

IMS – simulačná štúdia Epidemiologický model na makroúrovni

Obsah

1	Úvo	d
	1.1	Autori, zdroje
	1.2	Overenie validity
2	Roz	bor témy a použitých metód/technologií
	2.1	Populácia Slovenska
	2.2	Opatrenia proti šíreniu ochorenia
	2.3	Popis pôvodu použitých metód/technologií
3	Kon	cept modelu
	3.1	SIR model
	3.2	Exposure factor E_f
4	Imp	lementácia simulačného modelu
	4.1	Spustenie simulačného modelu
5	Exp	erimenty
	5.1	Experiment č. 1
	5.2	Experiment č. 2
	5.3	Experiment č. 3
	5.4	Experiment č. 4
	5.5	Experiment č. 5
	5.6	Experiment č. 6
	5.7	Experiment č. 7
	5.8	Experiment č. 8
	5.9	Závery experimentov
6	7 św	ar 1

1 Úvod

Táto práca sa zaoberá simuláciou[5, p. 8] šírenia vírusovej choroby Covid 19 na Slovensku v čase 2. vlny pandémie. Cieľom tejto práce je porovnávať vplyv zavedenia rôznych protiepidemických opatrení a ich kombinácií na počty denných prírastkov nakazených.

Experimenty spočívajú v aplikovaní rôznych kombinácií opatrení, ktoré ovplyvňujú vzájomné kontakty ľudí, čím obmedzujú šíreniu vírusu. K implementácii sa využíva SIR model[5, p. 7].

1.1 Autori, zdroje

Túto prácu vypracovali študentky VUT FIT Natália Holková (xholko02) a Martina Chripková (xchrip01).

Zdroje o populačnom rozdelení Slovenska pochádzajú zo štatistického úradu Slovenskej Republiky a sú aktuálne ku koncu roka 2019.

1.2 Overenie validity

Validita modelu[5, p. 37] bola overená pomocou porovnávania reálnych dát o prírastkoch nakazených na Slovensku po 29.11.2020 a výsledkov nášho modelu v rovnakom čase pri použití podobných opatrení (viz Experiment č. 8).

2 Rozbor témy a použitých metód/technologií

2.1 Populácia Slovenska

Počet obyvateľov Slovenska v roku 2020 je 5 457 873 [8].

Populácia Slovenskej republiky bola rozdelená na niekoľko tried. Toto bolo vykonané z dôvodu, že rôzne skupiny ľudí majú rôzne denné návyky, čím vykonávajú rôzny počet a druh sociálnych kontaktov, a preto každú skupinu budú zavedené opatrenia inak ovplyvňovať. Populačné triedy sme vytvárali predovšetkým na základe veku a zamestnanosti.

Dospeli sme k rozdeleniu celej populácie Slovenska na 9 kategórií a ich percentuálnemu zastúpení vzhľadom k celkovej populácii štátu [8]:

Trieda	% zastúpenie
deti do predškolského veku	6.70
škôlkari a 1. stupeň základných škôl	6.58
2. stupeň základných škôl	3.87
stredoškoláci	6.99
vysokoškoláci	1.93
zamestnaní	47.34
nezamestnaní	2.89
osoby v domácnosti	2.29
dôchodcovia	21.41

K dátumu 29.11.2020 sa ochorením Covid 19 nakazilo **105 733** osôb, pričom **64 197** osôb sa z ochorenia vyliečilo a **816** osôb podľahlo na následky ochorenia[9].

2.2 Opatrenia proti šíreniu ochorenia

Bol nadefinovaný zoznam možných protiepidemických opatrení. Bol vytvorený najmä na základe opatrení, ktoré boli už v minulosti zavedené alebo sú momentálne v platnosti[13]. Vzhľadom k neskorším výpočtom museli mať opatrenia disjunktný charakter. Každé opatrenie je charakterizované dvoma hodnotami:

- 1. počet sociálnych kontaktov na jedinca, ktoré sa vytvárajú, keď opatrenie nie je v platnosti
- 2. počet sociálnych kontaktov na jedinca, ktoré sa vytvárajú, keď opatrenie **je** v platnosti

Výsledný zoznam opatrení:

