Nirma University

Institute of Technology
Semester End Examination (IR), December - 2021
B. Tech. in Computer Engineering, Semester-VII
IT724 Artificial Intelligence

Time: 2 Hour Max Marks: 50		
Instruc	2. Figures to right indicate full marks.	_
	3. Assume suitable assumptions if required and specify them.	
Q-1	Answer the following.	[10]
A) CO1	Taking an example of Blocks-World Problem, explain how does a local maxima problem occur using "local" heuristic? Rewrite the heuristic function in such a way that the local maxima is resolved.	05
B) CO3	Consider the following statements and assume additional knowledge if required.	05
	 Rajan likes all kind of food. Apple and Chicken are food 	
	3. Anything anyone eats and is not killed is food.4. Ajay eats peanuts and still aliveTranslate the above statements into clausal form. Prove that "rajan likes peanuts" using resolution process.	
Q-2 A) CO3	Answer the following. Consider Missionaries and cannibals problem: i. Analyze the problem with respect to seven problem characteristics ii. Represent the problem in state space representation iii. Give the one possible solution mentioning production rules Give the one possible solution mentioning production rules.	[10] 06
B) CO3	Critically discuss about built in predicate cut(!) and fail in PROLOG.	04
Q-3 A) CO3	Answer the following. What is Dempster Shafer Theory? Apply the theory to the real-life example and justify its usefulness.	[10] 07
A)	OR Taking an example of "Robot Arm Navigation", explain the	07
CO2 B) CO1	mechanism of Means-Ends-Analysis technique. When would breadth first search works better than best first search? Justify your answer by suitable example.	03

A) CO3	Write a program in PROLOG to remove the n th element from the list of integers. Read n from the user.	O 4
B) CO2	Solve the following crypt arithmetic problem step-by-step:	06
	SEND + MORE = MONEY	
	*.	
	OR	
B) CO2	What is meant by "Annealing Schedule"? What are its components? Under which situation, Simulated Annealing behaves as Simple Hill Climbing method?	06
Q-5	Answer the following.	[10]
A) CO2	Consider the following search space. In this state space A is the starting state. The values written in square box are heuristic values of that respective state. The value written on arrow is the cost of moving from one state to another state. Trace A* algorithm and find out optimal path. Cleary maintain open and closed queue.	05

B) What are Alpha-Beta cutoffs in the context of Minimax search CO2 algorithm? What are its significance? How are they beneficial? Discuss with a suitable example.