Transportes - grafos bipartidos

Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

22 de outubro de 2014

Transportes - grafos bipartidos

antes

• O algoritmo simplex resolve problemas de programação linear.

Guião

- O problema de transportes é um caso particular do problema de programação linear em que o modelo é definido num grafo (rede).
- O algoritmo para o problema de transportes é uma especialização do algoritmo simplex que tira partido dessa estrutura em rede.
- A sua implementação, usando estruturas de dados adequadas, pode traduzir-se em resoluções muito mais rápidas.

depois

• Veremos um algoritmo para grafos (redes) gerais.

Conteúdo

- Modelo do Problema de Transportes
- Solução inicial
 - Método do canto NW
 - Método dos custos mínimos
- Pivôs
- Teste de optimalidade
 - Método do Stepping-stone
 - Método dos multiplicadores
- Resolução de um exemplo
- Apêndices
 - Cálculo do custo usando a função objectivo dual (veremos depois)
 - Quadro simplex equivalente

Problema de Transportes

- Conjunto V_1 de pontos de produção (origens) ($|V_1| = m$)
- Conjunto V_2 de pontos de consumo (destinos) ($|V_2| = n$)
- Cada origem *i* produz *a_i* unidades.
- Cada destino j necessita de b_j unidades.
- Custo unitário de transporte entre a origem i e o destino j é c_{ij} .

- Grafo bipartido $G = (V_1, V_2, A) : \forall (i,j) \in A, i \in V_1, j \in V_2,$
- é um grafo cujo conjunto de vértices é partido em V_1 e V_2 , e em que todos os arcos ligam uma origem $i \in V_1$ a um destino $j \in V_2$.
- As unidades a transportar são entidades de um único tipo.

Modelo de transportes

Variáveis de decisão:

• x_{ij} - quantidade a transportar da origem i para o destino j.

$$\begin{aligned} & \min \qquad & \sum_{i \in V_1} \sum_{j \in V_2} c_{ij} x_{ij} \\ & \text{suj. a} \qquad & \sum_{j \in V_2} x_{ij} = a_i \text{ , } \forall i \in V_1 \\ & \sum_{i \in V_1} x_{ij} = b_j \text{ , } \forall j \in V_2 \\ & x_{ij} \geq 0 \end{aligned}$$

 Objectivo: minimizar o custo de transporte das unidades entre os pontos de produção (origens) e os pontos de consumo (destinos).

Diversas representações

	1	2	3	
1	x ₁₁ _{c₁₁}	$x_{12}_{c_{12}}$	$x_{13}_{c_{13}}$	a_1
2	x ₂₁ _{c₂₁}	$x_{22}_{c_{22}}$	x_{23}	a ₂
3	x ₃₁ _{c₃₁}	x ₃₂ _{c₃₂}	x ₃₃ _{c₃₃}	<i>a</i> ₃
	b_1	<i>b</i> ₂	<i>b</i> ₃	

	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>X</i> 31	<i>X</i> 32	<i>X</i> 33	
origem 1	1	1	1							$= a_1$
origem 2				1	1	1				$= a_2$
origem 3							1	1	1	$= a_3$
destino 1	1			1			1			$= b_1$
destino 2		1			1			1		$= b_2$
destino 3			1			1			1	$= b_3$
min	c ₁₁	c ₁₂	c ₁₃	c ₂₁	<i>c</i> ₂₂	c ₂₃	c ₃₁	<i>c</i> ₃₂	<i>c</i> ₃₃	

Exemplo

	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₂₁	<i>x</i> ₂₂	<i>X</i> 23	<i>x</i> ₃₁	<i>X</i> 32	<i>X</i> 33	
A	1	1	1							= 30
В				1	1	1				= 10
C							1	1	1	= 50
D	1			1			1			= 20
Ε		1			1			1		= 30
F			1			1			1	= 40
min	3	6	5	2	5	5	1	2	3	

30

10

50

Balanceamento

- Produção $=\sum_{i\in V_1}a_i$ deve ser **sempre** igual ao consumo $=\sum_{j\in V_2}b_j$
- Se (produção > consumo), criar destino fictício que absorva excesso.

