Algoritmos Genéticos Práctica 4.1

$$f(x) = -x * sen(V|x|)$$

- Calcular el valor mínimo
- -500≤x≤500
- NIPOP = 20
- Selección de Pareja de Mayor a Menor.
- Sin Mutación
- 2 iteración
- Cruce sencillo

	Población	x	f(x) valor			
	inicial	valor	(función			
	(fenotipos)	genotipo	adaptación)			
1	01101	13	169			
2	11000	24	576			
3	01000	8	64			
4	10011	19	361			
Suma			1170			
Media			293			
Mejor			576			

Signo	2 ⁸	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
+	256	128	64	32	16	8	4	2	1
0	1	1	1	1	1	1	1	1	1

511

Signo	2 ⁸	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
-	256	128	64	32	16	8	4	2	1
0	1	0	0	0	1	1	1	1	1

```
Funciones de Conversión Binario-decimal y decimal-binario
b = 11001
#Convertimos el entero en una cadena y despues lo pasamos a binario.
#Base 2.
print int(str(b), 2)
>>> 25
#Convertimos el entero 25 a binario
bin(25)
#Nos devuelve una cadena.
>>> '0b11001'
#Para convertir el numero en un entero.
int(bin(25)[2:])
```

http://daniel.blogmatico.com/python-de-binario-a-decimal-y-de-decimal-a-binario/

Acceso a carácter individual de una cadena

- > cadena = bin(25) # Convertir entero a binario
- > cadena #despliegue de cadena
- '0b11001'
- > cadena[1] #accesar segundo carácter de la cadena
- 'b'
- > cadena[0:3] #accesar los caracteres 0 1 2, no el carácter 3
- '0b1'

Ligas de interés:

https://fide.dev/2019/10/19/algoritmos-geneticos-en-python/

http://daniel.blogmatico.com/python-de-binario-a-decimal-y-de-decimal-a-binario/

https://robologs.net/2015/08/28/como-programar-un-algoritmo-genetico-parte-i-in-theory/

http://robologs.net/2015/09/01/como-programar-un-algoritmo-genetico-parte-ii-implementacion-en-python/

https://www.monografias.com/docs115/introduccion-algoritmos-geneticos-python/introduccion-algoritmos-geneticos-python.shtml