

Improved Quad CMOS Analog Switches

DESCRIPTION

The DG308B, DG309B analog switches are highly improved versions of the industry-standard DG308A, DG309. These devices are fabricated in Vishay Siliconix' proprietary silicon gate CMOS process, resulting in lower on-resistance, lower leakage, higher speed, and lower power consumption.

These quad single-pole single-throw switches are designed for a wide variety of applications in telecommunications, instrumentation, process control, computer peripherals, etc.

An improved charge injection compensation design minimizes switching transients. The DG308B and DG309B can handle up to \pm 22 V input signals. An epitaxial layer prevents latchup.

All devices feature true bi-directional performance in the on condition, and will block signals to the supply levels in the off condition.

The DG308B is a normally open switch and the DG309B is a normally closed switch. (see Truth Table.)

FEATURES

- ± 22 V supply voltage rating
- CMOS compatible logic
- Low on-resistance $R_{DS(on)}$: 45 Ω
- Low leakage I_{D(on)}: 20 pA
- Single supply operation possible
- Extended temperature range
- Fast switching t_{ON}: < 200 ns
- Low glitching Q: 1 pC

BENEFITS

- · Wide analog signal range
- · Simple logic interface
- Higher accuracy
- · Minimum transients
- · Reduced power consumption
- Superior to DG308A, DG309
- Space savings (TSSOP)

APPLICATIONS

- · Industrial instrumentation
- Test equipment
- · Communications systems
- Disk drives
- · Computer peripherals
- · Portable instruments
- Sample-and-hold circuits

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

DG308B

Dual-In-Line, SOIC and TSSOP

Top View

TRUTH TABL	E	
Logic	DG308B	DG309B
0	OFF	ON
1	ON	OFF

 $\begin{array}{l} \text{Logic "0"} \leq 3.5 \text{ V} \\ \text{Logic "1"} \geq 11 \text{ V} \end{array}$

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply

DG308B, DG309B

Vishay Siliconix

ORDERING INFORMA	ORDERING INFORMATION				
Temp. Range	Package	Part Number			
	16-Pin PlasticDIP 16-Pin Narrow SOIC	DG308BDJ DG308BDJ-E3			
		DG309BDJ DG309BDJ-E3			
		DG308BDY DG308BDY-E3 DG308BDY-T1 DG308BDY-T1-E3			
- 40 °C to 85 °C		DG309BDY DG309BDY-E3 DG309BDY-T1 DG309BDY-T1-E3			
	16 Bin TSSOD	DG308BDQ DG308BDQ-E3 DG308BDQ-T1 DG308BDQ-T1-E3			
	16-Pin TSSOP	DG309BDQ DG309BDQ-E3 DG309BDQ-T1 DG309BDQ-T1-E3			

ABSOLUTE MAXIMUN	I RATINGS			
Parameter		Limit	Unit	
Voltages Referenced, V+ to V-		44		
GND		25		
		(V-) - 2 to (V+) + 2	V	
Digital Inputs ^a , V _S , V _D		or		
		30 mA, whichever occurs first		
Current, Any Terminal		30	mΛ	
Peak Current, S or D (Pulsed at	1 ms, 10 % duty cycle max.)	100	mA	
Ctorogo Tompovoturo	(AK Suffix)	- 65 to 150	°C	
Storage Temperature	(DJ, DY and DQ Suffix)	- 65 to 125		
	16-Pin Plastic DIP ^c	470		
Power Dissipation (Package) ^b	16-Pin Narrow SOIC and TSSOP ^d	640	mW	
	16-Pin CerDIP ^e	900	1	

- a. Signals on S_X , D_X , or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings. b. All leads welded or soldered to PC board.
- c. Derate 6.5 mW/°C above 75 °C.
- d. Derate 7.6 mW/°C above 75 °C.
- e. Derate 12 mW/°C above 75 °C.

