Category Theory

October 19, 2018

C(ONTENTS	2
Contents		
0	Introduction	3
1	Definitions and examples	4
2	The Yoneda Lemma	10
3	Adjunctions	15

3

0 Introduction

I didn't go to the first 3 lectures, so no intro – sorry. I have no idea on what this course is about, let's see

1 Definitions and examples

Definition. (1.1)

A category C consists of:

- (a) a collection ob \mathcal{C} of objects A, B, C;
- (b) a collection mor C of morphisms f, g, h;
- (c) two operations domain, codomain assigning to each $f \in \text{mor } \mathcal{C}$ a pair of objects, its *domain* and *codomain*; we write $A \xrightarrow{f} B$ to mean f is a morphism and dom f = A, cod f = B;
- (d) an operation assigning to each $A \in \text{ob } \mathcal{C}$ a morphism $A \xrightarrow{1_A} A$;
- (e) a partial binary operation $(f,g) \to fg$ on morphisms, such that fg is defined iff dom $f = \operatorname{cod} g$, and dom $(fg) = \operatorname{dom} g$, $\operatorname{cod}(fg) = \operatorname{cod}(f)$ if fg is defined, satisfying:
- (f) $f1_A = f = 1_B f$ for any $A \xrightarrow{f} B$;
- (g) (fg)h = f(gh) whenever fg and gh are defined.

Remark. (1.2)

- (a) This definition is independent of any model of set theory. If we're given a particular model of set theory, we call \mathcal{C} small if ob \mathcal{C} and mor \mathcal{C} are sets.
- (b) Some texts say fg means f followed by g, i.e. fg is defined iff $\operatorname{cod} f = \operatorname{dom} g$.
- (c) Note that a morphism f is an identity iff fg = g and hf = h whenever the composites are defined. So we could formulate the definition entirely in terms of morphisms.

Example. (1.3)

(a) The category **Set** has all sets as objects, and all functions between sets as morphisms.

Strictly speaking, morphisms $A \to B$ are pairs (f, B) where f is a set-theoretic function. (See part II logic and sets)

(b) The category \mathbf{Gp} has all groups as objects, group homomorphisms as morphisms.

Similarly, **Ring** is the category of rings, $\mathbf{Mod}_{\mathbf{R}}$ is the category of R-modules.

(c) The category **Top** has all topological spaces as objects, and continuous functions as morphisms.

Similarly, **Unif** has all uniform spaces and uniformly continuous functions as morphisms, **Mf** has all manifolds and smooth maps correspondingly.

- (d) The category **Htpy** has the same objects as **Top**, but morphisms are homotopy classess of continuous functions. More generally, given \mathcal{C} , we call an equivalence relation \simeq on mor \mathcal{C} a congruence if $f \simeq g \implies \text{dom } f = \text{dom } g$ and cod f = cod g, and $f \simeq g \implies fh \simeq gh$ and $kf \simeq kg$ whenever the composites are defined. Then we have a category \mathcal{C}/\simeq with the same objects as \mathcal{C} , but congruence classes as morphisms instead.
- (e) Given \mathcal{C} , the *opposite category* C^{op} has the same objects and morphisms as \mathcal{C} , but dom and cod are interchanged, and fg in \mathcal{C}^{op} is gf in \mathcal{C} .

This leads to the duality principle: if P is a true statement about categories, so is the statement P^* obtained from P by reversing all arrows.

(f) A small category with one object is a *monoid*, i.e. a semigroup with 1. In particular, a group is a small cat (\boxtimes) with one object in which every morphism is an isomorphism (i.e. for all $f, \exists g$ s.t. fg and gf are identities).

- (g) A groupoid is a category in which every morphism is an isomorphism. For example, for a topological space X, the fundamental groupoid $\pi(x)$ has all points of X as objects, and morphisms $x \to y$ are homotopy classes $rel\{0,1\}$ of paths $u:[0,1] \to X$ with u(0)=x, u(1)=y (if you know how to prove that the fundamental group is a group, you can prove that $\pi(x)$ is a groupoid).
- (h) A discrete cat is one whose only morphism are identities.

A preorder is a cat C in which, for any pair (A, B), \exists at most 1 morphism $A \to B$.

A small preorder is a set equipped with a binary relation which is reflexive and transitive.

In particular, a partially ordered set is a small preorder in which the only isomorphisms are identities.

(i) The category **Rel** has the same objects as *set*, but morphisms $A \to B$ are arbitrary relations $R \subseteq A \times B$. Given R and $S \subseteq B \times C$, we define $S \cdot R = \{(a,c) \in A \times C | (\exists b \in B)((a,b) \in R, (b,c) \in S)\}.$

The identity $1_A: A \to A$ is $\{(a, a) | a \in A\}$.

Similarly, the category **Part** are for sets and partial functions (i.e. relations s.t. $(a,b) \in R$ and $(a,b') \in R \implies b=b'$).

