

# GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAMPINA GRANDE BACHARELADO EM ENGENHARIA DE COMPUTAÇÃO

**Circuito Decodificador para Display de 7 Segmentos** 

Carlos Elias Fialho de Lima Marcus Cauê de Farias Barbosa Miguel Ryan Dantas de Freitas **Obs.:** Este projeto foi feito com o auxílio da ferramenta *open-source* logisim (mais informações, acesse: <a href="http://www.cburch.com/logisim/">http://www.cburch.com/logisim/</a>) para ajudar na verificação das expressões lógicas, mapas de Karnaugh e circuito lógico.

#### **Tabela Verdade**

| Entradas |   | Saídas |   |   |   |   | Display |   |   |         |
|----------|---|--------|---|---|---|---|---------|---|---|---------|
| A        | В | С      | а | b | С | d | е       | f | g | Display |
| 0        | 0 | 0      | 1 | 1 | 0 | 0 | 1       | 1 | 1 | Р       |
| 0        | 0 | 1      | 0 | 0 | 0 | 0 | 1       | 1 | 0 | I       |
| 0        | 1 | 0      | 1 | 0 | 0 | 1 | 1       | 1 | 0 | С       |
| 0        | 1 | 1      | 1 | 1 | 1 | 1 | 1       | 1 | 0 | 0       |
| 1        | 0 | 0      | 0 | 0 | 0 | 1 | 1       | 1 | 0 | L       |
| 1        | 0 | 1      | 1 | 0 | 0 | 1 | 1       | 1 | 1 | E       |
| 1        | 1 | 0      | X | X | X | X | X       | Х | X |         |
| 1        | 1 | 1      | X | X | Х | X | X       | Х | Х |         |

### Mapas de Karnaugh

| $C \setminus AB$ | 00 | 01 | 11 | 10 |
|------------------|----|----|----|----|
| 0                | 1  | 1  | X  | 0  |
| 1                | 0  | 1  | Х  | 1  |

| $C \setminus AB$ | 00 | 01 | 11 | 10 |
|------------------|----|----|----|----|
| 0                | 0  | 0  | Х  | 0  |
| 1                | 0  | 1  | X  | 0  |

Mapa da Saída "**a**"

Mapa da Saída "c"

| $C \setminus AB$ | 00 | 01 | 11 | 10 |
|------------------|----|----|----|----|
| 0                | 1  | 0  | X  | 0  |
| 1                | 0  | 1  | X  | 0  |

| $C \setminus AB$ | 00 | 01 | 11 | 10 |
|------------------|----|----|----|----|
| 0                | 0  | 1  | X  | 1  |
| 1                | 0  | 1  | Х  | 1  |

Mapa da Saída "**b**"

Mapa da Saída "d"

| $C \setminus AB$ | 00 | 01 | 11 | 10 |
|------------------|----|----|----|----|
| 0                | 1  | 1  | X  | 1  |
| 1                | 1  | 1  | Х  | 1  |

| $C \setminus AB$ | 00 | 01 | 11 | 10 |
|------------------|----|----|----|----|
| 0                | 1  | 1  | X  | 1  |
| 1                | 1  | 1  | Х  | 1  |

Mapa da Saída "e"

Mapa da Saída "f"

| AB | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| 0  | 1  | 0  | X  | 0  |
| 1  | 0  | 0  | X  | 1  |

Mapa da Saída "g"

## Anéis dos Mapas de Karnaugh









#### Expressões Lógicas Simplificadas

Obs.: Para auxiliar na verificação, reduza o zoom e coloque na visualização de duas páginas.

$$\begin{split} &\textbf{Saida a} \rightarrow \{\textbf{I}\}\,\overline{\textbf{A}}\,^*\,\overline{\textbf{C}}\,+\,\{\textbf{II}\}\,\textbf{B}\,+\,\{\textbf{III}\}\,\textbf{A}\,^*\,\textbf{C} \rightarrow (\textbf{A}\odot\,\textbf{C})\,+\,\textbf{B} \\ &\textbf{Saida b} \rightarrow \{\textbf{I}\}\,\overline{\textbf{A}}\,^*\,\overline{\textbf{B}}\,^*\,\overline{\textbf{C}}\,+\,\{\textbf{II}\}\,\textbf{B}\,^*\,\textbf{C} \rightarrow \overline{\textbf{A}}\,+\,\textbf{B}\,+\,\overline{\textbf{C}}\,\,+\,\textbf{B}\,^*\,\textbf{C} \\ &\textbf{Saida c} \rightarrow \{\textbf{I}\}\,\textbf{B}\,^*\,\textbf{C} \\ &\textbf{Saida d} \rightarrow \{\textbf{I}\}\,\textbf{B}\,+\,\{\textbf{II}\}\,\textbf{A} \\ &\textbf{Saida e} \rightarrow \{\textbf{I}\}\,\textbf{1} \\ &\textbf{Saida f} \rightarrow \{\textbf{I}\}\,\textbf{1} \\ &\textbf{Saida g} \rightarrow \{\textbf{I}\}\,\textbf{A}\,^*\,\textbf{C}\,+\,\{\textbf{II}\}\,\overline{\textbf{A}}\,^*\,\overline{\textbf{B}}\,^*\,\overline{\textbf{C}} \rightarrow \textbf{A}\,^*\,\textbf{C}\,+\,\overline{\textbf{A}}\,+\,\overline{\textbf{B}}\,+\,\overline{\textbf{C}} \\ \end{split}$$

# Diagrama do Circuito Lógico





Para esse circuito, os segmentos **e** e **f** sempre estarão ligados porque eles estão presentes em todas as letras que as combinações das variáveis de entrada formam

# Diagrama do Circuito Lógico a ser simulado no TinkerCad



#### Circuito Simulado no TinkerCad

Acesso ao circuito: <a href="https://www.tinkercad.com/things/0ki9D3skBuy-copy-of-bcd-to-7-segment-decoder/editel?tenant=circuits">https://www.tinkercad.com/things/0ki9D3skBuy-copy-of-bcd-to-7-segment-decoder/editel?tenant=circuits</a>