Compressibility of Soil

Chapter 11

동신대학교 토목공학과 지반공학연구실

1. Elastic Settlement

❖ 탄성침하 또는 즉시침하 (Elastic or Immediate settlement)

- 함수비에 변화없이 유발되는 탄성변형
- 탄성론에서 유도된 방정식

❖ 1차 압밀침하 (Primary Consolidation Settlement)

- 포화된 점성토의 간극
- 물의 배제에 따른 체적변화

❖ 2차 압밀침하 (Secondary Consolidation Settlement)

- 점착력이 있는 포화토에서 관찰
- 흙입자배열의 소성변형
- 유효응력하에서 일어나는 압축의 한 형태

1.1 Elastic Settlement (clay)

❖ 접촉면적의 침하형상

- 기초의 유연성
- 기초를 받치는 재료
- 점토층
- 연성기초와 강성기초

1.2 Elastic Settlement (sand)

❖ 접촉면적의 침하형상

- 기초의 유연성
- 기초를 받치는 재료
- 모래층
- 연성기초와 강성기초

1.3 Elastic Settlement Calculation

❖ 탄성침하량 계산

■ 탄성이론의 원리 (Schleicher, 1929)

$$S_{e} = \Delta \sigma B \frac{1 - \mu_{s}^{2}}{E_{s}} I_{\rho}$$

- S_e = 즉시침하
- $\Delta \sigma = 순압력$
- B = 기초의 폭
- μ_s = 흙의 포아송비
- E = 흙의 탄성계수
- I₀ = 무차원 영향계수

		02	$I_{ ho}$					
		Flex	Flexible					
Shape	m_1	Center	Corner	Rigid				
Circle	-	1.00	0.64	0.79				
Rectangle	1	1.12	0.56	0.88				
	1.5	1.36	0.68	1.07				
	2	1.53	0.77	1.21				
	3	1.78	0.89	1.42				
	5	2.10	1.05	1.70				
	10	2.54	1.27	2.10				
	20	2.99	1.49	2.46				
	50	3.57	1.8	3.0				
	100	4.01	2.0	3.43				

2. Consolidation Settlement

 $\Delta u < \frac{P}{A}$

❖ 압밀의 근본원리

- 사질토
- 간극의 배수가 빠름
- 탄성, 압밀침하 동시

- 점토층
- 하중에 의한 과잉간극수압
- 탄성침하
- 즉시 발생
- 체적변화(압밀침하)
- 오랜 시간에 걸쳐 진행색

2.1 Clay layer drained at top and bottom

❖ 배수되는 점토층의 응력

- 전응력, 간극수압, 유효응력
- 시간에 따른 응력변화들

2.2 Terzaghi 압밀 이론

❖ 1차원 압밀시험을 위한 가정

- 1) 흙은 균질하다.
- 2) 흙은 완전포화이다.
- 3) 토립자와 물은 비압축성이다.
- 4) 압축과 물의 흐름은 1차원(수직)이다.
- 5) 흙의 변형은 아주 작다.
- 6) 수리학적 경사는 Darcy's law 를 따른다.
- 7) 투수계수와 흙의 체적압축계수 압밀 동안 상수이다.
- 8) 간극비와 유효응력의 관계는 시간흐름에 영향받지 않는다.

2.3 1차원 압밀시험

Oedometer

- 압밀시험기
- 금속제 링(ring)
- 2개의 다공질판
- 마이크로 다이얼게이지
- 레버암(lever arm) 하중

2.4 압밀곡선

- ❖ 하중에 따른 압밀 3단계 (I, II, III)
- ❖ Loading, unloading, and reloading: 간극비(e) vs. 유효응력(ơ′)

2.5 간극비-압밀압력 곡선

- ❖ 실내시험에서 각 하중에 대한 시간-변형 곡선
- ❖ 하중에 따른 간극비의 변화
 - 1) 시료에서 흙의 높이 Hs 계산

$$H_S = \frac{W_S}{AG_S r_W} = \frac{M_S}{AG_S \rho_W}$$

2) 간극의 초기높이 H_v 계산

$$H_{v} = H - H_{s}$$

3) 시료의 초기간극비 e_0 계산 $e_0 = \frac{V_v}{V_c} = \frac{H_v}{H_c} \frac{A}{A} = \frac{H_v}{H_c}$

- 4) ΔH_1 의 변형을 일으키는 초기 증가하중 σ_1 에 대한 간극 변화 Δe_1 계산 $\Delta e_1 = \frac{\Delta H_1}{H_c}$
- 5) 하중 증가량에 의한 압밀 후 새로운 간극비 계산

$$e_1 = e_0 - \Delta e_1$$

2.6 간극비-압밀압력 곡선

 $\bullet \sigma_2$ 에 의해 추가 변형 ΔH_2 가 발생되며, 압밀 후 간극비 e_2 는 다음과 같이 계산된다.