Destino fictício F absorve excesso. Geralmente, custos unitários de transporte dos novos arcos são nulos (*i.e.*, $c_{AF} = c_{BF} = 0$).

 Se (produção < consumo), problema é impossível, porque não é possível satisfazer a procura (assumindo que não é possível recorrer a ofertas externas ao modelo).

Número de equações linearmente independentes

- Das n+m equações, há n+m-1 equações linearmente independentes,
- porque qualquer equação pode ser expressa como uma combinação linear das restantes.
- Exemplo:

	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₂₁	<i>x</i> ₂₂	<i>X</i> 23	<i>x</i> ₃₁	<i>X</i> 32	<i>X</i> 33	
Α	1	1	1							= 30
В				1	1	1				= 10
C							1	1	1	= 50
D	1			1			1			= 20
Ε		1			1			1		= 30
F			1			1			1	= 40
min	3	6	5	2	5	5	1	2	3	

 A equação de E é igual à soma das equações de A, B e C subtraída das equações de D e F.

Caracterização das soluções básicas

O grafo associado a uma solução básica é uma árvore^(*).

Uma árvore é um grafo com as seguintes propriedades:

- ligado (existe um caminho entre cada par de vértices),
- sem ciclos.
- com um número de arcos = número de vértices -1.
- Pode ser provado que quaisquer 2 das propriedades caracterizam uma árvore e implicam a terceira.

Independência e dependência linear num grafo

- Os arcos de uma árvore correspondem a um conjunto de vectores linearmente independentes do modelo de programação linear.
- Os arcos de um ciclo correspondem a um conjunto de vectores linearmente dependentes: um arco do ciclo pode ser expresso como uma combinação dos restantes arcos.

Exemplo: resolver em ordem às variáveis de ${\mathscr B}$

- Conjunto das variáveis básicas $\mathcal{B} = \{x_{11}, x_{12}, x_{22}, x_{32}, x_{33}\}.$
- Grafo correspondente é uma árvore: ligado, sem ciclos e $|\mathcal{B}| = 5$.
- Conjunto das variáveis não-básicas $\mathcal{N} = \{x_{13}, x_{21}, x_{23}, x_{31}\}.$
- Quando as variáveis não-básicas são iguais a 0, qual a solução do sistema de equações em ordem às variáveis básicas de *3*?

 A solução é a solução (única) do sistema com 5 equações linearmente independentes e com 5 variáveis (determinado).

Solução básica (vértice)

- Solução básica é admissível, porque $x_{ij} \ge 0, \forall i, j$.
- Há m+n-1 variáveis básicas
- (neste exemplo, o quadro tem 5 casas básicas).
- As restantes variáveis são não-básicas.

	D	E	F	
Α	20 3	10 ₆	5	30
В	2	10 ₅	5	10
С	1	10 2	40 3	50
	20	30	40	

Custo da solução básica:

• custo =
$$20(3)+10(6)+10(5)+10(2)+40(3)=310$$

Algoritmo de transportes

Algoritmo

Obter um quadro inicial Enquanto (quadro não óptimo) mudar para um quadro adjacente melhor

Dois métodos para obter um quadro inicial:

- Método do canto NW
- Método dos custos mínimos

- Olocar a maior quantidade possível na casa mais a NW ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Ortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

	D	Е	F			
Α	3	6	5	30	A	D
В	2	5	5	10	B	E
С	1	2	3	50	(C)	F
	20	30	40			

- Olocar a maior quantidade possível na casa mais a NW ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Ortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

	I	Þ	Е	F			
Α	2	20 3	6	5	30	(A)—	(D)
В		2	5	5	10	B	E
С		1	2	3	50	(C)	F
		20	30	40	_		

- Olocar a maior quantidade possível na casa mais a NW ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Ortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

