Table Main site characteristics, and studied periods of flux sites used in this analysis. All the data gathered from www.fluxdata.org.

Site name	Lon^1	Lat ²	Alt	Year start	Year end	Veg^3	Ref^4
AR-SLu	-66.4598	-33.4648	887	2009	2011	MF	[Ulke et al., 2015]
AR-Vir	-56.1886	-28.2395	74	2009	2012	ENF	[Posse et al., 2016]
AT-Neu	11.3175	47.1167	970	2002	2012	GRA	[Wohlfahrt et al., 2008]
AU-Ade	131.1178	-13.0769	188	2007	2009	WSA	[Beringer et al., 2011a]
AU-ASM	133.249	-22.283	615	2010	2013	ENF	[Cleverly et al., 2013]
AU-Cpr	140.5891	-34.0021	51	2010	2014	SAV	[Meyer et al., 2015]
AU-Cum	150.7225	-33.6133	107	2012	2014	EBF	[Beringer et al., 2016a]
AU-DaP	131.3181	-14.0633	160	2007	2013	GRA	[Beringer et al., 2011b]
AU-DaS	131.3881	-14.1593	160	2008	2014	SAV	[Hutley et al., 2011]
AU-Dry	132.3706	-15.2588	204	2008	2014	SAV	[Cernusak et al., 2011]
AU-Emr	148.4746	-23.8587	220	2011	2013	GRA	[Schroder et al., 2014]
AU-Fog	131.3072	-12.5452	90	2006	2008	WET	[Beringer et al., 2013]
AU-Gin	115.7138	-31.3764	127	2011	2014	WSA	[Beringer et al., 2016b]
AU-GWW	120.6541	-30.1913	511	2013	2014	SAV	[Prober et al., 2012]
AU-How	131.1523	-12.4943	6	2001	2014	WSA	[Beringer et al., 2007]
AU-Lox	140.6551	-34.4704	51	2008	2009	DBF	[Stevens et al., 2011]
AU-RDF	132.4776	-14.5636	187	2011	2013	WSA	[Bristow et al., 2016]
AU-Rig	145.5759	-36.6499	278	2011	2014	GRA	[Beringer et al., 2016c]
AU-Rob	145.6301	-17.1175	492	2014	2014	EBF	[Beringer et al., 2016d]
AU-Stp	133.3502	-17.1507	240	2008	2014	GRA	[Beringer et al., 2011c]
AU-TTE	133.64	-22.287	609	2012	2013	OSH	[Cleverly et al., 2016]
AU-Tum	148.1517	-35.6566	817	2001	2014	EBF	[Leuning et al., 2005]
AU-Wac	145.1878	-37.4259	309	2005	2008	EBF	[Kilinc et al., 2013]
AU-Whr	145.0294	-36.6732	164	2011	2014	EBF	[McHugh et al., 2017]
AU-Wom	144.0944	-37.4222	705	2010	2012	EBF	[Hinko-Najera et al., 2017]
AU-Ync	146.2907	-34.9893	133	2012	2014	GRA	[Yee et al., 2015]
BE-Bra	4.5206	51.3092	16	1996	2014	MF	[Carrara et al., 2004]
BE-Lon	4.7461	50.5516	167	2004	2014	CRO	[Moureaux et al., 2006]
BE-Vie	5.9981	50.3051	493	1996	2014	MF	[Aubinet et al., 2001]
BR-Sa3	-54.9714	-3.018	100	2000	2004	EBF	[Wick et al., 2005]
CA-Man	-98.4808	55.8796	259	1994	2008	ENF	[Dunn et al., 2007]
CA-NS1	-98.4839	55.8792	260	2001	2005	ENF	[Goulden et al., 2006a]
CA-NS2	-98.5247	55.9058	260	2001	2005	ENF	[Goulden et al., 2006b]
CA-NS3	-98.3822	55.9117	260	2001	2005	ENF	[Goulden et al., 2006c]
CA-NS4	-98.3822	55.9117	260	2002	2005	ENF	[Goulden et al., 2006d]
CA-NS5	-98.485	55.8631	260	2001	2005	ENF	[Goulden et al., 2006e]
CA-NS6	-98.9644	55.9167	244	2001	2005	OSH	[Goulden et al., 2006f]
CA-NS7	-99.9483	56.6358	297	2002	2005	OSH	[Goulden et al., 2006g]
CA-Qfo	-74.3421	49.6925	382	2003	2010	ENF	[Bergeron et al., 2007]
CA-SF1	-105.8176	54.485	536	2003	2006	ENF	[Mkhabela et al., 2009a]
CA-SF2	-105.8775	54.2539	520	2001	2005	ENF	[Mkhabela et al., 2009b]
CA-SF3	-106.0053	54.0916	540	2001	2006	OSH	[Mkhabela et al., 2009c]
CH-Cha	8.4104	47.2102	393	2005	2014	GRA	[Merbold et al., 2014]
CH-Dav	9.8559	46.8153	1639	1997	2014	ENF	[Zielis et al., 2014]
CH-Fru	8.5378	47.1158	982	2005	2014	GRA	[Imer et al., 2013]
CH-Lae	8.365	47.4781	689	2004	2014	MF	[Etzold et al., 2011]
	0.000	11.1101	000	2001		1111	[202010 00 001., 2011]

Site name	Lon ¹	Lat ²	Alt	Year start	Year end	$\overline{ m Veg^3}$	Ref ⁴
CH-Oe1	7.7319	47.2858	450	2002	2008	GRA	[Ammann et al., 2009]
CH-Oe2	7.7343	47.2863	452	2004	2014	CRO	[Dietiker et al., 2010]
CN-Cha	128.0958	42.4025	1057	2003	2005	MF	[Guan et al., 2006]
CN-Cng	123.5092	44.5934	130	2007	2010	GRA	[?]
CN-Dan	91.0664	30.4978	4764	2004	2005	GRA	[Shi et al., 2006]
CN-Din	112.5361	23.1733	70	2003	2005	EBF	[Yan et al., 2013]
CN-Du2	116.2836	42.0467	1353	2006	2008	GRA	[Chen et al., 2009]
CN-Ha2	101.3269	37.6086	3563	2003	2005	WET	[?]
CN-HaM	101.18	37.37	3516	2002	2004	GRA	[Kato et al., 2006]
CN-Qia	115.0581	26.7414	238	2003	2005	ENF	[Wen et al., 2010]
CN-Sw2	111.8971	41.7902	1469	2010	2012	GRA	[Shao et al., 2017]
CZ-BK1	18.5369	49.5021	875	2004	2008	ENF	[Acosta et al., 2013]
CZ-BK2	18.5429	49.4944	855	2004	2006	GRA	[?]
CZ-wet	14.7704	49.0247	426	2006	2014	WET	[Dušek et al., 2012]
DE-Akm	13.6834	53.8662	-1	2009	2014	WET	[?]
DE-Rkin DE-Geb	10.9143	51.1001	161.5	2003	2014	CRO	[Anthoni et al., 2004]
DE-Geb DE-Gri	10.9145 13.5125	51.1001 50.9495	385	2001	2014	GRA	[Prescher et al., 2010a]
DE-Hai	10.453	51.0792	430	2000	2012	DBF	[Knohl et al., 2003]
DE-Kli	13.5225	50.8929	478	2004	2014	CRO	[Prescher et al., 2010b]
DE-Lkb	13.3047	49.0996	1308	2009	2013	ENF	[Lindauer et al., 2014]
DE-Obe	13.7196	50.7836	735	2008	2014	ENF	[?]
DE-RuR	6.3041	50.6219	514.7	2011	2014	GRA	[Post et al., 2015]
DE-RuS	6.4472	50.8659	102.8	2011	2014	CRO	[Mauder et al., 2013]
DE-Seh	6.4497	50.8706	103	2007	2010	CRO	[Schmidt et al., 2012]
DE-SfN	11.3275	47.8064	590	2012	2014	WET	[Hommeltenberg et al., 20
DE-Spw	14.0337	51.8923	63	2010	2014	WET	[?]
DE-Tha	13.5669	50.9636	380	1996	2014	ENF	[Grünwald and Bernhofer,
DK-Fou	9.5872	56.4842	51	2005	2005	CRO	[?]
DK-NuF	-51.3861	64.1308	50	2008	2014	WET	[Westergaard-Nielsen et al
DK-Sor	11.6446	55.4859	40	1996	2014	DBF	[Pilegaard et al., 2011]
DK-ZaF	-20.5545	74.4814	38	2008	2011	WET	[Stiegler et al., 2016]
DK-ZaH	-20.5503	74.4732	38	2000	2014	GRA	[Lund et al., 2012]
ES-LgS	-2.9658	37.0979	2267	2007	2009	OSH	[Reverter et al., 2010]
ES-Ln2	-3.4758	36.9695	2249	2009	2009	OSH	[Serrano-Ortiz et al., 2011
FI-Hyy	24.295	61.8475	181	1996	2014	ENF	Suni et al., 2003]
FI-Jok	23.5135	60.8986	109	2000	2003	CRO	[Lohila, 2004]
FI-Lom	24.2092	67.9972	274	2007	2009	WET	[Aurela et al., 2015]
FI-Sod	26.6378	67.3619	180	2001	2014	ENF	[Thum et al., 2007]
FR-Fon	2.7801	48.4764	103	2005	2014	DBF	[Delpierre et al., 2015]
FR-Gri	1.9519	48.8442	125	2004	2013	CRO	[Loubet et al., 2011]
FR-LBr	-0.7693	44.7171	61	1996	2008	ENF	[Berbigier et al., 2001]
FR-Pue	3.5958	43.7414	270	2000	2014	EBF	[Rambal et al., 2004]
GF-Guy	-52.9249	5.2788	48	2004	2014	EBF	[Bonal et al., 2008]
IT-BCi	14.9574	40.5238	20	2004	2014	CRO	[Vitale et al., 2015]
IT-CA1	12.0266	42.3804	200	2011	2014	DBF	[Sabbatini et al., 2016a]
IT-CA1	12.0260 12.026	42.3772	200	2011	2014	CRO	[Sabbatini et al., 2016a]
IT-CA2 IT-CA3	12.020 12.0222	42.3772	200 197	2011	2014	DBF	[Sabbatini et al., 2016c]
IT-Col	13.5881	41.8494	1560	1996	2014	DBF	[Valentini et al., 1996]
IT-Cp2	12.3573	41.7043	19	2012	2014	EBF	[Fares et al., 2014]

