Linguagens Formais e Autômatos

Gramáticas

(parte "a")

Eduardo Furlan Miranda

Baseado em: GARCIA, A. de V.; HAEUSLER, E. H. Linguagens Formais e Autômatos. Londrina: EDA, 2017.

Aspecto sintático da linguagem

- A sintaxe define o conjunto de regras
 - Estrutura e formação de sentenças válidas na linguagem
 - Como os símbolos (letras, números, operadores, etc.)
 - que podem ser combinados para formar expressões, comandos, declarações e outros elementos sintáticos
- Se concentra na forma, e não no significado

sintaxe

semântica

- O objetivo da gramática é formar palavras (strings, cadeias)
- É um conjunto de regras formais
- Mostra como cada cadeia de uma linguagem é gerada através de regras
- Como as sequências de símbolos do alfabeto podem ser combinadas para formar cadeias válidas
- Existem notações como p. ex. a Backus-Naur Form (BNF) que é bastante usada em gramáticas de linguagens de programação

- Especificar a linguagem L_D dos números não negativos, inteiros ou ponto decimal, na base decimal
- Ex. de números nesta linguagem são

```
• L_D = \{ 0, 1, 2, ..., 9, 10, 11, ..., 99, 100, ..., 0.1, 0.2, ... \}
```

O alfabeto sobre o qual L_D está definida é

```
• \Sigma = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, . \} ponto
```

 Tente escrever um programa que vai lendo o teclado, e se encontrar algum erro no número, ele avisa

(continuação)

- Um jeito de começar é ir escrevendo frases:
 - Se apertar a tecla "0" então armazene e espere a próxima tecla ser apertada
 - Se apertar a tecla ".", e não existir ainda o "." no número, acrescente "." ao que já foi lido
 - E assim por diante
- Será que podem ocorrer erros de interpretação? Para um problema maior, não ficaria muito complicado?
- É desejável uma maneira de descrever mais próxima da lógica de programação, e que não esteja sujeita a interpretações

Outro jeito de especificar

- N → L (um número N pode ser uma lista de dígitos L)
- $N \rightarrow L.L$ (N pode ser uma lista de dígitos L seguida de outra lista L) (especifica o ".")
- L → D (uma lista de dígitos L pode ser um dígito D)
- L → LD (uma lista de dígitos L pode ser outra lista L seguida de um dígito D)
- D → 0 (uma dígito D pode ser o dígito 0)
- $D \rightarrow 1$ (uma dígito D pode ser o dígito 1)

```
"→": "regra"
"⇒": "derivação"
```

D → 9 (uma dígito D pode ser o dígito 9)

Derivação

- Podemos usar as regras do slide anterior para gerar,
 p. ex., o nº 1.23
 - Neste caso dizemos que N gera (ou deriva) 1.23
- O processo de derivação é representado por ⇒
 - N \Rightarrow L.L \Rightarrow D.L \Rightarrow 1.LD \Rightarrow 1.DD \Rightarrow 1.2D \Rightarrow 1.23
 - Neste caso vai-se substituindo as regras até chegar no nº
 - Se chegou no nº que queremos, dizemos que reconheceu
 - A essa especificação damos o nome de gramática
 - Descreve uma derivação em uma gramática formal

"→": "regra" "⇒": "derivação"

Elementos da gramática

(outro jeito de especificar o slide 6)

- $T = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, . \}$
 - Alfabeto sobre o qual a linguagem é definida
 - Chamamos os elementos deste alfabeto de símbolos terminais
- V = { N, L, D }
 - Conjunto de símbolos auxiliares ou variáveis
 - Chamamos de símbolos não terminais

Elementos da gramática

- P = { N \rightarrow L, N \rightarrow L, L \rightarrow D, L \rightarrow LD, D \rightarrow 0, D \rightarrow 1, D \rightarrow 2, D \rightarrow 3, D \rightarrow 4, D \rightarrow 5, D \rightarrow 6, D \rightarrow 7, D \rightarrow 8, D \rightarrow 9 }
 - Conjunto de produções (ou regras de substituição)
 - Indicam como os símbolos são substituídos para gerar uma cadeia da linguagem
 - L $\rightarrow \omega$ indica que podemos substituir qualquer ocorrência de L por ω na palavra (cadeia) que está sendo gerada
- Símbolo inicial
 - Neste caso: N
 - As derivações iniciam por ele