- (j) Let K be a field. The cateogry $\mathbf{Mat}_{\mathbf{K}}$ has natural numbers as objects, and morphism $n \to p$ are $(p \times n)$ matrices with entries from K. Composition is matrix multiplication.
- (k) We write **Cat** for the category whose objects are all small categories, and whose morphisms are functors between them. (see below for definition of functors)

Definition. (1.4)

Let \mathcal{C} and \mathcal{D} be categories. A functor $F:\mathcal{C}\to\mathcal{D}$ consists of:

- (a) a mapping $A \to FA$ from ob \mathcal{C} to ob \mathcal{D} ;
- (b) a mapping $f \to Ff$ from mor \mathcal{C} to mor \mathcal{D} ,

such that dom(Ff) = F(dom f), cod(Ff) = F(cod f), $1_{FA} = F(1_A)$, and (Ff)(Fg) = F(fg) whenever fg is defined.

Example. (1.5)

- (a) We have forgetful functors $U: \mathbf{Gp} \to \mathbf{Set}$, $\mathbf{Ring} \to \mathbf{Set}$, $\mathbf{Top} \to \mathbf{Set}$, $\mathbf{Ring} \to \mathbf{AbGp}$ (forget \times), $\mathbf{Ring} \to \mathbf{Mon}$ (Category of all monoids) (forget +).
- (b) Given a set A, the free group FA has the property:

Given any group G and any function $A \xrightarrow{f} UG$ (?), there's a unique homomorphism $FA \xrightarrow{\bar{f}} G$ extending f. Here F is a functor $\mathbf{Set} \to \mathbf{Gp}$: given $A \xrightarrow{f} B$, we define Ff to be the unique homomorphism extending $A \xrightarrow{f} B \leftrightarrow UFB$. Functoriality follows from uniqueness given $B \xrightarrow{f} C$. F(gf) and (Fg)(Ff) are both homomorphisms extending $A \xrightarrow{f} B \xrightarrow{g} C \to UFC$.

(c) Given a set A, we write PA for the set of all subsets of A.

We can make P into a functor $\mathbf{Set} \to \mathbf{Set}$, given $A \xrightarrow{f} B$, we defined $Pf(A') = \{f(a) | a \in A'\}$ for $A' \subseteq A$.

But we also have a functor $P^*: \mathbf{Set} \to \mathbf{Set}^{op}$ defined on objects by P, but $P^*f(B') = \{a \in A | f(a) \in B'\}$ for $B' \subseteq B$.

By a contravariant functor $\mathcal{C} \to \mathcal{D}$, we mean a functor $\mathcal{C} \to \mathcal{D}^{op}$ (or $\mathcal{C}^{op} \to \mathcal{D}$). A covariant functor is one that doesn't reverse arrows (in op I guess?).

- (d) Let K be a field. We have a functor $*: \mathbf{Mod_K} \to \mathbf{Mod_K}^{op}$ defined by $V^* = \{ \text{ linear maps } V \to K \}$, and if $V \xrightarrow{f} W$, $f^*(\theta : W \to K) = \theta f$.
- (e) We have a functor $op : \mathbf{Cat} \to \mathbf{Cat}$, which is the identity on morphisms (note that this is a covariant).
- (f) A functor between monoids is a monoid homomorphism.
- (g) A functor between posets is an order-preserving map.
- (h) Let G be a group. A functor $F \circ G \to \mathbf{Set}$ consists of a set A = F* together with an action of G on A, i.e. a permutation representation of G.

Similarly, a functor $G \to \mathbf{Mod_K}$ is a K-linear representation of G.

(i) The construction of the fundamental group $\pi(X, X)$ of a space X with basepoint X is a functor $\mathbf{Top}* \to \mathbf{Gp}$ where $\mathbf{Top}*$ is the category of spaces with a chosen basepoint.

Similarly, the fundamental groupoid is a functor $\mathbf{Top} \to \mathbf{Gpd}$, where \mathbf{Gpd} is the category of groupoids and functors between them.

Definition. (1.6)

Let \mathcal{C} and \mathcal{D} be categories and $F, G: \mathcal{C} \rightrightarrows \mathcal{D}$ (why two arrows?) two functors. A natural transformation $\alpha: F \to G$ consists of an assignment $A \to \alpha_A$ from ob \mathcal{C} to mor \mathcal{D} (think about this), such that $\dim_{\alpha_A} = FA$ and $\operatorname{cod}_{\alpha A} = GA$ for all A, and for all $A \xrightarrow{f} B$ in \mathcal{C} , the square

$$FA \xrightarrow{Ff} FB$$

$$\downarrow \alpha_A \qquad \downarrow \alpha_B$$

$$GA \xrightarrow{Gf} GB$$

commutes (i.e. $\alpha_B(Ff) = (Gf)_{\alpha A}$).

(1.3) (l) Given categories \mathcal{C} and \mathcal{D} , we write $[\mathcal{C}, \mathcal{D}]$ for the category whose objects are functors $\mathcal{C} \to \mathcal{D}$ and whose morphisms are natural transformations.

Example. (1.7)

(a) Let K be a field, V a vector space over K. There is a linear map $\alpha_V : V \to V^{**}$ given by $\alpha_V(v)\theta = \theta(v)$ for $\theta \in V^*$.

This is the V-component of a natural transformation $1_{\mathbf{Mod_K}} \to ** : \mathbf{Mod_K} \to \mathbf{Mod_K}$.

