Text Is All You Need: Learning Language Representations for Sequential Recommendation

Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin Shen, Jingbo Shang, and Julian McAuley.

Presentado por: Javiera Belén López Massaro, Javiera Paz Azócar Oliva, Pablo Poblete Arraé, Gabriel Acevedo

KDD 2023

Contexto

Sistemas de recomendación secuencial

- Sistemas que buscan modelar el comportamiento dinámico del usuario a partir de interacciones históricas para sugerir ítems de interés.
- Su objetivo es recomendar ítems potenciales que interesen a los usuarios.
- Tienen la capacidad de capturar tanto las preferencias a corto como a largo plazo de los usuarios. Por ello, son ampliamente utilizados en diversos escenarios de recomendación.

Text Is All You Need 2 / 37

Problema

- Los modelos secuenciales de recomendación están basados en el ID del item, por lo que al añadir nuevos items nos vemos enfrentados al cold-start
- Un segundo problema que ocurre con los sistemas secuenciales actuales [Cadenas de Markov, RNN], es la poca flexibilidad, al tener una baja capacidad de transferir el conocimiento a otros contextos
- Representaciones textuales como Bert no capturan preferencias tan finas, al fijase más en lo semantico

Text Is All You Need 3 / 37

Contribución

- Formulan los ítems como pares de atributos clave-valor para la recomendación secuencial sin ID y proponen una novedosa estructura Transformer bidireccional para codificar secuencias de pares clave-valor.
- Diseñan el marco de aprendizaje que ayuda al modelo a conocer las preferencias de los usuarios y, posteriormente, a recomendar ítems basándose en representaciones lingüísticas y a transferir el conocimiento a diferentes dominios de recomendación e ítems de inicio en frío.
- Se realizan experimentos exhaustivos para demostrar la eficacia del método.

Text Is All You Need 4 / 37

Marco Teórico de Recformer

- Modelo Secuencial: predice el siguiente ítem basado en el historial del usuario.
- **Representación Textual**: usa descripciones textuales estructuradas (título, marca, categoría) en lugar de IDs.
- Codificación Semántica: emplea encoders preentrenados como BERT para generar embeddings significativos.
- Modelado con Transformers: utiliza arquitectura Longformer para procesar secuencias largas con atención eficiente.
- Predicción por Similitud: compara intención del usuario con todos los ítems candidatos usando producto punto.
- Generalización y Transferencia: diseño modular facilita adaptabilidad a dominios nuevos y problemas de cold-start.

Text Is All You Need 5 / 37

Metodología - Formulación del problema

• En una secuencia de interacciones $s = \{i_1, i_2, ..., i_n\}$. Cada ítem i tiene un diccionario de atributos D_i con pares clave-valor (ej., {Title: "MacBook Air Laptop M1 Chip", Brand: "Apple", Color: "Gold"}).

Figura: Comparación de Input

Text Is All You Need 6 / 37

Metodología

Text Is All You Need

Construcción de la entrada del modelo:

• Los pares clave-valor se "aplanan" en una "sentencia" del ítem $Ti = \{k_1, v_1, k_2, v_2, ..., k_m, v_m\}$. Una secuencia de interacción de usuario se invierte $(i_n, i_{n-1}, ..., i_1)$ y se añade un token especial [CLS] al principio, formando la entrada $X = \{[CLS], Tn, Tn - 1, ..., T1\}.$

Figura: Item sentences entrada del modelo

7 / 37

Metodología - Arquitectura de Recformer

 Un Transformer bidireccional de múltiples capas basado en la estructura de Longformer. Utiliza atención de ventana local para secuencias largas, con el token [CLS] teniendo atención global

Figura: Modelo Recformer

8 / 37

Text Is All You Need

Arquitectura de Recformer

- Basado en Longformer: atención eficiente para secuencias largas.
- 4 embeddings:
 - Token embedding (significado básico de la palabra)
 - Posición del token (palabra dentro de la frase del Item)
 - Tipo del token (palabra es clave o valor, [CLS])
 - Posición del item (indica a que item pertenece la palabra)
- Representaciones derivadas del token [CLS] (entendimiento del modelo sobre las preferencias del usuario)

Text Is All You Need 9 / 37

Objetivos de Entrenamiento

- El procedimiento de entrenamiento incluye dos etapas:
 - Preentrenamiento: se aprenden representaciones generales usando datos a gran escala.
 - 2 Fine-tuning: se adapta el modelo a un dominio específico.
- En ambas etapas se utiliza como objetivo principal la predicción del siguiente ítem.

