Variable Speed Motor Control

August Fry Charles Baker

1906

537.832 F 94

ARMOUP INST. OF TECH. LIB. CHICAGO.

Illinois Institute
of Technology
UNIVERSITY LIBRARIES

AT 35 Fry, August Variable Speed Motor Control

For Use in Library Only

A COMPARATIVE STUDY OF VARIABLE SPEED MOTOR CONTROL

A THESIS

PRESENTED BY

AUGUST FRY CHARLES BAKER

TO THE

PRESIDENT AND FACULTY

OF

ARMOUR INSTITUTE OF TECHNOLOGY

FOR THE DEGREE OF

BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

HAVING COMPLETED THE PRESCRIBED COURSE OF STUDY IN

ELECTRICAL ENGINEERING

JUNE, 1906

ILLINOIS INSTITUTE OF TECHNOLOGY PAUL V. GALVIN LIBRARY 35 WEST 33RD STREET CHICAGO, IL 60616

1906

D. E. Frezman

Prof. E. Drow

At an of Eigneing

Ctitue

A COM ARMILVE CIDIY OF VARLEBLA . LD J. D.

There has been for a number of years and interative depend for variable speed motors for the direct driving of rachinery. It is the general opinion that the great bulk of rachinery in the future is to be driven by electric meters rather than belt arivers. There are a number of important conditions that are escential and Adiob that be met in order that variable speed meters shall core into general use. Among these may be rantioned: noneparting under excessive loads; large range of speeds; speed to be constant at all loads where adjusted to any desired speed; connectness; simple mechanical construction; reversibility; lightest possible weight; and high efficiency under average loads.

The different methods by which variable speed of motors is obtained are as follows:-

1st. Rheostat in the armative circuit.

· 2nd. Rhesetat in the field circuit.

. Brd. Combination of 1st. and 2nd.

4th. Multivoltage system.

5th. Variations of air gap, or variation of Tagnetic reluctance in the field circuit.

6th. Interpola iethod.

by introducing a variable resistance in the armsture direct, thus controlling the voltage impressed on the armsture terminals, a variation in speed from zero to a maximum may be obtained.

But this is a very wasteful method, and, furthernore, for a

for a given position of the rheostat the sneed fill very according to the current consumed. If the torque required of motor is increased, the appears if i increase and the preceding diminish, although the rheostat modition remains unchanged. The large loss of power fue to the rheostat, the CTR loss, is a dead loss, and the rheostat, which is usually of large namericans. make the rethod inefficient and underlyable.

The method of introducing resistance in the field circuit is far more efficient, involving only the very slight loss of the shunt adjusting rhepatat. As the current is decreased the field is decreased, and the C. I. H. F. in the armature is decreased. As the C. E. H. F. of the armatuse decreases the current flowing through the armatuse will increase, causing an increase of smeed. The objection to the method is that violent sparking at the commutator is encountered with a variation of smeed of from 50% to 40% above normal.

The multi-voltage a ster complied the noter with a number of voltages necessary to obtain the range of speed. The range is voltage any be obtained by rears of a number of generators in contact a large generator and a set of boosters: or a storage battery with an end cell switch. This retires to obtain for all ranges of speed and load, but requires complicate wiring and accessories.

The variation of regnetic reluctance in the field circuit in busines by two rethod. First, by a movable of it is not a re-

in a relient pole-rioce. Second, by with a respect to the influence of the field moter. I is a result of the recentry in that a rid a result in the limit of the able, good efficiency at a relience lords, and the lift of the research of the a for itself.

The interpolation of precision with the compact of the control of

independent the multipolitage spoter, three this is we contained on which to work. These very the Stowe, Lincoln as interpole, bids one successful, variable speed of the mole under the first exception of the first action of the first to qualifies expended it successful variable speed control.

The inter-Pole inter is essentially administrated birthing spectry vipintion. By means of a sheostablin field mished. If we, notice, one are two unique features of construction added by most of which a large parge of areas is obtainable. The object of the imperiod of the same of in the commutator, the cutting down the reactions without an in the commutator, the cutting down the reactions without an incommutator of auxiliary major which are incomed between the fair poles. These nodes are unall compared with the content of the content of the content of the content of the field of the content of the content of the field of the content of the cont

produce the required numbered in the confliction in the road in a creased. The effect of the auxiliary pole, is the and not produce of the direction of the rotation, burched which the continuous in the armsture is in also now roof in the constitutions. Points in favor or this of the local to accomplish the armsture of accessories. The armsture is carried on ball burnings, then by reducing frictions to contribute that.

The Lincoln . In is an ordinary when the ..., the ... huma field winding being connected in series. Speed variables in it obtains by withdrawing the armature from the influence of the fills releasing the armature, which is alightly remied in share, in withdrawn the regresse resistance, share to homeon in air gap, is increased, that be declarating the weeful regretic flux and has increasing the arcset. Special commutating releases provided ander the face of which the armature conservation is withdrawn into its positions of high speed. The full field subject is used for all speeds, thereby eliminating the undesirable feature of field distortion.

A hand theel is used in connection with a screw rechanish to move the arrature laterally and by reams of this whicel it is ressible to get an infinite variety of speeds from the lawset to the highest. The magnetic pull of the arrature is calculated on ball thrust bearing, which reduces all friction. The brushes

the commutator and the brushes.

The Stowe nother to a shunt motor having poles piece, the diff of which are novable. The poles are conques of a role should common form integrally connected with a cylindrical slull, sver which the ragnetizing coils are wound, and with which is a police core of high permanbility and of cross section relatively large as compared with the conducting area of the inclosing shell. By means of a hond theel this inner core is adjustable in any direction radial to the center of the almoture, and is so proportioned that a slight variation in its position within de ragnetized shell produces a considerable difference in the reluctance of the magnetic circult of which the plunger forms a part. Then the nlunger is to adjusted that the inner and cores in contact with the pole shoc the magnetic circuit is rost complete and of minirum reluctance, and since the ragnetomotive force remains construct the volume of the magnectiv flux becomes a maximum and the smeed a minimum or normal. As the plunger is drawn away from contact with the pole shoe xxx xxx xxx a column of air is interrosed Thich gradually increased the reluctance of the magnetic circuit es long as the plunger continues to be withdrawn. As the plungis moved the gar between the pole face and the arreture retained constant, the air gap inside the role being the one which is varied, and the design of the pole piece and plunger is such that

ment of the plunger the remaining regarding flux or forced one of more in the direction of the mole time, the flux at all times of outflinions in an architecture.