3. 정규압밀점토와 과압밀점토

- ❖ 정규압밀(normally consolidation) 상태
 - : 현재 받고 있는 유효상재압력이 과거에 받았던 최대압력인 경우
- ❖ 과압밀(overconsolidation) 상태
 - : 현재 받고 있는 유효상재압력이 과거에 받았던 최대유효상재압력보다 작은 경우이다. 과거에 받았던 최대유효압력을 선행압밀압력이라 한다.

$$OCR = \frac{\sigma_c'}{\sigma'}$$

 $\cdot \sigma_c'$ = 시료의 선행압밀압력

 $\cdot \sigma'$ = 현재의 유효토층압력

3.1 선행압밀압력 결정

lacktriangle Casagrande(1936)의 실내 e-log σ' 곡선에서 σ'_c 결정 작도법

- 1) 육안관찰로 최소곡률반경을 갖는 e-logơ' 곡선상의 점 a를 결정한다
- 2) 수평선 ab를 긋는다
- 3) 점 a에서 접선 ac를 긋는다
- 4) 각 bac의 이등분선 ad를 긋는다
- 5) $e-log\sigma'$ 곡선의 직선부 gh를 연장하여 이등분선 ad와 만나는 점을 f라고 하면, 점 f의 횡좌표 값은 선행압밀압력 σ'_c 이 된다

3.2 간극비-압밀압력 관계에서 교란의 영향

❖ 낮거나 보통정도의 예민비를 가진 정규압밀점토

처녀압축곡선(virgin compression curve)

- 1) 곡선2는 실내시험을 통해 얻은 e-log σ' 곡선이다. 이 곡선에서 선행압밀압력 $\sigma'_c = \sigma'_0$ (현재 유효상재압력)을 결정한다. $\sigma'_c = \sigma'_0$ 인 점을 알고 연직선 ab 긋는다
- 2) 현장에서의 간극비 e_0 를 계산한다 수평선 cd를 긋는다
- $0.4e_0$ 를 계산하고 선 ef를 긋는다
- 4) 점 f와 g를 연결하고, g는 선 ab와 선 cd의 교점이다.
- 5) 만일 흙이 완전히 재성형되었다면, e-logơ' 곡선의 일반적인 위치는 곡선3과 같이 나타날 수 있다.

3.3 간극비-압밀압력 관계에서 교란의 영향

❖ 낮거나 보통정도의 예민비를 가진 과압밀점토

- 곡선 2는 하중재하(loading)에 의한 실내시험 e-logσ' 곡선이고, 곡선 3은 하중제거(unloading)에 의한 실내시험곡선. 곡선 2에서 선행압밀압력 σ' 를 결정하고 연직선 ab를 긋는다.
- 2) 현장의 유효상재압력 σ'_0 을 결정하고 연직선 cd를 긋는다.
- e_0 를 구하고 수평선 fg를 긋는다. 선 fg와 선 cd의 교점은 h이다
- 4) 실제적으로 직선인 곡선3과 평행한 선 hi를 긋는다. 선 fg와 선 ab의 교점은 j이다.
- 5) 점 j와 점 k를 연결하라. 점 k는 곡선 2상에 있고, 이것의 횡좌표는 $0.4e_0$ 이다.

