

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2005年8月4日 (04.08.2005)

PCT

(10) 国際公開番号
WO 2005/071672 A1

- (51) 国際特許分類⁷: G11B 7/135, G02B 5/32, G11B 7/09, 7/13
- (21) 国際出願番号: PCT/JP2005/000173
- (22) 国際出願日: 2005年1月11日 (11.01.2005)
- (25) 国際出願の言語: 日本語
- (26) 国際公開の言語: 日本語
- (30) 優先権データ:
特願2004-016988 2004年1月26日 (26.01.2004) JP
- (71) 出願人(米国を除く全ての指定国について): 日本ビクター株式会社 (VICTOR COMPANY OF JAPAN, LIMITED) [JP/JP]; 〒2218528 神奈川県横浜市神奈川区守屋町3丁目12番地 Kanagawa (JP).
- (72) 発明者; および
(75) 発明者/出願人(米国についてのみ): 大山 実 (OHYAMA, Minoru).
- (74) 代理人: 三好 秀和 (MIYOSHI, Hidekazu); 〒1050001 東京都港区虎ノ門1丁目2番8号 虎ノ門琴平タワー Tokyo (JP).
- (81) 指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA,

/続葉有/

(54) Title: OPTICAL DEVICE AND OPTICAL PICKUP DEVICE

(54) 発明の名称: 光デバイス及び光ピックアップ装置

WO 2005/071672 A1
(57) Abstract: There is provided an optical device for diffracting an incident light by a hologram element (19) and receiving the light in light receiving areas (20A to 29) on a light receiving element (12). The light receiving element (12) receives a reflected light of a main beam used for reading information from an optical disc and a reflected light of a sub beam used for tracking operation in respective independent light receiving areas, and receives the reflected light of the main beam in a common light receiving area regardless of the wavelength values and receives the reflected light of the sub beam in different light receiving areas depending on the wavelength values. Thus, when recording and/or reproducing an information signal onto/from an optical disc using different wavelength values of the light source such as "DVD" and "CD", it is possible to eliminate the affect from an unnecessary reflected light from the optical disc and eliminate complexity of operation about the output signal.

(57) 要約: 入射光をホログラム素子19によって回折させて受光素子12上の受光領域20A~29において受光する光デバイスであり、受光素子12は、光ディスクからの情報読出に用いるメインビームの反射光と、トラッキング動作に用いるサブビームの反射光とをそれぞれ独立した受光領域において受光し、メインビームの反射光を波長に

/続葉有/

NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

- (84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SI, SZ, TZ, UG, ZM, ZW), ヨーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR),

OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
— 國際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明 細 書

光デバイス及び光ピックアップ装置

技術分野

[0001] 本発明は、光ディスク等の情報記録媒体に対する記録及び再生を行う光ピックアップ装置に用いる光デバイスに関し、また、このような光デバイスを用いて構成された光ピックアップ装置に関する。

背景技術

[0002] 従来、情報記録媒体として種々の光ディスクが提案されている。このような光ディスクとして、「CD」(Compact Disc)規格の光ディスクの約7倍の記録容量を有する「DVD」(Digital Versatile Disc)規格の光ディスクは、近年急速に普及している。この「DVD」にビデオ信号を記録したもの('DVD-Video')は、大量複製が可能であり、映画等のコンテンツの配布やレンタルに使用する媒体として、「VHS」(商標名)等のビデオテープ媒体に取って替わろうとしている。

[0003] さらに、いわゆる「DVD-RAM」、「DVD-R」、「DVD-RW」、「+R」、「+RW」など、ユーザが情報信号を記録することが可能な光ディスクの規格も、パソコン用の記録媒体やビデオレコーダ用の記録媒体として、急速に普及しつつある。

[0004] 一方、「CD」に関しても、いわゆる「CD-R」など、ユーザが情報信号を記録することが可能な光ディスクの規格が広く普及している。

[0005] このように、光ディスク記録装置においては、「DVD」規格である650nm波長帯の光源を用いる光ディスクと、「CD」規格である780nm波長帯の光源を用いる光ディスクとのいずれについても、ユーザが情報信号を記録することが可能な機能が要求されるようになっている。特に、「DVD」規格の光ディスクとしては、前述のように多岐に渡る規格が存在し、これら種々の規格の光ディスクの全てについて、記録及び再生の互換性が求められ、このような要求に応じた光ピックアップ装置が提案されている。

[0006] このような種々の規格の光ディスクに対する記録及び再生を可能とした光ピックアップ装置は、機能及び構造が極めて複雑なものとなっており、製造が困難である。一方

、このような光ピックアップ装置において、特に、民生用途の光ピックアップ装置においては、多機能であることを維持しつつ、装置構成の簡素化、小型化及び軽量化、製造の容易化、低価格化への要求が高まっている。

- [0007] このような要求に応じて、「CD」及び「DVD」の両規格の光ディスクに対する再生、あるいは、記録及び再生が可能である光ピックアップ装置であって、小型化、軽量化を図ったものが種々提案されている。
- [0008] 例えば、本件発明者は、図1に示すように、第1の波長のレーザ光を発する第1のレーザ光源101と、第2の波長のレーザ光を発する第2のレーザ光源を内蔵した光デバイス102とを備えた光ピックアップ装置を提案している。この光学ピックアップ装置において、光デバイス102は、図2に示すように、第2のレーザ光源103と、ホログラム素子104と、受光素子105を一体的に備えて構成されている。受光素子105は、図3に示すように、それぞれが複数の受光領域に分割された複数の受光部106, 106を有している。
- [0009] この光ピックアップ装置においては、各波長のレーザ光について3本のビームが生成されて、図1に示すように、光ディスク201の記録トラック201aに対して照射される。この光ディスク201からの反射光は、図2に示すように、2つの領域に分割されたホログラム素子104の各領域において回折され、受光素子105の所定の複数の受光領域によって受光される。このとき、互いに異なる第1及び第2の波長の反射光は、同一の受光領域によって受光されるようになっている。
- [0010] そして、この光ピックアップ装置においては、受光素子105の各受光領域より独立的に出力される光検出出力に基づいて、光ディスクからの情報の読み取信号と、各種のエラー信号とが得られる。
- [0011] なお、従来技術に関する特許文献としては、特開2002-260273号公報がある。
発明の開示
- [0012] ところで、前述のような光ピックアップ装置においては、下記のような課題があった。すなわち、キャッシングエラー信号の検出について、「CD」規格の光ディスクの再生を行う場合については、いわゆる「3ビーム法」が一般的であり、また、「DVD」規格の光ディスクに対する記録を行う場合については、いわゆる「DPP(差動ブッシュブル)

法」が一般的である。これら各方式は、それぞれレーザ光源からの光束を3本のビームに分割して用いる方式であるが、ビームの分割のしかたや、受光素子からの出力の演算のしかたが異なっている。そのため、この光ピックアップ装置を構成する光デバイスにおいては、光検出出力の出力のしかたやこれら光検出出力についての演算が複雑なものとなっていた。

