Play with 600519 data: TimeLine Assignment

Yu-Chieh Jack Ho

1/15 2021

Outlines

- Problem Formulation
- Feature Generation
- Model Development & Experiments
- Summary
- Future Work

Problem Formulation

- A regression problem
 - y (Target): nextMidpt
 - Available X: book and trade data
 - Objective: minimizing RMSE
- Approach the goal by
 - Selecting and generating useful features from raw book/trade data
 - Python + pandas + numpy
 - Developing models which extract useful info. from those features
 - Tensorflow + keras

Please refer to data_proc.ipynb for details

- Data exploring Preprocessing:
 - Data Exploring & cleaning (e.g., check and remove NaN)
 - TimeStamp → DateTime for data splitting
 - Design pipelines which allows frequent feature change
- Normalization:
 - Scaler: MiniMax / Srandard scaler
 - Fit Scaler with only training set

- Price features:
 - Raw features
 - ['Bid1', 'Bid2', 'Bid3', 'Bid4', 'Bid5']
 - ['Ask1', 'Ask2', 'Ask3', 'Ask4', 'Ask5']
 - Midpt
 - Statistical features
 - ['MicroPrice', 'Bid_Mean', 'Ask_Mean']
 - Distance features
 - ['Spread1', 'Spread2', 'Spread3', 'Spread4', 'Spread5', 'SpreadMean']
 - More targets (as possible regularizers)
 - next_Bid1, next_Ask1

Size features

- Raw features
 - ['Bid1Size', 'Bid2Size', 'Bid3Size', 'Bid4Size', 'Bid5Size', 'Bid_Total_Size']
 - ['Ask1Size', 'Ask2Size', 'Ask3Size', 'Ask4Size', 'Ask5Size', 'Ask_Total_Size']
- Distribution features: proportion of bid/ask size in each sample
 - ['Bid1SizeProp', 'Bid2SizeProp', 'Bid3SizeProp', 'Bid4SizeProp', 'Bid5SizeProp']
 - ['Ask1SizeProp', 'Ask2SizeProp', 'Ask3SizeProp', 'Ask4SizeProp', 'Ask5SizeProp']
- Ratio features
 - Bid/Ask Ratio
 - ['BidAskRatio1', 'BidAskRatio2', 'BidAskRatio3', 'BidAskRatio4', 'BidAskRatio5', 'BidAskRatioTotal']
 - Queue Imbalance features
 - ['Q_lmB1', 'Q_lmB2', 'Q_lmB3', 'Q_lmB4', 'Q_lmB5']

- More feature engineering
 - Moving average of selected features
 - Percentage Change of selected features

Model Development

- Baseline model
 - Linear Regression
- DNN model
 - A MLP model which mimic the kernel trick

- 2-winged DNN model
 - A DNN model which extract the info. from size and price features independently

Experimental Setting

- Callback functions leveraged:
 - ReduceLROnPlateau: Monitored val_loss and reduce learning rate when the metric has stopped improving
 - EarlyStopping: Monitored val_loss and stop training when the metric has stopped improving.
 - ModelCheckpoint: Select and save the best model according to the val_loss during learning
- {'batch_size': 128, 'epochs': 300, 'optimizer': 'adam', 'loss': mean_squared_error}

 The manual selection of features affect the RMSE slightly, but did not change the related accuracy of models. In the following slides, I will report their performance when training with all features

Baseline Model

Please refer to baseline_model.ipynb for details

Baseline model + features without normalization

Evaluation metrics

Training Data - MSE: 0.0820, RMSE: 0.2863

Validation Data - MSE: 0.0801, RMSE: 0.2830

A baseline which is **better than expected**

Baseline model + features with normalization

• However...

Evaluation metrics

Training Data –

MSE: 274388.6250, RMSE: 523.8212

Validation Data - MSE: 22248.3984, RMSE: 149.1590

Linear activation
Relu activation (nonlinear)

DNN Model

The model with has best performance so far

Please refer to dnn_model.ipynb for details

Linear DNN model + features without normalization

Evaluation metrics

Training Data - MSE: 0.0824, RMSE: 0.2871

Validation Data - MSE: 0.0768, RMSE: 0.2772

Linear DNN model + features with normalization

Evaluation metrics

Training Data - MSE: 0.0644, RMSE: 0.2538

Validation Data - MSE: 0.0628, RMSE: 0.2507

Best Performance so far

Nonlinear DNN model + features without normalization

Evaluation metrics

Training Data - MSE: 0.0792, RMSE: 0.2814 Validation Data - MSE: 0.0787, RMSE: 0.2805

Nonlinear DNN model + features with normalization

Evaluation metrics

Training Data - MSE: 0.0653, RMSE: 0.2556

Validation Data - MSE: 0.0635, RMSE: 0.2520

Please refer to 2w_dnn_model.ipynb for details

Linear 2W-DNN model + features without normalization

Evaluation metrics

Training Data - MSE: 0.1054, RMSE: 0.3247

Validation Data - MSE: 0.0999, RMSE: 0.3161

Linear 2W-DNN model + features with normalization

Evaluation metrics

Training Data - MSE: 0.0675, RMSE: 0.2598

Validation Data - MSE: 0.0664, RMSE: 0.2578

Nonlinear 2W-DNN model + features without normalization

Evaluation metrics

Training Data - MSE: 0.0711, RMSE: 0.2667 Validation Data - MSE: 0.0696, RMSE: 0.2638

Nonlinear 2W-DNN model + features with normalization

Evaluation metrics

Training Data - MSE: 0.0727, RMSE: 0.2696 Validation Data - MSE: 0.0683, RMSE: 0.2613

Summary

- The linear DNN model gave the best performance so far
 - MSE: 0.0628, RMSE: 0.2507 on validation set.

• The performance of 2W-DNN gave similar performance (but did not surpass) with more training epochs (e.g., 1000)

• The performance maybe slightly improved by carefully hyperparameters tuning and feature selection.

Future Work

- It would be interesting to explore more features, targets and model structures
 - Features
 - Features from trade data
 - Indicators
 - Targets
 - Signals
 - Models
 - Attention model for time-series analysis

• Looking forward to sharing and learning with you!