Data Wrangling

Join, Combine and Reshape

```
In [1]:
```

```
\# Sometimes it is very difficult anlyze the data that is not arraged or stored properly
```

Importance of Hierarchical Indexing

Hierarchical indexing is an important feature of pandas that enables you to have multiple (two or more) index levels on an axix

```
In [2]:
```

```
# This help us to work with higher dimensional data in lower dimensional form
```

In [4]:

```
import pandas as pd
import numpy as np
```

```
In [ ]:
```

In [5]:

Out[5]:

```
A 1 0.351449
2 1.278593
3 1.159270
B 1 -0.733105
4 -0.265540
C 1 -0.204688
2 0.778994
D 2 0.210338
4 -0.145815
dtype: float64
```

```
In [27]:
```

```
# The index (axis labels) of the Series.
pd.Series.index?
```

In [6]:

```
# Let's access the index to what type of Index it is using 'Series.index' method data_hi.index
```

Out[6]:

```
MultiIndex(levels=[['A', 'B', 'C', 'D'], [1, 2, 3, 4]],
labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 3, 0, 1, 1, 3]])
```

In [7]:

```
# Partial indexing is possible with the hierachically indexed object
data_hi['A']
```

Out[7]:

- 1 0.351449 2 1.278593 3 1.159270 dtype: float64
- In [8]:

```
# slicing is also possible
data_hi['A':'C']
```

Out[8]:

- A 1 0.351449 2 1.278593
 - 3 1.159270
 - 3 1 -0.733105
- 4 -0.265540
- C 1 -0.204688
- 2 0.778994

dtype: float64

In [10]:

```
# selecting a particular index is also possible: pass a list of index to be selected in
side the indexing object i.e. data_hi[index]
data_hi[['A', 'C']]
```

Out[10]:

- A 1 0.351449
 - 2 1.278593
 - 3 1.159270
- C 1 -0.204688
- 2 0.778994

dtype: float64

In [11]:

```
# we can also use explicit loc to index the Series object
data_hi.loc[:, 1]
```

Out[11]:

A 0.351449 B -0.733105 C -0.204688 dtype: float64

In [12]:

we can rearrange the data into a DataFrame object using 'unstack' method
Unstack, a.k.a. pivot, Series with MultiIndex to produce DataFrame.
The level involved will automatically get sorted.
pd.Series.unstack?

In [13]:

The missing values are replaced with NaN by default. However we can replace the missi
ng values using 'fill_value=' argument
data_hi.unstack()

Out[13]:

	1	2	3	4
Α	0.351449	1.278593	1.15927	NaN
В	-0.733105	NaN	NaN	-0.265540
С	-0.204688	0.778994	NaN	NaN
D	NaN	0.210338	NaN	-0.145815

In [14]:

data_hi.unstack(fill_value=0)

Out[14]:

	1	2	3	4
Α	0.351449	1.278593	1.15927	0.000000
В	-0.733105	0.000000	0.00000	-0.265540
С	-0.204688	0.778994	0.00000	0.000000
D	0.000000	0.210338	0.00000	-0.145815

In [15]:

```
# The inverse operation of 'unstack' is 'stack'
# you can check doc_string of it using 'pd.Series.unstack.stack?'
data_hi.unstack().stack()
```

Out[15]:

```
1
Α
       0.351449
   2
       1.278593
   3
       1.159270
  1
       -0.733105
      -0.265540
C
      -0.204688
  1
       0.778994
D
   2
       0.210338
   4
      -0.145815
dtype: float64
```

In [17]:

Out[17]:

		one		three
		Green	Red	Green
а	1	0	1	2
	2	3	4	5
b	1	6	7	8
	2	9	10	11

In [57]:

```
pd.names?
```

Object `pd.names` not found.

In [68]:

```
# We can check the documentation of any attribute using 'help' command also.
#help(pd.MultiIndex)
#pd.MultiIndex?
```

In [21]:

```
# we can easily rename the row index and column index names with the help of 'DataFram
e.index.names' n 'ataFrame.column.names' attributes
# change the row index lavel names
df_hi.index.names = ['val1', 'val2']
```

In [23]:

```
# change the column index level names
df_hi.columns.names = ['number', 'color']
```

In [24]:

```
# Let's display the DF
df_hi
```

Out[24]:

	number	one		three
	color	Green	Red	Green
val1	val2			
а	1	0	1	2
	2	3	4	5
b	1	6	7	8
	2	9	10	11

In [26]:

```
# now we can apply partial indexing on DF
df_hi['one']
```

Out[26]:

	color	Green	Red
val1	val2		
а	1	0	1
	2	3	4
b	1	6	7
	2	9	10

In [69]:

WE can create our own MultiIndex and can be reused whenever required using 'MultiIndex x' method

How Reordering and Sorting of Index Levels Takes Place?

In [70]:

```
# we can use 'swaplevel' method: it will rearrange the order of the levels on an axis o
r sort the data by the values
# in one specific level
# Docstring: Swap levels i and j in a MultiIndex on a particular axis
pd.DataFrame.swaplevel?
```

In [71]:

```
# let's swap the row index levels first. it is the default operation
df_hi.swaplevel('val1', 'val2', axis=0)
```

Out[71]:

	number	one		three
	color	Green	Red	Green
val2	val1			
1	а	0	1	2
2	а	3	4	5
1	b	6	7	8
2	b	9	10	11

In [72]:

```
# We can swap the column index levels by passing 'axis=1'
df_hi.swaplevel('number', 'color', axis=1)
```

Out[72]:

	color	Green	Red	Green
	number	one	one	three
val1	val2			
а	1	0	1	2
	2	3	4	5
b	1	6	7	8
	2	9	10	11

In [77]:

sort_index, on the other hand, sorts the data using only the values in a single level
Docstring: Sort object by labels (along an axis)
pd.DataFrame.sort index?

