Nearest neighbor for realizable online classification

Sanjoy Dasgupta and Geelon So (2023)

Geelon So, agso@eng.ucsd.edu EnCORE Student Social — Mar 20, 2023

THE WEATHER CHANNEL'S TASK

Each day:

▶ receive atmospheric data

THE WEATHER CHANNEL'S TASK

Each day:

- ► receive atmospheric data
- ▶ predict tomorrow's weather

THE WEATHER CHANNEL'S TASK

Each day:

- ► receive atmospheric data
- ▶ predict tomorrow's weather
- ▶ observe actual weather

THE WEATHER CHANNEL'S TASK

Each day:

- ► receive atmospheric data
- ▶ predict tomorrow's weather
- ▶ observe actual weather
- ▶ incur ire of viewers if wrong

NEAREST NEIGHBOR ALGORITHM

► remember all past conditions + weather outcomes

NEAREST NEIGHBOR ALGORITHM

- ► remember all past conditions + weather outcomes
- ▶ predict weather according to the most similar conditions in memory

SETTING

Let (\mathcal{X}, ρ) be a metric space.

SETTING

Let (\mathcal{X}, ρ) be a metric space.

NEAREST NEIGHBOR ALGORITHM

SETTING

Let (\mathcal{X}, ρ) be a metric space.

NEAREST NEIGHBOR ALGORITHM

lacktriangle remember all past data points $\{(x_1, y_1), \dots, (x_t, y_t)\}$

SETTING

Let (\mathcal{X}, ρ) be a metric space.

NEAREST NEIGHBOR ALGORITHM

- ▶ remember all past data points $\{(x_1, y_1), \dots, (x_t, y_t)\}$
- ▶ given query *x*, find most similar data point in memory

$$NN(x) = \underset{\tau}{\arg\min} \ \rho(x, x_{\tau})$$

SETTING

Let (\mathcal{X}, ρ) be a metric space.

NEAREST NEIGHBOR ALGORITHM

- remember all past data points $\{(x_1, y_1), \dots, (x_t, y_t)\}$
- ightharpoonup given query x, find most similar data point in memory

$$NN(x) = \operatorname*{arg\,min}_{\tau} \, \rho(x, x_{\tau})$$

predict using corresponding label

$$\hat{y}(x) = y_{NN(x)}$$

Behavior of online nearest neighbor

QUESTION

When is the *nearest neighbor rule* a reasonable online prediction strategy?

ONLINE LEARNING LOOP

For
$$t = 1, 2, ...$$

ightharpoonup receive instance x_t

ONLINE LEARNING LOOP

For t = 1, 2, ...

- ightharpoonup receive instance x_t
- ightharpoonup predict label \hat{y}_t

ONLINE LEARNING LOOP

For t = 1, 2, ...

- ightharpoonup receive instance x_t
- ightharpoonup predict label \hat{y}_t
- ightharpoonup observe true label y_t

ONLINE LEARNING LOOP

For t = 1, 2, ...

- ightharpoonup receive instance x_t
- ightharpoonup predict label \hat{y}_t
- ightharpoonup observe true label y_t
- ▶ incur loss $\ell(x_t, y_t, \hat{y}_t)$

REALIZABILITY ASSUMPTION

The true labels are generated by some underlying function $f:\mathcal{X} \to \mathcal{Y}$,

$$y_t = f(x_t).$$

GOAL

Make fewer and fewer mistakes over time.

GOAL

Make fewer and fewer mistakes over time. Formally:

$$\mathrm{er}_T := rac{1}{T} \sum_{t=1}^T \ellig(x_t, y_t, \hat{y}_tig) o 0 \ .$$
achieve vanishing error rate

Connection to regret

In the usual goal in the online learning setting is to achieve sublinear regret:

$$\operatorname{regret}_T := \sum_{t=1}^T \ell(x_t, y_t, \hat{y}_t) - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell(x_t, y_t, h(x_t)).$$

Connection to regret

In the usual goal in the online learning setting is to achieve sublinear regret:

$$\operatorname{regret}_T := \sum_{t=1}^T \ell(x_t, y_t, \hat{y}_t) - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell(x_t, y_t, h(x_t)).$$

▶ In the realizable setting, if \mathcal{H} is non-parametric (e.g. all nearest neighbor classifiers), no mistakes are made by any optimal $h \in \mathcal{H}$ on $(x_1, y_1), \dots, (x_T, y_T)$.

