

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15030019103

FCC REPORT (WIFI)

Applicant: GUANGDONG GUANTONG HOLDING CO., Ltd.

Address of Applicant: NO.2, BEIAO AVENUE, DAWENBA, AOTOU, DAYABAY,

HUIZHOU, GUANGDONG, CHINA

Equipment Under Test (EUT)

Product Name: 3G Smart phone

Model No.: M403

FCC ID: 2ADTY-M403

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 25 Mar., 2015

Date of Test: 26 Mar., to 13 Apr., 2015

Date of report issued: 14 Apr., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	14 Apr., 2015	Original

Prepared by: 14 Apr., 2015

Report Clerk

Reviewed by: Date: 14 Apr., 2015

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	_
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	8
	5.6	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2 6.7		
	6.7.1	SPURIOUS EMISSION	
	6.7.1		
	· · · · · ·		
7	TES	T SETUP PHOTO	58
8	EUT	CONSTRUCTIONAL DETAILS	59

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	GUANGDONG GUANTONG HOLDING CO., Ltd.
Address of Applicant:	NO.2, BEIAO AVENUE, DAWENBA, AOTOU, DAYABAY, HUIZHOU, GUANGDONG, CHINA
Manufacturer/Factory:	GUANGDONG GUANTONG HOLDING CO., Ltd.
Address of Manufacturer/Factory:	NO.2, BEIAO AVENUE, DAWENBA, AOTOU, DAYABAY, HUIZHOU, GUANGDONG, CHINA

5.2 General Description of E.U.T.

Product Name:	3G Smart phone
Model No.:	M403
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps,9Mbps,12Mbps,18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2 dBi
AC adapter:	Input:100-240V AC,50/60Hz 200mA Output:5V DC MAX 500mA
Power supply:	Rechargeable Li-ion Battery DC3.7V-1300mAh

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3 2422MHz 6 2437MHz 9 2452MHz							

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

Report No: CCIS15030019103

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation

The sample was placed on the table 0.8 meters for below 1GHz, 1.5 meters for above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Report No: CCIS15030019103

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radia	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	04-19-2014	04-19-2015
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	04-19-2014	04-19-2015
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	03-01-2015	02-28-2016
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	06-09-2014	06-08-2015
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	03-01-2015	02-28-2016
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	03-01-2015	02-28-2016
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	04-19-2014	04-19-2015
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-01-2015	02-28-2016
13	Loop antenna	Laplace instrument	RF300	EMC0701	03-01-2015	02-28-2016
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	05-29-2014	05-28-2015
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-19-2014	04-19-2015

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	10-10-2012	10-09-2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-01-2015	02-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-01-2015	02-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	03-01-2015	02-28-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2.0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	,			
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz		1		
Limit:	Frequency range (MHz) Limit (dBuV) Quasi-peak				
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm1. The E.U.T and simulators				
	 a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 				
Test setup:	AUX Equipment E.U Test table/Insulation plant Remark E.U.T: Equipment Under Test LISN Line Impedence Stabilization Test table height=0.8m	EMI Receiver	er — AC power		
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Neutral:

Trace: 5

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: 191RF Job No.

EUT : 3G Smart phone : M403 : WIFI mode Model

Test Mode Power Rating : AC 120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Winner

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBuV	₫₿	₫B	dBu∜	dBu∛	₫B	
1	0.202	37.50	0.25	10.76	48.51	63.54	-15.03	QP
2	0.202	26.22	0.25	10.76	37.23	53.54	-16.31	Average
3	0.330	35.50	0.26	10.73	46.49	59.44	-12.95	QP
4	0.330	28.57	0.26	10.73	39.56	49.44	-9.88	Average
5	0.393	28.45	0.25	10.72	39.42		-18.57	
6	0.595	16.68	0.23	10.77	27.68	46.00	-18.32	Average
7	0.601	26.47	0.23	10.77	37.47		-18.53	
1 2 3 4 5 6 7 8 9	1.464	29.67	0.26	10.92	40.85	56.00	-15.15	QP
9	1.636	14.51	0.27	10.93	25.71	46.00	-20.29	Average
10	2.500	28.65	0.29	10.94	39.88		-16.12	
11	2.636	14.19	0.29	10.93	25.41	46.00	-20.59	Average
12	3.985	8.93	0.29	10.89				Average

