

DATE: 01 February 2011

I.T.L. (PRODUCT TESTING) LTD. FCC Radio Test Report for ConnectOne Ltd.

Equipment under test: WiFi Module

iW-SM2144N2BIO

Written by:

D. Shidlowsky, Documentation

Approved by: _

A. Sharabi, Test Engineer

Approved by:

I. Raz, EMC Laboratory Manager

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd.

This report relates only to items tested.

Measurement/Technical Report for ConnectOne Ltd.

WiFi Module

iW-SM2144N2BIO

FCC ID: XM5-SM2144N2BIO

IC: 8516A-SM2144N2BIO

This report concerns: Original Grant: X

Class I Change:

Class II Change: **Digital Transmission System**

Limits used:

Equipment type:

47CFR15 Section 15.247

Measurement procedure used is ANSI C63.4-2003.

Application for Certification Applicant for this device:

prepared by: (different from "prepared by")

Ishaishou Raz Avi Provizor

ITL (Product Testing) Ltd. ConnectOne Ltd. Kfar Bin Nun 20 Atir Yeda St. D.N. Shimshon 99780 Kfar Saba 4463

Israel Israel

e-mail Sraz@itl.co.il Tel: + 972 - 9 - 766 - 0456

> + 972 - 9 - 766 - 0461 Fax: e-mail: avip@connectone.com

TABLE OF CONTENTS

1.	GENERAL II	NFORMATION	5
	1.1 A	Administrative Information	5
		ist of Accreditations	
		Product Description	
		est Methodology	
		est Facility	
		Measurement Uncertainty	
2.		ST CONFIGURATION	
		ustificationUT Exercise Software	
		Special Accessories	
		quipment Modifications	
		Configuration of Tested System	
3.		D AND RADIATED MEASUREMENT TEST SET-UP PHOTOS	
		UM BANDWIDTH	
4.			
		est procedure	
		Results tableest Equipment Used	
		• •	
5.	-	MUM BANDWIDTH	
		est procedure	
		Results table	
	5.3 T	est Equipment Used	29
6.	MAXIMUM T	RANSMITTED PEAK POWER OUTPUT	30
		est procedure	
	6.2 R	Results table	37
	6.3 T	est Equipment Used	38
7.	PEAK POW	ER OUTPUT OUT OF 2400-2483.5 MHZ BAND	39
••		est procedure	
		Results table	
		est Equipment Used	
8.	BAND EDGE	E SPECTRUM	84
O.		est procedure	
		Results table	
		est Equipment Used	
9.	PANIATEN	EMISSION, 9 KHZ – 30 MHZ	01
Э.		est Specification	
		est Procedure	
		Neasured Data	
		est Instrumentation Used, Radiated Measurements	
		Field Strength Calculation	
10.	RADIATED	EMISSION 30 – 25000 MHZ	03
10.		est Specification	
		est Procedure	
		est Data	
		Field Strength Calculation below 1 GHz	
		est Instrumentation Used, Radiated Measurements 30 MHz -25 GHz	
11.	TRANSMITT	ED POWER DENSITY	103
		est procedure	
		est Equipment Used	
12.	ANTENNA G	GAIN/INFORMATION	112

13.	R.F EXPO	SURE/SAFETY	113
14.	APPENDI	X A - CORRECTION FACTORS	114
		Correction factors for CABLE	
	14.2	Correction factors for CABLE	115
	14.3	Correction factors for CABLE	116
	12.6	Correction factors for LOG PERIODIC ANTENNA	117
	14.4	Correction factors for LOG PERIODIC ANTENNA	118
	14.5	Correction factors for BICONICAL ANTENNA	119
	14.6	Correction factors for Double-Ridged Waveguide Horn	120
	14.7	Correction factors for Horn Antenna	121
	14.8	Correction factors for ACTIVE LOOP ANTENNA	122
		Correction ractors for ACTIVE EGGI ATTENTACTOR	

1. General Information

1.1 Administrative Information

Manufacturer: ConnectOne Ltd.

Manufacturer's Address: 20 Atir Yeda St., Kfar Saba, 44643,

Israel

Tel: +972-9-766-0456 Fax: +972-9-766-0461

Manufacturer's Representative: Avi Provizor

Equipment Under Test (E.U.T): WiFi Module

Equipment Model No.: iW-SM2144N2BIO

Equipment Serial No.: Not Designated

Date of Receipt of E.U.T: 08/11/10

Start of Test: 08/11/10

End of Test: 11/11/10

Test Laboratory Location: I.T.L (Product Testing) Ltd.

Kfar Bin Nun, ISRAEL 99780

Test Specifications: See Section 2

1.2 List of Accreditations

The EMC laboratory of I.T.L. is accredited by the following bodies:

- 1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
- 2. The Federal Communications Commission (FCC) (U.S.A.), Registration No. 90715.
- 3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
- 4. The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) (Japan), Registration Numbers: C-1350, R-1285.
- 5. Industry Canada (Canada), IC File No.: 46405-4025; Site No. IC 4025B-1.
- 6. TUV Product Services, England, ASLLAS No. 97201.

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.

1.3 Product Description

WIREACH BK is a secure serial-to-Wireless LAN device server module that also acts as a bridge to connect serial devices to 802.11b/g Wireless LANs. It includes the iChipTM CO2144 IP Communication ControllerTM chip and Marvell 88W8686 WiFi chipset. It is packaged in RoHS-compliant ultra-slim form factor and uses an industry standard pin-out.

WIREACH BK offers much more than many other device servers on the market. It acts as a security gap between the application and the network; supports up to 10 simultaneous TCP/UDP sockets; two listening sockets; a web server with two websites; SMTP and POP3 clients; MIME attachments; FTP and TELNET clients, and SerialNETTM mode for serial-to-IP bridging.

WIREACH BK supports the SSL3/TLS1 protocol for secure sockets, HTTPS and FTPS, WEP, WPA and WPA2 WiFi encryption.

WIREACH BK minimizes the need to redesign the host device hardware. It easily inserts into headers on the host PCB and connects to an external antenna. Minimal or no software configuration is needed for WIREACH BK to access the Wireless LAN.

