MLDS HW3-2

TAs

b05902013@csie.ntu.edu.tw b05902127@csie.ntu.edu.tw

Baseline Model (5/15 Update)

Generator

- noise_input = (100,);
- o text_input = (119,);
- # num of (hair, eyes) pairs
- text_emb = Dense(256,'relu')(text_input);
- concatenate([noise_input, text_emb]);
- Dense(4*4*512); Reshape((4, 4, 512));
- Batchnorm(mom=0.9); Relu;
- Conv2DTranspose(256, kernel=5);
- Batchnorm(mom=0.9); Relu;
- Conv2DTranspose(128, kernel=5);
- Batchnorm(mom=0.9); Relu;
- Conv2DTranspose(64, kernel=5);
- Batchnorm(mom=0.9); Relu;
- Conv2DTranspose(3, kernel=5);
- Tanh;

Training

 \circ Adam(lr = 0.0002, beta = 0.5)

Discriminator

- o image_input = (64,64,3);
- o text_input = (119,);
- text_emb = Dense(256,'relu')(text_input);
- o text_emb = Reshape((1,1,256))(text_emb);
- tiled_emb = tile(text_emb, [1,4,4,1]);
- Conv2D(64 ,kernel=5)(image_input); LeakyRelu;
- Conv2D(128, kernel=5);
- Batchnorm(mom=0.9); LeakyRelu;
- Conv2D(256, kernel=5);
- Batchnorm(mom=0.9); LeakyReLu;
- Conv2D(512, kernel=5);
- Batchnorm(mom=0.9);
- image_feat = LeakyRelu;
- concatenate([image_feat, tiled_emb]);
- Conv2D(512, kernel=1, strides=(1,1));
- Flatten;
- Dense(1, 'sigmoid');

Outline

- Timeline
- Task Descriptions
- Model & Training tips
- Submission & Rules
- **Q&A**

Timeline

Three Parts in HW3

- (3-1) Image Generation
- (3-2) Text-to-Image Generation
- (3-3) Style Transfer

Schedule

- 4/30 or 5/4:
 - Release HW3-1
- 5/7 or 5/11:
 - Present HW 3-1
 - o Release HW 3-2, HW 3-3
- 5/14 or 5/18 : Break
- 5/21 or 5/25:
 - o Present HW 3-2, HW 3-3

Task Descriptions

HW3-2: Text-to-Image Generation 1/2

an all black bird **Generative Model** this flower is **Flower** white and pink

Generative Model

HW3-2: Text-to-Image Generation 2/2

Data Collections 1/2

Anime dataset

Tags ? aikatsu! 98 ? hikami sumire 9 ? hiten goane ryu 64 ? clouds 7859 ? flowers 9334 ? leaves 1778 ? long hair 54717 ? purple eyes 10468 ? purple hair 8210 ? rainbow 302 ? sky 9537 ? twintails 18309 ? umbrella 2239 ? water 9675 ? wet 5730

http://konachan.net/post/show/239400/aikatsu-clouds-flowers-hikami_s umire-hiten_goane_r

感謝樊恩宇助教蒐集data

Data Collections 2/2

Extra data

Model & Training Tips

Conditional GAN

Conditional GAN for Text-to-Image Generation 1/2

ref: https://arxiv.org/pdf/1605.05396.pdf

Conditional GAN for Text-to-Image Generation 2/2

ref: https://arxiv.org/pdf/1605.05396.pdf

Tip for Training

- Discriminator Output:
 - (real image, right text): 1
 - (fake image, right text): 0
 - (wrong image, right text): 0
- Different objective function
 - Wasserstein GAN (WGAN)
 - Improved WGAN (WGAN-GP)
 - Auxiliary Classifier GAN (ACGAN)
 - StackGAN

ACGAN 1/2

Discriminator should also be able to do a classification task.

$$L_{D,Q}^{ACGAN} = L_{D}^{GAN} + E[P(class = c|x)] + E[P(class = c|G(z))]$$

$$L_{G}^{ACGAN} = L_{G}^{GAN} + E[P(class = c|G(z))]$$

ACGAN 2/2

$$L_S = E[\log P(S = real \mid X_{real})] + E[\log P(S = fake \mid X_{fake})]$$

$$L_C = E[\log P(C = c \mid X_{real})] + E[\log P(C = c \mid X_{fake})]$$

D is trained to maximize $\mathbf{L_s} + \mathbf{L_c}$ while **G** is trained to maximize $\mathbf{L_c} - \mathbf{L_s}$

ref:https://arxiv.org/pdf/1610.09585.pdf

StackGAN

Figure 2. The architecture of the proposed StackGAN. The Stage-I generator draws a low-resolution image by sketching rough shape and basic colors of the object from the given text and painting the background from a random noise vector. Conditioned on Stage-I results, the Stage-II generator corrects defects and adds compelling details into Stage-I results, yielding a more realistic high-resolution image.

