CHAPTER 7 IONIC EQUILIBRIUM

- 7.1 Acids and Bases
- 7.2 Acid-base Titration
- 7.3 Solubility Equilibrium

7.1 a) Definition of Acids and Bases

There are 2 main definitions for acids and bases:

- *Arrhenius
- *Brönsted-Lowry

Arrhenius Theory

Acid

Substance that dissociate in water to produce H₃O⁺ ion.

EXAMPLE: $HCI(aq) + H_2O(I) \rightarrow H_3O^+(aq) + CI^-(aq)$

Base

Substance that dissociate in water to produce OH⁻ ion.

EXAMPLE: NaOH(aq) \rightarrow Na⁺(aq) + OH⁻(aq)

Bronsted-Lowry Theory

Acid

Any substance that can donate a proton,(H+) to other substance.

EXAMPLE:

HNO₃ (aq) + H₂O (I)
$$\longrightarrow$$
 NO₃⁻ (aq) + H₃O⁺ (aq) acid

$$NH_4^+$$
 (aq) + H_2O (I) \longrightarrow NH_3 (aq) + H_3O^+ (aq) acid

Bronsted-Lowry Theory

Base

Any substance that can accept a proton, (H+) from other substance.

EXAMPLE:

$$NH_3(aq) + H_2O(I) \Longrightarrow NH_4^+(aq) + OH^-(aq)$$
 base

$$CO_3^{2-}(aq) + H_2O(I) \longrightarrow HCO_3^{-}(aq) + OH^{-}(aq)$$
base

 An acid can exist as "+" charge, "-" charge or neutral.

Example: H₃O⁺, H₂SO₄, HCO₃⁻, NH₄⁺

- A base can only exist as "-" charge or neutral.
 Example: OH⁻, CN⁻, NH₃, NH₂⁻
- H₂O is amphoteric: able to act as an acid or a base

7.1 b) Conjugate Acid-Base Pairs

Conjugate Acid

A species that remains when one proton,(H+) has been added to the base.

Conjugate Base

A species that remains when one proton,(H+) has been removed from the acid.

acid loss H⁺ conjugate base
$$HCO_{3}^{-}(aq) + H_{2}O(I) \Longrightarrow CO_{3}^{2-}(aq) + H_{3}O^{+}(aq)$$
base gain H⁺ conjugate acid

EXERCISE 1

In the following reactions, identify the acid-base conjugate pairs.

a.
$$CIO^{-}(aq) + H_2O(I) \longrightarrow HOCI(aq) + OH^{-}(aq)$$

b.
$$CH_3NH_2$$
 (aq) + $H_2PO_4^-$ (aq) \longrightarrow $CH_3NH_3^+$ (aq) + HPO_4^{2-} (aq)

c.
$$PO_4^{3-}(aq) + H_2O(I) \longrightarrow HPO_4^{2-}(aq) + OH^{-}(aq)$$

d.
$$CH_3COOH(aq) + H_2O(I) \rightleftharpoons CH_3COO^{-}(aq) + H_3O^{+}(aq)$$

7.1 c) The water Ionization Constant, K_w

Water ionizes to a small degree to form very small amount of H₃O⁺ and OH⁻.

$$H_2O(I) + H_2O(I) \rightleftharpoons H_3O^+(aq) OH^-(aq)$$

$$Kw = [H_3O^+][OH^-] = 1 \times 10^{-14}$$

*ionic product of water at 25°C

Negative log of both sides of the expression

$$-\log (K_w) = -\log ([H_3O^+][OH^-])$$

$$-\log (1.0 \times 10^{-14}) = (-\log [H_3O^+]) + (-\log [OH^-])$$

$$14 = pH + pOH$$

The value of $K_{\rm w}$ increases with temperature because the dissociation of water is an endothermic process. For aqueous solution at 25°C,

ACIDIC SOLUTION	NEUTRAL SOLUTION	BASIC SOLUTION
$[H_3O^+] > [OH^-]$	$[H_3O^+] = [OH^-]$	$[OH^-] > [H_3O^+]$
$[H_3O^+] > 1.0 \times 10^{-7} M$	$= 1.0 \times 10^{-7} M$	[OH ⁻] > 1.0 x 10 ⁻⁷ M
@		@
$[OH^{-}] < 1.0 \times 10^{-7} M$		$[H_3O^+] < 1.0 \times 10^{-7} M$

7.1 d) Strong and Weak Acids

When an acid HA dissolves in water, equilibrium is established

$$HA(aq) + H_2O(I) \implies A^{-}(aq) + H_3O^{+}(aq)$$

 The stronger the acid, the further the position of the equilibrium lies to right, the higher degree of dissociation.

$$HCI$$
 (aq) \rightarrow CI^{-} (aq) + H^{+} (aq)

Strong acids completely dissociated in aqueous solution

$$HCN(aq) + H_2O(I) \rightleftharpoons CN^-(aq) + H_3O^+(aq)$$

· Weak acids partially dissociate in aqueous solution.

Strong and Weak Bases

When a base X dissolves in water, equilibrium is established

$$X(aq) + H_2O(I) \rightarrow HX^+(aq) + OH^-(aq)$$

 The stronger the base, the further the position of the equilibrium lies to right, the higher degree of dissociation.

NaOH (aq)
$$\rightarrow$$
 Na⁺(aq) + OH⁻ (aq)

Strong base completely dissociated in aqueous solution

$$NH_3(aq) + H_2O(I) \longrightarrow NH_4^+(aq) + OH^-(aq)$$

Weak base partially dissociate in aqueous solution.

Example:

STRONG ACIDS	STRONG BASES	
The hydrohalic acids e.g: HCI, HBr and HI	M ₂ O or MOH, where M is group 1 element:	
	Li, Na, K, Rb, Cs	
Oxoacids: the number of O atoms exceeds the number of ionizable protons by two or more. e.g: HNO ₃ and HClO ₄	RO or R(OH) ₂ , where R is Ca, Sr, Ba	

Example:

WEAK ACIDS	WEAK BASES
Hydrohalic acids: HF	Ammonia: NH ₃
Acids in which H not bonded to O or halogen: HCN and H ₂ S	Amine: R-NH ₂ , R ₂ -NH & R ₃ -N such as CH ₃ CH ₂ -NH ₂ & etc
Oxoacids: HCIO, HNO ₂ and H ₃ PO ₄	Hydrazine : N ₂ H ₄
Organic acids (general formula = R – $COOH$): CH_3COOH and C_6H_5COOH	18

рН	рОН	pKw
pH is a measure of the concentration of H+/H ₃ O+ ions in a solution	pOH is a measure of the concentration of OH-ions a solution	pKw is a measure of negative logarithm (-log) of the dissociation or ionisation constant of water.
pH = -log [H+]	pOH = -log [OH-]	$pKw = -log(K_w)$

pH scale: Scale to express acidity/basicity

Neutral solution : pH = 7 ; $[H_3O^+] = [OH^-]$ Acidic solution: pH < 7 ; $[H_3O^+] > [OH^-]$ Basic solution: pH > 7 ; $[H_3O^+] < [OH^-]$

7.1 e) pH Calculation for Strong Acid & Strong Base

Example:

1. Calculate the pH of 0.15 mol dm⁻³ of HCl solution.

2. Calculate the pH of 0.20 M of NaOH solution.

Answer:

Question 1

	HCI(aq) —	→ H⁺(aq)	+ Cl ⁻ (aq)
Initial (M)	0.15	0	0
Final (M)	0	0.15	0.15

pH =
$$- log [H^+]$$

= $- log (0.15)$
= 0.82

Answer:

Question 2

	NaOH(aq) -	— OH⁻(aq)	+ Na ⁺ (aq)
Initial (M)	0.20	0	0
Final (M)	0	0.20	0.20

$$pH + pOH = 14$$

7.1 f) Relationship Between K_a and K_b for Acid-Base Conjugate Pairs

Consider the acid-base conjugate pair of ammonium ion, NH₄+ and ammonia, NH₃.