- (b) For any set A, we have a mapping $\sigma_A : A \to PA$ sending a to $\{a\}$. If $f : A \to B$, then $Pf\{a\} = \{f(a)\}$. So σ is a natural transformation $1_{\mathbf{Set}} \to P$.
- (c) Let $F:\mathbf{Set} \to \mathbf{Gp}$ be the free group functor (1.5(b)), and $U:\mathbf{Gp} \to \mathbf{Set}$ the forgetful functor. The inclusions $A \to UFA$ form a natural transformation $1_{\mathbf{Set}} \to UF$.
- (d) Let G, H be groups and $f, g : G \Rightarrow H$ be two homomorphisms. A natural transformation $\alpha : f \to g$ corresponds to an element $h = \alpha_*$ of H, s.t. $hf(x) \to g(x)h$ for all $x \in G$ or equivalently $f(x) = h^{-1}g(x)h$, i.e. f and g are conjugate group homomorphisms.
- (e) Let A and B be two G-sets, regarded as functors: $G \rightrightarrows \mathbf{Set}$. A natural transformation $A \to B$ is a function f satisfying $f(g \cdot a) = g \cdot f(a)$ for all $a \in A$, i.e. a G-equivariant map.

Lemma. (1.8)

Let $F, G : \mathcal{C} \Rightarrow \mathcal{D}$ be two functors, and $\alpha : F \to G$ a natural transformation. Then α is an isomorphism in $[\mathcal{C}, \mathcal{D}]$ iff each α_A is an isomorphism in \mathcal{D} . *Proof.* Forward is trivial (ok, I'll check this later). For backward, suppose each α_A has an inverse β_A . Given $f: A \to B$ in \mathcal{C} , we need to show that

$$GA \xrightarrow{Gf} GB$$

$$\downarrow \beta_A \qquad \downarrow \beta_B$$

$$FA \xrightarrow{Ff} FB$$

commutes. But as α is natural,

$$(Ff)\beta_A = \beta_B \alpha_B(Ff)\beta_A = \beta_B(Gf)\alpha_A \beta_A = \beta_B(Gf)$$

So β is a natural transformation as well.

Definition. (1.9)

Let \mathcal{C} and \mathcal{D} be categories. By an *equivalence* between \mathcal{C} and \mathcal{D} , we mean a pair of functors $F: \mathcal{C} \to \mathcal{D}$, $G: \mathcal{D} \to \mathcal{C}$ together with natural isomorphisms $\alpha: 1_{\mathcal{C}} \to GF$ and $\beta: FG \to 1_{\mathcal{D}}$.

We write $\mathcal{C} \cong \mathcal{D}$ if \mathcal{C} and \mathcal{D} are equivalent.

We say a property P of categories is a *categorical property* if whenever C has P and $C \cong D$, then D has P.

For example, being a groupoid or a preorder are categorical properties, but being a group or a partial order are not.

Example. (1.10)

- (a) The category **Part** is equivalent to the category **Set*** of pointed sets (and basepoint preserving functions (as morphisms)):
- We define $F : \mathbf{Set}_* \to \mathbf{Part}$ by $F(A, a) = A \setminus \{a\}$, and if $f : (A, a) \to (B, b)$, then Ff(x) = f(x) if $f(x) \neq b$, and undefined otherwise;
- and $G : \mathbf{Part} \to \mathbf{Set}_*$ by $G(A) = A^+ = (A \cup \{A\}, A)$, and if $f : A \to B$ is a partial function, we define $Gf : A^+ \to B^+$ by Gf(x) = f(x) if $x \in A$ and f(x) defined, and equals B otherwise.

The composite FG is the identity on **Part**, but GF is not the identity. However, there is an isomorphism $(A, a) \to ((A \setminus \{a\})^+, A \setminus \{a\})$ sending a to $A \setminus \{a\}$ and everything else to itself and this is natural.

Note that there can be no isomorphism from \mathbf{Set}_* to \mathbf{Part} , since \mathbf{Part} has a 1-element isomorphism class $\{\phi\}$ but \mathbf{Set}_* doesn't.

- (So we see that equivalent categories can be non-isomorphic. According to a post on SO, this usually happens when there are multiple copies of the *same* thing in one but not the other. However, we can't generally *discard obsolete copies* in one as that generally requires AC and is not a very useful thing to do anyway In short, *identifying isomorphic objects is often an extremely bad idea*.)
- (b) The category $\mathbf{fdMod_K}$ of finite-dimensional vector spaces over K is equivalent to $\mathbf{fdMod_K}^{op}$, the functors in both directions are * (the dual operator) and both isomorphisms are the natural transformations of 1.7(a) (double dual).
- (c) $\mathbf{fdMod}_{\mathbf{K}}$ is also equivalent to \mathbf{Mat}_K (1.3(j)):

We define $F: \mathbf{Mat}_{\mathbf{K}} \to \mathbf{fdMod}_{\mathbf{K}}$ by $F(n) = K^n$, and F(A) is the linear map represented by A w.r.t. the standard bases of K^n and K^p .

To define $G: \mathbf{fdMod_K} \to \mathbf{Mat_K}$, choose a basis for each finite dimensional vector

space, and define $G(V) = \dim V$, $G(V \xrightarrow{f} W)$ to be the matrix representing f w.r.t. chosen bases. GF is the identity, provided we choose the standard bases for the spaces K^n ; $FG \neq 1$, but the chosen bases give isomorphisms $FG(V) = K^{\dim V} \to V$ for each V, which form a natural isomorphism.

