Állóhullámok Kötélen

Mig András 2019 Február 24.

A méréseket végezte: Karsai Alexandra és Mig András

A mérések dátuma: 2019.02.22

A mérés

1. A mérés célja

Két mérést végzünk. Az első mérés célja, hogy megmérjük az egyes félhullám-hosszakhoz tartozó sajátfrekvenciát, illetve ebből meghatározzuk a kötélen terjedő transzverzális hullám sebességét. A második mérésben megvizsgáljuk, hogy milyen arányban függ a hullám sebessége az anyagi minőségétől a fonálnak, és ebből a lineáris sűrűségét. Majd ellenőrizzük a referencia fonállal.

2. Eszközök és összeállítás

A mérés elvégzéséhez szükségünk van egy szinusz generátorra, egy vibrátorra, egy kötélre, amin az állóhullámot létrehozzuk, valamint egy csigára, súlyokra és egy mérőszalagra. A szinusz generátort összekötjük a vibrátorral majd rá erősítjük a kötél egyik végét. A csigán átvetve lelógatjuk a kötél másik végét, amelyre súlyokat akasztunk.

3. Első mérés

A mérések első részében a kialakuló csomópontok és így a félhullámok mennyiségét változtatjuk a frekcvencia állításával, miközbren a felakasztott súlyok tömege állandó. (90 gramm) Célunk, hogy bebizonyítsuk a kialakuló félhullámok mennyisége és az őket létrehozó frekvencia közti egyenes arányosságot, valamint hogy megállapítsuk a hullám terjedési sebességét. A következő táblázatban láthatjuk, hogy egyes félhullámok kialakulásához mekkora frekvencia szükséges, illetve a mérési bizonytalanságot.

n	f [Hz]	$\Delta f [Hz]$
2	10	0,4
3	15	0,5
4	20	0,8
5	25	0,6
6	30	0,4

Ahogy láthatjuk, egyenes arányosság figyelhető meg a kialakuló félhullámok száma és az őket kialakítő frekvenciák között

4. Második mérés

A következő mérésben a fonalat feszítő erőt változtatjuk, és keressük az a saját frekventiát, amin kialakul három félhullámhossznyi állóhullám. A feszítő súlyok tömegét 50 grammról 170 grammra növeljük, 20 grammonként. Minden tömegre háromszor végeztük el a frekvencia keresést. A következő táblázat mutatja a mért frekvenciákat a tömeg függvényében.

m[g]	f [Hz]			
	1.	2.	3.	átlag
50	45,8	46,1	47,5	46,47
70	59,7	57,9	57,6	58,4
90	65,1	64,8	64	64,63
110	73,7	72,2	73	72,97
130	78,5	79,2	80,6	79,43
150	85,2	84,9	85,7	85,27
170	92,7	92,2	92,4	92,43

Kiértékelés

1. Elméleti háttér

Adott közegen állóhullám alakulhat ki, két ellentétes irányú és fél periódus fáziseltérésű, de azonos amplitúdójú és frekvenciájú hullám interferál. Ezt a jelenséget létrehozhatjuk egy rugalmas kötélen, amit állandó amplitúdóval és frekvenciával rezgetünk, ha legalább az egyik végét rögzítjük, hogy onnan visszaverődve interferáljon önmagával. Hogy beállíthassuk a megfelelő fáziseltolódást, hangolnunk kell a hullámhosszt, a húr hosszához, a következő képpen:

$$L = \frac{n\lambda_n}{2} \tag{1}$$

A hullámhossz és a frekvencia közötti összefüggést a $c=\lambda f$ egyenlet adja meg. A frekvenciát a külső frekvenciaforrás, a sebességet pedig a kötél paraméterei és a kötelet feszítő erőből kapjuk $c=\sqrt{\frac{F}{\rho A}}$ összefüggés szerint. Megfelelő behelyetesítésekkel és rendezéssel:

$$f_n = \frac{n}{2L} \sqrt{\frac{F}{\rho A}} \tag{2}$$

ahol f_n a húr sajátfrekvenciája, L a húr hossza, F a húrt feszítő erő, A a húr keresztmetszete, ρ pedig a kötél anyagára jellemző állandó.

2. Első mérés

Az (1) egyenlet alapján adott n-re meghatározzuk a λ_n hullámhosszat és a mért f frekvencia alapján kiszámítjuk a c terjedési sebességet. Előzetes ismereteink alapján arra számítunk, hogy c állandó marad függetlenül a frekvenciától.

n	λ_n	f [Hz]	c
2	152,5	10	1525
3	101,6	15	1525
4	76,25	20	1525
5	61	25	1525
6	50,8	30	1525

A számításokat elvégezve láthatjuk, hogy valóban nem változik meg a hullám terjedési sebessége a frekvencia és a hullámhosszak változtatásával.

3. Második mérés

A második mérés sorozatban meg határozzuk a kötél sűrűségéből és a keresztmetszetből számaztatott lineáris sűrűségtől való függését a terjedési sebességnek. ($\mu = \rho A$) A kapott eredmény összevetjük a a referencia kötél adataiból számolt függéssel. A (2) összefüggést átrendezve:

$$\mu = \frac{F}{\left(\frac{2f_n L}{n}\right)^2} = \frac{Fn^2}{4f_n^2 L^2}$$

felhasználva, hogy a feszítő erő a fonál végére akasztott súlyokból származik F=mg, valamint, hogy a rezgési frekvencia négyzete arányos a rezgő tömeggel $a=\frac{f_n^2}{m}$

$$\mu = \frac{n^2 g}{4L^2 a}$$

Ügyelve a mértékegységekre, egyenes illesztéssel (1. ábra) megkapjuk, hogy $a=50\frac{1}{{\rm S}^2{\rm g}}$

Ezt behelyetesítve megkapjuk, hogy $\mu = 0,1898 \frac{\text{g}}{\text{m}}$

Ellenőrzés

A mérés mellé adott egy ugyanolyan anyagból készül 4 méteres húr, aminek tömege 0,8 gramm. $\mu=0,8g/4m=0,2\frac{\rm g}{\rm m}$ Relatív hiba: $\frac{\Delta\mu}{\mu_{ref}}=\frac{0,0102}{0,2}=0,051$

Hibaszámítás

A mérési hibák a szinusz generátor pontatlanságából, a szabad szemmeli mérés pontatlanságából származik. Ezekből a hibákből származó relatív hibák azonban határon alul vannak.

Diszkusszió

Az első mérés során beláttuk, hogy a hullám terjedési sebessége nem függ a frekvenciától, illetve kiszámoltuk annak nagyságát egy adott kötélen, illetve meghatároztuk a mérési bizonytalanságot is.

A második méréssel több különböző súlyokra megkerestük az f_3 sajátfrekvenciát és az elméleti háttér felhasználásával kiszámoltuk a lineáris sűrűségét egy másik fonálnak, és a kapott eredményt összehasonlítottuk a referencia fonál sűrűségével. Ahol lehetőség nyílt rá, a hiba nagyságát megállapítottuk.

1. ábra. Egyenes illesztés m $\quad f^2$