

Stacjonarność

Natalia Nehrebecka

#6

Szwecja, Rok 2003

Dlaczego ci panowie są tak uśmiechnięci?...

Plan zajęć

- Stacjonarność, biały szum
- Random walk błądzenie przypadkowe
- Trendy w szeregach czasowych
- Zmienne zintegrowane

Plan zajęć

- Stacjonarność, biały szum
- ▶ Random walk błądzenie przypadkowe
- Trendy w szeregach czasowych
- Zmienne zintegrowane

Silna stacjonarność

- Proces stochastyczny jest <u>silnie stacjonarny</u> lub ścisłe stacjonarny jeśli <u>łączne rozkłady jego zmiennych nie zmieniają</u> <u>się w czasie</u>.
 - W rezultacie, parametry takie jak wartość oczekiwana i wariancja, jeśli istnieją, także pozostają stałe w czasie.
- Formalnie, jeśli
 - $\{X_t\}$ jest procesem stochastycznym, oraz
 - $F_X(x_{t_1+ au},\dots,x_{t_k+ au})$ opisuje dystrybuantę rozkładu łącznego zmiennych $\{X_t\}$ w momentach $t_1+ au,\dots,t_k+ au$,

to

• $\{X_t\}$ jest procesem stacjonarnym, jeśli $\forall k, \ \forall \tau, \forall t_1, ..., \ t_k$ $F_Xig(x_{t_1+\tau}, ..., x_{t_k+\tau}ig) = F_Xig(x_{t_1}, ..., x_{t_k}ig)$

Słaba stacjonarność

Proces stochastyczny jest stacjonarny w sensie słabym, jeśli dla każdego t spełnione są trzy poniższe warunki:

$$E(X_t) = \mu$$
 - wartość oczekiwana nie zależy od t (jest skończona i stała w czasie)

 $Var(X_t) = \sigma^2$ - wariancja nie zależy od t (jest skończona i stała w czasie)

 $Cov(X_t, X_{t+h}) = \sigma_h$ - wartość kowariancji dla dwóch obserwacji zależy jedynie od *odstępu* miedzy nimi, a nie od momentów czasu z których pochodzą obserwacje

Proces stochastyczny niestacjonarny

Proces stochastyczny z rosnącą (niestacjonarną) wartością oczekiwaną:

Stacjonarny proces stochastyczny

Proces stochastyczny ze stałą (stacjonarną) wartością oczekiwaną i stałą wariancją:

- Uwaga!
 - Nie możemy nic powiedzieć o kowariancji na podstawie tego wykresu!

Słaba stacjonarność

 $Cov(X_t, X_{t+h}) = \sigma_h$ - wartość kowariancji dla dwóch obserwacji zależy jedynie od odstępu miedzy nimi, a nie od momentów czasu z których pochodzą obserwacje

np.

- (A) Korelacja dla szeregu z roku **1980** i **1985** jest taka sama jak dla lat **1990** i **1995** (czyli t = 1980 oraz 1990, *h* = *5*)
- (B) Korelacja dla szeregu z roku **1980** i **1987** jest taka sama jak dla lat **1990** i **1997** (czyli t = 1980 i 1990, h = 7)

zmienna stacjonarna

zmienna, której własności nie zmieniają się wraz z upływem czasu

- istnieje kilka **definicji stacjonarności**, my będziemy posługiwać się pojęciem **słabej (kowariancyjnej) stacjonarności**:

- 1. $E(y_t) = \mu < \infty$ wartość oczekiwana y_t jest skończona i stała w czasie

- 2. $Var(y_t) = \sigma^2 < \infty$ - wariancja y_t jest skończona i stała w czasie

- 3. $Cov(y_{t_1}, y_{t_1+h}) = Cov(y_{t_2}, y_{t_2+h}) = \gamma_h$ kowariancja między realizacjami y_t zależy jedynie od dystansu w czasie h

któryś z warunków niespełniony= zmienna niestacjonarna

- 1. $E(y_t) = \mu < \infty$ wartość oczekiwana y_t jest skończona i stała w czasie

- 2. $Var(y_t) = \sigma^2 < \infty$ - wariancja y_t jest skończona i stała w czasie

