(16) 日本国格路庁 (JP)

€ 撒 4 盐 华 噩 4 3

(11)特許出顧公開每号

特開平6-350974

(43)公開日 平成6年(1994)12月22日

(51)IntCl.* H04N 7	1/01	機関記事	識別記号 庁内整理番号 G 6942-5C	<u></u>	校
~ =	5/93 11/04	B B	<i>4221</i> – 5 C 7331 – 5 C		

(全 2月)

(21)出版番号	特顧平5-22324 1	(71)出版人 000005821 松下電器	000005821 松下電器産業株式会社	
(22) 出題日	平成5年(1993)9月8日	(72) 発明者	大阪府門真市大学門真1006番地 角野 属也	
(31) 優先権主張番号(39) 億先日	传版平 5-86149 以5.11993)4月13日		大阪府門真市大学門真1006番地 松下電器産業株式会社内	離
(33) 優先権主張国	日本 (JP)	(74) 代理人	弁理士 小鍜治 明 (外2名)	
	_			

フレーム静止画像生成装置 (54) [発明の名称]

【目的】 フィールド静止画よりも垂直解像度を向上さ せたフレーム静止画像を生成する。 (51) [瞅色]

フィールド内補間器4は垂直方向に1/2画 2は垂直1/2以上の精度の動きベクトル13とブロッ ク散差信号14を出力する。フィールド間補間器17は 動きベクトル13とインタレース位置を参照して補間画 像信号20を生成する。選択器21はプロック誤整信号 14を所定値と比較し、所定値以上であれば補間画像信 号5、所定値未満で且つ判定結果16が1/2の奇数倍 であれば補間画像信号20、それ以外の場合は補間画像 信号5を出力する。選択器23は奇数フィールドでは画 8のフィールド内補間を行なう。動きベクトル検出器1 复信号3、偶数フィールドでは強択器出力22をフレー ム画像信号24とする。 [特成]

特許請求の範囲】

或してフィールド内補間信号として出力するフィールド 刺信号として出力するフィールド間補間手段と、前記動 きベクトルの垂直動き成分が垂直画案間隔の1/2の奇 **ールドを水平および垂直に分割して構成した画業の集合** をプロックと定義し、第Nフィールドのプロックの画案 位置から垂直方向に垂直画素間隔の1/2移動した位置 の画案値を前記第Nフィールドのフィールド内補間で生 内補間手段と、前記各プロック単位で前記第Nフィール ドの画案値と前配第Mフィールドの画案値を比較するこ とにより各プロックの動きである動きベクトルを検出し て,動きベクトルおよび動き補償観整の大きさであるブ ロック觀差信号を出力する動きベクトル検出手段と、前 に動きベクトルを参照して前記各プロックの画案位置か 5 垂直方向に垂直画楽間隔の1/2移動した位置の画券 に対応する前記第Mフィールドの画案をフィールド間予 ロックについて前配垂直動きが1/2の奇数倍と判断さ 九且つ前記プロック観整信号の大きさが所定値未満であ いば前記フィールド間子測信号を出力し、それ以外の場 **≙には前記フィールド内補間信号を第N修正フィールド 信号として出力する第1の選択手段と、前配第Nフィー** ルド信号と前配第N修正フィールド信号をフィールド周 **朝で切り替えて出力する第2の選択手段とを備えたこと** |静水項1|| 第Mフィールドと第N(ただし、N=M-またはN=M+1) フィールドで構成されるインタレ - ス画像信号を入力信号としてフレーム静止画像を生成 **教倍であるか否かを判定する垂直動き判定手段と、各ブ** して出力するファーム静止画像生成装置であって、フィ を特徴とするフレーム静止画像生成装置。

をフィールド聞予測信号として出力するフィールド間補 復号化して第Mフィールド信号及び第Nフィールド信号 【静水項2】第Mフィールドと第N(ただし、N=Mー 化された信号を入力信号として、復号画像のフレーム静 止画像を生成して出力するフレーム静止画像生成装置で あって、前記入力信号の第Nフィールドの動き補償符号 助き情報復号化手段と、前記入力画像信号と前記動きべ として出力すると共に、観差の大きさであるプロック観 ックの画案位置から垂直方向に垂直画案間隔の1/2移 |またはN=M+1| フィールドで構成されるインタレ --ス画像信号の第Nフィールドを、複数の画案からなる プロック単位で第Mフィールドを参照して動き補償符号 化されたプロックの動きベクトルを復号化して出力する クトルから第Mフィールド及び第Nフィールドの画案を 整信号を出力する画案復号化手段と、前記動き補償符号 化された各ブロックの画案位置から垂直方向に垂直画案 間隔の1/2移動した位置の画案値を前配第Nフィール ド信号からフィールド内補間で生成してフィールド内補 聞信号として出力するフィールド内画案補間手段と、前 記動きベクトルを参照して前配第Nフィールドの各プロ 動した位置の画衆に対応する前配第Mフィールドの画衆

