TOA ĐỘ TRONG KHÔNG GIAN

A - LÝ THUYẾT

1. Hệ truc toa đô trong không gian

Trong không gian, xét ba trục tọa độ Ox, Oy, Oz vuông góc với nhau từng đôi một và chung một điểm gốc O. Gọi \vec{i} , \vec{j} , \vec{k} là các vecto đơn vị, tương ứng trên các trục Ox, Oy, Oz. Hệ ba trục như vậy gọi là hệ trục tọa độ vuông góc trong không gian.

Chú ý:
$$\vec{i}^2 = \vec{j}^2 = \vec{k}^2 = 1$$
 và $\vec{i} \cdot \vec{j} = \vec{i} \cdot \vec{k} = \vec{k} \cdot \vec{j} = 0$.

- a) Định nghĩa: $\vec{u} = (x; y; z) \Leftrightarrow \vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$
- **b) Tính chất:** Cho $\vec{a} = (a_1; a_2; a_3), \vec{b} = (b_1; b_2; b_3), k \in \mathbb{R}$
- $\vec{a} \pm \vec{b} = (a_1 \pm b_1; a_2 \pm b_2; a_3 \pm b_3)$
- $k\vec{a} = (ka_1; ka_2; ka_3)$

$$\bullet \vec{a} = \vec{b} \iff \begin{cases} a_1 = b_1 \\ a_2 = b_2 \\ a_3 = b_3 \end{cases}$$

- \bullet $\vec{0} = (0;0;0), \vec{i} = (1;0;0), \vec{j} = (0;1;0), \vec{k} = (0;0;1)$
- \vec{a} cùng phương $\vec{b}(\vec{b} \neq \vec{0})$ $\iff \vec{a} = k\vec{b} \ (k \in \mathbb{R})$

$$\Leftrightarrow \begin{cases} a_1 = kb_1 \\ a_2 = kb_2 \\ a_3 = kb_3 \end{cases} \Leftrightarrow \frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}, \quad (b_1, b_2, b_3 \neq 0)$$

- $\vec{a}.\vec{b} = a_1.b_1 + a_2.b_2 + a_3.b_3$ $\vec{a} \perp \vec{b} \iff a_1b_1 + a_2b_2 + a_3b_3 = 0$
- $\vec{a}^2 = a_1^2 + a_2^2 + a_3^2$ $|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_2^2}$
- $\cos(\vec{a}, \vec{b}) = \frac{\vec{a}.\vec{b}}{|\vec{a}|.|\vec{b}|} = \frac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{a^2 + a^2 + a^2} \sqrt{b^2 + b^2 + b^2}}$ (với $\vec{a}, \vec{b} \neq \vec{0}$)

3. Toa đô của điểm

- a) Định nghĩa: $M(x; y; z) \Leftrightarrow \overrightarrow{OM} = x.\overrightarrow{i} + y.\overrightarrow{j} + z.\overrightarrow{k}$ (x: hoành độ, y: tung độ, z: cao độ) Chú ý: • $M \in (Oxy) \Leftrightarrow z = 0; M \in (Oyz) \Leftrightarrow x = 0; M \in (Oxz) \Leftrightarrow y = 0$
- $M \in Ox \Leftrightarrow y = z = 0; M \in Oy \Leftrightarrow x = z = 0; M \in Oz \Leftrightarrow x = y = 0$.
- b) Tính chất: Cho $A(x_A; y_A; z_A)$, $B(x_B; y_B; z_B)$
- $\bullet \ \overrightarrow{AB} = (x_B x_A; y_B y_A; z_B z_A)$
 - $AB = \sqrt{(x_B x_A)^2 + (y_B y_A)^2 + (z_B z_A)^2}$
- Toạ độ trung điểm M của đoạn thẳng $AB: M\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}; \frac{z_A + z_B}{2}\right)$
- Toạ độ trọng tâm G của tam giác $ABC: G\left(\frac{x_A + x_B + x_C}{3}; \frac{y_A + y_B + y_C}{3}; \frac{z_A + z_B + z_C}{3}\right)$
- \bullet Toạ độ trọng tâm G của tứ diện ABCD :

$$G\left(\frac{x_A + x_B + x_C + x_D}{4}; \frac{y_A + y_B + y_C + y_D}{4}; \frac{z_A + z_B + z_C + z_C}{4}\right)$$

Tích có hướng của hai vectơ

a) Định nghĩa: Trong không gian Oxyz cho hai vector $\vec{a}=(a_1;a_2;a_3)$, $\vec{b}=(b_1;b_2;b_3)$. Tích có hướng của hai vecto \vec{a} và \vec{b} , kí hiệu là $[\vec{a}, \vec{b}]$, được xác định bởi

$$\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = \begin{pmatrix} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}; \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix}; \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = (a_2b_3 - a_3b_2; a_3b_1 - a_1b_3; a_1b_2 - a_2b_1)$$

Chú ý: Tích có hướng của hai vectơ là một vectơ, tích vô hướng của hai vectơ là một số.

- b) Tính chất:
 - $[\vec{a}, \vec{b}] \perp \vec{a}; [\vec{a}, \vec{b}] \perp \vec{b}$
- $\left[\vec{a}, \vec{b}\right] = -\left[\vec{b}, \vec{a}\right]$
- $[\vec{i}, \vec{j}] = \vec{k}; [\vec{j}, \vec{k}] = \vec{i}; [\vec{k}, \vec{i}] = \vec{j}$ $|[\vec{a}, \vec{b}]| = |\vec{a}| \cdot ||\vec{b}| \cdot \sin(\vec{a}, \vec{b})$ (Chương trình nâng cao)
- \vec{a} , \vec{b} cùng phương $\Leftrightarrow [\vec{a}, \vec{b}] = \vec{0}$ (chứng minh 3 điểm thẳng hàng)
- c) Úng dụng của tích có hướng: (Chương trình nâng cao)
- Điều kiện đồng phẳng của ba vecto: \vec{a} , \vec{b} và \vec{c} đồng phẳng $\Leftrightarrow [\vec{a}, \vec{b}] . \vec{c} = 0$
- $S_{aABCD} = \left[\overrightarrow{AB}, \overrightarrow{AD} \right]$ • Diện tích hình bình hành ABCD:
- Diện tích tam giác ABC: $S_{\triangle ABC} = \frac{1}{2} \left[\overrightarrow{AB}, \overrightarrow{AC} \right]$
- Thể tích khối hộp ABCDA'B'C'D': $V_{ABCD.A'B'C'D'} = [\overrightarrow{AB}, \overrightarrow{AD}].\overrightarrow{AA'}$
- $V_{ABCD} = \frac{1}{6} | [\overrightarrow{AB}, \overrightarrow{AC}]. \overrightarrow{AD} |$ • Thể tích tứ diện ABCD:

Chú ý:

- Tích vô hướng của hai vectơ thường sử dụng để chứng minh hai đường thẳng vuông góc, tính góc giữa hai đường thăng.
- Tích có hướng của hai vectơ thường sử dụng để tính diện tích tam giác; tính thể tích khối tứ diện, thể tích hình hộp; chứng minh các vectơ đồng phẳng – không đồng phẳng, chứng minh các vecto cùng phương.

$$\vec{a} \perp \vec{b} \Leftrightarrow \vec{a}.\vec{b} = 0$$

$$\vec{a} \ v \vec{a} \ \vec{b} \ c \vec{u} ng \ phương \Leftrightarrow \left[\vec{a}, \vec{b}\right] = \vec{0}$$

$$\vec{a}, \vec{b}, \vec{c} \ d \hat{o} ng \ phẳng \Leftrightarrow \left[\vec{a}, \vec{b}\right].\vec{c} = 0$$

5. Một vài thao tác sử dụng máy tính bỏ túi (Casio Fx570 Es Plus, Casio Fx570 Vn Plus, Vinacal 570 Es Plus)

Trong không gian Oxyz cho bốn điểm $A(x_A; y_A; z_A), B(x_B; y_B; z_B), C(x_C; y_C; z_C), D(x_D; y_D; z_D)$

- MODE 8 1 1 (nhập vector AB)
- SHIFT 5 2 2 (nhập vecto AC)
- $\boxed{\mathbf{5}}$ $\boxed{\mathbf{2}}$ $\boxed{\mathbf{3}}$ $\boxed{\mathbf{1}}$ (nhập vector AD) SHIFT
- AC SHIFT 5 3 SHIFT 5 4 = (tính $\overline{AB}, \overline{AC}$)
- AC SHFT 5 3 SHFT 5 4 SHFT 5 7 SHFT 5 5 \blacksquare $(tinh [\overrightarrow{AB}, \overrightarrow{AC}].\overrightarrow{AD})$
- AC SHFT hyp (Abs) SHFT 5 3 SHFT 5 4 SHFT 5 7 SHFT 5 5 \equiv (tính $|\overline{AB}, \overline{AC}|.\overline{AD}|$)
- AC 1 = 6 SHIFT (hyp) (Abs) SHIFT 5 3 SHIFT 5 4 SHIFT 5 7 SHIFT 5 5 = (tinh $V_{ABCD} = \frac{1}{6} | [\overrightarrow{AB}, \overrightarrow{AC}] . \overrightarrow{AD} |$

