Filter Summary Report: TIA,simple,Z2,Z3,ZL

Generated by MacAnalog-Symbolix

December 5, 2024

Contents

1	Examined $H(z)$ for TIA simple Z2 Z3 ZL: $\frac{Z_3Z_L(Z_2g_m+1)}{Z_2Z_3g_m+Z_2Z_Lg_m+Z_3+Z_L}$	42
2	HP	42
	BP 3.1 BP-1 $Z(s) = \left(\infty, R_2, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$. 42
	3.2 BP-2 $Z(s) = \left(\infty, R_2, R_3, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$. 42
	3.3 BP-3 $Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	
	3.4 BP-4 $Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} \right)$	
	3.5 BP-5 $Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$. 44
	3.6 BP-6 $Z(s) = \left(\infty, R_2, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, R_L\right)$. 44
	3.7 BP-7 $Z(s) = \left(\infty, R_2, \frac{L_{3S}}{C_3L_3s^2+1}, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$. 45
	3.8 BP-8 $Z(s) = \left(\infty, R_2, \frac{L_{3s}}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	
	3.9 BP-9 $Z(s) = \left(\infty, R_2, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, R_L\right)$	
	3.10 BP-10 $Z(s) = \left(\infty, R_2, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{1}{C_L s}\right)$. 46

3.11	BP-11 $Z(s) =$	$\left(\infty,\right.$	R_2	$\frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}},$	∞ , ∞ ,	$\frac{R_L}{C_L R_L s + 1}$)		 	 	 	 	 	 	47
3.12	BP-12 $Z(s) =$	$\left(\infty,\right.$	R_2	$\frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}},$	$\infty, \ \infty,$	$\frac{L_L s}{C_L L_L s^2 + 1}$	$\Big)$.		 	 	 	 	 	 	47
3.13	BP-13 $Z(s) =$	$\left(\infty,\right.$	R_2	$\frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}},$	∞ , ∞ ,	$\frac{1}{C_L s + \frac{1}{R_L} +}$	$\frac{1}{L_L s}$		 	 	 	 	 	 	48
3.14	BP-14 $Z(s) =$	$(\infty,$	$\frac{1}{C_2 s}$	$R_3, \infty, \infty,$	$\frac{L_L s}{C_L L_L s^2 +}$	$\overline{-1}$)			 	 	 	 	 	 	48
3.15	BP-15 $Z(s) =$	$\left(\infty,\right.$	$\frac{1}{C_2 s}$	$R_3, \infty, \infty, \infty,$	$\frac{1}{C_L s + \frac{1}{R_L}}$	$\left(\frac{1}{1+\frac{1}{L_L s}}\right)$.			 	 	 	 	 	 	49
3.16	BP-16 $Z(s) =$	$\left(\infty,\right.$	$\frac{1}{C_2 s}$	$\frac{1}{C_3s}$, ∞ , ∞	$C_L s + \frac{1}{R_I}$	$\left(\frac{1}{L} + \frac{1}{L_L s}\right)$.			 	 	 	 	 	 	49
3.17	BP-17 $Z(s) =$	$(\infty,$	$\frac{1}{C_2 s}$	$, \frac{R_3}{C_3R_3s+1}, \infty$	$, \infty, \overline{C_L}$	$\frac{L_L s}{L_L s^2 + 1}$.			 	 	 	 	 	 	50
3.18	BP-18 $Z(s) =$	$\left(\infty,\right.$	$\frac{1}{C_2 s}$	$\frac{R_3}{C_3R_3s+1}, \ \infty$	$0, \infty, \overline{C_L}$	$\frac{1}{Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}$	$\left(\cdot \right)$.		 	 	 	 	 	 	50
3.19	BP-19 $Z(s) =$	$(\infty,$	$\frac{1}{C_2 s}$	$, \frac{L_3s}{C_3L_3s^2+1}, \propto$	∞ , ∞ , R	$_{L}$)			 	 	 	 	 	 	51
3.20	BP-20 Z(s) =	$\left(\infty,\right.$	$\frac{1}{C_2 s}$	$, \frac{L_3s}{C_3L_3s^2+1}, \propto$	$\infty, \ \infty, \ \overline{C}_{i}$	$\frac{R_L}{LR_Ls+1}$).			 	 	 	 	 	 	51
3.21	BP-21 Z(s) =	$\left(\infty,\right.$	$\frac{1}{C_2 s}$	$, \frac{L_3s}{C_3L_3s^2+1}, \ \circ$	\circ , ∞ , \overline{C}	$\frac{1}{L s + \frac{1}{R_L} + \frac{1}{L_L}}$	$\left(\frac{1}{s} \right)$.		 	 	 	 	 	 	52
3.22	BP-22 $Z(s) =$	$\left(\infty,\right.$	$\frac{1}{C_2 s}$	$, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}$	∞ , ∞ , ∞	$, R_L $			 	 	 	 	 	 	52
3.23	BP-23 Z(s) =	$\left(\infty,\right.$	$\frac{1}{C_2 s}$	$, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}$	∞ , ∞ , ∞	$, \frac{1}{C_L s} $.			 	 	 	 	 	 	53
3.24	BP-24 Z(s) =	$\left(\infty,\right.$	$\frac{1}{C_2 s}$	$, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}$	∞ , ∞ , ∞	$, \frac{R_L}{C_L R_L s + 1}$	$\left. \cdot \right)$.		 	 	 	 	 	 	53
3.25	BP-25 Z(s) =	$\left(\infty,\right.$	$\frac{1}{C_2 s}$	$, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}$	$, \infty, \infty$	$, \frac{L_L s}{C_L L_L s^2 + 1}$	$_{\overline{1}}\bigg)$.		 	 	 	 	 	 	54
3.26	BP-26 $Z(s) =$	$\left(\infty,\right.$	$\frac{1}{C_2 s}$	$, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}$	∞ , ∞ , ∞	$, \frac{1}{C_L s + \frac{1}{R_L}} -$	$+\frac{1}{L_L s}$)	 	 	 	 	 	 	54
3.27	BP-27 Z(s) =	$(\infty,$	$\frac{I}{C_2R}$	$R_2 \over R_2 s+1$, R_3 , ∞ ,	∞ , $\frac{1}{C_L I}$	$\left(\frac{L_L s}{L_L s^2 + 1}\right)$.			 	 	 	 	 	 	55
3.28	BP-28 Z(s) =	$\left(\infty,\right.$	$\frac{1}{C_2 E}$	$\frac{R_2}{R_2s+1}$, R_3 , ∞ ,	∞ , $\overline{C_L}$	$\frac{1}{s + \frac{1}{R_L} + \frac{1}{L_L s}}$	$\Big)$		 	 	 	 	 	 	55
3.29	BP-29 $Z(s) =$	$\left(\infty,\right.$	$\frac{I}{C_2 R}$	$\frac{R_2}{R_2s+1}, \frac{1}{C_3s}, \infty$	o , ∞ , $\overline{C_L}$	$\frac{1}{s + \frac{1}{R_L} + \frac{1}{L_L s}}$	$\left(\frac{1}{2}\right)$.		 	 	 	 	 	 	56

3.30 BP-30 $Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{R_3}{C_3R_3s+1}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$	56
3.31 BP-31 $Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{R_3}{C_3R_3s+1}, \infty, \infty, \frac{1}{C_Ls+\frac{1}{R_L}+\frac{1}{L_Ls}}\right) \dots \dots$	57
3.32 BP-32 $Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \infty, R_L\right)$	57
3.33 BP-33 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1} \right) \dots$	58
3.34 BP-34 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}} \right)$	58
3.35 BP-35 $Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{1}{C_3s+\frac{1}{R_3}+\frac{1}{L_3s}}, \infty, \infty, \infty, R_L\right)$	59
3.36 BP-36 $Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{1}{C_3s+\frac{1}{R_3}+\frac{1}{L_3s}}, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$	59
3.37 BP-37 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	60
3.38 BP-38 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$	60
3.39 BP-39 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	61
3.40 BP-40 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$	61
3.41 BP-41 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	62
3.42 BP-42 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	62
3.43 BP-43 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$	63
3.44 BP-44 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	63
3.45 BP-45 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_{3s}}{C_3 L_{3s^2 + 1}}, \infty, \infty, R_L\right)$	64
3.46 BP-46 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	64
3.47 BP-47 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	65
3.48 BP-48 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, R_L\right)$	65
3.49 BP-49 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{1}{C_L s}\right)$	66

$$\begin{array}{c} 3.69 \text{ BP-69 } Z(s) = \left(\infty, \ L_2 + R_2 + \frac{1}{c_2 s}, \ \frac{1}{c_2 R_2 s + 1}, \ \infty, \ \infty, \ \frac{c_{L+1}^{-1}}{c_{L+1}^{-1} + \frac{1}{c_{L+1}^{-1}}} \right) & 76 \\ 3.70 \text{ BP-70 } Z(s) = \left(\infty, \ L_2 + R_2 + \frac{1}{c_2 s}, \ \frac{1}{c_2 R_2 s + 1}, \ \infty, \ \infty, \ \frac{1}{c_{L+1}^{-1} + \frac{1}{c_{L+1}^{-1}}} \right) & 76 \\ 3.71 \text{ BP-71 } Z(s) = \left(\infty, \ L_2 + R_2 + \frac{1}{c_2 s}, \ \frac{1}{c_2 R_2 s + 1}, \ \infty, \ \infty, \ R_L \right) & 77 \\ 3.72 \text{ BP-72 } Z(s) = \left(\infty, \ L_2 + R_2 + \frac{1}{c_2 s}, \ \frac{1}{c_2 R_2 s + 1}, \ \infty, \ \infty, \ \frac{R_L}{c_2 R_2 s + 1} \right) & 77 \\ 3.73 \text{ BP-73 } Z(s) = \left(\infty, \ L_2 + R_2 + \frac{1}{c_2 s}, \ \frac{1}{c_2 R_2 s + 1}, \ \infty, \ \infty, \ \frac{1}{c_2 R_2 s + 1} \right) & 78 \\ 3.74 \text{ BP-74 } Z(s) = \left(\infty, \ L_2 + R_2 + \frac{1}{c_2 s}, \ \frac{1}{c_2 R_2 s + 1}, \ \infty, \ \infty, \ R_L \right) & 78 \\ 3.75 \text{ BP-75 } Z(s) = \left(\infty, \ L_2 + R_2 + \frac{1}{c_2 s}, \ \frac{1}{c_2 R_2 s + 1}, \ \frac{1}{c_2 s + R_2 s + \frac{1}{c_2 s}}, \ \frac{1}{c_2 R_2 s + 1}, \ \infty, \ \infty, \ R_L \right) & 79 \\ 3.76 \text{ BP-76 } Z(s) = \left(\infty, \ L_2 + R_2 + \frac{1}{c_2 s}, \ \frac{1}{c_2 s + \frac{1$$

	3.89 BP-89 $Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$	86
	3.90 BP-90 $Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$	86
	3.91 BP-91 $Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$	87
	3.92 BP-92 $Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, R_3, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$	87
	3.93 BP-93 $Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, R_3, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}} \right) \dots $	88
	3.94 BP-94 $Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{1}{C_3s}, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right) \dots \dots$	88
	3.95 BP-95 $Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{R_3}{C_3R_3s + 1}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} \right)$	89
	3.96 BP-96 $Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{R_3}{C_3R_3s + 1}, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}} \right) \dots $	89
	3.97 BP-97 $Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_3s}{C_3L_3s^2 + 1}, \infty, \infty, R_L\right)$	
	3.98 BP-98 $Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_3s}{C_3L_3s^2 + 1}, \infty, \infty, \frac{R_L}{C_LR_Ls + 1} \right)$	90
	3.99 BP-99 $Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_3s}{C_3L_3s^2 + 1}, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}} \right) \dots $	91
	$3.100\text{BP-}100\ Z(s) = \left(\infty,\ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}},\ \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}},\ \infty,\ \infty,\ R_L\right)\ \dots$	
	$3.101\text{BP-101 } Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, \infty, \frac{1}{C_Ls}\right) \dots \dots$	92
	$3.102\text{BP-}102\ Z(s) = \left(\infty,\ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}},\ \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}},\ \infty,\ \infty,\ \frac{R_L}{C_LR_Ls + 1}\right) \dots $	92
	$3.103\text{BP-}103\ Z(s) = \left(\infty,\ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}},\ \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}},\ \infty,\ \infty,\ \frac{L_Ls}{C_LL_Ls^2 + 1}\right) \dots $	93
	$3.104\text{BP-}104\ Z(s) = \left(\infty,\ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}},\ \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}},\ \infty,\ \infty,\ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right) \dots $	93
4	LP	94

5	BS 5.1	BS-1 $Z(s) = \left(\infty, R_2, R_3, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$	94 94
	5.2	BS-2 $Z(s) = \left(\infty, \ R_2, \ R_3, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s} \right)}{L_L s + R_L + \frac{1}{C_L s}} \right) $	94
	5.3	BS-3 $Z(s) = \left(\infty, R_2, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$	95
	5.4	BS-4 $Z(s) = \left(\infty, R_2, \frac{R_3\left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, R_L\right)$	95
	5.5	BS-5 $Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$	96
	5.6	BS-6 $Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$	96
	5.7	BS-7 $Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$	97
	5.8	BS-8 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, \infty, R_L\right)$	97
	5.9	BS-9 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3, \infty, \infty, L_L s + \frac{1}{C_L s} \right)$	98
	5.10	BS-10 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$	98
	5.11	BS-11 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$	99
	5.12	BS-12 $Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ R_L\right)$	99
	5.13	BS-13 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$	100
	5.14	BS-14 $Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ R_3, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$	100
	5.15	BS-15 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$	101
	5.16	BS-16 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, R_L\right)$	101
	5.17	BS-17 $Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ R_3, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s} \right)^{-1} \dots \dots$	102
	5.18	BS-18 $Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ R_3, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s} \right)}{L_L s + R_L + \frac{1}{C_L s}} \right)$	102
	5.19	BS-19 $Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$	103

	5.20	BS-20 $Z(s) =$	$(\infty,$	$L_2s + \frac{1}{C_2s}$	$\frac{R_3\left(L_3s+\frac{1}{L_2s+R_2+1}\right)}{L_2s+R_2+1}$	$\left(\frac{\frac{1}{C_3s}}{\frac{1}{c_3}}\right)$, ∞ ,	∞ , R_L		 	 	 	 	. 103
		BS-21 $Z(s) =$	\			9	,						
	5.22	BS-22 $Z(s) =$	$(\infty,$	$L_2s + R_2$	$+\frac{1}{C_2s}, R_3$	$_{3}, \infty, \infty,$	$\frac{R_L \left(L_L s + \frac{1}{2}\right)}{L_L s + R_L + \frac{1}{2}}$	$\left(\frac{1}{C_L s}\right)$. 104
		BS-23 $Z(s) =$	`					,					
		BS-24 $Z(s) =$	\			030		,					
	5.25	BS-25 $Z(s) =$	$(\infty,$	$\frac{L_2s}{C_2L_2s^2+1} -$	$+R_2, R_3,$	∞ , ∞ , I	$L_L s + \frac{1}{C_L s}$)	 	 	 	 	. 106
		BS-26 $Z(s) =$	\					ъ. /					
	5.27	BS-27 $Z(s) =$	$(\infty,$	$\frac{L_2s}{C_2L_2s^2+1} -$	$+R_2, L_3s$	$+\frac{1}{C_3s}, \propto$	∞ , ∞ , R_L)	 	 	 	 	. 107
		BS-28 $Z(s) =$	\			- 3		,					
	5.29	BS-29 $Z(s) =$	$\left(\infty,\right.$	$\frac{R_2\left(L_2s + \frac{1}{C_2}\right)}{L_2s + R_2 + \frac{1}{C_2}}$	$\left(\frac{\frac{1}{2^{s}}}{\frac{1}{2^{s}}}\right)$, R_{3} , c	∞ , ∞ , L_I	$\left(s + \frac{1}{C_L s}\right)$. 108
		BS-30 $Z(s) =$											
	5.31	BS-31 $Z(s) =$	$\left(\infty,\right.$	$\frac{R_2\left(L_2s + \frac{1}{C_2}\right)}{L_2s + R_2 + \frac{1}{C_2}}$	$\left(\frac{\frac{1}{2^{s}}}{\frac{1}{2^{s}}}\right), L_{3}s +$	$-\frac{1}{C_3s}$, ∞ ,	∞ , R_L		 	 	 	 	. 109
	5.32	BS-32 $Z(s) =$	$\left(\infty,\right.$	$\frac{R_2\left(L_2s + \frac{1}{C_2}\right)}{L_2s + R_2 + \frac{1}{C_2}}$	$\frac{\left(\frac{1}{2s}\right)}{\left(\frac{1}{2s}\right)}, \frac{R_3\left(L_3\right)}{L_3s+L_3}$	$\frac{3s + \frac{1}{C_3s}}{R_3 + \frac{1}{C_3s}},$	∞ , ∞ , R	L)	 	 	 	 	. 109
6	\mathbf{GE}		,				`						110
	6.1	GE-1 $Z(s) =$	$(\infty,]$	R_2, R_3, ∞	∞ , ∞ , $L_L s$	$s + R_L + \overline{\epsilon}$	~ L ~ /						
	6.2	GE-2 $Z(s) =$	$(\infty,]$	R_2, R_3, ∞	$\infty, \ \infty, \ \frac{I}{C_L L}$	$\frac{L_L s}{L_L s^2 + 1} + I$	(R_L)		 	 	 	 	. 110
	6.3	GE-3 $Z(s) =$	$(\infty,)$	$R_2, L_3s +$	$R_3 + \frac{1}{C_3s}$	$\infty, \infty, 1$	R_L)		 	 	 	 	. 111
		GE-4 $Z(s) =$											
	6.5	GE-5 $Z(s) =$	$(\infty,$	$\frac{1}{C}$, R_3 , c	∞ , ∞ , L_L	$s + R_L +$	$\frac{1}{G}$.		 	 	 	 	112
		GE-6 $Z(s) =$											
		` '		C 20	\mathcal{O}_L	LLO I	/						

6.7	GE-7 Z	(s) = (c)	∞ ,	$\frac{1}{100}$, $L_3s + R_3 + \frac{1}{C_3s}$, ∞ , ∞ , R_L)
6.8	GE-8 Z	(s) = (c)	∞ ,	$\frac{L_3s}{C_3L_3s^2+1}+R_3, \ \infty, \ \infty, \ R_L$
6.9	GE-9 Z	(s) = (c)	∞ ,	$\frac{R_2}{R_2s+1}$, R_3 , ∞ , ∞ , $L_L s + R_L + \frac{1}{C_L s}$)
6.10	GE-10 Z	Z(s) = ($\left(\infty,\right.$	$\frac{R_2}{C_2R_2s+1}$, R_3 , ∞ , ∞ , $\frac{L_Ls}{C_LL_Ls^2+1} + R_L$)
6.11	GE-11 Z	Z(s) = ($\left(\infty, \right.$	$\frac{R_2}{C_2R_2s+1}$, $L_3s + R_3 + \frac{1}{C_3s}$, ∞ , ∞ , R_L
6.12	GE-12 Z	Z(s) = ($\left(\infty, \right.$	$\frac{R_2}{C_2R_2s+1}, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, R_L$
6.13	GE-13 Z	Z(s) = ($\left(\infty,\right.$	$R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}$
6.14	GE-14 Z	Z(s) = ($\left(\infty, \right)$	$R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L$
6.15	GE-15 Z	Z(s) = ($(\infty,$	$R_2 + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ R_L$
6.16	GE-16 Z	Z(s) = ($\left(\infty, \right)$	$R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ R_L$
6.17	GE-17 Z	Z(s) = ($(\infty,$	$L_2s + \frac{1}{C_2s}, R_3, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}$
6.18	GE-18 Z	Z(s) = ($\left(\infty, \right)$	$L_2s + \frac{1}{C_2s}, R_3, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1} + R_L$
		`	>	$(C_2s + \frac{1}{C_2s}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \infty, R_L)$
		,	,	$\left(\frac{L_2 s}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \infty, R_L \right) $
6.21	GE-21 Z	Z(s) = ($(\infty,$	$L_2s + R_2 + \frac{1}{C_2s}, R_3, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}$
6.22	GE-22 Z	Z(s) = ($\left(\infty, \right)$	$L_2s + R_2 + \frac{1}{C_2s}, R_3, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1} + R_L$
6.23	GE-23 Z	Z(s) = ($(\infty,$	$L_2s + R_2 + \frac{1}{C_2s}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ R_L$
6.24	GE-24 Z	Z(s) = ($\left(\infty, \right)$	$\left(L_{2}s + R_{2} + \frac{1}{C_{2}s}, \frac{L_{3}s}{C_{3}L_{3}s^{2}+1} + R_{3}, \infty, \infty, R_{L}\right)$
6.25	GE-25 Z	Z(s) = ($(\infty,$	$\frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}$
6.26	GE-26 Z	Z(s) = ($\left(\infty, \right)$	$\frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L$
6.27	GE-27 Z	Z(s) = ($(\infty,$	$\frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ R_L$
			\	$\frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ R_L$
6.29	GE-29 Z	$Z(s) = \left(\right.$	$\left(\infty,\right.$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, R_3, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$

		GE-30 $Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, R_3, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$
	6.31	GE-31 $Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \infty, R_L\right)$
		GE-32 $Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \infty, \infty, R_L\right)$
7	\mathbf{AP}	126
8		VALID-NUMER
		INVALID-NUMER-1 $Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$
		INVALID-NUMER-2 $Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$
		INVALID-NUMER-3 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$
	8.4	INVALID-NUMER-4 $Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$
	8.5	INVALID-NUMER-5 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$
	8.6	INVALID-NUMER-6 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$
	8.7	INVALID-NUMER-7 $Z(s) = (\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, R_L + \frac{1}{C_L s})$
	8.8	INVALID-NUMER-8 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$
		INVALID-NUMER-9 $Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s} \right)$
	8.10	INVALID-NUMER-10 $Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$
		INVALID-NUMER-11 $Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right) \dots \dots$
		INVALID-NUMER-12 $Z(s) = \left(\infty, L_2s + R_2 + \frac{1}{C_2s}, R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{R_L}{C_LR_Ls + 1}\right)$
		INVALID-NUMER-13 $Z(s) = \left(\infty, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$
		INVALID-NUMER-14 $Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$
		INVALID-NUMER-15 $Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{R_3}{C_3R_3s + 1}, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$
	8.16	INVALID-NUMER-16 $Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, R_3 + \frac{1}{C_3s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1} \right)$

9	INVALID-WZ	13 4
	INVALID-ORDER 10.1 INVALID-ORDER-1 $Z(s) = (\infty, R_2, R_3, \infty, \infty, R_L)$	134 . 134 . 135
	10.3 INVALID-ORDER-3 $Z(s) = \left(\infty, R_2, R_3, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	
	10.4 INVALID-ORDER-4 $Z(s) = \left(\infty, R_2, R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right)$	
	10.6 INVALID-ORDER-6 $Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$	
	10.7 INVALID-ORDER-7 $Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$. 135
	10.8 INVALID-ORDER-8 $Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$	
	10.10INVALID-ORDER-10 $Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$	
	10.11INVALID-ORDER-11 $Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$. 136
	10.12INVALID-ORDER-12 $Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$	
	10.13INVALID-ORDER-13 $Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$	
	10.14INVALID-ORDER-14 $Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s+1}, \infty, \infty, R_L\right)$	
	10.16INVALID-ORDER-16 $Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s+1}, \infty, \infty, \frac{R_L}{C_L R_L s+1}\right) \dots \dots$. 137
	10.17INVALID-ORDER-17 $Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, L_L s + \frac{1}{C_L s}\right) \dots$. 137
	10.18INVALID-ORDER-18 $Z(s) = \left(\infty, \ R_2, \ \frac{R_3}{C_3 R_3 s+1}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s} \right)$. 137 . 137
	$10.20 \text{INVALID-ORDER-20 } Z(s) = \left(\infty, \ R_2, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s} \right)}{L_L s + R_L + \frac{1}{C_L s}} \right) $	
	10.21INVALID-ORDER-21 $Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$. 138

10.22INVALID-ORDER-22 $Z(s)=\langle$	$\left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$
10.23INVALID-ORDER-23 $Z(s) = 0$	$\left(\infty, \ R_2, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$
10.24INVALID-ORDER-24 $Z(s) = 0$	$\left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$
10.25 INVALID-ORDER-25 $\boldsymbol{Z}(s) = ($	$\left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$
10.26 INVALID-ORDER-26 $\boldsymbol{Z}(s) = ($	$\left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right) \dots \dots$
10.27INVALID-ORDER-27 $Z(s) = 1$	$\left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$
10.28INVALID-ORDER-28 $Z(s) = 0$	$\left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$
10.29 INVALID-ORDER-29 $Z(s)=\langle$	$\left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \dots \dots$
10.30INVALID-ORDER-30 $Z(s) = 0$	$(\infty, R_2, L_3s + \frac{1}{C_3s}, \infty, \infty, \frac{1}{C_Ls})$
10.31INVALID-ORDER-31 $Z(s) = 0$	$\left(\infty, R_2, L_3s + \frac{1}{C_3s}, \infty, \infty, \frac{R_L}{C_LR_Ls + 1}\right) \dots \dots$
10.32INVALID-ORDER-32 $Z(s) = 0$	$\left(\infty, R_2, L_3s + \frac{1}{C_3s}, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$
10.33 INVALID-ORDER-33 $\boldsymbol{Z}(s) = ($	$\left(\infty, R_2, L_3 s + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$
10.34 INVALID-ORDER-34 $\boldsymbol{Z}(s) = ($	$\left(\infty, R_2, L_3s + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$
10.35 INVALID-ORDER-35 $\boldsymbol{Z}(s) = (s)$	$\left(\infty, R_2, L_3 s + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$
10.36 INVALID-ORDER-36 $Z(s)=\langle$	$\left(\infty, R_2, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right) \dots \dots$
10.37INVALID-ORDER-37 $Z(s) = 0$	$\left(\infty, R_2, L_3s + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right) \dots \dots$
10.38INVALID-ORDER-38 $Z(s) = 1$	$\left(\infty, R_2, L_3s + \frac{1}{C_3s}, \infty, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$
10.39INVALID-ORDER-39 $Z(s) = 0$	$(\infty, R_2, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \frac{1}{C_Ls})$
10.40INVALID-ORDER-40 $Z(s) = 0$	$(\infty, R_2, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, R_L + \frac{1}{C_Ls})$
10.41 INVALID-ORDER-41 $\boldsymbol{Z}(s) = ($	$\left\langle \infty, R_2, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, L_Ls + \frac{1}{C_Ls} \right\rangle$
10.42INVALID-ORDER-42 $Z(s) = 0$	$(\infty, R_2, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1})$
10.43 INVALID-ORDER-43 $Z(s) = 0$	$(\infty, R_2, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls})$

10.44INVALID-ORDER- $44 Z(s) =$	$\left(\infty, \ R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$
10.45INVALID-ORDER- 45 $Z(s) =$	$\left(\infty, R_2, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_I s}}\right)$
10.46INVALID-ORDER-46 $Z(s) =$	$(\infty, R_2, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{1}{C_Ls})$
10.47INVALID-ORDER- $47 Z(s) =$	$\left(\infty, R_2, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{R_L}{C_LR_Ls + 1}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.48INVALID-ORDER- $48 Z(s) =$	$\left(\infty, R_2, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$
10.49INVALID-ORDER-49 $Z(s) =$	$\left(\infty, R_2, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$
10.50INVALID-ORDER-50 $Z(s) =$	$\left(\infty, R_2, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$
10.51INVALID-ORDER-51 $Z(s) =$	$\left(\infty, R_2, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$
10.52INVALID-ORDER-52 $Z(s) =$	$\left(\infty, R_2, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$
10.53INVALID-ORDER-53 $Z(s) =$	$(\infty, R_2, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L)$
10.54INVALID-ORDER-54 $Z(s) =$	$\left(\infty, \ R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	$\left(\infty, R_2, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$
10.56INVALID-ORDER-56 $Z(s) =$	$\left(\infty, R_2, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$
10.57INVALID-ORDER-57 $Z(s) =$	$\left(\infty, R_2, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$
10.58INVALID-ORDER-58 $Z(s) =$	$\left(\infty, R_2, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$
10.59INVALID-ORDER-59 $Z(s) =$	$\left(\infty, \ R_2, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \ \dots $
10.60INVALID-ORDER-60 $Z(s) =$	$\left(\infty, \ R_2, \ \frac{L_{3s}}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$
10.61INVALID-ORDER-61 $Z(s) =$	$\left(\infty, \ R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \frac{R_L}{C_LR_Ls+1}\right) $
10.62INVALID-ORDER-62 $Z(s) =$	$\left(\infty, \ R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$
10.63INVALID-ORDER-63 $Z(s) =$	$\left(\infty, \ R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right) \ \dots $
10.64INVALID-ORDER- 64 $Z(s) =$	$\left(\infty, \ R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1}\right) \ \dots \ $

10.65 INVALID-ORDER-65 $Z(s) = \displaystyle$	$\left(\infty, R_2,\right.$	$\frac{L_3s}{C_3L_3s^2+1} + R$	$_3, \infty, \infty$	$D, L_L s + R$	$R_L + \frac{1}{C_L s}$)	 	 	 	. 146
10.66 INVALID-ORDER-66 $Z(s)=$	$\left(\infty, R_2,\right.$	$\frac{L_3s}{C_3L_3s^2+1} + R$	R_3, ∞, ∞	$O, \frac{1}{C_L s + \frac{1}{R_L}}$	$\frac{1}{+\frac{1}{L_L s}}$. 146
10.67 INVALID-ORDER-67 $Z(s)=$	$(\infty, R_2,$	$\frac{L_3s}{C_3L_3s^2+1} + R$	$_3, \infty, \infty$	$C_L \frac{L_L s}{C_L L_L s^2 + 1}$	$\overline{R}_1 + R_L$. 147
10.68INVALID-ORDER-68 $Z(s)=$	$\left(\infty, R_2,\right.$	$\frac{L_3s}{C_3L_3s^2+1} + R$	R_3, ∞, ∞	$O, \frac{R_L \left(L_L s - \frac{1}{L_L s + R_L}\right)}{L_L s + R_L}$	$\left(\frac{+\frac{1}{C_L s}}{+\frac{1}{C_L s}}\right)$. 147
10.69 INVALID-ORDER-69 $Z(s)=$	$(\infty, R_2,$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}$	$, \infty, \infty,$	$\frac{1}{C_L s}$. 147
10.70 INVALID-ORDER-70 $Z(s)=$	$\left(\infty, R_2,\right.$	$\frac{R_3 \left(L_3 s + \frac{1}{C_3 s} \right)}{L_3 s + R_3 + \frac{1}{C_3 s}}$	$, \infty, \infty,$	$\frac{R_L}{C_L R_L s + 1}$)		 	 	 	. 147
10.71 INVALID-ORDER-71 $Z(s)=$	\	030			/					
10.72INVALID-ORDER-72 $Z(s) =$	$\left(\infty, R_2,\right.$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}$	$, \infty, \infty,$	$L_L s + \frac{1}{C_L}$	\overline{s})		 	 	 	. 148
10.73 INVALID-ORDER-73 $Z(s)=$	$(\infty, R_2,$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}$	$, \infty, \infty,$	$\frac{L_L s}{C_L L_L s^2 + 1}$)		 	 	 	. 148
10.74 INVALID-ORDER-74 $Z(s)=$	\	9			,		 	 	 	. 148
10.75 INVALID-ORDER-75 $Z(s)=$	$(\infty, R_2,$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}$	$, \infty, \infty,$	$\frac{1}{C_L s + \frac{1}{R_L} +}$	$\frac{1}{L_L s}$. 148
10.76 INVALID-ORDER-76 $Z(s)=$										
10.77 INVALID-ORDER-77 $Z(s) = \displaystyle$	$(\infty, R_2,$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}$	$, \infty, \infty,$	$\frac{R_L \left(L_L s + \frac{1}{C}\right)}{L_L s + R_L + \frac{1}{C}}$	$\left(\frac{1}{C_L s}\right) \over \frac{1}{C_L s}$. 149
10.78INVALID-ORDER-78 $Z(s) =$										
10.79INVALID-ORDER-79 $Z(s) =$	$\left(\infty, \frac{1}{C_2 s},\right.$	$R_3, \infty, \infty,$	$\frac{1}{C_L s}$) .				 	 	 	. 149
10.80INVALID-ORDER-80 $Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, \right)$	$R_3, \infty, \infty,$	$\frac{R_L}{C_L R_L s + 1}$. 149
10.81INVALID-ORDER-81 $Z(s) =$	}									
10.82INVALID-ORDER-82 $Z(s) =$	`			,						
10.83INVALID-ORDER-83 $Z(s) =$	<i>)</i>		/\							
10.84 INVALID-ORDER-84 $Z(s)=$	$(\infty, \frac{1}{C_2 s},$	$\frac{1}{C_3s}$, ∞ , ∞ ,	$\frac{\overset{'}{R_L}}{C_L R_L s +}$	$\overline{1}$)			 	 	 	. 150