- [0013] また、「CD」規格の光ディスク及び「DVD」規格の光ディスクの双方について使用される対物レンズによって集光されるレーザ光は、これら光ディスク上において、一点に集光する成分以外に、対物レンズにおける回折による「フレア」成分を含むものとなる。この「フレア」成分は、光ディスクによって反射され、光ディスクの受光素子に対しては、広がって照射されることとなる。このような「フレア」成分の反射光は、光ディスクからの情報の読み取り信号や各種のエラー信号に対して加算された直流成分として検出されることとなり、信号変調度の劣化や、エラー信号のオフセットの原因となる。
- [0014] さらに、記録層が2層となされて形成された「DVD」規格の光ディスクを再生する場合においては、光ディスクに照射されたレーザ光は、再生対象となる一の記録層以外の他の記録層においても反射されて、不要反射光として受光素子に戻ることとなる。このように再生対象ではない記録層によって反射された反射光は、大きく焦点ずれして広がった状態で受光素子に戻り、かつ、再生対象である記録層からの反射光と同等の総光量を有している。したがって、このような不要反射光は、光ディスクからの情報の読み取り信号や各種のエラー信号に対して加算された直流成分として検出されることとなり、信号変調度の劣化や、エラー信号のオフセットの原因となる。
- [0015] また、光ディスクに情報信号を記録するための光ピックアップ装置においては、いわゆる「3ビーム法」や「DPP法」のために3本のビームを生成するときに、記録光のパワーを確保するために、メインビームとサブビームとの光量比を、例えば、15:1乃至20:1程度に大きくする必要がある。そして、3本のビームの反射光を受光する互いに隣接した受光領域においては、前述したように、メインビームの反射光に含まれる拡散光がサイドビームを受光する受光領域にまで広がるおそれがある。このとき、メインビームの光量はサブビームの15倍乃至20倍程度であるので、メインビームの反射光に含まれる拡散光の光量は、微弱なサブビームの反射光を検出している受光領域にお

いて無視できない影響を与えることとなる。したがって、このようなメインビームの反射光に含まれる拡散光は、光ディスクからの情報の読み取り信号や各種のエラー信号に対して加算された直流成分として検出されることとなり、信号変調度の劣化や、エラー信号のオフセットの原因となり、演算回路のダイナミックレンジを確保することを困難とすることとなる。

- [0016] そして、前述のようにホログラム素子を用いた光デバイスにおいては、「CD」規格の光ディスク用と「DVD」規格の光ディスク用との互いに波長の異なる反射光を同一のホログラム素子で回折させると、これら反射光は、回折角の波長依存性により、受光素子における到達位置が互いに異なることとなる。したがって、これら異なる波長の反射光について同一の受光領域において受光しようとすると、受光領域の面積を拡大させる必要がある。ところが、受光領域の面積を拡大させると、前述したような不要反射光を受光する量が面積の拡大に略々比例して増大し、結果として、信号変調度の劣化や、エラー信号のオフセットが生じ、演算回路のダイナミックレンジを確保することが困難となる。
- [0017] ここで、各波長の反射光の到達位置に対応して受光領域を分離させることとすると、これら受光領域からの信号出力チャンネル数が倍増することとなり、演算回路の規模が大きくなってしまうのみならず、光デバイスにおける配線ピン数が増加して光デバイスのサイズが大きくなってしまうという問題があった。
- [0018] そこで、本発明は、前述の実情に鑑みてなされたものであり、「DVD」規格の光ディスク及び「CD」規格の光ディスクのように、使用する光源の波長が異なる光ディスクについて情報信号の再生、あるいは、記録及び再生を行うにあたって、光ディスクからの不要反射光による影響が回避されるとともに、出力信号についての演算の複雑さが回避される光デバイスを提供し、このような光デバイスを用いて構成された光ピックアップ装置を提供しようとするものである。
- [0019] 前述の課題を解決するため、本発明に係る光デバイスは、少なくとも受光素子とホログラム素子とを備えて構成され複数の互いに異なる波長の入射光をホログラム素子によって回折させこの回折光を受光素子上の受光領域において受光する光デバイスであって、受光素子は、少なくとも情報記録媒体からの情報検出に用いるメインビー

ムの反射光と、トラッキング動作に用いるサブビームの反射光とをそれぞれ独立した受光領域において受光するとともに、メインビームの反射光を波長に依らず共通の受光領域で受光し、サブビームの反射光を波長に依って異なる受光領域で受光するものである。

- [0020] この光デバイスにおいては、サブビームの反射光を波長に依って異なる受光領域で受光するので、信号変調度の劣化やエラー信号のオフセットが生ずることが防止され、演算回路のダイナミックレンジを確保することが容易となる。
- [0021] また、本発明に係る光デバイスは、少なくとも受光素子とホログラム素子とを備えて構成され複数の互いに異なる波長の入射光をホログラム素子によって回折させこの回折光を受光素子上の受光領域において受光する光デバイスであって、受光素子は、少なくとも情報記録媒体からの情報検出に用いるメインビームの反射光と、トラッキング動作に用いるサブビームの反射光とをそれぞれ独立した受光領域において受光するとともに、メインビームの反射光を波長に依って異なる受光領域で受光し、これらメインビーム用の受光領域からの検出出力が共通の出力として連結され、サブビームの反射光を波長に依って異なる隣接した受光領域で受光し、これらサブビーム用の隣接した受光領域からの検出出力が別個の出力として分離されていることが好ましい。
- [0022] この光デバイスにおいては、メインビームの反射光を波長に依って異なる受光領域で受光するが、これらメインビーム用の受光領域からの検出出力が共通の出力として連結されている。したがって、波長に依って異なる受光領域についても、出力を連結することによって、波長に依らない実質的に共通の受光領域として作用させることができる。また、このように複数の受光領域の出力を連結することにより、受光領域の面積を容易に確保することができる。
- [0023] また、この光デバイスにおいては、サブビームの反射光を波長に依って異なる受光領域で受光し、これらサブビーム用の受光領域からの検出出力が別個の出力として分離されているので、信号変調度の劣化やエラー信号のオフセットが生ずることが防止され、演算回路のダイナミックレンジを確保することが容易であり、さらに、信号出力チャンネル数が増加する增加しないので、演算回路の規模を大きくすることができなく、

配線ピン数を増加させることがないので、小型化が容易となる。

[0024] そして、本発明に係る光デバイスは、少なくとも受光素子とホログラム素子とを備えて構成され複数の互いに異なる波長の入射光をホログラム素子によって回折させこの回折光を受光素子上の受光領域において受光する光デバイスであって、ホログラム素子は、第1及び第2の領域に分割されており第1及び第2の互いに異なる波長の入射光を第1及び第2の領域のそれぞれにおいて回折させ、受光素子は、少なくとも情報記録媒体からの情報検出に用いる第1及び第2の波長のメインビームの反射光をホログラム素子の第1の領域を介して受光する第1の受光領域と、第1及び第2の波長のメインビームの反射光をホログラム素子の第2の領域を介して受光する第2の受光領域と、トラッキング動作に用いる第1の波長の第1のサブビームの反射光をホログラム素子の第1の領域を介して受光する第3の受光領域と、トラッキング動作に用いる第1の波長の第2のサブビームの反射光をホログラム素子の第1の領域を介して受光する第4の受光領域と、トラッキング動作に用いる第2の波長の第1のサブビームの反射光をホログラム素子の第1の領域を介して受光する第5の受光領域と、トラッキング動作に用いる第2の波長の第2のサブビームの反射光をホログラム素子の第1の領域を介して受光する第6の受光領域と、トラッキング動作に用いる第1の波長の第1のサブビームの反射光をホログラム素子の第2の領域を介して受光する第7の受光領域と、トラッキング動作に用いる第1の波長の第2のサブビームの反射光をホログラム素子の第2の領域を介して受光する第8の受光領域と、トラッキング動作に用いる第2の波長の第1のサブビームの反射光をホログラム素子の第2の領域を介して受光する第9の受光領域と、トラッキング動作に用いる第2の波長の第2のサブビームの反射光をホログラム素子の第2の領域を介して受光する第10の受光領域とを備え、第3の受光領域及び第4の受光領域からの検出出力が共通の出力として連結され、第7の受光領域及び第8の受光領域からの検出出力が共通の出力として連結され、第5の受光領域及び第9の受光領域からの検出出力が共通の出力として連結され、第6の受光領域及び第10の受光領域からの検出出力が共通の出力として連結されていることが好ましい。

