Тюленев А.И. Математический анализ. 02.09.2025

Множество

Это понятие, которому невозможно дать определение.

Множество можно задать двумя способами:

1. перечислением элементов:

$$A = \{a, b, c, d\}$$

2. указанием некоторого свойства:

$$X = \{y :$$
 некоторое свойство $\}$

Операции

- 1. $A \cap B := \{x : x \in A \land x \in B\}$ пересечение.
- 2. $A \cup B := \{x : x \in A \lor x \in B\}$ объединение.
- 3. $A \setminus B := \{x : x \in A \land x \notin B\}$ разность.
- 4. $A \subset B \Leftrightarrow \forall a (a \in A \Rightarrow a \in B)$ является подмножеством.
- 5. Пусть X, Y непустые множества.

$$X imes Y := \{(x,y) : x \in X \land y \in Y\}$$
 – декартово произведение.

Соответствие

Определение

Пусть X, Y – непустые множества.

Задать соответствие f – значит выделить подмножество G_f в декартовом произведении $X \times Y$.

 G_f – график соответствия.

 $D_f = \{x \in X : (\exists y \in Y : (x,y) \in G_f)\}$ – область определения соответствия f.

В таком случае говорят, что у поставлен в соответствие х.

 $E_f = \{y \in Y : (\exists x \in X : (x,y) \in G_f)\}$ – множество значений соответствия f.

Отображение

Определение

$$egin{cases} D_f = X \ orall x \in D_f, \exists ! y \in Y : (x,y) \in G_f \end{cases} \Leftrightarrow$$
 Задано отображение $f: X o Y$

При этом y обозначают f(x).

Инъективное отображение

Отображение $f: X \to Y$ называется инъективным (или инъекцией), если для него выполнено:

$$(orall x_1, x_2 \in X: x_1
eq x_2) \Rightarrow (f(x_1)
eq f(x_2))$$

Сюръективное отображение

Отображение $f: X \to Y$ назывется сюръективным (или сюръекцией), если для него выполнено:

$$(\forall y \in Y, \exists x \in X : (x, y) \in G_f) \Leftrightarrow (E_f = Y)$$

Композиция отображений

Пусть заданы отображения f:X o Y,g:Y o Z, где X,Y,Z - непустые множества. Назовём композицией отображений g,f отображение $g\circ f:X o Z$: $g\circ f(x)=g(f(x)), \forall x\in X$

Тождественное отображение

Отображение $f:X \to X: f(x)=x, \forall x \in X$ называется тождественным отображением и обозначается id_X .

Обратное отображение

Пусть задано отображение $f: X \to Y$. Будем говорить, что отображение $g: Y \to X$ является обратным к f и писать $g = f^{-1}$, если выполнены все условия:

- 1. $(orall x \in X) \Rightarrow (g(f(x)) = x)$, что эквивалентно $g \circ f = id_X$
- 2. $(orall y \in Y) \Rightarrow (f(g(y)) = y)$, что эквивалентно $f \circ g = id_Y$.

Отображение, для которого существует обратное отображение, является инъективным и сюръективным одновременно.

Доказательство

Пусть задано отображение $f: X \to Y$ такое, что $q = f^{-1}$ существует.

Предположим, что f не является инъективным отображением.

Тогда
$$\exists x_1, x_2 \in X: x_1 \neq x_2 \wedge f(x_1) = f(x_2).$$

Поскольку $g=f^{-1}$ является обратным отображением к $f, (\forall x\in X)\Rightarrow (g(f(x))=x).$ Отсюда $g(f(x_1))=x_1, g(f(x_2))=x_2.$ (1)

Поскольку $g=f^{-1}$ является отображением, $\forall y\in Y, \exists !x\in X: (y,x)\in G_g.$ (2) Пусть $y=f(x_1)=f(x_2).$

Поскольку f является отображением и $x_1,x_2\in X$, выполняется $y\in Y$. Значит, в силу (2) $\exists !x\in X:x=g(y).$

В силу (1) верны следующие утверждения:

a)
$$x = g(y) = g(f(x_1)) = x_1;$$

$$\text{ 6) } x = g(y) = g(f(x_2)) = x_2.$$

Из этого следует, что $x_1=x=x_2$. Но $x_1\neq x_2$ – необходимое условие предположения. Получили противоречие. Следовательно, f – инъективное отображение.

Предположим, что f не является сюръективным отображением.

Тогда
$$\exists y \in Y: (\forall x \in X) \Rightarrow ((x,y) \notin G_f).$$
 Что эквивалентно $\exists y \in Y: (\forall x \in X) \Rightarrow (f(x) \neq y).$

2. Поскольку $g=f^{-1}$ является обратным отображением к f, $(\forall y\in Y)\Rightarrow (y=f(g(y)))$ Поскольку $g=f^{-1}$ является отображением, $\forall y\in Y,\ \exists!x\in X:x=g(y)$

Значит, $(\forall y \in Y) \Rightarrow (\exists ! x \in X : y = f(x)).$ Следовательно, $\not\exists y \in Y : (\forall x \in X) \Rightarrow (f(x) \neq y).$

Противоречие. Значит, f — сюръективное отображение.

