Logika R

Weronika Jakimowicz

Zima 2025/26

Weronika Jakimowicz

Spis treści

1	Formalizacja matematyki		1
	02.10.2025	Uproszczony model rzeczywistości matematycznej: struktura I rzędu .	1
	1.	Model języka i język struktury modelu	1
	2.	Zdania w języku	3

Weronika Jakimowicz Logika R

1. Formalizacja matematyki

02.10.2025 Uproszczony model rzeczywistości matematycznej: struktura I rzędu

1. Model języka i język struktury modelu

Definicja 1.1: model

Model to struktura matematyczna składająca się z

- niepustego zbioru będącego uniwersum $A \neq \emptyset$,
- funkcji $f_1, ..., f_k$ o arności n_i (tzn. $f_i: A^{n_i} \rightarrow A$),
- relacji (predykatów) w A, P_1 , ..., P_n , gdzie $P_i \subseteq A^{n_i}$,
- stałych z $A c_1, ..., c_l \in A$.

Zapisujemy

$$\mathfrak{M} = (A; f_1, ..., f_k; P_1, ..., P_n; c_1, ..., c_l)$$

gdzie k, n, l to liczby kardynalne, zazwyczaj skończone (tzn. k, n, $l \in \mathbb{N}$).

Przykłady

1. Jeśli n=0, czyli nie mamy relacji, to $\mathfrak M$ jest strukturą algebraiczną. Weźmy na przykład grupę. Grupa jest zdefiniowana jako zbiór G z wyróżnionym elementem neutralnym e, operacją mnożenia · oraz brania elementu odwrotnego $^{-1}$. Operacje to funkcje, a element neutralny to stała. Sam zbiór G to z kolei uniwersum, czyli mamy model:

$$(\textit{G};\cdot,^{-1}\,;\;;e)$$

2. Rodzina zbiorów *V* z relacją należenia ∈ jest modelem z jedną relacją, ale bez funkcji i bez stałych:

$$(V; ; \in;)$$

Symbole oznaczające funkcje, relacje, stałe będziemy od ich znaczenia odróżniać przez podkreślenie:

• $\underline{f_i}$, P_j , $\underline{c_t}$ to symbole,

• natomiast f_i , P_J , c_t to funkcja, relacja, stała.

Definicja 1.2: język

Język

$$L = \{\underline{f_1},...,\underline{f_k};\underline{P_1},...,\underline{P_n};\underline{c_1},...,\underline{c_l}\}$$

składa się z symboli: funkcyjnych, relacyjnych, stałych wraz z przypisanymi tym symbolom arnościami, tzn. f_i to symbol funkcjsi n_i -argumentowej etc.

Język jak wyżej jest nazywany językiem struktury $\mathfrak M$, typem podobieństwa $\mathfrak M$, sygnaturą $\mathfrak M$. Z kolei $\mathfrak M$ jest modelem dla L.

Szerzej będziemy dla ${\mathfrak M}$ - modelu dla L - pisać

$$(\mathfrak{M};\underline{f_1}^{\mathfrak{M}},...,\underline{f_k}^{\mathfrak{M}};\underline{P_1}^{\mathfrak{M}},...,\underline{P_n}^{\mathfrak{M}};\underline{c_1}^{\mathfrak{M}},...,\underline{c_l}^{\mathfrak{M}})$$

gdzie $f_i^{\mathfrak{M}}$ oznacza interpretację symbolu $\underline{f_1}^{\mathfrak{M}}$ w kontekście modelu \mathfrak{M} .

Uwaga 1.3

Dla dowolnego języka L istnieje wiele struktur \mathfrak{M} .

Mając dany język L mówimy/piszemy w nim przy pomocy

- symbolów języka,
- symboli logicznych \land , \lor , \neg , \rightarrow , \leftrightarrow (!!! \implies oraz \iff będą dla nas elementami metajęzyka !!!), \forall , \exists , =,
- zmiennych, np. x_i dla $i \in \mathbb{N}$, y, z,
- oraz symboli pomocniczych takich jak nawiasy, przecinki etc.

