MATH 490

Midterm

Name : SOLUTIONS

March 25, 2016

Instructions: Show all work for full credit. Poor notation or sloppy work will be penalized. For this exam, the symbol p represents a prime number in \mathbb{Z} , and $|\cdot|_p$ represents the p-adic norm on \mathbb{Q} or \mathbb{Q}_p .

1. (15 pts.) Perform the following 5-adic arithmetic computations.

b)

134_{$$\wedge$$}
× 23 _{\wedge}

1012
323

$$\begin{array}{c}
1/\\
2 \quad 82/1_{\wedge}\\
= \quad 24_{\wedge}
\end{array}$$

c) Give the canonical 5-adic expansion of $\frac{7}{25}$.

- 2. (9 pts.) Give examples of the following, if they exist. Briefly justify your answer.
 - (a) A 7-adic integer $x \in \mathbb{Q} \setminus \mathbb{Z}$.

$$\mathbb{E}_{3}$$
 $\left[\begin{array}{c|c} x=\frac{1}{2} \\ \end{array}\right]$ $x \in \mathbb{Z}_{7}$ $x \in \mathbb{Z}_{7}$ $x \in \mathbb{Z}_{7}$

(b) An element $y \in \mathbb{Q}_7 \setminus \mathbb{Q}$.

Note the non-repeating canonical

y e/ Q

7-adic expension By a HW proller,

(c) An element $z \in \mathbb{Z}_7 \setminus \mathbb{Q}$.

quadrate residur mod 7, since 32 = 2 (mod 7) Since p=7 is odd, it follows by the Corollary to Hensel's Lemma That JZ & Zy \ Q.

3. (26 pts.) Give an example of a non-constant nor non-eventually constant sequence of integers $\{a_n\}$ such that $\{a_n\}$ converges to a=2 with respect to the 3-adic norm $\|\cdot\|_3$, but $\{a_n\}$ does not converge with respect to the 5-adic norm $\|\cdot\|_5$.

(b) Now use the $\epsilon-N$ definition of 'a sequence converges to a limit a' to prove that $\{a_n\}\to 2$ with respect to the 3-adic norm $|\cdot|_3$.

CICIMIT The sequence $\{2+3^n\}$ converges to 2 with respect to $|\cdot|_3$.

Let ϵ 0 be ϵ 1. Take ϵ 2 or ϵ 3 that ϵ 4. Then if ϵ 5 or ϵ 6 or ϵ 9 or

(c) Prove that $\{a_n\}$ does not converge with respect to the 5-adic norm $\|\cdot\|_5$.

Proof: Since Of is a complete metric space and all Cauchy sequences

converge in complete metric spaces, it suffices to show that {2+37} is

Not Cauchy in Qs. To this end, consider |an-antils = |2+37 - (2+3741)|s

= |37-3741|s = |37|s |3-1|s = |37|s |2|s = 1. Thus, consequentive terms in

the sequence are always a unit distance apart and {and {and is not cauchy in Qs.

(d) Explain briefly, but rigorously, why this problem illustrates that $|\cdot|_3 \not\sim |\cdot|_5$ as norms on the rational numbers.

The sequence {2+3n} is Couchy with respect to 1/3, but not 1/5
That is, by definition, these norms are inequivalent

- 4. (20 pts.)
 - (a) (5 pts.) State the Strong Triangle Inequality for a non-Archimedean norm $\|\cdot\|$ on a normed field F.

(b) (5 pts.) By Proposition 1.15, we have "If the elements $x,a\in\mathbb{Q}_5$ satisfy the inequality $|x-a|_5<|a|_5$, then $|x|_5=|a|_5$. Give an example x,a, both non-zero, illustrating this. (A complete answer includes computations of the relevant norms.)

(c) (10 pts.) Prove that if $B = B(a,r) = \{x \in \mathbb{Q}_5 \mid |x-a|_5 < r\}$ is the open ball centered at a of radius r > 0 and $b \in B$, then B = B(b,r).

