EXERCICE 1.

Déterminer une primitive des fonctions suivantes :

1.
$$t \mapsto t e^{-3t^2}$$

$$2. \ t \mapsto \frac{1}{t(\ln t)^4}$$

$$3. \ t \mapsto \frac{1}{\operatorname{th} t}$$

4.
$$t \mapsto \frac{t^2}{1+t^3}$$

$$5. \ t \mapsto \frac{\sin(2t)}{1+\sin^2 t}$$

6.
$$t \mapsto \tan^2 t$$

7.
$$t \mapsto \frac{1}{\cos^2 t \sqrt{\tan t}}$$

8.
$$t \mapsto \frac{1}{t + \sqrt{t}}$$

9.
$$t \mapsto \frac{\ln(\ln t)}{t}$$

10.
$$t \mapsto e^{e^t + t}$$

$$11. \ t \mapsto \frac{1}{t + t(\ln t)^2}$$

12.
$$t \mapsto \frac{1}{\cosh^2 t}$$

EXERCICE 2.

Soit $(m, n) \in \mathbb{N}^2$. Calculer

1.
$$I_{m,n} = \int_0^{2\pi} \cos(mt) \cos(nt) dt$$

2.
$$J_{m,n} = \int_0^{2\pi} \sin(mt) \sin(nt) dt$$

3.
$$K_{m,n} = \int_0^{2\pi} \cos(mt) \sin(nt) dt$$

EXERCICE 3.

Calculer les intégrales suivantes.

$$I = \int_0^{\pi/2} x \sin x \, dx, \qquad J = \int_0^1 \sqrt{e^x} \, dx, \qquad K = \int_0^2 \frac{2^x \, dx}{\sqrt{2 + 2^x}}.$$

$$J = \int_0^1 \sqrt{e^x} \, \mathrm{d}x,$$

$$K = \int_0^2 \frac{2^x \, dx}{\sqrt{2 + 2^x}} \, .$$

EXERCICE 4.

Calculer les intégrales suivantes

$$A = \int_0^1 \frac{1}{\sqrt{4 - x^2}} \, \mathrm{d}x$$

$$B = \int_0^{\pi} (\sin x)^3 dx,$$

$$A = \int_0^1 \frac{1}{\sqrt{4 - x^2}} \, dx, \qquad B = \int_0^\pi (\sin x)^3 \, dx, \qquad C = \int_0^1 \sqrt{1 - x^2} \, dx.$$

EXERCICE 5.

Déterminer une primitive de la fonction $f(x) = (\sin(2x))^3 \cos(3x)$.

EXERCICE 6.

Calculer l'intégrale $\int_{0}^{\pi/2} \sin(2x)^3 dx.$

Exercice 7.★

Calculer, en fonction du nombre réel x, l'intégrale suivante

$$f(x) = \int_0^1 |x - t| \, \mathrm{d}t.$$

EXERCICE 8.

Soit $\alpha \in \mathbb{R}$ et H la fonction définie par :

$$\forall x \in \mathbb{R}, H(x) = \alpha \cos x + \sin x + 2$$

- 1. Donner une condition nécessaire et suffisante sur α pour que H ne s'annule pas.
- 2. On suppose la condtion précédente satisfaite et on pose pour $x \in \mathbb{R}$, $F(x) = \int_0^x \frac{dt}{H(t)}$. Justifier que F est bien définie et continue sur \mathbb{R} et donner une expression de F(x) pour $x \in]-\pi,\pi[.$
- 3. Calculer l'intégrale $F(2\pi)$.

Exercice 9.

Soient α et β deux réels strictement positifs. On définit une fonction f par :

$$\forall x \in \mathbb{R}, f(x) = \frac{1}{\alpha + \beta \cos^2 x}$$

- **1.** Justifier que f admet des primitives sur \mathbb{R} . On note F celle qui s'annule en 0.
- **2.** Montrer que F(x) tend vers $+\infty$ quand x tend vers $+\infty$.
- **3.** Déterminer une expression de F(x) pour $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- 4. Calculer I = $\int_{0}^{2\pi} \frac{dt}{49 45\sin^2 t}.$

EXERCICE 10.

Calculer I = $\int_{a^2}^{b^2} x \sqrt{(x-a^2)(b^2-x)} \, dx$.

Exercice 11.

Calculer

1.
$$\int x \arctan^2(x) dx$$

4.
$$\int \frac{x \, dx}{\sqrt{1+x}} \text{ en posant } u = \sqrt{1+x}.$$

$$2. \int e^x \sin^2(x) \, \mathrm{d}x$$

5.
$$\int \frac{\mathrm{d}x}{\mathrm{ch}\,x}$$

3.
$$\int \cos(\ln x) \, dx \text{ en posant } u = \ln x$$

EXERCICE 12.

On pose
$$S = \int_0^{\frac{\pi}{2}} \frac{\sin t}{\sin t + \cos t} dt$$
 et $C = \int_0^{\frac{\pi}{2}} \frac{\cos t}{\sin t + \cos t} dt$.

- 1. Justifier que S et C sont bien définies.
- **2.** Montrer que S = C par changement de variable.
- **3.** Que vaut S+C? En déduire S et C.
- 4. En déduire I = $\int_0^1 \frac{dt}{t + \sqrt{1 t^2}}.$

EXERCICE 13.

Calculer

1.
$$\int_0^{\pi} \frac{\sin t \, dt}{4 - \cos^2 t}$$
 en posant $u = \cos t$;

2.
$$\int_{\frac{\pi}{3}}^{x} \frac{dt}{\sin t} \text{ pour } x \in]0, \pi[\text{ en posant } u = \cos t ;$$

3.
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\mathrm{d}t}{\cos^3 t} \text{ en posant } u = \sin t ;$$

4.
$$\int_0^{\frac{\pi}{2}} \frac{\mathrm{d}t}{\sin t + \cos t} \text{ en posant } u = \tan \frac{t}{2}.$$

Exercice 14.

Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on pose

$$I_n(x) = \int_0^x \frac{\mathrm{d}t}{(1+t^2)^{n+1}}$$

- **1.** Déterminer une relation entre $I_{n+1}(x)$ et $I_n(x)$.
- **2.** En déduire l'existence et une expression simple de $\lim_{x\to+\infty} I_n(x)$.

Exercice 15.★

Calculer:

1.
$$I = \int_0^{\pi/4} \sqrt{1 + \tan^2(t)} dt$$
 en posant $u = \tan(t)$;

2.
$$J = \int_0^1 \frac{dx}{\sqrt{x} + 1}$$
 en posant $u = \sqrt{x}$;

3.
$$K = \int_0^{\ln(2)} \sqrt{e^x - 1} dx$$
 en posant $u = \sqrt{e^x - 1}$;

4. L=
$$\int_0^1 \frac{du}{\sqrt{u^2 + u + 1}}$$
 en posant $x = \sqrt{u^2 + u + 1} - u$;

5.
$$M = \int_0^{\pi/4} \frac{dx}{\cos(x)}$$
 en posant $u = \sin(x)$;

6. N =
$$\int_{\pi/4}^{\pi/3} \frac{dx}{\sin(x)}$$
 en posant $u = \cos(x)$;

7.
$$O = \int_0^{\pi/2} \cos^2(x) \sin^3(x) dx$$
 en posant $u = \cos(x)$;

8.
$$P = \int_0^{\pi/4} \frac{\sin(2x)dx}{1+\cos^2(x)}$$
 en posant $u = \cos(2x)$;

9.
$$Q = \int_0^1 \sqrt{\frac{1-x}{1+x}} dx$$
 en posant $x = \cos(2u)$;

10. R =
$$\int_0^1 \frac{\sqrt{x} + x^{1/4}}{\sqrt{x} + 1} dx$$
 en posant $u = x^{1/4}$.

Exercice 16.

On pose pour $n \in \mathbb{N}$, $I_n = \int_0^1 \frac{(1-x)^n}{n!} e^x dx$.

- **1.** Montrer que (I_n) converge vers 0.
- **2.** Déterminer une relation de récurrence entre I_n et I_{n+1} .
- 3. En déduire que $e = \sum_{k=0}^{+\infty} \frac{1}{k!}$.

Exercice 17.

On considère la suite de terme général $I_n = \int_0^1 \frac{t^n}{1+t} dt$.

- **1.** Déterminer la limite de (I_n) .
- **2.** Déterminer une relation de récurrence entre I_n et I_{n+1} .
- 3. On pose $S_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. Exprimer S_n en fonction de I_n .
- **4.** En déduire la convergence et la limite de (S_n) .

Exercice 18.

Pour $(n, p) \in \mathbb{N}^2$, on pose

$$I_{n,p} = \int_0^1 t^n (1-t)^p \, dt$$

1. Montrer que pour tout $n \in \mathbb{N}^*$ et tout $p \in \mathbb{N}$

$$I_{n,p} = \frac{n}{p+1} I_{n-1,p+1}$$

2. En déduire un expression de $I_{n,p}$ pour tout $n \in \mathbb{N}$.

Exercice 19.

- **1.** Montrer qu'il existe un unique $\alpha \in \mathbb{R}_+$ tel que $\mathrm{sh}(\alpha) = 1$.
- 2. On pose pour $n \in \mathbb{N}$, $I_n = \int_0^{\alpha} \operatorname{sh}(t)^n dt$. Déterminer le sens de variation de la suite (I_n) .
- 3. Justifier que (I_n) converge. On ne cherchera pas à calculer sa limite pour l'instant.
- 4. A l'aide d'une intégration par parties, montrer que

$$\forall n \in \mathbb{N}, (n+2)I_{n+2} = \operatorname{ch}(\alpha) - (n+1)I_n$$

5. En déduire la limite de la suite (I_n) .

Exercice 20.★★

Pour $n \in \mathbb{N}$, on pose

$$I_n = \int_0^1 t^n \sqrt{1-t} \, dt.$$

- **1.** Trouver une relation de récurrence entre I_{n-1} et I_n .
- **2.** Calculer I_0 puis I_n pour tout $n \ge 0$.
- 3. Calculer I_n d'une autre manière et montrer que

$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+3} \binom{n}{k} = 2^{2n+2} \frac{n!(n+2)!}{(2n+4)!}.$$

Exercice 21.

Calculer une primitive des fonctions suivantes.

$$1. \ t \mapsto \frac{1}{1+t+t^2}$$

3.
$$t \mapsto \frac{3t+2}{2t^2-4t+3}$$

2.
$$t \mapsto \frac{2-5t}{1+t^2}$$

Exercice 22.★

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue. Etablir la dérivabilité puis calculer la dérivée de la fonction ψ définie par

$$x \longmapsto \int_0^1 f(t+x)dt$$
.

Exercice 23.

Justifier que $f: x \mapsto \int_{x^2}^{x^3} \frac{t}{1+e^t} dt$ est dérivable sur $\mathbb R$ et calculer sa dérivée.

Exercice 24.

Calculer les limites suivantes. On ne cherchera pas à calculer les intégrales.

1.
$$\lim_{x\to 0} \int_{-x}^{x} \sin(t^2) dt$$
.

$$2. \lim_{x \to +\infty} \int_{x}^{2x} \frac{dt}{\ln t}.$$

3.
$$\lim_{x \to +\infty} \int_{x}^{2x} \frac{\sin t}{t} \, \mathrm{d}t.$$