B - BÀI TẬP TRẮC NGHIỆM

Câu 1.	Gọi φ là góc giữa hai vecto \vec{a} và \vec{b} , với \vec{a} và \vec{b} khác $\vec{0}$, khi đó $\cos \varphi$ bằng											
	A. $\frac{\vec{a}.\vec{b}}{ \vec{a} . \vec{b} }$.	B. $\frac{\left \vec{a}.\vec{b}\right }{\left \vec{a}\right .\left \vec{b}\right }.$	C. $\frac{-\vec{a}.\vec{b}}{ \vec{a} . \vec{b} }$.	$\mathbf{D.} \ \frac{\vec{a} + \vec{b}}{ \vec{a} . \vec{b} }.$								
Câu 2.	Gọi φ là góc giữa hai v	vector $\vec{a} = (1, 2, 0)$ và $\vec{b} =$	$(2;0;-1)$, khi đó $\cos \varphi$	bằng								
	A. 0.	B. $\frac{2}{5}$.	C. $\frac{2}{\sqrt{5}}$.	D. $-\frac{2}{5}$.								
Câu 3.	Cho vecto $\vec{a} = (1; 3; 4)$,	tìm vector \vec{b} cùng phươ	ng với vector \vec{a}									
	A. $\vec{b} = (-2; -6; -8).$	B. $\vec{b} = (-2; -6; 8).$	C. $\vec{b} = (-2; 6; 8)$.	D. $\vec{b} = (2; -6; -8).$								
Câu 4.	Tích vô hướng của hai	vector $\vec{a} = (-2; 2; 5), \vec{b} = 0$	(0;1;2) trong không gia	n bằng								
	A. 10.	B. 13.	C. 12.	D. 14.								
Câu 5.	Trong không gian cho l	nai điểm $A(-1;2;3), B($	0;1;1), độ dài đoạn AB	bằng								
	A. $\sqrt{6}$.	B. $\sqrt{8}$.	C. $\sqrt{10}$.	D. $\sqrt{12}$.								
Câu 6.	Trong không gian Oxyz	z , gọi \vec{i} , \vec{j} , \vec{k} là các vecto	σ đơn vị, khi đó với M ($(x; y; z)$ thì \overrightarrow{OM} bằng								
	$\mathbf{A.} -x\vec{i}-y\vec{j}-\vec{z}k.$	B. $\vec{xi} - \vec{yj} - \vec{zk}$.	$\mathbf{C.} \vec{xj} + \vec{yi} + \vec{zk}.$	$\mathbf{D.} \overrightarrow{xi} + y \overrightarrow{j} + \overrightarrow{zk}.$								
Câu 7.	Tích có hướng của hai vector $\vec{a}=(a_1;a_2;a_3)$, $\vec{b}=(b_1;b_2;b_3)$ là một vector, kí hiệu $\left[\vec{a},\vec{b}\right]$, đượ xác định bằng tọa độ											
	A. $(a_2b_3 - a_3b_2; a_3b_1 - a_3b_2; a_3b_2$	$(a_1b_3; a_1b_2 - a_2b_1).$	B. $(a_2b_3 + a_3b_2; a_3b_1 + a_3b_2; a_3b_2;$	$-a_1b_3; a_1b_2 + a_2b_1$).								
	$\mathbf{C.} (a_2b_3 - a_3b_2; a_3b_1 + a_3b_2; $	$a_1b_3; a_1b_2 - a_2b_1$).	D. $(a_2b_2 - a_3b_3; a_3b_3 - a_3b_3$	$-a_1b_1; a_1b_1-a_2b_2$).								
Câu 8.	Cho các vecto $\vec{u} = (u_1; u_2; u_3; u_4; u_4; u_5; u_5; u_5; u_5; u_5; u_5; u_5; u_5$	$u_2; u_3$) và $\vec{v} = (v_1; v_2; v_3)$	$\vec{u} \cdot \vec{v} = 0$ khi và chỉ khi									
	A. $u_1v_1 + u_2v_2 + u_3v_3 = 1$. B. $u_1 + v_1 + u_2 + v_2 + u_3 + v_3 = 0$.											
	$\mathbf{C.} \ \ u_1 v_1 + u_2 v_2 + u_3 v_3 = 0$).	$\mathbf{D.} \ u_1 v_2 + u_2 v_3 + u_3 v_1 = 0$	-1.								
Câu 9.	Cho vector $\vec{a} = (1, -1, 2)$, độ dài vecto \vec{a} là										
	A. $\sqrt{6}$.	B. 2.	C. $-\sqrt{6}$.	D. 4.								
Câu 10.	độ, khi đó tọa độ điểm	M có dạng		không trùng với gốc tọa								
	A. $M(a;0;0), a \neq 0$.	B. $M(0;b;0), b \neq 0$.	C. $M(0;0;c), c \neq 0$.	D. $M(a;1;1), a \neq 0$.								
Câu 11.	Trong không gian Oxyz gốc tọa độ và không nằ			cho M không trùng vớ là $(a,b,c \neq 0)$								
	A. $(0;b;a)$.	B. $(a;b;0)$.	C. $(0;0;c)$.	D. $(a;1;1)$								
Câu 12.	Trong không gian Oxyz	a , cho $\vec{a} = (0;3;4)$ và $ \vec{b} $	$ =2 \vec{a} $, khi đó tọa độ v	ector $ec{b}$ có thể là								
		·		D. (-8;0;-6).								

Câu 13.	Trong không gian Oxy	z cho hai vecto \vec{u} và \vec{v} ,	khi đó \vec{u}, \vec{v} bằng	
	A. $ \vec{u} . \vec{v} .\sin(\vec{u},\vec{v}).$	B. $ \vec{u} \cdot \vec{v} \cdot \cos(\vec{u}, \vec{v})$.	C. $\vec{u}.\vec{v}.\cos(\vec{u},\vec{v})$.	D. $\vec{u}.\vec{v}.\sin(\vec{u},\vec{v})$.
Câu 14.			$\vec{a} = (1; -1; 2), \vec{b} = (3; 0;$	-1), $\vec{c} = (-2; 5; 1)$, vector
	m = a + b - c có tọa độ A. $(6;0;-6)$.	B. $(-6;6;0)$.	C. (6;-6;0).	D. (0;6;-6).
Câu 15.	Trong không gian <i>Oz AB</i> , <i>AC</i> , <i>BC</i> của tam g	,	(2;-3), B(2;4;-1), C(2;-1)	-2;0). Độ dài các cạnh
	A. $\sqrt{21}, \sqrt{13}, \sqrt{37}$.	B. $\sqrt{11}, \sqrt{14}, \sqrt{37}$.	C. $\sqrt{21}, \sqrt{14}, \sqrt{37}$.	D. $\sqrt{21}, \sqrt{13}, \sqrt{35}$.
Câu 16.	Trong không gian <i>Oxy</i> của tam giác <i>ABC</i> là	z cho ba điểm $Aig(1;0;-1)$	3), B(2;4;-1), C(2;-2;	0). Tọa độ trọng tâm G
	A. $\left(\frac{5}{3}; \frac{2}{3}; -\frac{4}{3}\right)$.	B. $\left(\frac{5}{3}; \frac{2}{3}; \frac{4}{3}\right)$.	C. (5;2;4).	D. $\left(\frac{5}{2};1;-2\right)$.
Câu 17.			(0), B(-1;1;3), C(0;-2;5)). Để 4 điểm A,B,C,D
	đồng phẳng thì tọa độ α . $D(-2;5;0)$.	điểm D là B. $D(1;2;3)$.	C. $D(1;-1;6)$.	D. $D(0;0;2)$.
Câu 18.	Trong không gian Oxy	vz , cho ba vecto $\vec{a} = (1;$	$(2;3), \vec{b} = (-2;0;1), \vec{c} = ($	(-1;0;1). Tìm tọa độ của
	vector $\vec{n} = \vec{a} + \vec{b} + 2\vec{c} - \vec{b}$			_
	A. $n = (6; 2; 6)$.	B. $\vec{n} = (6; 2; -6)$.	C. $n = (0; 2; 6)$.	D. $n = (-6, 2, 6)$.
Câu 19.	trọng tâm G của tam gi	ác ABC		(3), C(3;2;4). Tìm tọa độ
	A. $G\left(\frac{2}{3};1;3\right)$.	B. $G(2;3;9)$.	C. $G(-6;0;24)$.	D. $G\left(2;\frac{1}{3};3\right)$.
Câu 20.	Cho 3 điểm $M(2;0;0)$), $N(0;-3;0)$, $P(0;0;4)$.	Nếu MNPQ là hình t	oình hành thì tọa độ của
	điểm Q là A. $O(-2:-3:4)$	B. $Q(2;3;4)$	C. $O(3:4:2)$	D. O(-2:-3:-4)
Câu 21				7;5). Để tứ giác MNPQ
Cau 21.	là hình bình hành thì tọ	9	(1,1,1),1\(\(\(\frac{2}{2}\),\(\frac{1}{2}\),1\(\(\frac{7}{2}\),	7,5). De tu giae min g
		B. $Q(6;5;2)$.	C. $Q(6;-5;2)$.	D. $Q(-6;-5;-2)$.
Câu 22.	Cho 3 điểm $A(1;2;0), R$	B(1;0;-1),C(0;-1;2). T	am giác ABC là	
	A. tam giác có ba gócC. tam giác vuông đỉng		B. tam giác cân đỉnhD. tam giác đều.	A.
Câu 23.	Trong không gian tọa	a độ Oxyz cho ba điển	A(-1;2;2), B(0;1;3),	C(-3;4;0). Để tứ giác
		nh thì tọa độ điểm D là B. $D(4;5;-1)$.	C. $D(-4;-5;-1)$.	D. $D(4;-5;1)$.