Line:

Trace: 7

Site : CCIS Shielding Room Condition : FCC PART15 B QP LISN LINE

Job No. : 191RF

EUT : 3G Smart phone

Model : M403 Test Mode : WIFI mode Power Rating : AC 120/60Hz

Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Winner

Remark

emark								
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	₫₿	₫B	dBuV	dBuV	₫B	
1	0.202	21.75	0.28	10.76	32.79	53.54	-20.75	Average
2	0.211	34.31	0.28	10.76	45.35	63.18	-17.83	QP
3	0.330	25.98	0.27	10.73	36.98	49.44	-12.46	Average
4	0.337	34.95	0.27	10.73	45.95	59.27	-13.32	QP
5	0.595	29.35	0.25	10.77	40.37	56.00	-15.63	QP
6	0.595	17.47	0.25	10.77	28.49	46.00	-17.51	Average
7	0.686	29.92	0.22	10.77	40.91	56.00	-15.09	QP
1 2 3 4 5 6 7 8 9	0.862	13.85	0.24	10.83	24.92	46.00	-21.08	Average
9	1.123	29.78	0.25	10.88	40.91	56.00	-15.09	QP
10	1.918	14.23	0.26	10.95	25.44	46.00	-20.56	Average
11	2.066	31.35	0.26	10.96	42.57		-13.43	
12	2.809	12.95	0.27	10.93	24.15	46.00	-21.85	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.10:2013 and KDB558074					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.					

Measurement Data

T	Maximum	Conducted Output			
Test CH	802.11b 802.11g 802.11n(H20)		Limit(dBm)	Result	
Lowest	11.73	8.33	7.84		
Middle	11.37	8.34	7.90	30.00	Pass
Highest	11.52	8.65	8.63		

Test plot as follows:

Middle channel

Highest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.10:2013 and KDB558074				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

	6dB	Emission Bandwidtl		_		
Test CH	802.11b 802.11g 802.11n(H20)		Limit(kHz)	Result		
Lowest	10.26	15.79	16.99		Pass	
Middle	10.26	15.87	16.99	>500		
Highest	10.26	15.71	16.99			

T . O.I.	99%	Occupy Bandwidth		Result		
Test CH	802.11b	802.11g	Limit(kHz)			
Lowest	12.02	16.43	17.64		N/A	
Middle	12.10	16.51	17.64	N/A		
Highest	12.26	16.75	17.80			

Test plot as follows:

6dB EBW

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Middle channel

Highest channel

Middle channel

Highest channel

99% **OBW**

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Middle channel

Highest channel

Middle channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB558074
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH		Pow	er Spectral Densi		5 "		
		802.11b 802.11g 802.11n(H20)		Limit(dBm)	Result		
	Lowest	1.95	-1.63	-0.98		Pass	
	Middle	1.81	-1.19	-1.00	8.00		
	Highest	2.06	-0.78	-0.49			

Test plot as follows:

Middle channel

Highest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 below that in the 100 kHz bandwidth within the band that contains highest level of the desired power, based on either an RF conducted radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Lowest channel Highest channel

Lowest channel Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	2.3GHz to 2.5GHz						
Test site:	Measurement D						
	Weasurement D	istance. Sin					
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	Above IGHZ	Peak	1MHz	10Hz	Average Value		
Limit:		т.	· · · / ID \ /	/ 60 \			
	Freque	ncy I					
	Above 1	GHz					
Test setup:	Frequency Above 1GHz The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height anterower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to meters and the rota table was turned from 0 degrees to 360 degree to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower that the limit specified, then testing could be stopped and the peak varied the EUT would be reported. Otherwise the emissions that did in have 10dB margin would be re-tested one by one using peak, que peak or average method as specified and then reported in a data sheet.						
			Amplif				
Test Instruments:	Refer to section	5.6 for details					
Test mode:	Refer to section						
Test results:							
rest results.	Passed						

