Random Forest Demonstration in R

Vinh Nguyen

Abstract—The purpose of this documentation is to demo how Random Forest algorithm works in R

Index Terms—Randome Forest, algorithm, R, bootstraping

• -----

1 DATASET

In this experiment, we use a very popular dataset for machine learning, that is, the IRIS dataset introduced by Fisher. This dataset contains 150 observations for three species of flowers (setosa, versicolor, and virginica) with 4 variables (Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)

> summary(iris)			
Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
Min. :4.300	Min. :2.000	Min. :1.000	Min. :0.100
1st Qu.:5.100	1st Qu.:2.800	1st Qu.:1.600	1st Qu.:0.300
Median :5.800	Median :3.000	Median :4.350	Median :1.300
Mean :5.843	Mean :3.057	Mean :3.758	Mean :1.199
3rd Qu.:6.400	3rd Qu.:3.300	3rd Qu.:5.100	3rd Qu.:1.800
Max. :7.900	Max. :4.400	Max. :6.900	Max. :2.500
Species			
setosa :50			
versicolor:50			
virginica :50			

2 DATA PROCESSING

We split our dataset in two parts: training part and testing part with the following commands

data_set_size <- floor(nrow(iris)/2)
indexes <- sample(1:nrow(iris), data_set_size)
training <- iris[indexes,]
test <- iris[-indexes,]</pre>

3 RUNNING ALGORITHM

rf_classifier <- randomForest(Species ~., data = training, ntree=100, mtry=2, importance=TRUE)

In the command above, we have 5 parameters. The first parameter (Species \sim .) indicates that our target class is Species in which we need our algorithm have to classify, the dot (.) shows that we will put all other variables/features into training, data=training points out the training data which we created in the previous step. ntree = 100 shows that we will create 100 random trees, mtry = sqrt (features/variables) = sqrt (4) = 2, important = TRUE means that we want to output the important value of variables.

4 RESULT

00B estimate of error rate: 5.33%

Confusion matrix:

Commusitor	HOLE EXT			
	setosa	versicolor	virginica	class.error
setosa	21	0	0	0.00000000
versicolor	0	25	2	0.07407407
virginica	0	2	25	0.07407407

The result shows that our out-of-bag error rate is 5.33% = 4/75 as depicted in the confusion matrix when training the model.

predicted

observed	setosa	versicolor	virginica
setosa	29	0	0
versicolor	0	20	3
virginica	0	1	22

The figure above shows the confusion matrix with testing data, the error rate is the same compared to training data.

ROC Curve

The ROC curve:

Red: setosa Blue: versicolor Black: virginica

It can quickly be seen that setosa is the ideal case with 100 accuracy, followed by virginica and versicolor.

The figure below shows the importance of each variable, it can be

rf_classifier

seen that Petal.Length plays the most important role for classification task.

• Vinh Nguyen. Email: vinh.nguyen@ttu.edu