

FCC Part 15C **Measurement and Test Report**

For

Cyrus Technology GmbH

Hergelsbendenstrasse 49, D-52080 Aachen, Germany

FCC ID: 2AI3KCS22SA2

FCC Rule(s): FCC Part 15.247

Product Description: Rugged Phone

Tested Model: CS22SA

Report No.: STR18098107I-6

Sample Receipt Date: 2018-09-11

Tested Date: 2018-09-12 to 2018-09-25

Issued Date: 2018-09-26

Jason Su / Engineer Tested By:

Jason Su Silin chen Jumbyso Silin Chen / EMC Manager Reviewed By:

Approved & Authorized By: Jandy So / PSQ Manager

Prepared By:

Shenzhen SEM Test Technology Co., Ltd.

1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road,

Bao'an District, Shenzhen, P.R.C. (518101)

Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM Test Technology Co., Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
1.2 Test Standards.	
1.3 TEST METHODOLOGY	
1.4 TEST FACILITY	
1.6 MEASUREMENT UNCERTAINTY	
1.7 TEST EQUIPMENT LIST AND DETAILS	
2. SUMMARY OF TEST RESULTS	7
3. RF EXPOSURE	8
3.1 STANDARD APPLICABLE.	8
3.2 TEST RESULT	8
4. ANTENNA REQUIREMENT	9
4.1 STANDARD APPLICABLE	
4.2 EVALUATION INFORMATION	9
5. POWER SPECTRAL DENSITY	10
5.1 STANDARD APPLICABLE	10
5.2 TEST PROCEDURE	
5.3 SUMMARY OF TEST RESULTS/PLOTS	
6. DTS BANDWIDTH	12
6.1 STANDARD APPLICABLE	
6.2 TEST PROCEDURE	
7. RF OUTPUT POWER	
7.1 STANDARD APPLICABLE	
7.2 TEST PROCEDURE	14 14
8. FIELD STRENGTH OF SPURIOUS EMISSIONS	
8.1 Standard Applicable	
8.2 Test Procedure.	
8.3 Corrected Amplitude & Margin Calculation	
8.4 SUMMARY OF TEST RESULTS/PLOTS	17
9. OUT OF BAND EMISSIONS	25
9.1 Standard Applicable	
9.2 Test Procedure	
9.3 SUMMARY OF TEST RESULTS/PLOTS	
10.1 Test Programs	
10.1 TEST PROCEDURE	
10.2 BASIC TEST SETUP BLOCK DIAGRAM 10.3 TEST RECEIVER SETUP	
10.4 STIMMADY OF TEST PESTIFTS/PLOTS	32

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: Cyrus Technology GmbH

Address of applicant: Hergelsbendenstrasse 49, D-52080 Aachen, Germany

Manufacturer: Cyrus Technology GmbH

Hergelsbendenstrasse 49, D-52080 Aachen, Germany Address of manufacturer:

General Description of EUT	
Product Name:	Rugged Phone
Brand Name:	Cyrus
Model No.:	CS22SA
Adding Model(s):	/
Rated Voltage:	DC 3.8V by Battery
Battery Capacity:	4000mAh
Dower Adeptor:	Model: Y733-20
Power Adapter:	Input:AC100-240V 50/60Hz 0.35A; Output: DC5V 2000mA
Software Version:	CS22_V1.01_2017_12_28
Hardware Version:	L808F_MB
	•
Note: The test data is gathered fro	m a production sample, provided by the manufacturer.

Technical Characteristics of EUT	
Bluetooth Version:	V4.0 (BLE mode)
Frequency Range:	2402-2480MHz
RF Output Power:	1.913dBm (Conducted)
Data Rate:	1Mbps
Modulation:	GFSK
Quantity of Channels:	40
Channel Separation:	2MHz
Type of Antenna:	Integral Antenna
Antenna Gain:	0.80dBi
Lowest Internal Frequency of EUT:	13.56MHz

Report No.: STR18098107I-6 FCC Part 15.247 Page 3 of 34

1.2 Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247:</u> Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

<u>558074 D01 15.247 Meas Guidance v05</u>: Guidance For Compliance Measurements On Digital Transmission System, Frequency Hopping Spread Spectrum System, And Hybrid System Devices Operating Under Section 15.247 Of The Fcc Rules

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, KDB 558074 D01 15.247 Meas Guidance v05

The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions.

