Семинар #3: Функции. Домашнее задание.

Задача 1. Куб

Напишите функцию cube, которая будет принимать на вход одно целое число и возвращать куб этого числа. Вызовите эту функции main следующим образом:

```
#include <stdio.h>

// Тут вам нужно написать
// функцию cube

int main()
{
    printf("%i\n", cube(5));
}
```

После того как вы напишите функцию cube, скомпилируйте данную программу и запустите она должна напечатать на экран число 125.

Задача 2. Четность

Напишите функцию is_even, которая будет принимать на вход одно целое число и возвращать 1, если это число чётное и 0, если число нечётное. Вызовите эту функцию в функции main следующим образом:

```
#include <stdio.h>

// Тут вам нужно написать
// функцию is_even

int main()
{
    printf("%i\n", is_even(90));
    printf("%i\n", is_even(91));
}
```

После того как вы напишите функцию is_even, скомпилируйте данную программу и запустите она должна напечатать на экран:

1

Задача 3. Печать чётных чисел

Напишите функцию print_even, которая будет принимать на вход два целых числа a и b и печатать на экран все чётные числа, которые находятся на отрезке [a, b].

вход функции $print_even$	печать на экран
2 15	2 4 6 8 10 12 14
1 15	2 4 6 8 10 12 14 2 4 6 8 10 12 14 -6 -4 -2 0 2
-7 3	-6 -4 -2 0 2

Задача 4. Треугольник из звёздочек (к удалению)

Напищите функцию triangle, которая будет принимать на вход одно целое положительно число n и будет печатать на экран прямоугольный треугольник из звёздочек (символов *). В функции main считайте с экраная число и вызовите функцию triangle, передав ей считанное число.

выход
*
**

*
**

*

Задача 5. Сумма цифр числа

• Напишите функцию sum_of_digits, которая будет принимать на вход целое число и возвращать сумму всех цифр числа (в десятичной записи). Предполагайте, что на вход функции всегда будут приходить неотрицательные числа. Реализуйте эту функцию с помощью цикла.

вход функции sum_of_digits	выход функции sum_of_digits
123	6
55955	29
4	4
0	0

• Напишите функцию sum_of_digits_rec, которая будет принимать на вход целое число и возвращать сумму всех цифр числа (в десятичной записи). Предполагайте, что на вход функции всегда будут приходить неотрицательные числа. Реализуйте эту функцию с помощью рекурсии. Пользоваться уже написаной с помощью цикла функцией sum_of_digits в этой функции нельзя.

Задача 6. Бинарное представление числа

Напишите функцию print_binary, которая будет принимать на вход целое число и печатать на экран бинарное представление этого числа. Предполагайте, что на вход функции всегда будут приходить неотрицательные числа. Реализуйте эту функцию с помощью рекурсии.

вход функции $print_binary$	печать на экран
6	110
128	10000000
4823564	10010011001101000001100
0	0

Задача 7. Числа трибоначчи

Числа трибоначчи - это последовательность чисел, задаваемые следующим образом:

```
trib(0) = 0;
trib(1) = 0;
trib(2) = 1;
trib(n) = trib(n - 3) + trib(n - 2) + trib(n - 1);
```

Напишите функцию, trib, которая будет принимать на вход целое число n и будет возвращать n-е число трибоначчи. Убедитесь, что функция работает быстро при вычислении 38-го числа трибоначчи.

вход функции trib	выход функции trib
1	0
5	4
20	35890
35	334745777
38	2082876103

Задача 8. Количество чётных

Напишите функцию count_even, которая будет принимать на вход массив целых чисел и количество элементов этого массива. Эта функция должна возвращать количество чётных чисел в этом массиве. Протестируйте эту функцию в функции main.

вход функции $count_even$	выход функции count_even
array: 1 2 3 4 5	2
size: 5	
array: 10 20 30 40	4
size: 4	
array: 10 1	1
size: 2	

Задача 9. Оставить последнюю цифру (к удалению)

Hanumute функцию last_digits, которая будет принимать на вход массив целых чисел и количество элементов этого массива. Эта функция должна заменять каждый элемент массива на его последнюю цифру (в десятичной записи числа). Протестируйте эту функцию в функции main.

