- 1) Use the remainder theorem to determine the remainder when $2x^3 + 7x^2 8x + 3$ is divided by each binomial.
- a) x + 1

b) x - 2

c) x + 3

2)a) Divide $x^3 + 3x^2 - 2x + 5$ by x + 1. Express the result in quotient form.

- **b)** Write the corresponding statement that can be used to check the division.
- 3) Divide $3x^4 4x^3 6x^2 + 17x 8$ by 3x 4. Express the result in quotient form.

b) Write the corresponding statement that can be used to check the division.

4) Perform each division. Express the result in quotient form.

a)
$$x^3 + 7x^2 - 3x + 4$$
 divided by $x + 2$

b)
$$6x^3 + x^2 - 14x - 6$$
 divided by $3x + 2$

c)
$$10x^3 + 11 - 9x^2 - 8x$$
 divided by $5x - 2$ **d)** $11x - 4x^4 - 7$ divided by $x - 3$

d)
$$11x - 4x^4 - 7$$
 divided by $x - 3$

e)
$$6x^3 + x^2 + 7x + 3$$
 divided by $3x + 2$

f)
$$8x^3 + 4x^2 - 31$$
 divided by $2x - 3$

g)
$$6x^2 - 6 + 8x^3$$
 divided by $4x - 3$