1.4 Test Facility

FCC - Registration No.: 125990

Shenzhen SEM Test Technology Co., Ltd. Laboratory has been recognized to perform compliance testing on equipment subject to the Commissions Declaration Of Conformity (DOC). The Designation Number is CN5010, and Test Firm Registration Number is 125990.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM.Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

Report No.: STR18098107I-6 Page 4 of 34 FCC Part 15.247

1.5 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, with a duty cycle equal to 100%, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List			
Test Mode	Description	Remark	
TM1	Low	2402MHz	
TM2	Middle	2440MHz	
TM3	High	2480MHz	

Test Conditions		
Temperature:	22~25 °C	
Relative humidity	50~55 %.	
ATM Pressure:	1019 mbar	

EUT Cable List and Details				
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite	
USB Cable	1.0	Unshielded	Without Core	
Earphone	1.2	Unshielded	Without Core	

Special Cable List and Details					
Cable Description Length (m) Shielded/Unshielded With / Without Ferrite					
/	/	/	/		

Auxiliary Equipment List and Details					
Description Manufacturer Model Serial Number					
/	/	/	/		

1.6 Measurement Uncertainty

Measurement uncertainty				
Parameter	Conditions	Uncertainty		
RF Output Power	Conducted	±0.42dB		
Occupied Bandwidth	Conducted	±1.5%		
Power Spectral Density	Conducted	±1.8dB		
Conducted Spurious Emission	Conducted	±2.17dB		
Conducted Emissions	Conducted	9-150kHz ±3.74dB		
Conducted Emissions	Conducted	$0.15-30 \text{MHz} \pm 3.34 \text{dB}$		
		30-200MHz ±4.52dB		
Transmitter Spurious Emissions	Radiated	0.2-1GHz ±5.56dB		
		1-6GHz ±3.84dB		
		6-18GHz ±3.92dB		

Report No.: STR18098107I-6 Page 5 of 34 FCC Part 15.247

1.7 Test Equipment List and Details

No.	Description	Manufacturer	Model	Serial No.	Cal Date	Due Date
SEMT-1072	Spectrum	Agilent	E4407B	MY41440400	2018-05-22	2019-05-21
SEN11-10/2	Analyzer	Agnent	E4407B	101141440400	2010-03-22	2019-03-21
SEMT-1031	Spectrum	Rohde &	FSP30	836079/035	2018-05-22	2019-05-21
SENTI-1031	Analyzer	Schwarz	1 51 50	630017/033	2010-03-22	2017-03-21
SEMT-1007	EMI Test	Rohde &	ESVB	825471/005	2018-05-22	2019-05-21
SENTI-1007	Receiver	Schwarz	LSVD	0234717003	2010-03-22	2017-03-21
SEMT-1008	Amplifier	Agilent	8447F	3113A06717	2018-05-22	2019-05-21
SEMT-1043	Amplifier	C&D	PAP-1G18	2002	2018-05-22	2019-05-21
SEMT-1011	Broadband Antenna	Schwarz beck	VULB9163	9163-333	2017-06-08	2020-06-07
SEMT-1042	Horn Antenna	ETS	3117	00086197	2017-06-08	2020-06-07
SEMT-1121	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170582	2017-06-08	2020-06-07
SEMT-1069	Loop Antenna	Schwarz beck	FMZB 1516	9773	2017-06-08	2020-06-07
SEMT-1001	EMI Test	Rohde &	ESPI	101611	2018-05-22	2019-05-21
SEM1-1001	Receiver	Schwarz	ESPI	101611	2018-03-22	2019-03-21
SEMT-1003	L.I.S.N	Schwarz beck	NSLK8126	8126-224	2018-05-22	2019-05-21
SEMT-1002	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100911	2018-05-22	2019-05-21
SEMT-1168	Pre-amplifier	Direction Systems Inc.	PAP-0126	14141-12838	2018-05-22	2019-05-21
SEMT-1169	Pre-amplifier	Direction Systems Inc.	PAP-2640	14145-14153	2018-05-22	2019-05-21
SEMT-1163	Spectrum Analyzer	Rohde & Schwarz	FSP40	100612	2018-05-22	2019-05-21
SEMT-1170	DRG Horn Antenna	A.H. SYSTEMS	SAS-574	571	2018-03-19	2021-03-18
SEMT-1166	Power Limiter	Agilent	N9356B	MY45450376	2018-05-22	2019-05-21
SEMT-1048	RF Limiter	ATTEN	AT-BSF-2400~2500	/	2018-05-22	2019-05-21
SEMT-1076	RF Switcher	Top Precision	RCS03-A2	/	2018-05-22	2019-05-21
SEMT-C001	Cable	Zheng DI	LL142-07-07-10M(A)	/	2018-03-19	2019-03-18
SEMT-C002	Cable	Zheng DI	ZT40-2.92J-2.92J-6M	/	2018-03-19	2019-03-18
SEMT-C003	Cable	Zheng DI	ZT40-2.92J-2.92J-2.5M	/	2018-03-19	2019-03-18
SEMT-C004	Cable	Zheng DI	2M0RFC	/	2018-03-19	2019-03-18
SEMT-C005	Cable	Zheng DI	1M0RFC	/	2018-03-19	2019-03-18
SEMT-C006	Cable	Zheng DI	1M0RFC	/	2018-03-19	2019-03-18