Opatrenie	Kontakty ak nie je zavedené	Kontakty ak je zavedené
bohoslužby - zákaz	10	0
svadby - iba obrad	50	6
pohreby - najbližšia rodina	50	6
obchody - obmedzeny počet ľudí	20	10
detské ihriská	5	0
zavreté škôlky a 1. stupeň ZŠ	25	0
polovica ľudí v škôlke a 1. stupni ZŠ	25	12
zavretý 2 stupeň ZŠ	25	0
polovica ľudí 2. stupni ZŠ	25	12
zavreté stredné školy	25	0
polovica ľudí na stredných školách	25	12
zavreté vysoké školy	25	0
polovica ľudí na vysokých školách	25	12
zavreté internáty	10	0
hromadné podujatia - zákaz	100	0
kiná - zatvorené	20	0
divadlá - zatvorené	20	0
múzeá a gelérie - zatvorené	10	0
reštaurácie, kaviarne - max 6 ľudí	10	6
reštaurácie, kaviarne - zatvorené	10	0

Pre každé opatrenie bol určený približnáý počet denných kontakov pre jednotlivé triedy populácie, ktorý je zaznačený v nasledujúcich tabuľkách:

Opatrenie	do predškolského veku	škôlkari + 1. st. ZŠ	2. st. ZŠ	stredoškoláci
bohoslužby	52363,61	51447,15	30283,02	54658,04
svadby	272,26	267,38	157,26	284,04
pohreby	488,59	479,84	282,21	509,73
obchody	2779145,2	2730505,2	1607240,4	2900920
detské ihriská	522395,71	453169,29	0	0
škôlky a 1. stupeň ZŠ	0	6415660,71	0	0
2 stupeň ZŠ	0	0	3776410,71	0
stredné školy	0	0	0	6816071,42
vysoké školy	0	0	0	0
internáty	0	0	0	13632,14
hromadné podujatia zákaz	0	0	0	57749,59
kiná	0	5143,78	19063,81	34408,41
divadlá	0	2592,56	4578,13	8263,09
reštaurácie, kaviarne	121892,33	119759	70493	181761,90

Opatrenie	vysokoškoláci	zamestnaní	nezamestnaní	v domácnosti	dôchodcovia
bohoslužby	15091,89	369976,41	22582,06	22582,06	167296,30
svadby	78,42	1923,69	117,44	93,06	870
pohreby	140,74	3452,19	210,75	166,99	1561,29
obchody	800986,8	19636120	19636120	948480	8879080
detské ihriská	0	0	0	0	0
škôlky a 1. stupeň ZŠ	0	0	0	0	0
2 stupeň ZŠ	0	0	0	0	0
stredné školy	0	0	0	0	0
vysoké školy	1129210,71	0	0	0	0
internáty	78668,35	0	0	0	0
hromadné podujatia	57749,59	1415726,03	43205,47945	34191,78	320082,19
kiná	9500,67	232908	4738,63	11250,12	35105,53
divadlá	2281,56	55932	1137,97	2701,69	8430,50
reštaurácie, kaviarne	301122,86	7382000	52566,67	89142,86	194716,67

Denný počet kontaktov pre jednotlivé kategórie boli vyrátané následovne:

• Kiná, divadlá, pohreby a svadby: [8] [14]

 $denny_pocet_kontaktov = rocny_pocet_navstev/365 * percento_skupiny * pocet_kontaktov_udalosti$ (1)

· Školy, detské ihriská

$$denny_pocet_kontaktov = pocet_kontaktov_udalosti * velkost_skupiny * denna_frekvencia$$
 (2)

Predpokladáme, že predškoláci navštevujú detské ihrisko 2 krát týždenne a škôlkari a 1. stupeň ZŠ 3 krát týždenne.

• Kaviarne, reštaurácie, obchody, bohoslužby

$$denny_pocet_kontaktov = pocet_kontaktov_udalosti * velkost_skupiny * denna_frekvencia$$
 (3)

Denná frekvencia nákupov je 0,38.[11]

Denná frekvencia návštevy kostola bola stanovená na 0.014. [12]

Predpokladáme, že kaviarne a reštaurácie navševuje každá skupina s inou dennou frekvenciou:

- predškoláci - raz mesačne

- zamestnaní - 2 krát týždenne

škôlkari a 1. stupeň ZŠ - raz mesačne

- nezamestnaní - raz mesačne

- 2. stupeň ZŠ - raz mesaćne

- v domácnosti - raz za 2 týždne

stredoškoláci - raz za 3 týždne

vysokoškoláci - 2 krát týždenne

- dôchodcovia - raz mesačne

2.3 Popis pôvodu použitých metód/technologií

Bol použitý jazyk C++, nakoĺko je rýchly, imperatívny, objektovo-orientovaný a prenositeľný.

