Национальный исследовательский университет ИТМО Факультет информационных технологий и программирования Прикладная математика и информатика

Методы оптимизации

Отчет по лабораторной работе $\mathbb{N}2$

⟨Собрано 29 апреля 2023 г.⟩

Работу выполнили:

Бактурин Савелий Филиппович M32331 Вереня Андрей Тарасович M32331 Сотников Максим Владимирович M32331

Преподаватель:

TBA

Стохастический градиентный спуск

Исследование с разными размерами батча

Реализуйте стохастический градиентный спуск для решения линейной регрессии. Исследуйте сходимость с разным размером батча (1-SGD, 2, ..., n-1-Minibatch GD, n-GD из предыдущей работы).

Стохастический градиентный спуск

Cmoxacmuческий градиентный спуск — модификация к основному методу итерационного поиска минимума через антиградиент дифференцируемой функции в рассматриваемой плоскости \mathbb{R}^n . Идея: пусть есть множество M — какой-то полный набор данных вычисленных оценок при спуске к минимуму, тогда в рассматриваемой версии мы будем брать случайное значение из выбранного $M' \subset M$. Как правило, такой подход преуменьшает вычислительные ресурсы, в особенности, следует помнить, что float считается крайне медленно, и ускоряет итерацию по количествам эпохам, но при этом мы теряем точность сходимости.

Пусть $x_i = \{x_i^0, x_i^1, \dots, x_i^{n-1}\}$ – координата в \mathbb{R}^n и задана функция $f(x_i): \mathbb{R}^n \to \mathbb{R}$. Мы хотим нашу задачу свести к исследованию на некоторых специальных образцах заданной функции, для каждой точки из которых мы будем минимизировать ошибку для дальнейшего нахождения приближенного минимума рассматриваемой функции $f(x_i)$. Мы хотим найти линейную регрессию, представляющая из себя полином 1-ой степени от n переменных. Для начала мы найдем функцию ошибки S по следующей формуле:

$$S(f) = (X'^{\mathrm{T}} \times X')^{-1} \times X'^{\mathrm{T}} \times Y \times \vec{x},$$

где Y – матрица значений при множестве X (определение), X' – это матрица X, но в 1-ой колонке забитый единицами. По другому мы можем записать данную формулу следующим образом:

$$S(f) = \sum_{i=1}^{N} (y_i - x_i \cdot w_i)^2,$$

где $y_i \in D(f(x_i))$ (образ функции), $w_i \in W$ – сгенерированные веса, коэффициенты при линейной функции.

Рассмотрим идею алгоритма. При итерации, пока мы не превысили максимальное количество шагов или не сведем нашу функцию потери до некоторого ε , мы будем обобщать экспериментальные данные в виде случайных точек в некоторую многомерную линию. На каждом шаге мы будем изменять функцию потерь от измененной w.

Напишем идейный псевдокод. Скажем, что $x_i = \{x_i^0, x_i^1, \dots, x_i^{n-1}\}$ – координата в n-мерном пространстве $\mathbb{R}^n, y_i = \{y_i^0, y_i^1, \dots, y_i^{n-1}\}$ – образ функции $f(x_i)$.

```
function S(x,y,w):

        \sum_{i=1}^{N} (y_i - x_i \cdot w_i)^2 

function stochastic_descent(x,y):
        w \leftarrow [w_i \in \mathbb{R}] * n
```

```
prev \leftarrow INIT, предыдущее значение функции потери
            \text{next} \leftarrow S(x, y, w), текущее значение функции потери
 7
            \alpha \leftarrow \mathtt{const}
 8
            while |prev-next| > \varepsilon:
9
                    \mathtt{prev} \leftarrow \mathtt{next}
                    i \leftarrow x \in [0, |Y|]
                    T \leftarrow [0] * n
                    \forall j \in |w| \ \mathrm{do}
13
                           T_j \leftarrow (y_i - x_i \times w) \cdot x_i^j
14
                    w \leftarrow w + \alpha \cdot T
                    next \leftarrow S(x, y, w)
16
            return w
17
18
```

Minibatch градиентный спуск

Модификация Minibatch обобщает вариант стохастического градиентного спуска, тем, что во время итерации мы будем брать не одну случайную точку из посчитанных на предыдущем шаге и изменять функцию потери как бы относительно её, а теперь возьмем выборку $M' \subset M$, причем, обязательно, чтобы |M'| > 1 и |M'| < |M|.