10.85 INVALID-ORDER-85 $\boldsymbol{Z}(s) = ($	$\left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$
10.86 INVALID-ORDER-86 $\boldsymbol{Z}(s) = ($	$\left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right) \dots \dots$
10.87INVALID-ORDER-87 $Z(s) = 0$	$\left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$
10.88INVALID-ORDER-88 $Z(s)=\langle$	$\left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$
	$\left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.90INVALID-ORDER-90 $Z(s) = 1$	$\left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$
10.91INVALID-ORDER-91 $Z(s)=\langle$	$\left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s+1}, \infty, \infty, \infty, R_L\right)$
10.92INVALID-ORDER-92 $Z(s) = 0$	$\left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s+1}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$
10.93 INVALID-ORDER-93 $\boldsymbol{Z}(s) = 1$	$\left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s+1}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s+1}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.94INVALID-ORDER-94 $Z(s) = 0$	$\left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s+1}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.95INVALID-ORDER-95 $Z(s) = 0$	$\left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$
10.96INVALID-ORDER-96 $Z(s) = 0$	$\left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s+1}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$
10.97INVALID-ORDER-97 $Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s+1}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \dots \dots$
10.98INVALID-ORDER-98 $Z(s)=\langle$	$\left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty, R_L\right)$
10.99 INVALID-ORDER-99 $Z(s)=\langle$	$\left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$
10.10 0 NVALID-ORDER-100 $Z(s) =$	$\left(\infty, \frac{1}{C_{2s}}, R_3 + \frac{1}{C_{3s}}, \infty, \infty, R_L + \frac{1}{C_{Ls}}\right)$
10.10INVALID-ORDER-101 $Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$
10.10 2 NVALID-ORDER-102 $Z(s) =$	$\left(\infty, \frac{1}{C_{2s}}, R_3 + \frac{1}{C_{3s}}, \infty, \infty, \frac{L_{Ls}}{C_L L_L s^2 + 1}\right)$
10.10 B NVALID-ORDER-103 $Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$
10.104NVALID-ORDER-104 $Z(s) =$	$\left(\infty, \ \frac{1}{C_2 s}, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.10 5 NVALID-ORDER-105 $Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$
10.10 6 NVALID-ORDER-106 $Z(s) =$	$\left(\infty, \frac{1}{C_{2s}}, R_3 + \frac{1}{C_{3s}}, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$

10.10TNVALID-ORDER- $107 Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, I\right)$	$L_3s + \frac{1}{C_3s}, \ \infty,$	$\infty, \frac{1}{C_L s}$. 154
10.108NVALID-ORDER- $108 Z(s) =$	$(\infty, \frac{1}{C_2 s}, I$	$L_3s + \frac{1}{C_3s}, \ \infty,$	∞ , $\frac{R_I}{C_L R_L}$	$\left(\frac{1}{s+1}\right)$. 154
10.109NVALID-ORDER- $109 Z(s) =$	$(\infty, \frac{1}{C_2 s}, I$	$L_3s + \frac{1}{C_3s}, \ \infty,$	∞ , R_L +	$\left(\frac{1}{C_L s}\right)$. 154
10.11 0 NVALID-ORDER-110 $Z(s) =$	$(\infty, \frac{1}{C_2 s}, I$	$L_3s + \frac{1}{C_3s}, \ \infty,$	∞ , $L_L s$ -	$+\frac{1}{C_L s}$) .		 	 	 	. 154
10.11 I NVALID-ORDER-111 $Z(s) =$	$(\infty, \frac{1}{C_2 s}, I$	$L_3s + \frac{1}{C_3s}, \ \infty,$	∞ , $\frac{L_L}{C_L L_L}$	$\left(\frac{s}{s^2+1}\right)^{\prime}$. 155
10.11 2 NVALID-ORDER-112 $Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, I\right)$	$L_3s + \frac{1}{C_3s}, \ \infty,$	∞ , $L_L s$ -	$+R_L + \frac{1}{C_L s}$)	 	 	 	. 155
10.11\(\mathbb{B}\) NVALID-ORDER-113 $Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, I\right)$	$L_3s + \frac{1}{C_3s}, \ \infty,$	∞ , $\overline{C_L s}$ +	$\frac{1}{\frac{1}{R_L} + \frac{1}{L_L s}}$. 155
10.11 4 NVALID-ORDER-114 $Z(s) =$	`		,	\ \ '		 	 	 	. 155
10.115NVALID-ORDER-115 $Z(s) =$	$\left(\infty, \ \frac{1}{C_2 s}, \ I\right)$	$L_3s + \frac{1}{C_3s}, \ \infty,$	$\infty, \frac{R_L(I)}{L_L s + 1}$	$\left(\frac{C_L s + \frac{1}{C_L s}}{R_L + \frac{1}{C_L s}}\right)$. 155
10.11 6 NVALID-ORDER-116 $Z(s) =$	$\left(\infty, \ \frac{1}{C_2 s}, \ \overline{C}\right)$	$\frac{L_3s}{C_3L_3s^2+1}, \ \infty,$	$\infty, \frac{1}{C_L s}$. 156
10.11 T NVALID-ORDER-117 $Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, \frac{1}{C_2 s}\right)$	$\frac{L_3s}{C_3L_3s^2+1}, \ \infty,$	∞ , R_L +	$\frac{1}{C_L s}$)		 	 	 	. 156
10.118NVALID-ORDER-118 $Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, \frac{1}{C_2 s}\right)$	$\frac{L_3s}{C_3L_3s^2+1}, \ \infty,$	∞ , $L_L s +$	$\frac{1}{C_L s}$)		 	 	 	. 156
10.119NVALID-ORDER-119 $Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, \frac{1}{C_2 s}\right)$	$\frac{L_3s}{C_3L_3s^2+1}, \ \infty,$	∞ , $\frac{L_L s}{C_L L_L s}$	$\left(\frac{3}{2+1}\right)$. 156
10.12 ONVALID-ORDER- $120 Z(s) =$	$\left(\infty, \ \frac{1}{C_2 s}, \ \overline{C}\right)$	$\frac{L_3s}{C_3L_3s^2+1}, \ \infty,$	∞ , $L_L s +$	$R_L + \frac{1}{C_L s}$. 156
10.12INVALID-ORDER- $121 Z(s) =$	$\left(\infty, \ \frac{1}{C_2 s}, \ \overline{C}_3 \right)$	$\frac{L_3s}{C_3L_3s^2+1}$, ∞ ,	∞ , $\frac{L_L s}{C_L L_L s}$	$\left(\frac{8}{2+1} + R_L\right)$. 156
10.12 2 NVALID-ORDER-122 $Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, \frac{1}{C_2 s}\right)$	$\frac{L_3s}{C_3L_3s^2+1}, \ \infty,$	∞ , $\frac{R_L(L_L)}{L_L s + 1}$	$\left(\frac{S + \frac{1}{C_L s}}{R_L + \frac{1}{C_L s}}\right)$. 157
10.128NVALID-ORDER- $123 Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, I\right)$	$L_3s + R_3 + \frac{1}{C_3s}$	$, \infty, \infty, \infty,$	$\frac{1}{C_L s}$)		 	 	 	. 157
10.124NVALID-ORDER-124 $Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, I\right)$	$L_3s + R_3 + \frac{1}{C_3s}$	$_{i}, \infty, \infty,$	$\frac{R_L}{C_L R_L s + 1}$. 157
10.125NVALID-ORDER- $125 Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, I\right)$	$L_3s + R_3 + \frac{1}{C_3s}$	$, \infty, \infty, \infty,$	$R_L + \frac{1}{C_L s}$. 157
10.12 6 NVALID-ORDER-126 $Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, I\right)$	$L_3s + R_3 + \frac{1}{C_3s}$	$, \infty, \infty, \infty,$	$L_L s + \frac{1}{C_L s}$)	 	 	 	. 157
10.12TNVALID-ORDER- $127 Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, I\right)$	$L_3s + R_3 + \frac{1}{C_3s}$	∞ , ∞ , ∞ ,	$\left. \frac{L_L s}{C_L L_L s^2 + 1} \right)$. 158
10.12\NVALID-ORDER-128 $Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, I\right)$	$L_3s + R_3 + \frac{1}{C_3s}$	∞ , ∞ , ∞ ,	$L_L s + R_L$	$+\frac{1}{C_L s}$. 158

10.12¶NVALID-ORDER-129 $Z(s)=\langle$	$\left(\infty, \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$
10.13 0 NVALID-ORDER-130 $Z(s) = ($	$\left(\infty, \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$
10.13INVALID-ORDER-131 $Z(s) = 1$	$\left(\infty, \ \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \dots $
10.132NVALID-ORDER-132 $Z(s) = 1$	
10.13 B NVALID-ORDER-133 $Z(s) = 1$	$\left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$
10.134NVALID-ORDER-134 $Z(s) = 1$	$\left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$
10.13 INVALID-ORDER-135 $Z(s) = 1$	$\left(\infty, \ \frac{1}{C_2 s}, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.136NVALID-ORDER-136 $Z(s) = 1$	$\left(\infty, \ \frac{1}{C_2 s}, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \ \dots $
10.13 T NVALID-ORDER-137 $Z(s)=\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\infty, \frac{1}{C_2 s}, \frac{L_{3 s}}{C_3 L_{3 s}^2 + 1} + R_3, \infty, \infty, \frac{1}{C_L s}\right) \dots \dots$
10.13&NVALID-ORDER-138 $Z(s)=\left(\rule{0mm}{2.5mm}\right.$	$\left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$
10.13 9 NVALID-ORDER-139 $Z(s) = ($	$(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, R_L + \frac{1}{C_L s})$
10.14 0 NVALID-ORDER-140 $Z(s) = ($	$(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, L_L s + \frac{1}{C_L s})$
10.14INVALID-ORDER-141 $Z(s) = ($	$(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1})$
10.142NVALID-ORDER-142 $Z(s) = ($	$\left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right) \dots \dots$
10.14\$NVALID-ORDER-143 $Z(s) = 1$	$\left(\infty, \ \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.14\PVALID-ORDER-144 $Z(s) = 0$	$\left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$
10.14Б NVALID-ORDER-145 $Z(s) = 1$	$\left(\infty, \ \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \ \dots $
10.146NVALID-ORDER-146 $Z(s) = 1$	$\left(\infty, \ \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.14 Invalid-order-147 $Z(s) = 1$	$\left(\infty, \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right) \dots \dots$

10.14\nstructure NVALID-ORDER-148 $Z(s) =$	$(a), \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, R_L + \frac{1}{C_L s}$	
10.149NVALID-ORDER-149 $Z(s) =$	$(0), \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, L_L s + \frac{1}{C_L s}$	
10.15 0 NVALID-ORDER-150 $Z(s) =$	$(a), \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}$	
10.15INVALID-ORDER-151 $Z(s) =$	$(a), \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}$	
10.15 2 NVALID-ORDER-152 $Z(s) =$	$(a, \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}})$	
10.15 B NVALID-ORDER-153 $Z(s) =$	$(x), \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L$	
10.154NVALID-ORDER-154 $Z(s) =$	$\sum_{i}, \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}} $	
10.15 Invalid-order-155 $Z(s) =$	$, \frac{R_2}{C_2R_2s+1}, R_3, \infty, \infty, R_L$	
10.156NVALID-ORDER-156 $Z(s) =$	$, \frac{R_2}{C_2R_2s+1}, R_3, \infty, \infty, \frac{1}{C_Ls}$	
10.15 T NVALID-ORDER-157 $Z(s) =$	$, \frac{R_2}{C_2R_2s+1}, R_3, \infty, \infty, \frac{R_L}{C_LR_Ls+1}$	
	' \	
10.15 9 NVALID-ORDER-159 $Z(s) =$,	
	,	
10.16 I NVALID-ORDER-161 $Z(s) =$		
10.16 2 NVALID-ORDER-162 $Z(s) =$	/	
	' \	
10.164NVALID-ORDER-164 $Z(s) =$, ,	
	,	
	$, \frac{R_2}{C_2R_2s+1}, \frac{1}{C_3s}, \infty, \infty, \frac{L_{Ls}}{C_LL_Ls^2+1} + R_L$	
10.16 T NVALID-ORDER-167 $Z(s) =$	$\frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \dots \dots$	
10.16\(\mathbb{R}\) NVALID-ORDER-168 $Z(s) =$	_ /	

10.16 9 NVALID-ORDER-169 $Z(s)=\left(\right.$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$\frac{R_3}{C_3R_3s+1},$	∞ , ∞ ,	$\frac{1}{C_L s}$)			 	 	 	165
10.17 0 NVALID-ORDER-170 $Z(s)=\langle$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$\frac{R_3}{C_3R_3s+1},$	∞ , ∞ ,	$\frac{R_L}{C_L R_L s + 1}$)		 	 	 	166
10.17INVALID-ORDER-171 $\boldsymbol{Z}(s) = ($	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$\frac{R_3}{C_3R_3s+1},$	∞ , ∞ ,	$L_L s + \frac{1}{C_L}$	$\left(\frac{1}{2s}\right)$		 	 	 	166
10.172NVALID-ORDER-172 $Z(s) = ($	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$\frac{R_3}{C_3R_3s+1},$	∞ , ∞ ,	$L_L s + R_I$	$L + \frac{1}{C_L s}$)	 	 	 	166
10.17 B NVALID-ORDER-173 $Z(s) = ($	$\left(\infty, \frac{R_2}{C_2R_2s+1}, \right.$	$\frac{R_3}{C_3R_3s+1},$	∞ , ∞ ,	$\frac{L_L s}{C_L L_L s^2 + 1}$	$\left(1 + R_L\right)$		 	 	 	166
10.174NVALID-ORDER-174 $Z(s) = 1$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}\right)$	$, \frac{R_3}{C_3R_3s+1},$	∞ , ∞ ,	$R_L \left(L_L s + L_L s + R_L - L_L s + R_L $	$\left(\frac{1}{C_L s}\right)$ $\left(\frac{1}{C_L s}\right)$		 	 	 	166
10.17 INVALID-ORDER-175 $Z(s) = ($	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$R_3 + \frac{1}{C_3 s}$	$, \infty, \infty$	$, R_L$)			 	 	 	167
10.17 6 NVALID-ORDER-176 $Z(s) = ($	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$R_3 + \frac{1}{C_3 s}$	$, \infty, \infty$	$, \frac{1}{C_L s}$			 	 	 	167
10.17TNVALID-ORDER-177 $Z(s)=\left(\right. \left. \right. \right. \left. \right. \right. \left. \left. \right. \right. \right. \left. \left. \right. \right. \right. \left. \left. \left. \right. \right. \right. \left. \left. \left. \right. \right. \left. \left. \right. \left. \left. \right. \right. \left. \left. \left. \right. \right. \right. \left. \left. \left. \right. \right. \left. \left. \left. \right. \right. \right. \left. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \left. \right. \right. \left. \left. \left. \right. \right. \left. \left. \left. \right. \right. \right. \right. \left. \left. \left. \left. \right. \right. \left. \left. \right. \right. \right. \left. \left. \left. \right. \right. \left. \left. \left. \right. \right. \right. \right. \left. \left. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \left. \right. \right. \left. \left. \right. \right. \right. \left. \left. \left. \right. \right. \right. \left. \left. \left. \right. \right. \left. \left. \left. \right. \right. \right. \left. \left. \left. \right. \right. \right. \left. \left. \left. \right. \right. \left. \left. \left. \left. \right. \right. \right. \left. \left. \left. \right. \right. \right. \left. \left. \left. \left. \right. \right. \right. \right. \right. \left. \left. \left. \left. \left. \left. \right. \right. \right. \right. \left. \left. \left. \left. \left. \right. \right. \right. \left. \left. \left. \left. \left. \right. \right. \right. \right. \right. \right. \right. \left. \left. \left. \left. \left. \left. \left. \right. \right. \right. \right. \right. \right. \left. \left. \left. \left. \left. \left. \left. \right. \right. \right. \right. \right. \left. \left. \left. \left. \left. \left. \right. \right. \right. \right. \right. \right. \right. \left. \left. \left. \left. \left. \left. \left. \right. \right. \right. \right. \right. \left. \left. \left. \left. \left. \left. \left. \right. \right. \right. \right. \right. \right. \right. \right. \left. \left. \left. \left. \left. \left. \left. \left. \left. \right. \right. \right. \right. \right. \right. \right. \right. \left. \left. \left. \left. \left. \left. \left. \left. \left. \right. \right. \right. \right. \right. \right. \right. \right. \left. \left. \left. \left. \left. \left. \left. \left. \right. \right. \right. \right. \right. \right. \right. \right. \right. \left. \right. \right.$	$\left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \right.$	$R_3 + \frac{1}{C_3 s}$	$, \infty, \infty$	$R_L + \frac{1}{C_I}$	$\left(\frac{1}{Ls}\right)$		 	 	 	167
10.17&NVALID-ORDER-178 $Z(s) = ($	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$R_3 + \frac{1}{C_3 s}$	$, \infty, \infty$	$, L_L s + \overline{c}$	$\left(\frac{1}{C_L s}\right)$.		 	 	 	167
10.17 9 NVALID-ORDER-179 $Z(s) = ($	$\left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \right.$	$R_3 + \frac{1}{C_3 s}$	$, \infty, \infty$	$, \frac{L_L s}{C_L L_L s^2 + }$	$\overline{-1}$)		 	 	 	167
10.18 0 NVALID-ORDER-180 $Z(s) = ($	$\left(\infty, \frac{R_2}{C_2R_2s+1}, \right.$	$R_3 + \frac{1}{C_3 s}$	$, \infty, \infty$	$L_L s + R$	$R_L + \frac{1}{C_L s}$	$\left(\cdot \right) $	 	 	 	167
10.18INVALID-ORDER-181 $Z(s) =$	$\left(\infty, \frac{R_2}{C_2R_2s+1}\right)$	$R_3 + \frac{1}{C_3 s}$	∞ , ∞ , ∞	$, \frac{1}{C_L s + \frac{1}{R_L}}$	$\overline{+\frac{1}{L_L s}}$		 	 	 	168
10.182NVALID-ORDER-182 $Z(s) = ($	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$R_3 + \frac{1}{C_3 s}$	$, \infty, \infty$	$, \frac{L_L s}{C_L L_L s^2 +}$	$\overline{-1} + R_L$		 	 	 	168
10.18 B NVALID-ORDER-183 $Z(s) = 1$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}\right)$	$R_3 + \frac{1}{C_3 s}$	∞ , ∞ , ∞	$\frac{R_L \left(L_L s - \frac{1}{L_L s + R_L}\right)}{L_L s + R_L}$	$\left(\frac{+\frac{1}{C_L s}}{+\frac{1}{C_L s}}\right)$		 	 	 	168
10.184NVALID-ORDER-184 $Z(s)=\langle$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$L_3s + \frac{1}{C_3s}$	$\frac{1}{s}$, ∞ , ∞	$C, \frac{1}{C_L s}$			 	 	 	168
10.18 5 NVALID-ORDER-185 $Z(s)=\langle$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$L_3s + \frac{1}{C_3s}$	$\frac{1}{s}$, ∞ , ∞	$O, \frac{R_L}{C_L R_L s + 1}$	$\overline{-1}$)		 	 	 	168
10.18 6 NVALID-ORDER-186 $Z(s)=\left(\right. \label{eq:eq:energy_energy}$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$L_3s + \frac{1}{C_3s}$	$\frac{1}{s}$, ∞ , ∞	$R_L + \overline{C}$	$\left(\frac{1}{C_L s}\right)$.		 	 	 	169
10.18 T NVALID-ORDER-187 $Z(s) = ($	$\left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \right.$	$L_3s + \frac{1}{C_3}$	$\frac{1}{s}$, ∞ , ∞	D , $L_L s + \frac{1}{2}$	$\frac{1}{C_L s}$) .		 	 	 	169
10.18&NVALID-ORDER-188 $Z(s) = ($	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$L_3s + \frac{1}{C_3s}$	$\frac{1}{s}$, ∞ , ∞	$O, \frac{L_L s}{C_L L_L s^2}$	$\overline{+1}$) .		 	 	 	169
10.18¶NVALID-ORDER-189 $Z(s) = ($	$\left(\infty, \frac{R_2}{C_2R_2s+1}, \right.$	$L_3s + \frac{1}{C_3s}$	$\frac{1}{s}$, ∞ , ∞	$L_L s + L_L s$	$R_L + \frac{1}{C_L}$	\overline{s} .	 	 	 	169
10.19 0 NVALID-ORDER-190 $Z(s) = 1$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}\right)$	$L_3s + \frac{1}{C_3}$	$\frac{1}{s}$, ∞ , \circ	$O, \frac{1}{C_L s + \frac{1}{R}}$	$\left(\frac{1}{L} + \frac{1}{L_L s}\right)$		 	 	 	169

10.19INVALID-ORDER-191 $Z(s)=\langle$	$\left(\infty, \frac{R_2}{C_2R_2s+1},\right.$	$L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \overline{C}$	$\left(\frac{L_L s}{L_L L_L s^2 + 1} + R_L\right)$		
10.19 2 NVALID-ORDER-192 $Z(s) = 1$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$L_3s + \frac{1}{C_3s}$, ∞ , ∞ , $\frac{R_3}{R_3}$	$\left(\frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$		
10.19 B NVALID-ORDER-193 $Z(s) = 0$	$(\infty, \frac{R_2}{C_2R_2s+1},$	$\frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \frac{1}{C_L}$	\overline{s})		
10.194NVALID-ORDER-194 $Z(s)=\langle$	$\left(\infty, \frac{R_2}{C_2R_2s+1}, \right.$	$\frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, R_L$	$\left(1 + \frac{1}{C_L s}\right) \dots$		
10.19 5 NVALID-ORDER-195 $Z(s)=\langle$	$\left(\infty, \frac{R_2}{C_2R_2s+1}, \right.$	$\frac{L_3s}{C_3L_3s^2+1}$, ∞ , ∞ , L_L	$s + \frac{1}{C_L s}$		
10.196NVALID-ORDER-196 $Z(s) = 0$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$\frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \frac{C_L}{C_L}$	$\frac{L_L s}{L_L s^2 + 1}$ \cdots		
10.19 T NVALID-ORDER-197 $Z(s) = 0$	>		` '		
10.19\(\mathbb{E}\)NVALID-ORDER-198 $Z(s) = 0$	`,		/		
10.19 9 NVALID-ORDER-199 $Z(s) = 0$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$\frac{L_3s}{C_3L_3s^2+1}$, ∞ , ∞ , $\frac{R_L}{L_1}$	$\left(\frac{L_L s + \frac{1}{C_L s}}{L_S + R_L + \frac{1}{C_L s}}\right)$		
10.20 © NVALID-ORDER-200 $Z(s)=\langle$	$\left(\infty, \frac{R_2}{C_2R_2s+1}, \right.$	$L_3s + R_3 + \frac{1}{C_3s}, \ \infty,$	$\infty, \frac{1}{C_L s}$)		
10.20INVALID-ORDER-201 $Z(s)=\langle$	$\left(\infty, \frac{R_2}{C_2R_2s+1}, \right.$	$L_3s + R_3 + \frac{1}{C_3s}, \ \infty,$	∞ , $\frac{R_L}{C_L R_L s + 1}$		
10.202NVALID-ORDER-202 $Z(s)=\langle$	$\left(\infty, \frac{R_2}{C_2R_2s+1}, \right.$	$L_3s + R_3 + \frac{1}{C_3s}, \ \infty,$	∞ , $R_L + \frac{1}{C_L s}$		
10.20 & NVALID-ORDER-203 $Z(s)=0$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$L_3s + R_3 + \frac{1}{C_3s}, \ \infty,$	∞ , $L_L s + \frac{1}{C_L s}$		
10.204NVALID-ORDER-204 $Z(s)=\langle$	$\left(\infty, \frac{R_2}{C_2R_2s+1}, \right.$	$L_3s + R_3 + \frac{1}{C_3s}, \ \infty,$	$\infty, \frac{L_L s}{C_L L_L s^2 + 1}$		
10.20 SNVALID-ORDER-205 $Z(s) = 0$	$\left(\infty, \frac{R_2}{C_2R_2s+1}, \right.$	$L_3s + R_3 + \frac{1}{C_3s}, \ \infty,$	∞ , $L_L s + R_L +$	$\left(\frac{1}{C_L s}\right)$	
10.20 6 NVALID-ORDER-206 $Z(s) = 1$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$L_3s + R_3 + \frac{1}{C_3s}, \ \infty,$	$\infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L}}$	$\frac{1}{\overline{s}}$ \cdots \cdots	
10.20 T NVALID-ORDER-207 $Z(s) = 0$	$\left(\infty, \frac{R_2}{C_2R_2s+1}, \right.$	$L_3s + R_3 + \frac{1}{C_3s}, \ \infty,$	∞ , $\frac{L_L s}{C_L L_L s^2 + 1}$ +	R_L)	
10.20&NVALID-ORDER-208 $Z(s) = \langle$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$L_3s + R_3 + \frac{1}{C_3s}, \ \infty,$	∞ , $\frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}$	$\left(\frac{\overline{s}}{\overline{s}}\right)$	
10.20 9 NVALID-ORDER-209 $Z(s) = 0$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$\frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \ \infty, \ \infty,$	$R_L + \frac{1}{C_L s}$.		
10.21 0 NVALID-ORDER-210 $Z(s) = 0$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$\frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty,$	$L_L s + \frac{1}{C_L s}$		
10.21INVALID-ORDER-211 $Z(s) = 1$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$\frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \ \infty, \ \infty,$	$L_L s + R_L + \frac{1}{C_L}$	$\left(\frac{1}{\sqrt{s}}\right)$	

10.21 2 NVALID-ORDER-212 $Z(s) = 0$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$\frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty,$	$\frac{L_L s}{C_L L_L s^2 + 1} +$	R_L)	 	 174
10.21 E NVALID-ORDER-213 $Z(s) = 0$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$\frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \ \infty, \ \infty,$	$\frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}$	$\left(\frac{1}{2}\right)$	 	 174
10.21#NVALID-ORDER-214 $Z(s) = 0$		$\frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \circ$			 	 174
10.21 5 NVALID-ORDER-215 $Z(s) = 0$	$\left(\infty, \frac{R_2}{C_2R_2s+1}, \right.$	$\frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \circ$	$O, \frac{R_L}{C_L R_L s + 1}$		 	 174
10.21 6 NVALID-ORDER-216 $Z(s) = 0$	$\left(\infty, \frac{R_2}{C_2R_2s+1}, \right.$	$\frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \circ$	o, $R_L + \frac{1}{C_L s}$		 	 174
10.21 T NVALID-ORDER-217 $Z(s) = 0$	$\left(\infty, \frac{R_2}{C_2R_2s+1}, \right.$	$\frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \circ$	o, $L_L s + \frac{1}{C_L s}$)	 	 175
10.21\NVALID-ORDER-218 $Z(s) = 0$	$(\infty, \frac{R_2}{C_2R_2s+1},$	$\frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \circ$	$O, \frac{L_L s}{C_L L_L s^2 + 1}$	• • • • • • •	 	 175
10.21 9 NVALID-ORDER-219 $Z(s) = 0$	$(\infty, \frac{R_2}{C_2R_2s+1},$	$\frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \circ$	c , $L_L s + R_L$	$+\frac{1}{C_L s}$)	 	 175
10.22 ONVALID-ORDER- $220 Z(s) = 10.22$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1},\right.$	$\frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ c$	$\infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{R}}$	$\left(\frac{1}{L^s}\right)$	 	 175
10.22INVALID-ORDER-221 $Z(s) = 0$	$(\infty, \frac{R_2}{C_2R_2s+1},$	$\frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \circ$	$O, \frac{L_L s}{C_L L_L s^2 + 1}$	$+R_L$)	 	 175
10.22 2 NVALID-ORDER-222 $Z(s) = 1$	$\left(\infty, \frac{R_2}{C_2R_2s+1}, \right.$	$\frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ c$	$\infty, \ \frac{R_L \left(L_L s + \frac{1}{C}\right)}{L_L s + R_L + \frac{1}{C}}$	$\left(\frac{1}{L^s}\right)$ $\left(\frac{1}{L^s}\right)$	 	 176
10.22\&\text{NVALID-ORDER-223} $Z(s) = 1$	$\left(\infty, \frac{R_2}{C_2R_2s+1}, \right.$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty$	$, \frac{1}{C_L s} $ $) \cdot \cdot \cdot$		 	 176
10.224NVALID-ORDER-224 $Z(s) = 1$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty$	$\left(\frac{R_L}{C_L R_L s + 1}\right)$		 	 176
10.225NVALID-ORDER-225 $Z(s) = 1$	$(\infty, \frac{R_2}{C_2R_2s+1},$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty,$	$R_L + \frac{1}{C_L s}$		 	 176
10.226NVALID-ORDER-226 $Z(s) = 1$	$\left(\infty, \frac{R_2}{C_2R_2s+1},\right.$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty,$	$, L_L s + \frac{1}{C_L s}$		 	 176
10.22 T NVALID-ORDER-227 $Z(s) = 1$	$(\infty, \frac{R_2}{C_2R_2s+1},$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty$	$\left(\frac{L_L s}{C_L L_L s^2 + 1}\right)$		 	 177
10.22\nabla NVALID-ORDER-228 $Z(s) = 1$	$\left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \right.$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty,$	$, L_L s + R_L +$	$\frac{1}{C_L s}$ \cdots \cdots	 	 177
10.22 9 NVALID-ORDER-229 $Z(s) = 1$	\	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty$	L L	/	 	 177
10.23 0 NVALID-ORDER-230 $Z(s) = 1$	$(\infty, \frac{R_2}{C_2R_2s+1},$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty$	$, \frac{L_L s}{C_L L_L s^2 + 1} +$	R_L)	 	 177

10.23INVALID-ORDER- 231 $Z(s) =$	$\left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $.77
	$\left(\infty, R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, R_L\right) \dots \dots$	78
	$\left(\infty,\ R_2 + \frac{1}{C_2 s},\ R_3,\ \infty,\ \infty,\ \frac{1}{C_L s}\right)$	
	$\left(\infty, R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	
	$\left(\infty, R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right)$.78
	$\left(\infty,\ R_2+\frac{1}{C_2s},\ \frac{1}{C_3s},\ \infty,\ \infty,\ R_L\right)$	
10.23 INVALID-ORDER-237 $Z(s) = 0$	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right) \dots \dots$.78
10.23\NVALID-ORDER-238 $Z(s) =$	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$.79
10.23 9 NVALID-ORDER-239 $Z(s) =$	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$.79
10.24 0 NVALID-ORDER-240 $Z(s) =$	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$.79
10.24INVALID-ORDER-241 $Z(s) =$	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$.79
10.242NVALID-ORDER-242 $Z(s) = 1$	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right) \dots \dots$.79
	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$.79
10.24 INVALID-ORDER-244 $Z(s) =$	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$.80
	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, R_L\right)$.80
10.246NVALID-ORDER-246 $Z(s) =$	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{1}{C_L s}\right)$.80
10.24 T NVALID-ORDER-247 $Z(s) =$	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$.80
10.24\&NVALID-ORDER-248 $Z(s) =$	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$.80
10.249NVALID-ORDER-249 $Z(s) = 0$	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right) \dots \dots$.80
10.25 0 NVALID-ORDER-250 $Z(s) = 1$	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$.81
10.25INVALID-ORDER-251 $Z(s) =$	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \dots \dots$.81
10.25 2 NVALID-ORDER-252 $Z(s) =$	$\left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$.81
10.25 NVALID-ORDER-253 $Z(s) =$	$\left(\infty, R_2 + \frac{1}{C_{2S}}, R_3 + \frac{1}{C_{2S}}, \infty, \infty, \frac{1}{C_{LS}}\right) \dots \dots$.81

10.25INVALID-ORDER- 254 $Z(s) =$	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	$R_3 + \frac{1}{C_3 s},$	∞ , ∞ ,	$R_L + \frac{1}{C_L s}$			 	 	 	 181
10.255NVALID-ORDER- $255 Z(s) =$	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	$R_3 + \frac{1}{C_3 s},$	∞ , ∞ ,	$L_L s + \frac{1}{C_L s}$)		 	 	 	 181
10.256NVALID-ORDER- 256 $Z(s) =$	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	$R_3 + \frac{1}{C_3 s},$	∞ , ∞ ,	$\frac{L_L s}{C_L L_L s^2 + 1}$			 	 	 	 182
10.25 T NVALID-ORDER-257 $Z(s) =$	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	$R_3 + \frac{1}{C_3 s},$	∞ , ∞ ,	$L_L s + R_L +$	$+\frac{1}{C_L s}$		 	 	 	 182
10.25 NVALID-ORDER-258 $Z(s) =$	$\left(\infty,\right.$	$R_2 + \frac{1}{C_2 s},$	$R_3 + \frac{1}{C_3 s},$	∞ , ∞ ,	$\frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L}}$	$\left(\frac{1}{L^s}\right)$.		 	 	 	 182
10.259NVALID-ORDER-259 $Z(s) =$	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	$R_3 + \frac{1}{C_3 s},$	∞ , ∞ ,	$\frac{L_L s}{C_L L_L s^2 + 1} +$	$-R_L$		 	 	 	 182
10.26 ONVALID-ORDER- $260 Z(s) =$	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	$R_3 + \frac{1}{C_3 s},$	∞ , ∞ ,	$\frac{R_L \left(L_L s + \frac{1}{C_L} + $	$\left(\frac{\overline{s}}{L}\right)$.		 	 	 	 182
10.26INVALID-ORDER- 261 $Z(s) =$	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	$L_3s + \frac{1}{C_3s},$	∞ , ∞	$, \frac{1}{C_L s}$)			 	 	 	 183
10.26 2 NVALID-ORDER-262 $Z(s) =$	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	$L_3s + \frac{1}{C_3s},$	∞ , ∞	$, \frac{R_L}{C_L R_L s + 1}$			 	 	 	 183
10.263NVALID-ORDER- 263 $Z(s) =$	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	$L_3s + \frac{1}{C_3s},$	∞ , ∞	$R_L + \frac{1}{C_L s}$)		 	 	 	 183
10.264NVALID-ORDER-264 $Z(s) =$	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	$L_3s + \frac{1}{C_3s},$	∞ , ∞	$L_L s + \frac{1}{C_L s}$)		 	 	 	 183
10.265NVALID-ORDER- 265 $Z(s) =$	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	$L_3s + \frac{1}{C_3s},$	∞ , ∞	$, \frac{L_L s}{C_L L_L s^2 + 1}$			 	 	 	 183
10.266NVALID-ORDER-266 $Z(s) =$	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	$L_3s + \frac{1}{C_3s},$	∞ , ∞	$L_L s + R_L$	$+\frac{1}{C_L s}$)	 	 	 	 183
10.26TNVALID-ORDER- $267 Z(s) =$	$\left(\infty,\right.$	$R_2 + \frac{1}{C_2 s},$	$L_3s + \frac{1}{C_3s}$	$, \infty, \infty$	$, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{R_L}}$	$\frac{1}{L_L^s}$		 	 	 	 184
10.268NVALID-ORDER- 268 $Z(s) =$	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	$L_3s + \frac{1}{C_3s},$	∞ , ∞	$, \frac{L_L s}{C_L L_L s^2 + 1} -$	$+R_L$		 	 	 	 184
10.26 9 NVALID-ORDER-269 $Z(s) =$	$\left(\infty,\right.$	$R_2 + \frac{1}{C_2 s},$	$L_3s + \frac{1}{C_3s}$	$, \infty, \infty$	$, \frac{R_L \left(L_L s + \frac{C}{C}\right)}{L_L s + R_L + \frac{C}{C}}$	$\left(\frac{\frac{1}{L^s}}{\frac{1}{C_L^s}}\right)$		 	 	 	 184
10.27 ONVALID-ORDER-270 $Z(s) =$								 	 	 	 184
10.27INVALID-ORDER- $271 Z(s) =$	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	$\frac{L_3s}{C_3L_3s^2+1},$	∞ , ∞ ,	$R_L + \frac{1}{C_L s}$			 	 	 	 184
10.27 2 NVALID-ORDER-272 $Z(s) =$	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	$\frac{L_3s}{C_3L_3s^2+1},$	∞ , ∞ ,	$L_L s + \frac{1}{C_L s}$			 	 	 	 185
10.278NVALID-ORDER-273 $Z(s) =$	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	$\frac{L_3s}{C_3L_3s^2+1},$	∞ , ∞ ,	$\frac{L_L s}{C_L L_L s^2 + 1}$			 	 	 	 185
10.27INVALID-ORDER-274 $Z(s) =$	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	$\frac{L_3s}{C_3L_3s^2+1},$	∞ , ∞ ,	$L_L s + R_L +$	$-\frac{1}{C_L s}$		 	 	 	 185
10.275NVALID-ORDER- $275 Z(s) =$	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	$\frac{L_3s}{C_3L_3s^2+1},$	$\infty, \infty,$	$\frac{L_L s}{C_L L_L s^2 + 1}$ +	R_L		 	 	 	 185

