ABSTRACT ALGEBRA

YUNZHI ZHANG

1. Group

1.1. Subgroup.

• Let H be a subgroup of G, $a \in G$. $Ha = \{ha|h \in H\}$ is a right coset of H in G, $[a] = \{x \in G|a \equiv x \mod H\}$ is the equivalence class of a in G. Ha = [a].

Equivalence class yields a partition of G, thus right cosets of H is G are disjoint.

If H is a finite group, then any right coset of H in G has o(H) elements. If G is a finite group, then $i_G(H) = o(G)/o(H)$.

- If p = o(G) is a prime, then G is cyclic.
- Let H, K be subgroups of G. $HK = \{x \in G | x = hk, h \in H, k \in K\}$ is a subgroup of G iff HK = KH. It is trivially true when G is abelian. $o(HK) = \frac{o(H)o(K)}{o(H \cap K)}$.
- A subgroup N of G is a normal subgroup of G if any of the following holds:
 - (1) $\forall g \in G, n \in N, gng^{-1} \in N$.
 - (2) $\forall q \in G, qNq^{-1} \subset N$.
 - (3) $\forall g \in G, gNg^{-1} = N.$
 - (4) Every left coset of N is a right coset of N in G.
 - (5) $\forall g \in G, gN = Ng$.
 - (6) Product of two right cosets of N in G is a right coset of N in G.
 - (7) $\forall a, b \in N, NaNb = Nab.$
- HH = H.

1.2. Homomorphism.

- Let G/N denote the collection of right cosets of N in G. Then G/N is the quotient group of G by N. Define $\phi: G \to G/N, x \mapsto Nx$. Then ϕ is a homomorphism of G onto G/N.
- If ϕ is a homomorphism of G into \bar{G} , define $K_{\phi} = \{x \in G | \phi(x) = \bar{e}\}$ to be the kernel of ϕ . K is a normal subgroup of G. $\phi^{\text{pre}}(\bar{g}) = Kx \subset G/K$, where $\phi(x) = \bar{g}$.
- Let ϕ be a homomorphism of G onto \bar{G} with kernel K. Then $G/K \approx \bar{G}$.

Define $\psi: G/K \to \bar{G}, X \mapsto \phi(g)$ where X = Kg, and ψ is an isomorphism from G/K to \bar{G} .

There is a one-to-one correspondence between homomorphic images of G and normal subgroups of G.

• (Cauchy's Theorem for abelian groups) Suppose G is a finite abelian group, $p \mid o(G)$, p is prime. Then there is an element $a \neq e \in G$ such that $a^p = e$.

Date: May 17, 2019.

YUNZHI ZHANG

Proof. By induction. If o(G) = 1, vacuously true. Assume true for any group with order less than G.

- i If o(G) = p, then it is cyclic. Obvious.
- ii If $o(G) \neq p$, then there exists nontrivial subgroup N. If $p \mid o(N)$, true by assumption.
- iii If $p \nmid o(N)$, then $p \mid o(G/N)$. By assumption $\exists X \in G/N, X^p = N, X \neq N$. Let $X = Nb, b \in G$, then $b^p \in N, b \notin N$.

$$c = b^{o(N)}$$
, then $c^p = (b^p)^{o(N)} = e$ by Lagrange's.

If
$$c = e$$
, then $X^{o(N)} = N$, $X^p = N$, $(p, o(N)) = 1$, then $X = N$, contradiction. Thus $c \neq e$.

• (Sylow's Theorem for abelian groups) If G is an abelian group of order o(G), p is prime, $p^{\alpha} \mid o(G), p^{\alpha+1} \nmid o(G)$, then G has a subgroup of order p^{α} . Such subgroup is unique.

Proof. If $\alpha = 0$, (e) satisfies the conditions.

If not, let $S = \{x \in G | \exists n, x^{p^n} = e\}$. S is a subgroup of G, $o(S) = p^{\beta}$ for some $0 < \beta <= \alpha$ (by showing S is non-empty, no prime number other than p divides o(S) by contradicting Cauchy's, and $o(S) \mid o(G)$).

