2. CLASSIFYING EXTENSIONS

We already defined some classifications For K-L:

- · finitely generated, if L= K(x,,, an), wiel
- Simple, if L=K(x), xeL
 Finite, IF [L:K] < ∞

DeFinition 2.1

Let KGL be a field extension.

· an element $\alpha \in L$ is algebraic over Kif $\exists p \in K[t], p \neq 0$, such that $p(\alpha) = 0$ If no such p exists, α is transcendental over K

· The extension K L is algebraic if every over L algebraic over K.

The extension is transcendental IF some element OFF IS transcendental over K.

· "algebraic" = algebraic over Q

"transcendental" = transcendental over Q

Relations (to be proved) nontrivial Simple

Algebraic Finite Finitely gen

transcendental => infinite infinitely gen

Example 2.2

- $\sqrt{2}$ is algebraic as a root of $t^2-260[t]$
- •Q \hookrightarrow Q(\sqrt{z}) = $\{a+b\sqrt{z}: a,b\in Q\}$ is algebraic: $a+b\sqrt{z}$ is a root of $(t-a)^2-2b^2\in Q[t]$
- · M, e, sin JZ are transcendental (Lindemann Wolenstars)

Example 2.3

Let K be a field and L = K(x) the field of rational finding in the indeterminate X. Then $K \hookrightarrow L$ is transcential:

- Let $p = a_n t^n + \dots + a_0 \in K[t]$ such that $p(x) = a_n x^n + \dots + a_s = 0 \in L$
- But then $a_n = ... = a_0 = 0$, so p = 0.

Theorem 2.4 Let KCC subfield and XEC.

Every simple transcendental extension K-Kla) is isomorphic to K-K(x) with K(x) the

field of rational functions in the indeterminate X.

 $\frac{Proof}{K(x)} \xrightarrow{\varphi} K(x)$ Define $\phi(P/q) = \frac{P(a)}{q(a)}$ $\int \int \varphi|_{k:K \to K}$ is the identity, so suffice, $K \xrightarrow{id} K$ to show ϕ is a Field isomorphism.

& homomorphism: $\phi\left(\frac{P}{q} + \frac{\hat{P}}{\hat{q}}\right) = \phi\left(\frac{P\hat{q} + \hat{p}\hat{q}}{q\hat{q}}\right) = \frac{P(\alpha)\hat{q}(\alpha) + \hat{p}(\alpha)\hat{q}(\alpha)}{q(\alpha)\hat{q}(\alpha)} = \frac{P(\alpha)}{q(\alpha)} + \frac{\hat{p}(\alpha)}{\hat{q}(\alpha)} + \frac{$ Similarly $\phi(\frac{P}{q}, \frac{\hat{p}}{q}) = \frac{P(k)}{q(a)} \cdot \frac{\hat{p}(k)}{\hat{q}(a)}$. # injective: If p(p|q) = p(a)/q(a) = 0, then p(a) = 0.

By assumption a transcendent over $K \Rightarrow p=0=1$ Fig. 0.

& surjective: By Lemma 1.6, every element of K(a) can be obtained as a finite sequence of field operations using K and a.

Since $\phi(x) = K$ and $\phi(x) = \alpha$, surjectivity follows. \Box

~ complete classification of simple transcendental extensions: K(x) is the only one!

Corollary 2.5 If K -> K(a) is a transcendental extension, then [Kb): K] < 00. Proof

to Kunk(x). KC>K(d) is isonorphic In K(x), the element 1, x, x^2 , x^3 , ... are all K-linearly independent.

Recall: a polynomial p=anth+.-+a is monic if an=1.

Definition 2.6

Let KUL be a field extension and all algebraic over K.

The minimal polynomial of a over K is
a monic polynomial mek[t] of minimal degree < t m(d)=0

Lemma 2.7

Let agl be algebraic over K and m its minimal pulynomial.

If pek[t] has p(a)=0, then m/p (m divides p)

Proof

Polynomial division \Rightarrow $\exists q, r \in K[t]$ such that p = qm + r, deg r < deg mThen $r(\alpha) = p(\alpha) - q(\alpha)m(\alpha) = 0$.

By definition m has minimal degree among nonzero polynomials with α as a rout \Rightarrow $r=0 \Rightarrow m/p$ []

Lemna 2.7 => the minimal polynomial is unique:

15 m, m monic and m/m, m/m, then m=m.

