Mirror Symmetry and Rigid Structures of Generalized K3 Surfaces

Atsushi Kanazawa

Keio University

Geometry and Dynamics Seminar, BIMSA 2023 December 13th

Overview

Interplay of

- generalized Calabi-Yau geometry (4-dim): unification of CY geometry and symplectic geometry
- mirror symmetry: duality between complex geometry and symplectic geometry

Generalized CY geometry brings a new insight into "rigid structure" of K3 surfaces. In particular, it solves the problem of MS for singular K3 surfaces.

Generalized CY structures (4-dim)

M: C^{∞} -manifold underlying a K3 surface, $A^{2*}_{\mathbb{C}}(M)=\oplus_{i=0}^2 A^{2i}_{\mathbb{C}}(M)$: even diff forms with \mathbb{C} -coeff with Mukai pairing

$$\langle \varphi, \psi \rangle = \varphi_2 \wedge \psi_2 - \varphi_0 \wedge \psi_4 - \varphi_4 \wedge \psi_0 \in A^4_{\mathbb{C}}(M)$$

where φ_i denotes the degree i part of φ .

Definiton 2.1 (generalized CY structure (4-dim), Hitchin)

A generalized CY structure on M is a closed form $\varphi \in A^{2*}_{\mathbb{C}}(M)$ such that

$$\langle \varphi, \varphi \rangle = 0, \quad \langle \varphi, \overline{\varphi} \rangle > 0$$

 $(E_{\varphi} = \{(v, \xi) \in T_M \oplus T_M^* \mid \iota(v)\varphi + \xi \land \varphi = 0\}$ generalized complex structure)

Generalized CY structures (4-dim)

• symplectic form ω , $\varphi = e^{\sqrt{-1}\omega} = 1 + \sqrt{-1}\omega - \frac{1}{2}\omega^2$.

$$\begin{split} \langle e^{\sqrt{-1}\omega}, e^{\sqrt{-1}\omega} \rangle &= \langle 1 + \sqrt{-1}\omega - \frac{1}{2}\omega^2, 1 + \sqrt{-1}\omega - \frac{1}{2}\omega^2 \rangle = 0, \\ \langle e^{\sqrt{-1}\omega}, e^{-\sqrt{-1}\omega} \rangle &= 2\omega^2 > 0. \end{split}$$

• hol 2-form w.r.t complex structure σ , $\varphi = \sigma$.

$$\langle \sigma, \sigma \rangle = 0,$$

 $\langle \sigma, \overline{\sigma} \rangle = \sigma \wedge \overline{\sigma} > 0.$

B-field transform

 $B\in A^2_{\mathbb{C}}(M)$ acts on $A^{2*}_{\mathbb{C}}(M)$ by the exterior product of e^B :

$$e^B\varphi=(1+B+\frac{1}{2}B\wedge B)\wedge\varphi.$$

This action is orthogonal w.r.t. the Mukai pairing

$$\langle e^B \varphi, e^B \psi \rangle = \langle \varphi, \psi \rangle.$$

A real closed 2-form is called a B-field.

Theorem 2.2

For a B-field B and a gCY structure φ , the B-field transform $e^B\varphi$ is a gCY structure.

Classification of gCY structures

Theorem 2.3 (Hitchin)

Let φ be a gCY structure.

• (type A) $\varphi_0 \neq 0$: \exists a symplectic form ω , a B-field B,

$$\varphi = e^B(\varphi_0 e^{\sqrt{-1}\omega}) = \varphi_0 e^{B+\sqrt{-1}\omega}$$

• (type *B*) $\varphi_0 = 0$: \exists a hol 2-form σ (w.r.t. a complex str), a *B*-field *B*,

$$\varphi = e^B \sigma = \sigma + \sigma \wedge B \ (= \sigma + \sigma \wedge B^{0,2})$$

Definiton 2.4

gCY structures φ, φ' are isomorphic if \exists an exact B-field B and $f \in \mathrm{Diff}_*(M)$ such that $\varphi = e^B f^* \varphi'$.

$$\operatorname{Diff}_*(M) = \operatorname{Ker}(\operatorname{Diff}(M) \to O(H^2(M, \mathbb{Z}))).$$

Unification of A- and B-structures

A fascinating aspect of gCY structures is the occurrence of the complex structure σ and symplectic structure $e^{\sqrt{-1}\omega}$ in the same moduli.

