МІНІСТЕРСТВО ОСВІТИ І НАУКИ НАВЧАЛЬНО-НАУКОВИЙ КОМПЛЕКС «ІНСТИТУТ ПРИКЛАДНОГО СИСТЕМНОГО АНАЛІЗУ» НАЦІОНАЛЬНОГО ТЕХНІЧНОГО УНІВЕРСИТЕТУ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ» КАФЕДРА МАТЕМАТИЧНИХ МЕТОДІВ СИСТЕМНОГО АНАЛІЗУ

Лабораторна робота №1 з курсу «Чисельні методи»

Тема: Власні числа та вектори

Варіант 16

Виконав: студент 3 курсу

групи КА-32

Пустовіт Д.Т.

Прийняв:

Коновалюк М.М.

Завдання:

Розв'язати повну та часткову проблеми для матриці

Сюди введіть номер Вашої групи (№гр) та Ваш номер у списку групи (№сп) та натисніть на кнопку:						
	6.92	1.2	0.87	1.15		
	1.2	3.5	1.3	0.16		
A =	0.87	1.3	6.1	2.1		
	1.15	0.16	2.1	5.44		
Реалізувати метод QR						

Математичний розв'язок задачі:

Степеневий метод застосовують для пошуку максимального за модулем власного числа. Для цього будується ітераційний процес $x^{s+1} = Ax^s$, де вектор х довільний не нульовий. При цьому вектор х збігається до власного вектора за напрямом. Критерієм закінчення є різниця відношення координат векторів x^s та x^{s+1} . при цьому власне число обчислюється за формулою:

$$|\lambda_1| \approx \frac{|x^{(s+1)}|}{|x^{(s)}|} = \sqrt{\frac{(x^{(s+1)}, x^{(s+1)})}{(x^{(s)}, x^{(s)})}}.$$

Алгоритм QR гуртується на тому факті, що для будь-якої квадратної матриці A існує розклад A=QR, де Q-ортогональна, а R верхня трикутна. Для розкладу використовують матрицю

Хаусхолдера
$$H = E - \frac{2}{v^T v} v v^T$$
 де E – одинична, а v обирається з умови:
$$\begin{cases} v_i^k = 0, \ \text{для } i = \overline{1, k-1} \\ v_2^k = a_{kk}^{k-1} + sign(a_{kk}^{k-1}) \sqrt{\sum_{j=k}^n (a_{j2}^{k-1})^2}, \ \text{Далі отримуємо QR розклад з того, що:} \\ v_i^k = a_{ik-1}^{k-1}, \ \text{для } i = \overline{k+1, n} \\ Q = (H_{n-1}H_{n-2}...H_0)^T = H_1H_2...H_{n-1}, \ R = A_{n-1}. \end{cases}$$

Тепер будуємо ітераційний процес: $A^{(k+1)} = R^{(k)} \mathcal{Q}^{(k)}$ якщо у матриці відсутні кратні власні числа, то вона збігається до трикутної матриці. Діагональними елементами тепер є власні числа, а для отримання власних векторів необхідно перемножити ортогональні матриці $Q^{(k)}$.

