

क्रमांक

2015 (II) गणित विज्ञान प्रश्न पत्र

विषय कोड

पुरितका कोड

पूर्णांक : 200 अंक

समय : 3:00 घंटे

अनुदेश

- 1. **आपने हिन्दी को माध्यम चुना है ।** इस परीक्षा पुस्तिका में एक सौ बीस (20 भाग 'A' में + 40 भाग 'B' + 60 भाग 'C' में) बहुल विकल्प प्रश्न (MCQ) दिए गए हैं । आपको भाग 'A' में से अधिकतम 15 और भाग 'B' में 25 प्रश्नों तथा भाग 'C' में से 20 प्रश्नों के उत्तर देने हैं । यदि निर्धारित से अधिक प्रश्नों के उत्तर दिए गए तब केवल पहले भाग 'A' से 15, भाग 'B' से 25 तथा भाग 'C' से 20 उत्तरों की जांच की जाएगी ।
- 2. **ओ.एम.आर.** उत्तर पत्रक अलग से दिया गया है । अपना रोल नम्बर और केन्द्र का नाम लिखने से पहले यह जांच लीजिए कि पुस्तिका में पृष्ठ पूरे और सही हैं तथा कहीं से कटे—फटे नहीं हैं । यदि ऐसा है तो आप इन्विजीलेटर से उसी कोड की पुस्तिका बदलने का निवेदन कर सकते हैं । इसी तरह से **ओ.एम.आर.** उत्तर पत्रक को भी जांच लें । इस पुस्तिका में रफ काम करने के लिए अतिरिक्त पन्ने संलग्न हैं ।
- 3. **ओ.एम.आर.** उत्तर पत्रक के पृष्ठ 1 में दिए गए स्थान पर अपना रोल नम्बर, नाम तथा इस परीक्षा पुस्तिका का क्रमांक लिखिए, साथ ही अपना हस्ताक्षर भी अवश्य करें ।
- 4. आप अपनी ओ॰एम॰आर॰ उत्तर पत्रक में रोल नंबर, विषय कोड, पुस्तिका कोड और केन्द्र कोड से संबंधित समुचित वृतों को काले बॉल पेन से अवश्य काला करें। यह एक मात्र परीक्षार्थी की जिम्मेदारी है कि वह ओ॰एम॰आर॰ उत्तर पत्रक में दिए गए निर्देशों का पूरी सावधानी से पालन करें, ऐसा न करने पर कम्प्यूटर विवरणों का सही तरीके से अकूटित नहीं कर पाएगा, जिससे अंततः आपको हानि, जिससे आपकी ओ॰एम॰आर॰ उत्तर पत्रक की अस्वीकृति भी शामिल, हो सकती है।
- 5. भाग 'A' में प्रत्येक प्रश्न 2 अंक , भाग 'B' में प्रत्येक प्रश्न के 3 अंक तथा भाग 'C' में प्रत्येक प्रश्न 4.75 अंक का है । प्रत्येक गलत उत्तर का ऋणात्मक मूल्यांकन भाग 'A' में @ 0.5 अंक तथा भाग 'B' में @ 0.75 अंक से किया जाएगा । भाग 'C' के उत्तरों के लिए ऋणात्मक मूल्यांकन नहीं है ।
- 6. भाग 'A' तथा भाग 'B' के प्रत्येक प्रश्न के नीचे चार विकल्प दिए गए हैं । इनमें से केवल एक विकल्प ही "सही" अथवा "सर्वोत्तम हल" है । आपको प्रत्येक प्रश्न का सही अथवा सर्वोत्तम हल ढूंढना है । भाग 'C' में प्रत्येक प्रश्न का "एक" या "एक से अधिक" विकल्प सही हो सकते हैं । भाग 'C' में प्रत्येक प्रश्न के सभी विकल्पों का सही चयन करने पर ही क्रेडिट प्राप्त होगा । सब सही विकल्पों का चयन नहीं करने पर कोइ आंशिक क्रेडिट नहीं दिया जाएगा ।
- 7. नकल करते हुए या अनुचित तरीकों का प्रयोग करते हुए पाए जाने वाले परी**क्षा**र्थियों का इस और अन्य भावी परीक्षाओं के लिए अयोग्य ठहराया जा सकता है ।
- 8. **परीक्षा**र्थी को उत्तर या रफ पन्नों के अतिरिक्त कहीं और कुछ भी नहीं लिखना चाहिए ।
- 9. केलकूलेटर का उपयोग करने की अनुमित नहीं है।
- 10. परीक्षा समाप्ति पर छिद्र बिन्दु चिन्हित स्थान से OMR उत्तर पत्रक को विभाजित करें। इन्विजीलेटर को मूल OMR उत्तर पत्रक सौंपने के पश्चात आप इसकी कॉर्बनलैस प्रतिलिपि ले जा सकते हैं।
- 11. हिन्दी माध्यम/संस्करण के प्रश्न में विसंगति होने/पाये जाने पर अंग्रेजी संस्करण प्रमाणिक होगा ।
- 12. केवल परीक्षा की पूरी अवधि तक बैठने वाले **परीक्षा**र्थी को ही परीक्षा पुस्तिका साथ ले जाने की अनुमति दी जाएगी ।

रोल नंबर :	अभ्यर्थी द्वारा भरी गई जानकारी को मैं सत्यापित करता हूँ ।
नाम :	 इन्विजीलेटर के हस्ताक्षर

FOR ROUGH WORK

भाग \PART 'A'

1. मोरियार्टी ने खज़ाने की चोरी की तथा दस स्तंभों में से एक में छिपा दिया। मोरियार्टी से शैर्लाक को दी गयी चिद्ठी में लिखा था, "मानव मित के अंदर सुराग छिपा हुआ है"। कौन-सा स्तंभ था?

1. X

2. II

3. III

4. IX

1. "The clue is hidden in this statement", read the note handed to Sherlock by Moriarty, who hid the stolen treasure in one of the ten pillars. Which pillar is it?

1. X

2. II

3. III

4. IX

- 2. मार्ने कि प्राध्यापकों की तीन संगोष्ठियां क्रमशः मुम्बई, दिल्ली तथा चैन्नई में आयोजित की गयीं। हर प्राध्यापक इन में से केवल किसी दो संगांष्ठियों में शामिल हुए। 21 प्राध्यापक मुम्बई संगोष्ठी में, 27 दिल्ली संगोष्ठी में तथा 30 चेन्नई संगोष्ठी में शामिल हुए। दिल्ली तथा चेन्नई संगोष्ठी में शामिल होने वाले प्राध्यापकों की कुल संख्या क्या थी?
 - 1. 18
 - 2. 24
 - 3. 26
 - उपरोक्त सूचना से पता नहीं लगाया जा सकता।
- 2. Suppose three meetings of a group of professors were arranged in Mumbai, Delhi and Chennai. Each professor of the group attended exactly two meetings. 21 professors attended Mumbai meeting, 27 attended Delhi meeting and 30 attended Chennai meeting. How many of them attended both the Chennai and Delhi meetings?
 - 1. 18
 - 2. 24
 - 3. 26
 - 4. Cannot be found from the above information
- 3. मानें कि किसी यात्रा के दौरान, बिना टिकट के सवार के पकड़े जाने की प्रायिकता 0.1 है। यदि कोई व्यक्ति बिना टिकट लिए 4 बार यात्रा करता

है, तो इन यात्राओं के दौरान उसके पकड़े जाने की प्रायिकता होगी:

1. $1-(0.9)^4$

 $2. (1-0.9)^4$

3. $1-(1-0.9)^4$

4. $(0.9)^4$

3. The probability that a ticketless traveler is caught during a trip is 0.1. If the traveler makes 4 trips, the probability that he/she will be caught during at least one of the trips is:

1. $1-(0.9)^4$

 $2. (1-0.9)^4$

3. $1-(1-0.9)^4$

4. $(0.9)^4$

4.

. . .

. . .

दर्शाये गये नौ बिंदुओं को कलम को उठाए बिना तथा किसी पथ के पुन: अनुरेखण किये बिना जोड़ने के लिए कम से कम कितनी सरल रेखाओं की आवश्यकता है?

1. 3

2. 4

3. 5

4. 6

4.

. . .

. . .

. . .

The minimum number of straight lines required to connect the nine points above without lifting the pen or retracing is

3
 5

4
 6

5. एक इकाई घन के सबसे लंबे विकर्ण के दो सिरे A, B हैं। A से B के बीच घन के सतह पर बने पथ की न्यूनतम लंबाई क्या है?

1. $\sqrt{3}$

2. $1 + \sqrt{2}$

3. $\sqrt{5}$

4. 3

5. Let A, B be the ends of the longest diagonal of the unit cube. The length of the shortest path from A to B along the surface is

1. $\sqrt{3}$

2. $1 + \sqrt{2}$

3. $\sqrt{5}$

4. 3

- 6. संख्या 3¹⁶ को यदि दशमलव कोइ में लिखा जाये तो उस संख्या में कितने दशमलव अंक होंगे?
 - 1. तीन

9

सात

4. आਠ

- **6.** How many digits are there in 3¹⁶ when it is expressed in the decimal form?
 - 1. Three

2. Six

3. Seven

4. Eight

7. x-y निर्देशांक समतल पर खींचा गया एक वृत्त उद्गम से गुजरता है, और x तथा y अक्षों पर लम्बाइयां क्रमशः 8 और 7 के जीवा रखता है। इस वृत्त के केंद्र के निर्देशांक हैं

1. (8, 7)

 $2. \quad (-8,7)$

3. (-4, 3.5)

4. (4, 3.5)

7. A circle drawn in the *x-y* coordinate plane passes through the origin and has chords of lengths 8 units and 7 units on the *x* and *y* axes, respectively. The coordinates of its centre are

1. (8, 7)

 $2. \quad (-8,7)$

 $3. \quad (-4, 3.5)$

4. (4, 3.5)

8. चित्र में दर्शाये अनुसार एक वर्ग के अंदर तथा बाहर एक-एक वृत्त बनाया गया है। बाहय वृत्त के क्षेत्रफल और आंतर वृत्त के क्षेत्रफल का अनुपात क्या है ?

1. $\sqrt{2}$

2.

3. $2\sqrt{2}$

4. $\sqrt{3/2}$

8. There is an inner circle and an outer circle around a square. What is the ratio of the area of the outer circle to that of the inner circle?

1. $\sqrt{2}$

2.

3. $2\sqrt{2}$

4. $\sqrt{3/2}$

9. एक गिलास के पेंद्रे का व्यास उस के किनारे के व्यास से 20% छोटा है। गिलास को आधी ऊँचाई तक द्रव भर दिया गया है। गिलास के खाली आयतन का भरे आयतन से अनुपात है

1. $\frac{\sqrt{10} - \sqrt{9}}{\sqrt{9} - \sqrt{8}}$

2. $\frac{10-9}{9-8}$

3. $\frac{10^2-9^2}{9-8}$

4. $\frac{10^3 - 9^3}{9^3 - 8^3}$

9. The base diameter of a glass is 20% smaller than the diameter at the rim. The glass is filled to half the height. The ratio of empty to filled volume of the glass is

1. $\frac{\sqrt{10} - \sqrt{9}}{\sqrt{9} - \sqrt{8}}$

2. $\frac{10-9}{9-8}$

3. $\frac{10^2-9^2}{9-8}$

4. $\frac{10^3 - 9^3}{9^3 - 8^3}$

10. एक दुपिहया ठेले को एक अर्धवृत्ताकार पथ पर चलाया जा रहा है। पथ की औसत त्रिज्या 10मी. है, तथा पिहयों के बीच का फासला एक मीटर है। ठेले के दो पिहयों द्वारा पारित दूरी में अंतर है

1. 0

2. 10

3. π

4. 2π

10. A wheel barrow with unit spacing between its wheels is pushed along a semi-circular path of mean radius 10. The difference between distances covered by the inner and outer wheels is

1. 0

2. 10

3. π

4. 2π

11. यदि d=1 डिग्री, r=1 रेडियन, तथा g=1 ग्रेड माना जाये, तो निम्न में से कौन-सा सही है?

(100 ग्रेड = एक लंब कोण)

1. $\cos d < \cos r < \cos g$

2. $\cos r < \cos g < \cos d$

3. $\cos r < \cos d < \cos g$

4. $\cos g < \cos d < \cos r$

11. Write d = 1 degree, r = 1 radian and g = 1 grad. Then which of the following is true? (100 grad = a right angle)

1. $\cos d < \cos r < \cos g$

2. $\cos r < \cos g < \cos d$

3. $\cos r < \cos d < \cos g$

4. $\cos g < \cos d < \cos r$

12. एक विक्रेता प्रत्येक 100 रुपये क्रय मूल्य वाली चीजों को साल भर बेचता है। पहले आठ महीनों में विक्रय मूल्य अधिक रखा जाता है, तथा बाद के चार महीनों में छूट दी जाती है। छूट के दौरान का विक्रय मूल्य पहले आठ महीनों का आधा है। हर महीने बिकी वस्तुओं की संख्या समान है। यदि वह साल के अंत में 20% मुनाफा पाता है तो पहले आठ महीनों में विक्रय मूल्य क्या है?

1. 122

2. 144

3. 150

4. 160

12. A vendor sells articles having a cost price of Rs.100 each. He sells these articles at a premium price during first eight months, and at a sale price, which is half of the premium price, during next four months. He makes a net profit of 20% at the end of the year. Assuming that equal numbers of articles are sold each month, what is the premium price of the article?

1. 122

2. 144

3. 150

4. 160

- 13. कथन 'मेरे पुत्र का पिता तुम्हारे जनकों की एकमात्र सन्तान है'
 - 1. कभी सही नहीं हो सकता
 - 2. केवल एक ही प्रकार के संबंध में सही है
 - 3. एक से अधिक संबंधों में सही हो सकता है
 - 4. किसी बहुसंगमनी कुटुंब में ही हो सकता है।
- **13**. The statement: "The father of my son is the only child of your parents"
 - 1. can never be true
 - 2. is true in only one type of relation
 - 3. can be true for more than one type of relations
 - 4. can be true only in a polygamous family
- 14. एक समतल को सर्वागसम बहुभुजों से इस तरह ढंकने की आवश्यकता है, कि कोई जगह खाली नहीं छूटे। बहुभुजों में किससे यह संभव है?
 - 1. षड्भुज (6-gon)
 - 2. अष्ट भुज (8-gon)

- 3. दश भुज (10-gon)
- 4. द्वादशभ्ज (12-gon)
- **14**. One is required to tile a plane with congruent regular polygons. With which of the following polygons is this possible?

1. 6-gon

2. 8-gon

3. 10-gon

4. 12-gon

15. बराबर व्यास के तीन वृत्तों को इस प्रकार रखा गया है, जिससे कि उन के केंद्रों से एक समभुज त्रिकोण बन जाये।

हर वृत्त के अंदर 50 बिंदुओं को याद्दच्छिकतः विखरा जाता है। सभी संभव बिन्दु-युगलों के बीच की दूरी का आवृत्ति बंटन इस प्रकार दीखेगा।

2. So Distance

3. So Distance

15. Three circles of equal diameters are placed such that their centres make an equilateral triangle as in the figure

Within each circle, 50 points are randomly scattered. The frequency distribution of distances between all possible pairs of points will look as

- 16. भारत के उष्णकटीबंध प्रदेशों में अधिकतर फल अप्रैल-मई के महीनों में पनपते हैं। इस का स्पष्टीकरण नीचे दिये किस विधान से हो सकता है?
 - 1. इस दौरान पर्याप्त मात्रा में पानी का होना।
 - 2. गर्मी से फलों का आसानी से पकना।
 - पशुओं के लिए इस दौरान खाने के अन्य स्रोतों की कमी।
 - आने वाले बारिश के मौसम में बीजों का अन्कूलतम प्रसारण हो।
- **16**. Most Indian tropical fruit trees produce fruits in April-May. The best possible explanation for this is
 - 1. optimum water availability for fruit production.
 - 2. the heat allows quicker ripening of fruit.
 - 3. animals have no other source of food in summer.
 - 4. the impending monsoon provides optimum conditions for propagation.
- 17. एक उत्तल द्वादशभुज (12-gon) के विकर्णों की संख्या है
 - 1. 66

2. 54

3. 55

- 4. 60
- **17**. The number of diagonals of a convex deodecagon (12-gon) is
 - 1. 66

2. 54

3. 55

- 4. 60
- 18. लाल, नीले तथा हरे रंग के क्रमश: तीन बक्से तथा तीन गेंदें है। किसी भी डिब्बे में कोई गेंद ऐसी रखी जाती है, कि डिब्बे का और गेंद का रंग भिन्न हो। ऐसे करने के कितने प्रकार हैं?
 - 1. 1

2. 2

3. 3

4. 4

- 18. Three boxes are coloured red, blue and green and so are three balls. In how many ways can one put the balls one in each box such that no ball goes into the box of its own colour?
 - 1. 1

2. 2

3. 3

- 4. 4
- 19. कूट वाचन करें

वि	ध्या	র্থি	यों	को
न	स	म	स्या	ही
मा	स	इ	का	मि
द्धि	बु	ਕ	ह	ਕ
I	है	ता	क	स

- 1. विध्यार्थियों को समस्या ही ताकत है।
- 2. स्याही विध्यार्थियों के काम आती है।
- 3. समस्याहीन विध्यार्थी कहीं नहीं मिलेंगे।
- इस समस्या का हल बुद्धिमान विध्यार्थियों को ही मिल सकता है।
- 19. Decode

G	E	N	T	S	T	U
I	S	S	O	L	V	D
L	I	I	S	P	A	Е
L	M	Η	T	R	В	N
E	E	L	В	O	L	T
Т	N	I	Y	В	E	S

- 1. GENT STUDENTS CAUSE LITTLE HEART BURNS
- 2. STUDENTS ARE INTELLIGENT BUT PROBLEM IS NOT SOLVABLE
- 3. THIS PROBLEM IS UNSOLVABLE BY ANY STUDENT
- 4. THIS PROBLEM IS SOLVABLE BY INTELLIGENT STUDENTS
- 20. लापता संख्या है

