

STi5518

SINGLE CHIP SET-TOP BOX DECODER WITH ENHANCED AUDIO

REGISTER MANUAL

Introduction
Register map
Asynchronous serial controller (ASC)
Audio decoder (AUD)
Block move DMA (BMDMA)
Cache control (CAC)
Clock generator (CKG)
Digital encoder (DEN)
Programmable CPU memory interface (EMI)
Front end interface (FEI)
Interrupt control registers (INC)
Interrupt-level control registers (INC)
IR transmitter/receiver (IRB)
Link (LNK)
Low power module (LPM)
Modem analog front-end interface (MOD)
MPEG DMA (MPEGDMA)
On-screen display (OSD)
Overlay graphics & text (OGT)
PES parser (PES)
Parallel input/output (PIO)
PWM and counter module (PWC)
SmartCard interface (SCI)
Sub-picture decoder (SPD)
Synchronous serial controller (SSC)
Teletext interface (Ttxt)
SDRAM block move (USD)
Video deceder (VID)

1 Introduction STi5518

1 Introduction

This manual describes the bit fermat and functionality of the STi5518 registers. *Register map* on page 5 lists all of the memory mapped registers, there is a table for each group of registers and the registers are sorted in address order within the tables. In the subsequent chapters, the registers are described individually in detail. The register map quotes the absolute register addresses, and the individual register descriptions give the address offset to the base address. The table below lists the base addresses for each group of registers. The final chapter contains an alphabetical index of registers. In the electronic version of this manual, the index and table of contents are hypertext linked into the register descriptions.

1.1 Accessing registers

Registers can be examined and set by the *devlw* (device load word) and *devsw* (device store word) instructions; they cannot be accessed using memory instructions. All registers located in region 2 of the peripheral address space. The registers of each module are grouped in the address space, usually in a 4 Kbyte block. In the register descriptions, the addresses are given as offsets from the base of the appropriate block. Table 1 lists the register block base variables and gives their values.

All unused register map locations and unused register bits are reserved, and only the value "0" must be written to any of these locations or bits. The values read from these locations or bits are undefined.

Variable	Base address value	Block				
ASC0BaseAddress	0x20003000	Asynchronous serial controller ASC0 / SmartCard 0				
ASC1BaseAddress	0x20004000	Asynchronous serial controller ASC1				
ASC2BaseAddress	0x20005000	Asynchronous serial controller ASC2				
ASC3BaseAddress	0x20006000	Asynchronous serial controller ASC3 / SmartCard 1				
AudioBaseAddress	0x00000200	Audio decoder				
BMBaseAddress	0x20026000	Block move DMA controller				
CacheBaseAddress	0x00004000	Cache configuration				
Clock GeneratorBaseAddress	0x00000100	Clock Generator				
DencBaseAddress	0x00000600	Digital Encoder				
EMIBaseAddress	0x00002000	Programmable CPU Memory Interface				
IntControllerBase	0x20000000	Interrupt controller				
InterruptLevelBase	0x20011000	Interrupt level controller				
IRBBaseAddress	0x2000A200	Infra red blaster				
LinkBaseAddress	0x20038000	Link and front-end interface				
LPCBaseAddress	0x20000400	Low power and Watchdog				
ModemBaseAddress	0x20027000	Modem control				
MPEGDMA0BaseAddress	0x20024000	MPEGDMA controller				
MPEGDMA1BaseAddress	0x20025000	MPEGDMA controller				
MPEGDMA2BaseAddress	0x20030000	LINK (SDAV MPEGDMA2) controller				
PIO0BaseAddress	0x2000C000	PIO port 0 controller				
PIO1BaseAddress	0x2000D000	PIO port 1 controller				
PIO2BaseAddress	0x2000E000	PIO port 2 controller				
PIO3BaseAddress	0x2000F000	PIO port 3 controller				
PIO4BaseAddress	0x20010000	PIO port 4 controller				
PIO5BaseAddress	0x20001000	PIO port 5 controller				
PIO5BaseAddress	0x2000A100	PIO port 5 controller				
PWMBaseAddress	0x2000B000	PWM and counter module				
SSC0BaseAddress	0x20009000	Synchronous serial controller SSC0				
SSC1BaseAddress	0x2000A000	Synchronous serial controller SSC1				

Table 1 Register block base variables

STi5518 1 Introduction

Variable	Base address value	Block
SubPictureBaseAddress	0x00000400	Sub-picture decoder
TTxtBaseAddress	0x2000A300	Teletext
VideoBaseAddress	0x00000000	MPEG video decoder

Table 1 Register block base variables

1.2 Audio/video access control

Audio and video access is controlled by the register MPEG_CONTROL, described here.

MPEG_CONTROL MPEGAV buffer control register

	31	30	29	28	28	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0xE00								Re	eser	ved								Register select hold time	Register select setup time		Reserved	CD strobes hold time	CD strobes setup time		_	lold	-off	valu	ie	Enable sub-picture FIFO fullness polling	Enable audio FIFO fullness polling	Enable video FIFO fullness polling

Address: 0xE00 Type: R/W Reset value: 0

Description

This register controls the speed of CPU accesses to the audio, video, sub-picture and DENC registers. It can also control the nature and speed of accesses to the CD FIFOs. For normal applications this register should be left in its default state. The register can be accessed by 8-bit word reads or word writes at the address 0xE00[7:0] and 0xE01[14:8].

- Bits 14:12 slow down register accesses by adding extra cycles on the internal register select signals.
- Bits 10:8 slow down CD FIFO accesses by adding extra cycles on the internal FIFO strobe signals.
- The 5-bit hold-off value enables the user to define a minimum wait time between two CD FIFO accesses. (The delay
 is in units of system clock cycles.)

Bitfield	Description			
Register select hold time	Extra cycle with register select high.			
Register select setup time	Number of extra cycles with registers select low.			
CD strobes hold time Extra cycle with FIFO strobe high.				

7170180A 3/275

1 Introduction STi5518

Bitfield	Description							
CD strobes setup time	Number of extra cycles with FIFO strobe low.							
	Minimum wait time before sending next CD FIFO access.							
	Enable FIFO fullness polling.							
	If the FIFO fullness polling enable bit is set, the CD FIFO fullness is examined on every byte							
	transfer. If the FIFO is full then the transfer will be stalled. If the enable is not set, then data will							
TELIADIE VIUEU FIFO IUIITIESS DOIIITIU	be transferred regardless of the FIFO fullness. Hence there is a risk of FIFO overflow if the incoming bandwidth is too high.							
	incoming bandwidth is too nigh.							

1.3 Synchronization of video decoder registers

There are two types of video decoder register: synchronized and unsynchronized.

- Synchronized registers only change value in response to an internal event, either DSYNC or VSYNC, depending on
 the register. These registers are double-banked; during the write cycle the new value is loaded into a master
 register, and on the occurrence of the synchronizing event this value is loaded into a slave register, at which time
 the new value is available to the circuit. If a synchronized register is read, the value returned is that held in the
 master register.
- Unsynchronized registers change their value immediately they are written to.

Some registers are non synchronized registers with edge triggered write (on end of write cycle). This is to avoid glitches on internal signals during write cycles.

STi5518 2 Register map

2 Register map

This chapter lists all the memory mapped registers in grouped into modules and in address order. The contents of each register are given in the individual register descriptions, and the addresses are absolute addresses. The column headed **Bits** gives the number of significant bits. For serial registers, only 8 bits should be read or written at each access.

REGISTER	Address	Bits	Access	Description
ASC_0_BAUDRATE	0x20003000	16	R/W	ASC 0 Baud rate generator/reload
ASC_0_TXBUFFER	0x20003004	9	W	ASC 0 Output buffer
ASC_0_RXBUFFER	0x20003008	9	R	ASC 0 Input buffer
ASC_0_CONTROL	0x2000300C	13	R/W	ASC 0 Control register
ASC_0_INTENABLE	0x20003010	9	R/W	ASC 0 Enable interrupts
ASC_0_STATUS	0x20003014	11	R	ASC 0 Interrupt status
ASC_0_GUARDTIME	0x20003018	8	R/W	ASC 0 Delay before transmitter empty flag
ASC_0_TIMEOUT	0x2000301C	8	R/W	ASC 0 Time out register
ASC_0_TXRESET	0x20003020	0	W	ASC 0 Reset output FIFO
ASC_0_RXRESET	0x20003024	0	W	ASC 0 Reset input FIFO
ASC_0_RETRIES	0x20003028	8	R/W	ASC 0 number of retries on transmission

Table 2 Asynchronous Serial Controller 0 (ASC)

REGISTER	Address	Bits	Access	Description
ASC_1_BAUDRATE	0x20004000	16	R/W	ASC 1 Baud rate generator/reload
ASC_1_TXBUFFER	0x20004004	9	W	ASC 1 Output buffer
ASC_1_RXBUFFER	0x20004008	9	R	ASC 1 Input buffer
ASC_1_CONTROL	0x2000400C	13	R/W	ASC 1 Control register
ASC_1_INTENABLE	0x20004010	9	R/W	ASC 1 Enable interrupts
ASC_1_STATUS	0x20004014	11	R	ASC 1 Interrupt status
ASC_1_GUARDTIME	0x20004018	8	R/W	ASC 1 Delay before transmitter empty flag
ASC_1_TIMEOUT	0x2000401C	8	R/W	ASC 1 Time out register
ASC_1_TXRESET	0x20004020	0	W	ASC 1 Reset output FIFO
ASC_1_RXRESET	0x20004024	0	W	ASC 1 Reset input FIFO
ASC_1_RETRIES	0x20004028	8	R/W	ASC 1 number of retries on transmission

Table 3 Asynchronous Serial Controller 1 (ASC)

Register	Address	Bits	Access	Description
ASC_2_BaudRate	0x20005000	16	R/W	ASC 2 Baud rate generator/reload
ASC_2_TxBuffer	0x20005004	9	W	ASC 2 Output buffer
ASC_2_RxBuffer	0x20005008	9	R	ASC 2 Input buffer
ASC_2_Control	0x2000500C	13	R/W	ASC 2 Control register
ASC_2_IntEnable	0x20005010	9	R/W	ASC 2 Enable interrupts

Table 4 Asynchronous Serial Controller 2 (ASC)

Register	Address	Bits	Access	Description
ASC_2_Status	0x20005014	11	R	ASC 2 Interrupt status
ASC_2_Guardtime	0x20005018	8	R/W	ASC 2 Delay before transmitter empty flag
ASC_2_Timeout	0x2000501C	8	R/W	ASC 2 Time out register
ASC_2_TxReset	0x20005020	0	W	ASC 2 Reset output FIFO
ASC_2_RxReset	0x20005024	0	W	ASC 2 Reset input FIFO
ASC_2_Retries	0x20005028	8	R/W	ASC 2 number of retries on transmission

Table 4 Asynchronous Serial Controller 2 (ASC)

Register	Address	Bits	Access	Description
ASC_3_BaudRate	0x20006000	16	R/W	ASC 3 Baud rate generator/reload
ASC_3_TxBuffer	0x20006004	9	W	ASC 3 Output buffer
ASC_3_RxBuffer	0x20006008	9	R	ASC 3 Input buffer
ASC_3_Control	0x2000600C	13	R/W	ASC 3 Control register
ASC_3_IntEnable	0x20006010	9	R/W	ASC 3 Enable interrupts
ASC_3_Status	0x20006014	10	R	ASC 3 Interrupt status
ASC_3_Guardtime	0x20006018	8	R/W	ASC 3 Delay before transmitter empty flag
ASC_3_Timeout	0x2000601C	8	R/W	ASC 3 Time out register
ASC_3_TxReset	0x20006020	0	W	ASC 3 Reset output FIFO
ASC_3_RxReset	0x20006024	0	W	ASC 3 Reset input FIFO
ASC_3_Retries	0x20006028	8	R/W	ASC 3 number of retries on transmission

Table 5 Asynchronous Serial Controller 3 (ASC)

Register	Address	Bits	Access	Description
AUD_VERSION	0x00000200	8	RO	Hardware version
AUD_IDENT	0x00000201	8	RO	Identify
AUD_SFREQ	0x00000205	8	R/WS	Sampling frequency
AUD_EMPH	0x00000206	2	R/W	Emphasis
AUD_INTEL [7:0]	0x00000207	16	R/W	Interrupt enable
AUD_INTE [15:8]	0x00000208	16	R/W	Interrupt enable
AUD_INT [7:0]	0x00000209	16	R/W	Interrupt
AUD_INT [15:8]	0x0000020A	16	R/W	Interrupt
AUD_SIN_SETUP	0x0000020C	8	R/W	Input data setup
AUD_CAN_SETUP	0x0000020D	8	R/W	A/D converter setup
AUD_ERROR	0x0000020F	8	RO	ERROR code
AUD_SOFTRESET	0x00000210	8	W	Soft reset
AUD_PLLPCM	0x00000212	3	R/W	PCM PLL disable
AUD_PLAY	0x00000213	1	R/W	Play
AUD_MUTE	0x00000214	1	R/W	Mute
AUD_PLLMASK	0x00000218	1	W	PCMCLK mask for half sampling frequency

Table 6 Audio Decoder (AUD)

Register	Address	Bits	Access	Description
AUD_SYNCSTATUS	0x00000240	4	RO	Synchronization status
AUD_ANCCOUNT	0x00000241	8	RO	Ancillary data
AUD_HEAD[31:24]	0x00000242	8	RO	HEADER 4 register
AUD_HEAD[23:16]	0x00000243	8	RO	HEADER 3 register
AUD_HEADLEN[15:8]	0x00000244	8	RO	Frame length
AUD_HEADLEN[7:0]	0x00000245	8	RO	Frame length
AUD_PTS[32]	0x00000246	8	R/W	PTS
AUD_PTS[31:24]	0x00000247	8	R/W	PTS
AUD_PTS[23:16]	0x00000248	8	R/W	PTS
AUD_PTS[15:8]	0x00000249	8	R/W	PTS
AUD_PTS[7:0]	0x0000024A	8	R/W	PTS
AUD_STREAMSEL	0x0000024C	3	R/W	STREAM selection
AUD_DECODESEL	0x0000024D	5	R/W	Decoding algorithm
AUD_VOLUME0	0x0000024E	8	R/W	Left/right balance
AUD_PACKET_LOCK	0x0000024F	8	R/W	Packet lock
AUD_AUDIO_ID_EN	0x00000250	8	R/W	Enable audio ID
AUD_AUDIO_ID	0x00000251	8	R/W	Audio ID
AUD_AUDIO_ID_EXT	0x00000252	8	R/W	Audio extension
AUD_SYNC_LOCK	0x00000253	8	R/W	SYNC lock
AUD_PCMDIVIDER	0x00000254	8	R/W	Divider for PCM clock
AUD_PCM_CONF	0x00000255	7	R/W	PCM configuration
AUD_PCM_CROSS	0x00000256	6	R/W	Cross PCM channels
AUD_LDLY	0x00000257	8	R/W	Left channel
AUD_TM_SPEED	0x00000257	8	R/W	Audio trick-mode speed
AUD_RDLY	0x00000258	8	R/W	Right channel
AUD_CDLY	0x00000259	8	R/W	Centre channel
AUD_SUBDLY	0x0000025A	8	R/W	Subwoofer channel
AUD_LSDLY	0x0000025B	8	R/W	Left surround channel
AUD_RSDLY	0x0000025C	8	R/W	Right surround channel
AUD_DLYUPDATE	0x0000025D	8	R/W	PCM delay update
AUD_SPDIF_CMD	0x0000025E	8	R/W	IEC958 control
AUD_SPDIF_CAT	0x0000025F	8	R/W	Category code
AUD_SPDIF_CONF	0x00000260	8	R/W	IEC958 PCMCLK divider
AUD_SPDIF_STATUS	0x00000261	7	R/W	IEC status bit
AUD_PDEC	0x00000262	3	R/W	Post decoder register
AUD_VOLUME1	0x00000263	8	R/W	L/R surround balance
AUD_PL_AB	0x00000264	8	R/W	Pro logic auto balance
AUD_PL_DWNX	0x00000265	8	R/W	Pro logic decoder downmix
AUD_OCFG	0x00000266	4	R/W	Output configuration
AUD_CHAN_IDX	0x00000267	3	R/W	PCM scale factor
AUD_PCM_BTONE	0x00000268	8	R/W	PCM beep tone frequency
AUD_DECODE_LFE	0x00000268	8	R/W	Decode LFE for AC3 setup

Table 6 Audio Decoder (AUD)

7170180A 7/275

Register	Address	Bits	Access	Description
AUD_MP_SKIP_LFE	0x00000268	8	R/W	Channel skip for MPEG setup
AUD_COMP_MOD	0x00000269	8	R/W	Compression mode for AC3 setup
AUD_MP_PROG_NO	0x00000269	8	R/W	Program number for MPEG setup
AUD_AC3_HDR	0x0000026A	8	R/W	High dynamic range for AC3 setup
AUD_MP_DRC	0x0000026A	1	R/W	High dynamic range for MPEG setup
AUD_AC3_LDR	0x0000026H	8	R/W	Low dynamic range
AUD_AC3_CRC_OFF	0x0000026C	8	R/W	Repeat count for AC3 setup
AUD_MP_CRC_OFF	0x0000026C	8	R/W	CRC check-off for MPEG setup
AUD_AC3_KARAMODE	0x0000026D	8	R/W	Karaoke downmix for AC3 setup
AUD_MP_MC_OFF	0x0000026D	2	R/W	Multichannel for MPEG setup
AUD_AC3_DUALMODE	0x0000026E	8	R/W	Dual downmix for AC3 setup
AUD_MP_DUAL	0x0000026E	8	R/W	Dual downmix for MPEG setup
AUD_AC3_DOWNMIX	0x0000026F	8	R/W	Downmix for AC3 setup
AUD_MP_DOWNMIX	0x0000026F	6	R/W	Downmix for MPEG setup
AUD_DWSMODE	0x00000270	8	R/W	Downsampling filter
AUD_SOFTVER	0x00000271	8	R/W	Software version
AUD_RUN	0x00000272	1	R/W	RUN decoding
AUD_SKIP_MUTE_CMD	0x00000273	5	R/W	Skip or mute commands
AUD_SKIP_MUTE_VALUE	0x00000274	8	R/W	Skip frames or mutes blocks of frame
AUD_SPDIF_REP_TIME	0x00000275	8	R/W	IEC958 repetition time of a pause frame
AUD_STATUS0	0x00000276	8	RO	AC-3 status register
AUD_MP_STATUS0	0x00000276	8	RO	MPEG status register0
AUD_LPCM_STATUS0	0x00000276	7	RW	LPMC status register0
AUD_STATUS1	0x00000277	4	RO	AC-3 status register 1
AUD_MP_STATUS1	0x00000277	4	RO	MPEG status register1
AUD_LPCM_STATUS1	0x00000277	7	RW	LPMC status register1
AUD_STATUS2	0x00000278	8	RO	AC-3 status register 2
AUD_MP_STATUS2	0x00000278	4	RO	MPEG status register2
AUD_LPCM_STATUS2	0x00000278	8	RW	LPMC status register3
AUD_STATUS3	0x00000279	4	RO	AC-3 status register 3
AUD_MP_STATUS3	0x00000279	8	RO	MPEG status register3
AUD_STATUS4	0x0000027A	5	RO	AC-3 status register 4
AUD_MP_STATUS4	0x0000027A	8	RO	MPEG status register4
AUD_STATUS5	0x0000027B	8	RO	AC-3 status register 5
AUD_MP_STATUS5	0x0000027B	8	RO	MPEG status register5
AUD_STATUS6	0x0000027C	5	RO	AC-3 status register 6
AUD_STATUS7	0x0000027D	8	RO	AC-3 status register 7
AUD_SPDIF_LATENCY	0x0000027E	8	R/W	Latency value
AUD_SPDIF_DTDI	0x0000027F	8	R/W	IEC958 data type information

Table 6 Audio Decoder (AUD)

STi5518			Á	2 Register map
	SEN			
REGISTER	Address	Bits	Access	Description
BMDMA_SRCADDRESS	0x20026000	32	W	Block move DMA source address
BMDMA_DESTADDRESS	0x20026004	32	W	Block move DMA destination address
BMDMA_COUNT	0x20026008	16	W	Block move DMA counts
BMDMA_INTEN	0x2002600C	1	R/W	Block move DMA interrupt enable
BMDMA_STATUS	0x20026010	2	R	Block move DMA status
BMDMA_INTACK	0x20026014	32	W	Block move DMA interrupt acknowledge
BMDMA_ABORT	0x20026018	32	W	Block move DMA abort

Table 7 Block move DMA (BMDMA)

REGISTER	Address	Bits	Access	Description
CAC_CACHECONTROL0	0x00004000	8	R/W	Cacheability of 0xC0000000 to 0xC007FFFF
CAC_CACHECONTROL1	0x00004100	8	R/W	Cacheability of 0xC0200000 to 0xC027FFFF
CAC_CACHECONTROL2	0x00004200	8	R/W	Cacheability of 0x40000000 to 0x4007FFFF
CAC_CACHECONTROL3	0x00004300	4	R/W	Cacheability of 0x40000000 to 0x7FFFFFFF
CAC_DCACHENOTSRAM	0x00004400	1	W	Select data cache or extra SRAM
CAC_INVALIDATEDCACHE	0x00004500	1	W	Invalidate the data cache
CAC_FLUSHDCACHE	0x00004600	1	W	Flush the data cache
CAC_ENABLEICACHE	0x00004700	1	W	Enable the instruction cache
CAC_INVALIDATEICACHE	0x00004800	1	W	Invalidate the instruction cache
CAC_CACHESTATUS	0x00004900	7	R	Cache status
CAC_CACHECONTROLLOCK	0x00004A00	1	R/W	Lock the cache configuration

Table 8 Cache Control (CAC)

Register	Address	Bits	Access	Description
CKG_LPC_DIV	0x000001CE	8	R/W	Low-power clock divider
CKG_PLL_CNT	0x000001CF	6	R/W	Clock bypass PLL phase and PLL controller
CKG_CCAUD	0x000001D0	3	R/W	Clock controller for audio clock
CKG_DIVAUD	0x000001D1	4	R/W	Clock divider for audio clock
CKG_CCAUXDENC	0x000001D2	3	R/W	Auxiliary clock controller
CKG_DIVAUXDENC	0x000001D3	4	R/W	Denc Test clock divider
CKG_CCMCK	0x000001D4	3	R/W	Clock controller for MEMCLK
CKG_DIVMCK	0x000001D5	4	R/W	Clock divider for MEMCLK
CKG_SFREQSMC_SDIV	0x000001D6	3	R/W	SDIV reg: SMC frequency synthesizer
CKG_SFREQSMC_PE0	0x000001D7	8	R/W	PE reg (LSB): SMC frequency synthesizer
CKG_SFREQSMC_PE1	0x000001D8	8	R/W	PE reg (MSB): SMC frequency synthesizer
CKG_SFREQSMC_MD	0x000001D9	5	R/W	MD reg: SMC frequency synthesizer
CKG_SMC_CNT	0x000001DA	2	R/W	Smart card clock control

Table 9 Clock generator (CKG)

Register	Address	Bits	Access	Description
CKG_CCDENC	0x000001DC	3	R/W	Clock Control for the DENC Clock
CKG_CCST20	0x000001DD	3	R/W	Clock controller for ST20 clock
CKG_DIVST20	0x000001DE	4	R/W	Clock divider for ST20 clock
CKG_PREDIVPLL	0x000001DF	8	R/W	Pre-divider ratio set-up of the PLL
CKG_FBKDIVPLL	0x000001E0	8	R/W	Feedback divider ratio set-up of the PLL
CKG_POSTDIVPLL	0x000001E1	6	R/W	Post divider ratio and lock detector
CKG_PLLSETUP	0x000001E2	6	R/W	PLL start-up control and charge pump control
CKG_IDDQPAD_C	0x000001E3	4	R/W	Iddq mode, I/O hsync, vsync
CKG_SFREQAUD_SDIV	0x000001E4	3	R/W	SDIV reg: AUD frequency synthesizer
CKG_SFREQAUD_PE0	0x000001E5	8	R/W	PE reg (LSB): AUD frequency synthesizer
CKG_SFREQAUD_PE1	0x000001E6	8	R/W	PE reg (MSB): AUD frequency synthesizer
CKG_SFREQAUD_MD	0x000001E7	5	R/W	MD reg: AUD frequency synthesizer
CKG_AUD_CNT	0x000001E8	1	R/W	Sets audio frequency control through ST20 or MMDSP
CKG_SFREQAUX_SDIV	0x000001E9	3	R/W	SDIV reg: AUX frequency synthesizer
CKG_SFREQAUX_PE0	0x000001EA	8	R/W	PE reg (LSB): AUX frequency synthesizer
CKG_SFREQAUX_PE1	0x000001EB	8	R/W	PE reg (MSB): AUX frequency synthesizer
CKG_SFREQAUX_MD	0x000001EC	5	R/W	MD reg: AUX frequency synthesizer
CKG_AUX_CNT	0x000001ED	1	R/W	Enable AUX frequency synthesizer

Table 9 Clock generator (CKG)

Register	Address	Bits	Access	Description
DEN_CFG0	0x00000600	8	R/W	DENC configuration 0
DEN_CFG1	0x00000601	8	R/W	DENC configuration 1
DEN_CFG2	0x00000602	8	R/W	DENC configuration 2
DEN_CFG3	0x00000603	8	R/W	DENC configuration 3
DEN_CFG4	0x00000604	8	R/W	DENC configuration 4
DEN_CFG5	0x00000605	7	R/W	DENC configuration 5
DEN_CFG6	0x00000606	8	R/W	DENC configuration 6
DEN_CFG7	0x00000607	8	R/W	DENC configuration 7
DEN_CFG8	0x00000608	8	R/W	DENC configuration 8
DEN_STA	0x00000609	8	R	DENC Status
DEN_IDFS1	0x0000060A	8	R/W	DENC Increment for Digital Frequency Synthesizer
DEN_IDFS2	0x0000060B	8	R/W	DENC Increment for Digital Frequency Synthesizer
DEN_IDFS3	0x0000060C	8	R/W	DENC Increment for Digital Frequency Synthesizer
DEN_PDFS1	0x0000060D	8	R/W	Static phase offset for digital frequency synthesizer
DEN_PDFS2	0x0000060E	8	R/W	Static phase offset for digital frequency synthesizer
DEN_WSS1	0x0000060F	8	R/W	WSS data registers
DEN_WSS2	0x00000610	8	R/W	WSS data registers
DEN_DAC13	0x00000611	8	R/W	DAC1 and DAC3 multiplying factors
DEN_DAC45	0x00000612	8	R/W	DAC4 and DAC5 multiplying factors

Table 10 Digital encoder (DEN)

2 Register map

Register	Address	Bits	Access	Description
DEN_DAC66	0x00000613	8	R/W	DAC6 and C multiplying factors
DEN_LJMP1	0x00000615	8	R/W	Line jump
DEN LJMP2	0x00000616	8	R/W	Line jump
DEN_LJMP3	0x00000617	8	R/W	Line jump
DEN_CID	0x00000618	8	R	DENC identification number
DEN_VPS1	0x00000619	8	R/W	VPS data registers
DEN_VPS2	0x0000061A	8	R/W	VPS data registers
DEN_VPS3	0x0000061B	8	R/W	VPS data registers
DEN_VPS4	0x0000061C	8	R/W	VPS data registers
DEN_VPS5	0x0000061D	8	R/W	VPS data registers
DEN_VPS6	0x0000061E	8	R/W	VPS data registers
DEN_CGMS1	0x0000061F	4	R/W	CGMS data registers
DEN_CGMS2	0x00000620	8	R/W	CGMS data registers
DEN_CGMS3	0x00000621	8	R/W	CGMS data registers
DEN_TTX1	0x00000622	8	R/W	Teletext block definition
DEN_TTX2	0x00000623	8	R/W	Teletext block definition
DEN_TTX3	0x00000624	8	R/W	Teletext block definition
DEN_TTX4	0x00000625	8	R/W	Teletext block definition
DEN_TTXM	0x00000626	8	R/W	Teletext block mapping
DEN_CCF1	0x00000627	8	R/W	Closed caption characters/extended data for field 1
	0x00000628	8	R/W	Closed caption characters/extended data for field 1
DEN_CCF2	0x00000629	8	R/W	Closed caption characters/extended data for field 2
	0x0000062A	8	R/W	Closed caption characters/extended data for field 2
DEN_CLF1	0x0000062B	5	R/W	Closed caption/extended data line insert for field 1
DEN_CLF2	0x0000062C	5	R/W	Closed caption/extended data line insert for field 2
DEN_REG_4563	0x0000062D-3F			RESERVED
DEN_REG_64	0x00000640	3	R/W	TTX_conf
DEN_REG_65	0x00000641	8	R/W	DAC2MULT&TTXS
DEN_REG_6568	0x00000642-4			RESERVED
DEN_REG_69	0x00000645	8	R/W	Brightness
DEN_REG_70	0x00000646	8	R/W	Contrast
DEN_REG_71	0x00000647	8	R/W	Saturation
DEN_YCOUT	0x000001F9	1	R/W	Make YC data bus accessible on PIO4

Table 10 Digital encoder (DEN)

2 Register map				STi5518
Programmable CPU Memory	Interface (EMI)	TIP		
REGISTER	Address	Size	Read/ Write	Description
EMI_CONFIGDATA0BANK0	0x00002000	16	R/W	EMI bank 0 configuration data register 0 SDRAM, DRAM and peripheral memory formats
EMI_CONFIGDATA1BANK0	0x00002004	16	R/W	EMI bank 0 configuration data register 1 SDRAM, DRAM and peripheral memory formats
EMI_CONFIGDATA2BANK0	0x00002008	16	R/W	EMI bank 0 configuration data register 2 SDRAM, DRAM and peripheral memory formats
EMI_CONFIGDATA3BANK0	0x0000200C	16	R/W	EMI bank 0 configuration data register 3 SDRAM, DRAM and peripheral memory formats
EMI_CONFIGDATA0BANK1	0x00002010	16	R/W	EMI bank 1 configuration data register 0 SDRAM, DRAM and peripheral memory formats
EMI_CONFIGDATA1BANK1	0x00002014	16	R/W	EMI bank 1 configuration data register 1 SDRAM, DRAM and peripheral memory formats
EMI_CONFIGDATA2BANK1	0x00002018	16	R/W	EMI bank 1 configuration data register 2 SDRAM, DRAM and peripheral memory formats
EMI_CONFIGDATA3BANK1	0x0000201C	16	R/W	EMI bank 1 configuration data register 3 SDRAM, DRAM and peripheral memory formats
EMI_CONFIGDATA0BANK2	0x00002020	16	R/W	EMI bank 2 configuration data register 0 peripheral memory format
EMI_CONFIGDATA1BANK2	0x00002024	16	R/W	EMI bank 2 configuration data register 1 peripheral memory format
EMI_CONFIGDATA2BANK2	0x00002028	16	R/W	EMI bank 2 configuration data register 2 peripheral memory format
EMI_CONFIGDATA3BANK2	0x0000202C	16	R/W	EMI bank 2 configuration data register 3 peripheral memory format
EMI_CONFIGDATA0BANK3	0x00002030	16	R/W	EMI bank 3 configuration data register 0 peripheral memory format
EMI_CONFIGDATA1BANK3	0x00002034	16	R/W	EMI bank 3 configuration data register 1 peripheral memory format
EMI_CONFIGDATA2BANK3	0x00002038	16	R/W	EMI bank 3 configuration data register 2 peripheral memory format
EMI_CONFIGDATA3BANK3	0x0000203C	16	R/W	EMI bank 3 configuration data register 3 peripheral memory format
EMI_CONFIGLOCKBANK0	0x00002040	1	W	Write protection bit. When set, makes EMI_ConfigData0-3 for Bank0 read only.
EMI_CONFIGLOCKBANK1	0x00002044	1	W	Write protection bit. When set, makes EMI_ConfigData0-3 for Bank1 read only.
EMI_CONFIGLOCKBANK2	0x00002048	1	W	Write protection bit. When set, makes EMI_ConfigData0-3 for Bank2 read only.
EMI_CONFIGLOCKBANK3	0x0000204C	1	W	Write protection bit. When set, makes EMI_ConfigData0-3 for Bank3 read only.
EMI_CONFIGSTATUS	0x00002050	8	R	Status information
EMI_SDRAMMODEREG0	0x00002058	7	W	SDRAM Mode Register for either the case of one SDRAM bank or SDRAM in bank0, when two SDRAM banks.
EMI_SDRAMMODEREG1	0x0000205C	7	W	SDRAM Mode Register in the case of SDRAM in bank only when two SDRAM banks.

Table 11 Programmable CPU Memory Interface (EMI)

REGISTER	Address	Size	Read/ Write	Description
EMLDRAMINITIALIZE	0x00002060	1	W	Initialize any (S)DRAM in the system. In Slave Mode, the EMI3 should not initialize DRAM or SDRAM devices in the system, nor should it refresh any S/DRAM device. Therefore this register should never be written
EMI_CONFIGPADLOGIC	0x00002070	14	R/W	Padlogic configuration data register.

Table 11 Programmable CPU Memory Interface (EMI)

Register	Address	Bits	Access	Description
FEI_IK	0x20038000 + 00, 01, 02, 03, 04	8	W & R ¹	Intermediate Key
FEI_TWH	0x20038000, + 10, 11, 12, 13, 14	8	W0	Temporary Word High
FEI_TWL	0x20038000, + 18, 19, 1A, 1B, 1C	8	W0	Temporary Word Low
FEI_IKL	0x20038007	8	W0	Internal Key Load Register
FEI_IF	0x2003803F	6	W0	Internal Function
FEI_DEC_DAT	0x20038780	8	R/W	
FEI_DEC_IDX	0x20038784	6	WO	
FEI_DEC_STA	0x20038784	2	RO	
FEI_SUB	0x20038788	16	RO	
FEI_SFF	0x2003878C	8	RO	
FEI_GCF	0x20038790	16	RO	
FEI_SLG	0x20038798	16	R/W	
FEI_REV	0x2003879C	8	RO	Revision ID
FEI_ATAPI_CFG	0x200387A0	8	R/W	ATAPI interface configuration
FEI_SE_RST	0x20038800	1	WO	Reset Module
FEI_SE_SAC	0x20038804	1	R/W	Sector Address Check
FEI_SE_MOD	0x20038808	1	R/W	Sector Processor Mode
FEI_SE_CAPEN	0x2003880C	1	R/W	Capturing Enable
FEI_SE_EMR	0x20038810	1	R/W	Error Mode
FEI_SE_IR	0x20038814	8	R/W	Interrupt
FEI_SE_STAT	0x20038818	1	RO	Status
FEI_SE_CAP_H	0x20038820	8	R/W	Address of first sector /subcode block to be captured
FEI_SE_CAP_L	0x20038824	8	R/W	Address of first sector /subcode block to be captured
FEI_SE_LST_H	0x20038828	8	R/W	Address of (last + 1) sector /subcode block to be captured
FEI_SE_LST_L	0x2003882C	16	R/W	Address of (last + 1) sector/subcode block to be captured
FEI_SE_CUR_H	0x20038830	8	RO	Address of sector/subcode block actually entering the SP
FEI_SE_CUR_L	0x20038834	16	RO	Address of sector /subcode block entering the SP
FEI_SE_HE_H	0x20038860	16	R/W	CPR_MAI Bits of Current Sector actually entering the SP
FEI_SE_HE_M	0x20038864	16	R/W	CPR_MAI Bits of Current Sector actually entering the SP
FEI_SE_HE_L	0x20038868	16	R/W	CPR_MAI Bits of Current Sector actually entering the SP

Table 12 Front-end interface (FEI)

7170180A 13/275

 Read access in some conditions 2 Register map STi5518

Register	Address	Bits	Access	Description
INC_HANDLERWPTR0	0x20000000	32	R/W	Interrupt handler 0 work space pointer
INC_HANDLERWPTR1	0x20000004	32	R/W	Interrupt handler 1 work space pointer
INC_HANDLERWPTR2	0x20000008	32	R/W	Interrupt handler 2 work space pointer
INC_HANDLERWPTR3	0x2000000C	32	R/W	Interrupt handler 3 work space pointer
INC_HANDLERWPTR4	0x20000010	32	R/W	Interrupt handler 4 work space pointer
INC_HANDLERWPTR5	0x20000014	32	R/W	Interrupt handler 5 work space pointer
INC_HANDLERWPTR6	0x20000018	32	R/W	Interrupt handler 6 work space pointer
INC_HANDLERWPTR7	0x2000001C	32	R/W	Interrupt handler 7 work space pointer
INC_TRIGGERMODE0	0x20000040	3	R/W	Interrupt 0 trigger mode
INC_TRIGGERMODE1	0x20000044	3	R/W	Interrupt 1 trigger mode
INC_TRIGGERMODE2	0x20000048	3	R/W	Interrupt 2 trigger mode
INC_TRIGGERMODE3	0x2000004C	3	R/W	Interrupt trigger mode
INC_TRIGGERMODE4	0x20000050	3	R/W	Interrupt 3 trigger mode
INC_TRIGGERMODE5	0x20000054	3	R/W	Interrupt 4 trigger mode
INC_TRIGGERMODE6	0x20000058	3	R/W	Interrupt 5 trigger mode
INC_TRIGGERMODE7	0x2000005C	3	R/W	Interrupt 6 trigger mode
INC_MASK	0x200000C0	17	R/W	Interrupt enable mask
INC_SET_MASK	0x200000C4	17	W	Set a bit of the interrupt enable mask
INC_CLEAR_MASK	0x200000C8	17	W	Clear a bit of the interrupt enable mask
INC_PENDING	0x20000080	8	R/W	Interrupt pending
INC_SET_PENDING	0x20000084	8	W	Set a bit of the Pending register
INC_CLEAR_PENDING	0x20000088	8	W	Clear a bit of the Pending register
INC_EXEC	0x20000100	8	R/W	Interrupts executing
INC_SET_EXEC	0x20000104	8	W	Set a bit of the Exec register
INC_CLEAR_EXEC	0x20000108	8	W	Clear a bit of the Exec register

Table 13 Interrupt control (INC)

INC_INTOPRIORITY	0x20011000	3	R/W	Internal interrupt 0 priority
INC_INT1PRIORITY	0x20011004	3	R/W	Internal interrupt 1 priority
INC_INT2PRIORITY	0x20011008	3	R/W	Internal interrupt 2 priority
INC_INT3PRIORITY	0x2001100C	3	R/W	Internal interrupt 3 priority
INC_INT4PRIORITY	0x20011010	3	R/W	Internal interrupt 4 priority
INC_INT5PRIORITY	0x20011014	3	R/W	Internal interrupt 5 priority
INC_INT6PRIORITY	0x20011018	3	R/W	Internal interrupt 6 priority
INC_INT7PRIORITY	0x2001101C	3	R/W	Internal interrupt 7 priority
INC_INT8PRIORITY	0x20011020	3	R/W	Internal interrupt 8 priority

Table 14 Interrupt level control

STi5518 2 Register map

INC_INT9PRIORITY	0x20011024	3	R/W	Internal interrupt 9 priority
INC_INT10PRIORITY	0x20011028	3	R/W	Internal interrupt 10 priority
INC_INT11PRIORITY	0x2001102C	3	R/W	Internal interrupt 11 priority
INC_INT12PRIORITY	0x20011030	3	R/W	Internal interrupt 12 priority
INC_INT13PRIORITY	0x20011034	3	R/W	Internal interrupt 13 priority
INC_INT14PRIORITY	0x20011038	3	R/W	Internal interrupt 14 priority
INC_INT15PRIORITY	0x2001103C	3	R/W	Internal interrupt 15 priority
INC_INT16PRIORITY	0x20011040	3	R/W	Internal interrupt 16 priority
INC_INT17PRIORITY	0x20011044	3	R/W	Internal interrupt 17 priority
INC_INT18PRIORITY	0x20011048	3	R/W	Internal interrupt 18 priority
INC_INT19PRIORITY	0x2001104C	3	R/W	Internal interrupt 19 priority
INC_INT20PRIORITY	0x20011050	3	R/W	Internal interrupt 20 priority (reserved)
INC_INT21PRIORITY	0x20011054	3	R/W	Internal interrupt 21 priority (reserved)
INC_INT22PRIORITY	0x20011058	3	R/W	Internal interrupt 22 priority (reserved)
INC_INT23PRIORITY	0x2001105C	3	R/W	Internal interrupt 23 priority (reserved)
INC_INT24PRIORITY	0x20011060	3	R/W	External interrupt 0 priority
INC_INT25PRIORITY	0x20011064	3	R/W	External interrupt 1 priority
INC_INT26PRIORITY	0x20011068	3	R/W	External interrupt 2 priority
INC_INT27PRIORITY	0x2001106C	3	R/W	External interrupt 3 priority
INC_INT28PRIORITY	0x20011070	3	R/W	External interrupt 4 priority
INC_INT29PRIORITY	0x20011074	3	R/W	External interrupt 5 priority
INC_INT30PRIORITY	0x20011078	3	R/W	External interrupt 6 priority
INC_INPUTINTERRUPTS	0x2001107C	23	R	Input interrupt status
INC_SRC0_TRIGGERMODE	0x200110BC	3	R/W	Interrupt source 0 trigger mode
INC_SRC1_TRIGGERMODE	0x200110C0	3	R/W	Interrupt source 1 trigger mode
INC_SRC2_TRIGGERMODE	0x200110C4	3	R/W	Interrupt source 2 trigger mode
INC_SRC3_TRIGGERMODE	0x200110C8	3	R/W	Interrupt source 3 trigger mode
INC_SRC4_TRIGGERMODE	0x200110CC	3	R/W	Interrupt source 4 trigger mode
INC_SRC5_TRIGGERMODE	0x200110D0	3	R/W	Interrupt source 5 trigger mode
INC_SRC6_TRIGGERMODE	0x200110D4	3	R/W	Interrupt source 6 trigger mode
INC_SRC7_TRIGGERMODE	0x200110D8	3	R/W	Interrupt source 7 trigger mode
INC_SRC8_TRIGGERMODE	0x200110DC	3	R/W	Interrupt source 8 trigger mode
INC_SRC9_TRIGGERMODE	0x200110E0	3	R/W	Interrupt source 9 trigger mode
INC_SRC10_TRIGGERMODE	0x200110E4	3	R/W	Interrupt source 10 trigger mode
INC_SRC11_TRIGGERMODE	0x200110E8	3	R/W	Interrupt source 11 trigger mode
INC_SRC12_TRIGGERMODE	0x200110EC	3	R/W	Interrupt source 12 trigger mode
INC_SRC13_TRIGGERMODE	0x200110F0	3	R/W	Interrupt source 13 trigger mode
INC_SRC14_TRIGGERMODE	0x200110F4	3	R/W	Interrupt source 14 trigger mode
INC_SRC15_TRIGGERMODE	0x200110F8	3	R/W	Interrupt source 15 trigger mode
INC_SRC16_TRIGGERMODE	0x200110FC	3	R/W	Interrupt source 16 trigger mode
INC_SRC17_TRIGGERMODE	0x20011100	3	R/W	Interrupt source 17 trigger mode
INC_SRC18_TRIGGERMODE	0x20011104	3	R/W	Interrupt source 18 trigger mode
INC_SRC19_TRIGGERMODE	0x20011108	3	R/W	Interrupt source 19 trigger mode
	l			

Table 14 Interrupt level control

7170180A 15/275

INC_SRC20_TRIGGERMODE	0x2001110C	3	R/W	Interrupt source 20 trigger mode (reserved)
INC_SRC21_TRIGGERMODE	0x20011110	3	R/W	Interrupt source 21 trigger mode (reserved)
INC_SRC22_TRIGGERMODE	0x20011114	3	R/W	Interrupt source 22 trigger mode (reserved)
INC_SRC23_TRIGGERMODE	0x20011118	3	R/W	Interrupt source 23 trigger mode (reserved)
INC_SRC24_TRIGGERMODE	0x2001111C	3	R/W	External interrupt source 0 trigger mode
INC_SRC25_TRIGGERMODE	0x20011120	3	R/W	External interrupt source 1 trigger mode
INC_SRC26_TRIGGERMODE	0x20011124	3	R/W	External interrupt source 2 trigger mode
INC_SRC27_TRIGGERMODE	0x20011128	3	R/W	External interrupt source 3 trigger mode
INC_SRC28_TRIGGERMODE	0x2001112C	3	R/W	External interrupt source 4 trigger mode
INC_SRC29_TRIGGERMODE	0x20011130	3	R/W	External interrupt source 5 trigger mode
INC_SRC30_TRIGGERMODE	0x20011134	3	R/W	External interrupt source 6 trigger mode
INC_SRC_CLEAR_MASK	0x200111B4	31	W	Clear interrupt-source enable register
INC_SRC_SET_MASK	0x200111B8	31	W	Set interrupt-source enable mask
INC_SRC_MASK	0x200111BC	31	R/W	Interrupt-source enable mask
INC_SELNOTINV	0x200111C8	3	R/W	External interrupt pin is set to active high or active low
INC_EN_INT	0x200111CC	3	R/W	Enable external interrupt to wake-up the low-power controller
INC_SRC_STATUS	0x200111DC	31	R	Gives the latched status of an interrupt source
INC_SRC_CLEAR	0x200111EC	31	R	Clears the INC_SRC_STATUS register
1				

Table 14 Interrupt level control

Register	Address	Bits	Access	Description	
IRB_TX_PRE_SCALER_IR	0x00	8	W/R	Clock pre-scaler selection	RC
IRB_TX_SUB_CARRIER_IR	0x04	16	W/R	sub-carrier freq. programming	Transmit Interface
IRB_TX_SYM_TIME_IR ¹	0x08	16	W	symbol time programming	registers
IRB_TX_ON_TIME_IR ¹	0x0C	16	W	symbol on time programming	
IRB_TX_INT_EN_IR	0x10	3	W/R	Transmit Interrupt enable register	
IRB_TX_INT_STATUS_IR	0x14	4	R	Transmit Interrupt status register	
IRB_TX_EN_IR	0x18	1	W/R	RC transmit enable register	
IRB_TX_CLR_UNDERRUN_IR	0x1C	1	W	Clears the underrun status	
IRB_RX_ON_TIME_IR ¹	0x40	16	R	Received pulse time capture	RC .
IRB_RX_SYM_TIME_IR ¹	0x44	16	R	Received symbol time capture	Receive Interface
IRB_RX_INT_EN_IR	0x48	4	W/R	Receive Interrupt enable register	registers
IRB_RX_INT_STATUS_IR	0x4C	5	R	Receive Interrupt status register	for Infrared
IRB_RX_EN_IR	0x50	1	W/R	RC receive enable register	signals
IRB_RX_MAX_SYM_TIME_IR	0x54	16	W/R	Maximum RC symbol time register	
IRB_RX_CLR_OVERRUN_IR	0x58	1	W	Clears the overrun status	
IRB_RX_NOISE_SUPPRESS_WIDTH_IR	0x5C	8	W/R	Reserved	
IRB_RC_IRDA_CONTROL	0x60	1	W/R	Reserved	

Table 15 Infra red blaster (IRB)

2 Register map

Register	Address	Bits	Access	Description	
IRB_RX_SAMPLING_RATE_ COMMON	0x64	4	W/R	Sampling frequency division for UHF and IR frequencies.	Common to both RC and UHF receivers
IRB_RX_ON_TIME_UHF1	0x80	16	R	Received pulse time capture	RC Bassins
IRB_RX_SYM_TIME_UHF ¹	0x84	16	R	Received symbol time capture	Receive Interface
IRB_RX_INT_EN_UHF	0x88	4	W/R	Receive Interrupt enable register	registers
IRB_RX_INT_STATUS_UHF	0x8C	5	R	Receive Interrupt status register	for UHF signals
IRB_RX_EN_UHF	0x90	1	W/R	RC receive enable register	
IRB_RX_MAX_SYM_TIME_UHF	0x94	16	W/R	Maximum RC symbol time register	
IRB_RX_CLR_OVERRUN_UHF	0x98	1	W	Clears the overrun status	
IRB_RX_NOISE_SUPPRESS_ WIDTH_UHF	0x9C	8	W/R	Noise suppression width	

Table 15 Infra red blaster (IRB)

1. These locations have a quadruple buffer (i.e. a FIFO of length 4 words).

STi5518

Name	Address	Bits	Access	Description
LNK_STREAM_CONF_1	0x20038580	32	R/W	Link configuration 1
LNK_STREAM_CONF_2	0x20038600	32	R/W	Link configuration 2
LNK_STREAM_CONF_3	0x20038680	32	R/W	Link configuration 3
LNK_STREAM_ENn	0x20038F00 +4n	1	R/W	Stream n enable
LNK_STAT	0x20038F80	21	R/W	Status register
LNK_STAT_FIFO	0x20038F84	32	R	FIFO status word
LNK_PACKET_LENGTH	0x20038F88	12	R/W	Number of bytes per packet
LNK_TIME_OUT	0x20038F8C	6	R/W	AR threshold to reset the block
LNK_MODE	0x20038F90	9	R/W	Mode
LNK_PCR_STREAM	0x20038F94	6	R/W	PCR stream
LNK_AF1-0	0x20038F98	32	R	Adaptation field bytes 0 to 3
LNK_AF1-0	0x20038F9C	32	R	Adaptation field bytes 4 to 7
LNK_V_PTS	0x20038FA0	32	R	Video time stamp
LNK_A_PTS	0x20038FA4	32	R	Audio time stamp
LNK_PCR	0x20038FA8	32	R	PCR
LNK_PCR_EXT	0x20038FAC	9	R	PCR extension
LNK_AR_SIZE	0x20038FB0	6	R/W	AR size
LNK_SDAV_CONF	0x20038FB4	27	R/W	SDAV configuration
LNK_SDAV_DMA_EN	0x20038FB8	6	R/W	SDAV DMA enable
LNK_SDAV_DATA	0x20038FBC	32	R/W	SDAV data
LNK_EN_LINK	0x20038FC0	1	R/W	Enable link
LNK_EXTRA_BITS	0x20038FC8	13	R/W	Extra bits
LNK_HDD_ADDSTOP	0x20038904	16	R/W	Write limit address

Table 16 Link (LNK)

Name	Address	Bits	Access	Description
LNK_HDD_ADDRHIGH	0x2003890C	9	R/W	High part of the incoming address
LNK_HDD_ADDRBANK	0x20038908	4	R/W	High part of the incoming address
LNK_HDD_BUESIZE	0x20038900	13	R/W	Buffer size

Table 16 Link (LNK)

Register	Address	Bits	Access	Description
LPM_TIMER[31:0]	0x20000400	32	R/W	Low power timer least significant word
LPM_TIMER[32:63]	0x20000404	32	R/W	Low power timer most significant word
LPM_TIMERSTART	0x20000408	1	W	Low power timer start
LPM_ALARM[31:0]	0x20000410	32	R/W	Low power alarm least significant word
LPM_ALARM[32:39]	0x20000414	8	R/W	Low power alarm most significant word
LPM_ALARMSTART	0x20000418	1	W	Low power alarm start
LPM_SYSPLL	0x20000420	2	R/W	System clock PLL
LPM_SYSRATIO	0x20000500	6	R	System clock ratio
LPM_WDENABLE	0x20000510	1	R/W	Watchdog enable
LPM_WDFLAG	0x20000514	1	R	Watchdog flag

Table 17 Low Power Module (LPM)

Register	Address	Bits	Access	Notes
MOD_CONTROL	0x20027000	2	R/W	MAFEIF control
MOD_STATUS	0x20027004	6	R	MAFEIF status
MOD_INT_ENABLE	0x20027008	3	R/W	Interrupt enable
MOD_ACK	0x2002700C	8	W	Acknowledge
MOD_BUFFER_SIZE	0x20027010	7	R/W	Buffer size
MOD_MAFE_CTRL	0x20027014	8	W	MAFE control
MOD_MAFE_STATUS	0x20027018	8	R	MAFE status
MOD_RECEIVE0_POINTER	0x20027020	30	R/W	Receive_memory_buffer_0 start address
MOD_RECEIVE1_POINTER	0x20027024	30	R/W	Receive_memory_buffer_1 start address
MOD_TRANSMIT0_POINTE R	0x20027028	30	R/W	Transmit_memory_buffer_0 start address
MOD_TRANSMIT1_POINTE R	0x2002702C	30	R/W	Transmit_memory_buffer_1 start address

Table 18 Modem analog front-end interface (MOD)

Register	Address	Bits	Access	Notes
MPEGDMA0_BURSTSIZE	0x20024000	5	W	The number of bytes to be transferred in one burst
MPEGDMA0_HOLDOFF	0x20024004	5	W	Holdoff for MPEG decoder: range 0 to 31, where 0=0 delay cycles

Table 19 MPEGDMA0 (MPEGDMA)

Register	Address	Bits	Access	Notes
MPEGDMA0_ABORT	0x20024008	1	W	Abort all operation
MPEGDMA0_WHICHDEC	0x2002400C	2	W	DMA destination pointer
MPEGDMA0_STATUS	0x20024010	2	R	Interrupt status register
MPEGDMA0_INTACK	0x20024014	1	W	Interrupt acknowledge register
MPEGDMA0_SRCADD	0x20024018	32	W	DMA source pointer
MPEGDMA0_CNTRL	0x2002401C	2	R/W	Interrupt control register
MPEGDMA0_BLSIZE	0x20024020	16	W	Data block dimension to be transferred

Table 19 MPEGDMA0 (MPEGDMA)

Register	Address	Bits	Access	Notes
MPEGDMA1_BURSTSIZE	0x20025000	5	W	The number of bytes to be transferred in one burst
MPEGDMA1_HOLDOFF	0x20025004	5	W	Holdoff for MPEG decoder: range 0 to 31, where 0=0 delay cycles
MPEGDMA1_ABORT	0x20025008	1	W	Abort all operation
MPEGDMA1_WHICHDEC	0x2002500C	2	W	DMA destination pointer
MPEGDMA1_STATUS	0x20025010	2	R	Interrupt status register
MPEGDMA1_INTACK	0x20025014	1	W	Interrupt acknowledge register
MPEGDMA1_SRCADD	0x20025018	32	W	DMA source pointer
MPEGDMA1_CNTRL	0x2002501C	2	R/W	Interrupt control register
MPEGDMA1_BLSIZE	0x20025020	16	W	Data block dimension to be transferred

Table 20 MPEGDMA1 (MPEGDMA)

Register	Address	Bits	Access	Description
OGT_CTL	0x00000040	7	R/W	Control register
OGT_LUT	0x00000041	8	R/W	Main look-up table
OGT_LUT_H1	0x00000042	8	R/W	Highlight 1 look-up table
OGT_LUT_H2	0x00000043	8	R/W	Highlight 2 look-up table
OGT_XDI	0x00000044	2	R/W	Active area horizontal position offset
OGT_XDI	0x00000045	8	R/W	Active area horizontal position offset
OGT_YDI	0x00000046	2	R/W	Active area vertical position offset
OGT_YDI	0x00000047	8	R/W	Active area vertical position offset
OGT_HL2XO	0x00000048	2	R/W	Active area vertical position offset
OGT_HL2XO	0x00000049	8	R/W	Active area vertical position offset
OGT_HL2YO	0x0000004A	2	R/W	Highlight 2 area, start Y
OGT_HL2YO	0x0000004B	8	R/W	Highlight 2 area, start Y
OGT_HL2XI	0x0000004C	2	R/W	Highlight 2 area, end X
OGT_HL2XI	0x0000004D	8	R/W	Highlight 2 area, end X
OGT_HL2YI	0x0000004E	2	R/W	Highlight 2 area, end Y
OGT_HL2YI	0x0000004F	8	R/W	Highlight 2 area, end Y

Register		Address	Bits	Access	Description
OGT_STAT		0x00000050	2	R	Status register

Table 21 Overlay graphics and text (OGT)

Register	Address	Bits	Access	Description
OSD_ACT	0x0000003E	7	R/W	Active Signal
OSD_CFG	0x00000091	3	R/W	OSD Configuration
OSD_BDW	0x00000092	6	R/W	OSD Boundary Weight
OSD_OBP	0x0000002B	14	Serial R/W	OSD Bottom Field Pointer
OSD_OTP	0x0000002A	14	Serial R/W	OSD Top Field Pointer

Table 22 On-screen display

Register	Address	Bits	Access	Description
PES_CF1	0x00000040	7	R/W	PES Audio Decoding Control
PES_CF2	0x00000041	8	R/W	PES Video Parser Control
PES_TM1	0x00000042	8	RO	DSM Trick Mode
PES_TM2	0x00000043	2	RO	PES Parser Status
PES_TS [7:0]	0x00000049	8	RO	PES Time Stamps
PES_TS [15:8]	0x0000004A	8	RO	PES Time Stamps
PES_TS [23:16]	0x0000004B	8	RO	PES Time Stamps
PES_TS [31:24]	0x0000004C	8	RO	PES Time Stamps
PES_TS [32:TSA]	0x0000004D	2	RO	PES Time Stamps

Table 23 PES Parser (PES)

REGISTER	Address	Bits	Access	Description
PIO_P0OUT	0x2000C000	8	R/W	PIO 0 output
PIO_SET_P0OUT	0x2000C004	8	W	Set bits of P0Out
PIO_CLEAR_P0OUT	0x2000C008	8	W	Clear bits of P0Out
PIO_P0IN	0x2000C010	8	R	PIO 0 input
PIO_P0C0	0x2000C020	8	R/W	PIO 0 configuration 0
PIO_SET_P0C0	0x2000C024	8	W	Set bits of P0C0
PIO_CLEAR_P0C0	0x2000C028	8	W	Clear bits of P0C0
PIO_P0C1	0x2000C030	8	R/W	PIO 0 configuration 1
PIO_SET_P0C1	0x2000C034	8	W	Set bits of P0C1
PIO_CLEAR_P0C1	0x2000C038	8	W	Clear bits of P0C1
PIO_P0C2	0x2000C040	8	R/W	PIO 0 configuration 2
PIO_SET_P0C2	0x2000C044	8	W	Set bits of P0C2
PIO_CLEAR_P0C2	0x2000C048	8	W	Clear bits of P0C2
PIO_P0COMP	0x2000C050	8	R/W	PIO 0 input comparison

Table 24 Parallel I/O 0 (PIO)

