MA553: Spring 2016 Homework

Carlos Salinas

 $March\ 27,\ 2016$

We'll discuss some important theorems and results as we solve some of these problems.

Problem 1.1. Let G be a group, $a \in G$ an element of finite order m, and n a positive integer. Prove that

$$|a^n| = \frac{m}{\gcd(m,n)}.$$

Proof.

Problem 1.2. Let G be a group, and let a, b be elements of finite order m, n respectively. Show that if ba = ab and $\langle a \rangle \cap \langle b \rangle = \{e\}$, then $|ab| = \operatorname{lcm}(m, n)$.

Proof.

Problem 1.3. Let G be a group and H, K normal subgroups with $H \cap K = \{e\}$. Show that

- (a) hk = kh for every $h \in H$, $k \in K$.
- (b) HK is a subgroup of G with $HK \cong H \times K$.

Proof.

Problem 1.4. Show that A_4 has no subgroup of order 6 (although 6 | $12 = |A_4|$).

Problem 2.1. Let G be the group of order $2^3 \cdot 3$, $n \ge 2$. Show that G has a normal 2-subgroup $\ne \{e\}$.

Proof.

Problem 2.2. Let G be a group of order p^2q , p and q primes. Show that the Sylow p-Sylow subgroup or the q-Sylow subgroup of G is normal in G.

Proof.

Problem 2.3. Let G be a subgroup of order pqr, p < q < r primes. Show that the r-Sylow subgroup of G is normal in G.

Proof.

Problem 2.4. Let G be a group of order n and let $\varphi: G \to S_n$ be given by the action of G on G via translation.

- (a) For $a \in G$ determine the number and the lengths of the disjoint cycles of the permutation $\phi(a)$.
- (b) Show that $\varphi(G) \not\subset A_n$ if and only if n is even and G has a cyclic 2-Sylow subgroup.
- (c) If n = 2m, m odd, show that G has a subgroup of index 2.

Proof.

Problem 2.5. Show that the only simple groups $\neq \{e\}$ of order < 60 are the groups of prime order.

Problem 3.1. Let G be a finite group, p a prime number, N the intersection of all p-Sylow subgroups of G. Show that N is a normal p-subgroup of G and that every normal p-subgroup of G is contained in N.

Proof.

Problem 3.2. Let G be a group of order 231 and let H be an 11-Sylow subgroup of G. Show that $H \subset Z(G)$.

Proof.

Problem 3.3. Let $G = \{e, a_1, a_2, a_3\}$ be a non-cyclic group of order 4 and define $\varphi \colon S_3 \to \operatorname{Aut}(G)$ by $\varphi(\sigma)(e) = e$ and $\varphi(\sigma)(a_1) = a_{\sigma(i)}$. Show that φ is well-defined and an isomorphism of groups.

Proof.

Problem 3.4. Determine all groups of order 18.

Problem 4.1. Let p be a prime and let G be a nonAbelian group of order p^3 . Show that $G' = Z(G)$
Proof.
Problem 4.2. Let p be an odd prime and let G be a nonAbelian group of order p^3 having an element of order p^2 . Show that there exists an element $b \notin \langle a \rangle$ of order p .
Proof.
Problem 4.3. Let p be an odd prime. Determine all groups of order p^3 .
Proof.
Problem 4.4. Show that $(S_n)' = A_n$.
Proof.
Problem 4.5. Show that every group of order < 60 is solvable.
Proof.
Problem 4.6. Show that every group of order 60 that is simple (or not solvable) is isomorphic to A_5 .
Proof.

Problem 5.1. Find all composition series and the composition factors of D_6 .

Proof.

Problem 5.2. Let T be the subgroup of $GL_n(\mathbf{R})$ consisting of all upper triangular invertible matrices. Show that T is solvable.

Proof.

Problem 5.3. Let $p \in \mathbf{Z}$ be a prime number. Show:

- (a) $(p-1)! \equiv -1 \mod p$.
- (b) If $p \equiv 1 \mod 4$ then $x^2 \equiv -1 \mod p$ for some $x \in \mathbf{Z}$.

Proof.

Problem 5.4. (a) Show that the following are equivalent for an odd prime number $p \in \mathbf{Z}$:

- (i) $p \equiv 1 \mod 4$.
- (ii) $p = a^2 + b^2$ for some a, b in \mathbf{Z} .
- (iii) p is not prime in $\mathbf{Z}[i]$.
- (b) Determine all prime ideals of $\mathbf{Z}[i]$.

Problem 6.1. Let R be a domain. Show that R is a UFD if and only if every nonzero nonunit in R is a product of irreducible elemnets and the intersection of any two principal ideals is again principal.

Proof.

Problem 6.2. Let R be a PID and p a prime ideal of R[X]. Show that p is principal or p = (a, f) for some $a \in R$ and some monic $f \in R[X]$.

