COMPUTER SCIENCE & MATHEMATICS Teknik Pengintegralan

Fakultas Ilmu Komputer, Universitas Indonesia

TABLE OF CONTENTS

O1 Substitusi
Sederhana

Pengintegralan

02 Bagian demi

Bagian

Integral Trigonometri 04

Trigonometric Substitution

05

Partial Integration

03

Sebelumnya ...

Pengenalan Integral Sebagai Anti-Turunan

Notasi:

$$\int f(x)dx = F(x) + C$$
 dengan kata lain $\int dF(x) = F(x) + C$

dengan f(x) = integran

Sebelumnya ...

Anti-derivative (Integral Tak Tentu)

Kumpulan derivative:

f(x)	С	x ⁿ	sin x	cos x	ln x	e ^x
f(x) dx	0	nx ⁿ⁻¹	cos x	-sin x	1/x	e ^x

Aturan yang dapat diaplikasikan pada anti-derivative:

1.
$$\int kf(x)dx = k \int f(x)dx$$

2.
$$\int (f(x)\pm g(x))\,dx = \int f(x)dx \pm \int g(x)dx$$

Sebelumnya ...

Anti-derivative (Integral Tak Tentu)

Kumpulan fungsi, derivative, dan anti-derivative:

f(x)	С	x ⁿ	sin x	cos x	In x	e ^x
f(x) dx	0	nx ⁿ⁻¹	cos x	-sin x	1/x	e ^x
∫ f(x) dx	С	x ⁿ	sin x	cos x	In x	e ^x

*Contoh teorema anti-derivative lainnya:

$$1. \int a^x dx \, = \, \frac{a^x}{\ln a} + C$$

4.
$$\int x^r dx = \frac{x^{r+1}}{r+1} + C$$

Power Rule

$$2. \int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1}\left(\frac{u}{a}\right) + C$$

5.
$$\int [g(x)]^r g'(x) dx = \frac{[g(x)]^{r+1}}{r+1} + C$$
 Generalized Power Rule

3.
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \left(\frac{u}{a} \right) + C$$

1. Substitusi Sederhana

Teorema Substitusi Sederhana

Jika t = g(x),

$$\int f(g(x))g'(x)dx \ = \ \int f(t)dt \ = \ F(t)+C = F(g(x))+C$$

$$1. \quad \int -\frac{x}{\sin^2{(x^2)}} dx \ =$$

3.
$$\int \frac{e^x}{4 + 9e^{2x}} dx =$$

$$2. \int \frac{e^{1/x}}{x^2} dx =$$

4.
$$\int \sin z \cos z \sqrt{1 + \sin^2 z} \, dz =$$

2. Pengintegralan Bagian demi Bagian

Integral Parsial

Dari aturan perkalian pada derivative [$(fg)^2 = fg^2 + gf^2$], jika kedua sisi kita integralkan, maka:

$$fg = \int f'g + \int fg' ~loop fg - \int f'g = \int fg'$$

1.
$$\int \left(\ln x \sec x \tan x + \frac{\sec x}{x} \right) dx =$$

2.
$$\int -2 \ln x \cos x \sin x dx =$$

Substitusi + Aturan Trigonometri = Integral Trigonometri

Bentuk umum:

1.
$$\int \sin^m(x) \, \cos^n(x) dx$$

- a. m atau n ganjil
 - i. $(\cos x)' = -\sin x \, dx \, atau \, (\sin x)' = \cos x \, dx; \, dan$
 - ii. $\cos^2 x = 1 \sin^2 x$
- b. m dan n genap

i.
$$\cos^2 x = (\cos(2x) + 1) / 2$$
; $\sin^2 x = (1 - \cos(2x)) / 2$

1.
$$\int \sin^5{(x)} dx =$$

Substitusi + Aturan Trigonometri = Integral Trigonometri

Bentuk umum:

2.
$$\int \sec^m(x) \tan^n(x) dx$$
; $\int \csc^m(x) \cot^n(x) dx$

- a. m genap
 - i. $(\tan x)' = \sec^2 x \, dx$, $\sec^2 x = 1 + \tan^2 x \, \frac{\cot x}{\cot x} = -\csc^2 x \, dx$, $\csc^2 x = 1 + \cot^2 x$
- b. m dan n ganjil
 - i. $(\sec x)' = \sec x \tan x dx$
- c. m ganjil dan n genap
 - i. bawa ke sec atau $csc \rightarrow diikuti rumus recursive untuk sec atau <math>csc$

1.
$$\int \csc^3(x) dx =$$

$$1. \int \frac{\sin^2 x}{\sec^2 x} dx =$$

$$2. \int \tan^5 x \sec x dx =$$

Contoh Soal

1.
$$\int \frac{\sin^2 x}{\sec^2 x} dx =$$

Bentuk $\int \sin^m{(x)} \cos^n{(x)} dx$, case: m dan n genap

$$2. \int \tan^5 x \sec x dx =$$

Bentuk $\int \sec^m{(x)} \tan^n{(x)} dx$, case: m dan n ganjil

$$1. \int \frac{\sin^2 x}{\sec^2 x} dx = \int \sin^2 x \cos^2 x dx = \int (1 - \cos^2 x) \cos^2 x dx = \int (\cos^2 x - \cos^4 x) dx$$

$$= \int \cos^2 x dx - \int (\cos^2 x)^2 dx = \int \left(\frac{1 + \cos 2x}{2}\right) dx - \int \left(\frac{1 + \cos 2x}{2}\right)^2 dx$$

$$= \frac{1}{2} \int (1 + \cos 2x) dx - \frac{1}{4} \int (1 + \cos 2x)^2 dx = \frac{1}{2} \int (1 + \cos 2x) dx - \frac{1}{4} \int (1 + 2\cos 2x + \cos^2 2x) dx$$

$$= \left(\frac{1}{2} - \frac{1}{4}\right) x + \left(\frac{1}{2} - \frac{2}{4}\right) \int \cos 2x dx - \frac{1}{4} \int \cos^2 2x dx = \frac{1}{4} \left(x - \int \cos^2 2x dx\right)$$

$$= \frac{1}{4} \left(x - \int \left(\frac{1 + \cos 2(2x)}{2}\right) dx\right) = \frac{1}{4} x - \frac{1}{8} \left(x + \int \cos(4x) dx\right)$$

$$= \frac{1}{8} x - \frac{1}{8} \left(\frac{1}{4} \sin(4x)\right) = \frac{1}{8} x - \frac{1}{32} \sin 4x + C$$

2.
$$\int \tan^5 x \sec x dx = \int \tan^4 x (\tan x \sec x dx) = \int (\sec^2 x - 1)^2 d(\sec x)$$

= $\int (\sec^4 x - 2\sec^2 x + 1) d(\sec x)$
= $\frac{1}{5} \sec^5 x - \frac{2}{3} \sec^3 x + \sec x + C$

Substitusi + Aturan Trigonometri = Integral Trigonometri

Bentuk umum:

3.
$$\int \sin(Ax)\cos(Bx) dx = \frac{1}{2}\int (\sin((A+B)x) + \sin((A-B)x)) dx;$$
$$\int \sin(Ax)\sin(Bx) dx = \frac{1}{2}\int (\cos((A-B)x) - \cos((A+B)x)) dx;$$
$$\int \cos(Ax)\cos(Bx) dx = \frac{1}{2}\int (\cos((A+B)x) + \cos((A-B)x)) dx$$
a.
$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin\beta$$
b.
$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

1.
$$\int \cos^2 3x \sin 5x dx =$$

Substitusi + Aturan Trigonometri = Integral Trigonometri

Bentuk umum:

3.
$$\int \sin(Ax)\cos(Bx) dx = \frac{1}{2} \int (\sin((A+B)x) + \sin((A-B)x)) dx;$$
$$\int \sin(Ax)\sin(Bx) dx = \frac{1}{2} \int (\cos((A-B)x) - \cos((A+B)x)) dx;$$
$$\int \cos(Ax)\cos(Bx) dx = \frac{1}{2} \int (\cos((A+B)x) + \cos((A-B)x)) dx$$
a.
$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$
b.
$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

1.
$$\int \cos^2 3x \sin 5x dx = \int \left(\frac{1+\cos 2(3x)}{2}\right) \sin 5x dx$$
 atau

$$\int \cos^2 3x \sin 5x dx = \int \cos 3x igg(rac{1}{2}(\sin 8x + \sin \left(-2x
ight))igg) dx = rac{1}{2} \int \cos 3x (\sin 8x - \sin 2x) dx$$

4. Substitusi Trigonometri

Teorema Substitusi Trigonometri

- 1. Integran melibatkan bentuk $\sqrt[n]{ax+b}$, cukup lakukan substitusi u = $\sqrt[n]{ax+b}$
- 2. Integran melibatkan bentuk $\sqrt{a^2-x^2}$, $\sqrt{a^2+x^2}$, $\sqrt{x^2-a^2}$ Asumsikan a positif, maka dapat dilakukan substitusi:

Akar	Substitusi	Pembatasan pada t
$\sqrt{a^2-x^2}$	x = a sin θ	$-\pi/2 \le \theta \le \pi/2$
$\sqrt{a^2+x^2}$	x = a tan θ	$-\pi/2 < \theta < \pi/2$
$\sqrt{x^2-a^2}$	x = a sec θ	$0 \le \theta \le \pi, \theta \ne \pi/2$

4. Substitusi Trigonometri

Latihan Soal

1.
$$\int \frac{dx}{x - \sqrt{x}} =$$

$$2. \quad \int \sqrt{x^2 - 6x + 6} \, dx =$$

$$3. \quad \int \frac{\sqrt{7-6x-x^2}}{x+3} \, dx =$$

$$4. \quad \int \frac{dx}{\sqrt{x^2 - 8x + 20}} =$$

Akar	Substitusi
$\sqrt{a^2-x^2}$	x = a sin θ
$\sqrt{a^2+x^2}$	x = a tan θ
$\sqrt{x^2-a^2}$	$x = a \sec \theta$

5. Integral Fungsi Rasional

Dekomposisi Pecahan Parsial

Fungsi rasional r(x)=(p(x))/(q(x)), disebut proper jika derajat polinomial p(x) < derajatpolinomial q(x).

Untuk menyelesaikan $\int [p(x)/(q(x))] dx$ digunakan cara berikut:

Jika akar-akar q(x) semua riil dan berbeda, misalkan q(x) =
$$(x-x_1)$$
... $(x-x_k)$ o maka $\frac{p(x)}{q(x)} = \sum_{i=1}^k \frac{A_i}{(x-x_i)}$, sehingga $\int \frac{p(x)}{q(x)} \, dx = \sum_{i=1}^k A_i \, \ln{(x-x_i)} + C$

- Jika akar-akar q(x) semua riil ada ya ganda
 - khusus untuk akar ganda faktornya disesuaikan, namun dengan prinsip yang sama.
- Jika ada akar kompleks
 - khusus untuk faktor yang memiliki akar kompleks, digunakan faktor pecahan berbentuk $\underline{\hspace{0.4cm}}Ax+B\underline{\hspace{0.4cm}}$, yang integralnya bisa berbentuk ln atau arctan

5. Integral Fungsi Rasional

Latihan Soal

$$1. \int \frac{x}{(x-4)^2} dx =$$

$$2. \quad \int \frac{6x^2 - 3x + 1}{(4x+1)(x^2+1)} \, dx =$$

3.
$$\int \frac{2x^2 + x - 8}{x^3 + 4x} \, dx = 0$$

4.
$$\int \frac{1}{(x-1)^2(x+4)^2} dx =$$

