Math3 CM

Cours de L. PASQUEREAU Tapé par C. THOMAS

29 septembre 2022

Table des matières

1	Fon	ctions	$\mathrm{de}\;\mathbb{R}\;\mathrm{dans}\;\mathbb{R}$
	1.1	$\operatorname{Limit}_{\epsilon}$)
		1.1.1	Adhérence
		1.1.2	Limite
		1.1.3	Fonctions négligeables
		1.1.4	Croissance comparée
		1.1.5	Fonctions Équivalentes
		1.1.6	Opération sur les équivalents
	1.2	Contin	nuité
	1.3	Dériva	abilité
		1.3.1	Dérivée successives
	1.4	Dévelo	oppements Limités (DL)
		1.4.1	Taylor-Young
		1.4.2	DL usuels
		1.4.3	Opération sur les DL
		1.4.4	Application au calcul de dérivé
	1.5	Intégr	ales de Riemann
		1.5.1	Introduction
		1.5.2	Propriétés de l'intégrale
		1.5.3	Opération sur les intégrales
		1.5.4	Positivité de l'intégrale
		1.5.5	Moyenne
		1.5.6	Théorème fondamental de l'analyse
		1.5.7	Primitives usuelles
		1.5.8	Changement de variable
		1.5.9	Intégration par parties
	1.6	Intégr	ales Généralisées
		1.6.1	Cas des fonctions réelles positives
		1.6.2	Cas des fonction réelles positives et où $b=\infty$
		1.6.3	Cas où b est fini
		1.6.4	Cas des fonctions de signes qql

2	Not	otations et rappels				
	2.1	Ensem	ibles	29		
	2.2	2.2 Fonctions				
		2.2.1	Ensembles de fonctions	29		
		2.2.2	Opérations entre fonctions et fonctions et scalaires	29		
		2.2.3	Comparaison entre fonctions et fonctions et scalaires	30		
		2.2.4	Limites, continuité et dérivabilité	30		
		2.2.5	Autre	30		

Chapitre 1

Fonctions de \mathbb{R} dans \mathbb{R}

Soit $D \in \mathbb{R}$, soit $f \in \mathbb{R}^D$

1.1 Limite

1.1.1 Adhérence

Définition 1.1.1

On appelle adhérence de D le plus petit ensemble fermé qui contient D. Noté \bar{D}

1.1.2 Limite

Soit f définie sur D, Soit $a \in \overline{D}$, Soit $l \in \mathbb{R}$

Définition 1.1.2

On dit que f a pour limite l quand x tends vers a si

$$\forall \varepsilon > 0, \exists \eta > 0 | |x - a| < \eta \Rightarrow |f(x) - l| < \varepsilon$$

1.1.3 Fonctions négligeables

Définition 1.1.3

Soit $f, g \in \mathbb{R}^D$ et $a \in \bar{D}$ on dit que $f = o_a(g)$ si $\frac{f(x)}{g(x)} \to_a 0$

1.1.1

en 0 on a

$$\frac{f(x)}{g(x)} = \frac{x}{\sqrt{x}} \tag{1.1}$$

$$\rightarrow_{0^{+}} 0 \tag{1.2}$$

$$f = o_{O^+}(g) \tag{1.3}$$

1.1.4 Croissance comparée

Théorème 1.1.1 – Croissances Comparées

Soient $(\alpha, \beta, \gamma) \in \mathbb{R}^{+*}$ avec $\gamma > 1$ avec

$$f: x \mapsto (\log x)^{\alpha}$$

$$g: x \mapsto x^{\beta}$$

$$h: x \mapsto \gamma^x$$

alors on a

$$g = o_{\infty}(f)$$

$$h = o_{\infty}(g)$$

c'est à dire

$$\frac{(\log x)^{\alpha}}{x^{\beta}} \to_{\infty} 0$$

$$\frac{x^{\beta}}{\gamma^x} \to_{\infty} 0$$

1.1.5 Fonctions Équivalentes

Définition 1.1.4

Soit $f, g \in \mathbb{R}^D$ et $a \in \bar{D}$ on dit que f est équivalente à g quand x tends vers a si $\frac{f}{f} \to_a 1$.

