

AN4660 应用笔记

从 STM32F42xxx/STM32F43xxx 到 STM32F74xxx/STM32F75xxx 的微控制器应用移植

前言

使用 STM32 微控制器开发应用的设计人员必须能够轻松地用同一产品系列中的微控制器替换另一个型号。将应用移植到不同微控制器的原因可能是:

- 为了满足更高的产品要求,对存储器大小或者增加 I/O 数量的额外要求。
- 为了满足降低成本的要求,要求使用更小的元件和更小的 PCB 面积。

本应用笔记旨在帮助从现有 STM32F42xxx/STM32F43xxx 器件向基于 STM32F74xxx/STM32F75xxx 器件的设计进行移植,并且对移植过程中的每个步骤进行了分析。

本应用笔记提供了硬件移植和外设移植的指南。为了更好的理解本应用笔记中的信息,用户 应该熟悉 STM32 微控制器系列。

关于其它信息,请参考 STM32F42xxx/STM32F43xxx 和 STM32F74xxx/STM32F75xxx 参考 手册 (RM0090 和 RM0385) 和数据手册。文档可以从 www.st.com 上下载。

表 1. 适用产品

类型	产品编号
微控制器	STM32F427AG, STM32F427AI, STM32F427IG, STM32F427II, STM32F427VG, STM32F427VI, STM32F427ZG, STM32F427ZI
	STM32F437AI, STM32F437IG, STM32F437II, STM32F437VG, STM32F437VI, STM32F437ZG, STM32F437ZI
	STM32F429AG, STM32F429AI, STM32F429BE, STM32F429BI, STM32F429IE, STM32F429IG, STM32F429II, STM32F429NE, STM32F429VI, STM32F429VI, STM32F429ZE, STM32F429ZI
	STM32F439AI, STM32F439BG, STM32F439BI, STM32F439IG, STM32F439II, STM32F439JG, STM32F439NG, STM32F439NI, STM32F439VG, STM32F439VI, STM32F439ZG, STM32F439ZI
	STM32F745ZG, STM32F745VG, STM32F745ZE, STM32F745IE, STM32F745VE
	STM32F746VG, STM32F746ZG, STM32F746IG, STM32F746BG, STM32F746NG, STM32F746IE, STM32F746VE, STM32F746ZE, STM32F746BE, STM32F746NE
	STM32F756VG, STM32F756ZG, STM32F756IG, STM32F756BG, STM32F756NG

2015 年 8 月 DocID027558 Rev 2 1/27

目录

1	硬件	硬件移植4					
	1.1	引脚排列兼容性4					
	1.2	自举模式兼容性6					
	1.3	系统自举程序7					
2	外设	。 移植					
	2.1	STM32 产品交叉兼容性8					
	2.2	存储器映射					
	2.3	Flash 存储器					
	2.4	嵌入式 Flash					
	2.5	可变存储控制器 (FMC)13					
	2.6	中断向量					
	2.7	外部中断线 (EXTI)14					
	2.8	RCC 15					
		2.8.1 根据电源级别参数的最大频率16					
	2.9	PWR 17					
	2.10	RTC 18					
	2.11	U(S)ART					
	2.12	I2C 20					
	2.13	SPI 20					
	2.14	CRC 21					
	2.15	USB OTG					
	2.16	ADC					
		2.16.1 常规通道的外部触发23					
		2.16.2 注入通道的外部触发24					
3	结论						
4	修订点	历史					

AN4660 表格索引

表格索引

表 1. 适用产品	4
表 3. 自举模式选择对比 - STM32F42xxx/F43xxx 和	6
STM32F74xxx/F75xxx	
表 4. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 自举程序通信	
外设	7
表 5. STM32 外设兼容性分析 STM32F42xxx/F43xxx 与	
STM32F74xxx/F75xxx	8
表 6. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 IP 总线映射区别	10
表 7. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 Flash 存储器区别	11
表 8. Flash 模块 1 MB 单存储区域构成 (STM32F74xxx/F75xxx)	12
表 9. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 FMC 区别	13
表 10. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的中断向量区别	14
表 11. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 EXTI 线区别	14
表 12. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 RCC 区别	15
表 13. 最大频率比较 - STM32F42xxx/F43xxx 和	
STM32F74xxx/F75xxx	16
表 14. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 PWR 区别	17
表 15. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 RTC 比较	
表 16. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 U(S)ART 区别	
表 17. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 I2C 区别	20
表 18. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 SPI 区别	
表 19. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 CRC 区别	
表 20. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 USB OTG 区别	
表 21. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的常规通道外部触发区别	
表 22. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的注入通道外部触发区别	
表 23. 文档修订历史	26

