UPMC Paris Universitas - Master Informatique - STL

Cours Composant 6. Logique de Hoare 1

© 2005-2013 Frédéric Peschanski

UPMC Paris Universitas

4 mars 2013

Plan du cours

Logique de Hoare I

- Le langage J-While
- Triplets de Hoare
- Axiome d'affectation
- Règle de séquencement
- Opérateurs logiques
- Alternatives

Le langage J-While

Langage J-While : version très simplifiée de Java

- « Programme » = Corps d'une méthode
- pas d'invocation
- types booléens, entiers et tableaux
- expressions arithmétiques et logiques de base
- instructions : affectations, séquencement, alternatives et boucles while

Triplets de Hoare

Triplet de Hoare

```
{P} prog {Q}
```

οù

- P est la précondition
- prog est un extrait de programme J-While
- Q est la postcondition

Interprétation :

« En supposant P vraie avant exécution, et si on exécute prog, alors Q est vraie après exécution »

Axiome d'affectation

Axiome d'affecation

$$\frac{}{\{Q[\exp(V)]\} \ V = \exp(Q)} \ (aff)$$

Remarque:

 $Q[\exp(V)] \stackrel{\text{\tiny def}}{=} Q$ en substituant toute occurence libre de V dans Q par $\exp(\operatorname{ou} \exp(W))$ « écrase » V dans Q)

Axiome d'affectation : exemples

Axiome d'affecation

$$\overline{\{Q[\exp(V)]\}\ V = \exp(Q)\}} \ (aff)$$

Exercice 1 : On cherche la précondition la plus faible P telle que

$${P}x = y + 1{x = 3}$$

Exercice 2 : Trouver P et Q « intéressantes » telles que

$$\{P\}\mathbf{x} = -\mathbf{y}\{Q\}$$

Exercice 3: Trouver prog tel que

$$\{y = a\}\operatorname{prog}\{y = a \land x = 2 * a\}$$

Règle de séquencement

Règle de séquencement

$$\frac{\{P\} \ C_1 \ \{Q_1\} \ \ \{Q_1\} \ C_2 \ \{Q_2\} \ \dots \ \{Q_{n-1}\} \ C_n \ \{Q\}}{\{P\} \ C_1; \dots; C_n \ \{Q\}} \ (\textit{seq})$$

Exercice: Prouver que

$$\{true\}z = x; z = z + y; u = z\{u = x + y\}$$

Opérateurs logiques : rappels

Tables de vérité :

Α	В	$\neg A$	$A \wedge B$	$A \vee B$	$A \Longrightarrow B$	$\neg A \lor B$	$A \Longleftrightarrow B$
false	false	true	false	false	true	true	true
false	true	true	false	true	true	true	false
true	false	false	false	true	false	false	false
true	true	false	true	true	true	true	true

Question transposition de la logique classique en logique de Hoare?

Modus ponens

Règles du modus-ponens

$$\frac{P \implies P' \quad \{P'\} \ C \ \{Q'\} \quad Q' \implies Q}{\{P\} \ C \ \{Q\}} \ (mp)$$

$$\frac{P \implies P' \quad \{P'\} \ C \ \{Q\}}{\{P\} \ C \ \{Q\}} \ (mp\text{-}pre)$$

$$\frac{\{P\} \ C \ \{Q'\} \quad Q' \implies Q}{\{P\} \ C \ \{Q\}} \ (mp\text{-}post)$$

Exercice prouver de deux façons : $\{x = 3\}y = x + 1\{y > 0\}$

Conjonctions et disjonction

Règle de conjonction

$$\frac{\{P_1\} \ \mathtt{C} \ \{Q_1\} \quad \{P_2\} \ \mathtt{C} \ \{Q_2\}}{\{P_1 \land P_2\} \ \mathtt{C} \ \{Q_1 \land Q_2\}} \ (\mathit{conj})$$

Règles de disjonction

$$\frac{\{P_1\} \ C \ \{Q_1\}}{\{P_1 \lor P_2\} \ C \ \{Q_1 \lor Q_2\}} \ (\textit{disj}_1) \quad \frac{\{P_2\} \ C \ \{Q_2\}}{\{P_1 \lor P_2\} \ C \ \{Q_1 \lor Q_2\}} \ (\textit{disj}_2)$$

Règle des alternatives

Règle des alternatives

$$\frac{\{B \land P\} \ \mathtt{C}_1 \ \{Q\} \quad \{\neg B \land P\} \ \mathtt{C}_2 \ \{Q\}}{\{P\} \ \mathtt{if}(\mathtt{B}) \ \mathtt{C}_1 \ \mathtt{else} \ \mathtt{C}_2 \ \{Q\}} \ (\mathit{alt})$$

Technique de preuve

- Chercher P_1 telle que $\{P_1\}C_1\{Q\}$
- ② Chercher P_2 telle que $\{P_2\}$ C₂ $\{Q\}$
- **3** La précondition recherchée est $P \stackrel{\text{def}}{=} (B \implies P_1) \land (\neg B \implies P_2)$

Règle des alternatives

Règle des alternatives

$$\frac{\{B \wedge P\} \ \mathtt{C}_1 \ \{Q\} \quad \{\neg B \wedge P\} \ \mathtt{C}_2 \ \{Q\}}{\{P\} \ \mathtt{if}(\mathtt{B}) \ \mathtt{C}_1 \ \mathtt{else} \ \mathtt{C}_2 \ \{Q\}} \ (\mathit{alt})$$

```
Exercice 1 Trouver P telle que \{P\} if(x<y) x=y else x=2 \{x=2\}

Exercice 2 Prouver : \{true\}
a=x+1; if((a-1)==0) y=1 else y=a \{y=x+1\}
```