特開平6-350974

3

の奇数倍と判断され且つ前記プロック靱整信号の大きさ が所定値未満であれば前配フィールド間予測信号を出力 し、それ以外の場合には前記フィールド内補間信号を第 間手段と、前記動きベクトルの垂直動き成分が垂直画衆 間隔の1/2の奇数倍であるか否かを判定する垂直動き 判定手段と、各ブロックについて前配垂直動きが1/2 N修正フィールド信号として出力する第1の選択手段

と、前配第Nフィールド信号と前配第N修正フィールド **信号をフィールド周期で切り替えて出力する第2の選択**

2

手段とを備えたことを特徴とするフレーム静止画像生成 【醋水項3】第Mフィールドと第N(ただし、N=M-

成してフィールド内補間信号として出力するフィールド 内補間手段と、前記各ブロック単位で前記第Nフィール 5垂直方向に垂直画案間隔の1/2移動した位置の画案 に対応する前記第Mフィールドの画案をフィールド間予 動きベクトルの差分ペクトルの大きさを計算して差分動 について前記垂直動き 量が1/2の奇数倍と判断され且 記差分動き 量が所定値未満であれば前配フィールド間予 の選択手段と、前配第Nフィールド信号と前配第N修正 フィールド信号をフィールド周期で切り替えて出力する 第2の選択手段とを備えたことを特徴とするフレーム静 ールドを水平および垂直に分割して構成した画業の集合 位置から垂直方向に垂直画案間隔の1/2移動した位置 の画案値を前記第Nフィールドのフィールド内補間で生 とにより各ブロックの動きである動きベクトルを検出し て,動きベクトルおよび動き補償観差の大きさであるプ ロック觀差信号を出力する動きペクトル検出手段と、前 **拠信号として出力するフィールド間補間手段と、前記動** 数倍であるか否かを判定する垂直動き判定手段と、任意 のブロックの動きベクトルとそれに隣接するブロックの つ前記プロック観差信号の大きさが所定値未満で且つ前 削盾号を出力し、それ以外の場合には前記フィールド内 ドの画案値と前記第Mフィールドの画案値を比較するこ 記動きベクトルを参照して前記各プロックの画案位置か きペクトルの垂直動き成分が垂直画衆間隔の1/2の奇 補間信号を修正第Nフィールド信号として出力する第1 - メ画像信号を入力信号としてフレーム静止画像を生成 をブロックと定義し、第Nフィールドのブロックの画案 き量として出力する差分動き量計算手段と、各プロック 1またはN=M+1) フィールドで粧成されるインタレ して出力するフレーム静止画像生成装置であって、フィ 40 8 ಜ

ブロック単位で第Mフィールドを参照して動き補償符号 止画像を生成して出力するフレーム静止画像生成装置で あって、前記入力信号の第Nフィールドの動き補償符号 1またはN=M+1) フィールドで構成されるインタレ 化された信号を入力信号として、復号画像のフレーム静 - メ画像信号の第Nフィールドを、複数の画案からなる 【簡求項4】第Mフィールドと第N(ただし、N=M-

S

3

ックの画案位置から垂直方向に垂直画案間隔の1/2移 動した位置の画案に対応する前配第Mフィールドの画案

段と、各プロックについて前配無直動き量が1/2の奇 をフィールド聞予測信号として出力するフィールド間補 判定手段と、任意のプロックの動きベクトルとそれに隣 定値未満で且つ前記差分動き量が所定値未満であれば前 **号と前記第N修正フィールド信号をフィールド周期で切** 後するブロックの動きベクトルの差分ベクトルの大きさ 数倍と判断され且つ前記プロック観差信号の大きさが所 して出力する第1の選択手段と、前記第Nフィールド信 間手段と、前記動きベクトルの無直動き成分が垂直画菜 間隔の1/2の奇数倍であるか否かを判定する垂直動き を計算して差分動き量として出力する差分動き畳計算手 配フィールド間予測信号を出力し、それ以外の場合には 前記フィールド内補間信号を修正第Nフィールド信号と り替えて出力する第2の選択手段とを備えたことを特徴 とするフレーム静止画像生成装置。

ಜ 1またはN=M+1) フィールドで構成されるインタレ ロック観差信号を出力する動きペクトル検出手段と、前 記動きベクトルを参照して前配各ブロックの画案位置か きベクトルの垂直動き成分が垂直画楽間隔の1/2の奇 をブロックと定義し、第Nフィールドのプロックの画案 の画楽値を前記第Nフィールドのフィールド内補間で生 成してフィールド内補間信号として出力するフィールド 内補間手段と、前配各プロック単位で前配第Nフィール とにより各ブロックの動きである動きベクトルを検出し **၂ 関信号として出力するフィールド間補間手段と、前記動** 数倍であるか否かを判定する垂直動き判定手段と、入力 **信号の第Nフィールドをプロックよりも小さい複数の小** - ス画像信号を入力信号としてフレーム静止画像を生成 位置から垂直方向に垂直画衆間隔の1/2移動した位置 て,動きベクトルおよび動き補償緊差の大きさであるブ ら垂直方向に垂直画衆間隔の1/2移動した位置の画茶 に対応する前記第Mフィールドの画案をフィールド間予 【謝求項5】第Mフィールドと第N(ただし、N=M-**ールドを水平および垂直に分割して構成した画衆の集合** して出力するフレーム静止画像生成装置であって、フィ ドの画素値と前記第Mフィールドの画案値を比較するこ

