Python 3 for scientific computing

Lecture 8, 28.3.2018
High-performance computing (HPC) in Python

Juha Jeronen juha.jeronen@tut.fi

Spring 2018, TUT, Tampere RAK-19006 Various Topics of Civil Engineering

HPC in Python

- Python itself is a (very) high-level language, and (comparatively speaking) can be slow.
- Performance-critical computations require acceleration tools, such as:
 - NumPy, SciPy
 - NumPy is already an acceleration tool (much faster than Python loops), if your math is expressed in the tensor formalism. However, single-core only (unless multicore BLAS).
 - Similarly, *SciPy already provides excellent performance* for standard math problems, simply by using LAPACK et al.

- ☆ Cython: C-Extensions for Python
 - Statically compiled Python with extra syntax for easy embedding of fast C-like code.
 - Creates native extension modules that can be **import**ed like any Python modules.
 - For custom low-level code, and for creating Python interfaces to existing low-level libraries.
 - Numexpr: Fast numerical array expression evaluator
 - Further accelerates NumPy. Optimizes memory use, uses multiple cores automatically.
 - Numba: JIT compiler
 - With a few annotations, array-oriented and math-heavy Python code can be just-in-time compiled to native machine instructions, similar in performance to C, C++ and Fortran, without having to switch languages or Python interpreters.
 - Theano
 - A Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently.
 - No longer developed.

- Compiled language.
 - A superset of Python; can use a Python program as a starting point.
 - However, looking at Cython as just a static compiler for Python is missing the point.
 - Language basics for new users.

Two main use cases:

Static compilation means offline, before program execution. Contrast dynamic compilation. See also incremental comp..

- FFI (foreign function interface), to connect Python code to libraries written in C or C++.
 - See *simple-cython-example* and *scikit-sparse* for examples of Cython for FFI.
 - Other possibilities: CFFI (example in *sparseqr*), and *ctypes* in the standard library.
 - If you need a Fortran FFI instead, see F2PY.
- * Acceleration, by allowing low-level algorithms to be implemented and manually tuned.
 - The level of abstraction can be closer to the underlying hardware than in pure Python. In effect, Cython transforms Python into a *wide-spectrum language*.
 - Especially good for exploiting multiple cores: number-crunching code that needs only NumPy arrays does not need to hold the GIL.
 - Compiles to C, which is then compiled to machine language via GCC.
 - The result is an extension module, which can be imported just like any Python module.
 - The compiled code skips the Python interpreter, calling directly into the Python C API. This is slightly faster, but not much.
 - Number-crunching loops accessing only NumPy arrays may compile to native C code, skipping Python altogether! This may be **up to two orders of magnitude faster**.
 - Ideal for inherently serial algorithms, or when (part of) an algorithm is much easier to express as a traditional loop over array elements rather than as a tensor operation.
 - The C-like extra syntax has some differences to the actual C language.

Advantages:

- Approachable to Python users: just Python, with some extra syntax.
- Number-crunching loops compiled to machine language, can be very fast (if the algorithm is).
- True parallelism for custom multithreaded number-crunching in Python.
 - Also extremely easy to leverage OpenMP for parallel loops over NumPy arrays.
- Excellent integration with Python.
 - Just import your Cython module, no need to care it's written in another language.
- Easy-ish tool for FFI. (So is CFFI.)

Drawbacks:

- Limited support in IDEs and text editors, which tend to focus on pure Python. Acceleration of Python code usually a concern only in the scientific computing community.
 - Spyder has Cython syntax highlighting, but no graphical debugger for Cython.
 - PyCharm has full Cython support, but only in the commercial edition.
 - Cython syntax highlighting data file for gedit (actually, for GtkSourceView that it uses).
- Can be somewhat clumsy:
 - No REPL: must make a module, compile, and import it.
 - Not an inherent limitation of compiled languages; just a common choice in the C family.
 Python has a REPL, although it internally uses a compiler. Lisps have a REPL; some of them compile to machine code.
 - Need to create and maintain a compile script (setup.py).
 - Very basic static type system, just like in C; often gets in your way instead of being helpful.
 - Binaries are platform-dependent; the distribution process can be much more involved.
- Smaller community, compared to pure Python.
 - May need to look at the generated C code to analyze what exactly is going wrong, instead of just asking the Internet.
 - All input Cython code is included as comments, though, so it's easy to find the right spot.
- To do (or understand) some things, may need to know a bit of C.