In [75]:

this mehod sorts the index level lexographically by the indicated level
let's sort the index labels with level=1, i.e on second index level of Row's MultiInd
ex
df_hi.sort_index(level=1)

Out[75]:

	number	one		three
	color	Green	Red	Green
val1	val2			
а	1	0	1	2
b	1	6	7	8
а	2	3	4	5
b	2	9	10	11

In [78]:

let's sort the index labels with level=0, i.e on first index level of Row's MultiIn
dex
df_hi.sort_index(level=0)

Out[78]:

	number	one		three
	color	Green	Red	Green
val1	val2			
а	1	0	1	2
	2	3	4	5
b	1	6	7	8
	2	9	10	11

In [79]:

```
# we can apply sort_index on top of swaplevel to get the sorted index of the swaped lev
els
df_hi.swaplevel(0, 1).sort_index(level=0)
# Now the val2 becomes level=0 and val1 becomes level=1 and then sorted on val2, i.e on
val2
```

Out[79]:

	number	one		three
	color	Green	Red	Green
val2	val1			
1	а	0	1	2
	b	6	7	8
2	а	3	4	5
	b	9	10	11

How To Get The Summary Statistics By Level?

In [87]:

```
# Docstring: Return the sum of the values for the requested axis
pd.DataFrame.sum?
```

In [82]:

```
# The Pandas Series and DataFrame have a level option for their descriptive and summary
stastistics
print(df_hi)
df_hi.sum(level='val1') # all 'a' and 'b's are grouped first and then sum is applied
```

number		one		three
color		Green	Red	Green
val1	val2			
a	1	0	1	2
	2	3	4	5
b	1	6	7	8
	2	9	10	11

Out[82]:

number	one		three
color	Green	Red	Green
val1			
а	3	5	7
b	15	17	19

In [83]:

```
print(df_hi)
df_hi.sum(level='val2') # all '1' and '2's are grouped first and then sum is applied
```

numbe	er	one		three
color	^	Green	Red	Green
val1	val2			
a	1	0	1	2
	2	3	4	5
b	1	6	7	8
	2	9	10	11

Out[83]:

n	umber	one		three
C	olor	Green	Red	Green
	val2			
	1	6	8	10
	2	12	14	16

In [85]:

we can do across the columns using 'axis=1' and then the column name
print(df_hi)
df_hi.sum(level='color', axis=1) # in color index level 'Green' are grouped together fi
rst and then sum is applied.

numbe	er	one		three
colo	r	Green	Red	Green
val1	val2			
a	1	0	1	2
	2	3	4	5
b	1	6	7	8
	2	9	10	11

Out[85]:

	color	Green	Red
val1	val2		
а	1	2	1
	2	8	4
b	1	14	7
	2	20	10

In [86]:

similarly You can work with other summary statistics methods
The above technique uses the 'groupby' method working principle, and it is neverthles
s to know in future in this course

How To Index With DF's columns?

In [88]:

```
# The idea here is we can move row index into the columns and vice versa
```

In [89]:

Out[89]:

```
        a
        b
        c
        d

        0
        0
        14
        one
        0

        1
        1
        13
        one
        1

        2
        2
        12
        one
        2

        3
        3
        11
        two
        0

        4
        4
        10
        two
        1

        5
        5
        9
        two
        2

        6
        6
        8
        two
        3
```

In [90]:

```
# DataFrame's set_index function will create a new DataFrame using one or more of its c
olumns as the index
# Docstring: Set the DataFrame index (row labels) using one or more existing columns. B
y default yields a new object
pd.DataFrame.set_index?
```

In [94]:

```
# Let's convert the column index into row index
df_si = df_c.set_index(['c', 'd'])
df_si
```

Out[94]:

```
two | a | b |
c | d | |
c | d | |
d | 1 | 13 |
d | 2 | 2 | 12 |
d | 1 | 4 | 10 |
d | 2 | 5 | 9 |
d | 3 | 6 | 8
```

In [92]:

```
# if you notice the new DF object, the columns have been removed after new index has be
en formed
# we can keep the columns even after reindexing using 'drop=False' argument by default
it is set to True
df_c.set_index(['c', 'd'], drop=False)
```

Out[92]:

		а	b	С	d
С	d				
one	0	0	14	one	0
	1	1	13	one	1
	2	2	12	one	2
two	0	3	11	two	0
	1	4	10	two	1
	2	5	9	two	2
	3	6	8	two	3

In [95]:

```
# The 'reset_index' method on the otherhand will do the opposit of 'set_index' method
# Here the hierarchical index levels are moved into the columns
df_si.reset_index()
```

Out[95]:

	С	d	а	b
0	one	0	0	14
1	one	1	1	13
2	one	2	2	12
3	two	0	3	11
4	two	1	4	10
5	two	2	5	9
6	two	3	6	8

How To Combine and Merge Datasets?

