Heart Disease Prediction from heart beat audio signals using Machine Learning and Network Analysis

Ligari D. • Alberti A.¹

¹ Department of Computer Engineering, Data Science, University of Pavia, Italy Course of Advanced Biomedical Machine Learning

Github page: https://github.com/DavideLigari01/advanced-biomedical-project

Date: June 30, 2024

Abstract — Heart disease remains one of the leading causes of mortality worldwide, making early diagnosis crucial. This study aims to predict heart diseases by analyzing heartbeat audio signals using machine learning and network analysis. We utilized a dataset from the PASCAL Classifying Heart Sounds Challenge 2011, which includes normal heart sounds, murmurs, extra heart sounds, extra systoles, and artifacts. Various preprocessing techniques such as noise reduction, resampling, and segmentation were applied to ensure data quality. Features were extracted using methods like Mel-Frequency Cepstral Coefficients (MFCC), Chroma, RMS, ZCR, and spectral features. Multiple machine learning models including LightGBM, XGBoost, CatBoost, Random Forest, and Multilayer Perceptron were trained and evaluated. The best performing model achieved high accuracy in distinguishing between different heart sound categories. This research highlights the potential of machine learning in cardiac diagnostics and provides a foundation for future advancements in the field.

Keywords ——TO BE DEFINED—

C	CONTENTS					
1	Intr	oduction	1			
	1.1	Problem Domain	2			
	1.2		2	4		
	1.3	Previous Research	2			
2	Methods					
	2.1	Source of Data	2	•		
	2.2	Data Preprocessing	4	•		
	2.3	Data Preprocessing	4			
	2.4	Feature Extraction	4	-		
	2.5		6]		
	2.6	Models	6	1		
		2.6.1 Metrics	6	2		
		2.6.2 Prevention Model	6	t		
		2.6.3 Support Model	6]		
		2.6.4 Experimented Architectures	6	1		
	2.7	Tools and Software	6	1		
				i		
3	Resu		7	ł		
	3.1	Prevention Model	7	1		
		3.1.1 Best Model Analysis	7	i		
	3.2	Support Model	8	5		
		3.2.1 Explainability	8	(
	3.3	Other Experiments	8	i		
		3.3.1 CNNs	8]		
		3.3.2 Tiered Ensemble Model	8	t		
		3.3.3 Data Augmentation	8	1		

4.1 Positioning in Existing Research 8 4.2 Limitations 8 5 Conclusion 8 5.1 Overall Impression 8 5.2 Future Work 8 6 Appendix 9

1. Introduction

Discussion

Heart disease remains a leading cause of mortality worldwide. Early diagnosis is critical for effective treatment and management. Traditional methods of diagnosis often involve invasive procedures and expensive equipment. Recent advancements in machine learning have opened new avenues for non-invasive diagnosis using heart sound recordings. This paper explores the use of machine learnng and network analysis to predict heart disease from heart beat audio signals. Despite significant progress, gaps remain in accurately classifying heart sounds due to data mbalance and the presence of noise in recordings. This study aims to address these gaps by employing advanced data preprocessing techniques and robust machine learnng models. The research question guiding this study is: How can machine learning models be optimized to improve the accuracy of heart disease prediction from heart sound ecordings?

1.1. Problem Domain

1.2. Research Question

1.3. Previous Research

2. METHODS

2.1. Source of Data

The dataset for this project was obtained from a Kaggle repository titled *Dangerous Heartbeat Dataset (DHD)* [1], which in turn sources its data from the PASCAL Classifying Heart Sounds Challenge 2011 (CHSC2011) [2]. This dataset comprises audio recordings of heartbeats, categorized into different types of heart sounds. Specifically, the dataset consists of 5 types of recordings: Normal Heart Sounds, Murmur Sounds, Extra Heart Sounds, Extrasystole Sounds, and Artifacts. Data has been gathered from the general public via the iStethoscope Pro iPhone app and from a clinic trial in hospitals using the digital stethoscope DigiScope.

Type of Sources

The dataset comprises audio recordings collected from three distinct sources:

Type A: This subset includes recordings contributed by the general public through the iStethoscope Pro iPhone app. Users from diverse backgrounds and locations have submitted these recordings, providing a wide range of heart sounds in various conditions.

Type B: This subset consists of recordings obtained from clinical trials conducted in hospitals using the DigiScope digital stethoscope. These recordings are collected in controlled environments, contributing to a high-quality dataset for clinical applications.

