FUNDAMENTOS MATEMÁTICOS PARA COMPUTAÇÃO

SUMÁRIO

- ➤ Relações Binárias
- > Propriedades de Relações
- > Fecho de uma Relação
- > Ordem Parcial
- > Relações de Equivalência

Uma relação binária em um conjunto S é um subconjunto de SxS.

$$x \rho y \leftrightarrow x < y$$

```
Exemplo: S={1,2,3,4}
SxS={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),}
       (3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)
x \rho y \leftrightarrow x < y, x \in S e y \in S
SxS={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),}
       (3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)
\rho = \{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}
```

```
Exemplo: S=\{1,2\}

SxS=\{(1,1),(1,2),(2,1),(2,2)\}

x \rho y \leftrightarrow x+y \text{ \'e impar, } x \in S \text{ e } y \in S

\rho = \{(1,2),(2,1),\}

x \rho y \leftrightarrow \rho = \{(1,1),(2,1)\}, \text{ onde } (1,2) \notin \rho
```

Relações entre conjuntos diferentes:

- Dados dois conjuntos S e T, uma relação binária de S para T é um subconjunto de S × T.
- Dados n conjuntos S1, S2, ..., Sn, n > 2, uma relação n-ária em S1 × S2 × ... × Sn é um subconjunto de S1 × S2 × ... × Sn.

Seja p uma relação binária em um conjunto S.

Reflexiva:

$$(\forall x)(x \in S \rightarrow (x, x) \in \rho)$$

Simétrica:

$$(\forall x)(\forall y)(x \in S \land y \in S \land (x, y) \in \rho \rightarrow (y, x) \in \rho)$$

Transitiva:

```
(\forall x)(\forall y)(\forall z)(x \in S \land y \in S \land z \in S\land (x, y) \in \rho \land (y, z) \in \rho \rightarrow (x, z) \in
```

Exemplo: Seja ρ a relação binária em Ν

$$x \rho y \leftrightarrow x \le y, x \in \mathbb{N} e y \in \mathbb{N}$$

• Essa relação é reflexiva:

$$(\forall x)(x \in S \rightarrow (x, x) \in \rho)$$

Se $x \in \mathbb{N}$, temos $x = x$, logo $(x, x) \in \rho$

• Essa relação é transitiva:

$$(\forall x)(\forall y)(\forall z)(x \in S \land y \in S \land z \in S)$$

$$\land$$
 $(x, y) \in \rho \land (y, z) \in \rho \rightarrow (x, z) \in$

p)

Para $x,y,z \in \mathbb{N}$, se $x \le y$ e $y \le z$, temos $x \le y \le z$. Logo, $x \le z$

Exemplo: Seja ρ a relação binária em Ν

$$x \rho y \leftrightarrow x \le y, x \in \mathbb{N} e y \in \mathbb{N}$$

• Essa relação não é simétrica.

$$(\forall x)(\forall y)(x \in S \land y \in S \land (x, y) \in \rho \rightarrow (y, x) \in \rho)$$

Basta um contra-exemplo!

Temos que $(3,4) \in \rho$ pois $3 \le 4$.

 $3 \le 4$ não implica que $4 \le 3$.

Para x, y $\in \mathbb{N}$, se x \leq y e y \leq x, então x = y.

Seja p uma relação binária em um conjunto S.

Relação anti simétrica:

$$(\forall x)(\forall y)(x \in S \land y \in S \land (x, y) \in \rho \land (y, x) \in \rho \rightarrow x = y)$$

Cuidado!!

- Seja ρ é uma relação simétrica e antissimétrica em S com (x, y) ∈ ρ.
 - $(y, x) \in \rho \rightarrow Simetria e x=y \rightarrow Anti simetria.$
 - \circ x ρ y \leftrightarrow x=y

Seja p uma relação binária em um conjunto S.

Relação anti simétrica:

$$(\forall x)(\forall y)(x \in S \land y \in S \land (x, y) \in \rho \land (y, x) \in \rho \rightarrow x = y)$$

Cuidado!!

- Seja $\rho = \{(1, 2), (2, 1), (1, 3)\}$ em S = $\{1, 2, 3\}$.
 - Não é simétrica: (1, 3)∈ρ e (3,1)∉ρ
 - Não é anti simétrica: (1, 2), (2, 1)∈ρ com
 1≠2.

Fecho de uma Relação

Uma relação binária ρ* em um conjunto S é o fecho de uma relação ρ em S em relação à propriedade P se:

- 1. ρ* tem a propriedade P
- 2. $\rho \subseteq \rho^*$
- 3. ρ* é subconjunto de qualquer outra relação em S que inclua ρ e tenha a propriedade P.

Fecho de uma Relação

Exemplo: Sejam S = $\{1, 2, 3\}$ e ρ = $\{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$

- ρ não é reflexiva, nem simétrica, nem transitiva.
- Fecho de ρ em relação à reflexividade (P)
- ρ ⊆ ρ*
- Qualquer relação reflexiva em S tem que conter os novos pares ordenados. Qualquer relação reflexiva contendo ρ tem ρ* como subconjunto.

Fecho de uma Relação

```
Exemplo: Sejam S = \{1, 2, 3\} e \rho = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}.
```

Fecho de ρ em relação à simetria é

```
\rho^* = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3), (2, 1), (3, 2)\}
```

• Fecho de ρ em relação à transitividade é:

```
\{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3), (3, 2), (3, 3), (2, 1)\} (Incompleta!!)

\rho^* = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3), (3, 2), (3, 3), (2, 1), (2, 2)\}
```

Uma relação binária em um conjunto S que seja reflexiva, antissimétrica e transitiva é chamada de uma ordem parcial em S.

