Inteligência Artificial

Aula 25- Aprendizagem de Máquina: Agrupamento ¹

Sílvia M.W. Moraes

Faculdade de Informática - PUCRS

June 12, 2017

¹Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores.

Sinopse

- Nesta aula, continuamos a falar sobre aprendizagem de máquina.
- Este material foi construído com base no material sobre Data Mining dos professores Rodrigos Barros, Duncan e Renata de Paris e também nos capítulos:
 - 11 Inteligência Artificial: Uma abordagem de Aprendizagem de Máquina: Facelli e outros.
 - 10 do livro Inteligência Artificial: Luger
 - 18 do livro Artificial Intelligence a Modern Approach: Russel
 & Norvig

Sumário

- 1 O que vimos ...
- Revisando: Paradigmas, Tarefas e Processo de Aprendizagem
- 3 Agrupamento

Aulas anteriores

- Agente Reativos e Cognitivos
- Solução de Problemas: Algoritmos de busca
- Planejamento Clássico
- Introdução à Raciocínio Probabilistico
- Introdução à Aprendizagem de Máquina
 - Pré-processamento

- Paradigma de aprendizagem é definido pela natureza do problema. Tipo de realimentação usada pelo algoritmo para aprender.
 - Podem ser:
 - Supervisionado: aprendizagem de uma função h a partir de exemplos (amostras rotuladas), de entradas (x) e saídas correspondentes (f(x)). Com crítica referente ao erro da saída.
 - Não-supervisionado: aprendizagem a partir de as amostras não são rotuladas. Essa abordagem não usa os atributos de saída. Sem critica, usa regularidades e propriedades estatísticas dos dados.
 - Por reforço: processo de aprendizagem baseado em punição e recompensa. Reforça uma ação positiva e penaliza, uma negativa. Critica apenas de desempenho.

- As tarefas de aprendizagem podem ser: preditivas ou descritivas
 - preditivas: tarefa supervisionada, sua meta é encontrar uma função (modelo ou hipótese) a partir dos dados de treino que possa ser usada para prever um rótulo (classe) ou valor de um novo exemplo.
 - Ex: classificação (rótulos discretos), regressão (rótulos contínuos)

- As tarefas de aprendizagem podem ser: preditivas ou descritivas
 - descritivas: tarefa não supervisionada, sua meta é explorar ou descrever um conjunto de dados. (não usam atributos de saída)
 - Ex: agrupamento (divisão em grupos baseada em similaridade), sumarização (descrição simples e compacta), associação (relações frequentes entre dados)

Resumo:

Processo de Descoberta de Conhecimento

 Knowledge Discovery in Databases (KDD): consiste em uma série de passos bem definida cujo meta é transformar dados em conhecimento.

Processo de Descoberta de Conhecimento

- Knowledge Discovery in Databases (KDD):
 (e) Mineração :
 - Usa Algoritmos de aprendizado de máquina
 - Análise de uma séries de dados para compreensão do domínio
 - Resultados compreensíveis e especialmente úteis

Conceito

- Objetivo: organizar dados (não classificados, sem rótulos) em grupos de acordo com alguma medida de similaridade, tal que exista:
 - Alta similaridade intra-grupo.
 - Baixa similaridade entre grupos.

Características

Características:

- Técnica aplicada para organizar os dados quando não há classe para predizer.
- Grupos: formados por dados (objetos) que compartilham características (podem ser mais genéricos ou mais especializados, diferentes níveis de refinamento).
- Pode ser usado como uma etapa anterior a alguma tarefa, como por exemplo: sumarização.

• Quantos grupos há nessa imagem ?

• Quantos grupos há nessa imagem ? 2.

• Quantos grupos há nessa imagem ? 4.

• Quantos grupos há nessa imagem ? 6.

Etapas do Processo de Agrupamento

• O processo de agrupamento inclui as etapas: preparação, proximidade, agrupamento, validação e interpretação.

Etapas do Processo de Agrupamento

- O processo de agrupamento inclui as etapas: preparação, proximidade, agrupamento, validação e interpretação.
 - Preparação: inclui pré-processamento (ex: normalizações, conversão de tipos e redução de dimensionalidade) e forma de representação dos dados (ex: matriz de similaridade) para que o algoritmo de agrupamento possa ser usado.
 - Proximidade: definição de medidas de proximidade apropriadas ao domínio e ao tipo de informação que se deseja extrair dos dados.
 - Existem medidas para atributos quantitativos e qualitativos.