1. -19

2. -5

3. 9

4. -9

20. The missing number is

भाग \PART 'B'

UNIT 1

- 21. मार्ने कि A, जाति 2 का एक वास्तविक 3×4 आव्यूह है। तो $A^t A$ की जाति है, जहां A^t , A के परिवर्त को निर्दिष्ट करता है:
 - 1. ठीक-ठीक 2
 - 2. ठीक-ठीक 3
 - 3. ठीक-ठीक 4
 - 4. अधिक से अधिक 2 परंत् आवश्यकतः 2 नहीं
- **21**. Let A be a real 3×4 matrix of rank 2. Then the rank of A^tA , where A^t denotes the transpose A, is:
 - 1. exactly 2
 - 2. exactly 3
 - 3. exactly 4
 - 4. at most 2 but not necessarily 2
- 22. द्विघातीय रूप $Q(v) = v^t A v$ पर विचारें, जहां

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, v = (x, y, z, w)$$

हैं। तो

- 1. *Q* की जाति 3 है।
- 2. किसी व्युत्करणीय 4×4 वास्तविक आव्यूह P के लिए $xy + z^2 = Q(Pv)$ है।
- 3. किसी व्युत्करणीय 4×4 वास्तविक आव्यूह P के लिए $xy + y^2 + z^2 = Q(Pv)$ है।
- 4. किसी ट्युत्करणीय 4×4 वास्तविक आद्यूह P के लिए $x^2 + y^2 - zw = Q(Pv)$ है।

22. Consider the quadratic form $Q(v) = v^t A v$,

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, v = (x, y, z, w)$$

- 1. *Q* has rank 3.
- 2. $xy + z^2 = Q(Pv)$ for some invertible 4×4 real matrix P.
- 3. $xy + y^2 + z^2 = Q(Pv)$ for some invertible 4×4 real matrix P.
- 4. $x^2 + y^2 zw = Q(Pv)$ for some invertible 4×4 real matrix P.
- 23. मानें कि S उन सभी अभाज्य संख्याओं p के सम्च्यय को निर्दिष्ट करता है, जिनके ग्णधर्म है कि आव्यह

$$\begin{bmatrix} 91 & 31 & 0 \\ 29 & 31 & 0 \\ 79 & 23 & 59 \end{bmatrix}$$

ि $\begin{bmatrix} 91 & 31 & 0 \\ 29 & 31 & 0 \\ 79 & 23 & 59 \end{bmatrix}$ का, क्षेत्र $\mathbb{Z}/p\mathbb{Z}$ में व्युत्क्रम है। तो

- 1. $S = \{31\}$
- 2. $S = \{31, 59\}$
- 3. $S = \{7,13,59\}$
- 4. *S* अनंत है
- **23**. Let *S* denote the set of all the prime numbers p with the property that the matrix

$$\begin{bmatrix} 91 & 31 & 0 \\ 29 & 31 & 0 \\ 79 & 23 & 59 \end{bmatrix}$$

has an inverse in the field $\mathbb{Z}/n\mathbb{Z}$. Then

- 1. $S = \{31\}$
- 2. $S = \{31, 59\}$
- 3. $S = \{7,13,59\}$
- 4. *S* is infinite
- **24**. यदि A एक 5×5 वास्तविक आव्यूह, अन्रेख 15के साथ है, तथा यदि 2 तथा 3 A के अभिलक्षणिक मान हैं, प्रत्येक बीजीय बहुकता 2 के साथ, तो A का सारणिक इसके समान है:
 - 1. 0

2. 24

3. 120

- 4. 180
- **24**. If A is a 5×5 real matrix with trace 15 and if 2 and 3 are eigenvalues of A, each with algebraic multiplicity 2, then the determinant of A is equal to
 - 1. 0

2. 24

3. 120

4. 180

- 25. किसी धन पूर्णांक n के लिए मानें कि वास्तविक गुणांक युक्त, कोटि $\leq n$ के एक चर x में बहुपदों की समष्टि को P_n निर्दिष्ट करता है। $T(p(x)) = p(x^2)$ से परिभाषित मानचित्र $T: P_2 \to P_4$ पर विचारें। तो
 - T एक रैखिक रूपांतरण है तथा विम परिसर (T) = 5 है।
 - 2. T एक रैखिक रूपांतरण है तथा विम परिसर (T) = 3 है।
 - 3. T एक रैखिक रूपांतरण है तथा विम परिसर (T) = 2 है।
 - 4. T एक रैखिक रूपांतरण नहीं है।
- **25**. For a positive integer n, let P_n denote the vector space of polynomials in one variable x with real coefficients and with degree $\leq n$. Consider the map $T: P_2 \rightarrow P_4$ defined by $T(p(x)) = p(x^2)$. Then
 - 1. T is a linear transformation and dim range(T) = 5.
 - 2. *T* is a linear transformation and dim range(T) = 3.
 - 3. *T* is a linear transformation and dim range(T) = 2.
 - 4. *T* is not a linear transformation.
- **26**. मार्ने कि $f: \mathbb{R} \to \mathbb{R}$ एक दो बार संततत: अवकलनीय फलन है, f(0) = f(1) = f'(0) = 0 के साथ। तो
 - 1. f" शून्यक फलन है।
 - f"(0) शून्य है।
 - 3. किसी $\mathbf{x} \in (0, 1)$ के लिए $f''(\mathbf{x}) = 0$ ।
 - 4. f'' कभी लुप्त नहीं होता।
- 26. Let $f: \mathbb{R} \to \mathbb{R}$ be a twice continuously differentiable function, with f(0) = f(1) = f'(0) = 0. Then
 - 1. f'' is the zero function.
 - 2. f''(0) is zero.
 - 3. f''(x) = 0 for some $x \in (0, 1)$.
 - 4. f'' never vanishes.
- **27**. मानें कि $A \neq I_n$ एक $n \times n$ आव्यूह है ताकि $A^2 = A$ है जहां, I_n कोटि n का तत्समक आव्यूह है। निम्न कथनों में से कौन-सा सही नहीं है?

- 1. $(I_n A)^2 = I_n A$.
- 2. अन्रेख (A) = जाति (A).
- 3. जाति (*A*) + जाति ($I_n A$) = n.
- 4 A के अभिलक्षणिक मान 1 के समान हैं।
- 27. Let $A \neq I_n$ be an $n \times n$ matrix such that $A^2 = A$, where I_n is the identity matrix of order n. Which of the following statements is false?
 - 1. $(I_n A)^2 = I_n A$.
 - 2. Trace (A) = Rank (A).
 - 3. Rank (A) + Rank $(I_n A) = n$.
 - 4 The eigenvalues of A are each equal to 1.
- 28. मानें कि A, \mathbb{R} का एक संवृत उपसमुच्चय है, $A \neq \emptyset, A \neq \mathbb{R}$ । तो A है
 - 1. A के आंतरिक का संवरक है।
 - 2. एक गणनीय समुच्चय है।
 - 3. एक संहत समुच्चय है।
 - 4. विवृत नहीं है।
- **28**. Let *A* be a closed subset of \mathbb{R} , $A \neq \emptyset$, $A \neq \mathbb{R}$. Then A is
 - 1. the closure of the interior of *A*.
 - 2. a countable set.
 - 3. a compact set.
 - 4. not open.
- **29.** मार्ने कि $f: [0, \infty) \to [0, \infty)$ एक संतत फलन है। निम्न में से कौन-सा सही है?
 - 1. x_0 ∈[0, ∞) है, ताकि $f(x_0) = x_0$ हो।
 - 2. किसी M > 0 के लिए यदि सभी $x \in [0, \infty)$ के लिए $f(x) \le M$ है, तो $x_0 \in [0, \infty)$ का अस्तित्व है तािक $f(x_0) = x_0$ हो।
 - 3. यदि f का एक नियत बिंदु है, तो उसको अद्वितीय होना चाहिए।
 - 4. f का कोई नियत बिंदु नहीं है जब तक वह $(0,\infty)$ पर अवकलनीय नहीं हो।
- **29.** Let $f: [0, \infty) \to [0, \infty)$ be a continuous function. Which of the following is correct?
 - 1. There is $x_0 \in [0, \infty)$ such that $f(x_0) = x_0$.
 - 2. If $f(x) \le M$ for all $x \in [0, \infty)$ for some M > 0, then there exists $x_0 \in [0, \infty)$ such that $f(x_0) = x_0$.
 - 3. If *f* has a fixed point, then it must be unique.
 - 4. f does not have a fixed point unless it is differentiable on $(0, \infty)$

30.

सीमांत
$$\frac{1}{\sqrt{n}}\left(\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}+\cdots\right)$$
 $+\frac{1}{\sqrt{2n}+\sqrt{2n+2}}$

눍

1. $\sqrt{2}$

- 2. $\frac{1}{\sqrt{2}}$
- 3. $\sqrt{2} + 1$
- 4. $\frac{1}{\sqrt{2}+3}$

30.

$$\lim_{n\to\infty} \frac{1}{\sqrt{n}} \left(\frac{1}{\sqrt{2} + \sqrt{4}} + \frac{1}{\sqrt{4} + \sqrt{6}} + \cdots + \frac{1}{\sqrt{2n} + \sqrt{2n+2}} \right)$$

is

1. $\sqrt{2}$

- 2. $\frac{1}{\sqrt{2}}$
- 3. $\sqrt{2} + 1$
- 4. $\frac{1}{\sqrt{2}+1}$
- 31. $(x,y) \neq (0,0)$ युक्त $(x,y) \in \mathbb{R}^2$ के लिए, मानें कि $\theta = \theta (x,y)$ एक अद्वितीय वास्तविक संख्या है ताकि $-\pi < \theta \le \pi$ तथा $(x,y) = (r\cos\theta, r\sin\theta)$ है, जहां $r = \sqrt{x^2 + y^2}$ है। तो परिणमित फलन
 - $\theta \colon \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$
 - 1. अवकलनीय है।
 - 2. संतत परंतु अवकलनीय नहीं है।
 - 3. परिबद्ध, परंत् संतत नहीं है।
 - 4. न तो परिबद्ध, न संतत है।
- **31.** For $(x, y) \in \mathbb{R}^2$ with $(x, y) \neq (0,0)$, let $\theta = \theta$ (x,y) be the unique real number such that $-\pi$ $< \theta \le \pi$ and $(x, y) = (r \cos \theta, r \sin \theta)$, where $r = \sqrt{x^2 + y^2}$. Then the resulting function θ : $\mathbb{R}^2 \setminus \{(0, 0)\} \to \mathbb{R}$ is
 - 1. differentiable.
 - 2. continuous, but not differentiable.
 - 3. bounded, but not continuous.
 - 4. neither bounded, nor continuous.
- **32.** मानें कि $S_n = \sum_{k=1}^n \frac{1}{k}$ । निम्न में से कौन-सा सही है?
 - 1. प्रत्येक $n \geq 1$ के लिए $S_{2^n} \geq \frac{n}{2}$ है।
 - $2. S_n$ एक परिबद्ध अनुक्रम है।

- 3. जैसे $n \to \infty$ है, तो $|S_{2^n} S_{2^{n-1}}| \to 0$ है।
- 4. जैसे $n \to \infty$ है, तो $\frac{S_n}{n} \to 1$ है।
- 32. Let $S_n = \sum_{k=1}^n \frac{1}{k}$. Which of the following is true?
 - 1. $S_{2^n} \ge \frac{n}{2}$ for every $n \ge 1$.
 - 2. S_n is a bounded sequence.
 - 3. $|S_{2^n} S_{2^{n-1}}| \to 0 \text{ as } n \to \infty.$
 - 4. $\frac{S_n}{n} \to 1$ as $n \to \infty$.

UNIT 2

- 33. समीकरण $(x_1 + x_2 + x_3)$ $(y_1 + y_2 + y_3 + y_4) = 15$ के लिए धन पूर्णांक हलों की कुल संख्या क्या है?
 - 1. 1

2. 2

3. 3

- 4. 4
- **33**. What is the total number of positive integer solutions to the equation

$$(x_1 + x_2 + x_3) (y_1 + y_2 + y_3 + y_4) = 15$$
?

1.

2. 2

3. 3

- 4. 4
- **34**. समुच्चय $\{z \in \mathbb{C} \mid z^{98} = 1 \text{ तथा }$ किसी 0 < n < 98 के लिए $z^n \neq 1\}$ की गणनसांख्यिकी क्या है?
 - 1. 0.

2. 12.

3. 42.

- 4. 49.
- 34. What is the cardinality of the set $\{z \in \mathbb{C} \mid z^{98} = 1 \text{ and } z^n \neq 1 \text{ for any } 0 < n < 98 \}$?
 - 1. 0.

2. 12.

3. 42.

- 4. 49.
- **35**. संबंध $x^3 = y^2 = (xy)^2 = 1$ युक्त अवयवों x, y द्वारा जिनत एक समूह G है। G की कोटि है
 - 1. 4.

2. 6.

3. 8.

- 4 12.
- **35**. A group *G* is generated by the elements x, y with the relations

$$x^3 = y^2 = (xy)^2 = 1$$
. The order of *G* is

1. 4

2. 6

3. 8.

4 12.

- 36. मानें कि R एक यूक्लिडीय प्रांत है ताकि R एक क्षेत्र नहीं है। तो बह्पद वलय R[X] हमेशा
 - 1. एक यूक्लिडीय प्रांत है।
 - 2. एक मुख्य गुणजावली प्रांत है, परंतु एक युक्लिडीय प्रांत नहीं है।
 - 3. एक अद्वितीय गुणनखंडन प्रांत है, परंतु मुख्य ग्णजावली प्रांत नहीं है।
 - 4. एक अद्वितीय ग्णनखंडन प्रांत नहीं है।
- **36**. Let *R* be a Euclidean domain such that *R* is not a field. Then the polynomial ring R[X] is always
 - 1. a Euclidean domain.
 - 2. a principal ideal domain, but not a Euclidean domain.
 - 3. a unique factorization domain, but not a principal ideal domain.
 - 4. not a unique factorization domain.
- 37. निम्न में से कौन-सा, $\mathbb Q$ पर $x^{12}-1$ का एक अखंडनीय गुणनखंड है?
 - 1. $x^8 + x^4 + 1$.

 - 2. $x^4 + 1$. 3. $x^4 x^2 + 1$.
 - 4. $x^5 x^4 + x^3 x^2 + x 1$.
- **37**. Which of the following is an irreducible factor of $x^{12} - 1$ over \mathbb{Q} ?
 - 1. $x^8 + x^4 + 1$.
 - 2. $x^4 + 1$.
 - 3. $x^4 x^2 + 1$.
 - 4. $x^5 x^4 + x^3 x^2 + x 1$.
- 38. सम्मिश चर z की निम्न घात श्रेणी पर विचारें। $f(z) = \sum_{n=1}^{\infty} n \log n \ z^n, \ g(z) = \sum_{n=1}^{\infty} \frac{e^{n^2}}{n} \ z^n.$ यदि r,R क्रमश: f तथा g की अभिसरण त्रिज्यायें हैं तो
 - 1. r = 0, R = 1. 2. r = 1, R = 0.
 - 2. r = 1, R = 0. 4. $r = \infty, R = 1$. 3. $r = 1, R = \infty$.
- **38**. Consider the following power series in the complex variable z:

complex variable 2.

$$f(z) = \sum_{n=1}^{\infty} n \log n \ z^n$$
, $g(z) = \sum_{n=1}^{\infty} \frac{e^{n^2}}{n} \ z^n$. If r, R are the radii of convergence of f and g respectively, then

1.
$$r = 0, R = 1$$
.
2. $r = 1, R = 0$.
3. $r = 1, R = \infty$.
4. $r = \infty, R = 1$.

39. मानें कि $a,b,c,d \in \mathbb{R}$ हैं ताकि ad-bc>0 है। मोबियस रूपांतरण $T_{a,b,c,d}(z) = \frac{az+b}{cz+d}$ पर विचारें। परिभाषित करें कि

> $\mathcal{H}_{+} = \{ z \in \mathbb{C} : Im(z) > 0 \}, \mathcal{H}_{-} = \{ z \in \mathbb{C} : Im(z) < 0 \},$ $\mathcal{R}_+ = \{z \in \mathbb{C} : Re(z) > 0\}, \ \mathcal{R}_- = \{z \in \mathbb{C} : Re(z) < 0\}.$ तो, $T_{a,b,c,d}$ प्रतिचित्रित करता है

- $1. \mathcal{H}_+$ को \mathcal{H}_+ पर।
- 升₊ को 升_− पर।
- $3. \mathcal{R}_+$ को \mathcal{R}_+ पर।
- $4. \mathcal{R}_{+}$ को \mathcal{R}_{-} पर।
- **39**. Let $a, b, c, d \in \mathbb{R}$ be such that ad bc > 0. Consider the Mobius transformation

$$T_{a,b,c,d}(z) = \frac{az+b}{cz+d}. \text{ Define}$$

$$\mathcal{H}_{+} = \{z \in \mathbb{C} : Im(z) > 0\}, \mathcal{H}_{-} = \{z \in \mathbb{C} : Im(z) < 0\},$$

$$T_{-} = \{z \in \mathbb{C} : Im(z) > 0\}, \mathcal{H}_{-} = \{z \in \mathbb{C} : Im(z) < 0\},$$

$$\mathcal{R}_+ = \{ z \in \mathbb{C} : Re(z) > 0 \}, \ \mathcal{R}_- = \{ z \in \mathbb{C} : Re(z) < 0 \}.$$

Then, $T_{a,b,c,d}$ maps

- 1. \mathcal{H}_+ to \mathcal{H}_+ .
- 2. \mathcal{H}_{+} to \mathcal{H}_{-} .
- 3. \mathcal{R}_+ to \mathcal{R}_+ .
- 4. \mathcal{R}_+ to \mathcal{R}_- .
- 40. सांस्थितिक समिष्टि X के एक उपसम्= चय के लिये, मानें कि \hat{A} निर्दिष्ट करता है सम्च्यय Aतथा $X \setminus A$ के उन सभी संबद्ध घटकों के सम्मिलन का जो X में सापेक्षत: संहत हैं (अर्थात संवरण संहत है)। तो प्रत्येक $A \subseteq X$ के लिए
 - 1. *Â* संहत है
- $2. \ \hat{A} = \widehat{\hat{A}}.$
- 3. *Â* संबद्ध है
- 4. $\hat{A} = X$.
- **40**. For a subset A of the topological space X, let \hat{A} denote the union of the set A and all those connected components of $X \setminus A$ which are relatively compact in X (i.e., the closure is compact). Then for every $A \subseteq X$,
 - 1. Â is compact.
- 2. $\hat{A} = \hat{A}$.
- 3. Â is connected.
- 4. $\hat{A} = X$.

