

MAJOR TEST (MT)

(JEE ADVANCED PATTERN) TARGET: JEE(MAIN+ADVANCED) 2015

COURSE: VIJETA (JP)

HINTS & SOLUTIONS (संकेत एवं हल)

PAPER-1 Part-I Mathematics

- A parallelogram is formed by the सदिशों $5\vec{a}+2\vec{b}$ तथा $\vec{a}-3\vec{b}$ को आसन्न भुजांए
- Sol. We know, if adjacent sides of parallelogram are x &

then diagonals are $\vec{X} \pm \vec{y}$

one of the diagonal is $(5\vec{a} + 2\vec{b}) + (\vec{a} - 3\vec{b})$

$$= 6\vec{a} - \vec{b}$$

DATE: 28-12-2014

& similar other $x - y = 4\vec{a} + 5\vec{b}$

so length of Ist diagonal =
$$\sqrt{(6\vec{a} - \vec{b}).(6\vec{a} - \vec{b})}$$

= $\sqrt{36 |\vec{a}|^2 + |\vec{b}|^2 - 12\vec{a}.\vec{b}}$
= 15

similarly II^{nd} diagonal's length = $\sqrt{593}$ हम जानते है कि समान्तर चतुर्भुज की भुजाएं x और y है। तब विकर्ण $\vec{x} \pm \vec{y}$ है।

एक विकर्ण
$$(5\vec{a} + 2\vec{b}) + (\vec{a} - 3\vec{b}) = 6\vec{a} - \vec{b}$$

इसी प्रकार दूसरा $x - y = 4\vec{a} + 5\vec{b}$ प्रथम विकर्ण की लम्बाई =

$$\sqrt{(6\vec{a} - \vec{b}).(6\vec{a} - \vec{b})} = \sqrt{36 |\vec{a}|^2 + |\vec{b}|^2 - 12\vec{a}.\vec{b}} = 15$$

इसी प्रकार दूसरे विकर्ण की लम्बाई = $\sqrt{593}$

If $arg\left(\frac{Z_1}{Z_1}\right) = \frac{\pi}{2}$; then the

यदि
$$arg\left(\frac{z_1}{z_2}\right) = \frac{\pi}{2}$$
 तब

Sol.

$$F'\left(\alpha\right) = \frac{-\sin\alpha - \cos\alpha - 1}{\left(\sin\alpha + 1\right)^2} < 0 \quad \forall \quad \alpha \in \left(0, \frac{\pi}{2}\right)$$

$$\lim_{\alpha \to 0^+} \frac{\cos \alpha + 1}{\sin \alpha + 1} = 2 \,, \ \lim_{\alpha \to \frac{\pi^-}{2}} \frac{\cos \alpha + 1}{\sin \alpha + 1} = \frac{1}{2}$$

Ans.
$$\left(\frac{1}{2},2\right)$$

Which of the following..... निम्न में से कौनसा/कौनसे

Sol.
$$\tan x - 3 \tan 3x = \tan x - 3 \frac{\left(3 \tan x - \tan^3 x\right)}{1 - 3 \tan^2 x}$$

$$= \frac{\tan x - 3 \tan^3 x - 9 \tan x + 3 \tan^3 x}{1 - 3 \tan^2 x} = \frac{-8 \tan x}{1 - 3 \tan^2 x}$$

$$\frac{tan9^o}{1-3tan^29^o} = -\frac{1}{8} (tan9^o - 3tan27^o)$$

Given expression दिया गया व्यंजक

$$= -\frac{3}{8} (\tan 9^{\circ} - 3\tan 27^{\circ}) + \frac{9}{8} (\tan 27^{\circ} - 3\tan 81^{\circ})$$
$$+ \frac{27}{9} (\tan 81^{\circ} - 3\tan 243^{\circ}) + \frac{81}{9} (\tan 243^{\circ} - 3\tan 729^{\circ})$$

$$= -\frac{1}{8} \begin{bmatrix} 3 \tan 9^{\circ} - 9 \tan 27^{\circ} + 9 \tan 27^{\circ} - 27 \tan 81^{\circ} + 27 \tan 81^{\circ} \\ - 81 \tan 243^{\circ} + 81 \tan 243^{\circ} - 243 \tan 729^{\circ} \end{bmatrix}$$

$$= -\frac{1}{8} (3 \tan 9^{\circ} - 243 \tan 729^{\circ})$$

$$\{ tan729^o = tan(720^o + 9^o) = tan9^o \}$$

$$= -\frac{1}{8}(-240)\tan 9^{\circ} = 30\tan 9^{\circ} \qquad k = 30$$

- The real numbers $x_1, \, x_2, \, x_3$ satisfying वास्तविक संख्याँऐ x_1, x_2, x_3 समान्तर श्रेढी में हो
- **Sol.** $x^3 x^2 + bx + c = 0$ Let the roots of the equation be a - d, a, a + dमाना समीकरण के मूल a – d, a, a + d

sum of the roots मूलों का योग = 1 or या
$$a - d + a + a + d = 1$$
 or या $a = 1/3$...(2)

$$\big(a-d\big)a+a\big(a+d\big)+\big(a-d\big)\big(a+d\big)=b$$

or या
$$3a^2 - d^2 = b$$

or या $3(1/9) - d^2 = b$ or या $1/3 - d^2 = b$

or या
$$d^2 = 1/3 - b$$
 Since d is real, $1/3 - b > 0$

d वास्तविक है, 1/3 - b > = 0

Corporate Office (New Campus): CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PTC024029

or या b < = 1/3

thus अतः, < b < = 1/3

Product of roots मूलों का गुणनखण्ड = - c

or या
$$(a - d) a(a + d) = -c$$

or या,
$$a(a^2 - d^2) = -c$$

or या,
$$\frac{1}{3}(\frac{1}{9} - d^2) = -c$$

or या,
$$c = d^2/3 - 1/27$$

As d is real d वास्तविक है $d^2 > 0$.

$$\Rightarrow c \ge -\frac{1}{27} \Rightarrow -\frac{1}{27} \le c < \infty$$

$$-\frac{1}{27} \le c < \infty$$

The solution of differential equation 5.

अवकल समीकरण $3\frac{dx}{dy} = \frac{x}{x^3 - y}$ का हल

Sol.
$$3x^2 \frac{dx}{dy} = \frac{x^3}{x^3 - y}$$

$$x^3 = t$$

$$3x^2dx = dt$$

$$\Rightarrow \frac{dt}{dv} = \frac{t}{t - v}$$

$$\Rightarrow \big(t-y\big)dt=t\ dy$$

$$\Rightarrow$$
 t dt = y dt + t dy $\Rightarrow \frac{t^2}{2} = t.y + \frac{c}{2}$

$$\Rightarrow x^6 = 2x^3y + c$$

Let $I = \int_{0}^{4} \sin 4x \cdot e^{\tan^2 x} dx$. Then which

मानािक $I = \int_{0}^{4} \sin 4x \cdot e^{\tan^2 x} dx$ है, तब

Sol. Let माना $\int 2.\sin 2x.\cos 2x.e^{\tan^2x}dx = I$, then तब

$$I = \int_{0}^{\frac{\pi}{4}} 2 \cdot \frac{2 \tan x}{1 + \tan^{2} x} \cdot \frac{1 - \tan^{2} x}{1 + \tan^{2} x} \cdot e^{\tan^{2} x} dx$$

$$I = \int\limits_0^{\frac{\pi}{4}} \frac{2 \Big(1 - tan^2 \, x\Big)}{\Big(1 + tan^2 \, x\Big)^2} \cdot \frac{2 tan \, x \cdot sec^2 \, x}{\Big(1 + tan^2 \, x\Big)} \cdot e^{tan^2 \, x} dx$$

 $2 \tan x \cdot \sec^2 x dx = dt$

At
$$x = 0, t = 0$$
 पर

$$x = \frac{\pi}{4}, t = 1$$

$$I = \int_{0}^{1} \frac{2(1-t)}{(1+t)^{3}} \cdot e^{t} dt = -2 \int_{0}^{1} \frac{t-1}{(1+t)^{3}} \cdot e^{t} dt$$

$$=-2\int_{0}^{1}\frac{(t+1)-2}{(1+t)^{3}}\cdot e^{t} dt$$

$$=-2\int_{0}^{1}e^{t}\left[\frac{1}{(t+1)^{2}}+\frac{-2}{(1+t)^{3}}\right]dt$$

$$=-2\left[\frac{e^{t}}{(1+t)^{2}}\right]^{1}=-2\left(\frac{e}{4}-1\right)=2-\frac{e}{2}$$

- In a parallelogram ABCD, $|\overrightarrow{AB}| = a$, $|\overrightarrow{AD}| = b$ ABCD समान्तर चतुर्भुज में, $|\overrightarrow{AB}| = a, |\overrightarrow{AD}| = b$
- **Sol.** $\overrightarrow{DB} \cdot \overrightarrow{AB} = (\overrightarrow{AB} \overrightarrow{AD}) \cdot \overrightarrow{AB}$

$$= \overline{AB} \cdot \overline{AB} - \overline{AD} \cdot \overline{AB}$$

$$= |\overline{AB}|^2 - |\overline{AD}| |\overline{AB}| \cos \alpha$$

$$= a^2 - \frac{a^2 + b^2 - c^2}{-2}$$

$$= a^2 + \frac{a^2 + b^2 - c^2}{2} \Rightarrow \frac{3a^2 + b^2 - c^2}{2}$$

- One vertex of a triangle is a fix point त्रिभुज का एक शीर्ष स्थिर बिन्दु है जहाँ
- Sol. Fixed point स्थिर बिन्दु (1

$$h = \frac{1+3+\lambda}{3}$$
, $k = \frac{4-1+0}{3} = 1 \Rightarrow y = 1$

- All the 7-digit Numbers containing सभी 7 अंक की संख्याएं ठीक एक बार
- Sol. The 7-digit Numbers with 1 in the left most place and containing each of the digits 1, 2, 3, 4, 5, 6, 7 exactly once is

7 अंक की संख्याएं ठीक एक बार अंकों 1, 2, 3, 4, 5, 6, 7 को रखती है 6! = 720.

But 120 of there end in 5 and hence are divisible by 5.

1800

hence 2000-th number must have 4 in the left most place. अतः बांयी के सबसे उपयुक्त स्थान पर 2000 वीं संख्या में 4 है।

Again the numbers of such 7-digit numbers beginning with 41, 42 and not divisible by 5 is 120 - 24 = 96 each and there account for 192 numbers.

पुनः इस प्रकार की 7 अंकों की संख्याओं की शुरूआत 41, 42 तथा 5 से विभाजित है।

120 - 24 = 96 प्रत्येक और तीन के लिए संख्याएं 192 है।

2000-th number in the list beginning with 43

2000 वीं संख्या की शुरूआत 43 से होती है।

next 8 numbers in the lest are:

अगली 8 संख्याएं

4312567, 4312576, 4312657, 4312756, 4315267, 5315276, 4315627, 4315672.

- Which of the following functions..... निम्न में से कौनसा फलन आवृति
- Sol. $f(x) = \begin{cases} 1, & x \text{ is integer} \\ 0, & x \text{ is non-integer} \end{cases}$

$$f(x) = \begin{cases} 1 & , & x \text{ पूर्णांक } \hat{\mathbf{E}} \mid \\ 0, & x \text{ पूर्णांक } नहीं & \hat{\mathbf{E}} \mid \end{cases}$$

$$\Rightarrow f(x+k) = \begin{cases} 1, & x+k \text{ is integer} \\ 0, & x+k \text{ is non-integer} \end{cases}$$

$$\Rightarrow f(x+k) = \begin{cases} 1, & x+k \text{ पूर्णांक है } \\ 0, & x+k \text{ पूर्णांक नहीं है } \end{cases}$$

$$\Rightarrow f(x+k) = f(x)$$

 \Rightarrow f(x) is periodic function.

f(x) एक आवृति फलन है।

$$\Rightarrow \ f\left(x\right) = \begin{cases} x - \left[x\right] & \text{, } 2n \leq x < 2n + 1 \\ 1/2 & \text{, } 2n + 1 \leq x < 2n + 2 \end{cases}$$

From the graph it can be verified that period is 2. आरेख से इसका आवर्त 2 है।

$$\Rightarrow$$
 $f(x) = (-1)^{\left[\frac{2x}{\pi}\right]}$

$$\Rightarrow \ f\left(x+\pi\right) = \left(-1\right)^{\left[\frac{2(\pi+x)}{\pi}\right]} = \left(-1\right)^{\left[\frac{2x}{\pi}\right]+2} = \left(-1\right)^{\left[\frac{2x}{\pi}\right]}$$

$$\Rightarrow f(x) = x - [x + 3] + \tan\left(\frac{\pi x}{2}\right)$$

$$=\left\{x\right\}-3+tan\left(\frac{\pi x}{2}\right)$$

Hence, the period is अतः आवर्त

{x}is periodic with 1, $tan\left(\frac{\pi x}{2}\right)$ is periodic with period 2.

 $\{x\}$ एक आवृत्ति फलन है जिसका आवर्त 1 है, $tan\left(\frac{\pi x}{2}\right)$ एक

आवर्त फलन जिसका आवर्त 2 है।

Now, the LCM of 1 and 2 is 2. Hence, the period of f(x) is

- 11. If A $_{i}$ is the area bounded by $\left|x-a_{_{i}}\right|+\left|y\right|=b_{_{i}},\,i\in N$... यदि $|x-a_i|+|y|=b_i, i\in N$ जहाँ $a_{i+1}=a_i+\frac{3}{2}b_i$...
- $a_1 = 0, b_1 = 32, a_2 = 48, b_2 = 16, a_3 = 72, b_3 = 8$

Area of ith loop (square) =
$$\frac{1}{2}$$
 (diogonal)²

iā लूप (वर्ग) का क्षेत्रफल = $\frac{1}{2}$ (विकर्ण)²

$$A_i = \frac{1}{2}(2b_i)^2 = 2(b_i)^2$$

So इसलिए,
$$\frac{A_{i+1}}{A_i} = \frac{2(b_{i+1})^2}{2(b_i)^2} = \frac{1}{4}$$

Area form a G.P. series क्षेत्रफल एक गुणोत्तर श्रेढी बनाते है।

Sum of G.P. upto
$$\infty$$
 term = $\frac{8}{3}(32)^2$ units.

