Série 10

- 1. Les fonctions suivantes sont-elles dérivables en x=0?

 - a) $a(x) = \tan |x|$ c) $c(x) = \sin(x) \cos\left(\frac{1}{x}\right)$ si $x \neq 0$ et c(0) = 0

 - b) $b(x) = x \sin |x|$ d) $d(x) = \sin^2(x) \cos (\frac{1}{x})$ si $x \neq 0$ et d(0) = 0.
- 2. On considère la fonction g définie dans un voisinage de $x_0 = \frac{\pi}{2}$ par

$$g(x) = \frac{\cos(2x) + \sin x}{\sin(2x)}$$
 si $x \neq \frac{\pi}{2}$ et $g(\frac{\pi}{2}) = 0$.

Montrer à l'aide de la définition que la fonction g est dérivable en $x_0 = \frac{\pi}{2}$.

3. Montrer que la fonction b(x) de l'exercice 1. b) de la série 9 peut être prolongée par continuité en $x_0 = 0$.

Est-elle alors dérivable en $x_0 = 0$? $b(x) = \frac{\sqrt{x^2 + 1} + x - 1}{x}$.

4. Calculer la fonction dérivée des fonctions suivantes, en précisant leur ensemble de définition et celui de la fonction dérivée.

a)
$$a(x) = x^6 + 15\sqrt[5]{x^2} - \frac{6}{x}$$

$$d) \ d(x) = \sqrt{x\sqrt{x\sqrt{x}}}$$

b)
$$b(x) = \frac{4x-1}{2x+1}$$

e)
$$e(x) = \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1} - x}$$

c)
$$c(x) = \sqrt{\frac{1-2x}{x+1}}$$

f)
$$f(x) = \sqrt[3]{\left(1 - \sqrt{x^3}\right)^2}$$

- g) $g(x) = (x-1)^5(2x+1)^5$; pour quelles valeurs de x la dérivée g'(x)est-elle nulle?
- h) $h(x) = \sqrt[3]{(x-1)^2(x+a)}$; pour quelle valeur de a la dérivée h'(x)est-elle nulle en x = -1?
- **5.** Dériver sur \mathbb{R}^* les deux fonctions suivantes :

a)
$$f(x) = \sqrt[3]{x} = \begin{cases} x^{\frac{1}{3}} & \text{si } x \ge 0\\ -(-x)^{\frac{1}{3}} & \text{si } x < 0 \end{cases}$$

b)
$$g(x) = \sqrt[5]{x^2} = \begin{cases} x^{\frac{2}{5}} & \text{si } x \ge 0\\ (-x)^{\frac{2}{5}} & \text{si } x < 0 \end{cases}$$

- 6. On considère la courbe Γ d'équation $y=(\pi-x)^2\sin^2x$. Déterminer l'équation de la tangente t à la courbe Γ en $x_0=\frac{\pi}{2}$.
- 7. Déterminer l'équation de la parabole d'équation $y=x^2+px+q$ tangente à la droite d'équation y-3x-1=0 au point T d'abscisse $x_T=1$.

Réponses de la série 10

- **1.** a) non
- b) oui
- c) non
- d) oui
- **2.** La fonction g est dérivable en $x_0 = \frac{\pi}{2}$ et $g'(\frac{\pi}{2}) = -\frac{3}{4}$.
- **3.** La fonction prolongée \hat{b} est dérivable en $x_0 = 0$ et $\hat{b}'(0) = \frac{1}{2}$.
- **4.** a) $a'(x) = 6\left(x^5 + \frac{1}{\sqrt[5]{x^3}} + \frac{1}{x^2}\right)$, $D_a = D_{a'} = \mathbb{R}^*$.
 - b) $b'(x) = \frac{6}{(2x+1)^2}$, $D_b = D_{b'} = \mathbb{R} \{-\frac{1}{2}\}$.
 - c) $c'(x) = -\frac{3}{2} \frac{1}{\sqrt{(x+1)^3 (1-2x)}}$, $D_c =]-1; \frac{1}{2}]$ et $D_{c'} =]-1; \frac{1}{2}[$.
 - d) $d'(x) = \frac{7}{8} \frac{1}{\sqrt[8]{x}}$, $D_d = \mathbb{R}_+$ et $D_{d'} = \mathbb{R}_+^*$.
 - e) $e'(x) = \frac{2}{\sqrt{x^2 + 1}} \left(\sqrt{x^2 + 1} + x \right)^2$, $D_e = D_{e'} = \mathbb{R}$.
 - f) $f'(x) = -\frac{\sqrt{x}}{\sqrt[3]{1-\sqrt{x^3}}}$, $D_f = \mathbb{R}_+$ et $D_{f'} = \mathbb{R}_+ \{1\}$.
 - g) $g'(x) = 5(4x 1)(x 1)^4(2x + 1)^4$, $D_g = D_{g'} = \mathbb{R}$, $g'(x) = 0 \iff x \in \{-\frac{1}{2}; \frac{1}{4}; 1\}$.
 - h) $h'(x) = \frac{3x + 2a 1}{3} \frac{1}{\sqrt[3]{(x+a)^2 (x-1)}}$, $D_h = \mathbb{R}$ et $D_{h'} = \mathbb{R} \{1; -a\}$, $h'(-1) = 0 \Leftrightarrow a = 2$.
- **5.** a) $(\sqrt[3]{x})' = \frac{1}{3\sqrt[3]{x^2}}$, $\forall x \in \mathbb{R}^*$. b) $(\sqrt[5]{x^2})' = \frac{2}{5\sqrt[5]{x^3}}$, $\forall x \in \mathbb{R}^*$.
- **6.** Equation de la tangente $t: y = -\pi x + \frac{3}{4}\pi^2$.
- 7. Equation de la parabole : $y = x^2 + x + 2$.

8. On donne ci-dessous la courbe Γ d'équation y = f(x).

Esquisser le graphe de la fonction dérivée de $\ f$.

9. On donne ci-dessous la courbe Γ d'équation y = f(x).

Esquisser le graphe de la fonction dérivée de $\ f$.

