Analiza, Wykład: Całka oznaczona (Riemanna)

Wojciech Domitrz (slajdy: Ewa Stróżyna, Wojciech Domitrz)

Wydział Matematyki i Nauk Informacyjnych, Politechnika Warszawska

Dana jest funkcja $f:[a,b] \to \mathbb{R}$.

Dla $n \in \mathbb{N}$ przez Δ_n oznaczmy podział przedziału [a, b] taki, że $a = x_0 < x_1 < \cdots < x_n = b, \quad \Delta x_k = x_k - x_{k-1}, \ k = 1, \ldots, n.$

Dana jest funkcja $f:[a,b] \to \mathbb{R}$.

Dla $n \in \mathbb{N}$ przez Δ_n oznaczmy podział przedziału [a, b] taki, że $a = x_0 < x_1 < \cdots < x_n = b, \quad \Delta x_k = x_k - x_{k-1}, \ k = 1, \ldots, n.$

Średnica podziału: $\delta_n = \max_{1 \leqslant k \leqslant n} \Delta x_k$

Mówimy, że ciąg podziałów jest *normalny* $\iff \lim_{n \to \infty} \delta_n = 0$

Dana jest funkcja $f:[a,b] \to \mathbb{R}$.

Dla $n \in \mathbb{N}$ przez Δ_n oznaczmy podział przedziału [a, b] taki, że $a = x_0 < x_1 < \cdots < x_n = b, \quad \Delta x_k = x_k - x_{k-1}, \ k = 1, \ldots, n.$

Średnica podziału: $\delta_n = \max_{1 \leqslant k \leqslant n} \Delta x_k$

Mówimy, że ciąg podziałów jest *normalny* $\iff \lim_{n \to \infty} \delta_n = 0$

Tworzymy sume całkową wybierając dowolny punkt $\xi_k \in [x_{k-1}, x_k], \ k = 1, \dots, n$:

$$S_n = \sum_{k=1}^n f(\xi_k) \cdot \Delta x_k$$

Definicja

Jeśli dla każdego ciągu normalnego podziałów przedziału [a,b] istnieje granica właściwa ciągu sum całkowych (S_n) , niezależna od wyboru punktów ξ_k , to tę granicę nazywamy całką oznaczoną (Riemanna) funkcji f na przedziale [a,b] i oznaczamy:

$$\int_{a}^{b} f(x) \, dx$$

Definicja

Jeśli dla każdego ciągu normalnego podziałów przedziału [a,b] istnieje granica właściwa ciągu sum całkowych (S_n) , niezależna od wyboru punktów ξ_k , to tę granicę nazywamy całką oznaczoną (Riemanna) funkcji f na przedziale [a,b] i oznaczamy:

$$\int_{a}^{b} f(x) \, dx$$

$$\int_a^b f(x) dx = \lim_{\delta_n \to 0} \sum_{k=1}^n f(\xi_k) \cdot \Delta x_k$$

Definicja

Jeśli dla każdego ciągu normalnego podziałów przedziału [a,b] istnieje granica właściwa ciągu sum całkowych (S_n) , niezależna od wyboru punktów ξ_k , to tę granicę nazywamy całką oznaczoną (Riemanna) funkcji f na przedziale [a,b] i oznaczamy:

$$\int_{a}^{b} f(x) \, dx$$

$$\int_a^b f(x) dx = \lim_{\delta_n \to 0} \sum_{k=1}^n f(\xi_k) \cdot \Delta x_k$$

Jezeli całka $\int_a^b f(x) dx$ istnieje to mówimy, że funkcja f jest całkowalna w sensie Riemanna na [a,b] (lub R-całkowalna na [a,b]).

Definicja

Jeśli dla każdego ciągu normalnego podziałów przedziału [a,b] istnieje granica właściwa ciągu sum całkowych (S_n) , niezależna od wyboru punktów ξ_k , to tę granicę nazywamy całką oznaczoną (Riemanna) funkcji f na przedziale [a,b] i oznaczamy:

$$\int_{a}^{b} f(x) \, dx$$

$$\int_a^b f(x) dx = \lim_{\delta_n \to 0} \sum_{k=1}^n f(\xi_k) \cdot \Delta x_k$$

Jezeli całka $\int_a^b f(x) dx$ istnieje to mówimy, że funkcja f jest całkowalna w sensie Riemanna na [a,b] (lub R-całkowalna na [a,b]). Zbiór wszytkich fukcji R-całkowalnych na [a,b] oznaczamy przez R[a,b].

Definicja

Jeśli dla każdego ciągu normalnego podziałów przedziału [a,b] istnieje granica właściwa ciągu sum całkowych (S_n) , niezależna od wyboru punktów ξ_k , to tę granicę nazywamy całką oznaczoną (Riemanna) funkcji f na przedziale [a,b] i oznaczamy:

$$\int_{a}^{b} f(x) \, dx$$

$$\int_a^b f(x) dx = \lim_{\delta_n \to 0} \sum_{k=1}^n f(\xi_k) \cdot \Delta x_k$$

Jezeli całka $\int_a^b f(x) dx$ istnieje to mówimy, że funkcja f jest całkowalna w sensie Riemanna na [a,b] (lub R-całkowalna na [a,b]). Zbiór wszytkich fukcji R-całkowalnych na [a,b] oznaczamy przez R[a,b]. a nazywamy dolną, a b to górną granicą całkowania.

Interpretacja geometryczna całki oznaczonej

Jeśli f – ciągła, nieujemna w [a,b], to: $\int_a^b f(x) dx = |D|$, gdzie |D| – pole figury ograniczonej wykresem funkcji y = f(x) i prostymi y = 0, x = a, x = b.

Interpretacja geometryczna całki oznaczonej

Niech $v : [a, b] \to \mathbb{R}$ będzie funcją prędkości w zależności od czasu.

Niech $v:[a,b] \to \mathbb{R}$ będzie funcją prędkości w zależności od czasu. Podzielmy odcinek czasu [a,b] punktami $a=t_0 < t_1 < t_2 < \cdots < t_{n-1} < t_n = b$.

Niech $v:[a,b] \to \mathbb{R}$ będzie funcją prędkości w zależności od czasu. Podzielmy odcinek czasu [a,b] punktami $a=t_0 < t_1 < t_2 < \cdots < t_{n-1} < t_n = b$. Niech $v_i=v(\tau_i)$, gdzie $\tau_i \in (t_{i-1},t_i)$ oraz $\Delta t_i=t_i-t_{i-1}$ dla $i=1,\cdots,n$.

Niech $v:[a,b] \to \mathbb{R}$ będzie funcją prędkości w zależności od czasu.

Podzielmy odcinek czasu [a, b] punktami

$$a = t_0 < t_1 < t_2 < \cdots < t_{n-1} < t_n = b.$$

Niech $v_i = v(\tau_i)$, gdzie $\tau_i \in (t_{i-1}, t_i)$ oraz $\Delta t_i = t_i - t_{i-1}$ dla $i = 1, \dots, n$.

Wtedy droga s przebyta od chwili a do b jest w przybliżeniu równa $s_n = \sum_{i=1}^n v_i \Delta t_i$.

Niech $v:[a,b] \to \mathbb{R}$ będzie funcją prędkości w zależności od czasu.

Podzielmy odcinek czasu [a, b] punktami

$$a = t_0 < t_1 < t_2 < \cdots < t_{n-1} < t_n = b.$$

Niech $v_i = v(\tau_i)$, gdzie $\tau_i \in (t_{i-1}, t_i)$ oraz $\Delta t_i = t_i - t_{i-1}$ dla $i = 1, \dots, n$.

Wtedy droga s przebyta od chwili a do b jest w przybliżeniu równa $s_n = \sum_{i=1}^n v_i \Delta t_i$.

Jeśli ciąg średnic podziałów $\delta_n=\max_{k=1,\cdots,n}\Delta t_k$ dąży do zera to $\lim_{n\to\infty}s_n=\int_a^bv(t)dt$ jest drogą przebytą w czasie od chwili a do chwili b.

Jeśli $f:[a,b]\to\mathbb{R}$ jest nieograniczona w przedziale to f nie jest R-całkowalna na [a,b].

Jeśli $f:[a,b]\to\mathbb{R}$ jest nieograniczona w przedziale to f nie jest R-całkowalna na [a,b].

Dowód:

Jeśli $f:[a,b]\to\mathbb{R}$ jest nieograniczona w przedziale to f nie jest R-całkowalna na [a,b].

Dowód: Z założenia wynika, że dla każdego podziału Δ_n istnieje przedział $[x_{r-1}, x_r]$, w którym funkcja jest nieograniczona.