カし、前記垂直動き量が1/2の奇数倍と判断され且つ 前記小ブロック観整信号の大きさが所定値未満であれば さが所定値未満であれば前記フィールド間予測信号を出 は前記フィールド内補間信号を修正第Nフィールド信号 として出力する第1の選択手段と、前配第Nフィールド 信号と前記第N体正フィールド信号をフィールド周期で の前記動きベクトルを用いて動き補償しその動き補償設 **きである小ブロック観整信号を出力する小ブロック観差** 2の奇数倍と判断され且つ前記プロック觀差信号の大き 前記フィールド間予測信号を出力し、それ以外の場合に 切り替えて出力する第2の選択手段とを備えたことを特 ルドの画衆値と第Mフィールドの画案値を当眩プロック **計算手段と、各ブロックについて前記垂直動き量が1/** 徴とするフレーム静止画像生成装置。

間宿号として出力するフィールド内画素補間手段と、前 倍と判断され且つ前配小ブロック觀差信号の大きさが所 あって、前記入力信号の第Nフィールドの動き補償符号 化されたプロックの動きベクトルを復号化して出力する 動き情報復号化手段と、前配入力画像信号と前配動きべ 復号化して第Mフィールド信号及び第Nフィールド信号 楚信号を出力する画案復号化手段と、前記動き補償符号 間隔の1/2移動した位置の画案値を前記第Nフィール ックの画案位置から垂直方向に垂直画案間隔の1/2移 をフィールド聞予測信号として出力するフィールド間補 る小ブロック観差計算手段と、各ブロックについて前記 垂直動き 量が1/2の奇数倍と判断され且つ前配プロッ .またはN=M+1) フィールドで構成されるインタレ ブロック単位で第Mフィールドを参照して動き補償符号 化された信号を入力信号として、復号画像のフレーム静 止画像を生成して出力するフレーム静止画像生成装置で クトルから第Mフィールド及び第Nフィールドの画案を として出力すると共に、観整の大きさであるプロック観 ド信号からフィールド内補間で生成してフィールド内補 記動きベクトルを参照して前記第Nフィールドの各プロ 動した位置の画案に対応する前配第Mフィールドの画案 問手段と、前記動きベクトルの垂直動き成分が垂直画業 間隔の1/2の奇数倍であるか否かを判定する垂直動き も小さい複数の小ブロックに構成し、前配各小ブロック ク製整信号の大きさが所定値未満であれば前配フィール ド間予測信号を出力し、前記垂直動き量が 1/2の奇数 それ以外の場合には前記フィールド内補間信号を修正第 【静水項6】第Mフィールドと第N(ただし、N=Mー -- ス画像信号の第Nフィールドを、複数の画案からなる 化された各ブロックの画案位置から垂直方向に垂直画案 判定手段と、入力信号の第Nフィールドをプロックより 単位で第Nフィールドの画案値と第Mフィールドの画案 値を当該プロックの前記動きベクトルを用いて動き補償 しその動き補償飼差である小ブロック観差信号を出力す 定値未満であれば前記フィールド間予測信号を出力し、 ន

記第Nフィールド信号と前記第N修正フィールド信号を フィールド周期で切り替えて出力する第2の選択手段と を備えたことを特徴とするフレーム静止画像生成装置。 [発明の詳細な説明]

[0001]

号をフレーム静止表示するために、偶数フィールドと奇 【産業上の利用分野】本発明は、インタレース動画像信 数フィールドかのファーム静止画を構成するファーム静 止画像生成装置に関するものである。

[0002]

とならない。例えば、移動する矩形図形は図5に示すよ うに、横方向にずれて表示される。そこで、従来のフレ 【従来の技術】 インタレース(飛び越し走査)された動 画像信号の1フレームは、異なる2通りの時刻の要案で 構成されている。従って、1フレームをそのまま静止要 に同じフレームで表示されることになり、静止した画像 **- ム静止画像生成装置では、一方のフィールドをフィー** ルド内補間することによって、フレーム画像を構成して 示 (フレーム表示) すると、2つの異なる画面が、同時

画楽補間を行うフィールド内補間器、5はフィールド内 ッチ、71は生成されたフレーム画像信号、8はフィール 【0003】従来のフレーム静止画像生成装置のプロッ 2はメモリ、3はメモリ出力である画像信号、4は垂直 補間器4で生成された補間画像信号、6は切り替えスイ ク図を図6に示す。同図において、1は入力画像信号、 ドの奇数/偶数を表すフィールドの切替信号である。

