TD3 STATISTIQUES 2 / HPC - BIG DATA 2023

Exercice 1:

On cherche à expliquer la production photovoltaïque (PROD en W) par deux prédicteurs que sont les paramètres rayonnement (RAY en W/m²) et température de l'air (TEMP en °C). On dispose de 30 mesures de chacune des variables, les mesures de production photovoltaïque étant issues de trois capteurs de surface 1 m² provenant de constructeurs différents nommés a, b et c (voir tableau ci-dessous).

i	1	 10	11		20	21	 30
PROD	P_1			•••			P ₃₀
RAY	R_1			•••			R ₃₀
TEMP	T_1			•••			T ₃₀
CAPT	a	 a	b		b	С	 c

On considère le modèle suivant :

$$P_i = \beta_o + \beta_1 R_i + \beta_2 T_i + e_i \qquad \qquad pour \ i = 1, ..., 30 \qquad (modèle \ 1)$$

Les e_i sont supposées indépendantes, identiquement distribuées suivant une loi normale centrée de variance σ^2 constante et inconnue. Les variables RAY et TEMP sont <u>centrées</u>.

De plus, on donne :
$$\sum_{i=1}^{30} T_i^2 = 10^4$$
 ; $\sum_{i=1}^{30} R_i^2 = 10^6$; $\sum_{i=1}^{30} R_i T_i = 0$

- Matriciellement le modèle s'écrit : P = Xβ + e.
 Expliciter la matrice X et le vecteur β. Quelle est la dimension q du modèle ?
 Donner l'expression des estimateurs des moindres carrés β̂₀, β̂₁, β̂₂ et expliciter la loi de chacun d'eux. Ces estimateurs sont-ils indépendants? Donner l'expression de l'estimateur sans biais de σ².
- 2. Proposer formellement (poser les hypothèses H_0 et H_1 , la statistique de décision, sa loi sous H_0 , la règle de décision) un test de niveau α permettant de tester la significativité de l'effet de la température de l'air sur la production photovoltaïque.
- 3. Au vu des résultats ci-dessous obtenus avec le logiciel R sur les données du problème, répondre aux questions suivantes :
 - a. Donner les valeurs de $\hat{\beta}_1$ et $\hat{\beta}_2$. Peut-on conclure que la température de l'air a un effet significatif sur la production photovoltaïque ? Qu'en est-il du prédicteur rayonnement global ? Justifier les réponses.
 - b. Calculer la donnée manquante notée « ? » dans les sorties R fournies.
 - c. Donner une estimation de la variance du terme d'erreur dans ce modèle.
 - d. Interpréter le nombre Multiple R-Squared fourni.

$lm(formula = PROD \sim RAY + TEMP, data)$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	80.50	2.00	?	1.09e-12
RAY	0.043	0.01	4.30	0.00021
TEMP	-0.004	0.11	-0.036	0.972

Residual standard error: 10.95 on 27 degrees of freedom

Multiple R-squared: 0.6865

4. On cherche désormais à répondre à la question suivante : les trois capteurs photovoltaïques ont-ils des comportements différents ?

On introduit dans notre modèle le paramètre α_{capt} pouvant prendre trois valeurs (α_a, α_b et α_c) en fonction de la modalité du facteur CAPT (voir tableau page 1). On considère donc le modèle d'analyse de covariance suivant :

$$P_i = \beta_o + \beta_1 R_i + \beta_2 T_i + (\alpha_{capt})_i + e_i \qquad \qquad pour \ i = 1, \dots, 30 \qquad \qquad (\text{modèle 2})$$

Les e_i sont supposées indépendantes, identiquement distribuées suivant une loi normale centrée de variance σ^2 constante et inconnue. Le modèle s'écrit : $P = Z\beta + e$.

Expliciter la matrice \mathbf{Z} et le vecteur $\boldsymbol{\beta}$ du modèle 2 en imposant la contrainte d'identification notée « α $_a$ =0 » . Quelle est la dimension q de ce modèle ? Avec cette contrainte, comment interpréter les coefficients qui seront estimés ?

Les sorties R listées ci-dessous et obtenues sur les données du problème permettentelles de répondre à la question posée ? Justifier.

$lm(formula = PROD \sim RAY + TEMP + CAPT, data)$

	Estimate	Std. Error	t value	Pr(>/t/)
(Intercept)	<i>73.86</i>	1.75	42.21	1.15e-13
RAY	0.043	0.008	5.375	1.41e-05
TEMP	-0.004	0.10	-0.040	0.9681
$CAPT_b$	3.21	1.53	2.098	0.0462
$CAPT_c$	0.11	1.53	0.072	0.9432

Exercice 2:

On cherche à prévoir pour le lendemain la valeur d'un indice noté PO de pollution à l'ozone en exploitant trois prédicteurs potentiels constitués de prévisions d'un modèle météorologique à l'échéance 24H des variables suivantes :

- T, la température T de l'air en °C.
- FF, la force du vent en m/s.
- DD, la direction du vent (variable qualitative à 4 modalités : Nord, Ouest, Sud et Est).

L'indice PO est défini par : $PO = [O_3] / 180$, avec $[O_3]$ concentration en Ozone en $\mu g.m^3$, 180 $\mu g.m^3$ correspondant au seuil de concentration au-delà duquel la population doit être informée.

