МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Компьютерные науки и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №3 по курсу «Программирование графических процессоров»

Классификация и кластеризация изображений на GPU.

Выполнил: Попов М. Р.

Группа: 8О-408Б

Преподаватели: К.Г. Крашенинников,

А.Ю. Морозов

Условие

- 1. **Цель работы:** научиться использовать GPU для классификации и кластеризации изображений. Использование константной памяти и одномерной сетки потоков.
- 2. Вариант 4: метод спектрального угла.

Программное и аппаратное обеспечение

1. Графический процессор: Nvidia GeForce GT 545

а. Количество потоковых процессоров: 144

b. Частота ядра: 720 МГц

с. Количество транзисторов: 1.170 млн

d. Тех. процесс: 40 нм

е. Энергопотребление: 70 Вт

2. OC: Ubuntu 16.04

3. Текстовый редактор: VS Code

4. Компилятор: nvcc

Метод решения

Используем константную память для хранения промежуточных вычислений для каждого из классов, в функции **kernel** используем метод спектрального угла для классификации пикселей.

Описание программы

Программа состоит из одного файла, в котором есть функция kernel, внутри которой и выполняется проход в цикле по изображению, а также функция spectral_angle_method, которая выполняет классификацию.

Результаты

1. Зависимость времени выполнения программы от количества используемых потоков (для тестов использовалось изображение 1024×1024 пикселей):

Потоки	Время (в мс)	
2×2×2×2	41	
8×8×8×8	29	
32×32×32×32	21	

2. Сравнение программы на CUDA с 8×8×8×8 потоками и программы на CPU с одним потоком:

Размер изображений	Время на CUDA (в мс)	Время на СРИ (в мс)
720×720	21	221
1024×1024	34	311
2736×3648	52	640

3. Примеры обработанных изображений

Выводы

Проделав лабораторную работу, я использовал константную память и одномерную сетку потоков, а также реализовал метод спектрального угла для классификации пикселей в изображении.