

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAIBA COORDENAÇÃO DO CURSO SUPERIOR DE BACHARELADO EM ENGENHARIA ELÉTRICA

ALYSSON BATISTA DE SOUZA FABRÍCIO DA SILVA LEITÃO GABRIEL BARBOSA DO NASCIMENTO

Projeto 2 – Sistemas de Controle I

JOÃO PESSOA Maio de 2023

ALYSSON BATISTA DE SOUZA FABRÍCIO DA SILVA LEITÃO GABRIEL BARBOSA DO NASCIMENTO

Projeto 2 – Sistemas de Controle I

Relatório referente à disciplina de Sistemas de controle 1, ministrada no Instituto Federal de Educação, Ciência e Tecnologia da Paraíba, durante o semestre 2023.1, orientado pelo professor Dr. Ademar Gonçalves da Costa Júnior

João Pessoa Maio de 2023

Lista de ilustrações

Figura 1 – C	Circuito 1	5
Figura 2 – C	Cálculo do tempo de pico, o overshoot e o tempo de assentamento	17
Figura 3 – C	Comparação entre as curvas dos sistemas de malha aberta e malha	
fe	echada	18
Figura 4 – D	Diagrama de polos e zeros dos sistemas em malha aberta e malha fechada.	19
Figura 5 – Fa	aixa de valores de ganho para o sistema ser estável, instável e margi-	
na	almente estável e cálculo da Tabela de Routh-Hurwitz para o k=3 $$	20
Figura 6 – D	Diagrama de polos e zeros com k=3	21
Figura 7 – R	Resposta do sistema em malha fechada quando temos um K=3 $$	21
Figura 8 – Fa	aixa de valores de ganho para o sistema ser estável, instável e margi-	
na	almente estável e cálculo da Tabela de Routh-Hurwitz para o k=-3	22
Figura 9 – D	Diagrama de polos e zeros com k=-3	23
Figura 10 – R	Resposta do sistema em malha fechada quando temos um K=-3 $$	23
Figura 11 – Fa	aixa de valores de ganho para o sistema ser estável, instável e margi-	
na	almente estável e cálculo da Tabela de Routh-Hurwitz para o k=-1	24
Figura 12 – D	Diagrama de polos e zeros com k=-1 \dots	25
Figura 13 – R	Resposta do sistema em malha fechada quando temos um K=-1 $$	25
Figura 14 – C	Constantes de erro estático	26
Figura 15 – Se	ensibilidade do erro em regime permanente em malha fechada para	
Va	ariações no parâmetro do ganho "K"e no parâmetro "b"	27

Sumário

1	ANALÍTICA 5
1.1	Função de transferência
1.2	Item 1.a
1.3	Item 1.b
1.4	Item 1.c
1.5	Item 1.d
1.6	Item 1.e
1.7	Item 1.f
1.8	Item 1.g
2	SIMULAÇÃO
2 2.1	SIMULAÇÃO 17 Item 2.a 17
	,
2.1	Item 2.a
2.1 2.2	Item 2.a
2.1 2.2 2.3	Item 2.a 17 Item 2.b 18 Item 2.c 19
2.1 2.2 2.3 2.4	Item 2.a 17 Item 2.b 18 Item 2.c 19 Item 2.d 20

1 Analítica

1.1 Função de transferência

A primeira etapa do processo foi o modelamento matemático do circuito 1, apresentado na Figura 1, proposto em aula para desenvolvimento deste projeto.

Figura 1 – Circuito 1

 $C_1 = 10\mu F \implies Z_{C_1} = \frac{1}{j\omega C_1} \implies Z_{C_1} = \frac{1}{sC_1} = \frac{100K}{s}$

$$C_{2} = 1\mu F \implies Z_{C_{2}} = \frac{1}{j\omega C_{2}} \implies Z_{C_{2}} = \frac{1}{sC_{2}} = \frac{1M}{s}$$

$$Z_{eq} = Z_{C_{1}} / (R_{2} + Z_{C_{2}})$$

$$Z_{eq} = \frac{\frac{100K}{s} \times (100 + \frac{1M}{s})}{\frac{100K}{s} + 100K + \frac{1M}{s}} = \frac{\frac{100K}{s} \times 100K(1 + \frac{10}{s})}{100K + \frac{1,1M}{s}} = \frac{\frac{100K}{s} \times 100K(\frac{s+10}{s})}{\frac{100K}{s}(11 + s)}$$

$$Z_{eq} = \frac{100K(\frac{s+10}{s})}{(11 + s)}$$

$$Z_{eq} = \frac{100K(s + 10)}{s(11 + s)}$$

Regra do divisor de tensão

$$V_o(s) = \frac{Z_{C_2}}{R_2 + Z_{C_2}} \times V_1(s)$$

$$V_1(s) = \frac{Z_{eq}}{R_1 + Z_{eq}} \times V_i(s)$$
3

substituindo (3) em (2)

$$V_o(s) = \frac{Z_{C_2}}{R_2 + Z_{C_2}} \times \frac{Z_{eq}}{R_1 + Z_{eq}} \times V_i(s)$$
$$V_o(s) = \frac{\frac{1M}{s}}{100K + \frac{1M}{s}} \times \frac{Z_{eq}}{R_1 + Z_{eq}} \times V_i(s)$$