	I	þ	Е	F			
-A	-	20	10		30	(A)	→ (D)
		3	6	5			
В		2	5	5	10	B	E
C		1	2	3	50	<u>C</u>	F
	2	0	30	40	,		

- Olocar a maior quantidade possível na casa mais a NW ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Ortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

)	Е	F	
_Δ	,	20	10		30-
, ,		3	6	5	30
_B			10 _		10
		2	5	5	10
С		1	2	3	50
	2	0	30	40	

- Olocar a maior quantidade possível na casa mais a NW ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Ortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

	I)	ı	Ė	F	_
		0	1	0		30
A	4	3	1	6	5	30
R			1	0		10—
-0		2		5	5	
С		1	1	0 2	3	50
	2	0	3	0	40	_

- Olocar a maior quantidade possível na casa mais a NW ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Cortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

 Desvantagem: não toma em consideração os custos das casas, que podem ser muito elevados nas casas a NW.

- Olocar a maior quantidade possível na casa com custo mínimo ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Cortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

	D	E	F			
Α	3	6	5	30	A	D
В	2	5	5	10	B	E
С	1	2	3	50	C	F
	20	30	40			

- Olocar a maior quantidade possível na casa com custo mínimo ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Cortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

	-	þ	Ε	F			
Α		3	6	5	30	A	D
В		2	5	5	10	B	E
С	2	20 1	2	3	50	©	F
		0	30	40	,		

- Olocar a maior quantidade possível na casa com custo mínimo ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Ortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

	[þ	I	<u> </u>	F		
Α		3		6		5	30
В		2		5		5	10
	,	20	2	0			50 -
C	1	1		2		3	30
	2	0	3		40		

- Olocar a maior quantidade possível na casa com custo mínimo ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Ortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

	I	þ	I	Ė	F	_
					30 -	30
^		3		6	50 5	30
В		2		5	5	10
-C	- 2	20 1	3	0 2	3	50
	2	0	3	0	40	•

- Olocar a maior quantidade possível na casa com custo mínimo ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Cortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

	ı	þ	ı	Ė	F	
					30 -	30
А		3		6	30 ₅	30
_B					10 _	10—
ъ		2		5	5	10
	,	20	_ 2	0		50-
C		1		2	3	30
	2	0	3	0	40	

- Olocar a maior quantidade possível na casa com custo mínimo ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Cortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

 Solução básica deve ter 5 variáveis básicas. Esta solução é admissível, mas ...

... deve ter 5 variáveis básicas

- Considerar uma variável com valor nulo como variável básica
- (neste caso, por exemplo, x_{AE}).
- A solução básica admissível é uma solução degenerada.

	D	E	F	
Α	3	0 6	30 ₅	30
В	2	5	10 5	10
С	20 1	30 ₂	3	50
	20	30	40	

 Grafo associado à solução básica é uma árvore (depois de adicionar o arco).

Nota: selecção da variável a tornar básica

- Nem todas as variáveis podem ser escolhidas!
- No seguinte exemplo, escolher a variável x_{AE} dá origem a um grafo que não é uma árvore.

 A escolha errónea impossibilita o uso do método dos multiplicadores [veremos depois], porque há multiplicadores que não podem ser calculados.

Análise do pivô: como variam as variáveis não-básicas?

- Pivô: Quadro inicial → quadro adjacente
- Movimento ao longo de uma aresta do poliedro do modelo de programação linear (de transportes):
- todas as variáveis não-básicas permanecem nulas, excepto uma que aumenta de valor.

Análise do pivô: como variam as variáveis básicas quando uma variável não-básica aumenta?

• Exemplo: quando a variável x_{AF} (não-básica) aumenta de uma quantidade θ , como variam os valores das variáveis básicas?

30

10

50

	D	E	F
Α	20 3	10 6	+0 5
В	2	10 5	5
С	1	10 2	40 3
	20	30	40

Propriedades das árvores:

- Há 1 caminho (e 1 só) entre cada par de vértices. Porquê?
- A adição de 1 arco a uma árvore dá origem a 1 (e 1 só) ciclo.
 Porquê?