Simple example: a naive ddot, let's call it ddot.pyx:

- New keywords double, unsigned, int, cdef, nogil
 - The IEEE-754 double precision float datatype is called double, like in C
 - int is a native integer, either 32 or 64 bits, depending on platform
 - **unsigned** means no sign bit is used; values are 0, 1, ..., $2^m 1$, where m is 32 or 64.
 - **cdef**, when used for variables, denotes a type declaration.
 - Optional. If a name is used without a **cdef**, the default type is general Python object.
 - Technically speaking, since k, n and out have a primitive datatype, they are **variables** names for fixed storage locations, like in C. Now e.g. k += 1 actually mutates the variable.
- Explicit memory layout: the pythonic syntax [::1] denotes a contiguous rank-1 array.
- range() now comes from Cython, not from Python, although it looks the same.
- The loop now runs at native speed, but doesn't yet release the GIL. (See next slide.)
- For more, see Cython for NumPy users.

• Releasing the GIL. A naive $O(n^3)$ dgemm (note: better algorithms exist!):

```
import numpy as np # just a usual Python import
```

return np.asanyarray(out) # return np.array, not memoryview (with no extra copying of data)

- The "context manager" with nogil: releases the GIL for the dynamic extent of the with block.
- Almost always, *np.array* is a good choice for *dynamically allocated*, but immutable-size arrays.
 - Cython can use C primitives malloc/free (no need for GIL!), but very painful (just like in C).
- Memoryviews talk with np.arrays seamlessly, except at output (return) must be converted.
 - When creating the array, we use *order='C'* to be explicit that we want a [:,::1].

• What exactly happens in the *np.array* ↔ *memoryview* conversion:

```
& is Cython (and C) for "take the memory address of".
import numpy as np
                                             Python-level code can use id and is, as usual.
def test():
                                          It must work like that, because
  A = np.random.random((5,5))
                                          this line does not refer to "A".
  cdef double [:,::1] B = A
  C = np.asanyarray(B)
  print(A is C)
                                        # False; A and C are different np.array instances
  print([type(x) for x in (A,B,C)])
                                        # B is a memoryview: A and C are np.arrays
  addr_A, readonly_flag_A = A.__array_interface__['data']
  addr C, readonly flag C = C. array interface ['data']
  print("\{:x\}, \{:x\}, \{:x\}".format(addr A, <unsigned long long>&B[0,0], addr C)) # same!
```

- We first create an np.array, and bind it to the name A, as a general Python object.
- Then, the line with the cdef:
 - We first declare a C-contiguous memoryview, with the name "B".
 - We attempt to bind the name "B" to point to the same object as "A", but "A" is an np.array.
 - Cython **implicitly converts** "A" to a memoryview.
 - \triangle Recall that pure Python *makes no implicit conversions*. This is different in Cython.
 - Finally, this new memoryview instance is bound to the name "B".
 - We could put this on one line as **cdef double** [:,::1] B = np.random.random((5,5))
 - In that case, even though the original *np.array* disappears, the data inside it strictly speaking, the exact same region of memory lives on in the memoryview instance.
- np.asanyarray() reverses the conversion, wrapping the same memory back into a new np.array.
 - For returning a memoryview, an explicit conversion is needed, because Cython will **return** the exact object instance we tell it to. Alternatively, we can return "A", already an *np.array*.

- **C functions**. The previous examples are, in principle, usual Python functions, although they contain some C-like code and they are compiled into a native extension module.
- To avoid Python's high overhead for function calls, Cython provides *C functions*, which are:
 - "called at the C level", using the faster C calling conventions.
 - not visible to Python modules can only be called from Cython code.
 - "Cython code" includes also any regular (def) functions in Cython modules.

```
cdef double cddot(double [::1] a, double [::1] b) nogil: # keyword cdef makes a C function.
    cdef unsigned int k
    cdef unsigned int n = a.shape[0]
    cdef double out = 0.0

for k in range(n):
    out += a[k] * b[k]

return out
```

- Note optional C-like type declaration for the return value, just before the function name.
- nogil at the end of the function signature means that this C function may be called also when the GIL is not held. (This implies the function cannot use any Python objects!)
 - This does not release the GIL; it allows calls **also** without the GIL.
- C functions, by default, *cannot propagate Python exceptions* to the caller, but they can tag a special *error return value* to add this functionality. Use an **except** keyword at the end of the function signature, just use exceptions as usual, and *never manually return the tagged value*.
- See also Cython Function Declarations; and Early Binding for Speed.
- Beside **cdef**, there is also **cpdef**, which means "define this function for both C and Python".

