DIFFERENTIAL TOPOLOGY AND DIFFERENTIAL GEOMETRY WITH APPLICATIONS TO GENERAL RELATIVITY

DIFFERENTIAL TOPOLOGY AND DIFFERENTIAL GEOMETRY WITH APPLICATIONS TO GENERAL RELATIVITY

Preface

The process of writing this book started in autumn of 2018. The book is mainly based on the course notes of the course *Differential Geometry I* and *Differential Geometry II* held by *Prof. Dr. Will J. Merry* at *ETH Zurich* in the autumn semester 2018 and spring semester 2019, I visited. They can be found here:

https://www.merry.io/differential-geometry/

Moreover, the part concerning general relativity, is freely taken from the course *General Relativity* taught by *Prof. Dr. Renato Renner* at ETH Zurich in the autumn semester 2018.

Winterthur, Yannis Bähni September 1, 2018

Contents

reface	ii
hapter 1: Differential Topology	1
The Category of Smooth Manifolds	1
The Tangent Bundle	1
Vector Fields	1
The Cotangent Bundle	2
Tensor Bundles and Tensor Fields	2
hapter 2: Differential Geometry	7
hapter 3: General Relativity	8
Classical Mechanics	
ibliography	9

CHAPTER 1

Differential Topology

The Category of Smooth Manifolds

Example 1.1 (*n*-Spheres). Let $n \in \omega$. If n = 0, we have that $\mathbb{S}^0 = \{\pm 1\}$. It is easily seen that \mathbb{S}^0 is a smooth manifold of dimension 0. Let $n \geq 1$. Define $N := e_{n+1}$ and $S := -e_{n+1}$, where e_{n+1} denotes the n+1-th standard basis vector of \mathbb{R}^{n+1} . Moreover, set

$$U_+ := \mathbb{S}^n \setminus S$$
 and $U_- := \mathbb{S}^n \setminus N$.

Then U_+ and U_- are open subsets of \mathbb{S}^n , the upper and lower hemisphere, respectively. Then the functions $\varphi_{\pm}:U_{\pm}\to\mathbb{R}^n$ defined by

$$\varphi_{\pm}(x) := \frac{1}{1 \pm x_{n+1}} (x_1, \dots, x_n),$$

are homeomorphisms. Indeed, one can check that $\psi_{\pm}:\mathbb{R}^n o U_{\pm}$ defined by

$$\psi_{\pm}(x) := \left(\frac{2x}{1 + |x|^2}, \frac{\pm (1 - |x|^2)}{1 + |x|^2}\right)$$

is a continuous inverse for φ_+ and φ_- , respectively. We claim that $\{(U_\pm, \varphi_\pm)\}$ is a smooth atlas for \mathbb{S}^n . Clearly, \mathbb{S}^n is covered by the two charts. Next we have to calculate the transition functions $\varphi_\mp \circ \varphi_\pm^{-1} = \varphi_\mp \circ \psi_\pm : \varphi_\pm(U_+ \cap U_-) \to \varphi_\mp(U_+ \cap U_-)$. It is easy to see that $\varphi_\pm(U_+ \cap U_-) = \mathbb{R}^n \setminus \{0\}$ and that

$$\varphi_{\mp} \circ \psi_{\pm} = \frac{x}{|x|^2},$$

which is smooth. Since \mathbb{S}^n is Hausdorff as a metric space and as a subspace of a second countable space, itself second countable, \mathbb{S}^n equipped with the smooth structure induced by the smooth atlas constructed above, is a smooth manifold of dimension n.

The Tangent Bundle

Vector Fields.

The Cotangent Bundle

Tensor Bundles and Tensor Fields

Let $M \in \text{Diff}$ and $(k, l) \in \omega \times \omega$. Consider

$$T^{(k,l)}M := \coprod_{p \in M} T^{(k,l)}(T_pM).$$

Define $\pi: T^{(k,l)}M \to M$ by setting $\pi(p,A) := p$ for $A \in T^{(k,l)}(T_pM)$. Clearly π is surjective. Thus let $p \in M$ be arbitrary. Then there exists a chart (U,φ) around p

