

Weiterentwicklung eines selbstfahrenden Fahrzeuges mit Lidar und anderen Sensoren

Studienarbeit

über die ersten drei Quartale des 3. Studienjahres

an der Fakultät für Technik im Studiengang Informationstechnik

an der DHBW Ravensburg Campus Friedrichshafen

von

Justin Serrer - 5577068 - TIT21 Timo Waibel - 8161449 - TIT21 Janik Frick - 4268671 - TIT21

Sperrvermerk

gemäß Ziffer 1.1.13 der Anlage 1 zu §§ 3, 4 und 5 der Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg vom 29.09.2017 in der Fassung vom 25.07.2018.

"Der Inhalt dieser Arbeit darf weder als Ganzes noch in Auszügen Personen außerhalb des Prüfungsprozesses und des Evaluationsverfahrens zugänglich gemacht werden, sofern keine anders lautende Genehmigung vom Dualen Partner vorliegt."

Ort, Datum	$\overline{\mathrm{Unterschrift}}$

Selbständigkeitserklärung

gemäß Ziffer 1.1.13 der Anlage 1 zu §§ 3, 4 und 5 der Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg vom 29.09.2017 in der Fassung vom 25.07.2018.

Ich versichere hiermit, dass ich meine Hausarbeit mit dem Thema

Weiterentwicklung eines selbstfahrenden Fahrzeuges mit Lidar und anderen Sensoren

selbständig verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt habe. Ich versichere zudem, dass die
eingereichte elektronische Fassung mit der gedruckten Fassung
übereinstimmt.

Ort, Datum	$\overline{\mathrm{Unterschrift}}$

Gender-Erklärung

Das in dieser Arbeit gewählte generische Maskulinum bezieht sich zugleich auf die männliche, die weibliche und andere Geschlechteridentitäten. Zur besseren Lesbarkeit wird auf die Verwendung männlicher und weiblicher Sprachformen verzichtet. Alle Geschlechteridentitäten werden ausdrücklich mitgemeint, soweit die Aussagen dies erfordern.

Inhaltsverzeichnis Ι Selbständigkeitserklärung Π Gender-Erklärung 1 Einleitung Problemstellung, Ziel und Umsetzung 1 1 2.2 2 2.3 2 Überblick Hardware und Software 4 3.1 4 3.2 4 3.3 7 Systemvoraussetzungen und Einschränkungen 7 4.2 8 SLAM9 5.1 9 9 5.2 9 9 Lokalisierung 9 5.3.15.3.2 12Simulation des Ausweichalgorithmus 16 6.1 6.2Simulation im Kontext eines Ausweichalgorithmus 6.3 6.3.117 6.3.2 Prüfung der kritischen Funktionalitäten 19 6.3.3Auswertung der Prüfung 2122 Implementierung 7.1.1

7.1.2

٨	Anl				38
	8.3	Ausbl	lick		36
	8.2	Evalu	ation		35
	8.1	Rückb	blick		29
8	Faz	it			29
		7.2.4	Umsetzung von SLAM		28
		7.2.3	Umsetzung des Ausweichalgorithmus		28
		7.2.2	Implementierung des LiDARs mit der RPLIDAR SD	K	27
		7.2.1	Simulation des LiDARs		25
	7.2	Erläu	terung der Implementierung		25
		7.1.3	LiDAR-Projekt		25

Abkürzungsverzeichnis

 ${\bf GPIO} \ \ {\bf general\text{-}purpose} \ {\bf input/output}$

LiDAR Light Detection and Ranging

ROS Robot Operating System

SLAM Simultanous Localization and Mapping

GPS Global Positioning System

ICP Iterative Closest Point

PCL Point Cloud Library

Abbildungsverzeichnis

5.1	Beispiel einer starren 2D Point Cloud Registration	13
5.2	Typischer Ablauf einer paarweisen Registration. Quelle: [18] .	14
8.1	RPLiDAR A1 Pins Reference Design, Quelle: [11, p. 12]	29

Listings

7.1	Berechnung des Schnittpunktes zweier Geraden	26
7.2	Auslesen der LiDAR Daten	27

1 Einleitung

Die Automatisierung im Straßenverkehr befindet sich in stetigem Wachstum, wobei selbstfahrende Fahrzeuge zunehmend an Bedeutung gewinnen.

Auch im Bereich der Modell-Autos und Roboter ist Automatisierung eine präsentes Thema.