Jeśli $f:[a,b] \to \mathbb{R}$ jest nieograniczona w przedziale to f nie jest R-całkowalna na [a,b].

Dowód: Z założenia wynika, że dla każdego podziału Δ_n istnieje przedział $[x_{r-1},x_r]$, w którym funkcja jest nieograniczona. Wybieramy punkty pośrednie z pozostałych przedziałów $\xi_k \in [x_{k-1},x_k]$, jako ostatni wybieramy $\xi_r \in [x_{r-1},x_r]$ tak, aby $|S_n| > n$.

Jeśli $f:[a,b]\to\mathbb{R}$ jest nieograniczona w przedziale to f nie jest R-całkowalna na [a,b].

Dowód: Z założenia wynika, że dla każdego podziału Δ_n istnieje przedział $[x_{r-1},x_r]$, w którym funkcja jest nieograniczona. Wybieramy punkty pośrednie z pozostałych przedziałów $\xi_k \in [x_{k-1},x_k]$, jako ostatni wybieramy $\xi_r \in [x_{r-1},x_r]$ tak, aby $|S_n| > n$.

Jest to sprzeczne z istnieniem granicy właściwej $\lim_{\delta_n\to 0} S_n$ niezależnej od wyboru ξ_k . \square

Jeśli $f:[a,b]\to\mathbb{R}$ jest nieograniczona w przedziale to f nie jest R-całkowalna na [a,b].

Dowód: Z założenia wynika, że dla każdego podziału Δ_n istnieje przedział $[x_{r-1},x_r]$, w którym funkcja jest nieograniczona. Wybieramy punkty pośrednie z pozostałych przedziałów $\xi_k \in [x_{k-1},x_k]$, jako ostatni wybieramy $\xi_r \in [x_{r-1},x_r]$ tak, aby $|S_n| > n$.

Jest to sprzeczne z istnieniem granicy właściwej $\lim_{\delta_n\to 0} S_n$ niezależnej od wyboru ξ_k . \square

Wniosek

Jezeli funkcja f jest R-całkowalna na [a, b] to f jest ograniczona w [a, b].

Przykład funkcji ograniczonej i niecałkowalnej w sensie Riemanna

Niech f będzie funkcją Dirichleta czyli f(x)=1 dla $x\in\mathbb{Q}$ i f(x)=0 dla $x\in\mathbb{R}\setminus\mathbb{Q}$. Niech $a,b\in\mathbb{R}$ i a< b. Rozważmy dowolny ciąg normalny podziałów $a=x_0< x_1< \cdots < x_n=b$. Z każdego przedziału $[x_{i-1},x_i]$ wybieżmy $\xi_i\in\mathbb{Q}$. Wtedy $S_n=\sum_{i=1}^n f(\xi_i)\Delta x_i=\sum_{i=1}^n 1\cdot \Delta x_i=b-a$ czyli $\lim_{n\to\infty}S_n=b-a$. Jeśli zaś z każdego przedziału wybieżemy $\xi_i\in\mathbb{R}\setminus\mathbb{Q}$ to $S_n=\sum_{i=1}^n 0\cdot \Delta x_i=0$ i $\lim_{n\to\infty}S_n=0$. Stąd wynika, ze f nie jest R-całkowalna na [a,b].

Przykład funkcji ograniczonej i niecałkowalnej w sensie Riemanna

Niech f będzie funkcją Dirichleta czyli f(x)=1 dla $x\in\mathbb{Q}$ i f(x)=0 dla $x\in\mathbb{R}\setminus\mathbb{Q}$. Niech $a,b\in\mathbb{R}$ i a< b. Rozważmy dowolny ciąg normalny podziałów $a=x_0< x_1< \cdots < x_n=b$. Z każdego przedziału $[x_{i-1},x_i]$ wybieżmy $\xi_i\in\mathbb{Q}$. Wtedy $S_n=\sum_{i=1}^n f(\xi_i)\Delta x_i=\sum_{i=1}^n 1\cdot \Delta x_i=b-a$ czyli $\lim_{n\to\infty}S_n=b-a$. Jeśli zaś z każdego przedziału wybieżemy $\xi_i\in\mathbb{R}\setminus\mathbb{Q}$ to $S_n=\sum_{i=1}^n 0\cdot \Delta x_i=0$ i $\lim_{n\to\infty}S_n=0$. Stąd wynika, ze f nie jest R-całkowalna na [a,b].

Tw. (warunek wystarczający)

Jeśli funkcja $f:[a,b]\to\mathbb{R}$ jest ograniczona w [a,b] i ciągła w [a,b] z wyjątkiem skończonej liczby punktów to f jest R-całkowalna na [a,b].

Własności całek oznaczonych

(1) $f,g\in R[a,b]$ i funkcje f i g różnią się w skończonej liczbie punktów, to

$$\int_a^b f(x) \, dx = \int_a^b g(x) \, dx$$

Własności całek oznaczonych

(1) $f,g\in R[a,b]$ i funkcje f i g różnią się w skończonej liczbie punktów, to

$$\int_a^b f(x) \, dx = \int_a^b g(x) \, dx$$

(2)
$$f,g \in R[a,b]$$
 i $f \leqslant g \text{ w } [a,b]$, to

$$\int_{a}^{b} f(x) \, dx \leqslant \int_{a}^{b} g(x) \, dx$$

Własności całek oznaczonych

(1) $f,g\in R[a,b]$ i funkcje f i g różnią się w skończonej liczbie punktów, to

$$\int_a^b f(x) \, dx = \int_a^b g(x) \, dx$$

(2) $f,g \in R[a,b]$ i $f \leqslant g \text{ w } [a,b]$, to

$$\int_a^b f(x) \, dx \leqslant \int_a^b g(x) \, dx$$

(3) $f \in R[a,b]$ i $c \in (a,b)$, to $f \in R[a,c]$, $f \in R[c,b]$ oraz

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

Definicja

Dla a > b definiujemy

$$\int_a^b f(x) dx = -\int_b^a f(x) dx, \quad \int_a^a f(x) dx = 0$$

Definicja

Dla a > b definiujemy

$$\int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx, \quad \int_{a}^{a} f(x) \, dx = 0$$

Własności całek oznaczonych c.d.

(4)
$$f,g \in R[a,b], k \in \mathbb{R}$$
 to $f \pm g, f \cdot g, k \cdot f \in R[a,b]$ i

$$\int_a^b [f(x) \pm g(x)] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$

$$\int_a^b k \cdot f(x) \, dx = k \int_a^b f(x) \, dx$$

Nierówność Schwarza - Buniakowskiego

$$\int_a^b f(x) \cdot g(x) \, dx \leqslant \int_a^b f^2(x) \, dx \cdot \int_a^b g^2(x) \, dx$$

Własności całek oznaczonych c.d.

(5) Jeśli istnieje $\int_{\alpha}^{\beta} f(x) dx$, gdzie $\alpha = \min(a, b, c)$, $\beta = \max(a, b, c)$, to niezależnie od położenia a, b, c

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

Własności całek oznaczonych c.d.

(5) Jeśli istnieje $\int_{\alpha}^{\beta} f(x) dx$, gdzie $\alpha = \min(a, b, c)$, $\beta = \max(a, b, c)$, to niezależnie od położenia a, b, c

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

(7)
$$f \in R[a,b] \Rightarrow |f| \in R[a,b]$$
 i

$$\int_{a}^{b} f(x) dx \le \left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx \le M \cdot |b - a|$$

$$M = \sup_{x \in [a,b]} |f(x)|$$

Przykład:

$$\int_{a}^{b} f(x) \cdot g(x) \, dx \neq \int_{a}^{b} f(x) \, dx \cdot \int_{a}^{b} g(x) \, dx :
[a, b] = [0, 2]$$

$$f(x) = \begin{cases} 0, & 0 \leqslant x \leqslant 1 \\ 1, & 1 < x \leqslant 2 \end{cases} \qquad g(x) = \begin{cases} 1, & 0 \leqslant x \leqslant 1 \\ 0, & 1 < x \leqslant 2 \end{cases}$$

$$\int_{0}^{2} f(x) \cdot g(x) \, dx = 0 \quad \text{ale}$$

$$\int_{0}^{2} f(x) \, dx \cdot \int_{0}^{2} g(x) \, dx = 1 \quad \text{, bo}$$

$$\int_{0}^{2} f(x) \, dx = \int_{1}^{2} dx = 1, \quad \int_{0}^{2} g(x) \, dx = \int_{0}^{1} dx = 1$$

Funkcja górnej granicy całkowania

Twierdzenie

Jeśli funkcja $f:[a,b]\to\mathbb{R}$ jest R - całkowalna w [a,b] i $\alpha\in[a,b]$, to funkcja $F:[a,b]\to\mathbb{R}$ określona wzorem:

$$F(x) = \int_{\alpha}^{x} f(t) dt$$

jest ciągła na [a, b].

