Ejercitario 2: Números Difusos y su Aritmética

Responde a las preguntas de abajo utilizando este mismo notebook. Recuerda de seguir las instrucciones de envío que están en la plataforma Educa.

Ejercicio 1. Escribe una expresión para la función de membresía y los cortes alfa en forma intervalar para un número difuso triangular $tfn(\bar{x}, e_1, e_2)$. Utiliza este resultado para:

- 1. Calcular los cortes alfa en forma intervalar del número tfn(2,4,5).
- 2. Calcular la función de membresía del número tfn(2,4,5).
- 3. Presenta un dibujo de tfn(2, 4, 5).

Respuestas:

(i) Calcular los cortes alfa en forma intervalar del número tfn(2,4,5).

```
In [1]: x,y=SR.var('x,y') #indicamos que x e y son variables
ec_izquierda = y==1+(x-2)/4 #ecuación de la izquierda
ec_izquierda = solve(ec_izquierda,x) #despejamos y
ec_derecha = y==1-(x-2)/5 #ecuación de la derecha
ec_derecha = solve(ec_derecha,x) #despejamos y
```

Tenemos así que el extremo izquierdo del corte alfa está dado por la siguiente ecuación:

```
In [2]: ec_izquierda[0]
Out[2]: x == 4*y - 2
```

El corte alfa del lado derecho está dado por la siguiente ecuación:

```
In [3]: ec_derecha[0]
Out[3]: x == -5*y + 7
```

En resumen tenemos que ${}^{\alpha}A=[4\alpha-2,-5\alpha+7].$

(ii) Calcular la función de membresía del número tfn(2,4,5).

$$\operatorname{tfn}(\bar{x},e_l,e_r)$$

$$A(x) = egin{cases} 0, & ext{si } x \leq \overline{x} - e_l, \ 1 + (x - \overline{x})/e_l, & ext{si } \overline{x} - e_l < x < \overline{x}, \ 1 - (x - \overline{x})/e_r, & ext{si } \overline{x} \leq x < \overline{x} + e_r, \ 0, & ext{si } x \geq \overline{x} + e_r. \end{cases}$$

tfn(2, 4, 5)

$$A(x) = egin{cases} 0, & ext{si } x \leq -2, \ 1 + (x-2)/4, & ext{si } -2 < x < 2, \ 1 - (x-2)/5, & ext{si } 2 \leq x < 7, \ 0, & ext{si } x \geq 7. \end{cases}$$

(iii) Presenta un dibujo de tfn(2, 4, 5).

In [3]:
$$f1(x)=1 + (x - 2)/4$$

$$f2(x)=1 - (x - 2)/5$$

$$plot(f1,(x,-2,2),legend_label='lado izquierdo')+plot(f2,(x,2,7),color='green', legend_label='lado derecho')$$

Ejercicio 2. Dado el número difuso exponencial A = efn(2, 0.5, 1, 0.4).

- 1. Escribe su función de membresía.
- 2. Encuentra una expresión intervalar para los cortes alfa.
- 3. Encuentra una expresión intervalar para los cortes alfa de A^2 .
- 4. Dibuja A y A^2 en una misma gráfica para compararlos.

Respuestas:

(i) Escribe su función de membresía.

$$\operatorname{efn}(\overline{x}, \tau_l, \tau_r, a)$$

$$E(x) = egin{cases} 0, & ext{si } x < \overline{x} - a au_l, \ exp[(x-\overline{x})/ au_l], & ext{si } \overline{x} - a au_l \le x < \overline{x}, \ exp[(\overline{x}-x)/ au_r], & ext{si } \overline{x} \le x < \overline{x} + a au_r, \ 0, & ext{si } \overline{x} + a au_r \le x. \end{cases}$$

$$E(x) = egin{cases} 0, & ext{si } x < 1.8, \ exp[(x-2)/0.5], & ext{si } 1.8 \leq x < 2, \ exp[(2-x)/1], & ext{si } 2 \leq x < 2.4, \ 0, & ext{si } 2.4 \leq x. \end{cases}$$

