TER : Intégration et optimisation d'algorithmes de classifications supervisées pour Weka

ALIJATE Mehdi - NEGROS Hadrien- TURKI Batoul

Université Montpellier 2 - LIRMM

23 février 2014

Abstract

Résumé

Ce sujet vise à intégrer et à optimiser des algorithmes de classifications supervisées de documents dans la suite logiciel WEKA. Ces algorithmes sont issus de travaux de recherche menés récemment au sein du LIRMM.

- Introduction
- Organisation
- Second State

 Exploration de WEKA
- Mouvelles méthodes de classifications
 - Pondérations intra-classe
 - Pondérations inter-classe
 - Algorithmes de classifications
- Développement des algorithmes de classifications
 - NBMultinomialTER
 - CFCTERab
- Intégration et résultats
 - Intégration
 - Résultats des tests
- Conclusion
- Démonstration

- Introduction
- Organisation
- Exploration de WEKA
- 4 Nouvelles méthodes de classifications
- 5 Développement des algorithmes de classifications
- 6 Intégration et résultats
- Conclusion

Introduction

Introduction

- Ce TER vise à intégrer des algorithmes de classifications supervisées de documents dans la suite logiciel WEKA
- Intégrant de nouvelles solutions adaptées aux faibles quantités de données textuelles.
- Se basant sur de nouvelles pondérations.

La classification

La classification est le processus visant à associer un document à la classe le représentant le mieux.

Exemple

Classer des résumés de films selon leur genre. (Policier, Comédie, etc...)

Vocabulaire

Attribut Ou terme unique est un élément d'un document.

Document Un ensemble d'attributs (ex : un résumé)

Classe Un ensemble de documents liés entre eux. (ex : genre cinématographique)

Besoins

Besoins

- Prise en main de Weka
- Développement des différentes bibliothèques en java
- L'intégration dans l'écosystème Weka

- Introduction
- Organisation
- Exploration de WEKA
- 4 Nouvelles méthodes de classifications
- 5 Développement des algorithmes de classifications
- 6 Intégration et résultats
- Conclusion

Organisation

- Plusieurs réunions
- Un outil collaboratif pour la gestion du projet : Github
- Mises au point régulières

- Exploration de WEKA

Exploration de Weka

- L'API Weka
- L'utilisation des classes
- Ajout d'un algorithme dans Weka

A la fin de cette étape

- Méthodes et classes ciblées
- Le Package weka.classifiers
- Le classifieur NaiveBayesMultinomial
- Pour l'ajout d'algorithme : Le package weka.gui

- Introduction
- Organisation
- Exploration de WEKA
- Nouvelles méthodes de classifications
 - Pondérations intra-classe
 - Pondérations inter-classe
 - Algorithmes de classifications
- Développement des algorithmes de classifications

Nouvelles méthodes de classifications

- Différentes pondérations pour la construction des nouveaux classifieurs
 - Des mesures intra-classe.
 - ② Des mesures inter-classe.

Ces mesures sont inspirées du TF-IDF et ont étés développées au LIRMM.

Elles sont définies dans l'article :

De nouvelles pondérations adaptées à la classification de petits volumes de données textuelles.

De M. Roche, F. Bouillot, P. Poncelet EGC 2014

Pondérations intra-classe

- Les pondérations que nous définissons ci-après sont dites intra-classe
- Les différentes valeurs que nous utilisons pour les calculer sont dépendantes d'une classe.

Intra-classe document

Cette mesure dépend du nombre de documents contenant le terme dans la classe.

$$\textit{inner-weight}_{ij}^{\textit{Df}} = \frac{\textit{DF}_{ti}^{\textit{j}}}{|\textit{d}_{\textit{j}}|}$$

Avec:

- DF_{ti}^{j} : Nombre de documents contenant le terme t_{i} dans la classe C_{j}
- ullet $|d_j|$: Nombre de documents dans C_j

Intra-classe terme

Cette mesure dépend du nombre d'occurrences du terme dans la classe.

$$inner-weight_{ij}^{Tf} = \frac{TF_{ti}^{J}}{|n_{j}|}$$

Avec:

- ullet TF_{ti}^{j} : Nombre d'occurrences du terme t_{i} dans la classe C_{j}
- ullet $|n_j|$: Nombre de termes total dans la classe C_j

Pondérations inter-classe

- Les pondérations inter-classes utilisent des valeurs calculées à partir de l'ensemble du corpus.
- Depuis les classes extérieures à celle qui nous intéresse.

