

Ch 34 Gradients of curves (C)

Given a function y=f(x) we denote its gradient function by $\dfrac{dy}{dx}$ or simply by y'.

Gradient function of $y = x^n$

Rules for finding gradient functions

Rule 1: If y = f(x) + g(x) then y' = f'(x) + g'(x). Rule 2: If y = f(x) - g(x) then y' = f'(x) - g'(x). *Rule 3*: If y = kf(x), where k is a number, then y' = kf'(x).

Higher derivatives

y'' or $\frac{d^2y}{dx^2}$ is found by differentiating y'.

Finding max & min points of a curve

y = f(x)	y'=f'(x)	Notes
constant	0	
X	1	
x^2	2x	
χ^n	nx^{n-1}	
e ^x	e ^x	
e^{kx}	ke^{kx}	k is a constant
$\sin x$	$\cos x$	
$\cos x$	$-\sin x$	
$\sin kx$	$k \cos kx$	k is a constant
$\cos kx$	$-k \sin kx$	k is a constant
$\ln kx$	1/x	k is a constant

Minimum
$$0$$
 $+$ 0 $-$ Point of inflexion 0 $+$ 0 or 0 0

Stationary points are located by setting the gradient function equal to zero, that is y'=0.

 $ig|_{igspace}$ If y'' is positive at the stationary point, the point is a minimum.

If y'' is negative at the stationary point, the point is a maximum.

If y'' is equal to zero, this test does not tell us anything and the previous method should be used.