Site name	Lon ¹	Lat^2	Alt	Year start	Year end	$ m Veg^3$	Ref^4
IT-Cpz	12.3761	41.7052	68	1997	2009	EBF	[Garbulsky et al., 2008]
IT-Isp	8.6336	45.8126	210	2013	2014	DBF	[Ferréa et al., 2012]
IT-La2	11.2853	45.9542	1350	2000	2002	ENF	[Marcolla et al., 2003a]
IT-Lav	11.2813	45.9562	1353	2003	2014	ENF	[Marcolla et al., 2003b]
IT-MBo	11.0458	46.0147	1550	2003	2013	GRA	[Marcolla et al., 2011]
IT-Noe	8.1515	40.6061	28	2004	2014	CSH	[Papale et al., 2014]
IT-PT1	9.061	45.2009	60	2002	2004	DBF	[Migliavacca et al., 2009]
IT-Ren	11.4337	46.5869	1730	1998	2013	ENF	[Montagnani et al., 2009]
IT-Ro1	11.93	42.4081	235	2000	2008	DBF	[Rey et al., 2002]
IT-Ro2	11.9209	42.3903	160	2002	2012	DBF	[Tedeschi et al., 2006]
IT-SR2	10.291	43.732	12	2013	2014	ENF	[Hoshika et al., 2017]
IT-SRo	10.2844	43.7279	6	1999	2012	ENF	[Chiesi et al., 2005]
IT-Tor	7.5781	45.8444	2160	2008	2014	GRA	[Galvagno et al., 2013]
JP-MBF	142.3186	44.3869	296	2003	2005	DBF	[Matsumoto et al., 2008a]
JP-SMF	137.0788	35.2617	319	2002	2006	MF	[Matsumoto et al., 2008b]
NL-Hor	5.0713	52.2404	2.2	2004	2011	GRA	[Jacobs et al., 2007]
NL-Loo	5.7436	52.1666	$\frac{2.2}{25}$	1996	2013	ENF	[Moors, 2012]
NO-Adv	15.923	78.186	17	2011	2014	WET	[?]
NO-Rav NO-Blv	11.8311	78.9216	25	2008	2009	SNO	[Lüers et al., 2014]
RU-Che	161.3414	68.613	4	2002	2005	WET	[Merbold et al., 2009b]
RU-Cok	147.4943	70.8291	48	2002	2014	OSH	[van der Molen et al., 200]
RU-Fyo	32.9221	56.4615	$\frac{46}{265}$	1998	2014	ENF	[Kurbatova et al., 2008]
RU-Ha1	90.0022	54.7252	446	2002	2014	GRA	[Marchesini et al., 2007]
SD-Dem		13.2829	500	2002	2004	SAV	, ,
	30.4783		40				[Ardo et al., 2008]
SN-Dhr	-15.4322	15.4028		2010	2013	SAV	[Tagesson et al., 2014]
US-AR1	-99.42	36.4267	611	2009	2012	GRA	[Raz-Yaseef et al., 2015a]
US-AR2	-99.5975	36.6358	646	2009	2012	GRA	[Raz-Yaseef et al., 2015b]
US-ARb	-98.0402	35.5497	424	2005	2006	GRA	[Raz-Yaseef et al., 2015c]
US-ARc	-98.04	35.5465	424	2005	2006	GRA	[Raz-Yaseef et al., 2015d]
US-ARM	-97.4888	36.6058	314	2003	2012	CRO	[Fischer et al., 2007]
US-Blo	-120.6328	38.8953	1315	1997	2007	ENF	[Goldstein et al., 2000]
US-Cop	-109.39	38.09	1520	2001	2007	GRA	[Bowling et al., 2010]
US-GBT	-106.2397	41.3658	3191	1999	2006	ENF	[Zeller and Nikolov, 2000]
US-GLE	-106.2399	41.3665	3197	2004	2014	ENF	[Frank et al., 2014]
US-Ha1	-72.1715	42.5378	340	1991	2012	DBF	[Urbanski et al., 2007]
US-KS2	-80.6715	28.6086	3	2003	2006	CSH	[Powell et al., 2006]
US-Los	-89.9792	46.0827	480	2000	2014	WET	[Sulman et al., 2009]
US-Me1	-121.5	44.5794	896	2004	2005	ENF	[Irvine et al., 2007]
US-Me2	-121.5574	44.4523	1253	2002	2014	ENF	[Irvine et al., 2008]
US-Me6	-121.6078	44.3233	998	2010	2014	ENF	[Ruehr et al., 2012]
US-MMS	-86.4131	39.3232	275	1999	2014	DBF	[Dragoni et al., 2011]
US-Myb	-121.7651	38.0498	-1	2010	2014	WET	[Matthes et al., 2014]
US-Ne1	-96.4766	41.1651	361	2001	2013	CRO	[Verma et al., 2005a]
US-Ne2	-96.4701	41.1649	362	2001	2013	CRO	[Verma et al., 2005b]
US-Ne3	-96.4397	41.1797	363	2001	2013	CRO	[Verma et al., 2005c]
US-NR1	-105.5464	40.0329	3050	1998	2014	ENF	[Monson et al., 2002]
US-ORv	-83.0183	40.0201	221	2011	2011	WET	[Morin et al., 2014]
US-PFa	-90.2723	45.9459	470	1995	2014	MF	[Desai et al., 2015]
US-Prr	-147.4876	65.1237	210	2010	2013	ENF	[Nakai et al., 2013]

Site name	$\mathrm{Lon^1}$	Lat ²	Alt	Year start	Year end	$\mathrm{Veg^3}$	Ref ⁴
US-SRG	-110.8277	31.7894	1291	2008	2014	GRA	[Scott et al., 2015a]
US-SRM	-110.8661	31.8214	1120	2004	2014	WSA	[Scott et al., 2009]
US-Syv	-89.3477	46.242	540	2001	2014	MF	[Desai et al., 2005]
US-Ton	-120.966	38.4316	177	2001	2014	WSA	[Baldocchi et al., 2010]
US-Tw1	-121.6469	38.1074	-9	2012	2014	WET	[Oikawa et al., 2017]
US-Tw2	-121.6433	38.1047	-5	2012	2013	CRO	[Knox et al., 2016]
US-Tw3	-121.6467	38.1159	-9	2013	2014	CRO	[Baldocchi et al., 2015]
US-Tw4	-121.6414	38.103	-5	2013	2014	WET	[Baldocchi, 2016]
US-Twt	-121.653	38.1087	18	2009	2014	CRO	[Hatala et al., 2012]
US-UMB	-84.7138	45.5598	234	2000	2014	DBF	[Gough et al., 2013a]
US-UMd	-84.6975	45.5625	239	2007	2014	DBF	[Gough et al., 2013b]
US-Var	-120.9507	38.4133	129	2000	2014	GRA	[Ma et al., 2007]
US- WCr	-90.0799	45.8059	520	1999	2014	DBF	[Cook et al., 2004]
US-Whs	-110.0522	31.7438	1370	2007	2014	OSH	[Scott et al., 2015b]
US-Wi0	-91.0814	46.6188	349	2002	2002	ENF	[Noormets et al., 2007a]
US-Wi3	-91.0987	46.6347	411	2002	2004	DBF	[Noormets et al., 2007b]
US-Wi4	-91.1663	46.7393	352	2002	2005	ENF	[Noormets et al., 2007c]
US-Wi6	-91.2982	46.6249	371	2002	2003	OSH	[Noormets et al., 2007d]
US-Wi9	-91.0814	46.6188	350	2004	2005	ENF	[Noormets et al., 2007e]
US-Wkg	-109.9419	31.7365	1531	2004	2014	GRA	[Scott et al., 2010]
ZA-Kru	31.4969	-25.0197	359	2000	2010	SAV	[Archibald et al., 2009]
ZM-Mon	23.2528	-15.4378	1053	2000	2009	DBF	[Merbold et al., 2009a]

¹ Negative value indicates west longitude. ² Positive value indicates north latitude. ³ Vegetation types: deciduous broadleaf forest (DBF); evergreen broadleaf forest (EBF); evergreen needleleaf forest (ENF); grassland (GRA); mixed deciduous and evergreen needleleaf forest (MF); savanna ecosystem (SAV); shrub ecosystem (SHR); wetland (WET); unknown (UNK). ⁴ References.