गुणोत्तर श्रेढ़ी के अनन्त पदों का योग =
$$\frac{8}{3}(32)^2$$
 इकाई

If f(x) and g(x) are two positive and यदि f(x) तथा g(x) दो धनात्मक तथा

Sol. Let माना
$$y = \left(f(x)\right)^{g(x)}$$

$$\Rightarrow \frac{dy}{dx} = f(x)^{g(x)} \left[g(x)\frac{f'(x)}{f(x)} + g'(x)logf(x)\right]$$

$$f(x)^{g(x)}$$
, $g(x)$, $f(x)$, $f'(x)$ and $g'(x)$ are positive, but log

$$f(x) \text{ can be negative, which can cause } \frac{dy}{dx} < 0$$

$$f\left(x
ight)^{g(x)},\,g(x),\,f(x),f'(x)$$
 तथा $g'(x)$ धनात्मक है, लेकिन \log

$$f(x)$$
 ऋणात्मक हो सकता है जिससे $\displaystyle \frac{dy}{dx} < 0$,

Hence statement A is false.

if $f(x) < 1 \Rightarrow \log f(x) < 0$, which does not necessarily make

$$\frac{dy}{dx} < 0 \text{ , hence statement B is false.}$$

C is false but reverse of C is true

यदि
$$f(x) < 1 \Rightarrow \log f(x) < 0$$
, जो आवश्यक नहीं है। $\frac{dy}{dx} < 0$

अतः कथन B असत्य है।

C is false but reverse of C is true.

C असत्य है लेकिन C का व्युत्क्रम सत्य है।

13. If
$$\int \frac{x^4+1}{x^6+1} dx = tan^{-1} f(x) - \frac{2}{3} tan^{-1} g(x) + c$$
, where ...
ਧਿੰਫ $\int \frac{x^4+1}{x^6+1} dx = tan^{-1} f(x) - \frac{2}{3} tan^{-1} g(x) + c$, ਯहाँ ...

Sol. Let माना
$$I = \int \frac{\left(x^4 + 1\right)}{\left(x^6 + 1\right)} \, dx$$

$$I = \int \frac{\left(x^2 + 1\right)^2 - 2x^2}{\left(x^2 + 1\right)\left(x^4 - x^2 + 1\right)} dx$$

$$= \int \frac{(x^2+1)dx}{(x^4-x^2+1)} - 2\int \frac{x^2 dx}{(x^6+1)}$$

$$= \int \frac{\left(1 + \frac{1}{x^2}\right) dx}{\left(x^2 - 1 + \frac{1}{x^2}\right)} - 2\int \frac{x^2 dx}{\left(x^3\right)^2 + 1}$$

$$I = tan^{-1}\left(x - \frac{1}{x}\right) - \frac{2}{3}tan^{-1}\left(x^{3}\right) + c$$

Here यहाँ,
$$f(x) = x - \frac{1}{x}$$
 andऔर $g(x) = x^3$

$$\begin{split} & \int \frac{f(x)}{g(x)} \, dx = \int \frac{x - \frac{1}{x}}{x^3} \, dx = \int \left(\frac{1}{x^2} - \frac{1}{x^4}\right) \, dx \\ & = -\frac{1}{x} + \frac{3}{x^3} + c \end{split}$$

14. If
$$f(x) = \int_a^x \frac{1}{f(x)} dx$$
 and

यदि
$$f(x) = \int_{a}^{x} \frac{1}{f(x)} dx$$
 तथा

Sol.
$$f(x) = \int_{a}^{x} \frac{1}{f(x)} dx \Rightarrow f'(x) = \frac{1}{f(x)} 1 - 0$$
$$\Rightarrow f(x)f'(x) = 1$$
$$\int f(x)f'(x) dx = \int 1 dx$$
$$\Rightarrow \frac{\left[f(x)\right]^{2}}{2} = x + c \qquad \dots (1$$

Now given that दिया है कि $\int_{0}^{1} \left[f(x) \right]^{-1} dx = \sqrt{2}$

...(1)

$$\Rightarrow f(1) = \sqrt{2}$$

from (1)
$$\stackrel{\rightarrow}{\forall}$$
 $\frac{1}{2} (f(1))^2 = 1 + c \Rightarrow c = 0$

$$\Rightarrow f(x) = \pm \sqrt{2x}$$

But परन्त $f(1) = \sqrt{2}$

$$\Rightarrow f(x) = \sqrt{2x}$$
$$\Rightarrow f(2) = 2$$

$$\Rightarrow$$
 f(2) = 2 (A)

$$f'(x) = \frac{1}{\sqrt{2x}} \Rightarrow f'(2) = \frac{1}{2}$$
 (B)

$$\int_{0}^{1} f(x) dx = \frac{(2)^{3/2}}{3}$$

$$f^{-1}(x) = \frac{x^2}{2} \implies f^{-1}(2) = 2$$

15. If
$$f(x) = \lim_{t \to \infty} \frac{|a + \sin \pi x|^t - 1}{|a + \sin \pi x|^t + 1}$$
,

यदि
$$f(x) = \lim_{t \to \infty} \frac{\left|a + \sin \pi x\right|^t - 1}{\left|a + \sin \pi x\right|^t + 1}$$
 , $x \in \left(0,6\right)$

Sol. given function is discontinuity when दिया गया फलन असतत्

Now, if अब यदि $a = 1 \Rightarrow$

 $\sin \pi x = 0$

 \Rightarrow x = 1, 2, 3, 4, 5

not possible सम्भव नहीं

 $\sin \pi x = -2$;

if a = 0.5

 $\sin \pi x = \frac{1}{2}$

⇒ x has 6 values, 2 each for one cycle of period 2.

यदि
$$a = 0.5$$
 \Rightarrow $\sin \pi x = \frac{1}{2}$

⇒ x के 6 मान, आवर्त 2 के प्रत्येक चक्र के लिए 2.

$$\Rightarrow x = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \frac{9}{2}, \frac{11}{2}$$

16. Let z_1 , z_2 and z_3 be complex numbers माना सम्मिश्र संख्याएं z₁, z₂ एवं z₃ इस प्रकार.....

Sol.

The triangle has circumcentre at origin and its orthocentre lying on the circumcircle..

त्रिभुज का परिकेन्द्र मूल बिन्दु तथा लम्ब केन्द्र परिगत वृत्त पर स्थित

17. If
$$\lim_{x\to 1} \frac{100}{1-x^{100}} - \frac{50}{1-x^{50}} = 5A$$
; find.....

यदि
$$\lim_{x\to 1} \frac{100}{1-x^{100}} - \frac{50}{1-x^{50}} = 5A$$
 तव....

Sol. Let माना
$$L = \lim_{x \to 1} \frac{100}{1 - x^{100}} - \frac{50}{1 - x^{50}}$$

$$x = \frac{1}{y} \quad x \to 1, y \to 1$$

$$L = \lim_{y \to 1} \frac{100}{1 - \frac{1}{v^{100}}} - \frac{50}{1 - \frac{1}{v^{50}}}$$

$$= \lim_{y \to 1} \frac{100y^{100}}{v^{100} - 1} - \frac{50 \cdot y^{50}}{v^{50} - 1}$$

$$= \lim_{y \to 1} \frac{100 \Big(y^{100} - 1\Big) + 100}{y^{100} - 1} - \frac{50 \Big(y^{50} - 1\Big) + 50}{y^{50} - 1}$$

$$= \lim_{y \to 1} 100 - 50 - \left(\frac{100}{1 - v^{100}} - \frac{50}{1 - v^{50}}\right)$$

$$=50-\lim_{y\to 1}\left(\frac{100}{1-y^{100}}-\frac{50}{1-y^{50}}\right)$$

$$L = 50 - L$$
 : $L = \frac{50}{2} = 25$

18. If
$$\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{3^{i} 3^{j} 3^{k}} = \frac{27 \times A}{208}$$
; where

यदि
$$\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{3^{i} 3^{j} 3^{k}} = \frac{27 \times A}{208} \text{ जहाँ A एक } \dots$$

Sol. No condition on i, j, k

i, j, k जब कोई पर प्रतिबन्ध नही है

$$=\frac{3}{2}\times\frac{3}{2}\times\frac{3}{2}=\frac{27}{8}$$

Corporate Office (New Campus): CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PTC024029

when any two of i, j, k are equal जब कोई दो i, j, k बराबर है

$$= \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{1}{3^{2i}} \cdot \frac{1}{3^{j}} = \frac{3}{2} \left[1 + \frac{1}{9} + \dots \right]$$
$$= \frac{3}{2} \times \frac{9}{8} = \frac{27}{16}$$

When all three are equal जब तीनों बराबर हो।

$$= 1 + \frac{1}{27} + \frac{1}{27^2} + \dots \infty$$
$$= \frac{27}{26}$$

Required अभिष्ठ $=\frac{27}{8}-3\cdot\frac{27}{16}+\frac{2\cdot27}{26}=\frac{81}{208}$

- Let X be the set of all positive माना सभी धनात्मक पूर्णाको जो 8 के
- Sol. We observe that

$$f(9) = f(4+5) = f(4\cdot5) = f(20) = f(16+4)$$

= $f(16\cdot4) = f(64) = f(8\cdot8)$
= $f(8+8) = f(16) = f(4\cdot4) = f(4+4) = f(8) = 9$

- The three different polynomials तीन विभिन्न बहुपद $x^2 + ax + b$,
- **Sol.** Let $x = \alpha$ be common zero then माना $\mathbf{x} = \alpha$ उभयनिष्ठ शून्य है तब

$$\alpha^2 + a\alpha + b = 0 \qquad \dots$$

$$\alpha^2 + \alpha + ab = 0 \qquad ...(2)$$

$$a\alpha^2 + \alpha + b = 0 \qquad ...(3)$$

$$(1) - (2) \Rightarrow (a-1)(\alpha - b) = 0$$

 $a \neq 1 \Rightarrow \alpha = b$ put in में रखने पर

(1) or (3) gives
$$b^2 + ab + b = 0$$
 ...(4)

& (3) give
$$ab^2 + 2b = 0$$

$$b \neq 0 \Rightarrow ab = -2$$

if यदि
$$ab = -2$$
, $b^2 + b - 2 = 0$

a = -2, b = 1 and a = 1, b = -2 (does not satisfy the mentioned condition polynomial will be same)

a = -2, b = 1 तथा a = 1, b = -2 (जो दिये गये प्रतिबन्ध को सन्तुष्ठ नही करते बहुपद समान होगें)

a + 2b = 0.

Part-II Physics

When a current of (2.5 ± 0.5) A..... जब एक तार से (2.5 ± 0.5) A.....

Sol.
$$R = \frac{V}{i} \Rightarrow \frac{dR}{R} \Big|_{max} = \pm \frac{dV}{V} \Big|_{max} \pm \frac{di}{i} \Big|_{max} \Rightarrow dR)_{max} = 8$$

$$\left[\frac{1}{20} + \frac{0.5}{2.5} \right] = 2\Omega$$

- The figure shows two points sources..... चित्र में दो बिन्दु स्त्रोत दर्शाये गये है.....
- **Sol.** Path difference at y = 0 $\Delta x = 5.5\lambda = 11 \frac{\lambda}{2}$ So at y = 0 fringe is dark fringe

For y > 0 maximum path difference is zero so, six dark and five bright fringe are appear

कलान्तर
$$y = 0$$
 पर $\Delta x = 5.5\lambda = 11 \frac{\lambda}{2}$

अतः y = 0 पर अदिप्त फ्रिंज बनेगी।

y > 0 के लिए अधिकतम पथान्तर शून्य है, अतः छः अदिप्त व पाँच दिप्त फ्रिंजे बनती है।

- 23. If electron of the hydrogen atom is..... यदि हाइड्रोजन परमाणु में इलेक्ट्रॉन को.....
- Sol. According to Bohr's theory (बोहर सिद्धान्त के अनुसार)

$$r \propto \, \frac{1}{m} \, , \, \text{KE} \propto m, \, \text{T.E.} \propto m, \, \Delta \text{E} \propto m$$

Speed of electron is independent of m. (इलेक्ट्रॉन की चाल द्रव्यमान m पर निर्भर नहीं करती है।)

- In the given AC circuit current and potential..... दिये गये प्रत्यावर्ती धारा परिपथ में प्रतिरोध.....
- Sol. Current leads the voltage (धारा कला में वोल्टता से आगे है।)

$$V_{c} - V_{L}$$

$$V_{0} = \sqrt{(V_{L} - V_{C})^{2} + V_{R}^{2}} = \sqrt{100 + 25} = 5\sqrt{5} V$$

P.F. =
$$\frac{V_R}{V_0} = \frac{5}{5\sqrt{5}} = \frac{1}{\sqrt{5}}$$
]

- **25.** An object is moving in the xy plane..... एक वस्तु xy तल में दिये गये स्थित.....
- Sol. If (यदि) $\frac{dr}{dt} < 0$

Then (तब) $\vec{r}.\vec{v} < 0$

The least count of a stop watch is $\frac{1}{5}$ s.....

एक विराम घड़ी का अल्पतमांक $\frac{1}{5}$ सैकण्ड.....