(ii) Encuentra una expresión intervalar para los cortes alfa.

```
In [4]: x,y=SR.var('x,y') #indicamos que x e y son variables
ec_izquierda = y==exp((x-2)/0.5) #ecuación de la izquierda
ec_izquierda = solve(ec_izquierda,x) #despejamos y
ec_derecha = y==exp((2-x)/1) #ecuación de la derecha
ec_derecha = solve(ec_derecha,x) #despejamos y
```

Tenemos así que el extremo izquierdo del corte alfa está dado por la siguiente ecuación:

```
In [5]: ec_izquierda[0]
Out[5]: x == 1/2*log(y) + 2
```

El corte alfa del lado derecho está dado por la siguiente ecuación:

```
In [6]: ec_derecha[0]
Out[6]: x == -log(y) + 2
```

En resumen tenemos que ${}^{\alpha}A = [1/2 \cdot log(\alpha) + 2, -log(\alpha) + 2].$

(iii) Encuentra una expresión intervalar para los cortes alfa de A^2 .

La multiplicación de $A \cdot A$ esta dada por

$$egin{aligned} {}^{lpha}\!(A\cdot A) &= {}^{lpha}\!A\cdot{}^{lpha}\!A \ &= [1/2\cdot log(lpha) + 2, -log(lpha) + 2]\cdot [1/2\cdot log(lpha) + 2, -log(lpha) + 2] \ &= [\min((1/2\cdot log(lpha) + 2)(1/2\cdot log(lpha) + 2), (1/2\cdot log(lpha) + 2)(-log(lpha) + 2), (-log(lpha) + 2)), \max((1/2\cdot log(lpha) + 2)(1/2\cdot log(lpha) + 2), (1/2\cdot log(lpha) + 2) \ &\quad (-log(lpha) + 2)(-log(lpha) + 2))]. \end{aligned}$$

Aquí se utilizó la regla de multiplicación de intervalos.

Podemos simplificar el intervalo del corte alfa como sigue. Primero definimos funciones simbólicas.

```
In [7]: var('y')
    a1=1/2*log(y)+2; a2=-log(y)+2; b1=1/2*log(y)+2; b2=-log(y)+2
    c1(y)=min_symbolic(a1*b1,a1*b2,a2*b1,a2*b2)
    c2(y)=max_symbolic(a1*b1,a1*b2,a2*b1,a2*b2)

In [8]: c1(y).full_simplify()

Out[8]: min(log(y)^2 - 4*log(y) + 4, 1/4*log(y)^2 + 2*log(y) + 4, -1/2*log(y)^2 - log
    (y) + 4)

In [9]: c2(y).full_simplify()

Out[9]: max(-1/2*log(y)^2 - log(y) + 4, 1/4*log(y)^2 + 2*log(y) + 4, log(y)^2 - 4*log
    (y) + 4)
```

(iv) Dibuja A y A^2 en una misma gráfica para compararlos.

Ejercicio 3. Escribe una expresión para la función de membresía y los cortes alfa para un número difuso cuadrático $qfn(\bar{x}, \beta_l, \beta_r)$ en forma general. Utiliza este resultado para:

- 1. Calcular los cortes alfa en forma intervalar del número $qfn(\bar{x}, \beta_l, \beta_r)$.
- 2. Calcular la función de membresía del número $qfn(\bar{x}, \beta_l, \beta_r)$.
- 3. Presenta un dibujo de qfn(1, 5, 2).

Respuestas:

(i) Calcular los cortes alfa en forma intervalar del número $\mathrm{qfn}(\bar{x}, eta_l, eta_r)$.

```
In [11]: x,y,z,l,r=SR.var('x,y,z,l,r') #indicamos cuales son las variables
ec_izquierda = y==1-(x-z)^2/l^2 #ecuación de la izquierda
ec_izquierda = solve(ec_izquierda,x) #despejamos y
ec_derecha = y==1-(x-z)^2/r^2 #ecuación de la derecha
ec_derecha = solve(ec_derecha,x) #despejamos y
```

Tenemos así que el extremo izquierdo del corte alfa está dado por la siguiente ecuación:

```
In [12]: ec_izquierda[0]
Out[12]: x == -l*sqrt(-y + 1) + z
```