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§ 2.1093	RF Exposure	Compliant
§ 15.203; § 15.247(b)(4)(i)	Antenna Requirement	Compliant
§15.205	Restricted Band of Operation	Compliant
§ 15.207(a)	Conducted Emission	Compliant
§ 15.247(e)	Power Spectral Density	Compliant
§ 15.247(a)(2)	DTS Bandwidth	Compliant
§ 15.247(b)(3)	RF Output Power	Compliant
§ 15.209(a)	Radiated Emission	Compliant
§ 15.247(d)	Band Edge (Out of Band Emissions)	Compliant

N/A: not applicable

Report No.: STR18098107I-6 Page 7 of 34 FCC Part 15.247

3. RF Exposure

3.1 Standard Applicable

According to § 1.1307 and § 2.1093, the portable transmitter must comply the RF exposure requirements.

3.2 Test Result

This product complied with the requirement of the RF exposure, please see the RF Exposure Report.

Report No.: STR18098107I-6 Page 8 of 34 FCC Part 15.247

4. Antenna Requirement

4.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

4.2 Evaluation Information

This product has a PCB antenna, fulfill the requirement of this section.

Report No.: STR18098107I-6 Page 9 of 34 FCC Part 15.247

5. Power Spectral Density

5.1 Standard Applicable

According to 15.247(a)(1)(iii), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.2 Test Procedure

According to the KDB 558074 D01 v05 Subclause 8.4 and ANSI C63.10-2013 Subclause 11.10.2, the test method of power spectral density as below:

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 \times RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.3 Summary of Test Results/Plots

Test Mode	Test Channel	Power Spectral Density dBm/3kHz	Limit dBm/3kHz
	Low	-12.86	8
GFSK(BLE)	Middle	-12.92	8
	High	-12.59	8

Please refer to the following test plots:

Report No.: STR18098107I-6 Page 10 of 34 FCC Part 15.247

6. DTS Bandwidth

6.1 Standard Applicable

According to 15.247(a)(2). Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.2 Test Procedure

According to the KDB 558074 D01 v05 Subclause 8.2 and ANSI C63.10-2013 Subclause 11.8.1, the test method of DTS Bandwidth as below:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 \times RBW.
- c) Detector = Peak.
- d) Trace mode = \max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.3 Summary of Test Results/Plots

Test Mode	Test Channel	6 dB Bandwidth	Limit	
	rest Chamier	kHz	kHz	
	Low	732.304	≥500	
GFSK(BLE)	Middle	733.665	≥500	
	High	733.369	≥500	

Please refer to the following test plots:

Report No.: STR18098107I-6 Page 12 of 34 FCC Part 15.247

7. RF Output Power

7.1 Standard Applicable

According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

7.2 Test Procedure

According to the KDB-558074 D01 v05 Subclause 8.3.1.1 and ANSI C63.10-2013 Subclause 11.9.1.1, this procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- a) Set the RBW \geq DTS bandwidth.
- b) Set VBW \geq 3 \times RBW.
- c) Set span $\geq 3 \times RBW$
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = \max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

7.3 Summary of Test Results/Plots

Test Mode	Test Channel	Reading	Output Power	Limit
	Test Chamier	dBm	mW	mW
	Low	1.427	1.389	1000
GFSK(BLE)	Middle	1.582	1.439	1000
	High	1.913	1.553	1000

Report No.: STR18098107I-6 Page 14 of 34 FCC Part 15.247

8. Field Strength of Spurious Emissions

8.1 Standard Applicable

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

8.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.247(a) and FCC Part 15.209 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

Report No.: STR18098107I-6 Page 16 of 34 FCC Part 15.247

Frequency:9kHz-30MHz	Frequency:30MHz-1GHz	Frequency : Above 1GHz
RBW=10KHz,	RBW=120KHz,	RBW=1MHz,
VBW =30KHz	VBW=300KHz	VBW=3MHz(Peak), 10Hz(AV)
Sweep time= Auto	Sweep time= Auto	Sweep time= Auto
Trace = max hold	Trace = max hold	$Trace = \max hold$
Detector function = peak	Detector function = peak, QP	Detector function = peak, AV

8.3 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit. The equation for margin calculation is as follows:

8.4 Summary of Test Results/Plots

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Report No.: STR18098107I-6 Page 17 of 34 FCC Part 15.247

> Spurious Emissions Below 1GHz

N	No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
		(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
	1	51.6616	35.03	-12.82	22.21	40.00	-17.79	341	100	peak
	2	109.4116	32.95	-13.93	19.02	43.50	-24.48	97	100	peak
	3	357.9287	31.57	-6.73	24.84	46.00	-21.16	333	100	peak
	4	1000.0000	31.38	4.04	35.42	54.00	-18.58	104	100	peak

Report No.: STR18098107I-6 Page 18 of 34 FCC Part 15.247

Test Channel Low	Polarity:	Vertical
------------------	-----------	----------

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	52.5753	34.71	-12.85	21.86	40.00	-18.14	289	100	peak
2	108.2667	33.09	-13.96	19.13	43.50	-24.37	129	100	peak
3	354.1831	32.44	-6.61	25.83	46.00	-20.17	66	100	peak
4	996.4996	30.56	3.98	34.54	54.00	-19.46	337	100	peak

Test Channel						N	Middle Polarity:				Horizontal						
30.0	dBuV/	<u>'m</u> :		:	:	:	: :				:			Lim	it1:		_
70												ļ				,,	
60													1				
50		· 													<u> </u>		
10														ļ	ļ		
																	4 ************************************
30			1							Jerskardni Ma dali sti	3	س والله	الماريق	MANAGERIA	pul ^{pende} tt	Mark Rev	g
20	politikay hardishi	Touch to Maryl	WANTER PARTY	Mary A			انطال	2 		ale To Broke to party 198	HWWW POWA	Nan-Hall-houd	M Manager		<u> </u>		
10	A Sundan				MAN.	Marie	/m	" Whole had a service of the service	Managaria					ļ	ļ		
_																	
D													1				
-10		· 		·		<u> </u>						į		<u> </u>	į		
20.0				<u> </u>	<u> </u>	<u> </u>								<u> </u>	<u> </u>		
30	0.000	40	50	60	70	80					300	400	500	600	700	100	0.0

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	52.3912	34.96	-12.84	22.12	40.00	-17.88	83	100	peak
2	110.1816	33.19	-13.94	19.25	43.50	-24.25	106	100	peak
3	345.5952	31.49	-6.50	24.99	46.00	-21.01	140	100	peak
4	993.0114	30.07	3.93	34.00	54.00	-20.00	122	100	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark	
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)		
1	44.7433	35.13	-12.99	22.14	40.00	-17.86	89	100	peak	
2	97.1148	33.53	-14.90	18.63	43.50	-24.87	161	100	peak	
3	314.3765	32.15	-7.16	24.99	46.00	-21.01	97	100	peak	
4	1000.0000	29.91	4.04	33.95	54.00	-20.05	139	100	peak	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark	
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)		
1	45.0583	33.92	-12.97	20.95	40.00	-19.05	352	100	peak	
2	114.5146	33.52	-14.70	18.82	43.50	-24.68	171	100	peak	
3	386.6338	31.88	-6.74	25.14	46.00	-20.86	50	100	peak	
4	989.5355	29.69	3.88	33.57	54.00	-20.43	341	100	peak	

