Stimmungsanalyse mit Twitter

Anne Huber, Andreas Franke, Felix Lindner, Burak Özkan, Milomir Soknic

Projektpraktikum Web Science, Artificial Intelligence Group, Universität Hagen, Deutschland

18. März 2025

Motivation

- Twitter als Echtzeit-Plattform für Meinungen und Trends
- Große Datenmengen für maschinelles Lernen nutzbar
- Herausforderungen: Ironie, Sarkasmus, Emojis, Abkürzungen
- Einsatz in Politik, Marketing und Krisenmanagement

Zielsetzung

➤ Wie effektiv sind verschiedene maschinelle Lernverfahren bei der Stimmungsanalyse von Tweets?

- 1 Daten
 - Datenauswahl
 - Testdatensatz
- 2 Klassische Methoden
- 3 Deep Learning
 - Deep Learning BERT-Modelle
 - Deep Learning Finetuning BERT-Modelle
 - DeepSeek
- 4 Zusammenfassung

- 1 Daten
 - Datenauswahl
 - Testdatensatz
- 2 Klassische Methoden
- 3 Deep Learning
 - Deep Learning BERT-Modelle
 - Deep Learning Finetuning BERT-Modelle
 - DeepSeek
- 4 Zusammenfassung

Datenauswahl

- Prüfung diverser Datensätze
- Entscheidung für "Sentiment140"
- ▶ Besonderheiten:
 - ► Artikel: "Twitter Sentiment Classification using Distant Supervision"
 - ► Bessere Datenqualität
 - Ausbalancierte Klassen
 - Emoticons als Sentiment-Indikatoren

Beispieltweet:

Original Tweet

Just got my dream job! So excited! :)

Datensatz

Just got my dream job! So excited!

Stimmung: Positiv

- 1 Daten
 - Datenauswahl
 - Testdatensatz
- 2 Klassische Methoden
- 3 Deep Learning
 - Deep Learning BERT-Modelle
 - Deep Learning Finetuning BERT-Modelle
 - DeepSeek
- 4 Zusammenfassung

Testdatensatz

Eigenschaften:

- ► Enthält **359** manuell gesammelte Tweets
- ▶ 177 negative und 182 positive Tweets
- ► Keine automatische Annotation durch Emoticons
- Dient zur unabhängigen Evaluierung von Modellen
- Testdatensatz enthält zusätzlich Query-Terms

Beispieltweet:

"no. it is too big. I'm quite happy with the Kindle2 "

Ohne Query Term: Negativ Mit Query Term: Positiv

- 1 Dater
 - Datenauswahl
 - Testdatensatz
- 2 Klassische Methoden
- 3 Deep Learning
 - Deep Learning BERT-Modelle
 - Deep Learning Finetuning BERT-Modelle
 - DeepSeek
- 4 Zusammenfassung

Klassische Methoden - Überblick

Klassische Methoden

- Logistische Regression
- Support Vector Machine (SVM)
- Naiver Bayes
- ► Entscheidungsbäume
- Entscheidungswälder
- ► K-nächste Nachbarn

Metrik: Genauigkeit

Parameter

- Vektorisierungsmethode
- Normalisierungsstrategie
- Strategie zur Entfernung von Stoppwörtern
- ▶ N-Gramm-Bereich
- Maximale Anzahl an Merkmalen

Klassische Methoden - Datenvorverarbeitung

	Beispiel
Original-Tweet	"@user I love this movie! http://example.com"
Bereinigung	"I love this movie"
Tokenisierung	["I", "love", "this", "movie"]
Transformation	Lemmatization: ["I", "love", "this", "movie"] Stemming: ["I", "lov", "thi", "movi"]
Stoppwörter Behandlung	Ohne Stoppwörter: ["love", "movie'']
Merkmalsextraktion	TF-IDF Beispiel: (love: 0.75, movie: 0.85)

Klassische Methode - Beste Genauigkeit pro Modell

- 1 Daten
 - Datenauswahl
 - Testdatensatz
- 2 Klassische Methoden
- 3 Deep Learning
 - Deep Learning BERT-Modelle
 - Deep Learning Finetuning BERT-Modelle
 - DeepSeek
- 4 Zusammenfassung

- 1 Daten
 - Datenauswahl
 - Testdatensatz
- 2 Klassische Methoden
- 3 Deep Learning
 - Deep Learning BERT-Modelle
 - Deep Learning Finetuning BERT-Modelle
 - DeepSeek
- 4 Zusammenfassung

Deep Learning - BERT-Modelle (1/2)