Lemma 1.2. Let $n, k \in \mathbb{Z}$, $n, k \ge 1$. Let V be an n-dimensional real vector space. Then

$$V \otimes \underbrace{V^* \otimes \cdots \otimes V^*}_{k} \cong L(\underbrace{V, \dots, V}_{k}; V) \tag{1}$$

canonically. If (e_v) is a basis of V and (e_v^*) the corresponding basis of V^* , then $f \in \operatorname{End}(V)$ corresponds to

$$\sum_{\nu=1}^{n} f(e_{\nu}) \otimes e_{\nu}^{*}. \tag{2}$$

Proof. It is easily checked that

$$\Psi: \begin{cases} V \times V^* \times \cdots \times V^* \to L(V, \dots, V; V) \\ (v, f_1, \dots, f_k) \mapsto ((v_1, \dots, v_k) \mapsto f_1(v_1) \cdots f_k(v_k)v) \end{cases}$$

is multilinear. Thus by the universal property of the tensor product there exists a unique linear mapping $\widetilde{\Psi} \in \operatorname{Hom}_{\mathbb{R}} \left(T^{(1,k)}(V); L(V,\ldots,V;V) \right)$ such that $\Psi = \widetilde{\Psi} \circ \otimes$. It is also easily checked that $\widetilde{\Psi}$ is an isomorphism. Let $f \in \operatorname{End}(V)$. Then for any $v \in V$ we have

$$\widetilde{\Psi}\left(\sum_{\nu=1}^{n} f(e_{\nu}) \otimes e_{\nu}^{*}\right)(v) = \sum_{\nu=1}^{n} \widetilde{\Psi}\left(f(e_{\nu}) \otimes e_{\nu}^{*}\right)(v)$$

$$= \sum_{\nu=1}^{n} e_{\nu}^{*}(v) f(e_{\nu})$$

$$= f\left(\sum_{\nu=1}^{n} e_{\nu}^{*}(v) e_{\nu}\right)$$

$$= f(v).$$

Proposition 1.3. The bundle of mixed tensors of type (k, l) has a unique natural structure as a smooth vector bundle of rank n^{k+l} over M.

Proof. For each $p \in M$ let $E_p := T^{(k,l)}(T_pM)$. By [Lee13, p. 57] and [Lee13, p. 313] dim $E_p = n^{k+l}$. Furthermore, let $E := T^{(k,l)}TM$ and $\pi : E \to M$ be defined by $\pi(p,A) := p$. Let $\{(U_\alpha, \varphi_\alpha) : \alpha \in A\}$ be an atlas for M. For each $\alpha \in A$ define

$$\Phi_{\alpha}: \begin{cases} \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{n^{k+l}} \\ (p, A) \mapsto \left(p, (A_{j_1 \dots j_l}^{i_1 \dots i_k}) \right) \end{cases}$$

Clearly, the inverse is given by

$$\Phi_{\alpha}^{-1}: \begin{cases} U_{\alpha} \times \mathbb{R}^{n^{k+l}} \to \pi^{-1}(U_{\alpha}) \\ \left(p, (A_{j_{1} \dots j_{l}}^{i_{1} \dots i_{k}})\right) \mapsto (p, A) \end{cases}.$$

Hence each Φ_{α} is bijective. Now we have to check, that $\Phi_{\alpha}|_{E_p}$ is an isomorphism. So let $\lambda \in \mathbb{R}$ and $B \in E_p$. Then

$$\Phi_{\alpha}|_{E_{p}}(p,\lambda A + B) = (p,(\lambda A + B)_{j_{1}...j_{l}}^{i_{1}...i_{k}}))
= (p,\lambda(A_{j_{1}...j_{l}}^{i_{1}...i_{k}}) + (B_{j_{1}...j_{l}}^{i_{1}...i_{k}}))
= \lambda\Phi_{\alpha}|_{E_{p}}(p,A) + \Phi_{\alpha}|_{E_{p}}(p,B).$$

Now let $\alpha, \beta \in A$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$. We consider the mapping

$$\Phi_{\alpha} \circ \Phi_{\beta}^{-1} : (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{n^{k+l}} \to (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{n^{k+l}}$$

Define $\tau_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \mathrm{GL}(n^{k+l}, \mathbb{R})$ by

$$\tau_{\alpha\beta} := (\delta_i^i).$$

Then we have that

$$(\Phi_{\alpha} \circ \Phi_{\beta}^{-1}) \left(p, (A_{j_{1} \dots j_{l}}^{i_{1} \dots i_{k}}) \right) = \left(p, (A_{j_{1} \dots j_{l}}^{i_{1} \dots i_{k}}) \right) = \left(p, \tau_{\alpha\beta}(p) (A_{j_{1} \dots j_{l}}^{i_{1} \dots i_{k}}) \right).$$

Since $\tau_{\alpha\beta}$ is constant, it is smooth (see [Lee13, p. 36]). Hence we can apply the vector bundle chart lemma [Lee13, p. 253] and the result follows.