—Lecture 4—

Definition. (1.11)

Let $\mathcal{C} \xrightarrow{F} \mathcal{D}$ be a functor.

- (a) We say F is faithful if, given $f, f' \in \text{mor } \mathcal{C}$ with dom f = dom f', cod f = cod f', and Ff = Ff', then f = f' (injectivity on morphisms. The name comes more from representation theory);
- (b) We say F is full if, given $FA \xrightarrow{g} FB$ in \mathcal{D} , there exists $A \xrightarrow{f} B$ in \mathcal{C} with Ff = g. (this is something like surjectivity on morphisms, but see below);
- (c) We say F is essentially surjective if, for every $B \in \text{ob } \mathcal{D}$, there exists $A \in \text{ob } \mathcal{C}$ and isomorphism $FA \to B$ in \mathcal{D} .

We say a subcategory $\mathcal{C}' \subseteq \mathcal{C}$ is full if the inclusion $\mathcal{C}' \to \mathcal{C}$ is a full functor (basically, if the objects are kept, any morphism between them must be kept). For example, \mathbf{Gp} is a full subcategory of \mathbf{Mon} (the category of all monoids), but \mathbf{Mon} is not a full subcategory of the category \mathbf{SGp} of semigroups (consider e.g. the homomorphism that sends everything in (\mathbb{Z}, \cdot) to $(0, \cdot)$ (which is also a semigroup); but this doesn't preserve 1 so is not a morphism in \mathbf{Mon}).

Lemma. (1.12)

Assuming the axiom of choice, a functor $F:\mathcal{C}\to\mathcal{D}$ is part of an equivalence $\mathcal{C}\simeq\mathcal{D}$ if it's full, faithful, and essentially surjective.

Proof. \Rightarrow : Suppose given G, α, β as in (1.9). Then for each $B \in \text{ob } \mathcal{D}$, β_B is an isomorphism $FGB \to B$, so F is essentially surjective.

Given $A \xrightarrow{f} B$ in C, we can recover f from Ff as composite $A \xrightarrow{\alpha_A} GFA \xrightarrow{GFf} GFB \xrightarrow{\alpha_b^{-1}} B$. Hence if $A \xrightarrow{f'} B$ satisfies Ff = Ff', then f = f'. So F is faithful:

Lastly, for fullness, given $FA \xrightarrow{g} FB$, define f to be the composite $A \xrightarrow{\alpha_A} GFA \xrightarrow{Gg} GFB \xrightarrow{\alpha_B^{-1}} B$. Then $GFf = \alpha_B f \alpha_A^{-1}$, which by construction is just Gg. But G is faithful for the same reason as f, so Ff = g.

 \Leftarrow : (need to find suitable G, α, β for F.) For each $B \in \text{ob } \mathcal{D}$, choose $GB \in \text{ob } \mathcal{C}$ and an isomorphism $\beta_B : FGB \to B$ in \mathcal{D} . Given $B \xrightarrow{g} B'$, define $Gg : GB \to GB'$ to be the unique morphism whose image under F is $FGB \xrightarrow{\beta_B} B \xrightarrow{g} B' \xrightarrow{\beta_{B'}^{-1}} FGB'$.

Uniqueness implies functoriality: given $B' \xrightarrow{g'} B''$, (Gg')(Gg) and G(g'g) have the same image under F, so they are equal.

By construction, β is a natural transformation $FG \to 1_{\mathcal{D}}$.

Given $A \in \text{ob } \mathcal{C}$, define $\alpha_A : A \to GFA$ to be the unique morphism whose image under F is $FA \xrightarrow{\beta_{FA}^{-1}} FGFA$. α_A is an isomorphism, since β_{FA} also has a unique pre-image under F. And α is a natural transformation, since any naturality

square for α (the commutative square when we defined natural transformation) is mapped by F to a commutative square, and F is faithful.

Definition. (1.13)

By a *skeleton* of a category, we mean a full subcategory C_0 containing one object from each isomorphism class. We say C is *skeletal* if it's a skeleton of itself. For example, $\mathbf{Mat_K}$ is a skeletal, and the image of $F: \mathbf{Mat_K} \to \mathbf{fdMod_K}$ of 1.10(c) is a skeleton of $\mathbf{fdMod_K}$.

(there are some examples on wikipedia)

Warning: almost any assertion about skeletons is equivalent to axiom of choice (see q2 on example sheet 1).

Definition. (1.14)

Let $A \xrightarrow{f} B$ be a morphism in C.

- (a) We say f is a monomorphism (or f is monic) if, given any pair $C \stackrel{g}{\underset{h}{\Longrightarrow}} A$, fg = fh implies g = h.
- (b) We say f is an *epimorphism* (or *epic*) if it's a monomorphism in C^{op} , i.e. if gf = hf implies g = h.

We denote monomorphisms by $A \stackrel{f}{\rightarrowtail} B$, and epimorphisms by $A \stackrel{f}{\twoheadrightarrow} B$. Any isomorphism is monic and epic: more generally, if f has a left inverse (i.e. $\exists g \text{ s.t. } gf$ is an identity), then it's monic. We call such monomorphisms split. We say $\mathcal C$ is a balanced category if any morphism which is both monic and epic is an isomorphism.

