Online Learning and Online Convex Optimization Shai-Shaley Shwartz

Stefanos Poulis

February 6, 2014

Outline

- Notation-Definitions
 - Lipchitzness
 - Convexity
 - Sub-gradients
- Follow The Leader (FTL)
- Strongly Convex Regularizers
- Follow The Regularized Leader (FoReL)
 - Online Gradient Descent (OGD)
 - Exponentiated Gradient Descent (EGD)
- Online Classification
 - Perceptron
 - Winnow

Notation-Definitions

Definition

A function f is called L-Lipschitz over a set S with respect to a norm ||*|| if for all $u, w \in S$ we have $|f(u) - f(w)| \le L||u - w||$.

Notation-Definitions

Definition

A function f is called L-Lipschitz over a set S with respect to a norm ||*|| if for all $u,w\in S$ we have $|f(u)-f(w)|\leq L||u-w||$.

Definition

A set S is convex if for all $u, w \in S$ and $\alpha \in [0,1]$ we have that $\alpha u + (1-\alpha)w \in S$ as well. A function $f \to S : \mathbb{R}$ is convex iff for all $w \in S$ there exists z such that

$$\forall u \in S, f(u) \ge f(w) + (u - w, z). \tag{1}$$

Furthermore, such z is called the **sub-gradient** of f at w.

Follow-The-Leader (FTL)

Algorithm: Follow-The-Leader

$$\forall t, w_t = \underset{w \in S}{\operatorname{argmin}} \sum_{i=1}^{t-1} f_i(w)$$
 (2)

Lemma

Let $w_1, w_2, ...$ be the sequence of vectors produced by FTL. Then for all $u \in S$ we have

$$Regret_{T}(u) = \sum_{t=1}^{T} (f_{t}(w_{t}) - f_{t}(u)) \leq \sum_{t=1}^{T} (f_{t}(w_{t}) - f_{t}(w_{t+1}))$$
(3)

Proof.

Sketch: Use induction

Follow-the-Regularized-Leader (FoReL)

Algorithm: Follow-the-Regularized-Leader

$$\forall t, w_t = \underset{w \in S}{\operatorname{argmin}} \sum_{i=1}^{t-1} f_i(w) + R(w)$$
 (4)

- $R: S \to \mathbb{R}$ is a regularization term
- The goal of regularization is to stabilize the solution

Follow-the-Regularized-Leader

Example

Consider $f_t = \langle w, z \rangle$, let $S = \mathbb{R}^d$ and run FoReL with $R(w) = \frac{1}{2\eta} ||w||_2^2$, where $\eta \geq 0$. Then, the **gradient updates** are

$$w_{t+1} = -\eta \sum_{i=1}^{t} z_i = w_t - \eta z_t$$
 (5)

This rule is often called Online Gradient Descent

Follow-the-Regularized-Leader

Theorem

Consider running FoReL on a sequence of linear functions, $f_t(w) = \langle w, z_t \rangle$ for all t, with $S = \mathbb{R}^d$ and with the regularizer $R(w) = \frac{1}{2\eta} \|w\|_2^2$, which yields the predictions given by the gradient-updates. Then, for all u we have,

$$Regret_{T}(u) \le \frac{1}{2\eta} \|u\|_{2}^{2} + \eta \sum_{t=1}^{I} \|z_{t}\|_{2}^{2}.$$
 (6)

Proof.

Sketch: Run FTL on $f_0, f_1, ..., f_T$, where $f_0 = R$

Use gradient updates

Online Gradient Descent (OGD)

Running FoReL with Euclidean regularization yields OGD

Algorithm: Online Gradient Descent

parameter: $\eta > 0$ initialize: $w_1 = 0$

update rule: $w_{t+1} = w_t - \eta z_t$

OGD enjoys the same bound as FoReL, namely

$$Regret_T(u) \le \frac{1}{2\eta} \|u\|_2^2 + \eta \sum_{t=1}^T \|z_t\|_2^2.$$
 (7)

Better bound for OGD

Lemma

Let $f: S \to \mathbb{R}$ be convex. Then f is L-Lipschitz over S with respect to a norm $\|.\|$ iff for all $w \in S$ and $z \in \partial f(w)$ we have that $\|z\|_* \leq L$, where $\|.\|_*$ is the dual norm.

