EE510 Linear Algebra for Engineering

USC Viterbi

School of Engineering

Week 1 Session 1

Review:

Logical Inference

Logical Statement P and Q

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \lor Q$	$P \implies Q$	$P \iff Q$
1	1	0	0	1	1	1	1
0	1	1	0	0	1	1	0
1	0	0	1	0	1	0	0
0	0	1	1	0	0	1	1

 \wedge is AND

 \lor is OR

 \Longrightarrow If then

 \iff If and only if

Conditional: $P \implies Q$

Contrastive: $\neg P \implies \neg Q$

Converse: $Q \implies P$

Predicate: Px means x is P

Quantifier: $\forall x$ (universal) means "for all x"

 $\exists x$ (existential) means "for some x"

 $\forall x : Px \text{ means "Everything is } P$ "

 $Px_1 AND Px_2 AND Px_3 AND$

 $\exists x : Px$ means "Something is P"

Rules of Inference:

• Modus Ponens: Affirming the antecedent

Premise 1: $P \implies Q$

Premise 2: P

Conclusion: Q

• Modus Tollens: Denying the consequent

Premise 1: $P \implies Q$

Premise 2: $\neg Q$

Conclusion: $\neg Q$

• Mathematical Induction

Goal: Proof that $P_n orall n \geq n_0$ where n_0 is usually 0 or a positive number

- 1. Basis step: P_{n0}
- 2. Induction step:

$$P_{n0} \& P_{n-1} \implies P_n$$

Assume P_{n0} and P_{n-1} then show P_n

Set Theory

set: a collection of elemtns

 $x \in A$, where x is element, A is set, $\in \equiv$ Elementhood

$$A = \{a_1, a_2, \dots, a_n\}$$

Subset: $A\subset X$, $B\subset X$

 $A\subset X$ if and only if $\forall x\in A$, $x\in A$

$$A^c = \{x \in X : X \not\in A\}$$

$$A \bigcup B = \{x \in X : x \in A \ OR \ x \in B\}$$

$$A \cap B = \{x \in X : x \in A \ AND \ x \in B\}$$

De Morgan's Law:

$$A\bigcup B=(A^c\bigcap B^c)^c$$

$$A \bigcap B = (A^c \bigcup B^c)^c$$

Function

$$f: X \implies Y$$

Injective function:

f is injective if and only if $\forall x,z\in X$, $f(x)=f(z)\implies x=z$ Surjective function:

 $orall y \in Y, \exists x \in X: f(x) = y$

Bijective Function (1-1 correspondence)

f is bijective if and only if f is injective and surjective.

Cardinality of a set

Finite set:

$$A = \{a_1, \dots, a_n\}$$
, where $n \in \mathbb{Z}^+$

Infinite set:

1. Uncountably infinite

 \mathbb{R}

2. Countably infinite

$$\mathbb{Z}^+$$

Example:

$$f: \mathbb{Z}^+(1-1\ correspondence) \implies \mathbb{Z}^-$$

Vectors

A vector is a 1-dimensional array of scalars over a field.

Let
$$V = \in \mathbb{R}^(n): v_1, \ldots, v_n \in \mathbb{R}$$

For $u,v\in\mathbb{R}^n$

• Vector Addition:

$$u+v=egin{bmatrix} u_1+v_1\ \dots\ u_n+v_n \end{bmatrix}\in\mathbb{R}^n$$

• Scalar Multiplication:

For $a \in \mathbb{R}, v \in R^n$

Then
$$av = egin{bmatrix} av_1 \ \dots \ av_n \end{bmatrix}$$

• Linear Combination:

For $a,b\in\mathbb{R}$ and $u,v\in\mathbb{R}^n$

$$au+bv=egin{bmatrix} au_1\ \ldots\ au_n \end{bmatrix}+egin{bmatrix} bv_1\ \ldots\ bv_n \end{bmatrix}=egin{bmatrix} au_1+bv_1\ \ldots\ au_n+bv_n \end{bmatrix}$$

• Inner Product

$$u,v\in\mathbb{R}^n$$

$$u \cdot v = \sum_{k=1}^n u_k v_k$$

Length:

$$||u||^2 = u \cdot u = \sum_{k=1}^n (u_k)^2$$

$$||u_k||^2 = \sqrt(\sum_{k=1}^n (u_k)^2)$$

$$u \cdot v = ||u|| \, ||v|| cos(\theta)$$

$$||v||^2 = v \cdot v$$

$$cos(heta) = rac{u \cdot v}{||u|| \; ||v||}$$

Let
$$u,v\in\mathbb{R}^n$$
 , $|u\cdot v|\leq ||u||\,||v||$

Proof:

Case 1: ||u|| = 0 or ||v|| = 0

If
$$||u|| = 0$$
: $|0 \cdot v| = 0 \le ||u|| \, ||v|| = 0 ||v|| = 0$

If
$$||v|| = 0$$
: $|u \cdot 0| = 0 \le ||u|| \, ||v|| = ||u||0 = 0$

Case 2: $||u|| \neq 0$ and $||v|| \neq 0$

Lemma 1: If $a,b\in\mathbb{R}$, then $a^2+b^2\geq 2ab$

Proof: $(a-b)^2 \geq 0$ for $a,b \in \mathbb{R}$

$$a^2 + b^2 - 2ab \ge 0$$

$$a^2 + b^2 \ge 2ab$$

Lemma 2: If If $a,b\in\mathbb{R}$, then $a^2+b^2\geq -2ab$

Proof: $(a+b)^2 \geq 0$ for $a,b \in \mathbb{R}$

$$a^2 + b^2 + 2ab > 0$$

$$a^2 + b^2 \ge -2ab$$

Let
$$a_k \equiv rac{u_k}{||u||}$$
 , $b_k \equiv rac{v_k}{||v||}$

$$(a_k)^2+(b_k)^2\geq 2a_kb_k$$
 using Lemma 1

$$\sum_{k=1}^n (rac{(u_k)^2}{(||u||)^2} + rac{(v_k)^2}{(||v||)^2}) \ge \sum_{k=1}^n (2rac{u_k}{||u||} rac{v_k}{||v||})$$

$$rac{1}{(||u||)^2} \sum_{k=1}^n (u_k)^2 + rac{1}{(||v||)^2} \sum_{k=1}^n (v_k)^2 \geq rac{2}{||u||||v||} \sum_{k=1}^n u_k v_k$$

$$rac{(||u||)^2}{(||u||)^2} + rac{(||v||)^2}{(||v||)^2} \geq rac{2}{||u|| \ ||v||} (u \cdot v)$$

$$2 \geq rac{2}{||u||\;||v||}(u \cdot v)$$

$$||u||\,||v|| \geq (u \cdot v)$$

Similarly,

$$||u||\,||v|| \geq -(u\cdot v)$$
 using Lemma 2

Therefore $||u|| \ ||v|| = 0$

Week 1 Session 2

Outline

Vectors: Dot Products, Norm, Minkowski Inequality

Matrices: Matrix multiplication ,Transpose, Trace, Block matrices

 $u,v\in\mathbb{R}^n$

Inner Product: $u \cdot v = \sum_{k=1}^n u_k v_k$

Length (Norm): $||u||^2 = u \cdot c = \sum_{k=1}^n (u_k)^2$

Properties: For $k \in \mathbb{R}$, $u,v,w \in \mathbb{R}^n$

1. $u \cdot v = v \cdot u$

2. $u \cdot (v + w) = (u \cdot v) + (u \cdot w)$

3. $ku \cdot v = k(u \cdot v)$

4. $u \cdot u \geq 0$ and $u \cdot u = 0$ if and only if $u = \mathbf{0}$

 $|u \cdot v| \leq ||u|| \, ||v||$: Cauchy Schwartz Inequality

Minkowski Inequality

$$||u + v|| \le ||u|| + ||v||$$

Proof:

$$||u+v||^2 = (u+v) \cdot (u+v)$$

$$= (u \cdot u) + (u \cdot v) + (v \cdot u) + (v \cdot v)$$

$$= ||u||^2 + 2(u \cdot v) + ||v||^2$$

$$\leq ||u||^2 + 2|u \cdot v| + ||v||^2 \qquad (u \cdot v) \in \mathbb{R}$$

$$\leq ||u||^2 + 2||u||\,||v|| + ||v||^2$$
 Cauchy Schwartz Inequality

$$=(||u||+||v||)^2$$

Therefore:

$$||u+v||^2 \le (||u||+||v||)^2$$

$$||u + v|| \le ||u|| + ||v||$$

u nd v are orthogonal (perpendicular) $\implies u \cdot v = 0$

Normalizing a vector: $\frac{v}{||v||}$

 $u^* \equiv \operatorname{Projection}$ of u onto v

$$u^* \equiv Proj(u,v) = rac{u \cdot v}{||v||^2} v$$

 $u^* \equiv Proj(u,v) = ||u||rac{v}{||v||}$, where ||u|| is the magnitude, $rac{v}{||v||}$ is the direction

$$= ||u||cos(heta)rac{v}{||v||}$$

$$=||u||\ ||v||cos(heta)rac{v}{||v||^2}$$

$$= rac{u \cdot v}{||v||^2} v$$

Complex Vectors

$$u,v\in\mathbb{C}^n$$

$$u \cdot v = \sum_{k=1}^n u_k v_k^\star$$

where $v_k \in \mathbb{C}$, $v_k = a_k + jb_k$, where a_k is the real part, and b_k is the imaginary part

Matrices

$$A\equiv [a_ij]=egin{bmatrix} a_{11}&a_{12}&\dots&a_{1n}\ \dots&\dots&\dots&\dots\ a_{m1}&a_{m2}&\dots&a_{mn} \end{bmatrix}$$

A is $m \times n$ with m rows and n columns

$$A \in \mathbb{R}^{m imes n}$$

$$A = egin{bmatrix} 2 & 1 & 0 \ 4 & 2 & -1 \ 3 & 3 & 0 \ 2 & 4 & 2 \end{bmatrix} \in \mathbb{R}^{4 imes 3}$$

A row vector: $v = [v_1, v_2, \dots, v_n] \in K^{1 imes n}$

A column vector:
$$v = egin{bmatrix} v_1 \\ v_2 \\ \dots \\ v_m \end{bmatrix} \in K^{m imes 1}$$

Matrix Addition

$$A,B \in K^{m imes n} A + B = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \ \dots & \dots & \dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} + egin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \ \dots & \dots & \dots \ b_{m1} & b_{m2} & \dots & b_{mn} \end{bmatrix} \ = egin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \ \dots & \dots & \dots \ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{bmatrix}$$

Scalar Multiplication

If
$$k \in K, A \in K^{m imes n}$$

$$kA = egin{bmatrix} ka_{11} & ka_{12} & \dots & ka_{1n} \ \dots & \dots & \dots \ ka_{m1} & ka_{m2} & \dots & ka_{mn} \end{bmatrix}$$

Null Matrix

$$A \equiv [a_{ij}] = \mathbf{0}$$

$$\forall i, j, a_{ij} = 0$$

$$A = \begin{bmatrix} 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

Linear Combination:

$$a,b\in K$$
 , $A,B\in K^{M imes N}$

$$aA+bB = egin{bmatrix} aa_{11}+bb_{11} & aa_{12}+bb_{12} & \dots & aa_{1n}+bb_{1n} \ \dots & \dots & \dots & \dots \ aa_{m1}+bb_{m1} & aa_{m2}+bb_{m2} & \dots & aa_{mn}+bb_{mn} \end{bmatrix}$$

Properties:

If $k, k' \in K$ and $A, B, C \in K^{m \times n}$

1.
$$A + B = B + A$$
 Commutativity

2.
$$A + (B + C) = (A + B) + C$$
 Associativity

3.
$$k(A + B) = kA + kB$$

4.
$$kk'A = k(k'A)$$

5.
$$A + -A = 0$$

6.
$$A + 0 = A$$

Transpose:

If
$$A \in K^{m imes n}$$
 and $A = [a_{ij}]$, then

$$A^T \in K^{n imes m}$$
 and $A^T = B = [b_{ij}]$ where $b_{ij} = a_{ji}$

$$A=egin{bmatrix} a_{11}&a_{12}&\ldots&a_{1n}\ \ldots&\ldots&\ldots\ a_{m1}&a_{m2}&\ldots&a_{mn} \end{bmatrix}$$
 where dimension is $m imes n$

$$A^T = egin{bmatrix} a_{11} & a_{12} & \dots & a_{m1} \ \dots & \dots & \dots & \dots \ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix}$$
 where dimension is $n imes m$

Example.

$$A = egin{bmatrix} 1 & 2 \ 3 & 4 \ 5 & 6 \end{bmatrix}$$

then

$$A^T = egin{bmatrix} 1 & 3 & 5 \ 2 & 4 & 6 \end{bmatrix}$$

Properties:

If $A,B\in K^{m imes n}$

1.
$$(A + B)^T = A^T + B^T$$

2.
$$(A^T)^T = A$$

Let $u,v \in K^{m imes 1}$

then
$$u \cdot v = u^T v$$

Square Matrix

 $A=\left[a_{ij}
ight]$ is a square matrix if and only if the number of rows equal the number of columns.

m = n

$$A = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \ \dots & \dots & \dots \ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

Diagonal Matrix:

$$A \equiv [a_{ij}]$$

A square matrix such that orall i
eq j, $a_{ij} = 0$

$$A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

Triangular Matrices:

Upper triangular

$$A=egin{bmatrix} a_{11}&a_{12}&\ldots&a_{1n}\ \ldots&\ldots&\ldots&0 \end{pmatrix}$$

$$\forall i>j, a_{ij}=0$$

Lower triangular

$$A = egin{bmatrix} a_{11} & 0 & \dots & 0 \\ \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

$$\forall i < j, a_{ij} = 0$$

Matrix Multiplication

A	В	C
m imes n	n imes p	m imes p
$[a_{ij}]$	$[b_{ij}]$	$[c_{ij}]$

$$c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}$$

В	A	D
n imes m	m imes p	n imes p
$[a_{ij}]$	$[b_{ij}]$	$[c_{ij}]$

$$BA = D$$

$$d_{ij} = \sum_{k=1}^m b_{ik} a_{kj}$$

$$c_{ij} = i^{th} \ row \ of \ A \cdot j^{th} \ column \ of \ B$$

$$i^{th}\ row\ of\ A$$
: $A_{i:}$

$$j^{th}\ column\ of\ B$$
: $B_{:j}$

Properties: If A,B,C are conformable for multiplication

1.
$$(AB)C = A(BC)$$
 Associativity

2.
$$A(B+C)=AB+AC$$
 Left distribution

3.
$$(A+B)C = AC + BC$$
 Right distribution

$$4. (AB)^T = B^T A^T$$

5.
$$c(AB)=(cA)B=A(cB)\,$$
 if c is a scalar

6.
$$AB
eq BA$$

Trace

$$A \in K^{n imes n}$$

$$Tr(A) = \sum_{k=1}^{n} a_{kk}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 2 & 5 \end{bmatrix}$$

$$Tr(A) = a_{11} + a_{22} + a_{33} = 1 + 1 + 5 = 7$$

Properties:

If A, B, C are conformable for multiplication

1.
$$Tr(A) = Tr(A^T)$$

2.
$$Tr(BA) = Tr(AB)$$

3.
$$Tr(ABC) = Tr(BCA) = Tr(CAB)$$

Cyclic Property of Trace

Thm:

$$Tr(A_1 A_2 ... A_{n-1} A_n) = Tr(A_n A_1 ... A_{n-1})$$

If the matrices A_k are conformable for matrix multiplication where T_r is the trace operator:

$$Tr(A) = \sum_{k=1}^p a_{kk}$$
 if A is a square matrix

$$A_k \in \mathbb{C}^{m_k imes n_k}$$

Proof:

Lemma 1:

$$Tr(AB) = Tr(BA)$$

Lemma 2:

$$A \times (B \times C) = (A \times B) \times C$$

Lemma 1:

A dimension is $m \times n$

B dimension is $n \times m$

Then $A \times B$ is $m \times m$, $B \times A$ is $n \times n$

$$Tr(AB) = \sum_{k=1}^m (AB)_{kk} \quad ext{ def of } Tr$$

$$=\sum_{k=1}^m(\sum_{l=1}^n a_{kl}b_{lk})$$
 def of matrices, multiplication

$$=\sum_{k=1}^{m}\sum_{l=1}^{n}a_{kl}b_{lk}$$
 distribution

$$=\sum_{l=1}^{n}\sum_{k=1}^{m}a_{kl}b_{lk}$$
 finite sum

$$=\sum_{l=1}^{n}\sum_{k=1}^{m}b_{lk}a_{kl}$$
 complex number

$$=\sum_{l=1}^n(\sum_{k=1}^m b_{lk}a_{kl})$$
 distribution

$$=\sum_{l=1}^n (BA)_{ll}$$
 def of matrix multiplication $=Tr(BA)$ def of Tr

Lemma 2:

A dimension is u imes v

B dimension is v imes w

C dimension is w imes r

Then
$$A \times (B \times C)$$
 is $u \times r$, $(A \times B) \times C$ is $u \times r$

say
$$M \equiv [m_{ij}]$$
 , $N \equiv [n_{ij}]$

$$m_{ij} = n_{ij}$$

$$m_{ij} = (A(BC))_{ij}$$

$$=\sum_{k=1}^v a_{ik}(BC)_{kj}$$
 def of matrix multiplication

$$=\sum_{k=1}^v a_{ik}(\sum_{l=1}^w b_{kl}c_{lj})$$
 def of matrix multiplication

where
$$(\sum_{l=1}^w b_{kl} c_{lj}) = (BC)_{kj}$$

$$=\sum_{k=1}^v\sum_{l=1}^w a_{ik}b_{kl}c_{lj}$$
 distribution

$$=\sum_{l=1}^w (\sum_{k=1}^v a_{ik} b_{kl}) c_{lj}$$
 finite sum

where
$$(\sum_{k=1}^v a_{ik} b_{kl}) = (AB)_{il}$$

$$=\sum_{l=1}^{w}(AB)_{il}c_{lj}$$
 def of matrix multiplication

$$=((AB)C)_{ij}$$
 def of matrix multiplication

 $= n_{ij}$

$$Tr(A_1 A_2 \dots A_{n-1} A_n) = Tr((A_1 A_2 \dots A_{n-1}) A_n)$$

= $Tr(A_n (A_1 A_2 \dots A_{n-1}))$
= $Tr(A_n A_1 \dots A_{n-1})$

A	В	A+B
n imes n	n imes n	n imes n
diagonal	diagonal	diagonal
triangular	triangular	triangular
upper	upper	upper
lower	lower	lower

Invertible Matrices

A is invertible if and only if $\exists B:AB=BA=I_n$

$$I = egin{bmatrix} 1 & 0 & \dots & 0 \ \dots & \dots & \dots \ 0 & 0 & \dots & 1 \end{bmatrix}$$

Properties:

1.
$$A^{-1}A = I_n$$

2.
$$(AB)^{-1} = B^{-1}A^{-1}$$

3.
$$(A^T)^{-1} = (A^{-1})^T$$

 $A \in \mathbb{C}^{m imes n}$

Hermitian

$$A^{H} = (A^{*})^{T} = (A^{T})^{*}$$

If
$$A \in \mathbb{R}^{m imes n}$$
 , $A^H = (A^*)^T = (A^T)^*$

Normal Matrices

$$A^T A = A A^H$$

Complex:

ullet Hermitian matrices: $A=A^H$

 $\bullet \ \ {\rm Skew \ Hermitian:} \ A = -A^H$

• Unitary: $A^{-1} = A^H$

Real:

• Symmetric: $A = A^T$

• Skew symmetric: $A = -A^T$

 $\bullet \ \ {\rm Orthogonal}; A^{-1} = A^T$

Block Matrices

$$A = egin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \ a_{21} & a_{22} & a_{23} & a_{24} \ a_{31} & a_{32} & a_{33} & a_{34} \ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

Week 2 Session 1

Outlines

Linear System: Lines, Hyperplane, Normal

Equivalent Systems: Elementary row operations

Echelon Form: Gaussian Elimination

Row Canonical Form: Gauss-Jordan

Located Vectors

$$P(u_1,\ldots,u_n)$$

$$Q(v_1,\ldots,v_n)$$

$$\overrightarrow{PQ} = \overrightarrow{Q} - \overrightarrow{P} = \begin{bmatrix} v_1 \\ \dots \\ v_n \end{bmatrix} - \begin{bmatrix} u_1 \\ \dots \\ u_n \end{bmatrix} = \begin{bmatrix} v_1 - u_1 \\ \dots \\ v_n - u_n \end{bmatrix}$$

Lines

$$L=\{x\in\mathbb{R}^n: x=p+ut, t\in\mathbb{R}^n\}$$

L is a line that passes through point P with direction $u \in \mathbb{R}^n$

Linear Systems

Linear Equation

$$a_1x_1+\ldots+a_nx_n=b$$

$$\sum_{j=1}^n a_j x_j = b$$

where a_j are the coefficients, and x_j are the unknowns

Hyperplane H:

$$H = \{x \in \mathbb{R}^n : \sum_{j=1}^n a_j x_j = b\}$$

Example:

$$6x=6$$
 , $H=\{1\}$

$$x + y = 2$$

$$x + y + z = 1$$

Normal to
$$H$$
: $\sum_{j=1}^n a_j x_j = b$

 $w\in\mathbb{R}^n$ such that for all any located vector $\overrightarrow{\mathrm{PQ}}$ in H,w is orthogonal to $\overrightarrow{\mathrm{PQ}}$

$$w = \begin{bmatrix} a_1 \\ \dots \\ a_n \end{bmatrix}$$

Proof:

$$\sum_{j=1}^n a_j x_j = b$$

$$P(u_1,\ldots,u_n)\in H \implies \sum_{j=1}^n a_j u_j = b$$

$$Q(v_1,\ldots,v_n)\in H \implies \sum_{j=1}^n a_j v_j = b$$

$$w\perp\overrightarrow{\overline{\mathrm{PQ}}}$$

$$w = \begin{bmatrix} a_1 \\ \dots \\ a_n \end{bmatrix}$$

$$w \cdot \overrightarrow{\mathrm{PQ}} = egin{bmatrix} a_1 \ \ldots \ a_n \end{bmatrix} \cdot egin{bmatrix} v_1 - u_1 \ \ldots \ v_n - u_n \end{bmatrix}$$

$$=\sum_{j=1}^n a_j(v_j-u_j)$$

$$=\sum_{j=1}^{n}a_{j}v_{j}-\sum_{j=1}^{n}a_{j}u_{j}$$

$$= b - b$$

$$= 0$$

Linear Systems

A list of linear equations with the same unknowns

m equations and n unkowns

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$$

. . .

