Model Behavior: Training a Machine Learning Network in Real-Time

Agenda

- Supervised Machine Learning Classification
- When to use it (Cases)
- About R
- Credit Card dataset
- Neural Networks

Supervised Learning

When to use it (Cases)

- Document classification
- Spam filtering
- Medical diagnostic test
- Customer behavior prediction
- Fraud detection

R and Data Science process

Collection

Cleaning

Exploring

Modeling

Deployment

Data Story - Credit Card Dataset

Supervised ML Model (Classification)

Supervised ML Model (Classification)

Cross Validation

Random Split:

Classification model assumptions

There is minimal or no multicollinearity among the independent variables.

The observations to be independent of each other.

Model evaluation measures

 Confusion Matrix- used to describe the performance of a classification model

 Accuracy – simply measures how often the classifier correctly predicts

 ROC AUC score shows how well the classifier distinguishes positive and negative classes. It can take values from 0 to 1

Supervised Classification model

Evaluation	Scores
Accuracy	.9
Recall	.64
Precision	.9
ROC AUC	.96
F 1 score	.75

Neural Network

Neural Network

Back to the Credit Card Dataset story Fraud detection

Using neuralnet package


```
library(neuralnet)
split <- createDataPartition(y = df$Class, p= 0.8, list = F)

creditcard.training <- df[split,]
creditcard.test <- df[-split,]

creditcart.training.two <- creditcard.training%>% mutate_at(c(1:30), funs(c(scale(.))))

nn_model <- neuralnet(Class ~ ., data = creditcart.training.two, hidden = c(5,2), linear.output = F)</pre>
```

Using neuralnet package


```
library(neuralnet)

# plot our neural network

plot(nn_model, rep ="best")

#scale the test dataset
setcreditcart.test.two <- creditcard.test %>% mutate_at(c(1:30),
funs(c(scale(.))))

#create the predicted values
predicted.nn.values <- neuralnet::compute(nn_model, creditcart.test.two)</pre>
```


Deep learning (neural networks) model

Confusion Matrix

Evaluation	Scores
Accuracy	.99
Recall	.99
Precision	.99
ROC AUC	.89
F 1 score	.99

Confusion matrix

Supervised Classification model

Deep learning (neural networks) model

Model Evaluation Metrics

Supervised Classification model

EvaluationScoresAccuracy.90Recall.64Precision.90ROC AUC.96F 1 score.75

Deep learning (neural networks) model

Evaluation	Scores
Accuracy	.99
Recall	.99
Precision	.99
ROC AUC	.89
F 1 score	.99

What did we learn?

