Redes de Computadores Trabalho Prático 4

Pedro Afonso Moreira Lopes [A100759], Gonçalo Machado Daniel Costa [A100824] e José Eduardo Silva Monteiro Santos Oliveira [A100547]

Questões e Respostas

4. Acesso Rádio

1) Identifique em que frequência do espectro está a operar a rede sem fios, e o canal que corresponde essa frequência.

```
Wireshark · Packet 14 · WLAN-traffic-20230502a.pcapng

Frame 14: 48 bytes on wire (384 bits), 48 bytes captured (384 bits) on interface en0, id 0

Radiotap Header v0, Length 34

802.11 radio information

PHY type: 802.11b (HR/DSSS) (4)

Short preamble: False

Data rate: 1,0 Mb/s

Channel: 1

Frequency: 2412MHz

Signal strength (dBm): -89 dBm

Noise level (dBm): -93 dBm

Signal/noise ratio (dB): 4 dB

TSF timestamp: 154756

>-[Duration: 304µs]

- IEEE 802.11 Acknowledgement, Flags: ......C
```

Figura 1. Rádio Information da trama número 14

Como se pode ver pela imagem acima, a frequência do espectro é de 2412MHz e o canal correspondente é o 1.

2) Identifique a versão da norma IEEE 802.11 que está a ser usada.

A versão da norma que está a ser usada é **802.11b** (**HR/DSSS**), como se pode visualizar pelo campo PHY Type na figura acima.

3) Qual o débito a que foi enviada a trama escolhida? Será que esse débito corresponde ao débito máximo a que a interface Wi-Fi pode operar? Justifique.

O débito da trama que foi enviada a trama escolhida é igual a 1.0 MB/s, o que não corresponde ao débito máximo de 11 MB/s pois este é o débito máximo deste tipo de protocolo. Este débito não é utilizado para garantir que o beacon chega a todos os hosts, utilizando assim o débito mais baixo possível.

4) Verifique qual a força do sinal (Signal strength) e a qualidade expectável de receção da trama, sabendo que:

A força do sinal, como podemos ver pela figura 1, é igual a -89 dBm, ou seja, de acordo com a tabela acima, tem uma qualidade esperada de **Unreliable Signal Strength**.

5. Scanning Passivo e Scanning Ativo

5) Selecione uma trama beacon cuja ordem (ou terminação) corresponda a XX. Esta trama pertence a que tipo de tramas 802.11? Identifique o valor dos identificadores de tipo e de subtipo da trama. Em que parte concreta do cabeçalho da trama estão especificados (ver anexo)?

Figura 2. Trama beacon 114 capturada

Esta trama pertence ao tipo de *Management Frame*, o seu identificador é 0 (00) e o seu subtipo é o 8 (1000). Esta informação, como se pode ver pela figura acima, encontra-se especificados nos campos *Type* e *Subtype* no cabeçalho da trama.

6) Para a trama acima, identifique todos os endereços MAC em uso. Que conclui quanto à sua origem e destino?

Como podemos ver pela figura 2 acima, os endereços MAC em uso são o Destination e Receiver, que ambos apresentam ser Broadcast (ff:ff:ff:ff:ff), ou seja, o destino são todos os dispositivos que se encontram ligados à rede Wireless. Juntamente com estes 2, temos também os endereços Source e Transmitter, que ambos também apresentam ser também PTInovac_9e:9b:b2 (00:06:91:9e:9b:b2).

7) Verifique se está a ser usado o método de deteção de erros (CRC). Justifique. Justifique o porquê de ser necessário usar deteção de erros em redes sem fios.

Figura 3. Aplicação de uma flag para verificar se o CRC está a ser usado

Como se pode ver, o método de deteção de erros (CRC) está a ser usado. Dito isto, é necessário usar deteção de erros em redes sem fios pois estas são mais suscetíveis a problemas de qualidade devido a obstáculos físicos que possam interferir com o sinal e também operam na sua maioria em ambientes compartilhados, onde pode haver colisão de envios de pacotes de dados. Sabendo isto, a detecção de erros é fulcral para detetar e corrigir estes problemas.

