

planetmath.org

Math for the people, by the people.

proof of Cauchy condition for limit of function

Canonical name ProofOfCauchyConditionForLimitOfFunction

Date of creation 2013-03-22 18:59:08 Last modified on 2013-03-22 18:59:08

Owner puff (4175) Last modified by puff (4175)

Numerical id 8

Author puff (4175)

Entry type Proof

Classification msc 54E35 Classification msc 26A06 Classification msc 26B12 The forward direction is . Assume that $\lim_{x\to x_0} f(x) = L$. Then given ϵ there is a δ such that

$$|f(u) - L| < \epsilon/2 \text{ when } 0 < |u - x_0| < \delta.$$

Now for $0 < |u - x_0| < \delta$ and $0 < |v - x_0| < \delta$ we have

$$|f(u) - L| < \epsilon/2$$
 and $|f(v) - L| < \epsilon/2$

and so

$$|f(u)-f(v)| = |f(u)-L-(f(v)-L)| \le |f(u)-L|+|f(v)-L| < \epsilon/2+\epsilon/2 = \epsilon.$$

We prove the reverse by contradiction. Assume that the condition holds. Now suppose that $\lim_{x\to x_0} f(x)$ does not exist. This means that for any l and any ϵ sufficiently small then for any $\delta>0$ there is x_l such that $0<|xl-x_0|<\delta$ and $|f(x_l)-l|\geq \epsilon$. For any such ϵ choose u such that $0<|u-x_0|<\delta$ and put l=f(v) then substituting in the condition with $u=x_l$ we get $|f(x_l)-l|<\epsilon$. A contradiction.