Chapter 0 Preliminaries

- Introduction
- Analysis vs. numerical analysis
- Computers and numerical analysis
- A Typical Example
- Implementing Bisection
- Computer Arithmetic and Errors
- Interval arithmetic
- Measuring the efficiency of numerical procedures

Introduction

- Numerical Analysis
 - The development and study of efficient and robust procedures for problems with a computer.
 - Efficiency
 - Computing & Memory
 - Robustness
- Operations in numerical Analysis
 - The only operations required are +, -, *, /, and comparisons
- Characteristics of numerical solutions
 - Always numerical
 - An approximation

Analytic vs. numerical solution

- Analytical solution vs. numerical solution
 - Example: Solving f(x)=0
 - Even an analytic solution is subject to the errors except exact arithmetic is used
- Numerical solution
 - Is always an approximation
 - Require error analysis
 - Need to consider robustness
 - Requires computers to evaluate the numerical solutions
 - Require time analysis

Computers and numerical analysis

- Numerical solution
 - Algorithms or procedures
- Tools for the numerical solution
 - Programs written in Fortran, C, C++, Java,...
 - Computer algebra systems (good for small problems)
 - Mathematica, Maple, MATLAB
 - Numerical packages (good for real world problems)
 - IMSL, LAPACK (linear algebra system),
 - LINPACK, EISPPACK

Computers and numerical analysis

- Computer Algebra System
 - Able to perform mathematics symbolically, also carry out numerical procedures with extreme precision
 - Good for small problems only
 - Offer an excellent learning environment
 - Very easy to use

Many numerical solutions are iterative

Example: Bisection

- Solve a root of f(x)=0 by starting with two values that enclose the root
 - At least on root in the interval if f(x) is continuous
 - Halve the interval and test for sign change

Errors in numerical procedures

- Error in original data
 - Due to measurement
 - Hard to overcome such errors, but may need to find how sensitive the results are to change in the input information (sensitive analysis)
- Human error
- Truncation error
 - Due to the method itself. Ex., truncated Taylor series of a function
- Round-off error (computers with limited precision)
- Propagated error

Errors in numerical procedures

Round-off error

- Finite representation in computers
 - Floating-point of fixed word length
- Numbers are round when stored as floatingpoint numbers

Propagated error

- Errors propagated in the succeeding steps of a process due to the occurrence of an earlier error
- It is of critical importance
 - Unstable: errors are magnified continuously, eventually overshadow the true values
 - Stable: earlier errors die out as the method continues
 - Well-conditioned vs. ill-conditioned

Absolute vs. relative error

Absolute error

true value - approximate value

- Not good
- **1036.52 +- 0.010**
 - accurate to 5 significant digits
 - adequate precision
- **0.005 +- 0.010**
 - bad precision
- Relative error

More independent of the scale of the value

Significant digits

- Another term for expressing accuracy
- Significant digits is
 - How many digits in the number have meaning
 - A formal definition

Let the true value have digits $d_1d_2d_3....d_nd_{n+1}....d_p$ Let the approximate value have $d_1d_2d_3....d_ne_{n+1}....e_p$ where $d_1 \neq 0$ and $d_{n+1} \neq e_{n+1}$.

Both values agree to n significant digits if

$$|d_{n+1} - e_{n+1}| < 5$$

Otherwise, they agree to *n*-1 significan t digits.

- Computer stores real numbers as floatingpoint numbers
 - 13.524 as .13524E2
 - -0.0442 as -.442E-1
- IEEE standard
 - A computer number has 3 parts
 - Sign
 - Fraction part (Mantissa)
 - Exponent part
 - Stored as a binary quantity

3 levels of precision

Single

• Length: 32

Sign: 1,

Mantissa: 23

Exponent: 8,

Range: 10+-38

Double

• Length: 64

Sign: 1, Mantissa: 52

Exponent: 11,

Range: 10+-308

Extended

Length: 80

Sign: 1, Mantissa: 64

Exponent: 15,

Range: 10+-4931

Biased exponent

- Allows negative exponent w/o sign bit by adding a bias value to actual exponent value to make all exponents range from 0 to max
- For single precision, bias value is 127, so
 -127 stored as 0, 127 as 255.

- Infinite real numbers vs. finite floatingpoint numbers
 - Gap between true number and stored number
 - Results in round-off error
- A largest number and smallest number
 - Single precision
 - Smallest: 2.93873E-39
 - Largest: 3.40282E+38
 - Overflow, underflow

Floating-point arithmetic Examples

• 6 bits (1 for sign, 2 for exponent, 3 for mantissa) Sign Mantissa Exponent Val

_	Smal	lest:
	JIIIai	IC3L.

