

Prof. Dr. Florian Künzner

CA 8 – Memory 1

The lecture is based on the work and the documents of Prof. Dr. Theodor Tempelmeier

CAMPUS Rosenheim

Computer Science

Goal

Goal

Memory modules

CAMPUS Rosenheim **Computer Science**

Goal

CA::Memory 1 - Hardware

- Memory types
- Memory chips
- Memory modules
- Modern memory modules

Memory types

RAM vs ROM

RAM - Random access memory

- For **read and write** access
- Usage: programs and data
- It is (usually) a volatile memory (data are lost when power is switched off)
- Very fast access time
- High power consumption
- Expensive

ROM - Read only memory

- For **read only** memory access
- Usage: **firmware** (BIOS, UEFI)
- It is a non-volatile memory (remembers the data even if power is switched off)
- Usually slower than RAM
- Low power consumption
- Cheaper than RAM
- Example: EPROM, EEPROM

Memory types

It's all about RAM!

Memory types

SRAM vs DRAM

Property

Construction

Realisation of a bit - 4..6 transistors

Speed

Size (capacity)

Cost

Used for

Density

Charge leakage

Power consumption + Low

SRAM - Static RAM

- Complex
- + Faster
- Small
- Expensive

Cache memory

- Less dense
- + Not present

DRAM - Dynamic RAM

- + Simple
- + 1 transistor + 1 capacitor
- Slower
- + Large
- + Cheap

Main memory

- + Highly dense
- Present: refresh required
- High

CAMPUS Rosenheim

Computer Science

Orders of magnitudes for bits and bytes

Bits:

Bits (decimal)			
Symbol	Power	Num bits	Name
1 kbit	10 ³	1.000	kilobit
1 Mbit	10 ⁶	1.000.000	megabit
1 Gbit	10 ⁹	1.000.000.000	gigabit
1 Tbit	10^{12}	1.000.000.000.000	terabit

Bits (binary)			
Symbol	Power	Num bits	Name
1 Kibit	2^{10}	1.024	kibibit
1 Mibit	2^{20}	1.048.576	mebibit
1 Gibit	2^{30}	1.073.741.824	gibibit
1 Tibit	2^{40}	1.099.511.627.776	tebibit

Bytes:

Bytes (decimal)			
Symbol	Power	Num bytes	Name
1 kB	10 ³	1.000	Kilobyte
1 MB	10 ⁶	1.000.000	Megabyte
1 GB	10 ⁹	1.000.000.000	Gigabyte
1 TB	10^{12}	1.000.000.000.000	Terabyte

Bytes (binary)				
Symbol	Power	Num bytes	Name	
1 KiB	2^{10}	1.024	Kibibyte	
1 MiB	2^{20}	1.048.576	Mebibyte	
1 GiB	2^{30}	1.073.741.824	Gibibyte	
1 TiB	2^{40}	1.099.511.627.776	Tebibyte	

Summary

CAMPUS Rosenheim

Computer Science

Memory modules and chips - overview

[source: wikipedia.org]

Summary

Memory chips

Arrangement of memory cells: (within a memory chip)

Linear Arrangement:

- To address 1-out-of- 2^n memory cells, naddress lanes are required.
- Problem: Address lanes are expensive (takes place on the chip)

Matrix Arrangement:

- To address 1-out-of-2ⁿ memory cells, only n/2 address lanes are required.
- The address is usually transferred in two steps:
 - 1: Row address
 - 2: Column address
- Only half the address lanes are required

Unit

CAMPUS Rosenheim

Computer Science

Memory chips

Chip types:

Terminology:

Description Type Chip with x mega that provides 1 bit per address $\times M \times 1$ bit Chip with x mega that provides 2 bit per address $xM \times 2 = 2$ bit Chip with x mega that provides 4 bit per address $xM \times 4$ nibble Chip with x mega that provides 8 bit per address $\times M \times 8$ byte

Memory chips

Chip capacity:

On these chips: K means Ki, M means Mi, G means Gi, ... xK/xM/xG denotes the number of chip cell rows inside the chip

Chip capacity = xM x number of bits per chip

Examples:

- 16M x 1: 16Mi x 1 = 16 Mibit => 16Mi/8 = 2 MiB
- 16M x 2: 16Mi x 2 = 32 Mibit => 32Mi/8 = 4 MiB
- 1G x 4: 1Gi x 4 = 4 Gibit => 4Gi/8 = 512 MiB
- 1G x 8: 1Gi x 8 = 8 Gibit => 8Gi/8 = 1 GiB

Technische Hochschule Rosenheim Technical University of Applied Sciences

Questions?

All right? \Rightarrow

and use chat

speak after | ask you to

Memory modules

The memory chips on a memory module are usually arranged in a matrix layout.

