Jianwei Sun

Curriculum Vitae

⊠ jian58sun@gmail.com ijanwei-sun.github.io

Education

2020 to **Ph.D. in Systems and Control**,

Present University of California, Los Angeles (UCLA).

Advised by Prof. Dr. Jacob Rosen

2019 to 2020 M.Sc. in Systems and Control,

University of California, Los Angeles (UCLA).

Cumulative GPA: 4.0/4.0

2017 to 2019 M.Sc. in Electrical Engineering and Information Technology,

Swiss Federal Institute of Technology (ETH Zürich).

Cumulative GPA: 5.71/6.0

2012 to 2017 B.A.Sc. in Engineering Science (Electrical and Computer Engineering),

University of Toronto (UofT). Cumulative GPA: 3.79/4.0

Research Experience

Feb 2019 to **Bionics Lab**, University of California Los Angeles.

Present "Control and Estimation for Physical Human-Robot Interaction with Applications in Manipulation and Rehabilitation"

Supervised by Prof. Dr. Jacob Rosen.

- Developed a hardware-independent safety-focused admittance control methodology for multi-arm serial manipulators (Implemented as open-source C++ library), and verified on the V-Rex and EXOUL8 systems (C/C++)
- Explored feedback-linearization-based approach for constrained physical human-robot interaction with applications in robotic rehabilitation (C/C++)
- o Implemented a rate-limiting filter to suppress unstable human-induced oscillations due to physiological and mechanical time delays (C/C++)

Feb 2019 to **Bionics Lab**, University of California Los Angeles.

Sep 2019 "Improving Transparency in Physical Human-Robot Interaction for the EXO-UL8 Exoskeleton" Project co-supervised by Prof. Dr. Jacob Rosen and Prof. Dr. Maryam Kamgarpour.

- o Developed a Kalman filter-based sensor fusion method to achieve similar human-exoskeleton transparency using only a subset of six-axis force/torque sensors (C/C++)
- Coauthored a paper for the 2019 IEEE International Conference on Rehabilitation Robotics

Feb 2018 to Institute for Dynamic Systems and Control, ETH Zürich.

Aug 2018 "Vehicle Platoon Control with Virtual Path Constraints"

Project co-supervised by Rajan Gill and Prof. Dr. Raffaello D'Andrea.

- Designed and implemented a distributed feedback-linearized admittance controller to enable safe human-interaction with a path-constrained quadrotor platoon (C/C++)
- Primary author of a paper submitted to the 2019 IEEE Conference on Control Technology and Applications, awarded Outstanding Paper Award and finalist for Best Student Paper

Oct 2017 to Computer Engineering and Networks Laboratory, ETH Zürich.

Feb 2018 "DCF77 Based Long-Term Timer"

Project co-supervised by Roman Trüb and Prof. Dr. Lothar Thiele.

- o Designed and implemented a radio clock-based ultra low power ($\sim 10 \mu W$) clock synchronizer capable of overcoming arbitrarily long clock drift for wireless network devices (MSP430, C)
- Developed a benchmark device based on received timepulses from GPS for characterizing the timer device to nanosecond precision (MSP430, Raspberry Pi, C, Python)

Sep 2016 to **Reconfigurable Antenna Laboratory**, University of Toronto.

Jun 2017 "Synthesis of a Multibeam Dual Reflectarray Beam Pattern Using Genetic Algorithms" Project supervised by Prof. Dr. Sean V. Hum.

- Developed a genetic algorithm-based multi-objective non-convex optimizer for beam synthesis on a Cassegrain reflectarray antenna system (MATLAB)
- Coauthored a paper for the 2017 IEEE Antennas and Propagation Symposium

May 2016 to Institute for Dynamic Systems and Control, ETH Zürich.

Aug 2016 Project co-supervised by Rajan Gill and Prof. Dr. Raffaello D'Andrea.

- o Developed toolchains for automatic dynamic response characterization of nonlinear brushless motor systems for quadrotor vehicles (C/C++, MATLAB)
- o Developed a motor selection tool to automatically scrape off-the-shelf motor data from the web and suggest the best suited based on dynamic response requirements (Ruby)

May 2014 to **Department of Mechanical Engineering**, National University of Singapore.

Aug 2014 Project co-supervised by Goh Yu Feng and Prof. Dr. Koh Soo Jin Adrian.

- Characterized dynamic responses of dielectric elastomers as soft actuators for use as artificial muscles (MATLAB)
- Developed a waveform generator for a 5kV high voltage power supply to actuate elastomers (LabVIEW)

Work Experience

Jun 2022 to **Skydio**, *Autonomy*, San Mateo.

