Braids and the Jones polynomial

Thesis presentation

Apoorv Potnis

IISERB

April 2023

Table of Contents

Outline

Braids

Geometric definition Generators and relations Algebraic definition

Section 1

Outline

Table of Contents

Outline

Braids

Geometric definition Generators and relations Algebraic definition

Section 2

Braids

Subsection 1

Geometric definition

Three dimensional representation

Figure: Three dimensional geometric representation of a braid

Two dimensional representation

Figure: A projection of the braid

Multiplication of braids

Figure: Multiplication of two braids

The identity braid \mathbf{I}_n

Figure: The identity I₃

Inverse of braids

Figure: Inverse of a braid

Subsection 2

Generators and relations

Generators of the braid group

Figure: Generators σ_i and σ_i^{-1}

Type II move: $\sigma_i \sigma_i^{-1} = \mathbf{I}_n$

Figure: A type II move illustrating $\sigma_i \sigma_i^{-1} = \mathbb{I}_n$

Type III move: $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$

Figure: A type III move illustrating $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$

Sliding of crossings: $\sigma_i \sigma_j = \sigma_j \sigma_i$

Figure: Sliding of crossings illustrating $\sigma_i \sigma_j = \sigma_j \sigma_i$

Algebraic definition

Subsection 3

Presentation of the braid group

The Artin braid group B_n admits the following presentation on the generators σ_i , for $1 \le i \le n-1$.

$$\mathsf{B}_n \coloneqq \left\langle \begin{array}{ccc} \sigma_1, \dots, \sigma_{n-1} \\ \sigma_i \sigma_i^{-1} & = & \mathbf{I}_n \\ \sigma_i \sigma_{i+1} \sigma_i & = & \sigma_{i+1} \sigma_i \sigma_{i+1} & \text{if } i+1 \leq n-1 \\ \sigma_i \sigma_i & = & \sigma_i \sigma_i & \text{if } |i-j| \geq 2 \end{array} \right\rangle$$