UNIVERSIDAD DE CONCEPCIÓN

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA MATEMÁTICA JAA/BBM/LNB/JSA/MSS/MVH/jaa

Listado de Ejercicios 2 Álgebra I (525147)

Problema 1 (En práctica a), b) y d)) Sean $p, q \in \mathcal{P}(\mathbb{R})$ tales que $\operatorname{gr}(p) = n$ y $\operatorname{gr}(q) = m$. Determine si las siguientes afirmaciones son verdadres o falsas. Justifique en cada caso.

a)
$$gr(pq) = n + m$$

b)
$$\operatorname{gr}(p+q) = \max \{\operatorname{gr}(p), \operatorname{gr}(q)\}$$

- c) Si gr(p) es un número par, entonces p es una función par
- d) $(\forall \alpha \in \mathbb{R}) \operatorname{gr}(\alpha p) = \operatorname{gr}(p)$

e)
$$(\forall x > 0) p(x) \ge 0$$

f)
$$\operatorname{Rec}(p) = \mathbb{R}$$

g)
$$(\exists r \in \mathcal{P}(\mathbb{R})) (\forall x \in \mathbb{R}) p(x) r(x) = 1$$

h)
$$(\exists r \in \mathcal{P}(\mathbb{R})) (\exists x_0 \in \mathbb{R}) p(x_0) r(x_0) = 1$$

- i) La función compuesta $p \circ q \in \mathcal{P}\left(\mathbb{R}\right)$ y $\operatorname{gr}(p \circ q) = nm$
- j) $gr(p^2)$ siempre es par

Problema 2 Determine un polinomio $p \in \mathcal{P}_3(\mathbb{R})$ tal que p(0) = 0, p(1) = 1, p(2) = 4 y p(3) = 10.

Problema 3 Determine los valores de $a,b\in\mathbb{R}$ tales que el polinomio $p\left(x\right)=x^3+ax^2+bx+2$ tenga como una de sus raíces el complejo z=2+i.

Problema 4 (En práctica b)) Determine el cuocuiente q(x) y el resto r(x) de la división entre p(x) y d(x), donde

a)
$$p(x) = x^5 - 7x^4 + 2x^2 - x + 2$$
; $d(x) = x - 2$

b)
$$p(x) = x^5 + 2x^4 - x^3 + 22x$$
; $d(x) = x^2 - 4x + 1$

c)
$$p(x) = 2x^4 - 15x^2 + 8x - 3$$
; $d(x) = x + 3$

Problema 5 Determine los valores de $a, b \in \mathbb{R}$ tales que $(x+1)^2$ es un factor de $p(x) = ax^4 + bx + 15$.

Problema 6 (En práctica) Sea $p \in \mathcal{P}(\mathbb{R})$ tal que p(x) - 5 es divisible por (x + 5) y p(x) + 5 es divisible por (x - 5). Determine el resto de dividir p(x) por $(x^2 - 25)$.

Problema 7 Sea $p \in \mathcal{P}(\mathbb{C})$ tal que gr $(p) \geq 4$. Sean $a, b, c \in \mathbb{R}$, con $b \neq 0$. Se sabe que el resto de dividir p por $(x^2 - b^2)$ es cx y el resto de dividir p por $(x^2 - b^2)$ (x - a) es un polinomio mónico (o sea, su coeficiente principal es igual a 1).

- a) Determine el valor de p(b) y p(-b).
- b) Determine el resto de dividir p por $(x^2 b^2)(x a)$.

Indicación: Aplique sucesivamente el Teorema del Resto.

Problema 8 Sean $p \in \mathcal{P}(\mathbb{R})$, $k \in \mathbb{N}$ y $c \in \mathbb{R}$. Demuestre que las siguientes proposiciones son equivalentes.

- a) p(x) es divisible por $(x-c)^k$, pero no por $(x-c)^{k+1}$.
- b) Existe $q \in \mathcal{P}(\mathbb{R})$ tal que $p(x) = (x c)^k q(x)$, donde q no admite a c como raíz.

