

Chapter 5 The Performance of Feedback System

Contents

- □ 5.1 Introduction
- 5.2 Test Input Signals
- 5.3 Performance of Second-Order Systems
- 5.4 Effects of a Third Pole and a Zero on the Second-Order System Response
- 5.5 The s-Plane Root Location and the Transient Response
- 5.6 The Steady-State Error of Feedback Control Systems
- 5.7 Summary

5.1 Introduction

5.2 Test Input Signal

Impulse

$$r(t) = \begin{cases} \frac{A}{\varepsilon} & 0 \le t \le \varepsilon \\ 0 & \text{otherwise} \end{cases}$$

$$R(s) = A$$

Step

$$r(t) = \begin{cases} A & t \ge 0 \\ 0 & t < 0 \end{cases}$$

$$R(s) = \frac{A}{s}$$

Ramp

$$r(t) = \begin{cases} At & t \ge 0 \\ 0 & t < 0 \end{cases}$$

$$R(s) = \frac{A}{s^2}$$

5.2 Test Input Signal

Acceleration

(Parabolic)

$$r(t) = \begin{cases} At^2 & t \ge 0 \\ 0 & t < 0 \end{cases}$$

$$R(s) = \frac{2A}{s^3}$$

飞飘 Sine & cosine

$$r(t) = A \sin(\omega t)$$
 $R(s) = \frac{A\omega}{s^2 + \omega^2}$
 $r(t) = A \cos(\omega t)$ $R(s) = \frac{As}{s^2 + \omega^2}$

$$R(s)$$
 $G(s)$ $Y(s)$

$$G(s) = \frac{9}{s+10}, R(s) = \frac{1}{s}, y(t) = ?$$

$$Y(s) = G(s) \cdot R(s) = \frac{9}{s+10} \cdot \frac{1}{s}$$

$$=\frac{0.9}{s}-\frac{0.9}{s+10}$$

$$y(t) = 0.9 - 0.9e^{-10t}$$

$$G(s) = \frac{k}{s(Ts+1)}, R(s) = \frac{1}{s}, H(s) = 1, y(t) = ?$$

$$G_{closed-loop}(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{k/T}{s^2 + (1/T)s + k/T} = \frac{\omega_n^2}{s^2 + 2\omega_n \zeta s + \omega_n^2}$$

Let
$$\begin{cases} \omega_n^2 = k/T \\ 2\zeta\omega_n = 1/T \end{cases} \Rightarrow \begin{cases} \omega_n = \sqrt{k/T} \rightarrow \text{natural frequency} \\ \zeta = \frac{1}{2\sqrt{kT}} \rightarrow \text{damping ratio} \end{cases}$$

$$Y(s) = \frac{\omega_n^2}{s^2 + 2\omega_n \zeta s + \omega_n^2} \cdot R(s) \quad \text{CE: } q(s) = s^2 + 2\omega_n \zeta s + \omega_n^2 = 0$$

$$s_{1,2} = \frac{-2\zeta\omega_n \pm \sqrt{4\zeta^2\omega_n^2 - 4\omega_n^2}}{2} = -\zeta\omega_n \pm \omega_n \sqrt{\zeta^2 - 1} \quad (\omega_n > 0, \quad \zeta \ge 0)$$

$$\zeta > 1$$

1 overdamped $\zeta > 1$ 2 critical damping $\zeta = 1$

$$\zeta = 1$$

光净化③ underdamped

$$0 < \zeta < 1$$

The a undamped

$$\zeta = 0$$

CE:
$$s^2 + 2\omega_n \zeta s + \omega_n^2 = 0$$
, $s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$

