9. Distributions d'échantillonnage

MTH2302D

S. Le Digabel, École Polytechnique de Montréal

A2017

(v3)

1/7 2/7 3/7 4/7 5/7 6/7 7/7

Plan

- 1. Échantillons aléatoires
- 2. Statistiques et distributions échantillonnales
- 3. Distribution échantillonnale de la moyenne
- 4. Distribution échantillonnale de la variance
- 5. Loi t de Student
- 6. Distribution échantillonnale d'une différence de deux moyennes
- 7. Distribution échantillonnale d'un rapport de variances

1. Échantillons aléatoires

3/7

1/7

6/7

5/7

7/7

Introduction

But

Tirer des conclusions au sujet d'une population sans avoir à examiner toutes les unités expérimentales (difficile ou impossible).

Comment?

On prélève un sous-ensemble (échantillon) de la population et on tire des conclusions sur la population à partir des résultats obtenus avec l'échantillon.

Par exemple, on estime la moyenne de la population avec la moyenne échantillonnale.

Définition d'un échantillon aléatoire

Un échantillon aléatoire de taille n de la variable aléatoire X est une suite de variables aléatoires indépendantes X_1, X_2, \ldots, X_n ayant toutes la même distribution que X.

Une suite x_1, x_2, \dots, x_n de valeurs prises par les v.a. X_i est une réalisation de l'échantillon.

Remarque

On suppose habituellement que la population est infinie ou que la taille de l'échantillon est beaucoup plus petite que la taille de la population.

Exemple 1

On fait l'hypothèse que la taille (en cm) des 4000 étudiants masculins d'une école de génie est une variable aléatoire X distribuée normalement, c'est-à-dire que $X \sim N(\mu, \sigma^2)$.

Un échantillon aléatoire de taille 50 de cette population est une suite de 50 variables aléatoires $X_i \sim N(\mu, \sigma^2)$, $i = 1, 2, \dots, 50$.

Paramètres d'une population

- ► Une population (v.a.) est *connue* si on connaît sa distribution, c'est-à-dire sa fonction de masse ou de densité.
- En pratique on peut connaître une population seulement partiellement, c'est-à-dire qu'on connaît la forme générale de sa distribution mais avec des paramètres inconnus.

Exemple 2

On fait l'hypothèse que la taille des étudiant est distribuée normalement : $X \sim \mathsf{N}(\mu, \sigma^2)$ mais on ne connaît pas les paramètres μ et σ^2 (moyenne et variance).

Ce sont ces paramètres que l'on cherche à estimer.

4 51 . 11 . 1

1/7

3/7

5/7

4/7

6/7

2. Statistiques et distributions échantillonnales

1. Échantillons aléatoires

2/7

- 2. Distribution (shout) bounds to be account
- 4. Distribution échantillonnale de la variance
- 5 Loi + de Studen
- 6. Distribution échantillonnale d'une différence de deux moyennes
- 7. Distribution échantillonnale d'un rapport de variances

7/7

7/7

Définition d'une statistique

Soit X_1, X_2, \dots, X_n un échantillon aléatoire d'une variable aléatoire X.

Une *statistique* est une fonction $h(X_1, X_2, \dots, X_n)$ ne dépendant que des variables aléatoires X_i .

Exemples de statistiques :

- \blacktriangleright La moyenne échantillonnale $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$
- ▶ La variance échantillonnale $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$
- La médiane échantillonnale, etc.

Distribution échantillonnale

Notion importante

Puisque les X_i sont des variables aléatoires, toute statistique est aussi une variable aléatoire et on s'intéresse à sa distribution, appelée distribution échantillonnale.

Par exemple, on discute dans les prochaines sections de l'espérance et la variance de la moyenne et la variance échantillonnales, c'est à dire $E(\overline{X})$, $V(\overline{X})$, $E(S^2)$, et $V(S^2)$.