Koncept modelu 3

SIR model 3.1

Na modelovanie[5, p. 8] vývoja epidémie sme sa rozhodli použiť SIR model využívajúci obyčajné diferenciálne rovnice, ktorý bol prvý raz definovaný v [1]. V tomto modeli je populácia rozdelená do troch skupín: S - susceptible (náchylní na ochorenie), I - infectious (nakazení) a R - recoved (vyliečení + mŕtvi). Pre tento model ignorujeme narodenia a úmrtia ľudí (mimo na chorobu).

Pokiaľ si označíme veľkosť populácie ako N, platí [2]:

$$S + I + R = N \tag{4}$$

V čase t môžme vyjadriť prírastky/úbytky medzi S, I a R pomocou rovníc:

$$\frac{dS(t)}{dt} = -\beta * S(t) * I(t) \tag{5}$$

$$\frac{dI(t)}{dt} = \beta * S(t) * I(t) - \gamma * I(t)$$
(6)

$$\frac{dR(t)}{dt} = \gamma * I(t) \tag{7}$$

Parameter β vyjadruje mieru nákazy a γ mieru zotavenia. γ možno vypočítať ako [6]

$$\gamma = \frac{1}{D} \tag{8}$$

kde D je priemerná dĺžka infekčnosti v dňoch. Podĺa [4] je priemerná dĺžka infekčnosti 18,1 dní. Po dosadení vychádza $\gamma=0,05524861878$.

Ku dňu 29.11.2020 bolo podĺa [10] efektívne reprodukčné číslo $R_e=1$. Efektívne reprodukčné číslo Re predstavuje priemerný počet sekundárnych prípadov na infekčný prípad v populáciu, ktorú tvoria náchylní a nenáchylní ľudia.[3] Z R_e môžeme vypočítať R_0 ako:

$$R_e = R_0 * x \tag{9}$$

kde x je percento náchylnej populácie. Pre Slovensko ku dňu 29.11. vychádza $R_0 = 1,019755275$.

Zvyšný parameter β sa dopočíta podľa vzorca:

$$R_0 = \frac{\beta}{\gamma} \tag{10}$$

Po dosadení $\beta = 0,05634007047$.

V článku [7] autori využívajú navyše parameter $E_f \in [0,1]$, ktorý násobí β a tým modeluje opatrenie na obmedzenie šírenia infekcie. Po pridaní tohto parametru budú rovnice vyzerať nasledovne:

$$\frac{dS(t)}{dt} = -\beta * E_f * S(t) * I(t) \tag{11}$$

$$\frac{dI(t)}{dt} = \beta * E_f * S(t) * I(t) - \gamma * I(t)$$
(12)

$$\frac{dR(t)}{dt} = \gamma * I(t) \tag{13}$$

Čas t považujeme za diskrétnu veličinu[5, p. 22] nakoľko nám stačí aktualizovať stavy infikovaných raz denne. Čas t=0 predstavuje dátum 29.11.2020.

3.2 Exposure factor E_f

Exposure factor stanovuje rýchlosť šírenia vírusu. Zavedenými opatreniami E_f nebude nikdy rovný nule, vzľadom nato, že existujú opatrenia, ktoré úplne nezakazujú dannú činnosť(obchody). Pre jednotlivé opatrenia bol stanovený faktor rovnicou:

$$E_f = pocet_usetrenych_kontaktov/pocet_kontaktov$$
 (14)

Opatrenie	E_f
bohoslužby - zákaz	0,01078358347
svadby - iba obrad	0,00004933840215
pohreby - len najbližśia rodina	0,00008854100931
obchody	0,2861638386
detské ihriská	0,01346020787
škôlky a 1. supeň ZŠ - zatvorené	0,08851909084
śkôlky a 1.stupeň ZŠ - polovica	0,04602992724
2. stupeň ZŠ - zatvorený	0,05210444535
2. stupeň ZŠ - polovica	0,02709431158
stredné školy - zatvorené	0,09404369601
stredné školy - polovica	0,04890272193
vysoké školy - zatvorené	0,01558011096
vysoké školy - polovica	0,008101657698
zatvorené internáty	0,001273501789
hromadné podujatia - zakázané	0,02581421447
kiná - zatvorené	0,004858308329
múzeá, galérie - zatvorené	0,002429956372
divadlá - zatvorené	0,001185437729
reštaurácie, kaviarne - zatvorené	0,1174630884