	tọa độ trọng tâm G của t		0 A(1,0,2),B(2,1,3),C	C(3;2;4), D(6;9;-5). Tim
	A. $G\left(-9; \frac{18}{4}; -30\right)$.	B. $G(8;12;4)$.	C. $G(3;3;\frac{14}{4})$.	D. $G(2;3;1)$.
Câu 38.	Trong không gian <i>Oxyz</i> hai điểm <i>A</i> , <i>B</i> có tọa độ), $B(2;-1;2)$. Điểm M	trên trục Ox và cách đều
	A. $M\left(\frac{1}{2}; \frac{1}{2}; \frac{3}{2}\right)$.	B. $M\left(\frac{1}{2};0;0\right)$.	C. $M\left(\frac{3}{2};0;0\right)$.	D. $M\left(0; \frac{1}{2}; \frac{3}{2}\right)$.
Câu 39.	Trong không gian <i>Oxyz</i> hai điểm <i>A</i> , <i>B</i> có tọa độ), $B(3;-1;2)$. Điểm M	trên trục Oz và cách đều
	A. $M(0;0;4)$.	B. $M(0;0;-4)$.	C. $M(0;0;\frac{3}{2})$.	D. $M\left(\frac{3}{2}; \frac{1}{2}; \frac{3}{2}\right)$.
Câu 40.	Trong không gian Oxyz	cho ba điểm $A(-1; -2;$	3), B(0;3;1), C(4;2;2).	Cosin của góc $\widehat{\mathit{BAC}}$ là
	A. $\frac{9}{2\sqrt{35}}$.	B. $\frac{9}{\sqrt{35}}$.	C. $-\frac{9}{2\sqrt{35}}$.	D. $-\frac{9}{\sqrt{35}}$.
Câu 41.	Tọa độ của vecto \vec{n} vuô			
	A. $\vec{n} = (3;4;1)$.	B. $\vec{n} = (3; 4; -1)$.	C. $\vec{n} = (-3; 4; -1)$.	D. $\vec{n} = (3; -4; -1)$.
Câu 42.	Cho $ \vec{a} = 2; \vec{b} = 5$, góc	giữa hai vecto \vec{a} và \bar{b}	\vec{b} bằng $\frac{2\pi}{3}$, $\vec{u} = k\vec{a} - \vec{b}$;	$\vec{v} = \vec{a} + 2\vec{b}$. Để \vec{u} vuông
	- tt: → 41. \ 1 - 1. \ \			
	góc với v thì k bằng	1.5		4.5
	$\mathbf{A.} -\frac{6}{45}.$	B. $\frac{45}{6}$.	C. $\frac{6}{45}$.	D. $-\frac{45}{6}$.
Câu 43.	A. $-\frac{6}{45}$.	U	73	D. $-\frac{45}{6}$. Da vecto trên đồng phẳng
Câu 43.	A. $-\frac{6}{45}$.	$n; 3; -1), \vec{w} = (1; 2; 1). \ V\acute{c}$	vi giá trị nào của <i>m</i> thì l	O
	A. $-\frac{6}{45}$. Cho $\vec{u} = (2; -1; 1), \vec{v} = (n + 1)$	$n; 3; -1), \overrightarrow{w} = (1; 2; 1). \ \text{Vol}$ B. $-\frac{3}{8}$.	Fi giá trị nào của m thì to $\frac{8}{3}$.	pa vecto trên đồng phẳng $\mathbf{D.} -\frac{8}{3}.$
	A. $-\frac{6}{45}$. Cho $\vec{u} = (2; -1; 1), \vec{v} = (n + 1)$ A. $\frac{3}{8}$.	$m; 3; -1), \vec{w} = (1; 2; 1). \ \text{Vol}$ $\mathbf{B.} -\frac{3}{8}.$ $g_3 5; m), \vec{b} = (3; \log_5 3; 4)$	Fi giá trị nào của m thì to $\frac{8}{3}$.	pa vectơ trên đồng phẳng $ \mathbf{D.} \ -\frac{8}{3}. $ thì $\vec{a} \perp \vec{b}$
Câu 44.	A. $-\frac{6}{45}$. Cho $\vec{u} = (2; -1; 1), \vec{v} = (n + 1)$ A. $\frac{3}{8}$. Cho hai vector $\vec{a} = (1; \log n)$ A. $m = 1; m = -1$.	$m; 3; -1), \vec{w} = (1; 2; 1). \ \text{V6}$ B. $-\frac{3}{8}$. $g_3 5; m), \vec{b} = (3; \log_5 3; 4)$ B. $m = 1$.	vi giá trị nào của m thì lo $\frac{8}{3}$. O. Với giá trị nào của m C. $m = -1$.	pa vecto trên đồng phẳng $ \mathbf{D.} \ -\frac{8}{3}. $ thì $\vec{a} \perp \vec{b}$
Câu 44.	A. $-\frac{6}{45}$. Cho $\vec{u} = (2; -1; 1), \vec{v} = (m + 1)$ A. $\frac{3}{8}$. Cho hai vector $\vec{a} = (1; \log \frac{1}{2})$ A. $m = 1; m = -1$. Trong không gian $Oxyz$ A, B, C thẳng hàng là A. $x = 5; y = 11$.	$m; 3; -1), \vec{w} = (1; 2; 1). \ \text{V6}$ B. $-\frac{3}{8}$. $g_3 5; m), \vec{b} = (3; \log_5 3; 4)$ B. $m = 1$.	ri giá trị nào của m thì lo $\frac{8}{3}$. O. Với giá trị nào của m C. $m = -1$. $B(3;7;4), C(x; y;6)$. Gian. B. $x = -5; y = 11$.	pa vecto trên đồng phẳng $\mathbf{D.} -\frac{8}{3}.$ thì $\vec{a} \perp \vec{b}$ $\mathbf{D.} m = 2; m = -2.$
Câu 44. Câu 45.	A. $-\frac{6}{45}$. Cho $\vec{u} = (2; -1; 1), \vec{v} = (m + 1)$ A. $\frac{3}{8}$. Cho hai vector $\vec{a} = (1; \log \frac{1}{2})$ A. $m = 1; m = -1$. Trong không gian $Oxyz$ A, B, C thẳng hàng là A. $x = 5; y = 11$. C. $x = -11; y = -5$.	$a; 3; -1), \vec{w} = (1; 2; 1). \ \text{Vol}$ B. $-\frac{3}{8}$. $a; 5; m, \vec{b} = (3; \log_5 3; 4)$ B. $m = 1$. cho ba điểm $A(2; 5; 3)$	Fi giá trị nào của m thì là C. $\frac{8}{3}$.). Với giá trị nào của m C. $m = -1$. $B(3;7;4), C(x;y;6)$. Gi B. $x = -5; y = 11$. D. $x = 11; y = 5$.	pa vecto trên đồng phẳng $\mathbf{D}\frac{8}{3}.$ thì $\vec{a} \perp \vec{b}$ $\mathbf{D}. m = 2; m = -2.$ tá trị của x, y để ba điểm
Câu 44. Câu 45.	A. $-\frac{6}{45}$. Cho $\vec{u} = (2; -1; 1), \vec{v} = (m + 1)$ A. $\frac{3}{8}$. Cho hai vector $\vec{a} = (1; \log \frac{1}{2})$ A. $m = 1; m = -1$. Trong không gian $Oxyz$ A, B, C thẳng hàng là A. $x = 5; y = 11$. C. $x = -11; y = -5$. Trong không gian $Oxyz$	$m; 3; -1), \vec{w} = (1; 2; 1). \text{ Volume}$ B. $-\frac{3}{8}$. $g_3 5; m), \vec{b} = (3; \log_5 3; 4)$ B. $m = 1$. cho ba điểm $A(2; 5; 3)$	Fi giá trị nào của m thì là C. $\frac{8}{3}$.). Với giá trị nào của m C. $m = -1$. $B(3;7;4), C(x;y;6)$. Gi B. $x = -5; y = 11$. D. $x = 11; y = 5$. $B(0;0;1), C(2;1;1)$. Tam	pa vectơ trên đồng phẳng \mathbf{D} . $-\frac{8}{3}$. thì $\vec{a} \perp \vec{b}$ \mathbf{D} . $m=2; m=-2$. Tá trị của x,y để ba điểm trị của ABC là
Câu 44. Câu 45.	A. $-\frac{6}{45}$. Cho $\vec{u} = (2; -1; 1), \vec{v} = (m + 1)$ A. $\frac{3}{8}$. Cho hai vector $\vec{a} = (1; \log \frac{1}{2})$ A. $m = 1; m = -1$. Trong không gian $Oxyz$ A, B, C thẳng hàng là A. $x = 5; y = 11$. C. $x = -11; y = -5$.	$m; 3; -1), \vec{w} = (1; 2; 1). \ \text{Vol}$ B. $-\frac{3}{8}$. $g_3 5; m), \vec{b} = (3; \log_5 3; 4)$ B. $m = 1$. cho ba điểm $A(2; 5; 3)$ cho ba điểm $A(1; 0; 0), A$.	Fi giá trị nào của m thì là C. $\frac{8}{3}$.). Với giá trị nào của m C. $m = -1$. $B(3;7;4), C(x;y;6)$. Gi B. $x = -5; y = 11$. D. $x = 11; y = 5$.	pa vectơ trên đồng phẳng $\mathbf{D}\frac{8}{3}.$ thì $\vec{a} \perp \vec{b}$ $\mathbf{D}. m = 2; m = -2.$ tá trị của x, y để ba điểm
Câu 44. Câu 45.	A. $-\frac{6}{45}$. Cho $\vec{u} = (2; -1; 1), \vec{v} = (m + 1)$ A. $\frac{3}{8}$. Cho hai vector $\vec{a} = (1; \log \frac{1}{8})$ A. $m = 1; m = -1$. Trong không gian $Oxyz$ A, B, C thẳng hàng là A. $x = 5; y = 11$. C. $x = -11; y = -5$. Trong không gian $Oxyz$ A. tam giác vuông tại Δx C. tam giác vuông cân Δx	$a; 3; -1), \vec{w} = (1; 2; 1). \ \text{Vol}$ B. $-\frac{3}{8}$. $a; 5; m, \vec{b} = (3; \log_5 3; 4)$ B. $m = 1$. cho ba điểm $A(2; 5; 3)$ cho ba điểm $A(1; 0; 0), \vec{a}$. tại A .	ri giá trị nào của m thì là C. $\frac{8}{3}$.). Với giá trị nào của m C. $m = -1$. $B(3;7;4), C(x;y;6)$. Gi B. $x = -5; y = 11$. D. $x = 11; y = 5$. $B(0;0;1), C(2;1;1)$. Tam B. tam giác cân tại A D. Tam giác đều.	pa vectơ trên đồng phẳng $\mathbf{D}\frac{8}{3}.$ thì $\vec{a} \perp \vec{b}$ $\mathbf{D}. m = 2; m = -2.$ tá trị của x, y để ba điểm

