WOJSKOWA AKADEMIA TECHNICZNA

Praca domowa z przedmiotu Modelowanie Matematyczne

PROWADZĄCY: MGR INŻ. MICHAŁ KAPAŁKA WYKONAWCA: DAMIAN SZPURA, GRUPA 16Y3S1

1. Werbalny opis problemu.

Pewny zakład produkcyjny zajmujący się tworzeniem procesorów chce zmaksymalizować zyski po wydaniu nowej serii procesorów, chcą oni stworzyć plan sprzedaży procesorów. Wyprodukowaną liczbę procesorów zapiszemy jako L_{SM} . Procesory te mają różne rodzaje - L_A . Wiemy że każdy procesor ma odpowiedni koszt produkcji w postaci materiałów M_{pi} , oraz koszt energii E_{pi} . Zarówno materiały jak i energia jest ograniczona przez ich maksymalną wartość, odpowiednio - M_{pmax} , E_{pmax} . Dodatkowo każdy z procesorów ma określoną moc obliczeniową O_{Pi} oraz cenę sprzedaży C_{Pi} . Z uwagi na to że zakład nie ma wystarczająco dużo miejsca, nie może on produkować najstarszych serii procesorów, dlatego też wprowadzono że moc obliczeniowa musi być większa od wskazanego minimum O_{pmin} . W ten sposób stworzono miejsce dla najnowszej serii.

Należy znaleźć - ile jakiego rodzaju procesorów - L_{Pi} oraz ile całkowicie procesorów - L_{SM} najlepiej tworzyć aby, przy maksymalnej produkcji otrzymać jak największe zyski.

2. Opis cech.

 L_{SM} - całkowita liczba procesorów wszystkich rodzajów. $L_{SM} \in N$

 L_A - liczba rodzajów procesorów. $L_A \in N$

 $L_{Pi}\text{-}$ liczba procesorów danego i-tego rodzaju. Gdzie i = $\overline{1,\mathrm{L_A}},\ L_{Pi}\in N$

 M_{pi} - materiały potrzebne do produkcji i-tego rodzaju procesora, ograniczone przez maksimum $M_{\rm pimax}$. Gdzie i = $\overline{1, L_{\rm A}}$, $M_{pi} \in Q_+$

 E_{pi} - energia potrzebna do produkcji i-tego rodzaju procesora, ograniczone przez maksimum E_{pmax} . Gdzie $i=\overline{1,L_A}$, $E_{pi}\in Q_+$

 O_{Pi} - całkowita moc obliczeniowa i-tego rodzaju procesora. Gdzie $i=\overline{1,L_A},\ O_{Pi}\in Q_+$

 M_{pmax} - maksymalna ilość materiałów jakie posiada zakład, jest to wartość stała i ta sama dla każdego roku. $M_{pmax} \in N$

 E_{pmax} - maksymalna ilość energii jaką posiada zakład, jest to wartość stała i ta sama dla każdego roku. $E_{pmax} \in N$

 O_{pmin} - minimalna całkowita moc obliczeniowa niezbędna do produkcji. $O_{pmin} \in N$

 C_{Pi} - cena sprzedaży i-tego procesora przez zakład produkcyjny dla sklepów w złotówkach. Gdzie $i=\overline{1,L_A},\ C_{Pi}\in Q_+$

 \mathcal{C}_z - zysk całkowity uzyskany ze sprzedaży. $\mathcal{C}_z \in \mathcal{Q}_+$

3. Opis związków.

 (Z_1) : Można wyprodukować tyle procesorów na ile pozwalają zasoby materiałów.

$$\begin{aligned} Y_1 &= \langle \left\{ M_{pi} \right\}_{i=1}^{L_A}, M_{pmax}, L_A, \left\{ L_{Pi} \right\}_{i=1}^{L_A} \rangle \\ R_1 &= \left\{ \langle \left\{ a_i \right\}_{i=1}^c, b, c, \left\{ d_i \right\}_{i=1}^c \rangle \in N^{2+c} \times Q_+^c : \sum_{i=1}^c (a_i d_i) \leq b \right\} \end{aligned}$$

 (Z_2) : Można wyprodukować tyle procesorów na ile pozwalają zasoby energii.

$$Y_{2} = \langle \{E_{pi}\}_{i=1}^{L_{A}}, E_{pmax}, L_{A}, \{L_{Pi}\}_{i=1}^{L_{A}} \rangle$$

$$R_{2} = \{ \langle \{a_{i}\}_{i=1}^{c}, b, c, \{d_{i}\}_{i=1}^{c} \rangle \in N^{2+c} \times Q_{+}^{c} : \sum_{i=1}^{c} (a_{i}d_{i}) \leq b \}$$

 (Z_3) : Każdy rodzaj procesora musi mieć całkowitą moc obliczeniową większą od wartości minimalnej.

