RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU, Belagavi)

I Semester Master of Technology (Computer Science and Engineering)
ADVANCED DATA STRUCTURES AND ALGORITHM

Time: 03 Hours

Maximum Marks: 100

Instructions to candidates:

- 1. Each unit consists of two questions of 16 marks each.
- 2. Answer FIVE full questions selecting one from each unit (1 to 5).
- 3. Question 11 is mandatory and carries 20 marks.

UNIT-1

1	a b		Explain stack <i>ADT</i> and its operation Sort the following list using Buck	s. et sort and also analyze its time	08
		-	efficiency. 66, 33, 40, 20, 50, 88, 60, 11, 77, 30, 45, 65	Grum)	08
			O	R	
2	а			algorithm to sort the numbers in for the same and discuss its time	08
	b		i) function (int n)	wing code in Big-Oh notation. ii) void function (int n)	
				int $i = 1, s = 1;$ while $(s \le n)$	
			{ printf(" * "); break;	i + +; $s += i;$	
				<pre>printf(" * "); } }</pre>	08

UNIT-2

3	a b	Give Ford Fulkerson method for solving the maximum flow problem. With an example, show the residual network of a graph. Differentiate depth-first search and breadth-first search traversal of a graph with suitable examples.	08
		OR	
4	ą	Illustrate Krukal's algorithm to find the minimum spanning tree of a graph. Trace the algorithm for the following graph shown in Fig. 4.a.	
		3 2 4 (V3)	~
		Fig 4a	08

UNIT-3

5	а	Discuss the structure of Fibonacci heaps with a suitable example. Illustrate the following operations on the Fibonacci heaps. i) Decreasing a key	
		ii) Deleting a node	10
	Ъ	Apply the randomized quicksort algorithm for the following data and perform sorting on it: 10, 2, 5, 6, 20, 9. Discuss its efficiency in best,	
		worst and average cases. (May r)	06
		OR	
6	а	Explain the Miller-Robin primality testing algorithm and how it determines whether a given number is prime or composite? Provide a step-by-step explanation of the algorithm, including the necessary	
		computations.	08
	b	Check if the number 91 is prime using Miller-Robin primality testing	
		algorithm.	08

UNIT-4

7	а	Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and a hash	
		function $h(X) = X \pmod{100}$, show the resulting:	
		i) Chaining	
		ii) Linear probing	
		iii) Quadratic probing.	10
	b	Explain the technique of 'Hashing' as an effective searching	
		technique. What are 'collisions'? How can they be handled?	06
		OR	
8	а	Differentiate between linear probing, quadratic probing, double hashing and Rehashing techniques with example. Consider the	
		following hash table with the current status and hash $key = key\% 11$.	
		Explain the situation what happens when going to insert next key	
		element 87 using linear probing method and rewrite the hash table.	

		Index Value	
1		0 43	
		1	
		2 46	
1		3 25	
		4 36	
1		5	
		6	
		7 18	
		8 29	
		9	
		10 10	10
	р	Explain Trie data structure with an example. List Trie implementation	06
		strategies.	

UNIT-5

9	a b	Construct the Rabin-Karp matcher algorithm. Apply the algorithm when $T=314152$, $p=31415$, $d=10$ and $q=13$. Explain Naïve String matching algorithm with an example.	10 06
		OR	
10	а	Apply Knuth-Morris-Pratl (<i>KMP</i>) algorithm and search if or the pattern in the text. Discuss the time complexity of the algorithm Text: ababcabcababa	
		Pattern: abab	10
	b	Generate the failure function or the π table for the patterns Pattern1: ababcabab	
		Pattern2: ababcabcabaabb	06
11	а	Write the pseudocode for swapping the contents of adjacent nodes in a linked test.	10
	b	Write a program to illustrate reverse the contents of a stack using suitable ADT's.	10