Etapas do Processo de Agrupamento: Proximidade

- Proximidade Medidas para Atributos Quantitativos:
 - Medidas de Distância: atributos contínuos e racionais:
 - Manhattan: $d(x_i, x_j) = \sum_{l=1}^{d} |x_i^l x_j^l|$ (usual para binários)
 - Euclidiana: $d(x_i, x_j) = \sqrt{\sum_{l=1}^{d} (x_i^l x_j^l)^2}$
 - ullet Chebyschev (ou supremum): $d(x_i, x_j) = \max_{1 \leq l \leq d} |x_i^l x_j^l|$

Etapas do Processo de Agrupamento: Proximidade

- Proximidade Medidas para Atributos Quantitativos:
 - Medidas de Similaridade:
 - Separação angular (cosseno): $cos(x_i, x_j) = \frac{\int\limits_{l=1}^d x_i^l x_j^l}{\sqrt{\int\limits_{l=1}^d x_i^2 \int\limits_{l=1}^d x_j^2}}$
 - Pearson: $p(x_i, x_j) = \frac{\int\limits_{l=1}^{d} (x_i^l \overline{x_i})(x_j^l \overline{x_j})}{\sqrt{\int\limits_{l=1}^{d} (x_i^l \overline{x_i})^2 \int\limits_{l=1}^{d} (x_j^l \overline{x_j})^2}}$ (quando magnitude não é importante, mas sim o grau de variação. Ex: Bioinformática)

cosseno

Etapas do Processo de Agrupamento: Proximidade

- Proximidade Medidas para Atributos Qualitativos:
 - São obtidas a partir da soma das contribuições individuais de todos os atributos.
 - Para atributos nominais, a distância mais usada é a de Hamming.

$$d(x_i, x_j) = \sum_{l=1}^d a(x_i^l, x_j^l) \text{ , onde } a(x_i^l, x_j^l) = \begin{cases} 1 & \text{se } x_i^l \neq x_j^l \\ 0 & c.c \end{cases}$$

Etapas do Processo de Agrupamento

- O processo de agrupamento inclui as etapas: ...
 - agrupamento: nessa etapa um ou mais algoritmos de agrupamento são usados para gerar os grupos.
 - validação: etapa que verifica se os grupos gerados são significativos. Ajuda a determinar o número adequado de grupos, quando esse número não é conhecido.
 - interpretação: processo de examinar o grupo em relação aos outros com o objetivo de rotulá-lo, indicando a natureza do grupo.

Tipos de Agrupamentos

Agrupamento Particional

 Divisão dos objetos de dados em subconjuntos (grupos) sem sobreposição tal que cada objeto de dados está em exatamente um único grupo.

Agrupamento Hierárquico

• Um conjunto de grupos aninhados na forma de uma árvore hierárquica.

- k-means: Algoritmo de agrupamento particional.
 - Características:
 - Cada grupo está associado a um centroide (objeto central).
 - Cada objeto é atribuído ao grupo com o centroide mais próximo.
 - Número de grupos (k) deve ser especificado
 - 1. Selecione k objetos como centroides iniciais.
 - 2. Repita
 - 3 Forme k agrupamentos vinculando todos os objetos aos centroides mais próximos.
 - Recalcule o centroide de cada agrupamento.
 - 5. Até que os centroides não mudem.

Características:

- Centroides iniciais são geralmente aleatórios.
- Agrupamento varia conforme a inicialização.
- Centroides são (tipicamente) a média de todos os objetos do grupo.
- A medida de distância geralmente empregada é a distância Euclidiana.
- k-means geralmente converge com poucas iterações.
- Complexidade é O(n × k × i × d), onde n = número de objetos, k = número de grupos, i= número de iterações e d= número de atributos

• Exemplo:

- Considere o conjunto de dados abaixo, o qual possui 6 registros de peso(atributo1) e altura (atributo2) normalizados para o intervalo 0 a 10.
- Supondo que o Padrão1 é o centroide inicial do cluster1 e o Padrão2 é o centroide inicial do cluster2, quais serão os valores dos centroides dos dois clusters, ao final da execução do algoritmo?