Zwar ist die Umsetzung eines selbstfahrenden Modell-Autos oder Roboters, aufgrund der vorhersehbareren und weniger komplexen Umgebung, einfacher als die Umsetzung eines selbstfahrenden PKW, jedoch stellt sie trotzdem eine Herausforderung dar.

2 Problemstellung, Ziel und Umsetzung

In diesem Abschnitt wird auf die Problemstellung, das generelle Ziel und die geplante Umsetzung der Arbeit eingegangen. Des weiteren wird Erläutert, weshalb das Ziel der Arbeit wichtig ist, wie die Arbeit aufgebaut ist und welche Probleme und Schwierigkeiten durch bereits getätigte Versuche einer Umsetzung des Arbeits-Ziels bereits bekannt sind.

2.1 Problemstellung

Bisherige Versuche, ein selbstfahrendes Auto, im Rahmen einer Studienarbeit zu entwerfen und einen entsprechenden Algorithmus zu programmieren, sind gescheitert. Die beiden Hauptprobleme der bisherigen Arbeiten, war zum Einen der Bau eines geeigneten Fahrzeugs und zum Anderen die Entwicklung einer Software, welche es dem Auto ermöglicht, ohne manuelle Steuerung, Hindernisse zu erkennen und um diese herum zu navigieren. Da es sich bei den Studenten der bisherigen Gruppen ausschließlich um Studenten mit einem Schwerpunkt in Elektrotechnik handelte, war die Entwicklung und Implementierung der Software zum autonomen Fahren die größere Herausforderung.

Da keine der bisherigen Gruppen, das Problem der Software lösen konnte, wurde sich dazu entschieden, die Aufgaben aufzuteilen. Die Aufgabe, der Erstellung eines funktionsfähigen Modell-Autos und einer Schnittstelle, zur Steuerung des Autos, wurde einer Gruppe von Studenten mit einem Schwerpunkt in Elektrotechnik zugeteilt. Somit ist das Hauptproblem dieser Arbeit, die Entwicklung und Implementierung eines Ausweichalgorithmus, welcher das Auto, über die, von der anderen Gruppe zur Verfügung gestellten Schnittstelle, steuern soll und so eine autonome Hindernis-Detektierung und Vermeidung ermöglicht.

Da die Aufgabe auf mehrere Gruppen aufgeteilt wurde, ist ein weiteres Problem die Kommunikation zwischen den Gruppen. Um einen reibungslosen und effizienten Ablauf gewährleisten zu können, sollte diese möglichst Umfangreich sein.

Durch die Aufteilung auf verschiedene Gruppen entsteht zusätzlich das Problem, dass die Hardware nur eingeschränkt verfügbar ist. Da die Gruppe, welche den Hardware-Teil der Aufgabe übernimmt, diese erst bauen und anschließend auch testen muss, ist die Hardware, vor allem zu Beginn der Arbeit, kaum verfügbar. Daher ist zur Entwicklung der Software, eine Abstrahierung der Hardware notwendig. Konkret bedeutet das, dass die Schnittstelle zur Steuerung, sowie die Daten der Sensoren simuliert werden müssen, um ein Testen des Algorithmus auch ohne Verfügbarkeit der Hardware zu ermöglichen.

2.2 Ziel

Das Hauptziel der Arbeit ist die Entwicklung und Implementierung eines Algorithmus für ein Modell-Auto. Dieser soll mit Hilfe der Daten diverser Sensoren, Hindernisse erkennen und das Auto, unter Verwendung einer bereitgestellten Schnittstelle, um die Hindernisse herum navigieren. Hierbei werden Zielkoordinaten an das Fahrzeug übermittelt. Diese sollen vollständig autonom von dem Fahrzeug angefahren werden.

Da der Hardware-Teil der Arbeit von einer anderen Gruppe an Studenten übernommen wird, ist es notwendig, die Hardware zu abstrahieren um so ein Testen des Algorithmus möglich zu machen. Somit ist das Entwickeln einer solchen Simulation der Hardware ein weiteres Ziel der Arbeit.

2.3 Umsetzung

Um eine umfangreiche Kommunikation zwischen den Gruppen zu ermöglichen, müssen Kommunikationswege so früh wie möglich erstellt werden. Des weiteren sollten Termine für regelmäßige Meetings festgelegt werden, um einen konstanten Austausch von Informationen zwischen den Gruppen zu gewährleisten.

