# Regression Models : Automatic | Manual Transmission better for MPG

Aysegul Sonmez March 4, 2018

#### R Markdown

Motor Trends Regression Model Project Week 4 Executive Summary

In this report, we will analyze mtcars data set and explore the relationship between a set of variables and miles per gallon (MPG). The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models). We use regression models and exploratory data analyses to mainly explore how automatic (am = 0) and manual (am = 1) transmissions features affect the MPG feature. The t-test shows that the performance difference between cars with automatic and manual transmission. And it is about 7 MPG more for cars with manual transmission than those with automatic transmission. Then, we fit several linear regression models and select the one with highest Adjusted R-squared value. So, given that weight and 1/4 mile time are held constant, manual transmitted cars are  $14.079 + (-4.141)^*$ weight more MPG (miles per gallon) on average better than automatic transmitted cars. Thus, cars that are lighter in weight with a manual transmission and cars that are heavier in weight with an automatic transmission will have higher MPG values.

#### **Exploratory Data Analysis**

First, we load the data set mtcars and change some variables from numeric class to factor class.

```
library(ggplot2)
data(mtcars)
mtcars[1:3, ] # Sample Data
                   mpg cyl disp hp drat
                                              wt qsec vs am gear carb
## Mazda RX4
                  21.0
                           160 110 3.90 2.620 16.46
                                                                       4
## Mazda RX4 Wag 21.0
                            160 110 3.90 2.875 17.02
                                                        0
                                                                       4
## Datsun 710
                  22.8
                            108 93 3.85 2.320 18.61
dim(mtcars)
## [1] 32 11
mtcars$cyl <- as.factor(mtcars$cyl)</pre>
mtcars$vs <- as.factor(mtcars$vs)</pre>
mtcars$am <- factor(mtcars$am)</pre>
mtcars$gear <- factor(mtcars$gear)</pre>
mtcars$carb <- factor(mtcars$carb)</pre>
attach(mtcars)
## The following object is masked from package:ggplot2:
##
##
       mpg
```

Then, we do some basic exploratory data analyses. Please refer to the Appendix: Figures section for the plots. According to the box plot, we see that manual transmission yields higher values of MPG in general. And as for the pair graph, we can see some higher correlations between variables like "wt", "disp", "cyl" and "hp".

#### Inference

At this step, we make the null hypothesis as the MPG of the automatic and manual transmissions are from the same population (assuming the MPG has a normal distribution). We use the two sample T-test to show it.

```
result <- t.test(mpg ~ am)
result$p.value

## [1] 0.001373638

result$estimate

## mean in group 0 mean in group 1
## 17.14737 24.39231</pre>
```

Since the p-value is 0.00137, we reject our null hypothesis. So, the automatic and manual transmissions are from different populations. And the mean for MPG of manual transmitted cars is about 7 more than that of automatic transmitted cars.

Regression Analysis

## gear4

## gear5

First, we fit the full model as the following.

1.11435

2.52840

3.79952

3.73636

```
fullModel <- lm(mpg ~ ., data=mtcars)</pre>
summary(fullModel) # results hidden
##
## Call:
## lm(formula = mpg ~ ., data = mtcars)
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
## -3.5087 -1.3584 -0.0948 0.7745
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23.87913
                           20.06582
                                      1.190
                                               0.2525
## cyl6
               -2.64870
                            3.04089
                                     -0.871
                                               0.3975
               -0.33616
                            7.15954
## cy18
                                     -0.047
                                               0.9632
## disp
                0.03555
                            0.03190
                                      1.114
                                               0.2827
                                               0.0939
               -0.07051
                            0.03943
                                     -1.788
## hp
## drat
                1.18283
                            2.48348
                                      0.476
                                               0.6407
## wt
               -4.52978
                            2.53875
                                     -1.784
                                               0.0946 .
                0.36784
                            0.93540
                                      0.393
                                               0.6997
## qsec
## vs1
                1.93085
                            2.87126
                                      0.672
                                               0.5115
## am1
                1.21212
                            3.21355
                                      0.377
                                               0.7113
```