10.276NVALID-ORDER-276 $Z(s) = 1$	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_{3s}}{C_3 L_{3s^2 + 1}}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \dots \dots$
10.27 TNVALID-ORDER-277 $Z(s) = ($	∞ , $R_2 + \frac{1}{C_2 s}$, $L_3 s + R_3 + \frac{1}{C_3 s}$, ∞ , ∞ , $\frac{1}{C_L s}$
10.27\$NVALID-ORDER-278 $Z(s) = ($	$(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1})$
10.27 9 NVALID-ORDER-279 $Z(s) = ($	$(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s})$
10.28©NVALID-ORDER-280 $Z(s) = ($	$\left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$
10.28INVALID-ORDER-281 $Z(s) = ($	$(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1})$
10.282NVALID-ORDER-282 $Z(s) = 0$	$(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s})$
10.28\mathbb{B}\mathbb{N}\mathbb{A}\mathbb{L}\mathbb{I}\mathbb{D}\mathrm{C}\mathrm{R}\mathrm{D}\mathrm{E}\mathrm{R}-283 \ Z(s) =	$\left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$
10.284NVALID-ORDER-284 $Z(s) = ($	$(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L)$
10.28 INVALID-ORDER-285 $Z(s) = 1$	$\left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$
10.286NVALID-ORDER-286 $Z(s) = 1$	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$
10.28 INVALID-ORDER-287 $Z(s) = 1$	$\left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s} \right) \ \dots \ $
10.28\mathbb{R}NVALID-ORDER-288 $Z(s) = 1$	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$
10.28 9 NVALID-ORDER-289 $Z(s) = 1$	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$
10.29 0 NVALID-ORDER-290 $Z(s) = 1$	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \dots \dots$
10.29INVALID-ORDER-291 $Z(s) = 0$	$(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{1}{C_L s})$
	$(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_{3s}}{C_3 L_{3s^2 + 1}} + R_3, \infty, \infty, \frac{R_L}{C_L R_L s + 1})$
10.29 & NVALID-ORDER-293 $Z(s) = ($	$(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, R_L + \frac{1}{C_L s})$
10.294NVALID-ORDER-294 $Z(s) = ($	$(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_{3s}}{C_3 L_{3s^2 + 1}} + R_3, \infty, \infty, L_L s + \frac{1}{C_L s})$
10.29 NVALID-ORDER-295 $Z(s) = 0$	$(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1})$
10.296NVALID-ORDER-296 $Z(s) = ($	$\left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$

10.29¶NVALID-ORDER-297 $Z(s) =$	$\bigg(\infty, \ \ \bigg)$	$R_2 + \frac{1}{C_2 s},$	$\frac{L_3s}{C_3L_3s^2+1}+I$	R_3, ∞, \circ	$C, \frac{1}{C_L s + \frac{1}{R}}$	$\left(\frac{1}{L} + \frac{1}{LL^s}\right)$		 	 	189
10.29&NVALID-ORDER-298 $Z(s) = 0$	$(\infty, 1)$	$R_2 + \frac{1}{C_2 s},$	$\frac{L_3s}{C_3L_3s^2+1} + R$	R_3, ∞, ∞	$0, \ \frac{L_L s}{C_L L_L s^2}$	$\frac{1}{1} + R_L$)	 	 	190
10.29 9 NVALID-ORDER-299 $Z(s) =$	$\left(\infty,\right)$	$R_2 + \frac{1}{C_2 s},$	$\frac{L_3s}{C_3L_3s^2+1} + I$	R_3, ∞, \circ	$0, \ \frac{R_L \left(L_L \right)}{L_L s + R}$	$\left(\frac{s + \frac{1}{C_L s}}{c_L + \frac{1}{C_L s}}\right)$		 	 	190
10.30 0 NVALID-ORDER-300 $Z(s) = 1$	$\left(\infty,\right)$	$R_2 + \frac{1}{C_2 s},$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}$	$, \infty, \infty,$	$\frac{1}{C_L s}$			 	 	190
10.30INVALID-ORDER-301 $Z(s) =$	$\left(\infty,\right)$	$R_2 + \frac{1}{C_2 s},$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}$	$, \infty, \infty,$	$\frac{R_L}{C_L R_L s + 1}$	·		 	 	190
10.30 2 NVALID-ORDER-302 $Z(s) =$	$\left(\infty,\right)$	$R_2 + \frac{1}{C_2 s},$	$\frac{R_3\left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}$	$, \infty, \infty,$	$R_L + \frac{1}{C_L}$	\overline{s}		 	 	190
10.30 RNVALID-ORDER-303 $Z(s) = 1$	$\left(\infty,\right)$	$R_2 + \frac{1}{C_2 s},$	$\frac{R_3 \left(L_3 s + \frac{1}{C_3 s} \right)}{L_3 s + R_3 + \frac{1}{C_3 s}}$	$, \infty, \infty,$	$L_L s + \overline{C}$	$\left(\frac{1}{Ls}\right)$.		 	 	191
10.304NVALID-ORDER-304 $Z(s) =$	$\left(\infty,\right)$	$R_2 + \frac{1}{C_2 s},$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}$	$, \infty, \infty,$	$\frac{L_L s}{C_L L_L s^2 +}$	$\overline{1}$)		 	 	191
10.30 Δ NVALID-ORDER-305 $Z(s)=1$	$\left(\infty,\right)$	$R_2 + \frac{1}{C_2 s},$	$\frac{R_3\left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}$	$, \infty, \infty,$	$L_L s + R$	$C_L + \frac{1}{C_L s}$)	 	 	191
10.30 6 NVALID-ORDER-306 $Z(s) =$	$\left(\infty,\right)$	$R_2 + \frac{1}{C_2 s},$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}$	$, \infty, \infty,$	$\frac{1}{C_L s + \frac{1}{R_L}}$	$\frac{1}{+\frac{1}{L_L s}}$		 	 	191
10.30 T NVALID-ORDER-307 $Z(s) =$	$\left(\infty, \right)$	$R_2 + \frac{1}{C_2 s},$	$\frac{R_3 \left(L_3 s + \frac{1}{C_3 s} \right)}{L_3 s + R_3 + \frac{1}{C_3 s}}$	$, \infty, \infty,$	$\frac{L_L s}{C_L L_L s^2 +}$	$_{\overline{1}}+R_{L}$		 	 	191
10.30 NVALID-ORDER-308 $Z(s) = 1$	$\left(\infty,\right)$	$R_2 + \frac{1}{C_2 s},$	$\frac{R_3 \left(L_3 s + \frac{1}{C_3 s} \right)}{L_3 s + R_3 + \frac{1}{C_3 s}}$	$, \infty, \infty,$	$\frac{R_L \left(L_L s + L_L s + R_L s + R_L s + R_L s \right)}{L_L s + R_L s}$	$\left(\frac{1}{C_L s}\right) + \frac{1}{C_L s}$		 	 	192
10.30 9 NVALID-ORDER-309 $Z(s) = 0$	$\Big(\infty,\ \Box$	$L_2s + \frac{1}{C_2s},$	$R_3, \infty, \infty,$	R_L) .				 	 	192
10.31 0 NVALID-ORDER-310 $Z(s) = 0$	$\Big(\infty,\ \Box$	$L_2s + \frac{1}{C_2s},$	$R_3, \infty, \infty,$	$\frac{1}{C_L s}$).				 	 	192
10.31 I NVALID-ORDER-311 $Z(s) =$	$\Big(\infty,\ \Box$	$L_2s + \frac{1}{C_2s},$	$R_3, \infty, \infty,$	$\frac{R_L}{C_L R_L s + 1}$	$\left[\right] \ldots$			 	 	192
10.312NVALID-ORDER-312 $Z(s) = 0$	$\left(\infty,\right)$	$L_2s + \frac{1}{C_2s},$	$R_3, \infty, \infty,$	$R_L + \frac{1}{C_L}$	$\left(\frac{1}{\sqrt{s}}\right)$			 	 	192
10.31 3 NVALID-ORDER-313 $Z(s) = 0$	$\left(\infty, \perp\right)$	$L_2s + \frac{1}{C_2s},$	$\frac{1}{C_3s}$, ∞ , ∞ ,	R_L).				 	 	192
10.31#NVALID-ORDER-314 $Z(s) = 0$	$\left(\infty,\right)$	$L_2s + \frac{1}{C_2s},$	$\frac{1}{C_3s}$, ∞ , ∞ ,	$\frac{1}{C_L s}$				 	 	193
10.31 5 NVALID-ORDER-315 $Z(s) = 0$	$(\infty, 1)$	$L_2s + \frac{1}{C_2s},$	$\frac{1}{C_3s}$, ∞ , ∞ ,	$\frac{R_L}{C_L R_L s +}$	$\overline{1}$			 	 	193
10.316NVALID-ORDER-316 $Z(s) = 1$	$\left(\infty,\right)$	$L_2s + \frac{1}{C_2s},$	$\frac{1}{C_3s}$, ∞ , ∞ ,	$R_L + \overline{C}$	$\left(\frac{1}{Ls}\right)$			 	 	193

10.31 T NVALID-ORDER-317 $Z(s) = ($	$(\infty,$	$L_2s + \frac{1}{C_2s},$	$\frac{1}{C_3s}$, ∞ , ∞	∞ , L	$Ls + \overline{c}$	$\left(\frac{1}{C_L s}\right)$			 	 	 	 	 193
10.31 NVALID-ORDER-318 $Z(s) = 0$	$(\infty,$	$L_2s + \frac{1}{C_2s},$	$\frac{1}{C_3s}$, ∞ , ∞	∞ , \overline{C}	$\frac{L_L s}{L L_L s^2}$	$\overline{+1}$) .			 	 	 	 	 193
10.31 9 NVALID-ORDER-319 $Z(s) = ($	$(\infty,$	$L_2s + \frac{1}{C_2s},$	$\frac{1}{C_3s}$, ∞ , ∞	∞ , L	Ls + I	$R_L + \frac{1}{C_I}$	$\left(\frac{1}{2\sqrt{s}}\right)$.		 	 	 	 	 193
10.32 0 NVALID-ORDER-320 $Z(s) = ($	$\left(\infty,\right.$	$L_2s + \frac{1}{C_2s},$	$\frac{1}{C_3s}$, ∞ , ∞	∞ , \overline{C}	$\frac{L_L s}{L L_L s^2}$	$\frac{1}{1} + R_I$	z)		 	 	 	 	 194
10.32INVALID-ORDER-321 $Z(s) = 1$	$\left(\infty,\right.$	$L_2s + \frac{1}{C_2s},$	$\frac{1}{C_3s}$, ∞ ,	$\infty, \frac{R}{I}$	$\frac{R_L \left(L_L s\right)}{L_L s + R_L}$	$\left(\frac{+\frac{1}{C_L s}}{c+\frac{1}{C_L s}}\right)$)		 	 	 	 	 194
10.32 2 NVALID-ORDER-322 $Z(s) = ($									 	 	 	 	 194
10.32 INVALID-ORDER-323 $Z(s) = ($	$\left(\infty,\right.$	$L_2s + \frac{1}{C_2s},$	$\frac{R_3}{C_3R_3s+1},$	∞ , o	$\circ, \frac{1}{C_L}$	\bar{s}			 	 	 	 	 194
10.32#NVALID-ORDER-324 $Z(s) = ($	$\left(\infty,\right.$	$L_2s + \frac{1}{C_2s},$	$\frac{R_3}{C_3R_3s+1},$	∞ , o	$\overline{C_L}$	$\frac{R_L}{R_L s+1}$			 	 	 	 	 194
10.325NVALID-ORDER-325 $Z(s) = ($	$\Big(\infty,$	$L_2s + \frac{1}{C_2s},$	$\frac{R_3}{C_3R_3s+1},$	∞ , o	o, L_L	$s + \frac{1}{C_L s}$	$\left(\frac{1}{2}\right)$		 	 	 	 	 194
10.326NVALID-ORDER-326 $Z(s) = ($	$\Big(\infty,$	$L_2s + \tfrac{1}{C_2s},$	$\frac{R_3}{C_3R_3s+1},$	∞ , o	o, L_L	$s + R_L$	$+ \frac{1}{C_L s}$		 	 	 	 	 195
10.32 T NVALID-ORDER-327 $Z(s) = ($	$\Big(\infty,$	$L_2s + \frac{1}{C_2s},$	$\frac{R_3}{C_3R_3s+1},$	∞ , o	$\overline{C_L}$	$\frac{L_L s}{L_L s^2 + 1}$	$+R_L$		 	 	 	 	 195
10.32\NVALID-ORDER-328 $Z(s) = 1$	$\left(\infty,\right.$	$L_2s + \frac{1}{C_2s},$	$\frac{R_3}{C_3R_3s+1},$	∞ , c	$\infty, \frac{R_L}{L_L}$	$\frac{\left(L_L s + \frac{1}{C}\right)}{s + R_L + \frac{1}{C}}$	$\left(\frac{\frac{1}{C_L s}}{\frac{1}{C_L s}}\right)$		 	 	 	 	 195
10.32 9 NVALID-ORDER-329 $Z(s) = ($	$(\infty,$	$L_2s + \frac{1}{C_2s},$	$R_3 + \frac{1}{C_3 s},$	∞ ,	∞ , R	$_{L})$			 	 	 	 	 195
10.33 0 NVALID-ORDER-330 $Z(s) = ($	$\left(\infty,\right.$	$L_2s + \frac{1}{C_2s},$	$R_3 + \frac{1}{C_3 s},$	∞ ,	$\infty, \frac{1}{C_I}$	$\left(\frac{1}{2s}\right)$.			 	 	 	 	 195
10.33INVALID-ORDER-331 $Z(s) = ($	$\left(\infty,\right.$	$L_2s + \frac{1}{C_2s},$	$R_3 + \frac{1}{C_3 s},$	∞ ,	∞ , R_1	$L + \frac{1}{C_L s}$	$\left(\frac{1}{5}\right)$		 	 	 	 	 195
10.33 2 NVALID-ORDER-332 $Z(s) = ($	$\left(\infty,\right.$	$L_2s + \frac{1}{C_2s},$	$R_3 + \frac{1}{C_3 s},$	∞ ,	∞ , L_I	$cs + \frac{1}{CL}$	$\left(\frac{1}{\sqrt{s}}\right)$.		 	 	 	 	 196
10.33\(\text{SNVALID-ORDER-333} \) $Z(s) = ($	$\left(\infty,\right.$	$L_2s + \frac{1}{C_2s},$	$R_3 + \frac{1}{C_3 s},$	∞ ,	∞ , $\overline{C_I}$	$\frac{L_L s}{L_L s^2 + 1}$	$\left(\cdot \right) \cdot \cdot$		 	 	 	 	 196
10.334NVALID-ORDER-334 $Z(s) = ($	$\left(\infty,\right.$	$L_2s + \frac{1}{C_2s},$	$R_3 + \frac{1}{C_3 s},$	∞ ,	∞ , L_I	$Ls + R_I$	$L + \frac{1}{C_L}$	$\frac{1}{s}$	 	 	 	 	 196
10.33 NVALID-ORDER-335 $Z(s) = 1$	$\left(\infty,\right.$	$L_2s + \frac{1}{C_2s},$	$R_3 + \frac{1}{C_3 s},$	∞ ,	∞ , \overline{C}	$\frac{1}{Ls + \frac{1}{R_L} + \frac{1}{R_L}}$	$-\frac{1}{L_L s}$	•	 	 	 	 	 196
10.336NVALID-ORDER-336 $Z(s) = 0$	$(\infty,$	$L_2s + \frac{1}{C_2s},$	$R_3 + \frac{1}{C_3 s},$	∞ ,	∞ , $\overline{C_I}$	$\frac{L_L s}{L_L s^2 + 1}$	$+R_L$)	 	 	 	 	 196
10.33¶NVALID-ORDER-337 $Z(s) = 1$	$(\infty,$	$L_2s + \frac{1}{C_2s},$	$R_3 + \frac{1}{C_3 s},$	∞ ,	$\infty, \frac{R}{L}$	$L \left(L_L s + L_L s + R_L s $	$\left(\frac{\frac{1}{C_L s}}{\frac{1}{C_L s}}\right)$		 	 	 	 	 197
10.33\(\text{NVALID-ORDER-338} \(Z(s) = (/					\			 	 	 	 	 197

$$\begin{array}{ll} 10.33 \text{INVALID-ORDER-340} \ Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ L_3s + \frac{1}{C_2s}, \ \infty, \infty, \frac{R_s}{C_R R_s s + 1} \right) \\ 10.34 \text{INVALID-ORDER-341} \ Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ L_3s + \frac{1}{C_2s}, \ \infty, \infty, \ R_L + \frac{1}{C_L s} \right) \\ 197 \\ 10.34 \text{INVALID-ORDER-341} \ Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ L_3s + \frac{1}{C_2s}, \ \infty, \infty, \ L_L s + \frac{1}{C_L s} \right) \\ 198 \\ 10.34 \text{INVALID-ORDER-342} \ Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ L_3s + \frac{1}{C_2s}, \ \infty, \infty, \ \frac{L_L s}{C_L L_2 s + 1} \right) \\ 198 \\ 10.34 \text{INVALID-ORDER-343} \ Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ L_3s + \frac{1}{C_2s}, \ \infty, \infty, \ \frac{L_L s}{C_L L_L s + 1} \right) \\ 198 \\ 10.34 \text{INVALID-ORDER-343} \ Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ L_3s + \frac{1}{C_2s}, \ \infty, \infty, \ \frac{L_L s}{C_L L_L s + \frac{1}{L_L s}} \right) \\ 198 \\ 10.34 \text{INVALID-ORDER-345} \ Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ L_3s + \frac{1}{C_2s}, \ \infty, \infty, \ \frac{L_L s}{C_L L_L s + \frac{1}{L_L s}} \right) \\ 198 \\ 10.34 \text{INVALID-ORDER-345} \ Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ L_3s + \frac{1}{C_2s}, \ \infty, \infty, \ \frac{L_L s}{C_L L_L s + \frac{1}{L_L s}} \right) \\ 198 \\ 10.34 \text{INVALID-ORDER-347} \ Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ L_3s + \frac{1}{C_2s}, \ \infty, \infty, \ \frac{L_L s}{C_L L_L s + \frac{1}{L_L s}} \right) \\ 199 \\ 10.34 \text{INVALID-ORDER-348} \ Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ C_2 \frac{L_2 s}{C_L s + \frac{1}{C_2s}} \right) \\ 199 \\ 10.34 \text{INVALID-ORDER-349} \ Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ \frac{L_L s}{C_L L_L s + \frac{1}{L_L s}} \right) \\ 199 \\ 10.35 \text{INVALID-ORDER-350} \ Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ \frac{L_L s}{C_L s + \frac{1}{C_2s}}, \ \frac{L_L s}{C_L L_L s + \frac{1}{L_L s}} \right) \\ 199 \\ 10.35 \text{INVALID-ORDER-350} \ Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ \frac{L_L s}{C_L s + \frac{1}{C_2s}}, \ \frac{L_L s}{C_L L_L s + \frac{1}{L_L s}} \right) \\ 199 \\ 10.35 \text{INVALID-ORDER-350} \ Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ \frac{L_L s}{C_L s + \frac{1}{C_2s}}, \ \frac{L_L s}{C_L L_L s + 1} \right) \\ 199 \\ 10.35 \text{INVALID-ORDER-350} \ Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ \frac{L_L s}{C_L s + \frac{1}{C_2s}}, \ \frac{L_L s}{C_L s + \frac{1}{C_L s}} \right) \\ 199 \\ 10.35 \text{INVALID-ORDER-350} \ Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ \frac{L_L s}{C_L s + \frac{$$

10.36INVALID-ORDER-361 $Z(s) = ($	$\left(\infty, L_2s + \frac{1}{C_2s}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$	201
10.362NVALID-ORDER-362 $Z(s) = \left(\right.$	$\left(\infty, \ L_2s + \frac{1}{C_2s}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \ \dots \ $	201
	$(\infty, L_2s + \frac{1}{C_2s}, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, R_L + \frac{1}{C_Ls})$	202
10.364NVALID-ORDER-364 $Z(s) = \left(\right.$	$\left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$	202
10.36 5 NVALID-ORDER-365 $Z(s) = \left(\right.$	$\left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$	202
10.36 6 NVALID-ORDER-366 $Z(s) = \left(\right.$	$\left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$	202
10.36¶NVALID-ORDER-367 $Z(s) = \left(\frac{1}{2}\right)^{-1}$	$\left(\infty, \ L_2s + \frac{1}{C_2s}, \ \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \ \infty, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	202
10.36\notanunusNVALID-ORDER-368 $Z(s) = ($	$\left(\infty, \ L_2s + \frac{1}{C_2s}, \ \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$	203
10.369NVALID-ORDER-369 $Z(s) = 0$	$\left(\infty,\ L_2s + \frac{1}{C_2s},\ \frac{L_3s}{C_3L_3s^2 + 1} + R_3,\ \infty,\ \infty,\ \frac{R_L}{C_LR_Ls + 1}\right)$	203
10.370NVALID-ORDER-370 $Z(s) = 0$	$\left(\infty, \ L_2s + \frac{1}{C_2s}, \ \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right) \ \dots \ $	203
10.37INVALID-ORDER-371 $Z(s) = 0$	$\left(\infty,\ L_2s + \frac{1}{C_2s},\ \frac{L_3s}{C_3L_3s^2 + 1} + R_3,\ \infty,\ \infty,\ L_Ls + \frac{1}{C_Ls}\right)$	203
10.37 2 NVALID-ORDER-372 $Z(s) = 0$	$(\infty, L_2s + \frac{1}{C_2s}, \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1})$	203
10.37 B NVALID-ORDER-373 $Z(s) = \left(\begin{array}{c} \\ \end{array}\right)$	$\left(\infty,\ L_2s + \frac{1}{C_2s},\ \frac{L_3s}{C_3L_3s^2 + 1} + R_3,\ \infty,\ \infty,\ L_Ls + R_L + \frac{1}{C_Ls}\right)$	203
10.374NVALID-ORDER-374 $Z(s) = \left(\right.$	$\left(\infty, L_2s + \frac{1}{C_2s}, \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$	204
10.37 INVALID-ORDER-375 $Z(s) = ($	$\left(\infty, \ L_2s + \frac{1}{C_2s}, \ \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right) \ \dots \ $	204
10.376NVALID-ORDER-376 $Z(s) = \left(\frac{1}{2}\right)^{-1}$	$\left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	204
10.37¶NVALID-ORDER-377 $Z(s) = \left(\frac{1}{2}\right)^{-1}$	$\left(\infty,\ L_2s + rac{1}{C_2s},\ rac{R_3\left(L_3s + rac{1}{C_3s} ight)}{L_3s + R_3 + rac{1}{C_3s}},\ \infty,\ \infty,\ rac{1}{C_Ls} ight)$	204
10.37&NVALID-ORDER-378 $Z(s) = \left(\frac{1}{2}\right)^{-1}$	$\left(\infty,\ L_2s + \frac{1}{C_2s},\ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}},\ \infty,\ \infty,\ \frac{R_L}{C_LR_Ls + 1}\right)$	204
10.37¶NVALID-ORDER-379 $Z(s) = \left(\frac{1}{s}\right)$	$\left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right) \dots $:05

10.38 0 NVALID-ORDER-380 $Z(s) =$	$\left(\infty, \ L_2s + \frac{1}{C_2s}, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.38INVALID-ORDER-381 $Z(s) =$	$\left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	$\left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right) \ \dots \ $
10.38 INVALID-ORDER-383 $Z(s) =$	$\left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.38#NVALID-ORDER-384 $Z(s) =$	$\left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.38 INVALID-ORDER-385 $Z(s) =$	$\left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.38©NVALID-ORDER-386 $Z(s) =$	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, R_3, \infty, \infty, R_L\right)$
10.38 T NVALID-ORDER-387 $Z(s) =$	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, R_3, \infty, \infty, \frac{1}{C_Ls})$
10.38 NVALID-ORDER-388 $Z(s) =$	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, R_3, \infty, \infty, \frac{R_L}{C_LR_Ls+1})$
10.38 9 NVALID-ORDER-389 $Z(s) =$	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, R_3, \infty, \infty, R_L + \frac{1}{C_Ls})$
	$\left(\infty,\ L_2s+R_2+\frac{1}{C_2s},\ \frac{1}{C_3s},\ \infty,\ \infty,\ R_L\right)$
10.39INVALID-ORDER-391 $Z(s) =$	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, \frac{1}{C_3s}, \infty, \infty, \infty, \frac{1}{C_Ls})$
	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, \frac{1}{C_3s}, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls + 1}\right)$
	$\left\langle \infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls} \right\rangle \ldots $
10.394NVALID-ORDER-394 $Z(s) =$	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, \frac{1}{C_3s}, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls})$
10.39 NVALID-ORDER-395 $Z(s) =$	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, \frac{1}{C_3s}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1})'$
	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, \frac{1}{C_3s}, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls})$
	$\left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)'$
	$\left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s} \right)}{L_L s + R_L + \frac{1}{C_L s}} \right)' \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, \frac{R_3}{C_3R_3s+1}, \infty, \infty, R_L)$
10.40 0 NVALID-ORDER-400 $Z(s) =$	$\left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$

10.40 I NVALID-ORDER-401 $Z(s)=\langle$	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, \frac{R_3}{C_3R_3s+1}, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$
10.40 2 NVALID-ORDER-402 $Z(s)=($	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, \frac{R_3}{C_3R_3s + 1}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right) \dots \dots$
10.40 B NVALID-ORDER-403 $Z(s)=0$	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, \frac{R_3}{C_3R_3s+1}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls})$
10.404NVALID-ORDER-404 $Z(s)=\langle$	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, \frac{R_3}{C_3R_3s+1}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$
10.40\$NVALID-ORDER-405 $Z(s) = 1$	$\left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{R_3}{C_3R_3s + 1}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \ \dots \ $
10.40 6 NVALID-ORDER-406 $Z(s)=0$	$\left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$
10.40 T NVALID-ORDER-407 $Z(s) = 0$	$\left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$
10.40&NVALID-ORDER-408 $Z(s) = 0$	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, R_3 + \frac{1}{C_3s}, \infty, \infty, R_L + \frac{1}{C_Ls})$
10.40 9 NVALID-ORDER-409 $Z(s) = 0$	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, R_3 + \frac{1}{C_3s}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$
10.41 0 NVALID-ORDER-410 $Z(s) = 0$	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1})$
10.41 I NVALID-ORDER-411 $Z(s) = 0$	$\left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$
10.41 2 NVALID-ORDER-412 $Z(s) = 0$	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$
10.41 B NVALID-ORDER-413 $Z(s) = 0$	$\left(\infty, L_{2}s + R_{2} + \frac{1}{C_{2}s}, R_{3} + \frac{1}{C_{3}s}, \infty, \infty, \frac{L_{L}s}{C_{L}L_{L}s^{2} + 1} + R_{L}\right)$
10.41 INVALID-ORDER-414 $Z(s) = 1$	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, R_3 + \frac{1}{C_3s}, \infty, \infty, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$
10.41 SNVALID-ORDER-415 $Z(s) = 0$	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, L_3s + \frac{1}{C_3s}, \infty, \infty, \frac{1}{C_Ls})$
10.41 © NVALID-ORDER-416 $Z(s) = 0$	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, L_3s + \frac{1}{C_3s}, \infty, \infty, \frac{R_L}{C_LR_Ls + 1})$
10.41 T NVALID-ORDER-417 $Z(s) = 0$	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, L_3s + \frac{1}{C_3s}, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$
10.41&NVALID-ORDER-418 $Z(s) = 0$	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, L_3s + \frac{1}{C_3s}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$
10.41 9 NVALID-ORDER-419 $Z(s) = 0$	$\left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$
10.42 0 NVALID-ORDER-420 $Z(s) = 0$	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, L_3s + \frac{1}{C_3s}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls})$
10.42INVALID-ORDER-421 $Z(s) = 1$	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, L_3s + \frac{1}{C_3s}, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$
$10.42 \mathbf{\tilde{z}} \text{NVALID-ORDER-} 422 \ Z(s) = ($	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, L_3s + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L)$

10.423NVALID-ORDER-423 $Z(s) = 1$	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, L_3s + \frac{1}{C_3s}, \infty, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$
10.42#NVALID-ORDER-424 $Z(s)=($	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \frac{1}{C_Ls})$
10.42 5 NVALID-ORDER-425 $Z(s) = ($	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, R_L + \frac{1}{C_Ls})$
10.426NVALID-ORDER-426 $Z(s)=\langle$	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$
10.42 T NVALID-ORDER-427 $Z(s) = ($	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1})$
10.428NVALID-ORDER-428 $Z(s)=($	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, \frac{L_3s}{C_3L_3s^2 + 1}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls})$
10.42 9 NVALID-ORDER-429 $Z(s) = ($	$\left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right) \dots \dots$
10.43 0 NVALID-ORDER-430 $Z(s) = 1$	$\left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$
10.43 INVALID-ORDER-431 $\boldsymbol{Z}(s) = ($	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{1}{C_Ls})$
10.43 2 NVALID-ORDER-432 $Z(s) = ($	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{R_L}{C_LR_Ls + 1}\right) \dots \dots$
10.43 B NVALID-ORDER-433 $Z(s) = ($	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, R_L + \frac{1}{C_Ls})$
10.434NVALID-ORDER-434 $Z(s)=\langle$	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$
10.43 5 NVALID-ORDER-435 $Z(s) = ($	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1})$
10.43 6 NVALID-ORDER-436 $Z(s) = ($	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls})$
10.43 T NVALID-ORDER-437 $Z(s) = 1$	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$
10.43&NVALID-ORDER-438 $Z(s)=($	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L)$
10.43 9 NVALID-ORDER-439 $Z(s) = 1$	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$
10.44 0 NVALID-ORDER-440 $Z(s) = 1$	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$
10.44INVALID-ORDER-441 $Z(s) = 1$	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$
10.442NVALID-ORDER-442 $Z(s) = 1$	$\left(\begin{array}{ccc} C_2s & C_3s + \overline{R_3} + \overline{L_3}s \end{array}\right)$
10.44\$NVALID-ORDER-443 $Z(s) = 1$	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$

$$\begin{array}{lll} 10.44 \text{INVALID-ORDER-444} & Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s} \right) & \frac{1}{C_3 s + \frac{1}{R_2} + \frac{1}{C_3 s}}, & \infty, & \frac{R_L(L_s s + \frac{1}{C_2 s})}{L_s s + R_L s + \frac{1}{C_2 s}}, & \frac{1}{C_2 s + \frac{1}{R_2} + \frac{1}{C_3 s}}, & \frac{1}{C_2 s + \frac{1}{R_2} + \frac{1}{C_2 s}}, & \frac{1}{C_2 s +$$

