9.2절

9.2절

9.2 일원분류 분산분석

일원분류 분산분석 (one way ANOVA)

- □ 통계적 실험에서 두 개 이상의 집단으로부터 자료를 관측하였을 때 각 집단의 반응에 차이가 있는가를 분석하는 통계적 분석방법을 **분산분석 (ANOVA: analysis of variance)** 이라고 한다.
- □ 그 중 **요인이 하나인 실험**에 대한 분산분석법을 **일원분류 분산분석 (one way ANOVA)** 이라고 한다.
- □ 일원분류 분산분석은 실험단위들이 처리의 각 수준에 랜덤하게 배정되는 완전확률화 계획 법에 의하여 실험이 실시된 것을 전제로 한다.

일원분류 분산분석의 자료 형태

□ 실험에서 비교하고자 하는 K개의 처리집단이 있을 때, 처리집단의 모평균이 모두 같은지에 대한 검정을 실시하기 위하여 각 집단에서 n_i 개, (i=1,2,...,K) 의 표본을 추출하여 실험을 실시한 후에 관측한 반응의 표본평균과 분산을 각각 μ_i , σ_i^2 , (i=1,2,...,K)로 표현할 수 있다.

① 분석의 전제조건

- * 각 처리집단의 모분산은 동일하다. [$\sigma_i^2 = \sigma^2$, i = 1, 2, ..., K]
- * 각 처리집단의 관찰값은 모두 정규분포를 따른다. [$N(\mu_i, \sigma^2), i = 1, 2, ..., K$]

② 가설 설정

 $H_0: \mu_1 = \mu_2 = \dots = \mu_k$

→ 모든 처리집단의 모평균이 동일하다는 것을 의미

 $H_1: H_0$ 가 사실이 아니다.

→ 모평균 모두가 동일하지는 않다는 것, 즉 최소한 하나는 다른 값과 다르다는 것을 의미

검정과정

□ 확률변수 X 를 K개의 처리집단에서 관측된 반응이라고 할 때 다음과 같이 표현할 수 있다.

$$X_{ij}$$
, $i = 1, 2, ..., K, j = 1, 2, ..., n_i$

첫 번째 첨자 i:i번째 처리집단을 의미한다.

두 번째 첨자 j: i번째 처리집단에서 j번째 관측값임을 나타낸다.

모든 관측값을 표로 나타내면 다음과 같다.

± 11−1	일원분류 분산분석의 자료			
처리집단	1	2	•••	K
	X_{11}	X ₂₁	444	X_{K_1}
71.5.71	X_{12}	X_{22}		X_{K_2}
관측값	:			:
	X_{1n_0}	X_{2n_2}		X_{Kn_K}
합	X_1	X2	•••	X_K
평균	\overline{X}_{1}	\overline{X}_2		\overline{X}_{K}

① 제곱합 계산

□ i번째 처리집단의 평균과 전체관측값의 평균은 다음과 같이 나타낼 수 있다.

$$\overline{X}_{i.} = \frac{1}{n_i} \sum_{j=1}^{n_i} X_{ij}$$
 $\overline{X}_{..} = \frac{1}{N} \sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij}$

개별관측값과 전체평균과의 편차는 다음과 같이 나타낼 수 있다.

$$X_{ij} - \overline{X}_{..} = (X_{ij} - \overline{X}_{i.}) + (\overline{X}_{i.} - \overline{X}_{..})$$

- $\mathbf{X}_{ij} \overline{X}_{i}$: 각 관측값과 그 관측값이 속한 처리집단의 평균과의 차이로 반응에 대한 **오차효과를** 측정하는 값이다.
- lacktriangledown $\overline{X}_{i,j} \overline{X}_{i,j}$: 각 처리의 평균과 전체평균과의 차이로 반응에 대한 **처리효과를 측정하는 값**이다.

□ 편차의 모든 관측값에 대한 제곱합은 다음과 같이 나타낼 수 있다.

