Today - Special Topic: Cryptography

- Commitments
- Zero-Knowledge Proofs

Some problems are hard...

- Consider the group $\mathbb{G} = \mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$, $3^1 \mod 17 = 3$, $3^2 \mod 17 = 9$, $3^3 \mod 17 = 10$, $3^4 \mod 17 = 13...$, $3^{16} \mod 17 = 1$. Fermat's Little Theorem
- Given $x \in \mathbb{Z}$ can you compute $g^x \mod p$? Efficiently?
- What about the other way around? Given g, X, p can we compute x such that $X = g^x \mod p$?
- Efficiently? Well, it depends on what x was?
- Discrete-Log Problem: Sample (uniform) $x \leftarrow \{1, \dots p-1\}$ and give you g, X, p where $X = g^x \mod p$. Now can you find x?
- Best Algorithm: $e^{(3^{2/3}-o(1))(\log p)^{\frac{1}{3}}(\log\log p)^{\frac{2}{3}}}$

How large can primes be?

- The number of prime numbers is infinite.
- As of January 2017, the largest known prime number is 2^{74,207,281} 1, a number with 22,338,618 digits. It was found in 2016 by the Great Internet Mersenne Prime Search (GIMPS).
- Using large enough primes primes the discrete log problem is believed to be hard!

Commitment Schemes

- A protocol between a committer (C) and a receiver (R)
- C's input: a bit $b \in \{0,1\}$ and R has no input
- Commitment Phase: $\langle C(b; s_C) \leftrightarrow R(s_R) \rangle$

Opening Phase: C sends b, s_C to R who outputs 0 or 1.

- Correctness: If C and R are honest then R always outputs 1
- ► **Hiding**: At the end of the commitment phase, R doesn't learn anything about *b*.
- ▶ **Binding**: C can not find $(0, s_0)$ and $(1, s_1)$ such that R outputs 1 on both.

Commitment Protocol

$$Commiter(b; s_C)$$

Receiver(
$$s_R$$
)
 $x \leftarrow \{0, \cdots p-1\}$
 $h := g^x \mod p$

$$\frac{h}{Y = g^b h^{s_c}}$$

Store Y

Opening Phase

$$\xrightarrow{b,s_C}$$

Output 1 if $g^b h^{s_c} \stackrel{?}{=} Y$ Else output 0

Is it hiding?

- Y contains no information about b.
- If $g^b h^s = Y$ then $g^{1-b} h^{s'} = Y$ where $s' = \frac{2b-1}{x} + s \mod p 1.1$

¹ For this class, we ignore that x^{-1} may sometimes not exist.

Is it binding?

- It is only computationally binding!
- If at the end of the protocol C can come up with $(0, s_0)$ and $(1, s_1)$ such that R outputs 1 on both choices then we can use this "procedure" to solve the discrete-log problem.
- Given (g, X, p) we are trying to find $dlog_g X$. We set h = X on behalf of R. Now given $(0, s_0)$ and $(1, s_1)$ (and because R outputs 1 on both) we have that $x \cdot s_0 = 1 + x \cdot s_1$. Therefore, $x = \frac{1}{s_0 s_1}$ mod p 1

How would you prove that a NP problem is true?

- A NP problem I is true if there exists a solution S such that $\mathscr{C}(I,S) = true$, where \mathscr{C} is the checking algorithms.
- You can send the solution S to your friend.
- However, this leaks the solution to your friend.

- Can you color a map in 3 colors?
- How can you prove to a friend that there exists a 3-coloring without disclosing the coloring itself?
- This problem is NP-complete.

Zero-Knowledge Proofs

- We have two players: a prover (\mathscr{P}) and a verifier (\mathscr{V})
- \mathscr{P} and \mathscr{V} get as input a graph/map G = (V, E)
- \mathscr{P} also gets as input a coloring function $c: V \to \{R, B, G\}$.
- A protocol $\langle \mathcal{P}, \mathcal{V} \rangle$ where at the end \mathcal{V} outputs 0 or 1.
 - ▶ Correctness: Execution with honest \mathscr{P}, \mathscr{V} always leads \mathscr{V} to output 1.
 - Soundness: For any cheating \mathscr{P}^* and G that is not 3-colorable \mathscr{V} outputs 0 with probability greater that $1-2^{-\lambda}$.
 - ▶ Zero-Knowledge: No cheating \mathscr{V}^* learns anything about P's coloring function c.

Zero-Knowledge Protocol

$$\mathcal{P}(G,c;r) \\ \pi \text{ be a random function} \\ \{\textit{R},\textit{B},\textit{G}\} \rightarrow \{\textit{R},\textit{B},\textit{G}\} \\ & \xrightarrow{\forall \textit{v} \in \textit{V},\textit{c}_{\textit{v}} = \textit{com}(\pi(\textit{c}(\textit{v})))} \\ & \xrightarrow{\textit{e} = (\textit{u},\textit{v})} \\ & \xrightarrow{\textit{open }\textit{c}_{\textit{u}},\textit{c}_{\textit{v}}} \\ & \xrightarrow{\textit{otiput 1}} \\ & \text{if diff} \\ & \text{Else 0}$$

Correctness and Soundness

- If \mathscr{P}, \mathscr{V} are honest then does V always accept?
- What is G doesn't have any 3-colorings? \mathscr{V} catches the prover with probability $\frac{1}{|E|}$.
- How do we reduce probability of not catching to $2^{-\lambda}$? Repeat it $|E| \cdot \lambda$ times.
- Must use fresh randomness (namely π) in each.

Zero-Knowledge

- What does a cheating verifier \mathcal{V}^* learn in one execution?
- Nothing! :)

CS194 on Cryptography: Next Semester