3. Distribution échantillonnale de la moyenne

4. Distribution échantillonnale de la variance

3/7

4/7

5/7

6/7

2/7

1. Échantillons aléatoires

1/7

- 5. Loi t de Studen
- moyennes
- 7. Distribution échantillonnale d'un rapport de variances

7/7

Distribution échantillonnale de la moyenne \overline{X}

Soit X_1, X_2, \dots, X_n un échantillon aléatoire d'une v.a. X de moyenne $\mu = \mathsf{E}(X)$ et variance $\sigma^2 = \mathsf{V}(X)$.

Soit \overline{X} la moyenne échantillonnale. Alors

1.
$$E(\overline{X}) = \mu$$
 (\overline{X} est un estimateur non-biaisé de μ)

$$2. \ \mathsf{V}(\overline{X}) = \frac{\sigma^2}{n}$$

Ces résultats découlent directement des règles de combinaisons linéaires.

Exemple 3

Une population est constituée des nombres 2, 3, 6, 8, 11.

L'ensemble des échantillons (avec remise) de taille 2 est

Calculer

- **1.** La moyenne et la variance de la population : μ et σ^2 .
- 2. L'espérance et la variance de la moyenne échantillonnale \overline{X} : $\mathsf{E}(\overline{X})$ et $\mathsf{V}(\overline{X})$.

Distribution de la moyenne \overline{X} (suite)

En utilisant le théorème central limite, on peut donner la loi de probabilité de la moyenne échantillonnalle.

Si l'échantillon est suffisamment grand, \overline{X} suit approximativement une loi $N(\mu, \sigma^2/n)$.

Remarques

- ▶ On a aussi (approx.) $n\overline{X} \sim N(n\mu, n\sigma^2)$.
- ▶ Si $X \sim N(\mu, \sigma^2)$, alors \overline{X} , et $n\overline{X}$ sont exactement normales, même pour de petits échantillons.

Distribution de la moyenne \overline{X} (suite)

On peut également définir la variable aléatoire

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

qui suit approximativement une loi N(0,1).

Remarques

- ▶ Si $X \sim N(\mu, \sigma^2)$, alors Z est exactement normale, même pour de petits échantillons.
- On appelle pivot une variable aléatoire qui se calcule à partir d'une statistique et des paramètres de la population.
- Nous verrons qu'un pivot dont la loi de probabilité ne dépend pas des paramètres de la population permet de définir un intervalle de confiance.

Exemple 4

Toujours avec $X \sim N(\mu, \sigma^2)$, supposons que l'on connaisse la moyenne et la variance de la population : $\mu = 175$ et $\sigma^2 = 10^2$.

On choisit 10 échantillons aléatoires de 50 étudiants chacun.

Pour combien de ces échantillons s'attend-on à avoir une moyenne comprise entre 174 et 176 cm?

3. Distribution échantillonnale de la moyenne

4. Distribution échantillonnale de la variance

3/7

4/7

5/7

6/7

2/7

1. Échantillons aléatoires

1/7

- 5. Loi t de Studen
- 6. Distribution échantillonnale d'une différence de deux moyennes
- 7. Distribution échantillonnale d'un rapport de variances

7/7

4/7

7/7

Distribution échantillonnale de la variance S^2

Soit X_1,X_2,\ldots,X_n un échantillon aléatoire d'une v.a. X de moyenne $\mu=\mathsf{E}(X)$, de variance $\sigma^2=\mathsf{V}(X)$ et de coefficient d'aplatissement $\beta_2=\frac{\mu_4}{\sigma^4}.$

Soit S^2 la variance échantillonnale. Alors

1.
$$\mathsf{E}(S^2) = \sigma^2$$
 (S^2 est un estimateur non-biaisé de σ^2)

2.
$$V(S^2) = \sigma^4 \left(\frac{2}{n-1} + \frac{\beta_2 - 3}{n} \right)$$

Remarques

- ▶ On peut montrer (difficile!) que S^2 suit approximativement une loi normale pour de grands échantillons.
- ▶ En supposant que X suit une loi normale, on peut définir la distribution de S^2 pour de petits échantillons.