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_{..})^2 = \sum_{i=1}^{k} n_i (\overline{X}_{i.} - \overline{X}_{..})^2 + \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_{i.})^2$$

총제곱합 (TSS) = 처리제곱합 (SS_T) + 오차제곱합 (SS_E)

$$(X_{ij} - \overline{X}_{\cdot \cdot})^2 = (X_{ij} - \overline{X}_{i \cdot} + \overline{X}_{i \cdot} - \overline{X}_{\cdot \cdot})^2 = (X_{ij} - \overline{X}_{i \cdot})^2 + 2(X_{ij} - \overline{X}_{i \cdot})(\overline{X}_{i \cdot} - \overline{X}_{\cdot \cdot}) + (\overline{X}_{i \cdot} - \overline{X}_{\cdot \cdot})^2$$

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_{..})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_{i.})^2 + 2 \sum_{i=1}^{k} \sum_{j=1}^{n_i} [X_{ij} (\overline{X}_{i.} - \overline{X}_{..}) - \overline{X}_{i.} (\overline{X}_{i.} - \overline{X}_{..})] + \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\overline{X}_{i.} - \overline{X}_{..})^2$$

한편,
$$\sum_{i=1}^k \sum_{j=1}^{n_i} \left[X_{ij} \left(\overline{X}_{i.} - \overline{X}_{..} \right) - \overline{X}_{i.} \left(\overline{X}_{i.} - \overline{X}_{..} \right) \right] = \sum_{i=1}^k \left(\overline{X}_{i.} - \overline{X}_{..} \right) \sum_{j=1}^{n_i} X_{ij} - \sum_{i=1}^k n_i \overline{X}_{i.} \left(\overline{X}_{i.} - \overline{X}_{..} \right) = 0$$

- * 처리제곱합 (SS_T)
- * 오차제곱합 (SS_E)
- □ 서로 독립인 K개의 처리집단에서 각 관측값과 처리집단평균과의 편차의 제곱합으로 자유 도는 N-K 이다.
- * 평균제곱합
- □ 각각의 제곱합을 자유도로 나눈 값을 평균제곱합이라고 하며 다음과 같이 한다.

$$MS_{T} = \frac{SST}{N}(K-1)$$

 $MS_{E} = \frac{SSE}{N}(N-K)$

* 검정통계량 F

□ 귀무가설 하에서의 검정통계량의 값은 다음과 같다.

$$F = MST / MSE$$

- □ 검정통계량 F는 자유도가 (K-1,N-K)인 F-분포를 따른다.
- □ 따라서 유의수준 α 하에서의 검정은 위와 같이 구한 F 값이 $F_{(K-1,N-K)}$ 보다 크면 귀무가설을 기각하게 된다.

② 분산분석표의 작성

□ 지금까지의 제곱합과 자유도, 평균제곱합을 이용하여 분산분석표(ANOVA table)를 다음 과 같이 작성할 수 있다.

11-2	일원분류		
변인(source)	자유도(d.f.)	제곱합 (SS)	평균제곱합(<i>MS</i>)
처리(treatment)	K – 1	$\sum_{i=1}^{K} n_i (\overline{X}_i - \overline{X}_{\cdot \cdot})^2$	$SS_T/(K-1)$
£ ≭(error)	N – K	$\sum_{i=1}^K \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2$	$SS_E/(N-K)$
전체(total)	N – 1	$\sum_{i=1}^{K} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_{i})^2$	

$$n_1 = n_2 = \cdots = n_k = n$$
이라 두면

$$\square$$
 $N = nK$

$$N - K = nK - K = (n - 1)K$$

$$N - 1 = nK - 1$$

$$\sum_{i=1}^{k} n_i (\overline{X}_i - \overline{X}_{..})^2 = n \sum_{i=1}^{k} (\overline{X}_i - \overline{X}_{..})^2$$

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_{i.})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n} (X_{ij} - \overline{X}_{i.})^2$$

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_{..})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n} (X_{ij} - \overline{X}_{..})^2$$

그 각 처리집단의 관측값의 수가 같은 경우 각 처리집단의 관측치의 수가 같으면 (즉 $n_1 = n_2 = \cdots = n_k = n$) 분산분석표의 작성과정이 좀더 간단해진다. 즉, 처리집단의 수를 K라 하고 각 처리집단의 관측값의 수를 n이라고 할 때 분산분석표는 다음과 같다.