Análise do pivô: variação dos valores das variáveis básicas

• O arco (A, F) (variável não-básica) forma um ciclo com os arcos (C, F), (C, E) e (A, E) (das variáveis básicas).

	D	E	<u> </u>
A	20 3	$10 - \frac{\theta}{6}$	+ θ 5
В	2	10 ₅	5
С	1	10 +θ ₂	40 -0 3
	20	30	40

- As variáveis básicas do ciclo são designadas por Stepping-stones.
- Os valores das variáveis básicas que ficam fora do ciclo não mudam.

Análise do pivô: qual o aumento máximo de x_{AF} ?

	D	E	F	
Α	20 3	$10-\theta_{6}$	+ θ 5	
В	2	10 5	5	
С	1	10+θ ₂	40-θ ₃	
	20	30	40	

• Quanto pode aumentar a variável não-básica x_{AF} sem nenhuma das variáveis básicas se tornar negativa?

30

10

50

• $\theta_{max} = \min\{10, 40\} = 10$

Pivô: exemplo

	D	Е	F
Α	20 3	$10-\theta_{6}$	+ θ 5
В	2	10 5	5
С	1	10+θ ₂	40-θ ₃
	20	30	40

30	
10	

50

$$\theta_{max} = \min\{10, 40\} = 10$$

• A variável x_{AF} entra na base e x_{AE} sai da base.

	D	E	F
Α	20 3	6	10 5
В	2	10 5	5
С	1	20 2	30 3
	20	30	40

Teste de optimalidade

Teste de optimalidade:

- análise da variação da função objectivo quando se caminha ao longo de cada aresta (aumentar uma variável não-básica de cada vez mantendo as restantes iguais a 0).
- Se o valor da função objectivo não melhorar em nenhuma aresta, a solução actual (vértice actual) é uma solução óptima.

Dois métodos para fazer o teste de optimalidade:

- análise da atractividade de cada variável não-básica, uma a uma.
- método dos multiplicadores.

Teste de optimalidade (cont.)

Análise da atractividade de uma dada variável não-básica:

- Os valores das variáveis ao longo do ciclo mudam, com reflexo nos custos.
- A soma das variações dos custos ao longo do ciclo fornece a variação do valor da função objectivo.
- Esta análise deve ser repetida para cada variável não-básica.
- O Método dos Multiplicadores é uma forma alternativa (e mais eficiente) de fazer a análise para todas as variáveis não-básicas.
- Vamos ilustrar a avaliação da atractividade de uma variável não-básica.

Exemplo: variável não-básica x_{AF}

	D	Е	F			
Α	20 3	$10-\theta_{6}$	+ θ 5	30	A	→ D
В	2	10 5	5	10	B	E
C	1	$10+\theta_2$	$40-\theta_{3}$	50	(C)	F
	20	30	40	$\theta_{max} = n$	$nin\{10,40\} = 10$	

Por cada unidade de aumento da variável não-básica x_{AF} ,

- gastam-se mais 5 unidades em (A, F),
- economizam-se 3 unidades em (C,F),
- gastam-se mais 2 unidades em (C, E),
- economizam-se 6 unidades em (A, E),
- pelo que o valor da função objectivo diminui 2 unidades: $\delta_{AF} = +5 3 + 2 6 = -2$.

Método dos multiplicadores

Output do método dos multiplicadores:

- os δ_{ij} de todas as variáveis não-básicas ij.
- Vantagem: mais eficiente do que calcular as variações de custo para todos os ciclos.

Validade do método: resulta da teoria da dualidade (veremos depois)

Os multiplicadores são variáveis duais associadas às restrições.

Método dos multiplicadores

Multiplicadores associados às restrições:

- há um multiplicador u_i associado a cada linha i, i = 1,...,m;
- há um multiplicador v_i associado a cada coluna j, j = 1, ..., n.

