RespiraSense

FYP-I MID EVALUATION

OUR TEAM

Sania Nisar

21L-6065

Syed Farhan Jafri 21L-6074

Ayesha Haroon 21L-6116

Supervised by:

Mr. Muhammad Naveed

CONTENTS

- 1. Introduction
- 2. Experiments and Results
- 3. Goals Achieved
- 4. Future Goals
- 5. Working Prototype
- 6. Conclusion

INTRODUCTION

Project Name: RespiraSense

- Al-powered respiratory disease detection chest x-rays
- Improve healthcare accessibility and diagnostic accuracy
- Target Diseases: Pneumonia, COVID, Tuberculosis

Key Features

- Real-time chest X-ray analysis
- Doctor recommendation system
- Chatbot to assist patient side users

Technology

- MERN Application
- Combined Machine Learning and Deep Learning Techniques

PROBLEM STATEMENT

Global Health Challenge

 Respiratory diseases are leading causes of mortality worldwide

Current Diagnostic Methods

- Manually slow and error prone
- Limited access to medical resources under developed areas

Need for solution

Fast, accurate, and accessible diagnostic tool to improve early detection

Our Approach

Automate chest x-ray analysis

PROBLEM ELABORATION

Challenges of Traditional Methods

Slow, error-prone manual X-ray analysis

Impact on Patient Outcomes

Delays in diagnosis, worsened patient outcomes

Data Management Issues

 Difficulty in securely storing/accessing medical data

Solution Overview

• Al solution for real-time, automated diagnosis

SCOPE

- Al disease detection, doctor recommendations, chatbot
- Built with MERN stack and Flask integration
- Focus on accuracy, UI responsiveness, functionality
- No mobile app, third-party integrations(for model), or hosting

GOALS

- Dataset obtained
- User-friendly web interface Figma

Future

- Al model for lung disease detection
- Integrated chatbot, doctor recommendations

LITERATURE REVIEW

- 20 research articles reviewed
- Key methods CNN and Deep Learning methods
- Results High accuracy achievable with pre trained models
- Limitations Dataset imbalance, limited disease coverage, early stage detection, bias
- Conclusion Al integration is promising but requires diverse dataset

MOST RELEVANT

Title	Focus	Methodology	Findings	Relation
A Deep Learning Approach for COVID- 19 and Pneumonia Classification using DenseNet201 [3]	Classifying COVID-19 and Pneumonia using DenseNet20I from chest X- rays to aid diagnosis.	DenseNet20I with transfer learning on 15,153 chest X-rays from Kaggle to classify as Normal, Pneumonia, or COVID-19.	DenseNet201 showed strong classification performance, compared against other models.	Both focus on using DenseNet201 for classifying COVID-19 and Pneumonia from X-rays
A Systematic Review of Healthcare Recommender Systems [2]	Review of healthcare recommender systems (HRS)	Analysis of 41 articles covering various HRS categories	HRS can improve disease prevention, cost reduction, and healthcare services	Provides insights for building a scalable, accurate recommendation system for RespiraSense's doctor recommendation module.
Chatbots and Their Applications in Medical Fields [1]	Review of the use of Al- powered chatbots in healthcare	Literature review across 5 databases	Al chatbots are increasingly used but can't replace professionals	Supports the integration of a chatbot in RespiraSense for effective patient communication.

METHODOLOGY

Disease Detection

- Classification of x-rays Normal, Tuberculosis, COVID 19, Pneumonia
- Data Pre-processing
- TensorFlow framework

Chatbot

• Technique - OpenAl API

Recommendation System

- Machine Learning based matchmaking - popular hospitals
- Content based filtering

DESIGN(KEY REQUIREMENTS)

Requirements

- User Authentication
- Lung Disease Prediction
- Data Storage
- Security and Access control

Constraints

- Only predicts Pneumonia,
 Tuberculosis and Covid-19
- Consistent internet connection

SYSTEM ARCHITECTURE

LUNG DISEASE DETECTION SUBSYSTEM

CONCLUSION

- Problem: Need for efficient, accessible respiratory disease diagnosis
- Objectives: Al disease detection, doctor recommendations, chatbot assistant
- Scope: Web app for disease detection, secure records, patient-doctor interaction.
- Methodology: Kaggle data, ML based disease detection and doctor matching, OpenAl chatbot.

