Sum to Infinity - Divergent vs Convergent

What can you say about the sum of each series up to infinity?

$$\times 1 - 2 + 3 - 4 + 5 - 6 + ...$$
 Divergent

$$S_{\infty} = \frac{1}{1 - \frac{1}{2}} = 2$$

- The infinite series will converge provided that -1 < r < 1 (which can be written as |r| < 1), because the terms will get smaller.
- Provided that |r| < 1, what happens to r^n as $n \to \infty$? $r^n \rightarrow 0$

series is convergent if |r| < 1.

How therefore can we use the $S_n = \frac{a(1-r^n)}{1-r}$ formula to find the sum to infinity, i.e. S_{∞} ?

For a <u>convergent</u> geometric series, $S_{\infty} = \frac{a}{1 - c}$

$$S_{\infty} = \frac{a}{1 - r}$$

$$S_{\infty} = \frac{a}{1 - r}$$

$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$$

$$27, -9, 3, -1, \dots$$

$$p, p^2, p^3, p^4, \dots$$

where -1

$$p, 1, \frac{1}{p}, \frac{1}{p^2}, \dots$$

$$a = 1$$
 $r = \frac{1}{2}$ $S_{\infty} = \frac{1}{1 - \frac{1}{2}}$

$$A = 27$$
 $\Gamma = -\frac{1}{3}$ $S_{\infty} = \frac{27}{1-\frac{1}{3}} = \frac{81}{4} = 20.25$

$$1=p \quad r=p \quad S_{\infty} = \frac{p}{1-p}$$

$$a = P$$
 $r = \frac{1}{P}$ $S_{\infty} = \frac{P}{1 - \frac{1}{P}} \times P = \frac{P^2}{P - 1}$

The fourth term of a geometric series is 1.08 and the seventh term is 0.23328.

- a) Show that this series is convergent.
- b) Find the sum to infinity of this series. The find r

$$U_4 = 1.08$$
 $U_7 = 0.23328$
 $1-08 = ar^3$ $0.23328 = ar^6$

$$\frac{0.13328}{1000} = \frac{ar^{6}}{ar^{3}}$$

Because 17/<1,
The series is convergent.

b)
$$1.08 = 0 \times 0.6^3$$

$$a = 5$$

$$S_{ob} = \frac{5}{1 - 0.6}$$

For a geometric series with first term a and common ratio r, $S_4 = 15$ and $S_\infty = 16$.

- a) Find the possible values of r.
- b) Given that all the terms in the series are positive, find the value of a.

b)
$$r = \frac{1}{2}$$

$$16 = \frac{a}{1-\frac{1}{2}}$$

a)
$$S_n = \frac{\alpha(1-r^n)}{1-r}$$
 $U_n = \frac{\alpha r^{n-1}}{1-r}$

$$S_{4} = 15$$
, $n = 4$

$$15 = a(1-r^{4})$$

$$16 = a$$

$$1-r$$

$$15 = 16(1-r^{4})$$

$$\frac{15}{16} = 1-r^{4}$$

$$r^{4} = \frac{1}{16}$$

$$r = \pm \frac{1}{2}$$

10. In a geometric series the common ratio is r and sum to n terms is S_n

Given

$$S_{\infty} = \frac{8}{7} \times S_6$$

show that $r = \pm \frac{1}{\sqrt{k}}$, where k is an integer to be found.

$$S_{\infty} = \frac{8}{7} \times S_{6}$$

$$\frac{1}{1-r} = \frac{8}{7} \times \frac{\cancel{\cancel{(1-r^6)}}}{\cancel{\cancel{1-r^6}}}$$

$$\frac{7}{8} = 1 - r^6$$

$$r^{6} = 1 - \frac{7}{8}$$

$$k=2$$

(4)

Your Turn

Edexcel C2 May 2011 Q6

The second and third terms of a geometric series are 192 and 144 respectively.
 For this series, find

(a) the common ratio,

(2)

(b) the first term,

(2)

(c) the sum to infinity,

(2)

(d) the smallest value of n for which the sum of the first n terms of the series exceeds 1000.

(4)