Math 122 Assignment 3 Solution Ideas

- * (Assignment 2, Question 5)
 - (a) False. The elements of A are $1, \{1\}, 2, \{\emptyset\}, \{\{1\}, \{2\}\}, \{\{1\}, 2\},$ and $\{2\}$ isn't one of these.
 - (b) True. Both 1 and 2 are elements of A, and $A \neq \{1, 2\}$.
 - (c) False. As in (a), $\{1, \{2\}\}$ is not an element of A,
 - (d) False. Similar reason as in (a).
 - (e) False. Both $\{1\} \subseteq A$ and $\{1\} \in A$, so $\{1\} \in A \cap \mathcal{P}(A)$.
 - (f) True. $\{2\} \subseteq A$.
 - (g) False. {1} has no non-empty proper subset.
- 1. (a) $A \setminus (B \cup C) = \{x : (x \in A) \land (x \notin B \cup C)\}$ $= \{x : (x \in A) \land \neg (x \in B \cup C)\}$ Definition $= \{x : ((x \in A) \land (x \in A)) \land ((x \in B^c) \land (x \in C^c)\}$ DeMorgan, Conj. Idemp. $= \{x : ((x \in A) \land (x \in B^c)) \land ((x \in A) \land (x \in C^c))\}$ Associative and Commutative (several times) $= \{x : (x \in A \cap B^c) \land (x \in A \cap C^c)\}$ Definition $= \{x : x \in (A \setminus B) \cap (A \setminus C)\}$

Definition

 $= (A \setminus B) \cap (A \setminus C)$

(b)
$$A \setminus (B \cup C) = A \cap (B \cup C)^c \quad \text{known}$$

$$= (A \cap A) \cap (B^c \cap C^c) \quad \text{Idempotent}$$

$$= (A \cap B^c) \cap (A \cap C^c) \quad \text{Associative and Commutative (several times)}$$

$$= (A \setminus B) \cap (A \setminus C) \quad \text{known}$$

- 2. (a) We prove the contrapositive: if $A \setminus B \neq \emptyset$, then $A \not\subseteq B$. Suppose $A \setminus B \neq \emptyset$. Then, by definition, there exists an element of A which is not in B. Thus $A \not\subseteq B$. Hence if $A \subseteq B$, then $A \setminus B = \emptyset$.
 - (b) Suppose $A \setminus B = \emptyset$. Since $B \subseteq A \cup B$ by definition, it suffices to show that $A \cup B \subseteq B$. Take any $x \in A \cup B$. Then $x \in A$ or $x \in B$. If $x \in B$ there is nothing to show. If $x \in A$ then, since $A \setminus B = \emptyset$, we have $x \in B$. In either case $x \in B$. Thus $A \cup B \subseteq B$ and hence $A \cup B = B$.
 - (c) Suppose $A \cup B = B$. Take any $x \in A$. Then $x \in A \cup B$ by definition of union. Since $A \cup B = B$, we have $x \in B$. Therefore $A \subseteq B$.

- (d) Yes. In parts (a), (b), (c) above we have shown (i) \Rightarrow (ii), (ii) \Rightarrow (iii), and (iii) \Rightarrow (i). The three statements are then logically equivalent by Assignment 1, Question 3.
- 3. (a) We need to show (a) \Rightarrow (b), (b) \Rightarrow (c), and (c) \Rightarrow (a).
 - (a) \Rightarrow (b). Suppose A = B. Then $A \cup B = A \cup A = A = A \cap A = A \cap B$.
 - (b) \Rightarrow (c). We prove the contrapositive: If $A \oplus B \neq \emptyset$ then $A \cup B \neq A \cap B$. Suppose $A \oplus B \neq \emptyset$. Then there exists $x \in A$ such that $x \notin B$, or there exists $x \in B$ such that $x \notin A$. In either case, the element x belongs to $A \cup B$ but not to $A \cap B$. Thus $A \cup B \neq A \cap B$. Hence if $A \cup B = A \cap B$, then $A \oplus B = \emptyset$.
 - (c) \Rightarrow (a). We prove the contrapositive: if $A \neq B$ then $A \oplus B \neq \emptyset$. Suppose $A \neq B$. Then either there exists $x \in A$ such that $x \notin B$, or there exists $x \in B$ such that $x \notin A$. In either case, $x \in A \oplus B$, so $A \oplus B \neq \emptyset$. Hence if $A \oplus B = \emptyset$, then A = B.

