Introduktion til Statistik

Forelæsning 4: Konfidensinterval for middelværdi (og spredning)

Peder Bacher

DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby – Danmark e-mail: pbac@dtu.dk

Forår 2017

DTU Compute

Introduktion til Statistik

Forår 2017

/ 58

Chapter 3: One sample confidence intervals

General concepts

- Population and a random sample
- Estimation (e.g. $\hat{\mu}$ is estimate of μ)
- ullet Significance level lpha
- Confidence intervals (Catches true value $1-\alpha$ times)
- Sampling distributions (sample mean (t) and sample value (χ^2))
- Central Limit Theorem

Specific methods, one sample

- Confidence interval for the mean (t-distribution)
- Confidence interval for the variance (χ^2 -distribution)

Chapter 3: Konfidensintervaller for én gruppe/stikprøve

Grundlæggende koncepter

- Population og tilfældig stikprøve
- Estimation (f.eks. $\hat{\mu}$ er estimat af μ)
- ullet Signifikansniveau lpha
- Konfidensintervaller (fanger rigtige prm. 1α af gangene)
- Stikprøvefordelinger (stikprøvegennemsnit (t) og empirisk varians (χ^2))
- Centrale grænseværdisætning

Specifikke metoder, én gruppe/stikprøve

- Konfidensinterval for middelværdi (t-fordeling)
- Konfidensinterval for varians (χ^2 -fordeling)

U Compute Introduktion til Statistik Forår 2017 2 / !

Oversigt

- Fordelingen for gennemsnittet
 - *t*-fordelingen
- \bigcirc Konfidensintervallet for μ
 - Eksempel
- 3 Den statistiske sprogbrug og formelle ramme
- 4 Ikke-normale data, Central Grænseværdisætning (CLT)
- 5 Konfidensinterval for varians og spredning

DTU Compute Introduktion til Statistik Forår 2017 3 / 58 DTU Compute Introduktion til Statistik Forår 2017 4 /

Theorem 3.2: Fordeling for gennemsnit af normalfordelinger

(Stikprøve-) fordelingen/ The (sampling) distribution for \bar{X}

Assume that X_1, \ldots, X_n are independent and identically normally distributed random variables, $X_i \sim N(\mu, \sigma^2)$ and i = 1, ..., n, then:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Introduktion til Statistik Forår 2017

Fordelingen for gennemsnittet

Spørgsmål om stikprøvegennemsnittet (socrative.com, room: PBAC)

Den ene pdf hører til X_i og den anden til \bar{X} . Hvad kan konkluderes (for n > 1)?

• A: Den sorte hører til X_i og den blå til \bar{X}

• C. Den kan ikke afgøres

Svar A:

Introduktion til Statistik

 $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ altså

Forår 2017 8 / 58

Middelværdi og varians følger af regneregler

Theorem 2.40: Lineær funktion af normal distribuerede variable er også normalfordelt

Theorem 2.53: Middelyærdien af \bar{X}

$$\mathsf{E}(\bar{X}) = \mathsf{E}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}\mathsf{E}(X_{i}) = \frac{1}{n}\sum_{i=1}^{n}\mu = \frac{1}{n}n\mu = \mu$$

Theorem 2.53: Variansen for \bar{X}

$$Var(\bar{X}) = \frac{1}{n^2} \sum_{i=1}^{n} Var(X_i) = \frac{1}{n^2} \sum_{i=1}^{n} \sigma^2 = \frac{1}{n^2} n \sigma^2 = \frac{\sigma^2}{n}$$

Introduktion til Statistik Forår 2017

Fordelingen for gennemsnittet

Simuler i R: Middelværdi og spredning af stikprøvegennemsnit

```
## Simuler stikprøvegennemsnit af normalfordelt stokastisk variabel
## Middelværdien
## Standard afvigelsen
## Stikprøvestørrelsen
## Simuler normalfordelte X_i
x <- rnorm(n=n, mean=mu, sd=sigma)
## Se realiseringerne
## Empirisk tæthed
hist(x, prob=TRUE, col='blue')
## Beregn gennemsnittet (stikprøve middelværdien, i.e. sample mean)
## Beregn stikprøvevariansen (sample variance)
var(x)
## Gentag den simulerede stikprøvetagning mange gange
mat <- replicate(100, rnorm(n=n, mean=mu, sd=sigma))
## Beregn gennemsnittet for hver af dem
xbar <- apply(mat, 2, mean)</pre>
## Nu har vi mange realiseringer af stikprøvegennemsnittet
## Se deres fordeling
          DTU Compute
```