Connection to regret

In the usual goal in the online learning setting is to achieve sublinear regret:

$$\operatorname{regret}_T := \sum_{t=1}^T \ell(x_t, y_t, \hat{y}_t) - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell(x_t, y_t, h(x_t)).$$

- ▶ In the realizable setting, if \mathcal{H} is non-parametric (e.g. all nearest neighbor classifiers), no mistakes are made by any optimal $h \in \mathcal{H}$ on $(x_1, y_1), \dots, (x_T, y_T)$.
- ► Thus, sublinear regret is equivalent to vanishing error rate.

Difficulty of realizable online learning

 \blacktriangleright The sequence of instances x_t do not come i.i.d. from some distribution.

Difficulty of realizable online learning

- \blacktriangleright The sequence of instances x_t do not come i.i.d. from some distribution.
- \blacktriangleright In the worst-case, each x_t is selected so that learner makes a mistake each time.

GOAL

Learn the sign function
$$f(x) := \begin{cases} + & x \ge 0 \\ - & x < 0 \end{cases}$$

GOAL

Learn the sign function
$$f(x) := \begin{cases} + & x \ge 0 \\ - & x < 0 \end{cases}$$

EXAMPLE. A worst-case sequence where the nearest neighbor rule errs every time.

GOAL

Learn the sign function
$$f(x) := \begin{cases} + & x \ge 0 \\ - & x < 0 \end{cases}$$

EXAMPLE. A worst-case sequence where the nearest neighbor rule errs every time.

GOAL

Learn the sign function
$$f(x) := \begin{cases} + & x \ge 0 \\ - & x < 0 \end{cases}$$

EXAMPLE. A worst-case sequence where the nearest neighbor rule errs every time.

Negative example: learning the sign function

GOAL

Learn the sign function
$$f(x) := \begin{cases} + & x \ge 0 \\ - & x < 0 \end{cases}$$

EXAMPLE. A worst-case sequence where the nearest neighbor rule errs every time.

▶ The sequence alternate signs and the nearest neighbor of x_{t+1} is x_t out of x_1, \ldots, x_t .

Negative result

SETTING

Let (\mathcal{X}, ρ) be a totally bounded metric space and $f: \mathcal{X} \to \{-, +\}$.

Negative result

SETTING

Let (\mathcal{X}, ρ) be a totally bounded metric space and $f : \mathcal{X} \to \{-, +\}$.

Proposition (Non-convergence in the worst-case)

There is a sequence of instances $(x_t)_t$ on which the nearest neighbor error rate is bounded away from zero if and only if there is no positive separation between classes:

$$\inf_{f(x)\neq f(x')} \rho(x,x') = 0.$$

Negative result

SETTING

Let (\mathcal{X}, ρ) be a totally bounded metric space and $f: \mathcal{X} \to \{-, +\}$.

Proposition (Non-convergence in the worst-case)

There is a sequence of instances $(x_t)_t$ on which the nearest neighbor error rate is bounded away from zero if and only if there is no positive separation between classes:

$$\inf_{f(x)\neq f(x')} \rho(x,x') = 0.$$

- **Proof idea:** can always find arbitrarily close pairs (x, x') with opposite signs
 - \triangleright can select sequence so that x_{2t} is closest to x_{2t-1} , which has the opposite sign

The worst-case adversary is too powerful—learning may not be possible in this setting.

▶ **ISSUE:** the adversary can compute/construct test instances with arbitrary precision.

The worst-case adversary is too powerful—learning may not be possible in this setting.

▶ ISSUE: the adversary can compute/construct test instances with arbitrary precision.

The worst-case adversary is too powerful—learning may not be possible in this setting.

▶ **ISSUE:** the adversary can compute/construct test instances with arbitrary precision.

- ▶ a real adversary may be limited in:
 - information,

The worst-case adversary is too powerful—learning may not be possible in this setting.