Ponadto jeśli $x_0 \in [a, b]$ jest punktem ciągłości funkcji f, to funkcja F jest różniczkowalna w x_0 oraz

$$F'(x_0)=f(x_0).$$

Funkcja f jest R-całkowalna więc jest ograniczona w [a,b], czyli istnieje M>0 takie, że $|f(x)|\leq M$ dla $x\in [a,b]$.

Funkcja f jest R-całkowalna więc jest ograniczona w [a,b], czyli istnieje M>0 takie, że $|f(x)|\leq M$ dla $x\in [a,b]$.

Niech x_0 , $x_0 + \Delta x \in [a, b]$.

Funkcja f jest R-całkowalna więc jest ograniczona w [a,b], czyli istnieje M>0 takie, że $|f(x)|\leq M$ dla $x\in [a,b]$.

Niech
$$x_0$$
, $x_0 + \Delta x \in [a, b]$. Wtedy $0 \le |F(x_0 + \Delta x) - F(x_0)| = |\int_{\alpha}^{x_0 + \Delta x} f(t) dt - \int_{\alpha}^{x_0} f(t) dt| = |\int_{x_0}^{x_0 + \Delta x} f(t) dt| \le \int_{x_0}^{x_0 + \Delta x} |f(t)| dt \le M|\Delta x| \to 0$ dla $\Delta \to 0$

Funkcja f jest R-całkowalna więc jest ograniczona w [a,b], czyli istnieje M>0 takie, że $|f(x)|\leq M$ dla $x\in [a,b]$.

Niech
$$x_0$$
, $x_0 + \Delta x \in [a, b]$. Wtedy $0 \le |F(x_0 + \Delta x) - F(x_0)| = |\int_{\alpha}^{x_0 + \Delta x} f(t) dt - \int_{\alpha}^{x_0} f(t) dt| = |\int_{x_0}^{x_0 + \Delta x} f(t) dt| \le \int_{x_0}^{x_0 + \Delta x} |f(t)| dt \le M|\Delta x| \to 0$ dla $\Delta \to 0$

Dlatego
$$\lim_{\Delta x \to 0} F(x_0 + \Delta x) = F(x_0)$$
. \square

Niech x_0 będzie punktem ciągłości funkcji f. Weżmy dowolne $\varepsilon > 0$.

Niech x_0 będzie punktem ciągłości funkcji f. Weżmy dowolne $\varepsilon > 0$. Wtedy istnieje $\delta > 0$ taka, że dla każdego $x \in [a, b]$ jeśli $|x - x_0| < \delta$ to $|f(x) - f(x_0)| < \varepsilon$.

Niech x_0 będzie punktem ciągłości funkcji f. Weżmy dowolne $\varepsilon>0$. Wtedy istnieje $\delta>0$ taka, że dla każdego $x\in[a,b]$ jeśli $|x-x_0|<\delta$ to $|f(x)-f(x_0)|<\varepsilon$.

Zauważmy, że
$$\frac{F(x_0+\Delta x)-F(x_0)}{\Delta x}-f(x_0)=\frac{1}{\Delta x}\int_{x_0}^{x_0+\Delta x}f(t)\,dt-\frac{1}{\Delta x}\int_{x_0}^{x_0+\Delta x}f(x_0)\,dt=\frac{1}{\Delta x}\int_{x_0}^{x_0+\Delta x}[f(t)-f(x_0)]\,dt.$$

Niech x_0 będzie punktem ciągłości funkcji f. Weżmy dowolne $\varepsilon > 0$. Wtedy istnieje $\delta > 0$ taka, że dla każdego $x \in [a,b]$ jeśli $|x-x_0| < \delta$ to $|f(x)-f(x_0)| < \varepsilon$.

Zauważmy, że
$$\frac{F(x_0+\Delta x)-F(x_0)}{\Delta x}-f(x_0)=\frac{1}{\Delta x}\int_{x_0}^{x_0+\Delta x}f(t)\,dt-\frac{1}{\Delta x}\int_{x_0}^{x_0+\Delta x}f(x_0)\,dt=\frac{1}{\Delta x}\int_{x_0}^{x_0+\Delta x}[f(t)-f(x_0)]\,dt.$$

Punkt t należy do przedziału o końcach x_0 i $x_0 + \Delta x$. Stąd jeśli $|\Delta x| < \delta$ to $|t - x_0| < \delta$, co implikuje, że $|f(t) - f(x_0)| < \varepsilon$.

Niech x_0 będzie punktem ciągłości funkcji f. Weżmy dowolne $\varepsilon > 0$. Wtedy istnieje $\delta > 0$ taka, że dla każdego $x \in [a,b]$ jeśli $|x-x_0| < \delta$ to $|f(x)-f(x_0)| < \varepsilon$.

Zauważmy, że
$$\frac{F(x_0+\Delta x)-F(x_0)}{\Delta x}-f(x_0)=\frac{1}{\Delta x}\int_{x_0}^{x_0+\Delta x}f(t)\,dt-\frac{1}{\Delta x}\int_{x_0}^{x_0+\Delta x}f(x_0)\,dt=\frac{1}{\Delta x}\int_{x_0}^{x_0+\Delta x}[f(t)-f(x_0)]\,dt.$$

Punkt t należy do przedziału o końcach x_0 i $x_0 + \Delta x$. Stąd jeśli $|\Delta x| < \delta$ to $|t - x_0| < \delta$, co implikuje, że $|f(t) - f(x_0)| < \varepsilon$.

Stad dla
$$|\Delta x| < \delta$$
 mamy $\left| \frac{F(x_0 + \Delta x) - F(x_0)}{\Delta x} - f(x_0) \right| \le \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} |f(t) - f(x_0)| dt < \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} \varepsilon dt = \frac{1}{\Delta x} \varepsilon \Delta x = \varepsilon.$

Niech x_0 będzie punktem ciągłości funkcji f. Weżmy dowolne $\varepsilon > 0$. Wtedy istnieje $\delta > 0$ taka, że dla każdego $x \in [a,b]$ jeśli $|x-x_0| < \delta$ to $|f(x)-f(x_0)| < \varepsilon$.

Zauważmy, że
$$\frac{F(x_0+\Delta x)-F(x_0)}{\Delta x}-f(x_0)=\frac{1}{\Delta x}\int_{x_0}^{x_0+\Delta x}f(t)\,dt-\frac{1}{\Delta x}\int_{x_0}^{x_0+\Delta x}f(x_0)\,dt=\frac{1}{\Delta x}\int_{x_0}^{x_0+\Delta x}[f(t)-f(x_0)]\,dt.$$

Punkt t należy do przedziału o końcach x_0 i $x_0 + \Delta x$. Stąd jeśli $|\Delta x| < \delta$ to $|t - x_0| < \delta$, co implikuje, że $|f(t) - f(x_0)| < \varepsilon$.

Stad dla
$$|\Delta x| < \delta$$
 mamy $\left| \frac{F(x_0 + \Delta x) - F(x_0)}{\Delta x} - f(x_0) \right| \le \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} |f(t) - f(x_0)| dt < \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} \varepsilon dt = \frac{1}{\Delta x} \varepsilon \Delta x = \varepsilon.$

Z czego wynika, że $\lim_{\Delta x \to 0} \frac{F(x_0 + \Delta x) - F(x_0)}{\Delta x} = f(x_0).$

(1)
$$F(x) = \int_{-1}^{x} e^{t^2} dt$$
, $f(t) = e^{t^2} - \text{ciagla} \ \forall \ t \in \mathbb{R} \Rightarrow F'(x) = e^{x^2}$

(1)
$$F(x) = \int_{-1}^{x} e^{t^2} dt$$
, $f(t) = e^{t^2} - \text{ciagla} \ \forall \ t \in \mathbb{R} \Rightarrow F'(x) = e^{x^2}$

(2)
$$F(x) = \int_{-1}^{\sin x} e^{t^2} dt$$
, $f(t) = e^{t^2} - \text{ciagla } \forall t \in \mathbb{R} \Rightarrow F'(x) = e^{\sin^2 x} \cdot \cos x$

(1)
$$F(x) = \int_{-1}^{x} e^{t^2} dt$$
, $f(t) = e^{t^2} - \text{ciagla} \ \forall \ t \in \mathbb{R} \Rightarrow F'(x) = e^{x^2}$

(2)
$$F(x) = \int_{-1}^{\sin x} e^{t^2} dt$$
, $f(t) = e^{t^2} - \text{ciagla } \forall t \in \mathbb{R} \Rightarrow F'(x) = e^{\sin^2 x} \cdot \cos x$

(3) Znaleźć ekstrema funkcji $F(x) = \int_0^x \frac{\sin t}{t} dt$ w przedziale $(0, +\infty)$.

$$f(t) = \frac{\sin t}{t}$$
 – ciągła w $(0, +\infty)$

$$F'(x) = \frac{\sin x}{x} = 0 \iff x = n\pi, \ n \in \mathbb{N}$$

$$F''(x) = \frac{x \cos x - \sin x}{x^2} \Rightarrow F''(n\pi) = \frac{1}{n\pi} \cdot (-1)^n \neq 0 \Rightarrow$$

funkcja ma maksima dla n nieparzystych i minima dla n parzystych.