10.46 \$ NVALID-ORDE	$R-463 Z(s) = \Big($	$(\infty,$	$\frac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	R_3 ,	∞ ,	∞ , I	R_L					 	 	 	 	 	2	221
10.464NVALID-ORDE	$R-464 Z(s) = \Big($	$(\infty,$	$\tfrac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	R_3 ,	∞ ,	∞ , $\bar{\epsilon}$	$\frac{1}{C_L s}$					 	 	 	 	 	2	221
10.465NVALID-ORDE	$R-465 Z(s) = \left(\begin{array}{c} \\ \end{array} \right)$	$(\infty,$	$\frac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	R_3 ,	∞ ,	∞ , $\bar{\epsilon}$	$\frac{\dot{R_L}}{C_L R_L}$	$\overline{s+1}$				 	 	 	 	 	2	221
10.46 6 NVALID-ORDE	$R-466 Z(s) = \left(\begin{array}{c} \\ \end{array} \right)$	$(\infty,$	$\tfrac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	R_3 ,	∞ ,	∞ , I	$R_L +$	$\frac{1}{C_L s}$				 	 	 	 	 	2	221
10.46 T NVALID-ORDE	$R-467 Z(s) = \Big($	$(\infty,$	$\frac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	$\frac{1}{C_3s}$,	∞ ,	∞ ,	R_L					 	 	 	 	 	2	221
10.468NVALID-ORDE	$R-468 Z(s) = \Big($	$(\infty,$	$\tfrac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	$\frac{1}{C_3 s}$,	∞ ,	∞ ,	$\frac{1}{C_L s}$					 	 	 	 	 	2	221
10.46 9 NVALID-ORDE	$R-469 Z(s) = \Big($	$(\infty,$	$\frac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	$\frac{1}{C_3s}$,	∞ ,	∞ ,	$\frac{R_{I}}{C_{L}R_{I}}$	$\left(\frac{L}{Ls+1}\right)$				 	 	 	 	 	2	222
10.47 0 NVALID-ORDE	$R-470 Z(s) = \Big($	$(\infty,$	$\tfrac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	$\frac{1}{C_3s}$,	∞ ,	∞ ,	R_L +	$-\frac{1}{C_L s}$) .			 	 	 	 	 	2	222
10.47INVALID-ORDE	$R-471 Z(s) = \Big($	$(\infty,$	$\frac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	$\frac{1}{C_3s}$,	∞ ,	∞ ,	$L_L s$	$+\frac{1}{C_L}$	$\left(\frac{1}{s}\right)$.			 	 	 	 	 	2	222
10.472NVALID-ORDE	$R-472 Z(s) = \Big($	$(\infty,$	$\tfrac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	$\frac{1}{C_3 s}$,	∞ ,	∞ ,	$\frac{L_1}{C_L L_L}$	$\left(\frac{s}{s^2+1}\right)$) .			 	 	 	 	 	2	222
10.47 B NVALID-ORDE	$R-473 Z(s) = \Big($	$(\infty,$	$\frac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	$\frac{1}{C_3s}$,	∞ ,	∞ ,	$L_L s$	$+R_L$	$+\frac{1}{C_I}$	$\left(\frac{1}{2s}\right)$		 	 	 	 	 	2	222
10.474NVALID-ORDE	$R-474 Z(s) = \Big($	$(\infty,$	$\tfrac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	$\frac{1}{C_3 s}$,	∞ ,	∞ ,	$\frac{L_I}{C_L L_L}$	$\frac{L^s}{L^{s^2+1}}$	$+R_{I}$			 	 	 	 	 	2	222
10.475NVALID-ORDE	$R-475 Z(s) = \Big($	$\left(\infty,\right.$	$\frac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	$\frac{1}{C_3s}$	$, \infty,$	∞ ,	$\frac{R_L\left(1\right)}{L_L s}$	$\frac{L_L s + \overline{c}}{+R_L + \overline{c}}$	$\frac{\frac{1}{C_L s}}{\frac{1}{C_L s}}$			 	 	 	 	 	2	223
10.476NVALID-ORDE	R-476 $Z(s) = ($	$(\infty,$	$\tfrac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	$\frac{R}{C_3 R_3}$	$\frac{c_3}{3s+1}$,	∞ ,	∞ ,	R_L				 	 	 	 	 	2	223
10.47 T NVALID-ORDE	$R-477 Z(s) = \Big($	$(\infty,$	$\tfrac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	$\frac{R}{C_3 R_3}$	$\frac{c_3}{3s+1}$,	∞ ,	∞ ,	$\frac{1}{C_L s}$				 	 	 	 	 	2	223
10.47&NVALID-ORDE	R-478 $Z(s) = ($	$(\infty,$	$\tfrac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	$\frac{R}{C_3 R_3}$	$\frac{c_3}{3s+1}$,	∞ ,	∞ ,	$\frac{R_L}{C_L R_L}$	$\left(\frac{1}{s+1}\right)$	•		 	 	 	 	 	2	223
10.479NVALID-ORDE	R-479 $Z(s) = ($	$(\infty,$	$\tfrac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	$\frac{R}{C_3 R_3}$	$\frac{c_3}{3s+1}$,	∞ ,	∞ ,	$L_L s$ -	$+\frac{1}{C_L s}$	$\left(\cdot \right)$		 	 	 	 	 	2	223
10.48 0 NVALID-ORDE	R-480 $Z(s) = ($	$(\infty,$	$\tfrac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	$\frac{R}{C_3 R_3}$	$\frac{c_3}{3s+1}$,	∞ ,	∞ ,	$L_L s$ -	$+R_L$	$+ \overline{c}$	$\left(\frac{1}{T_L s}\right)$	 	 	 	 	 	2	223
10.48INVALID-ORDE	$R-481 Z(s) = \Big($	$(\infty,$	$\tfrac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	$\frac{R}{C_3 R_3}$	$\frac{c_3}{s+1}$,	∞ ,	∞ ,	$\frac{L_L}{C_L L_L}$	$\frac{s}{s^2+1}$	+R	L	 	 	 	 	 	2	224
10.48 2 NVALID-ORDE	$R-482 Z(s) = \Big($	$\left(\infty,\right.$	$\frac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	$\frac{R}{C_3R}$	$\frac{R_3}{3s+1}$,	∞ ,	∞ ,	$\frac{R_L \left(L \right)}{L_L s + 1}$	$\frac{L_L s + \frac{1}{C}}{-R_L + \frac{1}{C}}$	$\frac{1}{C_L^s}$		 	 	 	 	 	2	224
10.48 B NVALID-ORDE	$R-483 Z(s) = \Big($	$(\infty,$	$\tfrac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	R_3 +	$\vdash \frac{1}{C_3 s}$	$, \infty$	$, \infty,$	R_L				 	 	 	 	 	2	224
10.484NVALID-ORDE	$R-484 Z(s) = \Big($	$(\infty,$	$\tfrac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	R_3 +	$+\frac{1}{C_3s}$, ∞	$, \infty,$	$\frac{1}{C_L s}$)			 	 	 	 	 	2	224
10.485NVALID-ORDE	R-485 $Z(s) = ($	$(\infty,$	$\tfrac{L_2s}{C_2L_2s^2+1}$	$+R_2,$	R_3 +	$+\frac{1}{C_3s}$, ∞	$, \infty,$	R_L -	$+\frac{1}{C_L s}$	$\left(\cdot \right)$		 	 	 	 	 	2	224

10.48 6 NVALID-ORDER- 486 $Z(s) =$	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, R_3 + \frac{1}{C_3s}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right) \dots \dots$. 224
10.48TNVALID-ORDER- 487 $Z(s) =$	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$. 225
10.48NVALID-ORDER- 488 $Z(s) =$	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, R_3 + \frac{1}{C_3s}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$. 225
10.48 9 NVALID-ORDER-489 $Z(s) =$	$\left(\infty, \ \frac{L_{2s}}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $. 225
10.49 ONVALID-ORDER- 490 $Z(s) =$	$\left(\infty, \frac{L_{2s}}{C_2L_2s^2+1} + R_2, R_3 + \frac{1}{C_3s}, \infty, \infty, \infty, \frac{L_{Ls}}{C_LL_Ls^2+1} + R_L\right)$. 225
10.49INVALID-ORDER-491 $Z(s) =$	$\left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \ \dots $. 225
10.49 2 NVALID-ORDER-492 $Z(s) =$	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, L_3s + \frac{1}{C_3s}, \infty, \infty, \frac{1}{C_Ls}\right)$. 226
10.49 NVALID-ORDER- 493 $Z(s) =$	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, L_3s + \frac{1}{C_3s}, \infty, \infty, \infty, \frac{\dot{R}_L}{C_LR_Ls+1}\right)$. 226
10.49#NVALID-ORDER-494 $Z(s) =$	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, L_3s + \frac{1}{C_3s}, \infty, \infty, R_L + \frac{1}{C_Ls}\right) \dots \dots$. 226
10.495NVALID-ORDER- 495 $Z(s) =$	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, L_3s + \frac{1}{C_3s}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$. 226
10.49 6 NVALID-ORDER-496 $Z(s) =$	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, L_3s + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right) \dots \dots$. 226
10.49 T NVALID-ORDER-497 $Z(s) =$	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, L_3s + \frac{1}{C_3s}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right) \dots \dots$. 226
10.49 NVALID-ORDER-498 $Z(s) =$	$\left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right) \dots $. 227
10.49 9 NVALID-ORDER-499 $Z(s) =$	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, L_3s + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right) \dots \dots$. 227
10.50 ONVALID-ORDER- $500 Z(s) =$	$\left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \dots $. 227
10.50 I NVALID-ORDER-501 $Z(s) =$	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \frac{1}{C_Ls}\right)$. 227
10.50 2 NVALID-ORDER- 502 $Z(s) =$	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$. 227
10.503NVALID-ORDER- 503 $Z(s) =$	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right) \dots \dots$. 228
10.504NVALID-ORDER-504 $Z(s) =$	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$. 228
10.50 INVALID-ORDER-505 $Z(s) =$	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right) \dots \dots$. 228
10.50 CNVALID-ORDER- 506 $Z(s) =$	$\left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right) \dots $. 228
10.50TNVALID-ORDER- 507 $Z(s) =$	$\left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \ \dots $. 228

10.50&NVALID-ORDER-508 $Z(s) = ($	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{1}{C_Ls}\right) \dots \dots$	229
10.50 9 NVALID-ORDER-509 $Z(s) = ($	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$	229
10.51 0 NVALID-ORDER-510 $Z(s) = ($	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, R_L + \frac{1}{C_Ls}\right) \dots \dots$	229
10.51INVALID-ORDER-511 $Z(s) = ($	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$	229
10.51 2 NVALID-ORDER-512 $Z(s) = ($	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right) \dots \dots$	229
10.51 3 NVALID-ORDER-513 $Z(s) = ($	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right) \dots \dots$	229
10.51#NVALID-ORDER-514 $Z(s) = ($	$\left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right) \dots $	230
10.515NVALID-ORDER-515 $Z(s) = ($	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$	230
10.516NVALID-ORDER-516 $Z(s) = 0$	$\left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \ \dots $	230
10.51 T NVALID-ORDER-517 $Z(s) = ($	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$	230
10.51&NVALID-ORDER-518 $Z(s) = 0$	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right) \dots \dots$	230
10.51 \text{\text{\$0}} NVALID-ORDER-519 $Z(s) = \left(\begin{array}{c} 1 & 1 \\ 1 & 1 \end{array} \right)$	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$	231
10.52 0 NVALID-ORDER-520 $Z(s) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	$\left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right) \dots $	231
10.52INVALID-ORDER-521 $Z(s) = ($	$\left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \ \dots $	231
10.52 2 NVALID-ORDER-522 $Z(s) = ($	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{1}{C_Ls}\right)$	231
10.52 S NVALID-ORDER-523 $Z(s) = ($	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$	231
10.524NVALID-ORDER-524 $Z(s) = ($	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$	232
10.525NVALID-ORDER-525 $Z(s) = ($	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right) \dots \dots$	232
10.526NVALID-ORDER-526 $Z(s) = ($	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$	232
10.52 T NVALID-ORDER-527 $Z(s) = ($	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$	232
10.52\NVALID-ORDER-528 $Z(s) = ($	$\left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	232

10.529NVALID-ORDER- 529 $Z(s) = 1$	$\Big(\infty,$	$\frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2,$	$\frac{L_3s}{C_3L_3s^2+1}$ +	R_3, ∞, \circ	$C, \frac{L_L}{C_L L_L}$	$\frac{s}{s^2+1} + R_L$)	 	 	 233
10.53 ONVALID-ORDER- 530 $Z(s) =$	$\left(\infty,\right.$	$\frac{L_2s}{C_2L_2s^2+1} + R_2,$	$\frac{L_3s}{C_3L_3s^2+1}$ +	R_3, ∞, ∞	∞ , $\frac{R_L(L)}{L_L s + 1}$	$\left(\frac{L^{s+\frac{1}{C_L^{s}}}}{R_L+\frac{1}{C_L^{s}}}\right)$		 	 	 233
10.53INVALID-ORDER-531 $Z(s) =$	$(\infty,$	$\frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2,$	$\frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}$	$\frac{)}{\bar{s}}, \ \infty, \ \infty$	$, \frac{1}{C_L s}$			 	 	 233
10.53 2 NVALID-ORDER- 532 $Z(s) =$	$(\infty,$	$\frac{L_2s}{C_2L_2s^2+1} + R_2,$	$\frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}$	$\frac{)}{\overline{s}}, \ \infty, \ \infty$	$, \frac{R_L}{C_L R_L s}$	$\overline{+1}$)		 	 	 233
10.53 B NVALID-ORDER-533 $Z(s) =$	$\left(\infty,\right.$	$\frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2,$	$\frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}$	$\frac{)}{\overline{s}}, \ \infty, \ \infty$	$R_L + \overline{C}$	$\left(\frac{1}{C_L s}\right)$		 	 	 233
10.534NVALID-ORDER-534 $Z(s) =$	$\left(\infty,\right.$	$\frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2,$	$\frac{R_3 \left(L_3 s + \frac{1}{C_3 s} \right)}{L_3 s + R_3 + \frac{1}{C_3 s}}$	$\frac{)}{\bar{s}}, \ \infty, \ \infty$	$, L_L s +$	$\frac{1}{C_L s}$.		 	 	 234
10.53 NVALID-ORDER-535 $Z(s) =$	$\left(\infty,\right.$	$\frac{L_2s}{C_2L_2s^2+1} + R_2,$	$\frac{R_3 \left(L_3 s + \frac{1}{C_3 s} \right)}{L_3 s + R_3 + \frac{1}{C_3 s}}$	$\frac{1}{s}$, ∞ , ∞	$, \frac{L_L s}{C_L L_L s^2}$	$\overline{+1}$)		 	 	 234
10.536NVALID-ORDER- 536 $Z(s) =$	$\left(\infty,\right.$	$\frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2,$	$\frac{R_3 \left(L_3 s + \frac{1}{C_3 s} \right)}{L_3 s + R_3 + \frac{1}{C_3 s}}$	$\frac{)}{\overline{s}}, \ \infty, \ \infty$	$L_L s + 1$	$R_L + \frac{1}{C_L s}$)	 	 	 234
10.53 INVALID-ORDER- 537 $Z(s) =$	$\left(\infty,\right.$	$\frac{L_2s}{C_2L_2s^2+1} + R_2,$	$\frac{R_3 \left(L_3 s + \frac{1}{C_3 s} \right)}{L_3 s + R_3 + \frac{1}{C_3 s}}$	$\frac{1}{s}$, ∞ , ∞	$, \frac{1}{C_L s + \frac{1}{R_I}}$	$\left(\frac{1}{L} + \frac{1}{L_L s}\right)$		 	 	 234
10.53\NVALID-ORDER-538 $Z(s) =$	$\left(\infty,\right.$	$\frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2,$	$\frac{R_3 \left(L_3 s + \frac{1}{C_3 s} \right)}{L_3 s + R_3 + \frac{1}{C_3 s}}$	$\frac{1}{\overline{s}}$, ∞ , ∞	$, \frac{L_L s}{C_L L_L s^2}$	$\frac{1}{1} + R_L$		 	 	 234
10.53 9 NVALID-ORDER-539 $Z(s) =$	$\left(\infty,\right.$	$\frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2,$	$\frac{R_3 \left(L_3 s + \frac{1}{C_3 s} \right)}{L_3 s + R_3 + \frac{1}{C_3 s}}$	$\frac{)}{\bar{s}}, \ \infty, \ \infty$	$, \frac{R_L \left(L_L s + \frac{1}{L_L s + R}\right)}{L_L s + R}$	$\left(\frac{s + \frac{1}{C_L s}}{L + \frac{1}{C_L s}}\right)$		 	 	 235
10.54 ONVALID-ORDER- $540 Z(s) =$	$(\infty,$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ I$	$R_3, \infty, \infty, \ldots$	R_L)				 	 	 235
10.54INVALID-ORDER- 541 $Z(s) =$	$\left(\infty,\right]$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ I$	$R_3, \infty, \infty, \cdots$	$\frac{1}{C_L s}$ \cdot \cdot				 	 	 235
10.54 2 NVALID-ORDER- 542 $Z(s) =$	$(\infty,$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ I$	$R_3, \infty, \infty, \gamma$	$\frac{R_L}{C_L R_L s + 1}$				 	 	 235
10.548NVALID-ORDER- 543 $Z(s) =$	$\left(\infty,\right]$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ I$	$R_3, \infty, \infty, \ldots$	$R_L + \frac{1}{C_L s}$)			 	 	 235
10.54INVALID-ORDER- 544 $Z(s) =$								 	 	 236
10.545NVALID-ORDER- 545 $Z(s) =$	$\left(\infty,\right]$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \overline{C}$	$\frac{1}{C_3s}$, ∞ , ∞ ,	$\frac{1}{C_L s}$.				 	 	 236

10.546NVALID-ORDER-546 $Z(s) = 1$	$\left(\infty,\right.$	$\left(\frac{R_2 \left(L_2 s + \frac{1}{C_2 s} \right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1} \right) \dots $
10.54 TNVALID-ORDER-547 $Z(s) = 1$	$\left(\infty,\right.$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}$
10.54\nbelownVALID-ORDER-548 $Z(s) = 1$	$\left(\infty,\right.$	$\left(\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{1}{C_3s}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$
10.54 9 NVALID-ORDER-549 $Z(s) = 1$	$\left(\infty,\right.$	$\left(\frac{R_2 \left(L_2 s + \frac{1}{C_2 s} \right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} \right) $
10.55 0 NVALID-ORDER-550 $Z(s) = 1$	$\left(\infty,\right.$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}$
10.55INVALID-ORDER-551 $Z(s) = 1$	$\left(\infty,\right.$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L$
10.55 2 NVALID-ORDER-552 $Z(s) = 1$		$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \ \dots $
10.55 % NVALID-ORDER-553 $Z(s) = 1$	$\left(\infty,\right]$	$\frac{R_2\left(L_2s+rac{1}{C_2s} ight)}{L_2s+R_2+rac{1}{C_2s}},\;rac{R_3}{C_3R_3s+1},\;\infty,\;\infty,\;R_L $
10.554NVALID-ORDER-554 $Z(s) = 1$	$\left(\infty,\right]$	$\frac{R_2\left(L_2s+rac{1}{C_2s} ight)}{L_2s+R_2+rac{1}{C_2s}}, \; rac{R_3}{C_3R_3s+1}, \; \infty, \; \infty, \; rac{1}{C_Ls}$
10.55 NVALID-ORDER-555 $Z(s) = 1$	$\left(\infty,\right]$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{R_3}{C_3R_3s + 1}, \ \infty, \ \infty, \ \frac{R_L}{C_LR_Ls + 1}\right) \dots \qquad 238$
10.55©NVALID-ORDER-556 $Z(s) = 1$	$\left(\infty,\right]$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{R_3}{C_3R_3s + 1}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.55 T NVALID-ORDER-557 $Z(s) = 1$		$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{R_3}{C_3R_3s + 1}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}$
10.55 NVALID-ORDER-558 $Z(s) = 1$	$\left(\infty,\right]$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{R_3}{C_3R_3s + 1}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right) \qquad \dots $
10.55 9 NVALID-ORDER-559 $Z(s) = ($		$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{R_3}{C_3R_3s + 1}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) $
10.560NVALID-ORDER-560 $Z(s) = 1$	$(\infty,$	$\frac{R_2\left(L_2s+\frac{1}{C_2s}\right)}{L_2s+R_2+\frac{1}{C_2s}},\ R_3+\frac{1}{C_3s},\ \infty,\ \infty,\ R_L$
		$\frac{R_2\left(L_2s+\frac{1}{C_2s}\right)}{L_2s+R_2+\frac{1}{C_2s}}, \ R_3+\frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls}$
10.562NVALID-ORDER-562 $Z(s) = 1$	$(\infty,$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right) \dots \qquad 239$

		$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right) \qquad \dots \qquad $
		$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1}$
10.56 NVALID-ORDER-565 $Z(s) = \left(\circ \right)$	∞ ,	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.56 C NVALID-ORDER-566 $Z(s) = \left(\circ \right)$	∞ ,	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right) \dots \qquad 240$
10.56 T NVALID-ORDER-567 $Z(s) = \left(\circ \right)$	∞ ,	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.56\(\text{NVALID-ORDER-568} \) $Z(s) = \left(\circ \right)$	∞ ,	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \ \dots $
10.56 9 NVALID-ORDER-569 $Z(s) = \left(\circ \right)$	∞ ,	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
		$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L}{C_LR_Ls + 1}\right) \dots \qquad 241$
10.57INVALID-ORDER-571 $Z(s) = \left(\circ \right)$	∞ ,	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right) \qquad \dots \qquad $
10.572NVALID-ORDER-572 $Z(s) = \left(\circ \right)$	∞ ,	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
		$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1}\right) \qquad \dots \qquad 241$
_		$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right) \ \dots \ $
10.57 INVALID-ORDER-575 $Z(s) = \left(\circ \right)$	∞ ,	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right) \qquad \dots \qquad 242$
10.576NVALID-ORDER-576 $Z(s) = \left(\circ \right)$	∞ ,	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
		$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \dots \qquad 242$
10.57\(\text{NVALID-ORDER-578} \) $Z(s) = \left(\circ \right)$	∞ ,	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{L_3s}{C_3L_3s^2 + 1}, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right) \qquad \dots \qquad 242$
10.57 9 NVALID-ORDER-579 $Z(s) = \left(\circ \right)$	∞ ,	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{L_3s}{C_3L_3s^2 + 1}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right) \dots \qquad 243$

10.58 0 NVALID-ORDER-580 $Z(s) = ($	$\left(\infty,\right.$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_3s}{C_3L_3s^2 + 1}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right) \qquad . \qquad $
10.58INVALID-ORDER-581 $Z(s) = ($	$\left(\infty,\right.$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_3s}{C_3L_3s^2 + 1}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right)' \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.582NVALID-ORDER-582 $Z(s) = \left(\frac{1}{2}\right)^{1/2}$	$\left(\infty,\right.$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_3s}{C_3L_3s^2 + 1}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.58 B NVALID-ORDER-583 $Z(s) = \left(\right.$	$\left(\infty,\right.$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_3s}{C_3L_3s^2 + 1}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.584NVALID-ORDER-584 $Z(s) = \left(\frac{1}{2}\right)^{1/2}$	\	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_3s}{C_3L_3s^2 + 1}, \infty, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.58 NVALID-ORDER-585 $Z(s) = ($	$\left(\infty,\right.$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right) \ \dots \ $
10.586NVALID-ORDER-586 $Z(s) = \left(\frac{1}{2}\right)^{-1}$	$\left(\infty,\right.$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L}{C_LR_Ls + 1}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.58 T NVALID-ORDER-587 $Z(s) = \left(\frac{1}{2}\right)$	$\left(\infty,\right.$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right) \qquad \dots \qquad 24c$
	\	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.58 9 NVALID-ORDER-589 $Z(s) = \left(\frac{1}{2}\right)$	$\left(\infty,\right.$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1}\right) \qquad \dots \qquad $
	\	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right) \qquad \dots \qquad $
10.59INVALID-ORDER-591 $Z(s) = ($	$\left(\infty,\right.$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right) \qquad \dots \qquad $
10.592NVALID-ORDER-592 $Z(s) = \left(\frac{1}{2}\right)^{1/2}$	$\left(\infty,\right.$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
		$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.594NVALID-ORDER-594 $Z(s) = ($	$\left(\infty,\right.$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, R_L + \frac{1}{C_Ls}\right) $
10.59\NVALID-ORDER-595 $Z(s) = \left(\right)$	∞	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.596NVALID-ORDER-596 $Z(s) = \left(\frac{1}{2}\right)^{-1}$	$(\infty,$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $

$$\begin{array}{lll} 10.59 \text{INVALID-ORDER-507 } Z(s) = \left(\infty, \frac{n_2 \left(r_2 + r_2 \right)_{-1}^2}{r_2 + 1 r_2 + r_2}, \frac{1}{r_2 + 1 r_2 + r_2^2}, \frac{1}{r_2 + 1 r_2 + r_2^2}, \frac{1}{r_2 + r_2}, \infty, \infty, \frac{L_L s}{r_L L_L s^2 + L_L} + R_L \right) & 246 \\ 10.59 \text{INVALID-ORDER-508 } Z(s) = \left(\infty, \frac{n_2 \left(r_2 + r_2 \right)_{-1}^2}{r_2 + 1 r_2 + r_2 + r_2^2}, \frac{1}{r_2 + r_2 + r_2^2}, \infty, \infty, \frac{n_2 \left(l_L s + r_2 \right)_{-1}^2}{r_L L_L s + R_L + r_2 L^2} \right) & 246 \\ 10.59 \text{INVALID-ORDER-509 } Z(s) = \left(\infty, \frac{n_2 \left(r_2 + r_2 \right)_{-1}^2}{l_2 + 1 r_2 + r_2 + r_2^2}, \frac{1}{r_2 + r_2 + r_2^2}, \frac{1}{r_2 + r_2^2}, \frac{1}{r_2 + r_2^2}, \frac{1}{r_2 + r_2^2}, \frac{1}{r_2 + r_2^2}, \frac{1}{r_2^2}, \frac{1}{r$$

10.614NVALID-ORDER-614 $Z(s) = \left(\frac{1}{2} \right)$	∞ ,	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty$	∞ , ∞ ,	$\frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$. 250
10.61 5 NVALID-ORDER-615 $Z(s) = \left(\begin{array}{c} 0.0015 & 0.0015 \\ 0.0015 & 0.0015 \end{array}\right)$	∞ ,	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty$	∞ , ∞ ,	$\frac{L_L s}{C_L L_L s^2 + 1} + R_L$. 250
10.616NVALID-ORDER-616 $Z(s) = \left(\begin{array}{c} X \\ Y \end{array}\right)$	∞ ,	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty$	∞ , ∞ ,	$\frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$. 250

1 Examined H(z) for TIA simple Z2 Z3 ZL: $\frac{Z_3Z_L(Z_2g_m+1)}{Z_2Z_3g_m+Z_2Z_Lg_m+Z_3+Z_L}$

$$H(z) = \frac{Z_3 Z_L (Z_2 g_m + 1)}{Z_2 Z_3 g_m + Z_2 Z_L g_m + Z_3 + Z_L}$$

- 2 HP
- 3 BP
- **3.1** BP-1 $Z(s) = \left(\infty, R_2, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{L_L R_3 s}{C_L L_L R_3 s^2 + L_L s + R_3}$$

Parameters:

Q:
$$C_L R_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.2 BP-2
$$Z(s) = \left(\infty, R_2, R_3, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{C_L R_3 R_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L}$$
 wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
 bandwidth:
$$\frac{R_3 + R_L}{C_L R_3 R_L}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_3 R_L}{R_3 + R_L}$$
 Qz: 0 Wz: None

3.3 BP-3
$$Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s}{C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_L(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_L(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.4 BP-4
$$Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_L(C_3+C_L)}}(C_3+C_L)$$

wo:
$$\sqrt{\frac{1}{L_L(C_3+C_L)}}$$

bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.5 BP-5
$$Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

$$Q \colon \frac{R_3 R_L \sqrt{\frac{1}{L_L (C_3 + C_L)}} (C_3 + C_L)}{R_3 + R_L}$$
 wo: $\sqrt{\frac{1}{L_L (C_3 + C_L)}}$ bandwidth: $\frac{R_3 + R_L}{R_3 R_L (C_3 + C_L)}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_3 R_L}{R_3 + R_L}$ Qz: 0 Wz: None

3.6 BP-6
$$Z(s) = \left(\infty, R_2, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$C_3 R_L \sqrt{\frac{1}{C_3 L_3}}$$
 wo: $\sqrt{\frac{1}{C_3 L_3}}$

bandwidth:
$$\frac{1}{C_3R_L}$$

K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.7 BP-7
$$Z(s) = \left(\infty, R_2, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_3(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_3(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.8 BP-8
$$Z(s) = \left(\infty, R_2, \frac{L_{3s}}{C_3L_3s^2+1}, \infty, \infty, \frac{1}{C_Ls+\frac{1}{R_L}+\frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_3L_LR_Ls}{C_3L_3L_LR_Ls^2 + C_LL_3L_LR_Ls^2 + L_3L_Ls + L_3R_L + L_LR_L}$$

Q:
$$R_L \sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L (C_3 + C_L)}$

K-LP: 0 K-HP: 0 K-BP: R_L Qz: 0 Wz: None

3.9 BP-9
$$Z(s) = \left(\infty, R_2, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

Parameters:

Q:
$$\frac{C_3R_3R_L\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_3+R_L}{C_3R_3R_L}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_3R_L}{R_3+R_L}$ Qz: 0 Wz: None

3.10 BP-10
$$Z(s) = \left(\infty, R_2, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + L_3 s + R_3}$$

Q:
$$R_3 \sqrt{\frac{1}{L_3(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_3(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_3(C_3 + C_L)}$
K-LP: 0

K-HP: 0K-BP: R_3 Qz: 0Wz: None

3.11 BP-11
$$Z(s) = \left(\infty, R_2, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + C_L L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

Parameters:

Q:
$$\frac{R_{3}R_{L}\sqrt{\frac{1}{L_{3}(C_{3}+C_{L})}}(C_{3}+C_{L})}{R_{3}+R_{L}}$$
 wo:
$$\sqrt{\frac{1}{L_{3}(C_{3}+C_{L})}}$$
 bandwidth:
$$\frac{R_{3}+R_{L}}{R_{3}R_{L}(C_{3}+C_{L})}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_{3}R_{L}}{R_{3}+R_{L}}$$
 Qz: 0 Wz: None

3.12 BP-12
$$Z(s) = \left(\infty, R_2, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L R_3 s}{C_3 L_3 L_L R_3 s^2 + C_L L_3 L_L R_3 s^2 + L_3 L_L s + L_3 R_3 + L_L R_3}$$

Q:
$$R_3\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$$
 (C_3+C_L) wo: $\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$ bandwidth: $\frac{1}{R_3(C_3+C_L)}$ K-LP: 0 K-HP: 0

K-BP: R_3 Qz: 0 Wz: None

3.13 BP-13
$$Z(s) = \left(\infty, R_2, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_3 R_L s}{C_3 L_3 L_L R_3 R_L s^2 + C_L L_3 L_L R_3 R_L s^2 + L_3 L_L R_3 s + L_3 L_L R_4 s + L_3 R_3 R_L + L_L R_3 R_L}$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}(C_3+C_L)}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.14 BP-14
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$C_L R_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3

Qz: 0 Wz: None

3.15 BP-15
$$Z(s) = \left(\infty, \frac{1}{C_{2s}}, R_3, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{C_L R_3 R_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 + R_L}{C_L R_3 R_L} \\ &\text{K-LP: } 0 \\ &\text{K-HP: } 0 \\ &\text{K-BP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{Qz: } 0 \\ &\text{Wz: None} \end{aligned}$$

3.16 BP-16
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s}{C_2 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_L(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_L(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0

Wz: None

3.17 BP-17
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

Parameters:

$$\begin{array}{l} {\rm Q:}\; R_3 \sqrt{\frac{1}{L_L(C_3+C_L)}} \left(C_3+C_L\right) \\ {\rm wo:}\; \sqrt{\frac{1}{L_L(C_3+C_L)}} \\ {\rm bandwidth:}\; \frac{1}{R_3(C_3+C_L)} \\ {\rm K-LP:}\; 0 \\ {\rm K-HP:}\; 0 \\ {\rm K-BP:}\; R_3 \\ {\rm Qz:}\; 0 \\ {\rm Wz:}\; {\rm None} \end{array}$$

3.18 BP-18
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L s}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_{3}R_{L}\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}(C_{3}+C_{L})}{R_{3}+R_{L}} \\ \text{wo:} \ \sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}} \\ \text{bandwidth:} \ \frac{R_{3}+R_{L}}{R_{3}R_{L}(C_{3}+C_{L})} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_{3}R_{L}}{R_{3}+R_{L}} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.19 BP-19
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$C_3R_L\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.20 BP-20
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_3(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_3(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.21 BP-21
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_L s}{C_3 L_3 L_L R_L s^2 + C_L L_3 L_L R_L s^2 + L_3 L_L s + L_3 R_L + L_L R_L}$$

Q:
$$R_L \sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$$
 ($C_3 + C_L$)
wo: $\sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L (C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.22 BP-22
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_{3}R_{3}R_{L}\sqrt{\frac{1}{C_{3}L_{3}}}}{R_{3}+R_{L}} \\ \text{wo:} \ \sqrt{\frac{1}{C_{3}L_{3}}} \\ \text{bandwidth:} \ \frac{R_{3}+R_{L}}{C_{3}R_{3}R_{L}} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_{3}R_{L}}{R_{3}+R_{L}} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.23 BP-23
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + L_3 s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_3(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.24 BP-24
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + C_L L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{1}{L_3(C_3+C_L)}}(C_3+C_L)}{R_3+R_L}\\ \text{wo:} \ \sqrt{\frac{1}{L_3(C_3+C_L)}}\\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

3.25 BP-25
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L R_3 s}{C_3 L_3 L_L R_3 s^2 + C_L L_3 L_L R_3 s^2 + L_3 L_L s + L_3 R_3 + L_L R_3}$$

Q:
$$R_3\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.26 BP-26
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_3 R_L s}{C_3 L_3 L_L R_3 R_L s^2 + C_L L_3 L_L R_3 R_L s^2 + L_3 L_L R_3 s + L_3 L_L R_4 s + L_3 R_3 R_L + L_L R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}(C_3+C_L)}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.27 BP-27
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$C_L R_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.28 BP-28
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{C_L R_3 R_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_3 + R_L}{C_L R_3 R_L}$$
K-LP: 0
K-HP: 0
K-BP:
$$\frac{R_3 R_L}{R_3 + R_L}$$
Qz: 0
Wz: None

3.29 BP-29
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s}{C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

Q:
$$R_L\sqrt{\frac{1}{L_L(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_L(C_3+C_L)}}$
bandwidth: $\frac{1}{R_L(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.30 BP-30
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_L(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_L(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.31 BP-31
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{R_3}{C_3R_3s+1}, \infty, \infty, \frac{1}{C_Ls+\frac{1}{R_L}+\frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_3R_Ls}{C_3L_LR_3R_Ls^2 + C_LL_LR_3R_Ls^2 + L_LR_3s + L_LR_Ls + R_3R_Ls}$$

Q:
$$\frac{R_{3}R_{L}\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}(C_{3}+C_{L})}{R_{3}+R_{L}}$$
 wo:
$$\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}$$
 bandwidth:
$$\frac{R_{3}+R_{L}}{R_{3}R_{L}(C_{3}+C_{L})}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_{3}R_{L}}{R_{3}+R_{L}}$$
 Qz: 0 Wz: None

