ZADANIE 1.

Pokaż, że $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) = 0$ jeśli m, n są względnie pierwsze.

Załóżmy, że m, n są względnie pierwsze, czyli z równości Bezout'a:

$$am + bn = 1$$

teraz popatrzmy na dowolny element produkciku:

$$x \otimes y = (xy) \otimes (am + bn) = (xy) \otimes (am) + (xy) \otimes (bn) = (amx) \otimes y + (xy) \otimes 0 = 0 \otimes y + (xy) \otimes 0 = 0 + 0 = 0$$

Czyli każdy element jest 0, więc całość też jest 0.

ZADANIE 2.

Niech A będzie pierścieniem, $\mathfrak a$ ideałem, a M A-modułem. Pokaż, że $(A/\mathfrak a) \otimes_A M$ jest izomorficzne do $M/\mathfrak aM$. [Stensoruj ciąg dokładny $0 \to \mathfrak a \to A \to A/\mathfrak a \to 0$ z M

To jest tak, że jak miałam sobie

$$a \rightarrow A \rightarrow A/a \rightarrow 0$$

i jakiś losowy A-moduł M, to

$$\mathfrak{a} \otimes \mathsf{M} \to \mathsf{A} \otimes \mathsf{M} \to \mathsf{A}/\mathfrak{a} \otimes \mathsf{M} \to \mathsf{0}$$

też jest ciągiem dokładnym!

Zajebiście, to teraz jak te pyśki szły? Pierwszy jest iniekcją, drugi jest suriekcją i ten drugi indukuje izomorfizm Coker(f) = M/f(M') na M'' (f to pierwsza funkcja, a myśki lecą $M' \to M \to M''$.)

Czyli co? Jak wygląda ta iniekcja $\mathfrak{a} \to A$? To jest identyczność na \mathfrak{a} lol.

Jak na razie mam, że

$$A/a \otimes M \cong (A \otimes M)/(a \otimes M) \cong AM/aM = M/aM$$

ZADANIE 3.

Niech A będzie pierścieniem lokalnym, M, N skończenie generowanymi A-modułami. Udowodnij, że $M \otimes N = 0$ wtedy M = 0 lub N = 0.

[Niech \mathfrak{m} będzie ideałem maksymalnym, $k = A/\mathfrak{m}$ będzie residue filed (to jest ciało zrobione przez wytentegowanie z tym tym). Niech $M_k = k \otimes_A M \cong M/\mathfrak{m}M$ na mocy zadania 2. Z lematu Nakayamy mamy, że $M_k = 0 \implies M = 0$. Ale $M \otimes_A N = 0 \implies (M \otimes_A N)_k = 0 \implies M_k \otimes_k N_k = 0 \implies M_k = 0$ or $N_k = 0$, since M_k , N_k są przestrzeniami wektorowymi nad ciałem.]

Czyli co, ja mam uzasadnić po prostu przejścia w tym łańcuszku?

$$\mathsf{M} \otimes_{\mathsf{A}} \mathsf{N} = \mathsf{0} \implies (\mathsf{M} \otimes_{\mathsf{A}} \mathsf{N})_{\mathsf{k}} = \mathsf{0} \stackrel{(\star)}{\Longrightarrow} \mathsf{M}_{\mathsf{k}} \otimes_{\mathsf{k}} \mathsf{N}_{\mathsf{k}} = \mathsf{0} \stackrel{(\heartsuit)}{\Longrightarrow} \mathsf{M}_{\mathsf{k}} = \mathsf{0} \vee \mathsf{N}_{\mathsf{k}} = \mathsf{0}$$

Bo cała reszta wydaje się mieć sens?

$$(\star) k \otimes_A (M \otimes_A N) = 0 \implies (k \otimes_A M) \otimes_k (k \otimes_A N) = 0$$

Jeśli k
$$\otimes_A$$
 (M \otimes_A N) = 0, to (k \otimes_A M) \otimes_A N) = 0, czyli k \otimes_A M

A to to jest raczej proste, bo jeśli $k \otimes_A (M \otimes_A N) = 0$, to tym bardziej $k \otimes_k (k \otimes_A (M \otimes_A N)) = 0$ a jak się poprzestawia, bo to raczej jest izomorficzne, chyba że nagle świat staną na głowie, to dostaję $k \otimes_A M \otimes_k k \otimes_A N$.

(♥) $M_k \otimes_k N_k = 0 \implies M_k = 0 \lor N_k = 0$? Nie no, to jest raczej oczywiste z tego ten ten na N.

