Model Optimization and Tuning Phase Report

Team ID: SWTID1720067156

July 11, 2024

Model Optimization and Tuning Phase

Team ID: SWTID1720067156

Project Title: Lymphography Classification Tool

Maximum Marks: 10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks)

Model	Tuned Hyperparameters	Optimal Values
Decision Tree	<pre>param_grid = { 'max_depth': [None, 10, 20, 30] } dt = DecisionTreeClassifier(random_state=42) grid_search = GridSearchCV(dt, param_grid, cv=5) grid_search.fit(X_train, y_train) best_dt = grid_search.best_estimator_ y_pred = best_dt.predict(X_test)</pre>	max_depth=10, criterion='gini'
Random Forest	param_grid = ('n_extinator:' [50, 100, 700], 'max_depth': [None, 10, 20, 30]} rf = RandomForstClassifier(random_state=42) grid_search = GridSearchCV(rf, param_grid, cv=5) grid_search = GridSearchCV(rf, param_grid, cv=5) best_rf = grid_search_best_extinator_ y_pred = best_rf,predict(X_test)	n_estimators=100, max_depth=20
KNN	<pre>param_grid = {'n_neighbors': [3, 5, 7, 9, 11]} knn = KNeighborsClassifier() grid_search = GridSearchCV(knn, param_grid, cv=5) grid_search.fit(X_train, y_train) best_knn = grid_search.best_estimator_ y_pred = best_knn.predict(X_test)</pre>	n_neighbors=5, metric='minkowski'
Gradient Boosting	<pre>param grid = ('n estimators: [50, 100, 200], 'learning_rate': [0.01, 0.1, 0.2]) gb = GradienBoosting(lassifier[random_state=42) grid_search = GridSearch(flb, param_grid, cv=5) grid_search.fltX, train, y_train) best_gb = grid_search.best_estimator_ y_pred = best_gb.predict(X_test)</pre>	learning_rate=0.1, n_estimators=100

Performance Metrics Comparison Report (2 Marks)

Model	Optimized Metric	Confusion Matrix
Decision Tree	Decision Tree Accuracy: 0.73 Decision Tree Classification Report: precision recall f1-score support 1 0.65 0.93 0.76 14 2 0.90 0.64 0.75 14 3 0.00 0.00 0.00 2 Decision recall f1-score support Decision recall f1-score support 1 0.65 0.93 0.76 14 Decision recall f1-score support Decision recall f1-score support	Confusion Matrix: [[9 4 1] [2 11 1] [0 0 3]]
Random Forest	Random Forest Accuracy: 0.83 Random Forest Classification Report:	Confusion Matrix: [[10 3 1] [1 11 3] [0 0 2]]
KNN	KNN Accuracy: 0.87 KNN Classification Report:	Confusion Matrix: [[12 2 0] [2 12 0] [0 0 2]]
Gradient Boosting	Gradient Boosting Accuracy: 0.87 Gradient Boosting Classification Report:	Confusion Matrix: [[11 2 1] [3 10 1] [0 0 3]]

Final Model Selection Justification (2 Marks)

Model	Reasoning	
KNN	Reasoning: The KNN model was selected for its superior	
	accuracy of 87%, indicating its effectiveness in handling local	
	variations in lymphography criteria and providing reliable	
	classification results.	