- ▶ 2018 von Google entwickelt
- ▶ Bidirectional encoder representations from transformers (BERT)
- ▶ Mit großem textuellen Korpus vortrainiert
- ▶ 110 Mio. Parameter
- Etabliert in der natürlichen Sprachverarbeitung (NLP)

Deep Learning - BERT-Modelle (2/2)

DistilBERT-base-uncased

- Destilliertes BERT-Modell
- Eigenschaften:
 - Modelldestillation des bert-base-uncased Modells
 - ► 40% kleiner
 - 60% schnellere Inferenz
 - ▶ 97% der Fähigkeiten bleiben erhalten

Twitter-RoBERTa-base-sentiment

- Auf Twitter-Daten trainiertes RoBERTa-Modell
- **Eigenschaften:**
 - Mit 58 Mio. englischsprachigen
 Tweets weitertrainiert
 - Finetuning mit einem Stimmungsanalyse-Datensatz

- 1 Daten
 - Datenauswahl
 - Testdatensatz
- 2 Klassische Methoden
- 3 Deep Learning
 - Deep Learning BERT-Modelle
 - Deep Learning Finetuning BERT-Modelle
 - DeepSeek
- 4 Zusammenfassung

Deep Learning - Finetuning BERT-Modelle

Methode

- ► Finetuning der Modelle mit Sentiment140
- ► Huggingface *transformers* Bibliothek

Untersuchte Parameter

- ► Initiale Lernrate
- Größe des Trainingsdatensatzes

Evaluationsmetrik

Genauigkeit

Deep Learning - Ergebnisse BERT-Modelle

- 1 Daten
 - Datenauswahl
 - Testdatensatz
- 2 Klassische Methoden
- 3 Deep Learning
 - Deep Learning BERT-Modelle
 - Deep Learning Finetuning BERT-Modelle
 - DeepSeek
- 4 Zusammenfassung

Deep Learning - DeepSeek-R1 Modell

- Reasoning-Modell
- ► Basiert auf Transformer Architektur
- ► Trainiert mit Hilfe von Reinforcement Learning
- ▶ 671 Mrd. Parameter
- Destillierte Modelle verfügbar
- ► Finetuning Ansatz
 - ► DeepSeek-R1-Distill-Qwen-1.5B
 - Aufgrund von Hardwareanforderungen verworfen

Deep Learning - DeepSeek-R1 Zero-Shot Ansatz

Zero-Shot-Ansatz:

- ► Prompt enthält keine Beispiele
- Verwendete Modelle
 - ► DeepSeek-1.5B
 - DeepSeek-8B
 - ► DeepSeek-32B
 - DeepSeek-70B
- Inferenz mit und ohne Query-Terms

Prompt: Tweet sentiment? Sentiment Topic: {Query-Term} Answer with positive or negative. Provide reasoning in JSON.

Tweet: "{tweet}"

Deep Learning - DeepSeek-R1 Prompt Beispiel

Tweet: "no. it is too big. I'm quite happy with the Kindle2 "

Reasoning ohne Query Term

"The tweet expresses dissatisfaction with something being 'too big,' indicating a negative sentiment."

Reasoning mit Query Term:

"The tweet mentions being 'quite happy' with the Kindle2, which indicates a positive sentiment ."

Deep Learning - DeepSeek-R1 Ergebnisse

- 1 Daten
 - Datenauswahl
 - Testdatensatz
- 2 Klassische Methoden
- 3 Deep Learning
 - Deep Learning BERT-Modelle
 - Deep Learning Finetuning BERT-Modelle
 - DeepSeek
- 4 Zusammenfassung

Zusammenfassung - Überblick Ergebnisse alle Modelle

Zusammenfassung - Erkenntnisse und Ausblick

Erkenntnisse:

- LLMs führen zu höheren Genauigkeiten als klassische Verfahren
- Finetuning erhöht Genauigkeit der LLMs
- Query-Terms erhöhen die Genauigkeit für LLMs erheblich
- LLMs haben viel größere Hardwareanforderungen und längere Inferenzzeiten

Ausblick:

- Noisy-Label
- Aspect-Based-Sentiment-Analysis (ABSA)
- ► Große *Deep Learning* Modelle

Zusammenfassung - Erkenntnisse und Ausblick

Erkenntnisse:

- LLMs führen zu höheren Genauigkeiten als klassische Verfahren
- Finetuning erhöht Genauigkeit der LLMs
- Query-Terms erhöhen die Genauigkeit für LLMs erheblich
- LLMs haben viel größere Hardwareanforderungen und längere Inferenzzeiten

Ausblick:

- Noisy-Label
- Aspect-Based-Sentiment-Analysis (ABSA)
- ► Große *Deep Learning* Modelle

Vielen Dank für Ihre Aufmerksamkeit!

Fragen?