Quizlet 4: Semirings

Kevin Liang Ling 185A Due: 09/06/2024, 11:59 PM PDT

Your name: Ricardo Vasela Tellez

Total: 20 points

1 Semirings (14 points)

Remember that a semiring a set R associated with two binary operations: "generalized or" (\bigcirc operator) and "generalized and" (\bigcirc operator) with a few additional restrictions for all x, y, $z \in R$.

- (i) (R, \emptyset) is a so-called "monoid" in that the following properties are true:
 - associative: $x \overset{\text{of}}{\bigcirc} (y \overset{\text{of}}{\bigcirc} z) = (x \overset{\text{of}}{\bigcirc} y) \overset{\text{of}}{\bigcirc} z$
 - neutral element: There is a particular element $\bot \in R$ such that $\bot \bigcirc x = x \bigcirc \bot = x$
- (ii) (R, \bigcirc) is also a monoid in that the following properties are true:
 - associative: $x \lozenge (y \lozenge z) = (x \lozenge y) \lozenge z$
 - neutral element: There is a particular element $T \in R$ such that $T \otimes x = x \otimes T = x$
- (iii) The "generalized or" must be commutative: $a \odot b = b \odot a$
- (iv) The neutral element for "generalized or" (\bigcirc) must be the *annihilator* element for "generalized and". $a \circlearrowleft \bot = \bot \circlearrowleft a = \bot$
- (v) <u>⊘ must distribute </u>⊘
 - $a \oslash (b \oslash c) = (a \oslash b) \oslash (a \oslash c)$
 - $(b \otimes c) \stackrel{a \sim b}{\bigcirc} a = (b \otimes a) \otimes (c \otimes a)$
- 1. Show that $(\mathbb{R}_{\geq 0}, \times)$ is a monoid (i.e., show that \times is associative and that there is some neutral element $\bot \in \mathbb{R}_{\geq 0}$ such that $\bot \times x = x \times \bot = x$). Note $\mathbb{R}_{\geq 0}$ indicates all real numbers that are greater or equal to 2 points 0. \times is the multiplication operation.
- 2. Show that $(\mathbb{R}_{\geq 0}, +)$ is a monoid (i.e., show that + is associative and that there is some neutral element $T \in \mathbb{R}_{\geq 0}$ such that T + x = x + T = x). Note + is the addition operation.

3. Show that $\mathbb{R}_{\geq 0}$ with \times and + is a semiring (i.e., properties (iii), (iv), and (v) are also true).

3 points

4. Choose one of the following and show that it is a semiring (i.e., show that properties (i) through (v) are true for the given set and operations):

7 points

- $\mathscr{P}(\Sigma^*)$ with \cdot and \cup is a semiring. Specifically, $\mathscr{P}(\Sigma^*)$ is a powerset of Σ^{*-1} , and $X \cdot Y = \{u + v \mid u \in X, v \in Y\}$ ('++' is string concatenation).
- $\mathbb{R}_{\geq 0}$ with \times and max is a semiring.

¹powerset is the set of all subsets

1. Show that $(\mathbb{R}_{\geq 0}, \times)$ is a monoid (i.e., show that \times is associative and that there is some neutral element $\bot \in \mathbb{R}_{\geq 0}$ such that $\bot \times x = x \times \bot = x$). Note $\mathbb{R}_{\geq 0}$ indicates all real numbers that are greater or equal to 0. \times is the multiplication operation.

$$1 \times a = a \times 1 = a$$

Therefore (R = 0, x) is a monoid.

Hence, Neutral element is 1.

2. Show that $(\mathbb{R}_{\geq 0}, +)$ is a monoid (i.e., show that + is associative and that there is some neutral element $T \in \mathbb{R}_{\geq 0}$ such that T + x = x + T = x). Note + is the addition operation.

2 points

Let T (neutral number) equal O.

Hence, Noutral element is ().

for all
$$a \in R \ge 0$$
,
$$0 + a = a + 0 = a$$

Therefore (2 = 0, t) is a monoid.