8) Uma trama beacon anuncia que o AP pode suportar vários débitos de base (B), assim como vários débitos adicionais (extended supported rates). Indique quais são esses débitos.

```
Wireshark · Packet 114 · WLAN-traffic-20230502a.pcapng
> 802.11 radio information
>-IEEE 802.11 Beacon frame, Flags: ......C
└-IEEE 802.11 Wireless Management
   >-Fixed parameters (12 bytes)
  V-Tagged parameters (154 bytes)
     >-Tag: SSID parameter set: "MEO-WiFi"
     √- Tag: Supported Rates 1(B), 2(B), 5.5(B), 11(B), 18, 24, 36, 54, [Mbit/sec]
         Tag Number: Supported Rates (1)
        -Tag length: 8
        —Supported Rates: 1(B) (0x82)
         -Supported Rates: 2(B) (0x84)
         -Supported Rates: 5.5(B) (0x8b)
        -Supported Rates: 11(B) (0x96)
        -Supported Rates: 18 (0x24)
        — Supported Rates: 24 (0x30)
        -Supported Rates: 36 (0x48)
       Supported Rates: 54 (0x6c)
     >-Tag: DS Parameter set: Current Channel: 1
     >-Tag: Traffic Indication Map (TIM): DTIM 0 of 1 bitmap
```

Figura 4. Débitos da trama 114

Como podemos ver pela figura acima, os débitos de base (B) são 1, 2, 5.5 e 11 e os débitos adicionais são 18, 24, 36 e 54 Mbit/seg.

9) Qual o intervalo de tempo previsto entre tramas beacon consecutivas (este valor é anunciado na própria trama beacon)? Na prática, a periodicidade de tramas beacon provenientes do mesmo AP é verificada

com precisão? Justifique.

Figura 5. Intervalo de tempo previsto e na prática das tramas selecionadas de AP's com SSID == "MEO-D68850"

Como podemos ver pela figura 4 acima, o tempo previsto entre tramas beacon consecutivas é de 0.102400 segundos. Contudo, isto não se verifica na prática sempre devido ao congestionamento da rede local nomeadamente na espera para a transmissão quando o meio se encontra ocupado.

10) Identifique e liste os SSIDs dos APs que estão a operar na vizinhança da STA de captura. Explicite o modo como obteve essa informação (por exemplo, se usou algum filtro para o efeito).

No trace disponibilizado foi também registado scanning ativo (envolvendo tramas probe request e probe response), comum nas redes Wi-Fi como alternativa ao scanning passivo.

Depois de procurar todos os SSIDs dos APs, chegamos então à conclusão que a lista é: MEO-D68850, NOS-C876, MEO-WiFi, MEO-FCF0A0, NOS-2EC6, MEO-9E9BB0, FlyingNet, MEO-45BE30, MEO-9BF2A0, K6000 Plus, TP-LINK_AP_AF08, Masmorra do Sexo, Vodafone-DC61F7, GV BRAGA, MEO-D9EDE0, GRUPO GV, IA 2 5 e finalmente Vodafone-48683C.

Para obter esta informação, simplesmente fomos filtrando para fora todas as tramas com um certo SSID até que já não haviam tramas beacon, tendo assim chegado ao gigante filtro seguinte:

wlan.ssid != "MEO-D68850" && wlan.ssid != "NOS-C876" && wlan.ssid != "MEO-WiFi" && wlan.ssid != "MEO-FCF0A0" && wlan.ssid != "NOS-2EC6" && wlan.ssid != "MEO-9E9BB0" && wlan.ssid != "FlyingNet" && wlan.ssid != "MEO-45BE30" && wlan.ssid != "MEO-9BF2A0" && wlan.ssid != "K6000 Plus" && wlan.ssid != "TP-LINK_AP_AF08" && wlan.ssid != "Masmorra do Sexo" && wlan.ssid != "Vodafone-DC61F7" && wlan.ssid != "GV BRAGA" && wlan.ssid != "MEO-D9EDE0" && wlan.ssid != "GRUPO GV" && wlan.ssid != "IA 2 5"&& wlan.ssid != "Vodafone-48683C"

11) Estabeleça um filtro Wireshark apropriado que lhe permita visualizar todas as tramas probing request e probing response, simultaneamente.