3.4 1차원 1차 압밀침하량 계산(정규압밀)

 $c_c(\text{compression index}) 는 <math>e - \log \sigma'$ 곡선의 기울기이다.

$$\Delta V_v = \Delta e \ V_S$$
, $V_S = \frac{V_0}{1 + e_0} = \frac{AH}{1 + e_0}$, $\Delta V = S_c A = \Delta e \ V_S = \frac{AH}{1 + e_0} \Delta e$

$$S_c = H \frac{\Delta e}{1 + e_0}$$
, $\Delta e = C_c [\log(\sigma_0' + \Delta \sigma') - bg \ \sigma_0']$, $\therefore S_c = \frac{C_c H}{1 + e_0} \log \left(\frac{\sigma_0' + \Delta \sigma'}{\sigma_0'}\right)$

3.5 압축지수(C_c) 와 팽창지수(C_s)

 \Rightarrow 과압밀점토 $(\sigma'_0 + \Delta \sigma' \leq \sigma'_c)$... $\therefore S_c = \frac{C_s H}{1 + e_0} \log \left(\frac{\sigma'_0 + \Delta \sigma'}{\sigma'_0} \right)$

$$(\sigma_0' + \Delta \sigma' > \sigma_c') \dots \quad \therefore S_c = \frac{C_s H}{1 + e_0} \log \frac{\sigma_c'}{\sigma_0'} + \frac{C_s H}{1 + e_0} \log \left(\frac{\sigma_0' + \Delta \sigma'}{\sigma_0'}\right)$$

Equation	Reference	Region of applicability
$C_c = 0.007(LL - 7)$	Skempton (1944)	Remolded clays
$C_c = 0.01 w_N$		Chicago clays
$C_c = 1.15(e_O - 0.27)$	Nishida (1956)	All clays
$C_c = 0.30(e_O - 0.27)$	Hough (1957)	Inorganic cohesive soil: silt, silty clay, clay
$C_c = 0.0115 w_N$		Organic soils, peats, organic silt, and clay
$C_c = 0.0046(LL - 9)$		Brazilian clays
$C_c = 0.75(e_O - 0.5)$		Soils with low plasticity
$C_c = 0.208e_O + 0.0083$		Chicago clays
$C_c = 0.156e_O + 0.0107$		All clays

❖ 팽창지수는 C_s (swell index)는 압축지수보다 상당히 작고, 일반적으로 실내시험 결과로부터 그 값을 얻을 수 있다.

$$C_s \approx \frac{1}{5} \sim \frac{1}{10} C_c$$

3.6 Example

- 1. 하중 $\Delta\sigma$ 가 지표면에 가해진다면 1차 압밀로 인한 점토층의 침하량은 얼마인가 ? (점토는 정규압밀상태, $\sigma_c'=190$ kN/m², $C_s\approx\frac{1}{6}C_c$)
- 2. 선행압밀하중(σ'_c)=190kN/m² 인 침하량은? (Skempton(1944)의 불교란 점토의 압축지수 경험식; $C_c=0.009(L\!L-10)$ 사용하라)

4. 2차 압밀침하량

❖ 1차 압밀 종료시(즉, 과잉간극수압이 완전히 소산된 후) 약간의 침하가 흙구조의 소성재배열 대문에 일어난다.

$$\therefore S_s = C_\alpha' H \log \left(\frac{t_2}{t_1}\right)$$

$$C_{\alpha}' = \frac{C_{\alpha}}{1 + e_p}$$

- ❖ C_α = 2차 압축지수
- ❖ ∆e = 간극비의 변화
- ❖ t₁,t₂ = 시간
- ❖ H = 점토층의 두께
- \bullet e_p = 1차압밀 종료시의 간극비

4.1 압밀 중 점토층에서 물의 흐름

$$\frac{\partial v_z}{\partial z} dx \ dy \ dz = \frac{\partial V}{\partial t}$$

Darcy의 법칙을 사용하면,

$$v_z = ki = -k \frac{\partial h}{\partial z} = -\frac{k}{\gamma_w} \frac{\partial V}{\partial t}$$

$$\therefore -\frac{k}{\gamma_w} \frac{\partial^2 u}{\partial z^2} = \frac{1}{dx \, dy \, dz} \frac{\partial V}{\partial t}$$

- ❖ u = 응력증가로 인해 발생된 과잉간극수압
- ❖ e₀ = 초기 간극비

$$\therefore -\frac{k}{\gamma_w} \frac{\partial^2 u}{\partial z^2} = \frac{1}{1 + e_0} \frac{\partial e}{\partial t}$$

