Europäisches Patentamt **European Patent Office** Office européen des brevets

(1) Veröffentlichungsnummer: 0 407 899 A2

(P

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 90112903.1

2 Anmeldetag: 06.07.90

(5) Int. Cl.5: C07D 401/04, A01N 43/54, C07D 401/14

Priorität: 11.07.89 DE 3922735

Veröffentlichungstag der Anmeldung: 16.01.91 Patentblatt 91/03

Benannte Vertragsstaaten: AT CH DE ES FR GB GR IT LI

7 Anmelder: HOECHST AKTIENGESELLSCHAFT Postfach 80 03 20 D-6230 Frankfurt am Main 80(DE)

(7) Erfinder: Giencke, Wolfgang, Dr.

Am Steinberg 45

D-6238 Hofheim am Taunus(DE)

Erfinder: Sachse, Burkhard, Dr.

An der Ziegelei 30

D-6233 Kelkheim (Taunus)(DE)

Erfinder: Wicke, Heinrich, Dr.

Schillerstrasse 3

D-6239 Eppstein/Taunus(DE)

- Aminopyrimidin-Derivate, Verfahren zu ihrer Herstellung, sie enthaltende Mittel und ihre Verwendung als Fungizide.
- (57) Verbindungen der Formel I

(1),

worin

R1 = H, Alkyl, Alkoxyalkyl, Alkylthioalkyl, Cycloalkyl, Alkenyl, Alkinyl, Cycloalkylalkyl, subst. Amino-alkyl Phenyl, Phenylalkyl, Phenoxyalkyl, Phenylmercaptoalkyl, Phenoxyphenoxyalkyl, wobei diese Reste im Phenylteil substituiert sein können,

R², R³, R⁴ = unabhängig voneinander H, Alkyl oder Phenyl, das substituiert sein kann,

R⁵ = H, Alkyl, Cycloalkyl, Cycloalkylalkyl, Haloalkyl, Alkoxy, Alkylthio, Alkoxyalkyl, einen Rest R⁷R⁸N-, Alkylthioalkyl, R⁷R⁸N-alkyl, Halogen, Alkenyl, Alkinyl, Phenoxy, Phenoxy, Phenoxyalkyl, Phenoxya captoalkyl, Phenylmercapto, Phenylalkoxy oder Phenylalkylthio, wobei diese Reste im Phenylteil substituiert sein können:

R⁶ = H, Alkyl, Alkyloxy, Alkenyloxy, Alkinyloxy, Alkylthio, Halogen oder Phenyl, das substituiert sein kann, oder R5 und R5 bilden zusammen eine Polymethylenkette und

R⁷ und R⁸ = unabhängig voneinander H, Alkyl, Alkoxyalkyl, Hydroxyalkyl, Alkylthioalkyl, Alkenyl, substituiertes Aminoalkyl, Alkinyl, Cycloalkyl, Cycloalkylalkyl, welche im Cycloalkylteil substituiert sein können, Formyl, Phenyl oder Phenylalkyl, die im Phenylteil substituiert sein können, oder R7, R8 bilden zusammen mit dem Stickstoffatom einen unsubstituierten oder substituierten 5- bis 7-gliedrigen gesättigten oder ungesättigten Heterocyclus mit 1 bis 3 gleichen oder verschiedenen Heteratomen, bedeuten sowie deren Säureadditionssalze besitzen vorteilhafte fungizide Eigenschaften.

AMINOPYRIMIDIN-DERIVATE, VERFAHREN ZU IHRER HERSTELLUNG, SIE ENTHALTENDE MITTEL UND IHRE VERWENDUNG ALS FUNGIZIDE

Die vorliegende Erfindung betrifft neue Aminopyrimidin-Derivate, Verfahren zu ihrer Herstellung, sie enthaltende Mittel und ihre Verwendung als Fungizide.

Pyrimidin-Derivate sind bereits als wirksame Komponenten in fungiziden Mitteln bekannt (vgl. EP-A-270 362, EP-A-259 139, EP-A 234 104). Die Wirkung dieser Pyrimidin-Derivate ist jedoch insbesondere bei niedrigen Aufwandmengen nicht immer befriedigend.

Es wurden neue Pyrimidin-Derivate gefunden, die vorteilhafte Wirkungen bei der Bekämpfung eines breiten Spektrums phytopathogener Pilze insbesondere bei niedrigen Dosierungen aufweisen.

Gegenstand der vorliegenden Erfindung sind daher die Verbindungen der Formel i

worin

10

15

 R^1 = Wasserstoff, $(C_1-C_6)Alkyl$, $(C_1-C_4)Alkoxy-(C_1-C_4)alkyl$, $(C_1-C_4)Alkylthio-(C_1-C_4)alkyl$, $(C_2-C_6)Alkenyl$, $(C_2-C_6)Alkinyl$, $(C_3-C_7)Cycloalkyl$, $(C_3-C_7)Cycloalkyl-(C_1-C_4)alkyl$, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch $(C_1-C_4)Alkyl$ substituiert sein können, eine Gruppe $R^7R^8N-(C_1-C_4)alkyl$, Phenyl, Phenoxy- $(C_1-C_4)alkyl$, Phenyl- $(C_1-C_4)alkyl$, Phenoxy-phenoxy- $(C_1-C_4)alkyl$, wobei die fünf letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, $(C_1-C_4)Alkyl$, $(C_1-C_4)Alkoxy$, $(C_1-C_4)Alkyl$ thio, $(C_1-C_4)Haloalkyl$ oder $(C_1-C_4)Haloalkoxy$ substituiert sein können,

 R^2 , R^3 , R^4 = unabhängig voneinander Wasserstoff, (C_1 - C_6)Alkyl, Phenyl, wobei der Phenylrest bis zu dreifach durch Halogen, Nitro, Cyano, (C_1 - C_4)Alkyl, (C_1 - C_4)Alkoxy, (C_1 - C_4)Alkylthio, (C_1 - C_4)Haloalkyl oder (C_1 - C_4)Haloalkoxy substituiert sein kann,

R⁵ = Wasserstoff, (C₁-C₆)Alkyl, (C₃-C₇)Cycloalkyl, (C₃-C⁷)Cycloalkyl-(C₁-C₄)alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch (C₁-C₄)Alkyl substituiert sein können, (C₁-C₄)-Haloalkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Alkoxy-(C₁-C₄)alkyl, eine Gruppe R⁷R⁸N-, (C₁-C₄)-Alkylthio-(C₁-C₄)alkyl, eine Gruppe R⁷R⁸N-(C₁-C₄)alkyl, Halogen, (C₂-C₆)Alkenyl, (C₂-C₆)Alkinyl, Phenyl, Phenoxy, Phenyl(C₁-C₄)alkyl, Phenoxy-(C₁-C₄)alkyl, Phenylmercapto-(C₁-C₄)alkyl, Phenylmercapto, Phenyl-(C₁-C₄)alkoxy oder Phenyl-(C₁-C₄)alkylthio, wobei die acht letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein können;

 R^6 = Wasserstoff, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₂-C₅)Alkenyloxy, (C₂-C₅)Alkinyloxy, (C₁-C₄)Alkylthio, Halogen, Phenyl, wobei der Phenylrest bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)-Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein kann, oder

Alkoxy, (C_1-C_4) Alkylthio, (C_1-C_4) Haloalkyl oder (C_1-C_4) Haloalkoxy substitutert sein kann, oder R^5 und R^6 bilden zusammen eine Polymethylenkette der Formel - $(CH_2)_m$ - mit m=3-4 und

 R^7 , R^8 = unabhängig voneinander Wasserstoff, (C_1-C_6) Alkyl, (C_1-C_4) Alkoxy- (C_1-C_6) -Alkyl, Hydroxy- (C_1-C_6) -Alkyl, (C_1-C_4) Alkylthio- (C_1-C_6) Alkyl, R^1R^{10} N- (C_1-C_6) Alkyl, (C_3-C_6) Alkenyl, (C_3-C_6) Alkinyl, (C_3-C_7) Cycloalkyl- (C_1-C_4) Alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch (C_1-C_4) Alkyl substituiert sein können; Formyl, Phenyl- (C_1-C_4) Alkyl, wobei die beiden letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C_1-C_4) Alkyl, (C_1-C_4) Alkoxy, (C_1-C_4) Alkylthio, (C_1-C_4) Haloalkyl oder (C_1-C_4) Haloalkoxy substituiert sein können;

oder beide Reste R⁷, R⁸ stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder bis zu vierfach substituierten 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit 1 bis 3 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit den Heteroatomen Stickstoff, Sauerstoff und/oder Schwefel und dem Substituenten (C₁-C₄)Alkyl;

 R^9 , R^{10} = unabhängig voneinander Wasserstoff, $(C_1-C_6)Alkyl$, $(C_3-C_6)Alkenyl$, $(C_3-C_6)Alkinyl$, $(C_3-C_7)-Cycloalkyl$, $(C_3-C_7)Cycloalkyl-(C_1-C_4)alkyl$, wobei die beiden letztgenannten Reste im. Cycloalkylteil bis zu

dreifach durch (C₁-C₄)Alkyl substituiert sein können; Formyl, Phenyl, Phenyl(C₁-C₄)alkyl, wobei die beiden letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)-Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein können;

oder beide Reste R³, R¹º stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder bis zu vierfach substituierten 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit 1 bis 3 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit den Heteroatomen Stickstoff, Sauerstoff und/oder Schwefel und dem Substituenten (C¹-C₄)Alkyl; bedeuten, sowie deren Säureadditionssalze.

Dabei können die Alkyl-, Alkenyl- oder Alkinylreste sowohl geradkettig als auch verzweigt sein. Halogen bedeutet F, Cl, Br, J, bevorzugt F, Cl und Br. Die Vorsilbe "Halo" in der Bezeichnung eines Substituenten bedeutet hier und im folgenden, daß dieser Substituent einfach oder mehrfach bei gleicher oder verschiedener Bedeutung auftreten kann. Die Vorsilbe "Halo" beinhaltet Fluor, Chlor, Brom oder Jod, insbesondere Fluor, Chlor oder Brom. Als Beispiele für Halogenalkyl seien genannt: CF₃, CF₂CHF₂, CF₂CF₃, CCl₃, CCl₂F, CF₂CF₃, CF₂CHFCF₃ und (CF₂)₃CF₃. Beispiele für Haloalkoxy sind OCF₃, OCF₂CHF₂ oder OCF₂CF₂CF₃.

Bevorzugt unter den Verbindungen der Formel I sind solche, worin

 R^1 = Wasserstoff, (C_1 - C_6)Alkyl, Phenyl, Phenyl-(C_1 - C_2)alkyl, Phenoxy-phenoxy-(C_1 - C_2) alkyl, wobei die vier letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen oder (C_1 - C_4)Alkyl substituiert sein können; (C_1 - C_3)Alkoxy-(C_1 - C_2)alkyl,

R², R³ = unabhängig voneinander Wasserstoff, (C₁-C₃)Alkyl, Phenyl, wobei der Phenylrest bis zu dreifach durch Halogen oder (C₁-C₄)Alkyl substituiert sein kann,

R4 = Wasserstoff,

 R^5 = Wasserstoff, $(C_1-C_6)Alkyl$, $(C_3-C_6)Cycloalkyl$, $(C_5-C_6)Cycloalkyl$, $(C_1-C_3)alkyl$, Halogen, Phenyl, Phenyl- $(C_1-C_2)alkyl$, wobei die beiden letztgenannten Reste im Phenylteil unsubstituiert oder bis zu dreifach durch Halogen, $(C_1-C_4)Alkyl$ oder $(C_1-C_4)Alkyl$

 R^6 = Wasserstoff, (C₁-C₄)Alkyl, Halogen, Phenyl, (C₁-C₃)Alkoxy oder

R5 und R6 bilden zusammen eine Polymethylenkette der Formel -(CH2)m- mit m = 3 - 4 und

R⁷ und R⁸ unabhängig voneinander Wasserstoff, (C₁-C₆)Alkyl, (C₁-C₄)Alkoxy-(C₁-C₆)-Alkyl, Hydroxy-(C₁-C₆)Alkyl, (C₃-C₄)Alkenyl, (C₃-C₄)Alkinyl, (C₃-C₆)-Alkyl, (C₃-C₆)-A

Cycloalkyl, (C₃-C₅)Cycloalkyl-(C₁-C₃)alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu zweifach durch (C₁-C₂)Alkyl substituiert sein können; Formyl, Phenyl, Phenyl-(C₁-C₂)alkyl, wobei die beiden letztgenannten Reste im Phenylteil bis zu zweifach durch Halogen, (C₁-C₃)Alkyl, (C₁-C₃)Alkoxy, Trifluormethyl oder Trichlormethyl substituiert sein können;

oder

beide Reste R⁷, R⁸ stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder bis zu zweifach substituierten 5- bis 7-gliedrigen gesättigten oder ungesättigten Heterocyclus mit 1 oder 2 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit den Heteroatomen Stickstoff und/oder Sauerstoff und dem Substituenten (C₁-C₃)Alkyl,

R³, R¹0 = unabhängig voneinander Wasserstoff, (C₁-C₆)Alkyl, (C₃-C₆)Alkenyl, (C₃-C₆)Alkinyl, (C₃-Cȝ)-Cycloalkyl, (C₃-Cȝ)Cycloalkyl-(C₁-C₄)alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch (C₁-C₄)Alkyl substituiert sein können; Formyl, Phenyl, Phenyl(C₁-C₄)alkyl, wobei die beiden letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)-Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein können;

oder beide Reste R³, R¹o stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder bis zu vierfach substituierten 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit 1 bis 3 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit den Heteroatomen Stickstoff, Sauerstoff und/oder Schwefel und dem Substituenten (C¹-C₄)Alkyl; bedeuten, sowie deren Säureadditionssalze.

Zur Herstellung der Säureadditionssalze der Verbindungen der Formel I kommen folgende Säuren in Frage: Halogenwasserstoffsäuren wie Chlorwasserstoffsäure oder Bromwasserstoffsäure, ferner Phosphorsäure, Salpetersäure, Schwefelsäure, mono- oder bifunktionelle Carbonsäuren und Hydroxycarbonsäuren wie Essigsäure, Maleinsäure, Bernsteinsäure, Fumarsäure, Weinsäure, Citronensäure, Salicylsäure, Sorbinsäure oder Milchsäure, sowie Sulfonsäuren wie p-Toluolsulfonsäure oder 1,5-Naphthalindisulfonsäure. Die Säureadditionssalze der Verbindungen der Formel I können in einfacher Weise nach üblichen Salzbildungsmethoden, z. B. durch Lösen einer Verbindung der Formel I in einem geeigneten organischen Lösemittel und Hinzufügen der Säure erhalten werden und in bekannter Weise, z. B. durch Abfiltrieren, isoliert und gegebenenfalls durch Waschen mit einem inerten organischen Lösemittel gereinigt werden.

Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Herstellung der Verbindungen der

Formel I, dadurch gekennzeichnet, daß man eine Verbindung der Formel II in Gegenwart einer Base mit einer Verbindung der Formel III umsetzt.

10

15

50

Die Substituenten R¹ bis R8 haben dabei die Bedeutungen wie in der Formel I. X steht für Halogen. Halogen bedeutet Fluor, Chlor, Brom oder Jod, insbesondere Chlor oder Brom.

Die Umsetzung der Verbindungen II mit III erfolgt vorzugsweise in inerten aprotischen Lösungsmitteln wie z. B. Acetonitril, Dichlormethan, Toluol, Xylol, Tetrahydrofuran, Dioxan, Dialkylether wie Diethylenglykoldialkylether, insbesondere Diethylenglykoldiethylether, oder DMF bei Temperaturen zwischen -10°C und der Siedetemperatur des Lösungsmittels. Als Basen eignen sich die für diesen Reaktionstyp üblichen Basen wie beispielsweise Carbonate und Hydrogencarbonate von Alkali-und Erdalkalimetallen, Alkalihydroxide, Alkalialkoholate wie K-tert.-butylat, tert.-Amine, Pyridin oder substituierte Pyridinbasen (z. B. 4-Dimethylaminopyridin).

Auch ein zweites Äquivalent der Verbindungen der allgemeinen Formel III kann die Funktion der Base übernehmen.

Die Verbindungen der Formel II können nach bekannten Verfahren hergestellt werden (vgl. EP-A-234 104, EP-A-259 139, EP-A-270 362, J. Org. Chem. 32, 1591, (1967)). Die Verbindungen der Formel III sind bekannt und leicht zugänglich (Houben-Weyl, Methoden der Org. Chemie, Band XI/1).