Portanto a função de tranferência é:

$$G(s) = \frac{V_o(s)}{V_i(s)}$$

$$G(s) = \frac{V_o(s)}{V_i(s)} = \frac{\frac{1M}{s}}{100K + \frac{1M}{s}} \times \frac{Z_{eq}}{R_1 + Z_{eq}}$$

$$\tag{4}$$

Substituindo (1) em (4)

$$G(s) = \frac{\frac{1M}{s}}{100K + \frac{1M}{s}} \times \frac{\left[\frac{100K(s+10)}{s(11+s)}\right]}{180K + \left[\frac{100K(s+10)}{s(11+s)}\right]}$$

$$G(s) = \frac{1M}{100Ks + 1M} \times \frac{100Ks + 1M}{180Ks(11+s) + 100Ks + 1M}$$

$$G(s) = \frac{1M}{180Ks^2 + 1,98Ms + 100Ks + 1M}$$

$$G(s) = \frac{1M}{180Ks^2 + 2,08M + 1M}$$

$$G(s) = \frac{5,56}{s^2 + 11,55s + 5,56}$$

1.2 Item 1.a

1a. Nesse item, acrescentem o ganho K antes do sistema dinâmico (ramo direto), e projetem para que o sistema em malha fechada apresente overshoot máximo de 5% (cálculo do K que atenda a essa premissa) (ver tema: diagrama de blocos). Obs: analisem para a entrada do tipo degrau (amplitude dada para cada grupo).

$$G(s) = \frac{5,56}{s^2 + 11,55s + 5,56}$$

substituindo na equação:

$$T(s) = \frac{k \times G(s)}{1 + k \times G(s)}$$

$$T(s) = \frac{k \times \frac{5,56}{s^2 + 11,55s + 5,56}}{1 + k \times \frac{5,56}{s^2 + 11,55s + 5,56}}$$

$$T(s) = \frac{k \times \frac{5,56}{s^2 + 11,55s + 5,56}}{\frac{s^2 + 11,55s + 5,56 + 5,56 \times k}{s^2 + 11,55s + 5,56}}$$

$$T(s) = \frac{k \times \frac{5,56}{s^2 + 11,55s + 5,56 \times k}}{\frac{s^2 + 11,55s + 5,56 + 5,56 \times k}{s^2 + 11,55s + 5,56}}$$

$$T(s) = \frac{k \times 5,56}{s^2 + 11,55s + 5,56 + 5,56 \times k}$$

$$T(s) = \frac{k \times 5,56}{s^2 + 11,55s + 5,56 + 5,56 \times k}$$

$$T(s) = \frac{k \times 5,56}{s^2 + 11,55s + 5,56(1 + k)}$$

A forma da função de transferência de malha fechada é igual:

$$T(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Por comparação:

$$5,56(1+k) = \omega_n^2$$
 5

e comparando:

$$11,55 = 2\zeta\omega_n$$

$$\omega_n = \frac{11,55}{2\zeta} \quad \boxed{6}$$

podemos então substituir 6 em 5

$$5,56(1+k) = \left(\frac{11,55}{2\zeta}\right)^2$$

$$5,56(1+k) = \frac{133,4}{4\zeta^2}$$

$$\zeta^2 = \frac{133,4}{4\times5,56(1+k)}$$

$$\zeta = \sqrt{\frac{133,4}{4\times5,56(1+k)}}$$

$$\zeta = \sqrt{\frac{133,4}{22,24(1+k)}} \longrightarrow \div 133,4$$

$$\zeta = \frac{1}{\sqrt{0,16(1+k)}}$$
7

sistema em malha fechada apresente overshoot máximo de 5%

$$M_p = e^{-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}}$$

$$0.05 = e^{-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}}$$

$$ln(0.05) = ln(e^{-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}})$$

$$-2.995 = \frac{\zeta\pi}{\sqrt{1-\zeta^2}}$$

$$\frac{-2.995}{\pi} = \frac{\zeta}{\sqrt{1-\zeta^2}}$$

$$0.95 = \frac{\zeta}{\sqrt{1-\zeta^2}}$$

$$0.95 \times \sqrt{1-\zeta^2} = \zeta$$

$$(0.95 \times \sqrt{1-\zeta^2})^2 = (\zeta)^2$$

$$(0.95)^2 \times (\sqrt{1-\zeta^2})^2 = (\zeta)^2$$

$$\zeta^2 = 0.9025(1-\zeta^2)$$

$$\zeta^2 = 0.9025\zeta^2$$

$$1.9025\zeta^2 = 0.9025$$

$$\zeta = 0.6887$$

Com valor de ζ aplicamos na equação (7):

$$0,6887 = \frac{1}{\sqrt{0,16(1+k)}}$$

$$\sqrt{0,16(1+k)} = \frac{1}{0,6887}$$

$$(k+1) = \frac{\left(\frac{1}{0,6887}\right)^2}{0,16}$$

$$k = 13,17 - 1$$

$$k = 11,64$$

1.3 Item 1.b

1b. Com o valor do ganho K calculado no item 1a, estimem o tempo de pico, o overshoot e o tempo de assentamento para o sistema em malha fechada.