Type C: This subset is a mixed collection that includes recordings from both the iStethoscope Pro app and the DigiScope digital stethoscope. Additionally, this subset incorporates heart sound recordings sourced from various publicly available datasets on the internet. This mixed dataset is valuable for its diversity and comprehensiveness, covering a broad spectrum of heart sound variations and abnormalities.

These diverse sources ensure a robust dataset that supports comprehensive analysis and improves the generalizability of the heartbeat audio classification model.

Classes

Heart sounds can be categorized into different classes based on their acoustic characteristics and clinical significance. Accurate classification of these sounds is essential for diagnosing and treating a variety of cardiac conditions. The primary categories include Normal heart sounds, Murmurs, Extra Heart Sounds, Artifacts, and Extra Systoles. Understanding the distinct features and clinical implications of each class is a crucial step before building a machine learning model to classify heartbeats. This phase is particularly

important for the identification of patterns that are characteristic of specific classes, which in turn guides the selection of features to extract from the audio. This knowledge aids in identifying specific patterns and anomalies within the heart sounds, leading to more precise and reliable model predictions.

Normal The Normal category includes recordings of typical, healthy heart sounds. These sounds exhibit the characteristic "lub-dub, lub-dub" pattern, where "lub" (S1) represents the closing of the atrioventricular valves and "dub" (S2) signifies the closing of the semilunar valves. In a normal heart, the time interval between "lub" and "dub" is shorter than the interval from "dub" to the next "lub," especially when the heart rate is below 140 beats per minute. Most normal heart rates at rest fall between 60 and 100 beats per minute, though rates can vary from 40 to 140 beats per minute based on factors such as age and activity level. Recordings may include background noises like traffic or radio sounds and may capture incidental noises such as breathing or microphone contact with clothing or skin. It contains both clean and noisy normal recordings, the latter featuring significant background noise or distortion, which simulates real-world conditions.

Figure 1 shows a sample of a normal heart beat audio. The characteristic "lub-dub, lub-dub" pattern can be observed, where the peaks represent the "lub" (S1) and "dub" (S2) sounds of a healthy heart.

Fig. 1: Sample of normal heart beat audio.

Murmur Heart murmurs are abnormal sounds during the heartbeat cycle, such as a "whooshing, roaring, rumbling, or turbulent fluid" noise, heard between the "lub" and "dub" (systolic murmur) or between "dub" and "lub" (diastolic murmur). These murmurs are typically indicative of turbulent blood flow in the heart and can signal various heart conditions, some of which may be serious. It is crucial to distinguish murmurs from the normal "lub-dub" sounds since they occur between the primary heart sounds and not concurrently with them. It also includes noisy murmur data, which mimics real-world recording scenarios by incorporating significant background noise and distortions. Figure 2 shows a sample of a murmur heart beat audio. The presence of additional sounds between the "lub" and "dub" peaks can be observed, indicating the characteristic "whooshing, roaring, rumbling, or turbulent fluid" noise typical of heart murmurs.

Fig. 2: Sample of murmur heart beat audio.

Extra Heart Sound Extra heart sounds are characterized by an additional sound in the cardiac cycle, producing patterns such as "lub-lub dub" or "lub dub-dub". These sounds can arise from physiological or pathological conditions. For example, a third heart sound (S3) may indicate heart failure or volume overload, while a fourth heart sound (S4) can be associated with a stiff or hypertrophic ventricle. Detecting these extra sounds is important for identifying potential heart diseases early, allowing for timely intervention and management. Figure 3 shows a sample of an extra heart sound audio. The presence of additional peaks within the normal "lub-dub" pattern indicates extra heart sounds, which can be critical for diagnosing various heart conditions.

Fig. 3: Sample of extra heart sound audio.

Artifact The Artifact category consists of recordings with non-cardiac sounds, including feedback squeals, echoes, speech, music, and various types of noise. These recordings generally lack discernible heart sounds and do not exhibit the temporal periodicity typical of heartbeats at frequencies below 195 Hz. Accurately identifying artifacts is essential to avoid misinterpreting non-cardiac sounds as pathological heart sounds, ensuring that data collection efforts focus on genuine heart sounds. Figure 4 shows a sample of an artifact heart beat audio, there can be observed that there is not a clear pattern in the audio.