Die erfindungsgemäßen Verbindungen der Formel I zeichnen sich durch eine hervorragende fungizide Wirkung aus. Bereits in das pflanzliche Gewebe eingedrungene pilzliche Krankheitserreger lassen sich erfolgreich kurativ bekämpfen. Dies ist besonders wichtig und vorteilhaft bei solchen Pilzkrankheiten, die nach eingetretener Infektion mit den sonst üblichen Fungiziden nicht mehr wirksam bekämpft werden können. Das Wirkungsspektrum der beanspruchten Verbindungen erfaßt eine Vielzahl verschiedener wirtschaftlich bedeutender, phytopathogener Pilze, wie z.B. Piricularia oryzae, Venturia inaequalis, Cercospora beticola, Echte Mehltauarten, Fusariumarten, Plasmopora viticola, Pseudoperonospra cubensis, verschiedene Rostpilze und Pseudocercosporella herpotrichoides. Besonders gut werden Benzimidazol- und Dicarboximid-sensible und -resistente Boytritis cinerea-Stämme erfaßt.

Die erfindungsgemäßen Verbindungen eignen sich daneben auch für den Einsatz in technischen Bereichen, beispielsweise als Holzschutzmittel, als Konservierungsmittel in Anstrichfarben, in Kühlschmiermitteln für die Metallbearbeitung oder als Konservierungsmittel in Bohr-und Schneidölen.

Gegenstand der Erfindung sind auch Mittel, die die Verbindungen der Formel I neben geeigneten Formulierungshilfsmitteln enthalten.

Die erfindungsgemäßen Mittel enthalten die Wirkstoffe der Formel I im allgemeinen zu 1 bis 95 Gew.-%.

Sie können auf verschiedene Art formuliert werden, je nachdem wie es durch die biologischen und/oder chemischphysikalischen Parameter vorgegeben ist. Als Formulierungsmöglichkeiten kommen daher in Frage: Spritzpulver (WP), emulgierbare Konzentrate (EC), wäßrige Lösungen (SC), Emulsionen, versprühbare Lösungen, Dispersionen auf Öl- oder Wasserbasis (SC), Suspoemulsionen (SC), Stäubemittel (DP), Beizmittel, Granulate in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), ULV-Formulierungen, Mikrokapseln, Wachse oder Köder.

Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in:

Winnacker-Küchler, "Chemische Technologie", Band 7, C-Hauser Verlag München, 4. Aufl. 1986; van Falkenberg, "Pesticides Formulations", Marcel Dekker N.Y., 2nd Ed. 1972-73; K. Martens, "Spray Drying Handbook", 3rd Ed. 1979, G. Goodwin Ltd. London.

Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J.; H.v.Olphen, "Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y.; Marschen, "Solvents Guide", 2nd Ed., Interscience, N.Y. 1950; McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley

and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1976; Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986.

Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix.

Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs-oder Inertstoff noch Netzmittel, z.B. polyoxethylierte Alkylphenole, polyoxethylierte Fettalkohole, Alkyl- oder Alkylphenol-sulfonate und Dispergiermittel, z.B. ligninsulfonsaures Natrium, 2.2′-dinaphthylmethan-6,6′-disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleylmethyltaurinsaures Natrium enthalten. Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel, z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen unter Zusatz von einem oder mehreren Emulgatoren hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calzium-Salze wie Ca-dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Propylenoxid-Ethylenoxid-Sorbitanfettsäureester, Polyoxyethylensorbitan-Fettsäureester oder Polyoxethylensorbitester.

Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen wie Kaolin, Bentonit, Poryphillit oder Diatomeenerde. Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.

In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen etwa 2 bis 20 Gew.-%. Bei Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden.

Daneben enthalten die genannten Wirkstofformulierugen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Lösungsmittel, Füll-oder Trägerstoffe.

Zur Anwendung werden die in handelsüblicher Form vorliegenden Konzentrate gegebenenfalls in üblicher Weise verdünnt, z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und teilweise auch bei Mikrogranulaten mittels Wasser. Staubförmige und granulierte Zubereitungen sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.

Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit u.a. variiert die erforderliche Aufwandmenge. sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,005 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,01 und 5 kg/ha.

Die erfindungsgemäßen Wirkstoffe können in ihren handelsüblichen Formulierungen entweder allein oder in Kombination mit weiteren, literaturbekannten Fungiziden angewendet werden.

Als literaturbekannte Fungizide, die erfindungsgemäß mit den Verbindungen der Formel I kombiniert werden können, sind z.B. folgende Produkte zu nennen:

Imazalil, Prochloraz, Fenapanil, SSF 105, Triflumizol, PP 969, Flutriafol, BAY-MEB 6401, Propiconazol, Etaconazol, Diclobutrazol, Bitertanol, Triadimefon, Triadimenol, Fluotrimazol, Tridemorph, Dodemorph, Fenpropimorph, Falimorph, S-32165, Chlobenzthiazone, Parinol, Buthiobat, Fenpropidin, Triforine, Fenarimol, Nuarimol, Triarimol, Ethirimol, Dimethirimol,

Bupirimate, Rabenzazole, Tricyclazole, Fluobenzimine, Pyroxyfur, NK-483, PP-389, Pyroguilon, Hymexazole, Fenitropan, UHF-8227, Cymoxanil, Dichlorunanid, Captafol, Captan, Folpet, Tolylfluanid, Chlorothalonil, Etridiazol, Iprodione (Formel II), Procymidon, Vinclozolin, Metomeclan, Myclozolin, Dichlozolinate, Fluorimide, Drazoxolan, Chinomethionate, Nitrothalisopropyl, Dithianon, Dinocap, Binapacryl,

Fentinacetate, Fentinhydroxide, Carboxin, Oxycarboxin, Pyracarbolid, Methfuroxam, Fenfura, Furmecyclox, Benodanil, Mebenil, Mepronil, Flutalanil, Fuberidazole, Thiabendazole, Carbendazim, Benomyl, Thiofante, Thiofanatemethyl, CGD-94340 F, IKF-1216.

Mancozeb, Maneb, Zineb, Nabam, Thiram, Probineb, Prothiocarb, Propamocarb, Dodine, Guazatine, Dicloran, Quintozene, Chloroneb, Tecnazene, Biphenyl, Anilazine, 2-Phenylphenol, Kupferverbindungen wie Cuoxychlorid, Oxine-Cu, Cu-oxide, Schwefel, Fosetylaluminium, Natrium-dodecylbenzolsulfonat, Natrium-dodecylsulfat,

Natrium-C13/C15-alkoholethersulfonat, Natrium-cetostearylphosphatester, Dioctyl-natriumsulfosuccinat, Natrium-isopropylnaphthalinsulfonat,

Natrium-methylenbisnaphthalinsulfonat,

Cetyl-trimethyl-ammoniumchlorid,

Salze von langkettigen primären, sekundären oder tertiären Aminen, Alkyl-propylenamine, Lauryl-pyridinium-bromid, ethoxilierte quaternierte Fettamine, Alkyl-dimethyl-benzyl-ammoniumchlorid und 1 Hydroxyethyl-2-alkyl-imidazolin.

Die oben genannten Kombinationspartner stellen bekannte Wirkstoffe dar, die zum großen Teil in CH.R. Worthing, U.S.B. Walker, The Pesticide Manual, 7. Auflage (1983), British Crop Protection Council beschrieben sind.

Darüberhinaus können die erfindungsgemäßen Wirkstoffe, insbesondere die der aufgeführten Beispiele, in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen oder Herbiziden vorliegen. Zu den Insektiziden zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, Formamidine, Zinnverbindungen, durch Mikroorganismen hergestellte Stoffe u.a.. Bevorzugte Mischungspartner sind:

1. aus der Gruppe der Phosphorsäureester

Azinphos-ethyl, Azinphos-methyl, 1-(4-Chlorphenyl)-4-(O-ethyl, S-propyl)phosphoryloxypyrazol (TIA-230), Chlorpyrifos, Coumaphos, Demeton, Demeton-S-methyl, Diazinon, Dichlorvos, Dimethoat, Ethoprophos, Etrimfos, Fenitrothion, Fenthion, Heptenophos, Parathion, Parathion-methyl, Phosalon, Pirimiphos-ethyl, Pirimiphos-methyl, Profenofos, Prothiofos, Sulprofos, Triazophos, Trichlorphon.

2. aus der Gruppe der Carbamate

Aldicarb, Bendiocarb, BPMC (2-(1-Methylpropyl)phenyl methylcarbamat), Butocarboxim, Butoxicarboxim, Carbaryl, Carbofuran, Carbosulfan, Cloethocarb, Isoprocarb, Methomyl, Oxamyl, Primicarb, Promecarb, Propoxur, Thiodicarb.

3. aus der Gruppe der Carbonsäureester

Allethrin, Alphamethrin, Bioallethrin, Bioresmethrin, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cypermethrin, Deltamethrin, 2,2-Dimethyl-3-(2-chlor-2-trifluormethylvinyl)cyclopropancarbonsäure-(alpha-cyano-3-phenyl-2-methyl-benzyl)ester (FMC 54800), Fenpropathrin, Fenfluthrin, Fenvalerat, Flucythrinate, Flumethrin, Fluvalinate, Permethrin, Resmethrin, Tralomethrin.

4. aus der Gruppe der Formamidine

Amitraz, Chlordimeform

5. aus der Gruppe der Zinnverbindungen

Azocyclotin, Cyhexatin, Fenbutatinoxid

6. Sonstige

Abamektin, Bacillus thuringiensis, Bensultap, Binapacryl, Bromopropylate, Buprofecin, Camphechlor, Cartap, Chlorbenzialate, Chlorfluazuron, 2-(4-Chlorphenyl)-4,5-diphenylthiophen (UBI-T 930), Chlofentezine, Cyclopropancarbonsäure(2-naphthylmethyl)ester (Ro 12-0470), Cyromacin, DDT, Dicofol, N-(3,5-Dichlor-4-(1,1,2,2,-tetrafluoroethoxy)phenylamino)carbonyl)-2,6-difluorbenzamide (XRD 473), Diflubenzuron, N-(2,3-Dihydro-3-methyl-1,3-thiazol-2-ylidene)2,4-xylidine, Dinobuton, Dinocap, Endosulfan, Fenoxycarb, Fenthiocarb, Flubenzimine, Flufenoxuron, Gamma-HCH, Hexythiazox, Hydramethylnon (AC 217 300) Ivermectin, 2-Nitromethyl-4,5-dihydro-6H-thiazin (SD 52618), 2-Nitromethyl-3,4-dihydrothiazol (SD 35651), 2-Nitromethylene-1,3-thiazinan-3-yl-carbamaldehyde (WL 108 477), Propargite, Teflubenzuron, Tetradifon, Tetrasul, Thiocyclam, Triflumaron, Kempolyeder- und Granuloseviren.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren, Die Wirkstoffkonznetration der Anwendungsformen kann von 0,0001 bis zu 100 Gew.-% Wirkstoff, vorzugsweise zwischen 0,001 und 1 Gew.-% liegen. Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weisen.

Nachfolgende Beispiele dienen zur Erläuterung der Erfindung.

A. Formulierungsbeispiele

55

20

30

35

40

- a) Ein Stäubemittel wird erhalten, indem man 10 Gew.-Teile Wirkstoff und 90 Gew.-Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert.
- b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gew.-Teile

Wirkstoff, 65 Gew.-Teile kaolinhaltigen Quarz als Inertstoff, 10 Gew.-Teile ligninsulfonsaures Kallium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer

- c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat stellt man her, indem man 40 Gew.-Teile Wirkstoff mit 7 Gew.-Teilen eines Sulfobernsteinsäurehalbesters, 2 Gew.-Teilen eines Ligninsulfonsäure-Natriumsalzes und 51 Gew.-Teilen Wasser mischt und in einer Reibkugelmühle auf eine Feinheit von
- d) Ein emulgierbares Konzentrat läßt sich herstellen aus 15 Gew.-Teilen Wirkstoff, 75 Gew.-Teilen Cyclohexanon als Lösungsmittel und 10 Gew.-Teilen oxethyliertem Nonylphenol (10 AeO) als Emulgator.
- e) Ein Granulat läßt sich herstellen aus 2 bis 15 Gew.-Teilen Wirkstoff und einem inerten Granulatträgermaterial wie Attapulgit, Bimsgranulat und/oder Quarzsand. Zweckmäßigerweise verwendet man eine Suspension des Spritzpulvers aus Beispiel b) mit einem Feststoffanteil von 30 % und spritzt diese auf die Oberfläche eines Attapulgitgranulats, trocknet und vermischt innig. Dabei beträgt der Gewichtsanteil des Spritzpulvers ca. 5 % und der des inerten Trägermaterials ca. 95 % des fertigen Granulats.

B. Chemische Beispiele

5

10

15

20

30

40

4-Methyl-2-(2-methyl-pyridin-6-yl)-6-propylamino-pyrimidin (Bsp. Nr. 1.2)

Zu einer Lösung von 1,10 g (5 mmol) 4-Chlor-6-methyl-2-(2-methyl-pyridin-6-yl)-pyrimidin in 30 ml Acetonitril fügt man nacheinander 0,32 g (5,5 mmol) Propylamin, 0,83 g (6 mmol) K₂CO₃ und 10 mg Benzyltriethylammoniumchlorid hinzu. Die Reaktionsmischung wird 7 h am Rücklfuß gekocht. Danach saugt man alle unlöslichen Bestandteile ab. Das Filtrat wird eingeengt, in Methylenchlorid gelöst, anschließend mit Wasser gewaschen, über Na₂SO₄ getrocknet und im Vakuum eingedampft. Man erhält 1,15 g (95 %), der Titelverbindung als gelbliches Öl.

4-Chlor-6-diethylamino-2-(2-methyl-pyridin-6-yl)-pyrimidin (Bsp. 9.5)

Zu einer Lösung von 1,44 g (6 mmol) 4,6-Dichlor-2-(2-methyl-pyridin-6-yl)-pyrimidin in 30 ml Acetonitril fügt man nacheinander 0,48 g (6,6 mmol) Diethylamin, 0,97 g (7,0 mmol) K₂CO₃ und 10 mg Benzyltriethylammoniumchlorid. Die Reaktionsmischung wird 3 h bei Raumtemperatur gerührt.

Danach saugt man alle unlöslichen Bestandteile ab. Das Filtrat wird eingeengt, in Methylenchlorid gelöst, mit Wasser gewaschen, über Na₂SO₄ getrocknet und im Vakuum eingedampft. Man erhält 1,73 g (92 %) der Titelverbindung als grünliches Öl.

4-Phenyl-6-propylamino-2-(2-methylpyridin-6-yl)-pyrimidin Hydrochlorid (Bsp. Nr. 200.1)

In eine Lösung von 3,4 g (0,01 mol) 4-Phenyl-6-propylamino-2-(2-methylpyridin-6-yl)-pyrimidin leitet man über einen Zeitraum von 1 h HCl-Gas ein. Der ausgefallene Feststoff wird abgesaugt. Er zerfließt sofort zu einer sirupösen Masse.

Analog zu diesen Beispielen lassen sich die Verbindungen der Tabellen A und B herstellen.

