

Bachelor's Thesis

submitted in partial fulfillment of the requirements for the course "Applied Computer Science"

My Title

Robin William Hundt

Institute of Computer Science

Bachelor's and Master's Theses of the Center for Computational Sciences at the Georg-August-Universität Göttingen

09. May 2020

Georg-August-Universität Göttingen Institute of Computer Science

Goldschmidtstraße 7 37077 Göttingen Germany

a +49 (551) 39-172000

+49 (551) 39-14403

www.informatik.uni-goettingen.de

First Supervisor: Prof. Dr. Burkhard Morgenstern

Second Supervisor: Dr. Peter Meinicke

Abstract

Here comes the abstract...

Contents

1	Introduction	1
2	Basics 2.1 Multiple sequence alignment	3
3	Prior Work	5
4	Algorithm	7
5	Implementation	9
6	Evaluation6.1BAliBASE 36.2Sum-of-pairs and column score6.3MAFFT6.4Results	11 11 11 11 11
7	Conclusion 7.0.1 Further work	13
Bi	bliography	15

Introduction

Basics

2.1 Multiple sequence alignment

Prior Work

Algorithm

In this chapter, the analysis of ...

Implementation

In this chapter, the implementation of \dots

Evaluation

6.1 BAliBASE 3

The third version of the BAliBASE benchmark protein alignment database has been released in 2005 and is widely employed for the comparison of multiple alignment programs [1,2].

- 6.2 Sum-of-pairs and column score
- 6.3 MAFFT
- 6.4 Results

Primary Structure Alignments PSIBlast search in PDB database, select sequences with E < 10⁻³ Cluster and remove PDB sequences with > 40% identity Superpose selected 3D structures Manually verify and refine structure alignments Sequence/Structure Alignments BlastP search UniProt database, select sequences with E < 10⁻³ Cluster and remove PDB sequences with > 80% identity Remove sequences of unknown structure with < 40% identity Manually verify and refine structure alignments Construction of Reference Sets Select sequences for BAliBASE reference sets 1-5 Calculate reliable core block regions Annotate alignments Ref 1: Ref 2: Ref 3: Ref 4: Ref 5: variable length orphans sub families extensions insertions

Figure 6.1: Flow chart showing the semi automatic process used to establish the reference sets

Conclusion

7.0.1 Further work

Bibliography

- [1] J. D. Thompson, P. Koehl, R. Ripp, and O. Poch, "Balibase 3.0: latest developments of the multiple sequence alignment benchmark," *Proteins: Structure, Function, and Bioinformatics*, vol. 61, no. 1, pp. 127–136, 2005.
- [2] D. J. Russell, *Multiple Sequence Alignment Methods -*, softcover reprint of the original 1st ed. 2014 ed. unbekannt: Humana Press, 2016.

18 BIBLIOGRAPHY