

最优化理论 Optimality Theory

目录(CONTENT)

- 01 课程简介(Introduction)
- 02 线性规划(Linear Programming)
- 03 非线性规划(Non-Linear Programming)
- 04 整数规划(Integer Programming)
- 05 动态规划(Dynamic Programming)

单纯形方法 Simplex Method

■ 主要内容

- ▶ 单纯形方法原理
- ➤ 两阶段法和大M方法
- ▶ 退化情形
- ▶ 修正单纯形方法

■ 单纯形法基本思路

有选择地取(而不是枚举所有的)基本可行解,即是从可行域的一个顶点出发,沿着可行域的边界移到另一个相邻的顶点,要求新顶点的目标函数值不比原目标函数值差,如此迭代,

- 纯形法的基本过程

■ 表格法

• 表格形式的单纯形方法

 $\min cx$

s.t.
$$Ax = b$$
, $i = 1, 2, ...m$
 $x \ge 0$, (3.1)

利用分块矩阵

$$A = [B, N]$$
 , $x = (x_B, x_N)$, x_B 为基变量 , x_N 为非基变量 于是 (3.1) 等价于
$$\min \ f$$

$$s.t. \ f - c_B x_B - c_N x_N = 0$$

$$Bx_B + Nx_N = b$$

 $x_R \ge 0, x_N \ge 0$

■ 表格法

• 表格形式的单纯形方法

$$x_B = B^{-1}b - B^{-1}x_N$$
代入上述规划得等价形式:

min
$$f$$

s.t. $x_B + B^{-1}Nx_N = B^{-1}b$,
 $f + 0 \cdot x_B + (c_B B^{-1}N - c_N)x_N = c_B B^{-1}b$
 $x_B \ge 0, x_N \ge 0$

■ 表格法

f x_B x_N 右端 x_B x_N 右端 x_B x_B

min
$$f$$

s.t. $x_B + B^{-1}Nx_N = B^{-1}b$,
 $f + 0 \cdot x_B + (c_B B^{-1}N - c_N)x_N = c_B B^{-1}b$
 $x_B \ge 0, x_N \ge 0$

表格法

$$i \Box B^{-1}N = B^{-1}(A_{N(1)}, A_{N(2)}, ..., A_{N(n-m)})
= (B^{-1}A_{N(1)}, B^{-1}A_{N(2)}, ..., B^{-1}A_{N(n-m)})
= (y_{N(1)}, y_{N(2)}, ..., y_{N(n-m)})
B^{-1}b = (\overline{b_1}, \overline{b_2}, ..., \overline{b_3}),
(c_B B^{-1}N - c_N)_i = (c_B B^{-1}A_i - c_i) = -\overline{c_i} = (z_i - c_i)$$

■ 表格法

单纯形表

右端向量

离基变量

进基变量

	\boldsymbol{x}_{1}	•••	X_r		\boldsymbol{X}_{m}	\boldsymbol{x}_{m+1}	•••	X_k	•••	X_n	RHS
	0	•••	0	•••	0	$-\overline{c}_{m+1}$	•••	$-\overline{c}_k$	•••	$-\overline{c}_n$	z_0
\mathbf{x}_1	1	•••	0	•••	0	\overline{a}_{1m+1}	•••	\overline{a}_{1k}	•••	\overline{a}_{1n}	$\overline{m{b}}_{\!\scriptscriptstyle 1}$
•	•	••	•		•	•		•		•	•
x_r	0	•••	1	•••	0	\overline{a}_{rm+1}	•••	\overline{a}_{rk}^*	•••	\overline{a}_{rn}	$\overline{m{b}}_{\!r}$
•	•		•	•••	•	•		/ :		•	•
\mathcal{X}_{m}	0	•••	0	•••	1	\overline{a}_{mm+1}	/	\overline{a}_{mk}	•••	\overline{a}_{mn}	$\overline{m{b}}_{\!m}$

■ 表格法

例2: 求解线性规划问题

max
$$z= 3x_1 +4x_2 -x_3 +2x_4$$

s.t. $x_1 +x_2 +x_3 +x_4 \le 25$
 $x_1 +2x_2 +x_3 +2x_4 \le 36$
 $x_1 x_2 x_3 x_4 \ge 0$

