QM3 workshop 3, Problem 1: The Hermitian operator A has eigenvectors u, v, $Au = \lambda u$, $Av = \mu v$. A commutes with the Hermitian operator B, [A, B] = 0. (a) Show that if $\lambda \neq \mu$ then u, v are also eigenvectors of B. (b) When there is double degeneracy, i.e. $\lambda = \mu$, explain where the proof fails and sketch how we can obtain two eigenvectors of B. (Not full derivation.)

Problem 2 Two non-interacting electrons, bound by the attractive potential $v(\mathbf{r})$, are described by the 2-electron Slater determinant Φ :

$$\Phi(\boldsymbol{r}_1, \sigma_1; \boldsymbol{r}_2, \sigma_2) = \frac{1}{\sqrt{2}} \begin{vmatrix} \psi_1(\boldsymbol{r}_1) \chi_1(1) & \psi_1(\boldsymbol{r}_2) \chi_1(2) \\ \psi_2(\boldsymbol{r}_1) \chi_2(1) & \psi_2(\boldsymbol{r}_2) \chi_2(2) \end{vmatrix}$$

The non-interacting Hamiltonian that describes the system is:

$$H_0 = h(r_1, p_1) + h(r_2, p_2), \quad h(r, p) = -\frac{\hbar^2 \nabla^2}{2m} + v(r)$$

• Show that the expectation value of H_0 is

$$\langle \Phi | H_0 | \Phi \rangle = \sum_{i=1}^2 \int d^3 r \, \psi_i^*(\boldsymbol{r}) \left(-\frac{\hbar^2}{2m} \, \nabla^2 \psi_i(\boldsymbol{r}) \right) + \int d^3 r \, \rho(\boldsymbol{r}) \, v(\boldsymbol{r}), \quad \rho(\boldsymbol{r}) = \sum_{i=1}^2 |\psi_i(\boldsymbol{r})|^2$$

[Hint: work out first $\langle \Phi | h | \Phi \rangle = \iint d^3r_1 d^3r_2 \Phi^*(\boldsymbol{r}_1, \sigma_1; \boldsymbol{r}_2, \sigma_2) h(\boldsymbol{r}_1, \boldsymbol{p}_1) \Phi(\boldsymbol{r}_1, \sigma_1; \boldsymbol{r}_2, \sigma_2)$]

Problem 3: Localised identical particles can be considered as distinguishable

Two identical particles are localised in positions A and B and do not interact. We ignore spin. The (normalised) wave-function that describes one of the particles localised at A is $\phi_A(\mathbf{r})$ and the (normalised) wave-function that describes one of the particles localised at B is $\phi_B(\mathbf{r})$. The wave-functions $\phi_A(\mathbf{r})$, $\phi_B(\mathbf{r})$ do not overlap anywhere in space: $\phi_A(\mathbf{r}) \phi_B(\mathbf{r}) = 0$, $\forall \mathbf{r}$. Indistinguishable particles must be described with a wave-function of the correct symmetry. For

Indistinguishable particles must be described with a wave-function of the correct symmetry. For two bosons/fermions, the two-particle wave-function is

$$\Psi_{AB}^{\mathrm{ind}}(\boldsymbol{r}, \boldsymbol{r}') = rac{1}{\sqrt{2}} \left[\phi_A(\boldsymbol{r}) \, \phi_B(\boldsymbol{r}') \pm \phi_B(\boldsymbol{r}) \, \phi_A(\boldsymbol{r}') \right]$$

Distinguishable particles are described with a simple product wave-function:

$$\Psi_{AB}^{\mathrm{dis}}(\boldsymbol{r}, \boldsymbol{r}') = \phi_A(\boldsymbol{r}) \, \phi_B(\boldsymbol{r}')$$

