

Perfect Optical Absorption-Enhanced Magneto-Optic Kerr Effect Microscopy

Dongha Kim, Young-Wan Oh, Jong-Uk Kim, Jonghwa Shin, Kab-Jin Kim, Byong-Guk Park, Min-Kyo Seo

¹Subhra jyoti Mishra ²Subhankar Bendanta

²Gunda Santosh Babu

Abstract

We present a technique enhancing Magneto-Optic Kerr Effect (MOKE) microscopy via Perfect Optical Absorption (POA). Near-100% absorption at specific wavelengths enables Kerr rotations up to 20°, allowing high-resolution imaging of nanoscale magnetic domains. This facilitates advanced spintronic studies.

Introduction

Magnetic and spintronic media are fundamental to both scientific research and technological applications. Magneto-optic Kerr effect (MOKE) microscopy is a powerful tool for studying the dynamics of spins, magnetic quasi-particles, and domain walls. However, conventional optical techniques are limited by:

- Weak Magneto-Optical Activity: Traditional MOKE signals are extremely weak, making it challenging to detect and image nanoscale spin textures.
- Diffraction Limit: Optical techniques are limited by the diffraction barrier, necessitating expensive alternatives like electron microscopy or scanning probe methods.

This study introduces **Perfect Optical Absorption (POA)** as a novel approach to overcome these limitations. POA enhances MOKE performance by:

- Suppressing non-magnetic optical reflection (r_{XX}) .
- Enhancing magneto-optical reflection (r_{XV}) .

Key Advantages of POA

- Enables high-sensitivity detection of magnetized domains.
- Facilitates real-time imaging of sub-wavelength magnetic domain reversals.
- Allows statistical analysis of nanoscale magnetic phenomena beyond the optical diffraction limit.

Methods

POA Setup

POA is achieved using two thin SiO₂ spacer layers and a bottom Al mirror. This setup:

- Suppresses non-magnetic reflection through destructive interference.
- Enhances magneto-optical reflection through a highly confined electric field.

Sample Fabrication

- 100-nm-thick Al mirror deposited via electron beam evaporation.
- SiO₂ layers deposited via radio-frequency sputtering.
- Co/Pt and Pt/Co/Pt/Ta layers deposited via physical vapor deposition.

Measurement

- Samples mounted on a non-magnetic XYZ translation stage.
- External magnetic field applied using a neodymium magnet.
- Spectral measurements using a broadband LED and spectrometer.
- MOKE imaging using a narrowband LED and CMOS camera.

Figure 1. Conventional vs. POA-enhanced MOKE.

Result

Enhanced Kerr Amplitude

For a 1-nm-thin Co film, the Kerr amplitude reached 20°, which is 66 times larger than the bare Co/Pt film. This enhancement allows for highly sensitive detection of magnetized domains.

Figure 2. Measured Kerr amplitude for POA and conventional MOKE.

High-Visibility MOKE Imaging POA enables high-visibility imaging over a wide range of analyser angles. The visibility reached **0.72** with a high-extinction analyser, significantly improving the detection of magnetic domains.

Figure 3. High-visibility MOKE imaging of magnetic domains.

Barkhausen Jumps Real-time detection of Barkhausen jumps below the diffraction limit. Powerlaw scaling verified down to the **10-nm scale**.

Figure 4. Real-time measurement of Barkhausen jumps.

Analyser-Free MOKE Microscopy High circular birefringence enables analyser-free MOKE microscopy. Bright-field microscopy using circularly polarized illumination.

Figure 5. Analyser-free MOKE microscopy images.

Conclusion

POA significantly expands the capabilities of MOKE microscopy by:

- Enhancing sensitivity and visibility for nanoscale magnetic domain imaging.
- Enabling real-time measurement and statistical analysis of magnetic domain reversals.
- Providing a pathway for studying advanced magnetic phenomena such as skyrmions, magnons, and magnetic solitons.

References

- Žutić, I., Fabian, J., & Das Sarma, S. (2004). Spintronics: Fundamentals and applications. Rev. *Mod. Phys.* 76, 323–410.
- McCord, J. (2015). Progress in magnetic domain observation by advanced magneto-optical microscopy. J. Phys. D. Appl. Phys. 48.
- Kim, D. H., et al. (2019). Perfect optical absorption-enhanced magneto-optic Kerr effect microscopy. *arXiv:1909.13275*.