化成标准化形式

min z'=
$$-3x_1$$
 $-4x_2$ $+x_3$ $-2x_4$
s.t. x_1 $+x_2$ $+x_3$ $+x_4$ $+x_5$ =25
 x_1 $+2x_2$ $+x_3$ $+2x_4$ $+x_6$ =36
 x_1 x_2 x_3 x_4 x_5 x_6 $\geqq 0$

■ 表格法

写出单纯形表

	\mathbf{X}_1	\mathbf{X}_2	X_3	X_4	X_5	\mathbf{X}_{6}	RHS
z'	3	4	-1	2	0	0	0
X5	1	1	1	1	1	0	25
X ₆	1	2	1	2	0	1	36

 x_2 进基, x_6 离基,

■ 表格法

	\mathbf{X}_1	\mathbf{X}_2	X ₃	X_4	X_5	\mathbf{X}_6	RHS	
z'	3	4	-1	2	0	0	0	25/1
X5	1	1	1	1	1	0	25	
\mathbf{X}_6	1	(2)	1	2	0	1	36	36/2

X₂进基, X₆离基,

	\mathbf{x}_1	\mathbf{X}_2	X 3	\mathbf{X}_4	X 5	X_6	RHS	
z'	1	0	-3	-2	0	$\overline{-2}$	$\overline{-72}$	
x5	(1/2)	0	1/2	0	1	-1/2	7	7/0.5
_ x2 _	1/2	_ 1	1/2	_ 1 _	0	1/2	<u> </u>	18/0.5

 X_1 进基, X_5 离基,

■ 表格法

Z'	\mathbf{X}_1	\mathbf{X}_2	X 3	X_4	X ₅	X_6	RHS
Z'	0	0	-4	$\overline{-2}$	$\overline{}$	$\overline{}$	-86
X_1	1	0	1	0	2	-1	14
X_2	0	1	0	1	-1	1	11

得到最优解,最优解为:

$$(x_1, x_2, x_3, x_4, x_5, x_6)=(14,11,0,0,0,0)$$

min z'=-86, max z=86

■ 表格法

例3: 求解线性规划问题

■ 表格法

	\mathbf{X}_1	X_2	X_3	X_4	X 5	\mathbf{X}_6	RHS	_
z'	2	3	1	0	0	0	0	
X ₄	1	[3]	1	1	0	0	15	15/3
X 5	2	3	-1	0	1	0	18	18/3
\mathbf{x}_6	1	-1	1	0	0	1	3	-

x2进基, x4离基

■ 表格法

	\mathbf{x}_1	X_2	X_3	X_4	X5	X_6	RHS	
z'	1	0	0	-1	0	0	-15	
\mathbf{X}_2	1/3	1	1/3	1/3	0	0	5	5/1/3
X5	[1]	0	-2	-1	1	0	3	3/1
X ₆	4/3	0	4/3	1/3	0	1	8	8/4/3

x1进基,x5离基

■ 表格法

	\mathbf{x}_1	\mathbf{X}_2	X 3	X_4	X_5	\mathbf{X}_{6}	RHS	
\mathbf{z}^{\prime}	0	0	2	0	-1	0	-18	
\mathbf{X}_2	0	1	1	2/3	-1/3	0	4	4/1
\mathbf{x}_1	1	0	-2	-1	1	0	3	
X 6	0	0	[4]	5/3	-4/3	1	4	4/4

x3进基,x6离基

■ 表格法

	\mathbf{X}_1	\mathbf{X}_2	\mathbf{X}_3	\mathbf{X}_4	X_5	\mathbf{X}_{6}	RHS
z'				-5/6			l l
X 2	0	1	0	1/4	0	-1/4	3
\mathbf{x}_1	1	0	0	-1/6	1/3	1/2	5
X 3	0	0	1	5/12	-1/3	1/4	1

最优解: $(x_1,x_2,x_3,x_4,x_5x_6)=(5,3,1,0,0,0)$, max z=20

	\mathbf{X}_1	X_2	X ₃	X_4	X5	X ₆	R Hasan Un	iversity Of Technology
z'	2	3	1	0	0	0	0	
X_4	1	[3]	1	1	0	0	15	15/3
X_5	2	3	-1	0	1	0	18	18/3
\mathbf{x}_6	1	-1	1	0	0	1	3	_