Connect One's high-level AT+iTM API eliminates the need to add WiFi drivers, security and networking protocols and tasks to the host application. The AT+i SerialNET operating mode offers a true plug-and-play mode that eliminates any changes to the host application.

WIREACH BK firmware – the IP stack and Internet configuration parameters – are stored in an external flash memory. The module is power-efficient: the core operates at 1.2V, while I/Os operate at 3.3V. Power Save mode further reduces power consumption.

1.4 Test Methodology

Radiated testing was performed according to the procedures in ANSI C63.4: 2003. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.5 Test Facility

The radiated emissions tests were performed at I.T.L.'s testing facility at Kfar Bin-Nun, Israel. This site is a FCC listed test laboratory (FCC Registration No. 90715, date of listing September 03, 2009).

I.T.L.'s EMC Laboratory is also accredited by A2LA, certificate No. 1152.01.

1.6 Measurement Uncertainty

Radiated Emission

The Open Site complies with the ± 4 dB Normalized Site Attenuation requirements of ANSI C63.4-2003. In accordance with Paragraph 5.4.6.1 of this standard, this tolerance includes instrumentation calibration errors, measurement technique errors, and errors due to site anomalies.

2. System Test Configuration

2.1 Justification

The E.U.T. was placed in an evaluation board powered from 9 VDC in order to perform the tests. The E.U.T. transmitted continuously.

The evaluation board was placed in a typical position on the table.

2.2 EUT Exercise Software

iChip Config (ConnectOne's Utility) and Hyper Terminal software were used.

2.3 Special Accessories

No special accessories were needed to achieve compliance.

2.4 Equipment Modifications

No modifications were necessary in order o achieve compliance.

2.5 Configuration of Tested System

Figure 1. Configuration of Tested System

3. Conducted and Radiated Measurement Test Set-up Photos

Figure 2. Conducted Emission From Antenna Port Test

Figure 3. Radiated Emission Test

4. 6 dB Minimum Bandwidth

4.1 Test procedure

The E.U.T. was set to the applicable test frequency. The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator (20 dB) and an appropriate coaxial cable (cable loss = 1 dB). The spectrum analyzer was set to 100 kHz resolution BW. The spectrum bandwidth of the E.U.T. at the point of 6 dB below maximum peak power was measured and recorded.

The E.U.T. was tested at 2412, 2437, and 2462 MHz with the following modulations: 1, 11, 6 and 54 Mbps.

Figure 4 — Channel 1, 1Mbps

Figure 5 ——Channel 1, 11Mbps

Figure 6 — Channel 1, 6Mbps

Figure 7 — Channel 1, 54Mbps

Figure 8 — Channel 6, 1Mbps

Figure 9 — Channel 6, 11Mbps

Figure 10 — Channel 6, 6Mbps

Figure 11 — Channel 6, 54Mbps

Figure 12 — Channel 11, 1Mbps

Figure 13 — Channel 11, 11Mbps

Figure 14 — Channel 11, 6Mbps

Figure 15 — Channel 11, 54Mbps

4.2 Results table

E.U.T Description: WiFi Module Model No.: iW-SM2144N2BIO Serial Number: Not Designated

Specification: F.C.C. Part 15, Subpart C: (15.247-a2)

Operation	Modulation	Reading	Specification
Frequency			
(MHz)	(Mbps)	(MHz)	(MHz)
	1	9.37	0.5
2412	11	9.12	0.5
2.12	6	16.75	0.5
	54	16.38	0.5
	1	9.87	0.5
2437	11	9.25	0.5
2 /	6	16.75	0.5
	54	16.50	0.5
	1	8.50	0.5
2462	11	7.88	0.5
	6	16.75	0.5
	54	16.38	0.5

Figure 16 6 dB Minimum Bandwidth

JUDGEMENT: Passed

TEST PERSONNEL:

Tester Signature: _____ Date: 03.02.11

Typed/Printed Name: A. Sharabi

4.3 Test Equipment Used.

6 dB Minimum Bandwidth

				Calibration	
Instrument	Manufacturer	Model	Serial/Part Number	Last Calibration Date	Period
Spectrum Analyzer	HP	8592L	3826A01204	March 14, 2010	1 year
Attenuator	Jyebao	-	FAT- AM5AF5G6G2W20	October 12, 2010	1 year
Cable	TestLINE	18	11556	October 12, 2010	1 year

Figure 17 Test Equipment Used

5. 26 dB Minimum Bandwidth

5.1 Test procedure

The E.U.T. was set to the applicable test frequency. The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator (20 dB) and an appropriate coaxial cable (cable loss = 1 dB). The spectrum analyzer was set to 100 kHz resolution BW. The spectrum bandwidth of the E.U.T. at the point of 26 dB below maximum peak power was measured and recorded.

The E.U.T. was tested at 2412, 2437, and 2462 MHz with the following modulations: 1, 11, 6 and 54 Mbps.

Figure 18 —Channel 1, 1Mbps

Figure 19 —Channel 1, 11Mbps

Figure 20 — Channel 1, 6Mbps

Figure 21 — Channel 1, 54Mbps

Figure 22 — Channel 6, 1Mbps

Figure 23 — Channel 6, 11Mbps

Figure 24 — Channel 6, 6Mbps

Figure 25 — Channel 6, 54Mbps

Figure 26 — Channel 11, 1Mbps

Figure 27 — Channel 11, 11Mbps

Figure 28 — Channel 11, 6Mbps

Figure 29 — Channel 11, 54Mbps

5.2 Results table

E.U.T Description: WiFi Module Model No.: iW-SM2144N2BIO Serial Number: Not Designated

Specification: F.C.C. Part 15, Subpart C: (15.247-a2)

Operation	Modulation	Reading	Specification	
Frequency				
(MHz)	(Mbps)	(MHz)	(MHz)	
	1	17.00	0.5	
2412	11	17.00	0.5	
2112	6	22.00	0.5	
	54	20.25	0.5	
	1	17.13	0.5	
2437	11	17.00	0.5	
,	6	20.50	0.5	
	54	20.50	0.5	
	1	17.00	0.5	
2462	11	17.00	0.5	
	6	21.00	0.5	
	54	21.00	0.5	

