HWOS CoderBak

I. Equivalent Polynomials

(a)
$$f(p) \neq g(p) \pmod{p}$$

(b)
$$X^{\varsigma} = X \pmod{\varsigma}$$
, $\forall X \in GF(\varsigma)$

$$4x^{70} + 9x^{11} + 3 \equiv 4x^{10} + 9x + 3 \pmod{1}$$
, $\forall x \in GF(11)$

(c) By using
$$\chi P \equiv \chi \pmod{p}$$
.

II. Secret sharing

(onsider $f(x) = ax^2 + bx + C$, where c is the answer

Every TA will be given 2 points on f

Every reader will be given I point on f

2 TAS: 4 points.

3 readers: 3 points

1 TA + 1 reader: 3 points

1 TA x 2 readers X

III. One Point Interpolation

(a)
$$X_i = i$$

$$\begin{cases} 0^{k} + 0^{k-1} C_{k-1} + \dots + C_{0} = y_{0} \\ 1^{k} + 1^{k-1} C_{k-1} + \dots + C_{0} = y_{1} \\ 2^{k} + 2^{k-1} C_{k-1} + \dots + C_{0} = y_{1} \\ \vdots$$

(b)
$$\chi_{*} = [00.$$

IV. Error - Correcting Codes

- (a) $n/[-\lambda]$
- (b) N/1-2d

V. Alice and Bob

(a) Every time we choose 3 points and check the rest using Python, we can calculate the result:

Note: $A(a_1,b_1)$ $B(a_2,b_2)$ $C(a_3,b_3)$.

$$\frac{(x-a_2)(x-a_3)}{(a_1-a_2)(a_1-a_3)}b_1 + \frac{(x-a_1)(x-a_3)}{(a_2-a_1)(a_2-a_3)}b_2 + \cdots$$

$$=) \quad M_1 \equiv \frac{b_1}{(a_1 - a_2)(a_1 - a_3)} + \frac{b_2}{(a_2 - a_1)(a_2 - a_3)} + \frac{b_3}{(a_3 - a_1)(a_3 - a_2)}.$$

$$M_{\lambda} = \frac{-(\alpha_2 + \alpha_3) b_1}{(\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)} + \cdots$$
Result: $M_1 = M_{\lambda} = M_{\lambda} = M_{\lambda} = M_{\lambda}$

(3, p(3)) is modified

$$M_3 = \frac{\alpha_2 \alpha_3 \beta_1}{(\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)} + \cdots$$

(b) if Bob can find >1 pairs with 3 points laying on a line, he can't determin what has changed.

①
$$(3.5)$$
 (4.0) \Rightarrow $y=8x+7 \Rightarrow (2.10)
② (3.5) (1.7) \Rightarrow $y=-x+8 \Rightarrow (2.6) . \Rightarrow $x=5.6.10$
③ (3.5) (0.5) \Rightarrow $y=5$ \Rightarrow $(2.5)$$$

(c) (o