C11 - 1.1 - Arithmetic Sequence missing terms WS

Find missing terms of the sequence.

2, 4, 6, _____, ____

8, 14, 20, _____, _____

7, 10, 13, ____, ____,

11, 6, 1, ____, ____,

2, -4, -10, _____, ____

-8, -5, -2, _____, ____

-8, -13, -18, ____, ____,

 $\frac{1}{2'}$ $\frac{3}{2'}$ $\frac{5}{2'}$ $\frac{----}{2'}$ $\frac{-----}{2'}$

0.33, 0.34, 0.35, _____,

 $\frac{1}{2}$, $\frac{1}{4}$, 0, _____,

x, x + 1, x + 2, _____,

_____, ____, 8, 10, 12

5, _____, 17, _____,

2, -8, _____

4, _____, -2, _____,

-7, ____, 3, ____,

5, _____, ____, 20, 25,

2, _____, 8, 10,

4, _____, ____, 25, _____,

2, _____, -4, -6,

7, ____, -32, ____,

13, _____, 81

Solve for x, and missing terms

x + 1, 3x - 1, 2x + 3, _____,

2x + 2, -x - 5, 5x + 7,

 $x^2 - 12$, $x^2 - 2x + 2$, $2x^2 - 3x - 4$, _____

3,5,7, x=2 8,12,16,2

8,12,16,22 x=3

4,10,16 x = 4

C11 - 1.2 - Arithmetic Series Sum terms WS

1. Find the sum of the first sixth terms of the sequence.

2, + 4, + 6, + ____, + ____, =

3, + 7, + 11, + ____, + ____ =

8, 14, 20, _____ =

7, 10, 13, ____, ____,

11, 14, 17, ____, ____,

6, 8, 10, ____, ____,

2, 6, 10, _____, _____

3, 10, 17, _____, _____

8, 13, 18, ____, ____,

7, 14, 21, _____, ____,

11, 17, 23, ____, ____

8, 7, 6, _____, ____

7, 2, -3, _____, ____

11, 8, 5, ____, ____,

6, 5, 4, _____, _____

12, 7, 2, _____, _____

C11 - 1.1 - Arithmetic Sequences WS

$$\frac{3}{t_1}, \frac{5}{t_2}, \frac{7}{t_3}, \frac{?}{t_4}, \frac{?}{t_5}, \dots, \frac{?}{t_n}$$

$$\frac{1}{t_1}, \frac{1}{t_2}, \frac{1}{t_2}, \frac{7}{t_3}, \frac{?}{t_4}, \frac{?}{t_5}, \dots, \frac{?}{t_n}$$

$$\frac{1}{t_1}, \frac{1}{t_2}, \frac{1}{t_2}, \frac{7}{t_3}, \dots, \frac{?}{t_n}$$

$$\frac{1}{t_1}, \frac{1}{t_2}, \frac{1}{t_2}, \frac{7}{t_3}, \dots, \frac{?}{t_n}$$

$$\frac{1}{t_1}, \frac{1}{t_2}, \frac{1}{t_2}, \frac{7}{t_3}, \dots, \frac{?}{t_n}$$

$$t_1 =$$

$$d = t_n - t_{n-1}$$

$$d = d =$$

$$d = t_n - t_{n-1}$$

Arithmetic: d must always be the _____

1. Find the General term $t_n = ?$

$$t_n = t_1 + (n-1)d$$

_____ formula

Or, Start from beginning

The first term plus'n - 1' differences

What is the tenth term t_{10} ?

$$t_n =$$

General term formula

Remember: You could have also added the common difference 7 times to Term 3 (t_3)

Check your answer: 3,5,7,

31 is what term, $t_n = 31$, n = ?

$$t_n =$$

Check your answer: 3,5,7,

C11 - 1.1 - Arithmetic first term, difference HW

1. Circle the first term, write $t_1 = and$ find the common difference, twice.

3, 7, 11, 15,

8, 14, 20, 26, 32

$$t_1 = 1$$

 $t_1 =$

$$d = 3 - 1 = 2$$

 $d = 5 - 3 = 2$

d = d = d

 $3, -1, -5, \dots$

5, 2.5, 0, ...

$$-\frac{1}{2}$$
, $-\frac{3}{2}$, $-\frac{5}{2}$, ...

$$\frac{9}{2}, \frac{7}{2}, \frac{5}{2}, \dots$$

 $27, 13, -1, \dots$

$$-3, -5, -7, -9, -11$$

5, 11, 17, 23, 29

0.3, 0.31, 0.32, 0.33, ...