Proof: We then first that
$$B(b,r) \in B(a,r)$$
. Let $x \in B(a,r)$ and note that $|x-b|_{\mathcal{S}} \leq r$ by definition. We have $|x-c|_{\mathcal{S}} = |(x-b)+(b-a)|_{\mathcal{S}} \leq max\{|x-b|_{\mathcal{S}}, |b-a|_{\mathcal{S}}\}$ by the strong triangle Inequality. However, $|x-b|_{\mathcal{S}} \leq r$ since $|b|_{\mathcal{S}} \leq B(b,r)$ and $|b-a|_{\mathcal{S}} \leq r$ since $|b|_{\mathcal{S}} \leq B(a,r)$. and therefore max $\{|x-b|_{\mathcal{S}}, |b-a|_{\mathcal{S}}\} \leq r$. Thus, $|x-a|_{\mathcal{S}} \leq r$ since $|b|_{\mathcal{S}} \leq B(a,r)$. and therefore $|a|_{\mathcal{S}} \leq B(a,r)$ for thus, $|a|_{\mathcal{S}} \leq r$ and $|a|_{\mathcal{S}} \leq B(a,r)$. By symmetry, $|a|_{\mathcal{S}} \leq r$ and $|a|_{\mathcal{S}} \leq B(a,r)$.

5. (8 pts.) Give the value of $|3^6!|_3$, simplifying any exponents occurring in your answer. (No need to justify your answer, unless you hope for partial credit.)

First count the number of times
$$3 | 36!$$
. This number is

$$35 \quad + 34 \quad + 34 \quad + 34 \quad = \frac{36-1}{3-1} = \frac{728}{2} = 364.$$

Her factors # of factors divisible by 3 divisible by 3

- 6. (22 pts.) Solving equations.
 - (a) (6 pts.) Let $F(x) \in \mathbb{Z}_p[x]$ be a polynomial, and F'(x) denote its formal derivative. State Hensel's Lemma for finding a solution to F(x) = 0 in \mathbb{Z}_p .

Suppose $a \in \mathbb{Z}_p$ such that $F(a_0) \equiv 0 \pmod{p}$ and $F(a_0) \not\equiv 0 \pmod{p}$ Then there exists a unique $a \in \mathbb{Z}_p$ such that $F(a_0) \equiv F(a) \pmod{p}$ and $F(a) \equiv 0$.

- (b) (8 pts.) Let p=7 and consider the quadratic equation $F(x)=x^2+x+2=0$. i. Show that there exists some $a_0\in\{0,1,\dots 6\}\subset \mathbb{Z}_7$ such that $F(a_0)\equiv 0\ (\bmod\ 7)$.
 - ii. Can a_0 be refined to find $a \in \mathbb{Z}_p$ with F(a) = 0? Explain. If so, find the first two terms in the 7-adic expansion of x, $x \equiv a_1 a_{0 \wedge} \pmod{7^2}$.

Using the neal's Lemma, test F'(3). The formal derivative is F'(x)=2x+1 and $F'(3)=2.3+1\equiv 0 \text{ (mod 7)}$. Thus, by this version of Hensells Lemma, $R_0=3$ can not be refined to a root of F(x).

(c) (8 pts.) Let p=7 and consider the equation $F(x)=x^2-2=0$ in \mathbb{Z}_7 . Does there exist a root $a\in\mathbb{Z}_7$ to this equation? Explain. If so, find the first two digits in the 7-adic expansion of a, $a\equiv a_1a_0$ (mod 7^2).

of $a, a \equiv a_1 a_{0,0} \pmod{7^2}$.

Let $a_0 = 2$, then $a_0 = 2 \pmod{7}$ and by "throtis lemma for square Rode"

or just Hensel's Lemma, $a_0 = 2 \pmod{5}$ refined to a p-adic integer root

Consider $b = 3+3c_1$, then $F(b) = F(3+3c) = (3+3c_1)^2 - 2 = 9+42c_1 + 3^2c_1^2 - 2$ $= 7+42c_1 + 3^2c_1^2 = 7+42c_1 \pmod{7^2}$. After division by $a_0 = 3$, we must solve

(*) $a_0 = 3 + 3c_1$ since we went to find a root mod $a_0 = 3$. The digit $a_0 = 1 \pmod{7}$ since we went to find a root mod $a_0 = 3$. The digit $a_0 = 1 \pmod{7}$ since we went to find a root mod $a_0 = 3$. The digit $a_0 = 1 \pmod{7}$ since we went to find a root mod $a_0 = 3$. The digit $a_0 = 1 \pmod{7}$ since we went to find a root mod $a_0 = 3$. The digit $a_0 = 1 \pmod{7}$ since we want to find a root mod $a_0 = 3$. The digit $a_0 = 1 \pmod{7}$ since $a_0 = 13$ since $a_0 = 3$ s

Extra credit: Consider the rational number x with canonical 3-adic expansion

$$x = \overline{12}1_{\wedge}2$$

Find $a,b\in\mathbb{Z}$ so that $x=rac{a}{b}.$