# 第二章 条件概率与独立性

§ 2.1 条件概率,乘法公式

例 1: 设某箱子中有 10 个球,分别标号 1-10,现从箱子中任取 1 个球,记A="球的标号是 3 的倍数", B="球的标号是奇数",求 P(A), P(B), P(AB), P(A|B), P(B|A).

定义 1: 设A, B是两个随机事件,且P(B) > 0,则称

$$P(A|B) = \frac{P(AB)}{P(B)}$$

为在事件B发生的条件下,事件A发生的(条件)概率。

若
$$P(A) > 0$$
,也可定义  $P(B|A) = \frac{P(AB)}{P(A)}$ .

定理 1: 条件概率P(A|B)满足:

- (1) 对任一事件A, 有 $P(A|B) \ge 0$ . (2) P(S|B) = 1.
- (3) 若 $A_1, A_2, \dots$  互不相容,则 $P(\bigcup_{i=1}^{\infty} A_i | B) = \sum_{i=1}^{\infty} P(A_i | B)$ .

注:请同学们自行写出条件概率关于概率所有性质的表示形式。

定理 2: (乘法公式) 若P(B) > 0,则P(AB) = P(B)P(A|B); 若P(A) > 0,则P(AB) = P(A)P(B|A).

例 2: 设某箱子中有 10 个零件,其中有 6 个合格品,4 个次品。在 10 个零件任取 2 次,每次任取 1 个,取后不放回。求 2 次都取得合格品的概率。

**定理 3:** (n个事件的乘法公式)设 $A_1, A_2, ..., A_n$ 是n个事件  $(n \ge 2)$ ,

且 $P(A_1A_1\cdots A_{n-1})>0$ ,则

$$P(A_1 A_2 \cdots A_n) = P(A_1) P(A_2 | A_1) P(A_3 | A_1 A_2) \cdots P(A_n | A_1 A_2 \cdots A_{n-1}).$$

例 3: 设某箱子中有 10 个零件,其中有 6 个合格品,4 个次品。在 10 个零件任取 3 次,每次任取 1 个,取后不放回。求第 3 次才取得合格品的概率。

# § 2.2 全概率公式

定理 1: (全概率公式) 如果事件 $A_1, A_2, \dots, A_n, B$ 满足:

- (1)  $P(A_i) > 0$ ,  $i = 1, 2, \dots, n$ ,
- (2)  $A_1, A_2, \dots, A_n$  互不相容, (3)  $B \subset A_1 \cup A_2 \cup \dots \cup A_n$ ,

则  $P(B) = \sum_{i=1}^{n} P(A_i) P(B|A_i).$ 

**例 1**: 某盒中有n个球,其中m个白球,甲乙两人依次各取 1 个球(不放回),求乙取得白球的概率。

# 例 2:



例 3: 某工厂有 3 个车间加工同种零件, 3 个车间的加工任务分别占总任务量的 50%, 30%, 20%. 3 个车间加工零件的次品率分别为 0.01, 0.015, 0.02. 将生产的零件混在一起, 并任取 1 个, 求任取的 1 个是次品的概率。

例 4: 在例 3 中, 若任取的 1 个是次品, 问这 1 个次品是哪个车间生产的可能性最大?

#### § 2.3 贝叶斯公式

**定理 1**: (贝叶斯公式,Bayes,英,1702-1761, 1763 年提出)如果事件 $A_1, A_2, \dots, A_n, B$ 满足:

- (1) P(B) > 0,  $P(A_i) > 0$ ,  $i = 1, 2, \dots, n$ ,
- (2)  $A_1, A_2, \dots, A_n$  互不相容, (3)  $B \subset A_1 \cup A_2 \cup \dots \cup A_n$ ,

$$\mathbb{P}(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_{j=1}^{n} P(A_j)P(B|A_j)}, \quad i = 1, 2, \dots, n, .$$

注: (1) 公式中,  $P(A_i)$ ,  $i=1, 2, \dots, n$ , 称为先验概率.

(2) 公式中,  $P(A_i|B)$ , i=1, 2, ..., n, 称为后验概率.