Zur Umsetzung der Aufgabe selbst, stehen, neben einem RPLiDAR A1M8-R6 der Firma Slamtec, auch weitere Sensoren, wie Ultraschall-, Lenkwinkelund Geschwindigkeits-Sensoren, sowie ein Raspberry PI 4 zur Verfügung. Bevor die eigentliche Arbeit an einem Algorithmus beginnen kann, muss die gegebene Hardware getestet werden. Zudem ist es, um das weitere Vorgehen planen zu können, notwendig, sich mit der Hardware vertraut zu machen. Zu wissen, welche Daten von den Sensoren, wann gesendet werden, ermöglicht es, präziser zu planen, wodurch die Entwicklung des Algorithmus effizienter wird.

Nachdem verstanden wurde, wie die Hardware funktioniert, muss eine Möglichkeit, diese zu simulieren, entwickelt werden. Hierbei ist es wichtig, die, für den Algorithmus notwendige Hardware, so genau wie möglich zu simulieren. Je genauer die Simulation ist, desto unwahrscheinlicher treten Probleme bei der Zusammenführung von Hard- und Software auf.

Die Simulation dient jedoch nur zum testen des Algorithmus. Im späteren Betrieb sollen, anstelle der Daten der Simulation, die Daten der vorhandenen Sensorik verwendet werden. Hierzu ist die Entwicklung eines Interface, durch welches mit der Sensorik kommuniziert werden kann, notwendig.

Nachdem nun realitätsnahe, simulierte Daten, sowie echte Daten, eingelesen werden können, kann die Umsetzung eines Simultanous Localization and Mapping (SLAM)-Algorithmus begonnen werden. Hierzu muss eine Möglichkeit entwickelt werden, mit der die vorhandenen Daten zur Erstellung einer Karte genutzt werden können. Des Weiteren muss das Auto innerhalb der Karte lokalisiert werden können.

Als Nächstes muss der Ausweich-Algorithmus entwickelt werden. Dieser muss in der Lage sein, die vorhandenen Daten zu nutzen und so das Auto um Hindernisse herum zu einem gewünschten Zielort zu navigieren.

Abschließend wird die Hardware und die Software vereint und getestet.

3 Überblick Hardware und Software

In diesem Kapitel wird die Hardware und Software beschriben, welche zur Bearbeitung der Studienarbeit zur Verfügung stehen. Zusätzlich wird die Technologie-Entscheidung erläutert und begründet.

3.1 Hardware

Dieser Abschnitt beschreibt die Hardware, welche für die Entwicklung des Ausweichalgorithmus relevant ist.

1. Raspberry Pi 4 Model B

Der Raspberry Pi 4 ist ein single-board-computer, welcher im Jahr 2019 auf dem Markt erschien. Er besitzt eine ARM-basierte 64-bit CPU, welche mit 1.5GHz getaktet ist. Das Modell, welches im Rahmen unserer Studienarbeit genutzt wird, besitzt 8GB Arbeitsspeicher. Außerdem verfügt der Raspberry Pi 4 über 40 general-purpose input/output (GPIO) Pins, welche zur Kommunikation mit den Sensoren und der Steuerungs-Schnittstelle genutzt werden können. [9]

2. Slamtec RPLiDAR A1M8-R6

Der RPLiDAR A1M8-R6 von Slamtec ist ein zweidimensionaler Laser-Scanner, welcher mittels Light Detection and Ranging (LiDAR), ein 360° Scan der Umgebung erstellen kann. [12, p. 3] Er hat eine effektive Reichweite von 0.15 bis 12 Meter und bei einer Scan-Rate von 5.5 Scans pro Sekunde, sowie eine Scan-Frequenz von 8000 Hz, eine Auflösung von weniger als einem Grad. [12, p. 8]

3. Weitere Sensoren

Da der LiDAR-Sensor nur zweidimensionale Scans macht, können Hindernisse, welche kleiner wie die Scan-Höhe des LiDAR sind, von diesem nicht erfasst werden. Daher sind weitere Sensoren, wie z.B. Ultraschall-Sensoren notwendig, um auch niedrige Hindernisse erkennen zu können. Außerdem wäre eine Sensor zur Bestimmung des aktuellen Lenkwinkels und ein weiterer Sensor zum Bestimmen der aktuellen Geschwindigkeit sinnvoll. Die Daten dieser Sensoren könnten bei der Ermittlung der Position im Raum von Nutzen sein.

