Estruturas de Concreto I - Resumo

@ivansnpmaster

August 3, 2018

1 Pré-dimensionamento de lajes maciças

Para o pré-dimensionamento da espessura das lajes maciças, deve-se utilizar a seguinte equação:

$$h = \frac{lx}{40}$$

Onde h é a altura da laje em cm e lx é menor medida em cm de um dos lados da laje.

As dimensões mínimas especificadas na NBR 6118/14 são, em cm:

- $h \geqslant 7$ para lajes de cobertura (não em balanço);
- $h \ge 8$ para lajes de piso (não em balanço);
- $h \geqslant 10$ para lajes em balanço;
- $h \geqslant 10$ para estacionamento para veículos até 30 kN;
- $h \geqslant 12$ para estacionamento para veículos com mais de 30 kN.

Tentar sempre arredondar para o inteiro superior mais próximo, a fim de facilitar a confecção da forma da laje, sempre se atentando ao mínimo exigido na norma.

Em lajes em balanco, deve-se utilizar um coeficiente de majoração adicional (γ_n) na definição do momento fletor de projeto (M_d) , esse coeficiente depende da altura da laje em balanço, sendo utilizado para lajes com espessura inferior a 19 cm, de acordo com a seguinte tabela:

h(cm)	19	18	17	16	15	14	13	12	11	10
γ_n	1,00	1,05	1,10	1,15	1,20	1,25	1,30	1,35	1,40	1,45

Tabela 1: Coeficiente de majoração adicional (γ_n) para majoração do momento fletor de projeto.

2 Pré-dimensionamento de pilares maciços

Os pilares são pré-dimensionados para atuarem com uma **tensão de serviço** (σ) de 1,0 a 1,5 kN/cm^2 submetidos a uma ação de 10 a 12 kN/m^2 por pavimento (carga por pavimento).

Deve-se considerar os seguintes itens para a obtenção das medidas de seção dos pilares:

- Espessura dos blocos das paredes adjacentes (19 cm para pilares externos e 14 cm para internos);
- Tensão de serviço;
- Carga por pavimento;
- Número de pavimentos.

A carga na base do pilar é o produto:

$$F_b i = A_{inf} i \cdot F_{pav} \cdot N_{pav}$$

Onde F_bi é a força na base do pilar i em kN, $A_{inf}i$ é a área de influência das lajes adjacentes ao pilar i em m^2 , F_{pav} é a carga por pavimento em kN/m^2 e N_{pav} é o número de pavimentos.

As dimensões da área de influência das lajes em um determinado pilar são montadas a partir da metade da distância até os pilares adjacentes, como na seguinte imagem:

Figura 1: Área de influência i das lajes adjacentes em um pilar P.

Obtida a carga na base do pilar, pode-se obter a área da seção pelo quociente, lembrando-se que $\sigma = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A}$, portanto:

$$A_i = \frac{F_b i}{\sigma}$$

Onde A_i é a área da seção transversal do pilar i em cm^2 , F_bi é a força na base do pilar i em kN e σ é a tensão de serviço em kN/cm^2 .

A **área mínima** de seção transversal para pilares é de $360~cm^2$ e deve ser adotada caso a equação acima dê um valor inferior.

Obtida a área da seção, pode-se finalmente obter a estimativa das dimensões do pilar. Tem-se previamente uma das dimensões (19 cm para pilares externos e 14 cm para internos) e pode-se encontrar a restante a partir da equação da área do retângulo ($base \cdot altura$) para pilares retangulares.

A nomenclatura das dimensões dos pilares em projetos de estruturas (plantas) é **Pi (largura x altura)**, por exemplo, **P5 (19 x 35)**.

3 Cargas nas lajes

Há basicamente dois tipos de cargas verticais em lajes maciças, cargas permanentes e cargas acidentais. A primeira sempre existirá na vida útil do edifício, a segunda é decorrente da utilização do ambiente. As cargas acidentais são tabeladas e definidas pela NBR 6120.

As cargas permanentes podem ser subdivididas em quatro, sendo:

• Peso próprio da laje (g1):

$$g1 = \gamma_c \cdot h$$

Onde γ_c é o peso específico da laje em kN/m^3 e h é a altura da laje em m. Portanto, a unidade de g1 é kN/m^2 , ficando em função da área da laje.

- Revestimento (g2): Considera-se geralmente de 1,0 a 1,5 kN/m^2 .
- Enchimento (g3): Encontra-se geralmente no teto de banheiros, onde há passagem da tubulação.

$$g3 = \gamma_e \cdot h_e$$

Onde γ_e é o peso específico do enchimento em kN/m^3 e h_e é a altura do enchimento em m. Portanto, a unidade de g3 é kN/m^2 , ficando em função da área da laje.

