

AI/ML Architecture - how it all fits together

Maciej Kępa

Roadmap

09

08

07

06

Generative AI and LLMs the new wave of technology

Learn how LLMs differ from classical ML, understand transformers, RAG, Al agent orchestration, and try a simple RAG demo in Azure OpenAI.

MLOps - manage your ML solution

Explore ML lifecycle management with tracking, model monitoring, data drift handling, canary deployments, A/B testing, and monitoring demos.

ML Pipelines - automation and CI/CD

Build repeatable ML workflows with orchestration tools, CI/CD pipelines, model registry/versioning, and a Databricks pipeline demo.

Deep Learning - leveling up

Understand neural network basics, choose between TensorFlow and PyTorch, leverage GPU/TPU scaling, and build a simple CNN with visualization.

Model Training in Practice

Learn how to split data, perform hyperparameter tuning, scale training, and train models with code and metrics using MLflow.

01

02

03

04

AI/ML architecture - how it all fits together

Understand the full ML stack from data sources to production, including roles, cloud reference architectures, layers, tools, and a simple ETL + model demo.

Data Preparation - practical foundations

Learn practical techniques for building ML data pipelines, cleaning data, using feature stores, validating datasets, and preparing a dataset in PySpark

Feature Engineering – the art of extracting value from data

Discover how to create effective features, handle different types of data, apply encoding and normalization, monitor feature drift, and track features with Spark +

ML Algorithms - the classical approach

Get familiar with core algorithms like regression, trees, and gradient boosting, understand classification, regression, clustering, their pros and cons, and try MLlib demos in Databricks.

05

Agenda

- 1. Introduction
- 2. What an Al/ML system is made of?
- 3. Roles and responsibilities
- 4. Cloud architecture
- 5. Demo
- 6. System design best practices

Al history

Long, long ago...

1950s

Completely Automated Public Turing test to tell Computers and Humans Apart.

What an AI/ML system is made of?

Al project lifecycle

Al project areas

Key layers

Layer	Purpose	Typical Components / Tools	Key Responsibilities	Artifacts
Data Layer	Collects, stores, and prepares data for modeling.	Data Lake (Azure Data Lake, GCS, S3), Data Warehouse (Synapse, BigQuery), Feature Store (Databricks Feature Store, Feast).	Ingestion from raw sources, cleaning, transformation, feature creation, and validation (Great Expectations).	Raw and processed datasets, feature tables, data validation reports, ETL notebooks, schema definitions.
Model Layer	Focuses on training, tracking, and versioning ML models.	Databricks, MLflow, Azure ML, TensorFlow, PyTorch, scikit-learn.	Model development, experiment tracking, hyperparameter tuning, model registration, and reproducibility.	Model training notebooks, experiment logs, metrics, model binaries, registered models.
Deployment Layer	Delivers trained models to production and maintains operational quality.	CI/CD pipelines (GitHub Actions, Azure DevOps), Model Registry, APIs, Monitoring (Azure Monitor, Prometheus).	Model packaging and deployment, version control, A/B testing, drift monitoring, continuous retraining.	Deployment scripts, inference APIs, dashboards, monitoring reports, retraining jobs.

Roles and responsibilities

Division of roles in AI/ML teams

Cloud Architecture

System design best practices

Takeaways

- **Don't overengineer from day one:** start with a simple, working system, add the more advanced features later (if you really need them).
- If its not tracked, it doesn't exist: every experiment, model version, and hyperparameter tracking is never optional.
- Understand your problem: Al projects fail due to too high expectations and problem misunderstanding
- Clean data beats fancy models: A simple model on good data will outperform any complex architecture trained on garbage every single time.
- **Choosing your cloud provider matters less than you expect:** the tools differ; the principles don't. Pick one and focus on building value, not migrating clouds.

Thank you!

Contact:

in https://www.linkedin.com/in/maciej-kepa

https://github.com/maciejkepa/ai-ml-in-practice