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥ ♀○○

Preentrenamiento

- Se utilizan dos objetivos principales:
 - MLM (Masked Language Modeling): ayuda a preservar la semántica del texto del ítem.
 - Aprendizaje Contrastivo entre Ítems: maximiza la similitud (coseno) entre el vector de contexto y el ítem real siguiente, diferenciándolo de ítems negativos.

Text Is All You Need

11 / 37

Fine-tuning en Dos Etapas

- **Etapa 1:** se congela el codificador textual. Solo se entrena el codificador secuencial y la capa de predicción.
 - Las representaciones de ítems se recalculan en cada época.
- Etapa 2: se ajusta todo el modelo incluyendo el codificador textual para una mejor adaptación al dominio destino.

Text Is All You Need 12 / 37

Algoritmo 1: Fine-tuning en Dos Etapas

- 1: Inicializar el modelo Recformer con pesos preentrenados.
- 2: Congelar encoder de texto.
- 3: for cada batch de entrenamiento (Etapa 1) do
- 4: Propagación hacia adelante con el Transformer.
- 5: Calcular pérdida y retropropagación.
- 6: Actualizar parámetros del Transformer.
- 7: end for
- 8: Descongelar encoder de texto.
- 9: for cada batch de entrenamiento (Etapa 2) do
- 10: Propagación hacia adelante completa.
- 11: Calcular pérdida total y retropropagación.
- 12: Actualizar todos los parámetros.
- 13: end for

Text Is All You Need 13 / 37

Resumen Paso a Paso del Algoritmo

- Congelar encoder textual = evitar modificar representaciones base.
- Entrenar solo el codificador secuencial permite adaptación a dominio sin afectar semántica textual.
- Luego, desbloquear encoder textual permite ajuste fino conjunto.
- Este procedimiento mejora convergencia y estabilidad.

Text Is All You Need 14 / 37

DataSet Pre-training

Entrenamiento:

- Automotive.
- Cellphones and accessories.
- Clothing Shoes and Jewelry.
- Electronics
- Grocery and Gourmet Food
- Home and Kitchen
- Movies and TV

Validación:

Text Is All You Need

Cds and Vinyl

4 미 차 (환) (불) (불) 있었다.

15 / 37

DataSet Finetuning

- Scientific.
- Instruments.
- Arts.
- Office
- Games
- Pet

Datasets	#Users	#Items	#Inters.	Avg. n	Density	
Pre-training	3,613,906	1,022,274	33,588,165	9.29	9.1e-6	
-Training	3,501,527	954,672	32,291,280	9.22	9.0e-6	
-Validation	112,379	67,602	1,296,885	11.54	1.7e-4	
Scientific	11,041	5,327	76,896	6.96	1.3e-3	
Instruments	27,530	10,611	231,312	8.40	7.9e-4	
Arts	56,210	22,855	492,492	8.76	3.8e-4	
Office	101,501	27,932	798,914	7.87	2.8e-4	
Games	11,036	15,402	100,255	9.08	5.9e-4	
Pet	47,569	37,970	420,662	8.84	2.3e-4	

Figura: Data set después del preprocesamiento

Comparación con baselines

Id-only methods:

- GRU4Rec: Mediante una RNN modela las secuencias de interacciones que corresponden a una sesión.
- **SASRec**: Usa un modelo self-attentive en una sola direccion, captura relaciones entre ítems dentro de la secuencia.
- **BERT4Rec**: Usa transformer bidireccional que tratar de predecir items ocultos en la secuencia.
- RecGURU: Pre entrena representaciones de secuencia usando autoencoders junto con aprendizaje advesarial.

Text Is All You Need 17 / 37

Comparación con baselines

Id-text methods:

- FDSA: Modelo que usa auto-atención, capturando patrones de transición.
- **S3-Rec**: pre entrena el modelo secuencial, correlacionando atributos, items, subsecuencias, secuencias.

