Einführung in die Regelungstechnik WS 2010/11

Zusammenfassung: Begriffe und Formeln

Prof. Dr.-Ing. Christian Ebenbauer

Institut für Systemtheorie und Regelungstechnik Universität Stuttgart

15. März 2011

Kapitel 1: Stabilität und Übertragungsfunktionen

- BIBO-Eigenschaft
- Nyquist Kriterium
- Interne Stabilität

Literatur: Horn-Dourdoumas, S.90-92, 106-114, 169-171

Interne Stabilität

Definition: Ein Regelkreis heißt intern stabil, wenn alle möglichen Übertragungsfunktionen des Kreises die BIBO-Eigenschaft besitzen.

Theorem 3

Der erweiterte Regelkreis ist intern stabil, genau dann wenn alle Übertragungsfunktionen

$$\begin{bmatrix} p(s) \\ y(s) \end{bmatrix} = \frac{1}{1+K(s)G(s)} \begin{bmatrix} V(s) & 1 & -K(s) \\ V(s)G(s) & G(s) & -K(s)G(s) \end{bmatrix} \begin{bmatrix} r(s) \\ w(s) \\ q(s) \end{bmatrix}$$

die BIBO-Eigenschaft besitzen. Der Standardregelkreis mit $G(s) = \frac{Z(s)}{N(s)}$ Z,N teilerfremd, $K(s) = \frac{A(s)}{B(s)}$, A,B teilerfremd, ist genau dann intern stabil, falls das Polynom Z(s)A(s) + N(s)B(s) Hurwitz ist (keine Kürzungen zwischen G(s), K(s) in der rechten Halbebene möglich).

Anzahl der Pole von L(s) in der offenen rechten Halbeben na...Anzahl der Pole von L(s) auf der imaginären Achse

Nyquist Kriterium

◆ ∆arg . . . stetige Winkeländerung

- L(s)...offener Kreis $T(s) = \frac{L(s)}{1 + L(s)}$...geschlossener Kreis
- Theorem 2 (Nyquist Kriterium, 1932)

$$T(s) \in BIBO \Leftrightarrow \frac{\Delta arg(1 + L(j\omega)) = \pi(2n_r + n_a)}{\omega = -\infty \text{ bis } + \infty}$$

Das Nyquist Kriterium ist ein notwendiges und hinreichendes (graphisches) Stabilitätskriterium für den geschlossenen Kreis T(s), wobei der graphische Verlauf der Ortskurve (Bodediagramm) des offenen Kreises L(s) untersucht wird.

Kapitel 2: Anforderungen an einen Regelkreis

- 4 Anforderungen
- 2 Amplituden- und Phasenreserve
- Sprungantwort
- Führungs- und Störverhalten
- Grenzen des Entwurfs

Literatur: Horn-Dourdoumas, S.161-196

Anforderungen an einen Regelkreis

Voraussetzungen, Grenzen, Implementierung (fachspez, Problemstellung) Stabilität Steuer- und Beobachtbarkeit interne Stabilität BIBO-Eigenschaft Realisierbarkeit Regelgüte gutes Führungsverhalten Anstiegszeit, Überschwingweite, keine bleibende Regelabweichung instabile Pole und Nullstellen Bandbreite unempf. bzgl. Meßrauschei Integralkriterien. Bandbreite Dilemma der RT, Bodeintegrale gute worst-case Regelgüte

Einige Anforderungen an einen Regelkreis. Diese lassen sich oft auf Fragen der Stabilität, Regelgüte (Optimalität, Performance) und Robustheitseigenschaften (Robustheit bzgl. einer Eigenschaft) zurückführen und mathematisch beschreiben (Spezifikation). Es ist zu beachten, daß nur solche Anforderungen und Spezifikationen gestellt werden sollen, die auch erreichbar sind (Voraussetzungen fundamentale Grenzen, Implementierungsvorgaben etc. beachten)!

BIBO-Eigenschaft

Frage: Wann hat ein System die Eigenschaft, daß ein beschränktes aber sonst beliebiges Eingangssignal $u = u(t), |u(t)| \le u_{max} < \infty$, ein beschränktes Ausgangsignal y = y(t) verursacht?

