Trabajo Práctico N 2: Coeficiente de rozamiento estático y dinámico

Integrantes: Lautaro Agustin Benitez Lagraña, Bautista Goya, Arostegui Simón

Universidad de la Cuenca del Plata

Profesor: Ing. Walter Esteban Vázquez

Determinación del Coeficiente de Rozamiento Estático y Dinámico

Materiales: Una pista para materializar el plano inclinado; una porta pista, para variar la altura de la misma; transportador; regla; escuadras y cuerpos de distintos materiales

Coeficiente de rozamiento	estático
---------------------------	----------

Material: Borrador	Base	Altura (H)	μe
1	30 cm	16 cm	0,53
2	30 cm	16,5 cm	0,55
3	30 cm	17 cm	0,57
4	30 cm	17,5 cm	0,58
5	30 cm	18 cm	0,6
-	-	Promedio	≈ 0,56
-	-	Error estimado	≈ 0,043

<u>Cálculos</u>

<u>Tabla 1</u>

Error Medio Cuadrático de las Lecturas o Desviación Estándar.

$$\sigma = \pm \sqrt{\frac{0,0094}{5}} \approx 0,043$$

xi	Desviación de cada lectura al cuadrado
0,53	$(0.53 - 0.53)^2 = 0$
0,55	$(0.53 - 0.55)^2 = 0.0004$
0,57	$(0.53 - 0.57)^2 = 0.0016$
0,58 es	$(0.53^{\circ} - 0.58)^2 = 0.0025$
0,6	$(0.5\overline{3} - 0.6)^2 = 0.0049$

Error Medio Cuadrático del Promedio.

$$E = \frac{0,043}{\sqrt{5}} \approx 0,019$$

Resultado de la Medición.

$$x = 0.53 \pm 0.019 \approx \pm 0.514$$

Error Relativo y Porcentual.

$$E_r = \frac{0.019}{0.53} \approx 0.035$$

$$E_p = 0.035 * 100 = 3.5\%$$

Tabla 2

Coeficiente de rozamiento dinámico

Material: Borrador	Base	Altura H (cm)	μd
1	30 cm	10.5 cm	0,35
2	30 cm	10.3 cm	0,343
3	30 cm	10.4 cm	0.347
4	30 cm	10.2 cm	0.34
5	30 cm	10.6 cm	0.353
-	-	Promedio	0.347
-	-	Error estimado	± 0.103

<u>Cálculos</u>

$$\sigma = \pm \sqrt{\frac{0.05305}{5}} \approx 0,103$$

Xi	Desviación de cada lectura al cuadrado
0,35	$(0,35 - 0,35)^2 = 0$
0,343	$(0,35 - 0,343^{-})^{2} = 0,00004^{-}$
0.347	$(0.35 - 0.347)^2 = 0.0529$
0.34	$(0,35 - 0.34)^2 = 0,0001$
0.353	$(0,35 - 0.35\overline{3})^2 = 0,00001^-$

Error Medio Cuadrático del Promedio.

$$E = \frac{0,103}{\sqrt{5}} \approx 0,046$$

Resultado de la Medición.

$$x = 0.35 \pm 0.046 \approx 0.304$$

Error Relativo y Porcentual

$$E_r = \frac{0.046}{0.35} \approx 0.131$$

$$E_p = 0,131 * 100 = 13,1\%$$

Cuestionario

Las diferencias que encontramos entre los coeficientes hallados fueron:

- El coeficiente de rozamiento estático (μ_e) fue mayor que el dinámico (μ_d).
- Las diferencias encontradas fueron: μ_e = 0,566 , μ_d = 0,346
- Esto indica que las superficies tienen mayor resistencia al inicio del movimiento debido al mayor contacto entre las irregularidades de la superficie.
- Podemos también sacar la conclusión de que necesitamos mayor fuerza para comenzar a mover un objeto que para mantenerlo en movimiento