$$\omega_n = \sqrt{5,56 + k \times 5,56}$$

$$\omega_n = \sqrt{5,56 + 11,64 \times 5,56}$$

$$\omega_n = 8,3832$$

Tempo de pico T_p :

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} = \frac{\pi}{8,3832\sqrt{1 - (0,6887)^2}}$$
$$T_p = 0,5168$$

Tempo de assentamento:

$$T_s = \frac{4}{\zeta \omega_n} = \frac{4}{0,6887 \times 8,3832}$$
$$T_s = 0,6928$$

Overshoot:

$$\zeta = 0.6887 \longrightarrow M_p(\%) = 100 \times e^{-\frac{\zeta \pi}{\sqrt{1-\zeta^2}}} = 100 \times e^{-\frac{0.6887\pi}{\sqrt{1-(0.6887)^2}}}$$
$$M_p(\%) = 5.0584\%$$

1.4 Item 1.c

1c. Com os dados do item 1a, esbocem o diagrama de polos e zeros do sistema em malha fechada, comparando com o diagrama de polos e zeros em malha aberta (do sistema dinâmico);

Função de tranferência em malha aberta:

$$G(s) = \frac{5,56}{s^2 + 11,55s + 5,56} \implies s_1 = -0,503 e s_2 = -11,046$$

Função de tranferência em malha fechada:

$$T(s) = \frac{64,71}{s^2 + 11,55s + 70,27} \implies [s_1 = -5,775 + 6,076j] e[s_2 = -5,775 - 6,076j]$$

Malha aberta:

Malha fechada:

 \times -5,775 - 6,076j

1.5 Item 1.d

1d. Determinem a faixa de valores do ganho K do sistema em malha fechada, para que o sistema seja estável, instável e marginalmente estável (ver tema: estabilidade);

Pela função de tranferência em malha fechada:

$$T(s) = \frac{k \times 5,56}{s^2 + 11,55s + 5,56(1+k)}$$

Tabela de Routh-Hurwitz:

$$egin{array}{c|cccc} s^2 & 1 & 5,56(1+k) \\ \hline s^1 & 11,55 & \circlearrowleft \\ \hline s^0 & b_1 & & \end{array}$$

calculamos:

$$b_1 = \frac{(11.55)(5.56 + 5.56k) - 0}{11.55} = 5.56 + 5.56K$$

Sistema estável:

$$b_1 > 0 \implies 5.56 + 5.56K > 0$$

$$\boxed{K > -1}$$

Sistema instável:

$$b_1 < 0 \implies 5.56 + 5.56K < 0$$

$$\boxed{K < -1}$$

Sistema marginalmente estável:

$$b_1 = 0 \implies 5,56 + 5,56K = 0$$

$$\boxed{K = -1}$$

1.6 Item 1.e

1e. Nesse item, acrescentem o ganho K novamente antes do sistema dinâmico (ramo direto), e projetem para que o sistema em malha fechada, possua erro em regime permanente de, no máximo, 5% (não utilizar os valores de K estimados anteriormente).

Função de transferência em malha fechada

$$\frac{C(s)}{R(s)} = \frac{K \times G(s)}{1 + K \times G(s)}$$

Função de transência entre o sinal de erro, e(t) e o sinal de entrara r(t):

$$\frac{E(s)}{R(s)} = 1 - \frac{C(s)}{R(s)} = 1 - \frac{K \times G(s)}{1 + K \times G(s)} = \underbrace{\frac{1 + K \times G(s) - K \times G(s)}{1 + K \times G(s)}}_{1 + K \times G(s)}$$

$$\frac{E(s)}{R(s)} = \frac{1}{1 + K \times G(s)} \longrightarrow E(s) = \underbrace{\frac{1}{1 + K \times G(s)} \times R(s)}_{1 + K \times G(s)}$$

o erro estacionário é:

$$e_{ss} = \lim_{x \to 0} \frac{s \times R(s)}{1 + K \times G(s)} = \lim_{x \to 0} \frac{s \times \frac{1}{s}}{1 + K \times G(s)} = \lim_{x \to 0} \frac{1}{1 + K \times G(s)} = \lim_{$$

$$e_{ss} = \lim_{x \to 0} \frac{1}{1 + K \times \left(\frac{5,56}{s^2 + 11,55 + 5,56}\right)}$$

$$e_{ss} = 5\% = \frac{5}{100} = \frac{1}{1 + K} \longrightarrow \frac{1}{1 + K} = 0,05 \longrightarrow 1 + K = \frac{1}{0,05} = 20$$

$$1 + K = 20 \longrightarrow K = 20 - 1$$

$$K = 19$$

1.7 Item 1.f

1f. Com o valor do ganho K calculado no item 1e, calculem as constantes de erro estático e o erro em regime permanente para as entradas do tipo degrau (amplitude dada para cada grupo) e rampa unitária (ver tema: erro em regime permanente).