3.32 BP-32
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$C_3R_L\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.33 BP-33
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_3(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_3(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.34 BP-34
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_L s}{C_3 L_3 L_L R_L s^2 + C_L L_3 L_L R_L s^2 + L_3 L_L s + L_3 R_L + L_L R_L s}$$

Q:
$$R_L \sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$$
 ($C_3 + C_L$)
wo: $\sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L (C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.35 BP-35
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

Q:
$$\frac{C_3 R_3 R_L \sqrt{\frac{1}{C_3 L_3}}}{R_3 + R_L}$$
 wo: $\sqrt{\frac{1}{C_3 L_3}}$ bandwidth: $\frac{R_3 + R_L}{C_3 R_3 R_L}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_3 R_L}{R_3 + R_L}$ Qz: 0 Wz: None

3.36 BP-36
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + L_3 s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_3(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.37 BP-37
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + C_L L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{1}{L_3(C_3+C_L)}}(C_3+C_L)}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{1}{L_3(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.38 BP-38
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L R_3 s}{C_3 L_3 L_L R_3 s^2 + C_L L_3 L_L R_3 s^2 + L_3 L_L s + L_2 R_3 + L_L R_3}$$

Q:
$$R_3\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.39 BP-39
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_3 R_L s}{C_3 L_3 L_L R_3 R_L s^2 + C_L L_3 L_L R_3 R_L s^2 + L_3 L_L R_3 s + L_3 L_L R_4 s + L_3 R_3 R_L + L_L R_3 R_L s}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}(C_3+C_L)}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.40 BP-40
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$C_L R_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.41 BP-41
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{C_L R_3 R_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L}$$
 wo: $\sqrt{\frac{1}{C_L L_L}}$ bandwidth: $\frac{R_3 + R_L}{C_L R_3 R_L}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_3 R_L}{R_3 + R_L}$ Qz: 0 Wz: None

3.42 BP-42
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s}{C_3 L_I R_L s^2 + C_L L_I R_L s^2 + L_L s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_L(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_L(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.43 BP-43
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

$$\begin{array}{l} {\rm Q:}\; R_3\sqrt{\frac{1}{L_L(C_3+C_L)}}\left(C_3+C_L\right) \\ {\rm wo:}\;\; \sqrt{\frac{1}{L_L(C_3+C_L)}} \\ {\rm bandwidth:}\;\; \frac{1}{R_3(C_3+C_L)} \\ {\rm K-LP:}\;\; 0 \\ {\rm K-HP:}\;\; 0 \\ {\rm K-BP:}\;\; R_3 \\ {\rm Qz:}\;\; 0 \\ {\rm Wz:}\;\; {\rm None} \end{array}$$

3.44 BP-44
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{R_{3}R_{L}\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}(C_{3}+C_{L})}{R_{3}+R_{L}}$$
 wo:
$$\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}$$
 bandwidth:
$$\frac{R_{3}+R_{L}}{R_{3}R_{L}(C_{3}+C_{L})}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_{3}R_{L}}{R_{3}+R_{L}}$$
 Qz: 0 Wz: None

3.45 BP-45
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$C_3R_L\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.46 BP-46
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_3(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_3(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.47 BP-47
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_L s}{C_3 L_3 L_L R_L s^2 + C_L L_3 L_L R_L s^2 + L_3 L_L s + L_3 R_L + L_L R_L s}$$

Q:
$$R_L \sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$$
 ($C_3 + C_L$)
wo: $\sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L (C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.48 BP-48
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

Q:
$$\frac{C_3 R_3 R_L \sqrt{\frac{1}{C_3 L_3}}}{R_3 + R_L}$$
 wo: $\sqrt{\frac{1}{C_3 L_3}}$ bandwidth: $\frac{R_3 + R_L}{C_3 R_3 R_L}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_3 R_L}{R_3 + R_L}$ Qz: 0 Wz: None

3.49 BP-49
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + L_3 s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_3(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.50 BP-50
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + C_L L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{1}{L_3(C_3+C_L)}}(C_3+C_L)}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{1}{L_3(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.51 BP-51
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L R_3 s}{C_3 L_3 L_L R_3 s^2 + C_L L_3 L_L R_3 s^2 + L_3 L_L s + L_3 R_3 + L_L R_3}$$

Q:
$$R_3\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$$
 (C_3+C_L) wo: $\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$ bandwidth: $\frac{1}{R_3(C_3+C_L)}$ K-LP: 0 K-HP: 0 K-BP: R_3 Qz: 0 Wz: None

3.52 BP-52
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_3 R_L s}{C_3 L_3 L_L R_3 R_L s^2 + C_L L_3 L_L R_3 R_L s^2 + L_3 L_L R_3 s + L_3 L_L R_4 s + L_3 R_3 R_L + L_L R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}(C_3+C_L)}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.53 BP-53
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$C_L R_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.54 BP-54
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{C_L R_3 R_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_3 + R_L}{C_L R_3 R_L}$$
K-LP: 0
K-HP: 0
K-BP:
$$\frac{R_3 R_L}{R_3 + R_L}$$
Qz: 0
Wz: None

3.55 BP-55
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s}{C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_L(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_L(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.56 BP-56
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_L(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_L(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.57 BP-57
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{R_{3}R_{L}\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}(C_{3}+C_{L})}{R_{3}+R_{L}}$$
 wo:
$$\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}$$
 bandwidth:
$$\frac{R_{3}+R_{L}}{R_{3}R_{L}(C_{3}+C_{L})}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_{3}R_{L}}{R_{3}+R_{L}}$$
 Qz: 0 Wz: None

3.58 BP-58
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$C_3R_L\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.59 BP-59
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + L_3 s + R_L}$$

$$\begin{array}{l} {\rm Q:}\; R_L \sqrt{\frac{1}{L_3(C_3+C_L)}} \, (C_3+C_L) \\ {\rm wo:}\; \sqrt{\frac{1}{L_3(C_3+C_L)}} \\ {\rm bandwidth:}\; \frac{1}{R_L(C_3+C_L)} \\ {\rm K-LP:}\; 0 \\ {\rm K-HP:}\; 0 \\ {\rm K-BP:}\; R_L \\ {\rm Qz:}\; 0 \\ {\rm Wz:}\; {\rm None} \end{array}$$

3.60 BP-60
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_L s}{C_3 L_3 L_L R_L s^2 + C_L L_3 L_L R_L s^2 + L_3 L_L s + L_3 R_L + L_L R_L s}$$

Q:
$$R_L \sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$$
 ($C_3 + C_L$)
wo: $\sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L (C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.61 BP-61
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

Q:
$$\frac{C_3R_3R_L\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_3+R_L}{C_3R_3R_L}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_3R_L}{R_3+R_L}$ Qz: 0 Wz: None

3.62 BP-62
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + L_3 s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_3(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.63 BP-63
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{L_3 s}}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + C_L L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{1}{L_3(C_3+C_L)}}(C_3+C_L)}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{1}{L_3(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.64 BP-64
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L R_3 s}{C_3 L_3 L_L R_3 s^2 + C_L L_3 L_L R_3 s^2 + L_3 L_L s + L_3 R_3 + L_L R_3}$$

Q:
$$R_3\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.65 BP-65
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_3 R_L s}{C_3 L_3 L_L R_3 R_L s^2 + C_L L_3 L_L R_3 R_L s^2 + L_3 L_L R_3 s + L_3 L_L R_4 s + L_3 R_3 R_L + L_L R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}(C_3+C_L)}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.66 BP-66
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$C_L R_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.67 BP-67
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

$$\begin{aligned} \text{Q:} & \frac{C_L R_3 R_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ \text{wo:} & \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} & \frac{R_3 + R_L}{C_L R_3 R_L} \\ \text{K-LP:} & 0 \\ \text{K-HP:} & 0 \\ \text{K-BP:} & \frac{R_3 R_L}{R_3 + R_L} \\ \text{Qz:} & 0 \\ \text{Wz:} & \text{None} \end{aligned}$$

3.68 BP-68
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s}{C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_L(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_L(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.69 BP-69
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_L(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_L(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.70 BP-70
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{1}{L_L(C_3+C_L)}}(C_3+C_L)}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{1}{L_L(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.71 BP-71
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$C_3R_L\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.72 BP-72
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_3(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_3(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.73 BP-73
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_L s}{C_3 L_3 L_L R_L s^2 + C_L L_3 L_L R_L s^2 + L_3 L_L s + L_3 R_L + L_L R_L s}$$

Q:
$$R_L \sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$$
 ($C_3 + C_L$)
wo: $\sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L (C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.74 BP-74
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_{3}R_{3}R_{L}\sqrt{\frac{1}{C_{3}L_{3}}}}{R_{3}+R_{L}} \\ \text{wo:} \ \sqrt{\frac{1}{C_{3}L_{3}}} \\ \text{bandwidth:} \ \frac{R_{3}+R_{L}}{C_{3}R_{3}R_{L}} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_{3}R_{L}}{R_{3}+R_{L}} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.75 BP-75
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + L_3 s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_3(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.76 BP-76
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + C_L L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{1}{L_3(C_3+C_L)}}(C_3+C_L)}{R_3+R_L}\\ \text{wo:} \ \sqrt{\frac{1}{L_3(C_3+C_L)}}\\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

3.77 BP-77
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L R_3 s}{C_3 L_3 L_L R_3 s^2 + C_L L_3 L_L R_3 s^2 + L_3 L_L s + L_3 R_3 + L_L R_3}$$

Q:
$$R_3\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$$
 (C_3+C_L) wo: $\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$ bandwidth: $\frac{1}{R_3(C_3+C_L)}$ K-LP: 0 K-HP: 0 K-BP: R_3 Qz: 0 Wz: None

3.78 BP-78
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_3 R_L s}{C_3 L_3 L_L R_3 R_L s^2 + C_L L_3 L_L R_3 R_L s^2 + L_3 L_L R_3 s + L_3 L_L R_4 s + L_3 R_3 R_L + L_L R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}(C_3+C_L)}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.79 BP-79
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$C_L R_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.80 BP-80
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_3R_Ls}{C_LL_LR_3R_Ls^2 + L_LR_3s + L_LR_Ls + R_3R_L}$$

Q:
$$\frac{C_L R_3 R_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_3 + R_L}{C_L R_3 R_L}$$
K-LP: 0
K-HP: 0
K-BP:
$$\frac{R_3 R_L}{R_3 + R_L}$$
Qz: 0
Wz: None

3.81 BP-81
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_Ls}{C_3L_LR_Ls^2 + C_LL_LR_Ls^2 + L_Ls + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_L(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_L(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.82 BP-82
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3}{C_3R_3s+1}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_L(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_L(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.83 BP-83
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{R_3}{C_3R_3s+1}, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_3R_Ls}{C_3L_LR_3R_Ls^2 + C_LL_LR_3R_Ls^2 + L_LR_3s + L_LR_Ls + R_3R_Ls}$$

Q:
$$\frac{R_{3}R_{L}\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}(C_{3}+C_{L})}{R_{3}+R_{L}}$$
 wo:
$$\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}$$
 bandwidth:
$$\frac{R_{3}+R_{L}}{R_{3}R_{L}(C_{3}+C_{L})}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_{3}R_{L}}{R_{3}+R_{L}}$$
 Qz: 0 Wz: None

3.84 BP-84
$$Z(s) = \left(\infty, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$C_3R_L\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.85 BP-85
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{L_3R_Ls}{C_3L_3R_Ls^2 + C_LL_3R_Ls^2 + L_3s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_3(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_3(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.86 BP-86
$$Z(s) = \left(\infty, \ \frac{L_{2s}}{C_2L_2s^2+1} + R_2, \ \frac{L_{3s}}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_3L_LR_Ls}{C_3L_3L_LR_Ls^2 + C_LL_3L_LR_Ls^2 + L_3L_Ls + L_3R_L + L_LR_L}$$

Q:
$$R_L \sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$$
 ($C_3 + C_L$)
wo: $\sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L (C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.87 BP-87
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3R_3R_Ls}{C_3L_3R_3R_Ls^2 + L_3R_3s + L_3R_Ls + R_3R_L}$$

Q:
$$\frac{C_3 R_3 R_L \sqrt{\frac{1}{C_3 L_3}}}{R_3 + R_L}$$
 wo: $\sqrt{\frac{1}{C_3 L_3}}$ bandwidth: $\frac{R_3 + R_L}{C_3 R_3 R_L}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_3 R_L}{R_3 + R_L}$ Qz: 0 Wz: None

3.88 BP-88
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3R_3s}{C_3L_3R_3s^2 + C_LL_3R_3s^2 + L_3s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_3(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.89 BP-89
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{L_3R_3R_Ls}{C_3L_3R_3R_Ls^2 + C_LL_3R_3R_Ls^2 + L_3R_3s + L_3R_Ls + R_3R_L}$$

$$\begin{aligned} &\text{Q:} \ \frac{R_3 R_L \sqrt{\frac{1}{L_3 (C_3 + C_L)}} (C_3 + C_L)}{R_3 + R_L} \\ &\text{wo:} \ \sqrt{\frac{1}{L_3 (C_3 + C_L)}} \\ &\text{bandwidth:} \ \frac{R_3 + R_L}{R_3 R_L (C_3 + C_L)} \\ &\text{K-LP:} \ 0 \\ &\text{K-HP:} \ 0 \\ &\text{K-BP:} \ \frac{R_3 R_L}{R_3 + R_L} \\ &\text{Qz:} \ 0 \\ &\text{Wz:} \ \text{None} \end{aligned}$$

3.90 BP-90
$$Z(s) = \left(\infty, \ \frac{L_{2s}}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_3L_LR_3s}{C_3L_3L_LR_3s^2 + C_LL_3L_LR_3s^2 + L_3L_Ls + L_3R_3 + L_LR_3}$$

Q:
$$R_3\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$$
 (C_3+C_L) wo: $\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$ bandwidth: $\frac{1}{R_3(C_3+C_L)}$ K-LP: 0 K-HP: 0 K-BP: R_3 Qz: 0 Wz: None

3.91 BP-91
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_3L_LR_3R_Ls}{C_3L_3L_LR_3R_Ls^2 + C_LL_3L_LR_3R_Ls^2 + L_3L_LR_3s + L_3L_LR_Ls + L_3R_3R_L + L_LR_3R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}(C_3+C_L)}{R_3+R_L}\\ \text{wo:} \ \sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}\\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

3.92 BP-92
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, R_3, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_LR_3s}{C_LL_LR_3s^2 + L_Ls + R_3}$$

Q:
$$C_L R_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_3}$
K-HP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.93 BP-93
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, R_3, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_3R_Ls}{C_LL_LR_3R_Ls^2 + L_LR_3s + L_LR_Ls + R_3R_L}$$

Q:
$$\frac{C_L R_3 R_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_3 + R_L}{C_L R_3 R_L}$$
K-LP: 0
K-HP: 0
K-BP:
$$\frac{R_3 R_L}{R_3 + R_L}$$
Qz: 0
Wz: None

3.94 BP-94
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{1}{C_3s}, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_Ls}{C_3L_LR_Ls^2 + C_LL_LR_Ls^2 + L_Ls + R_L}$$

Q:
$$R_L\sqrt{\frac{1}{L_L(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_L(C_3+C_L)}}$
bandwidth: $\frac{1}{R_L(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.95 BP-95
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{R_3}{C_3R_3s + 1}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_LR_3s}{C_3L_LR_3s^2 + C_LL_LR_3s^2 + L_Ls + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_L(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_L(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.96 BP-96
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{R_3}{C_3R_3s + 1}, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_3R_Ls}{C_3L_LR_3R_Ls^2 + C_LL_LR_3R_Ls^2 + L_LR_3s + L_LR_Ls + R_3R_Ls}$$

$$Q: \frac{R_3 R_L \sqrt{\frac{1}{L_L (C_3 + C_L)}} (C_3 + C_L)}{R_3 + R_L}$$
 wo: $\sqrt{\frac{1}{L_L (C_3 + C_L)}}$ bandwidth: $\frac{R_3 + R_L}{R_3 R_L (C_3 + C_L)}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_3 R_L}{R_3 + R_L}$ Qz: 0 Wz: None

3.97 BP-97
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_3s}{C_3L_3s^2 + 1}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3R_Ls}{C_3L_3R_Ls^2 + L_3s + R_L}$$

Q:
$$C_3R_L\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.98 BP-98
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_3s}{C_3L_3s^2 + 1}, \infty, \infty, \frac{R_L}{C_LR_Ls + 1}\right)$$

$$H(s) = \frac{L_3R_Ls}{C_3L_3R_Ls^2 + C_LL_3R_Ls^2 + L_3s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_3(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_3(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.99 BP-99
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_3s}{C_3L_3s^2 + 1}, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_3L_LR_Ls}{C_3L_3L_LR_Ls^2 + C_LL_3L_LR_Ls^2 + L_3L_Ls + L_3R_L + L_LR_Ls}$$

Q:
$$R_L \sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$$
 ($C_3 + C_L$)
wo: $\sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L (C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.100 BP-100
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3R_3R_Ls}{C_3L_3R_3R_Ls^2 + L_3R_3s + L_3R_Ls + R_3R_L}$$

Q:
$$\frac{C_3R_3R_L\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_3+R_L}{C_3R_3R_L}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_3R_L}{R_3+R_L}$ Qz: 0 Wz: None

3.101 BP-101
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3R_3s}{C_3L_3R_3s^2 + C_LL_3R_3s^2 + L_3s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_3(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.102 BP-102
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls + 1}\right)$$

$$H(s) = \frac{L_3R_3R_Ls}{C_3L_3R_3R_Ls^2 + C_LL_3R_3R_Ls^2 + L_3R_3s + L_3R_Ls + R_3R_Ls}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{1}{L_3(C_3+C_L)}}(C_3+C_L)}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{1}{L_3(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.103 BP-103
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_3L_LR_3s}{C_3L_3L_LR_3s^2 + C_LL_3L_LR_3s^2 + L_3L_Ls + L_3R_3 + L_LR_3}$$

Q:
$$R_3\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.104 BP-104
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_3L_LR_3R_Ls}{C_3L_3L_LR_3R_Ls^2 + C_LL_3L_LR_3R_Ls^2 + L_3L_LR_3s + L_3L_LR_Ls + L_3R_3R_L + L_LR_3R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}(C_3+C_L)}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

- 4 LP
- 5 BS

5.1 BS-1
$$Z(s) = \left(\infty, R_2, R_3, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_3 s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_3} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3}{L_L} \\ &\text{K-LP: } R_3 \\ &\text{K-HP: } R_3 \\ &\text{K-BP: } 0 \\ &\text{Qz: None} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

5.2 BS-2
$$Z(s) = \left(\infty, R_2, R_3, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1 \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}(R_3+R_L)}{R_3R_L}$$
wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
bandwidth:
$$\frac{R_3R_L}{L_L(R_3+R_L)}$$
K-LP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-HP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_LL_L}}$

5.3 BS-3
$$Z(s) = \left(\infty, R_2, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_L}{L_3} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ R_L \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

5.4 BS-4
$$Z(s) = \left(\infty, R_2, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3R_L\left(C_3L_3s^2 + 1\right)}{C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_3R_3R_Ls + R_3 + R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}(R_3 + R_L)}{R_3R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3R_L}{L_3(R_3 + R_L)} \\ \text{K-LP:} \ \frac{R_3R_L}{R_3 + R_L} \end{array}$$

K-HP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.5 BS-5
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_3 s + 1}$$

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_3}$$
 wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
 bandwidth:
$$\frac{R_3}{L_L}$$
 K-LP:
$$R_3$$
 K-HP:
$$R_3$$
 K-BP:
$$0$$
 Qz: None
$$Wz: \sqrt{\frac{1}{C_LL_L}}$$

5.6 BS-6
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_3 + R_L)}{R_3 R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{R_3 R_L}{L_L (R_3 + R_L)} \\ \text{K-LP:} \ \frac{R_3 R_L}{R_3 + R_L} \end{array}$$

K-HP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_LL_L}}$

5.7 BS-7
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_L} \\ \text{wo: } \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth: } \frac{R_L}{L_3} \\ \text{K-LP: } R_L \\ \text{K-HP: } R_L \\ \text{K-BP: } 0 \\ \text{Qz: None} \\ \text{Wz: } \sqrt{\frac{1}{C_3L_3}} \end{array}$$

5.8 BS-8
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + R_3 + R_L}$$

Q:
$$\frac{L_3\sqrt{\frac{1}{C_3L_3}}(R_3+R_L)}{R_3R_L}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{R_3R_L}{L_3(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$

K-HP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.9 BS-9
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_3 s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_3}\\ \text{wo:} \ \sqrt{\frac{1}{C_LL_L}}\\ \text{bandwidth:} \ \frac{R_3}{L_L}\\ \text{K-LP:} \ R_3\\ \text{K-HP:} \ R_3\\ \text{K-BP:} \ 0\\ \text{Qz:} \ \text{None}\\ \text{Wz:} \ \sqrt{\frac{1}{C_LL_L}} \end{array}$$

5.10 BS-10
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_3 + R_L)}{R_3 R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{R_3 R_L}{L_L (R_3 + R_L)} \\ \text{K-LP:} \ \frac{R_3 R_L}{R_3 + R_L} \end{array}$$

K-HP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_LL_L}}$

5.11 BS-11
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_L} \\ \text{wo: } \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth: } \frac{R_L}{L_3} \\ \text{K-LP: } R_L \\ \text{K-HP: } R_L \\ \text{K-BP: } 0 \\ \text{Qz: None} \\ \text{Wz: } \sqrt{\frac{1}{C_3L_3}} \end{array}$$

5.12 BS-12
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + R_3 + R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}(R_3 + R_L)}{R_3R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3R_L}{L_3(R_3 + R_L)} \\ \text{K-LP:} \ \frac{R_3R_L}{R_3 + R_L} \end{array}$$

K-HP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.13 BS-13
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_3 s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_3}\\ \text{wo:} \ \sqrt{\frac{1}{C_LL_L}}\\ \text{bandwidth:} \ \frac{R_3}{L_L}\\ \text{K-LP:} \ R_3\\ \text{K-HP:} \ R_3\\ \text{K-BP:} \ 0\\ \text{Qz:} \ \text{None}\\ \text{Wz:} \ \sqrt{\frac{1}{C_LL_L}} \end{array}$$

5.14 BS-14
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_3 + R_L)}{R_3 R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 R_L}{L_L (R_3 + R_L)} \\ &\text{K-LP: } \frac{R_3 R_L}{R_3 + R_L} \end{aligned}$$

K-HP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_LL_L}}$

5.15 BS-15
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_L}{L_3} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ R_L \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

5.16 BS-16
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + R_3 + R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}(R_3 + R_L)}{R_3R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3R_L}{L_3(R_3 + R_L)} \\ \text{K-LP:} \ \frac{R_3R_L}{R_3 + R_L} \end{array}$$

K-HP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.17 BS-17
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_3 s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_3} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3}{L_L} \\ &\text{K-LP: } R_3 \\ &\text{K-HP: } R_3 \\ &\text{K-BP: } 0 \\ &\text{Qz: None} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

5.18 BS-18
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_3 + R_L)}{R_3 R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 R_L}{L_L (R_3 + R_L)} \\ &\text{K-LP: } \frac{R_3 R_L}{R_3 + R_L} \end{aligned}$$

K-HP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_LL_L}}$

5.19 BS-19
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1\right)}{C_2 L_2 s^2 + C_2 R_1 s + 1}$$

$$\begin{array}{l} \text{Q: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_L} \\ \text{wo: } \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth: } \frac{R_L}{L_3} \\ \text{K-LP: } R_L \\ \text{K-HP: } R_L \\ \text{K-BP: } 0 \\ \text{Qz: None} \\ \text{Wz: } \sqrt{\frac{1}{C_3L_3}} \end{array}$$

5.20 BS-20
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + R_3 + R_L}$$

Q:
$$\frac{L_3\sqrt{\frac{1}{C_3L_3}}(R_3+R_L)}{R_3R_L}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{R_3R_L}{L_3(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$

K-HP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.21 BS-21
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_2 s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_3} \\ \text{wo:} \ \sqrt{\frac{1}{C_LL_L}} \\ \text{bandwidth:} \ \frac{R_3}{L_L} \\ \text{K-LP:} \ R_3 \\ \text{K-HP:} \ R_3 \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_LL_L}} \end{array}$$

5.22 BS-22
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ R_3, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_3 + R_L)}{R_3 R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 R_L}{L_L (R_3 + R_L)} \\ &\text{K-LP: } \frac{R_3 R_L}{R_3 + R_L} \end{aligned}$$

K-HP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_LL_L}}$

5.23 BS-23
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1\right)}{C_2 L_2 s^2 + C_2 R_1 s + 1}$$

$$\begin{array}{l} \text{Q: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_L} \\ \text{wo: } \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth: } \frac{R_L}{L_3} \\ \text{K-LP: } R_L \\ \text{K-HP: } R_L \\ \text{K-BP: } 0 \\ \text{Qz: None} \\ \text{Wz: } \sqrt{\frac{1}{C_3L_3}} \end{array}$$

5.24 BS-24
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + R_3 + R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}(R_3 + R_L)}{R_3R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3R_L}{L_3(R_3 + R_L)} \\ \text{K-LP:} \ \frac{R_3R_L}{R_3 + R_L} \end{array}$$

K-HP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.25 BS-25
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_LL_Ls^2 + 1\right)}{C_LL_Ls^2 + C_LR_2s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_3}\\ \text{wo:} \ \sqrt{\frac{1}{C_LL_L}}\\ \text{bandwidth:} \ \frac{R_3}{L_L}\\ \text{K-LP:} \ R_3\\ \text{K-HP:} \ R_3\\ \text{K-BP:} \ 0\\ \text{Qz:} \ \text{None}\\ \text{Wz:} \ \sqrt{\frac{1}{C_LL_L}} \end{array}$$

5.26 BS-26
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_3R_L\left(C_LL_Ls^2 + 1\right)}{C_LL_LR_3s^2 + C_LL_LR_Ls^2 + C_LR_3R_Ls + R_3 + R_L}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_3 + R_L)}{R_3 R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 R_L}{L_L (R_3 + R_L)} \\ &\text{K-LP: } \frac{R_3 R_L}{R_3 + R_L} \end{aligned}$$

K-HP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_LL_L}}$

5.27 BS-27
$$Z(s) = \left(\infty, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1\right)}{C_2 L_2 s^2 + C_2 R_1 s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_L}{L_3} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ R_L \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

5.28 BS-28
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_3R_L\left(C_3L_3s^2 + 1\right)}{C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_3R_3R_Ls + R_3 + R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}(R_3 + R_L)}{R_3R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3R_L}{L_3(R_3 + R_L)} \\ \text{K-LP:} \ \frac{R_3R_L}{R_3 + R_L} \end{array}$$

K-HP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.29 BS-29
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, R_3, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_LL_Ls^2 + 1\right)}{C_LL_Ls^2 + C_LR_3s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_3} \\ \text{wo:} \ \sqrt{\frac{1}{C_LL_L}} \\ \text{bandwidth:} \ \frac{R_3}{L_L} \\ \text{K-LP:} \ R_3 \\ \text{K-HP:} \ R_3 \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_LL_L}} \end{array}$$

5.30 BS-30
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ R_3, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_3R_L\left(C_LL_Ls^2 + 1\right)}{C_LL_LR_3s^2 + C_LL_LR_Ls^2 + C_LR_3R_Ls + R_3 + R_L}$$

Q:
$$\frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_3 + R_L)}{R_3 R_L}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_3 R_L}{L_L (R_3 + R_L)}$$

K-LP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_LL_L}}$

5.31 BS-31
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, L_3s + \frac{1}{C_3s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L\left(C_3L_3s^2 + 1\right)}{C_3L_2s^2 + C_3R_Ls + 1}$$

Q:
$$\frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_L}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_L}{L_3}$ K-LP: R_L K-HP: R_L K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.32 BS-32
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3R_L\left(C_3L_3s^2 + 1\right)}{C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_3R_3R_Ls + R_3 + R_L}$$

Q:
$$\frac{L_3\sqrt{\frac{1}{C_3L_3}}(R_3 + R_L)}{\frac{R_3}{C_3L_3}}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$

bandwidth: $\frac{R_3R_L}{L_3(R_3+R_L)}$ K-LP: $\frac{R_3R_L}{R_3+R_L}$ K-HP: $\frac{R_3R_L}{R_3+R_L}$ K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_3L_3}}$

6 **GE**

6.1 GE-1
$$Z(s) = \left(\infty, R_2, R_3, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 + R_L}{L_L} \\ &\text{K-LP: } R_3 \\ &\text{K-HP: } R_3 \\ &\text{K-BP: } \frac{R_3 R_L}{R_3 R_L} \\ &\text{Qz: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.2 GE-2
$$Z(s) = \left(\infty, R_2, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

Q:
$$C_L \sqrt{\frac{1}{C_L L_L}} \left(R_3 + R_L \right)$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L (R_3 + R_L)}$
K-LP: $\frac{R_3 R_L}{R_3 + R_L}$
K-HP: $\frac{R_3 R_L}{R_3 + R_L}$
K-BP: R_3
Qz: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$
Wz: $\sqrt{\frac{1}{C_L L_L}}$

6.3 GE-3
$$Z(s) = \left(\infty, R_2, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{L_3} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ R_L \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

6.4 GE-4
$$Z(s) = \left(\infty, R_2, \frac{L_{3s}}{C_3L_3s^2+1} + R_3, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + L_3 s + R_3 + R_L}$$

Q:
$$C_3\sqrt{\frac{1}{C_3L_3}}$$
 (R_3+R_L)
wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$
K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: R_L
Qz: $C_3R_3\sqrt{\frac{1}{C_3L_3}}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

6.5 GE-5
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 + R_L}{L_L} \\ &\text{K-LP: } R_3 \\ &\text{K-HP: } R_3 \\ &\text{K-BP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{Qz: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.6 GE-6
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

Q:
$$C_L\sqrt{\frac{1}{C_LL_L}}$$
 (R_3+R_L)
wo: $\sqrt{\frac{1}{C_LL_L}}$
bandwidth: $\frac{1}{C_L(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$
K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: R_3
Qz: $C_LR_L\sqrt{\frac{1}{C_LL_L}}$
Wz: $\sqrt{\frac{1}{C_LL_L}}$

6.7 GE-7
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_3L_3}} \\ &\text{bandwidth: } \frac{R_3+R_L}{L_3} \\ &\text{K-LP: } R_L \\ &\text{K-HP: } R_L \\ &\text{K-BP: } \frac{R_3R_L}{R_3+R_L} \\ &\text{Qz: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3} \\ &\text{Wz: } \sqrt{\frac{1}{C_3L_3}} \end{aligned}$$

6.8 GE-8
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + L_3 s + R_3 + R_L}$$

Q:
$$C_3\sqrt{\frac{1}{C_3L_3}}$$
 (R_3+R_L)
wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$
K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: R_L
Qz: $C_3R_3\sqrt{\frac{1}{C_3L_3}}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

6.9 GE-9
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 + R_L}{L_L} \\ &\text{K-LP: } R_3 \\ &\text{K-HP: } R_3 \\ &\text{K-BP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{Qz: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.10 GE-10
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

$$\begin{aligned} &\text{Q: } C_L \sqrt{\frac{1}{C_L L_L}} \left(R_3 + R_L \right) \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{1}{C_L (R_3 + R_L)} \\ &\text{K-LP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{K-HP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{K-BP: } R_3 \\ &\text{Qz: } C_L R_L \sqrt{\frac{1}{C_L L_L}} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.11 GE-11
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_3L_3}} \\ &\text{bandwidth: } \frac{R_3+R_L}{L_3} \\ &\text{K-LP: } R_L \\ &\text{K-HP: } R_L \\ &\text{K-BP: } \frac{R_3R_L}{R_3+R_L} \\ &\text{Qz: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3} \\ &\text{Wz: } \sqrt{\frac{1}{C_3L_3}} \end{aligned}$$

6.12 GE-12
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + L_3 s + R_3 + R_L}$$

Q:
$$C_3\sqrt{\frac{1}{C_3L_3}}$$
 (R_3+R_L)
wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$
K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: R_L
Qz: $C_3R_3\sqrt{\frac{1}{C_3L_3}}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

6.13 GE-13
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 + R_L}{L_L} \\ &\text{K-LP: } R_3 \\ &\text{K-HP: } R_3 \\ &\text{K-BP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{Qz: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.14 GE-14
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

Q:
$$C_L \sqrt{\frac{1}{C_L L_L}} \left(R_3 + R_L \right)$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L (R_3 + R_L)}$
K-LP: $\frac{R_3 R_L}{R_3 + R_L}$
K-HP: $\frac{R_3 R_L}{R_3 + R_L}$
K-BP: R_3
Qz: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$
Wz: $\sqrt{\frac{1}{C_L L_L}}$

6.15 GE-15
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_3L_3}} \\ &\text{bandwidth: } \frac{R_3+R_L}{L_3} \\ &\text{K-LP: } R_L \\ &\text{K-HP: } R_L \\ &\text{K-BP: } \frac{R_3R_L}{R_3+R_L} \\ &\text{Qz: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3} \\ &\text{Wz: } \sqrt{\frac{1}{C_3L_3}} \end{aligned}$$

6.16 GE-16
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_{3s}}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + L_3 s + R_3 + R_L}$$

Q:
$$C_3\sqrt{\frac{1}{C_3L_3}}$$
 (R_3+R_L)
wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$
K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: R_L
Qz: $C_3R_3\sqrt{\frac{1}{C_3L_3}}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

6.17 GE-17
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 + R_L}{L_L} \\ &\text{K-LP: } R_3 \\ &\text{K-HP: } R_3 \\ &\text{K-BP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{Qz: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.18 GE-18
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

Q:
$$C_L\sqrt{\frac{1}{C_LL_L}}$$
 (R_3+R_L)
wo: $\sqrt{\frac{1}{C_LL_L}}$
bandwidth: $\frac{1}{C_L(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$
K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: R_3
Qz: $C_LR_L\sqrt{\frac{1}{C_LL_L}}$
Wz: $\sqrt{\frac{1}{C_LL_L}}$

