6

Orthogonality and Least Squares

6.5

LEAST-SQUARES PROBLEMS

LEAST-SQUARES PROBLEMS (when Ax=b has no exact solution)

■ **Definition:** If A is $m \times n$ and \mathbf{b} is in \mathbb{R}^m , a **least-squares solution** of $A\mathbf{x} = \mathbf{b}$ is an $\hat{\mathbf{x}}$ in \mathbb{R}^n such that $\left\| \mathbf{b} - A\hat{\mathbf{x}} \right\| \le \left\| \mathbf{b} - A\mathbf{x} \right\|$ for all \mathbf{x} in \mathbb{R}^n .

• The most important aspect of the least-squares problem is that no matter what **x** we select, the vector A**x** will necessarily be in the column space, Col A.

• So we seek an **x** that makes A**x** the closest point in Col A to **b**. See the figure on the next slide.

LEAST-SQUARES PROBLEMS

The vector **b** is closer to $A\hat{\mathbf{x}}$ than to $A\mathbf{x}$ for other **x**.

Solution of the General Least-Squares Problem

• Given A and b, apply the Best Approximation Theorem to the subspace Col A.

Let

$$\hat{b} = proj_{\text{Col } A} b$$

Because b is in the column space A, the equation Ax = b is consistent, and there is an x in Rⁿ such that
(1) Ax = b

- Since $\hat{\mathbf{b}}$ is the closest point in Col A to **b**, a vector $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$ if and only if $\hat{\mathbf{x}}$ satisfies (1).
- Such an \hat{x} in \mathbb{R}^n is a list of weights that will build bout of the columns of A. See the figure on the next slide.

The least-squares solution $\hat{\mathbf{x}}$ is in \mathbb{R}^n .

- Suppose $\hat{\mathbf{x}}$ satisfies $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$.
- By the Orthogonal Decomposition Theorem, the projection \hat{b} has the property that $b \hat{b}$ is orthogonal to Col A, so $b A\hat{x}$ is orthogonal to each column of A.
- If \mathbf{a}_j is any column of A, then $a_j \cdot (b A\hat{x}) = 0$, and $a_j^T (b A\hat{x}) = 0$.

• Since each \mathbf{a}_{j}^{T} is a row of A^{T} ,

$$A^{T}(\mathbf{b} - A\hat{\mathbf{x}}) = 0 \tag{2}$$

Thus

$$A^T \mathbf{b} - A^T A \hat{\mathbf{x}} = 0$$

$$A^{T}A\hat{\mathbf{x}} = A^{T}\mathbf{b}$$

• These calculations show that each least-squares solution of Ax = b satisfies the equation

$$A^{T}A\mathbf{x} = A^{T}\mathbf{b} \tag{3}$$

- The matrix equation (3) represents a system of equations called the **normal equations** for Ax = b.
- A solution of (3) is often denoted by \hat{x} .

- Theorem 13: The set of least-squares solutions of Ax = b coincides with the nonempty set of solutions of the normal equation $A^T Ax = A^T b$.
- **Proof:** The set of least-squares solutions is nonempty and each least-squares solution $\hat{\mathbf{x}}$ satisfies the normal equations.
- Conversely, suppose $\hat{\mathbf{x}}$ satisfies $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.
- Then $\hat{\mathbf{x}}$ satisfies (2), which shows that $\mathbf{b} A\hat{\mathbf{x}}$ is orthogonal to the rows of A^T and hence is orthogonal to the columns of A.
- Since the columns of A span Col A, the vector $\mathbf{b} A\hat{\mathbf{x}}$ is orthogonal to all of Col A.

Hence the equation

$$\mathbf{b} = A\hat{\mathbf{x}} + (\mathbf{b} - A\hat{\mathbf{x}})$$

is a decomposition of **b** into the sum of a vector in Col A and a vector orthogonal to Col A.

- By the uniqueness of the orthogonal decomposition, $A\hat{\mathbf{x}}$ must be the orthogonal projection of **b** onto Col A.
- That is, $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$ and $\hat{\mathbf{x}}$ is a least-squares solution.