The apparatus used for the tests were an erroture of ill meter, a volt eter for the main line veltage, and a trace of a volteter. Tond was annualled to the mate. Ly ment of a rine, you brake used. A storged rulley. The momen summitted to the mater under test who developed in a 18 M. T. (estirgunted generator, driven by a direct counted findless. The bost of a count of the findless. The same of the first of tests of tests of tests. The same of the generator is a result set of tests.

The first of the muse of them with the lowest reted are d, indicated on the name who ter The lord was incorrective zero to about fifth per oart over load. I wring these runs readings were taken of the armsture current, field current, four factor run scale, and from the data obtained the develoard home name (B. H. r.); the electrical imput: and the officiency were beined. By quair, the sincord of indicates the electrical imput was obtained. The constant voltage of 110 volta the electrical imput was obtained. The D. H. F. was obtained to the electrical

P. H. = 277 n l w.

incre $\mathbf{r} = \mathbf{r} \cdot \mathbf$

The above set of data was taken in the first reliable of a test and in both arcetions of rotation. Then the constant as a mised to the circle value, on the constant value, on a shift of the constant range was a shifter as the first value.

The data are tabulated on comparts sheets, a check too. below made of sech. In the Intermals matter each to have areas of efficiency curves winted. In the incolumn sections of the two eyes of the tar mun. Percephotica.

Another that rede about the refer to with the D. D. Parent for a consist of value and the angel acase colorate seried.

Full rated loss of helf load numbers to but in both district refer to retain as one each of the method. First this feel a new elficient, able to obtain an idea of the constant. It is various assigned under load, with Amiltina of them.

Interpole Coor.

Lo. Treed.			Clockwill Rut tion.			
I.a.	12.	Hotz Imput.	Speed.	"II to	и	-1710
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	4.000000000000000000000000000000000000	1004 0104 0104 0103 003 003 003 003 003 1000 13110 14000 15436	50 6 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.3.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7		
7.5 74.7 74.7 74.7 74.7 74.7 74.7 74.7 7	4.07 05 05 05 05 05 05 05 05	750 1096 2027 5108 1201 5421 7496 3554 2018 10603 12010 14504 15700	0.3 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.8 14.8 15.0 52.0 74.0 56.0 170.8 184.0 145.8	7.70 TO A 2 F A 2	

Interpolation.

	ow Speed	If an it do		Cloc' ise		
la.	IÎ.	Watt	Creed	't.	140 10	
60;		22 1/2 17 2 1			•	
= 40	4.54	706	03.7	0.0	0.	<u> </u>
5.7	4.25	1010	319 303	4.2	0.0	00 , 2 14 , 5
18.6	4.20	3508	504	50.8	Z. 57	7: 04.
38.0	4.20	1340	5.0%	12.3	4.47	7100
.47.7	4.70	5707	501	F/1:8	6.38"	871
57.4	4.18	3773	298	33.8	7.61	87.3
67.5 77.4	4.17	7884 8973	297	7818 9 0.8	8.44	80.0
87.2	4.14	10047	898	108.8	11.57	24.7
97.4	4.13	11168	203	114.8	12.87	55.0
109	4.12	18445	505	106.8	14.12	-4.0
119.2	4.08	13561 14803	301 289	150.8 150.8	15.4 16.66	84.3
1424	4.00	16066	288 288	163.8	17.89	50.0
Soften ada Sten VV						
5.2	4.19	813	321	0.	2:	(.
5.8	4.18	1097	318	3:6	.315	21.4
18.8	4.15	2491	515	18.8	2.34	50.5
28 4 6	4.14	3301	319	30.8	3.33	77.8
37.8 48.8	4.11	49 11 58 30	309 506	49.8 FA.8	5.42	80.5
57.7	4.10	3728	205	35.8	7.79	7.5
37:5	4.00	7874	304	78.9	2.13	3.5
78.4	4.07	9071	301	97.8	10.41	33.0
8949	4.06	10335	300	100:8	14.45	34.8
100. 125.3	4.05	11 6 45 14007	226	130.8	15.6	77.0
185.5	4.01	16543	392	150.8	13.3	-1.77

Interpose 1 ..

	Lidale Ercea		Similar to the sine			
يازد ه	If.	Imput	Treed	.T.	liez e	L •
2.0	1.26	380	**** = = = = = = = = = = = = = = = = =	^ •	^ .	· •
11.3	7.26	1001	718	3	.507	47.05
20.1	1.26	2340	سآر	.8	0,09	72.4
51.7	1.53	J325	703	14.8	5.70	yes gree .
43.0	1.03	4338	307	30.8	5,29	
55.C	1.26	31dS	300	00.8	3.73	77.7
57.3	1.26	7374	387	₹0.8	3.000	Ĵ.,
50.0	1.83	9003	393	38*9	1.70	90.0
93.0	1.23	30305	307	44.0	11.4	70.3
109.5	1.33	18183	702	50.8	13.01	79.4
123.6	1.53	15734	703	56.8	14.53	79.1
139.7	1.23	15503	707	30.8	14.3	77.
10.5	1.04	3290	714	0.	.83	44.3
21.1	1.24	2457	704	3.9	2.26	36 . 3
80.	1.24	-3766	390	8.8	3.78	74.0
44.8	1.24	50.34	3.94	14.9	F.83	77.3
56.7	1.24	6373	390	30.8	5.75	70.7
69.4	1.24	7770	<mark>38</mark> 8	26.8	3.24	79.0
82.5	1.34	9211	68 5	32.8	9.72	78.7
98.0	1.24	10916	685	38.3	11.46	79. 5
110.	1.24	12036	6 83	45.2	12.39	77.00
124.9	1.24	13975	5 30	50.8	14.1	78.0
140	1.24	15533	578	56.8	15.59	74.5

4 . -4 19 .