初始单纯型表

$$(B,I) \rightarrow (I,B^{-1})$$

$$(B,I) \to (I,B^{-1}) \quad B = (A_2 \ A_1 \ A_3) = \begin{pmatrix} 3 & 1 & 1 \\ 3 & 2 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$

最优单纯	型表	\mathbf{X}_1	\mathbf{X}_2	X ₃	X_4	X 5	\mathbf{X}_{6}	RHS	
	z'	0	0	0	-5/6	-1/3	-1/2	-20	
	\mathbf{X}_2	0	1	0	1/4	0	-1/ 4	3	
	\mathbf{x}_1	1	0	0	-1/6	1/3	1/2	5	
	X 3	0	0	1	5/12	-1/3	1/4	1	

最优解:
$$(x_1,x_2,x_3,x_4,x_5x_6)=(5,3,1,0,0,0)$$
, max z=20

■ 两阶段法

- 单纯形法三要素: 初始基本可行解,解的迭代,最优性检验
- 后两个已解决,现考虑如何获得一个初始基本可行解.(一)两阶段法

设标准LP为

m in
$$c^{T} x$$

$$s.t.\begin{cases} A x = b \\ x \ge 0 \end{cases}$$
 (3.2.1)

■ 两阶段法

若系数矩阵中有一个单位矩阵,则容易得到初始基可行解.所以我们希望幸运的碰到这种矩阵. **没有的话,硬性加一个?**

人工变量

即
$$\begin{cases} (A, I_m) \begin{pmatrix} x \\ x_\alpha \end{pmatrix} = b \\ x \ge 0, x_\alpha \ge 0 \end{cases}$$
 (3.2.3) ⇒
$$\begin{pmatrix} x \\ x_\alpha \end{pmatrix} = \begin{pmatrix} 0 \\ b \end{pmatrix}$$
 为 (3.2.3) 的BFS

两阶段法

问题是如何由(3.2.3)的初始可行解获得原来LP的 一个初始可行解?

为此,考虑如下辅助LP(第一阶段)

min
$$e^{T}x_{\alpha}$$

s.t. $\begin{cases} Ax + x_{\alpha} = b \\ x \ge 0, x_{\alpha} \ge 0 \end{cases}$ (3.2.4)
这里 $e = (1, 1, ..., 1)^{T}, x_{\alpha} = (x_{n+1}, x_{n+2}, ..., x_{n+m})$

■ 两阶段法

- 1. 如果原问题有可行解,则辅助问题的最优值为0,反之亦然.
- 2. 由于 $b \ge 0$,所以以 $x_{\alpha} = (x_{n+1}, x_{n+2}, ..., x_{n+m})^{T}$ 为基变量,就可以得到辅助问题的初始基可行解 $(0,b)^{T}$,同时 $x_{\alpha} \ge 0$ 所以 $\sum_{i=n+1}^{n+m} x_{i} \ge 0$ 一定有最小值.

■ 两阶段法

利用单纯形法求得一个最优可行解. 这个解将会给我们带来什么?

设单纯形法得到(3.2.4)的最优解为($\overline{\mathbf{x}}^{\mathsf{T}}, \mathbf{x}_{\alpha}^{\mathsf{T}}$)^T,则必有如下情况之一出现:

- $(1)\bar{x}_{\alpha} \neq 0$,则原规划(3.2.1)无可行解,(反证)
- $(2)\bar{x}_{\alpha} = 0$,且其分量都为非基变量,则 $x = \bar{x}$ 是原规划(3.2.1)的一个基可行解.
- (3) $\bar{x}_{\alpha} = 0$,且其分量至少有一个是基变量,则可用主元消去法使得这些人工变量出基, $x = \bar{x}$ 仍是原规划(3.2.1)的一个基可行解.

■ 两阶段法

• 于是我们获得一个初始基可行解,从而可以以此基可行解出发利用单纯形法求出最优解.