0.293

0.677

0.7733

0.5089

```
## carb2
              -0.97935
                          2.31797
                                   -0.423
                                            0.6787
                          4.29355
## carb3
               2.99964
                                    0.699
                                            0.4955
               1.09142
## carb4
                          4.44962
                                    0.245
                                            0.8096
## carb6
               4.47757
                          6.38406
                                    0.701
                                            0.4938
## carb8
               7.25041
                          8.36057
                                    0.867
                                            0.3995
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.833 on 15 degrees of freedom
## Multiple R-squared: 0.8931, Adjusted R-squared: 0.779
## F-statistic: 7.83 on 16 and 15 DF, p-value: 0.000124
```

This model has the Residual standard error as 2.833 on 15 degrees of freedom. And the Adjusted R-squared value is 0.779, which means that the model can explain about 78% of the variance of the MPG variable. However, none of the coefficients are significant at 0.05 significant level.

Then, we use backward selection to select some statistically significant variables.

```
stepModel <- step(fullModel, k=log(nrow(mtcars)))</pre>
```

```
## Start: AIC=101.32
## mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb
##
##
                          RSS
                                  AIC
          Df Sum of Sq
## - carb
               13.5989 134.00
                               87.417
## - gear 2
               3.9729 124.38
                              95.428
## - cyl
           2
              10.9314 131.33
                               97.170
## - am
           1
               1.1420 121.55
                               98.157
## - qsec 1
               1.2413 121.64
                               98.183
## - drat 1
               1.8208 122.22
                               98.335
## - vs
           1
               3.6299 124.03 98.806
## - disp 1
               9.9672 130.37 100.400
## <none>
                       120.40 101.321
           1
               25.5541 145.96 104.014
## - wt
## - hp
           1
              25.6715 146.07 104.040
##
## Step: AIC=87.42
## mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear
##
##
          Df Sum of Sq
                          RSS
## - gear
         2
               5.0215 139.02 81.662
           2
               12.5642 146.57 83.353
## - cvl
## - disp
          1
               0.9934 135.00 84.187
## - drat 1
               1.1854 135.19 84.233
## - vs
               3.6763 137.68 84.817
           1
## - qsec 1
               5.2634 139.26 85.184
## - am
              11.9255 145.93 86.679
           1
## <none>
                       134.00 87.417
               19.7963 153.80 88.360
## - wt
           1
## - hp
              22.7935 156.79 88.978
##
## Step: AIC=81.66
## mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am
```

```
##
## Df Sum of Sq RSS AIC
## - cyl 2 10.4247 149.45 77.045
## - drat 1
            0.9672 139.99 78.418
## - disp 1
            1.5483 140.57 78.551
## - vs 1 2.1829 141.21 78.695
## - qsec 1 3.6324 142.66 79.022
                    139.02 81.662
## <none>
## - am 1 16.5665 155.59 81.799
## - hp 1 18.1768 157.20 82.129
## - wt 1 31.1896 170.21 84.674
##
## Step: AIC=77.04
## mpg ~ disp + hp + drat + wt + qsec + vs + am
##
        Df Sum of Sq
                     RSS
## - vs 1 0.645 150.09 73.717
             2.869 152.32 74.187
## - drat 1
## - disp 1
             9.111 158.56 75.473
## - qsec 1
            12.573 162.02 76.164
## - hp 1 13.929 163.38 76.431
## <none>
                   149.45 77.045
## - am 1 20.457 169.91 77.684
## - wt 1 60.936 210.38 84.523
##
## Step: AIC=73.72
## mpg \sim disp + hp + drat + wt + qsec + am
##
        Df Sum of Sq
                       RSS
                             AIC
## - drat 1 3.345 153.44 70.956
## - disp 1 8.545 158.64 72.023
## - hp 1 13.285 163.38 72.965
## <none>
                    150.09 73.717
## - am 1
            20.036 170.13 74.261
## - qsec 1
            25.574 175.67 75.286
## - wt 1
            67.572 217.66 82.146
##
## Step: AIC=70.96
## mpg \sim disp + hp + wt + qsec + am
##
       Df Sum of Sq RSS
## - disp 1 6.629 160.07 68.844
## - hp 1 12.572 166.01 70.011
             153.44 70.956
## <none>
## - qsec 1 26.470 179.91 72.583
## - am 1 32.198 185.63 73.586
## - wt
        1
            69.043 222.48 79.380
##
## Step: AIC=68.84
## mpg \sim hp + wt + qsec + am
##
##
       Df Sum of Sq RSS
## - hp 1 9.219 169.29 67.170
                    160.07 68.844
## <none>
```

```
20.225 180.29 69.186
## - qsec
           1
## - am
           1
                25.993 186.06 70.193
## - wt
           1
                78.494 238.56 78.147
##
## Step: AIC=67.17
  mpg ~ wt + qsec + am
##
##
##
          Df Sum of Sq
                          RSS
                                  ATC
## <none>
                       169.29 67.170
## - am
           1
                26.178 195.46 68.306
## - qsec
           1
               109.034 278.32 79.614
               183.347 352.63 87.187
## - wt
           1
summary(stepModel) # results hidden
##
## Call:
## lm(formula = mpg ~ wt + qsec + am, data = mtcars)
## Residuals:
##
       Min
                1Q Median
                                3Q
                                        Max
## -3.4811 -1.5555 -0.7257
                           1.4110
                                    4.6610
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 9.6178
                            6.9596
                                      1.382 0.177915
                -3.9165
                            0.7112
                                    -5.507 6.95e-06 ***
## wt.
                 1.2259
                            0.2887
                                      4.247 0.000216 ***
## qsec
                 2.9358
                                      2.081 0.046716 *
## am1
                            1.4109
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.459 on 28 degrees of freedom
## Multiple R-squared: 0.8497, Adjusted R-squared: 0.8336
## F-statistic: 52.75 on 3 and 28 DF, p-value: 1.21e-11
```