4 Implementácia simulačného modelu

Pri vytváraní simulačného modelu[5, p. 44] bol použitý objektívny prístup. Trieda Data obsahuje dáta o populácii Slovenska - celkový počet obyvateľov, počty zdravých/infikovaných/vyliečených k dátumu začiatku simulácie a zoznam možných opatrení. Trieda SIR predstavuje SIR model tak ako je popísaný v SIR model.

Simulačnému modelu sú nastavené aktívne opatrenia pomocou vstupných argumentov z príkazového riadku. Sú zadávané v tvare názov_opatrenia1, názov_opatrenia2. Možné názvy opatrení sú:

- bohosluzby_zakaz
- svadby_obrad
- pohreby_rodina
- obchody
- detske_ihriska
- skolky_1_stupen_ZS
- skolky_1_stupen_ZS_polovica
- 2_stupen_ZS
- 2_stupen_ZS_polovica
- stredne_skoly
- stredne_skoly_polovica

- vysoke_skoly
- vysoke_skoly_polovica
- internaty_zatvorene
- hromadne_podujatia_zakaz
- kina_zatvorene
- divadla_zatvorene
- muzea_galerie_zatvorene
- restauracie_kaviarne_6_osob
- restauracie_kaviarne_zatvorene
- hromadne_podujatia

Každému opatreniu je pomocou std::map priradená hodnota delta_exposure_factor, ktorá bola vopred vypočítaná v tabuľke 3.2. Výsledný parameter exposure_factor je vypočítaný odčítaním súčtu hodnôt delta_exposure_factor momentálne aktívnych opatrení od 1.

SIR modelu sú nastavené počiatočné hodnoty pre čas t=0 funkciou set_initial_data(). Následne je spustená simulácia funkciou run_simulation(). Funkcia vypisuje počet nových infikovaných od začiatka simulácie (t=0) až po koniec ($t=max_t$).

4.1 Spustenie simulačného modelu

Simulačný model je potrebné preložiť pomocou príkazu make, prípadne make build.

Spustiť simulačný model je možné príkazom make run, ktorý spustí simuláciu pre prípad, keď nie sú zavedené žiadne opatrenia. Pre nastavenie parametrov simulácie ako je zoznam opatrení, dĺžka simulácie v ďnoch alebo súbor s výstupnými dátami, je nutné spúšťať simuláciu ako make run ARG='args'. Pomocou args možno nastaviť:

- počet dní trvania simulácie (pôvodne 30): -t 30
- ukladanie výstupu do súboru: -f output.dat
- aktívne opatrenia: -m vysoke_skoly, stredne_skoly

5 Experimenty

Cieľom experimentov je zistiť, aký vplyv majú jednotlivé opatrenia na znižovanie denných prírastkov nakazených. Chceme zistiť, ktoré opatrenia majú takmer zanedbateľný vplyv. Ďalej chcem zistiť, či je možné kombináciou menej účinných opatrení nahradiť niektoré účinnejšie opatrenie, ktorému by sme sa radšej vyhli (napr. zatváranie základných škôl).

Všetky experimenty majú spoločné nasledujúce vstupné parametre:

- S0 = 0.980627
- I0 = 0.00746078
- R0 = 0.0119118
- beta = 0.0563401
- qamma = 0.0552486

Všetky experimenty trvali 30 dní od počiatočného dátumu 29.11.2020.

5.1 Experiment č. 1

V experimente č. 1 sme sledovali vývoj denného počtu nakazených keď by neboli zavedené žiadne opatrenia.

