Lie Theory

September 15, 2023

Contents

1	Background		
	1.1	Topology	1
2	Topologcial Groups		
	2.1	Introduction	1
	2.2	Neighborhoods of Identity	2
	2.3	Metrizable Groups	2
	2.4	Homomorphisms	2
	2.5	Subgroups	3
	2.6	Connected Components of Topological Groups	4

1 Background

1.1 Topology

Definition 1.1.1. A topological space is *locally connected* at point x if everyneighborhood of x contains a connected open neighborhood.

2 Topologcial Groups

2.1 Introduction

Definition 2.1.1. A *topological group* is a group such that

- 1. he product $p:G\times G\to G, p(g,h)=gh,$ is a continuous map if $G\times G$ has the product topology;
- 2. The map $\iota: G \to G, \iota(g) = g^{-1}$, is continuous (hence, a homeomorphism, as $\iota^{-1} = \iota$).

Each element $g \in G$ defines the following maps.

- left translation: $L_g: G \to G, L_g(h) = gh;$
- right translation: $R_g: G \to G, R_g(h) = hg;$
- conjugation: $C_g: G \to G, C_g(h) = ghg^{-1}$.

2.2 Neighborhoods of Identity

An (open) neighborhood of $x \in X$, where X is a topological space, is an open set U that cointains x.

Let G be a topological group, and $1 \in G$ is the identity. V(1) refers to the set of all neighborhoods of 1.

Proposition 2.2.1 (Proposition 2.2). Let G be a t.g. (topological group), V = V(1). Then we'll have

- 1. (T1)for all $u \in V, 1 \in u$;
- 2. $(T2)u, v \in V \implies u \cap v \in V;$
- 3. (TG1) for all $u \in V$, there exists $v \in V$ s.t. $v^2 \subseteq u$;
- 4. (TG2) $u \in V \implies u^{-1} \in V$:
- 5. (TG3) $u \in V, g \in G \implies gug^{-1} \in V$.

Definition 2.2.2. Let G be a group, not necessarily topological group. A system of neighborhood of $1 \in G$ is a family of sets sastisfying (T1) to (TG3).

Definition 2.2.3. Let X be a topological space and $x \in X$. A fundamental system of neighborhoods of x is a family F of open sets containing x s.t. for all open u that contains x, there exists $v \in F$ s.t. $v \subseteq u$.

Theorem 2.2.4 (Proposition 2.5). Let G be an abstract group, V be a system of neighborhoods of 1. There exists a unique topology on G making G into a topological group and s.t. V is a fundamental system of neighborhoods of 1.

idea of proof. \Box

Proposition 2.2.5. Let G be a topological group. TFAE

- 1. topology of G is a Hausdorff
- 2. {1} is closed in
- 3. $\bigcap_{U \in \mathcal{V}(1)} U = \{1\}$

2.3 Metrizable Groups

Definition 2.3.1. Let G be a topological group. G is metrizable if it has a left-(or right-) invariant distance which defines the tooplogy left-invariant for all $g \in G$ and d(gx, gy) = d(x, y) for all $x, y \in G$.

Theorem 2.3.2. A topological group G is metrizable iff it has a countable system of neighborhoods of 1.

2.4 Homomorphisms

We need to talk about $G \to H$ continuous homomorphisms.

Example 2.4.1. The determinant homomorphism det : $GL_n(\mathbb{R}) \to \mathbb{R}^* = GL(1,\mathbb{R})$ is continuous.

Theorem 2.4.2. Let G, H be topological group. A group homomorphism $\phi : G \to H$ is continuous iff ϕ is continuous at $1 \in G$.

Proof. \implies is obvious. Let's look at the other direction.

Note that $\phi \circ L_g = L_{\phi(g)} \circ \phi$ as maps $G \to H$ because

$$(\phi \circ L_g)(g') = \phi(gg') = \phi(g)\phi(g') = (L_{\phi(g)} \circ \phi)(g').$$

Then

$$\phi = L_{\phi(q)} \circ \phi \circ L_{q^{-1}}$$

is continuous at g, as $L_{g^{-1}}$ is continuous at g, ϕ continuous at 1, and $L_{\phi(g)}$ continuous everywhere.

Theorem 2.4.3. A map $\phi: G \to H$ is a group homomorphism (G, H are just groups) iff

$$gr(\phi) := \{(g, \phi(g)) \mid g \in G\} \subseteq G \times H.$$

Proposition 2.4.4. Let X and Y be topological spaces, such that Y is Hausdorff. A map $\phi: X \to Y$ is continuous if and only if its graph $gr(\phi)$ is closed and the projection $p(x, \phi(x)) = x$ is a homeomorphism.

Proof. Suppose ϕ is continuous. Then

$$qr(\phi) = \theta^{-1}(\Delta y)$$
 w.r.t. $\theta: X \times Y \to Y \times Y$

is closed, since tehta is continuous and Δy is closed.

Theorem 2.4.5. Suppose G, H are topological groups, H is Hausdorff. The map $G \to H$ is a continuous homomorphism iff $gr(\phi)$ is a closed subgroup and $p: gr(\phi) \to G$ is a homeomorphism.

2.5 Subgroups

Let G be a topological group. $H \subseteq G$ is a topological subgroup if H is a topological group w.r.t. the induced topology.

Proposition 2.5.1. Let G be a topological group. If $H \subseteq G$ a subgroup, which is open. Then H is also closed.

Proof. Consider

$$Y = \bigcup_{g \in G - H} gH.$$

Y is open, as it is a union of open sets. H is also closed, as G-Y=H. Hence, H is closed. \square

Proposition 2.5.2. G a topological group, $H \subseteq G$ a subgroup. Then \overline{H} is also a subgroup of G.

Proof. Note that $A \subseteq X$ (subset of a topological space), $x \in \overline{A}$ iff for all open U that contains $x, U \cap A \neq \emptyset$. Then we check the followings.

1. \overline{H} is closed under $m: G \times G \to G$.

2.6 Connected Components of Topological Groups

A connected space cannot be written as the union of two disjoint open sets.

A connected component of a point $x \in X$ is the union of all connected sets containing x, which is also the maximal connected set containing x.

A connected component of X is a maximal connected subset.

If $A \subseteq X$ is connected, then the closure \overline{A} is connected. Thus, every connected component is closed.

Let G be a topological group, G_0 is the connected component of $1 \in G$.

Proposition 2.6.1. G_0 is a closed normal subgroup of G. The connected components of G are exactly gG_0 for $g \in G$.

A neighborhood N of $x \in X$ is a subset $N \subseteq X$, $x \in N$ and there exists an open $U \subseteq X$ s.t $x \in U \subseteq N$.

A space is *locally connected* if for every open neighborhood of every point contains a connected open neighborhood.

Proposition 2.6.2. If G is locally connected, then G_0 is open.

Proposition 2.6.3. If G connected, $U \in \mathcal{V}(1)$, then $G = \bigcup_{n \geq 1} U^n$.