

DESCRIPTION

The Hynix HY57V281620A is a 134,217,728bit CMOS Synchronous DRAM, ideally suited for the main memory applications which require large memory density and high bandwidth. HY57V281620A is organized as 4banks of 2,097,152x16

HY57V281620A is offering fully synchronous operation referenced to a positive edge of the clock. All inputs and outputs are synchronized with the rising edge of the clock input. The data paths are internally pipelined to achieve very high bandwidth. All input and output voltage levels are compatible with LVTTL.

Programmable options include the length of pipeline (Read latency of 2 or 3), the number of consecutive read or write cycles initiated by a single control command (Burst length of 1,2,4,8, or full page), and the burst count sequence(sequential or interleave). A burst of read or write cycles in progress can be terminated by a burst terminate command or can be interrupted and replaced by a new burst read or write command on any cycle. (This pipelined design is not restricted by a '2N' rule.)

FEATURES

- Single 3.3±0.3V power supply
- All device pins are compatible with LVTTL interface
- JEDEC standard 400mil 54pin TSOP-II with 0.8mm of pin pitch
- All inputs and outputs referenced to positive edge of system clock
- Data mask function by UDQM or LDQM
- Internal four banks operation

- · Auto refresh and self refresh
- 4096 refresh cycles / 64ms
- Programmable Burst Length and Burst Type
 - 1, 2, 4, 8 or Full page for Sequential Burst
 - 1, 2, 4 or 8 for Interleave Burst
- Programmable CAS Latency; 2, 3 Clocks

ORDERING INFORMATION

Part No.	Clock Frequency	Power	Organization	Interface	Package
HY57V281620AT-6	166MHz				
HY57V281620AT-7	143MHz				
HY57V281620AT-K	133MHz	1			
HY57V281620AT-H	133MHz	Normal			
HY57V281620AT-8	125MHz	1			
HY57V281620AT-P	100MHz	1			
HY57V281620AT-S	100MHz	1	4Banks x 2Mbits	LVTTL	400mil 54pin TSOP II
HY57V281620ALT-6	166MHz		x16	LVIIL	400mii 34piii 130F ii
HY57V281620ALT-7	143MHz	1			
HY57V281620ALT-K	133MHz	1			
HY57V281620ALT-H	133MHz	Low power			
HY57V281620ALT-8	125MHz	1			
HY57V281620ALT-P	100MHz	1			
HY57V281620ALT-S	100MHz				

This document is a general product description and is subject to change without notice. Hynix does not assume any responsibility for use of circuits described. No patent licenses are implied.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	PIN NAME	DESCRIPTION
CLK	Clock	The system clock input. All other inputs are registered to the SDRAM on the rising edge of CLK
CKE	Clock Enable	Controls internal clock signal and when deactivated, the SDRAM will be one of the states among power down, suspend or self refresh
CS	Chip Select	Enables or disables all inputs except CLK, CKE, UDQM and LDQM
BA0, BA1	Bank Address	Selects bank to be activated during RAS activity Selects bank to be read/written during CAS activity
A0 ~ A11	Address	Row Address : RA0 ~ RA11, Column Address : CA0 ~ CA8 Auto-precharge flag : A10
RAS, CAS, WE	Row Address Strobe, Col- umn Address Strobe, Write Enable	RAS, CAS and WE define the operation Refer function truth table for details
UDQM, LDQM	Data Input/Output Mask	Controls output buffers in read mode and masks input data in write mode
DQ0 ~ DQ15	Data Input/Output	Multiplexed data input / output pin
VDD/VSS	Power Supply/Ground	Power supply for internal circuits and input buffers
VDDQ/VSSQ	Data Output Power/Ground	Power supply for output buffers
NC	No Connection	No connection

FUNCTIONAL BLOCK DIAGRAM

2Mbit x 4banks x 16 I/O Synchronous DRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Ambient Temperature	ТА	0 ~ 70	°C
Storage Temperature	TSTG	-55 ~ 125	°C
Voltage on Any Pin relative to VSS	VIN, VOUT	-1.0 ~ 4.6	V
Voltage on VDD relative to VSS	VDD, VDDQ	-1.0 ~ 4.6	V
Short Circuit Output Current	IOS	50	mA
Power Dissipation	PD	1	W
Soldering Temperature · Time	TSOLDER	260 · 10	°C · Sec

Note: Operation at above absolute maximum rating can adversely affect device reliability.

