Class 8: Rotational Motion of a Rigid Body, Part 2

Advanced Placement Physics C

Dr. Timothy Leung

Fall 2021

Olympiads School

Introduction

Curvilinear vs. Rectilinear Motion

Kinematic quantities for rectilinear (translational) vs. curvilinear (circular) motion are related:

$$egin{array}{lll} ec{r} &
ightarrow & heta \ ec{v} &
ightarrow & lpha \ ec{a} &
ightarrow & lpha \end{array}$$

Dynamics:

$$egin{array}{cccc} m &
ightarrow & I \ ec{F} &
ightarrow & ec{ au} \ ec{p} = m ec{ ext{v}} &
ightarrow & ec{ ext{L}} = I \omega \end{array}$$

Laws of Motion

The laws of motion are also related between translational and rotational motion:

$$\vec{F}_{net} = \frac{d\vec{p}}{dt} \rightarrow \vec{\tau}_{net} = \frac{d\vec{L}}{dt}$$
 $\vec{F}_{net} = m\vec{a} \rightarrow \vec{\tau}_{net} = I\vec{\alpha}$

3

Solving Rotational Problems

When solving for rotational problems like the ones described in the previous sections:

- Draw a free-body diagram to account for all forces
- The direction of friction force is not always obvious
- The magnitude of any static friction force cannot be assumed to be at maximum.
- If the object is to change its rotational state, there must be a net torque causing it.

Solving Rotational Problems

Once the free-body diagram is complete, the forces should break down into their forces into $\hat{\imath}$, $\hat{\jmath}$ and \hat{k} components. If the axes are defined properly, only one direction should have acceleration (usually $\hat{\imath}$), i.e.:

$$\sum F_x = ma$$
 $\sum F_y = 0$ $\sum F_z = 0$

There are also three equations for rotation, and torque is only applied in one direction (likely \hat{k}):

$$\sum \tau_x = 0$$
 $\sum \tau_y = 0$ $\sum \tau_z = I_z \alpha$

Solving Rotational Problems

For rotational motion dynamics equation:

1. Relate the force(s) that causes rotational motion to the net torque

$$au_{\mathrm{net}} = \sum_{i} F_{i} r_{i}$$

- 2. Substitute the expression for momentum of inertia (which has both mass and radius terms in it) into the equation for rotational motion
- 3. Relate angular acceleration to linear acceleration, if applicable:

$$\alpha = \frac{\alpha}{R}$$

Now there are two equations with force and acceleration terms.

Problems with Only Rotations

Pure Rolling Problems

Pure Rolling Problems

A smooth solid sphere of constant density rolls along a smooth surface without slipping (called **pure rolling**). We assume that:

- Both the sphere and the surface are both perfectly rigid (they do not deform)
- The sphere and the surface are both perfectly smooth without defects even at the microscopic level

The free-body diagram:

Pure Rolling Problems

The free-body diagram is simple enough that we can see that:

- There is no friction
- Neither gravity $(m\vec{g})$ nor normal force (\vec{N}) generate a torque about the CM
- $\sum F = 0$ and $\sum \tau = 0$, therefore
- The translational state (\vec{v}) and rotational state (ω) are constant in time
- In theory, this sphere will roll along with velocity \vec{v} and angular velocity $\omega = v/R$ forever

Reality: Rolling Resistance

In reality, the rolling ball will slow down and eventually come to a stop, because *nothing* is perfectly rigid: both the ball and the surface deform when they make contact

- The normal force is larger in magnitude on the front side than on the other
- N exerts both a horizontal force to slow down the ball, as well as a torque to slow down its rotation
- The normal force does not point toward the CM because of the deformation.

Rolling with Slipping

For a rigid and smooth sphere of radius R rolling down a ramp of angle ϕ without slippage down a ramp of angle θ .

Three forces act on the sphere as it rolls down the ramp

- The weight (mg) of the sphere acts at the CM
- The normal force (N) acts at the point of contact
- The static friction (f_s) act at the point of contact

Only static friction generates a torque about the CM in the clockwise direction

• If f_s is not present, there would have been nothing that causes the sphere to rotate.

To solve this problem, there are three dynamics equations:

$$\sum_{s} F_{s} = mg \sin \theta - f_{s} = ma$$

$$\sum_{s} F_{y} = N - mg \cos \theta = 0$$

$$\sum_{s} \tau = Rf_{s} = I\alpha$$

At this point, static friction f_s is not known. The coefficient of static friction (μ_s) only tells us the maximum static friction, not the actual friction. (We will instead use it to check if the answer makes sense.)

For non-slip case, angular and translational acceleration are related using relative motion:

$$a = \alpha R$$

Solving for the static friction:

$$f_s = \frac{I\alpha}{R} = \frac{2}{5}mR^2 \cdot \frac{a}{R} \cdot \frac{1}{R} = \frac{2}{5}ma$$

It is substituted into the force equation in the $\hat{\imath}$ direction to solve for the acceleration of the CM down the ramp:

$$mg \sin \theta - \frac{2}{5}ma = ma$$

The acceleration of the center of mass is therefore:

$$a = \frac{5}{7}g\sin\theta$$

Compare this to an object *sliding* without friction down the same ramp, which is higher than the pure rolling case.

$$a = g \sin \theta$$

If the sphere starts from rest, the speed of the sphere when it reaches the bottom of the ramp, a distance d away, would be:

$$v = \sqrt{2ad} = \sqrt{\frac{10}{7}gd\sin\theta}$$

Work & Energy in Rotational Motion

Mechanical Work

For translational motion, mechanical work is defined as

$$W_t = \int_{x_1}^{x_2} \vec{F} \cdot d\vec{x}$$

For rotational motion, mechanical work is defined similarly as:

$$oxed{W_r = \int_{ heta_1}^{ heta_2} au \cdot \mathrm{d} heta}$$

The work-energy theorem still applies to rotational motion, i.e.;

$$W_r = \Delta K_r$$

Rotational Kinetic Energy

To find the kinetic energy of a rotating system of particles (discrete number of particles, or continuous mass distribution), we sum the kinetic energies of the individual particles:

$$K_r = \sum_i \frac{1}{2} m_i v_i^2 = \sum_i \frac{1}{2} m_i (r_i \omega)^2 = \frac{1}{2} \left(\sum_i m_i r_i^2 \right) \omega^2$$

It's no surprise that rotational kinetic energy is given by:

$$K_{\rm r}=rac{1}{2}I\omega^2$$

Kinetic Energy of a Rotating System

The total kinetic energy of a rotating system is the sum of its translational and rotational kinetic energies at its center of mass:

$$K = K_t + K_r = \frac{1}{2}mv_{CM}^2 + \frac{1}{2}I_{CM}\omega^2$$

In this case, I_{CM} is calculated at the center of mass. For simple problems, we only need to compute rotational kinetic energy at the pivot:

$$K = \frac{1}{2}I_{P}\omega^{2}$$

In this case, the I_P is calculated at the pivot. **IMPORTANT:** $I_{CM} \neq I_P$

Parallel Axis Theorem

The **parallel axis theorem** relates the moment of inertia of an object along two different but parallel axis by:

$$I = I_{CM} + md^2$$