This model is "mpg  $\sim$  wt + qsec + am". It has the Residual standard error as 2.459 on 28 degrees of freedom. And the Adjusted R-squared value is 0.8336, which means that the model can explain about 83% of the variance of the MPG variable. All of the coefficients are significant at 0.05 significant level.

Please refer to the Appendix: Figures section for the plots again. According to the scatter plot, it indicates that there appear to be an interaction term between "wt" variable and "am" variable, since automatic cars tend to weigh heavier than manual cars. Thus, we have the following model including the interaction term:

```
amIntWtModel<-lm(mpg ~ wt + qsec + am + wt:am, data=mtcars)
summary(amIntWtModel) # results hidden

##
## Call:
## lm(formula = mpg ~ wt + qsec + am + wt:am, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5076 -1.3801 -0.5588 1.0630 4.3684
##
## Coefficients:</pre>
```

```
Estimate Std. Error t value Pr(>|t|)
##
                  9.723
                             5.899
                                     1.648 0.110893
## (Intercept)
## wt
                 -2.937
                             0.666
                                    -4.409 0.000149 ***
                  1.017
                             0.252
                                     4.035 0.000403 ***
## qsec
## am1
                 14.079
                             3.435
                                     4.099 0.000341 ***
                                    -3.460 0.001809 **
## wt:am1
                 -4.141
                             1.197
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.084 on 27 degrees of freedom
## Multiple R-squared: 0.8959, Adjusted R-squared: 0.8804
## F-statistic: 58.06 on 4 and 27 DF, p-value: 7.168e-13
```

This model has the Residual standard error as 2.084 on 27 degrees of freedom. And the Adjusted R-squared value is 0.8804, which means that the model can explain about 88% of the variance of the MPG variable. All of the coefficients are significant at 0.05 significant level. This is a pretty good one.

Next, we fit the simple model with MPG as the outcome variable and Transmission as the predictor variable.

```
amModel<-lm(mpg ~ am, data=mtcars)
summary(amModel) # results hidden

##
## Call:</pre>
```

```
## Call:
## lm(formula = mpg ~ am, data = mtcars)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
##
  -9.3923 -3.0923 -0.2974
                           3.2439
                                    9.5077
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
                 17.147
                             1.125
                                   15.247 1.13e-15 ***
## (Intercept)
                                     4.106 0.000285 ***
## am1
                  7.245
                             1.764
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
## F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
```

It shows that on average, a car has 17.147 mpg with automatic transmission, and if it is manual transmission, 7.245 mpg is increased. This model has the Residual standard error as 4.902 on 30 degrees of freedom. And the Adjusted R-squared value is 0.3385, which means that the model can explain about 34% of the variance of the MPG variable. The low Adjusted R-squared value also indicates that we need to add other variables to the model.

