

VIDEC-33

Facebook 7 -> code storywith MIK
Twith -> cswith MIK

-> codestory with MIK

3068. Find the Maximum Sum of Node Values

Alice wants the sum of values of tree nodes to be maximum, for which Alice can perform the following operation any number of times (including zero) on the tree:

Choose any edge (u) (v) connecting the nodes u and v, and update their values as follows:
 nums [u] = nums [u] XOR k
 nums [v] = nums [v] XOR k

Return the maximum possible sum of the values Alice can achieve by performing the operation any number of times.

Thought Process

ee We can pick any pain of nodes and apply XOR to them?

nums =
$$\{1, 2, 1\}$$

$$\downarrow^{k} \qquad \downarrow^{k} \qquad \Rightarrow 2+2+2=6$$
2

nums =
$$\begin{cases} 2, 1, 1 \\ 2, 1, 1 \end{cases} = 2+2+2=6$$

2+2+1=5

Spreedy.

$$\int C \rightarrow O(n)$$

$$\int C = O(1)$$

Another Similar Approach

 $| \frac{1}{2} | \frac{$

$$num_{s} = \begin{cases} 1, & 1 \\ 1, & 1 \end{cases}$$

$$new_num_{s} = \begin{cases} 2, & 2 \end{cases}$$

$$fayda = \begin{cases} 1, & 1 \end{cases}$$

$$fayda = \begin{cases} 1, & 1 \end{cases}$$

"This example is taken from lee-toole"

nums =
$$\{1, 3, 4, 0, 1, 2, 0\}$$
, K= 3

$$new-nums = \{2, 0, 7, 3, 2, 1, 3\}$$

danda = 16 (2) a

87 m - [1] -3 3 3 1, -1, 3 9

