

FS2

INNOVATIVE SENSOR TECHNOLOGY

Thermal Mass Flow Sensor Optimal for measuring gas flow and direction

- Detection of flow direction
- Simple signal processing
- Outstanding sensitivity
- Stable platinum technology
- No moving mechanical parts
- Excellent long-term stability
- Simple calibration
- Bare sensor element resists up to +450 °C (customer specific)
- Excellent reproducibility
- Customer specific sensor available upon request

Illustration¹⁾

1) For actual size, see dimensions

Technical Data

Dimensions (L x W x H / H2 in mm):*	5 x 3.5 x 0.20 / 0.60	
Operating measuring range:	0 ml/min to 50 ml/min (half bridge mode)	
	0 m/s to 1 m/s (half bridge mode)	
	0 m/s to 100 m/s (CTA mode)	
	0 l/min to 5 l/min (CTA mode)	
Minimum operating range:	0 ml/min to 2.5 ml/min	
Response sensitivity:	0.001 m/s (50 µl/min)	
Accuracy:	< 2 % of the measured value (dependent on the electronics and calibration)	
Response time t ₆₃ :	< 0.5 s	
Operating temperature range:*	-20 °C to +150 °C	
Temperature sensitivity:	< 0.1%/K (dependent on the electronics)	
Connection:*	Cu-wire, enamelled, Ø 0.2 mm	
Heater:*	$R_{H}(25 \text{ °C}) = 34 \Omega \pm 10 \%$	
Measuring element:*	$R_{s_i}(25 ^{\circ}\text{C}) = 425 \Omega \pm 10 \%$	
Reference element:*	$R_R(25 \text{ °C}) = 710 \Omega \pm 10 \%$	
Voltage range (nominal):*	2 V to 5 V (dependent on flow rate)	

^{*} Customer specific alternatives available

DFFS2_E2.2.0 1/5

FS2 **Thermal Mass Flow Sensor** Optimal for measuring gas flow and direction

2/5

Pin Assignment

Order Information - Cu-wire, enamelled, Ø 0.2 mm

Wire length	25 mm	300 mm
	FS2T.0.1E.025	FS2T.0.1E.300
Order code	050.00130	350.00053

INNOVATIVE SENSOR TECHNOLOGY Innovative Sensor Technology IST AG, Stegrütistrasse 14, CH-9642 Ebnat-Kappel, Switzerland, Phone: +41 (0) 71 992 01 00 | Fax: +41 (0) 71 992 01 99 | E-mail: info@ist-ag.com | Web: www.ist-ag.com

Application NoteThermal Mass Flow Sensor FS2

Terminal connection of sensor chip

Circuit recommendation

Wire diameter: 0.2mm

Application NoteMeasuring small and high flows and its direction

Example – Characteristic for small flow measurement with direction output

The heater R_H is fed by a constant voltage or a constant temperature. As shown in the scheme above, the two sensor-elements ($R_{S \text{ left}}$ and $R_{S \text{ right}}$) can be connected in a bridge circuit.

With a corresponding supply VCC, the bridge balance $V_Br = V1-V2$ is depending of the mass-flow. If the bridge balance is adjusted at flow = 0 to $V_Br = 0$, the sign gives the information about the direction of the flow. For this the resistor R1 has to be adjustable.

Typical signal – curve between 0 ... 2.5 m/s

Flow range from 2.5m/s to 50m/s

A flow direction-independent signal output 1 and/or U_Bs is available likewise and represents the flow dependent entire heat transfer of the sensor into the medium. This can be taken in order to measure larger flow ranges than 2.5m/s. The signal U_Br can be further used to detect flow direction.

Application Note Measuring small and high flows and its direction FS2

Example - Characteristic for high flow measurement with direction output

Bridge signal for direction detection

Custom specific solutions

The electrical connections can be fabricated custom specific. Custom specific chip design on request.

5/5