

		Lecture 8: Distance measure
<u>课程</u>	Unit 3 Methods of Estimation	between distributions

9. Worked Examples on Total Varation Distance Continued

9. Worked Examples on Total Varation Distance Continued

Note: The following exercises will be presented in lecture, but we encourage you to attempt these yourselves first.

Computing Total Variation IV

1/1 point (graded)

So far, we have defined the total variation distance to be a distance $\mathbf{TV}(\mathbf{P}, \mathbf{Q})$ between **two probability measures P** and **Q**. However, we will also refer to the total variation distance between two random variables or between two pdfs or two pmfs, as in the following.

Compute $\mathrm{TV}\left(X,X+a\right)$ for any $a\in(0,1)$, where $X\sim\mathsf{Ber}\left(0.5\right)$.

Solution:

Since $a \in (0,1)$, X and X+a have no support points where both pmf's are non-zero. Therefore, the total variation distance is equal to 1.

提交

你已经尝试了1次(总共可以尝试3次)

Answers are displayed within the problem

Computing Total Variation V

1/1 point (graded)

Compute $\operatorname{TV}\left(2\sqrt{n}\left(ar{X}_{n}-1/2
ight),Z
ight)$ where $X_{i}\overset{i.i.d}{\sim}\operatorname{\mathsf{Ber}}\left(0.5
ight)$ and $Z\sim\mathcal{N}\left(0,1
ight)$.

$$\mathrm{TV}\left(2\sqrt{n}\left(ar{X}_{n}-1/2
ight),Z
ight)=oxedsymbol{1}$$
 Answer: 1

Solution:

Let ${f P}$ and ${f Q}$ denote the probability measures of $2\sqrt{n}\,(ar X_n-1/2)$ and Z, respectively. Recall the total variation distance is defined as

$$\max_{A\subset E} \lvert \mathbf{P}\left(A
ight) - \mathbf{Q}\left(A
ight)
vert$$

Let $B riangleq \left\{a_i = 2\sqrt{n}\left(rac{i}{n} - rac{1}{2}
ight) \mid i = 0, 1, \ldots, n
ight\}$ be set of n+1 points where the pmf of $2\sqrt{n}\left(ar{X}_n - 1/2\right)$ is non-zero.

Consider the set $A=\mathbb{R}\setminus B$ ($=R\cap B^c$). For this set, $\mathbf{P}(A)=0$ and $\mathbf{Q}(A)=1$. Therefore, $|\mathbf{P}(A)-\mathbf{Q}(A)|=1$. We know from a previous problem that the total variation distance is upper bounded by ${f 1}$ for any two distributions. Since we have produced a set where this bound is met with equality, $\mathrm{TV}\left(2\sqrt{n}\left(ar{X}_{n}-1/2\right),Z
ight)=1.$

提交

你已经尝试了2次(总共可以尝试3次)

Answers are displayed within the problem

Worked Examples on Total Variation Distance Continued