In [96]:

```
# pandas.merge connects rows in DataFrames based on one or more keys.
# pandas.concat concatenates or "stacks" together objects along an axis.
# The combine_first instance method enables splicing together overlapping data to fill in missing values in one object
# with values from another
```

In [98]:

```
# Docstring: Merge DataFrame objects by performing a database-style join operation by c
olumns or indexes.
pd.DataFrame.merge?
```

In [99]:

Out[99]:

	key	data1
0	b	0
1	b	1
2	а	2
3	С	3
4	а	4
5	b	5

In [100]:

Out[100]:

	key	data2
0	а	0
1	b	1
2	d	2

Let's see Database-Style DataFrame Joins

In [101]:

```
# 'many to one join'
pd.merge(df1, df2)
# In df1 'b' appers first and then 'a'. Hence the merged object consists of df1 data va
lues that are matched with the df2
# data values. only common rows are considered to merge the data values
```

Out[101]:

	key	data1	data2
0	b	0	1
1	b	1	1
2	b	5	1
3	а	2	0
4	а	4	0

In [102]:

```
# we can also use Pandas style to merge the DF's
df1.merge(df2)
```

Out[102]:

	key	data1	data2
0	b	0	1
1	b	1	1
2	b	5	1
3	а	2	0
4	а	4	0

In [103]:

```
# By deafault 'merge' method uses overlaping column names as 'merging keys': here key c
olumn is used as the merging key
# we can also specify it explicitly and it is a good practice always
pd.merge(df1, df2, on='key')
```

Out[103]:

	key	data1	data2
0	b	0	1
1	b	1	1
2	b	5	1
3	а	2	0
4	а	4	0

In [107]:

Out[107]:

	lkey	data1
0	b	0
1	b	1
2	а	2
3	С	3
4	а	4
5	b	5

In [105]:

Out[105]:

	rkey	data2
0	а	0
1	b	1
2	d	2

In [114]:

```
# Let's merge these DF's by switchng on the left and right keys separately
print('df_1', df_1, end='\n'), print('df_r', df_r, end='\n')
pd.merge(df_1, df_r, left_on='lkey', right_on='rkey')
```

```
df_1
       lkey data1
0
     b
            0
1
     b
            1
2
            2
     а
3
            3
     C
4
            4
5
     b
            5
df r
       rkey data2
0
     а
1
     b
            1
2
     d
            2
```

Out[114]:

	lkey	data1	rkey	data2
0	b	0	b	1
1	b	1	b	1
2	b	5	b	1
3	а	2	а	0
4	а	4	а	0

In [115]:

```
# By default merge does an 'inner' join; the keys in the result are the intersection, o r the common set found in both tables
# Hence in the above 'merge' operation 'c' and 'd' data and associated values are missing
# This is referred as the 'inner' join: it takes the intersection of the keys for merging operation
```

In [117]:

```
# The other joins are 'left', 'right' and 'outer' joins. use 'how=right' for 'right' jo in for example. By default this argument
# is set to 'inner'
pd.merge(df_l, df_r, left_on='lkey', right_on='rkey', how='outer')

# Now we got the fully merged object with uncommon values and associated data are fille d with missing value sentinels NaN
```

Out[117]:

	lkey	data1	rkey	data2
0	b	0.0	b	1.0
1	b	1.0	b	1.0
2	b	5.0	b	1.0
3	а	2.0	а	0.0
4	а	4.0	а	0.0
5	С	3.0	NaN	NaN
6	NaN	NaN	d	2.0

In [118]:

```
# Similarly you can do 'left' and 'right' joins by passing them separately
```

In [119]:

```
# Let's see 'many to many merge' operation
```

In [120]:

Out[120]:

	1key	data1
0	b	0
1	b	1
2	а	2
3	С	3
4	а	4
5	b	5

In [122]:

Out[122]:

	2key	data2
0	а	0
1	b	1
2	а	2
3	b	3
4	d	4

In [124]:

```
pd.merge(df_m1, df_m2, left_on='1key', right_on='2key') # let's ommit "how='outer'" or
"how='inner'"
```

Out[124]:

	1key	data1	2key	data2
0	b	0	b	1
1	b	0	b	3
2	b	1	b	1
3	b	1	b	3
4	b	5	b	1
5	b	5	b	3
6	а	2	а	0
7	а	2	а	2
8	а	4	а	0
9	а	4	а	2

In [125]:

```
pd.merge(df_m1, df_m2, left_on='1key', right_on='2key', how='outer') # let's include "h
ow='outer'" or "how='inner'"
```

Out[125]:

	1key	data1	2key	data2
0	b	0.0	b	1.0
1	b	0.0	b	3.0
2	b	1.0	b	1.0
3	b	1.0	b	3.0
4	b	5.0	b	1.0
5	b	5.0	b	3.0
6	а	2.0	а	0.0
7	а	2.0	а	2.0
8	а	4.0	а	0.0
9	а	4.0	а	2.0
10	С	3.0	NaN	NaN
11	NaN	NaN	d	4.0

In [126]:

```
pd.merge(df_m1, df_m2, left_on='1key', right_on='2key', how='left') # let's include "ho w='left' # Notice here the data 'd' is excluded in the merge operation which is in df_m2
```

Out[126]:

	1key	data1	2key	data2
0	b	0	b	1.0
1	b	0	b	3.0
2	b	1	b	1.0
3	b	1	b	3.0
4	а	2	а	0.0
5	а	2	а	2.0
6	С	3	NaN	NaN
7	а	4	а	0.0
8	а	4	а	2.0
9	b	5	b	1.0
10	b	5	b	3.0

