FIRST MIDTERM PRACTICE PROBLEMS MATH 185, SECTION 3

Suggestions for preparation:

- Understand thoroughly the proofs of all the important theorems.
- Review all the homework problems. Rethink the problems before you read the solutions: understanding the thought process is much more important than memorizing the solutions, since the exam problems are not likely to be exactly the same as something you've seen before.
- Do as many practice problems as possible.
- (1) Compute the following integrals:

$$\int_0^\infty \frac{1}{(1+x^2)^2} dx; \quad \int_0^\infty \frac{x^2}{(x^2+1)(x^2+9)} dx; \quad \int_{|z|=1} z^4 e^{2/z^2} dz; \quad \int_{|z-3|=1} \frac{\cos(z)}{z(z-\pi)^2} dz.$$

- (2) Prove that if f is a holomorphic function on \mathbb{D} and |f| is constant, then f is a constant function.
- (3) If the power series $\sum a_n z^n$ has radius of convergence $R_1 > 0$ and the power series $\sum b_n z^n$ has radius of convergence $R_2 > 0$. Prove that the radius of convergence of the power series $\sum a_n b_n z^n$ is at least $R_1 R_2$.
- (4) Find the power series expansion of f(z) = 1/z at the point $z_0 = 1 + i$. What's its radius of convergence?
- (5) Let p(z) be a polynomial of degree at least two, and C be a simple closed curve which contains all zeros of p(z) in its interior. Prove that

$$\int_C \frac{1}{p(z)} dz = 0.$$

(6) If f is holomorphic in a disc $D_R(z_0)$, then for any 0 < r < R we have

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta.$$

(7) Prove that there exists $\epsilon > 0$ such that for every polynomial p(z),

$$\max_{|z|=1} \left| \frac{1}{z} - p(z) \right| > \epsilon.$$

- (8) Let $f: \mathbb{C} \to \mathbb{C}$ be a function such that f(1/n) = 1 for all positive integer n and f(2i) = 2. Prove that f is not an entire function.
- (9) Find all the entire functions f such that $\text{Re}(f(z)) > (\text{Im}(f(z)))^2$ holds for any $z \in \mathbb{C}$.
- (10) Prove that there is no entire function f(z) with $Re(f(z)) = |z|^2$.
- (11) How many roots does the polynomial $z^5 + 2z^2 + 1$ have in the annulus $A_{\frac{1}{2},2}(0)$?

(12) If f is a nonconstant entire function, then

$$\max_{|z| \le 1} |f(z)| < \max_{|z| \le 2} |f(z)|.$$

- (13) Review the biholomorphic maps among some basic simply connected domains, e.g. page 213 of the textbook.
- (14) Let f_A be the Möbius transformation associated to $A \in \mathrm{SL}_2(\mathbb{R})$. Prove that $f_A \circ f_B = f_{AB}$ for any $A, B \in \mathrm{SL}_2(\mathbb{R})$.
- (15) Let $\Omega = \{z \in \mathbb{C} : |z| < 1/2\}$, and let \mathcal{F} be the family of holomorphic functions on Ω consisting of polynomials of the form

$$f(z) = (z - a_1)(z - a_2) \cdots (z - a_n)$$
, where $|a_i| < 1/2$ for all $1 \le i \le n$.

Is \mathcal{F} a normal family on Ω ? Justify your answer.

- (16) Let $\wp(z)$ be the Weierstrass \wp -function with respect to a lattice $\Lambda \subseteq \mathbb{C}$. Express $\wp'(z)\wp'''(z)$ as a polynomial in $\wp(z)$.
- (17) Prove that the only modular forms of weight zero are the constant functions.