OIPE

PAGE: 1

RAW SEQUENCE LISTING PATENT APPLICATION US/09/483,184

DATE: 02/08/2000 TIME: 14:59:52

Input Set: I483184.RAW

This Raw Listing contains the General Information Section and up to first 5 pages.

```
<110> APPLICANT: Craig, Ruth W.
           Bingle, Colin D.
 2
 3
           Whyte, Moira
 4
     <120> TITLE OF INVENTION: Mcl-1 GENE REGULATORY ELEMENTS AND A
 5
           PRO-APOPTOTIC Mcl-1 VARIANT
     <130> FILE REFERENCE: DART1110-1
 6
     <140> CURRENT APPLICATION NUMBER: US/09/483,184
 7
 8
     <141> CURRENT FILING DATE: 2000-01-14
 9
     <160> NUMBER OF SEQ ID NOS: 19
     <170> SOFTWARE: FastSEQ for Windows Version 4.0
10
     <210> SEQ ID NO 1
11
     <211> LENGTH: 8253
12
13
     <212> TYPE: DNA
14
     <213> ORGANISM: Homo sapiens
15
     <400> SEQUENCE: 1
16
           tctagagtca aatgtgcctt attatcagta caaaaataaa tggtgtcagc tgggtgcagt
                                                                                  60
17
           gactcacacc tgtaatccca gcactttaag aggctgaggc aggtggatca cctgaggcca
                                                                                 120
18
           qqaqtttgag accagcctgg ccaacatggt gaaaccacat tgtcaggcct ctgagcccaa
                                                                                 180
19
           gccaagccat cgcatcccct gtgacttgca cgtatacatc cagatggcct gaagtaactg
                                                                                 240
20
           aagatccaca aaagaagtaa aaatagcctt aactgatgac attccaccat tgtgatttgt
                                                                                 300
           ttctgcccca cccgaactga tcaatgtact ttgtaatctc ccccaccctt aagaaggttc
                                                                                 360
21
           tttgtaattc tccccaccct tgagaatgta ctttgtgaga tccacccctg cccacaaaac
                                                                                 420
22
                                                                                 480
23
           attgetetea aetteaecae etateecaaa aeetgtaaga aetaatgata ateeateaee
24
           ctttgctgac tctcttttcg gactcagccc gcctgcaccc aggtgaaata aacagccatg
                                                                                 540
25
           ttgctcacac aaagcctgtt tggtggtgtc ttcacacaga cgcgcatgaa acacatctct
                                                                                 600
26
           actaaaaata caataatcag ctgggcgagg tggctcacag ctgtaatctc agcactttgg
                                                                                . 660
27
           gaggccgaga caggcaggtc acttgaggcc atgagttcga gaccagcctg gccaacatcg
                                                                                 720
           tgaaaacccc atctctacca aaaatacaaa aactagccag atgtggtggc gcacgcctgt
                                                                                 780
28
           aatcccagct actcgggagg ctgaggtacc gaatcgtctg aacgtgggaa gtggagcttg
29
                                                                                 840
30
           tagtgagccg agatcgcccc actgcactcc agcctgggca acagagctag actgtctcaa
                                                                                 900
           aacaaacaaa aaatggtgtc aagactctca gacgagattc taatggatta aggcctatat
31
                                                                                 960
32
           gtaaatagca ccaaagacta tggaacagag atgggagaag caagcaggga ggcaggaata
                                                                                1020
          gtttagctgt ggcagtttta gcttagtcca cttacataaa tggttcttta gggtagcacg
                                                                                1080
33
34
           tggagcatcc tcatttccaa acattggact gagagtagag agctgtgcaa aataaccaca
                                                                                1140
35
           agtececaae tatgecetet taattateee tateatetaa gaetgttgtt eecateeate
                                                                                1200
          actgaacttc cccgtcctct tccttcaacc cctgtgttag tcaatggttg aaattttgat
                                                                                1260
36
37
           ttggtaaaaa acctctggcg aaaaccagca aaaagggctc acaaatcagg tctcagggaa
                                                                                1320
          gcacagaggt agccacgaga aggcccgagg tgctcatgga aagagctcga gcccaggagc
38
                                                                                1380
39
           tctgggagga ccccaggcgc tcggagccgc cgttacgtaa ccggcactca gagcctccga
                                                                                1440
          40
                                                                                1500
          gcagetggta ggtgccgtgc gcaaccetcc ggaagetgcc gcccctttcc ccttttatgg
                                                                                1560
41
          gaatactttt tttaaaaaaa aagagttcgc tggcgccacc ccgtaggact ggccgcccta
42
                                                                                1620
43
          aaaccgtgat aaaggagctg ctcgccactt ctcacttccg cttccttcca gtaaggagtc
                                                                                1680
          ggggtcttcc ccagttttct cagccaggcg gcggcggcga ctggcaatgt ttggcctcaa
                                                                                1740
44
```


