Lösungsvorschläge zum Übungsblatt 7

zur Vorlesung Mannigfaltigkeiten

Sommersemester 2016

Aufgabe 1. (a) Sei $\pi:TM\to M$ die Projektion. Die Abbildung $\Phi:M\times\mathbb{R}^n\to TM$ definiert durch

$$\Phi(p, (v^1, \dots, v^n)) = (p, \sum_{i=1}^n v^i X_i(p))$$

ist glatt und bijektiv. Wir zeigen, dass Φ ein lokaler Diffeomorphismus ist, dann folgt, dass Φ ein Diffeomorphismus sein muss. Sei dazu $(p,v) \in M \times \mathbb{R}^n$ und $(U,\phi=(x^1,\ldots,x^n))$ eine Karte um p mit induzierter Karte $\phi^{TM}:\pi^{-1}(U)\to\phi(U)\times\mathbb{R}^n$. Wir nehmen $\phi\times\mathrm{id}:\phi(U)\times\mathbb{R}^n\to\mathbb{R}^{2n}$ als Karte für $M\times\mathbb{R}^n$ um (p,v). Dann gilt für die lokale Darstellung von Φ bezüglich dieser Karten

$$\phi^{TM} \circ \Phi \circ (\phi \circ \mathrm{id})^{-1}(u, v) = \phi^{TM}(\phi^{-1}(u), \sum_{i} v^{i} X_{i}(\phi^{-1}(u))) = (u, \sum_{i,j=1}^{n} v^{i} X_{i}^{j}(\phi^{-1}(u)) e_{j}),$$

wobei $\{e_j\}$ die Standardbasis von \mathbb{R}^n bezeichnet und $X_i^j \in C^{\infty}(U)$ die Komponenten von X_i bezüglich ϕ sind, also

$$X_i = \sum_j X_i^j \frac{\partial}{\partial x^j}.$$

Das Differential von $\phi^{TM} \circ \Phi \circ (\phi \circ id)^{-1}$ hat nun die Blockgestalt

$$d\phi^{TM} \circ \Phi \circ (\phi \circ \mathrm{id})_{u,w}^{-1} = \begin{pmatrix} 1_n & 0 \\ * & X(\phi^{-1}(u)) \end{pmatrix}$$

Da die Vektoren $X_i(q) \in T_pM$ eine Basis von T_qM bilden, ist die Matrix $X(q) = (X_i^j(q))_{i,j}$ invertierbar, und zwar für alle $q \in U$. Also ist das Differential von Φ in jedem Punkt invertierbar.

(b) Sei $1_G \in G$ das Einselement und $\{v_1, \ldots, v_n\}$ irgendeine Basis für $T_{1_G}G$ $(n := \dim G)$. Betrachte nun die zugehörigen links-invarianten Vektorfelder

$$X_i(g) = X_g^{v_i} = (dL_g)_{1_G}(v_i), \qquad i = 1, \dots, n.$$

Nach den Resultaten aus der Vorlesung sind dies glatte Vektorfelder auf G. Da L_g ein Diffeomorphismus ist, ist $dL_g)_{1_G}: T_{1_G}G \to T_gG$ ein Isomorphismus. Da $\{v_1, \ldots, v_n\}$ eine Basis für $T_{1_G}G$ ist, sind also die Vektorfelder X_1, \ldots, X_n punktweise linear unabhängig und daher ist G parallelisierbar.

Aufgabe 2. Alle Mannigfaltigkeiten in dieser Aufgabe sind offene Teilmengen von \mathbb{R}^n und wir benutzen in allen Berechnungen den Standardatlas.

(a) Wir betrachten die Differentialgleichung $\frac{dt}{d\sigma} = t(\sigma)^2$ mit Anfangswert $t(0) = t_0 \in \mathbb{R}$. Falls $t_0 = 0$, so ist $t(\sigma) = 0$ die eindeutige Lösung dieser Gleichung.

