Supervised Component-based Generalized Linear Regression with finite mixture models of responses

Julien GIBAUD¹, Xavier BRY¹ and Catherine TROTTIER^{1,2}

IMAG, CNRS, Univ. Montpellier, France.
AMIS, Univ. Paul-Valéry Montpellier 3, Montpellier, France.

ASMDA 2021

Outline

- Motivations
- Searching for supervised components
- 3 Response mixture with common explanatory components
- 4 Response mixture SCGLR
- 6 Applications

Outline

- Motivations
- 2 Searching for supervised components
- Response mixture with common explanatory components
- 4 Response mixture SCGLR
- 5 Applications

Motivations

Ecological motivations

In a context of global warming, we aim at

- Finding the main determinants of species observations, among a large number of explanatory variables
- Identifying species communities influenced by common determinants

Motivations

Ecological motivations

In a context of global warming, we aim at

- Finding the main determinants of species observations, among a large number of explanatory variables
- Identifying species communities influenced by common determinants

Statistical counterparts

- Finding strong dimensions allowing to explain the responses as best as possible
 - → Searching for supervised components
- Identifying groups of responses with explanatory dimensions specific to each group
 - → Clustering

Outline

- Motivations
- Searching for supervised components
- 3 Response mixture with common explanatory components
- 4 Response mixture SCGLR
- 6 Applications

What is a supervised component?

Notations

- ullet Let $Y=[y_1,\ldots,y_q]\in\mathbb{R}^{n imes q}$ be the matrix of responses (species)
- Let $X = [x_1, \dots, x_p] \in \mathbb{R}^{n \times p}$ be the matrix of explanatory variables

What is a supervised component?

Notations

- Let $Y = [y_1, \dots, y_q] \in \mathbb{R}^{n \times q}$ be the matrix of responses (species)
- Let $X = [x_1, \dots, x_p] \in \mathbb{R}^{n \times p}$ be the matrix of explanatory variables

Definition

A component is a vector $f \in \mathbb{R}^n$ linearly combining the explanatory variables, such that

- $f_h = Xu_h$, for $h = 1, \dots, H$, and $F = [f_1, \dots, f_H]$
- $f_h \perp f_g$, for all $h \neq g$

What is a supervised component?

Notations

- Let $Y = [y_1, \dots, y_q] \in \mathbb{R}^{n \times q}$ be the matrix of responses (species)
- Let $X = [x_1, \dots, x_p] \in \mathbb{R}^{n \times p}$ be the matrix of explanatory variables

Definition

A component is a vector $f \in \mathbb{R}^n$ linearly combining the explanatory variables, such that

- $f_h = Xu_h$, for $h = 1, \dots, H$, and $F = [f_1, \dots, f_H]$
- $f_h \perp f_g$, for all $h \neq g$

Demands

- Components must be close to some explanatory variables to be interpreted
- Components must predict responses $Y \Rightarrow$ supervised components

SCGLR (Bry et al., 2013)

Structural Relevance (SR)

The criterion $\phi(u)$ measures the "strength" of the component f = Xu (overall closeness to explanatory variables) under the constraint $||u||^2 = 1$

SCGLR (Bry et al., 2013)

Structural Relevance (SR)

The criterion $\phi(u)$ measures the "strength" of the component f=Xu (overall closeness to explanatory variables) under the constraint $\|u\|^2=1$

Goodness-of-Fit (GoF)

The criterion $\psi(u,\theta)$ is the likelihood of the component model

SCGLR (Bry et al., 2013)

Structural Relevance (SR)

The criterion $\phi(u)$ measures the "strength" of the component f=Xu (overall closeness to explanatory variables) under the constraint $\|u\|^2=1$

Goodness-of-Fit (GoF)

The criterion $\psi(u,\theta)$ is the likelihood of the component model

The SCGLR combined criterion

$$\underset{u, \|u\|^2=1}{\operatorname{argmax}} s \ln \left(\phi(u)\right) + (1-s) \ln \left(\psi(u, \theta)\right)$$

The real $s \in [0,1]$ allows to tune the trade-off between SR and GoF

Estimation steps

Iterate:

Estimation steps

Iterate:

Estimation of u given θ

The PING algorithm allows to solve a program of the form

$$\begin{cases} \max_{u} & c(u), \\ \text{s.t.} & \|u\|^2 = 1 \quad \text{and} \quad D^T u = 0, \end{cases}$$

where D is the constraint matrix of components' orthogonality

Estimation steps

Iterate:

Estimation of u given θ

The PING algorithm allows to solve a program of the form

$$\begin{cases} \max_{u} & c(u), \\ \text{s.t.} & \|u\|^2 = 1 \quad \text{and} \quad D^T u = 0, \end{cases}$$

where D is the constraint matrix of components' orthogonality

Estimation of θ given u

Maximize the likelihood on θ , e.g. solve

$$\nabla_{\theta} \psi(u, \theta) = 0$$

Outline

- Motivations
- 2 Searching for supervised components
- 3 Response mixture with common explanatory components
- 4 Response mixture SCGLR
- 5 Applications

Mixture of responses (Dunstan et al., 2013)

More notations

- Let G be the number of groups
- Let z_{kg} be the latent dummy variable equal to 1 if the response y_k belongs to the group g
- ullet Let p_g be the *a priori* probability of belonging to the group g

Mixture of responses (Dunstan et al., 2013)

More notations

- Let G be the number of groups
- Let z_{kg} be the latent dummy variable equal to 1 if the response y_k belongs to the group g
- ullet Let p_g be the *a priori* probability of belonging to the group g

Model

Conditionally to $z_{kg} = 1$, $y_k \sim \mathbb{P}(\theta_g)$ with pdf $d(y_k; \theta_g)$.

The model likelihood writes : $\psi(u_1, \dots, u_G; \Theta) = \prod_{k=1}^q \sum_{g=1}^G p_g d(y_k; \theta_g)$, with θ_g including :

- ullet the loading vectors u_g specific to each group
- the parameters of within cluster regression model of responses on components

Mixture of responses (Dunstan et al., 2013)

More notations

- Let G be the number of groups
- Let z_{kg} be the latent dummy variable equal to 1 if the response y_k belongs to the group g
- Let p_g be the a priori probability of belonging to the group g

Model

Conditionally to $z_{kg} = 1$, $y_k \sim \mathbb{P}(\theta_g)$ with pdf $d(y_k; \theta_g)$.

The model likelihood writes : $\psi(u_1, \dots, u_G; \Theta) = \prod_{k=1}^q \sum_{g=1}^G p_g d(y_k; \theta_g)$, with θ_{φ} including :

- the loading vectors u_g specific to each group
- the parameters of within cluster regression model of responses on components

Problem: this likelihood is hard to maximize

Estimation (Dempster et al., 1977)

We use the Expectation-Maximization (EM) algorithm. It allows to :

- Maximize a likelihood in the presence of latent variables
 - \rightarrow Here : the dummy variable z_{kg}
- Estimate the posterior distribution of each z_k conditional on the observations
 - ightarrow Here : the posterior group membership probabilities of each response

Outline

- Motivations
- Searching for supervised components
- Response mixture with common explanatory components
- Response mixture SCGLR
- 6 Applications

A new enhanced criterion

The separation criterion

We introduce the criterion $\varphi(u_1, \ldots, u_G)$ in order to separate the explanatory spaces

A new enhanced criterion

The separation criterion

We introduce the criterion $\varphi(u_1, \ldots, u_G)$ in order to separate the explanatory spaces

Maximized criterion

$$\underset{\forall g, \|u_g\|^2=1}{\operatorname{argmax}} s \sum_{g=1}^G \ln \left(\phi(u_g)\right) + t \ln \left(\varphi(u_1, \ldots, u_G)\right) + (1-s-t) \ln \left(\psi(u_1, \ldots, u_G; \Theta)\right)$$

A new enhanced criterion

The separation criterion

We introduce the criterion $\varphi(u_1, \ldots, u_G)$ in order to separate the explanatory spaces

Maximized criterion

$$\operatorname*{argmax}_{\forall g, \, \|u_g\|^2 = 1} s \sum_{g=1}^G \ln \left(\phi(\textit{u}_g) \right) + t \ln \left(\varphi(\textit{u}_1, \dots, \textit{u}_G) \right) + \left(1 - s - t \right) \ln \left(\psi(\textit{u}_1, \dots, \textit{u}_G; \Theta) \right)$$

Estimation

We alternate on the two maximization steps :

- ullet Find Θ through the EM algorithm
- \bullet Find u_g through the PING algorithm, for all g

Outline

- Motivations
- 2 Searching for supervised components
- Response mixture with common explanatory components
- 4 Response mixture SCGLR
- 5 Applications

Simulation study

Random responses

$$Y = \underbrace{[y_1, \dots, y_{20}]}_{\text{G1 : Gaussian}} \underbrace{|y_{21}, \dots, y_{50}|}_{\text{G2 : Poisson}} \underbrace{|y_{51}, \dots, y_{100}]}_{\text{G3 : Bernoulli}}$$

Y is composed in 3 groups of responses

Simulation study

Random responses

$$Y = \underbrace{[y_1, \dots, y_{20}]}_{\text{G1 : Gaussian}} \underbrace{[y_{21}, \dots, y_{50}]}_{\text{G2 : Poisson}} \underbrace{[y_{51}, \dots, y_{100}]}_{\text{G3 : Bernoulli}}$$

