准稳态法测不良导体的导热系数和比热-实验报告

姓名: <u>夏弘宇</u> 学号: <u>2023011004</u> 实验日期: <u>20241008</u> 实验组/台号: <u>M11</u> 【实验目的】

- 1.学习万用表的功能及其使用方法;
- 2.了解使用热电偶测量温度的方法。
- 3.学习并掌握准稳态法测量不良导体的导热系数和比热的原理和方法;
- 4.学习作图法处理实验数据。

【实验仪器】

函数信号发生器、数字万用表、直流稳压电源、保温杯(冷端)、换向开关、 秒表(手机秒表代替)、未知规格电容、电阻、二极管、导线

实验样品台架:①中心面横梁,承载中心面的热电偶;②加热面横梁,承载加热面的热电偶;③加热薄膜,给样品加热,两加热薄膜已并联;④隔热泡沫层,防止散热,从而保证实验精度;⑤锁定杆,实验时锁定横梁,防止在未松开螺杆⑥时取出热电偶导致热电偶损坏;⑥螺杆旋钮,推动隔热层压紧或松开实验样品和热电偶。

平行板试样 4 块: 有机玻璃, 密度 1196kg/m³, 长×宽×厚=90.0mm×90.0mm×10.0mm; 薄膜加热器 2 片, 加热电压控制在 15-20V 之间, 电流不超过 0.5A; 热电偶 2 只, 温度系数 40.0uV/ \mathbb{C} ; 泡沫绝热体 2 块

【实验原理】

1. 傅里叶导热定律

单位时间内通过该截面的传导热量 $Q = -\lambda F \frac{dt}{dx}$

单位时间内通过单位面积的热流量为热流密度(也称为热通量)

$$q = \frac{Q}{F} = -\lambda \frac{dt}{dx}$$

2. 准稳态法测量导热系数及比热

目标:测量不良导体样品的导热系数 λ

模型: 厚度为 2R,初始内部温度均匀为 t_0 ,在两侧提供恒定热流密度 q_c ,平板样品内温度场记作 $t(x,\tau)$,以中心截面 x=0

为对称面;沿
$$x$$
 轴方向的传热方程为 $\frac{\partial t}{\partial \tau} = \alpha \frac{\partial^2 t}{\partial x^2}, |x| \leq R$,

其中热扩散率 $\alpha = \lambda/(c\rho)$,考虑初始及边界条件,易得

$$t(x, au)=t_0+rac{q_c}{\lambda}igg[rac{lpha au}{R}-rac{R}{6}+rac{1}{2R}x^2+R\sum_{n=1}^{\infty}(-1)^{n+1}rac{2}{\mu_n^2}\mathrm{cos}igg(\mu_nrac{x}{R}igg)\mathrm{exp}(-\mu_n^2F_0)igg]$$

式中 $\mu_n = n\pi$, n=1,2,3, … , $F_0 = \alpha \tau/R^2$ 为傅里叶数。当经过一定的初始加热时间 τ 使得傅里叶数 $F_0>0.5$ 后,式中指数项因子衰减得很小,可以忽略,因此简化为

$$t(x, au) = t_0 + rac{q_c R}{\lambda} igg(rac{lpha au}{R^2} + rac{x^2}{2R^2} - rac{1}{6} igg)$$

由此表达式可以看出, $F_0>0.5$ 后任一时刻样品内各点的温度 t 随位置 x 的变化呈抛物线分布;任意一点的温度随加热时间 τ 的增加而线性升高。进一步分析可知,样品内各点的温升速率相同并保持不变(准稳态)。

虽然上述各式都预设样品表面无限大,但实际只要长宽为厚度的 6 倍就可以 近似认为样品中心点就位于无限大平板上,忽略有限面积带来的误差。

上式中有 c 和 λ 两个未知量,所以还需要一个式子来测 c。由于装置的对称性,样品中心面为绝热面,从一侧的加热面流入样品的热流 q_c 全部被 $R\sim 0$ 厚度范围内的样品物质所吸收,使得样品内各处的温度以相同的速率 $dt/d\tau$ 同步升高

$$(F_0>0.5$$
 后),因此符合 $q_cF=c
ho RFrac{dt}{d au}$,即 $c=rac{q_c}{
ho R}\Big(rac{dt}{d au}\Big)^{-1}$ 。