Example. (1.15)

- (a) As usual we consider **Set** first. In **Set**, monomorphisms correspond to injections (\Leftarrow is easy (ok); for \Rightarrow , take $C \Rightarrow 1 = \{*\}$), and epimorphisms correspond to surjections (\Leftarrow is easy; for \Rightarrow , use morphisms $B \Rightarrow 2 = \{0,1\}$). So **Set** is balanced.
- (b) In \mathbf{Gp} , monomorphisms again correspond to injections (for \Rightarrow use homomorphisms $\mathbb{Z} \to A$); epimorphisms again correspond to surjections (\Rightarrow use free products with amalgamation this is a non-trivial fact about groups, read more if free). So \mathbf{Gp} is also balanced.
- (c) In **Rng** (obvious notation), monomorphisms correspond to injections (proof is much like for **Gp**). However, not all epimorphisms are surjective. For example the inclusion $\mathbb{Z} \to \mathbb{Q}$ is an epimorphism, since if $\mathbb{Q} \stackrel{f}{\underset{g}{\Longrightarrow}} R$ (any ring) agree on all integers, they agree everywhere. So **Rng** is not balanced.
- (d) One final example is **Top**. Again, monomorphisms are injections and epimorphisms are surjections (and vice versa): proof is similar to **Set** (check). However, **Top** is not balanced since a continuous bijection need not have continuous inverse.

2 The Yoneda Lemma

—Lecture 5—

Definition. (2.1)

We say a category C is *locally small* if, for any two objects A, B, the morphisms $A \to B$ in C form a set C(A, B).

If we fix A and let B vary, the assignment $B \to \mathcal{C}(A,B)$ becomes a functor $\mathcal{C}(A,-): \mathcal{C} \to \mathbf{Set}$: given $B \xrightarrow{f} C$, $\mathcal{C}(A,f)$ is the mapping $g \to fg$. Similarly, $A \to \mathcal{C}(A,B)$ defines a functor $\mathcal{C}(-,B): C^{op} \to \mathbf{Set}$.

Lemma. (2.2)

- (i) Let \mathcal{C} be a locally small category, $A \in \text{ob } \mathcal{C}$ and $F : \mathcal{C} \to \mathbf{Set}$ a functor. Then natural transformations $\mathcal{C}(A, -) \to F$ are in bijection with elements of FA;
- (ii) Moreover, this bijection is natural in both A and F.

Proof. (i) Given $\alpha: \mathcal{C}(A, -) \to F$, we define $\Phi(x) = \alpha_A(1_A) \in FA$. Given $x \in FA$, we define $\Psi(x): \mathcal{C}(A, -) \to F$ by $\Psi(x)_B(A \xrightarrow{f} B) = Ff(x) \in FB$. $\Psi(x)$ is natural: given $g: B \to C$, we have

$$\Psi(x)_{C}C(A,g)(f) = \Psi(x)_{C}(gf) = F(gf)(x),$$

$$(Fg)\Psi(x)_{B}(f) = (Fg)(Ff)(x) = F(gf)(x),$$

$$\Phi\Psi(x) = \Psi(X)_{A}(1_{A}) = F(1_{A})(x) = x$$

Given α ,

$$\Psi\Phi(\alpha)_B(f)\Psi(\alpha_A(1_A))_B(f) = Ff(\alpha_A(1_A))$$
$$= \alpha_B \mathcal{C}(A, f)(1_A) = \alpha_B(f)$$

So
$$\Psi\Phi(\alpha) = \alpha$$
.

Corollary. (2.3)

The assignment $A \to \mathcal{C}(A, -)$ defines a full and faithful functor $\mathcal{C}^{op} \to [\mathcal{C}, \mathbf{Set}]$.

Proof. Put $F = \mathcal{C}(B, -)$ in 2.2(i): we get a bijection between $\mathcal{C}(B, A)$ and morphisms $\mathcal{C}(A, -) \to \mathcal{C}(B, -)$ in $[\mathcal{C}, \mathbf{Set}]$. We need to verify this is functorial: but it sends $f: B \to A$ to the natural transformation $g \to gf$. So functoriality follows from associativity.

We call this functor (or the functor $\mathcal{C} \to [\mathcal{C}^{op}, \mathbf{Set}]$ sending A to $\mathcal{C}(-, A)$) the Yoneda embedding of \mathcal{C} , and denote it by Y.

Now let's go back to prove 2.2(ii):

Proof. (ii) Suppose for the moment that \mathcal{C} is small, so that $[\mathcal{C}, \mathbf{Set}]$ is locally small. Then we have two functors $\mathcal{C} \times [\mathcal{C}, \mathbf{Set}] \to \mathbf{Set}$: one sends (A, F) to FA, and the other is the composite: $\mathcal{C} \times [\mathcal{C}, \mathbf{Set}] \xrightarrow{Y \times 1} [\mathcal{C}, \mathbf{Set}]^{op} \times [\mathcal{C}, \mathbf{Set}] \xrightarrow{[\mathcal{C}, \mathbf{Set}](-;-)} \mathbf{Set}$. 2.2(ii) says that these are naturally isomorphic. We can translate this into an

elementary statement, making sense even when \mathcal{C} isn't small. Given $A \xrightarrow{f} B$ and $F \xrightarrow{\alpha} G$, the two ways of producing an element of GB from a natural transformation $\beta: \mathcal{C}(A,-) \to F$ give the same result, namely

$$\alpha_B(Ff)\beta_A(1_A) = (Gf)\alpha_A\beta_A(1_A)$$

which is equal to $\alpha_B \beta_B(f)$.