Interpole

Middle Speed			C. Colvis Rotation			
la.	If.	•	Speed	Wt.	н. Р	Eff.
3&6	1.31	540	725	0	0	0
11.8	1.31	1441	723	3.56	. 28	50.8
21.6	1.315	2520	715	3.8	2.4	71.
33.6	1.315	3840	715	14.8	4.03	78.4
45.4	1.315	5138	717	20.8	5.67	82.4
53.1	1.3	6534	720	23.8	7.35	84.0
70.6	1.295	7908	722	33.8	9.01	35.
83.1	1.395	9284	792	3348	10.63	85.9
96.1	1.3	10714	717	44.8	12.27	85.4
11.05	1.295	12299	714	50.8	13.84	84.1
12.18	0. 205	13541	708	F5.8	15.54	84.3
135.0	1.295	14993	703	32.8	16.8	33.7
		the contract of the contract o	ררזי מון	ts		
F.,	1.205	465	725)	. 0	0
10.7	1.295	1319	717	3.98	.314	41.1
23.6	1.295	3739	711	9.98	2.7	73.75
33.2	1.29	3795	708	14.8	3.99	78.5
44.4	1.29	5026	709	20.8	5.63	83.5
53.5	1.29	6357	708	26.8	7.23	84.9
69.5	1.29	7787	711	32.8	3.89	85.9
829	1.29	9261	713	38.8	10.54	34.9
97.5	1.295	10868	717	44.8	12.27	84.5
13.0.7	1.29	12320	733	50.8	13.99	35 .3
124.7	1.20	13955	717	56.8	35,60	98.5
	1.235	7 = 75	713	• • • •	17.00	

* * *

. . . .

- 1, -

•

Interpole Leter.

Ia.	gh Ereed	Watt	Clock Wis		ion. H.P.	III.
5,5 15.1 23.7 54.1 44.4 54.2 64.0 76.0 86:3 99:0 112. 124.0 155.5		10put 465 1865 2398 5840 4976 3058 7151 2451 1964 10981 13930 14996	1160 1125 1117 1110 1110 1100 1107 1105 1100 1105 1113	0. 5.14 5.00 8.9 11.5 14.8 17.3 2018 25.0 25.0 57.8	0. 1.05 2.47 5.79 4.90 5.25 3.1 10.1 11.5 14.07	70. E
3.4 18.5 27.7 34.1 44.4 54.8 35.6 77.3 88.2 101.5 110.		435 2137 3188 3342 4975 3119 7007 3484 97 90 11556 12001 18919	1130 1105 1115 1113 1110 1110 1110 1113 1113	0. 5.89 6909 8.8 11.8 17.3 20.8 20.8 20.8 20.8	0. 1.63 2.0 5.74 5.02 5.03 7.55 3.31 10.50 10.50 15.00	0.000 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00

y ... - ; •

Interpole Lotor

Hig	h Speed	Nati	Counter Old	ockwise R	ntation.	
la.	I.	Liput	Speed	T. C.	H. E.	SEL.
3.2	.305	440	1160	0	0	Ó
15.7	•805	1015	1140	3.7	1.39	7.2
25.6	.805	2684	2130	5.8	2.49	69.5
33.4	.905	3752	1130	8.8	5.79	75.9
43.0	.905	4818	1128	11.8	5.03	78.7
53.	.805	5918	1138	14.8	6.37	30.4
33.1	.805	7039	1124	17.8	7.64	37.1
73.5	.805	3173	1104	20.8	8.02	37.4
84 .3	.805	9361	1134	23.8	10.81	51.5
94.3	.305	10461	1117	26.8	11.41	81.0
104.3	.805	11.551	1107	20.3	12.58	37.9
113.4	.305	12552	1089	30.8	13.50	80.0
122.3	49 05	15541	1076	35.8	14.70	31.7
132.7	.805	14635	1056	38.8	15.33	79.5
,						
3.2 16.1 23.5 33.2 43.0 53.1 52.7 72.9 33.8 94.3 104.5 115.0 125.3 134.7	.8 .8 .8 .79 .79 .79 .79 .79	440 1859 2384 3740 4818 5929 6984 8106 9305 10449 11582 12757 13370 14904	1150 1148 1133 1128 1130 1136 1139 1126 1120 1116 1104 1091	0: 3.16 5.8 818 11.8 1418 17:3 20.8 25.8 26.8 29.8 35.8	0. 1.38 2.50 3.78 5.08 6.38 7.64 8.95 10.22 11.40 12.68 13.80	0.55.575.578.080.30.485.191.581.981.987.987.987.987.987.987.98.687.987.987.987.987.987.987.987.987.987.9

1 Jul 20 . e e 1 F . • •

Interpolate int r.

Ia	Half Load	latt	at) Courte Speed.		e Rota La.	E.H.
59.8	۷. ٥ کړ	Juput. 7020	200	57.9	7.00	
59.0	9.35	4778	2.00	40.2	7.5	1€.
59.1	1.79	6605	FOO	39.53	7.5	7.7 • 3
59.8	1.55	6743	600	32.0	7.5	91-1
59.8	1.27	6717	700	28.]4	7.5	1 . d
50.8	1.13	5702	800	24.6	7.5	
60.	1.01	3711	900	21.86	7. 5	30.05
60.1	.94	9714	1000	19.69	7.5	55.40
62.5	.83	3366	1100	17.9	7.5	30.4
65.6	.77	7086	1100	13.95	7.5	78.
	Melf ord	100 0000	1 27	Dajonia pos	to the second	
E9.1	Mr17 001	100 otens	N 037	ochris por	7.34	۵. ک
E9.1 E7.0						∪2 , 4_ ∪= • '
	4.05	3,443	300	67.9	7.34	
F7.0	4.05 2.41	3,443 358 5	305 400	67.9 49.2	7.34	o=• ·
F7.0	4.05 2.41 1.82	3,443 355 5 3330	505 400 500	67.9 42.2 59.56	7.34 7.5 7.5	o≣. ` ∂4.5
F7.0 F8.4	4.05 2.41 1.82 1.5	3,443 352 5 3300 3518	303 400 500 600	67.9 42.2 59.56 52.8	7.34 7.5 7.5 7.5	65. ° 84. R 91. °
F7.0 F8.4 F7.7	4.05 2.41 1.82 1.5	3,443 355 5 3300 3518 6500	505 400 500 600 700	67.9 42.2 59.56 52.8 28.14	7.34 7.5 7.5 7.5	05.1 24.5 21.7 35.5
F7.0 F8.4 F7.7 F0.0	4.05 2.41 1.82 1.5 1.08	3,443 355 5 3300 3518 6500 3471	505 400 500 600 700 800	67.9 42.2 59.56 52.8 28.14	7.34 7.5 7.5 7.5 7.5	05. T
E7.0 E8.4 E7.7 D.0 E7.7	4.05 2.41 1.82 1.5 1.08 1.18	3,443 3535 3535 3518 3580 3471 3539	303 400 500 500 700 800 900	67.9 42.2 59.56 52.8 28.14 24.5	7.34 7.5 7.5 7.5 7.5	05.1 24.5 27.5 25.5 23.5

