Name	PMF	Mean	Variance	MGF
$\mathbf{Ber}(p)$	$\mathbb{P}(X=1) = p, \mathbb{P}(X=0) = 1 - p$	p	p(1-p)	$e^t p + (1 - p)$
$\mathbf{Bin}(n,p)$	$\binom{n}{x} p^x (1-p)^{n-x}$ for $x = 0, 1, \dots, n$	np	np(1-p)	$(e^t p + (1-p))^n$
$\mathbf{Geom}(p)$	$p(1-p)^{x-1}$ for $x = 1, 2, \dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{e^t p}{1 - (1 - p)e^t}$ for $t < -\ln(1 - p)$
$\mathbf{NegBin}(r,p)$	$\binom{x-1}{r-1} p^r q^{x-r}$ for $x = r, r+1, \dots$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{e^t p}{1 - (1 - p)e^t}\right)^r \text{ for } t < -\ln(1 - p)$
$\mathbf{HG}(N_1,N_2,n)$	$\frac{\binom{N_1}{x}\binom{N_2}{n-x}}{\binom{N_1+N_2}{x}} \text{ for } \max\{0, n-N_2\} \le x \le \min\{n, N_1\}$	$m \frac{N_1}{N_1 + N_2}$	$n \cdot \frac{N_1 N_2}{(N_1 + N_2)^2} \cdot \frac{N_1 + N_2 - n}{N_1 + N_2 - 1}$	
$\mathbf{Poisson}(\lambda)$	$\frac{e^{-\lambda}\lambda^x}{x!}$ for $x = 0, 1, \dots$	λ	λ	$e^{\lambda(e^t-1)}$

Table 1: Table of Important Distributions to be provided in the Exams.

Geometric series	$\sum_{k=0}^{N} ap^{k} = \frac{a(1-p^{N+1})}{1-p} \text{ for } p \in (0,1)$
Power series for e^x	$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$

Table 2: Table of formulas to be provided in the Exams.