

Conformal Prediction Sets for Graph Neural Networks

Soroush H. Zargarbashi¹, Simone Antonelli¹, Aleksandar Bojchevski²

(1) CISPA Helmholtz Center for Information Security, (2) University of Cologne

CISPA HELMHOLTZ CENTER FOR INFORMATION SECURITY University of Cologne

- Conformal prediction for semi-supervised node classification returns <u>sets</u> that provably contain the true label.
- Extensive study of graphs + exchangeability.
- Neighborhood diffusion leads to more efficient prediction sets, and significantly improves correct singletons.

1. Motivation

Quantification of the model's uncertainty is critical

Models are usually uncalibrated with no uncertainty guarantees

Distribution-free coverage guarantees via Conformal Prediction

2. Conformal Prediction

Given: holdout labeled set $D_{cal} \subset D$ (exchangeable), black-box model M trained with $D_{tr} \cup D_{val}$, user-specified α , test input \mathbf{x}_{n+1}

Compute: $q = \text{Quantile}(\alpha, \{s_i = s(x_i, y_i)\})$

Returns: $\mathbb{P}[\mathbf{y}_{n+1} \in \{y : s(\mathbf{x}_{n+1}, y) \ge q\}] > 1 - \alpha$. true label prediction set

Any conformity score $s(\cdot, \cdot)$ works! Goal: Design a good s!

3. Scores, and Metrics

APS:
$$s(\mathbf{x}, y) = -(\sum_{c=1}^{K} \pi(\mathbf{x})_c \mathbb{I}[\pi(\mathbf{x})_c > \pi(\mathbf{x})_y] + u \cdot \pi(\mathbf{x}, y))$$

RAPS: Reducing size by penalizing low rank scores.

Metrics:

- Coverage: guaranteed and user-specified!
- Average Set Size: lower is better
- (Correct) Singleton Hits: higher is better

Github Repository

4. CP for Node Classification

Settings:

Transductive: Exchangeable

Train: entire graph | Calibrate: entire graph | Train: entire graph

Simultaneous Inductive: Exchangeable

Train: sub-graph Calibrate: entire graph Train: entire graph

• Inductive: Not Exchangeable

Train: sub-graph Calibrate: sub-graph Train: entire graph

5. DAPS: Diffused Adaptive Prediction Sets

K-hop DAPS: Apply on k-hop neighborhood

Score Propagation: $\hat{S} = (1 - \lambda)S + (I - \lambda D^{-1}A)^{-1}S$

Intuition: Diffusion makes $\pi(y \mid x)$ closer to $p(y \mid x)$.

6.1. DAPS Handles Hard Predictions

We can define DAPS over black-box prediction machines, which return only top class labels.

6.2. DAPS is Pareto Dominating and Scalable

6.3. DAPS (and its Generalizations) are More Stable

Generalizations

6.4. DAPS Enhances Uncertainty Awareness

Applicable to all Scores