Text-only methods:

- **ZesRec**: Convierte el texto de los ítems en embeddings partir de un modelo de lenguaje pre entrenado.
- UniSRec: Representaciones textuales a partir de un modelo de lenguaje, usa adaptador MoE-enhance para ajustarse a nuevos dominios.

Text Is All You Need 18 / 37

Rendimiento

		ID-Only Methods			ID-Text Methods		Text-Only Methods			Improv.	
Dataset Metric	GRU4Rec	SASRec	BERT4Rec	RecGURU	FDSA	S ³ -Rec	ZESRec	UniSRec	RECFORMER	improv.	
	NDCG@10	0.0826	0.0797	0.0790	0.0575	0.0716	0.0451	0.0843	0.0862	0.1027	19.14%
Scientific	Recall@10	0.1055	0.1305	0.1061	0.0781	0.0967	0.0804	0.1260	0.1255	0.1448	10.96%
	MRR	0.0702	0.0696	0.0759	0.0566	0.0692	0.0392	0.0745	0.0786	0.0951	20.99%
	NDCG@10	0.0633	0.0634	0.0707	0.0468	0.0731	0.0797	0.0694	0.0785	0.0830	4.14%
Instruments	Recall@10	0.0969	0.0995	0.0972	0.0617	0.1006	0.1110	0.1078	0.1119	0.1052	-
	MRR	0.0707	0.0577	0.0677	0.0460	0.0748	0.0755	0.0633	0.0740	0.0807	6.89%
	NDCG@10	0.1075	0.0848	0.0942	0.0525	0.0994	0.1026	0.0970	0.0894	0.1252	16.47%
Arts	Recall@10	0.1317	0.1342	0.1236	0.0742	0.1209	0.1399	0.1349	0.1333	0.1614	15.37%
N	MRR	0.1041	0.0742	0.0899	0.0488	0.0941	0.1057	0.0870	0.0798	0.1189	12.49%
1	NDCG@10	0.0761	0.0832	0.0972	0.0500	0.0922	0.0911	0.0865	0.0919	0.1141	17.39%
Office	Recall@10	0.1053	0.1196	0.1205	0.0647	0.1285	0.1186	0.1199	0.1262	0.1403	9.18%
	MRR	0.0731	0.0751	0.0932	0.0483	0.0972	0.0957	0.0797	0.0848	0.1089	12.04%
	NDCG@10	0.0586	0.0547	0.0628	0.0386	0.0600	0.0532	0.0530	0.0580	0.0684	8.92%
Games	Recall@10	0.0988	0.0953	0.1029	0.0479	0.0931	0.0879	0.0844	0.0923	0.1039	0.97%
MRR	MRR	0.0539	0.0505	0.0585	0.0396	0.0546	0.0500	0.0505	0.0552	0.0650	11.11%
	NDCG@10	0.0648	0.0569	0.0602	0.0366	0.0673	0.0742	0.0754	0.0702	0.0972	28.91%
Pet	Recall@10	0.0781	0.0881	0.0765	0.0415	0.0949	0.1039	0.1018	0.0933	0.1162	11.84%
	MRR	0.0632	0.0507	0.0585	0.0371	0.0650	0.0710	0.0706	0.0650	0.0940	32.39%

Figura: Performance de los distintos métodos

◆ロト ◆部ト ◆差ト ◆差ト 差 めなぐ

Resultados Clave

- Métodos ID-Text mejor desempeño que ID-Only Text-Only
- Recformer supera a todos los modelos comparativos(mejora 15.99 % en promedio), excepto en Recall en dataset de instrumentos.

Rendimiento en escenario Zero-shot

Figura: Rendimiento (NDCG@10) de tres métodos de solo texto en la configuración de disparo cero.

Text Is All You Need 21 / 37

Rendimiento en escenario Zero-shot

- Evalúa modelos Text-Only (Recformer, UniSRec, ZESRec) sin fine-tuning.
- Recformer supera incluso a métodos ID-Only totalmente entrenados en algunos casos.
- Demuestra la capacidad de transferencia sin entrenamiento adicional.

Text Is All You Need 22 / 37

Rendimiento en escenario con pocos datos

Figura: Rendimiento (NDCG@10) de SASRec, UniSRec y Recformer en diferentes tamaños (es decir, 1%, 5%, 10%, 50%, 100%) de datos de entrenamiento.

Rendimiento en escenario con pocos datos

- Compara el rendimiento con diferentes proporciones de datos (1 %, 5 %, 10 %, etc.).
- Recformer y UniSRec superan a SASRec especialmente cuando hay poca data.
- Recformer es más robusto en escenarios de escasez de datos.

Text Is All You Need 24 / 37

Ítems Cold-Start

		SASRec		Unis	Rec	RECFORMER		
Dataset	Metric	In-Set	Cold	In-Set	Cold	In-Set	Cold	
Scientific	N@10	0.0775	0.0213	0.0864	0.0441	0.1042	0.0520	
	R@10	0.1206	0.0384	0.1245	0.0721	0.1417	0.0897	
Instruments	N@10	0.0669	0.0142	0.0715	0.0208	0.0916	0.0315	
	R@10	0.1063	0.0309	0.1094	0.0319	0.1130	0.0468	
Arts	N@10	0.1039	0.0071	0.1174	0.0395	0.1568	0.0406	
	R@10	0.1645	0.0129	0.1736	0.0666	0.1866	0.0689	
Pet	N@10	0.0597	0.0013	0.0771	0.0101	0.0994	0.0225	
	R@10	0.0934	0.0019	0.1115	0.0175	0.1192	0.0400	

Figura: Rendimiento de modelos comparado entre elementos dentro del conjunto y elementos de inicio en frío en cuatro conjuntos de datos

Text Is All You Need 25 / 37

Ítems Cold-Start

- Recformer supera ampliamente a métodos basados en IDs (como SASRec) en ítems nunca vistos.
- Ventaja clara de usar textos frente a embeddings de ítems preentrenados.

(□ ▶ ∢御 ▶ ∢差 ▶ ∢差 ▶ ○差 ○夕@

Estudio de Ablación

Variants	5	Scientific		Instruments			
V 44.24.24.25	NDCG@10	Recall@10	MRR	NDCG@10	Recall@10	MRR	
(0) Recformer	0.1027	0.1448	0.0951	0.0830	0.1052	0.0807	
(1) w/o two-stage finetuning	0.1023	0.1442	0.0948	0.0728	0.1005	0.0685	
(1) + (2) freezing word emb. & item emb.	0.1026	0.1399	0.0942	0.0728	0.1015	0.0682	
(1) + (3) trainable word emb. & item emb.	0.0970	0.1367	0.0873	0.0802	0.1015	0.0759	
(1) + (4) trainable item emb. & freezing word emb.	0.0965	0.1383	0.0856	0.0801	0.1014	0.0760	
(5) w/o pre-training	0.0722	0.1114	0.0650	0.0598	0.0732	0.0584	
(6) w/o item position emb. & token type emb.	0.1018	0.1427	0.0945	0.0518	0.0670	0.0501	

Figura: Estudio de ablación en dos datasets

27 / 37

Text Is All You Need

Estudio de Ablación

- Se estudian variantes del modelo para ver el impacto de cada componente:
 - Fine-tuning en dos etapas mejora el rendimiento.
 - Pre-entrenamiento es crucial.
 - Embeddings de posición y tipo de token también son importantes.

(ロ) (個) (重) (重) (個) (口)

Pasos de pre-entrenamiento

Figura: Rendimiento de la recomendación de disparo cero del Recformador (NDCG@10 y Recall@10) en diferentes pasos previos al entrenamiento.

Text Is All You Need 29 / 37

Fortalezas de Recformer

- Generalización sin necesidad de IDs.
- Representaciones transferibles entre dominios.
- Escalabilidad sin tablas de embeddings.

(ロ) (団) (트) (트) (ロ)

Debilidades y Desafíos

- Alto costo computacional (modelo de lenguaje).
- Requiere metadatos textuales ricos.
- Menor aplicabilidad en dominios sin descripciones.

◆ロ ▶ ◆昼 ▶ ◆昼 ▶ ○昼 ・ 夕久で

Conclusiones

- Recformer unifica lenguaje natural y recomendación secuencial.
- Alta capacidad de transferencia.
- Rompe con la dependencia de IDs y tablas estáticas.

Referencias

- Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normalization. ArXiv abs/1607.06450 (2016).
- Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The Long-Document Transformer. ArXiv abs/2004.05150 (2020).
- Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong. 2017. On Sampling Strategies for Neural Network-based Collaborative Filtering. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017).

Text Is All You Need 33 / 37

Referencias (1/4)

- (1) Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normalization. ArXiv abs/1607.06450 (2016).
- 2 Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The Long-Document Transformer. ArXiv abs/2004.05150 (2020).
- Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong. 2017. On Sampling Strategies for Neural Network-based Collaborative Filtering. KDD (2017).
- Yong-Guang Chen et al. 2022. Intent Contrastive Learning for Sequential Recommendation. WWW (2022).
- Junyoung Chung et al. 2014. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. ArXiv abs/1412.3555 (2014).
- Jacob Devlin et al. 2019. BERT: Pre-training of Deep Bidirectional Transformers. ArXiv abs/1810.04805 (2019).
- Was Ding et al. 2021. Zero-Shot Recommender Systems. ArXiv abs/2105.08318 (2021).
- Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE. EMNLP.
- Ruining He and Julian McAuley. 2016. Fusing Similarity Models with Markov Chains. ICDM (2016).
- Dan Hendrycks and Kevin Gimpel. 2016. Gaussian Error Linear Units (GELUs). ArXiv.

Text Is All You Need 34 / 37

Referencias (2/4)

- Balázs Hidasi et al. 2015. Session-based Recommendations with RNNs. CoRR abs/1511.06939.
- Yupeng Hou et al. 2022. Towards Universal Sequence Representation. KDD (2022).
- Guangneng Hu et al. 2018. CoNet. CIKM (2018).
- Wang-Cheng Kang and Julian McAuley. 2018. Self-Attentive Sequential Recommendation. ICDM (2018).
- Mike Lewis et al. 2019. BART. ACL.
- Chenglin Li et al. 2021. RecGURU. WSDM (2021).
- Jing Li et al. 2017. Neural Attentive Session-based Recommendation. CIKM (2017).
- Jiacheng Li et al. 2022. UCTopic. ACL 2022.
- Jiacheng Li et al. 2020. Time Interval Aware Self-Attention. WSDM (2020).
- Jiacheng Li et al. 2022. Coarse-to-Fine Sparse Sequential Recommendation. SIGIR (2022).

Text Is All You Need 35 / 37

Referencias (3/4)

- Yinhan Liu et al. 2019. RoBERTa. ArXiv abs/1907.11692.
- Jianmo Ni et al. 2019. Justifying Recommendations. EMNLP.
- Alec Radford and Karthik Narasimhan. 2018. GPT Pre-Training.
- Colin Raffel et al. 2019. Exploring the Limits of Transfer Learning. ArXiv abs/1910.10683.
- Steffen Rendle et al. 2010. Factorizing Markov chains. WWW.
- Ajit Paul Singh and Geoffrey J. Gordon. 2008. Collective Matrix Factorization. KDD.
- Fei Sun et al. 2019. BERT4Rec. CIKM.
- Jiaxi Tang and Ke Wang. 2018. Convolutional Sequence Embedding. WSDM.
- Jie Tang et al. 2012. Cross-domain collaboration recommendation. KDD.
- Ashish Vaswani et al. 2017. Attention is All You Need. ArXiv abs/1706.03762.

Text Is All You Need 36 / 37

Referencias (4/4)

- 1 Chuhan Wu et al. 2020. PTUM. ArXiv abs/2010.01494.
- 2 Chaojun Xiao et al. 2021. UPRec. ArXiv abs/2102.10989.
- Ruobing Xie et al. 2021. Contrastive Cross-domain Recommendation. KDD.
- Fajie Yuan et al. 2018. Convolutional Generative Network. WSDM.
- 55 Fajie Yuan et al. 2020. Continual User Representation. SIGIR.
- Manzil Zaheer et al. 2020. Big Bird. ArXiv abs/2007.14062.
- Tingting Zhang et al. 2019. Feature-level Self-Attention. IJCAI.
- Kun Zhou et al. 2020. S3-Rec. CIKM.
- Feng Zhu et al. 2019. DTCDR. CIKM.
- Feng Zhu et al. 2021. Cross-Domain Recommendation Survey. ArXiv abs/2103.01696.

Text Is All You Need 37 / 37