▶ **ISSUE:** the adversary can compute/construct test instances with arbitrary precision.

- ▶ a real adversary may be limited in:
 - ▶ information,
 - computational power,

The worst-case adversary is too powerful—learning may not be possible in this setting.

▶ **ISSUE:** the adversary can compute/construct test instances with arbitrary precision.

- ► a real adversary may be limited in:
 - ▶ information,
 - computational power,
 - access to hard instances.

This work

RESEARCH QUESTION

Under what *general conditions* is realizable online learning possible?

This work

RESEARCH QUESTION

Under what general conditions is realizable online learning possible?

▶ How much do we need to relax the worst-case adversary?

- ► Worst-case analysis:
 - ▶ Show that there exists at least one hard problem instance.

- ► Worst-case analysis:
 - ▶ Show that there exists at least one hard problem instance.
 - ▶ This can fail to capture the actual behavior of the algorithm in practice.

- ► Worst-case analysis:
 - ▶ Show that there exists at least one hard problem instance.
 - ▶ This can fail to capture the actual behavior of the algorithm in practice.
- ► Non-worst-case analysis:
 - ▶ Introduce a (probability) measure over problem instances.

- ► Worst-case analysis:
 - ▶ Show that there exists at least one hard problem instance.
 - ▶ This can fail to capture the actual behavior of the algorithm in practice.
- ► Non-worst-case analysis:
 - ▶ Introduce a (probability) measure over problem instances.
 - Show that almost all problems are easy (the hard instances have measure zero).
 - Or, problems are easy with high probability/on average.

SMOOTHED ADVERSARY LOOP

For
$$t = 1, 2, ...$$

SMOOTHED ADVERSARY LOOP

For
$$t = 1, 2, ...$$

> select test distribution μ_t over all instances \mathcal{X}

SMOOTHED ADVERSARY LOOP

For t = 1, 2, ...

- **>** select test distribution μ_t over all instances \mathcal{X}
- ▶ draw test instance $x_t \sim \mu_t$

SMOOTHED ADVERSARY LOOP

For t = 1, 2, ...

- **>** select test distribution μ_t over all instances \mathcal{X}
- ▶ draw test instance $x_t \sim \mu_t$
- ▶ observe (fully/partially) learner's internal state after update

SMOOTHED ADVERSARY LOOP

For t = 1, 2, ...

- **select** test distribution μ_t over all instances \mathcal{X}
- ▶ draw test instance $x_t \sim \mu_t$
- ▶ observe (fully/partially) learner's internal state after update

The smoothed online setting is also studied by Rakhlin et al. (2011); Haghtalab et al. (2020).

- ▶ The smoothed adversary framework interpolates between:
 - **b** the i.i.d. setting: μ_t is fixed for all time t

- ▶ The smoothed adversary framework interpolates between:
 - **b** the i.i.d. setting: μ_t is fixed for all time t
 - \blacktriangleright the worst-case setting: μ_t may be point masses

Example: Gaussian perturbation model

GAUSSIAN-SMOOTHED ADVERSARY:

ightharpoonup adversary selects \overline{x}

Example: Gaussian perturbation model

GAUSSIAN-SMOOTHED ADVERSARY:

- ightharpoonup adversary selects \overline{x}
- ▶ test instance x is a perturbed version $\overline{x} + \xi$ where $\xi \sim \mathcal{N}(0, \sigma^2 I)$, so:

$$\mu = \mathcal{N}(\bar{x}, \sigma^2 I).$$

Example: σ -smoothed adversary

σ -SMOOTHED ADVERSARY:

 \blacktriangleright let ν be an underlying distribution over ${\mathcal X}$

Example: σ -smoothed adversary

σ -SMOOTHED ADVERSARY:

- ightharpoonup let u be an underlying distribution over \mathcal{X}
- lacktriangle the adversary can select any distribution μ satisfying:

$$\mu(A) \le \frac{1}{\sigma} \cdot \nu(A),$$

for all $A \subset \mathcal{X}$ measurable.

In this work, we generalize both by the ν -dominated adversary.

► INTUITION: the dominated adversary cannot place a constant probability mass on an arbitrarily small region of problem instances.

