Fire Monkeys Animation de feu en 3D temps réel

Benjamin Aupetit - Julien Champeau - Arnaud Emilien

Jun 14 2010

1/31

- Objectif
- 2 Le modèle
 - Le fluide
 - Les objets
- Portage du modèle de fluide sur GPU
- Démonstration
- Conclusion

Objectif

Réaliser un modèle de combustion d'objets en 3D temps réel.

- Le feu
- La fumée
- Interactions avec des objets
- Propagation du feu sur l'objet
- Combustion d'objet

Les étapes de notre démarche

Découverte du milieu scientifique :

- Apprendre une démarche de R&D
- Étudier différents articles
- Concevoir notre propre modèle
- Implémenter le modèle
- Paralléliser le modèle en l'implémentant sur GPU

4/31

Le feu

- Résultat de la combustion d'un fluide
- Le fluide se propage dans l'air
- La couleur de la flamme = f (chaleur, gaz)

Figure: Gaz qui brûle

Principe

- Modèle basé sur le travail de Jos Stam, notamment Stable Fluids(SIGGRAPH 99 Conference Proceedings).
- Résolution de manière approchée des équation de Navier-Stokes pour la dynamique des fluides incompressibles.

Représentation du fluide

- 4 grilles uniformes 3D
 - Densité de gaz (flamme)
 - Densité de fumée
 - Temperature
 - Champs de vitesse de l'air

Phase 1 - La diffusion

Échange de valeurs avec les cases voisines.

Figure: Diffusion sur une grille 2D \bigcirc

Phase 2 - Le transport

Déplacement des valeurs en fonction du champs de vitesse.

Figure: Résolution de l'advection par Backtracking introduite par **Jos Stam**

Figure: Advection d'une densité dans une grille 2D

Phase 3 - La projection

But : avoir un fluide incomprésible

Solution : gradient de la pression nul (Décomposition de Hodge)

Effet visuel : des vortex se créent

Figure: Correction du champ de vitesse par la soustraction du gradient

11/31

Apéritif

Figure: Rendu de flamme sur la version finale

Le rendu

Problème : tourner autour de l'image

Solution : une texture 3D et une technique de "billboard",

⇒ affichage de plans face à la camera

Figure: Affichage normal face caméra

Figure: Vue des plans affichés

Coloration de la flamme

Figure: Coloration de la flamme

- Corps noir
- Formule de Planck

Bruit de perlin 4D

- Bruit de perlin 3D lissé cosinusoïdalement
- Translation des coordonnées de texture
- Continuité temporelle

Figure: Sans le bruit de Perlin

Figure: Avec le bruit de Perlin

Le fluide Les objets

Entrée

Description des objets

- Volumiques
- Différents matériaux
- Combustibles
- Température de combustion

Modèle d'intéraction

Interactions entre le modèle de fluide et le modèle d'objet.

- Présence des objets (i.e. : pas de flamme a l'intérieur des objets)
- Transmission des informations de chaleur d'un modèle à l'autre.
- Gestion de la "pyrolyse" des objets.

Une représentation par voxel

Un objet = un champ de voxels Interaction facilitée avec le modèle d'objet

Figure: Exemple de champ de distance

Figure: Exemple de champ de distance 2

Rendu

Besoin : recalculer la surface de l'objet localement.

⇒ utilisation d'un algorithme de marching cube adaptatif.

Figure: Surface calculée par marching cube

Figure: Mesh original

Action des objets sur le fluide

Propagation du feu qui tient compte des objets

⇒ champs de répulsion autour des objets.

Figure: Objet affiché avec son champs de répulsion

Combustion des objet

1: combustion

2 : génération de gaz / chaleur / fumée

3 : si plus de matière : destruction du voxel et recalcul de la surface

Figure: Combustion d'une sphère, avec diffusion de la chaleur

Le fluide Les objets

Plat principal

Le calcul sur GPU

Principe du modèle indentique, calcul différent.

	CPU	GPU
données	tableau unidimentionnel	texture 3D
calcul	itératif	parallèle par cellule
rendu	tableau vers texture 3D	texture 3D
coloration	function(chaleur) return RGB	couleur(texture 1D,chaleur)
stockage	min 1E-37, max 1E+37	min 0.0, max 1.0

Figure: Comparatif de performances

26/31

Objectif Le modèle Portage du modèle de fluide sur GPU Démonstration Conclusion

Trou Normand

Problème rencontré

- dessin dans un frame buffer
- calculs fait par le fragment shader

Figure: Frame Buffer Object

Objectif Le modèle 'ortage du modèle de fluide sur Po Démonstration

Dessert

Conclusion

- Résultats très satisfaisants
- Modèle complet
- Beaucoup de nouvelles connaissances
- Petite déception pour le GPU

Remerciements

- Marie-Paule Cani pour avoir accepté de nous encadrer, pour ses conseils et indices de recherche.
- Cyril Crassin pour nous avoir aidé à comprendre le fonctionnement de GLSL.
- Aurelie Catel pour le suivi de gestion de projet.
- NintendoTM pour Super Smash Bross Melee ©.