

Oncology Use Cases

Muhammet ŞANTAŞ

Senior Data Scientist, John Snow Labs

Agenda

- 1. Introduction
- 2. Case Study Samples
- 3. Problem Description
- 4. Solution Steps
- 5. Coding

John Snow Labs Provides State-of-the-Art Medical Language Models

100+ million

Downloads on PyPI.

"Most Widely Used NLP
Library in the Enterprise."

O'Reilly Media

59% share

of Healthcare NLP teams use John Snow Labs

Gradient Flow

#1 Accuracy

on 25 benchmarks in peer-reviewed papers

Papers with Code

Peer-Reviewed, State-of-the-Art Accuracy

John Snow Labs Peer-Reviewed Papers

Deeper Clinical Document Understanding Using Relation Extraction

New state-of-the-art accuracy on:

2019 Phenotype-Gene Relations dataset

2018 n2c2 Posology Relations dataset

2012 Adverse Drug Events Drug-Reaction dataset

2012 i2b2 Clinical Temporal Relations challenge

2010 i2b2 Clinical Relations challenge

Biomedical Named Entity Recognition in Eight Languages with Zero Code Changes

New state-of-the-art accuracy on:

LivingNER dataset using a single model architecture in English, French, Italian, Portuguese, Galatian, Catalan & Romanian

Mining Adverse Drug Reactions from Unstructured Mediums at Scale

New state-of-the-art accuracy on:

ADE benchmark
SMM4H benchmark
CADEC entity recognition dataset
CADEC relation extraction dataset

Accurate Clinical and Biomedical Named Entity Recognition at Scale

New state-of-the-art accuracy on:

2018 n2c2 medication extraction 2014 n2c2 de-identification 2010 i2b2/VA clinical concept extraction 8 different Biomedical NLP benchmarks

Oncology Case Studies from the NLP Summit

A Real-time NLP-Based Clinical Decision Support Platform for Psychiatry and Oncology

Accelerating Biomedical Innovation by Combining NLP and Knowledge Graphs

Large Language Models to Facilitate Building of Cancer Data Registries

Leveraging Healthcare NLP Models in Regulatory Grade Oncology Data Curation

Applying Natural Language Processing to Cancer Genomics

"Be Like Water" - NLP and GenAl Opportunities and Challenges in Healthcare

Real-World Oncology Use Case-I

ICD-10-CM Code Selection for Billing in an Oncology Hospital

PROBLEM: An oncology hospital needs to accurately select billable ICD-10-CM codes for insurance reimbursement. This process involves identifying the patient's current diagnoses, extracting the corresponding ICD-10-CM codes, and verifying that these codes are eligible for billing. Currently, this task is performed manually by medical coders, which is timeconsuming, error-prone, and susceptible to human error.

Real-World Oncology Use Case-I

ICD-10-CM Code Selection for Billing in an Oncology Hospital

PROBLEM: An oncology hospital needs to accurately select billable ICD-10-CM codes for insurance reimbursement. This process involves identifying the patient's current diagnoses, extracting the corresponding ICD-10-CM codes, and verifying that these codes are eligible for billing. Currently, this task is performed manually by medical coders, which is timeconsuming, error-prone, and susceptible to human error.

Real-World Oncology Use Case

Solution Steps

Entity Extraction (NER)

Create a robust NER pipeline and extract oncological entities and body parts.

Assertion Status Detection

Check the assertion status of the detected oncological entities.

Relation Extraction

Extract relations between the oncological entities and body parts.

Code Mapping & Billing Status

Map the entities to their corresponding ICD-10-CM codes and check their billable status.

