

IRF9310 P-Channel 30 V (D-S) MOSFET

Product Summary

V _{DS} (V)	$R_{DS(on)}$ (m Ω)	I _D (A) ^d	Q _g (Typ.)
- 30	4.6 at V _{GS} = - 10 V		58 nC
- 30	6.8 at $V_{GS} = -4.5 \text{ V}$	-20	56 HC

Features

- Industry-standard pinout SOP-8 Package
- Compatible with Existing Surface Mount Techniques
- RoHS Compliant, Halogen-Free
- MSL1, Industrial qualification

	Parameter	Max.	Units	
V _{DS}	Drain-to-Source Voltage	-30	V	
V _{GS}	Gate-to-Source Voltage	± 20		
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	-20		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	-16	Α	
I _{DM}	Pulsed Drain Current ①	-160		
P _D @T _A = 25°C	Power Dissipation ④	2.5	w	
P _D @T _A = 70°C	Power Dissipation ④	1.6	VV	
	Linear Derating Factor	0.02	W/°C	
TJ	Operating Junction and	-55 to + 150	°C	
T _{STG}	Storage Temperature Range		l c	

P-Channel 30 V (D-S) MOSFET

Static @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	-30			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.020		V/°C	Reference to 25°C, I _D = -1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.9	4.6	mΩ	$V_{GS} = -10V, I_D = -20A$ ③
	Static Drain-to-Source Off-nesistance		5.8	6.8	11152	$V_{GS} = -4.5V, I_D = -16A$ ③
$V_{GS(th)}$	Gate Threshold Voltage	-1.3	-1.8	-2.4	٧	V _{DS} = V _{GS} , I _D = -100μA
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-5.8		mV/°C	V _{DS} = V _{GS} , I _D = -100μA
I _{DSS}	Drain-to-Source Leakage Current			-1.0	μΑ	$V_{DS} = -24V, V_{GS} = 0V$
				-150] μΑ	$V_{DS} = -24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			-100	^	$V_{GS} = -20V$
	Gate-to-Source Reverse Leakage		I	100	nA	$V_{GS} = 20V$
gfs	Forward Transconductance	39			S	$V_{DS} = -10V, I_{D} = -16A$
Q_g	Total Gate Charge		58		nC	$V_{DS} = -15V, V_{GS} = -4.5V, I_{D} = -16A$
Q_g	Total Gate Charge		110	165		V _{GS} = -10V
Q_{gs}	Gate-to-Source Charge		17		nC	$V_{DS} = -15V$
Q_{gd}	Gate-to-Drain Charge		28			I _D = -16A
R_{G}	Gate Resistance		2.8		Ω	
t _{d(on)}	Turn-On Delay Time		25			$V_{DD} = -15V, V_{GS} = -4.5V$ ③
t _r	Rise Time		47]	I _D = -1.0A
t _{d(off)}	Turn-Off Delay Time		65		ns	$R_G = 1.8\Omega$
t _f	Fall Time		70			See Figs. 20a &20b
C _{iss}	Input Capacitance		5250			$V_{GS} = 0V$
Coss	Output Capacitance	Ī	1300		pF	$V_{DS} = -15V$
C _{rss}	Reverse Transfer Capacitance		880			f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units		
E _{AS}	Single Pulse Avalanche Energy ②		630	mJ		
I _{AR}	Avalanche Current ①		-16	Α		

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			-2.5		MOSFET symbol
	(Body Diode)			-2.5	A	showing the
I _{SM}	Pulsed Source Current			-160	^	integral reverse
	(Body Diode) ①			-100		p-n junction diode.
V_{SD}	Diode Forward Voltage	_	_	-1.2	٧	$T_J = 25^{\circ}C$, $I_S = -2.5A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time	_	71	107	ns	$T_J = 25^{\circ}C$, $I_F = -2.5A$, $V_{DD} = -24V$
Q_{rr}	Reverse Recovery Charge		12	18	nC	di/dt = 100A/μs ③

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead ©		20	°CAM
$R_{\theta JA}$	Junction-to-Ambient ④		50	°C/W

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25^{\circ}C$, L = 4.9mH, $R_G = 25\Omega$, $I_{AS} = -16A$.
- $\ensuremath{\mathfrak{G}}$ When mounted on 1 inch square copper board.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs.Drain-to-Source Voltage

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Ambient Temperature

Fig 8. Maximum Safe Operating Area

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

2

(Cm) Paristrance (DS(on)). Drain-to (On) Source On Resistance (DS(on)). T_J = 125°C

 $\label{eq:VGS} \mbox{-V}_{GS,} \mbox{Gate -to -Source Voltage (V)} \\ \mbox{\bf Fig 12. On-Resistance vs. Gate Voltage}$

8 10 12 14 16 18

Fig 14. Maximum Avalanche Energy vs. Drain Current

Fig 13. Typical On-Resistance vs. Drain Current

Fig 16. Typical Power vs. Time

Fig 18a. Gate Charge Test Circuit

Fig 19a. Unclamped Inductive Test Circuit

Fig 20a. Switching Time Test Circuit

Fig 18b. Gate Charge Waveform

Fig 19b. Unclamped Inductive Waveforms

Fig 20b. Switching Time Waveforms

IRF9310 P-Channel 30 V (D-S) MOSFET

Cymbol	Dimensions In	Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270	(BSC)	SC) 0.050(BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

IRF9310 P-Channel 30 V (D-S) MOSFET

Marking

Ordering information

Order code	Package	Baseqty	Deliverymode
UMW IRF9310TR	SOP-8	3000	Tape and reel