Exemplo: Em \mathbb{Z}_{\downarrow} , x ρ y \leftrightarrow x divide y.

Reflexiva:

Temos x/x=1, ou seja, x divide $x \rightarrow (x,x) \in \rho$

Antissimétrica:

Se $(x,y) \in \rho \land (y,x) \in \rho$, temos y=x.a, $a \in \mathbb{Z}_+$ e $x=y.b \rightarrow y=x.a=(y.b).a=y.(b.a)$, logo $b=a=1 \rightarrow x=y$

Transitiva:

Se $(x,y) \in \rho \land (y,z) \in \rho$, temos y=x.a e z=y.b, logo, z=(x.a).b=x. $(a.b) \rightarrow z$ =x.c $\rightarrow x$ divide z.

```
Exemplo: Em \mathbb{Z}_+, x \rho y \leftrightarrow x divide y em S={1,2,3,6,12,18} (S,\leq)={(1,1),(1,2),(1,3),(1,6),(1,12),(1,18),(2,2),(2,6), (2,12),(2,18),(3,3),(3,6),(3,12),(3,18),(6,6),(6,12), (6,18),(12,12),(18,18)}
```

- (S, ≼): Se x ≤ y, então ou x = y ou x ≠ y.
- Se x ≤ y mas x ≠ y, escrevemos x ≺ y: x é um predecessor de y ou y é um sucessor de x.
- Se x < y e não existe nenhum z com x < z < y então x é um predecessor imediato de y.

Exemplo:

```
(S, \leq) = \{(1,1), (1,2), (1,3), (1,6), (1,12), (1,18), (2,2), (2,6), (2,12), (2,18), (3,3), (3,6), (3,12), (3,18), (6,6), (6,12), (6,18), (12,12), (18,18)\}
```

• Predecessores de 6:

$$1 \le 6, 2 \le 6 \text{ e } 3 \le 6.$$

- Predecessores imediatos de 6:2 < 6 e 3 < 6
- Observe que 1 < 2 < 6, logo 1 não é um
 - predecessor imediato de 6.

Diagrama de Haase

Representa visualmente (S, ≼)

Diagrama de Haase

Em \mathbb{N} , $x \rho y \leftrightarrow x \leq y$.

Diagrama de Haase

Elementos Maximais

Uma relação binária em um conjunto S que é reflexiva, simétrica e transitiva é chamada de relação de equivalência em S.

Exemplo: Em \mathbb{N} , x ρ y \leftrightarrow x + y \acute{e} par.

Reflexiva: (x,x)∈ρ pois x+x=2x é par.

Simétrica: Se $(x,y) \in \rho$, x+y=2a par com $a \in \mathbb{N}$. Porém, $x+y=y+x \rightarrow y+x=2a$, logo $(y,x) \in \rho$

Transitiva: Se $(x,y) \in \rho$ e $(y,z) \in \rho$, temos: x+y=2a e y+z=2b. Como x=2a-y, temos $y+z=2b \Rightarrow y-2a+z=2b-2a \Rightarrow x+z=2c \Rightarrow (x,y) \in \rho$

Uma partição de um conjunto S é uma coleção de subconjuntos disjuntos não vazios cuja união é igual a S.

Classe de equivalência: $[x] = \{y | y \in S \land x \rho y\}$ Todos os elementos relacionados com x em S.

TEOREMA: Uma relação de equivalência ρ em um conjunto S determina uma partição de S, e uma partição de S determina uma relação de equivalência em S.

$$x \rho y \leftrightarrow x + y \acute{e} par$$

Congruência módulo n: Para x e y inteiros e n um inteiro positivo, $x \equiv y \pmod{n}$ se x - y for um múltiplo inteiro de n;

Exemplo: Quais as classes de equivalência para relação congruência módulo 5 em 2?

- $[0] = {..., -15, -10, -5, 0, 5, 10, 15, ...}$
- $[1] = {..., -14, -9, -4, 1, 6, 11, 16, ...}$
- $[2] = {..., -13, -8, -3, 2, 7, 12, 17, ...}$
- $[3] = {..., -12, -7, -2, 3, 8, 13, 18, ...}$
- $[4] = {..., -11, -6, -1, 4, 9, 14, 19,...}$

Exemplo: Quais as classes de equivalência para relação congruência módulo 5 em 2?

- $x-0=5a \Rightarrow x=5a$ [0] = {..., -15, -10, -5, 0, 5, 10, 15, ...}
- $x-1=5a \Rightarrow x=5a+1$ [1] = {..., -14, -9, -4, 1, 6, 11, 16, ...}
- $x-2=5a \Rightarrow x=5a+2$ [2] = {..., -13, -8, -3, 2, 7, 12, 17, ...}
- $x-5=5a \Rightarrow x=5a-5=5(a-1)=5a$ [5] = {..., -15, -10, -5, 0, 5, 10, 15, ...} =[0]

Os conceitos e exemplos apresentados nesses slides são baseados no conteúdo da seção 5.1 do material-base "Fundamentos Matemáticos para a Ciência da Computação", J.L. Gersting, 7a edição, LTC editora.

FUNDAMENTOS MATEMÁTICOS PARA COMPUTAÇÃO