Definition. (2.4)

We say a functor $F: \mathcal{C} \to \mathbf{Set}$ is representable if it's isomorphic to $\mathcal{C}(A, -)$ for some A. By a representation of F, we mean a pair (A, x) where $x \in FA$ is such that $\Psi(x)$ is an isomorphism.

We also call x a universal element of F.

Corollary. (2.5)

If (A, x) and (B, y) are both representations of F, then there's a unique isomorphism $f: A \to B$ such that (Ff)(x) = y.

Proof. Consider the composite $\mathcal{C}(B,-) \xrightarrow{\Psi(y)^{-1}} F \xrightarrow{\Psi(x)} \mathcal{C}(A,-)$. By (2.3) this is of the form Y(f) for a unique isomorphism $f: A \to B$, and the diagram

commutes iff (Ff)(x) = y.

Example. (2.6)

- (a) The forgetful functor $\mathbf{Gp} \to \mathbf{Set}$ is representable by $(\mathbb{Z}, 1)$, $\mathbf{Rng} \to \mathbf{Set}$ by $(\mathbb{Z}[X], X]$), and $\mathbf{Top} \to \mathbf{Set}$ by $(\{*\}, *)$.
- (b) The functor $P^*: \mathbf{Set}^{op} \to \mathbf{Set}$ is representable by $(\{0,1\},\{1\})$: this is the bijection between subsets and characteristic functions.
- (c) Let G be a group. The unique (up to isomorphism) representable functor $G(*,-):G\to \mathbf{Set}$ is the Cayley representation of G, i.e. the set $\cup G$ with G acting by left multiplication.
- (d) Let A and B be two objects of a small category \mathcal{C} . We have a functor

 $\mathcal{C}^{op} \to \mathbf{Set}$ sending C to $\mathcal{C}(C,A) \times \mathcal{C}(C,B)$. A representation of this, if it exists, is called a (categorical) *product* of A and B, and denoted $(A \times B, (A \times B \xrightarrow{\pi_1} A, A \times B \xrightarrow{\pi_2}_B)$).

This pair has the property that, for any pair $(C \xrightarrow{f} A, C \xrightarrow{g} B)$, there's a unique $C \xrightarrow{h} A \times B$ with $\pi_1 h = f$ and $\pi_2 h = g$.

Products exist in many categories of interest: in **Set**, **Gp**, **Rng**, **Top**,..., they are *just* cartesian products, in posets they are binary meets (see sheet 1 Q1).

Dually, we have the notion of coproduct $(A + B, A \xrightarrow{\mu_1} A + B, B \xrightarrow{\mu_2} A + B)$. These also exist in many categories of interest.

—Lecture 6—

(f) (Lecturer didn't like (e) so jumped to (f) directly) Let $A \stackrel{f}{\Longrightarrow} B$ be morphisms in locally small category \mathcal{C} . We have a functor $F: \mathcal{C}^{op} \to \mathbf{Set}$ defined by

$$F(C) = \{ h \in \mathcal{C}(C, A) | fh = gh \}$$

A representation (see (2.4)) of F, if it exists, is called an *equalizer* of (f,g): It consists of an object E and a morphism $E \stackrel{e}{\to} A$ s.t. fe = ge, and every h with fh = gh factors uniquely (see proof of 2.9(i) which gives an insight of what this means) through e.

In **Set**, we take $E = \{x \in A | f(x) = g(x)\}$ and e =inclusion. Similar constructions work in **Gp**, **Rng**, **Top**,...

Dually, we have the notion of *coequalizer*.

Remark. (2.7)

If e occurs as an equalizer, then it is a monomorphism, since any h factors through it in at most one way. We say a monomorphism is regular if it occurs as an equalizer.

Split monomorphisms are regular (cf sheet1 Q6(i)).

Note that regular epic monomorphisms are isomorphisms: if the equalizer e of (f,g) is epic, then f=g, so $e\cong 1_{\operatorname{cod} e}$.

Definition. (2.8)

Let \mathcal{C} be a category, \mathcal{G} a class of objects of \mathcal{C} .

(a) We say \mathcal{G} is a separating family for \mathcal{C} , if given $A \stackrel{f}{\underset{q}{\Longrightarrow}} B$ such that fh = gh for

all $G \xrightarrow{h} A$ with $G \in \mathcal{G}$, then f = g.

(i.e. the functors $C(G, -), G \in \mathcal{G}$, are collectively faithful.)

(b) We say \mathcal{G} is a detecting family if, given $A \xrightarrow{f} B$ such that every $G \xrightarrow{h} B$ with $G \in \mathcal{G}$ factors uniquely through f, then f is an isomorphism.

If $\mathcal{G} = \{G\}$, we call G a separator/detector.

Lemma. (2.9)

- (i) If $\mathcal C$ is a balanced category, then any saparating fmamily is detecting.
- (ii) If \mathcal{C} has equalizers, then any detecting family is separating.

Proof. (i) Suppose \mathcal{G} is separating and $A \xrightarrow{f} B$ satisfies the condition of 2.8(b). If $B \stackrel{g}{\Longrightarrow} C$ satisfy gf = hf, then gx = hx for every $G \xrightarrow{x} B$, so g = h, i.e. f is

epic.

