EPFL - Printemps 2022	Prof. Z. Patakfalvi
Anneaux et Corps	Exercices
Série 2	le 7 Mars 2022

Veuillez télécharger vos solutions à l'exercice 7 sur la page Moodle du cours avant le dimanche dimanche 20 mars, 18h.

1 Exercices

Exercice 1.

Dans chacun des cas suivants, déterminer si l'ensemble B est un sous-anneau, un idéal à gauche, un idéal à droite, un idéal bilatère de l'anneau A ou s'il ne possède aucune de ces propriétés:

(a)
$$A = \mathbb{Z}$$
 et $B = 9\mathbb{Z}$;

(e)
$$A = \mathbb{Q}$$
 et $B = \mathbb{Z}[\sqrt{5}]$;

(b)
$$A = \mathbb{F}_{11}$$
 et $B = \{[0], [2], [4], [6], [8], [10]\};$

(f)
$$A = \mathbb{Q}$$
 et $B = \mathbb{Z}[i]$;

(c)
$$A = \mathbb{Z}[t]$$
 et $B = t^2 \cdot \mathbb{Z}[t^2]$;

(g)
$$A = \mathbb{Z}/15\mathbb{Z}$$
 et $B = \{[0], [5], [10]\};$

(d)
$$A = \mathbb{F}_2[t]$$
 et $B = t^2 \cdot \mathbb{F}_2[t]$;

(h)
$$A = M_n(\mathbb{R}), B = \{M \mid m_{ij} = 0 \text{ si } i < j\};$$

(i)
$$A = \mathbb{Z}_{(p)} = \left\{ \frac{a}{b} \in \mathbb{Q} \, | \, p \text{ ne divise pas } b \right\}$$
 et $B = p^n \mathbb{Z}_{(p)},$ où p est un premier et $n \in \mathbb{N};$

(j)
$$A = M_n(\mathbb{R}) \text{ et } B = \left\{ \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 0 \end{pmatrix} \mid a, b, c, d \in \mathbb{R} \right\};$$

(k)
$$A = M_n(\mathbb{R}) \text{ et } B = \left\{ \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & e \end{pmatrix} \mid a, b, c, d, e \in \mathbb{R} \right\};$$

(1)
$$A = M_n(\mathbb{R})$$
 et $B = \left\{ \begin{pmatrix} a & a & 0 \\ b & b & 0 \\ c & c & 0 \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\};$

(m)
$$A = \mathbb{C}[S_3]$$
 et $B = \left\{ \sum_{g \in S_3} \lambda \cdot g \mid \lambda \in \mathbb{C} \right\};$

(n)
$$A = \mathbb{C}[S_3]$$
 et $B = \left\{ \sum_{g \in S_3} (-1)^{\operatorname{sgn}(g)} \lambda \cdot g \mid \lambda \in \mathbb{C} \right\};$

(o)
$$A = \mathbb{C}[S_3]$$
 et $B = \{\lambda \cdot \text{Id} + \lambda \varepsilon(123) + \lambda \varepsilon^2(132) + \mu(12) + \mu \varepsilon(23) + \mu \varepsilon^2(13) \mid \lambda, \mu \in \mathbb{C} \}$, où ε est une racine cubique primitive d'unité;

(p)
$$A = \mathbb{C}[S_3] \text{ et } B = \{\lambda(123) + \lambda(132) \mid \lambda \in \mathbb{C}\}.$$

Exercice 2.

Soit K un corps et $M_n(K)$ l'anneau des matrices carrées de taille $n \times n$.

1. Soit I un idéal à gauche de $M_n(K)$ contenant la matrice e_{ij} . Montrer que I contient aussi toutes les matrices "concentrées dans la j-ème colonne", i.e. (b_{rs}) avec $b_{rs} = 0$ si $s \neq j$.

- 2. Montrer que le sous-ensemble des matrices concentrées dans la j-ème colonne forme un idéal à gauche de $M_n(K)$.
- 3. Montrer que les seuls idéaux bilatères de $M_n(K)$ sont $\{0\}$ et $M_n(K)$.

Exercice 3.

Dans chacun des cas suivants, déterminer si l'affirmation suivante est vraie ou fausse. Justifier la réponse par un raisonnement ou un contre-exemple.

- (a) Si A est un anneau intègre, et I et J sont deux idéaux non nuls de A, alors $I \cap J$ est aussi un idéal non nul de A.
- (b) Si K est un corps, alors les deux seuls idéaux de K sont $\{0\}$ et K.
- (c) Si A est un anneau n'ayant que deux idéaux bilatères, alors K est un corps.
- (d) Si A est un anneau commutatif n'ayant que deux idéaux, alors K est un corps.

Exercice 4.

Montrer les isomorphismes suivants:

- (a) $K[t]/(t-a) \cong K$ si K est un corps et $a \in K$.
- (b) $M_n(A)/M_n(I) \cong M_n(A/I)$ si I est un idéal bilatère de A.
- (c) $\mathbb{Z}[\sqrt{7}]/(5+2\sqrt{7}) \cong \mathbb{Z}/3$ (on pourra commencer par identifier le noyau de l'unique homomorphisme d'anneaux $\varphi \colon \mathbb{Z} \to \mathbb{Z}[\sqrt{7}]/I$).

Exercice 5.

Soit A un anneau intègre. Si $f, g \in A[t]$, alors $\deg(f \cdot g) = \deg(f) + \deg(g)$.

Exercice 6.

Montrer que $\mathbb{Z}[\varepsilon] \cong \mathbb{Z}[t]/(t^2+t+1)$, où ε est une racine cubique primitive de l'unité.

2 Exercice Bonus 1

Exercice 7.

The goal of this exercise is to show that \mathbb{Q} can be exhibited as the fraction field of many subrings other than \mathbb{Z} . We begin by giving the following definitions.

Definition 1 (Valuation Function).

Let K be a field, a discrete valuation is a function $\nu: K \setminus 0 \to \mathbb{Z}$, such that

- a) $\nu(x \cdot y) = \nu(x) + \nu(y)$
- b) $\nu(x+y) \ge \min(\nu(x), \nu(y))$

We say that ν is non-trivial if it is not the constant 0 function

Definition 2 (Valuation Ring).

If ν is a discrete valuation function on the field K, then the valuation ring R_{ν} is the subset $\{x \in K | \nu(x) \geq 0\} \cup \{0\}$ of K.

Show that for a discrete valuation function ν on K we have:

- 1. $\nu(1) = 0$, $\nu(-1) = 0$.
- 2. R_{ν} is a subring of K.
- 3. K is the fraction field of R_{ν} .

From now on, $K = \mathbb{Q}$, that is the field of rational numbers. Show that

- 4 For every $x \in \mathbb{Z}$ we have $\nu(x) \geq 0$.
- 5 If $\nu(p) = 0$ for all primes p, then ν is trivial.
- 6 $\nu(p) \neq 0$ can happen for at most one (positive) prime p.
- 7 If $\nu(p) \neq 0$, then ν is given by $\nu(p^i a/b) = i \cdot c$, where a and b are prime to p and c is a fixed positive integer. Conversely, show that the above formula is a discrete valuation (called the p-adic valuation for c = 1, which we denote by ν_p).
- 8 Show that the valuation ring of ν_p is not equal to $\mathbb{Z} \subseteq \mathbb{Q}$.