5} represents $C_{2}-C_{5}$ alkylene group;

 R^6 is a phenyl group, a C_3-C_8 cycloalkyl group, a C_3-C_8 cycloalkenyl group, a benzyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl, benzyl, or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C_3-C_8 cycloalkyl group, C_3-C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a mercapto group, a cyano group, a nitro group, a thiocyanato group, a carboxy group, a carbamoyl group, a trifluoromethyl group, a C_1-C_6 alkyl group, a C_3-C_6 cycloalkyl group, a $C_2 C_6$ alkenyl group, a C_1 - C_6 alkoxy group, a C_3 - C_8 cycloalkyloxy group, a C_1 - C_6 alkylthio group, a C_1 - C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylamino group, a benzyl group, a benzoyl group, a phenylsulfinyl group, a phenylsulfonyl group, a 3-phenylureido group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 N-alkylcarbamoyl group, a C_1 - C_6 alkylsulfonyl group, a phenylcarbamoyl group, a N, N-di(C_1 - C_6 alkyl)sulfamoyl group, an amino group, a mono(C_1 - C_6 alkyl)amino group, a di(C_1 - C_6 alkyl)amino group, a benzylamino group, a C_2 - C_7 (alkoxycarbonyl) amino group, a C_1-C_6 (alkylsulfonyl) amino group, or a bis(C_1-C_6 alkylsulfonyl) amino group, wherein the substituent for the phenyl group, $C_3 - C_\theta$ cycloalkyl group, C_3 - C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen atom, a cyano group, a hydroxy group, an amino group, trifluoromethyl group, a C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a mono(C_1-C_6 alkyl)amino group, or a $di(C_1-C_6 \text{ alkyl})$ amino group.

17. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein k = 1 and m = 2 in the above formula (I).

- 18. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 17, wherein n=0 in the above formula (I).
- 19. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein k=0, m=3 and n=1 in the above formula (I).
- 20. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein k=1 and m=3 in the above formula (I).
- 21. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein k=2 and m=2 in the above formula (I).
- 22. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 21, wherein n = 1 in the above formula (I).
- 23. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein k = 1 and m = 4 in the above formula (I).
- 24. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein j = 0 in the above formula (I).
- 25. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein p=0, q=0 and G is a group represented by $-NR^7-CO-$ in the above formula (I).
- 26. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein R^2 is a hydrogen atom, R^3 is a hydrogen atom and R^7 is a hydrogen atom in the above formula (I).

PCT/US98/23254

WO 99/25686

5

5

5

- 27. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in Claim 16, wherein the substituent for the phenyl group, C_3 - C_6 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 is one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkylthio group, a C_2 - C_4 alkylenoxy group, a methylenedioxy group, a N-phenylcarbamoyl group, an amino group, a mono $(C_1$ - C_6 alkyl) amino group, or a di $(C_1$ - C_6 alkyl) amino group in the above formula (I).
- 28. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein the substituent for the phenyl group, C_3-C_6 cycloalkyl group, C_3-C_6 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R^6 is one or more of a halogen atom, a nitro group, a trifluoromethyl group, a C_1-C_6 alkoxy group, a phenylsulfonyl group, a C_2-C_7 alkanoylamino group, or an amino group in the above formula (I).
- 29. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein \mathbb{R}^1 is a phenyl group or an isoxazolyl group in the above formula (I).
- 30. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein R^6 is a phenyl group, a furyl group, or a thienyl group in the above formula (I).

5

- 31. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein the chemokine is MIP- 1α .
- 32. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein the chemokine is MCP-1.
- 33. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein

the chemokine receptor is CCR1.

5

5

5

5

5

5

34. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein the chemokine receptor is CCR2A or CCR2B.