Summary, language basics:

- Cython significantly accelerates for loops that use only np.arrays (≈100× over pure Python).
 - Needs static type information so that the loop can be compiled to C.
 - Must be provided by the programmer, in the form of type declarations (cdef).
- To avoid Python's high overhead for function calls, Cython provides C functions (also cdef).
 - A C function can be declared callable without the GIL by appending **nogil** to the signature.
- When you don't need Python objects except np.arrays, you can release the GIL with nogil:
 - **Danger**: with nogil: is in effect during the dynamic extent of the with block not lexically!
 - In other words, it behaves just like a context manager.
 - **Danger**: Trying to release the GIL when it is already released **will crash the program**.
 - **Design carefully**; combine with **nogil**. In each thread, use at most one **with nogil**: at a time; but it may safely call, also in a nested manner, any C functions which are **nogil**.
- NumPy arrays in Cython:
 - A good choice for dynamically allocated, but immutable-size arrays. Garbage-collected.
 - At the C level, access via typed memoryviews. At the Python level, just use as usual.
 - *Memory layout* can be C-contiguous [:,...,::1], Fortran-contiguous [::1,...,:], or general.
 - General layouts are denoted by predefined constants; to use them, *cimport cython.view*
 - Important: A fast C loop will only be generated if the array is contiguous, and Cython knows it (from a datatype declaration)!
 - Access to a fully general memory layout cannot be accelerated (as much), because then the only way to find out where the data is, is to ask the memoryview for that information.

Parallel loops:


```
import numpy as np
cimport cython.parallel
                        # note cimport instead of import (explanation on next slide)
def pdgemm(double [:,::1] A, double [:,::1] B): # parallel dgemm
  cdef int i, j, k
  cdef int n = A.shape[0] # indices are signed in OpenMP < 3.0
  cdef int m = B.shape[1]
  cdef int p = A.shape[1]
  cdef double [:,::1] out = np.zeros((n,m), dtype=np.float64, order='C')
  if B.shape[0] != p:
     raise ValueError('Incompatible input shapes ({:d},[:d}), ({:d},{:d})'.format(n,p,B.shape[0],m))
  with nogil:
     for i in cython.parallel.prange(n): # ← parallel loop
       for i in range(m):
         for k in range(p):
            out[i,i] += A[i,k] * B[k,j] # arrays can be accessed as usual
  return np.asanyarray(out)
```

- Uses OpenMP (Open Multi-Processing). Needs compiler and linker options to enable OpenMP.
- Available only at the C level; no access to Python objects in parallel code.
- prange() must either be inside a with nogil: block, or use the magic kwarg nogil=True.
- May only be used from the main thread or parallel regions due to OpenMP restrictions.
- For more (e.g. thread-local variables), see Parallelism in the Cython documentation.

• Cython's import system. Both of these are valid, but each works for a different reason:

```
cimport cython.parallelimport cython.paralleldef do_stuff():<br/>cdef unsigned int i, n=10<br/>...<br/>with nogil:<br/>for i in cython.parallel.prange(n):<br/>...def do_stuff():<br/>cdef unsigned int i, n=10<br/>...<br/>for i in cython.parallel.prange(n, nogil=True):<br/>...<br/>...<br/>...
```

- cimport is like C's #include <something.h>
- Brings in C-level definitions
- Just like cdef, seen only by Cython code

- import is just Python's import
- Brings in Python modules or objects, as usual
- Works just like in any Python code
- **Be precise**. For example, trying to *import* cython.parallel and then use it in a with nogil: block is a compile-time error, because **Python objects** cannot be used with the GIL released! But using a **C-level definition** with the GIL released is fine.
- cython.view must be cimported (not imported!), because the things that are used to denote general memory layouts are defined as C-level constants.
- NumPy must be imported (not cimported!), because the things we need from it (such as np.empty(), np.asanyarray()) are Python functions.

Definition files:

- Like in C, Cython code can be split to separate *definition* and *implementation* files. For example, for functions:
 - A definition states that a function with a certain name exists, and specifies its signature.
 - An *implementation* contains the actual code.
- Definition files are used to export functions at the C level i.e. to make them available for other Cython modules to cimport.
 - If a module is intended not to export anything at the C level, no definition file is needed.
- Implementation files have the file extension .pyx
- **Definition files** have the file extension *.pxd*; they play a role similar to C's header files (.h).
- Roughly, in C terms a *declaration* corresponds to a Cython *definition*, and a C *definition* corresponds to a Cython *implementation*. (Edge cases slightly complicate matters.)
- Contrast pure Python, which requires only an implementation. Separate definitions are typically a feature of statically compiled languages; functions are looked up statically instead of at runtime, as in Python.
 - Roughly speaking. We have ignored C++'s virtual methods, which use a limited form of runtime lookup to account for the object's *dynamic type*. (Recall lecture 3, slide 45.)
 - A declaration gives the *compiler* enough information to resolve the reference, whereas the definition provides what the *linker* needs to concretely fix the function to be called.
- See Sharing Declarations Between Cython Modules in the Cython documentation.