UNIT 3

41. \mathbb{R}^2 में सा.अ.स. के तंत्र पर विचारें,

$$\frac{dY}{dt} = AY, Y(0) = {0 \choose 1}, t > 0$$
 जहां $A =$

$$\begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$$
 तथा $Y(t) = \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix}$ है। तो

- 1. t > 0 के लिए $y_1(t)$ तथा $y_2(t)$ एकदिष्ट वर्धमान हैं।
- 2. t > 1 के लिए $y_1(t)$ तथा $y_2(t)$ एकदिष्ट वर्धमान हैं।
- 3. t > 0 के लिए $y_1(t)$ तथा $y_2(t)$ एकदिष्ट ह्रासमान हैं।
- 4. t > 1 के लिए $y_1(t)$ तथा $y_2(t)$ एकदिष्ट ह्रासमान हैं।
- 41. Consider the system of ODE in

$$\mathbb{R}^2$$
, $\frac{dY}{dt} = AY$, $Y(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $t > 0$

where
$$A = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$$
 and

$$Y(t) = \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix}$$
. Then

- 1. $y_1(t)$ and $y_2(t)$ are monotonically increasing for t > 0.
- 2. $y_1(t)$ and $y_2(t)$ are monotonically increasing for t > 1.
- 3. $y_1(t)$ and $y_2(t)$ are monotonically decreasing for t > 0.
- 4. $y_1(t)$ and $y_2(t)$ are monotonically decreasing for t > 1.
- **42**. \mathbb{R} पर सा.अ.स. y'(x) = f(y(x)) पर विचारें। यदि

f एक सम फलन है तथा y एक विषम फलन, तो

- 1. -v(-x) भी एक हल है।
- 2. y(-x) भी एक हल है।
- 3. -v(x) भी एक हल है।
- 4. y(x) y(-x) भी एक हल है।
- **42.** Consider the ODE on \mathbb{R} y'(x) = f(y(x)).

If f is an even function and y is an odd function, then

- 1. -y(-x) is also a solution.
- 2. y(-x) is also a solution.
- 3. -y(x) is also a solution.
- 4. y(x) y(-x) is also a solution.
- 43. आं.अ.स.

$$\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = x$$

- 1. का एक ही विशेष समाकल है।
- 2. का एक विशेष समाकल है, जो x तथा y में रैखिक है।
- 3 का विशेष समाकल है, जो x तथा y में एक द्विघात बहुपद है।
- 4. के एक से अधिक विशेष समाकल हैं।

43. The PDE

$$\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = x$$
, has

- 1. only one particular integral.
- 2. a particular integral which is linear in x and y.
- 3. a particular integral which is a quadratic polynomial in *x* and *y*.
- 4. more than one particular integral.

44. प्रारंभिक मान समस्या

$$(x-y)\frac{\partial u}{\partial x} + (y-x-u)\frac{\partial u}{\partial y} = u,$$

u(x,0)=1, का हल इसका समाधान करता है

- 1. $u^2(x-y+u) + (y-x-u) = 0$.
- 2. $u^2(x + y + u) + (y x u) = 0$.
- 3. $u^2(x-y+u) (x+y+u) = 0$.
- 4. $u^2(y-x+u) + (x+y-u) = 0$.

44. The solution of the initial value problem

$$(x-y)\frac{\partial u}{\partial x} + (y-x-u)\frac{\partial u}{\partial y} = u,$$

u(x,0) = 1, satisfies

1.
$$u^2(x-y+u) + (y-x-u) = 0$$
.

- 2. $u^2(x+y+u) + (y-x-u) = 0$.
- 3. $u^2(x-y+u) (x+y+u) = 0$.
- $4. u^{2}(v x + u) + (x + v u) = 0.$

45. फलनक

$$I(y(x)) = \int_a^b (y^2 + y'^2 - 2y\sin x) dx,$$

का निम्न चरम है, स्वेच्छ अचरों c_1 तथा c_2 के

साथ

1.
$$y = C_1 e^{2x} + C_2 e^{-2x} + \frac{1}{2} sinx$$
.

2.
$$y = C_1 e^x + C_2 e^{-x} + \frac{1}{2} \sin x$$
.

3.
$$y = C_1 e^x + C_2 e^{-x} - \frac{1}{2} sinx$$
.

4.
$$y = C_1 e^{2x} + C_2 e^{-2x} + \frac{1}{2} \cos x$$
.

45. The functional

$$I(y(x)) = \int_a^b (y^2 + y'^2 - 2y\sin x) dx,$$

has the following extremal with c_1 and c_2 as arbitrary constants.

1.
$$y = C_1 e^{2x} + C_2 e^{-2x} + \frac{1}{2} sinx$$
.

2.
$$y = C_1 e^x + C_2 e^{-x} + \frac{1}{2} sinx$$
.

3.
$$y = C_1 e^x + C_2 e^{-x} - \frac{1}{2} sinx$$
.

4.
$$y = C_1 e^{2x} + C_2 e^{-2x} + \frac{1}{2} \cos x$$
.

46. वोल्टेरा समाकल समीकरण $\varphi(x) = x +$

$$\lambda \int_a^x \varphi(s) ds$$
 की साधक अष्टि $R(x,t,\lambda)$ है

1.
$$e^{\lambda(x+t)}$$

2.
$$e^{\lambda(x-t)}$$

3.
$$\lambda e^{(x+t)}$$

4.
$$e^{\lambda xt}$$

46. The resolvent kernel $R(x, t, \lambda)$ for the Volterra integral equation

$$\varphi(x) = x + \lambda \int_{a}^{x} \varphi(s) ds$$
, is

1.
$$e^{\lambda(x+t)}$$

2.
$$e^{\lambda(x-t)}$$

3.
$$\lambda e^{(x+t)}$$

4.
$$e^{\lambda xt}$$

47. $a \in \mathbb{R}$ के लिए मार्ने कि f(x) = ax + 100 है। तो पुनरावृत्ति $x_{n+1} = f(x_n)$ $n \ge 0$ तथा $x_0 = 0$ के लिए अभिसरित होती है जब कि

1.
$$a = 5$$
.

2.
$$a = 1$$
.

3.
$$a = 0.1$$
.

4.
$$a = 10$$
.

47. Let f(x) = ax + 100 for $a \in \mathbb{R}$. Then the iteration $x_{n+1} = f(x_n)$ for $n \ge 0$ and $x_0 = 0$ converges for

1.
$$a = 5$$
.

2.
$$a = 1$$
.

3.
$$a = 0.1$$
.

4.
$$a = 10$$
.

48. किसी स्थिति सदिश $2\hat{\imath} + \hat{\jmath} - 2\hat{k}$ वाले कण पर बल $5\hat{\imath} - 2\hat{\jmath} + 3\hat{k}$ कार्य करता है। उद्गम के गिर्द बल का बलआधूर्ण है

1.
$$\hat{i} + 16\hat{j} + 9\hat{k}$$

2.
$$-\hat{i} - 16\hat{i} - 9\hat{k}$$

3.
$$\hat{i} + 16\hat{j} - 9\hat{k}$$

4.
$$\hat{i} - 16\hat{j} + 9\hat{k}$$

48. A force $5\hat{i} - 2\hat{j} + 3\hat{k}$ acts on a particle with position vector $2\hat{i} + \hat{j} - 2\hat{k}$. The torque of the force about the origin is

1.
$$\hat{i} + 16\hat{i} + 9\hat{k}$$

2.
$$-\hat{i} - 16\hat{j} - 9\hat{k}$$

3.
$$\hat{i} + 16\hat{j} - 9\hat{k}$$

4.
$$\hat{i} - 16\hat{j} + 9\hat{k}$$

UNIT 4

- **49**. N प्रेक्षणों का एक समुच्चय, क्रमश: आवृत्तियों f_1 , f_2, \dots, f_k के साथ ताकि $\sum_{i=1}^k f_i = N$ हो, k भिन्न मानों x_1, x_2, \dots, x_k पर परिणामित हुआ। अतिरिक्त k प्रेक्षण, प्रेक्षणों प्रत्येक x_1, x_2, \dots, x_k पर परिणमित हुआ, ताकि परिवर्तित (नया) नमूना, आमाप N+k का, है प्रेक्षण x_i आवृत्ति f_i+1 के साथ।
 - नया माध्य आवश्यकत: मूल माध्य के समान या उससे कम है।
 - 2. नयी मध्यिका आवश्यकतः मूल मध्यिका के समान या उससे अधिक है।
 - 3. नया प्रसरण आवश्यकतः मूल प्रसरण के समान या उससे कम है।
 - 4. नया बहुलक मूल बहुलक के समान है।
- **49**. A set of *N* observations resulted in *k* distinct values x_1, x_2, \dots, x_k with respective frequencies f_1, f_2, \dots, f_k , so that $\sum_{i=1}^k f_i = N$. Another *k* observations resulted in observations x_1, x_2, \dots, x_k once each, so that the modified (new) sample of size N+k has observation x_i with frequency $f_i + 1$.
 - 1. The new mean is necessarily less than or equal to the original mean.
 - 2. The new median is necessarily more than or equal to the original median.
 - 3. The new variance is necessarily less than or equal to the original variance.
 - 4. The new mode will be same as the original mode.
- 50. छ: अक्षरों, A, B, C, D, E तथा F से याद्दिछकत: तीन अक्षर पुन:स्थापन के साथ चुने जाते हैं। चुने गये अक्षरों से शब्द BAD या शब्द CAD की रचना कर सकने की प्रायिकता क्या है?

1.
$$\frac{1}{216}$$

$$2. \frac{3}{216}$$

3.
$$\frac{6}{216}$$

4.
$$\frac{12}{216}$$

50. From the six letters *A*, *B*, *C*, *D*, *E* and *F*, three letters are chosen at random with replacement. What is the probability that either the word *BAD* or the word *CAD* can be formed from the chosen letters?

1. $\frac{1}{216}$

2. $\frac{3}{216}$

3. $\frac{6}{216}$

4. $\frac{12}{216}$

51. मानें कि X एक याद्दिछक चर है जो 0 के गिर्द समित है। मानें कि X का संचयी बंटन फलन F है। निम्न कथनों में से कौन-सा हमेशा सच होता है?

1. F(x) + F(-x) = 1 सभी $x \in \mathbb{R}$ के लिए।

2. F(x) - F(-x) = 0 सभी $x \in \mathbb{R}$ के लिए।

3. F(x) + F(-x) = 1 + P(X = x) सभी $x \in \mathbb{R}$ के लिए।

4. F(x) + F(-x) = 1 - P(X = -x) सभी $x \in \mathbb{R}$ के लिए।

51. Let *X* be a random variable which is symmetric about 0. Let *F* be the cumulative distribution function of *X*. Which of the following statements is always true?

1. F(x) + F(-x) = 1 for all $x \in \mathbb{R}$.

2. F(x) - F(-x) = 0 for all $x \in \mathbb{R}$.

3. F(x) + F(-x) = 1 + P(X = x) for all $x \in \mathbb{R}$.

4. F(x) + F(-x) = 1 - P(X = -x) for all $x \in \mathbb{R}$.

52. मानें कि Y_1, Y_2 दो स्वतंत्र यादृच्छिक चर हैं जो मान -1 तथा +1, प्रत्येक प्रायिकता $\frac{1}{2}$ के साथ लेते हैं। परिभाषित करें कि

 $X_1=Y_1,\,X_2=Y_2,\,X_3=X_2X_1,\cdots,\,X_n=\,X_{n-1}X_{n-2},\,\,n\geq 3$ के लिए। तो

1. $P(X_8 = 1, X_9 = 1, X_{10} = -1) = \frac{1}{4}$

2. $P(X_8 = 1, X_9 = 1, X_{10} = 1) = \frac{1}{4}$

3. $P(X_8 = 1, X_9 = 1, X_{10} = -1) = \frac{1}{8}$

4. $P(X_8 = 1, X_9 = 1, X_{10} = 1) = \frac{1}{8}$

52. Let Y_1 , Y_2 be two independent random variables taking values -1 and +1 with probability $\frac{1}{2}$ each. Define

 $X_1 = Y_1, X_2 = Y_2, X_3 = X_2 X_1, \dots, X_n = X_{n-1} X_{n-2}$ for $n \ge 3$. Then

1. $P(X_8 = 1, X_9 = 1, X_{10} = -1) = \frac{1}{4}$

2. $P(X_8 = 1, X_9 = 1, X_{10} = 1) = \frac{1}{4}$

3. $P(X_8 = 1, X_9 = 1, X_{10} = -1) = \frac{1}{8}$

4. $P(X_8 = 1, X_9 = 1, X_{10} = 1) = \frac{1}{8}$

53. मानें कि X_i 's स्वतंत्र याद्दिछक चर हैं ताकि X_i 's, 0 के गिर्द सममित हैं तथा प्रसरण $(X_i) = 2i-1, i \ge 1$ के लिए | तो

 $\lim_{n\to\infty} P\left(X_1 + X_2 + \dots + X_n > n \log n\right)$

का अस्तित्व नहीं है।
 ½ के समान है।

1 के समान है।
 4. 0 के समान है।

53. Let X_i 's be independent random variables such that X_i 's are symmetric about 0 and $Var(X_i) = 2i-1$, for $i \ge 1$. Then,

 $\lim_{n\to\infty} P\left(X_1 + X_2 + \dots + X_n > n \log n\right)$

1. does not exist.

2. equals $\frac{1}{2}$.

3. equals 1.

4. equals 0.

54. मार्ने कि X_1, X_2, \dots, X_n एकसमान $(\theta, 5\theta), \theta > 0$ से प्राप्त याद्दाध्धिक प्रतिदर्श है। परिभाषित करें कि $X_{(1)} = \min \{X_1, X_2, \dots, X_n\}$ तथा $X_{(n)} = \max \{X_1, X_2, \dots, X_n\}$ हैं। θ का उच्चतम

संभाविता आकलज है $1. \frac{X_{(1)}}{5}$

2. $X_{(n)}$

3. *X*₍₁₎

4. $\frac{X_{(n)}}{5}$

54. Let X_1, X_2, \dots, X_n be a random sample from uniform $(\theta, 5\theta), \theta > 0$. Define $X_{(1)} = \min \{X_1, X_2, \dots, X_n\}$ and $X_{(n)} = \max \{X_1, X_2, \dots, X_n\}$. Maximum likelihood estimator of θ is

1. $\frac{X_{(1)}}{5}$

2. $X_{(n)}$

3. $X_{(1)}$

4. $\frac{X_{(n)}}{5}$

55. H_0 : $X \sim$ प्रसामन्य, माध्य 0 तथा प्रसरण $\frac{1}{2}$ के साथ, बनाम H_1 : $X \sim$ कोशी (0,1) परीक्षण पर विचारें। तो H_0 के H_1 के विरूद्ध परीक्षण के लिए शक्ततम आमाप α परीक्षण

- 1. का अस्तित्व नहीं है।
- 2. यदि तथा मात्र यदि $|x| > c_2$ है, जहां c_2 ऐसे है कि परीक्षण आमाप α का है, तो ही H_0 को अस्वीकार करता है।
- 3. यदि तथा मात्र यदि $|x| < c_3$ है, जहां c_3 ऐसे है िक परीक्षण आमाप α का है, तो ही H_0 को अस्वीकार करता है।
- 4. यदि तथा मात्र यदि $|x| < c_4$ या $|x| > c_5$ है, जहां c_4 तथा c_5 ऐसे हैं कि परीक्षण आमाप α का है, तो ही H_0 अस्वीकार करता है।
- **55**. Consider the problem of testing H_0 : $X \sim \text{Normal}$ with mean 0 and variance $\frac{1}{2}$ against H_1 : $X \sim$ Cauchy (0, 1). Then for testing H_0 against H_1 , the most powerful size α test
 - 1. does not exist.
 - 2. rejects H_0 if and only if $|x| > c_2$ where c_2 is such that the test is of size α .
 - 3. rejects H_0 if and only if $|x| < c_3$ where c_3 is such that the test is of size α .
 - 4. rejects H_0 if and only if $|x| < c_4$ or $|x| > c_5$, $c_4 < c_5$ where c_4 and c_5 are such that the test is of size α .
- **56**. मानें कि X_1 , X_2 , X_3 तथा X_4 स्वतंत्र तथा सर्वथासमानत: बंटित याद्दिछक चर हैं, चारों सार्व माध्य μ तथा प्रसरण 2 युक्त प्रसामान्य बंटन के साथ। यदि μ का पूर्व बंटन प्रसामान्य है, माध्य 0तथा प्रसरण $\frac{1}{2}$ के साथ, तो निम्न में से कौन-सा सही है?
 - 1. पूर्व बंटन संयुग्मी पूर्व नहीं है।
 - 2. X_1, X_2, X_3 तथा X_4 के दिये जाने पर μ का पश्च बह्लक है $\frac{\sum_{i=1}^{4} X_{i}}{2}$ ।
 - 3. X_1, X_2, X_3 तथा X_4 के दिये जाने पर μ की पश्च मध्यिका है $\frac{\sum_{i=1}^{4} X_i}{2}$ ।
 - 4. X_1, X_2, X_3 तथा X_4 के दिये जाने पर μ का पश्च प्रसरण है $\left(\frac{\sum_{i=1}^{4} X_i}{I}\right)^2$ ।
- **56.** Let X_1 , X_2 , X_3 and X_4 be independent and identically distributed random variables with common distribution normal with mean μ and variance 2. If the prior distribution of μ is

normal with mean 0 and variance $\frac{1}{2}$, then which of the following is true?