BIBO=bounded input bounded output. Spezialfall: LZI-System.

$$\dot{x} = Ax + bu, \ y = c^T x + du \leftrightarrow G(s).$$

Theorem 1

G(s) besitzt die BIBO-Eigenschaft $\Leftrightarrow G(s)$ ist asymptotisch stabil (alle Pole liegen in der linken offenen Halbebene).

Interne Stabilität

Zusammenhang: Asymptotische Stabilität, BIBO-Eigenschaft und interne Stabilität bei Systemen in Zustandsraumdarstellung

- Aus der BIBO-Eigenschaft einer Übertragungsfunktion $G(s) = c^{T}(sI - A)^{-1}b + d$ (die aus der Zustandsraumdarstellung (A, b, c, d) berechnet wurde) folgt im Allgemeinen nicht die asymptotische Stabilität der Systemmatrix A (wegen möglichen Kürzungen in der rechten Halbebene).
- Falls ein Regelkreis intern stabil ist UND in G(s), K(s), V(s)keine Kürzungen aufgetreten sind, dann ist die Systemmatrix des Regelkreises asymptotisch stabil.
- Jedes Zustandsraummodell (A, b, c, d) kann als Zusammenschaltung von Einzelsystemen (Integratoren) interpretiert werden (Signalflussdiagramm!). Interne Stabilität eines Systems (A, b, c, d) ist äquivalent mit der asymptotischen Stabilität der Systemmatrix A, d.h. alle "internen" Größen (=Zustände) sind asymptotisch stabil.

Amplituden- und Phasenreserve

- $L(j\omega)$... offener Kreis
- ω_D : $|L(j\omega_D)| \stackrel{!}{=} 1$ (Schnittpunkt mit Einheitskreis)
- ω_0 : $L(j\omega_0) \stackrel{!}{=} \text{reell}$ (Schnittpunkt mit neg. reellen Achse)
- Phasenreserve: $\phi_r=\pi+\arg L(j\omega_D)$ ($\omega_c=\omega_D$) Amplitudenreserve: $A_r=\frac{1}{|L(j\omega_0)|}$, Allg: Intervall [1/b,a].
- Die Amplitudenreserve (Phasenreserve) gibt an, wieviel zusätzliche Dämpfung (Totzeit bei ω_D) toleriert werden kann, ohne den Regelkreis zu destabilisieren.

Führungs- und Störverhalten

- \bullet Komplementäre Sensitivität: $T(s) = \frac{L(s)}{1 + L(s)}$, L(s) = K(s)G(s)
- Sensitivität: $S(s) = \frac{1}{1 + L(s)}$
- $r \overset{T(s)}{\mapsto} y$: Führungsverhalten, Regelgüte (Wunsch: $|T| \equiv 1$)
- $d \stackrel{S(s)}{\mapsto} y$: Störverhalten, Robustheit, (Wunsch: $|S| \equiv 0$)
- $n \stackrel{-T(s)}{\mapsto} y$: Übertragung Meßrauschen (Wunsch: $|T| \equiv 0$)
- Dilemma: $T(s) + S(s) \equiv 1$, Bode-Integrale Kompromiß notwendig!

Kapitel 3: Reglerentwurf im Frequenzbereich

- Frequenzkennlinienverfahren (loop-shaping)
- 2 Lead- und Lag-Glied

Literatur: Horn-Dourdoumas, S.271-297

Führungs- und Störverhalten

Typisches Szenario:

10/36

	$ T(j\omega) $	$ S(j\omega) $
ω klein	≈ 1	≈ 0
	gutes	gute
	Führungsverhalten	Störunterdrückung
ω groß	≈ 0	≈ 1
	unempf. bzgl.	
	Meßrauschen	

Frequenzkennlinienverfahren (loop-shaping)

Typisches Vorgehen: Anforderungen des geschlossenen Kreises übersetzen in Anforderungen (Spezifikationen) an das Bodediagramm des offen Kreises.

(Betrag und Phase werden im Bodediagramm addiert!)

