Rapport 2 : Décomposition LU et moindres carrés

Loïc Jabiro KAYITAKIRE

NOMA: 53272100

Question 1

Définition

Le conditionnement est un concept qui permet de mesurer la sensibilité d'un problème de calcul numérique par rapport à une perturbation. Il est mesuré grâce au nombre de conditionnement κ qui se calcule comme suit :

$$\kappa(x) = \lim_{\delta \to 0} \sup_{||\delta x|| \le \delta} \frac{\frac{||\delta x||}{||x||}}{\frac{||\delta A||}{||A||}}$$

Conditionnement par rapport à A

Le problème de base est : $A^TAx = A^TB$

On pose $A^T A = A'$ et $A^T B = B'$

On suppose une perturbation $\delta A'$ sur A'. On a alors le problème perturbé suivant :

$$(A' + \delta A')(x + \delta x) = B'$$

$$A'x + A'\delta x + \delta A'x + \delta A'\delta x = B'$$

A'x = B' et $\delta A'\delta x$ est négligeable par rapport au reste. On a alors :

$$A'\delta x + \delta A'x = 0$$

Ce qui donne ensuite :

$$\delta x = -A'^{-1}\delta A'x$$

On a alors:

$$||\delta x|| = ||-A'^{-1}\delta A'x|| \le ||A'^{-1}|| ||\delta A'|| ||x||$$

Et donc:

$$\frac{||\delta x||}{||x||} \le ||A'||||A'^{-1}||\frac{||\delta A'||}{||A'||}$$

Ainsi,
$$\kappa(A^TA) = ||A^TA||||(A^TA)^{-1}||$$

En suivant un raisonnement similaire pour une perturbation sur B, on obtient :

$$\kappa(A^T B) = ||A^T B||||(A^T A)^{-1}||$$

Question 2

La complexité

Question 3

Question 4