EXERCISES FOR CHAPTER 4: VECTOR SPACES ASSOCIATED WITH MATRICES

1. For each of the following $m \times n$ matrices,

- (i) find a basis for the row space and a basis for the column space;
- (ii) extend the basis for the row space in (i) to a basis for \mathbb{R}^m ; and mixing corrupting out in the last of the column space in (i) to a basis for \mathbb{R}^n ; and mixing corrupting ω .
- (iv) find a basis for the nullspace; Alution at of REF of Ax=0.
- (v) find the rank and nullity of the matrix and hence verify the Dimension Theorem for
- (vi) determine if the matrix has full rank. \Rightarrow longest diagram of the prior time of nullipse.

 (vi) $A = \begin{pmatrix} 1 & 4 & 0 & 5 & 2 \\ 2 & 1 & 0 & 3 & 0 \\ -1 & 3 & 0 & 2 & 2 \\ 1 & -1 & 1 & -1 & 1 \end{pmatrix}$,

 (b) $B = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ -1 & 3 & 6 \\ 2 & 1 & 0 \\ 3 & 1 & -1 \end{pmatrix}$
- (d) $\mathbf{D} = \begin{pmatrix} 1 & 4 & 5 & 8 \\ -1 & 4 & 3 & 0 \\ 2 & 0 & 2 & 1 \end{pmatrix}$. (c) $\mathbf{C} = \begin{bmatrix} 2 & 1 & 4 & 1 & 2 \\ 4 & 2 & 2 & 3 & 2 \\ 2 & 1 & -2 & 2 & 0 \\ 6 & 2 & 6 & 4 & 4 \end{bmatrix}$
- **2.** Let W be the subspace of \mathbb{R}^5 spanned by the following vectors:

$$u_1 = (1, -2, 0, 0, 3), \quad u_2 = (2, -5, -3, -2, 6), \quad u_3 = (0, 5, 15, 10, 0), \quad u_4 = (2, 1, 15, 8, 6).$$

(a) Find a basis for W. RREF of the versus pur together $\begin{pmatrix} U_1 \\ U_2 \end{pmatrix}_{\mathcal{U}} = \begin{pmatrix} U_1 \\ U_1 \end{pmatrix}_{\mathcal{U}} = \begin{pmatrix} U_1 \\ U_2 \end{pmatrix}_{\mathcal{U}} = \begin{pmatrix} U_1 \\ U_1 \end{pmatrix}_{\mathcal{U}} = \begin{pmatrix} U_1 \\$

- (c) Extend the basis for W found in Part (a) to a basis for \mathbb{R}^5 . and mixing two from the littly matter to \mathbb{R}^5 .
- 3. For each of the following vector space $V = \mathrm{span}(S)$, find a subset S' of S such that S' forms a basis for V. (a) $S = \{(1,0,1,3), (2,-1,0,1), (-1,3,5,12), (0,1,2,5), (3,-1,1,4)\}$.

 - (b) $S = \{(1,0,1,3,4), (2,1,-2,1,0), (-3,-2,5,1,4), (0,5,2,1,1), (0,4,6,6,9)\}.$
- **4.** Find a basis for the following subspace of \mathbb{R}^5 :

 $V = \{(a+b+3c+3d, b+2c+d, a+c+2d, -a-b-3c-3d, a+c+2d) \mid a, b, c, d \in \mathbb{R}\}.$

- 5. Let $A = \begin{pmatrix} 1 & 0 & -1 & 1 & 1 \\ 1 & 1 & 2 & 0 & 3 \\ -1 & 0 & 2 & -1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & -1 & -1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$.

 (a) Show that R is the reduced row-echelon form of A.

 REF of A.

$$S = \{(1,0,-1,1,1),(1,1,2,0,3),(-1,0,2,-1,0)\},$$

$$T = \{(1,0,0,1,2),(0,1,0,-1,-1),(0,0,1,0,1)\}.$$

$$S = \{(1,0,0,1,2),(0,1,0,-1,-1),(0,0,1,0,1)\}.$$

- (i) Explain why S is a basis for span(T).
- (ii) Find the transition matrix from *S* to *T*. $C \cdot S = T$?
- **6.** Let $V = \text{span}\{u_1, u_2, u_3, u_4\}$ where

$$u_1 = (1, 1, 1, 1, 1),$$
 $u_2 = (1, a, a, a, a),$ $u_3 = (1, a, a^2, a, a^2),$ $u_4 = (1, a^3, a, 2a - a^3, a)$ for some constant a . Find a basis for V and determine the dimension of V .

