

CSDN 学院人工智能工程师课程大纲

第一阶段 机器学习原理及推荐系统实现					
时间	主题	理论 课程目标			
Week1	机器学习简介	 机器学习定义; 机器学习行业应用举例; 机器学习任务:监督学习(分类、回归)、非监督学习(聚类、降维)、半监督学习、迁移学习、强化学习; 机器学习算法的组成部分:目标函数(损失函数+正则)、优化方法; 模型评估和模型选择:模型复杂度、过拟合、交叉验证、超参数空间、网格搜索… 		置及机器学习库 anaconda: Python、科 学 计 算 包 (NumPy, SciPy, Pandas)、数据可视化工具包(Matplotlib, seaborn)、机器学习库(scikit-learn)	
Week2	Logistic 回归 分析、神经网 络、SVM	1. 分类算法的损失函数: logistic 损失、Hingloss 损失、 2. 优化算法: IRLS (梯度下降、牛顿法)、BP 算法、SMO (序列最小最优化算法) 3. 正则化: L1/L2 4. 复习模型评估 5. 其他:最小间隔、核方法、支持向量回归	电商商品分类案例 用 Logistic 回归、神经网络和SVM等分类器实现商品分类 比较不同模型以及不同参数下SVM(不同正则参数和核函数)的性能,体会各模型的特点	理解分类任算法(Logistic 回归、 神经网络、SVM)原理,复习数据集	
Week3	决策树模型	1. 损失函数:信息增益、Gini 系数	电商商品分类案例	学习 Boosting 集成思想及基于树的	

	(CART)、基于	2.	划分: 穷举搜索、近似搜索		集成算法
	树的集成学习	3.		 XGBoost 在实际案例上的参数调	XXXXXXX
	算法(随机森	4.		优	
	林、GBDT)	5.			
	ባጥና GDD17				
		6.	Boosting 原理		
		7.	流行的 GBDT 工具: XGBoost 和 LightGBM		
		1.	主成分分析(PCA)	人脸图像特征提取: PCA、ICA、	学习用降维技术对高维特征进行降
	聚类、降维、矩 阵分解	2.	独立成分分析(ICA)	NFM	维
w 14		3.	非负矩阵分解(NFM)		
Week4		4.	隐因子模型(LFM)	电商用户聚类案例	
		5.	KMeans 聚类和混合高斯模型 GMM(EM 算法)		
		6.	吸引子传播聚类算法(Affinity		
			Propagation 聚类算法)		
		1.	数据预处理: 缺失值处理	商品推荐案例	学会常用数据预处理方法及特征编
		2.	特征编码:标签编码、Dummy(One hot)编		码方法
			码、后验均值编码	复习数据探索、数据离群点检测	
		3.	文本特征提取	和处理	学习特征工程的一般处理原则
Waale	特征工程、模型	4.	特征组合	数据预处理: 缺失值处理	
Week5	融合& 推荐系	5.	特征选择	特征编码	实现一个实际的推荐系统
	统实现	6.	协同过滤	组合各种特征工程技术和机器	
		7.	基于内容的过滤	学习算法实现推荐系统	
		8.	FFM & LFM		
		9.	排序学习		
		10	. 模型融合: Blending、Stacking		

第二阶段 深度学习原理及实战项目强化训练 主题 理论 实战案例 课程目标 时间 1. 神经网络历史与现状 LeNet 与传统神经网络对比 熟悉神经网络领域的常用术语, 2. 神经网络的分类: 全连接、卷积、循 了解很精网络在 AI 环境中的位 包含知识点—— 置。 环 3. 神经网络的应用:图像、语音、自然 损失函数、L1/L2 正则、梯度下降/ 语言处理 随机梯度下降/动量随机梯度下降 神经网络入门 4. 神经网络的计算: 权重、损失和梯度 5. 神经网络的优化:前向/反向传播和梯 度下降 6. 全局最优、局部最优和鞍点 7. 正则化、归一化 Week1 1. 学习环境配置: 常用软件、环境配置 │ Mnist 手写数字识别 学会用 tensorflow 解一个实际 及机器学习库 问题。 anaconda: Python、Python 科学计算 | 包含知识点—— 包(NumPy, SciPy, Pandas)、Python | Mnist 数据集探索 Tensorflow 基础概念 数据可视化工具包(Matplotlib, 机器学习环境配置 计算图 seaborn) 神经网络框架 Tensorflow session 2. 简单神经网络实现手写数字识别 1. 多层神经网络结构:输入、输出、隐 手写数字识别 Mnist 神经网络基础 使用不同结构的神经网络结构验 Week2

			层和激活函数	验证码识别	证网络结构对效果的影响
		2.	前向计算和损失		
			向量化计算和 one-hot 编码	包含内容——	
			sigmoid、softmax 及交叉熵	使用简单神经网络实现手写数字识	
		3.	反向传播及迭代优化	别	
			梯度下降及动量		
		4.	过拟合与欠拟合		
		5.	正则化、批正则化及 Se lu		
		6.	Dropout		
		1.	卷积	LeNet	了解卷积神经网络的相关概念和
			padding、stride、kernel 和 channel	数据集 Mnist	基础知识
			局部相关性	用 LeNet 实现手写数字识别	
			感受野	局部相关性	
	卷积神经网络		感受野的计算	权值共享	
		2.	池化		
			max_pooling, average_pooling		
			global_average_pooling		
		3.	局部网络连接		
		_	网络八米人加上南顶	F1 #6-40-65	—————————————————————————————————————
		1.	图像分类介绍与实现	Flowers 数据集	学习图像分类任务目前主要模型
	卷积神经网络 分类任务	2.	imagenet 数据集与预训练模型	基于 imagenet 预训练模型的迁移	算法
Wasta		3.	Inception 网络 ResNet 网络		
Week3		4. 5.	mesnet 网络 细粒度分类		
		5.	细似反刀关		
		1.	检测任务介绍与实现	PascalV0C 数据集	

	检测任务	2.	特征提取	使用 Tensorflow 训练一个检测模	
		3.	区域建议	型	
		4.	区域合并		
		5.	R-CNN		
		6.	Fast/Faster R-CNN		
		7.	SSD		
		8.	Y0L0		
	卷积神经网络	1.	分割任务简介	C0C0 数据集	学习主流分割模型
Week4	· 分割任务	2.	反卷积(deconv/transpose-conv)	学习语义分割模型	
	刀削工刀	3.	FCN		
		1.	RNN 基本原理	写诗机器人	学习循环神经网络的原理及应用
	循环神经网络	2.	门限循环单元(GRU)		
		3.	长短期记忆单元(LSTM)		
		4.	词向量提取: Word2Vec		
Week5		5.	编码器─解码器结构		
		6.	注意力机制模型: Attention Model		
		7.	图片标注(Image Captioning)		
		8.	图片问答(Visual Question		
			Answering)		

第三阶段 四个工业级实战项目(可选)及成果展示					
项目名称	项目内容				
自然语言处理: 文本 分类	根据企业的注册、投资及经营范围等相关信息,对企业进行分类,为企业的估值提供参考。				
广告点击率预测 (CTR)	预测用户浏览给定网页的广告点击率,提高广告投放精准度。				
车辆检测及型号识别	用深度学习方法从图片中检测车辆并识别其型号。				
看图说话机器人	用计算机视觉和深度学习方法分析图片内容,并对图片自动生成文字描述。				