ref:https://arxiv.org/pdf/1612.03242.pdf

Progressive GAN

Generator

Discriminator

Little Results

input text: black hair blue eyes

input text: pink hair green eyes

input text: green hair green eyes

input text: blue hair red eyes

GAN result

input text: black hair blue eyes

input text: pink hair green eyes

input text: green hair green eyes

input text: blue hair red eyes

WGAN-GP result

Little Results

Submission & Grading

Data & format

- Anime Dataset
 - o training data: 33.4k (image, tags) pair
 - faces/, tags.csv, testing_tags.txt
- training tags file format
 - img_id <comma> tag1 <colon> #_post <tab> tag2 <colon> #_post

tags.csv

- testing text file format
 - testing_text_id <comma> testing_text
 - testing text only includes 'color hair' and 'color eyes', only alphabetic char involved.

Testing Text Content

'color hair'

'orange hair', 'white hair', 'aqua hair', 'gray hair',
 'green hair', 'red hair', 'purple hair', 'pink hair',
 'blue hair', 'black hair', 'brown hair', 'blonde hair'.

'color eyes'

'gray eyes', 'black eyes', 'orange eyes',
'pink eyes', 'yellow eyes', 'aqua eyes', 'purple eyes',
'green eyes', 'brown eyes', 'red eyes', 'blue eyes'.

Data & format

Extra data

- o training data: 36.7k (image, tags) pair
- images/, tags.csv

training tags file format

- img_id <comma> hair tag <space> eyes tag
- tags in extra data only includes 'color hair' and 'color eyes'

black eyes red hair

```
1 0,aqua hair aqua eyes2 1,aqua hair aqua eyes3 2,aqua hair aqua eyes4 3,aqua hair aqua eyes5 4,aqua hair aqua eyes
```

tags.csv

Extra Data & format (2019 Spring Update)

Raw data

- all_data.zip, all_tags.csv (~25.6GB)
- tags是用|分隔的, 意義如下
- id | hair_style | smile | hat | eyes color | hair color | dark skin | blush | glasses
- image是 512 x 512 的人臉照

Processed + Selected data

- tag.npy, large_image.npy (~1.9GB)
- tag是120維的one hot, 詳細資訊請於const.py查看。
- large_image是個128 x 128的人臉照, 並且有 crop過。
- 你們可以自己用把 120維的one-hot壓成 22維tag, 並討論結果會怎麼樣。
 - (共12種髮色, 10種瞳色), 與之前的dataset一樣。
- 如果要壓成 64 x 64, 可以自己resize。
- Raw data tag很髒!如要做cGAN可以自己處理一下dataset。
- Processed data的 tag是有做小小的處理該篩選的,雖然好很多但也有點小髒。

Raw data

Crop data

testing_tags

- 以下這五個tag個產生5張當做你的結果。
 - o pink hair black eyes
 - black hair purple eyes
 - ored hair red eyes
 - aqua hair green eyes
 - blonde hair orange eyes

Data Link

- Anime Dataset
- Extra Data
- Crypko.ai Data

HW3 Grading Policy:

- HW3-1 Passing baseline, Experiment of tips
- HW3-2 Generate testing_tags image

HW3-2 Report Questions

- Model Description
 - Describe the models you use to, including the model architecture, objective function for G and D.
- Experiment settings and observation
 - Show generated images
- 嘗試把WGAN, WGAN-GP, LSGAN等loss funcion設計的精神融入cGAN/ACGAN/stack GAN等,並討論其是否成功,或嘗試解釋你的設計為什麼合邏輯。
 - 例如WGAN-GP的設計直接套用cGAN, 那麼tag呢?
 - 例如LSGAN的設計套到ACGAN的synthesis score, 合理嘛?那麼classify 的score呢?
 - 例如WGAN有辦法和ACGAN做結合嘛?

Output Format Requirement

- We recommend that each generated image resized to at least 64 x 64
- Generate 25 image into one png
 - sample code is in baseline.py
 - 為防止同學產生的圖片不一致,請同學使用baseline.py裡的**save_imgs()**
- 放在report或討論的時候, 請先用64 x 64做好baseline。之後你可以嘗試 generate更大的image size, 並討論你怎麼改或選擇model的, 還有中間所遇到 的困難(例如比較難train, 或是有diminished gradient發生之類的)。(Optional)
- 只需要放圖片在report or slide 即可, 不用reproduce。

Q&A

b05902013@csie.ntu.edu.tw b05902127@csie.ntu.edu.tw