Sol. Absolute error for A A के लिए परमत्रुटि

$$\Delta T' = \frac{30T + \frac{1}{5}}{30} - T = \frac{1}{150}$$

Absolute error for B B के लिए परमत्रुटि

$$\Delta T' = \frac{50T + \frac{1}{5}}{50} - T = \frac{1}{250}$$

- Consider a long hypothetical cylindrical..... मानिये की एक अधिकल्पित लम्बा बेलनाकार.....
- **Sol.** Gravitation field outside the cylindrical planet $E = \frac{G.2\pi\rho R^2}{r}$

बेलनाकार ग्रह के बाहर गुरूत्वीय क्षेत्र $E = \frac{G.2\pi \rho R^2}{r}$

$$mE = \frac{mv^2}{r} = \frac{G.2\pi\rho R^2m}{r}$$

$$KE = \frac{mv^2}{2} = G.R\pi\rho R^2$$

$$\overset{T^2}{-} \propto r^2$$

A metal of length L whose coefficient..... L लम्बाई तथा रेखीय ताप प्रसार गुणांक.....

$$\text{Sol.} \quad \alpha = \frac{1}{L} \frac{dL}{dT}$$

$$\int 10^{-3} dT = \int \frac{dL}{L}$$

$$L_f = 2.7 L$$

- Two smooth spheres A and B of masses..... दो चिकने गोले A व B के द्रव्यमान.....
- **Sol.** $F_{ext} = 0$

$$\vec{P}_i = \vec{P}_f \implies 36 - 24 = -4 + 8v_2$$

 $v_2 = +2ms^{-1} \& v_1 = -1ms^{-1}$

$$v_2 = +2ms^{-1} & v_1 = -1ms^{-1}$$

$$e = \frac{v_{sep}}{v_{app}} = \frac{3}{12} = \frac{1}{4}$$

$$\Delta K = \left[\frac{1}{2}(4)(9)^2 + \frac{1}{2}8(3)^2\right] - \left[\frac{1}{2}4(1)^2 + \frac{1}{2}8(2)^2\right]$$

$$\Delta K = 180 J$$

$$\vec{I}_B = m_B (\vec{v}_f - \vec{v}_i) = 8(2 - (-3)) = 40 \text{ N-S}$$

- A string is holding a solid block below the..... द्रव सतह के नीचे एक ठोस ब्लॉक डोरी.....
- **Sol.** Let σ is density of liquid & ρ is density at object (माना द्रव का घनत्व σ है व वस्तू का घनत्व ρ है।)

$$B_i = \sigma v g \hspace{1cm} B_f = \sigma v (g+a) = B_i \Biggl(\frac{g+a}{a} \Biggr)$$

$$T_i = (\sigma - \rho)vg$$
 $T_f = (\sigma - \rho)v$ $(g + a) = T_i\left(\frac{g + a}{a}\right)$

Two points on string are being observed..... डोरी में संचरित प्रगाामी तंरग के दौरान.....

$$\textbf{Sol.} \quad \frac{2\pi}{\lambda} \times 1 = \frac{\pi}{8} \Rightarrow \lambda = 16$$

$$\frac{2\pi}{\lambda} = n2\pi + \frac{\pi}{8} \Rightarrow \lambda = \frac{2\pi}{2n\pi + \frac{\pi}{8}} = \frac{16}{16n + 1}$$

- There are four large parallel conducting..... यहाँ चार विस्तारित समान्तर चालक प्लेटे.....
- Sol. Charge on outer sides of plate 1 & plate 4 are equal and its magnitude is = $\frac{q_1 + q_2 + q_3 + q_4}{2}$

परिमाण निम्न है =
$$\frac{q_1 + q_2 + q_3 + q_4}{2}$$

Electric field at P पर विद्युत क्षेत्र

$$= \left(\frac{q_1 + q_2}{2 \in_0 A}\right) \widehat{i} - \left(\frac{q_3 + q_4}{2 \in_0 A}\right) \widehat{i}$$

$$\vec{E}_P = \frac{q_1 + q_2 - q_3 - q_4}{2\epsilon_0 A} \hat{i}$$

Electric field at Q पर विद्युत क्षेत्र =
$$\left(\frac{q_1+q_2+q_3}{2\epsilon_0A}\right)\hat{i} - \left(\frac{q_4}{2\epsilon_0A}\right)\hat{i}$$

$$\vec{E}_Q = \frac{q_1+q_2+q_3-q_4}{2\epsilon_0 A} \hat{i}$$

- Consider a rope of mass 4m and length $4\pi R$ मानिये की 4m द्रव्यमान एवंम् $4\pi R$ लम्बाई.....
- FBD of rope in contact with pulley is shown here we can see torque of dN about O is zero Torque of friction is balanced by torque T_1 and T_2 . घिरनी के सम्पर्क में रस्सी का FBD चित्र में दर्शाया गया है। हम देख सकते है, कि dN का बल आघूर्ण O के सापेक्ष शून्य है।

घर्षण का बल आघूर्ण T1 व T2 के बल आघूर्ण से सन्तुलित है।

34. Plane rectangular loop is placed एक समतलीय आयताकार लूप चुम्बकीय

Sol.
$$|e| = \left| -\frac{d\phi}{dt} \right| = |e| \alpha \left| -\frac{d\phi}{dt} \right|$$

and also area under the curve gives : $\varphi_i - \varphi_i = \int d\varphi = \int e \ dt$

$$|e| = \left| -\frac{d\phi}{dt} \right| = |e| \alpha \left| -\frac{d\phi}{dt} \right|$$

और वक्र से घिरा क्षेत्रफल देता है $-\phi_i-\phi_i=\int d\phi=\int e\ dt$ फ्लक्स में परिवर्तन

- A long cylindrical conductor of radius..... त्रिज्या a की लम्बे बेलनाकार चालक में व्यास.....
- Sol.

$$\vec{B}_1 = \frac{\mu_0}{2} \left(\frac{a}{r} \right)^2 (\vec{J}_1 \times \overrightarrow{C_0 P_1})$$

$$\vec{B}_2 = \frac{\mu_0}{2} \left(\frac{a}{r} \right)^2 (\vec{J}_1 \times \overline{C_0 P_2})$$

$$\vec{B}_{3} = \frac{\mu_{0}}{2} \left(\frac{\frac{a}{2}}{r - \frac{a}{2}} \right)^{2} (\vec{J}_{2} \times \overline{C_{1}P_{2}}) + \frac{\mu_{0}}{2} \left(\frac{\frac{a}{2}}{r + \frac{a}{2}} \right)^{2} (\vec{J}_{3} \times \overline{C_{2}P_{1}})$$

$$\vec{B}_{4} = \left| \frac{\mu_{0}}{2} \left(\frac{\frac{a^{2}}{4}}{r^{2} + \frac{a^{2}}{4}} \right) (\vec{J}_{2} \times \overline{C_{1}P_{2}}) \right| \sin \theta + \left| \frac{\mu_{0}}{2} \left(\frac{\frac{a^{2}}{4}}{r^{2} + \frac{a^{2}}{4}} \right)^{2} (\vec{J}_{3} \times \overline{C_{3}P_{2}}) \right| \sin \theta$$

$$\vec{B}_{P_1} = \vec{B}_1 + \vec{B}_3 = \frac{\mu_0 I}{\pi r} \Biggl(\frac{2r^2 - a^2}{4r^2 - a^2} \Biggr)$$
 to the left बांयी ओर

$$\vec{B}_{P_2} = \vec{B}_2 + \vec{B}_4 = \frac{\mu_0 I}{\pi r} \left(\frac{2r^2 + a^2}{4r^2 + a^2} \right) \text{ towards the top of the}$$

page कागज के शीर्ष की ओर

- **36.** A particle experiences a force which...... एक कण एक बल अनुभव करता है.....
- Sol. Let (माना) $\vec{F} = -k_1\vec{r}$

$$W = \int \vec{F} \cdot d\vec{r}$$

$$W = -K_1 \left[\int_{3}^{3} x dx + \int_{0}^{4} y dy + \int_{0}^{0} z dz \right] = -k_1 (-8)$$

$$8 = K_1 8 \Rightarrow K_1 = 1$$

- Sol.

F.R. = 2F.Rsin
$$\theta \Rightarrow \theta = \frac{\pi}{6}$$
 rad

38. An observer moves towards a stationary..... एक प्रेक्षक स्थिर ध्वनि स्त्रोत की ओर ध्वनि.....

Sol.
$$O \rightarrow \frac{V}{5} \leftarrow \frac{V, f}{s}$$
 $\leftarrow \frac{V, f}{s}$ $\leftarrow \frac{V, f}{c}$ $\leftarrow \frac{V, f}{c}$ $\leftarrow \frac{V, f}{c}$ $\leftarrow \frac{V}{c}$ $\leftarrow \frac{V}{c$

$$f' = f\left(\frac{v + v/5}{v - 0}\right)$$

$$f' = \frac{6}{5}f$$

% charges परिवर्तन $\frac{\frac{6}{5}f - f}{f} \times 100 = \frac{1}{5} \times 100 = 20\%$

- Sol. As जैसाकि $K = \frac{4eA\sigma T^3}{ms}$

$$\frac{K_1}{K_2} = \frac{k_1}{k_2} = \frac{m_2 s_2}{m_1 s_1} = \frac{3}{2}$$

40. A cubical block of side $10\sqrt{10}$ cm is.....

 $10\sqrt{10}$ cm भुजा का एक घनाकार ब्लॉक 20 g.....

Sol. By constraint relation, velocity of block is 2V. As acceleration for Block and disc is zero, for disc 2T = mg बन्धित गति से ब्लॉक का वेग 2V है। चूंकि ब्लॉक व चकती का त्वरण शून्य है। चकती के लिए 2T = mg है:

$$\Rightarrow$$
 T = $\frac{\text{mg}}{2}$

and for block T = f (तथा ब्लॉक के लिए T = f)

$$\Rightarrow \frac{mg}{2} = \eta A \frac{2V}{d}$$

$$\Rightarrow \eta = \frac{mgd}{4AV}$$

$$= \frac{20 \times 10^{-3} \times 10 \times 0.2 \times 10^{-3}}{4 \times 10^{3} \times 10^{-4} \times 2 \times 10^{-2}} = 5 \times 10^{-3} \text{ NSm}^{-2}$$

Part-III Chemistry

- 41. Propanone reacts with प्रोपेनोन निम्नलिखित समीकरण
- Sol. From the given data, rate ∞ [CH₃COCH₃] [H⁺]
 Therefore, step I is the RDS.
 दिये गये आकडों से वेग ∕ दर ∞ [CH₃COCH₃] [H⁺]
 इस प्रकार पद I RDS है।
- **42.** A magnetic moment of 1.73 BM निम्न में से कौन चूम्बकीय आघूर्ण का
- **Sol.** $[Cu(NH_3)_4]^{2^+}$ hybridisation dsp^2 $Cu^{+2} - 3d^9$ has one unpaired e^- So magnetic moment

$$\mu = \sqrt{n(n+2)} = \sqrt{1(1+2)} = \sqrt{3} = 1.73$$

Sol. $[Cu(NH_3)_4]^{2^+}$ संकरण dsp^2 $Cu^{+2} - 3d^9$ में एक अयुग्मित इलेक्ट्रॉन है अतः चुम्बकीय आघूर्ण

$$\mu = \sqrt{n(n+2)} = \sqrt{1(1+2)} = \sqrt{3} = 1.73$$

- 43. Ammonia gas is prepared अमोनिया गैस का निर्माण किया
- **Sol.** (A) $(NH_4)_2Cr_2O_7 \xrightarrow{\Delta} N_2 + Cr_2O_3 + 4H_2O$ (B) $CaCN_2 + 3H_2O \longrightarrow CaCO_3 + 2NH_3$
 - (C) $NH_4CI + Ca(OH)_2 \longrightarrow 2NH_3 + CaCI_2 + 2H_2O$
- Which of the following निम्न में से कौनसा/कौनसे
- $\textbf{Sol.} \quad \text{(A) } Al_2O_3(s) + 2NaOH(aq) + 3H_2O(l) \longrightarrow 2Na[Al(OH)_4](aq)$ $[AI(OH)_4]^-$ (aq) $\xrightarrow{H_2O}$ $AI(OH)_3\downarrow + OH^-$ (aq) 2Al (OH)₃ $\downarrow \xrightarrow{\Delta}$ Al₂O₃ (s) + 3H₂O(l)
 - electrolysis in fused salt system AI (at $Al_2O_3 + Na_3AlF_6$ cathode) + O2 (at anode)
 - (B) $MgCl_2$ (from sea water) + $Ca(OH)_2 \longrightarrow Mg(OH)_2 \downarrow$ + $CaCl_2$ + 2HCI(aq) \longrightarrow MgCI₂ + 2H₂O $Mg(OH)_2$ $\xrightarrow{\text{crystallisation}} \text{MgCl}_2.6\text{H}_2\text{O}$
 - $\label{eq:mgCl2} \text{MgCl}_2. \ 6\text{H}_2\text{O} \xrightarrow[\text{Dry HCl}(g)]{\Delta} \ \text{MgCl}_2 + 6\text{H}_2\text{O}$

Electrolytic reduction in fused salts system containing NaCl, CaCl₂ and anhydrous MgCl₂.

$$MgCl_2 \longrightarrow Mg^{2+} + 2Cl^{-}$$

 $\begin{array}{lll} \textbf{At cathode}: & \text{Mg}^{2^+} + 2e^- {\longrightarrow} & \text{Mg}(99\% \text{ pure}) \ ; \\ \textbf{At anode}: & 2\text{Cl}^- {\longrightarrow} & \text{Cl}_2 + 2e^- \\ & & & \end{array}$

- (C) Ag₂S (conc. ore) + 2NaCN $\stackrel{Air}{\longleftarrow}$ 2AgCN + Na₂S. $4Na_2S + 5O_2 + 2H_2O \longrightarrow 2Na_2SO_4 + 4NaOH + 2S$
- Na₂S is converted into Na₂SO₄ . Hence equilibrium shifts towards right side.
 - $AgCN + NaCN \longrightarrow Na[Ag(CN)_2]$ (soluble complex) $2Na[Ag(CN)_2] + Zn (dust) \longrightarrow 2Ag\downarrow + Na_2[Zn(CN)_4].$
- (D) $2HgS + 3O_2 \longrightarrow 2HgO + 2SO_2$; $2HgO + HgS \longrightarrow 2Hg +$
- $Cu_2S + 3O_2 \longrightarrow 3Cu_2O + 2SO_2$; $2Cu_2O + Cu_2S \longrightarrow 6Cu +$
- $2PbS + 3O_2 \longrightarrow 2PbO + 2SO_2$; $2PbO + PbS \longrightarrow 3Pb + SO_2$ $PbS + 2O_2 \longrightarrow PbSO_4$; $PbSO_4 + PbS \longrightarrow 2Pb + 2SO_2$
- **Sol.** (A) $Al_2O_3(s) + 2NaOH(aq) + 3H_2O(l) \longrightarrow 2Na[Al(OH)_4](aq)$
 - $[Al(OH)_4]^-$ (aq) $\xrightarrow{H_2O}$ $Al(OH)_3\downarrow + OH^-$ (aq) 2AI (OH)₃ $\downarrow \xrightarrow{\Delta}$ AI₂O₃ (s) + 3H₂O(l)
 - Na₃AIF₆
 - + O₂ (एनोड पर)
 - (B) MgCl₂ (समुद्री जल से) + Ca(OH)₂ → Mg(OH)₂↓ + CaCl₂ $Mg(OH)_2$ + 2HCI(aq) \longrightarrow $MgCI_2$ + $2H_2O$ क्रिस्टलीकरण \rightarrow MgCl₂.6H₂O
 - MgCl₂. $6H_2O \xrightarrow{\Delta} MgCl_2 + 6H_2O$

NaCl, CaCl2 तथा अनाद्र MgCl2 युक्त गलित लवण तन्त्र में वैद्युत अपघटनीय अपचयन

$$MgCl_2$$
 \longrightarrow $Mg^{2+} + 2Cl^-$ कैथोड़ पर : $Mg^{2+} + 2e^- \longrightarrow Mg(शुद्ध 99\%)$;

- एनोड़ पर : $2CI^- \longrightarrow CI_2 + 2e^-$ (C) Ag₂S (सान्द्रित अयस्क) + 2NaCN वायु 2AgCN + Na₂S. $4Na_2S + 5O_2 + 2H_2O \longrightarrow 2Na_2SO_4 + 4NaOH + 2S$
- Na₂S, Na₂SO₄ में परिवर्तित हो जाता है, इस प्रकार साम्य दांयी ओर विस्थापित हो जाता है।
 - AgCN + NaCN → Na[Ag(CN)₂] (विलयशील संकूल) 2Na[Ag(CN)₂] + Zn (चूर्ण) —→ 2Ag+ Na₂[Zn(CN)₄].

