The Power of Naïve Query Segmentation

Matthias Hagen Martin Potthast Benno Stein Christoph Bräutigam

The Problem

Web queries are keyword based.

san jose yellow pages

Queries with quotated segments perform better.

"san jose" "yellow pages"

Users are often not aware of the quotation option.

Automatic query segmentation

Our Naïve Approach

Get Google n-gram counts for segments

segment s	count(s)		
san jose	14 495 804		
san jose yellow	8 822		
san jose yellow pages	8 739		
jose yellow	8 831		
jose yellow pages	8 745		
yellow pages	41 380 676		

Score every segmentation S as follows:

segme	entation S			score(S)
"san'	' "jose"	"yellow	pages"	165 522 704
"san'	' "jose	yellow"	"pages"	35 324
"san'	' "jose	yellow	pages"	236 115
"san	jose"	"yellow"	"pages"	57 983 216
"san	jose"	"yellow	pages"	223 505 920
"san	jose	yellow"	"pages"	238 194
"san	jose	yellow	pages"	8 948 736

Choose segmentation with highest score

"san jose" "yellow pages"

Evaluation

Anno-	Accuracy	Algorithm					
tator	Measure	MI	[1]	[2]	[3]	Naïve	
	query	0.274	0.638	0.526		0.536	
	break	0.693	0.863	0.810		0.807	
A	seg prec	0.469		0.657	0.652	0.665	
	seg rec	0.534		0.657	0.699	0.708	
	seg F	0.499		0.657	0.675	0.686	
В	query	0.244		0.494		0.380	
	break	0.634		0.802		0.752	
	seg prec	0.408		0.623	0.632	0.519	
	seg rec	0.472		0.640	0.659	0.626	
	seg F	0.438		0.631	0.645	0.568	
C	query	0.264		0.494		0.454	
	break	0.666		0.796		0.772	
	seg prec	0.451		0.634	0.614	0.581	
	seg rec	0.519		0.642	0.649	0.653	
	seg F	0.483		0.638	0.631	0.615	
Agree	query	0.343	0.717	0.671		0.627	
	break	0.728	0.892	0.871		0.851	
	seg prec	0.510		0.767	0.772	0.718	
	seg rec	0.550		0.782	0.826	0.778	
	seg F	0.530		0.774	0.746	0.746	

Query corpus (Bergsma and Wang [1]):

- 500 queries from AOL query log
- 3 human Annotators → A, B, C
- 220 queries identically segmented → Agree

Accuracy measures:

- query ratio of queries that exactly match annotator's segmentation
- break ratio of decisions between two words that match annotator's decisions
- seg prec precision of derived segments
- seg rec recall of derived segments
- seg FF-Measure

Results:

- Naïve always in a 0.1-range compared to best approach
- Naïve segments 3000 queries per second with 12GB RAM

^[1] S. Bergsma and Q.I. Wang. Learning noun phrase query segmentation. In EMNLP-CoNNL 2007, pages 819-826.

^[2] B. Tan and F. Peng. Unsupervised query segmentation using generative language models and Wikipedia. In *WWW 2008*, pages 347-356.

^[3] C. Zhang, N. Sun, X. Hu, T. Huang, and T.-S. Chua. Query segmentation based on eigenspace similarity. In *ACL-IJCNLP 2009*, pages 185-188.