C11 - 1.1 - Arithmetic Means HW

Write the first 5 terms of the sequence

$$t_1=2, d=3$$

$$t_1 = 4, d = -3$$

$$t_1=-4, d=5$$

$$t_1 = -7, t_3 = 3$$

$$t_1 = 5, t_3 = 15$$

$$t_1 = 2, t_4 = -4$$

$$t_1 = 7, t_4 = -32$$

$$t_1 = 13, t_5 = 81$$

$$t_1 = 2x - 8$$
, $t_3 = 3x - 2$

$$6,13,19, x = 7$$

C11 - 1.1 - Arithmetic Means HW

Find t_1 and d

$$t_2 = 2, t_3 = 4$$

$$t_2 = 15, t_3 = 20$$

$$t_2 = 2, t_4 = -8$$

$$t_2 = 8, t_4 = -32$$

$$t_2 = 2, t_5 = -13$$

$$t_2 = 3, t_6 = 23$$

$$t_3 = 4, t_{10} = 39$$

$$t_3 = 3, t_{12} = -1527$$

C11 - 1.1 - Arithmetic General Term, nth terms HW

Find the General term.

Find the 18th term. $t_{18} = ?$

Find out what term 63 is. $t_n = 63$.

3,

7, 11, 15,

 $t_1 = d =$

d =

 $t_n = t_1 + (n-1)d$

Find the General term.

Find the 12th term. $t_{12} = ?$ Find out what term 49 is. $t_n = 49$.

4,

9, 14, ...

Find the General term.

Find the 20th term. $t_{20} = ?$

Find out what term 64 is. $t_n = 64$.

7,

10,

13, ...

C11 - 1.2 - Arithmetic Series WS

$$\frac{3}{t_1}, \quad \frac{5}{t_2}, \quad \frac{7}{t_3}, \quad \frac{?}{t_4}, \quad \frac{?}{t_5}, \dots, \frac{?}{t_n}$$

$$\frac{1}{t_1}, \quad \frac{1}{t_2}, \quad \frac{7}{t_3}, \quad \frac{?}{t_4}, \quad \frac{?}{t_5}, \quad \frac{?}{t_n}$$

$$\frac{1}{t_1}, \quad \frac{1}{t_2}, \quad \frac{?}{t_3}, \quad \frac{?}{t_4}, \quad \frac{?}{t_5}, \quad \frac{?}{t_5}, \quad \frac{?}{t_6}$$

$$t_1 =$$

$$d = t_n - t_{n-1}$$
 $d = t_n - t_{n-1}$ $d = t_n - t_{n-1}$

$$d = d =$$

4. What is the sum of the first twelve terms s_{12} ? $s_{12} = ?, n = 12$.

$$s_n = \frac{n}{2}(t_1 + t_n)$$

$$t_n =$$

$$s_n = \frac{n}{2}(t_1 + t_n)$$

Sum of "n" terms formula: if t_n is known.

Check your answer: 3 + 5 + 7 +

<u>OR</u>

$$s_n = \frac{n}{2}(2t_1 + (n-1)d)$$

$$s_n = \frac{n}{2}(2t_1 + (n-1)d)$$

Sum of "n" terms formula: if t_n is not known.