[0025] この光デバイスにおいては、第1の波長の第1のサブビームの反射光を受光する第

3の受光領域及び第7の受光領域からの検出出力が共通の出力として連結され、第1の波長の第2のサブビームの反射光を受光する第4の受光領域及び第8の受光領域からの検出出力が共通の出力として連結され、第2の波長の各サブビームの反射光をホログラム素子の第1の領域を介して受光する第5の受光領域及び第6の受光領域からの検出出力が共通の出力として連結され、第2の波長の各サブビームの反射光をホログラム素子の第2の領域を介して受光する第9の受光領域及び第10の受光領域からの検出出力が共通の出力として連結されているので、信号変調度の劣化やエラー信号のオフセットが生ずることが防止され、演算回路のダイナミックレンジを確保することが容易であり、さらに、信号出力チャンネル数が増加する事がないので、演算回路の規模を大きくすることなく、配線ピン数を増加させることないので、小型化が容易となる。

- [0026] また、本発明に係る光デバイスは、前述の光デバイスであって、ホログラム素子は、情報記録媒体における記録トラック接線方向に光学写像的に平行な分割線において第1及び第2の領域に略二等分されており、情報記録媒体からの反射光を分割線において該情報記録媒体の径方向に2分割することが好ましい。
- [0027] そして、本発明に係る光デバイスは、前述の光デバイスであって、第3及び第4の受光領域からの検出出力と第7及び第8の受光領域からの検出出力との差に基づいて第1の波長のサブビームの反射光を用いた差動プッシュブル法によるトラッキングエラー信号の検出を可能とし、第5及び第9の受光領域からの検出出力と第6及び第10の受光領域からの検出出力との差に基づいて第2の波長のサブビームの反射光を用いた3ビーム法によるトラッキングエラー信号の検出を可能とすることが好ましい。
- [0028] また、本発明に係る光デバイスは、前述の光デバイスであって、第1の波長は、650 nm帯域であり、第2の波長は、780nm帯域であり、これら第1及び第2の波長の光に適合された2種類の情報記録媒体からの情報検出を行うことが好ましい。
- [0029] さらに、本発明に係る光デバイスは、前述の光デバイスであって、第1の波長の光を発する光源及び第2の波長の光を発する光源の少なくともいずれか一方が、受光素子の基板上に一体的に集積形成されていることが好ましい。
- [0030] そして、本発明に係る光ピックアップ装置は、前記光デバイスと、第1及び第2の波

長の光を発するレーザ光源とを備え、第1の波長の光及び第2の波長の光のいずれを用いた場合にも、光デバイスから、メインビームによる情報記録媒体からの読み取り信号と、サブビームによるトラッキング信号を得るものである。

- [0031] また、本発明に係る光ピックアップ装置は、前記光デバイスと、第1の波長の光を発するレーザ光源と、レーザ光源から発せられた第1の波長の光を3ビームに分割する回折格子とを備え、光デバイスに設けられた光源が第2の波長の光を発するレーザ光源であり、このレーザ光源から発せられた第2の波長の光を3ビームに分割する回折格子をこの光デバイス内に備えていることが好ましい。
- [0032] さらに、本発明に係る光ピックアップ装置は、前記光デバイスと、第2の波長の光を発するレーザ光源と、レーザ光源から発せられた第2の波長の光を3ビームに分割する回折格子とを備え、光デバイスに設けられた光源が第1の波長の光を発するレーザ光源であり、このレーザ光源から発せられた第1の波長の光を3ビームに分割する回折格子をこの光デバイス内に備えていることが好ましい。
- [0033] 本発明に係る光デバイス及び光学ピックアップ装置においては、「DVD」(Digital Versatile Disc)規格の光ディスク及び「CD」(Compact Disc)規格の光ディスクのように、使用する光源の波長が異なる光ディスクについて情報信号の再生、あるいは、記録及び再生を行うにあたって、信号変調度の劣化やエラー信号のオフセットが生ずることが防止され、演算回路のダイナミックレンジを確保することが容易となり、さらに、信号出力チャンネル数が増加する事がないので、演算回路の規模を大きくすることなく、配線ピン数を増加させることないので、小型化が容易となる。
- [0034] すなわち、本発明によれば、例えば、「DVD」規格の種々の光ディスク(いわゆる「DVD-RAM」、「DVD-R」、「DVD-RW」、「+R」、「+RW」など、650nm波長帯域のレーザ光を用いる記録型光ディスク)及び「CD」規格の種々の光ディスク(いわゆる「CD-R」、「CD-RW」など、780nm波長帯域のレーザ光を用いる記録型光ディスク)のように、使用する光源の波長の異なる情報記録媒体について互換性のある光デバイスを提供することができる。
- [0035] そして、この光デバイスにおいては、トラッキングエラー信号の検出について、「DVD」規格の光ディスクに対して情報信号の記録を行う場合にはいわゆる「DPP(差動

プッシュプル)法」を用い、「CD」規格の光ディスクについてはいわゆる「3ビーム法」を用いるというように、情報記録媒体によって異なるエラー検出方法を用いることを可能としながら、信号出力チャンネル数を増加させず、演算回路の規模を縮小することができる。

- [0036] また、この光デバイスにおいては、対物レンズにより集光される光束において光ディスク上で一点に集光されない成分の反射光である「フレア」成分が受光素子上に広がって照射されることの影響が低減され、信号変調度の劣化やエラー信号のオフセットの発生が低減される。
- [0037] さらに、この光デバイスにおいては、記録層が2層となされて形成された「DVD」規格の光ディスクを再生する場合において、再生対象ではない記録層からの反射光が受光素子上に広がって照射されることの影響が低減され、信号変調度の劣化やエラー信号のオフセットの発生が低減される。
- [0038] また、この光デバイスにおいては、「3ビーム法」や「DPP法」を実行するための3本のビームにおいて、記録光パワーの確保のために、メインビームの光量をサブビームの光量より大きくした場合においても、メインビームからの拡散光がサブビームの受光領域に照射されることの影響が低減され、信号変調度の劣化やエラー信号のオフセットの発生が低減され、また、演算回路のダイナミックレンジを確保することが容易となる。
- [0039] また、この光デバイスにおいては、ホログラム素子を用いて互いに波長の異なる入射光を回折させる場合において、サブビームに関しては受光領域の面積を大きくする必要がなく、不要反射光の影響が低減され、信号変調度の劣化やエラー信号のオフセットの発生が低減され、また、演算回路のダイナミックレンジを確保することが容易となる。
- [0040] すなわち、本発明は、「DVD」規格の光ディスク及び「CD」規格の光ディスクのように、使用する光源の波長が異なる光ディスクについて情報信号の再生、あるいは、記録及び再生を行うにあたって、光ディスクからの不要反射光による影響が回避されるとともに、出力信号についての演算の複雑さが回避される光デバイスを提供することができ、また、このような光デバイスを用いて構成された光ピックアップ装置を提供す

