第三篇

热学

第7章 熟力学基础

二、循环过程 卡诺循环

Cyclic Process and Carnot Cycle

热机: 利用工质做功把热能转变成机械能的装置

理想气体状态方程 热力学第一定律

$$pv = vRT$$

$$Q = \Delta E + A$$

$$egin{aligned} Q &= m{\mathcal{V}} m{\mathcal{C}} \ \Delta T \ \Delta E &= m{\mathcal{V}} m{\mathcal{C}}_{v,a} \ \Delta T \ A &= \int m{\mathcal{P}} dV \end{aligned}$$

$$Q = \bigvee C \Delta T \qquad \Delta T = T_2 - T_1 \qquad C_{V,n} = \frac{i}{2}R$$

$$\Delta E = \bigvee C_{V,n} \Delta T \qquad \Delta E = E_2 - E_1$$

$$A = \int P dV \qquad C_{P,n} = C_{V,n} + R \qquad Y = \frac{C_P}{C_{V,n}}$$

过程

过程方程

 ΔE \boldsymbol{A}

等体

 $\frac{P}{T} = R$

 $\nu c_{v} \Delta T$

 $\nu c_{v} \Delta T$

压

 $\frac{V}{T} = \mathring{R}$

 $\nu c_{v_a} \Delta T$

 $p_{\Delta V}$ $VR \Delta T$

 $\nu_{C_{p,m}}\Delta T$

等 温

pV = 常量

 $VRT_1 ln \frac{V_2}{V_1}$ 或 p_1V_1 In $\frac{V_2}{V_1}$

 $VRT_1 ln \frac{V_2}{V_1}$ 或 p_1V_1 In $\frac{V_2}{V_1}$

绝 热

 $pV^{\gamma} = 常量$

 $\nu c_{va} \Delta T$

 $\boldsymbol{p}_1 \boldsymbol{V}_1 - \boldsymbol{p}_2 \boldsymbol{V}_2$

二、循环过程 卡诺循环

Cyclic Process and Carnot Cycle

- 1. 循环过程
- (1) 循环过程

系统的工质,经一系列变化又回到了初始状态的整个过程,称为循环过程。

以蒸汽机为例:

蒸汽机的工质——水

- 1) 循环过程的特征: $\Delta E = 0$
- (2) 通过各种平衡(或准静态)过程组合起来实现
- (3) 热功计算: 按各不同的分过程进行, 总合起来 求得整个循环过程的净热量、净功

(2) 热机效率

热机: 利用工质做功把热能转变成机械能的装置

从高温热源 T_1 吸热 Q_1 对外做净功 A_{p} 向低温热源 T_2 放热 Q_2 工质回到初态 $\Delta E = 0$

$$A_{\not\ni} = Q_1 - \left| Q_2 \right|$$

热机效率:

$$\eta = \frac{A_{\text{p}}}{Q_{\text{low}}} = \frac{Q_1 - |Q_2|}{Q_1} = 1 - \frac{|Q_2|}{Q_1} < 1$$

(3) 致冷系数

将热机的工作过程反向运转——致冷机

从低温库 T_2 吸热 Q_2

外界做净功 A_{β} 向高温库 T_1 放热 Q_1

工质回到初态
$$\Delta E = 0$$

致冷系数:
$$w = \frac{Q_{2\%}}{|A_{\beta}|} = \frac{Q_2}{|Q_1| - Q_2}$$

 $A_{_{/\!\!/}} = Q_1 - Q_2$

w越高越好!(吸一定的热量 Q_2 需要的净功越少越好)

思考:

一直敞开冰箱门能制冷整个房间吗?

典型的热力学循环

循环/过程	压缩	吸热	膨胀	放热
外燃机或热泵经常使用	的循环	不方式		
埃里克森循环 (第一类,1833年提出) 布雷顿循环	绝热	等压	绝热	等压
贝尔・科曼循环 (逆向布雷顿循环)	绝热	等压	绝热	等压
卡诺循环	等熵	等温	等熵	等温
朗肯循环 (蒸汽机)	绝热	汽化	绝热	等容
斯特灵循环	等温	等容	等温	等容
埃里克森循环 (第二类,1853年提出)	等温	等压	等温	等压
斯托达德循环	绝热	等容	绝热	等容
内燃机经常使用的	循环方	式		
奥托循环	绝热	等容	绝热	等容
迪塞尔循环	绝热	等压	绝热	等容
布雷顿循环 (喷气式)	绝热	等压	绝热	等压
勒努瓦循环 (脉冲喷气式)	等压	等容	绝热	等压

典型的热力学循环

1. 奥托循环: 内燃机

尼古拉斯·奥托 1832-1891

2. 卡诺循环: 外燃机

尼古拉·莱昂纳尔·萨迪·卡诺 1796-1832

例4. 空气标准奥托循环:

——(四冲程内燃机进行的循环过程)