Método dos multiplicadores:

- Fixar o valor de um qualquer multiplicador (e.g., no valor 0).
- Para as casas básicas $(ij \in \mathcal{B})$, fazer:

$$c_{ij} = u_i + v_j$$

2 Para as casas não-básicas $(ij \in \mathcal{N})$, fazer:

$$\delta_{ij} = c_{ij} - u_i - v_j$$

Output do método dos multiplicadores:

ullet os δ_{ij} de todas as casas não-básicas.

Método dos multiplicadores:

• Fixar o valor de um qualquer multiplicador (e.g., no valor 0).

 $u_i^{V_i}$

0

20 3	10 6	5
2	10 5	5
1	10 2	40 3

3010

50

• fixar um multiplicador: $u_A = 0$.

Método dos multiplicadores:

Para as casas básicas, fazer:

$$c_{ij} = u_i + v_j$$

 $u_i^{V_j}$

0

20 3	10 6	5
2	10 5	5
1	10 2	40 3

30

10

•
$$u_A + v_D = 3$$

$$\Rightarrow v_D =$$

- •
- •
- •
- •

Método dos multiplicadores:

Para as casas básicas, fazer:

$$c_{ij} = u_i + v_j$$

30

10

50

 u_i^{V}

· ' __

20 3	10 6	5
2	10 5	5
1	10 2	40 3

•
$$u_A + v_D = 3$$

$$\Rightarrow v_D = 3$$

•
$$u_A + v_E = 6$$

$$\Rightarrow v_E =$$

Método dos multiplicadores:

Para as casas básicas, fazer:

$$c_{ij} = u_i + v_j$$

10 50

30

•
$$u_A + v_D = 3$$

$$\Rightarrow v_D = 3$$

•
$$u_A + v_E = 6$$

$$\Rightarrow v_E = 6$$

•
$$u_B + v_F = 5$$

$$\Rightarrow u_B =$$

•

•

Método dos multiplicadores:

Para as casas básicas, fazer:

$$c_{ij} = u_i + v_j$$

ui 3 6 20 3 0 10 10 5 -1 2 10 2 40 3

10

50

•
$$u_A + v_D = 3$$

$$\Rightarrow v_D = 3$$

•
$$u_A + v_E = 6$$

• $u_B + v_F = 5$

$$\Rightarrow v_E = 6$$

$$\Rightarrow u_B = -1$$

•
$$u_C + v_E = 2$$

$$\Rightarrow u_C =$$

Método dos multiplicadores:

Para as casas básicas, fazer:

$$c_{ij} = u_i + v_j$$

$u_i^{v_j}$	3	6	
0	20 3	10 6	5
-1	2	10 5	5
-4	1	10 2	40 3

50

$$\bigcirc$$
 3

•
$$u_A + v_D = 3$$

$$\Rightarrow v_D = 3$$

•
$$u_A + v_E = 6$$

$$\Rightarrow v_E = 6$$

•
$$u_B + v_F = 5$$

$$\Rightarrow u_B = -1$$

•
$$u_C + v_E = 2$$

$$\Rightarrow u_C = -4$$

•
$$u_C + v_F = 3$$

$$\Rightarrow u_C = -4$$

 $\Rightarrow v_F =$

Método dos multiplicadores:

Para as casas básicas, fazer:

$$c_{ij} = u_i + v_j$$

$u_i^{v_j}$	3	6	7
0	20 3	10 6	5
-1	2	10 5	5
-4	1	10 2	40 3

30 10

•
$$u_A + v_D = 3$$

$$\Rightarrow v_D = 3$$

•
$$u_A + v_E = 6$$

$$\Rightarrow v_E = 6$$

•
$$u_B + v_F = 5$$

$$\Rightarrow u_B = -1$$

•
$$u_C + v_E = 2$$

$$\Rightarrow u_C = -4$$

•
$$u_C + v_E = 2$$

$$\Rightarrow u_C = -4$$

 $\Rightarrow v_F = 7$

Método dos multiplicadores

V:

Para as casas não-básicas, fazer:

$$\delta_{ij} = c_{ij} - u_i - v_j$$

u_i	J	3	6	
0		20 3	10 6	-2 5
-1		0 2	10 5	-1 5
-4		+2	10 2	40 3

10

50

•
$$\delta_{AF} = 5 - 0 - 7 = -2$$

•
$$\delta_{BD} = 2 - (-1) - 3 = 0$$

•
$$\delta_{BF} = 5 - (-1) - 7 = -1$$

•
$$\delta_{CD} = 1 - (-4) - 3 = +2$$

• A variável não-básica x_{AF} é a mais atractiva.

Selecção de variável não-básica

• O critério de selecção da variável não-básica é a ganância (δ_{ij} mais negativo)

Resolução do exemplo: diapositivo repetido da iteração 1

	D	E	F			
Α	20 3	$10-\theta_6$	+ θ 5	30	A	(D)
В	2	10 5	5	10	B	E
С	1	10+θ ₂	$40-\theta_{3}$	50	<u>C</u>	F
	20	30	40	$\theta_{max} = m$	$nin\{10,40\} = 10$	

• A variável x_{AF} entra na base e x_{AE} sai da base.

	D	Е	F		
Α	20 3	6	10 5	30	(A) (D)
В	2	10 5	5	10	B
С	1	20 2	30 3	50	$C \longrightarrow F$
	20	30	40		

Quadro 2: teste de optimalidade

• A variável não-básica mais atractiva é a variável x_{BD} : $\delta_{BD} = -2$.

Iteração 2

	D	Е	F	
Α	$20-\theta_3$	6	$10+\theta_5$	
В	+0 2	$10-\theta_5$	5	
С	1	20+θ ₂	$30-\theta_3$	
	20	30	40	

30	A	D
10	B	E
50	C	F
max = mir	110,20,30 = 10	

• A variável x_{BD} entra na base e x_{BE} sai da base.

	D	E	F
Α	10 3	6	20 5
В	10 2	5	5
С	1	30 2	20 3
	20	30	40

Quadro 3: teste de optimalidade

- Solução óptima.
- \bullet Custo da solução óptima: 10(3)+20(5)+10(2)+30(2)+20(3)=270
- Há soluções óptimas alternativas, porque $\delta_{CD} = 0$.

Uma solução óptima alternativa

	D	Ε	F			
Α	$10-\theta_3$	6	20+ <i>θ</i> ₅	30	A	D
В	10 2	5	5	10	B	E
С	+0 1	30 2	$20-\theta_3$	50	C	F
	20	30	40	$\theta_{max} = m$	$sin\{10, 20\} = 10$	

• O custo da seguinte solução é o mesmo. Porquê?

	D	E	F
Α	3	6	30 ₅
В	10 2	5	5
С	10 1	30 2	10 3
	20	30	40

Degenerescência: pivô degenerado

ullet Com degenerescência, regras são semelhantes, mas $heta_{max}$ pode ser 0.

	5	6	5		
0	-2	0-θ ₆	30+ <i>θ</i> ₅	30	(
0	$^{-3}$ $+\theta$ 2	-1 5	$10-\theta_5$	10	(
-4	$20-\theta_{1}$	$30+\theta_{2}$	+2 3	50	(
	20	30	40	$\theta_{max} = m$	in{0,1

• A variável x_{BD} entra na base (com valor nulo) e x_{AE} sai da base.

3	6	30 ₅
0 2	5	10 5
20 1	30 ₂	3
20	30	40

Degenerescência: saída do vértice degenerado

O pivô anterior designa-se por pivô degenerado:
 a base é diferente, mas a solução básica (vértice) é a mesma.

