

Circuitos Secuenciales Síncronos

© Luis Entrena, Celia López, Mario García, Enrique San Millán

Universidad Carlos III de Madrid

Índice

- Introducción
- Máquinas de estados finitos
 - Modelo de Moore
 - Modelo de Mealy
- Análisis de circuitos secuenciales síncronos
- Síntesis de circuitos secuenciales síncronos
- Ejemplos

Introducción

• Esquema general de un circuito secuencial síncrono:

 El bloque "Estado" está formado por biestables, todos ellos sincronizados con la misma señal de reloj

Máquinas de estados

- El comportamiento de un circuito síncrono se puede representar mediante una máquina de estados (FSM, o "Finite State Machine")
- Una máquina de estados tiene los siguientes elementos:
 - X = Entradas
 - Y = Salidas
 - Z = Estados (valores de los biestables, cambian con cada flanco de reloj)
 - δ = Funciones de estado (funciones combinacionales de entrada de los biestables)
 - λ = Funciones de salida (combinacionales)
- Una FSM se define como una secuencia de eventos en tiempos discretos. El estado Z cambia en cada evento (el cambio está definido por δ).

Modelo de Moore

- En el modelo de Moore las salidas dependen únicamente de los estados (no de las entradas)
- Máquina de estados de Moore:
 - $Z = \delta(X, Z)$
 - $Y = \lambda (Z)$
- Estructura de un circuito asociado a un modelo de Moore:

Modelo de Moore

- El reloj y el reset no aparecen en las máquinas de estados, la asociación entre estas señales en un circuito y la máquina de estados es:
 - En cada flanco de reloj se produce una transición o cambio de estado
 - El reset se utiliza únicamente para establecer el estado inicial
- En las máquinas de estados de Moore las salidas cambian únicamente si hay un cambio de estado:
 - Las salidas están sincronizadas con el reloj

Modelo de Moore

- Una FSM se puede representar también mediante un diagrama de estados (STG o "State Transition Graph"):
 - Cada estado se representa con un círculo
 - Cada transición de estado se representa con una flecha
 - Los diferentes valores de las entradas se representan en las flechas
 - En el caso del modelo de Moore, las salidas se representan dentro de cada estado

Modelo de Mealy

- En el modelo de Mealy las salidas dependen tanto de los estados como de las entradas (caso general)
- Máquina de estados de Mealy:
 - $Z = \delta(X, Z)$
 - $Y = \lambda (X, Z)$
- Estructura de un circuito asociado a un modelo de Mealy:

Modelo de Mealy

Diagrama de estados de Mealy:

- Cada estado se representa con un círculo
- Cada transición de estado se representa con una flecha
- Los diferentes valores de las entradas se representan en las flechas
- En el caso del modelo de Mealy, las salidas se representan también en las flechas (dependen del estado y de las entradas)

Modelo de Mealy

- Igual que en Moore, el reloj y el reset no aparecen en el STG, están implícitos
- En las máquinas de estados de Mealy las salidas pueden cambiar en cualquier momento (basta con que cambie una entrada del circuito):
 - Las salidas no están sincronizadas con el reloj
 - NOTA: Aunque las salidas no estén sincronizadas con el reloj, el circuito sigue siendo síncrono (todos los biestables están sincronizados con el mismo reloj)

Análisis y Síntesis de Circuitos Secuenciales Síncronos

- Análisis: A partir de un circuito obtener su funcionalidad
 - Circuitos Combinacionales:
 - Obtener tablas de verdad o funciones booleanas de las salidas
 - Circuitos Secuenciales:
 - Obtener diagrama de estados, o funciones de estado y salidas (δ y λ)
- Síntesis: Dada una funcionalidad, obtener la implementación de un circuito
 - Circuitos Combinacionales:
 - Obtener expresiones boolenas, implementar con puertas lógicas, multiplexores, decodificadores, etc.
 - Circuitos Secuenciales:
 - Obtener diagrama de estados e implementar las funciones de estado y de salida (δ y λ) con puertas lógicas, multiplexores, decodificadores