Real-World Oncology Use Case

(Resolvers can be mapped to each other using the pretrained mapper module or resolved from scratch using the same sBert Embeddings)

Out-of-the-Box Oncology NLP Models

Medical NER Models

ner_oncology_langtest	ner_biomarker
ner_oncology_limited_80p_for_benchmarks	ner_biomarker_langtest
ner_oncology_posology	ner_oncology
ner_oncology_posology_langtest	ner_oncology_anatomy_general
ner_oncology_response_to_treatment	ner_oncology_anatomy_general_healthcare
ner_oncology_response_to_treatment_langtest	ner_oncology_anatomy_general_langtest
ner_oncology_test	ner_oncology_anatomy_granular
ner_oncology_test_langtest	ner_oncology_anatomy_granular_langtest
ner_oncology_therapy	
ner_oncology_therapy_langtest	ner_oncology_biomarker
ner_oncology_tnm	ner_oncology_biomarker_healthcare
ner_oncology_tnm_langtest	ner_oncology_biomarker_langtest
ner_oncology_unspecific_posology	ner_oncology_demographics
ner_oncology_unspecific_posology_healthcare	ner_oncology_demographics_langtest
ner_oncology_unspecific_posology_langtest	ner_oncology_diagnosis
	ner_oncology_diagnosis_langtest
	ner_oncology_emb_clinical_large

ner oncology emb clinical medium

Relation Extraction Models

re_oncology
re_oncology_biomarker_result
re_oncology_granular
re_oncology_location
re_oncology_size
re_oncology_temporal
re_oncology_test_result

Relation Extraction DL Models

redl_oncology_biobert

redl_oncology_biomarker_result_biobert

redl_oncology_granular_biobert

redl_oncology_location_biobert

redl_oncology_size_biobert

redl_oncology_temporal_biobert

redl_oncology_test_result_biobert

Assertion Status Detection Models

assertion_oncology
assertion_oncology_demographic_binary
assertion_oncology_family_history
assertion_oncology_problem
assertion_oncology_response_to_treatment
assertion_oncology_smoking_status
assertion_oncology_test_binary
assertion_oncology_treatment_binary

Sequence Classification Models

bert_sequence_classifier_biomarker bert_sequence_classifier_response_to_treatment

- **32** NER Models
- **7** Relation Extraction Models
- **7** Relation Extraction DL Models
- Assertion Status Detection Models
- **2** Sequence Classification Models

Out-of-the-Box Oncology NLP Models

Explore Oncology Notes with Spark NLP Models

This demo shows how oncological terms can be detected using Spark NLP Healthcare NER, Assertion (...)

Identify Anatomical and Oncology entities related to different Treatments and Diagnosis from Clinical Texts

This demo shows how to extract more than 40 Oncology-related entities including those related (...)

Identify Tests, Biomarkers, and their Results

This demo shows how to extract entities Pathology Tests, Imaging Tests, mentions of Biomarkers, (...)

Identify Demographic Information from Oncology Texts

This demo shows how to extract Demographic information, Age, Gender, and Smoking status fro (...)

Detect Assertion Status from Clinics Entities

This demo shows how to detect the assertion status of entities related to oncology (including diagnoses, (...)

Detect Relation Extraction between different Oncological entity types

This demo shows how to identify relations between Clinical entities, Tumor mentions, Anatomical (...

Resolve Oncology terminology using the ICD-O taxonomy

This model maps oncology terminology to ICD-O codes using Entity Resolvers.

https://nlp.johnsnowlabs.com/oncology

Pre-trained Entity Recognition - Oncology

Text annotated with identified Named Entities

Pre-trained Entity Recognition - Biomarkers

Assertion Status Detection

"Mother with a lung cancer, a patient is diagnosed as breast cancer in 1991 and then admitted to Mayo Clinic in Oct 2000, went under chemo for 6 months, discharged in April 2001 with a prescription of 2 mg metformin 3x per day. No sign of gynecological disorder but she suffers from acute cramps if she doesn't take her drug."

Chunk	Entity	Assertion
lung cancer	Oncological	Family
breast cancer	Oncological	Past
chemo	Treatment	Past
gynecological disorder	Disorder	Absent
acute cramps	Disorder	Conditional

Relation Extraction

"This is a 52-year-old inmate with a 5.5 cm diameter nonfunctioning mass in his right adrenal shown by CT of abdomen. During the umbilical hernia repair, the harmonic scalpel was utilised superiorly and laterally."

