

Weather Station WS-3000 Proble - Pinout

Determine Wind Speed

Waveform of 70:

No wind: (v) (s)

Has wind:

Wind speed.

$$\Delta t_1: 0,667 \cdot \frac{4}{4} = 0,667 \ (m/s)$$

$$\Delta t_2: 0,667 \cdot \frac{2}{5} = 0,2668 \ (m/s)$$

Determine wind direction

The equation of output Y, is:

$$Y_{4} = \frac{VR \cdot 10^{3}}{10 \cdot 10^{3} + VR \cdot 10^{3}} \cdot 3,3 \quad (V)$$

$$Y_{4} = \frac{VR}{10 + VR} \cdot 3,3 \quad (V) = \frac{VR}{10 + VR} \cdot 1024 \quad (ADC's unit)$$

Based on the datasheet of WS-3000, we can call Yn corresponding to each angle. Suppose that ADC in ESP32 has ADC's resolution is 10bits. Hence:

Angle R(K.n.)
$$\frac{7}{1}$$
 (mV) $ADC (=\frac{7}{3,3} \cdot 1023)$
0 33 2532 786
22,5 6,57 1308 406
45 8,2 1487 461
67,5 0,891 270 89 $\frac{7}{8}$ $\Delta = 9$ $ADC's$ unif

			D = 28 ADCs unit
112,5	0,638	212	65 🖟
135	2,2	595	185
157,5	1,41	407	126
180	3,9	926	187
202,5	3,14	789	244
225	16	2030	670
297,5	14,12	1931	5 99
270	120	3046	945
292,5	42,12	2666	827
315	64, 9	2859	287
337,5	21,8	2262	702
			1 (AD(sunit) = 0,0032238 (V)
			= 3,23 (mV)

Since, a number of ADC's unit between 67.5° and 90° is the most minimum in the table. Thus, the accepted accuracy in ADC's unit is ± 4 (\pm 13 mV)