Bode-Integrale

- Komplementäres Sensitivitätsintegral (T(s) BIBO, T(0) = 1, $K_c = \lim_{s \to 0} sL(s)$: $\frac{1}{\pi} \int_0^\infty \log |T(j\omega)| \frac{d\omega}{\omega^2} + \frac{1}{K_c} = \sum_{i=1}^\infty \frac{1}{\alpha_i} = \int_0^\infty e(t)^2 dt$
- Sensitivitätsintegral (T(s) BIBO, T(0) = 1, $K_{\infty} = \lim_{s \to \infty} sL(s)$, falls $r \ge 2$): $\frac{1}{\pi} \int_0^\infty \log |S(j\omega)| d\omega + \frac{K_\infty}{2} = \sum_{i=1}^\infty \beta_i = \int_0^\infty u(t)^2 dt$
- α_i/β_i ...instabile Nullstellen/Pole von L(s)
- min. Regelfehler: $\int_0^\infty e(t)^2 dt$, min. Stellenergie $\int_0^\infty u(t)^2 dt$

Anforderungen im Bodediagramm

- (1) Regelgüte (bleibende Regelabweichung, V), $(L(s) = \frac{V}{s^{\lambda}} \frac{Z(s)}{N(s)}$ Z(0) = N(0) = 1)
- (2) Bandbreite $\omega_B \approx \omega_D$, Rauschen, Regelgüte (Störungen)
- (3) Stabilität, Robustheit, ϕ_R

-offener Kreis, Frequenzbereich-

囚

Faustformeln

- Anstiegszeit $t_r \leftrightarrow \text{Bandbreite} (\omega_B \approx) \omega_D$: $t_r \omega_D \approx 1.5$
- Überschwingweite $M_p \leftrightarrow \mathsf{Phasenreserve} \ \phi_R$: $\phi_R + 100(M_p - 1) \approx 70$
- Verstärkung $V \leftrightarrow$ bleibende Regelabweichung e_{∞} :

$$e_{\infty,Sprung} = \left\{ \begin{array}{ll} \frac{1}{1+V} & \lambda = 0 \\ 0 & \lambda = 1 \end{array} \right. \qquad e_{\infty,Rampe} = \left\{ \begin{array}{ll} \infty & \lambda = 0 \\ \frac{1}{V} & \lambda = 1 \end{array} \right.$$

$$e_{\infty,Rampe} = \begin{cases} \infty & \lambda = 0\\ \frac{1}{V} & \lambda = 1 \end{cases}$$

Herleitung/Voraussetzung: $L(s) \approx \frac{\omega_n^2}{s^\lambda(s+2\zeta\omega_n)}$ (dominantes Polpaar in T(s)).

Lead-Glied

Typische Anwendung:

- Phase anheben (Erhöhung der Phase im Bereich der Durchtrittsfrequenz möglich, ohne diese (stark) zu verändern)
- Amplitudenreserve anheben
- Bandbreite vergrößern

Lag-Glied

Typische Anwendung:

- Phase und Betrag absenken
- Rauschen unterdrücken
- bleibende Regelabweichung verkleinern

Dimensionierung von Lead- und Lag-Glied

 $m=\frac{\omega_N}{\omega_R}$, ist die maximale Verstärkung/Dämpfung (für $\omega\gg$) und $\Delta \phi_{max} = \arcsin \frac{m-1}{m+1}$ ist die maximale Phasenverschiebung, welche bei der Mittenfrequenz $\omega_m = \sqrt{\omega_Z \omega_N}$ auftritt.

• Aufgabe 1: Betrag bei ω_0 um den Faktor m_0 verändern, ohne die Phase nennenswert zu verändert:

$$m_0 = \frac{\omega_N}{\omega_Z}, \ max\{\omega_Z, \omega_N\} \approx \frac{\omega_0}{10}$$