Introduktion til Statistik

Forår 2017 9 / 58

mean(xbar)

Standardiseret fejl vi begår, Corollary 3.3:

Når vi bruger \bar{X} som estimat for μ :

Så begår vi fejlen $\bar{X} - \mu$

Fordelingen for den standardiserede fejl vi begår:

Assume that X_1, \ldots, X_n are independent and identically normally distributed random variables, $X_i \sim N(\mu, \sigma^2)$ where $i = 1, \ldots, n$, then:

$$Z = \frac{\bar{X} - \mu}{\sigma_{\left(\bar{X} - \mu\right)}} = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1^2)$$

That is, the standardized sample mean Z follows a *standard normal distribution*.

DTU Compute

Introduktion til Statistik

rår 2017

0 / 58

Fordelingen for gennemsnittet

Transformation til standard normalfordeling:

Pdf for *fejlen vi begår* $\bar{X} - \mu$ når $X_i \sim N(\mu, \sigma^2)$

Fordelingen for gennemsnittet

Transformation til standard normalfordeling: Pdf for gennemsnittet \bar{X} når $X_i \sim N(\mu, \sigma^2)$

DTU Compute

troduktion til Statistik

11 / 50

Fordelingen for gennemsnittet

Transformation til standard normalfordeling: Pdf for *den standardiserede fejl* $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$ når $X_i \sim N(\mu, \sigma^2)$

Standardiseret til standard normalfordeling (noteres $Z=rac{ar{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1^2)$)

Introduktion til Statistik

Forår 2017 1

Forår 2017

Nu kan et 95% konfidensinterval udledes

95% konfidensinterval for μ :

$$P(z_{0.025} < Z < z_{0.975}) = 0.95$$

$$P\left(z_{0.025} < \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} < z_{0.975}\right) = 0.95$$

$$P\left(z_{0.025}\frac{\sigma}{\sqrt{n}} < \bar{X} - \mu < z_{0.975}\frac{\sigma}{\sqrt{n}}\right) = 0.95 \qquad \Leftrightarrow$$

$$P\left(\bar{X} + z_{0.025} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{0.975} \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

Introduktion til Statistik

Forår 2017

Fordelingen for gennemsnittet

2. simulering: Beregning af 95% konfidensinterval

Konfidensintervallet er omkring \bar{x} og fanger her μ

Fordelingen for gennemsnittet

1. simulering: Beregning af 95% konfidensinterval

Konfidensintervallet er omkring \bar{x} og fanger her μ

Fordelingen for gennemsnittet

2. simulering: Beregning af 99% konfidensinterval

99% konfidensintervallet er breddere end 95% konfidensintervallet (det

skal fange μ of

DTU Compute

Introduktion til Statistik

Forår 2017 17 / 58

DTU Compute

Introduktion til Statistik

Forår 2017

20 simuleringer: Beregning at 95% konfidensinterval

Introduktion til Statistik

Forår 2017

Fordelingen for gennemsnittet

Spørgsmål om konfidensinterval (socrative.com, room: PBAC)

Hvis vi planlægger at beregne et 98% konfidensinterval for middelværdien, hvad er da sandsynligheden for at middelværdien *ikke* ligger inde i intervallet?

- A: 1%
- B: 2%
- C: 4%
- D: Den kender vi ikke
- E: Ved ikke

Svar B: Der er 2% for at vi ikke 'fanger' den rigtige middelværdi i 98% konfidensintervallet

Fordelingen for gennemsnittet

100 simuleringer: Beregning at 95% konfidensinterval

Introduktion til Statistik

Forår 2017

Fordelingen for gennemsnittet

Spørgsmål om konfidensinterval (socrative.com, room: PBAC)

Når vi så har udført eksperimentet og har stikprøven, ved vi da om middelværdien er indeholdt i det konfidensinterval vi har beregnet?

