CSE431/531 (Fall 2022) Programming Assignment 2

Due date: Monday, 12/11/2022

You need to implement either the Kruskal's algorithm or the Prim's algorithm for the minimum spanning tree problem. If you are using Prim's algorithm, an $O(n^2)$ -time algorithm is sufficient to pass all test cases.

- Input format: You need to read the input from the console. In the first line of the input, we have two positive integers n and m. n is the number of vertices in the graph and m is the number of edges in the graph. The vertices are indexed from 1 to n. You can assume that $1 \le n \le 1000$ and $1 \le m \le 100000$. In the next m lines, each line contains 3 integers: u, v and w, with $1 \le u < v \le n$ and $1 \le w \le 10^6$. This indicates that there is an edge (u, v) of weight w. You can also assume that the graph is connected and there are no parallel edges.
- Output format: You need to output to the console. For simplicity, you only need to output one line, which contains the total weight of the minimum spanning tree.

Example Input:	Example Output:
9 14	42
1 2 5	
1 8 12	
2 3 8	
2 8 11	
3 4 13	
3 6 4	
3 9 2	
4 5 9	
4 6 14	
5 6 10	
673	
7 8 1	
7 9 6	
897	