Abkürzungen: Et = Ethyl

Me = Methyl Pr = Propyl

50

	50	45	40		35	30	25	15		10	5
Tabel1	Tabelle A Fortsetzung	setzunç	7 0								
Nr	R1	R2	R3	R4	R5	R6	NR 7R8	physikal	ische E	physikalische Eigenschaften	ten
1.5	снз	×	×	Ħ	CH ₃	=	NHMe				
1.6	. СН3	Ħ	#	æ	CH ₃	×	NHEt				·
							(
1.7	CH ₃	Ħ	x	æ	CH ₃	I	\bigcirc				
1.8	СНЗ	#	Ħ	#	CH3	æ	NHC ₆ H ₅				
										•	
1.9	CH ₃	æ	Ħ	×	сн3	Ħ	NCH 2C6H5				
1.10	CH ₃	Ħ	Ħ	×	СН3	#	NHC6H4-4-C1				

S & & & G	35		30		20	5 10
R2 R3 R4 F		124	R5	R6	NR ⁷ R ⁸	physikalische Eigenschaften
н		ΰ	С3Н7	Ħ	NEt2	1H-NMR (CDC13): d 8,14 t 7,65 d 7,19 s 6,22 q 3,69 m 2,69 s 2,65 dq 1,79 t 1,21 t 1,03
н н		ပ်	C3H7	æ	NH Propyl	[ppm] 1H-NMR (CDCl3): d 8,17 t 7,66 d 7,16 s 6,17 q 3,25 m 2,69 s 2,64 m 1,68 t 1,00 t 0,98
н н н С3		ပ်	C3H7	н	, (lPPm] 1H-NMR (CDCl ₃): d 8,14 t 7,66 d 7,20 s 6,34 m 3,70 m 2,80 s 2,75 m 1,64 t 0,98 [ppm]
н н н С3		ບິ	C3H7	: : :		1H-NMR (CDCl ₃): d 8,15 t 7,65 t 7,19 s 6,11 m 3,56 t 2,72 s 2,69 m 2,00 m 1,74 t 1,0 f _{pbm}]
н н н сзн7		C ₃ 1	17	#	°	1H-NMR (CDCl ₃): d 8,16 t 7,68 d 7,20 s 6,84 m 3,77 m 2,75 s 2,66 m 1,78 t 0,99 [ppm]
н н н сзн7		ည်	Н7	н	NMe2	1H-NMR (DMSO-d ₆): 8,07 t 7,68 d 7,29 s 6,52 s 3,11 t 2,59

65	50	45		40	35	30	25	20	15	10	5
Tabe 11	Tabelle A Fortsetzung	setzun	ים								
Nr.	R1	R2	к3	R4	R5	R6	NR ⁷ R ⁸	physik	alische l	physikalische Eigenschaften	en
2.7	CH ₃	Ħ	Ħ	#	C3H7	Ħ	NHMe	1H-NMR (Cd 7,16 st 2,66 st 1	DC13 6,19 2,63	d 8,16 t 5,41 d 2, 1,79 t 0,	t 7,67 2,94 0,97
2.8	CH ₃	×	æ	Ħ	C3H7	æ	NCH3C6H5	[wdd]	Smp.: 145°C	145°C	
2.9	CH3	= .	#	Ħ	C3H7	Ħ	NHEt		Smp	100 - 102°C	7)
2.10	СНЗ	#	×	. m	С3H7	Ħ	инсн2с≡сн				
2.11	CH3	æ	Ħ	Ħ	С3Н7	Ħ	NHCH2-CH=CH2		Smp.:	111 - 113°C	7)
2.12	CH3	×	Ħ	Ħ	C3H7	н	NH Heptyl				

5		aften					t 7,67	6,16	s 2,67	.3 t 7,62	s 4,88	dq 1,77	
10		ne Eigensch	೨,66	119°C	107°C	2°97	1 -NMR (CDCl $_{3}$): d 8,19	d 7,16 s	,55 t 2,69	t 0,98 [ppm] (CDCl3): d 8,1	,15 s 6,30	,72 s 2,69	
15		physikalische Eigenschaften	Smp.:	Smp.:	Smp.:	Smp.: 76°C	1-NMR (CDC	m 7,36-7,21	t 5,63 d 4,55	dq 1 $_7$ 5 t 0,98 [ppm] 1H-NMR (CDC1 $_3$): d 8,13	s 7,27 d 7,15	s 3,11 t 2,72	t 0,98 [ppm]
20				yı	۲. بري	ą	Ę	-	•		••	••	·
25		NR ⁷ R ⁸	NH Butyl	NH iso-Butyl	NH sec-Butyl	NH Pentyl	NH Benzyl	٠		WMe Benzyl			
30		R6	Ħ	ж	æ	Ħ	æ			Ħ			
35		R5	C3H7	C3H7	C3H7	C3H7	C3H7			C3H7			
		R4	Ħ	×	Ħ	æ	Ħ			Ħ			
40	Бu	R3	Ħ	ж	æ	Ħ	Ħ			Ħ	٠		
45	rtsetzu	R2	Ħ	Ħ	Ħ	. #	. =		•	Ħ			
	Tabelle A Fortsetzung	R1	CH3	CH ₃	CH3	CH3	ĊĦ3			CH3			
50	Tabell	Nr.	2.13	2.14	2.15	2.16	2.17			2.18			

5 10		physikalische Eigenschaften	Smp.: 118 - 120°C	Smp.: 90 - 92°C	- 50 0 7 7 1 1 1 1 2 1) 0#1 : dwg		Smp.: 103 - 105°C
		physik	opyl	kyl .	.	entyı	· ·	эп су 1 С6 H4)
25		NR 7R8	NH iso-Propyl	NH Cyclohexyl	NH Cyclopentyl		NH C6H5	NH C6H5 NH (4-Cl-C6H4)
o		R6	Ħ	ж	#	•	ж	н н
		R5	C3H7	C3H7	C3H7		C3H7	C3H7 C3H7
o		R4	Ħ	#	Ħ		ж	н н
,	bur.	R3	Ħ	#	Ħ		Ħ	н н
<i>4</i> 5	Tabelle A Fortsetzung	R2	Ħ	#	æ		Ħ	ж ж
50	Le A ro	R1	CH3	СН3	CH3		CH3	CH ₃
55 l	rabel.	Nr.	2.19	2.20	2.21		2.22	2.22

55	50	45	40	40	35	30	25	15 20	10	5
Tabel]	Tabelle A Fortsetzung	setzung	m							
Nr.	R1	R2	R3	R4 .	R5	R6	NR 7R8	physike	physikalische Eigenschaften	nschaften
2.25	CH ₃	н	æ	Ħ	C3H7	Ħ	NH (4-CH3- C6H4)			
2.26	СНЗ	ж	Ħ	ж	C3H7	æ	NH (4-NO ₂ - C ₆ H ₄)			
2.27	СН3	ж	# .	ж	C3H7	Ħ	NH (3-CH3- C6H4)			
2.28	CH3	ж	#	ж	С3Н7	æ	NH-Cyclopropyl	py1		
2.29	СНЗ	#	Ħ	Ħ	С3Н7	Ħ	NH-CH ₂ CH= C(Me) ₂	·		
2.30	CH3	Ħ	Ħ	æ	C3H7	Ħ	NH- C ₆ H4- 4- OMe	Ме		

55	50	45		40	35	30	20	20	15	10	5
Tabel1	Tabelle A Fortsetzung	setzun	ש								
Nr.	R1	R2	к3	R4	R5	R6	NR7R8	physi	kalische	physikalische Eigenschaften	haften
2.31	CH ₃	×	×	Ħ	С ₃ Н7	н	NH- C ₆ H ₄ - 3CF ₃				
2.32	CH3	æ	Ħ	æ	сн(сн3)2	Ħ	NEt ₂				
2.33		×	. =	æ	C3H7	æ	\bigvee_{z}°		Smp.:	151°C	
2.34	CH ₃	Ħ	Ħ	Ħ	СН(СН3)2	н	NH-Propyl		Smp.: 105°С	105°C	
2.35	СН3	æ	×	Ħ	СН(СН3)2	æ	NH-Butyl				
2.36	CH3	Ħ	Ħ	Ħ	СН(СН3)2	Ħ	NH-Pentyl				

5 10 15		physikalische Eigenschaften	Smp. 113°C		1H-NMR (CDCl3): d 8,16 t 7,66 d 7,19 s 6,36 t 3,76 t 2,73 s 2,71 t 2,50 s 2,36 dq 1,76 t 1,00 [ppm]	1 H-NMR (CDCl $_{3}$): d 8,19 t 7,69 d 7,19 s 6,35 m 3,86-3,70 sep 3,05
25	g c Z	NN 7R8		NCH3CH2- C6H5	- N N- CH ₃	
30	4	ж ж	Ħ	#	ж	. ш
35	ر ا	R5 СН(СН3)2	C3H7	C ₃ H ₇	C3H7	сн(сн3)2
40	4	R4 H	Ħ	#	'ш	Ħ
		н н	Ħ	· ¤	ш .	Ħ
45 + -	For tsersuig	н.	×	Ħ	E	Ħ
50 E		R1 CH3	. сн3	СН3	СН3	сн3
55 E	Taperr	Nr. 2.37	2.38	2.39	2.40	2.41

	en						
5	nschaft		129°C		.44°C	n	102°C
10	physikalische Eigenschaften	Smp.: 105°C	Smp.: 128 -	Smp.: 180°C	Smp.: 143-144°C	Smp.: 162°C	- 66 : dws
15	physik						
20	nr ⁷ r ⁸	-N N-CH3	NH- C6H4-4-C1	EN N-	$\binom{\circ}{z}$	___\\	NHCHCH3C2H5
25		, 			_	Ħ	Ħ
30	R6	н	#	æ	#		
35	ம	сн(сн3)2	СН(СН3)2	C3H7	С5Н9	C5H9	С5Н9
40	4	ļ	Ħ	#	Ħ	エ	æ
45	setzu _p 3	#	=	Ħ	Ħ	· #	Ħ
	Fort	H H	Ħ	. #	=	Ħ	Ħ
50	Tabelle A Fortsetzung	CH3	СН3	CH3	СН3	СНЗ	CH ₃
55	Tabe	Nr. 2.42	2.43	2.44	2.45	2.46	2.47

50 9 .	Tabelle A Fortsetzun	setzu	bu ·	40	35	30		20	15	5
R2		В3	R4	R5		ж6	NR ⁷ R ⁸	physika	lische Ei	physikalische Eigenschaften
Ħ		Ħ	Ħ	С5Н9		Ħ	NHCH2C6H5	Smp	Smp.: 111°C	
Ħ		Ħ	Ħ	С5Н9		н	NH HN	Sms	Smp.: 124 - 126°C	126°C
×		Ħ	#	С5Н9		Ħ	NHCH2CH=CH2	Smg	Smp.: 133°C	
Ħ	•	Ħ	Ħ	C5H9		. #	-N-CH3	H P S E	1H-NMR(CDCl3) d 7,21 s 6,36 s 2,69 t 2,50 m 1,52-1,20 t	-NMR(CDCl3) d 8,15 t 7,66 7,21 s 6,36 t 3,77 m 2,90- 2,69 t 2,50 s 2,31 m 1,90- 1,52-1,20 t 0,85 [ppm]
# ·		H	Ħ	CH ₃		ฮ	್ಧಿ	S	Smp.: 72 - '	74°C
Ħ	_	· =	Ħ	СН3		ប	N N-CH ₃	ű	Smp.: 80-83°C	Ç

5 10		physikalische Eigenschaften	Smp.: 95 - 97°C	$NHCH_2CH_2N(CH_3)_2$ ¹ H-NMR (CDCl ₃): d 8,19 t 7,66	d 7,19 s 6,16 s 2,69 m 1,78 t 0,99					1H-NWR (CDCl3): d 8,41 m 8,14 t 7,71 m 7,47 d 7,21 s 6,70 s 3,04 s 2,72 [ppm]
20		skyd	CH ₃ CH ₃	(снз)2 1н-	d 7,	инсн2сн2он	инсн2сн2осн3	H ₂ N	NHCH2CH2SCH3	1H- t 7 8 3
25		NR 7R8	ڒؠؙ	NHCH2CH2N		NHCH ₂	NHCH ₂	NCH2CH2N	NHCH ₂	NHMe
30		R6	CI	Ħ		Ħ	CI	Ħ	Br	Ħ
35			_	7		_		(снз)2сн	61	5
40		R ⁵	СН3	C3H7		CH3	СН3	1 5)	С4Н9	C6H5
	bun	R4	Ħ	H		Ħ	Ħ	Ħ	Ħ	æ
45	tsetzi	В3	Ħ	Ħ		Ħ	Ħ	×	Ħ	Ħ
	A For	R ²	×	Ħ		Ħ	Ħ	Ħ	Ħ	.
50	Tabelle A Fortsetzung	R1	CH3	CH3		CH3	CH3	CH3	CH3	CH3
55	Tal	Nr.	2.54	2.55		2.56	2.57	2.58	2.59	3.1

10		physikalische Eigenschaften	<pre>1H-NMR (CDCl3): d 8,26 m 8,10 t 7,69 m 7,45 d 7,20 s 6,75 q 3,69 s 2,71 t 1,27 [ppm]</pre>	Smp.: 120 - 122°C	: 119 - 121°C	: 127 - 129°C	Smp.: 105°C	Smp.: 134°C	Smp.: 131°C			
20		physil	1H-M t 7, g 3,	Smp.	Smp.:	Smp.:	ß	ឆ	เร	y1	7	
25		NR 7R8	NEt2	$\bigcirc_{\mathbf{z}}$	NHBu	NHPr	NHiso- Propyl	$\langle z \rangle$	(°)	NH-Propyl	NH Butyl	į
30		R6	Ħ	#	Ħ	Ħ	æ	Ħ.	Ħ	Ħ	Br	ć
35 40		R5	С6Н5	C6H5	C ₆ H ₅	C ₆ H ₅	с645	C6H5	C6H5	4-сн3-с6н4	2,4-(CH3)2-C6H3	
	but	R4	×	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	=
45	tsetzu	R3	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	æ	Ħ
	• For	R2	æ.	Ħ	æ	æ	æ	.	Ħ	Ħ	×	Ħ
50 ·	Tabelle A Fortsetzun g	R1	СН3	СНЗ	сн3	снз	СН3	CH3	снз	СН3	снз	ָלָם נ
55	Tab	Nr.	3.2	э.э	3.4	3.5	3.6	3.7	ສ. ສ	3.9	3.10	11

5		chaften	·		, .	•	
10		physikalische Eigenschaften					
15		physikalis					
20				py1			
25		NR 7R8	$\bigcirc_{\mathbf{z}}$	NH Propyl	NH Ho	NMe2	
30		Rб	ш	Ħ	ж	Ħ	
35		R5	3-Et-C ₆ H4	3-с1-с ₆ н4	2,4-C12-C ₆ H3-	4- OCH3- C6H4-	
	ıng	R4	ж	æ	Ħ	Ħ	
45	tsetzı	я3	Ħ	Ħ	Ħ	Ħ	
	A Fort	R2	Ħ	Ħ	Ħ	Ħ	
50	Tabelle A Fortsetzung	\mathbb{R}^1	CH3	CH3	CH3	снз	
55	Tab	Nr.	3.12	3.13	3.14	3.15	

50		45		40	35	30	20	15	10	5
A FO	Ĭ.	Tabelle A Fortsetzung	nng							·
R2	2	R3	R4	R5		R6	NR 7R8	physika	lische Ei	physikalische Eigenschaften
=		Ħ	#	Propyl		Br	NEt2			·
щ.	E	=	E	Propyl		Br	NH Et			
	Ħ	=	=	Propyl		Br	$\bigcirc_{\mathbf{z}}$			-
	Ħ	Ħ	#	Propyl		Br	NH Butyl			
	Ħ	ਜ਼	=	Propyl		ប	NH Propyl			
	Ħ	Ħ	Ħ	Propyl		ដ	NH iso-Propyl	ę		

5		physikalische Eigenschaften			<pre>1H-NMR (CDCl3): d 8,16 t 7,66 m 7,29 d 7,19 s 5,94 s 4,19 t 3,48 s 2,7 t 1,12 [ppm]</pre>	1H-NMR (CDCl ₃): d 8,17 t 7,66 m 7,30 d 7,18 s 6,10 s 4,12 m 3,57 s 2,70 m 1,60 [ppm]	<pre>1H-NMR (CDCl3): d 8,19 t 7,68 m 7,30 d 7,19 s 5,94 s 4,09 t 3,16 s 2,69 m 1,61 t 0,92 [ppm]</pre>	
15		ohysikalisch			lH-NMR (CDCl3): m 7,29 d 7,19 s t 3,48 s 2,7 t	1H-NMR (CDC1 n 7,30 d 7,1 n 3,57 s 2,7	1H-NMR (CDC1 m 7,30 d 7,1 t 3,16 s 2,6 [ppm]	
20					·· • +			
25		NR 7R8	${z}$	исн ₃ сн ₂ с ₆ н ₅	NEt ₂	${\mathbf{z}}$	NH Propyl	NH Et
30		R6	ប	C T	Ħ	##	Ħ	Ħ
35	•			_				
			۲۱	۲۱	6H5	6H5	6H5	6H5
40		R5	Propyl	Propyl	СН2С6Н5	сн2с6н5	сн2с6н5	CH2C6H5
		- 1		,				
	bunz	R4	Ħ	.	Ħ	#	Ħ	Ħ
45	tșet	R3	Ħ	Ħ	x	.	Ħ	=
	For	R2	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ
50	Tabelle A Fortșetzung	R^{1}	CH3	CH3	CH3	СНЗ	СН3	CH3
55	Tal	Nr.	4.9	4.10	5.1	5.2		5.4

5		haften				O		t 7,68 s 4,16 om]
10		Eigensc			·	1 - 163°C		: d 8,17 t 7,66 s 6,09 s 4,16 2,70 [ppm]
15		<u>phy</u> sikalische Eigenschaften				Smp.: 161	•	1-HNMR(CDCl3): d 8,17 t 7,68 s 7,23 d 7,19 s 6,09 s 4,16 m 3,84-3,52 s 2,70 [ppm]
20		yhd			٠			1-HN 8 7, m 3,
25		NR 7R8	NH Butyl		NMe2	$\binom{\circ}{\mathtt{z}}$	NH Pentyl	$\binom{\circ}{\mathbf{z}}$
30		R6	ш	Ħ	¤	Ħ	Ħ	Ħ
35		R5	сн2с6н5	сн2с6н5	сн2с6н5	сн2с6н5	сн2с6н5	сн2с6н5
.40	ρι	R4	=	×	Ħ	×	#	Ħ
45	setzm	R3	Ħ	Ħ	×	×	m	×
45	Fort	R2	æ	· =	Ħ	Ħ	Ħ	æ
50	Tabelle A Fortsetzung	R1	СНЗ	CH ₃	CH3	CH3	CH ₃	СН3
<i>EE</i>	Tab	Nr.	5.5	5. 6	5.7		5.9	5.10
55								•

5 10	physikalische Eigenschaften	1 samp(CDC1,); d 8,18 t 7,68	s 7,29 d 7,19 s 6,12 s 4,18 t 3,64 s 2,70 t 2,43 s 2,30 [ppm]	Smp.: 172 - 174°C	1H-NMR (CDCl3): d 8,21 t 7,71 m 7,24 m 6,98 s 6,60 s 5,23 q 3,59 s 2,72 t 1,19 [ppm]	Smp.: 122°C	Smp.: 134°C	1H-NMR (CDCl3): d 8,16 t 7,64 d 7,17 s 6,35 s 2,6 m 1,65 m 1,20 [ppm]
20	8		N- CH ₃	NHC6H4-4-Cl	£2		Z e	
25	NR 7R8			NHC	NHEt2		NMe2	Z
30	R6		È	Ħ	· #	Ħ	Ħ	Ħ
35	ទ	N. T.	сн2с ₆ н5	сн ₂ с ₆ н ₅	CH20C6H5	CH20C6H5	CH2OC6H5	CH ₂ CH ₂ -Cyclo-
	pi 4.		#	Ħ	æ	Ħ	#	Ħ
45	setzun	22	Ħ	#	Ħ	Ħ	x	Ħ
	Fort	22	Ħ	Ħ	Ħ	. #	Ħ	Ħ
50	Tabelle A Fortsetzung	R1	СНЗ	CH3	CH3	CH3	CH3	CH3
5 5	Tab	Nr.	5.11	5.12	6.1	6.2	6.3	4.

