Corrigé CCP 2014 Partie II : Langages et automates

1. Montrons que \hat{h} est un homomorphisme de langage. Pour cela on montre par récurrence sur n la propriété suivante:

"Pour tous mots
$$m_1, m_2$$
 avec $len(m_1) = n, \hat{h}(m_1.m_2) = \hat{h}(m_1).\hat{h}(m_2).$ "

Initialisation : si $n=0, m_1$ est le mot vide donc le résultat est immédiat.

Hérédite : Supposons la propriété vraie au rang n. Soit m_1 un mot de taille n+1, que l'on décompose en $m_1 = x.\tilde{m_1}$ avec $\tilde{m_1}$ de taille n. Alors pour tout mot m_2 , en utilisant l'hypothèse de récurrence et la définition de \hat{h} :

$$\hat{h}(m_1.m_2) = \hat{h}(x.\tilde{m}_1.m_2) = h(x).\hat{h}(\tilde{m}_1.m_2) = h(x).\hat{h}(\tilde{m}_1).\hat{h}(m_2) = \hat{h}(m_1).\hat{h}(m_2).$$

La propriété est donc vraie pour tout n, on a bien montré que \hat{h} est un homomorphisme de langage. Montrons de plus qu'il est Λ -libre. Supposons que m est un mot non vide. Il peut alors se décomposer $m=x.\tilde{m}$. Alors $\hat{h}(m)=h(x).\hat{h}(\tilde{m})$. Comme h est à valeurs dans $Y^*\setminus\{\Lambda\}$, h(x) est non vide donc $\hat{h}(m)$ aussi. Donc \hat{h} est Λ -libre.

2. Montrons que $\widehat{h}_{|X} = h$. On procède de nouveau par récurrence sur n = len(m).

Initialisation : Si m est le mot vide, on a $\widehat{h_{|X}}(\Lambda) = h(\Lambda) = \Lambda$ car ce sont des homomorphismes.

Hérédite : Supposons le résultat vrai au rang n. Soit m un mot de taille n+1 que l'on décompose en $m=x.\tilde{m}$ avec \tilde{m} de taille n. Alors par définition de $\widehat{h}_{|X}$ et par hypothèse de récurrence:

$$\widehat{h_{|X}}(m) = \widehat{h_{|X}}(x.\tilde{m}) = h_{|X}(x).\widehat{h_{|X}}(\tilde{m}) = h(x).h(\tilde{m}) = h(m).$$

- 3. On obtient $\tilde{h}(e) = 10.(010 + 10010)^*$.
- 4. On montre par induction structurelle sur l'expression régulière e que \tilde{e} est une expression régulière.

Cas de base:

- si $e = \emptyset$ ou $e = \Lambda$, $\tilde{h}(e) = e$ est bien une expression régulière.
- si $e = a \in X$, $\tilde{h}(a) = h(a) \in Y^*$ est bien une expression régulière (tout mot peut être identifié à une expression régulière par itération de la règle de concaténation).

Supposons maintenant que le résultat est vrai pour e_1 et e_2 et montrons qu'il reste vrai pour $e_1 + e_2$, $e_1.e_2$ et e_1^* . En utilisant les définitions des expressions régulières et de \tilde{h} on a:

- $\tilde{h}(e_1+e_2)=\tilde{h}(e_1)+\tilde{h}(e_2)$ est bien une expression régulière
- $\tilde{h}(e_1.e_2) = \tilde{h}(e_1).\tilde{h}(e_2)$ est également une expression régulière

- $\tilde{h}(e_1^*) = \tilde{h}(e_1)^*$ est aussi une expression régulière.

Par induction structurelle, pour tout expression régulière $e, \tilde{h}(e)$ est une expression régulière.

5. On montre de nouveau le résultat par induction structurelle sur l'expression régulière e.

Cas de base:

- Si $e = \emptyset$, $L(\tilde{h}(e)) = \hat{h}(L(e)) = \{\}$. - Si $e = \Lambda$, $L(\tilde{h}(e)) = \hat{h}(L(e)) = \{\Lambda\}$.
- Si $e = a \in X$, on commence par remarquer que $L(h(a)) = \{h(a)\}$ (attention h(a) n'est pas forcément une lettre), on le montre par récurrence sur la longueur du mot et en utilisant la règle de concaténation. On a alors:

$$L(\tilde{h}(a)) = L(h(a)) = \{h(a)\} = \{\hat{h}(a)\} = \hat{h}(L(a)).$$

Supposons maintenant que le résultat est vrai pour e_1 et e_2 et montrons qu'il reste vrai pour $e_1 + e_2$, $e_1.e_2$ et e_1^* :

$$\begin{split} L(\tilde{h}(e_1 + e_2)) &= L(\tilde{h}(e_1) + \tilde{h}(e_2)) \\ &= L(\tilde{h}(e_1)) \cup L(\tilde{h}(e_2)) \\ &= \hat{h}(L(e_1)) \cup \hat{h}(L(e_2)) \\ &= \hat{h}(L(e_1) \cup L(e_2)) \\ &= \hat{h}(L(e_1 + e_2)) \end{split}$$

$$\begin{split} L(\tilde{h}(e_1.e_2)) &= L(\tilde{h}(e_1).\tilde{h}(e_2)) \\ &= \{m_1.m_2 | m_1 \in L(\tilde{h}(e_1)), m_2 \in L(\tilde{h}(e_2))\} \\ &= \{m_1.m_2 | m_1 \in \hat{h}(L(e_1)), m_2 \in \hat{h}(L(e_2))\} \\ &= \{\hat{h}(m_1).\hat{h}(m_2) | m_1 \in L(e_1), m_2 \in L(e_2)\} \\ &= \{\hat{h}(m_1.m_2) | m_1 \in L(e_1), m_2 \in L(e_2)\} \\ &= \hat{h}(\{m_1.m_2 | m_1 \in L(e_1), m_2 \in L(e_2)\}) \\ &= \hat{h}(L(e_1.e_2)). \end{split}$$

$$\begin{split} L(\tilde{h}(e_1^*)) &= L(\tilde{h}(e_1)^*) \\ &= L(\tilde{h}(e_1))^* \\ &= (\hat{h}(L(e_1)))^* \\ &= \bigcup_{n \in \mathbb{N}} (\hat{h}(L(e_1)))^n \\ &= \bigcup_{n \in \mathbb{N}} \{\hat{h}(x_1) \dots \hat{h}(x_n) | x_1 \dots x_n \in L(e_1)\} \\ &= \bigcup_{n \in \mathbb{N}} \{\hat{h}(x_1 \dots x_n) | x_1 \dots x_n \in L(e_1)\} \\ &= \hat{h}(\bigcup_{n \in \mathbb{N}} \{x_1 \dots x_n | x_1 \dots x_n \in L(e_1)\}) \\ &= \hat{h}(\bigcup_{n \in \mathbb{N}} L(e_1)^n) \\ &= \hat{h}(L(e_1)^*) \end{split}$$

Par induction structurelle, le résultat est donc vrai pour toute expression régulière e.

6. Soit L_X un langage régulier sur X. Il existe une expression régulière e telle que $L_X = L(e)$. Soit h un homomorphisme de langage. Alors par la question 2, $h = \widehat{h}_{|X}$ et par la question 5:

$$h(L_X) = \widehat{h_{|X}}(L(e)) = L(\widetilde{h_{|X}}(e)).$$

Par la question 4, $\widetilde{h_{|X}}(e)$ est une expression régulière donc $h(L_X)$ est bien un langage régulier.

- 7. Le langage de l'automate est décrit par l'expression régulière $a.(aa^*ba+bb)^*.b.$
- 8. On montre le résultat par récurrence sur $n = len(m_1)$.

Initialisation : si $m_1 = \Lambda$, $\delta^*(o, \Lambda) = \{o\}$ donc pour tous états o, d et tout mot m_2 :

$$\exists q \in Q, (q \in \delta^*(o, \Lambda) \land d \in \delta^*(q, m_2)) \iff d \in \delta^*(o, m_2)$$

Hérédité : Supposons le résultat vrai au rang n. Soit m_1 un mot de taille n+1 que l'on décompose $m_1 = x.\tilde{m_1}$ avec $\tilde{m_1}$ de taille n. Alors en utilisant les définitions et l'hypothèse de récurrence, pour tous états o et d et tout mot m_2 :

$$d \in \delta^*(o, m_1.m_2) \iff d \in \delta^*(o, x.\tilde{m}_1.m_2)$$

$$\iff \exists q_1 \in Q, (q_1 \in \delta(o, x) \land d \in \delta^*(q_1, \tilde{m}_1.m_2))$$

$$\iff \exists q_1 \in Q, (q_1 \in \delta(o, x) \land \exists q_2 \in Q, (q_2 \in \delta^*(q_1, \tilde{m}_1) \land d \in \delta^*(q_2, m_2)))$$

$$\iff \exists q_2 \in Q, (\exists q_1 \in Q, (q_1 \in \delta(o, x) \land q_2 \in \delta^*(q_1, \tilde{m}_1)) \land d \in \delta^*(q_2, m_2))$$

$$\iff \exists q_2 \in Q, (q_2 \in \delta^*(o, x.\tilde{m}_1) \land d \in \delta^*(q_2, m_2))$$

$$\iff \exists q_2 \in Q, (q_2 \in \delta^*(o, m_1) \land d \in \delta^*(q_2, m_2))$$