硬件移植 **AN4660**

硬件移植 1

引脚排列兼容性 1.1

除了 LQFP100 封装外、 STM32F74xxx/F75xxx 器件与 STM32F42xxx/F43xxx 器件完全引 脚兼容,使得用户可在开发期间尝试不同的外设和达到更高的性能 (更高的频率),从而获 取更大的自由度。

图 1. LQFP100 封装的非兼容板设计

表 2 列出 STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 LQFP100 封装引脚排列 区别。

表 2. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 引脚排列区别 (LQFP100)	表っ	STM32F42xxx/F	43xxx 和 STM32F7	4xxx/F75xxx F	引脚排列区别 (I QFP100)
---	----	---------------	-----------------	---------------	----------	-----------

LQFP100	STM32F42xxx/F43xxx 引脚排列	STM32F74xxx/F75xxx 引脚排列
19	VDD	VSSA
20	VSSA	VREF+
21	VREF+	VDDA
22	VDDA	PA0-WKUP
23	PA0-WKUP	PA1
24	PA1	PA2
25	PA2	PA3

AN4660 硬件移植

表 2. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 引脚排列区别 (LQFP100) (续)

	1-247				
LQFP100	STM32F42xxx/F43xxx 引脚排列	STM32F74xxx/F75xxx 引脚排列			
26	PA3	VSS			
27	VSS	VDD			
28	VDD	PA4			
29	PA4	PA5			
30	PA5	PA6			
31	PA6	PA7			
32	PA7	PC4			
33	PC4	PC5			
34	PC5	PB0			
35	PB0	PB1			
36	PB1	PB2			
37	PB2	PE7			
38	PE7	PE8			
39	PE8	PE9			
40	PE9	PE10			
41	PE10	PE11			
42	PE11	PE12			
43	PE12	PE13			
44	PE13	PE14			
45	PE14	PE15			
46	PE15	PB10			
47	PB10	PB11			
48	PB11	VCAP1			
49	VCAP1	VSS			

硬件移植 AN4660

1.2 自举模式兼容性

STM32F42xxx/F43xxx 的自举空间是基于自举模式选择引脚: BOOT0 和 BOOT1, 而 STM32F74xxx/F75xxx 是基于 BOOT0, 表 3列出了自举地址选项字节。

对于 STM32F74xxx/F75xxx, 自举基址支持从 0x0000 0000 到 0x2004 FFFF 范围内的任何地址。

表 3. 自举模式选择对比 - STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx

STM32F74xxx/F75xxx					
	自举模式	选择			
ВО	ОТ	自举地址选项 字节			
0 BOOT_ADD0 自举地址由用户选择字节 BOOT_ADD0[15:0] 元-ST 编程值:闪存 ITCM 在 0x00200000		自举地址由用户选择字节 BOOT_ADD0[15:0] 定义 -ST 编程值:闪存 ITCM 在 0x00200000			
1 B		BOOT_ADD1 [15:0]	自举地址由用户选择比特 BOOT_ADD1[15:0] 定义 -ST 编程值:系统自举程序在 0x0010 0000		
			STM32F42xxx/F43xxx		
自举模式选择引 脚 自举模式		自举模式	自举空间		
BOOT1	BOOT1 BOOT0				
х	0	主 Flash	在 0x0800 0000,选择主 Flash 存储器作为自举空间		
0 1 系统存储器 在 0x1FFF 0000,选择系统存储器作为自举空间					

AN4660 硬件移植

1.3 系统自举程序

系统自举程序位于系统存储器中,由意法半导体在生产阶段编程。它用于通过以下串行接口重新编程 Flash。

表 4 展示了系统自举程序所支持的通信外设。

表 4. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 自举程序通信 外设

系统自举程序外设	STM32F42xxx/F43xxxI/O 引脚	STM32F74xxx/F75xxxI/O 引脚			
DFU	USB OTG FS(PA11/PA12) 处于设备模式				
USART1	PA9 / PA10				
USART3	PB10 / PB11 和 PC10 / PC11				
CAN2	PB5 / PB13				
I2C1	NA PB6 / PB9				
I2C2	NA PF0 / PF1				
I2C3	NA PA8 / PC9				

默认情况下,在 STM32F74xxx/F75xxx 中,当选择从系统自举程序自举时,代码从 ITCM 接口执行。选择字节从 AXIM 接口执行时可以对其编程。更多有关系统自举程序的详细信息,请参考 AN2606。

2 外设移植

2.1 STM32 产品交叉兼容性

STM32 系列集成了一组外设,可以分为三类:

• 第一类是定义为所有产品都有的通用外设。这些外设完全一样,因此它们有相同的结构、寄存器和控制位。经过移植之后,应用级不需要修改任何固件就可以保持相同的功能。所有的特征和行为保持相同。

