גבול פונקציה - תרגילים נוספים2

תרגיל 1:

.יי: פונקציה המוגדרת ע"י: f(x)

$$f(x) = \lim_{n \to \infty} \frac{x^n}{3 + x^n}$$

חשבו את הביטויים הבאים:

$$f\left(1\right),\,f\left(-1\right),\,\lim_{x\rightarrow1^{-}}f\left(x\right),\,\lim_{x\rightarrow1^{+}}f\left(x\right),\,\lim_{x\rightarrow-1^{-}}f\left(x\right),\,\lim_{x\rightarrow-1^{+}}f\left(x\right)$$

פתרון:

$$f(1) = \lim_{n \to \infty} \frac{1^n}{3+1^n} = \frac{1}{4}$$

$$f(-1) = \lim_{n \to \infty} \frac{(-1)^n}{3+(-1)^n} = \lim_{n \to \infty} \begin{cases} \frac{1}{4}, & n = 2k \\ \frac{-1}{2}, & n = 2k+1 \end{cases}$$

לכן גבול זה אינו קיים.

לכל 0 < x = q < 1 לכל

$$\lim_{n \to \infty} \frac{q^n}{3 + q^n} = \frac{0}{3 + 0} = 0 \implies \lim_{x \to 1^-} f(x) = 0$$

לכל x=q>1 מתקיים:

$$\lim_{n\to\infty} \frac{q^n}{3+q^n} = \lim_{n\to\infty} \frac{1}{\frac{3}{a^n}+1} = \frac{1}{0+1} = 1 \implies \lim_{x\to 1^+} f(x) = 1$$

 $\lim_{n o \infty} rac{1}{q^n} = 0$ אבל איים, אבל ונשים לב ש מתקיים (נשים לב לכל x = q < -1):

$$\lim_{n\to\infty} \frac{q^n}{3+q^n} = \lim_{n\to\infty} \frac{1}{\frac{3}{a^n}+1} = \frac{1}{0+1} = 1 \implies \lim_{x\to -1^-} f(x) = 1$$

לכל 0 > x = q > -1 מתקיים:

$$\lim_{n \to \infty} \frac{q^n}{3 + q^n} = \frac{0}{3 + 0} = 0 \implies \lim_{x \to -1^+} f(x) = 0$$

1

אינפי 1 - תש"ף, סמסטר ב' - הקבצים של מדמון

תרגיל 2:

 $f(x)=a_n,\ \forall\, n-1< x\leq n$ ע"י: $f:(0,\infty)\longrightarrow \mathbb{R}$ תהי מדרה כלשהי, ונגדיר ונגדיר $\lim_{n\to\infty}a_n=L$ אם ורק אם $\lim_{x\to\infty}f(x)=L$ הוכיחו כי

פתרון:

ע"פ הגדרת הגבול, מתקיים:

$$\lim_{x\to\infty}f(x)=L\Longleftrightarrow\forall\epsilon>0,\ \exists X_0:\ \forall x>X_0,\ |f(x)-L|<\epsilon$$
 לכן בהינתן $a_n=f(x),\ x>X_0$ נבחר $N=[X_0]+1$ ואז לכל $N=[X_0]+1$ ולכן $\alpha_n-L=|f(x)-L|<\epsilon$ מעד שני, אם
$$|a_n-L|=|f(x)-L|<\epsilon$$
 מצד שני, אם $|a_n-L|=|f(x)-L|<\epsilon$ אז ע"פ ההגדרה: $|a_n-L|<\epsilon$ מקבל שאם $|a_n-L|<\epsilon$ אזי $|a_n-L|<\epsilon$ כאשר $|a_n-L|<\epsilon$ ולכן: $|a_n-L|<\epsilon$ ולכן: $|a_n-L|<\epsilon$

תרגיל 3:

 x_0 פונקציה המוגדרת בסביבת f

א. הראו כי אם לכל סדרה $\{x_n\}_{n=1}^\infty$ המתכנסת ל־ x_n קיים הגבול (אבל לא ידוע שזהו אותו לכל סדרה אבול סדרה $\lim_{x\to x_0}f(x)$), אזי קיים הגבול עבור כל סדרה אפשרית $\{x_n\}_{n=1}^\infty$), אזי קיים הגבול עבור כל סדרה אפשרית לידוע שזהו אותו

 $|f(x)-f(y)|<\epsilon$ אז $0<|y-x_0|<\delta$ ו־ $\delta>0$ רכל $\delta>0$ פך שאם $\delta>0$ כך שאם $\delta>0$ ו־ $\delta>0$ ו־ $\delta>0$ הוכיחו ע"י סעיף (א) כי קיים הגבול ו $\lim_{x\to x_0}f(x)$

