ভৃতীয় অধ্যায় পদার্থের গঠন (Structure of Matter)

হাইড্রোজেন পরমাণুর বিভিন্ন শক্তিস্তরে ইলেকট্রনের বিন্যাস

তোমরা কি কখনো ভেবে দেখেছ আমাদের চারপাশের জিনিসগুলো কী দিয়ে তৈরি? তোমার শরীরই বা কী দিয়ে তৈরি? হাাঁ, তোমাদের মতো প্রাচীন দার্শনিকেরাও এ নিয়ে বহু চিন্তা-ভাবনা করেছেন। প্রাচীন গ্রিক দার্শনিকেরা ভাবতেন মাটি, পানি, বায়ু এবং আগুন ইত্যাদি মৌলিক পদার্থ আর অন্য সকল বস্তু এদের মিশ্রণে তৈরি। গ্রিসের দার্শনিক ডেমোক্রিটাস প্রথম বলেছিলেন, প্রত্যেক পদার্থের একক আছে যা অতি ক্ষুদ্র আর অবিভাজ্য। তিনি এর নাম দেন এটম। কোনো বৈজ্ঞানিক পরীক্ষা দিয়ে এটি প্রমাণ করা সম্ভব হয়নি বলে এটি কোনো গ্রহণযোগ্যতা পায়নি। অবশেষে 1803 সালে ব্রিটিশ বিজ্ঞানী জন ডাল্টন বিভিন্ন পরীক্ষায় প্রাপ্ত ফলাফলের উপর ভিত্তি করে পরমাণু সম্পর্কে একটি মতবাদ দেন যে, প্রতিটি পদার্থ অজস্র ক্ষুদ্র এবং অবিভাজ্য কণার সমন্বয়ে গঠিত। তিনি দার্শনিক ডেমোক্রিটাসের সম্মানে এ একক কণার নাম দেন Atom, যার অর্থ পরমাণু। এর পরে প্রমাণিত হয় যে, পরমাণু অবিভাজ্য নয়।

এদের ভাঙলে পরমাণুর চেয়েও ক্ষুদ্র কণিকা ইলেকট্রন, প্রোটন, নিউট্রন ইত্যাদি পাওয়া যায়। পরমাণুর বিভিন্ন মডেল, পরমাণুর ইলেকট্রন বিন্যাস ইত্যাদি এ অধ্যায়ে আলোচনা করা হবে।

- মৌলের ইংরেজি ও ল্যাটিন নাম থেকে তাদের প্রতীক লিখতে পারব।
- মৌলিক ও স্থায়ী কণিকাগুলোর বৈশিষ্ট্য বর্ণনা করতে পারব।
- পারমাণবিক সংখ্যা, ভর সংখ্যা, আপেক্ষিক পারমাণবিক ভর ব্যাখ্যা করতে পারব।
- আপেক্ষিক পারমাণবিক ভর থেকে আপেক্ষিক আণবিক ভর হিসাব করতে পারব।
- পরমাণুর ইলেকট্রন, প্রোটন ও নিউট্রন সংখ্যা হিসাব করতে পারব।
- আইসোটোপের ব্যবহার ব্যাখ্যা করতে পারব।
- পরমাণুর গঠন সম্পর্কে রাদারফোর্ড ও বোর পরমাণু মডেলের বর্ণনা করতে পারব।
- রাদারফোর্ড ও বোর পরমাণু মডেলের মধ্যে কোনটি বেশি গ্রহণযোগ্য তা ব্যাখ্যা করতে
 পারব।
- পরমাণুর বিভিন্ন কক্ষপথে এবং কক্ষপথের বিভিন্ন উপস্তরে পরমাণুর ইলেকট্রনসমূহকে
 বিন্যাস করতে পারব।

3.1 মৌলিক ও যৌগিক পদার্থ (Elements and Compounds)

মৌলিক পদার্থ

তোমরা নিশ্চয় সোনা, রুপা বা লোহা দেখেছ। বিশুন্ধ সোনাকে তুমি যতই ভাঙ না কেন সেখানে সোনা ছাড়া আর কিছু পাবে না। রুপা এবং লোহার ক্ষেত্রেও একই কথা প্রযোজ্য। যে পদার্থকে ভাঙলে সেই পদার্থ ছাড়া অন্য কোনো পদার্থ পাওয়া যায় না তাকে মৌলিক পদার্থ বা মৌল বলে। এরকম আরও কিছু মৌলের উদাহরণ হলো নাইট্রোজেন, ফসফরাস, কার্বন, অক্সিজেন, হিলিয়াম, ক্যালসিয়াম, আর্গন, ম্যাগনেসিয়াম, সালফার ইত্যাদি। এ পর্যন্ত 118টি মৌল আবিষ্কৃত হয়েছে। এগুলোর মধ্যে 9৪টি মৌল প্রকৃতিতে পাওয়া যায়। বাকি মৌলগুলো গবেষণাগারে তৈরি করা হয়েছে। এগুলোকে কৃত্রিম মৌল বলে। তুমি কি জানো তোমার শরীরে মোট 26 ধরনের ভিন্ন ভিন্ন মৌল আছে?

যৌগিক পদার্থ

তোমরা জেনেছ যে, মৌলিক পদার্থকে ভাঙলে শুধু ঐ পদার্থই পাওয়া যাবে। পানিকে যদি ভাঙা হয় (অর্থাৎ রাসায়নিকভাবে বিশ্লেষণ করা যায়) তবে কিন্তু দুটি ভিন্ন মৌল হাইড্রোজেন ও অক্সিজেন পাওয়া যায়। আবার, লেখার চককে যদি ভাঙা যায় তাহলে সেখানে ক্যালসিয়াম, কার্বন ও অক্সিজেন এ তিনটি মৌল পাওয়া যাবে। যে সকল পদার্থকে ভাঙলে দুই বা দুইয়ের অধিক মৌল পাওয়া যায় তাদেরকে যৌগিক পদার্থ বলে। যৌগের মধ্যে মৌলসমূহের সংখ্যার অনুপাত সব সময় একই থাকে। যেমন—যেখান থেকেই পানির নমুনা সংগ্রহ করা হোক না কেন রাসায়নিকভাবে বিশ্লেষণ করা হলে সব সময় দুই ভাগ হাইড্রোজেন এবং এক ভাগ অক্সিজেন পাওয়া যাবে অর্থাৎ পানিতে হাইড্রোজেন ও অক্সিজেনের পরমাণুর সংখ্যার অনুপাত 2 : 1 । যৌগের ধর্ম কিন্তু মৌলসমূহের ধর্ম থেকে সম্পূর্ণ আলাদা। যেমন—সাধারণ তাপমাত্রায় হাইড্রোজেন ও অক্সিজেন গ্যাসীয় কিন্তু এদের থেকে উৎপন্ন যৌগ পানি সাধারণ তাপমাত্রায় তরল।

3.2 পরমাণু ও অণু (Atoms and Molecules)

পরমাণু হলো মৌলিক পদার্থের ক্ষুদ্রতম কণা যার মধ্যে মৌলের গুণাগুণ থাকে। যেমন— নাইট্রোজেনের পরমাণুতে নাইট্রোজেনের ধর্ম বিদ্যমান আর অক্সিজেনের পরমাণুতে অক্সিজেনের ধর্ম বিদ্যমান।

দুই বা দুইয়ের অধিক সংখ্যক পরমাণু পরস্পরের সাথে রাসায়নিক বন্ধন—এর মাধ্যমে যুক্ত থাকলে তাকে অণু বলে। রাসায়নিক বন্ধন সম্পর্কে তোমরা পঞ্চম অধ্যায়ে বিস্তারিত জানবে। দুটি অক্সিজেন পরমাণু (O) পরস্পরের সাথে যুক্ত হয়ে অক্সিজেন অণু (O_2) গঠিত হয়। আবার, একটি কার্বন পরমাণু (C) দুটি

অক্সিজেন পরমাণুর (O) সাথে যুক্ত হয়ে একটি কার্বন ডাই-অক্সাইড অণু (CO_2) গঠিত হয়। একই মৌলের একাধিক পরমাণু পরস্পরের সাথে যুক্ত হলে তাকে মৌলের অণু বলে। যেমন $-O_2$ । ভিন্ন ভিন্ন মৌলের পরমাণু পরস্পর যুক্ত হলে তাকে যৌগের অণু বলে। যেমন $-CO_2$ ।

3.3 মৌলের প্রতীক (Symbols of Elements)

কোনো মৌলের ইংরেজি বা ল্যাটিন নামের সংক্ষিপত রূপকে প্রতীক বলে। প্রত্যেকটি মৌলকে সংক্ষেপে প্রকাশ করতে তাদের আলাদা আলাদা প্রতীক ব্যবহার করা হয়। মৌলের প্রতীক লিখতে কিছু নিয়ম অনুসরণ করতে হয়।