Todas as tramas probing request e probing response apresentam subtipo 4 e 5. Sabendo isto, para observar estas tramas, basta aplicar o filtro:

(wlan.fc.type_subtype == 4) || (wlan.fc.type_subtype == 5)

Que nos vai dar o seguinte resultado:

	ype_subtype	0x4 wlan.fc.type_subtype			
	Time	Source	Destination	Protocol	Lengti Info
	1.381604	HitronTe_f3:9a:46	SamsungE_1a:10:f6	802.11	486 Probe Response, SN=1936, FN=0, Flags=C, BI=190, SSID="FlyingNet"
	1.382387	HitronTe_f3:9a:46	SamsungE_1a:10:f6	802.11	486 Probe Response, SN=1936, FN=0, Flags=RC, BI=100, SSID="FlyingNet"
	1.391750	HitronTe_f3:9a:46	SamsungE_1a:10:f6	802.11	486 Probe Response, SN=1936, FN=0, Flags=RC, BI=100, SSID="FlyingNet"
	1.391879	HitronTe_ee:2e:c6	SamsungE_1a:10:f6	802.11	485 Probe Response, SN=2192, FN=0, Flags=RC, BI=100, SSID="NOS-2EC6"
	1.399123	SamsungE_1a:10:f6	Broadcast	802.11	122 Probe Request, SN=1124, FN=0, Flags=C, SSID=Wildcard (Broadcast)
	2.710713	HitronTe_ee:2e:c6	AltoBeam_08:32:99	802.11	485 Probe Response, SN=2193, FN=0, Flags=C, BI=100, SSID="NOS-2EC6"
279	2.720237	HitronTe_ee:2e:c6	AltoBeam_08:32:99	802.11	485 Probe Response, SN=2193, FN=0, Flags=RC, BI=100, SSID="NOS-2EC6"
334	3.297107	PTInovac_45:be:32	ea:52:54:89:2b:72	802.11	224 Probe Response, SN=2424, FN=0, Flags=C, BI=100, SSID="MEO-W1F1"
335	3.297177	PTInovac_45:be:32	ea:52:54:89:2b:72	802.11	224 Probe Response, SN=2424, FN=0, Flags=RC, BI=100, SSID="MEO-WiFi"
336	3.300315	PTInovac_45:be:32	ea:52:54:89:2b:72	802.11	224 Probe Response, SN=2424, FN=0, Flags=RC, BI=100, SSID="MEO-W1F1"
788	7.826332	AltoBeam_08:32:99	Broadcast	802.11	110 Probe Request, SN=1111, FN=0, Flags=C, SSID=Wildcard (Broadcast)
789	7.832355	HitronTe_ee:2e:c6	AltoBeam_08:32:99	802.11	485 Probe Response, SN=2195, FN=0, Flags=C, BI=100, SSID="NOS-2EC6"
791	7.835604	HitronTe_ee:2e:c6	AltoBeam_08:32:99	802.11	485 Probe Response, SN=2195, FN=0, Flags=RC, BI=100, SSID="NOS-2EC6"
793	7.838631	AltoBeam_08:32:99	Broadcast	802.11	110 Probe Request, SN=1112, FN=0, Flags=C, SSID=Wildcard (Broadcast)
796	7.859430	HitronTe_ee:2e:c6	AltoBeam_08:32:99	802.11	485 Probe Response, SN=2196, FN=0, Flags=C, BI=100, SSID="NOS-2EC6"
797	7.862565	HitronTe_ee:2e:c6	AltoBeam_08:32:99	802.11	485 Probe Response, SN=2196, FN=0, Flags=RC, BI=100, SSID="NOS-2EC6"
798	7.868818	HitronTe_ee:2e:c6	AltoBeam_08:32:99	802.11	485 Probe Response, SN=2196, FN=0, Flags=RC, BI=100, SSID="NOS-2EC6"
962	9.389248	PTInovac 29:a9:c0	ARRISGro a9:9e:98	802.11	434 Probe Response, SN=3266, FN=0, Flags=C, BI=100, SSID="Masmorra do Sexo"