Similarly if $D \stackrel{k}{\Longrightarrow} A$ satisfy fk = fl, then ky = ly for any $G \stackrel{y}{\to} D$, since both are factorizations of fky through f. So k=l, i.e. f is monic. But $\mathcal C$ is balanced. So f is an isomorphism.

(ii) Suppose \mathcal{G} is detecting and $A \stackrel{f}{\Rightarrow} B$ satisfies the condition of 2.8(a). Then

the equalizer $E \xrightarrow{e} A$ of (f, g) is isomorphism, so f = g.

Example. (2.10)

- (a) In $[C, \mathbf{Set}]$, the family $\{C(A, -)|A \in ob C\}$ is both separating and detecting (just a restatement of Yoneda Lemma).
- (b) In **Set**. $1 = \{*\}$ (any one element set) is both a separator and a detector, since it represents the identity functor $\mathbf{Set} \to \mathbf{Set}$.

Similarly, \mathbb{Z} is both in \mathbf{Gp} , since it represents the forgetful functor $\mathbf{Gp} \to \mathbf{Set}$. Also, $2 = \{0, 1\}$ is a coseparator and a codetector in **Set**, since it represents $P^*: \mathbf{Set}^{op} \to \mathbf{Set}.$

(c) In **Top**, $1 = \{*\}$ is a separator since it represents the forgetful functor $\mathbf{Top} \to \mathbf{Set}$, but not a detector.

In fact, **Top** has no detecting set of objects (note that this doesn't mean it has no detecting family).

For any infinite cardinal κ , let X be a discrete space of cardinality κ , and Y the same set with co- $<\kappa$ topology, i.e. $F\subseteq Y$ is closed iff F=Y or Card $F<\kappa$ (think about, e.g. cocountable topology, then this name makes sense).

The identity $X \to Y$ is continuous, but not a homeomorphism (topologically). So if $\{G_i|i\in I\}$ is any set of spaces, taking $\kappa > \operatorname{Card} G_i$ for all i yields an example to show that the set is not detecting.

(d) (some Algebraic Topology stuff) Let \mathcal{C} be the category of pointed connected CW-complexes and homotopy classes of (basepoint-preserving) continuous mappings.

JHC Whitehead proved that $X \xrightarrow{f} Y$ in this category induces isomorphisms $\pi_n(X) \to \pi_n(Y)$ for all n, then it's an isomorphism in \mathcal{C} .

This says that $\{S^n | n \ge 1\}$ is a detecting set of \mathcal{C} .

But PJ Freyd showed there is no faithful functor $\mathcal{C} \to \mathbf{Set}$, so no separating set: if $\{G_i|i\in I\}$ were separating, then $x\to\coprod\mathcal{C}(G_i,x)$ (disjoint unions?) would be faithful.

Note that any functor of the form $\mathcal{C}(A,-)$ preserves monomorphisms, but they don't normally preserves epimorphisms.

Definition. (2.11)

We say an object P is Projective if, given

(recall the two head right arrow means epimorphisms) there exists $P \xrightarrow{g} A$ with eg = f.

(If \mathcal{C} is locally small, this says $\mathcal{C}(P, -)$ preserves epimorphisms).

Dually, an *injective* object of \mathcal{C} is a projective object of \mathcal{C}^{op} .

Given a class \mathcal{E} of epimorphisms, we say P is \mathcal{E} -projective if it satisfies the condition for all $e \in \mathcal{E}$.

Lemma. (2.12)

Representable functors are (pointwise)(?) projective in $[C, \mathbf{Set}]$.

Proof. Suppose given

$$\mathcal{C}(A, -)
\downarrow \beta
F \xrightarrow{\alpha} G$$

where α is pointwise surjective. By Yoneda, β corresponds to some $y \in GA$, and we can find $x \in FA$ with $\alpha_A(x) = y$. Now if $\gamma : \mathcal{C}(A, -) \to F$ corresponds to x, then naturality of the Yoneda bijection yields $\alpha \gamma = \beta$.

—Leture 7— First example class: Friday 26th October, 2pm MR3.

Lecture is happy to mark any question we hand in!

15

$\mathbf{3}$ Adjunctions

Definition. (3.1)

Let \mathcal{C} and \mathcal{D} be two categories and $\mathcal{C} \xrightarrow{F} \mathcal{D}$, $\mathcal{D} \xrightarrow{G} \mathcal{C}$ two functors.

By an adjunction between F and G we mean a bijection between morphisms $FA \xrightarrow{\hat{f}} B$ in \mathcal{D} and morphisms $A \xrightarrow{f} GB$ in \mathcal{C} , which is natural in A and B, i.e. given $A' \stackrel{g}{\to} A$ and $B \stackrel{h}{\to} B'$, we have $h\hat{f}(Fg) = \widehat{(Gh)fg} : FA' \to B'$. We say F is *left adjoint* to G, and write $(F \dashv G)$.

Example. (3.2)

(a) The free functor $\mathbf{Set} \xrightarrow{F} \mathbf{Gp}$ is left adjoint to the forgetful functor $\mathbf{Gp} \xrightarrow{U}$ **Set**, since any function $f: A \to UB$ extends uniquely to a homomorphisms $f: FA \to B$.