El corte alfa del lado derecho está dado por la siguiente ecuación:

```
In [13]: ec_derecha[0]
Out[13]: x == -r*sqrt(-y + 1) + z
```

En resumen tenemos que ${}^{\alpha}A=[-\beta_l\cdot\sqrt{-\alpha+1}+\overline{x},-\beta_r\cdot\sqrt{-\alpha+1}+\overline{x}].$

(ii) Calcular la función de membresía del número $\mathrm{qfn}(\bar{x}, eta_l, eta_r)$.

$$qfn(\bar{x},\beta_l,\beta_r)$$

$$Q(x) = egin{cases} 0, & ext{si } x \leq \overline{x} - eta_l, \ 1 - (x - \overline{x})^2/eta_l^2, & ext{si } \overline{x} - eta_l < x < \overline{x}, \ 1 - (x - \overline{x})^2/eta_r^2, & ext{si } \overline{x} \leq x < \overline{x} + eta_r, \ 0, & ext{si } x \geq \overline{x} + eta_r. \end{cases}$$

(iii) Presenta un dibujo de qfn(1, 5, 2).

Ejercicio 4. Para este ejercicio lee la definición de un número difuso L-R (Def.4.12, p.59) en el libro de texto de Bede (2013). Considera el número L-R dado por $L(x)=R(x)=x^2$. Sean $a_1^-=a_1^+=1$ y $\underline{a}=1$, $\overline{a}=2$, respectivamente.

- 1. Escribe la función de membresía del número.
- 2. Demuestra que sus cortes alfa están dados por $A_{lpha}=[\sqrt{r},3-2\sqrt{r}].$
- 3. Grafica el número.

Respuestas:

(i) Escribe la función de membresía del número.

$$u(x) = (a_0^-, a_1^-, a_1^+, a_0^+)_{L,R} \ u(x) = egin{cases} 0, & ext{si } x < a_0^-, \ L(rac{x-a_0^-}{a_1^--a_0^-}), & ext{si } a_0^- \leq x < a_1^-, \ 1, & ext{si } a_1^- \leq x < a_1^+, \ R(rac{a_0^+-x}{a_0^+-a_1^+}), & ext{si } a_1^+ \leq x < a_0^+, \ 0, & ext{si } a_0^+ \leq x. \end{cases}$$

Luego, sabemos que:

$$egin{aligned} &\underline{a} = a_1^- - a_0^- \Rightarrow 1 = 1 - a_0^- \Rightarrow a_0^- = 0 \ &\overline{a} = a_0^+ - a_1^+ \Rightarrow 2 = a_0^+ - 1 \Rightarrow a_0^+ = 3 \ &u(x) = (0,1,1,3)_{L,R} \ &u(x) = egin{cases} 0, & ext{si } x < 0, \ (x)^2, & ext{si } 0 \leq x < 1, \ 1, & ext{si } 1 \leq x < 1, \ (rac{3-x}{2})^2, & ext{si } 1 \leq x < 3, \ 0 & ext{si } 2 \leq x \end{aligned}$$

(ii) Demuestra que sus cortes alfa están dados por $A_lpha = [\sqrt{r}, 3-2\sqrt{r}]$.

```
In [14]: x,y=SR.var('x,y') #indicamos que x e y son variables
    ec_izquierda = y==x^2 #ecuación de la izquierda
    ec_izquierda = solve(ec_izquierda,x) #despejamos y
    ec_derecha = y==((3-x)/2)^2 #ecuación de la derecha
    ec_derecha = solve(ec_derecha,x) #despejamos y
```

Tenemos así que el extremo izquierdo del corte alfa está dado por la siguiente ecuación:

```
In [15]: ec_izquierda[0]
Out[15]: x == -sqrt(y)
```

El corte alfa del lado derecho está dado por la siguiente ecuación:

```
In [16]: ec_derecha[0]
Out[16]: x == -2*sqrt(y) + 3
```

En resumen tenemos que ${}^{\alpha}A=[\sqrt{\alpha},3-2\sqrt{\alpha}].$

(iii) Grafica el número.