- założenie o stacjonarności zmiennych w modelu jest niezbędne przy wyprowadzaniu rozkładów typowych statystyk testowych używanych przy testowaniu hipotez
- badanie stacjonarności zmiennych w modelu może być traktowane jako test diagnostyczny weryfikuje prawdziwość założeń koniecznych do tego, by standardowe procedury testowania hipotez były prawidłowe

Proces białego szumu (white noise) spełnia następujące założenia:

$$E(y_t) = \mu$$

$$Var(y_t) = \sigma^2$$

$$Cov(y_t, y_s) = 0$$

Zero-mean white noise:

$$E(y_t) = 0$$

$$Var(y_t) = \sigma^2$$

$$Cov(y_t, y_s) = 0$$

Przykład białego szumu

Independent (strong) white noise:

$$y_t \sim IID(0, \sigma^2)$$

IID (Independently and Identically Distributed)

realizacje y_t są niezależne i mają identyczne rozkłady.

Testowanie białego szumu

$$H_0: \rho_1 = \rho_2 = ... = \rho_P = 0$$

 H_0 : nie ma autokorelacji do rzędu P włącznie H_1 : występuje autokorelacji rzędu od $\mathbf 1$ do P

Statystyka Q Boxa-Pierce'a

$$Q = T \sum_{k=1}^{P} \hat{\rho}_k^2 \sim \chi_P^2$$

- Statystyka Q* Ljunga-Boxa
- (lepsza dla małych prób)

$$Q^* = T(T+2) \sum_{k=1}^{P} \frac{\hat{\rho}_k^2}{T-k} \sim \chi_P^2$$

$$\hat{\rho}_{k}^{2} = \frac{\sum_{t=k+1}^{T} e_{t} e_{t-k}}{\sum_{t=1}^{T} e_{t}^{2}}$$

W obu testach H_0 : proces **jest** białym szumem

Testowanie białego szumu

- Należy wybrać maksymalnie P do przetestowania
 - (24 opóźnienia dla autokorelacji zwykłej,
 - 3 dla sezonowej)

Przykład zmiennej stacjonarnej: AR (1)

$$y_t = \alpha y_{t-1} + \varepsilon_t$$
, gdzie $|\alpha| < 1$

- przykład zmiennej stacjonarnej: AR(1): $y_t = 0.7y_{t-1} + \varepsilon_t$

- przykład zmiennej stacjonarnej: AR(1)

$$y_{t} = \alpha y_{t-1} + \varepsilon_{t} \quad \varepsilon_{t} \sim IID(0, \sigma^{2})$$

$$|\alpha| < 1$$

Dowód stacjonarności:

1. Podstawiając $y_{t-1} = \alpha y_{t-2} + \varepsilon_{t-1}$ do poprzedniego wzoru:

$$y_t = \alpha^2 y_{t-2} + \alpha \varepsilon_{t-1} + \varepsilon_t$$

2. Postępując tak rekurencyjnie

$$y_t = \sum_{i=0}^{\infty} \alpha^i \varepsilon_{t-i}$$

$$\mathbf{E}(\mathbf{y}_t) = E(\sum_{i=0}^{\infty} \alpha^i \varepsilon_{t-i}) = \sum_{i=0}^{\infty} \alpha^i \underbrace{E(\varepsilon_{t-i})}_{0} = 0$$

$$Var(y_t) = Var(\sum_{i=0}^{\infty} \alpha^i \varepsilon_{t-i}) = \sum_{i=0}^{\infty} \alpha^{2i} \underbrace{Var(\varepsilon_{t-i})}_{\sigma^2} = \frac{\sigma^2}{1-\alpha^2}$$

$$Cov(y_t, y_{t-h}) = \alpha^h \frac{\sigma^2}{1-\alpha^2}$$

$$y_t = 20 + 0.7 \cdot y_{t-1} + \varepsilon_t$$

Plan zajęć

- Stacjonarność, biały szum
- Random walk błądzenie przypadkowe
- Trendy w szeregach czasowych
- Zmienne zintergrowane

Droga do pubu - przykład zmiennej niestacjonarnej

- Stoimy między dwoma pubami i chcemy zdecydować, do którego pójść przy pomocy rzutu monetą.
 - ∘ orzeł → robimy krok w lewo;
 - ∘ reszka → robimy krok w prawo;

$$Z_t = \left\{ \begin{array}{cc} -1 & \text{z prawd. } p = 1/2 \\ 1 & \text{z prawd. } p = 1/2 \end{array} \right.$$

Po każdym ruchu powtórnie rzucamy monetą, powtarzając całą operację, aż do celu (dla uproszczenia przyjmiemy, że od każdego z pubów dzieli nas nieskończona liczba kroków).

