Se $A = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -4 \end{bmatrix}$ Allows
Allora:
La risposta corretta è: $K_2(A)=3.$ Un problema definito dalla matrice A è mal condizionato se:
 ○ a. $K(A)$ è nullo. ⑤ b. $K(A)$ è grande. ○ c. $K(A)$ è negativo.
La risposta corretta è: $K(A)$ è grande.
Se il vettore $v=(10^6,5)^T$ è approssimato dal vettore $\tilde{v}=(999998,2)^T$, allora in $ \cdot _{\infty}$ l'errore relativo tra v e \tilde{v} è: a. $2\cdot 10^{-6}$. b. Nessuna delle precedenti. c. $3\cdot 10^{-6}$.
La risposta corretta è: $3\cdot 10^{-6}$. Sia $Ax=b$ un sistema lineare. Quale delle seguenti affermazioni è corretta: $(\Delta x=\text{errore su }x,\ \Delta b=\text{errore su }b)$
 a. Nessuna delle precedenti. b. $\frac{ \Delta b }{ b } \le A A^{-1} \frac{ \Delta x }{ x }$ c. $\frac{ x }{ \Delta x } \le A A^{-1} \frac{ b }{ \Delta b }$ ★ La risposta corretta è: Nessuna delle precedenti.
Sia $\Pi(x)$ il polinomio che interpola i punti $(x_i,f(x_i))$, con $i=0,\dots,n.$ Vale:
\bigcirc a. Se $n o\infty$ dell'errore $\Pi(x)-f(x) o 0$. \bigcirc b. Nessuna delle precedenti. \checkmark \bigcirc c. Se $n o\infty$ dell'errore $\Pi(x)-f(x) o\infty$. La risposta corretta è: Nessuna delle precedenti.
Le funzioni di Lagrange $\psi_k(x)$ per costruire il polinomio di interpolazione di $n+1$ punti sono:
 ○ a. Nessuna delle precedenti. ○ b. Polinomi di grado ≥ n. ○ c. Polinomi lineari a tratti. La risposta corretta è: Nessuna delle precedenti.
Sia $f:\mathbb{R}^n o\mathbb{R}$ funzione differenziabile strettamente convessa . Vale: $ \bullet \ \ \text{a.} \ \ \text{Se}\ \nabla f(x^*)=0 \ \ \text{allora}\ x^*\ \ \text{\`e}\ \text{un punto di minimo o massimo} $
O b. Se $\nabla f(x^*)=0$ allora x^* è un punto di minimo globale. O c. Se $\nabla f(x^*)=0$ allora x^* è un punto di massimo globale. La risposta corretta è: Se $\nabla f(x^*)=0$ allora x^* è un punto di minimo globale.
Sia $f:\mathbb{R}^n o\mathbb{R}$ differenziabile. Vale: $igodesign$ a. Se x^* è un minimo globale per f allora $ abla f(x^*)=0$. $ullet$ b. Nessuna delle precedenti.
\bigcirc c. Se $ abla f(x^*)=0$ allora x^* è un minimo locale per f . La risposta corretta è: Se x^* è un minimo globale per f allora $ abla f(x^*)=0$.
La risposta corretta è: Se x^* è un minimo globale per f allora $\nabla f(x^*)=0$. Se A è una matrice $n imes n$ definita positiva, allora: $igcirc$ a. A è simmetrica.
$lacktriangle$ b. Gli autovalori di A sono tutti positivi. \checkmark c. Gli autovalori di A sono tutti non negativi.
La risposta corretta è: Gli autovalori di A sono tutti positivi. Se U è una matrice $n imes n$ ortogonale allora:
 a. U è simmetrica. b. Nessuna delle precedenti. ✓ c. U è definita positiva.
La risposta corretta è: Nessuna delle precedenti. Sia
$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$ Allora:
 ○ a. La norma-2 di A è $A _2 = 2$. ○ b. La norma-2 di A è $A _2 = 2$. ○ c. La norma-2 di A è $A _2 = 4$.
La risposta corretta è: La norma-2 di A è $ A _2=4$. Se $\begin{bmatrix}1&0&0&0\\0&3&0&0\end{bmatrix}$
$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
 a. La norma-2 di A è $A _2=3$. ✓ b. La norma-2 di A è $A _2=0$. c. La norma-2 di A è $A _2=1$. La risposta corretta è: La norma-2 di A è $A _2=3$.
