Explicit CN Soundness Proof

Dhruv Makwana

July 21, 2021

1 Weakening

If
$$C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$$
 and $C; \mathcal{L}; \Phi; \mathcal{R} \vdash J$ then $C'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash J$.

PROOF STRATEGY: Induction over the typing judgements.

Assume: 1.
$$C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$$
.
2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash J$.

PROVE: $C'; L'; \Phi'; \mathcal{R}' \vdash J$.

2 Substitution

2.1 Weakening for Substitution

Weakening for substitution: as above, but with $J = (\sigma) : (\mathcal{C}''; \mathcal{L}''; \Phi''; \mathcal{R}'')$.

PROOF STRATEGY: Induction over the substitution.

Assume: 1.
$$C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$$
.
2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C''; \mathcal{L}''; \Phi''; \mathcal{R}'')$.

PROVE: $C'; L'; \Phi'; \mathcal{R}' \vdash (\sigma): (C''; L''; \Phi''; \mathcal{R}'')$.

2.2 Substitutions preserve SMT results

ASSUME: 1. smt
$$(\Phi' \Rightarrow term)$$
.
2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$.

PROVE: smt $(\Phi \Rightarrow \sigma(term))$.

$$\langle 1 \rangle 1$$
. smt $(\Phi' \Rightarrow \sigma(term))$.

PROOF: By assumption 1, which means it is true for all (well-typed) instantiations of its free variables.

$$\langle 1 \rangle 2$$
. smt $(\Phi \Rightarrow \sigma(term))$.
PROOF: By smt $(\Phi \Rightarrow term)$ for each $term \in \Phi'$ (from assumption 2) and $\langle 1 \rangle 1$.

2.3 Resource typing subsumption

Assume: 1. $\Phi \vdash res \equiv res'$.

2. $C; L; \Phi; R \vdash res_term \Leftarrow res$.

3.
$$\Phi \vdash \sigma(res) \equiv \sigma(res')$$
.

PROVE: $C; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term \Leftarrow res'$.

PROOF SKETCH: Induction over $C; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term \Leftarrow res$.

- $\langle 1 \rangle 1$. Case: Ty_Res_Emp Proof: $res = res' = res_term = emp$.
- $\langle 1 \rangle 2$. CASE: TY_RES_POINTSTO $res = points_to''$, $res_term = points_to'$, $res' = points_to_1$, $\mathcal{R} = \cdot$, $points_to$.
 - $\langle 2 \rangle 1$. $\Phi \vdash points_to \equiv points_to'$ and $\Phi \vdash points_to' \equiv points_to''$ by inversion.
 - $\langle 2 \rangle 2$. $\Phi \vdash points_to' \equiv points_to_1$ by transitivity.
 - $\langle 2 \rangle 3$. $C; \mathcal{L}; \Phi; \cdot, points_to \vdash points_to' \Leftarrow points_to_1$ as required.
- (1)3. Case: Ty_Res_Var Proof: By transitivity.
- (1)4. Case: Ty_Res_SepConj Proof: By induction.
- $\langle 1 \rangle$ 5. CASE: TY_RES_CONJ PROOF: We know smt ($\Phi \Rightarrow (term \rightarrow term')$) (by inversion on the equality) and smt ($\Phi \Rightarrow term$) (by inversion on the typing rule) so smt ($\Phi \Rightarrow term'$). Rest follows by induction.
- $\langle 1 \rangle 6$. CASE: TY_RES_PACK $res_term = pack (pval, res_term'), res = <math>\exists y:\beta. res_1, res' = \exists y:\beta. res_1'$.
 - $\langle 2 \rangle 1$. $\Phi \vdash res_1 \equiv res_1'$ by inversion on the equality.
 - $\langle 2 \rangle 2$. $\Phi \vdash pval/y, \cdot (res_1) \equiv pval/y, \cdot (res_1')$ by inversion on substitution assumption.
 - $\langle 2 \rangle 3. \ C; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term' \Leftarrow pval/y, \cdot (res'_1)$ by induction.
 - $\langle 2 \rangle 4$. C; \mathcal{L} ; Φ ; $\mathcal{R} \vdash \mathsf{pack}(pval, res_term') \Leftarrow \exists y : \beta. res'_1 \text{ as required.}$

2.4 Substitution Lemma

If
$$C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$$
 and $C'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash J$ then $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(J)$.

PROOF SKETCH: Induction over the typing judgements.

Assume: 1.
$$C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$$
.
2. $C'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash J$.

PROVE: $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(J)$.

- $\langle 1 \rangle 1$. Case: Ty_PVal_Obj*, Ty_PVal_{Obj,Loaded,Unit,True,False,Ctor_Nil}. Proof: No free variables in J so $\sigma(J)=J$ and the rules do not depend on the environment, so we are done.
- (1)2. CASE: TY_PVAL_{LIST,TUPLE,CTOR_CONS,CTOR_TUPLE,CTOR_ARRAY,CTOR_SPECIFIED}. PROOF: By induction and then definition of substitution over values.
- $\langle 1 \rangle 3$. Case: Ty_PVal_Var. \mathcal{C}' ; \mathcal{L}' ; $\Phi' \vdash x \Rightarrow \beta$
 - $\langle 2 \rangle 1$. $x:\beta \in \mathcal{C}'$ (or $x:\beta \in \mathcal{L}'$) by inversion.
 - $\langle 2 \rangle 2$. So $\exists pval. \ C; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta$ by TY_SUBS_CONS_{COMP,LOG}.
 - $\langle 2 \rangle 3$. Since $pval = \sigma(x)$, we are done.
- $\langle 1 \rangle 4$. Case: Ty_PVal_Error. Proof: By lemma 2.2.
- $\langle 1 \rangle$ 5. CASE: TY_PVAL_STRUCT. $\mathcal{C}'; \mathcal{L}'; \Phi' \vdash (\mathsf{struct}\, tag) \{ \overline{.member_i = pval_i}^i \} \Rightarrow \mathsf{struct}\, tag$
 - $\langle 2 \rangle 1. \ \overline{\mathcal{C}; \mathcal{L}; \Phi \vdash \sigma(pval_i) \Rightarrow \beta_{\tau_i}}^i$ by induction.
 - $\langle 2 \rangle 2$. $C; \mathcal{L}; \Phi \vdash (\mathtt{struct} \ tag) \{ \overline{.member_i = \sigma(pval_i)}^i \} \Rightarrow \mathtt{struct} \ tag \}$
- (1)6. CASE: TY_EQ_EMP PROOF: True trivially (no free variables).
- ⟨1⟩7. CASE: TY_RES_EQ_POINTSTO. PROOF: By lemma 2.2.
- (1)8. Case: Ty_Res_Eq_SepConj. Proof: By induction.
- $\langle 1 \rangle$ 9. Case: Ty_Res_Eq_Exists. Proof: By induction.
- (1)10. Case: Ty_Res_Eq_Term. Proof: By induction and lemma 2.2.
- $\langle 1 \rangle 11$. Case: Ty_Res_Emp. Proof:True trivially (no free variables).
- $\langle 1 \rangle 12$. Case: Ty_Res_PointsTo. $\mathcal{C}'; \mathcal{L}'; \Phi'; \cdot, points_to \vdash points_to' \Leftarrow points_to'$.
- $\langle 1 \rangle 13$. Case: Ty_Res_Var. \mathcal{C}' ; \mathcal{L}' ; Φ' ; \cdot , r: $res \vdash r \Leftarrow res'$.