POKOPAŁAM TE RÓWNOŚCI I CO JEST CZYM AAAAAAAAA – zapytać jak się zmienia to nad czym tensorujemy

Chwila, bo $0 = k \otimes_A (M \otimes_A N) = (k \otimes_A M) \otimes_A N$

ZADANIE 4.

Niech M_i ($i \in I$) będzie dowolną rodziną A-modułów i niech M będzie ich sumą prostą. Pokaż, że M jest płaski \iff każdy M_i jest płaski

Mamy funktor $T_N: M \mapsto M \otimes_A N$ i on jest na kategorii A-modułów i homomorfizmów. Jeśli T_N jest dokładny, czyli tensorowanie z N przekształca wszystkie ciągi dokładne na ciągi dokładne, wtedy N jest flat A-modułem.

 \iff pójdzie chyba z faktu, że (M \oplus N) \otimes P \cong (M \otimes P) \oplus (N \otimes P)

 \Longrightarrow

Wiem, że jeśli mam ciąg dokładny

$$0 \rightarrow N_1 \rightarrow N_2 \rightarrow N_3 \rightarrow 0$$

dla dowolnych N_i, to wtedy tensorowanie przez M zachowuje dokładność, tzn ciąg

$$0 \to N_1 \otimes M \to N_2 \otimes M \to N_3 \otimes M \to 0$$

jest nadal dokładny.

Co by się stało, jeśli któraś współrzędna M nie jest flat? Wtedy mogłam N wybrać tak, żeby

$$0 \rightarrow N_1 \otimes M_i \rightarrow N_2 \otimes M_i \rightarrow N_3 \otimes M_i \rightarrow 0$$

nie było dokładne, czyli tutaj psuje się iniekcja

$$f_1: N_1 \otimes M_i \to N_2 \otimes M_i$$

No dobra, ale ja mogę zapisać sobie

$$M = M_i \bigoplus_{j \neq i} M_j$$

i zrobić

$$F_1: N_1 \otimes (M_i \bigoplus M_j) \to N_2 \otimes (M_i \bigoplus M_j)$$

czyli coś typu $n_1 \otimes (m_i, m) \mapsto n_2 \otimes (m_i, m)$, ale mam też izomorfizmy

$$n_1 \otimes (m_i, m) \mapsto (n_1, m_i) \otimes (n_1, m)$$

$$n_2 \otimes (m_i, m) \mapsto (n_2, m_i) \otimes (n_2, m)$$

no i tak jakby iniekcyjność F_1 jest psuta przez brak inikcyjności w f_1 , czyli sprzeczność? Bo przecież $F_1 = f_1 \otimes F'$ dla jakiejś ładnej iniekcji F'.

ZADANIE 5.

Niech A[X] będzie pierścieniem wielomianów jednej zmiennej nad pierścieniem A. Pokaż, że A[X] jest płaską A-algebrą.

No jak dla mnie to A[X] to jest suma prosta $\bigoplus_{n\in\mathbb{N}} Ax^n \cong \bigoplus_{n\in\mathbb{N}} A$ i A[X] to moduł wolny. Ah, no i teraz korzystam z tego, że A \otimes M = M i śmiga.

ZADANIE 6.

Dla dowolnego A-moduły, niech M[X] będzie oznaczało zbiór wszystkich wielomianów w x o współczynnikach z M, to znaczy wyrażenia formy

$$m_0 + m_1 x + ... + x_r x^r$$

Zdefiniuj iloczyn elementu A[X] z elementem M[X] w oczywisty sposób, pokaż że M[X] jest A[X]-modułem. Pokaż, że M[X] \cong A[X] \otimes_{Δ} M.

$$a(x + y) = ax + ay$$

 $(a + b)x = ax + by$
 $(ab)x = a(bx)$
 $1x = x$

Czy ja chce brać sobie w, $v \in M[X]$ oraz p, $r \in A[X]$ i robić zwykłe mnożenie wielomianów? Chyba tak XD

$$\begin{split} p(w+v) &= \left(\sum p_i x^i\right) \left(\sum w_i x^i + \sum v_i x^i\right) = \left(\sum p_i x^i\right) \left(\sum (w_i + v_i) x^i\right) = \\ &= \sum_{k=0}^n \left(\sum_{i+j=k} p_i (w_j + v_j) x^k\right) = \sum \left(\sum p_i w_j x^k + \sum p_i v_j x^k\right) = \\ &= \sum \sum p_i w_j x^k + \sum \sum p_i v_j x^k = pw + pv \end{split}$$

I reszty sprawdzania to mi się nie chce.

