

The Leverage Statistic and the DFBETAS Statistic

Leverage Statistic

Consider a regression model with two independent variables, \mathbf{X}_1 and \mathbf{X}_2 . The vector of observed values \mathbf{Y} is not in the plane defined by the vectors \mathbf{X}_1 and \mathbf{X}_2 . The perpendicular projection from \mathbf{Y} onto the plane of \mathbf{X}_1 and \mathbf{X}_2 defines the vector $\hat{\mathbf{Y}}$ of predicted values. The projection matrix, also called the *hat matrix*, is shown below:

$$P = X(X'X)^{-1}X'$$

The leverage values are the diagonal elements of the projection matrix.

DFBETAS Statistic

DFBETAs measure the change in each parameter estimate when an observation is deleted from the model.

$$DFBETA_{j(i)} = \frac{b_j - b_{j(i)}}{\hat{\sigma}(b_j)}$$

where

- b_j is the parameter estimate for the j^{th} independent variable.
- b_{j(i)} is the parameter estimate for the jth independent variable with the ith observation deleted from the analysis.
- $\hat{\sigma}(b_j)$ is the standard error of the jth parameter estimate when all observations are included in the analysis.

Close

Copyright © 2017 SAS Institute Inc., Cary, NC, USA. All rights reserved.