Part II: Generalized Linear Models

Chapter II.3

Models for Binary Response

Logistic Regression: Goodness of Fit - Infinite Estimates

Goodness of Fit for Logistic Regression

II.3.20 Remark (analysis of deviance)

For GLMs. the analysis of variance procedure of LMs generalizes to the analysis of deviance. For binomial responses $m_i Y_i \sim \mathcal{B}(m_i, \pi_i)$, it holds $a(\phi; i) = \phi/w_i$ with $\phi = 1$ and $w_i = m_i$, $i=1,\ldots,n$. If all $w_i=1$, then the data are ungrouped. In this case, if $\ell_{\mathcal{M}}(\hat{\mu};y)$ and ℓ_{sat} are the maximized log likelihood for the model under consideration \mathcal{M} and the saturated model \mathcal{M}_{sat} , then the deviance (s. Definition II.2.35):

$$D(\boldsymbol{y}; \hat{\boldsymbol{\mu}}) = -2\left[\ell(\hat{\boldsymbol{\mu}}; \boldsymbol{y}) - \ell_{sat}\right] = \sum_{i=1}^{n} w_i \left(y_i(\tilde{\boldsymbol{\theta}}_i - \hat{\boldsymbol{\theta}}_i) - \left[b(\tilde{\boldsymbol{\theta}}_i) - b(\hat{\boldsymbol{\theta}}_i)\right]\right),$$

with $\hat{\theta}_i$ being the MLE of θ_i under \mathcal{M} and $\bar{\theta}_i = y_i$ (perfect fit under \mathcal{M}_{sat}), equals the LRS G^2 for testing model \mathcal{M} (s. also Remark II.2.37(2)):

$$D(\boldsymbol{y}; \hat{\boldsymbol{\mu}}) = D(\boldsymbol{y}; \hat{\boldsymbol{\pi}}) = G^2(\mathcal{M}) = 2\sum_{i=1}^n m_i y_i \log\left(\frac{m_i y_i}{m_i \hat{\pi}_i}\right) + 2\sum_{i=1}^n m_i (1-y_i) \log\left(\frac{m_i (1-y_i)}{m_i (1-\hat{\pi}_i)}\right).$$
 If $m_i y_i \ [m_i (1-y_i)]$ is the number of observed successes [failures] in the i -group $(i=1,\dots,n)$.

Binary Logistic Regression Goodness of Fit (GoF) for Grouped Data

II.3.21 LRS G^2 and Pearson's X^2

For Binomial GLMs with grouped data (x: categorical with n settings), the deviance (i.e LRS) G^2 and the Pearson's X^2 of a model $\mathcal M$ are Goodness of Fit (GoF) statistics for testing that $\mathcal M$ truly holds (H_0) . They are expressed by

$$G^2 = 2\sum_i \sum_{k=1}^2 n_{ik} \log \left(\frac{n_{ik}}{\hat{m}_{ik}}\right) \quad \text{and} \quad X^2 = \sum_i \sum_{k=1}^2 \frac{(n_{ik} - \hat{m}_{ik})^2}{\hat{m}_{ik}} \ ,$$

where for the *i*-th group (*i*-th setting of \mathbf{x}) of size m_i ($w_i = m_i$), $i = 1, \dots, n$, we denote

- \mathbf{o} n_{i1} : observed number of 'successes' (Y=1) at \mathbf{x}_i ,
- \bullet n_{i2} : observed number of 'failures' (Y=0) at \mathbf{x}_i
- $n_{i+}=n_{i1}+n_{i2}=m_i$ (size of this group),
- $\hat{\pi}_i$: estimated success probability P(Y=1) at \mathbf{x}_i ,
- $\hat{m}_{i1} = m_i \hat{\pi}_i$: predicted number of 'successes' for this group,
- $\hat{m}_{i2}=m_i(1-\hat{\pi}_i)$: predicted number of 'failures' for this group $\hat{m}_{i1}+\hat{m}_{i2}=m_i$

Binary Logistic Regression Goodness of Fit (GoF) for Grouped Data

II.3.22 Remark (asymptotic equivalence of G^2 and X^2)

For grouped data with fixed number of settings (n) for the explanatory variables

$$X^2$$
, $G^2 \stackrel{as.}{\sim} \chi_{df}^2$,

as $n_{tot} = \sum_{i=1}^n m_i$ increases, provided that most $\{m_{ik}\}$ are large (practical rule: at least 80% of them ≥ 5). The degrees of freedom are $df = \dim(\mathcal{M}_{sat}) - \dim(\mathcal{M})$, where the dimension of the parameter space under \mathcal{M} equals the number of parameters of this model $(\dim(\mathcal{M}) = p)$.