Ejercicio 5. Para este ejercicio lee la definición de número difuso L-R (Def.4.12, p.59) en el libro de texto de Bede (2013). Demostrar que si u es un número difuso L-R, entonces sus cortes alfa están dados por $u_{\alpha}=[a_0^-+L^{-1}(\alpha)\underline{a},a_0^+-R^{-1}(\alpha)\overline{a}].$

Respuestas:

Teniendo en cuenta que:

$$u(x) = egin{cases} 0, & ext{si } x < a_0^-, \ L(rac{x-a_0^-}{a_1^--a_0^-}), & ext{si } a_0^- \leq x < a_1^-, \ 1, & ext{si } a_1^- \leq x < a_1^+, \ R(rac{a_0^+-x}{a_0^+-a_1^+}), & ext{si } a_1^+ \leq x < a_0^+, \ 0, & ext{si } a_0^+ \leq x. \end{cases}$$

$$\underline{a}=a_1^--a_0^-$$
 y $\overline{a}=a_0^+-a_1^+$

Podemos demostrar lo siguiente:

$$egin{aligned} lpha &= L(rac{x-a_0^-}{\underline{a}}) \Rightarrow rac{x-a_0^-}{\underline{a}} = L^{-1}(lpha) \Rightarrow x = a_0^- + L^{-1}(lpha) \underline{a} \ & \ lpha &= R(rac{a_0^+ - x}{\overline{a}}) \Rightarrow rac{a_0^+ - x}{\overline{a}} = R^{-1}(lpha) \Rightarrow x = a_0^+ - R^{-1}(lpha) \overline{a} \end{aligned}$$

Finalmente, los cortes alfa están dados por $u_lpha=[a_0^-+L^{-1}(lpha)\underline{a},a_0^+-R^{-1}(lpha)\overline{a}].$

Ejercicio 6. Sea $L(x)=R(x)=x^a$, con a>0. Escribe la función de membresía y los cortes alfa en forma intervalar de los números L-R basados en estas funciones.

Respuestas:

(i) Función de membresía:

$$u(x) = egin{cases} 0, & ext{si } x < a_0^-, \ (rac{x - a_0^-}{a})^a, & ext{si } a_0^- \leq x < a_1^-, \ 1, & ext{si } a_1^- \leq x < a_1^+, \ (rac{a_0^+ - x}{\overline{a}})^a, & ext{si } a_1^+ \leq x < a_0^+, \ 0, & ext{si } a_0^+ \leq x. \end{cases}$$

(ii) Los cortes alfa en forma intervalar de los números L-R basados en estas funciones:

$$egin{aligned} lpha &= L[(rac{x-a_0^-}{a})^a] \Rightarrow (rac{x-a_0^-}{a})^a = L^{-1}(lpha) \Rightarrow (rac{x-a_0^-}{a}) = (lpha)^{rac{1}{a}} \Rightarrow x = a_0^- + (lpha)^{rac{1}{a}} &= lpha \end{aligned} \ egin{aligned} lpha &= R[(rac{a_0^+-x}{\overline{a}})^a] \Rightarrow (rac{a_0^+-x}{\overline{a}})^a = R^{-1}(lpha) \Rightarrow (rac{a_0^+-x}{\overline{a}}) = (lpha)^{rac{1}{a}} \Rightarrow x = a_0^+ - (lpha)^{rac{1}{a}} &= lpha \end{aligned}$$

Finalmente, los cortes alfa están dados por $u_lpha=[a_0^-+(lpha)^{rac{1}{a}}\underline{a},a_0^+-(lpha)^{rac{1}{a}}\overline{a}]$

Ejercicio 7. Sea $u=\mathrm{trfn}(2,5,6,7)$ un número difuso trapezoidal y $v=\mathrm{tfn}(1,4,5)$ un número difuso triangular. Dibuja u y v y calcula la función de membresía de:

- 1. u + v.
- 2. u v.
- 3. -2u + v.
- 4. u u.
- 5. 2v v.
- 6. Dibuja cada resultado uno encima de otro, en una misma gráfica.