Figure 30 26 dB Minimum Bandwidth

JUDGEMENT: Passed

TEST PERSONNEL:

Tester Signature: _____ Date: 03.02.11

Typed/Printed Name: A. Sharabi

5.3 Test Equipment Used.

26 dB Minimum Bandwidth

Instrument Manufacturer		Model	Serial/Part Number	Calibration	
				Last Calibration Date	Period
Spectrum Analyzer	HP	8592L	3826A01204	March 14, 2010	1 year
Attenuator	Jyebao	-	FAT- AM5AF5G6G2W20	October 12, 2010	1 year
Cable	TestLINE	18	11556	October 12, 2010	1 year

Figure 31 Test Equipment Used

6. Maximum Transmitted Peak Power Output

6.1 Test procedure

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator (20 dB) and an appropriate coaxial cable (cable loss = 1 dB). The Spectrum Analyzer was set to 1.0 MHz resolution BW. Peak power level was measured at selected operation frequencies.

The E.U.T. was tested at 2412, 2437, and 2462 MHz with the following modulations: 1, 11, 6 and 54 Mbps.

Figure 32 - Channel 1, 1Mbps

Figure 33- Channel 1, 11Mbps

Figure 34 - Channel 1, 6Mbps

Figure 35 - Channel 1, 54Mbps

Figure 36 - Channel 6, 1Mbps

Figure 37 - Channel 6, 11Mbps

Figure 38 - Channel 6, 6Mbps

Figure 39 - Channel 6, 54Mbps

Figure 40 - Channel 11, 1Mbps

Figure 41 - Channel 11, 11Mbps

Figure 42 - Channel 11, 6Mbps

Figure 43 - Channel 11, 54Mbps

6.2 Results table

E.U.T. Description: WiFi Module Model No.: iW-SM2144N2BIO Serial Number: Not Designated

Specification: F.C.C. Part 15, Subpart C Section 15.247(b)

Operation Frequency	Modulation	Reading	Specification	Margin
(MHz)	(Mbps)	(dBm)	(dBm)	(dB)
(141112)	1	16.74	30.0	-13.26
	1			
2412	11	17.95	30.0	-12.05
	6	14.10	30.0	-15.90
	54	15.03	30.0	-14.97
2437	1	16.61	30.0	-13.39
	11	17.92	30.0	-12.08
	6	14.95	30.0	-15.05
	54	15.37	30.0	-14.63
2462	1	16.93	30.0	-13.07
	11	19.16	30.0	-10.84
	6	15.04	30.0	-14.96
	54	15.58	30.0	-14.42

Figure 44 Maximum Peak Power Output

JUDGEMENT: Passed by 10.84 dB

TEST PERSONNEL:

Tester Signature: Date: 03.02.11

Typed/Printed Name: A. Sharabi

6.3 Test Equipment Used.

Peak Power Output

Instrument	Manufacturer	Model	Serial/Part Number	Calibration	
				Last Calibration Date	Period
Spectrum Analyzer	HP	8592L	3826A01204	March 14, 2010	1 year
Attenuator	Jyebao	-	FAT- AM5AF5G6G2W20	October 12, 2010	1 year
Cable	TestLINE	18	11556	October 12, 2010	1 year

Figure 45 Test Equipment Used

7. Peak Power Output Out of 2400-2483.5 MHz Band

7.1 Test procedure

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator (20 dB) and an appropriate coaxial cable (cable loss = 1 dB). The spectrum analyzer was set to 1MHz resolution BW except for the frequency range

9 kHz-150 kHz where the RBW was set to 1kHz and the frequency range 150 kHz-10 MHz where the RBW was set to 10kHz. The frequency range from 9 kHz to 25 GHz was scanned. Level of spectrum components out of the 2400-2483.5 MHz was measured at the selected operation frequencies.

The E.U.T. was tested at 2412, 2437, and 2462 MHz with the following modulations: 1, 11, 6 and 54 Mbps.

