

RNA-Seq primer

Sequencing: applications

Counting applications

- Profiling
 - microRNAs
 - Immunogenomics
 - Transcriptomics
- Epigenomics
 - Map histone modifications
 - Map DNA methylation
 - 3D genome conformation
- Nucleic acid Interactions

Polymorphism/mutation discovery

- Bacteria
- Genome dynamics
- Exon (and other target) sequencing
- Disease gene sequencing
- Variation and association studies
- Genetics and gene discovery

- Cancer genomics
 - Map translocations, CNVs, structural changes
 - Profile somatic mutations
- Genome assembly
- Ancient DNA (Neanderthal)
- Pathogen discovery
- Metagenomics

Counting applications

Sequencing libraries to probe the genome

- RNA-Seq
 - Transcriptional output
 - Annotation
 - miRNA
 - Ribosomal profiling
- ChIP-Seq
 - Nucleosome positioning
 - Open/closed chromatin
 - Transcription factor binding
- CLIP-Seq
 - Protein-RNA interactions
- Hi-C
 - 3D genome conformation

RNA-Seq libraries I: "Standard" full-length

- "Source: intact, high qual. RNA (polyA selected or ribosomal depleted)
- RNA \rightarrow cDNA \rightarrow sequence
- Uses:
 - Annotation. Requires high depth, paired-end sequencing. ~50 mill
 - Gene expression. Requires low depth, single end sequence, ~ 5-10 mill
 - Differential Gene expression. Requires ~ 5-10 mill,
 at least 3 replicates, single end

RNA-Seq libraries II: End-sequence libraries

- Target the start or end of transcripts.
- Source: End-enriched RNA
 - Fragmented then selected
 - Fragmented then enzymatically purified
- Uses:
 - Annotation of transcriptional start sites
 - Annotation of 3' UTRs
 - Quantification and gene expression
 - Depth required 3-8 mill reads
 - Low quality RNA samples

RNA-Seq libraries III: Small RNA libraries

- Source: size selected RNA
- Uses: miRNA, piRNA annotation and quantification
 - Short single end 30-50 bp reads
 - Require "clipping"
 - Depth: 5-10 mill reads

Malonne et al. CSHL protocols, 2011

When you need both annotation and quantification

- Attempt three replicates per condition
- Pool libraries to obtain ~15 mill reads per replicate
- Sequence using paired ends
- Analysis:
 - Merge replicate alignments for annotation
 - Split alignments for differential expression analysis

Our typical RNA quantification pipeline

Alignment requires pre-processing


```
bowtie2-build -f mm10.fa mm10

rsem-prepare-reference \
--gtf ucsc.gtf --transcript-to-gene-map ucsc_into_genesymbol.rsem \
mm10.fa mm10.rsem
```


Trapnell, Salzberg, Nature Biotechnology 2009

Spaced seed alignment – Hashing the genome

Store spaced seed positions


```
      ccga
      ttga
      ****
      ****
      1

      ccga
      ****
      ctga
      ****
      1

      ccga
      ****
      ****
      atgg
      1

      ****
      ttga
      ctga
      ****
      1

      ****
      ttga
      ****
      atgg
      1

      ****
      ****
      ctga
      atgg
      1
```

Spaced seed alignment – Mapping reads

G: accgattgactgaatggccttaaggggtcctagttgcgagacacatgctgaccgtgggattgaatg.....

Mapping quality

What does $q_{MS} = -10 \log_{10} P$ (read is wrongly mapped) mean?

Lets compute the probability the read originated at genome position i

q: accg atag accg aatg

$$q_s$$
: 30 40 25 30 30 20 10 20 40 30 20 30 40 40 30 25

 $q_s[k] = -10 \log_{10} P(\text{sequencing error at base k}), \text{ the PHRED score. Equivalently:}$

$$P(\text{sequencing error at base k}) = 10^{-\frac{q_s[k]}{10}}$$

So the probability that a read originates from a given genome position i is:

$$P(q \mid G, i) = \prod_{j \text{ match}} P(q_j \text{good call}) \prod_{j \text{ missmatch}} P(q_j \text{bad call}) \approx \prod_{j \text{ missmatch}} P(q_j \text{bad call})$$

In our example

$$P(q \mid G, 0) = \left[(1 - 10^{-3})^6 (1 - 10^{-4})^4 (1 - 10^{-2.5})^2 (1 - 10^{-2})^2 \right] \left[10^{-1} 10^{-2} \right] = [0.97] * [0.001] \approx 0.001$$