C11 - 1.2 - Arithmetic Series Sum nth terms HW

Find the sum of the first 12 terms. $s_{12} = ?, n = 12$

8, 14, 20, 26, 32

6, 13, 20, 27, 34

3,

7, 11,

15,

Find the sum of the first 18 terms

$$3, -1, -5, \dots$$

Find the sum of the first 100 terms.

7, 10,

13,

5, 11, 17, 23, 29

14, 38, 62, 86, ...

Find the sum of the first 251 terms.

$$\frac{1}{2}$$
, $\frac{3}{2}$, $\frac{5}{2}$, ...

$$\frac{9}{2}$$
, $\frac{7}{2}$, $\frac{5}{2}$,

C11 - 1.2 - Find 'n' Arithmetic Series HW

Find "n" the number of terms

15, 16, 17, 18, 19 100
$$\longrightarrow t_n$$

 $t_n = t_1 + (n-1)d$

C11 - 1.2 - Finding Sum, t_1 , d, Arithmetic Series HW

Find n and the sum.

$$t_n = t_1 + (n-1)d$$
 $s_n = \frac{n}{2}(t_1 + t_n)$

$$8 + (-2) + (-12) + ... + (-102)$$

C11 - 1.3 - Geometric Sequence missing terms WS

Find the missing terms of the sequence.

2, 4, 8, _____, _____

3, 9, 27, _____, _____

1, 2, 4, _____, ____

5, 20, 80, ____, ____,

4, 6, 9, _____, _____

-4, 2, -1, <u>____</u>, <u>___</u>,

9, 3, 1, _____, _____

10, 100, 1000, ____, ____,

-4, -2, -1, _____, ____

.5, .25, .125, _____, ____

 $\frac{2}{7}$, $\frac{12}{35}$, $\frac{72}{175}$, $\frac{}{}$

 $6, -1, \frac{1}{6}, \dots, \frac{1}{6}$

 $\frac{1}{3}$, $\frac{2}{9}$, $\frac{4}{27}$, $\frac{1}{27}$, $\frac{1}{27}$

2, -4, 8, ____, ____

 $\frac{1}{2'}$ $\frac{3}{2'}$ $\frac{9}{2'}$ $\frac{9}{2'}$

x, x^2 , x^3 , ____, ___

_____, ____, ____, 27, 81, 243,

_____, _____, _____, 625, 3125

 $-\frac{1}{5}$, $-\frac{1}{25}$, $-\frac{1}{25}$

5, _____, 20, _____,

2, ____, 32, ____,

5, _____, 40, 80, 160,

2, ____, 16, ____,

1, _____, $-\frac{1}{8}$, $\frac{1}{16}$, $-\frac{1}{32}$

x + 1, _____, $(x + 1)^4$, ____,

3, _____, 243

Solve for x, and missing terms

C11 - 1.4 - Geometric Sequence sum terms WS

1. Find the fourth, fifth and sixth terms of the sequence.

$$\frac{1}{3'}$$
 + $\frac{1}{9'}$ + 1/27, + ____, + ____ =

$$\frac{1}{2}$$
, + $\frac{3}{2}$, + $\frac{9}{2}$, +, + =

$$x_1 + x^2$$
, + x^3 , + ____, + ____ =

C11 - 1.3 - Geometric Means HW

Write the first terms 5 of the sequence

$$t_1 = 2, r = 3$$

$$t_1 = 4, r = -3$$

$$t_1=-4, r=\frac{1}{2}$$

$$t_1 = 4, t_3 = 16$$

$$t_1 = 5, t_3 = 20$$

$$t_1 = 2, t_4 = -54$$

$$t_1 = 1, t_4 = \frac{1}{8}$$

$$t_1 = 3, t_5 = 243$$

$$t_1 = x - 1, t_3 = 4x - 4$$

C11 - 1.3 - Geometric Means HW

Find t_1 and r

$$t_2 = 2, t_3 = 4$$

$$t_2 = 10, t_3 = 20$$

$$t_2 = 2, t_4 = 88$$

$$t_2 = 8, t_4 = 32$$

$$t_2 = 2, t_5 = -16$$

$$t_2 = 2, t_6 = 32$$

$$t_3 = 4, t_{10} = 512$$

$$t_3 = -3, t_{12} = -59049$$

C11 - 1.3 - Geometric Sequences WS

 $t_1 = first term$ $r = common \, ratio$ $t_n = term n$ n = number of terms

$$t_1 = 2$$

$$r = \frac{t_n}{t_{n-1}} \qquad \qquad r = \frac{t_n}{t_{n-1}}$$

$$r = \frac{t_n}{t_{n-1}}$$

$$r = \frac{t_n}{t_{n-1}}$$

A term divided by the term before it

$$r =$$

$$r =$$

Geometric: r must always be the same

1. Find the General term $t_n = ?$

$$t_n = t_1 r^{n-1}$$

$$t_n = t_1 r^{n-1}$$

General term formula

2. What is the fifth term t_5 ? $t_5 = ?$, n = 5.

$$t_n =$$

Check your answer: 2,6,18,

Remember: You could have also multiplied the common ratio 2 times to t_3

3. The number 1458 is what term? $t_n = 1458$, n = ?

$$t_n = t_1 r^{n-1}$$

C11 - 1.3 - Geometric Sequence $find\ t_1$, r WS

Find the first term t_1 , and the common ratio twice.

2, 4, 8, . .

3, 9, 27, ...

5, 25, 125, ...

 $t_1 = 2$

 $t_1 =$

 $r=\frac{4}{2}=2$

r =

 $r=\frac{8}{4}=2$

r =

8, -4, 2, ...

-6, -36, -216

5, 10, 20, ...

 $2, \frac{1}{2}, \frac{1}{8}, \dots$

 $-27, -3, -\frac{1}{3}, \dots$

 $27, 3, \frac{1}{3},$

1, -1, 1, ...

-10, 100, -1000, ...

0.3, 0.03, 0.003, ...

C11 - 1.3 - Geometric General Term, nth term WS

Find the General Term

Find the 12th term. $t_{12} = ?$

Find out what term 128 is. $t_n = 128$.

2, 4, 8, ...

 $t_1 = r =$

r =

 $t_n = t_1 r^{n-1}$

Find the General Term

2, 6, 18, . .

Find the 6th term. $t_6 = ?$

Find out what term 162 is. $t_n = 162$.

Find the General Term

 $8, -2, \frac{1}{2}, \dots$

Find the 8th term. $t_8 = ?$

Find out what term $\frac{1}{128}$ is. $t_n = -\frac{1}{128}$.

Find the General Term

Find the 5th term. $t_5 = ?$

Find out what term 0.00000003 is.

0.3, 0.03, 0.003, ...

C11 - 1.4 - Geometric Series WS

 $t_1 = first term$ $r = common \, ratio$ $t_n = term n$ n = number of terms

$$t_1 = 2$$

$$r = \frac{t_n}{t_{n-1}}$$

$$r = \frac{t_n}{t_{n-1}}$$

$$r = \frac{t_n}{t_{n-1}} \qquad \qquad r = \frac{t_n}{t_{n-1}} \qquad \qquad \boxed{r = \frac{t_n}{t_{n-1}}}$$

A term divided by the term before it

$$r =$$

$$r =$$

Geometric: r must always be the same

What is the sum of the first six terms s_6 ? $s_6 = ?$, n = 6.

$$s_n = \frac{t_1(1-r^n)}{1-r}$$

$$s_n = \frac{t_1(1-r^n)}{1-r}$$
 $s_n = \frac{t_1(1-r^n)}{1-r}$

Sum of "n" terms formula (if number of terms is known)

Check your answer: 2 + 6 + 18 +

$$s_n = \frac{t_1 - rt_n}{1 - r}$$

$$t_n =$$

$$s_n = \frac{t_1 - rt_n}{1 - r}$$

Sum of "n" terms formula (if last term t_n is known)

What is the sum of an infinite number of terms?

$$r =$$

$$r > 1$$
, :

Find the sum of the first 6 terms. $s_6=?$, n=6

$$s_n = \frac{t_1(1-r^n)}{1-r}$$
 $s_n = \frac{t_1(1-r^n)}{1-r}$

Find the sum of the first 9 terms

$$-6, -36, -216$$

Find the sum of the first 11 terms.

$$2, \frac{1}{2}, \frac{1}{4}, \dots$$

$$9, -3, -\frac{1}{3}, \dots$$

$$27, 3, \frac{1}{3},$$

Find the sum of the first 5 terms.

$$0.3, 0.33, 0.333, \dots$$

C11 - 1.3 - Geometric find 'n' WS

Find "n" the number of terms

 $t_n = t_1 r^{n-1}$

$$2,4,8,\ldots..256 \longrightarrow t_n$$

$$8, -4, 2, \dots \frac{1}{256}$$

$$-6, -36, -216 \dots -46656$$

$$5, 10, 20, \dots \dots 160$$

$$2, \frac{1}{2}, \frac{1}{8}, \dots \frac{1}{512}$$

$$9, -3, 1, \dots \frac{1}{81}$$

$$27, 3, \frac{1}{3}, \dots \frac{1}{2187}$$

C11 - 1.4 - Geometric find 'n' WS

Find n, and the sum

$$2, 4, 8, \dots 256 \longrightarrow t_n$$

$$t_n = t_1 r^{n-1} \qquad s_n = \frac{t_1 - rt_n}{1 - r}$$

$$8, -4, 2, \dots \frac{1}{256}$$

$$5, 10, 20, \dots \dots 160$$

$$2, \frac{1}{2}, \frac{1}{8}, \dots \dots \frac{1}{512}$$

$$9, -3, 1, \dots \frac{1}{81}$$

$$27, 3, \frac{1}{3}, \dots \frac{1}{2187}$$

C11 - 1.5 - Infinite Geometric Sequences HW

What is the sum of the infinite sequence?

$$\frac{1}{2}$$
 $\frac{1}{4}$...

$$-1$$
 $-\frac{1}{2}$ $-\frac{1}{4}$

$$t_1 = 2, r = 2$$

$$t_1=8, r=\frac{1}{2}$$

C11 - 1.1/2/3/4/5 - Sigma Notation WS

Take the sum of the terms a_k from the index to n, going up by 1 each time.

Arithmetic

$$\sum_{k=1}^{5} 3k =$$

$$\sum_{k=2}^{5} 2k - 1 =$$

$$\sum_{k=2}^{5} -2k - 1 =$$

Geometric

$$\sum_{k=2}^{6} 3(2)^{k-1} =$$

$$\sum_{k=1}^{4} 2(3)^{k-1} =$$

$$\sum_{k=1}^{\infty} 3(\frac{1}{2})^{k-1} =$$

C11 - 1.6 - Arithmetic Sequence Series Word Problems

If you make \$36, 000 in your first year at work and get a raise of \$3000 per year. How much will you make in your 10th, 20th, 50th year at work?
How much will you make total after 10 years, 20 years and 50 years?

C11 - 1.6 - Geometric Sequence Series Word Problems

CTT - 1.0 - Geometric sequence series word r for	леніз
A ball rolls off a building 100 m tall. Each time the ball bounces on the floor, it	rises to 80% of the previous height.
How high does the ball bounce after the first bounce? The third bounce?	
How high does the ball bounce after the nth bounce? (Find the general for	mula)
How high does the ball bounce after the 4th bounce. $(t_5=?)$	
What is the total vertical distance the ball has	
travelled when it hits the ground for the 5th bounce? $(s_5 = ? \times 2 - 100)$	If it bounces forever, what is the total distance?

C11 - 1.6 - Geometric Sequence Series Word Problems

orr the coometric coquence comes transferne
If you make \$1 in your first year at work and get paid double each year after. How much will you make in your 10th, 20th, 50th year at work?
How much will you make total after 10 years, 20 years and 50 years?