第一阶段: 不考虑原LP问题是否有基可行解,添加人工变量,构造仅含人工变量的目标函数,得辅助规划(3.2.4)

单纯型法求解上述模型,若有目标函数=0,说明原问题存在初始基本可行解,转入第二阶段。否则,原问题无可行解,计算停止。

第二阶段: 将第一阶段计算得到的最终表,除去人工变量,从该初始基本可行解开始,用单纯形法求原问题的最优解或判定原问题无界。

■ 两阶段法

例1 求解

$$\min z = 5x_1 + 21x_3$$

$$s.t. \begin{cases} x_1 - x_2 + 6x_3 \ge 2 \\ x_1 + x_2 + 2x_3 \ge 1 \\ x_j \ge 0; j = 1, 2, 3 \end{cases}$$

写成标准化形式

$$\min z = 5x_1 + 21x_3$$

$$x_1 - x_2 + 6x_3 - x_4 = 2$$

$$x_1 + x_2 + 2x_3 - x_5 = 1$$

$$x_j \ge 0; j = 1, 2, 3, 4, 5$$

■ 两阶段法

首先引入人工变量,构造辅助规划问题

第1阶段

$$\min g = x_6 + x_7$$

$$\begin{cases} x_1 - x_2 + 6x_3 - x_4 + x_6 &= 2\\ x_1 + x_2 + 2x_3 - x_5 + x_7 &= 1\\ x_j \ge 0; j = 1, 2, 3, 4, 5, 6, 7 \end{cases}$$

如果以 x_6 , x_7 为基变量,则可以得到该问题的BFS $(0,0,0,0,0,2,1)^{\mathrm{T}}$,其对应的单纯形表为

■ 两阶段法

	X_1	x_2	\mathcal{X}_3	\mathcal{X}_4	X_5	\mathcal{X}_6	\mathcal{X}_7	RHS
Z	-5	0	-21	0	0	0	0	0
g	0	0	0	0	0	-1	-1	0
x_6	1	-1	6	-1	0	1	0	2
x_7	1	1	2	0	-1	0	1	1
Z	-5	0	-21	0	0	0	0	0
z g	-5 2	0		0 -1	0 -1	0	0	3
	_					_		

₩ 17人 F/L*+

■ 内	阶段次		x_3	X_4	\mathcal{X}_{5}	x_6	\mathcal{X}_7	RHS
Z	-3/2	-7/2	0 -7	//2	0	7/2	0	-7
g	2/3	4/3	0	1/3	-1	-4/3	0	1/3
x_3	1/6	-1/6	1 -	1/6	0	1/6	0	1/3
x_7	2/3	4/3	0 1	/3	-1	-1/3	1	1/3
	\mathcal{X}_1	\mathcal{X}_2	X_3	\mathcal{X}_4	\mathcal{X}_{5}	x_6	\mathcal{X}_7	RHS
Z	1/4	0	0 -21	/8 -2	21/8	21/8		63/8
g	0	0	0	0	0	-1	-1	0
X_3	1/4	0	1 -1/	′8 -	-1/8	1/8	1/8	3/8
\mathcal{X}_2	1/2	1	0 1/	4	-3/4	-1/4	3/4	1/4

■ 两阶段法

	\mathcal{X}_1	\mathcal{X}_2	•	x_3 x	z_4 λ	\mathcal{C}_5	\mathcal{X}_{6}	\mathcal{X}_7	RHS
Z	1/4	0	0	-21/8	-21/8		21/8	21/8	63/8
g	0	0	0	0	0		-1	-1	0
X_3	1/4	0	1	-1/8	-1/8		1/8	1/8	3/8
x_2	1/2	1	0	1/4	-3/4		-1/4	3/4	1/4

第一阶段结束,得到辅助问题的一个最优解 $(0,\frac{1}{4},\frac{3}{8},0,0,0,0)^T$

同时得到原问题的一个初始基本可行解 $x^0 = (0, \frac{1}{4}, \frac{3}{8}, 0, 0)^T$

■ 两阶段法

去掉人工变量对应的行、列,得到原问题的初始单纯形表,

直接开始第二阶段运算

第 x_3 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_9 x

RHS	
63/8	
3/8	
1/4	

	\mathcal{X}_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	X_5	RHS
Z	0	-1/2	0	-11/4	-9/4	31/4
X_3	0	-1/2	1	-1/4	1/4	1/4
x_1	1	2	0	1/2	-3/2	1/2