- 1. The prior distribution is not a conjugate
- 2. Posterior mode of μ given X_1 , X_2 , X_3 and X_4 is $\frac{\sum_{i=1}^{4} X_i}{8}$.
- 3. Posterior median of μ given X_1, X_2, X_3 and X_4 is $\frac{\sum_{i=1}^{4} X_i}{4}$.
- 4. Posterior variance of μ given X_1 , X_2 , X_3 and X_4 is $\left(\frac{\sum_{i=1}^4 X_i}{4}\right)^2$.
- 57. मार्ने कि Y_1, Y_2, Y_3 तथा Y_4 सार्व अज्ञात प्रसरण σ^2 यक्त असहसंबंधित प्रेक्षण हैं, जिनकी प्रत्याशायें $E(Y_1) = \beta_1 + \beta_2 + \beta_3 = E(Y_2),$

$$E(Y_3) = \beta_1 - \beta_2 = E(Y_4)$$
, से दी गई हैं,

जहां β_1,β_2 तथा β_3 अज्ञात प्राचल हैं। परिभाषित करें िक $e_1 = \frac{1}{\sqrt{2}}(Y_1 - Y_2)$ तथा $e_2 = \frac{1}{\sqrt{2}}(Y_3 - Y_4) \mid \sigma^2$ के लिए एक अनिभनत आकलज है

1.
$$\frac{1}{2}(e_1^2-e_2^2)$$
.

2.
$$\frac{1}{2}(e_1^2 + e_2^2)$$
.

3.
$$\frac{1}{4}(e_1^2 + e_2^2)$$
.

4.
$$e_1^2 + e_2^2$$
.

57. Let Y_1 , Y_2 , Y_3 and Y_4 be uncorrelated observations with common unknown variance σ^2 and expectations given by

$$E(Y_1) = \beta_1 + \beta_2 + \beta_3 = E(Y_2),$$

$$E(Y_3) = \beta_1 - \beta_2 = E(Y_4),$$

where β_1 , β_2 and β_3 are unknown parameters.

Define
$$e_1 = \frac{1}{\sqrt{2}}(Y_1 - Y_2)$$
 and

 $e_2 = \frac{1}{\sqrt{2}}(Y_3 - Y_4)$. An unbiased estimator of

1.
$$\frac{1}{2}(e_1^2 - e_2^2)$$
.

2.
$$\frac{1}{2}(e_1^2 + e_2^2)$$
.

3.
$$\frac{1}{4}(e_1^2 + e_2^2)$$
. 4. $e_1^2 + e_2^2$.

4.
$$e_1^2 + e_2^2$$

58. 3 उपचार तथा 3 प्रतिकृतियां युक्त एक याद्दिछक खंड अभिकल्पना पर विचारें तथा मानें कि i^{th} (i=1, 2, 3) उपचार के प्रभाव को t_i निर्दिष्ट करता है। यदि σ किसी प्रेक्षण के प्रसरण को निर्दिष्ट करता है, तो निम्न कथनों में से कौन-सा सही है?

- 1. $(t_1 t_2)/\sqrt{2}$ तथा $(t_1 2t_2 + t_3)/\sqrt{6}$ के श्रेष्ठतम रैखिक अनिभैनत आकलजों (BLUE) के प्रसरण समान हैं।
- 2. $t_1 t_3$ के BLUE तथा $t_1 2t_2 + t_3$ के BLUE के बीच सहप्रसरण $2\sigma^2/3$ है।
- 3. $t_i t_j$, $(i \neq j, i, j = 1, 2, 3)$ के BLUE का प्रसरण $\sigma^2/3$ है।
- 4. $(t_1 2t_2 + t_3)$ के BLUE का प्रसरण $\sigma^2/6$ है।
- **58.** Consider a randomized block design involving 3 treatments and 3 replicates and let t_i denote the effect of the i^{th} treatment (i = 1, 2, 3). If σ^2 denotes the variance of an observation, which of the following statements is true?
 - 1. The variance of the best linear unbiased estimators (BLUE) of $(t_1 t_2)/\sqrt{2}$ and $(t_1 2t_2 + t_3)/\sqrt{6}$ are equal.
 - 2. The covariance between the BLUE of $t_1 t_3$ and the BLUE of $t_1 2t_2 + t_3$ is $2\sigma^2/3$.
 - 3. The variance of the BLUE of $t_i t_j$, $(i \neq j, i, j = 1, 2, 3)$ is $\sigma^2/3$.
 - 4. The variance of the BLUE of $(t_1 2t_2 + t_3)$ is $\sigma^2/6$.
- 59. मार्ने कि $n \times 1$ सदिश \underline{x} एक n-चर प्रसामान्य बंटन का अनुसरण करता है जिसका माध्य सदिश $\underline{\mu}(\neq \underline{0})$ तथा प्रसरण -सहप्रसरण आव्यूह $V(\neq l_n, n^{th}$ कोटि का तत्समक आव्यूह) हैं। इसके अतिरिक्त, मार्ने कि A कोटि n का एक सममित आव्यूह है। निम्न कथनों में से कौन-सा सही है?
 - 1. यदि तथा मात्र यदि $(AV)^2 = AV$ है, तो ही $\underline{x}'A\underline{x}$ एक केंद्रीय काई-वर्ग बंटन का अनुसरण करता है।
 - 2. यदि तथा मात्र यदि $A^2 = A$ है, तो ही $\underline{x}'A\underline{x}$ एक केंद्रीय काई-वर्ग बंटन का अन्सरण करता है।
 - 3. $\underline{x'}A\underline{x}$ का माध्य है $\underline{\mu'}A\underline{\mu} + tr(AV)$, जहां $tr(\cdot)$, एक वर्ग आव्यूह के अन्रेख को निर्दिष्ट करता है।
 - 4. $\underline{x}'A\underline{x}$ का हमेशा एक केंद्रीय काई-वर्ग बंटन, स्वतंत्रता कोटि n के साथ है।

- **59**. Let the $n \times 1$ vector \underline{x} follow an n-variate normal distribution with mean vector $\underline{\mu}(\neq \underline{0})$ and variance –covariance matrix $V(\neq I_n)$, the n^{th} order identity matrix). Also, let A be a symmetric matrix of order n. Which of the following statements is true?
 - 1. $\underline{x}' \underline{A} \underline{x}$ follows a central chi-square distribution if and only if $(AV)^2 = AV$
 - 2. $\underline{x}' \underline{A} \underline{x}$ follows a central chi-square distribution if and only if $A^2 = A$.
 - 3. The mean of $\underline{x'}\underline{A}\underline{x}$ is $\underline{\mu'}\underline{A}\underline{\mu} + tr(AV)$, where $tr(\cdot)$ denotes the trace of a square matrix.
 - 4. $\underline{x}' \underline{A} \underline{x}$ always has a central chi-square distribution with n degrees of freedom.

समस्या

1. का कोई सुसंगत हल नहीं है।

 $x_1, x_2 \ge 0.$

- 2. के अनंतत: कई इष्टतम हल हैं।
- 3. का एक अदिवतीय इष्टतम हल है।
- 4. का एक अपरिबद्ध हल है।
- **60**. Consider the following Linear Programming Problem. Max $x_1 + \frac{5}{2}x_2$ subject to

$$5x_1 + 3x_2 \le 15$$
$$-x_1 + x_2 \le 1$$
$$2x_1 + 5x_2 \le 10.$$
$$x_1, x_2 \ge 0.$$

The problem

- 1. has no feasible solution.
- 2. has infinitely many optimal solutions.
- 3. has a unique optimal solution.
- 4. has an unbounded solution.

भाग \PART 'C'

UNIT 1

- **61**. $(x,y) \in \mathbb{R}^2$ के लिए श्रेणी $\lim_{n \to \infty} \sum_{\ell,k=0}^n \frac{k^2 x^k y^\ell}{\ell!}$ पर विचारें। यह श्रेणी अभिसरित होती है (x,y) के लिए जो इसमें हैं:
 - 1. $(-1,1) \times (0,\infty)$
- $2. \quad \mathbb{R} \times (-1,1)$
- 3. $(-1,1) \times (-1,1)$
- $\mathbb{R} \times \mathbb{R}$
- **61.** For $(x, y) \in \mathbb{R}^2$, consider the series $\lim_{n \to \infty} \sum_{\ell, k=0}^{n} \frac{k^2 x^k y^{\ell}}{\ell!}$. Then the series converges for (x, y) in
 - 1. $(-1,1) \times (0,\infty)$
- $\mathbb{R} \times (-1,1)$
- 3. $(-1,1) \times (-1,1)$
- 4. $\mathbb{R} \times \mathbb{R}$
- 62. निम्न समुच्चयों में से कौन-से संहत हैं?
 - 1. यूक्लिडियन संस्थितिकी में

$$\{\,(x,y,z)\in\,\mathbb{R}^3:\ x^2+\,y^2\,+z^2=1\}\,\,|\,$$

2. यूक्लिडियन संस्थितिकी में

$$\{(z_1, z_2, z_3) \in \mathbb{C}^3: z_1^2 + z_2^2 + z_3^2 = 1\}$$

- 4. किसी नियत धन वास्तविक संख्या a के लिए यूक्लिडियन संस्थितिकी में $\{z\in\mathbb{C}:|Re\ z|\leq a\}$ ।
- **62**. Which of the following sets are compact?
 - 1. $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ in the Euclidean topology.
 - 2. $\{(z_1, z_2, z_3) \in \mathbb{C}^3: z_1^2 + z_2^2 + z_3^2 = 1\}$ in the Euclidean topology.
 - 3. $\prod_{n=1}^{\infty} A_n$ with product topology, where $A_n = \{0,1\}$ has discrete topology for n = 1,2,3,...
 - 4. $\{z \in \mathbb{C} : |Re z| \le a\}$ in the Euclidean topology for some fixed positive real number a.

63. मानें कि $f:(0,1) \to \mathbb{R}$ संतत है। मानें कि सभी $x,y \in (0,1)$ के लिए

 $|f(x) - f(y)| \le |\cos x - \cos y| \ \text{\reft} \ \text{l} \ \text{ al}$

- 1. (0,1) में कम से कम एक बिंदु पर f असंतत है।
- 2. (0,1) पर f सभी जगह संतत है परंतु (0,1) पर एकसमानतः संतत नहीं ।
- 3. (0,1) पर f एकसमानत: संतत है।
- 4. $\lim_{x\to 0} f(x)$ का अस्तित्व है।
- **63**. Let $f: (0,1) \to \mathbb{R}$ be continuous. Suppose that $|f(x) f(y)| \le |\cos x \cos y|$ for all $x, y \in (0,1)$. Then,
 - 1. *f* is discontinuous at least at one point in (0, 1).
 - 2. *f* is continuous everywhere on (0, 1) but not uniformly continuous on (0, 1).
 - 3. f is uniformly continuous on (0,1).
 - 4. $\lim_{x\to 0} f(x)$ exists.
- 64. मार्ने कि $f: \mathbb{R} \to \mathbb{R}$ एक अवकलनीय फलन है तािक $\sup_{x \in \mathbb{R}} |f'(x)| < \infty$ है। तो
 - 1. f किसी परिबद्ध अनुक्रम को किसी परिबद्ध अनुक्रम पर प्रतिचित्रित करता है।
 - 2. f एक कोशी अनुक्रम को एक कोशी अनुक्रम पर प्रतिचित्रित करता है।
 - 3. f एक अभिसरित अनुक्रम को एक अभिसरित अनुक्रम पर प्रतिचित्रत करता है।
 - 4. f एकसमानत: संतत है।
- **64**. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that

 $\sup_{x \in \mathbb{R}} |f'(x)| < \infty$. Then,

- 1. *f* maps a bounded sequence to a bounded sequence.
- 2. *f* maps a Cauchy sequence to a Cauchy sequence.
- 3. *f* maps a convergent sequence to a convergent sequence.
- 4. *f* is uniformly continuous.
- **65**. मार्ने कि $p_n(x) = a_n x^2 + b_n x$ द्विघात बहुपदों का एक अनुक्रम है जहां सभी $n \ge 1$ के लिए a_n , $b_n \in \mathbb{R}$ है। मार्ने कि λ_0 , λ_1 विविक्त शून्येतर वास्तविक संख्यायें हैं ताकि $\lim_{n \to \infty} p_n(\lambda_0)$ तथा $\lim_{n \to \infty} p_n(\lambda_1)$ के अस्तित्व हैं। तो

- $1.\ \lim_{n o\infty}p_n(x)$ का अस्तित्व सभी $x\in\mathbb{R}$ के लिए है।
- 2. $\lim_{n\to\infty}p'_{n}\left(x\right)$ का अस्तित्व सभी $x\in\mathbb{R}$ के लिए है।
- 3. $\lim_{n o \infty} p_n \Big(rac{\lambda_0 + \lambda_1}{2} \Big)$ का अस्तित्व नहीं है।
- 4. $\lim_{n \to \infty} {p'}_n \left(\frac{\lambda_0 + \lambda_1}{2} \right)$ का अस्तित्व नहीं है।
- **65**. Let $p_n(x) = a_n x^2 + b_n x$ be a sequence of quadratic polynomials where $a_n, b_n \in \mathbb{R}$ for all $n \ge 1$. Let λ_0, λ_1 be distinct nonzero real numbers such that $\lim_{n\to\infty} p_n(\lambda_0)$ and $\lim_{n\to\infty} p_n(\lambda_1)$ exist. Then,
 - 1. $\lim_{n\to\infty} p_n(x)$ exists for all $x\in\mathbb{R}$.
 - 2. $\lim_{n\to\infty} p'_n(x)$ exists for all $x \in \mathbb{R}$.
 - 3. $\lim_{n\to\infty} p_n\left(\frac{\lambda_0+\lambda_1}{2}\right)$ does not exist.
 - 4. $\lim_{n\to\infty} p'_n\left(\frac{\lambda_0+\lambda_1}{2}\right)$ does not exist
- **66**. मार्ने कि $S \subset \mathbb{R}^2$ परिभाषित है $S = \{\left(m + \frac{1}{4^{|p|}}, n + \frac{1}{4^{|q|}}\right) : m, n, p, q \in \mathbb{Z} \} \ \, \vec{\mathrm{tl}} \, ,$ तो,
 - $1. \mathbb{R}^2$ पर S विविक्त है।
 - 2. S के सीमा बिंदुओं का समुच्चय है समुच्चय $\{(m,n): m,n \in \mathbb{Z}\}$ ।
 - 3. S^c संबद्ध है परंतु पथ संबद्ध नहीं है।
 - 4. S^c पथ संबद्ध है।
- **66.** Let $S \subset \mathbb{R}^2$ be defined by $S = \{ \left(m + \frac{1}{4^{|p|}}, n + \frac{1}{4^{|q|}} \right) : m, n, p, q \in \mathbb{Z} \}.$ Then,
 - 1. S is discrete in \mathbb{R}^2 .
 - 2. The set of limit points of *S* is the set $\{(m, n): m, n \in \mathbb{Z}\}.$
 - 3. S^c is connected but not path connected.
 - 4. S^c is path connected.
- 67. मार्ने कि $f: \mathbb{R}^2 \to \mathbb{R}^2$ सूत्र $f(x,y) = (3x + 2y + y^2 + |xy|, 2x + 3y + x^2 + |xy|)$ से दिया जाता है। तो
 - 1. (0,0) पर f असंतत है।
 - (0,0) पर f संतत है। परंतु (0,0) पर अवकलनीय नहीं।

- 3. (0,0) पर f अवकलनीय है।
- 4. (0,0) पर f अवकलनीय है, परंतु अवकलज Df(0,0) व्युत्क्रमणीय है।
- **67.** Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be given by the formula $f(x,y) = (3x + 2y + y^2 + |xy|, 2x + 3y + x^2 + |xy|). Then,$
 - 1. f is discontinuous at (0,0).
 - 2. *f* is continuous at (0,0) but not differentiable at (0,0).
 - 3. f is differentiable at (0,0).
 - 4. f is differentiable at (0,0) and the derivative Df(0,0) is invertible.
- **68**. मार्ने कि $A = \{(x,y) \in \mathbb{R}^2 : x + y \neq -1\}$ है। परिभाषित करें $f: A \to \mathbb{R}^2$ को $f(x,y) = (\frac{y}{1+x+y}, \frac{x}{1+x+y})$ से। तो
 - 1. A पर f के जैकोबी का सारणिक लुप्त नहीं होता।
 - 2. A पर f अनंतत: अवकलनीय है।
 - 3. f एकैकी है।
 - 4. $f(A) = \mathbb{R}^2$
- **68.** Let $A = \{ (x, y) \in \mathbb{R}^2 : x + y \neq -1 \}$. Define $f: A \to \mathbb{R}^2$ by $f(x, y) = (\frac{y}{1 + x + y}, \frac{x}{1 + x + y})$. Then,
 - 1. the determinant of the Jacobian of *f* does not vanish on *A*.
 - 2. *f* is infinitely differentiable on *A*.
 - 3. *f* is one to one.
 - 4. $f(A) = \mathbb{R}^2$.
- **69**. मानें कि $f: \mathbb{R}^2 \to \mathbb{R}^2$, फलन $f(r,\theta) = (r\cos\theta, r\sin\theta)$ है। तो निम्न दिये गये \mathbb{R}^2 के विवृत उपसमुच्चयों U में किस के लिए, U तक सीमित f एक व्युत्क्रम को अनुमत करता है? $1. \ U = \mathbb{R}^2$
 - 2. $U = \{(x, y) \in \mathbb{R}^2 : x > 0, y > 0 \}$
 - 3. $U = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$
 - 4. $U = \{(x, y) \in \mathbb{R}^2 : x < -1, y < -1\}$
- **69**. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be the function $f(r,\theta) = (r\cos\theta, r\sin\theta)$. Then for which of the open subsets U of \mathbb{R}^2 given below, f restricted to U admits an inverse?