- $\langle 2 \rangle 1$. From $\mathcal{R}' = \cdot, r:res$, we know σ was derived using Ty_Subs_Cons_Res_Named.
- $\langle 2 \rangle 2$. $\sigma = res_term/r, \sigma'$ and $C; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term \Leftarrow \sigma'(res)$ by inversion on $\langle 2 \rangle 1$.
- $\langle 2 \rangle 3$. $\Phi' \vdash res \equiv res'$ by inversion on Ty_Res_VAR.
- $\langle 2 \rangle 4$. $\Phi \vdash res \equiv res'$ and $\Phi \vdash \sigma(res) \equiv \sigma(res')$ by $\langle 2 \rangle 3$ and substitution lemma.
- $\langle 2 \rangle$ 5. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term \Leftarrow \sigma'(res)$ by inversion on TY_SUBS_CONS_RES_NAMED.
- $\langle 2 \rangle 6$. $\sigma(r) = res_{term}$ by $\langle 2 \rangle 2$.
- $\langle 2 \rangle 7$. $\sigma'(res') = \sigma(res')$ (and same for res) because r cannot occur in either.
- $\langle 2 \rangle 8$. SUFFICES: $C; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term \Leftarrow \sigma'(res')$ by $\langle 2 \rangle 3$ and $\langle 2 \rangle 7$. PROOF: By lemma 2.3 and $\langle 2 \rangle 4$.
- (1)14. Case: Ty_Res_SepConj. Proof: By induction.
- $\langle 1 \rangle 15$. Case: Ty_Res_Conj. \mathcal{C}' ; \mathcal{L}' ; Φ' ; $\mathcal{R}' \vdash res_term \Leftarrow term \land res$.
 - $\langle 2 \rangle 1$. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(res_term) \Leftarrow \sigma(res)$. PROOF: By induction.
 - $\langle 2 \rangle 2$. smt $(\Phi \Rightarrow \sigma(term))$. PROOF: By lemma 2.2.
 - $\langle 2 \rangle 3$. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(res_term) \Leftarrow \sigma(term \land res)$ as required.
- $\langle 1 \rangle 16$. Case: Ty_Res_Pack. $\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash \mathtt{pack} (\mathit{pval}, \mathit{res_term}) \Leftarrow \exists \mathit{y} : \beta. \mathit{res}.$
 - $\langle 2 \rangle 1$. By induction, 1. \mathcal{C} ; \mathcal{L} ; $\Phi \vdash \sigma(pval) \Rightarrow \beta$. 2. \mathcal{C} ; \mathcal{L} ; Φ ; $\mathcal{R} \vdash \sigma(res_term) \Leftarrow \sigma, pval/y, \cdot (res)$.
 - $\langle 2 \rangle 2$. So $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\operatorname{pack}(pval, res_term)) \Leftarrow \sigma(\exists y : \beta. res)$.
- $\langle 1 \rangle 17$. Case: Ty_Spine_Empty. Proof: ret can be anything, including $\sigma(ret)$ and the rule does not depend on the environment, so we are done.
- $\langle 1 \rangle 18$. Case: Ty_Spine_Comp. $\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash x = pval, \overline{x_i = spine_elem_i}^i :: \Pi x:\beta. arg \gg pval/x, \psi; ret.$
 - $\langle 2 \rangle$ 1. By induction, 1. $\mathcal{C}; \mathcal{L}; \Phi \vdash \sigma(pval) \Rightarrow \beta$. 2. $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{x_i = \sigma(spine_elem_i)}^i :: \sigma(arg) \gg \sigma(\psi); \sigma(ret)$.
 - $\langle 2 \rangle 2$. So $C; \mathcal{L}; \Phi; \mathcal{R} \vdash x = \sigma(pval), \overline{x_i = \sigma(spine_elem_i)}^i :: \sigma(\Pi x : \beta.arg) \gg \sigma(pval/x, \psi); \sigma(ret).$
- (1)19. Case: Ty_Spine_Log. Proof: Similar to Ty_Spine_Comp.

 $\langle 1 \rangle 20$. Case: Ty_Spine_Res.

$$\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}'_1, \mathcal{R}_2 \vdash x = res_term, \overline{x_i = spine_elem_i}^i :: res \multimap arg \gg res_term/x, \psi; ret$$

- $\langle 2 \rangle 1$. By inversion and then induction,
 - 1. $C; \mathcal{L}; \Phi; \mathcal{R}_1 \vdash \sigma(\mathit{res_term}) \Leftarrow \sigma(\mathit{res}).$
 - 2. $C; \mathcal{L}; \Phi; \mathcal{R}_2 \vdash \overline{x_i = \sigma(spine_elem_i)}^i :: \sigma(res) \multimap \sigma(arg) \gg \sigma(\psi); \sigma(ret).$
- $\langle 2 \rangle 2$. Hence $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R}_2 \vdash x = \sigma(res_term), \overline{x_i = \sigma(spine_elem_i)}^i :: \sigma(res \multimap arg) \gg \sigma(res_term/x, \psi); \sigma(ret)$ as required.
- $\langle 1 \rangle 21$. Case: Ty_Spine_Phi.

$$\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash \overline{x_i = spine_elem_i}^i :: term \supset arg \gg \psi; ret$$

- $\langle 2 \rangle 1$. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{x_i = \sigma(spine_elem_i)}^i :: \sigma(res) \multimap \sigma(arg) \gg \sigma(\psi); \sigma(ret)$. PROOF: By induction.
- $\langle 2 \rangle 2$. smt $(\Phi \Rightarrow \sigma(term))$. PROOF: By lemma 2.2.
- $\langle 2 \rangle 3$. Hence $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R}_2 \vdash x = \sigma(res_term), \overline{x_i = \sigma(spine_elem_i)}^i :: \sigma(res \multimap arg) \gg \sigma(res_term/x, \psi); \sigma(ret)$ as required.
- $\langle 1 \rangle 22$. Case: Ty_PE_Val Proof: By induction.
- $\langle 1 \rangle 23$. Case: Ty_PE_Array_Shift. \mathcal{C}' ; \mathcal{L}' ; $\Phi' \vdash \text{array_shift} (pval_1, \tau, pval_2) \Rightarrow y$:loc. $y = pval_1 +_{\text{ptr}} (pval_2 \times \text{size_of}(\tau))$
 - $\langle 2 \rangle 1$. By induction,
 - 1. $C; \mathcal{L}; \Phi \vdash \sigma(pval_1) \Rightarrow loc$
 - 2. $C; \mathcal{L}; \Phi \vdash \sigma(pval_2) \Rightarrow \mathtt{integer}$
 - $\langle 2 \rangle 2$. So, \mathcal{C} ; \mathcal{L} ; $\Phi \vdash \sigma(\operatorname{array_shift}(pval_1, \tau, pval_2)) \Rightarrow y : \operatorname{loc.} \sigma((y = pval_1 +_{\operatorname{ptr}}(pval_2 \times \operatorname{size_of}(\tau))))$.
- $\langle 1 \rangle 24$. Case: Ty_PE_Member_Shift.

PROOF: Similar to Ty_PE_ARRAY_SHIFT.

- $\langle 1 \rangle 25.$ Case: Ty_PE_{Not,Arith_Binop,Rel_Binop,Bool_Binop}. Proof: By induction.
- $\langle 1 \rangle 26.$ Case: Ty_PE_Call. See Ty_Seq_E_CCall for more general case and proof.
- $\langle 1 \rangle 27.$ Case: Ty_PE_{Assert_Undef,Bool_To_Integer,WrapI}. Proof: By induction.
- (1)28. Case: Ty_TPVal_Under See Ty_TVal_Under for a more general case and proof.
- $\langle 1 \rangle$ 29. Case: Ty_TPVal_Done $\mathcal{C}'; \mathcal{L}'; \Phi' \vdash \text{done } pval \Leftarrow y:\beta. term.$

- $\langle 2 \rangle 1$. $C; \mathcal{L}; \Phi \vdash \sigma(pval) \Rightarrow \beta$. PROOF: By induction.
- $\langle 2 \rangle 2$. smt $(\Phi \Rightarrow \sigma, pval/y, \cdot (term))$.

PROOF: By lemma 2.2.

- $\langle 2 \rangle 3$. So $C; \mathcal{L}; \Phi \vdash \sigma(\mathtt{done} \ pval) \Leftarrow y: \beta. \ \sigma(term)$.
- (1)30. CASE: TY_TPE_{LET,LETT}.

 See TY_SEQ_TE_{LET,LETT} for a more general case and proof.
- $\langle 1 \rangle 31$. Case: Ty_TPE_IF. Proof: By induction.
- (1)32. Case: Ty_TPE_Case.