• The test statistics G^2 and X^2 are asymptotically equivalent under H_0 (model $\mathcal M$ holds). As n_{tot} increases, X^2 converges faster to χ^2 -distribution than G^2 and behaves "better" when some m_{ik} are small (< 5).

 $^{^{}a}$ For the proof of this equivalence and a detailed discussion s. Agresti (2013, Categorical Data Analysis (CDA), 3rd ed., Wiley, p. 597).

Binary Logistic Regression Goodness of Fit

II.3.23 Remark

- When some or all of the components of ${\bf x}$ are continuous, X^2 and G^2 are no more asymptotically χ^2 distributed, but they are still useful in comparing models applied on the same data set.
- X^2 and LRS (Deviance) In order to proceed to asymptotic inference with ungrouped data, *grouping* of the data is required.

The grouping is based on the number of distinct values/levels of the explanatory variables. If this number of groups n is too large (common for continuous explanatory variables), then the expected values are to low (< 5) and hence we cannot compute p-values based on the χ^2 -approximation.

In such cases, if X^2/df (G^2/df) is close to 1, this is an indication of good fit.

№ II.3.24 The Test of Hosmer and Lemeshow

For ungrouped data, the total number of observations is $n_{tot} = n$. These n observations are grouped in g groups (usually, g = 10).

The first group consists of the n_1 observations that correspond to the n/g smallest $\hat{\pi}$, the 2nd group consists of the n_2 observations with the next n/g smallest $\hat{\pi}$, etc.

Let y_i^* be the number of observed successes in group i $(i=1,\ldots,g)$ and $\overline{\pi}_i$ the average of $\hat{\pi}_i$ for the observations in group i.

The test is based on the statistical function

$$\hat{C} = \sum_{i=1}^{g} \frac{(y_i^* - n_i \overline{\pi}_i)^2}{n_i \overline{\pi}_i (1 - \overline{\pi}_i)} .$$

Hosmer and Lemeshow a proved via simulations that, provided that all the levels of the explanatory variables are different and the logistic regression model holds, the distribution of \hat{C} is approximated by X_{g-2}^2 (independently from the number of explanatory variables).

^aHosmer and Lemeshow (1980). A goodness-of-fit test for multiple logistic regression model. Commun. Stat. A 9: 1043-1069.

▶ II.3.25 Example (horseshoe crabs data)

For a detailed desciption/analysis, see Agresti (2013, CDA, Sec. 4.3.2, Sec. 6.1) Ungrouped data set: sample of n=173 female crabs,

```
Variables: C = \text{color (4 categories)} S = \text{spine condition (3 categories)} W = \text{width of carapace shell (cm)} \rightarrow (m = 66 \text{ different levels}) SAT = \text{number of satellites} WT = \text{weight of crab (kg)} Y = \text{whether a female horseshoe crab has 'satellites' (1 = \text{yes, 0} = \text{no})}
```

Data in file 'crabs.dat'.

```
> setwd("C:/.../ADA II (for R)"); fungal <- read.table("crabs.dat", header=T)</pre>
> crabs[1:2,] # try: head(crabs)
            W
                   SAT
                         WT
     3
        3
                    8
            28.3
                        3050
                               1
     4
        3 22.5
                 0 1550
       1
            26.0
                 9 2300 1
> cor(crabs$W,crabs$WT) # high correlated weight and width
[1] 0.8868715
> crabs$S <- factor(crabs$S)</pre>
> # color has values from 2 (light) to 5 (dark) --> recode to 1-4:
> C4 <- factor(crabs$C-1); C2 <- crabs$C</pre>
> C2[which(crabs$C < 5)] <- 2 # -> merge color to binary:
> C2[which(crabs$C == 5)] <- 1  # 1:dark, 2:other</pre>
> C2 < - factor(C2)
> fit <- glm(Y \sim C2*W, family=binomial, data =crabs)
             Terms added sequentially (first to last)
                  Df Deviance Resid, Df Resid, Dev
              NULT.
                                   172
                                          225.76
              C2
                  1 10.9656
                                  171
                                          214.79
                   1 26.8351
                                  170 187.96
             C2:W 1 1.1715
                                  169
                                       186.79
> anova(fit)
```

```
> fit2 <- glm(Y \sim C2+W, family=binomial, data =crabs)
> summary(fit2)
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -12.9795 2.7272 -4.759 1.94e-06 ***
        1.3005 0.5259 2.473 0.0134 *
C22
     0.4782 0.1041 4.592 4.39e-06 ***
Signif, codes: 0 \*** 0.001 \** 0.01 \*/ 0.05 \./ 0.1 \/ 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 187.96 on 170 degrees of freedom
AIC: 193.96
Number of Fisher Scoring iterations: 4
```

Infinite Estimates in Logistic Regression

II.3.26 Remark (on ML estimation of logistic model parameters)

At least one parameter estimate is infinite if we can separate with a plane the x values where y=1 and where y=0.

