CS6111: Foundations of Cryptography

Assignment 2

Instructions

- Deadline is September 9.
- We encourage submissions by Latex. Paper is also accepted.

References

- Introduction to Cryptography Delfs and Knebl
- A Graduate Course in Applied Cryptography Boneh and Shoup (link)
- Introduction to Modern Cryptography Katz and Lindell
- Handout 3

1 Number Theory

1. (2 points)

Proposition 1. Let \mathbb{G} be a finite group, and $\mathbb{H} \subseteq \mathbb{G}$. Assume that \mathbb{H} contains the identity element of \mathbb{G} , and that for all $a, b \in \mathbb{H}$ it holds that $ab \in \mathbb{H}$. Then \mathbb{H} is a subgroup of \mathbb{G} .

Show that the above proposition does not necessarily hold when \mathbb{G} is infinite. **Hint:** Consider the set $\{1\} \cup \{2,4,6,8\cdots\} \subset \mathbb{R}$.

- 2. (2 points) Let \mathbb{G} be a finite group and $g \in \mathbb{G}$. Show that $\langle g \rangle = \{g^i \mid i \geq 0\}$ is a subgroup of \mathbb{G} . Is the set $\{g^0, g^1, \dots\}$ necessarily a subgroup of G when G is infinite?
- 3. (2 points) If N = pq and $ed = 1 \mod \phi(N)$ then for any $x \in \mathbb{Z}_N^*$ we have $(x^e)^d = x \mod N$. Show that this holds for all $x \in \mathbb{Z}_N$. **Hint:** Use the Chinese remainder theorem.
- 4. (2 points) Let N = pq be a product of two distinct primes. Show that if N and $\phi(N)$ are known, it is possible to compute p and q in polynomial time.
- 5. (2 points) Let N = pq be a product of two distince primes. Show that if N and an integer d such that $3d \equiv 1 \mod \phi(n)$ are known, then it is possible to compute p and q in polynomial time. **Hint:** First obtain a small list of possible values of $\phi(n)$.)

2 One Way Functions and Negligible Functions

- 1. (2 points) If $\mu(.)$ and $\nu(.)$ are negligible functions then show that $\mu(.) \cdot \nu(.)$ is a negligible function.
- 2. (2 points) If μ () is a negligible function and f() is a function polynomial in its input then show that $\mu(f)$ are negligible functions.
- 3. (2 points) Prove that the existence of one-way functions implies $P \neq NP$.
- 4. (2 points) Prove that there is no one-way function $f:\{0,1\}^n \to \{0,1\}^{\lfloor \log_2 n \rfloor}$.
- 5. (2 points) Let $f: \{0,1\}^n \to \{0,1\}^n$ be any one-way function then is $f'(x) \stackrel{def}{=} f(x) \oplus x$ necessarily one-way?
- 6. (2 points) Prove or disprove: If $f: \{0,1\}^n \to \{0,1\}^n$ is a one-way function, then $g: \{0,1\}^n \to \{0,1\}^{n-\log n}$ is a one-way function, where g(x) outputs the $n \log n$ higher order bits of f(x).
- 7. (2 points) If f is a one-way function then is $f^2(x) = f(f(x))$ always a one-way function?

3 Fun With One Way Functions

Suppose that f(x) is a one-way function. Let |x| denote the length of the binary string x. We let \circ denote the concatenation operator. Similarly, (\circ) is the parse operator which we can use to represent a string x as $x = x_1(\circ)x_2$ where $|x_1| = |x_2|$. (Assume for simplicity that all strings to which this operator is applied are of even length; for example, this can be accomplished by appending a 0 to the end of an odd-length string prior to applying this operator.) Function f here is length-preserving, which means that |f(x)| = |x|, and also that we need not give the adversary 1^k as input.

- 1. (3 points) Prove that the following is not a one-way function: $f_a(x) = f(x_1) \oplus x_2$, where $x = x_1(\circ)x_2$.
- 2. (3 points) Find the fault in the following proof that f_a is one-way.

 $f_a(x)$ is a one-way function. Assume for the sake of contradiction that we have a PPT inverter \mathcal{A} for $f_a(x)$ that, when given w, outputs some x' such that $f_a(x') = w$ with nonnegligible probability. We want to use this \mathcal{A} to construct an inverter for the one-way function f(x). Let \mathcal{B} be a PPT that on input y picks a random string $z \leftarrow \{0,1\}^{|y|}$, runs \mathcal{A} on $w = y \oplus z$ to get back some value $x' = x'_1(\circ)x'_2$, and then returns x'_1 .

What happens when \mathcal{A} succeeds? This means that the x' that \mathcal{A} returns is such that $f(x_1') \oplus x_2' = f_1(x') = w = y \oplus z$. Because f is length preserving and y and z have the same length, we know that $f(x_1') = y$ and $x_2' = z$. Therefore, the x_1' that \mathcal{B} returns is a preimage of y.

This means that when \mathcal{A} succeeds, so does \mathcal{B} , which further implies that the probability of \mathcal{B} succeeding is at least the probability of \mathcal{A} succeeding inside \mathcal{B} . Since the input to \mathcal{A} inside \mathcal{B} is distributed identically to the input to \mathcal{A} in the wild, the probability of \mathcal{A} succeeding inside \mathcal{B} is equal to the probability of \mathcal{A} succeeding in the wild, which is non-negligible by assumption. So the probability of \mathcal{B} succeeding is also non-negligible. But this means that \mathcal{B} is an inverter for the one-way function f(x) that works with non-negligible probability, which is a contradiction. So $f_a(x)$ must be a one-way function.

- 3. (3 points) Prove that one-way functions cannot have polynomial-size ranges. More precisely, prove that if f is a one-way function, then for every polynomial p() and all sufficiently large n's, $|\{f(x): x \in \{0,1\}^n\}| > p(n)$
- 4. (3 points) Let f be a one-way function. Prove that $g(x) = f(x_1)$, where $x = x_1(\circ)x_2$, is a one-way function.