Тогда псевдокод от предыдущего рассмотренного варианта почти ничем не отличается. Скажем также, что $x_i = \{x_i^0, x_i^1, \dots, x_i^{n-1}\}$ – координата в n-мерном пространстве $\mathbb{R}^n, y_i = \{y_i^0, y_i^1, \dots, y_i^{n-1}\}$ – образ функции $f(x_i)$; значение m – выступает в роли мощности подмножества M'.

```
1 function S(x, y, w):
           return \sum_{i=1}^{N} (y_i - x_i \cdot w_i)^2
 4 function stochastic_descent(x, y, m):
           w \leftarrow [w_i \in \mathbb{R}] * n
           \mathtt{prev} \leftarrow INIT, предыдущее значение функции потери
           \text{next} \leftarrow S(x, y, w), текущее значение функции потери
 8
           \alpha \leftarrow \texttt{const}
            while |prev-next|>\varepsilon:
 9
                   \mathtt{prev} \leftarrow \mathtt{next}
10
                   \forall i \in [0, m] do
                           T \leftarrow [0] * n
                           \forall j \in |w| do
                                   T_j \leftarrow (y_i - x_i \times w) \cdot x_i^j
14
                           w \leftarrow w + \alpha \cdot T
15
                   next \leftarrow S(x, y, w)
17
           return w
18
```

Градиентный спуск

Наконец, самый общий случай и являющийся самым быстроходным среди двух рассмотренных ранее, благодаря тому, что мы учитываем все точки $M' \equiv M$. Данный метод работает крайне медленно, но является одним из самых быстрых в сходимости

к приближенной точке минимума.

Пусть m – есть мощность множества M, тогда идейным псевдокодом-решением задачи будет являться тот же код, что и для предыдущего варианта, то есть

```
1 function S(x,y,w):
           return \sum_{i=1}^{N} (y_i - x_i \cdot w_i)^2
4 function stochastic_descent(x, y, m):
           w \leftarrow [w_i \in \mathbb{R}] * n
           prev \leftarrow INIT, предыдущее значение функции потери
           \text{next} \leftarrow S(x,y,w), текущее значение функции потери
           \alpha \leftarrow \mathtt{const}
           while |prev - next| > \varepsilon:
9
                   \mathtt{prev} \leftarrow \mathtt{next}
10
                   \forall i \in [0, m] do
11
                          T \leftarrow [0] * n
                           \forall j \in |w| do
13
                                  T_j \leftarrow (y_i - x_i \times w) \cdot x_i^j
14
                   w \leftarrow w + \alpha \cdot T
15
          next \leftarrow S(x, y, w)
17
           {	t return} w
18
```

Learning rate scheduling

Задачей мы поставим подбор функции изменения шага, чтобы улучшить сходимость из предыдущего пункта. Тогда, мы использовали самый простой способ — κ онстантный, однако у него есть недостаток: иногда шаг в $const_learning_rate$ может «перепрыгнуть» через минимум и/или начать «прыгать» через него бесконечно много раз, в таком случае мы хотим, чтобы шаг был уменьшен. Другой случай: когда такой шаг может привести к долгому ожиданию, пока алгоритм не дойдет до минимума. Вот тут и возникает задача подбора такой функции изменения шага, чтобы алгоритм за какое-то конечное k эпох добрался до минимума быстрее. В качестве такой мы возьмем экспоненциальную функцию. Экспоненциальная функция, в общем случае, для изменения сходимости выглядит так:

$$learning_rate = start_learning_rate \cdot e^{-k \cdot epoch},$$

где learning_rate — текущий размер шага, start_learning_rate — стартовая длина, k — некий параметр, который может зависеть от размера выбранного батча, и, наконец, epoch — текущий номер эпохи.

Исследование различных модификаций

Исследуйте модификации градиентного спуска (Nesterov, Momentum, AdaGrad, RMSProp, Adam).

Momentum

Пусть нам дана функция $f(x_i)$, где $x_i = \{x_i^1, x_i^2, \dots, x_i^n\}$ – координата точки x_i в n-мерном пространстве – и пусть у данной f есть множество локальных точек минимума, образующийся «впадиной» функции, и «горы» – максимумов. Рассмотрим некоторый объект \mathfrak{O} , который обладает свойством «скольжения» по поверхности нашей функции f, определяемый следующим образом:

- а) если он «сходит» с горы, то он не останавливается при «схождении» с локального максимума;
- b) если он «перескакивает» локальный минимум, то он либо остановится на идеально гладкой части поверхности функции f, либо он «сойдет» к локальному минимуму.