In this work, we generalize both by the ν -dominated adversary.

- ► INTUITION: the dominated adversary cannot place a constant probability mass on an arbitrarily small region of problem instances.
- **SETTING:** let (\mathcal{X}, ν) be a measure space.

In this work, we generalize both by the ν -dominated adversary.

- ► INTUITION: the dominated adversary cannot place a constant probability mass on an arbitrarily small region of problem instances.
- **SETTING:** let (\mathcal{X}, ν) be a measure space.

Definition (Dominated adversary)

The measure ν uniformly dominates a family \mathcal{M} of probability distributions on \mathcal{X} if for all $\varepsilon > 0$ there exists $\delta > 0$ such that:

$$\nu(A) < \delta \implies \mu(A) < \varepsilon,$$

for all $A \subset \mathcal{X}$ measurable and distribution $\mu \in \mathcal{M}$.

In this work, we generalize both by the ν -dominated adversary.

- ► INTUITION: the dominated adversary cannot place a constant probability mass on an arbitrarily small region of problem instances.
- **SETTING:** let (\mathcal{X}, ν) be a measure space.

Definition (Dominated adversary)

The measure ν uniformly dominates a family \mathcal{M} of probability distributions on \mathcal{X} if for all $\varepsilon > 0$ there exists $\delta > 0$ such that:

$$\nu(A) < \delta \implies \mu(A) < \varepsilon,$$

for all $A \subset \mathcal{X}$ measurable and distribution $\mu \in \mathcal{M}$. We say that adversary is ν -dominated if at all times t it selects μ_t from a family of distributions uniformly dominated by ν .

SETTING

Suppose that the instance space $\ensuremath{\mathcal{X}}$ consists of countably many well-separated clusters

SETTING

Suppose that the instance space ${\mathcal X}$ consists of countably many well-separated clusters

▶ within-cluster distances ≪ between-cluster distances

SETTING

Suppose that the instance space ${\mathcal X}$ consists of countably many well-separated clusters

- ▶ within-cluster distances ≪ between-cluster distances
- ▶ the labels for each cluster is pure (all positive or all negative labels).

SETTING

Suppose that the instance space ${\mathcal X}$ consists of countably many well-separated clusters

- ▶ within-cluster distances ≪ between-cluster distances
- ▶ the labels for each cluster is pure (all positive or all negative labels).

THE NEAREST NEIGHBOR LEARNER

makes at most one mistake made per cluster

CONVERGENCE RESULT FOR WELL-SEPARATED CLUSTERS

Let ν be a finite measure on \mathcal{X} .

CONVERGENCE RESULT FOR WELL-SEPARATED CLUSTERS

Let ν be a finite measure on $\mathcal X.$ The nearest neighbor learner achieves vanishing error rate against any ν -dominated adversary.

Proof sketch.

▶ Split \mathcal{X} into two pieces $\mathcal{X}_{easy} \cup \mathcal{X}_{small}$, where:

- ▶ Split \mathcal{X} into two pieces $\mathcal{X}_{easy} \cup \mathcal{X}_{small}$, where:
 - \triangleright \mathcal{X}_{easy} is the union of a finite collection of clusters

- ▶ Split \mathcal{X} into two pieces $\mathcal{X}_{easy} \cup \mathcal{X}_{small}$, where:
 - \triangleright \mathcal{X}_{easy} is the union of a finite collection of clusters
 - $ightharpoonup \mathcal{X}_{small}$ satisfies $\nu(\mathcal{X}_{small}) < \delta$.

- ▶ Split \mathcal{X} into two pieces $\mathcal{X}_{easy} \cup \mathcal{X}_{small}$, where:
 - \triangleright \mathcal{X}_{easy} is the union of a finite collection of clusters
 - $ightharpoonup \mathcal{X}_{small}$ satisfies $\nu(\mathcal{X}_{small}) < \delta$.
- ightharpoonup Nearest neighbor can only make finitely many mistakes on \mathcal{X}_{easy} .

