Tarea 8. Electromagnetismo.

Dr. Luis Osvaldo Téllez Tovar

- 1. Un protón se mueve perpendicularmente a un campo magnético uniforme \vec{B} a una rapidez de 1×10^7 m/s y experimenta una aceleración de 2×10^{13} m/s² en la dirección positiva de x cuando su velocidad está en la dirección positiva de z. Determina la magnitud y la dirección del campo.
- 2. Un protón que se mueve a 4×10^6 m/s a través de un campo magnético de 1.7 T experimenta una fuerza magnética de magnitud 8.2×10^{-13} N. ¿Cuál es el ángulo que forma la velocidad del protón y el campo?
- 3. Un protón (con carga = +e y masa = m_p), un deuterón (con carga = +e y masa = $2m_p$) y una partícula alfa (con carga = +2e y masa = $4m_p$) son acelerados mediante una diferencia de potencial común ΔV . Cada una de las partículas entra en un campo magnético uniforme \vec{B} con una velocidad en dirección perpendicular a \vec{B} . El protón se mueve en una trayectoria circular de radio r_p . Determine los radios de las órbitas circulares del deuterón, r_d , y de la partícula alfa, r_α , todos ellos en función de r_p .
- 4. Un protón de rayo cósmico en el espacio interestelar tiene una energía de 10 MeV y ejecuta una órbita circular de radio igual a la de la órbita de Mercurio alrededor del Sol $(5.8 \times 10^{10} \,$ m). ¿Cuál es el campo magnético existente en esa región del espacio?
- 5. Un selector de velocidad está constituido por los campos eléctrico y magnético que se describen mediante las expresiones $\vec{E} = E\hat{k}$ y $\vec{B} = B\hat{j}$, siendo B = 15mT. Determine el valor de E tal que un electrón de 750 eV trasladándose a lo largo del eje positivo x no se desvíe.