Exemple 5

Une population est constituée des nombres 2, 3, 6, 8, 11.

Les variances échantillonnales

$$S^{2} = \frac{1}{2-1} \left((X_{1} - \overline{X})^{2} + (X_{2} - \overline{X})^{2} \right)$$

des 25 échantillons (avec remise) de taille 2 sont :

Retrouver manuellement ces valeurs et calculer $\mathsf{E}(S^2)$.

La fonction gamma

Rappel

La fonction gamma est définie pour tout x > 0 par

$$\Gamma(x) = \int_{t=0}^{\infty} t^{x-1} e^{-t} dt.$$

Propriétés

- **1.** $\Gamma(1) = 1$,
- **2.** $\Gamma(1/2) = \sqrt{\pi}$,
- **3.** $\Gamma(x) = (x-1)\Gamma(x-1)$ pour x > 1,
- **4.** Si $x = n \in \mathbb{N}$ alors $\Gamma(n) = (n-1)!$,
- 5. Voir page 139 (2ème édition) / page 142 (3ème édition).

La loi du khi-deux

Soit Z_1, Z_2, \ldots, Z_k des variables aléatoires indépendantes et identiquement distribuées selon une loi normale N(0,1). Alors la variable aléatoire

$$W = Z_1^2 + Z_2^2 + \dots + Z_k^2$$

suit une loi du khi-deux à k degrés de liberté. On note $W\sim\chi^2_k$. La fonction de densité de W est

$$f(w) = \begin{cases} \frac{1}{2^{k/2}\Gamma(k/2)} w^{(k/2)-1} e^{-w/2} & \text{si } w \ge 0 \text{ ,} \\ 0 & \text{sinon.} \end{cases}$$

Remarques : $\chi_1^2 \equiv (\mathsf{N}(0,1))^2$ et $\chi_k^2 \equiv \Gamma(k/2,1/2)$. De plus, si k/2 est entier, alors $X_1 + X_2 + \ldots + X_{k/2} \sim \chi_k^2$ avec $X_i \sim \mathsf{Exp}(1/2)$, $i \in \{1,2,\ldots,n\}$.

La loi du khi-deux (suite)

Soit $W \sim \chi_k^2$. Alors

- **1.** E(W) = k.
- **2.** V(W) = 2k.
- 3. Le quantile $\chi^2_{\alpha;k}$ est défini par $P(W>\chi^2_{\alpha;k})=\alpha$ avec $0<\alpha<1$.

Calculs avec la loi du khi-deux

- ► Le tableau de la page 478 (2ème édition) / page 514 (3ème édition) donne les quantile de la loi du khi-deux.
- ► En R : $\chi^2_{\alpha:k}$ est donné par qchisq(1- α ,k).
- ▶ En Excel : LOI.KHIDEUX.INVERSE.DROITE(α ,k).

Exemple 6

Calculer $\chi^2_{0.1:3}$ et $P(X \le 11.07)$ si $X \sim \chi^2_5$.

Additivité la loi du khi-deux

Théorème

Soient W_1,W_2,\dots,W_p des v.a. khi-deux à k_1,k_2,\dots,k_p degrés de liberté respectivement. Alors

$$Y = W_1 + W_2 + \ldots + W_p$$

suit une loi du khi-deux à $k=k_1+k_2+\ldots+k_p$ degrés de liberté.

Additivité la loi du khi-deux

Application du théorème d'additivité

Soit Z_1, Z_2, \dots, Z_n un échantillon aléatoire de $Z \sim N(0,1)$. On définit

$$A = \sum_{i=1}^{n} Z_i^2$$
, $B = \sum_{i=1}^{n} (Z_i - \overline{Z})^2$ et $C = n(\overline{Z})^2$.

On peut montrer que A = B + C.

De plus, $A \sim \chi_n^2$ et $C \sim \chi_1^2$.

On en déduit, d'après le théorème précédent, que $B \sim \chi^2_{n-1}$, car seule la loi χ^2_{n-1} , additionnée à une loi χ^2_1 , peut donner une loi χ^2_n .

