1. Lite repetition

Låt $A = \{1, 2, 3\}$ och B = P(A)

(a) Visa att (B, \subseteq) är en partiell ordning. $B = P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 3\}, \{1, 2, 3\}\}$

För att relationen ska vara en partiell ordning gäller det att de tre följande kraven är uppfyllda: Reflexivitet: Alla mängder i potensmängden är delmängder till sig själva.

Antisymmetri: För alla mängder i potensmängden gäller att om $A\subseteq B, \forall$ mängd A och B, så finns det EJ B så att $B\subseteq A$

Transitivitet: Om $A \subseteq B$ och $B \subseteq C$ så gäller det $A \subseteq C$ (Detta gäller även för tomma mängden)

(b) Är det en total ordning? Varför?

För att en partiell ordning ska vara en total ordning gäller det att alla $x,y \in A$ (i detta fall mängder A och B i P(A)) så gäller det att det finns en relation mellan alla $x,y \in A$, alltså i detta fall ska det finnas en relation mellan alla mängder i P(A). Man kan titta på motsägelsen av detta och försöka motbevisa med ett exempel men det kommer inte finnas något motexempel då potensmängden är mängden av alla delmängder till A.

- (c) Ange alla minimala respektive maximala element. Minimala element: $\{1\},\{2\},\{3\}$ Maximala element: $\{1,2,3\}$
- (d) Om det finns, ange det minsta elementet respektive det största elementet.

Det minsta elementet: $\{\emptyset\}$

Det största elementet: $\{1,2,3\}$

2. Induktion i mängder

Ge induktiv definition av den naturliga talmängden N

(Tips: Börja med ett basfall och sedan ett induktionssteg)

3. Induktion i summor av talföljder

Bevisa med induktion att detta gäller för alla positiva heltal \mathbb{Z}_+ :

(a)
$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

(b)
$$\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)$$

(c)
$$\sum_{k=1}^{n} k(k+1) = \frac{1}{3}n(n+1)(n+2)$$

(d)
$$\sum_{k=1}^{n} k(k+1)(k+2) = \frac{1}{4}n(n+1)(n+2)(n+3)$$

si@chalmers.it http://nollk.it/si

4. Om ni hinner

Titta på de tre senaste uppgifterna ovan, gissa en formel och bevisa denna med hjälp av induktion.

$$\sum_{k=1}^{n} k(k+1)(k+2)(k+3), n \in \mathbb{N}$$