#### Recitation 3: OLS properties: Sampling distribution and fitness

Seung-hun Lee

Columbia University
Undergraduate Introduction to Econometrics Recitation

September 29th, 2022

# Ordinary least squares

#### Ordinary Least Squares: Population vs sample linear models

 Suppose that the population linear regression model (also known as data generating process in some books) is

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

- ullet However, we do not know the true values of the population parameters  $eta_0$  and  $eta_1$
- An alternative way to approach the problem is to use the sample linear regression model (or just model)

$$Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{u}_i$$

where  $\hat{\beta}_0, \hat{\beta}_1$  are estimates of  $\beta_0, \beta_1$ 

September 29th, 2022 Recitation 3 (UN 3412) 3 / 17

#### **Ordinary Least Squares: Definition**

- The ideal estimator minimizes the squared sum of residuals.
- Mathematically, this can be obtained by solving the following minimization problem and the first order conditions

$$\min_{\beta_{0}, \beta_{1}} \sum_{i=1}^{n} (Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i})^{2}$$
$$[\hat{\beta}_{0}] : -2 \sum_{i=1}^{n} (Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i}) = 0$$
$$[\hat{\beta}_{1}] : -2 \sum_{i=1}^{n} X_{i} (Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i}) = 0$$

The resulting least squares estimators are

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}, \ \hat{\beta}_1 = \frac{\sum_{i=1}^n (Y_i - \bar{Y})(X_i - \bar{X})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

September 29th, 2022 Recitation 3 (UN 3412) 4 / 17

#### Ordinary Least Squares: Main assumptions

• For OLS to be unbiased, consistent, efficient, and asymptotic normal, the following assumptions must be made

#### **Assumptions**

A0 Linearity: The regression is assumed to be linear in parameters.

Okay: 
$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + u_i$$
, Not:  $Y_i = \beta_0 + \beta_1 X_i + \beta_2^2 X_i + u_i$ 

- A1  $E(u_i|X_i) = 0$ : Conditional on letting  $X_i$  take a certain value, we are not making any systematical error in the linear regression. This is required for the OLS to be unbiased. (or  $cov(X_i, u_i) = 0$ )
- A2 i.i.d. (random sampling):  $(X_i, Y_i)$  is assumed to be from independent, identical distribution
- A3 No Outliers: Outlier has no impact on the regression results.  $(E(X_i^4), E(Y_i^4) < \infty)$
- A4 Homoskedasticity:  $var(u_i) = \sigma_u$  (variance of  $u_i$  does not depend on  $X_i$ ).  $\leftrightarrow$  heteroskedasticity
- A5 No Autocorrelation (Serial Correlation): For  $i \neq j$ ,  $cov(u_i, u_j) = 0$ . Error at the previous period does not have any impact on the current period. This is usually broken in time series settings

September 29th, 2022 Recitation 3 (UN 3412) 5 / 17

## Ordinary Least Squares: Useful alternative expression for $\hat{\beta}_1$

- OLS estimate that we are getting is a random variable getting different estimates depending on sample we work with.
- $\hat{\beta}_1$ : Recall that we can write

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

Now, replace  $Y_i$  an  $\bar{Y}$  with

$$Y_i = \beta_0 + \beta X_i + u_i, \ \bar{Y} = \beta_0 + \beta_1 \bar{X} + \bar{u},$$

which allows us to write

$$(Y_i - \bar{Y}) = (\beta_1(X_i - \bar{X}) + (u_i - \bar{u}))$$

and get

$$\hat{\beta}_1 = \beta_1 + \frac{\sum_{i=1}^{n} (X_i - \bar{X})(u_i - \bar{u})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

## Ordinary Least Squares: Unbiasedness of $\hat{\beta}_1$

•  $E[\hat{\beta}_1]$ : It can be written as

$$E[\hat{\beta}_{1}] = E\left[\beta_{1} + \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(u_{i} - \bar{u})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}\right]$$
$$= \beta_{1} + E\left[\frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(u_{i} - \bar{u})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}\right]$$

 $\sum_{i=1}^{n} (X_i - \bar{X})(u_i - \bar{u})$  can be written to something simpler.

$$\sum_{i=1}^{n} (X_i - \bar{X})(u_i - \bar{u}) = \sum_{i=1}^{n} X_i u_i - \bar{u} \sum_{i=1}^{n} X_i - \bar{X} \sum_{i=1}^{n} u_i + n\bar{X}\bar{u} = \sum_{i=1}^{n} (X_i - \bar{X})u_i$$

- $\rightarrow$  Since  $\bar{X}$  is a sample mean of X,  $\sum_{i=1}^{n} X_i = n\bar{X}$ .
- $\rightarrow$  The assumption that conditional mean is zero and  $(X_i, u_i)$  are uncorrelated means that the term on the left hand side is zero.
- $\rightarrow$  Therefore, UNDER CLASSICAL ASSUMPTIONS,  $E[\hat{\beta}_1] = \beta_1$ .