55	50		45		40	35	30	25	20	15	10	5
Tak	rabelle A Fortsetzung	/ Fort	tsetzu	bui								
Nr.	R1	R ²	R3	R4	R5		R6	NR ⁷ R ⁸		physikali	physikalische Eigenschaften	schaften
	CH3	#	#	Ħ	CH2CH2-Cyclo- pentyl	Cyclo-	ж	NH Propyl		1H-NMR (C d 7,16 s m 1,71 t	¹ H-NMR (CDCl ₃): d 8,15 t 7, d 7,16 s 6,16 t 3,26 s 2,63 m 1,71 t 0,97 [ppm]	1H-NMR (CDCl3): d 8,15 t 7,62 d 7,16 s 6,16 t 3,26 s 2,63 m 1,71 t 0,97 [ppm]
9.9	CH3	=	Ħ	Ħ	CH2CH2-Cyclo- pentyl	Cyclo-	Ħ	NHMe		1H-NMR (Cd 1,9 s 6 s 2,66 m	in-NMR (CDCl3): d 8,19 t 7 d 1,9 s 6,19 q 5,60 d 2,94 s 2,66 m 1,69 [ppm]	¹ H-NMR (CDCl ₃): d 8,19 t 7,69 d 1,9 s 6,19 q 5,60 d 2,94 s 2,66 m 1,69 [ppm]
6.7	CH3	æ	Ħ	=	CH ₂ CH ₂ -Cyclo- pentyl	Cyclo-	æ	NCH3CH2C6H5	5H5	¹ H-NMR (C m 7,26 d s 3,13 s	1H-NMR (CDCl3): d 8,14 t 7 m 7,26 d 7,16 s 6,31 s 4,8 s 3,13 s 2,70 m 1,62 [ppm]	1H-NMR (CDCl ₃): d 8,14 t 7,64 m 7,26 d 7,16 s 6,31 s 4,89 s 3,13 s 2,70 m 1,62 [ppm]
6.8	CH3	##	æ	Ħ	СН20С6Н5	5	æ	NH Propyl		Smp.	Smp.: 152 - 15	153°C
6.9	CH3	×	#	Ħ	CH2CH2C3	CH2CH2Cyclopentyl	н T	(°)		Smp.	1 8 6	100°C
6.10	СН3	Ħ	Ħ	Ħ	CH20C6H5	5H5	Ħ	NEt2		Smp.	Smp.: 142°C	·

5 10 15		physikalische Eigenschaften	Smp.: 122 - 123°C	Smp.: 134 - 136°C	Smp.: 125°C	Smp.: 109°C	¹ H-NMR (CDCl ₃): d 8,11 t 7,66 d 7,18 q 3,69 s 2,70 s 2,66 t 1,33 [ppm]	¹ H-NMR (CDCl ₃): d 8,16 t 7,68 d 7,19 q 3,26 s 2,70 s 2,64 [ppm]
25		NR 7R8	Ç	N(CH3)2	$\binom{\circ}{z}$	NCH3C6H5	NEt2	NMe ₂
30		R6	. 	æ	æ	щ	ជ	CI
35		R5	сн2ос6н5	сн20с6н5	CH20C6H5	CH ₂ OC ₆ H ₅	CH3	снз
	ng	R4	æ	#	æ	Ħ	Ħ	×
45	tsetzı	R3	Ħ	· #	Ħ	Ħ	Ħ.	Ħ
	A For	R2	Ħ	д	=	×	.	Ħ
50	Tabelle A Fortsetzung	R_1	СНЗ	СН3	GH 3	CH3	CH3	СНЗ
55	Tab	Nr.	6.11	6.12	6.13	6.14	7.1	7.2

5		physikalische Eigenschaften					d 8,14 t 7,64 3,81 s 3,46
10		sche Eige	107				(3): 56 s
15		physikal	Smp.: 106 -107		·		1H-NWR (CDC) d 7,16 s 4,5 s 2,64 [ppm]
20							
25		NR 7R8	NH Propyl	NH Propyl	NH Butyl		OCH3 NHC3H7
30		R6	G	ш	ш	OCH ₃	ОСН3
35			m	m	m.	MeOCH ₂	MeOCH ₂
40		R5	CH3	CF3	CF3	Me(₩
	ng	R4	Ħ	æ	Ħ	æ	Ħ
45	setzu	В3	Ħ	· #	H	Ħ	#
	Fort	R2	Ħ	Ħ	#	Ħ	Ħ
50	Tabelle A Fortsetzung	R1	CH ₃	CH3	CH3	CH ₃	CH3
55	Ta	Nr.	7.3	7.4	7.5	7.6	7.7

55	50		45		40	35	30	25	20	15	10	5
Tab	Tabelle A Fortsetzung	Fort	setzu	ing				· •				
Nr.	R1	R2	R3	R4	R5		R6	NR 7R8	хча	sikalische	physikalische Eigenschaften	ften
7.8	снз	Ħ	Ħ	ш	меосн ₂	. •	осн3	NEt ₂	1 _H -d 7	1H-NMR(CDCi3): d 8,08 d 7,16 s 4,59 g 3,67 s 2,66 t 1,24 [ppm]	υ α T	3,49
7.9	СНЗ	Ħ	Ħ	E	меосн2		оснз	М НС6 ^Н 5				
7.10	CH ₃	#	×	æ	н ₃ сосн ₂		0CH3	NHC2H5		Smp	102°C	
7.11	CH ₃	# .	Ħ	Ħ	н ₃ сосн ₂		оснз	NHCH2C6H5		Smp.:	120 - 121°C	7)
7.12	CH3	æ	, =	×	н3сосн2		оснз			: · dws	129°C	
7.13	СНЗ	=	Ħ	Ħ	C3H7		Br	NHC3H7		Smp.: 77°C	77°C	

55	50		45		40	35	30	25	20	15	10	5
Tal	Tabelle A Fortsetzung	A Fort	tsetzu	buı								
Nr.	R1	R2	R3	R4	R5		R6	NR ⁷ R ⁸	physi	physikalische Eigenschaften	igenschaf	ten
7.14	CH3	×	Ħ	Ħ	C3H7		Br	N(C ₂ H ₅) ₂		Smp.: 95°C		
7.15	CH3	Ħ	Ħ	#	C3H7	. ·	Вг	· (°)	·	Smp.: 89°C		
7.16	CH ₃	¤ .	· æ	#	C3H7	•	Br	N(CH ₃) ₂		Smp.: 103°C	D	
7.17	CH3	Ħ	Ħ	н	C3H7		Br	N N-CH ₃		•		
7.18	CH3	Ħ	#	Ħ	CH3		CI .	(°)		Smp.: 72 -	74°C	
7.19	CH ₃	.	Ħ	=	CH3		ប	N N-CH ₃		Smp.: 80 -	83°C	

physikalische Eigenschaften Smp.: 95 - 97°C Smp.: 95 - 97°C d 7,17 s 3,14 m 2,91 s 2,66 m 2,35 m 1,84 [ppm] 1H-NMR (CDCl3): d 8,14 t 7,68 d 7,17 m 3,85 m 3,47 m 3,05 s 2,68 m 2,59 m 1,86 [ppm] th-NMR (CDCl3): d 8,16 t 7,64 d 7,15 m 3,71 t 2,97 t 2,78 s 2,66 m 1,86 [ppm] Smp.: 170 - 172°C	Smp.: 153 - 154°C
llische Eige c.: 95 - 97 c.: 95 - 97 c.: 95 - 97 a 3,14 m 2 m 1,84 [ppr m 1,84 [ppr cDCl3): d m 3,85 m 3 m 2,59 m 1 cDCl3): d m 3,85 m 3 m 1,86 [ppr	153 -
	Smp.
2,35 1H-NMR d 7,17 m 2,35 d 7,17 s 2,68 d 7,17 s 2,68 d 7,17 s 2,68 s 2,68 s 2,66 s 2,66	
20	
NR ⁷ R ⁸ NHCH ₃ NH Propyl	NEt2
- (CH ₂) ₄	-(CH2)4-
35	
CH ₃	
ия ж н н н н н	Ħ
ж н н н ж ж н н н н н н н н н н н н н н	×
н н н н н н н н н н н н н н н н н н н	Ħ
Tabelle A Fortsetzung R1 R2 R3 R CH3 H H H CH3 H H H CH3 H H H CH3 H H H H	CH3
R. 2 8.3 8.4	S. 8

5 10		physikalische Eigenschaften	141 - 144°C	•				
15		physika]	Smp.:			·		
20				h r t	15			
25		NR 7R8	ڔۣٛؠ	МНСН2С≡С- Н	NCH3CH2C6H5	NH Propyl		NH Butyl
30		R6	-(CH2)4-	-(CH2)4-	- (СН2)4-	OCH3	0CH ₃	Ħ
35)	5) -	۵) -	·		
40		R5		·		Ħ	Ħ	Ħ
	ng	R4	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ
45	tsetzu	R3	#	Ħ	Ħ	Ħ	#	Ħ
	For	R2	Ħ	Ħ	Ħ	Ħ	I	Ħ
50	Tabelle A Fortsetzung	R1	CH3	CH ₃	CH3	CH3	СН3	CH ₃
65	Ta .	Nr.	8.6	. 8.7	8	9.1	9.	9.3

5 10 15		physikalische Eigenschaften			1H-NMR (CDCl ₃): d 8,14 t 7,54 d 7,20 s 6,38 q 3,58 s 2,68 t 1,23 [ppm]				
			γl				.y1	y1	y1
25		NR 7R8	NH Propyl		NEt2		OCH ₃ NH Pentyl	NH Propyl	NH Propyl
30		R6	н		Ħ	Ħ	OCH3	æ	Ħ
35		2				г.	=	NH Propyl	NH Et
40		R5	H		ប៊	C	ជ	Z	Z
	bun	R4	Ħ		Ħ	Ħ	æ	Ħ	H
45	tsetz	R3	#		=	Ħ	. #		Ħ
	Fort	R2	Ħ	.•	æ	Ħ	Ħ	. 	Ħ
50	Tabelle A Fortsetzung	R1	снз		СНЗ	CH3	СН3	СН3	CH3
55	Ta	Nr.	9.4		9.5	9.6	9.7	8.6	6.6

		en						
5		schaft					•	
10		Eigen						
45		physikalische Eigenschaften			·			
15		physik						
20							ر ا	<u>ر</u> ا
25		NR 7R8	NH Et	NEt2	NHMe .	NH Butyl	NH Propyl	NH Propyl
30		R6	Ħ	Ħ	Ħ	CH3	E E	CH ₃
35			<u>ق</u>			Տ- Ը6મ4- 4- Ը1		
40		R5	0C4H9	OCH3	SMe		Ħ	Ħ
	bun	R4	Ħ	æ	Ħ	Ħ	#	Ħ
45	tsetz	R3	E	Ħ	Ħ	Ħ	Ħ	Ħ
	A For	R2	Ħ	#	Ħ	Ħ	Ħ	Ħ
50	Tabelle A Fortsetzung	R1	CH3	CH3	СНЗ	СН3	CH3	CH3
55	Tak	Nr.	9.10	9.11	9.12	9.13	9.14	9.15

5 10 15		physikalische Eigenschaften	Smp.: 79 - 81°C	1H-NMR(CDCl3): d 8,14 t 7,68 d 7,21 s 6,37 q 3,56 s 2,67 + 1 20 [nnm]	Smp.: 159°C	Smp.: 135°C	1H-NMR (CDCl3): dd 8,36 s 6,30 s 3,22 s 2,51 [ppm]
20				•			
25		NR 7R8	NEt2	NEt2	$\binom{\circ}{z}$	NHC3H7	NMe2
30		R6	Ħ	Ħ	ж	Ħ	ж
35 40		R5	NHC3H7	c1	CI	OC2H5	снз
40	Бu	R4	Ħ	æ	Ħ	Ħ	Ħ
45	setzu	ж3	Ħ	ж	Ħ	. ж	#
	. Fort	R2	Ħ	- #	æ		Ħ
50	Tabelle A Fortsetzung	R1	CH3	CH ₃	СН3	E	C6H5
55	Tab	Nr.	9.16	9.17 -	9.18	9.19	10.1

5		haften	,32 s 6,26 [ppm]	,33 s 6,19 t 0,98	,39 s 6,17 ,28 [ppm]		1H-NMR (CDCl3): dd 8,28 s 6,21 q 3,61 t 2,73 m 1,80 t 1,24 t 1,02 [ppm]	. 1H-NMR (CDCl3): dd 8,31 s 6,15 t 5,28 m 3,27 t 2,70 m 1,72 t 1,01 t 1,03 [ppm]
10		che Eigensc	(CDCl ₃): dd 8,32 s s 2,51 t 1,23 [ppm]	<pre>1H-NMR (CDCl3): dd 8,33 s 6,19 t 3,24 s 2,47 m 1,65 t 0,98 [ppm]</pre>	1H-NMR (CDCl ₃): dd 8,39 s 6,17 sept 3,92 s 2,50 d 1,28 [ppm]		1H-NMR (CDCl3): dd 8,28 s 6 q 3,61 t 2,73 m 1,80 t 1,24 t 1,02 [ppm]	1H-NMR (CDCl3): dd 8,31 s 6 t 5,28 m 3,27 t 2,70 m 1,72 t 1,01 t 1,03 [ppm]
15		physikalische Eigenschaften	1H-NMR (CDCl ₃): dd 8,32 s 6,26 q 3,62 s 2,51 t 1,23 [ppm]	1H-NMR (CD t 3,24 s 2 [ppm]	1H-NMR (CD sept 3,92		1H-NWR (CDCl ₃ q 3,61 t 2,73 t 1,02 [ppm]	1H-NMR (C t 5,28 m t 1,01 t
20					ropyl	NH- (3,5-C1 ₂ -C6H3)	•	уl
25		NR 7R8	NEt2	NH Propy ¹	NH iso-Propyl	NH- (3,5-	NEt2	NH Propyl
30		R6	#	н	æ	CH ₃	æ	ж
35			•					
		R5	СНЗ	CH3	. СН3	CH ₃	C3H7	C3H7
40	bu	R4	Ħ	æ	Ħ	Ħ	#	Ħ
	setzu	R ³	Ħ	×	Ħ	#	` #	Ħ
45	Fort	R2	ж	Ħ	Ħ	Ħ	Ħ	· ##
50	Tabelle A Fortsetzung	_R 1	C6H5	C6H5	C6H5	C6H5	C6H5	C6H5
	Tab	Z.	10.2	10.3	10.4	10.5	11.1	11.2
55								

		ten	1,00		٠			d 8,49 6,73
5		Eigenschaften	dd 8,33 1,82 t 1				156°C	48,81 d7,41 s 6
10			(CDCl3): c t 2,76 m 1				155 - 156	¹ H-NMR (CDCl ₃): d 8,81 d m 8,10 t 7,81 m 7,41 s 6, q 3,69 t 1,26 [ppm]
15		physikalische	1H-NMR (s 3,20 t [ppm]				Smpkt.:	1H-NMR (C m 8,10 t q 3,69 t
20				CH=CH2	NHCH2-CH=CH-CH3 E-Isomeres	NHCH2-CH=CH-CH3 Z-Isomeres		
25		NR 7R8	NMe2	NH-CH2-CH=CH2	NHCH2-CH=C E-Isomeres	NHCH2-CH=C Z-Isomeres	NEt2	\bigcirc
30		R6	III.	æ	Ħ	СНЗ	н	щ
35		R5	C3H7	C3H7	C3H7	C3H7	С6Н5	C6H5
40	bur	R4	Ħ	#	ж	æ	Ħ	Ħ
	tsetzı	ж3	×	Ħ	Ħ	#	æ	Ħ
45	For	R2	×	Ħ	Ħ	Ħ	Ħ	æ
	Tabelle A Fortsetzung	R1	С6Н5	C6H5	C6H5	C ₆ H ₅	Ħ	æ
50	Tab	Nr.	11.3	11.4	11.5	11.6	20.1	20.3