REGISTER	Address	Bits	Access	Description
PIO_SET_P0COMP	0x2000C054	8	W	Set bits of P0Comp
PIO_CLEAR_POCOMP	0x2000C058	8	W	Clear bits of P0Comp.
PIO_POMASK	0x2000C060	8	R/W	PIO 0 input comparison mask
PIO_SET_POMASK	0x2000C064	8	W	Set bits of P0Mask
PIO_CLEAR_P0MASK	0x2000C068	8	W	Clear bits of P0Mask

Table 24 Parallel I/O 0 (PIO)

REGISTER	Address	Bits	Access	Description
PIO_P1OUT	0x2000D000	8	R/W	PIO 1 output
PIO_SET_P1OUT	0x2000D004	8	W	Set bits of P1Out
PIO_CLEAR_P1OUT	0x2000D008	8	W	Clear bits of P1Out
PIO_P1IN	0x2000D010	8	R	PIO 1 input
PIO_P1C0	0x2000D020	8	R/W	PIO 1 configuration 0
PIO_SET_P1C0	0x2000D024	8	W	Set bits of P1C0
PIO_CLEAR_P1C0	0x2000D028	8	W	Clear bits of P1C0
PIO_P1C1	0x2000D030	8	R/W	PIO 1 configuration 1
PIO_SET_P1C1	0x2000D034	8	W	Set bits of P1C1
PIO_CLEAR_P1C1	0x2000D038	8	W	Clear bits of P1C1
PIO_P1C2	0x2000D040	8	R/W	PIO 1 configuration 2
PIO_SET_P1C2	0x2000D044	8	W	Set bits of P1C2
PIO_CLEAR_P1C2	0x2000D048	8	W	Clear bits of P1C2
PIO_P1COMP	0x2000D050	8	R/W	PIO 1 input comparison
PIO_SET_P1COMP	0x2000D054	8	W	Set bits of P1Comp
PIO_CLEAR_P1COMP	0x2000D058	8	W	Clear bits of P1Comp
PIO_P1MASK	0x2000D060	8	R/W	PIO 1 input comparison mask
PIO_SET_P1MASK	0x2000D064	8	W	Set bits of P1Mask
PIO_CLEAR_P1MASK	0x2000D068	8	W	Clear bits of P1Mask

Table 25 Parallel I/O 1 (PIO)

REGISTER	Address	Bits	Access	Description
PIO_P2OUT	0x2000E000	8	R/W	PIO 2 output
PIO_SET_P2OUT	0x2000E004	8	W	Set bits of P2Out
PIO_CLEAR_P2OUT	0x2000E008	8	W	Clear bits of P2Out
PIO_P2IN	0x2000E010	8	R	PIO 2 input
PIO_P2C0	0x2000E020	8	R/W	PIO 2 configuration 0
PIO_SET_P2C0	0x2000E024	8	W	Set bits of P2C0
PIO_CLEAR_P2C0	0x2000E028	8	W	Clear bits of P2C0
PIO_P2C1	0x2000E030	8	R/W	PIO 2 configuration 1

Table 26 Parallel I/O 2 (PIO)

REGISTER	Address	Bits	Access	Description
PIO_SET_P2C1	0x2000E034	8	W	Set bits of P2C1
PIO_CLEAR_P2C1	0x2000E038	8	W	Clear bits of P2C1
PIO_P2O2	0x2000E040	8	R/W	PIO 2 configuration 2
PIO_SET_P2C2	0x2000E044	8	W	Set bits of P2C2
PIO_CLEAR_P2C2	0x2000E048	8	W	Clear bits of P2C2
PIO_P2COMP	0x2000E050	8	R/W	PIO 2 input comparison
PIO_SET_P2COMP	0x2000E054	8	W	Set bits of P2Comp
PIO_CLEAR_P2COMP	0x2000E058	8	W	Clear bits of P2Comp
PIO_P2MASK	0x2000E060	8	R/W	PIO 2 input comparison mask
PIO_SET_P2MASK	0x2000E064	8	W	Set bits of P2Mask
PIO_CLEAR_P2MASK	0x2000E068	8	W	Clear bits of P2Mask

Table 26 Parallel I/O 2 (PIO)

REGISTER	Address	Bits	Access	Description
PIO_P3OUT	0x2000F000	8	R/W	PIO 3 output
PIO_SET_P3OUT	0x2000F004	8	W	Set bits of P3Out
PIO_CLEAR_P3OUT	0x2000F008	8	W	Clear bits of P3Out
PIO_P3IN	0x2000F010	8	R	PIO 3 input
PIO_P3C0	0x2000F020	8	R/W	PIO 3 configuration 0
PIO_SET_P3C0	0x2000F024	8	W	Set bits of P3C0
PIO_CLEAR_P3C0	0x2000F028	8	W	Clear bits of P3C0
PIO_P3C1	0x2000F030	8	R/W	PIO 3 configuration 1
PIO_SET_P3C1	0x2000F034	8	W	Set bits of P3C1
PIO_CLEAR_P3C1	0x2000F038	8	W	Clear bits of P3C1
PIO_P3C2	0x2000F040	8	R/W	PIO 3 configuration 2
PIO_SET_P3C2	0x2000F044	8	W	Set bits of P3C2
PIO_CLEAR_P3C2	0x2000F048	8	W	Clear bits of P3C2
PIO_P3COMP	0x2000F050	8	R/W	PIO 3 input comparison
PIO_SET_P3COMP	0x2000F054	8	W	Set bits of P3Comp
PIO_CLEAR_P3COMP	0x2000F058	8	W	Clear bits of P3Comp
PIO_P3MASK	0x2000F060	8	R/W	PIO 3 input comparison mask
PIO_SET_P3MASK	0x2000F064	8	W	Set bits of P3Mask
PIO_CLEAR_P3MASK	0x2000F068	8	W	Clear bits of P3Mask

Table 27 Parallel I/O 3 (PIO)

REGISTER	Address	Bits	Access	Description
PIO_P4OUT	0x20010000	8	R/W	PIO 4 output
PIO_SET_P4OUT	0x20010004	8	W	Set bits of P4Out

Table 28 Parallel I/O 4 (PIO)

REGISTER	Address	Bits	Access	Description
PIO_CLEAR_P4OUT	0x20010008	8	W	Clear bits of P4Out
PIO_P4IN	0x20010010	8	R	PIO 4 input
PIO_P4O0	0x20010020	8	R/W	PIO 4 configuration 0
PIO_SET_P4C0	0x20010024	8	W	Set bits of P4C0
PIO_CLEAR_P4C0	0x20010028	8	W	Clear bits of P4C0
PIO_P4C1	0x20010030	8	R/W	PIO 4 configuration 1
PIO_SET_P4C1	0x20010034	8	W	Set bits of P4C1
PIO_CLEAR_P4C1	0x20010038	8	W	Clear bits of P4C1
PIO_P4C2	0x20010040	8	R/W	PIO 4 configuration 2
PIO_SET_P4C2	0x20010044	8	W	Set bits of P4C2
PIO_CLEAR_P4C2	0x20010048	8	W	Clear bits of P4C2
PIO_P4COMP	0x20010050	8	R/W	PIO 4 input comparison
PIO_SET_P4COMP	0x20010054	8	W	Set bits of P4Comp
PIO_CLEAR_P4COMP	0x20010058	8	W	Clear bits of P4Comp
PIO_P4MASK	0x20010060	8	R/W	PIO 4 input comparison mask
PIO_SET_P4MASK	0x20010064	8	W	Set bits of P4Mask
PIO_CLEAR_P4MASK	0x20010068	8	W	Clear bits of P4Mask

Table 28 Parallel I/O 4 (PIO)

REGISTER	Address	Bits	Access	Description
PIO_P5OUT	0x2000D000	8	R/W	PIO5 output
PIO_SET_P5OUT	0x2000D004	8	W	Set bits of P5Out
PIO_CLEAR_P5OUT	0x2000D008	8	W	Clear bits of P5Out
PIO_P5IN	0x2000D010	8	R	PIO 5 input
PIO_P5C0	0x2000D020	8	R/W	PIO 5 configuration 0
PIO_SET_P5C0	0x2000D024	8	W	Set bits of P5C0
PIO_CLEAR_P5C0	0x2000D028	8	W	Clear bits of P5C0
PIO_P5C1	0x2000D030	8	R/W	PIO 5 configuration 1
PIO_SET_P5C1	0x2000D034	8	W	Set bits of P5C1
PIO_CLEAR_P5C1	0x2000D038	8	W	Clear bits of P5C1
PIO_P5C2	0x2000D040	8	R/W	PIO 5 configuration 2
PIO_SET_P5C2	0x2000D044	8	W	Set bits of P5C2
PIO_CLEAR_P5C2	0x2000D048	8	W	Clear bits of P5C2
PIO_P5COMP	0x2000D050	8	R/W	PIO 5 input comparison
PIO_SET_P5COMP	0x2000D054	8	W	Set bits of P5Comp
PIO_CLEAR_P5COMP	0x2000D058	8	W	Clear bits of P5Comp
PIO_P5MASK	0x2000D060	8	R/W	PIO 5 input comparison mask
PIO_SET_P5MASK	0x2000D064	8	W	Set bits of P5Mask
PIO_CLEAR_P5MASK	0x2000D068	8	W	Clear bits of P5Mask

Table 29 Parallel I/O 5 (PIO)

7170180A 23/275

2 Register map			$\sqrt{1}$	STi5518
	DEN	J	I A	
REGISTER	Address	Bits	Access	Description
PWM_0VAL	0x2000B000	9	R/W	PWM 0 pulse width
PWM_1VAL	0x2000B004	9	R/W	PWM 1 pulse width
PWM_2VAL	0x2000B008	9	R/W	PWM 2 pulse width
PWM_3VAL	0x2000B00C	9	R/W	PWM 3 pulse width
PWM_INTENABLE	0x2000B054	9	R/W	PWM interrupt enable
PWM_INTSTATUS	0x2000B058	9	R	PWM interrupt status
PWM_INTACK	0x2000B05C	9	W	PWM interrupt acknowledge
PWM_CONTROL	0x2000B050	11	R/W	PWM control register
PWM_COUNT	0x2000B060	8	R/W	PWM output counter
PWM_0CAPTUREEDGE	0x2000B030	2	R/W	PWM 0 capture event definition
PWM_1CAPTUREEDGE	0x2000B034	2	R/W	PWM 1 capture event definition
PWM_2CAPTUREEDGE	0x2000B038	2	R/W	PWM 2 capture event definition
PWM_3CAPTUREEDGE	0x2000B03C	2	R/W	PWM 3 capture event definition
PWM_0CAPTUREVAL	0x2000B010	32	R	PWM 0 capture value
PWM_1CAPTUREVAL	0x2000B014	32	R	PWM 1 capture value
PWM_2CAPTUREVAL	0x2000B018	32	R	PWM 2 capture value
PWM_3CAPTUREVAL	0x2000B01C	32	R	PWM 3 capture value
PWM_0COMPAREVAL	0x2000B020	32	R/W	PWM 0 compare value
PWM_1COMPAREVAL	0x2000B024	32	R/W	PWM 1 compare value
PWM_2COMPAREVAL	0x2000B028	32	R/W	PWM 2 compare value
PWM_3COMPAREVAL	0x2000B02C	32	R/W	PWM 3 compare value
PWM_0COMPAREOUTVAL	0x2000B040	1	R/W	PWM 0 compare output value
PWM_1COMPAREOUTVAL	0x2000B044	1	R/W	PWM 1 compare output value
PWM_2COMPAREOUTVAL	0x2000B048	1	R/W	PWM 2 compare output value
PWM_3COMPAREOUTVAL	0x2000B04C	1	R/W	PWM 3 compare output value
PWM_CAPTURECOUNT	0x2000B064	32	R/W	PWM capture/compare counter

Table 30 PWM and counter module (PWM)

REGISTER	Address	Bits	Access	Description
SCI_SC0CLKVAL	0x20007000	5	W	SmartCard 0 clock
SCI_SC0CLKCON	0x20007004	2	W	SmartCard 0 clock control

Table 31 SmartCard Interface 0 (SCI)

REGISTER	Address	Bits	Access	Description
SCI_SC1CLKVAL	0x20008000	5	W	SmartCard 1 clock
SCI_SC1CLKCON	0x20008004	2	W	SmartCard 1 clock control

Table 32 SmartCard Interface 1 (SCI)

STi5518				2 Register map
3113316	TOEN			Z Kegistei iliap
	EN	1 T		
	-11)			
Register	Address	Bits	Access	Description
SPD_CTL1	0x00000400	6	R/W	Control Register 1
SPD_SPR	0x00000401	1	R/W	Soft Reset
SPD_CTL2	0x00000402	2	R/W	Control Register 2
SPD_LUT	0x00000403	8	W	Main Lookup Table
SPD_XD0 [9:8]	0x00000404	2	R/W	Sub-picture X Offset
SPD_XD0 [7:0]	0x00000405	8	R/W	Sub-picture X Offset
SPD_YD0_1 [9:8]	0x00000406	2	R/W	Sub-picture Y Offset
SPD_YD0_2 [7:0]	0x00000407	8	R/W	Sub-picture Y Offset
SPD_HLSX [9:8]	0x0000040C	2	R/W	Highlight Region Start X
SPD_HLSX [7:0]	0x0000040D	8	R/W	Highlight Region Start X
SPD_HLSY [9:8]	0x0000040E	2	R/W	Highlight Region Start Y
SPD_HLSY [7:0]	0x0000040F	8	R/W	Highlight Region Start Y
SPD_HLEX [9:8]	0x00000410	2	R/W	Highlight Region End X
SPD_HLEX [7:0]	0x00000411	8	R/W	Highlight Region End X
SPD_HLEY [9:8]	0x00000412	2	R/W	Highlight Region End Y
SPD_HLEY [7:0]	0x00000413	8	R/W	Highlight Region End Y
SPD_HCOL	0x00000414	8	R/W	Highlight Region Color
SPD_HCOL	0x00000415	8	R/W	Highlight Region Color
SPD_HCN	0x00000416	8	R/W	Highlight Region Contrast
SPD_HCN	0x00000417	8	R/W	Highlight Region Contrast
SPD_SXD0 [9:8]	0x00000424	2	R/W	Sub-picture Display Area
SPD_SXD0 [7:0]	0x00000425	8	R/W	Sub-picture Display Area
SPD_SYD0 [9:8]	0x00000426	2	R/W	Sub-picture Display Area
SPD_SYD0 [7:0]	0x00000427	8	R/W	Sub-picture Display Area
SPD_SXD1 [9:8]	0x00000428	2	R/W	Sub-picture Display Area
SPD_SXD1 [7:0]	0x00000429	8	R/W	Sub-picture Display Area
SPD_SYD1 [9:8]	0x0000042A	2	R/W	Sub-picture Display Area
SPD_SYD1 [7:0]	0x0000042B	8	R/W	Sub-picture Display Area

Table 33 Sub-picture decoder (SPD)

Register	Address	Bits	Access	Description
SSC_0_Con	0x2000900C	11	R/W	SSC 0 control
SSC_0_I2C	0x20009018	5	R/W	SSC 0 I2C control
SSC_0_TBuf	0x20009004	16	W	SSC 0 transmit buffer
SSC_0_RBuf	0x20009008	16	R	SSC 0 receive buffer
SSC_0_SIAd	0x2000901C	16	W	SSC 0 slave address
SSC_0_BRG	0x20009000	10	R/W	SSC 0 baud rate generation
SSC_0_Stat	0x20009014	10	R	SSC 0 status
SSC_0_IEn	0x20009010	9	R/W	SSC 0 interrupt enable

Table 34 Synchronous serial controller 0 (SSC)

7170180A 25/275

2 Register map			Á	STi5518
	DEN			
REGISTER	Address	Bits	Access	Description
SSC_1_CON	0x2000A00C	11	R/W	SSC 1 control
SSC_1_I2C	0x2000A018	5	R/W	SSC 1 I ² C control
SSC_1_TBUF	0x2000A004	16	W	SSC 1 transmit buffer
SSC_1_RBUF	0x2000A008	16	R	SSC 1 receive buffer
SSC_1_SLAD	0x2000A01C	16	W	SSC 1 slave address
SSC_1_BRG	0x2000A000	10	R/W	SSC 1 baud rate generation
SSC_1_STAT	0x2000A014	10	R	SSC 1 status
SSC_1_IEN	0x2000A010	9	R/W	SSC 1 interrupt enable

Table 35 Synchronous serial controller 1 (SSC)

REGISTER	Address	Bits	Access	Description
TTXT_ABORT	0x2000A324	1	W	Teletext abort
TTXT_ACKODDEVEN	0x2000A320	1	W	Teletext acknowledge odd or even
TTXT_DMAADDRESS	0x2000A300	32	R/W	Teletext DMA address
TTXT_DMACOUNT	0x2000A304	11	R/W	Teletext DMA count
TTXT_INTENABLE	0x2000A31C	3	R/W	Teletext interrupt enable
TTXT_INTSTATUS	0x2000A318	3	R	Teletext interrupt status
TTXT_OUTDELAY	0x2000A308	9	R/W	Teletext output delay

Table 36 Teletext (Ttxt)

Register	Address	Bits	Access	Description
USD_BMS[15:8]	0x00000009	8	R/W	Block move size
USD_BMS[7:0]	0x00000009	8	R/W	Block move size
USD_BRP[19:16]	0x00000088	4	R/W	Memory Read Pointer
USD_BRP[15:8]	0x00000089	8	R/W	Memory Read Pointer
USD_BRP[7:0]	0x0000008A	8	R/W	Memory Read Pointer
USD_BWP[19:16]	0x0000008C	4	R/W	Memory write pointer
USD_BWP[15:8]	0x0000008D	8	R/W	Memory write pointer
USD_BWP[7:0]	0x0000008E	8	R/W	Memory write pointer
USD_BSK[19:16]	0x000000A4	8	R/W	Block skip
USD_BSK[15:8]	0x000000A5	8	R/W	Block skip
USD_BSK[7:0]	0x000000A6	8	R/W	Block skip

Table 37 Block move (USD)

STi5518			1	2 Register map
0110010	IDEN	1		2 Register map
	-INEL			
Register	Address	Bits	Access	Description
VID_CFG_MCF	0x00000000	7	R/W	Memory refresh interval
VID_CFG_CCF	0x0000001	7	R/W	Chip configuration
VID_CTL	0x00000002	5	R/W	Decoding Control
VID_TIS	0x0000003	6	W	Task Instruction
VID_PFH	0x00000004	8	R/W	Picture F-parameters Horizontal
VID_PFV	0x00000005	8	R/W	Picture F-parameters Vertical
VID_PPR1	0x00000006	7	R/W	Picture Parameters 1
VID_PPR2	0x00000007	7	R/W	Picture Parameters 2
VID_DFP [14:8]	0x000000C	7	R/W	Displayed Luma Frame Pointer
VID_DFP [7:0]	0x0000000D	8	R/W	Displayed Luma Frame Pointer
VID_RFP[14:8]	0x0000000B	7	R/W	Reconstructed Frame Pointer
VID_RFP[7:0]	0x0000000E	8	R/W	Reconstructed Frame Pointer
VID_RFP [13:8]	0x0000001	6	R/W	Forward Luma Frame Pointer
VID_FFP [7:0]	0x00000011	8	R/W	Forward Luma Frame Pointer
VID_BFP [14:8]	0x00000012		R/W	Backward Frame Pointer
VID_BFP [7:0]	0x00000013	8	R/W	Backward Frame Pointer
VID_VBG[14:8]	0x00000014	7	R/W	Start of Video Bit Buffer
VID_VBG[7:0]	0x00000015	8	R/W	Start of Video Bit Buffer
VID_VBL[14:8]	0x00000016	7	R	Video Bit Buffer Level
VID_VBL[7:0]	0x00000017	8	R	Video Bit Buffer Level
VID_VBS[14:8]	0x0000018	7	R/W	Video Bit Buffer Stop
VID_VBS[7:0]	0x0000019	8	R/W	Video Bit Buffer Stop
VID_VBT[14:8]	0x000001A	7	R/W	Video Bit Buffer Threshold
VID_VBT[7:0]	0x0000001B	8	R/W	Video Bit Buffer Threshold
VID_ABG [14:8]	0x000001C	7	R/W	Start of audio bit buffer
VID_ABG [7:0]	0x0000001D	8	R/W	Start of audio bit buffer
VID_ABL [14:8]	0x0000001E	7	R	Audio Bit Buffer Level
VID_ABL [7:0]	0x0000001F	8	R	Audio Bit Buffer Level
VID_ABS [14:8]	0x00000020	7	R/W	Audio Bit Buffer Stop
VID_ABS [7:0]	0x00000021	8	R/W	Audio Bit Buffer Stop
VID_ABT [14:8]	0x00000022	7	R/W	Audio Bit Buffer Threshold
VID_ABT [7:0]	0x00000023	8	R/W	Audio Bit Buffer Threshold
VID_DFS	0x00000024	15	Serial R/W	Decoded Frame Size
VID_DFW	0x00000025	8	R/W	Decoded Frame Width
VID_XFW	0x00000028	8	R/W	Displayed Frame Width
VID_PAN [10:8]	0x0000002C	3	R/W	Pan/scan horizontal vector integer part
VID_PAN [7:0]	0x0000002D	8	R/W	Pan/scan horizontal vector integer part
VID_PTH[13:8]	0x0000002E	6	R/W	Panic threshold
VID_PTH[7:0]	0x0000002E	8	R/W	Panic threshold
VID_FTT[[7.0]	0x0000002F	2	R/W	Launch start-code detector FIFO
VID_STL	UXUUUUUU3U		IT/VV	Laurion Start-code detector FIFO

Table 38 Video decoder (VID)

Register	Address	Bits	Access	Description
VID_CWL	0x00000031	1	R/W	Launch compress data write
VID_656	0x00000032	1	R/W	Enable 656 mode
VID_SRA	0x00000035	1	R/W	Audio Soft Reset
VID_CFG_DRC	0x00000038	6	R/W	SDRAM configuration
VID_SRV	0x00000039	1	R/W	Video Soft Reset
VID_CFG_GCF	0x0000003A	8	R/W	General configuration
VID_STA	0x0000003B	8	R	Status
VID_ITM	0x000003C	8	R/W	Interrupt Mask
VID_ITS	0x0000003D	8	R	Interrupt Status
VID_TP_VID_LDP	0x0000003F	3	R/W	Load Pointer
VID_YDS[8]	0x00000046	1	R/W	Display Y End
VID_YDS[7:0]	0x00000047	8	R/W	Display Y End
VID_SPREAD	0x0000004E	20	Serial R/W	Sub-picture Read Pointer
VID_SPWRITE	0x0000004F	20	Serial R/W	Sub-picture Write Pointer
VID_SPB[10:8]	0x00000050	3	R/W	Sub-picture Buffer Begin
VID_SPB[7:0]	0x00000051	8	R/W	Sub-picture Buffer Begin
VID_SPE[11:8]	0x00000052	4	R/W	Sub-picture Buffer End
VID_SPE[7:0]	0x00000053	8	R/W	Sub-picture Buffer End
VID_TRF[12:8]	0x00000056	4	R/W	Temporal Reference
VID_TRF[7:0]	0x00000057	8	R/W	Temporal Reference
VID_DFC [14:8]	0x00000058	7	R/W	Displayed Chroma Frame Pointer
VID_DFC [7:0]	0x00000059	8	R/W	Displayed Chroma Frame Pointer
VID_RFC[14:8]	0x0000005A	7	R/W	Reconstructed Chroma Frame Pointer
VID_RFC[7:0]	0x0000005B	8	R/W	Reconstructed Chroma Frame Pointer
VID_FFC [14:8]	0x0000005C	7	R/W	Forward Chroma Frame Pointer
VID_FFC [7:0]	0x0000005D	8	R/W	Forward Chroma Frame Pointer
VID_BFC [14:8]	0x0000005E	7	R/W	Backward Chroma Pointer
VID_BFC [7:0]	0x0000005F	8	R/W	Backward Chroma Pointer
VID_ITM	0x00000060	8	R/W	Interrupt Mask
VID_ITM	0x00000061	8	R/W	Interrupt Mask
VID_ITS	0x00000062	8	R	Interrupt Status
VID_ITS	0x00000063	8	R	Interrupt Status
VID_STA2	0x00000064	8	R	Status
VID_STA3	0x00000065	8	R	Status
VID_HDF	0x00000066	16	Serial R	Header Data FIFO
VID_CDCOUNT	0x00000067	24	Serial R	Bit Buffer Input Counter
VID_SCDCOUNT	0x00000068	24	Serial R	Bit Buffer Output Counter
VID_HDS	0x00000069	4	R/W	Header Search
VID_LSO	0x0000006A	8	R/W	SRC Luminance Offset
VID_LSR [7:0]	0x0000006B	8	R/W	SRC Luma Resolution
VID_CSO	0x0000006C	8	R/W	SRC Chrominance Offset
VID_LSR [8]	0x0000006D	1	R/W	SRC Luma Resolution

Table 38 Video decoder (VID)

				5
Register	Address	Bits	Access	Description
VID_YDO[8]	0x0000006E	1	R/W	Display Y Offset
VID_YDO[7:0]	0x0000006F	8	R/W	Display Y Offset
VID_XDO[9:8]	0x00000070	2	R/W	Display X Offset
VID_XDO[7:0]	0x00000071	8	R/W	Display X Offset
VID_XDS[9:8]	0x00000072	2	R/W	Display X End
VID_XDS[7:0]	0x00000073	8	R/W	Display X End
VID_DCF	0x00000074	6	R/W	Display Configuration
VID_DCF	0x00000075	6	R/W	Display Configuration
VID_QMW	0x00000076	8	W	Quantization Matrix Data
VID_TST	0x00000077	1	R/W	Test register
VID_REV	0x00000078	8	R	Device revision
VID_LCK	0x0000007B	1	R/W	Locks registers VID_CFG_MCF, VID_CFG_CCF and VID_CFG_DRC
VID_TP_SCD_RD[15:8]	0x00000081	8	Read only	SCD pointer VLD load address
VID_TP_SCD_RD[7:0]	0x00000082	8	Read only	SCD pointer VLD load address
VID_TP_CD_RD[19:16]	0x00000083	4	Read only	CD pointer current address
VID_TP_CD_RD[15:8]	0x00000084	8	Read only	CD pointer current address
VID_TP_CD_RD[0:7]	0x00000085	8	Read only	CD pointer current address
VID_SCN	0x00000087	6	R/W	Pan/Scan Vertical Vector
VID_OUT	0x00000090	4	R/W	Output of 4:2:2 display
VID_BCK_Y	0x00000098	8	R/W	Background color Y
VID_BCK_U	0x0000009A	8	R/W	Background color U
VID_BCK_V	0x00000099	8	R/W	Background color V
VID_MWV	0x0000009B	8	R/W	Color mix between background color and video
VID_TP_SCD [16]	0x000000C0	1	R/W	SCD pointer load address
VID_TP_SCD [15:8]	0x000000C1	8	R/W	SCD pointer load address
VID_TP_SCD [7:0]	0x000000C2	8	R/W	SCD pointer load address
VID_TP_VLD_RD [19:16]	0x000000C3	4	Read only	VLD pointer current address
VID_TP_VLD_RD [15:8]	0x000000C4	8	Read only	VLD pointer current address
VID_TP_VLD_RD [7:0]	0x000000C5	8	Read only	VLD pointer current address
VID_TP_CD [16]	0x000000CA	1	R/W	CD pointer load address
VID_TP_CD [15:8]	0x000000CB	8	R/W	CD pointer load address
VID_TP_CD[7:0]	0x000000CC	8	R/W	CD pointer load address
VID_TP_SCD_CURRENT [19:16]	0x000000CD	4	Read only	SCD pointer current address
VID_TP_SCD_CURRENT [15:8]	0x000000CE	8	Read only	SCD pointer current address
VID_TP_SCD_CURRENT	0x000000CF	8	Read only	SCD pointer current address
VID_TP_VLD [15:8]	0x000000D4	8	R/W	VLD pointer load address
VID_TP_VLD [7:0]	0x000000D5	8	R/W	VLD pointer load address
VID_DCF	0x000000D6	3	R/W	Display Configuration
VID_TP_CDLIMIT [16]	0x000000E0	1	R/W	CD write limit address
	1	1	1	1

Table 38 Video decoder (VID)

7170180A 29/275

Register	Address	Bits	Access	Description
VID_TP_CDLIMIT [15:8]	0x000000E1	8	R/W	CD write limit address
VID_TP_CDLIMIT [7:0]	0x000000E2	8	R/W	CD write limit address
VID_CMQD	0x000000EA - 0x000000EE	40	R/W	Configure chrominance of block-row
VID_YMOD	0x000000EF - 0x000000F3	40	R/W	Configure luminance of block-row

Table 38 Video decoder (VID)

3 Asynchronous serial controller (ASC)

ASC_n_BAUDRATE

ASCn baud rate generator

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00 Reserved ReloadVal

Address: ASCnBaseAddress + 0x00

Type: Read/write

Reset value: 1

Description

The **ASC_***n***_BaudRate** register is the dual-function baud rate generator and reload value register. A read from this register returns the content of the 16-bit counter/accumulator; writing to it updates the 16-bit reload register.

If the **Run** bit of the control register is 1, then any value written in the **ASC_***n***_BaudRate** register is immediately copied to the timer. However, if the **Run** bit is 0 when the register is written, then the timer will not be reloaded until the first CPU clock cycle after the **Run** bit is 1.

The mode of operation of the baud rate generator depends on the setting of the **BaudMode** bit in the **ASC_n_Control** register. The 2 modes are described in the *Asynchronous Serial Controller* section of the *STi5518 Datasheet*.

Mode 0

When the **BaudMode** bit in the **ASC_**n_**Control** register is set to 0, the baud rate and the required reload value for a given baud rate can be determined by the following formulae:

$$BaudRate = \frac{f_{CPU}}{16 \times ASCBaudRate}$$

$$ASCBaudRate = \frac{f_{CPU}}{16 \times BaudRate}$$

where: *ASCBaudRate* represents the content of the **ASC_***n***_BaudRate** register, taken as an unsigned 16-bit integer, f_{CPU} is the frequency of the CPU.

Mode 0 shoud be used for all baud rates below 19.2K baud.

Table 39 lists commonly used baud rates with the required reload values and the approximate deviation errors for an example baud rate with a CPU clock of 60 MHz.

Baud rate	Reload value (exact)	Reload value (integer)	Reload value (hex)	Approx. deviation error
38.4 K	97.656	98	0062	0.35%
19.2 K	195.313	195	00C3	0.16%
9600	390.625	391	0091	0.1%
4800	781.250	781	030D	0.03%
2400	1562.500	1563	061B	0.03%
1200	3125.000	3125	0C35	0.00%
600	6250.000	6250	186A	0.00%

Table 39 Mode 0 Baud rates

Baud rate Reload value (exact)		Reload value (integer)	Reload value (hex)	Approx. deviation error		
300 12500.000		12500	30D4	0.00%		
75	50000.000	50000	C350	0.00%		

Table 39 Mode 0 Baud rates

Mode 1

When the **BaudMode** bit in the **ASC_**n_**Control** register is set to 1, the baud rate is given by::

BaudRate =
$$\frac{ASCBaudRate \times f_{CPU}}{16 \times 2^{16}}$$

where: f_{CPU} is the CPU clock frequency and ASCBaudRate is the value written to the ASC_n_BaudRate register..

Baud rate	Reload value (exact)	Reload value (integer)	Reload value (hex)	Approx. deviation error
115200	2013.266	2013	07DD	0.01%
96000	1677.722	1678	068E	0.02%
38.4 K	671.089	671	029F	0.02%
19.2 K	335.544	336	0150	0.14%

Table 40 Mode 1 Baud rates

Mode 1 should be used for baud rates of 19.2 K and above as it has a lower deviation error than Mode 0 at higher frequencies.

ASC_n_CONTROL ASCn control register

	31302928282625242322212019181716151413	12	11	10	9	8	7	6	5	4	3	2	1 (1
0x0C	Reserved	Baud	Cts	Fifo	SC	Rx	Run	Loop	Parity	Sto	р	N	/lode	
		Mode	Enable	Enable	Enable	Enable		Back	Odd	Bit	s	l		

Address: ASCnBaseAddress + 0x0C

Type: Read/write

Reset value: 0

Description

The **ASC_***n***_CONTROL** register controls the operating mode of the UART ASC *n* and contains control bits for mode and error check selection, and status flags for error identification.

Programming the mode control field (**Mode**) to one of the reserved combinations may result in unpredictable behavior. Serial data transmission or reception is only possible when the baud rate generator run bit (**Run**) is set to 1. When the **Run** bit is set to 0, **TxD** will be 1. Setting the **Run** bit to 0 will immediately freeze the state of the transmitter and receiver. This should only be done when the ASC is idle.

Serial data transmission or reception is only possible when the baud rate generator **Run** bit is set to 1. A transmission is started by writing to the transmit buffer register **ASC_***n***_TXBUFFER**.

32/275 7170180A

Bitfield	Description
Mode	ASC mode control: Mode2: 000: RESERVED 001: 8-bit data 010: RESERVED
	011: 7-bit data + parity 100: 9-bit data 101: 8-bit data + wake up bit 110: RESERVED 111: 8-bit data + parity
StopBits	Number of stop bits selection: 00: 0.5 stop bits 01: 1 stop bits 10: 1.5 stop bits 11: 2 stop bits
ParityOdd	Parity selection: 0: Even parity (parity bit set on odd number of '1's in data) 1: Odd parity (parity bit set on even number of '1's in data)
LoopBack	Loopback mode enable bit: 0: Standard transmit/receive mode 1: Loopback mode enabled
Run	Baudrate generator run bit: 0: Baudrate generator disabled (ASC inactive) 1: Baudrate generator enabled
RxEnable	Receiver enable bit: 0: Receiver disabled 1: Receiver enabled
SCEnable	SmartCard enable bit: 0: SmartCard mode disabled 1: SmartCard mode enabled
FifoEnable	FIFO enable bit: 0: FIFO disabled 1: FIFO enabled
CtsEnable	CTS enable bit: 0: CTS ignored 1: CTS enabled
BaudMode	Baud rate generation mode: 0: Baud counter decrements, ticks when it reaches 1 1: Baud counter added to itself, ticks when there's a carry

ASC_*n***_GUARDTIME ASC***n* guard time

 $31 \ \ 30 \ \ 29 \ \ 28 \ \ 28 \ \ 26 \ \ 25 \ \ 24 \ \ 23 \ \ 22 \ \ 21 \ \ 20 \ \ 19 \ \ 18 \ \ 17 \ \ 16 \ \ 15 \ \ 14 \ \ 13 \ \ 12 \ \ 11 \ \ 10 \ \ 9 \ \ 8 \ \ 7 \ \ 6 \ \ 5 \ \ 4 \ \ 3 \ \ 2 \ \ 1 \ \ 0$

0x18	Reserved	GuardTime

Address: ASCnBaseAddress + 0x18

Type: Read/write

Reset value: 0

Description

The **ASC_n_GUARDTIME** register enables the user to delay the assertion of the interrupt **TxEmpty** by a programmable number of baud clock ticks. The value in the register is the number of baud clock ticks to delay assertion of **TxEmpty**. This value must be in the range 0 to 255.

7170180A 33/275

ASC_n_INTENABLE

ASCn interrupt enable

Address: ASCnBaseAddress + 0x10

Type: Read/write

Reset value: 0

Description

Bitfield	Description
RBE	RxBufFullIE: Receiver buffer full interrupt enable:
	0: Receiver buffer full interrupt disable
	1: Receiver buffer full interrupt enable
TE	TxEmptylE: Transmitter empty interrupt enable:
	0: Transmitter empty interrupt disable
	1: Transmitter empty interrupt enable
THE	TxHalfEmptylE: Transmitter buffer half empty interrupt enable:
	0: Transmitter buffer half empty interrupt disable
	1: Transmitter buffer half empty interrupt enable
PE	ParityErrorIE: Parity error interrupt enable:
	0: Parity error interrupt disable
	1: Parity error interrupt enable
FE	FrameErrorIE: Framing error interrupt enable:
	0: Framing error interrupt disable
	1: Framing error interrupt enable
OE	OverrunErrorIE: Overrun error interrupt enable:
	0: Overrun error interrupt disable
	1: Overrun error interrupt enable
TNE	TimeoutNotEmptyIE: Time-out when not empty interrupt enable:
	0: Time-out when input FIFO or buffer not empty interrupt disable
	1: Time-out when input FIFO or buffer not empty interrupt enable
TOI	TimeoutIdleIE: Time-out when the receiver FIFO is empty interrupt enable:
	0: Time-out when the input FIFO or buffer is empty interrupt disable
	1: Time-out when the input FIFO or buffer is empty interrupt enable
RHF	RxHalfFullIE: Receiver FIFO is half full interrupt enable:
	0: Receiver FIFO is half full interrupt disable
	1: Receiver FIFO is half full interrupt enable

ASC_n_RETRIES ASCn number of retries on transmission

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x28 Reserved Number of Retries

Address: ASCnBaseAddress + 0x28

Type: Read/write

Reset value: 1

Description

The **ASC_***n***_Retries** register defines the number of transmissions attempted on a piece of data before the UART discards the data. If a transmission still fails after 'Number of Retries' the **Nacked** bit is set in the **ASC_***n***_Status** register where it can be read and acted on by software. This register does not have to be re-initialized after a Nack error.

34/275 7170180A

ASC_n_RxBUFFER

ASCn receive buffer

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x08 Reserved RD

Address: ASCnBaseAddress + 0x08

Type: Read only

Reset value: 0

Description

Serial data reception is only possible when the baud rate generator **Run** bit in the **ASC_***n***_Control** register is set to 1.

Bitfield	Description
RD[6:0]	Receive buffer data D0 to D6
RD[7]	Receive buffer data D7 , or parity error bit - depending on the operating mode (the setting of the Mode bit of the ASCControl register).
RD[8]	Receive buffer data D8 , or parity error bit, or wake-up bit - depending on the operating mode (the setting of the Mode field of the ASCControl register)
	If the Mode field selects an 8-bit frame then this bit is undefined. Software should ignore this bit when reading 8-bit frames

ASC_n_RxRESET ASCn receive FIFO reset

Address: ASCnBaseAddress + 0x24

Type: Write only

Description

Reset the receiver FIFO. The 'registers' **ASC_***n***_RxReset** have no actual storage associated with them. A write of any value to one of these registers resets the corresponding receiver FIFO.

7170180A 35/275

ASC_n_STATUS

ASCn interrupt status

Address: ASCnBaseAddress + 0x14

Type: Read only

Reset value: 3 (i.e. Rx buffer full and Tx buffer empty)

Description

Bitfield	Description
RBF	RxBufFull: Receiver FIFO not empty (FIFO operation) or buffer full (double-buffered operation):
	O: Receiver FIFO is empty or buffer is not full Receiver FIFO is not empty or buffer is full
TE	TxEmpty: Transmitter empty flag:
	O: Transmitter is not empty 1: Transmitter is empty
THE	TxHalfEmpty: Transmitter FIFO at least half empty flag or buffer empty:
	 0: The FIFOs are enabled and the transmitter FIFO is more than half full (more than 8 characters) or the FIFOs are disabled and the transmit buffer is not empty. 1: The FIFOs are enabled and the transmitter FIFO is at least half empty (8 or less characters) or the FIFOs are disabled and the transmit buffer is empty
PE	ParityError: Input parity error flag:
	O: No parity error 1: Parity error
FE	FrameError: Input frame error flag, i.e.stop bits not found:
	O: No framing error 1: Framing error
OE	OverrunError: Overrun error flag:
	No overrun error Overrun error, i.e. data received when the input buffer is full
TNE	TimeoutNotEmpty: Time-out when the receiver FIFO or buffer is not empty:
	O: No time-out or the receiver FIFO or buffer is empty 1: Time-out when the receiver FIFO or buffer is not empty
TOI	TimeoutIdle: Time-out when the receiver FIFO or buffer is empty:
	O: No time-out or the receiver FIFO or buffer is not empty 1: Time-out when the receiver FIFO or buffer is empty
RHF	RxHalfFull: Receiver FIFO is half full:
	The receiver FIFO contains 8 characters or less The receiver FIFO contains more than 8 characters
TF	TxFull: Transmitter FIFO or buffer is full:
	0: The FIFOs are enabled and the transmitter FIFO is empty or contains less than16 characters or the FIFOs are disabled and the transmit buffer is empty 1: The FIFOs are enabled and the transmitter FIFO contains 16 characters or the FIFOs are disabled and the transmit buffer is full
NKD	Nacked: Transmission failure acknowledgement by receiver:
	O: Data transmitted successfully 1: Data transmission unsuccessful (data 'nacked' by SmartCard)

ASC n TIMEOUT

ASCn time out

31 30 29 28 28 28 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1c Reserved Timeout

Address: ASCnBaseAddress + 0x1C

Type: Read/write

Reset value: 0

Description

The time-out period in baud rate ticks. The ASC contains an 8-bit time-out counter, which reloads from **ASC_***n***_Timeout** whenever one or more of the following is true:

- ASC_n_RxBuffer is read;
- the ASC is in the middle of receiving a character;
- ASC_n_Timeout is written to.

If none of these conditions hold the counter decrements towards 0 at every baud rate tick.

The **TimeoutNotEmpty** bit of the **ASC_***n***_Status** register is 1 when the input FIFO is not empty and the time-out counter is zero. The **TimeoutIdle** bit of the **ASC_***n***_Status** register is 1 when the input FIFO is empty and the time-out counter is zero.

When the software has emptied the input FIFO, the time-out counter will reset and start decrementing. If no more characters arrive, when the counter reaches zero the **TimeoutIdle** bit of the **ASC_***n***_Status** register will be set.

ASC_n_TxBUFFER ASCn transmit buffer

3	1 3	30	29	28	28	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											Re	serv	/ed															TD				

Address: ASCnBaseAddress + 0x04

Type: Write only

Reset value: 0

Description

0x04

A transmission is started by writing to the transmit buffer register **ASC_***n***_TxBuffer**. Serial data transmission is only possible when the baud rate generator **Run** bit in the **ASC_***n***_Control** register is set to 1.

Data transmission is double-buffered or uses a FIFO, so a new character may be written to the transmit buffer register before the transmission of the previous character is complete. This allows characters to be sent back-to-back without gaps.

Bitfield	Description
TD[6:0]	Transmit buffer data D0 to D6
TD[7]	Transmit buffer data D7 , or parity bit - depending on the operating mode (the setting of the Mode field of the ASC-Control register).
TD[8]	Transmit buffer data D8 , or parity bit, or wake-up bit or undefined - depending on the operating mode (the setting of the Mode field of the ASCControl register).
	If the Mode field selects an 8-bit frame then this bit should be written as 0.

7170180A 37/275

ASC_N_TXRESET ASCn transmit FIFO reset

Address: ASCnBaseAddress + 0x20

Type: Write only

Description

Reset the transmitter FIFO. The 'registers' **ASC_**n_**TxReset** have no actual storage associated with them. A write of any value to one of these registers resets the corresponding transmitter FIFO.

4 Audio decoder (AUD)

The following table describes codes used in the right-hand column of Table 41: *Audio decoder register map by function* on page 39:

Code	Description
(a)	Register modification is ALWAYS taken into account by the audio decoder. Any change to these registers is taken into account immediately.
(b)	Register modification is taken into account AFTER EVERY DECODED DATA BLOCK or JUST AFTER RESET (soft or hard). The decoded block is related to the granularity of the computation in the audio decoder software. A block is 256 samples in Dolby Digital, 96 samples in MPEG, 80 samples in LPCM/PCM.
(f)	Register modification is taken into account AFTER EVERY DATA FRAME. A frame is: 1152 samples in MPEG I/II, 1536 samples in Dolby Digital, 384 samples in MPEG-1 layer 1, 80 samples in LPCM/PCM.
(r)	Register modification is taken into account ONLY WHEN THE DSP IS RUN AFTER RESET (soft or hard).
(1)	The delay registers are updated when bit 0 of the AUD_UPDATE register is set to 1; the trick-mode registers are updated when bit 1 of the AUD_UPDATE register is set to 1.
(2)	The volume is updated when CHAN_IDX is set to the appropriate value.

The following tables list the register map by address and function, then each audio decoder register is described individually.

Register function	HEX	DEC	Name
VERSION	0x00	0	AUD_VERSION
	0x01	1	AUD_IDENT
	0x71	113	AUD_SOFVER
SETUP + INPUTS	0x0C	12	AUD_SIN_SETUP (a)
	0x0D	13	AUD_CAN_SETUP (a)
PCM CONFIGURATION	0x54	84	AUD_PCMDIVIDER (b)
	0x55	85	AUD_PCMCONF (b)
	0x56	86	AUD_PCMCROSS (b)
DAC AND PLL CONFIGURATION	0x05	5	AUD_SFREQ (f)
	0x06	6	AUD_EMPH (f)
	0x12	18	AUD_PLLPCM (a)
	0x18	24	AUD_PLLMASK (a)
CHANNEL DELAY SETUP	0x57	87	AUD_LDLY (1)
	0x58	88	AUD_RDLY (1)
	0x59	89	AUD_CDLY (1)
	0x5A	90	AUD_SUBDLY (1)
	0x5B	91	AUD_LSDLY (1)
	0x5C	92	AUD_RSDLY (1)
	0x5D	93	AUD_UPDATE (f)

Table 41 Audio decoder register map by function

7170180A 39/275

Register function	HEX	DEC	Name
SPDIF OUTPUT SETUP	0x5E	94	AUD_SPDIF_CMD(r)
	0x5F	95	AUD_SPDIF_CAT(f)
	0x60	96	AUD_SPDIF_CONF(b)
	0x61	97	AUD_SPDIF_STATUS(b)
	0x75	117	AUD_SPDIF_REP_TIME(b)
	0x7E	126	AUD_SPDIF_LATENCY(f)
	0x7F	127	AUD_SPDIF_DTDI(f)
COMMAND	0x10	16	AUD_SOFTRESET(a)
	0x13	19	AUD_PLAY(a)
	0x14	20	AUD_MUTE(a)
	0x72	114	AUD_RUN(a)
	0x73	115	AUD_SKIP_MUTE_CMD(f)
	0x74	116	AUD_SKIP_MUTE_VALUE(f)
INTERRUPT	0x07, 08	7, 8	AUD_INTE(a)
	0x09, 0A	9, 10	AUD_INT(a)
INTERRUPT STATUS	0x40	64	AUD_SYNC_STATUS
	0x41	65	AUD_ANCCOUNT
	0x42	66	AUD_HEAD4 (f)
	0x43	67	AUD_HEAD3(f)
	0x44, 45	68, 69	AUD_HEADLEN(f)
	0x46 - 4A	70	AUD_PTS(f)
	0x0F	15	AUD_ERROR
DECODING ALGORITHM	0x4C	76	AUD_STREAMSEL(r)
	0X4D	77	AUD_DECODESEL(r)
SYSTEM SYNCHRONIZATION	0x4F	79	AUD_PACKET_LOCK(r)
	0x50	80	AUD_ID_EN(a)
	0x51	81	AUD_ID(a)
	0x52	82	AUD_ID_EXT(a)
	0x53	83	AUD_SYNC_LOCK(r)
POST DECODING AND PRO LOGIC	0x62	98	AUD_PDEC(b)
	0x64	100	AUD_PL_AB(b)
	0x65	101	AUD_PL_DWNX(b)
	0x70	112	AUD_DWSMODE(b)
BASS REDIRECTION	0x4E	78	AUD_VOLUME0(2)
	0x63	100	AUD_VOLUME1(2)
	0x66	102	AUD_OCFG(b)
	0x67	103	AUD_CHAN_IDX(b)

Table 41 Audio decoder register map by function

Register function	HEX	DEC	Name
Dolby Digital configuration	0x68	104	AUD_AC3_DECODE_LFE (b)
	0X69	105	AUD_AC3_COMP_MOD (b)
	0x6A	106	AUD_AC3_HDR (b)
	0x6B	107	AUD_AC3_LDR (b)
	0x6C	108	AUD_AC3_RPC (b)
	0x6D	109	AUD_AC3_KARAMODE (b)
	0x6E	110	AUD_AC3_DUALMODE (b)
	0x6F	111	AUD_AC3_DOWNMIX (b)
	0x76	118	AUD_AC3_STATUS0 (f)
	0x77	119	AUD_AC3_STATUS1 (f)
	0x78	120	AUD_AC3_STATUS2 (f)
	0x79	121	AUD_AC3_STATUS3 (f)
	0x7A	122	AUD_AC3_STATUS4 (f)
	0x7B	123	AUD_AC3_STATUS5 (f)
	0x7C	124	AUD_AC3_STATUS6 (f)
	0x7D	125	AUD_AC3_STATUS7 (f)
MPEG configuration	0x68	104	AUD_MP_SKIP_LFE (b)
	0x69	105	AUD_MP_PROG_NUMBER (b)
	0x6E	106	AUD_MP_DUALMODE (b)
	0x6A	110	AUD_MP_DRC (b)
	0x6C	108	AUD_MP_CRC_OFF (b)
	0x6D	109	AUD_MP_MC_OFF (b)
	0x6F	111	AUD_MP_DOWNMIX (b)
	0x76	118	AUD_MP_STATUS0 (f)
	0x77	119	AUD_MP_STATUS1 (f)
	0x78	120	AUD_MP_STATUS2 (f)
	0x79	121	AUD_MP_STATUS3 (f)
	0x7A	122	AUD_MP_STATUS4 (f)
	0x7B	123	AUD_MP_STATUS5 (f)
DTS configuration	0x76	118	AUD_DTS_STATUS0 (f)
	0x77	119	AUD_DTS_STATUS1 (f)
	0x78	120	AUD_DTS_STATUS2 (f)
	0x79	121	AUD_DTS_STATUS3 (f)
PCM beep-tone configuration	0x68	104	AUD_PCM_BTONE (b)
Audio trick-mode configuration	0x57	87	AUD_TM_SPEED (1)

Table 41 Audio decoder register map by function

4.1 Version registers

AUD_IDENT

Identify

7 6 5 4 3 2 1 0 0x01

Address: AudioBaseAddress + 0x01

Type: RO SW Reset: NA HW Reset: NA

Description

IDENT is a read-only register and is used to identify the IC on an application board. IDENT always has the value "0xAC".

AUD_SOFVER Software version

7 6 5 4 3 2 1 0 0x71

Address: AudioBaseAddress + 0x71

Type: R/W SW Reset: 0x47 HW Reset: 0x47

Description

This register gives the version of micro-code which is running on the device. For STi5518 cut A0, the value is 0x4B. For subsequent cuts, the value is given in application note7152120, STi5518 How to move from cutA0.

AUD_VERSION Version

7 6 5 4 3 2 1 0

Address: AudioBaseAddress + 0x00

Type: RO SW Reset: 0x20 HW Reset: 0x20

Description

0x00

This register gives the audio hardware version (binary decimal encoded). For STi5518 cut A0, the value is 0x30. For subsequent cuts, the value is given in application note 7152120, STi5518 How to move from cutA0.

4.2 Setup & input registers

AUD_SIN_SETUP

Input data setup

7 6 5 4 3 2 1 0 0x0C

Address: AudioBaseAddress + 0x0C

Type: R/W SW Reset: NC HW Reset: 0

Description

This register is reserved and must be set to 1.

AUD_CAN_SETUP A/D converter setup

7 6 5 4 3 2 1 0 0x0D

Address: AudioBaseAddress + 0x0D

Type: R/W SW Reset: NC HW Reset: 0

Description

This register is reserved and must be set to 0.

7170180A 43/275

4.3 PCM configuration resisters

AUD_PCMDIVIDER

Divider for PCM clock

7 6 5 4 3 2 1 0 0x54

Address: AudioBaseAddress + 0x54

Type: R/W SW Reset: UND HW Reset: UND

Description

The PCM divider must be set according to the formula below, where DAC_SCLK is the bit clock for the DAC. When Div is set to 0, DAC_SCLK is equal to DAC_PCMCLK:

When the internal PLL is used, DAC_PCMCLK=384 x fs or 256 x fs. If DAC_PCMCLK = 384 x fs, the formula becomes:

$$Div = (192 \times Fs/DAC_SCLK) -1$$

If DAC_SCLK is 32 x Fs (common case with the 16 bit DAC), Div must be set to 5.

PCM divider value	Mode description
5	DAC_PCMCLK = 384Fs, DAC is 16-bit mode
3	DAC_PCMLK = 256 Fs, DAC is 16-bit mode
2	DAC_PCMLK = 384 Fs, DAC is 32-bit mode
1	DAC_PCMLK = 256 Fs, DAC is 32-bit mode

AUD_PCMCONF PCM configuration

	7	6	5	4	3	2	1	0
0x55		ORD	DIF	INV	FOR	SCL	PREC	C[1:0]

Address: AudioBaseAddress + 0x55

Type: R/W SW Reset: NC HW Reset: UND

Description

STi5518	4 Audio decoder (AUD)
Description	SENTIAL
Bitfield	Description
PREC[1:0]	PCM Precision 00: 16 bit mode (16 slots) 01: 18 bit mode (32 slots) 10: 20 bit mode (32 slots) 11: 24 bit mode (32 slots)
SCL	When set, the polarity of DAC_SCLK is inverted, the PCM outputs and DAC_LRCLK are stable for the DACs on the falling edge of DAC_SCLK. When reset, PCM outputs and DAC_LRCLK are stable on the rising edge of DAC_SCLK.
FOR	0: I ² S format 1: Sony format
INV	0: left channel is output when DAC_LRCLK is low (I ² S format). 1: left channel is output when DAC_LRCLK is high (Sony format).
DIF	If set to zero, left padded.
ORD	PCM Order: only significant in 16-bit mode. When set, LSB is sent first. When reset, MSB is sent first.

AUD_PCMCROSS Cross PCM channels

	7	6	5	4	3	2	1	0
0x56			CLR	[1:0]	CSW	[1:0]	LRS	[1:0]

Address: AudioBaseAddress + 0x56

R/W Type: SW Reset: NC HW Reset: UND

Description

The PCMCROSS register only acts if bit PFC of register AUD_SPDIF_DTDI is set.

Bitfield	Description
LRS[1:0]	Cross left and right surround.
CSW[1:0]	Cross centre and subwoofer.
CLR[1:0]	Cross left and right channels.
	 00: Left channel is mapped on the left output, Right channel is mapped on the Right output. 01: Left channel is duplicated on both outputs. 10: Right channel is duplicated on both outputs. 11: Right channel and Left channel are toggled.

57 7170180A 45/275

4.4 DAC and PLL configuration registers

AUD SFREQ

Sampling frequency

7 6 5 4 3 2 1 0 0x05

Address: AudioBaseAddress + 0x05

Type: R/WS SW Reset: NC HW Reset: 0

Description

This status register holds the code of the current sampling frequency. If the audio stream is encoded (Dolby Digital, MPEG) or packetized (DVD_LPCM), the sampling frequency is automatically read in the audio stream and written into this register by the audio DSP.

For PCM stream or CDDA, this register is written to by the application. The value in AUD_SFREQ corresponds to the following frequencies:

Value	0	1	2	3	4	8	9	10	11 (MP3 only)
Frequency (kHz)	48	44.1	32	not used	96	24	22.05	16	12 (MP3 only)

AUD_EMPH

Emphasis

	7	6	5	4	3	2	1	0
0x06							E[′	1:0]

Address: AudioBaseAddress + 0x06

Type: R/WS SW Reset: NC HW Reset: 0

Description

This register is used in MPEG, DVD_LPCM or CDDA modes; it is not supported in Dolby Digital.

In MPEG and DVD_LPCM modes, its register value is extracted from the bitstream. When the emphasis status changes (by setting bit DEM of the AUD_INT register), an interrupt is generated. In CDDA mode, the register value must be updated by the application.

The de-emphasis filter specified here is applied only if bit DEM of the AUD_PDEC register is set.

Bitfield	Description
E[1:0]	00: none, 01: 50/15μs, 10: reserved, 11: CCITT J.17

AUD_PLLPCM

PCM PLL disable

	1	7	1	6	5	4	3	2	1	0
0x12	"							256	RP	DP

Address + 0x12

Type: R/W SW Reset: NC HW Reset: 1

Description

When a Hard reset occurs the PLL is disabled. The host must set RP to 1 and set DP to 0 to enable it. When a Soft reset occurs the register remains unchanged.

Bitfield	Description
DP	0: Internal PCM PLL is used
	1: Internal PCM PLL is deactivated, PCM_CLK pin is an input
RP	Run PLL. When high the DAC PLL is running.
256	0: PCMCLK = 384 x fs
	1: PCMCLK = 256 x fs

AUD_PLLMASK

PCMCLK mask for half sampling frequency

7 6 5 4 3 2 1 0 0x18 HALF_FS

Address: AudioBaseAddress + 0x18

Type: W SW Reset: NC HW Reset: 0

Description

Bitfield	Description
HALF_FS	If the incoming bitstream is encoded with half sampling frequency, the device generates a PCM clock (for audio DAC)
	1: At 256 x half_fs or 384 x half_fs (half_fs is equal to 24KHz, 22.05KHz, 16KHz). 0: At 256 x fs or 384 x fs (fs is equal to 48KHz, 44.1KHz, 32KHz). This function is mainly use for DAC frequency adaptation.

7170180A 47/275

4.5 Channel delay set-up registers

The unit for the register delay contents is a group of 16 samples. The maximum delay is 35 ms (i.e. the sum of the delays on the six channels is limited by 35ms). E.g., when the sampling frequency is 48kHz, the sum of all the delays must be less than 105 = 35 ms * 48 KHz /16 samples.

When only one surround channel is present (in Pro Logic or other mode), the right surround delay must be cleared, and the left delay channel is used for both surround channels.

