# Módulo IV

#### Mais Sobre Contagem

Neste módulo, nós veremos alguns tópicos adicionais sobre contagem, que podem ser úteis na resolução de problemas.

## Bijeções e Cardinalidade de Conjuntos

Chamamos de **números cardinais** os tamanhos que os conjuntos podem ter, sejam eles finitos ou infinitos, ou seja, sua cardinalidade. Os números cardinais finitos são simplesmente os números naturais: 0, 1, 2, 3, ... . O primeiro número cardinal infinito é o tamanho do conjunto dos números naturais, e é escrito como  $\aleph_0$  (lê-se, alef-zero ou alef-nulo)<sup>1</sup>.

Podemos calcular o número cardinal de um contando explicitamente os seus elementos; por exemplo,  $|\varnothing| = 0$ ,  $|\{\text{Luísa, Mamãe, Papai}\}| = 3$ ,  $e | \{x \in \mathbb{N} : x < 100 \ e x \ é \ primo\}| = |\{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97\}| = 25$ . Bijeções, entretanto, permitem-nos definir o tamanho de conjuntos arbitrários sem termos quaisquer meios específicos para contar elementos.

Dizemos que dois conjuntos A e B têm a mesma cardinalidade se existir uma bijecção  $f:A \leftrightarrow B$ . Isso será particularmente útil para refletirmos sobre a cardinalidade de conjuntos infinitos. Números cardinais infinitos podem, de fato, se comportar de forma muito estranha. Por exemplo:

•  $\aleph_0 + \aleph_0 = \aleph_0$ . Note que para dois conjuntos disjuntos  $A \in B$  (isto é, quando  $A \cap B = \emptyset$ ), temos que  $|A \cup B| = |A| + |B|$ . Seja  $A = \{2x : x \in \mathbb{N}\}$  (os números naturais pares). A função  $f : \mathbb{N} \to A$ , definida por f(x) = 2x é bijetiva, portanto  $|A| = |\mathbb{N}| = \aleph_0$ . Por outro lado, seja  $B = \{2x + 1 : x \in \mathbb{N}\}$  (os números naturais ímpares). A função  $g : \mathbb{N} \to B$ , definida por g(x) = 2x + 1 é bijetiva, portanto também temos que  $|B| = |\mathbb{N}| = \aleph_0$ . Ora, como  $A \in B$  são disjuntos, temos que  $|A \cup B| = |A| + |B|$ , mas  $|A \cup B| = \mathbb{N}$ . Ou seja,  $\aleph_0 + \aleph_0 = \aleph_0$ .

Como adendo, note que a cardinalidade do conjunto dos números inteiros também é  $\aleph_0$ , uma vez que podemos construir a seguinte função bijetiva  $f: \mathbb{N} \to \mathbb{Z}$ , f(x) = k, se x = 2k; f(x) = -k se x = 2k + 1. Por exemplo, se x = 4, então f(4) = 2, pois  $4 = 2 \times 2$ . Já se x = 3, f(3) = -1, pois  $3 = 2 \times 1 + 1$ .

•  $\aleph_0 \times \aleph_0 = \aleph_0$ . Exemplo: Podemos definir o conjunto dos números racionais  $\mathbb Q$  como pares ordenados (a,b), onde a é o numerador e b é o denominador, sendo que  $a \in \mathbb Z$  e  $b \in \mathbb Z^*$  (inteiros não-nulos). Note que  $|\mathbb Z^*| = \aleph_0$ , uma vez que podemos construir a seguinte função bijetiva  $f: \mathbb Z \to \mathbb Z^*$ , f(x) = x, se x < 0; f(x) = x + 1 se  $x \ge 0$ . Como os elementos de  $\mathbb Q$  são exatamente aqueles do produto cartesiano de  $\mathbb Z \times \mathbb Z^*$ , temos que  $|\mathbb Q| = |\mathbb Z| \times |\mathbb Z^*|$ , ou seja,  $|\mathbb Q| = \aleph_0 \times \aleph_0$ . Acontece que também conseguimos construir uma função bijetiva de  $\mathbb Q$  para  $\mathbb N$ . É mais fácil mostrar graficamente como uma tal função poderia ser construída. Vamos

<sup>1</sup> Alef é a primeira letra do alfabeto hebraico.

começar olhando para os números racionais positivos. A ideia é que se conseguirmos organizar todos os números racionais numa lista, podemos mapear o primeiro elemento da lista para o número 1, o segundo para o 2, o terceiro para o 3, e assim por diante. Se tentarmos escrever todos os números racionais positivos, poderemos proceder assim:

```
2/1
               4/1
1/1
          3/1
                     5/1
1/2
     2/2
          3/2
               4/2
     2/3 3/3 4/3
                     5/3
1/3
     2/4
                     5/4
          3/4 \quad 4/4
1/5
     2/5
          3/5
               4/5
                     5/5
     2/6
          3/6
1/6
               4/6
                     5/6
           :
```

Este conjunto é uma bagunça. Em nada se parece com o conjunto dos números naturais. Na verdade, este conjunto continua infinitamente em uma série de direções diferentes. Cada linha segue infinitamente para a direita, e cada coluna segue infinitamente para baixo. Como poderíamos esperar encontrar uma forma de fazer uma bijeção entre isso e os números naturais, uma vez que os números naturais seguem infinitamente apenas numa direção?



#### **Créditos**

Todas as seções, com exceção da seção "Permutações com Repetição" foram adaptadas (traduzidas e modificadas) de [1], que está disponível sob a licença Creative Commons Attribution-ShareAlike 4.0 International.

#### Referências

1. Davies, Stephen. *A Cool Brisk Walk Through Discrete Mathematics*. Disponível em <a href="http://www.allthemath.org/vol-i/">http://www.allthemath.org/vol-i/</a>.

### Licença

É concedida permissão para copiar, distribuir, transmitir e adaptar esta obra sob a Licença Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0), disponível em <a href="http://creativecommons.org/licenses/by-sa/4.0/">http://creativecommons.org/licenses/by-sa/4.0/</a>.