The dissociation of both species in water is given by,

$$NH_4^+(aq) + H_2O(I) \longrightarrow NH_3(aq) + H_3O^+(aq)$$

$$NH_3(aq) + H_2O(I) \longrightarrow NH_4^+(aq) + OH^-(aq)$$

For ammonium ion, NH₄+ the expression corresponding to K_a is:

$$K_a = \frac{[NH_3][H_3O^+]}{[NH_4^+]}$$

For ammonia, NH₃ the expression corresponding to K_b is :

$$K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$$

Therefore, the product of $K_a \times K_b$ is:

$$-\log K_a + (-\log K_b) = -\log K_w$$

The equation above can be written as,

$$pK_a + pK_b = pK_w = 14$$

The Strengths of Acids And Bases

The strengths of acids and bases can be compared in terms of:

- i. the degree of dissociation (α)
- ii. the dissociation constant (K)

7.1 g) Degree of dissociation (α)

Ability of acids or bases to ionize or dissociate in aqueous solution

$$\alpha = \frac{x}{\text{[initial]}}$$

Example 1:

Calculate the percent dissociation if amount of H+ dissociated in a solution of 0.10 M acetic acid is 1.3 x 10⁻³ M.

ANSWER:

Percent dissociation =
$$\frac{1.3 \times 10^{-3}}{0.10}$$
 x 100%
= 1.3 %

 K_a or K_b value can be used to distinguish the relative acidity strength of weak acid and weak base.

$$\mathbb{K}_a \uparrow (pK_a \downarrow)$$
, [H+] \uparrow , thus pH \downarrow (more acidic)

$$\mathbb{K}_{b} \uparrow (pK_{b} \downarrow)$$
, $[OH^{-}] \uparrow$, thus pH \uparrow (more basic)

Acid	p <i>K</i> _a	Base	p <i>K</i> _b
CH ₃ COOH	4.74	C ₆ H ₅ NH ₂	9.37
НСООН	3.76	NH ₃	4.74

Conclusion:

- ➤ Relative acidity, HCOOH > CH₃COOH
- ➤ Relative basicity, NH₃ > C₆H₅NH₂

EXERCISE 1:

Find the values of [H+] that correspond to each of the following values of pH.

- a) 2.90 (the approximate pH of lemon juice)
- b) 11.61 (the pH of dilute, household ammonia)

Answer:

- a. $1.26 \times 10^{-3} M$
- b. $2.455 \times 10^{-12} M$

Solving Problems Involving Weak Acid & Weak Base Equilibria

Two general types of problems:

1. Equilibrium concentrations

$$rac{1}{2}$$
 find K_a (or K_b)

- 2. K_a (or K_b) and some concentrations information are given.
 - refind the other equilibrium concentrations.

USE *ICE* TABLE

ASSUMPTIONS:

If the formation of H₃O⁺ is very small,
 therefore [H₃O⁺] is negligible

2. A weak acid has a small K_a , $(K_a \le 1.0 \text{ x}10^{-5})$, x = x is very small

$$\mathbf{r} = []_{\text{initial}} - x = []_{\text{initial}}$$

Example 1:

Degree of dissociation of 1.0 M solution of hydrazine, N_2H_4 at 25°C is 3.5%. What is its base dissociation constant, K_b ?

Answer:

% ionization = concentration dissociated
$$(x)$$

of N_2H_4 initial concentration (c)

$$3.5 \% = \frac{x M}{1.0 M} \times 100$$

$$x = 0.035 \text{ M}$$

	$N_2H_{4 (aq)} + H_2O_{(l)} \longrightarrow OH_{(aq)}^- + N_2H_5^+_{(aq)}$			
Initial (M)	1.0	-	0	0
Change (M)	- 0.035	-	+ 0.035	+ 0.035
Equilibrium (M)	1.0 - 0.035	-	0.035	0.035
	= 0.965			

At equilibrium,
$$K_b = [N_2H_5^+][OH^-]$$

 $[N_2H_4]$

$$= (0.035)(0.035) = 1.27 \times 10^{-3}$$

$$(0.965)$$

Example 2:

Calculate the pH of a 0.20 M solution of HCN. $[K_a \text{ for HCN is } 4.90 \times 10^{-10}.]$

Answer:

	HCN _(aq) +	H ₂ O _(I)	≐ H ₃ O+ _(aq) ·	+ CN- _(aq)
Initial (M)	0.2	-	0	0
Change (M)	- x	-	+ x	+ x
Equilibrium (M)	0.2 - <i>x</i>	-	x	x

$$K_a = [H_3O^+][CN^-] = 4.90 \times 10^{-10}$$
[HCN]

$$K_a \ll 1$$

∴ Assume x very small, therefore:

$$0.20 - x \approx 0.20$$

$$4.90 \times 10^{-10} = \frac{(x)(x)}{(0.2)}$$

$$x^2$$
 = (4.9 x 10⁻¹⁰ M) (0.20 M)
 x = 9.9 x 10⁻⁶ M
Therefore,
[H+] = 9.9 x 10⁻⁶ M
pH = -log [H+]
= 5.00

Example 3:

The K_a for formic acid (HCOOH) is 1.8 x 10⁻⁴. What is the pH of a 0.010 M solution of formic acid?

Answer:

	$HCOOH_{(aq)} + H_2O_{(I)} \longrightarrow H_3O^+_{(aq)} + HCOO^{(aq)}$				
Initial (M)	0.01 - 0				
Change (M)	- x	-	+ <i>x</i>	+ x	
Equilibrium (M)	0.01 - <i>x</i>	-	x	x	

At equilibrium,

$$K_a = [H_3O^+][HCOO^-] = 1.8 \times 10^{-4}$$
[HCOOH]

 $K_a >>> 1.0 \times 10^{-5}$

solve the calculation with quadratic equation. 39

$$1.8 \times 10^{-4} = \frac{(x)(x)}{(0.01 - x)}$$

$$x^2 = (1.8 \times 10^{-4}) (0.01 - x)$$

$$x^2 + 1.8x \cdot 10^{-4}x - 1.8x \cdot 10^{-6} = 0$$

$$x_1 = 1.255 \times 10^{-3}$$
 $x_2 = -1.435 \times 10^{-3}$ (neglected)

$$[H^+] = 1.255 \times 10^{-3} M$$

Therefore, pH =
$$-\log [H^+]$$

= $-\log (1.255 \times 10^{-3})$
= 2.90

Example 4:

The base-dissociation constant for ammonia, $NH_{3(aq)}$ is 1.8 x 10^{-5} M. Calculate the concentration of OH^- ion, pH and % dissociation at equilibrium if the initial concentration of NH_3 is 0.15 M.

Answer:

	$NH_{3 (aq)} + H_2O_{(l)} \longrightarrow OH_{(aq)}^- + NH_4^+_{(aq)}$			
Initial (M)	0.15	-	0	0
Change (M)	- x	-	+ x	+ <i>x</i>
Equilibrium (M)	0.15 - <i>x</i>	-	x	x

At equilibrium,

$$K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$$

$$= \frac{(x)(x)}{(0.15 - x)} = 1.80 \times 10^{-5}$$

41

$$K_b \ll 1$$

∴ Assume x very small, therefore:

$$0.15 - x \approx 0.15$$

$$1.80 \times 10^{-5} = \frac{(x)(x)}{(0.15)}$$

$$x^{2} = (1.8 \times 10^{-5} \text{ M}) (0.15 \text{ M})$$

$$x = 1.64 \times 10^{-3} \text{ M}$$
Therefore,
$$[OH^{-}] = 1.64 \times 10^{-3} \text{ M}$$

$$pOH = -log [OH^{-}]$$

$$= 2.79$$

$$pH + pOH = 14$$

$$pH = 14 - 2.79$$

= 11. 21

% dissociation =
$$\frac{1.64 \times 10^{-3}}{0.15} \times 100\%$$

Degree of dissociation, $\alpha = 0.011$

7.1 h) Salt Hydrolysis

Salt is an ionic compound that is formed by the reaction of an acid with a base.

General equation of neutralization:

$$HX + MOH \longrightarrow MX + H_2O$$
 acid base salt water

Hydrolysis is the reaction of cations/anions (or both) from salts with water molecules to produce

H+ or OH-

MX salt dissociation equation:

$$MX \longrightarrow M^+ + X^-$$
 cation anion

Cation Hydrolysis:

$$M^{+}_{(aq)} + H_{2}O_{(I)} \longrightarrow MOH_{(aq)} + H^{+}_{(aq)}$$

Anion Hydrolysis:

$$X^{-}_{(aq)} + H_{2}O_{(l)} \longrightarrow HX_{(aq)} + OH^{-}_{(aq)}$$

Neutral Salt

- * Produced when a strong acid reacts with a strong base.
- Example: Sodium chloride, NaCl

$$HCI_{(aq)} + NaOH_{(aq)} \longrightarrow NaCI_{(aq)} + H_2O_{(l)}$$

strong acid strong base salt

* Dissociation of salt:

$$NaCl_{(aq)} \longrightarrow Na^+_{(aq)} + Cl^-_{(aq)}$$

Neutral Salt

- * Na+ is cation of strong base, NaOH
 - **№** Na⁺ does not hydrolyzed in water

- * Cl- is anion comes from strong acid, HCl
 - Cl-does not hydrolyzed in water

Neutral Salt

So, pH of a solution depends on the autoionization of water

$$H_2O_{(I)} + H_2O_{(I)} = H_3O^+_{(aq)} + OH^-_{(aq)}$$
 $K_w = [H_3O^+] [OH^-]$
 $= 1 \times 10^{-14}$
 $[H^+] = [OH^-] = 1.0 \times 10^{-7} M$
 $\implies pH = 7$

Basic Salt

* Produced from the reaction of weak acid and strong base.