Действительные числа

[От автора конспекта, с опорой на лектора] Что такое аксиома?

Эволюция понятия "аксиома" прошла путь от:

"Самоочевидная истина о мире" (Евклид) \to "Утверждение, принимаемое без доказательств" (упрощённое школьное определение) \to "Формула формальной системы, задающая правила логической игры и определяющая класс объектов" (современное, точное определение).

Определение

Множество действительных чисел \mathbb{R} – это множество, на котором заданы два отображения:

- 1. $'+': \mathbb{R} \to \mathbb{R}$ сложение:
- 2. $' \cdot ' : \mathbb{R} \to \mathbb{R}$ произведение;

и отношение порядка \leq , удовлетворяющие следующим аксиомам:

- 1. $a+b=b+a, \ \forall a,b\in\mathbb{R}$
- 2. $(a + b) + c = a + (b + c), \ \forall a, b, c \in \mathbb{R}$
- 3. $\exists 0 \in \mathbb{R} : 0 + a = a, \forall a \in \mathbb{R}$
- 4. $\forall a \in \mathbb{R}, \exists (-a) \in \mathbb{R} : (-a) + a = 0$
- 5. $a \cdot b = b \cdot a, \ \forall a, b \in \mathbb{R}$
- 6. $(a \cdot b) \cdot c = a \cdot (b \cdot c), \ \forall a, b, c \in \mathbb{R}$
- 7. $\exists 1 \neq 0 : a \cdot 1 = a, \ \forall a \in \mathbb{R}$
- 8. $\forall a \in \mathbb{R}: a \neq 0, \exists$ обратный элемент $a^{-1}: a \cdot a^{-1} = a^{-1} \cdot a = 1$
- 9. $a \cdot (b+c) = a \cdot b + a \cdot c, \forall a,b,c \in \mathbb{R}$
- 10. $a < b \lor b < a, \forall a, b \in \mathbb{R}$
- 11. $\forall a,b,c \in \mathbb{R}, (a \leq b \land b \leq c) \Rightarrow (a \leq c)$
- 12. если $a \leq b$, то $a+c \leq b+c, \forall a,b,c \in \mathbb{R}$
- 13. если $a \leq b$, то $a \cdot c \leq b \cdot c, \forall a,b,c \in \mathbb{R}: c \geq 0$
- 14. $(a < b \land b < a) \Leftrightarrow (a = b), \forall a, b \in \mathbb{R}$
- 15. аксиоме непрерывности.

Аксиома непрерывности

Пусть A, B — непустые числовые множества.

Будем говорить, что A располагается левее B, если $a \leq b, (\forall a \in A \land \forall b \in B).$

Тогда аксиома непрерывности гласит, что:

orall A,B:(A располагается левее $B),\exists c\in\mathbb{R}:a\leq c\leq b,(orall a\in A\wedgeorall b\in B)$

Замечание

Множество \mathbb{Q} удовлетворяет аксиомам 1-14, но не удовлетворяет аксиоме непрерывности.

Доказательство

$$A := \{x \in Q : x > 0, x^2 < 2\}$$

 $B := \{x \in Q : x > 0, x^2 > 2\}$

Заметим, что A располагается левее B.

Предположим, что $\exists c \in Q: a \leq c \leq b, \forall a \in A, \forall b \in B.$

Тогда
$$(c^2 \geq 2 \wedge c^2 \leq 2) \Leftrightarrow (c^2 = 2).$$

Предположим, что $c \in \mathbb{Q}$.

Тогда $\exists m,n\in\mathbb{N}:c=rac{m}{n},$ где $rac{m}{n}$ – несократимая дробь.

$$rac{m^2}{n^2}=c^2=2.$$
 $(m^2=2n^2)\Rightarrow (m^2-$ чётное $)\Rightarrow (m-$ чётное $).$

Пусть
$$m=2k^2, k\in Q.$$

$$rac{m^2}{n^2} = rac{4k^2}{n^2} = 2.$$

$$(4k^2=2n^2)\Rightarrow (n^2=2k^2)\Rightarrow (n^2$$
 – чётное $)\Rightarrow (n$ – чётное $)$.

$$(m, n$$
 – чётные $) \Rightarrow (\frac{m}{n}$ сократима $)$.

Противоречие. Следовательно, $c \notin Q$

Промежутки

Скажем, что $(a < b) \Leftrightarrow (a \le b \land a \ne b)$.

Пусть $a,b \in \mathbb{R}$ и a < b.

- 1. $[a,b]=\{x\in\mathbb{R}:a\leq x\leq b\}$ отрезок.
- 2. $(a,b) = \{x \in \mathbb{R} : a < x < b\}$ интервал.
- 3. $[a,b) = \{x \in \mathbb{R} : a \leq x < b\}$ открытый справа полуинтервал.
- $[4. \ (a,b] = \{x \in \mathbb{R} : a < x \leq b\}$ открытый слева полуинтервал.