

Sistemas de Controle II - QS1.2021

Laboratório Virtual 1

Obtenção Experimental do Diagrama de Bode

Professora: Dra. Heloise Assis Fazzolari

Grupo G

Alunos:

Daniel Macedo Costa Fagundes RA 11076809

Marcos Vinicius Fabiano de Oliveira RA 11067212

Santo André

SUMÁRIO

1	Objetivo	1	
	 Metodologia 2.1 Sistemas de Primeira ordem circuito RC 2.1.1 Cálculo da função de transferência 2.1.2 Cálculo da função de transferência senoidal 2.1.3 Cálculo da constante de tempo do sistema 2.1.4 Cálculo da frequência de canto da função de transferência 2.1.5 Obtenção experimental de módulo e defasagem 2.1.6 Diagrama de Bode 2.2 Sistemas de Segunda ordem circuito RLC 2.2.1 Cálculo da função de transferência 2.2.2 Cálculo da função de transferência senoidal 2.2.3 Relações da frequência natural (ωn) e do coeficiente de amortecimento (ξ) 	2 2 2 3 2 4 5 10 10 12	
	 2.2.5 Relações da frequencia natural (ωπ) e do coeficiente de amortecimento (ς) 2.2.4 Obtenção experimental de módulo e defasagem 2.2.5 Diagrama de Bode 	14 17	
3	 Questões 3.1 A frequência de canto ωc calculada teoricamente é a mesma obtida experimentalmente? Q são os fatores que influenciam nessa diferença? 3.2 A frequência natural ωn calculada teoricamente é a mesma obtida experimentalmente? Quais os fatores que influenciam nessa diferença? 3.3 Em qual dos circuitos se observa ressonância? Justifique sua resposta. 3.4 Enumere as possíveis fontes de erro nas experiências. 3.5 É possível obter ressonância em um circuito RLC? Quais seriam as condições para que ocressonância em dito circuito? 	19 s são 19 20 21	
4	Resultados e Discussão	22	
5	Conclusões	25	
6	Referências Bibliográficas	26	
A	nexo A - Diagrama de Bode para o Circuito RC	27	
A	nexo B - Diagrama de Bode para o Circuito RLC	28	

1 Objetivo

Obter experimentalmente o diagrama de Bode de circuitos RC e RLC por meio da técnica de varredura de frequência, analisando se há a existência de ressonância.

2 Metodologia

2.1 Sistemas de Primeira ordem circuito RC

2.1.1 Cálculo da função de transferência

Dado o circuito:

Figura 1 - Esquema de um circuito RC em série.

Sabemos que sua função de transferência h(t) será dada como a variação do sinal em relação ao sinal de entrada.

$$h(t) = \frac{y(t)}{u(t)}$$

Aplicando Laplace temos:

$$H(s) = \frac{Y(s)}{U(s)}$$

Analisando as tensões no circuito podemos concluir que tensão de saída Y(s) equivale a tensão no capacitor Vc(s):

$$V_c(s) = \frac{1}{sC} \Rightarrow Y(s) = \frac{1}{sC}$$

A tensão de entrada pode ser determinada como a soma das tensões nos componentes do circuito:

$$U(s) = \frac{1}{sC} + R$$

Portanto, temos que:

$$\frac{Y(s)}{U(s)} = \frac{\frac{1}{sC}}{\frac{1}{sC} + R} = \frac{1}{1 + RsC}$$

$$\therefore H(s) = \frac{1}{1 + RsC}$$

2.1.2 Cálculo da função de transferência senoidal

Como visto em aula, dado um sistema estável em regime permanente, a resposta a uma entrada senoidal pode ser obtida fazendo $s=j\omega$. Portanto, temos a função de transferência senoidal como:

$$H(s) = \frac{1}{1 + sRC} \Rightarrow H(j\omega) = \frac{1}{1 + j\omega RC}$$

$$H(j\omega) = \frac{1}{1 + j\omega RC} = |H(j\omega)| \measuredangle \phi(\omega)$$

$$|H(j\omega)| = \frac{1}{\sqrt{(\omega RC)^2 + 1^2}} e^{-\omega \phi(\omega)} = \omega - tan^{-1}(\omega RC)$$

