

CSE 6140/ CX 4140:

Computational Science and Engineering ALGORITHMS

Instructor: Anne Benoit

Visiting Associate Professor, CSE

Based on slides by Bistra Dilkina and Holger Hoos

HEURISTICS/LOCAL SEARCH [SLS2]

'This material is based on slides provided with the book 'Stochastic Local Search: Foundations and Applications' by Holger H. Hoos and Thomas Stützle (Morgan Kaufmann, 2004) - see www.sls-book.net for further information.'

Local Search (LS) Algorithms

- search space S
 - SAT: set of all complete truth assignments to propositional variables (all "potential solutions")
- solution set $S' \subseteq S$
 - SAT: all satisfying assignments for given formula
- neighborhood relation $N \subseteq S \chi S$
 - A way to move from one potential solution to another
 - SAT: neighboring variable assignments differ in the truth value of exactly one variable
- evaluation function $g: S \rightarrow R+$
 - SAT: number of clauses satisfied under given assignment

Local Search (LS)

- Start from initial position
- Iteratively move from current position to one of neighboring positions
- Use evaluation function to choose among neighboring positions

Local Search

Global view of search space

Local view of search space

State space landscape

Objective function defines state space landscape

Local Search (LS) Algorithms

- search space S
 - SAT: set of all complete truth assignments to propositional variables (all "potential solutions")
- solution set $S' \subseteq S$
 - SAT: all satisfying assignments for given formula
- neighborhood relation $N \subseteq S \chi S$
 - A way to move from one potential solution to another
 - SAT: neighboring variable assignments differ in the truth value of exactly one variable
- evaluation function $g: S \rightarrow R+$
 - SAT: number of clauses satisfied under given assignment

Local Search (LS) Algorithms

- search space S
 - TSP: set of all permutations of vertices (all "potential solutions")
- solution set $S' \subseteq S$
 - TSP: the tours of minimum length
- neighborhood relation $N \subseteq SxS$
 - A way to move from one potential solution to another
 - TSP: neighboring tour differ in several edges
- evaluation function $g: S \rightarrow R+$
 - TSP: length of tour

Symm. TSP --- search neighborhood

Search Space: all permutations of the cities (each defines a cycle) 3-opt – delete 3 edges and reconnect fragments into 1 cycle k-opt – delete k edges and reconnect fragments into 1 cycle

Iterative Improvement (Greedy Search)

- Initialize search at some point of search space
- At each step, move from the current search position to a neighboring position with <u>better</u> evaluation function value

Hill climbing (Best Improvement Search)

Choose the neighbor with the largest improvement as the next state


```
while f-value(state) < f-value(next-best(state))
state := next-best(state)</pre>
```

Hill climbing


```
function Hill-Climbing(problem) returns a solution state
```

```
current \leftarrow Make-Node(Initial-State[problem])
```

loop do

```
next ← a highest-valued successor of current
if Value[next] < Value[current] then return current
current ←next</pre>
```

end

Problems with iterative improvement

- Advantages:
 - Very fast, works well for certain problems
- Disadvantages:
 - What if there are multiple peaks?
 - Hill climbing gets stuck at all peaks, known as local maxima
 - Optimal solution is highest peak global maximum
 - May result in extremely suboptimal solution if many peaks
 - Being misguided by evaluation/objective function

Stochastic Local Search

- randomize <u>initialization</u> step
- randomize search steps such that <u>suboptimal/worsening steps</u> are allowed
- improved performance & robustness
- typically, degree of randomization controlled by noise parameter

Stochastic Local Search

Pros:

- for many combinatorial problems, more efficient than systematic search
- easy to implement
- easy to parallelize

Cons:

- often incomplete (no guarantees for finding existing solutions)
- highly stochastic behavior
- often difficult to analyze theoretically/empirically

Simple SLS methods

- Random Search (Blind Guessing):
 - In each step, randomly select one element of the search space.
- (Uninformed) Random Walk:
 - In each step, randomly select one of the neighboring positions of the search space and move there.