AUD_LDLY Left channel delay

7 6 5 4 3 2 1 0 0x57

Address: AudioBaseAddress + 0x57

Type: R/W SW Reset: NC HW Reset: UND

Delay on left channel, expressed in number of group of 16 samples. LDLY = delay (ms) * Fs (kHz) / 16

AUD_RDLY Right channel delay

7 6 5 4 3 2 1 0 0x58

Address: AudioBaseAddress + 0x58

Type: R/W SW Reset: NC HW Reset: UND

Delay on right channel, expressed in number of group of 16 samples. RDLY = delay (ms) * Fs (kHz) / 16

AUD_CDLY Centre channel delay

7 6 5 4 3 2 1 0 0x59

Address: AudioBaseAddress + 0x59

Type: R/W SW Reset: NC HW Reset: UND

Delay on center channel, expressed in number of group of 16 samples. CDLY = delay (ms) * Fs (kHz) / 16

0

AUD_SUBDLY

Subwoofer channel delay

5

0x5A

Address: AudioBaseAddress + 0x5A

Type: R/W SW Reset: NC HW Reset: UND

Delay on subwoofer channel, expressed in number of group of 16 samples. SUBDLY = delay (ms) * Fs (kHz) / 16

4

AUD_LSDLY

Left surround channel delay

7 6 5 4 3 2 1 0 0x5B

Address: AudioBaseAddress + 0x5B

Type: R/W SW Reset: NC HW Reset: UND

Delay on left surround channel, expressed in number of group of 16 samples. LSDLY = delay (ms) * Fs (kHz) / 16

AUD_RSDLY

Right surround channel delay

7 6 5 4 3 2 1 0 0x5C

Address: AudioBaseAddress + 0x5C

Type: R/W SW Reset: NC HW Reset: UND

Delay on right surround channel, expressed in number of group of 16 samples. RSDLY = delay (ms) * Fs (kHz) / 16 Note that when only one surround channel is used, this register must be reset at initialization.

7170180A 49/275

AUD_UPDATE

PCM delay update

0x5D TM DLY

Address AudioBaseAddress+ 0x5D

Type: R/W SW Reset: 0 HW Reset: 0

Description

Bitfield	Description
DLY	This bit must be set to 1 to force the DSP to update its delays values (read from the audio delay registers).
	0: Delay values held in the audio delay registers are NOT updated in the DSP (i.e. the DSP will keep the delay values set previously).
	1: The delay values held in the audio delay registers are updated in the DSP (i.e. the DSP will use the new values). This bit is automatically reset to zero after it the update has been carried out.
ТМ	This bit must be set to 1 to force the DSP to update the trick-mode speed (read from reg. AUD_TM_SPEED). 0: Audio trick-mode value held in the AUD_TM_SPEED register is NOT updated in the DSP (i.e. the DSP will keep the value set previously) 1: Audio trick-mode value held in the AUD_TM_SPEED register is updated in the DSP (i.e. the DSP will use the new values). This bit is automatically reset to zero after it the update has been carried out.

4.6 SPDIF output set-up

AUD_SPDIF_CMD

SPDIF control

7 6 5 4 3 2 1 0 0x5E

Address: AudioBaseAddress + 0x5E

Type: R/W SW Reset: NC HW Reset: UND

Description

This register is the control register. Several modes are available, the mode is selected by value:

Value	Description	
0	Off mode:	The SPDIF is not working, the output line is idle.
1	Muted mode:	The outputs are PCM null data.
2	PCM mode:	The outputs are PCM data. Only the first two decoded channels (Left and Right) are transmitted.
3	Encoded:	The compressed bitstream is transmitted (See IEC61937 standard)

AUD_SPDIF_CAT Category code

7 6 5 4 3 2 1 0 0x5F CATCODE

Address: AudioBaseAddress + 0x5F

Type: R/W SW Reset: NC HW Reset: UND

Description

The table below defines the category codes, values not listed are reserved.

Category code	Description
000000	General
1000000	Experimental
X X X 0 0 0 0	Reserved
X X X 1 0 0 0	Solid State Memory
0000100	Broadcast reception of dig. audio Japan
1100100	Broadcast reception of dig. audio United states
0001100	Broadcast reception of dig. audio Europe
1000100	Broadcast reception of dig. audio Electronic Software delivery
X X X X 1 0 0	Broadcast reception of dig. audio All other states are reserved
0000010	Digital / Digital converters and signal processing PCM encoder/decoder
0100010	Digital / Digital converters and signal processing Digital sound sampler
0010010	Digital / Digital converters and signal processing Digital signal mixer

Table 42 Category codes

Category code	Description				
0011010	Digital Digital converters and signal processing Sample rate converter				
X-X-X-010	Digital / Digital converters and signal processing All other states are reserved				
X X 0 0 1 1 0	A/D converter W/o copyright				
X X 1 0 1 1 0	A/D converter W/ copyright (using copy and L bits)				
X X X 1 1 1 0	Broadcast reception of dig. audio				
0000001	Laser optical CD - Compatible with IEC 908				
0001001	Laser optical CD - Not compatible with IEC 908 (Magneto optical)				
X X X X 0 0 1	Laser optical All other states are reserved				
0000101	Musical instruments, microphones, etc. Synthesizer				
0001101	Musical instruments, microphones, etc. Microphone				
X X X X 1 0 1	Musical instruments, microphones, etc. All other states are reserved				
0000011	Magnetic tape or disks DAT				
0001011	Magnetic tape or disks Digital audio sound VCR				
X X X X 0 1 1	Magnetic tape or disks All other states are reserved				
X X X X 1 1 1	Reserved				
7	Only cat. codes XXXX100, XXX1110, XXXX001 -> L bit				
0	Original, commercially pre-recorded data				
1	No indication of 1st generation or higher				
7	All other categories				
0	No indication of 1st generation or higher				
1	Original, commercially pre-recorded data				

Table 42 Category codes

AUD_SPDIF_CONF SPDIF PCMCLK divider

	7	6	5	4	3	2	1	0
0x60	LAT	SM=0	Bit5			DIV[4:0]		

Address: AudioBaseAddress + 0x60

Type: R/W SW Reset: NC HW Reset: UND

Description

STi5518	4 Audio decoder (AUD)
Description	DENTIFIE
Bitfield	Description
DJV[4:0]	This field is the DAC_PCMCLK divider. It must be set according to the formula: in 16 bit mode: IECDIV=(1+PCMDIV)/2-1; in 32 bit mode: IECDIV=PCMDIV
Bit5	Must be set to 1
SM -	SYNC MUTE Mode, must be set to zero.
LAT	Configures the latency mode between the SPDIF output (in mode compressed) and the Audio output.
	0: Auto-Latency: The latency is the transmission time for 2/3 of the payload, plus the time to decode an audio block.
	For MPEG Auto-Latency, the latency is the following time depending of the sampling frequency in the incoming bitstream: MPEG 48KHz: 20.90ms, MPEG 44.1KHz: 22.95ms, MPEG 32KHz: 32.53ms.
	1: User-programmable latency - the AUD_SPDIF_LATENCY register is used.

The table below shows the relationship between the value of the IEC divider and the value of the PCM divider.

PCM Divider Value	Mode Description	IEC Divider Value
5	DAC_PCMCLK = 384Fs, DAC is 16-bit mode	2
3	DAC_PCMLK = 256 Fs, DAC is 16-bit mode	1
2	DAC_PCMLK = 384 Fs, DAC is 32-bit mode	2
1	DAC_PCMLK = 256 Fs, DAC is 32-bit mode	1

AUD_SPDIF_STATUS **SPDIF** status bit

	7	6	5	4	3	2	1	0
0x61		SFR				PRE	COP	COM

Address: AudioBaseAddress + 0x61

Type: R/W SW Reset: NC HW Reset: UND

Description

This register is used to set the value of the status bit in the IEC958 data stream.

Bitfield	Description
СОМ	Compress data bit. 1: compressed mode 0: non compressed mode.
COP	1: copy allowed 0: copy not allowed
PRE	1: output has pre-emphasis 0: output does not have pre-emphasis
SFR	0000: if sampling frequency = 44.1KHz 0010: if sampling frequency = 48KHz 0011: if sampling frequency = 32KHz 1010: if sampling frequency = 96KHz

47/ 7170180A 53/275

AUD SPDIF REP TIME SPDIF repetition time of a pause frame

9x75 5 4 3 2 1 0

Address + 0x75

Type: R/W SW Reset: NC HW Reset: UND

Description

In compressed mode, a burst of pause frames is sent when there are no more data to transmit (due to an error or a gap in the incoming bitstream, for example). This register sets the size of a pause frame in IEC frames: Dolby Digital =4, MPEG=32 and DTS=3.

AUD_SPDIF_LATENCY Latency value

	7	6	5	4	3	2	1	0
0x7E				Va	lue			

Address: AudioBaseAddress + 0x7E

Type: R/W SW Reset: NC HW Reset: UND

Description

If bit LAT of register AUD_SPDIF_CONF is set, a delay can be configured between the output of IEC61937 in compressed mode and the output of the audio decoder. To configure a latency (in unit of seconds) this register has to be set according the following formula:

Value = L x F_S/8 where, L=Latency in s and FS=Sampling frequency in Hz

The minimum latency delay is 0; the maximum latency delay is the time to decode a frame:

Bitfield	Description
Value	Dolby Digital: L = 1536 samples / Sampling frequency
	MPEG: L = 1152 samples / Sampling frequency

AUD_SPDIF_DTDI SPDIF data-type information

	7	6	5	4	3	2	1	0
0x7F	PFC	DTD				INF		

Address: AudioBaseAddress + 0x7F

Type: R/W SW Reset: NC HW Reset: UND

Description

STi5518		MA			4 Audio dec	oder (AUD)
Descriptio Bitfield	n Description	17117				
DTDI[4:0]	In Dolby Digital mode:	4	3	2	1	0
(`,\		0	0		BSMOD[20]	
	In MPEG mode:	4	3	2	1	0
		0	0	0	DR	K
DTD	Data-type dependent information Refer to IEC958 standard for more of the control of the con	ore information.		essed mode, car	n be set by the us	ser.
PFC	1: PCMCROSS function enable	d				

4.7 Audio command registers

AUD_SOFTRESE

Soft reset

7 6 5 4 3 2 1 0 0x10

Address: AudioBaseAddress + 0x10

Type: W0 SW Reset: NA HW Reset: NA

Description

When bit 0 of this register is set, a soft reset occurs. The command registers and the interrupt registers listed below are cleared. The decoder goes into idle mode and the volumes are cleared.

Command registers: AUD_MUTE, AUD_RUN, AUD_PLAY, AUD_SKIP_MUTE_CMD and AUD_SKIP_MUTE_VALUE

Interrupt registers: AUD_INTE, AUD_INT and AUD_ERROR

AUD_PLAY Play

7 6 5 4 3 2 1 0 0x13 PLAY

Address: AudioBaseAddress + 0x13

Type: R/W SW Reset: 0 HW Reset: 0

Description

The PLAY command is treated according to the state of the decoder:

- When in idle mode, the PLAY value is not taken into account by the decoder.
- When in init mode, the PLAY value is not taken into account by the decoder.
- When in decode mode, PLAY enables the decoding, see table below:

PLAY value	MUTE value	DAC_SCLK, DAC_LRCLK state	DAC_PCMOUT	Decoding
0	0	Not running	0	No
0	1	Running	0	No
1	0	Running	Decoded samples	Yes
1	1	Running	0	Yes

AUD_MUTE Mute

7 6 5 4 3 2 1 0 0x14 MUTE

Address: AudioBaseAddress + 0x14

Type: SW Reset:

HW Reset

Description

The MUTE command is handled differently according to the state of the decoder:

IDENTIA

- When in idle mode after hardware reset, setting MUTE to "1" automatically runs the DAC_SCLK and DAC_LRCLK clocks and outputs them to the DACs.
- When playing, setting MUTE to "1" mutes the PCM outputs.
- The AUD_MUTE register has no effect on the SPDIF output.

AUD_RUN

RUN decoding

	7	6	5	4	3	2	1	0
0x72								RUN

Address: AudioBaseAddress + 0x72

Type: R/W SW Reset: 0 HW Reset: 0

Description

This register enables to exit from idle mode. After a soft or hard reset the decoder is in idle mode. It stays in this mode until the RUN is set.

In run mode the decoder takes into account the state of all the configuration registers and begins to decode.

The AUD_RUN register can only be reset by the SOFTRESET or REBOOT commands.

AUD_SKIP_MUTE_CMD Skip or mute commands

	7	6	5	4	3	2	1	0
0x73		RESERVED		REB	PAU	BLK	SKP	GMUT

Address: AudioBaseAddress + 0x73

Type: R/W SW Reset: 0 HW Reset: 0

Description

This register cannot be used in MP3 decoding mode. The register is taken in account at a beginning of decoding a frame:

Bitfield /	Description							
GMUT	Global mute comm 1: PCM and S/PDI In non-compressed 0: Normal operatio	Foutputs are muted. In cood mode, the IEC60958 trans.	mpressed mode, the S/PDIF transmits exactly the same data as	the decoder.				
SKP	Skip Frame. If set, the decoder skips the number of frames set in the SKIP_MUTE_VALUE register. This command is useful for Audio-Video synchronization when the audio decoder is in late. Once the frame skipped, the decoder clears this bit. For IEC60958/61937: - In compressed mode, the IEC61937 do not transmit the skipped frames. - In non-compressed mode, the IEC60958 do not transmit the skipped frame as the decoder. Note: The skip com-							
	•	ts in PCM or CDDA mode	• •	as the decoder. Note. The skip com-				
BLK	This command is u	seful for Audio-Video synd this bit. For IEC60958/61	chronization when the video deco 937:	in the SKIP_MUTE_VALUE register. oder is in late. Once the blocks muted,				
		ode, the IEC61937 transmen is the following table.	nits pause frames burst. The valu	ie of repetition time and Gap length				
	'		utes exactly the same amount of	f data as the decoder.				
		Repetition Time	Gap Length Parameter					
	Dolby Digital MPEG	4 32	SKIP_MUTE_VALUE x 256 SKIP_MUTE_VALUE x 96	3				
PAU	has been reset by		mutes during the time of decodir	me, then and forever it tests if the bit ng a block of frame and so on. If reset,				
	- In compressed m with gap_length_p	ode, the IEC61937 transmarameter_1. Then and fore	nits a Pause frames burst which over, it test if the bit is still set. If t	duration is a time of decoding a frame he bit is still set, it transmits a Pause meter-2 and so on. If reset, it transmits				
	- In non-compress	ed mode, the IEC60958 m	utes exactly the same amount of	f data as the decoder.				
		Repetition Time	Gap Length Parameter_1	Gap Length parameter_2				
	Dolby Digital	4	6 x 256	256				
	MPEG Layer2 MPEG1 Layer1	32 32	12 x 96 4 x 96	96 96				
REB	Reboot command.			ve new data and it is reinitialized.				
	registers, can be lo the decoder transn - In compressed m	aded by host. To restart th nits null data to the DAC in ode, the IEC61937 transm	e decoder, the Run register must n idle state. For IEC60958/61937 nits a burst of pause-frames, of d					
		· · · · · · · · · · · · · · · · · · ·	e is defined in the AUD_SPDIF_ ansmits exactly the same data as	REP_TIME register. s the decoder. The IEC60958/61937 is				
	For correct termina	ation of the reboot procedu	ire, two frames must be sent to the	he audio decoder.				

AUD_SKIP_MUTE_VALUESkip frames or mutes blocks of frame

9x74 5 4 3 2 1 0

Address + 0x74

Type: R/W SW Reset: 0 HW Reset: 0

Description

This register works according to soft mute block of frames (bit BLK) or skip frame (bit SKP) in the AUD_SKIP_MUTE_CMD register.

If the command SKIP is selected, the decoder skips n frames, and then clears the register.

If the command AUD_SOFT_MUTE_BLOCK is selected, the decoder mutes n blocks, and then clears the register. n is the value of the AUD_SKIP_MUTE_VALUE register. The following table gives the number of sample in a block or in a frame.

	Samples by frames	Samples by blocks
Dolby Digital	1536	256
MPEG layer II	1152	96
MPEG layer I	384	96

7170180A 59/275

4.8 Interrupt registers

AUD_INTE

Interrupt enable

	7	6	5	4	3	2	1	0
80x0				INTE	[15:8]			
0x07				INTE	[7:0]			

Address: AudioBaseAddress + 0x08 - 0x07

Type: R/W SW Reset: 0 HW Reset: 0

Description

The audio decoder contains a 16 bit interrupt register associated with a 16 bit "enable" register. A bit set in this register will enable the corresponding interrupt. The interrupt associated with each bit is given in the register INT description.

AUD_INT

Interrupt

	7	6	5	4	3	2	1	0
0A		RESE	RVED		FIO	FBE	FBF	PCM
09	ANC	PTS	BOF	DEM	SFR	ERR	HDR	SYN

Address: AudioBaseAddress + 0x0A - 0x09

Type: RO SW Reset: 0 HW Reset: 0

Description

An interrupt is signalled whenever one of the bits of INT become set. This can only occur if the corresponding bit is set in the INTE register. The Table below shows the condition indicated by each bit.

Bitfield	Description
SYN	Change in Synchronization Status ¹
HDR	Valid Header Registered ¹
ERR	Error Detected ¹
SFR	Sampling frequency changed ²
DEM	De-emphasis Changed ²
BOF	First Bit of New Frame at Output Stage ²
PTS	First Bit of New Frame with PTS at Output Stage ¹
ANC	Ancillary Data Registered ¹
PCM	PCM Output Underflow ²
FBF	Frame Buffer Full: The frame buffer memory contains 2 frames: one decoded, and one parsed for next decoding
FBE	The frame buffer memory contains 1 frame which begins to be decoded. The next frame begins to be parsed

Bitfield	Description
FIO	FIFO Input has Overflowed ²
TBD	Reserved

- 1. Cleared when the MSB of the corresponding register is read, or when a reset occurs. Affected registers are listed in the following table.
- 2. Cleared when the MSB of the interrupt register is read or when a reset occurs.

Address	Name
0x0F	AUD_ERROR
0x40	AUD_SYNCSTATUS
0x41	AUD_ANCCOUNT
0x42	AUD_HEAD 4
0x46	AUD_PTS

4.9 Interrupt status registers

AUD_SYNC_STATUS Synchronization status

7 6 5 4 3 2 1 0 0x40 PAC FRA

Address: AudioBaseAddress + 0x40

Type: RO SW Reset: UND HW Reset: UND

Description

This register indicates the status of the audio parser for synchronization. It is used in conjunction with PACKET_LOCK and SYNCK_LOCK registers. On read the synchronization status interrupt bit is cleared (INT.SYN is cleared).

Frame Status
0 0: Research audio synchronization
0 1: Wait for confirmation - a synchro word has been detected but the parser has not yet detected SYNC-LOCK+1 synchro words.
1 0: Synchronized - SYNC_LOCK + 1 synchro words have been detected
1 1: Not used
Packet Status
0 0: Research packet synchronization word
0 1: Wait for confirmation a synchro word has been detected but the parser has not yet detected
PACKET_LOCK+1 synchro words.
1 0: Synchronized - PACKET_LOCK + 1 synchro words have been detected 1 1: Not used

AUD_ANCCOUNT Ancillary data

7 6 5 4 3 2 1 0 0x41

Address: AudioBaseAddress + 0x41

Type: RO SW Reset: UND HW Reset: UND

Description

This value gives the number of ancillary data in the stream. The ancillary data interrupt bit ANC of the AUD_INT register is cleared by a read.

AUD_HEAD4

HEADER 4 register

	1	6	5	4	3	2	1	0
AC_3	0	0	0	0	0		BSMOD	
MPEG-2	0	0	0	0	0	0	DR	K
OTHER	0	0	0	0	0	0	0	0

Address: AudioBaseAddress + 0x42

Type: RO SW Reset: UND HW Reset: UND

Description

This register contains header data HEAD[31:24]. The contents depend on the type of the frame.HEAD4[7:3] = 00000, in all cases.

When the host reads this register, the corresponding interrupt bit (HDR) is cleared.

Dolby Digital

Bitfield	Description
HEAD4[2:0]	BSMOD if an Dolby Digital frame

MPEG-2

Bitfield	Description
HEAD4[2]	0
HEAD4[1]	DR=1 Dynamic range exists
HEAD4[0]	K=0 in normal mode, K=1 in Karaoke mode.

OTHER

In all other types of frame HEAD4[2:0] = "000"

AUD_HEAD3 HEADER 3 register

	7	6	5	4	3	2	1	0
0x43	0	0	0			DTYPE		

Address: AudioBaseAddress + 0x43

Type: RO SW Reset: UND HW Reset: UND

Description

This register contains header data HEAD[23:16].HEAD3[7:5] = "000", in all cases HEAD3[4:0] = DTYPE

7170180A 63/275

DTYPE is the data type and is defined as follows:

Bit	Descript	tion
DTYPE	0000:	Null data or Linear PCM
	0001:	Dolby Digital
	0100:	MPEG-1 Layer I
	0101:	MPEG-1 Layer II or MPEG-2 word extension
	0110:	MPEG-2 Layer II with extension
	1001:	MPEG-2 Layer II low sample rate

Note This register can not detect the data-type of data in a stream.

AUD_HEADLEN Frame length

	7	6	5	4	3	2	1	0
0x44	HEADLEN[15:8]							
0x45				HEADL	EN[7:0]			

Address: AudioBaseAddress + 0x44 - 0x45

Type: RO SW Reset: UND HW Reset: UND

Description

The HEADLEN register contains the bit length of the compressed data frame HEAD[15:0]. HEADER registers are all updated as soon as the decoder begins to decode a frame.

AUD_PTS PTS

	7	6	5	4	3	2	1	0
0x46								PTS[32]
0x47				PTS[3	31:24]			
0x48	PTS[23:16]							
0x49	PTS[15:8]							
0x4A				PTS	[7:0]			

Address: AudioBaseAddress + 0x46 to 0x4A

Type: R/W SW Reset: UND HW Reset: UND

Description

When the PTS interrupt is activated, a new PTS value is stored in this register. Once the PTS[32] value is read bit PTS of the AUD_PTS register is cleared.

AUD_ERROR

ERROR code

5 4 3 2 1 0

Address + 0x0F

Type: RO SW Reset: 0 HW Reset: 0

Description

This is a status register, when read by the ST20, this and the corresponding interrupt register are cleared. This register 7-bit register is ANDed with 0x7F to get the correct value. The value in the ERROR register indicates the type of error that has occurred. These errors are defined in the table below.

Error Name	Value
Dolby Digital Decoding	1
NO-ERROR	0
EXPAND_DELTA_PAST_END_ARRAY	1
XDCALL_TRY_TO_REUSE_REMAT_FLG	2
XDCALL_TRY_TO_REUSE_COUPLING_STRA	3
XDCALL_CANT_COUPLE_IN_DUAL_MODE	4
XDCALL_TRY_TO_REUSE_CPL_LEAK	5
XDCALL_TRY_TO_REUSE_SNR	6
XDCALL_TRY_TO_REUSE_BIT_ALLOC	7
XDCALL_TRY_TO_REUSE_COUPLING_EXPONENT_STRA	8
XDCALL_TRY_TO_REUSE_EXPONENT_STRA	9
XDCALL_TRY_TO_REUSE_LFE_EXPONENT_STRA	10
XDCALL_CHBWCOD_IS_TOO_HIGH	11
BSI_ERR_REV	12
BSI_ERR_CHANS	13
CRC_NOT_VALID	14
Packet Synchronization	,
SYNCHRO_PACKET_NOT_FOUND	16
BAD_MPEGI_RESERVED_WORD	17
BAD_MPEG2_RESERVED_WORD	18
BAD_LPCM_SYNCHRO	19
UNKNOWN_STREAM_ID	20
MARKER_ERROR	21
UNKNOWN_SUB_STREAM_ID	22
IEC958_INPUT_MISMATCH_CONF	23
IEC958_MPEG2_LAYERI_NOT_SUPPORTED	24
IEC958_PAUSE_FRAME_NOT_SUPPORTED	25
IEC958_BAD_DATA_TYPE_DEPENDANT	26
MISMATCH _HOST_SEL_CONFIGURATION	27
Audio Synchronization	'
SYNCHRO_AUDIO_NOT_FOUND	32
BAD_CRC_AC3	33

4 Audio decoder (AUD)	STi5518
BAD_LPCM_QUANTIZATION_WORDLENGTH	34
BAD_AUDIO_SAMPLING_FREQUENCY	35
BAD_MPEG_LAYER	36
MPEG_BITRATE_FREE_FORMAT	37
NOT_SUPPORTED_AC-3_FRMSIZECOD	38
BAD_CRC_MPEG_EXTENDED	39
BAD_MPEG_EXTENDED_RESERVED_BIT	40
MPEG_EXTENDED_SYNC_NOT_FOUND	41
MPEG_EXTENDED_LENGTH_TOO_SMALL	42
DTS Transmission	1
BAD_SAMPLES_PER_CHANNEL	44
BAD_FRAME_BIT_SIZE	45
MPEG Decoding	'
MPEG_EXTENSION_ERROR	48
MPEG_MC_MUTE	49
NOT USED	50
NOT USED	51
MPEG_LAYER_ERROR	52
MPEG_CHCONFIG_ERROR	53
MPEG_MC_PREDICTION_ERROR	54
MPEG_CRC_ERROR	55
MPEG_EXT_CRC_ERROR	56
MPEG_TOO_SMALL_FOR_MC_HEADER	57
MPEG_BITRATE_ERROR	58
Miscellaneous	
IEC_958_READ_ERROR	64
MPEG_FB_BYPASS_AREA_ERROR	65
SKIPPING_BITS_IN_FB_ERROR	66
LATENCY_TOO_BIG	67
SKIP_MUTE_ERROR	68
UNKNOW_SFREQ_FOR_LATENCY	69
LATENCY TOO SMALL	70

4.10 Decoding algorithm registers

The table below shows how the AUD_STREAMSEL and AUD_DECODESEL registers should be programmed for different types of bitstream.

AUD_STREAMSEL (0x4C)	AUD_DECODESEL (0x4D)	Mode
0	0	MPEG2 PES carrying Dolby Digital (ATSC)
0	1	MPEG2 PES carrying MPEG1 frames
0	2	MPEG2 PES carrying MPEG2 frames
1	0	MPEG2 PES carrying Dolby Digital frames for DVD
1	2	MPEG2 PES carrying MPEG2 frames for DVD
1	3	MPEG2 PES carrying linear PCM for DVD
1	6	MPEG2 PES carrying DTS frames for DVD
2	1	MPEG1 packet carrying MPEG1 audio
3	0	Dolby Digital frames elementary streams
3	1	MPEG1 frame elementary streams
3	2	MPEG2 frame elementary stream
3	3	Stereo PCM (16bits samples)
3	4	Pink noise generator
3	5	CDDA (Stereo PCM 16 bits samples)
3	6	DTS elementary stream
3	7	Activate PCM beep tone
3	8	MP3 elementary streams
5	0	IEC61937 Input with Dolby Digital frames
5	1	IEC61937 Input with MPEG1 frames
5	2	IEC61937 Input with MPEG2 frames
5	6	IEC61937 Input with DTS frames

Table 43 STREAMSEL and DECODESEL programming definitions

AUD_DECODESEL Decoding algorithm

Address: AudioBaseAddress + 0x4D

Type: R/W SW Reset: NC HW Reset: UND

7170180A 67/275

Description

This register identifies the audio data-type.

Bittield	Description
DEC	000: Dolby Digital Decoding
	001: MPEG1
	010: MPEG2
	011: PCM/LPCM
	100: PINK NOISE generator
	101: CD_DA
	110: DTS
	111: PCM beep tone generator
	1000: MP3

AUD_STREAMSEL STREAM selection

	7	6	5	4	3	2	1	0
0x4C							STRSEL	

Address: AudioBaseAddress + 0x4C

Type: R/W SW Reset: NC HW Reset: UND

Description

Bitfield	Description
STRSEL	000: PES 001: PES DVD
	010: Packet MPEG1
	011: Elementary Stream/IEC60958 100: Reserved 101: SPDIF IEC61937

4.11 System synchronization registers

AUD PACKET LOCK Packet lock

7 6 5 4 3 2 1 0 0x4F

Address: AudioBaseAddress + 0x4F

Type: R/W SW Reset: NC HW Reset: UND

Description

This register specifies the number of supplementary packet synchro words that the packet parser must detect before it is considered as synchronized, and can send data to the audio parser (max=1, min=0). In this way, stream data can not be sent to the audio parser instead of packet sync words.

PACKET_LOCK = 0: the packet parser is synchronized when it has detected one packet synchro word.

PACKET_LOCK = 1: the packet parser is synchronized when it has detected two packet synchro words.

AUD_ID_EN Enable audio ID

7 6 5 4 3 2 1 0 0x50

Address: AudioBaseAddress + 0x50

Type: R/W SW Reset: NC HW Reset: UND

Description

If set to 1, the audio decoder decodes only the stream corresponding to the stream-id or sub-stream-id of the packet layer. This selection is done through AUDIO_ID or AUDIO_ID_EXT registers. If set to 0, the decoder decodes all the audio packets.

AUD_ID Audio ID

7 6 5 4 3 2 1 0

Address: AudioBaseAddress + 0x51

Type: R/W SW Reset: NC HW Reset: UND

Description

0x51

When decoding packets, it is possible to specify an identifier for a selected program. AUDIO_ID must be written with the packet ID. This feature is enabled when the register AUDIO_ID_EN is set, and only packets with matching ID are decoded.

7170180A 69/275

For MPEG1 packets or PES, the 5 LSB bits are significant. For DVD PES (LPCM, Dolby Digital or MPEG), the 3 LSB bits are significant (see audio pack definition in DVD specifications).

These bits correspond to the stream number defined in the STREAM_ID field of the audio packet header, except for DVD Dolby Digital or LPCM packets, where they correspond to the stream number defined in the SUB_STREAM_ID field.

AUD_ID_EXT

Audio extension

7 6 5 4 3 2 1 0 0x52

Address: AudioBaseAddress + 0x52

Type: R/W SW Reset: NC HW Reset: UND

Description

The 3 LSB bits of this register are significant. In case of DVD MPEG2 audio with extension bitstream (see DVD specifications), this register is used to select the stream defined in the STREAM_ID of the packets containing MPEG2 extension bit stream data.

AUD_SYNC_LOCK SYNC lock

7 6 5 4 3 2 1 0 0x53

Address: AudioBaseAddress + 0x53

Type: R/W SW Reset: NC HW Reset: UND

Description

This register specifies the number of supplementary audio synchro words that the audio parser must detect before it is considered as synchronized, and can send data to the decoder. In this way, stream data can not be sent to the decoder instead of audio sync words. Max value = 3; min value = 0.

SYNC_LOCK = 0, the audio parser is synchronized when it has detected one audio synchro word.

SYNC_LOCK = n > 0, when the audio parser has detected one synchro word, it waits until it detects n supplementary audio sync words. When it has detected (SYNC_LOCK+1) sync words, it sends the data to the decoder.

4.12 Post decoding and pro logic registers

AUD PDEC

Post decoder control

	7	6	5	4	3	2	1	0	
0x62	62 Reserved		DEM	DCF	Reserved		PL		

Address: AudioBaseAddress + 0x62

Type: R/W SW Reset: NC HW Reset: UND

Description

This register controls the post decoder operations.

Bitfield	Description
PL	When high Pro Logic decoding is forced, when low the PL decoder is activated only if the output of the previous decoding stage is Pro Logic encoded.
DCF	When high the DC filter is activated.
DEM	When high the de-emphasis filter is activated.
Reserved	Set to zero

AUD_PL_AB Pro logic auto balance

7 6 5 4 3 2 1 0

Address: AudioBaseAddress + 0x64

Type: R/W SW Reset: NC HW Reset: UND

Description

0x64

This register enables the auto balance function of the pro-logic decoder. The default value is zero (auto balance off).

AUD_PL_DWNX Pro logic decoder downmix

7 6 5 4 3 2 1 0 0x65

Address: AudioBaseAddress + 0x65

Type: R/W SW Reset: NC HW Reset: UND

7170180A 71/275

Description

This value in this register controls the function of the Pro Logic Downmix.

Value	Comment
0, 1, 2	Pro Logic is disabled
3	3/0 (L, C, R) three stereo
4	2/1 (L, R, S) phantom
5	3/1 (L, C, R, S)
6	2/2 (L, R, S, S) phantom
7	3/2 (L, C, R, S, S)

Phantom mode means that the center is not used.

AUD_DWSMODE Downsampling filter

7 6 5 4 3 2 1 0

Address: AudioBaseAddress + 0x70

Type: R/W SW Reset: NC HW Reset: UND

Description

0x70

This register controls the downsampling filter. When decoding a 96kHz DVD-LPCM stream, it might be necessary to downsample the stream to 48kHz.

Value	Mode
0	Automatic (according to bitstream)
1	Force Downsampling
2	Suppress Downsampling

4.13 Bass redirection registers

AUD_VOLUMEO

Volume of first channel

Address 0x4E
Type: RWS
SW Reset: 0
HW Reset: UND

Description

This register reads or writes the attenuation that is applied to the channel selected by CHAN_IDX. The attenuation is kdB where k is the contents of the register.

- If CHAN_IDX = 0, then VOLUME0 can be written with the attenuation that will be applied to Left channel.
- If CHAN_IDX = 1, then VOLUME0 can be written with the attenuation that will be applied to Center channel.
- If CHAN_IDX = 2, then VOLUME0 can be written with the attenuation that will be applied to Left Surround channel.
- If CHAN_IDX = 5, then reading VOLUME0 provides the attenuation that is applied to Left channel.
- If CHAN_IDX = 6, then reading VOLUME0 provides the attenuation that is applied to Center channel.
- If CHAN_IDX = 7, then reading VOLUME0 provides the attenuation that is applied to Left Surround channel.
- For other values of CHAN_IDX, then the contains of this register is meaningless.

AUD_VOLUME1 Volume of second channel

Address: 0x63
Type: RWS
SW Reset: 0
HW Reset: UND

Description

This register reads or writes the attenuation that is applied to the channel selected by CHAN_IDX. The attenuation is -kdB where k is the contents of the register.

- If CHAN_IDX = 0, then VOLUME1 can be written with the attenuation that will be applied to Right channel.
- If CHAN_IDX = 1, then VOLUME1 can be written with the attenuation that will be applied to Subwoofer channel.
- If CHAN_IDX = 2, then VOLUME1 can be written with the attenuation that will be applied to Right Surround channel.
- If CHAN_IDX = 5, then reading VOLUME1 provides the attenuation that is applied to Right channel.
- If CHAN_IDX = 6, then reading VOLUME1 provides the attenuation that is applied to Subwoofer channel.
- If CHAN_IDX = 7, then reading VOLUME1 provides the attenuation that is applied to Right Surround channel.
- For other values of CHAN_IDX, then the contents of this register are meaningless.

7170180A 73/275

AUD_OCFG

Output configuration

	*	0	5	4	3	2	1	0
0x66							OCFG_num	

Address: AudioBaseAddress + 0x66

Type: R/W SW Reset: NC HW Reset: UND

Description

This register specifies the bass redirection scheme (see Dolby specifications for further information on this scheme). In this table, LP means low-pass filter, HP means high-pass filter.

Bitfield	Description
OCFG_num	Configuration number for bass management. For OCFG_num equal to 2 or 3, the subwoofer can be output if bit LFE = 1. For all other values of OCFG_num, bit LFE has no effect
	000: ALL, All channels are rounded according to the selected output precision, (24b -> 16b, 24 -> 18b.) and scaled (volume control) only.
	001: LSW, Low frequencies are extracted from the six input channels and redirected to the subwoofer. SUB = LP (L + R + LS + Rs + C + LFE) Low frequencies are removed from all channels L = HP (L) R = HP (R) C = HP (C) LS = HP (LS) RS = HP (RS)
	010: LLR, Low frequencies are extracted from C, LFE, LS and RS channels and redirected to left and right channels if subwoofer is not output or to the subwoofer. C =HP (C), Rs = HP (Rs), Ls = HP (Ls) if subwoofer is output, SUB = LP(LFE + C + Ls+ Rs), L = L, R = R if subwoofer is not output, L = L + LP (C + LFE + LS + RS), R = R + LP (C + LFE + LS + RS)
	011: SLP, Low frequencies are redirected to the left, right and surround channels or can be output on the subwoofer. if subwoofer is output, SUB = LFE, L = L + LP(C), R = R + LP(C), Ls = Ls, Rs = Rs if subwoofer is not output, L = L + LP(C) + LFE, R = R + LP(C) + LFE, Ls = Ls + LFE, Rs = Rs + LFE.
	101: BYP, All channels are directly routed to PCM outputs.
LFE	Subwoofer is not output Subwoofer is output

AUD_CHAN_IDX Channel Index

	7	6	5	4	3	2	1	0
0x67			Reserved		CHAN_IDX			

Address: 0x67
Type: R/W
SW Reset: 4
HW Reset: UND

This register identifies the pair of channels and the type of access:

Bitfield	value	Channel pair	Access	comment
CHAN IDX	0	Left and Right	write	
	1	Center and Subwoofer	write	
	2	Left surround and right surround	write	
	3	not used	not used	
	4	no pair selected	none	Indicates that volume can be read or written
	5	Left and Right	read	
	6	Center and Subwoofer	read	
	7	Left surround and right surround	read	

- To read a volume, the register AUD_CHAN_IDX must be set to the appropriate value. The DSP indicates that the
 attenuation is readable through registers AUD_VOLUME0 and AUD_VOLUME1 by changing automatically the
 AUD_CHAN_IDX to value 4.
- To write a volume, the attenuation of the pair of channel should be written in AUD_VOLUME0 and AUD_VOLUME1
 registers. Then the AUD_CHAN_IDX register is written to the appropriate value. The attenuation is updated on the
 next audio block and AUD_CHAN_IDX value is automatically changed to 4.

7170180A 75/275

4.14 Dolby Digital configuration registers

AUD_AC3_DECODE_LFEDecode LFE

7 6 5 4 3 2 1 0 0x68

Address: AudioBaseAddress + 0x68

Type: R/W SW Reset: NC HW Reset: UND

Description

When this register is set to 1, the device decodes LFE channel (if present).

AUD_AC3_COMP_MOD Compression mode

7 6 5 4 3 2 1 0 0x69

Address: AudioBaseAddress + 0x69

Type: R/W SW Reset: NC HW Reset: UND

Description

The value of this register defines the compression mode. In custom A mode, the dialog normalization function is not done by the audio decoder, it has to be done by an external analog part. In all other modes the normalization is done by audio decoder.

Value	Meaning	
0	Custom A (Analog)	
1	Custom D (Digital)	
2	Line Out	
3	RF Mode	

AUD_AC3_HDR High dynamic range

7 6 5 4 3 2 1 0 0x6A

Address: AudioBaseAddress + 0x6A

Type: R/W SW Reset: NC HW Reset: UND

Description

This register corresponds to the Dynamic range scale factor for high level signals, also called cut factor in the Dolby specifications.

HDR = 255 * Cut Factor (in decimal), where the cut factor is a fractional number between 0 and 1. It is used to scale the dynamic range control word for high-level signals that would otherwise tend to be reduced.

When HDR = 0xff (cut factor = 1.0), the high level signals reduction is the one given in the stream. A value of zero disables the high level compression. This word is ignored if the compression mode is set to RF mode.

AUD_AC3_LDR Low dynamic range

7 6 5 4 3 2 1 0

Address: AudioBaseAddress + 0x6B

Type: R/W SW Reset: NC HW Reset: UND

Description

0x6B

This register corresponds to the Dynamic range scale factor for low level signals, also called boost factor in the Dolby specifications.

LDR = 255 * BoostFactor (in decimal), where the boost factor is a fractional number between 0 and 1.0.

The boost factor scales the dynamic range control-word for low-level signals that would otherwise tend to be amplified. When LDR = 0xff (boost factor = 1.0), and the low level signals amplification is maximum. A value of zero disables the low-level amplification. This word is ignored if the compression mode is set to RF mode.

AUD_AC3_RPC Repeat count

7 6 5 4 3 2 1 0 0x6C

Address: AudioBaseAddress + 0x6C

Type: R/W SW Reset: NC HW Reset: UND

Description

When a CRC error is detected, previous blocks can be repeated or muted. This register specifies the number of audio blocks to repeat before muting. If this is zero, then blocks are muted until the next frame is decoded

AUD_AC3_KARAMODE Karaoke downmix

7 6 5 4 3 2 1 0 0x6D

Address: AudioBaseAddress + 0x6D

Type: R/W SW Reset: NC HW Reset: UND

7170180A 77/275

Downmix mode when a karacke bit stream is received. A Karacke bitstream can be composed of 5 channels, which are: L(left), R(right), M(Music), V1(Vocal 1), V2(Vocal 2). There are two major modes when receiving a Karacke bitstream: aware and capable.

- When in 'aware' mode (AUD_KARAMODE = 0), a predefined downmix is applied on all incoming channels.
- When in 'capable' mode (AUD_KARAMODE = 4, 5, 6, 7), the user can choose to reproduce or not the two incoming vocal channels, V1 and V2.

An additional mode is added (AUD_KARAMODE = 3) to allow multi-channel reproduction. In this case, the downmix specified by the AUD_DOWNMIX and AUD_DUALMODE registers is applied. The following table summaries the different modes:

Value	Mode	Comment
0	Aware	Left = L + clev*M + slev*V1, Right = R + clev*M + slev*V2
1		Not used
2		Not used
3	Multichannel	Consider bitstream as multi-channel:
		Perform downmix according to DOWNMIX and DUALMODE registers
4	Capable	Do not reproduce V1, V2: Left = L + clev*M, Right = R + clev*M
5		Reproduction V1 only: Left = L + clev*M + 0.707*V1, Right = R + clev*M + 0.707V1
6		Reproduction V2 only: Left = L + clev*M + 0.707*V2, Right = R + clev*M + 0.707V2
7	1	Reproduction V1, V2: Left = L + clev*M + V1, Right = R + clev*M + V2

Left = Output Channel,

Right = Output Channel, L, R, M, V1, V2 = Input Channels (coded in Dolby Digital karaoke bitstream),

clev = Center Mix Level (value provided in the bitstream),

slev = Surround Mix Level (value provided in the bitstream). For further information ref. to annex C of ATSC standard "Digital Audio Compression (AC-3)".

AUD AC3 DUALMODE Dual downmix

	7	6	5	4	3	2	1	0
0x6E								

Address: AudioBaseAddress + 0x6E

Type: R/W SW Reset: NC HW Reset: UND

Description

This register allows additional downmix to be set when in 2/0 output mode or when receiving a "Dual mode" incoming bitstream (example: A disk with 2 different languages on channel 1 and channel 2). In the following table, channel 1 and 2 represent the output channels after downmix performed with AUD_AC3_DOWNMIX.

This register enables Mono downmix when AUD DOWNMIX = 2 and AUD DUALMODE = 3.

Value	Comment
0	Output as Stereo
1	Output Channel 1 on both output L/R
2	Output Channel 2 on both output L/R
3	Mix Channel 1 and 2 to monophonic and output on both L/R

AUD AC3 DOWNMIX

Downmix

5

Address + 0x6F

Type: R/W SW Reset: NC HW Reset: UND

Description.

Value	Comment
0	2/0 Dolby Surround (LT, RT)
1	1/0 (C)
2	2/0 (L, R)
3	3/0 (L, C, R)
4	(L, R, S)
5	3/1 (L, C, R, S)
6	2/2 (L, R, LS, RS - Dolby Phantom Mode
7	3/2 (L, C, R, L _S , R _S)

Note In notation, 3/2 represents 3 front speakers and 2 surround speakers.

AUD_AC3_STATUS0 Dolby Digital status register

	7	6	5	4	3	2	1	0
0x76	Not used	fs_c	cod			Bitrate code		

Address: AudioBaseAddress + 0x76

Type: RO SW Reset: NC HW Reset: UND

Description

This register contains bit stream information extracted from the stream.

Bitfield	Description
Bitrate code	Code identifying the bitrate. Bitrate[40] = frmsizecod[51]
fs_cod	Code identifying the sampling frequency

AUD_AC3_STATUS1 Dolby Digital status register 1

	7	6	5	4	3	2	1	0
0x77	Reserved				LFE		Acmod	

Address: AudioBaseAddress + 0x77

Type: RO SW Reset: NC HW Reset: UND

7170180A

This register contains bit stream information extracted from the stream.

Bitfield	Description
Acmod	Audio coding mode. Indicates which channels are in use.
LFE	Indicates if LFe channel is present in the stream

AUD_AC3_STATUS2 Dolby Digital status register 2

	7	6	5	4	3	2	1	0
0x78		Bsmod				Bsid		

Address: AudioBaseAddress + 0x78

Type: RO SW Reset: NC HW Reset: UND

Description

This register contains bit stream information extracted from the stream.

Bitfield	Description
Bsid	Bit stream identification, indicates the version of the standard
Bsmod	Bbit stream mode, indicates the type of service

AUD_AC3_STATUS3 Dolby Digital status register 3

	7	6	5	4	3	2	1	0
0x79		Rese	erved		Cmix	klevel	SurM	ixlevel

Address: AudioBaseAddress + 0x79

Type: RO SW Reset: NC HW Reset: UND

Description

This register contains bit stream information extracted from the stream.

Bitfield	Description
Cmixlevel	Downmix level of center channel
SurMixlevel	Downmix level of surround channel

AUD_AC3_STATUS4 Dolby Digital status register 4

	7	6	5	4	3	2	1	0
0x7A		Reserved		Dsur	mod	Copyright	Origbs	Lancode

Address: AudioBaseAddress + 0x7A

Type: RO SW Reset: NC HW Reset: UND

This register contains bit stream information extracted from the stream.

Bitfield	Description
Lancode	When at 1, indicates that a language code is provided in the stream
Origbs	When at 1, indicates that the stream is an original
Copyright	When at 1, indicates that the stream is protected by copyright
Dsurmod	In 2/0 mode, indicates if the stream is Dolby surround encoded

AUD_AC3_STATUS5 Dolby Digital status register 5

	7	6	5	4	3	2	1	0
0x7B				Lan	code			

Address: AudioBaseAddress + 0x7B

Type: RO SW Reset: NC HW Reset: UND

Description

This register contains the code of the language of the audio service, extracted from the stream.

AUD_AC3_STATUS6 Dolby Digital status register 6

	7	6	5	4	3	2	1	0
0x7C		Reserved			ialog Normaliz	ation (see Dolb	y specifications	s)

Address: AudioBaseAddress + 0x7C

Type: RO SW Reset: NC HW Reset: UND

Description

This register contains the code indicating the dialog normalization level extracted from the stream.

AUD_AC3_STATUS7 Dolby Digital status register 7

	7	6	5	4	3	2	1	0
0x7D	Roon	n type			Mix level			Audprodie

Address: AudioBaseAddress + 0x7D

Type: RO SW Reset: NC HW Reset: UND

7170180A 81/275

This register contains bit stream information extracted from the stream.

Bitfield	Description
Audprodie	Audprodie: if set, indicates that room type and mix level are provided
Mix level	If audprodie is set, mix level indicates the sound level
Room type	If audprodie is set, mix level indicates the sound level

4.15 MPEG configuration registers

AUD_MP_SKIP_LFE Channel skip

	7	6	5	4	3	2	1	0
0x68				Res	erved			

Address: AudioBaseAddress + 0x68

Type: R/W SW Reset: 0x00 HW Reset: UND

Description

When this register is set to 1, the LFE channel is skipped. When this register is set to 0 the LFE channel is decoded (if present).

AUD_MP_PROG_NUMBERProgram number

	7	6	5	4	3	2	1	0
0x69				Reserved				Prog

Address: AudioBaseAddress + 0x69

Type: R/W SW Reset: 0x00 HW Reset: UND

Description

When the stream is in Second Stereo mode, this register specifies which program is played.

	Bitfield	Description
Ī	Prog	Select program #0 or #1 where 0: L0,R0 in front channels, 1: L2,R2 in front channels

AUD_MP_DUALMODE MPEG setup dual mode

7 6 5 4 3 2 1 0 0x6E

Address: AudioBaseAddress + 0x6E

Type: R/W SW Reset: 0x00 HW Reset: UND

The MPEG DUAL_MODE is active in downmix mode 1 and 9.

Val	ue			Comment
0	U			Output as Stereo
1				Output Channel 1 on both outputs L/R
2				Output Channel 2 on both outputs L/R
3	3 Mix Channel 1 and 2 to monophonic, and output on both L/R			

AUD_MP_DRC Dynamic range control

	7	6	5	4	3	2	1	0
0x6A								DRC

Address: AudioBaseAddress + 0x6A

Type: R/W SW Reset: 0x00 HW Reset: UND

Description

When bit DRC=1, dynamic range control is enabled. The dynamic range is set according to the data transmitted in the DVD MPEG stream.

AUD_MP_CRC_OFF CRC_CHECK_OFF

Address: AudioBaseAddress + 0x6C

Type: R/W SW Reset: NC HW Reset: UND

When register is set to 1, the CRC in MPEG frame is not checked. When register is set to 0, the CRC in MPEG frame is checked if exists. If a CRC error occurs, the decoder soft mutes the frame (but does note stop).

7170180A 83/275

AUD MP MC OFF

Multi-channel

	N	7	6	5	4	3	2	1	0
0x6D	"		Reserved		DEN		Reserved		MC

Address + 0x6D

Type: R/W SW Reset: NC HW Reset: UND

Description

Bitfield	Description
MC	When MC=1, the multi-channel part of the bitstream is not decoded, only the MPEG-1 compatible bitstream is decoded. Bit MC must be set to 1 for an MPEG-1 bitstream.
DEN	De-normalization: set DEN=0 for MPEG1 signals, and set DEN=1 for MPEG2 multi-channel signals
	When DEN=1, MPEG2 multi-channel signals L, C, R, LS and RS can be de-normalized. The signals must first be inverse-weighted then multiplied by the de-normalization factor. This undoes the attenuation carried out at the encoder side to avoid overload when calculating the compatible signals (see MPEG 13818-3 specifications).

AUD_MP_DOWNMIX MPEG downmix

7 6 5 4 3 2 1 0 0x6F

Address: AudioBaseAddress + 0x6F

Type: R/W SW Reset: 0x08 HW Reset: UND

Description

In the table below, L_O, R_O, C_O, Ls_O, Rs_O represent the output channels after downmix, and L, R, C, L_S, R_S are the audio channels.

The coefficients K_j , K_C , K_r , K_S , depend on the number of input channels. In the above table, the equations are given for a 5 channels input bitstream. If the input bitstream does not contain five channels (L, C, R, L_S, R_S), the coefficient "Kj" corresponding to the channel not present is equal to 0. If the MPEG bitstream contains only one surround channel (S), replace ($K_S \times (L_S + R_S)$), ($K_S \times L_S$ and ($K_S \times R_S$) by ($K_S \times S$) in the above equations.

Value	Output Mode	Comment
0x00	1/0 (C) = Mono	$C_O = K_j \times L + C + K_r \times R + K_S (L_S + R_S)$
0x01	2/0 (L, R) = Stereo	$L_O = (L + K_C \times C + K_S \times L_S)/(1 + K_C + K_S),$ $R_O = (R + K_C \times C + K_S \times R_S)/(1 + K_C + K_S)$
0x02	3/0 (L, C, R)	$L_O = L + K_S \times L_S, R_O = R + K_S \times R_S, C_O = C$
0x03	2/1 (L, R, S)	$L_O = L + K_C \times C, R_O = R + K_C \times C, Ls_O = Rs_O = K_S \times (L_S + R_S)$
0x04	3/1 (L, C, R, S)	$L_O = L, R_O = R, C_O = C, Ls_O = Rs_O = K_S x (L_S + R_S)$
0x05	2/2 (L, R, L _S , R _S)	$L_O = L + K_C \times C, R_O = R + K_C \times C, Ls_O = L_S, Rs_O = R_S$
0x06	3/2 (L, C, R, L _S , R _S)	$L_O = L, R_O = R, C_O = C, Ls_O = L_S, Rs_O = R_S$
0x09	2/0 (Dolby surround L _T , R _T)	$L_T = (L + 0.707C - 0.707 \times 0.5 (LS + R_S)) /2.414,$
		$R_T = (R + 0.707C + 0.707 \times 0.5 (L_S + R_S)) / 2.414$
0x0A	2/0 Karaoke capable: V1 ON, V2 ON	Lk = L + 0.707 A1 + 0.707 G, Rk = R + 0.707 A2 + 0.707 G
0x0B	2/0 Karaoke Capable: V1 ON, V2 OFF	Lk = L + 0.707 A1 + 0.707 G, Rk = R + 0.707 G

0x0C	2/0 Karaoke Capable: V1 OFF, V2 ON	Lk = L + 0.707 G, Rk = R + 0.707 A2 + 0.707 G
0x0D	2/0 Karaoke Capable: VI OFF, V2 OFF	Lk = L + 0.707 G, Rk = R + 0.707 G
0x0E	2/0 Karaoke Capable: V1 ON, V2 OFF (Dolby Digitarlike)	Lk = L + 0.707 A1 + 0.707 G, Rk = R + 0.707 A1 + 0.707 G
0x0F	2/0 Karaoke Capable: V1 OFF, V2 ON (Dolby Digital like)	Lk = L + 0.707 A2 + 0.707 G, Rk = R + 0.707 A2 + 0.707 G
0x1A	3/0 Karaoke Capable: V1 ON, V2 ON	Lk = L + 0.707 A1, Ck = G, Rk = R + 0.707 A2
0x1B	3/0 Karaoke Capable: V1 ON, V2 OFF	Lk = L + 0.707 A1, Ck = G, Rk = R
0x1C	3/0 Karaoke Capable: V1 OFF, V2 ON	Lk = L, Ck = G, Rk = R + 0.707 A2
0x1D	3/0 Karaoke Capable: V1 OFF, V2 OFF	Lk = L, Ck = G, Rk = R
0x1E	3/0 Karaoke Capable: V1 ON, V2 OFF (Dolby Digital like)	Lk = L, Ck = G + A1, Rk = R
0x1F	3/0 Karaoke Capable: V1 OFF, V2 ON (Dolby Digital like)	Lk = L, $Ck = G + A2$, $Rk = R$

AUD_MP_STATUS0 MPEG status register 0

	7	6	5	4	3	2	1	0
0x76	ID	LAY[1:0]		Р		BRI	[3:0]	

Address: AudioBaseAddress + 0x76

Type: RO SW Reset: UND HW Reset: UND

Description

Bitfield	Description
BRI[3:0]	Bit rate index
Р	Protection Bit
LAY[1:0]	Layer
ID	Identifier

AUD_MP_STATUS1 MPEG status register 1

	7	6	5	4	3	2	1	0
0x77	SFR[1:0]		PAD	PRI	MOD	[1:0]	MEX[[1:0]

Address: AudioBaseAddress + 0x77

Type: RO SW Reset: UND HW Reset: UND

7170180A 85/275

Bitfield	Description
MEX[1:0]	Mode Extension
MOD[1:0]	Mode
PRI	Private Bit
PAD	Padding Bit
SFR[1:0]	Sampling Frequency

AUD_MP_STATUS2 MPEG status register 2

	7	6	5	4	3	2	1	0
0x78	not used				С	OCB	EMF	P[1:0]

Address: AudioBaseAddress + 0x78

Type: RO SW Reset: UND HW Reset: UND

Description

Bitfield	Description
EMP[1:0]	Emphasis rate index
OCB	Original/Copy Bit
С	Copyright

AUD_MP_STATUS3 MPEG status register 3

	7	6	5	4	3	2	1	0
0x79	CEN[1:0]		SUR	[1:0]	LFE	AMX	DEN	Л[1:0]

Address: AudioBaseAddress + 0x79

Type: RO SW Reset: UND HW Reset: UND

Description

Bitfield	Description
DEM[1:0]	Dematrix procedure
AMX	Audio mix
LFE	LFE
SUR[1:0]	Surround
CEN[1:0]	Centre

AUD_MP_STATUS4 MPEG status register 4

	7	6	5	4	3	2	1	0	
0x7A	EXT		NML[2:0]		MFS	MLY	CIB	CIS	

Address: AudioBaseAddress + 0x7A

Type: RO SW Reset: UND

HW Reset:	UND
Bitfield	Description
CIS	Copy <mark>rig</mark> ht ID S ta rt
CIB	Copyright ID Bit
MLY	Multi-lingual Layer
MFS	Multi-lingual FS
NML[2:0]	Number of Multi-lingual Channels
EXT	Extension bitstream present

AUD_MP_STATUS5 MPEG status register 5

7 6 5 4 3 2 1 0 0x7B

Address: AudioBaseAddress + 0x7B

Type: RO SW Reset: UND HW Reset: UND

Description

The number of extended ancillary data bytes is contained in this register

4.16 Pink noise generation registers

AUD_PN_DOWNMIX Pink noise downmix

	7	6	5	4	3	2	1	0
0x6F			RS	LS	LFE	С	R	L

Address: AudioBaseAddress + 0x6F

Type: R/W SW Reset: NC HW Reset: UND

Description

Bitfield	Description
L	1: Left channel contains pink noise 0: Left channel is forced to zero
R	1: Right channel contains pink noise 0: Right channel is forced to zero
С	Center channel contains pink noise Center channel is forced to zero
LFE	1: LFE channel contains pink noise 0: LFE channel is forced to zero
LS	1: Left surround channel contain pink noise 0: Left surround channel is forced to zero
RS	Right surround channel contains pink zero Right surround channel is forced to zero

After this processing, the AUD_OCFG stage is applied on these channels. AUD_OCFG must be configured to 0 and attenuation on all channels must be set to 10dB attenuation.

7170180A 87/275

The other values must not be used because low frequency extraction must not be done when generating pink noise.

Pink noise selection is made through the AUD_STREAMSEL and AUD_DECODSEL registers.

4.17 DTS

AUD_DTS_STATUS0 DTS status 0 register

	7	6	5	4	3	2	1	0
0x76				NB	LKS			

Address: 0x76
Type: RO
SW Reset: NC
HW Reset: UND

Description

This status register contains the number of PCM samples in the stream. The value is extracted from the stream, and can be read after each BOF interrupt.

Bitfield	Description
NBLKS	The number of PCM samples is: (NBLKS+1) * 32

AUD_DTS_STATUS1 DTS status 1 register

	7	6	5	4	3	2	1	0	
0x77	Rese	rved		AMODE					

Address: 0x77
Type: RO
SW Reset: NC
HW Reset: UND

Description

This status register contains the arrangement mode of the audio channels. It defines the number and type of conveyed channels. The value AMODE is extracted from the incoming stream and can be read after each BOF interrupt.

AMODE value	N° of channels	Arrangement	
0	1	A	
1	2	A + B (dual mono)	
2	2	L + R (stereo)	
3	2	(L+R) + (L-R)	
4	2	LT + RT	
5	3	C+L+R	
6	3	L+R+S	
7	4	C+L+R+S	
8	4	L+R+SL+SR	

AMODE value	N° of channels	Arrangement
9	5	C+R+L+SL+SR
10	6	CL + CR + L + R + SL + SR
11	6	C + L + R + LR + RR + OV
12	6	CF + CR + LF + RF + LR + RR
13	7	CL + C + CR + L + R + SL + SR
14	8	CL + CR + L + R + SL1 + SL2 + SR1 + SR2
15	8	CL + C + CR + L + R + SL + S + SR
16/63	-	user defined

The following abbreviations have been used in the table above:

L: left, R: Right, C: Center, S: Surround, F: Front, R: Rear, T: Total, OV: overhead, A: channel1 (when in dual mono mode), B: channel2. I.e.: CR = Center_right, RR = Rear_right, SL1 = Surround_Left1, CF = Center_Front.

