UNIVERSITY OF LAGOS QUALITY ASSURANCE AND SERVICOM UNIT OFFICE OF THE VICE CHANCELLOR **TEACHING WORKPLAN**

Faculty: Science

Department: Computer Science

Session: 2017/2018 Semester: First

CSC303 Title of Course: Analysis and Design of Logic Circuits

Course Units: 3 units

Course Code:

Course Lecturers: Dr. Ebun Phillip Fasina (EPF)

Dr. B. A. Sawyerr (BAS)

Teaching Schedule: Monday 10 a.m. - 12 noon Venue: Faculty Lecture Rm. E303

COURSE DESCRIPTION

In this course students are introduced to Boolean algebra and its application to logic gate design, minimization of Boolean functions and the design of combinational and sequential circuits. Various procedures and algorithms are introduced to simplify the design of digital circuits. Students are encouraged throughout the course to conceptualize and design logic circuits with useful applications.

LEARNING OUTCOMES

- 1 Understand the basic concepts of Boolean Algebra
- 2 Minimize digital functions using various approaches Boolean algebra, K-maps and the Quine-McCluskey algorithm
- 3 Understand how to implement logic circuits with logic gates
- 4 Understand the function performed by standard combinational circuits such as adders, decoders, encoders, multiplexers, demultiplexers, comparators, subtractors, etc.
- 5 Formulate and solve problems using combinational circuits
- 6 Solve problems with SSI, MSI, LSI and VLSI logic circuits.
- 7 Understand the operation of latches and flip-flops
- 8 Understand the problems of sequential circuit design: State reduction and state assignment
- **9** Formulate and solve problems using sequential circuits
- **10** Recognize variants of registers and counters and understand how they function
- 11 Formulate and design registers and counters
- 12 Solve problems with registers and counters
- 13 Distinguish between ROM and RAM and understand their roles in logic circuit design
- **14** Understand ROM and RAM architectures
- 15 Design logic circuits using programmable logic arrays, programmable array logic and sequential programmable devices

COURSE RESOURCES

Required Textbook (On Reserve at the Main Library)

Mano, Morris M. and Michael D. Ciletti (2013) Digital Design: With an Introduction to the Verilog HDL, 5th Edition, Pearson Education, Inc., Prentice Hall, New Jersey 07458

Additional Textbooks

- 1 Hayes, John P. (1993) Introduction to Digital Logic Design, 1st Edition, Addison-Wesley
- **2** Perlman, David E., and James E. Palmer (1993) Schaum's Outline of Introduction to Digital Systems, 1st Edition, McGraw-Hill Education
- 3 Gajski, Daniel D. (1997) Principles of Digital Design, 1st Edition, Prentice Hall

COURSE CONTENT

WEEK	TOPIC	LECTURER(S)	REMARKS
1	Digital Systems and Binary Numbers	BAS	
	Binary, Octal and Hexadecimal Numbers, Number-Base		
	Conversions, Complement of Numbers, Binary Number		
	Representation, Binary Codes, Binary Logic, Storage and		
	Registers		
2	Boolean Algebra	BAS	
	Basic Definitions, Axiomatic Definition of Boolean Algebra,		
	Basic Theorems of Boolean Algebra, Properties of Boolean		
	Algebra,	DAG	
3	Boolean Functions, Logic Gates and Logic Circuits	BAS	
	Boolean Functions, Canonical and Standard Forms, Logic		
1	Operations, Digital Logic Gates, Integrated Circuits	DAC	
4	Gate-Level Minimization I	BAS	
	The Map Method (Sum-of-Products Simplification), Four-,		
	Five- and Six-Variable K-Maps, Product-of-Sums		
5	Simplification, Don't-Care Conditions Continuous Assessment I – MCQ Test	BAS	
5	Tutorial	DAS	
6	Gate-Level Minimization II	BAS	
O	Quine-McCluskey Minimization Algorithm	B/ (O	
7	Combinational Logic	EPF	
	Combinational Circuits, Analysis Procedure, Design		
	Procedure, Binary Adder-Subtractor, Binary Multiplier,		
	Magnitude Comparator, Decoders, Encoders, Priority		
	Encoders, Multiplexers		
8	Storage Elements	EPF	
	Asynchronous and Synchronous SR and D Latches, JK and		
	T Flip-flops		
9	Sequential Circuits	EPF	
	Analysis of Clocked Sequential Circuits, State Reduction,		
	State Assignment, Design of Synchronous Sequential		
	Circuits		
10	Continuous Assessment II – MCQ Test	EPF	
4.4	Tutorial		
11	Registers	EPF	
40	Registers, Shift Registers		
12	Counters	EPF	
	Binary and BCD Ripple Counters, Binary and BCD		
	Synchronous Counters, Counters with Unused States, Ring		
40	Counters, Johnson Counters	EDE	
13	Memory	EPF	
	Read-Only Memory, Random Access Memory, Memory		
	Decoding		

14	Programmable Logic	EPF	
	Programmable Logic Array, Programmable Array Logic,		
	Sequential Programmable Devices		
15	Revision	EPF/BAS	
16	Examination	EPF/BAS	
17	Examination	EPF/BAS	

COURSE AND UNIVERSITY POLICIES:

Attendance

Students enrolled in each course are expected to make **65% attendance** at lectures in order to be eligible for examination.

Evaluation

Continuous Assessment:	Subtotal	40 marks
MCQ Test I (1 hour)		15 marks
MCQ Test II (1 hour)		15 marks
Term Project - Implementation of the Quine-McCluskey Exact Logic Minimizer	with Java	10 marks
or C# (2 weeks)		

Examinations: Subtotal 60 marks

Examination (2 hours) – Answer 3 questions (40 minutes each) from 5 questions

Final Marks: Total 100 marks

Signature of Lecturers Head of Department

Dr. B. A. Sawyerr Dr. B. A. Sawyerr

Dr. E. P. Fasina