- A: Ja
- B: Nej
- C: Ved ikke

Svar B: Nej, vi ved ikke om vi har fanget den rigtige middelværdi, vi kender kun sandsynligheden for at fange den

DTU Compute Introduktion til Statistik Forår 2017 20 / 58 DTU Compute Introduktion til Statistik Forår 2017 2

Praktisk problem!!

Populationsspredningen σ indgår i formlen og den kender vi ikke!!

Oplagt løsning:

Anvend estimatet S af σ i stedet for!

MEN MEN:

Så bryder den givne teori faktisk sammen!!

HELDIGVIS:

Der findes en heldigvis udvidet teori, der kan klare det!!

Introduktion til Statistik

Forår 2017

Introduktion til Statistik

Forår 2017

23 / 58

Fordelingen for gennemsnittet *t*-fordelingen

t-fordelingen med 9 frihedsgrader (n = 10) og standardnormalfordelingen

Theorem 3.4: More applicable extension of the same stuff: (kopi af Theorem 2.49)

t-fordelingen tager højde for usikkerheden i at bruge s:

Assume that X_1, \ldots, X_n are independent and identically normally distributed random variables, where $X_i \sim N(\mu, \sigma^2)$ and i = 1, ..., n, then

$$T = \frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t$$

where t is the t-distribution with n-1 degrees of freedom.

Fordelingen for gennemsnittet *t*-fordelingen

t-fordelingen med 29 frihedsgrader (n = 30) og standardnormalfordelingen

DTU Compute

Introduktion til Statistik

DTU Compute

Introduktion til Statistik

Metodeboks 3.8: One-sample konfidensinterval for μ

Brug den rigtige *t*-fordeling til at lave konfidensintervallet:

For a sample x_1, \ldots, x_n the $100(1-\alpha)\%$ confidence interval is given by:

$$\bar{x} \pm t_{1-\alpha/2} \cdot \frac{s}{\sqrt{n}}$$

where $t_{1-\alpha/2}$ is the $100(1-\alpha)\%$ quantile from the *t*-distribution with n-1degrees of freedom.

Mest almindeligt med $\alpha = 0.05$:

The most commonly used is the 95%-confidence interval:

$$\bar{x} \pm t_{0.975} \cdot \frac{s}{\sqrt{n}}$$

Introduktion til Statistik

Forår 2017

27 / 58

Konfidensintervallet for μ Eksempel

Højde-eksempel, 95% konfidensinterval (CI)

97.5% fraktilen af t-fordelingen for n=10: qt(p=0.975, df=9)

[1] 2.26

Indsat i formlen

$$178 \pm 2.26 \cdot \frac{12.21}{\sqrt{10}}$$

giver det

$$178 \pm 8.74 = [169.3; 186.7]$$

Eksempel - Højde af 10 studerende

Stikprøve, n = 10:

168 161 167 179 184 166 198 187 191 179

Sample mean og standard deviation:

$$\bar{x} = 178$$

$$s = 12.21$$

Estimer population mean og standard deviation:

$$\hat{\mu} = 178$$

$$\hat{\sigma} = 12.21$$

Introduktion til Statistik

Forår 2017

28 / 58

Konfidensintervallet for μ Eksempel

Højde-eksempel, 99% Konfidensinterval (CI)

99.5% fraktilen af t-fordelingen for n=10: qt(p=0.995, df=9)

[1] 3.25

Indsat i formlen

DTU Compute

$$178 \pm 3.25 \cdot \frac{12.21}{\sqrt{10}}$$

giver det

$$178 \pm 12.55 = [165.4; 190.6]$$

DTU Compute Introduktion til Statistik Forår 2017 29 / 58 Introduktion til Statistik

Forår 2017

30 / 58

Konfidensintervallet for µ Eksempel

Der findes en R-funktion, der kan gøre det hele (med mere):

```
## Angiv data
x \leftarrow c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179)
## Beregn 99% konfidensinterval
t.test(x, conf.level=0.99)
##
    One Sample t-test
##
## data: x
## t = 50, df = 9, p-value = 5e-12
## alternative hypothesis: true mean is not equal to 0
## 99 percent confidence interval:
## 165 191
## sample estimates:
## mean of x
         178
```

Introduktion til Statistik

Konfidensintervallet for μ Eksempel

Forår 2017

PAUSE

Indeklimaundersøgelse

Specialestuderende er igang med en indeklimaundersøgelse, så tag jeres computer frem og gå til:

byg-cweb2.win.dtu.dk/dtu_auditorier/

og udfyld spørgeskemaet. TAK!