ることができるものである。

図面の簡単な説明

- [0041] [図1]図1は、従来の光学ピックアップ装置の構成を示す斜視図である。
[図2]図2は、従来の光デバイスの構成を示す斜視図である。
[図3]図3は、前記従来の光デバイスの受光素子を示す平面図である。
[図4]図4は、本発明に係る光学ピックアップ装置の構成を示す斜視図である。
[図5]図5は、本発明に係る光デバイスの構成を示す斜視図である。
[図6]図6は、前記光デバイスにおけるホログラム素子と受光素子との関係を示す平面図である。
[図7]図7(a)は前記光デバイスにおいて第1種類の光ディスクを用いている場合の受光素子上における反射光の状態を示す平面図であり、図7(b)は第2種類の光ディスクを用いている場合の受光素子上における反射光の状態を示す平面図である。
[図8]図8(a)は前記光デバイスにおいて第1種類の光ディスクを用いている場合のトラッキングエラー信号の演算回路を示す平面図であり、図8(b)は第2種類の光ディスクを用いている場合のトラッキングエラー信号の演算回路を示す平面図である。

発明を実施するための最良の形態

- [0042] 以下、本発明に係る光デバイス及び光学ピックアップ装置の実施の形態について、図面を参照して詳細に説明する。

[光学ピックアップ装置の構成]

- 図4は、本発明に係る光学ピックアップ装置の構成を示す斜視図である。
- [0043] この光学ピックアップ装置は、図4に示すように、第1の波長(例えば、650nm帯域)のレーザ光を発する第1のレーザ光源1を有する。この第1のレーザ光源1から発せられた第1の波長のレーザ光は、コリメータレンズ2によって平行光束となされ、第1のグレーティング3を経て0次光及び±1次光の3つのビームに分割されて、ビーム成形機能を有するビームスプリッタプリズム4に入射される。第1のグレーティング(回折格子)3における0次光は、光ディスクに対して情報信号の記録または再生を行うためのメインビームとなり、±1次光は、トラッキングエラー信号を検出するための第1及び第2のサブビームとなる。

- [0044] ビームスプリッタプリズム4において、第1の波長のレーザ光は、入射面4aに対して斜めに入射することによりビーム成形をなされて、このビームスプリッタプリズム4内に入射する。
- [0045] なお、ビームスプリッタプリズム4の入射面4aにおいては、第1の波長のレーザ光の一部が反射され、レーザパワーを検出するための第1のモニタフォトダイオード5により受光される。
- [0046] ビームスプリッタプリズム4内に入射された第1の波長のレーザ光は、光束を分離させるための反射膜4bを透過して、このビームスプリッタプリズム4から出射され、 $\lambda/4$ (四分の一波長)板6を透過して円偏光となれる。
- [0047] この第1の波長のレーザ光は、ミラー7により反射されて光路を曲げられて、対物レンズ8に入射する。この対物レンズ8は、入射された第1の波長のレーザ光を、この第1の波長のレーザ光に適合された情報記録媒体である第1種類の光ディスク、例えば、「DVD」規格の光ディスク201の信号記録面上に集光させる。
- [0048] そして、この光学ピックアップ装置は、本発明に係る光デバイス9を備えている。この光デバイス9には、後述するように、第2の波長(例えば、780nm帯域)のレーザ光を発する第2のレーザ光源が内蔵されている。この第2のレーザ光源から発せられた第2の波長のレーザ光は、光デバイス9より出射され、コリメータレンズ10によって平行光束となされ、ビームスプリッタプリズム4に入射される。
- [0049] このビームスプリッタプリズム4において、第2の波長のレーザ光は、反射膜4bによって反射され、このビームスプリッタプリズム4から出射され、 $\lambda/4$ (四分の一波長)板6を透過する。
- [0050] この第2の波長のレーザ光は、ミラー7により反射されて光路を曲げられて、対物レンズ8に入射する。この対物レンズ8は、入射された第2の波長のレーザ光を、この第2の波長のレーザ光に適合された情報記録媒体である第2種類の光ディスク、例えば、「CD」規格の光ディスク201の信号記録面上に集光させる。
- [0051] この光学ピックアップ装置において、第1種類の光ディスク201の信号記録面上に集光されこの信号記録面により反射された第1の波長の反射光及び第2種類の光ディスク201の信号記録面上に集光されこの信号記録面により反射された第2の波長

の反射光は、対物レンズ8、ミラー7を経て、ビームスプリッタプリズム4に戻る。これら第1及び第2の波長の反射光は、ビームスプリッタプリズム4において、反射膜4bによって反射され、このビームスプリッタプリズム4から光デバイス9に向けて出射される。

[0052] この反射光は、光デバイス9内に入射し、この光デバイス9に内蔵された受光素子によって受光される。そして、この受光素子からの光検出出力に基づいて、光ディスクからの情報読取信号や、種々のエラー信号の検出がなされる。

[光デバイスの構成]

図5は、本発明に係る光デバイスの構成を示す斜視図である。

[0053] 光デバイスは、図5に示すように、第2の波長のレーザ光を発する第2のレーザ光源11と、光ディスク201からの反射光を受光する受光素子12とを有して構成されている。

[0054] 第2のレーザ光源11は、サブマウント13及び受光素子基板14を介して、パッケージ(筐体)15に支持されている。この第2のレーザ光源11は、受光素子基板14の表面部に平行な方向に第2の波長のレーザ光を出射するように設置されている。

[0055] この第2のレーザ光源11は、第1の波長のレーザ光及び第2の波長のレーザ光の光ディスク201からの反射光が光デバイス9における同じ位置へ集光して戻るように、受光素子基板14上における位置が決定されている。すなわち、この第2のレーザ光源11は、第1及び第2の波長のレーザ光の反射光の受光素子12上における光軸が相互に一致するように設定されている。この第2のレーザ光源11は、第1の波長のレーザ光の発光点の共役点と第2の波長のレーザ光の発光点とが一致、もしくは、同一光軸上に位置するように設定されている。なお、ここで、共役点とは、ビームスプリッタプリズム4などを含む光学系による第1の波長のレーザ光の発光点の像点を意味する。

[0056] そして、受光素子12は、パッケージ15に支持された受光素子基板14上に形成されている。この受光素子12は、受光素子基板14の表面部に複数の受光領域を有して形成されており、この表面部に、例えば10度乃至20度の入射角で入射する光束を受光する。

[0057] また、この光デバイス9は、第2のレーザ光源11から受光素子基板14の表面部に

平行な方向(図5中におけるY'軸方向)に出射される第2の波長のレーザ光を、この受光素子基板14の表面部に垂直な方向(図5中におけるZ'軸方向)に反射させるマイクロミラー16を有している。このマイクロミラー16は、一端面が45°の傾斜面となされたプリズムであり、この傾斜面において第2の波長のレーザ光を反射する。このマイクロミラー16は、受光素子基板14上に、傾斜面を第2のレーザ光源11に向けて設置されている。