Example 2.8 X=e2rc/5 EC is algebraic: x5= e2rc=1 So & is a rost of P=ts-16Q[t] However p is not the minimal polynomial. The minimal polyis $M = t^4 + t^3 + t^2 + t + 1 \in \mathbb{Q}[t]$ (p=(t-1)m)

Proportion 29

Let K-L and all algebraic over K.

The minimal polynomial of a over K is irreducible over K.

Proof

Suppose M=pq with p, ge KIEJ, to p, tog q < to n. $0 = m(a) = p(a)q(a) \Rightarrow \text{ either } p(a) > 0 \text{ or } q(a) = 0.$

Out this contradicts the mininclity in degree of m. \square

Proposition 7.10

Let K be a subfield of a and mek[t] irreducible, nonc Let a e C be any rout of m. Then

m is the minimal polynomial of a over K.

POOF

Let m be the minimal polynomial of a over K.

Lemma 2.7 ⇒ mm/m.

m irredubk ⇒ m=m. □

Definition 2.11 Let mcK[t]. The ideal generated bym is <m> = {pm: peK[t]}cK[t] Theorem 2.12 The quotient ring K[t]/kmx is a field

if and only if M is irreducible. Proof ">" IF m is reduible, then m=fg with defdogs < degm. Since deg f < deg m, f & < m>, so its coset [f] & Killy is not zero. Similarly OFleJE KIEJKM>.

However [f][g] = [fg] = [m] = 0 & K[t]/cm> so [f] is a zero divisor, which is impossible in a field.

"> Let 07[F] 6 K[E]/cn>. We need to find [F]" i.e. a polynomal getit] such that [fg]=[1].

Since [F] +0, m/f. By irredubility of m, got(m,F)=1.

Bozout's identity => Thigek[t] such that hm+gf=1 ⇒ [J] = [hn+gf] = [hm] + [gf] = [g][f]

Theorem 2.13 Let K (K(a) be a simple algebraic extension. Let mck[E] be the minimal polynomial of a. Then K > K(a) is isomorphic to K < K[t]/m>. Proof

Kiel/kn> \$ K(a) Define \$ by [P] \$\rightarrow\$ p(a) J i) \$ 15 well defined: $K \xrightarrow{id} K$ IF [p] = [q], then m(p-q) $\Rightarrow (p-q)(\alpha) = 0 \Rightarrow p(\alpha) = q(\alpha)$ ii) o: K->K is the identity (evaluation of constant poly) iii) of is a field homomorphum? $\phi([p]+[q])=\phi([p+q])=p(0)+q(x)=\phi(p)+\phi(q)$ $\phi([p][q]) = \phi([pq]) = p(a)q(a) = \phi[p] \cdot \phi[q]$ iv) & is injective: by(i) &[0] = OEKA) V) \$ is sugartive: $\phi[t] = \alpha$

⇒ image of & is a field containing K and &

By definition of Kla), & is surjective. D

Corollary 2.14 Let Kuskla) and Kusk(B) be two simple algebraic extensions such that a and D have the same minimal pulynomial mekit]. Then Kuskla) and Kuskla) are isomorphic. Proof Both field extensions are isomorphic to Kith/<m> 11 Proposition 2.15 Let Kuska) simple algebraic extension, mEKEED minimal polynomial of a. Then [k(a): K] = deg m and {1, x, x2, --, x deg m-)} is a K-vector space basis of Kla). Post let n=deg n. i) Linear independence: suppose ko+kix+--+kn-1xn-1=0, with kiek. Then [ko+kit+-+kn th-]=0= KELT/2n> >> m/bo+--+konth

Since deg m=n, this is only possible if k0=--=kn=0.

11) \$1, -- , an-13 span all of K(a): Every element BeKG) is given by a finite sequence. of field operations => B = P(x), packIt] (see Exercise 1) Since gla) =0, Thin Z.13 implies m/q.

Then 1=am+bq For some a,bek[t], $50 \ \hat{q}(a) = b(a) \Rightarrow B = p(a)b(a)$. So every element has the Form B=PG), PEKIL)

By polynomal division

p=qm+r, q,rek[E], deg redeg m. Here $\beta = \tilde{p}(0) = g(0) \cdot n(0) + r(0) = r(0)$

and r(a) is a K-linear combination of 1, -, and. []

simple algebraic extensions K- KG) of degree n

irreducible polynomials me K[t] of degree n