Naturality in B is easy (lecturer says so), naturality in A follows from the definition of F as a functor.

- (b) The forgetful functor $\mathbf{Top} \xrightarrow{U} \mathbf{Set}$ has a left adjoint D which equips any set with the discrete topology, and also a right adjoint I which equips a set A with the discrete (lecturer had *indiscrete* here?) topology $\{\phi, A\}$.
- (c) The functor ob: $\mathbf{Cat} \to \mathbf{Set}$ (recall \mathbf{Cat} is the category of small categories) has a left adjoint D sending A to the discrete category with ob(DA) = Aand only identity morphisms, and a right adjoint I sending A to the category with ob(IA) = A and one morphism $x \to y$ for each $(x,y) \in A \times A$. In this case D in turn has a left adjoint π_0 sending a small category C to its set of connected components, i.e. the quotient of ob \mathcal{C} by the smallest equivalence relation identifying dom f with cod f for all $f \in \text{mor } C$.
- (d) Let M be the monoid $\{1,e\}$ with $e^2=e$. An object of $[M,\mathbf{Set}]$ is a pair (A, e) (the images of the functor?), where $e: A \to A$ satisfies $e^2 = e$.

We have a functor $G: [M, \mathbf{Set}] \to \mathbf{Set}$ sending (A, e) to $\{x \in A | e(x) = x\} = \mathbf{Set}$ $\{e(x)|x\in A\}$ and a functor $F:\mathbf{Set}\to [M,\mathbf{Set}]$ sending A to $(A,1_A)$.

I claim $(F \dashv G \dashv F)$: given $f: (A, 1_A) \to (B, e)$, it must take values in G(B, e), and any $g:(B,e)\to(A,1_A)$ is determined by its values on the image of e.

(e) Let 1 be the discrete category with one object *. For any \mathcal{C} , there's a unique functor $\mathcal{C} \to \mathbf{1}$: a left adjoint for this picks out an *initial* object of \mathcal{C} , i.e. and object I s.t. there exists a unique $I \to A$ for each $A \in \text{ob } \mathcal{C}$.

Dually, a right adjoint for $\mathcal{C} \to \mathbf{1}$ corresponds to a terminal object of \mathcal{C} (think about what this means).

(f) Let $A \xrightarrow{f} B$ be a morphism in **Set**. We can regard PA and PB as posets, and we have functors $PA \overset{Pf}{\rightleftharpoons} PB$. I claim $(PF \dashv P^*f)$: we have $Pf(A') \subseteq B' \iff f(x) \in B'$ for all $x \in A' \iff$

 $A' \subseteq P^*f(B')$.

(g) (Galois Connection) Suppose given sets A, B and a relation $R \subseteq A \times B$. We define mappings $(-)^l$, $(-)^r$ between PA and PB by

$$S^r = \{ y \in B | (\forall x \in S)((x, y) \in R) \} \text{ for } S \subseteq A$$

$$T^l = \{ x \in A | (\forall y \in T)((x, y) \in R) \} \text{ for } T \subseteq B$$

The mappings are order-reserving (i.e. contravariant functors), and $T \subseteq S^r \iff$ $S \times T \subseteq R \iff S \subseteq T^l$.

3 ADJUNCTIONS 16

We say $()^r$ and $()^l$ are adjoint on the right.

(h) Let's now consider, as a functor, $P^*: \mathbf{Set}^{op} \to \mathbf{Set}$ is self-adjoint on the right, since functions $A \to PB$ correspond bijectively to subsets of $A \times B$, and hence to functions $B \to PA$.

Theorem. (3.3)

(sorry I forgot to charge the other laptop today, the diagrams don't look very nice)

Let $G: \mathcal{D} \to \mathcal{C}$ be a functor. Then specifying a left adjoint for G is equivalent to specifying an initial object of $(A \downarrow G)$ for each $A \in \text{ob}\,\mathcal{C}$, where $(A \downarrow G)$ has objects pairs (B, f) with $A \xrightarrow{f} GB$, and morphisms $(B, f) \to (B', f')$ are morphisms $B \xrightarrow{g} B'$ such that

commutes.

Proof. Suppose given $(F \dashv G)$. Consider the morphism $\eta_A : A \to GFA$ correspond to $FA \xrightarrow{\eta} FA$. Then (FA, η_A) is an object of $(A \downarrow G)$. Moreover, given $g : FA \to B$ and $f : A \to GB$, the diagram

3 ADJUNCTIONS 17

commutes iff

commutes, i.e. $g = \hat{f}$. So (FA, η_A) is initial in $(A \downarrow G)$.

Conversely, suppose given an initial object (FA, η_A) for each $(A \downarrow G)$. Given $A \xrightarrow{f} A'$, we define $Ff: FA \to FA'$ to be the unique morphism making

$$\begin{array}{ccc} A \xrightarrow{\eta_A} & GFA \\ \downarrow f & \downarrow GFf \\ A' \xrightarrow{\eta_{A'}} & GFA' \end{array}$$

commute.

Functoriality follows from uniqueness: given $f':A'\to A''$, F(f'f) and (Ff')(Ff) are both morphisms $(FA,\eta_A)\to (FA'',\eta_{A''}F'f)$ in $(A\downarrow G)$.

Note that we haven't finished: we still have to verify natural adjunctions. We'll finish off this next monday.