Para a entrada $u(t)=5sen(\omega t)$, a resposta esperada para regime estacionário é:

$$y(t) = 5 \cdot |H(j\omega)| \cdot \sin(\omega t + \angle \phi(\omega))$$

$$y(t) = 5 \cdot \frac{1}{\sqrt{(\omega RC)^2 + 1^2}} \cdot \sin(\omega t - \tan^{-1}(\omega RC))$$

Seguindo a tabela de valores de resistência e capacitância fornecida na descrição do experimento, R = 1 k Ω e C = 20 μ F, temos que RC vale 0,02. Substituindo em y(t):

$$y(t) = 5 \cdot \frac{1}{\sqrt{(\omega \cdot 0.02)^2 + 1^2}} \cdot \sin(\omega t - \tan^{-1}(\omega \cdot 0.02))$$
$$y(t) = \frac{5}{\sqrt{4\omega^2 \cdot 10^{-4} + 1}} \cdot \sin(\omega t - \tan^{-1}(\cdot 0.02\omega))$$

2.1.3 Cálculo da constante de tempo do sistema

$$H(s) = \frac{1}{1 + sRC} \Rightarrow \frac{1}{1 + \tau s} : .$$
$$\tau = RC = 1000 \cdot 20\mu = 0.02$$

Podemos afirmar que em cinco constantes de tempo, ou seja 0.1 segundo, o sistema está em regime permanente e é válido que

$$y(t) = \frac{5}{\sqrt{4\omega^2 \cdot 10^{-4} + 1}} \cdot \sin(\omega t - \tan^{-1}(\cdot 0.02\omega))$$

2.1.4 Cálculo da frequência de canto da função de transferência

Como H(s) é um sistema de primeira ordem , sua frequência de canto é dada como sendo $\frac{1}{\tau}$.

$$\tau = 0.02 \Rightarrow \omega_c = \frac{1}{\tau} = \frac{1}{0.02} = 50 \ rad/s$$

$$f_c = \frac{\omega_c}{2\pi} = \frac{50}{2\pi} = 7.957Hz$$

2.1.5 Obtenção experimental de módulo e defasagem

Dados Experimentais | Tabela

Utilizando o software LTspice, foi elaborada uma simulação do circuito RC respeitando as seguinte características:

Dados do enunciado				
Resitência [Ω]	1000			
Capacitância [F]	0.00002			

Características do sistema				
Cte tempo	0.02			
Ômega corte	50			

O circuito utilizado na simulação e exemplificado abaixo foi a base para coleta dos dados, sofrendo pequenos ajustes no intervalo de simulação de acordo com a frequência selecionada.

Figura 2 - Representação do circuito RC utilizado na simulação.

Após a montagem do circuito foram selecionadas doze frequências múltiplas e submúltiplas da frequência de canto, como pode ser observado na tabela abaixo.

Tabela 1 - Dados experimentais do sistema de primeira ordem RC.

N * wc	w(rad/s)	f(hz)	Tsinal [ms]	Tatraso [ms]	Upp	Ypp	fase	ganho
0	0.00E+00	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.2	1.00E+01	1.592	627.6596	-19.7504	9.9888	9.8052	-11.3280	-0.1611
0.4	2.00E+01	3.183	314.1763	-19.0250	9.9988	9.2888	-21.7998	-0.6398
0.5	2.50E+01	3.979	251.3229	-18.5507	9.9983	8.9773	-26.5724	-0.9356
0.8	4.00E+01	6.366	157.0863	-16.8690	9.9990	7.9567	-38.6592	-1.9845
1	5.00E+01	7.958	125.6613	-15.7020	9.9995	7.3059	-44.9839	-2.7261
1.2	6.00E+01	9.549	104.7233	-14.5725	9.9983	6.7096	-50.0950	-3.4646
1.5	7.50E+01	11.937	83.7727	-13.0199	9.9984	5.9283	-55.9509	-4.5400
2	1.00E+02	15.915	62.8338	-10.8484	9.9982	4.9034	-62.1550	-6.1885
5	2.50E+02	39.789	25.1322	-4.5957	9.9988	2.2171	-65.8293	-13.0832
10	5.00E+02	79.577	12.5668	-2.6709	9.9968	1.0953	-76.5141	-19.2064
20	1.00E+03	159.155	6.2831	-1.3911	9.9968	0.5307	-79.7081	-25.5003