On note $f \equiv_a g$

- **1.1.2** Un polynome est équivalent à son monôme de plus haut degrès (resp bas) quand x tends vers ∞ (resp 0)
- $-\sin x \equiv_0 x$
- $-\ln(1+x) \equiv_0 x$

1.1. LIMITE 7

1.1.6 Opération sur les équivalents

Soient $f_1, g_1, f_2, g_2 \in \mathbb{R}^D$ soit $a \in \bar{D}$ soit $\alpha \in \mathbb{R}$

$$f_1 \equiv_a g_1$$

$$f_2 \equiv_a g_2$$

$$f_1 \cdot f_2 \equiv_a g_1 \cdot g_2$$

$$\frac{f_1}{f_2} \equiv_a \frac{g_1}{g_2}$$

$$f_1^{\alpha} \equiv_a g_1^{\alpha}$$

$$f = o_a g \Rightarrow f + g \equiv_a g \tag{1.4}$$

— Si $f \equiv_a g$ et $\lim_{x \to a} f(x) = l$ alors $\lim_{x \to a} g(x) = l$

Proposition 1.1.1

Si $f \equiv_a g$ et $\lim_a f \neq 1$ alors $\log f \equiv_a \log g$

Démonstration.

$$\frac{\log g(x)}{\log f(x)} - 1 = \frac{\log g(x) - \log f(x)}{\log f(x)}$$

$$= \frac{\log \left(\frac{g(x)}{f(x)}\right)}{\log f(x)} \quad \text{or } f \equiv_a g$$

$$\to_a \frac{0}{f(a)} \quad \text{par passage à la limite car } \lim_a f \neq 1$$

$$= 0$$

Donc
$$\lim_{x \to a} \frac{\log f(x)}{\log g(x)} = 1$$
 donc $\log f \equiv_a \log g$

Cas particulier où l=1

1.1.3
$$f(x) = 1 + x$$
 et $g(x) = 1 + \sqrt{x}$ on a bien $f \equiv_0 g$ et $f \to_0 1$ on a aussi $\log f(x) = \log 1 + x \equiv_0 x$ et $\log g(x) = \log 1 + \sqrt{x} \equiv_0 \sqrt{x}$ et $x \neq \sqrt{x}$

1.2 Continuité

Définition 1.2.1

Soit f définie sur un ouvert D de \mathbb{R} et $a \in D$. On dit que f est continue en a si et seulement si $\lim_{x\to a} f(x) = f(a)$. On note \mathcal{C}^0 l'ensemble des fonctions continues, c'est un espace vectoriel.

1.3 Dérivabilité

Définition 1.3.1

Soit f définie sur un ouvert D de \mathbb{R} et $a \in D$. On dit que f est dérivable en a si et seulement si $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ existe dans \mathbb{R} . On note f' la fonction $a\mapsto \lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ définie sur l'ensemble des valeurs dérivables de f.

1.3.1 Dérivée successives

On peut ensuite étudier la dérivabilité des dérivées successives de f

1.4 Développements Limités (DL)

Définition 1.4.1

On appelle Développement Limité (DL) à l'ordre n et au point $a \in I$ d'une fonction f défini sur un interval ouvert I de \mathbb{R} , un polynome P tel que

$$\deg P = n$$

$$f(x) = P(x - a) + o_0((x - a)^n)$$

C'est une propriété locale de f en a

1.4.1 Taylor-Young

Théorème 1.4.1 – Formule de Taylor-Young

Soit f une fonction définie de I dans \mathbb{R} , n fois dérivable, alors f admet un DL_n pour un point a de la forme

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + o((x-a)^{n})$$

Remarque 1.4.1

Dans la majorité des cas pratiques, on prend a = 0 ce qui donne

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)x^{k}}{k!} + o(x^{n})$$

1.4.1

En exemple on prend $f = \exp$, $\exp \in \mathcal{C}^{\infty}$ et on a $\forall n \in \mathbb{N}, f^{(n)} = \exp$ donc $\forall n \in \mathbb{N}, f^{(n)}(0) = 1$ donc d'après le théorème de Taylor-Young, $\forall n \in \mathbb{N}, \exp$ admet un DL_n de la forme

$$\exp(x) = \sum_{k=0}^{n} \frac{\exp^{(k)}(0)}{k!} x^{k} + o(x^{n})$$
$$\exp(x) = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n})$$

Remarque 1.4.2

La formule de Taylor-Young permet aussi de faire l'inverse, de trouver la valeur d'une dérivée en un point si l'on connaît le DL de la fonction.

1.4.2

Un exemple pour la valeur en 0 de la dérivée quatrième de $\frac{1}{1-x}$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + o(x^4)$$

Et d'après Taylor-Young on a

$$\frac{1}{1-x} = \frac{f(0)}{1} + \frac{f'(0)}{1}x + \frac{f''(0)}{2}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \frac{f^{(4)}(0)}{4!}x^4 + o(x^4)$$

Or les deux DL sont égaux, donc les polynômes aussi, et donc par identification des coefficients on a

$$\frac{f^{(4)}(0)}{4!} = 1$$

ce qui donne

$$\frac{f^{(4)}(0)}{4!} = 1$$
$$f^{(4)}(0) = 4! = 24$$

On a donc la valeur de la dérivée quatrième en ${\cal O}$ sans avoir à dériver la fonction.

En pratique ça permet l'étude des dérivées en un point sur des fonctions bien plus complexes.