Suppose
$$\beta < \alpha$$
, than $p \mid o(G/S)$. By Cauchy's, $\exists x \in G$ such that $Sx^p = S, Sx \neq S$. $x^p \in S$ gives $x^{p \cdot o(S)} = x^{p^{\beta+1}} = e$, then $x \in S$, contradiction. Thus $\beta = \alpha$.

- Let ϕ be a homomorphism of G onto \bar{G} with kernel K. There is a one-to-one correspondence between H a subgroup of G containing K, and \bar{H} a subgroup of \bar{G} , where $\bar{H} = \phi(H)$, $H = \phi^{\text{pre}}(\bar{H})$. Moreover, if \bar{H} is normal, then H is normal.
- Let ϕ be a homomorphism of G onto \bar{G} with kernel K, \bar{N} a normal subgroup of \bar{G} , $N = \phi^{\text{pre}}(\bar{N})$. Then $G/N \approx \bar{G}/\bar{N} \approx (G/K)/(N/K)$.

1.3. Automorphism.

- If G is abelian and has some element with order larger than 2, then $T: G \to G, x \mapsto x^{-1}$ defines an non-identity automorphism of G.
- $g \in G$, $T_g : G \to G$, $x \mapsto g^{-1}xg$ defines an automorphism of G. When G is non-abelian, there exists $T_a \neq I$. $\mathscr{P}(G) = \{T_g \in \mathscr{A}(G) | g \in G\}$, the group of inner automorphisms of G, is a subgroup of $\mathscr{A}(G)$, where $\mathscr{A}(G)$ is the group of automorphisms of G.

Consider $\phi: G \to \mathscr{A}(G), g \mapsto T_g$. ϕ is a homomorphism with image $\mathscr{P}(G)$. Kernel $K = Z = \{g \in G | xg = gx, \forall x \in G\}$ is the certer group of G. $\mathscr{P}(G) \approx G/Z$.

- $\forall \phi \in \mathcal{A}(G), a \in G, o(a) > 0$, then $o(\phi(a)) = o(a)$.
- Determine $\mathscr{A}(G)$ for all cyclic groups.
 - (1) If G = (a) has finite order $r, S : G \to G, a^i \mapsto a^{si}$ defines an automorphism of G, where 0 < s < r, s relatively prime to r. Any automorphism of G can be represented in this form. That is, $\mathscr{A}(G) \approx \mathbb{U}_r$.
 - (2) If G = (a) has infinite order, then $\mathscr{A}(G) \approx \mathbb{Z}_2$. Either T = I or $T : g \mapsto g^{-1}$.

1.4. Cayley's Theorem.

• (Cayley) Every group is isomorphic to a subgroup of A(S) for some S.

Proof. Let H be a subgroup of G, $S = \{Hg | g \in G\}$. (S is a iff H is normal.)

Define $t_g: S \to S, Hx \mapsto Hxg$, the action of g on set S. Then $\theta: G \to A(S), g \mapsto t_g$ defines a homomorphism. Kernel $K = \{b \in G | Hxb = Hx, \forall x \in G\}$ is the largest (by showing $n \in N \subseteq H \Rightarrow n \in K$) normal subgroup of G which is contained in H.

In particular, let S be the set of elements of G. For $g \in G$, define $\tau_g : S \to S, x \mapsto xg$. $\psi : G \to A(S), g \mapsto \tau_g$ defines a homomorphism with trivial kernel.

• If G is a finite group, and $H \neq G$ is a subgroup of G such that $o(G) \nmid i(H)!$ then H must contain a nontrivial normal subgroup of G. In particular, G cannot be simple.

Proof. θ is an isomorphism if and only it has trivial kernel, if and only if H has no nontrivial normal subgroup. Then $o(G) = o(\theta(G)) \mid o(A(S)) = o(S)! = i(H)!$.

• A finite group G can be represented as a subgroup of S_n for some n.