原问题的最优解

$$x = (\frac{1}{2}, 0, \frac{1}{4}, 0, 0)^T,$$

其最优值为 $\frac{31}{4}$

■ 两阶段法

例2 求解

$$\max 3x_1 + x_2 - 2x_3$$
s.t. $2x_1 - x_2 + x_3 = 4$

$$x_1 + x_2 + x_3 = 6$$

$$x_1 + x_4 = 2$$

$$3x_1 + 2x_3 = 10$$

$$x_j \ge 0; j = 1, 2, 3, 4$$

■ 两阶段法

解: 引进人工变量进行第一阶段

min
$$x_5 + x_6 + x_7$$

s.t. $2x_1 - x_2 + x_3 + x_5 = 4$
 $x_1 + x_2 + x_3 + x_6 = 6$
 $x_1 + x_2 + x_3 + x_4 = 2$
 $3x_1 + 2x_3 + x_7 = 10$
 $x_j \ge 0; j = 1, 2, ..., 7$

■ 两阶段法

单纯形法求解:

	X_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	\mathcal{X}_{5}	\mathcal{X}_6	X_7	
X_5	2	-1	1	0	1	0	0	4
x_6	1	1	1	0	0	1	0	6
X_4	1	0	0	1	0	0	0	2
x_7	3	-1 1 0 0	2	0	0	0	1	10
	6	0	4	0	0	0	0	20

■ 两阶段法

■ 两阶段法

_	\mathcal{X}_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	\mathcal{X}_{5}	\mathcal{X}_6	x_7		I	
x_3	0	-1	1	-2	1	0	0	0		
\mathcal{X}_{6}	0	2		0	1	-1		1	0	4
x_1	1	0	0	1	0	0	0	2		
\mathcal{X}_7	0	2		0	1	-2	2	0	1	4
	0	4		0	2	—2	4	0	0	8

■ 两阶段法

■ 两阶段法

第二阶段:

	x_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4
X_3	0	0	1	$-\frac{3}{2}$
x_2	0	1	0	$\frac{1}{2}$
x_1	1	0	0	1
·				
	0	0	0	0

2 2 2

0

■ 两阶段法

第二阶段初始单纯形表:

	\boldsymbol{x}_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	
X_3	0	0	1	- 3/2	2
x_2	0	1	0	$\frac{1}{2}$	2
x_1	1	0	0	$\frac{x_4}{-\frac{3}{2}}$ $\frac{1}{2}$ 1	2
	0	0	0	13/2	4

■ 大M法

• 前面所说的两阶段法分成两步走。能不能把这两步合并? 如何合并?

设原问题为

引入m个人工变量 $x_{m1},...,x_{mm}$

$$\min c^{T} x$$

$$s.t.\begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

$$s.t. \ a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n + x_{n+1} = b_1$$

$$a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n + x_{n+2} = b_2$$

$$\cdots$$

$$a_{m1} x_1 + a_{m2} x_2 + \cdots + a_{mn} x_n + x_{n+m} = b_m$$

$$x_1, \dots, x_n, x_{n+1}, \dots x_{n+m} \ge 0$$

■ 大M法

现在关键是如何选取目标函数,因要包含原问题, 所以必须包含原目标函数。联系到两阶段法,我们 要强迫人工变量取值为0,于是加上一个惩罚因子, 因为是极小化,所以希望这个惩罚因子越大越好!!

在目标函数中增加 $M\sum_{i=1}^{m}x_{n+i}$ 项,得如下规划

$$\min z = c^{T} x + M \sum_{i=n+1}^{n+m} x_{i}$$

$$s.t.\begin{cases} Ax + x_{\alpha} = b \\ x \ge 0, x_{\alpha} \ge 0 \end{cases}$$

■ 大M法

• 可行吗?

设原问题最优解 x_0^* ,最优值 z_0^* ;

新问题最优解 x_1^* ,最优值 z_1^* .

直观上,因M为足够大的正数,新问题最优解对应的人工变量取值应满足 $x_{\alpha} = 0$,(除非原问题不可行)

容易知道此时两个问题的目标函数值满足

$$z_0^* \leq z_1^*$$

从而新LP问题的最优解对应于原问题的(基本)可行解,

■ 大M法

另一方面,原问题的任意可行解x对应于辅助问题的 可行解 $(x,0)^{\mathrm{T}}$, x_0^* 也对应新问题的可行解 $(x_0^*,0)^{\mathrm{T}}$

且两个规划目标值相等,故原问题的最优解 $z_0^* \geq z_1^*$

综合

$$\therefore z_0^* = z_1^*$$

$$\therefore z_0^* = z_1^* \qquad x_0^* \qquad (x_0^*, 0)^{\mathrm{T}}$$

因此只需求解辅助问题就可求得原问题的最优解。

$$x_{\alpha} \neq 0$$
 ?