963	9.396704	PTInovac_29:a9:c0	ARRISGro_a9:9e:98	802.11	434 Probe Response, SN=3266, FN=0, Flags=RC, BI=100, SSID="Masmorra do Sexo"
	9.397631	PTInovac 29:a9:c0	ARRISGro a9:9e:98	802.11	434 Probe Response, SN=3266, FN=9, Flags=RC, BI=100, SSID="Masmorra do Sexo"
	9.403218	PTInovac_29:a9:c0	ARRISGro_a9:9e:98	802.11	434 Probe Response, SN=3266, FN=9, Flags=RC, BI=189, SSID="Masmorra do Sexo"
	9.409475	PTInovac 29:a9:c0	ARRISGro a9:9e:98	802.11	434 Probe Response, SN=3266, FN=9, Flags=RC, BI=199, SSID="Masmorra do Sexo"
	9.412592	PTInovac 29:a9:c2	ARRISGro a9:9e:98	802.11	240 Probe Response, SN=3267, FN=0, Flags=C, BI=100, SSID="MEO-M/F1"
	9.413792	PTInovac 29:a9:c2	ARRISGro_a9:9e:98	802.11	240 Probe Response, SN=3267, FN=0, Flags=RC, BI=180, SSID="MEO-WMF1"
	9.418850	PTInovac 29:a9:c2	ARRISGro_a9:9e:98	802.11	240 Probe Response, SN-3267, FN-0, Flags=R., C, BI=100, SSID="MEC-MIT!"
	9.418951	PTInovac_29:a9:c2	ARRISGro_a9:9e:98	802.11	240 Probe Response, SN-3267, FN-0, Flags=RC, BI=180, SSID="MEO-Mifi"
	9.461540	HitronTe e7:c8:76	ARRISGro a9:9e:98	802.11	517 Probe Response, SH=1809, FH=0, Flags=C, BI=100, SSID="MOS-C876"
	12.958765	ARRISGro a6:bc:a0	Broadcast	802.11	134 Probe Request, Sn-1506, Ph-0, Flags
	12.950/05	HitronTe ee:2e:c6	AltoBeam 08:32:99	802.11	485 Probe Response, No-2197, FN-9, Flags=C, BI=169, SSID-WMSLUcaru (Floradicast)
	12.977869	HitronTe ee:2e:c6	ARRISGro a6:bc:a0	802.11	485 Probe Response, SH=2198, FH=0, Flags=C, BI=100, SSID=MOS-2EC6"
	13.938314	HitronTe_ee:2e:c6	ARRISGIO_a6:bc:a0	802.11	405 PYODE RESPONSE, SNEZING, FREM, FLEMSE
	13.638314	HitronTe_ee:2e:c6	ARRISGFO_a6:bc:a0	802.11	485 Probe Response, SN-2209, FN-9, Flags=, Bl=109, SSIU="NUS-ZELD" 485 Probe Response, SN-2209, FN-9, Flags=, C. BI=109, SSIC="NUS-ZELD"
	13.578502	H1tronTe_ee:2e:c6	ARRISGro_a6:bc:a0	802.11	485 Probe Response, SN=2290, FN=0, Flags=RC, BI=100, SSID="NDS-ZEC6"
	13.612268	HitronTe_ee:2e:c6	ARRISGro_a6:bc:a0	802.11	485 Probe Response, SN=2201, FN=0, Flags=RC, BI=100, SSID="NOS-2EC6"
	13.613057	HitronTe_ee:2e:c6	ARRISGro_a6:bc:a0	802.11	485 Probe Response, SN=2201, FN=0, Flags=RC, BI=100, SSID="NOS-ZEC6"
	13.746366	22:58:38:50:79:94	Broadcast	802.11	139 Probe Request, SN=733, FN=9, Flags=C, SSID="IA 2 5"
	13.762607	22:58:38:50:79:94	Broadcast	802.11	139 Probe Request, SN=734, FN=9, Flags=C, SSID="IA 2 5"
	14.889662 14.995248	HitronTe_e7:c8:76 PTInovac 45:be:30	ea:52:54:89:2b:72 ea:52:54:89:2b:72	802.11 802.11	517 Probe Response, SN-1914, Flags, B. 18-100, SSID="NOS-C876" 389 Probe Response, SN-2951, FN-9 Flags, C. BI-100, SSID="NO-S48E30"