Corollary

Consider previous bound for OGD,

$$Regret_{T}(u) \le \frac{1}{2\eta} \|u\|_{2}^{2} + \eta \sum_{t=1}^{I} \|z_{t}\|_{2}^{2}.$$
 (8)

If we further assume that each f_t is L_t -Lipschitz with respect to $\|.\|_2$, and let L be such that $\frac{1}{T}\sum_{t=1}^T L_t^2 \leq L^2$, then

$$Regret_{T}(u) \leq \frac{1}{2\eta} \|u\|_{2}^{2} + \eta TL^{2}. \tag{9}$$

Strongly Convex Regularizers

A function is strongly convex if it is **strictly** above its tangent

Definition

A function $f:S\to\mathbb{R}^d$ is σ -strongly-convex over S with respect to a norm $\|.\|$ if for any $w\in S$ we have

$$\forall z \in \partial f(w), \forall u \in S, f(u) \ge f(w) + \langle z, u - w \rangle + \frac{\sigma}{2} \|u - w\|^2.$$
 (10)

Example

 $R(w) = \frac{1}{2} \|w\|_2^2$ is 1-strongly-convex with respect to the I_2 norm over \mathbb{R}^d .

Example

 $R(w) = \sum_{i=1}^{d} w_i log(w_i)$ is $\frac{1}{B}$ -strongly-convex with respect to the I_1 norm over the set $S = \{w \in \mathbb{R}^d : w > 0 \land \|w\|_1 \leq B\}$.

Analyzing FoReL with Strongly Convex Regularizers

Theorem

Let f(1),...,f(T) be a sequence of convex functions such that f_t is L_t -Lipschitz with respect to some norm $\|.\|$. Let L be such that $\frac{1}{T}\sum_t L_t^2 \leq L^2$. Assume that FoReL is run on the sequence with a regularization function that is σ -strongly-convex with respect to the same norm. Then for all $u \in S$,

$$Regret_T(u) \le R(u) - min_{w \in S}R(w) + \frac{TL^2}{\sigma}$$
 (11)

Proof.

Sketch: Use the fact that $f_t(w_t) - f_t(w_{t+1}) \leq \frac{L_t^2}{\sigma}$.

Derived Algorithms

• Running FoReL with $R(w) = \frac{1}{2} ||w||_2^2$ yields Online Gradient Descent, with updates

$$w_{t+1} = w_t - \eta z_t \tag{12}$$

• Running FoReL with $R(w) = \sum_{i=1}^d w_i log(w_i)$ yields Exponentiated Gradient Descent, with updates

$$w_{t+1}(i) = w_t(i)e^{\eta z_t(i)}$$
 (13)

Exponentiated Gradient Descent

Algorithm: Exponentiated Gradient Descent (Un-normalized)

parameter: $\eta>0$

initialize: $w_1 = (1/d, ..., 1/d)$

update rule: $\forall i, w_{t+1}(i) = w_t(i)e^{-\eta z_t(i)}$

Theorem

Let f(1),...,f(T) be a sequence of convex functions such that f_t is L_t -Lipschitz with respect to some norm $\|.\|$. Let L be such that $\frac{1}{T}\sum_t L_t^2 \leq L^2$. Assume Exponentiated Gradient Descent is run on the sequence and with the set $S = \{w : \|w\|_1 = B \land w > 0\} \subset \mathbb{R}^d$. Then,

$$Regret_{T}(S) \le \frac{Blog(d)}{\eta} + \eta BTL^{2}.$$
 (14)

Proof.

Sketch: Use strong convexity and Holder's inequality.

Online Classification

- $y \in \{-1, 1\}$
- A weight vector w makes a mistake on an example (\mathbf{x}, y) whenever $sign(\langle w, x \rangle) \neq y$
- 0-1 loss $I(w,(\mathbf{x},y)) = I_{[y\langle w,x\rangle \leq 0]}$
- Define surrogate loss $f_t = [1 y\langle w, x \rangle]_+$, (hinge-loss)
- f_t is convex and for all w, $f_t(w) \ge 0$ -1 loss

Run Online Gradient Descent on the sequence of functions $f_t(w)$ using update rule $w_{t+1}=w_t-\eta z_t$, where $z_t\in\partial f_t(w)$. We can check that $z_t=-y_tx_t\in\partial f_t(w)$. Obtain update rule

$$w_{t+1} = egin{cases} w_t, & y_t(w_t, x_t) > 0 \ w_t + \eta y_t x_t, & otherwise \end{cases}$$