Padrão	Peso(Atributo1)	Altura(Atributo2)
1	2	8
2	8	2
3	6	8
4	2	7
5	8	4
6	2	6

- Considerando, a distância euclidiana a medida de proximidade:
 - E sabendo que o centróide do cluster1 (C1) é definido por (8,2) e do cluster2 (C2) é (2,8)
 - Analisando o Padrão 3: (6,8)
 - ① Calcula a proximidade do padrão em relação aos centróides: distância de C1: $\sqrt{(8-6)^2+(2-8)^2}=6,32$ distância de C2: $\sqrt{(2-6)^2+(8-8)^2}=4$
 - 2 Recalcula o centróide do mais próximo ao padrão, usando média $\overline{x}(k) = \frac{1}{n_k} \sum_{x_i \in C_k} x_i$:

$$C2=(\frac{2+6}{2},\frac{8+8}{2})=(4,8)$$

- Considerando, a distância euclidiana a medida de proximidade:
 - E sabendo que novo centróide do cluster1 (C1) é definido por (8,2) e do cluster2 (C2) é (4,8)
 - Analisando o Padrão 4: (2,7)
 - ① Calcula a proximidade do padrão em relação aos centróides: distância de C1: $\sqrt{(8-2)^2+(2-7)^2}=7,81$ distância de C2: $\sqrt{(4-2)^2+(8-7)^2}=2,23$
 - 2 Recalcula o centróide do mais próximo ao padrão, usando média:

$$C2 = (\frac{2+6+2}{3}, \frac{8+8+7}{3}) = (3,7)$$

- Considerando, a distância euclidiana a medida de proximidade:
 - E sabendo que novo centróide do cluster1 (C1) é definido por (8,2) e do cluster2 (C2) é (3,7)
 - Analisando o Padrão 5: (8,4)
 - ① Calcula a proximidade do padrão em relação aos centróides: distância de C1: $\sqrt{(8-8)^2+(2-4)^2}=2$ distância de C2: $\sqrt{(3-8)^2+(7-4)^2}=5.83$
 - Recalcula o centróide do mais próximo ao padrão, usando média:

$$C1 = (\frac{8+8}{2}, \frac{2+4}{2}) = (8,3)$$

- ...E sabendo que centróide do cluster1 (C1) é (8,3) e do cluster2 (C2) é (3,7).
 - Analisando o Padrão 6: (2,6)
 - **1** Calcula a proximidade do padrão em relação aos centróides: distância de C1: $\sqrt{(2-8)^2 + (6-3)^2} = 6,70$ distância de C2: $\sqrt{(2-3)^2 + (6-7)^2} = 1,41$
 - Recalcula o centróide do mais próximo ao padrão, usando média:

$$C2 = \left(\frac{2+6+2+2}{4}, \frac{8+8+7+6}{4}\right) = (3,7)$$

- Produz um conjunto de grupos aninhados, organizados como uma árvore.
- Pode ser visualizado por um dendograma.
 - Uma árvore como um diagrama que mostra as sequências de combinações ou partições.

- Vantagens desse tipo de agrupamento:
 - Não é necessário assumir um número particular de grupos
 - Qualquer número de grupos desejado pode ser obtido ao 'cortar' o dendograma no nível apropriado.
 - Podem corresponder a taxonomias úteis. Exemplos em ciências biológicas (e.g., reino animal, reconstrução filogênica, ...)

- Tipos: Aglomerativo ou por Divisão
 - Aglomerativo:
 - Inicia com cada objeto representando um grupo individual.
 - A cada passo, combina o par mais próximo de grupos, até que somente um grupo (ou k grupos) reste ou algum critério de parada seja atingido.
 - Por Divisão:
 - Inicia com todos os objetos representando um único grupo.
 - A cada passo, divide o grupo até que cada grupo contenha um objeto (ou k grupos) ou algum critério de parada seja atingido.
 - Algoritmos hierárquicos tradicionais usam a matriz de similaridade ou distância

Os algoritmos aglomerativos são mais usados

Algoritmo Básico Calcular a matriz de distância entre os dados Cada ponto inicialmente é considerado um cluster Repetir

Juntar os dois clusters mais próximos Atualizar a matriz de distâncias Até que reste apenas um cluster

- A operação-chave é a distância entre os dois clusters
- A diferença entre os algoritmos que seguem essa abordagem está justamente no cálculo dessa distância.

- Similaridade baseada nas distâncias entre os elementos ou centróides dos clusters.
- Em geral usam uma matriz de similaridade.

- Tipos:
 - Single-link, Complete-link, Average-link, Distance Between Centroids e outros.

- Tipos:
 - **Single-link**: baseado na **menor distância** entre dois clusters C1 e C2 (usa os dados mais próximos, um de cada cluster).

 Complete-Link: baseado na maior distância entre dois clusters C1 e C2 (usa os dados mais afastados, um de cada cluster).

- Tipos:
 - Average-link: baseado na distância média entre dois clusters C1 e C2.

• Distance Between Centroids: baseado na distância entre os centróides de dois clusters C1 e C2.