DC OPERATING CONDITION (TA=0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit	Note
Power Supply Voltage	VDD, VDDQ	3.0	3.3	3.6	V	1
Input High voltage	VIH	2.0	3.0	VDDQ + 0.3	V	1,2
Input Low voltage	VIL	-0.3	0	0.8	V	1,3

Note:

- 1.All voltages are referenced to VSS = 0V
- 2.VIH(max) is acceptable 5.6V AC pulse width with <=3ns of duration.
- 3.VIL(min) is acceptable -2.0V AC pulse width with <=3ns of duration.

AC OPERATING TEST CONDITION (TA=0 to 70°C, VDD=3.3±0.3V, VSS=0V)

Parameter	Symbol	Value	Unit	Note
AC Input High / Low Level Voltage	VIH / VIL	2.4/0.4	V	
Input Timing Measurement Reference Level Voltage	Vtrip	1.4	V	
Input Rise / Fall Time	tR / tF	1	ns	
Output Timing Measurement Reference Level Voltage	Voutref	1.4	V	
Output Load Capacitance for Access Time Measurement	CL	50	pF	1

Note

1.Output load to measure access times is equivalent to two TTL gates and one capacitor (50pF). For details, refer to AC/DC output load circuit

CAPACITANCE (TA=25°C, f=1MHz)

Parameter	Pin	Symbol	-6/7/	K/H	-8/F	Unit		
i arameter	1	Oymbol .	Min	Max	Min	Max		
Input capacitance	CLK	CI1	2.5	3.5	2.5	4.0	pF	
	A0 ~ A11, BA0, BA1, CKE, CS, RAS, CAS, WE, UDQM, LDQM	CI2	2.5	3.8	2.5	5.0	pF	
Data input / output capacitance	DQ0 ~ DQ15	CI/O	4.0	6.5	4.0	6.5	pF	

OUTPUT LOAD CIRCUIT

DC Output Load Circuit

AC Output Load Circuit

DC CHARACTERISTICS I (TA=0 to 70°C, VDD=3.3±0.3V)

Parameter	Symbol	Min.	Max	Unit	Note
Input Leakage Current	ILI	-1	1	uA	1
Output Leakage Current	ILO	-1	1	uA	2
Output High Voltage	VOH	2.4	-	V	IOH = -4mA
Output Low Voltage	VOL	-	0.4	V	IOL = +4mA

Note:

1.VIN = 0 to 3.6V, All other pins are not tested under V IN =0V 2.DOUT is disabled, VOUT=0 to 3.6

DC CHARACTERISTICS II (TA=0 to 70°C, VDD=3.3±0.3V, VSS=0V)

Parameter	Symbol	Test Condition					Speed				Unit	Note
raiametei	Syllibol	lest Condition		-6	-7	-K	-H	-8	-P	-S	Unit	Note
Operating Current	IDD1	Burst length=1, One bank activ tRC ≥ tRC(min), IOL=0mA	120	120	110	110	100	100	100	mA	1	
Precharge Standby Current	IDD2P	CKE ≤ VIL(max), tCK = 15ns					2		•	•	mA	
in Power Down Mode	IDD2PS	CKE ≤ VIL(max), tCK = ∞					2				IIIA	
Precharge Standby Current in Non Power Down Mode	IDD2N	CKE ≥ VIH(min), CS ≥ VIH(min Input signals are changed one 2clks. All other pins ≥ VDD-0.2	time during				20				mA	
in Non Power Down Mode	IDD2NS	CKE ≥ VIH(min), tCK = ∞ Input signals are stable.		10								
Active Standby Current	IDD3P	CKE ≤ VIL(max), tCK = 15ns		7							mA	
in Power Down Mode	IDD3PS	CKE ≤ VIL(max), tCK = ∞		7							IIIA	
Active Standby Current	IDD3N	CKE ≥ VIH(min), CS ≥ VIH(min Input signals are changed one 2clks. All other pins ≥ VDD-0.2	time during				40				mA	
III Non Fower Down Mode	IDD3NS	CKE ≥ VIH(min), tCK = ∞ Input signals are stable.					40					
Burst Mode Operating	IDD4	tCK≥tCK(min), lOL=0mA	CL=3	140	130	120	120	110	100	100	mA	1
Current	1004	All banks active CL=2		100	100	120	100	100	100	100	1117	
Auto Refresh Current	IDD5	tRRC≥tRRC(min), All banks ac	240 240 240 220 200 200 200						200	mA	2	
Self Refresh Current	IDD6	CKE < 0.2V	2							mA	3	
22							800				uA	4

Note:

^{1.}IDD1 and IDD4 depend on output loading and cycle rates. Specified values are measured with the output open

^{2.}Min. of tRRC (Refresh RAS cycle time) is shown at AC CHARACTERISTICS II

^{3.}HY57V281620AT-6/7/K/H/8/P/S

^{4.}HY57V281620ALT-6/7/K/H/8/P/S

AC CHARACTERISTICS I (AC operating conditions unless otherwise noted)

Para	meter	Symbol	-	6	-	7	-	K	-	Н	-	8	-	P	-	s	Unit	Note
i uiu	imeter	Cymbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Jiii	Note
System Clock	CAS Latency = 3	tCK3	6	1000	7	1000	7.5	1000	7.5	1000	8	1000	10	1000	10	1000	ns	
Cycle Time	CAS Latency = 2	tCK2	10	1000 .	10	1000	7.5	1000	10	1000	10	1000	10	1000	12	1000	ns	
Clock High Pulse	Width	tCHW	2.5	-	2.5	-	2.5	-	2.5	-	3	-	3	-	3	-	ns	1
Clock Low Pulse V	Vidth	tCLW	2.5	-	2.5	-	2.5	-	2.5	-	3	-	3	-	3	-	ns	1
Access Time	CAS Latency = 3	tAC3	-	5.4	-	5.4	-	5.4	-	5.4	-	6	-	6	-	6	ns	2
From Clock	CAS Latency = 2	tAC2	-	6	-	6	-	5.4	-	6	-	6	-	6	-	6	ns	
Data-Out Hold Tim	ne	tOH	2.7	-	2.7	-	2.7	-	2.7	-	3	-	3	-	3	-	ns	
Data-Input Setup	Time	tDS	1.5	-	1.5	-	1.5	-	1.5	-	2	-	2	-	2	-	ns	1
Data-Input Hold Ti	ime	tDH	0.8	-	0.8	-	0.8	-	0.8	-	1	-	1	-	1	-	ns	1
Address Setup Tir	me	tAS	1.5	-	1.5	-	1.5	-	1.5	-	2	-	2	-	2	-	ns	1
Address Hold Tim	е	tAH	0.8	-	0.8	-	0.8	-	0.8	-	1	-	1	-	1	-	ns	1
CKE Setup Time		tCKS	1.5	-	1.5	-	1.5	-	1.5	-	2	-	2	-	2	-	ns	1
CKE Hold Time		tCKH	0.8	-	0.8	-	0.8	-	0.8	-	1	-	1	-	1	-	ns	1
Command Setup	Time	tCS	1.5	-	1.5	-	1.5	-	1.5	-	2	-	2	-	2	-	ns	1
Command Hold Ti	me	tCH	0.8	-	0.8	-	0.8	-	0.8	-	1	-	1	-	1	-	ns	1
CLK to Data Outpu	ut in Low-Z Time	tOLZ	1	-	1	-	1	-	1	-	1	-	1	-	1	-	ns	
CLK to Data Output in High-Z	CAS Latency = 3	tOHZ3	2.7	5.4	2.7	5.4	2.7	5.4	2.7	5.4	3	6	3	6	3	6	ns	
Time	CAS Latency = 2	tOHZ2	2.7	5.4	2.7	5.4	2.7	5.4	3	6	3	6	3	6	3	6	ns	

Note:

If tR & tF > 1ns, then [(tR+tF)/2-1]ns should be added to the parameter

If tR > 1ns, then (tR/2-0.5)ns should be added to the parameter

Rev. 1.3/Aug. 01

^{1.}Assume tR / tF (input rise and fall time) is 1ns

 $^{2.\}mbox{Access}$ times to be measured with input signals of $\mbox{1v/ns}$ edge rate, from $0.8\mbox{v}$ to $2.0\mbox{v}$