5		physikalische Eigenschaften	120°C					, 0 0
10		kalische Ei	Smp.: 118 -					
15		physi						_
20			py1	NH iso-Propyl		N-Me		
25	1	NR /RB	NH Propyl	NH isc	NHWe		NMe2	
		o O	Ħ	ж	×	ш	Ħ	3
30		Ro	C ₆ H ₅	C6H5	C ₆ H ₅	C6H5	C6H5	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
35	5	R4	Ħ	Ħ	н	ж	Ħ	Ħ
	ng	R	Ħ	·#	Ħ	#	æ	Ħ
40	rtsetzu	R2	Ħ	Ħ	Ħ	.	Ħ	Ħ
45	Tabelle A Fortsetzung	RI	***	H		: :::::::::::::::::::::::::::::::::::	Ħ	
	abel		#	#	#			
50	H	Ä.	20.3	20.4	20.5	20.6	20.7	a C

	•	en							7,85		t 7,81	1,23	
5		nschaft					-117°C		d 8,34 t 6,92 s 6,		8,30	ר נ	
10		physikalische Eigenschaften	Smp.: 146°C	•	Smp.: 123°C	Smp.: 82°C	Smp.: 115 -1		1H-NMR (CDC13): d d 7,56 d 7,23 d 6,		7		
15		physikal	Smp		Smg	Smi	Smj		¹ H-NMR d 7,56		TH-NMR	s 5,39 [mqq]	7 3 . 3 . 1
20					(CH3)2		H3)2						
25		NR ⁷ R ⁸	NHC3H7		NHCH ₂ CH(CH ₃) ₂	$\binom{\circ}{z}$	NHCH(CH ₃) ₂		NMe ₂		NEt2		
30		R6	æ		Ħ	Ħ	Ħ		Ħ		Ħ		
<i>3</i> 5		_R 5	СН3		CH3	СН3	CH3		CH3		CH3		
		R4	Ħ		Ħ	Ħ	×		Ħ		Ħ		
. 40	рu	к3	Ħ		Ħ	Ħ	Ħ	•	Ħ		Ħ		
	etzu	R2	Ħ		Ħ	Ħ	Ħ	•	Ħ		=		
45	Tabelle A Fortsetzung	R1	×		ĸ	 æ	Ħ		4-C1-C6H4- OCH2	1	4-C1-C ₆ H4-	OCH ₂	
50	Tabe	Nr.	20.9		20.10	.20.11	20.12		30.1		30.2		

10		physikalische Eigenschaften				1H-NMR (CDCl ₃): d 8,29 t 7,81 d 7,54 d 7,24 d 6,93 s 6,24 s 5,36 q 3,6 t 2,74 m 1,81 t 1,25 t 1,02 [ppm]	1H-NMR (CDCl ₃): d 8,31 t 7,81 d 7,54 d 7,23 d 6,93 s 6,30 s 5,34 s 3,19 t 2,74 m 1,83 t 1,01 [ppm]
20		ld				1. T G L	t a a t
25		NR 7RB	NH Propyl	NHEt		NEt2	NMe2
30		R6	Ħ	Ħ	ж	Ħ	Ħ.
35		R5	СН3	CH ₃	СН3	Propyl	Propyl
		R4	Ħ	#	Ħ	×	Ħ
40	ng	R3	Ħ	Ħ	Ħ	. ##	Ħ
45	setzu	R2	#	Ħ	Ħ		Ħ
50	Tabelle A Fortsetzung	R1	4-с1-с ₆ н ₄ - о́сн ₂	С6Н5-ОСН2	2,6-(Me)2- C ₆ H ₃	4-Cl-C ₆ H4- OCH ₂	4-с1-с ₆ н ₄ - осн ₂
55	Tab	Nr.	30.3	30.4	30.5	31.1	31.2

Tap 55	S & A	etzur		40	35	30		5 10 15
Nr.	R1	R2	R3	R4	R5	R6	NR ⁷ R ⁸	physikalische Eigenschaften
31.3	4-C1-C6H4- OCH2	Ħ	Ħ	×	Propyl	×	NH Propyl	1H-NMR (CDCl ₃): d 8,31 t 7,82 d 7,24 d 6,91 d 6,18 s 5,34 m 3,26 t 2,71 m 1,70 t 1,01 [ppm]
31.4	4-C1-C6H4- OCH2	Ħ	æ	≖ .	Propyl	# '	NCH3C6H5	Smp.: 139 - 140°C
40.1	4-C1-C6H4- O-C6H4-OCH2	m a	斑	æ	сн3	Ħ	NEt2	<pre>1H-NMR (DMSO-d₆): d 8,21 t 7,92 d 7,58 d 7,37 dd 7,09 d 6,94 s 6,51 s 5,28 q 3,58 s 2,35 t 1,14 [ppm]</pre>
41.1	4-C1-C6H4- 0-C6H4-OCH2	E	Ħ	×	Propyl	耳	NEt ₂	1H-NMR (DMSO-d ₆): d 8,21 t 7,94 d 7,60 d 7,39 dd 7,09 d 6,94 s 6,50 s 5,23 q 3,59 t 2,63 m 1,71 t 1,15 t 0,96 [ppm]
50.1	с6н5сн2	Ħ	Ħ	Ħ	Propyl	ж	мнсен5	Smp.: 116°C
50.2	C ₆ H ₅ CH ₂	Ħ	Ħ	æ	Propyl	Ħ	NCH3C6H5	

5 10 15 20 25		R6 NR7R8 physikalische Eigenschaften	yl H NH Propyl	yl H NH Pentyl	ул н М	opyl H NH Propyl	opyl H NEt2	
35		R5	Propyl	Propyl	Propyl	iso-Propyl	iso-Propyl	- 1
40		R4	Ħ	Ħ	Ħ	Ħ	. #	:
	bu	В3	æ	Ħ	Ħ	Ħ	Ħ	;
45	setzu	R2	×	=	×	. #	m .	:
50	Tabelle A Fortsetzung	R1	С6Н5СН2	С645СН2	С6Н5СН2	C6H5CH2	с6н5сн2	;
55	Tab	Nr.	50.3	50.4	50.5	50.6	50.7	

5		nschaften					ပွ	ပ	
10		physikalische Eigenschaften		೨ ₀ 86	Smp.: 127°C	Smp.: 154°C	115 - 117°C	162 - 163°C	Smp.: 164°C
15		physikal		Smp.:	Smp.:	Smp.:	: · dwg	Smp.:	Smb.
20									
25		NR 7R8		N(C ₂ H ₅) ₂	NHC3H7	N(CH ₃) ₂		$\binom{\circ}{z}$	CH ₃
30		R6	yl H	# •	Ħ	æ	æ	æ	æ
35		R5	iso-Propyl	C3H7	C3H7	С3H7	C3H7	С3H7	C. H.
40		R4	Ħ	=	æ	Ħ	Ħ	Ħ	#
	ığ	к3	. #	#	Ħ	Ħ	· ==	Ħ	;:
45	setzu	R2	Ħ,	Ħ	Ħ	#	Ħ	Œ	Ħ
50	Tabelle A Fortsetzung	R1	С6Н5СН2	С6Н5СН2	C ₆ H ₅ CH ₂	C ₆ H ₅ CH ₂	С6Н5СН2	С6Н5СН2	ביו איירויט אריירויט
55	Tabe	Nr.	6.03	50.10	50.11	50.12	50.13	50.14	

5 10		physikalische Eigenschaften	Smp.: 134°C	Smp.: 170°C	Smp.: 147 - 148°C	Smp.: 119°C	Smp.: 99 - 101°C	Smp.: 139°C	Smp.: 147°C	
20		physik	01		u,			-		
25		NR 7R8	N N- CH ₃	(N)	NHC3H7	N(C2H5)2	$\binom{\circ}{z}$	္ရွိ	NHC3H7	
30		R6	Ħ	Ħ	Ħ	Ħ	Ħ	æ	Ħ	
35	•	RS	C3H7	C3H7	C ₆ H ₅	C6H5	C6H5	C5H9	C5H9	
40	-	R4	æ	æ	æ	Ħ	н	=	H .	
	nng	в3	æ	.	Ħ	Ħ	Ħ	Ħ	x	
45	tsetz	R2	н	Ħ	# .	×	щ	` #	æ	
50	Tabelle A Fortsetzung	R1	50.16 С ₆ Н5СН2	C6H5CH2	C ₆ H ₅ CH ₂	C6H5CH2	CeH5CH2	С6Н5СН2	С6Н5СН2	
	Tabe	Nr.	50.16	50.17	51.1	51.2	51.3	. 22.1	52.2	

		cen		7,64 8 4 3-1,15					
5	٠	yenschaft		Cl3): d 8,16 t 7 18 d 8,01 s 6,38 3,78 m 2,90-2,74 1,91-1,60 m 1,50 76 [ppm]			116°C	133°C	·
10		physikalische Eigenschaften	.: 133°C	1H-NMR(CDCl3): d 8,16 t 7,64 m 7,37-7,18 d 8,01 s 6,38 s 4,35 t 3,78 m 2,90-2,74 t 2,52 m 1,91-1,60 m 1,50-1,15 m 1,02-0,76 [ppm]	Smp.: 149°C	.: 162°C	.: 114 -	.: 130 -	Smp.: 145°C
15		physikal	Smp.:	1H-NMR(CD m 7,37-7, s 4,35 t t 2,52 m m 1,02-0,	ЗшS	Smp.:	Smp.:	Smp.:	Smp
20						Ŋ		2	
25		NR 7R8	инс5н9	N N-CH ₃	NHC3H7	инснсн3с2н5	$\binom{\circ}{z}$	NНСН2СН=СН2	NHCH2C6H5
30		R6	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ
35		R5	С5Н9		С6Н5СН2	сен5сн2	с6н5сн2	с6н5сн2	C6H5CH2
40		R4	Ħ	=	.	Ħ	Ħ	#	Ħ
	ng	R3	Ħ	×	Ħ	Ħ	Ħ	Ħ	Ħ
4 5	setzu	R2	Ħ	×	Ħ	н	×	` EE	· ¤
50	Tabelle A Fortsetzung	R1	C6H5CH2	с ₆ н5сн2	с6н5сн2	C6H5CH2	С6Н5СН2	C6H5CH2	C6H5CH2
55	Tat	Nr.	52.4	52.5	53.1	53.2	53.3	53.4	53.5

5. 10 15	physikalische Eigenschaften	1H-NMR (CDC13): d 8,24 t 7,80 d 7,49 s 6,35 s 4,76 m 3,69 t 2,71 m 1,65 t 0,97 [ppm]				Smp.: 116 -117°C	1H-NMR (CDC13): d 8,50 m 8,13 t 7,85 m 7,49 s 6,71 s 4,79 s 3,49 m 3,36 m 1,72 t 1,04	[wdd]
25	NR 7R8		NH Propyl	NH Propyl	NCH2C6H5	$\binom{\circ}{z}$	NH Propyl	
30	ж ₆	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	
35	R5	Propyl	Propyl	iso-Propyl H	Propyl	Propyl	C6H5	
40	R4	Ħ	ж	æ	Ħ	Ħ	Ħ	
-	я В3	Ħ	Ħ	# . ,	Ħ	Ħ	Ħ	
45	etzunç R ²	Ħ	Ħ	æ	æ	Ë	. #	
50	Tabelle A Fortsetzung	н3сосн2	н3сосн2	н3сосн2	CH30CH2	снзосн2	нзсосн2	
55		Nr. 71.1	71.2	71.3	71.4	71.5	72.1	

55	50	45	40	40	35	30	25	20	15	10	5
Tal	Tabelle A Fortsetzung	setzun	£g.								
Nr.	R1	R2	R3	R4	R5	R6	NR7R8		physikali	physikalische Eigenschaften	chaften
72.2	н3сосн2	#		Ħ	C ₆ H ₅	ж	NEt ₂		1H-NMR (CDC13): t 7,82 m 7,46 s q 3,68 s 3,49 t	જ ં તં	d 8,35 m 8,11 6,74 s 4,78 1,24 [ppm]
72.3	нзсосн2	Ħ	н	Ħ	C ₆ H ₅	Ħ	$\binom{\circ}{\mathtt{z}}$		Smp.:	147 -	148°C ·
80.1	C3H7	Ħ	Ħ	Ħ	C3H7	ж	NH Propyl				
80.2	C3H7	Ħ	Ħ	Ħ	C3H7	##					
80.3	C3H7 .	#	Ħ	æ	C3H7	Ħ	NMe2		·		
80.4	C3H7	Ħ	Ħ	Ħ	СН(СН3)2 Н	H	NH Butyl				
80.5	C3H7	æ	Ħ	Ħ	СН(СН3)2 Н	н	NH Propyl				

55	50	45	40	46	35	30	25	20	15	10	5	
Ta	Tabelle A Fortsetzung	setzun	ğ									
Nr.	R1	R2	R3	R4	R5	R6	NR ⁷ R ⁸	ta	physikalische Eigenschaften	he Eigens	schaften	
80.6	С3H7	æ	Ħ	Ħ	СН(СН3)2 Н	æ	NHEt			·	•	
80.7	С3Н7	×	Ħ	Ħ	с6н5	Ħ	NH Butyl					
90.1	CH ₃	Ħ	CH3	н	Propyl	Ħ	NH Propyl					
90.2	CH ₃	Ħ	CH3	Ħ	Propyl	Ħ	NHEt				·	
90.3	CH ₃	. ж	СН3	×	Propyl	×	Me2				·	
90.4	снз	=	CH3	Ħ	iso-Propyl H	Ħ	$\bigcirc_{\mathbf{z}}$					

55	50	4 5	40		35	30	20	15		10	5
Tab	Tabelle A Fortsetzung	tsetzun	D								
Nr.	R1	R2	В3	R4	R5	R6	NR7R8	physi	kalisch.	physikalische Eigenschaften	chaften
100.1	æ	Ħ	既	H	Propyl	×	NH Propyl				
100.2	æ	. ##	គ វ	Ħ	Propyl	æ	Q		-		
100.3	H	Ħ	可	Ħ	Propyl	H	. NH- iso-Propyl	. ·	-	·	
100.4	Ħ	=	瓦	Ħ	C6H5	æ	WHEt				
100.5	æ	##	四	Ħ	C ₆ H ₅	.	NEt2				·
100.6	Ħ	Ħ	瓦	Ħ	SH92	Ħ	NMe2				·

5		aften				,		
10		Eigensch			,	128°C	·	
15		physikalische Eigenschaften			Smp.: 108°С	Smp.: 127 -	Smp.: 133°C	Smp: 125°C
20								
25		NR7R8	NH Propyl	NMe2	NH Propyl	МНМе	GH CH	$\binom{\circ}{z}$
30		R6	Ħ	Œ	æ	Ħ	z	Ħ
35		4 R5	iso-Propyl H	iso-Propyl H	Propyl	Propyl	C3H7	C3H7
		R4	H	Ħ	Ħ	æ	· #	Ħ
40	ng	В3	西	Et	Ħ	Ħ	×	Ħ
	etzu	R2	×	Ħ	. CH3	CH ₃	С Н.3	СН3
45	Forts							
50 ·	Tabelle A Fortsetzung	R1	æ	#	CH ₃	CH ₃	CH ₃	CH3
	Ta	Nr.	100.7	100.8	101.1	101.2	101.3	101.4
65								

						•	•		
5		nschaften							7)
10		physikalische Elgenschaften	87°C	່ ວູ99	111°C	Smp.: 127°C	၁့ 08	. 155°C	: 86 - 88°C
15		physikal	: đws	S. das	: dws	Smp.:	Smp.	Smp.:	Smp.
20									
25		NR7R8	N-CH ₃		NHC5H11	$\mathring{\mathbb{Q}}$	NHC3H7	N N-CH ₃	NHC5H11
30		R5 R6	С3Н7 Н	с6н5сн2	С6Н5СН2	C ₆ H ₅ CH ₂	- (CH ₂)4-	- (CH ₂)4-	- (CH ₂) ₄ -
35		R4	×	#	= .	#	H	Ħ	н
		R ³	Ħ	Ħ	Ħ	Ħ	Ħ	æ	×
40	tzung	R2	CH3	CH3	CH3	СН3	СНЗ	СНЗ	CH3
45	Tabelle A Fortsetzung		снз	СН ₃	CH ₃	CH ₃	CH ₃	СНЗ	CH ₃
50	Tabel	Nr. R1	101.5 ຕ	101.6	101.7 C	101.8 C	101.9	101.10 0	101.11