Problema 9 (En práctica b)) Encuentre el o los valores de $k \in \mathbb{C}$ de forma que

- a) $4x^3 + 3x^2 kx + 6k$ sea divisible por x + 3
- b) $x^2 + kx + 4$ tenga el mismo resto cuando se divide por x + 1 y por x 1
- c) El resto de la división de $x^2 + 2x 4$ por x k es 31.
- d) Las ra ces del polinomio $4x^2 8x + 2k + 1$ satisfagan que una de ellas es el triple de la otra.

Problema 10 Sean $a, b \in \mathbb{R}$, con $a \neq 0$. Demuestre que, si un polinomio es divisible por ax - b, también es divisible por $x - \frac{b}{a}$.

Problema 11 (En práctica d)) Divida los polinomios $p \in \mathcal{P}(\mathbb{R})$ dados por x - c, donde c se indica en cada caso. Luego, decida si el valor de c corresponde o no a una raíz del polinomio.

a)
$$p(x) = 6x^3 + 17x^2 - 5x - 6$$
; $c = -1/2$ d) $p(x) = x^3 - 2x^2 + x + 2$; $c = 2$

d)
$$p(x) = x^3 - 2x^2 + x + 2$$
; $c = 2$

b)
$$p(x) = x^3 - 8x^2 + x + 42$$
; $c = 5$

e)
$$p(x) = x^7 - 6x^4 - x^3 + 6$$
; $c = i$

c)
$$p(x) = x^4 + 20x^2 - 10x - 50$$
; $c = 5$ f) $p(x) = x^7 - 6x^4 - x^3 + 6$; $c = 3$

f)
$$p(x) = x^7 - 6x^4 - x^3 + 6$$
; $c = 3$

Problema 12 (En práctica b)) Hallar todas las raíces del polinomio $p \in \mathcal{P}(\mathbb{R})$ dado por

a)
$$p(x) = x^5 + 6x^4 + 15x^3 + 26x^2 + 36x + 24$$
, sabiendo que -2 es una raíz múltiple de p .

b)
$$p(x) = x^4 + x^3 + x^2 - 4x + 10$$
, sabiendo que $1 - i$ es una raíz de p .

c)
$$p(x) = x^4 + (1-i)x^3 - (4+i)x^2 - 4(1-i)x + 4i$$
, sabiendo que i es una raíz de p .

Problema 13 (En práctica e)) Para los siguientes polinomios, estime la cantidad de raíces reales positivas y negativas, las posibles raíces racionales, determine las raíces y establezca una factorización en factores irreductibles en $\mathcal{P}(\mathbb{Q})$, $\mathcal{P}(\mathbb{R})$ y $\mathcal{P}(\mathbb{C})$ de los siguientes polinomios

a)
$$p(x) = x^4 + 2x^3 - x - 2$$

f)
$$p(x) = x^3 - x^2 - 17x + 33$$

b)
$$p(x) = x^3 + x + 2$$

g)
$$p(x) = 6x^4 + 5x^3 + 3x^2 - 3x - 2$$

c)
$$p(x) = 2x^3 - x^2 - 1$$

h)
$$p(x) = x^8 - 4x^6 - 10x^4 + 28x^2 - 15$$

d)
$$p(x) = x^3 - 1$$

i)
$$p(x) = x^6 + 1$$

e)
$$p(x) = x^4 - 4x^3 + 3x^2 + 2x - 6$$

j)
$$p(x) = 3x^4 + 7x^2 + 6$$

Problema 14 (En práctica d) y f)) Descomponga las siguientes funciones racionales en sumas de fracciones parciales de $\mathcal{P}(\mathbb{R})$ y $\mathcal{P}(\mathbb{C})$.

a)
$$\frac{10x^2 + 9x - 7}{(x+2)(x^2 - 1)}$$

e)
$$\frac{x^2 - x + 1}{x^2 (x - 1)^3}$$

b)
$$\frac{1}{x(x-1)(x-2)}$$

f)
$$\frac{x^5 + 3x}{x^4 - 5x^2 + 4}$$

c)
$$\frac{x^4 - 3x^3 - 19x^2 + 4x + 18}{x^2 - 3x - 18}$$

g)
$$\frac{x^6}{(x^2-1)^3}$$

d)
$$\frac{(x^2 - x + 1)^2}{x^2 (x - 1)^2}$$

h)
$$\frac{x^3 - 3x + 1}{x^4 + 3x^2 + 2}$$

Problema 15 Sean $k, l, n \in \mathbb{N}$ y $p(x) = x^{3k} + x^{3l+1} + x^{3n+2}$ un polinomio.