Droga do pubu – cd.

Możemy zatem zapisać:

$$X_1 = Z_1$$

 $X_2 = X_1 + Z_2$
 $X_3 = X_2 + Z_3$
...
 $X_t = X_{t-1} + Z_t$

- Czy X_t jest zatem stacjonarny?
- Mamy co prawda:

$$E(X_t) = 0$$

▶ ale ...

Droga do pubu – cd.

$$\begin{aligned} \operatorname{Var}(X_1) &= \operatorname{Var}(Z_1) = 1 \\ \operatorname{Var}(X_2) &= \operatorname{Var}(X_1 + Z_2) = \operatorname{Var}(X_1) + \operatorname{Var}(Z_2) = 2 \\ \operatorname{Var}(X_3) &= \operatorname{Var}(X_2) + \operatorname{Var}(Z_3) = 3 \\ & \dots \\ \operatorname{Var}(X_t) &= t \end{aligned}$$

- Wariancja procesu X_t jest liniową funkcją czasu, więc jest to proces niestacjonarny!
- Jest to szczególny przypadek ważnego niestacjonarnego procesu, nazywanego błądzeniem przypadkowym (random walk).

Droga do pubu: skokowy proces błądzenia losowego

 Nawet jeśli mamy do pubu 20 kroków możemy tam długo nie dotrzeć

Zmienna niestacjonarna:

proces błądzenia losowego

Proces błądzenia losowego – definicja

$$y_{t} = y_{t-1} + \varepsilon_{t}$$

$$y_{t} = y_{t-1} + \varepsilon_{t} = y_{t-2} + \varepsilon_{t-1} + \varepsilon_{t} = y_{t-3} + \varepsilon_{t-2} + \varepsilon_{t-1} + \varepsilon_{t} = \dots = y_{0} + \sum_{t=1}^{T} \varepsilon_{t}$$

$$\text{trend stochastyczny}$$

Własności błądzenia losowego

$$E(y_t) = E(\sum_{t=1}^{T} \varepsilon_t) = \sum_{t=1}^{T} E(\varepsilon_t) = 0$$

$$D^2(y_t) = D^2(\sum_{t=1}^{T} \varepsilon_t) \stackrel{cov(\varepsilon_t, \varepsilon_{t-h}) = 0}{=} \sum_{t=1}^{T} D^2(\varepsilon_t) = T\delta^2$$

$$cov(y_t, y_{t-h}) = E(y_t, y_{t-h}) - E(y_t)E(y_{t-h}) = E(\sum_{t=1}^{T-h} \varepsilon_t \sum_{t=1}^{T-h} \varepsilon_t) - E(\sum_{t=1}^{T-h} \varepsilon_t) = D^2(\sum_{t=1}^{T-h} \varepsilon_t) = \sum_{t=1}^{T-h} D^2(\varepsilon_t) = (T-h)\delta^2$$

$$\underbrace{E(\sum_{t=1}^{T-h} \varepsilon_t)}_{0} = D^2(\sum_{t=1}^{T-h} \varepsilon_t) = \sum_{t=1}^{T-h} D^2(\varepsilon_t) = (T-h)\delta^2$$

Proces błądzenia przypadkowego

Błądzenie przypadkowe z dryfem:

$$y_t = \mu + y_{t-1} + \varepsilon_t$$

Dryf to systematyczne znoszenie w jednym kierunku o tej samej wielkości w każdym kroku.

