~ Chapter 4 ~

why is Business Intelligence useful for a Data Scientist?

Illustration by author

Structured -> Data ที่ถูกเก็มไว้ใน Warehouse

Unstructured -> Data ที่คอมพิวเพอร์ ไม่สามารถเข้าใจได้กันทั้ เช่น รูป เสียว รักกาม (คอมเมนท์)

OLTP vs OLAP

OLTP -> นลักการในการจัดการข้อมูล

เนื่อวนลัว (เพิ่ม, ลบ, อัพเดทข้อมูล เนมือน

data base) เป็นการเก็บรักษา Data

OLAP -> เก็ดทอนที่ Data wavehouse

เก็บเพื่อนี้ไปจิเคราะน์ เป็นการเวที่เราจัดการมาแล้ว

คืศัพท์ทั่งกรรุ้

Table of Content:

- 1. Data Warehouse
- 2. Data Mart
- 3. OLTP vs OLAP
- 4. ETL
- 5. Star vs Snowflake schemas
- b. Data Lake
- 7. From ETL to ELT
- 8. Batch vs stream Processing

1. Data Warehouse

Data Warehouse architecture. Illustration by author.

The data warehouses store three types of

data:

- ** Metadata -> ข้อมูลทั่งสินายข้อมูลเกี่ยวกับคลัวข้อมูลและ รายละเชียกเพื่อให้เข้าใจถ้วข้อมูลที่จักเก็บ
- Summary data

 ข้อมูลทั่รวบรวม /สมุปที่สร้างโดยผู้จัดการ

 ของคลังข้อมูล ช่วยเง่าประสิทธิภาพการสับคัน

 ข้อมล
- 🎥 Raw data -> ซังมูลดิบเป็นข้อมูลที่ไม่ได้ผ่านกรประมวลผล

2. Data Marts

Data warehouse vs Data Marts. Illustration by author.

3. ETL

ETL process. Illustration by author

ETL: เป็นกระบานการรวบรวม กละประมวลผลทั่ช่ายในัสามารถสร้าว

- 🝍 Extract: กันพอนกาเก็วก่องเวลากาเนล้วทำวๆ เช่น ไฟล์ csv, ฮรอพ, xml
- Transform: กรมปลาข้อมูลใน้อยู่ในรูปแบบทั้งปืนประโยชน์สานรับการวิเคราะผ์
- Load: ร้อมุลจากกบินทักลวในปลายทางสุดทัพนั้นต้อตลัวข้อมูล เกิดขั้นได้
 ทุกนาท์ ชั่วโมง วัน สีปดาน์ จั่วโนลดข้อมุล มากาท่าในรู้ การโคราะผ์

4. Star vs Snowflake Schemas

Snowflake Schema. Illustration by author

Data warehouse มันทักรับมูลโดยใช้ Schemas แลาษมิติ Schemas มีประโยชน์ ในการจัดการรับมูล จำนวนมากเพื่อวันกุประสาด ในการวิเคราะน์ มี Schemas

- Star Schema -> มีโครวหร้าวคลายดาวพรากลาวนี้ fact table โดยนี้ Dimension tables อยู่รอบๆ
- Snowflake Schema -> ฆ้โครวะร้าว แนมอนเกล็ดนิมะ รังดัดอย่างเพิ่มานาดและใช้พันท์รัดเกิบน้อยลว

5. Data Lake

DATA WAREHOUSE	DATA LAKE
structured, processed	structured / semi-structured/ unstructured, raw
schema-on-write	schema-on-read
expensive for large data	designed for low-cost
volumes	storage
less agile, fixed configuration	highly agile,
	possible updates
mature	maturing
business professionals	data scientists

Comparison of Data Warehouse and Data Lake. Illustration by author.