① overdamped $\zeta > 1$

 s_1 , s_2 are negative real roots

$$Y(s) = \frac{\omega_n^2}{s(s-s_1)(s-s_2)}$$

$$y(t) = \frac{\omega_n^2}{s_1 s_2} + \frac{\omega_n^2}{s_1^2 - s_1 s_2} e^{s_1 t} + \frac{\omega_n^2}{s_2^2 - s_1 s_2} e^{s_2 t}$$

$$\frac{Y(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\omega_n \zeta s + \omega_n^2}, \omega_n = 2, \zeta = 1, 2, 3 \quad R(s) = \frac{1}{s}$$

$$\frac{Y(s)}{R(s)} = \frac{4}{s^2 + 4s + 4}$$

$$\frac{Y(s)}{R(s)} = \frac{4}{s^2 + 8s + 4}$$

$$\frac{Y(s)}{R(s)} = \frac{4}{s^2 + 12s + 4}$$

- >> num=[4]; den=[1 4 4]; step(num,den);hold on;
- >> num=[4]; den=[1 8 4]; step(num,den);hold on;
- >> num=[4]; den=[1 12 4]; step(num,den);hold on;

② critical damping $\zeta = 1$

$$s_1$$
, s_2 are repeated real roots, s_1 , s_2 = - ω_n .

$$Y(s) = \frac{\omega_n^2}{s(s + \omega_n)^2} = \frac{1}{s} + \frac{-1}{s + \omega_n} + \frac{-\omega_n}{(s + \omega_n)^2}$$

$$y(t) = 1 - e^{-\omega_n t} - \omega_n t e^{-\omega_n t}$$

③ undamped
$$\zeta = 0$$

 $s_1, s_2 = \pm j\omega_n$

$$Y(s) = \frac{\omega_n^2}{s(s^2 + \omega_n^2)} = \frac{1}{s} - \frac{s}{s^2 + \omega_n^2}$$
$$y(t) = 1 - \cos \omega_n t$$

$$\frac{Y(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\omega_n \zeta s + \omega_n^2}, \omega_n = 2, \zeta = 0, 1, \text{step response}$$

$$\frac{Y(s)}{R(s)} = \frac{4}{s^2 + 4s + 1}$$
$$\frac{Y(s)}{R(s)} = \frac{4}{s^2 + 4}$$

>> num=[4];den=[1 4 4];step(num,den);hold on;

>> num=[4];den=[1 0 4];step(num,den);hold on;

$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$
: Damped oscillation frequency

= arccos
$$\zeta$$

 $\theta = \arctan \frac{\sqrt{1-\zeta^2}}{2}$

$$\sigma = \zeta \omega_n$$

: Attenuation coefficient

$$\frac{Y(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\omega_n \zeta s + \omega_n^2}, \omega_n = 4, \zeta = 0.2$$

The parameters: T_p , P.O., T_r , T_s .

For a 2nd-order system with a unit step input r(t)=1:

① T_p (peak time): the time it takes to rise from 0 to the peak value of the time response

$$\frac{dy(t)}{dt} = 0$$

$$T_{p} = \frac{\pi}{\omega_{n} \sqrt{1 - \zeta^{2}}} = \frac{\pi}{\omega_{d}}$$

$$M_{pt} = y(T_p) = 1 + e^{\frac{-\zeta \pi}{\sqrt{1-\zeta^2}}}$$

$$y(t) = 1 - \frac{e^{-\sigma t}}{\sqrt{1 - \zeta^2}} \sin(\omega_d t + \theta)$$

$$T_p \propto \frac{1}{\omega_p}$$

2 P.O. (percentage overshoot)

$$P.O. = \frac{M_{pt} - fv}{fv} \times 100\%$$

Mpt: the peak value of the output response

fv: final value

For the typical second order system (unit step input), fv=1

$$P.O. = e^{\frac{-\zeta\pi}{\sqrt{1-\zeta^2}}} \times 100\%$$

$$\zeta \uparrow \Rightarrow P.O. \downarrow$$

$$y(t) = 1 - \frac{e^{-\sigma t}}{\sqrt{1 - \zeta^2}} \sin(\omega_d t + \theta)$$

