0. Physical constants

 $k=1.381\times 10^{-23}J/K=8.617\times 10^{-5}eV/K,\ N_A=6.022\times 10^{23},\ R=8.315J/mol\cdot K,\ h=6.626\times 10^{-34}J\cdot s=4.136\times 10^{-15}eV\cdot S$

1. Energy in Thermal Physics

- 1.1. Thermal equilibrium. Temperature is a measure of the tendency of an object to spontaneously give up energy to its surroundings. When two objects are in thermal contact, the one that tends to spontaneously lose energy is at the higher energy. Room temperature 300K
- 1.2. The ideal gas. $PV = nRT = Nk_BT$. n is no of moles, $N = nN_A$ is number of molecules. $k_B = R/N_A$. Latter equation is valid when avg. space b/w molecules is larger than size of molecules. $\bar{E}_{K,trans} = \frac{3}{2}kT$.
- 1.3. Equipartition of energy. Theorem: at temperature T, the average energy of any quadratic degree of freedom is $\frac{1}{2}kT$. $U_{thermal}=Nf\frac{1}{2}kT$. Monoatomic gas: f=3. Diatomic gas: f=5,6 (3 trans., 2-3, rot.) or f=8 (3 trans., 3 rot., 2 vibr. K, P). Solid: f=6 (6 vibr. 3K, 3P). Some vibrational energies may be "frozen out" at room temperature.
- 1.4. **Heat and work.** First law of thermodynamics $\Delta U = Q + W$. The change in energy is equal to the heat added and the work done. Heat transfer happens by *conduction*, *convection* and *radiation*.
- 1.5. Compression work. Consider a piston. The force is F=PA. Assumes that the pressure is uniform. Compression must be slow enough so the gas has time to continually equilibrate to the changing conditions \rightarrow quasistatic. A compressed gas, i.e. negative ΔV gives $W=F\Delta x=PA\Delta x=-P\Delta V$.
- 1.5.1. Compression of ideal gas. Two idealised ways: Isothermal compression is so slow that the temperature of the gas does not rise (quasistatic). Adiabatic compression is so fast that no heat escapes during the compression. $VT^{f/2} = \text{constant}, \ V^{\gamma}P = \text{constant}. \ \gamma = \frac{f+2}{f}$ is the adiabatic exponent.
- 1.6. Heat capacities. Amount of heat needed to raise an object's temperature, per degree temperature increases $C = \frac{Q}{\Delta T} = \frac{\Delta U W}{\Delta T}$. W = 0 and V = constant is called heat capacity heat capacity at constant volume, else there would be compression work, $-P\Delta V$. $C_V = \left(\frac{\partial U}{\partial T}\right)_V$. If an object expand when heated and do work on surroundings, there is negative W. At constant P, Q i unambiguous \rightarrow heat capacity at constant pressure: $C_P = \left(\frac{\Delta U (-P\Delta V)}{\Delta T}\right)_P = \left(\frac{\partial U}{\partial T}\right)_P + P\frac{\partial V}{\partial T}_P$.

- 1.6.1. Latent heat. During a face transformation $C=\frac{Q}{\Delta T}=\frac{Q}{0}=\infty$. While $L=\frac{Q}{m}$ is the heat required to accomplish the transformation, the latent heat.
- 1.6.2. Enthalpy. To create a rabbit out of nothing, the sorcerer must summon up not only the energy U of the rabbit, but also some additional energy, equal to PV, to push the atmosphere out of the way to make room. The enthalpy: H = U + PV. At constant P, $\Delta H = Q + W_{other}$.

2. The Second Law

Entropy, and multiplicity, tends to increase.

- 2.1. **Two-state systems.** Multiplicity is given by the binomial coefficient. $\Omega(N,n) = \frac{N!}{n!\cdot(N-n)!} = \binom{N}{n}$. How many ways to pick n objects out of N. Permutations: ${}_{n}P_{k} = n(n-1)(n-2)\dots(n-k) = \frac{n!}{(n-k)!}$. Unordered permutations: ${}_{n}C_{k} = {}_{n}P_{k}/k! = \binom{n}{k}$.
- 2.2. Einstein model of a solid. One energy unit is $h\nu=\hbar\omega$. Multiplicity of Einstein solid with N oscillators (N/3 atoms) and q energy units: $\Omega(N,q)=\binom{q+N-1}{q}$.
- 2.3. Interacting systems. Two solids are weakly coupled when flow of energy between them is much slower than flow of energy between atoms within each solid. Macrostate is the combined system, specified by temporarily constrained values U_A , U_B . Over time they will change, with the sum $U_{tot} = U_A + U_B$ remaining fixed. All parameters in such a system is N_A , N_B , $q_{tot} = q_A + q_B$, $\Omega_{tot} = \Omega_A \Omega_B$. Fundamental assumption of statistical mechanics: In an isolated system, all accessible microstates are equally probable.
- 2.4. Large systems. If |x| << 1, a Taylor expansion gives $\ln(x+1) \approx x$. If N >> 1 one can apply Stirling's approximation: $N! \approx N^N e^{-1} \sqrt{2\pi N}$. If N is a large number, and N! is very large, the square root factor can be omitted. This is usually good enough: $\ln N! = N \ln N N$. In a large Einstein solid q >> N is the high temperature limit: $\Omega \approx \frac{(q+N)!}{q!N!}$, $\ln \Omega \approx (q+N) \ln(q+N) q \ln q N \ln N$, where $\ln(q+N) \approx \ln q + \frac{N}{q}$. S.T.: $\ln \Omega \approx N \ln \frac{q}{N} + N + \frac{N^2}{q}$.
- 2.5. The ideal gas. $\Omega(U,V,N)=f(N)V^NU^{3N/2}$, where f(N) is a complicated function of N. $\Omega_N=\frac{1}{N!}\frac{V^N}{h^{3N}}\times$ (area of momentum hypersphere). "area" $=\frac{2\pi^{d/2}}{(\frac{d}{2}-1)}r^{d-1}$, where in general d=3N and $r=\sqrt{2mU}$.
- 2.6. **Entropy.** $S = k \ln \Omega$. Now you see why the logarithm of the multiplicity is nice to have. Entropy of an ideal gas: $S = Nk \left[\ln \left(\frac{V}{N} \left(\frac{4\pi mU}{3Nh^2} \right)^{3/2} \right) + \frac{5}{2} \right]$ (The Sackur-Tetrode equation). Depends on V, E, N. Increasing any of them increases S.

1

- 2.6.1. Mixing. One gas into another chamber: $\Delta S_A = Nk \ln \frac{V_f}{V_i} = Nk \ln 2$. Two gases mixing, by removing a partition: $\Delta S_{tot} = \Delta S_A + \Delta S_B = 2Nk \ln 2$. Must be distinguishable gases. Gibbs Paradox.
- 2.6.2. Irreversible. Processes that create new entropy are said to be irreversible. A sudden expansion is irreversible. A reversible volume change must in fact be quasistatic S.T. $W=-P\Delta V$.
 - 3. Interactions and Implications
- 3.1. **Temperature.** Two Einstein solids: $\frac{\partial S_A}{\partial U_A} = \frac{\partial S_B}{\partial U_B} = 0$ at equilibrium with N_A , N_B fixed.