Remark and Solutions

Sheet 5

Problem 27

Suppose that A is not a domain. There are two possible situation for this to happen: If A = 0 then $gr_i(A) = A_{(i)}/A_{(i-1)} = 0$ for every i and thus gr(A) = 0. In this case gr(A) is again not a domain.

If $A \neq 0$ then there exist nonzero $a, b \in A$ with ab = 0. Then there exist $i, j \geq 0$ with $a \in A_{(i)}$ and $b \in A_{(j)}$ but $a \notin A_{(i-1)}$ and $b \notin A_{(j-1)}$ (where $A_{(-1)} = 0$). (This means that a is of degree i and b is of degree j.) Then the resulting elements $[a]_i \in \operatorname{gr}_i(A)$ and $[b]_j \in \operatorname{gr}_j(A)$ are nonzero with

$$[a]_i \cdot [b]_j = [ab]_{i+j} = [0]_{i+j} = 0.$$

In this case gr(A) is again not a domain.

If \mathfrak{g} is a Lie algebra then $\operatorname{gr}(\operatorname{U}(\mathfrak{g})) = \operatorname{S}(\mathfrak{g})$ is a domain because $\operatorname{S}(\mathfrak{g})$ is a polynomial algebra. (More specifically, if $(x_i)_{i\in I}$ is a basis of \mathfrak{g} then $\operatorname{S}(\mathfrak{g})\cong k[t_i\mid i\in I]$.) Thus $\operatorname{U}(\mathfrak{g})$ is a domain.

Problem 28

The main idea of our approach is taken from [MRS87, 6.7].

Let $A = \bigcup_{i \geq -1} A_{(i)}$ be a filtered algebra (where $A_{(-1)} = 0$). We denote for $x \in A_{(i)}$ the corresponding equivalence class in $\operatorname{gr}_i(A) = A_{(i)}/A_{(i-1)}$ by $[x]_i$. We denote for every $a \in A$ by $\deg(a)$ the degree of a, i.e.

$$\deg(a) = \min\{i \ge 0 \mid a \in A_{(i)}\}.$$

For every element $a \in A$ the equivalence class $[a]_i$ is defined for all $i \geq \deg(a)$, but $[a]_i = 0$ if $i > \deg(a)$. To every element $a \in A$ we can hence associate a canonical element $\gamma(a) \in \operatorname{gr}(A)$, namely $\gamma(a) = [a]_{\deg(a)}$.

To every left (resp. right) ideal I in A we can associate a homogeneous left (resp. right) ideal gr(I) in A, given by the homogeneous parts

$$\operatorname{gr}_i(I) := (A_{(i-1)} + I \cap A_{(i)})/A_{(i-1)} = \{[x]_i \mid x \in I \cap A_{(i)}\} \subseteq \operatorname{gr}_i(A)$$

^{*}Available online at https://github.com/cionx/representation-theory-1-tutorial-ss-19.

The space $gr(I) = \bigoplus_{i>0} gr_i(I)$ is indeed a left ideal in gr(A) because

$$\begin{split} \operatorname{gr}_i(A) & \operatorname{gr}_j(I) = \{ [a]_i[x]_j \mid [a]_i \in \operatorname{gr}_i(A), [x]_j \in \operatorname{gr}_j(I) \} \\ & = \{ [a]_i[x]_j \mid a \in A_{(i)}, x \in I \cap A_{(j)} \} \\ & = \{ [ax]_{i+j} \mid a \in A_{(i)}, x \in I \cap A_{(j)} \} \\ & \subseteq \{ [y]_{i+j} \mid y \in I \cap A_{i+j} \} \\ & = \operatorname{gr}_{i+j}(I) \,. \end{split}$$

If I is a right ideal then gr(I) is again a right ideal.

Recall 1. If M is an R-module (where R is some ring) and A,B,C are submodules of M with $A\subseteq C$ then

$$A + (B \cap C) = (A + B) \cap C.$$

We can therefore just write $A + B \cap C$.

Remark 2. The ideal I inherits from A a filtration given by $I_{(i)} := I \cap A_{(i)}$. Then

$$gr_{i}(I) = (A_{(i-1)} + I \cap A_{(i)})/A_{(i-1)}$$

$$\cong (I \cap A_{(i)})/(A_{(i-1)} \cap I \cap A_{(i)})$$

$$= (I \cap A_{(i)})/(I \cap A_{(i-1)})$$

$$= I_{(i)}/I_{(i-1)}.$$

This justifies the notation $gr_i(I)$.

If I and J are two ideals in A with $I \subseteq J$ then also $\operatorname{gr}_i(I) \subseteq \operatorname{gr}_i(J)$ for all i and thus $\operatorname{gr}(I) \subseteq \operatorname{gr}(J)$. We will see that if I is strictly contained in J, then $\operatorname{gr}(I)$ is also strictly contained in $\operatorname{gr}(J)$. This will be a consequence of the following observation, that is interesting in its own right.

Proposition 3. Let I be a left (resp. right) ideal in A and let S be a subset of I. If $\{[s]_{\deg(s)} \mid s \in S\}$ is a generating set for the left (resp. right) ideal $\operatorname{gr}(I)$ then S is a generating set for I.

