Distinct Element Using Hashing

Exercise 1

The hash function h(x) with b (the number of bits) and k (the number of ints) both equal to 32. We can think of A as being the matrix with 32 rows, k, and 32 columns, b.

```
public static int hash_h(int x){
  int hash=0;
  int[] A = matrix.getMatrix();
  for(int i = 0; i<32;i++){
    hash <<= 1;
    hash |= Integer.bitCount(x & A[i]) % 2;
  }
  return hash;
}</pre>
```

The code takes an integer x and outputs a hash value of 32-bits.

Exercise 2

We created a million values $x \in \{1, \dots, 10^6\}$ and plotted the hash values h(x) in the following graph.

The x-axis shows the number of leading zeros to the hash-value - 1. We took off one as all our numbers are positive and the first bit in an int defines whether a number is positive or negative. The y-axis is the total amount of hash-values that have that number of leading zeros.

As expected the distribution of hash values seems to satisfy the relation $Pr(phi(y)=i)=2^{-i}$ for i from 1 to k for random y in $\{0,1\}^k$. ie. half of all the hash ints have just one leading zero (which we ignore), a quarter has two, an eighth three etc.

This makes logical sense as there are twice as many possible numbers to be constructed from say 4 bits as there are from 3. Therefore, if our random hash function is working correctly, we could and should and did expect our distribution to look as it does.

Exercise 3

We created a text file with all of the numbers from 10^6 to $2*10^6-1$ named *input.txt* and implemented the algorithm with m=1024 and k=32.

Upon running the input through the HyperLogLog algorithm we returned the double: 973089.2722159306.

This number is, in layman's terms, pretty close to a million.

Exercise 4

The HyperLogLog algorithm does not react as we expected.

We created an input file with a million distinct random numbers in the range $\{1,10n\}$ where $n=10^6$. We set seed=30 and using $rand_input_gen.py$ created a text file named $rand_1mil_seed30.txt$.

We expected our estimate to get more precise as m gets larger however as can be seen in the table below our implementation has peak precision when m=2048.

However, as can by seen below the estimation, of all our values of m, is always within $(1\pm 2\rho)*10^6$.

m	${\it E}$ calculated by <code>HyperLogLog</code>	ρ	within $(1\pm ho)*10^6$	within $(1\pm 2 ho)*10^6$
512	940747444536	0.045962	FALSE	TRUE
1024	985207537650	0.0325	TRUE	TRUE
2048	999646365089	0.022981	TRUE	TRUE
8192	988574761804	0.01149	TRUE	TRUE
16384	988676715205	0.008125	FALSE	TRUE