- 35. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is 4-[{N-(2-amino-5-chlorobenzoyl)glycyl}aminomethyl}-1-(4-chlorobenzyl)piperidine.
- 36. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is 4-[$\{N$ - $\{2$ -amino-4,5-difluorobenzoyl\}glycyl\}aminomethyl]-1- $\{4$ -chlorobenzyl)piperidine.
- 37. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is 4-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(4-chlorobenzyl)piperidine.
- 38. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is 4-[{N-(2-amino-5-trifluoromethoxybenzoyl)glycyl}aminomethyl]-1-(4-chlorobenzyl)piperidine.
- 39. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is 4-[{N-(2-amino-4,5-difluorobenzoyl)glycyl}aminomethyl}-1-(4-bromobenzyl)piperidine.
- 40. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is 1-(2-amino-4-chlorobenzyl)-4-[N-(2-amino-5-trifluoromethylbenzoyl)glycyl)aminomethyl]piperidine.
- 41. A compound, its pharmaceutically acceptable acid addition salt or its

pharmaceutically acceptable C_1-C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $1-(3-amino-4-methoxybenzyl)-4-[{N-(2-amino-4,5-difluorobenzoyl)glycyl}aminomethyl]piperidine.$

5

42. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $4-[\{N-(2-amino-4,5-difluorobenzoyl)glycyl\}aminomethyl]-1-{4-chloro-3-$

5 (methylamino)benzyl)piperidine.

- 43. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is 4-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(2-thioxo-2,3-dihydro-1,3-benzoxazol-5-ylmethyl)piperidine.
- 44. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-[\{N-(2-amino-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(4-chlorobenzyl)pyrrolidine.$

5

5

45. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-[\{N-(2-\text{amino-5-trifluoromethylbenzoyl})\text{glycyl}\}$ amino]-1-(4-methoxybenzyl)pyrrolidine.

5

46. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-[\{N-(2-\text{amino}-5-\text{trifluoromethylbenzoyl}\}]]$ amino]-1-(3,4-

5 methylenedioxybenzyl)pyrrolidine.

47. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-[\{N-(2-\text{amino-}5-\text{trifluoromethylbenzoyl}\}\text{glycyl}]$ amino]-1-(2,3-dihydro-1-benzofuran-5-vlmethyl)pyrrolidine.

48. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is 3-[(N-(2-amino-5-trifluoromethylbenzoyl)glycyl)amino]-1-(4-methylthiobenzyl)pyrrolidine.

5

49. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-[\{N-(2-amino-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(4-ethylbenzyl)pyrrolidine.$

5

50. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-[\{N-(2-a\min 0.5-trifluoromethoxybenzoyl)glycyl\}amino]-1-(4-ethylbenzyl)pyrrolidine.$

5

51. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $1-(3-amino-4-methoxybenzyl)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine.$

5

52. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-[\{N-(2-a\min o-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(4-chloro-3-trifluoromethylbenzoyl)glycyl]amino[-1-trifluoromethylbenzoy$

5 methylbenzyl)pyrrolidine.

53. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1-C_6 alkyl addition salt as set forth in claim 1, wherein the compound is 3-[N-(2-amino-5-trifluoromethylbenzoyl)glycyl]amino]-1-[4-hydroxy-3-

5 (methylamino)benzyl}pyrrolidine.

54. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-[\{N-(2-amino-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(1,3-benzoxazol-5-$

5 ylmethyl)pyrrolidine.

Inte onal Application No PCT/US 98/23254

A. CLAS!	SIFICATION OF SUBJECT MATTER			
IPC 6	C07D211/58 A61K31/435 A61K31	1/41	C07D2O7/14	C07D211/56
-	CO7D211/26 CO7D207/09 CO7D40		C07D207/14 C07D405/12	
1	CO7D413/06 CO7D413/14 CO7D40			C07D409/12
A according			C07D405/06	
1	to International Patent Classification (IPC) or to both national class	ification an	d IPC	
	S SEARCHED			
Minimum d	documentation searched (classification system followed by classific	cation symt	ols)	
TLC O	C07D A61K			
Casument				
Document	ation searched other than minimum documentation to the extent the	at such doc	uments are included in the	ne fields searched
Sloctmaic	due have a secured during the international george (name of date			
Elections.	data base consulted during the international search (name of data	base and,	where practical, search t	erms.used)
			•	
	·			
	•			
C DOCUM	MENTS CONSIDERED TO BE RELEVANT			
				