3. Show that $\mathbb{R}_{>0}$ with \times and + is a semiring (i.e., properties (iii), (iv), and (v) are also true). 3 points (iii) Since addition is commutative over 120 for all a, b t R > 0, atb-hta V (iv) The neutral element for "generalized or" (Q), which we know is 0, is the annihilator element for X Por all a, b t l ≥ 0, 9 x 0 = 0 x 9 = 0 V This holds true because 0 times any number is O. (1) Q(x) must distribute Q(+). Fur all a, b, c t R = 0 , · ax(b+1)=(axb)+(ax1) V

- (b+c) x a = (bxa)+(cxa)

of multiplication over addition in 120. Since, (iii), (iv), and (v) are also true, Rzo with x and t is a

The equalities are true because of the distributive property

Semiring.

	noose <mark>one of</mark> ue for the gi			_			that	it is a	a sem	iiring	g (i.e.	, sho	w th	nat p	rop <mark>e</mark>	rties	(i) th	nroug	th (v)	are	7 po	ints								
	• $\mathscr{P}(\Sigma^*)$ with • and \cup is a semiring. Specifically, $\mathscr{P}(\Sigma^*)$ is a powerset of Σ^{*-1} , and $X \cdot Y = \{u + + v \mid u \in X, v \in Y\}$ ('++' is string concatenation).																													
	• $\mathbb{R}_{\geq 0}$ wit	h × ar	nd ma	x is a	sem	iring	ζ.	-	-																					
						Ĭ																								
(;)	We	k	no	~	+	The	ل_	7	ol	lou	√ i	5	5	,	Fra	> h	2	2	.∪ e ¹	5 t-	,e~	1	(:							
	x l	nsl	+: p	lic	· 4	hi c	·~`)	is	,	97	5 0	رز	at	rio	, c	O	ve	ſ	R	>	0								
	For	911		a,	b ,	, C		E	R	٤	0)																		
			a	×	(b	X	۷)	=	(G		×	ما)	>	((
	This	17	5	4,	ں ر	.	V	y		th	c		٦;	55°	၁ င	ia	† č	ں و		90	-0 f	٥٥	+4	,	c	f				
	mul.																													
	Lct		7 (Lue	ט יַ	t-	91		v	،طہ	< T)		e	ا لا) es	1	1	١.												
	for		911		a	4	R	>	O																					
)																				
				1	×	a	ι .	=	9	×	l	=		C																
	He.	۸ (ح	. ,	1	۵۷ر	υ f	59	l	el	C۰	٦ ٢	~ t	-	ί,	5	1	-													
	Ther	د 4	· V()	٤	۷)	<u> </u>	_ (ο,	×)	is		C/		V	40	u (· ; ,	7											
					••			- 1		'				•																

			ociativa	= 076F P > 0 ,	RZO.			
ex:	401	1 L	-2.(=3))= 49				
	W	ax (1, max (Max (2,3 1,3)	1) = ~, = ~ ~, = 3 ~	6x (~6x ((2, 3)	(1,2),3)		
							fuction sociative,	
			umber) > 0,	eaval	O. (note	we can	t use negative	real numbers)
		Max	(0,9)	= m6x	((a,0)	= 9		
				74 15				
There	Fuce	() }	20, ma	x) is	c,	choid,		

(iii) The wax function is commutative as the order in which elements are compared wort mange the result. For all abt Rzo, vax (a,b) = max (b,a) V (iv) The neutral element for "generalized or" (Q), which we know is 0, is the annihilator element for X. Por all a, b t l ≥0, $q \times 0 = 0 \times q = 0 \vee$ This holds true because 0 times any number is 0. (v) (x) must distribute () (max) Fur all a, b, c t R > 0, · a x max (b, c) = max (axb, axc) · max (b, c) x a = max (b x a, (x a) ex: let a=1, 6=2, c=3 · n=x(2,3) x 1 = max(2x1,3x1) · 1 x max (2,3) = max (1x7,1x3) 3×1 = max (2,3) IX 3 = WAX(2,3) っこう ✓ 3 = 3 V

This m	C475	multig	plying a	numbes	by the	mex of two	- other
nunhe	15	cg-2	1 +0	taking to	e mex	of the prod	uc+5
UF the	Firs	+ >>>	Mec a l	Γ	rer numbe	- 40	
C . 1		. 0.00	I -	+1151 01	ver wonst	1 1 1 4 6	
+163+	~ um;	es and	3 51 6 6 7	a other	non bes		
Since	prope	rtics	(i) thro	ugh (v)	are fr	e, Rzo u	th ×
and w	max	is a	semis	ina			

2 Generalized inside values (6 points)

Following our generalized forward values and backward values for generalized FSAs, write out the generalized inside values for CFGs. Try to sketch out the outside values if you are keen.

b. inside
$$(X_1,...,X_m)(N) = \bigcup_{1 \le i \le m} \bigcup_{k \in N} \bigcup_{r \in N} \left[R(N,k,r) \bigcap_{i = i \le k} (X_1,...,X_i)(k) \right]$$

$$(X_1,...,X_m)(N) = \bigcup_{i \le i \le m} \bigcup_{k \in N} \bigcup_{r \in N} \left[R(N,k,r) \bigcap_{i = i \le k} (X_1,...,X_m)(r) \right]$$