- Análisis: Obtener tabla de transiciones, calcular δ y λ, y obtener diagrama de estados.
- Ejemplo:

 $\lambda \implies Out = \overline{Q_1} \cdot Q_0$

Tabla de transiciones:

Q1	Q0	ln	D1	D0	Q1+	Q0+	Out
0	0	0	0	1	0	1	0
0	0	1	1	0	1	0	0
0	1	0	0	0	0	0	1
0	1	1	1	0	1	0	1
1	0	0	0	1	0	1	0
1	0	1	0	0	0	0	0
1	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0

Tabla de transiciones:

Q1	Q0	In	D1	D0	Q1+	Q0+	Out
0	0	0	0	1	0	1	0
0	0	1	1	0	1	0	0
0	1	0	0	0	0	0	1
0	1	1	1	0	1	0	1
1	0	0	0	1	0	1	0
1	0	1	0	0	0	0	0
1	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0

Diagrama estados (Mealy):

Diagrama estados (Moore):

- A partir de la descripción de la funcionalidad de un circuito secuencial, los pasos a seguir para obtener la implementación son:
 - 1. Obtener diagrama de estados
 - Codificación de estados
 - 3. Obtener Tablas de salidas y de transiciones de estados
 - 4. Tabla inversa de biestables (o tabla de excitación)
 - Obtener funciones de salida
 - Obtener funciones de estado
 - 7. Implementación
- La diferencia entre Moore y Mealy está en las funciones de salida

Tabla de excitación (o tablas inversas) de biestables

- Tablas inversas o tablas de excitación:
 - Describen todas las posibles de combinaciones de entradas que permiten pasar del estado actual Q al estado siguiente Q+

R-S latch

Q	Q+	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	Χ	0

J-K flip-flop

Q	Q+	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	Χ	0

D flip-flop

Q	Q+	D
0	0	0
0	1	1
1	0	0
1	1	1

T flip-flop

Q	Q+	T
0	0	0
0	1	1
1	0	1
1	1	0

- Problema: Diseñar un circuito secuencial síncrono que permita detectar una secuencia de tres o más unos consecutivos a través de una entrada serie.
 - La entrada se lee en cada flanco ascendente de reloj
 - La salida se activa cuando se detecta la secuencia

- Ejemplo de secuencia de entradas y salidas:
 - X:001101111100111
 - Z:000000011100001

- Ejemplo 1: Mealy con biestables D:
 - Diagrama de estados:

Codificación de estados:

Estado	Q1	Q0
S0	0	0
S1	0	1
S2	1	1
	1	0

Estado no alcanzable

- Mealy con biestables D :
 - Tabla de transiciones y tabla de salidas (combinadas juntas):

In	Q1	Q0	Q1+	Q0+	Out
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	Χ	Χ	X
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	Χ	Χ	X
1	1	1	1	1	1

- Mealy con biestables D:
 - Tabla inversa de biestables (biestables D):

In	Q1	Q0	Q1+	Q0+	Out	D1	D0
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	Χ	Χ	X	Χ	Χ
0	1	1	0	0	0	0	0
1	0	0	0	1	0	0	1
1	0	1	1	1	0	1	1
1	1	0	Χ	Χ	Χ	Χ	Χ
1	1	1	1	1	1	1	1

Función de salida:

Funciones de estado

$$D_1 = Q_0 In$$

$$D_0 = In$$

- Mealy con biestables D:
 - 7. Implementación

• **Ejemplo 2**. Mealy con biestables J-K:

4. Tabla inversa de biestables (biestables J-K):

In	Q1	Q0	Q1+	Q0+	Out	J1	K1	J0	K0
0	0	0	0	0	0	0	Χ	0	Χ
0	0	1	0	0	0	0	Χ	Χ	1
0	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ
0	1	1	0	0	0	Χ	1	X	1
1	0	0	0	1	0	0	Χ	1	Χ
1	0	1	1	1	0	1	Χ	Χ	0
1	1	0	Χ	Χ	Χ	Χ	Χ	X	Χ
1	1	1	1	1	1	Χ	0	Χ	0