PAGE: 2 RAW SEQUENCE LISTING
PATENT APPLICATION US/09/483,184

DATE: 02/08/2000 TIME: 14:59:52

Input Set: I483184.RAW

aagaaacgcg gtaatcggac tcaacctcta ctgtgggggg gccggcttgg gggccggcag eggeggegee accegeeegg gagggegaet tttggetaeg gagaaggagg ceteggeeeg gcgagagata gggggagggg aggccggcgc ggtgattggc ggaagcgccg gcgcaagccc cccgtccacc ctcacgccag actcccggag ggtcgcgcgg ccgccgccca ttggcgccga ggteccegae gteacegega ecceegegag getgetttte ttegegeeca eccgeegege ggegeegett gaggagatgg aageeeegge egetgaegee ateatgtege eegaagagga getggaeggg taegageegg ageetetegg gaageggeeg getgteetge egetgetgga gttggtcggg gaatctggta ataacaccag tacggacggg tcactaccct cgacgccgcc gccagcagag gaggaggagg acgagttgta ccggcagtcg ctggagatta tctctcggta ccttcgggag caggccaccg gcgccaagga cacaaagcca atgggcaggt ctggggccac cagcaggaag gcgctggaga ccttacgacg ggttgggggat ggcgtgcagc gcaaccacga gacggtcttc caaggtaagg gggttcatta atcgccaagg cctcactccc ttttttccat ctctccccgg actcactcgc caagggtggg ttggaaaccg aaacgagtca gtgttgaaac gtgtctcatc ctattcctga agccagaata ttctggccat gagtcattgt ttccgcccat cttgattctt ttggaaatgg cagctcttgt tcaaagaccg gaaagggtgg gatgtcaatt tcaagtgggg tcaacctgag ttctgtaaat cccagtagcg attttcccgc cgcgggtggg caggcgaatc ttgcgccggt ttagacaaag gaggccgtga ggacctgcat gcttttcttt ctcaggcatg cttcggaaac tggacatcaa aaacgaagac gatgtgaaat cgttgtctcg agtgatgate catgttttca gegaeggegt aacaaactgg ggeaggattg tgaeteteat ttcttttggt gcctttgtgg ctaaacactt gaagaccata aaccaagaaa gctgcatcga accattagca gaaagtatca cagacgttct cgtaaggaca aaacgggact ggctagttaa acaaagaggc tgggtaagtt tgccttaagg atgaaagggg ccttggagtg gagtggaagt agaatgaagg atttttttta gagaggtggg gatatctaaa ggtttttatg acgcacggct gtttgcaggc tctaactaaa ggaccattgt ttatttgatt tttaagtagt ggatccttag agatagtggt atggcggtct tgaattgtat caaaaatctt ggttttctct aggcaatttt ttgttccaat tcagttgaat actcttcagt ggattcaaac catgaaaaaa taagtcacca ggggaggata gctgaaataa ttcctaaggc ggtgcctgtt ttaatggaga agatatgggg tggagcctgc gttttaaaca aacccagatc tgatgcagga tgtacttaac tacgttgaga aaaactgatc tgcgcaattg aggcgttact gaaatattag gtggtggaga tttgagaata agggttttcg tcttttacct catgggaact ctggaagtcc ttttgttagg ataaatccta ataagacett gatagtaetg taaaatgaag tttaattate atgggteece gettaagaaa ctgaagaact tattttcttt ttttgccccg gggtgaataa taattggttt actattgctt tagggggaaa ccttagatat tttaatttac cttctctctg gatagtagtg ttgttaagag agcagaaacc cattettgaa aatgtgettt tettttttgt tttetaggat gggtttgtgg agttetteca tgtagaggae etagaaggtg geateaggaa tgtgetgetg gettttgeag gtgttgctgg agtaggagct ggtttggcat atctaataag atagccttac tgtaagtgca atagttgact tttaaccaac caccaccacc accaaaacca gtttatgcag ttggactcca agetgtaaet teetagagtt geaccetage aacetageea gaaaageaag tggeaagagg attatggcta acaagaataa atacatggga agagtgctcc ccattgattg aagagtcact gtctgaaaga agcaaagttc agtttcagca acaaacaaac tttgtttggg aagctatgga ggaggacttt tagatttagt gaagatggta gggtggaaag acttaatttc cttgttgaga acaggaaagt ggccagtagc caggcaagtc atagaattga ttacccgccg aattcattaa tttactgtag tagtgttaag agaagcacta agaatgccag tgacctgtgt aaaagttaca agtaatagaa ctatgactgt aagcctcagt actgtacaag ggaagctttt cctctcta attagctttc ccagtatact tcttagaaag tccaagtgtt caggactttt atacctgtta tactttggct tggttccatg attcttactt tattagccta gtttatcacc aataatactt gacggaaggc tcagtaatta gttatgaata tggatatcct caattcttaa gacagcttgt aaatgtattt gtaaaaattg tatatatttt tacagaaagt ctatttcctt gaaacgaagg aagtatcgaa tttacattag tttttttcat accettttga actttgcaac ttccgtaatt aggaacctgt ttcttacagc ttttctatgc taaactttgt tctgttcagt tctagagtgt