AC CHARACTERISTICS II

Para	meter	Symbol	-	6	-	7	-	K	-	Н	-	8	-	Р	-	s	Unit	Note
Faia	netei	Symbol .	Min	Max	Olik	Note												
RAS Cycle Time	Operation	tRC	60	-	65	-	60	-	65	-	68	-	70	-	70	-	ns	
NAS Cycle Time	Auto Refresh	tRRC	60	-	65	-	60	-	65	-	68	-	70	-	70	-	ns	
RAS to CAS Delay		tRCD	18	-	20	-	15	-	20	-	20	-	20	-	20	-	ns	
RAS Active Time		tRAS	42	100K	45	100K	45	100K	45	100K	48	100K	50	100K	50	100K	ns	
RAS Precharge Ti	me	tRP	18	-	20	-	15	-	20	-	20	-	20	-	20	-	ns	
RAS to RAS Bank	Active Delay	tRRD	12	-	14	-	15	-	15	-	16	-	20	-	20	-	ns	
CAS to CAS Delay		tCCD	1	-	1	-	1	-	1	-	1	-	1	-	1	-	CLK	
Write Command to	Data-In Delay	tWTL	0	-	0	-	0	-	0	-	0	-	0	-	0	-	CLK	
Data-In to Prechar	ge Command	tDPL	2	-	2	-	2	-	2	-	1	-	1	-	1	-	CLK	
Data-In to Active C	ommand	tDAL	5	-	5	-	4	-	5	-	4	-	3	-	3	-	CLK	
DQM to Data-Out I	Hi-Z	tDQZ	2	-	2	-	2	-	2	-	2	-	2	-	2	-	CLK	
DQM to Data-In Ma	ask	tDQM	0	-	0	-	0	-	0	-	0	-	0	-	0	-	CLK	
MRS to New Comr	mand	tMRD	2	-	2	-	2	-	2	-	2	-	2	-	2	-	CLK	
Precharge to Data	CAS Latency = 3	tPROZ3	3	-	3	-	3	-	3	-	3	-	3	-	3	-	CLK	
Output Hi-Z	CAS Latency = 2	tPROZ2	2	-	2	-	2	-	2	-	2	-	2	-	2	-	CLK	
Power Down Exit 1	ime	tPDE	1	-	1	-	1	-	1	-	1	-	1	-	1	-	CLK	
Self Refresh Exit T	ïme	tSRE	1	-	1	-	1	-	1	-	1	-	1	-	1	-	CLK	1
Refresh Time		tREF	-	64	-	64	-	64	-	64	-	64	-	64	-	64	ms	

Note:

1. A new command can be given tRRC after self refresh exit

IBIS SPECIFICATION

ІОН Characteristics (Pull-up)

Voltage	100MHz (Min)	100MHz (Max)	66MHz (Min)
(V)	I(mA)	I(mA)	I(mA)
3.45		-2.4	
3.3		-27.3	
3.0	0	-74.1	-0.7
2.6	-21.1	-129.2	-7.5
2.4	-34.1	-153.3	-13.3
2.0	-58.7	-197	-27.5
1.8	-67.3	-226.2	-35.5
1.65	-73	-248	-41.1
1.5	-77.9	-269.7	-47.9
1.4	-80.8	-284.3	-52.4
1.0	-88.6	-344.5	-72.5
0	-93	-502.4	-93

Io∟ Characteristics (Pull-down)

Voltage	100MHz (Min)	100MHz (Max)	66MHz (Min)
(V)	I(mA)	I(mA)	I(mA)
0	0	0	0
0.4	27.5	70.2	17.7
0.65	41.8	107.5	26.9
0.85	51.6	133.8	33.3
1.0	58.0	151.2	37.6
1.4	70.7	187.7	46.6
1.5	72.9	194.4	48.0
1.65	75.4	202.5	49.5
1.8	77.0	208.6	50.7
1.95	77.6	212.0	51.5
3.0	80.3	219.6	54.2
3.45	81.4	222.6	54.9

66MHz and 100MHz Pull-down

VDD Clamp @ CLK, CKE, $\overline{\text{CS}}$, DQM & DQ

VDD (V)	I(mA)
0.0	0.0
0.2	0.0
0.4	0.0
0.6	0.0
0.7	0.0
0.8	0.0
0.9	0.0
1.0	0.23
1.2	1.34
1.4	3.02
1.6	5.06
1.8	7.35
2.0	9.83
2.2	12.48
2.4	15.30
2.6	18.31

Minimum V DD clamp current (Referenced to VDD)

Vss Clamp @ CLK, CKE, $\overline{\text{CS}}$, DQM & DQ

VSS(V)	I (mA)
-2.6	-57.23
-2.4	-45.77
-2.2	-38.26
-2.0	-31.22
-1.8	-24.58
-1.6	-18.37
-1.4	-12.56
-1.2	-7.57
-1.0	-3.37
-0.9	-1.75
-0.8	-0.58
-0.7	-0.05
-0.6	0.0
-0.4	0.0
-0.2	0.0
0.0	0.0