【0004】以上のように構成された、従来のフレーム 田書では、1フレームを構成する前半フィールドを偶数 フィールドと呼び、後半フィールドを奇数フィールドと 静止画像生成装置の動作について説明する。なお、本明 **昇がことにする。**

信号5として出力する。黒丸の画案と白丸の画案のいず はメモリ2に蓄積され、所定の偶数フィールドの画像信 **与3が繰り返し出力される。フィールド内補間器4は画** 俊信号3を垂直方向に1/2画業のフィールド内補間を 行い、補間画像信号5として出力する。即ち、図7に黒 丸で示す偶数フィールドの実在画案(画像信号3)から 白丸で示す画業を補間生成し、白丸の画素値を補間画像 れをフレーム画像信号7として出力するかは、外部から 与えられるフィールド切替信号8によってスイッチ6の 指令によって行なわれる。即ち、偶数フィールドでは画 像信号3を出力し、奇数フィールドでは補間画像信号5 を出力するように切替えて、同じ偶数フィールドの画案 この様にしてフレーム画像信号7は同じ時刻の画案のみ た画像ではなく、完全に静止した静止画を表示すること [0005] 偶数フィールドの画案からなる画像信号1 から構成されるので、図5の様に2つの画面が合成され のみからフレーム画像信号7を構成することができる。

<u>垂直解像度が1フィールドの解像度と同じ、即ち1フレ</u> 化は、準静止画の様に動きの少ない画像信号の場合にお 「発明が解決しようとする課題」しかしながら、上記の 策な構成のフレーム静止画像生成装置においては、1フ **ームの垂直解像度の1/2になる。この垂直解像度の劣** ィールドの画珠から 1 ファームの画媒を生成するのた、 いては視覚的に顕著になる。

【0007】本発明は、上記問題点に鑑み、フレーム静 止画の様に2つの画面が合成されることなく、且つフィ 一ルド静止画よりも垂直解像度を向上させた静止画像を 表示することができるフレーム静止画像生成装置を提供 することを目的とする。

[8000]

1) フィールドで構成されるインタレース画像信号を入 【瞑題を解決するための手段】以上の課題を解決するた かに、本発明のフレーム静止画像生成装置は、第Mフィ -ルドと第N (ただし、N=M−1、またはN=M+

び垂直に分割して構成した画業の集合をプロックと定義 し、第Nフィールドのブロックの画茶位置から垂直方向 Nフィールドのフィールド内補間で生成してフィールド **圴補聞信号として出力するフィールド圴補聞手段と、前** 記各プロック単位で前記第Nフィールドの画案値と前記 クの動きである動きベクトルを検出して、動きベクトル 参照して前配各プロックの画案位置から垂直方向に垂直 **る第1の選択手段と、前配第Nフィールド信号と前配第** N体正フィールド信号をフィールド周期で切り替えて出 力信号としてフレーム静止画像を生成して出力するフレ 一ム静止画像生成装置であって、フィールドを水平およ に垂直画案間隔の1/2移動した位置の画案値を前配第 第Mフィールドの画案値を比較することにより各プロッ および動き補償販差の大きさであるブロック殿差信号を 出力する動きベクトル検出手段と、前配動きベクトルを 画案間隔の1/2移動した位置の画案に対応する前記第 Mフィールドの画業をフィールド間予測信号として出力 するフィールド間補間手段と、前配動きベクトルの垂直 動き成分が垂直画案間隔の1/2の奇数倍であるか否か を判定する垂直動き判定手段と、各ブロックについて前 記垂直動きが1/2の奇数倍と判断され且つ前配プロッ ク觀差信号の大きさが所定値未満であれば前配フィール ルド内補間信号を第N修正フィールド信号として出力す ド間予測信号を出力し、それ以外の場合には前配フィー カする第2の選択手段とを備えて構成されている。 \$