* Example: Sodium ethanoat, CH₃COONa

$$CH_3COONa_{(aq)} \longrightarrow Na^+_{(aq)} + CH_3COO^-_{(aq)}$$

Basic Salt

- * Na+ is cation of strong base, NaOH
 - Na⁺ does not hydrolyzed in water
- * CH₃COO⁻ is conjugate base of weak acid, CH₃COOH
 - **□** CH₃COO is hydrolyzed in water to produce OH

$$CH_3COO_{(aq)}^- + H_2O_{(l)} \rightleftharpoons CH_3COOH_{(aq)}^- + OH_{(aq)}^-$$

The solution is basic because OH formed

Acidic Salt

* Produced from the reaction of strong acid and weak base.

* Example: Ammonium chloride, NH4CI

$$NH_4CI_{(s)} \xrightarrow{H_2O} NH_4^+_{(aq)} + CI^-_{(aq)}$$

Acidic Salt

- * Cl⁻ is anion of strong acid, HCl
 - **□** Cl⁻ does not hydrolyzed in water
- * NH₄+ is conjugate acid of weak base, NH₃
 - **™** NH₄+ is hydrolyzed in water to produce H₃O+

$$NH_{4}^{+}_{(aq)} + H_{2}O_{(l)} = NH_{3(aq)} + H_{3}O^{+}_{(aq)}$$

▶ The solution is acidic because H₃O+ formed

Example 1:

Sodium cyanide, NaCN is a salt formed when a strong base, NaOH is reacted with a weak acid, HCN.

Write a balanced equation to show the reaction between NaOH and HCN. Classify the salt formed.

What would be expected pH of the NaCN solution? Explain the answer using equation(s).

Answer:

- * Na+ is cation of strong base, NaOH
 - Na⁺ does not hydrolyzed in water
- * CN⁻ is conjugate base of weak acid, HCN
 - **□** CN⁻ is hydrolyzed in water to produce OH⁻

$$CN_{(aq)}^{-} + H_2O_{(l)} \longrightarrow HCN_{(aq)} + OH_{(aq)}^{-}$$

The solution is basic because OH⁻ formed

7.1 j) Buffer Solutions

- A solution which has the ability to maintain its pH when a small amount of strong acid or strong base is added to the solution.
- Two types of buffer solutions :
 - i. acidic buffer solution (pH < 7)
 - a solution that contains a weak acid and its salt (or its conjugate base)
 - basic buffer solution (pH > 7)
 - and its salt (or its conjugate acid)

Acidic Buffer Solution

A solution that contains a mixing of weak acid and its salt (or its conjugate base).

Example: CH₃COOH and CH₃COONa.

$$CH_3COONa_{(aq)} \longrightarrow CH_3COO_{(aq)}^- + Na_{(aq)}^+$$
 $CH_3COOH_{(aq)}^- + H_2O_{(I)}^- \longrightarrow H_3O_{(aq)}^+ + CH_3COO_{(aq)}^-$
weak acid conjugate base

7.1 k) How the Acidic Buffer Solution Works?

When a small amount of strong acid is added,

The H⁺ ions will be react with ethanoate ion, CH₃COOto form CH₃COOH.

$$CH_3COO_{(aq)}^- + H_{(aq)}^+ \longrightarrow CH_3COOH_{(aq)}^-$$

- As a result, [CH₃COOH] increases and [CH₃COO-] decreases.
- [H+] & [OH⁻] remains constant.
- Therefore, pH not much affected.

How the Acidic Buffer Solution Works?

When a small amount of strong base is added,

The OH⁻ ions will be neutralized by the acid, CH₃COOH to form CH₃COO⁻ and H₂O.

$$CH_3COOH_{(aq)} + OH_{(aq)}^- \longrightarrow CH_3COO_{(aq)}^- + H_2O_{(l)}$$

- As a result, [CH₃COO⁻] increases and [CH₃COOH] decreases.
- [H⁺] & [OH⁻] remains constant.
- Therefore, pH not much affected.

Basic Buffer Solution

A solution that contains a mixing of weak base and its salt (or its conjugate acid).

Example: NH₃ and NH₄CI

$$NH_4CI_{(aq)} \longrightarrow NH_4^+_{(aq)} + CI_{(aq)}^-$$

$$NH_{3(aq)} + H_2O_{(I)} \longrightarrow NH_4^+_{(aq)} + OH_{(aq)}^-$$

weak base conjugate acid

How the Basic Buffer Solution Works?

When a small amount of strong acid is added,

The H⁺ ions will be consumed by the ammonia, NH₃ to form NH₄⁺ ion.

$$NH_{3(aq)} + H^{+}_{(aq)} \longrightarrow NH_{4}^{+}_{(aq)}$$

- As a result, [NH₄⁺] increases and [NH₃] decreases.
- **□** [H⁺] & [OH⁻] remains constant.
- Therefore, pH not much affected.

How the Basic Buffer Solution Works?

When a small amount of strong base is added,

The OH^- ions will be neutralised by the ammonium ions, NH_4^+ to form NH_3 and H_2O .

$$NH_4^+_{(aq)} + OH^-_{(aq)} \longrightarrow NH_{3(aq)} + H_2O_{(l)}$$

As a result, $[NH_3]$ increases and $[NH_4^+]$ decreases.

[H⁺] & [OH⁻] remains constant.

Therefore, pH not much affected.

7.1 l) Henderson-Hasselbalch Equation & Its Application

Acidic Buffer Solution

Example: CH₃COOH and CH₃COONa.

F Equations:

$$CH_3COONa_{(aq)} \longrightarrow CH_3COO_{(aq)}^- + Na_{(aq)}^+$$
 $CH_3COOH_{(aq)}^- + H_2O_{(I)}^- \longrightarrow H_3O_{(aq)}^+ + CH_3COO_{(aq)}^-$
weak acid
 $conjugate base$

Henderson-Hasselbalch equation : salt

Acidic Buffer Solution

From the equations:
$$K_a = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]}$$

Henderson-Hasselbalch equation for acidic buffer solution:

$$pH = pK_a + log [CH_3COO^-]$$

$$[CH_3COOH]$$

$$pK_a = - log K_a$$

Example 1:

A buffer solution is prepared by adding 2.00 g of benzoic acid, $C_6H_5COOH \& 2.00$ g sodium benzoate, C_6H_5COONa in enough water to make 1.00 L solution.

$$(K_a (C_6 H_5 COOH) = 6.3 \times 10^{-5} M)$$

- (i) Write its Henderson-Hasselbalch equation.
- (ii) Calculate the pH of a solution.

Answer:

weak acid

$$C_6H_5COONa_{(aq)} \longrightarrow C_6H_5COO_{(aq)}^- + Na_{(aq)}^+$$
 $C_6H_5COOH_{(aq)}^- + H_2O_{(l)}^- \longrightarrow C_6H_5COO_{(aq)}^- + H_3O_{(aq)}^+$

conjugate base

∴ Henderson-Hasselbalch equation :

$$pH = pK_a + log [C_6H_5COO^-]$$
$$[C_6H_5COOH]$$

Mol
$$C_6H_5COOH = 2.00 g = 1.64 x 10^{-2} mol 122.1 g mol^{-1}$$

$$[C_6H_5COOH] = 1.64 \times 10^{-2} \text{ mol} = 1.64 \times 10^{-2} \text{ M}$$

1.00 L

Mol
$$C_6H_5COO^- = 2.00 \text{ g} = 1.39 \text{ x } 10^{-2} \text{ mol}$$

 144 g mol^{-1}

$$[C_6H_5COO^-] = 1.39 \times 10^{-2} \text{ mol} = 1.39 \times 10^{-2} \text{ M}$$

1.00 L

pH = pK_a + log
$$[C_6H_5COO^-]$$

 $[C_6H_5COOH]$

pH =
$$-\log 6.3 \times 10^{-5} + \log \frac{1.39 \times 10^{-2}}{1.64 \times 10^{-2}}$$

= 4.13

Example 2:

A buffer solution is prepared by dissolving 0.025 mol CH₃COONa in 250 cm³ aqueous solution of CH₃COOH (0.10 mol dm⁻³). Calculate the pH of the buffer solution.