3.2 Software

In diesem Abschnitt wird auf die Software eingegangen, welche zur Entwicklung des Algorithmus zur Verfügung steht.

1. Robot Operating System (ROS)

ROS ist eine Ansammlung von Werkzeugen und Bibliotheken, wie Treiber und Algorithmen, welche bei der Entwicklung von Roboter-Anwendungen helfen sollen. Hierbei ist ROS vollständig Open-Source und bietet zudem eine ausführliche Dokumentation, Foren und eine große Community. [10] Des Weiteren bietet Slamtec, der Hersteller des zur Verfügung stehenden LiDAR-Sensors, eine Bibliothek, zur Nutzung des LiDAR-Sensors, in Kombination mit verschiedenen Versionen des ROS an. [3]

2. Slamtec RPLiDAR Public SDK

Slamtec bietet, neben der ROS-Bibliothek, auch eine öffentlich zugängliche SDK für sämtliche RPLiDAR-Produkte an. Die SDK ist in C++ geschrieben und unter der BSD 2-clause Lizenz lizenziert. [4]

3. Slamtec RPLiDAR SDK Python-Ports

Die Slamtec RPLidar Sensoren sind, aufgrund des erschwinglichen Preises, vor allem bei Einsteigern sehr beliebt. Auch die Programmiersprache Python ist in den letzten Jahren immer beliebter geworden. Da Slamtec selbst keine Python-SDK anbietet, entstanden über die Jahre diverse Ports der C++ SDK.

3.3 Technologie-Entscheidung

Dieser Abschnitt erläutert die Entscheidungen für die diversen Technologien, welche zur Bearbeitung des praktischen Teils der Arbeit gewählt wurden.

Hardware

Die Auswahlmöglichkeiten der Hardware sind sehr beschränkt. Da die notwendigen Berechnungen einiges an Leistung benötigen, wird sich für das leistungsstärkste, verfügbare Modell des Raspberry Pi entschieden. Der Raspberry Pi 4 Model B bietet neben einer 64-bit CPU mit ausreichender Leistung, auch 8 GB Arbeitsspeicher und einen Formfakter der klein genug ist, um eine Integration in das Fahrzeug zu ermöglichen. Zusätzlich bietet er ausreichend Schnittstellen um mit den diversen Sensoren und Motoren kommunizieren zu können.

Als Hauptsensor für das Messen der Umgebung steht nur der RPLiDAR A1M8-R6 von Slamtec zur Verfügung. Weitere Sensorik soll zwar auf dem Auto verbaut werden, jedoch erstmal nicht von der Software berücksichtigt werden. Der Grund hierfür ist der Zeitpunkt, zu dem die Sensorik verbaut werden kann. Die Verarbeitung der Daten des LiDAR kann ohne Auto oder per Simulation getestet werden, wohingegen es bei der anderen Sensorik sehr

stark auf die Integration in dem Fahrzeug ankommt. Da diese jedoch erst zum Schluss in dem Fahrzeug verbaut werden, wäre eine Software-Integration dieser Sensorik nur schwer rechtzeitig umzusetzten.

Software

Maßgeblich verantwortlich für die Auswahl der Programmiersprache, ist die Auswahl der Software, welche verwendet wird um den LiDAR anzusteuern. Die eine Möglichkeit, wäre das nutzen des offiziellen Slamtec RPLLiDAR ROS-Paket. Bei ROS handelt es sich jedoch um eine sehr umfangreiche Software. Diese kommt mit vielen, für die Studienarbeit nicht relevanten, Komponenten daher. Des Weiteren benötigt ROS ein anderes, nicht für den Raspberry Pi optimiertes, Betriebssystem wie Ubuntu. Das hat zu Folge, das weitere Resourcen für das Betriebssystem benötigt werden und nicht für die notwendigen Berechnungen zur Verfügung stehen.

Die Alternative zur Verwendung von ROS, ist das nutzen einer SDK. Die Python-Ports der SDK sind alle schon einige Jahre alt und haben teilweise keine wirklich übersichtliche Struktur. Die offizielle C++ SDK hingegen wird immernoch regelmäßige geupdated und bietet eine umfangreiche Dokumentation sowie einige Beispielprogramme.