AUD_DTS_STATUS2 DTS status 2 register

	7	6	5	4	3	2	1	0
0x78	Reserved					SFF	REQ	

Address: 0x78
Type: RO
SW Reset: NC
HW Reset: UND

Description

This status register contains a code corresponding to the sampling frequency of the stream. The value SFREQ is extracted from the incoming stream and can be read after each BOF interrupt.

SFREQ value	Source sampling frequency	SFREQ value	Source sampling frequency
0	invalid	8	44.1 kHz
1	8 kHz	9	88.2 kHz
2	16 kHz	10	176.4 kHz
3	32 kHz	11	12 kHz
4	64 kHz	12	24 kHz
5	128 kHz	13	48 kHz
6	11.025 kHz	14	96 kHz
7	22.05 kHz	15	192 kHz

AUD_DTS_STATUS3 Status 3 register

	7	6	5	4	3	2	1	0
0x79		Reserved				RATE		

Address: 0x79

7170180A 89/275

Type: SW Reset: **HW Reset**

Description

This status register contains a code corresponding to the transmission bit rate of the stream. The value RATE is extracted from the incoming stream and can be read after each BOF interrupt.

Rate value	Transmission bitrate						
0	32 kbps	8	256 kbps	16	960 kbps	24	1536 kbps
1	56 kbps	9	320 kbps	17	1024 kbps	25	1920 kbps
2	64 kbps	10	384 kbps	18	1152 kbps	26	2048 kbps
3	96 kbps	11	448 kbps	19	1280 kbps	27	3072 kbps
4	112 kbps	12	512 kbps	20	1344 kbps	28	3840 kbps
5	128 kbps	13	576 kbps	21	1408 kbps	29	open
6	192 kbps	14	640 kbps	22	1411.2 kbps	30	variable
7	224 kbps	15	768 kbps	23	1472 kbps	31	lossless

4.18 PCM beep-tone registers

AUD_PCM_BTONE **PCM** beep tone frequency

3 0x68

AudioBaseAddress + 0x68 Address:

R/W Type: HW Reset: SW Reset: UND

Description

The value in this register sets the PCM beep tone frequency according to the formula:

Beep_tone frequency = $(F_s/2)/(Register_value + 1)$

4.19 Audio trick-mode register

AUD_TM_SPEED Audio trick-mode speed

7 SPEED 0x57

Address: 0x57 Type: R/W HW Reset: 0 UND SW Reset:

This register sets the audio trick mode speed according to the table below. After setting this register, the register bit AUD_UPDATE.TM must be set to 1 to update the DSP with the new values. After the update, AUD_UPDATE.TM is automatically reset to zero.

Bitfield	Description
SPEED	00000000: normal speed (no audio trick mode) 00000001: slow forward (two times slower) 00000010: very slow forward (three times slower) 10000000: fast forward (two times faster) 01000000:very fast forward (three times faster) All other bit combinations are reserved.

AUD_LPCM_STATUS0

	7	6	5	4	3	2	1	0
0x76	EMPH_FLAG	MUTE_FLAG	Reserved			FRAME_NUM		

Address: 0x76 Type: R/W Reset value: UND

Description

Bitfield	Description
FRAME_NUM	frame number of the first access unit in the group of audio frames
Reserved	Set to 0
MUTE_FLAG	0: mute off, 1: mute on
EMPH_FLAG	Emphasis status after the first access unit: 0: emphasis off; 1: emphasis on

AUD_LPCM_STATUS1

	7	6	5	4	3	2	1	0
0x76	Word_Le	ength	Samp_	_Freq	Reserved	F	Aud_Channels	S

Address: 0x77
Type: R/W
Reset value: UND

7170180A 91/275

Bitfield	Description
Aud_Channels	Number of audio channels:000=1 channel (mono), 001=2 channels (stereo), 010=3 channels, 011=4 channels, 100=5 channels,101=6 channels, 110=7 channels, 111=8 channels
Reserved	Set to 0
Samp_Freq	Sampling frequency: 00=48kHz, 01=96kHz, 10=reserved, 11=reserved
Word_Length	Audio sample length: 00=16 bits, 01=20 bits, 10=24 bits, 11=reserved

AUD_LPCM_STATUS2

	7	6	5	4	3	2	1	0
0x76				Dyn_Range_C	Control			

Address: 0x78
Type: RW
Reset value: UND

Description

This register sets the dynamic range compression from the first access unit. For the hexadecimal value 0x80, dynamic range control is not set. For all other values, the dynamic range control is (24.082 - 6.0206 * X - 0.2007 * Y)dB, where $X = dynamic_range_control[7..5]$ and $Y = dynamic_range_control[4..0]$.

5 Block move DMA (BMDMA)

BMDMA_ABORT

Block move DMA abort

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x18 Abort

Address: BMBaseAddress + 0x18

Type: Write only

Description

Any write to this register aborts the current block move operation. The abort may take a few system clock cycles to complete depending on the access time of the memory and the Active bit in BMDMA_Status should be polled to check that the DMA has been aborted.

BMDMA_COUNT Block move DMA counts

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ByteCount

Address: BMBaseAddress + 0x08

Type: Write only

Description

0x08

The number of bytes to block move. Writing to this register starts the block move.

BMDMA_DESTADDRESSBlock move DMA destination address

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ox04

DestAddress

Address: BMBaseAddress + 0x04

Type: Write only

Description

The address of the base of the block move destination area.

BMDMA_INTACK Block move DMA interrupt acknowledge

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ox14

Address: BMBaseAddress + 0x14

Type: Write only

Description

Any write to this register acknowledges the interrupt and resets the Interrupt bit in the BMDMA_Status register.

7170180A 93/275

BMDMA INTEN

Block move DMA interrupt enable

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IntEn

Address: BMBaseAddress + 0x0C

Type: Read/write

Description

Interrupt enable; enabled when set to 1, masked when set to 0.

BMDMA_SRCADDRESS Block move DMA source address

 $31 \ \ 30 \ \ 29 \ \ 28 \ \ 28 \ \ 26 \ \ 25 \ \ 24 \ \ 23 \ \ 22 \ \ 21 \ \ 20 \ \ 19 \ \ 18 \ \ 17 \ \ 16 \ \ 15 \ \ 14 \ \ 13 \ \ 12 \ \ 11 \ \ 10 \ \ 9 \ \ 8 \ \ 7 \ \ 6 \ \ 5 \ \ 4 \ \ 3 \ \ \ 2 \ \ \ 1 \ \ \ 0$

0x00 SrcAddress

Address: BMBaseAddress + 0x00

Type: Write only

Description

The address of the base of the block move source data.

BMDMA_STATUS Block move DMA status

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ox10 Active Interrupt

Address: BMBaseAddress + 0x10

Type: Read only

Description

Bitfield	Description
Interrupt	Interrupt pending when set to 1.
Active	Block move in progress when this bit is 1.
Reserved	Read data undefined.

6 Cache control (CAC

CAC_CACHECONTROLO

Cache control 0

7 6 5 4 3 2 1 0

0x000 Cacheable7 Cacheable6 Cacheable5 Cacheable4 Cacheable3 Cacheable2 Cacheable1 Cacheable0

Address: CacheBaseAddress + 0x000

Type: Read/write

Reset value: 0

Description

This register defines the data cacheability of part of region 1, i.e. whether the data cache will be used when accessing data at addresses in the range 0xC0000000 to 0xC007FFFF.

Each bit in the register defines whether a certain 64 Kbyte block of addresses will be cached. If the appropriate bit is set then the block will be cached; otherwise it will not be cached.

Bitfield	Block start	Block end	
Cacheable0	0xC0000000	0xC000FFFF	
Cacheable1	0xC0010000	0xC001FFFF	
Cacheable2	0xC0020000	0xC002FFFF	
Cacheable3	0xC0030000	0xC003FFFF	
Cacheable4	0xC0040000	0xC004FFFF	
Cacheable5	0xC0050000	0xC005FFFF	
Cacheable6	0xC0060000	0xC006FFFF	
Cacheable7	0xC0070000	0xC007FFFF	

CAC_CACHECONTROL1 Cache control 1

	1	0	Э	4	3	2	ı	U
0x100	Cacheable7	Cacheable6	Cacheable5	Cacheable4	Cacheable3	Cacheable2	Cacheable1	Cacheable0

Address: CacheBaseAddress + 0x100

Type: Read/write

Reset value: 0

Description

This register defines the data cacheability of part of region 1, i.e. whether the data cache will be used when accessing data in addresses in the range 0xC0200000 to 0xC027FFFF.

Each bit in the register defines whether a certain 64 Kbyte block of addresses will be cached. If the appropriate bit is set then the block will be cached; otherwise it will not be cached.

7170180A 95/275

Bitfield	Błock start	Block end
Cacheable0	0xC0200000	0xC020FFFF
Cacheable1	0xC0210000	0xC021FFFF
Cacheable2	0xC0220000	0xC022FFFF
Cacheable3	0xC0230000	0xC023FFFF
Cacheable4	0xC0240000	0xC024FFFF
Cacheable5	0xC0250000	0xC025FFFF
Cacheable6	0xC0260000	0xC026FFFF
Cacheable7	0xC0270000	0xC027FFFF

CAC_CACHECONTROL2 Cache control 2

	7	6	5	4	3	2	1	0
0x200	Cacheable7	Cacheable6	Cacheable5	Cacheable4	Cacheable3	Cacheable2	Cacheable1	Cacheable0

Address: CacheBaseAddress + 0x200

Type: Read/write

Reset value: 0

Description

This register defines the data cacheability of part of region 3, i.e. whether the data cache will be used when accessing data in addresses in the range 0x40000000 to 0x4FFFFFFF, provided bit Cacheable0 of CacheControl3 is set.

If bit Cacheable0 of CacheControl3 is 0 then the address range 0x40000000 to 0x4007FFFF cannot be data cached. If this bit is set to 1 then each bit of CacheControl2 defines the data cacheability of one 64 Kbyte sub-block, as shown below. If the appropriate bit of CacheControl2 is set then the address range will be cached; otherwise it will not be cached.

Bitfield	Block start	Block end
Cacheable0	0x4000000	0x4000FFFF
Cacheable1	0x40010000	0x4001FFFF
Cacheable2	0x40020000	0x4002FFFF
Cacheable3	0x40030000	0x4003FFFF
Cacheable4	0x40040000	0x4004FFFF
Cacheable5	0x40050000	0x4005FFFF
Cacheable6	0x40060000	0x4006FFFF
Cacheable7	0x40070000	0x4007FFFF

CAC_CACHECONTROL3 Cacheability of region 3

	7	6	5	4	3	2	1	0
0x300					Cacheable3	Cacheable2	Cacheable1	Cacheable0

Address: CacheBaseAddress + 0x300

Type: Read/write

Reset value: 0

This register controls the data cacheability of the four EMI banks.

Clearing bit Cacheable of CacheControl3 to 0 will make EMI bank 0, the address range 0x40000000 to 0x4FFFFFF, completely not eacheable by the data cache. If this bit is set to 1 then the bottom 512 Kbyte is controlled by CacheControl2 and the rest of the bank is fully cacheable.

Setting any of bits Cacheable3-1 of CacheControl3 to 1 will make EMI bank 3 to 1 respectively completely cacheable by the data cache; clearing these bits to 0 will make the corresponding bank not cacheable.

Bitfield	EMI bank	Block start	Block end
Cacheable3	Bank 3	0x70000000	0x7FFFFFF
Cacheable2	Bank 2	0x60000000	0x6FFFFFF
Cacheable1	Bank 1	0x50000000	0x5FFFFFF
Cacheable0	Bank 0	0x40000000	0x4FFFFFF

CAC_CACHECONTROLLOCK Cache control lock

	7	6	5	4	3	2	1	0
0xA00								Lock

Address: CacheBaseAddress + 0xA00

Type: Read/write

Reset value: 0

Description

The cache configuration can be locked by writing a 1 to the CacheControlLock register bit. The lock makes CacheControl, DCacheNotSRAM, EnablelCache and CacheControlLock not writable. Reset of this flag is only performed by a hardware reset. This bit should be set to 1 after all the cache configuration registers have been written.

CAC_CACHESTATUS Cache status register

	7	6	5	4	3	2	1	0
0x900		ICache Ready	DCache Ready	Flushing DCache	Invalidating ICache	Invalidating DCache	Enable ICache	DCache NotSRAM

Address: CacheBaseAddress + 0x900

Type: Read only

Reset value: 0

7170180A 97/275

The CacheStatus register is read only, and shows the current state of the caches.

Bitfield	Description
DCacheNotSRAM	Data cache or SRAM:
	0: SRAM, 1: Data cache.
EnablelCache	Instruction cache enabled:
	0: Disabled, 1: Enabled.
InvalidatingDCache	Invalidating data cache:
	0: Not invalidating, 1: Invalidating.
InvalidatinglCache	Invalidating instruction cache:
	0: Not invalidating, 1: Invalidating.
FlushingDCache	Flushing instruction cache:
	0: Not flushing, 1: Flushing.
DCacheReady	Data cache ready:
	0: The data cache is busy performing an operation.
	1: The data cache is ready to perform another operation.
ICacheReady	Instruction cache ready:
	0: The instruction cache is busy performing an operation.
	1: The instruction cache is ready to perform another operation.

CAC_DCACHENOTSRAM Select data cache or SRAM

	7	6	5	4	3	2	1	0
0x400								DCacheNotSRAM

Address: CacheBaseAddress + 0x400

Type: Write only

Reset value: 0

Description

It is possible to select either data cache or an extra 2 Kbyte of on-chip SRAM. This is done by writing to the CAC_DCacheNotSRAM register. The default is to enable the extra on-chip SRAM. It is not recommended to change the selection other than during booting of the application. Set the DCacheNotSRAM bit to 1 to select data cache mode. The default value of 0 selects SRAM operation. Do not access locations 0x80001000 to 0x800017FF when using the data cache. The cache invalidate bit should be set before enabling the cache.

CAC_ENABLEICACHE Enable the instruction cache

	7	6	5	4	3	2	1	0
0x700								Enable

Address: CacheBaseAddress + 0x700

Type: Write only

Reset value: 0

Description

The instruction cache can be selected by writing 1 to the CAC_EnablelCache register; the default condition is no instruction cache. The instruction cache must be enabled before it is used. The cache should be invalidated immediately before enabling it.

Address: CacheBaseAddress + 0x600

Type: Write only

Description

Flushing the cache means forcing a write-back to memory of every dirty line in the cache. A dirty line is a line of cache that has been written to since it was loaded or last written back. Only the data cache can be flushed; the instruction cache never needs flushing since it is read only. To flush the data cache, set the CAC_FlushDCache register to 1. It is automatically reset to 0 on completion of the task. Any memory accesses that are cacheable which were started before the flush of the data cache is complete, will be blocked until it is completed. It is not recommended to change selection from data cache to SRAM during operation. However, if it is necessary to do so, it is essential to flush the cache to maintain memory integrity before making the change.

CAC_INVALIDATEDCACHE Invalidate the data cache

	7	6	5	4	3	2	1	0
0x500								Invalidate

Address: CacheBaseAddress + 0x500

Type: Write only

Description

Invalidating a cache marks every line as not containing valid data. This is done by setting the CAC_InvalidateDCache register to 1. This register is automatically reset to 0 on completion of the task. Changing from SRAM to data cache should normally only be performed during the initialization stage of an application. However, if it is necessary to do so at other times, it is essential to invalidate the cache contents when making the change by setting the invalidate bit first and then enabling the cache. Any memory accesses that are cacheable which are started before the data cache invalidation is complete will be blocked until it is completed.

CAC_INVALIDATEICACHE Invalidate the instruction cache

	7	6	5	4	3	2	1	0
0x800								Invalidate

Address: CacheBaseAddress + 0x800

Type: Write only

Description

Invalidating a cache marks every line as not containing valid data. This is done by setting the CAC_InvalidateICache register to 1. This register is automatically reset to 0 on completion of the task. Any instruction fetches that are cacheable and were started before completion of the invalidation of the instruction cache, will be blocked until it is completed. If the instruction cache is enabled, the cache contents will be random and must be invalidated by setting the invalidate bit first before enabling the cache.

7170180A 99/275

7 Clock generator (CKG)

7.1 Introduction

The clock generator registers are mapped into the ST20 memory space (Video decoder register) following the formula:

@ST20 = ClockGeneratorBaseAddress + @A8=1 + @ clock_generator_register

All of the clock generator registers are unsynchronized; they change their value immediately.

7.2 Register map

Register	Address	Bits	Access	Description
CKG_LPC_DIV	0x000001CE	8	R/W	Low-power clock divider
CKG_PLL_CNT	0x000001CF	6	R/W	Clock bypass PLL phase and PLL controller
CKG_CCAUD	0x000001D0	3	R/W	Clock controller for audio clock
CKG_DIVAUD	0x000001D1	4	R/W	Clock divider for audio clock
CKG_CCAUXDENC	0x000001D2	3	R/W	Auxiliary clock controller
CKG_DIVAUXDENC	0x000001D3	4	R/W	Denc Test clock divider
CKG_CCMCK	0x000001D4	3	R/W	Clock controller for MEMCLK
CKG_DIVMCK	0x000001D5	4	R/W	Clock divider for MEMCLK
CKG_SFREQSMC_SDIV	0x000001D6	3	R/W	SDIV reg: SMC frequency synthesizer
CKG_SFREQSMC_PE0	0x000001D7	8	R/W	PE reg (LSB): SMC frequency synthesizer
CKG_SFREQSMC_PE1	0x000001D8	8	R/W	PE reg (MSB): SMC frequency synthesizer
CKG_SFREQSMC_MD	0x000001D9	5	R/W	MD reg: SMC frequency synthesizer
CKG_SMC_CNT	0x000001DA	2	R/W	Smart card clock control
CKG_CCDENC	0x000001DC	3	R/W	Clock Control for the DENC Clock
CKG_CCST20	0x000001DD	3	R/W	Clock controller for ST20 clock
CKG_DIVST20	0x000001DE	4	R/W	Clock divider for ST20 clock
CKG_PREDIVPLL	0x000001DF	8	R/W	Pre-divider ratio set-up of the PLL
CKG_FBKDIVPLL	0x000001E0	8	R/W	Feedback divider ratio set-up of the PLL
CKG_POSTDIVPLL	0x000001E1	6	R/W	Post divider ratio and lock detector
CKG_PLLSETUP	0x000001E2	6	R/W	PLL start-up control and charge pump control
CKG_IDDQPAD_C	0x000001E3	4	R/W	Iddq mode, I/O hsync, vsync
CKG_SFREQAUD_SDIV	0x000001E4	3	R/W	SDIV reg: AUD frequency synthesizer
CKG_SFREQAUD_PE0	0x000001E5	8	R/W	PE reg (LSB): AUD frequency synthesizer
CKG_SFREQAUD_PE1	0x000001E6	8	R/W	PE reg (MSB): AUD frequency synthesizer
CKG_SFREQAUD_MD	0x000001E7	5	R/W	MD reg: AUD frequency synthesizer
CKG_AUD_CNT	0x000001E8	1	R/W	Sets audio frequency control through ST20 or MMDSP
CKG_SFREQAUX_SDIV	0x000001E9	3	R/W	SDIV reg: AUX frequency synthesizer
CKG_SFREQAUX_PE0	0x000001EA	8	R/W	PE reg (LSB): AUX frequency synthesizer
CKG_SFREQAUX_PE1	0x000001EB	8	R/W	PE reg (MSB): AUX frequency synthesizer
CKG_SFREQAUX_MD	0x000001EC	5	R/W	MD reg: AUX frequency synthesizer
CKG_AUX_CNT	0x000001ED	1	R/W	Enable AUX frequency synthesizer

Table 44 Clock generator (CKG)

7.3 Clock controller and clock divider registers

For the divider registers, only multiple of 2 are available:

- value 0: Clock divided is PLL clock.
- value 1 : Clock divided is PLL clock/2.
- value 2 : Clock divided is PLL clock/4.
- value 3 : Clock divided is PLL clock/6 ...

Five clocks are derived form the PLL clock, each of them can be controlled and programmed separately.

CKG_CCAUD

Clock controller for audio clock

	7	6	5	4	3	2	1	0
0xD0	ENA	DV2	BYP			Unused		

Address: ClockGenBaseAddress + 0xD0

Type: R/W Reset value: 0

Description

Bitfield	Description
BYP	Bypass. The Clock output is bypassed and is connected to Pixclk.
	0: Bypassed, 1: Not bypassed
DV2	Divide - by -2. The output of the divider is divided by two.
	0: Not divided by 2, 1: Divided by 2
ENA	Enable. Controls whether or not the divider is enabled or disabled for low power.
	0: Divider is disabled, 1: Divider is enabled

CKG_DIVAUD

Clock divider for audio clock

Address: ClockGenBaseAddress + 0xD1

Type: R/W Reset value: 0

Description

Bitfield	Description
NUM[3:0]	Contains the value of the divider (Described in PLL Strategy and Clocks distribution)

CKG_CCAUXDENC

Auxiliary clock controller

Address: ClockGenBaseAddress + 0xD2

7170180A 101/275

7 Clock generator (CKG)

Type: Serial R/W

Reset value:

Descripti<mark>o</mark>n

Bitfield	Description
BYP	Bypass. The Clock output is bypassed and is connected to Pixclk 0: Bypassed, 1: Not bypassed
DV2	0: The output of the divider is not divided by 2, 1: The output of the divider is divided by 2
ENA	0: Low power divider is disabled, 1: Low power divider is enabled

CKG_DIVAUXDENC

Denc Test clock divider

Address: ClockGenBaseAddress + 0xD3

Type: Serial R/W

Reset value: 0

Description

This value in this register sets the fractional divider for the Denc Test clock.

CKG_CCMCK

Clock controller for MEMCLK

	7	6	5	4	3	2	1	0
0xD4	ENA	DV2	BYP			Unused		

Address: ClockGenBaseAddress + 0xD4

Type: R/W Reset value: 0

Description

Bitfield	Description
BYP	Bypass. The Clock output is bypassed and is connected to Pixclk.
	0: Bypassed, 1: Not bypassed
DV2	The output of the divider is divided by two.
	0: Not divided by 2, 1: Divided by 2
ENA	Controls whether or not the divider is enabled or disabled for low power.
	0: Divider is disabled, 1: Divider is enabled

CKG_DIVMCK

Clock divider for MEMCLK

	7	6	5	4	3	2	1	0	
0xD5		NUM			Unused				

Address: ClockGenBaseAddress + 0xD5

Type: R/W Reset value: 0

Bitfield Description	
NUM[3:0] Contains the	value of the divider (Described in PLL Strategy and Clocks distribution)

CKG CCDENC

DENC clock controller

	7	6	5	4	3	2	1	0
0xDC	ENA	DV2	BYP			Unused		

Address: ClockGenBaseAddress + 0xDC

Type: R/W Reset value: 0

Description

Bitfield	Description
BYP	Bypass. The Clock output is bypassed and is connected to Pixclk.
	0: Bypassed, 1: Not bypassed
DV2	Divide by 2. The clock input is divided by two.
	0: Not divided by 2, 1: Divided by 2
ENA	Enable. Controls whether or not the clock is enabled or disabled for low power.
	0: Clk input is enabled, 1: Clk input (clk27MHz) is disabled

CKG_CCST20

Clock controller for ST20 clock

	7	6	5	4	3	2	1	0
0xDD	ENA	DV2	BYP			Unused		

Address: ClockGenBaseAddress + 0xDD

Type: R/W Reset value: 0xa0

Description

The ST20 Clock is enabled and divided (PLL clock divided by 4) when PLL is locked.

Bitfield	Description
BYP	Bypass. The Clock output is bypassed and is connected to Pixclk.
	0: Bypassed, 1: Not bypassed
DV2	Divide - by -2. The output of the divider is divided by two.
	0: Not divided by 2, 1: Divided by 2
ENA	Enable. Controls whether or not the divider is enabled or disabled for low power.
	0: Divider is disabled, 1: Divider is enabled

7170180A 103/275

CKG_DIVST20

Clock divider for ST20 clock

Address: ClockGenBaseAddress + 0xDE

Type: R/W Reset value: 0x20

Description

The ST20 Clock is enabled and divided (PLL clock divided by 4) when PLL is locked.

Bitfield	Description
NUM[3:0]	Contains the value of the divider (Described in PLL Strategy and Clocks distribution).

CKG_LPC_DIV

Low-power clock divider

7 6 5 4 3 2 1 0 0xCE NUM[7:0]

Address: ClockGenBaseAddress + 0xCE

Type: Serial R/W

Reset value: 0x7F --> 212 KHz

Description

The 27MHz clock is divided by the value contained in this register. the minimum frequency for the Low Power Clock is 105 KHz.

7.4 PLL controller registers

Separate registers are used to program the clock frequency, and to control PLL setup.

CKG PREDIVPLL

Pre-divider ratio set-up of the PLL

7 6 5 4 3 2 1 0 0xDF M[7:0]

Address: ClockGenBaseAddress + 0xDF

Type: R/W Reset value: 0x12

Description

Bitfield	Description
M[7:0]	Pre-divider ratio setup of the PLL

CKG_FBKDIVPLL

Feedback divider ratio set-up of the PLL

7 6 5 4 3 2 1 0 0xE0 N[7:0]

Address: ClockGenBaseAddress + 0xE0

Type: R/W Reset value: 0xA2

Description

Bitfield	Description
N[7:0]	Feedback divider ratio setup of the PLL

CKG_POSTDIVPLL

Post divider ratio and lock detector

	7	6	5	4	3	2	1	0
0xE1		P[2:0]			Setup[8:6]		UII	used

Address: ClockGenBaseAddress + 0xE1

Type: R/W Reset value: 0x30

7170180A 105/275

Bitfiel	ld	Description
Setup	[8:6 <mark>]</mark>	Lock detector threshold > 4ns
P[2 <mark>:</mark> 0]	7	Post-divider ratio setup of the PLL

CKG_PLLSETUP

PLL start-up control and charge pump control

	7	6	5	4	3	2	1	0
0xE2	Setur	0[5:4]		Setu	p[3:0]		Res	erved

Address: ClockGenBaseAddress + 0xE2

Type: R/W Reset value: 0x7C

Description

This register controls the Pre-divider, Post-divider, Feedback-divider and Setup of the PLL. There are four registers which are accessed at different address.

Bitfield	Description
Setup[3:0]	Charge-pump control > 3.61µA
Setup[5:4]	Start-up control > 1.5v

7.5 Configuration registers

CKG_IDDQPAD_CNT

Iddq mode, I/O hsync, vsync

	7	6	5	4	3	2	1	0
0xE3	CF7	CF6	CF5	CF4			erved	

Address: ClockGenBaseAddress + 0xE3

Type: Serial R/W

Reset value: 0

STi5518		7 Clock generator (CKG)
Description	DENTIAL	
Bitfield	Description	
CF4	Controls the /output state of the Vsync/pwm2 pin. 0. Pwm2 is an output, 1: Vsync is an output	
CF5	Controls the output state of the Hsync/pwm0 pin. 0: Pwm0 pin is an output, 1: Hsync pin is an output	
CF6	Force test clock for MMDSP. 0: MMDSP clock, 1: Force test clock.	
CF7	IDDQ mode control 0: No IDDQ Mode, 1: IDDQ Mode	

CKG_PLL_CNT

Clock bypass PLL phase and PLL controller

	7	6	5	4	3	2	1	0
0xCF	CF7	CF6	CF5	CF[4:3]		CF2	Unt	used

Address: ClockGenBaseAddress + 0xCF R/W for CF[7:6], RO for CF[5:2] Type:

Reset value: 0x38

Description

Bitfield	Description
CF2	State of sys_clk_off signal (From TPMAC) 0: All clocks are enabled 1: Clocks are turned off
CF[4:3]	State of what is required by the ST20 to control the PLL in stand-by mode (corresponds to lp_sys_pll_reg<1:0>) 00: Off 01: PLL reference on 10: PLL power on 11: PLL on
CF5	State of Lock signal (PLL). 0: Lock is off, 1: Lock is on
CF6	Disable the PLL 0: Enable - default value, 1: Disable.
CF7	Control the Bypassclk Phase. 0: Bypassclk, 1: Bypassclk inverted

CKG_SMC_CNT

Smart card clock control

Address: ClockGenBaseAddress + 0xDA

Type: Serial R/W

Reset value: 0

47/ 7170180A 107/275

Bitfield	Description
ENA	Enable the Frequency Synthesizer for the Smart Card Clock 0. Frequency Synthesizer is on - default value 1. Frequency Synthesizer is off.
SMG	Control the source of the Smart Card Clock 0: PIO1_2 is used as external Source - default value 1: Clock from Frequency Synthesizer is used

CKG_AUX_CNT

Enable AUX frequency synthesizer

Address: ClockGenBaseAddress + 0xED

Type: R/W Reset value: 0

Description

Bitfield	Description
ENA	0: Frequency Synthesizer on,1: Frequency Synthesizer off

CKG_AUD_CNT

Sets audio frequency control through ST20 or MMDSP

	7	6	5	4	3	2	1	0
0xE8	SRG				Reserved			

Address: ClockGenBaseAddress + 0xE8

Type: Serial R/W

Reset value: 0

Description

Bitfield	Description
SRG	Controls the value of frequency register
	0: MMDSP programs the Frequency Synthesizer - default value
	1: ST20 via Clock Generator controls the Frequency Synthesizer.

7.6 SMC clock frequency synthesizer

CKG_SFREQSMC_SDIV SDIV reg: SMC frequency synthesizer

	7	6	5	4	3	2	1	0	
0xD6	SDIV[2:0]			Reserved					

Address: ClockGenBaseAddress + 0xD6

Type: R/W Reset value: 0

Description

This register controls the SDIV values, combined with PE and MD registers.

CKG_SFREQSMC_PE PE reg: SMC frequency synthesizer

Address: ClockGenBaseAddress + 0xD7 (PE[7:0]), 0xD8 (PE[15:8])

Type: R/W Reset value: 0

Description

This register controls the PE values, combined with SDIV and MD registers.

CKG_SFREQSMC_MD MD reg: SMC frequency synthesizer

Address: ClockGenBaseAddress + 0xD9

Type: R/W Reset value: 0

Description

This register controls the MD values, combined with SDIV and PE registers.

7.7 Auxiliary clock frequency synthesizer

For programming, this clock is the same as the PCM clock. The Frequency synthesizer uses 24 bits (1x16 + 1x5 + 1x3) to program the frequency. 3 x 8 bits registers are inserted.

CKG_SFREQAUX_SDIV SDIV reg: AUX frequency synthesizer

Address: ClockGenBaseAddress + 0xE9

Type: R/W Reset value: 0

Description

This register controls the SDIV values, combined with PE and MD registers.

7170180A 109/275

CKG SFREQAUX PE

PE reg : AUX frequency synthesizer

Address: ClockGenBaseAddress + 0xEA (PE[7:0]), 0xEB (PE[15:8])

Type: R/W Reset value: 0

Description

This register controls the PE values, combined with SDIV and MD registers.

CKG_SFREQAUX_MD MD reg: AUX frequency synthesizer

	7	6	5	4	3	2	1	0
0xEC			MD[4:0]				Unused	

Address: ClockGenBaseAddress + 0xEC

Type: R/W Reset value: 0

Description

This register controls the MD values, combined with SDIV and PE registers.

7.8 Audio clock frequency synthesizer

The frequency synthesizer uses the CKG_SFREQAUD_SDIV, CKG_SFREQAUD_PE and CKG_SFREQAUD_MD registers to program the frequency, and the 1-bit Selreg register to validate it. Table 45 lists the register settings versus audio frequency values.

Audio frequency	SDIV (hex)	MD (hex)	PE (hex)
384 x 32KHz	4	11	3600
384 x 44.1KHz	3	19	3EB2
384 x 48KHz	3	17	4800
256 x 32KHz	4	1A	5100
256 x 44.1KHz	4	13	6F05
256 x 48KHz = 384 x 32KHz	4	11	3600
256 x 96KHz	3	11	3600
384 x 96KHz	2	17	4800
256 x 192KHz	2	11	3600
192 x 192KHz = 384 x 96KHz	2	17	4800

Table 45 Audio frequency vaues

CKG_SFREQAUD_SDIV

SDIV reg: AUD frequency synthesizer

7 6 5 4 3 2 1 0 0xE4 SDIV[2:0] Reserved

Address: ClockGenBaseAddress + 0xE4

Type: Serial R/W

Reset value: 0

Description

This register controls the SDIV values, combined with PE and MD registers.

CKG_SFREQAUD_PE

PE reg: AUD frequency synthesizer

Address: ClockGenBaseAddress + 0xE5 (CKG_SFREQAUD_PE0), 0xE6 (CKG_SFREQAUD_PE1)

Type: Serial R/W

Reset value: 0x0 1st Register - 0x0 2nd Register

Description

This register controls PE values, combined with SDIV and MD registers.

CKG_SFREQAUD_MD MD reg: AUD frequency synthesizer

	7	6	5	4	3	2	1	0
0xE7			MD[4:0]				Reserved	

Address: ClockGenBaseAddress + 0xE7

Type: Serial R/W

Reset value: 0

Description

This register controls the MD values, combined with SDIV and PE registers.

7170180A 111/275

8 Digital encoder (DEN)

8.1 Introduction

Where teletext is not implemented, registers related to teletext should not be used and register bit DEN_CFG6.TTX_EN must be left at the reset value of zero.

8.2 Register descriptions

DEN_CFG0 Configuration0

	7	6	5	4	3	2	1	0
0x0	std1	std0	sync2	sync1	sync0	polh	polv	freerun

Address: DencBaseAddress + 0x0

Type: Serial R/W Reset value: 10010010

Description

Bitfield	Description
std[1:0]	Standard
	0 0: PAL BDGHI
	0 1: PAL N (see bit set-up)
	1 0: NTSC M ^{1 2}
	1 1: PAL M
sync[2:1:0]	Configuration
	0 0 0: ODDEV-only based SLAVE mode (frame locked)
	0 0 1: F based SLAVE mode (frame locked)
	0 1 0: ODDEV + HSYNC based SLAVE mode (line locked)
	0 1 1: F+ H based SLAVE mode (line locked)
	1 0 0: VSYNC-only based SLAVE mode (frame locked) ³
	1 0 1: VSYNC + HSYNC based SLAVE mode (line locked)
	1 1 0: MASTER mode
	1 1 1: AUTOTEST mode (color bar pattern)
polh	Synchro: active edge of HSYNC selection (when input) or polarity of HSYNC (when output)
	0: HSYNC is a negative pulse (128 Tckref wide) or falling edge is active
	1: HSYNC is a positive pulse (128 Tckref wide) or rising edge is active
polv	Synchro: active edge of ODDEV/VSYNC selection (when input) 0: Falling edge of ODDEV flags start of field1 (odd field) or VSYNC is active low
	1: Rising edge of ODDEV flags start of field1 (odd field) or VSYNC is active low
freerun	Bit "freerun" is taken into account in ODDEV-only, VSYNC-only or F-based slave modes. It is irrelevant to
	other synchronization modes.
	Synchro: active edge of ODDEV/VSYNC selection (when input)
	0: Disabled
	1: Enabled

- 1. The standard on hardware reset is NTSC; any standard modification automatically selects the right parameters for correct subcarrier generation.
- 2. If bit 'secam' from register DEN_CFG7 is set, 'std1' and 'std0' bits are not taken into account.
- 3. In VSYNC-only based slave mode (sync[2:0]="100"), HSYNC is nevertheless needed as an input.

Configuration1

	V	6	5	4	3	2	1	0
0x01	blkli	flt1	fltO	syncok	coki	setup	cc2	cc1

Address: DencBaseAddress + 0x01

Type: Serial R/W Reset value: 01000100

Description

Bitfield	Description								
cc[2:1]	00: ²	00: ² No closed caption/extended data encoding							
	01:	Closed caption/extended data encoding enabled in field 1 (odd)							
	10:	Closed caption/extended data encoding enabled in field 2 (even)							
	11:	Closed caption/extended data encoding enabled in both fields							
setup	Pedestal enable								
	0:2	Blanking level and black level are identical on all lines (ex: Arg. PAL-N, Japan NTSC-M, PAL-BDGHI)							
	1:	Black level is 7.5 IRE above blanking level on all lines outside VBI (ex: Paraguayan and Uruguayan PAL-N). In all cases, gain factor is adjusted to obtain the required chrominance levels.							
coki	Color k	iller							
	0: ²	Color ON							
	1:	Color suppressed on CVBS output signal (CVBS=YS) but color still present on C output For color suppression on chroma DAC 'C', see register DEN_CFG5.bkdac2.							
syncok	Sync si	gnal availability (analog & digital) for input synchronization loss with free-run inactive freerun=0							
	0:2	No synchro output signals							
	1:	Output synchros available on YS, CVBS and, when applicable, HSYNC (if output port), ODDEV (if output port),: i.e same behavior as free-run except that video outputs are blanked in the active portion of the line							
flt[1:0]	U/V Chroma filter bandwidth selection. Typical applications for 3dB bandwidth are given for each flt bit configuration.								
	00:	f-3dB=1.1MHz low def NTSC filter							
	01:	f-3dB=1.3MHz low def PAL filter							
	10: ²	f-3dB=1.6MHz high def. NTSC filter (ATSC compliant) & PAL M/N (ITU-R 624.4 compliant)							
	11:	f-3dB=1.9MHz high def. PAL filter: Rec 624 - 4 for PAL BDG/I compliant							
blkli ¹	Vertical	Blanking Interval selection for active video lines area.							
	0: 2	('partial blanking') Only the following lines inside the vertical interval are blanked: NTSC-M: lines [19], [263(half)272] (525-SMPTE), PAL-M: lines [5236], [260(half)269] (525-CCIR) other PAL: lines [623(half)5], [311318] (625-CCIR) This mode preserves embedded VBI data within the incoming YCrCb, e.g. Teletext (lines [722] and [320335]), Wide Screen signalling (full line 23), Video Programing Service (line16), etc.). ('full blanking') All lines inside VBI are blanked							
		NTSC-M: lines [119], [263(half)282] (525-SMPTE), PAL-M: lines [52316], [260(half)279] (525-CCIR) other PAL: lines [623(half)22], [311335] (625-CCIR)							

1. **blkli** must be set to '0' when closed captions are to be encoded on the following lines:

in 525/60 system: before line 20(SMPTE) or before line 283(SMPTE) in 625/50 system: before line 23(CCIR) or before line 336(CCIR)

2. DEFAULT mode when denc_nrst pin is active (LOW level)

7170180A 113/275

DEN CFG2

Configuration 2

	1.		6	5	4	3	2	1	0
0x02	<u>۱</u>	nintri	enrst	bursten	set4:4:4	selrst	rstosc_buf	valrst1	valrst0

Address: DencBaseAddress + 0x02

Type: Serial R/W Reset value: 00100000

Description

Bitfield	Description							
valrst[0:1] 1	00: ² Automatic reset of the oscillator every line							
	01:	Automatic reset of the oscillator every 2 nd field						
	10:	Automatic reset of the oscillator every 4 th field						
	11:	Automatic reset of the oscillator every 8 th field						
rstosc_buf 3	Softwa	are phase reset of DDFS (Direct Digital Frequency Synthesizer) buffer						
_	0: ²	No reset						
	1:	When a 0-to-1 transition occurs, either the hard-wired default phase value, or the value loaded in the DEN_PDFS1/2 register (according to bit 'selrst'), is put to phase buffer. This value is loaded into accumulator (phase of sub-carrier) when bits ph_rst_osc from DEN_CFG8 are programmed, or when the standard changes or softreset occurs.						
selrst	Select	s reset values for Direct Digital Frequency Synthesizer						
	0:2	Hardware reset values for subcarrier oscillator phase (see DEN_PDFS1/2 register descriptions for values)						
	1:	Loaded reset values selected (see contents of the DEN_PDFS1/2 registers)						
set4:4:4	Selects the 4:2:2 or 4:4:4 video input from the mixing unit							
	0:2	YCrCb (4:2:2) input: The presence of OSD on the DENC output can be selected or deselected by OSD block header field S.						
	1:	YCrCb (4:4:4) input: In this mode OSD is always present on the DENC output.						
bursten		ninance burst control						
	0:	Burst is turned off on CVBS, chrominance output is not affected						
	1: ²	Burst is enabled						
enrst	Cyclic	update of DDFS phase						
	0:2	No cyclic subcarrier phase reset						
	1:	Cyclic subcarrier phase reset depending of valrst1 and valrst0 (see below)						
nintrl ⁴	Non-ir	nterlaced mode select						
	0: ²	Interlaced mode (625/50 or 525/60 system)						
	1:	Non-interlaced mode(2x312/50 or 2x262/60 system)						

- 1. valrst[1:0] is taken into account only if bit 'enrst' is set. Resetting the oscillator means here forcing the value of the phase accumulator to its nominal value to avoid accumulating errors due to the finite number of bits used internally. The value to which the accumulator is reset is either the hard-wired default phase value or the value loaded in the DEN_PDFS1/2 registers (according to bit 'selrst'), to which a 0⁰, 90⁰, 180⁰, or 270⁰ correction is applied according to the field and line on which the reset is performed.Note: If SECAM is performed the oscillator is reset every line.
- 2. Default mode when denc_nrst pin is active (LOW level)
- 3. rstosc_buf is automatically set back to '0' after the buffer is loaded
- 4. **nintrl** update is internally taken into account at the beginning of the next frame. In SECAM mode, only the interlaced mode is available.

Configuration3

		6	5	4	3	2	1	0
0x03	entrap	trap_4.43	encgms	ck_in_phase	del2	del1	del0	enwss

Address: DencBaseAddress + 0x03

Type: Serial R/W Reset value: 00000000

Description

Bitfield	Description						
enwss	WSS encoding enable						
	0:4	Disabled					
	1:	Enabled					
del[2:0]	Delay on lur	na path with reference to chroma path on 4:2:2 inputs					
	0 1 0:	+ 2 pixel delay on luma					
	0 0 1:	+ 1 pixel delay on luma					
	0 0 0: 4	+ 0 pixel delay on luma					
	1 1 1:	- 1 pixel delay on luma					
	1 1 0:	- 2 pixel delay on luma					
	Other config	urations: + 0 pixel delay on luma					
ck_in_phase 1	Choice of active edge of denc_ref_ck (master clock) that samples incoming YCrCb data.						
	This bit can be used to analyze the cause of application synchronization problems.						
	0:4	denc_ref_ck falling edge					
	1:	denc_ref_ck rising edge					
encgms ²	CGMS enco	ding enable					
	0:4	Disabled					
	1:	Enabled					
trap_4.43	Enable trap	filter: Trap_4.43 is taken into account only if bit entrap is set					
	0:4	Select the trap filter centered around 3.58 MHz					
	1:	Select the trap filter centered around 4.43 MHz					
entrap ³	Enable trap	filter					
	0:4	Trap filter disabled					
	1:	Trap filter enabled					

- 1. This bit is typically used when synchronization problems appear in application.
- 2. When encgms is set to 1, Closed-Captions/Extended Data Services should not be programmed on lines 20 and 283 (525/60, SMPTE line number convention).
- 3. When SECAM is performed trap filter is always enabled (entrap ='1').
- 4. Default mode when **denc_nrst** pin is active (LOW level)

<u> 577</u>

7170180A 115/275

Configuration4

		6	5	4	3	2	1	0
0x04	syncin_ad1	syncin_ad0	syncout_ad1	syncout_ad0	aline		del4_[2:0]	

Address: DencBaseAddress + 0x04

Type: Serial R/W Reset value: 00000000

Description

Bitfield	Description						
del4[2:0]	Delay on luma path w.r.t chroma path on YUV and RGB outputs when 4:4:4 input is used						
	0 1 0:	+ 2 pixel delay on luma					
	0 0 1:	+ 1 pixel delay on luma					
	0 0 0: 4	+ 0 pixel delay on luma					
	1 1 1:	- 1 pixel delay on luma					
	1 1 0:	- 2 pixel delay on luma					
	Other configurations: + 0 pixel delay on luma						
aline	Video active line duration control						
	0:1	Full digital video line encoding (720 pixels - 1440 clock cycles)					
	1:	Active line duration follows ITU-R/SMPTE 'analog' standard requirements					
syncout_ad[1:0]	Adjustment of outgoing sync signals. Used to ensure correct interpretation of incoming video samples as Y, Cr or Cb when the encoder is master and supplies sync signals						
	00: ¹	Nominal					
	01:	+1 ckref					
	10:	+2 ckref					
	11:	+3 ckref					
syncin_ad[1:0]	-	of incoming sync signals. Used to ensure correct interpretation of incoming video samples as Y, en the encoder is slaved to incoming sync signals (incl. 'F/H' flags stripped off ITU-R656/D1					
	00: ¹	Nominal					
	01:	+1 ckref					
	10:	+2 ckref					
	11:	+3 ckref					

^{1.} Default mode when **denc_nrst** pin is active (LOW level)

Configuration 5

		6	5	4	3	2	1	0
0x05	selrst_inc	bkdac1	bkdac2	bkdac3	bkdac4	bkdac5	bkdac6	dacinv

Address: DencBaseAddress + 0x05

Type: Serial R/W Reset value: 00000000

Description

Bitfield	Description 'Inverts' DAC codes to compensate for an inverting output stage in the application						
dacinv							
	0:1 Non inverted DAC inputs (outputs)						
	1: Inverted DAC inputs (outputs)						
bkdacN	Blanking of DACs (N = 1,2,3,4,5 or 6)						
	0:1 DAC N in normal operation						
	 DAC N input code forced to black level (if RGB, UV or C) or blanking level (if Y or CVBS) depend ing on conf_out bits of the DEN_CFG8 register. 						
selrst_inc	Choice of Digital Frequency Synthesizer increment after soft-reset or when ph_rst_mode = '01' (see the DEN_CFG8 register)						
	0:1 Hard wired value (depending on TV standard)						
	1: Soft (value from DEN_IDFS1/2/3 registers)						

^{1.} Default mode when **denc_nrst** pin is active (LOW level)

Configuration6

	7	6	5	4	3	2	1	0
0x06	softreset	jump	dec_ninc	free_jump	cfc1	cfc2	ttx_en	maxdyn

Address: DencBaseAddress + 0x06

Type: Serial R/W Reset value: 00010000

Description

Bitfield	on								
max_dyn ¹	Max dynamic magnitude allowed on YCrCb inputs for encoding								
_ ,	0:5	10hex to EBhex for Y, 10hex to E0hex for chrominance (Cr,Cb)							
	1:	01hex to FEhex for Y, Cr and Cb							
ttx_en	Teletext er	nable bit							
	0:5	Disabled							
	1:	Enabled							
cfc[1:0]	Color freq	uency control via CFC line							
	0 0:5	Update mode disabled (update is carried out by loading DEN_IDFS1/2/3 registers)							
	0 1:	Update of increment for DDFS just after serial loading via CFC							
	1 0:	Update of increment for DDFS on next active edge of HSYNC							
	1 1:	Update of increment for DDFS just before next color burst							
jump: ²	Update m	ode							
dec_ninc: free_jump	0 0 0:	Normal mode (no line skip/insert capability) ITU-R (CCIR): 313/312 or 263/262 non-interlaced: 312/312 or 262/262							
(bits[6:5:4])	0 x 1: ⁵	Manual mode for line insert ("dec_ninc"=0) or skip ("dec_ninc"=1) capability. Both fields of all the frames following the writing of this value are modified according to "lref" and "ltar" bits of DEN_LJPM1/2/3 registers (by default, "lref"=0 and "ltar"=1 giving the normal mode above).							
	1 0 0:	Automatic line insert mode. The 2nd field of the frame following the writing of this value is increased. Line insertion is done after line 245 in 525/60 and after line 290 in 625/50. "Iref" and "Itar" are ignored. ³							
	110	Automatic line skip mode. The 2nd field of the frame following the writing of this value is decreased. Line suppression is done after line 245 in 525/60 and after line 290 in 625/50. "Iref" and "Itar" are ignored.							
	1 x 0:	DO NOT USE!							
softreset 4	Software r	reset							
	0:5	No reset							
	1:	Software reset							

- 1. EAV and SAV words are replaced by blanking values before being fed to the luminance and chrominance processing.
- 2. Bit jump is automatically reset after use.
- 3. Two lines are skipped (inserted) in 525/60 and four lines in 625/50 standards.
- 4. Bit **softreset** is automatically reset after internal reset generation. Software reset is active for 4 CKREF periods. When softreset is activated, all the device is reset as with hardware reset except for the first nine user registers (DEN_CFG0 to DEN_CFG8).
- 5. Default mode when denc_nrst pin is active (LOW level)

Configuration7

 0x07
 secam
 gen_secam
 inv_phi_secam
 not used
 setupYUV
 uv_lev
 envps
 sqpix

Address: DencBaseAddress + 0x07

Type: Serial R/W Reset value: 00000000

Description

Bitfield	Description							
sqpix	Square pixel mode enable: This mode is not available in secam standard.							
	0:1 Disable							
	1: Enable							
envps	VPS encoding enable							
	0: ¹ Disable							
	1: Enable							
uv_lev	UV output level							
	O:1 Same peak to peak amplitude for both U and V (default value - 0.7 Vpp for 100/0/100/0 color bar pattern)							
	1: U and V outputs as defined by ITU-R624-4							
setupYUV	Pedestal enable on YUV outputs: This bit is significant only if register DEN_CFG8 bit conf_out(1:0) = '01' (YUV outputs). If this is the case, the Y output on dac5_g_y has a 7.5 IRE pedestal. Furthermore, if uv_lev = '1' then the U and V levels also depend on the value of setupYUV.							
	0:1 Disable							
iny phi gooom	1: Enable							
inv_phi_secam	Inversion of sub-carrier phase $0, 0, \pi,$ in odd fields and $\pi, \pi, 0$ in even fields							
	1: π , π , 0 in odd fields and 0, 0, π , in even fields							
gen_secam	Where the bit order is secam - gen_secam:							
/secam	O01: Standard selected by std1 and std0 bits of DEN_CFG0 (PAL or NTSC) O1: Genlock slave mode using external sync extraction O1: Secam standard, the sub-carrier phase sequence start-point is line1 O1: Secam standard, the sub-carrier phase sequence start-point is line23							
	If master mode is performed in the secam standard, bit "secam" must be set before sync2, sync1 and sync0 bits of DEN_CFG0. If DEN_CFG0 is not programmed, then a soft reset must be performed after programming secam. In secam, the trap filter should always be enabled (see DEN_CFG3 register).							

1. Default value

7170180A 119/275

Configuration8

	N	7	زر		6	5		4		3	2		1	0	
0x08	ph_rs	st_mod	e1	ph_r	rst_mode0	conf_o	ut1	conf_out	0	blk_all	ttx_notr	nν	XXX	XXX	

Address: DencBaseAddress + 0x08

Type: Serial R/W Reset value: 00100000

Description

Bitfield	Desc	ription								
ttx_notmv	WARNING! After reset, the default value of this bit is zero, however, for devices using teletext, this bit must then be reprogrammed to 1. This is to avoid the occurrence of teletext glitches in Secam mode and loss of teletext data in all modes.									
	Prior	rity of a	ncillary data	a on a VBI line	e. Note, highei	priority data	overwrites lov	wer priority data		
	01	Prior	ity is: CGMS	S > Closed capt	ion > Macrovision	on ² > WSS > V	PS > Teletext			
	1	Prior	ity is: Telete	xt > CGMS > C	losed caption >	WSS > VPS >	Macrovision			
blk_all	Blanking of all video lines 0 ¹ Disabled 1 Enabled (all inputs ignored - 80hex instead of Cr and Cb and 10hex instead of Y and Y4							f Y and Y4)		
conf_out[1:0]	DEN	C output	configuration	on				·		
			dac1	dac2	dac3	dac4	dac5	dac6		
	0	0	Υ	С	CVBS	С	Υ	CVBS		
	0	1	Υ	С	CVBS	V	Υ	U		
	1	x ¹	Υ	С	CVBS	R	G	В		
	If conf_out(1:0) = '01' and register DEN_CFG2 bit set_4:4:4 = '1', then the dac5 output Y comes from the Y4 input.									
ph_rst_mode[1:0]					atically reset to	"00" after oscilla	ator reset.			
ſ	01 Enabled - phase is updated with value from phase buffer register (see DEN_CFG2 bit rstosc_buf) on the beginning of the next video line. Increment is updated with hard or soft value depending on selreg_inc value (see DEN_CFG5)									
	10				value from the			the next incremen		
	11		oled - phase LSB.	is reset after de	etecting of rst bi	t on cfc line, up	to 9 denc_ref_	ck after loading o		

- 1. Default value
- 2. If there is no Macrovision programmed on the line, then VBI line blanking (when register DEN_CFG1 bit blki=1) will overwrite VPS or teletext, and no VPS or teletext data will be encoded.

DEN_STA

Status (read only)

	1,	7	6	5	4	3	2	1	0
0x09	יע	hok	atfr	buf2_free	buf1_free	fieldct2	fieldct1	fieldct0	jump

Address: DencBaseAddress + 0x09

Type: Serial R0 Reset value: Undefined

Description

Bitfield	Description							
jump	Indicates whether a frame length modification has been programmed at '1' from programming of bit 'jump' to end of frame(s) concerned							
	default = 0 Refer to DEN_CFG6 and DEN_LJPM1/2/3 registers							
fieldct[2:0]	Digital field identification number 000 Indicates field 1 111							
	Indicates field 8 NOTE: fieldct[0] also represents the odd/even information (odd='0', even='1')							
buf1_free	Closed caption registers access condition for field 1 Same as buf2_free but concerns field 1. Reset value:= 1 (access authorized) ²							
buf2_free	Closed caption registers access condition for field 2 Closed caption data for field 2 is buffered before being output on the relevant TV line; buf2_free is reset if the buffer is temporarily unavailable. If the microcontroller can guarantee that the DEN_CCF2 registers are never written more than once between two frame reference signals, then bit 'buf2_free' will always be true (set). Otherwise, closed caption field2 registers (DEN_CCF2) access might be temporarily forbidden by resetting bit 'buf2_free' until the next field2 closed caption line occurs.							
	Note that this bit is false (reset) when 2 pairs of data bytes are awaiting to be encoded, and is set back immediately after one of these pairs has been encoded (so at that time, encoding of the last pair of bytes is still pending)							
	Reset value:= 1 (access authorized) ²							
atfr	Frame synchronization flag 0 ² Encoder not synchronized 1 In slave mode: encoder synchronized							
hok ¹	Hamming decoding of frame sync flag embedded within ITU-R656 / D1 compliant YCrCb streams Consecutive errors A single or no error							

- 1. Signal quality detector is issued from Hamming decoding of EAV,SAV from YCrCb
- 2. DEFAULT mode when denc_nrst pin is active (LOW level)

7170180A 121/275

DEN_IDFS1/2/3

Increment for digital frequency synthesizer

These three registers contain the 24-bit increment used by the DDFS, **ONLY IF** bit 'selrst_inc' (register DEN_CFG5) equals '1'. They generate the phase of the subcarrier, i.e. the address that is supplied to the sine ROM. It, therefore, customizes the synthesized subcarrier frequency: 1 LSB ~ 1.6 Hz

To validate use of these registers instead of the hard-wired values:

- · Load the registers with the required value
- Set bit 'selrst_inc' to 1 (register DEN_CFG5)
- Perform a software reset (register DEN_CFG6)

Note The values loaded in DEN_IDFS1/2/3 are taken into account after a software reset, and **ONLY IF** bit 'selrst_inc'='1' (register DEN_CFG5)

These registers are never reset and must be explicitly written, to ensure that they contain sensible information.

On hardware or software reset the DDFS is initialized with a hardwired increment, independent of DEN_IDFS1/2/3. These hardwired values cannot be read out of the DENC.

	d23	d22	d21	d20	d19	d18	d17	d16
0x0A								
	d15	d14	d13	d12	d11	d10	d9	d8
0x0B								
	d7	d6	d5	d4	d3	d2	d1	d0
0x0C								

Address: DencBaseAddress+ 0x0A(DEN_IDFS1), 0x0B (DEN_IDFS2), 0x0C(DEN_IDFS3)

Type: Serial R/W Reset value: Undefined

Description

Bitfield	Description		
DEN_IDFS1/2/3	Value	Frequency synthesized	Ref.Clock
	d(23:0): 21F07C hexa for NTSC M	f=3.5795452 MHz	27 MHz
	d(23:0): 2A098B hexa for PAL BGHIN	f=4.43361875MHz	27 MHz
	d(23:0): 21F694 hexa for PAL N	f=3.5820558 MHz	27 MHz
	d(23:0): 21E6F0 hexa for PAL M	f=3.57561149 MHz	27 MHz
	d(23:0): 255554 hexa for NTSC M square pixel	f=3.5795434 MHz	24.545454 MHz
	d(23:0): 26798C hexa for PAL BGHIN square pixel	f=4.43361867 MHz	29.5 MHz
	d(23:0): 1F15C0 hexa for PAL N square pixel	f=3.58205605 MHz	29.5 MHz
	d(23:0): 254AD4 hexa for PAL M square pixel	f=3.57561082 MHz	24.545454 MHz

DEN PDFS1/2

Phase dfs

These registers are never reset and must be explicitly written to.

If bit selfst'=0 (e.g. after a hardware reset) the phase offset used every time the DDFS is reinitialized is a hard-wired value. The hard-wired values cannot be read out of the DENC. These are:

D9C000hex for PAL BDGHI, N, M, 1FC000hex for NTSC-M, 000000hex (blue lines) 43C000hex (red lines) for SECAM

When secam = '0' (DEN_CFG8)

Static phase offset for digital frequency synthesizer (10 bits only)

	-	-	-	-	-	-	o23	o22
0x0D								
	o21	o20	o19	o18	o17	o16	o15	o14
0x0E								

Address: DencBaseAddress + 0x0D (DEN_PDFS1), 0x0E (DEN_PDFS2)

Type: Serial R/W Reset value: Undefined

Under certain circumstances (detailed below), these registers contain the 10 MSBs of the value with which the phase accumulator of the DDFS is initialized after a 0-to-1 transition of bit 'rstosc' (DEN_CFG2), or after a standard change, or when cyclic phase readjustment has been programmed (see bits valrst[1:0] of DEN_CFG2). The 14 remaining LSBs loaded into the accumulator in these cases are all '0's (defining the phase reset value with a 0.35° accuracy).