 PROOF: See Ty_Seq_TE_Case for more general case and proof.
- $\langle 1 \rangle 33$. Case: Ty_{Action*,Memop*}. Proof: By induction. Rules with SMT checks still hold because they are true for all (well-typed) instantiations of a term's free variables, and $\operatorname{smt}(\Phi \Rightarrow term)$ for each $term \in \Phi'$.
- (1)34. Case: Ty_TVal_I Proof: Trivially (no free variables nor requirements on constraint context).
- $\langle 1 \rangle 35$. Case: Ty_TVal_{Comp,Log}. Only focusing on logical case; computational one is similar. $\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash \mathtt{done} \ pval, \ \overline{spine_elem_i}^i \Leftarrow \exists \ y:\beta. \ ret.$
 - $\begin{array}{l} \langle 2 \rangle 1. \ \, \text{By inversion and then induction,} \\ 1. \ \, \mathcal{C}; \mathcal{L}; \Phi \vdash \sigma(pval) \Rightarrow \beta \\ 2. \ \, \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\text{\tt done } \overline{spine_elem}_i^{\ i}) \Leftarrow \sigma(pval/y, \cdot (ret)). \end{array}$
 - $\langle 2 \rangle 2$. Therefore $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\mathtt{done}\,\mathit{pval},\,\overline{\mathit{spine_elem}_i}^i) \Leftarrow \exists\, y : \beta.\,\sigma(\mathit{ret}).$
- $\langle 1 \rangle 36$. Case: Ty_TVal_Phi $\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash \text{done } spine \Leftarrow term \land ret$
 - $\langle 2 \rangle 1$. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\mathtt{done}\,\mathit{spine}) \Leftarrow \sigma(\mathit{ret})$. PROOF: By induction.
 - $\langle 2 \rangle 2$. smt $(\Phi \Rightarrow \sigma(term))$. PROOF: By lemma 2.2.
 - $\langle 2 \rangle 3. \ \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\mathtt{done}\ spine) \Leftarrow \sigma(term \land ret) \text{ as required.}$
- (1)37. Case: Ty_TVal_Res Proof: Similar to Ty_TVal_Phi, except with resource environments being split.
- $\langle 1 \rangle$ 38. Case: Ty_TVal_Undef Proof: ret can be anything, including $\sigma(ret)$.
- $\langle 1 \rangle 39$. Case: Ty_Seq_TE_{TVal,If,Bound}.

PROOF: By induction.

- (1)40. CASE: TY_SEQ_E_{CCALL,PROC,RUN}. Only focusing on CCall, rest are similar.
 - $\langle 2 \rangle 1.$ $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{x_i = \sigma(spine_elem_i)}^i :: \sigma(arg) \gg \sigma(\psi); \sigma(ret).$ PROOF: By induction.
 - $\langle 2 \rangle 2$. $ident:arg \equiv \overline{x_i}^i \mapsto texpr \in \texttt{Globals}$ is unaffected by the substitution.
 - $\langle 2 \rangle 3. \ \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \text{ccall}(\tau, ident, \overline{\sigma(spine_elem_i)}^i) \Rightarrow \sigma, \psi(ret) \text{ as required.}$
- $\langle 1 \rangle 41$. Case: Ty_Is_{MEMOP,Neg_Action,Action} Proof: By induction.
- (1)42. Case: Ty_Seq_TE_{LETP,LETPT}. Proof: See Ty_Seq_TE_{LET,LETT}.
- $\langle 1 \rangle 43$. Case: Ty_Seq_TE_{LET,LETT,LETS}. Only doing Let case, LetT and LetS are similar. $\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}''', \mathcal{R}'' \vdash \text{let } \overline{ret_pattern}_i{}^i = seq_expr \text{ in } texpr \Leftarrow ret_2.$
 - $\langle 2 \rangle 1$. By induction, 1. \mathcal{C} ; \mathcal{L} ; Φ ; $\mathcal{R}' \vdash \sigma(seq_expr) \Rightarrow \sigma(ret_1)$. 2. \mathcal{C} , \mathcal{C}_1 ; \mathcal{L} , \mathcal{L}_1 ; Φ , Φ_1 ; \mathcal{R} , $\mathcal{R}_1 \vdash \sigma(texpr) \Leftarrow \sigma(ret_2)$.
 - $\langle 2 \rangle 2$. $C; \mathcal{L}; \Phi; \mathcal{R}', \mathcal{R} \vdash \sigma(\text{let } \overline{ret_pattern_i}^i = seq_expr \text{ in } texpr) \Leftarrow \sigma(ret_2)$ as required.
- $\langle 1 \rangle$ 44. Case: Ty_Seq_TE_Case. $\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash \mathsf{case} \, \mathit{pval} \, \mathsf{of} \, \overline{\mid \mathit{pattern}_i \Rightarrow \mathit{texpr}_i}^i \, \mathsf{end} \Leftarrow \mathit{ret}.$
 - $\langle 2 \rangle 1$. By induction, 1. $\mathcal{C}; \mathcal{L}; \Phi \vdash \sigma(pval) \Rightarrow \beta_1$. 2. $\overline{\mathcal{C}, \mathcal{C}_i; \mathcal{L}; \Phi, term_i = \sigma(pval); \mathcal{R} \vdash \sigma(texpr_i) \Leftarrow \sigma(ret)}^i$.
 - $\langle 2 \rangle 2$. $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\mathtt{case}\,\mathit{pval}\,\mathtt{of}\,\,\overline{\mid\,\mathit{pattern}_i \Rightarrow \mathit{texpr}_i^{\ i}}\,\mathtt{end}) \Leftarrow \sigma(\mathit{ret})$ as required.
- $\langle 1 \rangle 45$. Case: Ty_TE_{Is,Seq}. Proof: By induction.

2.5 Identity Extension

If $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$ then $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, id): (C, C'; \mathcal{L}, \mathcal{L}'; \Phi'; \mathcal{R}_1, \mathcal{R}')$.

PROOF SKETCH: Induction over the substitution.

Assume: $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$.

PROVE: $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, id) : (C, C'; \mathcal{L}, \mathcal{L}'; \Phi'; \mathcal{R}_1, \mathcal{R}')$.

 $\langle 1 \rangle 1$. $C; \mathcal{L}; \Phi; \mathcal{R}_1 \vdash (id): (C; \mathcal{L}; \Phi'; \mathcal{R}_1)$. PROOF: By induction on each of $C; \mathcal{L}; \Phi; \mathcal{R}_1$. $\langle 1 \rangle 2$. $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, id) : (\mathcal{C}, \mathcal{C}'; \mathcal{L}, \mathcal{L}'; \Phi'; \mathcal{R}_1, \mathcal{R}')$ PROOF: By induction on σ with base case as above.

2.6 Let-friendly Substitution Lemma

If
$$C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$$
 and $C, C'; \mathcal{L}, \mathcal{L}'; \Phi; \mathcal{R}_1, \mathcal{R}' \vdash J$ then $C; \mathcal{L}; \sigma(\Phi); \mathcal{R}_1, \mathcal{R} \vdash \sigma(J)$.

PROOF SKETCH: Apply identity extension then substitution lemma.

Assume: 1.
$$C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$$
.
2. $C, C'; \mathcal{L}, \mathcal{L}'; \Phi'; \mathcal{R}_1, \mathcal{R}' \vdash J$.

PROVE: $C; \mathcal{L}; \sigma(\Phi); \mathcal{R}_1, \mathcal{R} \vdash \sigma(J)$.

- $\langle 1 \rangle 1$. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma, id) : (\mathcal{C}, \mathcal{C}'; \mathcal{L}, \mathcal{L}'; \Phi'; \mathcal{R}_1, \mathcal{R}')$. PROOF: Apply identity extension to 1.
- $\langle 1 \rangle 2$. $C; \mathcal{L}; \sigma(\Phi); \mathcal{R}_1, \mathcal{R} \vdash (\sigma, \mathrm{id})(J)$. PROOF: Apply substitution lemma (2.4) to $\langle 1 \rangle 1$.
- $\langle 1 \rangle 3.$ $C; \mathcal{L}; \sigma(\Phi); \mathcal{R}_1, \mathcal{R} \vdash \sigma(J).$ PROOF: $\mathrm{id}(J) = J.$

3 Progress

3.1 Ty_Spine_* and Decons_Arg_* construct same substitution and return type

If $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{x_i = spine_elem_i}^i :: arg \gg \sigma; ret \text{ and } \overline{x_i = spine_elem_i}^i :: arg \gg \sigma'; ret' \text{ then } \sigma = \sigma' \text{ and } ret = ret'.$

PROOF SKETCH: Induction over arg.

3.2 Progress Statement and Proof

If $\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t$ and all pattern in e are exhaustive then either e is a value, or it is unreachable, or $\forall h : R. \exists e', h'. \langle h; e \rangle \longrightarrow \langle h'; e' \rangle$.

PROOF SKETCH: Induction over the typing rules.

2. All patterns in e are exhaustive.

PROVE: Either e is a value, or it is unreachable, or $\forall h : R. \exists e', h'. \langle h; e \rangle \longrightarrow \langle h'; e' \rangle$.