1.5. Permutation Groups.

- Let S be a set, $\theta \in A(S)$. Define an equivalence class $a \equiv_{\theta} b$ if and only if $b = a\theta^{i}$ for some interger i. For $s \in S$, $[s]_{\theta} = \{x \in S | x \equiv_{\theta} s\} = \{s\theta^{i}, i \in \mathbb{Z}\}$ is the orbit of s under θ .
- Every permutation can be uniquely expressed as a product of disjoint cycles.
- Every permutation is a product of 2-cycles (transpositions).
- Let A_n be the subset of S_n consisting of all even permutaions, then A_n is a subgroup. Let W be the group of 1, -1 under multiplication. $\phi: S_n \to W, s \mapsto \text{parity}(s)$ defines a homomorphism with kernel A_n . Thus $S_n/A_n \approx W$, A_n is a normal subgroup with index 2, $o(A_n) = \frac{o(S_n)}{o(W)} = \frac{1}{2}n!$. A_n is called the alternating group of degree n.

1.6. Cauchy's Theorem.

- Conjugacy defined by $a \sim b$: $\exists c \in G, b = c^{-1}ac$ is an equivalence relation. $C(a) = \{x \in G | a \sim x\} = \{y^{-1}ay | y \in G\}$ is the equivalence class of a.
- $N(a) = \{x \in G | xa = ax\}$ is the normalizer of a in G, which consists of all elements in G that commute with a. N(a) is a subgroup of G.
- $x, y \in G, x^{-1}ax = y^{-1}ay$ if and only if $x \equiv_{N(a)} y$. That is, o(G) = o(C(a))o(N(a)).
- When G is finite,

$$c_a = o(C(a)) = i_G(N(a)) = \frac{o(G)}{o(N(a))}, o(G) = \sum c_a = \sum \frac{o(G)}{o(N(a))}$$

- $a \in Z$ if and only if N(a) = G. If G is finite, $a \in Z$ if and only if $c_a = 1$ if and only if o(N(a)) = o(G).
- If $o(G) = p^n$ where p is a prime number, then $Z(G) \neq (e)$.

Proof. $o(N(a)) = p^{n_a}$ for some integer n_a by Lagrange's.

$$p^n = o(Z) + \sum_{n_a < n} \frac{p^n}{p^{n_a}}$$

Then $p \mid o(Z), e \in Z, o(Z) \ge 1$. $o(Z) \ge p$.

• If $o(G) = p^2$, p is prime, then G is abelian.

Proof. It suffices to show $o(Z) \neq p$. If not, let $a \in G, a \notin Z$. Then $o(N(a)) < o(G) = p^2$. $a \in N(a), Z \subset N(a)$, then o(N(a)) > o(Z) = p. But $N(a) \mid o(G)$, contradiction.

• (Cauchy) If p is a prime number and $p \mid o(G)$, then G has element of order p.

Proof. By induction. Assume true for all groups T with o(T) < o(G). Assume no proper subgroup of G is divisible by p.

$$o(G) = o(Z) + \sum \frac{o(G)}{o(N(a))}$$

By assumption $p \nmid o(N(a))$, then $p \mid o(Z)$. o(Z) cannot be a proper subgroup, thus o(Z) = G, G is abelian. Revoking Cauchy's theorem for finite abelian group completes the proof.

• Two permutations in S_n are conjugate if and only if they have the same cycle decomposition. It follows that S_n has exactly p(n) conjugate classes, where p(n) is the number of partitions of n.

Proof. Consider $\sigma, \theta \in S_n$. If $\sigma(i) = j, \theta(i) = s, \theta(j) = t$, then $\theta^{-1}\sigma\theta(s) = t$. It shows that to compute $\theta^{-1}\sigma\theta$, replace every symbol in σ by its image under θ . Thus the number of partition after conjugation is unchanged. \square

1.7. Sylow's Theorem.

- (Sylow) If p is prime and $p^{\alpha} \mid o(G)$, then G has a subgroup of order p^{α} .
 - (1) Proof. If $n = p^{\alpha}m$, where $p^r \mid m, p^{r+1} \nmid m$, then

$$p^r \mid \binom{p^{\alpha}m}{p^{\alpha}}, p^{r+1} \nmid \binom{p^{\alpha}m}{p^{\alpha}}$$