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 3G Smart phone EUT

: M403 Model

Test mode : Wifi-b-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT

Remark

a		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq		Factor						
	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
	2390.000 2390.000				0.00				

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : 3G Smart phone : M403 Model

Test mode : Wifi-b-L mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: YT

Ren

mar	k :	Read	Åntenna	Cable	Preamp		Limit	Over	
	Freq		Factor				Line	Limit	Remark
	MHz	dBu∜	dB/m	₫B	₫B	dBuV/m	dBuV/m	dB	-
1 2	2390.000 2390.000		27.58 27.58					-17.94 -8.38	Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : 3G Smart phone

Model : M403

: Wifi-b-H mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: YT Remark :

mai	ik :	: ReadAntenna		Cable	Preamp		Limit	Over	
	Freq		Factor				Line	Limit	Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500		27.52 27.52			59.08 48.61			

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 3G Smart phone : M403 EUT

Model

Test mode : Wifi-b-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: YI

Ren

emar	к :	: ReadAntenna		Cable	Preamp		Limit	Over	
	Freq		Factor						
	MHz	₫₿uV	dB/m	₫B	₫B	dBuV/m	dBu∀/m	dB	
1 2	2483.500 2483.500					57.11 45.85			

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 3G Smart phone EUT

: M403 Model

Test mode : Wifi-g-L mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: YT

Rema

a	ck :	Read	Ånt enna	Cable	Presmn		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	dB	dB	dBu√/m	dBuV/m	dB	
	2390,000 2390,000								

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : 3G Smart phone

: M403 Model

Test mode : Wifi-g-L mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: YT

Remark

	Freq	Read. Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∛	dB/m	dB	−−−−dB	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000								

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 3G Smart phone Condition

EUT

Model : M403

Test mode : Wifi-g-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT Remark

RZ	IK :								
			Ant enna				Limit		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∛	dB/m	₫B	dB	dBuV/m	dBuV/m	₫B	
1	2483.500	36.25	27.52	5.70	0.00	69.47	74.00	-4.53	Peak
2	2483, 500	18.33	27.52	5, 70	0.00	51.55	54.00	-2.45	Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 3G Smart phone Condition

EUT

Model : M403

Test mode : Wifi-g-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

Remark

		ReadAntenna		Cable	Preamp		Limit	Over		
	Freq		Factor							
	MHz	MHz dBuV	V dB/m 0	dB	B —— dB	dBu∀/m	dBuV/m	dB	*********	
1	2483,500 2483,500									

Remark:

2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 3G Smart phone Condition

EUT

: M403 Model

Test mode : Wifi-n20-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT

Rema

mar	к ;	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						
	MHz	dBu∜	dB/m	d₿	₫B	dBuV/m	dBuV/m	₫B	********
1 2	2390,000 2390,000				0.00	60.74 50.91	74.00 54.00	-13.26 -3.09	Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 3G Smart phone Condition

EUT

: M403 Model

Test mode : Wifi-n20-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT

Remark

		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	₫₿	dB	dBu∜/m	dBuV/m	₫B	
)	2390.000 2390.000								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 3G Smart phone EUT

Model : M403

: Wifi-n20-H mode Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: MT

Remark

_			Read	Antenna	Cable	Preamp		Limit	Over		
	Fre	ps		Factor							
	м	MHz	Hz dBuV	BuV dB/m	₫₿	dB	dBuV/m	dBuV/m	dB		
				27.52 27.52						Peak Average	

Remark:

2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 3G Smart phone

EUT

: M403 Model

Test mode : Wifi-n20-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

Remark

rar.	n .								
	7	Read	Antenna	Cable	Preamp	T	Limit	Over	
	rreq	rever	Factor	Loss	ractor	rever	Line	Limit	Remark
	MHz	dBuV	dB/m	₫B	₫B	dBuV/m	dBuV/m	dB	
55	2483.500 2483.500				0.00				Peak Average

Remark:

2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement: FCC Part 15 C Section 15.247 (d)								
Test Method:	ANSI C63.10:2013 and KDB558074							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table							
Test Instruments:	Refer to section 5.6 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:

Date: 2.APR.2015 13:40:51

30MHz~25GHz

Middle channel

Date: 2.APR.2015 13:41:39

30MHz~25GHz

Highest channel

Date: 2.APR.2015 13:42:20

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 2.APR.2015 13:48:50

30MHz~25GHz

Middle channel

Date: 2.APR.2015 13:48:17

30MHz~25GHz

Highest channel

Date: 2.APR.2015 13:47:52

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 2.APR.2015 13:45:45

30MHz~25GHz

Middle channel

Date: 2.APR.2015 13:46:22

30MHz~25GHz

Highest channel

Date: 2.APR.2015 13:47:05

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10:2	013					
Test Frequency Range:	9 kHz to 25 GH	z					
Test site:	Measurement [Distance: 3m					
Receiver setup:							
	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value		
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	Peak Value		
	710000 10112	Average Value					
Limit:	Fraguency Limit (dBu)//m @3m) Pomar						
	Frequency Limit (dBuV/m @3m) Remark						
	30MHz-88MHz 40.0 Quasi-peak Value						
	88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value						
	216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value						
	3001011 12-	10112	54.0		Average Value		
	Above 1GHz Above 1GHz 74.0 Average value 74.0 Peak Value						
Test Procedure:	below 1GH meter cam position of 2. The EUT wantenna, watower. 3. The antenna Both horizon make the result of find the 5. The test-result of the EUT have 10dE	Itz, 1.5 meters ber. The table the highest reas set 3 met which was more than the interest of the rota table maximum researched the rota table table the rota table	n the top of a resident adjustment of a resident adjustment on the formal of the maximum tical polarization. The maximum the maximum of the m	otating table GHz above to 360 degree on the interfector of a variate meter to full ons of the all T was arrand to heights from 0 degree degree to degree to be stopped vise the em I one by one	e 0.8 meters for the ground at a 3 es to determine the rence-receiving table-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 trees to 360 degrees. Function and the peak values issions that did not the using peak, quasi-eported in a data		

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 3G Smart phone Condition

EUT

Model : M403 Test mode : wifi mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: YT REMARK :

dire d		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m		dB	$\overline{dBuV/m}$	dBuV/m	dB	
1	44.431	28.94	13.55	0.56	29.86	13.19	40.00	-26.81	QP
2	56.593	29.70	12.93	0.66	29.79	13.50	40.00	-26.50	QP
3	102.001	33.05	12.97	0.98	29.51	17.49	43.50	-26.01	QP
4	213.763	36.93	11.00	1.45	28.74	20.64	43.50	-22.86	QP
2 3 4 5	321.061	28.93	13.40	1.84	28.50	15.67	46.00	-30.33	QP
6	416.179	29,04	15.39	2.16	28.81	17.78	46.00	-28.22	QP

Site

Condition

EUT

Model Test mode : wifi mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: YT

EMAKK	Freq		Antenna Factor				Limit Line	Over Limit	
	MHz	dBu₹	$\overline{dB/m}$	dB	dB	dBuV/m	dBuV/m	dB	
1	33.095	36.44	12.31	0.46			1	-20.75	C. (1980)
1 2 3 4	107.134	35.27	12.49	1.02	29.48	19.30	43.50	-24.20	QP
3	141.826	40.33	8.20	1.27	29.26	20.54	43.50	-22.96	QP
	213.763	35.15	11.00	1.45	28.74	18.86	43.50	-24.64	QP
5	432, 546	34.14	15.53	2.21	28.84	23.04	46.00	-22.96	QP
6	480.528	35.47	16.07	2.35	28.92	24.97	46.00	-21.03	QP

