21-484 Notes JD Nir jnir@andrew.cmu.edu February 3, 2012

Def:

- A triangulation of a triangle is a subdivision of the triangle into smaller triangles.

- A Sperner labeling of a triangulation is a labeling of the corners by 1,2,3 such that
 - \rightarrow The big corners are labeled 1,2,3
 - \rightarrow A small corner lying on the line connecting two Big corners labeled i, j can only be labeled i or j.

Example:

<u>Lemma:</u> (Sperner's lemma) In every Sperner's labeling there is a small triangle lableed 1,2,3. <u>Proof:</u> Define the following Graph G.

- The vertex set is the set of small triangles plus another vertex representing the outer face.
- There is an edge between two vertices if there is a side who's endpoints are labeled 1,2.

Notice:

1. the degree of an inner vertex is 0,1, or 2

- 2. the degree of an inner vertex is 1 iff it is labeled 1,2,3
- 3. the degree of the outer vertex is odd because we start with 1 and end with 2. Let x be the number of lines moving from $1 \to 2$. Let y be the number of lines moving from $2 \to 1$. x y = 1 so x + y is odd.
- \rightarrow since the sum of degrees in a graph is even, we must have an inner vertex with odd degree. Actualy, we proved that there is an odd number of such triangles.

Application: Proving Brouwer's Fixed point Thm.

Thm: Every continuous function t from $D = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le 1\}$ to itself has a fixed point x_0 such that $f(x_0) = x_0$

Proof: - having a fixed point is a topological property

- If $f:G\to G$ is continuous and we know that the FP theorem holds in H, and there is $h:G\to H$ continuous and bijective

$$\begin{array}{l} (h\circ f\circ h^{-1})(x_0)=x_0\\ f\circ (h^{-1}(x_0))=h^{-1}(x_0) \quad \text{Can prove on triangles} \end{array}$$

- \rightarrow Use Barycentric coordinates
 - \rightarrow write (x,y) as a convex combination of a,b,c

$$(x,y) \mapsto (1-x-y,x,y)$$

- \rightarrow let F be a continuous function from $\triangle abc$ to itself, assume f(x,y,z)=(x',y',z') label (x,y,z)
 - 1 if x' < x
 - 2 if $x' \ge x$ bu y' < y
 - 3 if $x' \ge x, y' \ge y$ but z' < z

Notice: \rightarrow if a point can not be labeled, then $a' \ge a, b' \ge b, c' \ge c \Rightarrow a' = a, b' = b, c' = c \Rightarrow$ found a fixed point

- $\rightarrow a$ is labeled 1 (or it is a fixed point)
- $\rightarrow b$ is labeled 2 (or it is a fixed point)
- $\rightarrow c$ is labeled 3 (or it is a fixed point)
- \rightarrow if (x,y) is on the a-b line, then y=0, so the Barycentric coordinates (1-x,x,0) in particular, the 3rd coordinate will not become smaller. So such (x,y) will be labeled 1 or 2 (or be a fixed point)
- \rightarrow true for all sides
- \rightarrow can apply Sperner's lemma