Tw. (Newtona – Leibniza)

Jeśli funkcja $f:[a,b]\to\mathbb{R}$ jest ciągła w [a,b] i $\alpha\in[a,b]$, to:

(1) funkcja $F(x) = \int_{\alpha}^{x} f(t) dt$ jest funkcją pierwotną funkcji f na przedziale [a, b].

Tw. (Newtona – Leibniza)

Jeśli funkcja $f:[a,b]\to\mathbb{R}$ jest ciągła w [a,b] i $\alpha\in[a,b]$, to:

- (1) funkcja $F(x) = \int_{\alpha}^{x} f(t) dt$ jest funkcją pierwotną funkcji f na przedziale [a, b].
- (2) $\int_a^b f(x) dx = F(x) \Big|_a^b = F(b) F(a)$

Tw. (Newtona – Leibniza)

Jeśli funkcja $f:[a,b]\to\mathbb{R}$ jest ciągła w [a,b] i $\alpha\in[a,b]$, to:

- (1) funkcja $F(x) = \int_{\alpha}^{x} f(t) dt$ jest funkcją pierwotną funkcji f na przedziale [a, b].
- (2) $\int_a^b f(x) dx = F(x) \Big|_a^b = F(b) F(a)$
- (3) Jeśli Φ jest dowolną funkcją pierwotną funkcji f w [a, b], to

$$\int_a^b f(x) dx = \Phi(b) - \Phi(a)$$

(1) Na postawie poprzedniego twierdzenia z ciągłosci f na [a, b] otrzymujemy różniczkowalność F na [a, b] oraz równość F'(x) = f(x) co kończy dowód (1).

- (1) Na postawie poprzedniego twierdzenia z ciągłosci f na [a,b] otrzymujemy różniczkowalność F na [a,b] oraz równość F'(x) = f(x) co kończy dowód (1).
- (2) Niech $a = x_0 < x_1 < \cdots < x_n = b$ będzie dowolnym podziałem przedziału [a, b].

- (1) Na postawie poprzedniego twierdzenia z ciągłosci f na [a,b] otrzymujemy różniczkowalność F na [a,b] oraz równość F'(x) = f(x) co kończy dowód (1).
- (2) Niech $a = x_0 < x_1 < \cdots < x_n = b$ będzie dowolnym podziałem przedziału [a,b]. Wtedy $F(b) F(a) = \sum_{i=1}^n F(x_i) F(x_{i-1})$.

- (1) Na postawie poprzedniego twierdzenia z ciągłosci f na [a, b] otrzymujemy różniczkowalność F na [a, b] oraz równość F'(x) = f(x) co kończy dowód (1).
- (2) Niech $a = x_0 < x_1 < \cdots < x_n = b$ będzie dowolnym podziałem przedziału [a,b]. Wtedy $F(b) F(a) = \sum_{i=1}^n F(x_i) F(x_{i-1})$. Z tw. Lagrange'a dla każdego i istnieje $c_i \in (x_{i-1},x_i)$ taki, że $\frac{F(x_i) F(x_{i-1})}{x_i x_{i-1}} = F'(c_i) = f(c_i).$

- (1) Na postawie poprzedniego twierdzenia z ciągłosci f na [a, b]otrzymujemy różniczkowalność F na [a, b] oraz równość F'(x) = f(x) co kończy dowód (1).
- (2) Niech $a = x_0 < x_1 < \cdots < x_n = b$ będzie dowolnym podziałem przedziału [a, b]. Wtedy $F(b) - F(a) = \sum_{i=1}^{n} F(x_i) - F(x_{i-1})$. Z tw. Lagrange'a dla każdego i istnieje $c_i \in (x_{i-1}, x_i)$ taki, że $\frac{F(x_i)-F(x_{i-1})}{x_i-x_{i-1}}=F'(c_i)=f(c_i).$

- (1) Na postawie poprzedniego twierdzenia z ciągłosci f na [a, b] otrzymujemy różniczkowalność F na [a, b] oraz równość F'(x) = f(x) co kończy dowód (1).
- (2) Niech $a=x_0 < x_1 < \cdots < x_n = b$ będzie dowolnym podziałem przedziału [a,b]. Wtedy $F(b)-F(a)=\sum_{i=1}^n F(x_i)-F(x_{i-1})$. Z tw. Lagrange'a dla każdego i istnieje $c_i \in (x_{i-1},x_i)$ taki, że $\frac{F(x_i)-F(x_{i-1})}{x_i-x_{i-1}}=F'(c_i)=f(c_i).$ Stąd $F(b)-F(a)=\sum_{i=1}^n f(c_i)(x_i-x_{i-1})=S_n.$ Dlatego dla dowolnego normalnego ciągu podziałów mamy $F(b)-F(a)=\lim_{\delta\to 0} S_n=\int_{-\delta}^b f(x)dx.$

- (1) Na postawie poprzedniego twierdzenia z ciągłosci f na [a, b] otrzymujemy różniczkowalność F na [a, b] oraz równość F'(x) = f(x) co kończy dowód (1).
- (2) Niech $a=x_0 < x_1 < \cdots < x_n = b$ będzie dowolnym podziałem przedziału [a,b]. Wtedy $F(b)-F(a)=\sum_{i=1}^n F(x_i)-F(x_{i-1})$. Z tw. Lagrange'a dla każdego i istnieje $c_i \in (x_{i-1},x_i)$ taki, że $\frac{F(x_i)-F(x_{i-1})}{x_i-x_{i-1}}=F'(c_i)=f(c_i).$ Stąd $F(b)-F(a)=\sum_{i=1}^n f(c_i)(x_i-x_{i-1})=S_n.$ Dlatego dla dowolnego normalnego ciągu podziałów mamy $F(b)-F(a)=\lim_{\delta\to 0} S_n=\int_{-\delta}^b f(x)dx.$
- (3) Jeśli Φ jest funkcją pierwotną f na [a,b] to $\Phi(x)=F(x)+C$ dla pewnej stałej C.

- (1) Na postawie poprzedniego twierdzenia z ciągłosci f na [a, b] otrzymujemy różniczkowalność F na [a, b] oraz równość F'(x) = f(x) co kończy dowód (1).
- (2) Niech $a=x_0 < x_1 < \cdots < x_n = b$ będzie dowolnym podziałem przedziału [a,b]. Wtedy $F(b)-F(a)=\sum_{i=1}^n F(x_i)-F(x_{i-1})$. Z tw. Lagrange'a dla każdego i istnieje $c_i \in (x_{i-1},x_i)$ taki, że $\frac{F(x_i)-F(x_{i-1})}{x_i-x_{i-1}}=F'(c_i)=f(c_i).$ Stąd $F(b)-F(a)=\sum_{i=1}^n f(c_i)(x_i-x_{i-1})=S_n$.

Dlatego dla dowolnego normalnego ciągu podziałów mamy $F(b) - F(a) = \lim_{\delta \to 0} S_n = \int_a^b f(x) dx$.

 $\Gamma(b) - \Gamma(a) = \lim_{\delta_n \to 0} S_n = \int_a I(x) dx.$

(3) Jeśli Φ jest funkcją pierwotną f na [a,b] to $\Phi(x)=F(x)+C$ dla pewnej stałej C.