11-7 각 처리집단의 관측값의 수가 동일한 경우의 분산분석표					
변인	d.f.	SS	MS	F	
처리	K – 1	$n \sum_{i=1}^{K} (\overline{X}_{i} \overline{X})^{2}$	$SS_T/(K-1)$	$\frac{MS_T}{MS_E}$	
오차	K(n-1)	$\sum_{i=1}^K \sum_{j=1}^n (X_{ij} - \overline{X}_{i\cdot})^2$	$SS_E/K(n-1)$		
전체	<i>K</i> • <i>n</i> − 1	$\sum_{i=1}^{K} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_{})^2$			

$$\square X_{i.} = \sum_{j=1}^{n_i} X_{ij}$$

$$TSS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_{..})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij}^2 - 2X_{ij}\overline{X}_{..} + \overline{X}_{..}^2)$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij}^2 - 2\overline{X}_{..} \sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij} + N\overline{X}_{..}^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij}^2 - N\overline{X}_{..}^2$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij}^2 - N\left(\frac{1}{N} \sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij}\right)^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij}^2 - \frac{1}{N}\left(\sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij}\right)^2$$

$$\square \quad CM = \frac{1}{N} \left(\sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij} \right)^2$$

$$TSS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij}^2 - CM$$

$$SST = \sum_{i=1}^{k} n_{i} (\overline{X}_{i}. - \overline{X}_{..})^{2} = \sum_{i=1}^{k} n_{i} (\overline{X}_{i}.^{2} - 2\overline{X}_{i}.\overline{X}_{..} + \overline{X}_{..}^{2})$$

$$= \sum_{i=1}^{k} n_{i} \left[\left(\frac{X_{i}.}{n_{i}} \right)^{2} - 2\overline{X}_{i}.\overline{X}_{..} + \overline{X}_{..}^{2} \right]$$

$$= \sum_{i=1}^{k} \frac{X_{i}.^{2}}{n_{i}} - 2\overline{X}_{..} \sum_{i=1}^{k} n_{i} \overline{X}_{i}. + N\overline{X}_{..}^{2}$$

$$= \sum_{i=1}^{k} \frac{X_{i}.^{2}}{n_{i}} - 2\overline{X}_{..} (N\overline{X}_{..}) + N\overline{X}_{..}^{2}$$

$$= \sum_{i=1}^{k} \frac{X_{i}.^{2}}{n_{i}} - N\overline{X}_{..}^{2} = \sum_{i=1}^{k} \frac{X_{i}.^{2}}{n_{i}} - CM$$

예9-2.

□ 4가지 교육방법의 효과를 비교분석하기 위하여 학생 40명을 랜덤하게 10명씩 4개 집단으로 나누고 한 학기 동안 각 교육방법으로 교육을 실시한 후에 치른 학기말 시험성적이 다음과 같다. 학기 중에 질병이나 전학 등으로 인하여 학기말 시험을 치른 학생의 수가 같지 않은데, 다음에 주어진 자료에 의할 때 4가지 교육방법의 효과가 다르다고 할 수 있는가를 분석하라.

11-3	4가지 교육방법에 의한 학기말시험 성적				
교육방법	1	2	3	4	
	65	75	59	94	
	87	69	78	89	
	73	83	67	80	
시험 성적	79	81	62	88	
	81	72	83		
	69	79	76		
		90			
험 성적(X _i .)	454	549	425	351	

□ (sol)

$$CM = \frac{\left(\sum_{i=1}^{4} \sum_{j=1}^{m_i} X_{ij}\right)^2}{N} = \frac{(1779)^2}{23} = 137,601.8$$

$$TSS = \sum_{i=1}^{4} \sum_{j=1}^{m} X_{ij}^{2} - CM$$

$$= (65)^{2} + (87)^{2} + (73)^{2} + \dots + (88)^{2} - CM$$

$$= 139, 511 - 137, 601.8$$

$$= 1,909.2$$

$$SS_E = TSS - SS_T = 1,909.2 - 712.6 = 1,996.6$$

 $MS_T = \frac{SS_T}{4 - 1} = \frac{712.6}{3} = 237.5$
 $MS_E = \frac{SS_E}{N - 4} = \frac{1,196.6}{23 - 4} = 63.0$
 $F = \frac{MS_T}{MS_E} = \frac{237.5}{63.0} = 3.77$

$$SS_{T} = \sum_{i=1}^{4} \frac{X_{i}^{2}}{n_{i}} - CM$$

$$= \frac{(454)^{2}}{6} + \frac{(549)^{2}}{7} + \frac{(425)^{2}}{6} + \frac{(351)^{2}}{4} - CM$$

$$= 138,314.4 - 137,601.8$$

$$= 712.6$$

□ 계산한 값을 가지고 분산분석표를 작성해 보면 다음과 같은 표를 만들 수 있다.

