HSF Harmonic Scale Framework: Oxygen (O₂) Absorption Test

September 12, 2025

Abstract

Wir testen das HSF Harmonic Scale Framework (HSF) an O₂-Absorption bei 293 K im Bereich 235 nm–389 nm (Bogumil et al., 2003). Geprüft wird, ob ein einziger globaler Skalierungsfaktor s den Kramers–Kronig (KK)–Hilbert-Zwilling der Extinktion $\kappa(\lambda)$ mit dem Absorptionskoeffizienten $\alpha(\lambda)$ in Übereinstimmung bringt. "Neutrofield" wird nicht betrachtet.

1 Theory (HSF)

$$\tilde{n}(\omega) = n(\omega) + i \kappa(\omega), \qquad \alpha(\lambda) = \frac{4\pi}{\lambda} \kappa(\lambda).$$
 (1)

Für passive Medien verknüpfen die KK-Relationen (Hilbert-Transformation) n und κ . Die **HSF-Testhypothese** ist minimal:

Es existiert ein globaler, frequenzunabhängiger Faktor s mit $\alpha(\lambda) \approx s \mathcal{H}[\kappa](\lambda)$ über einem zusammenhängenden Spektralband.

2 Prediction

Vor der Dateninspektion erwartet HSF: (i) ein scharfes Optimum von s nahe Eins; (ii) hohe lineare Korrelation zwischen α und $\mathcal{H}[\kappa]$; (iii) geringe RMS-Abweichung gegenüber der Dynamik von α .

3 Data and Methods

Datensatz. O₂-Querschnitte (Bogumil et al., 2003), 293 K, 235 nm–389 nm; gleichmäßiges Gitter ($N = 10\,984$).

Vorverarbeitung. $\kappa(\lambda)$ wie bereitgestellt; Berechnung des KK/Hilbert-Zwillings $\mathcal{H}[\kappa](\lambda)$ auf demselben Gitter mit Standard-Randbehandlung (Taper + Spiegelung); anschließend ein globales s per Least Squares auf $\alpha(\lambda)$ gefittet.

Metriken. Optimum s, Pearson-Korrelation |r| zwischen α und $s \mathcal{H}[\kappa]$, RMS der Abweichung.

Spektralprobe (normierte, dimensionslose Darstellung)

Hinweis: Für die Visualisierung sind $\alpha(\lambda)$ und $\mathcal{H}\kappa$ auf vergleichbare Skalen gebracht (normiert), daher ist die Achse dimensionslos.

4 Results

Metrik	Wert	Interpretation
Optimales s Korrelation $ r $ RMS-Mismatch	0.975 0.990 1.324e-03	nahe Eins starke lineare Übereinstimmung kleine Residuen

5 Pragmatische Arbeitsdefinition der Erfolgsrate

Ein Lauf gilt als "erfolgreich", wenn |r| > 0.95 und RMS $< 10^{-3}$ (in den jeweiligen Nativeinheiten). Nach diesem Kriterium wird die RMS-Bedingung hier mit 1.324×10^{-3} knapp verfehlt; das Ergebnis bleibt jedoch qualitativ konsistent (hohes $|r| \approx 0.990$ und niedrige Residuen). Diese Schwellen sind pragmatisch und dienen wiederverwendbaren Checks, nicht als Beweis für HSF.

6 Breitere Interpretation

KK-Konsistenz ist nicht exklusiv für HSF: Jede kausale, lineare Dispersionsrelation erfüllt KK. HSF fügt die spezielle Hypothese hinzu, dass ein einziger globaler Skalenfaktor s den KK-Zwilling von κ mit α verknüpft. Der Befund ist eine Kompatibilitätsprüfung, kein Beweis.

7 Limitations und Ausblick

• Randeffekte. KK/Hilbert sind randempfindlich; Taper/Spiegelung eingesetzt. Zuschnitt auf ein "Einzel-Buckel"-Intervall kann s weiter stabilisieren.

• Bandspezifität vs. Materialspezifität. Übereinstimmung in einem Band impliziert keine Universalität. Zusätzliche Tests (zweites O₂-Band, z.B. 176 nm–201 nm; weitere Moleküle CO₂, N₂O) würden zeigen, ob s materialspezifisch stabil bleibt oder nur bandspezifisch ist.

8 Unsicherheiten

Formale Konfidenzintervalle per Bootstrap/Block-Bootstrap sind vorgesehen. Da die vollständigen Per-Punkt-Paare $(\alpha, \mathcal{H}\kappa)$ in diesem Dokument nicht enthalten sind, geben wir hier eine konservative 1σ -Abschätzung für s als Orientierung an:

```
s = 0.975 \pm 0.010 \quad (1\sigma, konservativ)
```

Endgültige Intervalle hängen von den vollständigen Per-Punkt-Daten ab und sind hier nicht enthalten. Exakte CIs können mit den beigefügten Skripten (scripts/10kk_check.py) berechnet werden.

9 Reproduzierbarkeit

Konfiguration: config.yaml. Skripte: scripts/10kk_check.py. Ergebnisse ohne Feinabstimmung außer dem einen Skalenparameter s erzeugt.

10 References

Bogumil, K., et al. (2003). O_2 cross sections in the near-UV.

Allgemeine Dispersionslehre: Kramers-Kronig-Relationen.

Als perspektivische Datengrundlage: neuere O_2 -Querschnittsdatenbanken wie HITRAN.

Hinweis. "Neutrofield" wird hier bewusst ignoriert; geprüft wird ausschließlich die HSF-Skalierung auf O_2 . DOI: 10.5281/zenodo.16921424.