1.
$$U = \mathbb{R}^2$$

2.
$$U = \{(x, y) \in \mathbb{R}^2 : x > 0, y > 0 \}$$

3.
$$U = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$$

4.
$$U = \{(x, y) \in \mathbb{R}^2 : x < -1, y < -1\}$$

70. मानें कि t तथा a धन वास्तविक संख्यायें हैं। परिभाषित करें कि

$$B_a = \{ x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | x_1^2 + x_2^2 + \dots + x_n^2 \le a^2 \}$$

तो \mathbb{R}^n पर किसी संहतत: आलंबित संतत फलन f के लिए निम्न में से कौन-से सही हैं?

1.
$$\int_{B_a} f(tx) dx = \int_{B_{ta}} f(x) t^{-n} dx$$

2.
$$\int_{B_a} f(tx) \ dx = \int_{B_t n_a} f(x) t \ dx$$

$$3. \int_{\mathbb{R}^n} f(x+y) dx = \int_{\mathbb{R}^n} f(x) dx$$
, কুঞ $y \in \mathbb{R}^n$ के लिए

4.
$$\int_{\mathbb{R}^n} f(tx) dx = \int_{\mathbb{R}^n} f(x) t^n dx.$$

70. Let *t* and *a* be positive real numbers. Define $B_a = \{ x = (x_1, x_2,, x_n) \in \mathbb{R}^n | x_1^2 \}$

$$+ x_2^2 + \dots + x_n^2 \le a^2$$
.

Then for any compactly supported continuous function f on \mathbb{R}^n which of the following are correct?

1.
$$\int_{B_n} f(tx) dx = \int_{B_{ta}} f(x) t^{-n} dx$$

2.
$$\int_{B_a} f(tx) \ dx = \int_{B_t n_a} f(x) t \ dx$$

3.
$$\int_{\mathbb{R}^n} f(x+y)dx = \int_{\mathbb{R}^n} f(x)dx$$
, for some $y \in \mathbb{R}^n$.

4.
$$\int_{\mathbb{R}^n} f(tx) dx = \int_{\mathbb{R}^n} f(x) t^n dx.$$

- 71. $[0,\infty)$ पर वास्तविक मान संतत फलनों $\{f_n\}$ के सभी अनुक्रमों पर विचारें। पहचानें कि निम्न कथनों में से कौन-से सहीं है
 - 1. यदि $[0,\infty)$ पर $\{f_n\}, f$ पर बिंदुवत अभिसरित होता है, तो $\lim_{n\to\infty} \int_0^\infty f_n(x) dx = \int_0^\infty f(x) dx$
 - 2. यदि $[0, \infty)$ पर $\{f_n\}$, f तक एकसमानत: अभिसरित होता है, तो $\lim_{n\to\infty}\int_0^\infty f_n(x)dx=\int_0^\infty f(x)dx$ है।

- 3. यदि $[0, \infty)$ पर $\{f_n\}$, f तक एकसमानत: अभिसरित होता है, तो $[0, \infty)$ पर f संतत है।
- 4. $[0,\infty)$ पर संतत फलनों $\{f_n\}$ के एक अनुक्रम का अस्तित्व है ताकि $\{f_n\}$, $[0,\infty)$ पर f तक एकसमानत: अभिसरित होता है परंतु $\lim_{n\to\infty}\int_0^\infty f_n(x)dx \neq \int_0^\infty f(x)dx$.
- 71. Consider all sequences $\{f_n\}$ of real valued continuous functions on $[0, \infty)$. Identify which of the following statements are correct.
 - 1. If $\{f_n\}$ converges to f pointwise on $[0, \infty)$, then $\lim_{n\to\infty} \int_0^\infty f_n(x) dx = \int_0^\infty f(x) dx$
 - 2. If $\{f_n\}$ converges to f uniformly on $[0, \infty)$, then $\lim_{n\to\infty} \int_0^\infty f_n(x) dx = \int_0^\infty f(x) dx$
 - 3. If $\{f_n\}$ converges to f uniformly on $[0, \infty)$, then f is continuous on $[0, \infty)$.
 - 4. There exists a sequence of continuous functions $\{f_n\}$ on $[0,\infty)$ such that $\{f_n\}$ converges to f uniformly on $[0,\infty)$ but $\lim_{n\to\infty} \int_0^\infty f_n(x) dx \neq \int_0^\infty f(x) dx$.
- 72. मानें कि $\mathbb R$ पर V, n के समान या उससे कम कोटि के बहुपदों की सिदश समिष्ट है। V में $p(x) = a_0 + a_1 x + \dots + a_n x^n$ के लिए, $(Tp)(x) = a_n + a_{n-1} x + \dots + a_0 x^n$ द्वारा एक रैखिक रूपांतरण $T: V \to V$ को परिभाषित करें। तो
 - T एकैकी है।
- 2. T आच्छादक है।
- 3. T व्युत्क्रमणीय है।
- 4. सारणिक $T=\pm 1$ है।
- 72. Let V be the vector space of polynomials over \mathbb{R} of degree less than or equal to n. For $p(x) = a_0 + a_1 x + \dots + a_n x^n$ in V, define a linear transformation $T: V \to V$ by $(Tp)(x) = a_n + a_{n-1}x + \dots + a_0x^n$. Then
 - 1. *T* is one to one.
- 2. *T* is onto.
- 3. *T* is invertible.
- 4. det $T = \pm 1$.
- 73. मार्ने कि G_1 तथा G_2 , \mathbb{R}^2 के दो उपसमुच्चय हैं तथा $f\colon \mathbb{R}^2 \to \mathbb{R}^2$ एक फलन है। तो
 - 1. $f^{-1}(G_1 \cup G_2) = f^{-1}(G_1) \cup f^{-1}(G_2)$
 - 2. $f^{-1}(G_1^c) = (f^{-1}(G_1))^c$
 - 3. $f(G_1 \cap G_2) = f(G_1) \cap f(G_2)$
 - 4. यदि G_1 विवृत है तथा G_2 संवृत है तो $G_1+G_2=\{x+y:x\in G_1,y\in G_2\}$ न तो संवृत है न विवृत।

- 73. Let G_1 and G_2 be two subsets of \mathbb{R}^2 and $f: \mathbb{R}^2 \to \mathbb{R}^2$ be a function. Then,
 - 1. $f^{-1}(G_1 \cup G_2) = f^{-1}(G_1) \cup f^{-1}(G_2)$
 - 2. $f^{-1}(G_1^c) = (f^{-1}(G_1))^c$
 - 3. $f(G_1 \cap G_2) = f(G_1) \cap f(G_2)$
 - 4. If G_1 is open and G_2 is closed then $G_1 + G_2 = \{x + y : x \in G_1, y \in G_2\}$ is neither open nor closed.
- 74. मानें कि \mathbb{R} पर V एक परिमित विमीय सदिश समिष्ट है। मानें कि $T:V \to V$ एक रैखिक रूपांतरण है ताकि जाति $(T^2) =$ जाति (T) है। तो,
 - 1. अष्टि $(T^2) = अष्टि(T)$
 - 2. परिसर $(T^2) =$ परिसर (T)
 - 3. अष्टि (T) ∩ परिसर $(T) = \{0\}.$
 - 4. अष्टि (T^2) ∩ परिसर $(T^2) = \{0\}.$
- **74.** Let V be a finite dimensional vector space over \mathbb{R} . Let $T: V \to V$ be a linear transformation such that $rank(T^2) = rank(T)$. Then,
 - 1. Kernel (T^2) = Kernel (T)
 - 2. $Range(T^2) = Range(T)$
 - 3. Kernel $(T) \cap \text{Range } (T) = \{0\}.$
 - 4. $Kernel(T^2) \cap Range(T^2) = \{0\}.$
- 75. मार्ने कि \mathbb{C} पर A तथा B, $n \times n$ आव्यूह हैं। तो,
 - 1. AB तथा BA के अभिलक्षण मानों का समुच्चय हमेशा समान हैं।
 - 2. यदि AB तथा BA के अभिलक्षण मान के समुच्चय समान हैं तो AB = BA है।
 - 3. यदि A^{-1} का अस्तित्व है तो AB तथा BA समरूप हैं।
 - 4. AB की जाति हमेशा BA की जाति के समान है।
- 75. Let A and B be $n \times n$ matrices over C. Then,
 - 1. AB and BA always have the same set of eigenvalues.
 - 2. If AB and BA have the same set of eigenvalues then AB = BA.
 - 3. If A^{-1} exists then AB and BA are similar.
 - 4. The rank of *AB* is always the same as the rank of *BA*.
- **76**. मानें कि A एक $m \times n$ वास्तिवक आव्यूह है तथा $b \in \mathbb{R}^m, \ b \neq 0$ है।

- 1. Ax = b के सभी वास्तविक हलों का समुच्चय एक सिदश समिष्ट है।
- 2. यदि Ax = b के दो हल u तथा v हैं, तो $\lambda u + (1 \lambda)v$ भी Ax = b का एक हल है, कोई भी $\lambda \in \mathbb{R}$ के लिए।
- 3. Ax = b के किसी भी दो हलों u तथा v के लिए एकघात संचय $\lambda u + (1 \lambda)v$ भी Ax = b का एक हल है मात्र तब, जब $0 \le \lambda \le 1$ है।
- 4. यदि A की जाति n है, Ax = b का अधिक से अधिक एक हल है।
- **76.** Let *A* be an $m \times n$ real matrix and $b \in \mathbb{R}^m$ with $b \neq 0$.
 - 1. The set of all real solutions of Ax = b is a vector space.
 - 2. If u and v are two solutions of Ax = b, then $\lambda u + (1 \lambda)v$ is also a solution of Ax = b for any $\lambda \in \mathbb{R}$.
 - 3. For any two solutions u and v of Ax = b, the linear combination $\lambda u + (1 \lambda)v$ is also a solution of Ax = b only when $0 \le \lambda \le 1$.
 - 4. If rank of A is n, then Ax = b has at most one solution.
- 77. मानें कि A, \mathbb{C} पर एक $n \times n$ आव्यूह है ताकि \mathbb{C}^n का प्रत्येक शून्येतर सदिश A का एक अभिलक्षणिक सदिश है। तो
 - 1. A के सभी अभिलक्षणिक मान समान हैं।
 - 2. A के सभी अभिलक्षणिक मान विविक्त हैं।
 - 3. किसी $\lambda \in \mathbb{C}$ के लिए $A = \lambda I$ है, जहां I $n \times n$ तत्समक आव्यूह है।
 - 4. यदि χ_A तथा m_A क्रमशः अभिलक्षणिक बहुपद एवं अल्पिष्ठ बहुपद को निर्दिष्ट करते हैं, तो $\chi_A = m_A$ है।
- 77. Let A be an $n \times n$ matrix over \mathbb{C} such that every nonzero vector of \mathbb{C}^n is an eigenvector of A. Then
 - 1. All eigenvalues of *A* are equal.
 - 2. All eigenvalues of A are distinct.
 - 3. $A = \lambda I$ for some $\lambda \in \mathbb{C}$, where I is the $n \times n$ identity matrix.
 - 4. If χ_A and m_A denote the characteristic polynomial and the minimal polynomial respectively, then $\chi_A = m_A$.

- 78. आव्यूहों $A = \begin{bmatrix} 2 & 2 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix}$ तथा $B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ पर विचारें। तो
 - 1. परिमेय संख्या क्षेत्र $\mathbb Q$ पर A तथा B समरूप हैं।
 - 2. परिमेय संख्या क्षेत्र \mathbb{Q} पर A विकर्णनीय है।
 - 3. A का जोरदां विहित रूप B है।
 - 4. A के अल्पिष्ठ बहुपद एवं अभिलक्षणिक बहुपद समान हैं।
- **78.** Consider the matrices $A = \begin{bmatrix} 2 & 2 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. Then
 - 1. A and B are similar over the field of rational numbers \mathbb{Q} .
 - 2. *A* is diagonalizable over the field of rational numbers \mathbb{Q} .
 - 3. *B* is the Jordan canonical form of *A*.
 - 4. The minimal polynomial and the characteristic polynomial of *A* are the same

UNIT 2

79. मानें कि a_n , $\{1,2,\cdots,n\}$ पर उन क्रमचयों σ की संख्या को निर्दिष्ट करता है ताकि σ ठीक-ठीक दो असंयुक्त चक्रों का गुणनफल है। तो:

1.
$$a_5 = 50$$

2.
$$a_4 = 14$$

3.
$$a_5 = 40$$

4.
$$a_4 = 11$$

79. Let a_n denote the number of those permutations σ on $\{1,2,\dots,n\}$ such that σ is a product of exactly two disjoint cycles. Then:

1.
$$a_5 = 50$$

2.
$$a_4 = 14$$

3.
$$a_5 = 40$$

4.
$$a_4 = 11$$

80. निम्न तीन समशेषों को समाधान करने वाले पूर्णांक को निम्न अंतरालों में से कौन-सा अंतराल अंतर्विष्ट करता है?

$$x \equiv 2 \pmod{5}$$
, $x \equiv 3 \pmod{7}$ and

$$x \equiv 4 \pmod{11}$$
.

$$x \equiv 2 \pmod{5}$$
, $x \equiv 3 \pmod{7}$ and $x \equiv 4 \pmod{11}$.

- 1. [401,600]
- 2. [601, 800]
- 3. [801, 1000]
- 4. [1001, 1200]
- 81. मार्ने कि G कोटि 60 का एक सरल समूह है। तो
 - 1. G के छ: सिलो-5 उपसमूह हैं।
 - 2. G के चार सिलो-3 उपसमूह हैं।
 - 3. G का, कोटि 6 का, एक चक्रिक उपसमूह है।
 - 4. G का एक अद्वितीय अवयव, कोटि 2 का, है।
- **81**. Let G be a simple group of order 60. Then
 - 1. G has six Sylow-5 subgroups
 - 2. *G* has four Sylow-3 subgroups.
 - 3. *G* has a cyclic subgroup of order 6.
 - 4. G has a unique element of order 2.
- **82**. मानें कि A विभाग वलय $\mathbb{Q}[X]/(X^3)$ को निर्दिष्ट करता है। तो
 - 1. A में ठीक-ठीक तीन विविक्त उचित ग्णजावलियां हैं।
 - 2. A में मात्र एक अभाज्य गुणजावली है।
 - 3. A एक पूर्णांकीय प्रांत है।
 - 4. मानें कि f,g, $\mathbb{Q}[X]$ मैं हैं, ताकि A में $\bar{f} \cdot \bar{g} = 0$ है। यहां \bar{f} तथा \bar{g} , क्रमश: A में f तथा g के प्रतिबिंबों को निर्दिष्ट करते हैं। तो $f(0) \cdot g(0) = 0$ है।
- **82**. Let *A* denote the quotient ring $\mathbb{Q}[X]/(X^3)$. Then
 - 1. There are exactly three distinct proper ideals in *A*.
 - 2. There is only one prime ideal in *A*.
 - 3. *A* is an integral domain.
 - 4. Let f, g be in $\mathbb{Q}[X]$ such that $\bar{f} \cdot \bar{g} = 0$ in A. Here \bar{f} and \bar{g} denote the image of f and g respectively in A. Then $f(0) \cdot g(0) = 0$.
- 83. निम्न विभाग वलयों में से कौन-से क्षेत्र हैं?
 - 1. $\mathbb{F}_3[X]/(X^2+X+1)$, जहां \mathbb{F}_3 , 3 अवयवों का एक परिमित क्षेत्र है।
 - 2. $\mathbb{Z}[X]/(X-3)$
 - 3. $\mathbb{Q}[X]/(X^2 + X + 1)$
 - 4. $\mathbb{F}_2[X]/(X^2+X+1)$, जहां \mathbb{F}_2 , 2 अवयवों का एक परिमित क्षेत्र है।

- **83**. Which of the following quotient rings are fields?
 - 1. $\mathbb{F}_3[X]/(X^2+X+1)$, where \mathbb{F}_3 is the finite field with 3 elements.
 - 2. $\mathbb{Z}[X]/(X-3)$
 - 3. $\mathbb{Q}[X]/(X^2 + X + 1)$
 - 4. $\mathbb{F}_2[X]/(X^2 + X + 1)$ where \mathbb{F}_2 is the finite field with 2 elements.
- **84**. मार्ने कि $\omega = \cos \frac{2\pi}{10} + i \sin \frac{2\pi}{10}$ है।

मानें कि $K = \mathbb{Q}(\omega^2)$ तथा $L = \mathbb{Q}(\omega)$ हैं। तो

- 1. $[L: \mathbb{Q}] = 10$
- 2. [L:K]=2
- 3. $[K : \mathbb{Q}] = 4$
- 4. L = K
- **84**. Let $\omega = \cos \frac{2\pi}{10} + i \sin \frac{2\pi}{10}$.

