a(i) it training errample 2(4) - value of & for layor & x (1), y (1) -> mini - batch + Week 2 : Optimization Algorithms Mini- batch anadrent descent X = [(1) (1) (1) ... (m)] -> (Mm, m) Y = [y" y" ... y(n)] -> (1,m)
What if m = 5,000,000?
Split training sets into smaller parts -> (mini-latches) minibatches each of 1000 emangles X= [(0) (0) 41000) 1001 1000) 1 ... (m) 95X -> (na, 1000) X -> (na, 1000) Y= [y" y" y 6000) y 1001 2000 | ... | ... y [m] 7213 y (2) y (2) y (2) y (5000) Ministratch t: xtt3, yft3 Batch us mini-batch gradient descent all (x, y) x(e) y (t) are where at once processed

I S= no. of samples in the mini-batch Mini-bath gradient descent (algorithm) for t= 1,..., 5000 { forward prof. on x 4th Z [1] = W (1) X {1}, [(1)]

A (1) = g (1) (Z (1)) this vectorized > implementation A[L] = g[L] (Z[L]) | processes 1000 earryly nother than whole training set Compute cost J= 1 & L (g(i), y(i)) + fon xtt3, ytt3 1 7 2.1000 i 21/W 1/F Back proof to compute gradients cont Jits ~ (wing kits, y [ts)) w[1]:= w[1] - x dw[1], b[1]:=b[1] xdb[1] single pass through when you have a large training set, a mini-roath algorithm is methorned by it would cook faster than the regular algo.

Batch grad. Lexent Mini-batch grad . Sescent × 113, y 11) × 123, y 123 cost # diterations Mini both #t J 9+3 computed using X 4+3 yth The graph in mini-batch yets noisy securse we are computing J 9t3 for different different minime-batches is for different x 4t3, y 2t5 in each iteraction so that is when some might and some might and some might and some might go down, but overall thend should be seen as decreasing only. (hoosing mini-batch size (hyperparameter) It mini- batch size=m: Butch grad. descent (x13, x13) The mini-baratch size = 1: Stochastic glad. descent revery enemple is its own mini batch.

(x10, y40) = (n1), y(1)) =, (x10, y10) = (n10, y10) In Machise: mini-tath size is between and M.

Stochastic grad Bakh grad desent In-botween (mini-batch size) mini - batch size = 1 mini-batch size=m Fastest learning: vectorization · rake progress Too 1879 to process per iteration because processing one em. w/o training at a time is ineffecient. entine set It small training set: Use batch grad descent (m \$ 2000) Typical mini-bath sizes: 64, 128, 256, 512 26 27 28 29 Also make sure mini-tatch size fits in clo/GRU momory Other optimization Algos: Enponentially weighted averages -> Faster Kan gred. descent en: Q, = 4°c 02 = 9°C U, -0.9 V. + O.18, V2 = 0.9 V, +0102 83 -: 3 = 0.9 v2 + a1 83 8 180 = 15°C Vt=0.9V++0.18t

Vt = B Vt-1 + (1-B) Qt , B = 0.9 Ver can be inferred as approximately averaging over a lays temperature $\beta = 0.9$: ≈ 10 days average temp. B = 0.98: 2 50 days average

The when plotted, the curve gets more

the right. B=0.5: × 2 days -> mone nois y cur ve Vt= BVt-1+(1-B)8+, B=0.9 -V100 = 0.9 V99 + 0.1 8 100 49 - 0.9 V98 + 0.1 8 99 V98 = 0-9 V97 + 0.1 8 98 100 = 0.10,00 + 0.9 0x96.18 qq + 0.9 0x8) 0.10 ag 70.9 Va7 =0.18,00+0.1x0.9x8qq +0.1 (0.9) & 92 t. Of XXX D.IT

0.910 2 0.35 ~ = (1-E)1/E = == Implementing emponentially weighted averages Vo = 0 V1 = Bvo + (1-B)8, V2 = Bv, + (1-B)82 Vo=0 V20:= BV+(1-B)0, V:= BV+(1-B)02 Refeat h get nent 0+ 2 V8:= BV8 +(1-B)8+ * Very effecient as it takes only one line of cale and less memory (as we are overwritting the same variable), shill not the best way to find a for compute average. Bias connection in emponentially weighted averages Vt= BV+++ (-B) O+ , B=0.98 ν₀=0 ν₁=0.98ν₀ + 0.02θ, β=0.98 I) 8, = 40°C, V, = 0.02×40=0.8 which is not a good estimate on first day's dempenature,

v ['dw' + stn (1)] = np. zenos ((parameter ['w'+ stn (1)]). shape) The up and down oxillations slows down gradient descent and prevents is from using larger learning rates. If learning gate is large: / it ends up diverging Momentum: B Ont iteration t: Compute dw, db on current mini-batch Vantato = BVaw + (1-B)dw) Valuation = BVal + (1-B) db $W = W - \alpha V_{dw}$ $b = b - \alpha V_{db}$ Implementation details:

#Vd=0, Vdw=0 > shape(dw)

= shape(w)

Nyfer parameters: 7, B B = 0.9 (10 bust value) Common value
i.e. average of territery it days a to 10 4 No need to use big connection for volulivate

1 slow 6) 1 and is large AMM Page No.
Date RMS prof: Root Man Square prof On iteration t: compute dw, do on went mini-batch Small -> Sdw = & Sdw + (1-B)dw = Symple of the squares of the squares of the squares of the squares of the derivations. dw is small large -> Sab = B Sab + (1-B) db id db is large ω:= ω - χ's dw δ:= b - χ db Similar effects as seen in momentum us, vertical oscillations damp out and it moves faster honizontally, so we can also increase the learning rate to further make the mocess and computations faster without any issue.

a: needs to be tweed	-
B.: 0.9 (dw) -mean of the derivative	egy
B2: 0.999 (dw2)-> compute emponentially weighted average of square	lei
8:10	7
Adam: Adaptive moment estimation	
Learning Nate decay: - Slowly reduce x	
- Slowly reduce x	-
WITHOUT Slowly	
1 Peducing &	
The state of the s	
This does not anady converge at the	
This does not anathy converge at the minimum hence is wonders around the minimum J but never really reachest	Le
By slady reducing &, we will take	
smaller and smaller steps and of the	
By slady reducing x, we will take smaller and smaller steps and ay the min I at comes closer, it will finally converge with smaller steps and not	
worder around.	
	-

Page No.

	Page No. Date
	epoch = 1 pass through the data
	1 94 × 413 × 423
	- epoch 2 (2nd puss)
	= epoch 2 (2 nd pass)
100	hal 1500:-
100	$\alpha = \beta 1$
	1 + decaylate * epoch-number
	Environment of the state
	enample:
	Ko = 0.2, Decay Nato = 0.1
	Epoch X XA.
0	0-1
	2 0.067
	3 0.05
	4 0.04 Tapoch
	that learning nate decay methods:
1)	X = 0.95 epoch-num - Xo -> conponentially deay
	X = 0.95 epoch-num - Xs -> conponentially deay
0)	L. V
-	Q = R . No on X. Xo Sepoch-num St
111000	Ani-tath
37	Prisorete staincase on by Maryal
	imed interval Scheduling Decay