• Aufgabe 2: Phase bei ω_0 um $\Delta\phi_0$ anheben/absenken, wobei die maximale Phasenverschiebung bei $\alpha \omega_m$ liegen soll:

$$\frac{m_0-1}{\sqrt{m_0}} = \frac{\alpha^2+1}{\alpha} \mathrm{tan} \Delta \phi_0 \Rightarrow m_0 > 0, \omega_Z = \frac{\alpha \omega_0}{\sqrt{m_0}}, \omega_N = m_0 \omega_Z$$

ullet Aufgabe 3: Betrag bei ω_0 um den Faktor m_0 verändern, wobei bei ω_0 die Phasenverschiebung $\Delta\phi_0$ sein soll:

$$\frac{m_0-1}{\sqrt{m_0}} = \frac{\alpha^2+1}{\alpha} \mathrm{tan} \Delta \phi_0 \Rightarrow \alpha_{1,2}, \alpha_1 \leq \alpha_2, \ \omega_Z = \frac{\alpha_1 \omega_0}{\sqrt{m_0}}, \omega_N = m_0 \omega_Z$$

Kapitel 4: Reglerentwurf im Zustandsraum

Beobachtbarkeit

Ein System heißt beobachtbar, wenn aus der Kenntnis von u(t),

y(t) in endlicher Zeit T der unbekannte Anfangszustand x_0

- Steuerbarkeit
- 2 Beobachtbarkeit
- Eigenwertvorgabe (Polvorgabe)
- Beobachterentwurf
- Separationsprinzip
- Normalformen

Definition 6

bestimmt werden kann.

Literatur: Horn-Dourdoumas, S.77-84, 395-430

Steuerbarkeit

Definition 4

Ein System heißt steuerbar, wenn ein beliebiger Anfangszustand x_1 in endlicher Zeit T mittels u = u(t) in einen beliebigen Endzustand x_2 überführt werden kann.

Definition der Steuerbarkeit und Transformation auf Diagonalform

Für LZI-Systeme kann T beliebig klein gewählt werden. Steuerbarkeit ist invariant bzgl. einer regulären Zustandstransformation (Systemeigenschaft).

/

Beobachtbarkeit

$$\dot{x} = Ax + bu$$

$$y = c^{T}x + du$$

$$u(t) \text{ geg.}$$

$$t \in [t_{0}, t_{0} + T]$$

$$t \in [t_{0}, t_{0} + T]$$

Beobachtbarkeitsmatrix: $Q_b = [c, A^T c, \cdots, (A^{n-1})^T c]^T$

Theorem 7

(A,c) ist beobachtbar, genau dann wenn eines der beiden Kriterien erfüllt ist:

- Rang $(Q_b) = n$,
- $Ap = \lambda p \Rightarrow c^T p \neq 0$.

Das Kalman-Kriterium (Rang $(Q_b) = n$) gilt auch im MIMO-Fall. Verlust der Beobachtbarkeit \Rightarrow Kürzung in G(s):

 $G(s) = \sum_{i=1}^{n} (c^T p_i) (q_i^T b) \frac{1}{s - \lambda_i}$ (Spektralzerlegung, d = 0).

Steuerbarkeit

Steuerbarkeitsmatrix: $Q_s = [b, Ab, \cdots, A^{n-1}b]$.

Theorem 5

(A,b) ist steuerbar, genau dann wenn eines der beiden Kriterien erfiillt ist

- Rang $(Q_s) = n$,
- $\bullet \ a^T A = \lambda a^T \Rightarrow a^T b \neq 0.$

Das Kalman-Kriterium ($Rang(Q_s) = n$) gilt auch im MIMO-Fall. Verlust der Steuerbarkeit \Rightarrow Kürzung in G(s):

 $G(s) = \sum_{i=1}^{n} (c^T p_i) (q_i^T b) \frac{1}{s-\lambda_i}$ (Spektralzerlegung, d=0).

