

Obnovitelné zdroje energie

Miloslava Tesařová

Západočeská univerzita v Plzni Katedra elektroenergetiky a ekologie

Podíl OZE na instalovaném výkonu

Instalovaný výkon ES ČR za rok 2013 [MW]

Instalovaný výkon ve FVE

– cca 2 GVA = 2 bloky JE Temelín

Druh elektrárny	[MW]	Podíl [%]		
Parní (PE)	10 819	51,3%		
Jaderné (JE)	4 290	20,4%		
Fotovoltaika (FVE)	2 132	10,1%	—	21,9 %
Přečerpávací (PVE)	1 147	5,4%		21,3 /0
Vodní (VE)	1 083	5,1%		
Plynové (PSE)	820	3,9%		
Paroplynové (PPE)	518	2,5%		
Větrné (VTE)	270	1,3%		
Celkem ČR	21 079	100,0%		

Údaje o ES ČR

Údaje o ES ČR

Vliv OZE na chod ES ČR

- možnost velkých nárazových přetoků energie
- nestálost dodávaného výkonu (FVE, VTE) a nízká časová využitelnost
 - závisí na aktuálních klimatických podmínkách

Dodávaný výkon FVE

- zvýšené nároky na regulaci ES a zálohování zdrojů (nutnost teplé rezervy)
- vliv na kvalitu napětí
 - spínání zdrojů skokové změny napětí v síti
 - měnící se dodávaný výkon kolísání napětí, tzv. flikr

Vliv OZE na chod ES ČR

Vliv OZE na chod ES ČR

Na zemský povrch dopadá průměrně 0,2 kW/m²

V ČR dopadne na 1 m² přibližně 1000 kWh energie ročně

945₉₇₀1000 1030 1055 1085 1110 1140

Obr. 2.1: Globální solární záření [kWh/m² za rok]

Přeměna slunečního záření na elektrickou energii

- a) Solárně termická cesta využívá klasického principu známého z tepelných elektráren. Sluneční záření se soustřeďuje pomocí zrcadel na absorbér, jímž protéká teplonosná kapalina, například voda. Zde se voda zahřívá na vysoké teploty, vytvoří se přehřátá pára a ta pohání parní turbínu.
- <u>b</u>) Fotovoltaické články Sluneční záření dopadá na polovodičový fotovoltaický článek. Na rozhraní polovodičů typu P a N vzniká elektrické pole vysoké intenzity, toto pole pak uvádí do pohybu volné nosiče náboje vznikající absorpcí světla. Vzniklý elektrický proud (ss) odvádějí z článku elektrody.

Účinnost takové přeměny je asi 14 - 22 %

- 1) odražené sluneční paprsky, 2) věž se slunečním kotlem, 3) kotel ohřívající sluneční paprsky,
- 4) turbína, 5) generátor, 6) chladící věž

Fotovoltaický článek

Typ č lánku	Tloušťka [µm]	Ú č innost [%]	${ m J_{SC}} \ [{ m mA/cm^2}]$	V _{OC} [mV]
c-Si	300	16,9	35	510
μc-Si:H	0,86	8,5	19,9	598
a-Si:H	0,38	8,0	12,8	883
a-Si:H/ μc-Si:H	0,4/1,4	10,9	11,4	1391

Schéma FVE

pole FV panelů

Solární kolektory

jednookruhový

- 1) solární kolektor, 2) zásobník teplé vody,
- 3) přívod studené vody, 4) odběr teplé vody,
- 5) expanzní nádoba

Účinnost kolektorů je 70 – 90 %

dvouokruhový

- 1) solární kolektor, 2) tepelný výměník,
- 3) přívod studené vody, 4) odběr teplé vody,
- 5) oběhové čerpadlo, 6) automatická regulace, 7) expanzní nádoba

12

Plochý kolektor

- Základ nosná vana rám (Al, nerez)
- Izolace skelná vata, minerál. vata
- Absorbér se selektivním povrchem
- Solární sklo
 - Kalené (3 4mm)
 - Bezbarvé, propustnost cca 92%
- Dilatační rám
 - Ochrana před průnikem vlhkosti
- Systém odvětrání (proti rosení)
- Konstrukční prvky
 - Příruby
 - Montážní prvky

Účinnost kolektorů je 70 – 90 %

Větrná energie

Podle odhadů lze teoreticky výrobou el. energie z energie větru pokrýt asi 3 – 6 % současné spotřeby České republiky.