Figure 46 - Channel 1, 1Mbps

Figure 47 - Channel 1, 1Mbps

Figure 48 - Channel 1, 1Mbps

Figure 49 - Channel 1, 1Mbps

Figure 50 - Channel 1, 1Mbps

Figure 51 - Channel 1, 1Mbps

Figure 52- Channel 1, 1Mbps

Figure 53- Channel 1, 11Mbps

Figure 54- Channel 1, 11Mbps

Figure 55- Channel 1, 11Mbps

Figure 56- Channel 1, 11Mbps

Figure 57- Channel 1, 11Mbps

Figure 58- Channel 1, 11Mbps

Figure 59 - Channel 1, 11Mbps

Figure 60 - Channel 1, 6Mbps

Figure 61 - Channel 1, 6Mbps

Figure 62 - Channel 1, 6Mbps

Figure 63 - Channel 1, 6Mbps

Figure 64 - Channel 1, 6Mbps

Figure 65 - Channel 1, 6Mbps

Figure 66 - Channel 1, 6Mbps

Figure 67 - Channel 1, 54Mbps

Figure 68 - Channel 1, 54Mbps

Figure 69 - Channel 1, 54Mbps

Figure 70 - Channel 1, 54Mbps

Figure 71 - Channel 1, 54Mbps

Figure 72 - Channel 1, 54Mbps

Figure 73 - Channel 1, 54Mbps

Figure 74 - Channel 6, 1Mbps

Figure 75 - Channel 6, 1Mbps

Figure 76 - Channel 6, 1Mbps

Figure 77 - Channel 6, 1Mbps

Figure 78 - Channel 6, 1Mbps

Figure 79 - Channel 6, 1Mbps

Figure 80 - Channel 6, 1Mbps

Figure 81 - Channel 6, 11Mbps

Figure 82 - Channel 6, 11Mbps

Figure 83 - Channel 6, 11Mbps

Figure 84 - Channel 6, 11Mbps

Figure 85 - Channel 6, 11Mbps

Figure 86 - Channel 6, 11Mbps

Figure 87 - Channel 6 ,11Mbps

Figure 88 - Channel 6,6Mbps

Figure 89 - Channel 6,6Mbps

Figure 90 - Channel 6,6Mbps

Figure 91 - Channel 6,6Mbps

Figure 92 - Channel 6,6Mbps

Figure 93 - Channel 6,6Mbps

Figure 94 - Channel 6,6Mbps

Figure 95 - Channel 6,54Mbps

Figure 96 - Channel 6,54Mbps

Figure 97 - Channel 6,54Mbps

Figure 98 - Channel 6,54Mbps

Figure 99 - Channel 6,54Mbps

Figure 100 - Channel 6,54Mbps

Figure 101 - Channel 6,54Mbps

Figure 102 - Channel 11, 1Mbps

Figure 103 - Channel 11, 1Mbps

Figure 104 - Channel 11, 1Mbps

Figure 105 - Channel 11, 1Mbps

Figure 106 - Channel 11, 1Mbps

Figure 107 - Channel 11, 1Mbps

Figure 108 - Channel 11, 1Mbps

Figure 109 - Channel 11, 11Mbps

Figure 110 - Channel 11, 11Mbps

Figure 111 - Channel 11, 11Mbps

Figure 112 - Channel 11, 11Mbps

Figure 113 - Channel 11, 11Mbps

Figure 114 - Channel 11, 11Mbps

Figure 115 - Channel 11, 11Mbps

Figure 116 - Channel 11, 6Mbps

Figure 117 - Channel 11, 6Mbps

Figure 118 - Channel 11, 6Mbps

Figure 119 - Channel 11, 6Mbps

Figure 120 - Channel 11, 6Mbps

Figure 121 - Channel 11, 6Mbps

Figure 122 - Channel 11, 6Mbps

Figure 123 — Channel 11, 54Mbps

Figure 124 — Channel 11, 54Mbps

Figure 125 — Channel 11, 54Mbps

Figure 126 — Channel 11, 54Mbps

Figure 127 — Channel 11, 54Mbps

Figure 128 — Channel 11, 54Mbps

Figure 129 — Channel 11, 54Mbps

7.2 Results table

E.U.T Description: WiFi Module Model No.: iW-SM2144N2BIO Serial Number: Not Designated

Specification: F.C.C. Part 15, Subpart C (15.247)

Operation	Modulation	Reading	Specification	Margin
Frequency				
(MHz)	(Mbps)	(dBm)	(dBm)	(dB)
	1	-26.63	-8.7	-17.93
2412	11	-26.83	-6.7	-20.13
2.12	6	-26.16	-12.8	-13.36
	54	-27.36	-11.2	-16.16
	1	-26.87	-9.0	-17.87
2437	11	-27.18	-6.8	-20.38
2.07	6	-25.87	-11.8	-14.07
	54	-26.50	-10.0	-16.50
	1	-26.86	-9.2	-17.86
2462	11	-26.86	-9.2	-17.86
2.02	6	-26.74	-11.4	-15.34
	54	-26.72	-10.0	-16.72

Figure 130 Peak Power Output of 2400-2483.5 MHz Band

JUDGEMENT: Passed by 20.38 dB

TEST PERSONNEL:

Tester Signature: Date: 03.02.11

7.3 Test Equipment Used.

Peak Power Output of 2400-2438.5 MHz Band

				Calibration		
Instrument	Manufacturer	facturer Model Serial/Part Num		Last Calibration Date	Period	
Spectrum Analyzer	HP	8592L	3826A01204	March 14, 2010	1 year	
Attenuator	Jyebao	-	FAT- AM5AF5G6G2W20	October 12, 2010	1 year	
Cable	TestLINE	18	11556	October 12, 2010	1 year	

Figure 131 Test Equipment Used

8. Band Edge Spectrum

[In Accordance with section 15.247(c)]

8.1 Test procedure

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator (20 dB) and an appropriate coaxial cable (cable loss = 1 dB). The spectrum analyzer was set to 100 kHz resolution BW. Maximum power level below 2400 MHz and above 2483.5 MHz was measured relative to power level at 2400 MHz, and 2483.5 MHz correspondingly. The E.U.T. was tested at 2412 and 2462 MHz with the following modulations: 1, 11, 6 and 54 Mbps.

Figure 132 — Channel 1, 1Mbps

Figure 133 — Channel 1, 11Mbps

Figure 134 — Channel 1, 6Mbps

Figure 135 — Channel 1, 54Mbps

Figure 136 — Channel 11, 1Mbps

Figure 137 — Channel 11, 11Mbps

Figure 138 — Channel 11, 6Mbps

Figure 139 — Channel 11, 54Mbps

8.2 Results table

E.U.T. Description: WiFi Module Model No.: iW-SM2144N2BIO Serial Number: Not Designated

Specification: F.C.C. Part 15, Subpart C (15.247)

Operation	Modulation	Band Edge	Reading	Specification	Margin
Frequency		Frequency			
(MHz)	(Mbps)	(MHz)	(dBm)	(dBm)	(dB)
	1	2398.05	-39.43	-8.7	-30.73
2412	11	2398.55	-39.96	-6.7	-33.26
	6	2400.00	-34.28	-12.8	-21.48
	54	2400.00	-34.87	-11.2	-23.67
	1	2483.50	-46.67	-9.2	-37.47
2462	11	2483.50	-46.77	-9.4	-37.37
	6	2483.50	-45.34	-11.4	-33.94
	54	2483.50	-46.13	-10.0	-36.13

Figure 140 Band Edge Spectrum

JUDGEMENT: Passed by 21.48 dB

TEST PERSONNEL:

Tester Signature: _____ Date: 03.02.11

8.3 Test Equipment Used.

Band edge Spectrum

				Calibration		
Instrument	nstrument Manufacturer Model Serial/Part N		Serial/Part Number	Last Calibration Date	Period	
Spectrum Analyzer	HP	8592L	3826A01204	March 14, 2010	1 year	
Attenuator	Jyebao	-	FAT- AM5AF5G6G2W20	October 12, 2010	1 year	
Cable	TestLINE	18	11556	October 12, 2010	1 year	

Figure 141 Test Equipment Used

Radiated Emission, 9 kHz – 30 MHz

9.1 **Test Specification**

9 kHz-30 MHz, FCC, Part 15, Subpart C, Section 209

9.2 Test Procedure

The E.U.T. operation mode and test set-up are as described in Section 3.