Fig. 4: Sample of artifact heart beat audio

Extra systoles Extra systoles refers to extra or skipped heartbeats, resulting in irregular patterns such as "lub-lub dub" or "lub dub-dub". Unlike the regular extra heart sounds, extra systoles are sporadic and do not follow a consistent rhythm. These premature beats can occur in healthy individuals, particularly children, but they may also be associated with various heart diseases. Identifying extra systoles is crucial as they can be early indicators of cardiac conditions that might require medical attention if they occur frequently or in certain patterns.

In the audio signal depicted in Figure 5, irregularities within the normal "lub-dub" pattern are evident. These irregularities manifest as additional peaks or skipped beats, indicating extra systoles.

Fig. 5: Sample of extra systoles heart beat audio

Comparison of Heart Sounds In Figure 6, a comparison of the different classes of heart sounds can be observed.

As we can see, the "Artifact" signal appears erratic with no consistent pattern, likely representing noise or interference rather than true heart sounds.

The "Murmurs" signal shows irregular fluctuations in amplitude, which could indicate turbulent blood flow typically associated with murmurs.

The signal for "Extra Heart Beat Sound" has occasional spikes in amplitude that stand out from the baseline.

The "Normal" signal appears more uniform and regular compared to the others, reflecting the expected rhythm of a healthy heartbeat. Finally, the signal for "Extra Systoles" shows extra spikes at irregular intervals, indicating unexpected contractions of the heart muscle (systoles) occurring outside the normal rhythm.

Fig. 6: Comparison of the different classes of heart sounds.

Data Distribution

Figure 7, show the presence of highly imbalanced classes in the dataset. This poses a challenge for the classification task as the model may not have enough samples to learn from, especially for the 'Extrastole' and 'Extrahls' classes. This problem is tackled trying to augment the data available, both by segmenting the audio files and by using data augmentation techniques. Furthermore, we test the effectiveness of oversampling and undersampling techniques on the model performance. The data is split intro training and testing sets, with a 80% - 20% ratio, respectively. The validation set is omitted, due to the low number of samples available.

Fig. 7: Number of samples per duration.

2.2. Data Preprocessing

To prepare the data several preprocessing operations were performed:

Noise Reduction: the audio data was already provided in a clipped format to minimize noise and irrelevant information.

Normalization: the audio are loaded using the *torchaudio.load()* function, which normalized the audio signals in the range [-1, 1].

Removal of Corrupted Files: corrupted files were identified and removed from the dataset to ensure data quality.

Outlier Detection and Removal: we investigated the average duration of each class and found the 'artifact' class to have a significantly larger average duration. This was due

to a few long lasting audio recordings (see Figure 8). A large number of samples from the same audio might not be as informative, thereby we used IQR to detect and remove outliers.

Resampling: we evaluated two sampling rates to determine the optimal rate for heartbeat sounds and all audio files were resampled to a common frequency of 4000 Hz (see Section 2.4).

Segmentation: the audio data was segmented into 1-second intervals, identified as the optimal extraction interval (see Section 2.4), as it offered both good performance and dataset size increasing.

Hop and Window Size: the hop size determines the number of samples between successive windows, while the window size determines the number of samples considered. Each feature was extracted using the same window length and hop length facilitating a fair assessment of each feature's contribution to the classification task.

Fig. 8: Outliers in the Artifacts class.

2.3. Data Preprocessing

2.4. Feature Extraction

s demonstrated by [4] and [3], MFCCs are highly effective features for heartbeat classification. In addition to MFCCs, we incorporated other features to capture various characteristics of heart sounds, enhancing the classification accuracy. The features used are explained in the following section.

Features Type

MFCC

Mel-Frequency Cepstral Coefficients (MFCCs) are representations of the short-term power spectrum of sound. They are derived by taking the Fourier transform of a signal, mapping the powers of the spectrum onto the mel scale, taking the logarithm, and then performing a discrete cosine transform. MFCCs are effective in capturing the timbral texture of audio and are widely used in speech and audio processing due to their ability to represent the envelope of the time power spectrum. In heartbeat classification,

MFFCs can reflect the different perceived quality of heart sounds, such as the presence of murmurs or other anomalies.

Chroma STFT

Chroma features represent the 12 different pitch classes of music (e.g., C, C#, D, etc.). They are particularly useful for capturing harmonic and melodic characteristics in music. By mapping audio signals onto the chroma scale, these features can identify pitches regardless of the octave, making them useful for analyzing harmonic content in heart sounds.