The proof is now complete.

- 4. (a) It is possible to generate a counterexample from a Venn diagram, as shown in class. Here is a different one. Let $A = B = C = \{1\}$. Then $A \setminus (B \setminus C) = A \setminus \emptyset = A = \{1\}$, while $(A \setminus B) \setminus C = \emptyset \setminus C = \emptyset \neq \{1\}$. Thus $A \setminus (B \setminus C)$ is not equal to $(A \setminus B) \setminus C$ for all sets A, B, C. But the Venn diagram suggests $(A \setminus B) \setminus C$ is a subset of $A \setminus (B \setminus C)$.
 - (b) The two sets are equal. We show LHS \subseteq RHS and RHS \subseteq LHS.

LHS \subseteq RHS. Take any $x \in (A \oplus B^c) \oplus C$. Then $x \in A \oplus B^c$ and $x \notin C$ or $x \notin A \oplus B^c$ and $x \in C$. In the first case $x \notin C$ and either $x \in A$ and $x \notin B^c$, or $x \in B^c$ and $x \notin A$. In all cases, $x \in A \oplus (B^c \oplus C)$.

RHS \subseteq LHS. Take any $x \in A \oplus (B^c \oplus C)$. Then $x \in A$ and $x \notin (B^c \oplus C)$, or $x \notin A$ and $x \in (B^c \oplus C)$. In the first case, $x \in A, x \in B^c$ and $x \in C$, or $x \in A, x \notin B^c$ and $x \notin C$. In the second case $x \notin A, x \in B^c$ and $x \notin C$, or $x \in A, x \notin B^c$ and $x \notin C$. In all cases, $x \in (A \oplus B^c) \oplus C$.

Thus $(A \oplus B^c) \oplus C = A \oplus (B^c \oplus C)$.

5. (a) Let A_1, A_2, A_3 and A_4 be sets. We define

$$A_1 \cup A_2 \cup A_3 \cup A_4 = \{x : (x \in A_1) \lor (x \in A_2) \lor (x \in A_3) \lor (x \in A_4\}$$

and

$$A_1 \cap A_2 \cap A_3 \cap A_4 = \{x : (x \in A_1) \land (x \in A_2) \land (x \in A_3) \lor (x \in A_4\}.$$

(b) We show LHS \subseteq RHS and RHS \subseteq LHS.

LHS \subseteq RHS. Take any $x \in (A_1 \cup A_2 \cup A_3 \cup A_4)^c$. Then, by definition, $x \notin A_1$, $x \notin A_2$, $x \notin A_3$ and $x \notin A_4$. That is, $x \in A_1^c$, $x \in A_2^c$, $x \in A_3^c$ and $x \in A_4^c$. Therefore, $x \in (A_1^c \cap A_2^c \cap A_3^c \cap A_4^c)$.

RHS \subseteq LHS. Take any $x \in (A_1^c \cap A_2^c \cap A_3^c \cap A_4^c)$. Then, by definition, $x \notin A_1$, $x \notin A_2$, $x \notin A_3$ and $x \notin A_4$. Therefore, $x \notin (A_1 \cup A_2 \cup A_3 \cup A_4)$. Hence $x \in (A_1 \cup A_2 \cup A_3 \cup A_4)^c$.

Therefore $(A_1 \cup A_2 \cup A_3 \cup A_4)^c = (A_1^c \cap A_2^c \cap A_3^c \cap A_4^c)$.

(c) $(A_1 \cap A_2 \cap A_3 \cap A_4)^c = (A_1^c \cup A_2^c \cup A_3^c \cup A_4^c).$