CS448 PSO Week 4

CS448 staff

Adapted by Giselle Zeno

0

3NF and BCNF

- FD: $X \rightarrow A$ is **nontrivial** (RHS attribute is not in LHS)
- 3NF: a relation $\rm R$ is in 3NF iff (if and only if) for every nontrivial FD $\rm X{\to}A$,
 - o X is a **superkey**, or
 - A is **prime** (member of at least one key)
- $\bullet \quad \text{BCNF: a relation } \mathrm{R} \text{ is in } \textbf{BCNF} \text{ if for every nontrivial FD of } \mathrm{R, say} \; \mathrm{X} {\rightarrow} \mathrm{A},$

 - X is a superkey, or
 A is prime (member of at least one key).

1

Example

- Consider the relation
 - Contracts(contractId, supplierId, projectId, deptId, partId, qty, value)
 We will denote this relation schema by listing the attributes CSJDPQV
- Functional dependencies

 - C is the key

 C is the key

 I C —CSJDPQV

 Project purchases each part using single contract

 JP—C

 Dept purchases at most one part from a supplier

 SD—P

 Enchanced depth with a circle or unplier.

 - □ SD→F
 □ Each project deals with a single supplier
 □ J→S

Example 1: decompose a schema into BCNF

- FDs violate BCNF

3

Example 1: decompose a schema into BCNF $\bullet \quad \text{Schema: } \underline{\mathrm{CSJDPQV}} \\ \bullet \quad \text{FDs: } \{\mathrm{SD} \underline{\rightarrow} \mathrm{P, \ J} \underline{\rightarrow} \mathrm{S, \ JP} \underline{\rightarrow} \mathrm{C} \}$ SD is not a key, SD→P causes violation of BCNF FDs violate BCNF $\underline{\mathrm{CSJDPQV}}$ $SD \rightarrow P$ CSJDQV

4

Example 1: decompose a schema into BCNF J is not a key, J→S causes violation of BCNF FDs violate BCNF CSJDPQV $SD\rightarrow P$ SDPCSJDQV CJDQV JS

Alternatives in decomposing into BCNF

Schema: CSJDPQV
FDs: {SD→P, J→S, JP→C}
FDs violate BCNF

CSJDPQV

J→S

CIDPQV

6

Which alternative should be used? Choose the alternatives based on the semantics of the application. Example: R=(course id, course name, course abbreviation, year, instructor) ○ course abbreviation → course name ○ course name, year → instructor • The most frequently used query: ➤ selecting instructors given the course name and year. • Two decompositions: ○ (course name, course abbreviation) and (course id, course abbreviation, year, instructor) ○ (course name, year, instructor) and (course id, course abbreviation, year)

7

Example 1: decompose a schema into BCNF Decomposed schema: SDP, JS, CJDQV ✓ lossless join decomposition X dependency preserving decomposition CSJDPQV SD→P CSJDQV J→S CJDQV

Example 2: dependency-preserving decomposition into 3NF

Schema: CSJDPQV
FDs: {SD→P, J→S, JP→C}
SD→P, J→S violate 3NF

CSJDPQV

9

Example 2: dependency-preserving decomposition into 3NF

• Schema: $\underline{CSJDPQV}$ • FDs: $\{SD \rightarrow P, J \rightarrow S, JP \rightarrow C\}$ • $SD \rightarrow P, J \rightarrow S$ violate 3NF

CSJDPQV

SD $\rightarrow P$ SD $\rightarrow P$ CSJDQV

J $\rightarrow S$

10

Example 2: dependency-preserving decomposition into 3NF

• Schema: $\underline{CSJDPQV}$ • FDs: $\{SD \rightarrow P, J \rightarrow S, JP \rightarrow C\}$ • SD $\rightarrow P, J \rightarrow S$ violate 3NF $\underline{CSJDPQV}$ \underline{SDP} $\underline{CSJDPQV}$ \underline{SDP} $\underline{CSJDPQV}$ \underline{JS} \underline{JS} \underline{CJDQV}