Stand mamy $\Phi(b) - \Phi(a) = F(b) - F(a) = \int_a^b f(x) dx. \square$

(1) Obliczyć pole obszaru ograniczonego prostymi $y=\frac{1}{2}x,\ y=0,\ x=1,\ x=4.$

(1) Obliczyć pole obszaru ograniczonego prostymi $y=\frac{1}{2}x,\ y=0,\ x=1,\ x=4.$

(1) Obliczyć pole obszaru ograniczonego prostymi $y = \frac{1}{2}x, \ y = 0, \ x = 1, \ x = 4.$

$$|D| = \int_1^4 \frac{1}{2} x \, dx = \left| \frac{x^2}{4} \right|_1^4 = \frac{15}{4}$$

(2)
$$\int_0^{\frac{\pi}{4}} \operatorname{tg} x \, dx = -\int_0^{\frac{\pi}{4}} \frac{-\sin x}{\cos x} \, dx = -\ln|\cos x| \, \Big|_0^{\frac{\pi}{4}} = -\ln\frac{\sqrt{2}}{2}$$

(2)
$$\int_0^{\frac{\pi}{4}} \operatorname{tg} x \, dx = -\int_0^{\frac{\pi}{4}} \frac{-\sin x}{\cos x} \, dx = -\ln|\cos x| \, \Big|_0^{\frac{\pi}{4}} = -\ln\frac{\sqrt{2}}{2}$$

(2)
$$\int_0^{\frac{\pi}{4}} \operatorname{tg} x \, dx = -\int_0^{\frac{\pi}{4}} \frac{-\sin x}{\cos x} \, dx = -\ln|\cos x| \, \Big|_0^{\frac{\pi}{4}} = -\ln\frac{\sqrt{2}}{2}$$

(3)
$$\int_0^1 e^x dx = e^x \Big|_0^1 = e - 1$$

(2)
$$\int_0^{\frac{\pi}{4}} \operatorname{tg} x \, dx = -\int_0^{\frac{\pi}{4}} \frac{-\sin x}{\cos x} \, dx = -\ln|\cos x| \, \Big|_0^{\frac{\pi}{4}} = -\ln\frac{\sqrt{2}}{2}$$

(3)
$$\int_0^1 e^x dx = e^x \Big|_0^1 = e - 1$$

(4)
$$\int_0^{\pi} \sin x \, dx = -\cos x \Big|_0^{\pi} = -(-1 - 1) = 2$$

Wartość średnia funkcji

Niech f będzie R-całkowalna na przedziale [a,b]. Podzielmy przedział na n-równych przedziałów, każdy o długości $\frac{b-a}{n}$. Z każdego przedziału wybierzmy po jednym punkcie ξ_1, \cdots, ξ_n . Wtedy wartość średnia funkcji w tych punktach jest równa

$$\mu_n(f) = \frac{\sum_{i=1}^n f(\xi_i)}{n} = \frac{1}{b-a} \sum_{i=1}^n f(\xi_i) \frac{b-a}{n}.$$

Przechodząc $n o \infty$ otrzmujemy, że $\delta_n = rac{b-a}{n} o 0$. Stąd

Definicja (wartość średnia funkcji)

Wartością średnią funkcji f całkowalnej na [a, b] nazywamy

$$\mu(f) = \lim_{n \to \infty} \mu_n(f) = \frac{1}{b-a} \int_a^b f(x) dx.$$

Wartość średnia funkcji

Twierdzenie Newtona-Leibniza a wartość średnia.

Niech funkcja $F:[a,b]\to\mathbb{R}$ będzie różniczkowalna w [a,b]. Wtedy przyrost funkcji w tym przedziale jest równy iloczynowi średniej wartosci jej pochonej na tym przedziale i długości tego przedziału.

$$F(b) - F(a) = \int_a^b F'(x) dx = \frac{\int_a^b F'(x) dx}{b - a} (b - a) = \mu(F') (b - a).$$

Interpretacja fizyczna twierdzenia Newtona-Leibniza.

Droga to iloczyn średniej prędkości przez czas.

Tw. (całkowanie przez części dla całek oznaczonych)

Jeśli
$$f,g\in C^1[a,b]$$
, to

$$\int_a^b f(x) \cdot g'(x) \, dx = f(x) \cdot g(x) \Big|_a^b - \int_a^b f'(x) \cdot g(x) \, dx$$

Tw. (całkowanie przez części dla całek oznaczonych)

Jeśli
$$f,g\in C^1[a,b]$$
, to

$$\int_a^b f(x) \cdot g'(x) \, dx = f(x) \cdot g(x) \Big|_a^b - \int_a^b f'(x) \cdot g(x) \, dx$$

Przykład:

$$\int_{0}^{\pi} x \sin x \, dx = \left\| \begin{array}{cc} f = x & g' = \sin x \\ f' = 1 & g = -\cos x \end{array} \right\| = \\ = -x \cos x \, \left|_{0}^{\pi} + \int_{0}^{\pi} \cos x \, dx = \pi + \sin x \, \right|_{0}^{\pi} = \pi$$

Tw. (o zamianie zmiennej w całce oznaczonej)

Jeśli

- (1) $\varphi \in C^1(T)$, T przedział domknięty o końcach α, β , $\varphi(T) = X$,
- (2) f(x) jest ciągła w X,
- (3) $\varphi(\alpha) = a$, $\varphi(\beta) = b$, to:

$$\int_{a}^{b} f(x)dx = \left\| \begin{array}{c} x = \varphi(t) \\ dx = \varphi'(t) dt \\ x = a \Rightarrow t = \alpha \\ x = b \Rightarrow t = \beta \end{array} \right\| = \int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) dt$$

Dowód:

Jeśli F jest funkcją pierwotną f, to:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

$$\int_{\alpha}^{\beta} f[\varphi(t)] \cdot \varphi'(t) dt = \int_{\alpha}^{\beta} F'[\varphi(t)] \cdot \varphi'(t) dt = F[\varphi(t)] \Big|_{\alpha}^{\beta} = F(b) - F(a)$$

Dowód:

Jeśli F jest funkcją pierwotną f, to:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

$$\int_{\alpha}^{\beta} f[\varphi(t)] \cdot \varphi'(t) dt = \int_{\alpha}^{\beta} F'[\varphi(t)] \cdot \varphi'(t) dt = F[\varphi(t)] \Big|_{\alpha}^{\beta} = F(b) - F(a)$$

Przykłady:

$$(1) \int_{0}^{2} \sqrt{4 - x^{2}} \, dx = \begin{vmatrix} x = 2 \sin t \\ dx = 2 \cos t \, dt \\ x = 0 \Rightarrow t = 0 \\ x = 2 \Rightarrow t = \frac{\pi}{2} \end{vmatrix} =$$

$$= \int_{0}^{\frac{\pi}{2}} \sqrt{4 - 4 \sin^{2} t} \cdot 2 \cos t \, dt = 4 \int_{0}^{\frac{\pi}{2}} |\cos t| \cdot \cos t \, dt =$$

$$= 4 \int_{0}^{\frac{\pi}{2}} \cos^{2} t \, dt = 2 \int_{0}^{\frac{\pi}{2}} (1 + \cos 2t) \, dt = 2(t + \frac{1}{2} \sin 2t) \Big|_{0}^{\frac{\pi}{2}} =$$

$$= 2 \cdot \frac{\pi}{2} = \pi$$

$$(2) \int_0^5 \frac{x}{\sqrt{1+3x}} dx = \left\| \begin{array}{c} t = \sqrt{1+3x}, & x = 0 \iff t = 1 \\ x = \frac{t^2 - 1}{3}, & x = 5 \iff t = 4 \\ dx = \frac{2}{3}t dt \end{array} \right\| =$$

$$= \frac{2}{9} \int_1^4 (t^2 - 1) dt = \frac{2}{9} \left(\frac{t^3}{3} - t \right) \Big|_1^4 = 4$$

(2)
$$\int_0^5 \frac{x}{\sqrt{1+3x}} dx = \begin{vmatrix} t = \sqrt{1+3x}, & x = 0 \iff t = 1 \\ x = \frac{t^2-1}{3}, & x = 5 \iff t = 4 \\ dx = \frac{2}{3}t dt \end{vmatrix} =$$

= $\frac{2}{9} \int_1^4 (t^2 - 1) dt = \frac{2}{9} \left(\frac{t^3}{3} - t \right) \Big|_1^4 = 4$

(3)
$$\int_{\ln 2}^{\ln 3} \frac{dx}{e^{x} - e^{-x}} = \left\| \begin{array}{c} t = e^{x}, & x = \ln 2 \iff t = 2 \\ x = \ln t, & x = \ln 3 \iff t = 3 \end{array} \right\| =$$
$$= \int_{2}^{3} \frac{dt}{t(t - t^{-1})} = \int_{2}^{3} \frac{dt}{t^{2} - 1} = \frac{1}{2} \ln \left| \frac{t - 1}{t + 1} \right| \Big|_{2}^{3} = \frac{1}{2} \ln \frac{3}{2}$$

Zastosowania geometryczne całki Riemanna - obliczanie pola

Załóżmy, że funkcje f i g są ciągłe w [a, b] i

 $\forall x \in [a, b] \quad f(x) \geqslant g(x).$

Pole figury ograniczonej krzywymi y = f(x), y = g(x) i prostymi x = a, x = b:

$$|D| = \int_a^b [f(x) - g(x)] dx$$

Jeśli nie zakładamy, że $\forall x \in [a, b]$ $f(x) \ge g(x)$, to:

$$|D| = \int_a^b |f(x) - g(x)| dx$$

Niech $D = \{(x, y) \in \mathbb{R}^2 : y \in [c, d], x \in [0, g(y)]\}$

Wtedy pole D obliczmy ze wzoru $|D| = \int_{c}^{d} g(y) dy$.