On dispose d'une archive de n=80 valeurs de chacune des variables, prédictand et prédicteurs :

i	1	•••	20	21	•••	40	41	•••	60	61	•••	80
PO	PO ₁											PO ₈₀
T	T_1											T ₈₀
FF	FF ₁											FF ₈₀
DD	Nord		Nord	Ouest		Ouest	Sud	•••	Sud	Est		Est

Partie I: Régression multiple

On souhaite élaborer puis tester le modèle de régression suivant, comportant un terme d'interaction proportionnel au produit des variables T et FF:

$$PO_i = \beta_0 + \beta_1 T_i + \beta_2 FF_i + \beta_3 FF_i *T_i + e_i$$
 pour $i = 1,..., n$ (modèle 1)

Les e_i sont supposées indépendantes, identiquement distribuées suivant une loi normale centrée de variance σ^2 constante et inconnue.

Les variables FF et T ont été centrées et normées : $\sum_{i=1}^{n} T_i = \sum_{i=1}^{n} FF_i = 0$ et

$$\sum_{i=1}^{n} T_i^2 = \sum_{i=1}^{n} FF_i^2 = n \text{ . De plus, on donne : } \sum_{i=1}^{n} T_i . FF_i^2 = -40 \text{ et } \sum_{i=1}^{n} T_i^2 . FF_i^2 = +40$$

Les sommes $\sum_{i=1}^{n} T_i . FF_i$ et $\sum_{i=1}^{n} T_i^2 . FF_i$, négligeables devant les autres sommes du problème, seront considérées comme nulles.

Matriciellement le modèle 1 s'écrit : PO = Xβ + e.
 Entre-t-il dans le cadre théorique du modèle linéaire gaussien ? Pourquoi ?
 Quelles hypothèses sont alors faites ? Quelle est la dimension q du modèle 1 ?
 Donner les expressions de la 'design matrix' X et du vecteur des paramètres β.

2. Donner l'expression de la matrice ^tXX puis exprimer son inverse sous la forme :

$$({}^{t}XX)^{-1} = \frac{1}{80} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & a \\ 0 & 0 & a & b \end{pmatrix}$$
, a et b étant 2 entiers à déterminer.

- 3. Donner les expressions des estimateurs des moindres carrés des paramètres β_0 , β_1 , β_2 et β_3 . Expliciter la loi du vecteur $\hat{\beta}$. Les estimateurs des paramètres sont-ils indépendants ?
- 4. Proposer formellement (poser les hypothèses nulle et alternative, la statistique du test, sa loi sous H₀, la règle de décision en exploitant la p-value) un test de niveau α permettant de tester la significativité de l'effet de la force du vent sur l'indice PO.
- 5. Au vu des résultats ci-dessous obtenus avec le logiciel R sur les données du problème, répondre aux questions suivantes :
 - a. Donner la valeur de $\hat{\beta}_3$. Le terme d'interaction du modèle présente-t-il un intérêt ?
 - b. Quel est le pourcentage de variance expliquée par ce modèle ?
 - c. Rappeler l'expression de l'estimateur sans biais de σ^2 , la variance du terme d'erreur du modèle. Donner la valeur numérique de l'estimation de l'écart-type $\hat{\sigma}$ de l'erreur.
 - d. Quelle est l'unité de $\hat{\beta}_1$? Quel est l'écart-type estimé de cet estimateur ? Comment décririez-vous l'effet moyen de la température sur l'indice PO ?
 - e. Au final, quels prédicteurs retenir ? Justifier la réponse.

Call: $lm(formula = PO \sim T + FF + FF * T, data)$

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.75	0.016	<i>46.8</i>	< 2e-16
T	0.15	0.016	9.37	1.19e-14
FF	-0.06	0.023	-2.61	0.000782
T*FF	-0.01	0.033	-0.30	0.547740

Residual standard error: 0.15 on 76 degrees of freedom

Multiple R-squared: 0.60

Partie II : Analyse de covariance

Afin de tester l'intérêt du prédicteur DD, on considère le modèle d'analyse de covariance suivant :

$$PO_i = \beta_0 + \beta_1 T_i + \beta_2 FF_i + \theta_i + e_i$$
 pour $i = 1,..., n$ (modèle 2)

 θ_i pouvant prendre 4 valeurs : θ_N , θ_O , θ_S et θ_E suivant la modalité du facteur DD. Les erreurs e_i sont supposées indépendantes, identiquement distribuées suivant une loi normale centrée de variance σ^2 constante et inconnue.

- 1. Matriciellement le modèle 2 s'écrit : $PO = Z\beta + e$. En imposant la contrainte d'identification notée « $\theta_E = 0$ », expliciter Z et β . Quelle est la dimension q du modèle 2? Avec la contrainte imposée, comment interprétez-vous les paramètres estimés ?
- **2.** A l'aide des sorties R listées ci-dessous et obtenues sur les données du problème, répondre aux questions suivantes :
 - a. Interpréter les résultats relatifs au prédicteur DD.
 Est-il pertinent de conserver cette variable dans le modèle ? Justifier la réponse.
 - b. Peut-on dire que la modalité Ouest du facteur DD est sans effet sur le prédictand ?
 - c. Le modèle 2 est-il meilleur que le modèle 1 ? Justifier la réponse.
 - **d.** Les modèles testés vous semblent-ils adaptés au prédictand étudié ? Justifier la réponse.

Call:

 $lm(formula = PO \sim T + FF + DD, data)$

Residuals:

Min 1Q Median 3Q Max -0.28335 -0.07115 -0.01171 0.08507 0.27618

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercep	t) 0.71	0.026	27.31	< 2e-16
\boldsymbol{T}	0.14	0.013	<i>10.77</i>	< 2e-16
FF	-0.05	0.013	-3.84	0.00042
DDN	0.18	0.037	4.86	3.99e-06
DDO	0.02	0.038	0.53	0.59791
DDS	-0.02	0.037	-0.54	0.45814

Residual standard error: 0.11 on 74 degrees of freedom

Multiple R-squared: 0.74