- (D) $2HgS + 3O_2 \longrightarrow 2HgO + 2SO_2$; $2HgO + HgS \longrightarrow 2Hg +$ $Cu_2S + 3O_2 \longrightarrow 3Cu_2O + 2SO_2$; $2Cu_2O + Cu_2S \longrightarrow 6Cu +$ SO₂ $2PbS + 3O_2 \longrightarrow 2PbO + 2SO_2$; $2PbO + PbS \longrightarrow 3Pb + SO_2$
- For the reaction in basic क्षारीय विलयन में अभिक्रिया
- Slow step defines the rate law rate = $k_2[HOCI]$ [NH₃] ...(1)

 $PbS + 2O_2 \longrightarrow PbSO_4$; $PbSO_4 + PbS \longrightarrow 2Pb + 2SO_2$

But 1st step is reversible

$$k_1 = \frac{[HOCI][OH^-]}{[H_2O][OCI^-]}$$
 so $[HOCI] = \frac{k_1[H_2O][OCI^-]}{[OH^-]}$...(2)

so rate =
$$k_1k_2 \frac{[NH_3][OCI^-][H_2O]}{[OH^-]}$$

Sol. धीमा पद वेग नियम का निर्धारण करता है। वेग = k2[HOCI] [NH3]

परन्तु 1st पद उत्क्रमणीय है

$$k_1 = \frac{[HOCI][OH^-]}{[H_2O][OCI^-]}$$
 अतः $[HOCI] = \frac{k_1[H_2O][OCI^-]}{[OH^-]}$...(2)

अतः वेग =
$$k_1 k_2 \frac{[NH_3][OCI^-][H_2O]}{[OH^-]}$$

- The vapour pressure of the solution दो द्रवों A(p^o = 80 mm) व B(p^o = 120 mm)
- **Sol.** $P_{Total} = 0.4 \times 80 + 0.6 \times 120 = 104 > 100 \text{ mm of Hg.}$
- Cell reaction of which of the निम्न में से कौनसा सैल एक प्रबल
- Sol. Cell reaction are (सैल अभिक्रिया है)
 - (A) $2H_2 + O_2 + 2H_2O \longrightarrow 4H^+ + 4(OH^-)$
 - (B) $2H_2 + O_2 + 2(OH^-) + 4H^+ \longrightarrow 4H_2O$
 - $(C \& D) H^+ + OH^- + \longrightarrow H_2O$

This is simply neutrlization. (यह उदासीनीकरण अभिक्रिया है।) Hence (C) & (D) are Answers. (अत: (C) व (D) ਤਜ਼ਰ हੈ)

51. Product E can उत्पाद E हो सकता

52. Which of the following निम्न अभिक्रिया के लिए

54. Choose the correct दी गई अभिक्रिया के अनुसार

$$\begin{array}{c}
COOH & C-C \\
\hline
 \begin{array}{c}
KMnO_4/H^{\oplus} \\
\end{array}
\end{array}$$

$$\begin{array}{c}
COOH \\
\hline
 \begin{array}{c}
SOCI_2 \\
\end{array}
\end{array}$$

$$\begin{array}{c}
(Y)
\end{array}$$

$$C-Ph$$
 C
 C

Nucleophilic addition reaction. नाभिकरनेही योगात्मक अभिक्रिया।

OH CHO (Q)

- **56.** The number of atoms in 100 g एक FCC क्रिस्टल जिसका घनत्व
- **Sol.** a = 200 pm = 200 x 10^{-10} cm = 2 x 10^{-8} cm volume (आयतन) = $(2 \times 10^{-8})^3$

No. of atoms (परमाणुओं की संख्या) = $\frac{Z \times A}{d \times a^3}$

$$=\frac{4\times100}{10\times(2\times10^{-8})^3}=5\times10^{24}$$

- **57.** (i) Ti is purified by Van Arkel method.....
 - (i) Ti को वॉन आर्कल विधि द्वारा शुद्धीकृत
- Sol. (i) Van Arkel method

(ii) Fools gold $FeS_2 \longrightarrow Fe^{2+} S^- - S^-$

Sol. (i) वॉन आर्कल विधि

(ii) फूल्स गोल्ड $FeS_2 \longrightarrow Fe^{2+} S^-\!\!-\!\!S^-$

- **58.** In how many of the following reactions...... निम्न में से कितनी अभिक्रियाओं में,
- Sol. $KCl(aq) + Na_2 [PtCl_6] (aq) \longrightarrow K_2 [PtCl_6] \downarrow (yellow) (पीला)$ $Hg^{2+} (aq) + Co^{2+} (aq) + 4SCN^- (aq) \longrightarrow Co[Hg(SCN)_4] \downarrow$ (deep blue) (गहरा नीला) $Ag^+ (aq) + Br^- (aq) \longrightarrow AgBr \downarrow (yellow) (पीला)$ $2Mn(OH)_2 \downarrow + O_2 (g) \longrightarrow 2MnO(OH)_2 \downarrow (brown) (भूरा)$

$$Pb^{2^+}$$
 (aq) $+ 2I^-$ (aq) $\longrightarrow PbI_2 \downarrow$ (yellow) (पीला) $2NH_4^+$ (aq) $+ [PtCI_6]^{2^-}$ (aq) $\longrightarrow (NH_4)_2 [PtCI_6] \downarrow$ (yellow) (पीला) Br_2 (aq) $+ CI_2$ (aq) (आधिक्य) $\longrightarrow 2BrCI$ (aq) (yellow) (पीला)

- **59.** How many position isomers of डाईब्रोमोनेपथेलीन के कितने स्थिति
- Sol. Br Br Br Br O O Br

- **60.** How many molecules given नीचे दिये गये अणुओं में कितने
- Sol. Those N which have more e⁻ density N of aniline are more basic than aniline.
 I, II, III, IV, VIII, IX are more basic than aniline.
 वह N जो अधिक e⁻ घनत्व रखता है, एनिलीन का N एनीलिन की अपेक्षा अधिक क्षारीय होता है।

PAPER-2 Part-I Mathematics

- 1. If f(x), g(x) be twice differential यदि f(x), g(x), दो बार अवकलनीय
- Sol. $\int f''(x)dx = \int g''(x)dx$

$$\Rightarrow$$
 f'(x) = g'(x) + c

Put x = 1 रखने पर

$$f'(1) = g'(1) + c \Rightarrow 4 = 2 + c \Rightarrow c = 2$$

$$f'(x) = g'(x) + 2$$

$$f(x) = g(x) + 2x + c_1$$

Put
$$x = 2$$
 रखने पर $\Rightarrow c_1 = 2$

$$f(x) = g(x) + 2x + 2$$

$$\Rightarrow$$
 $|f(x) - g(x)| < 2 \Rightarrow |2x + 2| < 2 \Rightarrow -2 < x < 0$

f(x) - g(x) = 2x has no solution कोई हल नहीं

2. The determinant

Sol. Let माना $\Delta = \begin{vmatrix} x^2 & \left(y+z\right)^2 & yz \\ y^2 & \left(z+x\right)^2 & zx \\ z^2 & \left(x+y\right)^2 & xy \end{vmatrix}$

$${\rm C_2} \rightarrow {\rm C_2} - 2{\rm C_3}$$

$$\Delta = \begin{vmatrix} x^2 & y^2 + z^2 & yz \\ y^2 & z^2 + x^2 & zx \\ z^2 & x^2 + y^2 & xy \end{vmatrix}$$

$$\Delta = (x^2 + y^2 + z^2)(x - y)(y - z)(z - x)(x + y + z)$$

3. If \vec{a}, \vec{b} and \vec{c} are unit vectors then

यदि \vec{a}, \vec{b} तथा \vec{c} इकाई सदिश है,

 $\text{Sol.} \quad \left| \vec{a} + \vec{b} + \vec{c} \right|^2 \ge 0$

$$\Rightarrow \left| \vec{a} \right|^2 + \left| \vec{b} \right|^2 + \left| \vec{c} \right|^2 + 2 \left(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a} \right) \ge 0$$

$$\Rightarrow 1+1+1-2(-\vec{a}.\vec{b}-\vec{b}.\vec{c}-\vec{c}.\vec{a}) \geq 0$$

$$\Rightarrow -2(\vec{a}.\vec{b}) - 2(\vec{b}.\vec{c}) - 2(\vec{c}.\vec{a}) \le 1 + 1 + 1 \qquad \dots (1$$

Also तथा, $\left| \vec{a} - \vec{b} \right|^2 + \left| \vec{b} - \vec{c} \right|^2 + \left| \vec{c} - \vec{a} \right|^2$

$$= 2 \left(\left(\vec{a} \right)^2 + \left(\vec{b} \right)^2 + \left(\vec{c} \right)^2 \right) - 2 \left(\vec{a} . \vec{b} + \vec{b} . \vec{c} + \vec{c} . \vec{a} \right)$$

 $\leq 2(1+1+1)+3$

From (1) से

$$\therefore \left| \vec{a} - \vec{b} \right|^2 + \left| \vec{b} - \vec{c} \right|^2 + \left| \vec{c} - \vec{a} \right|^2 \le 9$$

4. A light ray is incident to a line mirror एक प्रकाश किरण दर्पण रेखा, रेखा

Sol.
$$\frac{3x-4y+5}{5} = \pm \frac{5x-12y+19}{13}$$

$$\Rightarrow 7x+4y-15=0 \text{ and } \text{ sint } 4x-7y+10=0$$

- **5.** f(x)
- **6.** f '(0)

Sol. (5 & 6)

$$f(x + y) = f(x) + f(y)$$

Put y = x रखने पर \Rightarrow f(2x) = 2f(x)

similarly put इसी प्रकार y = 2x रखने पर

- \Rightarrow f(3x) = 3f(x)
- \Rightarrow f(4x) = 4f(x)
- \Rightarrow f(5x) = 5f(x)

Now we know that अब

$$I_1 + I_2 + I_3 + I_4 + I_5 = 450$$

$$\int_{0}^{1} f(x).dx + 2 \int_{0}^{2} f(x).dx + 3 \int_{0}^{3} f(x) dx + 4 \int_{0}^{4} f(x). dx + 5 \int_{0}^{5} f(x).dx = 450$$
...(1)

Now take अब $2\int_{0}^{2} f(x).dx \Rightarrow put x = 2t रखने पर$

$$\Rightarrow$$
 dx = 2dt

$$2^2 \int_0^1 f(2t).dt$$
 is $2^3 \int_0^1 f(t).dt$ [:: $f(2t) = 2f(t)$]

similarly इसी प्रकार
$$3\int_{0}^{3} f(x).dx = 3^{3}\int_{0}^{1} f(t).dt$$

Now put all these values in (1) अब ये सभी मान (1) में रखने पर

$$\int_{0}^{1} f(x).dx [1 + 2^{3} + 3^{3} + 4^{3} + 5^{3}] = 450$$

$$\int_{0}^{1} f(x).dx = 2$$

Now we can say that अब

$$\int_{0}^{x} f(x).dx = x^{2} \int_{0}^{1} f(t).dt$$

$$\int_{0}^{x} f(x).dx = 2.x^{2}$$

f(x) = 4x \rightarrow After differentiating both sides दोनों तरफ अवकलन करने पर

Now we can solve all the question. अब सभी प्रश्न हल कर सकते है।

Aliter वैकल्पिक

$$f(x + y) = f(x) + f(y) \Rightarrow f(x) = kx$$

$$I_n = n \int_{0}^{n} (kx) dx = \frac{k}{2} n^3$$

450

- ⇒ k = 4
- \Rightarrow f(x) = 4x

Now we can solve all the question. अब सभी प्रश्न हल कर सकते है।

- Sol. Let माना $g(x) = x^3 9x^2 + 24x$ = $x(x^2 - 9x + 24)$ $\Rightarrow g'(x) = 3(x - 2)(x - 4)$

$$\Rightarrow g'(x) = 3(x-2)(x-4)$$

For three real roots of तीन वास्तविक मूलों के लिए

$$f(x) = x^3 - 9x^2 + 24x + c = 0,$$

c must lie in the interval (-20, -16)

c अन्तराल (-20,-16) में होना चाहिए

- **8.** If α, β, γ are real and distinct such that यदि α, β, γ वास्तविक एवं विभिन्न इस प्रकार है कि
- Sol. f(0) = c < 0

$$f(1) = 1 - 9 + 24 + c = 16 < 0$$

for
$$\forall$$
 c \in $(-20,-16)$

$$f(2) = 8 - 36 + 48 + c = c + 20 > 0$$

$$\alpha \in (1,2) \implies [\alpha] = 1$$

$$f(3) = 27 - 81 + 72 + c = 18 + c$$

$$\Rightarrow f\left(3\right) < 0 \text{ if } c \in \left(-20, -18\right) \text{ or } f\left(3\right) > 0 \text{ if }$$

$$c \in (-18, -16)$$

or ਥਾ
$$β ∈ (2,3)$$
 if $c ∈ (-20,-18)$

and और
$$\beta \in [3,4)$$
 if $c \in [-18,-16)$

Now अब.

$$f(4) = 64 - 144 + 96 + c = 16 + c < 0$$

$$\forall c \in (-20,-16)$$

$$f(5) = 125 - 225 + 120 + c = c + 20 > 0$$

$$\forall c \in (-20, -16)$$

$$\Rightarrow \gamma \in (4,5)$$

$$\Rightarrow [\gamma] = 4$$

Thus अतः,
$$\left[\alpha\right] + \left[\beta\right] + \left[\gamma\right] = 8$$

$$-18 \leq c < -16$$

- 9. The probability that the triangle have प्रायिकता होगी जबकि त्रिभुज की ठीक दो.....
- Sol. Total Number of ways कुल तरिकों की संख्या

$$= {}^{n}C_{3} = \frac{n(n-1)(n-2)}{6}$$

Favorable ways अनुकुल तरिके = $n(E_2) = n$

$$A_1A_2A_3, A_2A_3A_4$$
....., $A_{n-1}A_nA_1, A_nA_1A_2$

Required Prob. अभीष्ट प्रायिकता =
$$\frac{n}{{}^{n}C_{3}} = \frac{6}{(n-1)(n-2)}$$