Let \mathscr{M} be the collection of subsets (not necessarily groups) of G that have p^{α} elements, then $o(\mathscr{M}) = \binom{p^{\alpha}m}{p^{\alpha}}$. Given $M_1, M_2 \in \mathscr{M}$, define equivalence class $M_1 \sim M_2 : \exists g \in G, M_1 = M_2g$. By analysis above $\exists M \in \mathscr{M}, p^{r+1} \nmid o([M]), [M] = \{Mx | x \in G\}.$ $H(x) := \{g \in G : Mxg = Mx\}, H = H(e),$ then $H(x) = x^{-1}Hx, o(G) = o([M])o(H).$ Then $p^{\alpha} \mid o(H).$ $M \subset H, o(H) \geq o(M) = p^{\alpha}$, then $o(H) = p^{\alpha}$.

(2) Proof. First show the existence of p-Sylow subgroups of G for every prime p dividing o(G). Induction on o(G), consider the case when no subgroups of G is divisible by p^{α} . Then by the class equation, $p \mid o(Z)$, and by Cauchy's $\exists b \in Z, o(b) = p$. Let $B = (b) \subseteq G, \bar{G} = G/B$. Apply induction hypothesis, $\exists \bar{P} \subset \bar{G}, o(\bar{P}) = p^{\alpha-1}$. $P := \{x \in G | xB \in \bar{P}\} = \{x \in G | xB \in \bar{P}\}$. Since $o([x]) = o([B]) = p, o(\bar{P}) = p^{\alpha-1}, o(P) = p^{\alpha}$.

Then show that any group of order p^m has subgroups of order $p^{\alpha}, \forall 0 \leq \alpha \leq m$.

(3) Proof. (a) Show S_{p^k} has a p-Sylow subgroup by induction.

$$\{1, 2, \dots, p^{k-1}\},\$$

 $\{p^{k-1} + 1, p^{k-1} + 2, \dots, 2p^{k-1}\},\$
 $\dots,\$
 $\{(p-1)p^{k-1} + 1, (p-1)p^{k-1} + 2, \dots, p^k\}$

 $\sigma := (1, p^{k-1} + 1, \dots, (p-1)p^{k-1} + 1) \dots (p^{k-1}, 2p^{k-1}, \dots, p^k), A := \{\tau \in S_{p^k} | \tau(i) = i, \forall i > p^{k-1}\} \approx S_{p^{k-1}}.$ By induction there is *p*-Sylow subgroup P_0 of A, $o(P_0) = p^{n(k-1)}$. $P_j := \sigma^{-j}P_0\sigma^j$, then P_j only permutes elements in $\{jp^{k-1} + 1, jp^{k-1} + 2, \dots, (j+1)p^{k-1}\}.$

 $T := P_0 P_1 \dots P_{p-1}$. Distinct P_i 's permute non-overlapping sets of intergers, hence commute. Thus

T is a subgroup of S_{p^k} , $o(T) = o(P_0)^p = p^{p \cdot n(k-1)}$. $P := \{\sigma^i t | t \in T, 0 \le t \le p-1\}, \sigma^p = e$, then $\sigma^{-1}T\sigma = T$, P is a subgroup of S_{p^k} . $o(P) = p \cdot o(T) = p^{1+p \cdot n(k-1)} = p^{n(k)}$. P is a p-Sylow subgroup of S_{p^k} .

(b) Let G be a finite group, G is a subgroup of the finite group M, and that M has a p-Sylow subgroup Q. Then G has a p-Sylow subgroup P. In fact, $P = G \cap xQx^{-1}$ for some $x \in M$. Lemma: Let G be a group, A, B subgroups of G. If $x,y \in G$ define $x \sim y$ if y = axb for some $a \in A, b \in B$. It defines a relation in G, $[x] = AxB = \{axb|a \in A, b \in B\}$ is called a double coset of A, B in G.

$$o(AxB) = \frac{o(A)o(B)}{o(A \cap xBx^{-1})}$$

 $M = \bigcup GxQ$. Let $o(G \cap xQx^{-1}) = p^{m_x}$, then $o(M) = \sum o(G)p^{m-m_x} = \sum p^{m+n-m_x}t$ where $o(G) = p^nt$, $p \nmid t$. Thus for some x, $m_x = n$, $G \cap xQx^{-1} = p^n$ is a p-Sylow subgroup of G.