вход функции $last_digits$	массив после выполнения last_digits
array: 12 61 426 17 115	2 1 6 7 5
size: 5	
array: 5 10	5 0
size: 2	

Задача 10. Факториалы

Напишите функцию factorials, которая будет принимать на вход массив целых чисел и количество элементов этого массива. Эта функция должна заменять каждый элемент этого массива на его факториал. Напишите вспомогательную функцию fact, которая будет принимать одно целое число и возвращать факториал этого числа. Протестируйте эту функцию в функции main.

вход функции factorials	массив после выполнения factorials
array: 3 4 5 6 7	6 24 120 720 5040
size: 5	
array: 10 11 12	3628800 39916800 479001600
size: 3	

Задача 11. Обратный массив

Напишите функцию **reverse**, которая будет принимать на вход массив целых чисел и количество элементов этого массива. Эта функция должна переворачивать массив задом наперёд. Протестируйте эту функцию в функции main.

вход функции reverse	массив после выполнения reverse
array: 10 20 30 40 50	50 40 30 20 10
size: 5	
array: 60 20 80 10	10 80 20 60
size: 4	

Задача 12. Сортировка

Напишите функцию sort, которая будет принимать на вход массив целых чисел и количество элементов этого массива. Эта функция должна сортировать все элементы массива по убыванию. Протестируйте эту функцию в функции main.

вход функции sort	массив после выполнения sort
array: 70 20 80 30 50 40 10 60 size: 8	80 70 60 50 40 30 20 10
array: 60 20 80 10 size: 4	80 60 20 10

Задача 13. Необычная рекурсия

Алиса и Боб играют в игру. Сначала Алиса получает некоторое нечётное число. Алиса умножает это число на 3 и прибавляет к результату умножения единицу. Получившиеся число Алиса печатает на экран и передаёт Бобу. Боб получает чётное число и делит это число на 2 пока число не станет нечётным. После каждого деления на 2, Боб печатает число на экран. Как только Боб получит нечётное число, отличное от 1, он передаёт её Алисе. Но если Боб получит число 1, то программа заканчивает выполнение.

Например, если мы передадим на вход программе число 13, то она должна напечатать следующее:

Alice: 40 20 Bob: 10 Bob: Bob: 5 Alice: 16 Bob: 8 4 Bob: Bob: 2 Bob: 1

Эту программу очень просто написать с помощью обычного цикла. Но ваша задача заключается в том, чтобы написать её с помощью рекурсии, причём поведение Алисы и Боба должны описываться двумя разными функциями. Напишите следующие функции:

- void alice(int n)
- void bob(int n)

Эти функции должны изменять приходящее на вход число, печатать его на экран и передавать новое число другой функции. То есть функция alice должна вызывать функцию bob, а функция bob должна вызывать функцию alice (но только если новое нечётное число будет отлично от единицы).

Задача 14. Присвоение матриц

Написать функцию void assign(float A[MAX][MAX], float B[MAX][MAX], int n), которая присваивает элементам матрицы A соответствующие элементы матрицы B (A = B). Где MAX это #define-константа.

Задача 15. Умножение матриц

Написать функцию void multiply(float A[MAX] [MAX], float B[MAX], float C[MAX] [MAX], int n), которая перемножает матрицы A и B размера n на n (строка на столбец), а результат записывает в матрицу C. Формула: $C_{ij} = \sum_{i} A_{ik} \cdot B_{kj}$.

Проверьте ваш код на следующих тестах:

$$\begin{pmatrix} 7 & 7 & 2 \\ 1 & 8 & 3 \\ 2 & 1 & 6 \end{pmatrix} \cdot \begin{pmatrix} 5 & 2 & 9 \\ -4 & 2 & 11 \\ 7 & 1 & -5 \end{pmatrix} = \begin{pmatrix} 21 & 30 & 130 \\ -6 & 21 & 82 \\ 48 & 12 & -1 \end{pmatrix}$$
$$\begin{pmatrix} 5 & 2 & 9 \\ -4 & 2 & 11 \\ 7 & 1 & -5 \end{pmatrix} \cdot \begin{pmatrix} 7 & 7 & 2 \\ 1 & 8 & 3 \\ 2 & 1 & 6 \end{pmatrix} = \begin{pmatrix} 55 & 60 & 70 \\ -4 & -1 & 64 \\ 40 & 52 & -13 \end{pmatrix}$$
$$\begin{pmatrix} 7 & 7 & 2 \\ 1 & 8 & 3 \\ 2 & 1 & 6 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 7 & 7 \\ 3 & 8 & 1 \\ 6 & 1 & 2 \end{pmatrix}$$

