Лекция V

1 Предел функции

Будем рассматривать функцию $f:D\to \mathbb{R}$ и точку $a\in \mathbb{R}$, которая является предельной для области определения функции D.

Определение 1 (По Коши). Число $A \in \mathbb{R}$ называется *пределом функции* $f:D \to \mathbb{R}$ в тогда и только тогда, когда для всякого $\varepsilon>0$ найдется $\delta>0$ такое, что как только $x \in D$ удовлетворяет условию $0<|x-a|<\delta$, так сразу выполняется $|f(x)-A|<\varepsilon$.

Короче условие может быть записано в следующем виде:

$$\forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,\forall x \in D(0 < |x - a| < \delta \Rightarrow |f(x) - A| < \varepsilon). \tag{1}$$

Используя язык окрестностей 1 , это условие принимает эквивалентную форму:

$$\forall V_{\varepsilon}(A) \,\exists \mathring{U}_{\delta}(a) \,\forall x \in \mathring{U}_{\delta}(a) \cap D \, (f(x) \in V_{\varepsilon}(A)). \tag{1}'$$

Тот факт, что предел функции f в точке a равен A записывается следующим образом:

$$\lim_{x \to a} f(x) = A.$$

Пример 1. Рассмотрим функцию $f(x) = x \sin \frac{1}{x}$ с областью определения $D = \mathbb{R} \setminus \{0\}$.

 $^{^1}$ Напомним, что $V_{\varepsilon}(A):=(A-\varepsilon,A+\varepsilon)$ называется ε -окрестностью точки $A\in\mathbb{R},$ а $\mathring{U}_{\delta}(a):=(a-\delta,a+\delta)\setminus\{a\}-$ проколотой δ -окрестностью точки $a\in\mathbb{R}.$

Докажем по определению, что $\lim_{x\to 0}x\sin\frac{1}{x}=0$. В силу ограниченности функции $\sin\frac{1}{x}$ справедлива оценка

$$|f(x) - 0| = |x \sin \frac{1}{x}| = |x| |\sin \frac{1}{x}| \le |x|$$

из которой следует, что для любого $\varepsilon > 0$ можно положить $\delta = \varepsilon$ в условии (1) . Тогда, если $0 < |x| < \varepsilon$, то и $|f(x) - 0| < \varepsilon$.

Пример 2. Рассмотрим функцию сигнум,

$$\operatorname{sgn} x := \begin{cases} 1, & x > 0, \\ 0, & x = 0, \\ -1, & x < 0. \end{cases}$$

Мы собираемся доказать, что не существует предела функции $\operatorname{sgn} x$ в точке a=0. С этой целью запишем отрицание условия (1') того, что $A \in \mathbb{R}$ является пределом:

$$\exists V_{\varepsilon}(A) \ \forall \mathring{U}_{\vartheta}(a) \ \exists x \in \mathring{U}_{\vartheta}(a) \cap D \ (f(x) \notin V_{\varepsilon}(A)). \tag{2}$$

Очевидно, что любая точка $A \in \mathbb{R} \setminus \{-1,0,1\}$ удовлетворяет этому условию, поскольку она обладает ε -окрестностью, которая вообще не содержит значений функции. Поэтому рассматриваемое число A не может являться пределом функции.

Если теперь A – это одна из точек –1, 0 или 1, то, взяв в качестве ε -окрестности интервал $V(A) = (A - \frac{1}{2}, A + \frac{1}{2})$, мы получим, что обе точки –1 и 1 не могут лежать в нем одновременно. В любой проколотой δ -окрестности $\mathring{U}_{\mathfrak{J}}(0)$ содержатся как положительные x так и отрицательные. Поэтому в $\mathring{U}_{\mathfrak{J}}(0)$ всегда найдется x такой, что $f(x) \notin V(A)$.

Таким образом, ни одно вещественное число не может быть пределом функции сигнум в точке 0.

Дадим определение предела функции в терминах последовательностей.

Определение 2 (По Гейне). Число $A \in \mathbb{R}$ называется *пределом функции* $f: D \to \mathbb{R}$ в тогда и только тогда, когда для всякой последовательности $\{x_n\}$ точек $x_n \in D \setminus \{a\}$, сходящейся к a, последовательность $\{f(x_n)\}$ сходится к A.