Test Channel High	Polarity:	Vertical
-------------------	-----------	----------

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	51.4807	35.24	-12.85	22.39	40.00	-17.61	311	100	peak
2	99.5281	33.50	-14.53	18.97	43.50	-24.53	99	100	peak
3	346.8092	31.00	-6.49	24.51	46.00	-21.49	161	100	peak
4	993.0114	29.97	3.93	33.90	54.00	-20.10	120	100	peak

> Spurious Emissions Below 1GHz

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB	(dBuV/m)	(dBuV/m)	(dB)	H/V	
			Low Channe	el-2402MHz			
4804	58.46	-3.59	54.87	74	-19.13	Н	PK
4804	40.37	-3.59	36.78	54	-17.22	Н	AV
7206	58.77	-0.52	58.25	74	-15.75	Н	PK
7206	38.62	-0.52	38.1	54	-15.9	Н	AV
4804	58.25	-3.59	54.66	74	-19.34	V	PK
4804	41.31	-3.59	37.72	54	-16.28	V	AV
7206	60.17	-0.52	59.65	74	-14.35	V	PK
7206	38.45	-0.52	37.93	54	-16.07	V	AV
			Middle Chan	nel-2440MHz			
4880	60.32	-3.49	56.83	74	-17.17	Н	PK
4880	39.02	-3.49	35.53	54	-18.47	Н	AV
7320	58.25	-0.47	57.78	74	-16.22	Н	PK
7320	41.23	-0.47	40.76	54	-13.24	Н	AV
4880	61.68	-3.49	58.19	74	-15.81	V	PK
4880	41.38	-3.49	37.89	54	-16.11	V	AV
7320	58.93	-0.47	58.46	74	-15.54	V	PK
7320	38.82	-0.47	38.35	54	-15.65	V	AV
			High Chann	el-2480MHz			
4960	58.64	-3.41	55.23	74	-18.77	Н	PK
4960	40.32	-3.41	36.91	54	-17.09	Н	AV
7440	60.09	-0.42	59.67	74	-14.33	Н	PK
7440	41.68	-0.42	41.26	54	-12.74	Н	AV
4960	61.34	-3.41	57.93	74	-16.07	V	PK
4960	38.28	-3.41	34.87	54	-19.13	V	AV
7440	61.86	-0.42	61.44	74	-12.56	V	PK
7440	38.82	-0.42	38.4	54	-15.6	V	AV

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Report No.: STR18098107I-6 Page 24 of 34 FCC Part 15.247

9. Out of Band Emissions

9.1 Standard Applicable

According to §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

9.2 Test Procedure

According to the KDB 558074D01 v05 Subclause 8.4 and ANSI C63.10-2013 Subclause 11.11, the Emissions in nonrestricted frequency bands test method as follows:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 \times RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

According to the KDB 558074 D01 v05 Subclause 8.5 and ANSI C63.10-2013 Subclause 11.12, the Emissions in restricted frequency bands test method as follows:

A. Radiated emission measurements:

Set span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation (2310MHz to 2420MHz for low bandedge, 2460MHz to 2500MHz for the high bandedge)

RBW = 1MHz, VBW = 1MHz for peak value measured

RBW = 1MHz, VBW = 10Hz for average value measured

Sweep = auto; Detector function = peak/average; Trace = max hold

All the trace to stabilize, set the marker on the emission at the bandedge, or on the highest modulation product outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. Those emission must comply with the 15.209 limit for fall in the restricted bands listed in section 15.205. Note that the method of measurement KDB publication number: 913591 may be used for the radiated bandedge measurements.