4.2 압밀 중 점토층에서 물의 흐름

$$\partial e = a_v \partial (\Delta \sigma') = -a_v \partial u$$

$$-\frac{k}{\gamma_w} \frac{\partial^2 u}{\partial z^2} = -\frac{a_v}{1 + e_0} \frac{\partial u}{\partial t} = -m_v \frac{\partial u}{\partial t}$$
$$c_v = \frac{k}{\gamma_w m_v} = \frac{1}{\gamma_w \left(\frac{a_v}{1 + e_0}\right)}$$

$$a_v =$$
압축계수

$$m_v$$
 = 체적압축계수

$$c_v =$$
압밀계수

$$\therefore u = \sum_{m=0}^{m=\infty} \left[\frac{2u_0}{M} \sin\left(\frac{Mz}{H_{dr}}\right) \right] e^{-M^2 T_v}$$

$$\therefore T_v = \frac{c_v t}{H_{dr}^2} = 시간계수$$

4.3 시간계수 T_v 에 대한 평균압밀도 U(%)

Different types of drainage with u_O constant

• u_0 = 깊이에 따라 일정하다

4.4 평균압밀도 U(%) & 시간계수 T_v

U (%)	T_{ν}	U (%)	T_{ν}	U (%)	T_{ν}	U (%)	T_{v}
0	0	26	0.0531	52	0.212	78	0.529
1	0.00008	27	0.0572	53	0.221	79	0.547
2	0.0003	28	0.0615	54	0.230	80	0.567
3	0.00071	29	0.0660	55	0.239	81	0.588
4	0.00126	30	0.0707	56	0.248	82	0.610
5	0.00196	31	0.0754	57	0.257	83	0.633
6	0.00283	32	0.0803	58	0.267	84	0.658
7	0.00385	33	0.0855	59	0.276	85	0.684
8	0.00502	34	0.0907	60	0.286	86	0.712
9	0.00636	35	0.0962	61	0.297	87	0.742
10	0.00785	36	0.102	62	0.307	88	0.774
11	0.0095	37	0.107	63	0.318	89	0.809
12	0.0113	38	0.113	64	0.329	90	0.848
13	0.0133	39	0.119	65	0.304	91	0.891
14	0.0154	40	0.126	66	0.352	92	0.938
15	0.0177	41	0.132	67	0.364	93	0.993
16	0.0201	42	0.138	68	0.377	94	1.055
17	0.0227	43	0.145	69	0.390	95	1.129
18	0.0254	44	0.152	70	0.403	96	1.219
19	0.0283	45	0.159	71	0.417	97	1.336
20	0.0314	46	0.166	72	0.431	98	1.500
21	0.0346	47	0.173	73	0.446	99	1.781
22	0.0380	48	0.181	74	0.461	100	∞
23	0.0415	49	0.188	75	0.477		
24	0.0452	50	0.197	76	0.493		
25	0.0491	51	0.204	77	0.511		

4.5 Example

- 1. Oedometer 시험기로 점토층(양면배수)이 50% 압밀되는데 2분20초가 걸렸다. 만약 암반층 위에 3m의 점토층이 동일한 조건으로 있다면 50% 압밀이 일어나는데 걸리는 시간은 얼마인가?
- 2. 위 실내시험에서 현장에서 압밀도가 30% 되는데 걸리는 시간을 계산하라.

5. 압밀계수

- c_v (coefficient of consolidation): 액성한계가 증가함에 따라 감소한다.
- ❖ 시료에 가해진 하중 증가에 따른 두 가지 도해법이 실내 1차원 압밀시험에서 압밀계수를 구한다.
 - log t 법 (Casagrande and Fadum, 1940)
 - \sqrt{t} 법 (Taylor, 1942)
 - 쌍곡선법 (Sridharan and Prakash, 1985)
 - 초기단계 t법 (Robinson and Allam, 1996)

5.1 log t 법 (압밀계수 결정)

❖ c_v 결정을 위한 작도법

- 1) 1차 압밀곡선과 2차 압밀곡선의 직선구간을 연장한 교점 A의 종좌표는 d₁₀₀ = 1차압밀 100%
- 2) log t 에 대한 초기곡선구간 위에서 t_2 =4 t_1 에서 t_2 선택, 시간(t_2 - t_1) 동안의 시료변형의 차이 x
- 3) 연직거리 BD가 x와 같도록 수평선 DE를 긋는다. 선DE에 상응하는 변형 d_0 = 압밀변형 0%
- 4) 압밀곡선에서 **F**의 종좌표는 **1**차압밀의 **50%** 변형이며, 횡좌표는 시간 **t**₅₀
- 5) 평균압밀도 50% 일때, T_v=0.197

$$T_{50} = \frac{c_v t_{50}}{H_{dr}^2} \qquad \therefore c_v = \frac{0.197 H_{dr}^2}{t_{50}}$$