Лемма 1. Число $A \in \mathbb{R}$ является пределом по Коши функции $f : D \to \mathbb{R}$ в точке $a \in \mathbb{R}$ тогда и только тогда, когда число $A \in \mathbb{R}$ является пределом по Гейне функции $f : D \to \mathbb{R}$ в точке $a \in \mathbb{R}$.

Доказательство. Докажем необходимость. Пусть A – предел по Коши функции f, и $\{x_n\}$ – последовательность точек $x_n \in D \setminus \{a\}$, сходящаяся к точке a. По определению предела по Коши функции имеем,

$$\forall \varepsilon > 0 \, \exists \delta = \delta(\varepsilon) > 0 \, \forall x \in D(0 < |x - a| < \delta \Longrightarrow |f(x) - A| < \varepsilon).$$

Тогда в силу сходимости последовательности $\{x_n\}$ для числа δ найдется $N \in \mathbb{N}$ такое, что $|x_n - a| < \delta$ при всех $n \ge N$. Поэтому для любого $\varepsilon > 0$ при всех $n \ge N$ будет выполняться неравенство $|f(x_n) - A| < \varepsilon$, а это означает, $\lim_{n \to \infty} f(x_n) = A$.

Достаточность будем доказывать от обратного. Пусть A не является пределом по Коши функции f в точке a, то есть существует ε -окрестность V(A) точки A

такая, что во всякой проколотой δ -окрестности точки a найдется x со свойством $f(x) \notin V(A)$. Тогда для всякого $n \in \mathbb{N}$ в $\frac{1}{n}$ -окрестности точки a найдется $x_n \neq a$ такой, что $f(x_n) \notin V(A)$. Таким образом, последовательность таких точек x_n будет сходиться к a, а последовательность $\{f(x_n)\}$ не будет сходиться к A. Но это означает, что A не является пределом по Гейне функции f в точке a.

Определение предела по Гейне особенно удобно, когда мы хотим доказать несуществование предела функции в точке a: достаточно предъявить две сходящиеся к a последовательности $\{x_n'\}$ и $\{x_n''\}$ такие, что последовательности точек $f(x_n')$ и $f(x_n'')$ сходятся к разным пределам.

Пример 3. Рассмотрим функцию $f(x) = \sin \frac{1}{x}$ с областью определения $D = \mathbb{R} \setminus \{0\}$.

Докажем, что не существует $\lim_{x\to 0} \sin\frac{1}{x}$. Рассмотрим две последовательности:

$$x'_n = \frac{1}{\frac{\pi}{2} + 2\pi n} \text{ if } x''_n = \frac{1}{2\pi n},$$

которые, очевидно, сходятся к 0 при $n \to \infty$. При этом последовательности с общими членами

$$f(x'_n) = 1$$
 и $f(x''_n) = 0$

сходятся к 1 и 0, соответственно. Поэтому у функции $\sin \frac{1}{x}$ не существует предела в точке 0.

Благодаря эквивалентности определений по Коши и Гейне, предел функции обладает многими свойствами, аналогичными уже рассмотренным свойствам предела числовой последовательности. Например, из леммы 1 следует, что предел функции является единственным.

2 Арифметические свойства предела функции

Теорема 1. Пусть $f: D \to \mathbb{R}$ и $g: D \to \mathbb{R}$ – функции такие, что $\lim_{x \to a} f(x) = A$, $\lim_{x \to a} g(x) = B$. Тогда

- 1. $\lim_{x \to a} (f(x) + g(x)) = A + B$.
- 2. $\lim_{x \to a} f(x)g(x) = A \cdot B$.

3. Если $g(x) \neq 0$ для всех $x \in D$ и $B \neq 0$, то

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}.$$

Доказательство. Вытекает из аналогичной теоремы для последовательностей (теорема 3 лекция III) и леммы 1. \Box

3 Предел функции и неравенства

Теорема 2. Пусть $f,g,h:D\to\mathbb{R}$ – функции с областью определения D такие, что

$$\lim_{x \to a} f(x) = \lim_{x \to a} b(x) = A,$$

и для всех $x \in D$ выполняется неравенство

$$f(x) \le g(x) \le h(x).$$

Тогда $\lim_{x \to a} g(x) = A$.

Доказательство. Вытекает из леммы о двух милиционерах (теорема 5 лекция III) и леммы 1.