SPECIFICATIONS ^a									
		Test Conditions			A Suffix - 55 °C to 125 °C			uffix	
		Unless Specified V+ = 15 V, V- = - 15 V			- 55 °C t	0 125 °C	125 °C - 40 °C to 85 °C		
Parameter	Symbol	$V_{IN} = 11 \text{ V}, 3.5 \text{ V}^{f}$	Temp.b	Typ.c	Min. ^d	Max.d	Min. ^d	Max.d	Unit
Analog Switch			<u> </u>					I	
Analog Signal Range ^e	V _{ANALOG}		Full		- 15	15	- 15	15	V
Drain-Source On-Resistance	R _{DS(on)}	$V_D = \pm 10 \text{ V, } I_S = 1 \text{ mA}$	Room Full	45		85 100		85 100	Ω
R _{DS(on)} Match	$\Delta R_{DS(on)}$. D = 10 1, 13 1 1 1 1 1	Room	2					%
Source Off Leakage Current	I _{S(off)}	$V_S = \pm 14 \text{ V}, V_D = \pm 14 \text{ V}$	Room Full	± 0.01	- 0.5 - 20	0.5 20	- 0.5 - 5	0.5 5	
Drain Off Leakage Current	I _{D(off)}	$V_D = \pm 14 \text{ V}, V_S = \pm 14 \text{ V}$	Room Full	± 0.01	- 0.5 - 20	0.5 20	- 0.5 - 5	0.5 5	nA
Drain On Leakage Current	I _{D(on)}	V _S = V _D = ± 14 V	Room Full	± 0.02	- 0.5 - 40	0.5 40	- 0.5 - 10	0.5 10	
Digital Control									L
Input, Voltage High	V _{INH}		Full		11		11		.,
Input, Voltage Low	V _{INL}		Full			3.5		3.5	V
Input Current	I _{INH} or I _{INL}	V _{INH} or V _{INL}	Full		- 1	1	- 1	1	μΑ
Input Capacitance	C _{IN}		Room	5					pF
Dynamic Characteristics									
Turn-On Time	t _{ON}	$V_S = 3 \text{ V}$, see figure 2	Room			200		200	ns
Turn-Off Time	t _{OFF}	•	Room			150		150	113
Charge Injection	Q	$C_L = 1000 \text{ pF}, V_g = 0 \text{ V}, R_g = 0 \Omega$	Room	1					рC
Source-Off Capacitance	C _{S(off)}	$V_S = 0 V, f = 1 MHz,$	Room	5					
Drain-Off Capacitance	$C_{D(off)}$		Room	5					pF
Channel-On Capacitance	C _{D(on)}	$V_D = V_S = 0 V$, $f = 1 MHz$	Room	16					
Off-Isolation	OIRR	$C_1 = 15 \text{ pF, } R_1 = 50 \Omega,$	Room	90					
Channel-to-Channel Crosstalk	X _{TALK}	$V_S = 1 V_{RMS}, f = 100 \text{ kHz}$	Room	95					dB
Power Supply									
Positive Supply Current	+	V _{IN} = 0 V or 15 V	Room Full			1 5		1 5	μΑ
Negative Supply Current	l-	v _{IN} = 0 v 0i 13 v	Room Full		- 1 - 5		- 1 - 5		μΑ
Power Supply Range for Continuous Operation	V _{OP}		Full		± 4	± 22	± 4	± 22	٧

DG308B, DG309B

Vishay Siliconix

SPECIFICATIONS ^a (for Single Supply)									
		Test Conditions Unless Specified			_	uffix o 125°C	_	uffix to 85 °C	
Parameter	Symbol	V+ = 12 V, V- = 0 V $V_{IN} = 11 V, 3.5 V^{f}$	Temp.b	Typ.c	Min.d	Max. ^d	Min. ^d	Max.d	Unit
Analog Switch									
Analog Signal Range ^e	V_{ANALOG}		Full		0	12	0	12	V
Drain-Source On-Resistance	R _{DS(on)}	V _D = 3 V, 8 V, I _S = 1 mA	Room Full	90		160 200		160 200	Ω
Dynamic Characteristics									
Turn-On Time	t _{ON}	V 9.V and figure 9	Room			300		300	
Turn-Off Time	t _{OFF}	$V_S = 8 V$, see figure 2	Room			200		200	ns
Charge Injection	Q	$C_L = 1 \text{ nF, } V_{gen} = 6 \text{ V, } R_{gen} = 0 \Omega$	Room	4					рС
Power Supply		· ·							
Positive Supply Current	l+	V 0 V or 10 V	Room Full			1 5		1 5	
Negative Supply Current	I-	$V_{IN} = 0 \text{ V or } 12 \text{ V}$	Room Full		- 1 - 5		- 1 - 5		μΑ
Power Supply Range for Continuous Operation	V _{OP}		Full		4	44	4	44	V

Notes:

- a. Refer to PROCESS OPTION FLOWCHART.
- b. Room = 25 $^{\circ}$ C, Full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

R_{DS(on)} vs. V_D and Power Supply Voltages

 $R_{DS(on)}\, vs. \; V_D$ and Single Power Supply Voltages

100 V+ = 15 V 90 $\mathsf{R}_{\mathsf{DS}(\mathsf{on})}$ - Drain-Source On-Resistance (Ω) V- = - 15 V 80 70 60 125 50 85[']°C 40 25 °C 30 - 55^¹°C 20 10 0 - 15 - 10 15 V_D - Drain Voltage (V)

 $\mathbf{R}_{\mathrm{DS(on)}}$ vs. \mathbf{V}_{D} and Temperature

Leakage Currents vs. Analog Voltage

Q_S, Q_D - Charge Injection vs. Analog Voltage

Vishay Siliconix

VISHAY.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

SCHEMATIC DIAGRAM (Typical Channel)

TEST CIRCUITS

Figure 2. Switching Time

Figure 3. Off Isolation

Figure 4. Channel-to-Channel Crosstalk

 ΔV_O = measured voltage error due to charge injection The charge injection in coulombs is Q = C_L x ΔV_O

Figure 5. Charge Injection

Vishay Siliconix

VISHAY.

