ERIKMATS et al. Atty Dkt: 3670-58 Serial No. 10/538,044 Art Unit: 3662

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) An airborne radar device comprising:

at least two antennas; elutter-suppressing means;

wherein the radar device is arranged to send out, via the antennas, radar pulses focused in main lobes:

wherein the antennas are arranged to receive reflected radar pulses, the antennas being separated from each other vertically;

means for transforming the received radar pulses into signals in the form of sequences of bins (Rk), the signals being carried in a first channel (K_1) and a second channel (K_2) ;

clutter-suppressing means arranged in such a way that a clutter component (e_c) of a certain bin (R_k) in the first channel (K_1) is also found in the second channel (K_2) multiplied by a complex constant $(C(R_k))$, where the complex constant $(C(R_k))$ is a quotient between complex antenna gain of the second channel (K_2) and of the first channel in a direction of ground for the current bin (R_k) , the clutter-suppressing means being arranged to estimate a complex constant $(\hat{C}(R_k))$ which describes how the signals from the receiver antennas are weighted together separately for each bin (R_k) when the resultant output signal (Ψ) is formed, the estimated constant $(\hat{C}(R_k))$ serving to suppress the clutter component (e_c) in the resultant output signal (Ψ) by subtraction of the second channel (K_2) from the first channel (K_1) multiplied by the estimated constant $(\hat{C}(R_k))$.

2. (Previously Presented) A radar device according to Claim 1, wherein the radar device comprises means for putting the signal from the first antenna in the first channel (K_1) and means for putting the signal from the second antenna in the second channel (K_2).

ERIKMATS et al. Atty Dkt: 3670-58 Serial No. 10/538,044 Art Unit: 3662

3. (Previously Presented) A radar device according to Claim 1, further comprising means for summing the signals from pairs of antennas included in the radar system in the second channel (K_2) and means for forming a difference between the signals from pairs of antennas included in the radar system in the first channel (K_1).

- 4. (Previously Presented) Radar device according to claim 1, wherein the cluttersuppressing means is arranged for estimating the complex constant $(\hat{C}(R_k))$ by utilizing the values from range bins in the vicinity of the current range bin $(\hat{C}(R_k))$.
- 5. (Previously Presented) A radar device according to claim 1, wherein the clutter-suppressing means is arranged for estimating the complex constant ($\hat{C}(R_k)$) by adapting a polynomial of degree "m" with coefficients " c_m ", wherein the polynomial describes variations over a number of bins centered around the current bin.
- (Previously Presented) A radar device according to Claim 5, wherein the cluttersuppressing means is arranged for determining the coefficients of the polynomial by means of the method of least squares.
- 7. (Previously Presented) A radar device according to claim 1, wherein in that the clutter-suppressing means is arranged for suppressing clutter without coherence between different pulses sent out.
- 8. (Previously Presented) A radar device according to claim 1, wherein the antennas are rolled by \pm 15° maximum relative to the ground plane.

9. (Previously Presented) A method for suppressing ground clutter comprising:

jointly sending out a focused radar pulse in the form of a main lobe from at least two antennas separated from each other vertically.

receiving reflected radar pulses by the antennas,

converting the received radar pulses into signals in the form of a number of bins (R_k) , the signals being carried in a first channel (K_1) and a second channel (K_2) .

transmitting a clutter component (e_c) multiplied by a complex constant (C(Rk)) for a certain bin (R_k) in the second channel (K_2) , where the complex constant (C(Rk)) is a quotient between the second channel (K_2) and the complex antenna gain of the first channel (K_1) in a direction of the ground for the current bin (R_k) ,

transmitting the clutter component (e_c) for a certain bin (R_k) in the first channel (K_1) ,

estimating a complex constant $(\hat{C}(Rk))$ by weighting together the signals from the antennas separately for each bin (R_k) when forming a resultant output signal (Ψ) , multiplying the estimated constant $(\hat{C}(Rk))$ by the first channel (K_k) .

in the resultant output signal (Ψ) , subtracting the second channel (K_2) from the first channel (K_1) multiplied by the estimated constant $(\hat{C}(Rk))$, which gives rise to the clutter component (e_c) being suppressed in the resultant output signal (Ψ) .

- 10. (Previously Presented) The method according to Claim 9, wherein the method puts the signal from the first antenna in the first channel (K_1) and the signal from the second antenna in the second channel (K_2) .
- 11. (Previously Presented) The method according to Claim 9, further comprising summing of the signals from pairs of antennas included in the radar system in the second channel (K_2) and subtracting the signals from antenna pairs included in the radar system in the first channel (K_1) .

 ERIKMATS et al.
 Atty Dkt: 3670-58

 Serial No. 10/538,044
 Art Unit: 3662

12. (Previously Presented) The method according to Claim 9, wherein the step of estimating the estimated constant (\hat{C} (Rk)) comprises the following acts:

selecting a polynomial of degree M with a number of complex constants (c_m) , estimating the complex constants (c_m) by the method of least squares and the values from a number of bins in the main lobe, which polynomial has the following appearance:

$$\hat{C}(\mathbf{R}_k) = \sum_{n=1}^{M} \mathbf{c}_n \mathbf{R}_k^m$$

- 13. (Previously Presented) The method according to Claim 9, wherein the method suppresses clutter independently of the coherence between the pulses.
- 14. (Previously Presented) The method according to Claim 9, further comprising sending out and receiving of pulses from antennas which are rolled by \pm 15° maximum relative to the ground plane.
- 15. (Previously Presented) The method according to Claim 9, further comprising sending out and receiving of pulses from a radar device which is airborne.