Proposition 1.4 (Smoothness Criteria for Tensor Fields). Let M be smooth manifold and let $A: M \to T^{(1,k)}TM$ be a rough section. Then the following are equivalent:

- (a) $A \in \Gamma(T^{(1,k)}TM)$.
- (b) In every smooth coordinate chart, the component functions of A are smooth.
- (c) For all $X_1, ..., X_k \in \mathfrak{X}(M)$, the rough section $A(X_1, ..., X_k) : M \to TM$ defined by

$$A(X_1, \dots, X_k)(p) := A_p(X_1|_p, \dots, X_k|_p)$$
 (3)

is a smooth vector field.

(d) If $X_1, ..., X_k$ are smooth vector fields on some open subset $U \subseteq M$, then also $A(X_1, ..., X_k)$ is a smooth vector field on U.

Proof. We prove (a) \Leftrightarrow (b) and (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (b).

To prove (a) \Leftrightarrow (b), let $(U,(x^i))$ be a smooth chart. Actually, we can prove this for general tensor fields of type (k,l). Proposition 1.3 together with the proof of the vector bundle chart lemma [Lee13, pp. 253–254] implies, that the corresponding chart on $T^{(k,l)}TM$ is given by $(\pi^{-1}(U), \widetilde{\varphi})$, where $\widetilde{\varphi} : \pi^{-1}(U) \to \varphi(U) \times \mathbb{R}^{n^{k+l}}$ is defined by

$$\widetilde{\varphi} := (\varphi \times \mathrm{id}_{\mathbb{R}^{n^{k+l}}}) \circ \Phi$$

where $\Phi: \pi^{-1}(U) \to U \times \mathbb{R}^{n^{k+l}}$ is given as in the proof of proposition 1.3. Now we consider the coordinate representation \widehat{A} in the given charts (see [Lee13, p. 35]). Since A is a rough section, we have that

$$A^{-1}(\pi^{-1}(U)) = (\pi \circ A)^{-1}(U) = \mathrm{id}_{M}^{-1}(U) = U.$$

Hence $\varphi\left(U\cap A^{-1}(\pi^{-1}(U))\right)=\varphi(U)$, which is open, and $\widehat{A}:\varphi(U)\to\widetilde{\varphi}\left(\pi^{-1}(U)\right)$ is given by

$$\widehat{A}(x) = (\widetilde{\varphi} \circ A \circ \varphi^{-1})(x)$$

$$= (\varphi \times \mathrm{id}_{\mathbb{R}^{n^{k+l}}}) \left(\Phi(\varphi^{-1}(x), A_{\varphi^{-1}(x)}) \right)$$

$$= (\varphi \times \mathrm{id}_{\mathbb{R}^{n^{k+l}}}) \left(\varphi^{-1}(x), \left(A_{j_{1} \dots j_{l}}^{i_{1} \dots i_{k}} (\varphi^{-1}(x)) \right) \right)$$

$$= \left(x, \left(\widehat{A}_{j_{1} \dots j_{l}}^{i_{1} \dots i_{k}} (x) \right) \right).$$

By [Lee13, p. 35] A is smooth if and only if in any chart \widehat{A} is smooth. This is furthermore equivalent to that each $\widehat{A}_{j_1...j_l}^{i_1...i_k}$ is smooth and thus equivalent to that $A_{j_1...j_l}^{i_1...i_k}$ is smooth (see [Lee13, p. 33]).

To prove (b) \Rightarrow (c), let $(U, (x^i))$ be a smooth chart. Then write $X_1, \ldots, X_k \in \mathfrak{X}(M)$ as

$$X_{\nu} = X_{\nu}^{\mu_{\nu}} \frac{\partial}{\partial x^{\mu_{\nu}}}.$$

for v = 1, ..., k. For $p \in U$ lemma 1.2 implies

$$A(X_1, \dots, X_n)(p) = A_p(X_1|_p, \dots, X_k|_p)$$

$$= A_p \left(X_1^{\mu_1}(p) \frac{\partial}{\partial x^{\mu_1}} \Big|_p, \dots, X_1^{\mu_k}(p) \frac{\partial}{\partial x^{\mu_k}} \Big|_p \right)$$

$$= X_1^{\mu_1}(p) \cdots X_k^{\mu_k}(p) A_p \left(\frac{\partial}{\partial x^{\mu_1}} \Big|_p, \dots, \frac{\partial}{\partial x^{\mu_k}} \Big|_p \right)$$

$$= X_1^{\mu_1}(p) \cdots X_k^{\mu_k}(p) A_{\mu_1 \dots \mu_k}^i(p) \frac{\partial}{\partial x^i} \Big|_p.$$

