

CO 463 Course Notes

University of Waterloo

The One And Only Waterloo 76er Bill Zhuo

Free Material & Not For Commercial Use

-1	CO463 Main Content						
1	Affine Sets and Convex Sets	-					
1.1	introduction	7					
	Affine Sets and Affine Subspaces in \mathbb{R}^n	-					
1.1.2	Convex Sets in \mathbb{R}^n	8					
1.2	Convex Combinations of Vectors	9					
1.3	Convex Sets: Best Approximations	12					

CO463 Main Content

1	Affine	Sets	and	Convex	Sets	 	 	7
-	7					 	 	-

- 1.1 introduction
- 1.2 Convex Combinations of Vectors
- 1.3 Convex Sets: Best Approximations

1.1 introduction

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. Consider the problem

(P)
$$\min_{s.t.} f(x)$$
 $s.t. x \in C \subseteq \mathbb{R}^n$

In the special case, when $C = \mathbb{R}^n$, the minimizers of f (if any) will occur at the critical points of f, namely, $x \in \mathbb{R}^n$ such that $\nabla f(x) = 0$. This is known as **Fermat's Rule**. We will discuss and learn convexity of sets and functions and how we can approach problem (P) in the more general settings of:

- 1. Absence of differentiability of the objective function f, f is convex
- 2. $\emptyset \neq C \subsetneq \mathbb{R}^n$, convex *C* is the constraint set.

1.1.1 Affine Sets and Affine Subspaces in \mathbb{R}^n

Definition 1.1.1 — Affine set, affine subspace, and affine hull. Let $S \subseteq \mathbb{R}^n$. Then:

1. *S* is an affine set if for all $x, y \in S$ and for all $\lambda \in \mathbb{R}$,

$$\lambda x + (1 - \lambda)y \in S$$

Trivially, \emptyset , \mathbb{R}^n are affine sets.

- 2. *S* is an affine subspace if it is a non-empty affine set.
- 3. The affine hull of S, denoted by $\mathbf{aff}(S)$, is the intersection of all affine sets containing S
- Example 1.1 Affine Sets of \mathbb{R}^n . 1. Any linear subspace of \mathbb{R}^n
 - 2. a+L where $a \in \mathbb{R}^n$ and L is any linear subspace
 - 3. \emptyset , \mathbb{R}^n

Geometrically speaking, a non-empty subset $S \subseteq \mathbb{R}^n$ is affine if the line connecting any two points in the set lies entirely in the set. For example, $S = \{(x_1, x_2) | x_2 \le 0\}$ is not affine.

1.1.2 Convex Sets in \mathbb{R}^n

Definition 1.1.2 — Convex set. A subset C of \mathbb{R}^n is convex if for all $\lambda \in (0,1)$ and $x,y \in C$ we have $\lambda x + (1-\lambda)y \in C$.

- Example 1.2 Convex sets. In \mathbb{R}^n ,
 - 1. \emptyset , \mathbb{R}^n
 - 2. Balls
 - 3. Affine sets
 - 4. Any half-space,

$$C = \{x \in \mathbb{R}^n | \langle x, u \rangle \leq \eta \}, u \in \mathbb{R}^n, \eta \in \mathbb{R}$$

Geometrically speaking, a subset $C \subseteq \mathbb{R}^n$ is convex if given any two points $x, y \in C$, the line segment joining x, y, denoted by [x, y] lies entirely in C.

Figure 1.1.1: Convex sets and non-convex sets

Theorem 1 The intersection of an arbitrary collection of convex sets is convex.

Proof. Let I be an index set (not necessarily finite). Let $(C_i)_{i \in I}$ be a collection of convex subsets of \mathbb{R}^n . Consider

$$C:=\bigcap_{i\in I}C_i$$

Let $\lambda \in (0,1)$ and let $(x,y) \in C \times C$. Since C_i is convex for all $i \in I$. We have

$$\lambda x + (1 - \lambda)y \in C_i$$

Thus,

$$\lambda x + (1 - \lambda)y \in \bigcap_{i \in I} C_i = C$$

Hence, C is convex.

Corollary 1.1.1 Let $b_i \in \mathbb{R}^n$ and $\beta_i \in \mathbb{R}$ for $i \in I$ where I is an arbitrary index set. Then the set

$$C = \{x \in \mathbb{R}^n | \langle x, b_i \rangle \le \beta_i, \forall i \in I\}$$

is convex.