- [0058] そして、受光素子基板14上のマイクロミラー16が設置された位置には、第2の波長のレーザ光のレーザパワーを検出するための第2のモニタフォトダイオード17が設けられている。マイクロミラー16の傾斜面に入射した第2の波長のレーザ光は、この傾斜面において、一部が反射され、残部はこの傾斜面を透過してマイクロミラー16内に入射し、第2のモニタフォトダイオード17によって受光される。
- [0059] マイクロミラー16により反射された第2の波長のレーザ光は、第2のグレーティング(回折格子)18を透過し、0次光及び±1次光の3本のビームに分割される。この第2のグレーティング18における0次光は、光ディスクに対して情報信号の記録または再生を行うためのメインビームとなり、±1次光は、トラッキングエラー信号を検出するための第1及び第2のサブビームとなる。
- [0060] 第2のグレーティング18を経た第2の波長のレーザ光は、ホログラム素子19を透過して、この光デバイス9から出射される。このホログラム素子19は、光デバイス9から出射される光束(往路光)に対しても回折作用を及ぼすが、往路の回折光成分は使用しない。
- [0061] この光デバイス9には、第1の波長のレーザ光の第1種類の光ディスクからの反射光(復路光)及び第2の波長のレーザ光の第2種類の光ディスクからの反射光(復路光)がともに入射する。これら反射光は、ホログラム素子19を透過して、受光素子基板14に向けて入射する。このホログラム素子19は、透明基板上に光学透過性材料による微細な凹凸周期構造が形成されて構成されている光学素子である。
- [0062] このホログラム素子19は、第1及び第2の領域19L, 19Rに分割されており、それぞれが異なる特性を有している。ホログラム素子19は、全体としては円形に形成されており、第1及び第2の領域19L, 19Rは、それぞれがホログラム素子19を半分に分け

た半円形状に形成されている。

- [0063] このホログラム素子19が第1及び第2の領域19L, 19Rに分割されている分割線は、このホログラム素子19の中心、すなわち、光軸を通り、光ディスク201における記録トラック201aの接線方向に光学写像的に平行な方向となっている。すなわち、光ディスク201からの反射光は、ホログラム素子19の分割線において、光学写像的に光ディスク201における径方向について2分割され、一方が第1の領域19Lを透過し、他方が第2の領域19Rを透過することとなる。
- [0064] このホログラム素子19は、第1及び第2の領域19L, 19Rのそれぞれにおいて、第1の波長の反射光及び第2の波長の反射光を回折させて±1次回折光として透過させ、これら反射光からのトラッキングエラー信号及びフォーカスエラー信号の検出を可能とする。
- [0065] 第1の領域19Lにおいては、第1の波長の反射光及び第2の波長の反射光は、図5中矢印Aで示す方向に回折されて±1次回折光となる。また、第2の領域19Rにおいては、第1の波長の反射光及び第2の波長の反射光は、図5中矢印Bで示す方向に回折されて±1次回折光となる。これら第1の領域19Lにおける回折方向と第2の領域19Rにおける回折方向とは、互いに異なる方向となっている。
- [0066] 図6は、この光デバイス9におけるホログラム素子19と受光素子12の各受光領域との位置関係を示す平面図である。
- [0067] ホログラム素子19は、図6に示すように、光学写像的に光ディスク201における径方向について第1及び第2の領域19L, 19Rに2分割されており、かつ、各領域19L, 19Rにおける回折軸が互いに傾斜されて形成されている。
- [0068] メインビームの光ディスク201からの反射光は、ホログラム素子19の第1の領域19Lを透過する部分MLと、ホログラム素子19の第2の領域19Rを透過する部分MRとが互いに異なる方向に回折され、それぞれが受光素子12において異なる受光領域によって受光される。
- [0069] すなわち、受光素子12においては、一対の第1の受光領域20A, 20Bが、ホログラム素子19の第1の領域19Lを経た第1及び第2の波長のメインビームの反射光(ML(凸)、ML(凹))を受光する。また、この受光素子12においては、一対の第2の受光

領域21A, 21Bが、ホログラム素子19の第2の領域19Rを経た第1及び第2の波長のメインビームの反射光(MR(凸)、MR(凹))を受光する。

- [0070] これら第1の受光領域20A, 20B及び第2の受光領域21A, 21Bは、それぞれがさらに平行に4分割されている。これら第1及び第2の受光領域20A, 20B, 21A, 21Bを分割する方向は、ホログラム素子19を各領域19L, 19Rに分割する方向に対して略々直交する方向、すなわち、光学写像的に光ディスク201における記録トラックの接線方向となっている。これら第1及び第2の受光領域20A, 20B, 21A, 21Bの分割された各部分は、それぞれが独立的に光検出信号を出力する。
- [0071] これら第1及び第2の受光領域20A, 20B, 21A, 21Bにおいて、分割された各部分からの光検出出力信号に基づいて、光ディスクからの情報の読み取り信号、フォーカスエラー信号、ウォブル信号等を検出することができる。
- [0072] すなわち、これら第1及び第2の受光領域20A, 20B, 21A, 21Bからの全出力を合計することにより、光ディスクからの読み取り信号を得ることができる。
- [0073] また、これら第1及び第2の受光領域20Aと20Bの出力の合計と、21Aと21Bの出力の合計出力間の差出力をバンドパスフィルタに通すことにより、ウォブル信号を得ることができる。
- [0074] そして、これら第1及び第2の受光領域20A, 21Aの中心側2つ(20Ab, 20Ac, 21Ab, 21Ac)と、受光領域20Bと21Bの両側2つ(20Ba, 20Bd, 21Ba, 21Bd)の部分の出力を合計し、また、受光領域20B, 21Bの中心側2つ(20Bb, 20Bc, 21Bb, 21Bc)と、受光領域20Aと21Aの両側2つ(20Aa, 20Ad, 21Aa, 21Ad)の部分の出力を合計し、これら2つの合計出力間の差を求めることにより、いわゆるSSD(スポットサイズ)法によりフォーカスエラー信号を得ることができる。
- [0075] すなわち、ホログラム素子19における第1の領域19Lは、+1次回折光に対しては凸レンズのレンズパワーを有し、-1次回折光に対しては凹レンズのレンズパワーを有している。一方、ホログラム素子19における第2の領域19Lは、+1次回折光に対しては凹レンズのレンズパワーを有し、-1次回折光に対しては凸レンズのレンズパワーを有している。そのため、第1及び第2の受光領域20A, 20B, 21A, 21Bにおける分割された各部分からの出力信号に基づいてフォーカスエラー信号を生成すること

ができるのである。このフォーカスエラー信号FEは、各第1及第2の受光領域20A, 20Bにおける分割された各部分からの出力信号をV20Aa, V20Ab, V20Ac, V20Ad, V20Ba, V20Bb, V20Bc, V20Bdとし、各第2の受光領域21A, 21Bにおける分割された各部分からの出力信号をV21Aa, V21Ab, V21Ac, V21Ad, V21Ba, V21Bb, V21Bc, V21Bdとしたとき、以下のようにして求められる。

[0076]
$$\begin{aligned} FE = & \{(V20Ab+V20Ac+V20Ba+V20Bd)+(V21Ab+V21Ac+V21Ba+V21Bd)\} \\ & -\{(V20Aa+V20Ad+V20Bb+V20Bc)+(V21Aa+V21Ad+V21Bb+V21Bc)\} \end{aligned}$$

そして、第1及び第2のサブビームの光ディスク201からの反射光は、ホログラム素子19の第1の領域19Lを透過する部分S1L, S2Lと、ホログラム素子19の第2の領域19Rを透過する部分S1R, S2Rとが互いに異なる方向に回折され、それぞれが受光素子12において異なる受光領域によって受光される。

[0077] すなわち、第1及び第2のサブビームは、第1、または、第2の回折格子3, 18によって、光学写像的に光ディスクの記録トラックの接線方向に、メインビームに対して互いに逆方向に等角度を隔てて光ディスクに対して照射される。これらサブビームは、光ディスクの信号記録面上においては、記録トラックに対して、第1の波長のレーザ光(「DVD」規格の光ディスク用)においては、1/2トラックピッチ分、第2の波長のレーザ光(「CD」規格の光ディスク用)においては、1/4トラックピッチ分だけ、それぞれ径方向にオフトラックした位置に照射されるようになされている。そして、これらサブビームは、光ディスクの信号記録面において反射されて、光デバイス9に入射する。