6.19 GE-19
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_3L_3}} \\ &\text{bandwidth: } \frac{R_3+R_L}{L_3} \\ &\text{K-LP: } R_L \\ &\text{K-HP: } R_L \\ &\text{K-BP: } \frac{R_3R_L}{R_3+R_L} \\ &\text{Qz: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3} \\ &\text{Wz: } \sqrt{\frac{1}{C_3L_3}} \end{aligned}$$

6.20 GE-20
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + L_3 s + R_3 + R_L}$$

Q:
$$C_3\sqrt{\frac{1}{C_3L_3}}(R_3+R_L)$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$
K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: R_L
Qz: $C_3R_3\sqrt{\frac{1}{C_3L_3}}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

6.21 GE-21
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 + R_L}{L_L} \\ &\text{K-LP: } R_3 \\ &\text{K-HP: } R_3 \\ &\text{K-BP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{Qz: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.22 GE-22
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

$$\begin{aligned} &\text{Q: } C_L \sqrt{\frac{1}{C_L L_L}} \left(R_3 + R_L \right) \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{1}{C_L (R_3 + R_L)} \\ &\text{K-LP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{K-HP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{K-BP: } R_3 \\ &\text{Qz: } C_L R_L \sqrt{\frac{1}{C_L L_L}} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.23 GE-23
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{L_3} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ R_L \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

6.24 GE-24
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + L_3 s + R_3 + R_L}$$

Q:
$$C_3\sqrt{\frac{1}{C_3L_3}}(R_3+R_L)$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$
K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: R_L
Qz: $C_3R_3\sqrt{\frac{1}{C_3L_3}}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

6.25 GE-25
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 + R_L}{L_L} \\ &\text{K-LP: } R_3 \\ &\text{K-HP: } R_3 \\ &\text{K-BP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{Qz: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.26 GE-26
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

Q:
$$C_L\sqrt{\frac{1}{C_LL_L}}$$
 (R_3+R_L)
wo: $\sqrt{\frac{1}{C_LL_L}}$
bandwidth: $\frac{1}{C_L(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$
K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: R_3
Qz: $C_LR_L\sqrt{\frac{1}{C_LL_L}}$
Wz: $\sqrt{\frac{1}{C_LL_L}}$

6.27 GE-27
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_2 L_2 s^2 + C_3 R_2 s + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{L_3} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ R_L \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

6.28 GE-28
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + L_3 s + R_3 + R_L}$$

Q:
$$C_3\sqrt{\frac{1}{C_3L_3}}$$
 (R_3+R_L)
wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$
K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: R_L
Qz: $C_3R_3\sqrt{\frac{1}{C_3L_3}}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

6.29 GE-29
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ R_3, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{C_LL_Ls^2 + C_LR_2s + C_LR_Ls + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 + R_L}{L_L} \\ &\text{K-LP: } R_3 \\ &\text{K-HP: } R_3 \\ &\text{K-BP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{Qz: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.30 GE-30
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ R_3, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_LL_LR_3s^2 + C_LL_LR_Ls^2 + L_Ls + R_3 + R_L}$$

Q:
$$C_L \sqrt{\frac{1}{C_L L_L}} \left(R_3 + R_L \right)$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L (R_3 + R_L)}$
K-LP: $\frac{R_3 R_L}{R_3 + R_L}$
K-HP: $\frac{R_3 R_L}{R_3 + R_L}$
K-BP: R_3
Qz: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$
Wz: $\sqrt{\frac{1}{C_L L_L}}$

6.31 GE-31
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L\left(C_3L_3s^2 + C_3R_3s + 1\right)}{C_3L_3s^2 + C_3R_3s + C_3R_Ls + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_3L_3}} \\ &\text{bandwidth: } \frac{R_3+R_L}{L_3} \\ &\text{K-LP: } R_L \\ &\text{K-HP: } R_L \\ &\text{K-BP: } \frac{R_3R_L}{R_3+R_L} \\ &\text{Qz: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3} \\ &\text{Wz: } \sqrt{\frac{1}{C_3L_3}} \end{aligned}$$

6.32 GE-32
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_L\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3L_3R_3s^2 + C_3L_3R_Ls^2 + L_3s + R_3 + R_L}$$

$$\begin{array}{l} \text{Q: } C_3\sqrt{\frac{1}{C_3L_3}}\left(R_3+R_L\right) \\ \text{wo: } \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth: } \frac{1}{C_3(R_3+R_L)} \\ \text{K-LP: } \frac{R_3R_L}{R_3+R_L} \\ \text{K-HP: } \frac{R_3R_L}{R_3+R_L} \\ \text{K-BP: } R_L \\ \text{Qz: } C_3R_3\sqrt{\frac{1}{C_3L_3}} \\ \text{Wz: } \sqrt{\frac{1}{C_3L_3}} \end{array}$$

7 AP

8 INVALID-NUMER

8.1 INVALID-NUMER-1
$$Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

Q:
$$\frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_LR_3+C_LR_L}$$

wo:
$$\sqrt{\frac{1}{C_3C_LR_3R_L}}$$

bandwidth: $\frac{C_3R_3 + C_LR_3 + C_LR_L}{C_3C_LR_3R_L}$ K-LP: R_3

K-HP: 0 K-BP: $\frac{C_L R_3 R_L}{C_3 R_3 + C_L R_3 + C_L R_L}$ Qz: 0

Wz: None

8.2 INVALID-NUMER-2 $Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

Parameters:

Q:
$$\frac{C_{3}C_{L}R_{3}R_{L}\sqrt{\frac{1}{C_{3}C_{L}R_{3}R_{L}}}}{C_{3}R_{3}+C_{3}R_{L}+C_{L}R_{L}}$$
wo:
$$\sqrt{\frac{1}{C_{3}C_{L}R_{3}R_{L}}}$$
bandwidth:
$$\frac{C_{3}R_{3}+C_{3}R_{L}+C_{L}R_{L}}{C_{3}C_{L}R_{3}R_{L}}$$

K-LP: R_L K-HP: 0

Wz: None

8.3 INVALID-NUMER-3
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

Q:
$$\frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_LR_3+C_LR_L}$$
 wo:
$$\sqrt{\frac{1}{C_3C_LR_3R_L}}$$

bandwidth: $\frac{C_3R_3+C_LR_3+C_LR_L}{C_3C_LR_3R_L}$

K-LP: R_3 K-HP: 0

 $\text{K-BP: } \frac{C_L R_3 R_L}{C_3 R_3 + C_L R_3 + C_L R_L}$ Qz: 0

Wz: None

8.4 INVALID-NUMER-4 $Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L \left(C_3 R_3 s + 1 \right)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

Parameters:

Q:
$$\frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_3R_L+C_LR_L}$$

wo: $\sqrt{\frac{1}{C_3C_LR_3R_L}}$

bandwidth: $\frac{C_3R_3 + C_3R_L + C_LR_L}{C_3C_LR_3R_L}$

K-LP: R_L K-HP: 0

K-BP: $\frac{C_3R_3R_L}{C_3R_3+C_3R_L+C_LR_L}$ Qz: 0

Wz: None

8.5 INVALID-NUMER-5
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_LR_3+C_LR_L} \\ &\text{wo: } \sqrt{\frac{1}{C_3C_LR_3R_L}} \\ &\text{bandwidth: } \frac{C_3R_3+C_LR_3+C_LR_L}{C_3C_LR_3R_L} \end{aligned}$$

K-LP: R_3

K-HP: 0 K-BP: $\frac{C_L R_3 R_L}{C_3 R_3 + C_L R_3 + C_L R_L}$ Qz: 0

Wz: None

8.6 INVALID-NUMER-6 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

Parameters:

Q: $\frac{C_{3}C_{L}R_{3}R_{L}\sqrt{\frac{1}{C_{3}C_{L}R_{3}R_{L}}}}{C_{3}R_{3}+C_{3}R_{L}+C_{L}R_{L}}$ wo: $\sqrt{\frac{1}{C_{3}C_{L}R_{3}R_{L}}}$ bandwidth: $\frac{C_{3}R_{3}+C_{3}R_{L}+C_{L}R_{L}}{C_{3}C_{L}R_{3}R_{L}}$ K-LP: R_{L}

K-HP: 0

K-BP: $\frac{C_3R_3R_L}{C_3R_3+C_3R_L+C_LR_L}$ Qz: 0

Wz: None

8.7 INVALID-NUMER-7
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L R_L s + 1 \right)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

Parameters:

Q:
$$\frac{C_{3}C_{L}R_{3}R_{L}\sqrt{\frac{1}{C_{3}C_{L}R_{3}R_{L}}}}{C_{3}R_{3}+C_{L}R_{3}+C_{L}R_{L}}$$
 wo:
$$\sqrt{\frac{1}{C_{3}C_{L}R_{3}R_{L}}}$$

bandwidth: $\frac{C_3R_3+C_LR_3+C_LR_L}{C_3C_LR_3R_L}$

K-LP: R_3

K-HP: 0

K-BP: $\frac{C_L R_3 R_L}{C_3 R_3 + C_L R_3 + C_L R_L}$ Qz: 0

Wz: None

8.8 INVALID-NUMER-8 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

Parameters:

Q: $\frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_3R_L+C_LR_L}$ wo: $\sqrt{\frac{1}{C_3C_LR_3R_L}}$

bandwidth: $\frac{C_3R_3+C_3R_L+C_LR_L}{C_3C_LR_3R_L}$

K-LP: R_L

K-HP: 0 K-BP: $\frac{C_3R_3R_L}{C_3R_3+C_3R_L+C_LR_L}$ Qz: 0

Wz: None

8.9 INVALID-NUMER-9 $Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

Parameters:

Q: $\frac{C_{3}C_{L}R_{3}R_{L}\sqrt{\frac{1}{C_{3}C_{L}R_{3}R_{L}}}}{C_{3}R_{3}+C_{L}R_{3}+C_{L}R_{L}}$ wo: $\sqrt{\frac{1}{C_{3}C_{L}R_{3}R_{L}}}$ bandwidth: $\frac{C_{3}R_{3}+C_{L}R_{3}+C_{L}R_{L}}{C_{3}C_{L}R_{3}R_{L}}$

K-LP: R_3 K-HP: 0

K-BP: $\frac{C_L R_3 R_L}{C_3 R_3 + C_L R_3 + C_L R_L}$ Qz: 0

Wz: None

8.10 INVALID-NUMER-10
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 R_3 s + 1 \right)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

Parameters:

Q: $\frac{C_3 C_L R_3 R_L \sqrt{\frac{1}{C_3 C_L R_3 R_L}}}{C_3 R_3 + C_3 R_L + C_L R_L}$ wo: $\sqrt{\frac{1}{C_3 C_L R_3 R_L}}$

bandwidth: $\frac{C_3R_3 + C_3R_L + C_LR_L}{C_3C_LR_3R_L}$

K-LP: R_L K-HP: 0

K-BP: $\frac{C_3R_3R_L}{C_3R_3+C_3R_L+C_LR_L}$ Qz: 0

Wz: None

8.11 INVALID-NUMER-11 $Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

Parameters:

Q: $\frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_LR_3+C_LR_L}$ wo: $\sqrt{\frac{1}{C_3C_LR_3R_L}}$

bandwidth: $\frac{C_3R_3 + C_LR_3 + C_LR_L}{C_3C_LR_3R_L}$

K-LP: R_3

K-HP: 0 K-BP: $\frac{C_L R_3 R_L}{C_3 R_3 + C_L R_3 + C_L R_L}$

Qz: 0 Wz: None

8.12 INVALID-NUMER-12
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_3R_L+C_LR_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3C_LR_3R_L}} \\ \text{bandwidth:} \ \frac{C_3R_3+C_3R_L+C_LR_L}{C_3C_LR_3R_L} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{C_3R_3R_L}{C_3R_3+C_3R_L+C_LR_L} \\ \text{Qz:} \ 0 \end{array}$$

Wz: None

8.13 INVALID-NUMER-13 $Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{R_3}{C_3R_3s+1}, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_LR_3+C_LR_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3C_LR_3R_L}} \\ \text{bandwidth:} \ \frac{C_3R_3+C_LR_3+C_LR_L}{C_3C_LR_3R_L} \\ \text{K-LP:} \ R_3 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{C_LR_3R_L}{C_3R_3+C_LR_3+C_LR_L} \\ \text{Qz:} \ 0 \end{array}$$

Wz: None

8.14 INVALID-NUMER-14
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, R_3 + \frac{1}{C_3s}, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

Parameters:

Q:
$$\frac{C_{3}C_{L}R_{3}R_{L}\sqrt{\frac{1}{C_{3}C_{L}R_{3}R_{L}}}}{C_{3}R_{3}+C_{3}R_{L}+C_{L}R_{L}}$$
wo:
$$\sqrt{\frac{1}{C_{3}C_{L}R_{3}R_{L}}}$$
bandwidth:
$$\frac{C_{3}R_{3}+C_{3}R_{L}+C_{L}R_{L}}{C_{3}C_{L}R_{3}R_{L}}$$
K.I.P. R_{x}

K-LP: R_L

K-HP: 0

 $\begin{array}{l} \text{K-BP: } \overset{C}{\underset{C_3R_3+C_3R_L+C_LR_L}{C_3R_3+C_3R_L+C_LR_L}} \\ \text{Qz: } 0 \end{array}$

Wz: None

8.15 INVALID-NUMER-15
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{R_3}{C_3R_3s + 1}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_LR_3+C_LR_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3C_LR_3R_L}} \\ \text{bandwidth:} \ \frac{C_3R_3+C_LR_3+C_LR_L}{C_3C_LR_3R_L} \\ \text{K-LP:} \ R_3 \end{array}$$

K-HP: 0 K-BP: $\frac{C_L R_3 R_L}{C_3 R_3 + C_L R_3 + C_L R_L}$ Qz: 0

Wz: None

8.16 INVALID-NUMER-16
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{R_L}{C_LR_Ls + 1}\right)$$

$$H(s) = \frac{R_L\left(C_3R_3s + 1\right)}{C_3C_LR_3R_Ls^2 + C_3R_3s + C_3R_Ls + C_LR_Ls + 1}$$

 $\begin{array}{l} \text{Q:} \ \frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_3R_L+C_LR_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3C_LR_3R_L}} \\ \text{bandwidth:} \ \frac{C_3R_3+C_3R_L+C_LR_L}{C_3C_LR_3R_L} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{C_3R_3R_L}{C_3R_3+C_3R_L+C_LR_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$

9 INVALID-WZ

10 INVALID-ORDER

10.1 INVALID-ORDER-1
$$Z(s) = (\infty, R_2, R_3, \infty, \infty, R_L)$$

$$H(s) = \frac{R_3 R_L}{R_3 + R_L}$$

10.2 INVALID-ORDER-2
$$Z(s) = \left(\infty, R_2, R_3, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_L R_3 s + 1}$$

10.3 INVALID-ORDER-3
$$Z(s) = \left(\infty, R_2, R_3, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_L R_3 R_L s + R_3 + R_L}$$

10.4 INVALID-ORDER-4
$$Z(s) = \left(\infty, R_2, R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_L R_3 s + C_L R_L s + 1}$$

10.5 INVALID-ORDER-5
$$Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L}{C_3 R_L s + 1}$$

10.6 INVALID-ORDER-6
$$Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{1}{s\left(C_3 + C_L\right)}$$

10.7 INVALID-ORDER-7
$$Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L}{C_3 R_L s + C_L R_L s + 1}$$

10.8 INVALID-ORDER-8
$$Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L R_L s + 1}{s (C_3 C_L R_L s + C_3 + C_L)}$$

10.9 INVALID-ORDER-9
$$Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + 1}{s \left(C_3 C_L L_L s^2 + C_3 + C_L \right)}$$

10.10 INVALID-ORDER-10
$$Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.11 INVALID-ORDER-11
$$Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L \right)}$$

10.12 INVALID-ORDER-12
$$Z(s) = \left(\infty, \ R_2, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.13 INVALID-ORDER-13
$$Z(s) = \left(\infty, \ R_2, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L (C_L L_L s^2 + 1)}{C_3 C_L L_L R_L s^3 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.14 INVALID-ORDER-14
$$Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + R_3 + R_L}$$

10.15 INVALID-ORDER-15
$$Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + C_L R_3 s + 1}$$

10.16 INVALID-ORDER-16
$$Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.17 INVALID-ORDER-17
$$Z(s) = \left(\infty, \ R_2, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_L R_3 s^3 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.18 INVALID-ORDER-18
$$Z(s) = \left(\infty, \ R_2, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.19 INVALID-ORDER-19
$$Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

10.20 INVALID-ORDER-20
$$Z(s) = \left(\infty, \ R_2, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_4 s^2 + C_L R_3 R_L s + R_3 + R_L}$$

10.21 INVALID-ORDER-21
$$Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 R_3 s + C_3 R_L s + 1}$$

10.22 INVALID-ORDER-22
$$Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.23 INVALID-ORDER-23
$$Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L R_L s + 1)}{s (C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.24 INVALID-ORDER-24
$$Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L)}$$

10.25 INVALID-ORDER-25
$$Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s (C_3 R_3 s + 1)}{C_3 C_L L_L R_3 s^3 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.26 INVALID-ORDER-26
$$Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.27 INVALID-ORDER-27
$$Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 L_L R_L s^2 + C_3 R_3 R_L s + C_L L_L R_L s^2 + L_L s + R_L}$$

10.28 INVALID-ORDER-28
$$Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + 1}$$

10.29 INVALID-ORDER-29
$$Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_3 R_3 s + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.30 INVALID-ORDER-30
$$Z(s) = \left(\infty, R_2, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(C_3 C_L L_3 s^2 + C_3 + C_L\right)}$$

10.31 INVALID-ORDER-31
$$Z(s) = \left(\infty, \ R_2, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L R_L s + 1}$$

10.32 INVALID-ORDER-32
$$Z(s) = \left(\infty, \ R_2, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.33 INVALID-ORDER-33
$$Z(s) = \left(\infty, \ R_2, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.34 INVALID-ORDER-34
$$Z(s) = \left(\infty, \ R_2, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.35 INVALID-ORDER-35
$$Z(s) = \left(\infty, R_2, L_3 s + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.36 INVALID-ORDER-36
$$Z(s) = \left(\infty, R_2, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L s^2}$$

10.37 INVALID-ORDER-37
$$Z(s) = \left(\infty, R_2, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.38 INVALID-ORDER-38
$$Z(s) = \left(\infty, R_2, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_R L_s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.39 INVALID-ORDER-39
$$Z(s) = \left(\infty, \ R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + C_L L_3 s^2 + 1}$$

10.40 INVALID-ORDER-40
$$Z(s) = \left(\infty, \ R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_L s + 1}$$

10.41 INVALID-ORDER-41
$$Z(s) = \left(\infty, \ R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + 1}$$

10.42 INVALID-ORDER-42
$$Z(s) = \left(\infty, R_2, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_3 L_L s}{C_3 L_3 L_L s^2 + C_L L_3 L_L s^2 + L_3 + L_L}$$

10.43 INVALID-ORDER-43
$$Z(s) = \left(\infty, R_2, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3s\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_Ls^3 + C_3L_3s^2 + C_LL_3s^2 + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.44 INVALID-ORDER-44
$$Z(s) = \left(\infty, \ R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_L R_L s^2 + L_3 s + L_L s + R_L}$$

10.45 INVALID-ORDER-45
$$Z(s) = \left(\infty, R_2, \frac{L_{3s}}{C_3L_{3s^2+1}}, \infty, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{L_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_1 R_L s^2 + L_3 s + R_L}$$

10.46 INVALID-ORDER-46
$$Z(s) = \left(\infty, R_2, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.47 INVALID-ORDER-47
$$Z(s) = \left(\infty, R_2, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

10.48 INVALID-ORDER-48
$$Z(s) = \left(\infty, R_2, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_L R_L s + 1) (C_3 L_3 s^2 + C_3 R_3 s + 1)}{s (C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.49 INVALID-ORDER-49
$$Z(s) = \left(\infty, R_2, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.50 INVALID-ORDER-50
$$Z(s) = \left(\infty, \ R_2, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.51 INVALID-ORDER-51
$$Z(s) = \left(\infty, R_2, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.52 INVALID-ORDER-52
$$Z(s) = \left(\infty, R_2, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_Ls\left(C_3L_3s^2 + C_3R_3s + 1\right)}{C_3C_LL_3L_LR_Ls^4 + C_3C_LL_LR_3R_Ls^3 + C_3L_3L_Ls^3 + C_3L_3R_Ls^2 + C_3L_LR_3s^2 + C_3L_LR_3s^2 + C_3R_3R_Ls + C_LL_LR_Ls^2 + L_Ls + R_Ls^2}$$

10.53 INVALID-ORDER-53
$$Z(s) = \left(\infty, R_2, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_LR_3s^3 + C_3C_LL_LR_Ls^3 + C_3L_3s^2 + C_3L_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.54 INVALID-ORDER-54
$$Z(s) = \left(\infty, R_2, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_LL_Ls^2 + 1\right)\left(C_3L_3s^2 + C_3R_3s + 1\right)}{C_3C_LL_2L_Ls^4 + C_3C_LL_3R_Ls^3 + C_3C_LL_LR_3s^3 + C_3C_LL_RR_3s^3 + C_3C_LR_3R_Ls^2 + C_3R_3s + C_3R_4s + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.55 INVALID-ORDER-55
$$Z(s) = \left(\infty, R_2, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

10.56 INVALID-ORDER-56
$$Z(s) = \left(\infty, R_2, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_L R_3 s^2 + L_3 s + R_3}$$

10.57 INVALID-ORDER-57
$$Z(s) = \left(\infty, \ R_2, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

10.58 INVALID-ORDER-58
$$Z(s) = \left(\infty, \ R_2, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

10.59 INVALID-ORDER-59
$$Z(s) = \left(\infty, R_2, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_3 s^3 + C_L L_3 R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L s^2 + C_L L_3 R_3 R_L s^3 + C_L$$

10.60 INVALID-ORDER-60
$$Z(s) = \left(\infty, R_2, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_3L_3R_3s^2 + L_3s + R_3}{C_2C_LL_2R_2s^3 + C_2L_2s^2 + C_LL_2s^2 + C_LR_2s + 1}$$

10.61 INVALID-ORDER-61
$$Z(s) = \left(\infty, R_2, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3R_3R_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3R_Ls^2 + C_LR_3R_Ls + L_3s + R_3 + R_L}$$

10.62 INVALID-ORDER-62
$$Z(s) = \left(\infty, R_2, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.63 INVALID-ORDER-63
$$Z(s) = \left(\infty, \ R_2, \ \frac{L_{3s}}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_3 s + 1}$$

10.64 INVALID-ORDER-64
$$Z(s) = \left(\infty, R_2, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_L R_3 s^2 + L_3 s + L_L s + R_3}$$

10.65 INVALID-ORDER-65
$$Z(s) = \left(\infty, \ R_2, \ \frac{L_{3s}}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_1 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.66 INVALID-ORDER-66
$$Z(s) = \left(\infty, \ R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_2 s^3 + C_L L_3 L_L R_2 s^3 + C_L L_L R_3 R_L s^2 + L_3 L_L s^2 + L_3 R_L s + L_L R_3 s + L_L R_2 s + R_3 R_L s^2 + L_L R_3 R_L$$

10.67 INVALID-ORDER-67
$$Z(s) = \left(\infty, \ R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3L_LR_2s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_3s^2 + C_LL_LR_2s^2 + L_2s + R_3 + R_Ls^3 + C_LL_LR_3s^2 + C_LL_LR_2s^2 + L_2s + R_2s^2 + C_LL_RR_2s^2 + C_LL_$$

10.68 INVALID-ORDER-68
$$Z(s) = \left(\infty, \ R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_3 s^2 + C_L R_3 r_1 s^2 + C_L$$

10.69 INVALID-ORDER-69
$$Z(s) = \left(\infty, R_2, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)}{C_3C_LL_3R_3s^3 + C_3L_3s^2 + C_3R_3s + C_LR_3s + 1}$$

10.70 INVALID-ORDER-70
$$Z(s) = \left(\infty, R_2, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, \frac{R_L}{C_LR_Ls + 1}\right)$$

$$H(s) = \frac{R_3R_L\left(C_3L_3s^2 + 1\right)}{C_2C_LL_2R_2R_Ls^3 + C_2L_2R_2s^2 + C_2L_2R_Ls^2 + C_2R_2R_Ls + C_LR_2R_Ls + R_2 + R_L}$$

10.71 INVALID-ORDER-71
$$Z(s) = \left(\infty, R_2, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)\left(C_LR_Ls + 1\right)}{C_2C_LL_2R_2s^3 + C_2C_LL_2R_Ls^3 + C_2C_LR_2R_Ls^2 + C_2L_2s^2 + C_2R_2s + C_LR_2s + C_LR_2s + 1}$$

10.72 INVALID-ORDER-72
$$Z(s) = \left(\infty, R_2, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_1s^4 + C_3C_LL_3R_3s^3 + C_3C_LL_1R_3s^3 + C_3L_3s^2 + C_3R_3s + C_LL_1s^2 + C_LR_3s + 1}$$

10.73 INVALID-ORDER-73
$$Z(s) = \left(\infty, R_2, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_LR_3s\left(C_3L_3s^2 + 1\right)}{C_3C_LL_3L_LR_3s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_3L_LR_3s^2 + L_Ls + R_3}$$

10.74 INVALID-ORDER-74
$$Z(s) = \left(\infty, \ R_2, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_3s^3 + C_3C_LL_3R_Ls^3 + C_3C_LL_Ra_3s^3 + C_3C_LR_3R_Ls^2 + C_3L_3s^2 + C_3R_3s + C_LL_Ls^2 + C_LR_3s + C_LR_Ls + 1}$$

10.75 INVALID-ORDER-75
$$Z(s) = \left(\infty, R_2, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 R_3 R_L s^2 + C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L s^2}$$

10.76 INVALID-ORDER-76
$$Z(s) = \left(\infty, R_2, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_2R_2s^4 + C_3C_LL_2R_3R_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_2s^2 + C_3L_2R_3s^2 + C_3R_3R_Ls + C_LL_LR_3s^2 + C_LL_LR_2s^2 + L_Ls + R_3 + R_L}$$

10.77 INVALID-ORDER-77
$$Z(s) = \left(\infty, R_2, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_4 R_L s^3 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 R_L s^2 + C_3 L_3 R_L s^2 + C_4 L_L R_3 s^2 + C_L R_3 R_L s + R_3 + R_L R_2 r^2 + C_L R_3 R_L s^2 +$$

10.78 INVALID-ORDER-78
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{R_3 + R_L}$$

10.79 INVALID-ORDER-79
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_L R_3 s + 1}$$

10.80 INVALID-ORDER-80
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_L R_3 R_L s + R_3 + R_L}$$

10.81 INVALID-ORDER-81
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_L R_3 s + C_L R_L s + 1}$$

10.82 INVALID-ORDER-82
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L}{C_3 R_L s + 1}$$

10.83 INVALID-ORDER-83
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{1}{s\left(C_3 + C_L\right)}$$

10.84 INVALID-ORDER-84
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L}{C_3 R_L s + C_L R_L s + 1}$$

10.85 INVALID-ORDER-85
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L R_L s + 1}{s (C_3 C_L R_L s + C_3 + C_L)}$$

10.86 INVALID-ORDER-86
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + 1}{s \left(C_3 C_L L_L s^2 + C_3 + C_L \right)}$$

10.87 INVALID-ORDER-87
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.88 INVALID-ORDER-88
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L \right)}$$

10.89 INVALID-ORDER-89
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.90 INVALID-ORDER-90
$$Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_L s^3 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.91 INVALID-ORDER-91
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + R_3 + R_L}$$

10.92 INVALID-ORDER-92
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + C_L R_3 s + 1}$$

10.93 INVALID-ORDER-93
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.94 INVALID-ORDER-94
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.95 INVALID-ORDER-95
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.96 INVALID-ORDER-96
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

10.97 INVALID-ORDER-97
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

10.98 INVALID-ORDER-98
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 R_3 s + C_3 R_L s + 1}$$

10.99 INVALID-ORDER-99
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.100 INVALID-ORDER-100
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L R_L s + 1)}{s (C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.101 INVALID-ORDER-101
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 R_3 s + 1\right) \left(C_L L_L s^2 + 1\right)}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.102 INVALID-ORDER-102
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.103 INVALID-ORDER-103
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.104 INVALID-ORDER-104
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 L_L R_L s^2 + C_3 R_3 R_L s + C_L L_L R_L s^2 + L_L s + R_L}$$

10.105 INVALID-ORDER-105
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + 1}$$

10.106 INVALID-ORDER-106
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_3 R_3 s + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.107 INVALID-ORDER-107
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(C_3 C_L L_3 s^2 + C_3 + C_L \right)}$$

10.108 INVALID-ORDER-108
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L R_L s + 1}$$

10.109 INVALID-ORDER-109
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.110 INVALID-ORDER-110
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.111 INVALID-ORDER-111
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.112 INVALID-ORDER-112
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.113 INVALID-ORDER-113
$$Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

10.114 INVALID-ORDER-114
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.115 INVALID-ORDER-115
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_R L_s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.116 INVALID-ORDER-116
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + C_L L_3 s^2 + 1}$$

10.117 INVALID-ORDER-117
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_L s + 1}$$

10.118 INVALID-ORDER-118
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + 1}$$

10.119 INVALID-ORDER-119
$$Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L s}{C_3 L_3 L_L s^2 + C_L L_3 L_L s^2 + L_3 + L_L}$$

10.120 INVALID-ORDER-120
$$Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_4 s^2 + C_L R_L s + 1}$$

10.121 INVALID-ORDER-121
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3 s \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_L R_L s^2 + L_3 s + L_L s + R_L}$$

10.122 INVALID-ORDER-122
$$Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_L s^2 + L_3 s + R_L}$$

10.123 INVALID-ORDER-123
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.124 INVALID-ORDER-124
$$Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

10.125 INVALID-ORDER-125
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_L R_L s + 1) (C_3 L_3 s^2 + C_3 R_3 s + 1)}{s (C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.126 INVALID-ORDER-126
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.127 INVALID-ORDER-127
$$Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_2 L_2 L_3 L_4 s^4 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 L_4 s^2 + C_3 R_3 s + C_L L_4 s^2 + 1}$$

10.128 INVALID-ORDER-128
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_2 C_L L_2 s^2 + C_3 C_L L_L s^2 + C_2 C_L R_2 s + C_2 C_L R_L s + C_2 + C_L\right)}$$

10.129 INVALID-ORDER-129
$$Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_3 s^2 + C_3 L_L R_3 s^2 + C_3 R_3 R_L s + C_L L_L R_L s^2 + L_L s + R_L R_2 r^2 + C_3 R_3 R_L s + C_L R_2 r^2 + C_3 R_3 R_L s + C_L R_2 r^2 + C_3 R_3 R_L s + C_L R_2 r^2 + C_3 R_3 R_L s + C_L R_2 r^2 + C_3 R_3 R_L s + C_L R_2 r^2 + C_3 R_3 R_L s + C_L R_2 r^2 + C_3 R_3 R_L s + C_L R_2 r^2 + C_2 R_3 R_2 r^2 + C_3 R_3 R_3 r^2 + C_3 R_3 R$$

10.130 INVALID-ORDER-130
$$Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + 1}$$

10.131 INVALID-ORDER-131
$$Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_4 s + C_L L_L s^2 + C_L R_L s + 1}$$

10.132 INVALID-ORDER-132
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

10.133 INVALID-ORDER-133
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_L R_3 s^2 + L_3 s + R_3}$$

10.134 INVALID-ORDER-134
$$Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L L_4 R_3 s^2 + C_L L_4 R_3 s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

10.136 INVALID-ORDER-136
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_3 s^3 + C_L L_3 R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L s^3 + C_L L_3 R_3 R_L$$

10.137 INVALID-ORDER-137
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_2 C_1 L_2 R_2 s^3 + C_2 L_3 s^2 + C_1 L_3 s^2 + C_2 L_3 s^2 + C_3 L_3 s^2 + C_4 L_3 s^2 + C$$

10.138 INVALID-ORDER-138
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3 + R_L}$$

10.139 INVALID-ORDER-139
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_L R_L s + 1) (C_3 L_3 R_3 s^2 + L_3 s + R_3)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.140 INVALID-ORDER-140
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_3 s + 1}$$

10.141 INVALID-ORDER-141
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_L R_3 s^2 + L_3 s + L_L s + R_3}$$

10.142 INVALID-ORDER-142
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_1 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.143 INVALID-ORDER-143
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_2 s^3 + C_3 L_3 L_L R_2 s^3 + C_L L_L R_3 R_L s^2 + L_3 L_L s^2 + L_3 R_L s + L_L R_3 s + L_L R_3 s + L_L R_4 s + R_3 R_L s^2 + L_3 R_4 s^3 + C_4 R_4$$

10.144 INVALID-ORDER-144
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3L_LR_4s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_3s^2 + C_LL_LR_Ls^2 + L_3s + L_Ls + R_3 + R_Ls^2}$$

10.145 INVALID-ORDER-145
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_3 s^2 + C_L$$

10.146 INVALID-ORDER-146
$$Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_2 C_L L_2 R_2 s^3 + C_2 L_2 s^2 + C_2 R_2 s + C_L R_2 s + 1}$$

10.147 INVALID-ORDER-147
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.148 INVALID-ORDER-148
$$Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

10.149 INVALID-ORDER-149
$$Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.150 INVALID-ORDER-150
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_L R_3 s^2 + L_L s + R_3}$$

$$\textbf{10.151} \quad \textbf{INVALID-ORDER-151} \ \ Z(s) = \left(\infty, \ \ \frac{1}{C_2 s}, \ \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s} \right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \ \infty, \ \ \infty, \ \ L_L s + R_L + \frac{1}{C_L s} \right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_R R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.153 INVALID-ORDER-153
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

10.154 INVALID-ORDER-154
$$Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \frac{R_3\left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_1 R_L s^3 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 R_L s^2 + C_3 L_3 R_L s^2 + C_L L_L R_3 s^2 + C_L R_3 R_L s + R_3 + R_L R_2 r^2 + C_L R_3 R_L s^2 +$$

