Divide and Conquer with Neural Networks

Alex Nowak, Joan Bruna

NYU

alexnowakvila@gmail.com

February 15, 2017

Overview

- Motivation
- 2 Introduction
 - Classical formulation of dynamic programming
 - Some examples
- Model
- 4 Training
- Experiments
 - Sorting
 - Planar ConvexHull
- 6 Current and Future work
- Summary

- Motivation
- 2 Introduction
 - Classical formulation of dynamic programming
 - Some examples
- Model
- Training
- Experiments
 - Sorting
 - Planar ConvexHull
- 6 Current and Future work
- Summary

Motivation

- Successful DL models capture inductive biases that are aligned with the structure of the data.
- Two famous examples:
 - Convolutional Neural Networks: Exploit spatial stationarity and geometrical stability of computer vision tasks: If $\mathcal{F}:\mathcal{X}\to\mathcal{Y}$ is a CV task and \mathcal{T} a small deformation, then $\mathcal{FT}x\approx\mathcal{TF}x$ for all x
 - CNNs leverage this prior by breaking the representation at different scales and by learning shared weights.
 - Recurrent Neural Networks: many time series are stationary across time and have fast decaying memory.
 - Joint data distribution is well approximated with autoregressive models.

Inductive bias for algorithmic discrete tasks

- Consider discrete algorithmic tasks as discrete combinatorics, discrete geometry and graph problems.
- Some problems have some kind of scale stationarity, i.e, solving a problem for size m is 'similar' as solving the problem for size n > m.
- This self-similarity across scales is made explicit by the concept of recursion which leads to the principle of divide and conquer.
- Recursion:
 - Relates solutions of different scales in a 'simple' way.
 - Generally leads to optimal complexity algorithms by exploiting the self-similarity of the problem across scales.
- How can this inductive-bias be implemented/exploited to learn efficiently on the class of tasks that are near scale-invariant?

- Motivation
- 2 Introduction
 - Classical formulation of dynamic programming
 - Some examples
- Model
- 4 Training
- **6** Experiments
 - Sorting
 - Planar ConvexHull
- 6 Current and Future work
- Summary

Classical formulation of dynamic programming

Suppose we want to solve the task T(X), (|X| = n), and we are able to write this expression in the following way:

$$T(X) = M(T(S(X)))$$

where:

- S (split):
 - Commonly split the set X into k subsets $\{X_k\}_k$, $X_k \subsetneq X$
 - Can also be $X_k \nsubseteq X$ as long as $|X_k| < |X|$
 - M (merge): merge the solutions $\{T(X_k)\}_k$

- Sorting (quicksort):
 - $S(X) = (X_{\leq m}, X_{\geq m})$ (split w.r.t the median)
 - $M(T(S(X))) = (T(X_{\leq m}), T(X_{>m}))$ (concatenate)

- Sorting (mergesort):
 - $S(X) = (X_{(1:\lceil \frac{n}{2} \rceil)}, X_{(\lceil \frac{n}{2} \rceil + 1:n)})$ (split w.r.t middle coordinate)
 - $M(T(S(X))) = M(T(X_{(1:\lceil \frac{n}{2} \rceil)}), T(X_{(\lceil \frac{n}{2} \rceil + 1:n)}))$ (merge two sorted vectors)

- Finding planar convex hull: Given a set of points, find the extremal points of the convex set generated by this points.
 - $S(X) = (X_{h(X) \le 0}, X_{h(X) > 0})$ (split w.r.t an affine plane h)
 - $M(T(S(X))) = M(T(X_{h(X) \le 0}), T(X_{h(X) > 0}))$ (merge disjoint convex hulls)

Split the input $S(X) = (X_{h(X) \le 0}, X_{h(X) > 0})$

Solve the subproblems $T(X_{h(X)\leq 0}), T(X_{h(X)>0})$

Merge the solutions $M(T(X_{h(X)\leq 0}), T(X_{h(X)>0}))$

- Motivation
- 2 Introduction
 - Classical formulation of dynamic programming
 - Some examples
- Model
- 4 Training
- Experiments
 - Sorting
 - Planar ConvexHull
- Current and Future work
- Summary

Model of the dynamic arquitecture

- We will impose the inductive bias of stationarity across scales by dynamically solving the given task where $M_{\phi}(\cdot)$ and/or $S_{\theta}(\cdot)$ will be modeled by neural networks.
- ullet The set of parameters ϕ and θ will be then shared across scales.
- The balancing is *dynamic*, data-dependent.

Important Simplification

- In this work we will only consider split and merge tasks separately.
- Consider tasks for which the dynamic solution can be computed (or mostly), only with $M_{\phi}(\cdot)$ or $S_{\theta}(\cdot)$.

Forward Pass

Split:

- **1** $S_{\theta}(\mathbf{x}) = \hat{y}(\theta)$ usually vector of bernouilli probabilities for every coordinate of \mathbf{x} .
- ② Build partition from it: $\hat{y}(\theta) \rightarrow \{\mathbf{x}_1, \mathbf{x}_2\}$

Merge

- ① $M_{\phi}(\mathbf{x}_1, \mathbf{x}_2) = \hat{y}(\phi)$ usually also vector of probabilities for every coordinate of $\mathbf{x}_1, \mathbf{x}_2$.
- ② Build output \mathbf{x} from it: $\hat{y}(\phi) \rightarrow \{\mathbf{x}\}$

- Motivation
- 2 Introduction
 - Classical formulation of dynamic programming
 - Some examples
- Mode
- Training
- Experiments
 - Sorting
 - Planar ConvexHull
- 6 Current and Future work
- Summary

Strong vs Weak supervision

We can differentiate between two kinds of supervision depending on the amount of information we have for training.