[0078] これらサブビームは、光デバイス9においてホログラム素子19を透過するときには、メインビームに対して空間的にほぼ重複した状態となっており、このホログラム素子19によってメインビームと同様に回折作用を受ける。そして、これらサブビームは、受光素子基板14の表面に到達したときには、それぞれの光束径が数十 μ m程度となり、互いに離間された状態となる。この状態において、各サブビームは、対応する受光領域によって受光される。

[0079] 受光素子12においては、第3の受光領域22が、ホログラム素子19の第1の領域19Lを経た第1の波長の第1のサブビームの反射光S1Lを受光する。

[0080] また、受光素子12においては、第4の受光領域23が、ホログラム素子19の第1の

領域19Lを経た第1の波長の第2のサブビームの反射光S2Lを受光する。

- [0081] 受光素子12においては、第5の受光領域24が、ホログラム素子19の第1の領域19Lを経た第2の波長の第1のサブビームの反射光S1Lを受光する。
- [0082] 受光素子12においては、第6の受光領域25が、ホログラム素子19の第1の領域19Lを経た第2の波長の第2のサブビームの反射光S2Lを受光する。
- [0083] 受光素子12においては、第7の受光領域26が、ホログラム素子19の第2の領域19Rを経た第1の波長の第1のサブビームの反射光S1Rを受光する。
- [0084] 受光素子12においては、第8の受光領域27が、ホログラム素子19の第2の領域19Rを経た第1の波長の第2のサブビームの反射光S2Rを受光する。
- [0085] 受光素子12においては、第9の受光領域28が、ホログラム素子19の第2の領域19Rを経た第2の波長の第1のサブビームの反射光S1Rを受光する。
- [0086] 受光素子12においては、第10の受光領域29が、ホログラム素子19の第2の領域19Rを経た第2の波長の第2のサブビームの反射光S2Rを受光する。
- [0087] ここで、各サブビームの光ディスクの記録トラックに対する相対的な進行方向について先行ビームを第1のサブビームS1、後行ビームを第2のサブビームS2と表わし、これらの反射光がホログラム素子19の第1及び第2の領域19L, 19Rで回折された成分を反射光S1L, S1R, S2L, S2Rと表すと、図6に示すように、これらサブビームの反射光は、メインビームの反射光に対する位置関係を維持したまま、対応する受光素領域によって受光される。
- [0088] ここで、メインビームの反射光の受光領域20A, 20B, 21A, 21Bがフォーカスエラー信号の検出のために平行に4分割されているのに対し、各サブビームの反射光の受光領域は、各サブビームの各反射光ごとの積分光量を一括して検出すればよいため、一つの受光領域がさらに分割されていることはない。
- [0089] ホログラム素子19においては、回折現象の原理から、透過する光束の波長が異なれば、回折角も異なる。したがって、ホログラム素子19においては、第1の波長よりも長波長である第2の波長のサブビーム(790nm帯域)のほうが、第1の波長のサブビーム(650nm帯域)よりも大きく回折され、図6に示すように、第1の波長のサブビームが内側(光軸に近い側)、第2の波長のサブビームが外側(光軸から遠い側)におい

て受光される。各サブビーム用の受光領域は、これらサブビームの到達位置に応じて、やや傾斜した長方形形状に形成されている。

- [0090] なお、この光デバイス9においては、ホログラム素子19において各サブビームについて±1次の計2本生成される回折光の双方について、1本のサブビームだけを用いる構成となっている。
- [0091] 図7は、第1種類の光ディスクを用いている場合の受光素子上における反射光の状態(図7(a))及び第2種類の光ディスクを用いている場合の受光素子上における反射光の状態(図7(b))を示す平面図である。
- [0092] この光学ピックアップ装置において、第1種類の光ディスクに対して、第1の波長の光源を用いて記録、または、再生を行っている場合には、光デバイス9においては、図7(a)に示すように、第1乃至第4の受光領域20A, 20B, 21A, 21Bによりメインビームの反射光が受光され、第3及び第7の受光領域22, 26によって第1のサブビームの反射光が受光され、第4及び第8の受光領域23, 27によって第2のサブビームの反射光が受光される。
- [0093] また、この光学ピックアップ装置において、第2種類の光ディスクに対して、第2の波長の光源を用いて記録、または、再生を行っている場合には、光デバイス9においては、図7(b)に示すように、第1乃至第4の受光領域20A, 20B, 21A, 21Bによりメインビームの反射光が受光され、第5及び第9の受光領域24, 28によって第1のサブビームの反射光が受光され、第6及び第10の受光領域25, 29によって第2のサブビームの反射光が受光される。
- [0094] ところで、この光デバイス9においては、光学ピックアップ装置の対物レンズ8において発生するフレアや、光ディスクにおける記録層が2層となっている場合における再生対象ではない記録層からの反射光などの不要光は、受光素子基板14の略々全面に渡って広がって照射される。このような不要光によって光検出出力において生ずる直流(DC)的な成分は、各受光領域に対応されて受光される光スポットについての受光量とは全く独立に、その受光領域の面積に略々比例して発生する。
- [0095] そして、この光デバイス9においては、ホログラム素子19における同一の領域を透過しても、第1の波長のサブビームの反射光と、第2の波長のサブビームの反射光と

は、異なる受光領域によって受光される。

- [0096] したがって、この光デバイス9においては、各サブビームを受光する受光領域の面積を必要最小限の小さい面積とすることができます、不要光の影響を抑制することができます。
- [0097] 図8は、第1種類の光ディスクを用いている場合のトラッキングエラー信号TE(DPP)の演算回路(図8(a))及び第2種類の光ディスクを用いている場合のトラッキングエラー信号TE(3beam)の演算回路(図8(b))を示す平面図である。
- [0098] この光デバイスにおいて、トラッキングエラー信号の生成は、以下のように、光ディスクの種類によって異なる方法によって行われる。
- [0099] 第1種類の光ディスク('DVD'規格の光ディスク)を用いる場合においては、図8(a)に示すように、いわゆる差動プッシュプル法(DPP(Differential Push-Pull)法)によって、トラッキングエラー信号TE(DPP)を求める。この差動プッシュプル法においては、メインビームについてのプッシュプル信号(MainPP)と、第1のサブビーム及び第2のサブビームのそれぞれについてのプッシュプル信号(SubPP)との演算により、トラッキングエラー信号TE(DPP)を生成する。
- [0100] メインビームについてのプッシュプル信号(MainPP)は、ホログラム素子19の第1の領域19Lを透過したメインビームの反射光の光量と、ホログラム素子19の第2の領域19Rを透過したメインビームの反射光の光量との差に対応する信号であり、以下のように求められる。
- [0101]
$$\begin{aligned} \text{MainPP} &= (\text{MR} - \text{ML}) \\ &= \{(V20\text{Aa} + V20\text{Ab} + V20\text{Ac} + V20\text{Ad}) + (V20\text{Ba} + V20\text{Bb} + V20\text{Bc} + V20\text{Bd})\} \\ &\quad - \{(V21\text{Aa} + V21\text{Ab} + V21\text{Ac} + V21\text{Ad}) + (V21\text{Ba} + V21\text{Bb} + V21\text{Bc} + V21\text{Bd})\} \end{aligned}$$
- また、各サブビームについてのプッシュプル信号(SubPP)は、ホログラム素子19の第1の領域19Lを透過したサブビームの反射光の光量と、ホログラム素子19の第2の領域19Rを透過したサブビームの反射光の光量との差に対応する信号であり、以下のように求められる。
- [0102]
$$\text{SubPP} = (\text{S1R} + \text{S2R}) - (\text{S1L} + \text{S2L})$$
- ここで、メインビームの光量と各サブビームの光量の合計との比の逆数である係数k