- Sep 2022 Evaluated feasibility of an emergency three-rotor recovery landing
 - Implemented an IMU-based reduced-attitude controller to stabilize relaxed hover solutions (C++, Python)
 - Tested dynamically feasible optimal braking and landing polynominal trajectories for threerotor recovery (C++, Python)

- Sep 2018 to Apple, Wearable Systems, Cupertino.
 - Feb 2019 Designed a drop-in replacement system-in-package for the Apple Watch to measure coexistence issues only quantifiable in system form-factor (Cadence)
 - Developed software toolchain to automatically extract, process, and present data from the Apple Watch (Python)
 - Developed experiment setup to investigate a critical system coexistence issue between a power management IC and a MEMS sensor
- Jun 2017 to Intel, Programmable Solutions Group, San Jose.
 - Sep 2017 Developed hardware interfaces based on Avalon-Streaming for an H.265/HEVC 4K video encoder on a PCIe accelerator card with the Intel Arria-10 FPGA (Verlog, VHDL)
 - Simulated and debugged hardware with ModelSim, VCS-MX simulators, and custom test scripts (Python)
- May 2015 to Apple, Wearable Systems, Cupertino.
 - May 2016 Designed a multi-purpose hardware validation platform, including schematic entry, component selection, and PCB routing (Cadence)
 - Developed a fault-tolerant software API for a microprocessor to continuously stress-test (for 500 hours) a sensor subject to unpredictable device and digital interface failures in a high temperature/humidity environment (MSP432, C/C++)
 - Successfully identified a rare reliability failure mode and aided cross-functional teams in arriving at a mass-producible solution

Publications

- [JP4] J. Sun, Y. Foroutani, J. Rosen, "Virtually Constrained Admittance Control using Feedback Linearization for Physical Human-Robot Interaction with Rehabilitation Exoskeletons." Under review.
- [JP3] J. Sun, E. H. Kramer, J. Rosen, "A Safety-Focused Admittance Control Approach for Physical Human-Robot Interaction with Rigid Multi-Arm Serial Link Exoskeletons." Under review.
- [JP2] P. W. Ferguson, **J. Sun** and J. Rosen, "On the OTHER Hand: A Bimanual, Reconfigurable Hand Exoskeleton with Opposable Thumbs for Use with Upper Limb Exoskeletons." Under review.
- [JP1] **J. Sun**, Y. Shen, J. Rosen, "Sensor Reduction, Estimation, and Control of an Upper-Limb Exoskeleton," in *IEEE Robotics and Automation Letters*, vol. 6, no. 2, pp. 1012-1019, April 2021, doi: 10.1109/LRA.2021.3056366.
- [CP4] J. Sun, P. W. Ferguson and J. Rosen, "Suppressing Delay-Induced Oscillations in Physical Human-Robot Interaction with an Upper-Limb Exoskeleton using Rate-Limiting," 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022, pp. 6695-6701, doi: 10.1109/IROS47612.2022.9981943.

- [CP3] Y. Shen, J. Sun, J. Ma, J. Rosen, "Admittance Control Scheme Comparison of EXO-UL8: A Dual-Arm Exoskeleton Robotic System," 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 2019, pp. 611-617, doi: 10.1109/ICORR.2019.8779545.
- [CP2] J. Sun and R. Gill, "Vehicle Platoon Control with Virtual Path Constraints," 2019 IEEE Conference on Control Technology and Applications (CCTA), Hong Kong, China, 2019, pp. 456-461, doi: 10.1109/CCTA.2019.8920555. Video.
- [CP1] C. Geaney, J. Sun, S. V. Hum, E. Martinez-de-Rioja, and J. A. Encinar, "Synthesis of a multi-beam dual reflectarray antenna using genetic algorithms," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 2017, pp. 1179-1180, doi: 10.1109/APUS-NCURSINRSM.2017.8072632.

Service

Ad-hoc Transactions on Robotics (T-RO), Transactions on Mechatronics (TMECH), Transac-Reviewer tions on Medical Robotics and Bionics (T-MRB), Robotics and Automation Letters (RA-L), Control System Letters (L-CSS), International Conference on Robotics and Automation (ICRA), International Conference on Intelligent Robots and Systems (IROS), Conference on Decision and Control (CDC)

Awards

- 2023 Outstanding TA Award, Mechanical and Aerospace Engineering, University of California,
- 2022 Mechanical and Aerospace Engineering Department Fellowship, University of California, Los Angeles
- 2021 Grad Slam Top 10, University of California, Los Angeles.
- 2019 Best Student Paper Finalist, Outstanding Paper Award, 3rd IEEE Conference on Control Technology and Applications (CCTA).
- 2017 Dean's Honours List, University of Toronto, awarded for all academic years.
- 2016 University of Toronto, Center for International Experience Award, for funding summer research conducted at ETH Zürich.
- 2014 Nortel Institute Undergraduate Scholarship, University of Toronto.
- 2014 University of Toronto, Center for International Experience Award, for funding summer research conducted at the National University of Singapore.
- 2012 President's Scholars of Excellence entrance scholarship, University of Toronto.
- 2012 Alexander Rutherford Scholarship.

Conference Participation

- 2023 Southern California Robotics Symposium (SCR). Participant.
- 2022 35th IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Podium presentation.
- 2019 16th IEEE/RAS-EMBS International Conference on Rehabilitation Robotics (ICORR). Podium presentation.
- 2019 IEEE/AIM Workshop on "Towards Soft Robotics for Biomimetics and Applications: Emerging Sensors, Actuators, and Methods". Poster.