		1	•	•			-				
5		schaften		•	ູນ				136°C		
10		che Eigen	၁ ₀ 96		112 -113°C	139°C	185°C		135 -	٠	112°C
15	•	physikalische Eigenschaften	Smp.		Smp.:	Smp.:	Smp.:		Smp.:		Smp.:
20											
25		NR ⁷ R ⁸	NEt2		NHEt	NHC3H7	$\binom{\circ}{z}$		N NCH ₃		NHC5H11
30		R6	C ₆ H ₅		C6H5	Ħ	Ħ		#		Ħ
35		RS	ш		ш	C6H5CH2	С6н5СН2		C6H5CH2		С6Н5СН2
		R4	Ħ		Ħ	Ħ	Ħ		Ħ		Ħ
40	ng	В3	Ħ		H	Ħ	H		Ħ		Ħ
45	rtsetzu	R2	Ħ		H	Ħ	Ħ	•	Ħ		Ħ
50	Tabelle A Fortsetzung	R1	Propyl		Propyl	C3H7	C3H7		C3H7		C3H7
55	Tab	Nr.	102.1		102.2	102.3	102.4		102.5		102.6

55	50	45		40	35	30	25	20	15	10	5
Tabe	Tabelle A Fortsetzung	setzun	מַ								
Nr	R1	R2	к3	R4	R5 R	Rб	NR 7R8	skyd	physikalische	Eigenschaften	ften
.02.7	C3H7	Ħ	Ħ	Ħ	с6н5сн2 н		инсн2С6н5		Smp.: 156	6 - 159°C	
										-	
102.8	C3H7	Ħ	Ħ	Ħ	(CH ₂) ₂ - H Cyclopentyl		NHC3H7		Smp.: 112	2 - 114°C	
6.201	C3H7	Ħ	Ħ	Ħ	(CH ₂) ₂ - H Cyclopentyl	 .	$\binom{\circ}{z}$		Smp.: 174°C	5°4	
102.10	C3H7	#	Ħ	=	(CH ₂) ₂ - H Cyclopentyl	beet s			Smp.: 170°C	ວູດ	
102.11	C3H7	#	æ	Ħ	(CH ₂)2- H Cyclopentyl	**	NHCH2CH=CH2		Smp.: 141	11 - 143°C	
102.12	C3H7	Ħ	Ħ	Ħ	(CH ₂) ₂ - H Cyclopentyl	m:	N NCH3		Smp.: 15	Smp.: 158 - 160°C	

55	50	45		40	35	30	25	20	15	10	5
Tat	Tabelle A Fortsetzun	setzun	Dg.								
Nr.	R1	R2	. В	R4	R5	R6	NR 7R8	skyd	physikalische	Eigenschaften	ten
102.13	C ₃ H ₇	Ħ	¤ .	Ħ	сн3осн2	OCH3	NHC3H7	w	Smp.: 87 -	ວູ 68	
102.14	C3H7	#	Ħ	Ħ	сн3осн2	оснз	$ ho_z$	W	Smp.: 135°C		
102.15	C3H7		Ħ		снзосн2	осн3	N-CH ₃	W	Smp.: 121 -	. 122°C	
102.16	C3H7	×	æ	æ	CH ₃	ជ	NHC3H7	w	Smp.: 99°C		
102.17	C3H7	· #	Ħ	_ #	CH3	ij	o Ž	ω	Smp.: 161°C	ę\	
102.18	C3H7	æ	æ	Ħ	CH ₃	ដ	NHCH2CH=CH2	Ø	Smp.: 128°C	73	

55	50	45	40		35	30	25	20	15	10	5
Tab	Tabelle A Fortsetzung	tsetzu	ng								
Nr.	R1	R2	В3	R4	R5	R6	NR 7R8		physikal	ische Eig	physikalische Eigenschaften
102.19	С3Н7	Ħ	Ħ	Ħ	СНЗ	ដ	NHC5H11		3. o mS	Smp.: 112°C	
102.20	C3H7	Ħ	#	Ħ	C3H7	z ,			Smp.:	: 61 - 63°C	ပ္
102.21	С3Н7	Ħ	x	Ħ	C3H7	Ħ	NHC5H11		Smb.:	: 75°C	
102.22	C3H7	×	· #	. #	C3H7	Ħ	NHC3H7	·	Smp.:	ິນ 68 - 98 :	့ ပွ
102.23	С3Н7		Ħ	Ħ	C3H7	. #	$\binom{\circ}{z}$	·	: · dwg	: 75°C	
102.24	C3H7	Ħ	Ħ	Ħ	C3H7	Ħ	\c^2\		: dwg	ລ _ອ 89 - 99 :	ပ္စ

55	50	45	.5	40	35	30	25	20	15	10	5
Tab	Tabelle A Fortsetzung	tsetzu	ğ								
Nr.	R1	R2	R3	R4	R5	R6	NR 7R8		physikalis	physikalische Eigenschaften	chaften
102.25	C3H7	# .	Ħ	Ħ	C3H7	z	NHCH (CH3)2		Smp.: 9	98 - 100°C	
102.26	C3H7	æ	#	. #	C3H7	z	N-CH ₃		Smp.: 8	85°C	
102.27	C3H7	Ħ	Ħ	=	C ₃ H ₇	Ħ			Smp.: 1	109 - 110°C	
102.28	C3H7	#	Ħ	#	C3H7	Ħ	NHCH2C6H5		Smp.: 9	94°C	
102.29	C3H7	E	Ħ	Ħ	5) -	- (CH2)4-	NHC3H7		Smp.: 1	135 - 137°C	
102.30	C3H7	Ħ	Ħ	Ħ	9) -	- (CH ₂)4-	NHC5H11		Smp.: 1	128 - 130°C	

5 10 15		physikalische Eigenschaften	Smp.: 125 - 126°C	Smp.: 111 - 113°C				•
20								
25		NR ⁷ R ⁸		$\binom{\circ}{z}$	NHC5H11	NНМе	NMe ₂	NH Propyl
30		R6	- (CH2)4-	- (CH2)4-	æ	Ħ	m	.
35		R5	o) -	0) -	0C2H5	Propyl	Propyl	Propvl
		R4	Ħ	=	Ħ	Э Н	H H	CcHc H
40	рū	R3	Ħ	=	E	с6н5 н	C6H5	
45	Tabelle A Fortsetzung	R2	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ
50	elle A E	R1	C3H7	C3H7	C3H7	æ	= .	×
55	Tab	Nr.	102.31	102.32	102.33	110.1	110.2	110.3

55	50		45	40	35	30	25		20	15	10	5
Tał	elle A	Fort	Tabelle A Fortsetzung									
Nr.	R1	R2	R ³	R4	R5 F	R6	NR 7R8		physik	physikalische E	Eigenschaften	ten
110.4	Ħ	Ħ	C ₆ H ₅	Ħ	Propyl H	leel	NH-Cyclohexyl	hexyl				
110.5	Ħ	Ħ	C ₆ H ₅	Ħ	Propyl H							
110.6	æ	Ħ	C6H5	Ħ	iso-Propyl H		NH Propyl	E .				
110.7	Ħ		C ₆ H ₅	H .	iso-Propyl H		NHEt					
110.8	Ħ	×	C6H5	Ħ	iso-Propyl H	~	NH-Cyclopropyl	propyl				
110.9	Ë	Ħ	C6H5	×	iso-Propyl H	6 -p-4	N N-CH ₃	н3				

55	50		45	40	35		25 30	20	15	10	5
Tab	elle A	Fort	Tabelle A Fortsetzung								
Nr.	R1	R2	R3	R4	R5	R6	NR ⁷ R ⁸	skyd	ikalische	physikalische Eigenschaften	ten
110.10	Ħ	=	C6H5	Ħ	Phenyl	Ħ	NH Proypl				
110.11	Ħ	m ·	C6H5	Ħ	Phenyl	æ	NHEt				
110.12	· #	Ħ	C6H5	Ħ	Phenyl	æ	NH iso-Propyl				
110.13	Ħ	#	C6H5	Ħ	C3H7	æ	NHC5H11	u	Smp.: 107°C	r)	
110.14	Ħ	Ħ	C6H5	Ħ	C3H7	Ħ	$\binom{\circ}{z}$	oj.	Smp.: 117	- 119°C	
110.15	#	Ħ	C ₆ H ₅	Ħ	C3H7	æ		02	Smp.: 125	- 126°C	

5		ten									
10		Eigenschaf				 . 150°C		d 8,86 s([wdd]		7)
15		physikalische Eigenschaften	Smp.: 132°C	Smp.: 139°C	Smp.: 140°C	Smp.: 148 -		1H-NMR(CDCl3): d 8,86 s(br) 8,64	m /,/8-/,20 % 0,10 % 4,19 C t 2,43 % 2,29 [ppm]	,	Smp.: 155°C
20		skyd	02	0.7		0 4		1H-1	t #		•
25			6H5			CH3 O	, CH ₃	N-CH3			
30		NR 7R8	NHCH2C6H5	NHC3H7	$\binom{\circ}{z}$		}			(.°)
		R6	Ħ	Ħ	Ħ	I		Ħ			Ħ
35	-	R5	C3H7	C6H5CH2	с6н5сн2	C6H5CH2		сен5сн2			C3H7
40		R4	Ħ	Ħ	Ħ	Ħ		Ħ			Ħ
45	Tabelle A Fortsetzung	к3	C ₆ H ₅	C6H5	C6H5	C6H5		C ₆ H ₅			CH3
	A For	R2	Ħ	# .	×	Ħ		Ħ			Ħ
50 ·	elle 4	R1	×	H	 æ	×	•	Ħ			CH3
	Tab		110.16	.17	110.18	110.19		110.20			т.
		Nr.	110	110.17	110	110		110			120.1

5 10 15	Rigenschaften	physikalishic	Smp.: 169 - 170°C	1H-NMR(CDC13): s(br) 7,96 s(br) 7,03 s 6,38 t 3,71 t 2,74 s 2,64 t 2,53 s 2,36 dq 1,79 t 0,99 [ppm]	Smp.: 86 - 88°С	Smp.: 112°C	Smp.: 131°C	Smp.: 148°C
25 30		NR 7R8	CH3	N-CH3	NHC3H7	${z}$	NH	$\binom{\circ}{z}$
		R6	æ	æ	æ	×	Ħ	12
. 35		R5	C3H7	C3H7	C3H7	C3H7	C3H7	С ₆ Н5СН2
40		R4 F	×	Ħ	Ħ	Ħ	#	ı
45	Tabelle A Fortsetzung	R3	CH3	CH3	CH3	CH3	CH3	CH3
	Forts	R2	Ħ	Ħ	Ħ	=	Ħ	#
50	le A	R1.	CH3	CH3	CH3.	CH3	CH3	CH3
55	Tabel	Nr.	8	120.3	120.4	120.5	120.6	120.7

5	•		aften
10			Figensch
15			nhveikalischa Rigenschaften
20			a da
25			æ
30			6 NR 7 R 8
35			94
40			R4 R5
4 5		Tabelle A Fortsetzung	R2 R3
50		e A Fort	
, <u>,</u>		Tabell	, E

 1 H-NMR(CDCl₃): s(br) 7,99 s(br) 7,05 s 6,11 s 4,18 t 3,65 s 2,63 t 2,45 s 2,38 s 2,31 [ppm] сен5сн2 н CH3 ı CH3 120.8

5 10		Q	physikalische Eigenschaften	semikristallin, farblos			
20		(Säyreadditionssalze)	NR ⁷ R ⁸ phy	NH Propyl sem	NH Et	NH Propyl	NH Butyl
25 30		(Säu	R6	Ħ	H	Br	Ħ
35			R5	C6H5	C3H7	C3H7	СНЗ
40			R3 R4	H H	н	н	# #
45	•		R2	Œ	#	Ħ	æ
50	a a		R1	CH3	CH3	СНЗ	C6H5
55	Tabelle		Nr.	200.1	200.2	200.3	200.4

5 10		physikalische Eigenschaften		
20		NR 7R8	NHEt	
25		R6 N	N H	
30				Cyclopentyl
35		R5	CH ₂ CH ₂ .	Cyclo
40		3 R4	Ħ	
45	tzung	R2 R3	#	
	Tabelle B Fortsetzung	64	7 H	
50	lle B	R1	C3H7	
55	Tabe]	Nr.	200.5	

C. Biologische Beispiele

5

Filterpapierscheibchen von 6 mm Durchmesser werden mit je 20 μl der in Tabelle 1 angegebenen Wirkstoffe gleichmäßig benetzt und auf ein, je nach Pilzart, unterschiedliches Agar-Medium aufgelegt. Dem Agar werden zuvor in noch flüssigem Zustand je Petrischale 0,5 ml Suspensionskultur des Testorganismus (im vorliegenden Fall Botrytis cinerea, BCM- und Iprodion resistenter Stamm, ca. 10⁵ - 10⁶ Konidien) zugegeben und die so behandelten Agarplatten anschließend bei ca. 22 °C bebrütet. Nach 3 - 4 tägiger Inkubation wird die Inhibitionszone als Maß der Pilzhemmung gemessen und in mm angegeben.

Tabelle 1

		rabelle i
15	Fungizide Wirkung Ipro	gegenüber Botrytis cinerea - BCM- und dion-resistaneter Stamm.
	Verbindung gemäß Beispiel	Hemmzonen in mm Durchmesse bei 1000 ppm Wirkstoff und 20 µl pro Filterscheibchen
20	1.1	28 26
	1.2 1.3	26 30
	1.4	24
05	2.7	32
25	2.1	12
	2.38	12
	2.2	44
	7.1	14
00	7.3	40
30	10.2	14
	11.1	22
	11.2	20
	11.3	22
35	31.4	16
	unbehandelte Kontrolle	0

Beispiel 2

Filterpapierscheibchen von 6 mm Durchmesser werden mit je 20 µl der in Tabelle 2 angegebenen Wirkstoffe gleichmäßig benetzt und auf ein, je nach Pilzart, unterschiedliches Agar-Medium aufgelegt. Dem Agar werden zuvor in noch flüssigem Zustand je Petrischale 0,5 ml Suspensionskultur des Testorganismus (im vorliegenden Fall Alternaria mali) zugegeben und die so behandelten Agarplatten anschließend bei ca. 22°C bebrütet. Nach 3 - 4 tägiger Inkubation wird die Inhibitionszone als Maß der Pilzhemmung gemessen und in mm angegeben.

55

50

Tabelle 2

Fungizide W	Fungizide Wirkung gegenüber Alternaria mali .				
Verbindung gemäß Beispiel	Hemmzonen in mm Durchmesse bei 1000 ppm Wirkstoff und 20 µl pro Filterscheibchen				
2.2	20				
7.1	36				
7.3	36				
10.1	14				
10.2	14				
10.4	26				
11.1	30				
11.2	30				
11.3	30				
31.3	16				
unbehandelte Kontrolle	0				

Beispiel 3

5

10

15

20

25

35

40

45

50

Filterpapierscheibchen von 6 mm Durchmesser werden mit je 20 μ I der in Tabelle 3 angegebenen Wirkstoffe gleichmäßig benetzt und auf ein, je nach Pilzart, unterschiedliches Agar-Medium aufgelegt. Dem Agar werden zuvor in noch flüssigem Zustand je Petrischale 0,5 ml Suspensionskultur des Testorganismus (im vorliegenden Fall Sclerotinia sclerotiorum, Hyphenstücke des Pilzes) zugegeben und die so behandelten Agarplatten anschließend bei ca. 22° C bebrütet. Nach 3 - 4 tägiger Inkubation wird die Inhibitionszone als Maß der Pilzhemmung gemessen und in mm angegeben.

Tabelle 3

Fungizide Wirkung gegenüber Sclerotinia sclerotiorum					
Verbindung gemäß Beispiel	Hemmzonen in mm Durchmesse bei 1000 ppm Wirkstoff und 20 μl pro Filterscheibchen				
2.2	14				
7.1	40				
7.3	50				
10.2	14				
10.4	20				
30.1	12				
31.2	20				
unbehandelte Kontrolle	0				

Beispiel 4

Gerstenpflanzen wurden im 2-Blattstadium mit Konidien des Gerstenmehltaus (Erysiphe graminis hordei) stark inokuliert und in einem Gewächshaus bei 20°C und einer relativen Luftfeuchte von ca. 50 % weiterkultiviert. 1 Tag nach Inokulation wurden die Pflanzen mit den in Tabelle 4 aufgeführten Verbindungen in den angegebenen Wirkstoffkonzentrationen gleichmäßig benetzt. Nach einer Inkubationszeit von 7 - 9 Tagen wurden die Pflanzen auf Befall mit Gerstenmehltau untersucht. Der Wirkungsgrad der Prüfsubstan-

zen wurde prozentual zur unbehandelten, infizierten Kontrolle bonitiert und ist in Tabelle 4 wiedergegeben.

Tabelle 4

10	
15	
20	

Verbindung gemäß Beispiel Wirkungsgrad in % bei mg Wirkstoff/Liter Spritzbrühe 500 100 9.17 100 2.49 100 7.8 90 7.12 90 8.2 100 8.5 100 7.14 100 7.15 7.16 100 2.8 90 2.11 100 101.1 100 6.9 90 100 102.11 100 102.21 102.16 100 102.17 100 100 102.33 0 unbehandelte, infizierte Pflanzen

30

35

25

Beispiel 5

Ca. 14 Tage alte Ackerbohnen der Sorten "Harz Freya" oder "Frank's Ackerperle" wurden mit wässrigen Suspensionen der beanspruchten Verbindungen tropfnaß behandelt.