The time it takes to rise from 0 to 100% of the magnitude of the step input

$$y(T_r) = 1 \Rightarrow \sin(\omega_n \sqrt{1 - \zeta^2} T_r + \arccos \zeta) = 0$$

$$\omega_n \sqrt{1-\zeta^2} T_r + \arccos \zeta = k\pi \Rightarrow T_r = \frac{\pi - \arccos \zeta}{\omega_n \sqrt{1-\zeta^2}}$$

$$T_r \propto \frac{1}{\omega_n}$$

4 T_s (settling time):

The time required for the system to settle within a certain percentage of the input amplitude.

$$|y(T_s)-1| < \Delta, \quad \Delta = 2\% \& 5\%$$

$$T_s = \frac{4}{\zeta \omega_n}, \quad \Delta = 2\%$$

$$T_s = \frac{3}{\zeta \omega_n}, \quad \Delta = 5\%$$

$$T_s \propto \frac{1}{\omega_n}$$

19

Example 1

The response to a unit step input is specified as P.O.=20%, $T_p=1$ s.

Determine k, τ , T_r , and T_s .

Example 1

P.O.=20%, t_p =1s

k, τ to a unit step input

$$T(s) = \frac{\frac{k}{s(s+1)}}{1 + \frac{k}{s(s+1)}(1+\tau s)} = \frac{k}{s^2 + (1+k\tau)s + k} = \frac{\omega_n^2}{s^2 + 2\omega_n \zeta s + \omega_n^2}$$

where
$$k = \omega_n^2$$
, $1 + k\tau = 2\omega_n \zeta \Rightarrow k = \omega_n^2$, $\tau = \frac{2\omega_n \zeta - 1}{k}$

$$P.O. = \frac{M_{pt} - fv}{fv} \times 100\% = e^{\frac{-\zeta\pi}{\sqrt{1-\zeta^2}}} \times 100\% = 20\% \Longrightarrow \zeta = 0.45$$

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} = 1$$
s $\Rightarrow \omega_n = 3.5$ $\Rightarrow k = 12.25, \tau = 3.52$

Example 2

Discuss how T and k influence the system performance

$$\frac{Y(s)}{R(s)} = \frac{k/T}{s^2 + (1/T)s + k/T} = \frac{\omega_n^2}{s^2 + 2\omega_n \zeta s + \omega_n^2}, \ 1/T = 2\omega_n \zeta, k/T = \omega_n^2$$

$$P.O. = 100e^{\frac{-\zeta\pi}{\sqrt{1-\zeta^2}}} = e^{\sqrt{\frac{1}{\zeta^2}-1}} \uparrow \qquad T_s = \frac{3 \sim 4}{\zeta\omega_n} \rightarrow$$

$$T_{p} = \frac{\pi}{\omega_{p} \sqrt{1 - \zeta^{2}}} \downarrow$$

$$T_r = \frac{\pi - \arccos \zeta}{\omega_n \sqrt{1 - \zeta^2}} \downarrow$$

$$\frac{Y(s)}{R(s)} = \frac{k/T}{s^2 + (1/T)s + k/T} = \frac{\omega_n^2}{s^2 + 2\omega_n \zeta s + \omega_n^2}, \ 1/T = 2\omega_n \zeta, k/T = \omega_n^2$$

2) for a given
$$k$$
, $T \uparrow \Leftrightarrow \omega_n \downarrow, \zeta \downarrow$