- 第二类是指所有 STM32 产品都有,但是只存在微小差别的外设 (通常为了支持新特性),因此产品间的移植非常容易,不需要大量新的开发工作。
- 第三类是指产品之间变化比较大的外设(新架构、新特性 ...)。对于这一类外设,移植 将会要求在应用级进行新的开发。
- 表 5 中提到的 SW 兼容性只是涉及到"底层"驱动器的寄存器描述。

Cube 硬件抽象层 (HAL) 在 STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间是兼容的。 表 5 显示了 STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 STM32 外设兼容性。

表 5. STM32 外设兼容性分析 STM32F42xxx/F43xxx 与 STM32F74xxx/F75xxx

外设		STM32F42xxx/ F43xxx	STM32F74xxx/ F75xxx	兼容性	
	-	-	-	SW	注释
Flash	ı (KB)	2048	1024		
	系统	256 (115+16+64+64)	320 (240+16+64)		-
SRAM (KB)	指令	NA	16		
	备份	4	4		
定时器	GP	10	10	有	-
	高级的控制	2	2	有	-
	基本	2	2	有	-
	低功耗	NA	1	NA	-

表 5. STM32 外设兼容性分析 STM32F42xxx/F43xxx 与 STM32F74xxx/F75xxx (续)

外设		STM32F42xxx/ F43xxx	STM32F74xxx/ F75xxx		兼容性
	QuadSPI	无	有	NA	-
	SPI / I2S	6/2(全双工)	4/3(单工) 6/3(单工) ⁽¹⁾	否 (是)	兼容 I2S。
	I2C	3	4	无	对于 STM32F74xxx/F75xxx 时钟源可编程
	USART/UART	4/4	4/4	无	STM32F74xxx/F75xxx 有额外特性
通信接口	USB OTG FS	有	有	无	专用 VDDUSB STM32F74xxx/F75xxx 上更多的端点
	USB OTG HS	有	有	无	更多的端点和主机通道
	CAN	2	2	有	-
	(SAI)	1	2	有	-
	SDIO/SDMMC1	有	有	有	STM32F74xxx/F75xxx 上 SDMMC1 有新的时 钟源
	SPDIFRX	无	4 路输入	NA	-
RI	NG	有	有	有	-
FMC 存储控制器		有	有	有	-
以为	大网	有	有	有	-
HDM	I-CEC	无	有	NA	-
DC	CMI	有	有	有	-
WW	/DG	有	有	有	-
IW	DG	有	有	有	-
CI	CRC		有	有	STM32F74xxx/F75xxx 上有额外特性
LCD-TFT		无 有 ⁽²⁾	有	有	-
DMA		DMA1-DMA2(流		有	-
Chrom-ART-Acc (DMA2D)		有	有	有	-
加密		有	有	有	-
Hash		有	有	有	-
GF	PIO	多达 168	多达 168	有	-
ADC	12 位	3	3	+	ADC 定时触发器不兼
ADO	通道数	16 24	16 24	有	容

表 5. STM32 外设兼容性分析 STM32F42xxx/F43xxx 与 STM32F74xxx/F75xxx (续)

外设		STM32F42xxx/ F43xxx	STM32F74xxx/ F75xxx		兼容性
DAC	12 位	有	有	有	_
	通道数	2	2	11	-
EXTI		有	有	有	LPTIM1 的新 EXTI 线
RCC		有	有	有	新的 LSE 驱动模式
RTC		有	有	有	STM32F74xxx/F75xxx 上有额外特性
PWR		有	有	有	STM32F74xxx/F75xxx 有极性可配置的新的唤 醒引脚
SYSCFG		有	有	有	-

- 1. SPI / I2S:
- 4/3 对应于 100 引脚封装, 6/3 对应于其它封装。
- 2. LCD TFT:
- 无: STM32F437xx 上没有。
- 有: STM32F439xx 上有。

2.2 存储器映射

表 6显示了 STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的外设地址映射区别。

表 6. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 IP 总线映射区别

AL 2/L	44	STM32F42xxx/F43xxx	STM32F74xxx/F75xxx
外设	总线	基址	基址
QuadSPI 控制寄存器	AHB3	NA	0xA000 1000 - 0xA0001FFF
SAI2	APB2	NA	0x4001 5C00 - 0x4001 5FFF
HDMI-CEC		NA	0x4000 6C00 - 0x4000 6FFF
I2C4	APB1	NA	0x4000 6000 - 0x4000 63FF
I2S3ext		0x4000 4000 - 0x4000 43FF	NA
SPDIFRX	AFDI	NA	0x4000 4000 - 0x4000 43FF
I2S2ext		0x4000 3400 - 0x4000 37FF	NA
LPTIM1		NA	0x4000 2400 - 0x4000 27FF

