说明

在这个例子中,我们对下面这个例子使用了benders decomposition方法。

An example of Benders Decomposition on fixed charge transportation problem bk4x3. Optimal objective in reference: 350. Erwin Kalvelagen, December 2002 See: http://www.in.tu-clausthal.de/~gottlieb/benchmarks/fctp/

其中, FCTP master problem直接建模求解。

FCTP benders decomposition使用benders方法求解,通过callback求解。

FCTP benders cycle version分别构建两个model求解,没有通过callback求解。

1. $\hat{y}=\mathbf{0}$

迭代情况

```
supply = [10, 30, 40, 20],
```

demand = [20, 50, 30]

fixed cost = [[10, 30, 20],[10, 30, 20], [10, 30, 20]]

transport cost = [[2.0, 3.0, 4.0], [3.0, 2.0, 1.0], [1.0, 4.0, 3.0], [4.0, 5.0, 2.0]]

初始化UB = 1999, LB = 1

第0次,

 $\theta = [0,0,0,0,0,0,0,0,0,0,0,0,0]$ feasibility cut, \$\$ 100.0 -10.0 y_{11} -10.0 y_{12} -10.0 y_{13} -20.0 y_{21} -30.0 y_{22} -30.0 y_{23} -20.0 y_{31} -40.0 y_{32} -30.0 y_{41} -20.0 y_{42} -20.0 y_{43} <= 0 \$\$

其中,

 $$y_{23} = 1.0, \ y_{31} = 1.0, \ y_{33} = 1.0, \ y_{41} = 1.0 $$

feasibility cut, \$\$ 50.0 -10.0*y*_{12} -30.0*y*_{22} -40.0*y*_{32} -20.0*y*_{42} <= 0 \$\$

第2次, \$\$y = [0.0, 0.0, 0.0, -0.0, 1.0, 0.0, 1.0, 1.0, -0.0, 1.0, 0.0, -0.0]\$\$

其中,

 $$$y_{22} = 1.0, \ y_{31} = 1.0, \ y_{32} = 1.0, \ y_{41} = 1.0 $$$

feasibility cut, \$\$ 30.0 -10.0*y*_{13} -30.0*y*_{23} -30.0*y*_{33} -20.0*y*_{43} <= 0 \$\$

第3次, \$\$y = [0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, 1.0, 1.0, 0.0, 0.0, 0.0]\$\$

其中,

 $$y_{22} = 1.0, y_{32} = 1.0, y_{33} = 1.0 $$

feasibility cut, \$\$ 30.0 -10.0y_{13} -30.0y_{23} -30.0y_{33} -20.0y_{43} <= 0 \$\$

第4次, \$\$y = [0.0, 0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, 1.0, 1.0, 1.0, 0.0]\$ 其中, \$\$ $y_{32} = 1.0, y_{33} = 1.0, y_{41} = 1.0, y_{42} = 1.0, $$ feasibility cut, $$40.0 -10.0<math>y_{11} -10.0y_{12} -10.0y_{13} -20.0y_{21} -30.0y_{22} -30.0y_{23} <= 0$ \$\$

第5次,\$\$y = [0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0]\$\$ 其中,\$\$ y_{12} = 1.0,\ y_{23} = 1.0,\ y_{32} = 1.0,\ y_{41} = 1.0, \$\$ optimality cut, \$\$ 490.0 -20.0*y_{11} -40.0*y_{12} -20.0*y_{13} -20.0*y_{21} -150.0*y_{22}* \ -150.0*y_{23} -40.0y_{42} -80.0*y_{43} <= q \$\$

第11次,\$\$y = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0]\$\$ 其中, $$$y_{11} = 1.0 y_{22} = 1.0 y_{31} = 1.0 y_{33} = 1.0 y_{42} = 1.0 $$ optimality cut, $$340.0 -40.0 y_{12} -60.0 y_{22} -80.0 y_{32} <= q $$$

optimal solution found.

上下界变化图

2. 部分\$\hat{y}=\mathbf{1}\$的迭代

假定我们给定的\$y\$如下所示: \$\$\hat{y} = [0,0,0, 0,1,0, 0,0,1, 0,1,0]\$\$,

那么上下界变化如下所示:

上界在第九次迭代才更新,即子问题在第九次才找到optimal solution,说明初始化时,不同的\$y\$影响后面生成cut的质量。

3. 不同\$M_{ij}\$的影响

直观上理解,子问题约束3右侧的\$M_{ij}\$越紧越好,从不等式上来说,\$M_{ij}\$越小越好,那么这个影响有多大呢?可以通过实验看下效果。 在构建子问题时,通过分析需求量与供应量,\$M_{ij}=min{c_{ij}}, \forall i

\in S, \forall j \in D\$, 如果我们直接取\$M_{ij}=50\$,

上界在第32次才被更新,这从侧面说明在构面模型时,更紧的约束可以减少求解的时间。