Graphes Année 2023-2024

Feuille de TD 6 : recherche de plus courts chemins

Exercice 1 : Réseau routier

La matrice de valuation suivante représente un réseau routier (avec des sens interdits) avec les distances, en kilomètres, entre les villes (nommés de $A \grave{a} H$) :

- (a) Utilisez l'algorithme de Dijkstra pour remplir le tableau 1, en calculant les plus courts chemins du sommet E aux autres sommets du graphe, **sans dessiner le graphe** (en utilisant uniquement la matrice de valuation).
- (b) Quelle est la distance de l'itinéraire le plus court de E à H? Quel est cet itinéraire?

x	$d[A]_{P[A]}$	$d[B]_{P[B]}$	$d[C]_{P[C]}$	$d[D]_{P[D]}$	$d[E]_{P[E]}$	$d[F]_{P[F]}$	$d[G]_{P[G]}$	$d[H]_{P[H]}$
$x_0 = E$	[] [[] []		[] [[]	() 1 [D]	, , , , ,		[] [[]	[] [[11]
Résumé								

TABLE 1 – Exercice 1 : déroulement de l'algorithme de Dijkstra

Graphes Année 2023-2024

Exercice 2: Livraison de pizza

Un livreur de pizza doit livrer des commandes dans le secteur d'une ville. Le graphe non orienté, représenté par la matrice de valuation donné ci-dessous, indique les durées (exprimées en minutes) des trajets entre les différents carrefours du secteur de sa ville (les carrefours sont nommés de A à H) :

$$\begin{pmatrix} +\infty & 2 & +\infty & 5 & 7 & +\infty & +\infty & +\infty \\ 2 & +\infty & 9 & +\infty & 4 & +\infty & +\infty & +\infty \\ +\infty & 9 & +\infty & +\infty & 4 & +\infty & 6 & +\infty \\ 5 & +\infty & +\infty & +\infty & 3 & 5 & +\infty & +\infty \\ 7 & 4 & 4 & 3 & +\infty & 3 & 4 & +\infty \\ +\infty & +\infty & +\infty & 5 & 3 & +\infty & +\infty & 5 \\ +\infty & +\infty & 6 & +\infty & 4 & +\infty & +\infty & 3 \\ +\infty & +\infty & +\infty & +\infty & +\infty & 5 & 3 & +\infty \end{pmatrix}$$

- (a) Utilisez l'algorithme de Dijkstra pour remplir le tableau 2, en calculant les plus courts chemins du sommet A vers les autres sommets du graphe, **sans dessiner le graphe** (en utilisant uniquement la matrice de valuation).
- (b) La société fabriquant les pizzas se situe au sommet A du graphe et la livraison doit s'effectuer au sommet H. Quel est le temps de parcours le plus rapide, de A à H? Indiquez un itinéraire correspondant.
- (c) Le livreur doit livrer ses pizzas en moins de 15 minutes. Arrivera-t-il à temps en H?

x	$d[A]_{P[A]}$	$d[B]_{P[B]}$	$d[C]_{P[C]}$	$d[D]_{P[D]}$	$d[E]_{P[E]}$	$d[F]_{P[F]}$	$d[G]_{P[G]}$	$d[H]_{P[H]}$
$x_0 = A$								
Résumé								

TABLE 2 – Exercice 2 : déroulement de l'algorithme de Dijkstra

Graphes Année 2023-2024

Pour aller plus loin

Exercice 3 : Covoiturage (Contrôle du 10/03/2015)

Des étudiants nantais souhaitent proposer du covoiturage vers certaines villes des Pays de la Loire. Le tableau 3 donne les distances (en kilomètres) entre les villes choisies :

Nantes (N)	Angers (A)	90
Nantes	La Roche Sur Yon (R)	70
Nantes	Cholet (C)	60
Angers	Saumur (S)	60
Cholet	Saumur	70
Cholet	Fontenay Le Comte (F)	100
La Roche Sur Yon	Les Sables d'Olonne	40
La Roche Sur Yon	Fontenay Le Comte	60
Les Sables d'Olonne (O)	Fontenay Le Comte	90

TABLE 3 - Exercice 3: tableau des distances entre villes

- (a) Utilisez l'algorithme de Dijkstra pour calculer le plus court chemin de la ville de Nantes à chacune des autres villes (les noms des villes sont données par une de leurs initiales).
 - Dans le cas où plusieurs villes correspondent à la distance minimale courante, vous choisirez la ville à considérer selon **l'ordre alphabétique**.
- (b) Quel est le plus court chemin pour aller de Nantes à Saumur? Quelle est sa distance?
- (c) Quel est le plus court chemin pour aller de Nantes à Fontenay Le Comte ? Quelle est sa distance ?

Exercice 4 : Espace aérien

La matrice suivante donne les durées des vols (en heures) entre les villes v_1, v_2, \dots, v_6 . L'élément (i, j) de la matrice est égal à $+\infty$ s'il n'y a pas de vol entre les villes v_i et v_j .

$$\begin{pmatrix} 0 & 3 & +\infty & 5 & +\infty & +\infty \\ 3 & 0 & 5 & 2 & 4 & +\infty \\ +\infty & 4 & 0 & +\infty & 4 & 3 \\ 6 & 2 & +\infty & 0 & 4 & 4 \\ +\infty & 4 & 4 & 5 & 0 & 2 \\ +\infty & +\infty & 5 & 4 & 3 & 0 \end{pmatrix}$$

- (a) Donnez le graphe correspondant à la matrice de valuation.
- (b) Quel est l'itinéraire le plus rapide de la ville v_1 à la ville v_6 , en utilisant l'algorithme de Dijkstra?

On suppose maintenant qu'il y a une escale obligatoire de 2h, 3h, 1h, 1h, 4h, 5h aux villes v_1, v_2, \ldots, v_6 , respectivement.

- (c) Comment calculer les itinéraires les plus rapides entre les villes?
- (d) Quel est alors l'itinéraire le plus rapide de v_1 à v_6 ?