[image source: samsung.com]

Memory address is divided into:

- Chip select address
- Chip address (inside the chip)

Memory modules - hardware layout

Row capacity = Chip capacity * num chips

Data bus width = bits per chip * num chips

Address calculations:

Nr. **Descriptions**

- (1)Number of bits to address the module capacatiy
- Number of address lanes/bits for chip select (2)
- (3)Number of address lanes/bits for chip address
- (4)Number of bits to address the bytes inside the word

Calc

log₂(module capacity)

log₂(num. rows)

log₂(num. chip cell rows)

log₂(num. bytes per word)

Results

number of bits number of bits/address lanes number of bits/address lanes number of bits

Address calculation relationship:

Number of bits to address the module capacatiy: $(1) = \sum_{i=2}^{4} (i) = (2) + (3) + (4)$

CAMPUS Rosenheim

Computer Science

Summary

Memory modules - example

Example:

- Design a memory module with: 2 GiB capacity and a 32 bit data bus
- Use chips of type 256M x 4

Address calculations:

Nr. Descriptions Calc Result

- (1) Number of bits to address the module capacatiy
- (2) Number of address lanes/bits for chip select
- (3) Number of address lanes/bits for chip address
- (4) Number of bits to address the bytes inside the word

Memory modules - example (solution)

Example:

- Design a memory module with: 2 GiB capacity and a 32 bit data bus
- Use chips of type 256M x 4

Module capacity = 1 GiB row capacity * 2 number of rows = 2 GiB Addresses 256M x 4 28 bit 256 Mi/2= 1 bit 128 MiB 256M x 4 Chip select 256 Mi/2= decoder 128 MiB 128 MiB

Row capacity

- = 128 MiB chip capacity
 - * 8 num chips
- = 1 GiB

Data bus width = 4 bits per chip * 8 num chips = 32 bit (4 byte)

Address calculations:

Descriptions

- (1)Number of bits to address the module capacativ
- (2)Number of address lanes/bits for chip select
- (3)Number of address lanes/bits for chip address
- Number of bits to address the bytes inside the word

Calc

$$log_2(2 GiB = 2^{31})$$

 $log_2(2)$

$$log_2(256 Mi = 2^{28})$$

log₂(4bytes)

Result

31 bits

1 lanes/bits

28 lanes/bits

2 bits

Memory modules - formats

SIMM (single inline memory module):

SO-SIMM (small outline SIMM):

DIMM (dual inline memory module):

SO-DIMM (small outline DIMM):

Memory modules - interleaving

Problem:

After a **memory cell** is read in a DRAM, the cell **needs to be refreshed** and this takes some time.

Idea:

Distribute consecutive addresses evenly across the chip rows.

- Reduces the problem of waiting until the refresh is complete
- Accelerates memory access in an effect similar to pipelining
- But due to the increased capacities of the individual chips, a memory module has only one or two chip rows. -> Solution:

SDRAM

Technische Hochschule Rosenheim Technical University of Applied Sciences

Questions?

All right? \Rightarrow

Question? \Rightarrow

and use chat

speak after I ask you to

Modern memory modules

Overview of various terms in the memory area

SDRAM

SDRAM: synchronous DRAM

- Synchronous means there as a clock pulse
- Dynamic means there is a refresh necessary
- Memory is divided into several equally sized and independent banks: allows interleaving within chips
- Chips can accept new commands before finishing the previous one (for another bank).

Memory modules

CAMPUS Rosenheim **Computer Science**

ECC

ECC: error checking and correction

- ECC memory can detect and correct the most common kinds of internal data corruption
- Allows the detection and correction of single bit errors
- Some do also detect double bit errors
- Application area: Scientific and financial computing applications which operate on sensitive data

DDR-SDRAM

DDR-SDRAM: double data rate SDRAM

Idea:

- Transfers data at almost double the transfer rate
- Data is transferred on rising and falling edges.
- DDR4-RAM is state of the art for computers
- DDR5-RAM is approaching into the market in 2020/2021

	DDR3	DDR4	DDR5
Data transfer rate	17 GiB/s	25,6 GiB/s	51,2 GiB/s
Max module capacity	16 GiB	64 GiB	128 GiB

Multi-channel memory architecture

Idea:

- [source: wikipedia.com]
- Adds multiple channels from the memory to the controller
- Increase data transfer rate of DRAM memory modules with the memory controller
- Dual/Triple/Quad-channels are possible
- Dual-channel: theoretically doubles the data transfer rate
- New Intel processors (like Intel Core i7-9800X) supports quad-channel memory architecture

Technische Hochschule Rosenheim Technical University of Applied Sciences

Questions?

All right? \Rightarrow

Question? \Rightarrow

and use chat

speak after | ask you to

Summary and outlook

Summary

- Memory types
- Memory chips
- Memory modules
- Modern memory modules

Outlook

- MMU
- Virtual memory