Cau 40.	hành đó bằng	omi nami co iça dç ia	1,1,1),(2,3,4),(7,7,3).	
	A. $2\sqrt{83}$.	B. $\sqrt{83}$.	C. 83.	D. $\frac{\sqrt{83}}{2}$.
Câu 49.	Cho 3 vecto $\vec{a} = (1;2;1);$ A. 2.	$\vec{b} = (-1;1;2) \text{ và } \vec{c} = (x;1;2)$ B. -1.	3x; x+2). Tìm x để 3 C. -2 .	vecto $\vec{a}, \vec{b}, \vec{c}$ đồng phẳng D. 1.
Câu 50.	Trong không gian Oxyz	z cho ba vector $\vec{a} = (3;$	$-2;4), \vec{b} = (5;1;6), \vec{c} =$	$=(-3;0;2)$. Tim vecto \vec{x}
	sao cho vecto \vec{x} đồng th	nời vuông góc với $\vec{a}, \vec{b}, \vec{b}$	\vec{c}	
	A. $(1;0;0)$.	B. $(0;0;1)$.	C. $(0;1;0)$.	D. $(0;0;0)$.
Câu 51.	Trong không gian $Oxyz$ thức $\overrightarrow{CE} = 2\overrightarrow{EB}$ thì tọa c		3), C(7;4;-2). Nếu E	là điểm thỏa mãn đẳng
	A. $\left(3; \frac{8}{3}; -\frac{8}{3}\right)$.		C. $(3;3;-\frac{8}{3})$.	D. $\left(1; 2; \frac{1}{3}\right)$.
Câu 52.				a, $B(2;-1;3)$, $C(-2;3;3)$. $a^2 + b^2 - c^2$ có giá trị bằng
	A. 43	B. 44	C. 42	D. 45.
Câu 53.	tọa độ điểm D là chân đ	tường phân giác trong	go cA của tam giá cABC	
	A. $D(0;1;3)$.		C. $D(0;-3;1)$.	
Câu 54.	độ điểm I tâm đường tr	ròn ngoại tiếp tam giác	ABC	(3,2), C(0;2;1). Tìm tọa
	A. $I\left(\frac{8}{3}; \frac{5}{3}; \frac{8}{3}\right)$.	B. $I\left(\frac{5}{3}; \frac{8}{3}; \frac{8}{3}\right)$.	C. $I\left(-\frac{5}{3}; \frac{8}{3}; \frac{8}{3}\right)$.	D. $I\left(\frac{8}{3}; \frac{8}{3}; \frac{5}{3}\right)$.
Câu 55.	Trong không gian Ox	cyz , cho 3 vecto $\vec{a} =$	$(-1;1;0), \vec{b} = (1;1;0), \vec{c} =$	=(1;1;1). Cho hình hộp
	OABC.O'A'B'C' thỏa mã	in điều kiện $\overrightarrow{OA} = \vec{a}, \overrightarrow{OB} = \vec{A}$	•	a hình hộp nói trên bằng:
	A. $\frac{1}{3}$	B. 4	C. $\frac{2}{3}$	D. 2
Câu 56.	Trong không gian	với hệ trục Oxyz	cho tọa độ 4 điển	m $A(2;-1;1),B(1;0;0),$
	C(3;1;0),D(0;2;1). Cho	o các mệnh đề sau:		
	(1) Độ dài $AB = \sqrt{2}$. (2) Tam giác BCD vuô. (3) Thể tích của tứ diện Các mệnh đề đúng là:			
	A. (2).	B. (3).	C. (1); (3).	D. (2), (1)
Câu 57.	Trong không gian Oxyz	, cho ba vecto $\vec{a} = (-1)$	$(1,1,0); \vec{b} = (1,1,0); \vec{c} = (1,1,0)$	1,1). Trong các mệnh đề
	sau, mệnh đề nào đúng:			
	$\mathbf{A.} \ \cos(\vec{b}, \vec{c}) = \frac{\sqrt{6}}{3}.$	B. $\vec{a} + \vec{b} + \vec{c} = \vec{0}$.	C. $\vec{a}, \vec{b}, \vec{c}$ đồng phẳng	D. $\vec{a}.\vec{b} = 1$.

