PSI* – récolte oraux 2025

25 juin 2025

Table des matières

Planche 1 (ENS)

Planche 2 (CCINP)

Planche 1 (ENS)

Énoncé:

Soit $f:[0,1]\to\mathbb{R}$.

On définit la variation totale de f sur [0,1] par :

$$V(f) = \sup_{n \in \mathbb{N}} \sup_{0 \le t_0 \le t_1 \le \dots \le t_n \le 1} \sum_{i=1}^{n} |f(t_i) - f(t_{i-1})|$$

On appelle BV([0,1]) l'ensemble des fonctions à variation bornée, c'est-à-dire les fonctions $f:[0,1]\to\mathbb{R}$ telles que $V(f)<+\infty$.

- 1) Montrer que les fonctions monotones et lipschitziennes sont à variation bornée.
- 2) Les fonctions à variation bornée sont-elles bornées ?
- 3) Trouver une fonction continue qui n'est pas à variation bornée.
- 4) Montrer que $(BV, \|\cdot\|)$ est un \mathbb{R} -espace vectoriel normé avec

$$||f|| = |f(0)| + V(f)$$

- 5) Montrer que le produit de deux fonctions à variation bornée est à variation bornée.
- **6)** Soient $f:[0,1] \to \mathbb{R}$, $g:[0,1] \to [0,1]$ deux fonctions à variation bornée.
 - a) Si g est monotone, montrer que $f \circ g \in BV$.
 - **b)** Si f est monotone, $f \circ g \in BV$?

Indications

- Poser $f(x) = x \cos\left(\frac{\pi}{x}\right)$
- Poser $t_0 = 0, t_1 = x$
- Utiliser que $f \in BV \Rightarrow f$ est bornée
- $g(t_k)$ est une subdivision, $h \in [0,1]$

Corrigé:

1) a) Supposons f croissante (le cas décroissant est analogue). Soit

$$0 \le t_0 \le \dots \le t_n \le 1$$

une subdivision. Alors:

$$\sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| = f(t_n) - f(t_0) \le f(1) - f(0)$$

donc $f \in BV$.

b) Si f est K-lipschitzienne, alors :

$$\sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| \le K \sum_{k=1}^{n} |t_k - t_{k-1}| \le K$$

donc $f \in BV$.

2) Oui. Soit f non bornée. Soit $t_0 = 0$.

Soit $M \in \mathbb{R}$ et $t_1 \in [0, 1]$ tel que $|f(t_1)| > M + |f(0)|$.

Alors:

$$\sum_{k=1}^{1} |f(t_k) - f(t_{k-1})| = |f(t_1) - f(t_0)| > M$$

donc $f \notin BV$.

3) Soit $f: x \mapsto x \cos\left(\frac{\pi}{x}\right)$ si $x \neq 0$, et f(0) = 0. Soit $n \in \mathbb{N}^*$ et $t_k = \frac{1}{k+1}$. Alors :

$$\sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| = \sum_{k=1}^{n} \frac{1}{k+1} + \frac{1}{k} \to +\infty$$

et pour tant f est continue sur [0,1]. Donc $f \notin BV$.

- 4) $-0 \in BV$, évident.
 - $\lambda f \in BV$ si $f \in BV$, facile.
 - Si $f, g \in BV$, alors $f + g \in BV$ avec :

$$V(f+q) \leq V(f) + V(q)$$

Ainsi, BV est un sous-espace vectoriel de $\mathcal{F}([0,1],\mathbb{R})$.

- $||f|| \ge 0$, évident.
- $\|\lambda f\| = |\lambda| \cdot \|f\|$, facile.
- Si $f,g \in BV$, nous avons vu que $V(f+g) \leq V(f) + V(g)$, ce qui implique facilement que $||f+g|| \leq ||f|| + ||g||$.
- Si ||f|| = 0, alors f(0) = V(f) = 0. Soit $x \in [0, 1]$, posons $t_0 = 0, t_1 = x$. Alors :

$$0 \le \sum_{k=1}^{1} |f(t_k) - f(t_{k-1})| \le V(f) = 0$$

donc |f(x) - f(0)| = 0 et f(x) = f(0). Ainsi f est nulle.

Donc $\|\cdot\|$ est une norme.

