La synthèse des connaissances : une introduction aux méta-analyses et revues systématiques

- Risques de biais -

Mercredi 5/10/22 - Montpellier Dakis-Yaoba Ouédraogo — PatriNat (OFB-CNRS-MNHN)

dakis-yaoba.ouedraogo@mnhn.fr

Méta-analyse = combine les résultats d'études primaires pour déterminer l'effet global (+ analyse de l'hétérogénéité)

→ suppose que les études primaires collectées soient un échantillon représentatif de toutes les études disponibles

- publiées \rightarrow biais de publication
- publiées rapidement

 biais de retard de publication
- publiées en anglais

 biais de langue
- publiées plus d'une fois -> biais de publication multiple
- citées

 biais de citation

- publiées > biais de publication
- publiées rapidement

 biais de retard de publication
- publiées en anglais

 biais de langue
- publiées plus d'une fois → biais de publication multiple
- citées

 biais de citation

- publiées \rightarrow biais de publication
- publiées rapidement \rightarrow biais de retard de publication
- publiées en anglais → biais de langue
- publiées plus d'une fois \rightarrow biais de publication multiple
- citées → biais de citation

Funnel plots

14

Publication and Related Biases

Michael D. Jennions, Christopher J. Lortie, Michael S. Rosenberg, and Hannah R. Rothstein

Publication and Related Biases

Michael D. Jennions, Christopher J. Lortie, Michael S. Rosenberg, and Hannah R. Rothstein

Funnel plots

La distribution de toutes les études autour du vrai effet est symétrique

Publication and Related Biases

Michael D. Jennions, Christopher J. Lortie, Michael S. Rosenberg, and Hannah R. Rothstein

Funnel plots

La distribution de toutes les études autour du vrai effet est symétrique

Les études non publiées ont des petites tailles d'échantillon et des résultats non significatifs

Publication and Related Biases

Michael D. Jennions, Christopher J. Lortie, Michael S. Rosenberg, and Hannah R. Rothstein

Funnel plots

La distribution de toutes les études autour du vrai effet est symétrique

Les études non publiées ont des petites tailles d'échantillon et des résultats non significatifs

- → distribution asymétrique des effect sizes des études publiées
- → une relation entre taille de l'échantillon et effect size
- → une surestimation du vrai effet

Funnel plots

Methods for testing publication bias in ecological and evolutionary meta-analyses

```
Shinichi Nakagawa<sup>1</sup> | Malgorzata Lagisz<sup>1</sup> | Michael D. Jennions<sup>2</sup> | Julia Koricheva<sup>3</sup> | Daniel W. A. Noble<sup>2</sup> | Timothy H. Parker<sup>4</sup> | Alfredo Sánchez-Tóiar<sup>5</sup> | Yefeng Yang<sup>1</sup> | Rose E. O'Dea<sup>1</sup>
```

Effect size ~ N, SE, variance, precision, inverse variance

Très populaire

! Attention, l'asymétrie peut être due à l'hétérogénéité des *effect sizes*

Biais de publication : tests

Tests de l'asymétrie des funnel plots

Methods for testing publication bias in ecological and evolutionary meta-analyses

```
Shinichi Nakagawa<sup>1</sup> | Malgorzata Lagisz<sup>1</sup> | Michael D. Jennions<sup>2</sup> | Julia Koricheva<sup>3</sup> | Daniel W. A. Noble<sup>2</sup> | Timothy H. Parker<sup>4</sup> | Alfredo Sánchez-Tójar<sup>5</sup> | Yefeng Yang<sup>1</sup> | Rose E. O'Dea<sup>1</sup>
```

• **Egger's test** : régression linéaire des *effect sizes*/SE en fonction de 1/SE Si l'intercept est stat. signif. différent de 0 → asymétrie stat. signif.

Biais de publication : tests

Tests de l'asymétrie des funnel plots

Methods for testing publication bias in ecological and evolutionary meta-analyses

```
Shinichi Nakagawa<sup>1</sup> | Malgorzata Lagisz<sup>1</sup> | Michael D. Jennions<sup>2</sup> | Julia Koricheva<sup>3</sup> | Daniel W. A. Noble<sup>2</sup> | Timothy H. Parker<sup>4</sup> | Alfredo Sánchez-Tójar<sup>5</sup> | Yefeng Yang<sup>1</sup> | Rose E. O'Dea<sup>1</sup>
```

 Test de corrélation : test non paramétrique de la corrélation entre l'effect size standardisé et la variance (ou une autre mesure de l'incertitude)

Préférer la régression d'Egger

Biais de publication : évaluation de l'impact

Fail-safe N

= nombre de résultats non publiés stat. non significatifs qu'il faudrait pour rendre l'effet global non signif.

Si le *fail-safe* N est grand (> 5*N_études+10) les résultats sont considérés comme robustes vis-à-vis du biais de publication

Biais de publication : évaluation de l'impact

Trim-and-fill

Visualisation des *effect sizes* potentiellement manquants et ré-estimation de l'effet global

Methods for testing publication bias in ecological and evolutionary meta-analyses

```
Shinichi Nakagawa<sup>1</sup> | Malgorzata Lagisz<sup>1</sup> | Michael D. Jennions<sup>2</sup> | Julia Koricheva<sup>3</sup> | Daniel W. A. Noble<sup>2</sup> | Timothy H. Parker<sup>4</sup> | Alfredo Sánchez-Tójar<sup>5</sup> | Yefeng Yang<sup>1</sup> | Rose E. O'Dea<sup>1</sup>
```


Biais de publication : modélisation

Proposition d'une **nouvelle méthode** (*multilevel meta-regression*) pour détecter et corriger le biais de publication. La méthode permet de prendre en compte l'**hétérogénéité** et la **dépendance** des *effect sizes*.

