EECS 371 Design Project #7 <u>Linear Power Supplies</u>

Please carefully study H&H, Ch 6.01 thru 6.18 as well as BB material.

Part 1:

The circuit shown below is a classic linear regulator.

Calculate values for operation as specified. Build, test performance, and record values as requested below. Please be prepared to explain how all values were calculated.

Do <u>NOT</u> attempt to build with plug-in proto board; solder components using PCB "kluge" board. Be sure to consider voltage drops and use proper wiring techniques.

REFERENCE DESIGN

Specifications:

Vin = 12 Vdc to 18 Vdc. Vout = 9 Vdc \pm 0.5 V. Iout = 0 to 1.5 Amp Line + Load Regulation < 1.5%

a. Measure and record regulation?	•	Load Regulation. W	hat design aspects contribute to)
Reg _{line} =	% @ FL.	$Reg_{load} =$	% @ Vin = 15V	
b. <u>Calculate</u> the heat si Heat sink <	-	at 50C ambient. As	sume worse-case operation.	
			s short-circuited output (worse cutput current be?Am	
	Also measu	are differential dropo	think you should measure this arout voltage: Vi/o _{min} =ential value?	

e. Measure quiescent (no load) current. Iq = Discuss why, broadly speaking, a higher
performance supply would have a higher quiescent current. Modify your circuit with a resistor(s)
value change that results in an increased Iq, and then test to demonstrate this effect. Provide test
results showing how load regulation (at @ Vin = 15V) can be improved at the expense of a higher Iq:
$Reg_{load} = $
f. Add circuitry to your supply to add active current limiting to limit maximum output current to 2 amp. Measure and record short-circuit current. With current limiting in place, what is the worse-case heat sink requirement with a continuous short-circuit?
$I_{SC} =$ deg C/W.
Part 2.
Operate your supply on the "12V, 3A" unregulated supply in place of the bench supply. Using the
Variac AC supply, determine the AC line dropout voltage (at FL, of course). VACin _{min} =
Keep this built for your recitation.
<u> </u>

Part 3; THESE ARE DESIGN ONLY; INCLUDE AN ACCURATE SCHEMATIC WITH ALL COMPONENT VALUES:

- a. Design a power supply similar to the one in Part 1 above, but change it to a variable supply with an adjustment range of 4 V to 9V DC.
- b. Add a "shutdown" control. This is a 5V input, referred to ground, that shuts off the supply with a logic "1". During shutdown, quiescent current must be < 10uA.
- c. Design and prepare an accurate, complete schematic of a <u>variable</u> "split tracking" power supply, using a supply similar to that above as the positive section. Specifications below.

Specifications for Tracking Supply:

Vin: +/- 12 Vdc to 18 Vdc; Vout: +/-4 to 9 Vdc; Iout: 0 to +/- 1 Amp You are **not** required to build this circuit, but be prepared to discuss your design principles. Of course, if you wish you may build it to confirm your design.

<u>Discussion:</u> this power supply would be driven from a split bench supply (or from a center-tapped transformer with a bridge rectifier and two filter capacitors). Each side of the input supply would vary from 12 to 18 volts. A single control would vary the regulated outputs from 4 to 9 Vdc (one supply would be positive and one would be negative, with a common ground).

It would be best to design this circuit using discrete transistors, but if you must you may use op-amps.

FOR Saturday: Provide a schematic, with values, for the circuits in Part 1 and Part 3 (a) and (b).