Eigenwertvorgabe

- Problemstellung:
 - Geg: Streckenmodell: $\dot{x} = Ax + bu$, Wunschpolynom: $p(s) = s^n + p_{n-1}s^{n-1} + \ldots + p_0 = (s - \lambda_1) \ldots (s - \lambda_n).$
 - Ges: $u = -k^T x$, sodaß $\det(sI (A bk^T)) \stackrel{!}{=} p(s)$.
- Direkter Lösungsweg:
 - $det(sI (A bk^T)) \stackrel{!}{=} p(s)$ (Koeffizientenvergleich)
- Lösungsweg über RNF:
 - Schritt 1: (A, b) auf Steuerbarkeit prüfen $(\det(Q_s) \neq 0)$
 - Schritt 2: Transformation auf RNF $z = T^{-1}x$

$$A_F - e_n \tilde{k}^T = \begin{bmatrix} 0 & 1 & 0 \\ \vdots & \ddots & 1 \\ -a_0 - \tilde{k}_1 & -a_{n-1} - \tilde{k}_n \end{bmatrix}$$

- $\begin{array}{l} \bullet \text{ Schritt 3: } p_i \stackrel{!}{=} a_i + \tilde{k}_{i+1} \Rightarrow \tilde{k}_{i+1} = p_i a_i \\ \bullet \text{ Schritt 4: } u = -\tilde{k}^T z = -\tilde{k}^T T^{-1} x = -k^T x. \end{array}$
- Lösungsweg über Ackermann-Formel: $k^T = t_1^T p(A)$, $t_1^T = e_n^T Q_s^{-1}$

Beobachterentwurf

Definition der Beobachtbarkeit und Transformation auf Diagonalform

Für LZI-Systeme kann T beliebig klein gewählt werden.

Beobachtbarkeit ist invariant bzgl. einer regulären

Zustandstransformation (Systemeigenschaft).

System: $\dot{x} = Ax + bu$

 $y = c^T x + du$

Luenberger $\dot{\hat{x}} = A\hat{x} + bu + l(y - \hat{y})$

Beobachter: $\hat{y} = c^T \hat{x} + du$

Beobachterfehler: $e(t) = \hat{x}(t) - x(t) \stackrel{!}{\rightarrow} 0$

Fehlerdynamik: $\dot{e} = (A - lc^T)e$

Dualität: $(A - lc^T)^T = (A^T - cl^T) \leftrightarrow (A - bk^T)$

 $(A,b,c,d) \rightsquigarrow (A^T,c,b,d)$

Duales System : $\dot{\xi} = A^T \xi + cv$ $\eta = b^T \eta + dv$ $v = -l^T \xi$

Entwurf eines Beobachters entspricht dem Entwurf einer Zustandsrückführung für das duale System (EW-Vorgabe).

Separationsprinzip

Geschlossener Kreis:

$$\begin{bmatrix} \dot{x} \\ \dot{e} \end{bmatrix} = \underbrace{ \begin{bmatrix} A - bk^T & bk^T \\ 0 & A - lc^T \end{bmatrix} }_{A - bk^T} \underbrace{ \begin{bmatrix} x \\ e \end{bmatrix} }_{A - bk^T}$$

Durch das Zusammenschalten werden die EW nicht verändert!

Normalform - Regelungsnormalform (RNF)

$$\dot{z} = \underbrace{\begin{bmatrix} 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & \\ 0 & \cdots & 0 & 1 \\ -a_0 & -a_1 & \cdots & -a_{n-1} \end{bmatrix}}_{=A_F} z + \underbrace{\begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}}_{=e_n} u$$

$$y = \underbrace{\begin{bmatrix} \tilde{c}_0 & \tilde{c}_1 & \cdots & \tilde{c}_{n-1} \end{bmatrix}}_{=zT} z + du.$$

- System steuerbar \Leftrightarrow RNF existient \Leftrightarrow EW von $(A bk^T)$ beliebig platzierbar.
- $G(s) = \frac{\tilde{c}_{n-1}s^{n-1} + \dots + \tilde{c}_1s + \tilde{c}_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0} + d.$
- $\det(sI A_F) = s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0.$
- Transformation: $z = T^{-1}x$, $A_F = T^{-1}AT$, $e_n = T^{-1}b$, $\tilde{c}^T = c^T T$, $T^{-T} = [t_1, \cdots, t_n]$, $t_{i+1}^T = t_i^T A$, $t_1^T = e_n^T Q_s^{-1}$.