PAGE: 3 RAW SEQUENCE LISTING

RAW SEQUENCE LISTING DATE: 02/08/2000 PATENT APPLICATION US/09/483,184 TIME: 14:59:52

Input Set: I483184.RAW

95		aattgatgtg					4800
96	actatgcagg	tttaaatttt	cttatctgat	tttggtaagt	attccttaga	taggttttct	4860
97	ttgaaaacct	gggattgaga	ggttgatgaa	tggaaattct	ttcacttcat	tatatgcaag	4920
98	ttttcaataa	ttaggtctaa	gtggagtttt	aaggttactg	atgacttaca	aataatgggc	4980
99	tctgattggg	caatactcat	ttgagttcct	tccatttgac	ctaatttaac	tggtgaaatt	5040
100	taaagtgaat	tcatgggctc	atctttaaag	cttttactaa	aagattttca	gctgaatgga	5100
101	actcattagc	tgtgtgcata	taaaaagatc	acatcaggtg	gatggagaga	catttgatcc	5160
102	cttgtttgct	taataaatta	taaaatgatg	gcttggaaaa	gcaggctagt	ctaaccatgg	5220
103	tgctattatt	aggcttgctt	gttacacaca	caggtctaag	cctagtatgt	caataaagca	5280
104	aatacttact	gttttgtttc	tattaatgat	tcccaaacct	tgttgcaagt	ttttgcattg	5340
105	gcatctttgg	atttcagtct	tgatgtttgt	tctatcagac	ttaacctttt	atttcctgtc	5400
106	cttccttgaa	attgctgatt	gttctgctcc	ctctacagat	atttatatca	attcctacag	5460
107	ctttcccctg	ccatccctga	actctttcta	gcccttttag	attttggcac	tgtgaaaccc	5520
108	ctgctggaaa	cctgagtgac	cctccctccc	caccaagagt	ccacagacct	ttcatctttc	5580
109	acgaacttga	tcctgttagc	aggtggtaat	accatgggtg	ctgtgacact	aacagtcatt	5640
110	gagaggtggg	aggaagtccc	ttttccttgg	actggtatct	tttcaactat	tgttttatcc	5700
111.	tgtctttggg	ggcaatgtgt	caaaagtccc	ctcaggaatt	ttcagaggaa	agaacatttt	5760
112	atgaggcttt	ctctaaagtt	tcctttgtat	aggagtatgc	tcacttaaat	ttacagaaag	5820
113	aggtgagctg	tgttaaacct	cagagtttaa	aagctactga	taaactgaag	aaagtgtcta	5880
114		agggtcattt					5940
115		aataggtatg					6000
116	cctgcccatc	tcagagccat	aaggtcatct	ttgctagagc	tatttttacc	tatgtattta	6060
117		tcataagccg					6120
118		ttaattaatc					6180
119		acaagtgcat			-	-	6240
120		ctgtggaaat					6300
121	gagggcttag	gacaccccaa	gtggtttggg	aaaggaggag	ggagtggtgg	gtttataggg	6360