 $K_a (CH_3COOH) = 1.74 \times 10^{-5} \text{ moldm}^{-3}$

(Assume addition of CH₃COONa does not change the volume of solution)

Answer:

$$\begin{array}{lll} \text{CH}_{3}\text{COOH}_{(aq)} + \text{H}_{2}\text{O}_{(l)} & \Longrightarrow & \text{CH}_{3}\text{COO}^{-}_{(aq)} + \text{H}_{3}\text{O}^{+}_{(aq)} \\ & \text{weak acid} & & \text{conjugate base} & & \text{CH}_{3}\text{COONa}_{(aq)} + \text{Na}^{+}_{(aq)} \\ & \text{CH}_{3}\text{COONa}_{(aq)} & \longrightarrow & \text{CH}_{3}\text{COO}^{-}_{(aq)} + \text{Na}^{+}_{(aq)} \\ & & [\text{CH}_{3}\text{COO}^{-}] & = & 0.10 \text{ mol dm}^{-3} \\ & \text{pH} & = & \text{pK}_{a} + \log \underbrace{[\text{CH}_{3}\text{COO}^{-}]}_{[\text{CH}_{3}\text{COOH}]} \\ & = & - \log (1.74 \times 10^{-5}) + \log \underbrace{0.10}_{0.10} \\ & = & 4.76 \end{array}$$

73

Basic Buffer Solution

☞ Example : NH₃ and NH₄CI

☞ Equations:

$$NH_4CI_{(aq)} \longrightarrow NH_4^+_{(aq)} + CI^-_{(aq)}$$

$$NH_{3(aq)} + H_2O_{(l)} \longrightarrow NH_4^+_{(aq)} + OH_{(aq)}^-$$

weak base conjugate acid

Henderson-Hasselbalch equation :

Basic Buffer Solution

From the equations :
$$K_b = [NH_4^+][OH^-]$$

$$[NH_3]$$

: Henderson-Hasselbalch equation for basic buffer solution:

$$pOH = pK_b + log [NH_4^+]$$

$$[NH_3]$$

$$pK_b = - log K_b$$

Example 3:

A buffer solution is prepared by mixing 500 mL 0.1 M hydrazinium chloride, N_2H_5CI with 500 mL 0.2 M hydrazine, N_2H_4 . ($K_b = 1.7 \times 10^{-7}$)

- (i) Write its Henderson-Hasselbalch equation.
- (ii) Calculate the pH of a solution.

Answer:

Equations:

$$N_2H_5CI_{(aq)} \longrightarrow N_2H_5^+_{(aq)} + CI_{(aq)}^-$$

$$N_2H_{4(aq)} + H_2O_{(I)} \longrightarrow N_2H_5^+_{(aq)} + OH_{(aq)}^-$$

weak base conjugate acid

∴ Henderson-Hasselbalch equation :

$$pOH = pK_b + log [N_2H_5^+]$$

 $[N_2H_4]$

Answer:

$$= 0.05 M$$

No. of moles of
$$N_2H_4 = \frac{500 \text{ mL } \times 0.2 \text{ M}}{1000} = 0.1 \text{ mol}$$

$$[N_2H_4] = \frac{0.1}{(0.50 + 0.50)} = 0.1 \text{ M}$$

$$pOH = pK_b + log [N_2H_5^+] / [N_2H_4]$$

$$pOH = -log (1.7 \times 10^{-7}) + log 0.05 / 0.1$$

$$= 6.47$$

7.1 m) Calculation pH of buffer solution before and after the addition of strong acid or base

Example 4:

Calculate the change in pH when 1.00 cm³ of 1.00 M NaOH is added to a 1.00 dm³ buffer solution which contains a mixture of 0.10 M, CH_3COOH and 0.10 M CH_3COON a (p $K_aCH_3COOH = 4.750$)

Answer:

pH before addition of NaOH

$$pH = pK_a + log \frac{[CH_3COO^-]}{[CH_3COOH]}$$

$$= 4.750 + \log \frac{0.10}{0.10}$$

= 4.75

pH after addition of NaOH

No. of moles of OH⁻ ions in =
$$\frac{1.0 \times 1.0}{1.0 \text{ cm}^3 \text{ of } 1.0 \text{ mol dm}^{-3} \text{ NaOH}}$$
 = $1 \times 10^{-3} \text{ mol}$

No. of moles of $CH_3COOH = 0.1 \times 1.0 = 0.1 \text{ mol}$

No. of moles of $CH_3COO^- = 0.1 \times 1.0 = 0.1 \text{ mol}$

Final volume of buffer = 1.001 dm^3

Buffer action:

$CH_3COOH_{(aq)} + OH_{(aq)}^- \longrightarrow CH_3COO_{(aq)}^- + H_2O_{(l)}$				
(mol) _{initial}	0.100	1 x 10 ⁻³	0.100	-
(mol) _{change}	-1 x 10 ⁻³	- 1 x 10 ⁻³	+ 1 x 10 ⁻³	ı
(mol) _{equilibrium}	0.099	0	0.101	-

$$[CH_{3}COOH]_{new} = \underbrace{0.099}_{1.001} \qquad [CH_{3}COO^{-}]_{new} = \underbrace{0.101}_{1.001}$$

$$= 0.0989 \text{ M} \qquad = 0.1009 \text{ M}$$

$$pH = pK_{a} + log \underbrace{[CH_{3}COO^{-}]}_{[CH_{3}COOH]}$$

$$= 4.750 + log \frac{0.1009}{0.0989} = 4.75$$

Change in pH = 4.76 - 4.75 = 0.01 (small increase in pH)

Example 5:

A solution is made by mixing 500.00 cm³ of 2.00 M butanoic acid with 500.00 cm³ of 0.50 M sodium butanoate. Calculate the change in pH when 1.00 cm³ of 0.50 M HCl is added to 1.00 dm³ of the buffer solution. K_a for butanoic acid is 1.5 x 10⁻⁵.

Answer:

pH before addition of HCI

Mol
$$CH_3CH_2COOH = \frac{2.0 \times 500}{1000} = 1.00 \text{ mol}$$

Mol
$$CH_3CH_2CH_2COO^- = \frac{0.5 \times 500}{1000} = 0.25 \text{ mol}$$

volume of buffer solution = $500+500 = 1000 \text{ cm}^3 = 1 \text{ L}$

$$[CH_3CH_2COOH] = 1.00 = 1.00 M$$

$$[CH_3CH_2COO^-] = 0.25 = 0.25 M$$

1.00

pH before the addition of HCI

= 4.2218

pH = pK_a + log [CH₃CH₂CH₂COO⁻]
[CH₃CH₂CH₂COOH]
= - log (1.50 x
$$10^{-5}$$
) + log 0.25
1.00

pH after the addition of HCI

No. of moles of HCI added =
$$0.5 \times 1.00$$

1000

 $= 5.0 \times 10^{-4} \text{ mol}$

Final volume of buffer =
$$1000 + 1.00 = 1001 \text{ cm}^3$$

= 1.001 L

Buffer action:

	CH ₃ CH ₂ CH ₂ COO-(aq) +	$H^+_{(aq)} \longrightarrow CH_3$	CH ₂ CH ₂ COOH _(aq)
(mol) _{initial}	0.250	5 x 10 ⁻⁴	1.000
(mol) _{change}	- 5 x 10 ⁻⁴	- 5 x 10 ⁻⁴	+ 5 x 10 ⁻⁴
(mol) _{final}	0.2495	0	1.0005

$$[CH_3CH_2COO^-]_{new} = 0.2495 = 0.2493 M$$

1.001

$$[CH_3CH_2COOH]_{new} = \frac{1.0005}{1.001} = 0.9995 M$$

pH =
$$pK_a + log [CH_3CH_2CH_2COO^-]$$

[CH_3CH_2CH_2COOH]

$$= 4.824 + \log \frac{0.2493}{0.9995} = 4.2209$$

Change in pH = 4.2218 - 4.2209 = 0.0009 (small decrease in pH)

