Plan du cours

I.	Définitions		1	
II.	Syn	nétrique d'un point	ue d'un point 2	
III.	Pro	priétés de la symétrie centrale		
	1.	Symétrique d'un segment	3	
	2.	Symétrique d'une droite ou d'une demi-droite	4	
	3.	Symétrique d'un cercle	4	
	4.	Construction du symétrique d'une figure	4	

Activité d'introduction

I. Définitions

Définition

Deux figures sont symétriques par rapport à un point si, en effectuant un demi-tour autour de ce point, les deux figures se superposent. On dit alors que ce point est le centre de la symétrie.

Exemple:

II. Symétrique d'un point

En utilisant du papier calque, vérifier que la figure rouge et la figure violette représentées ci-dessous sont symétriques par rapport au point O.

- a. Quelle est la mesure de l'angle AOA' ?
- b. Que peut-on dire des longueurs OA et OA'?
- c. Que représente le point O pour le segment [AA'] ?
 Que peut-on dire du point O pour chacun des segments [BB'], [CC'], [DD'], [EE'] et [FF'] ?

Définition

Le symétrique d'un point A par rapport à un point O est le point A' tel que le point O soit le milieu du segment [AA'].

Exemple:

Le point O est le milieu du segment [AA'] donc, par définition, on peut dire que :

• le point A est le symétrique du point A' par rapport au point O.

• le point A' est le symétrique du point A par rapport au point O.

Exercice d'application 1 -

1. Construire les symétriques A', B', C', D' des points A, B, C et D par rapport au point E.

2. Construire le symétrique du point E par rapport au point C.

III. Propriétés de la symétrie centrale

Propriété

Deux figures symétriques par rapport à un point sont superposables. Par conséquent les longueurs, les angles, l'alignement des points et le parallélisme sont conservés.

1. Symétrique d'un segment

Propriété

L'image d'un segment par une symétrie centrale est un segment de même longueur.

Exemple:

3

2. Symétrique d'une droite ou d'une demi-droite

Propriété

L'image d'une droite (d) par une symétrie centrale est une droite (d') qui lui est parallèle.

Exemple:

Remarque: Le cas de la demi-droite est semblable à celui de la droite.

3. Symétrique d'un cercle

Propriété

L'image d'un cercle par une symétrie centrale est un cercle de même rayon. Les centres des deux cercles sont symétriques

Exemple:

4. Construction du symétrique d'une figure

Propriété

L'image d'un polygone par une symétrie centrale est un polygone semblable, ayant le même périmètre et la même aire.

Exemple:

Exercice d'application 2

Le point B', symétrique du point B par rapport au point O a déjà été construit sur la figure ci-contre.

Construire la figure F', symétrique de la figure F par rapport au point O sur la feuille de papier blanc.

