Tarea Opcional: El teorema de completación de espacios normados

Jose Antonio Lorencio Abril

Theorem 1. (Theorem 3. en P. Lax, Functional Analysis, Ch 5. Normed Linear Spaces) Dado X = (S, d) un espacio métrico no completo, existe una **completación** $\overline{X} = (\overline{S}, \overline{d})$, de tal forma que

$$(S,d) \stackrel{i}{\longrightarrow} (\overline{S},\overline{d})$$

es una aplicación inyectiva, \overline{X} es un espacio métrico completo, i(S) es denso en \overline{S} y

$$d(x,y) = \overline{d}(i(x), i(y)), \ \forall x, y \in S$$

 $Además, \overline{S}$ es único salvo isometrías.

Proof. Primero, definimos en $S^{\mathbb{N}}$ la siguiente relación de equivalencia

$$(x_n) \sim (y_n) \iff \lim_n d(x_n, y_n) = 0$$

y definimos

$$\overline{S} = \{ [(x_n)] : (x_n) \text{ es de Cauchy en } d \}$$
$$\overline{d}([x_n], [y_n]) = \lim_n d(x_n, y_n)$$

Primero, veamos que \overline{d} es una distancia:

• $\overline{d}([x_n],[y_n])$ es convergente:

$$d\left(x_{n},y_{n}\right) \leq d\left(x_{n},x_{m}\right) + d\left(x_{m},y_{m}\right) + d\left(y_{m},y_{n}\right) \iff d\left(x_{n},y_{n}\right) - d\left(x_{m},y_{m}\right) \leq d\left(x_{n},x_{m}\right) + d\left(y_{n},y_{m}\right) \leq d\left(x_{n},y_{m}\right) + d\left(y_{n},y_{m}\right) \leq d\left(x_{n},y_{m}\right) + d\left(y_{m},y_{m}\right) + d\left(y_{m},y_{m}\right) \leq d\left(x_{n},y_{m}\right) + d\left(y_{m},y_{m}\right) + d\left(y_{m},y_{m}\right) + d\left(y_{m},y_{m}\right) \leq d\left(x_{m},y_{m}\right) + d\left(y_{m},y_{m}\right) + d\left(y_{m},y_$$

y, como (x_n) e (y_n) son de Cauchy, para $\varepsilon > 0$, podemos tomar n, m suficientemente grandes, de forma que

$$d(x_n, y_n) - d(x_m, y_m) \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

de forma que $(d(x_n, y_n))$ es de Cauchy en \mathbb{R} , por lo que es convergente.

• \overline{d} está bien definida: sean $x_n \sim x_n'$ e $y_n \sim y_n'$, entonces

$$\overline{d}\left(\left[x_{n}\right],\left[y_{n}\right]\right)=\lim_{n}d\left(x_{n},y_{n}\right)\leq\lim_{n}d\left(x_{n},x_{n}'\right)+\lim_{n}d\left(x_{n}',y_{n}'\right)+\lim_{n}d\left(y_{n}',y_{n}\right)\overset{*}{=}\lim_{n}d\left(x_{n}',y_{n}'\right)=\overline{d}\left(\left[x_{n}'\right],\left[y_{n}'\right]\right)$$

donde * se debe a que $x_n \sim x_n' \iff \lim_n d(x_n, x_n') = 0$. Para ver la otra desigualdad y comprobar la igualdad el razonamiento es exactamente igual.

- Es no negativa: $\overline{d}([x_n], [y_n]) = \lim_n d(x_n, y_n) \ge 0$, por ser límite de números no negativos. Además, $\overline{d}([x_n], [y_n]) = 0 \iff \lim_n d(x_n, y_n) = 0 \iff (x_n) \sim (y_n) \iff [x_n] = [y_n]$
- Es simétrica: $\overline{d}\left(\left[x_{n}\right],\left[y_{n}\right]\right)=\lim_{n}d\left(x_{n},y_{n}\right)=\lim d\left(y_{n},x_{n}\right)=\overline{d}\left(\left[y_{n}\right],\left[x_{n}\right]\right)$.
- Verifica la designaldad triangular: $\overline{d}([x_n], [y_n]) = \lim_n d(x_n, y_n) \le \lim_n d(x_n, z_n) + d(z_n, y_n) = \lim_n d(x_n, z_n) + \lim_n d(z_n, y_n) = \overline{d}([x_n], [z_n]) + \overline{d}([z_n], [y_n]).$

Ahora, veamos que \overline{S} es una compleción de S:

• S es denso en \overline{S} : sea $\emptyset \neq A \subset \overline{S}$ un abierto de \overline{S} , entonces

$$S \cap A = \{ [x_n] \in A : x_n = x \in S, \forall n \}$$

Sea $[x_n] \in A$ y tomemos $\varepsilon > 0$ de forma que $B = B_{\overline{d}}([x_n], \varepsilon) \subset A$. Supongamos que $S \cap A$ es vacío, de forma que lo es $S \cap B$, en particular. Eso quiere decir que, $\forall s \in S, \overline{d}([x_n], [s]) \geq \varepsilon$, o sea

$$\lim_{n} d(x_{n}, s) \ge \varepsilon, \ \forall s \in S$$

no obstante, por la definición de \overline{S} , sabemos que (x_n) es de Cauchy en S, por lo que $\exists n_0 | \forall n, m > n_0, d(x_n, x_m) < \varepsilon$, lo cual es una contradicción (pues encontramos un elemento $x_m \in S$ con $\lim_n d(x_n, x_m) < \varepsilon$), que surge de suponer que $S \cap A = \emptyset$. Por tanto, ha de ser $S \cap A \neq \emptyset$ y S es denso en \overline{S} .