1.4.2 DL usuels

Proposition 1.4.1

Les développements limités usuels en 0 sont les suivants

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n})$$

$$\sin x = \sum_{k=0}^{n} \frac{(-1)^{k} x^{2k+1}}{(2k+1)!} + o(x^{2n+1})$$

$$\cos x = \sum_{k=0}^{n} \frac{(-1)^{k} x^{2k}}{(2k)!} + o(x^{2n})$$

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + o(x^n)$$

$$\frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k x^k + o(x^n)$$

$$\log(1+x) = \sum_{k=0}^{n} \frac{(-1)^k x^k}{k} + o(x^n)$$

$$(1+x)^{\alpha} = \sum_{k=0}^{n} \sigma_{\alpha}(k) x^k + o(x^n)$$

$$\alpha \in \mathbb{R}$$
et
$$\sigma_{\alpha}(k) = \begin{cases} 1, & \text{si } k = 0 \\ \frac{\sum_{i=0}^{k-1} (\alpha - i)}{k!}, & \text{sinon} \end{cases}$$

Remarque 1.4.3

Les DL de fonctions paires (resp impaires) ne contiennent que des coefficients sur les degrès pairs (resp impairs)

1.4.3

Exemple, la fonction cos est paire

1.4.3 Opération sur les DL

Sans perte de généralité, les DL sont ici en 0 Soit $P, Q \in R[X]$ et $f, g \in \mathbb{R}^I$ tels que

$$\deg P = \deg Q = n$$

$$f(x) = P(x) + o(x^n)$$

$$g(x) = Q(x) + o(x^n)$$

Troncage

Définition 1.4.2

On appelle "troncage" à l'ordre $k \leq n$ d'un DL, le polynome tronqué F_k de degrès k tel que tous les coefficients de F_k sont égaux à ceux de F jusqu'au

coefficient de x^k et tel que

$$f(x) = F_k(x) + o(x^k)$$

1.4.4

On a

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + o(x^5)$$

le DL_5 de exp alors on peut le "tronquer" à l'ordre $k=3\leq 5$ pour avoir le DL_3 de exp

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + o(x^3)$$

Somme

Proposition 1.4.2

Le DL_n de la fonction f + g est la somme des DL_n de f et de g

$$(f+g)(x) = P(x) + Q(x) + o(x^n)$$

Produit

Proposition 1.4.3

Le DL_n de la fonction fg est le produit des DL_n de f et de g tronqué à l'ordre n

$$(fg)(x) = PQ_n(x) + o(x^n)$$

Composée

Proposition 1.4.4

Si g(0) = 0 alors on peut composer les DL_n et le DL_n de $f \circ g$ est la composition des DL_n de f et de g tronqué à l'ordre n

$$(f \circ g)(x) = (P \circ Q)_n(x) + o(x^n)$$

1.4.5

Exemple DL_3 de $\sqrt{1+\sin x}$. On a bien $\sin 0 = 0$.

$$\sin x = x - \frac{x^3}{6} + o(x^3)$$

$$(1+X)^{\alpha} = 1 + \alpha X + \frac{\alpha(\alpha-1)x^2}{2}X^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{6}X^3 + o(X^3) \quad \text{donc}$$

$$(1+\sin x)^{\frac{1}{2}} = 1 + \frac{1}{2}\left(x - \frac{x^3}{6}\right) - \frac{1}{8}\left(x - \frac{x^3}{6}\right)^2 + \frac{3}{48}\left(x - \frac{x^3}{6}\right)^3 + o(x^9)$$

$$(1+\sin x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{x^3}{12} - \frac{1}{8}x^2 + \frac{3}{48}x^3 + o(x^3)$$

$$(1+\sin x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{48}x^3 + o(x^3)$$
tronquage

1.4.4 Application au calcul de dérivé

Les DL sont utiles pour résoudre des formes indéterminées lors du calcul de limite

Calcul de la limite en 0 de la fonction $f: x \mapsto \frac{e^{x^2} - \cos x}{x^2}$ On calcule les différents DL à l'ordre 4

$$e^{x^{2}} = 1 + (x^{2}) + \frac{(x^{2})^{2}}{2} + o(x^{4})$$

$$\cos x = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{24} + o(x^{4})$$

$$e^{x^{2}} - \cos x = \frac{3}{2}x^{2} + o(x^{2})$$

$$f(x) = \frac{\frac{3}{2}x^{2} + o(x^{2})}{x^{2}}$$

$$f(x) = \frac{3}{2} + o(1)$$

$$\lim_{x \to 0} f(x) = \frac{3}{2}$$
d'où

On voit après que l'ordre 2 aurait suffit, l'intuition peut aider pour savoir à quel ordre calculer.