Für $t_0 \neq 0$ ist die Lösung gegeben durch $t(\sigma) = \frac{1}{t_0^{-1} - \sigma}$. Das maximale Existenzintervall J_{t_0} ist also

$$J_{t_0} = \begin{cases} (-\infty, t_0^{-1}) & t_0 > 0 \\ (t_0^{-1}, \infty) & t_0 < 0 \end{cases} = \{ \sigma \in \mathbb{R} \mid \operatorname{sign}(t_0)\sigma < |t_0|^{-1} \}.$$

Hier ist $sign(t_0) \in \{\pm 1\}$ das Vorzeichen von t_0 , also $t_0 = sign(t_0)t_0$ Der Flussbereich ist daher

$$D^X = \{ (\sigma, t) \in \mathbb{R} \times \mathbb{R} \mid \operatorname{sign}(t_0)\sigma < |t_0|^{-1} \}.$$

(b) Es gilt $X_h = \partial_q h \cdot \frac{\partial}{\partial p} - \partial_p h \frac{\partial}{\partial q} = -q \frac{\partial}{\partial p} - p \frac{\partial}{\partial q}$. Daher betrachten wir das Gleichungssystem

$$\frac{dq}{dt} = -p$$

$$\frac{dp}{dt} = -q$$

mit Anfangswert $(q,p)(0)=(q_0,p_0)$ dann gilt $\frac{d^2p}{dt^2}=-\frac{dq}{dt}=p$, d.h. $p(t)=A\cosh(t)+B\sinh(t)$, für konstante $A,B\in\mathbb{R}$ und $q(t)=-\frac{dp}{dt}$. Wir erhalten deshalb für die Integralkurven

$$(q, p)(t) = \cosh(t)(q_0, p_0) - \sinh(t)(p_0, q_0),$$

was für alle t > 0 wohldefiniert und glatt ist. Daher ist X_h vollständig.

(c) Es gilt $X_h = p \frac{\partial}{\partial p} - q \frac{\partial}{\partial q}$, was zum Gleichungssystem

$$\frac{dq}{dt} = -q$$

$$dp$$

$$\frac{dp}{dt}=p$$

mit Anfangswert $(q, p)(0) = (q_0, p_0) \in \mathbb{R} \times (-1, 1)$ führt. Die Lösung ist dann $(q, p)(t) = (q_0 e^{-t}, p_0 e^t)$. Das maximale Existenzintervall mit Startwert $(q_0, 0)$ ist $J_{(q_0, 0)} = \mathbb{R}$. Ist $p_0 \neq 0$, dann ist

$$J_{q_0,p_0} = \{t \in \mathbb{R} \mid |p_0|e^t < 1\} = (-\infty, \log(|p_0|^{-1})),$$

Da $|p_0| < 1$ ist, enthält J_{q_0,p_0} den Punkt $0n\mathbb{R}$. Folglich ist X_h auf M nicht vollständig. Der Flussbereich ist

$$D^X = \{(t, q_0, p_0) \mid |p_0|e^t < 1\}.$$

Aufgabe 3. (a) Wir wissen aus der Vorlesung, dass das zu $a \in \mathfrak{gl}(n,\mathbb{R})$ gehörige linksinvariante Vektorfeld auf $\mathrm{GL}(n,\mathbb{R})$ an der Stelle $A \in \mathrm{GL}(n,\mathbb{R})$ gegeben ist durch

$$X_A^a = \sum_{i,j,k=1}^n A_k^i a_j^k \frac{\partial}{\partial A_j^i}.$$

Die zugehörige Differentialgleichung ist also

$$\frac{dA}{dt} = A(t)a.$$

Die Lösung dieser Gleichung mit Anfangswert $A_0 \in GL(n, \mathbb{R})$ ist

$$A(t) = A_0 \sum_{k=0}^{\infty} \frac{(ta)^k}{k!} = A_0 \exp(ta),$$

wie wir aus Analysis II wissen.

