Artificial Intelligence Syllabus

Module: Artificial Intelligence

Semester: 2nd Year 2022

S.N	CONTENT	HOUR	REMARKS
1	Introduction to Artificial Intelligence	3	
	 Artificial Intelligence (AI), AI Perspectives: acting and thinking humanly, acting and thinking rationally History of AI Foundations of AI: Philosophy, Economics, Psycology, Sociology, Linguistics 		Lecture / Tutorial presentation
	 Neuroscience, Mathmatics, Computer Science, Control Theory Applications of AI Risk and Benefits 		
2	Intelligent Agents	2	
	 Agents and Environments Good Behavior: The Concept of Rationality The Nature of Environment The structure of Agents 		Lecture / Tutorial presentation
3	Problem Solving by Searching	9	
	 Solving Problems by Searching, Search Strategies: Informed, Uninformed, Performance evaluation of search strategies: Time Complexity, Space Complexity, Completeness, Optimality Uninformed Search: Depth First Search, Breadth First Search, Depth Limited Search, Iterative Deepening Search, Uniform Cost Search, Bidirectional Search Informed Search, Heuristic Function, Admissible Heuristic, Informed Search Techniques: Greedy Best First Search, A* Search, Optimality and Admissibility in A*, Hill Climbing 		Presentation/demonstration
	 Search, Simulated Annealing Search Game Playing, Adversarial Search Techniques: Mini-max Search, Alpha -Beta Pruning Constraint Satisfaction Problems, Examples of Constraint Satisfaction Problems 		

4	Knowledge Representation	6	
	 Definition and importance of Knowledge, Issues in Knowledge Representation, Knowledge Representation Systems, Properties of Knowledge Representation Systems Types of Knowledge Representation Systems: Semantic Nets, Frames, Conceptual Dependencies, Scripts, Rule Based Systems (Production System), Propositional Logic, Predicate Logic Propositional Logic(PL): Syntax, Semantics, Formal logic -connectives, truth tables, tautology, validity, well -formed -formula, Inference using Resolution, Backward Chaining and Forward Chaining Predicate Logic: FOPL, Syntax, Semantics, Quantification, Inference with FOPL: By converting into PL (existential and universal instantiation), Unification and lifting, Inference using resolution 		Lecture / Tutorial Presentation /demonstration
5	Machine Learning	9	
	 Introduction to Machine Learning, Concepts of Learning, Supervised, Unsupervised and Reinforcement Learning Linear Regression and Classification Ensemble Learning Statistical-based Learning: Naive Bayes Model Developing Machine Learning Systems 		Lecture / Tutorial 2 LABS Required Presentation/ demonstration
6	Deep Learning	6	
	 Introduction, Biological Neural Networks Vs. Artificial Neural Networks (ANN), Mathematical Model of ANN, Activation Functions: Linear, Step Sigmoid, Types of ANN: Feed-forward, Recurrent, Single Layered, Multi-Layered, Application of Artificial Neural Networks, Learning by Training ANN, CNN, RNN, Supervised vs. Unsupervised Learning, Hebbian Learning, Perceptron Learning, Back - propagation Learning, transfer learning 		Lecture / Tutorial 1 LABS Required presentation/ demonstration

7	Reinforcement Learning	3	
	Learning from Rewards		Lecture / Tutorial
	Passive Reinforcement Learning		nragantation/damanat
	Active Reinforcement Learning		presentation/demonst ration
	Generalization in Reinforcement Learning		Tation
	Policy Search		
	Applications of Reinforcement Learning		
8	Natural Language Processing	3	
	Language Models,		(m) (1)
	Grammar, Parsing, Augmented Commons		Lecture / Tutorial
	Augmented Grammars,Complications of Real Natural Language		
	Natural Language Tasks		presentation/
	1 Natural Language rasks		demonstration
0	D. I. C. M.D.	2	
9	Deep Learning for NLP	3	T / /T / 1
	Word Embeddings,Recurrent Neural Networks for NLP,		Lecture / Tutorial
	Sequence-to-Sequence Models,		
	The Transformer Architecture,		massantation/
	Pretraining and Transfer Learning,		presentation/ demonstration
	State of the art		demonstration
8	Computer Vision & Robotics	3	
	Computer Vision: Image Formation, Simple Image		
	Features, Classifying Images, Detecting Objects, The 3D		
	World, Using Computer Vision		Lecture / Tutorial
	Robotics: Robot Hardware, Robotic Perception, Planning		
	and Control, Planning Uncertain Movements,		nragantation/
	Reinforcement Learning in Robotics, Humans and		presentation/ demonstration
	Robots, Application Domains		ucinonsulation

LAB PREPARATION

S.N	Chapter Unit	Lab Hour	Requirements
1	5	3	 Python installation Installation of ML packages Running a simple ML algorithms
2	5	3	Using Machine Learning Algorithms: Running NLP Projects Running Computer Vision Projects Running Data Science Projects
3	6	3	Using Deep Learning Algorithms: Running NLP Projects Running Computer Vision Projects Running Data Science Projects