- (1)1. Case: Ty_PVal_Obj*, Ty_PVal*, Ty_PE_Val, Ty_TPVal*, Ty_TVal*, Ty_Seq_TE_TVal. Proof: All these judgements/rules give types to syntactic values; and there are no operational rules corresponding to them (see Section 7).
- $\langle 1 \rangle$ 2. Case: Ty_PE_Array_Shift. PROOF: By inversion on \cdot ; \cdot ; $\cdot \vdash pval_1 \Rightarrow \mathsf{loc}$, $pval_1$ must be a mem_ptr (Ty_PVal_ObJ_PTr). Similarly $pval_2$ must be a mem_int , so rule OP_PE_PE_ArrayShift applies.

 $\langle 1 \rangle 3$. Case: Ty_PE_Member_Shift.

PROOF: pval must be a mem_ptr so OP_PE_PE_MEMBERSHIFT.

 $\langle 1 \rangle 4$. Case: Ty_PE_Not.

PROOF: pval must be a bool_value so OP_PE_PE_NOT_{TRUE,FALSE}.

 $\langle 1 \rangle$ 5. Case: Ty_PE_{ARITH,Rel}_Binop.

PROOF: $pval_1$ and $pval_2$ must be mem_ints so OP_PE_PE_{ARITH,REL}_BINOP respectively.

 $\langle 1 \rangle 6$. Case: Ty_PE_Bool_Binop.

PROOF: $pval_1$ and $pval_2$ must be $bool_values$ so OP_PE_PE_BOOL_BINOP.

 $\langle 1 \rangle 7$. Case: Ty_PE_Call.

PROOF: By inversion we have $name:pure_arg \equiv \overline{x_i}^i \mapsto tpexpr \in \mathsf{Globals}$ and $\cdot; \cdot; \cdot; \cdot \vdash \overline{x_i = pval_i}^i :: pure_arg \gg \sigma; \Sigma y:\beta. \ term \wedge \mathsf{I}$, with the latter implying $\overline{x_i = pval_i}^i :: pure_arg \gg \sigma; \Sigma y:\beta. \ term \wedge \mathsf{I}$ (lemma 3.1. Thus it can step with OP_PE_TPE_CALL.

 $\langle 1 \rangle 8$. Case: Ty_PE_Assert_Undef.

PROOF: pval must be a $bool_value$ and smt ($\Phi \Rightarrow pval$). If it is False, then by the latter, we have an inconsistent constraints context, meaning the code is unreachable. If it is True, we may step with OP_PE_PE_ASSERT_UNDEF.

 $\langle 1 \rangle 9$. Case: Ty_PE_Bool_To_Integer.

PROOF: pval must be a bool_value and so OP_PE_PE_BOOL_TO_INTEGER_{TRUE,FALSE}.

 $\langle 1 \rangle 10$. Case: Ty_PE_WrapI.

PROOF: pval must be a mem_int and so OP_PE_PE_WRAPI.

 $\langle 1 \rangle 11$. Case: Ty_TPE_{IF,Let,LetT,Case}.

PROOF: See Ty_Seq_TE_{IF,LET,LETT,CASE} cases for more general cases and proofs.

 $\langle 1 \rangle 12$. Case: Ty_Action_Create.

PROOF: pval must be a mem_int and h must be \cdot , so OP_ACTION_TVAL_CREATE $(mem_ptr \text{ and } pval: \beta_{\tau} \text{ are free in the premises and so can be constructed to satisfy the requirements).$

 $\langle 1 \rangle 13$. Case: Ty_Action_Load.

PROOF: $pval_0$ must be a mem_ptr and $h = \cdot + \{pval_1 \stackrel{\checkmark}{\mapsto}_{\tau} pval_2\}$, so OP_ACTION_TVAL_LOAD.

 $\langle 1 \rangle 14$. Case: Ty_Action_Store.

PROOF: $pval_0$ and $pval_2$ must be the same mem_ptr , so OP_ACTION_TVAL_STORE.

 $\langle 1 \rangle 15$. Case: Ty_Action_Kill_Static.

PROOF: $pval_0$ and $pval_1$ must be the same mem_ptr , so OP_ACTION_TVAL_KILL_STATIC.

 $\langle 1 \rangle 16$. Case: Ty_Memop_Rel_Binop.

PROOF: Similar to TY_PE_{ARITH,REL}_BINOP.

- $\langle 1 \rangle$ 17. Case: Ty_Memop_IntFromPtr. Proof: pval must be a mem_ptr so Op_Memop_TVal_Rel_IntFromPtr.
- $\langle 1 \rangle 18.$ Case: Ty_Memop_PtrFromInt. Proof: pval must be a mem_int so Op_Memop_TVal_Rel_PtrFromInt.
- $\langle 1 \rangle$ 19. Case: Ty_Memop_PtrValidForDeref. Proof: pval must be a mem_ptr and h must be $\cdot + \{mem_ptr \xrightarrow{\checkmark}_{\tau}_{-}\}$ so it can take a step with Op_Memop_TVal_Rel_PtrValidForDeref.
- $\langle 1 \rangle 20.$ Case: Ty_Memop_PtrWellAligned. Proof: pval must be a mem_ptr and so Op_Memop_TVal_PtrWellAligned.
- $\langle 1 \rangle 21$. Case: Ty_Memop_PtrArrayShift. Proof: $pval_1$ must be a mem_ptr and $pval_2$ must be a mem_int and so Op_Memop_TVal_PtrArrayShift.
- $\langle 1 \rangle$ 22. Case: Ty_Seq_E_CCall.

 Proof: By inversion we have $ident:arg \equiv \overline{x_i}^i \mapsto texpr \in Globals \text{ and } \cdot; \cdot; \cdot; \cdot \vdash \overline{x_i = spine_elem_i}^i :: arg \gg \sigma; ret$, with the latter implying $\overline{x_i = spine_elem_i}^i :: arg \gg \sigma; ret$ (lemma 3.1. Thus it can step with OP_SE_TE_CCall.
- $\langle 1 \rangle 23.$ Case: Ty_Seq_E_Proc. Proof: Similar to Ty_Seq_E_CCall.
- $\langle 1 \rangle$ 24. Case: Ty_Is_E_Memop. Proof: By induction, if mem_op is unreachable, then the whole expression is so. Memops are not values. Only stepping cases applies, so Op_IsE_IsE_Memop.
- $\langle 1 \rangle$ 25. Case: Ty_Is_E_{NEG_}Action. Proof: By induction, if mem_action is unreachable, then the whole expression is so. Actions are not values. Only stepping case applies, so Op_IsE_IsE_{NEG_}Action.
- $\langle 1 \rangle 26.$ Case: Ty_Seq_TE_{LETP,LETPT}. PROOF: See Ty_Seq_TE_{LET,LETT} for more general cases and proofs.
- (1)27. Case: Ty_Seq_TE_Let. Proof: By induction, since seq_expr is not value, if it is unreachable, the whole expression is so. If it takes a step, then Op_STE_TE_Let_LetT.
- (1)28. Case: Ty_Seq_TE_LetT.

 Proof: By induction, if texpr is unreachable, so is the whole expression. If if it a tval then Op_STE_TE_LetT_Sub. If if takes a step, then Op_STE_TE_LetT_LetT.
- (1)29. Case: Ty_Seq_TE_Case.

 Proof: By assumption that all patterns are exhaustive, there is at least one pattern against which *pval* will match, so OP_STE_TE_Case.
- (1)30. CASE: TY_SEQ_TE_IF.

 PROOF: pval must be a bool_value and so OP_STE_TE_IF_{TRUE,FALSE}.

 $\langle 1 \rangle 31$. Case: Ty_Seq_TE_Run.

PROOF: Similar to Ty_Seq_E_CCall.

 $\langle 1 \rangle 32$. Case: Ty_Seq_TE_Bound.

PROOF: By OP_STE_TE_BOUND.

 $\langle 1 \rangle 33$. Case: Ty_Is_TE_LetS.

PROOF: Similar to TY_SEQ_TE_LETT.

4 Framing

If $\langle h; e \rangle \longrightarrow \langle h'; e' \rangle$ and $\exists h_1, h_2$. disjoint $(h_1, h_2) \wedge h = h_1 + h_2 \wedge \langle h_1; e \rangle \longrightarrow \langle h'_1; e' \rangle$ then $h' = h'_1 + h_2$.

Assume: 1. $\langle h; e \rangle \longrightarrow \langle h'; e' \rangle$,

2. $h = h_1 + h_2$ where h_1, h_2 disjoint,

3. and $\langle h_1; e \rangle \longrightarrow \langle h'_1; e' \rangle$.