- Tupla: (x₁, x₂, ..., x_n)
 - sequência ordenada de elementos
 - a ordem dos elementos é crucial
 - n é o nº de elementos da tupla = aridade
 - Ex.: a aridade de (1, 2, 3) é 3

```
"ên-upla"
```

- "n-upla" = tupla com "n" elementos
 - Ex.: (1, "texto", 3.14) = 3-upla, tripla, ou terna "tri-upla"
 - "n-upla" e "3-upla" são aridades

Igualdade entre Tuplas

(a ordem é importante)

- $(x_1, x_2, ..., x_n) = (y_1, y_2, ..., y_n)$ se, e somente se, para todo $i \in \{1, 2, ..., n\}, x_i = y_i$
 - (x₁, x₂, ..., x_n) = (y₁, y₂, ..., y_n) : indica que as duas tuplas são iguais
 - se, e somente se : indica expressão lógica indicando equivalência
 - para todo i ∈ {1, 2, ..., n}: indica que i é um índice que percorre as posições dos elementos nas tuplas
 - x_i = y_i: indica que o elemento na posição i da primeira tupla (x_i) é igual ao elemento na mesma posição i da segunda tupla (y_i)

Gramática

sequência ordenada de elementos

- Uma gramática G é uma tupla (V, T, P, S)
 - V : conjunto finito não vazio de variáveis (símbolos não-terminais)
 - Variáveis representam categorias sintáticas ou construções gramaticais (usa-se letras maiúsculas)
 - T : conjunto finito n\u00e3o vazio de s\u00eambolos terminais (min\u00easculas)
 - P : conjunto finito de regras de produção da forma:
 - $\alpha \rightarrow \beta$, onde:
 - α, β ∈ (V∪T)*
 - α tem ao menos uma variável
 - S (∈ V) é o símbolo inicial (variável de partida)
 - Ponto de partida para à geração de cadeias da linguagem

todas as combinações possíveis, incluindo ε

G = (V, T, P, S) : definição de uma gramática formal

Descrevem como as variáveis

outras sequências de símbolos

podem ser substituídas por

$\alpha, \beta \in (V \cup T)^*$ todas as combinações possíveis, incluindo ϵ

- $\alpha \in \beta$: cadeias formadas por zero ou mais símbolos
 - Podem ser variáveis (V) ou terminais (T)
 - α tem ao menos uma variável (vide slide anterior)
- V = { S, A, B } variáveis
 ✓ variável = símbolo não-terminal
- T = { a, b } símbolos terminais
- (V U T) = { S, A, B, a, b }
- Possíveis valores para α e β
 - Qualquer combinação finita de S, A, B, a, b
 - ε, a, b, S, A, B, ab, ba, aab, bba, SAS, ABA, Bsb, ...

Regra de produção ($\alpha \rightarrow \beta$)

- "A sequência α pode ser reescrita como a sequência β"
 - Como α e β pertencem a $(V \cup T)^*$, isso significa que
 - α e β podem ser qualquer sequência de símbolos
 - variáveis, terminais, cadeia vazia (ε)
 - α deve conter pelo menos uma variável (vide slide 12)
 - Ex. de regras de produção válidas

```
• S \rightarrow aSb ("\alpha" = S, "\beta" = aSb)

• S \rightarrow \epsilon ("\alpha" = S, "\beta" = \epsilon)

• A \rightarrow a ("\alpha" = A, "\beta" = a)

• AB \rightarrow ba ("\alpha" = AB, "\beta" = ba)

• SA \rightarrow aSB ("\alpha" = SA, "\beta" = aSB)
```

- → regra
- ⇒ derivação

refere-se a uma forma

gramática formal

Exemplo 1 - derivação canônica

```
específica e padronizada de
• G = (V, T, P, S)
                                                 representar a derivação de uma
                                                          cadeia a partir de uma
• V = { N , D }
• T = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
• P = \{ N \rightarrow D  (1)
          N \rightarrow DN (2)
          D \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
                                                        (3)
• S = { N }
                                  (continua)
```

Exemplo 1 - derivação canônica

$$N \rightarrow D$$
 (1)
 $N \rightarrow DN$ (2)
 $D \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$ (3)