E-- 110 Volts.

e d 1 ** * . • + . n

Interpole hotor

Full Load (Constant)			Clockwiss Robution.			
Ia	1	Imput	Speed	W. T	H. P.	17 m 77 0 - 2 %
121.3	3.9	15827	292	135.6	15	31.5
120	3.40	13474	400	98.5		8.30
119	1.3	13299	500	78.75		84.05
119	1.57	13256	600	35.33		84.5
131.8	1.35	13546	700	53.25		30.5
120.8	1.30	13440	800	49.25		33.3
127.8	1.03	14171	900	43.74		79.1
123.6	.94	13669	1000	39.39		81.0
127.1	.35	14916	1100	35.74		75.
129.5	• 8	14333	1190	33.03		78.
Full Load	(Constan	t)	C. C. R	lotation.		
ā1 9.	3.96	13525	302	135.6	15	37.3
117.	2:45	13139	400	98.5		35.3
119	1.83	13296	500	78.73		84.25
120	1.5	14701	600	65.66		73.2
120.8	1.3	13431	700	56.26		83.3
123.3	1.13	13577	800	49.26		32.5
120.8	1.0	13398	900	43.74		85.5
136.8	•87	14043	1000	39.33		79.8
127.	.9	14058	1100	35.74		79.75
127.8	.74	14159	13.90	33.08		79.0

170 TT 7 4

Sincoln Lotor

Tow Pbeeg		*	01	chwise :	chwise A tation.		
مل دل ه	lf.	latt Ilmut	Lineed	Nt.	H.D.		
2.5 5.3 7.44 5.4 7.3 7.3 7.4 4.7 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7		500 040 1801 1085 0318 0318 0388 4910 5398 5398 5398 5398	505 520 513 513 505 505 505 505 505 505	0. F.	1.18 1.97 2.54 2.51 4.53 5.40 7.10	70.4 70.4 71.0 75.4 70.7 70.7 70.7 70.3	
7.5.5.7.5.1.9.6.5.1.9.6.5.1.5.1.9.6.5.1.5.1.9.6.5.1.5.1.9.6.5.1.5.1.9.6.5.1.5.1.9.6.5.1.5.1.9.6.5.1.5.1.9.6.5.1.5.1.9.6.5.1.5.1.5.1.5.1.5.1.5.1.5.1.5.1.5.1.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	365 14 2 3 1017 3533 3170 3687 4333 4463 5490 5020 357 9 7093	795 800 013 714 810 804 807 701 808 901	21.5 21.5 27.6 57.6 57.6 57.6 57.6 57.6 57.6 57.6	.036 1.17 1.20 1.20 5.00 5.00 5.31 7.00 7.72	7.7 51.2 76.8 76.5 70.1 50.1 90.4	

L ---- .110 Volte.

. =

Ŧ

Line la Jac.

Low Speed		*- 4	i tylle			
la.	lf.	lat lugut	Steed.	₩.	н. ц.	(= 1, e
3.6 5.5 10.75 15.6 20.9 26.0 33.5 41.5 46.0 54.2	E 4444444 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	371 370 1440 1002 05.6f 0159 7376 4091 4091 4097 7637	700 710 710 710 710 710 710 710 710 710	0. 5.7 10.7 20.7 20.7 30.7 45.7 67.7	0.45 1.10 1.00 5.00 5.00 5.04 5.44 7.03	
5.5 10.8 15.6 20.7 21.2 27.0 41.0 45.0 E5.0	0.4 0.08 0.08 0.08 0.07 0.08 0.08 0.08 0.08	369 1417 1077 2538 5107 5602 4838 5580 6088 5748	700 710 714 710 808 700 700 295 295	5.7 15.7 15.7 27.7 27.7 25.7 25.7 25.7 37.7	.450 1.10 1.57 2.07 2.07 2.08 4.08 5.40 7.11	TO.7 TO.3 TO.3 TO.3 TO.3 TO.3 TO.3 TO.3 TO.3

___110 Volts.

is of it.

	liudle	. Jud	٦, ا	el ion i tal	101.	
1. 8	lf.	.peet.	to	att	H. F.	و لما داد
2.	2.31	J13)	- - -	47.4	^ .	^ a
B • C	0.01	()	. 0	and the bar	4 TT	• 1
15.6	2.509	F'	£ 0 (**	1070	1. 7	13 •
22.0	2.307	1)	7.	16	7.27	700 0
004	2.507	0.4 4	5.8	7800		14 4 1
35.4	5.307	ONU	70.0	4247	± 4 7 c	/* a)
62.0	0.507	305	14.5	4935	100	15.
47.5	0.08	034	37.0	#373	F.70	1 •
55.0	8.979	375	-0.5	2470	3.5	, 10.00 + 29
.2.2	2.27	0.35	20.0	7102	7.25	7 5 *
2.4	0.31	J 35	1.7	1173		-
13.5	0.3	944	4.5	2043	7.50	~ . · . · · ·
21.4		765	7.0	0307	3.00	r 7 c
78.3	0.5	220	9.5	1200	5.35	7 . •
54.5	2.5	310	10.0	4046	4.13	Fr.L
43.0	9.28	900	14.5	4030	2	74.4
40.3	2.270	987	17.0	777	4 1 C	•
FE.3	2.279	3.34	10.5	3533	677	7,.2
20.5	2.57	835	23.0	71.4	7.05	7= -

BARNES-CROSBY COMPANY

GENTLEMEN:

RESPONDING TO YOURS OF

CONT

CHICAGO

Li woln motor

Middl	e Speed	Hatt	Counter	Clackwise	Rotati	111.
Ta	If	Imput	Speed	Weight	HIP.	Fff.
2.05	2.41	490	963	0	0	0
9.9	2.40	1353	953	2.2	. 8	44.0
15.6	3.405	1980	945	4.67	1.30	33,13
32.9	2.40	2783	934	7.2	2.56	58.6
29.6	2.30	3519	023	9.7	3,47	70.4
36.5	2.37	42.75	911	12.2	4.24	74.0
42.0	2.38	4991	904	14.7	5.03	75.7
49.3	2.57	5372	900	17.3	5.9	77.5
56.7	2.37	6497	892	19.7	5.7	77.0
65.3	2.37	7256	881	22.2	7.45	76.5
9.5	2.4	1309	955	3.1	₄ 765	43.6
15.6	2.33	1977	945	1.7	1.69	38.9
22.9	2.57	1779	938	7.2	2.57	6 9.00
29.1	2.37	3451	926	9.7	3.49	75.9
36.1	2.37	4231	915	19.8	4.25	74.0
42.3	2.37	4913	908	14.7	5.08	77.2
43.8	2.37	5628	900	17.2	F.9	73.3
56.4	2.37	6464	892	10.7	5.7	77.4
64.0	2.36	7200	881	23• <u>2</u>	7.45	73.2

ď	ir as	4 4			1	
					*	
,	7	2		-		ŧ
		¥			9	
		7			4	
4	- 3	Ť			T	
4	4	4	г г	÷	6	+
Δ.	Ē *	Ť		-	я	*
6	79	4			9	٠
s	*	,			y &	>
	я	d			•	٠
¥	4	P		-	,	*
		4			٠	*
~ 10 *	*	Ř			4	9
4	¥	ri				- 4
A	*	6			3	
		\$			B	٠
	à	4			6	

e

*

		Lincol	n Motor.		_	
100	High Speed,	Hatel	1 Inted	Wt,	I. I.	
5.3	9.45	3.63	7,300	0	\circ	\cap
17.2	9.45	0159	1480	7.5	2.17	73.
30.6	0.43	5350	1550	F.F	5.07	37.0
40.	3.43	4333	1548	7.0	4.13	0.740
45.9	2.41	5514	1540	3.5	5.0	70.0
52.9	2.40	3035	15 17	10.0	5.79	71.0
31.6	2.40	7040	1430	11.5	0.657	33.4
37.5	3.78	7633	1439	13.7	7.38	71.3
	2					
16.5	2.40	3079	1310	2.7	1.55	59.5
20.6	2.40	2550	1591	3.5	2.12	32.0.
29.1	2.40	3355	1580	7.5	3.39	73.9
37.8	2.38	4419	1570	7.0	4.2	71.0
44.8	2.38	5180	1530	8.5	5.03	72.9
54.0	2.38	6001	1538	10.0	5.33	70.5
59.7	2.37	6817	1519	11.5	3.35	70.3
59.3	2.53	7915	1511	15.0	7.49	70.3

I -- 110 Volts.

. , * . . -. . . ** • 9 т э . * * * 4 4 - 1 -b e . a • . . . * . * * * . 1 9 6 Let he has he . .

Lincoln Potor

High Ia 3.7	Speed If 3.42	Aatt Imput 375		unter Cl Vt.		Rotation, Erf
18.0	3.40	2244	1,580	3.0	1.3	30 a
30.5	2.39	3323	1523	5.5	5.9	Sr.aq
37.4	2.38	4375	1497	7.0	3.99	37.3
43.8	2438	5079	1473	8.5	4.73	70.40
54.4	2.58	5245	1430	10.0	5.45	55.0
39.7	2.35	6955	1400	11.5	6.14	66.1
37.5	2.35	7633	1380	13.0	6.85	66.5
3.9	2.38	690	1320	0	0	0
20.2	2.35	2480	1548	3.5	2.05	61.3
30.0	2.35	3 558	1520	5.5	3.19	67.0
43.0	2.35	4988	1503	7.0	4.01	60.40
48.0	2.35	5626	1489	8.5	4.32	34.0
56.7	2.35	6495	1470	10.0	5.60	64.4
35.6	2.35	7474	1432	11.5	6.41	64.0
69.6	2.35	7914	1448	13.0	7.18	67 • 6

Ħ

и				9		
	ds	*			7	
A	5	4			•	13.
,	4	d			¢ 1	*
	+	^ *			•). A
a	P	•		\ \		
#	٨	e.			6	*
TT & E		* * *			•	
•	*	*	` F		1)1	p \
						6
				•		
			-			
. ()	•	a .		* 7	٠	ø
7	= 4	4	~			в
4	* *	q			*	•
*	4	*				•
4	ř.	, er	1			· =
4	- ,	a r	F.* -	r	10	4

Mincoln Motor

Half L	્રાત (ઉ૦)	natont)	Cloca	awisa Rot	ations.	
	If %	att Imput			HP.	227
19.9	2.4	2453	220	20.5	7,5	76.1
19,0	2,4	2554	500	13.13	2.5	79.3
30.0	2.4	2464	700	9.38	0.5	75.7
20.4	2.58	2505	900	7.3	2.5	74.F
20.9	2.39	2560	1130	5,06	2.5	73.0
21.0	2.41	2575	1300	5.65	9.5	79.5
23.2	0.41	2817	1450	4.52	2.52	66.4
22.2	2.41	2707	1330	4.05	2.52	69.0
Half	had (Constant) .	ountar 0	ockwise	يا + + ا
20.6	2.41	2531	320	20 4 5	2.5	75.3
20.4	2.41	2509	500	15.12	2.5	74.5
21.1	2.40	2585	700	9.38	2.5	72.3
22.0	2.37	2680	900	7.3	3.5	69,7
23.7	2.37	2867	1100	5.96	9.5	65.1
2.40	2.37	2900	1300	5.05	2.5	64.4
23.0	2.40	2893	1450	4.52	2.5	64.6

..... Volta.

Я v (; D. OI 4 . . ГГ

Lincoln Motor

Full I	oad (3c	nstont)	Cloc	kwis R	tarion.	
Ia	lf	Watt Impat	Speed	7t.	II 71	Ufr.
3842	2.39	44-13	320	41.0	5.0	85.5
40.0	2.57	4660	500	26.25	5.0	3138
36.7	2.58	4293	700	1876	5.0	. 86.9
41.1	2.57	4781	900	14.6	F.0	73.0
43.6	2.37	5056	1100	11.08	5.0	73.7
41.0	2.40	4774	1300	10.1	5.0	78.1
41.5	2.38	4826	1450	9.05	5.0	77.4
Fall Los	ad (Cons	stantl	Countar	07001	tso Rota	ųtioni.
39.6	3.43	4532	320	41.0	540	80.7
40.2	2.40	4386	500	2625	5.0	79.7
41.9	2.40	4873	700	1876	5.0	73.5
43.8	2.40	5082	900	14.6	5.0	73.5
44.8	2.40	5192	1100	11.98	5.0	71.7
44.8	2.40	5192	1300	10.1	5.0	71.9
45.8	2.40	5302	1450	9.05	5.0	70.4

n--llo Volto.