PROVE: $h' = h'_1 + h_2$.

PROOF SKETCH:Induction over the operational rules. Only covering ones which modify the heap; rest are trivially true.

 $\langle 1 \rangle 1$. Case: Op_Action_TVal_Create

PROOF: Because mem_ptr is fresh.

 $\langle 1 \rangle 2$. Case: Op_Action_TVal_{Store,Kill}.

PROOF: By assumption of disjointness, $mem_ptr \in h_1$ implies $mem_ptr \notin h_2$.

5 Type Preservation

5.1 Pointed-to values have type β_{τ}

For $pt = \overrightarrow{\rightarrow}_{\tau} pval$, if $C; \mathcal{L}; \Phi; \mathcal{R} \vdash pt \Leftarrow pt$ then $C; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta_{\tau}$.

PROOF SKETCH: Induction over the typing judgements. Only TY_ACTION_STORE create such permissions, and its premise $C; \mathcal{L}; \Phi \vdash pval_1 \Rightarrow \beta_{\tau}$ ensures the desired property. TY_ACTION_LOAD simply preserves the property.

5.2 Terms derived from patterns are "equal to" matching values

Assume: 1. $pattern:\beta \leadsto C$ with term.

2. $pattern = pval \leadsto \sigma$.

PROVE: The constraint $term_i = pval$ holds.

PROOF SKETCH: Induction over pattern.

5.3 Deconstructing a pattern leads to a well-typed substitution

First, computational part.

Assume: 1. $\cdot; \cdot; \cdot \vdash pval \Rightarrow \beta_1$.

 $2. ident_or_pattern: \beta \leadsto \mathcal{C} \text{ with } term.$

3. $ident_or_pattern = pval \leadsto \sigma$.

PROVE: $\cdot; \cdot; \cdot; \cdot \vdash (\sigma) : (\mathcal{C}; \cdot; \cdot; \cdot).$

PROOF SKETCH: By induction over 2.

(1)1. Case: Ty_Pat_Sym_Or_Pattern_Sym and Ty_Pat_Comp_Sym_Annot.

 $\sigma = pval/x$, and $\mathcal{C} = \cdot, x:\beta$.

PROOF: By TY_SUBS_CONS_COMP and 1.

(1)2. CASE: TY_PAT_NO_SYM_ANNOT and TY_PAT_COMP_NIL.

 σ and \mathcal{C} are empty.

PROOF: By TY_SUBS_EMPTY, we are done.

 $\langle 1 \rangle 3$. Case: Ty_Pat_Comp_{Specified, Cons, Tuple, Array}.

PROOF: By induction (and concatenating well-typed substitutions).

Now, resource part.

Assume: 1. $\cdot; \cdot; \cdot; \mathcal{R} \vdash res_term \Leftarrow res$.

2. $res_pattern:res \leadsto \mathcal{L}; \Phi; \mathcal{R}'$.

3. $res_pattern = res_term \leadsto \sigma$.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R} \vdash (\sigma): (\cdot; \mathcal{L}; \Phi; \mathcal{R}').$

PROOF SKETCH: By induction over 2.

 $\langle 1 \rangle 1$. Case: Ty_Pat_Res_Empty.

 $res_pattern = res_term = res = emp. \ \sigma, \mathcal{L}, \Phi, \mathcal{R}, \mathcal{R}'$ are all empty.

PROOF: By TY_SUBS_EMPTY, we are done.

 $\langle 1 \rangle 2$. Case: Ty_Pat_Res_PointsTo.

 $res_pattern = res_term = res = pt. \ \sigma = \cdot, \ \mathcal{L} = \cdot, \ \Phi = \cdot, \ \mathcal{R} = \mathcal{R}' = \cdot, pt.$

PROOF: By TY_SUBS_CONS_RES_ANON.

 $\langle 1 \rangle 3$. Case: Ty_Pat_Res_Var.

 $res_pattern = r, \ \sigma = res_term/x, \cdot, \ \mathcal{L} = \cdot, \ \Phi = \cdot, \ \mathcal{R}' = \cdot, x:res.$

PROOF: By Ty_Subs_Cons_Res_Named.

 $\langle 1 \rangle 4$. Case: Ty_Pat_Res_SepConj.

PROOF: By induction (and concatenating well-typed substitutions).

 $\langle 1 \rangle$ 5. Case: Ty_Pat_Res_Conj.

PROOF: By smt $(\cdot \Rightarrow term)$ (from 1) and induction with TY_SUB_CONS_PHI.

 $\langle 1 \rangle 6$. Case: Ty_Pat_Res_Pack.

 $res_pattern = pack(x, res_pattern'), res_term = pack(pval, res_term'), res = \exists x:\beta. res'.$

 $\sigma = pval/x, \sigma', \, \mathcal{L} = \mathcal{L}', x{:}\beta, \, \mathcal{R} = \mathcal{R}'.$

PROOF: By induction and TY_SUBS_CONS_LOG.

Now, full proof.

Assume: 1. $\overline{ret_pattern_i} = spine_elem_i^i \leadsto \sigma$.

- $2. : : : : : \mathcal{R} \vdash \text{done } \overline{spine_elem_i}^i \Leftarrow ret.$
- 3. $\overline{ret_pattern_i}^i : ret \leadsto \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}'.$

PROVE: $\cdot; \cdot; \cdot; \mathcal{R} \vdash (\sigma) : (\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}').$

PROOF SKETCH: Induction on 3.

- (1)1. Case: Ty_Ret_Pat_Empty Proof: By Ty_Subs_Empty.
- ⟨1⟩2. CASE: TY_RET_PAT_{COMP,RES}

PROOF: By induction, well-typed computational / resource substitutions and concatenating well-typed substitutions.

 $\langle 1 \rangle 3$. Case: Ty_Ret_Path_Log.

PROOF: By induction.

 $\langle 1 \rangle 4$. Case: Ty_Ret_Pat_Phi

PROOF: By induction and inversion on 2 to conclude smt $(\cdot \Rightarrow term)$ (required by Ty_Subs_Cons_Phi).

5.4 Type Preservation Statement and Proof

If $:::::\mathcal{R} \vdash e \Leftrightarrow t$ then $\forall h : \mathcal{R}, e', h' : \mathcal{R}'$. $\langle h; e \rangle \longrightarrow \langle h'; e' \rangle \implies :::::\mathcal{R}' \vdash e' \Leftrightarrow t$.

PROOF SKETCH: Induction over the typing rules.

- 2. arbitrary $h: \mathcal{R}, e', h': \mathcal{R}'$
- 3. $\langle h; e \rangle \longrightarrow \langle h'; e' \rangle$.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R}' \vdash e' \Leftrightarrow t$.

 $\langle 1 \rangle 1$. Case: Ty_PE_Array_Shift.

Let: $term = mem_ptr +_{ptr} (mem_int \times size_of(\tau)).$

Assume: 1. $\cdot; \cdot; \cdot \vdash \text{array_shift} (mem_ptr, \tau, mem_int) \Rightarrow y:\text{loc.} y = term.$

2. $\langle array_shift(mem_ptr, \tau, mem_int) \rangle \longrightarrow \langle mem_ptr' \rangle$.

PROVE: $\cdot; \cdot; \cdot \vdash mem_ptr' \Rightarrow y:loc. y = term.$

PROOF: By TY_PVAL_OBJ_INT, TY_PVAL_OBJ, TY_PE_VAL and construction of mem_ptr' (inversion on 2).

 $\langle 1 \rangle 2$. Case: Ty_PE_Member_Shift.

PROOF SKETCH: Similar to Ty_Array_Shift.

 $\langle 1 \rangle 3$. Case: Ty_PE_Not.

Assume: 1. $\cdot; \cdot; \cdot \vdash \text{not}(bool_value) \Rightarrow y:\text{bool}. y = \neg bool_value.$

2. $\langle \mathtt{not}(\mathtt{True}) \rangle \longrightarrow \langle \mathtt{False} \rangle \text{ or } \langle \mathtt{not}(\mathtt{False}) \rangle \longrightarrow \langle \mathtt{True} \rangle$.

PROVE: $\cdot; \cdot; \cdot \vdash bool_value' \Rightarrow y:bool. y = \neg bool_value.$

PROOF: By TY_PVAL_{TRUE,FALSE}, TY_PE_VAL and 2.

 $\langle 1 \rangle 4$. Case: Ty_PE_Arith_Binop.

