

簡化

圖3.13.

 $k = \{0,1,2\}$ 。 **事實3.11.** R_{3}^3 的標法可從 R_{3}^2 的標法遞推。從 R_{3}^2 類型一的9個標號、類型

性質3.6. R₃₂,類型二的交點標號方法為,交點

二的18個標號、類型三的1個標號,到 R_{33}^3 類型一的81個標號、類型二的216個標號、類型三的28個標號,我可以利用這點將 R_{33}^3 標好標滿。

事實3.12. R_{3k}^3 的標法可從 R_{3k-1}^3 的標法遞推,因此可以把 R_{3k}^3 標好標滿。

性質3.14. R_{33}^3 ,類型一的交點標號方法為,交點 $V(E_{0,k}, E_{1,(k+i)mod9}, E_{2,(k+j)mod9})$ 標上9i+j+1, $i=\{0,1,2,3,4,5,6,7,8\}, j=\{0,1,2,3,4,5,6,7,8\}, k=\{0,1,2,3,4,5,6,7,8\}$ 。

性質3.15. $R_{3^3}^3$,類型二的交點標號方法為,遞推 $R_{3^2}^3$ 的標法,先將 E_0 、 E_1 、 E_2 各分成3等分,如圖6.4.19.。若有兩個平面都屬於 E_0 的第一等分,則剩下的那個平面可以是 $E_{1,0}$ 、 $E_{1,1}$ 、 $E_{1,2}$ 、 $E_{1,3}$ 、 $E_{1,4}$ 、 $E_{1,5}$ 、 $E_{1,6}$ 、 $E_{1,7}$ 、 $E_{1,8}$ 、 $E_{2,0}$ 、 $E_{2,1}$ 、 $E_{2,2}$ 、 $E_{2,3}$ 、 $E_{2,4}$ 、 $E_{2,5}$ 、 $E_{2,6}$ 、 $E_{2,7}$ 、 $E_{2,8}$,而 E_0 的第一等分內共有 E_2^3 = 3種組合方式,因此總共是 $18 \times 3 = 54$ 個標號。再加上若三個平面都屬於不同等分的話,則會有 $E_{3^2}^3$ 類型二的18(個標號) E_1 0 × 3 × 3 × 3 =

486個交點、 $\frac{18(個標號)\times3\times3\times3}{3}=162$ 個標號,也就是162。因此,總共對648個點用了54+162=216個標號。

性質3.16. $R_{3^3}^3$,類型三的交點標號方法為,將 E_0 、 E_1 、 E_2 分別分成3等分。如此,這個結構也相當於 $R_{3^2}^3$ 的結構。 共用了28個標號。

平面的個數	交點的數量	交線的數量	類型一用掉的個數	類型二用掉的個數	類型三用掉的個數	Factors
3	1	3	1	0	0	1
9	84	36	9	18	1	28
27	2925	351	81	216	28	325
81	85320	3240	729	2106	325	3160
243	2362041	29403	6561	19440	3160	29161
729	64304604	265356	59049	176418	29161	264628
2187	1741001445	2390391	531441	1592136	264628	2388205
6561	47050068240	21520080	4782969	14342346	2388205	21513520
n	C_3^n	C_2^n	$\frac{n^2}{9}$	$\frac{n^2}{3}-n$	$\frac{9C_3^{\frac{n}{3}}}{n}$	$\frac{3C_3^n}{n}$

04 多維度空間

題目4.1. 有n個k-1度超立方體,每k個相交成一個交點、每k+1個不存在共點,若我們在點上標上連續的自然數由1到 C_{k-1}^{n-1} ,使得每個k度超立方體上數字不重複,則稱為標好標滿。

[説明] 任意k個平面相交出一個交點,因此總交點數量是 $C_k^n = \frac{n \times (n-1) \times (n-2) \times \dots \times (n-k+1)}{k!}$,將此數乘以k後再平分給 n個超立方體,就是 $\frac{(n-1) \times (n-2) \times \dots \times (n-k+1)}{(k-1)!} = C_{k-1}^{n-1}$ 。

性質4.2. Complete k-uniform hypergraph相當於標好標滿的 R_n^k , 因此 $R_{k\times n}^k$ 可以標好標滿。

[證明] Complete k-uniform hypergraph中,每個點相當於標好標滿 R_n^k 中的一個k度超立方體、每條hyperedge相當於標好標滿 R_n^k 中的一個交點。如此,每一個l-factor為被標上相同數字的點,而總共有 C_{k-1}^{n-1} 個數字也就是 C_{k-1}^{n-1} 個l-factor。 Q.E.D.

多考資料

[1]游森棚,科學研習月刊第57卷第5期第58頁,台灣科學教育館網站,2018年5月。

[2]維基百科, Banayai's theorem, 2019年6月2日下載。

https://en.wikipedia.org/wiki/Baranyai%27s_theorem

[3] Narsingh Deo and Paulius Micikevicius, On One-factorization of Complete 3-Uniform

Hypergraphs https://pdfs.semanticscholar.org/7b3c/a95518252fe89e3346345e1192c884aceedf.pdf