- 7. Let $V = \text{span}\{(1,1,0,0),(-1,0,1,0)\}$ and $W = \text{span}\{(-1,2,3,0),(2,-1,2,-1)\}$. Find a basis for V+W. (See Question 3.20.) REF of (V+W)
- **8.** Let $V = \{a(1,2,0,0) + b(0,-1,1,0) + c(0,0,0,1) \mid a,b,c \in \mathbb{R}\}.$
 - (a) Find a 4×4 matrix A such that the row space of A is V.
 - (b) Find a 4×4 matrix \boldsymbol{B} such that the column space of \boldsymbol{B} is V. \longrightarrow half value to Col_{+}
 - (c) Find a 4×4 matrix C such that the nullspace of C is V.
- **9.** Let A be a 3×4 matrix. Suppose that $x_1 = 1, x_2 = 0, x_3 = -1, x_4 = 0$ is a solution to a nonhomogeneous linear system Ax = b and that the homogeneous system Ax = 0 has a general solution $x_1 = t - 2s$, $x_2 = s + t$, $x_3 = s$, $x_4 = t$ where s, t are arbitrary parameters.
 - (a) Find a basis for the nullspace of A and determine the nullity of A. $b = \begin{cases} x_{11} x_{21} x_{21} x_{31} x_{4} \end{cases}$ while $x = \begin{cases} x_{11} x_{21} x_{31} x_{4} \end{cases}$
 - (b) Find a general solution for the system Ax = b.
 - (c) Write down the reduced row-echelon form of A. determine from yet. 100.
 - (d) Find a basis for the row space of A and determine the rank of A. RREF of row vertou \longrightarrow rank = p^{n+1} wh
 - (e) Do we have enough information for us to find the column space of A?
- 10. Let $A = (a_1 \ a_2 \ a_3 \ a_4 \ a_5)$ be a 4×5 matrix such that the columns a_1, a_2, a_3 are linearly independent while $\mathbf{a}_4 = \mathbf{a}_1 - 2\mathbf{a}_2 + \mathbf{a}_3$ and $\mathbf{a}_5 = \mathbf{a}_2 + \mathbf{a}_3$.
- (a) Determine the reduced row-echelon form of A. (Hint: The linear relations between ger sob columns will not be changed by row operations. In this question, the fifth column of A is the sum of the second and the third columns of A. Then the fifth column of the reduced row-echelon form R is still the sum of the second and the third columns of R.) \sim PCF \sim Vec
 - (b) Find a basis for the row space of A and a basis for the column space of A.
 - 11. For each of the following A and b, solve the linear system Ax = b. Show that b belongs to the column space of A by expressing b as a linear combination of the columns of A.

(a)
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 5 \\ 2 & 3 & 4 \\ 0 & 1 & -1 \\ 1 & 1 & 2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 16 \\ 13 \\ -4 \\ 7 \end{pmatrix}$.

(b)
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 & -1 & 1 \\ 1 & 1 & -1 & 2 & 0 \\ 3 & 1 & 0 & 0 & -1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} -1 \\ 9 \\ 4 \end{pmatrix}$.

- 12. For each of the following cases, write down a matrix with the required property or explain why no such matrix exists.
 - (a) The column space contains vectors $(1,0,0)^T$, $(0,0,1)^T$ and the row space contains vectors (1,1), (1,2).
 - (b) The column space = \mathbb{R}^4 and the row space = \mathbb{R}^3 . No.
 - (c) The column space = the row space = span $\{(1,2,3)\}$.
 - (d) $A \times 2 \times 2$ matrix with the column space = the nullspace.
- 13. For each of the following, find the largest possible value for the rank of the matrix A and the smallest possible value for the nullity of *A*.

- **15.** Determine the possible rank and nullity of each of the following matrices:

where a, b, c, d, e, f are real numbers.

where
$$a, b, c, d, e, f$$
 are real numbers.

$$X = Q \cdot (+2 - (|2|)^2)$$
16. Let $X_n = (x_{ij})$ be a $(2n+1) \times (2n+1)$ matrix such that
$$X_1 : \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$x_{ij}^{\mathsf{C}} = \begin{cases} 1 & \text{if } i = j \text{ or } i = 2n+2-j \\ 0 & \text{otherwise.} \end{cases}$$
(a) Write down X_1, X_2 and find their rank and nullity. $X = 2 \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1)$
(b) In general what are $\operatorname{rank}(X_1)$ and nullity $(X_1)^2 \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1)$

- (b) In general, what are rank(X_n) and nullity (X_n)? $\{x_n\}$
- 17. Let A be a 3×3 matrix. Describe geometrically the solution set of the linear system Ax = 0for each of the cases when rank(A) = 0,1,2,3.