Współrzędne biegunowe

Pole wycinka kołowego

 $S(\phi)$ to wycinek kołowy dla kąta ϕ .

$$\frac{|S(\phi)|}{\pi r^2} = \frac{\phi}{2\pi} \Rightarrow |S(\phi)| = \frac{1}{2}\phi r^2$$

Twierdzenie

Pole wycinka kołowego o kącie ϕ i promieniu r to $|S(\phi)| = \frac{1}{2}\phi r^2$.

Pole figury we współrzędnych biegunowych

Pole figury ograniczonej krzywą we współrzędnych biegunowych $r=R(\phi),\ \phi\in[\alpha,\beta]$ można podzielić na pola wycinków krzywoliniowych $\{(r(\phi),\phi)|\phi\in[\phi_{k-1},\phi_k],\ r(\phi)\in[0,R(\phi)]\}$, gdzie $\alpha=\phi_0<\phi_1<\dots<\phi_n=\beta,\ \Delta\phi_k=\phi_k-\phi_{k-1},\ \xi_k\in(\phi_{k-1},\phi_k).$ Pole wycinka krzywoliniowego przybliżamy polem wycinka kołowego o promieniu $R(\xi_k)$ i kącie $\Delta\phi_k$ czyli $\frac{1}{2}(R(\xi_k))^2\Delta\phi_k$. Wtedy $S_n=\sum_{k=1}^n\frac{1}{2}(R(\xi_k))^2\Delta\phi_k$ jest sumą całkową.

Pole figury we współrzędnych biegunowych

$$\lim_{\delta_n\to 0} S_n = \lim_{\delta_n\to 0} \sum_{k=1}^n \frac{1}{2} (R(\xi_k))^2 \Delta \phi_k = \frac{1}{2} \int_{\alpha}^{\beta} (R(\phi))^2 d\phi.$$

Twierdzenie

Pole figury ograniczonej krzywą $r=R(\phi), \phi \in [\alpha,\beta]$ we współrzędnych biegunowych jest równe

$$|D| = \frac{1}{2} \int_{\alpha}^{\beta} (R(\phi))^2 d\phi$$

Przykłady:

(1) Obliczyć pole obszaru D ograniczonego wykresem funkcji $y = \ln x$ i sieczną tego wykresu przechodzącą przez punkty o rzędnych -1 i 1.

Przykłady:

(1) Obliczyć pole obszaru D ograniczonego wykresem funkcji $y=\ln x$ i sieczną tego wykresu przechodzącą przez punkty o rzędnych -1 i 1.

Przykłady:

(1) Obliczyć pole obszaru D ograniczonego wykresem funkcji $y=\ln x$ i sieczną tego wykresu przechodzącą przez punkty o rzędnych -1 i 1.

Sieczna przechodząca przez punkty $(\frac{1}{e},-1)$ i (e,1) ma równanie $y=1+\frac{2}{e-1}(x-e)$, więc

$$|D| = \int_{\frac{1}{e}}^{e} \left[\ln x - \left(1 + \frac{2}{e - \frac{1}{e}} (x - e) \right) \right] dx =$$

$$= \left(x \ln x - x \right) \left|_{\frac{1}{e}}^{e} - \left[x + \frac{(x - e)^{2}}{e - \frac{1}{e}} \right] \right|_{\frac{1}{2}}^{e} = \frac{2}{e}$$

(2) Obliczyć pole obszaru zawartego między parabolą $y^2 = 4x$ i prostą y = 2x - 4.

$$\begin{cases} y^2 = 4x \\ y = 2x - 4 \end{cases} \Rightarrow A = (1, -2), B = (4, 4)$$

Równanie paraboli $x = \frac{1}{4}y^2$ oraz prostej $x = \frac{1}{2}y + 2$

(2) Obliczyć pole obszaru zawartego między parabolą $y^2 = 4x$ i prostą y = 2x - 4.

$$\begin{cases} y^2 = 4x \\ y = 2x - 4 \end{cases} \Rightarrow A = (1, -2), B = (4, 4)$$

Równanie paraboli $x = \frac{1}{4}y^2$ oraz prostej $x = \frac{1}{2}y + 2$

(2) Obliczyć pole obszaru zawartego między parabolą $y^2 = 4x$ i prostą y = 2x - 4.

$$\begin{cases} y^2 = 4x \\ y = 2x - 4 \end{cases} \Rightarrow A = (1, -2), B = (4, 4)$$

Równanie paraboli $x = \frac{1}{4}y^2$ oraz prostej $x = \frac{1}{2}y + 2$

$$D = \int_{-2}^{4} \frac{1}{2}y + 2 - \frac{1}{4}y^2 dy = \frac{1}{4}y^2 + 2y - \frac{1}{12}y^3|_{-2}^4 = 9$$

(3) Obliczyć pole obszaru ograniczonego elipsą:

$$x(t) = a \cos t$$
, $y(t) = b \sin t$, $t \in [0, 2\pi]$.

$$|D| = 4 \int_0^a y \, dx = \left\| \begin{array}{c} x = a \cos t \\ dx = -a \sin t \, dt \\ x = 0 \iff t = \frac{\pi}{2} \\ x = a \iff t = 0 \end{array} \right\| =$$

 $= -4 \int_{\frac{\pi}{2}}^{0} b \sin t \cdot a \sin t \, dt = 4ab \int_{0}^{\frac{\pi}{2}} \sin^{2} t \, dt = 4ab \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos 2t}{2} \, dt =$ $= 2ab \int_{0}^{\frac{\pi}{2}} (1 - \cos 2t) \, dt = 2ab \left[t - \frac{1}{2} \sin 2t \right] \Big|_{0}^{\frac{\pi}{2}} = \pi ab$

(4) Obliczyć pole obszaru ograniczonego kardioidą zadaną równaniem $r = a(1 + \cos \varphi), \ \varphi \in [0, 2\pi].$

Jest to krzywa symetryczna, więc

$$\begin{split} |D| &= 2 \cdot \frac{1}{2} \int_0^{\pi} r^2 \, d\varphi = a^2 \int_0^{\pi} (1 + \cos \varphi)^2 \, d\varphi = \\ &= a^2 \int_0^{\pi} \, d\varphi + 2a^2 \int_0^{\pi} \cos \varphi \, d\varphi + \frac{a^2}{2} \int_0^{\pi} (1 + \cos 2\varphi) \, d\varphi = \\ &= a^2 \left[\frac{3}{2} \varphi + 2 \sin \varphi + \frac{1}{4} \sin 2\varphi \right] \Big|_0^{\pi} = \frac{3}{2} \pi a^2 \end{split}$$

Niech funkcja f będzie ciągła i nieujemna w [a,b]. Niech V będzie bryłą ograniczoną powierzchnią powstałą przez obrót wykresu funkcji f wokół osi OX oraz płaszczyznami P_a i P_b prostopadłymi do osi OX i takimi, że $(a,0) \in P_a$, $(b,0) \in P_b$.