1.2 Convex Combinations of Vectors

Definition 1.2.1 — Convex Combination. A vector sum

$$\lambda_1 x_1 + \cdots + \lambda_m x_m$$

is called a convex combination of vectors x_1, \dots, x_m if for $i = 1, \dots, m$, $\lambda_i \ge 0$ and $\sum_{i=1}^m \lambda_i = 1$.

Theorem 2 A subset C of \mathbb{R}^n is convex if and only if it contains all the convex combinations of its elements.

Proof. 1. **Easy:** suppose C contains all the convex combinations of its elements. Let $\lambda \in (0,1)$ and let $x,y \in C$. By assumption, the convex combination $\lambda x + (1-\lambda)y \in C$. Thus, C is convex.

- 2. **Hard:** suppose C is convex. Induction on m, the number of elements in the convex combination.
 - (a) **Base case:** when m = 2, the conclusion is clear by the convexity of C.
 - (b) **Induction step:** suppose that for some m > 2 it holds that any convex combination of m vectors lies in C. Let $\{x_1, \dots, x_m, x_{m+1}\} \subseteq C$, let $\lambda_1, \dots, \lambda_m, \lambda_{m+1} \ge 0$, such that $\sum_{i=1}^{m+1} \lambda_i = 1$. We want to show that

$$z := \sum_{i=1}^{m+1} \lambda_i x_i \in C$$

Note that there must exist at least one $\lambda_i \in [0,1)$ or else if all $\lambda_i = 1$ then the sum will be greater than 3, which is non-sense. Without loss of generality, we can and do assume that $\lambda_{m+1} \in [0,1)$. Now:

$$z = \sum_{i=1}^{m+1} \lambda_i x_i$$

$$= \sum_{i=1}^{m} \lambda_i x_i + \lambda_{m+1} x_{m+1}$$

$$= (1 - \lambda_{m+1}) \sum_{i=1}^{m} \frac{\lambda_i}{1 - \lambda_{m+1}} x_i + \lambda_{m+1} x_{m+1}$$

$$= (1 - \lambda_{m+1}) \sum_{i=1}^{m} \lambda_i' x_i + \lambda_{m+1} x_{m+1}$$

observe that $\lambda_i' = \frac{\lambda_i}{1 - \lambda_{m+1}} \ge 0$ and

$$\sum_{i=1}^{m} \lambda_i' = \frac{1 - \lambda_{m+1}}{1 - \lambda_{m+1}} = 1$$

Then by inductive hypothesis, we know that

$$z = (1 - \lambda_{m+1}) \underbrace{\sum_{i=1}^{m} \frac{\lambda_i}{1 - \lambda_{m+1}} x_i}_{\in C} + \lambda_{m+1} \underbrace{x_{m+1}}_{\in C} \in C$$

since *C* is convex.

We are done.

Definition 1.2.2 — Convex hull. Let $S \subseteq \mathbb{R}^n$. The intersection of all convex sets containing S is called the convex hull of S and is denoted by $\mathbf{conv}(S)$.

By Theorem 1, conv(S) is convex. In fact, it is the smallest convex set containing S.

Theorem 3 Let $S \subseteq \mathbb{R}^n$. Then **conv**(S) consists of all the convex combinations of the elements of S, i.e.,

$$\mathbf{conv}(S) := \left\{ \sum_{i \in I} \lambda_i x_i : I \text{ is a finite index set}, x_i \in S, \lambda_i \ge 0, \sum_{i=1} \lambda_i = 1 \right\}$$

Proof. Let

$$D := \left\{ \sum_{i \in I} \lambda_i x_i : I \text{ is a finite index set}, x_i \in S, \lambda_i \ge 0, \sum_{i=1} \lambda_i = 1 \right\}$$