September 29th, 2022 Recitation 3 (UN 3412) 7 / 17

## Ordinary Least Squares: Unbiasedness of $\hat{\beta}_0$

•  $\hat{\beta}_0$ : The formula for  $\hat{\beta}_0$  is  $\bar{Y} - \hat{\beta}_1 \bar{X}$ . By changing  $\bar{Y}$ , we can get

$$\hat{\beta}_0 = (\beta_0 + \beta_1 \bar{X} + \bar{u}) - \hat{\beta}_1 \bar{X}$$
$$= \beta_0 + (\beta_1 - \hat{\beta}_1) \bar{X} + \bar{u}$$

Then we can say the following about the sampling distribution

•  $E[\hat{\beta}_0]$ : We can write

$$E[\hat{\beta}_0] = \beta_0 + E[(\beta_1 - \hat{\beta}_1)\bar{X}] + E[\bar{u}] = \beta_0$$

since  $\hat{\beta}_1$  is unbiased and conditional expectation of  $u_i$  is zero.

 $\rightarrow$  Thus, under our current assumptions,  $\hat{\beta}_0$  is unbiased.

 September 29th, 2022
 Recitation 3 (UN 3412)
 8 / 17

## Ordinary Least Squares: Variances of $\hat{\beta}_0$ and $\hat{\beta}_1$

Might take bit of a work, but when you follow the notes, you get

$$var(\hat{eta}_0) = rac{\sigma_u^2}{n} rac{\sum_{i=1}^n X_i^2}{\sum_{i=1}^n (X_i - \bar{X})^2}, var(\hat{eta}_1) = rac{\sigma_u^2}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

At the end of the day, we can say

$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma_u^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)$$

$$\hat{\beta}_0 \sim N\left(\beta_0, \frac{\sigma_u^2}{n} \frac{\sum_{i=1}^n X_i^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)$$

• The importance of this is that now we can conduct a hypothesis test and create a test statistic based on this distribution

 September 29th, 2022
 Recitation 3 (UN 3412)
 9 / 17

#### Ordinary Least Squares: How well does the model capture the data?

#### Measure of fitness

- These numbers tell us how informative the sample linear regression we used is in telling us about the population data
- R<sup>2</sup>: It is defined as a fraction of total variation which is explained by the model. Mathematically, this is

$$Y_{i} = \underbrace{\hat{\beta}_{0} + \hat{\beta}_{1}X_{i}}_{\hat{Y}_{i}} + u_{i}, \ \bar{Y} = \underbrace{\hat{\beta}_{0} + \hat{\beta}_{1}\bar{X}}_{\bar{Y}} + \bar{u},$$

$$\implies Y_{i} - \bar{Y} = (\hat{Y}_{i} - \bar{\hat{Y}}) - (u_{i} - \bar{u})$$

$$\implies \sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2} = \sum_{i=1}^{n} (\hat{Y}_{i} - \bar{\hat{Y}})^{2} + \sum_{i=1}^{n} (u_{i} - \bar{u})^{2} - 2\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{\hat{Y}})(u_{i} - \bar{u})$$

September 29th, 2022 Recitation 3 (UN 3412) 10 / 17

### Ordinary Least Squares: Getting to R<sup>2</sup>

Note that

$$\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{\hat{Y}})(u_{i} - \bar{u}) = \sum_{i=1}^{n} \hat{Y}_{i}u_{i} - \bar{\hat{Y}}\sum_{i=1}^{n} u_{i} - \bar{u}\sum_{i=1}^{n} \hat{Y}_{i} + n\bar{u}\bar{\hat{Y}}$$

- Since  $\sum_{i=1}^n u_i = n\bar{u}$ ,  $\sum_{i=1}^n \hat{Y}_i = n\bar{\hat{Y}}$  and  $\sum_{i=1}^n \hat{Y}_i u_i = n\bar{u}\bar{\hat{Y}}$ , all terms cancel each other out.
- So we are left with

$$\begin{split} & \underbrace{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}_{TSS} = \underbrace{\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{\hat{Y}})^{2}}_{ESS} + \underbrace{\sum_{i=1}^{n} (u_{i} - \bar{u})^{2}}_{RSS} \\ \implies & 1 = \underbrace{\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{\hat{Y}})^{2}}_{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}} + \underbrace{\sum_{i=1}^{n} (u_{i} - \bar{u})^{2}}_{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}} \end{split}$$

September 29th, 2022 Recitation 3 (UN 3412) 11 / 17

#### Ordinary Least Squares: Getting to $R^2$

• Thus, the  $R^2$  can be found as

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{\hat{Y}})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}} = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$$

• Intuitively, higher  $R^2$  implies that the model explains more of the total variance, which implies that the regression fits the data well.

