

The MESSAGE_{ix} modeling framework for *i*ntegrated and *x*-cutting analysis

7-10 Sep 2020

Energy Program, International Institute for Applied Systems Analysis (IIASA), Austria

The MESSAGE_{ix} workshop team, Sep 2020

Behnam Zakeri

Paul Kishimoto

Oliver Fricko

Francesco Lovat

Muhammad Awais

Energy Program, International Institute for Applied Systems Analysis (IIASA), Austria

MESSAGE_{ix} workshop

Agenda for the week

- **Day 1**: Introduction to the MESSAGE_{ix} framework
 - ⇒ Discuss practice of modeling & model development.
 - ⇒ Learn terminology: model, framework, platform, etc.
 - ⇒ Understand the different components of MESSAGEix and their capabilities.
 - ⇒ Resolving issues of installation (if needed).
- **Days 2**: MESSAGE $_{ix}$ as an optimization model
- Describing the main objective of the mathematical model
- A technology-based, bottom-up modeling logic
- Use of basic model framework capabilities, using a rudimentary example.

$MESSAGE_{ix}$ modeling workshop (2)

Agenda for the week

- Day 3: Energy modeling using MESSAGE_{ix}
 - ⇒ Main modelling parameters and input data of a MESSAGEix model
 - \Rightarrow Walk through some simple, complete energy models from the MESSAGE_{ix} tutorials.
 - ⇒ Adding energy policy constraints to a MESSAGEix model

• Day 4:

- ⇒ Post-processing or "reporting": calculations based on model outputs.
- ⇒ Good research, modeling, and software development practices.
- ⇒ Continous integration

Today's agenda

- Examples of MESSAGE_{ix} applications.
- Breakout discussion: modeling and model development.
- Detailed tour of the MESSAGE is "ecosystem" of tools, including terminology.
- Installing the software (preparation for Sessions 2–4).

Ground rules

- Questions are welcome and valid.
 - ⇒ Raise your hand (using Zoom features).
 - ⇒ Ask in chat: "Everyone", or to a colleague with " (IIASA)" in their name.
 - ⇒ Follow-up via e-mail.
- Respect for diversity of participants, their level of knowledge, and their time.

The MESSAGE model at IIASA

IIASA and MESSAGE are at the center of global energy policy assessment

- Since 1980s used for assessing sustainable development and energy/climate policies at national, regional and global scales.
- MESSAGE: a systems engineering, long-term planning optimization model.
- MESSAGE widely in use in other organizations like IAEA and member countries.
- In 2018, transformed to an open-source modelling framework: MESSAGEix
- Relying on the state-of-the-art and powerful data management infrastructure
- Building a community of developers, transparency and knowledge sharing
- Sample publications:
 - ⇒ A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Grubler et al., Nature Energy (2018)
 - ⇒ Energy investment needs for fulfilling the Paris Agreement and achieving the SDGs.

 McCollum et al., Nature Energy (2018)

http://www.ipcc.ch/report/sr15/)

IIASA's Integrated Assessment Model (IAM)

MESSAGE_{ix} as an energy system model is at the core

07 September 2020

MESSAGE_{ix} example projects 1: Global Electricity Interconnector

What is the impact on renewbel energy integration?

Image: GEIDCO

MESSAGE example projects 2: Regional energy transition

Central Asia: conflict between energy and water demand

Modelling of hydropower storage solutions and sub-annual timeslices

- Impact of gas demand in China on gas exports from the region
- Coal and gas demand in a 2-degree world
- Role of renewables in the region
- Assessment of investment needs

Oil pipeline Natural gas pipeline New infastructure - complete New infrastructure - under construction New infrastructure - to be repurposed KAZAKHSTAN KAZAKHSTAN Atasu RUSSIA Arail Sea UZBEKISTAN Tashkent KYRGYSTAN Ashgabat TAJIKISTAN CHINA Ashgabat

image: moneyw eek.com

Investment needs in Central Asia (2020-2050)

 $REF: \ reference\ scenario, NDC: nationally\ determined\ contributions, P2C: 2-degree$