10.155 INVALID-ORDER-155
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{R_3 + R_L}$$

10.156 INVALID-ORDER-156
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, R_3, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3}{C_L R_3 s + 1}$$

10.157 INVALID-ORDER-157
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_L R_3 R_L s + R_3 + R_L}$$

10.158 INVALID-ORDER-158
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_L R_3 s + C_L R_L s + 1}$$

10.159 INVALID-ORDER-159
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{1}{C_3s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L}{C_3 R_L s + 1}$$

10.160 INVALID-ORDER-160
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{1}{s\left(C_3 + C_L\right)}$$

10.161 INVALID-ORDER-161
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L}{C_3 R_L s + C_L R_L s + 1}$$

10.162 INVALID-ORDER-162
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L R_L s + 1}{s (C_3 C_L R_L s + C_3 + C_L)}$$

10.163 INVALID-ORDER-163
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + 1}{s \left(C_3 C_L L_L s^2 + C_3 + C_L \right)}$$

10.164 INVALID-ORDER-164
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_2 L_L s^2 + C_L L_L s^2 + 1}$$

10.165 INVALID-ORDER-165
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L \right)}$$

10.166 INVALID-ORDER-166
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.167 INVALID-ORDER-167
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L (C_L L_L s^2 + 1)}{C_3 C_L L_L R_L s^3 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.168 INVALID-ORDER-168
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + R_3 + R_L}$$

10.169 INVALID-ORDER-169
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + C_L R_3 s + 1}$$

10.170 INVALID-ORDER-170
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.171 INVALID-ORDER-171
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.172 INVALID-ORDER-172
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.173 INVALID-ORDER-173
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

10.174 INVALID-ORDER-174
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_1 s^2 + C_L R_3 R_L s + R_3 + R_L}$$

10.175 INVALID-ORDER-175
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 R_3 s + C_3 R_L s + 1}$$

10.176 INVALID-ORDER-176
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.177 INVALID-ORDER-177
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L R_L s + 1)}{s (C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.178 INVALID-ORDER-178
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L)}$$

10.179 INVALID-ORDER-179
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s (C_3 R_3 s + 1)}{C_3 C_L L_L R_3 s^3 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.180 INVALID-ORDER-180
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + C_L R_L s + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.181 INVALID-ORDER-181
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 L_L R_L s^2 + C_3 R_3 R_L s + C_L L_L R_L s^2 + L_L s + R_L}$$

10.182 INVALID-ORDER-182
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_{3}R_{3}s+1\right)\left(C_{L}L_{L}R_{L}s^{2}+L_{L}s+R_{L}\right)}{C_{3}C_{L}L_{L}R_{3}s^{3}+C_{3}C_{L}L_{L}R_{L}s^{3}+C_{3}L_{L}s^{2}+C_{3}R_{3}s+C_{3}R_{L}s+C_{L}L_{L}s^{2}+1}$$

10.183 INVALID-ORDER-183
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_3R_3s + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_LR_3s^3 + C_3C_LL_LR_Ls^3 + C_3C_LR_3R_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.184 INVALID-ORDER-184
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(C_3 C_L L_3 s^2 + C_3 + C_L \right)}$$

10.185 INVALID-ORDER-185
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L R_L s + 1}$$

10.186 INVALID-ORDER-186
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.187 INVALID-ORDER-187
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.188 INVALID-ORDER-188
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.189 INVALID-ORDER-189
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.190 INVALID-ORDER-190
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

10.191 INVALID-ORDER-191
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2R_2s+1}, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_LR_Ls^3 + C_3L_3s^2 + C_3L_Ls^2 + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.192 INVALID-ORDER-192
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2R_2s+1}, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_Ls^3 + C_3C_LL_RL_s^3 + C_3L_3s^2 + C_3R_Ls + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.193 INVALID-ORDER-193
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s}{C_2 L_2 s^2 + C_L L_2 s^2 + 1}$$

10.194 INVALID-ORDER-194
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3s\left(C_LR_Ls+1\right)}{C_3C_LL_3R_Ls^3 + C_3L_3s^2 + C_LL_3s^2 + C_LR_Ls + 1}$$

10.195 INVALID-ORDER-195
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L L_L s^2 + 1\right)}{C_2 C_2 L_2 L_2 s^4 + C_2 L_3 s^2 + C_2 L_3 s^2 + C_2 L_3 s^2 + C_4 L_3$$

10.196 INVALID-ORDER-196
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L s}{C_3 L_3 L_L s^2 + C_L L_3 L_L s^2 + L_3 + L_L}$$

10.197 INVALID-ORDER-197
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_L s + 1}$$

10.198 INVALID-ORDER-198
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_L R_L s^2 + L_3 s + L_L s + R_L}$$

10.199 INVALID-ORDER-199
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \frac{R_L\left(L_Ls+\frac{1}{C_Ls}\right)}{L_Ls+R_L+\frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{L_3R_Ls\left(C_LL_Ls^2+1\right)}{C_3C_LL_2L_1R_1s^4+C_3L_3R_1s^2+C_LL_2L_1s^3+C_LL_2R_1s^2+C_LL_1R_1s^2+L_2s+R_1s^2+C_LL_2R_1s^3+C_LL_2R_1s^2$$

10.200 INVALID-ORDER-200
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.201 INVALID-ORDER-201
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

10.202 INVALID-ORDER-202
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L R_L s + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 C_L R_4 s + C_3 + C_L\right)}$$

10.203 INVALID-ORDER-203
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.204 INVALID-ORDER-204
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_2 R_3 s^3 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.205 INVALID-ORDER-205
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.207 INVALID-ORDER-207
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2R_2s+1}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_LR_3s^3 + C_3C_LL_LR_Ls^3 + C_3L_3s^2 + C_3L_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.208 INVALID-ORDER-208
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_L R_2 s^3 + C_3 C_L L_R R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.209 INVALID-ORDER-209
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

10.210 INVALID-ORDER-210
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{1}{C_3s+\frac{1}{R_3}+\frac{1}{L_3s}}, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3R_3s\left(C_LL_Ls^2+1\right)}{C_3C_LL_3L_LR_3s^4 + C_3L_3R_3s^2 + C_LL_3L_Ls^3 + C_LL_3R_3s^2 + C_LL_LR_3s^2 + L_3s + R_3}$$

10.211 INVALID-ORDER-211
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2R_2s+1}, \ \frac{1}{C_3s+\frac{1}{R_3}+\frac{1}{L_3s}}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3R_3s\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3R_3R_Ls^3 + C_3L_3R_3s^2 + C_LL_3L_Ls^3 + C_LL_3R_3s^2 + C_LL_3R_2s^2 + C_LL_3R_3s^2 + C_LL_3R_3$$

10.212 INVALID-ORDER-212
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_3 s^2 + L_3 L_L s^2 + L_3 R_3 s + L_3 R_L s + L_L R_3 s + R_3 R_L s^2 + L_3 R_3 s + L_3 R_4 s^3 + L_3 R_5 s^$$

10.213 INVALID-ORDER-213
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_3 s^3 + C_L L_3 R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L s^2 + C_L L_3 R_3 R_L s$$

10.214 INVALID-ORDER-214
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + 1}$$

10.215 INVALID-ORDER-215
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3 + R_L}$$

10.216 INVALID-ORDER-216
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.217 INVALID-ORDER-217
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_3 s + 1}$$

10.218 INVALID-ORDER-218
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_L R_3 s^2 + L_3 s + L_L s + R_3}$$

10.219 INVALID-ORDER-219
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_2 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.220 INVALID-ORDER-220
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

10.221 INVALID-ORDER-221
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3L_LR_3s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_3s^2 + C_LL_LR_2s^2 + L_Ls + R_3 + R_Ls^2}$$

10.223 INVALID-ORDER-223
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + 1}$$

10.224 INVALID-ORDER-224
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.225 INVALID-ORDER-225
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

10.226 INVALID-ORDER-226
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.227 INVALID-ORDER-227
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

10.228 INVALID-ORDER-228
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{R_3\left(L_3s+\frac{1}{C_3s}\right)}{L_3s+R_3+\frac{1}{C_3s}}, \infty, \infty, \infty, L_Ls+R_L+\frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2+1\right)\left(C_LL_Ls^2+C_LR_Ls+1\right)}{C_3C_LL_3L_Ls^4+C_3C_LL_3R_3s^3+C_3C_LL_3R_Ls^3+C_3C_LL_Rs^3+C_2C_LL_Rs^2+C_2C_LL_Rs^2+$$

10.229 INVALID-ORDER-229
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 R_3 R_L s^2 + C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L s^2}$$

$$\textbf{10.231} \quad \textbf{INVALID-ORDER-231} \ \ Z(s) = \left(\infty, \ \ \frac{R_2}{C_2 R_2 s + 1}, \ \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s} \right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \ \infty, \ \ \infty, \ \ \frac{R_L \left(L_L s + \frac{1}{C_L s} \right)}{L_L s + R_L + \frac{1}{C_L s}} \right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_L L_L R_3 s^2 + C_$$

10.232 INVALID-ORDER-232
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{R_3 + R_L}$$

10.233 INVALID-ORDER-233
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ R_3, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_L R_3 s + 1}$$

10.234 INVALID-ORDER-234
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ R_3, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_L R_3 R_L s + R_3 + R_L}$$

10.235 INVALID-ORDER-235
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L R_L s + 1\right)}{C_L R_3 s + C_L R_L s + 1}$$

10.236 INVALID-ORDER-236
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_L}{C_2 R_L s + 1}$$

10.237 INVALID-ORDER-237
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{1}{s(C_3 + C_L)}$$

10.238 INVALID-ORDER-238
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L}{C_2 R_L s + C_L R_L s + 1}$$

10.239 INVALID-ORDER-239
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L R_L s + 1}{s \left(C_3 C_L R_L s + C_3 + C_L\right)}$$

10.240 INVALID-ORDER-240
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + 1}{s \left(C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.241 INVALID-ORDER-241
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.242 INVALID-ORDER-242
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.243 INVALID-ORDER-243
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.244 INVALID-ORDER-244
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_L s^3 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.245 INVALID-ORDER-245
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{C_2 R_2 R_L s + R_2 + R_L}$$

10.246 INVALID-ORDER-246
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + C_L R_3 s + 1}$$

10.247 INVALID-ORDER-247
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.248 INVALID-ORDER-248
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.249 INVALID-ORDER-249
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.250 INVALID-ORDER-250
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_1 s^2 + L_L s + R_3 + R_L}$$

10.251 INVALID-ORDER-251
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

10.252 INVALID-ORDER-252
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 R_3 s + 1\right)}{C_2 R_2 s + C_2 R_4 s + 1}$$

10.253 INVALID-ORDER-253
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.254 INVALID-ORDER-254
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L R_L s + 1)}{s (C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.255 INVALID-ORDER-255
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) \left(C_L L_L s^2 + 1\right)}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.256 INVALID-ORDER-256
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.257 INVALID-ORDER-257
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.258 INVALID-ORDER-258
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 L_L R_L s^2 + C_3 R_3 R_L s + C_L L_L R_L s^2 + L_L s + R_L}$$

10.259 INVALID-ORDER-259
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + 1}$$

10.260 INVALID-ORDER-260
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_3 R_3 s + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_1 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.261 INVALID-ORDER-261
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(C_3 C_L L_3 s^2 + C_3 + C_L\right)}$$

10.262 INVALID-ORDER-262
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L R_L s + 1}$$

10.263 INVALID-ORDER-263
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L R_L s + 1\right)}{s \left(C_2 C_L L_2 s^2 + C_2 C_L R_L s + C_2 + C_L\right)}$$

10.264 INVALID-ORDER-264
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.265 INVALID-ORDER-265
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.266 INVALID-ORDER-266
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.267 INVALID-ORDER-267
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

10.268 INVALID-ORDER-268
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.269 INVALID-ORDER-269
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.270 INVALID-ORDER-270
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + C_L L_3 s^2 + 1}$$

10.271 INVALID-ORDER-271
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_L s + 1}$$

10.272 INVALID-ORDER-272
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + 1}$$

10.273 INVALID-ORDER-273
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L s}{C_3 L_3 L_L s^2 + C_L L_3 L_L s^2 + L_3 + L_L}$$

10.274 INVALID-ORDER-274
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_L s + 1}$$

10.275 INVALID-ORDER-275
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3s\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_Ls^4 + C_3L_3L_Ls^3 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_Ls^2 + L_3s + L_Ls + R_L}$$

10.276 INVALID-ORDER-276
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_L s^2 + L_3 s + R_L}$$

10.277 INVALID-ORDER-277
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.278 INVALID-ORDER-278
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

10.279 INVALID-ORDER-279
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_L R_L s + 1) (C_3 L_3 s^2 + C_3 R_3 s + 1)}{s (C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.280 INVALID-ORDER-280
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.281 INVALID-ORDER-281
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.282 INVALID-ORDER-282
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.283 INVALID-ORDER-283
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_3 s^2 + C_3 L_L R_3 s^2 + C_3 R_3 R_L s + C_L L_L R_L s^2 + L_L s + R_L R_2 r^2 + C_3 R_3 R_L s + C_L R_2 r^2 + C_3 R_3 R_L s + C_L R_2 r^2 + C_3 R_3 R_L s + C_L R_2 r^2 + C_3 R_3 R_L s + C_L R_2 r^2 + C_3 R_3 R_L s + C_L R_2 r^2 + C_3 R_3 R_L s + C_L R_2 r^2 + C_3 R_3 R_L s + C_L R_2 r^2 + C_2 R_3 R_2 r^2 + C_3 R_3 R_3 r$$

10.284 INVALID-ORDER-284
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_2 C_L L_3 L_4 s^4 + C_3 C_L L_4 R_3 s^3 + C_3 C_L L_4 R_4 s^3 + C_3 L_4 s^2 + C_3 L_4 s^2 + C_3 R_3 s + C_3 R_4 s + C_4 L_4 s^2 + 1}$$

10.285 INVALID-ORDER-285
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_3 s^3 + C_3 C_L L_R R_3 R_L s^2 + C_3 R_3 s + C_3 R_4 s + C_L L_L s^2 + C_L R_L s + 1}$$

10.286 INVALID-ORDER-286
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

10.287 INVALID-ORDER-287
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_L R_3 s^2 + L_3 s + R_3}$$

10.288 INVALID-ORDER-288
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L L_4 R_3 s^2 + C_L L_4 R_3 s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

10.289 INVALID-ORDER-289
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

10.290 INVALID-ORDER-290
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_3 s^3 + C_L L_3 R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L s^3 + C_L L_3 R_3 R_L s^3 + C_L R_3 R$$

10.291 INVALID-ORDER-291
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_3 C_L L_3 R_3 s^3 + C_2 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + 1}$$

10.292 INVALID-ORDER-292
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_2 R_3 s^2 + C_2 L_3 R_L s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3 + R_L}$$

10.293 INVALID-ORDER-293
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.294 INVALID-ORDER-294
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_3 s + 1}$$

10.295 INVALID-ORDER-295
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_L R_3 s^2 + L_3 s + L_L s + R_3}$$

10.296 INVALID-ORDER-296
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_2 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.297 INVALID-ORDER-297
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_2 s^3 + C_4 L_3 L_L R_2 s^3 + C_L L_L R_3 R_L s^2 + L_3 L_L s^2 + L_3 R_L s + L_L R_3 s + L_L R_4 s + R_3 R_L s^2 + L_4 R_4 s^3 + L_4 R_$$

10.298 INVALID-ORDER-298
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_3 s + L_L s + R_3 + R_L}$$

$$\textbf{10.299 INVALID-ORDER-299} \ Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s} \right)}{L_L s + R_L + \frac{1}{C_L s}} \right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_L s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_3 s^2 + C_L L_L R_2 s^2 + C_L L_L R_3 s^2 + C_L L_L R_2 s^2 + C_L L_L R_3 s^2 + C_L L_L R$$

10.300 INVALID-ORDER-300
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + 1}$$

10.301 INVALID-ORDER-301
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.302 INVALID-ORDER-302
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

10.303 INVALID-ORDER-303
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.304 INVALID-ORDER-304
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

10.305 INVALID-ORDER-305
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_1 R_3 s^3 + C_3 C_L L_1 R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.306 INVALID-ORDER-306
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 R_3 R_L s^2 + C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_4 s + R_3 R_L s^2}$$

$$\textbf{10.307} \quad \textbf{INVALID-ORDER-307} \ Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s} \right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L \right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_2 s^2 + L_L s + R_3 + R_L }$$

10.308 INVALID-ORDER-308
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$R_3R_L\left(C_3L_3s^2+1\right)\left(C_LL_Ls^2+1\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_4 R_L s^3 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 R_L s^2 + C_3 L_3 R_L s^2 + C_L L_L R_3 s^2 + C_L R_3 R_L s + R_3 + R_L R_2 r^2 + C_L R_3 R_L s + C_$$

10.309 INVALID-ORDER-309
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{R_3 + R_L}$$

10.310 INVALID-ORDER-310
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_L R_3 s + 1}$$

10.311 INVALID-ORDER-311
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_L R_3 R_L s + R_3 + R_L}$$

10.312 INVALID-ORDER-312
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_L R_3 s + C_L R_L s + 1}$$

10.313 INVALID-ORDER-313
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L}{C_3 R_L s + 1}$$

10.314 INVALID-ORDER-314
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{1}{s(C_3 + C_L)}$$

10.315 INVALID-ORDER-315
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L}{C_3 R_L s + C_L R_L s + 1}$$

10.316 INVALID-ORDER-316
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L R_L s + 1}{s \left(C_3 C_L R_L s + C_3 + C_L\right)}$$

10.317 INVALID-ORDER-317
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + 1}{s \left(C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.318 INVALID-ORDER-318
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.319 INVALID-ORDER-319
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.320 INVALID-ORDER-320
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.321 INVALID-ORDER-321
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_L s^3 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.322 INVALID-ORDER-322
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + R_3 + R_L}$$

10.323 INVALID-ORDER-323
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + C_L R_3 s + 1}$$

10.324 INVALID-ORDER-324
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.325 INVALID-ORDER-325
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.326 INVALID-ORDER-326
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.327 INVALID-ORDER-327
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

10.328 INVALID-ORDER-328
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

10.329 INVALID-ORDER-329
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 R_3 s + C_3 R_L s + 1}$$

10.330 INVALID-ORDER-330
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.331 INVALID-ORDER-331
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L R_L s + 1)}{s (C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.332 INVALID-ORDER-332
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) \left(C_L L_L s^2 + 1\right)}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.333 INVALID-ORDER-333
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.334 INVALID-ORDER-334
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 R_3 s + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.335 INVALID-ORDER-335
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 L_L R_L s^2 + C_3 R_3 R_L s + C_L L_L R_L s^2 + L_L s + R_L}$$

10.336 INVALID-ORDER-336
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + 1}$$

10.337 INVALID-ORDER-337
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_3 R_3 s + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.338 INVALID-ORDER-338
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(C_2 C_L L_2 s^2 + C_2 + C_L\right)}$$

10.339 INVALID-ORDER-339
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L R_L s + 1}$$

10.340 INVALID-ORDER-340
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.341 INVALID-ORDER-341
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.342 INVALID-ORDER-342
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.343 INVALID-ORDER-343
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.344 INVALID-ORDER-344
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_L s^2 + L_L s + R_L}$$

10.345 INVALID-ORDER-345
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.346 INVALID-ORDER-346
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.347 INVALID-ORDER-347
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + C_L L_3 s^2 + 1}$$

10.348 INVALID-ORDER-348
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L R_L s + 1\right)}{C_2 C_L L_2 R_L s^3 + C_2 L_2 s^2 + C_L L_2 s^2 + C_L R_L s + 1}$$

10.349 INVALID-ORDER-349
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L L_L s^2 + 1\right)}{C_2 C_L L_2 L_2 s^4 + C_2 L_2 s^2 + C_L L_2 s^2 + C_L L_2 s^2 + 1}$$

10.350 INVALID-ORDER-350
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L s}{C_3 L_3 L_L s^2 + C_L L_3 L_L s^2 + L_3 + L_L}$$

10.351 INVALID-ORDER-351
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_L s + 1}$$

10.352 INVALID-ORDER-352
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3 s \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_L R_L s^2 + L_3 s + L_L s + R_L}$$

10.353 INVALID-ORDER-353
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_L s^2 + L_3 s + R_L}$$

10.354 INVALID-ORDER-354
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.355 INVALID-ORDER-355
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

10.356 INVALID-ORDER-356
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_L R_L s + 1) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.357 INVALID-ORDER-357
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.358 INVALID-ORDER-358
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.359 INVALID-ORDER-359
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_2 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_1 s + C_3 + C_L\right)}$$

10.360 INVALID-ORDER-360
$$Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_Ls\left(C_3L_3s^2 + C_3R_3s + 1\right)}{C_3C_LL_3L_LR_2s^4 + C_3C_LL_LR_3R_Ls^3 + C_3L_3L_Ls^3 + C_3L_3R_Ls^2 + C_3L_LR_3s^2 + C_3R_3R_Ls + C_LL_LR_Ls^2 + L_Ls + R_Ls^2}$$

10.361 INVALID-ORDER-361
$$Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_LR_3s^3 + C_3C_LL_LR_Ls^3 + C_3L_3s^2 + C_3L_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.362 INVALID-ORDER-362
$$Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_LL_Ls^2 + 1\right)\left(C_3L_3s^2 + C_3R_3s + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_Ls^3 + C_3C_LL_LR_3s^3 + C_3C_LL_LR_1s^3 + C_3C_LR_3R_Ls^2 + C_3R_3s + C_3R_4s + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.363 INVALID-ORDER-363
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

10.364 INVALID-ORDER-364
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_L R_3 s^2 + L_3 s + R_3}$$

10.365 INVALID-ORDER-365
$$Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3R_3s\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3R_3R_Ls^3 + C_3L_3R_3s^2 + C_LL_3L_Ls^3 + C_LL_3R_3s^2 + C_LL_3R_Ls^2 + C_LL_3R_3s^2 + C_LL_$$

$$\textbf{10.366} \quad \textbf{INVALID-ORDER-366} \ \ Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L \right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_3 s^3 + C_L L_3 R_L s^3 + C_L L_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + L_L R_3 s + R_3 R_L s^2 + L_3 R_3 s + L_3 R_2 s + L_3 R_3 s$$

10.367 INVALID-ORDER-367
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s} \right)}{L_L s + R_L + \frac{1}{C_L s}} \right)$$

$$H(s) = \frac{L_3 R_3 R_L s \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_3 s^3 + C_L L_3 R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L s^2 + C_L L_3 R_3 R$$

10.368 INVALID-ORDER-368
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_2 C_4 L_2 R_2 s^3 + C_2 L_2 s^2 + C_4 L_3 s^2 + C_4 L_3$$

10.369 INVALID-ORDER-369
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3 + R_L}$$

10.370 INVALID-ORDER-370
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_L R_L s + 1) (C_3 L_3 R_3 s^2 + L_3 s + R_3)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.371 INVALID-ORDER-371
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_3 s + 1}$$

10.372 INVALID-ORDER-372
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_L R_3 s^2 + L_3 s + L_L s + R_3}$$

10.373 INVALID-ORDER-373
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_1 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.374 INVALID-ORDER-374
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L R_3 s^2 + L_3 L_L s^2 + L_3 L_L s^2 + L_3 R_L s + L_L R_3 s + L_L R_L s + R_3 R_L s^2 + L_3 R_L s^3 + C_4 L_1 R_2 s^3 + C_$$

10.375 INVALID-ORDER-375
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3L_LR_4s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_3s^2 + C_LL_LR_Ls^2 + L_3s + L_Ls + R_3 + R_Ls^2}$$

10.376 INVALID-ORDER-376
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_3 s^2 + C_L$$

10.377 INVALID-ORDER-377
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_2 C_L L_2 R_2 s^3 + C_2 L_2 s^2 + C_2 R_2 s + C_L R_2 s + 1}$$

10.378 INVALID-ORDER-378
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.379 INVALID-ORDER-379
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

10.380 INVALID-ORDER-380
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.381 INVALID-ORDER-381
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_L R_3 s^2 + L_L s + R_3}$$

10.382 INVALID-ORDER-382
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_1 s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_1 R_3 s^3 + C_3 C_L L_1 R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_4 s + 1}$$

10.384 INVALID-ORDER-384
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

10.385 INVALID-ORDER-385
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_1 R_L s^3 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 R_L s^2 + C_3 L_3 R_L s^2 + C_L L_L R_3 s^2 +$$

10.386 INVALID-ORDER-386
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{R_3 + R_L}$$

10.387 INVALID-ORDER-387
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_L R_3 s + 1}$$

10.388 INVALID-ORDER-388
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_L R_3 R_L s + R_3 + R_L}$$

10.389 INVALID-ORDER-389
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L R_L s + 1\right)}{C_L R_3 s + C_L R_L s + 1}$$

10.390 INVALID-ORDER-390
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_L}{C_3 R_L s + 1}$$

10.391 INVALID-ORDER-391
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{1}{s \left(C_3 + C_L\right)}$$

10.392 INVALID-ORDER-392
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L}{C_3 R_L s + C_L R_L s + 1}$$

10.393 INVALID-ORDER-393
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L R_L s + 1}{s \left(C_3 C_L R_L s + C_3 + C_L\right)}$$

10.394 INVALID-ORDER-394
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + 1}{s \left(C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.395 INVALID-ORDER-395
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.396 INVALID-ORDER-396
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.397 INVALID-ORDER-397
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.398 INVALID-ORDER-398
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_L s^3 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.399 INVALID-ORDER-399
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + R_3 + R_L}$$

10.400 INVALID-ORDER-400
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + C_L R_3 s + 1}$$

10.401 INVALID-ORDER-401
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.402 INVALID-ORDER-402
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.403 INVALID-ORDER-403
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.404 INVALID-ORDER-404
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

10.405 INVALID-ORDER-405
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{R_3}{C_3R_3s + 1}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_3R_L\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_LR_3R_Ls^3 + C_3R_3R_Ls + C_LL_LR_3s^2 + C_LL_LR_Ls^2 + C_LR_3R_Ls + R_3 + R_L}$$

10.406 INVALID-ORDER-406
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 R_3 s + 1\right)}{C_3 R_3 s + C_3 R_L s + 1}$$

10.407 INVALID-ORDER-407
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(C_3 C_L R_2 s + C_2 + C_L\right)}$$

10.408 INVALID-ORDER-408
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L R_L s + 1)}{s (C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.409 INVALID-ORDER-409
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{(C_3R_3s + 1)\left(C_LL_Ls^2 + 1\right)}{s\left(C_3C_LL_Ls^2 + C_3C_LR_3s + C_3 + C_L\right)}$$

10.410 INVALID-ORDER-410
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.411 INVALID-ORDER-411
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{(C_3R_3s + 1)\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{s\left(C_3C_LL_Ls^2 + C_3C_LR_3s + C_3C_LR_Ls + C_3 + C_L\right)}$$

10.412 INVALID-ORDER-412
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_Ls\left(C_3R_3s + 1\right)}{C_3C_LL_LR_3R_Ls^3 + C_3L_LR_3s^2 + C_3L_LR_Ls^2 + C_3R_3R_Ls + C_LL_LR_Ls^2 + L_Ls + R_Ls^2}$$

10.413 INVALID-ORDER-413
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

$$H(s) = \frac{(C_3R_3s + 1)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_2C_LL_LR_2s^3 + C_2C_LL_LR_Ls^3 + C_2L_Ls^2 + C_2R_2s + C_2R_Ls + C_LL_Ls^2 + 1}$$

10.414 INVALID-ORDER-414
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_3R_3s + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_LR_3s^3 + C_3C_LL_LR_Ls^3 + C_3C_LR_3R_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.415 INVALID-ORDER-415
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(C_3 C_L L_3 s^2 + C_3 + C_L\right)}$$

10.416 INVALID-ORDER-416
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L\left(C_3L_3s^2 + 1\right)}{C_3C_LL_3R_Ls^3 + C_3L_3s^2 + C_3R_Ls + C_LR_Ls + 1}$$

10.417 INVALID-ORDER-417
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.418 INVALID-ORDER-418
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.419 INVALID-ORDER-419
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.420 INVALID-ORDER-420
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.421 INVALID-ORDER-421
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_Ls\left(C_3L_3s^2 + 1\right)}{C_3C_LL_3L_LR_Ls^4 + C_3L_3L_Ls^3 + C_3L_3R_Ls^2 + C_3L_LR_Ls^2 + C_LL_LR_Ls^2 + L_Ls + R_Ls^2}$$

10.422 INVALID-ORDER-422
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.423 INVALID-ORDER-423
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_Ls^3 + C_3C_LL_RL_s^3 + C_3L_3s^2 + C_3R_Ls + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.424 INVALID-ORDER-424
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + C_L L_3 s^2 + 1}$$

10.425 INVALID-ORDER-425
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_L s + 1}$$

10.426 INVALID-ORDER-426
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + 1}$$

10.427 INVALID-ORDER-427
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L s}{C_3 L_3 L_L s^2 + C_L L_3 L_L s^2 + L_3 + L_L}$$

10.428 INVALID-ORDER-428
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_L s + 1}$$

10.429 INVALID-ORDER-429
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3 s \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_L R_L s^2 + L_3 s + L_L s + R_L}$$

10.430 INVALID-ORDER-430
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{L_3s}{C_3L_3s^2 + 1}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{L_3R_Ls\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_LR_Ls^4 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_3R_Ls^2 + C_LL_LR_Ls^2 + L_3s + R_L}$$

10.431 INVALID-ORDER-431
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.432 INVALID-ORDER-432
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

10.433 INVALID-ORDER-433
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L R_L s + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.434 INVALID-ORDER-434
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.435 INVALID-ORDER-435
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.436 INVALID-ORDER-436
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{s\left(C_3C_LL_3s^2 + C_3C_LL_Ls^2 + C_3C_LR_3s + C_3C_LR_Ls + C_3 + C_L\right)}$$

10.437 INVALID-ORDER-437
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_Ls\left(C_3L_3s^2 + C_3R_3s + 1\right)}{C_3C_LL_3L_LR_2s^4 + C_3C_LL_LR_3R_Ls^3 + C_3L_3L_Ls^3 + C_3L_3R_Ls^2 + C_3L_LR_3s^2 + C_3L_LR_2s^2 + C_3R_3R_Ls + C_LL_LR_Ls^2 + L_Ls + R_Ls^2}$$

10.438 INVALID-ORDER-438
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_LR_3s^3 + C_3C_LL_LR_Ls^3 + C_3L_3s^2 + C_3L_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.439 INVALID-ORDER-439
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_LL_Ls^2 + 1\right)\left(C_3L_3s^2 + C_3R_3s + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_Ls^3 + C_3C_LL_LR_2s^3 + C_3C_LL_RL_s^3 + C_3C_LR_3R_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.440 INVALID-ORDER-440
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

10.441 INVALID-ORDER-441
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_L R_3 s^2 + L_3 s + R_3}$$

10.442 INVALID-ORDER-442
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3R_3s\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3R_3R_Ls^3 + C_3L_3R_3s^2 + C_LL_3R_2s^2 + C_LL_3R_2s^2 + C_LL_3R_3s^2 +$$

$$\textbf{10.443} \quad \textbf{INVALID-ORDER-443} \ Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L \right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_3 s^3 + C_L L_L R_3 R_L s^2 + L_3 L_L s^2 + L_3 R_3 s + L_3 R_L s + L_L R_3 s + R_3 R_L s^2 + L_3 L_L R_3 s^3 + C_L L_3 L_L$$

10.444 INVALID-ORDER-444
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{L_3R_3R_Ls\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_LR_3R_Ls^4 + C_3L_3R_3R_Ls^2 + C_LL_3L_LR_3s^3 + C_LL_3L_LR_3s^3 + C_LL_3R_3R_Ls^2 + C_LL_LR_3R_Ls^2 + L_3R_3s + L_3R_Ls + R_3R_Ls^2}$$

10.445 INVALID-ORDER-445
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_3L_3R_3s^2 + L_3s + R_3}{C_3C_LL_3R_3s^3 + C_3L_3s^2 + C_LL_3s^2 + C_LR_3s + 1}$$

10.446 INVALID-ORDER-446
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3R_3R_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3R_Ls^2 + C_LR_3R_Ls + L_3s + R_3 + R_L}$$

10.447 INVALID-ORDER-447
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{(C_LR_Ls + 1)\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3R_3s^3 + C_3C_LL_3R_Ls^3 + C_3L_3s^2 + C_LL_3s^2 + C_LR_3s + C_LR_Ls + 1}$$

10.448 INVALID-ORDER-448
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_3 s + 1}$$

10.449 INVALID-ORDER-449
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_Ls\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3L_LR_3s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_LL_3L_Ls^3 + C_LL_LR_3s^2 + L_3s + L_Ls + R_3}$$

10.450 INVALID-ORDER-450
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_LL_Ls^2 + C_LR_Ls + 1\right)\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_3s^3 + C_3C_LL_3R_Ls^3 + C_3L_3s^2 + C_LL_3s^2 + C_LL_3s^2 + C_LR_3s + C_LR_Ls + 1}$$

$$\textbf{10.451} \quad \textbf{INVALID-ORDER-451} \ Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}} \right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_L R_3 R_L s^2 + L_3 L_L s^2 + L_3 R_L s + L_L R_3 s + L_L R_4 s + R_3 R_L s^2 + L_4 R_4 s^2 + L_4 R_4$$

10.452 INVALID-ORDER-452
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3L_LR_3s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_3s^2 + C_LL_LR_Ls^2 + L_3s + L_Ls + R_3 + R_Ls^2}$$

10.453 INVALID-ORDER-453
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_LL_Ls^2 + 1\right)\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3R_Ls^4 + C_3C_LL_3R_3R_Ls^3 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_3R_Ls^2 + C_LL_LR_3s^2 + C_LL_LR_2s^2 + C_LR_3R_Ls + L_3s + R_3 + R_Ls^2}$$

