CHAP.3 – LA PHOTOSYNTHESE LES PIGMENTS PHOTOSYNTHETIQUES

- 1. LES CHLOROPHYLLES
- 2. LES CAROTENOIDES
- 3. LES PHYCOBILINES
- 4. CAPTURE ET MIGRATION DE L'ENERGIE LUMINEUSE
- 5. NOTION DE RENDEMENT QUANTIQUE

La photosynthèse est un phénomène caractéristique des plantes vertes, qui utilisent l'énergie lumineuse du soleil pour produire des glucides à partir du gaz carbonique de l'air (CO2) et de l'eau (H20) puisée dans leur milieu de vie.

Pigment principal = la chlorophylle

Au cours de ce processus, les végétaux absorbent le gaz carbonique et rejettent de l'oxygène.

1. LES CHLOROPHYLLES

- 1.1. Structure chimique
- 1.2. Propriétés spectrales
- 2. LES CAROTENOIDES
- 3. LES PHYCOBILINES

Les différents types de chlorophylle et leur distribution chez les êtres vivants

Bactériochlorophylles

						•
	Chlorophylle a	Chlorophylle b	Chlorophylle c ₁	Chlorophylle c ₂	Chlorophylle d	Chlorophylle f
Formule brute	$C_{55}H_{72}O_5N_4Mg$	$C_{55}H_{70}O_6N_4Mg$	$C_{35}H_{30}O_5N_4Mg$	$C_{35}H_{28}O_5N_4Mg$	$C_{54}H_{70}O_6N_4Mg$	$C_{55}H_{70}O_6N_4Mg$
Pics d'absorption dans l'acétone-eau à 90 %	430 nm 664 nm	460 nm 647 nm	442 nm 630 nm	444 nm 630 nm	401 nm, 455 nm 696 nm	
Distribution	Universelle	- plantes vertes - algues vertes	• •	Phéophycées (algues brunes)	Rodophycées (algues rouges)	Certaines cyanobactéries

- 1. LES CHLOROPHYLLES
- 1.1. Structure chimique
- 1.2. Distribution
- 1.3. Propriétés spectrales
- 2. LES CAROTENOIDES
- 3. LES PHYCOBILINES

Absorption de la lumière

©1999 Addison Wesley Longman, Inc.

Lumière visible : 380 à 750 nm

d'après G. Bourbonnais (2007) - Cégep de Ste Foy - Québec

- 1. LES CHLOROPHYLLES
- 1.1. Structure chimique
- 1.2. Propriétés spectrales
- 2. LES CAROTENOIDES
- 3. LES PHYCOBILINES

LES CAROTENOÏDES

Famille des **terpènes**Monomère = isoprène 5 C

Nombre total de C = 40 => **tétraterpènes**2 sous-familles :

- Les carotènes
- Les xanthophylles

d'après G. Bourbonnais (2007) - Cégep de Ste Foy - Québec

Les carotènes : des hydrocarbures stricts

α carotène

β carotène

Autre exemple : le lycopène (tomate)

Les xanthophylles : des hydrocarbures oxygénés

- 1. LES CHLOROPHYLLES
- 1.1. Structure chimique
- 1.2. Distribution
- 1.3. Propriétés spectrales
- 2. LES CAROTENOIDES
- 3. LES PHYCOBILINES

Les phycobilines

Spectres d'absorption

© Biologie et Multimédia - R. Prat

Membrane des Thylakoïdes

LES CHROMOPROTEINES CHLOROPHYLLIENNES

Chlorophylle + Protéine = **Holochrome**

LES CHROMOPROTEINES CAROTENOIDIENNES

	COMPLEX 1	COMPLEX 2
Protéine	+	+
ß-carotène	+++	(+)
Lutéine	(+)	+++

LES BILIPROTEINES

Phycobiline + Protéine

4. CAPTURE ET MIGRATION DE L'ENERGIE LUMINEUSE

- 4.1. Capture de l'énergie
- 4.2. Migration de l'énergie
- 4.2.1. Par fluorescence
- 4.2.2. Par résonance
- 4.2.3. Par conversion
- 5. NOTION DE RENDEMENT QUANTIQUE

ENERGIE PHOTONIQUE

1. Définition d'un quantum d'énergie

quantum d'énergie
$$q = h v = h c \over \lambda$$

h = constante de Planck = 6,6.10⁻³⁴ joules c = vitesse de la lumière = 300000 km s⁻¹

