

Calculus 2 Workbook

Geometric series

GEOMETRIC SERIES TEST

 \blacksquare 1. Use the geometric series test to say whether the geometric series converges or diverges, then give the value of the common ratio r.

$$\sum_{n=1}^{\infty} 6 \left(\frac{2}{3}\right)^{n-1}$$

 \blacksquare 2. Use the geometric series test to say whether the geometric series converges or diverges, then give the value of the common ratio r.

$$\sum_{n=1}^{\infty} \left(\frac{3}{7}\right)^{n-1}$$

 \blacksquare 3. Use the geometric series test to say whether the geometric series converges or diverges, then give the value of the common ratio r.

$$\frac{\pi}{2} + \frac{\pi^2}{6} + \frac{\pi^3}{18} + \frac{\pi^4}{54} + \cdots$$

 \blacksquare 4. Use the geometric series test to say whether the geometric series converges or diverges, then give the value of the common ratio r.

$$1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots + \left(-\frac{1}{3}\right)^{n-1} + \dots$$

 \blacksquare 5. Use the geometric series test to say whether the geometric series converges or diverges, then give the value of the common ratio r.

$$\sum_{n=1}^{\infty} \left(\frac{e}{\pi}\right)^n$$

SUM OF THE GEOMETRIC SERIES

■ 1. Find the sum of the geometric series.

$$\sum_{n=1}^{\infty} 7 \left(\frac{3}{8} \right)^{n-1}$$

■ 2. Find the sum of the geometric series.

$$\sum_{n=1}^{\infty} 9 \left(\frac{5}{14} \right)^{n-1}$$

■ 3. Find the sum of the geometric series.

$$\frac{1}{3} - \frac{2}{9} + \frac{4}{27} - \frac{8}{81} + \cdots$$

■ 4. Find the sum of the geometric series.

$$\sum_{n=1}^{\infty} \left(\frac{e}{\pi}\right)^n$$

VALUES FOR WHICH THE SERIES CONVERGES

 \blacksquare 1. Find the values of x for which the geometric series converges.

$$\sum_{n=1}^{\infty} \frac{17}{3} x^{n-1}$$

 \blacksquare 2. Find the values of x for which the geometric series converges.

$$\sum_{n=1}^{\infty} 5 \left(\frac{x-2}{3} \right)^{n-1}$$

 \blacksquare 3. Find the values of x for which the geometric series converges.

$$\sum_{n=0}^{\infty} 4^n x^n$$

GEOMETRIC SERIES FOR REPEATING DECIMALS

- \blacksquare 1. Express the repeating decimal $0.\overline{17}$ as a geometric series.
- \blacksquare 2. Express the repeating decimal $23.\overline{23}$ as a geometric series.
- \blacksquare 3. Express the repeating decimal $6.7\overline{2}$ as a geometric series.
- \blacksquare 4. Express the repeating decimal $9.15\overline{65}$ as a geometric series.

W W W . K R I S T A K I N G M A T H . C O M