Respuestas:

$$u = \text{trfn}(2, 5, 6, 7)$$

$$v = tfn(1, 4, 5) = tfn(\bar{x}, e_l, e_r)$$

$$v = \operatorname{trfn}(\bar{x} - e_l, \bar{x}, \bar{x}, \bar{x} + e_r) = \operatorname{trfn}(1 - 4, 1, 1, 1 + 5) = \operatorname{trfn}(-3, 1, 1, 6)$$

Se puede representar un número difuso trapezoidal u por el cuádruple $(a,b,c,d) \in \mathbb{R}^4, a \leq b \leq c \leq d,$

$$u(x) = egin{cases} 0, & ext{si } x < a, \ rac{x-a}{b-a}, & ext{si } a \leq x < b, \ 1, & ext{si } b \leq x < c, \ rac{d-x}{d-c}, & ext{si } c \leq x < d, \ 0, & ext{si } d \leq x. \end{cases}$$

```
In [4]: # u
f1(x)=(x - 2)/ 3
f2(x)=(7 - x)/ 1

# v
f3(x)=(x + 3)/ 4
f4(x)=(6 - x)/ 5

plot(f1,(x,2,5),color='green',legend_label='u')+plot(1,(x,5,6),color='green')+
plot(f2,(x,6,7),color='green')+plot(f3,(x,-3,1),color='blue',legend_label='v')
+plot(f4,(x,1,6),color='blue')
```


(i)
$$u+v$$
.

$$u + v = \operatorname{trfn}(2, 5, 6, 7) + \operatorname{trfn}(-3, 1, 1, 6)$$

 $u + v = \operatorname{trfn}(2 + (-3), 5 + 1, 6 + 1, 7 + 6)$
 $u + v = \operatorname{trfn}(-1, 6, 7, 13)$

$$u+v(x) = \left\{ egin{array}{ll} 0, & ext{si } x < -1, \ rac{x+1}{7}, & ext{si } -1 \leq x < 6, \ 1, & ext{si } 6 \leq x < 7, \ rac{13-x}{6}, & ext{si } 7 \leq x < 13, \ 0, & ext{si } 13 \leq x. \end{array}
ight.$$

(ii) u-v.

$$u-v = \operatorname{trfn}(2,5,6,7) - \operatorname{trfn}(-3,1,1,6)$$

 $u-v = \operatorname{trfn}(2-6,5-1,6-1,7-(-3))$
 $u-v = \operatorname{trfn}(-4,4,5,10)$

$$u-v(x) = \left\{ egin{array}{ll} 0, & ext{si } x < -4, \ rac{x+4}{8}, & ext{si } -4 \leq x < 4, \ 1, & ext{si } 4 \leq x < 5, \ rac{10-x}{5}, & ext{si } 5 \leq x < 10, \ 0, & ext{si } 10 \leq x. \end{array}
ight.$$

(iii)
$$-2u + v$$
.

$$-2u + v = -2(\operatorname{trfn}(2, 5, 6, 7)) + \operatorname{trfn}(-3, 1, 1, 6)$$
 $-2u + v = \operatorname{trfn}(-14, -12, -10, -4) + \operatorname{trfn}(-3, 1, 1, 6)$
 $-2u + v = \operatorname{trfn}(-14 + (-3), -12 + 1, -10 + 1, -4 + 6)$
 $-2u + v = \operatorname{trfn}(-17, -11, -9, 2)$

$$-2u+v(x) = egin{cases} 0, & ext{si } x < -17, \ rac{x+17}{6}, & ext{si } -17 \le x < -11, \ 1, & ext{si } -11 \le x < -9, \ rac{2-x}{11}, & ext{si } -9 \le x < 2, \ 0, & ext{si } 2 \le x. \end{cases}$$

(iv)
$$u-u$$
.

$$u - u = \operatorname{trfn}(2, 5, 6, 7) - \operatorname{trfn}(2, 5, 6, 7)$$

 $u - u = \operatorname{trfn}(2 - 7, 5 - 6, 6 - 5, 7 - 2)$
 $u - u = \operatorname{trfn}(-5, -1, 1, 5)$

$$u-u(x) = \left\{ egin{array}{ll} 0, & ext{si } x < -5, \ rac{x+5}{4}, & ext{si } -5 \leq x < -1, \ 1, & ext{si } -1 \leq x < 1, \ rac{5-x}{4}, & ext{si } 1 \leq x < 5, \ 0, & ext{si } 5 \leq x. \end{array}
ight.$$