References

[Acosta et al., 2013] Acosta, M., Pavelka, M., Montagnani, L., Kutsch, W., Lindroth, A., Juszczak, R., and Janouš, D. (2013). Soil surface CO2 efflux measurements in Norway spruce forests: Comparison between four different sites across Europe — from boreal to alpine forest. *Geoderma*, 192:295–303.

[Ammann et al., 2009] Ammann, C., Spirig, C., Leifeld, J., and Neftel, A. (2009). Assessment of the nitrogen and carbon budget of two managed temperate grassland fields. *Agriculture*, *Ecosystems & Environment*, 133(3-4):150–162.

[Anthoni et al., 2004] Anthoni, P. M., Knohl, A., Rebmann, C., Freibauer, A., Mund, M., Ziegler, W., Kolle, O., and Schulze, E.-D. (2004). Forest and agricultural land-use-dependent CO2 exchange in Thuringia, Germany. *Global Change Biology*, 10(12):2005–2019.

[Archibald et al., 2009] Archibald, S. A., Kirton, A., van der Merwe, M. R., Scholes, R. J., Williams, C. A., and Hanan, N. (2009). Drivers of inter-annual variability in net ecosystem exchange in a semi-arid savanna ecosystem, South Africa. *Biogeosciences*, 6(2):251–266.

- [Ardo et al., 2008] Ardo, J., Molder, M., El-Tahir, B. A., and Elkhidir, H. A. M. (2008). Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan. *Carbon Balance and Management*, 3(1):7.
- [Aubinet et al., 2001] Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., and Laitat, E. (2001). Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. *Agricultural and Forest Meteorology*, 108(4):293–315.
- [Aurela et al., 2015] Aurela, M., Lohila, A., Tuovinen, J. P., Hatakka, J., Penttilä, T., and Laurila, T. (2015). Carbon dioxide and energy flux measurements in four northern-boreal ecosystems at Pallas. *Boreal Environment Research*, 20(4):455–473.
- [Baldocchi, 2016] Baldocchi, D. (2016). AmeriFlux US-Tw4 Twitchell East End Wetland from 2013-present.
- [Baldocchi et al., 2010] Baldocchi, D., Chen, Q., Chen, X., Ma, S., Miller, G., Ryu, Y., Xiao, J., Wenk, R., and Battles, J. (2010). The dynamics of energy, water, and carbon fluxes in a blue oak (Quercus douglasii) savanna in California. In *Ecosystem Function in Savannas*, pages 135–151. CRC Press.
- [Baldocchi et al., 2015] Baldocchi, D., Sturtevant, C., and Contributors, F. (2015). Does day and night sampling reduce spurious correlation between canopy photosynthesis and ecosystem respiration? *Agricultural and Forest Meteorology*, 207:117–126.
- [Berbigier et al., 2001] Berbigier, P., Bonnefond, J.-M., and Mellmann, P. (2001). CO2 and water vapour fluxes for 2 years above Euroflux forest site. *Agricultural and Forest Meteorology*, 108(3):183–197.
- [Bergeron et al., 2007] Bergeron, O., Margolis, H. A., Black, T. A., Coursolle, C., Dunn, A. L., Barr, A. G., and Wofsy, S. C. (2007). Comparison of carbon dioxide fluxes over three boreal black spruce forests in Canada. *Global Change Biology*, 13(1):89–107.
- [Beringer et al., 2011a] Beringer, J., Hacker, J., Hutley, L. B., Leuning, R., Arndt, S. K., Amiri, R., Bannehr, L., Cernusak, L. A., Grover, S., Hensley, C., Hocking, D., Isaac, P., Jamali, H., Kanniah, K., Livesley, S., Neininger, B., U, K. T. P., Sea, W., Straten, D., Tapper, N., Weinmann, R., Wood, S., and Zegelin, S. (2011a). SPECIAL—savanna patterns of energy and carbon integrated across the landscape. *Bulletin of the American Meteorological Society*, 92(11):1467–1485.
- [Beringer et al., 2011b] Beringer, J., Hutley, L. B., Hacker, J. M., Neininger, B., and U, K. T. P. (2011b). Patterns and processes of carbon, water and energy cycles across northern Australian landscapes: From point to region. *Agricultural and Forest Meteorology*, 151(11):1409–1416.
- [Beringer et al., 2011c] Beringer, J., Hutley, L. B., Hacker, J. M., Neininger, B., and U, K. T. P. (2011c). Patterns and processes of carbon, water and energy cycles across northern Australian landscapes: From point to region. *Agricultural and Forest Meteorology*, 151(11):1409–1416.
- [Beringer et al., 2016a] Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A., Cleverly, J., de Dios, V. R., Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N., Huete, A., Isaac, P., Kanniah, K., Leuning, R., Liddell, M. J., Macfarlane, C., Meyer, W., Moore, C., Pendall, E., Phillips, A., Phillips, R. L., Prober, S. M., Restrepo-Coupe, N., Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Yee, M. S., Tapper, N. J., van Gorsel, E., Vote, C., Walker, J., and Wardlaw, T. (2016a). An

- introduction to the Australian and New Zealand flux tower network OzFlux. *Biogeosciences*, 13(21):5895–5916.
- [Beringer et al., 2016b] Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A., Cleverly, J., De Dios, V. R., Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N., Huete, A., Isaac, P., Kanniah, K., Leuning, R., Liddell, M. J., MacFarlane, C., Meyer, W., Moore, C., Pendall, E., Phillips, A., Phillips, R. L., Prober, S. M., Restrepo-Coupe, N., Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Sun Yee, M., Tapper, N. J., Van Gorsel, E., Vote, C., Walker, J., and Wardlaw, T. (2016b). An introduction to the Australian and New Zealand flux tower network OzFlux. Biogeosciences, 13(21):5895–5916.
- [Beringer et al., 2016c] Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A., Cleverly, J., de Dios, V. R., Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N., Huete, A., Isaac, P., Kanniah, K., Leuning, R., Liddell, M. J., Macfarlane, C., Meyer, W., Moore, C., Pendall, E., Phillips, A., Phillips, R. L., Prober, S. M., Restrepo-Coupe, N., Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Yee, M. S., Tapper, N. J., van Gorsel, E., Vote, C., Walker, J., and Wardlaw, T. (2016c). An introduction to the Australian and New Zealand flux tower network OzFlux. *Biogeosciences*, 13(21):5895–5916.
- [Beringer et al., 2016d] Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A., Cleverly, J., de Dios, V. R., Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N., Huete, A., Isaac, P., Kanniah, K., Leuning, R., Liddell, M. J., Macfarlane, C., Meyer, W., Moore, C., Pendall, E., Phillips, A., Phillips, R. L., Prober, S. M., Restrepo-Coupe, N., Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Yee, M. S., Tapper, N. J., van Gorsel, E., Vote, C., Walker, J., and Wardlaw, T. (2016d). An introduction to the Australian and New Zealand flux tower network OzFlux. *Biogeosciences*, 13(21):5895–5916.
- [Beringer et al., 2007] Beringer, J., Hutley, L. B., Tapper, N. J., and Cernusak, L. A. (2007). Savanna fires and their impact on net ecosystem productivity in North Australia. *Global Change Biology*, 13(5):990–1004.
- [Beringer et al., 2013] Beringer, J., Livesley, S. J., Randle, J., and Hutley, L. B. (2013). Carbon dioxide fluxes dominate the greenhouse gas exchanges of a seasonal wetland in the wet–dry tropics of northern Australia. *Agricultural and Forest Meteorology*, 182-183:239–247.
- [Bonal et al., 2008] Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y., Burban, B., Gross, P., Bonnefond, J.-M., Elbers, J., Longdoz, B., Epron, D., Guehl, J.-M., and Granier, A. (2008). Impact of severe dry season on net ecosystem exchange in the neotropical rainforest of French Guiana. *Global Change Biology*, 14(8):1917–1933.
- [Bowling et al., 2010] Bowling, D. R., Bethers-Marchetti, S., Lunch, C. K., Grote, E. E., and Belnap, J. (2010). Carbon, water, and energy fluxes in a semiarid cold desert grassland during and following multiyear drought. *Journal of Geophysical Research*, 115(G4).
- [Bristow et al., 2016] Bristow, M., Hutley, L. B., Beringer, J., Livesley, S. J., Edwards, A. C., and Arndt, S. K. (2016). Quantifying the relative importance of greenhouse gas emissions from current and future savanna land use change across northern Australia. *Biogeosciences Discussions*, pages 1–47.

