

ELEC-E8740 — Basics of Sensor Fusion Introduction to the project work

Muhammad Emzir Sakira Hassan

Aalto University

October 30, 2020

- Intro

- Intro
- 2 What you need to do
- Reports
- 4 Grades
- Overview
- 6 Demonstration

- 1 Intro
- 2 What you need to do
- Reports
- 4 Grades
- Overview
- 6 Demonstration

- Intro
- 2 What you need to do
- Reports
- 4 Grades
- Overview
- 6 Demonstration

- Intro
- 2 What you need to do
- Reports
- 4 Grades
- Overview
- 6 Demonstration

- Intro
- What you need to do
- Reports
- Grades
- Overview
- Demonstration

- Intro

Before we begin

- Sign up for a team. A team of max. three members are allowed.
- Deadline for signing up is November 14, 2020.
- Link: https://mycourses.aalto.fi/mod/choicegroup/view.php?id=651037
- Project instruction: https://mycourses.aalto.fi/pluginfile.php/1380370/mod_resource/content/3/project_guide.p
- Make sure to check for updates in https://mycourses.aalto.fi/course/view.php?id=28638§ion=4
- Data will be available after signing up. Link: https://mycourses.aalto.fi/course/view.php?id=28638§ion=4
- Demo: https://mycourses.aalto.fi/mod/page/view.php?id=651876

Objective

- The aim of this project is to develop an algorithm for tracking an autonomous robot (DiddyBorg) by using a set of sensors.
- Sensors available: IMU, infra red detector, a motor controller, and a camera module.
- Track predefined lines (black) in a confined space.
- All handled by Raspberry PI.

- 1 Intro
- 2 What you need to do
- 3 Reports
- 4 Grades
- Overview
- 6 Demonstration

Part I

- Derivation of the sensor model: IMU and Camera system.
- \bullet Estimation of the model parameters \to this includes calibration.

Part II

Localization using camera measurements.

Part III

- Tracking using IMU only
- Tracking using both IMU and Camera.

Tasks

No.	Task	Notes
Part I		
1	Static IMU experiment	Check the static bias and the covariance.
2	IMU calibration	Determine the gain and the bias of the
		accelerometers, gyroscope, etc.
3	Camera module calibration	Determine the focal length and bias.
4	Motor control	Determine the speed of the robot.
Part II		
5	Localization	Estimate the position and attitude of the
		robot.
Part III		
6	Tracking with IMU	Develop a tracking algorithm.
7	Tracking with IMU and camera	Develop a tracking algorithm.

- 1 Intro
- 2 What you need to do
- Reports
- 4 Grades
- Overview
- Demonstration

Reports

Intermediate report

(DL: Monday, 30th November, 2020, 12:00)

Final submission

(DL: Monday, 11th January, 2021, 12:00)

Intermediate report

- Specify team number and members
- A brief description of the robot and sensor models.
- Explanatory data analysis of the log files.
- Plans to implement Part II (localization) and Part III (tracking) algorithms.

Final report

- Specify team number and members.
- An abstract.
- A brief introduction to the project and the problem that you are solving.
- Derivation of the model.
- Calibration procedures that are used (if any).
- Methods: a description of the estimation method(s) used for parameter estimation, validation, and tracking.
- Results.
- Conclusions and/or a summary.
- References (if applicable).

- 1 Intro
- 2 What you need to do
- Reports
- 4 Grades
- Overview
- 6 Demonstration

Grading criteria

Part I: Grade max. 1 (Pass)

Part II: Grade max. 3

Part III: Grade max. 5

- Overview

IMU

Figure: Illustration of the robot and camera coordinate systems given by the right hand axis rule. Notice the camera coordinate system is parallel to the robot coordinate system

Measurement Model: Camera

Figure: Illustration of the global coordinate system, QR-codes with known positions in global coordinate, and the robot local acceleration. When the robot camera heads to the *y* axis, the global angle of the robot equal to zero.

Measurement Model: Camera

For each QR-codes:

$$d_i = \sqrt{(x_c - x_i)^2 + (y_c - y_i)^2}$$

 $\phi_i = \arctan((x_c - x_i)/(y_i - y_c)) - \psi$

The distance d_i and direction of QR-codes from robot y axis ϕ_i can be determined by

$$\phi_i = \operatorname{arctan}(rac{c_{\mathrm{X},i}}{F}),$$
 $d_i = rac{H_o F}{h_i}.$

Measurement Model: Camera

Therefore

$$c_{x,i} = F \cdot \tan(\arctan((x_c - x_i)/(y_i - y_c)) - \psi),$$

$$h_i = \frac{H_o F}{\sqrt{(x_c - x_i)^2 + (y_c - y_i)^2}},$$

$$\mathbf{y} = \mathbf{h}(\mathbf{x}).$$

 H_o is the height of QR-codes, and F is the focal length of the lens in *pixel*.

Dead-reckoning

Figure: Schematic illustration of dead-reckoning, where the accelerometer and gyroscope measurements are integrated to position and orientation.

Tracking

First use IMU only, then after that use also the camera. Also, consider the timestamp.

- 1 Intro
- 2 What you need to do
- 3 Reports
- 4 Grades
- Overview
- 6 Demonstration

Demonstration (2min)

https://mycourses.aalto.fi/mod/resource/view.php?id=651871