In [127]:

```
pd.merge(df_m1, df_m2, left_on='1key', right_on='2key', how='right') # let's include "h
ow='right'
# Notice here the data 'c' is excluded in the merge operation which is in df_m1
```

Out[127]:

	1key	data1	2key	data2
0	b	0.0	b	1
1	b	1.0	b	1
2	b	5.0	b	1
3	b	0.0	b	3
4	b	1.0	b	3
5	b	5.0	b	3
6	а	2.0	а	0
7	а	4.0	а	0
8	а	2.0	а	2
9	а	4.0	а	2
10	NaN	NaN	d	4

Let's see How we can merge with Multiple column 'keys' as names

In [132]:

dfleft

```
key1 key2 lval
0 raga one 1
1 raga two 2
2 anuraga one 3
```

dfright

```
key1 key2 rval
0 raga one 4
1 raga one 5
2 anuraga one 6
3 anuraga two 7
```

In [133]:

```
# Let's merge these two df's with two key columns 'key1' and 'key2'
pd.merge(dfleft, dfright, on=['key1', 'key2'], how='outer') # 'outer' includes all the
  values and associated data
```

Out[133]:

	key1	key2	Ival	rval
0	raga	one	1.0	4.0
1	raga	one	1.0	5.0
2	raga	two	2.0	NaN
3	anuraga	one	3.0	6.0
4	anuraga	two	NaN	7.0

In [134]:

pd.merge(dfleft, dfright, on=['key1', 'key2'], how='inner') # 'inner' includes only the
common values and associated data

Out[134]:

	key1	key2	Ival	rval
0	raga	one	1	4
1	raga	one	1	5
2	anuraga	one	3	6

In [135]:

pd.merge(dfleft, dfright, on=['key1', 'key2'], how='left') # 'left' includes priority f
or left values and associated data

Out[135]:

	key1	key2	Ival	rval
0	raga	one	1	4.0
1	raga	one	1	5.0
2	raga	two	2	NaN
3	anuraga	one	3	6.0

In [136]:

```
pd.merge(dfleft, dfright, on=['key1', 'key2'], how='right') # 'right' includes priority
for right values and associated data
```

Out[136]:

	key1	key2	lval	rval
0	raga	one	1.0	4
1	raga	one	1.0	5
2	anuraga	one	3.0	6
3	anuraga	two	NaN	7

In [138]:

```
# while merging we may face some probelm with the overlapping column names. For ex: le
t's switch on only one column name
print('dfleft')
print(dfleft)
print()
print('dfright')
print(dfright)
pd.merge(dfleft, dfright, on='key1')
```

dfleft

```
key1 key2 lval
0 raga one 1
1 raga two 2
2 anuraga one 3
```

dfright

key1 key2 rval 0 raga one 4 1 5 raga one 2 anuraga one 6 7 3 anuraga two

Out[138]:

	key1	key2_x	Ival	key2_y	rval
0	raga	one	1	one	4
1	raga	one	1	one	5
2	raga	two	2	one	4
3	raga	two	2	one	5
4	anuraga	one	3	one	6
5	anuraga	one	3	two	7

In [140]:

```
# We can overcome this by suffixing different key suffixes using 'suffixes' argument in
side the merge operation
pd.merge(dfleft, dfright, on='key1', suffixes=('_left', '_right'))
```

Out[140]:

	key1	key2_left	Ival	key2_right	rval
0	raga	one	1	one	4
1	raga	one	1	one	5
2	raga	two	2	one	4
3	raga	two	2	one	5
4	anuraga	one	3	one	6
5	anuraga	one	3	two	7

Merging on Row Index

In [141]:

```
# when merge 'keys' found in DF's row index, we can pass can pass left_index=True or ri
ght_index=True (or both) to indicate
# that the index should be used as the merge key
```

In [146]:

```
dfril
      key1
            lval
0
      raga
1
      raga
                1
2
   anuraga
                3
3
      raga
  adiraga
dfrir
         rval
             1
raga
```

anuraga

2

In [147]:

```
# Let's switch on the dfril's key index column and pass the right_index=True to enable
    the right df i.e, dfrir's row index
pd.merge(dfril, dfrir, left_on='key1', right_index=True)
# Notice here the dfrir's row index is taken as priority index and the merging has been
taken place based on those values by
# matching with the dfril's key1 values because that is ON
```

Out[147]:

	key1	Ival	rval
0	raga	0	1
1	raga	1	1
3	raga	3	1
2	anuraga	2	2

In [149]:

```
# Let's see what happens if swich on left_index=True
#pd.merge(dfril, dfrir, left_on='key1', left_index=True) # if I run this I'll get 'Type
Error' because left DF has implicit
# integer index by default we can't switch it on.
```

In [150]:

```
# Let's make the union of two DF's index's values by passing how='outer' instead of int
ersecting i.e, selecting common index values
pd.merge(dfril, dfrir, left_on='key1', right_index=True, how='outer')
```

Out[150]:

	key1	Ival	rval
0	raga	0	1.0
1	raga	1	1.0
3	raga	3	1.0
2	anuraga	2	2.0
4	adiraga	4	NaN

Let's work with hierarchically indexed DataFrames

In [151]:

In hierachically indexed data the joining is implicitely a multiple key merge

```
In [158]:
```

12/29/2019

```
df_1:
```

key1key2data0raga20000.01raga20011.02raga20022.03anuraga20013.04anuraga20024.0

df_r:

		prog1	prog2
anuraga	2001	0	1
	2000	2	3
raga	2000	4	5
	2000	6	7
	2001	8	9
	2002	10	11