11-4	교육효과 분석자료의 분산분석표			
변인	d.f.	SS	MS	F
처리	3	712.6	237.5	3.77
오차	19	1,196.6	63.0	
전체	22	1.909.2	1	

- $\mu_1, \mu_2, \mu_3, \mu_4$ 를 각각의 교육방법에 있어서 모집단의 평균성적이라고 할 때, 검정하고자 하는 가설은 다음과 같다.

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$

$$H_1: H_0$$
이 사실이 아니다.

- 귀무가설하에서의 검정통계량의 값 F=3.77은 분포를 따른다. $\alpha=0.05$ 일 때 $F_{3,19}=3.13$ 이므로 $F=3.77>F_{0.05~3~19}$ 가 되어 귀무가설은 기각된다.
- 즉, 주어진 자료에 의할 때 5% 유의수준 하에서 4가지 교육방법의 효과가 동일하다고 볼 수 없다.

(완전 확률화 계획법에서 모수의 추정)

 $100(1-\alpha)$ % 신뢰구간

① 단일모평균
$$\mu: \overline{X}_i \pm t_{\alpha/2} \cdot \frac{S}{\sqrt{n_i}}$$
 (여기서 $S = \sqrt{MS_E} = \sqrt{\frac{SS_E}{N-K}}$)

② 두 모평균의 차
$$\mu_i - \mu_j : \left(\overline{X}_i. - \overline{X}_j.\right) \pm t_{\alpha/2} \cdot S\sqrt{\frac{1}{n_i} + \frac{1}{n_j}}$$
 (여기서 $S = \sqrt{MS_E} = \sqrt{\frac{SS_E}{N-K}}$)

예9-3.

(sol)
$$\overline{X}_1 = \frac{454}{6} = 75.67$$
 $\overline{X}_4 = \frac{351}{4} = 87.75$ $S = \sqrt{MS_E} = \sqrt{63.0} = 7.94$

- □ 자유도가 19인 t-분포에서 $t_{0.025,19} = 2.093$ 이다.
- \square 따라서 μ_1 의 95% 신뢰구간은 다음과 같다.

$$\overline{X}_1$$
. $\pm t_{(0.025 \pm 19)} \frac{S}{\sqrt{n_1}} = 75.67 \pm 2.093 \frac{7.94}{\sqrt{6}} = 75.67 \pm 6.78 = (68.89, 82.45)$

 $\mu_1 - \mu_4$ 의 95% 신뢰구간은 다음과 같다.

$$(\overline{X}_1, -\overline{X}_4) \pm t_{(0.025; 19)} \cdot S \sqrt{\frac{1}{n_1} + \frac{1}{n_4}} = (75.67 - 87.75) \pm (2.093) \cdot (7.94) \sqrt{\frac{1}{6} + \frac{1}{4}} = -12.08 \pm 10.73 = (-22.81, -1.35)$$

처리	1	2	3
M TOX	60	67	72
관측 값	65	71	75
	70	72	78
평균	65	70	75

〈자료 2〉			LO MA
처리	1	2	3
5% tel-11	40	50	50
관측값	60	70	80
59-15E-3	95	90	95
평균	65	70	75

9-6	-6 〈자료 2〉에 대한 분산분석표					
변인	d.f.	SS	MS	F	P	
처리	2	150	75	0.13	0.879	
오차	6	3,400	567	-(%) (c) (s) (d)		
전체	8	3,550	正包可提工生		- 144	

$$ext{-}$$
 <표9-5>에서 $F=5.49>F_{(0.05:2,6)}=5.14$ 이므로 $H_0:\mu_1=\mu_2=\mu_3$ 가 기각

$$ext{-}$$
 <표9-5>에서 $F=0.13 < F_{(0.05:2,6)}=5.14$ 이므로 $H_0: \mu_1=\mu_2=\mu_3$ 가 채택

□ <자료1>보다 <자료2>가 각 처리집단 내에서 관측값의 폭이 크다.

 \Box 두 개의 독립집단에 대한 모평균의 동일성($\mu_1 = \mu_2$)의 검증

$$T(X) = \frac{\overline{X}_1 - \overline{X}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

$$F = \frac{MS_T}{MS_E} = \frac{\sum_{i=1}^2 n_i (\overline{X}_i - \overline{X}_{..})^2}{\sum_{i=1}^2 \sum_{j=1}^{n_i} (\overline{X}_{ij} - \overline{X}_{i.})^2 / (n_1 + n_2 - 2)} \sim F(1, n_1 + n_2 - 2)$$

$$\implies T(X)^2 = F$$

