• Three perspectives:

• Three perspectives:

Passenger

Driver

Three perspectives:

Driver

 Question: what is the relationship between ride sharing and tipping?

Flow-chart of ride-sharing authorization:

Ride-hailing service's decision

(Bellemare et al., 2024) $oldsymbol{Y}$

Flow-chart of ride-sharing authorization:

Ride-hailing service's

(Bellemare et al., 2024)

 Clearly, it is in the interest of ride-hailing services for their drivers to get plentiful tips

- Clearly, it is in the interest of ride-hailing services for their drivers to get plentiful tips
- If a driver does shared rides, the driver potentially gets two tips – seems good for the service and for the driver!

- Clearly, it is in the interest of ride-hailing services for their drivers to get plentiful tips
- If a driver does shared rides, the driver potentially gets two tips – seems good for the service and for the driver!
- So services might "nudge" riders to authorize sharing

- Clearly, it is in the interest of ride-hailing services for their drivers to get plentiful tips
- If a driver does shared rides, the driver potentially gets two tips – seems good for the service and for the driver!
- So services might "nudge" riders to authorize sharing
- But, superficially, sharing is associated with lower tipping:

- Clearly, it is in the interest of ride-hailing services for their drivers to get plentiful tips
- If a driver does shared rides, the driver potentially gets two tips – seems good for the service and for the driver!
- So services might "nudge" riders to authorize sharing
- But, superficially, sharing is associated with lower tipping:

		Total charge (\$)		Tip (\$)	
	Ride type	Mean	SD	Mean	SD
Full sample	Dedicated		` ,		,
	Sharing	9.686	(5.269)	0.181	(0.698)
	authorized				
Sharing authorized	Shared	9.827	(5.365)	0.175	(0.683)
	Not shared	9.356	(5.024)	0.193	(0.731)

(Bellemare et al., 2024)

- Clearly, it is in the interest of ride-hailing services for their drivers to get plentiful tips
- If a driver does shared rides, the driver potentially gets two tips – seems good for the service and for the driver!
- So services might "nudge" riders to authorize sharing
- But, superficially, sharing is associated with lower tipping:

		Total ci	harge (\$)	<i>Tip (\$)</i>	
	Ride type	Mean	SD	Mean	SD
Full sample	Dedicated		` ,		` ,
	Sharing authorized	9.686	(5.269)	0.181	(0.698)
Sharing authorized	Shared	9.827	(5.365)	0.175	(0.683)
	Not shared	9.356	(5.024)	0.193	(0.731)

What should services do?

(Bellemare et al., 2024)

• X: does a passenger opt in to ride sharing? (1=yes, 0=no)

- X: does a passenger opt in to ride sharing? (1=yes, 0=no)
- M: does a passenger actually ride share? (1=yes, 0=no)

- X: does a passenger opt in to ride sharing? (1=yes, 0=no)
- M: does a passenger actually ride share? (1=yes, 0=no)
- Y: does the driver get a tip? (Or, how much does the driver tip?)

- X: does a passenger opt in to ride sharing? (1=yes, 0=no)
- M: does a passenger actually ride share? (1=yes, 0=no)
- Y: does the driver get a tip? (Or, how much does the driver tip?)
- What are the relevant quantities in the calculus of causal inference?

- X: does a passenger opt in to ride sharing? (1=yes, 0=no)
- M: does a passenger actually ride share? (1=yes, 0=no)
- Y: does the driver get a tip? (Or, how much does the driver tip?)
- What are the relevant quantities in the calculus of causal inference?
 - Driver's question: P(Y | do(M = 1), X = 1)

- X: does a passenger opt in to ride sharing? (1=yes, 0=no)
- *M*: does a passenger actually ride share? (1=yes, 0=no)
- Y: does the driver get a tip? (Or, how much does the driver tip?)
- What are the relevant quantities in the calculus of causal inference?
 - Driver's question: P(Y | do(M = 1), X = 1)
 - "to nudge?" question (simplified) : P(Y | do(X = 1))

- X: does a passenger opt in to ride sharing? (1=yes, 0=no)
- M: does a passenger actually ride share? (1=yes, 0=no)
- Y: does the driver get a tip? (Or, how much does the driver tip?)
- What are the relevant quantities in the calculus of causal inference?
 - Driver's question: P(Y | do(M = 1), X = 1)
 - "to nudge?" question (simplified) : P(Y | do(X = 1))
- Can we estimate these quantities from observational data?