2.3 Flash 存储器

表 7STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 Flash 存储器接口区别。

STM32F74xxx/F75xxx 器件从架构和接口方面实现了一个不同的 Flash 模块。更多有关 STM32F74xxx/F75xxxFlash 存储器的编程、擦除和保护等信息,请参见 STM32F74xxx 和 STM32F75xxx 的参考手册 (RM0385)。

表 7. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 Flash 存储器区别

Flash		STM32F42xxx/F43xxx	STM32F74xxx/F75xxx
主要的 / 程序存储器		0x0800 0000 - 0x081F FFFF	0x0800 0000 - 0x080F FFFF (在 AXIM 接口上)
		高达 2MB分为 2 个存储区域4 个 16 KB 扇区1 个 64 KB 扇区6 个 128 KB 扇区	高达 1MB分为 1 个存储区域4 个 32 KB 扇区1 个 128 KB 扇区3 个 256 KB 扇区
特	性	– 128 位宽数据读取 – 同时读写 (RWW)	- 256 位宽数据读取
等待	周期	多达8个(取决于电源电压和频 率)	多达 9 个 (取决于电源电压和频 率)
一次可编	程 (OTP)	512 OTP 字节	1024 OTP 字节
Flash 接	口寄存器	0x4002 3C00 - 0x4002 3FFF	
选项字节	基址	0x1FFF C000 - 0x1FFF C00F 0x1FFE C000 - 0x1FFE C00F	0x1FFF 0000 - 0x1FFF 001F (在 AXIM 接口上)
选项字节	FLASH_ OPTCR 寄 存器	- 位 31 SPRMOD - 位 30 DB1M - 位 29:28 保留 - 位 27:16 nWRP[11:0] - 位 15:8 RDP - 位 7:5 USER - 位 7: nRST_STDBY - 位 6: nRST_STOP - 位 5: WDG_SW - 位 4 BFB2 - 位 3:2 BOR_LEV - 位 1 OPTSTRT - 位 0 OPTLOCK	- 位 31 IWDG_STOP - 位 30 IWDG_STDBY - 位 29:24 保留 - 位 23:16 nWRP[7:0] - 位 15:8 RDP[7:0] - 位 7:4 USER - 位 7: nRST_STDBY - 位 6: nRST_STOP - 位 5: IWDG_SW - 位 4: WWDG_SW - 位 3:2 BOR_LEV[1:0] - 位 1 OPTSTRT - 位 0 OPTLOCK

2.4 嵌入式 Flash

表 8 中所示为主存储器块和信息块的构成。

表 8. Flash 模块 1 MB 单存储区域构成 (STM32F74xxx/F75xxx)

块	名称	块基址在 AXIM 接口上	块基址 在 ITCM 接口上	扇区 大小
	扇区 0	0x0800 0000 - 0x0800 7FFF	0x0020 0000 - 0x0020 7FFF	32 KB
	扇区 1	0x0800 8000 - 0x0800 FFFF	0x0020 8000 - 0x0020 FFFF	32 KB
→ / //+ ==	扇区 2	0x0801 0000 - 0x0801 7FFF	0x0021 0000 - 0x0021 7FFF	32 KB
主存储器 块	扇区 3	0x0801 8000 - 0x0801 FFFF	0x0021 8000 - 0x0021 FFFF	32 KB
7	扇区 4	0x0802 0000 - 0x0803 FFFF	0x0022 0000 - 0x0023 FFFF	128 KB
	扇区 5	0x0804 0000 - 0x0807 FFFF	0x0024 0000 - 0x0027 FFFF	256 KB
	扇区 6	0x0808 0000 - 0x080B FFFF	0x0028 0000 - 0x002B FFFF	256 KB
	扇区 7	0x080C 0000 - 0x080F FFFF	0x002C 0000 - 0x02F FFFF	256 KB
	系统存储 器	0x1FF0 0000 - 0x1FF0 EDBF	0x0010 0000 - 0x0010 EDBF	60 KB
信息块	ОТР	0x1FF0 F000 - 0x1FF0 F41F	0x0010 F000 - 0x0010 F41F	1024 字 节
	选项字节	0x1FFF 0000 - 0x1FFF 001F	-	32 字节

2.5 可变存储控制器 (FMC)

