MPC Course - Part 2

Regression : predicting a variable using other variable(s)

Simon Malinowski

M1 Miage, Univ. Rennes 1

- Introduction
- 2 Linear regression

What is regression?

From data to predictions

Regression example

House	House size (sq. feet)	Year built	House Price (target, in k€)
1	80	1985	120
2	92	2010	180
3	75	2008	145
4	110	2015	220
5	85	2000	140
6	150	1975	225
7	55	1992	100
8	105	1999	??
9	95	2018	??

Other regression examples

- How many people will retweet your tweet? (y)
 - \rightarrow depends on x : number of followers, popularity, subject of the tweet, ...
- What will be your next salary? (y)
 - \rightarrow depends on x : your degree, your experience, ...
- How many points will have a football team at the end of the season?
 - → depends on x : statistics about the team performance (goals, shoots, possession,...)

Different kinds of regression

 $\mathsf{Regression} \to \mathsf{target} \ \mathsf{variable} \ \mathsf{is} \ \mathsf{numerical}$

- Simple VS multiple
 - \rightarrow simple regression : one feature variable (X) to predict Y
 - \rightarrow multiple regression : several feature variables (X_1, \dots, X_p) to predict Y
- Linear VS Non-linear

Simple linear regression in a nutshell

Size	Price	
80	120	
92	180	
75	145	
110	220	
85	140	
150	225	
55	100	
105	??	
95	??	

Simple linear regression in a nutshell

Year	Price	
1985	120	
2010	180	
2008	145	
2015	220	
2000	140	
1975	225	
1992	100	
1999	??	
2018	??	

What we'll see about simple regression

- How to find the model? (i.e. coefficients of the regression line)
- How to evaluate the performance of a model?
 - \rightarrow will the model be good to predict new inputs?
 - \rightarrow if I have more than one variable, which one seems the best?

Multiple linear regression in a nutshell

Size	Year	Price
80	1985	120
92	2010	180
75	2008	145
110	2015	220
85	2000	140
150	1975	225
55	1992	100
105	1999	??
95	2018	??

$$P = -2872 + 1.65 \times S + 1.44 \times Y$$

Multiple linear regression for non-linear regression

Size	Size ²	Price
80	6400	120
92	8464	180
75	5625	145
110	12100	220
85	7225	140
150	22500	225
55	3025	100
105	11025	??
95	9025	??

$$P = -91.3 + 3.94 \times S - 0.012 \times S^2$$

What we'll see about multiple regression

- How to find the model? (i.e. coefficients of the model)
- How to evaluate the performance of a model?
 - → will the model be good to predict new inputs?
 - → how to compare models with different number of variables
- Non-linear regression with multiple regression
- Variable selection
 - ightarrow do I really need all the variables I have, or a subset might be better?
 - ightarrow how to perform variable selection? (criteria, methods)

Regression with non-numerical variables

Size	District	Price
80	Center	120
92	Bourg-Lesveque	180
75	Center	145
110	Longchamps	220
85	Longchamps	140
150	Bourg-Lesveque	225
55	Center	100
105	Longchamps	??
95	Center	??

- Introduction
- 2 Linear regression
 - Data, problem
 - Linear model
 - Estimation of the coefficients
 - Coefficient of determination (R-squared)
 - Statistical tests about regression models
 - Estimating the general performance of a model

Data, problem

Simple regression: 1 numerical target variable, 1 numerical explanatory variable

Individuals	Χ	Υ
1	<i>x</i> ₁	<i>y</i> ₁
	:	
i	Xi	Уi
	:	
n	Xn	Уn

Multiple regression : 1 numerical target variable, several numerical explanatory variables

Individuals	X_1	 X_j	 X_p	Y
1	X ₁₁	 X _{1j}	 x_{1p}	<i>y</i> ₁
	:	:	:	
i	x _{i1}	 Xij	 Xip	Уi
	:	:	:	
n	x_{n1}	 X _{nj}	 X _{np}	Уn

Quantity of information in the target variable

$$I_t = \sum_{i=1}^n (y_i - \overline{y})^2$$

- Introduction
- 2 Linear regression
 - Data, problem
 - Linear model
 - Estimation of the coefficients
 - Coefficient of determination (R-squared)
 - Statistical tests about regression models
 - Estimating the general performance of a model

Linear model

We assume that Y is a linear function of the explanatory variables X_i

$$Y \simeq \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

- Introduction
- 2 Linear regression
 - Data, problem
 - Linear model
 - Estimation of the coefficients
 - Coefficient of determination (R-squared)
 - Statistical tests about regression models
 - Estimating the general performance of a model

Estimation of the coefficients

 β_0,\ldots,β_p are the "optimal" parameters (that we would find if we knew all the data about the problem)

Aim : find $\hat{\beta}_0, \dots, \hat{\beta}_p$, estimations of β_0, \dots, β_p that are as accurate as possible

 \rightarrow Least-square regression

Least square regression (simple regression case)

ightarrow Objective : minimizing the sum of squared residuals

$$I_r(\beta_0, \beta_1) = \sum_{i=1}^n (\hat{y}_i - y_i)^2$$

$$I_r(\beta_0, \beta_1) = \sum_{i=1}^n ((\beta_0 + \beta_1 x_i) - y_i)^2$$

Partial derivatives needs to be equal to 0 :

$$\begin{cases} \beta_1 &= \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} \\ \beta_0 &= \overline{y} - \beta_1 \overline{x} \end{cases}$$

We can also compute $\hat{\sigma}_{eta_1}$: uncertainty about the value of eta_1

- Introduction
- 2 Linear regression
 - Data, problem
 - Linear model
 - Estimation of the coefficients
 - Coefficient of determination (R-squared)
 - Statistical tests about regression models
 - Estimating the general performance of a model