- (1)绝热压缩 $a \rightarrow b$,气体从 $V_1 \rightarrow V_2$
- (2) 等容吸热 $b \rightarrow c$ (点火爆燃), $(V_2 T_2) \rightarrow (V_2 T_3)$ 。
- (3) 绝热膨胀 $c \rightarrow d$,对外作功, 气体从 $V_2 \rightarrow V_1$
- (4) 等容放热 $d \rightarrow a$, $T_4 \rightarrow T_1$ 求 $\eta = ?$

解: $b \rightarrow c$, 吸热 $Q_1 = v C_{V,m} (T_3 - T_2)$

$$d\rightarrow a$$
,放热 $Q_2=vC_{V,m}(T_4-T_1)$

$$b \rightarrow c$$
,吸热 $Q_1 = \nu C_{V,m}(T_3 - T_2)$
 $d \rightarrow a$,放热 $Q_2 = \nu C_{V,m}(T_4 - T_1)$

$$\eta_{\text{MH}} = 1 - \frac{|Q_2|}{Q_1} = 1 - \frac{T_4 - T_1}{T_3 - T_2}$$

利用 $a \rightarrow b$, $c \rightarrow d$ 两绝热过程:

$$TV^{\gamma-1}=C''$$

可
$$T_1V_1^{\gamma-1} = T_2V_2^{\gamma-1} = r^{\gamma-1}$$

$$T_4V_1^{\gamma-1} = T_3V_2^{\gamma-1}$$

$$\eta = 1 - r = V_1$$

$$r = V_2$$
压缩比

$$\eta = 1 - \frac{1}{r^{\gamma - 1}}$$

$$r = \frac{V_1}{V_2}$$
压缩比

$$r \uparrow, \eta \uparrow r \leq 7$$
 若 $r = 7 \gamma = 1.4$

$$\begin{array}{c|c}
c\\
b\\
\hline
V_2\\
\hline
V_1\\
\hline
V_2\\
\hline
V_1\\
\hline
V = \frac{C_P}{C} = \frac{i+2}{i}
\end{array}$$

$$\eta = 54\%$$
 12

例5. 1000 mol空气, $C_{P,m}$ =29.2 J/(K mol),开始为标准 状态A(P_A =1.01×10 5 Pa, T_A =273K, V_A =22.4m 3) 等压膨胀至状态B, 其容积为原来的2倍,然后 经如图所示的等容和等温过程回到原态A,完成 一次循环,求循环效率。

解: (1) 等压膨胀过程 $A \rightarrow B$

$$A_{AB} = P_A (V_B - V_A) = P_A V_A$$

= 1.01×10⁵ × 22.4
= 2.26×10⁶ J

$$\begin{array}{c|c}
P & Q_1 \\
A & B \\
Q_2 & C
\end{array}$$

$$\begin{array}{c}
Q_2 \\
C & V
\end{array}$$

$$X \frac{V_B}{V_A} = \frac{T_B}{T_A}$$
 $T_B = \frac{V_B}{V_A}T_A = 2 \times 273 = 546 \text{ K}$

$$Q_1 = vC_{P,m}(T_B - T_A) = 1000 \times 29.2 \times (546 - 273)$$
$$= 7.97 \times 10^6 \text{ J}$$

(2) 等容降温过程 $B \rightarrow C$

$$Q_2 = E_B - E_C = vC_{V,m} (T_B - T_C)$$
$$= v (C_{P,m} - R) (T_B - T_C)$$

$$=1000\times(29.2-8.31)\times(546-273)$$

$$= 5.73 \times 10^6 \,\mathrm{J}$$

(3) 等温压缩过程 $C \rightarrow A$

$$Q_3 = A_{CA} = \nu R T_A \ln \frac{V_A}{V_C} = \nu R T_A \ln \frac{V_A}{V_B}$$

$$= 1000 \times 8.31 \times 273 \ln \frac{1}{2} = -1.57 \times 10^{6} \,\mathrm{J}$$

循环过程净功为:

$$A = A_{AB} + A_{CA}$$

$$= 2.26 \times 10^{6} - 1.57 \times 10^{6}$$

$$= 0.69 \times 10^{6} \text{ J}$$

循环过程在高温热源吸热为:

$$Q_{\text{TD}} = Q_1 = 7.97 \times 10^6 \,\text{J}$$

循环效率:

$$\eta = \frac{A}{Q_1} = \frac{0.69 \times 10^6}{7.97 \times 10^6} = 8.7\%$$

2. 卡诺循环 ——理想的循环

 $Q = \Delta E + A$

(1) 卡诺热机

由两个等温和两个绝热过程组成的正循环

1→2等温: $\begin{cases} 系统对外做功 A_{12} = \nu RT_1 \ln \frac{V_2}{V_1} \\ 系统从外吸热 Q_1 = A_{12} > 0 \end{cases}$ $2\rightarrow 3$ 绝热: $A_{23} = \nu C_{V,m}(T_1 - T_4)$ 系统从外吸热 Q = 0

