

Example 3.3: Compute the integral

$$I_{\bullet} = \int_0^{\pi} \sin(x) \, \mathrm{d}x$$

using the midpoint rule with four equally-sized inter-

vals.

With low gud intends
$$\Delta x = \overline{11} - 0 = \overline{11}$$
 and so

 $\chi_{0} = 0$, $\chi_{1} = \overline{11}$, $\chi_{2} = \overline{11}$, $\chi_{3} = \overline{31}$, $\chi_{4} = \overline{11}$

and $\overline{\chi}_{1} = \overline{11}$, $\overline{\chi}_{2} = \overline{31}$, $\overline{\chi}_{3} = \overline{51}$, $\overline{\chi}_{4} = \overline{71}$,

so $f(\overline{\chi}_{1}) = \sin(\overline{11})$, $f(\overline{\chi}_{2}) = \sin(\overline{31})$, $f(\overline{\chi}_{3}) = \sin(5\overline{11})$, $f(\overline{\chi}_{4}) = \sin(\frac{11}{8})$

Using the midpoint rule

$$M_{4} = \Delta \chi \left[f(\overline{\chi}_{1}) + f(\overline{\chi}_{2}) + f(\overline{\chi}_{3}) + f(\overline{\chi}_{4}) \right]$$

$$= \overline{11} \left[\sin(\overline{11}) + \sin(\overline{11}) + \sin(\overline{11}) + \sin(\overline{11}) \right]$$

$$= \overline{11} \left[\sin(\overline{11}) + \sin(\overline{11}) + \sin(\overline{11}) \right]$$

$$= \overline{11} \left[\sin(\overline{11}) + \sin(\overline{11}) + \sin(\overline{11}) \right]$$

Example 3.4: Compute the integral

$$I_{\mathbf{A}} = \int_0^{\pi} \sin(x) \, \mathrm{d}x$$

using the trapzaium rule with four equally-sized intervals

Vals.

With four gold interests
$$\Delta x = \frac{1}{4}$$
 and

 $x_0 = 0$, $x_1 = \frac{1}{4}$, $x_2 = \frac{1}{2}$, $x_3 = \frac{31}{4}$, $x_4 = 11$

and $y_0 = f(x_0) = 0$, $y_1 = f(x_1) = \frac{1}{\sqrt{2}}$, $y_2 = f(x_2) = 1$, $y_3 = f(x_3) = \frac{1}{\sqrt{2}}$, $y_4 = gf(x_4) = 0$.

Approximiting using the hapezium rule

 $T_4 = \frac{0x}{2} \left[f(x_1) + 2f(x_1) + 2f(x_2) + 2f(x_3) + f(x_4) \right]$
 $= \frac{11}{3} \left[0 + \frac{2}{\sqrt{2}} + 2 + \frac{2}{\sqrt{2}} + 0 \right]$
 $= \frac{11}{3} \left[2 + \frac{4}{\sqrt{2}} \right]$
 $= \frac{11}{3} \left[1 + \sqrt{2} \right]$

≈ 1-89612.

Example 3.5: Compute the integral

$$I_{\mathbf{A}} = \int_0^{\pi} \sin(x) \, \mathrm{d}x$$

using the Simpson's rule with four equally-sized intervals.

With four gradienterrals
$$\Delta x = \frac{1}{4}$$
 and

 $\chi_0 = 0$, $\chi_1 = \frac{1}{4}$, $\chi_2 = \frac{1}{2}$, $\chi_3 = \frac{34}{4}$, $\chi_4 = T$
 $y = f(x_0) = 0$, $y_1 = f(x_1) = \frac{1}{\sqrt{2}}$, $y_2 = 1$, $y_3 = \frac{1}{\sqrt{2}}$, $y_4 = 0$.

Applying Simpson's interaction in earth $y = y_1$
 $= \frac{1}{3} \frac{1}{4} \left[0 + \frac{1}{\sqrt{2}} + 2 + \frac{1}{\sqrt{2}} + 0 \right]$
 $= \frac{1}{3} \frac{1}{4} \left[(4\sqrt{2} + 2) \right]$
 $= \frac{1}{3} \left[(4\sqrt{2} + 2) \right]$

2 2.00456