Homomorfizm na

$$\begin{split} f: M[X] &\to A[X] \otimes_A M \\ f(\sum m_j x^j) &= \sum (x^j \otimes m_j) \end{split}$$

jest 1 – 1, bo każdy wielomian jest unikalny ze względu na współczynniki przy kolejnych potęgach, bla bla bla. Widać. Nawet mi się nie chce tego pisać ładnie

To teraz w drugą stronę jest też dość prosty

$$g: A[X] \otimes_A M \to M[X]$$

$$g(\left(\sum a_i x^i\right) \otimes m) = \sum a_i m x^i$$

ZADANIE 7.

Niech $\mathfrak p$ będzie ideałem pierwszym w A. Pokaż, że $\mathfrak p[X]$ jest ideałem pierwszym w A[X]. Czy jeśli $\mathfrak m$ jest ideałem pierwszym w A, to $\mathfrak m[X]$ jest ideałem maksymalnym w A[X]?

Z poprzedniego zadania wiem, że $\mathfrak{p}[X] \cong A[X] \otimes_A \mathfrak{p}$, bo każdy ideał jest A-modułem.

Czy mogę określić sobie homomorfizm (ewualuację w x = 1)

$$\begin{aligned} f: A[X] &\to A \\ f(\sum a_i x^i) &= \sum a_i \end{aligned}$$

i wtedy $f^{-1}[p]$ jest całością p[X] jest ideałem pierwszym jako przeciwobraz ideału pierwszego przez homomorfizm.

Alternatywnie

$$(X[X])/(y[X]) \cong (A/y)[X]$$

w pierwszym zadaniu z poprzedniego rozdziału pokazywaliśmy, że $f \in A[X]$ jest dzielnikiem zera \iff af = 0 dla pewnego $a \in A \setminus \{0\}$, czyli \iff w A są dzielniki zera. Ale w (A/\mathfrak{p}) dzielników zera nie ma, bo wszystkie są w \mathfrak{p} który to wyrzuciliśmy, więc śmiga.

ZADANIE 9.

TO WYPADAŁOBY ZROBIĆ, ALE NIEEE CHCEEE MIII SIEEEE

ZADANIE 10.

Niech A będzie pierścieniem i $\mathfrak a$ ideałem zawartym w radykalne Jacobsona. Niech M będzie A-modułem, a N niech będzie skończenie generowanym A-modułem. Niech $\mathfrak u: \mathsf M \to \mathsf N$ będzie homomorfizmem. Pokaż, że jeżeli indukowany homomorfizm $\mathsf TM/\mathfrak aM \to \mathsf N/\mathfrak aN$ jest surjektywny, to również $\mathfrak u$ taki jest.

Najpierw rysuneczek:

No i to jest tak, że to co jest w ??? jest izomorficzne z Coker(\overline{u}), bo no izomorfizm w dół mi nie popsuje Coker(\overline{u}), które było równe 0. Czyli ??? = 0. Z drugiej strony, to co jest w ??? jest równe Coker(u) \otimes A/ \mathfrak{a} . Skoro N było skończenie generowane, to takie jest też Coker(u), bo przecież wychodzi z N. Czyli mam, że

$$0 = Coker(u) \otimes A/a \cong Coker(u)/aCoker(u)$$

i z tego wynika, że Coker(u) = α Coker(u) i z lematu Nakayamy wiem, że Coker(u) = 0.

Nieskończenie generowany moduł, który nie spełnia lematu Nakayamy. Wyzwanie: znaleźć pierścień R, moduł M i ideał α taki, że M = α M i M \neq 0

Mam pierścień $k[x_1, ..., x_n, ...]$

ZADANIE 11.

Niech A będzie pierścieniem \neq 0. Pokaż, że $A^n \cong A^m \implies m = n$.

[Niech \mathfrak{m} będzie ideałem maksymalnym w A i niech $\phi: A^n \to A^m$ będzie izomorfizmem. Wtedy $1 \otimes \phi: (A/\mathfrak{m}) \otimes A^n \to (A/\mathfrak{m}) \otimes A^m$ jest izomorfizmem pomiędzy przestrzeniami liniowymi wymiaru \mathfrak{m} i \mathfrak{n} nad ciałem $k = A/\mathfrak{m}$. Czyli $\mathfrak{m} - \mathfrak{n}$.]

- Jeżeli $\phi: A^m \to A^n$ jest surjekcją, to m > n
- Czy jeżeli $\phi: A^m \to A^n$ jest iniekcją, to m < n?

