

BÀI 5: PHÂN TÍCH LIÊN KẾT

Các bài toán chính trong phân tích liên kết

- Xếp hạng đồ thị: Phân tích vai trò của các đỉnh trong đồ thị
- Nhận diện cộng đồng: Phát hiện các cộng đồng bao gồm các thành viên có tính chất tương tự
- Dự đoán liên kết: Dự đoán sự tiến hóa của đồ thị theo thời gian
- Phân loại đồ thị: Phân loại các đỉnh và các cạnh của đồ thị vào các lớp cho trước

Nội dung

- 1. Xếp hạng đồ thị
- 2. Nhận diện cộng đồng
- 3. Học biểu diễn đồ thị

Xếp hạng đồ thị 1.1 Các khái niệm cơ bản của đồ thị

a) Đồ thị vô hướng

b) Đồ thị có hướng

Ma trận kề

```
a[i, j] = 1 nếu tồn tại cạnh (i,j)
= 0 nếu ngược lại
= 2 nếu tồn tại cạnh từ một đỉnh đến chính nó
```


Bậc của đỉnh

- $d_i(i) = \text{s\^o}$ nút trỏ tới i
- $d_o(i) = \text{số nút } i \text{ trỏ tới}$

1.2 Thuật toán Dijkstra

- Tìm đường đi ngắn nhất từ một đỉnh s tới các đỉnh còn lại của đồ thị
- d(v): Khoảng cách từ đỉnh v tới đỉnh s
 - **B1**: Khởi tạo d(s) = 0; d(v) = oo
 - **B2**: Sắp xếp các đỉnh *v* theo một trật tự xác định trên hàng đợi Q
 - **B3**: Lấy một đỉnh u thuộc hàng đợi Q và cập nhật khoảng cách d(v) (nếu cần) với mỗi đỉnh v liền kề với u
 - Quay lại **B2** cho đến khi xử lý hết các đỉnh

VD

v	S	a	b	С	d
d[v]	0	∞	∞	∞	∞
pred[v]	nil	nil	nil	nil	nil
color[v]	W	W	W	W	W

$oldsymbol{v}$	S	a	b	С	d
d[v]	0	2	7	∞	∞
pred[v]	nil	S	S	nil	nil
color[v]	В	W	W	W	W

v	S	a	b	С	d
d[v]	0	2	5	10	7
pred[v]	nil	S	a	a	a
color[v]	В	В	W	W	W

v	S	а	b	С	d
d[v]	0	2	5	6	7
pred[v]	nil	S	а	b	а
color[v]	В	В	В	W	W

v	S	a	b	С	d
d[v]	0	2	5	6	7
pred[v]	nil	S	а	b	а
color[v]	В	В	В	В	W

v	S	a	b	С	d
d[v]	0	2	5	6	7
pred[v]	nil	S	а	b	а
color[v]	В	В	В	В	В

$$Q = \emptyset$$
.

1.3 Độ trung tâm Độ trung tâm lân cận

$$C_C(i) = \frac{n-1}{\sum_{j=1}^n d(i,j)}.$$

d(i, j): Khoảng cách ngắn nhất từ nút i tới nút j

Độ trung tâm trung gian

$$C_B(i) = \sum_{j < k} \frac{p_{jk}(i)}{p_{jk}}.$$

 $p_{ik}(i)$: Số lượng đường đi ngắn nhất từ j tới k mà đi qua i

$$C_B(1) = 15$$
, $C_B(2) = C_B(3) = C_B(4) = C_B(5) = C_B(6) = C_B(7) = 0$

1.4 Độ quan trọngĐộ quan trọng theo bậc

$$P_D(i) = \frac{d_I(i)}{n-1},$$

d_i(i): Số nút trỏ tới i

Độ quan trọng lân cận

$$P_{P}(i) = \frac{|I_{i}|/(n-1)}{\sum_{j \in I_{i}} d(j,i)/|I_{i}|},$$

I_i: Các nút có thể đi tới i

1.5 Thuật toán Pagerank

- Xếp hạng đồ thị dựa trên cấu trúc tổng quát
- Đối với các đồ thị lớn, thứ hạng được tính xấp xỉ bằng thuật toán lặp dựa trên 'random walk'
- Có ứng dụng quan trọng trong máy tìm kiểm web
- Nhược điểm: Không phụ thuộc vào câu truy vấn

Ma trận chuyển tiếp

$$\mathbf{A} = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 1/3 & 1/3 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1/2 & 0 \end{pmatrix}$$

Ma trận chuyển tiếp (tiếp)