টেবিল 3.01: মৌলের নামকরণ

মৌল	ইংরেঞ্চি নাম	প্রতীক
হাইড্রোজেন	Hydrogen	Н
অক্সিজেন	Oxygen	0
নাইট্রোজেন	Nitrogen	N

(a) মৌলের ইংরেজি নামের প্রথম অক্ষর দিয়ে প্রতীক লেখা হয় এবং তা ইংরেজি বর্ণমালার বড় হাতের অক্ষর দিয়ে প্রকাশ করা হয়।

টেবিল 3.02: মৌলের নামকরণ (প্রথম অক্ষর এক)

মৌল	ইংরেজি নাম	প্রতীক
কার্বন	Carbon	С
ক্লোরিন	Chlorine	cl
ক্যালসিয়াম	Calcium	Ca

মৌল	ইংরেজি নাম	প্রতীক
কোবাল্ট	Cobalt	Со
ক্যাডমিয়াম	Cadmium	Cd
ক্রোমিয়াম	Chromium	Cr

টেবিল 3.03: মৌলের নামকরণ (ল্যাটিন নাম)

মৌল	ল্যাটিন নাম	প্রতীক
সোডিয়াম	Natrium	Na
কপার	Cuprum	Cu
পটাশিয়াম	Kalium	K
সিলভার	Argentum	Ag
টিন	Stannum	Sn
এন্টিমনি	Stibium	Sb

মৌল	ল্যাটিন নাম	প্রতীক
গোল্ড	Aurum	Au
লেড	Plumbum	Pb
টাংস্টেন	Wolfram	W
আয়রন	Ferrum	Fe
মারকারি	Hydrurgyrum	Hg

(b) যদি দুই বা দুইয়ের অধিক মৌলের ইংরেজি নামের প্রথম অক্ষর একই হয় তবে একটি মৌলকে নামের প্রথম অক্ষর (ইংরেজি বর্ণমালার বড় হাতের) দিয়ে প্রকাশ করা হয়। অন্যগুলোর ক্ষেত্রে প্রতীকটি দুই অক্ষরে লেখা হয়। নামের প্রথম অক্ষরটি ইংরেজি বর্ণমালার বড় হাতের অক্ষর এবং নামের অন্য একটি অক্ষর ছোট হাতের অক্ষর দিয়ে লেখা হয়।

(c) কিছু মৌলের প্রতীক তাদের ল্যাটিন নাম থেকে নেওয়া হয়েছে।

একক কাজ

কাছ: চতুর্থ অধ্যায়ের পর্যায় সারণি থেকে কিছু মৌলের নাম ও প্রতীক সংগ্রহ করে তোমার রসায়ন শিক্ষককে দেখাও।

3.4 সংকেত (Formula)

হাইড্রোজেনের একটি অণুকে প্রকাশ করতে H_2 ব্যবহার করা হয়। যার অর্থ হলো একটি হাইড্রোজেনের অণুতে দুটি হাইড্রোজেনের পরমাণু (H) আছে। আবার, পানির একটি অণুকে প্রকাশ করতে H_2O ব্যবহার করা হয়। এর অর্থ হচ্ছে পানির একটি অণুতে দুটি হাইড্রোজেন (H) এবং একটি অক্সিজেন পরমাণু (O) থাকে। নিচে সাধারণ কয়েকটি অণুর সংকেত দেখানো হলো:

টেবিল 3.04: অণুর সংকেত

অপুর নাম	সংকেত
নাইট্রোজেন	N ₂
অ্যামোনিয়া	NH ₃
ক্লোরিন	Cl ₂
সালফিউরিক এসিড	H ₂ SO ₄
হাইড্রোক্রোরিক এসিড	HCl

3.5 পরমাণুর ভেতরের কণা (The Particles Inside an Atom)

পরমাণু তিনটি কণা দিয়ে তৈরি। সেগুলো হচ্ছে ইলেকট্রন, প্রোটন এবং নিউট্রন। পরমাণুর কেন্দ্রের নিউক্লিয়াসে প্রোটন ও নিউট্রন থাকে এবং ইলেকট্রন নিউক্লিয়াসকে ঘিরে ঘুরতে থাকে।

ইলেকট্রন: ইলেকট্রন হলো পরমাণুর একটি মূল কণিকা যার আধান বা চার্জ ঋণাত্মক বা নেগেটিভ। এ আধানের পরিমাণ -1.60×10^{-19} কুলম্ব। একে e প্রতীক দিয়ে প্রকাশ করা হয়। একটি ইলেকট্রনের

ভর $9.11 \times 10^{-28} \ \mathrm{g}$ । ইলেকট্রনের আপেক্ষিক আধান -1 ধরা হয় এবং এর ভর প্রোটন ও নিউট্রনের তুলনায় 1840 গুণ কম। তাই আপেক্ষিক ভর শূন্য ধরা হয়।

প্রোটন: প্রোটন হলো পরমাণুর একটি মূল কণিকা যার চার্জ বা আধান ধনাত্মক বা পজেটিভ। এ আধানের পরিমাণ $+1.60 \times 10^{-19}$ কুলম্ব। একে p প্রতীক দিয়ে প্রকাশ করা হয়। একটি প্রোটনের ভর 1.67×10^{-24} g l প্রোটনের আপেক্ষিক আধান +1 এবং আপেক্ষিক ভর 1 ধরা হয়।

প্রতীক মূল কণিকার আপেক্ষিক প্রকৃত আধান বা চার্জ আপেক্ষিক প্রকৃত ভর নাম আধান ভর ইলেকট্রন -1.60 × 10⁻¹⁹ কুলায়। $9.110 \times 10^{-28} \text{ g}$ -1 0 e প্রোটন +1.60 × 10⁻¹⁹ কুলম। $1.673 \times 10^{-24} \,\mathrm{g}$ +1 1 p নিউট্রন $1.675 \times 10^{-24} \,\mathrm{g}$ 0 0 1 n

টেবিল 3.05: মূল কণিকা

নিউট্রন: নিউট্রন হলো পরমাণুর আরেকটি মূল কণিকা যার কোনো আধান বা চার্জ নেই। হাইড্রোজেন ছাড়া সকল মৌলের পরমাণুতেই নিউট্রন রয়েছে। একে n প্রতীক দিয়ে প্রকাশ করা হয়। এর ভর প্রোটনের ভরের চেয়ে সামান্য বেশি। নিউট্রনের আপেক্ষিক আধান 0 আর আপেক্ষিক ভর 1 ধরা হয়।

3.5.1 পারমাণবিক সংখ্যা (Atomic Number)

কোনো মৌলের একটি পরমাণুর নিউক্লিয়াসে উপস্থিত প্রোটনের সংখ্যাকে ঐ মৌলের পারমাণবিক সংখ্যা বলা হয়। যেমন— হিলিয়াম (He) এর একটি পরমাণুর নিউক্লিয়াসে দুটি প্রোটন থাকে। তাই হিলিয়ামের পারমাণবিক সংখ্যা হলো দুই। আবার, অক্সিজেন (O) পরমাণুর নিউক্লিয়াসে আটটি প্রোটন থাকে। তাই অক্সিজেনের পারমাণবিক সংখ্যা হলো আট। কোনো পরমাণুর পারমাণবিক সংখ্যা দ্বারা ঐ পরমাণুকে চেনা যায়। পারমাণবিক সংখ্যা 1 হলে ঐ পরমাণুটি হাইড্রোজেন, পারমাণবিক সংখ্যা 2 হলে ঐ পরমাণুটি হিলিয়াম। পারমাণবিক সংখ্যা 9 হলে ঐ পরমাণুটি ফ্লোরিন। অর্থাৎ পারমাণবিক সংখ্যাই কোনো পরমাণুর আসল পরিচয়। প্রোটন সংখ্যা বা পারমাণবিক সংখ্যাকৈ Z দিয়ে প্রকাশ করা হয়। যেহেতু প্রত্যেকটা পরমাণুই চার্জ নিরপেক্ষ অর্থাৎ মোট চার্জ বা আধান শূন্য তাই পরমাণুর নিউক্লিয়াসে যে কয়টি প্রোটন থাকে।

3.5.2 ভরসংখ্যা (Mass Number)

কোনো পরমাণুতে উপস্থিত প্রোটন ও নিউট্রন সংখ্যার যোগফলকে ঐ পরমাণুর ভরসংখ্যা বলে। ভরসংখ্যাকে A দিয়ে প্রকাশ করা হয়। যেহেতু ভরসংখ্যা হলো প্রোটন সংখ্যা ও নিউট্রন সংখ্যার যোগফল, কাজেই ভরসংখ্যা থেকে প্রোটন সংখ্যা বিয়োগ করলে নিউট্রন সংখ্যা পাওয়া যায়। সোডিয়ামের (Na) ভরসংখ্যা হলো 23, এর প্রোটন সংখ্যা 11, ফলে এর নিউট্রন সংখ্যা হচ্ছে 23 –11 = 12

