Starbucks coffee customer sentiment analysis

Agenda

1. Problem Statement & Objective Value proposition

2. Data:

Preprocessing, EDA & Feature engineering

3. Prediction model

4. Recommendation

Problem Statement & Objective

Customers are not satisfied with our services!

- Traditional approach: Human sorts out comments and summarize (Cannot done by real-time)

Objective

- 1) Identify opportunity areas
- 2) To develop a predictive model on sentiment analysis of customer review

Stakeholder: Operation managers

Value proposition

- Provide priority to focus; region/store and issue to check
- Develop a real-time monitoring system of customer feedback

Data

Data extraction

Preprocessing

EDA

Feature engineering

- Text/NLP based
- Vectorization & Topic modeling
- Word embedding with PCA

Datasets

Downloaded from Kaggle
 https://www.kaggle.com/datasets/harshalhonde/starbucks-reviews-dataset/data

Review comment, Location (City & State), Name, Rating, Date, Images *Extract only US data (majority) for last 10 years (2012-2023)

RangeIndex: 850 entries, 0 to 849 Data columns (total 6 columns):								
#	Column	Non-	-Null Count	Dtype				
0	name	850	non-null	object				
1	location	850	non-null	object				
2	Date	850	non-null	object				
3	Rating	705	non-null	float64				
4	Review	850	non-null	object				
5	Image_Links	850	non-null	object				

Pre-processing & Feature Engineering

Correct format of State code using web scraping of Wikipedia

```
i.e. New York & NY > NY
```

- NLP with nltk
 - > Applied lower case, lemmatization, removing stop words, tokenization

'NS' 'ND' 'COLORADO' 'RI' 'MICHIGAN' 'WY'

'MT' 'CT' 'NO OTHER LINE NEEDED']

- Vectorization with TF-IDF word-level
 - > Topic models
- Word embedding by word2vec
 - > Dimensionality reduction by PCA
 - > Unsupervised learning: Clustering (NO)

Exploratory Data Analysis

Rating converted to sentiment

1 & 2: Not satisfied (as 0)

3-5: Satisfied (as 1)

** Imbalanced label distribution

(Over sampling for model training)

Exploratory Data Analysis

Satisfied

For a week now I've been unable to order because the shopping cart is literally broken, and according to each person I've dealt with, it has something to do with PayPal When I order a Venti Skinny vanilla latte it is always Never full — so much foam

This time this girl named KP was taking my order and when I ask her about discount she was so rude about it and she is like "There is no button on screen that I can give

Not satisfied

Int line policy is read past intend another leave almost state policy is read past intend another leave another le

*Further investigation required

Area: CA (California)

Issues: Order-related

Prediction model

Classification models:
 Logistic regression, SVC, KNN, RF, LGBM, XGB, DNN

Train-test data split
 Hold-out (due to small data size)

Hyper parameter tuning of ML
 GridSearchCV with train data

Model selection: Acc with train/test data

Model Selection/Evaluation

Model	Train (Accuracy)	Test (Accuracy)	Test (AUC)	Execution time (Train, msec)	Execution time (Test, msec)
Logistic Regression	98.5	84.6	0.885	149	5
SVC	98.6	90.2	0.836	2423	93
KNN	86.8	77.2	0.789	2383	578
Random Forest	95.5	77.2	0.727	1083	2
LightGBM	97.0	86.2	0.844	1504	2
XGBoost	97.2	68.2	0.827	5160	2
DNN	99.9	88.6	0.912	1300	43

Model Selection/Evaluation

Model Selection/Evaluation

Selected Model: DNN

Accuracy: 88.6%

AUC: 0.912

Recommandation

 Develop a real-time monitoring system, such as a dashboard, for sentiment analysis of customer reviews.

Route information/alert to region HQs or stores Monthly review process on sentiment

Limitation & Improvement idea

Limitation

- 1) Small size of dataset = 800 records & biased labels

 More data might be helpful for model performance, like recall score, without oversampling.
- 2) It is sentiment analysis, so cannot work on non-sentiment review i.e. Sifat went to Starbucks yesterday.
- 3) Only for US

Improvement

- 1) Model tuning; hyper parameters & design
- 2) Continuous training is required
 *Watch-out: Service got better > More positive > Data drift
- 3) Summary of feedback; Negative feedbacks

Conclusion

Focus on California & Order related Issues

 Predictive model of sentiment analysis: DNN Integrate to a real-time monitoring system