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in Figure 3.1.

The frequency range 9 kHz-30 MHz was scanned.

The emissions were measured using a computerized EMI receiver complying to CISPR 16 requirements. The specification limits and applicable correction factors are loaded to the receiver via a 3.5" floppy disk.

In the frequency range 9 kHz-30MHz, the loop antenna was rotated on its vertical axis. The antenna height (center of loop) was 1 meter at a distance of 3 meters.

The E.U.T. was tested at 2412, 2437, and 2462 MHz with the following modulations: 1, 11, 6 and 54 Mbps. Measurement was performed using a peak detector.

9.3 Measured Data

JUDGEMENT: Passed by dB

The EUT met the requirements of the F.C.C. Part 15, Subpart C, Section 209 specification.

The results for all 3 operation frequencies and modulations were the same.

No signals were detected in the frequency range of 9 kHz - 30 MHz.

TEST PERSONNEL:

Date: 03.02.11 Tester Signature: _

9.4 Test Instrumentation Used, Radiated Measurements

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	НР	85422E	3906A00276	November 10, 2009*	1 year
RF Section	НР	85420E	3705A00248	November 10, 2009*	1 year
Active Loop Antenna	EMCO	6502	9506-2950	October 19, 2010	1 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	НР	LaserJet 2200	JPKGC19982	N/A	N/A

^{*} Test was performed before 10 November 2010.

9.5 Field Strength Calculation

The field strength is calculated directly by the EMI Receiver software, and a "Correction Factors" data disk, using the following equation:

$$FS = RA + AF + CF$$

FS: Field Strength [dBµv/m]

RA: Receiver Amplitude [dBµv]

AF: Receiving Antenna Correction Factor [dB/m]

CF: Cable Attenuation Factor [dB]

Example: $FS = 30.7 \ dB\mu V \ (RA) + 14.0 \ dB \ (AF) + 0.9 \ dB \ (CF) = 45.6 \ dB\mu V$

No external pre-amplifiers are used.

10. Radiated Emission 30 – 25000 MHz

10.1 Test Specification

30 MHz-25000 MHz, F.C.C., Part 15, Subpart C

10.2 Test Procedure

The E.U.T. operation mode and test set-up are as described in Section 3.

See Section 3.1 Justification of the System Test Configuration concerning the E.U.T. orientation for this test.

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in Figure 1.

The frequency range 30 MHz-25000 MHz was scanned, and the list of the highest emissions was verified and updated accordingly.

The levels of the emissions within the frequency ranges of the restricted bands (Section 15.205 of FCC Part 15) were compared to the limits of the table in Section 15.209 (a), General Requirements.

In the frequency range of 30 MHz - 2.9 GHz, the emissions were measured using a computerized EMI receiver complying to CISPR 16 requirements. The specification limits and applicable correction factors are loaded to the receiver via a 3.5" floppy disk.

In the frequency range 2.9-25.0 GHz, a spectrum analyzer including a low noise amplifier was used. During average measurements, the IF bandwidth was 1 MHz and the video bandwidth was 100Hz. During peak measurements, the IF bandwidth was 1 MHz and the video bandwidth was 3 MHz.

The test distance was 3 meters.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization. Verification of the E.U.T emissions was based on the following methods: turning the E.U.T on and off; using a frequency span less than 10 MHz; observation of the signal level during turntable rotation. (Background noise is not affected by the rotation of the E.U.T.)

The E.U.T. was tested at 2412, 2437, and 2462 MHz with the following modulations: 1, 11, 6 and 54 Mbps.

10.3 Test Data

JUDGEMENT: Passed by 6.0 dB

For the operation frequency of 2412 MHz, the margin between the emission level and the specification limit is 7.0 dB in the worst case at the frequency of 4824.00 MHz, vertical polarization.

For the operation frequency of 2437 MHz, the margin between the emission level and the specification limit is 6.0 dB in the worst case at the frequency of 4783.00 MHz, vertical polarization.

For the operation frequency of 2462 MHz, the margin between the emission level and the specification limit is 6.8 dB in the worst case at the frequency of 4924.00 MHz, vertical polarization.

The results for all modulations were the same.

The EUT met the requirements of the F.C.C. Part 15, Subpart C, specification.

The details of the highest emissions are given in Figure 142 to Figure 147.

TEST PERSONNEL:

Tester Signature: _ Date: 03.02.11

E.U.T Description WiFi Module

Type iW-SM2144N2BIO Serial Number: Not Designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical Frequency range: 1.0 GHz to 25.0 GHz

Test Distance: 3 meters Detector: Peak

Operation Frequency: 2412 MHz

Frequency	Polarity	Peak Reading	Peak. Specification	Peak. Margin
(MHz)	(H/V)	(dBµV/m)	$(dB\;\mu V/m)$	(dB)
2390.00	Н	57.2**	74.0	-16.8
2390.00	V	57.4**	74.0	-16.6
4824.00	Н	54.5*	74.0	-19.5
4824.00	V	58.0*	74.0	-16.0

Figure 142. Radiated Emission. Antenna Polarization: HORIZONTAL / VERTICAL.

Detector: Peak

[&]quot;Peak Reading" includes correction factor.