By the smoothness criterion for vector fields [Lee13, p. 175] we have that each component function $X_{\nu}^{\mu_n}$ is smooth. Thus if A is smooth, we have by that each $A_{j_1...j_k}^i$ is smooth and

since $C^{\infty}(M)$ is an \mathbb{R} -algebra (see [Lee13, p. 33]), we have that

$$X_1^{\mu_1}\cdots X_k^{\mu_k}A_{\mu_1\ldots\mu_k}^i$$

is smooth for $i=1,\ldots,n$. Thus again by the smoothness criterion together with the localness of smoothness [Lee13, p. 35] we get that $A(X_1,\ldots,X_k)\in\mathfrak{X}(M)$.

To prove (c) \Rightarrow (d), we use that smoothness is a local property (see [Lee13, p. 35]). Let $p \in U$. Then by [Cat17, p. 14] we find a smooth bump function ψ supported in U and identically equal to 1 on some neighbourhood V of p. Set

$$\widetilde{X}_{\nu}|_{p} := \begin{cases} \psi(p)X_{\nu}|_{p} & p \in \operatorname{supp} \psi \\ 0 & p \in M \setminus \operatorname{supp} \psi \end{cases}.$$

Then the gluing lemma for smooth maps [Lee13, p. 35] implies $\widetilde{X}_1, \ldots, \widetilde{X}_k \in \mathfrak{X}(M)$. Hence by (c) we get that $A(\widetilde{X}_1, \ldots, \widetilde{X}_k) \in \mathfrak{X}_{\infty}$

mathfrak X(M) and so the restriction $A(\widetilde{X}_1, \ldots, \widetilde{X}_k)|_V$ is smooth. But $A(\widetilde{X}_1, \ldots, \widetilde{X}_k)|_V = A(X_1, \ldots, X_k)$ and so we are done.

Lasty to prove $(d)\Rightarrow(b)$, each vector field locally defined by

$$X_{j_{\nu}} = \delta_{j_{\nu}}^{\mu_{\nu}} \frac{\partial}{\partial x^{\mu_{\nu}}}.$$

is smooth. Thus by

$$A(X_1,\ldots,X_n)(p) = \delta_{j_1}^{\mu_1} \cdots \delta_{j_k}^{\mu_k} A_{\mu_1\ldots\mu_k}^i(p) \frac{\partial}{\partial x^i} \bigg|_{p} = A_{j_1\ldots j_k}^i(p) \frac{\partial}{\partial x^i} \bigg|_{p}$$

we get that $A^i_{j_1...j_k}$ is smooth and hence by (b) also A.

Theorem 1.5 (Tensor Characterization Lemma). A mapping

$$\underbrace{\mathfrak{X}(M)\times\cdots\times\mathfrak{X}(M)}_{k}\to C^{\infty}(M) \qquad or \qquad \underbrace{\mathfrak{X}(M)\times\cdots\times\mathfrak{X}(M)}_{k}\to \mathfrak{X}(M)$$

is induced by an element of $\Gamma(T^{(0,k)}TM)$ or $\Gamma(T^{(1,k)}TM)$, respectively, if and only if they are multilinear over $C^{\infty}(M)$.

Proof. We are proving only the second statement. Any element in $\Gamma(T^{(1,k)}TM)$ induces a mapping $\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ by part (c) of the smoothness criteria for tensor fields 1.4. Thus we have to show that \mathcal{A} is multilinear over $C^{\infty}(M)$. Let $f \in C^{\infty}(M)$ and $X_{\nu}, \widetilde{X}_{\nu} \in \mathfrak{X}(M), \nu = 1, \dots, k$. Then for any $p \in M$ we have that

$$A(X_{1},...,fX_{\nu}+\widetilde{X}_{\nu},...,X_{k})_{p} = A_{p}(X_{1}|_{p},...,(fX_{\nu}+\widetilde{X}_{\nu})_{p},...,X_{k}|_{p})$$

$$= A_{p}(X_{1}|_{p},...,f(p)X_{\nu}|_{p}+\widetilde{X}_{\nu}|_{p},...,X_{k}|_{p})$$

$$= f(p)A_{p}(X_{1}|_{p},...,X_{\nu}|_{p},...,X_{k}|_{p})$$

$$+ A_{p}(X_{1}|_{p},...,\widetilde{X}_{\nu}|_{p},...,X_{k}|_{p})$$

$$= f(p)A(X_{1},...,X_{\nu},...,X_{k})_{p}$$

$$+ \mathcal{A}(X_1, \dots, \widetilde{X}_{\nu}, \dots, X_k)_p$$

= $(f \mathcal{A}(X_1, \dots, X_{\nu}, \dots, X_k))_p$
+ $\mathcal{A}(X_1, \dots, \widetilde{X}_{\nu}, \dots, X_k)_p$.