- Complete separation: No observations on that plane
- Quasi-complete separation: On the plane boundary, both outcomes occur (common in contingency tables, i.e. logit models)
- Most software does not adequately detect this.

Data with infinite MLE in R

№ II.3.27 Example

Residual deviance: 2.1827e-10 on 6 degrees of freedom

Remark: If we add two observations at x = 50, one with y = 1 and one with y = 0, then quasicomplete separation occurs.

No warning for complete or quasi-complete separation!!

Sign: Huge values for the Std. Errors of the parameters' MLEs.

► II.3.28 Example (grouped data: quasi-complete separation)

Consider the following fungal infection data (Agresti, CDA 2013, Section 6.5.2):

		Response	
Center (C)	Group	Success (S)	$Failure\;(F)$
1	Treatment (T)	0	5
	Placebo	0	9
2	Treatment	1	12
	Placebo	0	10
3	Treatment	0	7
	Placebo	0	5
4	Treatment	6	3
	Placebo	2	6
5	Treatment	5	9
	Placebo	2	12

Data in file 'fungal.dat'.

```
> setwd("C:/.../ADA_II (for R)"); fungal <- read.table("fungal.dat", header=T)
> fungal[1:2.] # trv: head(fungal)
           treatment
     center
                         mγ
                              5
 1
> fit <- glm(my/m ~ treatment + factor(center), weights=m, family=binomial, data=fungal)
               Coefficients:
                                Estimate Std. Error z value Pr(>|z|)
                (Intercept) -2.459e+01 2.330e+04 -0.001
                                                           0.9992
                              1.546e+00 7.017e-01 2.203 0.0276 *
               treatment
               factor(center)2 2.039e+01 2.330e+04 0.001 0.9993
               factor(center)3 4.809e-03 3.172e+04 0.000 1.0000
               factor(center)4 2.363e+01 2.330e+04 0.001
                                                           0.9992
               factor(center)5 2.257e+01 2.330e+04 0.001
                                                           0.9992
               Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \' 0.1 \' 1
                (Dispersion parameter for binomial family taken to be 1)
                   Null deviance: 28.53202 on 9 degrees of freedom
               Residual deviance: 0.50214 on 4 degrees of freedom
               AIC: 24.859
               Number of Fisher Scoring iterations: 21
> summary(fit)
```

Model: $logit[P(S)] = log\left(\frac{P(S)}{1-P(S)}\right) = \beta_0 + \beta^T x + \beta_j^C$, with $\beta_1^C = 0$ (for identifiability) and x = 1 for drug and 0 for control.

> summarv(fit2)

Equivalently we can fit a model without intercept: $logit[P(S)] = \alpha_j^C + \beta^T x$, for which no identifiability constraint is required (12 localizes the problem in centers 1 and 3).

```
> fit2 <- glm(my/m ~ -1+treatment + factor(center), weights=m, family=binomial, data=fungal)
                 Coefficients:
                                  Estimate Std. Error z value Pr(>|z|)
                                 1.5460
                                              0.7017 2.203 0.027569 *
                 treatment
                 factor(center)1 -24.5922 23296.3959 -0.001 0.999158
                 factor(center)2 -4.2025 1.1891 -3.534 0.000409 ***
                 factor(center)3 -24.5874 21523.6453 -0.001 0.999089
                 factor(center)4 -0.9592 0.6548 -1.465 0.142956
                 factor(center)5 -2.0223 0.6700 -3.019 0.002540 **
                 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                 (Dispersion parameter for binomial family taken to be 1)
                     Null deviance: 73.07369 on 10 degrees of freedom
                 Residual deviance: 0.50214 on 4 degrees of freedom
                 ATC: 24.859
                 Number of Fisher Scoring iterations: 21
```

©ISW 2022, Cramer, Kateri 103

- $oldsymbol{\triangleright}$ Zero margins for centers 1,3 $\longrightarrow \hat{lpha}_1^C = \hat{lpha}_3^C = \infty$
- Strategies to estimate treatment effect β :
 - remove 'uninformative' centers 1,3
 - or add very small constant (e.g. 10^{-8}) to zero cells, so that all estimates exist
 - or combine some centers
- Cochran-Mantel-Haenszel test or exact test about treatment effect (not considered here) ignore centers 1,3
- **II.3.29 Remark**

In Example II.3.28, quasi-complete separation affects $\{\hat{\alpha}^C_j\}$, but not $\hat{\beta}.$

Alternative Approaches for Infinite Estimates?

II.3.30 Remark

- Sayesian approach: Influence of prior distribution smooths data and results in finite posterior mean estimates.
- Penalized likelihood approach (Firth, Biometrika 1993): Add a penalty term to the likelihood function. Maximizing the penalized likelihood results in shrinking estimates toward 0. (In R: package logistf)