Finally, we select the final model.

```
anova(amModel, stepModel, fullModel, amIntWtModel)
```

```
## Analysis of Variance Table
##
## Model 1: mpg ~ am
## Model 2: mpg ~ wt + qsec + am
## Model 3: mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb
## Model 4: mpg ~ wt + qsec + am + wt:am
```

```
Res.Df
              RSS Df Sum of Sq
                                            Pr(>F)
##
## 1
         30 720.90
         28 169.29
## 2
                     2
                          551.61 34.3604 2.509e-06 ***
                           48.88 0.4685
## 3
         15 120.40 13
                                            0.9114
## 4
         27 117.28 -12
                            3.13
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
confint(amIntWtModel) # results hidden
##
                    2.5 %
                            97.5 %
## (Intercept) -2.3807791 21.826884
               -4.3031019 -1.569960
## wt
## qsec
                0.4998811 1.534066
## am1
                7.0308746 21.127981
               -6.5970316 -1.685721
## wt:am1
```

We end up selecting the model with the highest Adjusted R-squared value, "mpg  $\sim$  wt + qsec + am + wt:am".

#### summary(amIntWtModel)\$coef

```
##
               Estimate Std. Error
                                                 Pr(>|t|)
                                    t value
               9.723053 5.8990407 1.648243 0.1108925394
## (Intercept)
              -2.936531 0.6660253 -4.409038 0.0001488947
## wt
## qsec
               1.016974 0.2520152 4.035366 0.0004030165
              14.079428 3.4352512 4.098515 0.0003408693
## am1
              -4.141376 1.1968119 -3.460340 0.0018085763
## wt:am1
```

Thus, the result shows that when "wt" (weight lb/1000) and "qsec" (1/4 mile time) remain constant, cars with manual transmission add 14.079 + (-4.141)\*wt more MPG (miles per gallon) on average than cars with automatic transmission. That is, a manual transmitted car that weighs 2000 lbs have 5.797 more MPG than an automatic transmitted car that has both the same weight and 1/4 mile time.

#### Residual Analysis and Diagnostics

Please refer to the Appendix: Figures section for the plots. According to the residual plots, we can verify the following underlying assumptions:

- 1. The Residuals vs. Fitted plot shows no consistent pattern, supporting the accuracy of the independenc
- 2. The Normal Q-Q plot indicates that the residuals are normally distributed because the points lie clos
- 3. The Scale-Location plot confirms the constant variance assumption, as the points are randomly distrib 4. The Residuals vs. Leverage argues that no outliers are present, as all values fall well within the 0.
- As for the Dfbetas, the measure of how much an observation has effected the estimate of a regression coefficient,

we get the following result:

```
sum((abs(dfbetas(amIntWtModel)))>1)
```

```
## [1] 0
```

Therefore, the above analyses meet all basic assumptions of linear regression and well answer the questions. Appendix: Figures

```
1.Boxplot of MPG vs. Transmission
```

```
boxplot(mpg ~ am, xlab="Transmission (0 = Automatic, 1 = Manual)", ylab="MPG",
       main="Boxplot of MPG vs. Transmission")
```

## **Boxplot of MPG vs. Transmission**



Transmission (0 = Automatic, 1 = Manual)

2.Pair Graph of Motor Trend Car Road Tests
pairs(mtcars, panel=panel.smooth, main="Pair Graph of Motor Trend Car Road Tests")

### **Pair Graph of Motor Trend Car Road Tests**



3. Scatter Plot of MPG vs. Weight by Transmission

```
ggplot(mtcars, aes(x=wt, y=mpg, group=am, color=am, height=3, width=3)) + geom_point() +
scale_colour_discrete(labels=c("Automatic", "Manual")) +
xlab("weight") + ggtitle("Scatter Plot of MPG vs. Weight by Transmission")
```

## Scatter Plot of MPG vs. Weight by Transmission



#### 4.Residual Plots

par(mfrow = c(2, 2))
plot(amIntWtModel)