^{* &}quot;Correction Factor" = Antenna Factor + Cable Loss- Low Noise Amplifier Gain

^{** &}quot;Correction Factor" = Antenna Factor + Cable Loss

E.U.T Description WiFi Module

Type iW-SM2144N2BIO Serial Number: Not Designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical Frequency range: 1.0 GHz to 25.0 GHz

Test Distance: 3 meters Detector: Average

Operation Frequency: 2412 MHz

Frequency	Polarity	Average Reading	Average Specification	Peak. Margin
(MHz)	(H/V)	(dBµV/m)	$(dB\;\mu V/m)$	(dB)
2390.00	Н	44.2**	54.0	-9.8
2390.00	V	45.3**	54.0	-8.7
4824.00	Н	45.0*	54.0	-9.0
4824.00	V	47.0*	54.0	-7.0

Figure 143. Radiated Emission. Antenna Polarization: HORIZONTAL / VERTICAL.

Detector: Average

Notes:

[&]quot;Average Reading" includes correction factor.

^{*} Correction Factor = Antenna Factor + Cable Loss- Low Noise Amplifier Gain

^{** &}quot;Correction Factor" = Antenna Factor + Cable Loss

E.U.T Description WiFi Module

Type iW-SM2144N2BIO Serial Number: Not Designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical Frequency range: 1.0 GHz to 25.0 GHz

Test Distance: 3 meters Detector: Peak

Operation Frequency: 2437 MHz

Freqency	Polarity	Peak Reading	Peak. Specification	Peak. Margin
(MHz)	(H/V)	(dBµV/m)	$(dB\;\mu V/m)$	(dB)
4783.00	Н	57.3*	74.0	-16.7
4783.00	V	60.1*	74.0	-13.9

Figure 144. Radiated Emission. Antenna Polarization: HORIZONTAL / VERTICAL.

Detector: Peak

[&]quot;Peak Reading" includes correction factor.

^{* &}quot;Correction Factor" = Antenna Factor + Cable Loss- Low Noise Amplifier Gain

E.U.T Description WiFi Module

Type iW-SM2144N2BIO Serial Number: Not Designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical Frequency range: 1.0 GHz to 25.0 GHz

Test Distance: 3 meters Detector: Average

Operation Frequency: 2437 MHz

Frequency	Polarity	Average Average Specification		Peak. Margin
(MHz)	(H/V)	(dBµV/m)	$(dB\;\mu V/m)$	(dB)
4783.00	Н	45.6*	54.0	-8.4
4783.00	V	48.0*	54.0	-6.0

Figure 145. Radiated Emission. Antenna Polarization: HORIZONTAL / VERTICAL.

Detector: Average

Notes:

[&]quot;Average Reading" includes correction factor.

^{*} Correction Factor = Antenna Factor + Cable Loss- Low Noise Amplifier Gain

E.U.T Description WiFi Module

iW-SM2144N2BIO Type Serial Number: Not Designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical Frequency range: 1.0 GHz to 25.0 GHz

Test Distance: 3 meters Detector: Peak

Operation Frequency: 2462 MHz

Frequency	Polarity	Peak Reading	Peak. Specification	Peak. Margin
(MHz)	(H/V)	(dBµV/m)	(dB μV/m)	(dB)
2483.50	Н	55.6**	74.0	-18.4
2483.50	V	54.3**	74.0	-19.7
4924.00	Н	56.3*	74.0	-17.7
4924.00	V	59.7*	74.0	-14.3

Figure 146. Radiated Emission. Antenna Polarization: HORIZONTAL / VERTICAL. **Detector: Peak**

[&]quot;Peak Reading" includes correction factor.

^{* &}quot;Correction Factor" = Antenna Factor + Cable Loss- Low Noise Amplifier Gain

^{**&}quot;Correction Factor" = Antenna Factor + Cable Loss

Radiated Emission Above 1 GHz

E.U.T Description WiFi Module

Type iW-SM2144N2BIO Serial Number: Not Designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical Frequency range: 1.0 GHz to 25.0 GHz

Test Distance: 3 meters Detector: Average

Operation Frequency: 2462 MHz

Frequency	Polarity	Average Reading	Average Specification	Peak. Margin
(MHz)	(H/V)	(dBµV/m)	$(dB\;\mu V/m)$	(dB)
2483.50	Н	41.3**	54.0	-12.7
2483.50	V	42.5**	54.0	-11.5
4924.00	Н	45.6*	54.0	-8.4
4924.00	V	47.2*	54.0	-6.8

Figure 147. Radiated Emission. Antenna Polarization: HORIZONTAL / VERTICAL. Detector: Average

Notes:

[&]quot;Average Reading" includes correction factor.

^{*} Correction Factor = Antenna Factor + Cable Loss- Low Noise Amplifier Gain

^{**&}quot;Correction Factor" = Antenna Factor + Cable Loss

10.4 Field Strength Calculation below 1 GHz

The field strength is calculated directly by the EMI Receiver software, and a "Correction Factors" data disk, using the following equation:

$$[dB\mu v/m]$$
 FS = RA + AF + CF

FS: Field Strength [dBμv/m]

RA: Receiver Amplitude [dBµv]

AF: Receiving Antenna Correction Factor [dB/m]

CF: Cable Attenuation Factor [dB]

Example: $FS = 30.7 \text{ dB}\mu\text{V}$ (RA) + 14.0 dB (AF) + 0.9 dB (CF) = 45.6 dB μV

No external pre-amplifiers are used.

10.5 Test Instrumentation Used, Radiated Measurements 30 MHz -25 GHz

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Period
EMI Receiver	HP	85422E	3906A00276	November 10, 2009*	1Year
RF Filter Section	HP	85420E	3705A00248	November 10, 2009-	1Year
Antenna Biconical	ARA	BCD 235/B	1041	August 1, 2010	1Year
Antenna Log Periodic	ARA	LPD-2010/A	1038	March 24, 2010	1 Year
Antenna Log Periodic	A.H. Systems	SAS- 200/511	253	January 29, 2009	2 Years
Double Ridged Waveguide Horn Antenna	EMCO	3115	29845	March 14, 2010	2 Years
Horn Antenna	ARA	SWH-28	1008	December 23, 2008	2 Years
Low Noise Amplifier	DBS MICROWAVE	LNA-DBS- 0411N313	013	January 13, 2010	1 Year
Low Noise Amplifier	Sophia Wireless	LNA 28-B	232	January 13, 2010	1 Year
Spectrum Analyzer	HP	8592L	3826A01204	March 14, 2010	1 Year
Spectrum Analyzer	HP	8546E	3442A00275	January 11, 2010	1 Year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	НР	LaserJet 2200	JPKGC19982	N/A	N/A

11. Transmitted Power Density

[In accordance with section 15.247(d)]

11.1 Test procedure

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator (20dB) and an appropriate coaxial cable (cable loss = 1 dB). The spectrum analyzer was set to 3 kHz resolution BW. and sweep time of 1 second for each 3 kHz "window". The spectrum peaks were located at each of the 3 operating frequencies.