Data Lake มีความขับข้อแน้อยกว่า Oata waychouse เนื่อวาก
 เก็นข้อมูลทั่วข้อมูลดิบ ที่มีโครวสร้าว และไม่มีโครวสร้าว อนุญาติให้เก็น
 ข้อมูลโดยไม่มี Schemas อนุญาติให้ทัศกรริเคราะผ์ข้อมูลในอดัศ ปัจจุบัน
 และอนาคท เนื่อวากร้อมลารไม่ถูกลอ

6. From ETL to ELT

ETL	ELT
data is transformed and then	Data remains in the DB of
transferred to Data Warehouse DB	Data Warehouse
At early stages, easier to implement	To implement ELT process
	deep knowledge of tools and
	expert skills are needed.
Supports relational and	Supports structured, unstructured
structured data.	data sources.
Does not support Data Lake	Allows use of Data Lake
High costs for small and medium	Low entry costs using online
businesses.	Software as a Service Platforms.
Complexity increase with the	Power of the target platform
additional amount of data in	can process significant
the dataset.	amount of data quickly.
The process is used for over two decades.	Relatively new concept and complex to implement.

Comparison of ETL and ELT. Illustration by author

- ETL แร้ง Extract-transform-load เป็นการเอาข้อมูลในม่ๆไปลวในคลัว เผมาะกับ
 การจำงางอนุลทั่นี้ไม่มาง เพราะจำนักร transformข้อมุลก่อน ทำในผลลัพธ์ทั่งงาง พานั้น
 ข้อมุลที่ภามข้าเข้อแมากขึ้น
- ELT แร้ง Extract (สกัดข้อมูล) load (ด้วข้อมูล) transform (เปล่งแรงโบบบข้อมูล)
 กังการเท็ข้อมูลจากแม้วแผ่ว แร้ง แลายๆ แผ่งวมาเก็มโทในคลัวโดยในกระบวนการจะมีการ
 transform ข้อมูลทามทั้งก็แนดไว้

Chapter 4: Data Warehousing and On-line Analytical Processing

■ Data Warehouse: Basic Concepts

- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Design and Usage
- Data Warehouse Implementation
- Summary

What is a Data Warehouse?

- Defined in many different ways, but not rigorously
 - A decision support database that is maintained separately from the organization's operational database
 - U Support information processing by providing a solid platform of consolidated, historical data for analysis

างัน Data __nonvolatile collection of data in support of management's decision-making

process."—W. H. Inmon

-> เราต้องมีฟ้าแมาอา่าจะสร้าง DW มาเพื่ออะไร สร้างมาเพื่อผอบกำกาม

- Data warehousing:
 - The process of constructing and using data warehouses

Mu Bath

From Tables and Spreadsheets to Data Cubes

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube
- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions
 - Dimension tables, such as item (item_name, brand, type), or time(day, week, month, quarter, year)
 - Fáct table contains measures (such as dollars_sold) and keys to each of the related dimension tables
- Data cube: A lattice of cuboids
 - In data warehousing literature, an n-D base cube is called a base cuboid
 - The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid
 - ☐ The lattice of cuboids forms a data cube.

Conceptual Modeling of Data Warehouses

- Modeling data warehouses: dimensions & measures
 - □ Star schema: A fact table in the middle connected to a set of dimension tables
 - Snowflake schema: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
 - □ Fact constellations: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation

รtar Schema: An Example

Snowflake Schema: An Example

dollars sold city_key avg_sales city state_or_province Measures country

Fact Constellation: An Example

A Sample Data Cube

Typical OLAP Operations

- Roll up (drill-up): summarize data
 - by climbing up hierarchy or by dimension reduction
- Drill down (roll down): reverse of roll-up
 - from higher level summary to lower level summary or detailed data, or introducing new dimensions
- Slice and dice: project and select
- Pivot (rotate):
 - reorient the cube, visualization, 3D to series of 2D planes
- Other operations
 - □ Drill across: involving (across) more than one fact table
 - Drill through: through the bottom level of the cube to its back-end relational tables (using SQL)

