

Table of Contents

Feature extraction	
RMS	1
Waveform Length	
AR coefficients	
Classifier	
Results	2
Accuracy	2
Plots	4
Raw Data Window Size = 100 Window Size = 1000	4
Window Size = 100	5
Window Size = 1000	g
Window Size = 50	
Window size = 200	18

Table of Figures

Figure 1 Raw Values	4
Figure 2 RMS, window size 100	5
Figure 3 Waveform length, window size 100	6
Figure 4 AR, window size 100	7
Figure 5 Classified Train vs Labeled, window size 100	8
Figure 6 Classified Test vs Labeled, window size 100	8
Figure 7 Accuracy of training and testing dataset, window size 100	9
Figure 8 RMS, window size 1000	
Figure 9 Waveform, window size 1000	10
Figure 10 AR, window size 1000	
Figure 11 Classified test vs Labeled data, window size 1000	
Figure 12 Classified train vs Labeled data, window size 1000	
Figure 13 Accuracy of training and test dataset, window size 1000	
Figure 14 RMS, window size 50	13
Figure 15 Waveform, window size 50	
Figure 16 AR, window size 50	15
Figure 17 Classified test data vs Labeled, window size 50	16
Figure 18 Classified train data vs Labeled, window 50	17
Figure 19 Accuracy of training and testing dataset, window size 50	17
Figure 20 RMS, window size 200	
Figure 21 Waveform, window size 200	
Figure 22 AR, window size 200	20
Figure 23 Classified train data vs Labeled data, window size 200	
Figure 24 Classified test data vs Labeled data, window size 200	21
Figure 25 Accuracy of training and testing dataset, window set 200	22
Figure 26 Accuracy after discarding half of training dataset, window size 200	22

Feature extraction

RMS

We traverse through the training data and calculate RMS of all 8 channels over a window size. Variable 'a' takes in the RMS value of all 8 channels. Then we repeat the vector 'a' upto the window size and concat it to the 'result' matrix.

At the end of for-loop, the result contains the rms values of entire data over static windows with size of window size.

Waveform Length

Similar format applies to waveform length. 'a' takes the waveform of a fixed static window and 'result' returns the entire waveform of all static windows with no overlap.

AR_coeff = aryule(ar_data , p); a(sensor) = -AR_coeff(2:end) * ar_data(end:-1:end-p+1);

end

AR coefficients

result = [result; repmat(a,window size,1)];

end

'ar_data represents the data over which we want to calculate the AR coefficients. 'AR_coeff' represents the AR coefficients. AR_coeff is 5x8 long (1 normalized vector + 4 order x 8 sensors)

'a' intakes the x_{i+1} by utilizing the AR coefficients and last 4 data points from ar data.

Classifier

```
trainer = fitcdiscr([xTrain_rms], yTrain);
classified_train = predict(trainer, [xTrain_rms]);
accuracy_train = sum(yTrain==classified_train)/size(yTrain,1)*100.0
classified_test = predict(trainer, [xTest_rms]);
accuracy_test = sum(yTest==classified_test)/size(yTest,1)*100.0
```

The trainer that yields the highest accuracy is trained using only rms values. Using waveforms or my perception of AR values decreases accuracy significantly.

Results

Accuracy

Window Size	Accuracy on Training Set	Accuracy on Testing Set
100	86.5%	68%
1000	44%	20%
50	83.25%	59%
200	90%	80%

As we note, window size 200 gives the highest accuracy. This is because the labels, i.e., labels in yTrain and yTest, are 200 ms long.

Additionally, I was able to achieve higher accuracy by discarding half of the training dataset.

```
xTrain = xTrain(1:10000,:);
yTrain = yTrain(1:10000,:);
```

By utilizing the above code, I discarded half of the training dataset and the accuracy after doing so was the following:

Window Size	Accuracy on Training Set	Accuracy on Testing Set
200	86%	84%

This might be because dataset of 20,000 might be overfitting our classifier. The more data is introduced to our classifier, the more variance will exist within classes. This variance might yield a different plane on which the variance within classes might overlap between classes.

Plots Raw Data

Figure 1 Raw Values

Window Size = 100

Figure 2 RMS, window size 100

Figure 3 Waveform length, window size 100

Figure 4 AR, window size 100

Figure 5 Classified Train vs Labeled, window size 100

Figure 6 Classified Test vs Labeled, window size 100

accuracy_test =

68

Figure 7 Accuracy of training and testing dataset, window size 100

Window Size = 1000

Figure 8 RMS, window size 1000

Figure 9 Waveform, window size 1000

Figure 10 AR, window size 1000

Figure 11 Classified test vs Labeled data, window size 1000

Figure 12 Classified train vs Labeled data, window size 1000

accuracy_train =
44

accuracy_test =

20

Figure 13 Accuracy of training and test dataset, window size 1000

Window Size = 50

Figure 14 RMS, window size 50

Figure 15 Waveform, window size 50

Figure 16 AR, window size 50

Figure 17 Classified test data vs Labeled, window size 50

Figure 18 Classified train data vs Labeled, window 50

Figure 19 Accuracy of training and testing dataset, window size 50

Window size = 200

Figure 20 RMS, window size 200

Figure 21 Waveform, window size 200

Figure 22 AR, window size 200

Figure 23 Classified train data vs Labeled data, window size 200

Figure 24 Classified test data vs Labeled data, window size 200

```
accuracy_train =
    90
accuracy_test =
    80
```

Figure 25 Accuracy of training and testing dataset, window set 200

```
5
        % inputs
        window = 200;
        moving_window = false;
        want_plots = 0;
        %% loading data
10
        load('semgExcerciseRand.mat')
11 -
12
        xTrain = xTrain(1:10000,:);
13 -
14 -
        yTrain = yTrain(1:10000,:);
Command Window
  accuracy_train =
      86
  accuracy_test =
      84
```

Figure 26 Accuracy after discarding half of training dataset, window size 200