(b) Wir leiten ab mittels Produktregel und benutzen $\frac{d}{dt} \exp(ta) = \exp(ta)a$, sowie $\exp(0) = 1_n$:

$$\frac{d}{dt}|_{t=0} \text{Ad}(\exp(ta))(b) = \frac{d}{dt}|_{t=0} \exp(ta)b \exp(-ta) = ab - ba = [a, b].$$

(c) Wir werden die folgenden Relationen benutzen: Das links-invariante Vektorfeld zu $v \in T_{1_G}G$ ist an der Stelle $g \in G$ gegeben durch $X_g^v = (dL_g)_{1_G}(v)$ und der Fluss von X^v ist gegeben durch $\Phi_t^{X^v}(g) = g \exp(tv) = R_{\exp(tv)}(g)$ und erfüllt $(\Phi_t^{X^v})^{-1} = \Phi_{-t}^{X^v} = R_{\exp(-tv)}$. Außerdem ist der Pullback eines Vektorfelds X bezüglich eines Diffeomorphismus F gegeben durch $(F^*X)_p = (dF_p)^{-1}(X_{F(p)}) = d(F^{-1})_{F(p)}(X_{F(p)})$. Damit können wir nun rechnen

$$\begin{split} \operatorname{Ad}(\exp(tv))(w) &= (dC_{\exp(tv)})_{1_G}(w) \\ &= d(L_{\exp(tv)} \circ R_{\exp(-tv)})_{1_G}(w) \\ &= d(R_{\exp(-tv)} \circ L_{\exp(tv)})_{1_G}(w) \\ &= d(R_{\exp(-tv)})_{\exp(tv)}(d(L_{\exp(tv)})_{1_G}(w)) \\ &= d(R_{\exp(-tv)})_{\exp(tv)}(X_{\exp(tv)}^w) \\ &= (d\Phi_t^{X^v})_{1_G})^{-1}(X_{\Phi_t^{X^v}(1_G)}^w) \\ &= ((\Phi_t^{X^v})^*X^w)_{1_G} \end{split}$$

Also folgt nach der Definition der Lie-Ableitung

$$\frac{d}{dt}|_{t=0}\operatorname{Ad}(\exp(tv))(w) = \frac{d}{dt}|_{t=0}((\Phi_t^{X^v})^*X^w)_{1_G} = (\mathcal{L}_{X^v}X^w)_{1_G} = [X^v, X^w]_{1_G} = [v, w].$$

Aufgabe 4. (a) Es gilt $\exp(ta) = 1_3 + ta + O(t^2)$. Damit können wir rechnen

$$X_p^{a_i} = \frac{d}{dt}|_{t=0} \exp(ta)p = \frac{d}{dt}|_{t=0} (1+ta_i)p = a_i p.$$

Es ergibt sich also explizit an der Stelle $p = (p^1, p^2, p^3)$

$$X_p^{a_1} = p^2 \frac{\partial}{\partial p^1} - p^1 \frac{\partial}{\partial p^2}, \qquad X_p^{a_2} = p^3 \frac{\partial}{\partial p^2} - p^2 \frac{\partial}{\partial p^3}, \qquad X_p^{a_3} = p^3 \frac{\partial}{\partial p^1} - p^1 \frac{\partial}{\partial p^3}$$

Diese Vektorfelder kennen wir schon von Blatt 6.

(b) Die lokale Darstellung von X^{a_1} bezüglich der Koordinaten ϕ_N berechnet man wie folgt: Es gilt $X_p^{a_1} = \frac{d}{dt}|_{t=0} \exp(ta)p = \gamma'(0)$, wobei $\gamma(t) = \exp(ta)p$ eine glatte Kurve in S^2 ist. Wir müssen also

$$(\phi_N \circ \gamma)'(0)$$

berechnen. Es gilt nun für $k \in \mathbb{N}$

$$(a_1)^{2k} = (-1)^k \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad (a_1)^{2k+1} = (-1)^k a_1,$$

also

$$\exp(ta_1) = \sum_{k=0}^{\infty} \frac{(ta_1)^k}{k!} = \begin{pmatrix} \cos(t) & \sin(t) & 0\\ -\sin(t) & \cos(t) & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

