Global Placement

姓名:李宇哲 學號: B10732040

校系:國立台灣科技大學 四資工四乙

您好,由於一些兼容性的問題,再麻煩請助教在下面這個伺服器操作及執行程式,感謝!!

IP:port: edaunion.ee.ntu.edu.tw:40056

Name: edaU6

Type: HPE ProLiant DL360 Gen10

OS: Ubuntu 20.04

→ Flow Chart

二、 資料結構

我使用 analytical placement 來完成 global placement,其中,wirelength 預估模型是選用 Log-sum-exp,density 模型是選用 Bell-shaped function。

這次程式作業沒有使用太多資料結構,大部分都在做數學的計算,以及參數的調整。

三、 我的發現

1. Module 的初始位置

我原本希望可以把所有 module 的初始位置通通擺在正中央,然後用 density 權重很高的 analytical placement 將他們拉開,但後來發現可能是中心點和周圍的密度差異太大,導致無法拉開,因此最後選擇用 random 的方式來設定初始位置。

2. 優化 wirelength

Analytical placement 最一開始,我會先把 lambda 設為 0、stepSizeBound 設很大、numlteration 設成 100,這個階段就是要專心優化 wirelength。

3. 優化 density

繼上一步優化 wirelength 後,這一步要來優化 density,我參考[Essential Issues in Analytical Placement Algorithms]的作法,每一個 iteration 完就把 lambda 乘以 2,讓密度越來越平均。

stepSizeBound 剛開始會設比較大,較能有效地走到更好的解,但為了讓結果能夠慢慢收斂,每一個 iteration 完會把 stepSizeBound 乘以 0.9,以免到後期因為步伐太大的關係錯失好的解。

四、 實驗結果

1. 數據

Benchmark	ibm01	ibm05
Global HPWL	80756519	17005030
Legal HPWL	149754098	24881704
Detail HPWL	98223775	15322953
CPU time(sec)	75	279

2. 結果圖

圖一 ibm01