1.5 Intégrales de Riemann

Explication des notations,

$$\int_{a}^{b} f = \int_{a}^{b} f(x) \mathrm{d}x$$

$$\int_{[a,b]} f = \int_a^b f$$

1.5.1 Introduction

Soit $a, b \in \mathbb{R}$ tels que a < b. Soit f définie et bornée sur [a, b] et $d = (x_1, \dots, x_n) \subset [a, b]$ une subdivision de [a, b] pour $n \in \mathbb{N}$. On définie

$$M_{i} = \sup_{x \in [x_{i-1}, x_{i}]} f(x)$$

$$m_{i} = \inf_{x \in [x_{i-1}, x_{i}]} f(x)$$

$$S(d) = \sum_{i=1}^{n} M_{i} \cdot (x_{i} - x_{i-1})$$

$$s(d) = \sum_{i=1}^{n} m_{i} \cdot (x_{i} - x_{i-1})$$

Le but est double

- Approcher f par des fonctions en escalier
- Augmenter n pour augmenter la précision de l'approche

Et pour d' une subdivision plus fine que d on a

$$s(d) \le s(d') \le S(d') \le S(d)$$

On peut définir des suites convergentes, et à l'infini on note

$$I = \sup_{[a,b]} S(d)$$
$$J = \inf_{[a,b]} s(d)$$

Définition 1.5.1

Une fonction f est Riemann-intégrable si $I_f = J_f = \int_a^b f$

1.5.2 Propriétés de l'intégrale

On prend f, g deux fonctions Riemann-intégrable définie sur [a, b]

Proposition 1.5.1

On a

$$\int_{a}^{a} f = 0$$

$$\int_{b}^{a} f = -\int_{a}^{b} f$$

Proposition 1.5.2 – Relation de Chales

Soit $c \in [a, b]$,

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

1.5.1

Exemple d'une fonction non-Riemann-intégrable. Soit f la fonction indicatrice de $\mathbb Q$ sur [0,1] alors on a

$$M_i = \sup f = 1$$
$$m_i = \inf f = 0$$

D'où

$$S(d) = x_n - x_0 = 1$$
$$s(d) = 0$$

Donc

$$I \neq J$$

Par conséquence, f n'est pas Riemann-intégrable sur [0,1]

Théorème 1.5.1

Soit f une fonction définie sur [a, b]

- 1. Si f est \mathcal{C}^0 alors f est Riemann-intégrable
- 2. Théorème des singularités supprimable, si on modifie f sur un nombre fini de point, l'intégrale n'est pas modifiée
- 3. Par conséquence, les fonctions continues par morceaux (\mathcal{M}^0) sont aussi Riemann-intégrable

1.5.3 Opération sur les intégrales

Proposition 1.5.3

Soient f, g Riemann-intégrables sur I

— Soit
$$\lambda \in \mathbb{R}$$
, alors $\int_I \lambda f = \lambda \int_I f$

- La fonction (f+g) est Riemann-intégrable et $\int_I (f+g) = \int_I f + \int_I g$
- La fonction |f| est Riemann-intégrable
- La fonction (fg) est Riemann-intégrable

1.5.4 Positivité de l'intégrale

Proposition 1.5.4

Soit f Riemann-intégrable sur I

— Si
$$\forall x \in I, f(x) \ge 0$$
 alors $\int_I f \ge 0$

— Si
$$\forall x \in I, f(x) \le 0$$
 alors $\int_I f \le 0$

Théorème 1.5.2 – Positivité de l'intégrale

Soit f, g Riemann-intégrable sur I telles que

$$\forall x \in I, f(x) \le g(x)$$

Alors il vient de la prop précédente que

$$\int_{I} f \le \int_{I} g$$

Proposition 1.5.5 – Généralisation de l'inégalitée triangulaire

Soit f Riemann-intégrable sur I, on a alors

$$\left| \int_{I} f \right| \le \int_{I} |f|$$

1.5.5 Moyenne

Soit f, g Riemann-intégrable sur I, on note

$$m = \inf_{I} f$$

$$M = \sup_{I} f$$

Proposition 1.5.6

Si g est de signe constant sur I alors $\exists \mu \in [m, M], \int_I fg = \mu \int_I g$

Démonstration. On a, $\forall x \in I, m \leq f(x) \leq M$, on considère sans perte de généralité que $\forall x \in I, g(x) \geq 0$ et que $\int_I g \neq 0$ alors on a

$$\forall x \in I, m \leq f(x) \leq M$$

$$mg(x) \leq f(x)g(x) \leq Mg(x)$$

$$m \int_{I} g \leq \int_{I} fg \leq M \int_{I} g$$

$$g \text{ est positive}$$

$$m \leq \frac{\int_{I} fg}{\int_{I} g} \leq M$$

$$\operatorname{car} \int_{I} g \neq 0$$

On pose $\frac{\int_I fg}{\int_I g} = \mu$, il vient que $\mu \in [m, M]$ et que $\mu \int_I g = \int_I fg$