- **10.** The probability that the triangle have at प्रायिकता होगी जबकि त्रिभुज की अधिक से
- Sol. Favorable ways = Atmost one side common अनुकुल तरिके = एक भुजा उभयनिष्ठ होना चाहिए = one side common + No side common एक भुजा उभयनिष्ठ + कोई भुजा उभयनिष्ठ नहीं

$$= {^{n-4}C_1} \times n + \frac{n(n-4)(n-5)}{6} = \frac{n(n-4)(n+1)}{6}$$

$$\frac{n(n-4)(n+1)}{n(n-4)(n+1)}$$

Required Prob. अभीष्ट प्रायिकता =
$$\frac{\frac{6}{n(n-1)(n-2)}}{6}$$

$$=\frac{\big(n-4\big)\big(n+1\big)}{\big(n-1\big)\big(n-2\big)}$$

Since zero side common

चूंकि शून्य भुजा उभयनिष्ठ है

$$= {}^{n}C_{3} - n(E_{1}) - n(E_{2})$$

$$= \frac{n(n-1)(n-2)}{6} - n(n-4) - n$$

$$= \frac{n(n^{2} - 9n + 20)}{6} = \frac{n(n-4)(n-5)}{6}$$

11. The value of $\sum_{\alpha \in A} \alpha$

$$\sum_{\alpha \in A} \alpha$$
 का

12. The value of $\sum_{\alpha \in \mathbb{B}} \left[\left(-\frac{\alpha}{3} \right)^{\frac{1}{6}} \right]$, where [x]

$$\sum_{lpha \in \mathbb{B}} \left[\left(-rac{lpha}{3}
ight)^{\!\! rac{1}{6}}
ight]$$
 का मान है जहाँ [x] महत्तम

Sol. To define परिभाषा से

$$\sin^{-1} x, \cos^{-1} x \to 1 \le x \le 1$$
 ...(1)

$$\sec^{-1} x, \csc^{-1} x \to x \in R - (-1,1)$$
 ...(2)

$$tan^{-1} x, cot^{1} x \rightarrow x \in R \qquad ...(3)$$

Domain of प्रान्त $f(x):(1)\cap(2)\cap(3)$

$$A = \{-1,1\}$$

11.
$$\sum_{\alpha=0}^{\infty} \alpha = -1 + 1 = 0$$

12.
$$f(-1) = \frac{3\pi^6}{64}$$
; $f(1) = 0$

Range of परिसर $f(x) = \left\{0, \frac{3\pi^6}{64}\right\}$

$$\Rightarrow \sum_{\alpha \in \mathbb{B}} \left[\left(\frac{\alpha}{3} \right)^{1/6} \right] = \left[\left(0 \right)^{1/6} \right] + \left[\left(\frac{3\pi^6}{64} \cdot \frac{1}{3} \right)^{1/6} \right]$$

$$=0+\left[\frac{\pi}{2}\right]=1$$

13. Let
$$S_n = \sum_{k=0}^n \frac{1}{\sqrt{K+1} + \sqrt{K}}$$
, What is

माना
$$S_n = \sum_{k=0}^n \frac{1}{\sqrt{K+1} + \sqrt{K}}$$
 है,

$$\text{Sol.} \quad S_n = \sum_{K=0}^n \frac{\sqrt{K+1} - \sqrt{K}}{\left(K+1\right) - K} \ = \sqrt{n+1}$$

$$\sum_{n=1}^{99} \frac{1}{S_n + S_{n-1}} = \sum_{n=1}^{99} \frac{1}{\sqrt{n+1} + \sqrt{n}} = \sum_{n=1}^{99} \left(\sqrt{n+1} - \sqrt{n}\right)$$

$$= 10 - 1 = 9$$

14. If
$$S = \frac{3}{5} + \frac{10}{5^2} + \frac{21}{5^3} + \frac{36}{5^4} + \frac{55}{5^5} + \dots$$

$$\overline{\text{vig}} \; S = \frac{3}{5} + \frac{10}{5^2} + \frac{21}{5^3} + \frac{36}{5^4} + \dots$$

Sol.
$$S = \frac{3}{5} + \frac{10}{5^2} + \frac{21}{5^3} + \frac{36}{5^4} + \frac{55}{5^5} + \dots \infty$$

$$\frac{S}{5} = \frac{3}{5^2} + \frac{10}{5^3} + \frac{21}{5^4} + \frac{36}{5^5} \dots$$

$$\frac{4}{5}S = \frac{3}{5} + \frac{7}{5^2} + \frac{11}{5^3} + \frac{15}{5^4} + \frac{19}{5^5}$$

$$\frac{4}{5^2}S = \frac{3}{5^2} + \frac{7}{5^3} + \frac{11}{5^4} + \dots$$

$$\frac{16}{25} S = \frac{3}{5} + \frac{4}{5^2} + \frac{4}{5^3} + \frac{4}{5^4} + \dots$$

$$= \frac{3}{5} + \frac{\frac{4}{5^2}}{1 - \frac{1}{5}} = \frac{3}{5} + \frac{1}{5}$$

$$\frac{16}{25}$$
 S = $\frac{4}{5}$

$$S = \frac{5}{4} \Rightarrow 4S = 5$$

If the value of the definite integral

यदि निश्चित समाकलन $\int_{0}^{1} 207 \, C_7 x^{200} \cdot (1-x)^7 dx$ का

Sol. Let
$$I = \int_{0}^{1} {}^{207}C_7 \underbrace{x^{200}}_{II} \underbrace{\left(1-x\right)^7}_{II} dx$$

$$I = {}^{207} C_7 \left[\underbrace{(1-x)^7 \frac{x^{201}}{201} \Big|_0^1}_{zero} + \frac{7}{207} \int_0^1 (1-x)^6 . x^{201} dx \right]$$

$$=^{207} C_7.\frac{7}{201} \int_{0}^{1} (1-x)^6 x^{201} dx$$

integrating by parts again 6 times more
$$= ^{207} C_7 \cdot \frac{7.6.5.4.3.2.1}{201.202.203.204.205.206.207} \int\limits_0^1 x^{207} dx$$

$$= \frac{(207)!}{7!200!} \frac{7!}{201.202...207} \cdot \frac{1}{208} = \frac{1}{208} = \frac{1}{k}$$

$$\Rightarrow k = 208$$
Ans. $\frac{k}{26} = 8$

Line L touches circles C₁, C and C₂ which....... रेखा L वृत्त C₁, C तथा C₂ को स्पर्श करती है। जो

AB, BC and AC are direct common tangents. AB, BC तथा AC उभ्यनिष्ट स्पर्श रेखाए है

Length of DCT
$$= \sqrt{d^2 - (r_1 - r_2)^2}$$

उभ्यनिष्ट स्पर्श रेखा की लम्बाई DCT
$$=\sqrt{{ extsf{d}}^2-{ extsf{(}}{ extsf{r}_{_1}}-{ extsf{r}_{_2}}{ extsf{)}}^2}$$

where d is distance between centres जहाँ d के दोनों केन्द्रो के बीच की दूरी है

Also if circles touch each other externally $d = r_1 + r_2$

यदि वृत्त एक दूसरे को बाह्य स्पर्श करे तो $d=r_1+r_2$

:. In this case DCT =
$$\sqrt{(r_1 + r_2)^2 - (r_1 - r_2)^2} = 2\sqrt{r_1 r_2}$$

∴ इस स्थिति में अभ्यनिष्ट स्पर्श रेख

$$= \sqrt{\left(r_1 + r_2\right)^2 - \left(r_1 - r_2\right)^2} = 2\sqrt{r_1 r_2}$$

$$\therefore$$
 AB = $2\sqrt{rr_1}$, BC = $2\sqrt{rr_2}$ and AC = $2\sqrt{r_1r_2}$

$$\Rightarrow$$
 AB + BC = AC

$$\Rightarrow 2\sqrt{r}\left(\sqrt{r_1} + \sqrt{r_2}\right) = 2\sqrt{r_1r_2}$$

$$\therefore \quad \sqrt{r} = \frac{\sqrt{r_1 r_2}}{\sqrt{r_1} + \sqrt{r_2}} = \frac{\sqrt{36 \times 900}}{\sqrt{36} + \sqrt{900}} = \frac{6 \times 30}{6 + 30} = 5$$

17. If
$$f(x) = 20x + 49x^2 + \int_0^1 (xy + x^2y^2) f(y) dy$$
 where x

यदि
$$f\left(x\right)=20x+49x^2+\int\limits_0^1\Bigl(xy+x^2y^2\Bigr)f\Bigl(y\Bigr)dy$$
 जहाँ

Sol.
$$f(x) = \left\{20 + \int_{0}^{1} y f(y) dy\right\} x + \left\{49 + \int_{0}^{1} y^{2} f(y) dy\right\} x^{2}$$

Let माना
$$f(x) = Ax + Bx^2$$

then तब
$$A = 20 + \int_{0}^{1} y f(y) dy$$

and तथा
$$B=49+\int\limits_{-1}^{1}y^{2}f\left(y\right) dy$$

$$\Rightarrow \ A = 20 + \int\limits_{-\infty}^{1} \Bigl(Ay + By^2\Bigr) y \ dy$$

$$\Rightarrow$$
 A = 20 + $\frac{A}{3}$ + $\frac{B}{4}$ \Rightarrow $\frac{2A}{3}$ = 20 + $\frac{B}{4}$

$$B = \frac{8A}{3} - 80$$

Also ओर,
$$B=49+\int\limits_{-1}^{1}y^{2}\left(Ay+By^{2}\right)dy$$

$$\therefore B = 49 + \frac{A}{4} + \frac{B}{5}$$

$$\Rightarrow \ \frac{4B}{5} = 49 + \frac{A}{4} \ \therefore \ B = \frac{245}{4} + \frac{5A}{16} \ ...(2)$$

From (1) and (2)

(1) तथा (2) से

$$\frac{8A}{3} - 80 = \frac{245}{4} + \frac{5A}{16}$$

$$\Rightarrow \frac{8A}{3} - \frac{5A}{16} = \frac{565}{4} \Rightarrow A = 60$$

$$\therefore 20 + \int_{0}^{1} y f(y) = 60$$

$$\therefore \int_0^1 y f(y) dy = 40$$

18. Let
$$P(x) = x^6 + ax^5 + bx^4 + cx^3 + dx^2 + ex + f$$
 be
 माना $P(x) = x^6 + ax^5 + bx^4 + cx^3 + dx^2 + ex + f$ एक
 बह्पद

Sol.
$$P(x) = (x-1)(x-2)(x-3)(x-4)(x-5)(x-6) + x$$

 $P(7) = 727 = k$; $\left\lceil \frac{727}{73} \right\rceil = 9$

- **19.** f(x) and g(x) are linear functions such
 - f(x) तथा g(x) रैखिक फलन है तथा सभी x के

Sol.
$$f(x) = mx + 4$$

$$g(x) = m'(x-5) + 17$$

$$g(f(x)) = m'[(mx + 4) - 5] + 17 = x$$

: identity function तत्समक फलन

$$\Rightarrow$$
 m = 1/17, m' = 17

$$\Rightarrow f(x) = \frac{1}{17}x + 4$$

$$f(136) = 12 = 4k \Rightarrow k = 3$$

20. If (x, y) are the solution of the equation, यदि (x, y) समीकरण

Sol.

since $\frac{\pi}{2}$ $\frac{\pi}{2}$

f(y)

also तथा
$$f(y) = y^2 - 4y + 17$$

$$f(y) \ge 13$$

$$\Rightarrow$$
 12 sin x + 5 cos x = $y^2 - 4y + 17 = 13$

$$\Rightarrow y = 2 \text{ and } \frac{12}{13}\sin x + \frac{5}{13}\cos x = 1$$

$$\sin(x + \phi) = \sin\frac{\pi}{2}$$
, where जहाँ $\tan \phi = \frac{5}{12}$

$$x + \phi = \frac{\pi}{2}$$

$$\Rightarrow 24 \cot \frac{xy}{2} = 24 \cot \left(\frac{\pi}{2} - \phi\right)$$

$$= 24 \tan \phi = 24.\frac{5}{12} = 10$$

Require अभीष्ट = 10 - 4 = 6

21. The number of real values of m for m के वास्तविक मानो कि संख्या जिसके लिए

Sol.
$$A = \{x : (x-2)(x+m+1) = 0, x \in R\}$$

$$B = \left\{ x : (m-1)x^2 + mx + 1 = 0, x \in R \right\}$$

Case I.

$$m = 1$$

$$A = \{2, -2\}$$
 and और $B = \{-1\}$

$$\therefore A \cup B = \left\{2, -2, -1\right\} \Rightarrow \text{exactly 3 elements ठीक 3 अवयव}$$

Case - II.

When m ≠ 1

$$A = \{2, -m-1\}, B = \{-1, \frac{-1}{m-1}\}$$

$$2 = -m - 1 \Rightarrow m = -3$$

$$A = \left\{2\right\}, B\left\{-1, \frac{1}{4}\right\}$$

$$2 = \frac{-1}{m-1} \implies m = \frac{1}{2}$$

$$A = \left\{2, -\frac{3}{2}\right\}, B = \left\{-1, 2\right\}$$

$$\therefore \boxed{m=\frac{1}{2}}$$

$$-m-1=\frac{-1}{m-1}$$
 \Rightarrow $m^2-1=1$

$$\therefore \boxed{m = \pm \sqrt{2}}$$

$$-m-1=-1$$
 \Rightarrow $m=0$

$$-1 = \frac{-1}{m-1} \Rightarrow m-1 = 1 : \underline{m=2}$$

Number of values of m = 7 m के मानों की संख्या = 7 है।

22. If 'a'(a > 0) is the value of parameter ਧਿੰਫ 'a'(a > 0) प्राचल का मान है जिसका

Sol.
$$y = \frac{a^2 - ax}{1 + a^4}$$
 ...(1)

$$y = \frac{x^2 + 2ax + 3a^2}{1 + a^4} \dots (2)$$

Point of intersection of (1) and (2)

(1) तथा (2) के प्रतिच्छेद बिन्दु

$$\frac{a^2 - ax}{1 + a^4} = \frac{x^2 + 2ax + 3a^2}{1 + a^4}$$
$$\Rightarrow (x + a)(x + 2a) = 0$$

$$x = -a, -2a$$

Required Area अभीष्ट क्षेत्रफल =

$$\int_{-2a}^{-a} \left[\left(\frac{a^2 - ax}{1 + a^4} \right) - \left(\frac{x^2 + 2ax + 3a}{1 + a^4} \right) \right]$$

Corporate Office (New Campus): CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PTC024029

$$\therefore A(a) = \frac{a^3}{6(1-a^4)}$$

$$\therefore$$
 A (a) in max.में अधिकतम \Rightarrow A '(a) = 0

$$\Rightarrow 3+3a^4-4a^4=0$$
$$a^4=3$$

23. Let
$$f:[0,\infty) \to R$$
 be a continuous

माना
$$f:[0,\infty) \to R$$
 निरन्तर वर्धमान फलन

Sol. Given दिया है
$$f^3(x) = \int_0^x t.f^2(t) dt$$

differentiating, अवकलन
$$3f^2(x)f'(x) = xf^2(x)$$

$$f(x) \neq 0 :: f'(x) = \frac{x}{3}$$

$$\therefore f(x) = \frac{x^2}{6} + c$$

But लेकिन
$$f(0) = 0 \Rightarrow c = 0$$

Hence अत: f(6) = 6

Sol.
$$f(f(x)) = f(x) + f^2(x) + f^4(x) + f^8(x) +$$

Coefficient of x^{10} in $f(x) = 0$
 $f(x) \stackrel{.}{\text{H}} x^{10}$ on $g(x) = 0$
Coefficient of $g(x) = 0$
Coefficient of $g(x) = 0$
 $g(x) \stackrel{.}{\text{H}} x^{10}$ on $g(x) = 0$
Coefficient of $g(x) = 0$
 $g(x) \stackrel{.}{\text{H}} x^{10}$ on $g(x) = 0$
 $g(x) \stackrel{.}{\text{H}} x^{10}$ on $g(x) = 0$
Coefficient of $g(x) = 0$
Coefficient of $g(x) = 0$
 $g(x) \stackrel{.}{\text{H}} x^{10}$ on $g(x) = 0$
 $g(x) \stackrel{.}{\text{H}} x^{10}$ on $g(x) = 0$
 $g(x) \stackrel{.}{\text{H}} x^{10}$ on $g(x) = 0$

Part-II Physics

- 25. A circuit shown in figure contains ideal...... चित्र में दर्शाया गया परिपथ एक आदर्श प्रेरकत्व.....
- Sol.