Para cada frequência ajustou-se o gerador de sinais senoidais com amplitude fixa de 5volts e mediu-se:

- Picos de tensão nos sinais de entrada (Vinput);
- Picos de tensão nos sinais de saída (Voutput);
- Período do sinal de entrada;
- Defasagem entre os sinais de entrada e saída.

Como exemplo do processo de medição, temos abaixo a coleta de dados de defasagem entre entrada e saída para o gerador de sinais ajustado para a frequência de canto 7.958 Hertz.

Figura 3 - Resultado da simulação do circuito RC realizada no LTSpice.

Para o exemplo temos uma defasagem de 15.7020 ms e um período para o sinal de entrada de 125.6613 ms, assim podemos determinar a fase como:

$$\angle \phi = \frac{360*Tatraso}{Tsinal} = \frac{360*15.7020ms}{125.6613ms} = 44.983^{\circ} \cong 45^{\circ}$$

Podemos observar que não apenas a fase corresponde ao esperado de acordo com a literatura disponível, mas também o módulo -2,726 dB está próximo dos -3 dB.

2.1.6 Diagrama de Bode

A partir dos dados da tabela 1 foi elaborado um diagrama de Bode para verificação visual do comportamento do sistema:

Figura 4 - Diagrama de Bode para o circuito RC

A partir do gráfico de módulo pela frequência podemos estimar a frequência de canto traçando assíntotas para as partes "lineares" do início e do final. O ponto de encontro das assíntotas corresponde à aproximação da frequência de canto.

Para a imagem abaixo as assíntotas foram traçadas em verde e a frequência de canto estimada pela abscissa em vermelho.

Figura 4.1 - Detalhe para a magnitude no diagrama de Bode para o circuito RC

O valor estimado a partir do módulo é de aproximadamente 5E+01.

Podemos observar também que o decaimento a partir da frequência encontrada corresponde com os 20dB por década previstos na literatura.

Ainda confirmando os resultados esperados observamos que a fase do sistema para a frequência encontrada é aproximadamente 45°.

Figura 4.2 - Detalhe para a fase no diagrama de Bode para o circuito RC

2.2 Sistemas de Segunda ordem circuito RLC

2.2.1 Cálculo da função de transferência

Dado o circuito:

Figura 4 - Esquema de um circuito RLC em série.

Sabemos que a função de transferência g(t) do sistema será dada como a variação do sinal de saída com relação ao sinal de entrada:

$$g(t) = \frac{y(t)}{u(t)}$$

Aplicando Laplace temos:

$$G(s) = \frac{Y(s)}{U(s)}$$

Analisando as tensões no circuito podemos concluir que tensão de saída Y(s) equivale a tensão no capacitor Vc(s):

$$Y(s) = V_c(s) = \frac{1}{sC}$$

A tensão de entrada pode ser determinada como a soma das tensões nos componentes do circuito:

$$U(s) = V_R(s) + V_L(s) + V_c(s) = R + sL + \frac{1}{sC}$$

Portanto, temos que:

$$G(s) = \frac{\frac{1}{sC}}{R + sL + \frac{1}{sC}}$$

Eliminando o operador de Laplace dos denominadores e reajustando para que se assemelhe a forma padrão de um sistema de segunda ordem:

$$G(s) = \frac{\frac{1}{sC}}{R+sL+\frac{1}{sC}} \max \frac{\frac{1}{sRC+s^2LC+1}}{\frac{1}{LC}} \xrightarrow{\frac{1}{LC}} \frac{\frac{1}{LC}}{s^2+\frac{R}{L}s+\frac{1}{LC}}$$

$$G(s) = \frac{\frac{1}{sC}}{R + sL + \frac{1}{sC}} \xrightarrow{sC} \frac{sC}{sC} \xrightarrow{\frac{1}{sRC} + s^2LC + 1} \xrightarrow{\frac{1}{LC}} \frac{\frac{1}{LC}}{\frac{1}{s^2 + \frac{R}{L}s + \frac{1}{LC}}}$$

$$\therefore G(s) = \frac{\frac{1}{LC}}{s^2 + \frac{1}{L}s + \frac{1}{LC}}$$

Comparando com a forma padrão,

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

podemos agora determinar a frequência natural, pois:

$$\omega_n^2 = \frac{1}{LC} \Rightarrow \omega_n = \frac{1}{\sqrt{LC}}$$

O mesmo pode ser aplicado para o fator de amortecimento, onde:

$$2\xi\omega_n = \frac{R}{L}$$

$$2\xi \frac{1}{\sqrt{LC}} = \frac{R}{L} \Rightarrow \xi = \frac{R}{2} \frac{\sqrt{LC}}{L}$$

$$\xi = \frac{R}{2} \frac{(LC)^{\frac{1}{2}}}{L} = \frac{R}{2} \frac{L^{\frac{1}{2}} \cdot C^{\frac{1}{2}}}{L}$$

$$\xi = \frac{R}{2} \frac{C^{\frac{1}{2}}}{L^{\frac{1}{2}}} = \frac{R}{2} \frac{\sqrt{C}}{\sqrt{L}}$$

$$\xi = \frac{R}{2} \sqrt{\frac{C}{L}}$$

2.2.2 Cálculo da função de transferência senoidal

Seguindo os mesmos princípios utilizados para o sistema de primeira ordem, a resposta a uma entrada senoidal pode ser obtida fazendo $s=j\omega$. Portanto, temos a função de transferência senoidal como:

$$G(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\xi\omega_n \cdot j\omega + \omega_n^2}$$

$$G(j\omega) = |G(j\omega)| \ \measuredangle \phi(omega)$$

onde,

$$|G(j\omega)| = |\frac{Y(jw)}{U(jw)}| = \frac{\omega_n^2}{\sqrt{(\omega_n^2 - \omega)^2 + (2\xi\omega_n\omega)^2}}$$

$$\angle \phi(\omega) = -tan^{-1}\left(\frac{2\xi\omega_n\omega}{\omega_n^2 - \omega}\right)$$

Para a entrada $u(t)=5sen(\omega t)$, espera-se como resposta:

$$y(t) = 5|G(j\omega)|sen(\omega t + \phi(\omega))$$

$$y(t) = 5\left[\frac{\omega_n^2}{\sqrt{(\omega_n^2 - \omega)^2 + (2\xi\omega_n\omega)^2}}\right] \cdot sen(\omega t - tan^{-1}(\frac{2\xi\omega_n\omega}{\omega_n^2 - \omega}))$$

Seguindo a tabela de valores de resistência, indutância e capacitância fornecida na descrição do experimento, temos:

$$\omega_n^2 = \frac{1}{LC} = 454, 545 \cdot 10^6$$

$$\omega_n = \frac{1}{\sqrt{LC}} = 21, 320 \cdot 10^3$$

$$\xi = \frac{R}{2} \sqrt{\frac{C}{L}} = 175, 890 \cdot 10^3$$

$$\therefore 2\xi \omega_n = 2 \cdot 175, 890 \cdot 10^3 \cdot 21, 320 \cdot 10^3 = 7, 5 \cdot 10^9$$

$$\Rightarrow (2\xi \omega_n)^2 = (7, 5 \cdot 10^9)^2 = 5, 624 \cdot 10^{19}$$

Substituindo em y(t):

$$y(t) = 5\left[\frac{454,545\cdot10^6}{\sqrt{(454,545\cdot10^6 - \omega)^2 + (7,5\cdot10^9\cdot\omega)^2}}\right] \cdot sen(\omega t - tan^{-1}(\frac{7,5\cdot10^9\omega}{454,545\cdot10^6 - \omega}))$$