9 3 . . - -- p i 4. -7 (***) , (" L m * #

.

. .

. towe | otor

	Low speed		Olver:i	Clocarise R tetron.		
Ia.	17.	antt	Speed	,'t.		= -;
2.7	1.54	444	380	Λ.	^ ,	· •
5.7	1.53	1103	339	2.67	• 37	F 1
17.4	1.53	2060	3E3	7.5	1.37	77.3
25.2	1.55	30 2 8	308	12.5	5.71	7, . 0
34.8	1.31	7979	573	17.F	5.97	74.2
45.9	1.51	4973	572	99.5	4.01	7 6 7
53.0	1.31	3007		27.5	5.87	77.0
65.1	1.31	7085	540	32.5	5.80	a .
72.7	1.51	3141	557	37.5	7.63	74.0
7.0	1.51	914	368	1.3	. 33	2.31
16.7	1.31	1981	352	7.5	1.87	0
						70.
27.6	1.31	3134	6 2 6	12.5	2.08	
57.1	1.31	4225	602	17.5	4.01	77.0
45.8	1.31	5182	585	22.5	5.01	70.0
55.3	1.31	3207	561	37.F	T.85	7′ •)
52.6	1.01	7030	561	30.5	3.25	1.10
70.4	1.31	3108	540	37.5	7.34	21.5

• e g . s · . * A • . , . 4 • . . .

Stove otor

Lo	w Speed	- 6.1	Countur	. 77	motor - worre	
Ia.	If.	.att Imput	Spped	774.	H.D	LII'.
2.8 7.5 15.6 25.5 55.0 45.0 54.0 65.0 76.5	1.45 1.45 1.45 1.45 1.45 1.45 1.45	467 984 1875 2964 4007 5107 6099 7309 85.52	695 687 680 635 635 658 658 650 645	0. 2.08 6.3 11.6 13.6 21.6 23.3 81.6 53.3	0: .504 1.71 0.03 4.0 5.41 6.03 7.02 8.00	75.0 75.0 75.0 73.0 73.0 79.3
5. 16.6 24.7 24. 44.6 64.9 68. 76.4	1.45 1.45 1.45 1.45 1.40 1.40 1.40	819 1864 2876 3899 5662 61.00 7636 9450	509 586 680 675 339 358 6 58 550	1.0 3.6 11.6 16.6 21.6 26.6 31.6	4.023 1.725 7.0 4.27 5.50 6.36 7.32 9.05	53.0 69.0 77.5 00.0 77.5 30.0
7.5 16.0 25. 30.0 44.8 56.1 68.8 79.4	1.42 1.42 1.42 1.42 1.42 1.41 1.41	981 1916 8906 5945 5034 6326 7725 889	709 395 686 680 675 665 350 659	2.2 6.6 11.6 13.3 21.8 23.3 21.6	.F9 1.74 F.U0 4.5 F.55 6.73 7.32	4

--- Volte.

• •• 4 .) . .

2000

	lidal.		Ole oki.c	P 4: Julia		
ra.	If	rtt	Lper a	Tt.	11.	T == 4
7.0	1.39	1003	int	0.	^ .	C .
15.9	1.33	1402	1039	1.5	19 ->	F
16.7	1.51	2201	1057	8.5	all the first	. 7 .
27.6	1.31	5180	1000	5 · E	2.40	· ; •)
57.1	1.51	4006	973	0.5	5.52	30.1
49.8	1.31	5000	395	10.5	4.09	53.3
57.0	1.51	3414	377	15.5	F.18	30.8
36.E	1.51	7350	847	18.5	F.07	77.E
75.0	1.31	3394	813	31.5	3.59	59.3
14.8	1.53	1773	1062	1.7	.59	00
35.4	1.32	1949	1051	3.5	1.4	58.7
23.3	1.52	3071	1002	3.5	3.48	RO.5
35.7	1.33	4072	237	0.5	3.5	34.9
46.8	1.51	5292	913	12.5	4.35	61.3
E7.3	1.31	3447	371	15.5	F.15	59.7
68.0	1.31	7624	R35	18.5	5. 80	57.3
74.4	1.31	8328	316	21.5	3.38	50.8

E-- 110 Volts.

- • , • . P . × . × .

Stowe Motor

Middle	Sneed	Hatt Cou	inter Clock	wise Rotat	ion.	
Ia	If.	Imput	Speed	Wt.	н. е.	20.2
5.7	1.45	786	1095	0	0	\cap
15.5	1.40	1864	1095	3.0	1.00	F7.
24.7	1.43	1873	1039	5.6	2.30	70.5
35.3	1.11	3851	1070	8 + 6	3 · E	67.7
39.3	1.41	4178	1062	10.6	4.28	71.5
45.8	1.41	5193	10=0	13.6	5.04	72.3
54.4	1.41	513 9	1042	14.6	F#8	70.5
60.0	1.41	6755	1030	13.6	6.51	72.0
35.7	1.41	7380	1018	18.6	7.22	73.05
31.3	1.41	9087	970	22.6	8.55	63.7
5.5	1.41	331	1095	Ģ	Ō	0
16.6	1.41	1981	1070	3.15	1.28	43.3
2.41	1.41	2906	1048	5.6	2.93	79.4
32.2	1.41	3697	1033	8.6	3.39	58.7
57 .7	1.41	4302	1031	10.6	4.12	71.4
45.1	1,41	5113	1006	12.6	. 34	70.3
50.3	1.41	5743	1000	14.3	5.F3	72.3
58.1	1.41	6546	981	13.3	6.20	77.3
63.6	1.41	7151	976	18.3	5.91	7.00
71.3	1.41	8031	963	20.6	7.55	70.9

	d d			* 5	
er	it.	*	er.	-	4
4	А			٠	H
•	,	7		-	Þ
1	А	•	4	٠,	ø
	79			~	e
Þ	vi	•		- July -	ę
*	•	9		= .	*
*	s	e			
1		*			4
		6		4	*
4	*	7			
d		9		-	-
*	м	ŧ			•
Þ	•				4
P		1			- ,
٠	P	ø		•	٠
٠	*	4			*
9	Δ.	4		•	

m | _ m

Slowe lotor.

