PAKET 10

PELATIHAN ONLINE

po.alcindonesia.co.id

SMA KIMIA

@ALCINDONESIA.CO.ID

085223273373

TERMOKIMIA

WHEN THE PARTY NAMED IN

Hukum I Termodinamika

Hukum I termodinamika sering dikenal dengan hukum kekekalan energi, dinyatakan sebagai berikut

 $\Delta U = q + w di mana$

ΔU = perubahan energi dalam

Q = kalor

W = kerja (W = -PdV)

Kalor

Kalor merupakan energi yang ditransfer akibat perbedaan suhu. Nilai kalor dapat ditentukan melalui kalorimetri atau meneggunakan Hukum Hess

<u>Kalorimetri</u>

$$Q = m.c.\Delta T$$
 atau $Q = C.\Delta T$

di mana Q adalah kalor (J), c adalah kapasitas kalor spesifik (J/g°C), C adalah kapasitas kalor (J/°C), ΔT adalah selisih suhu akhir dan suhu awal (°C).

Kalorimetri biasa dilakukan dalam dua kondisi: tekanan tetap (contoh : kalorimetri cangkir kopi) dan volume tetap (contoh : kalorimetri bom)

Hukum Hess

Karena entalpi merupakan fungsi keadaan, maka nilainya dapat ditentukan dengan meninjau keadaan akhir dan awal dari rangkaian proses saja

 $A + B \rightarrow C$ $\Delta H = a kJ$

 $C + A \rightarrow D$ $\Delta H = b kJ$

 $D + A \rightarrow E \qquad \Delta H = c kJ +$

 $3A + B \rightarrow E$ $\Delta H = a+b+c kJ$

TIPS MENGERJAKAN SOAL

#10 Kalor dalam tekanan tetap dan kalor dalam volume tetap

Dalam volume tetap, kalor akan setara dengan ΔU (perubahan energi dalam) sedangkan dalam tekanan tetap, kalor akan setara dengan ΔH (perubahan entalpi)

Volume tetap

$$Q_{v} = \Delta U - W$$
$$= \Delta U + PdV$$

Karena
$$dV = 0$$

$$Q_v = \Delta U$$

Tekanan tetap

$$\Delta U = Q_P + W$$

$$H = U+PV$$

$$\Delta H = \Delta U + \Delta (PV)$$

$$\Delta H = \Delta U + P \Delta V + V \Delta P$$

$$= Q_P + W + P\Delta V + V\Delta P$$

$$= Q_P - P\Delta V + P\Delta V + V\Delta P$$

$$= Q_P + V\Delta P$$

Karena tekanan tetap, maka $\Delta P = 0$

$$\Delta H = Q_P$$

SOAL

- 1. Sebuah bola besi seberat 22 g dengan suhu 90°C dijatuhkan ke dalam 100 mL air (ρ=1g/mL, c_{air}=4,2 J/g°C). Jika suhu sebelum penambahan bola besi adalah 25°C dan setelah penambahan adalah 27°C. Tentukan nilai kalor jenis dari bola besi
- a. 0,40 J/g°C
- b. 0,50 J/g°C
- c. 0,60 J/g°C
- d. 0,70 J/g°C
- e. 0,80 J/g°C
- 2. Jika 230g minyak (c=2,0 J/g°C) dipanaskan dari 25°C ke 100°C. Tentukan jumlah kalor yang diserap minyak ini!
- a. 34500 J
- b. 45000 J
- c. 54000 J
- d. 62500 J
- e. 75000 J
- 3. Proses pemanasan 100 g air murni 25°C menjadi uap 125°C memerlukan kalor sebanyak 77,15 kJ. Jika diketahui $c_{H2O(I)}$ = 4,2 J/g°C dan $c_{H2O(g)}$ =1,996 J/g°C, tentukan ΔH penguapan $H_2O!$
- a. 31,55 kJ/mol
- b. 40,65 kJ/mol
- c. 52,15 kJ/mol
- d. 13,23 kJ/mol
- e. 7,31 kJ/mol
- 4. Sebanyak 2g asam benzoat (C_6H_5COOH) dibakar dalam kalorimeter bom menghasilkan kenaikan suhu sebesar 3°C. Tentukan kapasitas kalor kalorimeter! Diketahui $\Delta U_c^\circ C_6H_5COOH = -3228,29 \text{ kJ/mol}$
- a. 17,64 kJ/K
- b. 21,25 kJ/K
- c. 33,26 kJ/K
- d. 39,15 kJ/K
- e. 42,44 kJ/K