פתרון:

a
eq b א. ניקח 2 סדרות , $\lim_{n o \infty} f(a_n) = a$, $\lim_{n o \infty} f(b_n) = b$, נסמן גסמן, $a_n, b_n \longrightarrow x_0$ ונניח בשלילה א. ניקח

נגדיר סדרה חדשה: $\lim_{n \to \infty} f(c_n) = c$ אזי על פי הנתון קיים $c_n = \begin{cases} a_n, & n=2k \\ b_n, & n=2k+1 \end{cases}$ אבל אם קיים גבול נגדיר סדרה חדשה:

a=b=c ולכן $f(c_{2k}),$ $f(c_{2k+1})\longrightarrow c$ של סדרה, אזי כל תתי־הסדרות שלה מתכנסות לאותו הגבול, ולכן $\lim_{n\to\infty}f(x_n)=c$ מתקיים כי x_0 מתקיים על פי משפט היינה, קיים $\lim_{n\to\infty}f(x)=c$ והוא שווה ל $\lim_{x\to x_0}f(x)$

 $0<|x_n-x_0|<\delta$ מתקיים $n,\,m>N$ מתקיים $n,\,m>N$ ב. תהי שואפת ל מאזי קיים אזי קיים און אזי קיים $|f(x_n)-f(x_m)|<\epsilon$ ולכן על פי הנתון $|f(x_n)-f(x_m)|<\epsilon$ ולכן על פי הנתון

לכן הסדרה $f(x_n)$ היא סדרת קושי, ולכן היא מתכנסת. קיבלנו כי עבור כל סדרה x_n ששואפת ל קיים הגבול ו $\lim_{x\to x_0}f(x)$ א, קיים הגבול שיים הגבול ולכן על פי סעיף א, קיים הגבול הגבול ולכן על פי סעיף א, קיים הגבול ולכן על פי סעיף א

אינפי 1 - תש"ף, סמסטר ב' - הקבצים של מדמון

תרגיל 4:

הוכיחו שהגבול הבא לא קיים

$$\lim_{x \to 0} \frac{[2\sin x]}{\sin x}$$

בשלוש דרכים שונות:

 $(\epsilon-\delta)$ על פי הגדרת קושי

ב) על הגדרת היינה (סדרות).

ג) ע"י גבולות חד־צדדיים.

פתרון:

אינו גבול של הביטוי הנתון. מספר כלשהו, נוכיח ע"פ הגדרת קושי שהוא אינו גבול של הביטוי הנתון. א

(ולכן: $|\sin x| < 1 \Longleftrightarrow |\sin x| < \frac{1}{2}$ של אפס שבה אזי קיימת אזי קיימת אזי אזי אזי אזי שבה אזי מכיוון ש

$$\forall x \in (0, \delta_0), [2\sin x] = 0; \forall x \in (-\delta_0, 0), [2\sin x] = -1$$

לכן עבור $x_1\in(0,\delta_1)$ ו $x_1\in(-\delta_1,0)$ ואז עבור $\delta_1=\min\{\delta,\delta_0\}$ נסמן $\delta>0$ נקבל כי: $\epsilon_0=\frac{1}{4}$ ואז עבור

$$f(x_1), f(x_2) \in \left(L - \frac{1}{4}, L + \frac{1}{4}\right) \Longrightarrow -1, 0 \in \left(L - \frac{1}{4}, L + \frac{1}{4}\right)$$

. $\frac{1}{2}$ אורך בקטע באורך לא יכולים שווה ל ל לא יכולים שהמרחק באורך שהמרחק היות סתירה כי שני מספרים המרחק ביניהם דואת

:בסדרה מתקיים , $a_n=\frac{(-1)^n}{n}$ בסדרה מתקיים (ב

$$f(a_{2n}) = \frac{\left[2\sin\frac{1}{2n}\right]}{\sin\frac{1}{2n}} \xrightarrow{n \to \infty} 0, \quad f(a_{2n+1}) = \frac{\left[2\sin\frac{-1}{2n+1}\right]}{\sin\frac{-1}{2n+1}} \xrightarrow{n \to \infty} -1$$

לכן לא קיים הגבול:

$$\lim_{n\to\infty}f\left(a_n\right)$$

ולכן ע"פ היינה לא קיים הגבול:

$$\lim_{x \to 0} \frac{[2\sin x]}{\sin x}$$

ג) לפי סעיף א:

$$\lim_{x \to 0+} \frac{[2\sin x]}{\sin x} = 0 \neq -1 = \lim_{x \to 0-} \frac{[2\sin x]}{\sin x}$$

לכן שני הגבולות החד־צדדיים לא שווים ולכן אין גבול בנקודה אפס עצמה.