Um die begrenzt vorhandenen Ressourcen des Raspberry Pi optimal nutzen zu können, ist daher die Nutzung der C++ SDK und einem entsprechenden Interface die beste Lösung. Da die SDK in C++ geschrieben ist, macht es Sinn, die restliche Software ebenfalls in C++ zu implementieren. Zusätzlich verbessert die Nutzung einer kompilierten Programmiersprache wie C++ die Laufzeit der Software was die Reaktionszeit des Autos verbessert.

4 Systemvoraussetzungen und Einschränkungen

In diesem Kapitel wird definiert welche Voraussetzungen erfüllt sein müssen, um eine korrekte Funktion der Software sicherzustellen. Die Algorithmik für die Ortung des Fahrzeuges befindet sich in einem frühen Entwicklungsstadium. Aus diesem Grund müssen einige Bedingugnen eingehalten werden.

4.1 Umweltvoraussetzungen

In diesem Abschnitt werden die Voraussetzungen an das Einsatzgebiet des Autos definiert.

1. Statische Umgebung

Das Fahrzeug darf nur in einer statischen Umgebung autonom gefahren werden. Die Objekte in der Umgebung dürfen während der Fahrt nicht bewegt werdem. Grund dafür ist, dass nicht bekannt ist, wie sich eine dynamsiche Umgebung auf die Präzision der Lokalisierungsalgorithmik auswirkt.

2. Hindernisse

Laut Datenblatt [12] liegen die Distanzen die der Sensor erfassen kann, zwischen 0.15 - 12 Metern. Um die Versorgung mit validen Daten sicherzustellen, muss die Umgebung so gebaut sein, dass zu jedem Zeitpunkt, sowohl in x-Richtung als auch in y-Richtung, Objekte mit einem Maximalen Abstand von maximal 10 Meteren vorhanden sind. Des Weiteren sollte eine Mindestanzahl von 100 Punkten pro Scan geliefert werden. Bei Nichteinhaltung der genannten Bedingungen ist eine Lokalisierung mittels des implementierten Algorithmus alleine ungenau.

3. Trockene Umgebung

Das Fahrzeug darf nur in einem vor Wasser geschützten Bereich verwendet werden. Hintergrund ist dass die Elektronik nicht vor eindringendem Wasser geschützt ist. Eindringendes Wasser könnte das Fahrzeug so beschädigen, dass es nicht mehr funktioniert.

4. Höhe der Hindernisse

Der verwendete LiDAR-Sensor liefert 2D-Daten in einem 360 Grad Winkel. Das bedeutet, dass die Hindernisse auf der Höhe des LiDAR-Sensors sein müssen um erfasst zu werden. Sind die Hindernisse unterhalb des LiDAR, so können diese Hindernisse von diesem nicht erfasst werden. Dadurch können diese auch nicht um Ausweichalgorithmus berücksichtigt werden, was ein Ausweichen dieser Hindernisse unmöglich macht.

4.2 Einschränkungen

In diesem Abschnitt werden die Voraussetzungen und Einschränkungen beschrieben, die berücksichtigt werden müssen, wenn die Algorithmik Weiterentwickelt wird.

1. Steuerung

Der Algorithmus muss auf die Steuerungsmöglichkeiten des Autos angepasst sein. Das bedeutet, dass der Algorithmus vor allem den Lenkwinkel und die Breite des Autos berücksichtigen muss. Die Steuerung selbst soll über eine klar definierte Schnittstelle erfolgen. Eine Nutzung des Algorithmus für ein anderes Auto wird daher nur nach einer Anpassung der Algorithmik möglich sein.

2. Simulation

Die Simulation soll einen ersten Ansatz für das Testen und die Visualisierung bieten. Deshalb ist die implementierung eine vereinfachte Darstellung eine Umgebung. Die Simulation soll eine einfache Top-Dowm Perspektive auf das Auto und die Umgebung bieten. Das virteulle Auto soll manuell und mittels Algorithmus gesteuert werden können. Auch hier gilt zu beachten, dass die Steuerung des simulierten Autos möglichst identisch mit der des eigentlichen Autos ist. Das gilt auch für die Schnittstelle zur Steuerung, welche der Algorithmus nutzen wird. Auf Grund der Abhängigkeit des Algorithus von den konkreten Werten des Autos, wird die Simulation bezogen auf die Ansteuerung des Fahrzeuges und der Visualisierung der Umgebung keine exakte, detaillierte Abbildung der Realität bieten. Das tatsächliche Verhalten eines verwendeten Fahrzeuges kann daher von der Simulation abweichen.