Maximum potential difference a cross L is at t = 0 at its value $\frac{E}{2}$

L के सापेक्ष अधिकतम विभवान्तर t = 0 पर है, इसका मान $\frac{E}{2}$ है।

According to the questions $e = \frac{E}{4} = L \frac{di}{dt}$

प्रश्न के अनुसार
$$e = \frac{E}{4} = L \frac{di}{dt}$$

$$I = \frac{E}{3R} \left(1 - e^{\frac{-3R}{2L}t} \right)$$

$$e = \frac{E/2}{2} = \frac{E}{2} \times e^{\frac{-3R}{2L}t}$$

$$2^{-1} = e^{\frac{-3R}{2L}t}$$
$$\ell n2 = \frac{3R}{2L} \times t$$

Current through R_1 at this time ; इस समय R_1 से गुजरने वाली धारा

$$I = \frac{E}{3R} (1 - e^{-\ell n 2} \right] = \frac{E}{3R} \left(1 - \frac{1}{2} \right] = \frac{E}{6R}$$

$$t = \ell n 2 \times \frac{2L}{3R}$$

- **26.** Four identical plates (equally spaced) चार एकसमान प्लेटे (समान दूरी पर) एवं......
- Sol. Equivalent Circuit तुल्य परिपथ

Combination of Capacitors (1) and (2) are short circuited. संयोजन के संघारित्र (1) तथा (2) लघुपथित है।

energy supplied by battery बैटरी द्वारा सप्लाई ऊर्जा

$$= CV^2$$

Potential difference between 1 and 3 = 0

1 तथा 3 के मध्य विभवान्तर = 0

Hence, potential difference between 2 and 4 = V

अतः प्लेट 2 तथा 4 के मध्य विभवान्तर = V

Charge is only on right side of plate 3.

आवेश प्लेट 3 के केवल दांयी ओर है।

- **27.** A collision takes place between two..... दो कण जो प्रत्येक v चाल से गतिशील.....
- Sol. $3m\vec{v}' = (mv + 2mv\cos\theta) \hat{i} + 2mv\sin\theta \hat{j}$

$$\vec{v}' = \frac{v}{3}(1 + 2\cos\theta)\hat{i} + \frac{2}{3}\sin\theta\hat{j}$$

$$tan\phi = \frac{2\sin\theta}{1 + 2\cos\theta}$$

$$\Delta K = k_{i} - k_{f}$$

$$\frac{3}{2}mv^2 - \frac{1}{2}(3m)v^{'2} = \frac{3}{2}mv^2 - \frac{mv^2}{6}(5 + 4\cos\theta)$$

- 28. Consider a sphere of radius R with a..... मानिए कि R त्रिज्या का एक गोला है.....
- Sol. For inner sphere initially प्रारम्भ में आन्तरिक गोले के लिए

$$P = \sigma T_0^4 4\pi R^2 = 4\pi\sigma T_0^4 R^2$$

For outer shell बाह्य कोश के लिए

$$P = \sigma T^4 4\pi 4R^2$$

$$4\pi\rho T_0^4 R^2 = \sigma T^4 4\pi.4R^2$$

$$T_0^4 = 4T^4$$

$$\Rightarrow$$
 T = $\frac{T_0}{\sqrt{2}}$

After covering for inner sphere ढकने के पश्चात् आन्तरिक गोले के लिए

$$2P = \sigma T^{4} 4\pi R$$

Corporate Office (New Campus): CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in
Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PTC024029

- **29.** The dimensional formula......kt के लिए विमीय सूत्र.....
- **30.** Which of the following mathematical.....
- Sol. 29 & 30 $[F] = [A] = MLT^{-2}$

 $[\omega t] = [Ak] = M^{0}L^{0}T^{0}$ $\Rightarrow [k] = M^{-1}L^{-1}T^{2}$

Sol. $k\ell_1 = 5I$

 $k\ell_2 = (5 + X) I$

or या
$$\frac{\ell_2}{\ell_1} = \frac{5+X}{5}$$
 or या $\frac{\ell_2 - \ell_1}{\ell_1} = \frac{X}{5}$

- **33.** The coefficient of volume expansion..... नलिका के अन्दर द्रव का आयतन.....
- **34.** For a liquid at t = 20°C h₀ and ht t = 20°C पर द्रव के लिए h₀ एवं ht.....
- Sol. 33 & 34

$$\rho_t = \frac{\rho_0}{1 + \gamma t} \quad \Rightarrow \qquad \quad \rho_0 = \rho_t (1 + \gamma t)$$

Also for equilibrium साम्यावस्था के लिए, $\rho_0 gh_0 = \rho_t gh_t$

$$\Rightarrow \frac{h_t}{h_0} = \frac{\rho_0}{\rho_t} = 1 + \gamma t \Rightarrow \qquad \gamma = \frac{h_t - h_0}{h_0 t}$$

For the given liquid दिये गये द्रव के लिए,

$$\gamma = \frac{101 - 100}{100 \cdot 20} = 5 \times 10^{-4} \text{ per } ^{\circ}\text{C}$$

For floatation of cylinder बेलन के द्रव में तैरने के लिए,

Buoyant उत्पलावन = weight भार = constant अचर

- $\Rightarrow \rho Ahg = constant अचर <math>\Rightarrow \rho A = constant अचर$
- ⇒ β_{cylinder बेलन} = γ_{liquid द्रव}

- **35.** An insect with mass 10 mg and total..... एक जीव का द्रव्यमान 10 mg तथा.....
- **Sol.** $B_0 = \frac{Mg}{TL}$ since insect just float so $B_0 = 1$

 $B_0 = \frac{\text{Mg}}{\text{TL}} \ \, \vec{z} \vec{l} \ \, \vec{p} \ \, \vec{l} \ \, \vec{$

M = Mass of insect जीव का द्रव्यमान

$$T = \frac{Mg}{L} = \frac{10 \times 10^{-6} \times 10}{1.3 \times 10^{-3}} = 0.076 \text{ N/m}$$

36. Mass of insect A is 15 mg and..... यदि जीव A का द्रव्यमान 15 mg.....

Sol.
$$B_0 = \frac{Mg}{TL}$$

For A के लिए, $B_0 = \frac{15 \times 10^{-6} \times 10}{7.5 \times 10^{-2} \times 2.5 \times 10^{-3}} = 0.8$ so A will

float ; A तैरेगा

For B के लिए, $B_0 = \frac{6 \times 10^{-6} \times 10}{7.5 \times 10^{-2} \times 0.6 \times 10^{-3}} = \text{ so B will}$

drown ; B डूबेगा

- **37.** A block is moving in horizontal...... लिफ्ट की चकनी सतह पर लिफ्ट के.....
- **Sol.** with respect to ground सतह के सापेक्ष V_{net} =

$$\sqrt{V^2+V^2} = \sqrt{2}V$$

$$v=10 \text{m/s}$$

$$a_c \qquad v=10 \text{m/s}$$
and तथा
$$a_c = \frac{V^2}{R}$$

Acceleration will be same from both the frames.

So, अਗ: ROC =
$$\frac{V_{\text{net}}^2}{a_{\perp}} = \frac{2v^2}{v^2/R} = 2R = 4m$$
.

- **38.** In an I.C. engine, a gas is..... एक अन्तः दहन इंजन में गैस
- **Sol.** Work done by the gas in one cycle एक चक्र में गैस द्वारा किया गया कार्य

= Area under P–V graph =
$$\frac{1}{2}$$
 (0.4 × 10⁵)

= P–V आरेख के अर्न्तगत क्षेत्रफल =
$$\frac{1}{2}$$
 (0.4 x 10⁵)

= 20 kJ

In 1 sec., 5 cycles arc completed

एक सैकण्ड में, 5 चक्र पूर्ण होते है।

So, work done in 1 sec. = $5 \times 20 \text{ kJ} = 100 \text{ kW}$. अतः 1 sec में किया गया कार्य = $5 \times 20 \text{ kJ} = 100 \text{ kW}$

- **39.** In a carburator of an engine...... एक इंजन के कार्बोरेटर में, वायुमण्डल.....
- **Sol.** To enter the patrol in the tube नली में पैट्रोल के प्रवेश करने के लिए

$$P_b \le P_0 - \rho_\ell g (0.1)$$

Applying Bernoulli equation from section A section B खण्ड A व खण्ड B में बरनॉली समीकरण लगाने पर

a is area of cross-section A and b is area of cross-section B A का अनुप्रस्थ काट क्षेत्रफल a है तथा B का अनुप्रस्थ काट क्षेत्रफल b है।

$$P_0 + \frac{1}{2} \quad \rho_{air} \, V^2 \, = (P_0 - \rho_\ell g(0.1)) + \, \frac{1}{2} \quad \rho_{air} \, \left(\, V \, \frac{a}{b} \right)^2 \,$$

Solving हल करने पर
$$\frac{a}{b} = \sqrt{11}$$
.

- **Sol.** $a_A = a = \alpha . R...(i)$

- 41. A uniform wire is bent in the form..... एकसमान तार को R त्रिज्या के अर्द्धवृत्ताकार.....
- $\textbf{Sol.} \ \ I_{\text{NAIL}}$

$$= I_{C.M.} + md^2$$

$$= mR^{2} - m\left(\frac{2R}{\pi}\right)^{2} + m\left[R - \frac{2R}{\pi}\right]^{2}$$

$$= 2 \text{ mR}^2 - \frac{4 \text{mR}^2}{\pi}$$

$$= 2 \, \text{mR}^2 \left(1 - \frac{2}{\pi} \right)$$

$$\Rightarrow T = 2 \pi \sqrt{\frac{I_{NAIL}}{mgd}} = 2 \pi \sqrt{\frac{2mR^2 \left(1 - \frac{2}{\pi}\right)}{mgR \left(1 - \frac{2}{\pi}\right)}}$$
$$= 2 \pi \sqrt{\frac{2R}{g}} = 2 \sqrt{2R} \text{ (as } \sqrt{g} = \pi)$$

= Time period of second's pendulum or 2 s सैकण्ड लोलक का आवर्तकाल 2 s

 \Rightarrow R = 0.5 m = 50cm

- **Sol.** $\sim 19.2 \times 10^{-3} \, \text{kg/m}$

From the free body diagram मुक्त वस्तु आरेख से

$$T - 4g - 4a = 0$$

$$T = 4(a + g) = 4(2 + 10) = 48 N$$

Wave speed तरंग चाल :

$$v = \sqrt{\frac{T}{\sim}} = \sqrt{\frac{48}{19.2 \times 10^{-3}}} = 50 \,\text{m/s}$$

So अत: n = 4

43. Here shown a diagram which is part..... यहाँ चित्र में एक परिपथ दर्शाया गया है.....

Sol.

By the diagram, we can C परिपथ से हम कह सकते है कि Current in R_2 में धारा = 6A

Current in R₁ में धारा = 3A

$$\frac{I_2}{I_1} = 2A$$

- **44.** What value of a D.C. voltage..... एक श्रेणी R-L परिपथ.....
- Sol. For A C circuit प्रत्यावर्ती धारा स्त्रोत के लिए $X_L = \omega L$

$$= 100\pi \times \frac{60}{\pi}$$

= $6000 \text{ m}\Omega$

$$=6\Omega$$

$$V = 5 \left[\sqrt{3} \cos 100 \pi t + \sin 100 \pi t \right]$$

$$V = 10 \left[\sin \left(100\pi t + \frac{\pi}{3} \right) \right]$$

In R – L circuit 'V' leads. R – L परिपथ में 'V' आगे है।

$$tan\phi = \frac{X_L}{R}$$

$$=\frac{6}{8}=\frac{3}{4}$$

$$\phi = 37^{\circ}, Z = \sqrt{8^2 + 6^2} = 10\Omega$$

 $i_0 = 1$

For DC के लिए

 $V = 1 \times 8 = 8V$

- **45.** Two radioactive samples A_1 and A_2 दो रेडियोधर्मी प्रतिदर्श A_1 तथा A_2
- **Sol.** $N_1 = 2N_2$

$$N_0e^{-\lambda_1t}=2N_0e^{-\lambda_2t}$$

$$\Rightarrow \frac{1}{t} = \frac{1}{T_2} - \frac{1}{T_1}$$

- **46** A masonry column of density ρ..... एक चिनाई (masonry) स्तम्भ का घनत्व ρ.....
- Sol. Since stress at any cross section is same चूंकि किसी भी भाग का प्रतिबल समान है।
 - ⇒ Stress at top शीर्ष पर प्रतिबल = stress at general cross sectional किसी भी अनुप्रस्थ भाग पर प्रतिबल

$$\Rightarrow \frac{F}{A_1} = \frac{W + F}{A}$$

Here यहाँ W = weight of column above the general cross section किसी भी भाग के ऊपर के स्तम्भ का भार है।

$$\Rightarrow \frac{F}{A_1} = \int \frac{\rho Agdz + F}{A}$$

$$\Rightarrow \frac{FA}{A_4} - F = \rho g \int A dz$$

Differentiating w.r.t. z on both sides दोनों ओर z के सापेक्ष अवकलन करने पर

$$\frac{F}{A_1} \cdot \frac{dA}{dz} = \rho g A$$

$$\Rightarrow \int_{A}^{A_{2}} \frac{1}{A} \cdot dA = \frac{\rho g A_{1}}{F} \int_{0}^{h} dz$$

Corporate Office (New Campus): CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in
Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PTC024029

$$\Rightarrow \ell n \frac{A_2}{A_1} = \frac{\rho g A_1 h}{F} = \frac{2F}{F} = 2$$

$$\Rightarrow \frac{A_2}{A_1} = e^2 = 7.38$$

⇒ Closest integer निकटतम पूर्णांक = 7

47. When the voltage applied to an X-ray..... जब X-किरण नलिका पर आरोपित.....

Sol.
$$\lambda_{th} = \frac{hc}{eV_a}$$

$$\frac{1}{\lambda_{K\alpha}} = R(z-1)^2 \left(\frac{1}{1^2} - \frac{1}{2^2} \right)$$

$$\frac{13}{10} (\lambda_{K_{\alpha}} - \lambda_{th}) = \left(\lambda_{K_{\alpha}} - \frac{\lambda_{th}}{2}\right)$$

$$\frac{3}{10} \lambda_{K_{\alpha}} = \left(\frac{13}{10} - \frac{1}{2}\right) \lambda_{th}$$

$$\frac{3}{10} \left(\frac{4 \times 10^{-7}}{3(z_7)^2} \right) = \left(\frac{8}{10} \right) \frac{12.4 \times 10^{-7}}{15.5 \times 10^3}$$

$$\Rightarrow \frac{5000}{8} = (z-1)^2$$

$$625 = (z - 1)^2 \qquad \Rightarrow z = 2$$

The sound intensity level at a point 4m..... बिन्दु स्त्रोत से 4m दूरी पर.....

$$\textbf{Sol.} \quad \beta_1 = 10 \, \log \frac{I}{I_0} \qquad \qquad \beta_2 = 10 \, \log \frac{4I}{I_0}$$

$$\beta_2 = 10 \log \frac{4I}{I_-}$$

$$\beta_2 - \beta_1 = 10 \log 4$$

 $\beta_2 = 10 + 10 \log 4 = 10 + 6$.