Y is composed in 3 groups of responses

Explanatory variables

$$X = \underbrace{\left[\begin{array}{c} x_1, \dots, x_{50} \\ \text{X1 : predict G1} \end{array} \middle| \begin{array}{c} x_{51}, \dots, x_{90} \\ \text{X2 : predict G2} \end{array} \middle| \begin{array}{c} x_{91}, \dots, x_{120} \\ \text{X3 : predict G3} \end{array} \middle| \begin{array}{c} x_{121}, \dots, x_{140} \\ \text{X4 : predict G1} \end{array} \middle| \begin{array}{c} x_{141}, \dots, x_{150} \\ \text{X5 : predict G2} \end{array} \middle| \begin{array}{c} x_{151}, \dots, x_{200} \\ \text{X6 : noise} \end{array}$$

- X is composed in 5 bundles plus 1 set of noise
- Bundles X1, X3 and X5 are weakly correlated (cor = 0.5)

Results obtained with the best classification index

Hyperparameters

The optimized parameters are s = 0.1 and t = 0.6

Results obtained with the best classification index

Hyperparameters

The optimized parameters are s = 0.1 and t = 0.6

Posterior group membership probabilities

- $\forall i = 1, ..., 20$, $\mathbb{P}(y_i \text{ belongs to the group } 1) > 0.9$
- $\forall i = 21, \ldots, 50$, $\mathbb{P}(y_i \text{ belongs to the group } 2) > 0.9$
- $\forall i = 51, \dots, 100, \mathbb{P}(y_i \text{ belongs to the group } 3) > 0.9$

Results obtained with the best classification index

Hyperparameters

The optimized parameters are s = 0.1 and t = 0.6

Posterior group membership probabilities

- $\forall i = 1, ..., 20$, $\mathbb{P}(y_i \text{ belongs to the group } 1) > 0.9$
- $\forall i = 21, \dots, 50$, $\mathbb{P}(y_i \text{ belongs to the group } 2) > 0.9$
- $\forall i = 51, \dots, 100, \mathbb{P}(y_i \text{ belongs to the group } 3) > 0.9$

Correlations

group 1		
$\operatorname{cor}^2(X_1,f_1)$	0.960	
$cor^2(X_4, f_2)$	0.966	

group 2		
$cor^2(X_2, f_1)$	0.993	
$cor^2(X_5, f_2)$	0.911	

group 3		
$cor^2(X_3, f_1)$	0.987	

Correlation scatterplot for the first group

Correlation scatterplot for the second group

Real data

The Genus dataset

- 27 species abundances (Y matrix)
- 39 explanatory variables (X matrix)
 - → subset of 13 rainfall variables ("pluvio")

 - → subset of 3 location variables

Real data

The Genus dataset

- 27 species abundances (Y matrix)
- 39 explanatory variables (X matrix)
 - → subset of 13 rainfall variables ("pluvio")
 - → subset of 23 photosynthesis variables ("evi")
 - \hookrightarrow subset of 3 location variables

Results

Groups	Responses	Explanatory variables
1	Y_4	"pluvio1", "pluvio12"
2	Y ₈ , Y ₁₉	"pluvio7", "pluvio6"
3	Y_1 , Y_3 , Y_5 , Y_7 , Y_{11} , Y_{12} , Y_{13} , Y_{14} , Y_{16}	"pluvio8", "pluvio1"
	$Y_{21}, Y_{24}, Y_{25}, Y_{26}, Y_{27}$	
4	Y_9	"pluvio10", "evi13"
5	$Y_6, Y_{15}, Y_{18}, Y_{22}, Y_{23}$	"pluvio7", "pluvio8"
6	Y_2 , Y_{10} , Y_{17} , Y_{20}	"pluvio7", "pluvio11"

Conclusion

We have:

- Extended SCGLR to response mixture
- Enhanced the combined criterion
- Developed an algorithm able to find groups of responses predicted by specific explanatory spaces

Acknowledgments and bibliography

Thank you for your attention

- Bry, X., Trottier, C., Verron, T., and Mortier, F. (2013). Supervised component generalized linear regression using a PLS-extension of the Fisher scoring algorithm. *Journal of Multivariate Analysis*, 119:47–60.
- Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society : Series B (Methodological)*, 39(1):1–22.
- Dunstan, P. K., Foster, S. D., Hui, F. K., and Warton, D. I. (2013). Finite mixture of regression modeling for high-dimensional count and biomass data in ecology. *Journal of agricultural, biological, and environmental statistics*, 18(3):357–375.