Summary of χ pod Chameleon EQ14 Analysis

Andy Pickering

April 26, 2017

Contents

1	Overview	2
2	Data and Processing	3
3	?	4
4	Comparing individual estimates of ϵ	8
5	Normalized eps vs chi plots	9
6	Averaging many profiles of ϵ	10
7	Effects of averaging in different-sized depth bins	13
8	γ computed from averaged quantities	15
9	Summary	16

1 Overview

- This document is an attempt to provide an overview/summary of what i've found in my χ pod analysis.
- The motivation/goal for all this work is to show if and how well the CTD- χ pod method works for estimating χ , ϵ , K_T , etc from fast temperature profiles. The idea is to deploy χ pods on regular CTD casts on WOCE/CLIVAR cruises etc. to making mixing measurements.
- Before dealing with all the issues with the CTD deployments (depth loops, entraining water, rosette-induced turbulence etc.), I wanted to verify that the method itself worked w/out these complications.
- The Chameleon microstructure profiler has both thermistor and shear probes, so this seemed like an ideal way to test the method. I would apply the χ pod method to the chameleon thermistor data only $(\chi_{\chi}, \epsilon_{\chi})$, and compare to the 'true' results computed using the shear probes (χ, ϵ) .
- I found that basically the estimates of χ agreed, but ϵ_{χ} was about an order of magnitude smaller than ϵ (Figure 1,2,3).
- The χ pod method requires assuming a mixing efficiency, and uses the normal assumption that $\gamma = 0.2$. I computed gamma from the chameleon data (formula) and found that it was about an order of magnitude smaller than 0.2; hence the low epsilon estimates.
- Is gamma really different here? Am I calculating it wrong? What does gamma mean?
 Sasha found something similar previously in EQ08 and other Chameleon datasets, gives me a little more confidence that i'm not doing something obviously wrong..
- One idea was that we should be computing gamma over patches, and it's meaningless outside of patches. Previous work has found gamma is close to 0.2 . So I tried computing patches and gamma. This can be a whole other can of worms (lots of choices to make in how to identify patches, compute N2, Tz etc), but I found I could get gammas close to 0.2 . And on a point-by-point basis, ϵ_{χ} agreed better with ϵ_{χ} . But then we have much fewer data points...
- Looked at whether averaging multiple profiles agreed better. Doesn't seem to make epsilon agree. However, gamma computed from average quantities is closer to 0.2?
- So, is gamma really small here, or am I just computing it wrong? Look at other locations/regimes?

2 Data and Processing

- ComputeChi_Chameleon_Eq14.m : Applies χ pod method to Chameleon profiles from EQ14.
- Sally shared w/ me Chameleon data that she and Jim processed. I ended up reprocessing it using a smaller fmax (7Hz) because it looked like the thermistor spectra rolled off much lower than the assumed 32Hz.

3 ?

Figure 1: Comparison of χ from chameleon method and chi-pod method, for EQ14 chameleon profiles. Each profile was averaged in 2m bins.

Figure 2: Comparison of ϵ from chameleon method and chi-pod method, for EQ14 chameleon profiles. Each profile was averaged in 2m bins. Values of below chameleon noise floor (-8.5) have been naned out

Figure 3: Comparison of χ ϵ from chameleon method and chi-pod method, for EQ14 chameleon profiles. Each profile was averaged in 2m bins. Values of below chameleon noise floor (-8.5) have been naned out. Black line is 1:1, red lines are +/- order of magnitude.

4 Comparing individual estimates of ϵ

Figure 4: EQ14: Histogram of the ratio of ϵ estimates from χ pod method to the chameleon values, for χ pod method applied to 1m binned profiles, and applied to just patches. Estimates for each profile were averaged in 10m depth bins.

5 Normalized eps vs chi plots

Assuming that

$$\gamma = \frac{N^2 \chi}{2\epsilon < T_z > 2} \tag{1}$$

, plotting $[\chi/t_z^2]$ vs $[\epsilon/N\hat{2}]$ should follow a straight line with slope equal to $2\gamma.$

Figure 5: EQ14: 10m binned chameleon $\epsilon/N\hat{2}$ vs χ/t_z^2 for *below 80db*. Lines show different values of γ . Values of ϵ below noise floor ($log_{10}\epsilon < -8.5$) are discarded also.

6 Averaging many profiles of ϵ

Figure 6 shows one example. A folder with many profiles is located at: https://github.com/OceanMixingGroup/Analysis/tree/master/Andy_Pickering/eq14_patch_gamma/figures/chi_eps_profiles_40profavgs. In general, it seems that averaging profiles does not change the comparsion much; ϵ_{χ} is still biased low.

I tried making plots of normalized chi vs eps, and scatterplots of chi-pod vs chameleon epsilon, for data averaged across different numbers of profiles. This doesn't seem to change either.

Figure 6: Example of averaging multiple profiles together. Left panels show a single profile from chamleeon and chi-pod method. Right panels show average of +/- 40 profiles, averaged in 10m depth bins.

Figure 7:

7 Effects of averaging in different-sized depth bins

I tried making plots of normalized chi vs eps, and scatterplots of chi-pod vs chameleon epsilon, for data averaged in different-sized depth bins (for each profile, not across profiles). They don't seem to change.

Figure 8:

8 γ computed from averaged quantities

If we compute gamma from time-averaged N^2, T_z, χ, ϵ do we get $\gamma = 0.2$ (or a different gamma)? Estimates from the averaged data are larger (Figures ??,9) but still slightly less than 0.2.

Figure 9: Boxplots of $log_{10}[\gamma]$ for a set of profiles from EQ14. Left is for all 1m avg data. Right is for data from all profiles averaged in 10m bins. Horizontal dashed line indicates $\gamma = 0.2$.

9 Summary

- Inidivudal (and 10m binned) χ pod estimates of ϵ_{χ} are biased low compared to Chameleon ϵ .
- This appears to be because γ computed from the Chameleon data is lower than the assumed 0.2
- γ computed from averaged (across profiles) N^2 , T_z , χ , and ϵ is closer to 0.2
- But averaging many epsilon profiles doesn't appear to improve comparison.

Questions:

- Is gamma really different here? Or is it an issue with the instrument or processing?
- Would be good to see what gamma you get from other instruments/locations (I think Amy did this for some of the database and found gamma was about 0.2?)
- Would be good to have 'standard' code to compute χ from thermistor data etc.? Thermistor response/noise level varies a lot though, would need a standard way to determine correction.