	2	3	5			
0	+1 3	+3	30 ₅	30	A	D
0	$0+\theta_2$	+2 5	$10-\theta_5$	10	B	E
-1	$20-\theta_{1}$	30 2	$^{-1}$ + θ 3	50	C	F
	20	30	40	$\theta_{max} = m$	$nin\{10, 20\} = 10$	
	2	3	5			
0	+1 3	+3	30 ₅	30	A	D
0	10 2	+2 5	5	10	B	E
-1	10 ,	30 2	⁻¹ 10 ₂	50	()	F

Conclusão

- O algoritmo apresentado é uma especialização do algoritmo simplex para um problema que é representado num grafo bipartido.
- Este problema é, por vezes, designado por problema de Hitchcock^(†), que apresentou um modelo matemático e um procedimento para a sua resolução.
- Os grafos bipartidos são uma classe de grafos, e o algoritmo pode ser generalizado para grafos gerais.

(†) - Frank. L. Hitchcock, The distribution of a product from several sources to numerous localities, J. Math. Physics, 20 (1941), 224-230.

Resultados de aprendizagem

- Saber caracterizar a estrutura das soluções básicas de um problema de transporte em grafos bipartidos
 - identificar o número correcto de variáveis básicas
 - construir uma solução básica com o número correcto de casas básicas
- Resolver problemas de transporte em grafos bipartidos.
 - saber usar o método dos multiplicadores para identificar a variável a entrar na base;
 - saber seleccionar a variável a sair da base;
 - utilizar o método do stepping-stone para mudar para uma base adjacente;
 - reconhecer quando uma solução é óptima;
 - reconhecer quando há soluções óptimas alternativas.
 - saber aplicar os mesmos conceitos em soluções degeneradas.

Apêndices

1. Outra forma de calcular o custo: custo da solução dual

• Problema dual é: $\max\{\sum_i a_i u_i + \sum_j b_j v_j : u_i + v_j \le c_{ij}\}$.

	3	4	5
0	10 3	+2	20 5
-1	10 2	+2 5	+1 5
-2	0 1	30 2	20 3
	20	30	40

10 50

- Multiplicadores são variáveis duais (veremos depois).
- Solução dual é $(u_A, u_B, u_C, v_D, v_E, v_F)^t = (0, -1, -2, 3, 4, 5)^t$.
- Custo da solução: 30(0)+10(-1)+50(-2)+20(3)+30(4)+40(5)=270

2. Desafio

 Como é o quadro simplex correspondente a um quadro de transportes?

Exemplo: colunas das variáveis básicas e lado direito

30

10

50

	3	6	7
0	20 3	$10-\theta_{6}$	$^{-2}$ + θ 5
-1	0 2	10 5	-1 5
-4	+2	10+θ ₂	40-θ ₃
	20	30	40

	x_{AD}	x_{AE}	x_{AF}	x_{BD}	x_{BE}	x_{BF}	x_{CD}	x_{CE}	XCF	
X_{AD}	1	0	?		0			0	0	20
XAE	0	1	?		0			0	0	10
XBE	0	0	?		1			0	0	10
XCE	0	0	?		0			1	0	10
XCF	0	0	?		0			0	1	40
-z	0	0	?		0			0	0	-310

Quais os valores dos coeficientes da coluna de x_{AF}?

Exemplo: coluna da variável não-básica XAF

	3	6	7
0	20 3	$10-\theta_{6}$	$^{-2}$ + θ 5
-1	0 2	10 5	-1 5
-4	+2	10+θ ₂	40-θ ₃
	20	30	40

	x_{AD}	x_{AE}	x_{AF}	x_{BD}	x_{BE}	x_{BF}	x_{CD}	x_{CE}	XCF	
X _{AD}	1	0	0		0			0	0	20
XAE	0	1	+1		0			0	0	10
XBE	0	0	0		1			0	0	10
XCE	0	0	-1		0			1	0	10
XCF	0	0	+1		0			0	1	40
-z	0	0	-2		0			0	0	-310

30

10

50

• Quando x_{AF} aumenta, x_{AE} e x_{CF} diminuem e x_{CE} aumenta.

Fim