Definition files – example:


```
# mysum.pxd
cdef double sum(double[::1] a) nogil
# mysum.pyx
cdef double sum(double[::1] a) nogil:
  cdef unsigned int k, n = a.shape[0]
  cdef double out = 0.0
  for k in range(n):
    out += a[k]
  return out
# mysum test.pyx
import numpy as np
cimport mysum
def test():
  a = np.arange(10, dtype=np.float64)
  print(mysum.sum(a)) # use just like any Python function (as long as the datatypes match)
# mysum run.sh
python3 -c "from mysum test import test; test()"
```

- Cython must be able to find mysum.pxd when compiling mysum_test.pyx.
 - This can sometimes be a source of headaches, especially when writing libraries. In Python 3, libraries use relative **import**s, but Cython doesn't fully seem to understand that.
 - One possible solution is to use absolute(-ish) cimports; see setup-template-cython.

- Extension types (a.k.a. cdef classes):
 - On equal footing with Python's built-in types. Uses less memory and is faster than a class.
 - Uses a C struct to store fields and methods, instead of a Python dict.
 - Can store **arbitrary C types** in the fields without requiring a Python wrapper.
 - Can access fields and methods directly at the C level (without a dict lookup).
 - Cannot add or remove fields, or change their datatype, at runtime.
 - **Example**: creating a Python-level wrapper for a generic C pointer (a.k.a. void pointer, void *):

```
# ptrwrap.pxd
cdef class PointerWrapper:
    cdef void * data
    cdef set(self, void * p)

# ptrwrap.pyx
cdef class PointerWrapper:
    cdef set(self, void * p):
        self.data = p

# ptrwrap_test.pyx
import numpy as np
from ptrwrap cimport PointerWrapper
def test():
    cdef double [:,::1] A = np.empty((3,5))
```

Where is this needed? To Python, a *PointerWrapper* is a Python object; it can be passed into a function as an argument, returned from a function, stored into the usual Python containers such as *list*, etc.

This can be convenient if your Cython code needs to pass pointers around internally, but the function to be called is a regular **def** function (Python function).

In real code, if a *PointerWrapper* is passed/stored as a Python object, cast it explicitly to a *PointerWrapper* before trying to access its *data* field, because it's a C field, not a Python attribute! Code example.

```
cdef double [:,::1] A = np.empty((3,5), dtype=np.float64, order='C')
cdef PointerWrapper pw = PointerWrapper()
    pw.set(&A[0,0])
    cdef double [:,::1] B = <double [:3,:5:1]>pw.data # specify size, a C pointer doesn't know!
main()
In Cython, the size is specified using the slice syntax.
```


- The Cython and C compilation steps are separate; different compilers, different languages.
 - Example: embedding SSE2 assembly (for the x86 family), via C FFI to SIMD intrinsics.
 - No ready-made .pxd for this exists. To declare (i.e. write Cython definitions for) the existing, external C functions we want to use, we must first tell Cython about the datatype __m128d, which is a pair of doubles packed into one 128-bit item for SSE2-based SIMD processing:

```
cdef extern from "emmintrin.h": # emmintrin for SSE2
  ctypedef double __m128d

__m128d _mm_loadu_pd (double *__P) nogil # (__P[0], __P[1]) are the input doubles
  __m128d _mm_add_pd (__m128d __A, __m128d __B) nogil
  __m128d _mm_mul_pd (__m128d __A, __m128d __B) nogil
  void _mm_store_pd (double *__P, __m128d __A) nogil # result written to (__P[0], __P[1])
```

- Cython and GCC need different information:
 - Cython must be told, within the constraints of its syntax, that an __m128d behaves somewhat like a **double** so that it knows how to generate the C code correctly.
 - But the C compiler needs the exact definition an __m128d is not a double, but a pair
 of doubles. To get the Cython-generated C code to #include the actual original definition,
 so that the C compile step can work, we must cdef extern from the original header.
- Full example on GitHub. (Danger: GCC-optimized C may be faster than manual assembly!)