Teaching and Mentoring Experience

- Jan 2024 to Teaching Fellow, MECH&AE M20 Introduction to Computer Programming with
 - Apr 2024 MATLAB, University of California Los Angeles (Winter Quarter). 20 hours per week
- Sep 2023 to **Teaching Fellow**, ENGR 214 Management Communication, University of California
 - Dec 2023 Los Angeles (Fall Quarter).
 - 20 hours per week
- Apr 2022 to Teaching Fellow, LIFESCI 30B Mathematics for Life Scientists (Python), University
 - Jun 2022 of California Los Angeles (Spring Quarter).
 - 20 hours per week
- Jan 2022 to Teaching Fellow, LIFESCI 30B Mathematics for Life Scientists (Python), University
 - Apr 2022 of California Los Angeles (Winter Quarter). 20 hours per week
- Sep 2021 to Teaching Fellow (Head TA), MECH&AE M20 Introduction to Computer Program-
 - Dec 2021 ming with MATLAB, University of California Los Angeles (Fall Quarter). 20 hours per week
- Apr 2021 to Teaching Associate, EC ENGR 141 Principles of Feedback Control, University of
 - Jun 2021 California Los Angeles (Spring Quarter).
 - 20 hours per week
- Jan 2021 to Teaching Associate, LIFESCI 30B Mathematics for Life Scientists (Python), Uni-
 - Apr 2021 versity of California Los Angeles (Winter Quarter). 20 hours per week
- Sep 2020 to Teaching Associate (Head TA), MECH&AE M20 Introduction to Computer Pro-
 - Dec 2020 gramming with MATLAB, University of California Los Angeles (Fall Quarter).
 - 20 hours per week
- Apr 2020 to Teaching Assistant, LIFESCI 30B Mathematics for Life Scientists (Python), Univer-
 - Jun 2020 sity of California Los Angeles (Spring Quarter).
 - 20 hours per week

Jan 2020 to Teaching Assistant, LIFESCI 30B - Mathematics for Life Scientists (Python), Univer-

Apr 2020 sity of California Los Angeles (Winter Quarter).

20 hours per week

Sep 2019 to Teaching Assistant, MECH&AE M20 - Introduction to Computer Programming with

Dec 2019 MATLAB, University of California Los Angeles (Fall Quarter).

20 hours per week

Aug 2016 to **Mentor**, IEEE Student Branch, University of Toronto.

Jun 2017 10 hours per week

 Mentored first and second year engineering students in hands-on electronics, design, and debugging (Arduino, C/C++)

Volunteering Experience

Aug 2016 to **Director of Events**, IEEE Student Branch, University of Toronto.

Jun 2017 10 hours per week

- Headed logistics and operations for a hardware Hackathon event with focus on wireless embedded technologies, resulting the largest participant turnout in recent years
- Negotiated with suppliers and sponsors to ensure sufficient funding for the club's operations

2013 to 2014 **Volunteer Team Member**, Supermileage Club, University of Toronto.

5 hours per week

- Designed the fuel pressurization system and engine dynamometer
- Assisted in carbon fiber layups, development, and assembly of completely new vehicle

2011 to 2013 **Volunteer**, Telus Spark Science Center, Calgary.

5 hours per week

2010 to 2011 **Volunteer**, Canadian Red Cross, Calgary.

5 hours per week

Personal Projects

Banana Split, Split-style ergonomic mechanical keyboard.

- Designed single PCB for both left and right sides in Altium
- Designed enclosure in SolidWorks and 3D printed

Link Website, Personal website developed with Jekyll.

Github HarryPlotter, open source plotting library for MATLAB.

<u>Video</u> **Boomerang**, persistence of vision display.

 Implemented a dynamic self-calibrating algorithm to calculate frame flashing rates of LEDs in a high-RPM rotating display

Technical Skills

Software

Languages C/C++, Python, MATLAB, LATEX, {x86_64, ARM, PIC} assembly, Java, Ruby, Bash

Environments Linux, Windows, Qt, LabVIEW, Jekyll, Ruby on Rails, Flask

Tools Eigen, Boost, Git, CMake, Make, Ninja

Hardware

Embedded ATmega, MSP43x, PIC, STM32, {Cyclone, Arria 10} FPGA, Arduino, Raspberry Pi

 ${\sf Lab} \quad {\sf Oscilloscopes, \ function \ generators, \ DC \ power \ supplies, \ DMMs, \ LCR \ meters, \ vector}$

network analyzers, spectrum analyzers, logic analyzers, frequency counters

Soldering Hands-on experience with DIP, SMT down to 01005, BGA, LGA, QFP packages

Tools

Simulation MuJoCo, MATLAB, Simulink, PSpice, LTSpice, ModelSim, VCS-MX

Design Cadence, Altium, KiCad, Eagle, SolidWorks

Languages

Native English

Native Mandarin Chinese

Intermediate German

Basic French

Hobbies

Boxing

Mountain biking

Hiking