PRINCIPLES OF ANALYSIS SOLUTIONS TO PROBLEM SET E

PAUL L. BAILEY

Problem 1 (Exercise 4.25). Let $f:(a,b)\to\mathbb{R}$ be differentiable on (a,b). Suppose that there exists M > 0 such that for every $x \in (a, b)$, we have $|f'(x)| \leq M$.

- (a) Show that if $x, y \in (a, b)$, then $\left| \frac{f(x) f(y)}{x y} \right| \le M$. (b) Show that f is uniformly continuous on (a, b).

Solution. Let $x, y \in (a, b)$, with x > x. Then by the Mean Value Theorem, there exists $c \in [y, x]$ such that $f'(c) = \frac{f(x) - f(y)}{x - y}$. Therefore

$$\left|\frac{f(x) - f(y)}{x - y}\right| = |f'(c)| \le M.$$

This proves part (a).

Now let $\epsilon > 0$. Set $\delta = \frac{\epsilon}{M}$. Let $x, y \in (a, b)$ such that $|x - y| < \delta$. Then

$$|f(x) - f(y)| \le (x - y)M \le \delta M = \epsilon.$$

Problem 2 (Exercise 4.35). Let $f(x) = x^3 + 2x^2 - x + 1$. Find an equation for the line tangent to the graph of f^{-1} at the point (3,1).

Solution. We know that $f'(x) = 3x^2 + 4x - 1$. The roots of this quadratic function are $\frac{-2\pm\sqrt{7}}{3}$. Since $\sqrt{7}$ < 3, the larger root is less that $\frac{1}{3}$. Therefore f'(x) is nonzero on $(\frac{1}{3}, \infty)$, and f is invertible on this interval.

Let f^{-1} denote the inverse of f on $(\frac{1}{3}, \infty)$. Now f(1) = 3, so (3,1) is a point on the graph of f^{-1} . By the inverse function theorem,

$$(f^{-1})'(3) = \frac{1}{f'(1)} = \frac{1}{6},$$

so this is the slope of the tangent line. Thus the tangent line is of the form $y = \frac{1}{6}x + b$. Since (3, 1) is on the line, we have $1 = \frac{1}{6} \cdot 3 + b$, so $b = \frac{1}{2}$, and the tangent line is

$$y = \frac{1}{6}x + \frac{1}{2}.$$

Observation 1 (Alternate Definition). Let $f: \mathbb{R} \to \mathbb{R}$ and let $x_0 \in \mathbb{R}$. Define

$$Q: \mathbb{R} \setminus \{0\} \to \mathbb{R}$$
 by $Q(h) = \frac{f(x_0 + h) - f(x_0)}{h}$.

Then f is differentiable at x_0 if and only if $\lim_{h\to 0} Q(h)$ exists, in which case $f'(x_0) = \lim_{h\to 0} Q(h)$.

Problem 3 (Exercise 4.39). Let $f: \mathbb{R} \to \mathbb{R}$ be a function satisfying

- (1) f(0) = 1;
- (2) f is differentiable at 0 and f'(0) = 1;
- (3) f(x+y) = f(x)f(y).

Show that f is differentiable on \mathbb{R} and that f'(x) = f(x) for every $x \in \mathbb{R}$.

Solution. Let $x \in \mathbb{R}$. Then

$$\frac{f(x+h)-f(x)}{h} = \frac{f(x)f(h)-f(x)}{h} = f(x)\Big(\frac{f(h)-1}{h}\Big).$$

Taking the limit as h goes to 0, and noting that f(x) is a constant with respect to h, yields

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f(x) \lim_{h \to 0} \frac{f(h) - 1}{h}.$$

Since f is differentiable at zero, this limit exists, and

$$f'(x) = f(x)f'(0) = f(x).$$

Definition 1. A function $f:[-b,b]\to\mathbb{R}$ is called *odd* if f(x)=-f(-x) for every $x\in[-b,b]$.