- Strong Supervision: We know the dynamic task by hand and we have access to the targets at every node of the tree.
- Weak Supervision: We only observe input-output pairs at the largest scale, we do not have intermediate labels for each split/merge decision.

Strong Supervision

Suppose we know the dynamic task by hand and we have access to the targets y_{ν} at every node of the generated tree.

• We can supervise all nodes of the dynamic tree.

$$\mathcal{L}(\theta) = \sum_{k=1}^{d} \sum_{v \in V^k} I^s(y_v^s, \hat{y}_v(\theta))$$

It is a form of currculum learning.

Weak Supervision

- Since we only observe input-output pairs at the largest scale, we do not have intermediate labels for each split/merge decision.
- The training by weak supervision balances two quantities:

$$\mathcal{L}(heta) = \mathcal{L}_{\mathsf{acc}}(heta) + \mathcal{L}_{\mathsf{compl}}(heta)$$

where

- $\mathcal{L}_{acc}(\theta)$ enforces solving the task with **high accuracy**.
- $\mathcal{L}_{\text{compl}}(\theta)$ enforces solving the task with **small complexity** by exploiting a task-specific prior.

Weak Supervision

$$\mathcal{L}(\theta) = \mathcal{L}_{acc}(\theta) + \mathcal{L}_{compl}(\theta) = \sum_{k=1}^{d} \sum_{v \in V^k} \left[I^w(y_v^w, \hat{y}_v(\theta)) + \alpha_k R_{\theta}(\hat{y}_v(\theta)) \right]$$

where:

- $I^{w}(y_{v}^{w}, \hat{y}_{v}(\theta))$ only supervises elements which are present at the final target (y_{v}^{w}) .
- $R_{\theta}(\hat{y}_{\nu}(\theta))$ acts as a regularizer enforcing some prior knowledge for the task.

- Motivation
- 2 Introduction
 - Classical formulation of dynamic programming
 - Some examples
- Model
- 4 Training
- **5** Experiments
 - Sorting
 - Planar ConvexHull
- 6 Current and Future work
- Summary

Split model for sorting

- The split model will receive a sequence of real numbers and will output a binary mask on them.
- We will use a model for sets, i.e, the function will be covariant to permutations $S_{\theta}(\mathbf{x}_{\sigma}) = S_{\theta}(\mathbf{x})_{\sigma}$.

$$\mathbf{x}=(x_1,\ldots,x_n)$$
 $h_i^{k+1}=\operatorname{sigmoid}(W_1^k(h_i^k,x_i)+W_2^kar{h}^k)$ $k=0,\ldots,l-1$ $\hat{y}=p_i=\operatorname{sigmoid}(Wh_i^l+b)$ where $\bar{h}^k=\frac{1}{n}\sum_i h_i^k$.

• Sample or take the mode from **p** to decide the partition.

Training sorting

- Only can supervise elements which are in the correct branch of the tree according to the target.
- $R(\hat{y}(\theta)) = \hat{\sigma}(\hat{y}_v) = \frac{1}{n_v 1} \sum_{i=1}^{n_v} (p_i^2 \hat{\mu})$ maximize variance of $\mathbf{p} = (p_1, \dots, p_{n_v})$ to enforce even splits.

Experiments on sorting

	Test n = 32	Test n = $[64,128]$
HAM trained $n = 32$	0.04%	0.24%
DivConq trained $n = 32$	0.02%	0.16%
DivConq trained $n = 256$	0%	0.1%

Planar Convex Hull

We will suppose an oracle split, i.e, a tree-structured partition of the input set of points into disjoint sets.

The dataset consists of input-output pairs where:

- inputs are tree-structured disjoint convex hulls.
- targets are the final convex hull (WS), or the target convex hulls at each dynamic step (SS).

At each scale the model sees much less points:

 \bullet if $X=\{x_1,\ldots,x_n\}\in \mathcal{K}$ taken uniformly from a planar polytope, then

$$\mathbb{E}|CH(X)| \lesssim \log n$$

 This property can be exploited by a dynamic model! The number of points is considerably reduced across scales.

Planar Convex Hull: Model and Weak supervision

- We use a RNN with attention over the points and output a vector of probabilities.
- Only can supervise points that belong to the final convex hull.
- $R(\hat{y}_{\nu}(\theta)) = |\sum_{i=1}^{n_{\nu}} p_i \alpha_k n_{\nu}|$ acts as a regularizer forcing the model to pick a certain amount of elements.

Convex Hull: Experiments

- All models trained for 60 points, 5 scales.
- Results:

Points,scales	60, 5	120, 6	240, 7
No-Disc	52%	26%	4%
Disc	51%	29%	9%
Baseline	46%	16%	0.2%

- Motivation
- 2 Introduction
 - Classical formulation of dynamic programming
 - Some examples
- Model
- Training
- Experiments
 - Sorting
 - Planar ConvexHull
- 6 Current and Future work
- Summary

Current work

- Explore deeper the convex hull model. Make it end-to-end differentiable by not ruling out points at each scale.
- Dynamic shortest path.
- Prove consistency for weak supervision.

Future work

- Joint training **Split** + **Merge**.
- Applications to Hierarchical Reinforcement Learning.

- Motivation
- 2 Introduction
 - Classical formulation of dynamic programming
 - Some examples
- Model
- Training
- Experiments
 - Sorting
 - Planar ConvexHull
- 6 Current and Future work
- Summary

 We present a dynamic model for algorithmic discrete tasks that exploits self-similarity across scales.

Pros

- Ability to train consistently with only input-output pairs.
- Proved much better generalization for $n \to \infty$ than models that try to solve directly the task.
- Flexible running complexity and learnable in a differentiable manner.

Cons

- For now, very tailored for the task.
- Most of the times Merge/Split model can't be implemented with binary masks and order matters a lot.

Thanks!