Example 6:

- A buffer solution is prepared by mixing 400 mL of 1.50 M NH₄Cl solution with 600 mL of 0.10 M NH₃.
- (a) Calculate the pH of the buffer solution.
- (b) Calculate the pH of the buffer solution after the addition of
 - (i) 0.015 mol NaOH
 - (ii) 0.011 mol HCl
- (Assume that the volume of the solution does not change when HCl and NaOH is added)

[
$$K_b$$
 for $NH_3 = 1.8 \times 10^{-5}$]

Answer:

(a) pH of the buffer solution

$$Mol NH_3 = \frac{0.1 \times 600}{1000} = 0.06 \text{ mol}$$

$$Mol NH4+ = $\frac{1.5 \times 400}{1000} = 0.6 \text{ mol}$$$

volume of buffer solution = $600+400 = 1000 \text{ cm}^3 = 1.00 \text{ L}$

$$[NH_3] = 0.06 = 0.06 M$$

$$[NH_4^+] = 0.6 = 0.6 M$$

pOH = pK_b + log
$$\frac{[NH_4^+]}{[NH_3]}$$

= - log (1.8 x 10⁻⁵) + log $\frac{0.6}{0.06}$
= 5.74
pH + pOH = 14
pH = 14- 5.74
= 8.26

b) (i) pH of the buffer solution after the addition of 0.015 mol NaOH

	NH ₄ ⁺ (aq) +	OH⁻ _(aq) →	NH _{3(aq)} +	H ₂ O _(/)
(mol) _{initial}	0.60	0.015	0.06	-
(mol) _{change}	- 0.015	- 0.015	+ 0.015	•
(mol) _{equilibrium}	0.585	0	0.075	-

$$[NH_3]_{\text{new}} = \frac{0.075}{1 \text{ L}} [NH_4^+]_{\text{new}} = \frac{0.585}{1 \text{ L}}$$

$$= 0.075 \text{ M} = 0.585 \text{ M}$$

$$pOH = pK_b + log [NH_4^+] [NH_3]$$

$$= -log (1.8 \times 10^{-5}) + log \frac{0.585}{0.075} = 5.64$$

$$pH + pOH = 14$$

$$pH = 14 - 5.64 = 8.36$$

b) (ii) pH of the buffer solution after the addition of 0.011 mol HCl

	NH _{3(aq)} +	H+ _(aq) —	\rightarrow NH ₄ ⁺ (aq)
(mol) _{initial}	0.06	0.011	0.60
(mol) _{change}	- 0.011	- 0.011	+ 0.011
(mol) _{final}	0.049	0	0.611

$$[NH_3]_{new} = 0.049$$
 $[NH_4^+]_{new} = 0.611$ $1L$ $= 0.049 M$ $= 0.611 M$

= - log (1.8 x
$$10^{-5}$$
) + log $\frac{0.611}{0.049}$ = 5.84
pH + pOH = 14
pH = 14- 5.84 = 8.16

Exercise:

A solution is prepared by mixing 100 cm³ aqueous NH_3 (0.1M) with 100 cm³ NH_4CI (1.0 M). Calculate the pH of the solution before and after the addition of 1 cm³ HCl (0.1 M). Comment on the result.

$$(K_b NH_3 = 1.74 \times 10^{-5} M)$$

Answer:

Before pH = 8.24After pH = 8.24

7.2 ACID-BASE TITRATION

TITRATION

Method for determining the concentration of an unknown solution by using another solution of known concentration (standard solution)

TITRANT

Standard solution is a solution of accurately known concentration

ANALYTE

The solution with unknown concentration

INDICATOR

A weak organic acid that has different color than it conjugate base and color changes occurring over a specific and relatively narrow pH range.

EQUIVALENT POINT

The point where the mole of acid and base is stoichiometrically equivalent @ mole of H+ equals to mole of OH- (no more acid or base left in the solution)

END POINT

The point where an indicator changes color

Burette: (contains titrant)

Concentration of solution inside:

known Example: NaOH(aq)

Indicator: (Example:

phenolphthalein)

Conical flask: (contains analyte)
Concentration of solution inside:

Concentration of Solution inside:

unknown Example: CH₃COOH(aq)

Acid-Base Titration Curve

A plot of the pH of a solution of acid (or base) versus the volume of base (or acid) added to the solution

TYPES OF TITRATION CURVE

- Strong Acid-Strong Base
- Weak Acid-Strong Base

Strong Acid-Weak Base

weak acid-weak base titration not normally done because the equivalence point cannot be accurately observed.

How to Sketch a Titration Curve

- 1. Calculate the initial pH of an analyte (solution in the conical flask).
- 2. Determine the equivalence point : the volume and its pH.
- 3. Identify type of pH jump (steep portion)
- 4. Identify the final pH.
 - * depends on the [titrant] (solution in the burette).

pH Jump (Steep Portion / Sharp Portion)

* depends on the type of the titration

Туре	pH jump
strong acid – strong base	3 – 11
strong acid – weak base	3 – 7
weak acid – strong base	7 – 11

Strong Acid-Strong Base Titration Curve

Description:

- 1 HCl as a strong acid. pH = $log [H_3O^+]$
- NaOH is added. It makes [H₃O+] decreases. pH increases.
- **3** pH jump is 3-11
- 4 Equivalent point. Mole of H+ equals to mole of OH-.
 Neutral salt formed. pH = 7
- **5** Beyond equivalent point. pH increases slowly as excess OH⁻ added.
- 6 pH approaching 13.

Strong Acid-Weak Base Titration Curve

Description:

- 1 HCl as a strong acid. pH = $log [H_3O^+]$
- 2 NH₃ is added. It makes [H₃O⁺] decreases. pH increases.
- **3** pH jump is 3-7
- 4 Equivalent point. Mole of H⁺ equals to mole of OH⁻. Acidic salt formed. pH < 7</p>
- Beyond equivalent point. pH increases slowly as excess OH⁻ added.
- 6 pH approaching 11.

Strong Base-Weak Acid Titration Curve

Description:

- CH₃COOH as a weak acid partially dissociate. The pH is about 2.8.
- NaOH is added. It makes [H₃O+] decreases. pH increases.
- **3** pH jump is 7-11
- 4 Equivalent point. Mole of H+ equals to mole of OH-. Basic salt formed. pH > 7
- **5** Beyond equivalent point. pH increases slowly as excess OH⁻ added.
- 6 pH approaching 13.

Keep in mind!

 At the midpoint of the buffer region, [base] = [acid], so the pH equals the pK_a

pH = p
$$K_a$$
 + log $\left(\frac{[base]}{[acid]}\right)$
pH = p K_a + log 1 = p K_a + 0
= p K_a

In fact, observing the pH at the midpoint of the buffer region is a common experimental method for estimating the pK_a of an unknown acid

pH Calculation for Acid Base Titrations

Example 1:

Sketch the titration curve of 25.0 mL 0.10 M HCI with 0.10 M NaOH.

Step 1:

Analyte is a strong acid,

HCI – dissociates completely

HCI(aq)
$$\longrightarrow$$
 H⁺(aq) + CI⁻(aq)
[H⁺] = [HCI] = 0.10 M
pH = - log [H⁺]
= 1.0

Step 2 : At equivalence point

$$HCI(aq) + NaOH(aq) \longrightarrow NaCI(aq) + H2O(I)$$

pH at equivalence:

- the solution is NaCl (aq)
- both Na⁺ and Cl⁻ do not hydrolyse
- therefore pH = 7.0

Volume equivalence:

$$n_{HCI} = n_{NaOH}$$

$$M_{HCI} V_{HCI} = M_{NaOH} V_{naOH}$$

$$V_{NaOH} = 0.10 \times 25 = 25 \text{ mL}$$

Step 3:

pH jump: 3 – 11 (strong acid-strong base)

Step 4:

Titrant is a strong base, NaOH.

NaOH (aq)
$$\longrightarrow$$
 Na⁺ (aq) + OH⁻ (aq)
[OH-] = [NaOH] = 0.10 M
pOH = -log 0.10 = 1
pH = 14-1
= 13

Final point approaching pH < 13.

Sketch a titration curve

Example 2:

Sketch the titration curve of 25.0 mL 0.10 M NH_3 and 0.10 M HCI.