[作用] 本発明は上記の構成により、フィールド静止画 の最高2倍の垂直解像度が得ることができる。以下、そ

る。フィールド内補間手段では、各プロックの画案位置 からインタレースのオフセットの値である垂直画森間隔 [0010] 最初に請求項1記載の発明について説明す ය

ができる。この静止画はフィールド静止画と呼ばれる。

Nフィールド信号として出力する第1の選択手段と、前

S

ブロックに構成し、前配各小ブロック単位で第Nフィー

画案A'および画案C'の画案値を使用する。垂直動き として出力する。図8は第Mフィールドと第Nフィール フィールドの実在画案を表し、白丸が第Mフィールドの フィールドをフレーム表示するためには画案Cや画案E が必要であり、これらの四角の画葉が前記フィールド内 国案補間手段で補間生成される。 動きベクトル検出手段 ではプロック単位で第Nフィールドの画案と第Mフィー ロック観差信号として出力する。図8で三角印は第Mフ **最計算手段では動きベクトルの垂直動き量がフィールド** 画案間隔の1/2の奇数倍の場合であるかどうかを判定 する。1/2の奇数倍でなければ、前記フィールド関補 間手段で予測に使用する画案値が第Mフィールドの垂直 ルド内補間手段で補間生成した場合と垂直解像度が同じ ことは、前記フィールド間補間手段の画衆値の予測精度 が悪いことを扱している。従って、この2つの何れかの 号を出力するように第1の選択手段で切替えることによ きる。よって、第2の選択手段で第Nフィールド信号と フィールド内補間手段で生成し、フィールド内補間信号 ドの画案の位置関係を示す図である。同図で黒丸が第N **與在画案を表し、生成すべき画案を四角印で表す。第№** ルドの画案を比較し、その差が最少となる相対位置を動 きベクトルとして出力し、またその際の差の大きさをブ イールドの無直補間画案であり、矢印は動きベクトルを **表す。フィールド間補間手段は前記動きベクトルを参照** して第Nフィールドの補間画案位置の画案を第Mフィー ルドの画珠から予測し、その予測値なフィールド聞予測 **信号として出力する。即ち、図8の矢印で示す動きベク** それ以外の場合は垂直解像度が高いフィールド間予測信 り、第Nフィールドの補間画案の画質を高めることがで ルドの画像信号とすれば、垂直解像度が高く且つ静止し の1/2だけ移動した位置の第Nフィールドの画案値を トルに対して、画衆のおよび画衆Eの予測値として各々 補間によって補間生成される画衆値となり、前配フィー になる。また、前記プロック設整信号の大きさが大きい 第N修正フィールド信号をフレームを構成する両フィー 条件が成立する場合はフィールド内補間信号を出力し、

力信号に対しても、第1の発明と同様の効果を得ること 【0011】 請求項2記載の発明は、入力信号がブロッ て、入力信号を動き情報復号化手段で復号化することに より、動きベクトルが生成できる。また、前記入力画像 盾号を画案復号化手段で復号化することにより、第1の することができる。以上の動作説明より、前記動き情報 る。また、その他の手段は第1の発明の各手段と同じで ルドのインタレース画像信号とプロック観差信号を生成 復号化手段と前記画案復号化手段で第1の発明の動きべ ある。従って、ブロック単位で動き補償符号化された入 発明の入力信号に対応する第Mフィールドと第Nフィー ク単位で動き補償符号化されている場合である。従っ クトル検出手段の動作が実現できることが明らかであ

と大きな画質劣化が発生する。例えば、図9(a) は平 の選択手段でフィールド間予測信号とフィールド内補関 信号の何れを出力するかを切替える条件に差分動き量を **自加したものである。 請求項1または請求項2記載の発** 午回辺形が木平方向に移動する倒であり、 早午回辺形の [0012] 請求項3および請求項4記載の発明は、請 **火項 1 記載の発明または請水項 2 記載の発明のフレーム** 明では隣接するプロックで動きベクトルが大きく異なる り、図形の一部が異なる動きペクトルで動き補償される 大部分が含まれるプロックはフィールド間予測信号で静 静止画像生成装置に整分動き量計算手段を付加し、第1 場合でもフィールド間予測信号が出力されることがあ 止するが、解板プロックの平行回辺形の一部は図9

5請求項4 記載の発明では、隣接するブロックで動きべ (b) に示すように静止しない。従って、請求項3およ に、第1の選択手段でフィールド内補間信号を出力する クトルが大きく異なる場合 (差分動き量が大きい場合) ことにより、前記の問題を解決している。

手段でフィールド間予測信号とフィールド内補間信号の を追加したものである。 請求項1や請求項2記載の発明 では、ブロック内に異なる動きをする小図形がある場合 **補償されたフィールド間予測信号が出力されることがあ** り、図形の小図形が静止しない場合には大きな画質劣化 が発生する。例えば、図10 (a) は移動する平行四辺 形の右上に静止した小四角形が存在する例である。プロ [0013] 請求項5および請求項6記載の発明は、請 **水項1または請求項2記載の発明のフレーム静止画像生** 成装置に小ブロック観差計算手段を付加し、第1の選択 阿れを出力するかを切替える条件に小ブロック観差信号 でも当該プロック内の大きな図形の動きベクトルで動き **导を切替える場合には、フィールド間予測信号を選択す** 小ブロック観整信号が大きく、他の小ブロックの小ブロ ック単位でフィールド間予測信号とフィールド内補間信 ると図10 (b) に示すように平行四辺形は静止する

信号が大きい小ブロックは第1の選択手段でフィールド が、小四角形は静止しない。そこで、ブロックを上下及 び左右に2分割して小ブロックを構成し、小ブロック説 **楚計算手段で各小ブロック毎に小ブロック誤差信号を計** 算する。その結果、図10(b)の右上の小ブロックは ック靱整信号は小さいくなる。従って、小ブロック靱巻 内補間信号を出力することにより、前記の問題を解決し

