Exercice 15.4

On donne un plan α et une droite d.

Construire la vraie grandeur de l'angle φ que forme la droite d avec le plan α .

L'angle φ est le complémentaire de l'angle θ formé par la droite d et une normale n à α . Le plan α étant perpendiculaire à π_3 , on commence par construire la troisième trace de α .

Soit P un point quel conque de d.

Soit n la normale à α passant par P. Le plan α étant perpendiculaire à π_3 , la droite n est une droite de profil.

Soit D un autre point quel conque de la droite d. Voici ses trois projections. On en déduit la troisième projection de d.

L'angle θ appartient au plan β défini par les deux droites d et n. On rabat le plan β autour de la droite de profil n sur un plan parallèle à π_3 . Et on construit le rabattement du point D par la méthode du triangle d'appui.

L'angle θ apparaît en vraie grandeur entre d_0 et la charnière. On en déduit la vraie grandeur de l'angle φ .

