Scaling

Guillaume Lozenguez

@imt-lille-douai.fr

IMT Lille Douai École Mines-Télécom IMT-Université de Lille

Decision Making

Is about controlling linked variables:

- ► Learning correlation
- Optimize trajectories

Matematically:

- Manipulate Cartesian Product (Set Theory)
- Estimate functions
- Exploring large graph

Dealing with large State Space

Reduce the state space

Work locally

A combination of these 2 solutions

A Complete Decision Architecture

A Complete Decision Architecture

State reduction (or identification)

Approach:

Distance based approach:

- Principal Component Analysis (PCA) (+ Discretization)
- Clustering: k-means, Simple Vector Machine (SVM)

Discrete approach:

Decision-Tree (ID3 algorithm family)

Goals:

Macro-States merge states with supposed similar values.

Deep-Learning-based Decision Architecture

Requirement:

Labeled data with valid *values*...

Action refinement at run time

Local computation of the Values and the policy from current state.

- Constrained Value Iteration (from the current state, with a limited horizon)
- Monte Carlo Approach (based on deep, but random trajectories)

Requirement:

Simulation: a model of the controlled system

The Curse of Dimensionality in MDP

Fonction de Transition:

Factored Model:

Factored Transition function:

Factored Model:

Factored Transition function:

Bayesian Network:

Model complex system from local dependencies

Example: Rain, Sprinkler and Grass Wet:

Bayesian Network:

Efficient in temporal prediction

Dynamic Bayesian Network:

Factored representation of variable evolution

Example: 421

Transition in two steps, but only the first isstokastic.

Example: Zombie Dice

Eat maximum brains

without dying (3 damages)

- ▶ Players are zombies.
- ► They try to catch humans three at a time.
- Humans are dice with probability to fight back.

Example: Zombie Dice

Matrice complète

Example: Zombie Dice

Dynamic Bayesian Network:

Model-Based Learning:

It's more about estimate variable correlations than transition probabilities.

- Determines variable dependencies (ie. Bayesian Network)
- Learn conditional probabilities (Gaussian Noise, Poisson's law)
- Validate the model regarding it entropy

Then decide from exploring limited search spaces

- ► Limited horizon Value or Policy Iteration
- random trajectories: Algorythm Monte-Carlo

To conclude

Conclusion

- Problem: Control Dynamic System
- Hypothesis: Markov Decision Process (but unknown)
- Reinforcement Learning:
 - Model-free: QLearning
 - Model-based: Bellman Values function
- ► The root difficulty: the curse of dimensionality
 - Use factored model
- The solution requires to:
 - identify the model structure
 - have a lot of data
- Optimasation from an iterative/incremental process