Distribution de la variance S^2 (suite)

Théorème

Soit X_1, X_2, \ldots, X_n un échantillon aléatoire de taille n d'une variable aléatoire normale $X \sim \mathsf{N}(\mu, \sigma^2)$ et S^2 la variance échantillonnale. Alors la variable aléatoire

$$W = \frac{(n-1)S^2}{\sigma^2}$$

suit une loi khi-deux avec n-1 degrés de liberté.

7/7

Distribution de la variance S^2 (suite)

Le théorème précédent nous permet de caractériser la distribution échantillonnale de ${\cal S}^2.$

Soit $W \sim \chi^2_{n-1}$, avec $\mathsf{E}(W) = n-1$ et $\mathsf{V}(W) = 2(n-1)$. On a :

$$\mathsf{P}(S^2 \le b) = \mathsf{P}\left(\frac{(n-1)S^2}{\sigma^2} \le \frac{(n-1)b}{\sigma^2}\right) = \mathsf{P}\left(W \le \frac{(n-1)b}{\sigma^2}\right)$$

$$E(S^2) = E\left(\frac{\sigma^2}{n-1}W\right) = \frac{\sigma^2}{n-1}E(W) = \sigma^2$$

▶
$$V(S^2) = V\left(\frac{\sigma^2}{n-1}W\right) = \frac{\sigma^4}{(n-1)^2}V(W) = \frac{2\sigma^4}{n-1}$$

Remarque : Ces résultats ne sont valides que si la population X suit une loi $N(\mu, \sigma^2)$.

Exemple 7

On fait l'hypothèse que la taille (en cm) des 4000 étudiants masculins d'une école de génie est une variable aléatoire normale X de moyenne 175 et variance 10^2 , c'est-à-dire $X \sim \mathsf{N}(\mu = 175, \sigma^2 = 10^2)$.

On choisit 10 échantillons de taille 50 de la population X.

Pour combien de ces échantillons s'attend-on à avoir une variance échantillonnale S^2 d'au plus 101 ?

2. Statistiques et distributions échantillonnales

4/7

5/7

6/7

7/7

5. Loi t de Student

2/7

1. Échantillons aléatoires

3/7

1/7

6. Distribution échantillonnale d'une différence de deux moyennes

4. Distribution échantillonnale de la variance

7 Distribution échantillonnale d'un rannort de variances

Loi t de Student

Rappel

Si X_1, X_2, \ldots, X_n est un échantillon aléatoire de taille n de la variable aléatoire X, où $\mathsf{E}(X) = \mu$ et $\mathsf{V}(X) = \sigma^2$, alors

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

suit approximativement une loi N(0,1). Cette variable aléatoire est un pivot permettant de définir un *intervalle de confiance* pour μ .

Loi t de Student (suite)

Si la variance σ^2 de la population n'est pas connue, on remplace σ par l'écart-type échantillonal $S=\sqrt{S^2},\ S^2$ étant la variance échantillonnale.

On obtient alors la variable aléatoire

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$

Cette v.a. est approximativement normale si n est suffisamment grand. Si $X \sim N(\mu, \sigma^2)$, on peut montrer que T suit une loi de Student. Cette loi est valide pour les petits et les grands échantillons.

Loi t de Student (suite)

Soit Z une variable aléatoire normale $\mathsf{N}(0,1)$ et W une variable aléatoire khi-deux à k degrés de liberté. Si Z et W sont indépendantes alors la variable aléatoire

$$T = \frac{Z}{\sqrt{W/k}}$$

suit une loi t de Student avec k degrés de liberté. On note $T\sim t_k$. La fonction de densité de T est

$$f(t) = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\sqrt{k\pi} \Gamma\left(\frac{k}{2}\right)} \left(\frac{t^2}{k} + 1\right)^{-\frac{k+1}{2}}$$

pour tout $t \in \mathbb{R}$.