2.2.3 Relações da frequência natural (ωn) e do coeficiente de amortecimento (ξ)

Supondo que exista uma relação entre frequência e amortecimento e que a relação seja dada por uma proporcional alpha, podemos escrever a frequência como alpha vezes o fator de amortecimento:

$$\omega_n = \alpha \xi$$

$$\omega_n = \alpha \xi \Rightarrow \frac{1}{\sqrt{LC}} = \alpha \cdot \frac{R}{2} \sqrt{\frac{C}{L}}$$

$$\frac{1}{L^{0.5}C^{0.5}} = \alpha \cdot \frac{R}{2} \frac{C^{0.5}}{L^{0.5}}$$

$$\alpha = \frac{1}{L^{0.5}C^{0.5}} \cdot \frac{2}{R} \frac{L^{0.5}}{C^{0.5}}$$
$$\alpha = \frac{2}{R \cdot C^{0.5} \cdot C^{0.5}}$$
$$\therefore \alpha = \frac{2}{RC}$$

Assim temos uma relação entre frequência natural e amortecimento descrita em função dos valores de resistência e capacitância do circuito.

$$\omega_n = \frac{2}{RC} \cdot \xi$$

2.2.4 Obtenção experimental de módulo e defasagem

Dados Experimentais | Tabela

Utilizando o software LTspice foi elaborada uma simulação do circuito RC respeitando as seguinte características:

Dados do enunciado				
Resitência [Ω]	750			
Capacitância [F]	2.20E-02			
Indutância [H]	1.00E-07			

Características do sistema					
Freq natural (wn)	2.13E+04				
Fator amortecimento	1.76E+05				

O circuito utilizado na simulação e exemplificado abaixo foi a base para coleta dos dados, sofrendo pequenos ajustes no intervalo de simulação de acordo com a frequência selecionada.

Figura 5 - Representação do circuito RLC utilizado na simulação.

Após a montagem do circuito, foram selecionadas doze frequências múltiplas e submúltiplas da frequência natural, como pode ser observado na tabela abaixo.

Tabela 2 - Dados experimentais do sistema de segunda ordem RLC.

N * wn	w(rad/s)	f(hz)	Tsinal [us]	Tatraso [us]	Upp	Үрр	fase	ganho
0	0.00E+00	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.2	4.26E+03	678.639	1473.5272	-75.3725	9.9993	9.8795	-18.4144	-0.1047
0.4	8.53E+03	1357.278	736.7273	-76.3447	9.9976	9.4350	-37.3056	-0.5031
0.5	1.07E+04	1696.597	589.3969	-76.6813	9.9989	9.0619	-46.8364	-0.8546
0.8	1.71E+04	2714.556	368.3875	-75.9688	9.9991	7.5959	-74.2391	-2.3876
1	2.13E+04	3393.195	294.7063	-73.8000	9.9990	6.5583	-90.1508	-3.6634
1.2	2.56E+04	4071.834	245.5700	-70.5691	9.9960	5.6002	-103.4527	-5.0324
1.5	3.20E+04	5089.792	196.4750	-64.6523	9.9984	4.3884	-118.4621	-7.1525
2	4.26E+04	6786.390	147.3570	-53.6625	9.9983	2.9410	-131.1000	-10.6286
5	1.07E+05	16965.974	58.9500	-26.5530	9.9991	0.3930	-162.1555	-28.1111
10	2.13E+05	33931.948	29.4708	-14.1183	9.9895	0.0988	-172.4617	-40.0994
20	4.26E+05	67863.896	14.7368	-6.9122	9.9944	0.0145	-168.8556	-56.7849

Para cada frequência ajustou-se o gerador de sinais senoidais com amplitude fixa de 5volts e mediu-se:

- Picos de tensão nos sinais de entrada (Vinput);
- Picos de tensão nos sinais de saída (Voutput);
- Período do sinal de entrada;
- Defasagem entre os sinais de entrada e saída.

Como exemplo do processo de medição, temos abaixo a coleta de dados para o gerador de sinais ajustado para uma frequência equivalente a dez vezes a frequência natural.

Figura 6 - Resultado da simulação do circuito RLC realizada no LTSpice.