Remarque 1.5.1

On prend le cas particulier où g=1 on a $\int_a^b f=\mu \int_a^b 1$ ce qui donne finalement

$$\mu = \frac{1}{(b-a)} \int_{a}^{b} f$$

On appelle alors μ la valeur moyenne de la fonction f sur [a,b]

1.5.6 Théorème fondamental de l'analyse

Proposition 1.5.7

Soit $f:[a,b]\to\mathbb{R}$ Riemann-intégrable, et on définie $g:[a,b]\in\mathbb{R}$ telle que

$$\forall x \in [a, b], g(x) = \int_{a}^{x} f$$

Alors

— Si f est Riemann-intégrable alors g est continue

- Si f est continue en $x_0 \in [a, b]$ alors g est dérivable en x_0
- Si f est continue sur [a, b] alors g est dérivable sur [a, b] et g' = f

Théorème 1.5.3 – Théorème fondamental de l'analyse

Soit f une fonction \mathcal{C}^0 sur I un interval de \mathbb{R} , et soit $\alpha \in I$ alors f admet une unique primitive F_{α} telle que $F'_{\alpha} = f$ s'annulant en $x = \alpha$. De plus pour toute fonction F primitive de f on a $\int_a^b f = F(b) - F(a)$

1.5.7 Primitives usuelles

Proposition 1.5.8

Les primitives usuelles sont les suivantes, par abus de notation toutes les fonctions suivantes sont marquées selon leur procédure, par example x^{α} réfère à la fonction $(x \mapsto x^{\alpha})$ sur son plus grand interval de définition, c désigne une constante réelle.

$$f = x^{\alpha}, F = \frac{x^{\alpha+1}}{\alpha+1} + c \qquad \alpha \neq -1$$

$$f = \frac{1}{x}, F = \ln|f| + c$$

$$f = \frac{1}{\sqrt{x}}, F = 2\sqrt{x} + c$$

$$f = e^{x}, F = e^{x} + c$$

$$f = \cos(ax+b), F = \frac{1}{a}\sin(ax+b) + c \qquad a \neq 0$$

$$f = \sin(ax+b), F = -\frac{1}{a}\cos(ax+b) + c \qquad a \neq 0$$

$$f = \frac{1}{\cos^{2}x}, F = \tan x$$

$$f = \frac{1}{x^{2} + a^{2}}, F = \frac{1}{a}\arctan\frac{x}{a} + c \qquad a \neq 0$$

Pour les fonctions, il faut pas oublier la règle de la composée qui donne par example

$$f = u^{\alpha} \cdot u', F = \frac{u^{\alpha+1}}{\alpha+1}$$

$$\alpha \neq -1$$

$$f = \frac{u'}{u}, F = \ln|u|$$

$$f = \frac{u'}{\sqrt{u}}, F = 2\sqrt{u}$$

1.5.8 Changement de variable

Théorème 1.5.4 – Théorème de changement de variable

Soit $\varphi[a,b] \in \mathbb{R}, \mathcal{C}^1$ sur [a,b], et soit $f: I \in \mathbb{R}\mathcal{C}'$ sur I alors on a la formule suivante

$$\int_a^b f \circ \varphi \cdot \varphi' = \int_{\varphi(a)}^{\varphi(b)} f$$

1.5.2

Calculons, $I = \int_0^1 \frac{x dx}{\sqrt{d - x^2}}$ On pose $t = 2 - x^2$ ce qui est bien \mathcal{C}^1 alors on a dt = -2x dx donc par changement de variable,

$$I = \int_{2}^{1} \frac{\mathrm{d}t}{-2\sqrt{t}}$$
$$= \int_{1}^{2} \frac{\mathrm{d}t}{2\sqrt{t}}$$
$$= \left[2\sqrt{x}\right]_{1}^{2}$$
$$= \sqrt{2} - 1$$

1.5.9 Intégration par parties

Théorème 1.5.5 – Théorème d'intégration par parties Soit u, v, C^1 sur [a, b] alors on a

$$\int_a^b uv' = [uv]_a^b - \int_a^b u'v$$

1.5.3

Exemple calculons $I = \int_0^1 x e^x dx$ On pose u(x) = x donc u'(x) = 1 et donc $v'(x) = e^x$ ce qui donne $v(x) = e^x$ ce qui sont bien C^1 , donc par IPP on a

$$I = [xe^x]_0^1 - \int_0^1 e^x dx$$

= $e - (e - 1)$

=1

1.6 Intégrales Généralisées

Il existe deux cas d'intégrales généralisées

- 1. Le cas où l'on intègre une fonction bornée sur un intervalle non borné (de forme [a,b[)
- 2. Le cas où l'on intègre une fonction non bornée sur un intervalle bornée (de forme [a,b])

Définition 1.6.1

Soit [a, b] tel que $-\infty < a < b \le +\infty$. Soit $f : [a, b] \to \mathbb{R}$. On prend l'application $I(\lambda) = \int_a^{\lambda} f$ définie sur [a, b]