RMS

Root Mean Square (RMS) measures the magnitude of varying quantities, in this case, the amplitude of an audio signal. It is a straightforward way to compute the energy of the signal over a given time frame. RMS is useful in audio analysis for detecting volume changes and can help identify different types of heartbeats based on their energy levels. For example, in a given timeframe the RMS may be altered by the presence of a murmur with respect to a normal heart sound.

ZCR

Zero-Crossing Rate (ZCR) is the rate at which a signal changes sign, indicating how often the signal crosses the zero amplitude line. It is particularly useful for detecting the noisiness and the temporal structure of the signal. In heartbeat classification, ZCR can help differentiate between normal and abnormal sounds by highlighting changes in signal periodicity.

CQT

Constant-Q Transform (CQT) is a time-frequency representation with a logarithmic frequency scale, making it suitable for musical applications. Since it captures more detail at lower frequencies, it may be useful for analyzing the low-frequency components of heart sounds.

Spectral Centroid

The spectral centroid indicates the center of mass of the spectrum and is often perceived as the brightness of a sound. It is calculated as the weighted mean of the frequencies present in the signal, with their magnitudes as weights. In heart sound analysis, a higher spectral centroid can indicate sharper, more pronounced sounds, while a lower centroid suggests smoother sounds.

Spectral Bandwidth

Spectral bandwidth measures the width of the spectrum around the centroid, providing an indication of the range of frequencies present. It is calculated as the square root of the variance of the spectrum. This feature helps in understanding the spread of the frequency components in the heart sounds, which can be indicative of different heart conditions.

Spectral Roll-off Spectral roll-off is the frequency below which a certain percentage of the total spectral energy lies. It is typically set at 85% and helps distinguish between har-

monic and non-harmonic content. In heartbeat classification, spectral roll-off can be used to differentiate between sounds with a concentrated energy distribution and those with more dispersed energy.

Sampling Rate Selection

The sampling rate of the data were heterogeneous, ranging from 4000 Hz to 44100 Hz, with a majority of the data being sampled at 4000 Hz. To assess the impact of the sampling rate on the classification performance, we trained different models on different features, extracted at different sampling rates and from various intervals. Each model is then evaluated using different metrics, taking into account the class imbalance issue. We also considered a possible dependency between the sampling rate and the extraction interval, as shown in Algorithm 1.

Algorithm 1 Sampling rate and Interval choice

```
1: Input:
 2: features = [mfcc30 & 120, cqt30 & 70, chroma12]
 3: sampling_rates = [mix, 4000]
 4: extraction_intervals = [0.5, 1, 2, 3]
 5: models = [rf, svm-rbf, lr]
 6: metrics = [macrof1, mcc]
 7: for sr in sampling_rates do
       for interval in extraction_intervals do
 8:
9:
           for feature in features do
10:
               extract feature with interval at sr
11:
               for model in models do
12:
                  train model with extracted feature
13:
                  for metric in metrics do
                      evaluate model with metric
15: Output:
16: Given all the results, group by model and average the values
```

6: Given all the results, group by model and average the values of a specific metric across features

The results, reported in Figure 9 showed no evident advantage to using a mix of sampling frequencies over a fixed resampled sample rate. Moreover, employing a fixed sample rate of 4000 Hz reduces the risk of introducing bias, enhances efficiency, and permits the use of a broader range of features and models.

Fig. 9: Comparison of the macro F1 score for different sampling rates.

Extraction Interval Selection

The extraction interval refers to the duration of the audio segment from which the features are extracted. Using algorithm 1, we evaluated the performance of 0.5, 1, 2, and 3-second intervals on the classification task. It is important to note that the interval choice affects the number of samples available for training and evaluation, so in case of a limited number of samples, this choice should no be based solely on the performance of the model. The results, showed that a 2-second interval yielded the best performance, however it also reduced the number of samples, impeding a correct training and evaluation of the models. As a consequence, we picked a 1-second interval as a compromise.

Number of Features per Type

2.5. Feature Selection

2.6. Models

2.6.1. *Metrics*

2.6.2. Prevention Model

The goal of the prevention model is to provide an accessible tool for the early diagnosis of heart diseases, potentially usable by non-experts. Therefore, it is crucial to develop a model that minimizes the number of false normal predictions to accurately indicate the presence or not of disease or identify artifacts in the provided data.