Mamy $A^m \cong A^n$ i $\mathfrak{m} \triangleleft A$.

$$\begin{array}{ccc}
A^{n} & \xrightarrow{\cong} & A^{m} \\
\downarrow & & \downarrow \\
(A/\mathfrak{m})^{n} & \xrightarrow{\cong} & (A/\mathfrak{m})^{m}
\end{array}$$

i to niżej to jest przestrzeń liniowa, korzystamy z fakty dobrej określonowości wymiaru takich przestrzeni.

Na surjekcję to działa, ale przy iniekcji niekoniecznie to się przenosi.

Zakładamy nie wprost, że m > n i mamy strzałkę $\phi: A^m \to A^n$. Będziemy uzasadniać, że ona ma nietrywialne jądro.

$$A^{m} \xrightarrow{q_{l}} A^{n} \xrightarrow{q_{l}} A^{m}$$

Niech M będzie modułem z A^k . i $\psi \in End(A^m)$. Mamy, że dla $a_i \in A$

$$\psi^{k}$$
 + ... + $a_1 \psi^{k-1}$ + ... + $a_k id_{a^m}$ = 0

ZADANIE 12.

Niech M będzie skończenie generowanym A-modułem i ϕ : M]toAⁿ będzie surjektywnym homomorfizmem. Pokaż, że ker(ϕ) jest skończenie generowany.

[Niech e_1 , ..., e_n będzie bazą A^n i wybierzmy $u_i \in M$ takie, że $\phi(u_i) = e_i$. Pokaż, że M jest sumą prostą $\ker(\phi)$ i podmodułów generowanych przez u_1 , ..., u_n .

Korzystamy ze wskazówki, czyli te u_i istnieją tak jak chcemy. Niech $m \in M$, wtedy

$$\phi(m) = \sum a_i e_i \implies m - \sum a_i u_i \in \ker(\phi)$$

Czyli m \in M to jest suma czegoś z $\langle u_i \rangle$ i czegoś z ker (ϕ) .

Z tego wnioskujemy, że ker(ϕ) \cong M/ $\langle u_i \rangle$ i my mówimy, że to jest skończenie generowane, bo jest suriekcja z M w to cóś.

ZADANIE 13

Niech f : A \to B będzie homomorfizmem pierścieni i niech N będzie B-modułem. Patrzenie na N jako na A-moduł poprzez restrykcję skalarów daje nam B-moduł N_B = B \otimes _A N. Pokaż, że homomorfizm g : N \to N_B taki, że y \mapsto 1 \otimes y jest iniekcją i że g(N) jest składnikiem sumy N_B (czyli N_B = g(N) \oplus C dla pewnego C).

[Zdefiniuje p : $N_B \rightarrow N$ przez p(b \otimes y) = by i pokaż, że N_B = Im(g) \oplus ker(p).]

To, że g jest iniekcją to raczej widać. Bo wpp.

$$g(y) = 1 \otimes y = 1 \otimes y' = g(y')$$

ale $y \neq y'$, czyli $1 \otimes y \neq 1 \otimes y'$.

Chyba mam pokazać, że ker(p) i Im(g) są rozłączne i coś z N jest albo w ker albo w Im. Ale to chyba widać.

Niech $b \otimes n \in N_B$. Wtedy mamy dwie opcje:

- bn = 0, wtedy $b \otimes n \in \text{ker}(p)$
- bn \neq 0, wtedy b \otimes n = 1 \otimes bn \in Im(g).

Wypadałoby też pokazać, że p jest liniowe, ale sobie pominiemy.

Wiemy, $\dot{z}e g \circ p = id i chcemy$, by ker(g) = 0

ZADANIE 14

Częściowo uporządkowany zbiór I jest skierowany, jeżeli dla każdej pary i, j \in I istnieje k \in I takie, że i \leq k \wedge j \leq k.

Niech A będzie pierścieniem, I będzie skierowanym zbiorem i niech $\{M_i\}_{i\in I}$ będzie rodziną A modułów indeksowanych przez I. Dla każdej pary i, j \in I takiej, że i \leq j niech $\mu_{ij}: M_i \to M_j$ będzie A-homomorfizmem i załóżmy, że poniższe aksjomaty są spełnione:

- μ_{ii} jest identycznością na M_i
- μ_{ik} = $\mu_{ik} \circ \mu_{ij}$ zawsze $gdy i \leq j \leq k$.

Wtedy moduł M_i i homomorfizmy μ_{ij} są skierowanym systemem \mathbb{M} = (M_i, μ_{ij}) nad zbiorem skierowanym I.

Skonstruujemy A-moduł M nazywany skierowaną granicą skierowanego systemu \mathbb{M} . Niech C będzie sumą prostą M_i i zidentyfikuj każdy moduł M_i z jego kanonicznym obrazem w C. Niech D będzie podmodułem C generowanym przez wszystkie elementy postaci $x_i - \mu_{ij}(x_i)$ dla $i \leq j$ i $x_i \in M_i$. Niech M = C/D i $\mu: C \to M$ będzie projekcją, μ_i oznacza restrykcję μ do M_i .