9. On obtient l'automate $\hat{h}^{-1}(\mathcal{E})$ avec les états $\{A,B,C,D\}$, A comme état initial, D comme état final, et les transitions: $\delta(A,0)=\{D\}$, $\delta(B,0)=\{A\}$, $\delta(B,1)=\{D\}$, $\delta(C,0)=\delta(C,1)=\{A\}$, $\delta(D,1)=\{B\}$.

- 10. Le langage de l'automate $\hat{h}^{-1}(\mathcal{E})$ peut être décrit par l'expression régulière $0.(100+11)^*$. Alors le langage $\hat{h}(L(\hat{h}^{-1}(\mathcal{E})))$ est décrit par l'expression régulière $ab.(babab+bb)^*$ et on a l'inclusion stricte $\hat{h}(L(\hat{h}^{-1}(\mathcal{E}))) \subsetneq L(\mathcal{E})$. (par exemple le mot aabab est dans $L(\mathcal{E})$ mais pas dans $\hat{h}(L(\hat{h}^{-1}(\mathcal{E})))$).
- 11. On montre de nouveau le résultat sur n = len(m).

Initialisation : pour n = 0, $m = \Lambda$ et:

$$d \in \delta_{\hat{h}^{-1}}^*(o, \Lambda) \Leftrightarrow d = o \Leftrightarrow d \in \delta^*(o, \Lambda) = \delta^*(o, \hat{h}(\Lambda))$$

Hérédité: supposons le résultat vrai au rang n. Soit m de taille n+1 que l'on décompose $m=x.\tilde{m}$ avec \tilde{m} de taille n. Alors:

$$\begin{split} d \in \delta^*(o, \hat{h}(m)) &\iff d \in \delta^*(o, \hat{h}(x.\tilde{m})) \\ &\iff d \in \delta^*(o, h(x).\hat{h}(\tilde{m})) \\ &\iff \exists q \in Q, (q \in \delta^*(o, h(x)) \land d \in \delta^*(q, \hat{h}(\tilde{m}))) \\ &\iff \exists q \in Q, (q \in \delta^*(o, h(x)) \land d \in \delta^*_{\hat{h}_{-1}}(q, \tilde{m})) \\ &\iff \exists q \in Q, (q \in \delta^*_{\hat{h}^{-1}}(o, x) \land d \in \delta^*_{\hat{h}_{-1}}(q, \tilde{m})) \\ &\iff d \in \delta^*_{\hat{h}^{-1}}(o, x.\tilde{m}) \\ &\iff d \in \delta^*_{\hat{h}^{-1}}(o, m). \end{split}$$

12. Montrons que $L(\hat{h}^{-1}(\mathcal{A})) = \hat{h}^{-1}(L(\mathcal{A}))$. Pour tout mot m:

$$m \in L(\hat{h}^{-1}(\mathcal{A})) \iff \exists i \in I, \exists t \in T, t \in \delta_{\hat{h}^{-1}}^*(i, m)$$
$$\iff \exists i \in I, \exists t \in T, t \in \delta^*(i, \hat{h}(m))$$
$$\iff \hat{h}(m) \in L(\mathcal{A})$$
$$\iff m \in \hat{h}^{-1}(L(\mathcal{A})).$$

13. Soit L_Y un langage régulier sur Y. Soit \mathcal{A} un automate le reconnaissant. Soit h un homomorphisme de langage. Par la question 2, $h = \widehat{h_{|X}}$. On considère l'automate $\mathcal{E} = \widehat{h_{|X}}^{-1}(\mathcal{A})$. Par la question 12:

$$L(\mathcal{E}) = \widehat{h_{|X}}^{-1}(L(\mathcal{A})) = h^{-1}(L_Y),$$

donc par le théorème de Kleene, comme $h^{-1}(L_Y)$ est reconnu par un automate, c'est un langage régulier.