O valor de K do item 1.e:

$$K = 19$$

A função de transferência em malha aberta:

$$G(s) = \frac{5,56}{s^2 + 11,55s + 5.56}$$

Sabendo que o erro é:

$$E(s) = \frac{1}{1 + G(s) \times K} \times R(s)$$

Aplicamos o teorema do valor final:

$$e(\infty) = \lim_{t \to \infty} e(t) = \lim_{s \to 0} s \times E(s) = \lim_{s \to 0} s \times \frac{1}{1 + G(s) \times K} \times R(s)$$

Adicionamos a entrada degrau $R(s) = \frac{1.5}{s}$:

$$e(\infty) = \lim_{s \to 0} \mathscr{s} \times \frac{1}{1 + G(s) \times K} \times \frac{1.5}{\mathscr{s}}$$

$$e(\infty) = \frac{1.5}{1 + \lim_{s \to 0} \left(G(s) \times K \right)} \tag{8}$$

calculando o limite de K_p :

$$K_p = \lim_{s \to 0} G(s) \times K$$

$$K_p = \lim_{s \to 0} \frac{5,56}{s^2 + 11,55s + 5,56} \times 19$$

$$K_p = \lim_{s \to 0} \frac{5,56}{s^2 + 11,55s + 5,56} \times 19 = \frac{5,56 \times 19}{5,56}$$

$$K_p = 19$$

Aplicando K_p na equação 8:

$$e(\infty) = \frac{1.5}{1+19}$$

$$e(\infty) = 0.075$$

Erro em regime permanente aplicado ao degrau 1.5 com K=19.

Adicionamos a entrada rampa unitária $R(s) = \frac{1}{s^2}$:

$$e(\infty) = \lim_{s \to 0} s \times \frac{1}{1 + G(s) \times K} \times \frac{1}{s^{2}}$$

$$e(\infty) = \underbrace{\frac{1}{\lim_{s \to 0} \left(s \times G(s) \times K\right)}}_{K}$$
9

calculando o limite de K_v :

$$K_v = \lim_{s \to 0} s \times G(s) \times K$$

$$K_v = \lim_{s \to 0} \frac{s^2 \times 5,56}{s^2 + 11,55s + 5,56} \times 19$$

$$\boxed{K_v = 0}$$

Aplicando K_v na equação (9):

$$e(\infty) = \frac{1}{0}$$
$$e(\infty) = \infty$$

Adicionamos a entrada $R(s) = \frac{1}{s^3}$:

$$e(\infty) = \lim_{s \to 0} \mathscr{s} \times \frac{1}{1 + G(s) \times K} \times \frac{1}{s \mathscr{s}}$$

$$e(\infty) = \underbrace{\lim_{s \to 0} \left(s^2 \times G(s) \times K \right)}_{K_s}$$
10

calculando o limite de K_a :

$$K_a = \lim_{s \to 0} s^2 \times G(s) \times K$$

$$K_a = \lim_{s \to 0} \frac{s^2 \times 5,56}{s^2 + 11,55s + 5,56} \times 19$$

$$\boxed{K_a = 0}$$

Aplicando K_a na equação (10):

$$e(\infty) = \frac{1}{0}$$
$$e(\infty) = \infty$$

1.8 Item 1.g

1g. Utilizando a mesma estrutura do item 1e, calculem a sensibilidade do erro em regime permanente em malha fechada para variações no parâmetro do ganho "K"e no parâmetro "b"da função de transferência em malha aberta (ex: G(s) = num(s)/den(s), com $den(s) = s^2 + as + b$), com a aplicação da entrada do tipo degrau (amplitude dada para cada grupo).

$$G(s) = \frac{5,56}{s^2 + 11,55s + 5,56}$$

$$\frac{E(s)}{R(s)} = 1 - T(s) = 1 - \frac{K \times G(s)}{1 + K(s)} = \frac{1 + K \times G(s) - K \times G(s)}{1 + K \times G(s)} = \frac{1}{1 + K \times G(s)}$$

$$E(s) = \frac{1}{1 + K \times G(s)} \times R(s) = \frac{1}{1 + K \times G(s)} \times \frac{1.5}{s}$$

$$E(s) = \frac{1,5}{s + s \times k \times G(s)}$$

O erro estacionário:

$$e_{ss} = \lim_{s \to 0} s \times E(s) = \lim_{s \to 0} \frac{\cancel{s} \times 1,5}{\cancel{s} + \cancel{s} \times k \times G(s)} = \lim_{s \to 0} \frac{1,5}{1 + k \times G(s)}$$

$$e_{ss} = \lim_{s \to 0} \frac{1,5}{1 + k \times \left(\frac{5,56}{\cancel{s}^2 + 11,556 + 5,56 \times b}\right)} = \frac{1,5}{1 + k \frac{5,56}{\cancel{5},56 \times b}}$$