	High Spe	eed Natt	Cleckwi:	o Rotati	on.	
la.	If.	Imput	Speed	Wt.	1 1.	7.0
13.1	1.55	1477	1510	0.	^ ·	^ a
ن` د زن	1.32	2510	Inch	0.0	1.08	t / 0
23.8	1.30	27.55	1409	5.5	1.07	50.3
31.7	1.30	3653	1335	5.0	2.80	F [7 41]
35.7	1.31	4071	1360	6.5	3.3 7	33.3
42.9	1.31	4855	1335	8.0	4.04	62.0
47.9	1.51	5413	1992	9.5	4.30	1 - C
50.0	1.51	F743	1382	11.0	5.37	70.0
F9.7	1.51	3711	1005	19.5	F.02	75.0
56.2	1.31	7423	1311	14.0	3.43	30.0
10.0	1.58	1539	1510	0.	· ·	O.
12.6						
19.7	1.33	2515	1474	0,0	i • j ∪	
20.8	1.51	9359	1457	3.5	7.04	Pro 3 Pr
27.6	1.31	3180	1409	5.0	3.68	F. 0
77.1	1.31	4225	1373	6.5	5.4	~n.c
41.3	1.3	4383	1854	3.0	4.15	35.7
48.8	1.8	5511	1808	0.5	4.7	34 . 1
53.0	1.5	F973	1289	11.0	F.40	57.5
~3.1	1.5	3534	1200	10.5	F.72	(0 ha
34.1	1.5	7104	1105	74.0	3.37	77.0

stove of s.

	1.4 (N)E	ed	J. unter	dre' ise	T. 0 01 1.	
la.	11.	.fatt Imput	Speed	i.t.	(T	- 2 - 8
12.0	1.4	1474	7770	·	0.	- ,
20.1	7.4	000	1474	3.	1.100	, F. F
25.7	1.4	2731	1432	3.5	1.75	E9.7
53.0	1.50	3730	7497	5.1	0.73	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
50.8	1.50	. 420	15 1	5.5	3.45	- 1 -
£ 5 . C	1.39	5102	1053	8.1	4.73	17.0
43.7	1.30	5500	1388	0.5	4.05	05.
54.0	1.50	3091	1709	11.0	5.52	77.
60.6	1.58	5317	7 043	10.5	5,95	3 7
10.7	1 • 5 :	1543	1010	0.	7.	· ·
	4					37.
1:.6	1.3)	2567	1433	1.65	ه ب ب	
25.6	1.53	2967	1421	8.8	1.)	
FC.1	1.37	3461	1333	5.0	2.54	e ra
UE.7	1.37	4077	1347	3.7	3.43	30.1
40.8	1.57	4303	1303	3.1	4.011	
47.3	1.57	5353	Idou	0.6	4.79	37.1
52.0	1.57	F.130	1748	11.0	F. 04	35.5
57.3	1.37	3F08	1230	10.5	5.33	317 6

2 to 1.6 10 bil.

	Half Load (Constant) Clockwise Retainen. Watt							
Īu.	4 P.	Imput	Lpoed	de Ag	110 0	110		
75.7	1.37	0077	700	12.05	U d	Tr.C		
25.5	1.50	5043	300	9.40	FT a	77.0		
29.3	1.35	0381	200	8.75	€. Ø	113.3		
30.0	1.36	5543	1000	, 7.07	€°	· . ^		
37.1	1.56	5700	חחני	7.15	3.	F).,		
34.0	1.33	5011	1300:	2 20 ()	5.	در مر ال		
31.0	1.36	3 <u>E</u> E9	1300	3.05	℧.	,C.,)		
	Half Load	Constant	Shunt	o Glock Tac	, 0,000	, ,		
26.3	1.00	3042	700	11.9F	₹ •	7. • 3		
26.0	1.37	3107	310	9.05	Ç.	70.3		
05.0		3107	100	3,75	3.	70.3		
53.0	1.54	8327	1000	7.57	5.	3.7.4		
30.6	1.54	3513	1700	7.15	5.	55.7		
34.3	1.34	5955	1200	3.55	₹.	E13.5		
33.3	1.54	4195	1300	5.05	3.	66.4		
57.7	1.54	4294	1400	5.62	3.	53.9		

E-- 110 Volts.

stove listor

Full Load (Constant) Clockle K tation. Watt								
La.		reput	Leed	iit.	H. F.	JAT.		
47.9	1.57	5464	700	22.5	3.	1.0		
49.4	1.37	5594	800.	19.7	3.	10.0		
47.0	1.57	5464	200	17.E	? .	- n • · v		
55.8	1.37	3988	1000	15.74	3.	72.0		
53.8	1.57	6068	IICO	14.7	3.	77 77 =		
33.6	1.35	7144	1200	15.1	3.	39.7		
	Full Look (20	netint)	(*) 12 °)	310 11 11.11	7) 4 4 4 4 5			
51.	1.4	5764	700	20.5	6.	77.		
55.5	1.39	6015	800	10.7	3.	72.4		
£7.9	1.38	6520	300	17.5	3.	48.3		
62.1	1.57	6981	1000	15.74	6.	64.2		
65.0	1.53	7 209	1100	14.3	3 3 d	7104		
37.0	1.35	7518	1200	13.1	3.	50.5		

E-- II Volts.

The interpolate it. 1t. 1.77 to location of the residence of the interpolate of the inter

Committee in the file of the original in any office of the complete of the committee of the

Due a brail 1. In not but with two of the productions—

Sugar his the collocamented but can amid agreed is the re
cally the theoretic. The maintained of the restriction of the

cally the the restriction of the restriction of the

cally the the restriction of the restriction of the beautiest resistance of the communical flower the production of the resistance of the contact resistance, and the larger the last of the restlice of the

contact resistance. This quality of the mathon brush tands to

prevent operating.

The current floater through the different semeths wolf, number of the field in the space between the modern of the spain that are bold that the relation of the spain that are bold that are bold that are spain that are bold that are spain that are bold to the spain spain.

