Unsupervised deep learning based video

Luca Barras, 257916

Objectives and motivations

- → Registration between an Infrared (IR) and classical (RGB) video
- → IR camera is sensible to the heat
- → Some methods to align IR and RGB images but not with lots of data (videos)
- → Unsupervised deep learning method

Example of a pair of RGB and IR videos

RGB video

IR video

Affine network

Voxelmorph network

$$\mathcal{L}(F, M, \phi) = \mathcal{L}_{sim}(F, M(\phi)) + \lambda \mathcal{L}_{smooth}(\phi)$$

Dataset (1st part)

- → A serie of RGB and IR videos pairs
- → Preprocessing on the dataset:
 - Convert videos in frames
 - Resize IR frames
 - ♦ Remove too dark frames
 - ♦ Use the gray-scale version of the frames

Results (1st part) Affine network

Results (1st part) Voxelmorph network

Results analysis (1st part)

- → In affine network, results too scale up and not align
- → In Voxelmorph network, results too warped and not align
- → No correlation between the pixel values of the RGB and IR frames

Dataset (2nd part)

- → We reuse exactly the same dataset as in the 1st part (gray-scale version)
- → We apply Sobel, Canny, adaptive threshold and laplacian filter

Filter results

Results (2nd part) Affine network

Results (2nd part) Voxelmorph network

Results analysis (2nd part)

- → In Affine network, the result does not move at all
- → In Voxelmorph netwok, the results move only locally (deform shape)
- → Loss function is too flat and much more contrast on RGB frames than IR frames

IR frame

RGB frame

Dataset (3rd part)

- 1. For each video, we keep only frames where are people
- 2. Use Deeplab to segment the RGB frames
- 3. Threshold with the blue channel to segment IR frames (Adapt thresh. depending of the sequence of frames)
- 4. Keep only frame we can well segment (IR and RGB)
- 5. Finally we have 10431 4-tuple of frames (8000 training set, 1000 validation set, 1400 test set)

Results (3rd part) Affine network

Results (3rd part) Voxelmorph network

Results analysis (3rd part)

- → We have pretty good results but not again perfect
- → The segmentation could be better (RGB and IR)
- → Problem when two frames are too far each others (intersection between RGB and IR mask empty)

Results Affine network

Before registration

After registration

Conclusion

- → Registration between IR and RGB frames are not as obvious
- → We must find a correlation
- → Contours is a correlation but loss function too flat and RGB frames much more contrast than IR frames
- → Segmentation is better but not again perfect (segmentation precision could be better)
- → For better results, we must improve the segmentation step

Thanks for your attention