$$e_{ss} = \frac{1,5}{1 + \frac{k}{b}}$$

Sensibilidade do erro em regime permanente para o parâmetro K:

$$S_{e:K} = \frac{K}{e} \times \frac{\partial e}{\partial K} = \frac{K}{\frac{1.5}{1+\frac{k}{b}}} \times \frac{0 \times (1+\frac{K}{b}) - 1.5 \times \frac{1}{b}}{(1+\frac{K}{b})^2}$$

$$S_{e:K} = \frac{K}{1.5} \times \frac{(-\frac{1.5}{b})}{1+\frac{K}{b}}$$

$$S_{e:K} = \frac{K}{1.5} \times \frac{-1.5}{b} \times \frac{1}{1+\frac{K}{b}}$$

$$S_{e:K} = \frac{-K}{b(\frac{1+K}{b})}$$

$$S_{e:K} = \frac{-K}{b(\frac{1+K}{b})}$$

Sensibilidade do erro em regime permanente para o parâmetro b:

$$S_{e:b} = \frac{b}{e} \times \frac{\partial e}{\partial b} = \frac{b}{\frac{1.5}{1+\frac{k}{b}}} \times \frac{-1.5 \times (\frac{-k}{b^2})}{(1+\frac{K}{b})^2}$$
$$S_{e:b} = \frac{\cancel{b}(1+\frac{k}{b})}{\cancel{1.5}} \times \frac{\cancel{1.5} \times \frac{K}{b^2}}{(1+\frac{k}{b})^2}$$

$$S_{e:b} = \frac{\frac{k}{b}}{1 + \frac{K}{b}}$$

$$S_{e:b} = \frac{K}{b+K}$$

Considerando b = 1:

$$S_{e:b} = \frac{K}{b+K} = \frac{19}{1+19} = 0.95$$

Variando b para $\pm 10\%$, logo b = 1,1 ou b = 0,9:

$$S_{e:b} = \frac{19}{1,1+19} = 0.945 \implies b_{+10\%} = 0.53\%$$

ou

$$S_{e:b} = \frac{19}{0.9 + 19} = 0.954 \implies b_{-10\%} = -0.42\%$$

2 Simulação

 ${\rm O}$ software utilizado no projeto foi o MATLAB R2020a. O código desenvolvido completo encontra-se em anexo.

2.1 Item 2.a

2a. Calculem por meio de uma rotina computacional em Matlab, os parâmetros dos itens 1a e 1b;

```
Omega_n:
    8.3827

csi:
    0.6889

Tr:
    0.6926

Tp:
    0.5170

Overshoot:
    5.0494

Raízes_denominador:
    -5.7750 + 6.0761i
    -5.7750 - 6.0761i
```

Figura 2 – Cálculo do tempo de pico, o overshoot e o tempo de assentamento.

2.2 Item 2.b

2b. Gerem o gráfico da saída do sistema em malha fechada, de acordo com o ganho K encontrado no item 1a para a entrada do tipo degrau (amplitude dada para cada grupo).

Figura 3 – Comparação entre as curvas dos sistemas de malha aberta e malha fechada.

2.3 Item 2.c

2c. Gerem o diagrama de polos e zeros dos sistemas em malha aberta e malha fechada (vejam o item 1c), em um mesmo gráfico;

Figura 4 – Diagrama de polos e zeros dos sistemas em malha aberta e malha fechada.

2.4 Item 2.d

2d. Analisem o item 1d por meio de gráficos da saída do sistema em malha fechada;

Quando o sistema é estável o K > -1:

```
Digite o K de acordo com a condições abaixo:
K > -1 => estável
K < -1 \Rightarrow instável
 K = -1 => marginalmente estável
Você quer calcular uma nova tabela de Routh-Hurwitz S/N s
DIGITE QUALQUER TECLA PARA CONTINUAR
DIGITE QUALQUER TECLA PARA CONTINUAR
 Tabela Routh-Hurwitz:
rhTable =
    1.0000
           22.2400
   11.5500
   22.2400
                   0
~~~~> É um sistema estável! <~~~~
Número de polos no lado direito = 0
```

Figura 5 – Faixa de valores de ganho para o sistema ser estável, instável e marginalmente estável e cálculo da Tabela de Routh-Hurwitz para o k=3

Figura 6 – Diagrama de polos e zeros com k=3

Figura 7 – Resposta do sistema em malha fechada quando temos um K=3

Quando o sistema é instável o K < -1:

```
Digite o K de acordo com a condições abaixo:
 K > -1 => estável
 K < -1 \Rightarrow instável
 K = -1 \Rightarrow marginalmente estável
 -3
Você quer calcular uma nova tabela de Routh-Hurwitz S/N s
DIGITE QUALQUER TECLA PARA CONTINUAR
DIGITE QUALQUER TECLA PARA CONTINUAR
 Tabela Routh-Hurwitz:
rhTable =
    1.0000 -11.1200
   11.5500
  -11.1200
                    0
~~~~> É um sistema instável! <~~~~
 Número de polos no lado direito = 1
```