2) for a given
$$k,T \uparrow \Leftrightarrow \omega_n \downarrow, \zeta \downarrow$$

$$P.O. = 100 e^{\frac{-\zeta\pi}{\sqrt{1-\zeta^2}}} = e^{\frac{-\pi}{\sqrt{\frac{1}{\zeta^2}-1}}} \uparrow \qquad T_s = \frac{3.5 \sim 4}{\zeta \omega_n} \uparrow$$

$$T_{p} = \frac{\pi}{\omega_{p} \sqrt{1 - \zeta^{2}}} \uparrow$$

$$T_{p} = \frac{\pi}{\omega_{n} \sqrt{1 - \zeta^{2}}} \uparrow \qquad T_{r} = \frac{\pi - \arccos \zeta}{\omega_{n} \sqrt{1 - \zeta^{2}}} \uparrow$$


```
>> num=[1];den=[1 0.4 1];step(num,den);hold on;
>> num=[1];den=[1 0.8 1];step(num,den);hold on;
>> num=[1];den=[1 1.4 1];step(num,den);hold on;
>> num=[1];den=[1 1.8 1];step(num,den);hold on;
```

$$T_r, T_p, T_s$$
 $T: consistant$
 $P.O.$ $K: contradictory$

Sometimes, we can not meet all specifications simultaneously, a necessary compromise is needed.

1. A third pole effect

$$T(s) = \frac{Y(s)}{R(s)} = \frac{1}{(s^2 + 2\zeta s + 1)(\gamma s + 1)}, 0 < \zeta < 1, R(s) = \frac{1}{s}, y(t) = ?$$

8.24

Let
$$\zeta = 0.5, T(s) = \frac{1}{(s^2 + s + 1)(\gamma s + 1)}$$

γ	$\frac{1}{\gamma}$	P. O.	t_s
2.25	0.444	0	9.63
1.5	0.666	3.9	6.3
0.9	1.111	12.3	8.81
0.4	2.50	18.6	8.67
0.05	20.0	20.5	8.37

 ∞

20.5

Feedback System

1. A third pole effect 石南克

It was ascertained experimentally that the response of the third-order system can be approximated by the dominant roots of the second-order system when

$$\left|\frac{1}{\gamma}\right| \ge (10 \text{ or } 5) |\zeta\omega_{n}|$$

$$\downarrow \frac{1}{3}$$

i.e. the real part of the dominant roots is less than one tenth(fifth) of the real part of the third root.

- For a stable higher-order system, the poles would be the dominant poles when the location of the close-loop is
- 1) The closest poles to the imaginary axis are the conjugate complex poles
- ②Other poles are far away from Im axis and $b \ge 5a$
- The transient response can be determined by dominant poles.

3. Effects of a zero

3. Effects of a zero
$$\frac{a}{\zeta \omega_n} \uparrow \Rightarrow P.O. \downarrow, t_s \downarrow, t_p \uparrow$$

$$T(s) = \frac{(\omega_n^2 / a)(s+a)}{(s^2 + 2\zeta \omega_n s + \omega_n^2)}, 0 < \zeta < 1, R(s) = \frac{1}{s}, y(t) = ? j\omega$$

$\frac{a}{\zeta \omega_n}$	P.O.	t_s	$t_{m p}$
5	23.1	8	3
2	39.7	7.6	2.2
1	89.9	10.1	1.8
0.5	210.0	10.3	1.5

Avoid selecting zeros near the imaginary axis or the dominant poles.

5.5 s-plane root location & the transient response

Closed-loop TF:

$$\frac{Y(s)}{R(s)} = \frac{\sum P_k \Delta_k}{\Delta} = \frac{G(s)}{1 + G(s)} = \frac{\text{zeros}}{\text{poles}}$$

$$CE: \Delta = 0 \Rightarrow 1 + G(s) = 0$$

$$R(s) = \frac{1}{s} \Rightarrow Y(s) = \frac{\text{zeros}}{\text{poles}} \cdot R(s)$$

Under none repeated roots assumptions:

$$Y(s) = \frac{1}{s} + \sum_{i=1}^{M} \frac{A_i}{s + \sigma_i} + \sum_{k=1}^{N} \frac{B_k s + C_k}{s^2 + 2\alpha_k s + (\alpha_k^2 + \omega_k^2)}$$
$$y(t) = 1 + \sum_{i=1}^{M} A_i e^{-\sigma_i t} + \sum_{k=1}^{N} D_k e^{-\alpha_k t} \sin(\omega_k t + \theta_k)$$