- ▶ Split \mathcal{X} into two pieces $\mathcal{X}_{easy} \cup \mathcal{X}_{small}$, where:
 - \triangleright \mathcal{X}_{easy} is the union of a finite collection of clusters
 - $ightharpoonup \mathcal{X}_{small}$ satisfies $\nu(\mathcal{X}_{small}) < \delta$.
- ightharpoonup Nearest neighbor can only make finitely many mistakes on \mathcal{X}_{easy} .
 - ▶ These mistakes contribute nothing to the asymptotic mistake rate.

- ▶ Split \mathcal{X} into two pieces $\mathcal{X}_{easy} \cup \mathcal{X}_{small}$, where:
 - \triangleright \mathcal{X}_{easy} is the union of a finite collection of clusters
 - \triangleright $\mathcal{X}_{\text{small}}$ satisfies $\nu(\mathcal{X}_{\text{small}}) < \delta$.
- ightharpoonup Nearest neighbor can only make finitely many mistakes on \mathcal{X}_{easy} .
 - ▶ These mistakes contribute nothing to the asymptotic mistake rate.
- ▶ The ν -dominated adversary selects points from \mathcal{X}_{small} at rate $\mu(\mathcal{X}_{small}) < \varepsilon$.

- ▶ Split \mathcal{X} into two pieces $\mathcal{X}_{easy} \cup \mathcal{X}_{small}$, where:
 - \triangleright \mathcal{X}_{easy} is the union of a finite collection of clusters
 - \triangleright $\mathcal{X}_{\text{small}}$ satisfies $\nu(\mathcal{X}_{\text{small}}) < \delta$.
- ightharpoonup Nearest neighbor can only make finitely many mistakes on \mathcal{X}_{easy} .
 - ▶ These mistakes contribute nothing to the asymptotic mistake rate.
- ▶ The ν -dominated adversary selects points from $\mathcal{X}_{\text{small}}$ at rate $\mu(\mathcal{X}_{\text{small}}) < \varepsilon$.
 - **>** By the law of large number, at most an *ε*-fraction of $(x_t)_t$ comes from \mathcal{X}_{small} :

$$\limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{1}\{x_t \in \mathcal{X}_{\text{small}}\} = \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \mu_t(\mathcal{X}_{\text{small}}) < \varepsilon \quad \text{a.s.}$$

Proof sketch.

- ▶ Split \mathcal{X} into two pieces $\mathcal{X}_{easy} \cup \mathcal{X}_{small}$, where:
 - \triangleright \mathcal{X}_{easy} is the union of a finite collection of clusters
 - \triangleright $\mathcal{X}_{\text{small}}$ satisfies $\nu(\mathcal{X}_{\text{small}}) < \delta$.
- ightharpoonup Nearest neighbor can only make finitely many mistakes on \mathcal{X}_{easy} .
 - ▶ These mistakes contribute nothing to the asymptotic mistake rate.
- ▶ The ν -dominated adversary selects points from \mathcal{X}_{small} at rate $\mu(\mathcal{X}_{small}) < \varepsilon$.
 - **>** By the law of large number, at most an *ε*-fraction of $(x_t)_t$ comes from \mathcal{X}_{small} :

$$\limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{1}\{x_t \in \mathcal{X}_{\text{small}}\} = \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \mu_t(\mathcal{X}_{\text{small}}) < \varepsilon \quad \text{a.s.}$$

Thus, the asymptotic mistake rate is upper bounded by any $\varepsilon > 0$ by selecting \mathcal{X}_{small} sufficiently small.

Proof sketch.

- ▶ Split \mathcal{X} into two pieces $\mathcal{X}_{easy} \cup \mathcal{X}_{small}$, where:
 - \triangleright \mathcal{X}_{easy} is the union of a finite collection of clusters
 - \triangleright $\mathcal{X}_{\text{small}}$ satisfies $\nu(\mathcal{X}_{\text{small}}) < \delta$.
- ▶ Nearest neighbor can only make finitely many mistakes on $\mathcal{X}_{\text{easy}}$.
 - ▶ These mistakes contribute nothing to the asymptotic mistake rate.
- ▶ The ν -dominated adversary selects points from \mathcal{X}_{small} at rate $\mu(\mathcal{X}_{small}) < \varepsilon$.
 - **>** By the law of large number, at most an *ε*-fraction of $(x_t)_t$ comes from \mathcal{X}_{small} :

$$\limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{1}\{x_t \in \mathcal{X}_{\text{small}}\} = \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \mu_t(\mathcal{X}_{\text{small}}) < \varepsilon \quad \text{a.s.}$$

Thus, the asymptotic mistake rate is upper bounded by any $\varepsilon > 0$ by selecting \mathcal{X}_{small} sufficiently small. The asymptotic mistake rate is zero by taking $\varepsilon \downarrow 0$.