Niech Δ_n : $a=x_0 < x_1 < \ldots < x_n = b$ będzie ciągiem normalnym podziałów przedziału [a,b], tzn. $\lim_{n\to\infty} \delta_n = 0$ $\Delta x_k = x_k - x_{k-1}$, $\xi_k \in [x_{k-1},x_k]$

Niech Δ_n : $a=x_0 < x_1 < \ldots < x_n = b$ będzie ciągiem normalnym podziałów przedziału [a,b], tzn. $\lim_{n \to \infty} \delta_n = 0$

$$\Delta x_k = x_k - x_{k-1}, \quad \xi_k \in [x_{k-1}, x_k]$$

Tworzymy sumę całkową, która jest równa sumie objętości walców o promieniach $f(\xi_k)$ i wysokościach Δx_k , $k=1,\ldots,n$

Niech Δ_n : $a=x_0 < x_1 < \ldots < x_n = b$ będzie ciągiem normalnym podziałów przedziału [a,b], tzn. $\lim_{n \to \infty} \delta_n = 0$

$$\Delta x_k = x_k - x_{k-1}, \quad \xi_k \in [x_{k-1}, x_k]$$

Tworzymy sumę całkową, która jest równa sumie objętości walców o promieniach $f(\xi_k)$ i wysokościach Δx_k , $k=1,\ldots,n$

$$S_n = \sum_{k=1}^n \pi \cdot f^2(\xi_k) \Delta x_k$$

Niech Δ_n : $a=x_0 < x_1 < \ldots < x_n = b$ będzie ciągiem normalnym podziałów przedziału [a,b], tzn. $\lim_{n \to \infty} \delta_n = 0$

 $\Delta x_k = x_k - x_{k-1}, \quad \xi_k \in [x_{k-1}, x_k]$

Tworzymy sumę całkową, która jest równa sumie objętości walców o promieniach $f(\xi_k)$ i wysokościach Δx_k , k = 1, ..., n

$$S_n = \sum_{k=1}^n \pi \cdot f^2(\xi_k) \Delta x_k$$

Następnie w sumie całkowej $n \to \infty$

$$\lim_{\delta_n \to 0} \pi \sum_{k=1}^n f^2(\xi_k) \Delta x_k = \pi \int_a^b f^2(x) \, dx$$

Następnie w sumie całkowej $n \to \infty$

$$\lim_{\delta_n \to 0} \pi \sum_{k=1}^n f^2(\xi_k) \Delta x_k = \pi \int_a^b f^2(x) \, dx$$

Twierdzenie

Objętość bryły obrotowej powstałej przez obrót wykresu funkcji y = f(x) wokół osi OX wyraża się wzorem:

$$|V| = \pi \int_a^b f^2(x) \, dx$$

Gdy bryła obrotowa powstaje przez obrót krzywej x = f(y) wokół osi OY, $y \in [c, d]$, to

$$|V| = \pi \int_{c}^{d} f^{2}(y) \, dy$$

(1) Obliczyć objętość stożka ściętego o promieniach podstaw a i b (0 < a < b) i wysokości h.

$$f(x) = \frac{b-a}{h}x + a, \ x \in [0, h]$$

$$|V| = \pi \int_0^h \left[\frac{b-a}{h}x + a\right]^2 dx = \begin{vmatrix} t = \frac{b-a}{h}x + a \\ dx = \frac{h}{b-a}dt \\ x = 0 \Rightarrow t = a \\ x = h \Rightarrow t = b \end{vmatrix} = \frac{\pi h}{b-a} \int_a^b t^2 dt = \frac{\pi h}{b-a} \cdot \frac{t^3}{3} \Big|_a^b = \frac{1}{3}\pi \frac{h}{b-a}(b^3 - a^3) = \frac{1}{3}\pi h(a^2 + ab + b^2)$$

(2) Obliczyć objętość bryły obrotowej powastałej przez obrót wokół osi *OX* łuku cykloidy

$$x(t) = a(t - \sin t), \ y(t) = a(1 - \cos t), \ t \in [0, 2\pi], \ a > 0.$$

$$x(t) = a(t - \sin t), \ y(t) = a(1 - \cos t), \ t \in [0, 2\pi], \ a > 0.$$

$$|V| = \pi \int_0^{2\pi a} f^2(x) \, dx =$$

$$= \left\| \begin{array}{c} x = a(t - \sin t), & x = 0 \iff t = 0 \\ dx = a(1 - \cos t) \, dt, & x = 2\pi a \iff t = 2\pi \end{array} \right\| =$$

$$= \left\| \begin{array}{c} f(x(t)) = y(t) \\ = \pi \int_0^{2\pi} a^3 (1 - \cos t)^3 \, dt = \pi a^3 \int_0^{2\pi} \left(2 \sin^2 \frac{t}{2} \right)^3 \, dt =$$

$$= 8\pi a^3 \int_0^{2\pi} \sin^6 \frac{t}{2} \, dt = \left\| \begin{array}{c} u = \frac{t}{2} \\ u = 5\pi^2 a^3 \end{array} \right\| = 16\pi a^3 \int_0^{\pi} \sin^6 u \, du =$$

$$= \left\| \begin{array}{c} u = \frac{t}{2} \\ u = 1 \end{array} \right\| = 16\pi a^3 \int_0^{\pi} \sin^6 u \, du =$$

$$= \left\| \begin{array}{c} u = \frac{t}{2} \\ u = 1 \end{array} \right\| = 16\pi a^3 \int_0^{\pi} \sin^6 u \, du =$$

(3) Obliczyć objętość bryły powstałej przez obrót elipsy $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ wokół osi OY.

$$|V| = \pi \int_{-b}^{b} x^{2} dy = \pi a^{2} \int_{-b}^{b} \left(1 - \frac{y^{2}}{b^{2}}\right) dy =$$

$$= 2\pi a^{2} \int_{0}^{b} \left(1 - \frac{y^{2}}{b^{2}}\right) dy = 2\pi a^{2} \left[y - \frac{y^{3}}{3b^{2}}\right] \Big|_{0}^{b} = \frac{4}{3}\pi a^{2} b$$

Krzywe (łuki)

Krzywą (łukiem) gładką nazywamy przekształcenie $x:[a,b]\to\mathbb{R}^n$, gdzie $x(t)=(x_1(t),\cdots,x_n(t))$ oraz $x_i(t)$ są funkcjami klasy C^1 na [a,b] dla $i=1,\cdots,n$. Jeżeli $\forall \ t_1,t_2\in(a,b)$ $t_1\neq t_2\Rightarrow x(t_1)\neq x(t_2)$ to krzywą nazywamy zwykłą.

Jeżeli dla krzywej zwykłej zachodzi $x(a) \neq x(b)$ to nazywamy ją otwartą, w przeciwnym przypaku nazywamy zamkniętą. Gładką krzywą nazywamy regularną, jeśli

$$\forall t \in [a,b] \qquad \sum_{i}^{n} [x_i'(t)]^2 > 0.$$

Krzywa gładkax jest płaska, jeżeli $x : [a, b] \to \mathbb{R}^2$ (czyli n = 2).

Krzywe (łuki) - przykłady

 $x(t)=(t+t^2,t^3+t^4)$, $t\in[-\frac{3}{2},\frac{1}{2}]$ to płaska krzywa regularna, ale nie jest zwykła.

 $x(t)=(3\cos t,\sin t),\ t\in[0,2\pi]$ to płaska krzywa regularna, zwykła, zamknięta.

 $x(t)=(t-t^2,t+t^5)$, $t\in[-1,1]$ to płaska krzywa regularna otwarta.

 $x(t)=(\cos t, 2\sin t, t),\ t\in [0,4\pi]$ to krzywa regularna, otwarta, ale nie jest płaska.

 $x(t)=(t^2,t^3)$, $t\in[-\frac{3}{2},\frac{1}{2}]$ to płaska krzywa gładka otwarta, ale nie jest regularna, bo x'(0)=(0,0).


```
x:[a,b] \to \mathbb{R}^2 to płaska krzywa regularna \Delta_n: a=t_0 < t_1 < \ldots < t_n=b - podział przedziału [a,b] średnica podziału: \delta_n=\max_{1\leqslant k\leqslant n}\Delta t_k, \Delta t_k=t_k-t_{k-1} (\Delta_n) - podział normalny \iff \lim_{n\to\infty}\delta_n=0 P_k=(x_1(t_k),x_2(t_k)), k=0,\ldots,n - punkty na krzywej x
```

 $x:[a,b] \to \mathbb{R}^2$ to płaska krzywa regularna $\Delta_n: a=t_0 < t_1 < \ldots < t_n=b$ - podział przedziału [a,b] średnica podziału: $\delta_n=\max_{1\leqslant k\leqslant n}\Delta t_k\,,\;\;\Delta t_k=t_k-t_{k-1}$ (Δ_n) - podział normalny $\iff \lim_{n\to\infty}\delta_n=0$ $P_k=(x_1(t_k),x_2(t_k))\,,\;k=0,\ldots,n$ - punkty na krzywej x Łącząc punkty P_k na łuku otrzymujemy łamaną I_n o długości

$$|I_n| = \sum_{k=1}^n \left| \overrightarrow{P_{k-1} P_k} \right|$$

gdzie

$$\begin{split} \left| \overrightarrow{P_{k-1}P_k} \right| &= \sqrt{[x_1(t_k) - x_1(t_{k-1})]^2 + [x_2(t_k) - x_2(t_{k-1})]^2} = \\ &= \sqrt{[x_1'(c_k) \cdot (t_k - t_{k-1})]^2 + [x_2'(d_k) \cdot (t_k - t_{k-1})]^2} = \\ &= \sqrt{[x_1'(c_k)]^2 + [x_2'(d_k)]^2} \cdot \Delta t_k \,, \quad c_k, d_k \in (t_{k-1}, t_k) \end{split}$$

Długość krzywej płaskiej

Jeśli dla każdego ciągu normalnego podziałów przedziału [a,b] istnieje granica właściwa ciągu (I_n) niezależna od wyboru punktów pośrednich, to krzywą nazywamy *prostowalną* a granicę $L = \lim_{n \to \infty} I_n$ nazywamy długością krzywej.