5.5 s-plane root location & the transient response

The impulse response for various root locations:

$$R(s) = R(s) + G(s) + G(s)$$

$$E(s) = R(s) - Y(s) = R(s) - T(s)R(s)$$

$$= (1 - \frac{G(s)}{1 + G(s)H(s)})R(s)$$

$$= \frac{1 + G(s)H(s) - G(s)}{1 + G(s)H(s)}R(s)$$

$$E_{a}(s) = R(s) - B(s)$$

$$= R(s) - H(s)Y(s)$$

$$= \frac{1}{1 + G(s)H(s)}R(s)$$

$$E(s) = \frac{1}{1 + G(s)H(s)}R(s) = E_{a}(s)$$

$$H(s) = 1$$

$$e_{ss} = e(\infty) = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{1}{1 + G(s)} R(s)$$

$$e_{ss} = e(\infty) = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{1}{1 + G(s)}R(s)$$

The general open-loop transfer function is

$$G(s) = \frac{K \prod_{j=1}^{M} (s + z_j)}{s^N \prod_{i=1}^{Q} (s + p_i)}$$

N=0	N=1	N=2
Type 0	Type I	Type II

N:The type number of the system

Three steady-state error constants:

(1) position error constant

$$K_p = \lim_{s \to 0} G(s)$$

② velocity error constant

$$K_{\nu} = \lim_{s \to 0} sG(s)$$

(3) acceleration error constant

$$K_a = \lim_{s \to 0} s^2 G(s)$$

① For step input,
$$R(s) = \frac{A}{s}$$

$$e_{ss} = e(\infty) = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{1}{1 + G(s)}R(s)$$

$$= \lim_{s \to 0} s \frac{1}{1 + G(s)} \frac{A}{s} = \frac{A}{1 + \lim_{s \to 0} G(s)}$$

$$= \frac{A}{1 + K_p} \qquad \text{(type 0)}$$

$$= \frac{A}{1 + \infty} = 0 \text{ (type II)}$$

② For ramp input,
$$R(s) = \frac{A}{s^2}$$

$$e_{ss} = e(\infty) = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{1}{1 + G(s)}R(s)$$

$$= \lim_{s \to 0} s \frac{1}{1 + G(s)} \frac{A}{s^2} = \lim_{s \to 0} \frac{A}{s + sG(s)} = \frac{A}{\lim_{s \to 0} sG(s)}$$

$$= \frac{A}{0} = \infty \qquad \text{(type 0)}$$

$$= \frac{A}{K_v} \qquad \text{(type II)}$$

(3) For acceleration input,
$$R(s) = \frac{A}{s^3}$$

$$e_{ss} = e(\infty) = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{1}{1 + G(s)} R(s)$$

$$= \lim_{s \to 0} s \frac{1}{1 + G(s)} \frac{A}{s^3} = \frac{A}{\lim_{s \to 0} s^2 G(s)}$$

$$= \frac{A}{0} = \infty \qquad \text{(type 0)}$$

$$= \frac{A}{0} = \infty \qquad \text{(type II)}$$

The value of e_{ss} depends on the type of R(s) and G(s)

	Type 0	Type 1	Type 2
Step input	$\frac{A}{1+K_p}$	0	0
Ramp input	∞	$\frac{A}{K_v}$	0
Acceleration input	∞	8	$\frac{A}{K_a}$

Example(5.6)

5.7 Summary

Concept

- Test input signals: step, ramp, parabolic, impulse
- Performance of the second-order system with unity step input

rise time, peak time, settling time, percent overshoot

Dominant poles, effects of the zero

The relationship between the s-plane root location and the transient response

The steady-state error Kp, ka, kv

- Technique
 Calculate Tr, Tp, Ts, P.O.
 - **Calculate steady-state error**

End