Câu 58.	C(-1;1;0), D(2;-1;-2)	. Độ dài đường cao Al	H của tử diện ABCD bà	
	A. $\frac{2}{\sqrt{13}}$.	B. $\frac{1}{\sqrt{13}}$.	C. $\frac{\sqrt{13}}{2}$.	D. $\frac{3\sqrt{13}}{13}$.
Câu 59.	Cho hình chóp tam giá đẳng thức đúng	c S.ABC với I là trọi	ng tâm của đáy ABC .	Đẳng thức nào sau đây là
	A. $\overrightarrow{SI} = \frac{1}{2} \left(\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{S} \right)$	\overrightarrow{C}).	B. $\overrightarrow{SI} = \frac{1}{3} \left(\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SB} \right)$	
	C. SI = SA + SB + SC.		$\mathbf{D.} \overrightarrow{SI} + \overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC}$	C=0.
Câu 60.	tích của tứ diện ABCD	,		C(0;0;1), D(-2;1;-1). Thể
	A. $\frac{3}{2}$.	B. 3.	C. 1.	D. $\frac{1}{2}$.
Câu 61.	tâm tam giác ABC. Kh	ii đó khoảng cách SG t	oằng	$\widehat{CSA} = 90^{\circ}$. Gọi G là trọng
	A. $\frac{a\sqrt{15}}{3}$.	B. $\frac{a\sqrt{5}}{3}$.	C. $\frac{a\sqrt{7}}{3}$.	D. $a\sqrt{3}$.
Câu 62.	Trong không gian tọ	a độ <i>Oxyz</i> cho ba đi	$ \stackrel{\circ}{\text{em}} A(2;5;1), B(-2;-6) $	(6;2), C(1;2;-1) và điểm
	$M\left(m;m;m ight)$, để $\left \overrightarrow{MB}- ight $	$2\overrightarrow{AC}$ đạt giá trị nhỏ nh	nất thì <i>m</i> bằng	
	A. 2.	B. 3.	C. 1.	D. 4.
Câu 63.				(5;2), C(1;2;-1) và điểm
	$M(m;m;m)$, để MA^2 –			D 1
Cân 64	A. 3. Cho hình chán S 486	B. 4.	C. 2.	D. 1.
Cau 04.				(1;2;3). Gọi H là trung
	điểm của $\mathit{CD}, \mathit{SH} \perp ($	ABCD). Đề khôi chóp	o S.ABCD có thể tích l	oăng — (đvtt) thì có hai
	. A A 1000 M 10 M 10			
	điểm S_1, S_2 thỏa mãn ye	êu cầu bài toán. Tìm tọ	a độ trung điểm I của I	S_1S_2
	điểm S_1, S_2 thỏa mãn ye A. $I(0;-1;-3)$.	êu cầu bài toán. Tìm tọc \mathbf{B} . $I(1;0;3)$	a độ trung điểm I của I .	S_1S_2 D. $I(-1;0;-3)$.
Câu 65.	điểm S_1, S_2 thỏa mãn ye A. $I(0;-1;-3)$.	êu cầu bài toán. Tìm tọc \mathbf{B} . $I(1;0;3)$ \mathbf{z} , cho hai điểm $A(2;-1)$	a độ trung điểm I của C . $I(0;1;3)$. 1;7), $B(4;5;-2)$. Đường	S_1S_2
Câu 65.	điểm S_1, S_2 thỏa mãn yếc A . $I(0;-1;-3)$. Trong không gian $Oxyz$ (Oyz) tại điểm M . Điể	êu cầu bài toán. Tìm tọc \mathbf{B} . $I(1;0;3)$ \mathbf{z} , cho hai điểm $A(2;-1)$	a độ trung điểm I của C . $I(0;1;3)$. 1;7), $B(4;5;-2)$. Đường	S_1S_2 D. $I(-1;0;-3)$.
	điểm S_1, S_2 thỏa mãn yơ A. $I(0;-1;-3)$. Trong không gian $Oxyz$ (Oyz) tại điểm M . Điể A. $\frac{1}{2}$.	êu cầu bài toán. Tìm tọc \mathbf{B} . $I(1;0;3)$ \mathbf{z} , cho hai điểm $A(2;-$ ểm M chia đoạn thẳng \mathbf{B} . 2 .	a độ trung điểm I của I . C. $I(0;1;3)$. 1;7), $B(4;5;-2)$. Đường AB theo tỉ số nào C. $\frac{1}{3}$.	S_1S_2 D. $I(-1;0;-3)$. g thẳng AB cắt mặt phẳng
	điểm S_1, S_2 thỏa mãn yơ A. $I(0;-1;-3)$. Trong không gian Oxy (Oyz) tại điểm M . Điể A. $\frac{1}{2}$. Trong không gian Oxy trục Oy . Biết $V_{ABCD} = 0$	êu cầu bài toán. Tìm tọc \mathbf{B} . $I(1;0;3)$ \mathbf{z} , cho hai điểm $A(2;-$ ểm M chia đoạn thẳng \mathbf{B} . 2 .	a độ trung điểm <i>I</i> của <i>I</i> C. <i>I</i> (0;1;3). 1;7), <i>B</i> (4;5;-2). Đường <i>AB</i> theo tỉ số nào C. $\frac{1}{3}$. O có $A(2;1;-1)$, $B(3;0;1)$	S_1S_2 D. $I(-1;0;-3)$. g thẳng AB cắt mặt phẳng D. $\frac{2}{3}$.
	điểm S_1, S_2 thỏa mãn yơ A. $I(0;-1;-3)$. Trong không gian Oxy : (Oyz) tại điểm M . Điể A. $\frac{1}{2}$. Trong không gian Oxy : trục Oy . Biết V_{ABCD} = Khi đó $y_1 + y_2$ bằng	êu cầu bài toán. Tìm tọc \mathbf{B} . $I(1;0;3)$ \mathbf{z} , cho hai điểm $A(2;-$ ểm M chia đoạn thẳng \mathbf{B} . 2. \mathbf{z} , cho tứ diện $ABCL$ 5 và có hai điểm D_1	a độ trung điểm I của I . C. $I(0;1;3)$. 1;7), $B(4;5;-2)$. Đường AB theo tỉ số nào C. $\frac{1}{3}$. O có $A(2;1;-1)$, $B(3;0;1)$. O; $y_1;0$), $D_2(0;y_2;0)$ the	S_1S_2 D. $I(-1;0;-3)$. Ig thẳng AB cắt mặt phẳng D. $\frac{2}{3}$. I), $C(2;-1;3)$ và D thuộc ỏa mãn yêu cầu bài toán.
Câu 66.	điểm S_1, S_2 thỏa mãn yơ A. $I(0;-1;-3)$. Trong không gian Oxy : (Oyz) tại điểm M . Điể A. $\frac{1}{2}$. Trong không gian Oxy : trục Oy . Biết V_{ABCD} = Khi đó $y_1 + y_2$ bằng A. 0 .	êu cầu bài toán. Tìm tọc \mathbf{B} . $I(1;0;3)$ \mathbf{z} , cho hai điểm $A(2;-$ ểm M chia đoạn thẳng \mathbf{B} . 2. \mathbf{z} , cho tứ diện $ABCL$ 5 và có hai điểm $D_1(\mathbf{B}$. 1.	a độ trung điểm I của I . C. $I(0;1;3)$. 1;7), $B(4;5;-2)$. Đường AB theo tỉ số nào C. $\frac{1}{3}$. O có $A(2;1;-1)$, $B(3;0;1)$. C. 2 .	S_1S_2 D. $I(-1;0;-3)$. In thẳng AB cắt mặt phẳng D. $\frac{2}{3}$. In $C(2;-1;3)$ và D thuộc oàn mãn yêu cầu bài toán. D. A .
	điểm S_1, S_2 thỏa mãn yơ A. $I(0;-1;-3)$. Trong không gian Oxy : (Oyz) tại điểm M . Điể A. $\frac{1}{2}$. Trong không gian Oxy : trục Oy . Biết V_{ABCD} = Khi đó $y_1 + y_2$ bằng A. 0 .	êu cầu bài toán. Tìm tọc \mathbf{B} . $I(1;0;3)$ \mathbf{z} , cho hai điểm $A(2;-$ ểm M chia đoạn thẳng \mathbf{B} . 2. \mathbf{z} , cho tứ diện $ABCL$ 5 và có hai điểm D_1 (\mathbf{B} . 1.	a độ trung điểm I của I . C. $I(0;1;3)$. 1;7), $B(4;5;-2)$. Đường AB theo tỉ số nào C. $\frac{1}{3}$. O có $A(2;1;-1)$, $B(3;0;1)$. O; $y_1;0$), $D_2(0;y_2;0)$ the C. 2 .	S_1S_2 D. $I(-1;0;-3)$. Ig thẳng AB cắt mặt phẳng D. $\frac{2}{3}$. I), $C(2;-1;3)$ và D thuộc ỏa mãn yêu cầu bài toán.
Câu 66.	điểm S_1, S_2 thỏa mãn yơ A. $I(0;-1;-3)$. Trong không gian Oxy : (Oyz) tại điểm M . Điể A. $\frac{1}{2}$. Trong không gian Oxy : trục Oy . Biết V_{ABCD} = Khi đó $y_1 + y_2$ bằng A. 0 . Trong không gian $Oxyz$: đường phân giác trong $Oxyz$:	êu cầu bài toán. Tìm tọc \mathbf{B} . $I(1;0;3)$ \mathbf{z} , cho hai điểm $A(2;-$ ểm M chia đoạn thẳng \mathbf{B} . 2. \mathbf{z} , cho tứ diện $ABCL$ 5 và có hai điểm D_1 (\mathbf{B} . 1.	a độ trung điểm I của I C. $I(0;1;3)$. 1;7), $B(4;5;-2)$. Đường AB theo tỉ số nào C. $\frac{1}{3}$. O có $A(2;1;-1)$, $B(3;0;1)$ O; $y_1;0)$, $D_2(0;y_2;0)$ the C. 2 . Ió $A(-1;2;4)$, $B(3;0;-2)$ Ii $ \overrightarrow{OD} $.	S_1S_2 D. $I(-1;0;-3)$. In thẳng AB cắt mặt phẳng D. $\frac{2}{3}$. In $C(2;-1;3)$ và D thuộc oàn mãn yêu cầu bài toán. D. A .

Trong không gian với hệ toạ độ Oxyz, cho tam giác ABC, biết A(1;1;1), B(5;1;-2), C(7;9;1).