 H_{dr} 은 압밀 동안의 최대평균배수길이

$5.2\sqrt{t}$ 법 (압밀계수 결정)

❖ c_v 결정을 위한 작도법

- 1) 곡선의 초기구간을 통과하는 선AB를 긋는다.
- 2) $\overline{OC} = 1.15 \overline{OB}$ 가 되도록 선 AC를 긋는다. 점 D의 횡좌표는 압밀곡선과 AC선의 교점이고, 90% 압밀에 대한 \sqrt{t} 값
- 3) 90% 압밀일 때, $T_{90} = 0.848$ 이다.

$$T_{90} = 0.848 = \frac{c_v t_{90}}{H_{dr}^2}$$
 $\therefore c_v = \frac{0.848 H_{dr}^2}{t_{90}}$

 $\cdot H_{dr}$ 은 압밀 동안의 최대평균배수길이

5.3 Example

Q: 정방형 기초가 작용하고 있을때, 정규압밀점토층의 압밀침하량을 구하여라.

(가중평균법을 사용하여 점토층 내의 유효응력 평균증가량을 계산하라)

$$\Delta \sigma'_{av} = \frac{\Delta \sigma'_t + 4\Delta \sigma'_m + \Delta \sigma'_b}{6}$$

$$S_c = \frac{C_c H}{1 + e_0} \log \left(\frac{\sigma_0' + \Delta \sigma_{av}'}{\sigma_0'} \right)$$

5.3 등분포하중을 받는 직사각형 면적중심아래의 연직응력

$$\Delta \sigma_z = q I_4$$

$$m_1 = \frac{L}{B} \qquad n_1 = \frac{z}{b} \qquad b = \frac{L}{2}$$

Table 10.9 Variation of I_4 with m_1 and n_1 [Eq. (10.35)]

 $L \ge B$

	m_1									
<i>n</i> ₁	1	2	3	4	5	6	7	8	9	10
0.20	0.994	0.997	0.997	0.997	0.997	0.997	0.997	0.997	0.997	0.997
0.40	0.960	0.976	0.977	0.977	0.977	0.977	0.977	0.977	0.977	0.977
0.60	0.892	0.932	0.936	0.936	0.937	0.937	0.937	0.937	0.937	0.937
0.80	0.800	0.870	0.878	0.880	0.881	0.881	0.881	0.881	0.881	0.881
1.00	0.701	0.800	0.814	0.817	0.818	0.818	0.818	0.818	0.818	0.818
1.20	0.606	0.727	0.748	0.753	0.754	0.755	0.755	0.755	0.755	0.755
1.40	0.522	0.658	0.685	0.692	0.694	0.695	0.695	0.696	0.696	0.696
1.60	0.449	0.593	0.627	0.636	0.639	0.640	0.641	0.641	0.641	0.642
1.80	0.388	0.534	0.573	0.585	0.590	0.591	0.592	0.592	0.593	0.593
2.00	0.336	0.481	0.525	0.540	0.545	0.547	0.548	0.549	0.549	0.549
3.00	0.179	0.293	0.348	0.373	0.384	0.389	0.392	0.393	0.394	0.395
4.00	0.108	0.190	0.241	0.269	0.285	0.293	0.298	0.301	0.302	0.303
5.00	0.072	0.131	0.174	0.202	0.219	0.229	0.236	0.240	0.242	0.244
6.00	0.051	0.095	0.130	0.155	0.172	0.184	0.192	0.197	0.200	0.202
7.00	0.038	0.072	0.100	0.122	0.139	0.150	0.158	0.164	0.168	0.171
8.00	0.029	0.056	0.079	0.098	0.113	0.125	0.133	0.139	0.144	0.147
9.00	0.023	0.045	0.064	0.081	0.094	0.105	0.113	0.119	0.124	0.128
10.00	0.019	0.037	0.053	0.067	0.079	0.089	0.097	0.103	0.108	0.112