Generation of Multi-modal Brain Tumor MRIs with Disentangled Latent Diffusion Model

Yoonho Na. Kvuri Kim. Hwivoung Kim. Sung-Joon Ye and Jimin Lee

Introduction

Prior researches generating multi-modal MRIs rely on Image-to-Image translation and thus require source image to obtain fixed structural information.

- Image-to-Image translation based approach has limitation that the structural diversity is restricted to the source image.
- We propose a novel approach for generating multi-modal brain tumor MRIs using feature distentanglement and diffusion models.
- Our proposed model, which we call disentangled latent diffusion model (DLDM), is capable of generating modality-sharing and modalityspecific information separately, eliminating the need for source image.

Methods

Key Idea

- Extract modality-sharing information from the multi-modal MRIs.

 Brain structures
- Decoding the latents with the fixed modality-sharing informations results in images with fixed brain structures.

(a) Avg(L₁, L₂, L₃) D L₂ D Structure vector Class-Label Class-Label Class-Label Avg(L₁, L₂, L₃) D Structure vector T 1 skyle vector T 2 skyle vector T 3 skyle vector T 3 skyle vector T 4 skyle vector T 5 skyle vector T 5 skyle vector T 5 skyle vector T 7 skyle vector T 7 skyle vector T 8 skyle vector T 9 skyle vector T 1 skyle vector T 1 skyle vector T 1 skyle vector T 2 skyle vector T 2 skyle vector T 2 skyle vector T 2 skyle vector T 3 skyle vector T 4 skyle vector T 5 skyle vector T 8 sk

DLDM is based on *Latent Diffusion Model* (Rombach et al., 2022). Therefore our proposed model require two steps for training.

- 1 Train autoencoder that maps pixel space to lower dimensional latent space
- 2 Train diffusion model that operates in learned latent space of autoencoder

Step 1 : Disentangled Autoencoder

Training Strategy

- For N number of MRI modalities, set the dimension of latent vector dimension to have N+1 channels.
 - Each N channels to have N distinct style vectors z^{style} and the rest channel to have structure vector z^{struct}.
- 2. Feed z^{struct} and randomly selected single z^{style} to the decoder.
- 3. Randomly mix z^{style} with other data in mini-batch
 - Strategy 2 and 3 ensures the encoder to separate multi-modal MRIs into modality-sharing and modality-specific information.
- Average the loss of selected modalities to ensure every modalities having similar reconstruction quality.

$$L_{Autoencoder} = L_{rec}(x, \mathcal{D}(\mathcal{E}(x))) + L_{reg}(x; \mathcal{E}, \mathcal{D})$$

Step 2 : Disentangled Latent Diffusion Model

Training Strategy

- We use the pair of (z^{struct}, z^{style}) as a input of latent diffusion model.
- Class-label c, is applied as condition to selectively obtain z^{style} for every MRI modalities.
- When sampling multi-modal MRIs, we fixed z^{struct} to generate same structural data.

$$L_{DLDM} := \mathbb{E}_{\mathcal{E}(x), c, \epsilon \sim \mathcal{N}(0, 1), t} \left[||\epsilon - \epsilon_{\theta}(z_t^{struct}, z_t^{style}, \tau_{\theta}(c), t)||_2^2 \right]$$

Generation Process of Multi-modal MRIs

Experimental Results

Qualitative Comparison

(Quantitive Comparison

DLDM							StyleGAN2						
Modality	Precision†	Recall†	Density†	Coverage†	FID↓	clean-FID↓	Modality	Precision†	Recall↑	Density [↑]	Coverage†	FID↓	clean-FID↓
Tl	0.95729	0.94063	0.96063	0.96563	18.52	0.00019	T1	0.91042	0.72500	0.74125	0.84063	53.55	0.00284
T2	0.90104	0.97083	0.81646	0.93438	13.86	0.00268	T2	0.27708	0.50000	0.10792	0.25625	169.12	0.00385
FLAIR	0.87604	0.95417	0.77854	0.93646	25.49	0.00025	FLAIR	0.96250	0.46146	1.13708	0.87188	102.65	0.00208
WB	0.91146	0.95833	0.79896	0.92708	22.34	0.00018	WB	0.77500	0.75729	0.64937	0.85208	42.91	0.00260
BB	0.91458	0.97708	0.82458	0.90833	28.89	0.00022	BB	0.46354	0.96771	0.18625	0.38646	119.40	0.00328
Average	0.91208	0.96021	0.83583	0.93438	21.82	0.00070	Average	0.67771	0.68229	0.56437	0.64146	97.53	0.00293

Disentanglement Study

Multi-modal MRIs are successfully disentangled into structure and styles.

Acknowledgments

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (trant number: HI21C1161).