Step 1 : Analyte is a weak base, NH₃

NH₃ (aq) + H₂O(I)
$$\Longrightarrow$$
 NH₄+ (aq) + OH- (aq)
[OH-] = [x] = ?
1.8 x 10-5 = x^2
0.10-x
[x] = [OH-] = 1.3 x 10-3 M
pOH= - log(1.3 x 10-3)
= 2.90
pH= 14 - 2.90
= 11.10

Step 2 : At equivalence point

$$HCI_{(aq)} + NH_{3 (aq)} \longrightarrow NH_4CI_{(aq)}$$

pH at equivalence

- the solution is NH₄Cl (aq)
- only NH₄+ hydrolyses to form H₃O+
- therefore pH < 7.0

Volume at equivalence

$$n NH_3 = n HCI$$
 $M_{NH3} V_{NH3} = M_{HCI} V_{HCI}$

$$\frac{M_{\text{NH3}} V_{\text{NH3}} = 1}{M_{\text{HCI}} V_{\text{HCI}} 1}$$

VHCI =
$$0.10 \times 25.0 = 25 \text{ mL}$$

0.10

Step 3:

Type of titration: strong acid-weak base

pH jump : 3 – 7

Step 4:

Titrant is a strong acid, HCI.

Final point approaching pH < 2

Sketch a titration curve

Example 3:

Sketch the titration curve of 25.0 mL 0.10 M CH₃COOH and 0.10 M NaOH.

Step 1: Analyte is a weak acid, CH₃COOH

CH₃COOH (aq) + H₂O(I)
$$\implies$$
 CH₃COO⁻ (aq) + H₃O⁺ (aq)
[H₃O⁺] = [x] = ?

1.8 x 10⁻⁵ =
$$x^2$$
 0.10-x

$$[x] = [H3O+] = 1.3 x 10-3 M$$

$$pH = -log(1.3 \times 10^{-3}) = 2.90$$

Step 2: At equivalence point

$$CH_3COOH(aq) + NaOH(aq) \longrightarrow CH_3COONa(aq) + H_2O(I)$$

- pH equivalence
 - the solution is CH₃COONa (aq)
 - CH₃COO⁻ hydrolyses to form OH⁻
 - therefore pH >7.0
- Volume equivalence

$$n CH_3COOH = n NaOH$$

$$V_{NaOH} = 0.10 \times 25.0 = 25 \text{ mL}$$

0.10

Step 3:

Type of titration: weak acid-strong base

pH jump: 7 - 11

Step 4:

Titrant is a strong base, NaOH.

Final point approaching pH < 13

Sketch a titration curve

7.2 e) Acid-base Titration Indicator

- Acid-base indicator is a weak organic acid that changes colour according to the concentration of hydrogen ions in the solution to which the indicator is added.
- The indicators can change colour because their ions have colours that are different from the undissociated molecule.

Some Common Acid-Base Indicators

	Color		
Indicator	In Acid	In Base	pH Range*
Thymol blue	Red	Yellow	1.2–2.8
Bromophenol blue	Yellow	Bluish purple	3.0-4.6
Methyl orange	Orange	Yellow	3.1-4.4
Methyl red	Red	Yellow	4.2-6.3
Chlorophenol blue	Yellow	Red	4.8-6.4
Bromothymol blue	Yellow	Blue	6.0-7.6
Cresol red	Yellow	Red	7.2-8.8
Phenolphthalein	Colorless	Reddish pink	8.3–10.0

^{*} The pH range is defined as the range over which the indicator changes from the acid color to the base color.

129

pH Ranges for Different Type of Titrations

Type of titrations	End point of pH Range	Suitable Indicators
strong acid- strong base	3 -11	any indicator (except thymol blue)
weak acid- strong base	7 - 11	phenolpthalein, cresol red
strong acid- weak base	3 - 7	methyl orange, methyl red, bromophenol blue, chlorophenol blue

EXAMPLE

What indicator would be suitable for the titration of each of these:

- (a) NaOH with HCIO₄
- (b) CH₃COOH with KOH
- (c) NH₃ solution with HBr

Explain your choices.

ANSWER

- (a) NaOH (strong base) with HCIO₄ (strong acid)
 Suitable indicator: bromothymol blue
- (b) CH₃COOH (weak acid) with KOH (strong base)
 Suitable indicator: phenolphthalein
- (c) NH₃ (weak base) solution with HBr (strong acid)
 Suitable indicator: methyl red

Reason:

All indicators are chosen because the equivalence points are within the range of the pH color changes.

7.3 SOLUBILITY EQUILIBRIA

7.3 a) SALT SOLUBILITY

- Some salts are soluble but many are insoluble or slightly soluble in water.
- * The solubility of a salt is the amount of solid that dissolved in a known value of saturated solution.
- * The unit of solubility used may be gL-1 or molL-1

Solubility (s)

- Mass of solute (g) dissolved in 1 L of a saturated solution.
- Unit : g/L

Molar solubility (s)

- Moles of solute dissolved in L of a saturated solution.
- Unit: mol/L

Solubility product (K_{sp})

 Is the product of the molar concentrations of the constituent ions, each raised to the power of its stoichiometric coefficient in the equilibrium equation.

EXAMPLE 1:

Write the ion-product (K_{sp}) expression for each of the following:

- (a) Silver carbonate
- (a) Barium fluoride
- (a) Copper(II) sulfide
- (d) Iron(III) hydroxide

ANSWER

(a) Silver carbonate

$$Ag_2CO_3(s) \Longrightarrow 2Ag^+(aq) + CO_3^{2-}(aq)$$

$$K_{sp} = [Ag^+]^2 [CO_3^{2-}]$$

(b) Barium fluoride

$$BaF_{2}(s) \Longrightarrow Ba^{2+}(aq) + 2F^{-}(aq)$$
 $K_{sp} = [Ba^{2+}] [F^{-}]^{2}$

(c) Copper(II) sulfide

CuS(s)
$$\Longrightarrow$$
 Cu²⁺(aq) + S²⁻(aq)
 $K_{sp} = [Cu^{2+}][S^{2-}]$

(d) Iron(III) hydroxide

Fe(OH)₃(s)
$$\Longrightarrow$$
 Fe³⁺(aq) + 3OH⁻(aq)
 $K_{sp} = [Fe^{3+}] [OH^{-}]^{3}$

EXAMPLE 2:

Write solubility equilibrium equations that are described by the following K_{sp} expressions.

For example, $K_{sp} = [Ag^+][CI^-]$ represent as

AgCl(s)
$$\longrightarrow$$
 Ag⁺(aq) + Cl⁻(aq).

(a)
$$K_{sp} = [Ag^+]^2[SO_4^{2-}]$$

(a)
$$K_{sp} = [Ni^{2+}]^3 [PO_4^{3-}]^2$$

ANSWER

(a)
$$K_{sp} = [Ag^+]^2 [SO_4^{2-}]$$

$$Ag_2SO_4(s) \Longrightarrow 2Ag^+(aq) + SO_4^{2-}(aq)$$

(b)
$$K_{sp} = [Ni^{2+}]^3 [PO_4^{3-}]^2$$

$$Ni_3(PO_4)_2(s) \implies 3Ni^{2+}(aq) + 2PO_4^{3-}(aq)$$

K_{sp} AND SOLUBILITY

- The higher the K_{sp} , the greater the solubility.
- The higher the temperature, the greater the K_{sp}

EXAMPLE:

$$MgCO_3(s) \iff Mg^{2+}(aq) + CO_3^{2-}(aq) \qquad K_{sp} = 3.5 \times 10^{-8}$$

PbSO₄(s)
$$\Longrightarrow$$
 Pb²⁺(aq) + SO₄²⁻(aq) $K_{sp} = 1.6 \times 10^{-8}$

MgCO₃ is more soluble than PbSO₄

7.3 b) SOLVING PROBLEMS INVOLVING $K_{\rm sp}$

Two general types of problems:

- Determining K_{sp} from solubility (g/L) or molar solubility (mol/L)
- Determining solubility or molar solubility from K_{sp}

USE *ICE* TABLE

EXAMPLE 3:

A particular saturated solution of PbI₂ has $[Pb^{2+}] = 5.0 \times 10^{-3} \text{ M}$ and $[I^{-}] = 1.3 \times 10^{-3} \text{ M}$.

- (a) What is the value of K_{sp} for Pbl_2 ?
- (b) What is [I⁻] in a saturated solution of PbI₂ that has [Pb²⁺] = 2.5 x 10^{-4} M?
- (c) What is $[Pb^{2+}]$ in a saturated solution has $[I^{-}] = 2.5 \times 10^{-4} \text{ M}$?

