

Multi-player Multi-armed Bandits with Delayed Feedback

Presenter: Jingqi Fan

<u>Paper ID: 1412</u>

Jingqi Fan¹, Zilong Wang², Shuai Li², Linghe Kong²

1 Northeastern University, China 2 Shanghai Jiao Tong University

Cognitive Radio Networks

- A new type of nework.
- Users in cognitive radio networks choose different channels.
- If users choose the same channel, all of them will fail to pass information. We say that there is a collision occur.
- Users experience delay in cognitive radio networks.

Multi-armed Bandits

- A player pulls an arm and gets a reward.
- We can design some algorithm to maximize the accumlated rewards.
- Then we want to prove this algorithm can works well theoretically.

Multi-player Multi-armed Bandits (MP-MAB) with Delayed Feedback

Problem Formulation:

- M players, K arms, T total steps.
- Let $[M] := \{1, ..., M\}$ and $[K] := \{1, ..., K\}$.
- At each step s, each player $j \in [M]$ pulls an arm $\pi^j(t) \in [K]$.
- The environment generates $X^j(s) \sim \mathrm{Bernoulli}(\mu_{\pi^j(s)})$ and $r^j(s) := X^j(s)[1 \eta^j(s)]$.
- The environment also generates $d^j(s) \sim D_{\pi^j(s)}$, where $D_{\pi^j(s)}$ is an unknow distribution.
- Then, at step $s + d^j(s) 1$, player j receives the feedback $[r^j(s), \eta^j(s), s]$.

Multi-player Multi-armed Bandits (MP-MAB) with Delayed Feedback

Goal: minimize the regret

$$\mathbb{E}[R(T)] := \sum_{s \leq T} \sum_{k \leq M} \mu_k - \mathbb{E}\left[\sum_{s \leq T} \sum_{j \leq M} r^j(s)\right],$$

where μ_k is the k-th biggest reward expectation. $\mu_1 \geq \cdots \geq \mu_K$.

Assumption:

- 1. $D_k = D_{k'} = D, \forall k \in [K]$. D is sub-Gaussian.
 - σ_d^2 denotes the sub-Gaussian parameter and $\mathbb{E}[d]$ denotes the expectation.
 - Note that σ_d^2 and $\mathbb{E}[d]$ are unknown.
- 2. Each player is aware of her own rank j.

Centralized MP-MAB

There exists a centra coordinator.

No collision occur.

Decentralized MP-MAB

Payers cannot see others' choices, rewards, collisions.

Centralized MP-MAB

There exists a centra coordinator.

No collision occur.

Decentralized MP-MAB

Payers cannot see others' choices, rewards, collisions.

Our Algorithm: DDSE

- The algorithm is divided into many exploration-communication phases.
- Let $\mathcal{M}^j(p)$ denote the set of empirical optimal arms during the p-th phase. $|\mathcal{M}^j(p)| = M$. Players initialize $\mathcal{M}^j(1)$ which is a list with $\mathcal{M}^j(1) = \mathcal{M}^{j'}(1)$ for any $j, j' \in [M]$.
- Players are divided into a leader and many followers.
- They pull arms in a round-robin way to avoid collisions while the leader is in charge of exploring arms. [Exploration Phase]
- Sometimes they collide on purpose to pass messages. [Communication Phase]

• When a player j receives a feedback at time t, she updates $n_k^j(t), \hat{\mu}_k^j(t), \text{UCB}_k^j(t), \text{LCB}_k^j(t)$ and the estimation of $\mathbb{E}[d]$ and σ_d^2 with

$$\hat{\mu}_{d}^{j}(t) := \frac{\sum_{s < t} \left(d^{j}(s) \mathbb{1}\{s + d^{j}(s) < t\} \right)}{\sum_{s < t} \mathbb{1}\{s + d^{j}(s) < t\}},$$

$$(\hat{\sigma}_{d}^{2})^{j}(t) := \frac{\sum_{s < t} \left(\left[d^{j}(s) - \hat{\mu}_{d}^{j}(t) \right] \mathbb{1}\{s + d^{j}(s) < t\} \right)^{2}}{\sum_{s < t} \mathbb{1}\{s + d^{j}(s) < t\}}.$$

the number of times to pull an arm

• When a player j receives a feedback at time t, she updates $n_k^{j}(t)$, $\hat{\mu}_k^j(t)$, $\text{UCB}_k^j(t)$, $\text{LCB}_k^j(t)$ and the estimation of $\mathbb{E}[d]$ and σ_d^2 with

$$\hat{\mu}_{d}^{j}(t) := \frac{\sum_{s < t} \left(d^{j}(s) \mathbb{1}\{s + d^{j}(s) < t\} \right)}{\sum_{s < t} \mathbb{1}\{s + d^{j}(s) < t\}},$$

$$(\hat{\sigma}_{d}^{2})^{j}(t) := \frac{\sum_{s < t} \left(\left[d^{j}(s) - \hat{\mu}_{d}^{j}(t) \right] \mathbb{1}\{s + d^{j}(s) < t\} \right)^{2}}{\sum_{s < t} \mathbb{1}\{s + d^{j}(s) < t\}}.$$