Example 2.5 (Hitchin)

For a hol 2-form σ , the real and imaginary parts $\mathrm{Re}(\sigma),\mathrm{Im}(\sigma)$ are symplectic forms. A family of gCY structures of type A

$$\varphi_t = te^{\frac{1}{t}(\operatorname{Re}(\sigma) + \sqrt{-1}\operatorname{Im}(\sigma))} = t(1 + \frac{1}{t}\sigma + \frac{1}{2t^2}\sigma^2) = t + \sigma$$

converges, as $t \to 0$, to the gCY structure σ of type B.

The B-fields interpolate between gCY structures of type A and B.

Kähler structure

For a gCY structure φ , define a distribution P_{φ} of real 2-planes by :

$$P_{\varphi} = \mathbb{R} \operatorname{Re} \varphi \oplus \mathbb{R} \operatorname{Im} \varphi \subset A^*(M).$$

gCY structures φ and φ' are called orthogonal if P_{φ} and $P_{\varphi'}$ are pointwise orthogonal $P_{\varphi} \perp P_{\varphi'}$. This is a stronger condition than $\langle \varphi, \varphi' \rangle = 0$.

Definiton 2.6 (Kähler)

A gCY structure φ is called <u>Kähler</u> if \exists another gCY structure φ' orthogonal to φ . Such φ' is called a <u>Kähler structure</u> for φ .

A Kähler structure for $\varphi=\sigma$ is of the form $\varphi'=\varphi_0'e^{B+\sqrt{-1}\omega}$. The orthogonality reads

$$\sigma \wedge B = \sigma \wedge \omega = 0.$$

Therefore *B* is a closed real (1,1)-form and $\pm \omega$ is a Kähler form w.r.t. σ .

HyperKähler structure

Recall that a Kähler form ω on a K3 surface is a hyperKähler form if for some $C \in \mathbb{R}$

$$2\omega^2 = C\sigma \wedge \overline{\sigma}.$$

Definiton 2.7 (hyperKähler)

A gCY structure φ is hyperKähler if \exists a Kähler structure φ' such that

$$\langle \varphi, \overline{\varphi} \rangle = \langle \varphi', \overline{\varphi'} \rangle.$$

Such φ' is called a hyperKähler structure for φ .

- $\langle e^{\sqrt{-1}\omega}, e^{-\sqrt{-1}\omega} \rangle = 2\omega^2, \langle \sigma, \overline{\sigma} \rangle = \sigma \wedge \overline{\sigma}.$
- If φ' a (hyper)Kähler structure for φ , then $e^B \varphi'$ is a (hyper)Kähler structure for $e^B \varphi$.

Classification of hyperKähler structures

(details are not important)

• $\varphi = \sigma$: a hyperKähler structure is $\varphi' = \lambda e^{B+\sqrt{-1}\omega}$, where B is a closed $\overline{(1,1)}$ -form and $\pm \omega$ is a hyperKähler form such that

$$2|\lambda|^2\omega^2 = \sigma \wedge \overline{\sigma}.$$

- $\varphi = \lambda e^{\sqrt{-1}\omega}$: a hyperKähler structure is either
 - $\varphi' = \sigma$, where $\pm \omega$ is a hyperKähler form,
 - $\varphi' = \lambda' e^{B' + \sqrt{-1}\omega'}$ such that
 - $\omega \wedge \omega' = \omega \wedge B' = \omega' \wedge B = 0$, $B'^2 = \omega^2 + {\omega'}^2$,
 - $|\lambda|^2 \omega^2 = |\lambda'|^2 \omega'^2.$

Any hyperKähler structure is a B-field transform of one of the above cases. There are 3 cases:

(type A, type B), (type B, type A), (type A, type A)

Generalized K3 surfaces

Definiton 2.8

A generalized K3 surface is a pair (φ, φ') of gCY structures such that φ is a hyperKähler structure for φ' .

