ENGG1410-E: Short Test 1

Name:

Student ID:

Write all your answers on this sheet, and use the back if necessary.

Problem 1 (50%). Calculate the following for a = [-1, 2, -3], and b = [3, -2, 1].

- 1. a + b
- 2. a b
- 3. $a \cdot b$
- 4. $\boldsymbol{a} \times \boldsymbol{b}$
- 5. |a|

Answer:

- 1. a + b = [2, 0, -2]
- 2. a b = [-4, 4, -4]
- 3. $\mathbf{a} \cdot \mathbf{b} = -3 4 3 = -10$
- 4. $\mathbf{a} \times \mathbf{b} = [-4, -8, -4]$
- 5. $|a| = \sqrt{14}$

Problem 2 (20%). In the figure below, the directed segment $\overrightarrow{P}, \overrightarrow{A}$ is an instantiation of vector [1, 1], and $\overrightarrow{P}, \overrightarrow{B}$ is an instantiation of vector [3, 2]. Let $\overrightarrow{A}, \overrightarrow{B}$ be an instantiation of vector \overrightarrow{v} . What is \overrightarrow{v} ?

Answer: [3,2] - [1,1] = [2,1].

Problem 3 (20%). As in Problem 2, $\overrightarrow{P,A}$ is an instantiation of vector [1,1], and $\overrightarrow{P,B}$ is an instantiation of vector [3,2]. Let D be the projection of point A onto $\overrightarrow{P,B}$. What is the distance from P to D?

Answer: Let γ be the angle of $\overrightarrow{P,A}$ and $\overrightarrow{P,B}$. Hence, $|[1,1]||[3,2]|\cos\gamma=[1,1]\cdot[3,2]=5$. The distance from P to D is exactly $|\overrightarrow{P,A}|\cos\gamma=|[1,1]|\cos\gamma=\frac{5}{|[3,2]|}=\frac{5}{\sqrt{13}}$.

Problem 4 (10%). Define function $r(t) = [t, t^2, t^3]$. What is the value of r'(1)?

Answer: $r'(t) = [1, 2t, 3t^2]$. Hence, r'(1) = [1, 2, 3].