Report No.: STR18098107I-6 Page 25 of 34 FCC Part 15.247

B. Antenna-port conducted measurements

Peak emission levels are measured by setting the instrument as follows:

- a) RBW = as specified in Table 9/
- b) VBW \geq [3 \times RBW].
- c) Detector = peak.
- d) Sweep time = auto.
- e) Trace mode = max hold.
- f) Allow sweeps to continue until the trace stabilizes. (Note that the required measurement time may be lengthened for low-duty-cycle applications.)

Table 9—RBW as a function of frequency

Frequency	RBW
9 kHz to 150 kHz	200 Hz to 300 Hz
0.15 MHz to 30 MHz	9 kHz to 10 kHz
30 MHz to 1000 MHz	100 kHz to 120 kHz
>1000 MHz	1 MHz

If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in section 8.1. Report the three highest emissions relative to the limit.

9.3 Summary of Test Results/Plots

Report No.: STR18098107I-6 Page 26 of 34 FCC Part 15.247

Radiated test

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	42.54	-7.78	34.76	54.00	-19.24	Average Detector
	2310.000	55.04	-7.78	47.26	74.00	-26.74	Peak Detector
2	2390.000	42.35	-7.32	35.03	54.00	-18.97	Average Detector
	2390.000	55.13	-7.32	47.81	74.00	-26.19	Peak Detector
3	2401.494	100.25	-7.25	93.00	/	/	Average Detector
	2401.616	105.39	-7.25	98.14	/	/	Peak Detector

Report No.: STR18098107I-6 Page 27 of 34 FCC Part 15.247

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2479.950	95.38	-6.79	88.59	/	/	Average Detector
	2479.740	100.89	-6.79	94.10	/	/	Peak Detector
2	2483.500	54.88	-6.77	48.11	54.00	-5.89	Average Detector
	2483.500	62.78	-6.77	56.01	74.00	-17.99	Peak Detector
3	2500.000	41.33	-6.67	34.66	54.00	-19.34	Average Detector
	2500.000	53.03	-6.67	46.36	74.00	-27.64	Peak Detector

Conducted test

10. Conducted Emissions

10.1 Test Procedure

The setup of EUT is according with per ANSI C63.4-2014 measurement procedure. The specification used was with the FCC Part 15.207 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

10.2 Basic Test Setup Block Diagram

10.3 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	150 kHz
Stop Frequency	30 MHz
Sweep Speed	Auto
IF Bandwidth	10 kHz
Quasi-Peak Adapter Bandwidth	9 kHz
Ouasi-Peak Adapter Mode	Normal

10.4 Summary of Test Results/Plots

Report No.: STR18098107I-6 Page 32 of 34 FCC Part 15.247

TEST Model: CS22SA

Test Mode	Communication	AC120V 60Hz	Polarity:	Neutral
0.0 dBuV				
1				Limit1: —
Aura				
	3			5
		Jana Madrida de de de de la como	grand de maria de la companya de la	-
, Minh		Hardhally any harmy for when	agasalhaya Halhani wanana a masa sani sa	me Many
				tı.
0.150	0.5		5	30.0

No.	Frequency	Reading	Correct	Result	Limit	Margin	Detector
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	0.1500	51.88	10.10	61.98	66.00	-4.02	QP
2	0.4820	30.47	10.28	40.75	46.30	-5.55	AVG
3	0.5340	40.56	10.31	50.87	56.00	-5.13	QP
4*	0.5340	33.59	10.31	43.90	46.00	-2.10	AVG
5	13.4300	41.67	11.00	52.67	60.00	-7.33	QP
6	13.4300	25.10	11.00	36.10	50.00	-13.90	AVG

TEST Model: CS22SA

No.	Frequency	Reading	Correct	Result	Limit	Margin	Detector
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	0.1540	45.66	10.10	55.76	65.78	-10.02	QP
2	0.2140	39.72	10.13	49.85	63.05	-13.20	QP
3	0.2500	36.44	10.16	46.60	61.76	-15.16	QP
4	0.4100	24.75	10.25	35.00	47.65	-12.65	AVG
5*	0.4860	28.88	10.28	39.16	46.24	-7.08	AVG
6	13.3380	23.28	11.00	34.28	50.00	-15.72	AVG

***** END OF REPORT *****