- Largest:

Sign	Mantissa	Exponent	Value
0	(1)001	00	$9/16 * 2^{-1} = +9/32$
	(1)111	11	$15/16 * 2^2 = +15/4$

Smallest =
$$1/2 + 0/4 + 0/8 + 1/16 = 9/16$$
,

Largest =
$$1/2 + 1/4 + 1/8 + 1/16 = 15/16$$
.

Floating-point arithmetic Examples

- Test in program
 - Don't do this: If A=B, then
 - Do this instead: If |A-B| <= TOL, then</p>

Machine epsilon

- Is the smallest machine number eps such that 1+eps is not stored as 1.
- Depends on the precision of computer system
- For a computer that stores N-bit normalized mantissas

$$eps = \begin{cases} 2^{-N+1} & \text{if chopping is used} \\ 2^{-N} & \text{if rounding is used} \end{cases}$$

- For single precision
 - eps=1.192E-07=2⁻²³ (rounding)

Round-off vs. truncation error

- Round-offer error
 - Due to imperfect precision of the computer
 - Occurs even when the procedure is exact
- Truncation error
 - Caused by a procedure that does not give precise results even when the arithmetic is precise
 - Ex: evaluate f(x) using truncated Taylor series
- Computational error
 - Sum of round-off error and truncation error

Well-posted and well-conditioned problems

- Accuracy of a numerical solution depends on
 - Computer accuracy for storing number
 - Condition of the problem
 - Stability of numerical solution
 - Stable: early error are damped out as the computation proceed, they do not grow without bound
- A problem is well-posed if
 - A solution exists and unique, and
 - has a solution that varies continuously when values of its input vary continuously

Well-posted and well-conditioned problems

- Condition of a problem
 - Well-conditioned
 - Not sensitive to input inaccuracy
 - The change (error) in the output is not greater than the change (error) in the input
 - Ill-conditioned
 - Sensitive to input inaccuracy
 - A small change (error) in the input causes a large change (error) in the output
 - Condition number C

$$C \approx \frac{\left| \text{ relative error in output } \right|}{\left| \text{ relative error in input } \right|}$$

Examples

Compute the value in single precision

$$\frac{(X+Y)^2 - 2XY - Y^2}{X^2} = Z,$$

X	<u>Y</u>	Z
0.01	1000	1.00000
0.001	1000	0.9999998
0.0001	1000	0.999213
0.00001	1000	1.000444
0.000001	1000	0.68212
0.0000001	1000	-79.58079

• The expression can be reduced to $Z=x^2/x^2=1$

Forward and backward error analysis

Evaluate y=f(x)

 y_{calc} is the computed value with input x

- Forward error

$$E_{\text{fwd}} = y_{\text{calc}} - y_{\text{exact}}$$

Backward error

Let x_{calc} be the x value that gives y_{calc} with no computation error

$$E_{\text{backw}} = x_{\text{calc}} - x$$

Interval arithmetic

- Interval arithmetic allows us to find how parameter errors are propagated through the sequence of computer operation of a procedure
- Work on intervals representing a range of numbers
 EX: 2.4 +- 0.05 → [2.35, 2.45]
- Rules

$$A + B = [a_{L}, a_{R}] + [b_{L}, b_{R}] = [a_{L} + b_{L}, a_{R} + b_{R}]$$

$$A - B = [a_{L}, a_{R}] - [b_{L}, b_{R}] = [a_{L} - b_{R}, a_{R} - b_{L}]$$

$$A * B = [\min(S), \max(S)]$$
where
$$S = \{a_{L} * b_{L}, a_{L} * b_{R}, a_{R} * b_{L}, a_{R} * b_{R}\}$$

Examples:

$$[0.5, 0.8] + [-1.2, 0.1] = [-0.7, 0.9]$$

 $[0.5, 0.8] - [-1.2, 0.1] = [0.4, 2.0]$
 $[0.5, 0.8] - [-1.2, 0.1] = [-0.96, 0.08]$

Measuring efficiency/error

- How to measure efficiency?
 - Based on operation count
 - O(n): order of n, O(n^2): order of n^2
- How to measure error?
 - Based on size of a parameter, say h. For Example,
 - Solve dy/dx=f(x,y) with a value given for y at some value for x
 - Some methods add a weighted sum of estimated values for the derivative function at evenly spaced x-values that differ by h
 - For one method the Error=(M/6)*h^3, where M depends on a value for the 3rd derivative of f(x, y)
 - O(h^3)