Chuẩn hóa:

$$A = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 1/3 & 1/3 \end{pmatrix}. \longrightarrow \overline{A} = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 1/3 & 1/3 \end{pmatrix}.$$

$$\begin{array}{c} \overline{A} = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 1/3 & 1/3 \end{pmatrix}.$$

$$\begin{array}{c} \overline{A} = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 1/3 & 1/3 \end{pmatrix}.$$

$$\begin{array}{c} \overline{A} = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 1/3 & 1/3 \end{pmatrix}.$$

Công thức xếp hạng

$$R(A) = (1 - d) / N + d * \Sigma_{B:(B,A) \in E} R(B) / d_o(B)$$

R(A): Thứ hạng của đỉnh A

d: damping factor

N: số đỉnh của đồ thị

(B,A) cạnh của đồ thị

d_o(B) bậc ra của đỉnh B

VD (d = 1)

VD (d = 0.85)

Thuật toán lặp

```
Algorithm PageRank(d, E)

1. Khởi tạo thứ hạng các trang R<sup>(0)</sup>;

2. i = 1;

3. repeat

4. for mỗi trang A do

5. R<sup>(i)</sup>(A) = (1 - d) / N + d * \Sigma_{B:(B,A) \in E} R^{(i-1)}(B) / d_o(B);

6. endfor

7. i++;

8. until hội tu
```

Tốc độ hội tụ

Number of Iterations

Ứng dụng: Tìm kiếm Web

To: 3

Ứng dụng: Phân tích trích dẫn

Guan et al. 2008. "Bringing Page-Rank to the Citation Analysis"

Ứng dụng: Phân tích trích dẫn (tiếp)

•1.6 Thuật toán HITS

Hypertext Induced Topic Search

J. Kleinberg. "Authoritative Sources in a Hyperlinked Environment." In Proc. of the 9th ACM SIAM Symposium on Discrete Algorithms (SODA'98), pp. 668–677, 1998.

	Spam filtering	Query relevance	Execution
HIST	SS		Online
PageRank			Offline

Authority/Hub

Authority: Trang được trỏ tới nhiều

Hub: Trang trỏ tới nhiều trang khác

Authority và hub có mối quan hệ tương hỗ

Bigraph

- Các nút chia thành hai tập không giao nhau
- Mỗi cạnh đều nối hai nút thuộc hai tập

Thuật toán

Đầu vào: Câu truy vấn q

 $\underline{\underline{\text{Dàu ra}}}$: Điểm authority và hub của các trang liên quan đến q

Thuật toán:

1 - Truy hồi thông tin

2 - Mở rộng đồ thị

3 - Tính ranking

1-Truy hồi thông tin

Y/c một máy tìm kiếm có chứa các văn bản liên quan đến câu truy vấn q (vd Google, Coccoc)

• Đưa q vào máy tìm kiếm và lấy về tập root \mathbf{W} gồm k trang liên quan nhất đến q (vd k = 200)

2- Mở rộng đồ thị

Từ tập root W, mở rộng ra tập base S

- Với mỗi trang p trong W
 - Bổ sung các trang mà *p* trỏ tới
 - Bổ sung các trang trỏ tới p

3- Tính thứ hạng

Authority score (a)

Hub score (h)

$$G = (V,E)$$

$$L_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$a(i) = \sum_{(j,i)\in E} h(j)$$

$$\sum_{i=1}^{n} a(i) = 1$$

$$h(i) = \sum_{(i,j)\in E} a(j)$$

$$\sum_{i=1}^{n} h(i) = 1$$

3- Tính thứ hạng (tiếp)

$$a = L^{T}h$$
$$h = La$$

```
HITS-Iterate(G)
      a_0 \leftarrow h_0 \leftarrow (1, 1, ..., 1);
      k \leftarrow 1
       Repeat
              a_k \leftarrow L^T L a_{k-1};
              \boldsymbol{h}_{k} \leftarrow \boldsymbol{L}\boldsymbol{L}^{T}\boldsymbol{h}_{k-1};
             a_k \leftarrow a_k/||a_k||_1;
                                                          // normalization
              \boldsymbol{h}_k \leftarrow \boldsymbol{h}_k / ||\boldsymbol{h}_k||_1;
                                                         // normalization
             k \leftarrow k + 1;
       until ||\boldsymbol{a}_k - \boldsymbol{a}_{k-1}||_1 < \varepsilon_a and ||\boldsymbol{h}_k - \boldsymbol{h}_{k-1}||_1 < \varepsilon_h;
       return a_k and h_k
```


VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attentions!