- \overline{S} es completo:
 - **Lema:** sea (M,d) un espacio métrico, (b_n) una sucesión de Cauchy en M y sea (a_n) una sucesión en M tal que $d(a_n,b_n)<\frac{1}{n}, \forall n$. Entonces (i) (a_n) es de Cauchy en M y (ii) $\lim_n a_n=p\in M\iff \lim_n b_n=p\in M$.

Dem: (i) $d(a_m, a_n) \le d(a_m, b_m) + (b_m, b_n) + d(b_n, a_n)$ y para $\varepsilon > 0, \exists n_1 | \frac{1}{n_1} < \frac{\varepsilon}{3}$ y para $n, m > n_1$ es

$$d\left(a_{m}, a_{n}\right) \leq \frac{2\varepsilon}{3} + d\left(b_{n}, b_{m}\right)$$

y por ser b_n de Cauchy, $\exists n_2 | n, m > n_2 \implies d(b_m, b_m) < \frac{\varepsilon}{3}$. Si $n_0 = \max\{n_1, n_2\}$, entonces, para $n, m > n_0$ se tiene

$$d\left(a_{m},a_{n}\right)<\varepsilon$$

 $y(a_n)$ es de Cauchy.

(ii)[\Longrightarrow] Se tiene que $\lim_n d(a_n, p) = 0$, y $0 \le d(b_n, a_n) \le \frac{1}{n}$, por lo que $\lim_n d(a_n, b_n) = 0$. Entonces

$$0 \le d(b_n, p) \le d(b_n, a_n) + d(a_n, p)$$

y tomando límites tenemos $\lim_n d(b_n, p) = 0 \iff \lim_n b_n = p$. $[\Leftarrow]$ Igual.

- Sea (α_n) ⊆ \overline{S} una sucesión de Cauchy en \overline{S} , tenemos que ver que es convergente. Como S es denso en \overline{S} , para todo $n \in \mathbb{N}, \exists y_n \in S$ tal que $\overline{d}([y_n], \alpha_n) < \frac{1}{n}$. Entonces, por (i) del lema, la sucesión (y_n) es también de Cauchy en \overline{S} , pero es una sucesión de sucesiones constantes, por lo que también es de Cauchy en S. Por ser S denso en \overline{S} , se tiene que $\lim_n ([y_n]) = y \in \overline{S}$, y por (ii) del lema se tiene $\lim_n \alpha_n = y$.
- $i(S) \subset \overline{S}$: obvio, tomando, para cada $x \in S$ la sucesión $x_n = x, \forall n$.
- i(S) es denso en \overline{S} : sea $\emptyset \neq A \subset \overline{S}$ un abierto de \overline{S} , entonces

$$S\cap A=\{[x_n]\in A: x_n=x\in S, \forall n\}$$

Sea $[x_n] \in A$ y tomemos $\varepsilon > 0$ de forma que $B = B_{\overline{d}}([x_n], \varepsilon) \subset A$. Supongamos que $S \cap A$ es vacío, de forma que lo es $S \cap B$, en particular. Eso quiere decir que, $\forall s \in S, \overline{d}([x_n], [s]) \geq \varepsilon$, o sea

$$\lim_{n} d(x_{n}, s) \ge \varepsilon, \ \forall s \in S$$

no obstante, por la definición de \overline{S} , sabemos que (x_n) es de Cauchy en S, por lo que $\exists n_0 | \forall n, m > n_0, d(x_n, x_m) < \varepsilon$, lo cual es una contradicción (pues encontramos un elemento $x_m \in S$ con $\lim_n d(x_n, x_m) < \varepsilon$), que surge de suponer que $S \cap A = \emptyset$. Por tanto, ha de ser $S \cap A \neq \emptyset$ y S es denso en \overline{S} .

• $d(x,y) = \overline{d}(i(x),i(y))$:

$$\overline{d}\left(i\left(x\right),i\left(y\right)\right) = \overline{d}\left(\left[x_{n} = x\right],\left[y_{n} = y\right]\right) = \lim_{n} d\left(x_{n},y_{n}\right) = \lim_{n} d\left(x,y\right) = d\left(x,y\right)$$

Falta ver la unicidad salvo isometrías.

Para ello, sea \overline{R} una completación de S. Entonces S es isométrico a un subespacio denso de \overline{R} . Podemos asumir que S es subespacio de \overline{R} . Al ser S denso en \overline{R} , $\forall r \in \overline{R}$, $\exists (x_n) \subset X$ tal que $\lim_n x_n = y$, por lo que (x_n) es de Cauchy.

Definimos

$$g: \overline{R} \longrightarrow \overline{S}$$
$$y \mapsto [(x_n)]$$

La aplicación está bien definida, porque si otra sucesión tiene a y como límite, entonces el límite de las distancias entre las dos sucesiones será 0, y estarán en la misma clase de equivalencia. Ahora

$$g(y) = g(y') \iff [(x_n)] = [(x'_n)] \implies \lim_{n} d(x_n, x'_n) = 0 \implies y = y'$$

y g es inyectiva.

Ahora, si $[(x_n)] \in \overline{S}$, la sucesión es de Cauchy en $X \subset \overline{R}$, por lo que converge a $y \in \overline{R}$, luego $g(y) = [(x_n)]$, y g es sobreyectiva.

Falta comprobar que conserva distancias:

$$\overline{d}\left(g\left(y\right),g\left(y'\right)\right) = \overline{d}\left(\left[\left(x_{n}\right)\right],\left[\left(x'_{n}\right)\right]\right) = \lim_{n} d\left(x_{n},x'_{n}\right) = d\left(\lim_{n} x_{n},\lim_{n} x'_{n}\right) = d\left(y,y'\right)$$

Por tanto, g es una isometría, y \overline{S} único salvo isometrías.