- a) Demuestre que las raíces de $q\left(x\right)=x^2+x+1$ son también raíces cúbicas de 1.
- b) Demuestre que p es divisible por q.

Indicación: Si bien es posible hacer el cálculo directo de las raíces de q(x), la parte a) se puede trabajar sin necesidad de calcularlas. Para ello, verifique que $(x-1)q(x)=x^3-1$. Para la parte b), basta con comprobar que todas las raíces de q son también raíces de p.

Ejercicios de evaluaciones anteriores

Problema 16 Sea $a \in \mathbb{R}$. Considere el polinomio $p(x) = x^4 + (a-1)x^2 + a$.

- a) ¿Para qué valores de a, el polinomio p posee exactamente una raíz real positiva y una negativa?
- b) ¿Para qué valores de a, el polinomio p posee dos raíces reales positivas y dos negativas?
- c) En función del valor de a, establezca una factorización irreductible de p en $\mathcal{P}(\mathbb{R})$.

Problema 17 Considere los polinomios $p(x) = 5x^6 + 3x^4 + 3x^3 - 11x^2 - x - 7$ y $q(x) = x^4 - 1$.

- a) Escriba $q\left(x\right)$ como producto de factores irreducibles en $\mathcal{P}\left(\mathbb{R}\right)$ y $\mathcal{P}\left(C\right)$.
- b) Descomponga $\frac{p}{q}$ en suma de fracciones parciales.

Problema 18 (En práctica) Sean $a, b \in \mathbb{R}$ y $p(x) = x^6 + 8x^5 + 23x^4 + 20x^3 - 30x^2 + ax + b$.

- a) Determine los valores de a y b de forma que -2 sea raíz doble de p(x).
- b) Sabiendo que -2 + i es raíz de p (con los valores de a y b determinados antes), encuentre la descomposición de p en factores irreducibles en $\mathcal{P}(\mathbb{R})$ y $\mathcal{P}(C)$.

Problema 19 Sea $p(x) = x^5 + x^3 - x^2 - 1$.

- a) Encuentre todas las raíces de p.
- b) Determine la descomposición de $\frac{x^2-1}{p\left(x\right)}$ en suma de fracciones parciales.

Problema 20 (En práctica) Sean $p(x) = x^4 - 2x^3 + 5x^2 - 8x + 4$, y $q(x) = x^5 + a_3x^3 + a_1x + a_0$ con $a_0, a_1, a_3 \in \mathbb{R}^+$.

- a) Sabiendo que p(x) es divisible por x-1, encuentre todas sus raíces indicando la multiplicidad de cada una de ellas.
- b) Pruebe que q(x) tiene sólo una raíz real $x_0 < 0$.

Problema 21 Considere el polinomio $p(x) = x^5 + 2x^4 - 7x^3 - 10x^2 + 28x + 40$.

- a) Determine todas sus raíces y la multiplicidad de cada una de ellas, sabiendo que sus únicas raíces racionales tienen valor absoluto menor o igual a 2.
- b) Obtenga la descomposición en suma de fracciones parciales en $\mathcal{P}\left(\mathbb{R}\right)$ de $\frac{p\left(x\right)}{\left(x+2\right)^{3}\left(x^{3}-8\right)}$.

Problema 22 Sean $a, b \in \mathbb{R}$. Considere el siguiente polinomio

$$p(x) = x^4 + ax^3 + 4x^2 + 4x + b$$

- a) Sabiendo que p es divisible por x-2-i, determine los valores de las constantes a y b.
- b) Con los valores de a y b encontrados en la parte a), encuentre la factorización de p(x) en polinomios ireeducibles en $\mathcal{P}(\mathbb{R})$ y $\mathcal{P}(\mathbb{C})$.
- c) Escriba la siguiente expresión como suma de fracciones parciales en $\mathcal{P}\left(\mathbb{R}\right)$.

$$\frac{x^3 - 7x + 14}{p(x)}$$