Problem 4 (Exercise 5.14). Let $f:[-b,b]\to\mathbb{R}$ be an odd function which is integrable on [-b,b]. Show that $\int_{-b}^{b}f\,dx=0$.

Proof. Say that a partition P of [-b,b] is symmetric if $0 \in P$ and $x \in P \Rightarrow -x \in P$. Suppose that P is symmetric; the number of points in P is odd, so enumerate them $-b = x_0 < x_1 < \dots < x_m = 0 < x_{m+1} < \dots < x_n = x_{2m} = b$. Under this enumeration, $-x_i = x_{2m-i}$.

Let x_{i-1} and x_i be adjacent points in $[-b, b] \cap P$. Let $c_i \in [x_{i-1}, x_i]$ such that $f(c_i) = M_f(P, i)$. Then $-f(-c_i) = m_f(P, 2m - i)$, and

$$U_f(P) = \sum_{i=0}^n f(c_i)(x_i - x_{i-1})$$

$$= \sum_{i=0}^n -m_f(P, 2m - i)(x_i - x_{i-1})$$

$$= \sum_{i=0}^n -m_f(P, 2m - i)(x_{2m-i} - x_{2m})$$

$$= -L_f(P).$$

Let $\epsilon > 0$, and let P_0 be a partition of [-b, b] such that

$$U_f(P_0) - L_f(P_0) < \epsilon.$$

Let $P_1 = \{-x \mid x \in P\}$, and let $P = P_0 \cup P_1$. Then P is a partition of [-b, b], and P is a refinement of P_0 , so $U_f(P) - L_f(P) < \epsilon$. Combine this with the fact that $U_f(P) = -L_f(P)$ to get $U_f(P) < \frac{\epsilon}{2}$. Now

$$-\frac{\epsilon}{2} < -U_f(P) = L_f(P) \le \int_{-b}^{b} f \, dx \le U_f(P) \le \frac{\epsilon}{2}.$$

That is, for every $\epsilon > 0$,

$$\left| \int_{-b}^{b} f \, dx \right| < \epsilon.$$

Thus $\int_{-b}^{b} f dx = 0$.

Problem 5 (Exercise 5.27). Let $f, g : [a, b] \to \mathbb{R}$ be integrable on [a, b]. Define $h : [a, b] \to \mathbb{R}$ by $h(x) = \max\{f(x), g(x)\}$. Show that h is integrable on [a, b].

Lemma 1. Let $f:[a,b] \to \mathbb{R}$ be integrable. Define a function $f^+:D\to \mathbb{R}$ by

$$f^+(x) = \begin{cases} f(x) & \text{if } f(x) \ge 0; \\ 0 & \text{otherwise.} \end{cases}$$

Then $f^+:[a,b]\to\mathbb{R}$ is also integrable.

Proof of Lemma. Let $\epsilon>0$ and let $P=\{x_0,\ldots,x_n\}$ be a partition of [a,b] such that $U_f(P)-L_f(P)<\epsilon$. Then for every i we have $M_f(P,i)\geq M_{f^+}(P,i)$, and $m_f(P,i)\leq m_{f^+}(P,i)$; this implies that $M_{f^+}(P,i)-m_{f^+}(P,i)\leq M_f(P,i)-m_{f^+}(P,i)$. Thus

$$U_{f^{+}}(P) - L_{f^{+}}(P) = \sum_{i=1}^{n} (M_{f^{+}}(P, i) - m_{f^{+}}(P, i))(x_{i} - x_{i-1})$$

$$\leq \sum_{i=1}^{n} (M_{f}(P, i) - m_{f}(P, i))(x_{i} - x_{i-1})$$

$$= U_{f}(P) - L_{f}(P)$$

$$< \epsilon.$$

This shows that f^+ is integrable.

Solution to Problem. Note that $h = (f - g)^+ + g$. Since f and g are integrable, so is f - g. Thus $(f - g)^+$ is integrable, and so is $h = (f - g)^+ + g$.

Department of Mathematics and CSCI, Southern Arkansas University $\emph{E-mail address}$: plbailey@saumag.edu