3. 热电偶测温

本实验中,由于温差较小,可近似为 $U(t,t_0)=k_1(t-t_0)$, k_1 为热电偶常数。

4. 热流密度 qc的计算

【实验内容及步骤】

1.学习数字万用表的基本使用

测量电阻阻值(二端法测量)、电容、二极管的正向导通电压、交流信号的电压、频率。注意计算仪器误差: $\Delta_{\alpha} = \alpha\% \cdot$ 读数 $+\beta\% \cdot$ 量程。

- 2.完成样品台组装。打开直流稳压电源、数字万用表电源并预热一段时间, 在适 当预设电压下, 用万用表测量实验前加热电压
- 3.用万用表测量并记录热电偶、加热器电阻值,检查器件是否完好

4.连接电路

连接热电偶、换向开关与数字万用表,组装测温系统,将热电偶各接点摆放到位。

5.数据测量与记录

使用温度计测量初始温度 t_0 及初始温差 $U_1(t_2t_1)$ 、初始中心面温度 $U_2(t_1t_c)$ 。接通电源与加热器,间隔 1 分钟测量 $U_1(t_2t_1)$ 与 $U_2(t_1t_c)$ \$, 共测量约 25 分钟。

6.结束实验

断开电源并拆下万用表,测量试验后的加热电压。清理实验台,注意松开压住式样的螺杆进行散热。

【数据处理】

τ(分钟)	0	1	2	3	4	5	6	7	8
$U_2(t_2, t_1)/\text{mV}$	0.012	0.015	0.025	0.041	0.062	0.085	0.109	0.133	0.158
$U_1(t_1, t_c)/\text{mV}$	0.008	0.119	0.150	0.167	0.175	0.180	0.182	0.184	0.184
τ(分钟)	9	10	11	12	13	14	15	16	17
$U_2(t_2, t_1)$	0.183	0.208	0.234	0.259	0.284	0.308	0.333	0.357	0.382
$U_1(t_1, t_c)$	0.184	0.185	0.185	0.185	0.185	0.185	0.185	0.185	0.186
τ(分钟)	18	19	20	21	22	23	24	25	26
$U_2(t_2, t_1)$	0.406	0.430	0.453	0.476	0.500	0.523	0.545	0.569	
$U_1(t_1, t_c)$	0.186	0.186	0.186	0.187	0.187	0.188	0.188	0.188	

其余数据见原始数据记录。

从图线中可看出,在第 7 min 后,加热面与中心面的温差不再发生变化,可以认为进入准稳态状态。

在准稳态下,计算加热面与中心面的温差 $\Delta t = \frac{U_1}{k} = \frac{186 \mu V}{40 \mu V/^{\circ} C} = 4.65^{\circ} C$ 。

计算热流密度
$$q_c=rac{1}{2}rac{U_{\text{min}}^2}{rF}=rac{17.9830^2}{2 imes0.09^2 imes2 imes55.226}=180.732W/m^2$$
。

于是,导热系数
$$\lambda = \frac{q_c R}{2\Delta t} = \frac{180.732 \times 0.01}{2 \times 4.65} = 0.194 W/(m \cdot C)$$

对 7min 后 U_2 的图像进行线性拟合,拟合图像如下:

由线性拟合结果可得:

$$\frac{dU_2}{d\tau}=0.0242mV/\mathrm{min}$$

$$\frac{dt}{d\tau}=\frac{1}{k}\frac{dU_2}{d\tau}=\frac{1}{40\mu V/^{\circ}C}\times0.0242mV/\mathrm{min}=0.605^{\circ}C/\mathrm{min}$$