Błądzenie przypadkowe - z dryfem i bez dryfu

Błądzenie przypadkowe - z dryfem i bez dryfu

Zmienna niestacjonarna:Błądzenie przypadkowe - z dryfem

Proces błądzenia losowego z dryfem – definicja

$$\begin{aligned} y_t &= \alpha_0 + y_{t-1} + \varepsilon_t \\ y_t &= \alpha_0 + y_{t-1} + \varepsilon_t = \alpha_0 + \alpha_0 + y_{t-2} + \varepsilon_{t-1} + \varepsilon_t = \\ \alpha_0 &+ \alpha_0 + \alpha_0 + y_{t-3} + \varepsilon_{t-2} + \varepsilon_{t-1} + \varepsilon_t = \dots \overset{y_0 = 0}{=} T\alpha_0 + \sum_{t=1}^T \varepsilon_t \\ &\text{trend stochastyczny} \end{aligned}$$

Własności błądzenia losowego z dryfem

$$E(y_t) = E(T\alpha_0 + \sum_{t=1}^{T} \varepsilon_t) = T\alpha_0 + \sum_{t=1}^{T} E(\varepsilon_t) = T\alpha_0$$

Wariancja i kowariancja takie same, jak w przypadku błądzenia przypadkowego, bo przesuniecie o stałą nie wpływa na dyspersję procesu.

Plan zajęć

- Stacjonarność, biały szum
- ► Random walk błądzenie przypadkowe
- Trendy w szeregach czasowych
- Zmienne zintegrowane

Trend stochastyczny

- W ekonomii często na podstawie badania szeregu czasowego można stwierdzić z jakim typem niestacjonarności mamy do czynienia.
- Jeżeli polega ona na tym, że szereg ma skłonność do poruszania się w jednym kierunku, nazywamy taką tendencję trendem.
- Szereg może powoli dryfować w górę lub w dół wyłącznie w rezultacie stochastycznych (losowych) szoków. Nazwiemy go wtedy szeregiem czasowym z trendem stochastycznym.

Trend deterministyczny

- Innym przykładem tendencji rozwoju niestacjonarnego procesu stochastycznego jest sytuacja, gdy średnia procesu jest funkcją czasu.
- Ogólnym zapisem takiej funkcji jest wielomian zmiennej czasowej stopnia k, który zapiszemy w postaci:

$$S_t = \beta_0 + \beta_1 t + \beta_2 t^2 + ... + \beta_k t^k$$

Funkcja taka nazywana jest trendem deterministycznym.
Szczególnym przypadkiem takiej funkcji jest trend liniowy:

$$S_t = \beta_0 + \beta_1 t$$

Trend stochastyczny vs. trend deterministyczny

Komentarz

- Proces błądzenia przypadkowego (z dryfem lub bez) i trendy deterministyczne wydają się sensownym odzwierciedleniem wielu makroekonomicznych szeregów czasowych (może występować również ich kombinacja).
- Dba rodzaje procesów dają niestacjonarne szeregi o silnym trendzie. Nie jest więc zaskakujące, że regresje tego typu zmiennych względem siebie niemal zawsze dają istotne statystycznie wyniki (relacje).
- Zależność ta jednak (silna korelacja między nimi) może być wynikiem podobnego trendu, niezależnie od rzeczywistego występowania między nimi relacji regresyjnej.

Szwecja, Rok 2003

Dlaczego ci panowie są tak uśmiechnięci?...

"Stara Ekonometria"

Zmienna zależna = f (zmienne niezależne) + odchylenia losowe

Ekonometria wyjaśnia relacje pomiędzy zmiennymi ekonomicznymi i pokazuje zależności w postaci formuł matematycznych

Opiera się na statystycznej analizie danych historycznych

Gospodarka narodowa, banki, journal of marketing...

"Nowa Ekonometria" W Autorskim Ujęciu Poetyckim

- Każda zmienna ma swoją duszę, coś co kieruje jej poczynaniami; to, co widzimy, to tylko ciało – fizyczna realizacja
- Tę duszę możemy odkryć...
- Podstawą do opisania rzeczywistości ekonomicznej jest jej przeszłość
- Występują pozorne zależności pomiędzy pewnymi zmiennymi ekonomicznymi.
 Należy ostrożnie postępować, żeby się wystrzec fałszywych wniosków!

Zinterpretujmy Model...

Dependent Variable: RW2 Method: Least Squares

Date: 14/12/07 Time: 07:03

Sample: 1 470

Included observations: 470

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RW1 C	0.725818 -7.142068	0.023532 0.503242	30.84337 -14.19212	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.670263 0.669559 5.662324 15004.98 -1480.801 0.044606	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statis	lent var criterion terion	-20.40957 9.850255 6.309792 6.327463 951.3134 0.000000

Jedynie wartość DW wskazuje, ze cos jest nie w porządku!