To validate use of these registers instead of the hard-wired values:

- Load the registers with the required value
- Set bit 'selrst' to 1 (DEN_CFG2)
- Perform a software reset (DEN_CFG6), or set DEN_CFG6 bit rstosc_buf to "1". This puts the soft-phase value into a tampon register and sets register DEN_CFG8 bit ph_rst_mode[1:0] to put this value into an accumulator at the beginning of the next line.

When secam = '1' (DEN_CFG8)

Static phase offset for digital frequency synthesizer for two SECAM sub-carriers (8 MSB only) (blue lines - DEN_PDFS1 and red lines - DEN_PDFS2)

	b21	b20	b19	b18	b17	b16	b15	b14
0x0D								
	r21	r20	r19	r18	r17	r16	r15	r14
0x0E								

Address: DencBaseAddress + 0x0D (DEN_PDFS1), 0x0E (DEN_PDFS2),

Type: Serial R/W Reset value: Undefined

7170180A 123/275

These registers contain the 8 bits (21 to 14) of the value with which the phase accumulator of the DDFS is initialized on **every line** in SECAM mode. The phase is calculated with 1.4° accuracy as:

(Blue lines) DEN_PDFS1 * 16384 (dec), or DEN_PDFS1 * 4000 (hex)
(Red lines) (256 + DEN_PDFS1 + DEN_PDFS2) * 16384 (dec), or (100 + DEN_PDFS1 + DEN_PDFS2) * 4000 (hex)

To validate use of these registers instead of the hard-wired values, follow the PAL and NTSC mode.

DEN_WSS1/2 WSS_BIT[15:0]: WSS data registers

	15	14	13	12	11	10	9	8
0x0F	wss15	wss14	wss13	wss12	wss11	wss10	wss9	wss8
	7	6	5	4	3	2	1	0
0x10	wss7	wss6	wss5	wss4	wss3	wss2	wss1	wss0

Address: DencBaseAddress + 0x0F(DEN_WSS1), 0x10 (DEN_WSS2)

Type: Serial R/W Reset value: Undefined

Description

Bitfield	Description					
wss[0]	0:	No subtitles within teletext				
	1:	Subtitles within teletext				
wss[2:1]	0 0:	No open subtitles				
	0 1:	Subtitles in active image area				
	1 0:	Subtitles out of image area				
	1 1:	reserved				
wss[7:3]	reserved	= 0				
wss[11:8] ¹	1 0 0 0:	full format 4:3				
	0 0 0 1:	box 14:9 center				
	0 0 1 0:	box 14:9 top				
	1 0 1 1:	box 16:9 center				
	0 1 0 0:	box 16:9 top				
	1 1 0 1:	> box 16:9 center				
	1 1 1 0:	full format 4:3 (shoot and protect 14:9 center)				
	0 1 1 1:	full format 16:9 (anamorphic)				
wss[12]	0:	Camera mode				
	1:	Film mode				
wss[15:13]	reserved = 0					

^{1.} wss11 is an odd parity bit

DEN_DAC13

Dac1 and dac3 multiplying factors

 7
 6
 5
 4
 3
 2
 1
 0

 0x11
 dac1_mult[3:0]

 dac3_mult[3:0]

Address: DencBaseAddress + 0x11

Type: Serial R/W Reset value: 10001000

Description

Bitfield	ield Description						
dac3_mult[3:0]	multiplying factor on dac3_cvbs digital signal before the D/A converters with 3.125% step						
	0 0 0 0:	75.00% dac3_cvbs value compared to default					
	0 0 0 1:	78.125% dac3_cvbs value compared to default					
	0 0 1 0:	81.25% dac3_cvbs value compared to default					
	0 0 1 1:	84.375% dac3_cvbs value compared to default					
	1 0 0 0: ¹	100% dac3_cvbs value compared to default					
	1 1 1 1:	121.875% dac3_cvbs value compared to default					
dac1_mult[3:0]	multiplying factor on dac1_y digital signal before the D/A converters with 3.125% step						
	0 0 0 0:	75.000% dac1_y value compared to default					
	0 0 0 1:	78.125% dac1_y value compared to default					
	0 0 1 0:	81.250% dac1_y value compared to default					
	0 0 1 1:	84.375% dac1_y value compared to default					
	1 0 0 0: ¹	100% dac1_y value compared to default					
	1 1 1 1:	121.875% dac1_y value compared to default					

1. Default value

7170180A 125/275

DEN_DAC45

DAC4 and DAC5 multiplying factors

7 6 5 4 3 2 1 0 0x12 dac4_mult[3:0] dac5_mult[3:0]

Address: DencBaseAddress + 0x12

Type: Serial R/W Reset value: 10001000

Description

Bitfield	Description							
dac5_mult[3:0]		Multiplying factor on dac5_g_y digital signal before the D/A converters: dac5_g_y value (in% of default value)						
	Value	if G(conf_out=1x)	if Y(conf_out=0x)					
	0 0 0 0:	80.49%	75.000%					
	0 0 0 1:	82.93%	78.125%					
	0 0 1 0:	85.37%	81.250%					
	0 0 1 1:	87.81%	84.375%					
	1 0 0 0: ¹	100%	100%					
	1 1 1 1:	117.07%	121.875%					
dac4_mult[3:0]	Multiplying factor on dac4_r_v_c digital signal before the D/A converters:							
	dac4_r_v_c value (in% of default value)							
	Value	if R (conf_out=1x)	if V or C (conf_out=0)					
	0 0 0 0:	80.49%	75.000%					
	0 0 0 1:	82.93%	78.125%					
	0 0 1 0:	85.37%	81.250%					
	0 0 1 1:	87.81%	84.375%					
	1 0 0 0: 1	100%	100%					
	1 1 1 1:	117.07%	121.875%					

^{1.} DEFAULT mode when denc_nrst pin is active (LOW level)

DEN_DAC6C

DAC6 and C multiplying factors

Address: DencBaseAddress + 0x13

Type: Serial R/W Reset value: 10000000

Description

Bitfield	Description						
c_mult[3:0]	Multiplying factor on C digital output (before D/A convertors) and on color part of CVBS signal:						
	Value	Factor value (c_mult)					
	0 0 0 0:	1.000000 (1.000000 dec)					
	0 0 0 1:	1.000001 (1.015625 dec)					
	0 0 1 0:	1.000010 (1.031250 dec)					
	0 0 1 1:	1.000011 (1.046875 dec)					
	1 1 1 1:	1.001111 (1.234375 dec)					
dac6_mult[3:0]	Multiplying factor on dac6_b_cvbs digital signal before the D/A converters:						
	dac6_b_cvbs value (in% of default value)						
	Value	If B(conf_out=1x)	If CVBS (conf_out=01)				
	0 0 0 0:	80.49%	75.000%				
	0 0 0 1:	82.93%	78.125%				
	0 0 1 0:	85.37%	81.250%				
	0 0 1 1:	87.81%	84.375%				
	1 0 0 0: 1	100%	100%				
	1 1 1 1:	117.07%	121.875%				

Default peak to peak amplitude of U and V outputs corresponds to 70% of default Y or CVBS peak to peak amplitude if 100/0/100/0 color bar pattern is inputted. In other words, when Iref is set to deliver 1Vpp for CVBS on DAC3 for example (and dac3_mult = "1000"), when switched to U, DAC6 delivers 0.7 Vpp. If bit 'uv_lev' from register DEN_CFG7 is set, default peak to peak amplitude is 86% (80% if setupYUV='1') for V output and 67% (57% if setupYUV='1') for U output, of default Y or CVBS peak to peak amplitude if 100/0/100/0 color bar pattern is inputted, according to ITU-R 624-4 definition of UV signals.

Default peak to peak amplitude of RGB outputs corresponds to 70% of default Y or CVBS peak to peak amplitude if 100/0/75/0 color bar pattern is inputted. In other words, when Iref is set to deliver 1Vpp for CVBS on DAC3 for example (and dac3_mult = "1000"), when switched to B, DAC6 delivers 0.7 Vpp.

77

7170180A 127/275

DEN LJPM1/2/3

CLIG REG = Itarg[8:0] and Iref[8:0]

	7	6	5	4	3	2	1	0
0x15	ltarg8	ltarg7	ltarg6	Itarg5	ltarg4	ltarg3	ltarg2	ltarg1
0x16	ltarg0	lref8	lref7	lref6	lref5	Iref4	lref3	lref2
0x17	Iref1	lref0	-	-	-	-	-	-

Address: DencBaseAddress+ 0x15(DEN_LJPM1), 0x16(DEN_LJPM2), 0x17(DEN_LJPM3)

Type: Serial R/W Reset value: Undefined

These registers can be used to jump from a reference line (end of that line) to a target line of the SAME FIELD. However, not all lines can be skipped or repeated without problems. This functionality should be USED WITH CAUTION.

Bitfield	Description
	Binary format of the reference line from which a jump is required. Default value: Iref[8:0]:= 000000000
Itarg[8:0]	Binary format of the target line. Default value: ltarg[8:0]:= 000000001

DEN_CID

CHIPID (read only): DENC version identification number

7 6 5 4 3 2 1 0 0x18 CHIPID

Address: DencBaseAddress + 0x18

Type: Serial RO Reset value: Undefined

Description

Bitfield	Description
CHIPID	1001 0000 (for V9, 1000 0000 for V8)

DEN_VPS1

VPS: VPS Data registers

	7	6	5	4	3	2	1	0
0x19	\$1	s0	XXX	XXX	cni3	cni2	cni1	cni0
0x1A	np7	np6	d4	d3	d2	d1	d0	m3
								_
0x1B	m2	m1	m0	h4	h3	h2	h1	h0
0x1C	min4	min3	min3	min2	min1	min0	сЗ	c2
0x1D	c1	c0	np5	np4	np3	np2	np1	np0
0x1E	pt7	pt6	pt5	pt4	pt3	pt2	pt1	pt0

 $\begin{array}{lll} DencBaseAddress & + & 0x19(DEN_VPS1), & 0x1A \\ 0x1C(DEN_VPS4), & 0x1D(DEN_VPS5), & 0x1E(DEN_VPS6) \end{array}$ 0x1A(DEN_VPS2), 0x1B(DEN_VPS3), Address:

Type: Serial R/W Reset value: Undefined

Description

Bitfield	Description					
pt[7:0]	Program type, binary					
np[5:0]	Network or program CNI (Country and Network Identification)					
c[3:0]	Country, binary					
min[5:0]	Minute, binary					
h [4:0]	Hour, binary					
m[3:0]	Month, binary					
d[4:0]	Day, binary					
np[7:6]	Network or program CNI					
cni[3:0]	4 bits of CNI Reserved for enhancement of VPS					
S[1:0]	Sounds					
	0 0: don't know					
	0 1: mono					
	10: stereo					
	1 1: dual sound					

57 7170180A 129/275

DEN_CGMS1/2/3

CGMS_BIT[1:20]: CGMS data registers (20 bits only)

	7	6	5	4	3	2	1	0
0x1F	_	-	-	-	b1	b2	b3	b4
0x20	b5	b6	b7	b8	b9	b10	b11	b12
0x21	b13	b14	b15	b16	b17	b18	b19	b20

Address: DencBaseAddress + 0x1F (DEN_CGMS1), 0x20 (DEN_CGMS2), 0x21 (DEN_CGMS3)

Type: Serial R/W Reset value: Undefined

Description

Bitfield	Description
b15 - b20	CRC (not internally computed)
b11 - b14	Word2
b7 - b10	Word1
b4 - b6	Word0B
b1 - b3	Word0A

DEN_TTX1-4/M

TTX__[1:4]_DEF Teletext block definition

	7	6	5	4	3	2	1	0
0x22	fp_ttxt	ttxdel2	ttxdel1	ttxdel0	ttx_l6	ttx_l7	ttx_l8	ttx_l9
0x23	ttx_l10	ttx_l11	ttx_l12	ttx_l13	ttx_l14	ttx_l15	ttx_l16	ttx_l17
0x24	ttx_l18	ttx_l19	ttx_l20	ttx_l21	ttx_l22	ttx_l23	ttx_l318	ttx_l319
0x25	ttx_l320	ttx_l321	ttx_l322	ttx_l323	ttx_l324	ttx_l325	ttx_l326	ttx_l327
0x26	ttx_l328	ttx_l329	ttx_l330	ttx_l331	ttx_l332	ttx_l333	ttx_l334	ttx_l335

Address: DencBaseAddress + 0x22(DEN_TTX1), 0x23(DEN_TTX2), 0x24(DEN_TTX3), 0x25(DEN_TTX4),

0x26(DEN_TTXM)

Type: Serial R/W Reset value: Undefined

Description

Bitfield	Description						
ttx_IX	Each of these bits enables teletext on line X (ITU-R line numbering and 625 line systems). Teletext line selections for other standards refer to the table below:						
ttxdel[2:0]	Teletext data latency: The encoder clocks the first Teletext data sample on the (2+txdl[2:0]) th rising edge of the master clock, following the rising edge of TTXS (teletext synchronization signal, supplied by the encoder). 1 0: default value						
fp_ttxt	Full page teletext mode enable 0 0:1 Disabled						
	0 1: Enabled						

1. Default mode when denc_nrst pin is active (low level).

TTX[1:4]_DEF bitfield	PAL BDGHIN line (CCIR 625 line numbering)	PAL M line (CCIR 525 line numbering)	NTSC M line (SMPTE 525 line numbering)
ttx_l6	6	6	9
ttx_l7	7	7	10
ttx_l8	8	8	11
ttx_l9	9	9	12
ttx_l10	10	10	13
ttx_l11	11	11	14
ttx_l12	12	12	15
ttx_l13	13	13	16
ttx_l14	14	14	17
ttx_l15	15	15	18
ttx_l16	16	16	19
ttx_l17	17	17	20
ttx_l18	18	18	21
ttx_l19	19	19	22
ttx_l20	20	20	23
ttx_l21	21	21	24
ttx_l22	22	22	25
ttx_l23	23	23	26
ttx_l318	318	268	271
ttx_l319	319	269	272
ttx_l320	320	270	273
ttx_l321	321	271	274
ttx_l322	322	272	275
ttx_l323	323	273	276
ttx_l324	324	274	277
ttx_l325	325	275	278
ttx_l326	326	276	279
ttx_l327	327	277	280

Table 46 Teletext block definition for PAL and NTSC standards

TTX[1:4]_DEF bitfield	PAL BOGHIN tine (CCIR 625 line numbering)	PAL M line (CCIR 525 line numbering)	NTSC M line (SMPTE 525 line numbering)
ttx_ 1 328	328	278	281
ttx_1329	329	279	282
ttx_l330	330	280	283
ttx_l331	331	281	284
ttx_l332	332	282	285
ttx_l333	333	283	286
ttx_l334	334	284	287
ttx_l335	335	285	288

Table 46 Teletext block definition for PAL and NTSC standards

DEN_CCF1

CCCF1: closed caption characters/extended data for field 1

	7	6	5	4	3	2	1	0
0x27	opc11	c117	c116	c115	c114	c113	c112	c111
							T	
0x28	opc12	c127	c126	c125	c124	c123	c122	c121

Address: DencBaseAddress + 0x27 (DEN_CCF11), 0x28 (DEN_CCF12)

Type: Serial R/W Reset value: Undefined

Description

Bitfield	Description				
c11[7:1]	First byte to encode in field1				
opc11	Odd-parity bit of US-ASCII 7-bit character c11[7:1]				
c12[7:1]	Second byte to encode in field1				
opc12	Odd-parity bit of US-ASCII 7-bit character c12[7:1]				

- DEFAULT value: none, but closed captions enabling without loading these registers will issue a null character.
- DEN_CCF1 registers are never reset.

DEN_CCF2

CCCF2: closed caption characters/extended data for field 2

	7	6	5	4	3	2	1	0
0x29	opc21	c217	c216	c215	c214	c213	c212	c211
0x2A	opc22	c227	c226	c225	c224	c223	c222	c221

Address: DencBaseAddress + 0x29 (DEN_CCF21), 0x2A (DEN_CCF22)

Type: Serial R/W Reset value: Undefined

Description

Bitfield	Description
c21[7:1]	First byte to encode in field2
opc21	Odd-parity bit of US-ASCII 7-bit character c21[7:1]
c12[71]	Second byte to encode in field2
opc22	Odd-parity bit of US-ASCII 7-bit character c22(7:1)

- DEFAULT value: none, but closed captions enabling without loading these registers will issue a null character.
- DEN_CCF2 registers are never reset.

DEN_CLF1 CCLIF1: closed caption/extended data line insertion for field 1

This register programs the TV line number of the closed caption/extended data encoded in field 1:

	7	6	5	4	3	2	1	0
0x2B	xx	xx	XX	l14	l13	l12	l11	l10

Address: DencBaseAddress + 0x2B

Type: Serial R/W Reset value: 00001111

525/60 system: (525-SMPTE line number convention)

Only lines 10 to 22 should be used for closed caption or extended data services (lines 1 to 9 contain the vertical sync pulses with equalizing pulses).

Bitfield	Description	
I1[4:0]	0 0 0 0 0:	No line selected for closed caption encoding
	0 0 0 x x:	Do not use these codes
	i code line (i+6)	(SMPTE) selected for encoding
	 11111:	line 37 (SMPTE) selected

625/50 system: (625-CCIR/ITU-R line number convention)

Only lines 7 to 23 should be used for closed caption or extended data services.

Bitfield	Description	
I1[4:0]	0 0 0 0 0:	No line selected for closed caption encoding
	i code line (i+6)	(CCIR) selected for encoding (i>0)
	 11111:	line 37 (CCIR) selected

DEFAULT value = 01111 line 21 (525/60, 525-SMPTE line number convention), which corresponds to line 21 in l625/50 system,(625-CCIR line number convention)

7170180A 133/275

DEN_CLF2

CCLIF2: closed caption/extended data line insertion for field 2

This register programs the TV line number of the closed caption/extended data encoded in field 1

	7	6	5	4	3	2	1	0
0x2C	xx	xx	xx	l24	l23	122	I21	120

Address: DencBaseAddress + 0x2C

Type: Serial R/W Reset value: 00001111

525/60 system: (525-SMPTE line number convention)

Only lines 273 to 284 should be used for closed caption or extended data services (preceding lines contain the vertical sync pulses with equalizing pulses), although it is possible to program over a wider range.????

Bitfield	Description	
12[4:0]	0 0 0 0 0:	No line selected for closed caption encoding
	0 0 0 x x:	Do not use these codes
	i line (269 +i)	(SMPTE) selected for encoding
	01111:	Line 284 (SMPTE) selected for encoding
	11111:	Line 289 (SMPTE)

Note If cgms is allowed on lines 20 and 283 (525/60, 525-SMPTE line number convention), closed captions should not be programmed on these lines.

625/50 system: (625-CCIR line number convention)

Only lines 319 to 336 should be used for closed caption or extended data services (preceding lines contain the vertical sync pulses with equalizing pulses), although it is possible to program over a wider range.????

Bitfield	Description	
12[4:0]	0 0 0 0 0:	No line selected for closed caption encoding
	i line (318 +i)	(CCIR) selected for encoding
	10010:	Line 336 (CCIR) selected for encoding
	11111:	Line 349 (CCIR)

DEFAULT value:= 01111 line 284 (525/60, 525-SMPTE line number convention) this value also corresponds to line 333 in 625/50 system, (625-CCIR line number convention)

DEN_REG 45...63 Reserved

DEN_REG_64 TTX_CONF

	7	6	5	4	3	2	1	0
0x40	ttxt100IRE	ttxt_abc	d[1:0]	XXX	xxx	xxx	xxx	xxx

Address: DencBaseAddress + 0x40

Type: Serial R/W Reset value: 01010000

Description

Bitfield	Description
ttxt_abcd[1:0]	Teletext standard selection
「てし」と	0 Teletext A
	0 1 Teletext B Teletext B in 625 line systems is known as World System Teletext
	1 0 ¹ Teletext C Teletext C in 525 line systems is known as NABTS
	1 1 Teletext D
ttxt100IRE	Teletext waveform amplitude
	₀ 1 70 IRE
	1 100 IRE

^{1.} DEFAULT mode when denc_nrst pin is active (LOW level)

Note Do not change the value of bits 4 to 0.

DEN_REG_65 DAC2MULT&TTXS

	7	6	5	4	3	2	1	0
0x41		dac2_m	nult[3:0]		ttx_mask_off	XXX	bcs_en_4	bcs_en_2

Address: DencBaseAddress + 0x41

Type: Serial R/W Reset value: 10000010

Description

Bitfield	Description						
bcs_en_2	Brightness, C	Contrast and Saturation control by registers DEN_REG_69 to DEN_REG_71 on 4:2:2 input					
	0: ¹	Disable					
	1:	Enable					
bcs_en_4	Brightness, C	Contrast and Saturation control by registers DEN_REG_69 to DEN_REG_71 on 4:4:4 input					
	0:	Disable					
	1: ¹	Enable					
ttx_mask_off	Masking of 2	bits in Teletext framing code, depending on selected teletext standard					
	0:1	Enable					
	1:	Disable					
dac2_mult[3:0]	Multiplying fa	Multiplying factor on dac1_c digital signal before the D/A converters with 3.125% step					
	Bitvalue	dac2_c value compared to default					
	0 0 0 0:	75.000%					
	0 0 0 1:	78.125%					
	0 0 1 0:	81.250%					
	0 0 1 1:	84.375%					
	1 0 0 0:1	100%					
	1 1 1 1:	121.875%					

1. DEFAULT mode when denc_nrst pin is active (LOW level)

7170180A 135/275

DEN REG 69

Brightness

Contrast

Address: DencBaseAddress + 0x45

Type: Serial R/W Reset value: 10000000

The register contents are used by the following formula to adjust the luminance intensity of the display video image:

$$Y_{out} = Y_{in} + b - 128$$

Where Yin is 8-bit input luminance and Yout is the result of 'Brightness' operation (still on 8 bits).

This value is saturated at 235 (16) or 254 (1) according to DEN_CFG6 bit "maxdyn", b: brightness (unsigned value with center at 128, default 128)

DEN_REG_70

0x46

	7	6	5	4	3	2	1	0
6				c[7	' :0]			

Address: DencBaseAddress + 0x46

Type: Serial R/W Reset value: 00000000

The register contents are used by the following formula to adjust the relative difference between the display image higher and lower intensity luminance values:

$$Y_{\text{out}} = \frac{(Y_{\text{in}} - 128)(c + 128)}{128} + 128$$

Where, Yin is 8-bit input luminance, Yout is the result of 'Contrast' operation (still on 8 bits). This value is saturated at 235 (16) or 254 (1) according to DEN_CFG6 bit 'maxdyn', c: contrast (2's complement value from -128 to 127, default 0)

DEN_REG_71 Saturation

7 6 5 4 3 2 1 0 0x47 s[7:0]

Address: DencBaseAddress + 0x47

Type: Serial R/W Reset value: 10000000

The register contents are used by the following formula to adjust the color intensity of the displayed video image:

Cbout =
$$\frac{s(Cbin - 128)}{128} + 128$$

Crout =
$$\frac{s(Crin - 128)}{128} + 128$$

Where Crin and Cbin are the 8-bit input chroma, Crout and Cbout are the result of 'Saturation' operation (still on 8 bits)

This value is saturated at 240 (16) or 254 (1) according to DEN_CFG6 bit 'maxdyn', s: saturation value (unsigned value with centre at 128, default 128).

DEN_YCOUT

Make YC data bus accessible on PIO4

	7	6	5	4	3	2	1	0
0x19F		Reserved		YCOUT		Rese	rved	

Address: VideoBaseAddress + 0x19F

Type: R/W Reset value: 0

Bitfield	Description
YCOUT	0: YC pads receive POI4 functional outputs
	1: DENC is bypassed and YC data bus is accessible on PIO4 pads

7170180A 137/275

9 Programmable CPU memory interface (EMI)

9.1 DRAM registers

EMI_CONFIGDATA0BANK0&1(DRAM format)

	15 14	13	12	11 10	9 8	7 6 5	4 3	2 1 0
0x00 & 0x10	Reserved	DataDriveDelay	BusReleaseTime	SubBanks	SubBankSize	ShiftAmount	PortSize	DeviceType

Address: EMIBaseAddress + 0x00 & 0x10

Type: R/W

Description

Bitfield	Definition
DeviceType	000 = DRAM. Sets the format of the configuration register
PortSize	00 = reserved, 01 = 32 bit, 10 = 16 bit, 11 = 8 bit
ShiftAmount	Column address width (0 = 7, 1 = 8)
SubBankSize	00 = 256k, 01 = 1M, 10 = 4M, 11 = 16M words
SubBanks	00 =1, 01 = 2, 10 = 4, 11 = reserved
BusReleaseTime	1 or 2 cycles
DataDriveDelay	0-1 phases

EMI_CONFIGDATA1BANK0&1(DRAM format)

7 15 9 6 2 0 14 13 12 11 10 8 5 3 0x04 & 0x14 **RASbits**

Address: EMIBaseAddress + 0x04 & 0x14

Type: R/W

Description

Bitfield	Definition
RASbits	Page address mask for address bits 22:7

The RASbits are used by the EMI to calculate whether the pending EMI access request is in the same page (row address) as the current access. If this is the case, the next access is a page mode access.

The 1s in the mask correspond to the row address bits to be compared, and are used to check that the pending access is in the same row as the current access. Therefore, a number of zeros are programmed in the LSBs of this register that correspond to the size of the DRAM column address. The remaining register bits are programmed to 1.

For example: Two 16Mbit 1M x 16 bit wide data port DRAMs are connected in parallel to make the memory 32 bits wide, and are connected onto an EMI bank configured as 32 bits wide. The DRAM has a row address size of 12 bits and a column address size of 8 bits.

The register should be programmed as: RASbits22:7 = 1111 1111 1111 1000 (0xFFF8)

This sets zeros in address lines MemAddr9-7. Address lines below MemAddr7 are by default zero. The zeros set the mask of the DRAM column size (8 bits). Zeros go from MemAddr9 to MemAddr2, as we are in 32 bit mode: this is 8 bits!

Note however that the data port size of the EMI bank affects the programming of the RASbits value.

For example: If instead one 16Mbit 1M x 16 bit wide data port DRAM, with a row address size of 12 bits and a column address size of 8 bits, is connected to the EMI, onto an EMI bank configured as 16 bits wide, the value will change to be:

RASbits22:7 = 1111 1111 1111 1100 (#FFFC)

MemAddr bits 6 to 1 are zero by default (MemAddr1 is now included in the calculation as we are in 16 bit mode). Then zeros go from MemAddr8 to MemAddr1, as we are in 16 bit mode: this is then 8 bits (for an 8 bit column).

EMI_CONFIGDATA2BANK0&1(DRAM format)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x08 & 0x18	Reserved			R	ASBi	ts			Pred	chargeT	ime		Refresh	Interval		RefreshRASedge

Address: EMIBaseAddress + 0x08 & 0x18

Type: R/W

Description

Bitfield	Definition
RefreshRASedge	1 or 2 cycles after start of refresh
RefreshInterval	(1 - 16) * 128 cycles
PrechargeTime	1 - 8 cycles
RASbits	Page address mask for address bits 29:23 Note: these bits should normally be set to all 1.

EMI_CONFIGDATA3BANK0&1(DRAM format)

	15 14 13 12	11	10 9	8	7 6	5 4	3 2	1	0
0x0C & 0x1C	Reserved	RAS-	CAStime	RASe1Time	RASe2Time	CASe1Time	CASe2Time	Multi-	Latch-
		time						byte	Point

Address: EMIBaseAddress + 0x0C & 0x1C

Type: R/W

Description

Bitfield	Definition
LatchPoint	0 = end of CAStime. 1 = 1 cycle before end of CAStime
Multibyte	When set, enables byte addressing using CAS strobes
CASe2Time	Rising edge of CAS. 0-3 phases before end of CAStime - in phases
CASe1Time	Falling edge of CAS. 1-4 phases after start of CAStime - in phases
RASe2Time	Rising edge of RAS. 0-3 phases before end of RAStime - in phases
RASe1Time	Falling edge of RAS. 1-2 phases after start of RAStime - in phases
CAStime	2 cycles + 0-3 cycles
RAStime	1 or 2 cycles

7170180A 139/275

9.2 Peripheral registers

EMI_CONFIGDATA0BANK 0, 1, 2 & 3 (peripheral format)

10 9 8 7 6 2 0 14 13 12 11 5 3 DataDriveDelay BusRelease-**CSactive OEactive BEactive** Portsize DeviceType Time

Address: EMIBaseAddress + 0x00, 0x10, 0x20 & 0x30

Type: R/W

Description

Bitfield	Definition
DeviceType	001 = peripheral. Sets the format of the configuration register
Portsize	0 = reserved, 01 = 32 bit, 10 = 16 bit, 11 = 8 bit
BEactive	00: Inactive 01: Active during read 10: Active during write 11: Active during read and write
OEactive	00: Inactive 01: Active during read 10: Active during write 11: Active during read and write
CSactive	00: Inactive 01: Active during read 10: Active during write 11: Active during read and write
BusReleaseTime	0-3 cycles
DataDriveDelay	0-7 phases

EMI_CONFIGDATA1BANK 0, 1, 2 & 3 (peripheral format)

 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

 AccessTimeRead
 CSe1TimeRead
 CSe2TimeRead
 OEe2TimeRead
 BEe1TimeRead
 BEe1TimeRead
 BEe2TimeRead

Address: EMIBaseAddress + 0x04, 0x14, 0x24 & 0x34

Type: R/W

Description

Bitfield	Definition
BEe2TimeRead	Rising edge of BE. 0-3 phases before end of access cycle
BEe1TimeRead	Rising edge of BE. 0-3 phases after start of access cycle
OEe2TimeRead	Rising edge of OE. 0-3 phases before end of access cycle
OEe1TimeRead	Falling edge of OE. 0-3 phases after start of access cycle
CSe2TimeRead	Rising edge of CS. 0-3 phases before end of access cycle
CSe1TimeRead	Falling edge of CS. 0-3 phases after start of access cycle
AccessTimeRead	2 cycles + 0-15 cycles

EMI_CONFIGDATA2BANK 0, 1, 2 & 3 (peripheral format)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Acc	essT	imeW	rite/	CSe1Tin	neWrite	CSe2Tii	meWrite	OEe1T	imeWrite	OEe2Tir	neWrite	BEe1Tii	meWrite	BEe2Tir	neWrite

Address: EMIBaseAddress + 0x08, 0x18, 0x28 & 0x38

Type: R/W

Description

Bitfield	Definition
BEe2TimeWrite	Rising edge of BE. 0-3 phases before end of access cycle
BEe1TimeWrite	Rising edge of BE. 0-3 phases after start of access cycle
OEe2TimeWrite	Rising edge of OE. 0-3 phases before end of access cycle
OEe1TimeWrite	Falling edge of OE. 0-3 phases after start of access cycle
CSe2TimeWrite	Rising edge of CS. 0-3 phases before end of access cycle
CSe1TimeWrite	Falling edge of CS. 0-3 phases after start of access cycle
AccessTimeWrite	2 cycles + 0-15 cycles

EMI_CONFIGDATA3BANK 0, 1, 2 & 3 (peripheral format)

Address: EMIBaseAddress + 0x0C, 0x1C, 0x2C & 0x3C

Type: R/W

Description

Bitfield	Definition
LatchPoint	0 = end of access cycle, 1 = 1 cycle before end of access cycle, 2 = 2 cycles before end of access cycle

7170180A 141/275

9.3 SDRAM registers

EMI_CONFIGDATA0BANK0&1(SDRAM format)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00 & 0x10 | Reserved | DataDriveDelay | BusReleaseTime | SubBankS | SubBankSize | ShiftAmount | PortSize | DeviceType

Address: EMIBaseAddress + 0x00 & 0x10

Type: R/W

Description

Bitfield	Definition
DeviceType	010 = SDRAM. Sets the format of the configuration register
PortSize	00 = reserved, 01 = 32 bit, 10 = 16 bit, 11 = 8 bit
ShiftAmount	Column address width (0 = 7, 1 = 8)
SubBankSize	00 = 16Mbit, 01 = 32 Mbit, 10 =64 Mbit, 11 = 128 Mbit
SubBanks	00 =1, 01 = 2, 10 = 4, 11 = reserved
BusReleaseTime	1 or 2 cycles
DataDriveDelay	0-1 phases

EMI_CONFIGDATA1BANK0&1(SDRAM format)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x04 & 0x14 RASbits

Address: EMIBaseAddress + 0x04 & 0x14

Type: R/W

Description

Bitfield	Definition
RASbits	Page address mask for address bits 22:7

The RASbits are used by the EMI to calculate if the pending EMI access request is in the same page (row address) as the current access. If this is the case, the next access is a page mode access (where page mode for SDRAM means that sequential read/write commands can be made without a preceeding row activate command).

The 1s in the mask correspond to the row address bits to be compared, and are used to check that the pending access is in the same row as the current access. Therefore, a number of zeros are programmed in the LSBs of this register that correspond to the size of the SDRAM column address. The remaining register bits are programmed to 1.

For example: a 64Mbit 32 bit wide data port SDRAM with a row address size of 12 bits and a column address size of 8 bits, configured onto an EMI bank 32 bits wide.

The register must be programmed as: RASbits22:7 = 1111 1111 1111 1000 (0xFFF8)

This sets zeros in address lines MemAddr9-7. Address lines below MemAddr7 are by default zero. The zeros set the mask of the SDRAM column size (8 bits). Zeros go from MemAddr9 to MemAddr2, as we are in 32 bit mode: this is 8 bits!

Note however that the data port size of the EMI bank affects the programming of the RASbits value.

For example: if instead a 64Mbit 16 bit wide data port SDRAM with a row address size of 12 bits and a column address size of 8 bits, configured onto an EMI bank 16 bits wide, the value will change to be:

RASbits22:7 = 1111 1111 1111 1100 (#FFFC)

MemAddr bits 6 to 1 are zero by default (MemAddr1 is now included in the calculation as we are in 16 bit mode). Then zeros go from MemAddr8 to MemAddr1, as we are in 16 bit mode: this is then 8 bits (for an 8 bit column).

EMI_CONFIGDATA2BANK0&1(SDRAM format)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x08 & 0x18	Reserved			R	ASBi	ts			Pred	hargeT	ime	F	Refresh	Interva	I	reserved

Address: EMIBaseAddress + 0x08 & 0x18

Type: R/W

Description

Bitfield	Definition
RefreshInterval	(1 - 16) * 128 cycles
PrechargeTime	1 - 8 cycles
RASbits	Page address mask for address bits 29:23. Note: these bits should normally be set to all 1.

EMI_CONFIGDATA3BANK0&1(SDRAM format)

	15	14	13	12 1	1 1	10	9	0	1	О	Э	4	3	2	I	U	
0x0C & 0x1C	Reserved	ModeSet-	Ref	resh	Tim	е	Activa	teTo-	Activate	ToWrite	CASIa	tency	SDram	WriteRe	covery-	Res.	1
		Delay					Rea	ad					Banks	Tim	ne		

Address: EMIBaseAddress + 0x0C & 0x1C

Type: R/W

Description

Bitfield	Definition
WriteRecoveryTime	00 = reserved, 01 = 1 cycle, 10 = 2 cycles, 11 = 3 cycles
SDRAM Banks	The number of internal memory banks in SDRAM organisation
	0 = 2 SDRAM banks (16Mbit devices), 1 = 4 SDRAM banks (64Mbit devices)
CASIatency	1 to 4 cycles
ActivateToWrite	1 or 4 cycles
ActivateToRead	1 to 4 cycles
RefreshTime	1 to 16 cycles
ModeSetDelay	3 or 4 cycles

EMI_CONFIGLOCKBANK0-3

Address: EMIBaseAddress + 0x40, 0x44, 0x48 & 0x4C

Type: Write only

7170180A 143/275

Description

Bitfield Definition

EMIConfigData0-3 Write protection, when set this bit makes the bank read only

EMI_CONFIGSTATUS EMI status

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x50 Reserved EMI_ConfigStatus[7:0]

Address: EMIBaseAddress + 0x50

Type: Read only

Description

Bitfield	Definition
EMI_ConfigStatus[0]	When set all the four configuration registers for bank0 have been written at least once
EMI_ConfigStatus[1]	When set all the four configuration registers for bank1 have been written at least once
EMI_ConfigStatus[2]	When set all the four configuration registers for bank2 have been written at least once
EMI_ConfigStatus[3]	When set all the four configuration registers for bank3 have been written at least once
EMI_ConfigStatus[4]	When set configuration registers for bank0 locked
EMI_ConfigStatus[5]	When set configuration registers for bank1 locked
EMI_ConfigStatus[6]	When set configuration registers for bank2 locked
EMI_ConfigStatus[7]	When set configuration registers for bank3 locked

EMI_DRAMINITIALIZE SDRAM system intialize

9 8 2 0 15 14 13 12 11 10 7 6 5 4 3 1 0x60 Reserved Bit0

Address: *EMIBaseAddress* + 0x60

Type: Write only

Description

In Slave Mode, the EMI3 should not initialize DRAM or SDRAM devices in the system, nor should it refresh any S/DRAM device. Therefore this register should never be written.

Bitfield	Definition
Bit0	Initializes the system SDRAM

EMI_SDRAMMODEREG0 SDRAM mode register

 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

 0x58
 Reserved
 Latency mode
 Burst type
 Burst length

Address: EMIBaseAddress + 0x58

Type: W Reset value: 0x22

This register is used by the EMI to program the SDRAM mode register. This is performed during the SDRAM initialize sequence, started by a write to the EMI_DRAMINITIALIZE register. The EMI performs a mode register set command to the SDRAM, in which the data in the EMI_SDRAMMODREGO register is copied onto the bottom 16 address lines of the EMI

SDRAM mode register for a single SDRAM bank (bank 0 or 1), or for SDRAM bank 0 when there are two SDRAM banks programmed in the EMI.

Bitfield	Descritpion
Burst length	Default 010 : this field is not required to be programmed, as the EMI does not use SDRAM burst mode
Burst type	Default 0 : this field is not required to be programmed, as the EMI does not use SDRAM burst mode
Latency mode	Default 010 : this latency value must match the value programmed into the CASlatency field in the corresponding EMI_CONFIGDATA3 register, for the EMI bank being used Valid codes for SDRAM are : 010 = SDRAM CAS latency of 2, 011 = SDRAM CAS latency of 3

EMI_SDRAMMODEREG1 SDRAM mode register

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x5C				Re	eserv	ed				La	atency mo	ode	Burst type	В	ırst lengt	th

Address: EMIBaseAddress + 0x5C

Type: W Reset value: 0x22

Description

This register is used by the EMI to program the SDRAM mode register. This is performed during the SDRAM initialize sequence, started by a write to the EMI_DRAMINITIALIZE register. The EMI performs a mode register set command to the SDRAM, in which the data in the EMI_SDRAMMODREG1 register is copied onto the bottom 16 address lines of the EMI.

SDRAM mode register for SDRAM bank 1, when there are two SDRAM banks programmed in the EMI.

Bitfield	Descritpion
Burst length	Default 010 : this field is not required to be programmed, as the EMI does not use SDRAM burst mode
Burst type	Default 0: this field is not required to be programmed, as the EMI does not use SDRAM burst mode
Latency mode	Default 010 : this latency value must match the value programmed into the CASlatency field in the EMI_CONFIGDATA3 register, for EMI bank 1. Valid codes for SDRAM are : 010 = SDRAM CAS latency of 2, 011 = SDRAM CAS latency of 3

7170180A 145/275

EMI_CONFIGPADLOGIC EMI configuration

	15 14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
0 x 70	WaitCycles	Reserved	CPADL [11]	Res.	CF	PADL[9:	7]	Res.	CPADL [5]	Res.	CI	PADL[3:	1]	CPADL [0]

Address: *EMIBaseAddress* + 0x70

Type: R/W Reset value: 0

Description

Bitfield	Definition
CPADL[0]	0: cas0 mapped on notCPU_CAS0
	1: cpu_addr[22] mapped on notCPU_CAS0
CPADL[3:1]	Encode DRAM or SDRAM configuration & sub-decoding of bank3 ¹ :
	000: NO (S)DRAM - sub-decode bank3 not enabled
	001: NO (S)DRAM - sub-decode bank3 enabled
	010: 1 (S)DRAM in bank0 - sub-decode bank3 not enabled
	011: 1 (S)DRAM in bank0 - sub-decode bank3 enabled
	100: 1 (S)DRAM in bank1 - sub-decode bank3 not enabled
	101: 1 (S)DRAM in bank1 - sub-decode bank3 enabled
	110: (S)DRAM in bank0 with sub-decoding - sub-decode bank3 not enabled
	111: 2(S)DRAM in bank0 and bank1 - sub-decode bank3 not enabled
CPADL[5]	0: asynchronous MemWait
	1: synchronous MemWait
CPADL[9:7]	SubBankSize in bank3:
	000=4Mbit, 001=8Mbit, 010=16Mbit, 011=32Mbit, 100=64Mbit, 101=1Gbit, 110,111=Reserved
CPADL[11]	0: no SDRAM in the EMI, 1: SDRAM in the EMI
WaitCycles	Sets the number of EMI wait cycles to be inserted during peripheral access to the upper part of EMIbank3:
	00: Zero wait cycles, 01: 1 wait cycle, 10: 2 wait cycles, 11: 3 wait cycles

^{1. (}S)DRAM means DRAM or SDRAM: it is not possible to have SDRAM and DRAM in the system at the same time: so the configuration refer to only DRAM OR only SDRAM in bank0,1.

10 Front end interface (FEI)

10.1 ATAPI interface

FEI_ATAPI_CFG

ATAPI interface configuration

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x7A0 Reserved READY ADDR_POL ENABLE PADS_CTL

Address: LinkBaseAddress + 0x7A0

Type: R/W except for bit 7 which is read only

Reset value: Undefined

Description

Bitfield	Description
PADS_CTL	0: Set ATAPI mode inactive, 1: Set ATAPI DIOR/DIOW pads active.
	The ST20 PIO1 and PIO2 must be programmed as outputs when using the ATAPI interface.
ENABLE	0: Disables ATAPI interface, 1: Enables ATAPI interface (Not used for STB applications)
ADDR_POL	Configurethe ATAPI interface (these bits correspond to EMI_addr<20:16>).
READY	This bit is read only
	0: Not ready for new sector, 1: Ready for new sector

10.2 Sector processor

The addresses below are quoted as the offset to the LinkBaseAddress.

FEI_SE_RST Reset module

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

SE_RST[0]

Address: LinkBaseAddress + 0x800

Type: W Reset value: 1

Description

Bitfield	Description
SE_RST[0]	1: The sector processor and all FEI are reset. This bit must be used if parallel or FEC (in DVD mode) inputs are also selected.
	0: This BID is write only. This bit resets all the FEI except decryption cell.

FEI_SE_SAC Sector address check

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

SE_SAC[0]

Address: LinkBaseAddress + 0x804

7170180A 147/275

Type: Reset value:

Description

Bitfield	Description
SE_SAC[0]	0 : no check 1 : continuity check

FEI_SE_MOD Sector processor mode

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SE_MOD[1:0]

Address: LinkBaseAddress + 0x808

Type: R/W Reset value: Undefined

Description

Bitfield	Description
SE_MOD[1:0]	00: DVD
	01: VCD Mode 2 form 2
	10: VCD Mode 2 form 1
	11: CD-DA

FEI_SE_CAPEN Capturing enable

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SE_CAPEN[0]

Address: LinkBaseAddress + 0x080C

Type: R/W Reset value: 0

Description

Bitfield	Description
SE_CAPEN[0]	0 : Disable Capturing (sector synchronized)
	1 : Enable Capturing (sector synchronized)

FEI_SE_EMR Error mode

Address: LinkBaseAddress + 0x810

Type: R/W Reset value: Undefined

Bitfield Description
SE_EMR[0] 0 : Continue

1. Stop. To restart the sector processor, SE_CAPEN[0] has to be set

FEI_SE_IR Interrupt

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SE_IR[7:0]

Address: LinkBaseAddress + 0x814

Type: R/W Reset value: 0

Description

Write: enable interrupt.

Read: interrupt status and interrupt clear.

Bitfield	Description
SE_IR[0]	CAPEND, sector with address in SE_LST minus one is captured
SE_IR[1]	SECCAP, sector with address in SE_CAP is captured
SE_IR[2]	RDERR, read error
SE_IR[3]	NPRENAV, New Pre NV_PCK
SE_IR[4]	EOF, VCD End Of File
SE_IR[5]	EOR, VCD End Of Record
SE_IR[6]	T, VCD Trigger
SE_IR[7]	Short Sector

FEI_SE_STAT Status

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

SE_STAT[0]

Address: LinkBaseAddress + 0x818

Type: R

Reset value: Undefined

7170180A 149/275

Bitfield	Description
SE_STAT[0]	Busy reading Not busy reading
SE_STAT[1]	1 : Busy capturing
	0 : Not capturing

FEI_SE_CAP_H Address of first sector /subcode block to be captured

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SE_CAP_H

Address: LinkBaseAddress + 0x820

Type: R/W Reset value: Undefined

FEI_SE_CAP_L Address of first sector /subcode block to be captured

 $31 \quad 30 \quad 29 \quad 28 \quad 28 \quad 26 \quad 25 \quad 24 \quad 23 \quad 22 \quad 21 \quad 20 \quad 19 \quad 18 \quad 17 \quad 16 \quad 15 \quad 14 \quad 13 \quad 12 \quad 11 \quad 10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1 \quad 0$

SE_CAP_L

Address: LinkBaseAddress + 0x824

Type: R/W Reset value: Undefined

Description

These two registers program the first sector / subcode block to be captured. The value type depends on the sector processor mode: DVD (24 bits sector number in DVD sector header), VCD (24 bits MSF in VCD sector header), CD-DA (24 bits MSF in Q sub channel).

 $SE_CAP_H = SE_CAP$ [23...16]

 $SE_CAP_L = SE_CAP$ [15...0]

FEI_SE_LST_H Address of (last + 1) sector /subcode block last to be captured

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SE_LST_H

Address: LinkBaseAddress + 0x828

Type: R/W Reset value: Undefined

FEI SE LST L

Address of (last + 1) sector /subcode block to be captured

31 30 <mark>29 28 28 26 25 24 23 2</mark>2 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SE_LST_L

Address: LinkBaseAddress + 0x82C

Type: R/W Reset value: Undefined

Description

These two registers are used to program the last sector / subcode block of the range to be captured.

This sector is not captured. Capture ends at LST-1. The type of value depends on sector processor mode: DVD (24 bits sector number in DVD sector header), VCD (24 bits MSF in VCD sector header), CD-DA (24 bits MSF in Q sub channel).

SE_LST_H=SE_LST [23...16]

SE_LST_L=SE_LST [15...0]

FEI_SE_CUR_H Address of actual sector /subcode block actually entering the SP

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SE_CUR_H

Address: LinkBaseAddress + 0x830

Type: R

Reset value: Undefined

FEI_SE_CUR_L Address of actual sector /subcode block entering the SP

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SE_CUR_L

Address: LinkBaseAddress + 0x834

Type: R

Reset value: Undefined

Description

These two registers are used to read the current sector / subcode block address entering the SP.

The type of read data depends on sector processor mode: DVD (24 bits sector number in DVD sector header), VCD (24 bits MSF in VCD sector header), CD-DA (24 bits MSF in Q sub channel).

SE_CUR_H=SE_CUR [23...16]

SE_CUR_L=SE_CUR [15...0]

7170180A 151/275

FEI_SE_HE_H

CPR_MAI bits of current sector actually entering the SP

31 30 <mark>29 28 28 26 25 24 23 2</mark>2 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SE_HE_REG_H

Address: LinkBaseAddress + 0x860

Type: R/W Reset value: Undefined

Description

SE_HE_REG_H[15...0]=CPR_MAI[47...32]

FEI_SE_HE_M CPR_MAI bits of current sector actually entering the SP

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SE_HE_REG_M

Address: LinkBaseAddress + 0x864

Type: R/W Reset value: Undefined

Description

This register is only significant in DVD Mode. SE_HE_REG_M[15...0]=CPR_MAI[31...16]

FEI_SE_HE_L CPR_MAI bits of current sector actually entering the SP

 $31 \quad 30 \quad 29 \quad 28 \quad 28 \quad 26 \quad 25 \quad 24 \quad 23 \quad 22 \quad 21 \quad 20 \quad 19 \quad 18 \quad 17 \quad 16 \quad 15 \quad 14 \quad 13 \quad 12 \quad 11 \quad 10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1 \quad 0$

SE_HE_REG_L

Address: LinkBaseAddress + 0x868

Type: R/W Reset value: Undefined

Description

This register is only significant in DVD Mode: SE_HE_REG_L[15...0]=CPR_MAI[15...0]

10.3 Front-end interface

FEI_REV Revision ID

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

REV

Address: LinkBaseAddress + 0x79C

Type: RO

This register gives the Front End Interface revision. For STi5518 cut A0, the value is 0x30. For susequent cuts, the value is given in application note 7152120, STi5518 How to move from cutA0.

FEI GCF

Front-end interface configuration

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FEI[15:0]

Address: LinkBaseAddress + 0x790

Type: R/W Reset value: 0x01E0

Description

Bitfield	Default	Description
FEI_GCF[0]	0	If set to 1, the DVD front-end-interface is bypassed. Data goes directly from the FEC interface to the acquisition RAM. This bit must be programmed to 1 to ensure compatability with the STi5500.
FEI_GCF[1]	0	If set to 1, the data are input using the parallel interface.
FEI_GCF[2]	0	If set to 0, the next sector will not be taken into account. This flag is usefull when the track-buffer is full. When this bit is set to 0, the current read sector n is not affected. To restart the sector processor (if used), it is necessary to set SE_CAPEN[0] and to send from the basic engine a sequence containing at least sector n (if addresses of sectors to be captured have not been modified). In case of parallel interface, reset ting this bit means desactivating PARA_REQ output signal. In case of FEC interface, this bit has no effect since there is no handshake.
FEI_GCF[3]	0	Polarity of PARA_STR input signal of parallel interface. If set to 1, rising edge is used to strobe the data.
FEI_GCF[4]	0	Polarity of PARA_REQ output signal of parallel interface. If set to 1, PARA_REQ = 1 means that the device can accept data.
FEI_GCF[5]	1	Decryption cell is bypassed.
FEI_GCF[6]	1	The I2S interface enters the sector processor The serial interface (or FEC interface) enters the sector processor (DVD mode only)
FEI_GCF[7]	1	Decryption cell software reset. This bit must be set and then reset to reset the decryption cell. The keys are lost on this action. After a hard reset, this bit is automatically set.
FEI_GCF[8]	1	Pin 20 In/Out. If set to 1, Pin 20 is an input, if not the Pin 20 is on output.
FEI_GCF[9]	0	Use NRSS - this bit must be used in conjunction with FEI_GCF[8].
FEI_GCF[10]	0	When FEI_GCF[11] is set, this bit is controls the active polarity of the external start sector signal.
FEI_GCF[11]	0	External start sector signal (PARA_SYNC or SER_SYNC) If set to 1, the external start-sector signal generates an internal start-sector signal.
FEI_GCF[12]	0	If set to 1, data coming from the FEC interface enters the CSS decryption block, FEI_GCF[13] and FEI_SLG must be programmed accordingly.
FEI_GCF[13]	0	1: The first 12 bytes and last bytes (after 2060) are not sent to the decryption cell. However, these bytes will be transfered by DMA. This initialization is done accordingly to FEI_SLG and FEI_GCF[12] registers. 0: All sector bytes enter the decryption cell (FEI_SLG must be set to 2048)
FEI_GCF[14]	0	Polarity of PARA_DVALID output signal of parallel interface. If set to 1, PARA_DVALID = 1 means data sent by the front end are valid.
FEI_GCF[15]	0	Use of PARA_DVALID signal. If set to 1, PARA_DVALID controls parallel data input.

After programming this register, perform a soft-reset using register FEI_SE_RST.

7170180A 153/275

FEI SLG

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Sector_length

Address: LinkBaseAddress + 0x798

Type: R/W Reset value: Undefined

Description

This register is only used when data are input using the parallel interface. The value to be written is the same than the value to be written in the "DMA_PLG" register. This value is used internally to generate a sector start synchronisation, what is done automatically when the sector-processor is used.

FEI_SUB

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Subcodes

Address: LinkBaseAddress + 0x788

Type: R

Reset value: Undefined

Description

This register contents the 16 bits subcode value from the subcode FIFO. Reading this register increments the read pointer of the subcode FIFO. If the FIFO is empty, the read cycle is not granted. It is necessary to read FEI_SFF before accessing FEI_SUB to be sure subcodes are available.

FEI_SFF

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Level

Address: LinkBaseAddress + 0x78C

Type: R

Reset value: Undefined

Description

This register indicates the actual filling level of the subcode FIFO (number of 16 bits words).

10.4 Decryption-cell Registers

The decryption cell internal registers are accessed by first writting an index to the Index Register (DEC_IDX) and then reading or writing data to the Data Register (DEC_DAT).

FEI_DEC_IDX

31 30 <mark>29 28 **28 2**6 25 **24** 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 (</mark>

INDEX[5:0]

Address: LinkBaseAddress + 0x784

Type: W

Reset value: Undefined

Description

This index register is used to select intermediate key register, internal key load register, temporary word register or internal function register.

FEI DEC STA

Address: LinkBaseAddress + 0x784

Type: R

Reset value: Undefined

Description

Bitfield	Description
done	Indicates completion of a function. A logic 1 indicates the function is complete.
success	Indicates the success or the failure of the function being performed. The value is only valid after the function is complete. This bit is valid only for function 4. A logic 1 indicates success.

FEI_DEC_DAT

 $31 \quad 30 \quad 29 \quad 28 \quad 28 \quad 26 \quad 25 \quad 24 \quad 23 \quad 22 \quad 21 \quad 20 \quad 19 \quad 18 \quad 17 \quad 16 \quad 15 \quad 14 \quad 13 \quad 12 \quad 11 \quad 10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1 \quad 0$

DATA[7:0]

Address: LinkBaseAddress + 0x780

Type: R/W Reset value: Undefined

Description

This data register is used to load intermediate key, internal keys, temporary word, to select internal functions.

7170180A 155/275

0

2

FEI TWH

Temporary word high

5

TEMP_HIGH

Address: LinkBaseAddress + 0 x 10, 11, 12, 13, 14

Type: W0

Reset value: Undefined

Description

This register is loaded with input values by the ST20 and is the source register for DVD ROM functions. This register is write only.

FEI_TWL

Temporary word low

Address: LinkBaseAddress + 0 x 18, 19, 1A, 1B, 1C

Type: WO Reset value: Undefined

Description

This register is loaded with input values by the ST20 and is the source register for DVD ROM functions. This register is write only.

FEI_IKL

Internal key load register

7	6	5	4	3	2	1	0
			KEY	[7:0]			

Address: LinkBaseAddress + 0x07

Type: W

Reset value: Undefined

Description

This register is used in function 3 as a mean to lead the disk key into the device for later decryption. This register is write only. The key is loaded 1 byte at a time by writing each byte in turn to this register.

FEI_IK

Intermediate key

	7	6	5	4	3	2	1	0					
Ī	INTER_KEY[7:0]												

Address: LinkBaseAddress + 0 x 00, 01, 02, 03, 04

Type: W, R under conditions

Reset value: Undefined

This register is a temporary result register used to store transient and intermediate values. This register is writeable but readable only at the completion of function 1. This register is loaded with the least significant byte at the lowest address. This register is used only with a DVD ROM drive.

FEI_IF

Internal function

7	6	5	4	3	2	1	0
0	0	Opt	ion	Mult		Function	

Address: LinkBaseAddress + 0x3F

Type: W

Reset value: Undefined

Description

Bitfield	Description										
Function[2:0]	0 : Verify drive response (use for DVD ROM only)										
	1 : Generate decoder response (use for DVD ROM only)										
	2 : Generate bus key (use for DVD ROM only)										
	3 : Load Keys										
	4 : Decrypt Disc Keys										
	5 : Decrypt Title Keys										
	6 : Decrypt Data										
	7 : Reset (will abort all other modes - keys preserved)										
Mult	Writing a 1 in this bit position causes the cell to reinitialize at the end of a block of data and continue decrypting data. Writing a 0 will cause the device to terminate decryption at the end of the current block.										
Option	Selects function 6 option of full DVD blocks or pre-parsed blocks with headers removed. ????????										
Option[5:4]	00 : Fixed length - full length block (2048 bytes).										
	01 : Fixed length - pack header removed (2034 bytes).										

7170180A 157/275

11 Interrupt control registers (INC)

INC_CLEAR_EXEC

Clear a bit of the Exec register

Address: IntControllerBase + 0x108

Type: Write only

Description

When set, bits 0-7 of this register clear the corresponding interrupt exec bit (IntEx) in register INC_Exec. There is one bit for each of the 8 interrupt levels, where bit 0 corresponds to bit INTEx0 etc... Bit 16 of this register clears all of the bits of the INC_Exec register.

Note, users must not use this register, as its operation is undefined.

INC_CLEAR_MASK Clear a bit of the interrupt enable mask

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Address: IntControllerBase + 0xC8

Type: Write only

Description

When set, bits 0-7 of this register clear the corresponding interrupt enable bit (IntEn) in register INC_Mask. There is one bit for each of the 8 interrupt levels, where bit 0 corresponds to bit IntEn0 etc... Bit 16 of this register clears all of the bits of the INC_Mask register.

INC_CLEAR_PENDING Clear a bit of the Pending register

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

R

Address: IntControllerBase + 0x88

Type: Write only

Description

When set, bits 0-7 of this register clear the corresponding interrupt pending bit (PendInt) in register INC_Pending. There is one bit for each of the 8 interrupt levels, where bit 0 corresponds to bit PendInt0 etc... Bit 16 of this register clears all of the bits of the INC_Pending register.

1

INC_EXEC

Interrupts executing

21 20 19 18 17 16 15 14 13 12 11 10 9 Reserved

Address: IntControllerBase + 0x100

Read/write Type:

Reset value: 0

Description

This register records whether interrupt levels 0-7 are currently executing and pre-empting interrupts. The bit is set when the CPU starts running code for that interrupt, where IntEx0 corresponds to interrupt level 0 etc... The highest priority interrupt bit is reset once the interrupt handler executes a return from interrupt instruction (iret).