কোনো পরমাণুর পারমাণবিক সংখ্যা পরমাণুর প্রতীকের নিচে বাম পাশে লেখা হয়, পরমাণুর ভরসংখ্যা প্রতীকের বাম পাশে উপরের দিকে লেখা হয়। যেমন— সোডিয়াম পরমাণুর প্রতীক Na এর পারমাণবিক সংখ্যা 11 এবং ভরসংখ্যা 23। এটাকে এভাবে প্রকাশ করা যায়:

টেবিল 3.05: মৌলের সংক্ষিণ্ড প্রকাশ

মৌলের	পারমাণবিক সংখ্যা	ভরসংখ্যা	ইলেকট্রন	নিউট্রন সংখ্যা	সংক্ষিপ্ত
প্রতীক	বা প্রোটন সংখ্যা Z	A	সংখ্যা	A - Z	প্রকাশ
Н	1	1	1	0	1 1
Не	2	4	2	2	4 2 He

শিক্ষার্থীর কাজ: ${}^{7}_{3}$ Li এবং ${}^{9}_{4}$ Be মৌলের ভর সংখ্যা, প্রোটন সংখ্যা এবং ইলেকট্রন সংখ্যা

3.6 পরমাণুর মডেল (Atomic Model)

3.6.1 রাদারফোর্ডের পরমাণু মডেল

1911 খ্রিস্টাব্দে বিজ্ঞানী রাদারফোর্ড পরমাণুর গঠন সম্পর্কে একটি মডেল প্রদান করেন। মডেলটি এরকম:

- (a) পরমাণুর একটি কেন্দ্র আছে। এই কেন্দ্রের নাম নিউক্লিয়াস। নিউক্লিয়াসের ভেতরে প্রোটন এবং নিউক্লিয়াসের বাইরে ইলেকট্রন অবস্থান করে। যেহেতু আপেক্ষিকভাবে ইলেকট্রনের ভর শূন্য ধরা হয় কাজেই নিউক্লিয়াসের ভেতরে অবস্থিত প্রোটন এবং নিউট্রনের ভরই পরমাণুর ভর হিসেবে বিবেচনা করা হয়।
- (b) নিউক্লিয়াস অত্যন্ত ক্ষুদ্র এবং পরমাণুর ভেতরে বেশির ভাগ জায়গাই ফাঁকা।
- (c) সৌরজগতে সূর্যকে কেন্দ্র করে বিভিন্ন কক্ষপথে যেমন গ্রহগুলো ঘুরে তেমনি নিউক্লিয়াসকে কেন্দ্র করে বিভিন্ন কক্ষপথে ইলেকট্রনগুলো ঘুরছে। কোনো পরমাণুর নিউক্লিয়াসে যে কয়টি প্রোটন থাকে নিউক্লিয়াসের বাইরে সেই কয়টি ইলেকট্রন থাকে। যেহেতু প্রোটন এবং ইলেকট্রনের চার্জ একে অপরের সমান ও বিপরীত চিহ্নের, তাই পরমাণুর সামগ্রিকভাবে চার্জ শূন্য।
- (d) ধনাত্মক চার্জবাহী নিউক্লিয়াসের প্রতি ঋণাত্মক চার্জবাহী ইলেকট্রন এক ধরনের আকর্ষণ বল অনুভব করে। এই আকর্ষণ বল কেন্দ্রমুখী এবং এই কেন্দ্রমুখী বলের কারণে পৃথিবী যেরকম সূর্যের চারদিকে ঘুরে ইলেকট্রন সেরকম নিউক্লিয়াসের চারদিকে ঘুরে।

রাদারফোর্ডের পরমাণু মডেলকে সৌরজগতের সাথে তুলনা করা হয়েছে বলে এ মডেলটিকে সোলার সিস্টেম মডেল বা সৌর মডেল বলে। আবার, এ

চিত্র 3.01: রাদারফোর্ডের পরমাণু মডেল।

মডেলের মাধ্যমে বিজ্ঞানী রাদারফোর্ড সর্বপ্রথম নিউক্লিয়াস সম্পর্কে ধারণা দেন বলে এ মডেলটিকে নিউক্লিয়ার মডেলও বলা হয়।

রাদারফোর্ডের পরমাণু মডেলের সীমাবন্দতা

রাদারফোর্ডই সর্বপ্রথম নিউক্লিয়াস এবং ইলেকট্রনের কক্ষপথ সম্বন্ধে ধারণা দেন। তিনিই সর্বপ্রথম একটি গ্রহণযোগ্য পরমাণু মডেল প্রদান করলেও তার পরমাণু মডেলের কিছু সীমাবন্ধতা ছিল। সেগুলো হলো:

(a) এই মডেল ইলেকট্রনের কক্ষপথের আকার (ব্যাসার্ধ) ও আকৃতি সম্বন্ধে কোনো ধারণা দিতে পারেনি।

- (b) সৌরজগতের সূর্য ও গ্রহগুলোর সামগ্রিকভাবে কোনো আধান বা চার্জ নেই কিন্তু পরমাণুতে ইলেকট্রন এবং নিউক্লিয়াসের আধান বা চার্জ আছে। কাজেই চার্জহীন সূর্য এবং গ্রহগুলোর সাথে চার্যযুক্ত নিউক্লিয়াস এবং ইলেকট্রনের তুলনা করা হয়েছে। কাজেই চার্জহীন বস্তুর সাথে চার্জযুক্ত বস্তুর তুলনা সঠিক নয়।
- (c) একের অধিক ইলেকট্রনবিশিষ্ট পরমাণুতে ইলেকট্রনগুলো কীভাবে নিউক্লিয়াসের চারদিকে পরিভ্রমণ করছে তার কোনো ধারণা এ মডেলে দেওয়া হয়নি।
- (d) ম্যাক্সওয়েলের তত্ত্বানুসারে ইলেকট্রন নিউক্লিয়াসকে কেন্দ্র করে ঘূর্ণনের সময় ক্রমাগত শস্তি হারাতে থাকবে। ফলে ইলেকট্রনের ঘূর্ণন পথও ছোট হতে থাকবে এবং এক সময় সেটি নিউক্লিয়াসের উপর পতিত হবে। অর্থাৎ পরমাণুর অস্তিত্ব বিলুক্ত হবে বা পরমাণু স্থায়ী হবে না। কিন্তু প্রকৃতিতে সেটা ঘটে না অর্থাৎ ম্যাক্সওয়েলের তত্ত্বানুসারে রাদারফোর্ডের পরমাণু মডেল সঠিক নয়।

চিত্র 3.02: ইলেকট্রন শস্তি হারিয়ে নিউক্লিয়াসে পতিত হচ্ছে।

3.6.2 বোর পরমাণু মডেল

রাদারফোর্ডের পরমাণু মডেলের ত্রুটিগুলোকে সংশোধন করে 1913 খ্রিস্টাব্দে বিজ্ঞানী নীলস্ বোর পরমাণুর একটি মডেল প্রদান করেন। এই মডেলকে বোরের পরমাণু মডেল বলা হয়। বোর পরমাণু মডেলের মতবাদগুলো এরকম—

- (a) পরমাণুতে যে সকল ইলেকট্রন থাকে সেগুলো নিউক্লিয়াসকে কেন্দ্র করে ইচ্ছামতো যেকোনো কক্ষপথে ঘুরতে পারে না। শুধু নির্দিষ্ট ব্যাসার্ধের কতগুলো অনুমোদিত বৃত্তাকার কক্ষপথে ঘুরে। এই নির্দিষ্ট ব্যাসার্ধের অনুমোদিত বৃত্তাকার কক্ষপথগুলোকে অনুমোদিত কক্ষপথ বা প্রধান শস্তিত্বর বা কক্ষপথ বা শেল বা অরবিট বা স্থির কক্ষপথ বলে। স্থির কক্ষপথে ঘুরার সময় ইলেকট্রনগুলো কোনোরূপ শস্তি শোষণ বা বিকিরণ করে না। স্থির কক্ষপথকে n দ্বারা প্রকাশ করা হয়। n=1,2,3,4 ইত্যাদি। অন্যভাবে বলা যায়, n=1 হলে K প্রধান শস্তিত্বর, n=2 হলে L প্রধান শস্তিত্বর, n=3 হলে M প্রধান শস্তিত্বর, n=4 হলে M প্রধান শস্তিত্বর ইত্যাদি।
- (b) বোর মডেল অনুসারে কোন শক্তিম্তরে ইলেকট্রনের কৌণিক ভরবেগ

$$mvr = \frac{nh}{2\pi}$$

m হচ্ছে ইলেকট্রনের ভর (9.11 × 10⁻³¹ kg)