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$$

- Unique solution
- Infinite solution
- No solution

A	x	b
m imes n	n imes 1	m imes 1

$$A = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \ \dots & \dots & \dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$x = egin{bmatrix} x_1 \ \dots \ x_n \end{bmatrix}$$

$$b = egin{bmatrix} b_1 \ \dots \ b_m \end{bmatrix}$$

Degenerate linear equation:

$$0x_1 + \ldots + 0x_n = b$$

1. b=0, every $x\in\mathbb{R}^n$ is a solution

2. $b \neq 0$, no solution

Homogenous system: Ax = b = 0

Equivalent Systems

Ax = b, A'x = b' where x is in dimension $n \times 1$

Theorem:

Let L be a linear combination of the equations $m \ Ax = b$, then x is a solution to L Proof:

$$Ax = b$$

$$\sum_{i=1}^n a_{ij}xj=b_i$$
 where $1\leq v\leq m$

Let
$$s = \begin{bmatrix} s_1 \\ \dots \\ s_n \end{bmatrix}$$
 is a solution to $Ax = b$

Then:
$$\sum_{j}\sum_{j=1}^{n}a_{ij}xj=\sum_{j}b_{i}$$
 Integration

$$\sum_{i=1}^{m} c_i (\sum_{j=1}^{n} a_{ij} s_j) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_i a_{ij} s_j$$

$$=\sum_{j=1}^n(\sum_{i=1}^mc_ia_{ij})s_j$$

$$=\sum_{j=1}^m c_i b_i$$

 \boldsymbol{x} is also a solution to \boldsymbol{L}

Ax=b Linear combination ightarrow A'x=b'

Elementary Row Operations

- 1. Row swap: $R_i \leftrightarrow R_j$
- 2. Scalar multiplication: $R_i o k R_i$
- 3. Sum of a row with a scalar multiple of another row: $R_i
 ightarrow R_i + kR_j$

Thm:

Ax=b and A'x=b' where A' (b') is obtained form the elementary row operations on Ax=b then they have same solutions.

Geometry: Linear System Solutions

$$Ax = b$$

Row:

$$\sum_{j=1}^n a_{ij} x_j = b_i$$

Row 1:
$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$$

Row 2:
$$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$$

. . .

Row m:
$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$$

Example 1:

$$x + y = 2$$

$$x - y = 0$$

x=1,y=1 is the unique solution

Example 2:

$$x + y = 2$$

$$2x+2y=4$$

Infinite solution

Example 3:

$$x + y = 2$$

$$x + y = 0$$

No solution

Column

$$Ax = b$$

$$A = egin{bmatrix} \ldots & \ldots & \ldots & \ldots \ a_{11} & a_{i2} & \ldots & a_{in} \ \ldots & \ldots & \ldots \end{bmatrix}$$

$$x = egin{bmatrix} x_1 \ \dots \ x_n \end{bmatrix}$$

$$b = egin{bmatrix} b_1 \ \ldots \ b_m \end{bmatrix}$$

$$\sum_{j=1}^n A_{ij} x_j = b$$

Example1:

$$x + y = 2$$

$$x - y = 0$$

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

Example 2:

$$x + y = 2$$

$$2x + 2y = 4$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

Echelon Form

$$2x_1 + 3x_2 + x_3 + x_4 - x_5 = 2$$

$$x_2 + x_3 + 0x_4 + x_5 = 2$$

$$x_4+x_5=1$$

$$m=3$$
 , $n=5$

Pivot variables: x_1, x_2, x_4 (leading variables)

Free variables: x_3, x_5 (non-leading variables)

Special case (Triangular Form)

$$2x_1 + 3x_2 + 4x_3 = 5$$

$$2x_2 + x_3 = 6$$

$$3x_3 = 1$$

$$m = 3, n = 3$$

Gaussian Elimination

Two step process for solving linear systems of form $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$

- 1. Forward elimination: Reduce to Echelon Form
- 2. Backward substitution

Example 1:

$$R1: 2x + y + z = 5$$

$$R2:4x-6y=-2$$

$$R3: -2x + 7y + 2z = 9$$

Forward Elimination:

$$R2: R2 - 2R1$$

$$R3 : R3 + R1$$

$$2x + y + z = 5$$

$$0x - 8y - 2z = -12$$

$$0x + 8y + 3z = 14$$

$$R3 : R3 + R2$$

$$2x + y + z = 5$$

$$0x - 8y - 2z = -12$$

$$0x + 0y + z = 2$$

Backward Substitution:

$$z = 2$$

$$y = 1$$

$$x = 1$$

Augmented Matrix (M)

A	x	b	M
m imes n	n imes 1	m imes 1	m imes (n+1)

$$M \equiv [A \mid b]$$

$$M = egin{bmatrix} 2 & 1 & 1 \mid 5 \ 4 & -6 & 0 \mid -2 \ -2 & 7 & 2 \mid 9 \end{bmatrix}$$

Where
$$A=egin{bmatrix}2&1&1\\4&-6&0\\-2&7&2\end{bmatrix}$$
 , $b=egin{bmatrix}5\\-2\\9\end{bmatrix}$

Echelon Matrix:

$$M = egin{bmatrix} 2 & 1 & 2 & 1 \ 0 & 4 & 3 & 2 \ 0 & 0 & 2 & 1 \ 0 & 0 & 0 & 5 \end{bmatrix}$$

Week 2 Session 2

Outline

Row Canonical Form: Gauss Jordan Elimination

Elementary Matrix Operations

LU Decomposition: LDU

Vector Spaces

Echelon Matrix

$$\begin{bmatrix} 1 & 1 & 2 & 3 & 5 \\ 0 & 2 & 1 & 4 & -1 \\ 0 & 0 & 0 & 2 & 1 \end{bmatrix}$$

Augmented Matrix

$$Ax = b$$
, $M = [A|b]$

Row Canonical Form (Row-reduced Echelon Form)

- 1. Echelon Form
- 2. All non zero leading elements must be equal to 1
- 3. All the other values above and below a leading element must be 0

$$\begin{bmatrix} 1 & 0 & 3 & 0 & 1 \\ 0 & 1 & 2 & 0 & 2 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

$$M = [A|b]$$

Gauss-Jordan Elimination

$$Ax = b$$

$$M = \left\lceil A \middle| b
ight
ceil$$
 - Augmented matrix

Reduce M to its row canonical form

$$M^\prime = [A^\prime | b^\prime]$$
 (i.e., $A^\prime x = b^\prime$)

Example:

$$2x_1 + x_2 + x_3 = 5$$

$$4x_1 - 6x_2 = -2$$

$$-2x_1 + 7x_2 + 2x_3 = 9$$

$$A = egin{bmatrix} 2 & 1 & 1 \ 4 & -6 & 0 \ -2 & 7 & 2 \end{bmatrix}$$

$$b = egin{bmatrix} 5 \ -2 \ 9 \end{bmatrix}$$

$$M \equiv [A|b] = egin{bmatrix} 2 & 1 & 1|5 \ 4 & -6 & 0|-2 \ -2 & 7 & 2|9 \end{bmatrix}$$

$$R2: R2 - 2R1$$

$$R3 : R3 + R1$$

$$\begin{bmatrix} 2 & 1 & 1 & 5 \\ 0 & 8 & -2 & -12 \\ 0 & 8 & 3 & 14 \end{bmatrix}$$

$$R3 : R3 + R2$$

$$\begin{bmatrix} 2 & 1 & 1 & 5 \\ 0 & 8 & -2 & -12 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$
 which is the Echelon Form

$$R1 : R1 - R3$$

$$R2 : R2 + 2R3$$

$$\begin{bmatrix} 2 & 1 & 0 & 3 \\ 0 & -8 & 0 & -8 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$R2:-1/8R2$$

$$\begin{bmatrix} 2 & 1 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$R1 : R1 - R2$$

$$\begin{bmatrix} 2 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \text{, which is in row canonical form}$$

$$x_1 = 1, x_2 = 2, x_3 = 2$$

Linear combination of orthogonal vectors

Let
$$u_1,u_2,\ldots,u_n\in\mathbb{R}^n$$
 are mutually orthogonal

For any vector
$$v \in \mathbb{R}$$

$$v = u_1 x_1 + \ldots + u_n x_n$$

where
$$x_i = rac{v \cdot u_1}{||u_i||^2}$$
 and $u_i
eq \mathbf{0}$ for $1 \leq i \leq n$

$$A = egin{bmatrix} \dots & \dots & \dots \\ u_1 & u_2 & \dots & u_n \\ \dots & \dots & \dots \end{bmatrix}$$

Ax = v what is x?