5) Soient $f,g \in BV$, M un majorant de |f|, et N un majorant de |g|. Alors pour toute subdivision $0 \le t_0 \le \cdots \le t_n \le 1$, on a :

$$\sum_{k=1}^{n} |(fg)(t_k) - (fg)(t_{k-1})| = \sum_{k=1}^{n} |f(t_k)(g(t_k) - g(t_{k-1})) + g(t_{k-1})(f(t_k) - f(t_{k-1}))|$$

$$\leq M \sum_{k=1}^{n} |g(t_k) - g(t_{k-1})| + N \sum_{k=1}^{n} |f(t_k) - f(t_{k-1})|$$

$$= MV(g) + NV(f)$$

donc $fg \in BV$.

6) a) Dans le cas où g est croissante, si $0 \le t_0 \le t_1 \le \cdots \le t_n \le 1$ alors $0 \le g(t_0) \le g(t_1) \le \cdots \le g(t_n) \le 1$ donc:

$$\sum_{k=1}^{n} |f(g(t_k)) - f(g(t_{k-1}))| \le V(f)$$

ainsi $f \circ g \in BV$.

Si g est décroissante, $1 \ge g(t_0) \le g(t_1) \ge \cdots \ge g(t_n) \ge 0$ mais le raisonnement est le même.

b) Non.

Posons:

$$f(x) = \begin{cases} 0 & \text{si } x \le \frac{1}{2} \\ 1 & \text{si } x > \frac{1}{2} \end{cases}, \quad g(x) = \frac{1}{2} \left(1 + x^3 \cos \left(\frac{\pi}{x} \right) \right)$$

Soit $n \in \mathbb{N}^*$, et $t_k = \frac{1}{k+1}$.

On remarque alors que:

$$f(g(t_k)) = \begin{cases} 0 & \text{si } g(t_k) < \frac{1}{2} \\ 1 & \text{si } g(t_k) > \frac{1}{2} \end{cases} \quad \text{donc } |f(g(t_k)) - f(g(t_{k-1}))| = 1.$$

Ainsi:

$$\sum_{k=1}^{n} |f(g(t_k)) - f(g(t_{k-1}))| = \sum_{k=1}^{n} 1 = n \to +\infty \quad \text{quand } n \to \infty$$

Donc $f \circ g \notin BV$.

Planche 2 (CCINP)

Énoncé:

Exercice 1 à préparer en 20 minutes : Soit A dans $\mathcal{M}_n(\mathbb{R})$ telle que $A^2 - 5A + 6I_n = 0$.

- 1) Donner 2 conditions nécessaire et suffisantes de diagonalisabilité pour une matrice carré.
- 2) Montrer que A est diagonalisable et que ses valeurs propres sont dans $\{2,3\}$. On note D la matrice diagonale associée.
- 3) Pour M dans $\mathcal{M}_n(\mathbb{R})$, on pose f(M) = MD + DM.
 - a) Montrer que f est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
 - b) Montrer que f est diagonalisable [indication : découper M et D en matrices par blocs].

Exercice 2 passage en 10 min sans préparation :

- 1) Chercher a, b, c tels que pour tout $t \in \mathbb{R} \setminus \{0, -1, 1\}, \frac{1}{t(t^2 1)} = \frac{a}{t} + \frac{b}{t 1} + \frac{c}{t + 1}$.
- 2) Résoudre l'équation différentielle $t(t^2-1)y'+2y=t^2$ sur $]1,+\infty[$ et sur]0,1[.

Corrigé:

Exercice 1:

- 1) Question de cours :
 - admet une base de vecteurs propres ;
 - les sous-espaces propres sont supplémentaires ;
 - le polynôme caractéristique est scindé et la multiplicité de chaque valeur propre est égale à la dimension du sous-espace propre associé.
- 2) Un polynôme annulateur de A est P = X² 5X + 6 = (X 2)(X 3). Il est scindé à racines simples, donc A est diagonalisable. Les valeurs propres de A sont parmi les racines de tout polynôme annulateur, donc elles sont dans {2,3}.
- 3) a) Si $M \in \mathcal{M}_n(\mathbb{R})$, $MD + DM \in \mathcal{M}_n(\mathbb{R})$. Et si $N \in \mathcal{M}_n(\mathbb{R})$, $\lambda \in \mathbb{R}$,

$$f(M+N) = MD + \lambda ND + DM + \lambda DN = f(M) + \lambda f(N)$$

donc $f \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}))$.

b) Si $D = 2I_n$ ou $3I_n$, f = 4id ou 6id, donc elle est évidemment diagonalisable. Sinon il existe $p \in [1, n-1]$ et q = n - p tel que dim $E_2(A) = p$ et dim $E_3(A) = q$.