Uwaga 1.4

Spójniki można ograniczyć do \land , \neg i kwantyfikatora \exists . Całą resztę spójników można zdefiniować jako macra przy pomocy tych trzech, np.

$$p \lor q := \neg(\neg p \land \neq q)$$

Wyrażenia języka L:

- a) wyrażenia nazwowe (termy) należą do \mathcal{T}_L i są definiowane rekurencyjnie:
 - ullet zmienna, symbol stałej należą do \mathcal{T}_L i nazywają się termami atomowymi

• jeśli τ_1 , ..., $\tau_n \in \mathcal{T}_L$, a \underline{f} jest symbolem n-argumentowej funkcji z L, to $\underline{f}(\tau_1, ..., \tau_n) \in \mathcal{T}_L$ i nazywa się $\underline{termem złożonym}$.

- b) formuły oznaczamy \mathcal{F}_I i definiujemy rekurencyjnie w następujący sposób
 - dla wszystkich termów τ_1 , ..., τ_n zachodzi $(\tau_1 = \tau_2) \in \mathcal{F}_L$ oraz dla n-argumentowego symbolu relacji \underline{P}_i : $\underline{P}_i(\tau_1, ..., \tau_n) \in \mathcal{F}_L$ to są formuły atomowe,
 - φ , $\psi \in \mathcal{F}_L \implies (\neg \varphi)$, $(\varphi \land \psi) \in \mathcal{F}_L$ $\varphi \in \mathcal{F}_L \implies (\exists \ r \ \varphi)$, $(\forall \ r\varphi) \in \mathcal{F}_L \ (r \ \text{występujące w wyrażeniach nazywamy zmiennymi})$

2. Zdania w języku

Niech $\varphi \in \mathcal{F}_L$ będzie formułą w której występuje, co najmniej raz, zmienna v. Jeśli pewne wystąpienie v w φ jest w zasięgu pewnego kwantyfikatora $Q_v \in \{\forall, \exists\}$, to spośród wszystkich wystąpień Q_v w φ w których zasięgu jest v wybieramy to najbardziej na prawo i mówimy, że to Q_v wiąże dane wystąpienie v w φ . Na przykład

$$\forall x \exists y (x \in y \land \forall x (x \in y \rightarrow x = y))$$
wiąże

Jeśli nie ma kwantyfikatora Q_v jak wyżej, to wystąpienie v w φ jest wolne.

Zapis $\varphi(v_1, ..., v_n)$ oznacza, że wszystkie wolne zmienne w φ są wśród $v_1, ..., v_n$.

Definicja 1.5: zdanie

Formalne zdanie w języku L to formuła niezawierająca zmiennych wolnych.

Powstaje pytanie co to znaczy, że formuła z L jest prawdziwa w strukturze M dla L?

Niech \mathfrak{M} będzie modelem dla $L=\{\underline{f}_i,...,\underline{P}_j,...,\underline{c}_t,...\}$, $\{\underline{a}:a\in\mathfrak{M}\}$ będzie zbiorem nowych symboli stałych. Rozważmy nowy język $L(\mathfrak{M})=L\cup\{\underline{a}:a\in\mathfrak{M}\}$. Termy stałe τ z $L(\mathfrak{M})$ interpretujemy w \mathfrak{M} w następujący sposób:

- jeśli au jest symbolem stałym w L, to $au^{\mathfrak{M}}\in\mathfrak{M}$ jest interpretacją $\underline{c}_{i}^{\mathfrak{M}}$
- jeśli au CO TU SIE WYTENTEGOWUYJE

Definicja 1.6

 $\mathfrak{M} \models \varphi$ oznacza, że φ jest prawdziwe/spełniane w \mathfrak{M} .

a) zdania atomowe:

•
$$\mathfrak{M} \models \tau_1 = \tau_2 \iff \underline{\tau}_1^{\mathfrak{M}} = \underline{\tau}_2^{\mathfrak{M}}$$

•
$$\mathfrak{M} \models \underline{P}_{j}(\tau_{1},...,\tau_{n}) \iff (\underline{\tau}_{1}^{\mathfrak{M}},...,\underline{\tau}_{n}^{\mathfrak{M}}) \in \underline{P}_{j}^{\mathfrak{M}}$$

b) zdania złożone:

$$\bullet \ \mathfrak{M} \models \varphi \ \land \ \varphi \iff \mathfrak{M} \models \varphi \ \mathrm{oraz} \ \mathfrak{M} \models \psi$$