APPLICATIONS

Figure 6. A Precision Amplifier with Digitally Programmable Inputs and Gains

Figure 7. Sample-and-Hold

APPLICATIONS

$$\begin{array}{ll} A_L \ (\mbox{Voltage Gain Below Break Frequency}) = & \frac{R_3}{R_1} \ = 100 \ (\mbox{40 dB}) \\ f_C \ (\mbox{Break Frequency}) = & \frac{1}{2\pi R_3 C_X} \\ f_L \ (\mbox{Unity Gain Frequency}) = & \frac{1}{2\pi R_1 C_X} \\ \\ \mbox{Max Attenuation} = & \frac{R_{DS(on)}}{10 \ k\Omega} \ \approx -40 \ dB \end{array}$$

Figure 8. Active Low Pass Filter with Digitally Selected Break Frequency

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?70047.

SOIC (NARROW): 16-LEAD JEDEC Part Number: MS-012

	MILLIM	IETERS	INC	HES			
Dim	Min	Max	Min	Max			
Α	1.35	1.75	0.053	0.069			
A ₁	0.10	0.20	0.004	0.008			
В	0.38	0.51	0.015	0.020			
С	0.18	0.23	0.007	0.009			
D	9.80	10.00	0.385	0.393			
Е	3.80	4.00	0.149	0.157			
е	1.27	BSC	0.050	BSC			
Н	5.80	6.20	0.228	0.244			
L	0.50	0.93	0.020	0.037			
0	0°	8°	0°	8°			
ECN: S-03946—Rev. F, 09-Jul-01							

DWG: 5300

PDIP: 16-LEAD

	MILLIN	IETERS	INC	HES			
Dim	Min	Max	Min	Max			
Α	3.81	5.08	0.150	0.200			
A ₁	0.38	1.27	0.015	0.050			
В	0.38	0.51	0.015	0.020			
B ₁	0.89	1.65	0.035	0.065			
С	0.20	0.30	0.008	0.012			
D	18.93	21.33	0.745	0.840			
E	7.62	8.26	0.300	0.325			
E ₁	5.59	7.11	0.220	0.280			
e ₁	2.29	2.79	0.090	0.110			
e _A	7.37	7.87	0.290	0.310			
L	2.79	3.81	0.110	0.150			
Q ₁	1.27	2.03	0.050	0.080			
S	0.38	1.52	.015	0.060			
ECN: S-03946—Rev. D, 09-Jul-01							

DWG: 5482

Document Number: 71261 www.vishay.com 06-Jul-01

CERDIP: 16-LEAD

	<u> </u>
//	# \
C	e _A ~ ~ ~

	MILLIM	IETERS	INC	HES			
Dim	Min	Max	Min	Max			
Α	4.06	5.08	0.160	0.200			
A ₁	0.51	1.14	0.020	0.045			
В	0.38	0.51	0.015	0.020			
B ₁	1.14	1.65	0.045	0.065			
С	0.20	0.30	0.008	0.012			
D	19.05	19.56	0.750	0.770			
E	7.62	8.26	0.300	0.325			
E ₁	6.60	7.62	0.260	0.300			
e ₁	2.54	BSC	0.100	BSC			
e _A	7.62 BSC		0.300	BSC			
L	3.18	3.81	0.125	0.150			
L ₁	3.81	5.08	0.150	0.200			
Q_1	1.27	2.16	0.050	0.085			
S	0.38	1.14	0.015	0.045			
∞	0°	15°	0°	15°			
ECN: S-03946—Rev. G, 09-Jul-01							

Document Number: 71282 www.vishay.com 03-Jul-01 www.vishay.com

TSSOP: 16-LEAD

	DIMENSIONS IN MILLIMETERS						
Symbols	Min	Nom	Max				
A	-	1.10	1.20				
A1	0.05	0.10	0.15				
A2	-	1.00	1.05				
В	0.22	0.28	0.38				
С	-	0.127	-				
D	4.90	5.00	5.10				
E	6.10	6.40	6.70				
E1	4.30	4.40	4.50				
е	-	0.65	-				
L	0.50	0.60	0.70				
L1	0.90	1.00	1.10				
у	-	-	0.10				
θ1	0°	3°	6°				
ECN: S-61920-Rev. D. 23-Oct-06							

ECN: S-61920-Rev. D, 23-Oct-06

DWG: 5624

Document Number: 74417 www.vishay.com 23-Oct-06 1

RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads Dimensions in inches (mm)

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Ш

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000