ANSWER

(a)
$$[Pb^{2+}] = 5.0 \times 10^{-3} \text{ M}$$
 $[I^-] = 1.3 \times 10^{-3} \text{ M}$ K_{sp} of $PbI_2 = ?$
 $PbI_2(s) \Longrightarrow Pb^{2+}(aq) + 2I^-(aq)$
 $K_{sp} = [Pb^{2+}] [I^-]^2$
 $= (5.0 \times 10^{-3}) \times (1.3 \times 10^{-3})^2$
 $= 8.5 \times 10^{-9}$

(b)
$$[Pb^{2+}] = 2.5 \times 10^{-4} M [I^{-}] = ?$$

$$Pbl_{2}(s) \Longrightarrow Pb^{2+}(aq) + 2l^{-}(aq)$$
 $K_{sp} = [Pb^{2+}][l^{-}]^{2}$

$$[I^-]^2 = \frac{K_{\rm sp}}{[Pb^{2+}]} = \frac{8.5 \times 10^{-9}}{(2.5 \times 10^{-4})}$$

$$[I^{-}] = 5.8 \times 10^{-3} M$$

(c)
$$[I^-] = 2.5 \times 10^{-4} M$$
 $[Pb^{2+}] = ?$

$$Pbl_{2}(s) = Pb^{2+}(aq) + 2l^{-}(aq)$$
 $K_{sp} = [Pb^{2+}][l^{-}]^{2}$

[Pb²⁺] =
$$\frac{K_{sp}}{[I^-]^2}$$
 = $\frac{8.5 \times 10^{-9}}{(2.5 \times 10^{-4})^2}$

$$[Pb^{2+}] = 0.136 M$$

EXAMPLE 4:

The molar solubility of AgBr is 7.1 x 10^{-7} M at 25° C. Calculate K_{sp} for AgBr at this temperature.

ANSWER

AgBr(s)
$$\longrightarrow$$
 Ag+(aq) + Br-(aq)
 $[]_i(M)$ - 0 + s + s
 $[]_{eq}(M)$ - s s

$$K_{sp} = [Ag^{+}][Br^{-}]$$

$$= (s) \times (s)$$

$$= s^{2} = (7.1 \times 10^{-7})^{2}$$

$$= 5.0 \times 10^{-13}$$

EXAMPLE 5:

The solubility of calcium sulphate is found experimentally to be 0.67 g/L.

Calculate the value of $K_{\rm sp}$ for calcium sulphate.

(Molar mass of $CaSO_4 = 136.2 \text{ g/mol}$)

ANSWER

Convert solubility (g/L) to molar solubility (mol/L (M)):

$$\frac{0.67 \text{ g CaSO}_4}{1 \text{ L solution}} \times \frac{1 \text{ mol CaSO}_4}{136.2 \text{ g CaSO}_4}$$

- $= 4.9 \times 10^{-3} \text{ mol/L}$
- $= 4.9 \times 10^{-3} M$

CaSO₄(s)
$$\Longrightarrow$$
 Ca²⁺(aq) + SO₄²⁻(aq)

[]_i (M) - 0 + s + s

[]_{eq} (M) - s s

$$K_{sp} = [Ca^{2+}][SO_4^{2-}]$$

$$= (s) \times (s)$$

$$= s^2 = (4.9 \times 10^{-3})^2$$

$$= 2.4 \times 10^{-5}$$

EXAMPLE 6:

Calculate the molar solubility of PbCl₂.

$$K_{\rm sp} = 1.6 \times 10^{-5}$$

$$K_{sp} = [Pb^{2+}] [Cl^{-}]^{2}$$

= (s) x (2s)²
= 4s³ = 1.6 x 10⁻⁵

 $s = 1.6 \times 10^{-2} M$

So, the molar solubility of PbCl₂ = $1.6 \times 10^{-2} M_{154}$

7.3 c) PREDICTING PRECIPITATION OF THE IONIC COMPOUNDS

- Precipitate is an insoluble solid formed in and separates from the solution
- K_{sp} values can be used to make general prediction concerning precipitation reactions.
- To predict whether a precipitate will form, the ion- product, Q is compared with K_{sp.}
- Q has the same expression as K_{sp} but the concentrations values are taken at any given time.

$$Q = K_{sp}$$

- Saturated solution formed
- System is in equilibrium

$$Q > K_{\rm sp}$$

- Solution is supersaturated
- Reaction proceeds from right to left
- Precipitate will formed until the ionic concentration product of the system equals the $K_{sp}(Q = K_{sp})$

$$Q < K_{\rm sp}$$

Reaction proceeds from left to right Solution is unsaturated and no precipitate formed

EXAMPLE 7:

Will a precipitate of $CaSO_4$ form in a solution if the Ca^{2+} concentration is 0.0025 M and the SO_4^{2-} concentration is 0.030 M? (K_{sp} of $CaSO_4 = 2.4 \times 10^{-5}$)

CaSO₄(s)
$$\Longrightarrow$$
 Ca²⁺(aq) + SO₄²⁻(aq)
 $K_{sp} = [Ca^{2+}][SO_4^{2-}] = 2.4 \times 10^{-5}$
[Ca²⁺] = 0.0025 M
[SO₄²⁻] = 0.030 M

$$Q = [Ca^{2+}][SO_4^{2-}]$$

= (0.0025)x(0.030) = 7.5 x 10⁻⁵
 $Q > K_{sp}$
So, CaSO₄ will precipitate until $Q = K_{sp}$

EXAMPLE 8:

Does a precipitate form when 0.100 L of 0.30 M Ca(NO₃)₂ is mixed with 0.200 L of 0.060 M NaF? $K_{\rm sp}$ of CaF₂ = 3.2 x 10⁻¹¹

$$Ca(NO_3)_2(aq) + 2NaF(aq) \rightleftharpoons 2 NaNO_3(aq) + CaF_2(s)$$

Ions present: Ca²⁺, NO₃⁻, Na⁺, F⁻

Possible precipitate = CaF_2

$$CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2F^{-}(aq)$$

$$K_{\rm sp} = [Ca^{2+}][F^{-}]^2$$

= 3.2 x 10⁻¹¹

Mol of $Ca(NO_3)_2$

- = Molarity x volume of solution
- $= 0.30 \text{ mol/L} \times 0.100 \text{ L}$
- $= 0.030 \text{ mol Ca(NO}_3)_2$

Total volume when Ca(NO₃)₂ mix with NaF

- = 0.100 L + 0.200 L
- = 0.300 L

Molarity of Ca(NO₃)₂ solution =
$$\frac{0.030 \text{ mol Ca(NO3)}_2}{0.300 \text{ L}}$$
$$= 0.100 M$$

$$Ca(NO_3)_2(aq) \rightarrow Ca^{2+}(aq) + 2NO_3^{-}(aq)$$

0.100 M 0.100 M

$$[Ca^{2+}] = 0.100 M$$

Mol of NaF = Molarity x Volume of solution

 $= 0.060 \text{ mol/L} \times 0.200 \text{ L}$

= 0.012 mol NaF

Total volume when Ca(NO₃)₂ mix with NaF

= 0.100 L + 0.200 L

= 0.300 L

Molarity of NaF solution =
$$\frac{0.012 \text{ mol NaF}}{0.300 \text{ L}}$$
$$= 0.040 M$$

NaF(
$$aq$$
) \rightarrow Na²⁺(aq) + F⁻(aq)
0.040 M 0.040 M

$$[F^{-}] = 0.040 M$$

$$[Ca^{2+}] = 0.100 M$$

 $[F^{-}] = 0.040 M$

$$Q = [Ca^{2+}][F^{-}]^{2}$$

$$= (0.100) \times (0.040)^{2}$$

$$= 1.6 \times 10^{-4}$$

So, CaF_2 will precipitate until $Q = K_{sp}$

7.3 d) COMMON ION EFFECT

Shift of equilibrium caused by addition or the presence of a compound having an ion in common with the dissolved substance

EXAMPLE:

PbCrO₄(s)
$$\Longrightarrow$$
 Pb²⁺(aq) + CrO₄²⁻(aq)

Common ion: CrO₄²⁻

Presence of a common ion decreases solubility of slightly soluble ionic compound

EXAMPLE: Addition of Na₂CrO₄ (soluble salt) to saturated solution of PbCrO₄

PbCrO₄(s)
$$\Longrightarrow$$
 Pb²⁺(aq) + CrO₄²⁻(aq)
$$K_{sp} = [Pb^{2+}] [CrO_4^{2-}]$$
= 2.3 x 10⁻¹³