Vstupné parametre:

• exposure_factor = 1

Výsledok:

Deň	Prírastok nakazených
1	2250
5	2246
10	2239
15	2232
20	2223
25	2213
30	2202

Spustiť je tento experiment je možné príkazom:

```
make exp1
```

5.2 Experiment č. 2

V experimente č. 2 sme sledovali vývoj denného počtu nakazených keď boli úplne zavreté všetky typy škôl a aj internáty. Vstupné parametre:

• exposure_factor = 0.748479

Výsledok:

Deň Prírastok nakazených 1 1684 5 1590 10 1480 15 1377 20 1281 25 1192 30 1109		
5 1590 10 1480 15 1377 20 1281 25 1192	Deň	Prírastok nakazených
10 1480 15 1377 20 1281 25 1192	1	1684
15 1377 20 1281 25 1192	5	1590
20 1281 25 1192	10	1480
25 1192	15	1377
20 11/2	20	1281
30 1109	25	1192
	30	1109

Spustiť je tento experiment je možné príkazom:

make exp2

5.3 Experiment č. 3

V experimente č. 3 sme sledovali vývoj denného počtu nakazených keď bola kapacita všetkých škôl obmedzená na polovicu.

Vstupné parametre:

• exposure_factor = 0.869871

Výsledok:

Deň	Prírastok nakazených
1	1957
5	1898
10	1827
15	1758
20	1690
25	1625
30	1562

Spustiť je tento experiment je možné príkazom:

make exp3

5.4 Experiment č. 4

V experimente č. 4 sme sledovali vývoj denného počtu nakazených keď boli zavrené iba vysoké školy a internáty. Vstupné parametre:

• exposure_factor = 0.983146

Výsledok:

Deň	Prírastok nakazených
1	2212
5	2200
10	2183
15	2166
20	2148
25	2129
30	2109

Spustiť je tento experiment je možné príkazom:

make exp4

5.5 Experiment č. 5

V experimente č. 5 sme sledovali vývoj denného počtu nakazených keď boli zakázané všetky kultúrne aktivity (návšteva divadiel, kín,..).

Vstupné parametre:

• exposure_factor = 0.965712

Výsledok:

Deň	Prírastok nakazených
1	2173
5	2152
10	2126
15	2100
20	2072
25	2044
30	2016

Spustiť je tento experiment je možné príkazom:

make exp5

5.6 Experiment č. 6

V experimente č. 6 sme sledovali vývoj denného počtu nakazených keď boli zatvorené reštaurácie, obchody a bohoslužby. Vstupné parametre:

• exposure_factor = 0.721053

Výsledok:

Deň	Prírastok nakazených
1	1622
5	1523
10	1406
15	1299
20	1199
25	1107
30	1022

Spustif je tento experiment je možné príkazom:

make exp6

5.7 Experiment č. 7

V experimente č. 7 sme sledovali vývoj denného počtu nakazených keď boli obmedzené svadby iba na obrad a pohreby na najbližšiu rodinu.

Vstupné parametre:

• exposure_factor = 0.999862

Výsledok:

Deň	Prírastok nakazených
1	2249
5	2245
10	2239
15	2231
20	2222
25	2212
30	2201

Spustif je tento experiment je možné príkazom:

make exp7

5.8 Experiment č. 8

V experimente č. 8 sme sledovali vývoj denného počtu nakazených keď boli nastavené opatrenia približne rovnako ako v realite, teda otvorený iba prvý stupeň škôl, sú zavreté internáty, pri svadbách môže byť iba obrad, obmedzené reštaurácie, kiná a divadlá nie sú prakticky otvorené.

Vstupné parametre:

• exposure_factor = 0.783969

Výsledok:

Deň	Prírastok nakazených
1	1764
5	1679
10	1578
15	1483
20	1393
25	1308
30	1229

Spustiť je tento experiment je možné príkazom:

make exp8

5.9 Závery experimentov

Celkovo sme vykonali 8 experimentov. Prvý experiment slúžil na zistenie najhoršieho možného prípadu ktorý môže nastať. Slúžil tiež na kontrolu validity, pretože žiadny experiment, ktorý zavádzal nejaké opatrenia logicky nemohol dosahovať horšie výsledky ako stav keď nie sú zavedené žiadne opatrenia.

Posledný 8. experiment slúžil predovšetkým na kontrolu validity modelu. Zobrazuje situáciu, keď sú zavedené opatrenia podobné tým, čo platili v rovnakom období v realite. Pri porovnaní výsledkov denných prírastkov dosahuje naša simulácia približne rovnaké hodnoty ako tomu bolo v realite.