Random restart hill climbing

- Start at random solution
- Hill-climb until local optima
- Start at another random position

Randomized Iterative Improvement:

- Idea: escape local maxima by <u>allowing some "bad" moves</u>
- initialize search at some point of search space
- search steps:
 - with probability p, move from current search position to a randomly selected neighboring position
 - otherwise, move from current search position to neighboring position with better evaluation function value
- Has many variations of how to choose the random neighbor, and how many of them


```
WalkSAT(CNF, max-tries, max-flips, p) {
   for i \leftarrow 1 to max-tries do
       solution = random truth assignment
      for j \leftarrow 1 to max-flips do
          if all clauses in CNF satisfied then
             return solution
          c \leftarrow \text{random unsatisfied clause in CNF}
          with probability p
             flip a random variable in c
          else
             flip variable in c that maximizes
                number of satisfied clauses
  return failure
```

Simulated annealing (SA)

- Combinatorial search technique inspired by the physical process of annealing [Kirkpatrick et al. 1983, Cerny 1985]
- Outline
 - Select a neighbor at random
 - If better than current state, go there (improving move)
 - Otherwise, go there with some probability (worsening move)
 - Probability goes down with time (similar to temperature cooling)
- When probability is high → diversify (many worsening moves)
- When probability is low -> intensify (focus on improving moves)

SA analogy

- Annealing is process of heating and cooling metals in order to improve strength
- Idea: Controlled heating and cooling of metal
 - When hot, atoms move around
 - When cooled, atoms find configuration with lower internal energy (i.e. makes metal stronger)
- Analogy:
 - Temperature = probability of accepting worse neighboring solution
 - When temperature is high, likely to accept worse neighboring solutions (but may lead to better overall solution)
 - Analogous to atoms wandering around
 - Cooling represents shrinking probability of accepting worse solutions

SA Pseudo code


```
function Simulated-Annealing(problem, schedule) returns
         solution state
current \leftarrow Make-Node(Initial-State[problem])
for t \leftarrow 1 to infinity (Iters, Time cutoff)
  T \leftarrow schedule[t] // T goes downwards.
  if T = 0 then return greedy from current
  next \leftarrow Random-Successor(current)
 \Delta E \leftarrow \text{f-Value}[next] - \text{f-Value}[current]
  if \Delta E > 0 then current \leftarrow next
  else current \leftarrow next with probability e^{\Delta E/T}
end
```

Simulated annealing (SA)

 Acceptance criterion (Metropolis condition): choose new solution s' over old solution s with probability (maximization)

$$\Pr(s', s) = \begin{cases} 1 & \text{if } f(s') > f(s) \\ \exp\left\{\frac{f(s') - f(s)}{T}\right\} & \text{otherwise} \end{cases}$$

- Initial temperature T₀
- Annealing (cooling) schedule: how to update the temperature
 - E.g. T = a T with a =0.95 (geometric schedule)
 - Number of iterations at each temperature (e.g. multiple of the neighborhood size)
- Stopping criterion
 - E.g. no improved solution found for a number of iterations (or number of temperature values)

Georgia Tech

SA for TSP [Johnson & McGeoch 1997]

- baseline implementation:
 - start with random initial solution
 - use 2-exchange neighborhood
 - simple annealing schedule
- relatively poor performance
- improvements:
 - look-up table for acceptance probabilities
 - neighborhood pruning
 - low-temperature starts

SA with restarts

- RESTARTS: Sometimes it is better to move back to a solution that was significantly better rather than always moving from the current state.
- The decision to restart could be based on several criteria.
 - based on a fixed number of steps,
 - based on whether the current energy is too high compared to the best energy obtained so far,
 - too many iterations without improvement,
 - restarting randomly, etc.

Summary of Simulated Annealing

- is historically important
- is easy to implement
- has interesting theoretical properties (convergence), but these are of very limited practical relevance
- achieves good performance often at the cost of substantial run-times

Tabu Search

- Combinatorial search technique that heavily relies on the use of an explicit memory of the search process [Glover 1989, 1990] to guide search process
- memory typically contains only specific attributes of previously seen solutions
- simple tabu search strategies exploit only short term memory
- more complex tabu search strategies exploit long term memory

Tabu search – exploiting short term memory

- in each step, move to best neighboring solution although it may be worse than current one
- to avoid cycles, tabu search tries to avoid revisiting previously seen solutions by basing the memory on attributes of recently seen solutions
- tabu list stores attributes of the TL most recently visited solutions; parameter TL is called tabu list length or tabu tenure
- solutions that contain tabu attributes are forbidden

Tabu Search

- Problem: previously unseen solutions may be tabu → use of aspiration criteria to override tabu status
- Stopping criteria:
 - all neighboring solutions are tabu
 - maximum number of iterations exceeded
 - number of iterations without improvement

