ElGamal on Elliptic Curve Cryptography

Grant McNaughton

29 March 2024

1 Introduction

Cryptography is the practice and study of making communications unintelligible to all except authorized parties. Naturally, we want to ensure the following:

- Correctness: The message sent by the sender is correctly received by the receiver.
- Security: The third party is prevented from eavesdropping the message. For this, the sender typically encrypts the message and the receiver decrypts. The encryption should be done in a way that the decryption is **extremely difficult** for the third party.
- Efficiency: Encryption should be efficient for the sender and decryption should be efficient for the receiver.

In this paper, we will describe

- 1. a cryptosystem called "ElGamal", proposed by Taher ElGamal [1]. It is built on an group, say G.
- 2. a field called "Finite prime field".
- 3. a group called "Elliptic Curve Group". It is built on a field, say F.

2 Cryptosystem (ElGamal)

Algorithm 1 (ElGamal Scheme).

Consider a situation where Alice (sender) wants to send a message to Bob (receiver).

- 1. Bob does the following once.
 - (a) Pick a group (G, \cdot) . For some prime number $p, G = \{\mathbb{Z} \setminus 13\mathbb{Z}\}^* = \{1, 2, \dots, p-1\}$ and \cdot represents multiplication modulo p.
 - (b) Choose $g \in G \setminus \{e\}$
 - (c) Choose $k \in \mathbb{N}$ such that k > 0.
 - (d) Set $h = g^k = g \cdot g \cdot \ldots \cdot g$.
 - (e) Publish (G, \cdot) , g, and h.
- 2. Alice does the following whenever she wants to send a message to Bob.
 - (a) Encode her message $m \in G$.

- (b) Choose $s \in \mathbb{N}$ such that s > 0.
- (c) Calculate $c_1 = g^s = g \cdot g \cdot \ldots \cdot g$ and $c_2 = h^s m = h \cdot h \cdot \ldots \cdot h \cdot m$.
- (d) Send c_1 and c_2 to Bob.
- 3. Bob does the following upon receiving series of c_1, c_2 from Alice.
 - (a) Calculate $m' = c_1^{-k}c_2 = m$.

Example 2.

- 1. Suppose that $G = (\mathbb{Z}/7\mathbb{Z})^*$, g = 2, k = 5, m = 3, s = 4. Determine the values of h, c_1 , c_2 and m'. Note
 - $h = g^k = 2^5 = 4$
 - $c_1 = g^s = 2^4 = 2$
 - $c_2 = h^s m = 4^4 \cdot 3 = 5$
 - $m' = c_1^{-k} c_2 = 2^{-5} \cdot 5 = 4^5 \cdot 5 = 3$
- 2. Suppose that $G = (\mathbb{Z}/13\mathbb{Z})^*$, g = 4, k = 5, m = 6, s = 2. Determine the values of h, c_1 , c_2 and m'. Note
 - $h = g^k = 4^5 = 10$
 - $c_1 = q^s = 4^2 = 3$
 - $c_2 = h^s m = 10^2 \cdot 6 = 2$
 - $m' = c_1^{-k}c_2 = 3^{-5} \cdot 2 = 9^5 \cdot 2 = 6$

Theorem 3. The ElGamal scheme is correct, that is, m' = m.

Proof. Set $g \in G$ and $k, s \in \mathbb{N}$ with k, s > 0. Note that because \cdot represents multiplication modulo p, \cdot is commutative and thus G is an Abelian group. Establish $h = g^k$, $c_1 = g^s$, $c_2 = h^s m$, and $m' = c_1^{-k} c_2$. From this we can derive that

$$h = g^k$$

$$h^s = g^{k^s}$$

$$h^s = g^{sk}$$

$$1 = e = g^{sk-1}h^s$$

$$m = em = g^{sk-1}h^sm$$

$$m = c_1^{-k}c_2 = m'$$

Therefore m' = m.

Algorithm 4 (gpow: efficient algorithm for power). Let G be a group.

Input: $g \in G, k \in \mathbb{N}$

Output: g^k

- 1. If k = 0 then return e.
- 2. If k is even, then define r given by the output of $gpow(g, \frac{k}{2})$ and return $r \cdot r$.
- 3. If k is odd, then define r given by the output of $gpow(g, \frac{k-1}{2})$ and return $r \cdot r \cdot g$.

3 Finite prime field

Definition 5 (Finite prime field). Let p be a prime number. Then the finite prime field structure is given by the following set F_p and two operations $+_p$ and \times_p on it.

- 1. $F_p = \{0, 1, \dots, p-1\}$
- 2. Operation $+_p$: $a +_p b$, (addition mod p)
- 3. Operation $\times_p : a \times_p b$, (multiplication mod p)

Example 6. p=5

- 1. $F_5 = \{0, 1, 2, 3, 4\}$
- $2. \ 2 +_5 4 = 1$
- 3. $2 \times_5 4 = 3$

Theorem 7. F_p is a field where 0 is the identity for $+_p$ and 1 is the identity for x_p .

Proof. See any standard text book.

Algorithm 8 (inverse for \times_p using the extended Euclidean algorithm).

Input: $a \in F_p \setminus \{0\}$ Output: a^{-1}

- 1. $r_0 \leftarrow p$
- 2. $r_1 \leftarrow a$
- $3. \ t_0 \leftarrow 0$
- 4. $t_1 \leftarrow 1$
- 5. $r_{i-2} = q_i r_{i-1} + r_i$
- 6. $t_{i-2} = q_i t_{i-1} + t_i$
- 7. Repeat while $r_i > 0$ and stop when $r_i = r_{\text{final}} = 0$.
- 8. $a^{-1} = t_{\text{final}-1}$

Example 9.

