OLAP (On-Line Analytical Processing) e Banco de Dados Multidimensionais

O que é OLAP?

- Processamento de dados
- Dedicado ao suporte a decisão
- Visualização de dados agregrados ao longo de várias dimensões analíticas (tempo, espaço, categoria de produto, quantidade vendida, preço...)
- Hierarquizadas em várias granularidades
- Armazenados em BD especializadas
- Modelo lógico de dados multidimensional
- Data Warehouse, Data Mart ou BD multidimensionais

Exemplos de consultas OLAP

Quais foram os produtos mais vendidos no mês passado?

A média salarial dos funcionários de informática com menos de 5 anos de experiência é maior do que a mesma para funcionários de telecomunicação?

Qual foi o total de vendas o mês passado por região de vinhos tintos importados da Europa?

Por quais semanas, quais produtos e quais cidades, a variação de venda de produtos em promoção em comparação da semana anterior sem promoção foi ≥ 15%?

Banco de dado operacional x data warehouse x data mart

BD operacional:

- armazena valores correntes e atômicas resultantes diretas das últimas transações
- fins **operacionais** <u>predefinidas</u> *ex, gerenciamento do estoque*

Data Mart:

- armazena réplicas históricas, não voláteis, agregadas ao longo de várias dimensões analíticas
- as vezes limpas, completadas e normalizadas em termos de escala e distribuição
- de dados de um único banco operacional
- fins analíticas <u>abertas</u> de escopo departamental

Data Warehouse:

- integra e padroniza dados
- de vários:

data marts

BD operacionais

BD de legado empacotados

BD semi-estruturados extraídos de páginas web

- em um único repositório coerente e limpo de dados
- fins analíticas abertas de escopo organizacional

OLTP x OLAP

Função	Automatizar operações diárias	Auxiliar tomada de decisão
Usuário humano	Cliente, Atendente, DBA	Executivo, Analista,
		Eng. de Conhecimento
Software cliente	Aplicativos de inventário,	Aplicativos de mineração de
	contabilidade,	dados, análise matemática,
Modelo lógico	Relacional,	Multidimensional,
	orientado por aplicações	orientado por assuntos
Granularidade	Única e atômica	<i>M</i> últipla e agregada
Temporalidade	Apenas valor corrente	Histórico dos valores,
dos dados	atualizada continuamente	completado periodicamente
Consultas	Simples e predefinidas	Complexas e <i>ad-hoc</i>
Direção	Tanto ler quanto escrever	Essencialmente ler
Envolve	Acessos via índice e hash	Junções, varreduras
Registros	10	106
Usuários	10 ³	[0-10]
Bytes	MB-GB	GB-TB
Prioridade	Disponibilidade, eficiência	Flexibilidade, interatividade
Métrica	Numero de transações	Número e tempo de cada consulta

Modelo de dados multidimensional

Cuboide:

Espaço de dimensão N para análise de dado

Dimensão analítica:

- Atributo geralmente categórico
- Escolhido como eixo no espaço analítico N-dimensional
- Campo de uma tabela do BD relacional fonte
- ex, tempo, local, produto, fornecedor

Medida:

- Atributo geralmente numérico
- Escolhido como ponto no espaço analítico N-dimensional
- Agregação de valores de um campo de uma tabela do BD relacional fonte, calculada por group-by de outros campos da relação
- ex, valor total das vendas, valor média das vendas, quantidade vendidas,

Cuboide de dados: exemplo 4D

Células

Membros

Dimensões

Location		Chicago			New York			Toronto					
Item		HE	Comp	Tel	Secu	HE	Comp	Tel	Secu	HE	Comp	Tel	Secu
Time	Supplier												
Q1	Sup1												
	Sup2												
Q2	Sup1												
	Sup2												
Q3	Sup1												
	Sup2												
Q3	Sup1												
	Sup2												
Q4	Sup1												
	Sup2												

Cuboide de dados: exemplo 4D

Reticulado de Cuboides

Tipologia e cálculo das medidas

Medida distributiva:

- agregada por operação distributiva sobre dados atômicos ou medidas distributivas
- count, sum, max, min

Medida algébrica:

- agregada por operações algébricas sobre dados atômicos ou medidas distributivas ou algébricas
- avg, standev

Medida holística:

- agregada por operações sem limite constante sobre o espaço necessário para armazenar os sub-agregados
- median, mode, rank
- em grandes data warehouses, cálculo apenas aproximativo

Hierarquias conceituais: da multidimensionalidade a multigranularidade

Hierarquia esquemática:

 implícita no esquema relacional do BD operacional fonte

Hierarquia de agrupamento:

 Inexistente no esquema fonte, gerada para reduzir numerosidade

Hierarquia:

- de ordem total ou parcial
- simples ou múltipla

Construção de hierarquias:

- Manual via GUI
- Automática via clustering

(a)

(b)