A Co Na To NOWA Ekonometria?

Młody Człowieku, nie zrobiłbyś tego błędu, badając stacjonarność!

Ha, ha, ha... Frajer!...

 Zmienne ekonomiczne przed modelowaniem trzeba odpowiednio przygotować!!!

Uwaga!

- Regresje dla szeregów czasowych niestacjonarnych (zawierających trend deterministyczny lub stochastyczny) często dają pozornie dobre wyniki.
- W ten sposób uniemożliwiają stwierdzenie, czy związki ekonomiczne wynikające z teorii są rzeczywiście poparte, czy tez nie, wynikami empirycznymi.
- Analiza regresji ma sens jedynie dla danych, które nie podlegają trendowi.
- Ponieważ wszystkie ekonomiczne szeregi czasowe zawierają trend, należy go usunąć przed przeprowadzaniem analizy regresji.

Regresje pozorne

- Własności statystyczne analizy regresji niestacjonarnych szeregów czasowych są na ogół wątpliwe.
- Dodatkowo występuje wysokie prawdopodobieństwo uzyskania istotnych wyników, nawet gdy w rzeczywistości one nie występują (regresje pozorne).
- Taka sytuacje nazywamy regresja pozorna (spurious regression).

Regresje pozorne: trend deterministyczny

Regresja trendu liniowego względem trendu kwadratowego:

$$y = 1, 2, 3, ..., n$$

$$x = 1, 4, 9, ..., n^2$$

reg y x

Source	SS	df	MS		Number of obs	=	50
+	+				F(1, 48)	=	750.29
Model	9786.41053	1 9	9786.41053		Prob > F	=	0.0000
Residual	626.08947	48	13.0435306		R-squared	=	0.9399
+	+				Adj R-squared	=	0.9386
Total	10412.5	49	212.5		Root MSE	=	3.6116
у	 Coef.		 rr. t		[95% Conf.	In	terval]
x _cons	.0184289	.000672	28 27.39	0.000	.0170761 8.128571		0197816

estat dwatson

Durbin-Watson d-statistic(2, 50) = .021547

Jedynie DW wskazuje, że coś jest nie w porządku!

Wartości teoretyczne vs. rzeczywiste

Regresje pozorne: trend stochastyczny

- Eksperyment Newbolda i Davisa
- Generujemy obserwacje dwóch niezależnych zmiennych niestacjonarnych;

$$y_{t} = y_{t-1} + \varepsilon_{1t}, \quad \varepsilon_{1t} \sim N(0,1)$$

$$x_{t} = x_{t-1} + \varepsilon_{2t}, \quad \varepsilon_{2t} \sim N(0,1)$$

$$Cov(\varepsilon_{1t}, \varepsilon_{2t}) = 0$$

Liczymy prostą regresję jednej zmiennej na drugą;

$$\varepsilon_{1t}$$
 na ε_{2t} oraz y_t na x_t

- Sprawdzamy istotność relacji (test t);
- Powtarzamy eksperyment odpowiednio dużą liczbę razy zapisując wyniki;
- Przy poziomie istotności 5% powinniśmy uzyskać istotny wynik w mniej więcej 5% przypadków

Wyniki dla 1000 powtórzeń

regresja zmiennych niestacjonarnych

regresja zmiennych stacjonarnych

	<u> </u>				
	teoretyczne	e1 na e2	y na x		
	statystyki t				
średnia	0,000	0,036	0,048		
odch . std	1,021	1,015	4,849		
skośność	0,000	-0,151	-0,214		
kurtoza	3,125	3,482	3,845		
5% percentyl	1,677	1,564	8,294		
% 'istotnych' wyników	5,000	5,200	64,200		
	statystyka DW				
średnia	2,000	1,994	0,313		

- x, y generowane niezależnie, więc zależności między nimi w rzeczywistości nie ma;
- Tymczasem wyniki pokazują "istotną" zależność w 64% przypadków !!!
- Regresje te miały również bardzo niską (średnio 0,313) wartość statystyki DW wskazującą na silną dodatnią autokorelację reszt.