3→4等温:

 \begin{cases} 系统对外做负功 $A_{34} = -\nu R T_2 \ln \frac{V_3}{V_4} \\$ 系统对外放热 $Q_2 = A_{34} < 0$ 16

$$\begin{cases} A_{12} = \nu R T_1 \ln \frac{V_2}{V_1} \\ Q_1 = A_{12} \end{cases} \begin{cases} A_{23} = \nu C_{V,m} (T_1 - T_2) \\ Q = 0 \end{cases} \begin{cases} A_{34} = -\nu R T_2 \ln \frac{V_3}{V_4} \\ Q_2 = A_{34} \end{cases}$$

4→1 绝热:

 $Q_1 T_1 \begin{cases} 系统对外做负功 A_{41} = -\nu C_{V,m}(T_1 - T_4) \\ 系统从外吸热 Q = 0 \end{cases}$

效率:
$$\eta_C = \frac{A_{\mathcal{P}}}{Q_1}$$

$$= 1 - \frac{|Q_2|}{Q_1}$$

$$= 1 - \frac{T_2}{T_1}$$

物理意义:

(a) 卡诺热机的效率只与 T_1 、 T_2 有关,与工作物无关。

$$\eta_C = 1 - \frac{T_2}{T_1}$$

为提高效率指明了方向!

Carnot

(b) 热机至少要在两个热源中间进行循环,从高温热源吸热,然后放一部分热量到低温热源去,因而两个热源的温度差才是热动力的真正源泉(选工作物质是无关紧要的)。

$$\eta = 100\%$$

$$T_2=0$$

热力学第三定律:不可能通过有限的连续过程达到绝对零度。

(2) 卡诺致冷机

工作物从低温热源吸热 Q_2 ,又接受外界所做的功 $A_{\beta} < 0$,然后向高温热源放出热量 Q_1 ,能量守恒:

$$Q_{2}+|A_{1/2}|=|Q_{1}|$$

$$w_{C}=\frac{Q_{2}}{|Q_{1}|-Q_{2}}=\frac{T_{2}}{T_{1}-T_{2}}$$

例 家用冰箱: 室温 T_1 = 300 K, 冰箱内 T_2 =273 K

$$w = \frac{T_2}{T_1 - T_2} = \frac{273}{300 - 273} = 10$$
 实际比此要小!

中国能效标识

CHINA ENERGY LABEL

 生产者名称
 名称

 規格型号
 AAA-000

输入功率(瓦)	1000
制冷量(瓦)	3200

依据国家标准 GB 12021 3-2004 主活品

3.4及以上1级3.2~3.42级3.0~3.23级2.8~3.04级2.6~2.85级

$$w_C = \frac{Q_2}{|Q_1| - Q_2} = \frac{T_2}{T_1 - T_2}$$

- (1) T_2 越低,使 T_1 - T_2 升高,都导致 $_w$ 下降,说明要得到更低的 T_2 ,就要花更大的外力功.
- (2) 低温热源的热量是不会自动地传向高温热源的,要以消耗外力功为代价。

$$T_1 \neq T_2$$
, $w_C \neq \infty$

例6. 一卡诺热机, 当高温热源的温度为127°C,低温热源的温度为27°C时, 其每次循环对外做净功8000J. 今维持低温热源的温度不变, 提高高温热源的温度, 使其每次循环对外做净功10000J。若两个卡诺循环工作在相同的两条绝热线之间,

求: (1) 第二个循环热机的效率 ";

(2) 第二个循环高温热源的温度 T'_1 。

解: $1\rightarrow 2$, $3\rightarrow 4$ 等温 $2\rightarrow 3$, $4\rightarrow 1$ 绝热

对第二个循环:

$$T_2' = T_2$$
, $Q_2' = Q_2$

功A' = 10000 J.

对第一个循环

$$T_1 = 127^{\circ} \text{C}, T_2 = 27^{\circ} \text{C}, A = 8000 \text{J}.$$
 $\eta = 1 - \frac{T_2}{T_1} = 1 - \frac{27 + 273}{127 + 273} = 0.25$
 $\eta = 0.25 = \frac{A}{Q_1} = \frac{8000}{Q_1}$
 $\therefore Q_1 = 32000 \text{ J}$
 $Q_2 = Q_1 - A = 24000 \text{ J}$

对第二个循环: $Q_1'=A'+Q_2=10000+24000=34000J$

$$\eta' = A' / Q_1' = 5 / 17 \approx 29.4\%$$

 $\eta' = 1 - T_2' / T_1' = 1 - T_2 / T_1' \implies T_1' = 425 \text{ K}$

例7.一台冰箱工作时,其冷冻室的温度为-10°C,室温为15°C。若按理想卡诺制冷循环计算,则此制冷机每消耗10³J的功,可以从冷冻室中吸出多少热量?

解: 制冷系数

 $Q_2 = wA = 10.5 \times 10^3 J$