122	gaggaggagg	caggtggtct	aagtgctgac	tggctacgta	gttcgggcaa	atcctccaaa	6420
123	agggaaaggg	aggatttgct	tagaaggatg	gggctcccag	tgactacttt	ttgacttctg	6480
124	tttgtcttac	gcttctctca	gggaaaaaca	tgcagtcctc	tagtgtttca	tgtacattct	6540
125	gtggggggtg	aacaccttgg	ttctggttaa	acagctgtac	ttttgatagc	tgtgccagga	6600
126	agggttagga	ccaactacaa	attaatgttg	gttgtcaaat	gtagtgtgtt	tccctaactt	6660
127	tctgtttttc	ctgagaaaaa	aaaataaatc	ttttattcaa	atacagggtg	tgatatgggt	6720
128		cgacgcctct					6780
129	gctgagcaaa	tatgtacagg	tggaattcaa	agcaaaagcc	tcacaaagtt	gatttgcctt	6840
130	agagcaaagg	acagttcctt	cttcaattct	aattagaggt	gttgggtttt	taattaaata	6900
131	tattactgct	gtacttagag	gagttcttaa	acctccaagt	aaaatcaaaa	acctctttaa	6960
132	aatcaaaatt	tctgtcttga	tttatttatt	tattatttt	tttttgagat	ggagttttgc	7020
133	tcttgttgtc	caggctggag	tgcaatggcc	agatctccgc	tcaccgcaac	ctccgcctcc	7080
134	aggttcaaat	gattctcctg	cctcagcctc	ctgagtagct	gggaatacag	gcatgcgcca	7140
135	ccacacccag	ataattttgt	atttttggta	gagatggggt	ttctccgtgt	tggtcaggct	7200
136	ggtcttgaac	tcccgacctc	aggtgattgc	ccacctctgc	ctcccagagt	gccaggatac	7260
137	aggcgtgagc	catcgcaccc	agcctctgtc	ttgattttt	tgaatcacca	ggtgttggta	7320
138		tgttttgttt					7380
139	tggggcaatc	tcggctcact	gcaacctcag	cctcccgagt	agctgggatt	acaggtgccc	7440
140		ccggctaatt					7500
141		gaagtcctga					7560
142		ccactgcgcc					7620
143	tctatcataa	cacctaaata	atacctaaag	ttaaagagtt	ttgatgaagt	tcttggcagc	7680
144	agtgcttttc	cccttctgct	ttccaaaagg	aggtaaaaag	aagccagtca	atttcaaaaa	7740

PAGE: 4

RAW SEQUENCE LISTING

PATENT APPLICATION US/09/483,184

Input Set: I483184.RAW

DATE: 02/08/2000

8253

TIME: 14:59:52

ccctatcctg cttttattt cagctacctt gaaagtgage tgaatcacca tggaaatgtg 7800
caaatgtgag gtttgcatac ttggttttaa gccctgagca ccatatgcta atcaggcaat 7860
caggattctg tgcctcctg cagtcagttg catttctatt taaaagtgca ttttggtttg 7920
gaagcccctt ttggagccta actaccaaaa ggcagcaact ttttgtatca ttacaaagaa 7980