Let $K = \mathbb{Q}(\omega^2)$ and let $L = \mathbb{Q}(\omega)$. Then

- 1. $[L: \mathbb{Q}] = 10$
- 2. [L:K] = 2
- 3. $[K : \mathbb{Q}] = 4$
- 4. L = K
- 85. निम्न कथनों में से कौन-सा/से सही है/हैं?
 - 1. एक संतत मानचित्र $f: \mathbb{R} \to \mathbb{R}$ का अस्तित्व है तािक $f(\mathbb{R}) = \mathbb{Q}$ हो।
 - 2. एक संतत मानचित्र $f: \mathbb{R} \to \mathbb{R}$ का अस्तित्व है तािक $f(\mathbb{R}) = \mathbb{Z}$ हो।
 - 3. एक संतत मानचित्र $f: \mathbb{R} \to \mathbb{R}^2$ का अस्तित्व है तािक $f(\mathbb{R}) = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ हो।
 - 4. एक संतत मानचित्र $f:[0,1] \cup [2,3] \rightarrow \{0,1\}$ का अस्तित्व है।
- **85**. Which of the following statements is/are true?
 - 1. There exists a continuous map $f: \mathbb{R} \to \mathbb{R}$ such that $f(\mathbb{R}) = \mathbb{Q}$.
 - 2. There exists a continuous map $f: \mathbb{R} \to \mathbb{R}$ such that $f(\mathbb{R}) = \mathbb{Z}$.
 - 3. There exists a continuous map $f: \mathbb{R} \to \mathbb{R}^2$ such that $f(\mathbb{R}) = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$.
 - 4. There exists a continuous map $f: [0,1] \cup [2,3] \longrightarrow \{0,1\}.$
- 86. $\mathbb C$ पर संतत सिम्मिश्र मान फलनों की सिंदिश समिष्टि को मानें कि $C(\mathbb C)$ निर्दिष्ट करता है, तथा $H(\mathbb C)$ सर्वत्र वैश्लेषिक फलनों की सिंदिश समिष्टि को। $C(\mathbb C)$ में या $H(\mathbb C)$ में किसी फलन f के

लिए तथा \mathbb{C} के किसी संहत उपसमुच्चय K के लिए परिभाषित करें कि

$$||f||_K = \sup_{z \in K} |f(z)|.$$

तो

- 1. प्रत्येक सहंत $K \subseteq \mathbb{C}$ के लिए $C(\mathbb{C})$ पर $\|\cdot\|_K$ एक मानक है।
- 2. प्रत्येक सहंत $K \subseteq \mathbb{C}$ के लिए $H(\mathbb{C})$ पर $\|\cdot\|_K$ एक मानक है।
- 3. प्रत्येक अरिक्त अंतरंग युक्त सहंत $K \subseteq \mathbb{C}$ के लिए $C(\mathbb{C})$ पर $\|\cdot\|_K$ एक मानक है।
- 4. प्रत्येक अरिक्त अंतरंग युक्त सहंत $K \subseteq \mathbb{C}$ के लिए $H(\mathbb{C})$ पर $\|\cdot\|_K$ एक मानक है।
- **86.** Let $C(\mathbb{C})$ denote the vector space of continuous complex valued functions on \mathbb{C} and $H(\mathbb{C})$ denote the vector space of entire functions. For any function f in $C(\mathbb{C})$ or $H(\mathbb{C})$, and for any compact subset K of \mathbb{C} , define

$$||f||_K = \sup_{z \in K} |f(z)|.$$

Then

- 1. $\|\cdot\|_{K}$ is a norm on $C(\mathbb{C})$ for every compact $K \subseteq \mathbb{C}$.
- 2. $\|\cdot\|_{K}$ is a norm on $H(\mathbb{C})$ for every compact $K \subseteq \mathbb{C}$.
- 3. $\|\cdot\|_K$ is a norm on $C(\mathbb{C})$ for every compact $K \subseteq \mathbb{C}$ with non-empty interior.
- 4. $\|\cdot\|_{K}$ is a norm on $H(\mathbb{C})$ for every compact $K \subseteq \mathbb{C}$ with non-empty interior.
- **87**. वलयिका $A = \left\{ z \in \mathbb{C} : \frac{1}{2} < |z| < 2 \right\}$ पर फलन $f(z) = \frac{1}{z}$ पर विचारें। निम्न में से कौन-सा/से सही हैं?
 - 1. A के संहत उपसचुच्चयों पर एकसमानत: f(z) को सिन्नकिटत करनेवाले बहुपदों $\{p_n(z)\}$ के एक अनुक्रम का अस्तित्व है।
 - 2. A के संहत उपसचुच्चयों पर एकसमानत: f(z) को सिन्निकटित करनेवाले परिमेय फलनों $\{r_n(z)\}$, जिनके अनंतक $\mathbb{C}\backslash A$ में अंतर्विष्टित हैं, के एक अनुक्रम का अस्तित्व है।

- 3. A के संहत उपसचुच्चयों पर एकसमानत: f(z) को सन्निकटित करनेवाले बहुपदों $\{p_n(z)\}$ का कोई अनुक्रम नहीं है।
- 4. A के संहत उपसचुच्चयों पर एकसमानत: f(z) को सन्निकटित करनेवाले परिमेय फलनों $\{r_n(z)\}$, जिनके अनंतक $\mathbb{C}\backslash A$ में अंतर्विष्टित हैं, का कोई अनुक्रम नहीं है।
- **87.** Consider the function $f(z) = \frac{1}{z}$ on the annulus $A = \left\{ z \in \mathbb{C} : \frac{1}{2} < |z| < 2 \right\}$. Which of the following is/are true?
 - 1. There is a sequence $\{p_n(z)\}$ of polynomials that approximate f(z) uniformly on compact subsets of A.
 - 2. There is a sequence $\{r_n(z)\}$ of rational functions, whose poles are contained in $\mathbb{C}\setminus A$ and which approximates f(z) uniformly on compact subsets of A.
 - 3. No sequence $\{p_n(z)\}$ of polynomials approximate f(z) uniformly on compact subsets of A.
 - 4. No sequence $\{r_n(z)\}$ of rational functions whose poles are contained in $\mathbb{C}\setminus A$, approximate f(z) uniformly on compact subsets of A.
- **88**. मार्ने कि सभी $z \in \mathbb{C}$ के लिए $f(z) = \frac{1}{e^{z}-1}$ है ताकि $e^{z} \neq 1$ है। तो
 - 1. f अनंतकी फलन है।
 - 2. f की विचित्रतायें मात्र अनंतक हैं।
 - 3. अधिकल्पित अक्ष में f के अपरिमिततः कई अनंतक हैं।
 - 4. f का हर अनंतक एकघात है।
- **88.** Let $f(z) = \frac{1}{e^z 1}$ for all $z \in \mathbb{C}$ such that $e^z \neq 1$. Then
 - 1. f is meromorphic.
 - 2. the only singularities of f are poles.
 - 3. *f* has infinitely many poles on the imaginary axis.
 - 4. Each pole of f is simple.
- **89**. मानें $n \ge 1$ पर $(\mathbb{Z}/n\mathbb{Z})$ के एकक का समूह $(\mathbb{Z}/n\mathbb{Z})^*$ है। निम्न में से कौन-सा समूह चक्रिक है।

- 1. (Z/10Z)*
- 2. $(\mathbb{Z}/2^3\mathbb{Z})^*$
- 3. $(\mathbb{Z}/100\mathbb{Z})^*$
- 4. (Z/163Z)*
- **89**. For $n \ge 1$, let $(\mathbb{Z}/n\mathbb{Z})^*$ be the group of units of $(\mathbb{Z}/n\mathbb{Z})$. Which of the following groups are cyclic?
 - 1. $(\mathbb{Z}/10\mathbb{Z})^*$
 - 2. $(\mathbb{Z}/2^{3}\mathbb{Z})^{*}$
 - 3. $(\mathbb{Z}/100\mathbb{Z})^*$
 - 4. (Z/163Z)*
- 90. मानें कि \mathbb{C} पर f एक वैश्लेषिक फलन है। तो f एक अचर है यदि f का शून्य समजन अंतर्विष्टित करता है इस अनुक्रम को:
 - $1. \ a_n = 1/n$
 - 2. $a_n = (-1)^{n-1} \frac{1}{n}$
 - 3. $a_n = \frac{1}{2n}$
 - 4. यदि 4, n को विभाजित नहीं करता तो $a_n=n$ तथा यदि 4, n को विभाजित करता है तो $a_n=\frac{1}{n}$.
- **90.** Let f be an analytic function in \mathbb{C} . Then f is constant if the zero set of f contains the sequence
 - 1. $a_n = 1/n$
 - 2. $a_n = (-1)^{n-1} \frac{1}{n}$
 - 3. $a_n = \frac{1}{2n}$
 - 4. $a_n = n$ if 4 does not divide n and $a_n = \frac{1}{n}$ if 4 divides n

UNIT 3

91. सीमा मान समस्या

$$-u''(x) = \pi^2 u(x) ; x \in (0, 1)$$

$$u(0) = u(1) = 0.$$

पर विचारें। यदि u तथा u' [0,1] पर संतत हैं,

- 1. $u'^2(x) + \pi^2 u^2(x) = u'^2(0)$
- 2. $\int_0^1 u'^2(x) dx \pi^2 \int_0^1 u^2(x) dx = 0$
- 3. $u'^2(x) + \pi^2 u^2(x) = 0$
- 4. $\int_0^1 u'^2(x)dx \pi^2 \int_0^1 u^2(x)dx = u'^2(0)$

91. Consider the boundary value problem $-u''(x) = \pi^2 u(x)$; $x \in (0, 1)$

$$u(0) = u(1) = 0.$$

If u and u' are continuous on [0, 1], then

- 1. $u'^2(x) + \pi^2 u^2(x) = u'^2(0)$
- 2. $\int_0^1 u'^2(x)dx \pi^2 \int_0^1 u^2(x)dx = 0$
- 3. $u'^2(x) + \pi^2 u^2(x) = 0$
- 4. $\int_0^1 u'^2(x) dx \pi^2 \int_0^1 u^2(x) dx = u'^2(0)$
- **92**. मार्ने कि $y(t) = y(0) + \int_0^t y(s) ds$ for $t \ge 0$ का समाधान करता एक संततत: वैश्लेषिक फलन

$$y:[0,\infty)\to[0,\infty)$$
 है। तो

- 1. $y^2(t) = y^2(0) + \int_0^t y^2(s) ds$.
- 2. $y^2(t) = y^2(0) + 2 \int_0^t y^2(s) ds$.
- 3. $y^2(t) = y^2(0) + \int_0^t y(s)ds$.
- 4. $y^2(t) = y^2(0) + \left(\int_0^t y(s)ds\right)^2 +$ $2y(0) \int_0^t y(s) ds$.
- **92.** Let $y:[0,\infty) \to [0,\infty)$ be a continuously differentiable function satisfying

$$y(t) = y(0) + \int_0^t y(s)ds \text{ for } t \ge 0.$$

- 1. $y^2(t) = y^2(0) + \int_0^t y^2(s) ds$.
- 2. $y^2(t) = y^2(0) + 2 \int_0^t y^2(s) ds$.
- 3. $y^2(t) = y^2(0) + \int_0^t y(s)ds$.
- 4. $y^2(t) = y^2(0) + \left(\int_0^t y(s)ds\right)^2 +$ $2y(0) \int_0^t y(s) ds$.
- 93. मार्ने कि u(t) एक संततत: वैश्लेषिक फलन है जो t > 0 के लिए अऋण मान लेता है तथा u'(t) = $4u^{3/4}(t)$; u(0) = 0 का समाधान करता है। तो 1. u(t) = 0.
 - 2. $u(t) = t^4$.
 - 3. $u(t) = \begin{cases} 0 & for \ 0 < t < 1 \\ (t-1)^4 & for \ t \ge 1 \end{cases}$
 - 4. $u(t) = \begin{cases} 0 & for \ 0 < t < 10 \\ (t 10)^4 & for \ t \ge 10 \end{cases}$
- **93**. Let u(t) be a continuously differentiable function taking nonnegative values for t > 0 and satisfying $u'(t) = 4u^{3/4}(t)$; u(0) = 0. Then

- 1. u(t) = 0.
- 2. $u(t) = t^4$.

3.
$$u(t) = \begin{cases} 0 & for \ 0 < t < 1 \\ (t-1)^4 & for \ t \ge 1. \end{cases}$$
4. $u(t) = \begin{cases} 0 & for \ 0 < t < 10 \\ (t-10)^4 & for \ t \ge 10. \end{cases}$

4.
$$u(t) = \begin{cases} 0 & for \ 0 < t < 10 \\ (t-10)^4 & for \ t \ge 10. \end{cases}$$

94. मानें कि तरंग समीकरण

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}; x \in (0, 2\pi), t > 0$$

$$u(x, 0) = e^{i\omega x}$$

का समाधान u(x, t) करता है किसी $\omega \in \mathbb{R}$ के

- 1. $u(x,t) = e^{i\omega x} e^{i\omega t}$
- 2. $u(x,t) = e^{i\omega x} e^{-i\omega t}$
- 3. $u(x,t) = e^{i\omega x} \left(\frac{e^{i\omega t} + e^{-i\omega t}}{2}\right)$
- 4. $u(x,t) = t + \frac{x^2}{2}$.
- **94**. Let u(x, t) satisfy the wave equation

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$$
; $x \in (0, 2\pi)$, $t > 0$

$$u(x, 0) = e^{i\omega x}$$

for some $\omega \in \mathbb{R}$. Then

- 1. $u(x,t) = e^{i\omega x} e^{i\omega t}$
- 2. $u(x,t) = e^{i\omega x} e^{-i\omega t}$
- 3. $u(x,t) = e^{i\omega x} \left(\frac{e^{i\omega t} + e^{-i\omega t}}{2}\right)$
- 4. $u(x,t) = t + \frac{x^2}{2}$.
- **95**. मार्ने कि समीकरण $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ का $\mathbf{u}(\mathbf{x}, \mathbf{y})$ हल
 - है, जो शून्य पर पहुंचता है जब $y \to \infty$ तथा जब y = 0 है तो मान $\sin x$ रखता है। तो
 - 1. $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n)e^{-ny}$, जहां स्वेच्छ तथा b_n शून्येतर अचर हैं।
 - 2. $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n) e^{-n^2 y}$, जहां
 - $a_1 = 1$ तथा $a_n (n > 1)$, b_n अऋण अचर हैं।
 - 3. $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n) e^{-ny}$, जहां $a_1 = 1, n > 1$ के लिए $a_n = 0$ तथा $n \ge 1$ के लिए $b_n = 0$ है।
 - 4. $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n) e^{-n^2 y}$, जहां $n \ge 0$ के लिए $b_n=0$ है तथा सभी a_n शुज्येतर हैं।

- **95.** Let u(x, y) be the solution of the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, which tends to zero as $y \to \infty$ and has the value $\sin x$ when y = 0. Then
 - 1. $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n)e^{-ny}$, where a_n are arbitrary and b_n are non-zero constants.
 - 2. $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n)e^{-n^2y}$, where $a_1 = 1$ and a_n (n > 1), b_n are nonzero constants.
 - 3. $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n)e^{-ny}$, where $a_1 = 1$, $a_n = 0$ for n > 1 and $b_n = 0$ for $n \ge 1$.
 - 4. $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n)e^{-n^2y}$, where $b_n = 0$ for $n \ge 0$ and a_n are all nonzero.
- 96. आ.अ.स.

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 - u = 0$$

का हल प्रितनिधित्व करता है:

- 1. x-y तल में एक दीर्घवृत्त का।
- 2. xyu आकाश में एक दीर्घवृत्तज का।
- 3. u-x तल में एक परवलय का।
- 4. u-y तल में एक अतिपरवलय का।
- **96**. A solution of the PDE

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 - u = 0$$

represents

- 1. an ellipse in the x-y plane.
- 2. an ellipsoid in the xyu space.
- 3. a parabola in the *u-x* plane.
- 4. a hyperbola in the *u*-*y* plane.
- 97. फलनक $J[y] = \int_a^b f(x,y,y')dx$, का एक न्यूनक के अस्तित्व को दिखाने, जिसके लिए एक न्यूनकी अनुक्रम (φ_a) उपस्थित है, यह पर्याप्त है कि
 - 1. (φ_n) अभिसारी है तथा J संतत है।
 - 2. (ϕ_n) अभिसारी है तथा J अवकलनीय है।
 - 3. (φ_n) का एक अभिसारी उपानुक्रम है तथा J संतत है।
 - 4. (φ_n) का एक अभिसारी उपानुक्रम है तथा J अवकलनीय है।

- 97. To show the existence of a minimizer for the functional $J[y] = \int_a^b f(x, y, y') dx$, for which there is a minimizing sequence (φ_n) , it is enough to have
 - 1. (φ_n) is convergent and J is continuous.
 - 2. (φ_n) is convergent and *J* is differentiable.
 - 3. (φ_n) has a convergent subsequence and J is continuous.
 - 4. (φ_n) has a convergent subsequence and J is differentiable.
- **98**. मानें कि $x \ge -3$ के लिए $f(x) = \sqrt{x+3}$ है। पुनरावृत्ति

 $x_{n+1} = f(x_n), x_0 = 0; n \ge 0$ पर विचारें। पुनरावृत्ति की संभाव्य सीमायें हैं ।

1. -1

2. 3

3. 0

- 4. $\sqrt{3 + \sqrt{3 + \sqrt{3 + \cdots}}}$
- 98. Let $f(x) = \sqrt{x+3}$ for $x \ge -3$. Consider the iteration

 $x_{n+1} = f(x_n), x_0 = 0; n \ge 0$ The possible limits of the iteration are

1. -1

2 3

3. 0

- 4. $\sqrt{3 + \sqrt{3 + \sqrt{3 + \cdots}}}$
- 99. दिये गये $x_0 \neq 0$ के लिए पुनरावृत्ति

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right), n \ge 0$$
 इसका एक दृष्टांत है:

- 1. $f(x) = x^2 2$ के लिए नियत बिंद् प्नरावृत्ति।
- 2. $f(x) = x^2 2$ के लिए न्यूटन की विधि।
- 3. $f(x) = \frac{x^2+2}{2x}$ के लिए नियत बिंदु पुनरावृत्ति।
- 4. $f(x) = x^2 + 2$ के लिए न्यूटन की विधि है।
- 99. The iteration

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right), n \ge 0$$

for a given $x_0 \neq 0$ is an instance of

- 1. fixed point iteration for $f(x) = x^2 2$.
- 2. Newton's method for $f(x) = x^2 2$.
- 3. fixed point iteration for $f(x) = \frac{x^2+2}{2x}$
- 4. Newton's method for $f(x) = x^2 + 2$.