Category °	Citation of document, with indication, where appropriate, of the	relevant pe	ssages	Relevant to claim No.
χ	EP 0 217 286 A (OKAMOTO SHOSUKE	CHUI	14	
^	DENKO KK (JP)) 8 April 1987	; SHUM	А	1,3,6,
1	DENKU KK (UF)) O APITI 130/			9-11,14
ı	see page 31, compound 42; claim	1		
v	FD 0 417 COO 4 (UDECUET AC) 20			÷
X	EP 0 417 698 A (HOECHST AG) 20 1	March	1991	1,3,6,9,
ı		•		14,15
	see example 5C			
		•		
1	·	-/		
	(1.
1				
1	1			1
. !				
!	1			1
!				· ·
1				
1	ĺ			1
1	1		-	
1	1			1
ļ				1
	<u> </u>		<u> </u>	[
X Furth	her documents are listed in the continuation of box C.	V	Dataset family members	
		L\	Patent family members	are listed in annex.
° Special car	tegories of cited documents :			
"A" docume	ent defining the general state of the art which is not	orp	priority date and not in col	er the international filing date inflict with the application but
0000	ered to be of particular relevance	cite	ed to understand the princ	ciple or theory underlying the
		inva	54	
"E" earlier d	document but published on or after the international	inve	ention	the -latered invention
"E" earlier d	document but published on or after the international ate	"X" docu can	ention ument of particular releval anot be considered novel	nce; the claimed invention or cannot be considered to
"E" earlier d filing da "L" documen which i	document but published on or after the international ate int which may throw doubts on priority claim(s) or is cited to establish the publication date of another	"X" docu can invo	ention Iment of particular relevar Inot be considered novel blve an inventive step who	or cannot be considered to sen the document is taken alone
"E" earlier d filing da "L" documen which i citation	document but published on or after the international ate international ate international at the may throw doubts on priority claim(s) or is cited to establish the publication date of another or other special reason (as specified)	"X" docu can invo "Y" docu can	ention iment of particular releval not be considered novel in blve an inventive step who iment of particular releval not be considered to invo	or cannot be considered to ten the document is taken alone ince; the claimed invention olve an inventive step when the
"E" earlier d filing da "L" documen which i citation	document but published on or after the international ate Int which may throw doubts on priority claim(s) or is cited to establish the publication date of another or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	"X" docu can invo "Y" docu can	ention ument of particular releval unot be considered novel olve an inventive step wh ument of particular releval not be considered to inve ument is combined with a	or cannot be considered to sen the document is taken alone ince; the claimed invention olve an inventive step when the one or more other, such docu-
"E" earlier diling da "L" docume which i citation "O" docume other m "P" docume	document but published on or after the international ate international ate international ate international ate internation of the international filling date but international filling date but	"X" docu can invo "Y" docu can doc mer in th	ention Iment of particular releval Innot be considered novel Inot be an inventive step whit Iment of particular releval Innot be considered to invocument is combined with o Ints, such combination bei the art.	or cannot be considered to seen the document is taken alone ince; the claimed invention olve an inventive step when the one or more other such docuing obvious to a person skilled
"E" earlier dilling da "L" documer which is citation "O" documer other m	document but published on or after the international ate in the international ate in the international ate in the internation of the internation o	"X" docu can invo "Y" docu can doc mer in th	ention Iment of particular releval Innot be considered novel blive an inventive step whi Iment of particular releval Into be considered to invo Lument is combined with o nts, such combination bei	or cannot be considered to seen the document is taken alone ince; the claimed invention olve an inventive step when the one or more other such docuing obvious to a person skilled
"E" earlier dilling da "L" documer which i citation "O" docume other "P" docume later th	document but published on or after the international ate international ate international ate international ate internation of the international filling date but international filling date but	"X" docu	ention ument of particular releval not be considered novel olve an inventive step who ument of particular releval ment of particular releval rument is combined with on the art. ument member of the sam	or cannot be considered to the the document is taken alone the claimed invention to the claimed invention to the claimed invention the one or more other such docuring obvious to a person skilled the patent family
"E" earlier dilling da "L" documer which i citation "O" docume other "P" docume later th	document but published on or after the international ate Int which may throw doubts on priority claim(s) or is cited to establish the publication date of another or other special reason (as specified) Interesting to an oral disclosure, use, exhibition or means Int published prior to the international filling date but han the priority date claimed	"X" docu	ention Iment of particular releval Innot be considered novel Inot be an inventive step whit Iment of particular releval Innot be considered to invocument is combined with o Ints, such combination bei the art.	or cannot be considered to the the document is taken alone the claimed invention to the claimed invention to the claimed invention the one or more other such docuring obvious to a person skilled the patent family
