Міністерство освіти і науки України Національний університет "Львівська політехніка"

про виконання лабораторної роботи №1 з дисципліни: "Моделювання комп'ютерних систем"

Виконав: ст.гр. КІ-202 Бажулін С.В. Прийняв: Козак Н.Б. **Мета роботи:** інсталяція та ознайомлення з середовищем розробки *Xilinx ISE*. Ознайомлення зі стендом Elbert V2 – Spartan 3A FPGA.

Виконання роботи

1. Використовуючи компоненти з бібліотеки, реалізував схему дешифратора 3->5

Рис.1 Схема дешифратора 3->5

2. Додав до проекту User Constraint файл та розкоментував/перейменував потрібні рядки.

```
# This file is a .ucf for ElbertV2 Development Board
   # To use it in your project :
 3
   # * Remove or comment the lines corresponding to unused pins in the project
   # * Rename the used signals according to the your project
    #------
    ***********************
8
                                                UCF for ElbertV2 Development Board
9
10
   CONFIG VCCAUX = "3.3" :
11
12
    # Clock 12 MHz
13
    # NET "Clk"
                                  LOC = P129 | IOSTANDARD = LVCMOS33 | PERIOD = 12MHz;
14
15
   16
                                            LED
17
   18
19
20
        NET "OUT O"
                                LOC = P46 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
                               LOC = P47 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P48 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P49 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P50 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
21
        NET "OUT 1"
        NET "OUT 2"
22
        NET "OUT 3"
23
       NET "OUT 4"
24
                               LOC = P51 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

LOC = P54 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

LOC = P55 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
     # NET "LED[5]"
25
     # NET "LED[6]"
26
27
     # NET "LED[7]"
28
    29
                                       DP Switches
30
   31
32
        NET "IN 0"
33
                         LOC = P70 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
                     LOC = P69 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P68 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
        NET "IN 1"
34
35
        NET "IN 2"
                               LOC = P64 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

LOC = P63 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

LOC = P60 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
     # NET "DPSwitch[3]"
36
     # NET "DPSwitch[4]"
37
     # NET "DPSwitch[5]"
38
                                            | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
| PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
                                LOC = P59
LOC = P58
     # NET "DPSwitch[6]"
39
      # NET "DPSwitch[7]"
40
```

Рис.2 Код проекту

3. Перевірив роботу схеми за допомогою симулятора ISim для кожного вхідного сигналу.

Рис 3. Симуляція в симуляторі

4. Згенерував біт файл

^		-	
lм'я 	Дата змінення	Тип	Розмір
xst	20.03.2023 23:39	Папка файлів	
fuse	20.03.2023 14:03	Текстовий докум	2 KБ
fuse.xmsgs	20.03.2023 14:03	Файл XMSGS	1 KБ
fuseRelaunch	20.03.2023 14:03	Сценарій команд	1 KБ
isim	20.03.2023 23:54	Сценарій команд	1 КБ
isim	21.03.2023 0:00	Текстовий докум	2 КБ
ab1.gise	21.03.2023 11:28	Файл GISE	17 КБ
≥ lab1	20.03.2023 14:03	Xilinx ISE Project	36 KБ
lab1_constraint.ucf	20.03.2023 14:03	Файл UCF	4 KБ
mylab1.bgn	21.03.2023 0:49	Файл BGN	6 KB
mylab1.bin	21.03.2023 0:49	Файл BIN	54 KB
mylab1.bit	21.03.2023 0:49	Файл BIT	54 KB
MyLab1.bld	21.03.2023 0:48	Файл BLD	2 KE
MyLab1.cmd_log	21.03.2023 0:49	Файл CMD_LOG	2 KБ
mylab1.drc	21.03.2023 0:49	Файл DRC	1 КБ
MyLab1.jhd	21.03.2023 1:22	Файл JHD	1 КБ
MyLab1.lso	21.03.2023 0:48	Файл LSO	1 КБ
MyLab1.ncd	21.03.2023 0:48	Файл NCD	5 КБ
MyLab1.ngc	21.03.2023 0:48	Файл NGC	3 КБ
MyLab1.ngd	21.03.2023 0:48	Файл NGD	6 КБ
MyLab1.ngr	21.03.2023 0:48	Файл NGR	2 КБ

Знайдемо необхідний порт у диспетчері завдань.

Рис.5. Диспетчер завдань

Запрограмуємо лабораторний стенд отриманим ВІТ файлом

Рис.6. ElbertV2Config.exe

Дочекаємося виконання процесу.

Рис.7. Виконання процесу

Перевіримо роботу проєкту

Рис. 8. Робота проекту на стенді

Висновок

Ознайомився з середовищем розробки і проектування Xilinx ISE, змоделював роботу дешифратора 3->7 за допомогою симулятора ISim та згенерував Віt файл.