- Si $I(\lambda)$ converge en b^- alors f est intégrable sur [a, b[, on note $\lim_{\lambda \to b^-} I(\lambda) = \int_a^b f$ et on appelle le scalaire $\int_a^b f$ **intégrale généralisée** de f sur [a, b[
- Si $I(\lambda)$ diverge en b^- alors f n'est pas intégrable sur [a,b[

1.6.1

On cherche à connaître la nature de l'intégrale de $\left(x \mapsto \frac{1}{x^2}\right)$ sur $[1, +\infty[$

$$I(\lambda) = \int_{1}^{\lambda} \frac{dx}{x^{2}}$$

$$= -\left[\frac{1}{x}\right]_{1}^{\lambda}$$

$$= -\frac{1}{\lambda} + 1 \to_{\infty} 1$$

Donc $\int_1^\infty \frac{\mathrm{d}x}{x^2}$ existe et vaut 1

1.6.2

On cherche à connaître la nature de l'intégrale de $(x \mapsto \cos x)$ sur $[0, \infty[$.

$$I(\lambda) = \int_{1}^{\lambda} \cos x \, \mathrm{d}x$$

$$= [\sin x]_1^{\lambda}$$
$$= -\sin \lambda$$

DV

Donc $(x \mapsto \cos x)$ n'est pas intégrable sur $[0, \infty[$

Remarque 1.6.1

Soit $c \in [a, b[$ alors $\int_a^b f$ et $\int_c^b f$ sont de même nature, et sont notés en général $\int_a^b f$

Remarque 1.6.2

Si on a $a = \infty$ ou f non définie en a on sépare l'étude en plusieurs sous problèmes

1.6.1 Cas des fonctions réelles positives

Dans la section f est une fonction réelle positive définie sur [a, b]

Majoration

Proposition 1.6.1

l'intégrale de f sur [a,b[CV $\Leftrightarrow \int_a^{\lambda} f$ majorée

Démonstration.

$$I(\lambda) = \int_{a}^{\lambda} f$$

On a I qui est croissante sur [a,b[d'après le théorème des limites monotones alors

- si I est majorée alors $I(\lambda) \to \mu \in \mathbb{R}$ et f est intégrable sur [a,b[
- si I n'est pas majorée alors $I(\lambda) \to \infty$ donc f n'est pas intégrable sur [a,b[

Comparaison

Proposition 1.6.2 – Théorème de comparaison

Soit $g:[a,b] \to \mathbb{R}$ tel que $0 \le f \le g$ alors

- Si g est intégrable sur [a, b] alors f l'est
- Si f n'est pas intégrable sur [a, b[alors g ne l'est pas

Equivalent

Proposition 1.6.3

Soit $g:[a,b[\to\mathbb{R} \text{ tel que } f\equiv_b g \text{ alors } \int^b f \text{ et } \int^b g \text{ sont de même nature}]$

1.6.2 Cas des fonction réelles positives et où $b=\infty$

Proposition 1.6.4

Si $f \not\to 0$ alors f n'est pas intégrable sur $[a, \infty[$

Démonstration. Supposons que $f \to l \neq 0$ alors $f \equiv l$ donc $\int_{-\infty}^{\infty} f$ est de même nature que $\int_{-\infty}^{\infty} l dx$ donc $\int_{-\infty}^{\infty} f$ DV

Critère de Riemann

Théorème 1.6.1 – Critère de Riemann

La fonction $(x \mapsto \frac{1}{x^{\alpha}})$ est :

- intégrable $\Leftrightarrow \alpha > 1$
- pas intégrable $\Leftrightarrow \alpha \leq 1$

Démonstration.

$$I(\lambda) = \int_{1}^{\lambda} \frac{dx}{x^{\alpha}}$$

$$= \left[\frac{x^{1-\alpha}}{1-\alpha}\right]_{1}^{\lambda}$$

$$= \frac{1}{(1-\alpha)\lambda^{\alpha-1}} - \frac{1}{1-\alpha}$$

Donc I ne converge que si $\alpha > 1$ et en retour si $\alpha > 1$ alors I converge.

Cherchons la nature de
$$\int_0^\infty \frac{2x+1}{\sqrt{x^4+8}}$$

$$\frac{2x+1}{\sqrt{x^4+8}} \equiv \frac{2x}{\sqrt{x^4}}$$
$$\equiv \frac{2}{x}$$

Donc d'après le critère de Riemann $\int_0^\infty \frac{2x+1}{\sqrt{x^4+8}}$ DV

Règle de Riemann

Proposition 1.6.5 – Règle de Riemann

Soit f une fonction définie sur $[a, \infty[$

- Si il existe $\alpha > 1$ tel que $x^{\alpha} f(x) \to l \in \mathbb{R}$ alors $\int_{-\infty}^{\infty} f \, \text{CV}$
- Si il existe $\alpha \leq 1$ tel que $x^{\alpha}f(x) \to l \in \mathbb{R}^*$ alors f n'est pas intégrable

Démonstration. Conséquence du critère de Riemann.