Let: $term = mem_int_1 binop_{arith} mem_int_2$.

Assume: 1. $\cdot; \cdot; \cdot \vdash mem_int_1 \ binop_{arith} \ mem_int_2 \Rightarrow y$:integer. y = term.

2. $\langle mem_int_1 \ binop_{arith} \ mem_int_2 \rangle \longrightarrow \langle mem_int \rangle$.

PROVE: $\cdot; \cdot; \cdot \vdash mem_int \Rightarrow y$:integer. y = term.

PROOF: By TY_PVAL_OBJ_INT, TY_PVAL_OBJ, TY_PE_VAL and construction of mem_int (inversion on 2).

 $\langle 1 \rangle$ 5. Case: Ty_PE_{Rel,Bool}_Binop.

PROOF SKETCH: Similar to TY_PE_ARITH_BINOP.

 $\langle 1 \rangle 6$. Case: Ty_PE_Call.

PROOF: See Ty_Seq_E_Call for a more general case and proof.

 $\langle 1 \rangle 7$. Case: Ty_PE_Assert_Undef.

Assume: 1. $\cdot; \cdot; \cdot \vdash assert_undef(True, UB_name) \Rightarrow y:unit. y = unit.$

2. $\langle assert_undef(True, UB_name) \rangle \longrightarrow \langle Unit \rangle$.

PROVE: $\cdot; \cdot; \cdot \vdash \texttt{Unit} \Rightarrow y : \texttt{unit}. \ y = \texttt{unit}.$

PROOF: By TY_PVAL_UNIT and TY_PE_VAL.

 $\langle 1 \rangle 8$. Case: Ty_PE_Bool_To_Integer.

Let: $term = if bool_value then 1 else 0$.

Assume: 1. $\cdot; \cdot; \cdot \vdash bool_to_integer(bool_value) \Rightarrow y:integer. y = term.$

2. $\langle bool_to_integer(True) \rangle \longrightarrow \langle 1 \rangle$ or $\langle bool_to_integer(False) \rangle \longrightarrow \langle 0 \rangle$.

PROVE: $\cdot; \cdot; \cdot \vdash mem_int \Rightarrow y$:integer. y = term

PROOF: By cases on bool_value, then applying TY_PVAL_{TRUE,FALSE} and TY_PE_VAL.

 $\langle 1 \rangle 9$. Case: Ty_PE_WrapI.

PROOF SKETCH: Similar to TY_PE_BOOL_TO_INTEGER, except by cases on $abbrev_2 \leq \max_i \operatorname{int}_{\tau}$, then applying TY_PVAL_OBJ_INT, TY_PVAL_OBJ and TY_PE_VAL.

 $\langle 1 \rangle 10$. Case: Ty_TPE_IF.

PROOF: See Ty_Seq_TE_IF for a more general case and proof.

 $\langle 1 \rangle 11$. Case: Ty_TPE_Let.

PROOF: See Ty_Seq_TE_Let for a more general case and proof.

 $\langle 1 \rangle 12$. Case: Ty_TPE_LETT.

PROOF: See Ty_Seq_TE_LetT for a more general case and proof.

 $\langle 1 \rangle 13$. Case: Ty_TPE_Case.

PROOF: See Ty_Seq_TE_Case for a more general case and proof.

 $\langle 1 \rangle 14$. Case: Ty_Action_Create.

Let: $pt = mem_{pt}r \stackrel{\times}{\mapsto}_{\tau} pval$.

 $term = \mathtt{representable} \ (\tau*, y_p) \land \mathtt{alignedI} \ (mem_int, y_p).$

 $ret = \sum y_n : loc. \ term \land \exists \ y : \beta_\tau. \ y_n \stackrel{\times}{\mapsto}_\tau \ y \otimes I.$

Assume: 1. $\cdot; \cdot; \cdot; \cdot \vdash \text{create}(mem_int, \tau) \Rightarrow ret$.

2. $\langle \cdot ; \mathtt{create} \left(mem_int, \tau \right) \rangle \longrightarrow \langle \cdot + \{ pt \} ; \mathtt{done} \ mem_ptr, pval, pt \rangle$.

PROVE: $\cdot; \cdot; \cdot; \cdot, pt \vdash \text{done } mem_ptr, pval, pt \Leftarrow ret.$

 $\langle 2 \rangle 1. : : : : \vdash mem_ptr \Rightarrow loc$ by TY_PVAL_OBJ_INT and TY_PVAL_OBJ.

- $\langle 2 \rangle 2$. smt $(\cdot \Rightarrow term)$ by construction of mem_ptr .
- $\langle 2 \rangle 3. : : : \vdash pval \Rightarrow \beta_{\tau}$ by construction of pval.
- $\langle 2 \rangle 4. : ; : ; : ; \cdot, pt \vdash pt \Leftarrow pt \text{ by Ty_Res_PointsTo}.$
- $\langle 2 \rangle$ 5. By TY_TVAL_I and then $\langle 2 \rangle$ 4 $\langle 2 \rangle$ 1 with TY_TVAL_{RES,LOG,PHI,COMP} respectively, we are done.
- $\langle 1 \rangle 15$. Case: Ty_Action_Load.

Let: $pt = mem_ptr \xrightarrow{\checkmark} pval$.

$$ret = \sum y : \beta_{\tau}. \ y = pval \land pt \otimes I.$$

Assume: 1. $\cdot; \cdot; \cdot; \cdot, pt \vdash load(\tau, mem_ptr, _, pt) \Rightarrow ret$.

2. $\langle \cdot + \{pt\}; \texttt{load}(\tau, mem_ptr, _, pt) \rangle \longrightarrow \langle \cdot + \{pt\}; \texttt{done}(pval, pt) \rangle$.

PROVE: $\cdot; \cdot; \cdot; \cdot, pt \vdash \text{done } pval, pt \Leftarrow ret$

- $\langle 2 \rangle 1. \ \ ; ; ; ; , pt \vdash pt \Leftarrow pt,$ by inversion on 1.
- $\langle 2 \rangle 2$. smt $(\cdot \Rightarrow pval = pval)$ trivially.
- $\langle 2 \rangle 3. : : : \vdash pval \Rightarrow \beta_{\tau} \text{ by } \langle 2 \rangle 1 \text{ and lemma 5.1.}$
- $\langle 2 \rangle 4$. By TY_TVAL_I and then $\langle 2 \rangle 1 \langle 2 \rangle 3$ with TY_TVAL_{RES,PHI,COMP} respectively, we are done.
- $\langle 1 \rangle 16$. Case: Ty_Action_Store.

Let: $pt = mem_{-}ptr \stackrel{\checkmark}{\mapsto}_{\tau}$.

 $pt' = mem_ptr \xrightarrow{\checkmark} pval.$

 $ret = \Sigma$ _:unit. $pt' \otimes I$.

Assume: 1. $\cdot; \cdot; \cdot; \cdot, pt \vdash \mathsf{store}(-, \tau, pval_0, pval_1, -, pt) \Rightarrow ret.$

 $2.\ \langle \cdot + \{pt\}; \mathtt{store}\left(_, \tau, mem_ptr, pval, _, pt\right) \rangle \longrightarrow \langle \cdot + \{pt'\}; \mathtt{done}\,\mathtt{Unit}, pt' \rangle.$

PROVE: $\cdot; \cdot; \cdot; \cdot, pt' \vdash \text{done Unit}, pt' \Leftarrow ret.$

- $\langle 2 \rangle 1. : : : : \vdash Unit \Rightarrow unit by TY_PVAL_UNIT.$
- $\langle 2 \rangle 2. \ \ ; ; ; ; , pt' \vdash pt' \Leftarrow pt' \text{ by TY_Res_PointsTo}.$
- $\langle 2 \rangle 3$. By TY_TVAL_I and $\langle 2 \rangle 1$ and $\langle 2 \rangle 2$ with TY_TVAL_{RES,COMP} respectively, we are done.
- $\langle 1 \rangle 17$. Case: Ty_Action_Kill_Static.

Let: $pt = mem_ptr \mapsto_{\tau}$.

Assume: 1. $\cdot; \cdot; \cdot; \cdot, pt \vdash \texttt{kill} (\texttt{static} \tau, pval_0, pt) \Rightarrow \Sigma_{\cdot} : \texttt{unit}. I.$

2. $\langle \cdot + \{pt\}; \texttt{kill} (\texttt{static} \, \tau, mem_ptr, pt) \rangle \longrightarrow \langle h; \texttt{done} \, \texttt{Unit} \rangle$.