• (Second part of Sylow's Theorem) If G is a finite group, then any two p-Sylow subgroups of G are conjugate. $Proof. \ G = \bigcup AxB, o(G) = \sum o(AxB).$ For some $x \in G, o(A \cap xBx^{-1}) = o(A)$, then $A = xBx^{-1}$.

• The number of p-Sylow subgroups in G equals o(G)/o(N(P)), where P is any p-Sylow subgroup of G.

Proof. $N(P) = \{x \in G | xPx^{-1} = P\}$ is the normalizer of P. The number of distinct conjugates of P in G is the index of N(H) in G.

• (Third part of Sylow's Theorem) The number of p-Sylow subgroups in G, for a given prime, is of the form 1+kp. $Proof. \ P = \bigcup PxP, o(P) = \sum o(PxP) = \sum_{x \in N(P)} o(Px) + \sum_{x \notin N(P)} o(PxP) = o(N(P)) + p^{n+1}u$ for some u. $p^{n+1} \nmid o(N(P))$ because $p^{n+1} \nmid o(G)$, then $p \mid p^{n+1}u/o(N(P))$. Frome above, the number of p-Sylow groups is o(P)/o(N(P)) = 1 + kp.

• If there is exactly 1 p-Sylow subgroup, then it is normal.

1.8. Direct Product.

- Let G be a group and N_1, N_2, \ldots, N_n normal subgroups of G such that
 - (1) $G = N_1 N_2 \dots N_n$.
 - (2) Given $g \in G$ then $g = m_1 m_2 \dots m_n, m_i \in N_i$ in a unique way.

Then G is the internal direct product of N_1, N_2, \ldots, N_n .

- Suppose that G is the internal direct product of N_1, \ldots, N_n . Then for $i \neq j, N_i \cap N_j = (e)$. If $a \in N_i, b \in N_j$, then ab = ba. The reverse is not always true.
- Let G be a group and G is the internal direct product of N_1, N_2, \ldots, N_n . Let $T = N_1 \times N_2 \times \cdots \times N_n$. Then G and T are isomorphic.

1.9. Finite Abelian Groups.

• Every finite abelian group is the direct product of cyclic groups.

Proof. (1) Any finite abelian group G is the direct product of its Sylow subgroups.

YUNZHI ZHANG

(2) Every abelian group of order p^n is the direct product of cyclic groups.

2. Ring

2.1. Special classes of Rings.

6

- If R is a commutative ring, then $a \neq 0 \in R$ is said to be a zero-divisor if there exists a $b \in R, b \neq 0, ab = 0$.
- A commutative ring is an integral domain if it has no zero-divisors.
- A ring is a division ring if its nonzero elements form a group under multiplication. A field is a commutative division ring.
- A finite integral domain is a field.

Proof. Let $x_1, x_2, ..., x_n$ be all elements of D, and suppose that $a \neq 0 \in D$. By pigeonhole principle, $a = x_i a$ for some x_i . Then x_i can be proved to be the identity element. $x_i = x_i' a$, then there exists a multiplicative inverse for any a.

• An integral domain D is of characteristic 0 if the relation ma = 0, where $a \neq 0$ is in D and m is an integer, holds only if m = 0.

An integral domain D is said to be of finite characteristic if there exists a (smallest) positive integer m such that $ma = 0, \forall a \in D$.

If D has finite characteristic p, then p is prime.

- Every integral domain can be imbedded in a field. In particular, it can be embedded into the field of quotients.
- Any finite field has finite characteristic. The reverse is not necessarily true.

2.2. Homomorphisms.

• Given $\phi: R \to R'$ is a homomorphism, $1 \in R, 1' \in R$. If R' is an integral domain, or if ϕ is onto, then $\phi(1) = 1'$ must be true.