- Vamos derivar o nº 243
 - N inicia-se pelo símbolo inicial
 - DN aplica-se a regra 2, N → DN
 - 2N aplica-se a regra 3, $D \rightarrow 2$
 - 2DN aplica-se a regra 2 de novo
 - 24N aplica-se a regra 3, $D \rightarrow 4$
 - 24D aplica-se a regra 1, N → D
 - 243 aplica-se a regra 3, $D \rightarrow 3$ chegamos no nº desejado

Exemplo 2 - derivação canônica

```
inicial
                                 formas
                                                        (V, T, P, S)
                                 sentenciais
                                                        V: variáveis {S, B}
• S \rightarrow a S b
                  (1)
                                                        T: terminais {a, b}
  S \rightarrow a B
                   (2)
                                                        P: produções
  B \rightarrow b
                   (3)
                                                        S : variável de partida
• S \Rightarrow a S b
                      inicia por (1)
• | ⇒ a a S b b
                      usa (1) de novo e substitui S por aSb
• | ⇒ a a a B b b
                      usa (2) e substitui S por aB
• | ⇒ a a a b b b
                      usa (3) e substitui B por b
```

- formou a palavra (ou cadeia): a a a b b b
 - com essa gramática é possível formar esse tipo de palavra
 - a gramática representa a linguagem L = aⁿbⁿ

Árvore de derivação ou parsing

derivação anterior

esquerda

```
S \Rightarrow a S S b
S \Rightarrow a a B S b
S \Rightarrow a a b S b
S \Rightarrow a a b a B b
S \Rightarrow a a b a b b
```

direita

 $S \Rightarrow a S S b$ $S \Rightarrow a S a B b$ $S \Rightarrow a S a b b$ $S \Rightarrow a a B a b b$ $S \Rightarrow a a b a b b$

 nessa gramática todas as palavras começam com a e terminam com b

Relação de derivação

 $\cdot \Rightarrow_{\mathsf{G}} \circ_{\mathsf{U}} \Rightarrow$

- descreve como uma cadeia de símbolos pode ser transformada em outra, em um único passo, seguindo as regras de produção da gramática G
- Gramática formal G definida por uma quádrupla (V, T, P, S)
 - Dizemos que $\alpha \Rightarrow_G \beta$ quando: \leftarrow relação de derivação direta (ou passo de derivação)
 - $\alpha = \delta_1 \alpha_1 \delta_2$ (α é formado por 3 partes)
 - α_1 : um trecho de símbolos no meio, onde ocorre a substituição
 - δ_1 e δ_2 : trechos de símbolos à esquerda e à direita
 - pode-se imaginar como "lugares para colocar algo"
 - podem ser usados em regras, ex.: "se existir, faça tal coisa"
 - $\beta = \delta_1 \beta_1 \delta_2$
 - e a regra $\alpha_1 \rightarrow \beta_1$ está em P

conjunto de regras de produção

- α , β , δ_1 , δ_2 , α_1 , β_1 : sequências de símbolos, que podem conter tanto terminais quanto não-terminais (variáveis)
- $\alpha_1 \rightarrow \beta_1$: uma regra de produção em P
 - Significa que a sequência α_1 pode ser substituída pela sequência β_1
 - $_{/}$ lê-se " α deriva para β em um passo usando a gramática G"
- α ⇒_G β: relação de derivação
 - Significa que a cadeia α deriva diretamente (em um único passo) na cadeia β usando as regras da gramática G

- $\alpha = \delta_1 \alpha_1 \delta_2$: descreve a estrutura da cadeia α
 - δ₁ e δ₂: são sequências de símbolos em (V ∪ T)*
 - podendo ser vazias (ε)
 - α₁: sequência de símbolos em (V U T)* que corresponde ao
 - lado esquerdo de uma regra de produção $(\alpha 1 \rightarrow \beta 1)$
 - é crucial que α₁ contenha pelo menos um não-terminal (slide 12)
- $\beta = \delta_1 \beta_1 \delta_2$: descreve a estrutura da cadeia β
 - mesma sequência descrita acima, com a diferença que $\beta 1$ corresponde ao lado direito regra de produção aplicada $(\alpha 1 \to \beta 1)$