	Ride type	Total c	harge (\$)	Tip (\$)	
		Mean	SD	Mean	SD
Full sample	Dedicated Sharing		(7.605) (5.269)		,
Sharing authorized	authorized Shared Not shared		,		` /

		Total c	Total charge (\$)		<i>Tip (\$)</i>	
	Ride type	Mean	SD	Mean	SD	
Full sample	Dedicated Sharing		(7.605) (5.269)		` ,	
Sharing authorized	authorized Shared Not shared		,		,	

• $E[Y|X=1] \ll E[Y|X=0]$, but we can't conclude that $E[Y|\operatorname{do}(X=1)] \ll E[Y|\operatorname{do}(X=0)]$

		Total charge (\$)		<i>Tip (\$)</i>	
	Ride type	Mean	SD	Mean	SD
Full sample	Dedicated Sharing authorized		(7.605) (5.269)		` ,
Sharing authorized	Shared Not shared		(5.365) (5.024)		,

• $E[Y|X=1] \ll E[Y|X=0]$, but we can't conclude that $E[Y|\operatorname{do}(X=1)] \ll E[Y|\operatorname{do}(X=0)]$

	Total charge (\$)		Tip (\$)		
	Ride type	Mean	SD	Mean	SD
Full sample	Dedicated Sharing authorized		(7.605) (5.269)		,
Sharing authorized	Shared Not shared		` '		` ,

• $E[Y|X=1] \ll E[Y|X=0]$, but we can't conclude that $E[Y|\operatorname{do}(X=1)] \ll E[Y|\operatorname{do}(X=0)]$

 And, we can't resort to back-door adjustment (i.e., controlling for back-door confounders)

• A set of variables Z satisfies the FRONT-DOOR CRITERION relative to an ordered pair of variables $\langle X,Y \rangle$ if:

- A set of variables Z satisfies the FRONT-DOOR CRITERION relative to an ordered pair of variables $\langle X,Y \rangle$ if:
 - Z intercepts all directed paths from X to Y;

- A set of variables Z satisfies the FRONT-DOOR CRITERION relative to an ordered pair of variables $\langle X,Y \rangle$ if:
 - Z intercepts all directed paths from X to Y;
 - ullet there is no unblocked back-door path from X to Z; and

- A set of variables Z satisfies the FRONT-DOOR CRITERION relative to an ordered pair of variables $\langle X,Y \rangle$ if:
 - Z intercepts all directed paths from X to Y;
 - ullet there is no unblocked back-door path from X to Z; and
 - all back-door paths from Z to Y are blocked by X.

- A set of variables Z satisfies the FRONT-DOOR CRITERION relative to an ordered pair of variables $\langle X,Y \rangle$ if:
 - Z intercepts all directed paths from X to Y;
 - ullet there is no unblocked back-door path from X to Z; and
 - all back-door paths from Z to Y are blocked by X.
- If Z satisfies the front door criterion relative to $\langle X, Y \rangle$ and if P(x,z) > 0, then the causal effect of X on Y is identifiable and is given by:

- A set of variables Z satisfies the FRONT-DOOR CRITERION relative to an ordered pair of variables $\langle X,Y \rangle$ if:
 - Z intercepts all directed paths from X to Y;
 - ullet there is no unblocked back-door path from X to Z; and
 - all back-door paths from Z to Y are blocked by X.
- If Z satisfies the front door criterion relative to $\langle X, Y \rangle$ and if P(x,z) > 0, then the causal effect of X on Y is identifiable and is given by:

$$P(y | do(X = x)) = \sum_{z} P(z | x) \sum_{x'} P(y | x', z) P(x')$$

Front-door adjustment, conceptually

- A set of variables Z satisfies the FRONT-DOOR CRITERION relative to an ordered pair of variables $\langle X,Y\rangle$ if:
 - Z intercepts all directed paths from X to Y;
 - there is no unblocked back-door path from X to Z; and
 - all back-door paths from Z to Y are blocked by X.

(Pearl, 2009)

Exercise for today

- Based on these slides, set up a causal model of the tipping problem, treating Y as dichotomous (the rider does or doesn't tip):
 - Determine your model structure
 - Choose example conditional probability distributions
 - Sample observational data from your model
 - Use the observational data to estimate the causal "nudge the passenger" quantity of interest, P(Y | do(X = 1))
- Time allowing, we can discuss this scenario further