表 9显示了 STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 FMC 区别。

表 9. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 FMC 区别

FM		STM32F42xxx/F43xxx	STM32F74xxx/F75xxx
外部存储器接口		SRAMNOR/NAND 存储器PSRAM两个带有硬件 ECC 的 NAND Flash 存储区域16 位 PC 卡兼容设备	SRAMNOR/NAND 存储器PSRAM带有硬件 ECC 的 NAND Flash 存储器
数据总统		8、16 或	ऐ 32 位
	存储区域 1 4×64MB	NOR/PSRAM/SRAM	NOR/PSRAM/SRAM
	存储区域 2 4×64MB	NAND Flash	保留
FMC 存储区域映	存储区域 3 4×64MB	ויאואט ו ומאוו	NAND Flash
射	存储区域 4 4×64MB	PC 卡	保留
	SDRAM bank1 4×64MB SDRAM bank2 4×64MB	SDRAM	SDRAM
		NOR/PSRAM/SRAM 256MB	SDRAM bank1 256MB
		NAND bank1 256MB	SDRAM bank2 256MB
 	肘交换:	SDRAM bank1 256MB	NAND bank3 256MB
(SYSCFG_MEMRMP) 位 11:10 SWP_FMC[1:0] = 01b		SDRAM bank2 256MB	保留
		保留	保留
		NAND bank2 256MB	NOR/PSRAM/SRAM 256MB
		PC卡 256MB	保留

2.6 中断向量

表 10 显示了 STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的中断向量区别。

表 10. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的中断向量区别

位置	STM32F42xxx/F43xxx	STM32F74xxx/F75xxx
91	NA	SAI2
92	NA	QuadSPI
93	NA	LPTIM1
94	NA	HDMI-CEC
95	NA	I2C4_EV
96	NA	I2C4_ER
97	NA	SPDIFRX

2.7 外部中断线 (EXTI)

表 11 显示了 STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 EXTI 线区别。

表 11. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 EXTI 线区别

EXTI 线	STM32F42xxx/F43xxx	STM32F74xxx/F75xxx	
0 到 15	16 个外	16 个外部中断线	
16	PVD	输出	
17	RTC 间	同钟事件	
18	USB OTG I	USB OTG FS 唤醒事件	
19	以太网	以太网唤醒事件	
20	USB OTG HS (可配置为 FS)唤醒事件		
21	RTC 入侵和时间戳事件		
22	RTC 唤醒事件		
23	NA LPTIM1 异步事件		

2.8 RCC

表 12 显示了 STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的与 RCC (复位和时钟 控制器)相关的主要区别。

表 12. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 RCC 区别

	32F42XXX/F43XXX 和 51M32F74 STM32F42xxx/F43xxx	STM32F74xxx/F75xxx		
外设	时钟源			
USB OTG FS	- PLL48MHz 来源于	– PLL48MHz 来源于		
RNG	主 PLL VCO(PLLQ 时钟)	主 PLL VCO (PLLQ 时钟) - PLLSAI VCO (PLLSAI 时钟)		
SDIO/SDMMC1	- PLL48CLK	- PLL48CLK - SYSCLK		
U(S)ART	– APB1 或 APB2 时钟 (PCLK1 或 PCLK2)	系统时钟 (SYSCLK)HSI 时钟LSE 时钟APB1 或 APB2 时钟 (PCLK1 或 PCLK2)		
I2C	– APB1 时钟 (PCLK1)	系统时钟 (SYSCLK)HSI 时钟APB1 或 APB2 时钟 (PCLK1 或 PCLK2)		
I2S	- PLLI2S			
	- 映射到 I2S_CKIN 引脚的外部时间	ф		
0.414	- PLLI2S_Q			
SAI1	− PLLSAI_Q− 映射到 I2S_CKIN 引脚的外部时钟。			
	- 水分() 手() 12.0 CKIIN J[M40) 71.40 b.) 4	– PLLI2S_Q		
SAI2	NA	- PLLSAI_Q		
		- 映射到 I2S_CKIN 引脚的外部时钟。		
LTDC	- PLLSAI_R			
LPTIM1 NA		LSI 时钟LSE 时钟HSI 时钟APB1 时钟 (PCLK1)		
USB OTG HS	- 用于外部 PHY 的 24 到 60 MHz			
ETHERNET MAC	─ 用于外部 PHY 的 25 到 50 MHz			
SPDIFRX	NA	- PLLI2SP VCO		
HDMI-CEC	NA	– LSE 时钟 – HSI 时钟 488 分频		

表 12. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx (续)之间的 RCC 区别

	STM32F42xxx/F43xxx	STM32F74xxx/F75xxx	
外设	时钟源		
RTC	- LSE 时钟 - LSI 时钟 - HSE 时钟 32 分频		
IWDG	LSI		
LSE	NA	RCC_BDCR 寄存器中的可配置 LSE 驱动: LSEDRV[1:0]: - 00: 低驱动 - 10: 中低驱动 - 01: 中高驱动 - 11: 高驱动。	
RCC 专用时钟配置寄存器	- RCC_DCKCFGR	- RCC_DKCFGR1 - RCC_DKCFGR2	