$$Y_3 = \langle \{O_{pi}\}_{i=1}^{L_A}, O_{pmin}, L_A \rangle$$

$$R_3 \{ \langle \{a_i\}_{i=1}^c, b, c \rangle \in N^2 \times Q_+^c : \Lambda_{i \in \overline{1c}} a_i \geq b$$

 (Z_4) : Zysk z produkcji.

$$\begin{aligned} Y_4 &= \langle \left\{ C_{pi} \right\}_{i=1}^{L_A}, C_z, L_A, \left\{ L_{Pi} \right\}_{i=1}^{L_A} \rangle \\ R_4 &= \left\{ \langle \left\{ a_i \right\}_{i=1}^c, b, c, \left\{ d_i \right\}_{i=1}^c \rangle \in N^{2+c} \times Q_+^c : b = \sum_{i=1}^c (a_i d_i) \right\} \end{aligned}$$

 (Z_5) : Całkowita ilość procesorów.

$$Y_5 = \langle \{L_{Pi}\}_{i=1}^{L_A}, L_{SM}, L_A \rangle$$

$$R_5 = \{ \langle \{a_i\}_{i=1}^c, b, c \rangle \in N^{1+c} \times Q_+ : b = \sum_{i=1}^c (a_i) \}$$

4. Model matematyczny

a) Podział cech na dane, zmienne decyzyjne i wskaźniki.

$$\mathbf{a} = \langle L_A, \{M_{pi}\}_{i=1}^{L_A}, \{E_{pi}\}_{i=1}^{L_A}, \{O_{pi}\}_{i=1}^{L_A}, \{C_{pi}\}_{i=1}^{L_A}, M_{pmax}, E_{pmax}, O_{pmin}, C_z \rangle$$

$$\mathbf{x} = \langle \{L_{Pi}\}_{i=1}^{L_A}, L_{SM} \rangle$$

$$\mathbf{w} = C_z$$

b) Określenie zbiorów poprawnych wartości danych, dopuszczalnych wartości zmiennych decyzyjnych i możliwych wartości wskaźników.

$$A = \{ \langle L_{A}, \{M_{pi}\}_{i=1}^{L_{A}}, \{E_{pi}\}_{i=1}^{L_{A}}, \{O_{pi}\}_{i=1}^{L_{A}}, \{C_{pi}\}_{i=1}^{L_{A}}, M_{pmax}, E_{pmax}, O_{pmin}, C_{z} \rangle$$

$$\in N^{5} \times Q_{+}^{4L_{A}} \}$$

$$\Omega(a) = \{ \langle \{L_{Pi}\}_{i=1}^{L_{A}}, L_{SM} \rangle \in N^{1+L_{A}} : \sum_{i=1}^{L_{A}} (L_{Pi}M_{pi}) \leq M_{pmax},$$

$$\sum_{i=1}^{L_{A}} (L_{Pi}E_{pi}) \leq E_{pmax}, \Lambda_{i\in\overline{1,L_{A}}} O_{pi} \geq O_{pmin}, L_{SM} = \sum_{i=1}^{L_{A}} (L_{Pi}) \}$$

$$W(a, x) = \{ C_{z} \in Q_{+} : C_{z} = \sum_{i=1}^{L_{A}} (L_{Pi}C_{pi}) \}$$

$$W(a) = \{ C_{z} \in W(a, x) : x \in \Omega(a) \}$$

c) Określenie funkcji osiągniecia celu.

$$E_a(C_z(x')) = \left\{ \begin{array}{l} 1, \ dla \ C_z(x') = \max W(a) = \max_{y \in \Omega(a)} C_z(x) \\ 0, w \ przeciwnym \ wpadku \end{array} \right\}$$

Gdzie:

$$C_z(x) = f(a, x) = \sum_{i=1}^{L_A} (L_{Pi}C_{pi})$$

Cel uznajemy za osiągniety, kiedy wartość wskaźnika \mathcal{C}_z będzie największa, czyli wtedy gdy osiągnie maksimum. Chcemy aby zyski zakładu były największe.

5. Analiza poziomu informacyjnego dotycząca znajomości przez decydenta wartości danych w chwili podejmowania decyzji.

Kiedy decydent dochodzi do momentu podejmowania decyzji ma do dyspozycji wartości wszystkich wartości danych zawartych w modelu matematycznym. Mogą być to zarówno stałe wartości jak i oszacowania które zostały przyjęte jako stałe wartości. Jednak decydent nie zna wartości wskaźnika, czyli w tym wypadku zysku. Ta wartość zostaje wyznaczona w trakcie wykonywania działań jak i po spełnieniu określonych warunków.

6. Zadanie optymalizacyjne.

Dla danych $a \in A$ wyznaczyć takie $x' \in \Omega(a)$, aby $C_z(x') = \max_{y \in \Omega(a)} C_z(x)$