Figura 8 – Faixa de valores de ganho para o sistema ser estável, instável e marginalmente estável e cálculo da Tabela de Routh-Hurwitz para o k=-3

Figura 9 – Diagrama de polos e zeros com k=-3

Figura 10 – Resposta do sistema em malha fechada quando temos um K=-3

Quando o sistema é marginalmente estável o K = -1:

```
Digite o K de acordo com a condições abaixo:
K > -1 => estável
K < -1 \Rightarrow instável
K = -1 => marginalmente estável
 -1
Você quer calcular uma nova tabela de Routh-Hurwitz S/N s
DIGITE QUALQUER TECLA PARA CONTINUAR
DIGITE QUALQUER TECLA PARA CONTINUAR
Tabela Routh-Hurwitz:
rhTable =
    1.0000
                   0
   11.5500
                   0
    0.0100
                   0
~~~~> É um sistema marginalmente estável! <~~~~
Número de polos no lado direito = 0
```

Figura 11 – Faixa de valores de ganho para o sistema ser estável, instável e marginalmente estável e cálculo da Tabela de Routh-Hurwitz para o k=-1

Figura 12 – Diagrama de polos e zeros com k=-1

Figura 13 – Resposta do sistema em malha fechada quando temos um K=-1

2.5 Item 2.e

 $2\mathrm{e.}$ Calculem por meio de uma rotina computacional em Matlab, os parâmetros dos itens $1\mathrm{e}$ e $1\mathrm{f};$

```
o erro em regime permanente quando aplicado o degrau 1.5 é:
0.075

A constante de posição é:
19
o erro em regime permanente quando aplicado a rampa = infinito
A constante de velocidade é:
0.0

A constante de aceleração é:
0.0
```

Figura 14 – Constantes de erro estático.

2.6 Item 2.f

2 b | - + 1 | \ b /

2f. Analisem por meio de gráficos, comparando com o sistema em malha fechada original, como a saida do sistema em malha fechada e o sinal de erro se comportam com variações de +-10% nos valores de 'a' e de 'K'. Aproveitamento do item 1g.

Figura 15 – Sensibilidade do erro em regime permanente em malha fechada para variações no parâmetro do ganho "K"e no parâmetro "b".

3 Considerações finais

Diante dos resultados obtidos na simulação, pode-se afirmar que o programa MATLAB gerou quase os mesmos valores da parte analítica do projeto.

```
% Instituto Federal da Paraíba
% Data: 11/05/2023
% Ademar Gonçalves da Costa Júnior
% Sistemas de Controle I
% Projeto 2 - Sistemas de Controle I
% Grupo 3: Alysson, Fabrício, Gabriel
close all
clear all
% sistema em malha aberta
num = [5.56];
den = [1 11.55 5.56];
disp(' '); disp('DIGITE QUALQUER TECLA PARA CONTINUAR'); disp(' ');
pause
% gerar gráfico
sysc = tf(num,den); % objeto função de transferência
opt = stepDataOptions('StepAmplitude',1.5);
[y,t] = step(sysc); % gera o gráfico para um degrau UNITÁRIO
figure() % cria objeto figura
plot(t,y,'LineWidth',1.3) % gera gráfico
title('Malha aberta');
xlabel('tempo(s)') % título do eixo x
ylabel('Amplitude do sistema') % título do eixo y
grid % coloca grid no gráfico
% 2a. Calculem por meio de uma rotina computacional em Matlab, os parâmetros
%dos itens la e 1b;
§_____
% la. Nesse item, acrescentem o ganho K antes do sistema dinâmico
% (ramo direto),% e projetem para que o sistema em malha fechada apresente
% overshoot máximo de 5% (cálculo do K que atenda a essa premissa)
% (ver tema: diagrama de blocos). Obs: analisem para a entrada do tipo
% degrau (amplitude dada para cada grupo).
§_____
% para um overshoot de 5%, temos:
% k ov = 11.64
% num e = [k ov*5.56];
% poly den e = [1 11.55 5.56+5.56*k ov];
num e = [64.71];
poly den e = [1 11.55 70.27];
§_____
% 1b. Com o valor do ganho K calculado no item 1a, estimem o tempo de pico,
% o overshoot e o tempo de assentamento para o sistema em malha fechada.
omegan = sqrt(poly den e(3)); % frequência natural
csi = poly den e(2)/(2*omegan); % coeficiente de amortecimento
```