Loi t de Student (suite)

Soit $T \sim t_k$. Alors

- **1.** E(T) = 0.
- **2.** $V(T) = \frac{k}{k-2}$ pour k > 2 (variance infinie pour k = 1 et 2).
- 3. On définit le *quantile* $t_{\alpha;k}$ de T par $P(T>t_{\alpha;k})=\alpha$ avec $0<\alpha<1$.

Propriété

La fonction de densité f(t) est symétrique par rapport à sa moyenne 0 et alors $-t_{\alpha;k}=t_{1-\alpha;k}$.

Théorème

La loi t_k est approximativement identique à une loi normale ${\sf N}(0,1)$ lorsque k est grand.

Calculs avec la loi de Student

Si on cherche le quantile $t_{\alpha;k}$ tel que $P(t_k > t_{\alpha;k}) = \alpha$:

- ▶ Le tableau à la page 479 (2ème édition) / page 515 (3ème édition) donne les quantiles $t_{\alpha:k}$.
- ▶ En R : $t_{\alpha;k}$ est donné par qt $(1-\alpha,k)$.
- ▶ En Excel : -LOI.STUDENT.INVERSE.N(α ,k).

Exemple 8

Calculer $t_{0.9;3}$ et $P(X \le 2.015)$ si $X \sim t_5$.

Utilisation de la loi de Student

Théorème

Soit X_1, X_2, \ldots, X_n un échantillon de taille n d'une variable aléatoire normale $X \sim \mathsf{N}(\mu, \sigma^2)$. Soit aussi \overline{X} et S^2 la moyenne et la variance échantillonnale. On peut montrer que \overline{X} et S^2 sont indépendantes, de sorte que la statistique

$$T = \frac{X - \mu}{S/\sqrt{n}}$$

suit une loi de Student avec n-1 degrés de liberté.

Exemple 9

Supposons que l'on s'intéresse maintenant à la taille (en cm) des 2000 étudiantes d'une école de génie.

On suppose que la taille X suit une loi normale de moyenne $\mu=170.$ La variance est inconnue.

Si on choisit un échantillon de taille 25 de cette population, quelle est la probabilité que le rapport

$$\frac{\overline{X} - 170}{S}$$

soit inférieur à 0.26?

2. Statistiques et distributions échantillonnales
3. Distribution échantillonnale de la movenne

4/7

5/7

6/7

7/7

E lait de Studen

2/7

1. Échantillons aléatoires

3/7

1/7

6. Distribution échantillonnale d'une différence de deux moyennes

4. Distribution échantillonnale de la variance

7 Distribution échantillonnale d'un rapport de variances

Distribution d'une différence de moyennes

Considérons maintenant deux échantillons aléatoires indépendants $X_1, X_2, \ldots, X_{n_N}$ et $Y_1, Y_2, \ldots, Y_{n_N}$ de deux variables aléatoires X et Y de moyenne et variance μ_X, σ_Y^2 et μ_Y, σ_Y^2 respectivement.

On s'intéresse à la différence des moyennes échantillonnales $\overline{X} - \overline{Y}$.

Théorème

Dans la situation décrite ci-dessus

1.
$$\mathsf{E}(\overline{X} - \overline{Y}) = \mu_X - \mu_Y$$
.

2.
$$V(\overline{X} - \overline{Y}) = \frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}$$
.

Distribution d'une différence de moyennes (suite)

Théorème

La variable aléatoire

$$Z = \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}}$$

suit approximativement une loi normale N(0,1) lorsque n_X et n_Y sont grands.

Remarque : Z suit exactement une loi N(0,1) si $X \sim N(\mu_X, \sigma_X^2)$ et $Y \sim N(\mu_Y, \sigma_X^2)$.

Exemple 10

Soit $X \sim N(175, 10^2)$ et $Y \sim N(170, 9^2)$ la taille (en cm) des étudiants et étudiantes d'une école de génie.

On choisit un échantillon de taille 50 de X et un échantillon de taille 25 de Y.

Quelle est la probabilité que la différence $\overline{X}-\overline{Y}$ soit inférieure à 4 cm?