Proof.

Problem 6.3. Let k be a field and $n \ge 1$. Show that $Z^n + Y^3 + X^2 \in k(X,Y)[Z]$ is irreducible.

Proof.

Problem 6.4. Let k be a field of characteristic zero and $n \ge 1$, $m \ge 2$. Show that $X_1^n + \cdots + X_m^n - 1 \in k[X_1, \ldots, X_m]$ is irreducible.

Proof.

Problem 6.5. Show that $X^{3^n} + 2 \in \mathbf{Q}(i)[X]$ is irreducible.

Problem 7.1. Let $k \subset K$ and $k \subset L$ be finite field extensions contained in some field. Show that:

- (a) $[KL:L] \leq [K:k]$.
- (b) $[KL:k] \leq [K:k][L:k]$.
- (c) $K \cap L = k$ if equality holds in (b).

Proof.

Problem 7.2. Let k be a field of characteristic $\neq 2$ and a, b elements of k so that a, b, ab are not squares in k. Show that $\left\lceil k\left(\sqrt{a}, \sqrt{b}\right) : k \right\rceil = 4$.

Proof.

Problem 7.3. Let R be a UFD, but not a field, and write K = Quot(R). Show that $[\overline{K} : k] = \infty$.

Proof.

Problem 7.4. Let $k \in K$ be an algebraic field extension. Show that every k-homomorphism $\delta \colon K \to K$ is an isomorphism.

Proof.

Problem 7.5. Let K be the splitting field of $X^6 - 4$ over **Q**. Determine K and $[K : \mathbf{Q}]$.

Problem 8.1. Let k be a field, $f \in k[X]$ a polynomial of degree $n \ge 1$, and K the splitting field of f over k. Show that $[K : k] \mid n!$.

Proof.

Problem 8.2. Let k be a field and $n \geq 0$. Define a map $\Delta_n : k[X] \to k[X]$ by $\Delta_n \left(\sum a_i X^i \right) := \sum a_i \binom{i}{n} X^{i-n}$. Show that

- (a) Δ_n is k-linear, and for $f, g \in k[X]$, $\Delta_n(fg) = \sum_{j=0}^n \Delta_j(f) \Delta_{n-j}(g)$.
- (b) $f^{(n)} = n! \Delta_n(f)$.
- (c) $f(X+a) = \sum \Delta_n(f)(a)X^n$.
- (d) $a \in k$ is a root of f of multiplicity n if and only if $\Delta_i(f)(a) = 0$ for $0 \le i \le n-1$ and $\Delta_n(f)(a) \ne 0$.

Proof.

Problem 8.3. Let $k \subset K$ be a finite field extension. Show that k is perfect if and only if K is perfect.

Proof.

Problem 8.4. Let K be the splitting field of $X^p - X - 1$ over $k = \mathbf{Z}/p\mathbf{Z}$. Show that $k \subset K$ is normal, separable, of degree p.

Proof.

Problem 8.5. Let k be a field of characteristic p > 0, and k(X, Y) the field of rational functions in two variables.

- (a) Show that $[k(X,Y):k(X^{p},Y^{p})]=p^{2}$.
- (b) Show that the extension $k(X^p, Y^p) \subset k(X, Y)$ is not simple.
- (c) Find infinitely many distinct fields L with $k(X^p, Y^p) \subset L \subset k(X, Y)$.

Problem 9.1. Let $k \subset K$ be a finite extension of fields of characteristic p > 0. Show that if $p \nmid [K : k]$, then $k \subset K$ is separable.

Proof.

Problem 9.2. Let $k \subset K$ be an algebraic extension of fields of characteristic p > 0, let L be an algebraically closed field containing K, and let $\delta \colon k \to L$ be an embedding. Show that $k \subset K$ is purely inseparable if and only if there exists exactly one embedding $\tau \colon K \to L$ extending δ .

Proof.

Problem 9.3. Let $k \subset K = k(\alpha, \beta)$ be an algebraic extension of fields of characteristic p > 0, where α is separable over k and β is purely inseparable over k. Show that $K = k(\alpha + \beta)$.

Proof.

Problem 9.4. Let $f(X) \in \mathbf{F}_q[X]$ be irreducible. Show that $f(X) \mid X^{q^n} - X$ if and only if $\deg f(X) \mid n$.

Proof.

Problem 9.5. Show that $\operatorname{Aut}_{\mathbf{F}_q}(\bar{\mathbf{F}}_q)$ is an infinite Abelian group which is torsionfree (i.e., $\delta^n = \operatorname{id}$ implies $\delta = \operatorname{id}$ or n = 0).

Proof.

Problem 9.6. Show that in a finite field, every element can be written as a sum of two perfect squares.