Minimum Vss clamp current

Rev. 1.3/Aug. 01

DEVICE OPERATING OPTION TABLE

HY57V281620A(L)T-6

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
166MHz(6ns)	3CLKs	3CLKs	7CLKs	10CLKs	3CLKs	5.4ns	2.7ns
143MHz(7ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	5.4ns	2.7ns
133MHz(7.5ns)	2CLKs	3CLKs	6CLKs	9CLKs	3CLKs	5.4ns	2.7ns

HY57V281620A(L)T-7

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
143MHz(7ns)	3CLKs	3CLKs	7CLKs	10CLKs	3CLKs	5.4ns	2.7ns
133MHz(7.5ns)	3CLKs	3CLKs	7CLKs	10CLKs	OCLKs 3CLKs		2.7ns
125MHz(8ns)	3CLKs	3CLKs	7CLKs	10CLKs	3CLKs	6ns	3ns

HY57V281620A(L)T-K

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
133MHz(7.5ns)	2CLKs	2CLKs	6CLKs	8CLKs	2CLKs	5.4ns	2.7ns
125MHz(8ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	6ns	3ns
100MHz(10ns)	2CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns

HY57V281620A(L)T-H

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
133MHz(7.5ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	5.4ns	2.7ns
125MHz(8ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	6ns	3ns
100MHz(10ns)	2CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns

HY57V281620A(L)T-8

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
125MHz(8ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	6ns	3ns
100MHz(10ns)	2CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns
83MHz(12ns)	2CLKs	2CLKs	4CLKs	6CLKs	2CLKs	6ns	3ns

HY57V281620A(L)T-P

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
100MHz(10ns)	2CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns
83MHz(12ns)	2CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns
66MHz(15ns)	2CLKs	2CLKs	4CLKs	6CLKs	2CLKs	6ns	3ns

HY57V281620A(L)T-S

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
100MHz(10ns)	3CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns
83MHz(12ns)	2CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns
66MHz(15ns)	2CLKs	2CLKs	4CLKs	6CLKs	2CLKs	6ns	3ns

Rev. 1.3/Aug. 01

COMMAND TRUTH TABLE

Commai	nd	CKEn-1	CKEn	cs	RAS	CAS	WE	DQM	ADDR	A10/ AP	ВА	Note			
Mode Register S	Set	Н	Х	L	L	L	L	Х		OP code					
		н	Х	Н	Х	Х	Х	Х		Х					
No Operation			^	L	Н	Н	Н	^		^	_				
Bank Active		Н	Х	L	L	Н	Н	Х	R	A	V				
Read		н	Х	L	Н	L	Н	X	CA	L	V				
Read with Autop	recharge		^	L	П	<u> </u>	П	^	C	Н	V				
Write		н	Х	L	Н	L	L	Х	CA	L	V				
Write with Autop	recharge	11	^	ı	11	_	١	^	Č	Н	V				
Precharge All Ba	anks	Н	Х	L	L	Н	L	X	х н х		Х				
Precharge selec	ted Bank	11	X	١	_	11	_	^	Λ	L	V				
Burst Stop		Н	Х	L	Н	Н	L	Х	Х						
DQM		Н			Х	- .		V	Х						
Auto Refresh		Н	Н	L	L	L	Н	Х		Х					
Burst-Read-Sing WRITE	ıle-	Н	Х	L	L	L	L	Х		.9 Pin Hig r Pins OP		MRS Mode			
	Entry	Н	L	L	L	L	Н	Х							
Self Refresh ¹	Exit	L	Н	Н	Х	Х	Х	X		X					
	LAIL	_		-	_		L	Н	Н	Н	^				
	Entry	н	L	Н	Х	Х	Х	X							
Precharge			_	L	Н	Н	Н			X					
power down	Exit	L	н	Н	Х	Х	Х	X	^						
	EXIL		•••	L	Н	Н	Н	^							
	Entry	Н	L	Н	Х	Х	Х	X							
Clock Suspend		11	_	L	V	V	V			X					
	Exit	L	Н	Х				Х]						

Note:

 $^{{\}bf 1.} \ {\bf Exiting} \ {\bf Self} \ {\bf Refresh} \ {\bf occurs} \ {\bf by} \ {\bf asynchronously} \ {\bf bringing} \ {\bf CKE} \ {\bf from} \ {\bf low} \ {\bf to} \ {\bf high}$

^{2.} X = Don't care, H = Logic High, L = Logic Low. BA =Bank Address, RA = Row Address, CA = Column Address, Opcode = Operand Code, NOP = No Operation

^{3.} The burst read sigle write mode is entered by programming the write burst mode bit (A9) in the mode register to a logic 1.

PACKAGE INFORMATION

400mil 54pin Thin Small Outline Package