100. मार्ने कि λ_1, λ_2 अभिलक्षणिक संख्या तथा f_1, f_2 संगत अभिलक्षणिक फलन है इस समघात समाकल समीकरण के लिए:

$$\varphi(x) - \lambda \int_{0}^{1} (2xt + 4x^{2})\varphi(t)dt = 0.$$

तो

- 1. $\lambda_1 \neq \lambda_2$
- 2. $\lambda_1 = \lambda_2$
- 3. $\int_0^1 f_1(x) f_2(x) dx = 0$
- 4. $\int_0^1 f_1(x) f_2(x) dx = 1$
- **100**. Let λ_1 , λ_2 be the characteristic numbers and f_1, f_2 be the corresponding eigenfunctions for the homogeneous integral equation

$$\varphi(x) - \lambda \int_{0}^{1} (2xt + 4x^{2})\varphi(t)dt = 0.$$

Then

- 1. $\lambda_1 \neq \lambda_2$
- 2. $\lambda_1 = \lambda_2$
- 3. $\int_0^1 f_1(x) f_2(x) dx = 0$
- 4. $\int_0^1 f_1(x) f_2(x) dx = 1$
- 101. व्युत्क्रम वर्ग केंद्रीय बल के अधीन गतिशील द्रव्यमान m के एक कण पर विचारें, जिसका अभिलक्षणिक ग्णांक μ है तथा निम्न लग्रांजी से

$$L(r,\dot{r},\,\theta,\dot{\theta}\,) = \frac{m}{2}(\dot{r}^2 + r^2\dot{\theta}^2) + \frac{\mu m}{r}$$

तो

1. तंत्र के व्यापकीकृत संवेग हैं

$$p_r = m\dot{r}$$
 तथा $p_{ heta} = mr^2\dot{ heta}$ ।

- 2. तंत्र की हैमिल्टनी है $H = \frac{1}{2m} \left[p_r^2 + \frac{p_\theta^2}{r^2} \right] \frac{1}{2} \frac{\mu m}{r}$ ।
- 3. तंत्र की हैमिल्टनी है $H = \frac{1}{2m} \left[p_r^2 + \frac{p_\theta^2}{r^2} \right] \frac{\mu m}{r}$ ।
- 4 तंत्र के व्यापीकृत संवेग हैं $p_r = +m\dot{r}$ तथा $p_{\theta} = -mr^2\dot{\theta}.$
- **101**. Consider a mass m moving in an inverse square central force with characteristic coefficient and described by the μ Lagrangian:

$$L(r,\dot{r},\,\theta,\dot{\theta}\,)=\frac{m}{2}(\dot{r}^2+\,r^2\dot{\theta}^2)+\frac{\mu m}{r}.$$

Then

- 1. The generalized momenta of the system are $p_r = m\dot{r}$ and $p_\theta = mr^2\dot{\theta}$.
- 2. The Hamiltonian of the system is $H = \frac{1}{2m} \left[p_r^2 + \frac{p_\theta^2}{r^2} \right] - \frac{1}{2} \frac{\mu m}{r}.$ 3. The Hamiltonian of the system is
- $H=\frac{1}{2m}\Big[p_r^2+\frac{p_\theta^2}{r^2}\Big]-\frac{\mu m}{r}.$ 4. The generalized momenta of the system are $p_r = +m\dot{r}$ and $p_\theta = -mr^2\dot{\theta}$.
- 102. द्रव्यमान m तथा गति ν के एक कण की हैमिल्टनी (H) तथा लग्रांजी (L) पर विचारें। तो
 - 1. H तथा L एक दूसरे से स्वतंत्र हैं
 - 2. H तथा L संबंधित हैं परंत् v पर भिन्न रूप से निर्भर हैं।
 - 3. H तथा L समान हैं
 - 4. H तथा L दोनों v में दिवधातीय हैं।
- **102**. Consider the Hamiltonian (H) and the Lagrangian (L) for a free particle of mass m and velocity v. Then
 - 1. *H* and *L* are independent of each other.
 - 2. H and L are related but have different dependence on v.
 - 3. *H* and *L* are equal.
 - 4. Both H and L are quadratic in v.

UNIT 4

103. प्रायिकता घनत्व फलन $f(x; \theta) = \theta x^{\theta-1}, 0 < x < 0$ 1, अन्यथा शून्य; $\theta > 0$ से लिए गए एक याद्दिछक प्रतिदर्श को मार्ने कि $X_1, X_2 \cdots, X_n$ निर्दिष्ट करते हैं। समुच्चय

$$\{(x_1,x_2,\cdots,x_n)\colon \sum_1^n \log(x_i)\geq c\},$$
 जहां c एक वास्तविक संख्या है जो उपयुक्ततः चुनी गयी है, H_0 को H_1 के विरूद्ध परीक्षण करने के लिए एक एकसमानतः शक्ततम प्रांत है जब

- 1. H_0 : $\theta = 1$ बनाम H_1 : $\theta > 1$ ।
- 2. $H_0: \theta = 1$ बनाम $H_1: \theta \ge 4$ |
- 3. H_0 : $\theta = 4$ बनाम H_1 : $\theta \le 1$ ।
- 4. H_0 : $\theta = 4$ बनाम H_1 : $\theta \neq 1$ ।

103. Let $X_1, X_2 \cdots, X_n$ denote a random sample from a distribution having a probability density function $f(x; \theta) = \theta x^{\theta-1}, 0 < x < 1$, zero elsewhere; $\theta > 0$.

The set $\{(x_1, x_2, \dots, x_n) : \sum_{i=1}^n log(x_i) \ge c\}$, where c is a suitably chosen real number, is a uniformly most powerful region for testing H_0 against H_1 when

- 1. $H_0: \theta = 1$ against $H_1: \theta > 1$.
- 2. $H_0: \theta = 1$ against $H_1: \theta \ge 4$.
- 3. H_0 : $\theta = 4$ against H_1 : $\theta \le 1$.
- 4. $H_0: \theta = 4$ against $H_1: \theta \neq 1$.
- 104. किसी कलश में 3 लाल तथा 6 काली गेंदें हैं। एक-एक करके, याद्दिछकत: गेंद चुने जाते हैं, पुन:स्थापित किये बिना। पांचवीं चयन में दूसरे लाल गेंद के प्रकट होने की प्रायिकता है:
 - 1. $\frac{1}{9!}$

2. $\frac{4!}{9!}$

3. $4\left(\frac{6!4!}{9!}\right)$

- 4. $\frac{6!4!}{9!}$
- **104.** An urn has 3 red and 6 black balls. Balls are drawn at random one by one without replacement. The probability that second red ball appears at the fifth draw is
 - 1. $\frac{1}{9!}$

2. $\frac{4!}{9!}$

3. $4\left(\frac{6!4!}{9!}\right)$

- 4. $\frac{6!4}{9!}$
- 105. एक न्याय्य सिक्के को बार-बार उछाला जाता है। मानें कि X, प्रथम शीर्ष के प्रकट होने के पूर्व प्रकट हुए पृच्छों की संख्या है। प्रथम तथा द्वितीय शीर्षों के प्रकट होने के बीच प्रेक्षित पृच्छों की संख्या को माने कि Y निर्दिष्ट करता है। मानें कि X + Y = N है। तो निम्न कथनों में से कौन-से सही हैं ?
 - 1. X तथा Y स्वतंत्र याद्दिछक चर हैं

$$P(X = k) = P(Y = k) =$$

$$\begin{cases} 2^{-(k+1)} & \text{for } k = 0, 1, 2 \cdots \text{ के लिए} \\ 0 & \text{अन्यथा} \end{cases}$$
के साथ।

2. N का एक प्रायिकता द्रव्यमान फलन है जो

$$P\{N=k\} = \begin{cases} (k-1)2^{-k} & \text{for } k=2,3,4,\cdots$$
 के लिए $& \text{3}$ न्यथा के साथ दिया जाता है।

- 3. यह दिये जाने पर कि N = n, X तथा Y के सप्रतिबंध बंटन स्वतंत्र हैं।
- 4. यह दिये जाने पर कि N=n है,

$$P\{X = k\} = \begin{cases} \frac{1}{n+1} & k = 0, 1, 2, \dots, n \text{ के लिए} \\ 0 & 3 - 241 \end{cases}$$

- **105**. A fair coin is tossed repeatedly. Let X be the number of Tails before the first Head occurs. Let Y denote the number of Tails observed between the occurrence of the first and the second Heads. Let X + Y = N. Then, which of the following statements are true:
 - 1. *X* and *Y* are independent random variables with $P(X = k) = P(Y = k) = \begin{cases} 2^{-(k+1)} & \text{for } k = 0, 1, 2 \cdots \\ 0 & \text{otherwise} \end{cases}$
 - 2. N has a probability mass function given by

$$P{N = k} = \begin{cases} (k-1)2^{-k} & \text{for } k = 2, 3, 4, \dots \\ 0 & \text{otherwise.} \end{cases}$$

- 3. Given N = n, the conditional distribution of X and Y are independent.
- 4. Given N = n,

$$P\{X = k\} = \begin{cases} \frac{1}{n+1} & \text{for } k = 0, 1, 2, \dots, n. \\ 0 & \text{otherwise.} \end{cases}$$

- 106. मार्ने कि X_1, X_2, \cdots स्वतंत्रत: तथा सवर्थासमानत: बंटित है, प्रत्येक (0, 1) पर एक एकसमान बंटन के साथ। मार्ने कि $n \ge 1$ के लिए $S_n = \sum_{i=1}^n X_i$ है। तो निम्न कथनों में से कौन-से सही है?
 - 1. जैसे $n \to \infty$, $\frac{S_n}{n \log n} \to 0$ प्रायिकता 1 के साथ।
 - 2. $P\left\{\left\{S_n>\frac{2n}{3}\right\}\right\}$ अपरिमिततः कई n बार घटता है $\left\{S_n>\frac{2n}{3}\right\}$
 - 3. जैसे $n \to \infty$, $\frac{S_n}{\log n} \to 0$ प्रायिकता 1 के साथ।
 - 4. $P\left\{\left\{S_n > \frac{n}{3}\right\}\right\}$ अपरिमितत: कई n बार घटता है = 1 है।
- **106.** Let X_1, X_2, \cdots be independent and identically distributed, each having a uniform distribution on (0, 1). Let $S_n = \sum_{i=1}^n X_i$ for $n \ge 1$. Then, which of the following statements are true?
 - 1. $\frac{s_n}{n \log n} \rightarrow 0$ as $n \rightarrow \infty$ with probability 1.
 - 2. $P\left\{\left\{S_n > \frac{2n}{3}\right\} \text{ occurs for infinitely many } n\right\} = 1.$

- 3. $\frac{S_n}{\log n} \to 0$ as $n \to \infty$ with probability 1.
- 4. $P\left\{\left\{S_n > \frac{n}{3}\right\} \text{ occurs for infinitely many } n\right\} = 1.$
- 107. अवस्था समष्टि $S\coloneqq\{1,2,\cdots,23\}$ पर मार्ने कि $(X_n)_{n\geq 0}$ एक मार्कीव शृंखला है, संक्रमण प्रायिकता $p_{i,i+1}=p_{i,i-1}=rac{1}{2} \ \ orall\ 2\leq i\leq 22$

$$p_{1,2} = p_{1,23} = \frac{1}{2}$$

$$p_{23,1} = p_{23,22} = \frac{1}{2}.$$

के दिये जोन पर। तो, निम्न कथनों में से कौन-से सही हैं?

- $1. (X_n)_{n \ge 0}$ का एक अद्वितीय स्तब्ध बंटन है।
- 2. $(X_n)_{n\geq 0}$ अलघुकरणीय है।
- 3. $\mathbb{P}(X_n=1) \longrightarrow \frac{1}{23}$.
- $4. (X_n)_{n ≥ 0}$ पुनरावृत्त है।
- **107**. Let $(X_n)_{n\geq 0}$ be a Markov chain on the state space $S := \{1, 2, \dots, 23\}$ with transition probability given by

$$p_{i,i+1} = p_{i,i-1} = \frac{1}{2} \quad \forall \ 2 \le i \le 22$$

$$p_{1,2} = p_{1,23} = \frac{1}{2}$$

$$p_{23,1} = p_{23,22} = \frac{1}{2}.$$

Then, which of the following statements are true?

- 1. $(X_n)_{n\geq 0}$ has a unique stationary distribution.
- 2. $(X_n)_{n\geq 0}$ is irreducible.
- 3. $\mathbb{P}(X_n = 1) \to \frac{1}{23}$.
- 4. $(X_n)_{n\geq 0}$ is recurrent.
- **108.** मानें कि (X,Y) का एक संयुक्त बंटन है, जहां X का उपांत बंटन N(0,1) है तथा सभी $x \in \mathbb{R}$ के लिए $E(Y \mid X = x) = x^3$ है। तो, निम्न कथनों में कौन-से सही हैं?
 - 1. सहसंबंध (X, Y) = 0.
 - 2. सहसंबंध (X, Y) > 0.
 - 3. सहसंबंध (*X*, *Y*) < 0.
 - 4. *X* तथा *Y* स्वतंत्र हैं।
- **108.** Suppose that (X,Y) has a joint distribution with the marginal distribution of X being N(0, 1) and $E(Y | X = x) = x^3$ for all $x \in \mathbb{R}$. Then,

which of the following statements are true?

- 1. Corr (X, Y) = 0.
- 2. Corr (X, Y) > 0.
- 3. Corr (X, Y) < 0.
- 4. *X* and *Y* are independent.
- 109. मानें कि $\binom{X}{Y}$ एक यादच्छिक सिंदश है ताकि X तथा Y के उपांत बंटन समान हैं तथा प्रत्येक माध्य 0 तथा 1 प्रसरण के साथ प्रसामान्यतः बंटित है। तो, निम्न प्रतिबंधों में से कौन-से X तथा Y की स्वतंत्रता को इंगित करता है?
 - 1. सहप्रसरण (X, Y) = 0 है।
 - 2. aX + bY प्रसामान्यत: बंटित है, सभी वास्तविक a तथा b के लिए, माध्य 0 तथा प्रसरण $a^2 + b^2$ के साथ।
 - 3. $P(X \le 0, Y \le 0) = \frac{1}{4}$.
 - 4. सभी वास्तविक s तथा t के लिए $E[e^{itX+isY}] = E[e^{itX}] E[e^{isY}]$ है।
- **109.** Suppose $\binom{X}{Y}$ is a random vector such that the marginal distribution of X and the marginal distribution of Y are the same and each is normally distributed with mean 0 and variance 1. Then, which of the following conditions imply independence of X and Y?
 - 1. Cov (X, Y) = 0
 - 2. aX + bY is normally distributed with mean 0 and variance $a^2 + b^2$ for all real a and b.
 - 3. $P(X \le 0, Y \le 0) = \frac{1}{4}$.
 - 4. $E[e^{itX+isY}] = E[e^{itX}] E[e^{isY}]$ for all real s and t.
- 110. मानें कि X_1, X_2, \cdots, X_n , $U(\theta, \theta+1)$ से प्राप्त एक याद्दिष्टिक प्रतिदर्श है। यदि $X_{(1)} < X_{(2)} < \cdots < X_{(n)}, X_1, X_2, \cdots, X_n$ के क्रमित मानों को निर्दिष्ट करते हैं तो निम्न कथनों में से कौन-से सही हैं?
 - $1. \ \theta$ के लिए एक संयुक्तत: पर्याप्त प्रतिदर्शज $\left(X_{(1)},\ X_{(n)}+1\right)$ है।
 - $2. \ \theta$ के लिए एक पर्याप्त प्रतिदर्शज $X_{(n)}+1$ है।
 - 3. θ के लिए एक संयुक्ततः पर्याप्त प्रतिदर्शज $\left(X_{(1)},\ X_{(n)}\right)$ है।
 - 4. θ के लिए एक पर्याप्त प्रतिदर्शज $X_{(1)}$ है।

- **110**. Let X_1, X_2, \dots, X_n be a random sample from $U(\theta, \theta + 1)$. If $X_{(1)} < X_{(2)} < \dots < X_{(n)}$ denote the ordered values of X_1, X_2, \dots, X_n , then which of the following statements are true?
 - 1. $(X_{(1)}, X_{(n)} + 1)$ is a jointly sufficient statistic for θ .
 - 2. $X_{(n)} + 1$ is a sufficient statistic for θ .
 - 3. $(X_{(1)}, X_{(n)})$ is a jointly sufficient statistic for θ .
 - 4. $X_{(1)}$ is a sufficient statistic for θ .
- 111. $X_1, X_2, ..., X_n$ स्वतंत्रतः एवं सर्वथासमानतः बंटित यादच्छिक चर हैं जो Bin(1,p) का अनुसरण करते हैं। आमाप $\alpha=0.01$ के साथ $H_0\colon p=\frac{1}{2}$ बनाम $H_A\colon p=\frac{3}{4}$ की परीक्षण के लिए परीक्षण

है पर विचारें। तो, निम्न कथनों में से कौन-से सही हैं?