REFERENCES

- V. Viswanathan, V. Jain, A. Vaish, M. Jeyaraman, K. Iyengar, and R. Vaishya, "Chatbots and their applications in medical fields: Current status and future trends: A scoping review," Apollo Medicine, vol. 0, no. 0, 2024.
- H. Sanghvi, R. Patel, A. Agarwal, S. Gupta, V. Sawhney, and A. Pandya, "A deep learning approach for classification of COVID and pneumonia using DenseNet-201," International Journal of Imaging Systems and Technology, September 29, 2022.
- C. Effah et al., "Machine learning-assisted prediction of pneumonia based on non-invasive measures," Frontiers in Public Health, vol. 10, 2022.
- L. Venkataramana, D. Prasad, S. Saraswathi, C. Mithumary, R. Karthikeyan, and N. Monika, "Classification of COVID-19 from tuberculosis and pneumonia using deep learning techniques," Medical & Biological Engineering & Computing, vol. 60, no. 9, pp. 2681–2691, 2022. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9281341/.
- M. Etemadi, S. Bazzaz Abkenar, A. Ahmadzadeh, M. Haghi Kashani, P. Asghari, M. Akbari, and E. Mahdipour, "A systematic review of healthcare recommender systems: Open issues, challenges, and techniques," Expert Systems with Applications, vol. 205, p. 118823, 2022.
- M. Kabir, M. Mridha, A. Rahman, M. Hamid, and M. Monowar, "Detection of COVID-19, pneumonia, and tuberculosis from radiographs using AI-driven knowledge distillation," Heliyon, vol. 10, no. 5, p. e26801, 2024.
- S. Tripathi, "Lung disease detection using deep learning." Available at: https://www.researchgate.net/profile/Siddhanth-
 https://www.researchgate.net/profile/Siddhanth-
 https://www.researchgate.net/profile/Siddhanth-
 https://www.researchgate.net/profile/Siddhanth-
 https://www.researchgate.net/profile/Siddhanth-
 https://www.researchgate.net/profile/Siddhanth-
 https://www.researchgate.net/profile/Siddhanth-
 https://www.researchgate.net/profile/Siddhanth-
 https://www.researchgate.net/profile/Siddhanth-
 https://www.researchgate.net/publication/Jung_Disease_Detection_Using_Deep_Learning.pdf
 https://www.researchgate.net/publication/Jung_Disease_Deep_Learning.pdf
 <a href="mailto:Tripathi/publication/Jung_Disease_Deep_Le
- K. Rahman, "Reliable tuberculosis detection using chest X-ray with deep learning, segmentation, and visualization." Available at: https://ieeexplore.ieee.org/abstract/document/9224622, 2020.
- B. A. Ahmed MS, "Joint diagnosis of pneumonia, COVID-19, and tuberculosis from chest X-ray images: A deep learning approach." Available at: https://www.mdpi.com/2075-4418/13/15/2562, 2023.
- M. B. Ulas Bagci, "Computer-assisted detection of infectious lung diseases: A review." Available at: https://www.sciencedirect.com/science/article/abs/pii/S0895611111000802, 2011.
- N. Z. Wasif Khan, "Intelligent pneumonia identification from chest X-rays: A systematic literature review." Available at: https://ieeexplore.ieee.org/document/9389754, 2021.
- F. M. Luca Brunese, "Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays," 2020.
- "Multiple lung diseases classification from chest X-ray images using deep learning approach." Available at: https://www.academia.edu/download/72328256/ijatcse021052021.pdf, 2021.
- "Computer-aided detection of lung nodules in chest X-rays using deep convolutional neural networks." Available at: http://saucis.sakarya.edu.tr/en/download/article-file/702148, 2020.
- F. M. K. Malik and A. Rauf, "Medical report generation and chatbot for COVID-19 diagnosis using Open-Al." Available at:

 Diagnosis_Using_Open-Al, 2024.
- K. E. G. B. Indraprasta and Y.-C. Hsu, "Disparities in medical recommendations from AI-based chatbots across different countries/regions." Available at: https://pubmed.ncbi.nlm.nih.gov/39048640/, 2024.
- M. V. J. S and K. K, "Hospital recommendation system using machine learning." Available at: https://www.warse.org/IJATCSE/static/pdf/file/ijatcse64922020.pdf, 2020.
- S. K. P. Singh and S. Pal, "Energy-efficient model DenseNet20I based on deep convolutional neural network using cloud platform for detection of COVID-19 infected patients." Available at:
 <a href="https://www.researchgate.net/publication/371833553_Energy-efficient_model_DenseNet20I_based_on_deep_convolutional_neural_network_using_cloud_platform_for_detection_of_COVID-19_infected_patients, 2024.

REFERENCES

- [1]. H.Sanghvi, R.Patel, A. Agarwal, S. Gupta, V. Sawhney, and A.Pandya, "A deeplearning approach for classification of covid and pneumonia using densenet-201," International Journal of Imaging Systems and Technology, September 29 2022.
- [2]. M. Etemadi, S. Bazzaz Abkenar, A. Ahmadzadeh, M. Haghi Kashani, P. Asghari, M. Akbari, and E. Mahdipour, "A systematic review of healthcare recommender systems: Open issues, challenges, and techniques," Expert Systems with Applications, vol. 205, p. 118823, 2022
- [3]. V. Viswanathan, V. Jain, A. Vaish, M. Jeyaraman, K. Iyengar, and R. Vaishya, "Chatbots and their applications in medical fields: Current status and future trends: A scoping review," Apollo Medicine, vol. 0, no. 0, 2024
 [4]. https://www.kaggle.com/datasets/omkarmanohardalvi/lungs-disease-dataset-4-types

THANKYOU