149 agctgtgtaa gtgcactccc aagcaaaggt gtggtaggag agtagcagcc acagaggacc 8040
150 caagcccaag tcttggcctg agttaagtta gtgctattgc tcccattgac gtgctatgat 8100

gtgaagccgt ttctggtaca gtgttccttt gctcagcacc ttaaaagctt ggatttaata 8160 gtaactgggt aaccttaatc agtagtcaga attatcaaca ctttgcttta tttgacacaa 8220

153 ccagactttc tcagttcctg ttctgtatct aga

154 <210> SEQ ID NO 2

155 <211> LENGTH: 350

156 <212> TYPE: PRT

157 <213> ORGANISM: Homo sapiens

158 <400> SEQUENCE: 2

Met Phe Gly Leu Lys Arg Asn Ala Val Ile Gly Leu Asn Leu Tyr Cys

160 1 5 10 15

161 Gly Gly Ala Gly Leu Gly Ala Gly Ser Gly Gly Ala Thr Arg Pro Gly 162 20 25 30

163 Gly Arg Leu Leu Ala Thr Glu Lys Glu Ala Ser Ala Arg Arg Glu Ile 164 35 40 45

165 Gly Gly Glu Ala Gly Ala Val Ile Gly Gly Ser Ala Gly Ala Ser 166 50 55 60

167 Pro Pro Ser Thr Leu Thr Pro Asp Ser Arg Arg Val Ala Arg Pro Pro 168 65 70 75 80

Pro Ile Gly Ala Glu Val Pro Asp Val Thr Ala Thr Pro Ala Arg Leu

170 85 90 95 171 Leu Phe Phe Ala Pro Thr Arg Arg Ala Ala Pro Leu Glu Glu Met Glu

172 100 105 110 173 Ala Pro Ala Ala Asp Ala Ile Met Ser Pro Glu Glu Glu Leu Asp Gly

174 115 120 125

Tyr Glu Pro Glu Pro Leu Gly Lys Arg Pro Ala Val Leu Pro Leu Leu 176 130 135 140

Glu Leu Val Gly Glu Ser Gly Asn Asn Thr Ser Thr Asp Gly Ser Leu
178 145 150 155 160

179 Pro Ser Thr Pro Pro Pro Ala Glu Glu Glu Asp Glu Leu Tyr Arg

180 165 170 175 181 Gln Ser Leu Glu Ile Ile Ser Arg Tyr Leu Arg Glu Gln Ala Thr Gly

181 Gin ser Leu Giu lie lie ser Arg Tyr Leu Arg Giu Gin Ala Thr Gly
182 180 185 190

Ala Lys Asp Thr Lys Pro Met Gly Arg Ser Gly Ala Thr Ser Arg Lys
184 200 205

Ala Leu Glu Thr Leu Arg Arg Val Gly Asp Gly Val Gln Arg Asn His

186 210 215 · 220

187 Glu Thr Val Phe Gln Gly Met Leu Arg Lys Leu Asp Ile Lys Asn Glu 188 225 230 235 240

188 225 230 235 240 189 Asp Asp Val Lys Ser Leu Ser Arg Val Met Ile His Val Phe Ser Asp