C. $2\sqrt{74}$.

Câu 69. Trong không gian với hệ toạ độ Oxyz, cho 4 điểm A(2;4;-1), B(1;4;-1), C(2;4;3) D(2;2;-1).

D. $3\sqrt{74}$.

Tính độ dài phân giác trong AD của góc A

B. $\frac{3\sqrt{74}}{2}$.

A. $\frac{2\sqrt{74}}{2}$.

C - ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM

I – ĐÁP ÁN

				W. 100	. "														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A	В	A	C	A	D	A	С	A	A	В	D	A	С	C	A	A	D	A	В
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
В	Α	A	В	D	С	A	D	D	A	С	С	В	С	D	A	D	С	A	A
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
В	D	D	С	A	Α	С	A	A	D	A	В	A	С	D	A	A	В	В	D
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75					
01	02		_	03			00	0)		/ 1	12		<i>,</i> ¬						-
Α	Α	В	C	Α	В	D	Α	Α	D	Α	В	В	Α	В					

II -HƯỚNG DẪN GIẢI

- Câu 1. Chọn A.
- Câu 2. Chọn B.
- Câu 3. Chọn A.
- Câu 4. Chọn C.
- Câu 5. Chọn A.
- Câu 6. Chọn D.
- Câu 7. Chọn A.
- Câu 8. Chọn C.
- Câu 9. Chọn A.
- Câu 10. Chọn A.
- Câu 11. Chọn B.
- Câu 12. Chọn D.
- Câu 13. Chọn A.
- Câu 14. Chọn C.
- Câu 15. Chọn C.
- Câu 16. Chọn A.
- Câu 17. Chọn A.

Cách 1: Tính
$$[\overrightarrow{AB}, \overrightarrow{AC}].\overrightarrow{AD} = 0$$

Cách 2: Lập phương trình (ABC) và thế toạ độ D vào phương trình tìm được.

- Câu 18. Chọn D.
- Câu 19. Chọn A.
- Câu 20. Chọn B.

Gọi
$$Q(x; y; z)$$
, $MNPQ$ là hình bình hành thì $\overrightarrow{MN} = \overrightarrow{QP} \Leftrightarrow \begin{cases} x = 2 \\ y = 3 \\ z - 4 = 0 \end{cases}$

Câu 21. Chọn B.

Điểm Q(x; y; z)

$$\overrightarrow{MN} = (1;2;3)$$
, $\overrightarrow{QP} = (7-x;7-y;5-z)$

Vì MNPQ là hình bình hành nên $\overrightarrow{MN} = \overrightarrow{QP} \Rightarrow Q(6;5;2)$

Câu 22. Chọn A.

$$\overrightarrow{AB} = (0; -2; -1); \overrightarrow{AC} = (-1; -3; 2)$$
. Ta thấy $\overrightarrow{AB}.\overrightarrow{AC} \neq 0 \Rightarrow \Delta ABC$ không vuông.

 $|\overrightarrow{AB}| \neq |\overrightarrow{AC}| \Rightarrow \Delta ABC$ không cân.

Câu 23. Chọn A.

Điểm D(x; y; z)

$$\overrightarrow{AB} = (1;-1;1)$$
, $\overrightarrow{DC} = (-3-x;4-y;-z)$

Vì ABCD là hình bình hành nên $\overrightarrow{AB} = \overrightarrow{DC} \Rightarrow D(-4;5;-1)$

Câu 24. Chọn B.

Ta có
$$|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{b}| \cdot \cos(\vec{a}, \vec{b}) = 4 + 16 + 8 = 28 \Rightarrow |\vec{a} + \vec{b}| = 2\sqrt{7}$$
.

Câu 25. Chọn D.

Với
$$M(a;b;c) \Rightarrow d(M,(Oxy)) = |c|$$

Câu 26. Chọn C.

Với M(a;b;c) \Rightarrow hình chiếu vuông góc của M lên trục Oy là $M_1(0;b;0)$

Câu 27. Chọn A.

Với $M(a;b;c) \Rightarrow$ hình chiếu vuông góc của M lên mặt phẳng (Oxy) là $M_1(a;b;0)$

Câu 28. Chọn D.

Với
$$M(a;b;c) \Rightarrow d(M,Ox) = \sqrt{b^2 + c^2}$$

Câu 30. Chọn A.

$$\overrightarrow{b.c} = 2 \neq 0.$$

Câu 31. Chọn C.

Với M(a;b;c) \Rightarrow điểm đối xứng của M qua mặt phẳng (Oxy) là M(a;b;-c)

Câu 32. Chon C.

Với
$$M(a;b;c)$$
 \Rightarrow điểm đối xứng của M qua trục Oy là $M'(-a;b;-c)$ $\Rightarrow M'(-3;2;1)$ $\Rightarrow a+b+c=0$.

Câu 33. Chọn B.

$$\cos \varphi = \frac{1.0 + 1.1 + 1.m}{\sqrt{3}.\sqrt{m^2 + 1}} = \frac{1}{\sqrt{2}} \Leftrightarrow \sqrt{2}(m+1) = \sqrt{3}\sqrt{m^2 + 1} \Leftrightarrow \begin{cases} m \ge -1\\ 3(m^2 + 1) = 2(m+1)^2 \end{cases}$$

$$\Leftrightarrow m = 2 + \sqrt{3}$$

Câu 34. Chọn C

Tính
$$\overrightarrow{AB} = (2;5;2), \overrightarrow{AC} = (-2;4;2), \overrightarrow{AD} = (2;5;1)$$

$$V = \frac{1}{6} \left| \left[\overrightarrow{AB}, \overrightarrow{AC} \right] . \overrightarrow{AD} \right| = 3$$

Sử dụng Casio

MODE 8 1 1 (nhập vecto \overrightarrow{AB})

SHIFT 5 2 2 (nhập vecto \overrightarrow{AC})

SHIFT 5 2 3 1 (nhập vector \overrightarrow{AD})

AC 1 \blacksquare 6 SHFT (hyp) (abs) SHFT 5 3 SHFT 5 4 SHFT 5 7 SHFT 5 5 \blacksquare (tính V)

Câu 35. Chọn D.

$$\overrightarrow{V} \stackrel{1}{i} V_{ABCD} = \frac{1}{3} h. \frac{1}{2} \left[\overrightarrow{AB}. \overrightarrow{AC} \right] = \frac{1}{6} \left[\overrightarrow{AB}, \overrightarrow{AC} \right]. \overrightarrow{AD} \quad \text{nen } h = \frac{\left[\overrightarrow{AB}, \overrightarrow{AC} \right]. \overrightarrow{AD}}{\left[\overrightarrow{AB}. \overrightarrow{AC} \right]}.$$

Câu 36. Chọn A.

Tính
$$\overrightarrow{AB}(2;5;2), \overrightarrow{AC}(-2;4;2), \overrightarrow{AD}(2;5;1)$$

$$V = \frac{1}{6} \left| \left[\overrightarrow{AB}, \overrightarrow{AC} \right] . \overrightarrow{AD} \right| = 3$$

$$V = \frac{1}{3}B.h, \text{ v\'oi } B = S_{\Delta ABC} = \frac{1}{2} \left[\left[\overrightarrow{AB}, \overrightarrow{AC} \right] \right] = 7\sqrt{2}, h = d\left(D, \left(ABC\right)\right)$$

$$\Rightarrow h = \frac{3V}{B} = \frac{3.3}{7\sqrt{2}} = \frac{9}{7\sqrt{2}}$$

Câu 37. Chọn D.

Câu 38. Chọn C.

$$M \in Ox \Rightarrow M(a;0;0)$$

M cách đều hai điểm A, B nên $MA^2 = MB^2 \Leftrightarrow (1-a)^2 + 2^2 + 1^2 = (2-a)^2 + 2^2 + 1^2$

$$\Leftrightarrow 2a = 3 \Leftrightarrow a = \frac{3}{2}$$

Câu 39. Chọn A.

Câu 40. Chọn A.

Câu 41. Chọn B.

Câu 42. Chọn D.

$$\vec{u}.\vec{v} = (\vec{k}\vec{a} - \vec{b})(\vec{a} + 2\vec{b}) = 4k - 50 + (2k - 1)|\vec{a}||\vec{b}|\cos\frac{2\pi}{3} = -6k - 45$$

Câu 43. Chọn D.

Ta có:
$$[\vec{u}, \vec{v}] = (-2; m+2; m+6), \quad [\vec{u}, \vec{v}] \cdot \vec{w} = 3m+8$$

$$\vec{u}, \vec{v}, \vec{w}$$
 đồng phẳng $\Leftrightarrow [\vec{u}, \vec{v}] . \vec{w} = 0 \Leftrightarrow m = -\frac{8}{3}$

Câu 44. Chọn C.