を用いて、トラッキングエラー信号(TE(DPP))は、以下のように求められる。

$$[0103] \quad TE(DPP) = MainPP - k(SubPP)$$

$$= (MR - ML) - k\{ (S1R + S2R) - (S1L + S2L) \}$$

そして、この光デバイス9においては、第3の受光領域22及び第4の受光領域23からの検出出力が共通の出力として連結され、第7の受光領域26及び第8の受光領域27からの検出出力が共通の出力として連結されているので、(S1R + S2R)及び(S1L + S2L)については演算する必要がなく、各サブビームについてのプッシュプル信号(SubPP)は、図8(a)に示すように、1個の減算器30のみによって求めることができる。

[0104] なお、定数kは所定の定数であり、第1のグレーティング3におけるメインビーム及びサブビームの分岐比から定められる。ここで、k=0とすれば、メインビームの反射光のみから、プッシュプル法によるトラッキング誤差信号(TEPP)を得ることもできる。

[0105] また、この光デバイスにおいて、メインビームの反射光を受光する第1の受光領域20A, 20B及び第2の受光領域21A, 21Bは、それぞれを平行に3分割することとしてもよい。光ディスクに対する記録を行う場合において、前述のように、プッシュプル信号(MainPP)や差動プッシュプル法によるトラッキングエラー信号(TE(DPP))信号を求める場合においては、3分割でもよい。光ディスクを再生する場合に用いるいわゆる位相差法(DPD法)を行う場合には、4分割することが必要である。

[0106] そして、第2種類の光ディスク('CD'規格の光ディスク)を用いる場合においては、第1のサブビームの反射光と第2のサブビームの反射光との光量差からトラッキングエラー信号TE(3beam)を生成するいわゆる3ビーム法が用いられる。

[0107] すなわち、このトラッキングエラー信号(TE(3beam))は、図8(b)に示すように、下記のようにして求められる。

$$[0108] \quad TE(3beam) = S1 - S2 = (S1L + S1R) - (S2L + S2R)$$

この光デバイス9においては、第5の受光領域24及び第9の受光領域28からの検出出力が共通の出力として連結され、第6の受光領域25及び第10の受光領域29からの検出出力が共通の出力として連結されているので、(S1L + S1R)及び(S2L + S2R)については演算する必要がなく、トラッキングエラー信号(TE(3beam))は、図

8(b)に示すように、1個の減算器31のみによって求めることができる。

- [0109] このように、この光デバイス9においては、第1の波長のサブビームを受光する受光領域について、S1LとS2Lとが互いに素子上の配線で電気的に接続され、また、S1RとS2Rとが互いに素子上の配線で電気的に接続されている。また、この光デバイス9においては、第2の波長のサブビームを受光する受光領域について、S1LとS1Rとが互いに素子上の配線で電気的に接続され、また、S2LとS2Rとが互いに素子上の配線で電気的に接続されている。
- [0110] したがって、図8に示すように、2個の減算器30, 31のみによって、トラッキングエラー信号(TE (3beam))及び各サブビームについてのプッシュアップ信号(SubPP)を得ることができる。
- [0111] このように、この光デバイス9においては、演算回路の規模を縮小でいるとともに、光量の少ないサブビームの反射光について不要光の影響を抑制することができ、オフセットの低減を図ることができる。
- [0112] なお、本発明に係る光デバイスにおいて、トラッキングエラー信号TE (DPP)及びフォーカスエラー信号(FE)を得るための、ホログラム素子19及び受光素子12は、前述した構成に限定されず、従来より周知の種々の構成に置き換えて使用することができる。

請求の範囲

- [1] 少なくとも受光素子とホログラム素子とを備えて構成され、複数の互いに異なる波長の入射光を前記ホログラム素子によって回折させ、この回折光を前記受光素子上の受光領域において受光する光デバイスであって、
前記受光素子は、少なくとも情報記録媒体からの情報検出に用いるメインビームの反射光と、トラッキング動作に用いるサブビームの反射光とをそれぞれ独立した受光領域において受光するとともに、前記メインビームの反射光を波長に依らず共通の受光領域で受光し、前記サブビームの反射光を波長に依って異なる受光領域で受光する
ことを特徴とする光デバイス。
- [2] 少なくとも受光素子とホログラム素子とを備えて構成され、複数の互いに異なる波長の入射光を前記ホログラム素子によって回折させ、この回折光を前記受光素子上の受光領域において受光する光デバイスであって、
前記受光素子は、少なくとも情報記録媒体からの情報検出に用いるメインビームの反射光と、トラッキング動作に用いるサブビームの反射光とをそれぞれ独立した受光領域において受光するとともに、前記メインビームの反射光を波長に依って異なる受光領域で受光し、これらメインビーム用の受光領域からの検出出力が共通の出力として連結され、前記サブビームの反射光を波長に依って異なる隣接した受光領域で受光し、これらサブビーム用の隣接した受光領域からの検出出力が別個の出力として分離されている
ことを特徴とする光デバイス。
- [3] 少なくとも受光素子とホログラム素子とを備えて構成され、複数の互いに異なる波長の入射光を前記ホログラム素子によって回折させ、この回折光を前記受光素子上の受光領域において受光する光デバイスであって、
前記ホログラム素子は、第1及び第2の領域に分割されており、第1及び第2の互いに異なる波長の入射光を、前記第1及び第2の領域のそれぞれにおいて回折させ、
前記受光素子は、
少なくとも情報記録媒体からの情報検出に用いる第1及び第2の波長のメインビーム

ムの反射光を前記ホログラム素子の第1の領域を介して受光する第1の受光領域と、
前記第1及び第2の波長のメインビームの反射光を前記ホログラム素子の第2の領域を介して受光する第2の受光領域と、