10.454 INVALID-ORDER-454
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)}{C_3C_LL_3R_3s^3 + C_3L_3s^2 + C_3R_3s + C_LR_3s + 1}$$

10.455 INVALID-ORDER-455
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ \frac{R_L}{C_LR_Ls + 1}\right)$$

$$H(s) = \frac{R_3R_L\left(C_3L_3s^2 + 1\right)}{C_3C_LL_3R_3R_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_3R_3R_Ls + C_LR_3R_Ls + R_3 + R_L}$$

10.456 INVALID-ORDER-456
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)\left(C_LR_Ls + 1\right)}{C_3C_LL_3R_3s^3 + C_3C_LL_3R_Ls^3 + C_3C_LR_3R_Ls^2 + C_3L_3s^2 + C_3R_3s + C_LR_3s + C_LR_Ls + 1}$$

10.457 INVALID-ORDER-457
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.458 INVALID-ORDER-458
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_LR_3s\left(C_3L_3s^2 + 1\right)}{C_3C_LL_3L_LR_3s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_3L_LR_3s^2 + C_LL_LR_3s^2 + L_Ls + R_3}$$

10.459 INVALID-ORDER-459
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_3s^3 + C_3C_LL_3R_Ls^3 + C_3C_LL_3R_3s^3 + C_3C_LL_$$

10.460 INVALID-ORDER-460
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_2 s^3 + C_3 L_3 R_3 R_L s^2 + C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_4 s + R_3 R_L s^2}$$

$$\begin{aligned} \textbf{10.462} \quad \textbf{INVALID-ORDER-462} \ \ Z(s) &= \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}} \right) \\ H(s) &= \frac{R_3R_L\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3R_3R_Ls^3 + C_3C_LL_R_3R_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls + C_LL_R_3s^2 + C_LL_LR_3s^2 + C$$

10.463 INVALID-ORDER-463
$$Z(s) = \left(\infty, \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ R_3, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_3 R_L}{R_2 + R_L}$$

10.464 INVALID-ORDER-464
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3}{C_LR_2s+1}$$

10.465 INVALID-ORDER-465
$$Z(s) = \left(\infty, \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ R_3, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_L R_3 R_L s + R_3 + R_L}$$

10.466 INVALID-ORDER-466
$$Z(s) = \left(\infty, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L R_L s + 1\right)}{C_L R_2 s + C_L R_L s + 1}$$

10.467 INVALID-ORDER-467
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_L}{C_3R_Ls+1}$$

10.468 INVALID-ORDER-468
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{1}{s\left(C_3 + C_L\right)}$$

10.469 INVALID-ORDER-469
$$Z(s) = \left(\infty, \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L}{C_3 R_L s + C_L R_L s + 1}$$

10.470 INVALID-ORDER-470
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_LR_Ls + 1}{s\left(C_3C_LR_Ls + C_3 + C_L\right)}$$

10.471 INVALID-ORDER-471
$$Z(s) = \left(\infty, \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + 1}{s \left(C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.472 INVALID-ORDER-472
$$Z(s) = \left(\infty, \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.473 INVALID-ORDER-473
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_LL_Ls^2 + C_LR_Ls + 1}{s\left(C_3C_LL_Ls^2 + C_3C_LR_Ls + C_3 + C_L\right)}$$

10.474 INVALID-ORDER-474
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{C_LL_LR_Ls^2 + L_Ls + R_L}{C_3C_LL_LR_Ls^3 + C_3L_Ls^2 + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.475 INVALID-ORDER-475
$$Z(s) = \left(\infty, \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_L s^3 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.476 INVALID-ORDER-476
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3}{C_3R_3s+1}, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_3R_L}{C_3R_3R_Ls + R_3 + R_L}$$

10.477 INVALID-ORDER-477
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3}{C_3R_3s+1}, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3}{C_3R_3s + C_LR_3s + 1}$$

10.478 INVALID-ORDER-478
$$Z(s) = \left(\infty, \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.479 INVALID-ORDER-479
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3}{C_3R_3s+1}, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_LL_Ls^2+1\right)}{C_3C_LL_LR_3s^3 + C_3R_3s + C_LL_Ls^2 + C_LR_3s + 1}$$

10.480 INVALID-ORDER-480
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3}{C_3R_3s+1}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{C_3C_LL_LR_3s^3 + C_3C_LR_3R_Ls^2 + C_3R_3s + C_LL_Ls^2 + C_LR_3s + C_LR_Ls + 1}$$

10.481 INVALID-ORDER-481
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3}{C_3R_3s+1}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{R_3\left(C_LL_LR_2s^2 + L_Ls + R_L\right)}{C_3C_LL_LR_3R_Ls^3 + C_3L_LR_3s^2 + C_3R_3R_Ls + C_LL_LR_3s^2 + C_LL_LR_1s^2 + L_Ls + R_3 + R_L}$$

10.482 INVALID-ORDER-482
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3}{C_3R_3s+1}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_3R_L\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_LR_3R_Ls^3 + C_3R_3R_Ls + C_LL_LR_3s^2 + C_LL_LR_Ls^2 + C_LR_3R_Ls + R_3 + R_L}$$

10.483 INVALID-ORDER-483
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_L\left(C_3R_3s + 1\right)}{C_2R_2s + C_2R_Ls + 1}$$

10.484 INVALID-ORDER-484
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_3R_3s + 1}{s\left(C_3C_LR_3s + C_3 + C_L\right)}$$

10.485 INVALID-ORDER-485
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{(C_3R_3s+1)(C_LR_Ls+1)}{s(C_3C_LR_3s+C_3C_LR_Ls+C_3+C_L)}$$

10.486 INVALID-ORDER-486
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_3R_3s + 1\right)\left(C_LL_Ls^2 + 1\right)}{s\left(C_3C_LL_Ls^2 + C_3C_LR_3s + C_3 + C_L\right)}$$

10.487 INVALID-ORDER-487
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_Ls\left(C_3R_3s+1\right)}{C_3C_LL_LR_3s^3 + C_3L_Ls^2 + C_3R_3s + C_LL_Ls^2 + 1}$$

10.488 INVALID-ORDER-488
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{(C_3R_3s+1)\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{s\left(C_3C_LL_Ls^2 + C_3C_LR_3s + C_3C_LR_Ls + C_3 + C_L\right)}$$

10.489 INVALID-ORDER-489
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_Ls\left(C_3R_3s + 1\right)}{C_3C_LL_LR_3R_Ls^3 + C_3L_LR_3s^2 + C_3L_LR_Ls^2 + C_3R_3R_Ls + C_LL_LR_Ls^2 + L_Ls + R_Ls^2}$$

10.490 INVALID-ORDER-490
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{(C_3R_3s+1)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_LR_3s^3 + C_3C_LL_LR_Ls^3 + C_3L_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.491 INVALID-ORDER-491
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_3R_3s + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_LR_3s^3 + C_3C_LL_LR_Ls^3 + C_3C_LR_3R_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.492 INVALID-ORDER-492
$$Z(s) = \left(\infty, \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(C_3 C_L L_3 s^2 + C_3 + C_L\right)}$$

10.493 INVALID-ORDER-493
$$Z(s) = \left(\infty, \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L R_L s + 1}$$

10.494 INVALID-ORDER-494
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + 1\right)\left(C_LR_Ls + 1\right)}{s\left(C_3C_LL_3s^2 + C_3C_LR_Ls + C_3 + C_L\right)}$$

10.495 INVALID-ORDER-495
$$Z(s) = \left(\infty, \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.496 INVALID-ORDER-496
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_Ls\left(C_3L_3s^2 + 1\right)}{C_2C_LL_2L_2s^4 + C_2L_2s^2 + C_2L_2s^2$$

10.497 INVALID-ORDER-497
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{s\left(C_3C_LL_3s^2 + C_3C_LL_Ls^2 + C_3C_LR_Ls + C_3 + C_L\right)}$$

10.498 INVALID-ORDER-498
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_Ls\left(C_3L_3s^2 + 1\right)}{C_3C_LL_3L_LR_Ls^4 + C_3L_3L_Ls^3 + C_3L_3R_Ls^2 + C_3L_LR_Ls^2 + C_LL_LR_Ls^2 + L_Ls + R_Ls^2}$$

10.499 INVALID-ORDER-499
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_LR_Ls^3 + C_3L_3s^2 + C_3L_Ls^2 + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.500 INVALID-ORDER-500
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_Ls^3 + C_3C_LL_LR_Ls^3 + C_3L_3s^2 + C_3R_Ls + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.501 INVALID-ORDER-501
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3s}{C_2L_2s^2 + C_LL_2s^2 + 1}$$

10.502 INVALID-ORDER-502
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_L s + 1}$$

10.503 INVALID-ORDER-503
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3s\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_Ls^4 + C_3L_3s^2 + C_LL_3s^2 + C_LL_Ls^2 + 1}$$

10.504 INVALID-ORDER-504
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_3L_Ls}{C_3L_3L_Ls^2 + C_LL_3L_Ls^2 + L_3 + L_L}$$

10.505 INVALID-ORDER-505
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3s\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_Ls^3 + C_3L_3s^2 + C_LL_3s^2 + C_LL_4s^2 + C_LR_Ls + 1}$$

10.506 INVALID-ORDER-506
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{L_3s\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_Ls^4 + C_3L_3L_Ls^3 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_Ls^2 + L_3s + L_Ls + R_L}$$

10.507 INVALID-ORDER-507
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{L_3R_Ls\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_LR_Ls^4 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_3R_Ls^2 + C_LL_LR_Ls^2 + L_3s + R_L}$$

10.508 INVALID-ORDER-508
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_3L_3s^2 + C_3R_3s + 1}{s\left(C_3C_LL_3s^2 + C_3C_LR_3s + C_3 + C_L\right)}$$

10.509 INVALID-ORDER-509
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

10.510 INVALID-ORDER-510
$$Z(s) = \left(\infty, \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_L R_L s + 1) (C_3 L_3 s^2 + C_3 R_3 s + 1)}{s (C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.511 INVALID-ORDER-511
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.512 INVALID-ORDER-512
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.513 INVALID-ORDER-513
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.514 INVALID-ORDER-514
$$Z(s) = \left(\infty, \ \frac{L_{2}s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_Ls\left(C_3L_3s^2 + C_3R_3s + 1\right)}{C_3C_LL_3L_LR_Ls^4 + C_3C_LL_LR_3R_Ls^3 + C_3L_3L_Ls^3 + C_3L_3R_Ls^2 + C_3L_LR_3s^2 + C_3L_LR_2s^2 + C_3R_3R_Ls + C_LL_LR_Ls^2 + L_Ls + R_Ls^2}$$

10.515 INVALID-ORDER-515
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_2C_LL_3L_Ls^4 + C_3C_LL_LR_3s^3 + C_3C_LL_LR_3s^3 + C_3L_2s^2 + C_3L_2s^2 + C_3R_3s + C_3R_4s + C_4L_Ls^2 + 1}$$

$$\textbf{10.516} \quad \textbf{INVALID-ORDER-516} \ Z(s) = \left(\infty, \ \frac{L_{2s}}{C_2 L_2 s^2 + 1} + R_2, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s} \right)}{L_L s + R_L + \frac{1}{C_L s}} \right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_2 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.517 INVALID-ORDER-517
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3R_3s\left(C_LR_Ls + 1\right)}{C_3C_LL_3R_3R_Ls^3 + C_3L_3R_3s^2 + C_LL_3R_3s^2 + C_LL_3R_Ls^2 + C_LR_3R_Ls + L_3s + R_3}$$

10.518 INVALID-ORDER-518
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3R_3s\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_LR_3s^4 + C_3L_3R_3s^2 + C_LL_3L_Ls^3 + C_LL_3R_3s^2 + C_LL_LR_3s^2 + L_3s + R_3}$$

10.519 INVALID-ORDER-519
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3R_3s\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3R_3R_Ls^3 + C_3L_3R_3s^2 + C_LL_3L_Ls^3 + C_LL_3R_3s^2 + C_LL_3R_2s^2 + C_LL_3R_3s^2 + C_LL_3R_2s^2 + C_LL_3R_3s^2 + C_LL_3R_3s^$$

10.520 INVALID-ORDER-520
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_2 R_3 s^3 + C_L L_3 L_2 R_3 s^3 + C_L L_3 L_3 R_3 R_3 r_4 s^3 + C_L L_3 L_3 R_3 r_4 s^3 + C_L L_3 L_3 R_3 r_4 s^3 + C_L L_3 L_3 R_3 r_4 r_4 r_5 r_5 + C_L L_3 L_3 R_3 r_5 r_5 + C_L L_3 L_3 r_5 r_5 + C_L L_3 L_3 r_5 r_5 + C_L L_3 L_3 r_5 r_5 + C_L L_3 r_5 r_5$$

10.521 INVALID-ORDER-521
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{L_3R_3R_Ls\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_LR_3R_Ls^4 + C_3L_3R_3R_Ls^2 + C_LL_3L_LR_3s^3 + C_LL_3L_LR_ss^3 + C_LL_3R_3R_Ls^2 + C_LL_LR_3R_Ls^2 + L_3R_3s + L_3R_Ls + R_3R_Ls^2}$$

10.522 INVALID-ORDER-522
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_3L_3R_3s^2 + L_3s + R_3}{C_3C_LL_3R_3s^3 + C_3L_3s^2 + C_LL_3s^2 + C_LR_3s + 1}$$

10.523 INVALID-ORDER-523
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3R_3R_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3R_Ls^2 + C_LR_3R_Ls + L_3s + R_3 + R_L}$$

10.524 INVALID-ORDER-524
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_LR_Ls + 1\right)\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_2C_LL_3R_3s^3 + C_3C_LL_3R_Ls^3 + C_3L_2s^2 + C_LL_3s^2 + C_LR_3s + C_LR_Ls + 1}$$

10.525 INVALID-ORDER-525
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_LL_Ls^2 + 1\right)\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_3s^3 + C_3L_3s^2 + C_LL_3s^2 + C_LL_4s^2 + C_LR_3s + 1}$$

10.526 INVALID-ORDER-526
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_Ls\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3L_LR_3s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_LL_3L_Ls^3 + C_LL_LR_3s^2 + L_3s + L_Ls + R_3}$$

10.527 INVALID-ORDER-527
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_LL_Ls^2 + C_LR_Ls + 1\right)\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_3s^3 + C_3C_LL_3R_Ls^3 + C_3L_3s^2 + C_LL_3s^2 + C_LL_3s^2 + C_LR_3s + C_LR_Ls + 1}$$

10.529 INVALID-ORDER-529
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3L_LR_4s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_3s^2 + C_LL_LR_4s^2 + L_3s + L_Ls + R_3 + R_L}$$

$$\textbf{10.530} \quad \textbf{INVALID-ORDER-530} \ Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}} \right)$$

$$H(s) = \frac{R_L\left(C_LL_Ls^2 + 1\right)\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3R_3R_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3R_Ls^3 + C_LL_3R_2s^2 + C_LL_LR_3s^2 + C_LL_LR_3s^2 + C_LL_R_3s^2 + C_LL_$$

10.531 INVALID-ORDER-531
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)}{C_3C_LL_3R_3s^3 + C_3L_3s^2 + C_3R_3s + C_LR_3s + 1}$$

10.532 INVALID-ORDER-532
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ \frac{R_L}{C_LR_Ls + 1}\right)$$

$$H(s) = \frac{R_3R_L\left(C_3L_3s^2 + 1\right)}{C_3C_LL_3R_3R_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_3R_3R_Ls + C_LR_3R_Ls + R_3 + R_L}$$

10.533 INVALID-ORDER-533
$$Z(s) = \left(\infty, \ \frac{L_{2s}}{C_2L_2s^2+1} + R_2, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)\left(C_LR_Ls + 1\right)}{C_3C_LL_3R_3s^3 + C_3C_LL_3R_Ls^3 + C_3C_LR_3R_Ls^2 + C_3L_3s^2 + C_3R_3s + C_LR_3s + C_LR_Ls + 1}$$

10.534 INVALID-ORDER-534
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_3s^3 + C_3C_LL_LR_3s^3 + C_3L_3s^2 + C_3R_3s + C_LL_Ls^2 + C_LR_3s + 1}$$

10.535 INVALID-ORDER-535
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_LR_3s\left(C_3L_3s^2 + 1\right)}{C_3C_LL_3L_LR_3s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_3L_LR_3s^2 + C_LL_LR_3s^2 + L_Ls + R_3}$$

10.536 INVALID-ORDER-536
$$Z(s) = \left(\infty, \ \frac{L_{2s}}{C_2L_2s^2+1} + R_2, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_3s^3 + C_3C_LL_3R_Ls^3 + C_3C_LL_3R_3s^3 + C_3$$

10.537 INVALID-ORDER-537
$$Z(s) = \left(\infty, \ \frac{L_{2s}}{C_2L_2s^2+1} + R_2, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_3R_Ls\left(C_3L_3s^2 + 1\right)}{C_3C_LL_3L_LR_3R_Ls^4 + C_3L_3L_LR_3s^3 + C_3L_3L_LR_2s^3 + C_3L_3R_3R_Ls^2 + C_3L_LR_3R_Ls^2 + C_LL_LR_3R_Ls^2 + L_LR_3s + L_LR_2s + R_3R_Ls^2}$$

$$\textbf{10.538} \quad \textbf{INVALID-ORDER-538} \ \ Z(s) = \left(\infty, \ \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \ \infty, \ \ \infty, \ \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L \right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_LR_3R_Ls^3 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_3L_LR_3s^2 + C_LL_LR_3s^2 + C_LL_LR_2s^2 + L_Ls + R_3 + R_L}$$

$$\textbf{10.539} \quad \textbf{INVALID-ORDER-539} \ Z(s) = \left(\infty, \ \frac{L_{2s}}{C_2 L_2 s^2 + 1} + R_2, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s} \right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s} \right)}{L_L s + R_L + \frac{1}{C_L s}} \right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_4 L_L R_3 s^2 + C_L L_L R_3 s^2 + C_L$$

10.540 INVALID-ORDER-540
$$Z(s) = \left(\infty, \frac{R_2\left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, R_3, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{R_2 + R_L}$$

10.541 INVALID-ORDER-541
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ R_3, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3}{C_L R_3 s + 1}$$

10.542 INVALID-ORDER-542
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ R_3, \ \infty, \ \infty, \ \frac{R_L}{C_LR_Ls + 1}\right)$$

$$H(s) = \frac{R_3R_L}{C_LR_3R_Ls + R_3 + R_L}$$

10.543 INVALID-ORDER-543
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ R_3, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_LR_Ls + 1\right)}{C_LR_3s + C_LR_Ls + 1}$$

10.544 INVALID-ORDER-544
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_L}{C_3R_Ls + 1}$$

10.545 INVALID-ORDER-545
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{1}{s\left(C_3 + C_L\right)}$$

10.546 INVALID-ORDER-546
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L}{C_3 R_L s + C_L R_L s + 1}$$

10.547 INVALID-ORDER-547
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_L R_L s + 1}{s\left(C_3 C_L R_L s + C_3 + C_L\right)}$$

10.548 INVALID-ORDER-548
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{1}{C_3s}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_L L_L s^2 + 1}{s\left(C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.549 INVALID-ORDER-549
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_Ls}{C_2L_Ls^2 + C_LL_Ls^2 + 1}$$

10.550 INVALID-ORDER-550
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{s\left(C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.551 INVALID-ORDER-551
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

$$H(s) = \frac{C_LL_LR_Ls^2 + L_Ls + R_L}{C_3C_LL_LR_Ls^3 + C_3L_Ls^2 + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.552 INVALID-ORDER-552
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_LR_Ls^3 + C_3R_Ls + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.553 INVALID-ORDER-553
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{R_3}{C_3R_3s + 1}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3R_L}{C_3R_3R_Ls + R_3 + R_L}$$

10.554 INVALID-ORDER-554
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{R_3}{C_3R_3s + 1}, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3}{C_3R_3s + C_LR_3s + 1}$$

10.555 INVALID-ORDER-555
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{R_3}{C_3R_3s + 1}, \infty, \infty, \frac{R_L}{C_LR_Ls + 1}\right)$$

$$H(s) = \frac{R_3R_L}{C_3R_3R_Ls + C_LR_3R_Ls + R_3 + R_L}$$

10.556 INVALID-ORDER-556
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{R_3}{C_3R_3s + 1}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_LR_3s^3 + C_3R_3s + C_LL_Ls^2 + C_LR_3s + 1}$$

10.557 INVALID-ORDER-557
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{R_3}{C_3R_3s + 1}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{C_3C_LL_LR_3s^3 + C_3C_LR_3R_Ls^2 + C_3R_3s + C_LL_Ls^2 + C_LR_3s + C_LR_Ls + 1}$$

10.558 INVALID-ORDER-558
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{R_3}{C_3R_3s + 1}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3\left(C_LL_LR_2s^2 + L_Ls + R_L\right)}{C_3C_LL_LR_3R_Ls^3 + C_3L_LR_3s^2 + C_3R_3R_Ls + C_LL_LR_3s^2 + C_LL_LR_2s^2 + L_Ls + R_3 + R_L}$$

10.559 INVALID-ORDER-559
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{R_3}{C_3R_3s + 1}, \infty, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_3R_L\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_LR_3R_Ls^3 + C_3R_3R_Ls + C_LL_LR_3s^2 + C_LL_LR_4s^2 + C_LR_3R_Ls + R_3 + R_L}$$

10.560 INVALID-ORDER-560
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_L\left(C_3 R_3 s + 1\right)}{C_3 R_3 s + C_3 R_L s + 1}$$

10.561 INVALID-ORDER-561
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_3R_3s + 1}{s\left(C_3C_LR_3s + C_3 + C_L\right)}$$

10.562 INVALID-ORDER-562
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_3R_3s + 1\right)\left(C_LR_Ls + 1\right)}{s\left(C_3C_LR_3s + C_3C_LR_Ls + C_3 + C_L\right)}$$

10.563 INVALID-ORDER-563
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, R_3 + \frac{1}{C_3s}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_3R_3s + 1\right)\left(C_LL_Ls^2 + 1\right)}{s\left(C_3C_LL_Ls^2 + C_3C_LR_3s + C_3 + C_L\right)}$$

10.564 INVALID-ORDER-564
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_Ls\left(C_3R_3s + 1\right)}{C_3C_LL_LR_3s^3 + C_3L_Ls^2 + C_3R_3s + C_LL_Ls^2 + 1}$$

10.565 INVALID-ORDER-565
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, R_3 + \frac{1}{C_3s}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{(C_3R_3s + 1)\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{s\left(C_3C_LL_Ls^2 + C_3C_LR_3s + C_3C_LR_Ls + C_3 + C_L\right)}$$

10.567 INVALID-ORDER-567
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3R_3s + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_LR_3s^3 + C_3C_LL_LR_Ls^3 + C_3L_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.568 INVALID-ORDER-568
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_3R_3s + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_LR_3s^3 + C_3C_LL_LR_Ls^3 + C_3C_LR_3R_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.569 INVALID-ORDER-569
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_3L_3s^2 + 1}{s\left(C_3C_LL_3s^2 + C_3 + C_L\right)}$$

10.570 INVALID-ORDER-570
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, L_3s + \frac{1}{C_3s}, \infty, \infty, \frac{R_L}{C_LR_Ls + 1}\right)$$

$$H(s) = \frac{R_L\left(C_3L_3s^2 + 1\right)}{C_3C_LL_3R_Ls^3 + C_3L_3s^2 + C_3R_Ls + C_LR_Ls + 1}$$

10.571 INVALID-ORDER-571
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + 1\right)\left(C_LR_Ls + 1\right)}{s\left(C_3C_LL_3s^2 + C_3C_LR_Ls + C_3 + C_L\right)}$$

10.572 INVALID-ORDER-572
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, L_3s + \frac{1}{C_3s}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + 1\right)}{s\left(C_3C_LL_3s^2 + C_3C_LL_Ls^2 + C_3 + C_L\right)}$$

10.573 INVALID-ORDER-573
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_Ls\left(C_3L_3s^2 + 1\right)}{C_3C_LL_3L_Ls^4 + C_3L_3s^2 + C_3L_Ls^2 + C_LL_Ls^2 + 1}$$

10.574 INVALID-ORDER-574
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, L_3s + \frac{1}{C_3s}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{s\left(C_3C_LL_3s^2 + C_3C_LL_Ls^2 + C_3C_LR_Ls + C_3 + C_L\right)}$$

10.575 INVALID-ORDER-575
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, L_3s + \frac{1}{C_3s}, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

10.576 INVALID-ORDER-576
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, L_3s + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_LR_Ls^3 + C_3L_3s^2 + C_3L_Ls^2 + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.577 INVALID-ORDER-577
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_Ls^3 + C_3C_LL_RL_s^3 + C_3L_3s^2 + C_3R_Ls + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.578 INVALID-ORDER-578
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_{3s}}{C_3L_3s^2 + 1}, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_{3s}}{C_3L_3s^2 + C_LL_3s^2 + 1}$$

10.579 INVALID-ORDER-579
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{L_3s}{C_3L_3s^2 + 1}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3s\left(C_LR_Ls + 1\right)}{C_3C_LL_3R_Ls^3 + C_3L_3s^2 + C_LL_3s^2 + C_LR_Ls + 1}$$

10.580 INVALID-ORDER-580
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_3s}{C_3L_3s^2 + 1}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3s\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_Ls^4 + C_3L_3s^2 + C_LL_3s^2 + C_LL_Ls^2 + 1}$$

10.581 INVALID-ORDER-581
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{L_3s}{C_3L_3s^2 + 1}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_3L_Ls}{C_3L_3L_Ls^2 + C_LL_3L_Ls^2 + L_3 + L_L}$$

10.582 INVALID-ORDER-582
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_3s}{C_3L_3s^2 + 1}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3s\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_Ls^3 + C_3L_3s^2 + C_LL_3s^2 + C_LL_4s^2 + C_LR_4s + 1}$$

10.583 INVALID-ORDER-583
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{L_3s}{C_3L_3s^2 + 1}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3s\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_Ls^4 + C_3L_3L_Ls^3 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_Ls^2 + L_3s + L_Ls + R_L}$$

10.584 INVALID-ORDER-584
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{L_3s}{C_3L_3s^2 + 1}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{L_3R_Ls\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_LR_Ls^4 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_3R_Ls^2 + C_LL_LR_Ls^2 + L_3s + R_L}$$

10.585 INVALID-ORDER-585
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_3L_3s^2 + C_3R_3s + 1}{s\left(C_3C_LL_3s^2 + C_3C_LR_3s + C_3 + C_L\right)}$$

10.586 INVALID-ORDER-586
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls + 1}\right)$$

$$H(s) = \frac{R_L\left(C_3L_3s^2 + C_3R_3s + 1\right)}{C_3C_LL_3R_Ls^3 + C_3C_LR_3R_Ls^2 + C_3L_3s^2 + C_3R_3s + C_3R_Ls + C_LR_Ls + 1}$$

10.587 INVALID-ORDER-587
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_LR_Ls + 1\right)\left(C_3L_3s^2 + C_3R_3s + 1\right)}{s\left(C_3C_LL_3s^2 + C_3C_LR_3s + C_3C_LR_Ls + C_3 + C_L\right)}$$

10.588 INVALID-ORDER-588
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_LL_Ls^2 + 1\right)\left(C_3L_3s^2 + C_3R_3s + 1\right)}{s\left(C_3C_LL_3s^2 + C_3C_LL_Ls^2 + C_3C_LR_3s + C_3 + C_L\right)}$$

10.589 INVALID-ORDER-589
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_Ls\left(C_3L_3s^2 + C_3R_3s + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_LR_3s^3 + C_3L_3s^2 + C_3L_Ls^2 + C_3R_3s + C_LL_Ls^2 + 1}$$

10.590 INVALID-ORDER-590
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{s\left(C_3C_LL_3s^2 + C_3C_LL_Ls^2 + C_3C_LR_3s + C_3C_LR_Ls + C_3 + C_L\right)}$$

10.591 INVALID-ORDER-591
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_Ls\left(C_3L_3s^2 + C_3R_3s + 1\right)}{C_3C_LL_3L_LR_2s^4 + C_3C_LL_LR_3R_Ls^3 + C_3L_3L_Ls^3 + C_3L_3R_Ls^2 + C_3L_LR_3s^2 + C_3L_LR_2s^2 + C_3R_3R_Ls + C_LL_LR_Ls^2 + L_Ls + R_Ls^2}$$

10.592 INVALID-ORDER-592
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_LR_3s^3 + C_3C_LL_LR_Ls^3 + C_3L_3s^2 + C_3L_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.593 INVALID-ORDER-593
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_LL_Ls^2 + 1\right)\left(C_3L_3s^2 + C_3R_3s + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_Ls^3 + C_3C_LL_LR_3s^3 + C_3C_LL_Rl_s^3 + C_3C_LR_3R_Ls^2 + C_3R_3s + C_3R_4s + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.594 INVALID-ORDER-594
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3R_3s\left(C_LR_Ls + 1\right)}{C_3C_LL_3R_3R_Ls^3 + C_3L_3R_3s^2 + C_LL_3R_3s^2 + C_LL_3R_Ls^2 + C_LR_3R_Ls + L_3s + R_3}$$

10.595 INVALID-ORDER-595
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3R_3s\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_LR_3s^4 + C_3L_3R_3s^2 + C_LL_3L_Ls^3 + C_LL_3R_3s^2 + C_LL_3R_3s^2 + L_3s + R_3}$$

10.596 INVALID-ORDER-596
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3R_3s\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3R_3R_Ls^3 + C_3L_3R_3s^2 + C_LL_3L_Ls^3 + C_LL_3R_3s^2 + C_LL_3R_Ls^2 + C_LL_3R_3s^2 + C_LL_3R$$

$$\textbf{10.597} \quad \textbf{INVALID-ORDER-597} \ Z(s) = \left(\infty, \ \frac{R_2 \left(L_2 s + \frac{1}{C_2 s} \right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L \right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_3$$

10.598 INVALID-ORDER-598
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{L_3R_3R_Ls\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_LR_3R_Ls^4 + C_3L_3R_3R_Ls^2 + C_LL_3L_LR_3s^3 + C_LL_3L_LR_ss^3 + C_LL_3R_3R_Ls^2 + C_LL_LR_3R_Ls^2 + L_3R_3s + L_3R_Ls + R_3R_Ls^2}$$

10.599 INVALID-ORDER-599
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_3L_3R_3s^2 + L_3s + R_3}{C_3C_LL_3R_3s^3 + C_3L_3s^2 + C_LL_3s^2 + C_LR_3s + 1}$$

10.600 INVALID-ORDER-600
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \infty, \infty, \frac{R_L}{C_LR_Ls + 1}\right)$$

$$H(s) = \frac{R_L\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3R_3R_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3R_Ls^2 + C_LR_3R_Ls + L_3s + R_3 + R_L}$$

10.601 INVALID-ORDER-601
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_LR_Ls + 1\right)\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3R_3s^3 + C_3C_LL_3R_Ls^3 + C_3L_3s^2 + C_LL_3s^2 + C_LR_3s + C_LR_Ls + 1}$$

10.602 INVALID-ORDER-602
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_LL_Ls^2 + 1\right)\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_3s^3 + C_3L_3s^2 + C_LL_3s^2 + C_LL_4s^2 + C_LR_3s + 1}$$

10.603 INVALID-ORDER-603
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_Ls\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3L_LR_3s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_LL_3L_Ls^3 + C_LL_LR_3s^2 + L_3s + L_Ls + R_3}$$

10.604 INVALID-ORDER-604
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_LL_Ls^2 + C_LR_Ls + 1\right)\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_3s^3 + C_3C_LL_3R_Ls^3 + C_3L_3s^2 + C_LL_3s^2 + C_LL_3s^2 + C_LL_3s^2 + C_LR_3s + C_LR_Ls + 1}$$

10.605 INVALID-ORDER-605
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L R_3 s^2 + C_L L_L R_3 R_L s^2 + L_3 L_L s^2 + L_3 R_L s + L_L R_3 s + L_L R_4 s + R_3 R_L s^2 + L_3 R_4 s^2 + L_3 R_4 s^2 + L_4 R_4 s^2$$

10.606 INVALID-ORDER-606
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3L_LR_4s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_3s^2 + C_LL_LR_4s^2 + L_3s + L_Ls + R_3 + R_Ls^2}$$

10.607 INVALID-ORDER-607
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

10.608 INVALID-ORDER-608
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + 1}$$

10.609 INVALID-ORDER-609
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ \frac{R_L}{C_LR_Ls + 1}\right)$$

$$H(s) = \frac{R_3R_L\left(C_3L_3s^2 + 1\right)}{C_3C_LL_3R_3R_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_3R_3R_Ls + C_LR_3R_Ls + R_3 + R_L}$$

10.610 INVALID-ORDER-610
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)\left(C_LR_Ls + 1\right)}{C_3C_LL_3R_3s^3 + C_3C_LL_3R_Ls^3 + C_3C_LR_3R_Ls^2 + C_3L_3s^2 + C_3R_3s + C_LR_3s + C_LR_Ls + 1}$$

10.611 INVALID-ORDER-611
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_3s^3 + C_3C_LL_LR_3s^3 + C_3L_3s^2 + C_3R_3s + C_LL_Ls^2 + C_LR_3s + 1}$$

10.612 INVALID-ORDER-612
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_LR_3s\left(C_3L_3s^2 + 1\right)}{C_3C_LL_3L_LR_3s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_3L_LR_3s^2 + C_LL_LR_3s^2 + L_Ls + R_3}$$

$$\textbf{10.613} \quad \textbf{INVALID-ORDER-613} \ Z(s) = \left(\infty, \ \frac{R_2 \left(L_2 s + \frac{1}{C_2 s} \right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \ \frac{R_3 \left(L_3 s + \frac{1}{C_3 s} \right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s} \right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_R R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.614 INVALID-ORDER-614
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_L s^3 + C_3 L_3 R_3 R_L s^2 + C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L s^2}$$

10.615 INVALID-ORDER-615
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

10.616 INVALID-ORDER-616
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_1 R_L s^3 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 R_L s^3 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L R_3 R_L s + R_3 + R_L R_2 r^2 + C_L R_3 R_L s^2 + C_$$