- [Carrara et al., 2004] Carrara, A., Janssens, I. A., Yuste, J. C., and Ceulemans, R. (2004). Seasonal changes in photosynthesis, respiration and NEE of a mixed temperate forest. *Agricultural and Forest Meteorology*, 126(1-2):15–31.
- [Cernusak et al., 2011] Cernusak, L. A., Hutley, L. B., Beringer, J., Holtum, J. A., and Turner, B. L. (2011). Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia. *Agricultural and Forest Meteorology*, 151(11):1462–1470.
- [Chen et al., 2009] Chen, S., Chen, J., Lin, G., Zhang, W., Miao, H., Wei, L., Huang, J., and Han, X. (2009). Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types. *Agricultural and Forest Meteorology*, 149(11):1800–1809.
- [Chiesi et al., 2005] Chiesi, M., Maselli, F., Bindi, M., Fibbi, L., Cherubini, P., Arlotta, E., Tirone, G., Matteucci, G., and Seufert, G. (2005). Modelling carbon budget of Mediterranean forests using ground and remote sensing measurements. *Agricultural and Forest Meteorology*, 135(1-4):22–34.
- [Cleverly et al., 2013] Cleverly, J., Boulain, N., Villalobos-Vega, R., Grant, N., Faux, R., Wood, C., Cook, P. G., Yu, Q., Leigh, A., and Eamus, D. (2013). Dynamics of component carbon fluxes in a semi-arid Acacia woodland, central Australia. *Journal of Geophysical Research: Biogeosciences*, 118(3):1168–1185.
- [Cleverly et al., 2016] Cleverly, J., Eamus, D., Van Gorsel, E., Chen, C., Rumman, R., Luo, Q., Coupe, N. R., Li, L., Kljun, N., Faux, R., Yu, Q., and Huete, A. (2016). Productivity and evapotranspiration of two contrasting semiarid ecosystems following the 2011 global carbon land sink anomaly. *Agricultural and Forest Meteorology*, 220:151–159.
- [Cook et al., 2004] Cook, B. D., Davis, K. J., Wang, W., Desai, A., Berger, B. W., Teclaw, R. M., Martin, J. G., Bolstad, P. V., Bakwin, P. S., Yi, C., and Heilman, W. (2004). Carbon exchange and venting anomalies in an upland deciduous forest in northern Wisconsin, USA. *Agricultural and Forest Meteorology*, 126(3-4):271–295.
- [Delpierre et al., 2015] Delpierre, N., Berveiller, D., Granda, E., and Dufrêne, E. (2015). Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. *New Phytologist*, 210(2):459–470.
- [Desai et al., 2005] Desai, A. R., Bolstad, P. V., Cook, B. D., Davis, K. J., and Carey, E. V. (2005). Comparing net ecosystem exchange of carbon dioxide between an old-growth and mature forest in the upper Midwest, USA. *Agricultural and Forest Meteorology*, 128(1-2):33–55.
- [Desai et al., 2015] Desai, A. R., Xu, K., Tian, H., Weishampel, P., Thom, J., Baumann, D., Andrews, A. E., Cook, B. D., King, J. Y., and Kolka, R. (2015). Landscape-level terrestrial methane flux observed from a very tall tower. *Agricultural and Forest Meteorology*, 201:61–75.
- [Dietiker et al., 2010] Dietiker, D., Buchmann, N., and Eugster, W. (2010). Testing the ability of the DNDC model to predict CO2 and water vapour fluxes of a Swiss cropland site. Agriculture, Ecosystems & Environment, 139(3):396–401.
- [Dragoni et al., 2011] Dragoni, D., Schmid, H. P., Wayson, C. A., Potter, H., Grimmond, C. S. B., and Randolph, J. C. (2011). Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. *Global Change Biology*, 17(2):886–897.

- [Dunn et al., 2007] Dunn, A. L., Barford, C. C., Wofsy, S. C., Goulden, M. L., and Daube, B. C. (2007). A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. *Global Change Biology*, 13(3):577–590.
- [Dušek et al., 2012] Dušek, J., Čížková, H., Stellner, S., Czerný, R., and Květ, J. (2012). Fluctuating water table affects gross ecosystem production and gross radiation use efficiency in a sedge-grass marsh. *Hydrobiologia*, 692(1):57–66.
- [Etzold et al., 2011] Etzold, S., Ruehr, N. K., Zweifel, R., Dobbertin, M., Zingg, A., Pluess, P., Häsler, R., Eugster, W., and Buchmann, N. (2011). The carbon balance of two contrasting mountain forest ecosystems in Switzerland: Similar annual trends, but seasonal differences. *Ecosystems*, 14(8):1289–1309.
- [Fares et al., 2014] Fares, S., Savi, F., Muller, J., Matteucci, G., and Paoletti, E. (2014). Simultaneous measurements of above and below canopy ozone fluxes help partitioning ozone deposition between its various sinks in a Mediterranean Oak Forest. *Agricultural and Forest Meteorology*, 198-199:181–191.
- [Ferréa et al., 2012] Ferréa, C., Zenone, T., Comolli, R., and Seufert, G. (2012). Estimating heterotrophic and autotrophic soil respiration in a semi-natural forest of Lombardy, Italy. *Pedobiologia*, 55(6):285–294.
- [Fischer et al., 2007] Fischer, M. L., Billesbach, D. P., Berry, J. A., Riley, W. J., and Torn, M. S. (2007). Spatiotemporal variations in growing season exchanges of CO2, H2O, and sensible heat in agricultural fields of the southern Great Plains. *Earth Interactions*, 11(17):1–21.
- [Frank et al., 2014] Frank, J. M., Massman, W. J., Ewers, B. E., Huckaby, L. S., and Negrón, J. F. (2014). Ecosystem CO2/H2O fluxes are explained by hydraulically limited gas exchange during tree mortality from spruce bark beetles. *Journal of Geophysical Research: Biogeosciences*, 119(6):1195–1215.
- [Galvagno et al., 2013] Galvagno, M., Wohlfahrt, G., Cremonese, E., Rossini, M., Colombo, R., Filippa, G., Julitta, T., Manca, G., Siniscalco, C., di Cella, U. M., and Migliavacca, M. (2013). Phenology and carbon dioxide source/sink strength of a subalpine grassland in response to an exceptionally short snow season. *Environmental Research Letters*, 8(2):025008.
- [Garbulsky et al., 2008] Garbulsky, M. F., Peñuelas, J., Papale, D., and Filella, I. (2008). Remote estimation of carbon dioxide uptake by a Mediterranean forest. *Global Change Biology*, 14(12):2860–2867.
- [Goldstein et al., 2000] Goldstein, A., Hultman, N., Fracheboud, J., Bauer, M., Panek, J., Xu, M., Qi, Y., Guenther, A., and Baugh, W. (2000). Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA). Agricultural and Forest Meteorology, 101(2-3):113–129.
- [Gough et al., 2013a] Gough, C. M., Hardiman, B. S., Nave, L. E., Bohrer, G., Maurer, K. D., Vogel, C. S., Nadelhoffer, K. J., and Curtis, P. S. (2013a). Sustained carbon uptake and storage following moderate disturbance in a Great Lakes forest. *Ecological Applications*, 23(5):1202–1215.
- [Gough et al., 2013b] Gough, C. M., Hardiman, B. S., Nave, L. E., Bohrer, G., Maurer, K. D., Vogel, C. S., Nadelhoffer, K. J., and Curtis, P. S. (2013b). Sustained carbon uptake and storage following moderate disturbance in a Great Lakes forest. *Ecological Applications*, 23(5):1202–1215.