 ${f r}$ হচ্ছে ইলেকট্রন যে কক্ষপথ বা শক্তিম্তরে ঘুরবে তার ব্যাসার্ধ ${f r}$

 ${f v}$ হচ্ছে ইলেকট্রন যে কক্ষপথ বা শক্তিতরে ঘুরবে সেই কক্ষপথে ইলেকট্রনের বেগ ${f v}$

h হচ্ছে প্লাংক ধ্বুবক (h = $6.626 \times 10^{-34} \,\mathrm{m}^2 \,\mathrm{kg/s}$)

n হচ্ছে প্রধান শক্তিম্তর বা প্রধান কোয়ান্টাম সংখ্যা (n = 1, 2, 3 ইত্যাদি।)

এখানে যে শক্তিম্তরের n এর মান কম সেই শক্তিম্তর নিম্ন শক্তিম্তর এবং যে শক্তিম্তরের n এর মান বেশি সেই শক্তিম্তর উচ্চ শক্তিম্তর হিসেবে পরিচিত।

চিত্র 3.03: বোরের পরমাণু মডেল।

(c) কোনো প্রধান শক্তিস্তরে ইলেকট্রন ঘুরার সময় ইলেকট্রনের কোনো শক্তি শোষিত বা বিকিরিত হয় না, তবে ইলেকট্রন যদি নিম্ন শক্তিস্তর থেকে উচ্চ শক্তিস্তর এ যায় তখন শক্তি শোষিত হয়। আবার, যদি ইলেকট্রন উচ্চ শক্তিস্তর থেকে নিম্ন শক্তিস্তর এ যায় তখন শক্তি বিকিরিত হয়।

এই শোষিত বা বিকিরিত শক্তির পরিমাণ

$$h v = \frac{hc}{\lambda}$$

c হচ্ছে আলোর বেগ (3 \times 10 8 ms⁻¹)

 ν হচ্ছে শোষিত বা বিকিরিত শক্তির কম্পাঙ্ক (একক ${
m s}^{-1}$ বা ${
m Hz}$)

ম হচ্ছে শোষিত বা বিকিরিত শক্তির তরজা দৈর্ঘ্য (একক m)

ইলেকট্রন উচ্চ শক্তিম্তর থেকে নিম্ন শক্তিম্তরে যাবার সময় যে আলো বিকিরণ করে তাকে প্রিজমের মধ্য দিয়ে প্রবেশ করালে পারমাণবিক বর্ণালি (atomic spectra) সৃষ্টি হয়।

বোরের পরমাণু মডেলের সাফল্য

(a) রাদারফোর্ডের পরমাণু মডেল অনুসারে সৌরজগতে সূর্যকে কেন্দ্র করে গ্রহ-উপগ্রহণুলো যেমন ঘুরছে, পরমাণুতে ইলেকট্রনগুলোও তেমন নিউক্লিয়াসকে কেন্দ্র করে ঘুরছে। এখানে ইলেকট্রনের শক্তিস্তরের আকার সম্পর্কে কোনো কথা বলা হয়নি কিন্তু বোরের পারমাণবিক মডেলে পরমাণুর শক্তিস্তরের আকার বৃত্তাকার বলা হয়েছে।

- (b) রাদারফোর্ডের পরমাণু মডেলে পরমাণু শক্তি শোষণ করলে বা শক্তি বিকিরণ করলে পরমাণুর গঠনে কী ধরনের পরিবর্তন ঘটে সে কথা বলা হয়নি কিন্তু বোর পরমাণু মডেলে বলা হয়েছে পরমাণু শক্তি শোষণ করলে ইলেকট্রন নিম্ন শক্তিস্তর থেকে উচ্চ শক্তিস্তরে ওঠে। আবার, পরমাণু শক্তি বিকিরণ করলে ইলেকট্রন উচ্চ শক্তিস্তর থেকে নিম্ন শক্তিস্তরে নেমে আসে।
- (c) রাদারফোর্ডের পরমাণু মডেল অনুসারে কোনো মৌলের পারমাণবিক বর্ণালি ব্যাখ্যা করা যায় না কিন্তু বোরের পরমাণু মডেল অনুসারে এক ইলেকট্রন বিশিষ্ট পরমাণু হাইড্রোজেন (H) এর বর্ণালি ব্যাখ্যা করা যায়।

বোরের পরমাণু মডেলের সীমাবন্ধতা

বোর মডেলেরও কিছু সীমাবন্ধতা বা ত্রুটি লক্ষ্য করা যায়। সেগুলো হচ্ছে:

- (a) বোর মডেলের সাহায্যে এক ইলেকট্রন বিশিষ্ট পরমাণুর পারমাণবিক বর্ণালি ব্যাখ্যা করা যায় সত্যি কিন্তু একাধিক ইলেকট্রন বিশিষ্ট পরমাণুর পারমাণবিক বর্ণালি ব্যাখ্যা করা যায় না।
- (b) বোরের পারমাণবিক মডেল অনুসারে এক শক্তিম্তর থেকে ইলেকট্রন অন্য শক্তিম্তরে গমন করলে পারমাণবিক বর্ণালিতে একটিমাত্র রেখা পাবার কথা। কিন্তু শক্তিশালী যন্ত্র দিয়ে পরীক্ষা করলে দেখা যায় প্রতিটি রেখা অনেকগুলো ক্ষুদ্র ক্ষুদ্র রেখার সমষ্টি। প্রতিটি রেখা কেন অনেকগুলো ক্ষুদ্র ক্ষুদ্র রেখার সমষ্টি হয় বোর মতবাদ অনুসারে তার ব্যাখ্যা দেওয়া যায় না।
- (c) বোরের পরমাণুর মডেল অনুসারে পরমাণুতে শুধু বৃত্তাকার কক্ষপথ বিদ্যমান। কিন্তু পরে প্রমাণিত হয়েছে পরমাণুতে ইলেকট্রন শুধু বৃত্তাকার কক্ষপথেই নয় উপবৃত্তাকার কক্ষপথেও ঘুরে।

3.7 পরমাণুর শক্তিম্তরে ইলেকট্রন বিন্যাস (Orbital Electronic Configuration of Atoms)

বোরের মডেলে যে শক্তিস্তরের কথা বলা হয়েছে তাকে প্রধান শক্তিস্তর বলা হয়। প্রতিটি প্রধান শক্তিস্তরের সর্বোচ্চ ইলেকট্রন ধারণ ক্ষমতা $2n^2$ যেখানে n=1,2,3,4 ইত্যাদি। অতএব এ সূত্রানুসারে:

K শক্তিম্তরের জন্য n = 1 অতএব

K শক্তিম্তরে সর্বোচ্চ ইলেকট্রন থাকতে পারে $2n^2 = (2 \times 1^2)$ টি = 2টি

L শক্তিম্তরের জন্য n = 2 অতএব

L শক্তিম্তরে সর্বোচ্চ ইলেকট্রন থাকতে পারে $2n^2 = (2 \times 2^2)$ টি = 8টি

M শক্তিস্তরের জন্য n = 3 অতএব

M শক্তিম্তরে সর্বোচ্চ ইলেকট্রন থাকতে পারে $2n^2 = (2 \times 3^2)$ টি = 18টি

N শক্তিম্তরের জন্য n = 4 অতএব

N শস্তিস্তরে সর্বোচ্চ ইলেকট্রন থাকতে পারে $2n^2 = (2 \times 4^2)$ টি = 32টি

টেবিল 3.06: মৌলের ইলেকট্রন বিন্যাস [H(1) থেকে Zn(30) পর্যন্ত]

পারমাণবিক সংখ্যা	মৌল	K	L	М	N
1	Н	1			
2	Не	2			
3	Li	2	1		
4	Ве	2	2		
5	В	2	3		
6	С	2	4		
7	N	2	5		
8	0	2	6		
9	F	2	7		
10	Ne	2	8		
11	Na	2	8	1	
12	Mg	2	8	2	
13	Al	2	8	3	
14	Si	2	8	4	
15	P	2	8	5	

পারমাণবিক সংখ্যা	মৌল	K	L	M	N
16	S	2	8	6	
17	Cl	2	8	7	
18	Ar	2	8	8	
19	K	2	8	8	1
20	Ca	2	8	8	2
21	Sc	2	8	9	2
22	Ti	2	8	10	2
23	V	2	8	11	2
24	Cr	2	8	13	1
25	Mn	2	8	13	2
26	Fe	2	8	14	2
27	Со	2	8	15	2
28	Ni	2	8	16	2
29	Cu	2	8	18	1
30	Zn	2	8	18	2

হাইড্রোজেনের (H) পারমাণবিক সংখ্যা 1. ফলে এর ইলেকট্রন সংখ্যাও 1. তাই একটি ইলেকট্রন প্রথম শক্তিম্তর K-তে প্রবেশ করবে।