- A K3 surface $S = M_{\sigma}$ with a hyperKähler form ω is considered as a gK3 surface $(e^{\sqrt{-1}\omega}, \sigma)$.
- gK3 surfaces (φ, φ') and (ψ, ψ') are called isomorphic if $\exists f \in \operatorname{Diff}_*(M)$ and exact $B \in A^2(M)$ such that

$$(\varphi, \varphi') = e^B f^*(\psi, \psi') = (e^B f^* \psi, e^B f^* \psi').$$

Isom classes are classified by cohomology classes

gK3 surfaces and SCFT moduli space

Theorem 2.9 (Huybrechts)

 $\mathfrak{M}_{HK} = \left(\operatorname{Met}^{HK}(M)/\operatorname{Diff}_*(M)\right) \times H^2(M,\mathbb{R})$: moduli space of the *B*-field shifts of the hyperKähler metrics

$$\mathfrak{M}_{\mathrm{K3}} \times H^{2}(M,\mathbb{R}) \xrightarrow{\iota} \mathfrak{M}_{\mathrm{gK3}} \xrightarrow{\mathrm{per}_{\mathrm{gK3}}} \mathrm{Gr}_{2,2}^{po}(H^{*}(M,\mathbb{R})) = \mathfrak{M}_{(2,2)}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Mirror symmetry for K3 surfaces is an involution of the SCFT moduli spaces (Aspinwall-Morrison).

Period domains and period maps

 $\mathfrak{N}_{gCY} = \{\mathbb{C}\varphi\}/\cong:$ moduli space of gCY structures of hyperKähler type

Theorem 2.10 (Huybrechts)

$$\begin{split} \mathfrak{N}_{\text{gCY}} & \xrightarrow{\text{per}_{\text{gCY}}} \widetilde{\mathbb{D}} = \{ [\varphi] \in \mathbb{P}(H^*(M, \mathbb{C})) \mid \langle \varphi, \varphi \rangle = 0, \langle \varphi, \overline{\varphi} \rangle > 0 \} \\ & \cup \\ \mathfrak{N}_{\text{K3}} & \xrightarrow{\text{per}_{\text{K3}}} \mathfrak{D} = \{ [\sigma] \in \mathbb{P}(H^2(M, \mathbb{C})) \mid \langle \sigma, \sigma \rangle = 0, \langle \sigma, \overline{\sigma} \rangle > 0 \} \end{split}$$

pergCY: étale surjective

K3 surfaces and lattices

Mirror symmetry for a (classical) K3 surface S is very subtle because the complex and Kähler structures are somewhat mixed in $H^2(S, \mathbb{C})$.

A conventional formulation of mirror symmetry for K3 surfaces is given by Dolgachev in terms of sublattices of $H^*(S,\mathbb{Z}) \cong U^{\oplus 4} \oplus E_8^{\oplus 2}$:

Néron-Severi lattice:

$$NS(S) = \{ \delta \in H^2(S, \mathbb{Z}) \mid \langle \delta, [\sigma] \rangle = 0 \}$$

algebraic lattice:

$$NS'(S) = H^0(S, \mathbb{Z}) \oplus NS(S) \oplus H^4(S, \mathbb{Z}) \cong NS(S) \oplus U.$$

transcendental lattice:

$$T(S) = NS'(S)^{\perp} \subset H^*(S, \mathbb{Z})$$

Mirror symmetry for K3 surfaces

Definiton 3.1 (Dolgachev)

Given $M \subset \Lambda_{K3} = U^{\oplus 3} \oplus E_8^{\oplus 2}$ of sign $(1, \mu)$, assume that $\exists N$ such that

$$M^{\perp} = N \oplus U$$
.

