Mathematical Equation

Md.Hadizzaman

June 22, 2020

$$\begin{split} Y &= V_r^T X \\ \mathbb{R} \\ P_i &= \frac{1}{t-1} X_i X_i^T \in R^{mxn} \\ \delta(P_1, P_2) &= \left| \left| log(P_1^{-\frac{1}{2}} P_2 P_1^{\frac{1}{2}}) \right| \right|_F = [\sum_{i=1}^m log^2 \lambda_i]^{\frac{1}{2}} \\ s_i &= upper \left(log(Q_c^{-\frac{1}{2}} P_i Q_c^{-\frac{1}{2}}) \right) \\ P_{MEAN} &= argmin_{p \in P(m)} \sum_{i=1}^n d^2(P, P_i) \\ d_E(A, B) &= ||A - B||_F \\ d_R(A, B) &= ||log(A^{-\frac{1}{2}} B A^{-\frac{1}{2}})||_{F^1} \\ P_R(\mu) &= (\sum_{i=1}^1 (P_i + \mu_{-1} l)^{-1})^{-1} \\ P_{mid^*}^{(k+1)} &= (\sum_{i=1}^n \frac{P_i}{d_E(P_G^{(k)}, P_i)}) (\sum_{i=1}^n \frac{1}{d_R(P_{mid^*}^{(k+1)}, P_i)})^{-1} \\ V^k &= (\sum_{i=1}^n \frac{log P_G^{(k)} P_i}{d_R(P_G^{(k)}, P_i)}) (\sum_{i=1}^n \frac{1}{d_R(P_G^{(k)}, P_i)}) \\ P_G^{(k+1)} &= Exp_{p_G^{(k)}}(V^{(k)})) \\ R_e(P_{ref}, S) &= exp(log(p_{ref} + s)) \\ R_e^{-1}(P_{ref}, S) &= log(p) - log(p_{ref}) \end{split}$$

Item	Quantity	Price
Nails	500	0.34
Wooden boards	1004.00	Price
bricks	240	11.50

		Year	
City	2006	2007	2008
London	45789	46551	51298
Berlin	34759	47366	38364
Paris	34759	47366	38364

Table Head	Table column name				
	table column subhead	subhead	subhead		
copy	more table $copy^a$				

$$V = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_3 \end{bmatrix}$$