Part-III Chemistry

- Which of the following निम्न में से कौनसे कथन
- **Sol.** (A) $Fe^{3+}(aq) + I^{-}(aq) \longrightarrow Fe^{2+}(aq) + I_{3}^{-}(aq)$
 - (B) $2XeF_6 + SiO_2 \longrightarrow 2XeOF_4 + SiF_4$

- (C) FeCl₃.6H₂O + 6SOCl₂ → FeCl₃ + 12HCl + 6SO₂
- (D) $2Fe(s) + 3Cl_2(g) \longrightarrow 2FeCl_3$
- A container of 2 litre capacity एक 2 लीटर का पात्र N2O5 के 4 मोल.....

Sol.

$$N_2O_5$$

$$2NO_2$$

Initial mole 4 moles after diss 0

$$\therefore$$
 Mole ratio = $\frac{4}{40} = \frac{2}{5}$

$$\therefore \text{ Mole ratio} = \frac{4}{10} = \frac{2}{5}$$

$$t_{1/2} = \frac{0.693}{K} = \frac{0.693}{6.3 \times 10^{-4}} = 1100 \text{ sec but it depends upon}$$

temperature as K also depends upon temperature

$$t_{87.5\%} = \frac{1}{6.3 \times 10^{-4}} \; \ell n \; \frac{100}{100 - 87.5} \; = 3300 \; \text{sec} = 55 \; \text{min}$$

Rate = $K[N_2O_5]$; Thus $r_1 = K[N_2O_5]$

If V is doubled the concentration becomes half

$$\therefore r_2 = K \frac{1}{2} [N_2 O_5]$$

$$\therefore \quad \frac{r_1}{r_2} = \frac{2}{1}$$

Sol.
$$N_2O_5 \longrightarrow 2NO_2 + \frac{1}{2}O_5$$

प्रारम्भिक मोल 4

वियोजन के पश्चात मोल 0

$$\therefore \text{ मोल अनुपात} = \frac{4}{10} = \frac{2}{5}$$

$$t_{1/2} = \frac{0.693}{K} = \frac{0.693}{6.3 \times 10^{-4}} = 1100$$
 सैकण्ड लेकिन यह ताप पर

निर्भर करता है क्योंकि K सदैव ताप पर निर्भर करता है।

$$t_{87.5\%} = \frac{1}{6.3 \times 10^{-4}} \; \ell n \; \frac{100}{100 - 87.5} \; = 3300 \; \text{sec} = 55 \; \text{min}$$

दर = K[N2O5] ; अतः r1 = K [N2O5]

यदि V दुगुना करते तो सान्द्रता आधी हो जाती है।

$$\therefore \quad r_2 = K \; \frac{1}{2} \; [N_2 O_5]$$

$$\therefore \frac{r_1}{r_2} = \frac{2}{1}$$

51. An unknown compound of

अणुसूत्र C₁₀H₁₈O वाला एक अज्ञाात.....

Sol.
$$OH$$

$$\begin{array}{c}
 & H_2SO_4/\Delta \\
\hline
 & O_3/Zn \\
\hline
 & O_3/Zn
\end{array}$$

- At what pH will the cell potential किस pH पर सेल विभव शून्य होगा.....
- **Sol.** Cathode (कैथोड़) : NO₃⁻ + 3H₃O⁺ + 2e⁻ → HNO₂ + 4H₂O $E^0 = 0.94 \text{ V}$

Anode (एनोड़) : $2Hg^{2+} + 2e^- \longrightarrow Hg_2^{2+}$; $E^0 = 0.92 \text{ V}$

Overall balanced cell reaction (सम्पूर्ण सन्तुलित सैल अभिक्रिया) :

$$NO_3^- + 3H_3O^+ + Hg_2^{2+} \longrightarrow 2Hg^{2+} + HNO_2 + 4H_2O$$
;
 $E^0 = 0.02 \text{ V}$

$$\mathsf{E} = \mathsf{E}^{\circ}_{\mathsf{ceil}} - \frac{0.06}{2} \log \frac{[\mathsf{Hg}^{2+}]^2 [\mathsf{HNO}_2]}{[\mathsf{NO}_3^-][\mathsf{H}_3\mathsf{O}^+]^3 [\mathsf{Hg}_2^{2+}]}$$

$$\mathsf{E} = \mathsf{E}^{\mathsf{o}}_{\mathsf{cell}} - \frac{0.06}{2} \log \frac{1}{\left[\mathsf{H}_{3}\mathsf{O}^{+}\right]^{3}}$$

$$0 = 0.02 - 0.03 log \frac{1}{\left[H_3 O^+\right]^3}$$

$$0 = 0.02 - 0.03 \times 3 \text{ (pH)}$$

$$pH = \frac{0.02}{0.03 \times 3} = \left(\frac{2}{9}\right)$$

54. How many moles of electrons ਯਕ ਜੇ Hg²⁺ कੇ 0.6 ਸੀल

Sol.
$$NO_3^- + 3H_3O^+ + Hg_2^{2^+} \longrightarrow 2Hg^{2^+} - HNO_2 + 4H_2O + 0.5 - 0.5$$

Cathode (कैथोड) : $NO_3^- + 3H_3O^+ + 2e^- \longrightarrow HNO_2$ $4H_2O$

0.6mole

0.3mole

- **56.** Compound 'Y' when treated यौगिक 'Y' को जब टेट्राहाइड्रोक्साइड
- **Sol.** Ba²⁺ salts imparts yellowish-green/apple green colour to the Bunsen flame.

$$\begin{split} \text{Ba}^{2+} + \text{SO}_4^{2-} &\longrightarrow \text{BaSO}_4 \downarrow (\text{white}) - (\text{X}) \\ \text{BaSO}_4 + 4\text{C} + \text{Na}_2\text{CO}_3 &\longrightarrow \text{BaCO}_3 + \text{Na}_2\text{S} \ (\text{Y}) + 4\text{CO} \ \uparrow \end{split}$$

 S^{2-} + $[Fe(CN)_5NO]^{2-}$ \longrightarrow $[Fe(CN)_5NOS]^{4-}$ (Z)

हल. बेरियम लवण (Ba²⁺ लवण) बुन्सन ज्वाला को पीली युक्त हरी/सेब जैसी हरी ज्वाला प्रदान करते हैं।

$$BaSO_4 + 4C + Na_2CO_3 \longrightarrow BaCO_3 + Na_2S (Y) + 4CO \uparrow$$

$$S^{2-}$$
 + $[Fe(CN)_5NO]^{2-}$ \longrightarrow $[Fe(CN)_5NOS]^{4-}$ (Z)

- 57. (P) and (Q) respectively
 - (P) तथा (Q) क्रमशः
- Sol. LiAlH $_4$ raduces aldehydes, ketones as well as esters. Pd/H $_2$ reduces aldehyde & ketone, but ester is practically left behind. Hence answer (D).

LiAlH₄ एल्डिहाइड कीटोन के साथ—साथ एस्टर को भी अपचयित कर देता है। Pd/H₂ एल्डिहाइड तथा कीटोन को अपचयित करता है किन्तु प्रायोगिक रूप से एस्टर छुट जाता है। अतः उत्तर (D) है।

- **58.** (R) is: ਵੈ.....
- Sol. NaBD₄ can reduce aldehyde and ketone, but not ester. Hence ester remains unchanged.

NaBD₄ एल्डिहाइड तथा कीटोन को अपचयित कर सकता है किन्तु एस्टर को नहीं। अतः एस्टर अपरिवर्तित रहता है।

60. The lower boiling isomer W का निम्न क्वाथी समावयवी

Sol.

$$\begin{array}{c|c}
CH_2-C-CH_3\\
0\\
\end{array}$$
3,4-DNP

 $\xrightarrow{\text{H}_2/\text{Ni}} \text{Ph-CH}_2\text{-CH-CH-CH}_2\text{-Ph}$ Me Me (S)

W (trans is lower boiling) three stereoisomers monochlorination

(3) structural isomers.

(3) संरचनात्मक समावयवी

- **61.** Aqueous solution of how many निम्न में से कितने यौगिको का जलीय
- Sol. NaHCO₃, MgSO₃

 $P_0 = 200 \text{ mm of Hg}$

 $t = 15 \text{ min } P_0 + 7/2 P = 375$

P = 50 mm of Hg

$$\frac{P_{Cl_2} \text{ at } t = \infty}{P_{Cl_3} \text{ at } t = 15} = \frac{P_0}{P} = \frac{200}{50} = 4.$$

Ans 4

- **63.** Hydrogen peroxide solution तन् H₂SO₄ के साथ अम्लीय
- Sol. $2KMnO_4 + 5H_2O_2 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5O_2$

 $2KMnO_4 + 3MnSO_4 + 2H_2O \longrightarrow 5MnO_2 + 2H_2SO_4 + K_2SO_4$ $MnO_2 + Na_2C_2O_4 + 2H_2SO_4 \longrightarrow MnSO_4 + 2CO_2 + Na_2SO_4 + 2H_2O_4$

- \therefore meq. of MnO₂ = meq of Na₂C₂O₄ = 10 × 0.2 × 2 = 4
- $\therefore \text{ millimoles of MnO}_2 = \frac{4}{2} = 2$

Now, $2KMnO_4 + 3MnSO_4 + 2H_2O \longrightarrow 5MnO_2 \downarrow + K_2SO_4 + 2H_2O$

Since MnO₂ is derived from KMnO₄ and MnSO₄ both, thus it is better to proceed by mole concept

millimoles of KMnO₄ = millimoles of MnO₂ × (2/5) = 4/5 Also, $5H_2O_2 + 2KMnO_4 + 3H_2SO_4 \longrightarrow 2MnSO_4 + K_2SO_4 + 8H_2O + 5O_2$

: millimoles of H_2O_2 = millimoles of $KMnO_4$ × $\frac{5}{2}=\frac{4}{5}\times\frac{5}{2}=2$

$$M_{H_2O_2} \times 10 = 2$$
 or $M_{H_2O_2} = 0.2 \text{ M}$

ছল. $2KMnO_4 + 5H_2O_2 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5O_2$

 $5O_2$ $2KMnO_4 + 3MnSO_4 + 2H_2O \longrightarrow 5MnO_2 + 2H_2SO_4 + K_2SO_4$ $MnO_2 + Na_2C_2O_4 + 2H_2SO_4 \longrightarrow MnSO_4 + 2CO_2 + Na_2SO_4 + 2H_2O$

- \dots MnO₂ के मिलीतुल्यांक = Na₂C₂O₄ के मिलीतुल्यांक = 10 × 0.2 × 2 = 4
- $\therefore \quad \mathsf{MnO}_2 \ \hat{\mathsf{o}} \quad \mathsf{Hefl} \quad \mathsf{Him} = \frac{4}{2} = 2$

$$\begin{bmatrix} & Mn^{4+} + 2e \rightarrow Mn^{2+} \\ \therefore & MnO_2 & \text{का संयोजी कारक} = 2 \end{bmatrix}$$

अब, 2KMnO $_4$ + 3MnSO $_4$ + 2H $_2$ O \longrightarrow 5MnO $_2$ + K $_2$ SO $_4$ + 2H $_2$ O चूँिक MnO $_2$, KMnO $_4$ तथा MnSO $_4$ दोनों से व्युत्पन्न होता है, इसलिए इसे मोल अवधारणा से करना उचित है।

KMnO₄ के मिलीमोल = MnO₂ के मिलीमोल × (2/5) = 4/5 साथ ही $5H_2O_2 + 2KMnO_4 + 3H_2SO_4 \longrightarrow 2MnSO_4 + K_2SO_4 + 8H_2O + 5O_2$

- \therefore H_2O_2 के मिलीमोल = $KMnO_4$ के मिलीमोल $\times \frac{5}{2} = \frac{4}{5} \times \frac{5}{2} = 2$
- $M_{H_2O_2} \times 10 = 2$ or $M_{H_2O_2} = 0.2 \text{ M}$
- **64.** How many of the following give निम्न में से कितने, तनु HNO₃ विलयन
- Sol. Cu, Ag give NO gas with dilute HNO₃. Cu, Ag तनु HNO₃ के साथ NO गैस देते है।
- **65.** How many of the following will निम्न में से कितने यौगिक सान्द्र
- Sol. $AgI + HNO_3$ (conc.) $\longrightarrow AgNO_3 + I_2 + NO_2 \uparrow$ $Ag + HNO_3 \longrightarrow AgNO_3 + NO_2 \uparrow + H_2O$ $BaSO_3 + HNO_3 \longrightarrow BaSO_4 \downarrow + Na_2 \uparrow + H_2O$ HgO dissolves in HCl as well. $CuS + conc.HNO_3 \longrightarrow CuSO_4 + H_2SO_4 + NO_2 \uparrow$ $PbS + conc.HNO_3 \longrightarrow PbSO_4 \downarrow + NO_2 \uparrow$ $Hg_2CI_2 + conc.HNO_3 \longrightarrow HgCI_2 + Hg(NO_3)_2 + NO_2 \uparrow + H_2O$
- Sol. $AgI + HNO_3$ (सान्द्र) $\longrightarrow AgNO_3 + I_2 + NO_2 \uparrow$ $Ag + HNO_3 \longrightarrow AgNO_3 + NO_2 \uparrow + H_2O$ $BaSO_3 + HNO_3 \longrightarrow BaSO_4 \downarrow + Na_2 \uparrow + H_2O$ HgO, HCI में निम्न प्रकार से घुलनशील है—