Proof:

$$u_i \cdot u_j = egin{cases} 0, & ext{if } i
eq j \ ||u_i||^2, & ext{if } i = j \end{cases}$$
 Equation 1

$$Ax = v$$

$$\sum_{j=1}^n x_j u_j = v$$
 Equation 2

$$v \cdot u_i = \sum_{j=1}^n x_j u_j \cdot u_i$$

$$=\sum_{j=1}^n x_j(u_j\cdot u_i)$$

$$=(u_i\cdot u_i)x_i+\sum_{j=1,j
eq i}^n x_j(u_i\cdot u_j)$$

$$= ||u_i||^2 x_i$$

Therefore, $v \cdot u_i = ||u_i||^2 x_i$ means that $x_i = rac{v \cdot u_1}{||u_i||^2}$

$$v = \sum_{j=1}^n x_i u_i = \sum_{j=1}^n rac{v \cdot u_i}{||u_j||^2} u_i$$

Inverse Matrix

Using Gauss Jordan Elimination for A^{-1}

If A ($n \times n$) is invertible, $\exists A^{-1}$ such that $AA^{-1} = I$

$$AA^{-1}=I$$

$$\operatorname{say} B = A^{-1}$$

$$A = egin{bmatrix} \ldots & \ldots & \ldots & \ldots \\ a_1 & a_2 & \ldots & a_n \\ \ldots & \ldots & \ldots \end{bmatrix} \ A = egin{bmatrix} \ldots & \ldots & \ldots \\ b_1 & b_2 & \ldots & b_n \\ \ldots & \ldots & \ldots \end{bmatrix}$$

$$A = \begin{bmatrix} \dots & \dots & \dots \\ b_1 & b_2 & \dots & b_n \\ \dots & \dots & \dots \end{bmatrix}$$

$$\begin{bmatrix} \dots & \dots & \dots & \dots \\ a_1 & a_2 & \dots & a_n \\ \dots & \dots & \dots \end{bmatrix} \begin{bmatrix} \dots & \dots & \dots & \dots \\ b_1 & b_2 & \dots & b_n \\ \dots & \dots & \dots \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

$$Ab_1 = egin{bmatrix} 1 \ 0 \ \dots \ 0 \end{bmatrix}$$

$$Ab_2 = \left[egin{array}{c} 0 \ 1 \ \ldots \ 0 \end{array}
ight]$$

 $M = [A|I] \text{ Row canonical} \to [I|A^{-1}]$

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix} \; \mathrm{Find} \, A^{-1}$$

$$M \equiv egin{bmatrix} 2 & 1 & 1 & 1 & 0 & 0 \ 4 & -6 & 0 & 0 & 1 & 0 \ -2 & 7 & 2 & 0 & 0 & 1 \end{bmatrix}$$

R1:R1

R2:R2

$$R3 = R3 + R2$$

$$\begin{bmatrix} 2 & 1 & 1 & 1 & 0 & 0 \\ 0 & -8 & -2 & -2 & 1 & 0 \\ 0 & 8 & 3 & 1 & 0 & 1 \end{bmatrix}$$

R1 : R1 - R3

R2:R2

R3 : R3 + R2

$$\begin{bmatrix} 2 & 1 & 1 & 1 & 0 & 0 \\ 0 & -8 & -2 & -2 & 1 & 0 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix}$$

R1 : R1 - R3

R2: R2 + 2R3

R3:R3

$$\begin{bmatrix} 2 & 1 & 0 & 2 & -1 & -1 \\ 0 & -8 & 0 & -4 & 3 & 2 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix}$$

R1:R1

$$R2 = -1/8R2$$

R3 = R3

$$\begin{bmatrix} 2 & 1 & 0 & 2 & -1 & -1 \\ 0 & 1 & 0 & 1/2 & -3/8 & -1/4 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix}$$

R1:R1-R2

R2:R2

R3 = R3

$$\begin{bmatrix} 2 & 0 & 0 & 3/2 & -5/8 & -3/4 \\ 0 & 1 & 0 & 1/2 & -3/8 & -1/4 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix}$$

R1: 1/2R1

R2:R2

R3 : R3

$$\begin{bmatrix} 1 & 0 & 0 & 3/4 & -5/16 & -3/8 \\ 0 & 1 & 0 & 1/2 & -3/8 & -1/4 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix}$$

where
$$A^{-1}=egin{bmatrix} 3/4 & -5/16 & -3/8 \ 1/2 & -3/8 & -1/4 \ -1 & 1 & 1 \end{bmatrix}$$

Check:

$$AA^{-1} = egin{bmatrix} 2 & 1 & 1 \ 4 & -6 & 0 \ -2 & 7 & 2 \end{bmatrix} egin{bmatrix} 3/4 & -5/16 & -3/8 \ 1/2 & -3/8 & -1/4 \ -1 & 1 & 1 \end{bmatrix} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Elementary Matrix Operations

$$eA \equiv EA$$

where e is the elementary row operation, E is the elementary matrix operation

$$e_n \dots e_1 A = E_n \dots E_1 A$$

1. Row Swap $R_i \leftrightarrow R_i$

$$EA = egin{bmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{bmatrix} A = egin{bmatrix} \dots b_1 : \ \dots b_2 : \ \dots b_3 : \end{bmatrix}$$

Let
$$E=I$$

$$I = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

$$\mathit{EA} \equiv \mathit{B}$$
 where $\mathit{B} = [\mathit{b}_{ij}]$

$$\sum_{k=1}^n e_{ik} a_{kj} = b_{ij}$$

where $e_{ik} = [e_{i1}, e_{i2}, \dots, e_{in}]$

2. Scalar Multiplication of a row

$$R_i: kR_i$$

$$EA = B$$

$$E = egin{bmatrix} 1 & 0 & 0 \ 0 & k & 0 \ 0 & 0 & 1 \end{bmatrix}$$
 and $E^{-1} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1/k & 0 \ 0 & 0 & 1 \end{bmatrix}$

3. Row addition with a scalar multiple of another row

Operation	E	E^{-1}
R1	R1	R1
R2	R2+kR3	R2+kR3-kR3
R3	R3	R3

This is an operation of ${\cal E}$ and ${\cal E}^{-1}$

$$E = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & k \ 0 & 0 & 1 \end{bmatrix}$$
 and $E^{-1} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & -k \ 0 & 0 & 1 \end{bmatrix}$

LU decomposition

$$A = LU \equiv LDU$$

where A is in dimension $n \times n$, L is the lower triangular, U is the upper triangular, D is the diagonal matrix

A is a nonsingular matrix that can be reduced into triangular from U only row-addition operations

$$A = egin{bmatrix} 2 & 1 & 1 \ 4 & -6 & 0 \ -2 & 7 & 2 \end{bmatrix}$$

Example:

$$e_n \dots e_1 A = U = E_n \dots E_1 A$$

$$E_n \dots E_1 A = U$$

$$(E_n \dots E_1)^{-1} = E_1^{-1} E_2^{-1} \dots E_n^{-1}$$

$$(E_n \dots E_1)^{-1}(E_n \dots E_1)A = E_1^{-1}E_2^{-1} \dots E_n^{-1}U$$

$$LHS: A = LU$$

$$RHS = LU$$

R1:R1

$$R2: R2 - 2R1$$

$$R3 : R3 + R1$$

$$\begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 8 & 3 \end{bmatrix}$$

$$E_1 = egin{bmatrix} 1 & 0 & 0 \ -2 & 1 & 0 \ 1 & 0 & 1 \end{bmatrix}$$

Operations	E_1	E_1^{-1}
R1	R1	R1
R2	4R2 - 2R1(+2R1)	R2
R3	R3+R1 ($-R1$)	R3

$$E_1^{-1} = egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ -1 & 0 & 1 \end{bmatrix}$$

$$R3:R3+R2$$

$$\begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_2 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 1 & 1 \end{bmatrix}$$

$$(E_2E1)A = U$$

$$A=(E_1^{-1}E_2^{-1})U \ {\rm and} \ E_1^{-1}E_2^{-1}=L$$

Operations	E_1	E_1^{-1}
<i>R</i> 1	R1	R1
R2	R2	R2
R3	R3+R2 ($-R2$)	R3

$$E_2^{-1} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & -1 & 1 \end{bmatrix}$$

$$L=E_1^{-1}E_2^{-1}=egin{bmatrix}1&0&0\2&1&0\-1&0&1\end{bmatrix}egin{bmatrix}1&0&0\0&1&0\0&-1&1\end{bmatrix}=egin{bmatrix}1&0&0\2&1&0\-1&-1&1\end{bmatrix}$$

