1. Data Exploration

- Sentiment Analysis Dataset Consist of total 18,389 records
- Dataset is divided into training and test set in the ratio of 80-20%
- There are two attributes in which Phrases represent review of movies and Sentiment represents the target corresponding to reviews.
- Targets are 0,1,2,3 and 4 where 0,1 are considered as negative reviews, 2 is considered as neutral and 3 and 4 are considered as positive reviews.

df['target'].value_counts()

- 1 165(present of heart disease)
- 0 138(absence of heart disease)

Fig: Counts of male and female having Heart Disease which clearly shows that risk of heart disease in male is higher than the female.

Fig: above figure is the age distribution according to the presence of Heart Disease. It clearly shows below the age 40 there is a minimal chance of Heart Disease whereas between the ages 50 to 55 there is a higher chance of having Heart Disease.

2. Feature Extraction and preprocessing

df.isnull().sum()

There were no null values in all the records of the variables.

- Training and test data are splitted to X_train, y_train, X_test and y_test where X_train and X_test hold the features and y-train and y_test hold the target variable.
- Since before training we have encoded the categorical datas using OneHotEncoder.
- OneHotEncoder encodes categorical features as a one-not numerical array.
- Later we do the same procedure to preprocess the categorical features of test data.
- ❖ After encoding, the total number of both test and training dataset columns contain 23 features.

3. Grid Search

- Here, we used the Grid search for tuning the hyperparameter.
- Grid Search uses the Cross Validation technique to find the best hyperparameter.

Different hyperparameters defined for each classifier is shown below:

S.No	Classifier	Hyperparameters
1	SVC	Kernel: linear, rbf C: 1,10,5
2	DecisionTreeClassifier	max_depth: 2,3,5,8,6,4 min_samples_leaf : 12, 8, 2,14
3	RandomForestClassifier	N_estimators: 10,50,100 max_features: 1,0.5,0.8, 0.1 Min_samples_leaf: 12,1,5,8
4	ExtraTreesClassifier	N_estimators: 10,50,100 max_features: 1,0.5,0.8, 0.1, Min_samples_leaf: 12,1,5,8
5	AdaBoostClassifier	N_estimators: 5,10,20,30 Learning_rate: 0.5,0.1,0.001,0.0001
6	GradientBoostingClassifier	N_estimators: 10,20,40,45 learning_rate: 0.05,0.1, 0.01, 0.2, 0.5 Min_samples_split: 2,3,5

S.No	Classifier	Best Hyperparameters
1	SVC	Kernel: linear C: 1
2	DecisionTreeClassifier	max_depth: 3 min_samples_leaf : 14
3	RandomForestClassifier	N_estimators: 50 max_features: 1 Min_samples_leaf: 5
4	ExtraTreesClassifier	N_estimators: 10 max_features: 0.1, Min_samples_leaf:5
5	AdaBoostClassifier	N_estimators: 30 Learning_rate: 0.1
6	GradientBoostingClassifier	N_estimators: 10 learning_rate: 0.1 Min_samples_split: 2

4. Model Evaluation and Comparison

Below table shows the accuracy of each classifier for the dataset of Heart Disease.

Classifier	F1-macro
SVC	
DecisionTreeClassifier	
RandomForestClassifier	
ExtraTreesClassifier	
AdaBoostClassifier	
GradientBoostingClassifier	

The accuracy rate of GradientBoostingClassifier is higher compared to other five classifiers. Hence, GradientBoostingClassifier with best hyperparameter **N_estimators**: 10, **learning_rate**: 0.1 and **Min_samples_split**: 2 is chosen as the best classification algorithm for the Heart Disease Dataset.