This register is specified as being read/write, but users should not attempt to write to this register, as the device operation is undefined.

INC HANDLERWPTR_n Interrupt handler work space pointer

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 0x00 HandlerWptr0[31:2] Ρ HandlerWptr1[31:2] Ρ 0x04 0x08 HandlerWptr2[31:2] Р 0x0C HandlerWptr3[31:2] Р HandlerWptr4[31:2] Ρ 0x10

HandlerWptr5[31:2] Р 0x14 HandlerWptr6[31:2] P 0x18 HandlerWptr7[31:2] 0x1C

Address: IntControllerBase + 0x00 (INC_HandlerWptr0) to 0x1C (INC_HandlerWptr7)

Read/write Type: Undefined Reset value:

Description

This register points to the work space of the corresponding interrupt handler (HandlerWptr0 corresponds to interrupt level0...). The base of the work space is 32-bit word aligned, so the two least significant bits of the 32-bit address are always zero, and are not held. Each register contains a priority bit P which determines whether the interrupt is at a higher or lower priority than the high-priority process queue.

4 7170180A 159/275 Before the interrupt is enabled by writing a 1 in the INC_Mask register, the software must ensure that there is a valid HandlerWptr in the register.

Bji	field		1	1	Description								
Р					Sets the priority of the interrupt. If this bit is set to 0, the interrupt is a higher priority than the high priority process queue; if this bit is 1, the interrupt is a lower priority than the high priority process queue. 0: High priority, 1: Low priority								
На	HandlerWptr[31:2]				The 30 most significant bits of the address of the work space of the interrupt handler.								

INC_MASK

Interrupt enable mask

0xC0 Reserved Reserve

Address: IntControllerBase + 0xC0

Type: Read/write

Reset value: 0

Description

This register selectively enables or disables interrupts from the interrupt level controller, connected to each of the eight interrupt levels. The global interrupt disable bit, disables all interrupt levels, whatever the state of the individual interrupt mask bits.

The INC_Pending register contains a pending flag for each interrupt level. The INC_Mask register masks the INC_Pending register to control what interrupts the CPU, while continually monitoring interrupts.

On start-up, INC_Mask is initialized to zeros so all interrupts are disabled both globally and individually. When a 1 is written to the GloEn bit, the individual interrupt channels are still disabled. To enable an interrupt channel, a 1 must also be written to the corresponding IntEn bit.

Bitfield	Description
GloEn	Interrupt setting determined by the corresponding IntEn bit. All interrupts disabled
IntEn[7:0]	1: Interrupt enabled, 0: Interrupt disabled.

INC_Mask is mapped onto registers INC_Set_Mask and INC_Clear_Mask so that bits can be set or cleared individually.

INC_PENDING

Interrupt pending

	7	6	5	4	3	2	1	0
0x80	PendInt7	PendInt6	PendInt5	PendInt4	PendInt3	PendInt2	PendInt1	PendInt0

Address: IntControllerBase + 0x80

Type: Read/write

Reset value: 0

Description

This register contains one bit per interrupt level. A read of this register examines the state of the interrupt controller; a write can explicitly trigger an interrupt.

A bit is set when the triggering condition for an interrupt level is met. All bits are independent so that several bits can be set in the same cycle. Once a bit is set, a further triggering condition will have no effect. The triggering condition is independent of INC_Mask.

The highest priority interrupt bit is reset, once the interrupt controller has made an interrupt request to the CPU.

The interrupt controller receives interrupt requests and makes an interrupt request to the CPU when it has a pending interrupt request of higher priority than the currently executing interrupt handler.

If the software needs to write or clear some bits of the INC_Pending register, the interrupts should be masked (by writing or clearing the INC_Mask register) before writing or clearing the INC_Pending register. The interrupts can then be unmasked.

The INC_Pending register is mapped onto registers INC_Set_Pending and INC_Clear_Pending so that bits can be set or cleared individually.

INC_SET_EXEC Set a bit of the Exec register

	31	30	29	28	28	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x104							Re	ser	ved							Set			R	ese	erve	d			Set	Set	Set		Set	Set	Set	Set

Address: IntControllerBase + 0x104

Type: Write only

Description

This register sets bits of the INC_EXEC register individually. Writing a '1' in this register sets the corresponding bit in the INC_EXEC register, a '0' leaves the bit unchanged.

Note: do not write to this register as device operation is undefined.

INC_SET_MASK Set an interrupt enable mask

	31	30	29	28	28	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0xC4							Res	serv	ved							Set			F	Rese	erve	d			Set	Set	Set	Set	Set	Ð	Set	Set	

Address: IntControllerBase + 0xC4

Type: Write only

Description

This register sets bits of the INC_Mask register individually. Writing a '1' in this register sets the corresponding bit in the INC_Mask register, a '0' leaves the bit unchanged.

INC_SET_PENDING Set a bit of the Pending register

Address: IntControllerBase + 0x84

Type: Write only

7170180A 161/275

This register sets bits of the INC Pending register individually. Writing a '1' in this register sets the corresponding bit in the INC Pending register, a '0' leaves the bit unchanged.

INC_TRIGGERMODE Interrupt trigger mode

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x40	Reserved	Trigger0
0x44	Reserved	Trigger1
0x48	Reserved	Trigger2
0x4C	Reserved	Trigger3
0x50	Reserved	Trigger4
0x54	Reserved	Trigger5
0x58	Reserved	Trigger6
0x5C	Reserved	Trigger7

Address: IntControllerBase + 0x40 (INC_TriggerMode0) to 0x5C (INC_TriggerMode7)

Type: Read/write Reset value: Undefined

Description

These registers control the triggering conditions of the interrupts. Each interrupt channel can be programmed to trigger on rising or falling edges or high or low levels on the incoming interrupt signal.

Bitfield	Description
Trigger[7:0]	000: No trigger mode
	001: High level - triggered while input high
	010: Low level - triggered while input low
	011: Rising edge - low to high transition
	100: Falling edge - high to low transition
	101: Any edge - triggered on rising and falling edges
	110: No trigger mode
	111: No trigger mode

Level triggering is different from edge triggering in that if the input is held at the triggering level, a continuous stream of interrupts is generated.

Interrupt-level control registers (INC) 12

Interrupt priority

,	31	30	29	28	28	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x00																														Ir	nt0P	ri
																	•••															
0x78																														In	t30F)ri
UNIU																															1001	

Address: InterruptLevelBase + 0x00 (INC_Int0Priority), 0x04 (INC_Int1Priority) up to 0x78 (INC_Int30Priority)

Type: Read/write

000 Reset value:

Description

The value in this register sets the priority of internal interrupts, from 0 - 7. Each register is word aligned. There is one register for each interrupt source from N=0 to N=30.

Bitfield	Description
IntnPri[2:0]	000: 0 (lowest priority)
	001: 1
	010: 2
	011: 3
	100: 4
	101: 5
	110: 6
	111: 7 (highest priority)

INC_INPUTINTERRUPT Interrupt status

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

Intln 0-30 0x7C Reserved

Address: InterruptLevelBase + 0x7C

Read only Type:

Reset value: 0

Description

This register identifies the source of an interrupt, coming into the interrupt level controller. Each register bit corresponds to an individual interrupt source (bits 0-30 to interrupt sources 0-30). The STi5518 Data Sheet gives a table of interrupt assignments, this can be used to identify the cause of interrupt. When the bit value is 1, the corresponding interrupt source is high; when the bit value is 0, the corresponding interrupt source is low. Note this register is not latched, but is simply a synchronized version of the interrupt source signal, reflecting its current logic state.

7170180A 163/275

INC_SRC_TRIGGERMODE Interrupt-source trigger mode

0xBC	31 30 29	28 2	8 26 2	5 24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3		1 rigge	
0x C 0	٠																										igge	
0xC4																										Tı	igge	r
0x																										Tı	igge	r
0x134																										Tı	igge	r

Address: InterruptLevelBase + 0xBC (Interrupt N=0), 0xC0 (Interrupt N=1) to 0x134 (Interrupt N=30)

Type: Read/write Reset value: 001 (high level)

Description

This register sets the interrupt trigger for each of the 31 Interrupt Level Controller interrupt sources. Register INC_TriggerMode sets the interrupt trigger for each of the 8 interrupt levels (set by the Interrupt Controller). These two registers can be used together to set the trigger mode on each of the 31 interrupt inputs and the 8 interrupt levels. Backward compatibility with the STi5500, STi5505 and STi5508 can be maintained by not programming this feature so that the trigger mode is high level and can then be set on the 8 interrupt levels only. This is the default after reset.

The table of interrupt assignments is given in the Data Sheet. Each interrupt source can be programmed to trigger on rising or falling edges, or high or low levels on the incoming interrupt signal, as described in the table below.

Bitfield	Description
Trigger	000: No trigger mode
	001: High level - triggered while input high
	010: Low level - triggered while input low
	011: Rising edge - low to high transition
	100: Falling edge - high to low transition
	101: Any edge - triggered on rising and falling edges
	110: No trigger mode
	111: No trigger mode

In level-triggering, when the input is held at the triggering level a continuous stream of interrupts is generated.

INC_SRC_CLEAR_MASK Clear interrupt-source enable mask

	31	30	29	28	28	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x1B4							Ċ			Ċ	Ċ			Ċ	Ċ	Ċ	Ċ				Ċ	Cľ	Cľ	Ċ					Ċ	Cľ		Ċ

Address: InterruptLevelBase + 0x1B4

Type: Write only Reset value: Undefined

When set, these bits clear the corresponding interrupt enable bits in register INC_SRC_MASK. Bits 0-30 of this register can be set individually and correspond directly to bits 0-30 of INC_SRC_MASK (where bit0 corresponds to interrupt source N=0 etc.).

Register INC_Clear_Mask, in the interrupt controller, performs this same function on each of the 8 interrupt levels. These registers can be used in conjunction, or backwards compatibility with the STi5500, STi5505 and STi5508 can be maintained by not using this register.

INC_SRC_SET_MASK Set the interrupt-source enable mask

	31	30	29	28	28	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x1B8		Set	Set	Set	Set	Set		Set	Φ	Set																						

Address: InterruptLevelBase + 0x1B8

Type: Write only Reset value: Undefined

Description

When set, these bits set the corresponding bits in register INC_SRC_MASK. Bits 0-30 of this register can be set individually and correspond directly to bits 0-30 of INC_SRC_MASK (where bit0 corresponds to interrupt source N=0 etc.).

Register INC_Set_Mask, in the interrupt controller, performs this same function for each of the 8 interrupt levels. These registers can be used in conjunction, or backwards compatibility with the STi5500, STi5505 and STi5508 can be maintained by not using this register.

INC_SRC_MASK Interrupt source enable mask

Address: InterruptLevelBase + 0x1BC

Type: Read/write Reset value: 0x7FFFFFF

Description

This register selectively enables or disables individual interrupt sources. There is one bit for each interrupt source, where bit 0 corresponds to interrupt source N=0, etc. Writing a'1' to a bit in this register, enables the corresponding interrupt source.

The INC_SRC_STATUS register contains a pending flag for each interrupt source. The INC_SRC_MASK register masks the INC_SRC_STATUS register to control which interrupt sources reach the CPU. (via the interrupt controller)

INC_SRC_MASK is mapped onto registers INC_SRC_SET_MASK and INC_SRC_CLEAR_MASK.

Register INC_Mask, in the interrupt controller, performs the same function as INC_SRC_MASK, but on the 8 interrupt levels. The two registers can be used together, or backwards compatibility with the STi5500, STi5505 and STi5508 can be maintained by not using this register.

7170180A 165/275

INC_SELNOTINV

External Wake-Up interrupt pin is set to active high or active low

Address: InterruptLevelBase + 0x1C8

Type: Read/write

Reset value: 111

Description

The three bits of this register correspond to the external interrupt pins IRQ0 to IRQ2 (pins 127 to 125 resp.). When a bit is set to 1, then the corresponding pin is active high, otherwise it is active low. This register is used in conjunction with INC_EN_INT. This register is used to select the active level for the external interrupt pins, to wake up the CPU from low power mode. It does not affect the normal power operating mode interrupt triggering, in the interrupt level controller.

INC EN INT

Enable external interrupt to wake-up the low-power controller

Address: InterruptLevelBase + 0x1CC

Type: Read/write

Reset value: 0

Description

The three bits of this register correspond to the external interrupt pins IRQ0 to IRQ2 (pins 127 to 125 resp.). When a bit is set, then the corresponding pin can be used to wake-up the CPU from low power mode, when entered by the low power controller.

INC_SRC_STATUS Triggered status of an interrupt source

Address: InterruptLevelBase + 0x1DC

Type: Read only

Reset value: 0

Description

This register identifies the source of an interrupt, as it is after processing by the interrupt level controller trigger detection logic. Each bit corresponds to an individual interrupt source N (from 0 to 30). A bit is set when the triggering condition for that interrupt source is met. If the corresponding source bit is set to have an edge sensitive trigger mode, then the bit is only cleared explicitly by writing to the corresponding bit in the INC_SRC_CLEAR register. If the bit is set to be active high level, then the corresponding bit in the register remains set to 1,until the interrupt source is taken low again, when it is reset to 0. If the bit is set to be active low level, then the corresponding bit in the register remains set to 1 until the interrupt source is taken high again, when it is reset to 0.

Note the status register is set when the trigger mode condition is met, even if the corresponding bit of the INC_SRC_MASK register is reset. In this case no interrupt level output is generated for the interrupt controller.

INC_SRC_CLEAR

Clears the interrupt-source status register

	31	30	29	28	2 8	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x1EC		Stat	Stat	Stat	Stat	Stat	Stat	Stat	Stat	Stat	Stat	Stat	Stat	Stat	Stat	+	Stat															

Address: InterruptLevelBase + 0x1EC

Type: Write only Reset value: Undefined

Description

When set, individual bits of this register clear the corresponding bits of the INC_SRC_STATUS register, where bit 0 of this register corresponds to bit 0 of INC_SRC_STATUS etc.

13 IR transmitter/receiver (IRB)

This section describes the RC fransmitter and receiver registers, the RC and UHF receiver and control registers and the noise suppression registers of the IR transmitter/receiver. Although the IR RC receiver and UHF RC receiver registers are held at different addresses, their register descriptions are identical and are only given once for each pair of registers, in *RC receiver registers* on page 172.

Register	Address	Bits	Access	Description	
IRB_TX_PRE_SCALER_IR	0x00	8	W/R	Clock pre-scaler selection	RC
IRB_TX_SUB_CARRIER_IR	0x04	16	W/R	sub-carrier freq. programming	Transmit Interface
IRB_TX_SYM_PERIOD_IR ¹	0x08	16	W	symbol period programming	registers
IRB_TX_ON_TIME_IR ¹	0x0C	16	W	symbol on time programming	
IRB_TX_INT_EN_IR	0x10	3	W/R	Transmit Interrupt enable register	
IRB_TX_INT_STATUS_IR	0x14	4	R	Transmit Interrupt status register	
IRB_TX_EN_IR	0x18	1	W/R	RC transmit enable register	
IRB_TX_CLR_UNDERRUN_IR	0x1C	1	W	Clears the underrun status	
IRB_RX_ON_TIME_IR ¹	0x40	16	R	Received pulse time capture	RC
IRB_RX_SYM_PERIOD_IR ¹	0x44	16	R	Received symbol period capture	Receive Interface
IRB_RX_INT_EN_IR	0x48	4	W/R	Receive Interrupt enable register	registers
IRB_RX_INT_STATUS_IR	0x4C	5	R	Receive Interrupt status register	for Infrared
IRB_RX_EN_IR	0x50	1	W/R	RC receive enable register	signals
IRB_RX_MAX_SYM_PERIOD_IR	0x54	16	W/R	Maximum RC symbol period register	
IRB_RX_CLR_OVERRUN_IR	0x58	1	W	Clears the overrun status	
IRB_RX_NOISE_SUPPRESS_WIDTH_IR	0x5C	8	W/R	Reserved	
IRB_RC_IRDA_CONTROL	0x60	1	W/R	Reserved	
IRB_RX_SAMPLING_RATE_COM MON	0x64	4	W/R	Sampling frequency division for UHF and IR frequencies.	Common to RC & UHF receivers
IRB_RX_ON_TIME_UHF ¹	0x80	16	R	Received pulse time capture	RC Bassins
IRB_RX_SYM_PERIOD_UHF ¹	0x84	16	R	Received symbol period capture	Receive Interface
IRB_RX_INT_EN_UHF	0x88	4	W/R	Receive Interrupt enable register	registers
IRB_RX_INT_STATUS_UHF	0x8C	5	R	Receive Interrupt status register	for UHF signals
IRB_RX_EN_UHF	0x90	1	W/R	RC receive enable register	orginalo
IRB_RX_MAX_SYM_PERIOD_UH F	0x94	16	W/R	Maximum RC symbol period register	
IRB_RX_CLR_OVERRUN_UHF	0x98	1	W	Clears the overrun status	
IRB_RX_NOISE_SUPPRESS_WIDTH_UHF	0x9C	8	W/R	Noise suppression width	

Table 47 Infrared transmitter/receiver (IRB)

1. These locations have a quadruple buffer (i.e. a FIFO of length 4 words).

13.1 RC transmitter registers

IRB TX PRE SCALER IR Clock prescaler

Address: BaseAddress + 0x00

Type: Read/write Reset value: 0x00

Description

This register selects the value of the pre-scaler for clock division. The pre-scaled clock frequency is obtained by dividing the system clock frequency by PreScaleVal. It determines the transmit sub-carrier resolution, see IRB_TX_SUB_CARRIER_IR below.

IRB_TX_SUB_CARRIER_IR Sub-carrier frequency programming

Address: BaseAddress + 0x04

Type: Read/write Reset value: 0x00

Description

This register determines the RC transmit sub-carrier frequency. The pre-scaled clock frequency divided by (SubCarrierVal x 2) gives the sub-carrier frequency, which has a 50% duty cycle.

IRB_TX_SYM_PERIOD_IR symbol-time programming

Address: BaseAddress + 0x08

Type: Write Reset value: 0x0000

Description

The value in this register gives the symbol-time (symbol period) in periods of the sub-carrier clock. It must be programmed sequentially with the register *IRB_TX_ON_TIME_IR* on page 170. This register is quadruple buffered.

7170180A 169/275

IRB_TX_ON_TIME_IR

Symbol ON time programming

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x0c TxOnTimeVal

Address: BaseAddress + 0x0C

Type: Write Reset value: 0x0000

Description

The value in this register gives the symbol ON time (pulse duration) in periods of the sub-carrier clock. This register is quadruple buffered.

Note The registers IRB_TX_SYM_PERIOD_IR and IRB_TX_ON_TIME_IR act as a single register set. They must be programmed sequentially as a pair to latch in the data.

IRB_TX_INT_EN_IR Transmit interrupt enable register

	7	6	5	4	3	2	1	0
0x10	Rese	rved	TxF	ifoIrq		Reserved		TxIrqEnable

Address: BaseAddress + 0x10

Type: Read/write Reset value: 0x00

Description

Bit field	Function
TxIrqEnable	Select the Transmit interrupt enable/ disable: 0 - Interrupt Disable, 1 - Interrupt Enable
TxFifoIrq[1:0]	Select the Transmit FIFO fullness interrupt: 00 - Invalid 01 - Single word empty 10 - Half empty (two words empty) 11 - Buffer empty (three words empty)
Reserved	Set to logic '0'

	7	6	5	4	3	2	1	0
0x14	Rese	erved	TxFifo	Status	Rese	erved	TxUnderRun	TxIrqStatus
							Status	

Address: BaseAddress + 0x14

Type: Read Reset value: 0x00

This register is also updated when data is written into the registers IRB_TX_SYM_PERIOD_IR and IRB_TX_IR_ON_TIME_IR.

Bit Field	Function
TxIrqStatus	Transmit interrupt status: 1 - Interrupt enabled
TxUnderRunStatus	Transmit underrun status: 0 - No under run, 1 - Under run occurred
TxFifoStatus[1:0]	Transmit FIFO fullness status: 00 - FIFO Full, not empty 01 - One block empty in FIFO 10 - Two blocks empty in FIFO 11 - Three blocks empty in FIFO
Reserved	Set to logic '0'

IRB_TX_EN_IR

RC transmit enable register

Address: BaseAddress + 0x18

Type: Read/write Reset value: 0x00

Description

This register enables the RC transmit processor. When it is set to '1' and there is data in the transmit FIFO, then the RC processor is transmitting.

IRB_TX_CLR_UNDERRUN_IR Clears the underrun status

	7	6	5	4	3	2	1	0
0x1C				Reserved				ClrUnderRun

Address: BaseAddress + 0x1C

Type: Write Reset value: 0x00

Description

This register must be set to "1" as part of the procedure for clearing the underrun flag in the register IRB_TX_INT_STATUS_IR. No data is transmitted until this flag has been cleared.

7170180A 171/275

13.2 RC receiver registers

If not explicitly stated the following registers are common to both the RC-IR receiver and the RC-UHF receiver. The first address given is the RC-IR receiver (IR). The registers are distinguished by the suffix "_IR" for the IR receiver and "_UHF" for the UHF receiver.

IRB_RX_ON_TIME

Received pulse time capture

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x40								RxOnT	imeVal							
0x80																

Address: BaseAddress + 0x40 (IR) BaseAddress + 0x80 (UHF)

Type: Read Reset value: 0x0000

Description

The value in this register is the detected duration (in microseconds) of the received RC pulse. It must be read sequentially with register *IRB_RX_SYM_PERIOD* on page 172. The register is quadruple buffered.

IRB_RX_SYM_PERIOD

Received symbol period capture

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x44							R	xSymbo	olTimeVa	al						
0x84																

Address: BaseAddress + 0x44 (IR) BaseAddress + 0x84 (UHF)

Type: Read Reset value: 0x0000

Description

This register holds the detected time (in micro seconds) between the start of two successive received RC pulses. It is quadruple buffered.

NOTE: The registers IRB_RX_SYM_PERIOD and IRB_RX_IR_ON_TIME act as a register set. A new value can only be read after reading both registers sequentially.

IRB RX INT EN

Receive Interrupt enable register

	7	6	5	4	3	2	1	0
0x48	Rese	rved	RxFifol	rq[1:0]	Rese	erved	LastSymbol-	RxIrqEnable
0x88							IrqEnable	

Address: BaseAddress + 0x48 (IR) BaseAddress + 0x88 (UHF)

Type: Read/write Reset value: 0x00

To inhibit all these interrupts the RxIrqEnable bit (register bit 0) must be set to '0'.

Bit Field	Function
RxIrqEnable	Select the receive interrupt enable/disable:
	0 - Interrupt disable, 1 - Interrupt enable
LastSymbolIrqEnable	Select Interrupt Enable/disable on last symbol:
	1- Generate interupt on last symbol received
RxFifoIrq[1:0]	Select the Receive FIFO fullness interrupt:
	00 - Invalid
	01 - One word available for read
	10 - Two words available for read (half full)
	11 - Three words available for read (FIFO full)
Reserved	set to logic "0"

IRB_RX_INT_STATUS Receive Interrupt status register

	7	6	5	4	3	2	1	0	
0x4C	Reser	ved	RxFifo	Status	Reserved	RxOverRun-	LastSymbol-	RxIrqStatus	
0x8C						Status	IrqStatus		l

Address: BaseAddress + 0x4C (IR) BaseAddress + 0x8C (UHF)

Type: Read Reset value: 0x00

Description

Bit Field	Function
RxIrqStatus	Receive interrupt status: 1 - Interrupt Active
LastSymbollrqStatus	Last symbol interrupt status: 1 - Interrupt Active
RxOverRunStatus	Receive overrun status: 0 - No overrun, 1 - Overrun occurred
RxFifoStatus[1:0]	Receive FIFO fullness status: 00 - FIFO empty 01 - One word in FIFO 10 - Two words in FIFO 11 - Three words in FIFO
Reserved	Set to logic "0"

IRB_RX_EN RC receive enable register

	7	6	5	4	3	2	1	0
0x50				Reserved				RxEnable
0x90								

Address: BaseAddress + 0x50 (IR) BaseAddress + 0x90 (UHF)

Type: Read/write Reset value: 0x00

Description

When this register is set to "1" the RC receive section is enabled to read incoming data.

7170180A 173/275

IRB_RX_MAX_SYM_PERIOD | Maximum RC symbol period register

0x54 0x94 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address: BaseAddress + 0x54 (IR) BaseAddress + 0x94 (UHF)

Type: Read/write Reset value: 0x0000

Description

The value in this register sets the maximum symbol period (in microseconds) which is necessary to define the time-out for recognizing the end of the symbol stream.

	7	6	5	4	3	2	1	0
0x58				Reserved				ClrOverRun
0x98								

Address: BaseAddress + 0x58 (IR) BaseAddress + 0x98 (UHF)

Type: Write Reset value: 0x00

Description

This register must be set to "1" as part of the procedure for clearing the overrun flag in the register IRB_RX_INT_STATUS. No new data is written into the receive FIFO while this flag is set.

13.3 RC and UHF receiver control

IRB_RX_SAMPLING_RATE_COMMON Sampling frequency division for UHF and IR

	7	6	5	4	3	2	1	0
0x64		Rese	erved			SetSam	pleRate	

Address: BaseAddress + 0x64

Type: Read/write Reset value: 0x00

Description

The value in this register is the divisor which sets the sampling rate for the RC receive sections to 10MHz. It must be set to "5" with an IR transmitter/receiver system clock of 50MHz or to "6" with a clock of 60MHz. The register is common to both the IR and the UHF receive processors.

13.4 Noise suppression register

RB_RX_NOISE_SUPPRESS_WIDTH_UHF Noise suppression width

Address: BaseAddress + 0x9C (UHF)

Type: Read/write Reset value: 0x00

Description

The value, in microseconds, in this register determines the maximum width of noise pulses which the filter suppresses.

7170180A 175/275

14 Link (LNK) STi5518

14 Link (LNK)

14.1 Introduction

The link interface address space is 4kbytes (1024*32 bit words), and all resources are accessed as 32-bit words. In this chapter, all addresses point to bytes. The chapter is split into two sections, one describes the FRAM registers, and the other the link registers. The registers are in order of ascending address.

The following table shows the arrangement of registers in the 4kbytes memory map.

Address	Size	Resource
LinkBaseAddress - LinkBaseAddress + 0x77C	480 Words	FRAM
LinkBaseAddress+0x780 - LinkBaseAddress+0xEFC	480 Words	Not Used
LinkBaseAddress+0xF00 - LinkBaseAddress+0xFC4	49 Words	Registers
LinkBaseAddress+0xFC8 - LinkBaseAddress+0xFFC	15 Words	Not used

Table 48 Global address map

14.2 FRAM registers

The following table describes the arrangement of the FRAM (filter RAM) registers.

Address	Size	Function
LinkBaseAddress - LinkBaseAddress + 0x4FC	320 Words	Filter Data
LinkBaseAddress + 0x500 - LinkBaseAddress + 0x57C	32 Words	Descrambling Keys (reserved)
LinkBaseAddress + 0x580 - LinkBaseAddress + 0x5FC	32 Words	Stream Configuration #1
LinkBaseAddress + 0x600 - LinkBaseAddress + 0x67C	32 Words	Stream Configuration #2
LinkBaseAddress + 0x680 - LinkBaseAddress + 0x6FC	32 Words	Stream Configuration #3
LinkBaseAddress + 0x700 - LinkBaseAddress + 0x77C	32 Words	IRQ Registers

Table 49 Link interface FRAM address map

Eight different keys set are defined. Each key set contains 2 keys of 64 bit each, mapped as follows:

Address	Key set	Key Parity	Key bits	Туре	
0x20002500	0	EVEN	31:0 (LSW)	R/W	
0x20002504	0	EVEN	63:32 (MSW)	R/W	
0x20002508	0	ODD	31:0 (LSW)	R/W	
0x2000250C	0	ODD	63:32 (MSW)	R/W	
0x20002510	1	EVEN	31:0 (LSW)	R/W	
0x20002514	1	EVEN	63:32 (MSW)	R/W	
0x20002518	1	ODD	31:0 (LSW)	R/W	
0x2000251C	1	ODD	63:32 (MSW)	R/W	
0x20002578	7	ODD	31:0 (LSW)	R/W	
0x2000257C	7	ODD	63:32 (MSW)	R/W	

Table 50 Descrambling keys memory map

STi5518 ______ 14 Link (LNK)

LNK_STREAM_CONF_1 Stream configuration 1

31 30 29 <mark>28 27 26 25 24 23 22</mark> 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EOF_IRQ EOS_IRQ AF_IRQ	JT_PA(_TO_B OR_PA	PES_DES_EN PES_NSEC SEC_F_INV	SEC_F_INV_REG	FILTER_LENGTH	FILTER_NB	FRAM_ADDRESS

Address: LinkBaseAddress + 0x580, 584, 588, 58B...5F0 (32 words of 4 bytes)

Type: Read/write Reset value: Not defined

Description

Bitfield	Description				
FRAM_ADDRESS	Filter Start Address in FRAM				
FILTER_NB	Number of Filters				
FILTER_LENGTH	Size of Filters				
SEC_F_INV_REG	Offset in filter for 'not equal' filter				
SEC_F_INV	1: Equal Mode, 0: Not Equal Mode				
PES_NSEC	1: Stream PES, 0: Stream SECTION				
PES_DES_EN	1: Enables PES Level Descrambling, 0: No PES Level Descrambling				
ERROR_PATT	1: Insert Error Pattern on CC Error, 0: No Insertion of Error Code				
STREAM_TO_BUFFER	1: Enable Transfer to DMA Buffer, 0: Bytes are Only Read for SDAV				
OUTPUT_PACKET	1: Send Packet to SDAV, 0: Ignored by SDAV				
AF_IRQ	DVB: IRQ Mask on LNK_AFIRQ (not used on STI5508)				
EOS_IRQ	DVB: IRQ Mask on end of Section				
	DSS: End of Packet				
	DVD: End of Sector				
EOF_IRQ	DVB: IRQ Mask on end of Section Filtering				
	DSS: End of Conditional Filtering				
	DVD: Config. has been loaded				

14 Link (LNK) STi5518

LNK_STREAM_CONF_2 Stream configuration 2

1 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IN	CREMEN	TI	ΒŲ	FFER	STOP_ADDR	START_ADDR	DMA_BANK_ADDR	DMA_HIGH_ADDR
	•		7 1.					

Address: LinkBaseAddress + 0x600, 604, 608, 60B...670 (32 words of 4 bytes)

Type: Read/write Reset value: Not defined

Description

Bitfield	Description								
DMA_HIGH_ADDR	DMA address(21:15)								
DMA_BANK_ADDR	DMA address(31:28)								
START_ADDR	DMA start address(14:8)								
STOP_ADDR	DMA stop address(14:5)								
BUFFER_SIZE	DMA circular buffer size:								
	BUFFER_SIZE(2:0)	Buffer Size kBytes	Stop Precision Bytes]					
	000	256	1						
	001	512	1						
	010	1	1						
	011	1.5	2						
	100	2	4						
	101	3	8						
	110	4.5	16						
	111	8	32						
INCREMENT		1: The start address is set by register bit LNK_STREAM_CONF_3.DMA_LOW_ADDR, and is incremented after each access, independent of the start and stop addresses.							
	0: All of the data is written to the address specified by register bits LNK_STREAM_CONF_2.DMA_HIGH_ADDR and LNK_STREAM_CONF_3.DMA_LOW_ADDR.								

STi5518 14 Link (LNK)

LNK_STREAM_CONF_3 Stream configuration 3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GC_	SUSPEND	DMA_LOW_ADDR	TRANSFER_LENGTH
COUNTER IN			

Address: LinkBaseAddress + 0x0x680, 684, 688, 68B...6F0 (32 words of 4 bytes)

Type: Read/write Reset value: Not defined

Description

Bitfield	Description
TRANSFER_LENGTH	DVB - PES (When PES Scrambling): remaining Bytes of the PES Header, if the Header Exceeds 184 Bytes DVB - SEC: Remaining Bytes in Current Section DSS: Bit 0 = HD[1] (Toggle Bit)
DMA_LOW_ADDR	DMA address(14:0)
SUSPEND	DVB - PES: 1=Bypass First CC Check, 0=CC Check Takes Place DVB - SEC: 1=Section Cut, 0=No Section Cut DSS: 1=Hunt Mode, 0=No Hunt Mode
CC_COUNTER_IN	Current Continuity Counter Value

14.3 Link registers

LNK_STREAM_ENn Stream enable

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Not Used ພູ

Address: LinkBaseAddress + 0xF00 + 4n

Type: Read/write

Reset value: 0

Description

The stream enable registers enable and disable the streams. Each of the 32 streams has one register, and stream n is enabled by LNK_STREAM_ENn which is at the address given by: TransportDemuxBase + 0xF00 + 4n

Bitfield	Description						
SE	STREAM_EN	1: Enables the stream n, 0: Disables the stream n					

7170180A 179/275

14 Link (LNK) STi5518

LNK_STAT

Status

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

	Not Use	ed	FRA	Х	TE	FE	FWA	Not Used	FR	$\overline{\mathcal{C}}$	FNE

Address: LinkBaseAddress + 0xF80

Type: Read only except bit 2, which is read/write Reset value: Undefined except bit 2, which is reset to 0

Description

Bitfield	Description		Туре	Reset
FNE	FIFO_NOT_EMPTY	1: FIFO is not empty	R	х
FO	FIFO_OVERFLOW	1: FIFO has overflowed	R	х
FR	FIFO_RESET	1: FIFO pointers are reset	R/W	0
FWA	FIFO_WR_ADDR	Actual write pointer position of IRQ FIFO	R	Х
FE	F_Error	1: Error specified by the FEC interface	R	Х
TE	TRANSPORT_ERROR	1: Error specified in the TP header	R	Х
Χ	Not used			
FRA	FIFO_RD_ADD	Actual read pointer position of IRQ FIFO	R	Х

LNK_STAT_FIFO FIFO status

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
\sim	EOS	느	AF	AO	DO	BS	SU	SO	⊃CR	×		SN					CC				PT			TM							

Address: LinkBaseAddress + 0xF84

Type: Read only Reset value: Undefined

STi5518 14 Link (LNK)

Description

The register is the FIFO status word. For DVB, if bit AF=1 then LNK_STAT_FIFO(15:0) is set to the first 2 bytes of the AF. For bit EOS, the delay between the Interrupt generation and the actual transfer of the last byte of the section to memory can be up to 4 μ s.

Bitfield	Description	
ТМ	TARGET_MATCH	For DVD: TM[7]: is '1' if the potential SC is at end of the sector TM[6:5]:contains the two MSBs of the FRAM address for this sector TM[4:0]:contains the number of SCs in a sector Shows the 8 lowest target matches
OM	OTHER_MATCH	At least 1 match in the top 24 targets
PT	Packet type	For DVD: 000: Unknown packet type 001: if video packet is found 010: if navigation packet is found 101: if subpicture packet is found 100: Pack_start_code was not found! 101: if MPEG audio packet is found 110: if AC3 audio packet is found 111: if LPCM audio packet For DVB: Bit 11=PAYLOAD_UNIT_START_INDICATOR Bit 10=SCRAMBLING_INDICATOR Bit 9=KEY_INDICATOR (0: even; 1: odd)
		For DSS: Bit 11=HD(3), Bit 10=HD(2), Bit 9=KEY_INDICATOR (0: odd; 1: even)
CC	Continuity counter	Continuity counter
SN	STREAM_NUMBER	Stream number of packet
Χ	Not Used	
PCR	PCR	1: PCR has been latched
SO	SDAV_OVERFLOW	1: SDAV overflow if SDAV_underflow = 0, else interrupt for EXTRA_BITS
SU	SDAV_UNDERFLOW	1: SDAV Underflow if SDAV_overflow = 0, else interrupt for EXTRA_BITS
BS	BAD_SEC	1: Bad section received
DO	DMA_OVERFLOW	1: Storage buffer overflow
AO	AR_OVERFLOW	1: Acquisition RAM overflow
AF	AF	1: Adaptation field received
IF	INCOMPLETE_FILTER	1: Filtering not complete at end of pack
EOS	END_OF_SECTION	1: End of section transfer
EOF	END_OF_FILTER	1: End of section filtering

LNK_PACKET_LENGTH Packet length

 $31 \ \ \, 30 \ \ \, 29 \ \ \, 28 \ \ \, 27 \ \ \, 26 \ \ \, 25 \ \ \, 24 \ \ \, 23 \ \ \, 22 \ \ \, 21 \ \ \, 20 \ \ \, 19 \ \ \, 18 \ \ \, 17 \ \ \, 16 \ \ \, 15 \ \ \, 14 \ \ \, 13 \ \ \, 12 \ \ \, 11 \ \ \, 10 \ \ \, 9 \ \ \, 8 \ \ \, 7 \ \ \, 6 \ \ \, 5 \ \ \, 4 \ \ \, 3 \ \ \, 2 \ \ \, 1 \ \ \, 0$

Not Used	PACKET_LENGTH

Address: LinkBaseAddress + 0xF88

Type: Read/write Reset value: 0xBC

7170180A 181/275

14 Link (LNK) STi5518

Description

Bitfield Description

PACKET_LENGTH Number of bytes per packet

LNK_TIME_OUT Time out

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Not Used TIME_OUT

Address: LinkBaseAddress + 0xF8C

Type: Read/write Reset value: 0x38

Description

Bitfield	Description
TIME_OUT	AR threshold to reset the block

LNK_MODE Mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved	SCD	Ĕ	ВО	NC	S	M_{D}	/B_M	
	lш [']		_			2	6	

Address: LinkBaseAddress + 0xF90

Type: Read/write Reset value: 0x001

Description

The table below defines the mode register. DVB_MODE, DSS_MODE and DVD_MODE are mutually exclusive, so one of them must be set to 1.

Bitfield	Description
DVB_M	DVB mode
	1: DVB Mode
DSS_M	DSS mode
	1: DSS Mode
DVD_M	DVD mode
	1: DVD Mode
LS	Link SDAV
	0: Input from link/channel, 1: Input from SDAV
NC	NRSS card
	0: No NRSS card, 1: NRSS Card is Used
ВО	BIT order
	0: LSB first, 1: MSB first
PM	PCM mode
	0: PCM mode is disabled, 1: PCM mode is enabled
DFB	Disable final burst
	0: The last transfer can be a full burst, 1: No full burst for the last transfer
E_SCD	Enable start-code detector
	0: Start-code detector disabled, 1: Start-code detector enabled

STi5518 14 Link (LNK)

LNK_PCR_STREAM

PCR stream

31 30 29 **28 27 26 25 24 23 22** 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 (

PIM PSN

Address: LinkBaseAddress + 0xF94

Type: Read/write

Reset value: 0

Description

Bitfield	Description	
PSN	PCR_STREAM_NB: Stream which contains PCR	
PIM	PCR_IRQ_MASK: Interrupt mask on PCR_IRQ. An interrupt is generated if this bit is set to 1.	

LNK_AF1-0

Adaptation field

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0xF98	AF_7	AF_6	AF_5	AF_4
0xF9C	AF_3	AF_2	AF_1	AF_0

Address: LinkBaseAddress + 0xF98 (LNK_AF0) - 0xF9C (LNK_AF1)

Type: Read only Reset value: Undefined

Description

The table below defines the LNK_AF registers, which hold the first eight bytes of the adaptation field. The interrupt is generated if mask = 1.

Bitfield	Description	Туре
AF_7	AF1 LNK_AFByte #7	R
AF_6	LNK_AFByte #6	R
AF_5	LNK_AFByte #5	R
AF_4	LNK_AFByte #4	R
AF_3	AF0 LNK_AFByte #3	R
AF_2	LNK_AFByte #2	R
AF_1	LNK_AFByte #1	R
AF_0	LNK_AFByte #0	R

LNK_V_PTS

Video time stamp

 $31 \ \ 30 \ \ 29 \ \ 28 \ \ 27 \ \ 26 \ \ 25 \ \ 24 \ \ 23 \ \ 22 \ \ 21 \ \ 20 \ \ 19 \ \ 18 \ \ 17 \ \ 16 \ \ 15 \ \ 14 \ \ 13 \ \ 12 \ \ 11 \ \ 10 \ \ 9 \ \ 8 \ \ 7 \ \ 6 \ \ 5 \ \ 4 \ \ 3 \ \ 2 \ \ 1 \ \ 0$

V_PTS

Address: LinkBaseAddress + 0xFA0

Type: Read only Reset value: Undefined

7170180A 183/275

14 Link (LNK) STi5518

Description

Bitfield Description

V_PTS Actual video PTS (90 kHz)

LNK_A_PTS Audio time stamp

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A_PTS

Address: LinkBaseAddress + 0xFA4

Type: Read only Reset value: Undefined

Description

Bitfield	Description
A_PTS	Actual audio PTS (90 kHz)

LNK_PCR PCR

 $31 \ \ 30 \ \ 29 \ \ 28 \ \ 27 \ \ 26 \ \ 25 \ \ 24 \ \ 23 \ \ 22 \ \ 21 \ \ 20 \ \ 19 \ \ 18 \ \ 17 \ \ 16 \ \ 15 \ \ 14 \ \ 13 \ \ 12 \ \ 11 \ \ 10 \ \ 9 \ \ 8 \ \ 7 \ \ 6 \ \ 5 \ \ 4 \ \ 3 \ \ 2 \ \ 1 \ \ 0$

PCR

Address: LinkBaseAddress + 0xFA8

Type: Read only Reset value: Undefined

Description

Bitfield	Description
PCR	Actual PCR (90 kHz)

LNK_PCR_EXT PCR extension

 $31 \ \ 30 \ \ 29 \ \ 28 \ \ 27 \ \ 26 \ \ 25 \ \ 24 \ \ 23 \ \ 22 \ \ 21 \ \ 20 \ \ 19 \ \ 18 \ \ 17 \ \ 16 \ \ 15 \ \ 14 \ \ 13 \ \ 12 \ \ 11 \ \ 10 \ \ 9 \ \ 8 \ \ 7 \ \ 6 \ \ 5 \ \ 4 \ \ 3 \ \ 2 \ \ 1 \ \ 0$

Not Used PCR_EXT

Address: LinkBaseAddress + 0xFAC

Type: Read only Reset value: Undefined

STi5518 14 Link (LNK)

Description

Bitfield Description

PCR_EXT Actual PCR extension (27 MHz)

LNK_AR_SIZE AR size

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Not used AR_SIZE

Address: LinkBaseAddress + 0xFB0

Type: Read/write Reset value: 0x3E

Description

Bitfield	Description
AR_SIZE	Programmable AR size.

LNK_SDAV_CONF SDAV configuration

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address: LinkBaseAddress + 0xFB4

Type: Read/write

Reset value: Undefined except bits 12, 14, 15 and 22 reset to 0.

14 Link (LNK) STi5518

Description

Bitfield	Destription
EXTRA_BITS	Inserted into the SDAV packet headers
EC	EXT_CLK
	1: External clock (OSC_IN pin)
	0: internal clock (SYS_CLK)
DAM	DES_AR_MODE Active only when PCM_MODE = 0
	1: Input from descrambler
	0: Input from acq. RAM (scrambled)
D	DIRECTION A Contract was do
	1: Output mode, 0: Input mode
S	SDAV_1394
	1: IEEE 1394
TUDEOUOLD	0: SDAV (OSC_IN: 49.152MHz)
THRESHOLD	SDAV buffer threshold to start output transfer
SDE	SDAV_ENABLE
	1: SDAV enabled
10	0: SDAV disabled - x
IS	1394_IS_SLOW
	1: 0MHz < 1394_CLK < 40MHz 0: 40MHz < 1394_CLK < 60MHz
SDH	SDAV_HEADER_ENABLE
SDH	In IEEE 1394 mode enable the header:
	1: Packet has a STi5518 header
	0: Packet has no STi5518 header
SDC	AD SDAV CLK SWITCH
000	For the SDAV clock switch Mechanism:
	1: Before setting PCM_CLK_SWITCH to 1
	0: Before resetting PCM_CLK_SWITCH to 0
SE	STUFFING ENABLE
	ONLY in P1394 and DSS, active high
	1: Packet has 10 bytes of stuffing appended
	0: Packet has no stuffing

LNK_SDAV_DMA_EN SDAV DMA enable

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Not Used	IIF	LBP	FBP	DE

Address: LinkBaseAddress + 0xFB8

Type: Read only

Reset value: Undefined except bit 0 reset to 0

STi5518	3	14 Link (LNK)
Descript	ion	ENTIRE
Bitfield	Description	
DE	DMA_EN	Enable insertion at next opportunity
FВР	FIRST BYTE_POSIT	Defines which bytes are active in the first word of the DMA 00: DMA_DATA[31:0] 01: DMA_DATA[31:8] 10: DMA_DATA[31:16] 11: DMA_DATA[31:24]
LBP	LAST_BYTE_POSIT	Defines which bytes are active in the last word of the DMA 11: DMA_DATA[31:0] 10: DMA_DATA[23:0] 01: DMA_DATA[15:0] 00: DMA_DATA[7:0]
IIF	INSERT_IF_EMPTY	1: Insertion of CPU packets only if no transfer from the Transport Stream Demultiplexor to the STi5508

LNK_SDAV_DATA SDAV data

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SDAV_DATA

Address: LinkBaseAddress + 0xFBC

Type: Read/write Undefined Reset value:

Description

Bitfield	Comment
SDAV_DATA	SDAV data write port

Enable link LNK_EN_LINK

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Not Used

E

Address: LinkBaseAddress + 0xFC0

Type: Read/write

Reset value:

14 Link (LNK) STi5518

Description

Bitfield		1	\prod	人	Description
EL	1	1			Enable Transport Stream Demultiplexor

LNK_PCM_CONF **PCM** configuration

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DIV Reserved

NB_AUDIO_CH CLK_SWITCH NV_IRCLK PCM_1818 INV_SCLK FORMAT QUANT MUTE ORD PLAY

LinkBaseAddress + 0xFC4 Address:

Type: Read/write

Bits zero and one are reset to 0, all other bits have undefined reset Reset value:

STi5518 ______ 14 Link (LNK)

Description

Bitfield	Description
PCM_MUTE	Mute function reset=0
PCM_PLAY	Play function reset=0
CLKSWITCH	Switches between the two SDAV clocks. For the SDAV's clock switch resynchronization mechanism, it's a soft RESET, active high: Activated before the SDAV_OUT_CLK is changed or after it was changed, to freeze the SDAV outputs. (To guarantee any glitches when SDAV_OUT_CLK is switched) In PCM_MODE: (same as PCM_MUTE = 0 and PCM_PLAY = 0. But no DMA_REQ are generated).
NB_AUDIO_CH	Number of audio channels in the audio packet for linear PCM: 000: 1 Channel (mono: left) (right = left), 001 to 111: ACH0 is left, ACH1 is right.
QUANT	Quantification of Linear PCM Audio Packet: 00: 16 bits, 01: 20 bits, 10: 24 bits, 11: Invalid
PCM_18	Output coding 0:16-bit mode, 1:18-bit mode
ORD	Has significance only in 16-bit mode 0: MSB first, 1: LSB first
INV_SCLK	Polarity of SCLK. PCM_DATA, LRCLK are output 0: Just after the falling edge of SCLK, 1: Just after the rising edge of SCLK
INV_IRCLK	Polarity of the LRCLK 0: Left: LRCLK = 1, Right: LRCLK = 0, 1: Left: LRCLK = 0, Right: LRCLK = 1
DIF	This bit is only used in 18-bit mode: 0: The 18-bit PCM _DATA, w/14 sign extension bits, is right aligned, 1: According to PCM_FORMAT, the 18-bit PCM_DATA is left aligned.
FORMAT	This bit is only used if bits PCM_18 = 1 and DIF=1: 0: Standard format, left aligned: '0' are inserted on the right. 1: Compatible I2S format: '0' is inserted before the MSB on the left,13 '0' are inserted to the right of the LSB.
DIV	Divider register for SLCK generation: f(SCLK) = f(PCM_CLK) / 2*(PCM_DIV + 1)

LNK_EXTRA_BITS Extra bits

 $31\ 30\ 29\ 28\ 27\ 26\ 25\ 24\ 23\ 22\ 21\ 20\ 19\ 18\ 17\ 16\ 15\ 14\ 13\ 12\ 11\ 10\ 9\ 8\ 7\ 6\ 5\ 4\ 3\ 2\ 1\ 0$

Not used	EBI	EBI	EBM
		i	

Address: LinkBaseAddress + 0xFC8

Type: Read/write

Reset value: Undefined except bit 0 reset to 0.

Description

Bitfield	Description
EBM	EXTRA_BITS_IRQ_MASK: Interrupt mask for the extra bits
	1: Enable interrupt on change of extra bits, 0: Disable interrupt
EBI[4:1]	EXTRA_BITS_INPUT: Incoming EXTRA_BYTES: Copy guard information
EBI[5:12]	EXTRA_BYTES_INPUT: Incoming EXTRA_BYTES: Playback rate control

7170180A 189/275

14 Link (LNK) STi5518

14.4 HDD buffer control

LNK HDD ADDSTOP

Write limit address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x904 ADDSTOP

Address: LinkBaseAddress + 0x904

Type: Read/write

Reset value: 0

Description

Bitfield	Description
ADDSTOP	This register causes an HDD link interrupt (interrupt assignment N=29) when the buffer reaches a pre-defined fullness. This parameter must be set sufficiently in advance of reaching the last read address, to avoid overwritting data.

LNK_HDD_ADDRHIGH High part of the incoming address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x90C RESERVED ADDRHIGH

Address: LinkBaseAddress + 0x90C

Type: Read/write

Reset value: 0

Description

Bitfield	Description
ADDRHIGH	This value is used in conjunction with LNK_HDD_ADDRBANK to match the high part of the incoming address. It must be programmed to the same value as the corresponding link reg LNK_STREAM_CONF_2.DMA_HIGH_ADDR. The 2 LSBs must be programmed to zero, as must the following bits: LNK_STREAM_CONF_3.DMA_LOW_ADDR[25:26] and LNK_STREAM_CONF_2.START_ADDR[16:17].

LNK_HDD_ADDRBANK High part of the incoming address

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x908						RESE	マントレ							ADDR	BANK	

Address: LinkBaseAddress + 0x908

Type: Read/write

Reset value: 0

STi5518 14 Link (LNK)

Description

Bitfield Description

ADDRBANK This value is used in conjunction with LNK_HDD_ADDRHIGH to match the high part of the incoming address. This register should be programmed to the same value as the corresponding link register LNK_STREAM_CONF_2.DMA_BANK_ADDR.

LNK_HDD_BUFSIZE Buffer size

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x900 RESERVED BUFSIZE

Address: LinkBaseAddress + 0x900

Type: Read/write

Reset value: 0

Description

Bitfield	Description
BUFSIZE	Defines the buffer size, where buffer size = (LNK_HDD_BUFSIZE + 1) x 8KBytes. When LNK_HDD_BUFSIZE is reached, the next address is filled by register LNK_STREAM_CONF_2 bits DMA_BANK_ADDR and DMA_HIGH_ADDR.

15 Low power module (LPM)

LPM_TIMER

Low power timer

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x400

LPTimer[31:0]

0x404

Address: LPCBaseAddress + 0x400 (LPTimer[31:0])and 0x404(LPTimer[63:32])

Type: Read/write Reset value: UND

Description

These registers are the least significant and most significant words of the low-power timer register. These enable the least significant or most significant word to be written independently without affecting other words.

When either word of the register is written, the low power timer is stopped and the new value in this register is available to be written to the low power timer.

LPM_TIMERSTART Low power timer start

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x408

| Timer | Start

Address: LPCBaseAddress + 0x408

Type: Write only Reset value: UND

Description

A write of any value to this register starts the low power timer counter. The counter is stopped and the register reset if either word of register LPM_TIMER is written. Setting LPM_TimerStart to zero does not stop the timer.

LPM_ALARM Low power alarm

Address: LPCBaseAddress + 0x410 (LPAlarm[31:0]) and 0x414 (LPAlarm[39:32])

Type: Read/write Reset value: UND

Description

These registers are the least significant and most significant words of the low power alarm. They are used to program the alarm register.

LPM_ALARMSTART Low power alarm start

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x418 Alarm
Start

Address: LPCBaseAddress + 0x418

Type: Write only Reset value: UND

Description

Any write to this register starts the low power alarm counter. The counter is stopped and the LPM_START register reset if either word of the LPM_TIMER register is written.

LPM_SYSPLL System clock PLL

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x420

Address: LPCBaseAddress + 0x420

Type: Read/write Reset value: UND

Description

This register controls the System Clock PLL operation when low-power mode is entered.

Bitfield	Description
LPSysPII	00: PLL off, 01: Illegal, 10: Illegal, 11: PLL on

LPM_WDENABLE Watchdog enable

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x510

Address: LPCBaseAddress + 0x510

Type: Read/write

Reset value: 0

Description

Setting this register enables the low power alarm counter to be used as a watchdog timer.

LPM_WDFLAG Watchdog flag

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x514

Address: LPCBaseAddress + 0x514

Type: Read only

7170180A 193/275

Bitfield

WdFlag

Description
0: Watchdog reset has not occurred.
1: Watchdog reset has occurred.

16 Modem analog front-end interface (MOD)

MOD_CONTRO

MAFEIF control

Address: ModemBaseAddress + 0x00

Type: R/W Reset value: Undefined

Description

Bitfield	Description
run	1: The MAFEIF to start exchanging data with the AFE. 0: The MAFEIF will stop after completing the exchange of the current buffer-load of samples.
start	Indicates which of the two pairs of memory buffer pointers it should start off using: 0: Indicates Recieve0_pointer and Transmit0_pointer 1: Indicates Recieve1_pointer and Transmit1_pointer

MOD_STATUS

MAFEIF status

	7	6	5	4	3	2	1	0
0x04	Rese	erved	missed	overflow	last	ctrl_empty	complete	idle

Address: ModemBaseAddress + 0x04

Type: R

Reset value: Undefined

7170180A 195/275

Bitfield	Description
idle	0 indicates that the MAFEIF is exchanging data with the AFE. 1: indicates that the run bit is low and the MAFEIF is not exchanging data. After the software clears the run bit, the MAFEIF only goes idle when it has finished exchanging the current buffer-load of samples.
complete	Set to '1' when a buffer-load of samples has been exchanged. Cleared by writing to the Acknowledge register.
ctrl_empty	Set to '0' by writing to MOD_MAFE_CTRL. Set to '1' when the MAFEIF has completed the control/status exchange.
last	Indicates the last pair of buffer pointers used by the DMA.
overflow	1: Indicates that overflow has occurred (the MAFEIF has completed the exchange of another buffer-load of samples before the software has got round to acknowledging the previous buffer-load). Cleared by writing to MOD_ACK.
missed	1: Indicates that the memory latency is too high, causing a sample to be missed (the MAFEIF is exchanging samples faster than they can be read/written to/from the memory buffers). Cleared by writing to MOD_ACK.

MOD_INT_ENABLE

Interrupt enable

	7	6	5	4	3	2	1	0
0x08			Reserved			Intenable2	Intenable1	Intenable0

Address: ModemBaseAddress + 0x08

Type: R/W

Reset value: Undefined

Description

Bitfield	Description
	Enables interrupts connected to MAFEIF_status(2:0). 1: Indicates that the corresponding interrupt is enabled.

MOD_ACK

Acknowledge

	7	6	5	4	3	2	1	0
0x0C				AC	CK			

Address: ModemBaseAddress + 0x0C

Type: W

Reset value: Undefined

Bitfield

Description

ACK

Clears the overflow, missed and complete flags in the MOD_MAFEIF_STATUS register.

MOD_BUFFER_SIZE

Buffer size

7 6 5 4 3 2 1 0

0x10

SIZE

Reserved

Address:

ModemBaseAddress + 0x10

Type: R/W Reset value: Undefined

Description

Bitfield	Description
SIZE	This value must be a multiple of 2, it sets the buffer size (the number of 16-bit samples in a buffer).

MOD_MAFE_CTRL

MAFE control

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNTVAL

Address:

0x14

ModemBaseAddress + 0x14

Type:

Reset value: Undefined

Description

Bitfield	Description
CNTVAL	This number is the control value to send out to the MAFE

MOD_MAFE_STATUS

MAFE status

15 14 13 12 11 10 9 7 6 5 4 3 2 1 0 0x18 **STATUS**

Address: ModemBaseAddress + 0x18

Type: R

Reset value: Undefined

7170180A 197/275

Bitfield Description

STATUS This number is the status value received from the MAFE.

MOD_RECEIVEO_POINTER Receive_memory_buffer_0 start address

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

ADDR 0x20 Reserved

Address: ModemBaseAddress + 0x20

Type: R/W Reset value: Undefined

Description

Bitfield	Description
ADDR	This number is the start address of the receive_memory_buffer_0.

MOD_RECEIVE1_POINTER Receive_memory_buffer_1 start address

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

ADDR 0x24 Reserved

Address: ModemBaseAddress + 0x24

R/W Type: Reset value: Undefined

Description

Bitfield	Description
ADDR	This number is the start address of the receive_memory_buffer_1.

MOD_TRANSMIT0_POINTER Transmit_memory_buffer_0 start address

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0x28 **ADDR** Reserved

Address: ModemBaseAddress + 0x28

R/W Type: Reset value: Undefined

Bitfield	Description
ADDR	This number is the start address of the transmit_memory_buffer_0.

MOD_TRANSMIT1_POINTER Transmit_memory_buffer_1 start address

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2C ADDR Reserved

Address: ModemBaseAddress + 0x2C

Type: R/W

Reset value: Undefined

Description

Bitfield	Description
ADDR	This number is the start address of the transmit_memory_buffer_1.

7170180A 199/275

17 MPEG DMA (MPEGDMA)

The MPEGDMA registers are accessed by bits 2 to 5 of the dmacnt_and_peraddr (peripheral address), inclusively.

The ferm "MPEGDMAn" refers to both MPEGDMA0 and MPEGDMA1 registers. These two set of registers have identical descriptions but different base addresses as given in Table 1: Register block base variables on page 2.

MPEGDMAn_ABORT Abort the DMA operation

	7	6	5	4	3	2	1	0
80x0				Reserved				ABORT

Address: MPEGDMAnBaseAddress + 0x08

Type: W Reset value: 0

Description

While a data transfer is in progress, writing a "1" to this register will halt the data transfer and reset the DMA engine.