计算样品材料比热容得:

$$c = rac{q_c}{
ho R} igg(rac{dt}{d au}igg)^{ ext{-}1} = rac{180.732 W/m^2}{1196 kg/m^3 imes 10 imes 10^{ ext{-}3} m} imes igg(rac{60}{0.605}igg) s/^{\circ} C = 1.50 imes 10^3 J/(kg\cdot ^{\circ} C)$$

【实验总结】

实验结果: $\lambda = 0.194W/(m \cdot {}^{\circ}C)$, $c = 1.50 \times 10^{3} J/(kg \cdot {}^{\circ}C)$

测量误差:

系统误差:由于热量耗散的存在,测得的温度都会偏低;将有限大平板视为 无限大平板存在误差。

偶然误差: 万用表测量读数产生的误差。

其中, 热量耗散是简易热学实验难以避免的系统误差, 从读数中也可以看出, 7min 之后, △U2 总体变化越来越小, 与保持不变的理想状况不符合, 主要就是因为热量的耗散。鉴于这一因素, 本实验分析过程中并未计算不确定度。

【原始数据记录】

准稳态法测量不良导体的导热系数和比热数据记录

1. 万用表使用练习

. /4/14-10/1	4-731- 4					
测量任务	测量值	万用表量程	不确定度计算公式及计算结果	完整测量结果		
电阻 R	11.0445152	20 ks2	11.0445×0020%+20×0.004%=0.0030	11.0445±0.0030ks		
电容 C	0.940 MF	2 µF	0.940x 1/2 + 2 x 0.5%= 0.020	0.940±0.020 KF		
交流电压 U	1.74301V	žV	1.74301x0.6%+ 2x0.05%= 0.011	1.743±0.011 V		
交流信号 f	40.00711	49.987Hz 47.987 x a o l %+ 42787 x a c o l % x x x x x x x x x x x x x x x x x x		49.9870 to 006042		
	49.78/Hz					
二极管导			(不需要估计不确定度)			
通电压	0.57	44 V	CT III X III T T T T T T T T T T T T T T			

2. 热导实验准备、器件检查

(1)接线前检测热电偶是否完好

- 中心面热电偶阻值=3.6730 (应小于10 欧)
- 加热面热电偶阻值=<u>3,283</u>介(应小于10欧)
- 中心面冷端热电偶阻值=3.81CA (应小于10欧)
- 加热面冷端热电偶阻值=_3.943n(应小于10欧)
- (2)两个相同电加热薄膜并联后的阻值= 55.2260
- (3)冷端水温(近似以室温替代)t_c=_23.5℃
- (4)直流电源设定加热电压(15~20V),并测量(加热前后各测一次):

U(前) = 17.9826 V, U(后) = 17.9834 V

(5)其他已知条件:有机玻璃样品密度<u>| | | 96</u> kg/m³, 几何尺寸<u>\$0.0x\$o.oxbo.2</u> mm³ 热电偶 (铜-康铜) 温度系数=<u>4o.0</u> μV/℃

3.加热测量 (τ=0 时 U₁ 应小于 10 微伏)

τ(分钟)	0	1	2	3	4	5	6	7	8
$U_2(t_2,t_1)/(mV)$	0.012	0.015	0.025	0.041	0.062	0.085	0.109	0. 133	0.158
$U_1(t_1, t_c)/(\mathbf{m}\sqrt{})$	0.008	0.119	0.150	0.167	0.175	0.180	0.182	0.184	0.184
τ(分钟)	9	10	11	12	13	14	15	16	17
$U_2(t_2, t_1)$	0.183	v.20g	0.234	0.259	0.284	0.308	0.333	0.357	0.382
$U_1(t_1, t_c)$	0.184	0.185	0.185	0.185	0.185	0.185	0.185	0.185	0.186
τ(分钟)	18	19	20	21	22	23	24	25	26
$U_2(t_2,t_1)$	0.406	0.430	0.453	0,476	0.500	0.52}	0.545	0.569	
$U_1(t_1, t_c)$	0.186	0.186	0.186	0.187	0.187	0.188	0.188	0.188	