"E" earlier difiling da "L" document which is citation "O" document other in "P" document later th. Date of the a	document but published on or after the international ate Int which may throw doubts on priority claim(s) or is cited to establish the publication date of another or other special reason (as specified) Interesting to an oral disclosure, use, exhibition or means Int published prior to the international filling date but han the priority date claimed	"X" docu	ention ument of particular relevation not be considered novel olve an inventive step who ument of particular relevation not be considered to inve- cument is combined with o nts, such combination bei he art. ument member of the sam e of mailting of the interna	or cannot be considered to the the document is taken alone the claimed invention to the claimed invention to the claimed invention the one or more other such docuring obvious to a person skilled the patent family
"E" earlier difiling da "L" document which is citation "O" docume other in "P" documentater th. Date of the a	document but published on or after the international ate Int which may throw doubts on priority claim(s) or is cited to establish the publication date of another or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filling date but is in the priority date claimed actual completion of the international search March 1999	"X" docu	ention ument of particular releval not be considered novel olve an inventive step who ument of particular releval ment of particular releval rument is combined with on the art. ument member of the sam	or cannot be considered to the the document is taken alone the document is taken alone the claimed invention to the claimed invention the one or more other such docuring obvious to a person skilled the patent family
"E" earlier difiling da "L" document which is citation "O" docume other in "P" documentater th. Date of the a	document but published on or after the international ate Int which may throw doubts on priority claim(s) or is cited to establish the publication date of another or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or neans and published prior to the international filling date but are the priority date claimed actual completion of the international search March 1999 nailing address of the ISA	"X" docu can invo "Y" docu can doc mer in th "&" docu	ention ument of particular relevation not be considered novel olve an inventive step who ument of particular relevation not be considered to inve- cument is combined with o nts, such combination bei he art. ument member of the sam e of mailting of the interna	or cannot be considered to the the document is taken alone the document is taken alone the claimed invention to the claimed invention the one or more other such docuring obvious to a person skilled the patent family
"E" earlier difiling da "L" document which is citation "O" docume other in "P" documentater th. Date of the a	document but published on or after the international atterms the international atterms the published on or after the international atterms to consider the publication date of another or other special reason (as specified) and referring to an oral disclosure, use, exhibition or means and published prior to the international filling date but an the priority date claimed actual completion of the international search March 1999 mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	"X" docu can invo "Y" docu can doc mer in th "&" docu	ention ument of particular relevation to be considered novel obve an inventive step whomen of particular relevation to be considered to involve ument is combined with control of the same of mailing of the internal particular of the same of mailing of the internal 25/03/1999	or cannot be considered to the the document is taken alone the document is taken alone the claimed invention to the claimed invention the one or more other such docuring obvious to a person skilled the patent family
"E" earlier difiling da "L" document which is citation "O" docume other in "P" documentater th. Date of the a	document but published on or after the international ate Int which may throw doubts on priority claim(s) or is cited to establish the publication date of another or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or neans and published prior to the international filling date but are the priority date claimed actual completion of the international search March 1999 nailing address of the ISA	"X" docu can invo "Y" docu can doc mer in th "&" docu	ention ument of particular relevation to be considered novel obve an inventive step whomen of particular relevation to be considered to involve ument is combined with control of the same of mailing of the internal particular of the same of mailing of the internal 25/03/1999	or cannot be considered to the the document is taken alone the document is taken alone the claimed invention to the claimed invention the one or more other such docuring obvious to a person skilled the patent family