MPEGDMAn_BLSIZE Data block dimension to be transferred

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x20								BLS	SIZE							

Address: MPEGDMAnBaseAddress + 0x20

Type: W

Reset value: Undefined

Description

This register contain the overall block size to be transferred. Writing to this register starts the data transfer operation, it assumes that registers MPEGDMA_SRC_ADD and MPEGDMA_WHICHDEC have already been set. Writing to this register while the DMA engine is active has no effect and the new value is discarded.

Attempting to read a write only register will result in a return of all zeros.

MPEGDMAn_BURSTSIZENumber of bytes to be transferred in one burst

	7	6	5	4	3	2	1	0
0x00		Reserved				BURSTSIZE		

Address: MPEGDMAnBaseAddress + 0x00

Type: W

Reset value: Undefined

Description

This register holds the number of bytes to be copied in one burst. It is a 5 bit number and allows burst sizes in the range 1 to $31(2^5 - 1)$ bytes, zero means a 32 byte transfer will be performed.

Writing to this register while the data transfer engine is active will have effect only at the end of the present burst transfer.

MPEGDMAn CNTRL

Interrupt contro

Address: MPEGDMAnBaseAddress + 0x1C

Type: R/W Reset value: Undefined

Description

This register masks the interrupt signal.

Bitfield	Definition
CNTRL1	0: Interrupt disabled (Default), 1: Interrupt enabled
CNTRL2	0: Interrupt Mode - set to zero always

MPEGDMAn_HOLDOFF Holdoff for MPEG decoder

	7	6	5	4	3	2	1	0
0x04		Reserved				HOLDOFF		

Address: MPEGDMAnBaseAddress + 0x04

Type: W

Reset value: Undefined

Description

The value in this register is the hold-off time in cycles. After sampling the notcdreq_XX signal active, the signal is ignored until the burst size in bytes has been transferred, the last write cycle of the burst has completed, and the hold-off time has expired from the last write cycle completion.

Writing to this register while the data transfer engine is active will have effect only at the end of the present burst transfer.

MPEGDMAn_INTACK Interrupt acknowledge

	7	6	5	4	3	2	1	0
0x14				Reserved				INTACK

Address: MPEGDMAnBaseAddress + 0x14

Type: W Reset value: 0

Description

Writing to this register acknowledges any pending interrupt and clears it; writing to this register at any other time has no effect.

7170180A 201/275

MPEGDMAn_SRCADD DMA source pointer

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x18 SRCADD

Address: MPEGDMAnBaseAddress + 0x18

Type: W

Reset value: Undefined

Description

This register holds the address of the first byte of the block to be transferred. The data transfer operation can handle byte alignment. The contents of this register are unchanged after a transfer operation.

Writing to this register while the DMA engine is active has no effect and the new value is discarded.

MPEGDMAn_STATUS Interrupt status

	7	6	5	4	3	2	1	0
0x10			Rese	rved			STATUS2	STATUS1

Address: MPEGDMAnBaseAddress + 0x10

Type: R

Reset value: Undefined

Description

This register gives the status of the interrupt and DMA engine.

Bitfield	Description
STATUS1	0: No Interrupt, 1: Interrupt pending.
STATUS2	0: Inactive, 1: Active/busy.

MPEGDMAn_WHICHDECDMA destination pointer

	7	6	5	4	3	2	1	0
0x0C				WHIC	HDEC			

Address: MPEGDMAnBaseAddress+ 0x0C

Type: W

Reset value: Undefined

Description

This register holds the number of the MPEG decoder of the destination of the data transfer is placed in this register. Writing to this register while the data transfer engine is active will have effect only at the end of the present burst transfer.

The address placed on the memory bus as in the table below:

Decoder	Destination address
0	Video
1	Audio
2	SubPicture
3	Not allowed

18 On-screen display (OSD)

OSD_ACT

Active Signal

6	5	4	3	2	1	0
OAM			OAD			

Address: VideoBaseAddress + 0x3E

Type: Read/write

Reset value: 0

Description

Bitfield	Description
OAM	OSD Active signal mode. When this bit is set, OSD active signal is an input. When it is reset, OSD active signal is an output. Note that OSD active signal must never be driven when VID_CTL.EVI=1 and VID_OSD.OAM=0.
OAD[5:0]	OSD Active signal delay. These bits are used to define the delay of the OSD active signal corresponding to output OSD pixels.

OSD_BDW

OSD Boundary Weight

7	6	5	4	3	2	1	0	
		OSD_BDW[5:0]						

Address: VideoBaseAddress + 0x92

Type: Read/write

Reset value: 0

Description

Bitfield	Description
BDW[5:0]	OSD Boundary Weight. These bits represent the value of mix_weight at the horizontal border of an OSD region or at a horizontal border of a transparent region within an OSD region. The OSD_BDW value is used in OSD filter formulae and has therefore no meaning when the OSD is in normal mode.

OSD_CFG

OSD Configuration

7	6	5	4	3	2	1	0
					ENA	NOR	FIL

Address: VideoBaseAddress + 0x91

Type: Read/write

Reset value: 0

Bitfield	Description
FIL	OSD Filter mode. This bit is used to select the OSD filter mode. When this bit is set the anti-flutter filter mode will be active. When this bit is reset the anti-flicker filter mode will be active. Note that to activate one of the two filter modes the bit OSD_CFG.NOR has to be set.
NOR	OSD Normal mode. This bit is used to select the OSD normal mode. When this bit is reset the OSD normal mode will be active, which means no filter modes specified in OSD CFG.FIL will be active. When OSD_CFG.NOR is set, then the filter mode specified in OSD_CFG.FIL will be active.
ENA	OSD Enable. When this bit is set the OSD is enabled, when this bit is reset the OSD will be inactive.

OSD_OBP OSD Bottom Field Pointer

Address: VideoBaseAddress + 0x2B

Type: Serial read/write

Reset value: 0

Synchronization: VSYNC bottom

Description

This register is written or read in two cycles: first cycle: OBP[13:8], second cycle: OBP[7:0]

The circularity is reset by a hardware reset or a bottom field VSYNC. The register holds the start address, in units of 256 bytes of the current OSD specification buffer for the bottom field. This specification will be decoded during bottom fields when OSD is enabled.

OSD_OTP OSD Top Field Pointer

Address: VideoBaseAddress + 0x2A

Type: Serial read/write

Reset value: 0

Synchronization: VSYNC top

Description

This register is written or read in two cycles: first cycle: OTP[13:8], second cycle: OTP[7:0]

The circularity is reset by a hardware reset or a top VSYNC. The register holds the start address, in units of 256 bytes, of the current OSD specification buffer for the top field. This specification will be decoded during top fields when OSD is enabled.

7170180A 205/275

19 Overlay graphics & text (OGT)

OGT_CTL

Control Register

	6	5	4	3	2	1	0
Not Used	Reserved	EnotO_pol	H2	H1	D	S	F

Address: SubPictureBaseAddress + 0x40

Type: R/W Reset value: 0 Synchronization: Vsync

Description

This register contains control bits for the overlay graphics and text.

Bitfield	Description
F	Force_ogt command. When set, this bit indicates that the sub-picture unit is bypassed and VCD mode is active.
S	OGT decoder start command. When set, this bit it indicates the start of a new page.
D	Disable Display command. When set, this bit turns off the OGT display, but the decoding process continues.
H1	Disable highlight region1. When set, this bit turns off highlighting inside the OGT display area.
H2	Disable highlight region 2. When set, this bit turns off highlighting inside the OGT display area.
EnotO_pol	Sets the polarity of EnotO

OGT_LUT Main Look-up Table

7 6 5 4 3 2 1 0 LUT[7:0]

Address: SubPictureBaseAddress + 0x41

Type: R/W
Reset value: 0
Synchronization: None

Description

Bitfield	Description
LUT[7:0]	Writing to this register auto-increments the address in the main look-up table. Starting with color 0, for each color the Y component (8-bits) is written first followed by U, V and then K. The process continues for each color, up to 4 colors.

OGT_LUT_H1 Highlight 1 Look-up Table

7 6 5 4 3 2 1 0 LUT_h1[7:0]

Address: SubPictureBaseAddress + 0x42

Type: R/W Reset value: 0 Synchronization: None

Bitfield

Description

LUT_H1[7:0]

Writing to this register auto-increments the address in the highlight 1 look-up table.

For each color, starting with the color 0, the Y component (8-bits) is written first followed by U, V and then K. The process continues for each color, up to 4 colors.

OGT_LUT_H2

Highlight 2 Look-up Table

Address: SubPictureBaseAddress + 0x43

Type: R/W Reset value: 0 Synchronization: None

Description

Bitfield	Description
LUT_H2[7:0]	Writing to this register auto-increments the address in the highlight 2 look-up table.
	For each color, starting with the color 0, the Y component (8-bits) is written first followed by U, V and then K.
	The process continues for each color, up to 4 colors.

OGT_XDI

Active area horizontal position offset

	7	6	5	4	3	2	1	0
0x44	Not Used							[9:8]
0x45	XDI[7:0]							

Address: SubPictureBaseAddress + 0x44 (OGT_XD1[9:8]) - 0x45 (OGT_XD1[7:0])

Type: R/W Reset value: 0 Synchronization: Vsync

Description

Bitfield	Description
XDI[9:0]	This register value sets the horizontal offset of the left-hand side of the active OGT decode region.
	The position is measured in number of pixels from the left-hand edge of the screen.
	The true horizontal start position is XDI + OGT_XDO.

OGT_YDI

Active area vertical position offset

	7	6	5	4	3	2	1	0
0x46		YDI[9:8]						
0x47	YDI[7:0]							

Address: SubPictureBaseAddress + 0x46 (OGT_YD1[9:8]) - 0x47 (OGT_YD1[7:0])

Type: R/W Reset value: 0

47/

7170180A 207/275

Synchronization: Vsync

Description

XD[9:0]

Bitfield

Description

This register value sets the vertical offset of the top of the active OGT decode region.

The position is measured in number of pixels from the top of the screen. The true value of the vertical position of the top is YDI + OGT_YDO

OGT_HL2XO Highlight 2 area, Start X

	7	6	5	4	3	2	1	0		
0x48	Not Used							HL2XO[9:8]		
0x49	HL2XO[7:0]									

Address: SubPictureBaseAddress + 0x48 (OGT_HL2XO[9:8]) - 0x49 (OGT_HL2XO[7:0])

Type: R/W Reset value: 0 Synchronization: Vsync

Description

Bitfield	Description
HL2XO[9:0]	This register value sets the horizontal position of the left-hand side of the highlight 2 region.
	The position is measured in number of pixels from the left-hand side of the screen.

OGT_HL2YO Highlight 2 area, start Y

	7	6	5	4	3	2	1	0
0x4A	Not Used							/O[9:8]
0x4B				HL2Y	O[7:0]			

Address: SubPictureBaseAddress + 0x4A (OGT_HL2YO[9:8]) - 0x4B (OGT_HL2YO[7:0])

Type: R/W Reset value: 0 Synchronization: Vsync

Description

Bitfield	Description
HL2YO[9:0]	This register value sets the vertical position of the top of the highlight 2 region.
	The position is measured in number of pixels from the top of the screen.

OGT_HL2XI Highlight 2 area, end X

	7	6	5	4	3	2	1	0		
0x4C	Not Used							HL2XI[9:8]		
0x4D				HL2>	(I[7:0]					

Address: SubPictureBaseAddress + 0x4C (OGT_HL2X1[9:8]) - 0x4D (OGT_HL2X1[7:0])

Type: R/W

Reset value: 0
Synchronization: Vsync

Description

Bitt	ield		Description
HL2	2X <mark>I[9:</mark> 0	Ţ	This register value sets the horizontal position of the right-hand side of the highlight 2 region.
			The position is measured in number of pixels from the left-hand edge of the highlight 2 OGT region.

OGT_HL2YI

Highlight 2 area, End Y

	7	6	5	4	3	2	1	0
0x4E		HL2YI[9:8]						
0x4F								

Address: SubPictureBaseAddress + 0x4E (OGT_HL2Y1[9:8]) - 0x4F (OGT_HL2Y1[7:0])

Type: R/W Reset value: 0 Synchronization: Vsync

Description

Bitfield	Description
HL2YI[9:0]	This register value sets the vertical position of the bottom of the highlight 2 region.
	The position is measured in number of pixels from the top of the active highlight 2 region.

OGT_STAT Status register

7	6	5	4	3	2	1	0
Not Used							E

Address: SubPictureBaseAddress + 0x50

Type: R
Reset value: 0
Synchronization: None

Description

Bitfield	Description
E	RLD error. This bit is set when an RLD processing error is detected. The RLD state machine automatically stops in its actual state.
R	Acknowledge not received after a request to the FIFO, the state machine is automatically reset into idle state.

7170180A 209/275

PES parser (PES) **20**

PES Audio Decoding Control

	7	6	5	4	3	2	1	0
0x40	SDT		IAI			AUD_ID[4:0]		

Address: VideoBaseAddress + 0x40

Type: Read/write

Reset value: Synchronization: None

Description

This register controls the audio stream decoding and some miscellaneous parser functions.

Bitfield	Description
AUD_ID	Audio Stream ID
IAI	Ignore Audio Stream ID
SDT	Store DTS not PTS. When set, this bit causes the DTS stamps to be stored instead of the PTS stamps for the video parser.

PES Video Parser Control PES_CF2

	7	6	5	4	3	2	1	0
0x41	MOD	[1:0]	SS	IVI		VID_I	D[3:0]	

Address: VideoBaseAddress + 0x41

Type: Read/write

Reset value: 0 Synchronization: None

Description

This register controls the video stream parser.

Bitfield	Description
VID_ID[3:0]	Video Stream ID
IVI	Ignore Video Stream ID
SS	System Stream. This bit, when set, indicates that the stream sent to the parser is a system stream. To decode a pure video or audio stream this bit should be set to zero.
MOD[1:0]	 00: Automatic configuration. The parser will configure itself to decode the incoming stream. 01: MPEG-1 system stream with one data strobe input format 10: MPEG-2 PES separate data strobes input format (standard mode). 11: MPEG-2 whole PES video and whole PES audio, one after the other with single data strobe input format.

PES_TM1

DSM Trick Mode

0x42 PES_TM1[7:0]

Address: VideoBaseAddress + 0x42

Type: Read only

Reset value: 0
Synchronization: None

Description

This register stores the DSM trick mode bits. This register may be used only if the ES rate flag of the bit stream is set to

PES_TM2 PES Parser Status

	7	6	5	4	3	2	1	0
0x43							M2	DSA

Address: VideoBaseAddress + 0x43

Type: Read only

Reset value: 2 Synchronization: None

Description

PES parser status register.

Bitfield	Description
DSA	DSM association flag. This bit, when set indicates that the picture header present in the start code detector is associated to DSM values present in the PES_TM1 register.
M2	MPEG-2 not MPEG-1. This bit indicates, in automatic mode, if the current stream being decoded is an MPEG-2 or an MPEG-1 stream.

PES_TS PES Time Stamps

	7	6	5	4	3	2	1	0
0x49				PES_	TS [7:0]			
0x4A				PES_	TS [15:8]			
0x4B				PES_T	S [23:16]			
0x4C				PES_T	S [31:24]			
0x4D							TSA	PES_TS [32]

Address: VideoBaseAddress + 0x49 (PES_TS [7:0]) to 0x4D (PES_TS [32:TSA])

Type: Read only

Reset value: 0 Synchronization: None

7170180A 211/275

These registers store the time stamps selected using the control bit in PES_CF1.

Bitfield	Description
TSA	Time stamp association. When this bit is set it indicates that the picture to be decoded next (from which the header is available in the start code detector) has an associated time stamp available in PES_TS .

(PIO Clear PnC1)and

0x48

21 Parallel input/output (PIO)

Each eight bit PIO port has a set of eight-bit registers. Each of the eight bits of each register refers to the corresponding pin in the corresponding port.

PIO_CLEAR_PnC2:0 Clear bits of PnC2:0

(PIO Clear PnC0),

0x38

Address: PIOnBaseAddress

(PIO_Clear_PnC2)

Type: Write only

Description

PIO_Clear_PnC2:0 allows the bits of registers PIO_PnC2:0 to be cleared individually. Writing a '1' in one of these register clears the corresponding bit in the corresponding PIO PnC2:0 register, while a '0' leaves the bit unchanged.

0x28

PIO_CLEAR_PnCOMP Clear bits of PnComp

7 6 5 4 3 2 1 0

Clear_PComp[7:0]

Address: PIOnBaseAddress + 0x58

Type: Write only

Description

PIO_Clear_P*n***Comp** allows bits of **PIO_P***n***Comp** to be cleared individually. Writing a '1' in this register clears the corresponding bit in the **PIO_P***n***Comp** register, while a '0' leaves the bit unchanged.

PIO_CLEAR_PnMASK Clear bits of PnMask

Address: PIOnBaseAddress + 0x68

Type: Write only

Description

PIO_Clear_PnMask allows bits of **PIO_PnMask** to be cleared individually. Writing a '1' in this register clears the corresponding bit in the **PIO_PnMask** register, while a '0' leaves the bit unchanged.

7170180A 213/275

PIO CLEAR Phout

Clear bits of PnOut

7 6 5 4 3 2 1 0 Clear_POut[7:0]

Address: PIOnBaseAddress + 0x08

Type: Write only

Description

PIO_Clear_P*n***Out** allows bits of **PIO_P***n***Out** to be cleared individually. Writing a '1' in this register clears the corresponding bit in the **PIO_P***n***Out** register, while a '0' leaves the bit unchanged.

PIO_PnC2:0 PIO configuration 7 6 5 4 3 2 1 0 0x20 ConfigData0[7:0] ConfigData1[7:0] ConfigData2[7:0] ConfigData2[7:0]

Address: PIOnBaseAddress + 0x20 (PIO_PnC0), 0x30 (PIO_PnC1) and 0x40 (PIO_PnC2)

Type: Read/write

Reset value: 0

Description

There are three configuration registers (PIO_PnC0, PIO_PnC1 and PIO_PnC2) for each port, which are used to configure the PIO port pins. Each pin can be configured as an input, output, bidirectional, or alternative function pin (if any), with options for the output driver configuration.

Three bits, one bit from each of the three registers, configure the corresponding bit of the port. The configuration of the corresponding I/O pin for each valid bit setting is given in the table below.

PnC2[y]	[y] PnC1[y] PnC0[y] Bit y configuration		Bit y output	
0	0	1	Bidirectional	Open drain.
0	1	0	Output	Push-pull.
0	1	1	Bidirectional	Open drain.
1	0	0	Input	Hi-Z.
1	0	1	Input	Hi-Z.
1	1	0	Alternative function output	Push-pull.
1	1	1	Alternative function bidirectional	Open drain.

Table 51 PIO bit configuration encoding

The PIO_PnC registers are each mapped onto two additional addresses PIO_Set_PnC and PIO_Clear_PnC so that bits can be set or cleared individually.

PIO_PnCOMP

PIO input comparison

7 6 5 4 3 2 1 0 PComp[7:0]

Address: PIOnBaseAddress + 0x50

Type: Read/write

Reset value: 0

Description

The input compare register PIO PnComp can be used to cause an interrupt if the input value differs from a fixed value.

The input data from the PIO ports pins will be compared with the value held in **PIO_P***n***Comp**. If any of the input bits is different from the corresponding bit in the **PIO_P***n***Comp** register and the corresponding bit position in **PIO_P***n***Mask** is set to 1, then the internal interrupt signal for the port will be set to 1.

The compare function is sensitive to changes in levels on the pins. For the comparison to be seen as a valid interrupt by an interrupt handler, the change in state on the input pin must be longer in duration than the interrupt response time.

The compare function is operational in all configurations for each PIO bit, including the alternative function modes.

The PIO_PnOut register is mapped onto two additional addresses PIO_Set_PnOut and PIO_Clear_PnOut so that bits can be set or cleared individually.

PIO_PnIN		PIO input					
7	6	5	4	3	2	1	0
			Pln	[7:0]			

Address: PIOnBaseAddress + 0x10

Type: Read only

Reset value: 0

Description

The data read from this register will give the logic level present on the input pins of the port at the start of the read cycle to this register. Each bit reflects the input value of the corresponding bit of the port. The read data will be the last value written to the register regardless of the pin configuration selected.

PIO_PnMASK PIO input comparison mask 7 6 5 4 3 2 1 0 PMask[7:0]

Address: *PIO*n*BaseAddress* + 0x60

Type: Read/write

Reset value: 0

Description

When a bit is set to 1, the compare function for the internal interrupt for the port is enabled for that bit. If the respective bit (7 to 0) of the input is different from the corresponding bit in the **PIO_PnComp** register, then an interrupt is generated.

7170180A 215/275

The PIO_PnMask register is mapped onto two additional addresses PIO_Set_PnMask and PIO_Clear_PnMask so that bits can be set or cleared individually.

PIO PnOUT

PIO output

6 5 4 3 2 1 0 POut[7:0]

Address: PIOnBaseAddress + 0x00

Type: Read/write

Reset value: 0

Description

This register holds output data for the port. Each bit defines the output value of the corresponding bit of the port.

The PIO_PnOut register is mapped onto two additional addresses PIO_Set_PnOut and PIO_Clear_PnOut so that bits can be set or cleared individually.

PIO_SET_PnC2:0

Set bits of PnC2:0

	7	6	5	4	3	2	1	0
0x24				Set_P	C0[7:0]			
0x34				Set_P	C1[7:0]			
0x44				Set_P	C2[7:0]			

Address: PIOnBaseAddress + 0x24 (PIO_Set_PnC0), 0x34 (PIO_Set_PnC1) and 0x44 (PIO_Set_PnC2)

Type: Write only

Description

PIO_Set_PnC2:0 allow the bits of registers PIO_PnC2:0 to be set individually. Writing a '1' in one of these registers sets the corresponding bit in the corresponding PIO_PnC2:0 register, while a '0' leaves the bit unchanged.

PIO_SET_PnCOMP

Set bits of PnComp

Address: PIOnBaseAddress + 0x54

Type: Write only

Description

PIO_Set_PnComp allows bits of PIO_PnComp to be set individually. Writing a '1' in this register sets the corresponding bit in the PIO_PnComp register, while a '0' leaves the bit unchanged.

PIO_SET_PnMASK

Set bits of PnMask

7 5 4 3 2 1 0 Set_PMask[7:0]

Address: PIOnBaseAddress + 0x64

Type: Write only

Description

PIO_Set_PnMask allows bits of PIO_PnMask to be set individually. Writing a '1' in this register sets the corresponding bit in the PIO_PnMask register, while a '0' leaves the bit unchanged.

PIO_SET_P	nOUT	Set bits o	of PnOut				
7	6	5	4	3	2	1	0
			Set_P	Out[7:0]			

Address: PIOnBaseAddress + 0x04

Type: Write only

Description

PIO_Set_PnOut allows bits of PIO_PnOut to be set individually. Writing a '1' in this register sets the corresponding bit in the PIO_PnOut register, while a '0' leaves the bit unchanged.

7170180A 217/275

PWM_3CaptureEdge

22 PWM and counter module (PWC)

PWM_nCAPTUREEDGE PWM n Capture event definition

 31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2
 1 0

 0x30
 PWM_0CaptureEdge

 0x34
 PWM_1CaptureEdge

 0x38
 PWM_2CaptureEdge

Address: PWMBaseAddress + 0x30 (PWM_0CaptureEdge) to 0x3C (PWM_3CaptureEdge)

Type: Read/write Reset value: Undefined

Description

0x3C

The code in register PWM_nCaptureEdge defines what constitutes an event on input pin **CaptureIn** *n*. Possible events are rising edge, falling edge, both or neither (in other words, disabled).

Bitfield	Description
CaptureEdge	01: Capture on rising edge
	10: Capture on falling edge
	11: Capture on rising or falling edge
	00: Capture disabled

PWM_nCAPTUREVAL PWM n capture value

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x10	PWM0CaptureVal
0x14	PWM1CaptureVal
0x18	PWM2CaptureVal
0x1C	PWM3CaptureVal
	·

Address: PWMBaseAddress + 0x10 (PWM_0CAPTUREVAL0) to 0x1C (PWM_3CAPTUREVAL)

Type: Read only Reset value: Undefined

Description

Each of the four capture value registers holds the 32-bit counter value at the time of the last event occurring at the corresponding CaptureIn pin. When an input event occurs on input CaptureInn, the value of the counter in register PWM_CAPTURECOUNT at that time is captured in register PWM_nCAPTUREVAL. The value can be any 32-bit value.

When an input event occurs, an interrupt is generated provided the register bit PWM_INTENABLE.IntN is set to 1. Register bit PWM_INTSTATUS.Intn becomes 1, and can be reset by writing 1 to register PWM_INTACK.IntAck.

The counter is not stopped nor reset by any of these events.

218/275 7170180A

PWM_nCOMPAREOUTVALPWM a compare output value

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Compare OutVal2

Address: PWMBaseAddress + 0x40 to 0x4C

Type: Read/write Reset value: Undefined

Description

This register holds the value which will be written to the PWM_COMPAREOUTN pin when the compare value in PWM_nCOMPAREVAL matches the counter value PWM_CAPTURECOUNT.

PWM_nCOMPAREVAL PWM n compare value

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x20

0x24

0x28

PWM1CompareVal

PWM2CompareVal

PWM3CompareVal

Address: PWMBaseAddress + 0x20 (PWM0CompareVal) to 0x2C (PWM3CompareVal)

Type: Read/write Reset value: Undefined

Description

0x2C

Each of the four compare registers PWM_nCOMPAREVAL in the module can be set to any 32-bit value. When the counter in register PWMCaptureCount reaches the value of register PWM_nCOMPAREVAL, two things happen:

- 1 An interrupt is generated if the register bit PWM_INTENABLE.IntN is set to 1. Register bit PWM_INTSTATUS.IntN becomes 1, and can be reset by writing 1 to register bit PWM_INTACK.IntAck.
- 2 Pin PWM_nCOMPAREOUT takes on the value set in register PWM_nCOMPAREVAL.

The counter is not stopped nor reset by any of these events.

PWM_nVAL PWM n pulse width

0x00 | Second Se

Address: PWMBaseAddress + 0x00 (PWM_0VAL) to 0x0C (PWM_3VAL)

Type: Read/write Reset value: Undefined

7170180A 219/275

These registers hold the counter values, which are used to determine the width of the pulse generated on the PWMOut pin. PWMOut pulse width = $(PWMVal + 1) \times PWMOut$ pulse width =

If PWMVal is 255 then PWMOut does not go low.

PWM_CAPTURECOUNT PWM capture/compare counter

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CaptureCount

Address: PWMBaseAddress + 0x64

Type: Read/write Reset value: Undefined

Description

This register holds the shared capture/compare counter used by all the capture and compare functions.

The capture/compare counter is clocked from the prescaled system clock. The prescaling factor, and therefore the period represented by one count, is determined by the value of field CaptureClkValue in register PWM_CONTROL. The factor can be from 1 to 32.

The counter is enabled by setting register bit PWM_CONTROL.CaptureEnable to 1. When it is disabled (PWM_CONTROL.CaptureEnable=0), none of the capture or compare functions work. PWM_CAPTURECOUNT can be read or written at any time.

When the capture/compare counter reaches its maximum count of #FFFFFFF, it wraps round to count up from zero again.

PWM_CONTROL PWM control register

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Capture	PWM	Capture	PWM
Enable	Enable	ClkValue	ClkValue

Address: PWMBaseAddress + 0x50

Type: Read/write Reset value: Undefined

Description

Bitfield	Description
PWMClkValue	PWM clock prescale factor 0-15 (divide clock by value + 1)
CaptureClkValue	Capture/compare clock prescale factor 0-31 (divide clock by value + 1)
PWMEnable	Enables PWM counter when = 1
CaptureEnable	Enables capture/compare counter when = 1

220/275 7170180A

PWM COUNT

PWM output counter

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count

Address: *PWMBaseAddress* + 0x60 Type: Read/write (but see text)

Reset value: Undefined

Description

PWM output counter. The counter (in register PWM_COUNT) is enabled by setting register bit PWM_CONTROL.PWMEnable to 1. When it is disabled (PWM_CONTROL.PWMEnable=0), pin PWM_OUT is forced low. PWM_COUNT is writable at any time but can have a synchronization latency.

PWM_INTACK PWM interrupt acknowledge

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

npIA3	/ldu	npIA1	/Jdu	ptIA	ъ	ptIA1	₫	ıtAck
Cr	Cu	_				()		<u>=</u>

Address: PWMBaseAddress + 0x5C

Type: Write only

Description

Bitfield	Description
IntAck	Interrupt acknowledge: write 1 to reset PWMInt to 0
CmpIA0	Compare 0 interrupt acknowledge: write 1 to reset status bit
CmpIA1	Compare 1 interrupt acknowledge: write 1 to reset status bit
CmpIA2	Compare 2 interrupt acknowledge: write 1 to reset status bit
CmpIA3	Compare 3 interrupt acknowledge: write 1 to reset status bit
CptIA0	Capture 0 interrupt acknowledge: write 1 to reset status bit.
CptIA1	Capture 1 interrupt acknowledge: write 1 to reset status bit
CptIA2	Capture 2 interrupt acknowledge: write 1 to reset status bit
CptIA3	Capture 3 interrupt acknowledge: write 1 to reset status bit

PWM_INTENABLE PWM interrupt enable

 $31 \quad 30 \quad 29 \quad 28 \quad 28 \quad 26 \quad 25 \quad 24 \quad 23 \quad 22 \quad 21 \quad 20 \quad 19 \quad 18 \quad 17 \quad 16 \quad 15 \quad 14 \quad 13 \quad 12 \quad 11 \quad 10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1 \quad 0$

" 이 이 이 히 히 히 히 히

Address: PWMBaseAddress + 0x54

Type: Read/write Reset value: Undefined

7170180A 221/275

Bitfield	Description							
IntEn	PWM counter overflow interrupt enable							
CptIE0	Capture 0 interrupt enable: 1 = enabled							
CptlE1	Capture 1 interrupt enable: 1 = enabled							
CptlE2	Capture 2 interrupt enable: 1 = enabled							
CptIE3	Capture 3 interrupt enable: 1 = enabled							
CmpIE0	Compare 0 interrupt enable: 1 = enabled							
CmpIE1	Compare 1 interrupt enable: 1 = enabled							
CmpIE2	Compare 2 interrupt enable: 1 = enabled							
CmpIE3	Compare 3 interrupt enable: 1 = enabled							

PWM_INTSTATUS **PWM** interrupt status

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

c	2	7	_	0	1	Ī.,		_	\vdash
	<u>ძ</u>	mp	ď	ď	1	덫	pt1	矣	
		'n	Ľ	Ľ	ŭ			ŭ	=
))	\circ	\circ	_	_	_	_	

Address: PWMBaseAddress + 0x58

Type: Read only Undefined Reset value:

Description

Bitfield	Description
Int	1= PWM counter overflow
Cpt0	Capture 0 interrupt: 1 = interrupt
Cpt1	Capture 1 interrupt: 1 = interrupt
Cpt2	Capture 2 interrupt: 1 = interrupt
Cpt3	Capture 3 interrupt: 1 = interrupt
Cmp0	Compare 0 interrupt: 1 = interrupt
Cmp1	Compare 1 interrupt: 1 = interrupt
Cmp2	Compare 2 interrupt: 1 = interrupt
Cmp3	Compare 3 interrupt: 1 = interrupt

222/275 7170180A

23 SmartCard interface (SCI)

SCI_n_CLKCON

SmartCard n clock control

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved. Write 0 Enable Source

Address: SmartCardnBaseAddress + 0x04

Type: Write only

Reset value: 0

Description

This register controls the source of the clock and determines whether the SmartCard clock output is enabled. The programmable divider and the output are reset when the enable bit is set to 0.

Bitfield	Description
Enable	SmartCard clock generator enable bit. 0: Stop clock, set output low and reset divider. 1: Enable clock generator.
Source	Selects source of SmartCard clock. 0: Selects global clock. 1: Selects external pin.

SCI_n_CLKVAL SmartCard n clock

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ScClkVal

Address: SmartCardnBaseAddress + 0x00

Type: Write only

Reset value: 0

Description

This register determines the SmartCard clock frequency. The 5-bit value given in the register is multiplied by 2 to give the division factor of the input clock frequency. For example, if **Sc**n**SlkVal**=8 then the input clock frequency is divided by 16. The value "zero" must not be written into this register.

The divider is updated with the new value for the divider ratio on the next rising or falling edge of the output clock.

7170180A 223/275

24 Sub-picture decoder (SPD)

SPD_CTL1

Control Register 1

7	6	5	4	3	2	1	0
BOT	TOP	Р	В	Н	V	D	S

Address: SubPictureBaseAddress + 0x00

Type: Read/write

Reset value: 0

Synchronization: VSYNC (field)

Description

This register contains control bits for the subpicture decoder.

Bitfield	Description
S	Sub-Picture Decoder Start command. When set, this bit indicates the start of a new subpicture unit. The subpicture decoder will then reset the local time reference counter. The state is sampled on each VSYNC.
D	Decoder Active. This bit is set by the decoder when, at shadow register update, the Sub-picture start bit is sampled high. When the decoder active bit is reset decoding is disabled and can only be re-enabled by the decoder start bit.
V	Display Active. When reset, this bit turns off the sub-picture display, however, decoding still goes on even when the display is disabled. When decoding is disabled using the 'Decoder active' bit then the display is automatically disabled.
Н	Highlight Enable. When set, this bit turns on highlighting inside the sub-picture display area.
В	Bypass. When set, this bit puts the run-length decoder into transparent mode. This allows standard 2-bit-per-pixel bitmaps to be fed into the sub-picture decoder.
Р	Sub-Picture Pause. When this bit is set the 90KHz clock in sub-picture is paused.
TOP	When this bit is set to 1, the new subpicture command is taken into account one top field. If TOP and BOT are both set to 0, subpicture command are executed on any field.
BOT	When this bit is set to 1, the new subpicture command is taken into account one bottom field.

SPD_CTL2 Control Register 2

7	6	5	4	3	2	1	0
							Rc

Address: SubPictureBaseAddress + 0x02

Type: Read/write

Reset value: 0 Synchronization: None

Description

This register contains control bits for the subpicture decoder.

Bitfield	Description
Rc	Reset Lut #2. When set, this bit resets the auto-increment address counter.

224/275 7170180A

SPD_HCN

Highlight Region Contrast

Address: SubPictureBaseAddress + 0x16 and 0x17

Type: Read/write

Reset value: 0 Synchronization: VSYNC

Description

These registers contain the highlight contrast map values.

SPD_HCOL Highlight Region Color

	7	6	5	4	3	2	1	0		
0x14		e2[3	3:0]		e1[3:0]					
0x15		p[3	3:0]		b[3:0]					

Address: SubPictureBaseAddress + 0x14 and 0x15

Type: Read/write

Reset value: 0 Synchronization: VSYNC

Description

These registers contain the highlight color map values.

SPD_HLEX Highlight Region End X

	7	6	5	4	3	2	1	0
0x10							SPD_H	LEX[9:8]
0x11				SPD_HL	EX[7:0]			

Address: SubPictureBaseAddress + 0x10 (SPD_HLEX[9:8]) and 0x11 (SPD_HLEX[7:0])

Type: Read/write

Reset value: 0 Synchronization: VSYNC

Description

Highlight region end position X-coordinate. This register is also used as the OGT highlight region1.

7170180A 225/275

 SPD_HLEY
 Highlight Region End Y

 0x12
 7
 6
 5
 4
 3
 2
 1
 0

 0x12
 SPD_HLEY[9:8]

 0x13
 SPD_HLEY[7:0]

Address: SubPictureBaseAddress + 0x12 (SPD_HLEY[9:8]) and 0x13 (SPD_HLEY[7:0])

Type: Read/write

Reset value: 0

Synchronization: VSYNC

Description

Highlight region end position Y-coordinate. This register is also used as the OGT highlight region1.

SPD_HLSX Highlight Region Start X 7 6 5 4 3 2 1 0 0x0C SPD_HLSX[7:0]

Address: SubPictureBaseAddress + 0x0C (SPD_HLSX[9:8]) and 0x0D (SPD_HLSX[7:0])

Type: Read/write

Reset value: 0

Synchronization: VSYNC

Description

Highlight region start position X-coordinate. This register is also used as the OGT highlight region1.

SPD_HLSY Highlight Region Start Y 7 6 5 4 3 2 1 0 0x0E SPD_HLSY[9:8] 0x0F SPD_HLSY[7:0]

Address: SubPictureBaseAddress + 0x0E (SPD_HLSY[9:8]) and 0x0F (SPD_HLSY[7:0])

Type: Read/write

Reset value: 0
Synchronization: VSYNC

Description

Highlight region start position Y-coordinate. This register is also used as the OGT highlight region1.

Main Lookup Table

7 6 5 4 3 2 1 0 SPD_LUT[7:0]

Address: SubPictureBaseAddress + 0x03

Type: Write Reset value: 0 Synchronization: None

Description

This register allows input of the main lookup table. Writing to this register auto-increments the address in the lookup table. For each color, starting with color 0, the Y component (8-bit) is written first followed by U and V. The process continues for each color up to 16 colors.

SPD_SPR Soft Reset

7 6 5 4 3 2 1 0 SPD_SPR

Address: SubPictureBaseAddress + 0x01

Type: Read/write

Reset value: 0 Synchronization: None

Description

This register resets the subpicture decoder.

Bitfield	Description
SPR	Sub Picture Reset. When this bit is set the sub-picture decoder and its FIFOs are reset. Note that the sub-picture
	decoder is also reset by a hard reset or a global soft reset.

SPD_SXD0 Sub-picture display area

	7	6	5	4	3	2	1	0
0x24							SPD_S	XD0[9:8]
0x25				SPD_SX	D0[7:0]			

Address: SubPictureBaseAddress + 0x24 (SPD_SXD0[9:8]) and 0x25 (SPD_SXD0[7:0])

Type: Read/write

Reset value: 0
Synchronization: VSYNC

Description:

These registers contain the parameters which define the subpicture display area within the subpicture decode area. The value represents an offset from the corresponding parameter used to define the subpicture decode area. For example: The true horizontal start position of the subpicture display will be equal to XDO + SXDO.

This register is also used for OGT, its value sets the horizontal position of the left-hand side of the active OGT decode region, the position is measured in number of pixels from the left-hand edge of the screen. The minimum value is 3.

7170180A 227/275

SPD_SXD1 Subpicture Display Area 0x28 6 5 4 3 2 1 0 0x28 SPD_SXD1[9:8]

Address: SubPictureBaseAddress + 0x28 (SPD SXD1[9:8]) and 0x29 (SPD SXD1[7:0])

Type: Read/write

Reset value: 0 Synchronization: VSYNC

Description

These registers contain the parameters which define the subpicture display area within the subpicture decode area. The value represents an offset from the corresponding parameter used to define the subpicture decode area.

This register is also used for OGT, its value sets the width of active OGT decode region, the position is measured in number of pixels from the left-hand edge of the OGT region.

SPD_SYD0 Subpicture Display Area 7 6 5 4 3 2 1 0 0x26 SPD_SYD0[9:8] 0x27 SPD_SYD0[7:0]

Address: SubPictureBaseAddress + 0x26 (SPD_SYD0[9:8]) and 0x27 (SPD_SYD0[7:0])

Type: Read/write

Reset value: 0 Synchronization: VSYNC

Description

These registers contain the parameters which define the subpicture display area within the subpicture decode area. The value represents an offset from the corresponding parameter used to define the subpicture decode area.

This register is also used for OGT, its value sets the vertical position of the left-hand side of the active OGT decode region, the position is measured in number of pixels from the top edge of the screen.

SPD_SYD1 Subpicture Display Area 7 6 5 4 3 2 1 0 0x2A SPD_SYD1[9:8] 0x2B SPD_SYD1[7:0]

Address: SubPictureBaseAddress + 0x2A (SPD_SYD1[7:0]) and 0x2B (SPD_SYD1[9:8])

Type: Read/write

Reset value: 0
Synchronization: VSYNC

These registers contain the parameters which define the subpicture display area within the subpicture decode area. The value represents an offset from the corresponding parameter used to define the subpicture decode area.

This register is also used for OGT, its value sets the height of the active OGT decode region, the position is measured in number of pixels from the top edge of the OGT region.

SPD_XD0 Sub-picture X Offset

	7	6	5	4	3	2	1	0
0x04							SPD_X	[D0[9:8]
0x05				SPD_X	D0[7:0]			

Address: SubPictureBaseAddress + 0x04 (SPD_XD0[9:8]) and 0x05 (SPD_XD0[7:0])

Type: Read/write

Reset value: 0

Synchronization: VSYNC

Description

This register value sets the horizontal position of the left hand side of the active subpicture decode region. The position is measured in number of pixels from the left hand edge of the screen.

SPD_YD0 Sub-picture Y Offset

	7	6	5	4	3	2	1	0
0x06							SPD_Y	′D0[9:8]
0x07				SPD_Y	D0[7:0]		1	

Address: SubPictureBaseAddress + 0x06 (SPD_YD0[9:8]) and 0x07 (SPD_YD0[7:0])

Type: Read/write

Reset value: 0

Synchronization: VSYNC

Description

This register value sets the vertical position of the top of the active subpicture decode region. The position is measured in number of pixels from the top edge of the screen.

7170180A 229/275

25 Synchronous serial controller (SSC)

SSC_n_BRG

SSC n baud rate generation

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 BRG

Address: SSCnBaseAddress + 0x00

Type: Read/write

Reset value: 1

Description

This address is dual purpose. When reading, the current 16-bit counter value is returned. When a value is to this address, the 16-bit reload register is loaded with that value.

SSC_n_CON

SSC n control

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					LPB	EN	MS	SR	PO	PH	HB		В	M	

Address: SSCnBaseAddress + 0x0C

Type: Read/write

Reset value: 0

Description

Bitfield	Description
BM	SSC Data Width Selection
	0000: Reserved. Do not use this combination.
	0001: 2 bits
	0010: 3 bits
	mim
	1111: 16 bits
НВ	SSC Heading Control Bit
	0: LSB first
	1: MSB first
PH	SSC Clock Phase Control Bit
	0: Pulse in second half cycle
	1: Pulse in first half cycle

230/275 7170180A

Bitfield	Description
PO	SSC Clock Polarity Control Bit
	0: Clock idles at logic 0
	1: Clock idles at logic 1
SR	8SC Software Reset
	0: Device is not reset
	1: All functions are reset while this bit is set
MS	SSC Master Select Bit
	0: Slave mode
	1 Master mode
EN	SSC Enable Bit
	0: Transmission and reception disabled
	1: Transmission and reception enabled
LPB	SSC Loopback Bit
	0: Disabled
	1: Shift register output is connected to shift register input

SSC_n_I2C SSC n I²C control

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											AD10	ACKG	STOPG	STRTG	I2CM

Address: SSCnBaseAddress + 0x18

Type: Read/write

Reset value: 0

Description

Bitfield	Description
I2CM	SSC I ² C control bit 0: Disabled, 1: Enable I ² C features
STRTG	SSC I ² C generate START condition 0: Disabled, 1: Generate a START condition
STOPG	SSC I ² C generate STOP condition 0: Disabled,1:Generate a STOP condition
ACKG	SSC I ² C generate acknowledge bits 0: Disabled,1: Generate acknowledge bits when receiving
AD10	SSC I ² C 10-bit addressing control 0: Disabled,1: Use 10 bit addressing

SSC_n_IEn SSC n interrupt enable 7 15 14 13 12 10 9 8 6 2 0 11 ARBLEN STOPEN AASEN RIEN TIEN

Address: SSCnBaseAddress + 0x10

Type: Read/write

Reset value: 0

7170180A 231/275

This register holds the interrupt enable bits, which can be used to mask the interrupts.

Bitfield	Description
RIEN	0: Receiver Buffer Full Interrupt Enable
	1: Receiver buffer interrupt enabled
TIEN	0: Transmitter Buffer Empty Interrupt Enable
	1: Transmitter buffer empty interrupt enabled
TEEN	0: Transmit Error Interrupt Enable
	1: Transmit error interrupt enabled
REEN	0: Receive Error Interrupt Enable
	1: Receive error interrupt enabled
PEEN	0: Phase Error Interrupt Enable
	1: Phase error interrupt enabled
AASEN	0: I ² C Addressed As Slave Interrupt Enable
	1: Addressed as slave interrupt enabled
STOPEN	0: I ² C Stop Condition Interrupt Enable
	1: Stop condition interrupt enabled
ARBLEN	0: I ² C Arbitration Lost Interrupt Enable
	1: Arbitration lost interrupt enabled

SSC n receive buffer SSC_n_RBUF 15 14 10 7 0 13 12 11 6 5 3 2 1 RD[15:0]

SSCnBaseAddress + 0x08

Type: Read only

Reset value: 0

Description

Address:

Receive buffer data D15 to D0.

SSC_n_SLAD SSC n slave address

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							SL[9:7]					SL[6:0]			

Address: SSCnBaseAddress + 0x1C

Type: Write only

Reset value: 0

Description

The slave address is written into this register. If the address is a 10-bit address it is written into bits 9:0. If the address is a 7-bit address then it is written into bits 6:0.

232/275 7170180A

SSC_n_STAT

SSC nstatus

15 9 8 7 6 5 4 3 2 1 0 BUSY ARBL STOP AAS CLST PΕ RE ΤE TIR RIR

Address: SSCnBaseAddress + 0x14

Type: Read only

Reset value: 2, i.e. all active bits clear except **TIR**.

Description

Bitfield	Description
RIR	0: Receiver buffer full flag 1: Receiver buffer full
TIR	Transmitter buffer empty flag Transmitter buffer empty
TE	0: Transmit error flag 1: Transmit error set
RE	0: Receive error flag 1: Receive error set
PE	0: Phase error flag 1: Phase error set
CLST	0: I ² C clock stretch flag 1: Clock stretching in operation
AAS	0: I ² C addressed as slave flag 1: Addressed as slave device
STOP	0: I ² C stop condition flag 1: Stop condition detected
ARBL	0: I ² C arbitration lost flag 1: arbitration lost
BUSY	0: I ² C bus busy flag 1: I ² C bus busy

SSC_n_TBUF SSC n transmit buffer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TD[15:0]

Address: SSCnBaseAddress + 0x04

Type: Write only

Reset value: 0

Description

Transmit buffer data D15 to D0.

7170180A 233/275

26 Teletext interface (Ttxt)

Five dedicated DENC registers program the teletext encoding in various areas of the Vertical Blanking Interval (VBI) of each field. These registers are DEN_TTX1 to DEN_TTX4, and DEN_TTXM.

TTXT ABORT Teletext Abort

Address: TtxtBaseAddress + 0x24

Type: Write only

Description

This register is write only. Any write to this address causes the teletext interface to abort the current operation. The state of the teletext operation is reset, and the teletext data transfer is interrupted. The DMA engine is reset only after the current word read or write is complete.

TTXT_ACKODDEVEN Teletext Acknowledge odd or even

Address: TtxtBaseAddress + 0x20

Type: Write only

Description

This register acknowledges the odd/even toggle interrupt. Any write to the TTXT_ACKODDEVEN register clears the Odd and Even bits of the TTXT INTSTATUS register.

TTXT_DMAADDRESS Teletext DMA address

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DmaAddress

Address: TtxtBaseAddress + 0x00

Type: Read/write Reset value: Undefined

Description

0x00

The **TTXT_DMAADDRESS** register is a 32-bit register, which specifies the base address in memory for the DMA transfer from memory.

Bit field	Function
DmaAddress	The base address for DMA transfer of data to or from memory.

TTXT_DMACOUNT Teletext DMA count

0x04 31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address: TtxtBaseAddress + 0x04

Type: Read/write Reset value: Undefined

The **TTXT DMACOUNT** register specifies the number of bytes to be transferred from memory during the DMA operation. A write to this register also starts the teletext output operation.

- For teletext output operation, this value must be: 46 bytes x number_of_teletext_lines_to_send
- For teletext input operation, the value must be: 42 bytes x number_of_teletext_lines_to_receive

TTXT_INTENABLE Teletext Interrupt enable

	7	6	5	4	3	2	1	0
0x1C						EvenEnable	OddEnable	InOutCompleteEn

Address: TtxtBaseAddress + 0x1C

Type: Read/write Reset value: Undefined

Description

The TTXT_INTENABLE register allows masking of the TTXT_INTSTATUS register.

Bitfield	Function
InOutCompleteEn	Enable teletext input or output operation completed interrupt.
OddEnable	Enable odd field interrupt.
EvenEnable	Enable even field interrupt.

TTXT_INTSTATUS Teletext Interrupt status

Address: TtxtBaseAddress + 0x18

Type: Read only Reset value: Undefined

Description

The **TTXT_INTSTATUS** register gives the current state of the teletext operations. If the appropriate bits in the interrupt enable register are set then interrupts can be driven by the state of this register.

Bitfield	Function
InOutComplete	Teletext input or output operation completed.
Odd	Current (video encoder) field is ODD.
Even	Current (video encoder) field is EVEN.

7170180A 235/275

TTXT_OUTDELAY

Teletext Output delay

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x08 Delay

Address: TtxtBaseAddress + 0x08

Type: Read/write Reset value: Undefined

Description

This register programs the delay, in 27 MHz clock periods, from the rising edge of **TTXT_REQUEST** to the first valid teletext data bit, i.e. **TTXT_DATA** starting to transmit.

27 SDRAM block move (USD)

Address: VideoBaseAddress + 0x09

Type: Serial read/write

Reset value: 0

Description

This register holds the number of words to be moved in a block move. The second write to the register with USD_BMS non-zero enables (but does not launch) the block move mode. This register must be written before the associated USD_BRP. The register is reset by a hardware reset.

Address: VideoBaseAddress + 0x88 (1st cycle), 0x89 (2nd cycle) & 0x8A (3rd cycle)

Type: Serial read/write Reset value: Undefined

Description

This register holds the source address of the block to be moved. USD_BRP is an offset from the base of SDRAM in units of 64-bit words. It points to the base of the block to be copied. When USD_BMS is not zero, the third write to USD_BRP launches the block move process, taking into account the values in USD_BMS and USD_BWP. The pointer is reset by a hardware reset.

Address: VideoBaseAddress + 0x8C (1st cycle), 0x8D (2nd cycle) & 0x8E (3rd cycle)

Type: Serial read/write Reset value: Undefined

7170180A 237/275

When a block move is to be executed (i.e. USD_BMS is not zero), this register holds the destination address. USD_BWP defines an offset from the base of the SDRAM, in units of 64-bit words. This points to the base of the area to be written. The pointer is reset by a hardware reset.

USD_BSK		Block	skip					
	7	6	5	4	3	2	1	0
0xA4							USD_BSK[18:16]
0xA5				USD_B	SK[15:8]			
0xA6				USD_B	SK[7:0]			

Address: VideoBaseAddress + 0xA4, 0xA5, 0xA6

Type: Read/write Reset value: Undefined

Description

When a 2D block move is to be executed, this register holds the number of 64-bits words to skip before finding the beginning of the next line to move. As this register has 19 bits, it can contain negative values.

28 Video decoder (VID)

Address: *VideoBaseAddress* + 0x32

Type: R/W

Synchronization: Edge triggered

Description

Bitfield	Description					
E6M	Enable CCIR 656 mode:					
	0: Basic digital video output is sent to port YC[7:0].					
	1: Synchro patterns are inserted in video stream according to CCIR 656 recommendations.					

VID_ABG Start of audio bit buffer

	7	6	5	4	3	2	1	0
0x1C	Reserved				ABG[14:8]			
0x1D				ABG	G[7:0]			

Address: VideoBaseAddress + 0x1C and 0x1D

Type: Read/write

Reset value: 0

Description

The register holds the starting address of the audio bitstream buffer, defined in units of 2 Kbits. If the audio bit buffer starts at address 0, then this register does not need to be set up, since its reset state is 0. When all the registers corresponding to the settings of the bit buffer is done (VID_ABG, VID_ABS), an audio soft reset must be done for values to be taken in account. In other words it must only be changed before the first compressed data of a new sequence is input, and never during the decoding of a sequence.

VID ABL Audio Bit Buffer Level

	7	6	5	4	3	2	1	0
0x1E	Reserved				ABL[14:8]			
0x1F				AB	L[7:0]			

Address: VideoBaseAddress + 0x1E and 0x1F

Type: Read only

Reset value: 0

Description

This register holds the current level of occupation of the audio bit buffer, defined in units of 2 Kbits. It can be read at any time for the monitoring of the audio bit buffer level. When VID_ABL is greater than or equal to the value held in the VID_ABT register, the status bit VID_STA.ABF (audio bit buffer full) becomes set. When VID_ABL is zero, the status bit VID_STA.ABE (audio bit buffer empty) becomes set.

7170180A 239/275

Address: VideoBaseAddress + 0x20 and 0x21

Type: Read/write

Reset value: 0

Description

This register holds the address of the top of the audio bit buffer, defined in units of 2 Kbits. The space allocated to the audio bit buffer starts at the address defined by the VID_ABG register, or, by default, 0. The end address of the audio bit buffer is: (128 x ABS) + 127

VID_ABS must only be changed before the first compressed data of a new sequence is input, and never during the decoding of a sequence.

VID_ABT Audio Bit Buffer Threshold

	7	6	5	4	3	2	1	0
0x22	Reserved				ABT [14:8]			
0x23				ABT	[7:0]			

Address: VideoBaseAddress + 0x22 and 0x23

Type: Read/write

Reset value: 0

Synchronization: Edge Triggered

Description

This register holds the level of occupancy of the audio bit buffer, in units of 2 Kbits, which when reached causes the status bit VID_STA.ABF to become set.

If the bit CFG_CCF.PBO is set, then transfer of data to the audio bit buffer is prevented if the bit buffer level is at or above the level defined in the VID_ABT register. If VID_ABT is set to a value equal to the top of the bit buffer, then this automatic mechanism will ensure that overflow never occurs.

VID_BCK_Y Background color Y

7 0x98 BCK_Y[7:0]

Address: VideoBaseAddress + 0x98

Access: Read/write

Reset value: 0
Synchronization: VSYNC

Description

This register stores the value of the Y component of the background color mixable with the video or the still picture plane.

VID_BCK_U Background color

0x99 BCK_U[7:0]

Address: VideoBaseAddress + 0x9A

Access: Read/write

Reset value: 0 Synchronization: VSYNC

Description

This register stores the value of the U component of the background color mixable with the video or the still picture plane.

VID_BCK_V Background color V

7 0x9A BCK_V[7:0]

Address: VideoBaseAddress + 0x99

Access: Read/write

Reset value: FF Synchronization: VSYNC

Description

This register stores the value of the V component of the background color mixable with the video or the still picture plane.

VID_BFC Backward Chroma Pointer

Address: VideoBaseAddress + 0x5E and 0x5F

Type: Read/write

Reset value: 0
Synchronization: DSYNC

Description

This register holds the start address of the chrominance buffer of the backward prediction frame picture, defined in units of 256 bytes.

VID_BFP Backward Frame Pointer

Address: VideoBaseAddress + 0x12 and 0x13

7170180A 241/275

Type: Read/write

Reset value:

Synchronization: DSYNC

Des<mark>cription</mark>

This register holds the start address of the luminance buffer of the backward prediction frame picture, defined in units of 256 bytes.

VID_CDCOUNT Bit Buffer Input Counter

	7	6	5	4	3	2	1	0
1st cycle				CDcour	nt [23:16]			
2nd cycle				CDcou	nt [15:8]			
3rd cycle				CDcou	ınt [7:0]			

Address: VideoBaseAddress + 0x67

Type: Serial read only

Reset value: 0

Description

These three registers are accessed serially. They hold the number of bytes input to the bit buffer. The byte pointer is reset by a hardware reset, a global soft reset or a video soft reset.

VID_CFG_CCF Chip Configuration

7	6	5	4	3	2	1	0
	EOU	PBO	EC3	EC2	ECK	EDI	EVI

Address: VideoBaseAddress + 0x01

Type: R/W Reset value: 0

Synchronization: Edge Triggered

STi5518	28 Video decoder (VID)
Description	TOENTIAL
Bitfield	Description
EVIC	Enable video interface. When this bit is reset the digital video output (YC7 -YC0) is put into its high impedance state and the internal PIXCLK disabled. This bit must be set for normal operation and for reduced power mode (if the display interface is used). It is reset in low power mode.
EDI	Enable SDRAM interface. When this bit is reset the SDRAM interface (DD63-DD0, AA8-AA0, RAS1, RAS0, CAS, OE and WE) and the signal CDREQ are put into their high impedance state. This bit must be set for normal operation and for reduced power mode. It is reset in low power mode.
ECK	Enable clocks. When this bit is reset, all internal clocks are disabled. This bit must be set for normal operation and for reduced power mode. It is reset in low power mode.
EC2	Enable "clock 2". ("clock 2" is an internal clock controlling MPEG decoding). When this bit is reset, the internal "clock 2" is disabled. This bit must be set for normal operation, and reset in reduced and low power modes.
EC3	Enable "clock 3". ("Clock 3" is an internal clock controlling SDRAM accesses). When this bit is reset, the internal "clock 3" is disabled. This bit must be set for normal operation and for reduced power mode (in reduced power mode, MPEG decoding is not running but SDRAM accesses - display, OSD are still active). It is reset in low power mode (in low power mode SDRAM accesses are not active: no display, no SDRAM refresh).
PBO	Prevent bit buffer overflow. When this bit is set, bit buffer overflow (and thus the loss of data) is prevented by disabling the transfer of data from the compressed data FIFO to the bit buffer whenever the bit buffer level reaches the threshold defined in the VID_VBT or VID_ABT register.
EOU	Enable overflow/underflow errors. When this bit is reset overflow and underflow errors are not treated internally. This bit must be set for normal operation.