```
Ts = 4/(csi*omegan); % tempo de acomodação
Tp = pi/(omegan*sqrt(1-csi^2)); % tempo de pico
overshoot = 100*exp((-csi*pi)/sqrt(1-csi^2)); % overshoot ou sobressinal
raizes_den = roots(poly den e); % raízes do denominador
disp(' '); disp('DIGITE QUALQUER TECLA PARA CONTINUAR'); disp(' ');
pause;
disp('Omega n:'); disp(omegan);
disp('csi:'); disp(csi);
disp('Tr:'); disp(Ts);
disp('Tp:'); disp(Tp);
disp('Overshoot:'); disp(overshoot);
disp('Raízes denominador:'); disp(raizes den);
% 2b. Gerem o gráfico da saída do sistema em malha fechada, de acordo com o
% ganho K encontrado no item 1a para a entrada do tipo degrau (amplitude
% dada para cada grupo).
disp(' '); disp('DIGITE QUALQUER TECLA PARA CONTINUAR'); disp(' ');
pause
% gerar gráfico
sysc6 = tf(num e,poly den e); % objeto função de transferência
[y6,t6] = step(sysc6,opt);
figure()
te = 0:0.01:15;
s=tf('s');
sys3 ordem= tf(1.5*[64.61],[1 11.55 70.17]); % sistema em malha fechada
sys2 \text{ ordem} = tf([5.56], [1 11.55 5.56]); % sistema em malha aberta
hold on
f3 = step(sys3 ordem, te);
f2 = step(sys2 ordem, te);
plot(te,f3,'LineWidth',1.3)
plot(te, f2, 'LineWidth', 1.3)
title ('Comparação do sistema dinâmico com ganho K e com overshoot máximo de 5%');
xlabel('tempo(s)')
ylabel('Amplitude')
arid on
legend('Malha fechada', 'Malha aberta')
% 2c. Gerem o diagrama de polos e zeros dos sistemas em malha aberta e malha
% fechada (vejam o item 1c), em um mesmo gráfico;
disp(' '); disp('DIGITE QUALQUER TECLA PARA CONTINUAR'); disp(' ');
pause
figure()
subplot(2,1,1)
h1 = pzplot(sysc(:,:,1),'r'); grid on
title('Malha aberta')
```

```
subplot(2,1,2)
h2 = pzplot(sysc6(:,:,1),'r'); grid on
title('Malha fechada')
% 2d. Analisem o item 1d por meio de gráficos da saída do sistema em malha
% fechada;
% 1d. Determinem a faixa de valores do ganho K do sistema em malha fechada,
% para que o sistema seja estável, instável e marginalmente estável (ver
% tema: estabilidade);
disp(' '); disp('DIGITE QUALQUER TECLA PARA CONTINUAR'); disp(' ');
% Critério de Estabilidade Routh-Hurwitz:
K temp = input('Digite o K de acordo com a condições abaixo: \n K > -1 ⇒ estável ✔
entrada = input('Você quer calcular uma nova tabela de Routh-Hurwitz S/N ', 's');
if entrada == 's' || entrada == 'S'
% Pega coef do vetor e constroi as duas primeiras linhas
syms k
num temp = [K temp*5.56];
coeffVector = [1 11.55 5.56+5.56*K temp];
ceoffLength = length(coeffVector);
rhTableColumn = round(ceoffLength/2);
% Inicializa a tabela Routh-Hurwitz com vetor nulo
rhTable = zeros(ceoffLength,rhTableColumn);
% Computa a primeira linha da tabela
rhTable(1,:) = coeffVector(1,1:2:ceoffLength);
% Verifica se o comprimento do vetor de coeficientes é par ou împar
if (rem(ceoffLength,2) ~= 0)
% se par, a segunda linha da tabela será
rhTable(2,1:rhTableColumn - 1) = coeffVector(1,2:2:ceoffLength);
else
% se impar, a segunda linha da tabela será
rhTable(2,:) = coeffVector(1,2:2:ceoffLength);
end
disp(' '); disp('DIGITE QUALQUER TECLA PARA CONTINUAR'); disp(' ');
pause
figure()
func_temp = tf(num_temp,coeffVector);
h1 = pzplot(func temp(:,:,1),'r');grid on
disp(' '); disp('DIGITE QUALQUER TECLA PARA CONTINUAR'); disp(' ');
pause
plot_temp = step(func_temp);
figure()
plot(plot temp, 'LineWidth', 1.3);
```

```
title ('Análise de estabilidade em malha fechada')
xlabel('tempo(s)')
ylabel('Amplitude')
 %% Calcular as linhas da tabela de Routh-Hurwitz
 % Define epss como um valor pequeno
 epss = 0.01;
 % Calcula outros elementos da tabela
 for i = 3:ceoffLength
 % caso especial: linhas de zeros
 if rhTable(i-1,:) == 0
 order = (ceoffLength - i);
 cnt1 = 0;
 cnt2 = 1;
 for j = 1:rhTableColumn - 1
 rhTable(i-1,j) = (order - cnt1) * rhTable(i-2,cnt2);
 cnt2 = cnt2 + 1;
 cnt1 = cnt1 + 2;
 end
 end
 for j = 1:rhTableColumn - 1
 % fprimeiro elemento da linha superior
 firstElemUpperRow = rhTable(i-1,1);
 % computa cada elemento da tabela
 rhTable(i,j) = ((rhTable(i-1,1) * rhTable(i-2,j+1)) - ....
 (rhTable(i-2,1) * rhTable(i-1,j+1))) / firstElemUpperRow;
 end
 % caso especial: zero na primeira coluna
 if rhTable(i,1) == 0
 rhTable(i,1) = epss;
 end
 end
 %% Calcula o número de pólos do lado direito (pólos instáveis)
 % Inicializa pólos instáveis ??com zero
 unstablePoles = 0;
 % Verifica a mudança do sinal
 for i = 1:ceoffLength - 1
 if sign(rhTable(i,1)) * sign(rhTable(i+1,1)) == -1
 unstablePoles = unstablePoles + 1;
 end
 end
 % Print dados na command window
 fprintf('\n Tabela Routh-Hurwitz:\n')
 rhTable
 % Printa o resultado
 if unstablePoles == 0 & K temp > -1
 fprintf('~~~~ É um sistema estável! <~~~~\n')</pre>
 else
     if K temp == -1
        fprintf('~~~~> É um sistema marginalmente estável! <~~~~\n')</pre>
        fprintf('~~~~> É um sistema instável! <~~~~\n')</pre>
```