Introduktion til Statistik Forår 2017

Konfidensintervallet for μ Eksempel

Svar via socrative.com eller Socrative app. Room: PBAC

- Gennemsnit $\bar{x} = 14.4$, stikprøvespredningen s = 6, antal obs. er n = 9
- Formlen for konfidensintervallet er $\bar{x} \pm t_{0.975} \frac{s}{\sqrt{n}}$

Hvilket af intervallerne er det rigtige 95% konfidensinterval?

A: Turkise B: Sorte C: Grønne D: Blå E: Røde

DTU Compute

Svar D: Blå. Fordi $t_{0.975} \frac{s}{\sqrt{n}} = 2.31 \frac{6}{\sqrt{9}} \approx 4.6$ så nedre grænse omkring 10.

Introduktion til Statistik Forår 2017 33 / 58 DTU Compute

Introduktion til Statistik Forår 2017

Den formelle ramme for statistisk inferens

Fra eNote, Chapter 1:

- An observational unit is the single entity/level about which information is sought (e.g. a person) (**Observationsenhed**)
- The statistical population consists of all possible "measurements" on each observational unit (Population)
- The sample from a statistical population is the actual set of data collected. (Stikprøve)

Sprogbrug og koncepter:

- μ og σ er parametre, som beskriver populationen
- \bar{x} er *estimatet* for μ (konkret udfald)
- \bar{X} er estimatoren for μ (nu set som stokastisk variabel)
- Begrebet 'statistic(s)' er en fællesbetegnelse for begge

Introduktion til Statistik

Forår 2017

Den statistiske sprogbrug og formelle ramme

Statistisk inferens = Learning from data

Learning from data is learning about parameters of distributions that describe populations

Vigtigt i den forbindelse:

Stikprøven skal på meningsfuld vis være repræsentativ for en eller anden veldefineret population

Hvordan sikrer man det

Ved at sikre at stikprøven er fuldstændig tilfældig udtaget

Den statistiske sprogbrug og formelle ramme

Den formelle ramme for statistisk inferens - Eksempel

Fra eNote, Chapter 1, højdeeksempel

Vi måler højden for 10 tilfældige personer i Danmark

Stikprøven/The sample:

De 10 konkrete talværdier: x_1, \ldots, x_{10}

Populationen:

Højderne for alle mennesker i Danmark.

Observationsenheden:

En person

Introduktion til Statistik

Forår 2017

Den statistiske sprogbrug og formelle ramme

Tilfældig stikprøveudtagning

Definition 3.11:

- A random sample from an (infinite) population: A set of observations $X_1, X_2, ..., X_n$ constitutes a random sample of size n from the infinite population f(x) if:
 - **1** Each X_i is a random variable whose distribution is given by f(x)
 - 2 These n random variables are independent

Hvad betyder det????

- 4 Alle observationer skal komme fra den samme population
- 2 De må IKKE dele information med hinanden (f.eks. hvis man havde udtaget hele familier i stedet for enkeltindivider)

Introduktion til Statistik Forår 2017 DTU Compute Introduktion til Statistik DTU Compute

Theorem 3.13: The Central Limit Theorem

Gennemsnittet af en tilfældig stikprøve følger altid en normalfordeling hvis n er stor nok:

Let \bar{X} be the mean of a random sample of size n taken from a population with mean μ and variance σ^2 , then

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

is a random variable whose distribution function approaches that of the standard normal distribution, $N(0,1^2)$, as $n\to\infty$

Dvs., hvis n er stor nok, kan vi (tilnærmelsesvist) antage:

 $rac{ar{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1^2)$ og $rac{ar{X}-\mu}{S/\sqrt{n}}\sim t$ ved t-fordelingen med n-1 frihedsgrader

DTU Compute

ntroduktion til Statisti

orår 2017

Forår 2017

41 / 58

Ikke-normale data, Central Grænseværdisætning (CLT)