হিলিয়ামের (He) পারমাণবিক সংখ্যা 2. অতএব ইলেকট্রন দুটি প্রথম শক্তিস্তর K-তে প্রবেশ করবে। লিথিয়ামের (Li) পারমাণবিক সংখ্যা 3. ফলে প্রথম শক্তিস্তর K-তে 2টি ইলেকট্রন প্রবেশ করবে। যেহেতু K প্রধান শক্তিস্তরে দুটির বেশি ইলেকট্রন থাকতে পারে না তাই এর তৃতীয় ইলেকট্রনটি দ্বিতীয় শক্তিস্তর L তে প্রবেশ করবে।

আবার সোডিয়ামের (Na) এর পারমাণবিক সংখ্যা 11. তাই K শক্তিস্তরে 2টি, L প্রধান শক্তিস্তরে ৪টি বাকি 1টি ইলেকট্রন M শক্তিস্তরে প্রবেশ করবে।

ইলেকট্রন বিন্যাস ভালোভাবে খেয়াল করলে দেখতে পাবে হাইড্রোজেন (H) থেকে আর্গন (Ar) পর্যন্ত উপরে যে নিয়ম বর্ণনা করা হয়েছে সেই নিয়মেই ইলেকট্রন বিন্যাস হয়েছে। কিন্তু নিয়মিটির ব্যতিক্রম ঘটেছে পটাশিয়াম (K) থেকে পরবর্তী মৌলগুলোতে। কেননা, আমরা জানি তৃতীয় শক্তিস্তর (M) এর সর্বোচ্চ ইলেকট্রন ধারণ ক্ষমতা 18টি। কিন্তু পটাশিয়ামের 19তম ইলেকট্রন এবং ক্যালসিয়ামের (Ca) 19তম ও 20তম ইলেকট্রন তৃতীয় শক্তিস্তর (M) কে অপূর্ণ রেখে আগেই চতুর্থ (N) শক্তিস্তরে প্রবেশ করে। স্ক্যানডিয়ামের (Sc) ক্ষেত্রে 19তম ও 20তম ইলেকট্রন চতুর্থ শক্তিস্তরে যাবার পর 21তম ইলেকট্রনটি আবার তৃতীয় শক্তিস্তরে প্রবেশ করেছে। পারমাণবিক সংখ্যা 19 থেকে পরবর্তী মৌলগুলোতে আগে চতুর্থ প্রধান শক্তিস্তরে প্রবেশ করেছে। পারমাণবিক সংখ্যা 19 থেকে পরবর্তী মৌলগুলোতে আগে চতুর্থ প্রধান শক্তিস্তরে প্রে বিন্যাসে বিশেষ ব্যতিক্রম লক্ষ করা যাচ্ছে। এই বিষয়টি বোঝার জন্য আমাদের উপশক্তিস্তরের ধারণাটি থাকতে হবে।

3.7.1 উপশক্তিশ্তরের ধারণা

আমরা দেখেছি প্রতিটি প্রধান শক্তিম্বর n দিয়ে চিহ্নিত করা হয়। এই শক্তিম্বরগুলো আবার উপশক্তিম্বরে বিভক্ত থাকে এবং এই উপশক্তিম্বরকে l দ্বারা চিহ্নিত করা হয়। l এর মান হয় 0 থেকে n-1 পর্যন্ত। উপশক্তিম্বরগুলোকে অরবিটাল বলা হয়। এই উপশক্তিম্বর বা অরবিটালগুলোকে s, p, d, f ইত্যাদি নামে আখ্যায়িত করা হয়। বিভিন্ন উপশক্তিম্বরের জন্য সম্ভাব্য l এর মান নিচে দেখানো হলো l

n = 1 হলে l = 0 অরবিটাল একটি: 1s

n = 2 হলে l = 0, 1 অরবিটাল দুটি: 2s, 2p

n = 3 হলে l = 0, 1, 2 অরবিটাল তিনটি: 3s, 3p, 3d

n = 4 হলে l = 0, 1, 2, 3 অরবিটাল চারটি: 4s, 4p, 4d, 4f

n=5 হলে $l=0,\,1,\,2,\,3,\,4$ অর্থাৎ এখানে অরবিটাল থাকবে পাঁচটি কিন্তু $4s,\,4p,\,4d,\,4f$ এই প্রথম চারটি অরবিটালেই সবগুলো ইলেকট্রনের বিন্যাস করা সম্ভব বলে পরবর্তী অরবিটালের আর প্রয়োজন হয় না। $n=6,\,7$ এবং 8 এর জন্যও এটি সত্যি।

প্রতিটি অরবিটালে ইলেকট্রন সংখ্যা হচ্ছে: 2(2l+1), আমরা এর মাঝে জেনে গেছি প্রতিটি পূর্ণ শক্তিস্তরে ইলেকট্রনের সংখ্যা হচ্ছে $2n^2$ এবং তোমরা দেখবে সবগুলো অরবিটালের ইলেকট্রনের সংখ্যা যোগ করে আমরা এই $2n^2$ পেয়ে যাই। নিচের ছকে সেটি দেখানো হলো:

শক্তিস্তর n	শক্তিম্তর অনুযায়ী উপশক্তিম্তর l এর	,	অরবিটালের প্রতীক		
	মান	নাম		2(21 + 1)	2n²
1	0	s	1s	2	2
2	0	S	2s	2	2 + 6 = 8
2	1	p	2p	6	2 + 0 - 8
	0	S	3s	2	2 + 6 + 10
3	1	p	3p	6	= 18
	2	d	3d	10	- 18
	0	S	4s	2	
4	1	p	4p	6	2 + 6 + 10 +
4	2	d	4d	10	14 = 32
	3	f	4f	14	

টেবিল 3.07: শস্তিস্তরে ইলেকট্রন বিন্যাস (n = 1 থেকে 4 পর্যন্ত)

3.7.2 পরমাণুতে ইলেকট্রন বিন্যাসের নীতি

পরমাণুতে ইলেকট্রন প্রথমে সর্বনিম্ন শক্তির অরবিটালে প্রবেশ করে এবং পরে ক্রমান্বয়ে উচ্চশক্তির অরবিটালে প্রবেশ করে। অর্থাৎ যে অরবিটালের শক্তি কম সেই অরবিটালে ইলেকট্রন আগে প্রবেশ করবে এবং যে অরবিটালের শক্তি বেশি সেই অরবিটালে ইলেকট্রন পরে প্রবেশ করবে। অরবিটালের মধ্যে কোনোটির শক্তি কম আর কোনোটির শক্তি বেশি তা অরবিটাল দুটির প্রধান শক্তিশ্তরের মান (n) এবং উপশক্তিশ্তরের মান (l) এর যোগফলের উপর নির্ভর করে। যে অরবিটালের (n + l) এর মান কম সেই অরবিটালের শক্তি কম এবং সেই অরবিটালেই ইলেকট্রন আগে প্রবেশ করবে। অপরদিকে (n + l) এর মান যে অরবিটালের বেশি তার শক্তিও বেশি এবং সেই অরবিটালেই ইলেকট্রন পরে প্রবেশ করবে।

3d অরবিটালের জন্য n=3 এবং l=2 অতএব n+1 এর মান 3+2=5 আবার 4s অরবিটালের জন্য $n=4,\,l=0$ অতএব n+1 এর মান 4+0=4

কাজেই 3d অরবিটালের চেয়ে 4s অরবিটাল কম শক্তি সম্পন্ন। তাই ইলেকট্রন প্রথমে 4s অরবিটালে এবং পরে 3d অরবিটালে প্রবেশ করবে। আবার, দুটি অরবিটালের (n+1) এর মান যদি সমান হয় তাহলে যে অরবিটালটিতে n এর মান কম সেই অরবিটালে শক্তি কম হবে এবং সেই অরবিটালে ইলেকট্রন আগে প্রবেশ করবে। অপরদিকে, সমান (n+1) এর মানের জন্য যে অরবিটালের n এর মান বেশি. সেই অরবিটালের শক্তিও বেশি, কাজেই সে অরবিটালে ইলেকট্রন পরে প্রবেশ করবে।

যেমন-3d ও 4p এর n+1 এর মান যথাক্রমে 3+2=5 এবং 4+1=5 কিন্তু যেহেতু 3d অরবিটালে n এর মান কম, তাই এ অরবিটালের শস্তি কম এবং এ অরবিটালে ইলেকট্রন আগে প্রবেশ করবে। অপরদিকে 4p অরবিটালে n এর মান বেশি হওয়ায় এর শস্তি 3d এর চেয়ে বেশি। তাই এ অরবিটালে ইলেকট্রন পরে প্রবেশ করবে।

এ হিসাব অনুযায়ী পরমাণুর অরবিটালের ক্রমবর্ধমান শক্তি হবে এরকম :

উপস্তরগুলোর শন্তির ক্রমগুলো মনে রাখার জন্য নিচের ছকটির সাহায্য নেওয়া যায়:

আমরা দেখেছি s উপশক্তিম্ভরে সর্বোচ্চ 2টি ইলেকট্রন, p উপশক্তিম্ভরে সর্বোচ্চ 6টি ইলেকট্রন, d উপশক্তিম্ভরে সর্বোচ্চ 10টি ইলেকট্রন এবং f উপশক্তিম্ভরে সর্বোচ্চ 14টি ইলেকট্রন থাকতে পারে।

এই নীতি অনুসারে আমরা নিম্নের মৌলগুলোর ইলেকট্রন বিন্যাস বিশ্লেষণ করতে পারব।

$$K(19) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$$

$$Ca(20) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$$

$$Sc(21) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$$

$$V(22) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 4s^2$$

চিত্র 3.04: অরবিটালের শস্তিক্রম

যেহেতু 4s অরবিটালের শস্তি 3d অরবিটালের শস্তির চেয়ে কম, তাই পটাশিয়ামের সর্বশেষ 19তম ইলেকট্রনটি 3d অরবিটালে প্রবেশ না করে 4s অরবিটালে প্রবেশ করে। আবার, স্ক্যান্ডিয়ামের ক্ষেত্রে

ফর্মা নং-৭, রসায়ন- ৯ম-১০ম শ্রেণি

19 ও 20তম ইলেকট্রন অরবিটাল পূর্ণ করে পরবর্তী উচ্চ শক্তি সম্পন্ন অরবিটালে (3d) সর্বশেষ বা 21তম ইলেকট্রন প্রবেশ করে।

বিশেষ করে মনে রাখতে হবে যে যখন ইলেকট্রন বিন্যাস লিখবে তখন একই প্রধান শক্তিতরের সকল উপশক্তিতর পাশাপাশি লিখবে। তা না হলে ইলেকট্রনের বিন্যাস লেখার সময় ভূল হয়ে যেতে পারে। যেমন Fe(26) এর জন্য:

$$n = 1$$
 $n = 2$ $n = 3$ $n = 4$

Fe(26) \rightarrow $1s^2$ $2s^2 2p^6$ $3s^2 3p^6 3d^6$ $4s^2$

 $Fe(26) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$

3.7.3 ইলেকট্রন বিন্যাসের সাধারণ নিয়মের কিছু ব্যতিক্রম

সাধারণভাবে দেখা যায় যে, একই উপশক্তিম্বর p ও d এর অরবিটালগুলো অর্ধেক পূর্ণ (p^3, d^5) বা সম্পূর্ণরূপে পূর্ণ (p^6, d^{10}) হলে সে ইলেকট্রন বিন্যাস সুম্থিত হয়। তাই Cr(24) এর ইলেকট্রন বিন্যাস ম্বাভাবিকভাবে হওয়ার কথা: $Cr(24) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^4 4s^2$ কিন্তু 3d অরবিটাল সুম্থিত অর্ধপূর্ণ হওয়ার আকাজ্জায় 4s অরবিটাল হতে একটি ইলেকট্রন 3d অরবিটালে আসে। ফলে ক্রোমিয়ামের ইলেকট্রন বিন্যাস হয় এরকম: $Cr(24) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$

নিচ্ছে করো: Cu(29) এর ইলেকট্রন বিন্যাস স্বাভাবিকভাবে হওয়ার কথা: $Cu(29) \rightarrow 1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^9\ 4s^2$ কিন্তু কপারের ইলেকট্রন বিন্যাস হয় এরকম: $Cu(29) \rightarrow 1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^1$, কারণটি ব্যাখ্যা করো।

3.8 আইসোটাপ (Isotopes)

যে সকল পরমাণুর প্রোটন সংখ্যা সমান কিন্তু ভরসংখ্যা ও নিউট্রন সংখ্যা ভিন্ন তাদেরকে একে অপরের আইসোটোপ বলে। নিচের টেবিলে দেখানো তিনটি পরমাণুরই প্রোটন সংখ্যা সমান। কাজেই তারা একে অপরের আইসোটোপ। হাইড্রোজেনের সাতটি আইসোটোপ (1 H, 2 H, 3 H, 4 H, 5 H, 6 H এবং 7 H) আছে। এর মধ্যে শুধু তিনটি প্রকৃতিতে পাওয়া যায়, অন্যগুলোকে ল্যাবরেটরিতে প্রস্তুত করা হয়।

নাম	প্রতীক	প্রোটন সংখ্যা	ভর সংখ্যা	নিউট্রন সংখ্যা
		Z	Α	A - Z
হাইড্রোজেন বা প্রোটিয়াম	1 ₁ H	1	1	0
ডিউটেরিয়াম	² ₁ D	1	2	1
টিট্রিয়াম	³ ₁ T	1	3	2

টেবিল 3.08: হাইড্রোজেনের তিনটি আইসোটোপ

3.9 পারমাণবিক ভর বা আপেক্ষিক পারমাণবিক ভর (Atomic Mass or Relative Atomic Mass)

আমরা আগেই জেনেছি যে, কোনো মৌলের পরমাণুর ভরসংখ্যা হলো পরমাণুর নিউক্লিয়াসে উপস্থিত প্রোটন ও নিউট্রন সংখ্যার যোগফল। তাহলে ভরসংখ্যা নিশ্চয়ই হবে একটি পূর্ণসংখ্যা। কিন্তু তুমি যদি কপারের পারমাণবিক ভর দেখো তাহলে দেখবে সেটি হচ্ছে 63.5 আর ক্লোরিনের পারমাণবিক ভর হলো 35.5। এটা কীভাবে সম্ভব? আসলে এটি হলো আপেক্ষিক পারমাণবিক ভর। সেটি কী? বা তার দরকারই বা কী?

ফ্লোরিনের একটি পরমাণুর ভর হলো 3.16×10^{-23} গ্রাম। অ্যালুমিনিয়ামের একটি পরমাণুর ভর 4.482×10^{-23} গ্রাম।

কার্যক্ষেত্রে এত কম ভর ব্যবহার করা অনেক সমস্যা। সে জন্য একটি কার্বন 12 আইসোটোপের ভরের $\frac{1}{12}$ অংশকে একক হিসেবে ধরে তার সাপেক্ষে পরমাণুর ভর মাপা হয়।

কার্বন 12 আইসোটোপের পারমাণবিক ভরের $\frac{1}{12}$ অংশ হচ্ছে 1.66×10^{-24} গ্রাম কাজেই কোনো মৌলের আপেঞ্চিক পারমাণবিক ভর হচ্ছে:

মৌলের একটি পরমাণুর ভর একটি কার্বন 12 আইসোটোপের পারমাণবিক ভরের $\frac{1}{12}$ অংশ

কোনো মৌলের একটি পরমাণুর প্রকৃত ভর জানা থাকলে আমরা আপেক্ষিক পারমাণবিক ভর বের করতে পারব। এক্ষেত্রে ঐ মৌলের একটি পরমাণুর প্রকৃত ভরকে 1.66×10^{-24} গ্রাম দারা ভাগ করে আপেক্ষিক পারমাণবিক ভর বের করা যায়।

যেমন: Al এর 1টি পরমাণুর ভর 4.482×10^{-23} গ্রাম।

কাজেই Al মৌলের আপেক্ষিক পারমাণবিক ভর = $\frac{4.482 \times 10^{-23}$ গ্রাম}{1.66 \times 10^{-24} গ্রাম} = 27

কোনো মৌলের আপেক্ষিক পারমাণবিক ভর হলো দুটি ভরের অনুপাত, সেজন্য আপেক্ষিক পারমাণবিক ভরের কোনো একক থাকে না।

3.9.1 আইসোটোপের শতকরা হার থেকে মৌলের গড় আপেক্ষিক ভর নির্ণয়

প্রকৃতিতে বেশির ভাগ মৌলেরই একাধিক আইসোটোপ রয়েছে। তাই যে মৌলের একাধিক আইসোটোপ আছে সেই মৌলের সকল আইসোটোপের প্রকৃতিতে প্রাশ্ত শতকরা হার থেকে মৌলের গড় আপেক্ষিক ভর এর মান নিচের ধাপগুলো অনুসরণ করে হিসাব করা হয়।

ধাপ 1: প্রথমে কোনো মৌলের প্রত্যেকটি আইসোটোপের ভর সংখ্যা এবং প্রকৃতিতে প্রাশ্ত ঐ আইসোটোপের শতকরা পরিমাণ গুণ দিতে হবে।

ধাপ 2: প্রাপত গুণফলগুলোকে যোগ করতে হবে।

ধাপ 3: প্রাণ্ড যোগফলকে 100 দারা ভাগ করলেই ঐ মৌলের গড় আপেক্ষিক ভর পাওয়া যাবে।

ধরা যাক একটি মৌল A এর দুটি আইসোটোপ আছে। একটি আইসোটোপের ভর সংখ্যা p প্রকৃতিতে প্রাশ্ত ঐ আইসোটোপের শতকরা পরিমাণ m, অপর আইসোটোপের ভর সংখ্যা q প্রকৃতিতে প্রাশ্ত ঐ আইসোটোপের শতকরা পরিমাণ n তাহলে