- 5. Menggunakan data jawaban no.5, tentukan ΔU_c CH₃OH jika 1g CH₃OH dibakar menggunakan kalorimeter yang sama mengakibatkan kenaikan suhu sebesar 1,29°C!
- a. -725,95 kJ/mol
- b. 725,95 kJ/mol
- c. -1451,90 kJ/mol
- d. 1451,90 kJ/mol
- e. 956,77 kJ/mol
- 6. Dengan bantuan jawaban no.6, tentukan ΔH°_c CH₃OH pada suhu 25°C!
- a. 726 kJ/mol
- b. -726 kJ/mol
- c. 1452 kJ/mol
- d. -1452 kJ/mol
- e. 957 kJ/mol
- 7. Tentukan ΔH°_c etuna jika diketahui data berikut!

$$\Delta H_f^o C_2 H_{2(g)} = 226,7 \text{ kJ/mol}$$

$$\Delta H_f^{o} H_2 O_{(I)} = -292,74 \text{ kJ/mol}$$

$$\Delta H_f^o CO_{2(g)} = -393,5 \text{ kJ/mol}$$

- a. -603,22 kJ/mol
- b. 603,22 kJ/mol
- c. -1306,44 kJ/mol
- d. 1306,44 kJ/mol
- e. 1502,14 kJ/mol
- 8. Jika diketahui efisiensi pembakaran dari gas etuna dalam suatu alat adalah sebesar 80%, tentukan jumlah gas etuna yang dibutuhkan apabila tertulis daya alat sebesar 10.000 J kalor perdetik!
- a. 0,095 g/s
- b. 0,199 g/s
- c. 0,249 g/s
- d. 0,896 g/s
- e. 1,792 g/s
- 9. Sebuah tabung gas diketahui berisi gas propana dan beberapa komponen inert. Jika 3 kg dari campuran gas ini dibakar (ΔH_c =-2220 kJ/mol) menghasilkan kalor sebesar 45409,1 kJ. Tentukan kadar gas propana dari campuran gas tersebut!
- a. 10%

- b. 15%
- c. 20%
- d. 25%
- e. 30%
- 10. Campuran gas yang hanya terdiri dari metana dan etana sebanyak 3,0 g dibakar menghasilkan kalor sebesar 159,75 kJ. Tentukan komposisi gas tersebut! (ΔH_c metana = -882 kJ/mold an ΔH_c etana = -1560 kJ/mol)
- a. 1,2 g metana dan 1,8 g etana
- b. 1,5 g metana dan 1,5 g etana
- c. 1,7 g metana dan 1,3 g etana
- d. 1,9 g metana dan 1,1 g etana
- e. 2,1 g metana dan 0,9 g etana
- 11. Campuran gas yang terdiri dari metana dan propana sebanyak 4,8 g dibakar menghasilkan kalor sebesar 255,26 kJ. Tentukan komposisi gas tersebut! (ΔH_c metana = -882 kJ/mold an ΔH_c propana = -2220 kJ/mol)
- a. 1,2 g propana dan 3,6 g metana
- b. 1,7 g propana dan 3,1 g metana
- c. 2,0 g propana dan 2,8 g metana
- d. 2,4 g propana dan 1,2 g metana
- e. 2,8 g propane dan 2,0 g metana
- 12. Menggunakan siklus Born-Haber, jika diketahui:

 $\Delta H_{\text{sublimasi}} Mg = 148 \text{ kJ/mol}$

 $E_{ionisasi I} Mg = 738 kJ/mol$

 $E_{ionisasi II} Mg = 1451 kJ/mol$

 $\Delta H_{\text{atomisasi}} Cl_2 = 122 \text{ kJ/mol}$

Afinitas elektron Cl= -349 kJ/mol

Energi kisi MgCl₂ = -2526 kJ/mol

Tentukan ΔH_f MgCl₂!

- a. -643 kJ/mol
- b. 643 kJ/mol
- c. 737 kJ/mol
- d. -737 kJ/mol
- e. -900 kJ/mol

13. Menggunakan siklus Born-Haber, jika diketahui:

 $\Delta H_{\text{sublimasi}} \text{Ca}$ = 179,3 kJ/mol

 $E_{ionisasi\ I+II}$ Ca = 1731 kJ/mol

 $\Delta H_{disosiasi} F_2 = 139 \text{ kJ/mol}$

Afinitas elektron F= -327,9 kJ/mol

 $\Delta H_f CaF_2 = -1219,6 \text{ kJ/mol}$

Tentukan Ekisi MgCl2!