Inter-classe terme

Cette mesure dépend du nombre de classes contenant le terme.

$$inter-weight_{ij}^{class} = log_2 \frac{|C|}{C_{ti}}$$

Avec:

- \bullet |C|: Nombre de classes
- C_{ti} : Nombre de classes contenant le terme t_i

Formule inter-classe document

Cette mesure dépend du nombre de documents extérieurs à la classe contenant le terme.

$$inter-weight_{ij}^{doc} = log_2 rac{|d
otin C_j| + 1}{|d:t_i
otin C_j| + 1}$$

Avec:

- ullet $|d
 otin C_j|$: Nombre de documents n'appartenant pas à la classe C_j
- $|d:t_i \notin C_j|$: Nombre de documents n'appartenant pas à la classe C_j qui contient t_i
- En ajoutant 1, permet de prévenir le cas où t_i est uniquement utilisé dans C_j (quand $|d:t_i\notin C_j|=|d:t_i|-|d:t_i\in C_j|=0$)

Algorithmes de classifications

- Nous avons implémenté un classifieur *Naive Bayes* et *Class-Feature-Centroid*.
- Pour calculer la probabilité w_{ij} d'un terme i dans une classe j, nous avons combiné les différentes pondérations de 4 façons :

Les quatres pondérations

- $\bullet \ w_{ij}^{\mathit{Tf-Class}} {=} \mathit{inner-weight}_{ij}^{\mathit{Tf}} \ \times \ \mathit{inter-weight}_{ij}^{\mathit{class}}$
- $ullet w_{ij}^{Df-Class} = inner-weight_{ij}^{Df} imes inter-weight_{ij}^{class}$
- $w_{ij}^{Tf-Doc} = inner-weight_{ij}^{Tf} \times inter-weight_{ij}^{doc}$
- w_{ij}^{Df-Doc} =inner-weight $_{ij}^{Df}$ × inter-weight $_{ij}^{doc}$

Paramètres : α, β

Nous avons aussi mis en place une combinaison de ces mesures dépendantes de deux paramètres $\alpha, \beta \in [0,1]$:

$$\begin{aligned} \textit{w}_{\textit{ij}}^{\alpha\beta} &= \left(\alpha \times \textit{inner-weight}_{\textit{ij}}^{\textit{Tf}} + \left(1 - \alpha\right) \times \textit{inner-weight}_{\textit{ij}}^{\textit{Dost}}\right) \times \left(\beta \times \textit{inter-weight}_{\textit{ij}}^{\textit{class}} + \left(1 - \beta\right) \times \textit{inter-weight}_{\textit{ij}}^{\textit{doc}}\right) \end{aligned}$$

- Développement des algorithmes de classifications
 - NBMultinomialTER
 - CFCTERab

Développement

buildClassifier() C'est la méthode dans laquelle est calculé le tableau des w_{ij} (La probabilité d'un mot par rapport à une classe).

distributionForInstance(Instance) Renvoie les probabilités du document (Instance) en entrée pour chacune des classes du corpus.

Naive Bayes Multinomial TER

Version 1 : implémentant les quatre pondérations.

Version 2 : paramètrable avec α et β

CFCTERab

- Représentation des classes comme des vecteurs (exemple : $\vec{C}_i = (0.1, 0.3, 0.2, 0)$)
- Représentation des documents comme des vecteurs (exemple : $\vec{d}=(0.1,0,0.2,0)$, le terme 2 n'apparait pas dans le document)
- Mesure de la proximité entre les vecteurs en utilisant la proximité cosinus :

$$simcos(\vec{u}, \vec{v}) = arccos(\frac{\vec{u}.\vec{v}}{\|\vec{u}\|.\|\vec{v}\|})$$

- Intégration et résultats
 - Intégration
 - Résultats des tests

<u>Intégration</u>

Tests

Classification de résumés de films.

Jeux de données

Nos jeux de données :

- test3classes.arff : 150 instances et 41 attributs (une selection d'attributs SubsetEval a été faite dessus), avec 3 classes : Policier, Fantastique, Comédie.
- test5classes.arff: 248 instances et 5082 attributs au complet (sans selection d'attributs), avec 5 classes: Thriller, Western, Guerre, Policier, Sciences.

Résultats des tests : NaiveBayesMultinomialTER

NBMultinomialTER/fichierTest	Nb ^{Df – Class}	NBMultinomial
test3classes.arff	67%	66%
test5classes.arff	68%	63%

Expérimentations avec $Nb^{Df-Class}$ et comparaison avec NBMultinomial

Résultats des tests : NBTER $\alpha\beta$ et CFCTER $\alpha\beta$

Algo/FichierTest	α	β	$NBMTER \alpha \beta$	$CFCTER\alpha\beta$	NBMulti
test3classes.arff	0.0	1.0	67%	68%	66%
	0.6	0.6	66%	74%	
	0.7	0.3	66%	73%	
test5classes.arff	0.0	1.0	67%	68%	63%
	0.6	0.6	65%	70%	
	0.7	0.3	58%	60%	

Expérimentations avec différentes valeurs de α et β pour NBTER $\alpha\beta$ et CFCTER $\alpha\beta$

- Conclusion

Conclusion

Ce TER nous a permis de :

- Prendre en main Weka
- Comprendre les nouvelles mesures de classification
- Intégrer les algorithmes dans l'écosystème Weka

Perspective

Implémenter de nouvelles métriques pour CFC (exemple : Distance de Jaccard)

Démonstration

- Introduction
- Organisation
- Exploration de WEKA
- 4 Nouvelles méthodes de classifications
- 5 Développement des algorithmes de classifications
- 6 Intégration et résultats
- Conclusion