• Alvenaria direta sobre a laje (g4): Consiste na consideração da influência das paredes sobre a laje.

$$g4 = \frac{\gamma_a \cdot V_a}{lx \cdot ly}$$

Onde γ_a é o peso específico da alvenaria em kN/m^3 , V_a é o volume da alvenaria em m^3 , lx e ly são o menor e maior vão da laje, respectivamente, em m. Portanto, a unidade de g4 é kN/m^2 , ficando em função da área da laje.

Alguns exemplos de cargas acidentais em edifícios (NBR 6120):

- Dormitório, sala, cozinha e banheiro $(1, 5 kN/m^2)$;
- Despensa, área de serviço $(2,0 \ kN/m^2)$;
- Varanda $(3,0 \ kN/m^2)$.

Conhecendo-se as cargas permanentes e acidentais, considera-se a carga final na laje (P) como:

$$P = P_{pe} + P_{ac} = (g1 + g2 + g3 + g4) + P_{ac}$$

Onde P_{pe} é a carga permanente total e P_{ac} é a carga acidental do ambiente. A carga final é utilizada para definir o carregamento nas vigas adjacentes às lajes.

4 Pré-dimensionamento de vigas maciças

Para o pré-dimensionamento da altura de vigas, deve-se observar o número de apoios na qual ela está sujeita. Para obtenção dessa altura, deve-se utilizar as seguintes equações:

• Para **vigas contínuas** com mais de dois apoios, subdivide-se a viga em vigas menores, portanto:

$$h = c \cdot \frac{L}{10}$$

Onde h é a altura da viga, L é o comprimento do trecho e c é 0,75 para vigas nas extremidades e 0,7 para as demais. Adota-se a maior altura encontrada para toda a seção transversal.

• Para vigas em balanço, temos:

$$h = \frac{L}{5}$$

Onde h é a altura da viga e L seu comprimento.

• Para vigas biapoiadas, temos:

$$h = \frac{L}{10}$$

Onde h é a altura da viga e L seu comprimento.

Recomenda-se **não pré-dimensionar** vigas com menos de 25 $\it cm$ de altura.

Deve-se atentar, entretanto, que para lajes onde há a necessidade da passagem de tubulações, é necessário ajustar a altura da viga. Por exemplo, o teto de banheiros precisa de tubulações, deve-se considerar a espessura da laje do banheiro e a espessura do local onde ficará a tubulação. Para que as vigas não fiquem aparentes, além do usual método de adotar alturas de 5 em 5 cm para facilitar a montagem da forma, deve-se cobrir toda essa espessura onde há a tubulação + laje. Isso é muito importante.

Adota-se $bw \ge 14 \ cm$, podendo ser $\ge 12 \ cm$ em casos especiais.

5 Cargas nas vigas

As cargas verticais nas vigas são:

• Peso próprio da viga:

$$g_{viga} = \gamma_c \cdot bw \cdot h$$

Onde g_{viga} é o peso próprio da viga em kN/m^3 , γ_c é o peso específico do concreto armado, bw é a largura da seção transversal da viga em m e h é a altura da seção transversal da viga em m.

• Alvenaria sobre a viga:

$$g_{alv} = \gamma_{alv} \cdot h \cdot e$$

Onde g_{alv} é o peso da alvenaria sobre a viga em kN/m, γ_{alv} é o peso específico da alvenaria que está sobre a viga em kN/m^3 , h é a altura da parede em m e e é a espessura da parede em m.

• Carga das lajes sobre as vigas:

Sendo P a carga nas lajes, devemos distribuir geometricamente P para as vigas. Isso é feito analisando os apoios da laje, pois apoios engastados geralmente recebem mais carga. O primeiro passo é encontrar a área de influência das lajes para as vigas em função dos seus apoios, como na seguinte figura:

A carga px e py, obviamente, serão menores que a carga P, entretanto, suas unidades são diferentes. P está em função da área da laje, já px e py estão em função do comprimento da viga.

6 Linha neutra

Em lajes de concreto armado armadas em uma direção, a profundidade da linha neutra é encontrada do mesmo jeito da profundidade da linha neutra em vigas de concreto armado, sendo dada pela seguinte equação:

$$x = 1,25 \cdot d \cdot \left(1 - \sqrt{1 - \frac{M_d}{0,425 \cdot bw \cdot f_{cd} \cdot d^2}}\right)$$

Onde x é a profundidade da linha neutra, d é a altura útil, M_d é o momento fletor de projeto do vão principal, bw é a largura de 1 metro, f_{cd} é a resistência do concreto à compressão de projeto. Aqui é importante tomar cuidado com as unidades.

A NBR 6118/2014 limita a profundidade da linha neutra em $0,45 \cdot d$ para concretos com $f_{ck} \leq 50~MPa$ e em $0,35 \cdot d$ para concretos com $50 > f_{ck} \leq 90~MPa$. Essa limitação serve para não deixar que as deformações da laje alcancem o domínio 4 de deformação.