Generalizing the argument

The argument works even if the clusters are not well-separated.

Generalizing the argument

The argument works even if the clusters are not well-separated.

KEY PROPERTY USED

The nearest neighbor learner makes at most one mistake per cluster.

Generalizing the argument

The argument works even if the clusters are not well-separated.

KEY PROPERTY USED

The nearest neighbor learner makes at most one mistake per mutually-labeling set.

▶ We introduce the device of mutually-labeling sets $U \subset \mathcal{X}$ satisfying the property:

interpoint distances in $\,U<{
m distance}$ to points with different labels.

Mutually-labeling set

Generalizing argument

Definition (Mutually-labeling set)

A subset $U \subset \mathcal{X}$ is mutually labeling if for all $x, x' \in U$:

$$\underbrace{\rho(x,x')}_{\textit{interpoint distances}} < \underbrace{\max_{\textit{distance to decision boundary}}}_{\textit{distance to decision boundary}}$$

where margin(x) is the smallest distance between x and points with different labels:

$$\mathrm{margin}(x) = \inf \{ \rho(x, \overline{x}) : f(x) \neq f(\overline{x}) \}.$$

SETTING

Let (\mathcal{X}, ρ, ν) be a space equipped with a separable metric ρ and a finite Borel measure ν .

SETTING

Let (\mathcal{X}, ρ, ν) be a space equipped with a separable metric ρ and a finite Borel measure ν .

▶ Let $f: \mathcal{X} \to \mathcal{Y}$ have a boundary set $\partial \mathcal{X}$ with ν -measure zero, where:

$$\partial \mathcal{X} := \{ \operatorname{margin}(x) = 0 \}.$$

SETTING

Let (\mathcal{X}, ρ, ν) be a space equipped with a separable metric ρ and a finite Borel measure ν .

▶ Let $f: \mathcal{X} \to \mathcal{Y}$ have a boundary set $\partial \mathcal{X}$ with ν -measure zero, where:

$$\partial \mathcal{X} := \{ \operatorname{margin}(x) = 0 \}.$$

Theorem (Convergence of nearest neighbor)

The nearest neighbor rule achieves vanishing mistake rate against a ν -dominated adversary:

$$\lim_{T\to\infty} \frac{1}{T} \sum_{t=1}^T \mathbb{1}\{\hat{y}_t \neq y_t\} = 0$$
 a.s.

Proof sketch.

► Sufficiently small open balls around non-boundary points are mutually-labeling.

- ▶ Sufficiently small open balls around non-boundary points are mutually-labeling.
- ▶ There is an a.e.-countable cover of \mathcal{X} by these balls:

- ► Sufficiently small open balls around non-boundary points are mutually-labeling.
- ▶ There is an a.e.-countable cover of \mathcal{X} by these balls:
 - \blacktriangleright Use separability of ${\mathcal X}$ and that $\partial {\mathcal X}$ has measure zero.

- ▶ Sufficiently small open balls around non-boundary points are mutually-labeling.
- ▶ There is an a.e.-countable cover of \mathcal{X} by these balls:
 - ▶ Use separability of $\mathcal X$ and that $\partial \mathcal X$ has measure zero.
- ▶ Decompose \mathcal{X} into $\mathcal{X}_{easy} \cup \mathcal{X}_{small}$ like before:

- ► Sufficiently small open balls around non-boundary points are mutually-labeling.
- ▶ There is an a.e.-countable cover of \mathcal{X} by these balls:
 - ▶ Use separability of $\mathcal X$ and that $\partial \mathcal X$ has measure zero.
- ▶ Decompose \mathcal{X} into $\mathcal{X}_{easy} \cup \mathcal{X}_{small}$ like before:
 - \triangleright \mathcal{X}_{easy} is a finite union of these balls.

