理解 PLONK (四): 算术约束与拷贝约束

回顾置换证明

上一节,我们讨论了如何让 Prover 证明两个长度为 N 的向量 \vec{a} 与 \vec{b} 满足一个实现约定(公开)的置换关系 $\sigma(\cdot)$,即

$$a_i = b_{\sigma(i)}$$

基本思路是向 Verifier 要一个随机数 eta,把两个「原始向量」和他们的「位置向量」进行合体,产生出两个新的向量,记为 $ec{a}'$ 与 $ec{b}'$

$$a_i' = a_i + eta \cdot i, \qquad b_i' = b_i + eta \cdot \sigma(i)$$

第二步是再向 Verifier 要一个随机数 γ ,通过连乘的方法来编码 \vec{a}' 和 \vec{b}' 的 Multiset,记为 A 和 B:

$$A = \prod (a_i' + \gamma), \qquad B = \prod (b_i' + \gamma)$$

第三步是让 Prover 证明 A/B=1,即

$$\prod_i rac{(a_i' + \gamma)}{(b_i' + \gamma)} = 1$$

证明这个连乘,需要引入一个辅助向量 $ec{z}$,记录每次乘法运算的中间结果:

$$z_0=1, \qquad z_{i+1}=z_i\cdotrac{(a_i'+\gamma)}{(b_i'+\gamma)}$$

由于 $z_N=\prod \frac{a_i'+\gamma}{b_i'+\gamma}=1$,而且 $\omega^N=1$,因此我们可以用 z(X) 来编码 \vec{z} ,从而把置换证明转换成关于 z(X),a(X) 的关系证明。

最后 Verifier 发送挑战数 ζ , 得到 $z(\zeta), z(\omega \cdot \zeta), a(\zeta), b(\zeta)$ 然后检查它们之间的关系。

向量的拷贝约束

所谓拷贝约束 Copy Constraints,是说在一个向量中,我们希望能证明多个不同位置上的向量元素相等。我们先从一个简单例子开始:

$$ec{a}=(a_0,a_1,a_2,a_3)$$

假设为了让 Prover 证明 $a_0=a_2$,我们可以把 a_0 与 a_2 对调位置,这样形成一个「置换关系」,如果我们用 (0,1,2,3) 记录被置换向量的元素位置,那么我们把置换后的位置向量记为 σ ,而 \vec{a}_σ 为表示按照 σ 置换后的向量

$$\sigma = (2,1,0,3), \quad ec{a}_{\sigma} = (a_2,a_1,a_0,a_3)$$

显然,只要 Prover 可以证明置换前后的两个向量相等, $ec{a}=ec{a}_{\sigma}$,那么我们就可以得出结论: $a_0=a_2$ 。

这个方法可以推广到证明一个向量中有多个元素相等。比如要证明 \vec{a} 中的前三个元素都相等,我们只需要构造一个置换,即针对这三个元素的循环右移:

$$\sigma = (2,0,1,3), \quad ec{a}_{\sigma} = (a_2,a_0,a_1,a_3)$$

那么根据 $\vec{a} = \vec{a}_{\sigma}$ 容易得出 $a_0 = a_1 = a_2$ 。

多个向量间的拷贝约束

对于 Plonk 协议,拷贝约束需要横跨 W 表格的所有列,而协议要求 Prover 要针对每一列向量进行多项式编码。我们需要对置换证明进行扩展,从而支持横跨多个向量的元素等价。

回忆比如针对上面电路的 W 表格:

i	w_a	w_b	w_c
0	0	0	out
1	x_6	x_5	out
2	x_1	x_2	x_6
3	x_3	x_4	x_5

看上面的表格,我们要求 $w_{a,1}=w_{c,2}$, $w_{b,1}=w_{c,3}$ 且 $w_{c,0}=w_{c,1}$ 。

支持跨向量置换的直接方案是引入多个对应的置换向量,比如上表的三列向量用三个置换向量统一进行位置编码:

i	$id_{a,i}$	$id_{b,i}$	$id_{c,i}$
0	0	4	8
1	1	5	9
2	2	6	10
3	3	7	11

置换后的向量为 $\sigma_a,\sigma_b,\sigma_c$:

i	$\sigma_{a,i}$	$\sigma_{b,i}$	$\sigma_{c,i}$
0	0	4	9
1	10	11	8
2	2	6	1
3	3	7	5

Prover 用一个随机数 β (Verifier 提供)来合并 $(\vec{w}_a, i\vec{d}_a)$, $(\vec{w}_b, i\vec{d}_b)$, $(\vec{w}_c, i\vec{d}_c)$, 还有置换后的向量: (\vec{w}_a', σ_a) , (\vec{w}_b', σ_b) , (\vec{w}_c', σ_c) 。然后再通过一个随机数 γ (Verifier 提供)和连乘来得到 W 和 W' 的 Multisets, $\{f_i\}$ 与 $\{g_i\}$

$$f_i = (w_{a,i} + eta \cdot id_{a,i} + \gamma)(w_{b,i} + eta \cdot id_{b,i} + \gamma)(w_{c,i} + eta \cdot id_{c,i} + \gamma) \ g_i = (w_{a,i}' + eta \cdot \sigma_{a,i} + \gamma)(w_{b,i}' + eta \cdot \sigma_{b,i} + \gamma)(w_{c,i}' + eta \cdot \sigma_{c,i} + \gamma)$$

又因为拷贝约束要求置换后的向量与原始向量相等,因此 $w_a=w_a',\ w_b=w_b',\ w_c=w_c'.$

如果我们用多项式对 $\vec{w}_a, \vec{w}_b, \vec{w}_c, \vec{id}_a, \vec{id}_b, \vec{id}_c, \sigma_a, \sigma_b, \sigma_c$ 编码,得到 $w_a(X), w_b(X), w_c(X), id_a(X), id_b(X), id_c(X), \sigma_a(X), \sigma_b(X), \sigma_c(X)$,于是 f(X), g(X) 满足下面的约束关系:

$$f(X) = \Big(w_a(X) + eta \cdot S_{id_a}(X) + \gamma\Big) \Big(w_b(X) + eta \cdot S_{id_b}(X) + \gamma\Big) \Big(w_c(X) + eta \ g(X) = \Big(w_a(X) + eta \cdot S_{\sigma_a}(X) + \gamma\Big) \Big(w_b(X) + eta \cdot S_{\sigma_b}(X) + \gamma\Big) \Big(w_c(X) + eta$$

如果两个 Multiset 相等 $\{f_i\}=\{g_i\}$,那么下面的等式成立:

$$\prod_{X\in H}f(X)=\prod_{X\in H}g(X)$$

上面的等式稍加变形, 可得

$$\prod_{X\in H}rac{f(X)}{g(X)}=1$$

我们进一步构造一个辅助的**累加器**向量 \vec{z} ,表示连乘计算的一系列中间过程

$$z_0=1, \qquad z_{i+1}=z_i\cdotrac{f_i}{g_i}$$

其中 z_0 的初始值为 1, Prover 按照下表计算出 \vec{z} :

i	H_{i}	z_i
0	$\omega^0=1$	1
1	ω^1	$1\cdot rac{f_0}{g_0}$
2	ω^2	$rac{f_0}{g_0}\cdotrac{f_1}{g_1}$
3	ω^3	$rac{f_0f_1}{g_0g_1}\cdotrac{f_2}{g_2}$
:		:
N-1	ω^{N-1}	$rac{f_0f_1\cdots f_{N-3}}{g_0g_1\cdots g_{N-3}} \cdot rac{f_{N-2}}{g_{N-2}}$
N	$\omega^N=1$	$\left egin{array}{c} rac{f_0f_1\cdots f_{N-1}}{g_0g_1\cdots g_{N-1}} = 1 \end{array} ight $

如果 \vec{f} 能与 \vec{g} 连乘等价的话,那么最后一行 z_N 正好等于 1,即

$$z_N = z_0 = 1$$

而又因为 $\omega^N=1$ 。这恰好使我们可以把 $(z_0,z_1,z_2,\ldots,z_{N-1})$ 完整地编码在乘法子群 H 上。因此如果它满足下面两个多项式约束,我们就能根据数学归纳法得出 $z_N=1$,这是我们最终想要的「拷贝约束」:

$$z(\omega^0)=1$$
 $z(\omega\cdot X)g(X)=z(X)f(X)$

置換关系 σ

在构造拷贝约束前,置换关系 σ 需要提前公开共识。表格 W 含有所有算术门的输入输出,但是并没有描述门和门之间是否通过引线相连,而置换关系 σ 实际上正是补充描述了哪些算术门之间的连接关系。