3. Laufzeit

Der Laufzeit des Algorithmus soll ausreichend kurz sein. Das bedeutet, dass Hindernisse in unter einer halben Sekunde erkannt werden und entsprechend reagiert werden soll. Dieser Wert ist kein empirisch, oder anders wissenschaftlich validierter Wert. Für den Einsatz in der Realität muss ein fundierter Wert ermittelt werden, so dass die tatsächlich benötigte Geschwindigkeit berücksichtigt werdem kann.

5 SLAM

SLAM ist ein bekanntes Problem in der Robotertechnik. Im Folgenden wird das Problem selbst erläutert und näher auf die Umsetzung von SLAM im Rahmen dieser Studienarbeit eingegangen.

5.1 Was ist SLAM?

Bei dem SLAM-Problem handelt es sich um das Problem, eine Karte einer unbekannten Umgebung zu erstellen. Gleichzeitig soll die aktuelle Position des Roboters in dieser Karte ermittelt und dargestellt werden. Hierzu wird ausschließlich die Sensorik des Roboters genutzt.

5.2 Mapping

5.3 Lokalisierung

Das selbstfahrende Fahrzeug soll in der Lage sein ein vorgegebenes Ziel zu erreichen. Um diese Aufgabe zu meistern ist die Lokalisierung des Fahrzeuges eine zentrale Aufgabe. Denn ohne das Wissen über den aktuellen Standort kann kein Weg zum Ziel berechnet werden und es kann auch nicht bestimmt werdeen ob das Ziel erreicht ist.

In Folgenden werden verschiedene Ansätze zur Lösung des Lokalisierungsproblems mit den Vor- und Nachteilen beschrieben.

5.3.1 Datengenerierung

In diesem Abschnitt werden verschiedene Möglichkeiten zur generierung von Daten, welche zur Lokalisierung eines Fahrzeugs genutzt werden können, näher betrachtet.

Datenquellen zur Erzeugung globaler Bewegungsdaten

Globale Verfahren zur Datenerzeugung für Lokalisierungsalgorithmen basieren darauf dass die Umgebung dafür prepariert ist. Das Fahrzeug kommuniziert mit Sendern die in der Umgebung verfügbar sind. Mit Hilfe dieser Sender wird ein globales Netz erstellt, dass dem Fahrzeug die Berechnung der absoluten Position im globalen Koordinatensystem ermöglicht.

1. Global Positioning System (GPS)

Für die Ortung eines Fahrzeugs kommt in der Praxis das GPS zum Einsatz. GPS arbeitet mit Satelliten, die die Position des Benutters, in diesem

Fall des Fahrzeugs, bestimmen und übermittlen [1]. Die Genauigkeit des GPS beträgt ca. 5-10 cm [1].

Der Vorteil der Nutzung eines GPS-Sensors ist eine globale Verfügbarkeit.

Im Einsatz für Fahrzeuge auf der Straße ist diese Genauigkeit ausreichend, da die lokalisierten Objekte deutlich größer sind und dadurch trotz der Toleranzen der richtige Ort gefunden werden kann. Relativ zur Fahrzeuggröße sind 5-10 cm bei einem kleinen Modellfahrzeug eine deutliche Abweeichung, die abhängig von der Umgebung des Fahrzeugs ernsthafte Konsequenzen haben kann.

Eine weitere Problematik die die Verwendung von GPS-Daten mit sich bringt ist die Abhängigkeit von der Signalstärke und -verfügbarkeit. Ist das Siganl schewach, kann die Abweeichung noch größer werden. Ist kein Siganl verfügbar, ist gar keine Ortung möglich.

2. Eigenes GPS

Um das Problem der Siganlverfügbarkeit zu lösen, könnte man auf die Idee kommen ein eigenes Global Positioning System (GPS) aufzubauen, dass kleine Sender statt Satelliten verwendet. Diese Sender werden in der Umgebung platziert. Auf dem Fahrzeug ist ein Empfänger moniteirt, der die Entfernungen zu den Sendern erfasst. Mit dieser Technologie kann dann über Triangulation die Position des Fahrzeugs bestimmt werden. Dadurch wäre je nach Qualität von Sender und Empfänger eine höhere Präzision als 5-10 cm möglich.

Damit wären also beide Probleme von GPS in diesem Kontext gelöst. Aber es gibt auch einen deutlichen Nachteil. Denn vor der Verwendung des Fahrzeugs muss die Umgebung zunächst mit den Sendern präpariert werden. Ein Einsatz in unbekannten Gebieten ist dadurch nicht möglich. Je nach Einsatzzweck des Fahrzeuges ist das ein großes Problem.