In [161]:

```
# Let's handle these DF's with multiple keys
# we need to pass a list of multiple column names as keys to merge on hierarchical inde
x values
# The first priority we are giving is for the keys of df_l using 'left_on' and then we
are considering df_r's index as
# the merge key for merge operation # notice that the df_r also has two columns in its
index so as to form an hierarchical index
print('df_1:\n', df_1)
print()
print('df r:\n', df r)
pd.merge(df_l, df_r, left_on=['key1', 'key2'], right_index=True)
```

$df_1:$

ω.	_ ·		
	key1	key2	data
0	raga	2000	0.0
1	raga	2001	1.0
2	raga	2002	2.0
3	anuraga	2001	3.0
4	anuraga	2002	4.0

df_r:

		prog1	prog2
anuraga	2001	0	1
	2000	2	3
raga	2000	4	5
	2000	6	7
	2001	8	9
	2002	10	11

Out[161]:

	key1	key2	data	prog1	prog2
0	raga	2000	0.0	4	5
0	raga	2000	0.0	6	7
1	raga	2001	1.0	8	9
2	raga	2002	2.0	10	11
3	anuraga	2001	3.0	0	1

In [160]:

```
# Let's now consider the duplicate index values with 'how=outer' that is forming an uni
on of index values
print('df_1:\n', df_1)
print()
print('df_r:\n', df_r)
pd.merge(df_1, df_r, left_on=['key1', 'key2'], right_index=True, how='outer')
```

Out[160]:

	key1	key2	data	prog1	prog2
0	raga	2000	0.0	4.0	5.0
0	raga	2000	0.0	6.0	7.0
1	raga	2001	1.0	8.0	9.0
2	raga	2002	2.0	10.0	11.0
3	anuraga	2001	3.0	0.0	1.0
4	anuraga	2002	4.0	NaN	NaN
4	anuraga	2000	NaN	2.0	3.0

In [162]:

```
print('df_1:\n', df_1)
print()
print('df_r:\n', df_r)
pd.merge(df_l, df_r, left_on=['key1', 'key2'], right_index=True, how='left')
```

df_1:

• .	•		
	key1	key2	data
0	raga	2000	0.0
1	raga	2001	1.0
2	raga	2002	2.0
3	anuraga	2001	3.0
4	anuraga	2002	4.0

df_r:

		prog1	prog2
anuraga	2001	0	1
	2000	2	3
raga	2000	4	5
	2000	6	7
	2001	8	9
	2002	10	11

Out[162]:

	key1	key2	data	prog1	prog2
0	raga	2000	0.0	4.0	5.0
0	raga	2000	0.0	6.0	7.0
1	raga	2001	1.0	8.0	9.0
2	raga	2002	2.0	10.0	11.0
3	anuraga	2001	3.0	0.0	1.0
4	anuraga	2002	4.0	NaN	NaN

In [163]:

```
print('df_1:\n', df_1)
print()
print('df_r:\n', df_r)
pd.merge(df_1, df_r, left_on=['key1', 'key2'], right_index=True, how='right')
df_1:
      key1 key2 data
                  0.0
0
     raga 2000
1
     raga 2001
                  1.0
2
     raga 2002
                  2.0
3 anuraga 2001
                 3.0
                  4.0
  anuraga 2002
df_r:
```

		prog1	prog2
anuraga	2001	0	1
	2000	2	3
raga	2000	4	5
	2000	6	7
	2001	8	9
	2002	10	11

Out[163]:

	key1	key2	data	prog1	prog2
0	raga	2000	0.0	4	5
0	raga	2000	0.0	6	7
1	raga	2001	1.0	8	9
2	raga	2002	2.0	10	11
3	anuraga	2001	3.0	0	1
4	anuraga	2000	NaN	2	3

In [164]:

suppose if we have a multiple index on both the DF's then merging is possible just by switching on the index values of both # the DF's using 'left index=True' and 'right index=True'

In [165]:

```
raga anuraga
a 10 20
c 30 40
e 50 60

df_ri
braga sraga
```

b 70 80 c 90 100 d 110 120 e 130 140

In [166]:

```
pd.merge(df_li, df_ri, how='outer', left_index=True, right_index=True)
```

Out[166]:

	raga	anuraga	braga	sraga
а	10.0	20.0	NaN	NaN
b	NaN	NaN	70.0	80.0
С	30.0	40.0	90.0	100.0
d	NaN	NaN	110.0	120.0
е	50.0	60.0	130.0	140.0

In [167]:

```
pd.merge(df_li, df_ri, how='inner', left_index=True, right_index=True)
```

Out[167]:

	raga	anuraga	braga	sraga
С	30	40	90	100
е	50	60	130	140

In [168]:

similarly you can check for the remaining cases: left and right and then analyze what happens

In [169]:

```
# DF has a very good option to join the DF's of same or similar indexes with non-overla
pping column names:
# The method is 'join'
pd.DataFrame.join?
```

In [170]:

```
df_li.join(df_ri, how='outer')
```

Out[170]:

	raga	anuraga	braga	sraga
а	10.0	20.0	NaN	NaN
b	NaN	NaN	70.0	80.0
С	30.0	40.0	90.0	100.0
d	NaN	NaN	110.0	120.0
е	50.0	60.0	130.0	140.0