Above 1GHz

Test mode: 8	02.11b		Test char	nnel: Lowest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	53.81	31.53	8.90	40.24	54.00	74.00	-20.00	Vertical
4824.00	53.83	31.53	8.90	40.24	54.02	74.00	-19.98	Horizontal
Test mode: 8	02.11b		Test char	nnel: Lowest		Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	52.57	31.53	8.90	40.24	52.76	54.00	-1.24	Vertical
4824.00	51.75	31.53	8.90	40.24	51.94	54.00	-2.06	Horizontal

Test mode: 8	02.11b		Test char	nnel: Middle		Remark: Pea	ık		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	56.16	31.58	8.98	40.15	56.57	74.00	-17.43	Vertical	
4874.00	53.73	31.58	8.98	40.15	54.14	74.00	-19.86	Horizontal	
Test mode: 8	02.11b		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	52.05	31.58	8.98	40.15	52.46	54.00	-1.54	Vertical	
4874.00	51.93	31.58	8.98	40.15	52.34	54.00	-1.66	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Pea	ık		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	54.82	31.69	9.08	40.03	55.56	74.00	-18.44	Vertical	
4924.00	52.84	31.69	9.08	40.03	53.58	74.00	-20.42	Horizontal	
Test mode: 80	02.11b		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	52.07	31.69	9.08	40.03	52.81	54.00	-1.19	Vertical	
4924.00	51.11	31.69	9.08	40.03	51.85	54.00	-2.15	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	50.72	31.53	8.90	40.24	50.91	74.00	-23.09	Vertical
4824.00	51.47	31.53	8.90	40.24	51.66	74.00	-22.34	Horizontal
Test mode: 80	02.11g		Test channel: Lowest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	47.65	31.53	8.90	40.24	47.84	54.00	-6.16	Vertical
4824.00	49.66	31.53	8.90	40.24	49.85	54.00	-4.15	Horizontal

Test mode: 80	02.11g		Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	51.25	31.58	8.98	40.15	51.66	74.00	-22.34	Vertical	
4874.00	52.96	31.58	8.98	40.15	53.37	74.00	-20.63	Horizontal	
Test mode: 80	02.11g		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	49.63	31.58	8.98	40.15	50.04	54.00	-3.96	Vertical	
4874.00	50.33	31.58	8.98	40.15	50.74	54.00	-3.26	Horizontal	

Test mode: 8	02.11g		Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	52.23	31.69	9.08	40.03	52.97	74.00	-21.03	Vertical
4924.00	52.95	31.69	9.08	40.03	53.69	74.00	-20.31	Horizontal
Test mode: 8	02.11g		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	50.34	31.69	9.08	40.03	51.08	54.00	-2.92	Vertical
4924.00	49.97	31.69	9.08	40.03	50.71	54.00	-3.29	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H20)		Test char	nnel: Lowest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	51.49	31.53	8.90	40.24	51.68	74.00	-22.32	Vertical
4824.00	51.30	31.53	8.90	40.24	51.49	74.00	-22.51	Horizontal
Test mode: 80	02.11n(H20)		Test char	nnel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	49.37	31.53	8.90	40.24	49.56	54.00	-4.44	Vertical
4824.00	49.37	31.53	8.90	40.24	49.56	54.00	-4.44	Horizontal

Test mode: 8	02.11n(H20)		Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	52.22	31.58	8.98	40.15	52.63	74.00	-21.37	Vertical
4874.00	52.45	31.58	8.98	40.15	52.86	74.00	-21.14	Horizontal
Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	50.37	31.58	8.98	40.15	50.78	54.00	-3.22	Vertical
4874.00	50.37	31.58	8.98	40.15	50.78	54.00	-3.22	Horizontal

Test mode: 8	02.11n(H20)		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	52.76	31.69	9.08	40.03	53.50	74.00	-20.50	Vertical	
4924.00	51.80	31.69	9.08	40.03	52.54	74.00	-21.46	Horizontal	
Test mode: 8	02.11n(H20)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	50.38	31.69	9.08	40.03	51.12	54.00	-2.88	Vertical	
4924.00	49.65	31.69	9.08	40.03	50.39	54.00	-3.61	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7 Test Setup Photo

8 EUT Constructional Details

Reference to the test report No. CCIS15030019101

-----End of report-----