MESSAGE_{ix} example projects 3: NEST model framework

Transboundary analysis of water-energy-land use (Indus Basin)

MESSAGE_{ix} example projects 4: South Africa (MESSAGE-ZA)

Shale gas in South Africa

- South Africa beyond shale gas to meet NDC pledges
- Gas can function as a transition fuel from a coal to renewables
- Methane emissions from shale gas production need to be managed to avoid climate effects of gas usage
- Water scarcity might be an obstacle to shale gas use

Source: EIA - World Shale Gas Resources (April 2011)

Orthofer, C., Huppmann, D. and Krey, V., 2019. South Africa After Paris—Fracking Its Way to the NDCs?. Frontiers in Energy Research, 7, pp.art-20.

September 7, 2020

MESSAGE_{ix} example projects: others

National Policies and International Agreements

- Role of Brazilian Amazon on country's NDC
- Energy demand in India and vulnerability assessment
- Co-developing water-energy-land modeling tools with the Indian government
- Role of gas exploration in energy security of Israel

12 September 7, 2020

The remainder of today's session

What to expect?

- Learn about capabilities and organization of the MESSAGE $_{ix}$ framework.
- Learn about the installation and location of the installed packages.
- Be able to find the relevant source for more information about the framework.

Requirements for working on MESSAGE ix

- Knowledge on data analysis and mathematical modeling.
- Good knowledge of at least one programming language.

Patience, motivation, and curiosity.

Modeling and Model Development

What's a good model like?

- We use models to represent and investigate a phenomenon in real world or hypothetically
- Examples: building model, forestry model, energy and climate models etc.

- Elements of modeling work:
 - Structural relations (equations)
 - Data
 - States of the system (scenarios and simulation)
 - etc.

openenergymonitor.org

Question

What are the features of a good modeling tool? What is the best practice in model development?

Everyone:

- Think about your experiences in the past and your expectations from this workshop
- List three items that are important to you (2 min)

Group work (8 min):

- You will be grouped in parallel breakout sessions
- Possibly turn on your video, introduce yourself to each other
- Discuss your views on the questions

Question

What are the features of a good modeling tool? What is the best practice in model development?

Modeling and Model Development (2)

Discussion in group: what do we expect from a good model?

Complexity vs. simplicity Communication, Visualization

User-friendly

Documentation
Transparency
Structure and purpose

Data
Data analysis and versioning

Best practice in model development and maintenance

Modeling team Collaboration Tracking changes Validity Uncertainty

Responses from 2019-10 workshop attendees

Application of the model Technology vs. case study

The MESSAGE_{ix} modeling framework: Goals and Vision

Aim and vision of the framework as a whole

Goal: Developing a platform for streamlined modeling

- ⇒ using state-of-the-art tools for data processing,
- ⇒ building versatile & powerful mathematical models,
- ⇒ applying best practice of collaborative research

Vision:

- integration of models & scientific analysis between different disciplines
- highest level of transparency and scientific reproducibility for a wide audience
- flexibility: across spatial and temporal levels of disaggregation

The MESSAGE_{ix} modeling framework: 1. Data management in ixmp

A central data management system (the ix modeling platform, ixmp)

• An **open** platform for integrated and x-cutting analysis of energy, climate, the environment, and sustainable development.

ixmp, ix modeling platform or simply "platform" will be used interchangeably

The MESSAGE_{ix} modeling framework: 2. Database backend

Supported by a high-performance database architecture

The platform (ixmp)...

- ... is based on a Java interface as gateway to the data
- ... supports both an **ORACLE database backend** for high-performance, collaborative modeling and **local, file-based databases** for getting started or working "on the fly"

The MESSAGE_{ix} modeling framework: 3. Integration with GAMS

Connected to high-performance numerical programming

MESSAGE_{ix} in an Integrated Assessment Model (IAM). Its mathematical formulation is in GAMS, a versatile software for mathematical programming & optimization.

