Praktikum Atome, Moleküle, Kondensierte Materie - physik561

Studiengang - B.Sc. in Physik (PO von 2014)

\overline{Modul}	Praktikum Atome, Moleküle, Kondensierte Materie
Modul-Nr.	physik560

$\overline{Lehr veran staltung}$	Praktikum Atome, Moleküle, Kondensierte Materie
LV-Nr.	physik561

Kategorie	LV-Art	Sprache	SWS	LP	Semester
Pflicht	Praktikum	deutsch	5	5	WS/SS

Teilnahmevoraussetzungen: Teilnahme an Physik IV (physik411). Das heißt: erfolgreiche Teilnahme an den Übungen plus Teilnahme an der Modulprüfung physik411

Empfohlene Vorkenntnisse:

Physik I - III (physik110, physik210, physik310)

Theoretische Physik I - III (physik220, physik320, physik420)

Studien- und Prüfungsmodalitäten: Voraussetzung zur Prüfungsteilnahme (Versuchsprotokolle): erfolgreiche mündliche Überprüfung der Versuchsvorbereitung und Durchführung der Versuche

Dauer der Lehrveranstaltung: 1 Semester (während der Vorlesungszeit oder im Blockkurs in der vorlesungsfreien Zeit)

Lernziele der LV: Verständnis der Grundlagen der Experimente der Atomphysik und der kondensierten Materie. Praktische Erfahrungen zum zielgerichteten Experimentieren und Auswerten.

Inhalte der LV:

Vorbereiten auf physikalische Grundlagen anhand von Anleitungen und Versuchen. Praktisches Durchführen und Auswerten von Experimenten in kleinen Gruppen. Ausgewählte Versuche im Praktikum zur Atomphysik und kondensierten Materie.

Auswahl:

Balmerserie, Frank-Hertz-Versuch, optisches Pumpen; Plancksches Wirkungsquantum; Zeeman-Effekt, Hall-Effekt in Halbleitern, Rastertunnelmikroskopie, kernmagnetische Relaxation, Laser, Weißlichspektroskopie an Gold-Nanostrukturen, Röntgenstrahlung und Materialanalyse, Spektroskopie von Sternen

Literaturhinweise:

- C. Kittel; Einführung in die Festkörperphysik (R. Oldenbourg Vlg., München 14. Aufl. 2005)
- L. Bergmann, C. Schaefer; Lehrbuch der Experimentalphysik Bd. 6: Festkörperphysik (de Gruyter, Berlin 2. Aufl. 2005)
- H. Haken, H.C. Wolf; Atom- und Quantenphysik (Springer, Heidelberg 8. Aufl. 2003)
- T. Mayer-Kuckuk; Atomphysik (Teubner, Wiesbaden 5. Aufl. 1997)