Regresje pozorne: trend stochastyczny

- Eksperyment Newbolda i Davisa
- Dla równania regresji, dla niestacjonarnych szeregów:

$$y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$$

Pokazano, że statystyka:

$$t = \frac{b_2}{se(b_2)}$$

- ▶ nie ma rozkładu t − Studenta.
 - W ramach prostego eksperymentu Monte Carlo porównano wartości krytyczne testu dla powyższej regresji z wartościami teoretycznymi!

nie da się przeprowadzić wnioskowania przy użyciu standardowych statystyk testowych, jednak *estymator MNK jest nadal estymatorem zgodnym*

Plan zajęć

- Stacjonarność, biały szum
- ► Random walk błądzenie przypadkowe
- Trendy w szeregach czasowych
- Zmienne zintegrowane

zmienne zintegrowane:

 zmienne niestacjonarne, które można sprowadzić do stacjonarności poprzez różnicowanie

Engle i Granger (1987)

zmienna, która po zastosowaniu d-tych różnic staje się zmienną
 stacjonarną oznaczamy jako:

$$y_t \sim I(d)$$

 \circ mówimy, ze zmienna y_t jest zintegrowana rzędu d

zmienne stacjonarne są zintegrowane rzędu 0:

$$y_t \sim I(0)$$

- przykład zmiennej niestacjonarnej: błądzenie przypadkowe

$$y_t = y_{t-1} + \varepsilon_t \quad \varepsilon_t \sim IID(0, \sigma^2)$$

- różnicując zmienną y_t (odejmując od obu stron y_{t-1}):

$$\Delta y_t = \varepsilon_t$$
 - biały szum, zmienna I(0)

wobec tego błądzenie przypadkowe jest zmienną I(1)

Uwaga 1!

Szereg nie musi być białym szumem (white noise), żeby być stacjonarnym!

- uważa się, ze znaczna część zmiennych makroekonomicznych jest $m{I}(\mathbf{1})$
- istnieją też zmienne ekonomiczne, które są I(2)
- zmienne I(3) stanowią wśród zmiennych ekonomicznych rzadkość albo nie występują wcale

Uwaga 2!

- Uogólniajac, możemy wyróżnić dwa rodzaje niestacjonarności
- 1. błądzenie losowe z dryfem lub bez, tj. szereg przyrostowo-stacjonarny (difference-stationary process)

$$y_t = \mu + y_{t-1} + \varepsilon_t$$

2. trend deterministyczny, tj. szereg trendo-stacjonarny (*deterministic non-stationarity, trend-stationary process*)

$$y_t = \alpha + \beta t + \varepsilon_t$$

 Oba rodzaje niestacjonarności związane są z występowaniem trendów, wymagają one odmiennej procedury potrzebnej do osiągniecia stacjonarności.

Uwaga 2!

- Jeśli mamy powody by uważać, ze szereg jest trendo-stacjonarny, to właściwym podejściem jest regresja na trendzie liniowym, a następnie dalsza analiza na resztach pochodzących z tego równania.
- Jeśli natomiast wydaje się, ze szereg zawiera tylko trendy stochastyczne, to rozwiązaniem jest przeprowadzenie różnicowania – zwykle jednokrotnego, rzadziej dwukrotnego.

Uwaga 3!

Jeśli pierwsze różnice policzymy dla szeregu trendo-stacjonarnego to, co prawda usuniemy w ten sposób niestacjonarnosc, lecz przy okazji wprowadzimy do błędu losowego strukturę MA(1) (moving average process) -> o tym więcej na pozostałych zajęciach:

$$y_t = \alpha + \beta t + \varepsilon_t$$

▶ w *t-1*:

$$y_{t-1} = \alpha + \beta(t-1) + \varepsilon_{t-1}$$

Odejmując:

$$\Delta y_t = \beta + \varepsilon_t - \varepsilon_{t-1}$$

- powstała struktura MA (średniej ruchomej) jest nieodwracalna (non-invertible), tj. nie można jej przedstawić w postaci procesu autoregresyjnego (o tym więcej na pozostałych zajęciach).
- A zatem, y_t będzie posiadał w tym przypadku bardzo niepożądane własności.

Uwaga 3!

Podobną sytuację otrzymamy, jeśli spróbujemy usunąć trend liniowy za pomocą regresji zmiennej zawierającej trend stochastyczny.

Dziękuję za uwagę