Then the family S of M-pol K3 surfaces and the family S^{\vee} of N-pol K3 surfaces are mirror symmetric.

For generic M-pol K3 surface S and N-pol K3 surface S^{\vee} ,

$$NS'(S) \cong M \oplus U \cong T(S^{\vee}), \quad T(S) \cong N \oplus U \cong NS'(S^{\vee}),$$

duality of algebraic and transcendental cycles.

Mirror symmetry for K3 surfaces

Drawbacks

The conventioanl formulation has drawbacks:

- NS'(S) and T(S) are not symmetric.
- The assumption $M^{\perp} = N \oplus U$ does not hold in general:
 - singular K3 surface, where T(S) is of sign (2,0).

	singular K3 surface	??
Kähler	20-dim	0-dim
complex	0-dim	20-dim

 $\bullet \ M^{\perp} = N \oplus U(k)$

The problems are caused by $H^0(S,\mathbb{Z}) \oplus H^4(S,\mathbb{Z}) \cong U$.

Algebraic and transcendental lattices

We define sublattices of $H^*(M, \mathbb{Z})$ reflecting a gCY structure.

Definiton 3.2

The <u>algebraic</u> and <u>transcendental</u> lattices of a gK3 surface $X=(\varphi,\varphi')$ are defined respectively by

$$\widetilde{NS}(X) = \{ \delta \in H^*(M, \mathbb{Z}) \mid \langle \delta, [\varphi'] \rangle = 0 \},$$

$$\widetilde{T}(X) = \{ \delta \in H^*(M, \mathbb{Z}) \mid \langle \delta, [\varphi] \rangle = 0 \}.$$

• $\widetilde{NS}(X)$ and $\widetilde{T}(X)$ are defined on an equal footing.

$$2 \le \operatorname{rank}(\widetilde{NS}(X)), \operatorname{rank}(\widetilde{T}(X)) \le 22.$$

• In general, pt and [M] are no longer "algebraic".

Complex and Kähler rigidity

Definiton 4.1

A gK3 surface $X = (\varphi, \varphi')$ is called

- complex rigid if φ' is of type B and $rank(\widetilde{NS}(X)) = 22$.
- Kähler rigid if φ is of type A and $\operatorname{rank}(\widetilde{T}(X)) = 22$.

Theorem 4.2

A complex rigid gK3 surface is of the form $e^{B'}(\lambda e^{B+\sqrt{-1}\omega}, \sigma)$:

- M_{σ} : singular K3 surface
- $B \in H^{1,1}(M_{\sigma}, \mathbb{R})$,
- $B' \in H^2(M, \mathbb{Q})$,
- $\pm \omega$ is a Kähler form w.r.t. σ .

Glipmse of Kähler rigidity

S: K3 surface, $NS(S) = \mathbb{Z}H, H^2 = 2n > 0.$

$$v_1 = (1, 0, -n), \ v_2 = (0, H, 0) \in NS'(S)$$

Then

$$\begin{split} e^{\sqrt{-1}H} &= (1, \sqrt{-1}H, -n) \\ &= v_1 + \sqrt{-1}v_2 \in (\mathbb{Z}v_1 + \mathbb{Z}v_2)_{\mathbb{C}} \subsetneq NS'(S)_{\mathbb{C}}. \end{split}$$

On the other hand, for $\epsilon^2 \notin \mathbb{Q}$

$$\begin{split} e^{\sqrt{-1}\epsilon H} &= (1, \sqrt{-1}\epsilon H, -\epsilon^2 n) \\ &= (1, 0, -\epsilon^2 n) + \sqrt{-1}\epsilon (0, H, 0) \\ &= (1, 0, 0) - \epsilon^2 (0, 0, n) + \sqrt{-1}\epsilon (0, H, 0) \in NS'(S)_{\mathbb{C}} \end{split}$$