Our Algorithm: DDSE

the number of times to pull an arm

• When a player j receives a feedback at time t, she updates $n_k^j(t), \hat{\mu}_k^j(t), \text{UCB}_k^j(t), \text{LCB}_k^j(t)$ and the estimation of $\mathbb{E}[d]$ and σ_d^2 with

$$\hat{\mu}_d^j(t) := rac{\sum_{s < t} \left(d^j(s) \mathbb{1}\{s + d^j(s) < t\}
ight)}{\sum_{s < t} \mathbb{1}\{s + d^j(s) < t\}},$$
 empirical reward expectation

$$(\hat{\sigma}_d^2)^j(t) := rac{\sum_{s < t} \left([d^j(s) - \hat{\mu}_d^j(t)] \mathbb{1}\{s + d^j(s) < t\} \right)^2}{\sum_{s < t} \mathbb{1}\{s + d^j(s) < t\}}.$$

the number of times to pull an arm

upper/lower confidence bound

• When a player j receives a feedback at time t, she updates $n_k^j(t), \hat{\mu}_k^j(t), \text{UCB}_k^j(t), \text{LCB}_k^j(t)$ and the estimation of $\mathbb{E}[d]$ and σ_d^2 with

$$\hat{\mu}_d^j(t) := \frac{\sum_{s < t} \left(d^j(s) \mathbb{1} \{ s + d^j(s) < t \} \right)}{\sum_{s < t} \mathbb{1} \{ s + d^j(s) < t \}},$$

empirical reward expectation

$$(\hat{\sigma}_d^2)^j(t) := rac{\sum_{s < t} \left([d^j(s) - \hat{\mu}_d^j(t)] \mathbb{1}\{s + d^j(s) < t\} \right)^2}{\sum_{s < t} \mathbb{1}\{s + d^j(s) < t\}}.$$

the number of times to pull an arm

upper/lower confidence bound

• When a player j receives a feedback at time t, she updates $n_k^j(t), \hat{\mu}_k^j(t), \text{UCB}_k^j(t), \text{LCB}_k^j(t)$ and the estimation of $\mathbb{E}[d]$ and σ_d^2 with

$$\hat{\mu}_d^j(t) := rac{\sum_{s < t} \left(d^j(s) \mathbb{1}\{s + d^j(s) < t\}
ight)}{\sum_{s < t} \mathbb{1}\{s + d^j(s) < t\}} \,,$$

empirical reward expectation

$$(\hat{\sigma}_d^2)^j(t) := \frac{\sum_{s < t} \left([d^j(s) - \hat{\mu}_d^j(t)] \mathbb{1}\{s + d^j(s) < t\} \right)^2}{\sum_{s < t} \mathbb{1}\{s + d^j(s) < t\}}.$$

• Each player j aims to find q^j such that

$$q^j = \operatorname*{arg\,min}_q \left\{ q \in \mathbb{N} \mid t > \hat{\mu}_d^j(t) + (p-q) \mathit{KM} \log(T) \sqrt{2(\hat{\sigma}_d^2)^j(t) \log\left((M-1)(K+2M)(T)\right)} \right\} \,.$$

• Starting from Phase 2, players always use some old exploration results, i.e., $\mathcal{M}^{j}(p-q^{j})$, to mitigate the influence of delay.

Upper Bound

Let $\Delta_{k,\ell} := \mu_k - \mu_\ell$ and $\Delta := \min_{k \leq M} \mu_k - \mu_{k+1}$. In decentralized setting, given any K, M and a quantile $\theta \in (0,1)$, the regret of the algorithm satisfies

$$\mathbb{E}[R(T)] \leq \sum_{k>M} \frac{323 \log(T)}{\theta \Delta_{M,k}} + \frac{M}{K-M} \sum_{k>M} \Delta_{1,k} d_1 + \frac{15}{\theta} d_2 + d_3 + C,$$

Lower Bound

For any sub-optimal gap set $S_{\Delta} = \{\Delta_{M,k} \mid \Delta_{M,k} = \mu_{(M)} - \mu_{(k)} \in [0,1]\}$ of cardinality K-M and a quantile $\theta \in (0,1)$, there exists an instance with an order on S_{Δ} and a sub-Gaussian delay distribution such that

$$\mathbb{E}[R(T)] \geq \sum_{k>M} \frac{(1-o(1))\log(T)}{2\theta\Delta_{M,k}} + \frac{M}{2K} \sum_{k>M} \Delta_{M,k} d_4 - \frac{2}{\theta},$$

where

$$d_{1} = 2\mathbb{E}[d] + \sigma_{d}\sqrt{3\log(K)}, \quad d_{2} = \mathbb{E}[d] + \sigma_{d}\sqrt{2\log(\frac{1}{1-\theta})},$$

$$d_{3} = \frac{656\sqrt{2}\sigma_{d}^{2}}{\theta K^{2}M^{2}} + 3\sqrt{6}\sigma_{d}, \quad d_{4} = \mathbb{E}[d] - \sigma_{d}\sqrt{\frac{\theta}{1-\theta}}, C = \sum_{k>M} \frac{195}{\theta \Delta_{M,k}} + \frac{4M}{\Delta^{2}}.$$