Quellen für die Erzeugung relativer Bewegungsdaten

Globale Ortungsverfahren haben den Nachteil abhängig von den Gegebenheiten der Umgebung zu sein. Ist in der Umgebung keine Kommunikation mit den Sendern möglich, so ist keine Lokalisierung möglich. Dabei ist es nicht von Bedeutung ob das Signal von Satelliten oder von selbst angebrachten Sendern in der Umgebung stammt. Aus diesem Grund gibt es auch relative Verfahren, die die Positionsänderung anhand von Differenzen in den gesammelten Daten von verbauten Sensoren berechnen.

1. LiDAR-Sensor

Bei einem LiDAR-Sensor wird die Umgebung mit Hilfe von Laserstrahlen

5 SLAM 11

erfasst. Dabei werden Werte generiert, die die Distanz und Richtung des Objektes beinhalten. LiDAR-Sensoren bieten den Vorteil, dass sie unabhängig von den Lichtverhältnissen der Umgebung sind [6]. Bei LiDAR-Sensoren muss zwischen 2D- und 3D-Sensoren differenziert werden. 3D-Sensoren erfassen eine deutlich größere Datenmenge, wodurch die Verlässlichkeit der Daten erhöht wird. Dabei spielt es keine Rolle, ob der Sensor im Innen- oder Außenbereich zum Einsatz kommt [6].

Ein weiterer Vorteil von LiDAR-Sensoren ist die Datenrepräsentation. Die Repräsentation mit Abstand und Winkel ermnöglicht eine Verarbeitung ohne aufwendige Vorbereitung und Anpassung der Daten.

Die Präzision von LiDAR-Sensoren kann aber zum Beispiel unter Wettereinflüssen leiden. Zum Beispiel können Wasserteilchen in der Luft die Reflektion der Laserstrahlen so verändern, dass die empfangenen Werte des Sensors nicht mit der Realität übereinstimmen. Auch die eingeschränkte Reichweite kann abhängig von der Umgebung ein Problem darstellen.

Bei 2D-Sensoren kann auch die feste Höhe ein Problem sein. Ist ein Hinderniss unter- oder überhalb des Sensors, aber auf Höhe anderer Farzeugteile, werden diese nicht erkannt und eine Kollision mit solchen Objekten kann nicht verhindert werden.

2. Kamera

Kameras haben den Vorteil, dass alle Elemente, unabhängig von der Höhe, und auch in größeren Distanzen erkannt werden können.

Der Nachteil von Kameras ist die Abhängigkeit von der Beleuchtung der Umgebung, da diese maßgeblich den erkennabren Detailgerad beeinflusst. Auch Wetterfaktoren wie Nebel oder Niederschlag können die Qualität der Daten negativ beeinflussen.

Auch die Verarbeitung der Daten ist ein Nachteil. Um Kameradaten automatisiert auszuwerten müssen zunächst verschiedene Algorithmen zur Vorbereitung ausgeführt werden. Die Vorbereitung benötigt Zeit, die bei anderen Verfahren bereits zur Berechnng der Posiiton genutzt werdeen kann. Außerdem sind die Vorbereitungen und die Auswertung der Biler rechenintnsiv, wodurch diese als primäre Datenquelle zur Lokalisierung eher für Fahrzeuge mit hoher Rechenleistung geeignet sind.

Ein weiterer Nachteil von Kameras ist die eingeschränkte Sichtweite. Das Bild kann nur einen gewissen Teil der Umgebung aufnehmen und bietet nur durch die Kombination mehrerer Kameras eine vollständige Wahrnehmung der Umgebung.

5 SLAM 12

3. Ultraschall

Ultraschallsensoren erfassen die Umgebung mit Hilfe von Schallwellen und deren Reflektionen. Diese Methode ist sehr einfach in der implementierung und sehr sparsam im Energieverbrauch. Daher ist ein Einsatz auch in Fahrzeugen mit geringer Batterikapazität möglich. Das hat aber auch Nachteile. Die Reichweite von Ultraschallsensoren ist geringer als die anderer Sensoren. Außerdem ist auch die Auflösung der erfassten Daten geringer als die anderer Sensoren.