Лістинг:

```
#include "stdafx.h"
#include <fstream>
#include <iostream>
#include <math.h>
#define n 4
#define eps 0.00001
#define zn 3
using namespace std;
typedef double Mat[n][n];
typedef double vec[n];
void fileMat(ofstream &);
void inMat(string, Mat*);
void outMat(char*,char*,Mat*);
void outVec(char*, char*, vec*, bool);
void QR(Mat&, Mat&);
void Matprod(Mat, Mat, Mat &);
void Hausholder(Mat &, vec);
```

```
void findEigen(Mat&, vec&, Mat&);
void correct(Mat, vec, Mat);
double step(Mat);
int _tmain(int argc, _TCHAR* argv[])
            Mat A,B;
            vec b;
            inMat("inMat.txt", &A);
            ofstream fout("ans.txt");
            fout << "Розвязок часткової проблеми (Max eigen): " << step(A) << endl;
            findEigen(A, b, B);
           indingen(A, b, B),
outVec("ans.txt", "власні числа:", &b, false);
outMat("ans.txt", "власні вектори:", &B);
inMat("inMat.txt", &A);
            correct(A,b,B);
            system("Pause");
            return 0;
double step(Mat A){
            vec x, x1;
            for (int i = 0; i < n; i++) x[i] = 1;
            bool flag;
            double t;
            do
            {
                        for (int i = 0; i < n; i++) x1[i] = x[i];
                        for (int i = 0; i < n; i++){
                                    x[i] = 0;
                                    for (int j = 0; j < n; j++)
                                                x[i] += A[i][j] * x1[j];
                        t = x[0] / x1[0];
                        flag = true;
                        for (int i = 1; i < n; i++)
                                    if ( abs(x[i]/x1[i]-t)>eps ){
                                                 flag = false;
                                                 break;
            } while (!flag);
            double s1=0, s2=0;
            for (int i = 0; i < n; i++){
                        s1 += x[i] * x[i];

s2 += x1[i] * x1[i];
            return pow(s1/s2, 0.5);
void Matprod(Mat A, Mat B, Mat &AB){
            for (int i = 0; i < n; i++)
                        for (int j = 0; j < n; j++){
                                    AB[i][j] = 0;
                                    for (int k = 0; k < n; k++) AB[i][j] += A[i][k] * B[k][j];
void Hausholder(Mat &P, vec v){
            double s=0;
            for (int i = 0; i < n; i++) s += v[i] * v[i];
            for (int i = 0; i < n; i++)
                        for (int j = 0; j < n; j++)
                                    P[i][j] = -2 * v[i] * v[j] / s;
            for (int i = 0; i < n; i++) P[i][i] += 1;
void QR(Mat& A, Mat &Q){
            double s, t;
            vec v:
            Mat H,R,I;
            for (int i = 0; i < n; i++)
                        for (int j = 0; j < n; j++)
                                    Q[i][j] = 0;
            for (int i = 0; i < n; i++) Q[i][i] = 1;
            for (int k = 0; k < n - 1; k++){
                        t = 0;
                        for (int i = 0; i < n; i++)
                                    for (int j = 0; j < n; j++){
                                                 I[i][j] = Q[i][j];
                                                 R[i][j] = A[i][j];
```

```
for (int j = k; j < n; j++) t += A[j][k]*A[j][k];
                      s = sqrtf(t);
                      if (A[k][k] < 0) s = -s;
                      for (int j = 0; j < k; j++) v[j] = 0;
                       v[k] = A[k][k] + s;
                      for (int j = k + 1; j < n; j++) v[j] = A[j][k];
                      Hausholder(H, v);
                      Matprod(I, H, Q);
                      Matprod(H, R, A);
void findEigen(Mat& A, vec& b, Mat& B){
           Mat Q, P,R;
           int p=0;
           double s;
           char* str = new char[20];
           for (int i = 0; i < n; i++){
                      for (int j = 0; j < n; j++)
                                 if(i!=j) P[i][j] = 0;
                      P[i][i] = 1;
           while (true){
                      for (int i = 0; i < n; i++)
                                  for (int j = 0; j < n; j++)
                                              R[i][j] = A[i][j];
                      QR(R, Q);
                      Matprod(P,Q,B);
                      Matprod(R, Q, A);
                      //виведення проміжних данних
                       _itoa(p, str, 10);
                      strcat(str," iteration :");
                      outMat("debug.txt",str, &A);
                      //перевірка виходу
                      s = 0;
                      for (int k = 0; k < n - 1; k++)
                                  for (int i = k + 1; i < n; i++)
                                              s \leftarrow A[i][k] * A[i][k];
                      if (s < eps*eps) break;
                      for (int i = 0; i < n; i++)
                                  for (int j = 0; j < n; j++)

P[i][j] = B[i][j];
           for (int i = 0; i < n; i++) b[i] = A[i][i];
void correct(Mat A, vec b, Mat B){
           vec x;
           char * c = new char[10];
           for (int i = 0; i < n; i++){
                       _{itoa(i + 1, c, 10);}
                      strcat(c, "-а Невязка:\n");
                      for (int j = 0; j < n; j++){
                                  x[j] = 0;
                                  for (int k = 0; k < n; k++)
                                              x[j] += A[j][k] * B[k][i];
                                  x[j] = x[j] - b[i] * B[j][i];
                      outVec("ans.txt", c, &x, true);
void fileMat(ofstream &fout){
           fout.width(zn + 10);
           fout.precision(zn);
           fout.setf(ios::right);
           fout.setf(ios::fixed);
void inMat(string s, Mat* A){
           ifstream stm(s);
           int i, j;
           for (i = 0; i < n; i++)
                      for (j = 0; j < n; j++)
                                  stm >> (*A)[i][j];
           stm.close();
void outMat(char* s,char* msg, Mat* A){
           ofstream stm(s,ios_base::app);
           fileMat(stm);
           stm << msg << "\n";
```

```
\label{eq:continuity} \begin{cases} & \text{for (int } i=0; \ i<n; \ i++) \} \\ & \text{stm} << (*A)[i][j] << "\t"; \\ & \text{stm} << \text{endl}; \\ \end{cases} \\ & \text{stm} << \text{endl}; \\ \end{cases} \\ & \text{stm} << (*A)[i][j] << "\t"; \\ \\ & \text{stm} << \text{endl}; \\ \end{cases} \\ & \text{stm} << (*A)[i][j] << "\t"; \\ \\ & \text{stm} << (*A)[i][j] << (*A)[
```