Traitons le cas où

$$D = \begin{pmatrix} 2I_p & 0\\ 0 & 3I_q \end{pmatrix}$$

Alors en notant $M = \begin{pmatrix} K & L \\ N & Q \end{pmatrix}$ avec $K \in \mathcal{M}_p(\mathbb{R})$ et $Q \in \mathcal{M}_q(\mathbb{R})$, nous avons

$$f(M) = \begin{pmatrix} 2K & 3L \\ 2N & 3Q \end{pmatrix} + \begin{pmatrix} 2K & 2L \\ 3N & 3Q \end{pmatrix} = \begin{pmatrix} 4K & 5L \\ 5N & 6Q \end{pmatrix}$$

Soit $\mathscr{B} = (E_{ij})_{1 \leq i,j \leq n}$ la base canonique de $\mathscr{M}_n(\mathbb{R})$.

— Si
$$i, j \leq p, f(E_{ij}) = 4E_{ij}$$
;

— Si
$$i \leqslant p < j$$
 ou $j \leqslant p < i$, $f(E_{ij}) = 5E_{ij}$;

— Si
$$p < i, j$$
 alors $f(E_{ij}) = 6E_{ij}$.

C'est une base de vecteurs propres, donc f est diagonalisable.

Dans le cas général, notons $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$,

$$I_1 = \{i \in [1, n], \lambda_i = 2\}, I_2 = \{i \in [1, n], \lambda_i = 3\}$$

Alors $I_1 \sqcup I_2 = [1, n]$.

— Si
$$i, j \in I_1, f(E_{ij}) = 4E_{ij}$$
 (car $E_{ij}D = 2E_{ij}$ et $DE_{ij} = 2E_{ij}$)

— Si
$$i, j \in I_2$$
, $f(E_{ij}) = 6E_{ij}$ (car $E_{ij}D = 3E_{ij}$ et $DE_{ij} = 3E_{ij}$)

— Sinon
$$f(E_{ij}) = 5E_{ij}$$
 (car $D = 2$, $E_{ij}D = 2E_{ij}$ et $DE_{ij} = 3E_{ij}$ ou l'inverse)

et la conclusion est la même.

Exercice 2:

1) Après développement et identification on trouve

$$\frac{1}{t(t^2-1)} = -\frac{1}{t} + \frac{1}{2} \left(\frac{1}{t-1} + \frac{1}{t+1} \right).$$

2) Si $I =]1, +\infty[$ et J =]0, 1[

Sur I et J:

$$t(t^2 - 1)y' + 2ty = t$$
 équivaut à $y' + \frac{2}{t(t^2 - 1)}y = \frac{1}{t^2 - 1}$

Une primitive de $t\mapsto \frac{2}{t(t^2-1)}$ est $:t\mapsto -2\ln|t|+\ln|t-1|+\ln|t+1|.$

Donc l'ensemble des solutions de l'équation homogène sur I est

$$\left\{ \begin{array}{l} I \to \mathbb{R} \\ t \mapsto K \frac{t^2}{t^2 - 1} \end{array} \right., \quad K \in \mathbb{R} \right\}$$

De même, sur J on trouve :

$$\left\{ \begin{array}{l} J \to \mathbb{R} \\ t \mapsto K \frac{t^2}{t^2 - 1} \end{array} \right., \quad K \in \mathbb{R} \right\}.$$

Sur I et J, on trouve une solution particulière avec la même méthode et les mêmes calculs. Soit $y \in \mathcal{E}^1(I \text{ ou } J)$, il existe $K \in \mathcal{E}^1(I \text{ ou } J)$ tel que :

$$y: t \mapsto K(t) \cdot \frac{t^2}{t^2 - 1}$$

Alors y est solution de (E) sur I ou J ssi :

$$\forall t \in I \text{ ou } J, \quad K'(t) \cdot \frac{t^2}{t^2 - 1} = \frac{t}{t^2 - 1}$$

ssi :

$$\forall t \in I \text{ ou } J, \quad K'(t) = \frac{1}{t}$$

Donc:

$$t \mapsto \ln(t) \cdot \frac{t^2}{t^2 - 1}$$

est une solution particulière.

Finalement, l'ensemble des solutions de (E) est :

$$\left\{ \begin{array}{l}
I \text{ ou } J \to \mathbb{R} \\
t \mapsto (K + \ln(t)) \cdot \frac{t^2}{t^2 - 1} \end{array} \right., \quad K \in \mathbb{R} \right\}$$