- [Goulden et al., 2006a] Goulden, M. L., Winston, G. C., McMillan, A. M. S., Litvak, M. E., Read, E. L., Rocha, A. V., and Elliot, J. R. (2006a). An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange. *Global Change Biology*, 12(11):2146–2162.
- [Goulden et al., 2006b] Goulden, M. L., Winston, G. C., McMillan, A. M. S., Litvak, M. E., Read, E. L., Rocha, A. V., and Elliot, J. R. (2006b). An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange. *Global Change Biology*, 12(11):2146–2162.
- [Goulden et al., 2006c] Goulden, M. L., Winston, G. C., McMillan, A. M. S., Litvak, M. E., Read, E. L., Rocha, A. V., and Elliot, J. R. (2006c). An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange. *Global Change Biology*, 12(11):2146–2162.
- [Goulden et al., 2006d] Goulden, M. L., Winston, G. C., McMillan, A. M. S., Litvak, M. E., Read, E. L., Rocha, A. V., and Elliot, J. R. (2006d). An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange. *Global Change Biology*, 12(11):2146–2162.
- [Goulden et al., 2006e] Goulden, M. L., Winston, G. C., McMillan, A. M. S., Litvak, M. E., Read, E. L., Rocha, A. V., and Elliot, J. R. (2006e). An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange. *Global Change Biology*, 12(11):2146–2162.
- [Goulden et al., 2006f] Goulden, M. L., Winston, G. C., McMillan, A. M. S., Litvak, M. E., Read, E. L., Rocha, A. V., and Elliot, J. R. (2006f). An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange. *Global Change Biology*, 12(11):2146–2162.
- [Goulden et al., 2006g] Goulden, M. L., Winston, G. C., McMillan, A. M. S., Litvak, M. E., Read, E. L., Rocha, A. V., and Elliot, J. R. (2006g). An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange. *Global Change Biology*, 12(11):2146–2162.
- [Grünwald and Bernhofer, 2007] Grünwald, T. and Bernhofer, C. (2007). A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt. *Tellus B*, 59(3).
- [Guan et al., 2006] Guan, D.-X., Wu, J.-B., Zhao, X.-S., Han, S.-J., Yu, G.-R., Sun, X.-M., and Jin, C.-J. (2006). CO2 fluxes over an old, temperate mixed forest in northeastern China. *Agricultural and Forest Meteorology*, 137(3-4):138–149.
- [Hatala et al., 2012] Hatala, J. A., Detto, M., Sonnentag, O., Deverel, S. J., Verfaillie, J., and Baldocchi, D. D. (2012). Greenhouse gas (CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta. *Agriculture, Ecosystems & Environment*, 150:1–18.
- [Hinko-Najera et al., 2017] Hinko-Najera, N., Isaac, P., Beringer, J., van Gorsel, E., Ewenz, C., McHugh, I., Exbrayat, J.-F., Livesley, S. J., and Arndt, S. K. (2017). Net ecosystem carbon exchange of a dry temperate eucalypt forest. *Biogeosciences*, 14(16):3781–3800.
- [Hommeltenberg et al., 2014] Hommeltenberg, J., Schmid, H. P., Drösler, M., and Werle, P. (2014). Can a bog drained for forestry be a stronger carbon sink than a natural bog forest? *Biogeosciences*, 11(13):3477–3493.

- [Hoshika et al., 2017] Hoshika, Y., Fares, S., Savi, F., Gruening, C., Goded, I., De Marco, A., Sicard, P., and Paoletti, E. (2017). Stomatal conductance models for ozone risk assessment at canopy level in two Mediterranean evergreen forests. *Agricultural and Forest Meteorology*, 234-235:212–221.
- [Hutley et al., 2011] Hutley, L. B., Beringer, J., Isaac, P. R., Hacker, J. M., and Cernusak, L. A. (2011). A sub-continental scale living laboratory: Spatial patterns of savanna vegetation over a rainfall gradient in northern Australia. *Agricultural and Forest Meteorology*, 151(11):1417–1428.
- [Imer et al., 2013] Imer, D., Merbold, L., Eugster, W., and Buchmann, N. (2013). Temporal and spatial variations of soil CO₂, CH₄ and N₂O fluxes at three differently managed grasslands. *Biogeosciences*, 10(9):5931–5945.
- [Irvine et al., 2007] Irvine, J., Law, B. E., and Hibbard, K. A. (2007). Postfire carbon pools and fluxes in semiarid ponderosa pine in central Oregon. *Global Change Biology*, 13(8):1748–1760.
- [Irvine et al., 2008] Irvine, J., Law, B. E., Martin, J. G., and Vickers, D. (2008). Interannual variation in soil CO2 efflux and the response of root respiration to climate and canopy gas exchange in mature ponderosa pine. *Global Change Biology*, 14(12):2848–2859.
- [Jacobs et al., 2007] Jacobs, C. M. J., Jacobs, A. F. G., Bosveld, F. C., Hendriks, D. M. D., Hensen, A., Kroon, P. S., Moors, E. J., Nol, L., Schrier-Uijl, A., and Veenendaal, E. M. (2007). Variability of annual CO₂ exchange from Dutch grasslands. *Biogeosciences*, 4(5):803–816.
- [Kato et al., 2006] Kato, T., Tang, Y., Gu, S., Hirota, M., Du, M., Li, Y., and Zhao, X. (2006). Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. *Global Change Biology*, 12(7):1285–1298.
- [Kilinc et al., 2013] Kilinc, M., Beringer, J., Hutley, L. B., Tapper, N. J., and McGuire, D. A. (2013). Carbon and water exchange of the world's tallest angiosperm forest. *Agricultural and Forest Meteorology*, 182-183:215–224.
- [Knohl et al., 2003] Knohl, A., Schulze, E.-D., Kolle, O., and Buchmann, N. (2003). Large carbon uptake by an unmanaged 250-year-old deciduous forest in central Germany. *Agricultural and Forest Meteorology*, 118(3-4):151–167.
- [Knox et al., 2016] Knox, S. H., Matthes, J. H., Sturtevant, C., Oikawa, P. Y., Verfaillie, J., and Baldocchi, D. (2016). Biophysical controls on interannual variability in ecosystem-scale CO2and CH4exchange in a California rice paddy. *Journal of Geophysical Research: Biogeosciences*, 121(3):978–1001.
- [Kurbatova et al., 2008] Kurbatova, J., Li, C., Varlagin, A., Xiao, X., and Vygodskaya, N. (2008). Modeling carbon dynamics in two adjacent spruce forests with different soil conditions in Russia. *Biogeosciences*, 5(4):969–980.
- [Leuning et al., 2005] Leuning, R., Cleugh, H. A., Zegelin, S. J., and Hughes, D. (2005). Carbon and water fluxes over a temperate eucalyptus forest and a tropical wet/dry savanna in Australia: measurements and comparison with MODIS remote sensing estimates. *Agricultural and Forest Meteorology*, 129(3-4):151–173.

- [Lindauer et al., 2014] Lindauer, M., Schmid, H., Grote, R., Mauder, M., Steinbrecher, R., and Wolpert, B. (2014). Net ecosystem exchange over a non-cleared wind-throw-disturbed upland spruce forest—measurements and simulations. *Agricultural and Forest Meteorology*, 197:219–234.
- [Lohila, 2004] Lohila, A. (2004). Annual CO2 exchange of a peat field growing spring barley or perennial forage grass. *Journal of Geophysical Research*, 109(D18).
- [Loubet et al., 2011] Loubet, B., Laville, P., Lehuger, S., Larmanou, E., Fléchard, C., Mascher, N., Genermont, S., Roche, R., Ferrara, R. M., Stella, P., Personne, E., Durand, B., Decuq, C., Flura, D., Masson, S., Fanucci, O., Rampon, J.-N., Siemens, J., Kindler, R., Gabrielle, B., Schrumpf, M., and Cellier, P. (2011). Carbon, nitrogen and greenhouse gases budgets over a four years crop rotation in northern France. *Plant and Soil*, 343(1-2):109–137.
- [Lüers et al., 2014] Lüers, J., Westermann, S., Piel, K., and Boike, J. (2014). Annual CO₂ budget and seasonal CO₂ exchange signals at a high Arctic permafrost site on Spitsbergen, Svalbard archipelago. *Biogeosciences*, 11(22):6307–6322.
- [Lund et al., 2012] Lund, M., Falk, J. M., Friborg, T., Mbufong, H. N., Sigsgaard, C., Soegaard, H., and Tamstorf, M. P. (2012). Trends in CO2 exchange in a high Arctic tundra heath, 2000-2010. *Journal of Geophysical Research: Biogeosciences*, 117(G2):n/a-n/a.
- [Ma et al., 2007] Ma, S., Baldocchi, D. D., Xu, L., and Hehn, T. (2007). Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. *Agricultural and Forest Meteorology*, 147(3-4):157–171.
- [Marchesini et al., 2007] Marchesini, L. B., Papale, D., Reichstein, M., Vuichard, N., Tchebakova, N., and Valentini, R. (2007). Carbon balance assessment of a natural steppe of southern Siberia by multiple constraint approach. *Biogeosciences Discussions*, 4(1):165–208.
- [Marcolla et al., 2011] Marcolla, B., Cescatti, A., Manca, G., Zorer, R., Cavagna, M., Fiora, A., Gianelle, D., Rodeghiero, M., Sottocornola, M., and Zampedri, R. (2011). Climatic controls and ecosystem responses drive the inter-annual variability of the net ecosystem exchange of an alpine meadow. *Agricultural and Forest Meteorology*, 151(9):1233–1243.
- [Marcolla et al., 2003a] Marcolla, B., Pitacco, A., and Cescatti, A. (2003a). Canopy architecture and turbulence structure in a coniferous forest. *Boundary-Layer Meteorology*, 108(1):39–59.
- [Marcolla et al., 2003b] Marcolla, B., Pitacco, A., and Cescatti, A. (2003b). Canopy architecture and turbulence structure in a coniferous forest. *Boundary-Layer Meteorology*, 108(1):39–59.
- [Matsumoto et al., 2008a] Matsumoto, K., Ohta, T., Nakai, T., Kuwada, T., Daikoku, K., Iida, S., Yabuki, H., Kononov, A. V., van der Molen, M. K., Kodama, Y., Maximov, T. C., Dolman, A. J., and Hattori, S. (2008a). Energy consumption and evapotranspiration at several boreal and temperate forests in the Far East. Agricultural and Forest Meteorology, 148(12):1978–1989.
- [Matsumoto et al., 2008b] Matsumoto, K., Ohta, T., Nakai, T., Kuwada, T., Daikoku, K., Iida, S., Yabuki, H., Kononov, A. V., van der Molen, M. K., Kodama, Y., Maximov, T. C., Dolman, A. J., and Hattori, S. (2008b). Energy consumption and evapotranspiration at several boreal and temperate forests in the Far East. Agricultural and Forest Meteorology, 148(12):1978–1989.