2.8.1 根据电源级别参数的最大频率

表 13显示了 STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 中的 MCU 能够达到的最大频率比较。

表 13. 最大频率比较 - STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx

符号	参数	条件		F4 最大 频率	F7 最大 频率	单位
		电源级别3(过驱动 OFF)	120	144	
		电源级别 2	超载 OFF	144	168	
fHCLK	内部 AHB 时钟频率		超载 ON	168	180	
		电源级别 1 超载 OFF 超载 ON	超载 OFF	168	180	
			180	216	MHz	
fPCLK1	中郊 ADD4 마ీ바牙茲	超载	OFF	42	45	
IFCLKI	内部 APB1 时钟频率	超载 ON		45	54	
fDCI K3	中郊 ADDO 마셔셔荽	超载	OFF	84	90	
IF CLR2	fPCLK2 内部 APB2 时钟频率		ON	90	108	

16/27 DocID027558 Rev 2

2.9 PWR

表 14显示了 STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 PWR 控制器区别。

表 14. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 PWR 区别

PWR	STM32F42xxx/F43xxx	STM32F74xxx/F75xxx	
电源	NA	独立的 USB 收发器电源:VDDUSB: 范围是从 3.0 V 到 3.6 V, 完全独立于 VDD 或 VDDA	
待机模式 唤醒源	 PA0 引脚上升沿 WKUP RTC 事件 (RTC 闹钟、入侵事件、时间戳事件) IWDG 复位 NRST 引脚外部复位 	 上升沿或下降沿极性可配置的 WKUP 引脚: PA0 PA2 PC1 PC13 PI8 PI11 RTC 事件 (RTC 闹钟、入侵事件、时间戳事件) IWDG 复位 NRST 引脚外部复位 	
	PWR_CR PWR_CSR	PWR_CR1 PWR_CSR1	
电源控制寄存器	NA	PWR_CR2 PWR_CSR2 注释: - PWR_CR2: 用于配置唤醒引脚的极性,或者清除唤醒引脚标志。 - PWR_CSR2: 用于启用唤醒引脚或者检测在唤醒引脚上的事件	

2.10 RTC

表 15 显示了 STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 RTC 比较。

表 15. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 RTC 比较

RTC	STM32F42xxx/F43xxx	STM32F74xxx/F75xxx
BCD 中的日历	有	
日历亚秒访问	有 有 分辨率低至 RTCCLK	
实时日历同步	有	Ī
日历上的闹钟	2 w/ 5	亚秒
日历校准	校准窗:8s/16s/32s 校准步:3.81ppm/1.91ppm/0.95 ppm 范围 [-480ppm +480ppm]	
电源同步	有	
周期性唤醒	有	
时间戳	有 秒、分、小时、日、亚秒	
VBAT 开关上的时间戳	无	有
Tamper	2 个引脚 /2 个事件	3 个引脚 /3 个事件
ramper	带可配置滤波的边沿或者电平检测	
带滤波的外部中断和触发	无有	
32 位备份寄存器	20 32	
VBAT 中的 RTC	有	Ī

2.11 U(S)ART

U(S)ART 与 STM32F42xxx/F43xxx 不是 SW 兼容, 而且包含新的额外特性, 详见表 16。

表 16. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 U(S)ART 区别

U(S)ART	STM32F42xxx/F43xxx	STM32F74xxx/F75xxx	
UART/USART	4/4		
波特率	– 高达 4x11.25 Mbit/s	高达 13.5 Mbit/s(时钟频率是 100 MHz, 8 倍过采样率)	
时钟	- 单时钟域	– 双时钟域:方便的波特率编程,独立于 PCLK 重新编程	
数据	- 字长: 可编程(8或9位)	字长:可编程 (7、8或9位)可编程的数据顺序,高位在前或低位在前	
中断	– 10 个具有标志位的中断源	– 14 个具有标志位的中断源	
	 LIN 模式 SPI 主设备 IrDA SIR ENDEC 模块 硬件流控制 (CTS/RTS) 使用 DMA 进行连续通信 多处理器通信 单线半双工通信 		
特性	Smartcard 模式 T = 0 和 T= 1 必须由软件实现。 停止位数: 0.5、1、1.5、2	支持 T=0 和 T=1 异步协议。 停止位数: 1、1.5、2 智能卡工作模式。	
	NA	 支持 ModBus 通信 超时功能 CR/LF 字符识别 接收器超时中断 自动波特率检测 驱动器使能 Tx/Rx 引脚配置可交换 	
U(S)ART 寄存 器	- 软件不兼容		