- Compiling, or how to write a setup.py
 - Closely related to packaging and distributing Python projects; uses the same tools.
 - A large topic. See the Packaging and Distibuting Projects tutorial by PyPA.
 - Still a moving target; update your skills regularly.
 - As of early 2018, the recommended framework is *setuptools*.
 - Cython's documentation is based on the older *distutils*, but the relevant parts are somewhat compatible.
 - GCC compiler options for x86 may come in handy.
 - Examples too long to fit on a slide; see online:
 - A very minimal example for Cython compilation and distribution in cython-sse-example.
 - A template for number-crunching projects using Cython: setup-template-cython
 - For compile only, no distribution, see its test subfolder.
 - A template for FFI projects using Cython: simple-cython-example
 - Cf. a distribution script for a project using CFFI, but no Cython, in *sparseqr*.
 - Cf. a distribution script for a pure-Python project, no compile, in PyPA's sampleproject.
 - In simple cases, invoke with *python setup.py build_ext --inplace*
 - build_ext compiles; build just copies .py files declared as belonging to packages.
 - If you know what you are doing, invoke with python setup.py build_ext
 - The folder structure generated by this variant is very useful for making a package.

Performance:

- Some compiler directives can be used to enable a significant performance boost.
 - How to set them: per-function decorators, magic comments at start of file.
 - Default settings:
 - boundscheck=True: Array accesses are bounds-checked, like in Python.
 - Safe (no mysterious crashes or program state corruption), but slow.
 - Once sure that there are no indexing-past-end bugs, consider disabling.
 - wraparound=True: Negative indices are allowed, like in Python.
 - Convenient, but slow. Disable, if sure that no negative indices are used.
 - cdivision=False: The division operator uses Python semantics. Very slow!
 - Almost always, switch to C semantics.
- If your code is running suspiciously slowly:
 - First, invoke cython -a mymodule.pyx
 - This produces *mymodule.html*, showing the relative efficiency of the generated code.
 - Open it in a web browser to see your source, annotated (-a) with the generated C code.
 - Click on any line with a "+" in front of it to expand.
 - The more yellow a line is, the more Python work it is doing.
 - Lines that translate to pure C appear white.
 - For more detail, look at the generated C code. See e.g. if one of your loops:
 - queries the array for its *strides*; if so, Cython doesn't know the array is contiguous. Likely the datatype declaration for the array variable is missing, or is missing the ::1.
 - calls any Python functions when manipulating the loop counter variable; if so, the datatype declaration for the loop counter is missing.

• Final words:

- Regular Python modules can import Cython modules just fine which is the point of Cython,
 i.e. providing acceleration selectively where needed. Usually there is a main.py, no main.pyx.
- Our examples have used Cython only, just because we have concentrated on demonstrating Cython's C-level features.
- We looked at cdef extern from to declare external functions when no ready-made .pxd definition file exists; but often there is one, such as libc.math or scipy.linalg.cython_lapack, so you can just cimport it. See Calling C functions, and includes provided with Cython.
- In Cython modules, function signatures do not automatically appear in help().
 - To work around this, manually copy the signature to the beginning of the function docstring

 users will expect to see it.
 - (And remember to update the manual copy if you change the signature later.)
- Is it worth it? If you need to write custom low-level code, yes.
 - Achieve true parallelism for CPU-bound workloads.
 - Achieve native speed the real deal, -O3 C for number-crunching loops.
 - Eliminate the cost of Python function calls.
 - ...all while not deviating that far from Python.
- But keep in mind the Pareto principle very often, it happens that 80% of your run time comes from 20% of the code.
 - Identify that 20% before working too much on acceleration.
 - "Premature optimization is the root of all evil" –Donald Knuth

Meta Code examples

- The code examples shown in this slide set are available on GitHub.
 - Some examples, particularly ptrwrap, have been slightly extended.
- A compile script (setup.py) is provided.
 - Simple, minimal, compile only; no distribution logic.
 - To use: **python3 setup.py build_ext -inplace**
 - This command is also documented as *compile.sh*.
 - Feel free to use this *setup.py* as a template for your own Cython projects.
- All main programs have been packaged into main.py; except for mysum and ptrwrap, which have their own main programs.
 - To run these two examples, import the relevant module and call its *test()* function; example invocations given in *mysum_run.sh* and *ptrwrap_run.sh*.

Meta Next time

- Introduction to software engineering
 - I.e. how to develop correct and maintainable software quickly
 - Tools of the trade:
 - Basics of version control with git and GitHub
 - Debuggers
 - Profilers (finding that 20%, reliably)
 - How to write informative comments
 - Assertions, ensuring internal consistency
 - Automated unit testing to avoid new bugs, and catch regressions
- See you next week!