- publiées → biais de publication
- publiées rapidement

 biais de retard de publication
- publiées en anglais → biais de langue
- publiées plus d'une fois → biais de publication multiple
- citées → biais de citation

Biais de retard de publication

Corrélation entre effect size et année de publication

Déconseillé, ne tient pas compte de la précision

evolutionary meta-analyses

```
Shinichi Nakagawa<sup>1</sup> | Malgorzata Lagisz<sup>1</sup>
                                                               | Michael D. Jennions<sup>2</sup> |
Julia Koricheva<sup>3</sup> | Daniel W. A. Noble<sup>2</sup>
                                                               Timothy H. Parker<sup>4</sup>
Alfredo Sánchez-Tójar<sup>5</sup> | Yefeng Yang<sup>1</sup>
                                                               Rose E. O'Dea<sup>1</sup>
```


Biais de retard de publication

Cumulative meta-analysis

Plus il y a d'études, plus on converge vers le vrai effet

Received: 8 April 2021 | Accepted: 6 September 2021

DOI: 10.1111/2041-210X.13724

REVIEW ARTICLE

Mothods in Ecology and Evolution READMONT

Methods for testing publication bias in ecological and evolutionary meta-analyses

```
Shinichi Nakagawa<sup>1</sup> | Malgorzata Lagisz<sup>1</sup> | Michael D. Jennions<sup>2</sup> | Julia Koricheva<sup>3</sup> | Daniel W. A. Noble<sup>2</sup> | Timothy H. Parker<sup>4</sup> | Alfredo Sánchez-Tójar<sup>5</sup> | Yefeng Yang<sup>1</sup> | Rose E. O'Dea<sup>1</sup>
```


- publiées → biais de publication
- publiées rapidement \rightarrow biais de retard de publication
- publiées en anglais

 biais de langue
- publiées plus d'une fois \rightarrow biais de publication multiple
- citées → biais de citation

ORIGINAL RESEARCH

Ignoring non-English-language studies may bias ecological meta-analyses

Ko Konno¹ | Munemitsu Akasaka^{2,3} | Chieko Koshida⁴ | Naoki Katayama⁵ | Noriyuki Osada⁶ | Rebecca Spake⁷ | Tatsuya Amano^{3,8,9} |

Les études à l'échelle locale, se concentrant sur une espèce ou testant des hypothèses spécifiques ont plus de probabilité d'être publiées en langue non-anglaise

→ Biais de langue lié aux caractéristiques de l'étude

Les études montrant un effet statistiquement significatif ont plus de probabilité d'être publiées dans des journaux à plus gros facteur d'impact en anglais → Biais de langue lié aux résultats statistiques de l'étude

Ko Konno¹ | Munemitsu Akasaka^{2,3} | Chieko Koshida⁴ | Naoki Katayama⁵ | Noriyuki Osada⁶ | Rebecca Spake⁷ | Tatsuya Amano^{3,8,9} |

Les études à l'échelle locale, se concentrant sur une espèce ou testant des hypothèses spécifiques ont plus de probabilité d'être publiées en langue non-anglaise

→ Biais de langue lié aux

caractéristiques de l'étude

Biais de langue

Received: 11 February 2020	Revised: 20 April 2020	Accepted: 23 April 2020	
DOI: 10.1002/ece3.6368			
		Ecology and Evolution	14/22
ORIGINAL RESEA	RCH	Open Access	WILEY

	Levene's test for homogeneity of variance		Two-sample Kolmogorov- Smirnov test for normality		Two-sample t test for effect-size differences between languages	
Meta-analysis	F (df)	р	D	р	t (df)	р
Rice-field meta-analysis	0.13 (1, 56)	.72	0.44	.06	2.18 (56)	.03
Leaf life span meta-analysis	4.55 (1, 132)	.03	0.27	.08	-2.40 (38.42)	.02
Plant forestry meta-analysis	1.68 (1, 63)	.20	0.29	.12	-0.19 (63)	.85
Sapling forestry meta-analysis	6.07 (1, 39)	.02	0.36	.17	-2.03 (21.62)	.05

Note: Statistically significant results are in bold. Welch two-sample *t* test was used where the assumption of homogeneity of variance was not met.

Effects of rice-field abandonment on Biodiversity

Effect of light on plants' leaf life span

Ignoring non-English-language studies may bias ecological meta-analyses

Effect of thinning on groundlayer plant abundance

Effect of thinning on sapling and seedling abundance

Language Language

Conclusion

- Importance des premières étapes de recherche de littérature!
- → chercher la littérature grise
- inclure la littérature publiée en langue non-anglaise

 Toujours interpréter avec précaution les tests du biais de publication, car aucune méthode ne permet de vérifier le nombre réel d'études manquantes