Conversly, suppose that $\mathcal{A}:\mathfrak{X}(M)\times\cdots\times\mathfrak{X}(M)\to\mathfrak{X}(M)$ is multilinear over $C^\infty(M)$. Let $p\in M$. First we show that \mathcal{A} acts locally, i.e. if $X_\nu=\widetilde{X}_\nu$ in some neighbourhood U of p implies that also

$$A(X_1,\ldots,X_{\nu},\ldots,X_k)=A(X_1,\ldots,\widetilde{X}_{\nu},\ldots,X_k)$$

on U. By the multilinearity of \mathcal{A} it is enough to show that if X_{ν} vanishes on U then so does \mathcal{A} . There exists a smooth bump function ψ for $\{p\}$ supported in U (see [Lee13, p. 44]). Hence $\psi X_{\nu} = 0$ on M and $\psi(p) = 1$. Thus

$$0 = \mathcal{A}(X_1, \dots, \psi X_{\nu}, \dots, X_k)_p = \psi(p) \mathcal{A}(X_1, \dots, X_{\nu}, \dots, X_k)_p.$$

and since $\psi(p) = 1$ we have that

$$\mathcal{A}(X_1,\ldots,X_{\nu},\ldots,X_k)_p=0$$

for any $p \in U$.

Next we show that \mathcal{A} actually acts pointwise, i.e. if $X_{\nu}|_{p}$ vanishes so does \mathcal{A} . Let $(U,(x^{i}))$ be a chart containing p and $X_{\nu}=X_{\nu}^{i}\frac{\partial}{\partial x^{i}}$ on U. The same construction as used showing the implication $(c)\Rightarrow(d)$ in the proof of proposition 1.4 yields the existence of $f^{1},\ldots,f^{n}\in C^{\infty}(M)$ and $\widetilde{X}_{1},\ldots,\widetilde{X}_{n}\in\mathfrak{X}(M)$ such that $f^{i}=X_{\nu}^{i}$ and $\widetilde{X}_{i}=\frac{\partial}{\partial x^{i}}$ on a neighbourhood $V\subseteq U$ of p. Thus by the previous localization, we get that

$$\mathcal{A}(X_1,\ldots,X_{\nu},\ldots,X_k) = \mathcal{A}(X_1,\ldots,f^i\widetilde{X}_i,\ldots,X_k) = f^i\mathcal{A}(X_1,\ldots,\widetilde{X}_i,\ldots,X_k)$$

in U. Since $0 = X_{\nu}^{i}(p) = f^{i}(p)$, \mathcal{A} vanishes at p. Hence \mathcal{A} depends only on the value of X_{ν} at p. Thus define a rough section $A: M \to T^{(1,k)}TM$ by

$$A_p(v_1,\ldots,v_k) := \mathcal{A}(V_1,\ldots,V_k)(p)$$

where $V_1, \ldots, V_k \in \mathfrak{X}(M)$ are any extensions of $v_1, \ldots, v_k \in T_pM$ (see [Lee13, p. 177]). By the above, the choice of the extensions does not matter and the resulting rough section is smooth by proposition 1.4 part (c), hence $A \in \Gamma(T^{(1,k)}TM)$.

CHAPTER 2

Differential Geometry

CHAPTER 3

General Relativity

Classical Mechanics

We follow closely the exposition provided in [Tak08, pp. 4–61].

Bibliography

- [Cat17] Alberto S. Cattaneo. "Notes on Manifolds". 2017. URL: http://user.math.uzh.ch/cattaneo/manifoldsFS15.pdf.
- [Lee13] John M. Lee. *Introduction to Smooth Manifolds*. Second Edition. Graduate Texts in Mathematics. Springer, 2013.
- [Tak08] Leon A. Takhtajan. *Quantum Mechanics for Mathematicians*. Vol. 95. Graduate Studies in Mathematics. American Mathematical Society, 2008.