Example 1: Find a least-squares solution of the inconsistent system Ax = b for

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$$

• **Solution:** To use normal equations (3), compute:

$$A^{T} A = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{vmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{vmatrix} = \begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix}$$

$$A^{T}\mathbf{b} = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}$$

• Then the equation $A^T A \mathbf{x} = A^T \mathbf{b}$ becomes

$$\begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}$$

• Row operations can be used to solve the system on the previous slide, but since $A^{T}A$ is invertible and 2×2 , it is probably faster to compute

$$(A^{T}A)^{-1} = \frac{1}{84} \begin{bmatrix} 5 & -1 \\ -1 & 17 \end{bmatrix}$$

and then solve $A^{T}Ax = A^{T}b$ as

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$$

$$= \frac{1}{84} \begin{bmatrix} 5 & -1 \\ -1 & 17 \end{bmatrix} \begin{bmatrix} 19 \\ 11 \end{bmatrix} = \frac{1}{84} \begin{bmatrix} 84 \\ 168 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

- Theorem 14: Let A be an $m \times n$ matrix. The following statements are logically equivalent:
 - a. The equation Ax = b has a unique least-squares solution for each **b**in \mathbb{R}^m .
 - b. The columns of A are linearly independent.
 - c. The matrix A^TA is invertible.

When these statements are true, the least-squares solution \hat{x} is given by

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$$

• When a least-squares solution \hat{x} is used to produce $A\hat{x}$ as an approximation to **b**, the distance from **b** to $A\hat{x}$ is called the **least-squares error** of this approximation.

PROOF

- ► The logical equivalence of a) and c) is obvious.
- ► In the following, we prove that b) and c) are logically equivalent.
- For this, we prove that columns of A are linearly independent if and only if columns of A^TA are linearly independent.
- For this, we prove that equations $A\mathbf{x} = 0$ and $A^T A\mathbf{x} = 0$ have the same set of solutions.
- And for this, we show that $A\mathbf{x} = 0$ yields $A^T A\mathbf{x} = 0$, and $A^T A\mathbf{x} = 0$ yields $A\mathbf{x} = 0$.
 - We have: $A\mathbf{x} = 0$. Multiplying both sides by A^T yields: $A^T A\mathbf{x} = 0A^T = 0$.
 - We have: $A^T A \mathbf{x} = 0$. This yields: $\mathbf{x}^T A^T A \mathbf{x} = 0 \mathbf{x}^T = 0 \implies (A \mathbf{x})^T A \mathbf{x} = 0 \implies \|A \mathbf{x}\|^2 = 0 \implies A \mathbf{x} = 0$.

ALTERNATIVE CALCULATIONS OF LEAST-SQUARES SOLUTIONS

Theorem 15: Given an $m \times n$ matrix A with linearly independent columns, let A = QR be a QR-factorization of A. Then, for each \mathbf{b} in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution, given by

$$\hat{\mathbf{x}} = \mathbf{R}^{-1} \mathbf{Q}^T \mathbf{b}$$

Proof: When columns of *A* are linearly independent, by the previous theorem, the least-square solution $\hat{\mathbf{x}}$ is unique and

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$$

Replacing A with QR and A^T with R^TQ^T proves the theorem!

ALTERNATIVE CALCULATIONS OF LEAST-SQUARES SOLUTIONS

Example 4: Find a least-squares solution of Ax = b for

$$A = \begin{bmatrix} 1 & -6 \\ 1 & -2 \\ 1 & 1 \\ 1 & 7 \end{bmatrix}, b = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 6 \end{bmatrix}$$

■ Solution: Because the columns **a**₁ and **a**₂ of *A* are orthogonal, the orthogonal projection of **b** onto Col *A* is given by

$$\hat{b} = \frac{b \cdot a_1}{a_1 \cdot a_1} a_1 + \frac{b \cdot a_2}{a_2 \cdot a_2} a_2 = \frac{8}{4} a_1 + \frac{45}{90} a_2 \tag{5}$$

ALTERNATIVE CALCULATIONS OF LEAST-SQUARES SOLUTIONS

$$= \begin{bmatrix} 2 \\ 2 \\ 2 \\ + \begin{bmatrix} -1 \\ -1 \\ 1/2 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 5/2 \\ 11/2 \end{bmatrix}$$

- Now that $\hat{\mathbf{b}}$ is known, we can solve $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$.
- But this is trivial, since we already know weights to place on the columns of A to produce b.
- It is clear from (5) that

$$\hat{x} = \begin{bmatrix} 8/4 \\ 45/90 \end{bmatrix} = \begin{bmatrix} 2 \\ 1/2 \end{bmatrix}$$