Normalform - Beobachternormalform (BNF)

$$y = \underbrace{\left[\begin{array}{ccc} 0 & \cdots & 0 & 1 \end{array}\right]}_{=e_{r}^{T}} z + du.$$

- System beobachtbar \Leftrightarrow BNF existiert \Leftrightarrow EW von $(A lc^T)$ beliebig platzierbar.
- $\bullet \ G(s) = \frac{\tilde{b}_{n-1}s^{n-1} + \ldots + b_1s + \tilde{b}_0}{s^n + a_{n-1}s^{n-1} + \ldots + a_1s + a_0} + d.$ $\bullet \ \det(sI A_F^T) = s^n + a_{n-1}s^{n-1} + \ldots + a_1s + a_0.$
- $\begin{array}{l} \bullet \text{ Transformation: } z = T^{-1}x, \, A_F^T = T^{-1}AT, \, e_n = T^{-1}c, \\ \tilde{b}^T = b^TT, \, T^{-T} = [t_1, \cdots, t_n], t_{i+1}^T = t_i^TA^T, t_1^T = e_n^TQ_b^{-T}. \end{array}$

Normalform - Steuerbarkeitsnormalform

$$\dot{z} = \underbrace{\begin{bmatrix} 0 & \cdots & 0 & -a_0 \\ 1 & \ddots & \vdots & -a_1 \\ & \ddots & 0 & \vdots \\ 0 & 1 & -a_{n-1} \end{bmatrix}}_{=A_F^T} z + \underbrace{\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}}_{=e_1} u$$

$$y = \underbrace{\begin{bmatrix} \tilde{c}_0 & \tilde{c}_1 & \cdots & \tilde{c}_{n-1} \end{bmatrix}}_{=\tilde{c}^T} z + du.$$

- System ist steuerbar
- Transformation: $z = Q_s^{-1}x$, $A_F^T = Q_s^{-1}AQ_s$, $e_1 = Q_s^{-1}b$,

Δ

Normalform - Beobachtbarkeitsnormalform

- System ist beobachtbar
- Transformation: $z = Q_b x$, $A_F = Q_b A Q_b^{-1}$, $e_1^T = c^T Q_b^{-1}$, $\tilde{b}^T = b^T Q_h$.

Kapitel 5: PID-Regler und erweiterte Regelkreisstrukturen

- PID-Regler und Anti-Windup
- 2 Zustandsrückführung mit I-Anteil
- Störgrößenaufschaltung
- Smith-Prädiktor
- Kaskadenregelung
- 6 Regelkreisstruktur mit 2 Freiheitsgraden

Literatur: Horn-Dourdoumas, S.198-200, 257-270, Lunze 1: Kap.

PID-Regler und Anti-Windup

Einstellregeln für PID-Regler: z.B. Ziegler-Nichols, Aström-Hagglund

Kaskadenregelung

- Annahme: y₁ meßbar
- Entwurf: Innerer ("schneller") Kreis: $K_1(s)$ mit Wunsch $T_{1,ideal}(s) = 1$. Äußerer ("langsamer") Kreis: $K_2(s)$ unter der Annahme das $T_{1,ideal}(s) = 1$ entwerfen.
- Bemerkung: interne Stabilität, Realisierbarkeit, Antriebstechnik (elektrischer-mechanischer Teil)

Regelkreis mit 2 Freiheitsgraden

- Entwurf: Vorsteuerung $V_{1,ideal}(s) = \frac{1}{G(s)}T(s)$, T(s)...Wunschführungsverhalten, $V_{2,ideal}(s) = T(s)$, mit K(s)Störverhalten festlegen (unabh. von T(s)!), "direkte algebraische Synthese"
- Bemerkung: interne Stabilität, Realisierbarkeit (Kausalität)

Störgrößenaufschaltung und Smith-Prädiktor

- Annahme: z meßbar, $G_{zd}(s)$ bekannt
- Entwurf: $C_{ideal}(s) = -\frac{G_{zd}(s)}{G(s)}$
- Bemerkung: Realisierbarkeit (Kausalität), interne Stabilität (C(s) stabil)
- Annahme: Totzeit T bekannt
- \bullet Entwurf: K(s) basierend auf G(s) entwerfen
- Bemerkung: Totzeit kompensiert

36 / 36