Claims

- 1. A complex oxide having a composition represented by the formula $Ln_{1-x}M_xNiO_y$; wherein Ln is a lanthanide, M is at least one element selected from the group consisting of Na, K, Li, Zn, Pb, Ba, Ca, Al, Bi, and rare earth elements being not the same as Ln; and $0 \le x \le 0.8$; and $2.7 \le y \le 3.3$, the complex oxide having a negative Seebeck coefficient at $100^{\circ}C$ or higher.
- 2. A complex oxide having a composition represented by the formula $Ln_{1-x}M_xNiO_y$; wherein Ln is a lanthanide, M is at least one element selected from the group consisting of Na, K, Li, Zn, Pb, Ba, Ca, Al, Bi, and rare earth elements being not the same as Ln; $0 \le x \le 0.8$; and $2.7 \le y \le 3.3$, the complex oxide having an electrical resistivity of 1 Ω cm or less at 100° C or higher.
- A complex oxide having a composition represented by the formula (Ln_{1-x}M_x)₂NiO_y; wherein Ln is a lanthanide, M is at least one element selected from the group consisting of Na, K, Li,
 Zn, Pb, Ba, Ca, Al, Bi, and rare earth elements being not the same as Ln; 0≤x≤0.8; and 3.6≤y≤4.4, the complex oxide having a negative Seebeck coefficient at 100°C or higher.
- 4. A complex oxide having a composition represented by the formula $(Ln_{1-x}M_x)_2NiO_y$; wherein Ln is a lanthanide, M is at least one element selected from the group consisting of Na, K, Li, Zn, Pb, Ba, Ca, Al, Bi, and rare earth elements being not the same as Ln; $0 \le x \le 0.8$, and $3.6 \le y \le 4.4$, the complex oxide having an electrical resistivity of 1 Ω cm or less at 100° C or higher.
 - 5. An n-type thermoelectric material comprising the complex oxide of any one of Claims 1 to 4.
- 6. A thermoelectric module comprising the n-type thermoelectric material of Claim 5.

30