2.12 I2C

STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 在 I2C 上共享同样的特性,但是软件和寄存器配置不兼容。

表 17显示了 STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 I2C 区别。

表 17. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 I2C 区别

I2C	STM32F42xxx/F43xxx	STM32F74xxx/F75xxx
实例	- x3 (I2C1, I2C2, I2C3)	- x4 (I2C1, I2C2, I2C3, I2C4)
特性	- 7 位和 10 位寻址模式 - SMBus - 标准模式 (高达 100 kbit/s) - 快速模式 (高达 400 kbit/s)	
	- 单时钟源	- 可编程时钟源
I2C 寄存器	- 软件不兼容	

2.13 SPI

STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 在 SPI 上实现不同的特性。

表 18显示了 STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 SPI 区别。

表 18. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 SPI 区别

SPI	STM32F42xxx/F43xxx	STM32F74xxx/F75xxx
实例	х6	x4 x6
特性	SPI + I2S	
数据大小	固定、可配置为8或16位	从 4 到 16 位可编程
数据缓冲	Tx & Rx 16 位缓冲 (单数据帧)	两个 32 位嵌入式 Rx 和 Tx FIFO (高达 4 个数据帧)
数据封装	无 (仅 16 位访问)	有
模式	SPI TI 模式 SPI Motorola 模式	SPI TI SPI Motorola 模式 NSSP 模式
速度	高达 45Mbit/s	高达 50Mbit/s (TBC)
SPI 寄存器	软件不兼容	

2.14 CRC

STM32F74xxx/F75xxx 实现了相似的 CRC (循环冗余校验)计算单元,正如 STM32F42xxx/F43xxx。

表 19 显示了 STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 CRC 区别。

表 19. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 CRC 区别

	W 101 CT III CT		
CRC	STM32F42xxx/F43xxx	STM32F74xxx/F75xxx	
	 单输入 / 输出 32 位数据寄存器 对于 32 位数据大小, CRC 计算在 4 个 8 位通用寄存器 (可用于临时存储)	· AHB 时钟周期 (HCLK) 内完成	
特性	- 使用 CRC-32 (以太网)多项式: 0x4C11DB7 - 处理 32 位数据大小	 位数可编程的 (7位、8位、16位和32位)的完全可编程多项式 处理8位、16位、32位数据大小 可编程 CRC 初始值 输入缓冲器可避免计算期间发生总线阻塞 I/O 数据的可逆性选项 	
CRC 寄存器	 软件兼容。 STM32F74xxx/F75xxx 包括了新的特性	۰	

2.15 **USB OTG**

表 20 显示了 STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 USB OTG 区别。

表 20. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的 USB OTG 区别

USB	STM32F42xxx/F43xxx	STM32F74xxx/F75xxx
	─ 通用串行总线规范第 2.0 版─ 完全支持 USB On-The-Go (USB OTG)。	
特性	FS 模式: - 1 个双向控制端点 - 3 个 IN 端点 (批量、中断、同步) - 3 个 OUT 端点 (批量、中断、同步)	FS 模式: - 1 个双向控制端点 - 5 个 IN 端点 (批量、中断、同步) - 5 个 OUT 端点 (批量、中断、同步)
	HS 模式: - 6 个双向端点 (包括 EP0) - 12 个主机模式通道	HS 模式: - 8 个双向端点 (包括 EP0) - 16 个周期性主机通道
	- USB 内部连接 / 断开特性,具有一个在电电阻。	USB D + (USB_DP) 线上的内部上拉
	NA	当使用 USB 时,独立的VDDUSB 电源允许使用更低的VDDCORE。
缓冲器存储	FS 模式: - 1.25 KB 数据 FIFO - 多达 4 个 Tx FIFO 管理 (每个 IN 端点 1 个),和一个 Rx FIFO HS 模式: - 总共 4KB RAM	FS 模式: - 1.25 KB 数据 FIFO - 多达 6 个 Tx FIFO 管理 (每个 IN 端点 1 个),和一个 Rx FIFO HS 模式: - 总共 4KB RAM
低功耗模式	FS 模式: - USB 挂起和恢复 HS 模式: - 不支持 LPM	FS 模式: - USB 挂起和恢复 - 链路电源管理 (LPM) 支持 HS 模式: - 支持 LPM
配置	- SW 不兼容	ı

2.16 ADC

STM32F74xxx/F75xxx 器件集成了相同 ADC 外设,除了常规及注入通道的外部触发之外,它们具有相同的特性。

表 21 和表 22 显示了 STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的常规及注入通道的外部触发区别。