В файлах matA.txt и matB.txt лежат матрицы 10 на 10. Считайте эти матрицы с помощью метода перенаправления потока из файла combinedAB.txt, перемножьте (A на B) и запишите результат в другой файл. В результате должно получиться:

```
257
                      231
                             67
                                  237
                                        -64
                                              152
                                                    363
     -15
           237
                            325
                                              123
555
     233
           539
                 188
                      356
                                  423
                                        -47
                                                    387
497
           572
                            155
                                        207
                                              203
                                                    217
                 95
                      619
                                  414
455
     280
           675
                 354
                      664
                            346
                                  483
                                        177
                                              168
                                                    404
264
           272
                 290
                            -33
                                  234
                                              379
     182
                      474
                                        99
                                                    156
272
     180
           469
                 286
                      326
                            282
                                  325
                                        215
                                              195
                                                    231
421
                                              325
                                                    328
     363
           475
                 506
                      359
                            481
                                  468
                                        101
384
     218
                 395
                      475
                            488
                                  361
                                              291
                                                    298
           567
                                        168
     297
           480
                 170
                      318
                            423
                                  483
                                         10
                                              -17
                                                    406
193
     241
                                              212
                                                    172
           486
                 38
                      403
                            146
                                  286
                                        326
```

Задача 16. Матрица в степени

Написать функцию void power(int A[MAX][MAX], int C[MAX][MAX], int n, int k), которая вычисляет A^k , т.е. возводит матрицу A размера n на n в k-ю степень, а результат записывает в матрицу C. Используйте функции multiply и assign. Псевдокод простейшей реализации такой функции:

Проверьте ваш код на следующих тестах:

$$\begin{pmatrix} 7 & 7 & 2 \\ 1 & 8 & 3 \\ 2 & 1 & 6 \end{pmatrix}^4 = \begin{pmatrix} 7116 & 15654 & 9549 \\ 4002 & 8955 & 6135 \\ 3369 & 6165 & 4350 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}^{70} = \begin{pmatrix} 145547525 & 109870576 & 82938844 \\ 192809420 & 145547525 & 109870576 \\ 109870576 & 82938844 & 62608681 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}^{1000} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Подумайте, как можно возвести матрицу в k-ю степень более эффективно. Рассмотрите случай, когда $\mathbf k$ явлется степенью двойки и когда не является.

Необязательные задачи

Задача 1. Метод Гаусса

Написать программу, которая бы решала линейную систему уравнений Ax=b методом Гаусса.

Главная функция этой программы должна иметь вид:

```
void solve_linear_system(int n, float A[MAX][MAX], float b[], float x[]).
```

Программа должна считывать матрицу A размера n на n и столбец b из файла и записывать результат решения x в новый файл. Предполагайте, что детерминант матрицы не равен нулю. Примерный вид вашей программы:

```
#include <stdio.h>
#define MAX 200
// Возможно понадобится вспомогательная функция для перестановки строк матрицы А
void swap_rows(float A[MAX][MAX], int n, int k, int m)
{
    // Ваш код
}
void solve_linear_system(float A[MAX][MAX], int n, float b[], float x[])
{
    // Ваш код
}
int main()
{
    int n;
   float A[MAX][MAX];
    float b[MAX];
    float x[MAX];
    // Считываем n, A и b
    solve_linear_system(n, A, b, x);
   // Печатаем х
}
```

Проверьте вашу программу на следующих тестах (считывайте из файла методом перенаправления потока):

1. Следующая система:

$$\begin{cases} x_1 + x_2 - x_3 = 9 \\ x_2 + 3x_3 = 3 \\ -x_1 - 2x_3 = 2 \end{cases}$$

Вход для программы должен выглядеть следующим образом:

```
3
1 1 -1
0 1 3
-1 0 -2
9
3
```

Решение этой системы: $x=\left(\frac{2}{3},7,-\frac{4}{3}\right)\approx (0.67,7.00,-1.33)$

2. Системы из файлов system1.txt, system2.txt, system3.txt. Решения в файлах с именам x1.txt, x2.txt, x3.txt соответственно. Считывайте из файлов методом перенаправления потока.	