Nach Antrocknen des Spritzbelages wurden die Pflanzen mit einer Sporensuspension (1,5 Mio Sporen/ml) von Botrytis cinerea inokuliert. Die Pflanzen wurden in einer Klimakammer bei 20 - 22 C und ca. 99 % rel. Luftfeuchte weiterkultiviert. Die Infektion der Pflanzen äußert sich in der Bildung schwarzer Flecken auf Blättern und Stengeln. Die Auswertung der Versuche erfolgte ca. 1 Woche nach Inokulation.

Der Wirkungsgrad der Prüfsubstanzen wurde prozentual zur unbehandelten, infizierten Kontrolle bonitiert und ist in Tabelle 5 wiedergegeben.

5 Tabelle5

50

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
	gemäß Beispiel	Liter Spritzbrühe
5		500
3	2.15	100
	5.8	90
	2.33	90
10	2.9	. 100
	5.11	100
	72.3	. 100
15	101.1	100
	110.20	90
	101.5	100
20	101.10	100
20	101.11	100
	120.3	100
	5.12	90
25	6.9	90
	102.7	90
	102.11	100
30	102.21	90
	102.22	90
	102.8	100
35	102.3	100
35	102.17	100
	102.4	100
	102.5	100
40	102.13	90
	102.26	90
	102.15	100
45	102.14	100
	102.32	100

Fortsetzung Tabelle 5

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
5	gemäß Beispiel	Liter Spritzbrühe
		500
	6.13	100
	6.8	100
10	9.16	90
	9.18	90
	2.34	90
15	2.41	100
	2.40	100
	2.42	90
20	2.45	90
20	2.48	90
	7.18	100
	2.49	100
25	2.51	90
	7.19	100
	7.8	100
30	52.4	90
	52.3	100
	8.1	90
35	8.2	100
33	8.5	90
	7.13	90
	7.14	. 90
40	7.15	90
	2.8	90
	3.7	90
45	2.11	100
	2.13	100
	3.8	90
50	2.16	100

Fortsetzung Tabelle 5

Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
gemäß Beispiel	Liter Spritzbrühe
	500
102.29	100
102.30	100
1.1	100
1.2	100
1.4	100
2.8	100
2.1	100
2.2	100
2.3	100
2.4	100
2.5	100
2.7	100
7.3	100
10.1	100
10.2	100
10.3	100
10.4	100
11.2	100
30.1	100
31.2	100
2.6	100
unbehandelte,	
infizierte Pflanz	zen 0

⁴⁵ Beispiel 6

Etwa 5 Wochen alte Reispflanzen der Sorte "Ballila" wurden nach Vorspritzen mit 0,05 %iger Gelatinelösung mit den unten angegebenen Konzentrationen der beanspruchten Verbindungen behandelt. Nach Antrocknen des Spritzbelages wurden die Pflanzen mit einer Sporensuspension von Piricularia oryzae gleichmäßig inokuliert und 48 h in eine dunkel gehaltene Klimakammer mit einer Temperatur von 25 °C und 100 % rel. Luftfeuchte gestellt. Danach wurden die Reispflanzen in einem Gewächshaus bei einer Temperatur von 25 °C und 80 % rel. Luftfeuchte weiterkultiviert. Nach 5 Tagen erfolgte die Befallsauswertung. Der Wirkungsgrad der Prüfsubstanzen wurde prozentual zur unbehandelten, infizierten Kontrolle bonitiert und ist in Tabelle 6 wiedergegeben.

Tabelle 6

Ve	erbindungen emäß Beispiel 9.17 2.34 2.41 2.43	Wirkungsgrad in % bei mg Wirkstoff/ Liter Spritzbrühe 500 100 100 100 100 100
15	2.45 2.46 2.48 2.47	100 100 100
20	2.49 7.18 2.51	100 100 90 90
25	7.20 7.8 7.7 7.10	100 90 90
30 35	7.10 7.11 7.12 8.2 8.5	100 100 100 100

Fortsetzung Tabelle 6

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/	
5	gemäß Beispiel	Liter Spritzbrühe	
		500	
	7.13	100	
10	7.14	100	
70	7.15	100	
	7.16	100	
	2.19	100	
15	3.6	90	
	2.11	100	
	2.21	100	
20	3.4	90	
	2.14	90	
	3.8	100	
25	2.33	90	
25	2.9	100	
	120.1	90	
	120.6	90	
30	6.9	100	
	102.11	100	
	102.21	100	
35	102.16	100	
	102.22	100	
	102.17	100	
40	102.23	100	
40	102.18	. 100	
	102.13	90	
	102.32	10 <u>0</u>	
45	102.29	100	
	1.1	100	
	1.2	100	
50	2.1	100	

Fortsetzung Tabelle 6

Verbindungen gemäß Beispiel	Wirkungsgrad in % bei mg Wirkstoff/ Liter Spritzbrühe
	500
2.2	100
7.1	100
7.3	100
unbehandelte,	
infizierte Pflanzen	0
	2.2 7.1 7.3

Beispiel 7

Weizen der Sorte "Jubilar" wurde im 2-Blattstadium mit wäßrigen Suspensionen der beanspruchten Verbindungen tropfnaß behandelt.

Nach dem Antrocknen des Spritzbelages wurden die Pflanzen mit wäßrigen Sporensuspensionen von Puccinia recondita inokuliert. Die Pflanzen wurden für ca. 16 Stunden tropfnaß in eine Klimakammer 20°C und ca. 100 % rel. Luftfeuchte gestellt. Anschließend wurden die infizierten Pflanzen in einem Gewächshaus bei einer Temperatur von 22 - 25°C und 50 - 70 % rel. Luftfeuchte weiterkultiviert.

Nach einer Inkubationszeit von ca. 2 Wochen sporuliert der Pilz auf der gesamten Blattoberfläche der nicht behandelten Kontrollpflanzen, so daß eine Befallsauswertung der Versuchspflanzen vorgenommen werden kann. Der Wirkungsgrad der Prüfsubstanzen wurde prozentual zur unbehandelten, infizierten Kontrolle bonitiert und ist in Tabelle 7 wiedergegeben.

35

20

40

45

50

Tabelle 7

Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
gemäß Beispiel	Liter Spritzbrühe
	500
9.16	:90
9.17	100
9.18	100
2.45	90
2.49	90
7.8	100
7.11	90
7.12	. 100
8.5	100
7.14	100
7.15	100
7.16	100
2.8	100
2.19	100
3.6	100
2.11	100
2.21	90
2.14	90
2.16	90
5.8	100
2.9	100
3.5	90
120.5	90
6.9	90
102.11	100
102.17	100
102.10	100
102.33	100

50

Fortsetzung Tabelle 7

Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
gemäß Beispiel	Liter Spritzbrühe
	500
1.1	100
1.2	100
2.7	. 100
2.1	100
2.2	100
7.1	100
31.3	100
7.3	100
unbehandelte,	
infizierte Pflanzen	0

Beispiel 8

40

45

50

55

Weinsämlinge der Sorten "Riesling/Ehrenfelder" wurden ca. 6 Wochen nach der Aussaat mit wäßrigen Suspensionen der beanspruchten Verbindung tropfnaß behandelt.

Nach dem Antrocknen des Spritzbelages wurden die Pflanzen mit einer Zoosporangiensuspension von Plasmopara viticola inokuliert und tropfnaß in eine Klimakammer mit 23°C und 80 - 90 % rel. Luftfeuchte gestellt.

Nach einer Inkubationszeit von 7 Tagen wurden die Pflanzen über Nacht in die Klimakammer gestellt, um die Sporulation des Pilzes anzuregen. Anschließend erfolgte die Befallsauswertung. Der Wirkungsgrad der Prüfsubstanzen wurde prozentual zur unbehandelten, infizierten Kontrolle bonitiert und ist in Tabelle 8 wiedergegeben.

Tabelle 8

5	Verbindung gemäß Beispiel	Wirkungagrad in % bei mg Wirkstoff/Liter Spritzbrühe
3		500
	2.51	90
	52.5	100
	7.14	90
10	2.8	100
	101.1	90
	101.11	90
	120.5	90
	102.11	90
15	102.27	100
	102.5	100
	102.31	100
	102.10	90
	102.20	90
20	2.7	100
	unbehandelte, infizierte Pflanzen	0

Beispiel 9

25

Weizenpflanzen der Sorte "Jubilar" wurden im 2-Blattstadium mit wäßrigen Suspensionen der in Tabelle 9 angegeben Präparate tropfnaß behandelt.

Nach dem Antrocknen des Spritzbelages wurden die Pflanzen mit einer wäßrigen Pyknosporen-Suspension von Leptosphaeria nodorum inokuliert und mehrere Stunden bei 100 % rel. Luftfeuchte in einer Klimakammer inkubiert. Bis zur Symptomausprägung wurden die Pflanzen im Gewächshaus bei ca. 90 % rel. Luftfeuchte weiterkultiviert.

Der Wirkungsgrad ist prozentual zur unbehandelten, infizierten Kontrolle ausgedrückt und wird in Tabelle 9 wiedergegeben.

Tabelle 9

45

Tabelle 9

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
5	gemäß Beispiel	Liter Spritzbrühe
		500
	6.11	100
10	6.12	100
,,,	6.13	100
	6.8	100
	9.17	100
15	9.18	100
	2.34	100
	2.40	100
20	2.41	100
	2.≟2	100
	2.43	100
25	2.45	100
20	2.46	100
	2.47	100
	2.48	100
30	2.50	100
	2.49	100
	7.18	100
35	2.51	100
	7.19	100
	7.20	100
40	7.8	100
40	7.10	100
	7.7	90
	20.8	100
45	52.4	90

50

Fortsetzung Tabelle 9

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
5	gemäß Beispiel	Liter Spritzbrühe
		500
	51.1	90
	52 .5	90
10	51.3	90
	53.1	100
	52.1	100
15	53.2	100
	52.2 [.]	100
	52.3	100
20	53.4	100
	7.12	100
	8.1	100
	8.2	100
25	8.3	100
	8.4	100
	8.5	100
30	7.13	100 .
	7.15	100
	7.14	100
35	7.16	100
	8.6	90
	2.8	100
40	2.19	100
40	3.6	100
	2.11	100
	2.14	100
45	3.7	100
	2.13	100
	2.21	100
50	3.4	100

Fortsetzung Tabelle 9

Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/ Liter Spritzbrühe
gemäß Beispiel	500
2.14	100
2.16	100
3.8	100
2.17	100
2.15	100
2.18	100
2.33	100
5.8	100
2.9	100
3.5	100
5.11	100
72.3	100
110.15	100
101.3	100
101.9	100
120.2	90
120.3	90
101.1	90
120.6	100
5.12	100
6.9	100
6.10	100
120.7	100
102.11	100
102.21	100
102.8	100
102.16	100
102.22	100
102.17	100

Fortsetzung Tabelle 9

Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
gemäß Beispiel	Liter Spritzbrühe
	500
102.23	100
102.4	90
102.18	100
102.3	100
102.19	100
102.5	90
102.6	100
102.31	100
102.9	100
102.14	100
102.32	100
102.33	100
102.29	100
102.30	100
1.1	100
1.2	100
1.3	100
1.4	100
2.7	100
2.1	100
2.38	100
2.2	100
7.1	100
7.3	100
10.3	100
10.2	100
10.4	100
11.1	100
11.2	100

Fortsetzung Tabelle 9

5	Verbindungen gemäß Beispiel	Wirkungsgrad in % bei mg Wirkstoff/ Liter Spritzbrühe 500
	11.3	100
	31.2	100
10	unbehandelte,	
	infizierte Pflanzen	0

Beispiel 10

15

30

35

40

45

50

55

Gerstenpflanzen der Sorte "Igri" wurden im 2-Blattstadium mit einer wäßrigen Suspension der beanspruchten Verbindungen tropfnaß behandelt.

Nach dem Antrocknen des Spritzbelages wurden die Pflanzen mit wäßrigen Sporensuspensionen von Pyrenophora teres inokuliert und für 16 h in einer Klimakammer bei 100 % rel. Luftfeuchte inkubiert. Anschließend wurden die infizierten Pflanzen im Gewächshaus bei 25°C und 80 % rel. Luftfeuchte weiterkultiviert.

Ca. 1 Woche nach Inokulation wurde der Befall ausgewertet. Der Wirkungsgrad der Prüfsubstanzen wurde prozentual zur unbehandelten, infizierten Kontrolle bonitiert und ist in Tabelle 10 wiedergegeben.

Tabelle 10

### Specific Company of Company o	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
6.11 90 6.12 100 6.13 100 9.17 90 9.18 100 2.34 100 2.40 100 2.41 90 2.42 90 2.43 90 2.46 100 2.48 100 2.49 100 7.18 100 7.18 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	gemäß Beispiel	Liter Spritzbrühe
6.12 100 6.13 100 9.17 90 9.18 100 2.34 100 2.40 100 2.41 90 2.42 90 2.43 90 2.46 100 2.48 100 2.49 100 7.18 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	*****	500
6.13 100 9.17 90 9.18 100 2.34 100 2.40 100 2.41 90 2.42 90 2.43 90 2.46 100 2.49 100 7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	6.11	90
9.17 90 9.18 100 2.34 100 2.40 100 2.41 90 2.42 90 2.43 90 2.46 100 2.49 100 7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	6.12	100
9.18 100 2.34 100 2.40 100 2.41 90 2.42 90 2.43 90 2.46 100 2.48 100 2.49 100 7.18 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	6.13	. 100
2.34 100 2.41 90 2.42 90 2.43 90 2.46 100 2.48 100 2.49 100 7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	9.17	90
2.41 90 2.42 90 2.43 90 2.46 100 2.49 100 7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	9.18	100
2.41 90 2.42 90 2.43 90 2.46 100 2.48 100 2.49 100 7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	2.34	100
2.42 90 2.43 90 2.46 100 2.48 100 2.49 100 7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	2.40	100
2.43 90 2.46 100 2.48 100 2.49 100 7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	2.41	90
2.46 100 2.49 100 7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	2.42	90
2.48 100 2.49 100 7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	2.43	90
2.49 100 7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	2.46	100
7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	2.48	100
2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	2.49	100
7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	7.18	100
7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	2.51	100
52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	7.19	100
51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	7.11	90
7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	52.5	100
8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	51.3	100
8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	7.12	. 90
8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	8.1	90
7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	8.2	100
7.15 90 7.14 100 7.16 90 2.8 100	8.3	90
7.14 100 7.16 90 2.8 100	7.13	100
7.16 90 2.8 100	7.15	90
2.8 100	7.14	100
	7.16	90
2.19 100	2.8	100
	2.19	100

Fortsetzung Tabelle 10

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
5	gemäß Beispiel	Liter Spritzbrühe
		500
	3.6	90
10	2.11	90
	2.14	100
	2.13	100
	2.21	100
15	3.4	100
	2.14	100
	3.8	100
20	2.16	90
	2.15	100
	2.18	100
25	2.33	100
	5.11	100
	2.9	90
	101.1	100
30	101.3	100
	101.5	100
	101.4	90
35	120.2	100
	120.3	100
	120.4	100
40	6.10	100
	6.14	100
	5.12	90 .
	102.21	100
45	102.22	100
	102.3	100
	102.23	100
50	120.8	90

Fortsetzung Tabelle 10

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
5	gemäß Beispiel	Liter Spritzbrühe
		500
	102.19	100
10	102.27	· 100
	102.6	90
	102.15	100
15	102.31	100
19	102.9	100
	102.32	100
	102.29	100
20	102.30	100
	2.7	100
	7.1	100
25	10.3	100
	10.2	100
	11.2	100
	11.3	100
30	unbehandelte,	
	infizierte Pflanz	en 0

Beispiel 11

Tomatenpflanzen der Sorte "Rheinlands Ruhm" wurden im 3 - 4 Blattstadium mit wäßrigen Suspensionen der beanspruchten Verbindungen gleichmäßig tropfnaß benetzt.

Nach dem Antrocknen wurden die Pflanzen mit einer Zoosporangien-Suspension von Phytophthora infestans inokuliert und für 2 Tage unter optimalen Infektionsbedingungen in einer Klimakammer gehalten. Danach wurden die Pflanzen bis zur Symptomausprägung im Gewächshaus weiterkultiviert.

Die Befallsbonitur erfolgte ca. 1 Woche nach Inokulation. Der Wirkungsgrad der Prüfsubstanzen wurde prozentual zur unbehandelten, infizierten Kontrolle bonitiert und ist in Tabelle 11 wiedergegeben.