Algorithm: Perceptron

```
initialize: w_1 = 0
for t = 1, 2, ..., T
receive x_t
predict p_t = sign(\langle w_t, x_t \rangle)
if y_t(\langle w_t, x_t \rangle) \leq 0
w_{t+1} = w_t + y_t x_t
else w_{t+1} = w_t
```

Theorem

Suppose that the Perceptron runs on a sequence $(x_1, y_1, ..., x_T, y_T)$ and let $R = ||x_t||_{\infty}$, Let $\mathbb M$ be the rounds on which the Perceptron errs and let $f_t(w) = I_{[i \in \mathbb M]}[1 - y_t\langle w, x_t\rangle]_+$

$$\mathbb{M} \leq \sum_{t} f_{t}(u) + R \|u\| (\sum_{t} f_{t}(u))^{\frac{1}{2}} + R^{2} \|u\|^{2}$$
 (15)

Theorem

Suppose that the Perceptron runs on a sequence $(x_1, y_1, ..., x_T, y_T)$ and let $R = ||x_t||_{\infty}$, Let $\mathbb M$ be the rounds on which the Perceptron errs and let $f_t(w) = I_{[i \in \mathbb M]}[1 - y_t\langle w, x_t\rangle]_+$

$$\mathbb{M} \leq \sum_{t} f_{t}(u) + R \|u\| (\sum_{t} f_{t}(u))^{\frac{1}{2}} + R^{2} \|u\|^{2}$$
 (15)

Proof.

Sketch: Follow analysis for OGD and use claim that given

$$x, b, c \in \mathbb{R}^+, x < c + b^2 + bc^{1/2}$$

- $y \in \{-1, 1\}$
- ullet Originally proposed for the class of k monotone Boolean functions
- $\langle w, x \rangle \ge 1$, if one of the relevant features is turned on in x. Otherwise, $\langle w, x \rangle = 0$
- A weight vector w errs on (x, y) if $y(2\langle w, x \rangle 1) \le 0$
- 0-1 loss $I(w, (\mathbf{x}, y)) = I_{[y2\langle w, x \rangle 1) \leq 0]}$
- Define surrogate loss $f_t = [1 y_t 2\langle w, x_t \rangle 1]_+$
- f_t is convex and for all w, $f_t(w) \ge 0$ -1 loss

Run Exponentiated Gradient Descent on the sequence of functions $f_t(w)$ with

$$z_t = egin{cases} 2y_t x_t, & t \in \mathbb{M} \\ 0, & \textit{otherwise} \end{cases}$$

to get updates

$$\forall i, w_{t+1} = egin{cases} w_t(i), & y_t 2(w_t, x_t) - 1 \ge 0 \\ w_t(i)e^{-\eta 2y_t x_t(i)} & otherwise \end{cases}$$

Algorithm: Winnow,

```
initialize: w_1 = (1/d, ..., 1/d) for t = 1, 2, ..., T receive x_t predict p_t = sign(2\langle w_t, x_t \rangle - 1) if y_t(2\langle w_t, x_t \rangle - 1) \leq 0 \forall i, w_{t+1}(i) = w_t(i)e^{-\eta 2y_t x_t(i)} else w_{t+1} = w_t
```

Theorem

Suppose that Winnow runs on a sequence $(x_1, y_1, ..., x_T, y_T)$, where $x_t \in \{0, 1\}^d$ for all t. Let M, be the rounds on which Winnow errs and let $f_t(w) = I_{[i \in \mathbb{M}]}[1 - y_t 2\langle w, x_t \rangle - 1]_+$. Then for any $u \in \{0, 1\}^d$, such that $\|u\|_1 = k$ it holds that

$$\mathbb{M} \leq \frac{1}{1 - 2\eta} \left(\sum_{t} f_t(u) + \frac{k \log(d)}{\eta} \right). \tag{16}$$

Summary

- Derived bounds for FTL-FoReL
- Introduced strongly-convex regularization
- Used different regularizers to derive OGD-EGD using FoReL
- ullet By convexifying 0-1 loss we saw that OGD o Perceptron and EGD o Winnow