- [Matthes et al., 2014] Matthes, J. H., Sturtevant, C., Verfaillie, J., Knox, S., and Baldocchi, D. (2014). Parsing the variability in CH4flux at a spatially heterogeneous wetland: Integrating multiple eddy covariance towers with high-resolution flux footprint analysis. *Journal of Geophysical Research: Biogeosciences*, 119(7):1322–1339.
- [Mauder et al., 2013] Mauder, M., Cuntz, M., Drüe, C., Graf, A., Rebmann, C., Schmid, H. P., Schmidt, M., and Steinbrecher, R. (2013). A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. *Agricultural and Forest Meteorology*, 169:122–135.
- [McHugh et al., 2017] McHugh, I. D., Beringer, J., Cunningham, S. C., Baker, P. J., Cavagnaro, T. R., Nally, R. M., and Thompson, R. M. (2017). Interactions between nocturnal turbulent flux, storage and advection at an "ideal" eucalypt woodland site. *Biogeosciences*, 14(12):3027–3050.
- [Merbold et al., 2009a] Merbold, L., Ardö, J., Arneth, A., Scholes, R. J., Nouvellon, Y., de Grandcourt, A., Archibald, S., Bonnefond, J. M., Boulain, N., Brueggemann, N., Bruemmer, C., Cappelaere, B., Ceschia, E., El-Khidir, H. A. M., El-Tahir, B. A., Falk, U., Lloyd, J., Kergoat, L., Dantec, V. L., Mougin, E., Muchinda, M., Mukelabai, M. M., Ramier, D., Roupsard, O., Timouk, F., Veenendaal, E. M., and Kutsch, W. L. (2009a). Precipitation as driver of carbon fluxes in 11 African ecosystems. *Biogeosciences*, 6(6):1027–1041.
- [Merbold et al., 2014] Merbold, L., Eugster, W., Stieger, J., Zahniser, M., Nelson, D., and Buchmann, N. (2014). Greenhouse gas budget (CO2, CH4and N2O) of intensively managed grassland following restoration. *Global Change Biology*, 20(6):1913–1928.
- [Merbold et al., 2009b] Merbold, L., Kutsch, W. L., Corradi, C., Kolle, O., Rebmann, C., Stoy, P. C., Zimov, S. A., and Schulze, E.-D. (2009b). Artificial drainage and associated carbon fluxes (CO2/CH4) in a tundra ecosystem. *Global Change Biology*, 15(11):2599–2614.
- [Meyer et al., 2015] Meyer, W. S., Kondrlovà, E., and Koerber, G. R. (2015). Evaporation of perennial semi-arid woodland in southeastern Australia is adapted for irregular but common dry periods. *Hydrological Processes*, 29(17):3714–3726.
- [Migliavacca et al., 2009] Migliavacca, M., Meroni, M., Busetto, L., Colombo, R., Zenone, T., Matteucci, G., Manca, G., and Seufert, G. (2009). Modeling gross primary production of agro-forestry ecosystems by assimilation of satellite-derived information in a process-based model. *Sensors*, 9(2):922–942.
- [Mkhabela et al., 2009a] Mkhabela, M., Amiro, B., Barr, A., Black, T., Hawthorne, I., Kidston, J., McCaughey, J., Orchansky, A., Nesic, Z., Sass, A., Shashkov, A., and Zha, T. (2009a). Comparison of carbon dynamics and water use efficiency following fire and harvesting in Canadian boreal forests. *Agricultural and Forest Meteorology*, 149(5):783–794.
- [Mkhabela et al., 2009b] Mkhabela, M., Amiro, B., Barr, A., Black, T., Hawthorne, I., Kidston, J., McCaughey, J., Orchansky, A., Nesic, Z., Sass, A., Shashkov, A., and Zha, T. (2009b). Comparison of carbon dynamics and water use efficiency following fire and harvesting in Canadian boreal forests. *Agricultural and Forest Meteorology*, 149(5):783–794.
- [Mkhabela et al., 2009c] Mkhabela, M., Amiro, B., Barr, A., Black, T., Hawthorne, I., Kidston, J., McCaughey, J., Orchansky, A., Nesic, Z., Sass, A., Shashkov, A., and Zha, T. (2009c). Comparison of carbon dynamics and water use efficiency following fire and harvesting in Canadian boreal forests. *Agricultural and Forest Meteorology*, 149(5):783–794.

- [Monson et al., 2002] Monson, R. K., Turnipseed, A. A., Sparks, J. P., Harley, P. C., Scott-Denton, L. E., Sparks, K., and Huxman, T. E. (2002). Carbon sequestration in a high-elevation, subalpine forest. *Global Change Biology*, 8(5):459–478.
- [Montagnani et al., 2009] Montagnani, L., Manca, G., Canepa, E., Georgieva, E., Acosta, M., Feigenwinter, C., Janous, D., Kerschbaumer, G., Lindroth, A., Minach, L., Minerbi, S., Mölder, M., Pavelka, M., Seufert, G., Zeri, M., and Ziegler, W. (2009). A new mass conservation approach to the study of CO2 advection in an alpine forest. *Journal of Geophysical Research*, 114(D7).
- [Moors, 2012] Moors, E. (2012). Water Use of Forests in The Netherlands. PhD thesis, Vrije Universiteit Amsterdam.
- [Morin et al., 2014] Morin, T. H., Bohrer, G., d. M. Frasson, R. P., Naor-Azreli, L., Mesi, S., Stefanik, K. C., and Schäfer, K. V. R. (2014). Environmental drivers of methane fluxes from an urban temperate wetland park. *Journal of Geophysical Research: Biogeosciences*, 119(11):2188–2208.
- [Moureaux et al., 2006] Moureaux, C., Debacq, A., Bodson, B., Heinesch, B., and Aubinet, M. (2006). Annual net ecosystem carbon exchange by a sugar beet crop. *Agricultural and Forest Meteorology*, 139(1-2):25–39.
- [Nakai et al., 2013] Nakai, T., Kim, Y., Busey, R. C., Suzuki, R., Nagai, S., Kobayashi, H., Park, H., Sugiura, K., and Ito, A. (2013). Characteristics of evapotranspiration from a permafrost black spruce forest in interior Alaska. *Polar Science*, 7(2):136–148.
- [Noormets et al., 2007a] Noormets, A., Chen, J., and Crow, T. R. (2007a). Age-dependent changes in ecosystem carbon fluxes in managed forests in northern Wisconsin, USA. *Ecosystems*, 10(2):187–203.
- [Noormets et al., 2007b] Noormets, A., Chen, J., and Crow, T. R. (2007b). Age-dependent changes in ecosystem carbon fluxes in managed forests in northern Wisconsin, USA. *Ecosystems*, 10(2):187–203.
- [Noormets et al., 2007c] Noormets, A., Chen, J., and Crow, T. R. (2007c). Age-dependent changes in ecosystem carbon fluxes in managed forests in northern Wisconsin, USA. *Ecosystems*, 10(2):187–203.
- [Noormets et al., 2007d] Noormets, A., Chen, J., and Crow, T. R. (2007d). Age-dependent changes in ecosystem carbon fluxes in managed forests in northern Wisconsin, USA. *Ecosystems*, 10(2):187–203.
- [Noormets et al., 2007e] Noormets, A., Chen, J., and Crow, T. R. (2007e). Age-dependent changes in ecosystem carbon fluxes in managed forests in northern Wisconsin, USA. *Ecosystems*, 10(2):187–203.
- [Oikawa et al., 2017] Oikawa, P. Y., Jenerette, G. D., Knox, S. H., Sturtevant, C., Verfaillie, J., Dronova, I., Poindexter, C. M., Eichelmann, E., and Baldocchi, D. D. (2017). Evaluation of a hierarchy of models reveals importance of substrate limitation for predicting carbon dioxide and methane exchange in restored wetlands. *Journal of Geophysical Research: Biogeosciences*, 122(1):145–167.

