Семинар 1

Общая информация:

- Источник учебников: bookfi.net или z-lib.org
- Задачник Кострикин. Сборник задач по Алгебре. МЦНМО. 2009г.
- СЛУ система линейных уравнений
- ОСЛУ однородная система линейных уравнений
- Матрица это квадратная таблица заполненная числами
- Вектор столбец из чисел, т.е. матрица с одним столбцом
- Пусть $A = (a_{ij})$ матрица коэффициентов СЛУ, $x = (x_j)$ вектор переменных, $b = (b_i)$ вектор чисел (где $1 \le i \le n$ и $1 \le j \le m$). Тогда соответствующую СЛУ будем для краткости записывать так Ax = b, а ее однородную версию Ax = 0; то есть, Ax = b означает $\sum_{1 \le j \le m} a_{ij} x_j = b_i$ для любого $1 \le i \le n$.
- Пусть A и B матрицы одной высоты, тогда через (A|B) будем обозначать матрицу полученную приписыванием B справа от A.
- ullet Множество векторов с n координатами из вещественных чисел будем обозначать $\mathbb{R}^n.$
- Множество матриц с вещественными числами из m строк и n столбцов будем обозначать $\mathrm{M}_{m\,n}(\mathbb{R})$.
- Матрица заполненная целиком нулями называется «нулевой матрицей» и если нет путаницы с тем, какого она размера, ее обозначают через 0.

Задачи:

- 1. Задачник. §8, задача 8.1 (г).
- 2. Задачник. §8, задача 8.2 (з).
- 3. Задачник. §8, задача 8.7.
- 4. Пусть матрица $A \in M_{5.6}(\mathbb{R})$ имеет вид

$$\begin{pmatrix} 1 & x & 1 & 1 & x & 1 \\ x & 1 & x & x & 1 & x \\ x & 1 & 1 & 1 & 1 & x \\ 1 & x & 1 & 1 & x & 1 \\ 1 & 1 & x & x & 1 & 1 \end{pmatrix}$$

Для системы Ay=0, где $y\in\mathbb{R}^6$, найти количество главных переменных при любом значении $x\in\mathbb{R}.$

- 5. Задачник. §8, задача 8.13. Выражение a|b значит, a делит b. $A={\rm diag}(d_1,\ldots,d_r)$ означает, $a_{ij}=0$ при $i\neq j$ и $a_{ii}=d_i$. Элементарные преобразования I типа допускаются с целыми параметрами, элементарные преобразования III типа только умножения на ± 1 .
- 6. Пусть A квадратная матрица такая, что ОСЛУ Ax = 0 имеет ровно одно решение. Показать, что если B матрица, а b столбец чисел (оба той же высоты, что и A), то система (A|B)x = b имеет бесконечное число решений. Опишите главные и свободные неизвестные.
- 7. Пусть $A \in M_{mn}(\mathbb{R})$ некоторая матрица в ступенчатом виде и пусть B получена из A перестановкой двух соседних столбцов. Докажите, что B можно привести к ступенчатому виду с таким же количеством ступенек, что и A.