Data Structures

Lecture 21: AVL Trees

Nopadon Juneam
Department of Computer Science
Kasetsart university

Outlines

- Balanced and unbalanced binary search trees
- Hight-balance property
- AVL trees

Complexity of Operations on Binary Search Trees (1)

Operations	Complexity
search	O(h)
minimum	O(h)
maximum	O(h)
successor	O(h)
predecessor	O(h)
tree-insert	O(h)
Tree-delete	O(h)
	Remark: <i>h</i> is the hight of a binary tree. - At worst, <i>h</i> can be <i>n</i> -1. - At best, <i>h</i> can be log(<i>n</i> +1)–1.

Complexity of Operations on Binary Search Trees (2)

Total time: O(h)

Binary Search Trees of Different Heights

Unbalanced Binary Search Trees

- Unbalanced binary search tree:
 The height of the search tree is approximately linear in the number of nodes
- If a binary search tree is unbalanced, the performance it achieves is no better than the linear data structures

Complete Binary Tree

- Ideally, we would like to have a binary search tree to be complete, that is, every level of completely filled
 - The hight of a full binary tree is log(n+1)-1
- However, it is almost impossible to always maintain the search tree as a complete binary tree

AVL Property

- AVL property: For every internal node v, the height of the subtrees rooted at children of v differs by at most 1
- Node's height (subtree's height):
 The height of a node u in a tree is recursively defined by:
 - If u is external, then the height of u is zero
 - Otherwise, the height of u is one plus the maximum height of a child of u

AVL Trees

- Any binary search tree that satisfies the AVL property is said to be an AVL tree
 - An immediate consequence of the AVL property is that a subtree of an AVL tree itself is an AVL tree
 - In other words, the difference between the heights of left and right subtrees cannot be more than one for all nodes
- AVL Trees are named after the initials of its inventors (Adelson, Velskii, and Landis 1962)

AVL Tree's Height Property

Proposition 1: Let T be a binary tree that exhibits the AVL property. The height of the binary tree T is O(log n).

Complexity of Operations on AVL Trees

Operations	Complexity
search	O(log n)
minimum	O(log n)
maximum	O(log n)
successor	O(log n)
predecessor	O(log n)