

UNIVERSIDAD SANTO TOMÁS PRIMER CLAUSTRO UNIVERSITARIO DE COLOMBIA

SECCIONAL TUNJA

VIGILADA MINEDUCACIÓN - SNIES 1732

Taller en clase

$$f(\chi) \approx f(\chi_0) + f'(\chi_0)h + f''(\chi_0)h^2 + f'''(\chi_0)h^3$$

$$f(x) \approx f(x_0) + f'(x_0)h + f''(x_0)h^2 + f'''(x_0)h^3$$

$$f(x_0) = f(x_0) = 25(x_0)^3 - 6(x_0)^2 + 7(x_0) - 88 = 102$$

$$f'(x_0) = 75x^2 - 12x + 7 = 75(x_0)^2 - 12(x_0) + 7 = 283$$

$$f'''(x_0) = 150x - 12 = 150(x_0) - 12 = 283$$

$$f'''(x_0) = 150$$
ISIEMPTEL

$$f(x) \approx f(x_0) + f'(x_0)h + f''(x_0)h^2 + f'''(x_0)h^3 + f'''(x_0)h^3 + f''(x_0)h^3 +$$

Emplee la expansión de la serie de Taylor de cero hasta tercer orden para predecir f(3) si $f(x) = 25x^3 - 6x^2 + 7x - 88$ usando como punto base x = 2. Calcule el error relativo porcentual verdadero ε_t para cada aproximación.

$$f(x) \approx f(x_0) + f'(x_0)h + f''(x_0)h^2 + f'''(x_0)h^3$$

Valor verdadero:

$$f(3) = 25(3)^3 - 6(3)^2 + 7(3) - 88$$

$$= 554$$


```
Error:
0/den 0: \xi_{t} = \frac{554 - 102}{554} *100 = \frac{81,59\%}{554}.

0/den 1: \xi_{t} = \frac{554 - (102 + 285)}{100} *100 = \frac{30,59\%}{100}.
0, der 2: Et = 554 - (102 + 283 + 144) + 100 = 4,51\%
```


$$f'(x_0) = f(1) = 15(1)^3 + 2(1)^2 + 5(1) - 50 = -28$$

$$f'(x_0) = 45 \times^2 + 4 \times 45 = 54$$

$$f''(x_0) = f''(1) = 90 \times 44 = 94$$

$$f'''(x_0) = f'''(1) = 90$$

$$f(2) \approx f(x_0) + f'(x_0)h + f''(x_0)h^2 + f'''(x_0)h^3$$

$$\approx -28 + 54(1) + 94(1)^2 + 90(1)^3$$

$$\approx -28 + 54 + 47 + 15$$

Valor verdadero =>
$$f(z) = 15(z)^3 + 2(z)^2 + 5(z) - 50 = 88$$

 $E_{1} = 88 - (-28) + 100 = 131,82\%$
 $E_{2} = 88 - (-28 + 54) + 100 = 70,45\%$
 $E_{3} = 88 - (-28 + 54 + 47) + 100 = 17.05\%$
 $E_{4} = 88 - (-28 + 54 + 47) + 100 = 17.05\%$

Método de la bisección

Usando el método de la bisección, encuentre la raíz más grande para la función $f(x) = cos(10x) + 5x^2 - 30$

Inicie las iteraciones con los puntos xl=1.5 y xu=3. Calcule el error relativo porcentual verdadero ε_t y el error aproximado ε_a para cada iteración. Itere hasta que el ε_t sea menor a 0,5%. Haga la comprobación con el método gráfico y muestre el resultado.

Método de la bisección

Usando el método de la bisección, encuentre la raíz más grande para la función $f(x) = cos(10x) + 5x^2 - 30$

3. Inicie las iteraciones con los puntos xl=1.5 y xu=3. Calcule el error relativo porcentual verdadero ε_t y el error aproximado ε_a para cada iteración. Itere hasta que el ε_t sea menor a 0,5%. Haga la comprobación con el método gráfico y muestre el resultado.

iteración	punto inicial (xl)	punto medio (xr)	punto final (xu)	f(xl)	f(xr)	f(xu)	ea	et
1	1,5	2,25	3	-19,50968791	-5,56080464	15,15425145		7,18
2	2,25	2,625	3	-5,56080464	4,891273187	15,15425145	14,29	8,29
3	2,25	2,4375	2,625	-5,56080464	0,433421526	4,891273187	7,69	0,56
4	2,25	2,34375	2,4375	-5,56080464	-2,658303635	0,433421526	4,00	3,31
5	2,34375	2,390625	2,4375	-2,658303635	-1,087017906	0,433421526	1,96	1,38
6	2,390625	2,4140625	2,4375	-1,087017906	-0,314591819	0,433421526	0,97	0,41
7								
8								
9								
10								

Hatia IV LILL

Referencia bibliográfica

Chapra, S. C., & Canale, R. P. (2007). Métodos numéricos para ingenieros. McGraw-Hill,.

UNIVERSIDAD SANTO TOMÁS PRIMER CLAUSTRO UNIVERSITARIO DE COLOMBIA

SECCIONAL

VIGILADA MINEDUCACIÓN - SNIES 1732

iSiempre_{Ito!}