Результати роботи

(файл ans.txt) Розвязок часткової проблеми (Max eigen): 9.33224	(файл debug.txt)
власні числа:	7.865 0.973 1.242 -0.677
9.33224	0.973 4.051 1.594 0.184
5.96585	1.242 1.594 6.129 -1.419
4.15479	-0.677 0.184 -1.419 3.915
2.50712	
	2 iteration :
власні вектори:	8.548 0.976 1.007 0.279
0.581 -0.779 0.079 -0.222	0.976 4.876 1.513 -0.260
0.264 -0.084 -0.547 0.790	1.007 1.513 5.378 0.918
0.587 0.519 -0.436 -0.443	0.279 -0.260 0.918 3.158
0.499 0.342 0.710 0.361	
	*
1-а Невязка:	*
2.550011 005	*
-3.559011e-007	10 iteration :
-3.820398e-008	9.331 0.051 0.003 0.000
2.368629e-007	0.051 5.961 0.105 -0.001
1.559635e-007	0.003 0.105 4.161 0.021
2-а Невязка:	0.000 -0.001 0.021 2.507
2-а невязка:	11 iteration :
9.495280e-007	9.332 0.033 0.001 -0.000
-4.591544e-006	0.033 5.963 0.073 0.000
-3.489696e-006	0.001 0.073 4.158 -0.013
6.341996e-006	-0.000 0.000 -0.013 2.507
0.5417700-000	*
3-а Невязка:	*
o w Trophskui	*
-6.721007e-006	35 iteration:
-6.880687e-007	9.332 0.000 0.000 -0.000
4.448824e-006	0.000 5.966 0.000 0.000
2.956094e-006	0.000 0.000 4.155 -0.000
	-0.000 0.000 -0.000 2.507
4-а Невязка:	
	36 iteration:
3.258773e-009	9.332 0.000 0.000 0.000
-2.243868e-008	0.000 5.966 0.000 -0.000
-1.789355e-008	0.000 0.000 4.155 0.000
2.911521e-008	0.000 -0.000 0.000 2.507

Висновок:

Працюючи над лабораторною роботою, я навчився розв'язувати часткову проблему власних чисел степеневим методом, а також повну проблему QR методом.