# Power Analysis: Al Investment Decision Experiment

Within-subjects design with 6 conditions

AUTHORS
Jason Collins
Iñigo De Juan Razquin
Jianhua Li

PUBLISHED June 7, 2025

## 1 Overview

This document presents a power analysis for a within-subjects experiment investigating how different methods of delivering AI explanations affect human-AI collaborative decision-making. The analysis addresses the question:

How many participants do we need to reliably detect a 3 percentage point improvement in investment performance when using alternative AI explanation delivery methods?

#### 1.1 Research Context

While AI can provide valuable decision support, users often fail to engage meaningfully with AI explanations, limiting the potential for complementary human-AI performance. This experiment tests whether alternative explanation delivery methods can promote deeper engagement and better decision-making.

Specifically, we test three interventions designed to encourage more deliberate engagement with AI explanations:

- 1. Request: Users must actively click to access the AI recommendation and explanation
- 2. **Update**: Users make an initial decision, then can revise it after seeing the Al's input
- 3. Wait: The explanation is provided after a deliberate delay

The "Explanation" condition (immediate explanation) serves as the control against which we compare the three intervention strategies. The "No AI" and "No Explanation" conditions provide performance benchmarks.

# 1.2 Design

- Within-subjects design: Each participant experiences all 6 conditions in random order, serving as their own control
- 6 experimental conditions:
  - No AI (benchmark)
  - Al without explanation (benchmark)
  - Al with immediate explanation (control)
  - Three explanation delivery interventions (request, update, wait)
- 36 decisions per participant: 6 investment decisions × 6 conditions
- Realistic effect size: 3 percentage point improvement (75% → 78% success rate)
- Multiple testing correction: Bonferroni adjustment for 5 comparisons vs control

## 1.3 Analysis Approach

We employ three statistical methods to obtain power estimates:

- 1. Paired t-tests: Simple comparison of participant scores between conditions
- 2. Generalised Linear Mixed Models (GLMM): Model individual decisions with random effects
- 3. Generalised Estimating Equations (GEE): Population-level marginal effects

Each method handles the repeated-measures structure differently, providing converging evidence for sample size requirements.

## 1.4 Assumptions

- Control Performance: With standard AI recommendations with explanation, participants achieve
   75% accuracy
  - This was calculated from human performance in Germann and Merkle's (2019) fund manager data
- 2. **Treatment Effect**: Alternative explanation delivery methods provide a 3 percentage point improvement (75% → 78%)
  - o Assumes that promoting engagement leads to better calibration of AI reliance
  - Large enough to be practically meaningful for investment decisions
- 3. Individual Differences: Between-subject standard deviation of 0.177 percentage points
  - o Derived from Germann and Merkle's (2019) fund manager performance data
- 4. Learning Effects: Small practice effect of 1 percentage point per round
  - o Participants may improve slightly through experience with the task
  - Controlled by randomising condition order across participants

### 1.5 Statistical Considerations

We have 5 key comparisons, all versus the control (Explanation) condition. With 5 comparisons, we face increased Type I error risk.

- Primary analysis: Individual comparisons at  $\alpha = 0.05$
- Corrected analysis: Bonferroni correction ( $\alpha = 0.01$ ) for family-wise error control

Target Power: We aim for 90% statistical power: a 90% chance of detecting true effects when they exist.

- ▶ Show code
- ▶ Show code

# 2 Data simulation

The simulation creates synthetic experimental data based on our design assumptions. Each participant makes 36 binary decisions (correct/incorrect) across 6 conditions, with individual differences and small learning effects included.

#### **Output formats:**

- Binary: Individual decision outcomes (for GLMM/GEE analysis)
- Scores: Aggregated correct decisions per condition (for paired t-tests)

▶ Show code

Rather than simulate data repeatedly during power calculations, we pre-generate all required datasets once. This reduces computation time and ensures identical data across the three analysis methods.

- ▶ Show code
- ▶ Show code

# 3 Paired t-test on Scores

This method aggregates each participant's decisions into scores per condition (0-6 correct), then compares treatment scores to control scores using paired t-tests. Simple and robust, but loses information by aggregating binary decisions.

- ▶ Show code
- ▶ Show code
- ▶ Show code

#### Power by Sample Size (Average across 5 treatments)

| Sample Size | α=0.05 | α=0.01 |
|-------------|--------|--------|
| 200         | 0.376  | 0.182  |
| 400         | 0.703  | 0.456  |
| 600         | 0.837  | 0.611  |
| 900         | 0.951  | 0.867  |
| 1200        | 0.983  | 0.939  |

► Show code

Method 1: Paired t-test (Average Power across Treatments)



# 4 Mixed Effects Models (GLMM)

This method models individual binary decisions using logistic regression with random participant effects. More statistically efficient than Method 1 but requires distributional assumptions and can have convergence issues.

- ► Show code
- ▶ Show code
- ▶ Show code

Power estimates using GLMM

| Sample Size | α=0.05 | α=0.01 |
|-------------|--------|--------|
| 200         | 0.386  | 0.180  |
| 400         | 0.702  | 0.461  |
| 600         | 0.837  | 0.606  |
| 900         | 0.954  | 0.869  |
| 1200        | 0.984  | 0.941  |

▶ Show code



Significance Level  $\bullet$  Bonferroni ( $\alpha$ =0.01)  $\bullet$  No correction ( $\alpha$ =0.05)

Number of Participants

800

900

1000

1100

1200

## 4.1 Validation with simr

300

The simr package provides an independent validation of our GLMM power estimates. It fits a template model and systematically varies sample size to generate power curves.

First, we need to create a base model using the simulated data.

400

500

► Show code

0.0

200

We then extend this model to simulate the power curve across a range of sample sizes.

► Show code

We then plot the power curve to visualize how the power changes with sample size.

▶ Show code

Power curve with standard alpha (0.05):

▶ Show code



### ► Show code

Power curve with Bonferroni alpha (0.01):

▶ Show code



The following code extracts the power values from the simr power curve and formats them into a summary table.

#### ▶ Show code

Power using simr at both significance levels

| Sample Size | Power (α=0.05) | 95% CI          | Power (α=0.01) | 95% CI          |
|-------------|----------------|-----------------|----------------|-----------------|
| 200         | 39.5%          | [32.7% - 46.6%] | 17.0%          | [12.1% - 22.9%] |
| 400         | 65.5%          | [58.5% - 72.1%] | 38.5%          | [31.7% - 45.6%] |
| 600         | 82.5%          | [76.5% - 87.5%] | 58.5%          | [51.3% - 65.4%] |
| 900         | 94.0%          | [89.8% - 96.9%] | 77.0%          | [70.5% - 82.6%] |
| 1200        | 98.0%          | [95.0% - 99.5%] | 92.0%          | [87.3% - 95.4%] |

# **5 Generalised Estimating Equations (GEE)**

GEE provides a robust alternative to GLMM that estimates population-level effects while accounting for within-subject correlation. More robust to model assumptions than GLMM but potentially less efficient.

- ► Show code
- ▶ Show code
- ▶ Show code

### Power estimates using GEE

| Sample Size | α=0.05 | α=0.01 |
|-------------|--------|--------|
| 200         | 0.389  | 0.183  |
| 400         | 0.703  | 0.457  |
| 600         | 0.845  | 0.608  |
| 900         | 0.953  | 0.868  |
| 1200        | 0.982  | 0.940  |

### ▶ Show code





Significance Level • Bonferroni (α=0.01) • No correction (α=0.05)