Para o exemplo, temos uma frequência de 3,393 kHz para o sinal de entrada e um ganho próximo a -40 dB. A amplitude do sinal foi tomada no pico a pico da região mais estável, a partir de 300 μs, e apresentou um valor de 98,8 mV. Podemos observar, como esperado, que para altas frequências o circuito atenua o sinal de entrada. No caso acima, a redução fica na ordem de 10².

2.2.5 Diagrama de Bode

A partir dos dados da tabela 2 foi elaborado um diagrama de Bode para verificação visual do comportamento do sistema:

Figura 6 - Diagrama de Bode Para o Circuito RLC.

Aplicar a mesma técnica utilizada no circuito RC de traçar assíntotas para as regiões "lineares" não funciona no caso de circuitos RLC.

A frequência encontrada através deste método foi da ordem de 3E+04 e, o que corresponde a uma fase de aproximadamente 115° e um decaimento superior a 40dB por década, ambos fora das expectativas de resposta.

Sabendo disso adotou-se como estratégia encontrar a frequência correspondente a uma fase de 90°.

Figura 6.1 - Detalhe na Fase do diagrama de Bode para o Circuito RLC

O valor encontrado como frequência natural de 2E+04 foi verificado no gráfico de magnitude, onde apresentou decaimento de pouco abaixo de 40dB. Assim, considera-se que a frequência encontrada é satisfatória como aproximação da frequência natural.

3 Questões

3.1 A frequência de canto ωc calculada teoricamente é a mesma obtida experimentalmente? Quais são os fatores que influenciam nessa diferença?

A frequência de canto obtida por cálculo teórico é de 7.957 Hz e a mesma obtida experimentalmente é de 7.966487 Hz. Apenas observando os valores, podemos notar a diferença através da quantidade de algarismos significativos, que por consequência, gera diferença no resultado final.

Porém, o fator que mais influencia nessa diferença é a forma como a frequência de canto é obtida experimentalmente. O arredondamento proveniente de valores muito pequenos na variação da tensão; baixa taxa de amostragem e a imprecisão na hora de plotar os pontos obtidos prejudicam o traçar das assíntotas e por consequência a determinação da frequência de canto. Contudo, a aproximação é razoável.

3.2 A frequência natural ωn calculada teoricamente é a mesma obtida experimentalmente? Quais são os fatores que influenciam nessa diferença?

A frequência natural encontrada através dos experimentos não é a mesma teórica, pois os mesmo fatores que interferem nas medições e plotagem do diagrama de Bode para o circuito RC continuam atuando no circuito RLC. Entretanto , assim como para o circuito RC, o valor encontrado encontra-se na mesma ordem de potência do valor teórico.

3.3 Em qual dos circuitos se observa ressonância? Justifique sua resposta.

O fenômeno de ressonância ocorre quando, devido à frequência da entrada, o circuito é levado para uma impedância mínima de maneira abrupta. Para que isso ocorra, é necessário ter no circuito elementos armazenadores de energia em série ou paralelo, ou seja, só poderia acontecer no caso do circuito RLC.

O fenômeno ocorre porque dado um circuito em RLC série sua impedância pode ser calculada como:

$$Z = R + j(X_L - X_C)$$

Mas como,

$$X_{L} = 2\pi f_{0}L \quad e \quad X_{C} = \frac{1}{2\pi f_{0}C}$$

$$entao \quad para$$

$$X_{L} = X_{C} \Rightarrow 2\pi f_{0}L = \frac{1}{2\pi f_{0}C}$$

$$(2\pi f_{0})^{2} = \frac{1}{LC}$$

$$2\pi f_{0} = \frac{1}{\sqrt{LC}}$$

$$f_{0} = \frac{1}{2\pi\sqrt{LC}}$$

onde para a frequência f_0 o circuito entra em ressonância.

3.4 Enumere as possíveis fontes de erro nas experiências.

Durante a realização de experimentos, há muitos detalhes que podem influenciar os resultados causando erros. Assim, é fundamental que os procedimentos experimentais sejam fielmente seguidos, a fim de alcançar os objetivos estabelecidos. Dessa forma, podemos listar algumas possíveis fontes de erros:

- Configurações incorretas dos dispositivos no LTSpice;
- 2. Extração imprecisa das informações durante a varredura de frequência.
- 3. Imprecisão ao plotar os valores no diagrama de Bode

3.5 É possível obter ressonância em um circuito RLC? Quais seriam as condições para que ocorra ressonância em dito circuito?