因此,对于一个处于「空白态」的电路,通过 (Q,σ) 两个表格描述,其中 Q 由选择子向量构成,而 σ 则由「置换向量」构成。

下面是 Q 表格

i	q_L	q_R	q_M	q_C	q_O
0	0	0	0	99	1
1	0	0	1	0	1
2	1	1	0	0	1
3	0	0	1	0	1

下面是 S 表格,描述了哪些位置做了置换

i	$\sigma_{a,i}$	$\sigma_{b,i}$	$\sigma_{c,i}$
0	0	4	[9]
1	10	<u>11</u>	[8]
2	2	6	1
3	3	7	$\overline{\underline{5}}$

处理 Public Inputs

假如在上面给出的小电路中,要证明存在一个 Assignment,使得 out 的输入为一个特定的公开值,比如 out=99。最简单的办法是使用 Q 表中的 q_C 列,并增加一行约束,使得 $q_L=q_R=q_M=0$,因此满足下面等式

$$q_C(X) - q_O(X)w_c(X) = 0$$

但这个方案的问题是:这些公开值输入输出值被固定成了常数,如果公开值变化,那么 $q_C(X)$ 多项式需要重新计算。如果整体上W表格的行数比较大,那么这个重新计算过程会带来很多的性能损失。

能否在表格中引入参数,以区分电路中的常数列?并且要求参数的变化并不影响其它电路的部分?这就需要再引入一个新的列,专门存放公开参数,记为 ϕ ,因此,算术约束会变为:

 $q_L(X)w_a(X)+q_R(X)w_b(X)+q_M(X)w_a(X)w_b(X)-q_O(X)w_c(X)+q_C(X)$ 我们还可以通过修改拷贝约束的方式引入公开参数。

[!TODO]

位置向量的优化

我们上面在构造三个 σ 向量时,直接采用的自然数 $(0,1,2,\cdots)$,这样在协议开始前,Verifier 需要构造 3 个多项式 $S_{id_a}(X), S_{id_b}(X), S_{id_c}(X)$,并且在协议最后一步查询 Oracle,获得三个多项式在挑战点 $X=\zeta$ 处的取值 $(S_{id_a}(\zeta), S_{id_b}(\zeta), S_{id_c}(\zeta))$ 。

思考一下, σ 向量只需要用一些互不相等的值来标记置换即可,不一定要采用递增的自然数。如果我们采用 $H=\left(1,\omega,\omega^2,\cdots\right)$ 的话,那么多项式 $id_a(X)$ 会被大大简化:

$$egin{aligned} ec{id}_{a} &= (1,\omega,\omega^{2},\omega^{3}) \ ec{id}_{b} &= (k_{1},k_{1}\omega,k_{1}\omega^{2},k_{1}\omega^{3}) \ ec{id}_{c} &= (k_{2},k_{2}\omega,k_{2}\omega^{2},k_{2}\omega^{3}) \end{aligned}$$

其中 k_i 为互相不等的二次非剩余。

$$id_a(X) = X, \quad id_b(X) = k_1 \cdot X, \quad id_a(X) = k_2 \cdot X$$

这样一来,这三个多项式被大大简化,它们在 $X=\zeta$ 处的计算轻而易举,可以直接由 Verifier 完成。

这个小优化手段最早由 Vitalik 提出。采用 k_1 和 k_2 是为了产生 $(1,\omega,\omega^2,\omega^3)$ 的陪集(Coset),并保证 Coset 之间没有任何交集。我们前面提到 $H=(1,\omega,\omega^2,\omega^3)$ 是

 $\mathbb F$ 的乘法子群,如果 $H_1=k_1H$ 和 $H_2=k_2H$ 存在交集,那么 $H_1=H_2$ 。这个论 断可以简单证明如下:如果它们存在交集,那么 $k_1\omega^i=k_2\omega^j$,于是 $k_1=k_2\cdot\omega^{j-i}$,又因为 $\omega^{j-i}\in H$,那么 $k_1\in H_2$,那么 $\forall i\in [N].k_1\cdot\omega^i\in H_2$,那么 $H_1\subset H_2$,同理可得 $H_2\subset H_1$,于是 $H_1=H_2$ 。

如果 σ 的列数更多,那么我们需要选择多个 k_1,k_2,k_3,\ldots 且 $(k_i/k_j)^N \neq 1$ 来产生不相交的 Coset。一种最直接的办法是采用 $k_1,k_2,k_3,\ldots=g^1,g^2,g^3,\ldots$,其中 g 为乘法子群 T 的生成元, $|T|*2^\lambda=p-1$ 。

协议框架

预处理: Prover 和 Verifier 构造 $[q_L(X)]$, $[q_R(X)]$, $[q_O(X)]$, $[q_M(X)]$, $[q_C(X)]$, $[\sigma_a(X)]$, $[\sigma_b(X)]$, $[\sigma_c(X)]$

第一步: Prover 针对 W 表格的每一列,构造 $[w_a(X)]$, $[w_b(X)]$, $[w_c(X)]$, $\phi(X)$ 使得

$$q_L(X)w_a(X)+q_R(X)w_b(X)+q_M(X)w_a(X)w_b(X)-q_O(X)w_c(X)+q_C(X)w_b(X)$$

第二步: Verifier 发送随机数 β 与 γ ;

第三步: Prover 构造 [z(X)],使得

$$L_0(X)(z(X)-1)=0$$
 $z(\omega\cdot X)g(X)-z(X)f(X)=0$

第四步: Verifier 发送随机挑战数 α ;

第五步: Prover 计算 h(X), 并构造商多项式 [t(X)]

$$h(X) = q_L(X) w_a(X) + q_R(X) w_b(X) + q_M(X) w_a(X) w_b(X) - q_O(X) w_c(X) + lpha(z(\omega X) \cdot g(X) - z(X) \cdot f(X)) + lpha^2(L_0(X) \cdot (z(X) - 1))$$

其中

$$f(X) = \Big(w_a(X) + eta \cdot id_a(X) + \gamma\Big) \Big(w_b(X) + eta \cdot id_b(X) + \gamma\Big) \Big(w_c(X) + eta \cdot g(X) = \Big(w_a(X) + eta \cdot \sigma_a(X) + \gamma\Big) \Big(w_b(X) + eta \cdot \sigma_b(X) + \gamma\Big) \Big(w_c(X) + eta \cdot c$$

其中商多项式 $t(X) = \frac{h(X)}{z_H(X)}$;

第六步: Verifier 发送随机挑战数 ζ , 查询上述的所有 Oracle, 得到

•
$$\bar{w}_a = w_a(\zeta)$$
, $\bar{w}_b = w_b(\zeta)$, $\bar{w}_c = w_c(\zeta)$

$$oldsymbol{ar{q}}_L=q_L(\zeta)$$
, $ar{q}_R=q_R(\zeta)$, $ar{q}_M=q_M(\zeta)$, $ar{q}_O=q_O(\zeta)$, $ar{q}_C=q_C(\zeta)$

•
$$\bar{\sigma}_a = \sigma_a(\zeta)$$
, $\bar{\sigma}_b = \sigma_b(\zeta)$, $\bar{\sigma}_c = \sigma_c(\zeta)$

•
$$ar{z}_{(\omega\cdot\zeta)}=z(\omega\cdot\zeta)$$
, $ar{z}_{(\zeta)}=z(\zeta)$

•
$$\bar{t} = t(\zeta)$$

Verifier 还要自行计算

$$\bullet \ \ \bar{f}_{(\zeta)} = (\bar{w}_a + \beta \cdot \zeta + \gamma)(\bar{w}_b + \beta \cdot k_1 \cdot \zeta + \gamma)(\bar{w}_c + \beta \cdot k_2 \cdot \zeta + \gamma)$$

•
$$ar{g}_{(\zeta)} = (ar{w}_a + eta \cdot ar{\sigma}_1 + \gamma)(ar{w}_b + eta \cdot ar{\sigma}_2 + \gamma)(ar{w}_c + eta \cdot ar{\sigma}_3 + \gamma)$$

- $L_0(\zeta)$
- $z_H(\zeta)$
- $\phi(\zeta)$

验证步:

$$egin{aligned} ar{q}_Lar{w}_a + ar{q}_Rar{w}_b + ar{q}_Mar{w}_aar{w}_b - ar{q}_Oar{w}_c + ar{q}_C + \phi(\zeta) \ &+ lpha(ar{z}_{(\omega\cdot\zeta)}\cdotar{g}_-(\zeta) - ar{z}_{(\zeta)}\cdotar{f}_{(\zeta)}) + lpha^2(L_0(\zeta)\cdot(ar{z}_{(\zeta)}-1)) \stackrel{?}{=} ar{t}\cdot z_H(\zeta) \end{aligned}$$

参考文献

Found a bug?! Edit this page on GitHub.

0 个表情

0条评论

输入	预览	Aa
登录后可	· 发表评论	
		MI
		使用 GitHub 登录