Année scolaire 2024/2025

Prof:

Exercice 1 Force de Laplace

On considère le montage électrique ci-contre qui comporte

- Deux conducteurs parallèles formant un "rail de Laplace"
- Une barre conductrice AB de longueur L = 0, 12 m et de résistance négligeable.
- Un générateur électrique de f.é.m. E=12 V et de résistance interne $r=8 \Omega$
- Un aimant en U de largeur $\ell = 6$ cm crée un champ magnétique uniforme d'intensité B = 0.1 T

On place la barre AB dans l'entrefer d'un aimant en U et constate qu'elle a franchi une distance d = 7cm pendant une seconde.

- Expliquer comment on doit placer l'aimant en U pour obtenir le champ magnétique tel qu'il est représenté sur la figure par le vecteur B.
- 2 Déterminer l'intensité et le sens du courant traversant le circuit.
- 3 Calculer l'intensité de la force de Laplace exercée sur la barre AB.
- ullet Représenté sur la figure ci-dessus la force de Laplace $ar{F}$ et déduire le sens du déplacement de la barre AB
- 5 Calculer le travail de la force de Laplace et déterminer sa nature.
- 6 Calculer la puissance moyenne engendrée par la force de Laplace lors de ce déplacement.

Exercice 2 Réfraction et réflexion e la lumière

On envoie un rayon lumineux (SI) d'un angle d'incidence $i_1 = 55^{\circ}$ sur la surface libre de l'eau contenue dans un cristallisoir au fond duquel est placé un miroir plan AB comme l'indique la figure ci-contre.

- 1 Tracer la marche du rayon lumineux.
- En appliquant la loi de réfraction de la lumière déterminer la valeur de l'angle de réfraction i₂ au point I.
- Oéterminer la valeur de l'angle d'incidence i3 du rayon lumineux sur le miroir plan AB au point J.
- **1** En appliquant la loi de réflexion de la lumière déterminer la valeur de l'angle de réflexion i_4 de la lumière au point J.
- **5** Déterminer l'angle d'incidence i_5 au point K.
- 6 En appliquant la loi de réfraction de la lumière déterminer la valeur de l'angle de réfraction i_6 au point K.
- Déterminer l'angle de déviation D que forme le rayon incident (SI) et le rayon lumineux émergent (KR).

Exercice 3	Dosage	acido-basiq	lue

Répondre par vrai ou faux
☐ Les alcanes linéaires sont des hydrocarbures saturés tandis que les alcanes ramifiés sont des
hydrocarbures insaturés.
\square La formule brute d'un cycloalcane est C_nH_{2n}
☐ La représentation topologique montre la représentation spatiale de la molécule.
☐ Le méthyl cyclobutane est un alcane linéaire.
☐ Le craquage est une opération qui consiste à transformer des hydrocarbures lords en
hydrocarbures légers
☐ La ramification : est opération qui consiste à transformé un alcane ramifié en un alcane
linéaire.
☐ Le groupe caractéristique des alcools est le hydroxyde OH .

2 compléter le tableau suivant par ce qui convient:					
Composé organique	Nom	Famille	Groupe fonctionnel		
H ₃ C-CH ₂ -HC-CH ₂ -CH ₂ -CH ₃ CH ₂ -CH ₃					
^ cı					
H ₃ C—CH ₂ —CH ₂ —OH					
H ₃ C—CH—CH ₂ —COOH					
H ₃ C CH ₃					