CLT in action - gennemsnit af Uniform fordelte observationer

```
## Stikprgvestgrrelse
n=2
## Antal gentagelser
k=1000
## Simuler
u=matrix(runif(k*n),ncol=n)
## Se empirisk tæthed
hist(apply(u,1,mean), col='blue', main='n=2', xlab='Means', nclass=15, prob=TRUE, xlim=c(0,1))
```


Ikke-normale data, Central Grænseværdisætning (CLT)

Stikprøvestørrelse

CLT in action - gennemsnit af Uniform fordelte observationer

```
n=1
## Antal gentagelser
k=1000
## Simuler
u=matrix(runif(k*n),ncol=n)
## Se empirisk tæthed
hist(apply(u,1,mean), col='blue', main='n=1', xlab='Means', nclass=15, prob=TRUE, xlim=c(0)
```

Compute

Introduktion til Statistik

Forår 2017 42 /

Ikke-normale data, Central Grænseværdisætning (CLT)

CLT in action - gennemsnit af Uniform fordelte observationer

```
## Stikprøvestørrelse
n=6
## Antal gentagelser
k=1000
## Simuler
u=matrix(runif(k*n),ncol=n)
## Se empirisk tæthed
hist(apply(u,1,mean), col='blue', main='n=6', xlab='Means', nclass=15, prob=TRUE, xlim=c(0)
```


DTU Compute

Introduktion til Statistik

Forår 2017 44 /

Ikke-normale data, Central Grænseværdisætning (CLT)

CLT in action - gennemsnit af Uniform fordelte observationer

```
## Antal gentagelser
k=1000
## Simuler
u=matrix(runif(k*n),ncol=n)
## Se empirisk tæthed
hist(apply(u,1,mean), col='blue', main='n=30', xlab='Means', nclass=15, prob=TRUE, xlim=c(0,1))
```


Stikprøvestørrelse

Introduktion til Statistik

Forår 2017

Ikke-normale data, Central Grænseværdisætning (CLT)

Svar via socrative.com eller Socrative app. Room: PBAC

Er lydniveauet behageligt?

- A: Fino
- B: Nope, skru' op
- C: Nope, skru' ned
- D: Nope, der er dårlig og ubehagelig lyd herinde med det lydanlægget

Ikke-normale data, Central Grænseværdisætning (CLT)

Konsekvens af CLT:

Vores CI-metode virker OGSÅ for ikke-normale data:

Vi kan bruge konfidens-interval baseret på *t*-fordelingen i stort set alle situationer, blot n er "stor nok"

Hvad er "stor nok"?

Faktisk svært at svare præcist på, MEN:

- Tommelfingerregel: $n \ge 30$
- Selv for mindre n kan formlen være (næsten) gyldig for ikke-normale

DTU Compute

Introduktion til Statistik

Forår 2017

Ikke-normale data, Central Grænseværdisætning (CLT)

Svar via socrative.com eller Socrative app. Room: PBAC

Bør Peder klæde sig mere nydeligt?

- A: Ja, for den da! Det er grimt det tøj
- B: Nej, han ser faktisk rigtig checket ud
- C: Nej, det kan være lige meget med tøjet, han skal barbere sig og rede sit hår først
- D: Ved ikke, jeg har simpelthen været for optaget af statistikken til at lægge mærke til hans påklædning

Introduktion til Statistik Forår 2017 DTU Compute

Introduktion til Statistik

Stikprøvefordelingen for varians-estimatet (Theorem 2.56)

Variansestimater opfører sig som en χ^2 -fordeling:

Let

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

then:

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$$

is a random variable following the χ^2 -distribution with v = n - 1 degrees of freedom.

Introduktion til Statistik

Forår 2017

Forår 2017

Konfidensinterval for varians og spredning

Metode 3.18: Konfidensinterval for stikprøvevarians og stikprøvespredning

Variansen:

A $100(1-\alpha)\%$ confidence interval for the variance σ^2 is:

$$\left[\frac{(n-1)s^2}{\chi_{1-\alpha/2}^2};\;\frac{(n-1)s^2}{\chi_{\alpha/2}^2}\right]$$

where the quantiles come from a χ^2 -distribution with $\nu=n-1$ degrees of freedom.