2.3. Ideals and Quotient Rings.

- If U is an ideal of the ring R, then R/U is a ring and is a homomorphic image of R.
- Let R, R' be rings and ϕ a homomorphism of R onto R' with kernel U. $R' \approx R/U$. There is a one-to-one correspondence between the set of ideals of R' and the set of ideals of R which contain U: given W' an ideal in R', $W := \{x \in R | \phi(x) \in W'\}$, then $R/W \approx R'/W'$.
- If F is a field, then its only ideals are (0) and F. That is, a field has no homomorphic images other than itself or the trivial image.
- Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Then R is a field.

 Proof. $Ra = \{xa | x \in R\}$ is an ideal of R. $a \neq 0$ forces Ra = R, then R must be a field by finding the unit element and multiplicative inverse.
- Let R be the ring of all the real-valued, continuous functions on the closed unit interval. Then M is a maximal ideal of R if and only if

$$M = M_{\gamma} = \{ f(x) \in R | f(\gamma) = 0 \}$$

for some $\gamma \in [0,1]$.

• If R is a commutative ring with unit element and M is an ideal of R, then M is a maximal ideal of R if and only if R/M is a field. M is prime (that is, $a, b \in M \Rightarrow a \in M$ or $b \in M$) if and only if R/M is an integral domain.

2.4. Euclidean Rings.

- An integral domain R is a Euclidean ring if every $a \neq 0, a \in R$ is associated with a nonnegative integer d(a) such that
 - (1) $\forall a, b \neq 0, a, b \in R, d(a) \leq d(ab)$. Indeed, if $b \neq 0$ is not a unit, then d(a) < d(ab). That is, d(a) = d(ab) enforces that b is a unit.
 - (2) $\forall a, b \neq 0, a, b \in R, \exists t, r \in R \text{ such that } a = tb + r, \text{ where } r = 0 \text{ or } d(r) < d(b).$
- Every Euclidean rings is a principal ideal ring. That is, every ideal A in R is of the form $A = (a) = \{xa | x \in R\}$ for $a \in R$. The reverse is not necessarily true.

Proof. Let a be the element in A such that d(a) is minimal.

- A Euclidean domain possesses a unit element.
- Let R be a Euclidean ring. $\forall a, b \in R, \exists d = (a, b)$ the greatest common divisor of a, b in R. Moreover $d = \lambda a + \mu b$ for some $\lambda, \mu \in R$.

Proof.
$$(d) = \min\{ra + sb | r, s \in R\}.$$

• Let R be a communicative ring with unit element. An element $a \in R$ is a unit in R if there exists some $b \in R$ such that ab = 1.

u is a unit if and only if d(u) = d(1).

Two elements a, b are associates if b = ua for some unit u. It is an equivalence relation.

- Let R be an integral domain. If $a, b \in R, a \mid b, b \mid a$, the a, b are associates.
- In Euclidean ring R a nonunit π is a prime element if $\pi = ab \Rightarrow$ either a or b is a unit.
- Every nonzero element in a Euclidean ring R can be uniquely written (up to associates) as a product of prime elements or is unit in R.
- The ideal $A = (a_0)$ is a maximal ideal of the Euclidean ring R if and only if a_0 is a prime element of R.

2.5. Gaussian Integers.

• Gausshian Integers J[i] form an integral domain.

2.6. Polynomial Rings.

- Let F be a field, then F[x] is an integral domain. It can be extended to the field of rational functions in x over F which merely consists of all quotients of polynomials.
- F[x] is a Euclidean ring. As a result, F[x] is a principle ideal ring. Any polynomial in F[x] can be written uniquely as a product of irreducible polynomials in F[x].
- The ideal A = (p(x)) in F[x] is a maximal ideal if and only if p(x) is irreducible over F.

8 YUNZHI ZHANG

2.7. Polynomials over Commutative Rings.

- If R is an integral domain, then so is R[x], and so is $R[x_1, \ldots, x_n]$.
- A non-unit element a in R is irreducible (or prime) if $a = bc \Rightarrow b$ or c is a unit.
- Euclidean ring \Rightarrow P.I.D. \Rightarrow U.F.D. The converse is not true, as $F[x_1, x_2]$ is not a principal ideal ring, but a unique factorization domain.
- If R is U.F.D., then so is R[x].
- In an integer domain, prime \Rightarrow irreducible. In P.I.D., irreducible \Rightarrow prime.