

Algoritmos Estructuras de Datos I

Facultad de Ciencias Exactas y Tecnología
Universidad Nacional de Tucumán
2023

Especificación Algebraica(2)

TIPO: NAT

OPERACIONES

Sintaxis:

CERO: → NAT

SUCC : NAT→ NAT

IGUALCERO : NAT → BOOL

PRED : NAT - {CERO} → NAT

parcial

Semántica: Para todo $x \in NAT$

IGUALCERO(CERO) ≡ TRUE

 $IGUALCERO(SUCC(x)) \equiv FALSE$

 $PRED(SUCC(x)) \equiv x$

TIPO: NAT

OPERACIÓN ESPAR

Sintaxis:

ESPAR : NAT → BOOL

Semántica: Para todo $x \in NAT$

 $ESPAR(CERO) \equiv TRUE$ $ESPAR(SUCC(CERO)) \equiv FALSE$ $ESPAR(SUCC(SUCC(x))) \equiv ESPAR(x)$

TIPO: NAT

OPERACIÓN IGUAL

Sintaxis:

IGUAL : NAT x NAT → BOOL

Semántica: Para todo x, $y \in NAT$

 $IGUAL(CERO,CERO) \equiv TRUE$ $IGUAL(CERO,SUCC(x)) \equiv FALSE$ $IGUAL(SUCC(x),CERO) \equiv FALSE$ $IGUAL(SUCC(x),SUCC(y)) \equiv IGUAL(x,y)$

TIPO: NAT

OPERACIÓN MAX

Sintaxis:

 $MAX : NAT \times NAT \rightarrow NAT$

Semántica: Para todo x, $y \in NAT$

MAX (CERO,CERO) \equiv CERO MAX (CERO,SUCC(x)) \equiv SUCC(x) MAX (SUCC(x),CERO) \equiv SUCC(x) MAX (SUCC(x),SUCC(y)) \equiv SUCC (MAX(x,y))

TIPO: NAT

OPERACIÓN SUMA

Sintaxis:

SUMA : NAT x NAT → NAT

Semántica: Para todo x, $y \in NAT$

SUMA (CERO,CERO) \equiv CERO SUMA (CERO,SUCC(x)) \equiv SUCC(x) SUMA (SUCC(x),CERO) \equiv SUCC(x) SUMA (SUCC(x),SUCC(y)) \equiv SUCC(SUCC(SUMA(x,y)))

TIPO: NAT

OPERACIÓN SUMA en 2 axiomas

Sintaxis:

SUMA : NAT x NAT → NAT

Semántica: Para todo x, $y \in NAT$

SUMA (CERO, y) \equiv y SUMA (SUCC(x), y) \equiv SUCC(SUMA(x,y))

TIPO: NAT

OPERACIÓN MULT

Sintaxis:

MULT : NAT × NAT → NAT

Semántica: Para todo x, $y \in NAT$

MULT (CERO,CERO) \equiv CERO MULT (CERO,SUCC(x)) \equiv CERO MULT (SUCC(x),CERO) \equiv CERO MULT (SUCC(x),SUCC(y)) \equiv

SUCC(SUMA(SUMA(MULT(x,y),x),y))

TIPO: NAT

OPERACIÓN MULT en 2 axiomas

Sintaxis:

MULT : NAT × NAT → NAT

Semántica: Para todo x, $y \in NAT$

MULT $(x, CERO) \equiv CERO$ MULT $(x, SUCC(y)) \equiv SUMA(MULT(x,y),x)$

TIPO: CADENA

OPERACIONES

Sintaxis:

NULA : → CADENA

ESNULA : CADENA → BOOL

LARGO : CADENA → ENTERO ≥ 0

AGREGAR : CADENA X CHAR → CADENA

CONCAT : CADENA X CADENA → CADENA

TIPO: CADENA

Semántica: Para todo s,t \in CADENA, \forall c \in CHAR,

 $ESNULA(NULA) \equiv TRUE$ $ESNULA(AGREGAR(s,c)) \equiv FALSE$

LARGO(NULA) $\equiv 0$ LARGO(AGREGAR(s,c)) \equiv LARGO(s) + 1

CONCAT(s, NULA) \equiv s CONCAT(s, AGREGAR(t,c)) \equiv AGREGAR(CONCAT(s,t),c)

TIPO: COMPLEJO

OPERACIONES

Sintaxis:

ARMAR : REAL x REAL→ COMPLEJO

SUMA : COMPLEJO x COMPLEJO → COMPLEJO

RESTA : COMPLEJO x COMPLEJO → COMPLEJO

MULTIPLICA : COMPLEJO x COMPLEJO → COMPLEJO

DIVIDE **:** COMPLEJO x COMPLEJO → COMPLEJO U {indefinido}

TIPO: COMPLEJO

Sintaxis:

INVERSO **:** COMPLEJO → COMPLEJO U {indefinido}

OPUESTO : COMPLEJO → COMPLEJO

PREAL : COMPLEJO → REAL

PIMAG : COMPLEJO → REAL

ESREAL: COMPLEJO → BOOL

ESIMAG : COMPLEJO → BOOL

CONJUGADO : COMPLEJO → COMPLEJO

IGUAL : COMPLEJO x COMPLEJO → BOOL

NORMA : COMPLEJO → REAL

```
TIPO: COMPLEJO
Semántica: Para todo a, b, c, d \in REAL,
SUMA(ARMAR(a,b), ARMAR(c,d)) \equiv ARMAR(a+c,b+d)
RESTA(ARMAR(a,b), ARMAR(c,d)) = ARMAR (a-c,b-d)
MULTIPLICA(ARMAR(a,b), ARMAR(c,d)) = ARMAR (a*c-b*d, a*d+b*c)
DIVIDE(ARMAR(a,b), ARMAR(c,d)) \equiv
              si c*c+d*d = 0 entonces
                 indefinido
              sino
                  ARMAR ((a*c+b*d)/(c*c+d*d), (-a*d+b*c)/(c*c+d*d))
```

TIPO: COMPLEJO

Semántica: Para todo a, b, c, d ∈ REAL,

INVERSO (ARMAR(a,b)) = si a=0 AND b=0 entonces indefinido sino ARMAR (a/(a*a+b*b),-b/(a*a+b*b))

OPUESTO (ARMAR(a,b)) \equiv ARMAR (-a,-b)

PREAL (ARMAR(a,b)) \equiv a

PIMAG (ARMAR(a,b)) \equiv b

ESREAL (ARMAR(a,b)) \equiv b=0

ESIMAG (ARMAR(a,b)) = si a=0 AND b \neq 0 entonces TRUE sino FALSE

CONJUGADO(ARMAR(a,b)) \equiv ARMAR (a,-b)

IGUAL(ARMAR(a,b), ARMAR(c,d)) ≡ si a=c AND b=d entonces TRUE sino FALSE

 $NORMA(ARMAR(a,b)) \equiv a*a + b*b$

TIPOS ABSTRACTOS DE DATOS GENERICOS

- Los TADs genéricos representan colecciones de elementos todos del mismo tipo.
- Estos TADs definen un cierto comportamiento independiente del tipo de sus elementos.
- Para poder expresar genéricamente el tipo de los elementos se utilizan parámetros.
- De esta forma, se pueden construir ejemplares del TAD genérico utilizando otros TADs que cumplan con las restricciones del parámetro indicado en su especificación.

TIPO: VECTOR (ITEM)

OPERACIONES

Sintaxis:

```
VECTORVACIO: → VECTOR
ALMACENAR: VECTOR x ENTERO x ITEM → VECTOR
OBTENER: VECTOR x ENTERO → ITEM U { indefinido}
```

```
Semántica: Para todo A \in VECTOR, \forall i,j \in ENTERO, \forall x \in ITEM OBTENER(VECTORVACIO,i) = indefinido OBTENER(ALMACENAR(A,i,x), j) = si i=j entonces x sino OBTENER(A,j)
```

TIPO: MULTICONJUNTO(ITEM)

OPERACIONES

Sintaxis:

MULTICONJUNTOVACIO : → MULTICONJUNTO

ESVACIO : MULTICONJUNTO → BOOL

PERTENECE : MULTICONJUNTO x ITEM → BOOL

INSERTAR : MULTICONJUNTO x ITEM → MULTICONJUNTO

BORRAR : MULTICONJUNTO x ITEM → MULTICONJUNTO

TIPO: MULTICONJUNTO(ITEM)

Semántica: Para todo A ∈ MULTICONJUNTO , ∀ i, j ∈ ITEM.

```
ESVACIO(MULTICONJUNTOVACIO) = TRUE
ESVACIO(INSERTAR(A,i)) = FALSE
```

```
PERTENECE(MULTICONJUNTOVACIO,i) ≡ FALSE
PERTENECE(INSERTAR(A,i),j) ≡ si i=j entonces
TRUE
Sino
PERTENECE(A,j)
```

Otra manera de definir PERTENECE:

PERTENECE(MULTICONJUNTOVACIO,i) = FALSE PERTENECE(INSERTAR(A,i),j) = (i=j) OR PERTENECE(A,j)

= representa la operación IGUALITEM

TIPO: MULTICONJUNTO(ITEM)

Semántica: Para todo A ∈ MULTICONJUNTO , ∀ i, j ∈ ITEM.

BORRAR(MULTICONJUNTOVACIO,i) \equiv MULTICONJUNTOVACIO BORRAR(INSERTAR(A,i),j) \equiv si i=j entonces BORRAR (A,j) sino

INSERTAR(BORRAR(A,j),i)

= representa la operación IGUALITEM
BORRAR borra todas las ocurrencias de un ITEM