September 29th, 2022 Recitation 3 (UN 3412) 12 / 17

#### Ordinary Least Squares: Setting up the hypothesis test

- From the sample distribution of  $\hat{\beta}_1$ , we can break down into two cases
- Know  $\sigma_u$ : Since the  $\hat{\beta}_1$  takes a normal distribution, we can "standardize" it to get the test statistic and the distribution for it

$$rac{\hat{eta}_1 - eta_1}{\sqrt{ extstyle var(\hat{eta}_1)}} \sim extstyle extstyle extstyle (0,1)$$

and compare against the critical values (depending on significance level, two vs one-sided test)

September 29th, 2022 Recitation 3 (UN 3412) 13 / 17

#### Ordinary Least Squares: Hypothesis test methods

• **Don't know**  $\sigma_u$ ; need to have an estimate for  $var(\hat{\beta}_1)$  due to not knowing  $\sigma_u$ . The test statistics and its distribution is

$$rac{\hat{eta}_1 - eta_1}{\sqrt{\widehat{var}(\hat{eta}_1)}} \sim t_{n-2}$$

where  $var(\hat{\beta}_1)$  is the estimate for the variance and  $t_{n-2}$  is a t-distribution with n-2 degrees of freedom.

- The d.f. is determined by the number of observations, where 2 is subtracted because we are estimating  $\beta_0$  and  $\beta_1$  in the process.
- When *n* is large, t-distribution becomes similar to the normal distribution

September 29th, 2022 Recitation 3 (UN 3412) 14 / 17

#### Ordinary Least Squares: Confidence interval

- Confidence interval: A 95% confidence interval is a range of numbers that form a random interval that has a 95% chance of including a (nonrandom) true value of a parameter.
- This can be obtained by inverting the rejection region that we have used in the critical value approach.

$$\Pr\left(-1.96 \le \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\textit{var}(\hat{\beta}_1)}} \le 1.96\right) = 0.95$$

$$\implies \Pr\left(\hat{\beta}_1 - 1.96 \times \sqrt{\textit{var}(\hat{\beta}_1)} \le \beta_1 \le \hat{\beta}_1 + 1.96 \times \sqrt{\textit{var}(\hat{\beta}_1)}\right) = 0.95$$

• If they encompass the null test value, then we cannot reject the null hypothesis. Otherwise, we can reject the null.

September 29th, 2022 Recitation 3 (UN 3412) 15 / 17

#### Errors may have different distribution across observations

- The assumption that  $var(u_i)$  is constant may not hold. Thus, be open for heteroskedasticity
- If we stick to homoskedasticity in this case, the standard errors are incorrectly estimated (usually underestimated)



• In such case, standard errors of our estimators must take this into account.

September 29th, 2022 Recitation 3 (UN 3412) 16 / 17

#### ...but what does heteroskedasticity change?

| . regress test    | tscr str                 |                      |                          |                                   |     |                       | . regress test | scr str, vce        | (robust)             |                |                                    |                       |                           |
|-------------------|--------------------------|----------------------|--------------------------|-----------------------------------|-----|-----------------------|----------------|---------------------|----------------------|----------------|------------------------------------|-----------------------|---------------------------|
| Source            | SS                       | df                   | MS                       | Number of obs                     | =   |                       | Linear regress | ion                 |                      |                | Number of                          |                       | 420                       |
| Model<br>Residual | 7794.11919<br>144315.475 | 1<br>418             | 7794.11919<br>345.252333 | Prob > F<br>R-squared             | =   | 0.0000<br>0.0512      |                |                     |                      |                | F(1, 418)<br>Prob > F<br>R-squared | =                     | 19.26<br>0.0000<br>0.0512 |
| Total             | 152109.594               | 419                  | 363.030058               | - Adj R-squared<br>B Root MSE     | =   | 0.0490<br>18.581      |                |                     |                      |                | Root MSE                           | =                     | 18.581                    |
| testscr           | Coef.                    | Std. Err.            | t                        | P> t  [95% Cor                    | ıf. | Interval]             | testscr        | Coef.               | Robust<br>Std. Err.  | t              | P> t                               | [95% Conf.            | Interval]                 |
| str<br>_cons      | -2.27981<br>698.933      | .4798255<br>9.467491 |                          | 0.000 -3.222981<br>0.000 680.3232 |     | -1.336638<br>717.5428 | str<br>_cons   | -2.27981<br>698.933 | .5194894<br>10.36436 | -4.39<br>67.44 | 0.000<br>0.000                     | -3.300947<br>678.5602 | -1.258672<br>719.3057     |

- The variance rises (usually) in the heteroskedastic regression, so we may make a wrong hypothesis test
- The coefficients are unchanged, since estimation of OLS estimates did not rely on homoskedasticity

September 29th, 2022 Recitation 3 (UN 3412) 17 / 17