Figura 6. Filtro aplicado e resultados obtidos

12) Identifique um probing request para o qual tenha havido um probing response. Face ao endereçamento usado, indique a que sistemas são endereçadas estas tramas e explique qual o propósito das mesmas?

o.	^	Time	Source	Destination	Protocol	Lengtl Info
		69.381146	HitronTe_ee:2e:c6	AltoBeam_08:32:99	802.11	485 Probe Response, SN=2255, FN=0, Flags=RC, BI=100, SSID="NOS-2EC6"
		69.396712	HitronTe ee:2e:c6	AltoBeam_08:32:99	802.11	485 Probe Response, SN=2256, FN=0, Flags=C, BI=100, SSID="NOS-2EC6"
		69.396848	HitronTe_ee:2e:c6	AltoBeam_08:32:99	802.11	485 Probe Response, SN=2256, FN=0, Flags=RC, BI=100, SSID="NOS-2EC6"
		69.399866	HitronTe ee:2e:c6	AltoBeam 08:32:99	802.11	485 Probe Response, SN=2256, FN=0, Flags=RC, BI=100, SSID="NOS-2EC6"
		69.784472	IntelCor_19:8e:53	Broadcast	802.11	169 Probe Request, SN=896, FN=0, Flags=C, SSID="Vodafone-48683C"
		71.812790	HitronTe ee:2e:c6	46:c1:d5:8e:6e:98	802.11	485 Probe Response, SN=2257, FN=0, Flags=RC, BI=100, SSID="NOS-2EC6"
		71.813488	HitronTe ee:2e:c6	46:c1:d5:8e:6e:98	802.11	485 Probe Response, SN=2257, FN=0, Flags=RC, BI=100, SSID="NOS-2EC6"
		71.839235	HitronTe_ee:2e:c6	46:c1:d5:8e:6e:98	802.11	485 Probe Response, SN=2258, FN=0, Flags=RC, BI=100, SSID="NOS-2EC6"
81	185	72.219458	PTInovac d6:88:50	32:86:aa:fc:00:92	802.11	380 Probe Response, SN=2224, FN=0, Flags=C, BI=100, SSID="MEO-D68850"
		72.229308	PTInovac_d6:88:50	32:86:aa:fc:00:92	802.11	380 Probe Response, SN=2224, FN=0, Flags=RC, BI=100, SSID="MEO-D68850"
81	187	72.229450	PTInovac_d6:88:50	32:86:aa:fc:00:92	802.11	380 Probe Response, SN=2224, FN=0, Flags=RC, BI=100, SSID="MEO-D68850"
81	188	72.233246	PTInovac_d6:88:50	32:86:aa:fc:00:92	802.11	380 Probe Response, SN=2224, FN=0, Flags=RC, BI=100, SSID="MEO-D68850"
81	189	72.235763	PTInovac_d6:88:52	32:86:aa:fc:00:92	802.11	224 Probe Response, SN=2225, FN=0, Flags=C, BI=100, SSID="MEO-WiFi"
81	190	72.238933	PTInovac_d6:88:52	32:86:aa:fc:00:92	802.11	224 Probe Response, SN=2225, FN=0, Flags=RC, BI=100, SSID="MEO-WiFi"
81	192	72.243155	PTInovac_d6:88:52	32:86:aa:fc:00:92	802.11	224 Probe Response, SN=2225, FN=0, Flags=RC, BI=100, SSID="MEO-W1F1"
81	193	72.250454	PTInovac_d6:88:52	32:86:aa:fc:00:92	802.11	224 Probe Response, SN=2225, FN=0, Flags=RC, BI=100, SSID="MEO-WiFi"
81	194	72.250561	PTInovac_d6:88:52	32:86:aa:fc:00:92	802.11	224 Probe Response, SN=2225, FN=0, Flags=RC, BI=100, SSID="MEO-WiFi"
84	409	72.927955	PTInovac_45:be:30	86:9c:40:4f:c3:80	802.11	380 Probe Response, SN=3818, FN=0, Flags=C, BI=100, SSID="MEO-45BE30"
84	410	72.935667	PTInovac_45:be:30	86:9c:40:4f:c3:80	802.11	380 Probe Response, SN=3818, FN=0, Flags=RC, BI=100, SSID="MEO-45BE30"
84	411	72.935759	PTInovac_45:be:32	86:9c:40:4f:c3:80	802.11	224 Probe Response, SN=3819, FN=0, Flags=C, BI=100, SSID="MEO-W1F1"
84	480	73.468890	PTInovac_9b:f2:a0	Google_0e:9e:c0	802.11	412 Probe Response, SN=2177, FN=0, Flags=RC, BI=100, SSID="MEO-9BF2A0"
88	816	74.493453	HitronTe_ee:2e:c6	AltoBeam_08:32:99	802.11	485 Probe Response, SN=2259, FN=0, Flags=C, BI=100, SSID="NOS-2EC6"
88	818	74.503093	HitronTe_ee:2e:c6	AltoBeam_08:32:99	802.11	485 Probe Response, SN=2259, FN=0, Flags=RC, BI=100, SSID="NOS-2EC6"
89	963	75.279329	HitronTe_e7:c8:76	ARRISGro_a9:9e:98	802.11	517 Probe Response, SN=2532, FN=0, Flags=C, BI=100, SSID="NOS-C876"
89	964	75.292290	Tp-LinkT_ce:58:d2	Broadcast	802.11	82 Probe Request, SN=110, FN=0, Flags=C, SSID=Wildcard (Broadcast)
89	965	75.292304	Tp-LinkT_ce:58:d2	Broadcast	802.11	82 Probe Request, SN=111, FN=0, Flags=C, SSID=Wildcard (Broadcast)
89	966	75.298427	HitronTe_f3:9a:46	Tp-LinkT_ce:58:d2	802.11	486 Probe Response, SN=1967, FN=0, Flags=C, BI=100, SSID="FlyingNet"
89	968	75.298465	HitronTe_f3:9a:46	Tp-LinkT_ce:58:d2	802.11	486 Probe Response, SN=1968, FN=0, Flags=C, BI=100, SSID="FlyingNet"
89	975	75.328386	HitronTe e7:c8:76	ARRISGro a9:9e:98	802.11	517 Probe Response, SN=2534, FN=0, Flags=C, BI=100, SSID="NOS-C876"

