

Analysis of arterial mechanics during head down tilt bed rest

Morgan Elliott, Saint Louis University

David Martin, Wyle Science, Technology, and Engineering Group

Steven Platts, Ph.D., NASA Johnson Space Center

Cardiovascular Laboratory

www.nasa.gov

Introduction

- Hometown: Chattanooga, TN
- Career Goals:

Ph.D. in Biomedical Engineering, specializing in Tissue Engineering

Product oriented research in industry or government

- Why NASA? Mission and deliverables oriented
- Internship Objectives:

Data Analysis

Poster presentation at BMES Annual Meeting

Publication

Background

Cardiovascular Lab

- Investigate how weightlessness affects the cardiovascular system to aid in the improvement of astronaut health, develop countermeasures, and potentially benefit other populations on Earth
- Tests: head-down tilt bed rest (HDTBR), parabolic flight, hypovolemia models, and spaceflight

My Role

- Project 1: Define the frequency and pattern of mid-ventricular obstruction in the heart during high intensity exercise in a hypovolemic state
- Project 2: Analysis of arterial mechanics during HDTBR

Arterial Mechanics

HDTBR

Physiological deconditioning similar to space

-6° head down

Ground based

Days analyzed: BR-5, BR60, BR+3

Arterial Mechanics

3 arteries analyzed

Carotid Artery – 13 subjects (7M, 6F, mean age 35±8, weight 71±10 kg, and height 168±9 cm)

Brachial and Tibial Arteries – 11 different subjects (8M, 3F, mean age 34±9, weight 74±16 kg, and height 170±9 cm)

Arterial Mechanics Cont.

Intima-Media Thickness (IMT)

Mechanical Properties

Strain
$$\left[\frac{(SD-DD)}{DD}\right]$$

Distensibility Coefficient (DC) $\left[\frac{2}{P}\right]^{SD-DD}$

Stiffness (
$$\beta$$
) $\left[ln \left(\frac{SBP}{DBP} \right) \left(\frac{DD}{(SD-DD)} \right) \right]$

Pressure-Strain Elastic Modulus (PSE) $\left[0.1333 * PP * \frac{DD}{(SD-DD)} \right]$

Arterial Mechanics Results

Carotid

Brachial

→ Tibial

Figure 1. Carotid IMT margins were significantly thicker than the brachial and tibial IMT (p < 0.001). The tibial IMT decreased relative to the brachial response from BR -5 to BR 60 and BR+3 (p < 0.05). The tibial IMT was thinner on BR60 (p < 0.001) and did not recover by BR+3 (p = 0.02). Error bars represent 95% confidence intervals.

Arterial Mechanics Results Cont.

- Carotid
- Brachial
- → Tibial

Figure 2. The tibial artery trended towards increased DC (p = 0.1) from BR-5 to BR+3. Error bars represent 95% confidence intervals.

Figure 3. The tibial artery trended towards decreased stiffness (p = 0.06) from BR-5 to BR+3. Error bars represent 95% confidence intervals.

Arterial Mechanics Results Cont.

- Carotid
- Brachial
- → Tibial

Figure 4. The tibial artery trended towards smaller moduli (p = 0.1) from BR-5 to BR+3. Error bars represent 95% confidence intervals.

Figure 5. Strain margins are not significantly different between days of bed rest within vessels. Error bars represent 95% confidence intervals.

Arterial Mechanics Discussion

- Carotid, brachial, and tibial arteries react differently to HDTBR as a ground based analog of spaceflight.
- After slight variations during bed-rest, arterial mechanical properties and IMT return to pre-bed rest values. This does not appear to be true for the tibial stiffness and PSE, which continue to decrease post-bed rest while the DC increases.
- Limitations:

Small n value

Boundary determination methods

Small measurement differences

Single, non-blinded analysis

Acknowledgements

NASA

- Minority University Research and Education Program for funding
- David Martin for answering all my questions and his guidance
- Dr. Mike Stenger and Dr. Steve Platts for their guidance
- Chris Westby for his statistics aid
- Sydney Stein for the virtual model
- Cardiovascular lab staff for all their help and support
- Dr. Lauren Merkle for an amazing experience with SLSSI
- Missy Matthias and Diego Rodriguez for organizing the intern program

Sources

- Aubert, A.E., F. Beckers, and B. Verheyden, *Cardiovascular function and basics of physiology in microgravity.* Acta cardiologica, 2005. **60**(2): p. 129-151.
- Godia, Elisa Cuadrado, et al., Carotid artery distensibility a reliability study. Journal of Ultrasound in Medicine, 2007. 26(9): p. 1157-1165.
- Haluska, B., et al., *Derivation of the distensibility coefficient using tissue Doppler as a marker of arterial function.* Clinical Science, 2008. **114**: p. 441-447.
- Hargens, A.R., R. Bhattacharya, and S.M. Schneider, *Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight.* European journal of applied physiology, 2013. **113**(9): p. 2183-2192.
- Meck, J.V., S.A. Dreyer, and L.E.Warren., *Long-duration head-down bed rest: project overview, vital signs, and fluid balance*. Aviation, space, and environmental medicine, 2009. 80(5): p. A1-A8.
- Norsk, P., Blood pressure regulation IV: adaptive responses to weightlessness. European journal of applied physiology, 2014: p. 481-497.
- O' Rourke, M.F., et al. *Clinical applications of arterial stiffness; definitions and reference values*. American journal of hypertension, 2002. 15(5): p. 426-444.
- Tuday, E.C., et al., *Microgravity-induced changes in aortic stiffness and their role in orthostatic intolerance.* Journal of Applied Physiology, 2007. 102(3): p. 853-858.
- Van Bortel, L.M., M.J. Kool, and H.A. Struijker Boudier, *Effects of Antihypertensive Agents on Local Arterial Distensibility and Compliance*. Hypertension, 1995. **26**(3): p. 531-534.