Z ostatných experimentov sme zistili, že medzi najúčinnejšie kombinácie opatrení patrí práve hromadné zatváranie všetkých škôl. Medzi najmenej účinné kombinácie opatrení podľa nášho modelu patrilo obmedzenie svadieb a pohrebov, ktoré síce zahŕňajú viac osôb, ale štatisticky sa ich človek nezúčastňuje veľmi často.

Pokles denných prírastkov po určitom čase je spôsobený tým, že už množstvo ľudí je nakazených alebo vyliečených, tympádom sa množina náchylných na ochorenie zmenšuje.

6 Záver

Táto práca skúmala vplyv zavádzania rôznych opatrení proti šíreniu ochorenia Covid 19 na území Slovenska. Cieľom bolo nájsť najviac účinnú kombináciu opatrení na zníženie denného prírastky nakazených. Vplyv opatrení sme skúmali z hľadiska zamedzenia sociálnych kontaktov medzi ľudmi, čo je rozhodujúci faktor pri šírení tohto ochorenia.

Celkovo sme vykonali 8 experimentov, pri ktorých sme menili kombinácie opatrení. Validita nášho modelu bola overovaná experimentom, pri ktorom sme aplikovali opatrenia, ktoré boli platné v realite v tom čase. Validitu modelu tiež podporoval fakt, že žiadny experiment so zavádzaním opatrení nedosiahol horší výsledok než stav bez opatrení. Medzi najviac účinné kombinácie opatrení patrilo celoplošné zatváranie všetkých typov škôl.

Citácie

- [1] W. Kermack a A. McKendrick. "Contributions to the mathematical theory of epidemics—I". eng. In: *Bulletin of Mathematical Biology* 53.1-2 (1991), s. 33–55. ISSN: 0092-8240.
- [2] David Smith a Lang Moore. "The SIR Model for Spread of Disease The Differential Equation Model". In: *Convergence* (dec. 2004).
- [3] Maria Kirwan Helen Barratt a Saran Shantikumar. Epidemic theory (effective & basic reproduction numbers, epidemic thresholds) & techniques for analysis of infectious disease data (construction & use of epidemic curves, generation numbers, exceptional reporting & identification of significant clusters). https://www.healthknowledge.org.uk/public-health-textbook/research-methods/la-epidemiology/epidemic-theory. Accessed: 2020-12-04. 2018.
- [4] Andrew William Byrne et al. "Inferred duration of infectious period of SARS-CoV-2: rapid scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases". eng. In: *BMJ open* 10.8 (2020), e039856. ISSN: 2044-6055.
- [5] Martin Hrubý Petr Peringer. *Modelovaní a simulace*. http://www.fit.vutbr.cz/study/courses/IMS/public/prednasky/IMS.pdf. Accessed: 2020-12-06. Sept. 2020.
- [6] Kai Sasaki. COVID-19 dynamics with SIR model. https://www.lewuathe.com/covid-19-dynamics-with-sir-model.html. Accessed: 2020-12-04. Mar. 2020.
- [7] Ashutosh Simha, R Prasad a Sujay Narayana. "A simple Stochastic SIR model for COVID 19 Infection Dynamics for Karnataka: Learning from Europe". eng. In: arXiv.org (2020). ISSN: 2331-8422. URL: http://search.proquest.com/docview/2383709685/.
- [8] Slovenská republika v číslach 2020. Miletičova 3, Bratislava: Ústredie ŠÚ SR, 2020. ISBN: 978-80-8121-753-1.
- [9] *Coronavirus Statistics Slovakia*. https://epidemic-stats.com/coronavirus/slovakia. Accessed: 2020-12-04.
- [10] Estimates for Slovakia. https://epiforecasts.io/covid/posts/national/slovakia/. Accessed: 2020-12-04.
- [11] Jak často chodí lidé nakupovat? https://www.idnes.cz/ekonomika/test-a-spotrebitel/jak-casto-chodi-lide-nakupovat.A_2000M033T06E. Accessed: 2020-12-04.
- [12] Koľko ľudí chodí pravidelne do kostola. https://www.tvnoviny.sk/domace/1765853_zistili-kolko-ludi-chodi-na-slovensku-pravidelne-do-kostola. Accessed: 2020-12-04.
- [13] Prijaté opatrenia. https://korona.gov.sk/prijate-opatrenia/. Accessed: 2020-12-04.
- [14] Rok v slovenských kinách. https://www.ufd.sk/rok-2019-v-slovenskych-kinach/. Accessed: 2020-12-04.