Proof. Let $a \in A$. The associated element $[a]_{\deg(a)} \in A$ can be written as a linear combination

$$[a]_{\deg(a)} = \sum_{s \in S} b_s[s]_{\deg(s)}$$

for some $b_s \in \operatorname{gr}(A)$. By decomposing the coefficients b_s into homogeneous components we see that we can replace each b_s by its homogeneous component of degree $\deg(a) - \deg(s)$. We may hence assume that each b_s is homogeneous of degree $\deg(a) - \deg(s)$; in particular $b_s = 0$ whenever $\deg(s) > \deg(a)$. For

$$S' := \{ s \in S \mid \deg(s) \le \deg(a) \}$$

we thus have

$$[a]_{\deg(a)} = \sum_{s \in S'} b_s[s]_{\deg(s)}.$$

We can write every b_s as $b_s = [a_s]_{\deg(a) - \deg(s)}$ for some $a_s \in A_{\deg(a) - \deg(s)}$ because b_s is homogeneous of degree $\deg(a) - \deg(s)$. Then

$$[a]_{\deg(a)} = \sum_{s \in S'} b_s[s]_{\deg(s)}$$

$$= \sum_{s \in S'} [a_s]_{\deg(a) - \deg(s)}[s]_{\deg(s)}$$

$$= \sum_{s \in S'} [a_s s]_{\deg(a)}$$

$$= \left[\sum_{s \in S'} a_s s\right]_{\deg(a)}$$

and hence $a - \sum_{s \in S'} a_s s \in A_{\deg(a)-1}$. Now we can proceed inductively to express this difference as a linear combination of S.

Remark 4. One may think for $a \in A$ about the associated element $[a]_{\deg(a)} \in \operatorname{gr}(A)$ as the "leading term" of a, and as $\operatorname{gr}(I)$ as the "ideal of leading terms" of I. (Note that if A is a graded algebra then $\operatorname{gr}(A) = A$ and $[a]_{\deg(a)}$ is precisely the leading term of a.) Then the above statement and its proof may be compared to Hilbert's basis theorem¹, or the concept of a Gröbner basis.

Corollary 5. If I and J are left (resp. right) ideals in A with $I \subsetneq J$ then $gr(I) \subsetneq gr(J)$.

Proof. Suppose that gr(I) = gr(J). The ideal gr(I) is homogeneous and thus generated by homogeneous elements. There hence exists some subset S of I such that gr(I) is generated by the set $\{[s]_{\deg(s)} \mid s \in S\}$. It follows from Proposition 3 and gr(I) = gr(J) that S is a generating set of both I and J. Thus I = J.

Corollary 6. If gr(A) is left (resp. right) noetherian then A is left (resp. right) noetherian. The same holds for left (resp. right) artinian.

Proof. Every strictly increasing sequence of left (resp. right) ideals

$$I_0 \subsetneq I_1 \subsetneq I_2 \subsetneq I_3 \subsetneq \cdots$$

in A results by Corollary 5 in a strictly increasing sequence of left (resp. right) ideals

$$\operatorname{gr}(I_0) \subsetneq \operatorname{gr}(I_1) \subsetneq \operatorname{gr}(I_2) \subsetneq \operatorname{gr}(I_3) \subsetneq \cdots$$

in gr(A). So if A is not noetherian then neither is gr(A). Similarly for artinian. \square

Corollary 7. If \mathfrak{g} is a finite dimensional Lie algebra then $U(\mathfrak{g})$ is both left and right noetherian.

 $^{^1}$ In [MRS87, Proposition 6.7] the above proposition is implicitely used, and for a missing calculations the authors refer to an earlier proof — namely that of Hilbert's basis theorem.

Proof. If dim $\mathfrak{g} = n$ then $\operatorname{gr}(U(\mathfrak{g})) = k[x_1, \dots, x_n]$ is both left and right noetherian whence the assertion follows from Corollary 6.

Remark 8. Recall that for any $n \geq 1$ the polynomial algebra $k[x_1, \ldots, x_n]$ is not artinian because

$$(x_n) \supseteq (x_n^2) \supseteq (x_n^3) \supseteq \cdots$$

is a strictly decreasing sequence of ideals of infinite length. We can see similarly that if $\mathfrak g$ is any nonzero Lie algebra then $U(\mathfrak g)$ is neither left artianian nor right artinian:

We show that that $\mathrm{U}(\mathfrak{g})$ is not left artinian: Let $(x_i)_{i\in I}$ be basis of \mathfrak{g} such that the index set (I,\leq) is linearly ordered and admits a maximal element $j\in I$. (Here we use the well ordering theorem.) Then $\mathrm{U}(\mathfrak{g})$ admits the associated PBW basis consisting of all monomials $x_{i_1}^{n_1}\cdots x_{i_r}^{n_r}$ with $r\geq 0$, $n_i\geq 1$, $i_1<\cdots< i_r$. It follows that for all $m\geq 0$ the left ideal $\mathrm{U}(\mathfrak{g})x_j^m$ has as a basis all monomials $x_{i_1}^{n_1}\cdots x_{i_r}^{n_r}x_j^{m'}$ with $r\geq 0$, $n_i\geq 1$, $i_1<\cdots< i_r< j$ and $m'\geq m$. Thus

$$U(\mathfrak{g})x_j \supseteq U(\mathfrak{g})x_j^2 \supseteq U(\mathfrak{g})x_j^3 \supseteq \cdots$$

is a strictly increasing sequence of left ideals of infinite length. That $U(\mathfrak{g})$ is not right artinian can be seen in the same way.

References

[MRS87] J. C. McConnel, J. C. Robson, and L. W. Small. Noncommutative Noetherian Rings. Graduate Studies in Mathematics 30. American Mathematical Society, 1987, pp. xx+636. ISBN: 978-0-8218-2169-5.