EXAMPLE:

PbCrO₄(s)
$$\Longrightarrow$$
 Pb²⁺(aq) + CrO₄²⁻(aq)

- Effect of the addition of common ion CrO_4^{2-} :
- [CrO₄^{2−}] increase
- Position of equilibrium will shift to the left. Some CrO_4^{2-} combine with Pb^{2+} to form solid $PbCrO_4$
- Solubility of PbCrO₄ decrease

EXAMPLE 9:

What is the solubility (in M) of Ca(OH)₂ in 0.10 M Ca(NO₃)₂ ?

$$K_{\rm sp}$$
 of Ca(OH)₂ = 6.5 x 10⁻⁶

$$Ca(OH)_2(s) \Longrightarrow Ca^{2+}(aq) + 2OH^{-}(aq)$$
[]_i (M) - 0.10 0
 $\triangle(M)$ - + s + 2s
[]_{eq} (M) - 0.1 + s 2s

Assume s is very small
$$\sim 0.1 + s \approx 0.1$$

$$K_{sp} = [Ca^{2+}][OH^{-}]^{2}$$

$$= (0.1) \times (2s)^{2}$$

$$= 0.4s^{2} = 6.5 \times 10^{-6}$$

$$s = 4.0 \times 10^{-3} M$$

So, the molar solubility of $Ca(OH)_2 = 4.0 \times 10^{-3} M$

EXAMPLE 10:

What is the molar solubility of AgBr in

- (a) pure water
- (b) 0.0010 M NaBr
- (c) compare the solubility of AgBr in water and NaBr

$$K_{\rm sp}$$
 of AgBr = 7.7 x 10⁻¹³

(a)
$$AgBr(s) \Longrightarrow Ag^{+}(aq) + Br^{-}(aq)$$

[]_i (M) - 0 0

 \triangle (M) - + s + s

[]_{eq} (M) - s s

$$K_{sp} = [Ag^{+}][Br^{-}]$$

= (s) x (s)
= $s^{2} = 7.7 \times 10^{-13}$
s = 8.8 x 10⁻⁷ M

So, the molar solubility of AgBr in pure water = $8.8 \times 10^{-7} M$

(b) AgBr(s)
$$\longrightarrow$$
 Ag⁺(aq) + Br⁻(aq)

[]_i (M) - 0 0.0010

 \triangle (M) - + s + s

[]_{eq} (M) - s 0.0010 + s

s is very small
$$\sim 0.0010 + s \approx 0.0010$$

$$K_{sp} = [Ag^+][Br^-]$$

$$= (s) \times (0.0010)$$

$$= 0.0010s = 7.7 \times 10^{-13}$$

$$s = 7.7 \times 10^{-10} M$$

So, the molar solubility of AgBr in NaBr = $7.7 \times 10^{-10} M$

molar solubility of AgBr in NaBr = $7.7 \times 10^{-10} M$ molar solubility of AgBr in water = $8.8 \times 10^{-7} M$

The solubility of AgBr in NaBr is lower than in water.

The presence of the common ion Br increases the concentration of Br ion and thus shifts the equilibrium position to the left. Hence increase the formation of AgBr and decrease/reduce the solubility

EXERCISE 1:

 $K_{\rm sp}$ for AgCl is 1.7 x 10⁻¹⁰ . Calculate the molar solubility of AgCl in:

i. Water [1.30 x 10⁻⁵ M]

ii. In a solution of 0.1 mol dm⁻³ KCl. [1.70 x 10⁻⁹ M]

EXERCISE 2

- 1. It was found experimentally that the solubility of calcium sulphate is 0.67 g L⁻¹. Calculate the $K_{\rm sp}$ for calcium sulphate. (2.4 x 10⁻⁵)
- 2. The solubility of silver sulphate is 1.5 x 10⁻² mol L⁻¹. Calculate the solubility product of the salt.

 (1.35×10^{-5})

3. Will precipitate form if 200 mL of 0.0040 M BaCl₂ are added to 600 mL of 0.0080 M K₂SO₄? $K_{\rm sp}$ BaSO₄ = 1.1 x 10⁻¹⁰)

(Q> Ksp therefore BaSO₄ will precipitate)

GLOSSARY

NO	TERM	SYMBOL/ FORMULA	DEFINE
1.	Arrhenius acid	-	Substance that dissociate in water to produce H_3O^+ ion.
2.	Arrhenius base	-	Substance that dissociate in water to produce OH- ion.
3.	Bronsted-Lowry acid	-	Any substance that can donate a proton,(H+) to other substance.
4.	Bronsted-Lowry base	-	Any substance that can accept a proton, (H+) from other substance.
5.	Conjugate Acid	-	A species that remains when one proton,(H+) has been added to the base.
6.	Conjugate Base	-	A species that remains when one proton,(H+) has been removed from the acid.
7.	Strong acids	-	completely dissociated in aqueous solution

NO	TERM	SYMBOL/ FORMULA	DEFINE
8.	Weak acids	-	partially dissociate in aqueous solution.
9.	Strong base	-	completely dissociated in aqueous solution
10.	Weak base	-	partially dissociate in aqueous solution
11.	<u>pH</u>	pH = -log [H ⁺]	pH is a measure of the concentration of H ⁺ /H ₃ O ⁺ ions in a solution
12.	рОН	pOH = -log [OH ⁻]	pOH is a measure of the concentration of OH-ions a solution
13.	<u>pKw</u>	$pKw = -log(K_w)$	pKw is a measure of negative logarithm (- log) of the dissociation or ionisation constant of water.
14.	Degree of dissociation (α)	α=Concentration of acid or base dissociation Initial concentration	Ability of acids or bases to ionize or dissociate in aqueous solution

NO	TERM	SYMBOL/ FORMULA	DEFINE
15.	Salt	-	an ionic compound that is formed by the reaction of an acid with a base.
16.	Hydrolysis		The reaction of cations/anions (or both) from salts with water molecules to produce H ⁺ or OH ⁻
17.	buffer	-	A solution which has the ability to maintain its pH when a small amount of strong acid or strong base is added to the solution.
18.	Acidic buffer	$pH = pK_a + log \frac{[conjugate\ base]}{[weak\ acid]}$	a solution that contains a weak acid and its salt (or its conjugate base)
19.	Basic buffer	$pOH = pK_b + log \frac{[conjugate \ acid]}{[weak \ base]}$	a solution that contains a weak base and its salt (or its conjugate acid)

NO	TERM	SYMBOL/ FORMULA	DEFINE
20.	Titration	-	Method for determining the concentration of an unknown solution by using another solution of known concentration
21.	Standard Solution	-	Solution of known concentration
22.	Titrant	-	The solution in a titration that is added from a burette to a measured quantity of another solution @ A solution of known concentration that is added (titrated) to another solution
23.	Analyte	-	A substance or sample being analyzed @ The solution with unknown concentration
24.	Acid-Base Titrations	-	A method of quantitative analysis for determining the concentration of an acid or base by exactly neutralizing it with a standard solution of base or acid having known concentration.

NO	TERM	SYMBOL/ FORMULA	DEFINE
25.	End Point	-	The point where an indicator changes color
26.	Equivalence Point	_	The point where the mole of acid and base is stoichiometrically equivalent @ mole of H+ equals to mole of OH- (no more acid or base left in the solution)
27.	Titration Curves	-	A plot of the pH of a solution of acid (or base) versus the volume of base (or acid) added to the solution
28.	pH Jump	-	Steep portion or sharp portion in titration curves.
29.	Indicators	-	A weak organic acid that has different color than it conjugate base and color changes occurring over a specific and relatively narrow pH range. @ A weak organic acid that changes colour according to the concentration of hydrogen ions in the solution to which the indicator is added

NO	TERM	SYMBOL/ FORMULA	DEFINE
30.	Solubility	S	Mass of solute (g) dissolved in 1 L of a saturated solution. Unit: g/L
31.	Molar Solubility	S	Moles of solute dissolved in L of a saturated solution. Unit: mol/L
32.	Solubility Product	Ksp	The product of the molar concentrations of the constituent ions, each raised to the power of its stoichiometric coefficient in the equilibrium equation.
33.	Common Ion Effect	_	Shift of equilibrium caused by addition or the presence of a compound having an ion in common with the dissolved substance
34.	Common Ion	-	An ion that is already contained in the solution
35.	Precipitation	-	The action or process of precipitating a substance from a solution.
36.	Precipitate	-	An insoluble solid formed in and separates from the solution