Prof. Jan Kierfeld Theoretische Physik Ib Raum P1-O2-312 Tel. 3545

email: Jan.Kierfeld@tu-dortmund.de

 $24. \ \mathrm{Mai} \ 2013$ Besprechung am 4./5./7. Juni

Computational Physics Übung 6

Schrödinger-, Poisson-Gleichung

Achtung: Sie können sich eine der beiden Aufgaben aussuchen!

Aufgabe 1: Zeitabhängige Schrödingergleichung

Wir simulieren die Bewegung eines quantenmechanischen Teilchens in einer Dimension mit der Wellenfunktion $\psi(x,t)$ im harmonischen Oszillatorpotential. Dazu integrieren wir numerisch die zeitabhängige Schrödingergleichung

$$i\hbar\partial_t\psi = -\frac{\hbar^2}{2m}\partial_x^2\psi + \frac{1}{2}m\omega^2x^2\psi = \hat{H}\psi. \tag{1}$$

Der Anfangszustand soll ein normiertes Gaußpaket sein (siehe unten Gleichung (5)).

a) Zunächst machen wir die Schrödingergleichung (1) einheitenlos, indem wir Zeit- und Ortskoordinaten umskalieren. Wir messen Zeit in Einheiten von $2/\omega$ und reskalieren $\tau \equiv \omega t/2$. Mit welchem Faktor α muss die Ortskoordinate reskaliert werden, $\xi \equiv \alpha x$, um die Schrödingergleichung (1) in die Form

$$i\partial_{\tau}\psi = -\partial_{\xi}^{2}\psi + \xi^{2}\psi = \hat{\tilde{H}}\psi \tag{2}$$

zu bringen? Mit welchem Faktor β haben wir dann den Hamiltonoperator $\hat{\hat{H}}=\beta\hat{H}$ reskaliert?

b) Wir verwenden den Crank-Nicholson Algorithmus und lösen die einheitenlose Schrödingergleichung (2) auf einem Gitter $\xi_n = n\Delta\xi$.

Der diskretisierte Hamiltonoperator ist dann durch die Matrix

$$H_{nm} = -\frac{1}{(\Delta \xi)^2} \left(\delta_{n,m-1} + \delta_{n,m+1} - 2\delta_{nm} \right) + (\Delta \xi)^2 n^2 \delta_{nm}$$
 (3)

gegeben. Der diskretisierte Zeitentwicklungsoperator für einen Zeitschritt der Länge Δt nach Crank und Nicholson lautet

$$\mathbf{S}_{H} = \left(\mathbb{1} + \frac{i}{2}\mathbf{H}\Delta t\right)^{-1} \left(\mathbb{1} - \frac{i}{2}\mathbf{H}\Delta t\right) \tag{4}$$

Berechnen Sie diese Matrix für $\Delta t = 0.05$ für ein System der Größe $\xi \in [-10, 10]$, das mit $\Delta \xi = 0.1$ diskretisiert wird. Welche Dimension haben dann die Matrizen \mathbf{H} und \mathbf{S}_H ? Zur Berechnung der Inversen in (4) können Sie einen Algorithmus Ihrer Wahl (z.B. Gauß-Elimination, LU-Zerlegung, Jacobi-Gauß-Seidel-Iteration) selbst programmieren oder ein entsprechendes fertiges Unterprogramm, z.B. aus LAPACK oder NumRec verwenden.

c) Der Anfangszustand soll ein normiertes Gaußpaket sein mit $\langle \xi \rangle = \int d\xi \xi |\psi(\xi,t)|^2 = \xi_0$ und $\langle \Delta \xi^2 \rangle = \sigma$:

$$\psi(\xi,0) = \left(\frac{1}{2\pi\sigma}\right)^{1/4} e^{-(\xi-\xi_0)^2/4\sigma}.$$
 (5)

Wie lautet der diskretisierte Anfangszustandsvektor $\psi_n(0)$, der diesem Anfangszustand entspricht? Welche Dimension hat er? Normieren Sie den diskretisierten Anfangszustand $\psi_n(0)$ numerisch in ihrem Programm.

Als Lösung Plot von $|\psi_n(0)|^2$ (als Funktion von n) einschicken.

d) Berechnen Sie für einen solchen Anfangszustand mit $\xi_0 = \sigma = 1$ den Zustand $\psi_n(t)$ nach einer Zeit t = 10 durch fortgesetzte Matrixmultiplikation mit dem in b) berechneten Crank-Nicholson Zeitentwicklungsoperator \mathbf{S}_H . Prüfen Sie, ob der Zustand $\psi_n(t)$ während der Zeitentwicklung normiert bleibt.

Als Lösung Plots von $|\psi_n(t=10)|^2$ (als Funktion von n) einschicken. Plot der Normierung $\sum_n (\Delta \xi) |\psi_n(t)|^2$ als Funktion der Zeit einschicken.

e) Versuchen Sie, den Zeitverlauf der Wellenfunktion zu visualisieren/animieren, indem Sie mindestens 4 Plots der Wahrscheinlichkeitsverteilung innerhalb einer Schwingungsperiode 2π anfertigen.