Check:

$$LU = egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ -1 & -1 & 1 \end{bmatrix} egin{bmatrix} 2 & 1 & 1 \ 0 & -8 & -2 \ 0 & 0 & 1 \end{bmatrix} = egin{bmatrix} 2 & 1 & 1 \ 4 & -6 & 0 \ -2 & 7 & 2 \end{bmatrix}$$

Week 3 Session 1

Outlines

LU Decomposition: LDU

Vector Spaces: Fields, Span, Subspaces

Linear Independence: Invertibility

Uniqueness Theorem

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ 2 & 7 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A = LU$$

$$A = LDU$$

$$A = egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ -1 & -1 & 1 \end{bmatrix} egin{bmatrix} 2 & 0 & 0 \ 0 & -8 & 0 \ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} 1 & 1/2 & 1/2 \ 0 & 1 & 1/4 \ 0 & 0 & 1 \end{bmatrix}$$

Vector Spaces

Field:

A field F is a collection of elements such that for binary operations: $+, \times$

We have the following: $\forall a, b, c \in F$

1.
$$a+b=b+a$$
 ; $a\cdot b=b\cdot a$

2.
$$a + (b + c) = (a + b) + c$$
; $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

3.
$$\exists 0 \in F$$
 : $a+0=a$

$$\exists 1 \in F : a \cdot 1 = a$$

4.
$$\exists a' \in F: a + a' = 0$$

5.
$$a imes rac{1}{a} = 1$$
 if $a
eq 0$

6.
$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

Example:

$$\mathbb{R},\mathbb{Q},\mathbb{C}$$
 - field

$$\mathbb{Z}$$
 not a field ($5^{th} rac{1}{a}
otin \mathbb{Z}$)

A vector V over field F is a collection of elements $\{\alpha,\beta,\gamma,\dots\}$ (typically called vectors) and collection of elements $\{a,b,c,\dots\}\in F$ ca;;ed scalars such that:

• Commutative group for (V,+)

1.
$$\alpha+\beta\in V$$

2.
$$\alpha + \beta = \beta + \alpha$$

3.
$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$

4.
$$\forall \alpha, \exists \alpha' \in V : \alpha + \alpha' = \mathbf{0}$$

5.
$$\exists \mathbf{0} \in V : \forall \alpha \in V, 0 + \alpha = \alpha$$

ullet Properties for combination of + and imes

1.
$$alpha\in V$$

2.
$$a(b\alpha) = (ab)\alpha$$

3.
$$a(\alpha + \beta) = a\alpha + a\beta$$

4.
$$(a + b)\alpha = a\alpha + b\alpha$$

5.
$$\exists 1 \in F : 1\alpha = \alpha$$

1

K is field, K^n

$$\alpha, \beta \in K^n$$

$$lpha = egin{bmatrix} a_1 \ \ldots \ a_n \end{bmatrix}$$
 , $a_1 \in K$

2

Polynomial Space: P(t)

$$p(t) \in P(t)$$

$$p(t) = a_0 + a_1 t^1 + a_2 t^2 + \ldots + a_s t^s$$

where
$$s \in \{1, 2, 3, \dots\}$$

Matrix over a field: $K_{m imes n}$

$$A \in K_{m imes n}$$

$$A \equiv [a_{ij}]$$
 where $a_{ij} \in K$

Linear Combination:

Let $\alpha_1, \alpha_2, \ldots \alpha_n \in V$ where is a vector space over field V

w is a linear combination of the $lpha_i$'s if:

$$w = a_1 \alpha_1 + \ldots + a_n \alpha_n$$

where
$$a_1, a_2, \ldots, a_n \in F$$

Alternatively:

$$Ax = b$$

$$egin{bmatrix} \cdots \ lpha_1 \ \ldots \end{bmatrix} x_1 + egin{bmatrix} \cdots \ lpha_2 \ \ldots \end{bmatrix} x_2 + \ldots + egin{bmatrix} lpha_n \ \ldots \end{bmatrix} x_n = w$$

Linear Span

Let $S = \{\alpha_1, \dots \alpha_n\} \subset V$ for a vector space V over field F

S spans V means that $\forall w \in V, \exists a_1, \ldots, a_n \in F$ such that:

$$w = a_1 \alpha_1 + \ldots + a_n \alpha_n$$

Subspace

u is a subspace of vector space V over field F, if

- 1. $u \subset V$ (u is a subset of V)
- 2. \it{u} is a vector space over \it{F}

Thm:

Let V be a vector space over field F and u is a subset of v ($u \subset V$), If:

1.
$$0 \in u$$

2.
$$orall lpha, eta \in u, orall a, b \in F$$
 , $alpha + beta \in u$

Then u is a space of V

Thm:

Let V be a vector space over field F. If u is a subspace of V, and w is a subspace of u, then w is a subspace of V

Thm:

Intersection of any number of subspaces of a vector \boldsymbol{V} over field \boldsymbol{F} is a subspace of \boldsymbol{V}

Proof:

 u_1,u_2,\ldots are subspaces of V

 u_1 is a subspace of V

 u_2 is a subspace of \$\$

. . .

If $\bigcap_{i=1}^{n} u_i$ a subspace of V?

Yes.

Example:

$$w = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 where $\alpha_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ where $\alpha_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$

$$\mathbb{R}^2 \equiv \{(x,y) : x \in \mathbb{R}, y \in \mathbb{R}\}$$

 $\{\mathbf{0}\}$ subspace of \mathbb{R}^2

$$ax + by = 1$$

ax+by=0 subspace of \mathbb{R}^2

Thm:

Let $S = \{\alpha_1, \dots \alpha_n\} \subset V$ where V is a vector space over F and L(s) be the set of all linear combinations of S with respect to F. Then L(s) is a subspace of V.

1. Vector space V over field F

2.
$$S=\{lpha_1,\dotslpha_n\}\subset V$$

3.
$$L(s)=\{w:w=\sum_{i=1}^n a_ilpha_1,a_i\in F,lpha_i\in\S\}$$

 $\implies L(s)$ (span of S) is a subspace of V

Proof:

1. Show that $L(s)\subset V$

$$v \in L(s) \implies v \in V$$

Assume that $v \in L(s)$

$$v=\sum_{i=1}^n a_i lpha_i$$
 - Def of $L(s)$ $lpha_1 \in S \implies lpha_i \in V$ - because $S \subset V$ $v=\sum_{i=1}^n a_i lpha_i \in V$ - V is a vector space $L(s) \subset V$

2. Show that $\mathbf{0} \in L(s)$

$$\mathbf{0} = 0lpha_1 + 0lpha_2 + \ldots + 0lpha_n = \sum_{i=1}^n 0lpha_i \in L(s)$$
 - Def of S

3. Show that for $v,w\in L(s)$ and $c,d\in F$, $cv+dw\in L(s)$

$$cv+dw=c\sum_{i=1}^na_ilpha_i+d\sum_{i=1}^nb_ilpha_i$$
 where $v=\sum_{i=1}^na_ilpha_i$ and $w=\sum_{i=1}^nb_ilpha_i$ $=\sum_{i=1}^nca_ilpha_i+\sum_{i=1}^ndb_ilpha_i$ $=\sum_{i=1}^n(ca_i+db_i)lpha_i$ where $ca_1+db_i\in F$