 \Rightarrow MESSAGE_{ix} is the first model fully integrated with the ix modeling platform (ixmp)

Suite of mathematical models

MESSAGEix & MACRO

Versatile spatial systems-economic model

- ✓ Perfect-foresight or recursive-dynamic approach
- ✓ Easy to add new features & extensions
- ✓ Flexible spatial & temporal detail

Water-land integration

The MESSAGE_{ix} modeling framework: 4. Documentation

Implementing tools for comprehensive documentation

The framework ensures transparency and intelligibility through "auto-documentation" of all codes & packages on readthedocs.com

Documentation of all scientific programming packages using **Sphinx**

Documentation of the mathematical equations generated

automatically from **I** TrX mark-up in the GAMS code

The MESSAGE_{ix} modeling framework: 5. Scientific programming

Interfaces to scientific programming for advanced users

Python and R Application Programming Interfaces (APIs)

Scientific programming API

Seamless integration with powerful, open and flexible scientific programming languages

- ✓ Efficient implementation of workflows
- ✓ Standardized interface for data processing

The MESSAGE_{ix} modeling framework: 6. Collaborative research

Geared towards best-practice in collaborative research

The modeling framework facilitates collaborative model development through comprehensive **version control** of data, model codes and scripts.

All contents of both MESSAGE $_{ix}$ and ixmp are open-source and online as GitHub repositories:

https://github.com/iiasa/message_ix

https://github.com/iiasa/ixmp/

In the last session of this workshop (Session IV) there will be more explanation on how to collaborate through GitHub.

The MESSAGE_{ix} modeling framework: 7. Interactive web user interface

An intuitive gateway to modeling data for researchers and a wider audience

The Scenario Explorer allows for the re-use of scenario data by other research communities

The MESSAGE_{ix} modeling framework: Overview

Facilitating transparency and reproducibility of research

Key features of the *ix* modeling platform (*ixmp*)

26 (<u>Huppmann et al. 2019</u>) 07 September 2020

The MESSAGE_{ix} modeling framework: Main sources of information

- Main page in ReadTheDocs:
 - → https://docs.messageix.org/en/stable/
- Open-source GitHub repository:
 - → https://github.com/iiasa/message_ix
 (contribution guide)
- Files for the tutorials:

 https://github.com/iiasa/message_ix/tree/master/tutorial

For more detailed information on ixmp:

- Main page in ReadTheDocs:
 - → https://docs.messageix.org/projects/ixmp/en/stable/
- Open-source GitHub repository:
 - → https://github.com/iiasa/ixmp/

07 September 2020

The MESSAGE_{ix} modeling framework: Simplistic workflow of modeling

Flexible and high-performance processes

- Interface a *central place* for creating, loading, or working with a scenario
- Data can be modified through the interface or other input files (e.g., Excel)
- Model data and results: loaded from database, model GDX files, etc.

The MESSAGE_{ix} modeling framework: Prerequisites

MESSAGE ix & ixmp, encapsulated as two Python packages

The workshop is designed to be accessible for participants with different backgrounds and levels of experience with the modeling. However, there are some pre-requisite knowledge and skills, including:

- Elementary computer programming (preferably in the Python or R language);
 - ⇒ especially, basic knowledge of **pandas**, a Python package for data analysis (**pandas** tutorials)
- Fundamental concepts of mathematical modeling, optimization, and linear programming;
- Energy systems (e.g., energy supply, energy conversion technologies, and demand sectors and their linkages)
 - ⇒ also energy levels and techno-economic parameters

For a complete list, plus links to learning resources, see "<a href="Pre-requisite knowledge & skills" in the documentation

The MESSAGE_{ix} modeling framework: Installation

Two types of installation

1. Install MESSAGE_{ix} through Anaconda

- You only want to use the public release (<u>latest version</u> is v3.1.0; ~every 6 months).
- You don't aim to contribute to the code on GitHub.
- Still possible to develop code and a model specific to your research needs.

2. Install through the source (advanced users, developers)

- You want to test and review the latest features (i.e., since the latest public release).
- You want to contribute to the code.
- You want to (learn to) participate in collaborative code development.

