Cvičení 4 - Neuronové sítě

Jméno: Kateřina Fořtová (xforto00)

MLP

Vzorec pro výpočet počtu násobení:

počet vstupů * počet neuronů první skryté vrstvy + počet neuronů první skryté vrstvy * počet neuronů druhé skryté vrstvy + ... + počet neuronů poslední skryté vrstvy * počet výstupních neuronů

784-300-10: 784 * 300 + 300 * 10 = 238200

784-100-10: 784 * 100 + 100 * 10 = 79 400

784-100-100-10: 784 * 100 + 100 * 100 + 100 * 10 = 89 400 **784-300-300-10:** 784 * 300 + 300 * 300 + 300 * 10 = 328 200

Typ sítě	Dosažená validační přesnost po 10 epochách	Počet násobení v plně propojených vrstvách	Počet trénovacích parametrů
784-300-10	0.9794	238 200	238 510
784-100-10	0.9760	79 400	79 510
784-100-100-10	0.9778	89 400	89 610
784-300-300-10	0.9824	328 200	328 810

KNN

Vzorec pro výpočet počtu násobení pro konvoluční vrstvu:

Velikost vstupního obrázku * počet kanálů vstupního obrázku * velikost kernelu * počet filtrů

Konvoluční 2 konvoluce + 120-84-10 fully connected

První konvoluční vrstva: 28 * 28 * 3 * 3 * 1 * 6 = 42 336

Druhá konvoluční vrstva: 13 * 13 * 3 * 3 * 6 * 16 = 146 016

Vzorec pro plně propojené vrstvy stejný jako u MLP:

400 (výstup z Flatten) * 120 + 120 * 84 + 84 * 10 = 58 920

Konvoluční 1 konvoluce + 120-84-10 fully connected:

Vzorec pro plně propojené vrstvy stejný jako u MLP:

1014 (výstup z Flatten) * 120 + 120 * 84 + 84 * 10 = 132 600

Typ sítě	Dosažená validační přesnost po 10 epochách	Počet násobení v plně propojených vrstvách	Počet násobení v konvolučních vrstvách	Počet trénovacích parametrů
Konvoluční 2 konvoluce + 120-84-10 fully connected	0.9893	58 920	188 352	60 074
Konvoluční 2	0,9881	49 200	188 352	50 270

konvoluce + 120-10 fully connected				
Konvoluční 1 konvoluce + 120-84-10 fully connected	0,9831	132 600	42 336	132 874
Konvoluční 1 konvoluce + 120-10 fully connected	0,9819	122 880	42 336	123 070

Závislost energie (~celkového počtu násobení) a dosažené validační přesnosti po 10 epochách:

Modrá barva - Konvoluční sítě <mark>Zelená barva - MLP sítě</mark>

Shrnutí výsledků a závěr: Při celkovém počtu násobení vyšším jak 200 000 je výhodnější využít konvoluční síť než MLP. Počet trénovacích parametrů v této situaci je u konvolučních sítí nižší jak u MLP a konvoluční sítě dosahují vyšší přesnosti. Pokud chceme snížit co nejvíce energii, tedy zredukovat celkový počet operací násobení, můžeme využít MLP sítě 784-100-10 a 784-100-100-10. Tyto sítě avšak po natrénování po 10 epoch dosahovaly nejnižší přesnosti na validačních datech. MLP sít 784-300-300-10 pak má nevýhodu vzhledem k nejvyššímu počtu operací násobení a tedy nejvyšší vynaložené energii pro natrénování. MLP jsou obecně vhodné pro obecné klasifikační problémy, kde mají vstupy přidělenou určitou třídu. Tyto sítě však mají nevýhodu velmi vysokého počtu parametrů, protože všechny vrstvy jsou plně propojené. Konvoluční neuronové sítě pak obsahují konvoluční vrstvy a plně propojené vrstvy, redukují celkový počet trénovacích parametrů. Pracují dobře s daty, které obsahují prostorovou informaci.