Insurance Insights:
Knowledge
Discovery Applications
for Medicare and
Medicaid Claims

Brendan Scott Callender
Martin Solomon Hsu
Andrew Davis Kerr
Sophia Pylin Chung

Data Context

- Center for Medicare and Medicaid (CMS)
- Synthetic Claims Data (DE-SynPUF) 2008-2010
 - 20 subsets
 - 2 million patients per sample
 - 1 million inpatient claims per sample
- Disclaimer: Limited inferential value

Example Observations

Patient Data

Patient ID	Birth Date	Sex	Race	State	 Alzheimer's	 Stroke
00013D2EFD8E45D1	1923/05/01	1 (Male)	1	26	 0	 1

Inpatient Claims Data

Patient ID	Claim ID	Claim From Date	Claim To Date	Claim Amount	
00013D2EFD8E45D1	196661176988405	2010/03/12	2010/03/13	4000	•••

 Medicare/Medicaid – Federal insurance and welfare programs for (primarily) aged/disabled individuals

- Inpatient Procedure with overnight patient stays (vs. outpatient)
 - Loose definition

- Claim Request for service reimbursement/payment submitted by doctor or patient to insurance company
 - Contains information on patient and procedure including demographics, diagnosis, procedure type, date, cost, etc.

- Chronic condition Long-lasting and/or lifelong condition that requires recurring and/or coordinated care
 - E.g. cancer, diabetes, Alzheimer's, etc.

Project Objectives

- 1. <u>Association rules mining:</u> What combinations of chronic conditions (multi-morbidities) tend to appear together in a patient with inpatient claims?
- **2.** <u>Clustering:</u> What distinct **types of patients** appear in inpatient claims data?
- **3.** <u>Classification:</u> Can we **predict** whether a patient has the chronic conditions **diabetes**, **depression**, **or heart disease** (or some combination of the three)?

Association Rules Mining

- **Skyline frequent itemsets** Which chronic conditions appear together most often?
 - Minimum support = 0.10
- **Association rules** Which chronic conditions do we see most often given the existence of other frequent chronic conditions?
 - Minimum confidence = 0.75

Association Rules Mining

Chronic conditions:

- 1. Alzheimer's or related disorders or senile
- 2. Heart Failure
- 3. (Chronic) Kidney Disease
- 4. Cancer
- 5. Chronic Obstructive Pulmonary Disease (COPD)
- 6. Depression
- 7. Diabetes
- 8. (Ischemic) Heart Disease

- 9. Osteoporosis
- 10. Rheumatoid Arthritis and Osteoarthritis
- 11. Stroke/transient Ischemic Attack

Association Rules Mining

Top 3 skyline frequent itemsets:

- 1. Depression, diabetes, heart disease
- 2. Heart failure, depression, heart disease
- 3. Heart failure, kidney disease, heart disease, diabetes

Top 3 association rules:

- 1. Heart failure, kidney disease
 - → heart disease
- 2. Heart failure, COPD
 - → heart disease
- 3. COPD, diabetes
 - → heart disease

Cluster variables

- Age
- Claim payment amount
- Sex
- Chronic condition dummy variables
- Race dummy variables

- K-means: 6 clusters
 - 2 distinct clusters of interest
 - 4 less distinct clusters
- **DBSCAN:** 6 clusters + outliers
 - 10% random sample of dataset
 - Most clusters trend young, female
 - 3 distinct clusters of interest
 - Outliers trend older, expensive

- K-means cluster 1:
 - Lower claim counts
 - Lower claim amounts
 - Less chronic conditions

Number of Conditions with Centroid Below Mean

- K-means cluster 4:
 - High rates of cancer, COPD, osteoporosis, heart disease
 - Younger males

Cluster Age Centroids

- DBSCAN cluster 3:
 - High levels of chronic kidney disease

Cluster Kidney Disease Centroids

- DBSCAN clusters 2 & 4:
 - Lower payment amounts
 - Lower rates of most chronic disease
 - High rates of diabetes
 - High number of claims
 - Very low rates of depression in 2, very high rates of depression in 4

Cluster Diabetes & Depression Centroids

Classification

- Two algorithms:
 - K-Nearest Neighbors 10 neighbors
 - Random Forest 5 attributes and 1000 patients per tree, 5 trees, 0.02 gains threshold
- Predict depression, diabetes, heart disease
- Performance
 - Relatively poor accuracy
 - High runtime

8 Categories:

- <u>0</u>: None of 3 diseases
- 1-3: 1 of 3 diseases
 - 1: Depression only
 - 2: Diabetes only
 - 3: Heart disease only
- <u>4-6:</u> 2 of 3 diseases
 - 4: Diabetes, heart disease
 - 5: Depression, heart disease
 - 6: Depression, diabetes
- <u>7:</u> All 3 diseases

Classification

10-nearest neighbors (Accuracy: 28.2%)

Classification

Random Forest (Accuracy: 26.8%)

Ethical Concerns

- Age, race, sex in analysis
 - Included due to limited information in synthetic dataset
 - May lead to a system that does not demonstrate equality or group parity in analysis

Conclusions

- Association rule mining most effective
- Classification by far the worst
 - Didn't have access to the best predictors for the task
- Clustering mixed results
 - Found some insightful and distinct clusters
 - Try larger k's?

Questions?