Disparity of the Disparities

A Comparison of Rural-Urban Disparity of Mortalities among Acute Myocardial Infarction Inpatients between China and US, 2013-2015

BST 5025 Theory of Biostatistics II Presentation

May 3, 2018

Miao Cai

1. Background

Acute myocardial infarction = Heart attack

- Very common
- Emergency
- High mortality

China U.S.

ORIGINAL ARTICLE

Explaining Urban-Rural Health Disparities in China

Hai Fang, PhD, MPH,* Jie Chen, PhD,† and John A. Rizzo, PhD‡

Urban-Rural Disparity of Overweight, Hypertension, Undiagnosed Hypertension, and Untreated Hypertension in China Asia-Pacific Journal Of
Public Health
Volume 20 Number 2
April 2008 159-169
© 2008 APJPH
10.1177/1010539507312306
http://aph.sagepub.com
hosted at
http://online.sagepub.com

Xiaohui Hou, PhD, MHPA

National trend in congenital heart disease mortality in China during 2003 to 2010: A population-based study

Zhan Hu, MD, PhD, ^{a,b} Xin Yuan, MD, PhD, ^{c,d} Keqin Rao, MD, PhD, ^e Zhe Zheng, MD, PhD, ^{c,d} and Shengshou Hu, MD, PhD^{c,d}

ORIGINAL ARTICLE

Rural-Urban Disparities in Quality of Life Among Patients With COPD

Bradford E. Jackson, PhD;¹ David B. Coultas, MD;² Sumihiro Suzuki, PhD;³ Karan P. Singh, PhD;¹ & Sejong Bae, PhD¹

- 1 Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- 2 Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas
- 3 Department of Biostatistics, School of Public Health, University of North Texas Health Science Center, Fort Worth, Texas

Urban-Rural Differences in Coronary Heart Disease Mortality in the United States: 1999–2009

Widening Rural-Urban Disparities in All-Cause Mortality and Mortality from Major Causes of Death in the USA, 1969–2009

2. Hypothesis

```
•H_0: \beta_{CN} = \beta_{US}
```

•
$$H_1$$
: $\beta_{CN} \neq \beta_{US}$

3. Data source

- US: National Inpatient Sample (NIS), by AHRQ
- CN: Statewide inpatient records in Shanxi Province

AMI patients:

• US: 367,981 in 2013 ~ 2015

• CN: 36,464 in 2013 ~ 2015

• Propensity score matching → 32199 + 32199

4. Statistical models

• Outcome: mortality \rightarrow binary 0 or 1

•
$$Y_i \sim BIN(1, p_i)$$

• logit
$$\left(\frac{p_i}{1-p_i}\right) = \beta_1 X_1 + \dots + \beta_n X_n$$

• Two models separately for China and US

Table 1: Logistic regression results for China and US

	Dependent variable: DIED	
	China	United States
	(1)	(2)
Rural	0.063	0.248***
	(0.154)	(0.066)
Age: 45-59	0.453	0.386***
	(0.314)	(0.137)
Age: 60-69	1.172***	0.819***
	(0.306)	(0.136)
Age: 70-79	2.111***	1.193***
	(0.300)	(0.139)
Age: >80	2.700***	1.689***
	(0.304)	(0.139)
Female	0.046	0.069
	(0.092)	(0.047)
Emergency	0.328***	0.046
	(0.087)	(0.045)

	Dependent variable: DIED	
	China	United States
	(1)	(2)
Elixhauser Comorbidity Index	0.005	0.060***
	(0.008)	(0.002)
Payer: Public Insurance	0.163	-0.318***
	(0.169)	(0.113)
Payer: Private Insurance	-1.375^{*}	-0.359^{***}
	(0.728)	(0.118)
Payer: No Charge	0.378	0.412
	(0.300)	(0.321)
Payer: Other	0.264	0.018
	(0.291)	(0.163)
Constant	-5.899***	-3.836***
	(0.336)	(0.157)
Observations	32,199	32,199
Log Likelihood	-2,620.025	-7,639.565
Akaike Inf. Crit.	5,266.049	15,305.130
Note:	*p<0.1; **p<0.05; ***p<0.01	

Hypothesis testing (1)

- Model CN: $\hat{\beta}_{CN} \sim N(b_{CN}, se_{CN}^2)$
- Model US: $\hat{\beta}_{US} \sim N(b_{US}, se_{US}^2)$
- Combined: $\hat{\beta}_{CN} \hat{\beta}_{US} \sim N(b_{CN} b_{US}, se_{CN}^2 + se_{US}^2)$
- H_0 : $\beta_{CN} = \beta_{US} \rightarrow \beta_{CN} \beta_{US} = 0$

Hypothesis testing (2)

• Test statistics:

•
$$z = \frac{\widehat{\beta}_{CN} - \widehat{\beta}_{US} - (\beta_{CN} - \beta_{US})}{\sqrt{se_{CN}^2 + se_{US}^2}} \sim N(0, 1)$$

•
$$z = \frac{0.063 - 0.248 - (0 - 0)}{\sqrt{0.154^2 + 0.066^2}} = -1.104$$
 \rightarrow no evidence to reject H_0

A comparison of beta coefficient distributions for Rural-Urban Disparity among AMI inpatients in China and US, 2013-2015

Q & A