(v)
$$2v - v$$
.

$$2v - v = 2(\operatorname{trfn}(-3, 1, 1, 6)) - \operatorname{trfn}(-3, 1, 1, 6)$$

 $2v - v = \operatorname{trfn}(-6, 2, 2, 12) - \operatorname{trfn}(-3, 1, 1, 6)$
 $2v - v = \operatorname{trfn}(-6 - 6, 2 - 1, 2 - 1, 12 - (-3))$
 $2v - v = \operatorname{trfn}(-12, 1, 1, 15)$

$$2v-v(x) = \left\{ egin{array}{ll} 0, & ext{si } x < -12, \ rac{x+12}{13}, & ext{si } -12 \leq x < 1, \ 1, & ext{si } 1 \leq x < 1, \ rac{15-x}{14}, & ext{si } 1 \leq x < 15, \ 0, & ext{si } 15 \leq x. \end{array}
ight.$$

(vi) Dibuja cada resultado uno encima de otro, en una misma gráfica.

Out[11]:

```
In [11]:
         \# u + v
         f1(x)=(x + 1)/7
         f2(x)=(13 - x)/6
         # u - v
         f3(x)=(x + 4)/8
         f4(x)=(10 - x)/5
         \# -2u + v
         f5(x)=(x + 17)/6
         f6(x)=(2 - x)/11
         # u - u
         f7(x)=(x + 5)/4
         f8(x)=(5 - x)/4
         # 2v - v
         f9(x)=(x + 12)/13
         f10(x)=(15 - x)/14
         plot(f1,(x,-1,6),color='green',legend_label='u+v')+plot(1,(x,6,7),color='gree
         n')+plot(f2,(x,7,13),color='green')+plot(f3,(x,-4,4),color='blue',legend_label
         ='u-v')+plot(1,(x,4,5),color='blue')+plot(f4,(x,5,10),color='blue')+plot(f5,
         (x,-17,-11), color='orange', legend_label='-2u+v')+plot(1,(x,-11,-9),color='orange')
         ge')+plot(f6,(x,-9,2),color='orange')+plot(f7,(x,-5,-1),color='red',legend_lab)
         el='u-u')+plot(1,(x,-1,1),color='red')+plot(f8,(x,1,5),color='red')+plot(f9,
         (x,-12,1), color='yellow', legend_label='2v-v')+plot(f10,(x,1,15), color='yello
         w')
```


5

10

-5

-10

-15

15

-u+v

Ejercicio 8. Demuestra las propiedades de abajo.

- 1. Para cualquier número difuso u y cualquier $a,b\in\mathbb{R}$, con $a\cdot b\geq 0$, se cumple $(a+b)\cdot u=(a\cdot u)+(b\cdot u).$
- 2. Para cualquier $\lambda \in \mathbb{R}$ y cualesquiera números difusos u,v, se cumple $\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v$.
- 3. Para cualquier $\lambda, \mu \in \mathbb{R}$ y cualquier número difuso u, se cumple $(\lambda \cdot \mu) \cdot u = \lambda \cdot (\mu \cdot u)$.

Respuestas:

La suma de dos números difusos u+v y la multiplicación entre un real y un número difuso $\lambda \cdot u$ podemos definirlas como:

$$(u+v)(x) = u(x) + v(x),$$

 $(\lambda \cdot u)(x) = \lambda \cdot u(x)$

(i)
$$(a+b) \cdot u = (a \cdot u) + (b \cdot u)$$
.

$$(a+b)\cdot u(x) = a\cdot u(x) + b\cdot u(x) = (a\cdot u)(x) + (b\cdot u)(x)$$

Por ejemplo, si a=2, b=3, u(x)=4 entonces:

$$(2+3) \cdot 4 = 5 \cdot 4 = 20$$

$$(2\cdot 4)+(3\cdot 4)=8+12=20$$

(ii)
$$\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v$$
 .