Twierdzenie

Długość płaskiej krzywej regularnej $x:[a,b] o \mathbb{R}^2$ jest równa

$$L = \int_a^b \sqrt{[x_1'(t)]^2 + [x_2'(t)]^2} dt.$$

Długość krzywej w \mathbb{R}^n

Niech $v=(v_1,\cdots,v_n)$ będzie wektorem w \mathbb{R}^n . Wtedy jego długość (norma) to liczba $|v|=\sqrt{\sum_{i=1}^n v_i^2}$

Długość krzywej w \mathbb{R}^n

Jeśli $x:[a,b] o \mathbb{R}^n$ jest krzywą regularną to jej długość jest równa

$$L = \int_{a}^{b} |x'(t)| dt = \int_{a}^{b} \sqrt{\sum_{i=1}^{n} [x'_{i}(t)]^{2}} dt.$$

Uwaga:

Jeśli $f \in C^1([a,b])$, to wykres y=f(x) jest krzywą zwykłą otwartą regularną o parametryzacji x(t)=(t,f(t)) dla $t\in[a,b]$, więc $\int_a^b \sqrt{(x_1'(t))^2+(x_2'(t))^2}\,dt=\int_a^b \sqrt{1+[f'(t)]^2}\,dt$ Stąd wzór na długość krzwej zadanej funkcyjnie $L: v=f(x), x\in[a,b]$:

$$|L| = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx$$

Długość krzywej - przykłady

(1) Obliczyć długość łuku paraboli $y = \frac{1}{2}x^2, x \in [0, a], a > 0.$

$$\begin{split} |L| &= \int_0^a \sqrt{1 + [(\frac{1}{2}x^2)']^2} \, dx = \int_0^a \sqrt{1 + x^2} \, dx = \\ &= \left[\frac{1}{2}x\sqrt{x^2 + 1} + \frac{1}{2}\ln|x + \sqrt{x^2 + 1}| \right] \, \Big|_0^a = \\ &= \frac{1}{2} \left[a\sqrt{a^2 + 1} + \ln|a + \sqrt{a^2 + 1}| \right] \end{split}$$

Długość krzywej - przykłady

(2) Obliczyć długość łuku cykloidy $x(t) = a(t - \sin t)$, $y(t) = a(1 - \cos t)$, $t \in [0, 2\pi]$, a > 0.

$$|L| = \int_0^{2\pi} \sqrt{[a(1-\cos t)]^2 + [a\sin t]^2} dt = a \int_0^{2\pi} \sqrt{2 - 2\cos t} dt =$$

$$= a\sqrt{2} \int_0^{2\pi} \sqrt{2\sin^2 \frac{t}{2}} dt = 2a \int_0^{2\pi} |\sin \frac{t}{2}| dt =$$

$$= 2a \left(-2\cos \frac{t}{2}\right) \Big|_0^{2\pi} = -4a(-1-1) = 8a$$

Pole powierzchni bocznej stożka

Stożek o tworzącej o długości *L* i promieniu podstawy długości *R*.

Pole powierzchni bocznej stożka

Pole powierzchni bocznej stożka o tworzącej o długości L i promieniu podstawy długości R to $P=\pi RL$.

Pole powierzchni bocznej stożka ściętego

Stożek ścięty o tworzącej o długości $\it I$ i promieniach podstaw długości $\it r$ i $\it R$ ($\it r < \it R$)

Pole powierzchni bocznej stożka ściętego

$$\frac{a}{r} = \frac{a+1}{R} \implies aR = ar + lr \implies a = \frac{lr}{R-r}$$

Pole powierzchni bocznej stożka ściętego

 $a=rac{lr}{R-r}$. Pole powierzchni bocznej stożka ściętego to

$$P = \pi R(I + a) - \pi ra = \pi (RI + (R - r)a) = 2\pi \frac{r + R}{2}I.$$

$$P=2\pi\frac{r+R}{2}I$$

Powierzchnia powstała przez obrót wokół osi OX wykresu funkcji y = f(x), $x \in [a, b]$.

$$\xi_i = \frac{x_{i-1} + x_i}{2}, \ S_n = \sum_{i=1}^n 2\pi f(\xi_i) I_i = 2\pi \sum_{i=1}^n f(\xi_i) \sqrt{1 + f'(\xi_i)} \Delta x_i$$

$$\lim_{\delta_n\to 0} S_n = 2\pi \int_a^b f(x) \cdot \sqrt{1+[f'(x)]^2} \, dx.$$

Pole powierzchni obrotowej powstałej przez obrót wokół osi OX wykresu funkcji $y = f(x), x \in [a, b]$ wyraża się wzorem:

$$|S| = 2\pi \int_a^b f(x) \cdot \sqrt{1 + [f'(x)]^2} dx$$

Pole powierzchni obrotowej powstałej przez obrót wokół osi OX wykresu funkcji $y = f(x), x \in [a, b]$ wyraża się wzorem:

$$|S| = 2\pi \int_a^b f(x) \cdot \sqrt{1 + [f'(x)]^2} dx$$

Jeśli obracana krzywa zadana jest parametrycznie, to:

$$|S| = 2\pi \int_a^b y(t) \cdot \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$$

Pole powierzchni obrotowej powstałej przez obrót wokół osi OX wykresu funkcji $y = f(x), x \in [a, b]$ wyraża się wzorem:

$$|S| = 2\pi \int_a^b f(x) \cdot \sqrt{1 + [f'(x)]^2} dx$$

Jeśli obracana krzywa zadana jest parametrycznie, to:

$$|S| = 2\pi \int_a^b y(t) \cdot \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$$

Jeśli obracamy wokół osi OY wykres funkcji x = f(y), $y \in [c, d]$, to:

$$|S| = 2\pi \int_{C}^{d} f(y) \cdot \sqrt{1 + [f'(y)]^2} \, dy$$

Pole powierzchni obrotowej - przykłady

(1) Obliczyć pole powierzchni bocznej powstałej przez obrót wokół osi OX łuku krzywej $y=x^3,\ x\in \left[-\frac{2}{3},\frac{2}{3}\right]$.

$$|S| = 2 \cdot 2\pi \int_0^{\frac{2}{3}} x^3 \cdot \sqrt{1 + 9x^4} \, dx = \left\| \begin{array}{c} t = 1 + 9x^4 \\ dt = 36x^3 dx \\ x = 0 \Rightarrow t = 1 \\ x = \frac{2}{3} \Rightarrow t = \frac{25}{4} \end{array} \right\| =$$

$$= \frac{4\pi}{36} \int_1^{\frac{25}{9}} \sqrt{t} \, dt = \frac{\pi}{9} \cdot \frac{2}{3} \left[t^{\frac{3}{2}} \right] \Big|_1^{\frac{25}{9}} = \frac{2\pi}{27} \left(\frac{125}{27} - 1 \right)$$

 $= \frac{1}{36} \int_{1}^{1} \sqrt{t} \, dt = \frac{1}{9} \cdot \frac{1}{3} \left[t^{2} \right]_{1}^{1} = \frac{1}{27} \left(\frac{1}{27} - 1 \right)$

Pole powierzchni obrotowej - przykłady

(2) Obliczyć pole powierzchni powstałej przez obrót wokół OX asteroidy $x(t) = a \cos^3 t$, $y(t) = a \sin^3 t$, $t \in [0, 2\pi]$.

$$|S| = 2 \cdot 2\pi \int_0^{\frac{\pi}{2}} y(t) \cdot \sqrt{[x'(t)]^2 + [y'(t)]^2} dt =$$

$$= 4\pi \int_0^{\frac{\pi}{2}} a \sin^3 t \sqrt{(-3a\cos^2 t \sin t)^2 + (3a\sin^2 t \cos t)^2} dt$$

Pole powierzchni obrotowej - przykłady

$$|S| = 12\pi a^2 \int_0^{\frac{\pi}{2}} \sin^4 t \cos t \, dt = \begin{vmatrix} u = \sin t \\ du = \cos t \, dt \\ t = 0 \iff u = 0 \\ t = \frac{\pi}{2} \iff u = 1 \end{vmatrix} = 12\pi a^2 \int_0^1 u^4 \, du = 12\pi a^2 \frac{u^5}{5} \Big|_0^1 = \frac{12}{5}\pi a^2$$