Siano $x=3.89167$ e $y=0.4567$. Quanto vale e $z=x+y$ in $\mathcal{F}(10,5,-5,5)$? \bigcirc a. 0.43473×10^0 . \bigcirc b. 4.3483×10 . \bigcirc c. 0.43473×10^1 . \checkmark
La risposta corretta è: 0.43473×10^1 . La precisione macchina ϵ puo' essere definita come:
• a. Il più piccolo numero ϵ tale che $fl(1+\epsilon)>1$. • b. Il più piccolo numero ϵ tale che $fl(1+\epsilon)=1$. • c. Nessuna delle precedenti.
La risposta corretta è: Il più piccolo numero ϵ tale che $fl(1+\epsilon)>1$. Sia $f:\mathbb{R}^2\to\mathbb{R}$ definita come $f(x_1,x_2)=x_1^2+x_2^2$, scelta come iterata iniziale del metodo del gradiente $x^{(0)}=(1,1)^T$ e $\alpha=1/2$, allora:
\bigcirc a. $x^{(1)}=(2,2)^T.$ \bigcirc b. $x^{(1)}=(3/2,3/2)^T.$ \bigcirc c. $x^{(1)}=(0,0)^T.$
La risposta corretta è: $x^{(1)}=(0,0)^T.$ Il metodo di discesa del gradiente:
 a. Se α è scelto opportunamente, f ∈ C¹, per ogni x₀, converge sempre ad un punto stazionario di f(x). b. Converge sempre ad un minimo di f(x). ★ c. Se α è scelto opportunamente, f ∈ C¹, per x₀, converge sempre ad un minimo di f(x). La risposta corretta è: Se α è scelto opportunamente, f ∈ C¹, per ogni x₀,
Converge sempre ad un punto stazionario di $f(x)$. Un problema lineare ai minimi quadrati $min Ax-b _2^2$, con A matrice $m\times n$ con $m>n$, ha una e una sola soluzione se:
\bigcirc a. $rg(A)=m$. \bigcirc b. $rg(A)=n$. \checkmark \bigcirc c. Sempre.
La risposta corretta è: $rg(A)=n$. Sia A matrice $m imes n$ con $(m>n)$ e $rg(A)=k < n$, allora il problema lineare ai minimi quadrati $min Ax-b _2^2$:
 a. Ha una e una sola soluzione. b. Ha infinite soluzioni. ✓ c. Non ammette soluzioni.
La risposta corretta è: Ha infinite soluzioni.
a. Nessuna delle precedenti. b. Esiste solo se A $m \times n$ è non singolare \mathbf{x} c. Puo' non esistere anche se A $m \times n$ non singolare. La risposta corretta è: Puo' non esistere anche se A $m \times n$ non singolare.
La fattorizzazione di Gauss con pivoting $(PA=LR)$ esiste: $lacktriangle$ a. Per ogni matrice $A\ n imes n$ non singolare. $lacktriangle$
\bigcirc b. Nessuna delle precedenti. \bigcirc c. Per ogni matrice A $n imes n$.
La risposta corretta è: Per ogni matrice A $n \times n$ non singolare. Sia $A = \begin{bmatrix} 4 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}_{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
$A = \begin{bmatrix} 4 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix} b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ a. Il metodo di Gauss-Seidel e il metodo di Jacobi convergono. b. Il metodo di Gauss-Seidel e il metodo di Jacobi non convergono.
C. Il metodo di Jacobi è convergente quello di Gauss-Seidel no. La risposta corretta è: Il metodo di Gauss-Seidel e il metodo di Jacobi convergono.
 La decomposizione in valori singolari della matrice A esiste : a. Solo se la matrice è quadrata. b. Solo se la matrice ha rango massimo. c. Sempre. ✓
La risposta corretta è: Sempre.
Siano $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \ldots \geq \sigma_n$ i valori singolari di A allora :
$igodeligal$ a. $K_2(A)=rac{\sigma_1}{\sigma_n} ightharpoonup $ O b. $K_2(A)=rac{\sigma_n}{\sigma_1}$ O c. Nessuna delle precedenti.