1.6.4

Est-ce que $(x \mapsto \sqrt{x}e^{-x})$ est intégrable sur $[0, \infty[$

$$x^{2} * \sqrt{x}e^{-x} = \frac{x^{\frac{5}{2}}}{e^{x}}$$

$$\to 0$$
CC

Donc d'après la règle de Riemann, $\int_{-\infty}^{\infty} \sqrt{x}e^{-x}$ CV

1.6.3 Cas où b est fini

On note

$$g(x) = \frac{1}{(b-x)^{\alpha}}, \alpha > 0$$

Proposition 1.6.6

Nature de
$$\int_a^b g$$
.

$$I(\lambda) = -\frac{1}{(1-\alpha)} \left((b-\lambda)^{1-\alpha} - (b-a)^{1-\alpha} \right)$$

Donc

- si $\alpha < 1$ alors $(b \lambda)^{1-\alpha} \to 0$ donc I CV
- si $\alpha > 1$ alors $(b \lambda)^{1-\alpha} \to \infty$ donc I DV
- si $\alpha = 1$ alors $I \to \infty$ donc I DV

Critère de Riemann

Théorème 1.6.2 - Critère de Riemann - Version finie

$$\int_{a}^{b} \frac{\mathrm{d}x}{(b-x)^{\alpha}} \, \mathrm{CV} \iff \alpha < 1$$

Voir ci dessus.

Proposition 1.6.7

Par conséquent si $f \equiv \frac{A}{(b-x)^{\alpha}}$ alors $\int_{-b}^{b} f$ CV ssi $\alpha < 1$

Démonstration. Conséquence directe du critère de Riemann.

1.6.5

Nature de $\int_0^1 \frac{x+1}{\sqrt{x}}$ on a

$$\frac{x+1}{\sqrt{x}} \equiv \frac{2}{\sqrt{x}}$$
$$\equiv \frac{2}{x^{\frac{1}{2}}}$$

or
$$\frac{1}{2} < 1$$
 donc $\int_0^1 \frac{x+1}{\sqrt{x}}$ CV

Règle de Riemann

Proposition 1.6.8-Règle de Riemann - Version finie

Soit f une fonction définie sur [a, b[

- Si il existe $\alpha < 1$ tel que $x^{\alpha} f(x) \to l \in \mathbb{R}$ alors $\int_{-\infty}^{\infty} f \, \text{CV}$
- Si il existe $\alpha \geq 1$ tel que $x^{\alpha}f(x) \rightarrow l \in \mathbb{R}^*$ alors f n'est pas intégrable

Démonstration. Conséquence du critère de Riemann.

1.6.4 Cas des fonctions de signes qql

Définition 1.6.2

On dit que l'intégrale de f est simplement convergente si et seulement si $I(\lambda)$ a une limite et si

$$\lim_{x \to b^{-}} \int_{a}^{x} f \in \mathbb{R}$$

Définition 1.6.3

On dit que l'intégrale de f est absolument convergente si et seulement si $\int^x |f| \to \mu \in \mathbb{R}$

Théorème 1.6.3 – Comparaison

Soient $a \in \mathbb{R}$, $b \in \mathbb{R}$ tel que a < b et f une fonction définie sur [a, b]

- 1. Si l'intégrale de f est absolument convergente alors l'intégrale de f est simplement convergente
- 2. Le résultat $\left| \int f \right| \leq \int |f|$ est étendu aux intégrales généralisées

Démonstration. 1. Notons, $f^- = max(-f, 0)$ et $f^+ = max(f, 0)$. On observe que

$$f^- + f^+ = max(-f, 0) + max(f, 0)$$

= $|f|$

Et on a aussi

$$f^{+} - f^{-} = max(f, 0) - max(-f, 0)$$

= f

On suppose que $\int |f|$ est convergente donc

$$\exists \mu \in \mathbb{R}, \lim_{x \to b^-} \int_a^x (f^+ + f^-) = \mu$$

Or Les fonctions f^+ et f^- sont à valeurs positives, donc

$$\exists (\mu_1, \mu_2) \in \mathbb{R}^2, \lim_{x \to b^-} \int_a^x (f^+) = \mu_1$$
 et
$$\lim_{x \to b^-} \int_a^x (f^-) = \mu_2$$

Donc par linéarité,

$$\lim_{x \to b^{-}} \int_{a}^{x} (f^{+} - f^{-}) = \mu_{1} + \mu_{2} \in \mathbb{R}$$

Ce qui revient à

$$\exists \lambda \in \mathbb{R}, \lim_{x \to b^{-}} \int_{a}^{x} f = \lambda$$

Donc l'intégrale de f est simplement convergente.