1. **conv**(S) $\subseteq D$: note that $S \subseteq D$. It remains to show D is convex. Let $d_1, d_2 \in D$ and let $\lambda \in (0,1)$. Then, there exists

$$\lambda_1, \dots, \lambda_k \ge 0, \sum_{i=1}^k \lambda_i = 1$$

$$\mu_1, \dots, \mu_r \ge 0, \sum_{j=1}^r \mu_j = 1,$$

$$d_1 = \sum_{i=1}^k \lambda_i x_i, \{x_1, \dots, x_k\} \subseteq S$$

$$d_2 = \sum_{j=1}^r \mu_j y_j, \{y_1, \dots, y_r\} \subseteq S$$

Therefore,

$$\lambda d_1 + (1 - \lambda)d_2$$

$$= \lambda \sum_{i=1}^k \lambda_i x_i + (1 - \lambda) \sum_{j=1}^r \mu_j y_j$$

note that $\lambda \lambda_i, (1-\lambda)\mu_j \geq 0$ for all $i \in \{1, \cdots, k\}$ and $j \in \{1, \cdots, r\}$, and that

$$\lambda \sum_{i=1}^{k} \lambda_i + (1 - \lambda) \sum_{j=1}^{r} \mu_j = 1$$

Thus, *D* is convex and $\mathbf{conv}(S) \subseteq D$.

2. $D \subseteq \mathbf{conv}(S)$: observed that $S \subseteq \mathbf{conv}(S)$. By Theorem 2, all the convex combinations of elements in S are in $\mathbf{conv}(S)$

Thus, we are done.

Figure 1.2.1: Convex hulls

1.3 Convex Sets: Best Approximations

Definition 1.3.1 — Distance function. Let $S \subseteq \mathbb{R}^n$. The distance to S is the function $d_S : \mathbb{R}^n \to [0,\infty]$ defined by

$$d_S(x) = \inf_{s \in S} ||x - s||$$

Definition 1.3.2 — Projection onto a set. Let $\emptyset \neq C \subseteq \mathbb{R}^n$, $x \in \mathbb{R}^n$, and let $p \in C$. Then, p is a projection of x onto C, denoted by $P_C(x)$ if

$$d_C(x) = ||x - p||$$

- Note that this projection is not necessarily unique. By the projection theorem introduced later, we need C to be convex to have the unique projection.
- Recall that in \mathbb{R}^n , every Cauchy sequence converges since \mathbb{R}^n is complete. We also recall sequential continuity in \mathbb{R}^n . Consider $\|\cdot\|$, the Euclidean norm on \mathbb{R}^n . It is continuous on \mathbb{R}^n .

Lemma 1.4 — Auxiliary I. Let $x, y, z \in \mathbb{R}^n$. Then,

$$||x-y||^2 = 2||z-x||^2 + 2||z-y||^2 - 4||z-\frac{x+y}{2}||^2$$

Proof. For the RHS, we handle it term by term

$$2\|z - x\|^{2} = 2\|z\|^{2} - 4\langle z, x \rangle + 2\|x\|^{2}$$

$$2\|z - y\|^{2} = 2\|z\|^{2} - 4\langle z, y \rangle + 2\|y\|^{2}$$

$$4\left\|z - \frac{x + y}{2}\right\|^{2} = 4\left[\|z\|^{2} + \frac{1}{4}\|x + y\|^{2} - \langle z, x + y \rangle\right]$$

$$= 4\|z\|^{2} + \|x + y\|^{2} - 4\langle z, x \rangle - 4\langle z, y \rangle$$

Now, add them together,

$$RHS = 2||x||^{2} + 2||y||^{2} - ||x + y||^{2}$$

$$= 2||x||^{2} + 2||y||^{2} - ||x||^{2} - ||y||^{2} - 2\langle x, y \rangle$$

$$= ||x - y||^{2} = LHS$$

Lemma 1.5 — Auxiliary II. Let $x, y \in \mathbb{R}^n$. Then,

$$\langle x, y \rangle < 0 \iff \forall \lambda \in [0, 1], ||x|| < ||x - \lambda y||$$

Proof. 1. \Longrightarrow : suppose $\langle x, y \rangle \leq 0$. Then

$$||x - \lambda y||^2 - ||x||^2 = ||x||^2 - 2\lambda \langle x, y \rangle + \lambda^2 ||y||^2 - ||x||^2 = \lambda (\lambda ||y||^2 - 2\langle x, y \rangle) \ge 0$$

2. \Leftarrow : suppose that for every $\lambda \in (0,1]$,

$$||x - \lambda y|| \ge ||x||$$

then,

$$\langle x, y \rangle \le \frac{\lambda}{2} \|y\|^2$$

We can take $\lambda \downarrow 0$ to yield the desired result.