- 1. Find 4^{-1} in \mathbb{Z}_7 using the algorithm.
 - (a) See the trace of the algorithm:

(b) Note that $r_4 = 0$. Thus $4^{-1} = t_3 = 2$.

- 2. Find 7^{-1} in \mathbb{Z}_{13} using the algorithm.
 - (a) See the trace of the algorithm:

(b) Note that $r_4 = 0$. Thus $7^{-1} = t_3 = 2$.

Theorem 10. The algorithm terminates.

Proof. Immediate from $r_0 > r_1 > \cdots \geq 0$.

Theorem 11. The algorithm is correct.

4 Group based on Elliptic curve

Definition 12 (Elliptic Curve Structure). Let F be a field and let $a, b \in F$. The elliptic curve structure is given by the following set E and an operation +.

1.
$$E_{ab} = \{(x,y) \in F^2 : y^2 = x^3 + ax + b\} \cup \{\infty\}$$

2. Operation +: C = A + B

$$\begin{array}{llll} If & A = \infty & : & C = B \\ Else \ if & B = \infty & : & C = A \\ Else \ if & x_A = x_B & and \ y_A = -y_B & : & C = \infty \\ Else \ if & x_A = x_B & (and \ y_A = y_B) & : & m = \frac{3x_A^2 + a}{2y_A} \\ & & x_c = m^2 - 2x_A \\ & & y_c = -m(x_C - x_A) - y_A \\ Else & (x_A \neq x_B, \ generic \ case) & : & m = \frac{y_B - y_A}{x_B - x_A} \\ & & x_A = m^2 - x_A - x_B \\ & & y_C = -m(x_C - x_B) - y_A \end{array}$$

Example 13.

- 1. Let $F = (F_3, +_3, \times_3)$ and a = 1 and b = 1. (see below for the definition of the field.)
 - (a) Find all the elements of the elliptic curve E.

$$E = \{(x, y) \in F_3^2 : y^2 = x^3 + x + 1\} \cup \{\infty\}$$

= \{(0, 1), (0, 2), (1, 0), \infty\}

(b) Construct the operation table.

- 2. Let $F = (F_5, +_5, \times_5)$ and a = 0 and b = 1.
 - (a) Find all the elements of the elliptic curve E.

$$E = \{(x,y) \in F_5^2 : y^2 = x^3 + 1\} \cup \{\infty\}$$

= \{(0,1), (0,4), (2,2), (2,3), (4,0),\infty\}

(b) Construct the operation table.

Derivation 14.

- We will derive the formulas for m, x_C and y_C for the generic case.
 - 1. Determine $x_{C'}$ and $y_{C'}$.
 - (a) For this, we need to solve

$$y = y_A + m(x - x_A)$$
$$y^2 = x^3 + ax + b$$

where

$$m = \frac{y_B - y_A}{x_B - x_A}$$

(b) Because $y = m(x - x_A) + y_a$, we know that $y^2 = (m(x - x_A) + y_a)^2$, which can be simplified as follows:

$$y^{2} = (m(x - x_{A}) + y_{a})^{2}$$

$$= (m(x - x_{A}))^{2} + 2m(x - x_{A})y_{A} + y_{A}^{2}$$

$$= (mx - mx_{A})^{2} + 2mxy_{A} - 2mx_{A}y_{A} + y_{A}^{2}$$

$$= m^{2}x^{2} - 2m^{2}xx_{A} + m^{2}x_{A}^{2} + 2mxy_{A} - 2mx_{A}y_{A} + y_{A}^{2}$$

$$= m^2 x^2 + (-2m^2 x_A + 2my_A)x + (m^2 x_A^2 - 2mx_A y_A + y_A^2)$$

= $m^2 x^2 + 2m(y_A - mx_A)x + (mx_A - y_A)^2$

This result can then be used as the left-hand side of $y^2 = x^3 + ax + b$ as follows:

$$m^{2}x^{2} + 2m(y_{A} - mx_{A})x + (mx_{A} - y_{A})^{2} = x^{3} + ax + b$$

$$0 = x^{3} - m^{2}x^{2} + (a - 2m(y_{A} - mx_{A}))x + (b - (mx_{A} - y_{A})^{2})$$

Using Vieta's formulas, we can say that $x_A + x_B + x_{C'} = -\frac{-m^2}{1}$ and thus $x_{C'} = m^2 - x_A - x_B$. By definition, $y_{C'} = m(x_C - x_A) + y_A$.

2. Determine x_C and y_C .

$$x_C = x_{C'} = m^2 - x_A - x_B$$

$$y_C = -y_{C'} = -(m(x_C - x_A) + y_A) = -m(x_C - x_A) - y_A.$$

- Derive the formula for the slope m when $x_A = x_B$ and $y_A = y_B$.
 - 1. We can use implicit differentiation to find the derivative $\frac{dy}{dx}$:

$$y^{2} = x^{3} + ax + b$$
$$2y\frac{dy}{dx} = 3x^{2} + a$$
$$\frac{dy}{dx} = \frac{3x^{2} + a}{2y}$$

2. We can then evaluate the derivative at point A to find $m = \frac{2x_A^2 + a}{2y_a}$.

Theorem 15. (E,+) is is a group where ∞ is identity and the inverse of A is ∞ if $A=\infty$ and $(x_A,-y_A)$ if $A=(x_A,y_A)$.

References

[1] Taher ElGamal A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms *IEEE Transactions on Information Theory*, 31(4), 1985.