2. Supposons que l'intégrale de f est absolument convergente, rappelons d'abord que sur les intégrales de Riemann on a pour $(\alpha, \beta) \in \mathbb{R}^2$ tels que a < b et $g \mathcal{M}^0$ sur [a, b]

$$\left| \int_{\alpha}^{\beta} g \right| \le \int_{\alpha}^{\beta} |g| \tag{1.5}$$

Puis,

$$\forall x \in [a, b[, \left| \int_{a}^{x} f \right| = \left| \int_{a}^{x} (f^{+} - f^{-}) \right|$$

$$\leq \left| \int_{a}^{x} f^{+} \right| + \left| \int_{a}^{x} f^{-} \right| \qquad IT$$

$$\leq \int_{a}^{x} |f^{+}| + \int_{a}^{x} |f^{-}| \qquad (1)$$

$$\leq \int_{a}^{x} f^{+} + f^{-} \qquad \text{valeurs positives}$$

$$\leq \int_{a}^{x} |f|$$

Enfin par passage à la limite avec $x \to b^-$ (les limites existe avec la démonstration du 1.)

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f|$$

1.6.6

Nature de $\int_0^1 \sin \frac{1}{x} dx$. On a

$$\forall x \in]0,1] \le 1$$

Donc l'intégrale est absolument convergente donc l'intégrale est convergente

1.6.7

Nature de $\int_0^\infty \frac{\cos x}{1+x^2}$ par le même raisonnement absolument convergente donc convergente.

Chapitre 2

Notations et rappels

2.1 Ensembles

Remarque 2.1.1

Soit D un ensemble

- \bar{D} est l'adhérence de D c'est à dire le plus petit ensemble fermé contenant D, par exemple $\bar{R} = \mathbb{R} \cup \{-\infty, +\infty\}$
- Soit \mathbb{K} un corps, alors $\mathbb{K}[X]$ est l'ensemble des polynomes à coefficient dans \mathbb{K} a une indéterminée (en gros, variable)

2.2 Fonctions

2.2.1 Ensembles de fonctions

Remarque 2.2.1

Soit E, F deux ensembles, et soit I un interval de $\mathbb R$

- E^F est l'ensemble des applications (fonctions) de F dans E
- $\mathcal{C}^0(I)$ est l'ensemble des fonctions continues sur I
- Dans le cas général $C^n(I)$ est l'ensemble des fonctions dérivable n fois sur I et dont la n-ème dérivée est continue sur I
- $-\mathcal{M}^0(I)$ est l'ensemble des fonctions continues par morceaux sur I

2.2.2 Opérations entre fonctions et fonctions et scalaires

Remarque 2.2.2

Soit f, g deux fonctions, Soit $\lambda \in \mathbb{R}$

- λf est la fonction $(x \mapsto \lambda \cdot f(x))$
- f + g est la fonction $(x \mapsto f(x) + g(x))$
- fg est la fonction $(x \mapsto f(x)g(x))$
- $f \circ g$ est la fonction $(x \mapsto f(g(x)))$

2.2.3 Comparaison entre fonctions et fonctions et scalaires

Remarque 2.2.3

Soit f, g deux fonctions et $\lambda \in \mathbb{R}$

- $-f \ge \lambda \text{ (resp >, \leq, <)}$ représente $\forall x \in I, f(x) \ge \lambda \text{ (resp >, \leq, <)}$
- $-f \ge g \text{ (resp } >, \le, <) \text{ représente } \forall x \in I, f(x) \ge g(x) \text{ (resp } >, \le, <)$

$$- f = o_a(g) \Leftrightarrow \lim_a \frac{f}{g} = 0$$

$$--f = \mathcal{O}_a(g) \Leftrightarrow \lim_a \frac{f}{g} \in \mathbb{R}$$

$$-f \equiv_a g \Leftrightarrow \lim_a \frac{f}{g} = 1$$

2.2.4 Limites, continuité et dérivabilité

Remarque 2.2.4

Soit f une fonction définie sur I et $a \in I$

— Définition de la limite de f au point a

$$\left(\lim_{x\to a} f(x) = l\right) \Leftrightarrow (\forall \varepsilon > 0, \exists \nu > 0, |x-a| < \nu \Rightarrow |f(x) - l| < \varepsilon)$$

- $-\lim_{a} f = \lim_{x \to a} f(x)$
- f est continue en a si $\lim_{a} f = f(a)$
- f est continue sur I si $\forall x \in I, f$ est continue en x
- f est dérivable en a si le quotient $\frac{f(x) f(a)}{x a}$ admet une limite finie quand $x \to a$
- f est dérivable sur I si $\forall x \in I, f$ est dérivable en x

2.2.5 Autre

Remarque 2.2.5

Soit f une fonction définie sur I un interval de $\mathbb R$ tel que I=[a,b]

$$-\int_{I} f = \int_{a}^{b} f = \int_{a}^{b} f(x) dx$$