Идея модификации градиентного спуска Momentum в создании алгоритма, обладающий свойством $\mathfrak O$ в имении свойства импульса.

Рассмотрим последовательность $\{u_i\}$, которую мы назовем «скоростью», скажем, что $\{g_i\} \equiv \{-\nabla f(x_i)\}$, тогда определим скорость следующим образом:

$$v_{i+1} = \lambda \cdot v_i + (1 - \lambda) \cdot g_i, \ \lambda \in (0, 1)$$

и зададим изменение на i+1-ой итерации наших весов точек:

$$w_{i+1} = w_i - \alpha \cdot v_{i+1}, \ \alpha = \text{const}$$

Nesterov

Модификация *Nesterov* по своей сути почти ничем не отличается ранее рассмотренного Momentum: единственное, что отделяет братьев по крови, так это то, что Nesterov считает градиент не в текущей точке, на которой мы стоим, а той, куда мы бы могли пойти, следуя импульсу. Тогда, наши основные формулы немного меняются, для скорости:

$$v_{i+1} = \lambda \cdot v_i + (1 - \lambda) \cdot q(w_i - \alpha \cdot \lambda \cdot v_i), \ \alpha = \text{const}$$

И для весов:

$$w_{i+1} = w_i - \alpha \cdot v_{i+1}$$

AdaGrad

Рассмотрим некий start_learning_rate и стандартный метод стохастического спуска. Как мы уже видели, одним из недостатков такого метода является появления слишком больших или, наоборот, маленьких компонент относительно друг друга. Для исправления мы введём матрицу Ω , которую определим следующим образом:

$$\Omega = \sum_{j=1}^{i} g_j \times g_j^{\mathrm{T}},$$

где $g_j - \nabla f(x_j)$. Теперь рассмотрим основную формулу и поделим часть, где идет «шаг» алгоритма, на $\Omega_{i,i}$:

$$w_{i+1} = w_i - \frac{\alpha \cdot g_j}{\sqrt{\Omega_{i,i}}}$$

Теперь же, там, где мы потенциально делаем большие шаги, мы делим на большое $\Omega_{i,i}$ и таким образом уменьшаем количество больших скачков. Тут мы получаем глобальную проблема в виде потенциально слишком высокой скорости уменьшения шага.

RMSProp

Модификация RMSProp решает возникшую проблему с AdaGrad, в качестве решения было предложено усреднять значения. Пусть $(g_i)^2$ – покомпонентное возведение в квадрат, \eth – некое число порядка $[10^{-10}, 10^{-7}]$, дабы по формуле не было деления на ноль. Тогда, в качестве скорости возьмем:

$$s_{i+1} = \lambda \cdot s_i + (1 - \lambda) \cdot (g_i)^2, \ \lambda \in (0, 1)$$

Наконец, изменение весов:

$$w_{i+1} = w_i - \alpha \cdot \frac{g_i}{\sqrt{s_{i+1} + \eth}}, \ \alpha = \text{const}$$

Adam

Начинаем объединение веселья предыдущих. В отличие от всех его предшественником модификация Adam является наиболее распространенным и используемым.

$$v_{i+1} = \lambda_1 \cdot v_i + (1 - \lambda_1) \cdot g_i$$

$$s_{i+1} = \lambda_2 \cdot s_i + (1 - \lambda_2) \cdot (g_i)^2$$

$$\hat{v}_{i+1} = \frac{v_{i+1}}{1 - \lambda_1^{i+1}}$$

$$\hat{s}_{i+1} = \frac{s_{i+1}}{1 - \lambda_2^{i+1}}$$

Наконец, изменение весов будем рассчитывать по следующей формуле:

$$w_{i+1} = w_i - \lambda \cdot \frac{\hat{v}_{i+1}}{\sqrt{\hat{s}_{i+1} + \eth}},$$

где
$$\lambda_1 = 0.9, \, \lambda_2 = 0.999$$
 и $\eth = 10^{-8}.$

Сравнение модификаций

Сходимость

Траектории

Полиномиальная регрессия

Введение

Исследование различных модификация

L1

L2

Elastic регуляризация