$$\lambda \cdot (u+v)(x) = (\lambda \cdot (u+v))(x) = \lambda \cdot u(x) + \lambda \cdot v(x)$$

Por ejemplo, si $\lambda=2, u(x)=3, v(x)=4$ entonces:

$$2\cdot(3+4)=2\cdot7=14$$

$$(2\cdot 3)+(2\cdot 4)=6+8=14$$

(iii)
$$(\lambda \cdot \mu) \cdot u = \lambda \cdot (\mu \cdot u)$$
.

$$(\lambda \cdot \mu) \cdot u(x) = ((\lambda \cdot \mu) \cdot u)(x) = (\lambda \cdot (\mu \cdot u))(x) = \lambda \cdot (\mu \cdot u)(x)$$

Por ejemplo, si $\lambda=2, \mu=3, u(x)=4$ entonces:

$$(2\cdot 3)\cdot 4=6\cdot 4=24$$

$$2\cdot(3\cdot4)=2\cdot12=24$$

Ejercicio 9. Calcula el producto entre el número trapezoidal $u=\mathrm{trfn}(2,5,6,8)$ y el número triangular $v=\mathrm{tfn}(1,4,5)$.

- 1. Escribe la función de membresía o el intérvalo del corte alfa de $u \cdot v$.
- 2. Dibuja u,v y su producto $u\cdot v$ en una misma gráfica.

Respuestas:

$$egin{aligned} u &= ext{trfn}(2,5,6,8) \ v &= ext{tfn}(1,4,5) = ext{tfn}(ar{x},e_l,e_r) \ v &= ext{trfn}(ar{x}-e_l,ar{x},ar{x}+e_r) = ext{trfn}(1-4,1,1,1+5) = ext{trfn}(-3,1,1,6) \end{aligned}$$

(i) Escribe la función de membresía o el intérvalo del corte alfa de $u \cdot v$.

La multiplicación $u \cdot v$ se define como:

$$egin{aligned} a &= min(a_1 \cdot a_2, a_1 \cdot d_2, d_1 \cdot a_2, d_1 \cdot d_2) \ b &= min(b_1 \cdot b_2, b_1 \cdot c_2, c_1 \cdot b_2, c_1 \cdot c_2) \ c &= max(b_1 \cdot b_2, b_1 \cdot c_2, c_1 \cdot b_2, c_1 \cdot c_2) \ d &= max(a_1 \cdot a_2, a_1 \cdot d_2, d_1 \cdot a_2, d_1 \cdot d_2) \end{aligned}$$

Reemplazando por los valores de u = trfn(2, 5, 6, 8) y v = trfn(-3, 1, 1, 6) tenemos que:

$$a=min(2\cdot -3,2\cdot 6,8\cdot -3,8\cdot 6)=min(-6,12,-24,48)=-24$$

$$b=min(5\cdot 1,5\cdot 1,6\cdot 1,6\cdot 1)=min(5,5,6,6)=5$$

$$c=max(5\cdot 1,5\cdot 1,6\cdot 1,6\cdot 1)=max(5,5,6,6)=6$$

$$d=max(2\cdot -3,2\cdot 6,8\cdot -3,8\cdot 6)=max(-6,12,-24,48)=48$$
 Finalmente, $u\cdot v=\mathrm{trfn}(-24,5,6,48)$.

Se puede representar un número difuso trapezoidal u por el cuádruple $(a,b,c,d) \in \mathbb{R}^4, a \leq b \leq c \leq d,$

$$u(x) = \left\{ egin{array}{ll} 0, & ext{si } x < a, \ rac{x-a}{b-a}, & ext{si } a \leq x < b, \ 1, & ext{si } b \leq x < c, \ rac{d-x}{d-c}, & ext{si } c \leq x < d, \ 0, & ext{si } d \leq x. \end{array}
ight.$$

La función de membresía de $u \cdot v = \operatorname{trfn}(-24, 5, 6, 48)$ es igual a:

$$u\cdot v(x) = egin{cases} 0, & ext{si } x < -24, \ rac{x+24}{29}, & ext{si } -24 \leq x < 5, \ 1, & ext{si } 5 \leq x < 6, \ rac{48-x}{42}, & ext{si } 6 \leq x < 48, \ 0, & ext{si } 48 \leq x. \end{cases}$$