- [Papale et al., 2014] Papale, D., Migliavacca, M., Cremonese, E., Cescatti, A., Alberti, G., Balzarolo, M., Marchesini, L. B., Canfora, E., Casa, R., Duce, P., Facini, O., Galvagno, M., Genesio, L., Gianelle, D., Magliulo, V., Matteucci, G., Montagnani, L., Petrella, F., Pitacco, A., Seufert, G., Spano, D., Stefani, P., Vaccari, F. P., and Valentini, R. (2014). Carbon, water and energy fluxes of terrestrial ecosystems in Italy. In *The Greenhouse Gas Balance of Italy*, pages 11–45. Springer Berlin Heidelberg.
- [Pilegaard et al., 2011] Pilegaard, K., Ibrom, A., Courtney, M. S., Hummelshøj, P., and Jensen, N. O. (2011). Increasing net CO2 uptake by a Danish beech forest during the period from 1996 to 2009. Agricultural and Forest Meteorology, 151(7):934–946.
- [Posse et al., 2016] Posse, G., Lewczuk, N., Richter, K., and Cristiano, P. (2016). Carbon and water vapor balance in a subtropical pine plantation. *iForest Biogeosciences and Forestry*, 9(5):736–742.
- [Post et al., 2015] Post, H., Franssen, H. J. H., Graf, A., Schmidt, M., and Vereecken, H. (2015). Uncertainty analysis of eddy covariance CO₂ flux measurements for different EC tower distances using an extended two-tower approach. *Biogeosciences*, 12(4):1205–1221.
- [Powell et al., 2006] Powell, T. L., Bracho, R., Li, J., Dore, S., Hinkle, C. R., and Drake, B. G. (2006). Environmental controls over net ecosystem carbon exchange of scrub oak in central Florida. *Agricultural and Forest Meteorology*, 141(1):19–34.
- [Prescher et al., 2010a] Prescher, A.-K., Grünwald, T., and Bernhofer, C. (2010a). Land use regulates carbon budgets in eastern Germany: From NEE to NBP. Agricultural and Forest Meteorology, 150(7-8):1016–1025.
- [Prescher et al., 2010b] Prescher, A.-K., Grünwald, T., and Bernhofer, C. (2010b). Land use regulates carbon budgets in eastern germany: From NEE to NBP. Agricultural and Forest Meteorology, 150(7-8):1016–1025.
- [Prober et al., 2012] Prober, S. M., Thiele, K. R., Rundel, P. W., Yates, C. J., Berry, S. L., Byrne, M., Christidis, L., Gosper, C. R., Grierson, P. F., Lemson, K., Lyons, T., Macfarlane, C., O'Connor, M. H., Scott, J. K., Standish, R. J., Stock, W. D., van Etten, E. J., Wardell-Johnson, G. W., and Watson, A. (2012). Facilitating adaptation of biodiversity to climate change: A conceptual framework applied to the world's largest Mediterranean-climate woodland. *Climatic Change*, 110(1-2):227–248.
- [Rambal et al., 2004] Rambal, S., Joffre, R., Ourcival, J. M., Cavender-Bares, J., and Rocheteau, A. (2004). The growth respiration component in eddy CO2 flux from a Quercus ilex mediterranean forest. *Global Change Biology*, 10(9):1460–1469.
- [Raz-Yaseef et al., 2015a] Raz-Yaseef, N., Billesbach, D. P., Fischer, M. L., Biraud, S. C., Gunter, S. A., Bradford, J. A., and Torn, M. S. (2015a). Vulnerability of crops and native grasses to summer drying in the U.S. southern Great Plains. *Agriculture, Ecosystems & Environment*, 213:209–218.
- [Raz-Yaseef et al., 2015b] Raz-Yaseef, N., Billesbach, D. P., Fischer, M. L., Biraud, S. C., Gunter, S. A., Bradford, J. A., and Torn, M. S. (2015b). Vulnerability of crops and native grasses to summer drying in the U.S. southern Great Plains. *Agriculture, Ecosystems & Environment*, 213:209–218.

- [Raz-Yaseef et al., 2015c] Raz-Yaseef, N., Billesbach, D. P., Fischer, M. L., Biraud, S. C., Gunter, S. A., Bradford, J. A., and Torn, M. S. (2015c). Vulnerability of crops and native grasses to summer drying in the U.S. Southern Great Plains. *Agriculture, Ecosystems & Environment*, 213:209–218.
- [Raz-Yaseef et al., 2015d] Raz-Yaseef, N., Billesbach, D. P., Fischer, M. L., Biraud, S. C., Gunter, S. A., Bradford, J. A., and Torn, M. S. (2015d). Vulnerability of crops and native grasses to summer drying in the U.S. southern Great Plains. *Agriculture, Ecosystems & Environment*, 213:209–218.
- [Reverter et al., 2010] Reverter, B. R., Sánchez-Cañete, E. P., Resco, V., Serrano-Ortiz, P., Oyonarte, C., and Kowalski, A. S. (2010). Analyzing the major drivers of NEE in a Mediterranean alpine shrubland. *Biogeosciences*, 7(9):2601–2611.
- [Rey et al., 2002] Rey, A., Pegoraro, E., Tedeschi, V., Parri, I. D., Jarvis, P. G., and Valentini, R. (2002). Annual variation in soil respiration and its components in a coppice oak forest in central Italy. *Global Change Biology*, 8(9):851–866.
- [Ruehr et al., 2012] Ruehr, N. K., Martin, J. G., and Law, B. E. (2012). Effects of water availability on carbon and water exchange in a young ponderosa pine forest: Above- and belowground responses. *Agricultural and Forest Meteorology*, 164:136–148.
- [Sabbatini et al., 2016a] Sabbatini, S., Arriga, N., Bertolini, T., Castaldi, S., Chiti, T., Consalvo, C., Djomo, S. N., Gioli, B., Matteucci, G., and Papale, D. (2016a). Greenhouse gas balance of cropland conversion to bioenergy poplar short-rotation coppice. *Biogeosciences*, 13(1):95–113.
- [Sabbatini et al., 2016b] Sabbatini, S., Arriga, N., Bertolini, T., Castaldi, S., Chiti, T., Consalvo, C., Djomo, S. N., Gioli, B., Matteucci, G., and Papale, D. (2016b). Greenhouse gas balance of cropland conversion to bioenergy poplar short-rotation coppice. *Biogeosciences*, 13(1):95–113.
- [Sabbatini et al., 2016c] Sabbatini, S., Arriga, N., Bertolini, T., Castaldi, S., Chiti, T., Consalvo, C., Djomo, S. N., Gioli, B., Matteucci, G., and Papale, D. (2016c). Greenhouse gas balance of cropland conversion to bioenergy poplar short-rotation coppice. *Biogeosciences*, 13(1):95–113.
- [Schmidt et al., 2012] Schmidt, M., Reichenau, T., Fiener, P., and Schneider, K. (2012). The carbon budget of a winter wheat field: An eddy covariance analysis of seasonal and interannual variability. *Agricultural and Forest Meteorology*, 165:114–126.
- [Schroder et al., 2014] Schroder, I., Kuske, T., and Zegelin, S. (2014). Eddy Covariance Dataset for Arcturus (2011-2013), Geoscience Australia, Canberra. Technical report.
- [Scott et al., 2015a] Scott, R. L., Biederman, J. A., Hamerlynck, E. P., and Barron-Gafford, G. A. (2015a). The carbon balance pivot point of southwestern U.S. semiarid ecosystems: Insights from the 21st century drought. *Journal of Geophysical Research: Biogeosciences*, 120(12):2612–2624.
- [Scott et al., 2015b] Scott, R. L., Biederman, J. A., Hamerlynck, E. P., and Barron-Gafford, G. A. (2015b). The carbon balance pivot point of southwestern U.S. semiarid ecosystems: Insights from the 21st century drought. *Journal of Geophysical Research: Biogeosciences*, 120(12):2612–2624.

