LIST OF FIGURES

2.1	The six possibilities for $I \times J$.	41
2.2	Various level curves $Q(s, t) = V$.	44
2.3	Partitioning of the <i>st</i> -plane by triangle domain <i>D</i> .	50
2.4	Various level curves $Q(s, t) = V$.	51
3.1	Relationship between s and \bar{s} .	82
3.2	The standard camera model.	85
3.3	Object with front facing and back facing triangles indicated.	93
3.4	Four configurations for triangle splitting.	94
3.5	Various light sources.	101
3.6	Pixels that form the best line segment between two points.	113
3.7	Pixel selection based on slope.	114
3.8	Deciding which line pixel to draw next.	115
3.9	Deciding which circle pixel to draw next.	118
3.10	Three configurations for clipped triangle.	135
3.11	Three configurations for clipped triangle.	137
4.1	A simple tree with one grouping node.	143
4.2	Examples of culled and unculled objects.	158
4.3	Examples of culled and unculled objects.	160
4.4	Projection of cylinder and frustum plane, no-cull case.	163
4.5	Projection of ellipsoid and frustum plane, no-cull case.	165
5.1	The three cases for clipping when $d_0 > 0$.	173
5.2	The three cases for clipping when $d_0 < 0$.	173
5.3	The two cases for clipping when $d_0 = 0$.	174
5.4	Typical separating axis for a line segment and a box.	176
5.5	Typical situations for a ray and a box.	178
5.6	Partitioning of a line by a capsule.	180
5.7	Partitioning of a line by a lozenge.	181

xxi

xxii List of Figures

7.1	Parameters: $\tau = 0$, $\gamma = 0$, $\beta = 0$.	273
7.2	Parameters: $\tau = 1$, $\gamma = 0$, $\beta = 0$.	273
7.3	Parameters: $\tau = 0$, $\gamma = 1$, $\beta = 0$.	274
7.4	Parameters: $\tau = 0$, $\gamma = 0$, $\beta = 1$.	274
7.5	Parameters: $\tau = -1$, $\gamma = 0$, $\beta = 0$.	275
7.6	Parameters: $\tau = 0$, $\gamma = -1$, $\beta = 0$.	275
7.7	Parameters: $\tau = 0$, $\gamma = 0$, $\beta = -1$.	276
7.8	Uniform subdivision of a curve.	277
7.9	Subdivision of a curve by arc length.	277
7.10	Subdivision of a curve by midpoint distance.	279
7.11	Subdivision of a curve by variation.	283
8.1	Polynomial coefficients for $n = 2$.	297
8.2	Polynomial coefficients for $n = 3$.	298
8.3	Polynomial coefficients for $n = 4$.	299
8.4	Subdivisions of parameter space for a rectangle patch.	307
8.5	Subdivision that contains cracking.	316
8.6	Subdivision that has no cracking.	317
8.7	Subdivision that contains more complicated cracking.	318
8.8	Partial subdivision with three subdividing edges.	318
8.9	Partial subdivision illustrating the parent's topological constraint.	319
8.10	Partial subdivision with two adjacent subdividing edges.	319
8.11	Partial subdivision illustrating the parent's topological constraint.	320
8.12	Partial subdivision with two opposing subdividing edges.	320
8.13	Partial subdivision with one subdividing edge.	320
8.14	Subdivision based on calculating information in adjacent block.	321
8.15	Subdivisions of parameter space for a triangle patch.	322
8.16	Subdivision of a triangle and the corresponding binary tree.	324
8.17	H-adjacency for triangles <i>A</i> and <i>B</i> .	325
8.18	H-adjacency for triangles <i>A</i> and <i>C</i> .	326
8.19	H-adjacency for triangles <i>A</i> and <i>D</i> .	326
8.20	Pattern for subdivision of a triangle.	327
8.21	Working set of vertices, edges, and triangles.	332
8.22	Subdivided triangle.	332
8.23	Possible orientations of adjacent triangle with central triangle.	336
8.24	Tessellation of parameter space for a tube surface.	339
9.1	A general linearly linked manipulator.	349

	••
List of Fi	gures XX11

10.1	Edge contraction.	363
11.1	A 5 \times 5 height field and quadtree representation.	371
11.2	The topology for a single block.	372
11.3	The seven distinct triangle configurations.	372
11.4	The smallest simplification and highest resolution for four sibling blocks.	373
11.5	A single block with nine vertices labeled and all eight triangles drawn.	374
11.6	Special case for optimization when $(D_x, D_y) = (1, 0)$.	379
11.7	Vertex dependencies for an even block (left) and an odd block (right).	382
11.8	Minimal triangulation after block-based simplification.	382
11.9	Triangulation after vertex dependencies are satisfied.	382
11.10	The upper-left block shows one set of dependents for the added vertex.	383
11.11	The left block is the configuration after block simplification.	384
11.12	Binary tree for the right block in Figure 11.11.	384
11.13	Adjacent triangles forming a nonconvex quadrilateral.	401
11.14	Adjacent Bézier triangle patches.	404
11.15	Control points in triangle subdivision.	405
11.16	The required coaffine subtriangles are shaded in gray.	406
11.17	Illustration for geometric relationships between the vertices.	407
12.1	Illustration of visibility through a portal.	414
12.2	Simple portal example.	416
12.3	L-shaped region in a portal system.	416
12.4	BSP tree partitioning \mathbb{R}^2 .	418
12.5	Two polygons that cannot be sorted.	421
12.6	One-dimensional BSP tree representing drawn pixels on a scan line.	424
13.1	Illustration of environment mapping.	429
A.1	Single-inheritance hierarchy.	445
A.2	Multiple-inheritance hierarchy.	448