- a regra $\alpha_1 \rightarrow \beta_1$ está em P : esta é a condição fundamental para que a derivação $\alpha \Rightarrow_G \beta$ seja válida
 - Significa que existe uma regra de produção no conjunto P da gramática que permite substituir α_1 por β_1
- Para que α derive diretamente em β , devemos encontrar uma subcadeia α_1 dentro de α que corresponda ao lado esquerdo de uma regra de produção
 - Então, substituímos essa subcadeia α_1 pelo lado direito β_1 dessa regra, mantendo o restante da cadeia (δ_1 e δ_2) inalterado

- Considere a gramática G = (V, T, P, S), onde:
 - $V = \{S, A\}, T = \{a, b\}, P = \{S \rightarrow aA, A \rightarrow b\}, S \in a$ símbolo inicial
- Passo 1: começando com o símbolo inicial
 - Início: " α " = S
 - Aplicamos a regra S→aA, que está em P

•
$$S \Rightarrow_G aA$$

• Depois:
$$\beta = aA$$

$$\alpha \Rightarrow \beta$$
 $\alpha = \delta_1 \alpha_1 \delta_2$

 $\beta = \delta_1 \beta_1 \delta_2$

- Substituição:
 - $\alpha_1 = S$ o símbolo que está sendo substituído
 - $\beta_1 = aA$ o resultado da substituição
 - $\delta_1 e \delta_2 = \epsilon$

(continuação)

- Passo 2: Substituindo A por b
 - Agora: $\alpha = aA$
 - Aplicamos a regra A→b , que está em P

 - Substituição:
 - $\alpha_1 = A$ o símbolo que está sendo substituído
 - $\beta_1 = b$ o resultado da substituição
 - $\delta_1 = a$ o trecho à esquerda de A, que não muda
 - $\delta_2 = \epsilon$ vazio, pois não há nada à direita de A
- Após os 2 passos, a palavra gerada é ab, que é formada apenas por símbolos terminais (a e b)

(continua)

(continuação)

- Resumo da derivação
 - S \Rightarrow_G aA \Rightarrow_G ab
- Cada flecha (⇒_G) representa uma derivação direta usando uma regra de produção da gramática P
- Em cada passo, substituímos uma única variável (α_1) por seu equivalente na regra (β_1)
- O restante da palavra (δ_1 e δ_2) permanece inalterado durante a substituição
- O processo termina quando não há mais variáveis na palavra derivada, ou seja, a palavra contém apenas símbolos terminais

Considere a gramática G com 2 regras de produção P :

```
S → aSb (1)
S : Símbolo inicial
a, b : Símbolos terminais
```

- Derivação
 - Processo de aplicar as regras de produção para transformar o símbolo inicial S em uma cadeia na linguagem
 - S → aSb (aplicando a regra 1)

3

- aSb → aaSbb (aplicando a regra 1 novamente)
- aaSbb → aabb (aplicando a regra 2 para S)

Aplicamos as regras até que não hajam mais variáveis

(continua)

$$\alpha \Rightarrow \beta$$
 $\alpha = \delta_1 \alpha_1 \delta_2$
 $\beta = \delta_1 \beta_1 \delta_2$

- Detalhamento dos passos da derivação S ⇒_G aSb
 - $\alpha = S$: a derivação começa com o símbolo inicial **S**
 - β = aSb : a regra de produção (1) é aplicada a S
 - $\alpha 1 = S$: a parte da cadeia α que será substituída pela regra
 - $\beta 1 = aSb$: a parte que substituirá $\alpha 1$, de acordo com a regra (1)
 - $\delta 1 = \delta 2 = \epsilon$: cadeia vazia
 - $\alpha 2 = aSb$
 - $\beta 2 = aaSbb$
 - (...)
 - $\alpha 4 = aaSbb$
 - $\beta 4 = aabb$

 α , β , δ_1 , δ_2 , α_1 , β_1 : representam sequências de símbolos, que podem conter tanto terminais quanto variáveis

 Seja uma gramática que só possui os dígitos 0 e 1, gerando os números de ponto flutuante na base binária

```
G = (V, T, P, N), onde:
T = { 0, 1 }
V = { N, L, D }
P = { N → L , N → L.L , L → D , L → LD , D → 0 , D → 1 }
```

- Para esta gramática temos os seguintes exemplos de ⇒_G :
 - L.L ⇒_G L.LD
 - L.L \Rightarrow_G LD.L
- Quando a gramática G está subentendida no contexto, nós a suprimimos da notação, escrevendo simplesmente ⇒ :
 - L.LD ⇒ L.L0