5/7

6/7

7/7

 Distribution échantillonnale d'une différence de deu novennes

4. Distribution échantillonnale de la variance

7. Distribution échantillonnale d'un rapport de variances

2/7

1. Échantillons aléatoires

3/7

1/7

Distribution d'un rapport de variances

Considérons à nouveau deux échantillons aléatoires indépendants, de taille n_X et n_Y , des variables aléatoires X et Y.

On suppose que X et Y suivent des lois normales $\mathsf{N}(\mu_X,\sigma_X^2)$ et $\mathsf{N}(\mu_Y,\sigma_Y^2)$ respectivement.

On s'intéresse au rapport des variances échantillonnales S_X^2/S_Y^2 .

Loi de Fisher

Soient U et V deux variables aléatoires indépendantes suivant une loi du khi-deux avec u et v degrés de liberté, respectivement. Alors la variable aléatoire

$$Y = \frac{U/u}{V/v}$$

suit une loi de Fisher à u et v degrés de liberté. On note $Y \sim F_{u,v}$. La fonction de densité Y est

$$f(y) = \begin{cases} \frac{\Gamma\left(\frac{u+v}{2}\right) \left(\frac{u}{v}\right)^{u/2}}{\Gamma\left(\frac{u}{2}\right) \Gamma\left(\frac{v}{2}\right)} y^{(u/2)-1} \left(\left(\frac{u}{v}\right) y + 1\right)^{-(u+v)/2} & \text{si } y \geq 0 \text{ ,} \\ 0 & \text{si } y < 0. \end{cases}$$

Loi de Fisher (suite)

Soit $Y \sim F_{u,v}$. Alors

1.
$$E(Y) = \frac{v}{v-2}$$
 si $v > 2$.

2.
$$V(Y) = \frac{2v^2(u+v-2)}{u(v-2)^2(v-4)}$$
 si $v > 4$.

3. Le quantile $F_{\alpha;u,v}$ est défini par $P(Y>F_{\alpha;u,v})=\alpha$ avec $0<\alpha<1$.

Propriété

Par la définition de la loi de Fisher, $1/Y \sim F_{v,u}$ et on trouve que

$$F_{1-\alpha;u,v} = \frac{1}{F_{a,v,v}}$$
 (attention à l'inversion des indices!)

Calculs avec la loi de Fisher

Si on cherche le quantile $F_{\alpha;u,v}$ tel que $P(Y>F_{\alpha;u,v})=\alpha$:

- Les quantiles de $F_{u,v}$ sont donnés à la page 480 (2ème édition) / page 516 (3ème édition).
- ▶ En R : $F_{\alpha;u,v}$ est donné par qf(1- α,u,v).
- ▶ En Excel : $F_{\alpha;u,v}$ est donné par INVERSE.LOI.F.N(1- α ,u,v).

Exemple 11

Calculer $F_{0.75;11,10}$ et $P(X \le 200)$ si $X \sim F_{2,1}$.

Distribution d'un rapport de variances (suite)

Théorème

Soit X_1,X_2,\ldots,X_{n_X} et Y_1,Y_2,\ldots,Y_{n_Y} deux échantillons aléatoires indépendants, de taille n_X et n_Y , des variables aléatoires X et Y.

On suppose que X et Y suivent des lois normales $\mathsf{N}(\mu_X,\sigma_X^2)$ et $\mathsf{N}(\mu_Y,\sigma_Y^2)$ respectivement.

Soit S_X^2 et S_Y^2 les variances échantillonnales. Alors la variable aléatoire

$$\frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2}$$

suit une loi de Fisher à $n_X - 1$ et $n_Y - 1$ degrés de liberté.

Exemple 12

Soit $X \sim N(175, 10^2)$ et $Y \sim N(170, 9^2)$ la taille (en cm) des étudiants et étudiantes d'une école de génie.

On choisit un échantillon de taille 50 de X et un échantillon de taille 25 de Y.

Quelle est la probabilité que le rapport $\frac{S_X^2}{S_V^2}$ soit inférieur à 3?