 Prove Theorem 4.1.11. $70 \Rightarrow 30 \text{ FMM} \quad 3 \Rightarrow 70 \text{ MM} \quad 3$
- **\\ 8.** Prove Theorem 4.1.11.

- Let A and B be row equivalent matrices. Prove the following statements.
- (a) A given set of columns of A is linear independent if and only if the set of corresponding columns of **B** is linearly independent. (*Hint*: Read Question 3.30.)
- (b) A given set of columns of A forms a basis for the column space of A if and only if the set of corresponding columns of B forms a basis for the column space of B.
- **19.** Let **B** be an $m \times n$ matrix. If there exists an $n \times m$ matrix **C** such that BC = I, then **C** is called a right inverse of **B**.

Hence, or otherwise, find a right inverse of \mathbf{B} . Is the right inverse unique? Wq \mathbb{N}

- (b) Give an example of a nonzero matrix that has no right inverse. Let $0 \Rightarrow 200 \text{ pow}$.
- (c) Show that an $m \times n$ matrix **B** has a right inverse if and only if $\operatorname{rank}(\mathbf{B}) = m$. $\frac{1}{2} \operatorname{et}_{\mathbf{E}} 0 \Rightarrow \infty$ when $10 \operatorname{m}^2$
- **20.** Suppose A and B are two matrices such that AB = 0. Show that the column space of B is AX=0 - 'f AB=0, x=B, then mullypound A = Me from & An=0 contained in the nullspace of *A*.
- 21. Show that there is no matrix whose row space and nullspace both contain the same nonzero vector.
- **22.** Let A be an $m \times n$ matrix and P an $m \times m$ matrix.
 - (a) If P is invertible, show that $\operatorname{rank}(PA) = \operatorname{rank}(A)$. Now that $\operatorname{rank}(PA) = \operatorname{rank}(A)$. Now that $\operatorname{rank}(PA) = \operatorname{rank}(A)$.
 - (b) Give an example such that rank(PA) < rank(A). P www 240 fows.
 - (c) Suppose rank(PA) = rank(A). Is it true that P must be invertible? Justify your answer. 7
- **23.** Let *A* and | *B* be two matrices of the same size. Show that

$$\rho \circ f \land f \land \rho \circ f \land$$

- **24.** Let *A* be an $m \times n$ matrix. Suppose the linear system Ax = b is consistent for all $b \in \mathbb{R}^m$. Show that the linear system $A^T y = 0$ has only the trivial solution. ((0)) y = 0; if couldn't, A = I. Let A be an $m \times n$ matrix.
- **25.** Let **A** be an $m \times n$ matrix.
 - (a) Show that the nullspace of A is equal to the nullspace of $A^{T}A$.
 - (b) Show that $\operatorname{nullity}(A) = \operatorname{nullity}(A^{T}A)$ and $\operatorname{rank}(A) = \operatorname{rank}(A^{T}A)$.
 - (c) Is it true that $nullity(A) = nullity(AA^T)$? Justify your answer.
 - (d) Is it true that $rank(A) = rank(AA^{T})$? Justify your answer.
- **26.** Determine which of the following statements are true. Justify your answer.
 - (a) If \mathbf{A} and \mathbf{B} are two row equivalent matrices, then the row space of \mathbf{A}^{T} and the row space of \mathbf{B}^{T} are the same.
 - (b) If A and B are two row equivalent matrices, then the column space of A^{T} and the column space of \mathbf{B}^{T} are the same.
 - (c) If A and B are two row equivalent matrices, then the nullspace of A^{T} and the nullspace of \mathbf{B}^{T} are the same.
 - (d) If \boldsymbol{A} and \boldsymbol{B} are two matrices of the same size, then $\operatorname{rank}(\boldsymbol{A} + \boldsymbol{B}) = \operatorname{rank}(\boldsymbol{A}) + \operatorname{rank}(\boldsymbol{B})$.
 - (e) If \mathbf{A} and \mathbf{B} are two matrices of the same size, then nullity($\mathbf{A} + \mathbf{B}$) = nullity(\mathbf{A}) + nullity(\mathbf{B}).
 - (f) If \mathbf{A} is an $n \times m$ matrix and \mathbf{B} is an $m \times n$ matrix, then rank $(\mathbf{A}\mathbf{B}) = \operatorname{rank}(\mathbf{B}\mathbf{A})$.

(g) If \mathbf{A} is an $n \times m$ matrix and \mathbf{B} is an $m \times n$ matrix, then nullity($\mathbf{A}\mathbf{B}$) = nullity($\mathbf{B}\mathbf{A}$).