Sim, é possível obter ressonância em um circuito RLC variando a frequência da fonte de tensão até que seja verificada a ocorrência de corrente elétrica máxima devido ao valor da impedância ser mínimo, ou seja, equivalente ao valor da resistência. Nesse instante, a frequência verificada é a frequência de ressonância.

4 Resultados e Discussão

Por meio do software LTspice foi possível simular não apenas a varredura de frequência seguindo a tabela, como também o próprio diagrama de Bode de maneira fácil e rápida, mostrando o poder da ferramenta. Um exemplo para o circuito RC pode ser visto abaixo:

Figura 7 - Resultado da simulação do circuito RC realizada no LTSpice.

Embora tenha se pesquisado muito sobre a resposta de circuitos elétricos, não obteve-se um resultado satisfatório na análise do circuito RLC quando o diagrama de Bode foi gerado através do software LTspice.

A montagem do circuito e coleta dos dados seguiu o padrão estabelecido pelo relatório, entretanto encontrou-se grande dificuldade em compreender e justificar os resultados obtidos no modo de análise do software pois o diagrama difere do traçado a mão e os valores de fase não correspondem aos coletados quando a variação foi feita inserindo frequência por frequência. Com o objetivo de compreender mais a fundo o que estava e analisar as propriedades ressonantes de um circuito RLC foi proposto a

modificação do circuito inicial para um que entrasse em ressonância sem que a frequência de corte fosse alterada.

A hipótese adotada é de que devido ao baixo valor de indutância conferido ao sistema em sua configuração inicial, o circuito poderia ser simplificado como um circuito RC, perdendo sua maior característica que seria a ressonância na frequência natural.

Na tentativa de validar a hipótese, realizou-se um substituiu-se o indutor inicial de 22 mH por um de 220 mH. Como existe uma relação direta de proporcionalidade entre capacitância e indutância, para manter a frequência natural inalterada o valor inicial do capacitor de 100 nF foi reduzido para 10 nF. Abaixo o diagrama:

Figura 8 - Representação do circuito RLC utilizado na simulação.

Após a alteração do circuito, o diagrama de Bode ficou mais próximo do resultado esperado, mantendo a mesma frequência natural do circuito inicial, porém, apresentando comportamento de ressonância como pode ser observado abaixo.

Figura 9 - Resultado da simulação do circuito RLC realizada no LTSpice.

Figura 10 - Ampliação do resultado da simulação do circuito RLC realizada no LTSpice.

5 Conclusões

A realização do experimento e construção do relatório possibilitaram um maior aprofundamento sobre sobre a área de circuitos analógicos e suas possíveis aplicações.

Em especial, dedicou-se muito tempo na compreensão do significado das curvas no diagrama de Bode e quais características eram ou não desejáveis, dependendo da aplicação.

A utilização da técnica de varredura de frequência aparenta ser uma ferramenta poderosa para lidar com sistemas onde não se sabe a função de transferência, ou a mesma é muito complexa para ser calculada.

Tratando-se de sistemas elétricos, o software utilizado durante o experimento garantiu uma simulação completa das saídas dos circuitos e permitiu a validação de hipóteses de maneira rápida, além de suprir a ausência dos componentes físicos, como fonte de tensão, capacitores, resistores e indutores.

Por fim, conclui-se que os objetivos inicialmente projetados para o experimento foram alcançados, aprofundando e consolidando os conhecimentos teóricos adquiridos no contexto da disciplina Sistemas de Controle II.

6 Referências Bibliográficas

[1] Dorf, R. C., Bishop, R. H., 2011. Sistemas de Controle Modernos, 11th Edition. LTC, Rio de Janeiro.

[2] Ogata, K., 2008. Engenharia de Controle Moderno. Pearson & Prentice Hall, Brasil

Anexo A - Diagrama de Bode para o Circuito RC

Anexo B - Diagrama de Bode para o Circuito RLC