Coefficient of determination

We have seen that the quantity of information in the target variable is :

$$I_t = \sum_{i=1}^n (y_i - \overline{y})^2$$

This quantity of information can be split into two parts :

- ullet the quantity of information explained by the model I_m
- ullet the quantity of information not explained by the model I_r

We have $I_t = I_m + I_r$

The R-squared is defined as:

$$R^2 = \frac{I_m}{I_t}$$

- Introduction
- 2 Linear regression
 - Data, problem
 - Linear model
 - Estimation of the coefficients
 - Coefficient of determination (R-squared)
 - Statistical tests about regression models
 - Estimating the general performance of a model

Simple regression : Test for the significancy of β_1

Hypothesis 0 (H_0) : X does not influence Y $\to \beta_1 = 0$ Hypothesis 1 (H_1) : X has an influence on Y $\to \beta_1 \neq 0$ Under H_0 , $\frac{\hat{\beta}_1}{\hat{\sigma}_{\beta_1}}$ is generated by a Student's law with n-2 degrees of freedom

Simple regression : Test for the significancy of β_1

Under H_0 , $\frac{\beta_1}{\hat{\sigma}_{\beta_1}}$ is generated by a Student's law with n-2 degrees of freedom

 p_c : probabilty of making a wrong decision when deciding \mathcal{H}_1

 $p_c < 0.05 \Rightarrow \text{decide } H_1$

Multiple reg. : Test of significancy of one coefficient

Hypothesis $H_0: \beta_j = 0$ (x_j is not significant in the presence of other variables)

Hypothesis $H_1: \beta_j \neq 0$ (x_j is significant in the presence of other variables)

Test value : $T = \frac{\hat{\beta}_j}{\hat{\sigma}_j}$

Under H_0 , T is generated by a Student's law with (n - p - 1) degrees of freedom.

Si $|T| > t_{0.025}^{n-p-1}$, we refuse H_0 .

Examples of the interest of this test

```
Call:
lm(formula = y \sim x1 + x10, data = ozo)
Residuals:
   Min
            10 Median
                            30
                                  Max
-41.940 -11.255 0.369 9.500 55.273
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -28.96058 10.15508 -2.852 0.00521 **
             4.47827 0.66801 6.704 9.58e-10 ***
x1
x10
             0.40446 0.07219 5.602 1.63e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 17.44 on 108 degrees of freedom
Multiple R-squared: 0.6275, Adjusted R-squared: 0.6206
F-statistic: 90.98 on 2 and 108 DF, p-value: < 2.2e-16
```

Examples of the interest of this test

```
Call:
lm(formula = y \sim x1 + x2, data = ozo)
Residuals:
           10 Median
   Min
                         30
                               Max
-38.822 -11.896 0.239 11.338 46.672
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
x1
            0.8023 1.2252 0.655 0.51398
x2
            4.9473 0.9254 5.346 5.06e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 17.61 on 108 degrees of freedom
Multiple R-squared: 0.6199, Adjusted R-squared: 0.6128
F-statistic: 88.06 on 2 and 108 DF, p-value: < 2.2e-16
```

Examples of the interest of this test

```
Call:
lm(formula = y \sim x1 + x10 + x2, data = ozo)
Residuals:
   Min
            10 Median
                            30
                                  Max
-49.982 -8.149 0.438 9.916 38.693
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -28.11029 9.04994 -3.106 0.00243 **
x1
            -0.55031 1.10696 -0.497 0.62011
x10
             0.36521   0.06474   5.641   1.39e-07 ***
x2
             4.42587 0.82145 5.388 4.27e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 15.54 on 107 degrees of freedom
Multiple R-squared: 0.707, Adjusted R-squared: 0.6988
F-statistic: 86.07 on 3 and 107 DF, p-value: < 2.2e-16
```

- Introduction
- 2 Linear regression
 - Data, problem
 - Linear model
 - Estimation of the coefficients
 - Coefficient of determination (R-squared)
 - Statistical tests about regression models
 - Estimating the general performance of a model

Is a given model good to make predictions?

Are the determination coefficient or the I_r (or the statistical tests) adapted to tell me if a given model is good to make predictions?

Size	Price
80	120
92	180
75	145
110	220
85	140
150	225
55	100

Size	Size ²	Price
80	6400	120
92	8464	180
75	5625	145
110	12100	220
85	7225	140
150	22500	225
55	3025	100

Size Size ²		Price
6400		120
8464		180
75 5625		145
12100		220
7225		140
22500		225
3025		100
	6400 8464 5625 12100 7225 22500	6400 8464 5625 12100 7225 22500

Generalisation error of a model

Definition: it is the average error that a model would do when predicting any new individuals.

Problem : It is impossible to know exactly as we don't have any new individuals...

ightarrow we will try to have a fair estimation of this value.

2 main methods:

- Train/Test split
- K-fold cross validation

Train/Test split

Individuals	X_1	 X_{j}	 X_p	Y
1	<i>x</i> ₁₁	 x_{1j}	 <i>x</i> _{1<i>p</i>}	<i>y</i> ₁
	:	:	:	
i	x_{i1}	 x_{ij}	 x_{ip}	Уi
i +1	$x_{i+1,1}$	 $x_{i+1,j}$	 $x_{i+1,p}$	y _{i+1}
	÷	:	:	
n	x_{n1}	 x_{nj}	 x_{np}	Уn

Individuals in blue are used to **learn** a model (or different models) The model is used to predict y for all the individuals in green The generalization error is estimated by a Mean Square Error of these predictions.

Drawback?

K-fold cross validation

Principle : the dataset is split into K disjoint subsets

The estimation of the generalization error is the average of the K measure errors.