Fondamenti dell'Informatica

Compito scritto

31 gennaio 2005

Cognome:		
Nome:		
Matricola:		

Note

- 1. Per i quiz a risposta multipla, fare una croce sulla/e lettera/e che identifica/no la/e risposta/e desiderata/e.
- 2. Per i quiz a risposta multipla, c'è sempre almeno una risposta corretta. Talvolta ci sono più risposte corrette. Si richiede che siano marcate *tutte e sole* le risposte corrette. In altre parole, una crocetta in più o in meno invalida l'esercizio.
- 3. Per i quiz descrittivi e gli esercizi, la risposta va data sulla stessa facciata che contiene il testo dell'esercizio. Lo spazio lasciato a questo scopo è sempre sufficiente.
- 4. È possibile usare il retro dei fogli per eventuali calcoli e verifiche.
- 5. L'orario di consegna scritto alla lavagna è tassativo.
- 6. Non è consentita la consultazione di alcunché.
- 7. Gli esercizi verranno corretti solo se il numero di punti conseguiti nei quiz supera una certa soglia. In caso contrario il compito è insufficiente. Le soglie sono:
 - per i matematici, 18 punti riducibili a 16 a patto che le risposte ai quiz 1, 2, 3, 4, 5 e 9 siano corrette.
 - per gli informatici, 23 punti riducibili a 20 a patto che le risposte ai quiz 1, 2, 3, 4, 5, 9, 11 e 12 siano corrette.

Quiz per tutti

1. (1 punto) Un linguaggio finito

(A) è a pila; (B) è regolare; (C) è irregolare; (D) $n\acute{e}$ (A) $n\acute{e}$ (B) $n\acute{e}$ (C).

- 2. (1 punto) Quale è la cardinalità dell'insieme dei linguaggi che si possono definire su di un alfabeto Σ di n > 0 simboli?
- $(A) 2^n; (B) 2^{2^n}; (C) |\mathbb{N}|; (D) |\wp(\mathbb{N})|;$
- (E) $n\acute{e}$ (A) $n\acute{e}$ (B) $n\acute{e}$ (C) $n\acute{e}$ (D).
- 3. (2 punti) I linguaggi regolari sono chiusi rispetto a
- (A) complementazione; (B) concatenazione; (C) intersezione;
- (D) stella di Kleene; (E) unione; (F) nessuna di queste.
- (2 punti) Si descriva, usando la notazione insiemistica, il 4. linguaggio accettato dall'automa M qui sotto:

$$L(M) =$$

5. (2 punti) Si consideri la relazione $R \subset \{a,b,c,d,e\}^2$ data dalla tabella qui sotto, dove 1 o 0 all'incrocio tra la riga x e la colonna y indicano se $(x,y) \in R$ o se $(x,y) \notin R$, rispettivamente:

R	a	b	c	d	e
a	1	0	0	0	0
b	0	1	0	0	1
c	0	0	1	1	0
d	0	0	1	1	0
e	0	1	0	0	1

Le classi di equivalenza di R sono

- (A) (a,c), (c,d), (d,a), (b,e), (e,b); (B) $\{a\}$, $\{b\}$, $\{c,d\}$, $\{e\}$;
- (C) $\{a\}, \{c, d\}, \{b, e\};$
- (D) nessuna: R non è di equivalenza.

6. (5 punti) Quali dei seguenti linguaggi sull'alfabeto $\Sigma = \{a,b,c\}$ sono regolari?

$$\begin{split} L_1 &= \{ \, a^n b^m c^n \in \Sigma^* \mid n \geq 1, m \geq 1 \, \}; \\ L_2 &= \{ \, a^n a^m a^{n+m} \in \Sigma^* \mid n \geq 3, m \geq 4 \, \}; \\ L_3 &= \{ \, a^n b^m b^n \in \Sigma^* \mid n = 5, m \geq 1 \, \}. \\ L_4 &= \{ \, a^n b^m c^n \in \Sigma^* \mid 1 \leq n \leq 9, m \geq 1 \, \}; \\ L_5 &= \{ \, a^n b^m c^n \in \Sigma^* \mid n \geq 1, m = 5 \, \}; \end{split}$$

- (A) L_1 ; (B) L_2 ;
- (C) L_3 ; (D) L_4 ; (E) L_5 ; (F) nessuno di essi.
- 7. (2 punti) Si dia un'espressione regolare e_1 per il seguente linguaggio su $\{0,1\}$:

 $L_1 = \{ \text{tutte le stringhe non nulle che iniziano e finiscono con lo stesso simbolo} \}.$

 $e_1 =$

8. (2 punti) Si dia un'espressione regolare e_2 per il seguente linguaggio su $\{0,1\}$:

 $L_2 = \{ \text{tutte le stringhe che contengono le sottostringhe 0011 o 1010} \}.$

 $e_2 =$

9. (2 punti) Si dia un'espressione regolare e_3 per il seguente linguaggio su $\{0,1\}$:

 $L_3 = \{ \text{tutte le stringhe che non contengono 111 come sottostringa} \}.$

 $e_3 =$

(3 punti) Quali delle seguenti espressioni regolari definiscono il linguaggio

 $L = \{\epsilon\} \cup \{w \in \{a, b, c\}^* \mid \text{il numero di occorrenze di } a \text{ in } w \text{ è pari e positivo }\}?$

$$e_{1} = ((b^{*} + c^{*})a(b^{*} + c^{*})a(b^{*} + c^{*}))^{*};$$

$$e_{2} = ((b^{*}c^{*})a(b^{*}c^{*})a(b^{*}c^{*}))^{*};$$

$$e_{3} = ((b+c)^{*}a(b+c)^{*}a)^{*};$$

$$e_{4} = ((b+c)^{*}a(b+c)^{*}a(b+c)^{*})^{*};$$

$$e_{5} = (a(b+c)^{*}a(b+c)^{*})^{*}.$$

- (A) e_1 ; (B) e_2 ; (C) e_3 ; (D) e_4 ; (E) e_5 ; (F) nessuna di esse.
- 11. (2 punti) Si consideri la MdT definita dal seguente programma:

Q	0	1	\$
q_0			$q_1 \ $ R
q_1	q_2 1 L	$q_1 \ 0 \ \mathrm{R}$	
q_2		$q_2 1 L$	

Si supponga che la MdT cominci la computazione nello stato q_0 , avendo per input sul nastro la stringa "111010", con la testina posizionata sul primo simbolo \$ alla sinistra della stringa stessa. Allora la computazione suddetta:

- (A) termina dopo 3 passi; (B) termina dopo 5 passi;
- (C) termina dopo 6 passi; (D) non termina.

Quiz per gli "informatici"

- 12. (2 punti) L'affermazione "Se L è un linguaggio libero dal contesto e $L'\subseteq L$ allora anche L' è libero dal contesto"
- (A) è vera solo se L è anche regolare; (B) è sempre vera; (C) è sempre falsa.
- 13. (1 punto) Avendo un linguaggio L che sospetto non essere libero dal contesto, tento di dimostrare che L non è libero dal contesto usando il "pumping lemma". Tento cioè di dimostrare:
- (A) $\exists n \in \mathbb{N} : \forall z \in L : |z| \ge n \implies \left(\exists u, v, w, x, y \in \Sigma^* \right)$. $z = uvwxy \land |vx| \ge 1 \land |vwx| \le n \land \forall i \in \mathbb{N} : uv^i wx^i y \in L$
- (B) $\forall n \in \mathbb{N} : \exists z \in L . |z| \ge n \land \forall u, v, w, x, y \in \Sigma^*$ $: ((z = uvwxy \land |vx| \ge 1 \land |vwx| \le n) \implies \exists i \in \mathbb{N} . uv^i wx^i y \notin L)$
- (C) $\forall n \in \mathbb{N} : \exists z \in L . |z| \ge n \land \forall u, v, w, x, y \in \Sigma^*$ $: (z = uvwxy \land |vx| \ge 1 \land |vwx| \le n) \implies \forall i \in \mathbb{N} : uv^i wx^i y \notin L$
- 14. (2 punti) I linguaggi liberi dal contesto sono chiusi rispetto a
 - (A) complementazione; (B) concatenazione; (C) intersezione;
 - (D) stella di Kleene; (E) unione; (F) nessuna di queste.
- 15. (2 punti) Si dia un esempio di grammatica ambigua con un solo simbolo non terminale. Se il linguaggio generato è intrinsecamente ambiguo, lo si dica. Altrimenti, si esibisca un grammatica non ambigua equivalente.

Esercizio 1 (per tutti)

Si enunci e si dimostri il "Pumping Lemma" per i linguaggi regolari.

Esercizio 2 (per tutti)

Sia $f:\mathbb{N}\to\mathbb{N}$ una funzione parziale ricorsiva che sia anche iniettiva e totale. Si mostri che la funzione inversa $f^{-1}\colon\mathbb{N}\to\mathbb{N}$

$$f^{-1}(y) = \begin{cases} x, & \text{se } f(x) = y, \\ \uparrow, & \text{altrimenti,} \end{cases}$$

è parziale ricorsiva.

Esercizio 3 (per tutti)

Una relazione $R\subseteq \mathbb{N}^r$ è detta primitiva ricorsiva se la sua funzione caratteristica, $\chi_R\colon \mathbb{N}^r\to \mathbb{N}$ con

$$\chi_R((x_1,\ldots,x_r)) = \begin{cases} 1, & \text{se } (x_1,\ldots,x_r) \in R, \\ 0, & \text{altrimenti,} \end{cases}$$

è primitiva ricorsiva. Si mostri che le relazioni primitive ricorsive sono chiuse rispetto all'unione, l'intersezione e il complemento.

Esercizio 4 (solo per gli "informatici")

Si converta la seguente grammatica in forma normale di Chomsky:

$$\begin{split} S &\to SaBS \mid AbbB \mid b \\ A &\to Aa \mid BS \\ B &\to aBbC \mid CC \\ C &\to a \mid \epsilon \end{split}$$

Si mostrino le grammatiche ottenute: (A) dopo aver rimosso le ϵ -produzioni; (B) dopo aver rimosso le produzioni unitarie; e, naturalmente, (C) il risultato finale.