Population uncertainty from Census DP

Armelle Duston

June 2025

1 Proposed Models

1.1 Exact Benchmarking

$$U_j|P_{M_j}^* \sim \text{BM}_{\text{exact}}(P_{M_j}^*) = \mathbb{I}\left(\sum_{i \in M_j} P_i^* = U_j \& P_i^* \in \mathbb{N}_0\right)$$
 (1)

$$P_i^*|P_i \sim G(P_i, \tau) = \text{Laplace}(P_i, \tau)$$
 (2)

$$P_i \sim \text{Poisson}(\exp(S))$$
 (3)

$$S \sim \text{CAR}(\rho) : s_i | s_{-i} \sim \text{N}\left(\rho \bar{s}_{\delta_i}, \frac{\sigma_s^2}{n_{\delta_i}}\right)$$
 (4)

Things that are known:

- $\delta_i, i = \{1, \dots, n\}$ (pre-specified neighborhood structure)

Things that are not known and require prior:

- $U_j, j \in \{1, ..., J\}$ (values to which P_{M_j} 's are benchmarked, "prior" specified above)
- $P_i, i \in \{1, ..., n\}$ (true population counts, prior specified above)
- \bullet S (spatial random effect, prior specified above)
- σ_s^2 (spatial variance), gamma (α, β) prior (?)

Posterior Distribution

$$f(U,P,S,\rho,\sigma_s^2|P^*) = f(U|P^*)f(P^*|P)f(P|S)f(S|\rho,\sigma_s^2)f(\rho)f(\sigma_s^2)$$

1.2 Inexact Benchmarking

Everything is the same except

$$\eta U_j | P_{M_j}^* \sim \mathrm{BM}_{\mathrm{inexact}}(P_{M_j}^*) = \mathrm{Poisson}(\eta \sum_{i \in M_j} P_i^*) \mathbb{I}(P_i^* \in \mathbb{N}_0)$$
 (5)

Where η is a pre-specified discripancy parameter which controls how far off the counts are allowed to be from the benchmarks

2 Simulation Study

2.1 Plan

- 1. Simulate data according to the model above including spatial correlation, noise injection, and benchmarking
- 2. Assume simple spatial model
- 3. Assume spatial model + noise injection
- 4. Assume spatial model + noise injection + benchmarking
- 5. Evaluate performance using
 - bias
 - variance
 - credible interval coverage
 - anything else?