CAT collection of "clauses"
Collection of "clauses" (AND, A) literals (X, X,) connected by OR(V)
Input: CNF formula \$ (clauses can have any # literals)
on variables X= {X1Xn}
$(i.e., \not b = (x_1) \wedge (\overline{x_1} \vee x_2) \wedge (\overline{x_3} \vee x_4 \vee x_5))$
(k-CNF: each clause has ≤k Dirterals)
Output: assignment f: X -> IT. F) to maximize (# satisfied dauser)
Theorem, Max SAT is NP-hard.
_
Theorem. If every clause has exactly 3 literals from 3 different variables, 37/8-approximation algorithm.
Pf. Consider "noive" random f: X > ST, Fl that assigns
· · · · · · · · · · · · · · · · · · ·
$\times_i = \begin{cases} T & \omega.p. \frac{1}{2} \end{cases}$ independently.
for each clause C, Pr[C is sort. by f] = 7/8.
. The state of clauses sot by $f = \frac{7}{8} \cdot (\text{the clauses in } \phi)$
Generalizing this, if each dause has k literals coning from
k different variables, = (randomized) (1-1/24)-approx. algor
Gets better as k gets il!
What happens different clauses have different sizes?
(NLOG, literals in one dause are from different variables—why?)
Clauses with one literal are the worst ones, satisfied w.p. 1/2.

LP-Based Algorithm

	U
Suppose	$\phi = C_1 \land \dots \land C_m$ For $j \in [n]$, $S_j^+ := \{i \in [n] : X_i \in G\}$, $S_j^- := \{i \in [n] : X_i \in G\}$, $S_j^- := \{i \in [n] : X_i \in G\}$
	$(S_{o}, C_{j} = (\bigvee_{i \in S_{j}} X_{i}) \vee (\bigvee_{i \in S_{j}} \overline{X}_{i}).$ $(Y_{i})_{i \in [n]} : Y_{i} = 1 \text{ indicates } X_{i} \in T$ $(X_{o})_{j \in [n]} : Z_{j} = 1 " C_{j} \text{ is } Satisfied$
101	(91); ∈ [n]: Y₁= \ indicates X₁←T
Lt relau	eation (Vars (Zj)j EInj: Zj=1 "Cj is satisfied)
max :	Z_Z _J .
5.t	if Zj=1, then at lower one
2 i <i>e</i>	$\frac{2}{s_{j}^{2}}y_{i}+\frac{2}{16s_{j}^{2}}(1-y_{i})\geq 2j$ $\frac{2}{s_{j}^{2}}y_{i}+\frac{2}{16s_{j}^{2}}(1-y_{i})\geq 2j$ $\frac{2}{16s_{j}^{2}}y_{i}+\frac{2}$
	≤ Z, y ≤ 1. O+ least i ∈ Sj has y;=o!
Agoin, r	andomized rounding (w.r.t. LP): XiKT w.p. y:, independently
Fix some	e CjEØ and let kj=(# literals of Cj).
	unsatisfied] = $TT_i(1-y_i)TT_iy_i$. (let $t = \sum_{i \in S_i} (i-y_i) + \sum_{i \in S_i} y_i$
	≤ k _j -z _j)
	$\leq (t/k_j) (AM-GM) \text{if } \alpha_1\alpha_k \text{ are positive numbers}$ $\leq (1-3/k_j)^{k_j} \text{with fixed } \alpha_1++\alpha_k=t_1$ $= (1-3/k_j)^{k_j} \alpha_1\alpha_2\alpha_k \text{is maximized}$
	≤(1-2/5) With fixed art+ar=+,
Pro	$ \leq e^{-2j} \cdot \text{when } \alpha_i = \frac{4}{k} \cdot \frac{1}{i!} $ $ \text{(1-4e)} \times \frac{1-4e}{k} \times \frac{1-4e}{k!} $
ILECT SON	15 TIER] = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	\$0.67 (1-1/e)×
	1
Final al	gorithm. Do "naîve random" w.p. 1/2 and "LP-based-rondom" v.p. 1/2.
Fix Son	gorithm. Do "naive random" $\omega.p. \frac{1}{2}$ and "Liftared-random" $\omega.p. \frac{1}{2}$. ne $C_j \in \emptyset$. Pr[C_j Satisfied]?
	-

	naive	LP rounding.	Overall
kj = 1	1/2	≥ ۱ – (۱ -2 ĵ)	2/4+3/2234·Zj
$k_i = 2$	3/4	≥ (- (1-Z ₁ / ₂) ²	≥3/8+2/1-25/8≥3/4·2j.
k _i ≥3	≥ ₹⁄%	≥(1-1/e) Z j	≥(7/6) + (1-1/6) ≥ j ≥ 3/4·2·j
J		•	11 55 04371 0.32

So, PrIC; sotisfied 2 42; for all ; and IT # of satisfied dauses] = 34.0PTLP!

Thr. Constant E>0, # no (7/8+E)-approx. alg. for Max 3SAT unless P=NP.

Best approx ratio for Max SAT is 0.8331.