Figure 148 - Channel 1, 1Mbps

Figure 149- Channel 1, 11Mbps

Figure 150 - Channel 1, 6Mbps

Figure 151 - Channel 1,54Mbps

Figure 152 - Channel 6, 1Mbps

Figure 153 - Channel 6, 11Mbps

Figure 154 - Channel 6, 6Mbps

Figure 155 - Channel 6, 54Mbps

Figure 156 - Channel 11, 1Mbps

Figure 157 - Channel 11, 11Mbps

Figure 158 - Channel 11, 6Mbps

Figure 159 - Channel 11, 54Mbps

E.U.T. Description: WiFi Module Model No.: iW-SM2144N2BIO Serial Number: Not Designated

Specification: F.C.C. Part 15, Subpart C (15.247)

Operation Frequency	Modulation	Reading	Specification	Margin
(MHz)	(Mbps)	(dBm)	(dBm)	(dB)
	1	-13.64	8.0	-21.64
2412	11	-7.60	8.0	-15.60
	6	-17.39	8.0	-25.39
	54	-16.25	8.0	-24.25
	1	-13.31	8.0	-21.31
2437	11	-7.69	8.0	-15.69
,	6	-16.77	8.0	-24.77
	54	-15.29	8.0	-23.29
	1	-16.30	8.0	-24.30
2462	11	-8.54	8.0	-16.54
2.02	6	-17.43	8.0	-25.43
	54	-15.14	8.0	-23.14

Figure 160 Test Results

JUDGEMENT: Passed by 15.60 dB

TEST PERSONNEL:

Tester Signature: _____ Date: 03.02.11

Typed/Printed Name: A. Sharabi

11.2 Test Equipment Used.

Transmitted Power Density

				Calibration	
Instrument	Manufacturer	Model	Serial/Part Number	Last Calibration Date	Period
Spectrum Analyzer	HP	8592L	3826A01204	March 14, 2010	1 year
Attenuator	Jyebao	-	FAT- AM5AF5G6G2W20	October 12, 2010	1 year
Cable	TestLINE	18	11556	October 12, 2010	1 year

Figure 161 Test Equipment Used

12. Antenna Gain/Information

The antenna gain is 2 dBi.

13. R.F Exposure/Safety

The typical placement of the E.U.T. is on an OEM board. The typical distance between the E.U.T. and the user in the worst case application, is >10 cm.

Calculation of Maximum Permissible Exposure (MPE)
Based on Section 1.1307(b)(1) Requirements

(a) FCC limits at MHz is:
$$1 \frac{mW}{cm^2}$$

Using table 1 of Section 1.1310 limit for general population/uncontrolled exposures, the above level is an average over 30 minutes.

(b) The power density produced by the E.U.T. is

$$S = \frac{P_t G_t}{4\pi R^2}$$

P_t- Transmitted Peak Power 19.16 dBm = 82.4 mw

 G_{T} - Antenna Gain, 2 dBi = 1.6

R- Distance from Transmitter using 10 cm worst case

(c) The peak power density is:

$$S_p = \frac{82.4 \times 1.6}{4\pi (10)^2} = 0.104 \frac{mW}{cm^2}$$

(f) This is below the FCC limit.

14. APPENDIX A - CORRECTION FACTORS

14.1 Correction factors for

CABLE

from EMI receiver to test antenna at 3 meter range.

FREQUENCY	CORRECTION FACTOR	
(MHz)	(dB)	
10.0	0.3	
20.0	0.6	
30.0	0.8	
40.0	0.9	
50.0	1.1	
60.0	1.2	
70.0	1.3	
80.0	1.4	
90.0	1.6	
100.0	1.7	
150.0	2.0	
200.0	2.3	
250.0	2.7	
300.0	3.1	
350.0	3.4	
400.0	3.7	
450.0	4.0	
500.0	4.3	
600.0	4.7	
700.0	5.3	
800.0	5.9	
900.0	6.3	
1000.0	6.7	

FREQUENCY	CORRECTION FACTOR
(MHz)	(dB)
1200.0	7.3
1400.0	7.8
1600.0	8.4
1800.0	9.1
2000.0	9.9
2300.0	11.2
2600.0	12.2
2900.0	13.0

- 1. The cable type is RG-214.
- 2. The overall length of the cable is 27 meters.
- 3. The above data is located in file 27MO3MO.CBL on the disk marked "Radiated Emission Tests EMI Receiver".

14.2 Correction factors for

CABLE

from EMI receiver to test antenna at 3 meter range.

EDECLIENCY	CORRECTION
FREQUENCY	FACTOR
(GHz)	(dB)
1.0	1.2
2.0	1.6
3.0	2.0
4.0	2.4
5.0	3.0
6.0	3.4
7.0	3.8
8.0	4.2
9.0	4.6
10.0	5.0
12.0	5.8

- 1. The cable type is RG-8.
- 2. The overall length of the cable is 10 meters.

14.3 Correction factors for

from spectrum analyzer to test antenna above 2.9 GHz

FREQUENCY	CORRECTION FACTOR	FREQUENCY	CORRECTION FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	1.9	14.0	9.1
2.0	2.7	15.0	9.5
3.0	3.5	16.0	9.9
4.0	4.2	17.0	10.2
5.0	4.9	18.0	10.4
6.0	5.5	19.0	10.7
7.0	6.0	20.0	10.9
8.0	6.5	21.0	11.2
9.0	7.0	22.0	11.6
10.0	7.5	23.0	11.9
11.0	7.9	24.0	12.3
12.0	8.3	25.0	12.6
13.0	8.7	26.0	13.0

- 1. The cable type is SUCOFLEX 104 E manufactured by SUHNER.
- 2. The cable is used for measurements above 2.9 GHz.
- 3. The overall length of the cable is 10 meters.