Exemplo de hierarquia conceitual esquemática

location all all country Canada USA province_or_state(British Columbia) Ontario Illinois New York Vancouver...(Victoria Ottawa New York Buffalo city Toronto Chicago

Exemplo de hierarquia conceitual de agrupamento

Operadores OLAP: navegação no espaço analítico multidimensional e multigranular

Operadores de *navegação* ao longo das *hierarquias* conceituais:

- Roll-up, abstrai detalhes, aplicando ao cuboide corrente um operador de agregação dado ao longo de uma dimensão dada
- ex: região → pais
- Drill-down, detalha o cuboide corrente desagregando ao longo de uma dimensão dada
- ex: região → estado
- Drill-through, detalha os valores, ao longo de uma dimensão dada, além do nível mais baixo do cuboide, por consultas SQL diretamente na fonte relacional
- Drill-across, detalha vários cuboides com dimensões compartilhas, por desagregação ao longo de

Operadores OLAP: navegação no espaço analítico multidimensional e multigranular

Operadores de *navegação* ao longo do *reticulado de cuboides*:

- Slice, extrair sub-cuboide das células verificando um restrições de valor ao longo de <u>uma</u> dimensão (ex, time = Q1)
- **Dice**, extrair sub-cuboide das células verificando um restrições de valor ao longo de várias dimensões (ex, time = Q1 e item = HE)

Operadores de visualização dos resultados:

- Pivot, mudar os eixos da visualização (cross-tab ou 3D grahics) do resultado de uma consultas (ex, time na vertical no lugar da horizontal)
- Rank, ordena os membros de uma dimensão de acordo com a ordem da medida corrente (ex, time retrospectivo, começando pelo mais recentes primeiro); serve também para filtragem

Operadores OLAP: Roll-up e dice

Modelos físicos de dados para OLAP

ROLAP (OLAP Relacional):

- Armazena dados em tabelas relacionais
- Reaproveita da tecnologia relacional, inclusive SQL
- Apenas apresenta dados de maneira multidimensional
- Permite acoplamento mais estreito com fontes OLTP (geralmente relacionais)
- Porém, necessita remodelagem prévio de dados em esquema especializados (estrela, floco de neve)

MOLAP (OLAP Multidimensional):

- Armazena dados em arrays de dimensões N
- Necessita desenvolvimento de novas técnicas de otimização
- Sem acesso a granularidade mínima (i.e., única transações)

HOLAP (OLAP Híbrido):

- Duplica dados
- Tabelas para dados atómicos
- Arrays para agregrados
- Flexível e rápido de execução
- Custoso em memória e desenvolvimento

Modelos de dados ROLAP: Estrela

Uma tabela de fato com:

- uma coluna por medida agregada
- uma columa por chave de dimensão analítica

N tabelas de dimensões, uma por dimensão analítica

- uma coluna por para cada atributo descrevendo a dimensão
- geralmente um atributo por nível na hierarquia conceitual

Não normalizada:

- alguma redundância
- alguns níveis e membros aparecem em vários registros

Modelo estrela: exemplo

Modelos de dados ROLAP: Floco de Neve

Igual ao modelo estrela exceto pela *normalização das* tabelas de dimensões

Vantagens

- Facilita evolução das dimensões
- Reduz espa
 ço ocupado por elas

Desvantagens:

Aumenta tempo de resposta pela necessidade de junções

Balanço:

- Espaço ganhado negligível já que espaço total do data mart é principalmente ocupado pela tabela de fato
- Modelo estrela mais popular

Modelo floco de neve: exemplo

Modelos de dados ROLAP: Constelação

Várias tabelas de fato: um por assunto analítico Uma tabela dimensão por dimensão analítica de algum assunto

As dimensões compartilhadas por vários assuntos não são duplicadas, mas apontadas por várias tabelas de fato Em geral:

- data mart modelado em estrela
- data warehouse modelado em constelação
- data mart integrado em um data warehouse por: uniformização das tabelas de dimensões dos vários data marts ligações entre elas e as tabelas de fato

Modelo constelação: exemplo

Elementos de um modelo de dados lógico multidimensional

BDMD: coleção de cuboides D-dimensionais

Cuboides:

- D dimensões
 (ex, tempo, produto, espaço)
- C celulas de dados quantitativos atómicos = valores das medidas

Dimensão:

 H hierarquias de N níveis de granularidade

(ex, ano/mês/dias, ano/semestre/semana)

Nível: E membros

(ex, {Jan, ..., Dez}, {1, ..., 31})

Cellset: subcubo resultado de uma consulta OLAP selecionando:

- um cubo A do DBMD
- d dimensões de A como analíticas
- m dimensões de A como medidas
- para cada d:

uma hierarquia h_d um nivel n_d com m_d membros

- para cada m, uma função de agregação (sum, max, avg, var)
- ∀ Π m_d celulas, cada uma contendo m dados agregados