たフレーム静止画を実現することができる。

[0014]

[奥施例] 以下、本発明のフレーム静止画像生成装置の **東施例を、図面に基づいて説明する。**

て、1は入力画像信号、2,10はメモリ、3,11は メモリ出力である画像信号、4は垂直画案補間を行うフ [0015] 図1は本発明のフレーム静止画像生成装置 の第1の実施例におけるブロック図である。同図におい S

号、20はフィールド間補間器17で生成された補間画 與整個母、15は動きペクトル13の垂直方向の動き成 分が垂直画素聞隔の1/2の奇数倍であるか否かを判定 する垂直動き判定器、16は垂直動き判定器15の判定 **結果を表わす信号、17はフィールド間画業補間を行う** 参照画案の位置を示すアドレス信号、19は参照画案信 像信号、21は選択器、22は選択器21の出力、23 は選択器、24は生成されたフレーム画像信号、8はフ ィールド内補閒器、5はフィールド内補聞器4で生成さ れた補間画像信号、12は動きベクトルを検出する動き ペクトル検出器、13は動きベクトル、14はプロック フィールド関補間器、18はフィールド間予測のために イールドの奇数/偶数を表すフィールド切替信号であ

卑現することができる。

関画像信号5として出力する。一方、偶数フィールドの 画案はメモリ10に蓄積され、所定の偶数フィールドの 2に蓄積され、所定の奇数フィールドの画像信号3が繰 を垂直方向に1/2画案のフィールド内補間を行い、補 器12は画像信号3と画像信号11を数画繋ずつ画繋位 置をずらしながらブロック単位で比較し、両者の差が最 [0016]以上の様に構成された実施例について、以 り返し出力される。フィールド内補間器4は画像信号3 画像信号11が繰り返し出力される。動きベクトル検出 る。なお、この動きベクトル検出の垂直方向の検出精度 **ドその動作を説明する。奇数フィールドの画案はメモリ** また、その際の差をプロック誤差信号14として出力す 少となる相対位置を動きベクトル13として出力する。 は垂直フィールド画素間隔の1/2以上である。

3の垂直成分の大きさが垂直画案間隔の1/2の奇数倍 であるか否かを判定し、判定結果16を出力する。フィ る偶数フィールドの画案位置を示すアドレス信号18を 生成し、メモリ10からアドレス信号18に対応する参 この補間画像信号20は、奇数フィールドの時刻におけ る偶数フィールドの各画粟位置の画繋値を、偶数フィー [0017] 垂直動き判定器15では、動きペクトル1 **ールド間補間器17は、動きペクトル13とインタレー** スによる垂直1/2 画業の動きを加算した動きに対応す 照画業19を補間画像信号20として出力する。即ち、 ルドの画案値から予測した画案値である。選択器21

は、ブロック観差信号14を所定値と比較し、所定値以 た、プロック観差信号14が所定値未満の場合には、判 上であれば補間画像信号5を選択器出力22とする。ま 定結果16が画繋間隔の1/2の奇数倍であれば補間画 像信号20を選択器出力22とし、1/2の奇数倍以外 であれば補間画像信号5を選択器出力22とする。選択 器23は切替信号8が奇数フィールドを示す場合は画像 **信号3をフレーム画像信号24として出力し、切替信号** 8 が偶数フィールドを示す場合は選択器出力22をフレ **一ム画像信号24として出力する。**

ය [0018] 以上のように、本実施例によれば、フィー

序照平6-350974

9

ルド内補間器4、動きベクトル検出器12、垂直動き判 定器15、フィールド間補間器17、選択器21と選択 器23を備え、第選択器23で第Nフィールド信号(奇 数フィールド信号)と第N修正フィールド信号をフレー り、垂直解像度が高く、且つ静止したフレーム静止画を ムを構成する両フィールドの画像信号とすることによ

ルド間補間器、18はフィールド間予測のために参照画 号、15は動きベクトル13の垂直方向の動き成分が垂 直画楽聞隔の1/2の奇数倍であるか否かを判定する垂 直動き判定器、16は垂直動き判定器15の判定結果を 器、5はフィールド内補間器4で生成された補間画像信 森の位置を示すアドレス信号、19は参照画禁信号、2 24は生成されたフレーム画像信号、8はフィールドの **号化器32で復号化された画像信号、14はブロック鹍** 益信号、2, 10はメモリ、3はメモリ2の出力である 表わす信号、17はフィールド間画案補間を行うフィー 【0019】図2は本発明のフレーム静止画像生成装置 **の第2の実施例におけるブロック図である。同図におい** て、30は入力画像信号、31は動き情報復号化器、1 3は動きベクトル、32は画菜復身化器、33は画菜復 号、21は選択器、22は選択器出力、23は選択器、 画像信号、4は垂直画菜補間を行うフィールド内補間 0はフィールド間補間器17で生成された補関画像信 2 ន