Spredningen:

A $100(1-\alpha)\%$ confidence interval for the sample standard deviation $\hat{\sigma}$ is:

$$\left[\sqrt{\frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}}; \sqrt{\frac{(n-1)s^2}{\chi_{\alpha/2}^2}}\right]$$

χ^2 -fordelingen med v = 9 frihedsgrader

Plot chi^2 tathedsfunktion med 9 frihedsgrader ## En sekvens af x værdier x < - seq(0, 30, by = 0.1)## Plot chi^2 tathedsfunktion plot(x, dchisq(x, df = 9), type = 'l', ylab="f(x)")

Konfidensinterval for varians og spredning

Eksempel

Produktion af tabletter

Vi producerer pulverblanding og tabletter deraf, så koncentrationen af det aktive stof i tabletterne skal være 1 mg/g med den mindst mulige spredning. En tilfældig stikprøve udtages, hvor vi måler mængden af aktivt stof.

Data:

En tilfældig stikprøve med n = 20 tabletter er udtaget og fra denne får man:

$$\hat{\mu} = \bar{x} = 1.01, \ \hat{\sigma}^2 = s^2 = 0.07^2$$

95%-konfidensinterval for variansen - vi skal bruge χ^2 -fraktilerne:

$$\chi^2_{0.025} = 8.9065, \ \chi^2_{0.075} = 32.8523$$

Så konfidensintervallet for variansen σ^2 bliver:

$$\left[\frac{19 \cdot 0.7^2}{32.85}; \ \frac{19 \cdot 0.7^2}{8.907}\right] = [0.002834; \ 0.01045]$$

Og konfidensintervallet for spredningen σ bliver:

$$\left[\sqrt{0.002834};\ \sqrt{0.01045}\right] = [0.053;\ 0.102]$$

Introduktion til Statistik

Forår 2017 54 / 58

Højdeeksempel

Vi skal bruge χ^2 -fraktilerne med $\nu = 9$ frihedsgrader:

Konfidensinterval for varians og spredning

$$\chi^2_{0.025} = 2.700389, \ \chi^2_{0.975} = 19.022768$$

2.5% og 97.5% fraktilerne i chi^2 fordelingen for n=10 qchisq(c(0.025, 0.975), df = 9)

[1] 2.7 19.0

Så konfidensintervallet for højdespredningen σ bliver:

$$\left[\sqrt{\frac{9 \cdot 12.21^2}{19.022768}}; \sqrt{\frac{9 \cdot 12.21^2}{2.700389}}\right] = [8.4; 22.3]$$

Introduktion til Statistik

Forår 2017

Konfidensinterval for varians og spredning

Eksempel - Højde af 10 studerende - recap:

Stikprøve, n = 10:

168 161 167 179 184 166 198 187 191 179

Sample mean og standard deviation:

$$\bar{x} = 178$$

$$s = 12.21$$

 $\hat{\sigma} = 12.21$

Estimer population mean og

 $\hat{\mu} = 178$

standard deviation:

NYT:**Konfidensinterval**, μ :

$$178 \pm 2.26 \cdot \frac{12.21}{\sqrt{10}} \Leftrightarrow [169.3; 186.7]$$

NYT:**Konfidensinterval**, σ :

Konfidensinterval for varians og spredning

Svar via socrative.com eller Socrative app. Room: PBAC

Hvilket af følgende udsagn er korrekt?

- A: Statistik er virkelig skod, jeg tror ikke det kan bruges til noget
- B: Statistik er altså øv, man skal bare sidde og sætte en masse tal ind i nogle dumme formler
- C: Jeg burde ligge under min dyne og blive frisk til at feste igennem i aften
- D: Statistik er virkelig fedt, det er fascinerende at man ikke bare kan regne et estimat ud, men man kan også regne ud hvor præcist det estimat er

Svar D

Introduktion til Statistik Forår 2017 DTU Compute Introduktion til Statistik Forår 2017 57 / 58

Oversigt

- 1 Fordelingen for gennemsnittet
 - *t*-fordelingen
- 2 Konfidensintervallet for μ
 - Eksempel
- 3 Den statistiske sprogbrug og formelle ramme
- 4 Ikke-normale data, Central Grænseværdisætning (CLT)
- **(5)** Konfidensinterval for varians og spredning

DTU Compute Introduktion til Statistik Forår 2017 58 / 58