Theorem 4 — The projection theorem. Let C be a non-empty, closed, and convex subset of \mathbb{R}^n . Then,

- 1. For all $x \in \mathbb{R}^n$ $P_C(x)$ exists and is unique
- 2. For all $x \in \mathbb{R}^n$ and every $p \in \mathbb{R}^n$,

$$p = P_C(x) \iff p \in C \land \forall y \in C, \langle y - p, x - p \rangle \le 0$$

Proof. Let $x \in \mathbb{R}^n$,

- 1. Our goal is to show that x has a unique projection onto C.
 - (a) **Existence:** there exists a sequence $(c_n)_n$ in C such that $d_C(x) = \lim_n ||c_n x||$. Let $m, n \in \mathbb{N}$, by the convexity of C, we know that

$$\frac{1}{2}(c_m+c_n)\in C$$

then,

$$d_C(x) = \inf_{c \in C} ||x - c|| \le \left| \left| x - \frac{1}{2} (c_m + c_n) \right| \right|$$

by Auxiliary I lemma,

$$||c_n - c_m||^2 = 2||c_n - x||^2 + 2||c_m - x|| - 4||x - \frac{c_n + c_m}{2}||^2$$

$$\leq 2||c_n - x||^2 + 2||c_m - x|| - 4d_C^2(x)$$

let $m, n \to \infty$, we have

$$0 \le ||c_n - c_m||^2 \to 2d_C^2(x) + 2d_C^2(x) - 4d_C^2(x) = 0$$

Thus, $||c_n - c_m||^2 \to 0$. Hence, $(c_n)_n$ is Cauchy in C and it converges to some point $p \in C$ by the closedness of C. By sequential continuity, we have

$$dC(x) = ||x - p||$$

(b) **Uniqueness:** suppose that $q \in C$ satisfies that $d_C(x) = ||q - x||$. By the convexity of C, $\frac{1}{2}(p+q) \in C$. By Auxiliary I,

$$0 \le \|p - q\|^2$$

$$= 2\|p - x\|^2 + 2\|q - x\|^2 - 4\left\|x - \frac{p + q}{2}\right\|^2$$

$$\le 2d_C^2(x) + 2d_C^2(x) - 4d_C^2(x) = 0$$

This means p = q.

2. From part 1, we note that

$$p = P_C(x) \iff p \in C \wedge ||x - p||^2 = d_C^2(x)$$

Note that for every $y \in C$,

$$\alpha \in [0,1], y_{\alpha} := \alpha y + (1-\alpha)p \in C$$

Therefore,
$$\|x-p\|^2 = d_C^2(x)$$

$$\iff \forall y \in C, \forall \alpha \in [0,1], \|x-p\|^2 \le \|x-y_\alpha\|^2$$

$$\iff \forall y \in C, \forall \alpha \in [0,1], \|x-p\|^2 \le \|x-p-\alpha(y-p)\|^2$$

$$\iff \forall y \in C \langle x-p, y-p \rangle \le 0$$
 last \iff is by Auxiliary II.

■ Example 1.3 — Absence of closedness. For any $x \in \mathbb{R}^n \setminus C$, the projection of x onto C does not exist.

Example 1.4 — Absence of convexity. On the real line \mathbb{R} , consider

$$C = [-2, -1] \cup [1, 2]$$

which is not convex. Both 1, -1 are projections of 0 onto C.

Exercise 1.1 Let $\varepsilon > 0$, and let $C = B(0, \varepsilon) = \left\{ x \in \mathbb{R}^n : ||x||^2 \le \varepsilon^2 \right\}$. Show that

$$\forall x \in \mathbb{R}^n, P_C(x) = \frac{\varepsilon}{\max{\{\|x\|, \varepsilon\}}} x$$

Proof. Let $x \in \mathbb{R}^n$ and let $p := \frac{\varepsilon}{\max\{\|x\|, \varepsilon\}} x$. By the projection theorem, it suffices to show that 1. $p \in C$:

- (a) **Case 1:** when $||x|| \le \varepsilon$. Then, $x \in C$, $p = \frac{\varepsilon}{\varepsilon}x = x \in C$.
- (b) Case: 2 when $||x|| > \varepsilon$. Then, $p = \frac{\varepsilon}{||x||} x$, and $||p|| = \varepsilon \Longrightarrow p \in C$.
- 2. $\forall y \in C, \langle x p, y p \rangle \leq 0$: let $y \in C$,
 - (a) Case 1: when $||x|| \le \varepsilon$, p = x and

$$0 \le \langle x - p, y - p \rangle \le 0$$

(b) Case 2: when $||x|| > \varepsilon$, then $p = \frac{\varepsilon}{||x||}x$. We check

$$\begin{split} \langle x - p, y - p \rangle &= \left\langle x - \frac{\varepsilon}{\|x\|} x, y - \frac{\varepsilon}{\|x\|} x \right\rangle \\ &= \left(1 - \frac{\varepsilon}{\|x\|} \right) \left\langle x, y - \frac{\varepsilon}{\|x\|} x \right\rangle \\ &= \left(1 - \frac{\varepsilon}{\|x\|} \right) \left(\langle x, y \rangle - \frac{\varepsilon}{\|x\|} \|x\|^2 \right) \\ &\overset{\text{C-S Inequality}}{\leq} \left(1 - \frac{\varepsilon}{\|x\|} \right) (\|x\| \|y\| - \varepsilon \|x\|) \\ &\overset{\|y\| \leq \varepsilon}{\leq} \left(1 - \frac{\varepsilon}{\|x\|} \right) (\|x\| \varepsilon - \varepsilon \|x\|) \\ &- 0 \end{split}$$

Thus, we are done.

Definition 1.5.1 — Minkowski sum of two sets. Let C,D be two subsets of \mathbb{R}^n . The Minkowski sum of C,D, denoted by C+D, is

$$C+D := \{c+d : c \in C, d \in D\}$$

Theorem 5 Let $C_1, C_2 \subseteq \mathbb{R}^n$ be convex. Then, $C_1 + C_2$ is also convex.

Proof. Left as an exercise to the reader.

Proposition 1.5.1 Let C,D be non-empty, closed, convex subsets of \mathbb{R}^n such that D is bounded. Then, C+D is non-empty, closed, and convex.

Proof. It is clear that C+D is non-empty when C,D are non-empty and by Theorem 5, C+D is convex. It remains to check C+D is closed. Let $(x_n+y_n)_n$ be a sequence in C+D such that $(x_n)_n$ is in C and $(y_n)_n$ is in D. Moreover, $x_n+y_n\to z$. We want to show $z\in C+D$. Since D is

bounded, we have $(y_n)_n$ bounded. Then, by Bolzano-Weierstrass Theorem, we know that there exists a subsequence $(y_{n_k})_k$ such that $y_{n_k} \to y \in D$. Then, $x_{n_k} \to \bar{x} = z - y \in C$ by closedness. Thus, $z \in C + y \subseteq C + D$.

R

What happens if we drop the assumption that *D* is bounded?

Exercise 1.2 Given an example of two closed convex cones $K_1, K_2 \subseteq \mathbb{R}^n$ such that $K_1 + K_2$ is not closed.

Proof. Consider n = 3, $S_1 = \{(x, y, z) \in \mathbb{R}^3 : x^2 \ge y^2 + z^2, x \ge 0\}$ and $S_2 = \{t(-1, 0, 1) : t \ge 0\}$. It is clear that S_2 is a closed cone. We note that S_1 is a closed set and we proceed to show S_1 is indeed a cone. Note that S_1 is the cone constructed by lifting a convex disk $S = \{(x, y) : x^2 + y^2 \le 1\}$. Thus, by the lifting lemma proved in class, S_1 is a convex cone. Now, for each $n \in \mathbb{N}$, consider

$$n(-1,0,1) + \left(\sqrt{n^2 + \left(1 + \frac{1}{n}\right)^2}, 1 + \frac{1}{n}, -n\right) \in S_1 + S_2$$

Then, as $n \to \infty$, this sequence of points converges to (0,1,0). The sequence converges but (0,1,0) is not in S_1 nor S_2 . We claim $(0,1,0) \notin S_1 + S_2$. For the sake contradiction, say $(0,1,0) \in S_1 + S_2$. Then, we can write $(0,1,0) = s_1 + s_2$ with $s_1 = (-\lambda,0,\lambda)$ for some $\lambda \ge 0$ and $s_2 \in S_2$. Note that this forces

$$s_2 = (\lambda, 1, -\lambda)$$

but $\lambda^2 < 1 + \lambda^2 \Longrightarrow s_2 \not\in S_2$. This yields a contradiction and $(0,1,0) \not\in S_1 + S_2$ gives us a valid counterexample.