RBN Detection for Order of Finish

Hello! I'm Eric Bayless

Data Science Student at General Assembly

You can find me at: ericbayless.github.io

1 Problem Statement

Purpose and background

Proof Of Concept

Create a model that can detect race bib numbers in a manner that demonstrates its viability in a mobile app.

Detected!

Rank: 1

Background-Cross Country

ChuteSingle file

- Order of finish
 - Collect tags
 - Scan barcode

2 Data Acquisition

Description, challenges, and solutions

Race Bib Number (RBNR) Dataset

- 217 images containing 290 bibs
- Split into 3 sets from 3 races
- Mostly action shots

Street View House Number (SVHN) Dataset

- Over 600,000 images available
- Low resolution
- Has been used for bib number detection

3 Model Selection

What and why

Process

YOLOv4-tiny

Why?

- Relatively small footprint
- 8X as fast as YOLOv4 with % the performance on MS COCO
- Even less of a performance hit with fewer classes

4 Training Results

How did the models do individually?

Bib Detection

- Initial results limited by size of dataset
- Image augmentation used to create 5,088
 images from initial 127
- Initial mAP@0.5 = 76.03%
- Final MAP@0.5 = 94.42%

Digit Detection - SVHN

```
calculation mAP (mean average precision)...
13068
detections_count = 95055, unique_truth_count = 26032
class_id = 0, name = 0, ap = 86.72\% (TP = 1512, FP = 304)
class_id = 1, name = 1, ap = 74.05% (TP = 3789, FP = 884)
class_id = 2, name = 2, ap = 86.74% (TP = 3485, FP = 425)
class_id = 3, name = 3, ap = 82.89\% (TP = 2200, FP = 364)
class_id = 4, name = 4, ap = 84.72\% (TP = 2040, FP = 297)
                                      (TP = 1958, FP = 256)
class_id = 5, name = 5, ap = 86.79%
                                      (TP = 1625, FP = 276)
class id = 6, name = 6, ap = 85.75\%
class id = 7, name = 7, ap = 83.91%
                                      (TP = 1608, FP = 258)
class_id = 8, name = 8, ap = 85.98% (TP = 1395, FP = 214)
class id = 9, name = 9, ap = 83.61%
                                      (TP = 1324, FP = 286)
for conf thresh = 0.25, precision = 0.85, recall = 0.80, F1-score = 0.83
for conf thresh = 0.25, TP = 20936, FP = 3564, FN = 5096, average IoU = 62.52 %
IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
mean average precision (mAP@0.50) = 0.841158, or 84.12 %
Total Detection Time: 61 Seconds
```

Digit Detection - Race Bibs

Cropped all bibs from RBNR dataset

Only complete match counted

Accuracy = 67.59%

5 End to End Detection

Score and Demo

Digit Detection - Race Bibs

Used set 3 of RBNR dataset

Only complete match counted

Accuracy = 38.05%

Demo

The proof is in the pudding

6 Conclusions

Does it work?

Summary

Accuracy scores limited by data

 Demo and live webcam detection indicate viability

Further work is needed to validate these assumptions

Thanks! ANY QUESTIONS?

You can find me at: ericbayless.github.io

Resources

- https://people.csail.mit.edu/talidekel/RBNR.html
- http://ufldl.stanford.edu/housenumbers/
- https://www.researchgate.net/publication/335234017 Racing Bib Number Recognition Using Deep Learning
- https://blog.roboflow.com/train-yolov4-tiny-on-custom-data-lighting-fast-detection/
- https://www.slidescarnival.com/valentine-free-presentation-template/234