トラッキング動作に用いる第1の波長の第1のサブビームの反射光を前記ホログラム素子の第1の領域を介して受光する第3の受光領域と、

トラッキング動作に用いる第1の波長の第2のサブビームの反射光を前記ホログラム素子の第1の領域を介して受光する第4の受光領域と、

トラッキング動作に用いる第2の波長の第1のサブビームの反射光を前記ホログラム素子の第1の領域を介して受光する第5の受光領域と、

トラッキング動作に用いる第2の波長の第2のサブビームの反射光を前記ホログラム素子の第1の領域を介して受光する第6の受光領域と、

トラッキング動作に用いる第1の波長の第1のサブビームの反射光を前記ホログラム素子の第2の領域を介して受光する第7の受光領域と、

トラッキング動作に用いる第1の波長の第2のサブビームの反射光を前記ホログラム素子の第2の領域を介して受光する第8の受光領域と、

トラッキング動作に用いる第2の波長の第1のサブビームの反射光を前記ホログラム素子の第2の領域を介して受光する第9の受光領域と、

トラッキング動作に用いる第2の波長の第2のサブビームの反射光を前記ホログラム素子の第2の領域を介して受光する第10の受光領域と

を備え、

前記第3の受光領域及び前記第4の受光領域からの検出出力が共通の出力として連結され、

前記第7の受光領域及び前記第8の受光領域からの検出出力が共通の出力として連結され、

前記第5の受光領域及び前記第9の受光領域からの検出出力が共通の出力として連結され、

前記第6の受光領域及び前記第10の受光領域からの検出出力が共通の出力として連結されている

- ことを特徴とする光デバイス。
- [4] 請求の範囲第3項記載の光デバイスであって、
前記プログラム素子は、情報記録媒体における記録トラック接線方向に光学写像的に平行な分割線において前記第1及び第2の領域に略二等分されており、前記情報記録媒体からの反射光を前記分割線において該情報記録媒体の径方向に2分割することを特徴とする光デバイス。
- [5] 請求の範囲第4項記載の光デバイスであって、
前記第3及び第4の受光領域からの検出出力と前記第7及び第8の受光領域からの検出出力との差に基づいて、前記第1の波長のサブビームの反射光を用いた差動プッシュブル法によるトラッキングエラー信号の検出を可能とし、
前記第5及び第9の受光領域からの検出出力と前記第6及び第10の受光領域からの検出出力との差に基づいて、前記第2の波長のサブビームの反射光を用いた3ビーム法によるトラッキングエラー信号の検出を可能とする
ことを特徴とする光デバイス。
- [6] 請求の範囲第3項記載の光デバイスであって、
前記第1の波長は、650nm帯域であり、前記第2の波長は、780nm帯域であり、これら第1及び第2の波長の光に適合された2種類の情報記録媒体からの情報検出を行うことを特徴とする光デバイス。
- [7] 請求の範囲第3項記載の光デバイスであって、
前記第1の波長の光を発する光源及び前記第2の波長の光を発する光源の少なくともいずれか一方が、前記受光素子の基板上に一体的に集積形成されていることを特徴とする光デバイス。
- [8] 請求の範囲第1項乃至第6項のいずれか一に記載の光デバイスと、
前記第1及び第2の波長の光を発するレーザ光源と
を備え、
前記第1の波長の光及び前記第2の波長の光のいずれを用いた場合にも、前記光デバイスから、メインビームによる情報記録媒体からの読み取り信号と、サブビームによるトラッキング信号とを得る

- ことを特徴とする光ピックアップ装置。
- [9] 請求の範囲第7項記載の光デバイスと、
前記第1の波長の光を発するレーザ光源と、
前記レーザ光源から発せられた第1の波長の光を3ビームに分割する回折格子と
を備え、
前記光デバイスに設けられた光源が前記第2の波長の光を発するレーザ光源であ
り、このレーザ光源から発せられた第2の波長の光を3ビームに分割する回折格子を
この光デバイス内に備えている
ことを特徴とする光ピックアップ装置。
- [10] 請求の範囲第7項記載の光デバイスと、
前記第2の波長の光を発するレーザ光源と、
前記レーザ光源から発せられた第2の波長の光を3ビームに分割する回折格子と
を備え、
前記光デバイスに設けられた光源が前記第1の波長の光を発するレーザ光源であ
り、このレーザ光源から発せられた第1の波長の光を3ビームに分割する回折格子を
この光デバイス内に備えている
ことを特徴とする光ピックアップ装置。

[図1]

[図2]

[図3]

[図4]

[図5]

[図6]

[図7]

[図8]

(a)

(b)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/000173

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ G11B7/135, G02B5/32, G11B7/09, 7/13

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ G11B7/09-7/135 G02B5/30-5/32

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1922-1996	Jitsuyo Shinan Toroku Koho	1996-2005
Kokai Jitsuyo Shinan Koho	1971-2005	Toroku Jitsuyo Shinan Koho	1994-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y A	JP 2001-202647 A (Matsushita Electric Industrial Co., Ltd.), 27 July, 2001 (27.07.01), Par. Nos. [0033] to [0063]; Figs. 3 to 8 & US 6597642 B1 & CN 1304133 A	1, 2, 8-10 3-7
Y	JP 2002-92902 A (Ricoh Co., Ltd.), 29 March, 2002 (29.03.02), Par. Nos. [0027] to [0110]; Figs. 4 to 10 (Family: none)	1, 2, 8-10
Y	JP 2003-151169 A (Sony Corp.), 23 May, 2003 (23.05.03), Par. Nos. [0017] to [0022], [0079]; Figs. 1, 19 (Family: none)	9, 10

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	
"A"	document defining the general state of the art which is not considered to be of particular relevance
"E"	earlier application or patent but published on or after the international filing date
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	document referring to an oral disclosure, use, exhibition or other means
"P"	document published prior to the international filing date but later than the priority date claimed
"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&"	document member of the same patent family

Date of the actual completion of the international search
12 April, 2005 (12.04.05)

Date of mailing of the international search report
10 May, 2005 (10.05.05)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/000173

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 2002-123967 A (Victor Company Of Japan, Ltd.), 26 April, 2002 (26.04.02), Par. Nos. [0010] to [0066]; Figs. 1 to 9 & US 2002/8888 A1 & EP 1109163 A2	1-10
A	JP 2002-109759 A (Matsushita Electric Industrial Co., Ltd.), 12 April, 2002 (12.04.02), Par. Nos. [0090] to [0117]; Figs. 7 to 10 & US 2003/7436 A1 & CN 1343976 A	1-10
A	JP 8-17069 A (Olympus Optical Co., Ltd.), 19 January, 1996 (19.01.96), Par. Nos. [0048] to [0054]; Figs. 11 to 12 (Family: none)	1-10
A	JP 9-274730 A (NEC Corp.), 21 October, 1997 (21.10.97), Figs. 26, 30 & US 5875167 A & EP 791918 A1	9,10

A. 発明の属する分野の分類(国際特許分類(I.P.C.))

Int.Cl.⁷ G11B7/135, G02B5/32, G11B7/09, 7/13

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(I.P.C.))

Int.Cl.⁷ G11B7/09 - 7/135, G02B5/30 - 5/32

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2005年
日本国実用新案登録公報	1996-2005年
日本国登録実用新案公報	1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 2001-202647 A (松下電器産業株式会社) 2001.07.27 【0033】-【0063】 , 【図3】-【図8】	1, 2, 8-10
A	& US 6597642 B1 & CN 1304133 A	3-7
Y	JP 2002-92902 A (株式会社リコー) 2002.03.29 【0027】-【0110】 , 【図4】-【図10】(ファミリなし)	1, 2, 8-10
Y	JP 2003-151169 A (ソニー株式会社) 2003.05.23 【0017】-【0022】 , 【0079】 , 【図1】 , 【図19】(ファミリなし)	9, 10

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願目前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

12.04.2005

国際調査報告の発送日

10.05.2005

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

5D 9651

吉川 潤

電話番号 03-3581-1101 内線 3551

C (続き) 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP 2002-123967 A (日本ビクター株式会社) 2002. 04. 26 【0010】 - 【0066】 , 【図 1】 - 【図 9】 & US 2002/8888 A1 & EP 1109163 A2	1-10
A	JP 2002-109759 A (松下電器産業株式会社) 2002. 04. 12 【0090】 - 【0117】 , 【図 7】 - 【図 10】 & US 2003/7436 A1 & CN 1343976 A	1-10
A	JP 8-17069 A (オリンパス光学工業株式会社) 1996. 01. 19 【0048】 - 【0054】 , 【図 11】 - 【図 12】 (ファミリなし)	1-10
A	JP 9-274730 A (日本電気株式会社) 1997. 10. 21 【図 26】 , 【図 30】 & US 5875167 A & EP 791918 A1	9, 10