■ 大M法

• 例3 求解

解:

Max
$$z = 5x_1 + 2x_2 + 3x_3 - x_4$$

s.t. $x_1 + 2x_2 + 3x_3 = 15$
 $2x_1 + x_2 + 5x_3 = 20$
 $x_1 + 2x_2 + 4x_3 + x_4 = 26$
 $x_1, x_2, x_3, x_4 \ge 0$

Min
$$z' = -5x_1 - 2x_2 - 3x_3 + x_4 + Mx_5 + Mx_6$$

s.t. $x_1 + 2x_2 + 3x_3 + x_5 = 15$
 $2x_1 + x_2 + 5x_3 + x_6 = 20$
 $x_1 + 2x_2 + 4x_3 + x_4 = 26$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

■ 大M法

			5	2	3	-1	-M	-M	
C_B	$X_{\!B}$	RHS	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	θ_i
-M	<i>x</i> ₅	15	1	2	3	0	1	0	5
-M	x_6	20	2	1	(5)	0	0	1	4
-1	x_4	26	1	2	4	1	0	0	6.5
- Z		35M+26	3 <i>M</i> +6	3 <i>M</i> +4	8M+7	0	0	0	
-M	<i>x</i> ₅	3	-1/5	(7/5)	0	0	1	-3/5	15/7
3	x_3	4	2/5	1/5	1	0	0	1/5	20
-1	x_4	10	-3/5	6/5	0	1	0	-4/5	25/3
-z		3 <i>M</i> -2	-M/5+16/5	7/5 <i>M</i> +13/5	0	0	0	-8/5 <i>M</i> -7/5	
2	x_2	15/7	-1/7	1	0	0	5/7	-3/7	
3	x_3	25/7	(3/7)	0	1	0	-1/7	2/7	25/3
-1	x_4	52/7	-3/7	0	0	1	-6/7	-2/7	
-Z		-53/7	25/7	0	0	0	-M-13/7	-M-2/7	
2	x_2	10/3	0	1	1/3	0	2/3	-1/3	
5	x_1	25/3	1	0	7/3	0	-1/3	2/3	
-1	x_4	11	0	0	1	1	-1	0	
- Z		-112/3	0	0	-25/3	0	-M-2/3	-M+8/3	

• 得到最优解: (25/3, 10/3, 0, 11)^T

• 最优目标值: max=112/3

■ 单人工变量技巧

• 前述方法引入多个人工变量,能否只引入一个变量而达到目标?

考虑LP

 $\min cx$

$$s.t.$$
 $Ax = b,$ $i = 1, 2, ...m$

$$x \ge 0,$$
 (3.2.14)

设 $A = [B, N], x = (x_B, x_N), x_B$ 为基变量, x_N 为非基变量

$$Ax = b \Rightarrow Bx_B + Nx_N = b$$

$$\Rightarrow x_B + B^{-1} N x_N = B^{-1} b = \overline{b}$$
 (3.2.15)

若 $\bar{b} \geq 0 \Rightarrow \mathbf{x}^{\mathsf{T}} = (x_N, x_B) = (\bar{b}, 0) 为 BFS 。 从而可以用单纯形方法求得最优解。否则,我们考虑引进一个人工变量来求出初始可行解。$

■ 单人工变量技巧

引入单个人工变量 x_{α} :由(3.2.15)得,

$$\boldsymbol{x}_{\boldsymbol{B}} + \boldsymbol{B}^{-1} \boldsymbol{N} \boldsymbol{x}_{N} - \boldsymbol{x}_{\alpha} \boldsymbol{e} = \overline{\boldsymbol{b}}, \quad (3.2.16)$$
$$\boldsymbol{x} \ge 0, \ \boldsymbol{x}_{\alpha} \ge 0$$

其中 $e = (1,1,...,1)^T$ 为分量全为一的m维列<u>向量.</u> 下面考虑如何求得(3.2.16)的一个BFS. 设 $b = (b_1, b_2,...,b_m)$.