Example: Tabu Search for SAT / MAX-SAT

- Neighborhood: assignments that differ in exactly one variable instantiation
- Tabu attributes: variables
- <u>Tabu criterion</u>: flipping a variable is forbidden for a given number of iterations
- Aspiration criterion: if flipping a tabu variable leads to a better solution, the variable's tabu status is overridden
- [Hansen & Jaumard 1990; Selman & Kautz 1994]

Iterated local search

- Generate initial candidate solution s
- Perform local search on s (for example iterative improvement starting from s)
- While termination condition not met
 - Set r=s
 - Perform perturbation on s
 - Perform local search on perturbed s
 - Based on acceptance criterion, keep s or revert to r

Iterated local search

- ILS can be interpreted as walks in the space of local optima
- Perturbation is key
 - Needs to be chosen so that it cannot be undone easily by subsequent local search
 - It may consist of many perturbation steps
 - Strong perturbation: more effective escape from local optima but similar drawbacks as random restart
 - Weak perturbation: short subsequent local search phase but risk of revisiting previous optima
- Acceptance criteria: usually either the most recent or the better of two

Iterated local search for TSP

- Perturbation: "double-bridge move" = 4-exchange step
- Cannot be directly reversed by 2-exchange moves

Other search techniques

- Genetic algorithms
- Ant colony optimization
- Usually covered in AI courses

Construction heuristics for initial solutions

- search space: space of partial solutions
- search steps: extend partial solutions with assignment for the next element
- solution elements are often ranked according to a greedy evaluation function

TSP construction: Nearest neighbor

- Start at some vertex s; v=s;
- While not all vertices visited
 - Select closest unvisited neighbor w of v
 - Go from v to w
 - v=w
- Go from v to s
- Running time O(n²)

TSP construction: Many variants

- Closest insertion: insert vertex closest to vertex in the tour
- Farthest insertion: insert vertex whose minimum distance to a node on the cycle is maximum
- Cheapest insertion: insert the node that can be inserted with minimum increase in cost
- Random insertion: randomly select a vertex and insert vertex at position that gives minimum increase of tour length

CSE 6140/ CX 4140 Empirical Analysis of Algorithms [SLS4]

textbook: STOCHASTIC LOCAL SEARCH FOUNDATIONS AND APPLICATIONS

based on slides by Holger Hoos

Theoretical vs. Empirical Analysis

Ideal: Analytically prove properties of a given algorithm (run-time: worst-case / average-case / distribution, error rates).

Reality: Often only possible under substantial simplifications or not at all.

→ Empirical analysis

The Three Pillars of CS:

- Theory: abstract models and their properties ("eternal thruths")
- Engineering: principled design of artifacts (hardware, systems, algorithms, interfaces)
- (Empirical) Science: principled study of phenomenae (behaviour of hardware, systems, algorithms; interactions)

The Scientific Method

make observations

formulate hypothesis/hypotheses (model)

While not satisfied (and deadline not exceeded) iterate:

- 1. design experiment to falsify model
- 2. conduct experiment
- 3. analyse experimental results
- 4. revise model based on results

Goals

- Defining standard methodologies
- Comparing relative performance of algorithms so as to identify the best ones for a given application
- Characterizing the behavior of algorithms
- Identifying algorithm separators, i.e., families of problem instances for which the performance differ
- Providing new insights in algorithm design

Issues:

- algorithm implementation (fairness)
- selection of problem instances (benchmarks)
- performance criteria (what is measured?)
- experimental protocol
- data analysis & interpretation

Benchmark Selection

Some criteria for constructing/selecting benchmark sets:

- instance hardness (focus on hard instances)
- instance size (provide range, for scaling studies)
- instance type (provide variety):
 - individual application instances
 - hand-crafted instances (realistic, artificial)
 - ensembles of instances from random distributions
 (→ random instance generators)
 - encodings of various other types of problems
 (e.g., SAT-encodings of graph colouring problems)

CPU Time vs. Elementary Operations

How to measure run-time?

- Measure CPU time (using OS book-keeping & functions)
- Measure elementary operations of algorithm
 (e.g., local search steps, calls of expensive functions)
 and report cost model (CPU time / elementary operation)

Issues:

- accuracy of measurement
- dependence on run-time environment
- fairness of comparison