Câu 45. Chon A.

$$\overrightarrow{AB} = (1; 2; 1), \overrightarrow{AC} = (x - 2; y - 5; 3)$$

A, B, C thẳng hàng $\Leftrightarrow \overrightarrow{AB}, \overrightarrow{AC}$ cùng phương $\Leftrightarrow \frac{x-2}{1} = \frac{y-5}{2} = \frac{3}{1} \Leftrightarrow x = 5; y = 11$

Câu 46. Chọn A.

$$\overrightarrow{BA} = (1,0,-1), \overrightarrow{CA} = (-1,-1,-1), \overrightarrow{CB} = (-2,-1,0)$$

 $\overrightarrow{BA.CA} = 0 \Rightarrow \text{tam giác vuông tại } A, AB \neq AC$

Câu 47. Chọn C.

$$\overrightarrow{AB} = (-1;0;1), \overrightarrow{AC} = (1;1;1) . S_{\Delta ABC} = \frac{1}{2} \left[\left[\overrightarrow{AB}.\overrightarrow{AC} \right] \right] = \frac{\sqrt{6}}{2}$$

Câu 48. Chon A.

Gọi 3 đỉnh theo thứ tự là A, B, C

$$\overrightarrow{AB} = (1; 2; 3), \overrightarrow{AC} = (6; 6; 4). S_{hbh} = \left[\overrightarrow{AB}, \overrightarrow{AC} \right] = \sqrt{\left(-10\right)^2 + 14^2 + \left(-6\right)^2} = 2\sqrt{83}$$

Câu 49. Chọn A.

 $\vec{a}, \vec{b}, \vec{c}$ đồng phẳng thì $\left[\overrightarrow{a}, \overrightarrow{b}\right] \cdot \vec{c} = 0 \Rightarrow x = 2$.

Câu 50. Chọn D.

Dễ thấy chỉ có $\vec{x} = (0,0,0)$ thỏa mãn $\vec{x} \cdot \vec{a} = \vec{x} \cdot \vec{b} = \vec{x} \cdot \vec{c} = 0$.

Câu 51. Chọn A.

$$E(x; y; z), \text{ tùr } \overrightarrow{CE} = 2\overrightarrow{EB} \Rightarrow \begin{cases} x = 3 \\ y = \frac{8}{3} \end{cases}$$

$$z = -\frac{8}{3}$$

Câu 52. Chon b.

M(x; y; z), ABCM là hình bình hành thì

$$\overrightarrow{AM} = \overrightarrow{BC} \Rightarrow \begin{cases} x - 1 = -2 - 2 \\ y - 2 = 3 + 1 \Rightarrow M(-3; 6; -1) \Rightarrow P = 44.. \\ z + 1 = 3 - 3 \end{cases}$$

Câu 53. Chọn A.

Ta có $AB = \sqrt{26}$, $AC = \sqrt{26} \Rightarrow \tan \operatorname{giác} ABC \operatorname{cân} \stackrel{\circ}{o} A \operatorname{nên} D \operatorname{là} \operatorname{trung} \operatorname{diễm} BC \Rightarrow D(0;1;3)$.

Câu 54. Chon c.

Ta có: $AB = BC = CA = 3\sqrt{2} \Rightarrow \Delta ABC$ đều. Do đó tâm I của đường tròn ngoại tiếp ΔABC là trọng tâm của nó. Kết luận: $I\left(-\frac{5}{3}; \frac{8}{3}; \frac{8}{3}\right)$.

Câu 55. Chọn d.

$$\overrightarrow{OA} = \overrightarrow{a}, \Rightarrow A(-1;1;0), \overrightarrow{OB} = \overrightarrow{b} \Rightarrow B(1;1;0), \overrightarrow{OC'} = \overrightarrow{c} \Rightarrow C'(1;1;1)$$

$$\overrightarrow{AB} = \overrightarrow{OC} \Rightarrow C(2;0;0) \Rightarrow \overrightarrow{CC'} = (-1;1;1) = \overrightarrow{OO'} \Rightarrow V_{OABC.O'A'B'C'} = \left[\overrightarrow{OA}, \overrightarrow{OB}\right] \overrightarrow{OO'}$$

Câu 56. Chon A.

Câu 57. Chọn A.

$$\cos(\vec{b}, \vec{c}) = \frac{\vec{b}.\vec{c}}{|\vec{b}|.|\vec{c}|}$$

Câu 58. Chọn B.

Sử dụng công thức
$$h = \frac{\left[\overrightarrow{AB}, \overrightarrow{AC} \right] . \overrightarrow{AD}}{\left| \overrightarrow{AB} . \overrightarrow{AC} \right|} = \frac{1}{\sqrt{13}}.$$

Câu 59. Chọn B.

$$\begin{vmatrix}
\overrightarrow{SI} = \overrightarrow{SA} + \overrightarrow{AI} \\
\overrightarrow{SI} = \overrightarrow{SB} + \overrightarrow{BI}
\end{vmatrix} \Rightarrow 3\overrightarrow{SI} = \overrightarrow{SA} + \overrightarrow{SB} + (\overrightarrow{AI} + \overrightarrow{BI} + \overrightarrow{CI})$$

$$\overrightarrow{SI} = \overrightarrow{SC} + \overrightarrow{CI}$$

Vì I là trọng tâm tam giác $ABC \Rightarrow \overrightarrow{AI} + \overrightarrow{BI} + \overrightarrow{CI} = \overrightarrow{0} \Rightarrow \overrightarrow{SI} = \frac{1}{3} (\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC}).$

Câu 60. Chọn D.

Thể tích tứ diện:
$$V_{ABCD} = \frac{1}{6} \left[\overrightarrow{AB}, \overrightarrow{AC} \right] . \overrightarrow{AD}$$

Câu 61. Chọn A.

Áp dụng công thức tổng quát: Cho hình chóp S.ABC có SA = a, SB = b, SC = c và có $\widehat{ASB} = \alpha, \widehat{BSC} = \beta, \widehat{CSA} = \gamma$. Gọi G là trọng tâm tam giác ABC, khi đó

$$SG = \frac{1}{3}\sqrt{a^2 + b^2 + c^2 + 2ab\cos\alpha + 2ac\cos\gamma + 2bc\beta}$$

Chứng minh:

Ta có:
$$\overrightarrow{SG} = \frac{1}{3} \left(\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} \right)$$

$$\left(\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC}\right)^2 = \overrightarrow{SA}^2 + \overrightarrow{SB}^2 + \overrightarrow{SC}^2 + 2\overrightarrow{SA}.\overrightarrow{SB} + 2\overrightarrow{SA}.\overrightarrow{SC} + 2\overrightarrow{SB}.\overrightarrow{SC}$$

Khi đó
$$SG = \frac{1}{3}\sqrt{a^2 + b^2 + c^2 + 2ab\cos\alpha + 2ac\cos\gamma + 2bc\beta}$$

Áp dụng công thức trên ta tính được $SG = \frac{a\sqrt{15}}{3}$

Câu 62. Chọn A.

$$\overrightarrow{AC}(-1;-3;-2), \overrightarrow{MB}(-2-m;-6-m;2-m)$$

$$\left|\overrightarrow{MB}-2\overrightarrow{AC}\right| = \sqrt{m^2+m^2+(m-6)^2} = \sqrt{3m^2-12m+36} = \sqrt{3(m-2)^2+24}$$

$$\overrightarrow{De}\left|\overrightarrow{MB}-2\overrightarrow{AC}\right| \text{ nhỏ nhất thì } m=2$$

Câu 63. Chọn B.

$$\overrightarrow{MA} = (2-m; 5-m; 1-m), \overrightarrow{MB} = (-2-m; -6-m; 2-m), \overrightarrow{MC} = (1-m; 2-m; -1-m)$$

$$MA^2 - MB^2 - MC^2 = -3m^2 - 24m - 20 = 28 - 3(m-4)^2 \le 28$$
Để $MA^2 - MB^2 - MC^2$ đạt giá trị lớn nhất thì $m = 4$

Câu 64. Chon C.

Ta có
$$\overrightarrow{AB} = (-1; -1; 2), \overrightarrow{AC} = (1; -2; 1) \Rightarrow S_{ABC} = \frac{1}{2} \left[\overrightarrow{AB}, \overrightarrow{AC} \right] = \frac{3\sqrt{3}}{2}$$

$$\overrightarrow{DC} = (-2; -2; 4), \overrightarrow{AB} = (-1; -1; 2) \Rightarrow \overrightarrow{DC} = 2.\overrightarrow{AB} \Rightarrow ABCD$$
 là hình thang và

$$S_{ABCD} = 3S_{ABC} = \frac{9\sqrt{3}}{2}$$
. Vì $V_{S.ABCD} = \frac{1}{3}SH.S_{ABCD} \Rightarrow SH = 3\sqrt{3}$

Lại có H là trung điểm của $CD \Rightarrow H(0;1;5)$

Gọi
$$S(a;b;c) \Rightarrow \overrightarrow{SH} = (-a;1-b;5-c) \Rightarrow \overrightarrow{SH} = k \left[\overrightarrow{AB}, \overrightarrow{AC} \right] = k(3;3;3) = (3k;3k;3k)$$

Suy ra
$$3\sqrt{3} = \sqrt{9k^2 + 9k^2 + 9k^2} \implies k = \pm 1$$

+) Với
$$k = 1 \Rightarrow \overrightarrow{SH} = (3;3;3) \Rightarrow S(-3;-2;2)$$

+) Với
$$k = -1 \Rightarrow \overrightarrow{SH} = (-3, -3, -3) \Rightarrow S(3, 4, 8)$$

Suy ra I(0;1;3)

Câu 65. Chọn A.