2.16.1 常规通道的外部触发

表 21. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的常规通道外部触发区别

alé IIII	EXTSEL[3:0]	源		京
类型		STM32F42xxx/F43xxx	STM32F74xxx/F75xxx	
	0000	TIM1_CH1 事件	TIM1_CC1 事件	
	0001	TIM1_CH2 事件	TIM1_CC2 事件	
	0010	TIM1_CH3 事件	TIM1_CC3 事件	
	0011	TIM2_CH2 事件	TIM2_CC2 事件	
	0100	TIM2_CH3 事件	TIM5_TRGO 事件	
	0101	TIM2_CH4 事件	TIM4_CC4 事件	
	0110	TIM2_TRGO 事件	TIM3_CC4	
片上定时器的内部 信号	0111	TIM3_CH1 事件	TIM8_TRGO 事件	
111 3	1000	TIM3_TRGO 事件	TIM8_TRGO(2) 事件	
	1001	TIM4_CH4 事件	TIM1_TRGO 事件	
	1010	TIM5_CH1 事件	TIM1_TRGO(2) 事件	
-	1011	TIM5_CH2 事件	TIM2_TRGO 事件	
	1100	TIM5_CH3 事件	TIM4_TRGO 事件	
	1101	TIM8_CH1 事件	TIM6_TRGO 事件	
	1110	TIM8_TRGO 事件	NA	
外部引脚	1111	EXTI	线 11	

2.16.2 注入通道的外部触发

表 22. STM32F42xxx/F43xxx 和 STM32F74xxx/F75xxx 之间的注入通道外部触发区别

**************************************	源		
尖型	类型 EXTSEL[3:0]	STM32F42xxx/F43xxx	STM32F74xxx/F75xxx
	0000	TIM1_CH4 事件	TIM1_TRGO 事件
	0001	TIM1_TRGO 事件	TIM1_CC4 事件
	0010	TIM2_CH1 事件	TIM2_TRGO 事件
片上定时器的内部 信号	0011	TIM2_TRGO 事件	TIM2_CC1 事件
	0100	TIM3_CH2 事件	TIM3_CC4 事件
	0101	TIM3_CH4 事件	TIM4_TRGO 事件
	0110	TIM4_CH1 事件	NA
	0111	TIM4_CH2 事件	TIM8_CC4 事件
	1000	TIM4_CH3 事件	TIM1_TRGO(2) 事件
	1001	TIM4_TRGO 事件	TIM8_TRGO 事件
	1010	TIM5_CH4 事件	TIM8_TRGO(2) 事件
	1011	TIM5_TRGO 事件	TIM3_CC3 事件
	1100	TIM8_CH2 事件	TIM5_TRGO 事件
	1101	TIM8_CH3 事件	TIM3_CC1 事件
	1110	TIM8_CH4 事件	TIM6_TRGO 事件
外部引脚	1111	EXTI 线 15	NA

AN4660 结论

3 结论

本应用笔记是对数据手册和参考手册有益的补充,它给出了一个简单的指南,阐述如何从已有 STM32F42xxx/F43xxx 器件向 STM32F74xxx/F75xxx 器件移植。

修订历史 AN4660

4 修订历史

表 23. 文档修订历史

日期	版本	变更
2015年3月31日	1	初始版本。
2015年5月26日	2	更新了: - <i>第 2.1 节: STM32 产品交叉兼容性</i> 新增关于软件兼容性的段落, - <i>表 5: STM32 外设兼容性分析 STM32F42xxx/F43xxx 与 STM32F74xxx/F75xxx</i> 对应于 RNG、ADC 和 DAC 外设, - <i>第 2.8.1 节: 根据电源级别参数的最大频率</i> ,在过驱动ON 条件下,设置 F7 最大值在 216 MHz、108 MHz 和 54 MHz。 - <i>第 2.11 节: U(S)ART</i> ,波特率高达 13.5 MB/s。

重要通知 - 请仔细阅读

意法半导体公司及其子公司("ST")保留随时对 ST 产品和 / 或本文档进行变更、更正、增强、修改和改进的权利,恕不另行通知。买方在订货之前应获取关于 ST 产品的最新信息。 ST 产品的销售依照订单确认时的相关 ST 销售条款。

买方自行负责对 ST 产品的选择和使用, ST 概不承担与应用协助或买方产品设计相关的任何责任。

ST 不对任何知识产权进行任何明示或默示的授权或许可。

转售的 ST 产品如有不同于此处提供的信息的规定,将导致 ST 针对该产品授予的任何保证失效。

ST 和 ST 徽标是 ST 的商标。所有其他产品或服务名称均为其各自所有者的财产。

本文档中的信息取代本文档所有早期版本中提供的信息。

© 2015 STMicroelectronics - 保留所有权利 2015