- 1. जैसे $n \to \infty$, परीक्षण की शक्ति $\frac{1}{4}$ पर अभिसरित होती है।
- 2. जैसे $n \to \infty$, परीक्षण की शक्ति $\frac{1}{2}$ पर अभिसरित होती है।
- 3. जैसे $n \to \infty$, परीक्षण की शक्ति $\frac{3}{4}$ पर अभिसरित होती है।
- 4. जैसे $n \to \infty$, परीक्षण की शक्ति 1 पर अभिसरित होती है।
- **111.** $X_1, X_2, ..., X_n$ are independently and identically distributed random variables, which follow Bin(1, p). To test $H_0: p = \frac{1}{2}$ vs $H_A: p = \frac{3}{4}$, with size $\alpha = 0.01$, consider the test

$$\phi = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} X_i > c_n \\ 0 & \text{otherwise,} \end{cases}$$

then, which of the following statements are true?

- 1. As $n \to \infty$ power of the test converges to $\frac{1}{4}$.
- 2. As $n \to \infty$ power of the test converges to $\frac{1}{2}$
- 3. As $n \to \infty$ power of the test converges to $\frac{3}{4}$.
- 4. As $n \to \infty$ power of the test converges to 1.

- 112. प्रांत R पर विचारें जो शीर्ष $(0,0),(0,\theta),(\theta,0)$ जहां $\theta>0$, वाली त्रिभुजा है। इस प्रांत R से आमाप n का एक प्रतिदर्श याद्दिछकतः चुना जाता है। प्रतिदर्श को $\{(X_i,Y_i):i=1,2,\cdots,n\}$ निर्दिष्ट करें। तदुपरांत $X_{(n)}=\max(X_1,X_2,\cdots,X_n)$ एवं $Y_{(n)}=\max(Y_1,Y_2,\cdots,Y_n)$ निर्दिष्ट करते हुए निम्न कथनों में से कौन-से सही हैं?
 - 1. $X_{(n)}$ एवं $Y_{(n)}$ स्वतंत्र हैं
 - 2.~ heta का उच्चतम संभाविता आकलज है $rac{\chi_{(n)} + \chi_{(n)}}{2}$
 - 3. θ का उच्चतम संभाविता आकलज है $\max_{1 \le i \le n} (X_i + Y_i)$
 - 4. θ का उच्चतम संभाविता आकलज है $\max\{X_{(n)},Y_{(n)}\}$
- 112. Consider a region R, which is a triangle with vertices $(0,0), (0,\theta), (\theta,0)$, where $\theta > 0$. A sample of size n is selected at random from this region R. Denote the sample as $\{(X_i, Y_i): i = 1, 2, \dots, n\}$. Then denoting $X_{(n)} = \max(X_1, X_2, \dots, X_n)$ and $Y_{(n)} = \max(Y_1, Y_2, \dots, Y_n)$, which of the following statements are true?
 - 1. $X_{(n)}$ and $Y_{(n)}$ and independent
 - 2. MLE of θ is $\frac{X_{(n)}+Y_{(n)}}{2}$
 - 3. MLE of θ is $\max_{1 \le i \le n} (X_i + Y_i)$
 - 4. MLE of θ is max{ $X_{(n)}$, $Y_{(n)}$ }
- 113. मार्ने कि X_1, \cdots, X_n स्वतंत्रतः एवं सर्वथासमानतः बंटित याद्दच्छिक चर हैं $N(\mu,1)$ बंटन के साथ। मार्ने कि $\mu \in [0,\infty)$ । मार्ने कि $\hat{\mu}$, μ का उच्चतम संभाविता आकलज है। तो, निम्न कथनों में से कौन-से सही हैं?
 - 1. $\hat{\mu} = \max(\bar{X}_n, 0)$
 - 2. μ के लिए $\hat{\mu}$ अनिभनत है।
 - 3. μ के लिए \bar{X}_n पर्याप्त है।
 - 4. μ का अविरोधी आकलज $\hat{μ}$ है।
- 113. Let X_1, \dots, X_n be independent and identically distributed random variables with $N(\mu, 1)$ distribution. Assume that $\mu \in [0, \infty)$. Let $\hat{\mu}$ be the MLE of μ . Then, which of the following statements are true?

- 1. $\hat{\mu} = \max(\bar{X}_n, 0)$.
- 2. $\hat{\mu}$ is unbiased for μ .
- 3. \bar{X}_n is sufficient for μ .
- 4. $\hat{\mu}$ is a consistent estimator of μ .
- **114**. मार्ने कि $X = (X_1, X_2, X_3, X_4)'$ एक 4×1 यादच्छिक सदिश है ताकि $X \sim N_4(\mathbf{O}, \Sigma)$ है, जहां

$$\Sigma = \begin{pmatrix} 1 & \rho & \rho & \rho \\ \rho & 1 & \rho & \rho \\ \rho & \rho & 1 & \rho \\ \rho & \rho & \rho & 1 \end{pmatrix}$$

धनात्मक निश्चित है। तो, निम्न कथनों में से कौन-से सही हैं?

- 1. X_1X_2, X_2X_3 तथा X_3X_4 के बंटन सवर्थासमान हैं।
- 2. $\frac{(X_1-X_2)^2}{(X_1-X_3)^2} \sim F_{1,1}$.
- 3. $\{(X_1 X_3)^2 + (X_2 X_4)^2\} \cdot \frac{1}{2(1-\rho)} \sim \chi_2^2$.
- 4. $\frac{(X_1-X_2)^2}{(X_3-X_4)^2} \sim F_{1,1}$.
- **114.** Let $X = (X_1, X_2, X_3, X_4)'$ be 4×1 random vector such that $X \sim N_4$ (\mathbf{O}, Σ) where

$$\Sigma = \begin{pmatrix} 1 & \rho & \rho & \rho \\ \rho & 1 & \rho & \rho \\ \rho & \rho & 1 & \rho \\ \rho & \rho & \rho & 1 \end{pmatrix}$$

is positive definite. Then, which of the following statements are true?

- 1. X_1X_2 , X_2X_3 and X_3X_4 have identical distribution.
- 2. $\frac{(X_1-X_2)^2}{(X_1-X_3)^2} \sim F_{1,1}$.
- 3. $\{(X_1 X_3)^2 + (X_2 X_4)^2\} \cdot \frac{1}{2(1-\rho)} \sim \chi_2^2$
- 4. $\frac{(X_1-X_2)^2}{(X_2-X_4)^2} \sim F_{1,1}$.
- 115. मानें कि X एक 4×1 याद्दिछक सदिश है, बहुचर प्रसामान्य बंटन, माध्य μ तथा परिपेक्षी आव्यूह Σ के साथ। मानें कि Σ के अभिलक्षणिक मान हैं $\lambda_1 = 6, \, \lambda_2 = 3, \, \lambda_3 = 2, \, \pi$ था $\lambda_4 = 1$ । मानें कि Y_1, Y_2, Y_3, Y_4 चार मुख्य घटक हैं। निम्न कथनों में से कौन-से सही हैं?
 - 1. प्रथम दो घटकों से व्याख्यित विचरण का प्रतिशत 95% से कम है।

- 2. प्रथम तीन घटकों से व्याख्यित विचरण का प्रतिशत 95% से अधिक है।
- 3. Y₁, Y₂, Y₃, Y₄ स्वतंत्र हैं।
- 4. Y₁, Y₂, Y₃, Y₄ के बंटन सर्वथासमान हैं।
- 115. Let X be a 4×1 random vector with Multivariate normal distribution with mean μ and dispersion matrix Σ . Suppose, the eigenvalues of Σ are $\lambda_1 = 6$, $\lambda_2 = 3$, $\lambda_3 = 2$, $\lambda_4 = 1$. Let Y_1, Y_2, Y_3, Y_4 be the four principal components. Which of the following statements are correct?
 - 1. The percentage of variation explained by the first two components is $\leq 95\%$
 - 2. The percentage of variation explained by the first three components is $\geq 95\%$
 - 3. Y_1, Y_2, Y_3, Y_4 are independent
 - 4. Y_1, Y_2, Y_3, Y_4 have identical distribution.
- 116. मानें कि Y_1, Y_2, \cdots, Y_n यादृच्छिक चर हैं, सार्व अज्ञात माध्य θ के साथ। सदिश (Y_1, Y_2, \cdots, Y_n) , का प्रसरण-सहप्रसरण सदिश V ऐसा है कि V के व्युत्क्रम के सभी विकर्णी अवयव c के समान हैं तथा सभी अपविकर्णी अवयव d के समान हैं । माने कि θ का श्रेष्ठतम रैखिक अनिभनत आकलज T_1 है तथा θ का साधारण न्यूनतम वर्ग आकलज T_2 है। निम्न कथनों में से कौन-से सही हैं?
 - 1. $T_1 = \frac{1}{n} \sum_{i=1}^n Y_i = T_2$.
 - 2. $T_2 = n \bar{Y}$ तथा $T_1 = \sum_{i=1}^n Y_i \bar{Y}$ जहां Y_i 's का माध्य \bar{Y} है।
 - 3. Y_1, Y_2, \dots, Y_n के ठीक-ठीक (n-1) रैखिकत: स्वतंत्र फलन हैं, प्रत्येक शून्य प्रत्याशा के साथ।
 - Y₁, Y₂,···,Y_n के ठीक-ठीक (n 2) रैखिकत: स्वतंत्र रैखिक फलन हैं, प्रत्येक शून्य प्रत्याशा के साथ।
- **116**. Let Y_1, Y_2, \dots, Y_n be random variables with common unknown mean θ . The variance-covariance matrix V of the vector (Y_1, Y_2, \dots, Y_n) , is such that the inverse of V has all its diagonal elements equal to c and all its off-diagonal elements equal to d. Let T_1 be the

best linear unbiased estimator of θ and T_2 be the ordinary least squares estimator of θ . Which of the following statemens are true?

- 1. $T_1 = \frac{1}{n} \sum_{i=1}^{n} Y_i = T_2$. 2. $T_2 = n\overline{Y}$ and $T_1 = \sum_{i=1}^{n} Y_i \overline{Y}$ where \overline{Y} is the mean of the Y_i 's.
- 3. There are exactly (n-1) linearly independent linear functions of Y_1, Y_2, \dots, Y_n each with zero expectation.
- 4. There are exactly (n-2) linearly independent linear functions of Y_1, Y_2, \dots, Y_n each with zero expectation.
- 117. प्रत्येक आमाप 4 के खडों में कार्यान्वित एक 2^4 प्रयोग में कारक F_1, F_2, F_3 तथा F_4 सम्मिलित हैं, प्रत्येक दो स्तरों पर, जो 0 तथा 1 से चिहिनत हैं। खंड अंतर्विष्टियां निम्नवत हैं।

Block I					Block II			
F_{1}	F_2	F_3	F_4		F_{I}	F_2	F_3	F_4
0	0	0	0		0	0	0	1
0	1	1	0		0	1	1	1
1	0	1	1		1	0	1	0
1	1	0	1		1	1	0	0
Block III						В	lock	IV

Block III $ \begin{array}{ccccccccccccccccccccccccccccccccccc$			Block IV					
F_1	F_2	F_3	F_4		F_1	F_2	F_3	F_4
0	0	1	0	_	0	0	1	1
0	1	0	0		0	1	0	1
1	0	0	1		1	0	0	0
1	1	1	1		1	1	1	0

तो. निम्न कथनों में से कौन-से सही हैं?

- 1. संकरित प्रभाव हैं $F_1F_2F_3$, $F_1F_2F_4$, F_3F_4 .
- 2. संकरित प्रभाव हैं F₁F₂F₃, F₂F₃F₄, F₁F₄.
- 3. अभिकल्प संबद्ध है।
- 4. अभिकल्प असंबद्ध है।
- 117. A 2⁴ experiment involving factors F₁, F₂, F₃ and F4, each at two levels, coded 0 and 1 is conducted in blocks of size 4 each. The block contents are as below:

Block I					Block II					
F_{I}	F_2	F_3	F_4		F_{I}	F_2	F_3	F_4		
0	0	0	0		0	0	0	1		
0	1	1	0		0	1	1	1		
1	0	1	1		1	0	1	0		
1	1	0	1		1	1	0	0		
	Block III					Block IV				
F_1	F_2	F_3	F_4		F_1	F_2	F_3	F_4		
0	0	1	0		0	0	1	1		
0	1	0	0		0	1	0	1		
1	0	0	1		1	0	0	O		
1	1	1	1		1	1	1	0		

Then, which of the following statements are true?

- 1. The confounded effects are $F_1F_2F_3$, $F_1F_2F_4$, F_3F_4 .
- 2. The confounded effects are $F_1F_2F_3$, $F_2F_3F_4$, F_1F_4 .
- 3. The design is connected.
- 4. The design is disconnected.
- 118. एक परिमित आबादी की N इकाईयां U_1, U_2, \cdots U_N से चिहिनत हैं, तथा इकाई U_i पर अध्ययित चर का मान Y_i ($i = 1, 2, \dots, N$) है। मानें कि $Y = \sum_{i=1}^{N} Y_i$ तथा $\bar{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$ हैं। आबादी से प्नःस्थापन के साथ आमाप n>1 का प्रतिदर्श आमाप के अन्पात में प्रायिकता के साथ निकाला जाता है, वरण प्रायिकताओं $p_1, p_2, \dots, p_N; 0 < p_i <$ $1, i = 1, 2, \dots, N$ तथा $\sum_{i=1}^{N} p_i = 1$ के साथ। परिभाषित करें कि $T = \frac{1}{n} \sum_{i \in s} Y_i / p_i$, जहां योगफल प्रतिदर्श की इकाईयों पर विस्तृत है। तो, निम्न कथनों में से कौन-से सही हैं?
 - $1. \ \bar{Y}$ का अनिभनत आकलज है T।
 - 2. Y का अनिभनत आकलज है T।
 - 3. यदि सभी $i, i = 1, 2, \dots, N$ के लिए p_i के अनुपात में Y_i है तो T का प्रसरण शुन्य है।
 - 4. T के प्रसरण का अनिभनत आकलज है $\frac{1}{n(n-1)}\sum_{i\in s}\left(\frac{Y_i}{p_i}-T\right)^2$.

- **118.** A finite population has N units, labelled U_1 , U_2, \dots, U_N and the value of a study variable on unit U_i is Y_i $(i = 1, 2, \dots, N)$. Let $Y = \sum_{i=1}^N Y_i$ and $\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$. A sample of size n > 1 is drawn from the population with probability proportional to size with replacement, with selection probabilities p_1, p_2, \dots, p_N ; $0 < p_i < 1$, $i = 1, 2, \dots, N$ and $\sum_{i=1}^{N} p_i = 1$. Define $T = \frac{1}{n} \sum_{i \in S} Y_i / p_i$, where the sum extends over the units in the sample. Then, which of the following statements are true?
 - 1. T is an unbiased estimator of \overline{Y} .
 - 2. T is an unbiased estimator of Y.
 - 3. The variance of T is zero if Y_i is proportional to p_i for all $i, i = 1, 2, \dots, N.$
 - 4. An unbiased estimator of the variance of T is $\frac{1}{n(n-1)} \sum_{i \in s} \left(\frac{Y_i}{p_i} - T \right)^2$.
- 119. जैसे निम्न चित्र में व्यवस्थित किया गया है, एक तंत्र में तीन घटक अंतर्विष्टित हैं।

प्रत्येक घटक C_1, C_2, C_3 का स्वतंत्रत: तथा सर्वथासमानतः बंटित आय्काल हैं जिनका बंटन चरघातांकी है, माध्य 1 के साथ। तो तंत्र का अतिजीविता फलन S(t) दिया जाता है

- 1. $S(t) = e^{-3t}$, for t > 0.
- 2. $S(t) = (1 e^{-t})^2 e^{-t}$, for t > 0. 3. $S(t) = (1 e^{-2t}) e^{-t}$, for t > 0.
- 4. $S(t) = (1 (1 e^{-t})^2)e^{-t}$, for t > 0.
- **119**. A system consists of 3 components arranged as in the figure below:

Each of the components C_1 , C_2 , C_3 has independent and identically distributed lifetimes whose distribution is exponential with mean 1. Then, the survival function, S(t), of the system is given by

- 1. $S(t) = e^{-3t}$, for t > 0.
- 2. $S(t) = (1 e^{-t})^2 e^{-t}$, for t > 0.
- 3. $S(t) = (1 e^{-2t}) e^{-t}$, for t > 0.
- 4. $S(t) = (1 (1 e^{-t})^2)e^{-t}$, for t > 0.
- 120. एक M/M/1 कतार पर विचारें जिसकी प्वासों प्रकिया आगमन गति प्रतिघंटा ८ तथा सेवाकाल जो चरघातांकत: बंटित है, प्रति ग्राहक 6 मिनट की गति के साथ। कतार में ग्राहक का प्रतीक्षण काल का
 - 1. एक गॉमा बंटन है p.d.f.

$$f(x) = \begin{cases} \frac{(10)^8 x^7 e^{-10x}}{7!} & \text{for } x > 0 \\ 0 & \text{otherwise.} \end{cases}$$
 साथ।

2. एक बंटन फलन जो

$$F(x) = \begin{cases} 1 - (0.8)e^{-2x} & \text{for } x > 0 \\ 0 & \text{otherwise} \end{cases}$$
 से दिया जाता है।

- माध्य 4 मिनट है।
- 4. माध्य 24 मिनट है।
- **120.** Consider an M/M/1 queue with arrivals as a Poisson process at a rate of 8 per hour and a time which is exponentially distributed at a rate of 6 minutes per customer. The waiting time of a customer in the queue
 - 1. has a gamma distribution with p.d.f.

has a gamma distribution with p.d.f.
$$f(x) = \begin{cases} \frac{(10)^8 x^7 e^{-10x}}{7!} & \text{for } x > 0\\ 0 & \text{otherwise.} \end{cases}$$

2. has distribution function given by

$$F(x) = \begin{cases} 1 - (0.8)e^{-2x} & \text{for } x > 0 \\ 0 & \text{otherwise.} \end{cases}$$

- 3. has mean 4 minutes.
- 4. has mean 24 minutes.

FOR ROUGH WORK