To achieve this, different heart diseases were grouped together, transforming the problem into a 3-class classification task: normal, disease, and artifact. Grouping the diseases not only simplified the classification but also balanced the class distribution. The data was divided into training and testing sets in an 80-20 ratio, and various models were evaluated, as shown in Table 1.

The primary metrics for evaluating the models were the ROC-AUC score, false positive rate (FPR), and true positive rate (TPR), with F1-score and accuracy as secondary metrics. To adapt binary metrics for multi-class classification, the one-vs-rest strategy was employed. Specifically, we focused on the normal-vs-rest case to minimize false normal predictions.

In summary, each model was trained on the 3-class classification problem but was evaluated based on its binary classification performance (normal-vs-rest). The best model was selected based on its ROC-AUC score and performance at specific FPR levels (1%, 5%, 10%, and 20%). The objective was to minimize false normal predictions while maximizing true normals. A model predicting no cases as normal to achieve a 0% FPR would be ineffective.

2.6.3. Support Model

2.6.4. Experimented Architectures

The architectures of the models used in the experiments are detailed in Table 1. Special attention is given to the ensemble models, which combine predictions from multiple models to enhance overall performance.

Name	Architecture (hidden layers)	
Random Forest	-	
XGBoost	-	
CatBoost	-	
LightGBM	-	
MLP_Basic	(128, 64, 32)	
MLP_Ultra	(512, 256, 128, 64, 32)	
MLP_Large	(256, 128, 64, 32)	
MLP_Small	(64, 32)	
MLP_Tiny	(32, 16)	
MLP_Reverse	(32, 64, 128, 256, 512, 256, 128, 64, 32)	
MLP_Bottleneck	(512, 64, 32)	
MLP_Rollercoaster	(512, 128, 256, 128, 256, 64, 32)	
MLP_Hourglass	(512, 256, 128, 64, 32, 64, 128, 256, 512)	
MLP_Pyramid	(1024, 512, 256, 128, 128, 128, 64, 32)	
MLP_Wide	(1024, 1024)	
MLP_WideUltra	(1024, 1024, 128, 32)	
MLP_Sparse	(32, 16, 8)	
MLP_Dropout	(128, 64, 32)	
MLP_Ensemble1	MLP_Basic, Large, Ultra	
MLP_Ensemble2	RandomForest, MLP_Ultra	
MLP_Ensemble3	MLP_Rollercoaster, Large	
MLP_Ensemble4	MLP_Rollercoaster, Large, Ultra	
MLP_Ensemble5	RandomForest, MLP_Ultra, Rollercoaster	
MLP_Ensemble6	MLP_Rollercoaster, Large, Ultra, Wide	
ALL_Ensemble	All models majority vote	
CB_ALL_Ensemble	All models CatBoost	

Table 1: Models names and architectures.

All MLP_Ensemble models consist of the individual models listed in their architecture name. These models' predictions are combined using a soft voting strategy, where the final prediction is determined by the argmax of the sum of the predicted probabilities from each model. This approach is effective when the models are well-calibrated and exhibit complementary strengths and weaknesses.

The ALL_Ensemble model aggregates the predictions of all individual models using a majority vote strategy. In contrast, the CB_ALL_Ensemble model also considers all individual models but uses a CatBoost model to aggregate the predictions. This allows for a more flexible voting strategy, potentially leading to improved performance.

2.7. Tools and Software

This study utilized several powerful libraries and tools for data processing, model training, and evaluation:

- Scikit-learn: Used for MLP, RF, and metrics such as F1, Balanced Accuracy, Accuracy, MCC, ROC, AUC, permutation importance, train-test split, confusion matrix and voting classifiers.
- **Torchaudio**: Used to load the audio, for MFCC extraction and audio resampling.
- **Librosa**: Used for other features extraction and audio processing and augmentation.
- **Imblearn**: Applied for handling imbalanced datasets with techniques such as undersampling, oversampling, and SMOTEN.
- Numpy: Essential for numerical computations and array manipulations.

- Pandas: Crucial for data manipulation and analysis.
- Matplotlib: Employed for creating visualizations.
- Seaborn: Used for statistical data visualization.
- Scipy: Utilized for scientific and technical computing.
- **XGBoost**: Implemented for gradient boosting models.
- CatBoost: Applied for gradient boosting on decision trees
- PyTorch: Used for developing and training CNN models, specifically VGG16_bn.
- TensorFlow: Used for building and training deep learning models, including CNNs.
- Keras: High-level API for building and training neural networks on TensorFlow.
- Shap: Utilized for model interpretability.
- Other Utility Libraries: Includes joblib for model serialization, and os, sys for system operations and file handling.