- ► Sufficiently small open balls around non-boundary points are mutually-labeling.
- ▶ There is an a.e.-countable cover of \mathcal{X} by these balls:
 - ▶ Use separability of $\mathcal X$ and that $\partial \mathcal X$ has measure zero.
- ▶ Decompose \mathcal{X} into $\mathcal{X}_{easy} \cup \mathcal{X}_{small}$ like before:
 - \triangleright $\mathcal{X}_{\text{easy}}$ is a finite union of these balls.
 - $ightharpoonup \mathcal{X}_{small}$ contains very little mass $\nu(\mathcal{X}_{small}) < \delta$.

- ► Sufficiently small open balls around non-boundary points are mutually-labeling.
- ▶ There is an a.e.-countable cover of \mathcal{X} by these balls:
 - ▶ Use separability of $\mathcal X$ and that $\partial \mathcal X$ has measure zero.
- ▶ Decompose \mathcal{X} into $\mathcal{X}_{easy} \cup \mathcal{X}_{small}$ like before:
 - \triangleright $\mathcal{X}_{\text{easy}}$ is a finite union of these balls.
 - $ightharpoonup \mathcal{X}_{small}$ contains very little mass $\nu(\mathcal{X}_{small}) < \delta$.
 - Such a decomposition exists for any $\delta > 0$ by the finiteness of ν .

- ► Sufficiently small open balls around non-boundary points are mutually-labeling.
- ▶ There is an a.e.-countable cover of \mathcal{X} by these balls:
 - ▶ Use separability of $\mathcal X$ and that $\partial \mathcal X$ has measure zero.
- ▶ Decompose \mathcal{X} into $\mathcal{X}_{easy} \cup \mathcal{X}_{small}$ like before:
 - \triangleright $\mathcal{X}_{\text{easy}}$ is a finite union of these balls.
 - \triangleright $\mathcal{X}_{\text{small}}$ contains very little mass $\nu(\mathcal{X}_{\text{small}}) < \delta$.
 - Such a decomposition exists for any $\delta > 0$ by the finiteness of ν .
- ▶ The asymptotic mistake rate is upper bounded by any $\varepsilon > 0$ a.s. (prior argument).

- ► Sufficiently small open balls around non-boundary points are mutually-labeling.
- ▶ There is an a.e.-countable cover of \mathcal{X} by these balls:
 - \blacktriangleright Use separability of ${\mathcal X}$ and that $\partial {\mathcal X}$ has measure zero.
- ▶ Decompose \mathcal{X} into $\mathcal{X}_{easy} \cup \mathcal{X}_{small}$ like before:
 - \triangleright $\mathcal{X}_{\text{easy}}$ is a finite union of these balls.
 - \triangleright $\mathcal{X}_{\text{small}}$ contains very little mass $\nu(\mathcal{X}_{\text{small}}) < \delta$.
 - Such a decomposition exists for any $\delta > 0$ by the finiteness of ν .
- ▶ The asymptotic mistake rate is upper bounded by any $\varepsilon > 0$ a.s. (prior argument).
 - ▶ Upper bounds for any countable collection of $\varepsilon_k \downarrow 0$ hold simultaneously.

Proof sketch.

- ► Sufficiently small open balls around non-boundary points are mutually-labeling.
- ▶ There is an a.e.-countable cover of \mathcal{X} by these balls:
 - ▶ Use separability of $\mathcal X$ and that $\partial \mathcal X$ has measure zero.
- ▶ Decompose \mathcal{X} into $\mathcal{X}_{easy} \cup \mathcal{X}_{small}$ like before:
 - \triangleright $\mathcal{X}_{\text{easy}}$ is a finite union of these balls.
 - \triangleright $\mathcal{X}_{\text{small}}$ contains very little mass $\nu(\mathcal{X}_{\text{small}}) < \delta$.
 - Such a decomposition exists for any $\delta > 0$ by the finiteness of ν .
- ▶ The asymptotic mistake rate is upper bounded by any $\varepsilon > 0$ a.s. (prior argument).
 - ▶ Upper bounds for any countable collection of $\varepsilon_k \downarrow 0$ hold simultaneously.