PROVE: $\cdot; \cdot; \cdot; \cdot \vdash \mathtt{done} \, \mathtt{Unit} \Leftarrow \Sigma \, \mathtt{::unit.} \, \mathtt{I}$

PROOF: By TY_TVAL_I, TY_PVAL_UNIT and then TY_TVAL_COMP.

 $\langle 1 \rangle 18$. Case: Ty_Memop_Rel_Binop.

PROOF: Similar Ty_PE_Rel_Binop, except with Ty_TVAL_{I,PHI,COMP} at the end.

 $\langle 1 \rangle 19$. Case: Ty_Memop_IntFromPtr.

Let: $ret = \sum y$:integer. $y = \texttt{cast_ptr_to_int} \ mem_ptr \land \texttt{I}$.

Assume: 1. $\cdot; \cdot; \cdot; \cdot; \vdash \text{intFromPtr}(\tau_1, \tau_2, mem_ptr) \Rightarrow ret.$

2. $\langle \cdot; \mathtt{intFromPtr}(\tau_1, \tau_2, mem_ptr) \rangle \longrightarrow \langle \cdot; \mathtt{done}\ mem_int \rangle$.

PROVE: $\cdot; \cdot; \cdot; \cdot \vdash \text{done } mem_int \Leftarrow ret$

- $\langle 2 \rangle 1$. smt ($\cdot \Rightarrow mem_int = cast_ptr_to_int mem_ptr$) by construction of mem_int (inversion on 2).
- $\langle 2 \rangle 2. : : : : \vdash mem_int \Rightarrow integer by TY_PVAL_OBJ_INT and TY_PVAL_OBJ.$
- $\langle 2 \rangle 3$. By TY_TVAL_I and $\langle 2 \rangle 1$ and $\langle 2 \rangle 2$ with TY_TVAL_{PHI,COMP} respectively, we are done.
- $\langle 1 \rangle 20$. Case: Ty_Memop_PtrFromInt.

PROOF: Similar to TY_MEMOP_INTFROMPTR, swapping base types integer and loc.

 $\langle 1 \rangle 21$. Case: Ty_Memop_PtrValidForDeref.

Let: $pt = mem_ptr \stackrel{\checkmark}{\mapsto}_{\tau}$..

 $ret = \Sigma y$:bool. $y = \texttt{aligned} (\tau, mem_ptr) \land pt \otimes \mathtt{I}.$

Assume: 1. $\cdot; \cdot; \cdot; \mathcal{R} \vdash \mathsf{ptrValidForDeref}(\tau, mem_ptr, pt) \Rightarrow ret.$

 $2. \ \langle \cdot + \{pt\}; \mathtt{ptrValidForDeref} \ (\tau, mem_ptr, pt) \rangle \longrightarrow \langle \cdot + \{pt\}; \mathtt{done} \ bool_value, pt \rangle.$

PROVE: $\cdot; \cdot; \cdot; \mathcal{R} \vdash \text{done } bool_value, pt \Leftarrow ret.$

- $\langle 2 \rangle 1. \ \ ; \cdot ; \cdot ; \mathcal{R} \vdash pt \Leftarrow pt$, by inversion on 1.
- $\langle 2 \rangle 2$. $R = \cdot, pt$, by Ty_Res_PointsTo.
- $\langle 2 \rangle 3.\ bool_value = \mathtt{aligned}\ (\tau, mem_ptr)$ by construction of bool_value (inversion on 2).
- $\langle 2 \rangle 4. : : : : \vdash bool_value \Rightarrow bool by TY_PVAL_{TRUE,FALSE}.$
- $\langle 2 \rangle$ 5. By TY_TVAL_I, and then $\langle 2 \rangle 2 \langle 2 \rangle 4$ with TY_TVAL_{RES,PHI,COMP} respectively, we are done.
- $\langle 1 \rangle 22$. Case: Ty_Memop_PtrWellAligned.

Let: $ret = \sum y$:bool. $y = aligned(\tau, mem_ptr) \land I$.

Assume: 1. $\cdot; \cdot; \cdot; \cdot \vdash \mathsf{ptrWellAligned}(\tau, mem_ptr) \Rightarrow ret$.

2. $\langle \cdot; \texttt{ptrWellAligned}(\tau, mem_ptr) \rangle \longrightarrow \langle \cdot; \texttt{done}\ bool_value \rangle$.

PROVE: $\cdot; \cdot; \cdot; \cdot \vdash \text{done } bool_value \Rightarrow ret.$

- $\langle 2 \rangle 1$. smt ($\cdot \Rightarrow bool_value = \mathtt{aligned}(\tau, mem_ptr)$) by construction of $bool_value$ (inversion on 2).
- $\langle 2 \rangle 2. : : : \vdash bool_value \Rightarrow bool by TY_PVAL_{TRUE,FALSE}.$
- $\langle 2 \rangle 3$. By TY_TVAL_I and $\langle 2 \rangle 1$ and $\langle 2 \rangle 2$ with TY_TVAL_{PHI,COMP} respectively, we are done.
- ⟨1⟩23. Case: Ty_Memop_PtrArrayShift.

PROOF: Similiar to TY_PE_ARRAY_SHIFT, except with TY_TVAL_ $\{I,PHI,COMP\}$ at the end.

 $\langle 1 \rangle 24$. Case: Ty_Seq_E_CCall.

2. $\langle h; \mathtt{ccall}(\tau, ident, \overline{spine_elem_i}^i) \rangle \longrightarrow \langle h; \sigma'(texpr) : \sigma'(ret) \rangle$.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R} \vdash \sigma(texpr) \Leftarrow \sigma(ret)$

- $\langle 2 \rangle 1$. $ident: arg \equiv \overline{x_i}^i \mapsto texpr \in Globals by inversion (on either assumption).$
- $\langle 2 \rangle 2. \ \ ; ; ; ; \mathcal{R} \vdash \overline{x_i = spine_elem_i}^i :: arg \gg \sigma; ret \text{ by inversion on } 1.$
- $\langle 2 \rangle 3$. $\sigma = \sigma'$ and ret = ret' by induction on arg. Proof: Follows from lemma 3.1.
- $\langle 2 \rangle 4$. Let: $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}'$ be the the type of substitution $\sigma: \cdot; \cdot; \cdot; \mathcal{R} \vdash (\sigma): (\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}')$. Proof: From $\langle 2 \rangle 2$ we may deduce
 - 1. $C; \mathcal{L}; \Phi \vdash pval_i \Rightarrow \beta_i$ for each $x_i:\beta_i \in C$ or $x_i:\beta_i \in \mathcal{L}$.
 - 2. $C; \mathcal{L}; \Phi; \mathcal{R}' \vdash res_term_i \Leftarrow res_i \text{ for each } res_i \in \mathcal{R}'.$
 - 3. smt $(\cdot \Rightarrow term)$ for each $term \in \Phi$.
- $\langle 2 \rangle$ 5. $\mathcal{C}''; \mathcal{L}''; \Phi''; \mathcal{R}'' \vdash texpr \Leftarrow ret''$ where $\overline{x_i}^i :: arg \leadsto \mathcal{C}''; \mathcal{L}''; \Phi''; \mathcal{R}'' \mid ret''$ formalises the assumption that all global functions and labels are well-typed.
- $\langle 2 \rangle$ 6. C = C'', $\Phi = \Phi''$, $\mathcal{L} = \mathcal{L}''$, $\mathcal{R}' = \mathcal{R}''$ and ret = ret''. Proof: By induction on arg.
- $\langle 2 \rangle 7$. Apply substitution lemma (2.4) to $\langle 2 \rangle 4$ and $\langle 2 \rangle 5$ to finish proof.
- $\langle 1 \rangle 25.$ Case: Ty_Seq_E_Proc. Proof: Similar to Ty_Seq_E_CCall.
- (1)26. Case: Ty_Is_E_Memop.

 Proof: By induction on Ty_Memop* cases.
- $\langle 1 \rangle 27.$ Case: Ty_Is_E_{Neg_}Action. Proof: By induction on Ty_Action* cases.
- $\langle 1 \rangle 28$. Case: Ty_Seq_TE_LetP.

PROOF SKETCH: Only covering case $\langle pexpr \rangle \longrightarrow \langle pexpr' \rangle$ here.

See TY_SEQ_TE_LET for a more general version and proof for the remaining $\langle pexpr \rangle \longrightarrow \langle tpexpr: (y:\beta. term) \rangle$ case.