190 245 250 255

191 Gly Val Thr Asn Trp Gly Arg Ile Val Thr Leu Ile Ser Phe Gly Ala 192 260 265 270

Phe Val Ala Lys His Leu Lys Thr Ile Asn Gln Glu Ser Cys Ile Glu

194 275 280 285

PAGE: 5

RAW SEQUENCE LISTING PATENT APPLICATION US/09/483,184

DATE: 02/08/2000 TIME: 14:59:52

Input Set: I483184.RAW

195		Pro		Ala	Glu	Ser	Ile		Asp	Val	Leu	Val	-	Thr	Lys	Arg	Asp
196			290					295			_		300				
197		_	Leu	Val	Lys	Gln		Gly	Trp	Asp	Gly		Val	Glu	Phe	Phe	
198		305	_	_	_		310				_	315					320
199		Val	Glu	Asp	Leu		GTÀ	Gly	Ile	Arg		Val	Leu	Leu	Ala		Ala
200						325				_	330	_	_			335	
201		GTA	Val	Ala	Gly	Val	Gly	Ala	Gly		Ala	Tyr	Leu	Ile	_		
202					340					345					350	•	
203	<210>																
204		LENGTH: 271															
205		TYPE: PRT															
206	<213>				omo s	sapie	ens										
207	<400>	SEQUENCE: 3 Met Phe Gly Leu Lys Arg Asn Ala Val Ile Gly Leu Asn Leu Tyr Cys															
208			Phe	Gly	Leu	_	Arg	Asn	Ala	Val		Gly	Leu	Asn	Leu	_	Cys
209		1	_		_	5	_	_			10	_	_	_		15	_
210		Gly	Gly	Ala	Gly	Leu	Gly	Ala	Gly		Gly	Gly	Ala	Thr	_	Pro	Gly
211					20					25					30		
212		Gly	Arg	Leu	Leu	Ala	Thr	Glu	Lys	Glu	Ala	Ser	Ala	Arg	Arg	Glu	Ile
213				35					40					45			
214		Gly	Gly	Gly	Glu	Ala	Gly	Ala	Val	Ile	Gly	Gly	Ser	Ala	Gly	Ala	Ser
215			50					55					60				
216		Pro	Pro	Ser	Thr	Leu	Thr	Pro	Asp	Ser	Arg	Arg	Val	Ala	Arg	Pro	Pro
217		65					70					75					80
218		Pro	Ile	Gly	Ala	Glu	Val	Pro	Asp	Val	Thr	Ala	Thr	Pro	Ala	Arg	Leu
219						85					90					95	
220		Leu	Phe	Phe	Ala	Pro	Thr	Arg	Arg	Ala	Ala	Pro	Leu	Glu	Glu	Met.	Glu
221					100					105					110		
222		Ala	Pro	Ala	Ala	Asp	Ala	Ile	Met	Ser	Pro	Glu	Glu	Glu	Leu	Asp	Gly
223				115		,			120			•		125			
224		Tyr	Glu	Pro	Glu	Pro	Leu	Gly	Lys	Arg	Pro	Ala	Val	Leu	Pro	Leu	Leu
225			130					135					140				
226		Glu	Leu	Val	Gly	Glu	Ser	Gly	Asn	Asn	Thr	Ser	Thr	Asp	Gly	Ser	Leu
227		145					150					155					160
228		Pro	Ser	Thr	Pro	Pro	Pro	Ala	Glu	Glu	Glu	Glu	Asp	Glu	Leu	Tyr	Arg
229						165					170					175	
230		Gln	Ser	Leu	Glu	Ile	Ile	Ser	Arg	Tyr	Leu	Arg	Glu	Gln	Ala	Thr	Gly
231					180					185					190		
232		Ala	Lys	Asp	Thr	Lys	Pro	Met	Gly	Arg	Ser	Gly	Ala	Thr	Ser	Arg	Lys
233				195					200					205			
234		Ala	Leu	Glu	Thr	Leu	Arg	Arg	Val	Gly	Asp	Gly	Val	Gln	Arg	Asn	His
235			210					215					220				
236		Glu	Thr	Val	Phe	Gln	Gly	Trp	Val	Cys	Gly	Val	Leu	Pro	Cys	Arg	Gly
237		225					230					235					240
238		Pro	Arg	Arg	Trp	His	Gln	Glu	Cys	Ala	Ala	Gly	Phe	Cys	Arg	Cys	Cys
239						245					250					255	
240		Trp	Ser	Arg	Ser	Trp	Phe	Gly	Ile	Ser	Asn	Lys	Ile	Ala	Leu	Leu	
241		_		_	260	-		_		265		_			270		
242	<210>	SEQ	ID N	10 4													
243	<211>																
244	<212>	TYPE	E: DN	IA													

PAGE: 6

VERIFICATION SUMMARY PATENT APPLICATION US/09/483,184 DATE: 02/08/2000 TIME: 14:59:52

Input Set: I483184.RAW

Line ? Error/Warning

Original Text