Moduł M, albo bardziej dokładnie, para składająca się z M i rodziny homomorfizmów $\mu_{\rm i}: M_{\rm i} \to M$ jest nazywana skierowaną granicą skierowanego systemu $\mathbb M$ i piszemy $\varinjlim M_{\rm i}$. Z tej konstrukcji jasno wynika, że $\mu_{\rm i}$ = $\mu_{\rm i} \circ \mu_{\rm ii}$ gdy tylko i \leq j.

No konstrukcja, coś tutaj mam zrobić sama?

ZADANIE 15.

W sytuacji jak w zadaniu 14, pokaż, że każdy element M może być zapisany w formie $\mu_i(x_i)$ dla pewnego $i \in I$ i pewnego $x_i \in M_i$.

Pokaż, że jeśli $\mu_i(x_i) = 0$, wtedy istnieje $j \ge i$ takie, że $\mu_{ii}(x_i) = 0$ w M_i .

Widzę to. Teraz pokazać.

Weźmy element $x \in M$. Wtedy $x = \sum x_i + D$ dla $x_i \in M_i$. Ale mamy zbiór uporządkowany, czyli istnieje j takie, że $\sum x_i + D = \sum_{i < j} x_i + D$. To mogę sobie wszystko rzucić na M_j , to znaczy zrobić

$$y_j = \sum \mu_{ij}(x_i) \in M_j.$$

Wtedy

$$\sum_{i < j} x_i - \sum_{i < j} \mu_{ij}(x_i) = \sum_{i < j} (x_i - \mu_{ij}(x_i)) \in D$$

Czyli $\sum_{i < j} x_i = \sum_{i < j} \mu_{ij}(x_i)$ w środku C/D = M, czyli

$$x = y_i + D = \mu_i(y_i)$$

Jeżeli $\mu_i(x_i)$ = 0, to $x_i \in D$? A to znaczy, że $x_i - \mu_{ij}(x_i)$ = x_i dla pewnego j, czyli $\mu_{ij}(x_i)$ = 0?

ZADANIE 16.

Pokaż, że skierowana granica jest wyznaczona (z dokładnością do izomorfizmu) przez następującą własność. Niech N będzie A-modułem i dla każdego i \in I niech $\alpha_{\mathbf{i}}: \mathsf{M}_{\mathbf{i}} \to \mathsf{N}$ będzie homomorfizmem A-modułów takim, że $\alpha_{\mathbf{i}} = \alpha_{\mathbf{j}} \circ \mu_{\mathbf{i}\mathbf{j}}$ kiedy i \leq j. Wtedy istnieje jedyny homomorfizm $\alpha: \mathsf{M} \to \mathsf{N}$ taki, że $\alpha_{\mathbf{i}} = \alpha \circ \mu_{\mathbf{i}}$ dla wszystkich i \in I.

To, że taka istnieje to widać z diagramu. Teraz co, gdyby były dwie takie strzałki? α' i α ? Wtedy

$$\alpha_{\mathbf{i}} = \alpha \circ \mu_{\mathbf{i}}$$

$$\alpha_{\mathbf{i}} = \alpha' \circ \mu_{\mathbf{i}}$$

a z drugiej strony

$$\alpha_{\mathbf{i}} = \alpha_{\mathbf{j}} \circ \mu_{\mathbf{i}\mathbf{j}} = (\alpha \circ \mu_{\mathbf{j}}) \circ \mu_{\mathbf{i}\mathbf{j}}$$
$$\alpha_{\mathbf{i}} = \alpha_{\mathbf{j}} \circ \mu_{\mathbf{i}\mathbf{j}} = (\alpha' \circ \mu_{\mathbf{j}}) \circ \mu_{\mathbf{i}\mathbf{j}}$$

Zadanie 17. Niech $(M_i)_{i\in I}$ będzie rodziną podmodułów A-modułu takich, że dla każdej pary indeksów i, j \in I istnieje $k\in I$ takie, że $M_i+M_j\subseteq M_k$. Zdefiniujmy i \leq j przez $M_i\subseteq M_j$ i niech $\mu_{ij}:M_i\to M_j$ będzie włożeniem M_i w M_i . Pokaż, że

$$\varinjlim M_i = \sum M_i = \bigcup M_i.$$

W szczególności, dowolny A-moduł jest granicą skierowaną swoich skończenie generowanych podmodułów.