Đường thẳng AB cắt mặt phẳng (Oyz) tại điểm $M \Rightarrow M(0; y; z)$

$$\Rightarrow \overrightarrow{MA} = (2; -1 - y; 7 - z), \overrightarrow{MB} = (4; 5 - y; -2 - z)$$

Từ
$$\overrightarrow{MA} = k \overrightarrow{MB}$$
 ta có hệ
$$\begin{cases} 2 = k.4 \\ -1 - y = k(5 - y) \Rightarrow k = \frac{1}{2} \\ 7 - z = k(-2 - z) \end{cases}$$

Câu 66. Chọn B.

$$D\in Oy \Rightarrow D(0;y;0)$$

Ta có:
$$\overrightarrow{AB} = (1; -1; 2), \overrightarrow{AD} = (-2; y - 1; 1), \overrightarrow{AC} = (0; -2; 4)$$

$$\Rightarrow \left[\overrightarrow{AB}.\overrightarrow{AC}\right] = (0; -4; -2) \Rightarrow \left[\overrightarrow{AB}.\overrightarrow{AC}\right].\overrightarrow{AD} = -4y + 2$$

$$V_{ABCD} = 5 \Leftrightarrow \frac{1}{6} |-4y + 2| = 5 \Leftrightarrow y = -7; y = 8 \Rightarrow D_1(0; -7; 0), D_2(0; 8; 0) \Rightarrow y_1 + y_2 = 1$$

Câu 67. Chọn D.

Gọi
$$D(x; y; z)$$
. $\frac{DB}{DC} = \frac{AB}{AC} = \frac{2\sqrt{14}}{\sqrt{14}} = 2$

Vì D nằm giữa B, C (phân giác trong) nên
$$\overrightarrow{DB} = -2\overrightarrow{DC} \Leftrightarrow \begin{cases} 3 - x = -2(1 - x) \\ -y = -2(3 - y) \\ -2 - z = -2(7 - z) \end{cases} \Leftrightarrow \begin{cases} x = \frac{5}{3} \\ y = 2 \\ z = 4 \end{cases}$$

Suy ra
$$D\left(\frac{5}{3};2;4\right) \Rightarrow \left|\overrightarrow{OD}\right| = \frac{\sqrt{205}}{3}$$

Câu 68. Chọn A.

D(x; y; z) là chân đường phân giác trong gố cA của tam giác ABC.

Ta co
$$\frac{DB}{DC} = \frac{AB}{AC} = \frac{1}{2} \Rightarrow \overrightarrow{DC} = -2\overrightarrow{DB} \Rightarrow D(\frac{17}{3}; \frac{11}{3}; -1) \Rightarrow AD = \frac{2\sqrt{74}}{3}.$$

Câu 69. Chon A.

Gọi G là trọng tâm của ABCD ta có: $G\left(\frac{7}{3}; \frac{14}{3}; 0\right)$.

Ta có: $MA^2 + MB^2 + MC^2 + MD^2 = 4MG^2 + GA^2 + GB^2 + GC^2 + GD^2$ $\geq GA^2 + GB^2 + GC^2 + GD^2$. Dấu bằng xảy ra khi $M \equiv G\left(\frac{7}{3}; \frac{14}{3}; 0\right) \Rightarrow x + y + z = 7$.

Câu 70. Chọn D.

H(x;y;z) là trực tâm của $\triangle ABC \Leftrightarrow BH \perp AC, CH \perp AB, H \in (ABC)$

$$\Leftrightarrow \begin{cases} \overrightarrow{BH}.\overrightarrow{AC} = 0 \\ \overrightarrow{CH}.\overrightarrow{AB} = 0 \\ \overrightarrow{AB}, \overrightarrow{AC} \].\overrightarrow{AH} = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{2}{15}; y = \frac{29}{15}; z = -\frac{1}{3} \Rightarrow H\left(\frac{2}{15}; \frac{29}{15}; -\frac{1}{3}\right) \Rightarrow OH = \frac{\sqrt{870}}{15}.$$

Câu 71. Chọn A.

Giả sử $B(x; y; 0) \in (Oxy), C(0; 0; z) \in Oz$.

$$H$$
 là trực tâm của tam giác $ABC \Leftrightarrow \begin{cases} \overrightarrow{AH} \perp \overrightarrow{BC} \\ \overrightarrow{CH} \perp \overrightarrow{AB} \\ \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AH} \ d\hat{o}ng \ phẳng \end{cases} \Leftrightarrow \begin{cases} \overrightarrow{AH}.\overrightarrow{BC} = 0 \\ \overrightarrow{CH}.\overrightarrow{AB} = 0 \\ [\overrightarrow{AB}, \overrightarrow{AH}].\overrightarrow{AC} = 0 \end{cases}$

Câu 72. Chọn B.

Ta có trung điểm BD là I(-1,-2,4), BD = 12 và điểm A thuộc mặt phẳng (Oxy) nên A(a;b;0).

$$ABCD \text{ là hình vuông} \Rightarrow \begin{cases} AB^2 = AD^2 \\ AI^2 = \left(\frac{1}{2}BD\right)^2 \Leftrightarrow \begin{cases} (a-3)^2 + b^2 + 8^2 = (a+5)^2 + (b+4)^2 \\ (a+1)^2 + (b+2)^2 + 4^2 = 36 \end{cases}$$

$$\Leftrightarrow \begin{cases} b = 4 - 2a \\ (a+1)^2 + (6-2a)^2 = 20 \end{cases} \Leftrightarrow \begin{cases} a = 1 \\ b = 2 \end{cases} \text{ hoặc } \begin{cases} a = \frac{17}{5} \\ b = \frac{-14}{5} \end{cases}$$

$$\Rightarrow$$
 A(1; 2; 0) hoặc $A\left(\frac{17}{5}; \frac{-14}{5}; 0\right)$ (loại).

Với $A(1;2;0) \Rightarrow C(-3;-6;8)$.

Câu 73. Chọn B.

Ta co $AC^2 + BC^2 = 9 + 9 = AB^2$ \Rightarrow tam giá c ABC vuông tại C.

Suy ra:
$$r = \frac{S_{ABC}}{p} = \frac{\frac{1}{2}CA.CB}{\frac{1}{2}(AB + BC + CA)} = \frac{3.3\sqrt{2}}{3\sqrt{2} + \sqrt{3} + \sqrt{3}} = 9 - 3\sqrt{6}$$

Câu 74. Chọn A.

$$\overrightarrow{OM} = (3;0;0), \overrightarrow{ON} = (m;n;0) \Rightarrow \overrightarrow{OM}.\overrightarrow{ON} = 3m$$

$$\overrightarrow{OM}.\overrightarrow{ON} = \left| \overrightarrow{OM} \right| . \left| \overrightarrow{ON} \right| \cos 60^{0} \Rightarrow \frac{\overrightarrow{OM}.\overrightarrow{ON}}{\left| \overrightarrow{OM} \right| . \left| \overrightarrow{ON} \right|} = \frac{1}{2} \Rightarrow \frac{m}{\sqrt{m^{2} + n^{2}}} = \frac{1}{2}$$

$$MN = \sqrt{(m-3)^{2} + n^{2}} = \sqrt{13} \text{ suy ra } m = 2; n = \pm 2\sqrt{3}$$

$$\left[\overrightarrow{OM}, \overrightarrow{ON} \right] . \overrightarrow{OP} = 6\sqrt{3} p \Rightarrow V = \frac{1}{6} \left| 6\sqrt{3} p \right| = 3 \Rightarrow p = \pm \sqrt{3}$$

$$V_{A}^{2}y \quad A = 2 + 2.12 + 3 = 29.$$

Câu 75. Chọn B.

I(x; y; z) là tâm đường tròn ngoại tiếp tam giá c $ABC \Leftrightarrow AI = BI = CI, I \in (ABC)$

$$\Leftrightarrow \begin{cases} AI^2 = BI^2 \\ CI^2 = BI^2 \\ \left[\overrightarrow{AB}, \overrightarrow{AC} \right] \overrightarrow{AI} = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{14}{15}; \ y = \frac{61}{30}; \ z = -\frac{1}{3} \Rightarrow I\left(\frac{14}{15}; \frac{61}{30}; -\frac{1}{3}\right) \Rightarrow P = 50. \end{cases}$$