Eben diese 4 Plots (oder ein Movie oder eine andere äquivalente Animation) einschicken.

f) Berechnen Sie den Mittelwert $\langle \xi \rangle(t) = \sum_n (\Delta \xi) \xi_n |\psi_n(t)|^2$ und entsprechend die Schwankung $\langle \xi^2 \rangle(t) - \langle \xi \rangle^2(t)$ während der Bewegung 0 < t < 10. Erstellen Sie Plots vom zeitlichen Verlauf dieser Größen. Berechnen Sie außerdem Mittelwert und Schwankung des zu $\hat{\xi}$ gehörigen "Impulsoperators" $\hat{p}_{\xi} \equiv -i\partial_{\xi}$ und plotten Sie auch deren zeitlichen Verlauf. Diskutieren Sie die Ergebnisse vor dem Hintergrund der klassischen Bewegung im Oszillatorpotential und der Heisenbergschen Unschärferelation.

Die im Aufgabentext erwähnten Plots einschicken.

- g) freiwillige Zusatzaufgaben:
- a) Verwenden Sie ein einfaches explizites Schema statt des Cranck-Nicholson-Schemas (4) und vergleichen Sie die Ergebnisse, besonders bezgl. Normierung.

b) Fügen Sie noch eine kleine Anharmonizität

$$V_{nm} = +\epsilon (\Delta \xi)^4 n^4 \delta_{nm} \tag{6}$$

zum Hamiltonian ${f H}$ hinzu und vergleichen Sie das Verhalten des Wellenpaketes.

Aufgabe 2: Poisson-Gleichung

Lösen Sie die 2D Poisson-Gleichung

$$\partial_x^2 \phi + \partial_y^2 \phi = -\rho(x, y) \tag{7}$$

(also $\epsilon_0=1$) mit Hilfe der Jacobi- oder der Gauß-Seidel-Iteration für folgendes System:

- Ein Quadrat $Q = [0, 1] \times [0, 1]$
- Dirichlet-Randbedingungen mit vorgegebenem Potential ϕ auf den Quadraträndern.
- Als Quellen positionieren Sie im Inneren diskrete Ladungen q_i an Orten \mathbf{r}_i , also $\rho(\mathbf{r}) = \sum_i q_i \delta(\mathbf{r} \mathbf{r}_i)$.
- a) Diskretisieren Sie das System mit $\Delta=0.05$ und implementieren Sie die Jacobi- und/oder Gauß-Seidel-Iteration. Bei jeder Iteration sollte der Algorithmus einmal jeden Gitterplatz im Inneren updaten (ohne die Ränder zu verändern). Wählen Sie als Anfangsbedingung $\phi=0$ und testen Sie den Algorithmus für $\rho=0$ (keine Quellen) für Randbedingungen $\phi=$ const = 0. Schreiben Sie eine Ausgaberoutine für $\phi(\mathbf{r})$ und das elektrische Feld $\mathbf{E}=-\nabla\phi$.
- **b)** Lösen Sie nun die Poissongleichung für $\rho = 0$ im Inneren und mit Randbedingungen $\phi = 0$ auf den 3 Rändern x = 0, x = 1 und y = 0, aber $\phi(x, 1) = 1$ auf dem Rand y = 1. Leiten Sie auch die analytische Lösung für $\phi(x, y)$ her (Fourierzerlegung, siehe Vorlesung) und vergleichen Sie das Resultat.

Plot vom Ergebnis für $\phi(x,y)$ einschicken.

c) Wählen Sie wieder $\phi = \text{const} = 0$ auf allen Rändern und setzen nun eine Ladung $q_1 = +1$ ins Innere. Berechnen Sie $\phi(\mathbf{r})$ im Inneren durch Iteration, bis zu einer Genauigkeit 10^{-5} . Plotten Sie die Potentialverteilung $\phi(\mathbf{r})$ und den Betrag der Feldstärke $|\mathbf{E}|(\mathbf{r})$.

Plot von $\phi(x,y)$ und $|\mathbf{E}|(x,y)$ einschicken.

d) Überzeugen Sie sich, dass das elektrische Feld am Rand keine Tangentialkomponente besitzt (warum?). Berechnen Sie numerisch die auf dem Rand influenzierte Ladungsdichte σ über die Normalkomponente des Feldes $\sigma = -\mathbf{n} \cdot \nabla \phi = E_n$. Berechnen Sie numerisch das Linienintegral $\int_{\partial Q} dl \sigma$, also das 2D-Analogon zur Oberflächenladung $\int_{\partial Q} df \sigma$ in 3D. Wie lautet das theoretische Ergebnis für diese influenzierte Oberflächenladung? (Sie können diese Frage auch in 3 Dimensionen beantworten)

Plot des Winkels zwischen E-Feld und Rand für einen der 4 Ränder einschicken. Ergebnis für das Linienintegral und theoretisch erwarteten Wert einschicken.

e) Wählen Sie sich eine andere neutrale Ladungskonfiguration mit mindestens 2 Ladungen $(\sum_i q_i = 0)$ und Randbedingungen $\phi = \text{const} = 0$ auf allen Rändern. Führen Sie wieder die Aufgabenstellungen aus c) und d) durch.