মৌল A এর গড় আপেক্ষিক পরমাণবিক ভর =
$$\frac{p \times m + q \times n}{100}$$

উদাহরণ: প্রকৃতিতে ক্লোরিনের 2টি আইসোটোপ আছে ³⁵Cl এবং ³⁷Cl।

প্রকৃতিতে প্রাশ্ত ³⁵Cl এর শতকরা পরিমাণ 75% এবং প্রকৃতিতে প্রাশ্ত ³⁷Cl এর শতকরা পরিমাণ 25%

অতএব ক্লোরিনের গড় আপেক্ষিক পরমাণবিক ভর =
$$\frac{35 \times 75 + 37 \times 25}{100}$$
 = 35.5

এখানে উল্লেখ্য, তোমরা দেখবে পর্যায় সারণিতেও ক্লোরিনের গড় আপেক্ষিক পারমাণবিক ভর 35.5 লেখা আছে। পর্যায় সারণিতে যে পারমাণবিক ভর লেখা আছে তা মূলত গড় আপেক্ষিক পারমাণবিক ভর।

উদাহরণ: প্রকৃতিতে যদি কোনো মৌলের দুটি আইসোটোপ থাকে তাহলে সেই মৌলের গড় আপেক্ষিক পারমাণবিক ভর থেকে ঐ মৌলের বিভিন্ন আইসোটোপের প্রকৃতিতে প্রাপ্ত শতকরা পরিমাণ বের করা যায়।

প্রকৃতিতে কপারের দুটি আইসোটোপ আছে $^{63}\mathrm{Cu}$ এবং $^{65}\mathrm{Cu}$ । কপারের গড় পারমাণবিক আপেক্ষিক ভর 63.5।

ধরা যাক, প্রকৃতিতে প্রাশ্ত 63 Cu এর শতকরা পরিমাণ x% এবং প্রকৃতিতে প্রাশ্ত 65 Cu এর শতকরা পরিমাণ (100-x)%

এখানে, কপারের গড় আপেক্ষিক পরমাণবিক ভর =
$$\frac{x \times 63 + (100 - x) \times 65}{100}$$
 = 63.5

বা,
$$x = 75\%$$

প্রকৃতিতে প্রাপ্ত 63 Cu এর শতকরা পরিমাণ = 75 % এবং প্রকৃতিতে প্রাপ্ত 65 Cu এর শতকরা পরিমাণ (100-75)% = 25%

3.9.2 আপেক্ষিক পারমাণবিক ভর থেকে আপেক্ষিক আণবিক ভর নির্ণয়

কোনো মৌলিক বা যৌগিক পদার্থের অণুতে যে পরমাণুগুলো থাকে তাদের আপেক্ষিক পারমাণবিক ভর নিজ নিজ পরমাণু সংখ্যা দিয়ে গুণ করে যোগ করলে প্রাগত যোগফলই হলো ঐ অণুর আপেক্ষিক আণবিক ভর। আপেক্ষিক পারমাণবিক ভরকে পারমাণবিক ভর এবং আপেক্ষিক আণবিক ভরকে সাধারণভাবে আণবিক ভর হিসেবে বিবেচনা করা হয়।

যেমন H_2 অণুতে হাইড্রোজেন (H) পরমাণুর আপেক্ষিক পারমাণবিক ভর হলো-1 এবং পরমাণুর সংখ্যা-2 তাই H_2 অণুর আপেক্ষিক আণবিক ভর হবে: $1\times 2=2$

তেমনই H_2SO_4 অণুতে উপস্থিত হাইড্রোজেন (H) এর আপেক্ষিক পারমাণবিক ভর-1 এবং পরমাণুসংখ্যা 2, সালফার (S) পরমাণুর আপেক্ষিক পারমাণবিক ভর 32 এবং পরমাণুর সংখ্যা 1 এবং অক্সিজেন পরমাণুর আপেক্ষিক পারমাণবিক ভর 16 এবং পরমাণুর সংখ্যা 4। অতএব, H_2SO_4 এর আপেক্ষিক আণবিক ভর হবে $1 \times 2 + 32 \times 1 + 16 \times 4 = 98$

3.10 তেজস্কিয় আইসোটোপ ও তাদের ব্যবহার (Radioactive Isotopes and Their Uses)

এই অধ্যায়ে আমরা আইসোটোপ সম্পর্কে জেনেছি। কিছু কিছু আইসোটোপ রয়েছে যাদের নিউক্লিয়াস স্বতঃস্ফূর্তভাবে (নিজে নিজেই) ভেঙে আলফা রশ্মি, বিটা রশ্মি, গামা রশ্মি ইত্যাদি নির্গত করে তাদেরকে তেজন্দ্রিয় আইসোটোপ বলে। এখন পর্যন্ত 3000 সংখ্যক থেকে বেশি আইসোটোপ সম্বন্ধে জানা গেছে। এদের মধ্যে কিছু প্রকৃতিতে পাওয়া গেছে, অন্যগুলো গবেষণাগারে তৈরি করা হয়েছে। বিভিন্ন আইসোটোপ এবং তাদের তেজন্দ্রিয়তা নিয়ে তোমাদের পদার্থবিজ্ঞান বইয়ে বিস্তারিত আলোচনা করা হয়েছে। তাই এখানে শুধু তাদের কিছু ব্যবহার নিয়ে আলোচনা করা হবে।

তেজন্দ্রিয় আইসোটোপ-এর নিয়ন্ত্রিত ব্যবহার দিয়ে মানুষ অনেক কিছু করতে পারে যেটি অন্যভাবে করা দুঃসাধ্য ছিল। বর্তমানে তেজন্ধ্রিয় আইসোটোপ চিকিৎসাক্ষেত্রে, কৃষিক্ষেত্রে, খাদ্য ও বীজ সংরক্ষণে, বিদ্যুৎ উৎপাদনে, কোনো কিছুর বয়স নির্ণয়সহ আরও অনেক ক্ষেত্রে ব্যবহার করা হয়।

3.10.1. চিকিৎসাক্ষেত্রে

চিকিৎসাক্ষেত্রে বর্তমানে বিভিন্ন প্রয়োজনে তেজস্ক্রিয় আইসোটোপ ব্যবহার করা হচ্ছে। যেমন:

রোগ নির্ণয়ে

আইসোটোপ ব্যবহার করে রোগাক্রান্ত স্থানের ছবি তোলা সম্ভব। এ পদ্ধতিতে ইঞ্জেকশনের মাধ্যমে তেজস্ক্রিয় আইসোটোপ টেকনিশিয়াম-99 (⁹⁹ Tc) কে শরীরের ভেতরে প্রবেশ করানো হয়। এই আইসোটোপ যখন শরীরের নির্দিষ্ট স্থানে জমা হয় তখন ঐ তেজস্ক্রিয় আইসোটোপ গামা রশ্মি বিকিরণ করে, তখন বাইরে থেকে গামা রশ্মি শনান্তকরণ ক্যামেরা দিয়ে সেই স্থানের ছবি তোলা সম্ভব। এই তেজস্ক্রিয় আইসোটোপ টেকনিশিয়াম-99 এর লাইফটাইম 6 ঘণ্টা। তাই সামান্য সময়েই এর তেজস্ক্রিয়তা শেষ হয়ে যায় বলে এটি অনেক নিরাপদ।

রোগ নিরাময়ে

সর্বপ্রথম থাইরয়েড ক্যানসার নিরাময়ে তেজস্ক্রিয় আইসোটোপ ব্যবহার করা হয়। রোগীকে পরিমাণমতো তেজস্ক্রিয় আইসোটোপ ¹³¹I সমৃদ্ধ দ্রবণ পান করানো হয়। এই আইসোটোপ থাইরয়েডে পৌঁছায়। এ আইসোটোপ থেকে বিটা রিশ্মি নির্গত হয় এবং থাইরয়েডের ক্যানসার কোষকে ধ্বংস করে। এছাড়া ইরিডিয়াম আইসোটোপ ব্রেইন ক্যানসার নিরাময়ে ব্যবহার করা হয়। টিউমারের উপস্থিতি নির্ণয় ও নিরাময়ে তেজস্ক্রিয় আইসোটোপ ⁶⁰Co ব্যবহার করা হয়। ⁶⁰Co থেকে নির্গত গামা রিশ্মি ক্যানসারের কোষকলাকে ধ্বংস করে। রক্তের লিউকোমিয়া রোগের চিকিৎসায় ³²P এর ফসফেট ব্যবহার করা হয়।