Create views to consolidate a non-preserved FD	
➤ Use materialized views to consolidate a non-preserved FD into one table	
Check the FD in that materialized view by making LHS of the FD the key for	
the view	-
But will need to maintain the views when the base tables get updated	
12	
12	
	7
3NF synthesis	
SINF Synthesis	
\succ Take all the attributes over the original relation ${\rm R}$ and a minimal cover ${\rm F}$ for the	-
FDs that hold over it, and add a relation schema XA to the decomposition of R	
for each FD X→A in F.	
> If no decomposed table contains a candidate key for R, add a relation schema	
of any candidate key for R.	
13	
13	
13	
	_
Minimal cover	-
Minimal (Canonical) Cover for a set F of FDs is a set G of FDs such that:	
1. Every dependency in G is of the form $X \rightarrow A$, where A is a single attribute	
The closure F ⁺ is equal to the closure G ⁺ If we obtain a set H of dependencies from G by deleting one or more	
dependencies or by deleting attributes from a dependency in G, then F+≠H+	
14	

Example 3: find the minimal cover set Let F be the set of dependencies:	
15	
15	
General algorithm for obtaining a minimal cover set 1. Put the FDs in a standard form (single attribute on the right) 2. Minimize the left side of each FD 3. Delete redundant FDs	
16	
16	
Example 4: 3NF synthesis • Schema: CSJDPQV • FDs: {C→CSJDPQV, JP→C, SD→P, J→S} > Find the minimal cover set	

Example 4: 3NF synthesis > Find the minimal cover set $C \rightarrow S, \ C \rightarrow J, \ C \rightarrow D, \ C \rightarrow P, \ C \rightarrow Q, \ C \rightarrow V, \ JP \rightarrow C, \ SD \rightarrow P, \ J \rightarrow S$ 18

Example 4: 3NF synthesis

- $\begin{tabular}{ll} \bullet & Schema: \underline{C}SJDPQV \\ \bullet & FDs: $\{C \rightarrow CSJDPQV, JP \rightarrow C, SD \rightarrow P, J \rightarrow S\}$ \\ \end{tabular}$
- > Find the minimal cover set

$$C \rightarrow S, C \rightarrow J, C \rightarrow D, C \rightarrow P C \rightarrow Q, C \rightarrow V, JP \rightarrow C, \underline{SD} \rightarrow P, J \rightarrow S$$

19

Example 4: 3NF synthesis

- > Find the minimal cover set

 $C \rightarrow S, C \rightarrow J, C \rightarrow D, C \rightarrow P, C \rightarrow Q, C \rightarrow V, JP \rightarrow C, SD \rightarrow P, \underline{J \rightarrow S}$

	•
Example 4: 3NF synthesis	
Schema: CSJDPQV	
FDs: {C→CSJDPQV, JP→C, SD→P, J→S} Find the minimal cover set	
$\mathcal{L} = \{ C \rightarrow J, C \rightarrow D, \mathcal{L} = P, C \rightarrow Q, C \rightarrow V, JP \rightarrow C, SD \rightarrow P, J \rightarrow S \}$	
21	
21	
21	
]
Example 4: 3NF synthesis	
 Schema: <u>CSJDPQV</u> FDs: {C→CSJDPQV, JP→C, SD→P, J→S} 	
Find the minimal cover set $ \begin{array}{c} \text{C-S}, \ C \rightarrow J, \ C \rightarrow D, \ C \rightarrow P, \ C \rightarrow Q, \ C \rightarrow V, \ JP \rightarrow C, \ SD \rightarrow P, \ J \rightarrow S \end{array} $	
> Schemas: CJ, CD, CQ, CV, SDP, JS, JPC	
> (Optional) Combine: CJDQVP, SDP, JS > CJDQVP is a superkey	
22	
22	
	1
Case Study: The Internet shop	
Relations:	
Books (<u>isbn</u> , title, author, qty_in_stock, price, year_published) Customers (<u>cid</u> , cname, address)	
Orders (<u>ordernum. isbn.,</u> cid, cardnum, qty, order_date, ship_date)	
l .	1

Case Study: The Internet shop

- Books(<u>isbn</u>, title, author, qty_in_stock, price, year_published)
- Customers(<u>cid</u>, cname, address)
 Orders(<u>ordernum, isbn</u>, cid, cardnum, qty, order_date, ship_date)

Functional Dependencies:

- Books has one key: isbn. No other FDs
 Customers has one key: cid. No other FDs
- Orders has key: (ordernum, isbn).
 Other FDs: ordernum—cid, ordernum—order_date, ordernum—cardnum

25

Decomposition

- Schema: Orders(<u>ordernum, isbn</u>, cid, cardnum, qty, order_date, ship_date)
 FDs: ordernum→cid, ordernum→order_date, ordernum→cardnum

27

References

1. "The cow book": Database management systems by Raghu Ramakrishnan and Johannes Gehrke