- 5. Función de salida: (
 - $Out = Q_1 In$
- 6. Funciones de estado

$$J_0 = In$$

- Mealy con biestables J-K:
 - 7. Implementación

$$Out = Q_1 In$$

$$J_0 = In$$

$$K_0 = \overline{In}$$

$$J_1 = Q_0 In$$

$$K_1 = \overline{In}$$

• **Ejemplo 3**. Mealy con biestables T :

4. Tabla inversa de biestables (biestables T):

In	Q1	Q0	Q1+	Q0+	Out	T1	T0
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1
0	1	0	Χ	Χ	Χ	Χ	Χ
0	1	1	0	0	0	1	1
1	0	0	0	1	0	0	1
1	0	1	1	1	0	1	0
1	1	0	Χ	Χ	Χ	Χ	Χ
1	1	1	1	1	1	0	0

- 5. Función de salida: $Out = Q_1 In$
- 6. Funciones de estado

$$T_0 = \overline{In}Q_0 + In\overline{Q_0} = In \oplus Q_0$$

- Mealy con biestables T:
 - 7. Implementación

- **Ejemplo 4:** Mealy, otra codificación diferente:
 - Diagrama de estados:

Codificación de estados:

Estado	Q1	Q0	
S0	0	0	
S1	0	1	
S2	1	0	Ahora codificamos
	1	1	S2 de forma diferente

- Mealy con biestables D (codificación diferente):
 - 3. Tablas de transiciones y salidas (combinadas en una sola):

In	Q1	Q0	Q1+	Q0+	Out
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	Χ	Χ	Χ
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	Χ	Χ	Χ

- Mealy con biestables D :
 - 4. Tabla inversa de biestables (biestables D):

In	Q1	Q0	Q1+	Q0+	Out	D1	D0
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	0	0	0	0	0
0	1	1	Χ	Χ	X	Χ	Χ
1	0	0	0	1	0	0	1
1	0	1	1	0	0	1	0
1	1	0	1	0	1	1	0
1	1	1	Χ	Χ	Χ	Χ	Χ

Función de salida:

$$Out = Q_1 In$$

6. Funciones de estado

$$D_1 = Q_0 In + Q_1 In = In(Q_0 + Q_1)$$

$$D_0 = \overline{Q_1} \overline{Q_0} In$$

- Mealy con biestables D (codificación diferente):
 - 7. Implementación

Con esta otra codificación sale más complejo y se requieren más puertas lógicas para la implementación

$$Out = Q_1 In$$

$$D_1 = In(Q_0 + Q_1)$$

$$D_0 = \overline{Q_1} \overline{Q_0} In$$

• Ejemplo 5: Moore con biestables D:

Diagrama de estados:

Codificación de estados:

Estado	Q1	Q0
S0	0	0
S1	0	1
S2	1	1
S3	1	0

- Moore con biestables D :
 - 3. Tablas de transiciones y salidas:

Q1	Q0	Out
0	0	0
0	1	0
1	0	0
1	1	1

- Moore con biestables D :
 - 4. Tabla inversa de biestables (biestables D):

In	Q1	Q0	Q1+	Q0+	D1	D0
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	1	0	1
1	0	1	1	1	1	1
1	1	0	1	0	1	0
1	1	1	1	0	1	0

5. Función de salida:

Q1	Q0	Out
0	0	0
0	1	0
1	0	0
1	1	1

6. Funciones de estado

$$D_1 = Q_0 In + Q_1 In =$$
$$= (Q_0 + Q_1) In$$

$$D_0 = \overline{Q_1} In$$

- Moore con biestables D:
 - 7. Implementación

Bibliografía

- "Circuitos y Sistemas Digitales". J. E. García Sánchez, D. G. Tomás, M. Martínez Iniesta. Ed. Tebar-Flores
- "Electrónica Digital", L. Cuesta, E. Gil, F. Remiro, McGraw-Hill
- "Fundamentos de Sistemas Digitales ", T.L Floyd, Prentice-Hall