Mapping quality

What we want to estimate is $q_{MS} = -10 \log_{10} P(\text{read is wrongly mapped})$

That is, the posterior probability, the probability that the region starting at i was sequenced *given* that we observed the read q:

$$P(i \mid G, q) = \frac{P(q \mid G, i)P(i \mid G)}{P(q \mid G)} = \frac{P(q \mid G, i)P(i \mid G)}{\sum_{j} P(q \mid G, j)}$$

Fortunately, there are efficient ways to approximate this probability (see Li, H genome Research 2008, for example)

$$q_{MS} = -10\log_{10}(1 - P(i \mid G, q))$$

Considerations

- Trade-off between sensitivity, speed and memory
 - Smaller seeds allow for greater mismatches at the cost of more tries
 - Smaller seeds result in a smaller tables (table size is at most 4^k), larger seeds increase speed (less tries, but more seeds)

Short read mapping software

Sa	مط	l-extend
ンヒ	てロ	-EXLEIIU

	Short indels	Use base qual
Maq	No	YES
RMAP	Yes	YES
SeqMap	Yes	NO
SHRiMP	Yes	NO

BWT

	Use Base qual
BWA	YES
Bowtie	NO
Stampy*	YES
Bowtie2*	(NO)

^{*}Stampy is a hybrid approach which first uses BWA to map reads then uses seed-extend only to reads not mapped by BWA

^{*}Bowtie2 breaks reads into smaller pieces and maps these "seeds" using a BWT genome.

RNA-Seq Read mapping

Mapping RNA-Seq reads: Seed-extend spliced alignment (e.g. GSNAP)

Mapping RNA-Seq reads: Exon-first spliced alignment (e.g. TopHat)

Short read mapping software for RNA-Seq

Seed-extend

	Short indels	Use base qual
GSNAP	Yes	?
QPALMA	Yes	NO
BLAT	Yes	NO

Exon-first

	Use base qual
STAR	NO
TopHat	NO

Alignment requires pre-processing


```
tophat2 --library-type fr-firststrand --segment-length 20 \
-G genome.quantification/ucsc.gtf -o tophat/th.quant.ctrl1 \
genome.quantification/mm10 fastq.quantification/control_rep1.1.fq \
fastq.quantification/control_rep1.2.fq
```

```
/project/umw_biocore/bin/igvtools.sh count -w 5 tophat/th.quant.ctrl1.bam \ tophat/th.quant.ctrl1.bam.tdf genome.quantification/mm10.fa
```

IGV: Integrative Genomics Viewer

A desktop application

for the visualization and interactive exploration of genomic data

Visualizing read alignments with IGV — RNASeq

Visualizing read alignments with IGV — zooming out

How do "short" read aligners responded to read increase?

- Break reads into seeds (e.g. 16nt every 10nt)
- Use BWT or HashTable to find candidate positions
- Prioritize candidates
- Extend top candidates using classical alignment techniques.

Aligner	Technique
TopHat2 (Bowtie2)	BWT
GSNAP	Hash Table
STAR	Suffix (similar to TopHat)

Computing gene expression


```
rsem-calculate-expression --paired-end --strand-specific -p 2 \
    --output-genome-bam fastq.quantification/control_rep1.1.fq \
fastq.quantification/control_rep1.2.fq genome.quantification/mm10.rsem \
rsem/ctrl1.rsem
```

RNA-Seq quantification

- Is a given gene (or isoform) expressed?
- Is expression gene A > gene B?
- Is expression of gene A isoform a₁ > gene A isoform a₂?
- Given two samples is expression of gene A in sample 1 > gene A in sample 2?

Quantification: only one isoform

$$RPKM = 10^9 \frac{\#reads}{length \times TotalReads}$$

Reads per kilobase of exonic sequence per million mapped reads (*Mortazavi* et al Nature methods 2008)

- •Fragmentation of transcripts results in length bias: longer transcripts have higher counts
- •Different experiments have different yields. Normalization is key for cross lane comparisons

Complexity increases when multiple isoforms exist

Normalization for comparing two different genes

- To compare within a sequence run (lane), RPKM accounts for length bias.
- RPKM is not optimal for cross experiment comparisons.
 - Different samples may have different compositions.
- FPKM superseded RPKM
- And later TPM = 10^6 x Fraction of transcript

Normalization for comparing a gene across samples

Normalizing by total reads does not work well for samples with very different RNA composition