Thus, the mistake rate converges to zero almost surely.

UPSHOT

1. The nearest neighbor rule works fine against the ν -dominated adversary.

UPSHOT

- 1. The nearest neighbor rule works fine against the ν -dominated adversary.
 - ▶ Along the way, we obtained a nice analytic tool (mutually-labeling sets).

UPSHOT

- 1. The nearest neighbor rule works fine against the ν -dominated adversary.
 - ▶ Along the way, we obtained a nice analytic tool (mutually-labeling sets).
- 2. The argument generalizes to other certain types of online learners (see paper).

UPSHOT

- 1. The nearest neighbor rule works fine against the ν -dominated adversary.
 - ▶ Along the way, we obtained a nice analytic tool (mutually-labeling sets).
- 2. The argument generalizes to other certain types of online learners (see paper).
 - ▶ We give a sufficient condition to online learning against a dominated adversary.

UPSHOT

- 1. The nearest neighbor rule works fine against the ν -dominated adversary.
 - ▶ Along the way, we obtained a nice analytic tool (mutually-labeling sets).
- 2. The argument generalizes to other certain types of online learners (see paper).
 - ▶ We give a sufficient condition to online learning against a dominated adversary.

QUESTIONS

 \blacktriangleright Does the ν -dominated adversary balance between generality and tractability well?

UPSHOT

- 1. The nearest neighbor rule works fine against the ν -dominated adversary.
 - ▶ Along the way, we obtained a nice analytic tool (mutually-labeling sets).
- 2. The argument generalizes to other certain types of online learners (see paper).
 - ▶ We give a sufficient condition to online learning against a dominated adversary.

QUESTIONS

- \blacktriangleright Does the ν -dominated adversary balance between generality and tractability well?
- ► Can the arguments still hold when there is benign label noise?

UPSHOT

- 1. The nearest neighbor rule works fine against the ν -dominated adversary.
 - ▶ Along the way, we obtained a nice analytic tool (mutually-labeling sets).
- 2. The argument generalizes to other certain types of online learners (see paper).
 - ▶ We give a sufficient condition to online learning against a dominated adversary.

QUESTIONS

- \blacktriangleright Does the ν -dominated adversary balance between generality and tractability well?
- ► Can the arguments still hold when there is benign label noise?
- ► What do meaningful rates of convergence look like?

Many applications of machine learning happen in the **online** setting:

Many applications of machine learning happen in the online setting:

▶ never-ending and non-i.i.d. stream of tasks

Many applications of machine learning happen in the online setting:

- ▶ never-ending and non-i.i.d. stream of tasks
- models are updated incrementally

Many applications of machine learning happen in the online setting:

- ▶ never-ending and non-i.i.d. stream of tasks
- models are updated incrementally

OPPORTUNITY: we might not live in the worst-case adversarial setting

Many applications of machine learning happen in the online setting:

- ▶ never-ending and non-i.i.d. stream of tasks
- models are updated incrementally

OPPORTUNITY: we might not live in the worst-case adversarial setting

▶ Is the ν -dominated online learning setting realistic and tractable?

Many applications of machine learning happen in the online setting:

- never-ending and non-i.i.d. stream of tasks
- models are updated incrementally

OPPORTUNITY: we might not live in the worst-case adversarial setting

- ▶ Is the ν -dominated online learning setting realistic and tractable?
- ▶ If so, can we design and analyze algorithms specifically for this setting?
 - e.g. a minimax optimal algorithm might not be optimal in this setting

Thank you

ACKNOWLEDGEMENTS

Joint work with Sanjoy Dasgupta.

This work is under review, but send me an email for paper/further discussion: agso@eng.ucsd.edu.

References

Nika Haghtalab, Tim Roughgarden, and Abhishek Shetty. Smoothed analysis of online and differentially private learning. *Advances in Neural Information Processing Systems*, 33:9203–9215, 2020.

Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning: Stochastic and constrained adversaries. arXiv preprint arXiv:1104.5070, 2011.

Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. *Journal of the ACM (JACM)*, 51(3):385–463, 2004.