Therefore, $cv+dw\in L(s)$

L(s) is a subspace of V

Linear Independence

Let v be a vector space over field ${\cal F}$

$$S = \{\alpha_1, \dots \alpha_n\} \subset v$$

s is a linearly dependent set if there exist a_i 's in F such that:

$$a_1\alpha_1 + a_2\alpha_2, \ldots, a_n\alpha_n = \mathbf{0}$$

and at least one of the a_i 's is non-zero

Linearly Independent:

s is linearly independent means that:

$$a_1\alpha_1 + a_2\alpha_2, \dots, a_n\alpha_n = \mathbf{0}$$
 only holds when:

$$a_1 = a_2 = \ldots = a_n = 0$$

 $Ax=\mathbf{0}$ - Homogenous System

$$A=egin{bmatrix} \ldots & \ldots & \ldots & \ldots \ lpha_1 & lpha_2 & \ldots & lpha_n \ \ldots & \ldots & \ldots \end{bmatrix}$$
 , $x=egin{bmatrix} x_1 \ \ldots \ x_n \end{bmatrix}$, $b=\mathbf{0}$

Note

Let
$$S = \{ lpha_1, \dots lpha_n \} \subset v$$
 ,then:

- 1. If $\mathbf{0} \in s$, then s is a linearly dependent set
- 2. If $s=\{lpha_1\}$, then s is linearly dependent if and only if $lpha_1=0$

Row Equivalence

A , B are in dimension of m imes n

 ${\cal A}$ is row equivalent to ${\cal B}$ if f ${\cal B}$ can be obtained from a sequence of elementary row operations of ${\cal A}$

Example

A row operations $\implies A'$ (Echelon Form) row operations $\implies A''$ (Row Canonical Form)

Say A in dimension of $n \times n$

Echelon Form

$$L = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 5 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{, number of pivots (1, 2, 3, 1)} = n$$

$$R = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 5 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{, number of pivots (1, 2, 2)} < n \text{ Linearly dependent, 0 row (R4)}$$

Row Canonical Form

$$L = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} = I$$
 $R = egin{bmatrix} 1 & 0 & x & 0 \ 0 & 1 & y & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \end{bmatrix}
eq I$

$$I^{-1} = I$$

$$A \in \mathbb{R}^{n imes n} = egin{cases} A \sim (Row \ Equivalent) \ I \ A
eq I \end{cases}$$

$$B = \begin{bmatrix} \dots & \dots & \dots \\ \dots & \dots & \dots \\ \dots & \dots & \dots \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{(zero row) , } B = \begin{bmatrix} \dots & \dots & \dots \\ \dots & \dots & \dots \\ \beta_1 & \beta_2 & \beta_3 & \beta_4 \\ \dots & \dots & \dots \end{bmatrix}$$

$$BB^{-1}
eq egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} = I$$

There is no eta_4 such that $i_{44}=1$

So B^{-1} does not exist

Week 3 Session 2

Outlines

Uniqueness Theorem

Basis and Dimension: Dimension Theorem

Subspaces of a matrix

$$A \in \mathbb{R}^{n imes n}$$

- 1. Linearly independent rows $\leftrightarrow A \sim I$
- 2. Linearly dependent rows $\leftrightarrow A \sim B$ such that B^{-1} does not exist

Thm:

Let A be a square matrix, the following statement are equivalent:

- 1. A is invertible
- 2. $\it A$ is row equivalent to $\it I$
- 3. A is a product of elementary matrices

Let P and Q be logical statements

If
$$P$$
 then $Q(P \implies Q)$

- 1. Assume P is TRUE, and then show it logically implies that Q us TRUE
- 2. Proof by contradiction: $\sim Q \implies \sim P$

If and only if (Equivalence)

P if and only if ($P\leftrightarrow Q$)

- $\bullet P \Longrightarrow Q$
- $\bullet \ Q \implies P$

Proof: $a \implies b$, $b \implies c$, $c \implies a$

$$a \implies b, b \implies c, c \implies a$$

Then, $a \leftrightarrow b$

 $\bullet \ a \implies b$

A is invertible $\implies A$ is row equivalent to I

$$P \implies Q$$

 $\sim Q$: If A if not row equivalent to I, then $A \sim B$ such that B^{-1} does not exist

so,
$$B = E_n \dots E_1 A$$

$$(E_n \dots E_1)^{-1}B = (E_n \dots E_1)^{-1}E_n \dots E_1A = A$$

Due to
$$(A_1A_2)^{-1}=A_2^{-1}A_1^{-1}$$

$$A^{-1} = B^{-1}(E_n \dots E_1)$$

So, A is not invertible because B^{-1} does not exist

 \bullet $b \implies c$

If A is row equivalent to I then A is a product of elementary matrices

$$P \implies Q$$

$$E_n \dots E_1 A = I$$

$$(E_n \dots E_1)^{-1} (E_n \dots E_1) A = (E_n \dots E_1)^{-1} I$$

so,
$$A=(E_n \dots E_1)^{-1}=E_1^{-1}\dots E_n^{-1}$$

For an elementary matrix E_i , E_i^{-1} is also an elementary matrix

 \bullet $c \Longrightarrow a$

If A is a product of elementary matrices then A is invertible

$$A = (E_1 \dots E_n)$$

$$A^{-1} = (E_1 \dots E_n)^{-1} = E_n^{-1} \dots E_1^{-1}$$
 because E_1^{-1} exists

Therefore, $a \implies b$, $b \implies c$, $c \implies a$

Thm:

Let v be a vector space over F and $S=\{\alpha_1,\ldots,\alpha_n\}\subset V$. Suppose S is a linearly independent set, then for every $w\in V$ there exist at most one representation as a linear combination of vectors in S.

Sketch:

If $S=\{\alpha_1,\ldots,\alpha_n\}\subset V$ (linearly independent set), then $\forall w\in V$, there exist at least one representation: $w=\sum_{i=1}^n a_i\alpha_i$

$$P \implies Q$$

Proof:

 $\sim Q$: Assume that $\exists w \in V$, we have two possible representations

$$w = \sum_{i=1}^n a_i lpha_i$$
 and $w = \sum_{i=1}^n b_i lpha_i$, $\exists k: a_k
eq b_k, 1 \leq k \leq n$

So,
$$\mathbf{0} = w - w = \sum_{i=1}^n a_i lpha_i - \sum_{i=1}^n b_i lpha_i$$

$$=\sum_{i=1}^n (a_i-b_i)lpha_i$$

$$a_i(0) = \sum_{i=1, i
eq k}^n (a_i - b_i) lpha_i + (a_k - b_k) lpha_k$$
 , where $a_i(a_k - b_k)
eq 0$

Therefore, S is linearly dependent set

$$S = \{\alpha_1, \dots, \alpha_n\} \subset V$$
 (vector space over field F)

If
$$S$$
 spans V then $orall w \in \emph{v}$, $\exists a_i$'s $\in F: w = \sum_{i=1}^n a_i lpha_i$

$$P \implies Q$$

Thm:

Let
$$S = \{\alpha_1, \dots, \alpha_n\} \subset V$$
 where V is a vector space over field F

1. S is linearly independent (number of representations ≤ 1)

2. S spans V (number of representations ≥ 1)

then every vector $w \in V$ has a unique representation as a linear combination of vectors in S

Properties

$$S = \{lpha_1, \dots, lpha_n\} \subset V$$
 (vector space over field F)

1. If S is linearly dependent, then any larger set of vectors containing S is linearly dependent

2. If S is linearly independent, then any subset of S is linearly dependent

Basis and Dimension

Vector space V over field F Basis of V is a set of vectors $S \in V$ such that:

1. S span V

2. S is a linearly independent set

Dimension of V is the number of vectors in the basis of V

Example:

$$V \equiv \mathbb{R}^3$$

$$V = egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix}, x_1, x_2, x_3 \in \mathbb{R}$$

$$\text{Basis: } \{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \}$$

$$egin{array}{c} x_1 egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix} + x_2 egin{bmatrix} 0 \ 1 \ 0 \end{bmatrix} + x_3 egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}$$

$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\} \checkmark$$

$$Dim(\mathbb{R}^3)=3$$

$$P_n(t)=$$
 Polynomial of order $\leq n$

$$p(t) \in P_n(t)$$

$$p(t) = c_0 + c_1 t^1 + \ldots + c_n t^n$$

Basis=
$$\{1, t, t^2, \dots t^n\}$$

$$p(t) = \sum_{i=0}^n c_0 t^n$$

$$Dim(P_n(t)) = n+1$$

Thm: Dimension Theorem

All basis of a vector space have the same number of vectors

Proof:

If
$$T=\{lpha_1,\dotslpha_n\}$$
 (a basis) and $S=\{eta_1,\dots,eta_m\}$ (a basis) then $n=m$

$$P \implies Q$$

Proof by contradiction:

$$\sim Q: n
eq m
ightarrow (n < m) ext{ or } (n > m)$$

Let (n < m) - (WithoutLossOfGenerality)

$$T = \{\alpha_1, \dots \alpha_n\}$$

$$S = \{\beta_1, \dots, \beta_n, \beta_{n+1}, \dots \beta_m\}$$

$$A = \{\alpha_1, \dots \alpha_n\}$$
 , $B = \{\beta_1, \dots, \beta_n\}$

$$B = egin{bmatrix} \ldots & eta_1 & \ldots \ \ldots & eta_2 & \ldots \ \ldots & \ddots & \ddots & \ldots \ \ldots & eta_n & \ldots \ \ldots & eta_n & \ldots \ \ldots & lpha_1 & \ldots \ \end{array} egin{bmatrix} \epsilon \mathbb{R}^{n imes p} \text{, } C = egin{bmatrix} c_{11} & \ldots & c_{1n} \ \ldots & \ldots & \ldots \ c_{1n} & \ldots & \ldots \ c_{1n} & \ldots & c_{nn} \ \end{bmatrix} \in \mathbb{R}^{n imes n} \text{,}$$
 $A = egin{bmatrix} R^{n imes p} & \ldots & \ldots \ \ldots & lpha_n & \ldots \ \end{bmatrix} \in \mathbb{R}^{n imes p}$

$$B = CA$$

$$\begin{bmatrix} \dots & \beta_1 & \dots \\ \dots & \beta_2 & \dots \\ \dots & \dots & \dots \end{bmatrix} = \begin{bmatrix} c_{11} & \dots & c_{1n} \\ \dots & \dots & \dots \\ \vdots & \dots & \dots \\ c_{1n} & \dots & c_{nn} \end{bmatrix} \begin{bmatrix} \dots & \alpha_1 & \dots \\ \dots & \alpha_2 & \dots \\ \dots & \dots & \dots \\ \dots & \dots & \dots \end{bmatrix}$$

$$eta_{lj} = \sum_{k=1}^n c_{lk} lpha_{kj}$$
 - Matrix Multiplication

$$eta_l = \sum_{k=1}^n c_{lk} lpha_k$$

Lemma 1:

If A and B have linearly independent rows then C is invertible

$$P \implies Q \text{ or } \sim Q \implies \sim P$$

Note: C is invertible $\leftrightarrow C$ has linearly independent rows

 $\sim Q:C$ has linearly dependent rows

$$c_l = \sum_{i=1, i
eq l} a_i c_i, c_{lk} = \sum_{i=1, i
eq l}^n a_i c_{lk}$$

$$\beta_l = \sum_{k=1}^n c_{lk} \alpha_k$$

$$=\sum_{k=1}^n\sum_{i=1,i
eq l}^n a_i c_{lk}lpha_k$$

$$=\sum_{i=1,i
eq l}^n a_i \sum_{k=1}^n c_{lk}lpha_k$$

$$=\sum_{i=1,i
eq l}^n a_ieta_i$$

So for B=CA WITH INVERTIBLE C then,

$$A = C^{-1}B$$

$$C^{-1} = D \equiv [d_{ij}]$$

$$\alpha_{ij} = \sum_{k=1}^{n} d_{ik} \beta_{kj}$$

$$lpha_i = \sum_{k=1}^n d_{ik} eta_k$$

$$T = \{ lpha_1, \dots lpha_n \}$$
 is a basis of V and $eta_{m+1} \in V$

$$eta_{n+1} = \sum_{i=1}^n e_i lpha_i$$
 for some e_i 's $\in F$

$$eta_{n+1} = \sum_{i=1}^n e_i (\sum_{k=1}^n d_{ik} eta_k)$$

$$=\sum_{i=1}^n\sum_{k=1}^ne_id_{ik}eta_k$$

$$=\sum_{i=1}^n(\sum_{k=1}^ne_id_{ik})eta_k$$

 ${\cal S}$ is linearly dependent set

so S is a basis

Fundamental subspace of a matrix

 $A \in \mathbb{R}^{m imes n}$

$$A = egin{bmatrix} a_{11} & \dots & a_{1n} \ \dots & \dots & \dots \ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

$$Ax = b$$
 where $x \in \mathbb{R}^{n imes 1}, b \in \mathbb{R}^{m imes 1}$

$$T: \mathbb{R}^{n imes 1}$$
 (Domain) $ightarrow \mathbb{R}^{m imes 1}$ (Co-domain)

$$A^Ty=d$$
 where $A^T\in\mathbb{R}^{n imes m},y\in\mathbb{R}^{m imes 1},d\in\mathbb{R}^{n imes 1}$

$$T: \mathbb{R}^{m imes 1}$$
 (Domain) $ightarrow \mathbb{R}^{n imes 1}$ (Co-domain)

1. Column Space: C(A)

$$C(A) = \{b \in \mathbb{R}^{m imes 1}: Ax = b, x \in \mathbb{R}^{n imes 1}\}$$

2. Row Space: $C(A^T)$

$$C(A^T) = \{d \in \mathbb{R}^{n \times 1}: A^Ty = d, y \in \mathbb{R}^{m \times 1}\}$$

3. Null Space: n(A)

$$n(A) = \{x \in \mathbb{R}^{n imes 1} : Ax = \mathbf{0}\}$$

4. Left Null Space: $n(A^T)$

$$n(A) = \{y \in \mathbb{R}^{m imes 1}: A^Ty = \mathbf{0}\}$$

Subspaces	Dimension
Domain	$n \equiv$ order
C(A)	$r\equiv$ rank
n(A)	$\zeta \equiv$ nullity

Fact:
$$n=r+\zeta$$

 $r\equiv {\rm rank}$

$$r = ext{number of pivots} = Dim(C(A)) = Dim(C(A^T))$$

$$\zeta = \text{number of free variables} = Dim(n(A))$$

Example:

$$A = egin{bmatrix} 1 & 0 \ 5 & 4 \ 2 & 4 \end{bmatrix}$$
 Find $n(A)$ and its dimension.

$$Ax = \mathbf{0}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 5 & 4 & 0 \\ 2 & 4 & 0 \end{bmatrix}$$

$$R2:R2-5R1$$

$$R3 : R3 - 2R1$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 4 & 0 \end{bmatrix}$$

$$R3:R3-R2$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 4 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$r=$$
 number of pivots $=2\$$

$$\zeta=$$
 number of free variables $=0$

$$x=0, y=0$$

$$n(A) = \{\mathbf{0}\}$$

$$Dim(n(A))=\zeta=0$$

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 5 & 4 & 9 \\ 2 & 4 & 6 \end{bmatrix}$$

R1 : R1

R2: R2 - 5R1

R3 : R3 - 2R1

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 4 & 4 \\ 0 & 4 & 4 \end{bmatrix}$$

R1 : R1

R2:R2

R3 : R3 - R2

$$egin{bmatrix} 1 & 0 & 1 \ 0 & 4 & 4 \ 0 & 0 & 0 \end{bmatrix} r = 2, \zeta = 1$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 4 & 4 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Let
$$x_3=z,z\in\mathbb{R}$$

$$4x_3 + 4x_3 = 0 \implies x_2 = -Z$$

$$x_1 + x_3 = 0 \implies x_1 = -z$$

$$zegin{bmatrix} -1 \ -1 \ 1 \end{bmatrix}, z\in\mathbb{R}$$

$$n(A) = span \{ egin{bmatrix} -1 \ -1 \ 1 \end{bmatrix} \}$$

$$Dim(\mathcal{C}(A))=2, Dim(n(A))=1$$

Thm:

Interchanging the rows of a matrix leaves its rank unchanged.

Thm:

If Ax=0 and Bx=0 have the same solution, then A and B have the same column rank