Последовательности выпадения орлов

Предположим, что правильная (т.е. выпадение орла и решки равновероятны) монета подбрасывается n раз. Какого количества последовательных выпадений орла можно ожидать? Как покажет последующий анализ, эта величина ведет себя как $\Theta(\lg n)$. Докажем сначала, что математическое ожидание длины наибольшей последовательности орлов представляет собой $\Theta(\lg n)$. Вероятность того, что при очередном подбрасывании выпадет орел, равна 1/2. Пусть A_{ik} - событие, когда последовательность выпадений орлов длиной не менее k начинается с i-го подбрасывания, или, более строго, A_{ik} - событие, когда при k последовательных подбрасываниях монеты i, i+1,...,i+k-1 (где $1 \le k \le n$ и $1 \le i \le n-k+1$) будут выпадать одни орлы. Поскольку подбрасывания монеты осуществляются независимо, для каждого данного события A_{ik} вероятность того, что во всех k подбрасываниях выпадут одни орлы, определяется следующим образом:

$$Pr\{A_{ik}\} = 1/2^k. (5.8)$$

Для $k = 2\lceil \lg n \rceil$

$$Pr\left\{A_{i,2\lceil \lg n\rceil}\right\} = 1/2^{\lceil \lg n\rceil}$$

$$\leq 1/2^{\lg n}$$

$$= 1/n^2,$$

так что вероятность того, что последовательность повторных выпадений орлов длиной не менее $2\lceil\lg n\rceil$ начинается с i-го подбрасывания, довольно невелика. Имеется не более $n-2\lceil\lg n\rceil+1$ подбрасываний, с которых может начаться указанная последовательность орлов. Таким образом, вероятность того, что последовательность повторных выпадений орлов длиной не менее $2\lceil\lg n\rceil$ начинается при произвольном подбрасывании, равна

$$Pr\left\{ \bigcup_{i=1}^{n-2\lceil \lg n \rceil + 1} A_{i,2\lceil \lg n \rceil} \right\} \leq \sum_{i=1}^{n-2\lceil \lg n \rceil + 1} 1/n^2$$

$$\leq \sum_{i=1}^{n} 1/n^2$$

$$= 1/n. \tag{5.9}$$

Справедливость этого соотношения следует из неравенства Буля (В.19), согласно которому вероятность объединения событий не превышает сумму вероятностей отдель-

ных событий. (Заметим, что неравенство Буля выполняется даже для тех событий, которые не являются независимыми.)

Теперь воспользуемся неравенством (5.9) для ограничения длины самой длинной последовательности выпадения орлов. Пусть $L_j (j=0,1,2,...,n)$ - событие, когда длина самой длинной последовательности выпадения орлов равна j. В соответствии с определением математического ожидания мы имеем

$$E[L] = \sum_{j=0}^{n} j Pr\{L_j\}.$$
 (5.10)

Можно попытаться оценить эту сумму с помощью верхних границ каждой из величин $Pr\{L_j\}$, аналогично тому, как это было сделано в неравенстве (5.9). К сожалению, этот метод не может обеспечить хороших оценок. Однако достаточно точную оценку можно получить с помощью некоторых интуитивных рассуждений, которые вытекают из проведенного выше анализа. Присмотревшись внимательнее, можно заметить, что в сумме (5.10) нет ни одного слагаемого, в котором оба множителя j и $Pr\{L_j\}$ были бы большими. Почему? При $j \geq 2\lceil\lg n\rceil$ величина $Pr\{L_j\}$ очень мала, а при $j < 2\lceil\lg n\rceil$ оказывается невелико само значение j. Выражаясь более формально, можно заметить, что события L_j для j=0,1...,n несовместимы, поэтому вероятность того, что непрерывная последовательность выпадения орлов длиной не менее $2\lceil\lg n\rceil$ начинается с любого подбрасывания монеты, равна $\sum_{j=2\lceil\lg n\rceil}^n Pr\{L_j\}$. Согласно неравенству имеем $\sum_{j=2\lceil\lg n\rceil}^n Pr\{L_j\} < 1/n$. Кроме того, из $\sum_{j=0}^n Pr\{L_j\} = 1$ вытекает $\sum_{j=0}^{2\lceil\lg n\rceil-1} Pr\{L_j\} \leq 1$. Таким образом, получаем

$$E[L] = \sum_{j=0}^{n} j \Pr\{L_{j}\}$$

$$= \sum_{j=0}^{2\lceil \lg n \rceil - 1} j \Pr\{L_{j}\} + \sum_{j=2\lceil \lg n \rceil}^{n} j \Pr\{L_{j}\}$$

$$< \sum_{j=0}^{2\lceil \lg n \rceil - 1} (2\lceil \lg n \rceil) \Pr\{L_{j}\} + \sum_{j=2\lceil \lg n \rceil}^{n} n \Pr\{L_{j}\}$$

$$= 2\lceil \lg n \rceil \sum_{j=0}^{2\lceil \lg n \rceil - 1} \Pr\{L_{j}\} + \sum_{j=2\lceil \lg n \rceil}^{n} \Pr\{L_{j}\}$$

$$< 2\lceil \lg n \rceil \cdot 1 + n \cdot (1/n)$$

$$= O(\lg n).$$

Вероятность того, что длина последовательности непрерывных выпадений орла

превысит величину $r\lceil \lg n \rceil$, быстро убывает с ростом r. Для $r \geq 1$ вероятность того, что последовательность как минимум $r\lceil \lg n \rceil$ выпадений орлов начнется с i-го подбрасывания, равна

$$Pr\left\{A_{i,r\lceil \lg n \rceil}\right\} = 1/2^{r\lceil \lg n \rceil}$$

 $\leq 1/n^r.$

Таким образом, вероятность образования непрерывной цепочки из последовательных выпадений орла, имеющей длину не менее $r\lceil\lg n\rceil$, не превышает $n/n^r=1/n^{r-1}$. Это утверждение эквивалентно утверждению, что длина такой цепочки меньше величины $r\lceil\lg n\rceil$ с вероятностью не менее чем $1-1/n^{r-1}$.