3.10.2 কৃষিক্ষেত্রে

ফসলের পুন্টিতে

ফসলের পুষ্টির জন্য জমিতে পরিমাণমতো সার ব্যবহার করতে হয়। সার মূল্যবান বস্তু। তাই অতিরিপ্ত ব্যবহার করা আর্থিক ক্ষতির কারণ। একদিকে প্রয়োজনের অতিরিপ্ত সার পরিবেশের ক্ষতির কারণ, অপরিদিকে প্রয়োজনের চেয়ে কম পরিমাণ সার ব্যবহার করা হলে ফসলের উৎপাদন কম হয়। তেজক্ষিয় আইসোটোপ ব্যবহার করে জমিতে কী পরিমাণ নাইট্রোজেন ও ফসফরাস আছে তা জানা যায়। আর তা জেনে জমিতে আরও কী পরিমাণ নাইট্রোজেন ও ফসফরাস প্রয়োজন তারও হিসাব করা যায়। উদ্ভিদ তেজক্ষিয় নাইট্রোজেন ও তেজক্ষিয় ফসফরাস মূলের মাধ্যমে গ্রহণ করে এবং তা উদ্ভিদের শরীরের বিভিন্ন অংশে শোষিত হয়। এসকল তেজক্ষিয় আইসোটোপ থেকে তেজক্ষিয় রশ্মি নির্গত হয়। গাইগার মূলার কাউন্টার ব্যবহার করে এ তেজক্ষিয় রশ্মি শনাক্ত ও পরিমাপ করা হয়।

ক্ষতিকারক পোকামাকড় নিয়ন্ত্রণ করতে

ফসলের জন্য ক্ষতিকারক পোকামাকড় সব সময়ই মারাত্মক হুমকিস্বরূপ। এগুলো যেমন ফসলের উৎপাদন কমায় তেমনই এদের মাধ্যমে রোগ-জীবাণুও উদ্ভিদে প্রবেশ করে। এ সকল পোকামাকড় ধ্বংস করার জন্য ফসলে এবং জমিতে কীটনাশক দেওয়া হয়। এ কীটনাশক পরিবেশ ও আমাদের শরীরের জন্য ক্ষতিকর। শুধু তাই নয়, এ কীটনাশক ক্ষতিকারক পোকামাকড়ের সাথে সাথে অনেক উপকারী পোকামাকড়ও ধ্বংস করে। তেজস্ক্রিয় আইসোটোপ সমৃদ্ধ কীটনাশক ব্যবহারের মাধ্যমে জানা সম্ভব হয়েছে সর্বনিম্ন কতটুকু পরিমাণ কীটনাশক একটি ফসলের জন্য ব্যবহার করা যাবে।

ফসলের মানোন্নয়নে

বিভিন্ন ধরনের নিয়ন্ত্রিত তেজস্ক্রিয় রশ্মি ব্যবহারের মাধ্যমে উদ্ভিদ কোষের জিনগত পরিবর্তন ঘটিয়ে উন্নত মানের ফসলে পরিণত করা হয়।

3.10.3 বিদ্যুৎ উৎপাদনে

কিছু কিছু পরমাণুকে ভেঙে ক্ষুদ্র ক্ষুদ্র পরমাণুতে পরিণত করলে অর্থাৎ ফিশান বিক্রিয়া ঘটালে প্রচুর পরিমাণে তাপশক্তি বের হয়। এই তাপশক্তি ব্যবহার করে জেনারেটর দিয়ে বিদ্যুৎ উৎপন্ন করা হয়। আমরা সেটিকে নিউক্লিয়ার বিদ্যুৎকেন্দ্র বলি। তোমাদের পদার্থবিজ্ঞান বইয়ের চতুর্থ অধ্যায়ে এটি বিস্তারিত আলোচনা করা হয়েছে।

বাংলাদেশে পাবনা জেলার রূপপুরে বাংলাদেশ সরকার পারমাণবিক বিদ্যুৎকেন্দ্র স্থাপন করতে যাচ্ছে। এ পারমাণবিক বিদ্যুৎকেন্দ্র স্থাপিত হলে দুই হাজার চারশত মেগাওয়াট বিদ্যুৎ উৎপাদন হবে বলে আশা করা হচ্ছে।

दर्भ इनोब्रम

টিব 3.05: পাবনার রূপপুর নিউক্লিয়ার বিদ্যুৎক্রেন্ড।

3.10.4 তেজক্ষিয় আইসোটোপের প্রভাব

তেজক্মিয় অইলোটোপ আমানের অনেক উপকারে আলে সে কথা সতি কিন্তু এটি আমানের জন্য কতির কারণও হতে পারে। তেজক্মিয় আইলোটোপ থেকে বে আলফা, বেটা ও গামা রাশ্বি নির্গত হয় তা কোবের জিনগত পরিবর্তন ঘটাতে পারে যার ফলাফল হিসেবে ক্যানসারের মতো রোগ হতে পারে। বিতীয় বিশ্বযুগ্ধে জাপানের হিরোলিমা ও নাগাসাক্ষিতে পারমাণবিক বোমার বিক্লোরণ ঘটেছিল, তার জন্য কয়েক লক্ষ্ম জীবন ধ্বংস হয়েছে। 1986 সালে রাশিরার চেরোনোবিলে পারমাণবিক বিদ্যুৎকেন্দ্রের বে দুর্ঘটনা ঘটেছিল তার ফলে অনেক প্রাথ হারিয়েছে এবং ঐ এলাকায় পরিবেশ দূবণ ঘটেছে।

বহুনির্বাচনি প্রশ্ন

- 1. Z একটি মৌল যার প্রোটন সংখ্যা 111 এবং ভরসংখ্যা 252। কোনটি দ্বারা পরমাণুটিকে প্রকাশ করা যায়?

 - (학) 111 Z (박) $^{111}_{252}$ Z

 - (গ) ²⁵²Z (ঘ) ²⁵²Z
- 2. 'X' মৌলটির আপেক্ষিক পারমাণবিক ভর কত? (এখানে X প্রতীকী অর্থে, প্রচলিত কোনো মৌলের প্রতীক নয়)
 - (ক) 148 (খ) 150

 - (গ) 152 (ঘ) 153

আইসোটোপ	পর্যাপ্ততার শতকরা পরিমাণ	
¹⁴⁶ X	25	
¹⁵⁴ X	75	

- 3. একটি মৌলের একটি পরমাণুর প্রকৃত ভর যদি 4.482 × 10⁻²³ গ্রাম হয়, তবে এর আপেক্ষিক পারমাণবিক ভর হবে–
 - (ক) 25 (খ) 40

 - (গ) 29 (ঘ) 27
- 4. 27 Al সংকেতটিতে মৌলের-
 - (i) প্রোটন সংখ্যা 13
 - (ii) ভরসংখ্যা 27
 - (iii) ইলেকট্রন সংখ্যা 10

নিচের কোনটি সঠিক ?

- (주) i 영 ii (역) ii 영 iii
- (গ) i ও iii (ঘ) i, ii ও iii

- 5. পটাশিয়াম এর পারমাণবিক সংখ্যা কত?
 - (ক)15
- (খ) 17
- (গ) 19
- (ঘ) 21
- 6. N শেলে কয়টি উপশব্ভিত্তর থাকে?
 - (ক) 1
- (박) 2
- (গ) 3
- (ঘ) 4
- 7. Sc এর পারমাণবিক সংখ্যা 21। Sc এর সঠিক ইলেকট্রন বিন্যাস কোনটি?
 - ($\overline{\Phi}$)1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹ ($\overline{\Psi}$)1s² 2s² 2p⁶ 3s² 3p⁶ 4s²
 - (গ)1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹ 4s² (ঘ)1s² 2s² 2p⁶ 3s² 3p⁶

- 1. একটি মৌলের পরমাণুর মডেল আঁকার জন্য বলা হলে নবম শ্রেণির ছাত্র ফরিদ নিচের চিত্রটি অধ্বন কর্ল।
 - (ক) পারমাণবিক সংখ্যা কাকে বলে?
 - (খ) $\frac{64}{29}$ ম এবং $\frac{64}{30}$ পরমাণু দুটির নিউক্লিয়ন সংখ্যা সমান কিন্তু নিউট্রন সংখ্যা ভিন্ন–ব্যাখ্যা করো।
 - (গ) ফরিদের আঁকা চিত্রটি যে পরমাণু মডেলের সীমাবন্ধতা নির্দেশ করে সেই পরমাণু মডেলটি বর্ণনা করো।
 - (ঘ) অঞ্চিত চিত্র অনুসারে পরমাণু কেন স্থায়ী হবে না— তা আলোচনা করো।

- 2. A মৌল = 60Co, B মৌল = 32P, C যৌগ = H₂SO₄
 - (ক) প্রতীক কাকে বলে?
 - (খ) পরমাণুতে কখন বর্ণালির সৃষ্টি হয়? ব্যাখ্যা করো।
 - (গ) C যৌগের আপেক্ষিক আণবিক ভর বের করো।
 - (ঘ) A এবং B এর আইসোটোপগুলো আমাদের জীবনে গুরুত্বপূর্ণ ভূমিকা রাখে— ব্যাখ্যা করো।