Inter Inal Application No
PCT/US 98/23254

C. H. Ohm	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *		Relevant to claim No.
X	CHEMICAL ABSTRACTS, vol. 107, no. 7, 17 August 1987 Columbus, Ohio, US; abstract no. 51382, KHALID, M. ET AL: "N,N'-disubstituted L-isoglutamines as novel cancer chemotherapeutic agent" XP002094911 see abstract & DRUGS EXP. CLIN. RES. (1987), 13(SUPPL. 1), 57-60; ISSN: 0378-6501,1987,	1,3,6, 9-11,14, 15
A .	DATABASE WPI Section Ch, Week 9804 Derwent Publications Ltd., London, GB; Class B03, AN 98-035793 XP002094912 & JP 09 249566 A (TAKEDA CHEM IND LTD) , 22 September 1997 see abstract	1-54
P,X	WO 98 50534 A (SMITHKLINE BEECHAM CORP; RUYU (US); VEBER DANIEL F (US); MARQUIS) 12 November 1998 see claim 1; examples	1-15

PCT/US 98/23254

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: 16-34 because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 16-34 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compounds.
2. X	Claims Nos.: not applicable because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: See FURTHER INFORMATION sheet PCT/ISA/210
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inter	rnational Searching Authority found multiple inventions in this international application, as follows:
1	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3 A	As only some of the required additional search fees were timely paid by the applicant, this International Search Report overs only those claims for which fees were paid, specifically claims Nos.:
4. N re	lo required additional search fees were timely paid by the applicant. Consequently, this International Search Report is estricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark or	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Claims Nos.: not applicable

In view of the extremely broad Markush claims 1-15, the search was executed with due regard to the PCT Search Guidelines (PCT/GL/2), C-III, paragraph 2.1, 2.3 read in onjunction with 3.7 and Rule 33.3 PCT, i.e. particular emphasis was put on the inventive concept, as illustrated by the examples. The international search was, in so far as possible and reasonable, complete in that it covered the entire subject-matter to which the claims are directed.

information on patent family members

Inter nal Application No
PCT/US 98/23254

			101/03 90/23254			
cite	Patent document ed in search repo	rt	Publication date		Patent family member(s)	Publication date
EF	0217286	Α	08-04-1987	AU	598750 B	05-07-1990
		•		AU	6305186 A	02-04-1987
		,		CA	1297633 A	17-03-1992
				US	4895842 A	23-01-1990
				JP	2023215 C	26-02-1996
				JP	7053705 B	07-06-1995
			•	JP	63022061 A	29-01-1988
ΕP	0417698	Α	20-03-1991	AT	135368 T	15-03-1996
				AU	639259 B	22-07-1993
				AU	6234090 A	21-03-1991
				CA	2025093 A	13-03-1991
				DD	295377 A	31-10-1991
				ĎE	4028741 A	28-03-1991
				DE	59010189 D	18-04-1996
				DK	417698 T	22-07-1996
				ES	2086341 T	01-07-1996
				GR	3019331 T	30-06-1996
	1			JP	3106877 A	07-05-1991
	•		•	MX	9203284 A	31-07-1992
				NO	177143 B	18-04-1995
				PT	95278 A	22-05-1991
		- 		US	5374731 A	20-12-1994
WO	9850534	Α	12-11-1998	AU	7288598 A	27-11-1998