Mukai lattice polarization

Definiton 4.3 (Mukai lattice polarization)

For $\kappa, \lambda \ge 2$ such that $\kappa + \lambda = 24$, and even lattices K and L of signature $(2, \kappa - 2)$ and $(2, \lambda - 2)$, a pair (X, j) of

- a gK3 surface $X = (\varphi, \varphi')$,
- a primitive embedding $j: K \oplus L \hookrightarrow H^*(M, \mathbb{Z})$ such that
 - $K \subset \widetilde{NS}(X)$ and $K_{\mathbb{C}}$ contains gCY structure of type A,
 - $L \subset \widetilde{T}(X)$ and $L_{\mathbb{C}}$ contains gCY structure of type B.

is called a (K, L)-polarized gK3 surface.

[&]quot;polarization ⊂ lattice polarization ⊂ Mukai lattice polarization"

Mirror symmetry for gK3 surfaces

Definiton 4.4

The family $\mathcal X$ of (K,L)-pol gK3 surfaces and the family $\mathcal Y$ of (L,K)-pol gK3 surfaces are mirror symmetric.

For generic (K, L)-pol gK3 surface X and (L, K)-pol gK3 surface Y,

$$\widetilde{NS}(X) \cong K \cong \widetilde{T}(Y), \quad \widetilde{T}(X) \cong L \cong \widetilde{NS}(Y),$$

duality between algebraic and transcendental cycles w.r.t. gCY structures.

MS for complex and Kähler rigid gK3 surfaces

For n > 0, consider $K = \langle -2n \rangle^{\oplus 2} \oplus U \oplus E_8^{\oplus 2}$, $L = \langle 2n \rangle^{\oplus 2}$.

• The family X of (K, L)-pol gK3 surfaces is given by

$$\mathcal{X} = \{X = (e^{B + \sqrt{-1}\omega}, \sigma)\}\$$

where $T(M_{\sigma})=L$, and $B,\omega\in NS(M_{\sigma})_{\mathbb{R}}$. They are singular K3 surfaces with complexified Kähler parameters $B+\sqrt{-1}\omega\in NS(M_{\sigma})_{\mathbb{C}}$.

• The family $\mathcal Y$ of (L,K)-pol gK3 surfaces has a 19-dim subfamily of K3 surfaces of the form

$$\{Y = (e^{\sqrt{-1}H}, \sigma^{\vee})\}\$$

where $NS(M_{\sigma^{\vee}}) = \mathbb{Z}H$ such that $H^2 = 2n$.

MS for complex and Kähler rgid gK3 surfaces

In summary, for $K=\langle -2n\rangle^{\oplus 2}\oplus U\oplus E_8^{\oplus 2},\, L=\langle 2n\rangle^{\oplus 2},$

- (K, L)-pol gK3 surfaces = singular K3 surfaces
- (L, K)-pol gK3 surfaces \supset pol K3 surfaces (S, H) with $H^2 = 2n$

	(<i>K</i> , <i>L</i>)-pol gK3	(L, K)-pol gK3
A-deform	20-dim	0-dim
B-deform	0-dim	20-dim

The new formulation is compatible with Aspinwall-Morrison's description of the moduli space $\mathfrak{M}_{(2,2)}=\mathrm{Gr}_{2}^{po}(H^*(M,\mathbb{R})).$

謝謝! Thank you!

- N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281-308.
- D. Huybrechts, Generalized Calabi-Yau structures, K3 surfaces, and B-fields, Int. J. Math. 16 (2005) 13-36.
- A. Kanazawa and Y.-W. Fan, Attractor mechanisms of moduli spaces of Calabi-Yau 3-folds, J. Geom. Phys. 185 (2023) 104724.
- A. Kanazawa, Mirror symmetry and rigid structures of generalized K3 surfaces, arXiv:2108.05197.