- [Scott et al., 2010] Scott, R. L., Hamerlynck, E. P., Jenerette, G. D., Moran, M. S., and Barron-Gafford, G. A. (2010). Carbon dioxide exchange in a semidesert grassland through drought-induced vegetation change. *Journal of Geophysical Research*, 115(G3).
- [Scott et al., 2009] Scott, R. L., Jenerette, G. D., Potts, D. L., and Huxman, T. E. (2009). Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland. *Journal of Geophysical Research*, 114(G4).
- [Serrano-Ortiz et al., 2011] Serrano-Ortiz, P., Marañón-Jiménez, S., Reverter, B. R., Sánchez-Cañete, E. P., Castro, J., Zamora, R., and Kowalski, A. S. (2011). Post-fire salvage logging reduces carbon sequestration in Mediterranean coniferous forest. Forest Ecology and Management, 262(12):2287–2296.
- [Shao et al., 2017] Shao, C., Chen, J., Li, L., Dong, G., Han, J., Abraha, M., and John, R. (2017). Grazing effects on surface energy fluxes in a desert steppe on the Mongolian Plateau:. *Ecological Applications*, 27(2):485–502.
- [Shi et al., 2006] Shi, P., Sun, X., Xu, L., Zhang, X., He, Y., Zhang, D., and Yu, G. (2006). Net ecosystem CO2 exchange and controlling factors in a steppe—kobresia meadow on the Tibetan Plateau. *Science in China Series D: Earth Sciences*, 49(S2):207–218.
- [Stevens et al., 2011] Stevens, R. M., Ewenz, C. M., Grigson, G., and Conner, S. M. (2011). Water use by an irrigated almond orchard. *Irrigation Science*, 30(3):189–200.
- [Stiegler et al., 2016] Stiegler, C., Lund, M., Christensen, T. R., Mastepanov, M., and Lindroth, A. (2016). Two years with extreme and little snowfall: effects on energy partitioning and surface energy exchange in a high-Arctic tundra ecosystem. *The Cryosphere*, 10(4):1395–1413.
- [Sulman et al., 2009] Sulman, B. N., Desai, A. R., Cook, B. D., Saliendra, N., and Mackay, D. S. (2009). Contrasting carbon dioxide fluxes between a drying shrub wetland in northern Wisconsin, USA, and nearby forests. *Biogeosciences*, 6(6):1115–1126.
- [Suni et al., 2003] Suni, T., Rinne, J., Reissel, A., Altimir, N., Keronen, P., Rannik, Ü., Maso, M., Kulmala, M., and Vesala, T. (2003). Long-term measurements of surface fluxes above a Scots pine forest in Hyytiälä, southern Finland. *Boreal Environ. Res.*, 4:287–301.
- [Tagesson et al., 2014] Tagesson, T., Fensholt, R., Guiro, I., Rasmussen, M. O., Huber, S., Mbow, C., Garcia, M., Horion, S., Sandholt, I., Holm-Rasmussen, B., Göttsche, F. M., Ridler, M.-E., Olén, N., Olsen, J. L., Ehammer, A., Madsen, M., Olesen, F. S., and Ardö, J. (2014). Ecosystem properties of semiarid savanna grassland in West Africa and its relationship with environmental variability. Global Change Biology, 21(1):250–264.
- [Tedeschi et al., 2006] Tedeschi, V., Rey, A., Manca, G., Valentini, R., Jarvis, P. G., and Borghetti, M. (2006). Soil respiration in a Mediterranean oak forest at different developmental stages after coppicing. *Global Change Biology*, 12(1):110–121.
- [Thum et al., 2007] Thum, T., Aalto, T., Laurila, T., Aurela, M., Kolari, P., and Hari, P. (2007). Parametrization of two photosynthesis models at the canopy scale in a northern boreal Scots pine forest. *Tellus B*, 59(5).
- [Ulke et al., 2015] Ulke, A. G., Gattinoni, N. N., and Posse, G. (2015). Analysis and modelling of turbulent fluxes in two different ecosystems in Argentina. *International Journal of Environment and Pollution*, 58(1/2):52.

- [Urbanski et al., 2007] Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Budney, J., McKain, K., Fitzjarrald, D., Czikowsky, M., and Munger, J. W. (2007). Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. *Journal of Geophysical Research*, 112(G2).
- [Valentini et al., 1996] Valentini, R., Angelis, P., Matteucci, G., Monaco, R., Dore, S., and Mucnozza, G. E. S. (1996). Seasonal net carbon dioxide exchange of a beech forest with the atmosphere. *Global Change Biology*, 2(3):199–207.
- [van der Molen et al., 2007] van der Molen, M. K., van Huissteden, J., Parmentier, F. J. W., Petrescu, A. M. R., Dolman, A. J., Maximov, T. C., Kononov, A. V., Karsanaev, S. V., and Suzdalov, D. A. (2007). The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia. *Biogeosciences*, 4(6):985–1003.
- [Verma et al., 2005a] Verma, S. B., Dobermann, A., Cassman, K. G., Walters, D. T., Knops, J. M., Arkebauer, T. J., Suyker, A. E., Burba, G. G., Amos, B., Yang, H., Ginting, D., Hubbard, K. G., Gitelson, A. A., and Walter-Shea, E. A. (2005a). Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agricultural and Forest Meteorology, 131(1-2):77-96.
- [Verma et al., 2005b] Verma, S. B., Dobermann, A., Cassman, K. G., Walters, D. T., Knops, J. M., Arkebauer, T. J., Suyker, A. E., Burba, G. G., Amos, B., Yang, H., Ginting, D., Hubbard, K. G., Gitelson, A. A., and Walter-Shea, E. A. (2005b). Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agricultural and Forest Meteorology, 131(1-2):77-96.
- [Verma et al., 2005c] Verma, S. B., Dobermann, A., Cassman, K. G., Walters, D. T., Knops, J. M., Arkebauer, T. J., Suyker, A. E., Burba, G. G., Amos, B., Yang, H., Ginting, D., Hubbard, K. G., Gitelson, A. A., and Walter-Shea, E. A. (2005c). Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agricultural and Forest Meteorology, 131(1-2):77-96.
- [Vitale et al., 2015] Vitale, L., Tommasi, P. D., D'Urso, G., and Magliulo, V. (2015). The response of ecosystem carbon fluxes to LAI and environmental drivers in a maize crop grown in two contrasting seasons. *International Journal of Biometeorology*, 60(3):411–420.
- [Wen et al., 2010] Wen, X. F., Wang, H. M., Wang, J. L., Yu, G. R., and Sun, X. M. (2010). Ecosystem carbon exchanges of a subtropical evergreen coniferous plantation subjected to seasonal drought, 2003-2007. *Biogeosciences*, 7(1):357–369.
- [Westergaard-Nielsen et al., 2013] Westergaard-Nielsen, A., Lund, M., Hansen, B. U., and Tamstorf, M. P. (2013). Camera derived vegetation greenness index as proxy for gross primary production in a low Arctic wetland area. *ISPRS Journal of Photogrammetry and Remote Sensing*, 86:89–99.
- [Wick et al., 2005] Wick, B., Veldkamp, E., de Mello, W. Z., Keller, M., and Crill, P. (2005). Nitrous oxide fluxes and nitrogen cycling along a pasture chronosequence in central Amazonia, Brazil. *Biogeosciences*, 2(2):175–187.
- [Wohlfahrt et al., 2008] Wohlfahrt, G., Hammerle, A., Haslwanter, A., Bahn, M., Tappeiner, U., and Cernusca, A. (2008). Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: Effects of weather and management. *Journal of Geophysical Research*, 113(D8).

- [Yan et al., 2013] Yan, J., Zhang, Y., Yu, G., Zhou, G., Zhang, L., Li, K., Tan, Z., and Sha, L. (2013). Seasonal and inter-annual variations in net ecosystem exchange of two old-growth forests in southern China. *Agricultural and Forest Meteorology*, 182-183:257–265.
- [Yee et al., 2015] Yee, M. S., Pauwels, V. R., Daly, E., Beringer, J., Rüdiger, C., McCabe, M. F., and Walker, J. P. (2015). A comparison of optical and microwave scintillometers with eddy covariance derived surface heat fluxes. *Agricultural and Forest Meteorology*, 213:226–239.
- [Zeller and Nikolov, 2000] Zeller, K. and Nikolov, N. (2000). Quantifying simultaneous fluxes of ozone, carbon dioxide and water vapor above a subalpine forest ecosystem. *Environmental Pollution*, 107(1):1–20.
- [Zielis et al., 2014] Zielis, S., Etzold, S., Zweifel, R., Eugster, W., Haeni, M., and Buchmann, N. (2014). NEP of a Swiss subalpine forest is significantly driven not only by current but also by previous year's weather. *Biogeosciences*, 11(6):1627–1635.