Also gilt

$$\gamma(t) = (\cos(t)p^{1} + \sin(t)p^{2}, -\sin(t)p^{1} + \cos(t)p^{2}, p^{3})$$

und

$$\phi_N(\gamma(t)) = \frac{1}{1 - p^3} (\cos(t)p^1 + \sin(t)p^2, -\sin(t)p^1 + \cos(t)p^2).$$

Ableiten ergibt nun

$$(\phi_N \circ \gamma)'(0) = \frac{1}{1 - p^3} (p^2, -p^1).$$

Also gilt bezüglich der Karte $\phi_N = (x^1, x^2)$

$$X_p^{a_1} = \frac{1}{1 - p^3} \left(p^2 \frac{\partial}{\partial x^1} |_p - p^1 \frac{\partial}{\partial x^2} |_p \right) = x^2(p) \frac{\partial}{\partial x^1} |_p - x^1(p) \frac{\partial}{\partial x^2} |_p$$

Aufgabe 5. (a) Nach Definition von W ist W eine Teilmenge von D^X . Ist $(t,p) \in W$, so existiert ein offenes Intervall J, das t enthält und eine Umgebung U von p, sodass der Fluss von X auf $J \times U$ definiert ist. Für jedes Paar $(t_0, p_0) \in J \times U$ ist diese Eigenschaft gleichermaßen erfüllt, also ist W offen.

Sei nun $p \in M$. Satz 4.17 a) aus der Vorlesung impliziert die Existenz einer Umgebung U von p und $\epsilon > 0$, sodass für alle $q \in U$ die Integralkurve mit Startwert q mindestens auf $J = (-\epsilon, \epsilon)$ existiert. Also gilt $(0, p) \in W$.

- (b) Sei $(t_0, p_0) \in D^X \setminus W$ mit $t_0 > 0$. Dann existiert wegen $(0, p_0) \in W$ und weil W offen ist, ein $\epsilon > 0$ und eine Umgebung U von t_0 mit $(-\epsilon, \epsilon) \times U \subset W$. Also gilt $\tau = \sup\{t \in \mathbb{R} | (t, p_0) \in W\} > \epsilon > 0$. Da $(t_0, p_0) \notin W$, muss außerdem $\tau < t_0$ gelten. Wegen $(t_0, p_0) \in D^X$ gilt $t_0 \in J_{p_0}$ und damit also auch $\tau \in J_{p_0}$.
- (c) Sei $q_0 = \Phi^X(\tau, p_0)$. Dann wissen wir, dass $(0, q_0) \in W$ liegt, woraus die Behauptung folgt.
- (d) Sei nun U_0 und $\epsilon > 0$ wie in Teil c) und wähle $t_1 \in \mathbb{R}$ mit $\tau \epsilon < t_1 < \tau$ und $\Phi^X(t_1, p_0) \in U_0$. Dann gilt $(t_1, p_0) \in W$, d.h. es existiert ein $\delta > 0$ und eine Umgebung U_1 von p_0 sodass der Fluss Φ^X auf $(-\delta, t_1 + \delta) \times U_1$ definiert und glatt ist. Nach eventueller Verkleinerung von U_1 können wir annehmen, dass $\Phi^X(t_1, q) \in U_0$ für alle $q \in U_1$ gilt. Nun gilt

$$\Phi^{X}(t,p) = \Phi^{X}(t - t_1, \Phi^{X}(t_1(p))), \quad \forall t, t_1 \in J_p.$$

Wir haben nun t_1 so gewählt, dass Φ_{t_1} auf U_1 definiert und glatt ist und außerdem $\Phi^X_{t_1}(U_1) \subset U_0$ gilt. Es folgt also, dass $\Phi^X(t-t_1,\Phi^X(t_1(p)))$ definiert und in beiden Variablen glatt ist für alle $p \in U_1$ und t mit $|t-t_1| < \epsilon$. Also ist Φ^X auf $(-\delta,t_1+\epsilon) \times U_1$ definiert und glatt, was $(\tau,p_0) \in W$ impliziert, ein Widerspruch.