Figura 7. Probing request e Probing response

Como podemos ver na figura 6 acima, como por exemplo, a trama 8965 é um probe request. Com isto, vai ser emitida uma STA HiltronTe_f3:9a:46 para todos os dispositivos da rede, de forma a encontrar os APs que estão dentro do alcance rádio. Já a trama 8966 é um probing response, ou seja, uma resposta do Tp-LinkT ce:58:d2 para a STA emitida.

6. Processo de Associação

13) Identifique uma sequência de tramas que corresponda a um processo de associação realizado com sucesso entre a STA e o AP, incluindo a fase de autenticação.

Utilizando os filtros "wlan.fc.type_subtype == 0x00 || wlan.fc.type_subtype == 0x01 || wlan.fc.type_subtype == 0x0B" foi possível identificar as tramas que correspondem a um processo de associação entre a STA e AP.

14) Efetue um diagrama que ilustre a sequência de todas as tramas trocadas no processo.

7. Transferência de Dados

15) Considere a trama de dados nº8503. Sabendo que o campo Frame Control contido no cabeçalho das tramas 802.11 permite especificar a direcionalidade das tramas, o que pode concluir face à direcionalidade dessa trama, será local à WLAN?

As flags "toDS" e "fromDS" estão a 1 e 0, respetivamente. Assim, podemos concluir que as tramas vão do STA para o router de acesso, assim verificando a direcionalidade desta trama. Para além disso, com esses mesmos valores, podemos também deduzir que é local à WLAN.

16) Para a trama de dados nº8503, transcreva os endereços MAC em uso, identificando quais os endereços correspondentes à estação sem fios (STA), ao AP e ao router de acesso ao sistema de distribuição (DS)?