$$\Leftrightarrow \quad \overline{b}_r = \min\{\overline{b}_i\} < 0.$$

将 x_{α} 引入基:以第r行为主行,经主元消去,则 x_{α} 将进基。

此时右端向量变为:
$$\begin{cases} \bar{b}'_r = -\bar{b}_r \\ \bar{b}'_i = \bar{b}_i - \bar{b}_r, i \neq r. \end{cases}$$

于是得到 (3.2.16) 的一个BFS, x_{α} 为基变量. 从而可以

用两阶段或大M方法求得最优解。

例子:

■ 单人工变量技巧

min
$$x_1 + 2x_2$$

s.t. $x_1 - x_2 \ge 1$,
 $-x_1 + 2x_2 \ge 2$
 $x_1, x_2 \ge 0$,

引进松驰变量x3,x4,化为标准型

$$\min \ x_1 + 2x_2$$

s.t.
$$x_1 - x_2 - x_3 = 1,$$

 $-x_1 + 2x_2 - x_4 = 2$
 $x_i \ge 0, i = 1, 2, ..., 4$

■ 单人工变量技巧

引进松驰变量 x_3, x_4 ,化为标准型

min
$$x_1 + 2x_2$$

s.t. $x_1 - x_2 - x_3 = 1$,
 $-x_1 + 2x_2 - x_4 = 2$
 $x_i \ge 0, i = 1, 2, ..., 4$

等式两端乘以(-1),引进人工变量x5,化为

$$\begin{cases} -x_1 + x_2 + x_3 = -1, \\ x_1 - 2x_2 + x_4 = -2 \implies (3.2.17) \end{cases} - x_1 + x_2 + x_3 - x_5 = -1, \\ x_1 - 2x_2 + x_4 = -2 \implies (3.2.17) \end{cases}$$
$$x_1 - 2x_2 + x_4 - x_5 = -2$$
$$x_i \ge 0, i = 1, 2, ..., 4$$
$$x_i \ge 0, i = 1, 2, ..., 5$$

■ 单人工变量技巧

• 利用表格形式求解一个(3.2.17)的BFS:

					\mathcal{X}_{5}	
X_3	-1	1	1	0	-1	-1
\mathcal{X}_4	1	-2	0	1	-1 [-1]	-2

				\mathcal{X}_4		
x_3	-2 -1	3	1	-1	0	1
X_5	-1	2	0	-1	1	2

■ 单人工变量技巧

• 于是得到(3.2.17)的一个BFS,下面再用两阶段(或大M)法求解之. $\min x_5$

$$-2x_1 + 3x_2 + x_3 - x_4 = 1,$$

$$-x_1 + 2x_2 - x_4 + x_5 = 2$$

$$x_i \ge 0, i = 1, 2, ..., 5$$

				\mathcal{X}_4		
$[x_3]$	-2 -1 -1	[3]	1	-1	0	1
X_5	-1	2	0	-1	1	2
	-1	2	0	-1	0	2

单人工变量技巧

 X_3 \mathcal{X}_4 X_5

\mathcal{X}_2	$-\frac{2}{3}$	1	1/3	-1/
X_5	1/3	0	$-\frac{2}{3}$	-}

 X_1 X_2 X_3

$$-\frac{7}{3}$$
 1 $\frac{7}{3}$ $-\frac{7}{3}$ 0 $\frac{7}{3}$ $\frac{1}{3}$ 0 $\frac{7}{3}$ 1 $\frac{7}{3}$ 0 $-\frac{2}{3}$ $-\frac{1}{3}$ 1 $\frac{4}{3}$ 1 $\frac{7}{3}$ 0 $-\frac{2}{3}$ $-\frac{1}{3}$ 0 $\frac{4}{3}$

	\mathcal{X}_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4
x_2	0	1	-1	-1
\mathcal{X}_1	1	0	-2	-1
	0	0	0	0

 X_5

■ 单人工变量技巧

• 于是得到进行第二阶段时的初始表。

	\mathcal{X}_1	\mathcal{X}_2	X_3	\mathcal{X}_4	
X_2	0	1	-1	-1	3
x_1	1	0	-1 -2	-1	4
	0	0	-4	-3	10

•由上知道这是最优单纯形表。

小结和作业

■ 第五次作业

118页习题 1、2、3、4

小结和作业

■ 小结

- > 线性规划单纯形表
- > 线性规划两步法
- > 线性规划大M法
- > 退化情形