Step-1

Consider a 4 by 4 matrix in which $a_{ij} = 1$ above the diagonal and $a_{ij} = 0$ elsewhere. Find the Jordan form by finding the Eigen vectors.

Step-2

Let the matrix be A defined as follows:

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Calculate Eigen values of matrix *A*:

$$A - \lambda I = \begin{bmatrix} 0 - \lambda & 1 & 1 & 1 \\ 0 & 0 - \lambda & 1 & 1 \\ 0 & 0 & 0 - \lambda & 1 \\ 0 & 0 & 0 & 0 - \lambda \end{bmatrix}$$

$$\det(A - \lambda I) = 0$$

$$(-\lambda)(-\lambda^3) = 0$$

$$\lambda^4 = 0$$

On solving above equation Eigen values obtained are $\lambda = (0,0,0,0)$

Step-3

Clearly it can be seen that $\lambda = 0$ is the only repeated Eigen value of the matrix A. Eigen vector corresponding to this will be $v_1 = (1,0,0,0)$. Generalised Eigen vectors will be as follows:

$$v_2 = (0,1,0,0)$$

$$v_3 = (0, -1, 1, 0)$$

$$v_4 = (0,1,-2,1)$$

Step-4

Put these vectors in a matrix M. Therefore matrix M and its inverse can be defined as follows:

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$M^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Step-5

Recall that Jordan form is given by $M^{-1}AM = J$. Therefore,

$$M^{-1}AM = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$= J$$

Step-6

As matrix A has only one independent Eigen vector, so Jordan form will have only one block. In Jordan matrix three 1â \in TMs represents absence of three Eigen vectors. Therefore, Jordan form of matrix A is :

$$J = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$