[0020]以上の様に構成された実施例について、以 ルド内補間器4、垂直動き判定器15、フィールド間予 刺器17、選択器21、選択器23の動作は第1の実施 下その動作を説明する。メモリ2、メモリ10、フィー 奇数/偶数を表すフィールド切替信号である。

【0021】入力信号30はブロック単位で符号化され 0は動き情報復号化器31で復号化され、動きベクトル 13が出力される。画案復号化器32は、入力信号30 ルドの画案はメモリ2に記録され、偶数フィールドの画 で入力信号30を復号化する際に、助き補償の残益信号 をブロック毎の和であるブロック観整信号14として計 **算して出力する。以降の動作は上述した実施例と同じで 参照する動き補償符号化されており、その動きベクトル** と動きベクトル13を用いて画像信号を復号化し、画像 案はメモリ10に記録される。また、画案復号化器32 た信号である。その奇数フィールドは偶数フィールドを も動き補償観差と同時に符号化されている。入力信号3 **信号33を出力する。なお、画像信号33の奇数フィー** 例と同じであるため、説明を省略する。

[0022]以上のように、本実施例によれば、動きペ り、動き補償符号化された入力信号30についても、第 |の実施例同様に、高解像度のフレーム静止画像を生成 クトル検出器31と画案復号化器32を備えることによ

【0023】図3は本発明のフレーム静止画像生成装置 することができる。

特限平6-350974

8

メモリ出力である画像信号、4は垂直画桑補間を行うフ 段差信号、15は動きベクトル13の垂直方向の動き成 分が無直画衆間隔の1/2の奇数倍であるか否かを判定 **苗果を表わす信号、40は動きペクトルの差分の動き量** て、1は入力画像信号、2, 10はメモリ、3, 11は イールド内補間器、5はフィールド内補間器4で生成さ れた補間画像信号、12は動きベクトルを検出する動き する垂直動き判定器、16は垂直動き判定器15の判定 を計算する差分動き量計算器、41は差分動き量、17 ドレス信号、19は参照画案信号、20はフィールド間 2.2は選択器21の出力、23は選択器、24は生成さ れたファーム画像信号、8 はフィールドの奇数/偶数を ペクトル検出器、13は動きペクトル、14はプロック の第3の実施例におけるブロック図である。同図におい はフィールド間画衆補間を行うフィールド間補間器、、 8 はフィールド間予測のために参照画業の位置を示す7 補間器17で生成された補間画像信号、21は選択器 数すフィールド切替信号である。

Fその動作を説明する。メモリ2、メモリ10、フィー 【0024】以上の様に構成された実施例について、以 ルド内補間器4、動きベクトル検出器12、垂直動き判 **定器15、フィールド間予測器17、選択器23の動作** 【0025】 差分動き 量計算器 40は動きベクトル13 大きさである差分動き 最41を計算する。 差分動き 量4 1 が大きい場合は隣接するブロックとの動きが大きく異 なることを示し、その場合に隣接するブロックに含まれ を入力し、隣接するブロックでの動きベクトルの差分の る画像の一部が当該プロックに含まれていれば大幅な画 は第1の実施例と同じであるため、説明を省略する。

き品計算器40で差分動き品41を計算し、差分動き品 収器出力22とし、所定値未満であれば補間画像信号2 [0026]以上のように、本実施例によれば、惹分動 4 1の大きさによってフィールド関動き補償とフィール 0 を選択器出力22とする。

ド内動き補償を切替えることにより、複数のプロックに

4

含まれる画像のフレーム静止表示の画質を向上させるこ [0027]なお、本例の差分動き量計算器を用いた実 **陶別は、図1に示した構成の応用例であるが、図2に示** した構成においても同様に応用することができ、この場 合には、整分計算器の入力は、動き情報複号化器31の とができる。

、、小ブロック観差信号51の大きさによって小ブロッ

を切替えることにより、プロックと異なる動きの小画像

を含む画像のフレーム静止表示の画質を向上させること

ク単位でフィールド間動き補償とフィールド内動き補償

ができる。 S 【0028】図4は本発明のフレーム静止画像生成装置

て、1は入力画像信号、2, 10はメモリ、3, 11は ィールド内補間器、5はフィールド内補間器4で生成さ 段差信号、15は動きベクトル13の垂直方向の動き成 ルド間補間器17で生成された補間画像信号、21は避 の第4の実施例におけるプロック図である。同図におい メモリ出力である画像信号、4は垂直画素補間を行うフ れた補間画像信号、12は動きベクトルを検出する動き 分が垂直画案間隔の1/2の奇数倍であるか否かを判定 する垂直動き判定器、16は前配垂直動き判定器の判定 結果を示す信号、50は小ブロック単位の誤差を計算す 器、18はフィールド間予測のために参照画券の位置を 示すアドレス信号、19は参照画楽信号、20はフィー 択器、22は選択器出力、23は選択器、24は生成さ れたフレーム画像信号、8 はフィールドの奇数/偶数を ベクトル検出器、13は動きベクトル、14はプロック る小ブロック観差計算器、51は小ブロック観差信号、 17はフィールド間画琳補間を行うフィールド間補間 表すフィールド切替信号である。

