安徽大学 20_17_-20_18_学年第_2_学期

《 信号与系统 》期中考试试卷 (闭卷 时间 120 分钟)

题 号	_	=	Ξ	四	五	总分
得 分						
阅卷人						

一、	填空题	(每小题3	分,	共 15	分)
----	-----	-------	----	------	----

得 分

- 1. $\ddot{f}(t_1) * f(t_2) = y(t), \quad \text{if } f(t-t_1) * f(t-t_2) = \underline{\hspace{1cm}}$
- 2. 系统的初始状态为零,仅由______ 引起的响应叫做系统的零状态响应。
- 3. $\int_{-\infty}^{t} \sin(\tau + \frac{\pi}{2}) \delta(\tau) d\tau = \underline{\hspace{1cm}}$
- 4. 已知矩形调幅信号 $f(t) = G(t)\cos(\omega_0 t)$, 其中 G(t) 矩形脉冲,脉幅为 E,脉宽为 τ ,可知 G(t) 的频 谱为 $G(\omega) = E\tau \cdot Sa(\frac{\omega\tau}{2})$,则 f(t)的频谱为_____。
- 5. 己知某 LTI 连续系统当激励为 f(t)时,零状态响应为 $y_{-s}(t)$,零输入响应为 $y_{-t}(t)$,全响应为 $y_1(t)$, 当激励为 2f(t) 时,系统的全响应 y(t) 为______

二、选择题(每小题3分,共15分)

得 分

- 1. 下列系统中,属于线性时不变系统的是(
 - A. r(t) = e(1-t)

- B. y(t) = x(t) + x(t-1)
- C. $r(t) = \int_{-\infty}^{5t} e(\tau) d\tau$
- D. $y(t) = x(t)\sin(\frac{3\pi}{4}t + \frac{\pi}{4})$
- 2. 将信号 f(t) 变换为() 称为对信号 f(t) 的尺度变换。
 - A. f(at)
- B. $f(t-k_0)$ C. $f(t-t_0)$ D. $f(t^2)$
- 3. 己知系统微分方程为 $\frac{dy(t)}{dt} + 2y(t) = f(t), (y(0_+) = 1), f(t) = \sin(t)u(t)$ 解得全响应为

$$y(t) = \frac{5}{4}e^{-2t} + \frac{\sqrt{2}}{4}\sin(2t - 45^\circ), t \ge 0$$
 其中 $\frac{\sqrt{2}}{4}\sin(2t - 45^\circ)$ 指的是()。

- A. 零输入响应分量 B. 零状态响应分量 C. 自由响应分量 D. 稳态响应分量

李

年级

院/然

4. 信号 $f_1(t)$ 和 $f_2(t)$ 如图 1 所示,已知 $\mathcal{F}[f_1(t)] = F_1(\omega)$,则 $f_2(t)$ 的傅里叶变换为().

- A. $F_1(\omega)e^{j\omega t_0}$ B. $F_1(\omega)e^{-j\omega t_0}$ C. $F_1(-\omega)e^{j\omega t_0}$
- D. $F_1(-\omega)e^{-j\omega I_0}$

5. 已知信号 f(t) 如图 2 所示,则其傅里叶变换为(

- A. $\frac{\tau}{2} Sa\left(\frac{\omega \tau}{4}\right) + \frac{\tau}{2} Sa\left(\frac{\omega \tau}{2}\right)$
- C. $\frac{\tau}{2} Sa\left(\frac{\omega \tau}{4}\right) + \tau Sa\left(\frac{\omega \tau}{2}\right)$
- B. $tSd\left(\frac{\omega\tau}{4}\right) + \frac{\tau}{2}Sd\left(\frac{\omega\tau}{2}\right)$
- D. $tSa\left(\frac{\omega\tau}{4}\right) + tSa\left(\frac{\omega\tau}{2}\right)$

三、画图题 (10分)

1、已知f(t)的信号波形如图 3 所示,求下列信号波形。

(1)
$$f(t+4)$$

(2)
$$2f(1-2t)$$

得分

四、证明题(15分)

得分

五、计算题(第1题10分,第2题15分,第3题20分,共45分)

1、己知三角脉冲信号

$$f(t) = \begin{cases} E(1 - \frac{2}{\tau}|t|) & \left(|t| < \frac{\tau}{2}\right) \\ 0 & \left(|t| > \frac{\tau}{2}\right) \end{cases}, 求其傅里叶变换 F(\omega) .$$

2、若己知 $f(t) \leftrightarrow F(\omega)$, 确定下列信号的傅里叶变换:

(1)
$$f(1-t)$$
; (2) $f(2t-5)$.

- 3、如图 4 所示电路,t<0时,开关位于"1"且已达到稳态,t=0时刻,开关自"1"转至"2"
 - (1) 求 $i(0_{-}),i'(0_{-})$ 和 $i(0_{+}),i'(0_{+});$ (6分)
 - (2) 写出 $\iota \geq 0$,时间内描述系统的微分方程表示,求电阻电压 $u_{\scriptscriptstyle R}(\iota)$ 的完全响应。(8分)
 - (3) 求系统的单位冲激响应 h(t)。(6分)