ASSUME: 1. \cdot ; \cdot ; \cdot | let $ident_or_pattern = pexpr$ in $tpexpr \Leftarrow y_2:\beta_2$. $term_2$.

 $2. \ \langle \texttt{let} \, ident_or_pattern = pexpr \, \texttt{in} \, tpexpr \rangle \longrightarrow \langle \texttt{let} \, ident_or_pattern = pexpr' \, \texttt{in} \, tpexpr \rangle.$

PROVE: $\cdot; \cdot; \cdot \vdash \text{let } ident_or_pattern = pexpr' \text{ in } tpexpr \Leftarrow y_2:\beta_2. term_2.$

- $\langle 2 \rangle 1.$ 1. $\cdot; \cdot; \cdot; \cdot \vdash pexpr \Rightarrow y : \beta. term.$ 2. $ident_or_pattern : \beta \leadsto C_1 \text{ with } term_1.$
 - 3. C_1 ; ·; ·, $term_1/y$, ·(term), Φ_1 ; $\mathcal{R} \vdash texpr \Leftarrow ret$.

Proof: Invert assumption 1.

- $\langle 2 \rangle 2$. $\langle pexpr \rangle \longrightarrow \langle pexpr' \rangle$. PROOF: Invert assumption 2.
- $\langle 2 \rangle 3. \quad \because \because \vdash pexpr' \Rightarrow y : \beta. \ term.$ PROOF: By induction on $\langle 2 \rangle 1.1$ and $\langle 2 \rangle 2.$
- $\langle 2 \rangle 4. \quad \because \because \because \vdash \text{let } ident_or_pattern = pexpr' \text{ in } tpexpr \Leftarrow y_2:\beta_2. \ term_2.$ Proof: By Ty_Seq_TE_LetP using $\langle 2 \rangle 1.2,3$ and $\langle 2 \rangle 3.$
- (1)29. CASE: TY_SEQ_TE_LETPT.

 PROOF: See TY_SEQ_TE_LETT for a more general case and proof.

 $\langle 1 \rangle 30$. Case: Ty_Seq_TE_Let.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R}', \mathcal{R} \vdash \text{let } \overline{ret_pattern_i}^i : ret_1 = texpr_1 \text{ in } texpr_2 \Leftarrow ret_2.$

- $\langle 2 \rangle 2$. $\langle h; seq_expr \rangle \longrightarrow \langle h; texpr_1 : ret'_1 \rangle$. PROOF: By inversion on 2.
- $\langle 2 \rangle 4$. $ret_1 = ret'_1$. PROOF: By cases Ty_Seq_E_{CCALL,PCALL}.
- $\langle 2 \rangle$ 5. By Ty_Seq_TE_Let with $\langle 2 \rangle$ 1.2,3 and $\langle 2 \rangle$ 3, we are done.
- $\langle 1 \rangle 31$. Case: Ty_Seq_TE_LetT. Note: $h: \mathcal{R}', \mathcal{R}$ and $h: \mathcal{R}_1, \mathcal{R}$.

- $\langle 2 \rangle 1.$ 1. $\cdot; \cdot; \cdot; \mathcal{R}' \vdash \text{done } \overline{spine_elem_i}^i \Leftarrow ret_1.$ 2. $\overline{ret_pattern_i}^i : ret_1 \leadsto \mathcal{C}_1; \mathcal{L}_1; \Phi_1; \mathcal{R}_1.$ 3. $\mathcal{C}_1; \mathcal{L}_1; \Phi_1; \mathcal{R}_1, \mathcal{R} \vdash texpr_2 \Leftarrow ret_2.$ PROOF: By inversion on 1.
- $\langle 2 \rangle 2$. $\overline{ret_pattern_i = spine_elem_i}^i \leadsto \sigma$. Proof: By inversion on 2.
- $\langle 2 \rangle 3.$ $\cdot; \cdot; \cdot; \mathcal{R}' \vdash (\sigma) : (\mathcal{C}_1; \mathcal{L}_1; \Phi_1; \mathcal{R}_1).$ PROOF: By $\langle 2 \rangle 1.1,2$ and $\langle 2 \rangle 3$, $\langle 2 \rangle 2$ using lemma 5.3 (deconstructing a pattern produces a well-typed substitution).
- $\langle 2 \rangle 4$. By $\langle 2 \rangle 1.3$ and $\langle 2 \rangle 3$ and the let-friendly substitution lemma 2.6, we are done.
- $\langle 1 \rangle 32$. Case: Ty_Seq_TE_LetT.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R}'', \mathcal{R} \vdash \text{let } \overline{ret_pattern_i}^i : ret_1 = texpr'_1 \text{ in } texpr_2 \Leftarrow ret_2.$

 $\langle 2 \rangle 1.$ 1. $: ; : ; : ; \mathcal{R}' \vdash texpr_1 \Leftarrow ret_1.$ 2. $\underbrace{ret_pattern_i}^i : ret_1 \leadsto \mathcal{C}_1; \mathcal{L}_1; \Phi_1; \mathcal{R}_1.$ 3. $\mathcal{C}_1; \mathcal{L}_1; \Phi_1; \mathcal{R}_1, \mathcal{R} \vdash texpr_2 \Leftarrow ret_2.$ PROOF: By inversion on 1.

- $\langle 2 \rangle 2$. $\langle h; texpr_1 \rangle \longrightarrow \langle h'; texpr_1' \rangle$. PROOF: By inversion on 2.
- $\langle 2 \rangle 3. \quad \because \because : \mathcal{R}'' \vdash texpr'_1 \Leftarrow ret_1.$ PROOF: By induction on $\langle 1 \rangle 32.1$ and $\langle 2 \rangle 2.$
- $\langle 2 \rangle 4$. By $\langle 2 \rangle 3$, $\langle 1 \rangle 32.2,3$ using Ty_SeQ_TE_LetT, we are done.
- $\langle 1 \rangle 33$. Case: Ty_Seq_TE_Case.

- PROVE: $\cdot; \cdot; \cdot; \mathcal{R} \vdash \sigma_j(texpr_j) \Leftarrow ret.$
- $\langle 2 \rangle 1. \ 1. \ \underline{\cdot; \cdot; \cdot \vdash pval \Rightarrow \beta_1.}$
 - 2. $\overline{pattern_i:\beta_1 \leadsto \mathcal{C}_i \text{ with } term_i}^i$.
 - 3. C_i ; ·; ·, $term_i = pval$; $\mathcal{R} \vdash texpr_i \Leftarrow ret^i$.

PROOF: By inversion on 1.

- $\langle 2 \rangle 2$. 1. $pattern_j = pval \leadsto \sigma_j$. 2. $\forall i < j$. not $(pattern_i = pval \leadsto \sigma_i)$. PROOF: By inversion on 2.
- $\langle 2 \rangle 3$. $term_j = pval$. PROOF: By $\langle 1 \rangle 32.2$ and lemma 5.2.
- $\langle 2 \rangle 4. \quad : : : : : \vdash (\sigma_j) : (\mathcal{C}_j : : : \cdot, term_j = pval; \cdot).$ PROOF: By $\langle 2 \rangle 3$ and lemma 5.3 (deconstructing a pattern produces a well-typed substitution).
- $\langle 2 \rangle$ 5. By $\langle 2 \rangle$ 4, $\langle 1 \rangle$ 32.3 and 2.4, we are done.
- $\langle 1 \rangle 34$. Case: Ty_Seq_TE_If.

Only covering True case, False is almost identical.

2. $\langle h; \text{if True then } texpr_1 \text{ else } texpr_2 \rangle \longrightarrow \langle h; texpr_1 \rangle$.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R} \vdash texpr_1 \Leftarrow ret$.

PROOF: Invert 1, note $\cdot; \cdot; \cdot; \mathcal{R} \vdash (id): (\cdot; \cdot; \cdot, \mathsf{true} = \mathsf{true}; \mathcal{R})$ and then apply substitution lemma (2.4).

 $\langle 1 \rangle 35$. Case: Ty_Seq_TE_Run.

PROOF SKETCH: Similar to case Ty_Seq_E_{CCALL,PCALL}.

 $\langle 1 \rangle 36$. Case: Ty_Seq_TE_Bound.

PROOF: By inversion on the typing rule.

 $\langle 1 \rangle 37$. Case: Ty_Is_TE_LetS.

PROOF SKETCH: Similar to TY_SEQ_TE_LETT.

6 Typing Judgements

7 Opsem Judgements