- (3) 贝叶斯公式与全概率公式得区别:
- ①贝叶斯公式所求的是条件概率,而全概率公式所求的是无条件概率;
- ②贝叶斯公式共n个公式,而全概率公式只是1个公式。
- 例 1: 设患肺病的人经某仪器检查,能查出的概率为 0.95;而未患肺病的人经某仪器检查,被误认为患有肺病的概率为 0.002;又设某城的所有居民中患有肺病的概率为 0.001,若从居民中随机地抽 1 人检查,仪器显示有肺病,求这个人确实患有肺病的概率。

#### § 2.4 事件的独立性

**例 1**: 某盒中有 7 个白球 ,3 个黑球,从盒中依次取出 2 个球 (放回,不放回),记A="第一次取出的是白球",B="第二次取出的是白球"。 求P(B|A),P(B).

**定义 1**: 设 A, B 是两个事件,若 P(AB) = P(A)P(B),则称事件 A 与 B 是相互独立的,简称 A, B 独立。

定理 1: (1) 设P(A) > 0,则事件A,B独立的充分必要条件是 P(B) = P(B|A).

(2) 设P(B) > 0,则事件A, B独立的充分必要条件是

$$P(A) = P(A|B).$$

定理 2: 设事件A与B独立,则A与 $\overline{B}$ , $\overline{A}$ 与B, $\overline{A}$ 与 $\overline{B}$ 也分别独立。

例 2: 甲乙两人同时向同一目标各射击 1 次, 甲乙两人击中目标的概率 分别为 0.9 和 0.8, 求目标被击中的概率。

# 定义 2: (1) 设A, B, C是三个事件,若

P(AB) = P(A)P(B), P(AC) = P(A)P(C), P(BC) = P(B)P(C), 则称A, B, C两两独立。

(2) 设*A*, *B*, *C*是三个事件,若

$$P(AB) = P(A)P(B)$$
,  $P(AC) = P(A)P(C)$ ,  $P(BC) = P(B)P(C)$ ,  $P(ABC) = P(A)P(B)P(C)$ ,

则称A, B, C相互独立,简称A, B, C独立。

注:显然,由A, B, C相互独立可以推出A, B, C两两独立,但反之不能。

例 3: 某盒中有 4 个球,其中 1 个黑球,1 个白球,1 个红球,还有 1 个涂有黑白红的三色球。今从盒中任取 1 个球,记A="任取的球涂有黑色",B="任取的球涂有白色",C="任取的球涂有红色",验证A, B, C两两独立,但不相互独立。

证:

定义 3: (1) 设  $A_1$ ,  $A_2$ , …,  $A_n$ 是n个事件,若  $A_1$ ,  $A_2$ , …,  $A_n$ 中的任何两个事件独立,则称  $A_1$ ,  $A_2$ , …,  $A_n$ 两两独立。

(2) 设 $A_1, A_2, \dots, A_n$ 是n个事件,若对于任意的k ( $2 \le k \le n$ ),及任意的  $1 \le i_1 < i_2 < \dots < i_k \le n$ ,都有

$$P(A_{i_1}A_{i_2}\cdots A_{i_k}) = P(A_{i_1})P(A_{i_2})\cdots P(A_{i_k}),$$

则称 $A_1, A_2, \dots, A_n$ 相互独立,简称 $A_1, A_2, \dots, A_n$ 独立。

注:事件 $A_1, A_2, \dots, A_n$ 两两独立需要满足  $C_n^2$  个等式;

事件 $A_1, A_2, \dots, A_n$ 相互独立需要满足

$$C_n^2 + C_n^3 + \dots + C_n^n = 2^n - C_n^0 - C_n^1 = 2^n - 1 - n$$

个等式。

定理 3: 设事件 $A_1, A_2, \dots, A_n$ 独立,则

- (1) 事件 $A_1, A_2, \dots, A_n$ 两两独立。
- (2) 事件 $A_1, A_2, \dots, A_n$ 中的任何 $m (2 \le m < n)$ 个事件也独立。
- (3) 事件 $A_1^*$ ,  $A_2^*$ , …,  $A_n^*$ 也独立, 其中 $A_i^*$ 是 $A_i$ 或 $\overline{A_i}$ , i = 1, 2, ..., n.
- (4)  $P(A_1 A_2 \cdots A_n) = P(A_1) P(A_2) \cdots P(A_n)$ .

