List of Posters

Title	Authors	Affiliation
A soft computing approach for estimating the specific heat	Ahmed Abdelhalim M. Hassan ¹ ,	¹ Cairo University.
capacity ofmolten salt-based nanofluids	Debjyoti Banerjee ²	² Texas A&M University
A framework for reduced-order modeling of turbulent reacting flows	Opeoluwa Owoyele ¹ , Tarek Echekki ² , Pinaki Pal ²	¹ Argonne National Laboratory, ² North Carolina State University
Neural network flame closure model for liquid propellant rocket engine	Zeinab Shadram	University of California Irvine
Subgrid-scale parametrization of unresolved scales in forced	Jeric Alcala,	Hairmaite of Harratan
Burgers equation using Generative Adversarial Networks (GAN)	Ilya Timofeyev	University of Houston
Oil production analysis by machine learning methods	Darkhan Akhmed-Zaki Timur Imankulov, Yedil Nurakhov, Yerzhan Kenzhebek	al-Farabi Kazakh National University
Multi-fidelity learning with heterogeneous domains	Soumalya Sarkar, Michael Joly, Paris Perdikaris	University of Pennsylvania
In-situ coupled OpenFOAM and TensorFlow: Generic data science for CFD	Romit Maulik ¹ , Himanshu Sharma ¹ , Saumil Patel ² , Bethany Lusch ¹ , Elise Jennings ¹	¹ Argonne Leadership Computing Facility Argonne National Laboratory ² Computational Physics Division Argonne National Laboratory
Data-driven modeling for fluid dynamics: Turbulence closure model order reduction and superresolution	Suraj Pawar ¹ , Shady E. Ahmed ¹ , Harsha Vaddireddy ¹ , Romit Maulik ² , Omer San ¹ , Adil Rasheed ³	¹ Oklahoma State University ² Argonne National Laboratory ³ Norwegian University of Science and Technology
PDE discovery using convolutional LSTM	Kazem Meidani	Carnegie Mellon University
Machine learning potential for phonon transport in perfect Si and Si with vacancies	Ruiqiang Guo, Hasan Babaei, Amirreza Hashemi, Sangyeop Lee	University of Pittsburgh

List of Posters

Title	Authors	Affiliation
1 1		Aimacion
Machine learning enabled study of phonon transport from first	Sangyeop Lee,	University of Pittsburgh
principles	Ruiqiang Guo	-
Predicting time dependent solutions to the viscous Burger's equation using Gaussian Process Regression	Francis Ogoke ¹ ,	¹ Carnegie Mellon University ² Sandia National Laboratories
	Michael Glinsky ² , Amir Barati Farimani ¹	
Data duivou prodiction of a moulti coale Layers OC shootie	Pedram Hassanzadeh	
Data-driven prediction of a multi-scale Lorenz 96 chaotic		Birch Hot and
system using deep learning methods: Reservoir computing ANN and RNN-LSTM	Ashesh Chattopadhyay Devika Subramanian	Rice University
Learn a low-rank arbitrary Lagrangian Eulerian frame to reduce	Rambod Mojgani	University of Illinois at Urbana-Champaign
the dimensionality of convection dominated nonlinear flows	Maciej Balajewicz	
KiNet: A deep neural network representation of chemical	Weiqi Ji,	Massachusetts Institute of Technology
kinetics	Sili Deng	
	Arvind Mohan ¹ ,	1
Physics embedded neural networks for spatio-temporal	Nicholas Lubbers ¹ ,	¹Los Alamos National Laboratory
turbulence	Daniel Livescu ¹ ,	² University of Arizona
	Misha Chertkov ²	
	Platon Karpov	Los Alamos National Laboratory
Machine Learning for Turbulence in Supernovae	Chengkun Huang	
	Ghanshyam Pilania	
	Stan Woosley	
	Chris Fryer	
	Haiyi Wu,	
	Wen-Zhen Fang,	Virginia Polytechnic Institute and State University
Deep learning for transport in heterogeneous media: forward	Hongwei Zhang,	
and inverse problems	Qinjun Kang,	
	Guoqing Hu,	
	Wen-Quan Tao,	
	Rui Qiao	
Neural Network potential for lattice dynamics calculations and thermal conductivity prediction	Jie Gong,	
	Hyun-Young Kim,	Carnegie Mellon University
	Alan McGaughey	
Prospect of data-driven red blood cell micro mechanical models	Amir Saadat	Stanford University
for computational simulations	Eric Shaqfeh	

Title	Authors	Affiliation
Real-time reduced order modeling for chemical kinetics	Arash G. Nouri, Hessam Babaee, Peyman Givi	University of Pittsburgh
Predicting droplet traffic in microfluidic networks using machine learning	Masoud Norouzi Darabad, Siva Vanapalli, Mark Vaughn	Texas Tech University
Time-dependent POD (tPOD): real-time reduced order modeling	Michael Donello, Hessam Babaee	University of Pittsburgh
Data-driven classification and modeling of combustion regimes in a detonation wave	Supraj Prakash ¹ , Shivam Barwey ¹ , Malik Hassanaly ² , Venkat Raman ¹	¹ University of Michigan ² National Renewable Energy Laboratory