【0029】以上の様に構成された実施例について、以 ルド内補間器4、動きベクトル検出器12、垂直動き判 定器15、フィールド間予測器17、選択器23の動作 下その動作を説明する。メモリ2、メモリ10、フィー は第1の実施例と同じであるため、説明を省略する。

ន

する。 小ブロック誤差信号 5.1 が大きい場合には、その に分割し、小ブロック単位で動きペクトル13で示され 小ブロックの動きが同じプロックに含まれる他の小ブロ 【0030】小ブロック觀差計算器50は、画像信号3 を入力されるブロックの大きさよりも小さい小ブロック 5位置の画像信号11の画案と比較し、その小プロック の差分値の大きさを小プロック製差信号51として出力 ックの動きと異なる場合であり、その小ブロックはフィ 一ルド内補間を行わないと画質劣化が発生する。従っ ಜ

質劣化が発生する。選択器21はブロック誤整信号14

を所定値と比較し、所定値以上であれば補間画像信号5 を選択器出力22とする。また、プロック観燈信号14 の奇数倍以外であれば補間画像信号5を選択器出力22 とする。前記以外の場合は、更に、相対動き量41を所 **定値と比較し、所定値以上であれば補間画像信号5を避**

が所定値以上、または判定結果16が画衆間隔の1/

小ブロック単位で小ブロック観差信号51を所定値と比 [0031]以上のように、本実施例によれば、小ブロ C、選択器21 はプロック観差信号14を所定値と比較 の選択器出力22とする。また、プロック設差信号14 数し、所定値以上であれば補間画像信号 5 を当該小ブロ ックの選択器出力22とし、所定値未満であれば補間画 し、所定値以上であれば補関画像信号5を当該ブロック /2の奇数倍以外であれば補間画像信号5を当該プロッ が所定値未満の場合には、判定結果16が画業間隔の1 クの選択器出力22とする。更に、プロック輟益信号: 4 が所定値以上で画案間隔が1/2の奇数倍であれば、 像信号20を当該小プロックの選択器出力22とする。 ック観差計算器50で小ブロック観差信号51を計算

メモリ

まず

[図3] 本発明のフレーム静止画像生成装置の第3の実 権倒における プロック図 2, 10 メモリ [年号の説明] 関係を示す図 ω 8 1 7 30 20 ß 32 4 0 Ø ន 2 の画質向上にも利用できるので、その実用的効果は大き 静止画像生成装置によれば、動画の高画質なフレーム静 [図2] 本発明のフレーム静止画像生成装置の第2の実 た実施例は、図1に示した構成の応用例であるが、図2 の場合には、小ブロック観差計算器は、画像信号3を入 りされるプロックの大きさよりも小さい小ブロックに分 割し、小ブロック単位で動きベクトル13で示される位 の小ブロックの差分値の大きさを小ブロック観差信号と 0033]なお、本実施例においては、1フレームを 前半を奇数フィールドとしてもよい。また、第2の発明 の実施例において、動き情報復号化器31や画案復号化 器32を通常再生の場合の復身化装置と共用化してもよ [発明の効果] 以上説明したように、本発明のフレーム 止画を生成することができ、またこの技術はスロー再生 【図1】本発明のフレーム静止画像生成装置の第1の実 [0032] なお、本例の小ブロック誤差計算器を用い 単成するフィールドの前半を偶数フィールドとしたが、 വ こ示した構成においても同様に応用することができ、 置の画像信号 (メモリ10の出力)の画素と比較し、 J. て、第1の選択器21~送出してやればよい。 垂直動き [図1] ന **複例におけるプロック図 権例におけるプロック図** |図面の簡単な説明| メクトル いものがある。 [0034]

【図10】 ブロックに異なる動きの小画像が含まれる場 [図9] 隣接するプロックの画像が含まれる場合のフレ [図4] 本発明のフレーム静止画像生成装置の第4の実 【図8】 第Mフィールドと第Nフィールドの画素位置の [図5] 動画をそのままフレーム静止表示した例を示す 図10] 【図6】 従来のフレーム画像生成装置のプロック図 【図7】フィールド内補間の画業位置の説明図 0 O |図| 8のファーム静止画像の説明図 小ブロック製差計算器 レメールド間補間器 動きベクトル検出器 差分動き乱計算器 **複例におけるプロック図** 4 レメールド内権間路 動き情報復号化器 垂直動き判定器 - ム静止画像の説明図 21,23 選択器 画案復号化器 0 0 0 מאַ 2 S オーノボ 回補回 四葉区 'ω

[図4]

16

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

a black bonders
\square IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.