Manifolds

Ashan Jayamal & Nalamudu Samarasinghe

2024 - 03 - 05

Contents

1	Basic Theroms and Definitions	5
2	Manifolds	7
	2.1 Topological Manifolds	7

4 CONTENTS

Chapter 1

Basic Theroms and Definitions

Definition 1.1 (Topology). A topology on a set X is a collection $\mathcal T$ of subsets of X such that

- **(T1)** ϕ and X are in \mathcal{T} ;
- (T2) Any union of subsets in \mathcal{T} is in \mathcal{T} ;
- **(T3)** The finite intersection of subsets in \mathcal{T} is in \mathcal{T} .

A set X with a topology \mathcal{T} is called a topological space. Denoted by (X, \mathcal{T}) . An element of \mathcal{T} is called an open set.

Definition 1.2. A subset $U \subset M$ is referred to as open in M if $U \in \mathcal{T}$. A subset $A \subset M$ is termed closed if $M \setminus A \in \mathcal{T}$.

Definition 1.3 (Continuity). If both (M, \mathcal{T}_M) and (N, \mathcal{T}_N) are topological spaces, a map $f: M \to N$ is termed continuous if

$$f^{-1}(V) \in \mathcal{T}_M$$
 for all $V \in \mathcal{T}_N$

. In other words, the preimages of open sets must be open.

Definition 1.4 (Homemorphism). A map $f: M \to N$ between two topological spaces is called homemorphism if it has following proporties. - f is a bijection, - f is continuous, - the inverse function f^{-1} is continuous.

Two topological spaces M and N are called homeomorphic if there exists a homeomorphism between them.

Definition 1.5 (Hausdorff Space). A topological space (X,\mathcal{T}) is called a Hausdorff space if

(H1) $\forall x,y \in X$ such that $x \neq y, \exists U_x, U_y \in \mathcal{T}$ such that $x \in U_x, y \in U_y$, and $U_x \cap U_y = \emptyset$.

i.e., for every pair of distinct points x,y in X, there are disjoint neighborhoods U_x and U_y of x and y respectively.

Figure 1.1:

A space \$X\$ is said to have a **countable basis at the point \$x\$** if there is a count

Chapter 2

Manifolds

2.1 Topological Manifolds