VID_CFG_MCF **Memory Refresh Interval**

7 6 2 5 4 3 1 0 RFI[6:0]

VideoBaseAddress + 0x00 Address:

Type: R/W Reset value: 0 Synchronization: None

Description

Bitfield	Description
RFI[6:0]	SDRAM refresh interval. This is defined in units of 32 primary clock periods. 0: Refresh disabled 1: Refresh enabled. For example, if 2048 rows must be refreshed every 32 ms for a SDRAM clock of 100MHz, the following value must be stored in MCF.RFI[6:0]: $32 \times \frac{10^{-3}}{2048} \times \frac{100 \times 10^6}{24} = 65 \text{ decimal}, 1000001 \text{ binary}$

SDRAM configuration VID_CFG_DRC

7	6	5	4	3	2	1	0
MY64		MRS		P1	P0	ERQ	SDR

Address: VideoBaseAddress + 0x38

R/W Type:

7170180A

243/275

28 Video	decoder (VID) STi5518
Reset value: Synchroniza	tion: None
Description Bitfield	Description
SDR	Synchronous DRAM mode. This bit enables the Synchronous DRAM mode. To launch the automatic init sequence, it is necessary first to enable SDRAM interface (set bit SDR) and then set bit MRS with another write access.
ERQ	Enable Processes Requests. This bit when reset disables all processes requests to the local memory controller. This bit has to be set for normal operation.
P[1:0]	Clk3 phase to MemClk. The following procedure has to be executed to make sure the SDRAM interface is properly initialized: P[1:0] = 0, write 4 x 32 bits words to SDRAM, read back the 4 words from SDRAM, if they do not read back correctly, increment the value of P[1:0] until the read is correct.
MRS	Mode Register Set. Only for Synchronous DRAM use. When this bit is set the special power-on-reset sequence and mode register programming is carried out. When this bit is reset the procedure is inhibited.
MY64	1: Shared SDRAM is based on 64Mbit 0: Shared SDRAM is based on 16Mbit

General configuration VID_CFG_GCF

	7	6	5	4	3	2	1	0
0x3A	OnePixDel	A3Rq	A3DI	CD	R	SCK	A3M	TRST_ SPDIF

Address: VideoBaseAddress + 0x3A

Type: R/W Reset value: 0 Synchronization: None

Description

Bitfield	Description
TRST_SPDIF	When this bit is set to 0, SPDIF is tristated.
A3M	This bit has to be set to 0
SCK	Audio strobe clock select. When set, this bit selects "clock 2" ("clock 2" is an internal clock controlling MPEG decoding) as serial strobe period. Otherwise, "clock 3" ("clock 3" is an internal clock controlling SDRAM accesses) is selected.
CDR	Compressed data register 00: External strobes, 01: Audio strobes, 10: Subpicture strobes, 11: Video strobes
A3DI	This bit has to be set to 0
A3Rq	This bit has to be set to 0
OnePixDel	1: Shift one pixel to the right for block-to-row

SRC chrominance offset VID_CSO

CSO[7:0] 0x6C

VideoBaseAddress + 0x6C Address:

Type: Read/write

Reset value:

Synchronization: **VSYNC**

57 7170180A 244/275

This register is set up with a value calculated from the fractional part of the pan vector. If no pan vector is defined, this register can be left in its reset (default) state. The method of calculation of the CSO value is given in the **VID_PAN** register description

VID_CTL

Decoding Control

	7	6	5	4	3	2	1	0
0x02	ERU	ERS				PRS	SRS	EDC

Address: *VideoBaseAddress* + 0x02

Type: Read/write Synchronization: Edge triggered

Description

Bitfield	Description
EDC	Enable decoding: This bit must be set to allow decoding.
SRS	Soft reset: To generate a soft reset, this bit must be kept set for a duration of at least 80 SDRAM clock cycles (660 ns with a 121.5 MHz primary clock).
PRS	Pipeline reset: To generate a pipeline reset, this bit must be kept set for a duration of at least 4 SDRAM clock cycles (40 ns with a 100 MHz SDRAM clock).
	Reserved. Write 0.
ERS	Enable pipeline reset on severe error: When this bit is set, a pipeline reset is automatically generated in case of Severe Error (more than DFS macroblocks decoded).
ERU	Enable pipeline reset on picture decode error: When this bit is set, a pipeline reset is automatically generated in case of Picture Decode Error (less than DFS macroblocks decoded).

VID_CWL

Address: VideoBaseAddress + 0x31

Type: R/W

Synchronization: Edge triggered

Description

0x31

Bitfield	Description
CWL	Launch Compress Data Write FIFO reset procedure for trick-modes.
	Automatically set to zero once reset procedure is completed

VID_DCF

Display Configuration

CD write launch

Address: VideoBaseAddress + 0x74, 0x75 and 0xD6

7170180A 245/275

Type: Read/write

Reset value: Synchronization

VSYNC

Description

Bitfield	Description
LFB	0: The luma samples of the field are sent to the vertical filter.
	1: The luma samples of the frame are sent to the vertical filter.
CFB	0: The chroma samples of the field are sent to the vertical filter.
	1: The chroma samples of the frame are sent to the vertical filter.
ZOOM4	When this bit is set, only one line in two is sent from memory to the vertical filter. This mode is used for zoom/4 during play.
OSDPOL	OSD polarity:
FPM	Enable display field: When this bit is set to 1, the field displayed on the next VSYNC is that set by bit FPO.
ENPOL	E-not-O polarity: To be configured for block-to-row
FLY	0: The current picture is displayed from external memory
	1: Mode not supported
FNF	Frame not Field. This bit is only used during on-the-fly decoding. The bit must be set if a frame picture is going to be displayed, or reset if field picture are to be decoded on-the-fly. For classical decoding (field or frame) the bit is always 1.
BFL	Blank First Line. If this bit is set the first active line of a picture is blanked. (Used in letter box format display).
BLL	Blank Last Line. If this bit is set, the last active line of a picture is blanked. (Used in letter box format display).
FPO	Field polarity - 1 for bottom field, 0 for top field
DSR	Disable SRC. When this bit is set, both luminance and chrominance SRCs (sample rate converters) are disabled. In
	this case no horizontal filtering can occur, as would be required when the horizontal resolution of the decoded picture
	is equal to the horizontal resolution of the display.
EVD	Enable video display. When this bit is reset, the video output has a constant value of Y=16, C _B =C _R =128. OSD is
	still displayed.

VID_DFC

Displayed Chroma Frame Pointer

	7	6	5	4	3	2	1	0
0x58	Reserved			,	VID_DFC[14:8]			
0x59				VID_D	FC[7:0]			

Address: VideoBaseAddress + 0x58 and 0x59

Type: Read/write

Reset value: 0

Synchronization: VSYNC

Description

This register holds the start address, defined in units of 256 bytes, of the chroma frame which is currently being displayed. When a new value is written this is used at the start of the next field. When VID_DFC is set to same value as VID_RFC (i.e. the decoder is writing the reconstructed picture into the buffer which is being displayed), bit VID_TIS.OVW must be set.

246/275 7170180A

Address: VideoBaseAddress + 0x0C and 0x0D

Type: Read/write

Reset value: 0
Synchronization: VSYNC

Description

This register holds the start address, defined in units of 256 bytes, of the luma frame which is currently being displayed. When a new value is written this is used at the start of the next field.

When VID_DFP is set to the same value as VID_RFP (i.e. the decoder is writing the reconstructed picture into the buffer which is being displayed), bit VID_TIS.OVW must be set.

VID_DFS Decoded frame size

Address: VideoBaseAddress + 0x24

Type: Serial read/write

Reset value: 0
Synchronization: DSYNC

Description

The circularity is reset by a software reset.

Bitfield	Description
DFS	This register field is set up with a value equal to the number of macroblocks in the decoded picture. This is derived
	from the horizontal_size and vertical_size values transmitted in the sequence header.

VID_DFW Decoded frame width 7 6 5 4 3 2 1 0 0x25 DFW[7:0]

Address: VideoBaseAddress + 0x25

Type: Read/write

Reset value: 0 Synchronization: DSYNC

Description

This register is set up with the width in macroblocks of the decoded picture. This is derived from the *horizontal_size* value transmitted in the sequence header.

7170180A 247/275

Address: VideoBaseAddress + 0x5C and 0x5D

Type: Read/write

Reset value: 0

Synchronization: DSYNC

Description

This register holds the start address of the forward prediction chroma frame picture buffer, defined in units of 256 bytes.

VID_FFP Forward Luma Frame Pointer 7 6 5 4 3 2 1 0 0x10 FFP[13:8] FFP[7:0]

Address: VideoBaseAddress + 0x10 and 0x11

Type: Read/write

Reset value: 0

Synchronization: DSYNC

Description

This register holds the start address of the forward prediction luma frame picture buffer, defined in units of 256 bytes.

Address: VideoBaseAddress + 0x66

Type: Serial read only Reset value: Undefined

Description

When the start code detector has found a start code, the header data FIFO must be read in order to identify the start code and if required to obtain the header data. The start code identification procedure is described in the STi5508 datasheet.

Before reading the header FIFO, status bit VID_STA.HFE should be checked to ensure that it is not empty. If bit VID_STA.HFF is set then the header FIFO contains at least 66 bytes of data.

As the start code detection is managed with 16-bit words, two successive reads are needed to access the whole 16-bit word; you must always perform an even number of reads before start code search restart (by software or with DSYNC signal).

The byte pointer is reset by a hardware reset, a global soft reset or a video reset.

VID HDS

Header Search

	7	6	5	4	3	2	1	0
Read cycle					SCM			
Write cycle						sos	QMI	HDS

Address: VideoBaseAddress + 0x69

Type: Read only bit SCM, write only HDS, QMI and SOS.

Reset value: 0 Synchronization: None

Description

This register controls the header search when it is written to, and returns the location of the start code when read.

Bitfield	Description
HDS	Writing a 1 to this bit starts a header search. Completion of the header search is indicated by the setting of bit VID_STA.SCH.
QMI	This bit is used to control access to the inverse quantizer tables. 1: Select the intra table 0: Select the non-intra table. For example, to write a new intra table, write VID_HDS.QMI = 1 then write 64 weights to VID_QMW.
SOS	Stop on First Slice. This bit when set allows the start code detector to stop on the first slice start code of a picture (0x00000101). To allow mismatches, this bit must be used in conjunction with VID_HDS.SCM .
SCM	Start Code on MSB. This bit indicates in which byte the start code is located. If this bit is set then VID_HDF[15:8] contains the start code; otherwise VID_HDF[7:0] contains the start code.

VID_ITM

Interrupt Mask

	7	6	5	4	3	2	1	0
0x3C	CWR	ERR	SWR	TR_OK	ABF	SFF	AFF	ABE
0x60	PDE	SER	BMI	HFF	PNC	ERC	DEI	PII
0x61	PSD	VST	VSB	BBE	BBF	HFE	CFF	SCH

Address: VideoBaseAddress + 0x3C, 0x60 and 0x61

Type: Read/write

Reset value: 0 (all interrupts disabled)

Synchronization: None

Description

Bit definitions are given in register VID_STA on page 259.

Any bit set in this register will enable the corresponding interrupt. An interrupt is generated whenever a bit in the **VID_STA** register changes from 0 to 1 and the corresponding mask bit is set.

7170180A 249/275

VID ITS

Interrupt Status

	1	6	5	4	3	2	1	0
-0x3D	CWR	ERR	SWR	TR_OK	ABF	SFF	AFF	ABE
0x62	PDE	SER	BMI	HFF	PNC	ERC	DEI	PII
0x63	PSD	VST	VSB	BBE	BBF	HFE	CFF	SCH

Address: VideoBaseAddress + 0x3D, 0x62 and 0x63

Type: Read only

Reset value: 0

Description

Bit definitions are given in register VID_STA on page 259.

After the clocks have been enabled, the state changes to be the same as that of VID_STA. When a bit in the VID_STA register changes from 0 to 1, the corresponding bit in the VID_ITS register is set, irrespective of the state of VID_ITM. If the corresponding bit of VID_ITM is set, the interrupt is asserted. Reading the most significant byte of VID_ITS clears it, leaving IRQ in its de-asserted (high) state.

VID_LCK Register lock 7 6 5 4 3 2 1 0 0x7B LDP

Address: VideoBaseAddress + 0x7B

Type: R/W Reset value: 0

Description

When bit LDP is set to 1, registers VID_CFG_MCF, VID_CFG_CCF and VID_CFG_DRC are locked into an non-writable state.

VID_LSO SRC Luminance Offset

Address: VideoBaseAddress + 0x6A

Type: Read/write

Reset value: 0

Synchronization: VSYNC

Description

This register is set up with a value calculated from the fractional part of the pan vector. If no pan vector is defined, this register can be left in its reset (default) state.

The method of calculation of the LSO value is given in the VID_PAN register description.

Address: VideoBaseAddress + 0x6Band 0x6D

Type: Read/write

Reset value: 0
Synchronization: VSYNC

Description

This register holds the upsampling factor of the luminance SRC (sample rate converter). It applies on chroma also.

The upsampling factor is equal to 256/LSR. Table 52 gives some examples of upsampling factors, where in each case the displayed picture has a nominal width of 720 pels. Also shown are the numbers of valid pels generated, "N", calculated as shown in the STi5508 datasheet. Displayed picture widths other than 720 are supported.

Decoded picture width	LSR	N
640	228	715
640	227	718
544	193	717
544	192	721
480	170	717
480	169	722
352	125	713
352	124	719
704	250	717
704	249	720

Table 52 Example upsampling factors

VID_MWV Mix Weight Video 7 6 5 4 3 2 1 0 0x9B MWV[7:0]

Address: VideoBaseAddress + 0x9B

Type: Read/write

Reset value: 0 Synchronization: VSYNC

Description

This register holds the value of the mix between the background color and the video. When **VID_MWV** = 0xFF then the background color is being displayed and at 0 the video is being displayed.

7170180A 251/275

VID OUT

Output of 4:2:2 display

	7	6	5	4	3	2	1	0
-0x90	7				NOS	SPO	LAY	

Address: VideoBaseAddress + 0x90

Type: Read/write Reset value: 1100₂
Synchronization: VSYNC

Description

This register controls the content of the 4:2:2 output from the display mixing unit and the order of the OSD and subpicture planes. The bits work in combination as shown in Table 53.

Bitfield	Description
LAY	The number of layers to be displayed in front of the video in the 4:2:2 output.
SPO	0: OSD plane in front of Sub picture plane
	1: Sub picture plane in front of OSD plane
NOS	1: Do not include the OSD in the 4:2:2 output.

LAY	NOS	Sub-picture in front (SP0=1)	OSD in front (SP0=0)
00-01	Any	Video only	Video only
10	0	Video + OSD	Video + sub-picture
	1	Video only	Video + sub-picture
11	0	Video + OSD + sub-picture	Video + sub-picture + OSD
	1	Video + sub-picture	Video + sub-picture

Table 53 Encoding of LAY and NOS fields of VID_OUT

VID_PAN

Pan/Scan Horizontal Vector Integer Part

Address: VideoBaseAddress + 0x2C and 0x2D

Type: Read/write

Reset value: 0
Synchronization: VSYNC

Description

This register is set up with the integer part of the horizontal pan/scan vector. The horizontal pan/scan vector defines, in the decoded picture, the location of the first displayed luminance sample relative to the first luminance sample in the line.

The VID_LSO and VID_CSO registers are set up with the fractional part of the horizontal pan/scan vector, as follows:

 $PSV = \lfloor horizontal \, pan/scan \, vector \rfloor$, where $\lfloor x \rfloor$ indicates the integer part of x.

VID_LSO = 256 x (horizontal pan/scan vector - PSV)

VID_CSO = VID_LSO / 2 (+ 1 if PSV is odd)

Picture F-parameters Horizontal

Address: VideoBaseAddress + 0x04

Type: Read/write

Reset value: 0

Synchronization: DSYNC

Description

This register contains parameters of the picture to be decoded. These parameters are extracted from the bit stream.

Bitfield	MPEG-1	MPEG-2
FFH	Set to full_pel_forward_vector of the picture header.	Set to forward_horizontal_f_code of the picture
	Set to forward_f_code of the picture header.	coding extension.
BFH	Set to full_pel_backward_vector of the picture header.	Set to backward_horizontal_f_code of the picture
	Set to backward_f_code of the picture header.	coding extension.

VID_PFV

Picture F-parameters Vertical

Address: VideoBaseAddress + 0x05

Type: Read/write

Reset value: 0

Synchronization: DSYNC

Description

This register contains parameters of the picture to be decoded. These parameters are extracted from the bitstream.

In MPEG-1 mode (i.e. when VID_PPR2.MP2 is reset), VID_PFV is not used.

Bitfield	Description
FFV	The forward_vertical_f_code of the picture coding extension.
BFV	The backward_vertical_f_code of the picture coding extension.

VID PPR1

Picture Parameters 1

Address: VideoBaseAddress + 0x06

Type: Read/write

Reset value: 0

Synchronization: DSYNC

Description

This register contains parameters of the picture to be decoded. These parameters are extracted from the bit stream.

7170180A 253/275

In MPEG-1 mode (i.e. when VID_PPR2.MP2 is reset), only PCT has to be set; the other bits must be reset.

Bitfield	Description
P81	Set to the picture_structure bits of the MPEG-2 picture coding extension. 00: Frame picture. This value is illegal in the MPEG-2 variable. 01: Top field. 10: Bottom field. 11: Frame picture.
DCP	Set equal to <i>intra_dc_precision</i> of the picture coding extension. The value "11", defining a precision of 3 bits, is not allowed.
PCT	Set to the two least significant bits of picture_coding_type in the picture header.
OTF	When set this bit directs the decoded data in the block-to-row memory to be displayed directly. The picture data is not reconstructed in memory.

VID_PPR2 Picture Parameters 2

	7	6	5	4	3	2	1	0
0x07		MP2	TFF	FRM	CMV	QST	IVF	AZZ

Address: VideoBaseAddress + 0x07

Type: Read/write

Reset value: 0

Synchronization: DSYNC

Description

This register contains parameters of the picture to be decoded. These parameters are extracted from the bitstream. In MPEG-1 mode, all bits must be reset to 0.

Description

Bitfield	Description
AZZ	This bit is set equal to the alternate_scan bit of the picture coding extension.
IVF	This bit is set equal to the intra_vlc_format bit of the picture coding extension.
QST	This bit is set equal to the q_scale_type bit of the picture coding extension.
CMV	This bit is set equal to the <i>concealment_motion_vectors</i> bit of the MPEG-2 picture coding extension. It indicates that motion vectors are coded for intra macroblocks.
FRM	This bit is set equal to the frame_pred_frame_dct bit of the picture coding extension.
TFF	This bit is set equal to the top_field_first bit of the MPEG-2 picture coding extension.
MP2	MPEG-2 mode. When this bit is set, the STi5508 expects an MPEG-2 video bitstream. If it is reset, then an MPEG-1 bitstream is expected.

VID_PTH Panic threshold

	7	6	5	4	3	2	1	0
0x2E			FPAN	PEN	NFW		PTH[10:8]	
0x2F				PTH	[7:0]			
					•			

Address: VideoBaseAddress + 0x2E and 0x2F

Type: Read/write

Reset value: 0

Synchronization: VSYNC

254/275 7170180A

The panic threshold defines a block-to-row DRAM fullness level. In the block-to-row converter, there are two counters indicating the number of luma and chroma words stored. If the luma counter pointer is less than PTH or the chroma counter pointer is less than PTH divided by 2, a PANIC flag is set.

The panic threshold is programmed in units of DRAM cells.

Bitfield	Description
PTH	Panic mode threshold.
NFW	Near Forward. This bit allows the user to select which prediction direction will be retained for bidirectional macrob-locks in panic mode. Forward if set, backward otherwise.
PEN	Panic mode enable. When set this bit allows the decoding to set the panic flag and enter the panic mode.
FPAN	Force Panic Mode. This bit, when set, forces panic mode while decoding. For test purposes only.

VID_QMW Quantization Matrix Data

	7	6	5	4	3	2	1	0
0x76				QMV	V[7:0]			

Address: VideoBaseAddress + 0x76

Type: Write only Reset value: Undefined Synchronization: None

Description

This address is used to load the quantization coefficients in the order in which they appear in the bit stream, i.e. zig-zag order. Bit VID_HDS.QMI defines whether an INTRA or INTER matrix is written.

For example, to write a new INTRA table, write VID_HDS.QMI = 1, and then write 64 weights to VID_QMW.

VID_REV Device revision

Address: VideoBaseAddress + 0x78

Type: Read only

Description

This register gives the video cut number. For STi5518 cut A0, the value is 0x10. For subsequent cuts, the value is given in application note 7152120, STi5518 How to move from cutA0.

VID_RFC Reconstructed Chroma Frame Pointer

Address: VideoBaseAddress + 0x5A and 0x5B

Type: Read/write

7170180A 255/275

Reset value: 0
Synchronization: DSYNC

Description

This register holds the start address of the reconstructed (decoded) chroma frame picture buffer, defined in units of 256 bytes.

VID_RFP

Reconstructed Frame Pointer

ENTT

Address: VideoBaseAddress + 0x0E and 0x0F

Type: Read/write

Reset value: 0

Synchronization: DSYNC

Description

This register holds the start address of the reconstructed (decoded) luma frame picture buffer, defined in units of 256 bytes.

VID_SCDCOUNT

Bit Buffer Output Counter

Address: VideoBaseAddress + 0x68

Type: Serial read only

Reset value: 0

Description

These three registers are accessed serially. This register holds the number of 16-bit words output from the bit buffer into the Start Code Detector.

The byte pointer is reset by a hardware reset, a global soft reset or a video reset.

VID_SCN

Pan/Scan Vertical Vector

Address: VideoBaseAddress + 0x87

Type: Read/write

Reset value: 0

Synchronization: VSYNC

This register holds the vertical pan/scan vector in units of macroblock rows.

VID SPB

Sub-picture Buffer Begin

Address: VideoBaseAddress + 0x50 and 0x51

Type: Read/write

Reset value: 0 Synchronization: none

Description

This register holds the start address of the sub-picture circular buffer and is programmed in units of 64 bytes. The buffer should be aligned on a 1 Kbyte boundary.

VID_SPE

Sub-picture Buffer End

Address: VideoBaseAddress + 0x52 and 0x53

Type: Read/write

Reset value: 0 Synchronization: none

Description

This register holds the stop address of the sub-picture circular buffer and is programmed in units of 64 bytes. The buffer should be aligned on a 1 Kbyte boundary.

VID SPREAD

SubPicture Read Pointer

Address: VideoBaseAddress + 0x4E

Type: Serial read/write

Reset value: 0
Synchronization: VSYNC

7170180A 257/275

These three registers are accessed serially. The byte pointer is reset by a hardware reset. This is the absolute address in the memory. This register is used when the software needs to set the read address of the sub-picture decoder and is programmed in units of 64-bit words. This value is taken into account after a VSYNC.

VID_SPWRITE SubPicture Write Pointer

Address: VideoBaseAddress + 0x4F

Type: Serial read/write

Reset value: 0
Synchronization: None

Description

These three registers are accessed serially. The byte pointer is reset by a hardware reset. This is the absolute address in the memory. This register is used when the software needs to set the write address of the sub-picture decoder and is programmed in units of 64-bit words.

It is recommended to stop loading sub-picture data to the sub-picture decoder FIFO before changing the value of this register.

VID_SRA Audio Soft Reset

Address: VideoBaseAddress + 0x35

Type: Read/write

Reset value: 0 Synchronization: None

Description

In order to generate an audio soft reset (bit buffer), this bit must be kept set for a duration of at least 54 SDRAM clock cycles (540 ns with a 100 MHz primary clock).

VID_SRV Video Soft Reset

Address: VideoBaseAddress + 0x39

Type: Read/write

Reset value: 0 Synchronization: none

In order to generate a video soft reset, this bit must be kept set for a duration of at least 54 SDRAM clock cycles (540 ns with a 100 MHz primary clock).

VID_STA Status

	7	6	5	4	3	2	1	0
0x3B	CWR	ERR	SWR	TR_OK	ABF	SFF	AFF	ABE
0x64	PDE	SER	BMI	HFF	PNC	ERC	DEI	PII
0x65	PSD	VST	VSB	BBE	BBF	HFE	BFF	SCH

Address: VideoBaseAddress + 0x3B (VID_STA1), 0x64 (VID_STA2) and 0x65 (VID_STA3)

Type: Read only Reset value: Undefined

This register contains a set of bits which represent the status of the decoder at any instant. Any change from 0 to 1 of any of these bits sets the corresponding bit of the **VID_ITS** register, and can thus potentially cause an interrupt.

The status vector is sampled internally at the start of the read cycle accessing the most significant byte of **VID_STA** (address 0x3B). VST, VSB and PSD are pulses and are unlikely ever to be read as a 1.

The status bits are described in table. The reset column shows the state after clocks have been enabled.

Field	Description
SCH	Start Code Hit. This bit is set whenever the first 16-bit word available in the header FIFO contains one of the start codes recognized. While data is being read from the header FIFO, this bit can be tested to determine whether the next word contains a start code.
BFF	Video Compressed Data (bit stream) FIFO Full. This bit is set when the video CD FIFO is full. This bit is equivalent to the signal CDREQ.
HFE	Header FIFO Empty. This bit is set when the header FIFO is empty.
BBF	Video bit buffer full. This bit is set when the bit buffer level (= VID_VBL) is greater than or equal to the value loaded into the VID_VBT reg.
BBE	Video bit buffer empty. This bit is set when the bit buffer contains no data.
VSB	VSYNC Bottom. This bit is set for a short time at the beginning of the bottom field, corresponding to the rising edge of the B/T signal.
VST	VSYNC Top. This bit is set for a short time at the beginning of the top field, corresponding to the falling edge of the B/ \overline{T} signal.
PSD	Pipeline Starting to Decode. This bit is set for a short period at the instant the pipeline starts decoding a picture.
PII	Pipeline Idle. This bit is set when the device is not in the course of decoding a picture, i.e. when the pipeline is inactive. It becomes low when the decoding of a picture starts, and high when picture decoding is complete.
DEI	Decoder Idle. This bit is set when the device is ready to decode a picture, i.e. when the pipeline is inactive and it has found the next picture start code. It becomes low when the decoding of a picture starts, and high when picture decoding is complete and the next picture start code has been found by to pipeline.
ERC	Error Concealment. This bit is set when an error is detected in the bit stream and the mechanism of error concealment is active.

7170180A 259/275

Field	Description
PNC	Panic. This bit is set when decoding is in late compare to display.
HFF	Header FIFO Full. This bit is set when the header FIFO contains at least 66 bytes.
BMI	Block Move Idle. This bit is set when a block move operation has terminated. It is automatically reset at the start of a block move.
SER	Severe Error or overflow error. This bit is set when more than the programmed number of macroblocks (defined by DFS) have been decoded, either due to a data or a programming error. Decoding is halted automatically when this error condition is detected. This bit is reset by all three types of reset.
PDE	Picture Decoding Error or underflow error. This bit is set when less than the programmed number of macroblocks (defined by DFS) have been decoded, either due to a data or a programming error. Decoding is halted automatically when this error condition is detected. This bit is reset by all three types of reset.
ABE	Audio bit-buffer empty. This bit is set when the audio bit buffer contains no data.
AFF	Audio compressed data (bit stream) FIFO full. This bit is set when the audio CD FIFO is full.
SFF	Sub-picture compressed data (bit stream) FIFO full. This bit is set when the sub-picture CD FIFO is full.
AFB	Audio bit-buffer full
TR_OK	Indicates that the VLR read pointer has been loaded into the memory controller, and that the VLD is ready to decode the selected picture.
SWR	CD Write Ready: set when CD write FIFO has been reset and is ready
ERR	Inconsistency error in PES parser
CWR	Start Code Detector Write Ready: set when SCD FIFO has been reset and is ready

VID_STL **SDC trick-mode launch**

0 INR STL 0x30

Address: VideoBaseAddress + 0x30

Type: R/W

Synchronization: Edge triggered

Description

Bitfield	Description
STL	0: Launch Start Code Detector FIFO reset procedure for trick-modes.
	Automatically set to zero once reset procedure is completed
INR	Inhibit re-decode mode:
	0: Automatically start header code search after DSYNC.
	1: Header code search cannot be launched automatically (niether by the block itself nor by the standard process).

Video strobe VID_STR

Address: VideoBaseAddress + 0x44

Type:

260/275 7170180A

Bitf	ield	De	scri	ptic	on	V				
STE	2	Wri							be selected by register VID_CFG_GCF. CDR (either audio, video or subpicture).	
		lf y	ID.	CF	6_ (3CF	. CE	R=	=0, no internal strobes are selected and VID_STR cannot be used.	

VID_TIS Task Instruction

	7	6	5	4	3	2	1	0
0x03			SKF	11:01	OVW	FIS	RPT	EXE

Address: VideoBaseAddress + 0x03

Type: Write only

Reset value: 0 Synchronization: VSYNC

Description

This register contains 6 bits of the decoding task instruction.

Bitfield	Description
SKP	These bits are part of the instruction register, and are thus synchronized with VSYNC. They define the skipping of one or two pictures. If skipping is required, then these bits must be set up as part of the instruction for the picture which will be decoded immediately after the skipped pictures. 00: No skip (default) 01: Skip one picture, decode next 10: Skip two pictures, decode next 11: Skip one picture then stop
OVW	This bit must be set when the displayed picture and the reconstructed picture share the same buffer (i.e. VID_DFP = VID_RFP). It enables the overwrite mode which ensures that the reconstructed picture does not overwrite data which has not yet been displayed.
FIS	Force instruction: if this bit is set, the task described by this register will be launch immediately. This bit is reset after its action. Its effect is the same as the effect of a VSYNC.
RPT	When this bit is set, the task duration is two VSYNC periods. When the frame display rate is equal to the picture decoding rate, RPT will generally always be high. In case of a task launched by VID_TIS.FIS , RPT is not taken in account.
EXE	When this bit is not set, no decoding or skipping task is executed for one or two VSYNC periods, depending on the state of VID_TIS.RPT . If set, the next task (decoding or skipping) is executed. EXE is internally cleared when the task starts its execution, i.e. setting this bit activates only one execution.

VID_TP_CD CD pointer load address

	7	6	5	4	3	2	1	0
0xCA				Not used				CD pointer
								address[16]
0xCB				CD pointer a	ddress[15:8]			
0xCC				CD pointer a	address[7:0]			

Address: VideoBaseAddress + 0xCA, 0xCB, 0xCC

Type: R/W

Description

This register holds the CD pointer address during Trick Modes mode, defined in units of 512 bits.

7170180A 261/275

VID TP CD RD

CD pointer address

Address: VideoBaseAddress + 0x85, 0x84, 0x83

Type: Read Only

Description

Holds the current CD pointer address, defined in units of 64 bits.

VID_TP_CDLIMIT

CD write limit address

Address: VideoBaseAddress + 0xE2, 0xE1, 0xE0

Type: R/W

Description

Contains the CD write limit value; the CD cannot write beyond this limit. The address is not latched and is a multiple of the CAS cycle length. In trick modes, a special bit-buffer management system is applied where the CD write flow is as follows:

CD pointer address = CD write limit = request CD disable.

For VLD read flow:

VLD pointer address = CD write limit => VLD request disable if FMUFLAGS/VSB is reset VLD pointer address = CD pointer address => VLD request disable if FMUFLAGS/VSB is set

For SCD read flow:

VSCD pointer address = CD write limit => SD request disable

Note CD write limit must be in the same format as the address used during comparisons.

Address: VideoBaseAddress + 0xC0, 0xC1, 0xC2

Type: R/W

Description

Holds the address to load into the SCD pointer during Trick Modes. The address is defined in units of 512 bits.

VID_TP_SCD_CURRENT SCD pointer current address

Address: VideoBaseAddress + 0xCD, 0xCE, 0xCF

Type: Read Only

Description

Holds the current SCD address, defined in units of 64 bits

VID_TP_SCD_RD SCD pointer VLD load address

Address: VideoBaseAddress + 0x81, 0x82

Type: Read Only

Description

Holds the address to be loaded into the VLD pointer during trick modes. When the start-code detector finds a start-code, this register holds the bit buffer address, defined in units of 1Kbit.

VID_TP_LDP Load pointer 7 6 5 4 3 2 1 0 0x3F VSB TM LDP

Address: VideoBaseAddress + 0x3F

Type: R/W Reset value: Undefined

7170180A 263/275

28 Video decode	er (VID) STi5518
Description.	EIDENTIAL
Bitfield	Description
LDR	When this bit is set, the current start code detector pointer is stored in an internal register. When a PSC hit occurs, the current start code detector pointer has to be stored for further use by the VLD (if a B frame is to be processed on the fly). This bit has to be set then reset , before the PSD interrupt corresponding to the picture which has to be decoded on the fly (i.e. during the SCH interrupt)
ТМ	0: Trick modes are not selected 1: Trick modes are selected
VSB	This bit stops a VLD read: 1: If VSB is set the VLD pointer address = CD pointer address 0: If VSB is reset the VLD pointer address = CD write limit address

VID_TP_VLD

VLD pointer load address

Address: VideoBaseAddress + 0xD4, 0xD5

R/W Type:

Description

This register holds the address to load to the VLD address pointer address during Trick Modes mode. It is defined in units of 1Kbits.

VID_TP_VLD_RD

VLD pointer current address

Address: VideoBaseAddress + 0xC3, 0xC4, 0xC5

Read Only Type:

Description

Holds the current VLD pointer address, defined in units of 64 bits.

264/275 7170180A

Address: VideoBaseAddress + 0x56 and 0x57

Type: Read/write

Reset value: 0

Synchronization: DSYNC

Description

This register contain extensions of the decoding task instruction. It is used only when decoding a B frame on the fly.

Bitfield	Description
TRF	Temporal reference. This field holds the temporal reference of the current decoded B frame. On every B frame redecode the VLD uses the temporal reference field TRF to re-synchronize on the previously decoded picture. TRF is used only when bit DTR is reset.
DTR	Disable temporal reference comparison. This bit is used only when decoding a B frame on the fly. On every B frame re-decode the VLD uses the temporal reference field VID_TRF.TRF[9:0] to re-synchronize on the previously decoded picture. When this bit is set this comparison mechanism is disabled.
DC2	Re-decode same B Frame twice. When this bit is set it signals the VLD that the next picture will have to be decoded twice. This bit is used when decoding a B Frame on the fly. It has to be set by the user before the first PSD interrupt corresponding to a B frame and reset on the according PSD interrupt.
TML	Trick_mode_launch: This signal is auto-re-initialized, that is it returns automatically to zero (it generates only a pulse).

VID_TST Test register

7	6	5	4	3	2	1	0				
set to zero											

Address: VideoBaseAddress + 0x77

Type: R/W WITH CARE

Reset value: 0 Synchronization: None

7170180A 265/275

Bitfield Description

RBUSA7 This register is for test purposes only and should not be used otherwise.

1: the test registers can be written to
0: the test registers can not be written to

VID_VBG

Start of Video Bit Buffer

Address: VideoBaseAddress + 0x14 and 0x15

Type: Read/write

Reset value: 0 Synchronization: None

Description

The register holds the starting address of the video bit buffer, defined in units of 2 Kbits. If the video bit buffer starts at address 0, then this register does not need to be set up, since its reset state is 0. When all the registers corresponding to the settings of the bit buffer is done (VID_VBG, VID_VBS), an video soft reset must be done for values to be taken in account. In other words it must only be changed before the first compressed data of a new sequence is input, and never during the decoding of a sequence.

VID VBL

Video Bit Buffer Level

Address: VideoBaseAddress + 0x16 and 0x17

Type: Read only

Reset value: 0

Description

This register holds the current level of occupation of the video bit buffer, defined in units of 2 Kbits. It can be read at any time for the monitoring of the video bit buffer level. When VID_VBL is greater than or equal to the value held in the VID_VBT register, the status bit VID_STA.BBF (video bit buffer full) becomes set. When VID_VBL is zero, the status bit VID_STA.BBE (video bit buffer empty) becomes set.

VID_VBS

Video Bit Buffer Stop

Address: VideoBaseAddress + 0x18 and 0x19

Type: Read/write

266/275 7170180A

None Reset value: Synchronization:

Description

This register holds the address of the top of the video bit buffer, defined in units of 2 Kbits. The space allocated to the video bit buffer starts at the address defined by the VID_VBG register, or, by default, 0. The end address of the video bit buffer is (in units of 64 bits words): (32 x VID VBS) + 31

VID VBS must only be changed before the first compressed data of a new sequence is input, and never during the decoding of a sequence.

VID_VBT

Video Bit Buffer Threshold

Address: VideoBaseAddress + 0x1A and 0x1B

Read/write Type:

Reset value:

Synchronization: Edge triggered

Description

This register holds the level of occupancy of the video bit buffer, in units of 2 Kbits, which when reached causes the status bit VID_STA.BBF to become set, i.e. if VID_VBL ≥ VID_VBT, then VID_STA.BBF is set.

If the bit CFG_CCF.PBO is set, then transfer of data from the video CD FIFO to the bit buffer is prevented if the bit buffer level is at or above the level defined in the VID_VBT register. If VID_VBT is set to a value equal to the top of the bit buffer, then this automatic mechanism will ensure that overflow never occurs.

VID VFCMODE

Configure chrominance of block-row

	7	6	5	4	3	2	1	0			
0xEA	HORIZDN	INTP	ZOOMOL	JT[37:36]		OFFODD[35:32]					
0xEB		OFFODD[31:24]									
0xEC	OFFODD[23]			0	FFEVEN[22:1	6]					
0xED	OFFEVEN[15:10] INCREMENT[9:8]							1ENT[9:8]			
0xEE	INCREMENT[7:0]										

Address: VideoBaseAddress + 0xEA, 0xEB, 0xEC, 0xED, 0xEE

R/W Type: 0 Reset value: Synchronization: VSYNC

7170180A 267/275

Bitfield	Description
INCREMENT	The INCREMENT bit is used for downsampling up to zoom-out x2, and in conjunction with ZOOMOUT for tractional zoom-out between x2-x3, or x3-x4, for example x2.1, x2.2 etc.
	Define the vertical ratio of the zoom, and given by the formula: $increment = \left(\frac{framestoresize}{desired size} \times 512\right) - 1$
	Where <i>framestoresize</i> is the number of lines in the framestore, and <i>desiredsize</i> is the number of lines in the display region.
	Ex, to display a 525 line framestore onto a 625 display region: $increment = \left(\frac{525}{625} \times 512\right) - 1 = 429$
OFFEVEN	Vertical scans for even fields. Adjusts and superposes the luma and chroma filtering. The offset is a variable distance from the first line.
OFFODD	Vertical scans for odd fields. Adjusts and superposes the luma and chroma filtering. The offset is a variable distance from the first line.
ZOOMOUT	The INCREMENT bit is used for downsampling up to zoom-out x2, for zoom-out x3 and x4, ZOOMOUT must be used in as below. For zoom-out between x2-x3, or x3-x4, for example x2.1, x2.2 etc. ZOO-MOUT must be used in conjunction with INCREMENT. 00: zoom-out up to x2 01: zoom-out by 2 10: zoom-out by 3 11: zoom-out by 4
INTP	Interpolation field forces line repeat instead of integration (if 0, the top-line value is reproduced).
HORIZDN	Horizontal downsample by 2; neighboring samples are averaged. NOTE: That no other post processing filter can be used at the same time as this function. The lines in the macroblock buffer RAM are read out as they are, however, the line offset part of start_offset is still used.

VID_VFLMODE Configure luminance of block-row

	7	6	5	4	3	2	1	0			
0xEF	HORIZDN	INTP	ZOOMOU	UT[37:36]	OFFODD[35:32]						
0xF0	OFFODD[31:24]										
0xF1	OFFODD[23]	OFFODD[23] OFFEVEN[22:16]									
0xF2	OFFEVEN[15:10] INCREMENT[9:8]										
0xF3	INCREMENT[7:0]										

Address: VideoBaseAddress + 0xEF, 0xF0, 0xF1, 0xF2, 0xF3

Type: R/W
Reset value: 0
Synchronization: VSYNC

STi5518	28 Video decoder (VID)
Description	TOENTIAL
Bitfield	Description
INCREMENT	The INCREMENT bit is used for downsampling up to zoom-out x2, and in conjunction with ZOOMOUT for tractional zoom-out between x2-x3, or x3-x4, for example x2.1, x2.2 etc.
	Define the vertical ratio of the zoom, and given by the formula: $increment = \left(\frac{framestoresize}{desired size} \times 512\right) - 1$
	Where <i>framestoresize</i> is the number of lines in the framestore, and <i>desiredsize</i> is the number of lines in the display region.
	Ex, to display a 525 line framestore onto a 625 display region: $increment = \left(\frac{525}{625} \times 512\right) - 1 = 429$
OFFEVEN	Vertical scans for even fields. Adjusts and superposes the luma and chroma filtering. The offset is a variable distance from the first line.
OFFODD	Vertical scans for odd fields. Adjusts and superposes the luma and chroma filtering. The offset is a variable distance from the first line.
ZOOMOUT	The INCREMENT bit is used for downsampling up to zoom-out x2, for zoom-out x3 and x4, ZOOMOUT must be used in as below. For zoom-out between x2-x3, or x3-x4, for example x2.1, x2.2 etc. ZOO-MOUT must be used in conjunction with INCREMENT. 00: zoom-out up to x2 01: zoom-out by 2 10: zoom-out by 3 11: zoom-out by 4
INTP	Interpolation field forces line repeat instead of integration (if 0, the top-line value is reproduced).
HORIZDN	Horizontal downsample by 2; neighboring samples are averaged. NOTE: That no other post processing filter can be used at the same time as this function. The lines in the macroblock buffer RAM are read out as they are, however, the line offset part of start_offset is still used.

VID_XDO **Display X Offset**

Address: VideoBaseAddress + 0x70 to 0x71

Type: Read/write

Reset value:

VSYNC Synchronization:

Description

VID_XDO is set up with a number defining the beginning of the left-hand border of the display. This offset is measured from the active (first) edge of HSYNC and is specified in units of PIXCLK cycles.

The horizontal offset, *XDO*', is given by: *XDO*' = **VID_XDO** + 4

The offset, XDO' cannot be less than 153 video decoder clock cycles.

7170180A 269/275

Address: VideoBaseAddress + 0x72 to 0x73

Type: Read/write

Reset value: 0

Synchronization: VSYNC

Description

This register is set with a number defining the right-hand boundary of the picture display window, expressed in units of PIXCLK cycles. The value of VID_XDS must be equal to VID_XDO plus the width of the display window.

The actual offset, XDS', is given by: $XDS' = VID_XDS + 4$

VID XFW Displayed Frame Width

Address: VideoBaseAddress + 0x28

Read/write Type:

Reset value:

Synchronization: **VSYNC**

Description

This register is set with a value equal to the width in macroblocks of the displayed picture. This is derived from the horizontal_size value transmitted in the sequence header.

Display Y Offset VID_YDO

Address: VideoBaseAddress + 0x6E to 0x6F

Read/write Type:

Reset value: Synchronization: **VSYNC**

Description

This register is set up with a number defining the first line of the picture display, i.e. the top edge of the display window. Lines are counted from the active (first) edge of VSYNC.

In an interlaced display, the same value of VID_YDO must be used for both fields.

Address: VideoBaseAddress + 0x46 to 0x47

Type: Read/write

Reset value:

Synchronization: **VSYNC**

Description

This register is set up with a number defining the bottom line of the display window. The value of YDS must be equal to:

VID_YDO + number of lines in picture counted in one field.

In an interlaced display, the same value of **VID_YDS** must be used for both fields.

		11 1			STi5
		ATT IN			
Index of regis	ters				
ASC_n_BAUDRATE	31	AUD_MP_STATUS1	85	CAC_INVALIDATEDCACHE	99
ASC_n_CONTROL	32	AUD_MP_STATUS2		CAC_INVALIDATEICACHE.	
ASC_n_GUARDTIME		AUD_MP_STATUS3		CKG_AUD_CNT	
ASC_n_INTENABLÉ		AUD_MP_STATUS4		CKG_AUX_CNT	
ASC_n_RETRIES		AUD_MP_STATUS5		CKG_CCAUD	
ASC_n_RxBUFFER		AUD_MUTE		CKG_CCAUXDENC	
ASC_n_RxRESET		AUD_OCFG		CKG_CCDENC	
ASC_n_STATUS		AUD_PACKET_LOCK		CKG_CCMCK CKG_CCST20	
ASC_n_TIMEOUT ASC_n_TxBUFFER		AUD_PCM_BTONE AUD_PCMCONF		CKG_CC3120	
ASC_N_TXRESET		AUD_PCMCROSS		CKG_DIVAUXDENC	
AUD_AC3_COMP_MOD		AUD_PCMDIVIDER		CKG_DIVMCK	
AUD_AC3_DECODE_LFE		AUD_PDEC		CKG_DIVST20	
AUD_AC3_DOWNMIX		AUD_PL_AB		CKG_FBKDIVPLL	
AUD_AC3_DUALMODE		AUD_PL_DWNX		CKG_IDDQPAD_CNT	
AUD_AC3_HDR		AUD_PLAY		CKG_LPC_DIV	
AUD_AC3_KARAMODE	77	AUD_PLLMASK	47	CKG_PLL_CNT	107
AUD_AC3_LDR	77	AUD_PLLPCM	47	CKG_PLLSETUP	106
AUD_AC3_RPC	77	AUD_PN_DOWNMIX	87	CKG_POSTDIVPLL	
AUD_AC3_STATUS0		AUD_PTS		CKG_PREDIVPLL	
AUD_AC3_STATUS1		AUD_RDLY		CKG_SFREQAUD_MD	
AUD_AC3_STATUS2		AUD_RSDLY		CKG_SFREQAUD_PE	
AUD_AC3_STATUS3		AUD_RUN		CKG_SFREQAUD_SDIV	
AUD_AC3_STATUS4		AUD_SFREQ		CKG_SFREQAUX_MD	
AUD_AC3_STATUS5		AUD_SIN_SETUP		CKG_SFREQAUX_PE	
AUD_AC3_STATUS6		AUD_SKIP_MUTE_CMD		CKG_SFREQAUX_SDIV	
AUD_AC3_STATUS7 AUD_ANCCOUNT		AUD_SKIP_MUTE_VALUE AUD_SOFTRESET		CKG_SFREQSMC_MD	
AUD_CAN_SETUP		AUD_SOFTRESET		CKG_SFREQSMC_PE CKG_SFREQSMC_SDIV	
AUD_CDLY		AUD_SPDIF_CAT		CKG_SMC_CNT	
AUD_CHAN_IDX		AUD_SPDIF_CMD		DEN_CCF1	
AUD DECODESEL		AUD_SPDIF_CONF		DEN_CCF2	
AUD_DTS_STATUS0		AUD_SPDIF_DTDI		DEN_CFG0	
AUD_DTS_STATUS1		AUD_SPDIF_LATENCY		DEN_CFG1	
AUD_DTS_STATUS2		AUD_SPDIF_REP_TIME		DEN_CFG2	
AUD_DTS_STATUS3	89	AUD_SPDIF_STATUS	53	DEN_CFG3	11
AUD_DWSMODE	72	AUD_STREAMSEL	68	DEN_CFG4	116
AUD_EMPH		AUD_SUBDLY	49	DEN_CFG5	
AUD_ERROR	65	AUD_SYNC_LOCK		DEN_CFG6	
AUD_HEAD3		AUD_SYNC_STATUS		DEN_CFG7	
AUD_HEAD4		AUD_TM_SPEED		DEN_CFG8	
AUD_HEADLEN		AUD_UPDATE		DEN_CGMS1/2/3	
AUD_ID		AUD_VERSION		DEN_CID	
AUD_ID_EN		AUD_VOLUME0		DEN_CLF1	
AUD_ID_EXT		AUD_VOLUME1 BMDMA_ABORT		DEN_CLF2 DEN_DAC13	
AUD_INT		BMDMA_COUNT		DEN_DAC45	
AUD_INTE		BMDMA_DESTADDRESS		DEN_DAC6C	
AUD_LDLY		BMDMA_INTACK		DEN_IDFS1/2/3	
AUD_LPCM_STATUS0		BMDMA_INTEN		DEN_LJPM1/2/3	
AUD_LPCM_STATUS1		BMDMA_SRCADDRESS		DEN_PDFS1/2	
AUD_LPCM_STATUS2		BMDMA_STATUS		DEN_REG 4563	
AUD_LSDLY		CAC_CACHECONTROL0		DEN_REG_64	
AUD_MP_CRC_OFF		CAC_CACHECONTROL1		DEN_REG_65	
AUD_MP_DOWNMIX		CAC_CACHECONTROL2		DEN_REG_69	
AUD_MP_DRC	83	CAC_CACHECONTROL3	96	DEN_REG_70	
AUD_MP_DUALMODE		CAC_CACHECONTROLLOCK		DEN_REG_71	
AUD_MP_MC_OFF		CAC_CACHESTATUS	97	DEN_STA	
AUD_MP_PROG_NUMBER		CAC_DCACHENOTSRAM		DEN_TTX1-4/M	
AUD_MP_SKIP_LFE		CAC_ENABLEICACHE		DEN_VPS1	
AUD_MP_STATUS0	85	CAC_FLUSHDCACHE	99	DEN_WSS1/2	124

DEN_YCOUT137	INC_CLEAR_PENDING158	LNK_V_PTS	183
EMI_CONFIGDATA0BANK 0, 1, 2 & 3	INC_EN_INT166	LPM_ALARM	
(peripheral format)140	INC_EXEC159	LPM_ALARMSTART	
EMI_CONFIGDATA0BANK0&1(DRAMmat)	INC_HANDLERWPTR <i>n159</i>	LPM_SYSPLL	
138	INC_INPUTINTERRUPT163	LPM_TIMER	
EMI_CONFIGDATA0BANK0&1(SDRichMat)	INC_INT <i>n</i> PRIORITY163	LPM_TIMERSTART	192
142	INC_MASK160	LPM_WDENABLE	
EMI_CONFIGDATA1BANK 0, 1, 2 & 3	INC_PENDING160	LPM_WDFLAG	
(peripheral format)140	INC_SELNOTINV166	MOD_ACK	
EMI_CONFIGDATA1BANK0&1(DRAMmat)	INC_SET_EXEC161	MOD_BUFFER_SIZE	197
138	INC_SET_MASK161	MOD_CONTROL	
EMI_CONFIGDATA1BANK0&1(SDRichMat)	INC_SET_PENDING161	MOD_INT_ENABLE	196
142	INC_SRC_CLEAR167	MOD_MAFE_CTRL	197
EMI_CONFIGDATA2BANK 0, 1, 2 & 3	INC_SRC_CLEAR_MASK164	MOD_MAFE_STATUS	197
(peripheral format)141	INC_SRC_MASK165	MOD_RECEIVE0_POINTER	198
EMI_CONFIGDATA2BANK0&1(DRAMmat)	INC_SRC_SET_MASK165	MOD_RECEIVE1_POINTER	198
139	INC_SRC_STATUS166	MOD_STATUS	195
EMI_CONFIGDATA2BANK0&1(SDRichMat)	INC_SRC_TRIGGERMODE164	MOD_TRANSMIT0_POINTER	198
143	INC_TRIGGERMODE162	MOD_TRANSMIT1_POINTER	
EMI_CONFIGDATA3BANK 0, 1, 2 & 3	IRB_RX_CLR_OVERRUN174	MPEG_CONTROL	
(peripheral format)141	IRB_RX_EN173	MPEGDMAn_ABORT	
EMI_CONFIGDATA3BANK0&1(DRAfMormat)	IRB_RX_INT_EN172	MPEGDMAn_BLSIZE	200
139	IRB_RX_INT_STATUS173	MPEGDMAn_BURSTSIZE	200
EMI_CONFIGDATA3BANK0&1(SDRf@nlmhat)	IRB_RX_MAX_SYM_PERIOD174	MPEGDMAn_CNTRL	201
143	IRB_RX_NOISE_SUPPRESS_WIDTH_UHF	MPEGDMAn_HOLDOFF	201
EMI_CONFIGLOCKBANK0-3 143	175	MPEGDMAn_INTACK	201
EMI_CONFIGPADLOGIC146	IRB_RX_ON_TIME172	MPEGDMAn_SRCADD	202
EMI_CONFIGSTATUS 144	IRB_RX_SAMPLING_RATE_COMMON	MPEGDMAn_STATUS	202
EMI_DRAMINITIALIZE 144	174	MPEGDMAn_WHICHDEC	202
EMI_SDRAMMODEREG0144	IRB_RX_SYM_PERIOD172	OGT_CTL	206
EMI_SDRAMMODEREG1145	IRB_TX_CLR_UNDERRUN_IR171	OGT_HL2XI	208
FEI_ATAPI_CFG147	IRB_TX_EN_IR171	OGT_HL2XO	208
FEI_DEC_DAT 155	IRB_TX_INT_EN_IR170	OGT_HL2YI	209
FEI_DEC_IDX 155	IRB_TX_INT_STATUS_IR170	OGT_HL2YO	208
FEI_DEC_STA155	IRB_TX_ON_TIME_IR170	OGT_LUT	206
FEI_GCF 153	IRB_TX_PRE_SCALER_IR169	OGT_LUT_H1	206
FEI_IF157	IRB_TX_SUB_CARRIER_IR169	OGT_LUT_H2	207
FEI_IK156	IRB_TX_SYM_PERIOD_IR169	OGT_STAT	209
FEI_IKL156	LNK_A_PTS184	OGT_XDI	207
FEI_REV152	LNK_AF1-0183	OGT_YDI	
FEI_SE_CAP_H150	LNK_AR_SIZE185	OSD_ACT	204
FEI_SE_CAP_L150	LNK_EN_LINK187	OSD_BDW	204
FEI_SE_CAPEN148	LNK_EXTRA_BITS189	OSD_CFG	204
FEI_SE_CUR_H151	LNK_HDD_ADDRBANK190	OSD_OBP	
FEI_SE_CUR_L151	LNK_HDD_ADDRHIGH190	OSD_OTP	
FEI_SE_EMR148	LNK_HDD_ADDSTOP190	PES_CF1	210
FEI_SE_HE_H152	LNK_HDD_BUFSIZE191	PES_CF2	210
FEI_SE_HE_L 152	LNK_MODE182	PES_TM1	211
FEI_SE_HE_M152	LNK_PACKET_LENGTH181	PES_TM2	
FEI_SE_IR149	LNK_PCM_CONF188	PES_TS	211
FEI_SE_LST_H150	LNK_PCR184	PIO_CLEAR_P <i>n</i> C2:0	
FEI_SE_LST_L151	LNK_PCR_EXT184	PIO_CLEAR_P <i>n</i> COMP	
FEI_SE_MOD148	LNK_PCR_STREAM183	PIO_CLEAR_PnMASK	
FEI_SE_RST 147	LNK_SDAV_CONF185	PIO_CLEAR_PnOUT	214
FEI_SE_SAC147	LNK_SDAV_DATA187	PIO_PnC2:0	
FEI_SE_STAT149	LNK_SDAV_DMA_EN186	PIO_PnCOMP	
FEI_SFF 154	LNK_STAT180	PIO_PnIN	
FEI_SLG154	LNK_STAT_FIFO180	PIO_PnMASK	
FEI_SUB154	LNK_STREAM_CONF_1177	PIO_PnOUT	
FEI_TWH156	LNK_STREAM_CONF_2178	PIO_SET_PnC2:0	
FEI_TWL156	LNK_STREAM_CONF_3179	PIO_SET_PnCOMP	
INC_CLEAR_EXEC158	LNK_STREAM_ENn179	PIO_SET_PnMASK	
INC CLEAR MASK 158	I NK TIME OUT182	PIO SET PrOUT	217

7170180A 273/275

PWM_CAPTURECOUNT	220	TTXT_INTSTATUS	235	VID_PFV	253
PWM_CONTROL		TTXT_OUTDELAY	236	VID_PPR1	253
PWM_COUNT	221	USD_BMS	237	VID_PPR2	254
PWM_INTACK	221	USD_BRP	237	VID_PTH	254
	221	USD_BSK	238	VID_QMW	
PWM_INTSTATUS	222	USD_BWP	237	VID_REV	255
PWM_nCAPTUREEDGE	218	VID_656	239	VID_RFC	255
PWM_nCAPTUREVAL		VID_ABG	239	VID_RFP	256
PWM_nCOMPAREOUTVAL	219	VID_ABL	239	VID_SCDCOUNT	256
PWM_nCOMPAREVAL	219	VID_ABS	240	VID_SCN	256
PWM_nVAL	219	VID_ABT	240	VID_SPB	257
SCI_n_CLKCON	223	VID_BCK_U	241	VID_SPE	257
SCI_n_CLKVAL	223	VID_BCK_V	241	VID_SPREAD	257
SPD_CTL1	224	VID_BCK_Y	240	VID_SPWRITE	258
SPD_CTL2	224	VID_BFC	241	VID_SRA	258
SPD_HCN	225	VID_BFP	241	VID_SRV	258
SPD_HCOL	225	VID_CDCOUNT	242	VID_STA	259
SPD_HLEX	225	VID_CFG_CCF	242	VID_STL	260
SPD_HLEY	226	VID_CFG_DRC	243	VID_STR	260
SPD_HLSX		VID_CFG_GCF	244	VID_TIS	261
SPD_HLSY	226	VID_CFG_MCF	243	VID_TP_CD	261
SPD_LUT	227	VID_CSO	244	VID_TP_CD_RD	262
SPD_SPR	227	VID_CTL	245	VID_TP_CDLIMIT	262
SPD_SXD0	227	VID_CWL	245	VID_TP_LDP	263
SPD_SXD1		VID_DCF	245	VID_TP_SCD	263
SPD_SYD0	228	VID_DFC	246	VID_TP_SCD_CURRENT	263
SPD_SYD1	228	VID_DFP	247	VID_TP_SCD_RD	263
SPD_XD0	229	VID_DFS	247	VID_TP_VLD	
SPD_YD0	229	VID_DFW	247	VID_TP_VLD_RD	
SSC_ <i>n</i> _BRG	230	VID_FFC	248	VID_TRF	
SSC_n_CON	230	VID_FFP	248	VID_TST	265
SSC_n_I2C	231	VID_HDF	248	VID_VBG	266
SSC_ <i>n</i> _IEn	231	VID_HDS	249	VID_VBL	266
SSC_n_RBUF	232	VID_ITM	249	VID_VBS	266
SSC_n_SLAD	232	VID_ITS	250	VID_VBT	267
SSC_n_STAT	233	VID_LCK	250	VID_VFCMODE	267
SSC_n_TBUF	233	VID_LSO	250	VID_VFLMODE	268
TTXT_ABORT	234	VID_LSR	251	VID_XDO	269
TTXT_ACKODDEVEN	234	VID_MWV	251	VID_XDS	
TTXT_DMAADDRESS		VID_OUT	252	VID_XFW	
TTXT_DMACOUNT	234	VID_PAN	252	VID_YDO	270
TTXT INTENABLE	235	VID PFH	253	VID YDS	271

274/275 7170180A

SONFIDENTIA STi5518

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1999 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

7170180A 275/275