In [172]:

```
# suppose if the two DF's have similar column names with different data values, the joi
n method has 'lsuffix' and 'rsuffix'
# to differentiate them
# Let's see the simple example
caller = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],
'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],
                         'B': ['B0', 'B1', 'B2']})
print('caller:\n', caller)
print()
print('other:\n', other)
```

caller:

```
key A
  K0 A0
1 K1 A1
2
  K2 A2
3
  К3
     Α3
```

K4 A4

K5 A5

5

other:

2 K2

key В KØ BØ Κ1 В1 1

B2

In [173]:

```
# Since both the DF's have the similar columns with the common column name 'key'
# Let's use suffixes to use from both left DF and right DF
caller.join(other, lsuffix='_caller', rsuffix='_other') # default how in join is left,
we can make it other
```

Out[173]:

	key_caller	Α	key_other	В
0	K0	A0	K0	В0
1	K1	A1	K1	В1
2	K2	A2	K2	B2
3	K3	А3	NaN	NaN
4	K4	A4	NaN	NaN
5	K5	A5	NaN	NaN

In [174]:

```
caller.join(other, lsuffix='_caller', rsuffix='_other', how='right')
```

Out[174]:

	key_caller	Α	key_other	В
0	K0	Α0	K0	В0
1	K1	A1	K1	В1
2	K2	A2	K2	B2

In [175]:

```
# Join method also accepts the DF's which are modified to have the same index name with
'set_index' method
# Let's set 'key' column of both the DF's as their index
caller.set_index('key').join(other.set_index('key'))
```

Out[175]:

A B

key		
K0	A0	В0
K 1	A1	B1
K2	A2	B2
К3	A3	NaN
K4	A4	NaN
K5	A5	NaN

In [176]:

```
# we can also make one of the DF's column as the index and other DF's column as the mer
ging key using 'on' argument
# Let's make 'other' DF's column 'key' as the index and switch on the merge key(column
name) of 'caller' DF
caller.join(other.set_index('key'), on='key')
```

Out[176]:

	key	Α	В
0	K0	A0	В0
1	K1	A1	В1
2	K2	A2	В2
3	<i>K</i> 3	A3	NaN
4	K4	A4	NaN
5	K5	A5	NaN

In [177]:

Join method also accepts a list of DF's to join them, similar to a 'concat' operation which concats two or more DF's.

How To Concatenate DataFrame's Along The Row or Column Axis?

```
In [178]:
#
In [181]:
#
pd.concat?
```

Docstring: Concatenate pandas objects along a particular axis with optional set logic along the other axes. Can also add a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are the same (or overlapping) on the passed axis number.

```
In [182]:
```

```
ser1 = pd.Series([0, 1], index=['A', 'B'])
ser2 = pd.Series([2, 3, 4], index=['C', 'D', 'E'])
ser3 = pd.Series([5, 6], index=['F', 'G'])
print(ser1); print(ser2); print(ser3)
A 0
```

A 0 B 1

dtype: int64
C 2
D 3

E 4 dtype: int64

F 5 G 6 dtype: int64

In [184]:

```
# By default 'concat' function works along axis=0, that is along row index # so concatenation of series produces another series along an axis=0 pd.concat([ser1, ser2, ser3])
```

Out[184]:

A 0 B 1

C 2

D 3

E 4

F 5

G 6

dtype: int64

In [221]:

```
# Let's change the axis to concat along the column index
pd.concat([ser1, ser2, ser3], axis=1, sort=True) # with sort=False, that is index will
be sorted or un sorted or kept as it is
```

Out[221]:

	0	1	2
Α	0.0	NaN	NaN
В	1.0	NaN	NaN
С	NaN	2.0	NaN
D	NaN	3.0	NaN
Ε	NaN	4.0	NaN
F	NaN	NaN	5.0
G	NaN	NaN	6.0

In [222]:

```
# concatenating along an axis='column' produces a DF with non-overlapping values filled
by NaN
# which is similar to like joining with the union of index, that is how='outer' in case
of merge or join
print(ser1); print(ser2); print(ser3)
pd.concat([ser1, ser2, ser3], axis=1, sort=True) # with sort=False
```

Α В 1 dtype: int64 C 2 D 3

Ε dtype: int64

6 dtype: int64

Out[222]:

G

0 1 2 0.0 NaN NaN В 1.0 NaN NaN C NaN 2.0 NaN 3.0 NaN **D** NaN E NaN 4.0 NaN F NaN NaN 5.0 **G** NaN NaN 6.0

In [223]:

```
# we can concatenate by intersecting the indexes using 'join=inner' argument
# in this example it results null concatenation because of non-overlapping indexes
pd.concat([ser1, ser2, ser3], axis=1, sort=True, join='inner')
```

Out[223]:

0 1 2

In [224]:

```
# Let's create a Series with overlapping indexes and join
ser4 = pd.concat([ser1, ser3])
ser4
```

Out[224]:

```
Α
     0
В
      1
F
      5
G
     6
dtype: int64
```

In [225]:

```
print(ser1); print(ser4)
pd.concat([ser1, ser4], axis=1, sort=True) # this is the outer join, by default join=ou
ter in concat function
```

```
A 0
B 1
```

dtype: int64

A 0 B 1 F 5 G 6

dtype: int64

Out[225]:

0 1A 0.0 0B 1.0 1F NaN 5

In [226]:

G NaN 6

print(ser1); print(ser4)
pd.concat([ser1, ser4], axis=1, join='inner') # only intersected columns are combined t
ogether

A 0 B 1 dtype: int64 A 0 B 1 F 5 G 6

dtype: int64

Out[226]:

0 1 **A** 0 0

B 1 1

In [227]:

```
# we can specify axes to be used on the other axes with 'join_axex' argument, this is s
imilar to like outer join
pd.concat([ser1, ser4], axis=1, join_axes=[['A', 'B', 'F', 'G']])
```

Out[227]:

	0	1
Α	0.0	0
В	1.0	1
F	NaN	5

G NaN 6

In [228]:

```
# The concatented pices are not idenfiable in the result by default. however we can do
    so using keys argument
# this will create an hierarchical index to identify the objects used to concatenate
idc = pd.concat([ser1, ser2, ser3], axis=0, keys=['1', '2', '3'])
idc
# Here the '1', '2' and '3' identifies the three series that concatenated just now. You
can also strings to label the keys
```

Out[228]:

```
1 A 0
B 1
2 C 2
D 3
E 4
3 F 5
G 6
dtype: int64
```

In [229]:

```
# unstack() method on this concatenation makes keys as the new index label, it is simil
ar to like unstacking the
# hierarchical index
idc.unstack()
```

Out[229]:

	Α	В	С	D	Е	F	G
1	0.0	1.0	NaN	NaN	NaN	NaN	NaN
2	NaN	NaN	2.0	3.0	4.0	NaN	NaN
3	NaN	NaN	NaN	NaN	NaN	5.0	6.0

In [230]:

```
# we can use keys to concatenate along axis=1, here the keys becomes the DF's columns
pd.concat([ser1, ser2, ser3], axis=1, keys=['1', '2', '3'], sort=True)
```

Out[230]:

	1	2	3
Α	0.0	NaN	NaN
В	1.0	NaN	NaN
С	NaN	2.0	NaN
D	NaN	3.0	NaN
E	NaN	4.0	NaN
F	NaN	NaN	5.0
G	NaN	NaN	6.0

Let's see the same logic on DataFrame objects

In [251]:

```
df_li
    raga anuraga
     10
               20
     30
               40
c
               60
     50
df ri
    braga
          sraga
      70
             80
      90
            100
c
     110
            120
     130
            140
```

In [254]:

```
# Join=inner combines only the common columns along column index
pd.concat([df_li, df_ri], axis=1, keys=['one', 'two'], sort=True, join='inner')
```

Out[254]:

	one		two		
	raga	anuraga	braga	sraga	
С	30	40	90	100	
е	50	60	130	140	

In [253]:

```
# join='outer' takes union of the index values to combine the DF's
pd.concat([df_li, df_ri], axis=1, keys=['1', '2', '3'], sort=True, join='outer') # noti
ce that the index values are sorted
```

Out[253]:

1 2

	raga	anuraga	braga	sraga
а	10.0	20.0	NaN	NaN
b	NaN	NaN	70.0	80.0
С	30.0	40.0	90.0	100.0
d	NaN	NaN	110.0	120.0
е	50.0	60.0	130.0	140.0

In [255]:

```
# we can pass dictionary keys for the index levels,
pd.concat({'level1':df_li, 'level2':df_ri}, sort=True, join='outer') # along axis=0
```

Out[255]:

		anuraga	braga	raga	sraga
level1	а	20.0	NaN	10.0	NaN
	С	40.0	NaN	30.0	NaN
	е	60.0	NaN	50.0	NaN
level2	b	NaN	70.0	NaN	80.0
	С	NaN	90.0	NaN	100.0
	d	NaN	110.0	NaN	120.0
	е	NaN	130.0	NaN	140.0

In [256]:

Out[256]:

	level1		level2	
	raga	anuraga	braga	sraga
а	10.0	20.0	NaN	NaN
b	NaN	NaN	70.0	80.0
С	30.0	40.0	90.0	100.0
d	NaN	NaN	110.0	120.0
е	50.0	60.0	130.0	140.0

In [257]:

```
# we can also name the created column axis levels using names argument
pd.concat({'level1':df_li, 'level2':df_ri}, sort=True, join='outer', axis=1, names=['fi
rst', 'second'])
```

Out[257]:

first	level1	level2		
second	raga	anuraga	braga	sraga
а	10.0	20.0	NaN	NaN
b	NaN	NaN	70.0	80.0
С	30.0	40.0	90.0	100.0
d	NaN	NaN	110.0	120.0
е	50.0	60.0	130.0	140.0

In [258]:

```
# what happens if the DF's doesn't have any row index levels or if row index does not c
ontain any relevant data
df_li = pd.DataFrame([[10, 20], [30, 40], [50, 60]],
                      columns=['raga', 'anuraga'])
df_ri = pd.DataFrame([[70, 80], [90, 100], [110, 120], [130, 140]],
                       columns=['braga', 'sraga'])
print('df_li\n', df_li)
print()
print('df_ri\n', df_ri)
df li
    raga anuraga
0
     10
              20
              40
1
     30
              60
2
     50
df ri
    braga
          sraga
0
      70
             80
1
      90
            100
2
     110
            120
            140
3
     130
```

In [262]:

```
# in that case we pass 'ignore_index=True' argument
pd.concat([df_li, df_ri], axis=0, join='outer', ignore_index=True, sort=True)
```

Out[262]:

	anuraga	braga	raga	sraga
0	20.0	NaN	10.0	NaN
1	40.0	NaN	30.0	NaN
2	60.0	NaN	50.0	NaN
3	NaN	70.0	NaN	80.0
4	NaN	90.0	NaN	100.0
5	NaN	110.0	NaN	120.0
6	NaN	130.0	NaN	140.0

```
In [264]:
```

```
pd.concat([df_li, df_ri], axis=1, join='outer', ignore_index=True, sort=True)
```