- a. -1871,2 kJ/mol
- b. -2121,4 kJ/mol
- c. -2613,1 kJ/mol
- d. -3123,5 kJ/mol
- e. -3654,9 kJ/mol
- 14. Paduan logam yang terdiri dari besi dan tembaga dengan berat total 6g dipanaskan dari 40° C ke 80° C menggunakan total kalor sebesar 104,88 J. Tentukan komposisi paduan logam tersebut! ($c_{besi} = 0,45 \text{ J/g}^{\circ}$ C dan $c_{tembaga} = 0,385 \text{ J/g}^{\circ}$ C)
- a. 0,8 g besi dan 5,2 g tembaga
- b. 1,8 g besi dan 4,2 g tembaga
- c. 2,8 g besi dan 3,2 g tembaga
- d. 3,8 g besi dan 2,2 g tembaga
- e. 4,8 g besi dan 1,2 g tembaga
- 15. Hidrazin (N_2H_4) dapat terurai dari bentuk cairnya membentuk gas nitrogen dan gas ammonia melepas kalor sebesar 112 kJ/mol. Diketahui ΔH_f dari hidrazin cair = 50,6 kJ/mol, ΔH_f hidrazin gas = 95,4 kJ/mol dan energi ikatan rata-rata N-N = 159 kJ/mol. Tentukan ΔH penguapan dari hidrazin!
- a. 44,8 kJ/mol
- b. -44,8 kJ/mol
- c. 22,4 kJ/mol
- d. -22,4 kJ/mol
- e. 89,6 kJ/mol
- 16. Tentukan besar energi ikatan rata-rata $N \equiv N$ jika diketahui ΔH_f hidrazin gas = 95,4 kJ/mol, ΔH_f dari hidrazin cair = 50,6 kJ/mol, ΔH reaksi penguraian hidrazin cair menjadi gas ammonia dan gas nitrogen = -112 kJ/mol, dan energi ikatan rata-rata N-N = 159 kJ/mol!
- a. 947 kJ/mol
- b. 902 kJ/mol

- c. 477 kJ/mol
- d. 159 kJ/mol
- e. 53 kJ/mol
- 17. Jika sebanyak 0,68 g cairan H_2O_2 terdekomposisi menjadi H_2O dan O_2 menghasilkan kalor sebesar 3924 J. Tentukan entalpi dekomposisi dari H_2O_2 !
- a. -256,4 kJ/mol
- b. 256,4 kJ/mol
- c. -196,2 kJ/mol
- d. 196,2 kJ/mol
- e. 101,6 kJ/mol
- 18. Reaksi pelarutan sejumlah garam AX ke dalam air menghasilkan penurunan suhu sebesar 10°C. Mana pernyataan berikut yang benar?
- a. Reaksi tersebut merupakan reaksi endoterm dan ΔH_{reaksi} bernilai positif
- b. Reaksi tersebut merupakan reaksi eksoterm dan ΔH_{reaksi} bernilai positif
- c. Reaksi tersebut merupakan reaksi endoterm dan ΔH_{reaksi} bernilai negatif
- d. Reaksi tersebut merupakan reaksi eksoterm dan ΔH_{reaksi} bernilai negatif
- e. ΔH_{reaksi} bernilai nol
- 19. Diketahui $\Delta H_{atomisasi}$ F adalah 69,5 kJ/mol. Dari persamaan reaksi berikut, mana yang sesuai dengan proses atomisasi?
- a. $F_{2(g)} \rightarrow 2F_{(g)}$
- b. $\frac{1}{2} F_{2(g)} \to F_{(g)}$
- c. $F_{2(g)} \rightarrow F_{(g)}^{-} + F_{(g)}^{+}$
- d. $\frac{1}{2}F_{2(g)} \rightarrow \frac{1}{2}F^{-}_{(g)} + \frac{1}{2}F^{+}_{(g)}$
- e. $F_{2(g)} \rightarrow 2F_{(s)}$
- 20. Jika diketahui titik didih normal asam asetat adalah 118° C dan dalam 0,8 atm titik didihnya 106° C. Tentukan ΔH_{vap} dari asam asetat!
- a. 12,2 kJ/mol
- b. 22,9 kJ/mol
- c. 36,5 kJ/mol
- d. 48,6 kJ/mol
- e. 60,8 kJ/mol