Entity Resolution to Standard Terminologies

This is a 52-year-old **AGE** inmate with a 5.5 MEASUREMENTS nonfunctioning mass **SYMPTOM** diameter cm units right **DIRECTION** adrenal **BODYPART** CT of **IMAGINGTEST** his **GENDER** shown by abdomen **BODYPART** . During the umbilical hernia repair **PROCEDURE** harmonic scalpel **MEDICAL_DEVICE** was utilised superiorly **DIRECTION** , the and laterally **DIRECTION** .

Entity Resolution

ICD10CM, Snomed,

RxNorm, CPT-4,

ICD10CPS, RXCUI, ICDO,

UMLS, ATC, HPO,

	Term	Vocab	Code	Explanation (ground truth)
	СТ	CPT-4	76497	Unlisted computed tomography procedure
	CT of <mark>abdomen</mark>	CPT-4	74150	Computed tomography, abdomen; without contrast material
),	umbilical hernia repair	CPT-4	49587	Repair <mark>umbilical hernia</mark> , age <mark>5 years or older</mark> ; incarcerated or strangulated
	nonfunctioning mass, right adrenal	ICD10CM	D35.01	Benign <mark>neoplasm</mark> of <mark>right adrenal gland</mark>

4-6x Fewer Errors than AWS, Azure, & GCP

www.johnsnowlabs.com/comparison-of-key-medical-nlp-benchmarks-spark-nlp-vs-aws-google-cloud-and-azure/

Benchmark: Extracting ICD-10-CM Codes

Extracting ICD-10-CM codes is done with a 76% success rate vs. 26% for GPT-3.5 and 36% for GPT-4.

Benchmark: Extracting RxNorm Codes

	Top-3 Accuracy	Top-5 Accuracy	Cost
Healthcare NLP	82.7%	84.6%	\$4,500
Amazon Comprehend Medical	55.8%	56.2%	\$24,250
GPT-4 (Turbo)	8.9%	8.9%	\$44,000
GPT-40	8.9%	8.9%	\$22,000

Extracting RxNorm codes is done with a 82.7% success rate vs. 55.8% for Amazon and 8.9% for GPT-4.

Also 5x times cheaper!

Model Training Process overview

Model Training and Evaluation Process

Real-World Oncology Use Case-II

Biomarker and Biomarker Result Table Generation from Oncology Notes

PROBLEM: Oncology researchers require a method to efficiently extract and organize biomarker and biomarker result information specifically from sections within oncology notes dedicated to biomarker analysis. This information is crucial for data analysis and biomarker research. Currently, manually extracting this data from extensive oncology notes is timeconsuming, labor-intensive, and susceptible to human error.

Real-World Oncology Use Case-II

Biomarker and Biomarker Result Table Generation from Oncology Notes

PROBLEM: Oncology researchers require a method to efficiently extract and organize biomarker and biomarker result information specifically from sections within oncology notes dedicated to biomarker analysis. This information is crucial for data analysis and biomarker research. Currently, manually extracting this data from extensive oncology notes is timeconsuming, labor-intensive, and susceptible to human error.

Real-World Oncology Use Case-II

Solution Steps

Sequence Classification

Entity Extraction (NER)

Step 2

Create a robust NER pipeline and extract biomarker and biomarker result entities from the sequences related to biomarker.

Relation Extraction

the biomarker and biomarker results.

Classify the sequences to determine whether they are related to the biomarker or not.

Let's code!

© 2015-2024 John Snow Labs Inc. All rights reserved. The John Snow Labs logo is a trademarks of John Snow Labs Inc. The included information is for informational purposes only and represents the current view of John Snow Labs as of the date of this presentation. Since John Snow Labs must respond to changing market conditions, it should not be interpreted to be a commitment on its part, and John Snow Labs cannot guarantee the accuracy of any information provided after the date of this presentation. John Snow Labs makes no warranties, express or statutory, as to the information in this presentation.