Out[264]:

```
    0
    1
    2
    3

    0
    10.0
    20.0
    70
    80

    1
    30.0
    40.0
    90
    100

    2
    50.0
    60.0
    110
    120

    3
    NAN
    NAN
    130
    140
```

In [265]:

```
# You can easily work on remaining arguments of the concat function
```

How To Combine Data With Overlap?

combine_first

Docstring: Combine two DataFrame objects and default to non-null values in frame calling the method. Result index columns will be the union of the respective indexes and columns

```
In [ ]:
```

```
pd.DataFrame.combine_first?
```

In [270]:

```
df1 = pd.DataFrame([[1, np.nan]])
df2 = pd.DataFrame([[3, 4]])
print('df1:\n', df1)
print('df2:\n', df2)
```

df1:

0 : 0 1 NaN df2:

0 1

0 3 4

In [271]:

```
df1.combine_first(df2)
```

Out[271]:

```
0 1
0 1 4.0
```

In [276]:

```
# There is one more function 'combine': Add two DataFrame objects and do not propagate NaN values, so if for a (column, time)
# one frame is missing a value, it will default to the other frame's value (which might be NaN as well)
pd.DataFrame.combine?
```

In [279]:

```
df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})
df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
print('df1:\n', df1)
print('df2:\n', df2)
```

df1:

A B 0 0 4 1 0 4

df2:

A B 0 1 3

1 1 3

In [280]:

```
df1.combine(df2, lambda s1, s2: s1 if s1.sum() < s2.sum() else s2)
```

Out[280]:

АВ

0 3

1 0 3

In [281]:

if you observe the combine_first method which works like an if-else function
where as combine method takes a function with non-null values and add two DF's based
on the function passed

How To Reshape and Pivot Pandas Data?

In [282]:

Pandas provides many ways to rearrange the Tabular Data and is known as 'reshape or p ivot' operation

Reshaping The Hierarchically indexed DataFrame's

In [283]:

```
# 'stack' and 'unstack' methods are the two very important method to do this operation
# Docstring: Stack the prescribed level(s) from columns to index.
# Return a reshaped DataFrame or Series having a multi-level index with one or more new
inner-most levels compared to the
# current DataFrame
pd.DataFrame.stack?
```

In [284]:

Out[284]:

number	one	two	three
state			
raga	0	1	2
mmraga	3	4	5

In [286]:

```
# calling stack on this method pivotes columns into rows
df_s.stack()
```

Out[286]:

state	number	
raga	one	0
	two	1
	three	2
mmraga	one	3
	two	4
	three	5
dtype:	int32	

In [288]:

```
# Docstring: Pivot a level of the (necessarily hierarchical) index labels, returning a
   DataFrame having a new level of
# column labels whose inner-most level consists of the pivoted index labels. If the ind
ex is not a MultiIndex, the output
# will be a Series (the analogue of stack when the columns are not a MultiIndex). The le
vel involved will automatically get sorted.
pd.DataFrame.unstack?
```

In [287]:

calling unstack on stacked object will reverse the operation of stack
df_s.stack().unstack() # the default level=-1

Out[287]:

number	one	two	three
state			
raga	0	1	2
mmraga	3	4	5

In [289]:

The default unstack is on the innermost level, we can unstack on different level by p assing level name or number df_s.stack().unstack(level=0) # the column index is considered to unstack the data

Out[289]:

state	raga	mmraga
number		
one	0	3
two	1	4
three	2	5

In [290]:

we can also name instead
df_s.stack().unstack('state')

Out[290]:

state	raga	mmraga
number		
one	0	3
two	1	4
three	2	5

In [300]:

```
# suppose if the subgroups objects ara not having the same values in all the index leve
ls, then missing values will be introduced.
s1 = pd.Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'], name='one')
s2 = pd.Series([4, 5, 6], index=['c', 'd', 'e'], name='two')
data = pd.concat([s1, s2], keys= ['one', 'two'])
data
```

Out[300]:

```
one
           0
     а
           1
      b
           2
     C
           3
      d
           4
two
     C
           5
     d
           6
     e
dtype: int64
```

In [301]:

```
data.unstack()
```

Out[301]:

```
        a
        b
        c
        d
        e

        one
        0.0
        1.0
        2.0
        3.0
        NaN

        two
        NaN
        NaN
        4.0
        5.0
        6.0
```

In [302]:

stack method on this removes the missing data and revert back to the original shape
data.unstack().stack()

Out[302]:

```
one
    a
           0.0
           1.0
     b
           2.0
     C
     d
           3.0
two
     c
           4.0
           5.0
     d
           6.0
dtype: float64
```

In [303]:

we can pass 'dropna=False' to hold the missing values in the stack method if needed
data.unstack().stack(dropna=False)

Out[303]:

one a 0.0 b 1.0 c 2.0 d 3.0 NaN e two NaN а NaN b 4.0 C d 5.0 e 6.0 dtype: float64

In [304]:

Important to remember: stack()has 'dropna=True' by default where as unstack() has fil $l_value=None$ by default

In [315]:

When you unstack the DF's index the unstacked level will the lowest level in the returning object

In [311]:

```
df_s.stack().unstack('state')
```

Out[311]:

state	raga	mmraga
number		
one	0	3
two	1	4
three	2	5

In []: