Département de Mathématiques Maste1, Proba-States, Actuariat et Contrôle Optimal

Série 3 d'Analyse Numérique Matricielle

Exercice1: Soit n 1 un entier. On considère la matrice carrée tridiagonale A=D-L-U avec

1- En utilisant le fait que pour tout réel $\alpha \neq 0$, on a $\det(A) = \det(D - \alpha L - \frac{1}{\alpha}U)$, démontrer que pour tout $\lambda \in \mathbb{C}^*$ et $\omega \in \mathbb{R}^*$ on a

$$D_{L_{\omega}}(\lambda^{2}) = \lambda^{n} \omega^{n} D_{L_{\omega}}(\frac{\lambda^{2} + \omega - 1}{\lambda \omega})$$

- 2- En déduire que $\rho(\mathcal{L}_1) = \rho(J)^2$
- 3- Interpréter en terme de convergence des méthodes de Jacobi et celle de Gauss-Seidel.
 - 4- comparer ces deux méthodes.

Exercice 2:

Soit $A \in \mathcal{M}_n(\mathbb{R})$ inversible. Si $\omega > 0$, on considère la méthode itérative suivante:

$$\begin{cases} x_0 \in \mathbb{R}^n & \text{quelconque} \\ x_{n+1} = x_n - \omega(Ax_n - b) \end{cases}$$

A quelle condition (nécessaire) sur ω la méthode converge-t-elle ?

Exercice 3:Soit B la matrice carrée d'ordre n

$$B = \left[\begin{array}{cc} 0 & F \\ F^T & 0 \end{array} \right]$$

où F est une matrice à k lignes et n-k colonnes.

On considère le système x = Bx + b

- 1- Ecrire la matrice J de la méthode de Jacobi et la matrice \mathcal{L}_1 de la méthode de Gauss-Seidel .
 - 2- Que peut-on dire de $\rho(J)$ et $\rho(\mathcal{L}_1)$?

Exercice 4 :1- Ecrire la méthode de Jacobi, de Gauss-seidel et de Relaxation pour le système linéaire Ax = b, où b est un vecteur donné et

$$A = \left(\begin{array}{ccc} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array}\right)$$

(on calculera les trois matrices J , \mathcal{L}_1 et \mathcal{L}_ω).

- 2. Calculer les rayons spectraux des matrices J , \mathcal{L}_1 et \mathcal{L}_ω
- 3. Ces trois méthodes sont-elles convergentes ? Comparer la vitesse de leur convergence dans le cas d'une réponse affirmative.
- 4. Existe-il une valeur de ω pour laquelle la convergence de \mathcal{L}_{ω} est optimale? Si oui, laquelle ?

Exercice 5 : Démontrer que si A est une matrice à diagonale strictement dominante, alors la méthode de Jacobi converge.

Prof. Bouras Med Chérif