STA - 80:c5:f2:0f:0e:9b(source address)

AP - 74:9b:e8:f3:9a:46(receiver adress)

DS - 33:33:00:00:00:16(destination address)

17) Como interpreta a trama nº8521 face à sua direccionalidade e endereçamento MAC?

As flags "toDS" e "fromDS" estão a 0 e 1, respetivamente. Assim, podemos concluir que as tramas vão do STA para o router de acesso para o STA.

STA - 80:c5:f2:0f:0e:9b(destination address)

AP - 74:9b:e8:f3:9a:46(transmitter adress)

DS - 33:33:00:00:00:16(source address)

18) Que subtipo de tramas de controlo são transmitidas ao longo da transferência de dados acima mencionada? Tente explicar a razão de terem de existir (contrariamente ao que acontece numa rede Ethernet.)

O subtipo de tramas de controlo transmitidas na transferência de dados é a "QoS Data"(0x28). Normalmente este subtipo é utilizado para gerir e manusear a transmissão de tipos específicos de dados e para garantir que os diferentes serviços recebem os recursos necessários para o seu bom funcionamento, de acordo com os seus requisitos e prioridades.

19) O uso de tramas Request To Send e Clear To Send, apesar de opcional, é comum para efetuar "pré-reserva" do acesso ao meio quando se pretende enviar tramas de dados, com o intuito de reduzir o número de colisões resultante maioritariamente de STAs escondidas. Para o exemplo acima, verifique se está a ser usada a opção RTS/CTS na troca de dados entre a STA e o AP/Router da WLAN, identificando a direcionalidade das tramas e os sistemas envolvidos.

Dê um exemplo de uma transferência de dados em que é usada a opção RTC/CTS e um outro em que não é usada.

O filtro "wlan.fc.type_subtype == 0x1B" permite-nos listar as tramas que usam RTS/CTS. Por exemplo, a trama n°7.

POR exemplo, a trama n°7.

7 0.037432 PTInovac d6:88:50 (... ce:90:6f:21:42:3a (... 802.11 76 Request-to-send, Flags=.......

Podemos verificar que é RTS.

```
Type/Subtype: Request-to-send (0x001b)
Frame Control Field: 0xb400
.....00 = Version: 0
.... 01.. = Type: Control frame (1)
1011 .... = Subtype: 11
```

Como os valores das flags "toDS" e "fromDS" são ambas 0 podemos concluir que estamos numa network AH-HOC, ou seja, não há infraestruturas centralizadas, logo a ligação entre dispositivos é direta.

Como a ligação entre dispositivos é direta, o receiver address corresponde ao destino (ce:90:6f:21:42:3a) e o transmitter address corresponde à origem(PTInovac_d6:88:50).

```
Receiver address: ce:90:6f:21:42:3a (ce:90:6f:21:42:3a)
Transmitter address: PTInovac_d6:88:50 (00:06:91:d6:88:50)
```

Agora, uma tabela cuja opção RTS/CTS não foi utilizada.

```
IEEE 802.11 Beacon frame, Flags: ......C

Type/Subtype: Beacon frame (0x0008)

Frame Control Field: 0x8000

.... 00 = Version: 0

.... 00.. = Type: Management frame (0)

1000 .... = Subtype: 8

Flags: 0x00

.000 0000 0000 0000 = Duration: 0 microseconds
Receiver address: Broadcast (ff:ff:ff:ff:ff)
Destination address: Broadcast (ff:ff:ff:ff:ff)
Transmitter address: 90:aa:c3:ee:2e:c6 (90:aa:c3:ee:2e:c6)
Source address: 90:aa:c3:ee:2e:c6 (90:aa:c3:ee:2e:c6)
BSS Id: 90:aa:c3:ee:2e:c6 (90:aa:c3:ee:2e:c6)
```

Conclusão

Com a conclusão do TP4, acreditamos ter concluído este trabalho com sucesso, respondendo a todas as questões pedidas, e com isso aprender sobre vários aspectos do protocolo IEEE 802.11, o formato das tramas, o endereçamento dos componentes envolvidos na comunicação sem fios, os tipos de tramas mais comuns, bem como a operação do protocolo. Tivemos também as nossas devidas dificuldades mas com ajuda do excelente senhor professor Pedro António conseguimos eventualmente superá-las.