El intérvalo del corte alfa de $u \cdot v$ se define como:

$$\alpha = \frac{x+24}{29} \Rightarrow x = 29 \cdot \alpha - 24$$

$$\alpha = \frac{48-x}{42} \Rightarrow x = 48 - 42 \cdot \alpha$$

Finalmente, $(u\cdot v)_{lpha}=[29\cdot lpha-24,48-42\cdot lpha].$

(ii) Dibuja u,v y su producto $u\cdot v$ en una misma gráfica.

```
In [2]: # u
f1(x)=(x - 2)/ 3
f2(x)=(8 - x)/ 2

# v
f3(x)=(x + 3)/ 4
f4(x)=(6 - x)/ 5

# u · v
f5(x)=(x + 24)/ 29
f6(x)=(48 - x)/ 42

plot(f1,(x,2,5),color='green',legend_label='u')+plot(1,(x,5,6),color='green')+plot(f2,(x,6,8),color='green')+plot(f3,(x,-3,1),color='blue',legend_label='v')+plot(f4,(x,1,6),color='blue')+plot(f5,(x,-24,5),color='red',legend_label='u · v')+plot(1,(x,5,6),color='red')+plot(f6,(x,6,48),color='red')
```


Ejercicio 10. Escribe una expresión para los cortes alfa del producto de dos números difusos triangulares $u = tfn(a_1, b_1, c_1)$ y $v = tfn(a_2, b_2, c_2)$. Escribe la familia de cortes alfa en forma intervalar de $u \cdot v$.

Respuestas:

 $\operatorname{tfn}(ar{x},e_l,e_r)$

$$A(x) = egin{cases} 0, & ext{si } x \leq \overline{x} - e_l, \ 1 + (x - \overline{x})/e_l, & ext{si } \overline{x} - e_l < x < \overline{x}, \ 1 - (x - \overline{x})/e_r, & ext{si } \overline{x} \leq x < \overline{x} + e_r, \ 0, & ext{si } x \geq \overline{x} + e_r. \end{cases}$$

$$y=1+(x-\overline{x})/e_l\Rightarrow x=(y-1)\cdot e_l+\overline{x}$$

$$y=1-(x-\overline{x})/e_r\Rightarrow x=-(y-1)\cdot e_r+\overline{x}$$

Los cortes alfa de un número difuso triangular están dados por:

$$A_{lpha} = [(lpha - 1) \cdot e_l + \overline{x}, -(lpha - 1) \cdot e_r + \overline{x}]$$

Reemplazando $u = \operatorname{tfn}(a_1, b_1, c_1)$ y $v = \operatorname{tfn}(a_2, b_2, c_2)$:

$$u_lpha = [(lpha-1)\cdot b_1 + a_1, -(lpha-1)\cdot c_1 + a_1]$$

$$v_{\alpha} = [(\alpha - 1) \cdot b_2 + a_2, -(\alpha - 1) \cdot c_2 + a_2]$$

El producto de $u \cdot v$ esta dado por:

$$\begin{aligned} {}^{\alpha}\!(u \cdot v) &= {}^{\alpha}\!u \cdot {}^{\alpha}\!v \\ &= [(\alpha - 1) \cdot b_1 + a_1, -(\alpha - 1) \cdot c_1 + a_1] \cdot [(\alpha - 1) \cdot b_2 + a_2, -(\alpha - 1) \cdot c_2 + a_2] \\ &= [\min(((\alpha - 1) \cdot b_1 + a_1)((\alpha - 1) \cdot b_2 + a_2), ((\alpha - 1) \cdot b_1 + a_1)(-(\alpha - 1) \cdot c_2 + a_2), (-(\alpha - 1) \cdot c_1 + a_1), (-(\alpha - 1) \cdot c_2 + a_2)), \max(((\alpha - 1) \cdot b_1 + a_1)((\alpha - 1) \cdot b_2 + a_2), ((\alpha - 1) \cdot c_1 + a_1)(-(\alpha - 1) \cdot c_2 + a_2))]. \end{aligned}$$