2. Définition d'un einstein d'énergie

1 einstein = E = N q = N h c

1 einstein = 1 mole de photons

N = nombre d'Avogadro = 6,02.10²³

en lumière rouge

E = N h c =
$$\frac{6.02.10^{23} \times 6.6.10^{-34} \times 3.10^{5}}{\lambda}$$

 $\frac{680.10^{-12} \times 4.18}{680.10^{-12} \times 4.18}$
 $\frac{en \ km}{\Delta}$ \Rightarrow 1 cal = 4.18 joules
E = 0.0042.10⁶ cal
E \approx 42 Kcal

· en lumière bleue

E = N h
$$\underline{c}$$
 = $\frac{6.02.10^{23} \times 6.6.10^{-34} \times 3.10^{5}}{430.10^{-12} \times 4.18}$
en km \rightarrow 1 cal = 4,18 joules
E = 0,066.10⁵ cal
E \approx 66 Kcal

La lumière bleue est beaucoup plus riche en énergie que la lumière rouge.

La capture de l'énergie lumineuse

- 4. CAPTURE ET MIGRATION DE L'ENERGIE LUMINEUSE
- 4.1. Capture de l'énergie
- 4.2. Migration de l'énergie
- 4.2.1. Par fluorescence
- 4.2.2. Par résonance
- 4.2.3. Par conversion
- 5. NOTION DE RENDEMENT QUANTIQUE

La capture de l'énergie lumineuse

La capture de l'énergie lumineuse

MIGRATION DE L'ENERGIE LUMINEUSE

- FLUORESCENCE

q = h. c = Wo + q' q' < q for dég.

qu'te d'énergie = entroprie
émission de chaleux

q' = h. c avec 1' > 1 d'excitation

- RESONANCE

Proo P* — p

interpretation voisin ps

ps

ps

ps

ps

ps

ps

ps

mate

CONVERSION = une réaction nédox

P680 — P680 * ionisation P680

Carbocation

Carbocation

4. CAPTURE ET MIGRATION DE L'ENERGIE LUMINEUSE

- 4.1. Capture de l'énergie
- 4.2. Migration de l'énergie
- 4.2.1. Par fluorescence
- 4.2.2. Par résonance
- 4.2.3. Par conversion
- 5. NOTION DE RENDEMENT QUANTIQUE

MIGRATION DE L'ENERGIE LUMINEUSE

- FLUORESCENCE

q = h. $\frac{c}{d}$ = $\frac{\omega_0}{d}$ + $\frac{q'}{q'}$ = $\frac{q'}{q'}$

RESONANCE

hoo p* p*

faurgie lihérée sert à achiver un Abotoréapteur voisin ps

ps

ps

ps

ps

ps

ps

mate

CONVERSION = une réaction nédox

P680 — P680 * ionisation P680

carbocation

e- númbéré tor un

4. CAPTURE ET MIGRATION DE L'ENERGIE LUMINEUSE

- 4.1. Capture de l'énergie
- 4.2. Migration de l'énergie
- 4.2.1. Par fluorescence
- 4.2.2. Par résonance
- 4.2.3. Par conversion
- 5. NOTION DE RENDEMENT QUANTIQUE

MIGRATION DE L'ENERGIE LUMINEUSE

- FLUORESCENCE

q = h. $\frac{c}{d}$ = $\frac{\omega_0}{d}$ + $\frac{q'}{q'}$ = $\frac{q'}{q'}$

RESONANCE

hoo p* p*

faurgie lihérée sert à achiver un Abotoréapteur voisin ps

ps

ps

ps

ps

ps

ps

mate

CONVERSION = une réaction nédox

P680 — P680 * ionisation P680

carbocation

e- númbéré tor un

Migration de l'énergie lumineuse

Les pigments actifs

- Chlorophylle a
- Bactériochlorophylles

Les pigments accessoires

- Chlorophylle b
- Carotènes
- Xanthophylles
- Phycobilines

incapables de réaliser la réaction de conversion

Antenne collectrice et centre réactionnel

Les photosystèmes

On note:

PS1 le photosystème dont l'holochrome est P700

PS2 le photosystème dont l'holochrome est P680

4. CAPTURE ET MIGRATION DE L'ENERGIE LUMINEUSE

- 4.1. Capture de l'énergie
- 4.2. Migration de l'énergie
- 4.2.1. Par fluorescence
- 4.2.2. Par résonance
- 4.2.3. Par conversion

5. NOTION DE RENDEMENT QUANTIQUE

Rendement quantique

Rendement quantique pour la production d'oxygène d'une population d'algues unicellulaires (Chlorelles)

Rendement quantique < 1

Comparaison entre le spectre d'absorption de la chlorophylle (en rouge) et le spectre d'action de la lumière (en bleu) sur la photosynthèse d'une population d'algues unicellulaires (Chlorelles)

activité photosynthétique (U.A.