There aville in their rotation, but the line of force of Ciffield, and an L. . . F. in the meby powerates in them. The ..

1. F. in in with a function that it tends to cointain the current flavious in the soil. The effect, them for , of the traction is to produce enoughing.

In the constant count rates the two rain and as of as did not a self-induction of the chart-disculted soil, and the coil is of this soil in producting a maintaining 2.1. F. be suffing the field of the armature. They are ordered in most by the cistance of the brush content as sufficient above, as a simple of machine the brushe; the the shart-discust the coil is in a cold the sale and notice field. The machine these these is a cold case lines of force in such a manual that the cold is in the new rest of the case and that the cold is in the new rest of the case and that the cold is a second of the cold of the case and the state of the cold is a second of the cold of the case and the case and the cold of the case and the cold of the case and th

		٠	

Dio no lead to the second of t

the specific by the control of the termical and entirely in deduct. for the variety one dinton. The -duction of the fill a statement in necessary to obtain the bill speeds, prevent, its use in overcooling the repretic fill in the or ture. The oreture district, them for, not all mysent, but the increased oneed of the ar attemporantion ! In idarences the reintaining D. L. F. until it becomes in home that the derbon brush cannot everyone it. The increase are a of the or threader increases the D. . F. of a lfinfoction. In a result it burness to be the carbon brush to reverse the current in the chartsciencited chil, to in concedu no. Theme is destructive consting of the high one in order, to serve, to soft of the C. C. I. . . A. At in necession to movide our postio file in a model to of the end of the end This is some in to it was to not be a small in the below nother the transport of the nin annual to the risk with the ser tar , the sent of the supreme tell to the of an outsting, in the abile of the sensite of the compating in ... with the error of , who the many the

Fig. the constant and every constant constant we have a second or constant of the constant of

The most of the second of the

The Li magnetic hide of officionary of the desired for a being 74°. I full long the fifthern a 70°. The control of the full long, the control of a firstly on the long.

For the mode of the sound of th

The limbola of the jave it. If the fulfill of the fill is being 80.8 down to which it drop, ranially. The end of the curve is in a strength time.

The stor give on efficiency of 80° at full lost, oft which it dropp i gradually. The opening apply tion was 4.5° from zero to full load.

3. Pich cosed, chockwise rotation: same nurves as in

For the interpole the maximum efficienty we receive of bout helf load being 37.5%. From here it drowned gradually to 78.5% at full load. The speed drown a until half load rached, then it rose to almost it, noisel value. The ride. Table took to half load was 4%.

The winceln motor efficiency increased gradually to 70° start land, and commissionally continued to F0° start.

Ind. The course pullture as 70° for a second 1211 3 and the course being attracted tipe.

The officer, " he is a soft for a second of the second of

The close's officion, including the mode of the state of 77.5 of 500 or places. The office of the state of th

72.8%. The efficienty as light loads was rather poor, that it a quarter load being 53%. The creed variation was in a scale this curve, the regulation being 9%.

F. High sheed, alongwill intotions adrives an in (1).

half load, being 77.5%, gradually decreasing till at half load it is 75%. The efficiency at light load, are good, a quark load being 72.5%. The speed regulation was 4.5%, the speed varying with the load to half load off a dich it was together.

The officients for the Limble state with ".Fo at helf land,

700 at full load and at 500 everload 71.50. The appearing white the 80 four point to full load.

The Stow part of efficiently of the state of

In the Interpolation of the efficiency of a context load on TTM, of half load and of full load and. The appeal regulation was

The office of all the Lineal mentar was 500 at all 1 and 350 at half and from these constant to 500 members. The anti-from was 130, the space variety with the land.

In the Stow the efficience of quarter look to. Off, of helf look 50.3f of the full look of .The speed resulting as 10f from a so to full look the problem of receipt limits the problem. Land 104 and and speed so .T.

7. Variation in efficiency vita and, the last none that
the full load: aloak vice enterion.

On the interpolar paths the full load of linings an firm 33.5% at 100 perclutions has sinute to \$5.5% at 100 perclutions has sinute to \$5.5% at 100 perclutions has sinute to \$5.5% at 100 perclutions has the large an odd, at no to drown he a lettle above 1011 about 1011 about 111 denne manifer to impossible.

The efficiency of the Lincoln outer and from 37.5% of 800 r.p.m. to 70.5% at 1450 r.m. to The variation follows a string line.

Th. Storing of the air nor of 130 at 700 m.m.n. and 350 4

ot sull seems and the collection of the rotation.

The ones, the bull of the line of the line

The lamble told comments to the first or the state of the first of the state of the

The varieties to St., or for 77.50 of Con R, year, to EOM at 1200r. year, m. The restablishment of Control of

3. On the least of the Modern agency of the metally form and the metally described and the metally and the

The live on the collection of the collection of

The Tenner of the State of the

r. ... + 346 - 7300m, ... 2 m m ...

the state of the s

The first of the contract of the first of the contract of the

<u>lunt lunts</u>, who have seen level and the lands.

An example of the variety of the first of the form of the form of the first of the

20 3.	That Head	= 7, 1	*t 1 ** *	
7	264	34.37	37.0	
7-5	30.0	74.5	72	
To produce A	34	7.9	73	
Sull	35.8	? 7	70.	

Another stailing rapiditum asmob amon from the high and 3, alashnica rut dian busy r.

1 100	int pw10	Lincoln	- 4 y
7.004	79.57	rod.	467
7-9	73.4	67.5	so. 5
3-4	78.2	30.8	34.
2111	75.5	70.	35.5

The small of the mailines were seen from the regulation, stack first rotation and the result.

T. 11 81 g . ---4 •

Anoth thill is the variety of file and the shoulds.

The fire of the Line of the Later of the Control of the Line of the Control of th

waden full load grave a mang. of 4% to 1. The star mathe

accounts, although the series merical difference in fluir orchanical construction. The maternals is of difference a variousthe Lincoln and Stod, amedical former, no see a variousThicated a chanical construction to obtain variable sould onetrol.

Interpole motor sum plant the Lincoln and It is from the elections of the first of the Lincoln and It is from the elections of the first of the elections.

Vion, non-end ing and make a little as, simple resolutions of elementary, and therefore conclude that the matter, is the part of the part of the sector, is the part of the sector.