Basic usage	Advanced usage
Install the released version of message_ix.	Install the development version (source code).
Use a laptop/desktop computer.	Use cloud computing/HPC servers.
Store data on your local machine.	Store data in a shared database.
Run/modify the tutorial notebooks.	Build large models from scratch.
	Collaborate on MESSAGEix-GLOBIOM.
Use the mathematical formulation as-is.	Modify the MESSAGE equations.
Use the message_ix Python/R code.	Contribute or request new features.

Link to installation page in ReadTheDocs: https://docs.messageix.org/en/stable/install.html

The MESSAGE_{ix} modeling framework: Installation (2)

Installation through Anaconda. A checklist

1. Install the required software

- Anaconda (add to PATH environment variable)
- GAMS (add to PATH environment variable)

2. Install MESSAGE_{ix}

Open Anaconda Prompt window, and type:

```
$ conda config --prepend channels conda-forge
```

- \$ conda create -n my-env
- \$ conda activate my-env
- \$ conda install message-ix
- \$ conda install conda_nb

3. Download tutorials (examples for learning the model)

```
$ message-ix dl /path/for/folder_for_tutorials
```

message_ix & message-ix:

- The actual name of the package installed is message ix
- message-ix is a command-line program used to install and run tasks from message ix

The MESSAGE_{ix} modeling framework: After installation

Check installation. What is where?

1. Check that installation was successful

- Verify that the version installed corresponds to the latest release by running the following commands on the command line:
 - \$ message-ix show-versions
- If an error occurs, this may mean that an older version has been installed and should be updated
 - \$ conda list message-ix

2. ixmp & message_ix Python packages

- Locate your Anaconda (python) library and navigate to site-packages (good to pin this path)
 - You can open windows command line and type:
 - \$ where conda
 - Then, navigate to *site-packages* (C:\...\Anaconda3\envs\my-env\Lib\site-packages)
- You should be able to see two packages ixmp and message_ix

3. Mathematical model folder

- Model/folder is by default under message_ix/folder
- Model/folder can be changed to a new folder (optional)

Open an *Anaconda Prompt* window, and type:

\$ message-ix copy-model /path/for/GAMS/files

The MESSAGE_{ix} modeling framework: Mathematical formulation

Everything is at your disposal!

Looking into the GAMS files

- Locate your "model" folder (for example, C:\...\message_ix\message_ix\model)
- Create a GAMS project there to work with the files more easily (optional)
- MESSAGE formulation in $(C: \dots \setminus model \setminus MESSAGE)$: for example look at $model_core.gms$
- **Input data** in (*C:\...\model\data*): GDX files
- **Output results** in (*C:\...\model\output*): GDX files

	_			
193	addon_up	Par	6	6,822
163	aeei	Par	3	726
44	balance_equality	Set	2	0
106	bound_activity_lo	Par	5	8,053
105	bound_activity_up	Par	5	11,845
136	bound_emission	Par	4	0
82	bound_extraction_up	Par	4	88
102	bound_new_capacity_lo	Par	3	150
101	bound_new_capacity_up	Par	3	4,098
104	bound_total_capacity_lo	Par	3	0
103	bound_total_capacity_up	Par	3	0
85	capacity_factor	Par	5	116,559
42	cat_addon	Set	2	29
32	cat_emission	Set	2	16
29	cat_node	Set	2	11
33	cat relation	Set	2	0

				1990	1995	2000	2005	2010	2020	2030	2040	2050	2060	2070	2080	2090	2100	2110
bio_istig	M1	year	cogeneration_heat					0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
bio_istig_ccs										0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
bio_ppl					0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
			scrubber_CO2_bio		0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
cement_CO2			scrubber_CO2_cement	0.28	0.28	0.28	0.25	0.23	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18
coal_adv			cogeneration_heat					0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
	lignite							0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
coal_adv_ccs	M1								0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
	lignite								0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
coal_ppl	M1				0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
			scrubber_CO2_coal		0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
	lignite		cogeneration_heat		0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
			scrubber_CO2_coal		0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
coal_ppl_u	M1		cogeneration_heat	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15							
	lignite			0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15							

Thank you very much for your attention!

Francesco Lovat

Research Assistant – Energy

International Institute for Applied Systems Analysis (IIASA)

Laxenburg, Austria

lovat@iiasa.ac.at