Podle údajů z čidel rychlosti a směru větru natáčíme lopatky vrtule, nebo celou elektrárnu.

Vítr má stochastický charakter a tudíž je nutné regulovat otáčky rotoru a frekvenci.

Otáčky regulujeme natáčením lopatek, popř. přibržděním. Rotor je spojen s rotorem generátoru přes spojku a planetovou převodovku.

Orientační graf výkonu větrné elektrárny

Větrná energie

Od větrné energie k výrobě a distribuci elektrické energie

Generování elektrické energie a její distribuce z větrných elektráren je několikafázový proces. Společnost ABB vyrábí frekvenční měniče, generátory, transformátory a rozvaděče pro aplikace větrných elektráren.

Vodní energie

- Klasické vodní elektrárny
- průtočné
- akumulační
- přečerpávací
- Přílivové elektrárny

Vodní energie

Průtočná vodní elektrárna

- 1) přívodní kanál, 2) česle,
- 3) vzdouvací zařízení (hráz),
- 4) vtoková hradidla,
- 5) tlakový přivaděč,
- 6) montážní jeřáb, 7) generátor,
- 8) rotor, 9) hřídel,
- 10) vodní turbína, 11) sací roura,
- 12) odpadní kanál

Vodní energie

Přečerpávací vodní elektrárny (PVE)

Geotermální energie

- systém suché páry
- systém mokré páry
- horkovodní systém
- systém horké suché skály

Biomasa

	technologie	produkty	výstupy
termochemické procesy	spalování		teplo, elektřina
	zplyňování	olej, plyn, dehet, metan, čpavek, metanol	elektřina, teplo, pohon vozidel
biochemické procesy	alkoholové kvašení	etanol	pohon vozidel
	anaerobní digesce	bioplyn, metan	elektřina, teplo, pohon vozidel
	kompostování		teplo (z chlazení kompostu)
mechanicko- chemické procesy	esterifikace	methylester řepkového oleje (MEŘO)-bionafta	pohon vozidel
	štípání, drcení, lisování	pevná paliva	elektřina, teplo

Tepelné čerpadlo

- 1.....výparník
- 2.....okolní prostředí
- 3.....kompresor
- 4......škrtící ventil
- 5.....topný systém v objektu
- 6.....kondenzátor

COP = Q/E

Q = teplo dodané do vytápění [kWh]

E = el.energie pro pohon TČ [kWh]

Topný faktor = 2 až 5

Kompresor je poháněný el. energií, tepelné čerpadlo dodá 2-5 krát více energie než spotřebuje

Tepelné čerpadlo

Pracovní médium - i při nejnižších (venkovních) teplotách se odpařuje (např. čpavek)

Výparník (tepelný výměník)

 pracovní látka (kapalný stav) obíhající v TČ odebírá okolnímu prostředí teplo – vypařuje se - přejde z kapalného do plynného stavu

Kompresor

- plynné pracovní médium nasaje a stlačí, zvýší se jeho tlak a stoupne také jeho teplota - pracovní médium je tedy "přečerpáno" na vyšší teplotní úroveň.
- energie potřebná na stlačení zvyšuje energetický (tepelný) potenciál pracovního média

Kondenzátor (tepelný výměník)

- pracovní médium odevzdá své celkové teplo, které uvedeným způsobem získalo, resp. je mu odňato nějakou teplonosnou látkou, např. vodou pro teplovodní vytápění
- médium se ochladí a dojde k jeho zkapalnění

Expanzní ventil

 dojde k seškrcení (snížení) tlaku média na původní nízký tlak a oběh se opakuje.

Tepelné čerpadlo

Děkuji za pozornost, doplnění prezentovaných informací a vaše dotazy.

Miloslava Tesařová

Západočeská univerzita v Plzni Katedra elektroenergetiky a ekologie