**例 4:** 有n个射手,同时向同一目标各射击一次,击中目标的概率分别为 $p_1, p_2, \dots, p_n$ ,求目标被击中的概率。

例 5: 设一段电路是由 5 个电子元件组成(如图),每个电子元件的可靠性均为r (0 < r < 1),且各元件能否正常工作是相互独立的。求这段电路的可靠性。



# § 2.5 重复独立试验,二项概率公式

定义 1: 将某试验重复进行n次,若在每次试验中,任一事件发生的概率与其他各次试验的结果无关,则称这n次试验是独立的(或称这n次试验为n重独立试验)。特别,若每次试验的可能结果只有两个: A "成功"和 $\overline{A}$  "失败",则称这n次试验为n重贝努力试验。

例1:将1个骰子连掷8次,求恰好出现3次1点的概率。

定理 1: (二项概率公式) 在n重贝努力试验中,设每次试验成功的概率 为p(0 ,则恰好成功<math>k次的概率为  $P_n(k) = C_n^k p^k q^{n-k}$ ,  $k = 0, 1, 2, \dots, n$ . 且 $\sum_{k=0}^{n} P_n(k) = 1$ ,其中q = 1 - p.

例1(续):将1个骰子连掷8次,求恰好出现3次1点的概率。

例 2: 已知一大批产品中有 30%的一等品,现从中任取 5 件,求: 5 件中至少有 2 件一等品的概率。

例 3: 设某信号发射器每秒发射 $5\times10^5$ 个信号,由于干扰,出现误码的概率为 $10^{-7}$ ,求在 10 秒内出现 1 个误码的概率。

定理 2: (泊松定理, Poisson, 法国, 1781-1840) 在n重贝努力试验中, 设每次试验成功的概率为 $p_n$  ( $0 < p_n < 1$ ),若 $np_n = \lambda$  (常数),则对于固定的k,有  $\lim_{n \to \infty} P_n(k) = \frac{\lambda^k}{k!} \mathrm{e}^{-\lambda}$ .

**例3(续)**: 设某信号发射器每秒发射5×10<sup>5</sup>个信号,由于干扰,出现误码的概率为10<sup>-7</sup>,求在 10 秒内出现 1 个误码的概率。

# 附表 1 泊松分布累计概率值表

$$\sum_{k=m}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda}$$

|   | λ         |           |           |           |           |           |           |           |           |
|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| m | 0. 1      | 0. 2      | 0.3       | 0.4       | 0. 5      | 0.6       | 0. 7      | 0.8       | 0. 9      |
| 0 | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1         |
| 1 | 0. 095 16 | 0. 181 27 | 0. 259 18 | 0. 329 68 | 0. 393 47 | 0. 451 19 | 0. 503 42 | 0. 550 67 | 0. 593 43 |
| 2 | 0. 004 68 | 0. 017 52 | 0. 036 94 | 0. 061 55 | 0. 090 20 | 0. 121 90 | 0. 155 81 | 0. 191 21 | 0. 227 52 |
| 3 | 0.000 15  | 0. 001 15 | 0.003 60  | 0. 007 93 | 0. 014 39 | 0. 023 12 | 0. 034 14 | 0. 047 42 | 0.062 86  |
| 4 |           | 0. 000 06 | 0.000 27  | 0.000 78  | 0. 001 75 | 0. 003 36 | 0. 005 75 | 0.009 08  | 0. 013 46 |
| 5 |           |           | 0.000 02  | 0.000 06  | 0.000 17  | 0.000 39  | 0.000 79  | 0. 001 41 | 0.002 34  |
| 6 |           |           |           |           | 0. 000 01 | 0.000 04  | 0.00009   | 0.000 18  | 0.000 34  |
| 7 |           |           |           |           |           |           | 0.000 01  | 0.000 02  | 0.00004   |
| 8 |           |           |           |           |           |           |           |           | 0.00001   |

例 4: 设某保险公司有 2500 人参加了人身保险,每人交保险费 1200 元,一年内死亡者,保险公司赔付 20 万元。设 2500 人在一年内是否死亡是相互独立的,且一年内每人死亡的概率为 0.002. 求保险公司亏本的概率。

例 5: (配备维修人员问题)设有同类型仪器 300 台,他们是否正常工作是相互独立的,每台仪器发生故障的概率为 0.01,一台仪器发生故障,一个维修人员可以排除。问至少配备多少维修人员,才能保证仪器发生故障不能及时排除的概率小于 0.01?