3. RESULTS

3.1. Prevention Model

The initial evaluation is presented using the ROC curves of the normal class versus the others for selected models. According to Figure 10, the MLP models outperformed the other models, as indicated by the higher AUC values. Specifically, MLP_Ensemble5 achieved the highest AUC value of 0.96, followed by MLP_Ultra, MLP_Rollercoaster, MLP_Ensemble2, and MLP_Ensemble4, all with an AUC of 0.95. MLP_Ensemble5 also had the highest MCC value in the multiclass classification task, confirming its superior performance.

Fig. 10: ROC curves for the normal class against the rest of the classes across all models.

To further analyze model performance, we selected four FPR levels (1%, 5%, 10%, 20%) and calculated the corresponding TPR. The consolidated results are shown in Figure 11.

At each FPR level, *MLP_Ensemble5* outperformed the other models, achieving TPRs of 43.4%, 74.3%, 86.6%, and 95.8% at the 1%, 5%, 10%, and 20% FPR levels, respectively. Excluding *MLP_Ensemble5*, the best-performing model varied by FPR level: *MLP_WideUltra* at 1%, *MLP_Ultra* at 5%, *MLP_Ensemble2* at 10%, and *MLP_Ensemble4* at 20%.

These outcomes highlight the task's challenges in creating a model that performs well across all FPR levels and demonstrate the efficacy of a well-built ensemble model, which leverages the strengths of different models to achieve optimal performance.

3.1.1. Best Model Analysis

To further investigate the performance of the ensemble model, we compared the confusion matrices of the individual models with the ensemble one (Figure 12).

Fig. 12: Confusion matrices of the individual models and the ensemble model.

In the confusion matrix the class 2 represents the normal heartbeats, the class 1 represents the abnormal heartbeats, and the class 0 represents the artifacts. We can see that the Random Forest and MLP_Ultra are "complementary" models, with the former having higher true positive rates for the normal class and the latter a smaller false positive rate. The ensemble model combines these strengths. The contribution of the MLP_Rollercoaster model is less evident, but it was experimentally shown that it contributes to the ensemble's performance. The reason may be related to the fact that the some of the samples that are misclassified by the other models are correctly classified by the MLP_Rollercoaster model.

Interestingly, the MLP_Ultra model classifies less abnormal heartbeats as normal than the MLP_Ensemble5 model.

Fig. 11: TPR at different FPR levels for all models.

However this is due to the fact that this latter simply classifies less samples as normal. Indeed we could minimize the FPR of the normal class just by classifying all the samples as abnormal, but this would result in a very low TPR for the normal class. This evidence the importance of analyzing FPR and TPR together. In conclusion, the ensemble model is the best model for the task of classifying normal heartbeats, abnormal heartbeats, and artifacts, in a FPR/TPR trade-off maximization scenario.

- 3.2. Support Model
- 3.2.1. Explainability
- 3.3. Other Experiments
- 3.3.1. CNNs
- 3.3.2. Tiered Ensemble Model
- 3.3.3. Data Augmentation
- 4. DISCUSSION
- 4.1. Positioning in Existing Research
- 4.2. Limitations
- 5. CONCLUSION
- 5.1. Overall Impression
- 5.2. Future Work

6. APPENDIX

REFERENCES

- [1] en. URL: https://www.kaggle.com/datasets/mersico/dangerous-heartbeat-dataset-dhd.
- [2] P. Bentley et al. The PASCAL Classifying Heart Sounds Challenge 2011 (CHSC2011) Results. URL: http://www.peterjbentley.com/heartchallenge/index.html.
- [3] Wei Chen et al. "Deep Learning Methods for Heart Sounds Classification: A Systematic Review". In: *Entropy* 23.6 (May 2021), p. 667. ISSN: 1099-4300. DOI: 10.3390/e23060667.
- [4] Ali Raza et al. "Heartbeat Sound Signal Classification Using Deep Learning". en. In: *Sensors* 19.2121 (Jan. 2019), p. 4819. ISSN: 1424-8220. DOI: 10.3390/s19214819.