- a. Are these two-particle wave functions normalised?
- b. Work out the expression for the expectation values of the operator $\hat{O}_1 = O_1(\boldsymbol{r}, \boldsymbol{p}) + O_1(\boldsymbol{r}', \boldsymbol{p}')$:

$$\langle \Psi_{AB}^{\text{ind}} | \hat{O}_1 | \Psi_{AB}^{\text{ind}} \rangle = \frac{1}{2} \iint d^3r \, d^3r' \, \left[\phi_A(\boldsymbol{r}) \, \phi_B(\boldsymbol{r}') \pm \phi_B(\boldsymbol{r}) \, \phi_A(\boldsymbol{r}') \right]^* \left[O_1(\boldsymbol{r}, \boldsymbol{p}) + O_1(\boldsymbol{r}', \boldsymbol{p}') \right] \left[\phi_A(\boldsymbol{r}) \, \phi_B(\boldsymbol{r}') \pm \phi_B(\boldsymbol{r}) \, \phi_A(\boldsymbol{r}') \right]$$

$$\langle \Psi_{AB}^{\text{dis}} | \hat{O}_1 | \Psi_{AB}^{\text{dis}} \rangle = \iint d^3r \, d^3r' \, \phi_A^*(\boldsymbol{r}) \, \phi_B^*(\boldsymbol{r}') \left[O_1(\boldsymbol{r}, \boldsymbol{p}) + O_1(\boldsymbol{r}', \boldsymbol{p}') \right] \phi_A(\boldsymbol{r}) \, \phi_B(\boldsymbol{r}')$$

c. Work out the expression for the expectation values of the operator $\hat{O}_2 = O_2(|\boldsymbol{r} - \boldsymbol{r}'|)$:

$$\langle \Psi_{AB}^{\text{ind}} | \hat{O}_2 | \Psi_{AB}^{\text{ind}} \rangle = \frac{1}{2} \iint d^3r \, d^3r' \, \left[\phi_A(\boldsymbol{r}) \, \phi_B(\boldsymbol{r}') \pm \phi_B(\boldsymbol{r}) \, \phi_A(\boldsymbol{r}') \right]^* O_2(|\boldsymbol{r} - \boldsymbol{r}'|) \left[\phi_A(\boldsymbol{r}) \, \phi_B(\boldsymbol{r}') \pm \phi_B(\boldsymbol{r}) \, \phi_A(\boldsymbol{r}') \right]$$

$$\langle \Psi_{AB}^{\text{dis}} | \hat{O}_2 | \Psi_{AB}^{\text{dis}} \rangle = \iint d^3r \, d^3r' \, \phi_A^*(\boldsymbol{r}) \, \phi_B^*(\boldsymbol{r}') O_2(|\boldsymbol{r} - \boldsymbol{r}'|) \phi_A(\boldsymbol{r}) \, \phi_B(\boldsymbol{r}')$$

What is your conclusion?

Problem 4: Why we need approximations in theory of electronic structure.

This problem is to demonstrate that the amount of information in the many-particle wavefunction $\Psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N)$ is overwhelming and that it is hopeless to attempt to solve Schrödinger's equation numerically, fully, i.e. without introducing some approximation. Below we ignore spin.

- (a) Estimate the amount of information in the wavefunction $\psi(\mathbf{r})$ for the electron in the H atom, when we know the values of this function on a grid inside a box. Use a coarse grid with 10 grid points per coordinate x, y, z. How much capacity (in bytes) would it take to store this wf in memory? (A real number requires 4 bytes).
- (b) Repeat the estimate for the wf of the Li atom. Does the amount of information in the wf for one state of the Li atom fit in a DVD? A DVD holds ~ 10 GB.
- (c) For the atom of which element would the mass of DVDs required to store the wf of a single state exceed (i) the mass of the Earth? (ii) the mass of the Sun? (iii) the mass of the Milky Way? (DVD mass ~ 1 g, Earth mass $\sim 6 \times 10^{24}$ kg, solar mass $\sim 2 \times 10^{30}$ kg, mass of Milky Way $\sim 5 \times 10^{11}$ solar masses.)

Table of elements.pdf

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
138.906	140.115	140.908	144.24	144.913	150.36	151.966	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
227.028	232.038	231.036	238.029	237.048	244.064	243.061	247.070	247.070	251.080	[254]	257.095	258.1	259.101	[262]

©2014 Todd Helmenstine sciencenotes.org