```
end
end
fprintf('\n Número de polos no lado direito =%2.0f\n',unstablePoles)
reply = input('Você quer ver as raízes do sistema? S/N ', 's');
if reply == 's' || reply == 'S'
sysRoots = roots(coeffVector);
fprintf('\n Raízes de coeficientes polinomiais dadas :\n')
sysRoots
end
end
% 2e. Calculem por meio de uma rotina computacional em Matlab, os
% parâmetros dos itens 1e e 1f;
§______
% le. Nesse item, acrescentem o ganho K novamente antes do sistema dinâmico
% (ramo direto), e projetem para que o sistema em malha fechada, possua erro
% em regime permanente de, no máximo, 5% (não utilizar os valores de K
% estimados anteriormente).
svms s k
E estacionario = \lim_{x \to 0} (1/(1+k*(5.56/(s^2+11.55*s+5.56))), s, 0);
E = 5 = 5/100 = 1/(1+k)
% logo E estacionario = 1/(1+k) = 0.05
k parcial = 1/0.05; %k parcial = 20
k = k parcial - 1;
% 1f. Com o valor do ganho K calculado no item 1e, calculem as constantes de
% erro estático e o erro em regime permanente para as entradas do tipo degrau
% (amplitude dada para cada grupo) e rampa unitária (ver tema: erro em regime
% permanente).
disp(' '); disp('DIGITE QUALQUER TECLA PARA CONTINUAR'); disp(' ');
pause
syms s
% Aplicado o degrau R(s)=0.7/s
kp = k; %Constante de posição
if(1+kp == 0)
disp('O erro em regime permanente quando aplicado o degrau = infinito' );
else
ErD = vpa(round(10000*1*1.5/(1+kp))/10000);
disp('o erro em regime permanente quando aplicado o degrau 1.5 é:');
disp(ErD);
end
```

```
disp('A constante de posição é :');
disp(kp);
% Aplicando a Rampa unitaria R(s)=1/s^2
kv = vpa(round(1000*limit(s*5.56/(s^2+1.56*s+5.56),s,0))/1000); %Constande de <math>\mathbf{k}
velocidade
if(kv == 0)
disp('o erro em regime permanente quando aplicado a rampa = infinito' );
ErR = 1./(kv); % erro para a rampa
disp('o erro em regime permanente quando amplicado a rampa é:');
disp(ErR);
end
disp('A constante de velocidade é :');
disp(kv);
ka = vpa(round(1000*limit(s^2*5.56/(s^2+1.56*s+5.56),s,0))/1000); %Constante de <math>\checkmark
Aceleração
disp('A constante de aceleração é :');
disp(ka);
% 2f. Analisem por meio de gráficos, comparando com o sistema em malha fechada
% original, como a saida do sistema em malha fechada e o sinal de erro se
% comportam com variações de +-10% nos valores de 'a' e de 'K'. Aproveitamento
% do item 1q.
%-----
% 1g. Utilizando a mesma estrutura do item 1e, calculem a sensibilidade do
% erro em regime permanente em malha fechada para variações no parâmetro do
% ganho "K" e no parâmetro "b" da função de transferência em malha aberta
% (ex: G(s) = num(s)/den(s), com den(s)=s^2+as+b), com a aplicação da entrada
% do tipo degrau (amplitude dada para cada grupo).
§_____
disp(' '); disp('DIGITE QUALQUER TECLA PARA CONTINUAR'); disp(' ');
pause
syms s k b
E estacionario = \lim_{x \to a} (1.5/(1+k*(5.56/(s^2+11.55*s+5.56*b))), s, 0);
disp('Sensibilidade do erro em regime permanente para o parâmetro K: ' );
parcial k = (k/E \text{ estacionario});
sensk = parcial_k * diff(E_estacionario,k);
pretty(sensk);
disp('Sensibilidade do erro em regime permanente para o parâmetro b: ' );
parcial b = (b/E estacionario);
sensb = parcial b * diff(E estacionario,b);
pretty(sensb)
```