- CuS + सान्द्र HNO $_3$ \longrightarrow CuSO $_4$ + H $_2$ SO $_4$ + NO $_2$ $^{\uparrow}$ PbS + सान्द्र HNO $_3$ \longrightarrow PbSO $_4$ $^{\downarrow}$ + NO $_2$ $^{\uparrow}$ Hg $_2$ Cl $_2$ + सान्द्र HNO $_3$ \longrightarrow HgCl $_2$ + Hg(NO $_3$) $_2$ + NO $_2$ $^{\uparrow}$ + H $_2$ O
- Sol. SiCl₄, SF₄, PCl₃, NCl₃, ClF₃, BBr₃
- **Sol.** $P_T = P_A^0 x_A + P_B^0 x_B$ $P_T = 400 \times 0.5 + 600 \times 0.5$ $P_T = 200 + 300$

$$x_A^1 = \frac{P_A^0 x_A}{P_T} = \frac{200}{500}$$

$$x_B^1 = \frac{P_B^0 x_B}{P_T} = \frac{300}{500}$$

$$\frac{x_A^1}{x_B^1} = \frac{2}{3}$$

- **69.** Muscarine is a poisonous.......... अमोनिटा मस्कैरिया में उपस्थित
- Sol. It has 3 chiral atoms & hence no. of stereoisomers = 2^3 = 8 यह 3 किरैल परमाणु रखता है इसलिए त्रिविम समावयवी की संख्या = 2^3 = 8
- **70.** When addition of Br₂ was जब एथीन पर जलीय NaCl

$$\xrightarrow{Br_2 + aq. NaCl} \xrightarrow{H} C \xrightarrow{Br^{\oplus}} C \xrightarrow{H}$$

$$\begin{array}{c} & & & \\ & &$$

Formation of these three products clearly indicates about formation of cyclic Bromonium ion. इन तीन उत्पादों का निर्माण, चक्रीय ब्रोमोनियम के निर्माण को स्पष्ट

71. How many of the following may निम्न में से कितने उपयुक्त परिस्थिति

रूप से इंगित करता है।

$$O \longrightarrow CH_3$$
 OH does not undergo any hydrolysis कोई भी जल अपघटन नहीं देता है।

- **72.** How many compounds...... कितने यौगिकों को गर्म
- Sol. Compound (ii), (iii), (vi), (vii), (viii), (ix), (x) give CO2 gas on heating.
 यौगिक (ii), (iii), (vi), (vii), (viii), (ix), (x) को गर्म करने पर CO2 गैस मुक्त होती है।

MAJOR TEST (MT)

(JEE ADVANCED PATTERN) TARGET: JEE(MAIN+ADVANCED) 2015

COURSE: VIJETA (JP)

ANSWER KEY

35.

(AC)

36.

(1)

DATE: 28-12-2014

PAPER-1 MATHEMATICS

1.	(AC)	2.	(ACD) 3.	(AD) 4.	(AB) 5.	(ABC) 6.	(BC) 7.	(CD)
8.	(AD)	9.	(ABC) 10.	(ABCD) 11.	(AC) 12	. (ABC) 13 .	(ACD) 14.	(ABCD)

15. (ABD) **16.** 17. 5 18. 3 19. 20. 0

(6)

37.

PHYSICS

21.	(A)	22 .	(AD)	23.	(BD)	24.	(AC) 25.	(ABC) 26.	(AC)	27.	(ABD)
28.	(AB)	29.	(ABC)	30.	(AC)	31.	(BCD) 32.	(ABD) 33.	(BC)	34.	(BC)

38.

CHEMISTRY

(4)

39.

(8)

40.

(5)

41.	(BC)	42.	(ABC)	43.	(BC)	44.	(ACD)	45 .	(ABC) 46.	(AD)	47.	(ABCD)
48.	(CD)	49.	(BC)	50.	(CD)	51.	(AB)	52 .	(ABCD) 53.	(AD)	54.	(BCD)
55 .	(B)	56.	(5)	57.	(5)	58.	(4)	59.	(6) 60.	(6)		

PAPER-2

MATHEMATICS

1.	(ABC)	2.	(ABD)	3.	(ABC)	4.	(BC)	5.	(A)	6.	(B)	7.	(A)
8.	(D)	9.	(D)	10.	(B)	11.	(B)	12.	(C)	13.	9	14.	5
15.	8	16.	5	17.	3	18.	9	19.	3	20.	6	21.	7

22. 23. 24.

PHYSICS

25.	(ABC)	26.	(AC)	27.	(ACD)	28.	(ACD)	29.	(A)	30.	(D)	31.	(B)
32.	(A)	33.	(B)	34.	(C)	35.	(C)	36.	(A)	37.	(4)	38.	(1)
39.	(6)	40.	(4)	41.	(5)	42.	(4)	43.	(2)	44.	(8)	45.	(6)
46	(7)	47.	(2)	48.	(6)								

CHEMISTRY

49.	(ABD)	50.	(CD)	51.	(AC)	52.	(AB)	53.	(D)	54.	(A)	55.	(D)
56.	(C)	57 .	(D)	58.	(C)	59.	(B)	60.	(A)	61.	(2)	62.	(4)
63.	(2)	64.	(2)	65.	(4)	66.	(6)	67.	(2)	68.	(3)	69.	(8)
70.	(3)	71.	(5)	72.	(6)								

Corporate Office (New Campus): CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PTC024029

DATE: 28-12-2014

MAJOR TEST (MT)

(JEE ADVANCED PATTERN) TARGET: JEE(MAIN+ADVANCED) 2015

COURSE: VIJETA (JP)

						ANSV	VER K	ΈY						
COD	CODE-1													
						РА	PER-1							
					N	HTAN	EMAT	ICS						
1.	(AC)	2.	(ACD)	3.	(AD)	4.	(AB)	5.	(ABC)	6.	(BC)	7.	(CD)	
8.	(AD)	9.	(ABC)	10.	(ABCD		(AC)	12.	(ABC)	13.	(ACD)	14.	(ABCD)	
15.	(ABD)	16.	8	17.	5	18.	3	19.	9	20.	0			
						PH	YSICS	3						
21.	(D)	22.	(BD)	23.	(AD)	24.	(BC)	25.	(ACD)	26.	(AB)	27.	(ABC)	
28.	(AC)	29.	(ABD)	30.	(AB)	31.	(ACD)	32.	(ACD)	33.	(AC)	34.	(BD)	
35.	(BC)	36.	(1)	37.	(6)	38.	(4)	39.	(8)	40.	(5)			
						CHE	MISTF	RY						
41.	(AC)	42.	(ABC)	43.	(AC)	44.	(ACD)	45.	(ABC)	46.	(AD)	47.	(ABCD)	
48.	(AB)	49.	(AB)	50.	(AB)	51.	(AB)	52.	(ABCD		(AD)	54.	(ABC)	
55.	(D)	56.	(5)	57.	(5)	58.	(4)	59.	(6)	[′] 60.	(6)		,	
	. ,		. ,		. ,				, ,		. ,			
						РА	PER-2	2						
					N	IATH	EMAT	ICS						
1.	(ABC)	2.	(ABD)	3.	(ABC)	4.	(BC)	5.	(B)	6.	(A)	7.	(B)	
8.	(C)	9.	(C)	10.	(C)	11.	(C)	12.	(D)	13.	9	14.	5	
15.	8	16.	5	17.	3	18.	9	19.	3	20.	6	21.	7	
22.	3	23.	6	24.	4									
						PH	YSICS	6						
25.	(ACD)	26.	(BD)	27.	(BCD)	28.	(BCD)	29.	(D)	30.	(A)	31.	(A)	
32.	(D)	33.	(A)	34.	(B)	35.	(B)	36.	(C)	37.	(4)	38.	(1)	
39.	(6)	40.	(4)	41.	(5)	42.	(4)	43.	(2)	44.	(8)	45.	(6)	
46	(7)	47.	(2)	48.	(6)									
						CHE	MISTF	RY						
49.	(ABC)	50.	(BD)	51.	(AC)	52.	(CD)	53.	(C)	54.	(A)	55.	(C)	
56.	(A)	57.	(C)	58.	(B)	59.	(D)	60.	(B)	61.	(2)	62.	(4)	
63.	(2)	64.	(2)	65.	(4)	66.	(6)	67.	(2)	68.	(3)	69.	(8)	
70.	(3)	71.	(5)	72.	(6)									

Corporate Office (New Campus): CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in **Toll Free**: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PTC024029

MAJOR TEST (MT)

(JEE ADVANCED PATTERN) TARGET: JEE(MAIN+ADVANCED) 2015

COURSE: VIJETA (JP)

ANSWER KEY

-		-
,,,,	 _	-
	 	• /

DATE: 28-12-2014

PAPER-1 MATHEMATICS

1.	(AC)	2.	(ACD)	3.	(AD)	4.	(AB)	5.	(ABC)	6.	(BC)	7.	(CD)
8.	(AD)	9.	(ABC)	10.	(ABCD) 11.	(AC)	12.	(ABC)	13.	(ACD)	14.	(ABCD)
15.	(ABD)	16.	8	17.	5	18.	3	19.	9	20.	0		

PHYSICS

21.	(A)	22 .	(AD)	23.	(BD)	24.	(AC)	25.	(ABC)	26.	(AC)	27.	(ABD)
28.	(AB)	29.	(ABC)	30.	(AC)	31.	(BCD)	32.	(ABD)	33.	(BC)	34.	(BC)
35.	(AC)	36.	(1)	37.	(6)	38.	(4)	39.	(8)	40.	(5)		

CHEMISTRY

41.	(BC)	42.	(ABC)	43.	(BC)	44.	(ACD)	45.	(ABC) 46.	(AD)	47.	(ABCD)
48.	(CD)	49.	(BC)	50.	(CD)	51.	(AB)	52.	(ABCD) 53.	(AD)	54.	(BCD)
55.	(B)	56.	(5)	57.	(5)	58.	(4)	59.	(6) 60.	(6)		

PAPER-2

MATHEMATICS

1.	(ABC)	2.	(ABD)	3.	(ABC)	4.	(BC)	5.	(A)	6.	(B)	7.	(A)
8.	(D)	9.	(D)	10.	(B)	11.	(B)	12.	(C)	13.	9	14.	5
15	. 8	16.	5	17.	3	18.	9	19.	3	20.	6	21.	7
22	. 3	23.	6	24.	4								

PHYSICS

25.	(ABC)	26.	(AC)	27.	(ACD)	28.	(ACD)	29.	(A)	30.	(D)	31.	(B)
32.	(A)	33.	(B)	34.	(C)	35.	(C)	36.	(A)	37.	(4)	38.	(1)
39.	(6)	40.	(4)	41.	(5)	42.	(4)	43.	(2)	44.	(8)	45.	(6)
46	(7)	47.	(2)	48.	(6)								

CHEMISTRY

49.	(ABD)	50.	(CD)	51.	(AC)	52 .	(AB)	53.	(D)	54.	(A)	55.	(D)
56.	(C)	57.	(D)	58.	(C)	59.	(B)	60.	(A)	61.	(2)	62.	(4)
63.	(2)	64.	(2)	65 .	(4)	66.	(6)	67.	(2)	68.	(3)	69.	(8)
70.	(3)	71.	(5)	72.	(6)								

Corporate Office (New Campus): CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PTC024029

MAJOR TEST (MT)

(JEE ADVANCED PATTERN) TARGET: JEE(MAIN+ADVANCED) 2015

COURSE: VIJETA (JP)

(5)

ANSWER KEY

CO	D	F	-3
\mathbf{c}	u	_	-ں

35.

DATE: 28-12-2014

(BC)

36.

(1)

37.

PAPER-1 **MATHEMATICS**

1.	(AC)	2.	(ACD)	3.	(AD)	4.	(AB)	5.	(ABC)	6.	(BC)	7.	(CD)
8.	(AD)	9.	(ABC)	10.	(ABCD) 11.	(AC)	12.	(ABC)	13.	(ACD) 1	14.	(ABCD)
15.	(ABD)	16.	8	17.	5	18.	3	19.	9	20.	0		

38.

(6)

PHYSICS

(8)

40.

21.	(D)	22 .	(BD)	23.	(AD)	24.	(BC)	25.	(ACD) 26.	(AB)	27.	(ABC)
28.	(AC)	29.	(ABD)	30.	(AB)	31.	(ACD)	32.	(ACD) 33.	(AC)	34.	(BD)

CHEMISTRY

(4)

39.

41.	(AC)	42.	(ABC)	43.	(AC)	44.	(ACD)	45.	(ABC) 46.	(AD)	47.	(ABCD)
48.	(AB)	49.	(AB)	50.	(AB)	51.	(AB)	52 .	(ABCD) 53.	(AD)	54.	(ABC)
55.	(D)	56.	(5)	57.	(5)	58.	(4)	59.	(6) 60.	(6)		

PAPER-2 MATHEMATICS

1.	(ABC)	2.	(ABD)	3.	(ABC)	4.	(BC)	5.	(B)	6.	(A)	7.	(B)
8.	(C)	9.	(C)	10.	(C)	11.	(C)	12.	(D)	13.	9	14.	5
15.	8	16.	5	17.	3	18.	9	19.	3	20.	6	21.	7
22	3	22	6	24	1								

PHYSICS

25.	(ACD)	26.	(RD)	27.	(RCD)	28.	(RCD)	29.	(D)	30.	(A)	31.	(A)
32.	(D)	33.	(A)	34.	(B)	35.	(B)	36.	(C)	37.	(4)	38.	(1)
39.	(6)	40.	(4)	41.	(5)	42.	(4)	43.	(2)	44.	(8)	45.	(6)

46 (7)47. (2) 48. (6)

CHEMISTRY

49.	(ABC)	50.	(BD)	51.	(AC)	52 .	(CD)	53.	(C)	54.	(A)	55.	(C)
56.	(A)	57.	(C)	58.	(B)	59.	(D)	60.	(B)	61.	(2)	62.	(4)
63.	(2)	64.	(2)	65 .	(4)	66.	(6)	67.	(2)	68.	(3)	69.	(8)
70.	(3)	71.	(5)	72 .	(6)								