50

35

Tabelle 11

_	Verbindung gemäß Beispiel	Wirkungsgrad in % bei mg Wirkstoff/Liter Spritzbrühe
5		500
	2.34	90
	2.40	100
	2.41	100
10	2.49	100
	7.18	100
	7.8	90
	7.11	90
	8.1	100
15	7.12	90
	8.2	100
	2.19	90
	2.13	100
	2.21	100
20	2.16	90
	2.18	90
	2.9	100
	101.1	90
	101.5	90
25	102.5	90
	102.33	90
	10.3	100
	10.2	100
20	10.4	100
30	unbehandelte, infizierte Pflanzen	0

Ansprüche

35

1. Verbindungen der Formel I

40 (1),45

worin

50

 $R^1 = Wasserstoff, (C_1-C_6)Alkyl, (C_1-C_4)Alkoxy-(C_1-C_4)alkyl, (C_1-C_4)Alkylthio-(C_1-C_4)alkyl, (C_2-C_6)Alkenyl, (C_1-C_4)Alkylthio-(C_1-C_4)alkyl, (C_2-C_6)Alkenyl, (C_1-C_4)Alkylthio-(C_1-C_4)$ (C2-C6)Alkinyl,(C3-C7)Cycloalkyl, (C3-C7)Cycloalkyl-(C1-C4)alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch (C1-C4)Alkyl substituiert sein können, eine Gruppe R7R8N-(C1-C4)alkyl, Phenyl, Phenoxy-(C1-C4) alkyl, Phenylmercapto-(C1-C4)alkyl, Phenyl-(C1-C4)alkyl, Phenoxy-phenoxy-(C1-C4)alkyl, Phenoxy-phenoxy-(C1-C4)alkyl, Phenylmercapto-(C1-C4)alkyl, Phenylmercapto-(C1-C C4)alkyl, wobei die fünf letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C1-C4)Alkyl, (C1-C4)Alkoxy, (C1-C4)Alkylthio, (C1-C4)Haloalkyl oder (C1-C4)Haloalkoxy substituiert sein

R², R³, R⁴ = unabhängig voneinander Wasserstoff, (C₁-C₆)Alkyl, Phenyl, wobei der Phenylrest bis zu

dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein kann,

R⁵ = Wasserstoff, (C₁-C₆)Alkyl, (C₃-C₇)Cycloalkyl, (C₃-C₇)Cycloalkyl-(C₁-C₄)alkyl, wobei die beiden letzt-genannten Reste im Cycloalkylteil bis zu dreifach durch (C₁-C₄)Alkyl substituiert sein können, (C₁-C₄)-Haloalkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Alkoxy-(C₁-C₄)alkyl, eine Gruppe R⁷R⁸N-, (C₁-C₄)Alkylthio-(C₁-C₄)alkyl, eine Gruppe R⁷R⁸N-(C₁-C₄)alkyl, Halogen, (C₂-C₅)Alkenyl, (C₂-C₅)Alkinyl, Phenyl, Phenoxy, Phenyl(C₁-C₄)alkyl, Phenoxy-(C₁-C₄)alkyl, Phenylmercapto-(C₁-C₄)alkyl, Phenylmercapto, Phenyl-(C₁-C₄)alkylthio, wobei die acht letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein können;

 R^6 = Wasserstoff, $(C_1-C_4)Alkyl$, $(C_1-C_4)Alkoxy$, $(C_2-C_6)Alkenyloxy$, $(C_2-C_6)Alkinyloxy$, $(C_1-C_4)Alkyl$ thio, Halogen, Phenyl, wobei der Phenylrest bis zu dreifach durch Halogen, Nitro, Cyano, $(C_1-C_4)Alkyl$, $(C_1-C_4)Alkyl$,

s und

 R^7 , R^8 = unabhängig voneinander Wasserstoff, (C_1-C_6) Alkyl, (C_1-C_4) Alkoxy- (C_1-C_6) -Alkyl, Hydroxy- (C_1-C_6) -Alkyl, (C_1-C_4) Alkylthio- (C_1-C_6) Alkyl, (C_3-C_6) Alkyl, (C_3-C_6) Alkenyl, (C_3-C_6) Alkinyl, (C_3-C_7) Cycloaikyl, (C_3-C_7) Cycloaikyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch (C_1-C_4) Alkyl substituiert sein können; Formyl, Phenyl, Phenyl- (C_1-C_4) Alkyl, wobei die beiden letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C_1-C_4) Alkyl, (C_1-C_4) Alkoxy, (C_1-C_4) Alkyl, (C_1-C_4) A

C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein können;

oder beide Reste R⁷, R⁸ stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder bis zu vierfach substituierten 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit 1 bis 3 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit denHeteroatomen Stickstoff, Sauerstoff und/oder Schwefel und dem Substituenten (C₁-C₄)Alkyl;

 R^8 , R^{10} = unabhängig voneinander Wasserstoff, (C_1-C_6) Alkyl, (C_3-C_6) Alkenyl, (C_3-C_6) Alkinyl, (C_3-C_7) -Cycloalkyl, (C_3-C_7) -Cycloalkyl- (C_1-C_4) Alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch (C_1-C_4) Alkyl substituiert sein können; Formyl, Phenyl, Phenyl (C_1-C_4) Alkyl, wobei die beiden letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C_1-C_4) Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) Alkylthio, (C_1-C_4) -Haloalkyl oder (C_1-C_4) -Haloalkoxy substituiert sein können;

oder beide Reste R⁹, R¹⁰ stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder bis zu vierfach substituierten 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit 1 bis 3 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit den Heteroatomen Stickstoff, Sauerstoff und/oder Schwefel und dem Substituenten (C₁-C₄)Alkyl; bedeuten, sowie deren

Säureadditionssalze.

2. Verbindungen der Formel I von Anspruch 1, worin

 R^1 = Wasserstoff, $(C_1-C_6)Alkyl$, Phenyl, Phenyl- $(C_1-C_2)alkyl$, Phenoxy-phenoxy- $(C_1-C_2)alkyl$, Phenoxy- $(C_1-C_2)alkyl$, wobei die vier letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen oder $(C_1-C_4)Alkyl$ substituiert sein können; $(C_1-C_3)Alkoxy-(C_1-C_2)alkyl$,

40 R², R³ = unabhängig voneinander Wasserstoff, (C₁-C₃)Alkyl, Phenyl, wobei der Phenylrest bis zu dreifach durch -Halogen oder (C₁-C₄)Alkyl substituiert sein kann,

R4 = Wasserstoff,

 R^5 = Wasserstoff, (C_1-C_6) Alkyl, (C_3-C_6) Cycloalkyl, (C_5-C_6) Cycloalkyl $-(C_1-C_3)$ alkyl, Halogen, Phenyl, Phenyl- (C_1-C_2) alkyl, wobei die beiden letztgenannten Reste im Phenylteil unsubstituiert oder bis zu dreifach durch Halogen, (C_1-C_4) Alkyl oder (C_1-C_4) Alkoxy substituiert sein können,

R⁵ = Wasserstoff, (C₁-C₄)Alkyl, Halogen, Phenyl, (C₁-C₃)Alkoxy oder

R⁵ und R⁶ bilden zusammen eine Polymethylenkette der Formel - (CH₂)_m- mit m = 3 - 4 und

R⁷ und R⁸ unabhängig voneinander Wasserstoff, (C₁-C₆)Alkyl, (C₁-C₄)Alkoxy(C₁-C₆)Alkyl, Hydroxy(C₁-C₆)-Alkyl, (C₁-C₄)Alkylthio-(C₁-C₆)Alkyl, R³R¹⁰N-(C₁-C₆)Alkyl, (C₃-C₄)Alkenyl, (C₃-C₄)Alkinyl, (C₃-C₆)Cycloalkyl, wobei die beiden letztgenannten Beste im Cycloalkylteil bis zu zweifach

(C₃-C₆)Cycloalkyl-(C₁-C₃)alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu zweifach durch (C₁-C₂)Alkyl substituiert sein können; Formyl, Phenyl, Phenyl-(C₁-C₂)alkyl, wobei die beiden letztgenannten Reste im Phenylteil bis zu zweifach durch Halogen, (C₁-C₃)Alkyl, (C₁-C₃)Alkoxy, Trifluormethyl oder Trichlormethyl substituiert sein können; oder

beide Reste R⁷, R⁸ stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder bis zu zweifach substituierten 5- bis 7-gliedrigen gesättigten oder ungesättigten Heterocyclus mit 1 oder 2 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit den Heteroatomen Stickstoff und/oder Sauerstoff und dem Substituenten (C₁-C₃)Alkyl,

 R^9 , R^{10} = unabhängig voneinander Wasserstoff, $(C_1-C_6)Alkyl$, $(C_3-C_6)Alkenyl$, $(C_3-C_6)Alkinyl$, $(C_3-C_7)-C_7$

Cycloalkyl, (C3-C7)Cycloalkyl-(C1-C4)alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch (C1-C4)Alkyl substituiert sein können; Formyl, Phenyl, Phenyl (C1-C4)Alkyl, wobei die beiden letztgenannten Reste im Phenyltell bis zu dreifach durch Halogen, Nitro, Cyano, (C1-C4)Alkyl, (C1-C4)-Alkoxy, (C1-C4)Alkylthio, (C1-C4)Haloalkyl oder (C1-C4)Haloalkoxy substituiert sein können;

- oder beide Reste R³, R¹o stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder bis zu vierfach substituierten 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit 1 bis 3 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit den Heteroatomen Stickstoff, Sauerstoff und/oder Schwefel und dem Substituenten (C1-C4)Alkyl; bedeuten, sowie deren Säureadditionssalze.
- 3. Verfahren zur Herstellung von Verbindungen der Formel I gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß man eine Verbindung der Formel II

worin R¹ - R⁵ die Bedeutungen wie in Formel I besitzen und X für Halogen steht, in Gegenwart einer Base mit einer Verbindung der Formel III

$$H - N = \frac{R^8}{R^7}$$
 (III),

worin R7 und R8 die Bedeutungen wie in Formel I besitzen, umsetzt.

- 4. Fungizide Mittel, dadurch gekennzeichnet, daß sie eine wirksame Menge einer Verbindung der Formel I gemäß Anspruch 1 oder 2 enthalten.
- 5. Verwendung von Verbindungen der Formel I gemäß Anspruch 1 oder 2 zur Bekämpfung von Schadpilzen.
- 6. Verfahren zur Bekämpfung von Schadpilzen, dadurch gekennzeichnet, daß man auf die von ihnen befallenen Pflanzen, Flächen oder Substrate eine wirksame Menge einer Verbindung der Formel I gemäß Anspruch 1 oder 2 appliziert.
- Patentansprüche für folgenden Vertragsstaat: ES
 - 1. Verfahren zur Bekämpfung von Schadpilzen, dadurch gekennzeichnet, daß man auf die von ihnen befallenen Pflanzen, Flächen oder Substrate eine wirksame Menge einer Verbindung der Formel I

worin

15

20

25

30

35

 $R^1 = Wasserstoff, (C_1-C_6)Alkyl, (C_1-C_4)Alkoxy-(C_1-C_4)alkyl, (C_1-C_4)Alkylthio-(C_1-C_4)alkyl, (C_2-C_6)Alkenyl, (C_1-C_4)Alkylthio-(C_1-$ (C2-C5)Alkinyl,(C3-C7)Cycloalkyl, (C3-C7)Cycloalkyl-(C1-C4)alkyl, wobei die belden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch (C1-C4)Alkyl substituiert sein können, eine Gruppe R7R8N-(C1-C4)alkyl, Phenyl, Phenoxy-(C1-C4) alkyl, Phenylmercapto-(C1-C4)alkyl, Phenyl-(C1-C4)alkyl, Phenoxy-phenoxy-(C1-C4)alkyl, Phenyl-(C1-C4)alkyl, Phe

C₄)alkyl, wobei die fünf letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein können,

R², R³, R⁴ = unabhängig voneinander Wasserstoff, (C₁-C₆)Alkyl, Phenyl, wobei der Phenylrest bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein kann,

 R^5 = Wasserstoff, $(C_1-C_6)Alkyl$, $(C_3-C_7)Cycloalkyl$, $(C_3-C_7)Cycloalkyl$, $(C_1-C_4)alkyl$, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch $(C_1-C_4)Alkyl$ substituiert sein können, $(C_1-C_4)Alkyl$, Haloalkyl, $(C_1-C_4)Alkoxy$, $(C_1-C_4)Alkyl$, eine Gruppe R^7R^8N -, $(C_1-C_4)Alkyl$, eine Gruppe R^7R^8N -, $(C_1-C_4)Alkyl$, Halogen, $(C_2-C_6)Alk$ enyl, $(C_2-C_6)Alk$ enyl, Phenylmercanto, Phenyl

Phenoxy, Phenyl(C₁-C₄)alkyl, Phenoxy-(C₁-C₄)alkyl, Phenylmercapto-(C₁-C₄)alkyl, Phenylmercapto, Phenyl-(C₁-C₄)alkoxy oder Phenyl-(C₁-C₄)alkylthio, wobei die acht letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein können;

¹⁵ R⁶ = Wasserstoff, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₂-C₆)Alkenyloxy, (C₂-C₆)Alkinyloxy, (C₁-C₄)Alkylthio, Halogen, Phenyl, wobei der Phenylrest bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)-Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein kann, oder R⁵ und R⁶ bilden zusammen eine Polymethylenkette der Formel -(CH₂)_m- mit m = 3 - 4

R⁷, R⁸ = unabhängig voneinander Wasserstoff, (C₁-C₆)Alkyl, (C₃-C₆)Alkenyl, (C₃-C₆)Alkinyl, (C₃-C₇)-Cycloalkyl, (C₃-C₇)Cycloalkyl-(C₁-C₄)alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch (C₁-C₄)Alkyl substituiert sein können; Formyl, Phenyl, Phenyl-(C₁-C₄)alkyl, wobei die beiden letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)-Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein können;

oder beide Reste R⁷, R⁸ stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder bis zu vierfach substituierten 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit 1 bis 3 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit den Heteroatomen Stickstoff, Sauerstoff und/oder Schwefel und dem Substituenten (C₁-C₄)Alkyl; bedeuten, sowie deren Säureadditionssalze, appliziert.

2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß in Formel I R¹ = Wasserstoff, (C₁-C₅)Alkyl, Phenyl, Phenyl-(C₁-C₂)alkyl, Phenoxy-phenoxy-(C₁-C₂)alkyl, wobei die vier letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen oder (C₁-C₄)Alkyl substituiert sein können; (C₁-C₃)Alkoxy-(C₁-C₂)alkyl,

 R^2 , R^3 = unabhängig voneinander Wasserstoff, $(C_1-C_3)Alkyl$, Phenyl, wobei der Phenylrest bis zu dreifach durch Halogen oder $(C_1-C_4)Alkyl$ substituiert sein kann,

R4 = Wasserstoff,

 R^5 = Wasserstoff, $(C_1-C_6)Alkyl$, $(C_3-C_6)Cycloalkyl$, $(C_5-C_6)Cycloalkyl$ - $(C_1-C_3)alkyl$, Halogen, Phenyl, Phenyl- $(C_1-C_2)alkyl$, wobei die beiden letztgenannten Reste im Phenylteil unsubstituiert oder bis zu dreifach durch Halogen, $(C_1-C_4)Alkyl$ oder $(C_1-C_4)Alkyl$ substituiert sein können,

R⁶ = Wasserstoff, (C₁-C₄)Alkyl, Halogen, Phenyl, (C₁-C₃)Alkoxy oder
R⁵ und R⁶ bilden zusammen eine Polymethylenkette der Formel -(CH₂)_m- mit m = 3 - 4 und
R⁷ und R⁸ unabhängig voneinander Wasserstoff, (C₁-C₆)Alkyl, (C₃-C₄)Alkenyl, (C₃-C₄)Alkinyl, (C₃-C₆)Cycloalkyl, (C₃-C₆)Cycloalkyl-(C₁-C₃)alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu
zweifach durch (C₁-C₂)Alkyl substituiert sein können; Formyl, Phenyl-(C₁-C₂)alkyl, wobei die beiden
letztgenannten Reste im Phenylteil bis zu zweifach durch Halogen, (C₁-C₃)Alkyl, (C₁-C₃)Alkoxy, Trifluormethyl oder Trichlormethyl substituiert sein können;

beide Reste R⁷, R⁸ stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder bis zu zweifach substituierten 5- bis 7-gliedrigen gesättigten oder ungesättigten Heterocyclus mit 1 oder 2 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit den Heteroatomen Stickstoff und/oder Sauerstoff und dem Substituenten (C₁-C₃)Alkyl, bedeuten, sowie deren Säureadditionssalze.

3. Verfahren zur Herstellung von Verbindungen der Formel I gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß man eine Verbindung der Formel II

worin R¹ - R⁵ die Bedeutungen wie in Formel I besitzen und X für Halogen steht, in Gegenwart einer Base mit einer Verbindung der Formel III

$$H - N = R^8$$
 (III),

worin R7 und R8 die Bedeutungen wie in Formel I besitzen, umsetzt.

20 4. Verwendung von Verbindungen der Formel I gemäß Anspruch 1 oder 2 zur Bekämpfung von Schadpilzen.