12.6 Correction factors for LOG PERIODIC ANTENNA Type LPD 2010/A at 3 and 10 meter ranges.

Distance of 3 meters

FREQUENCY AFE (MHz) (dB/m)200.0 9.1 250.0 10.2 300.0 12.5 400.0 15.4 500.0 16.1 600.0 19.2 700.0 19.4 800.0 19.9 900.0 21.2

Distance of 10 meters

FREQUENCY	AFE
(MHz)	(dB/m)
200.0	9.0
250.0	10.1
300.0	11.8
400.0	15.3
500.0	15.6
600.0	18.7
700.0	19.1
800.0	20.2
900.0	21.1
1000.0	23.2

NOTES:

1000.0

1. Antenna serial number is 1038.

23.5

- 2. The above lists are located in file number 38M3O.ANT for a 3 meter range, and file number 38M100.ANT for a 10 meter range.
- 3. The files mentioned above are located on the disk marked "Radiated Emission Test EMI Receiver".

14.4 Correction factors for

LOG PERIODIC ANTENNA Type SAS-200/511 at 3 meter range.

FREQUENCY	ANTENNA
	FACTOR
(GHz)	(dB)
1.0	24.9
1.5	27.8
2.0	29.9
2.5	31.2
3.0	32.8
3.5	33.6
4.0	34.3
4.5	35.2
5.0	36.2
5.5	36.7
6.0	37.2
6.5	38.1

FREQUENCY	ANTENNA
	FACTOR
(GHz)	(dB)
7.0	38.6
7.5	39.2
8.0	39.9
8.5	40.4
9.0	40.8
9.5	41.1
10.0	41.7
10.5	42.4
11.0	42.5
11.5	43.1
12.0	43.4
12.5	44.4
13.0	44.6

- 1. Antenna serial number is 253.
- 2. The above lists are located in file number SAS3M0.ANT for a 3 meter range.
- 3. The files mentioned above are located on the disk marked "Antenna Factors".

14.5 Correction factors for

BICONICAL ANTENNA Type BCD-235/B, at 3 meter range

EDEOLIENOV	A ===		
FREQUENCY	AFE		
(MHz)	(dB/m)		
20.0	19.4		
30.0	14.8		
40.0	11.9		
50.0	10.2		
60.0	9.1		
70.0	8.5		
80.0	8.9		
90.0	9.6		
100.0	10.3		
110.0	11.0		
120.0	11.5		
130.0	11.7		
140.0	12.1		
150.0	12.6		
160.0	12.8		
170.0	13.0		
180.0	13.5		
190.0	14.0		
200.0	14.8		
210.0	15.3		
220.0	15.8		
230.0	16.2		
240.0	16.6		
250.0	17.6		
260.0	18.2		
270.0	18.4		
280.0	18.7		
290.0	19.2		
300.0	19.9		
310	20.7		
320	21.9		
330	23.4		
340	25.1		
350	27.0		

- 1. Antenna serial number is 1041.
- 2. The above list is located in file 19BC10M1.ANT on the disk marked "Radiated Emissions Tests EMI Receiver".

14.6 Correction factors for Double-Ridged Waveguide Horn Model: 3115, S/N 29845 at 3 meter range.

FREQUENCY	ANTENNA	ANTENN	FREQUENCY	ANTENNA	ANTENNA
	FACTOR	A Gain		FACTOR	Gain
(GHz)	(dB 1/m)	(dBi)	(GHz)	(dB 1/m)	(dBi)
1.0	24.8	5.4	10.0	38.8	11.4
1.5	26.1	7.6	10.5	38.9	11.8
2.0	28.6	7.7	11.0	39.0	12.1
2.5	29.8	8.4	11.5	39.6	11.8
3.0	31.4	8.4	12.0	39.8	12.0
3.5	32.4	8.7	12.5	39.6	12.5
4.0	33.7	8.6	13.0	40.0	12.5
4.5	33.4	9.9	13.5	39.8	13.0
5.0	34.5	9.7	14.0	40.2	13.0
5.5	35.1	9.9	14.5	40.6	12.9
6.0	35.4	10.4	15.0	41.3	12.4
6.5	35.6	10.8	15.5	39.5	14.6
7.0	36.2	10.9	16.0	38.8	15.5
7.5	37.3	10.4	16.5	40.0	14.6
8.0	37.7	10.6	17.0	41.4	13.4
8.5	38.3	10.5	17.5	44.8	10.3
9.0	38.5	10.8	18.0	47.2	8.1
9.5	38.7	11.1			

14.7 Correction factors for

Horn Antenna Model: SWH-28 at 1 meter range.

FREQUENCY	AFE	Gain
(GHz)	(dB/m)	(dB1)
18.0	40.3	16.1
19.0	40.3	16.3
20.0	40.3	16.1
21.0	40.3	16.3
22.0	40.4	16.8
23.0	40.5	16.4
24.0	40.5	16.6
25.0	40.5	16.7
26.0	40.6	16.4

14.8 Correction factors for ACTIVE LOOP ANTENNA Model 6502 S/N 9506-2950

	Magnetic	Electric
FREQUENCY	Antenna	Antenna
	Factor	Factor
(MHz)	(dB)	(dB)
.009	-35.1	16.4
.010	-35.7	15.8
.020	-38.5	13.0
.050	-39.6	11.9
.075	-39.8	11.8
.100	-40.0	11.6
.150	-40.0	11.5
.250	-40.0	11.6
.500	-40.0	11.5
.750	-40.1	11.5
1.000	-39.9	11.7
2.000	-39.5	12.0
3.000	-39.4	12.1
4.000	-39.7	11.9
5.000	-39.7	11.8
10.000	40.2	11.3
15.000	-40.7	10.8
20.000	-40.5	11.0
25.000	-41.3	10.2
30.000	42.3	9.2