Daher ist der Einsatz als primäre Datenquelle für die Lokalisierung des Fahrzeuges nur bedingt geeignet. Die Stärken von Ultraschall liegen eher im Nahbreich. Ein Einsatz dieser Technologie wäre also als Zusatz zu einer anderen Quelle denkbar. Das Ziel wäre dann durch die Ultraschall-Daten die Präzision der berechneten Position durch die primäre Datenquelle zu erhöhen.

5.3.2 Point Cloud Registration

Point Cloud Registration beschreibt ein Problem zur Schätzung der Transformation zwischen mehreren Punktewolken. 5.1

Mit Hilfe von Punktewolken können beliebig große Mengen an Punkten dargestellt werden. Die Wolke beinhaltet Informationen zu jedem der Punkte. Hierzu gehören zumindest die Koordinaten. Eine solche Wolke kann jedoch auch weitere Informationen wie Farbe oder Krümmung beinhalten. Die Gesamtheit der Punkte inerhalb einer solchen Wolke beschreibt die Form und Oberfläche eines Objektes [5, chapters 2.2]

Registration selbst lässt sich in verschiedene Unterkategorien einteilen. Beschränkt sich die Transformation auf Rotation und Translation, spricht man von einer steifen Transformation bzw. Registration. Des Weiteren wird anhand der Quelle und Anzahl der Datensätze unterschieden.

Die Punktewolken, welche Teil dieser Arbeit sind, werden mit Hilfe eines einzelnen, zwei-dimensionalen LiDAR-Sensor erstellt. Sie enthalten ausschließlich Informationen über die X und Y Koordinaten der einzelnen Punkte.

Somit spricht man bei der, im Kontext dieser Arbeit durchgeführten Point Cloud Registration, von einer paarweisen und steifen 2D Registration. Diese Art der Registration ist eine der simpelste, da lediglich zwei Punktewolken des selben Sensors miteinander verglichen werden und ausschließlich die Translation auf den zwei Achsen sowie die Rotation berechnet werden muss.

5 SLAM 13

(a) Source und Target Point Cloud

(b) Transformierte Source Point Cloud

Abbildung 5.1: Beispiel einer starren 2D Point Cloud Registration

Ablauf

Der Ablauf einer solche Registration beinhaltet, wie in 5.2 beschrieben, typischerweise sechs Schritte.

- 1. Datenerfassung
- 2. Schätzung der Keypoints
- 3. Schätzung der Feature-Deskriptoren
- 4. Schätzung der Korrespondenzen (Matching)

- 5. Ablehnung von Korrespondenzen
- 6. Schätzung der Transformation

Abbildung 5.2: Typischer Ablauf einer paarweisen Registration. Quelle: [18]

Datenerfassung:

Die Datenerfassung kann auf unterschiedlichste Arten erfolgen. Hierbei werden zwei Sets an Daten, gesammelt. Die Daten werden verarbeitet und in einer Punktewolke gespeichert. Durch ein einheitliches Vormat wird sichergestellt, dass die Punkte korrekt weiterverarbeitet werden.

Schätzung der Keypoints:

Die Schätzung von Keypoints ist von enormer Wichtigkeit. Sie dient der Verringerung notwendiger Rechenleistung.

Möchte man zwei Scans mit jeweils 100 Tausend Punkten vergleichen, gibt es 10 Miliarden mögliche Korrespondenzen. Um die Zahl der Korrespondenzen

zu verringern, werden Keypoints in des Scans gesucht.

Ein Keypoint beschreibt einen Punkt, welcher spezielle Eigenschaften innerhalb der Szene haben. Eine Beispiel hierfür wäre eine Ecke.

Die Keypoints werden im weiteren Verlauf für die Berechnungen genutzt, wodurch sich die Anzahl an Punkten drastisch senkt. Im Optimalfall ist das Ergebnis genau das selbe, benötigt aber deutlich weniger Rechenleistung und somit Zeit.

Schätzung der Feature-Deskriptoren:

Je nach Anwendungszweck sind Koordinaten nicht ausreichend um einen Punkt zu beschreiben. Feature-Deskriptoren oder Point-Feature Repräsentationen sind eine Form der erweiterten Beschreibung eines Punktes.

Durch miteinbeziehen der umliegenden Punkte, können Informationen über die Form und Beschaffenheit der Fläche gesammelt werden. Diese können widerum in den Feature-Deskriptoren gespeichert werden. Die simpelste Form eines solchen Feature-Deskriptor wäre die Normale der Fläche unter dem Punkt.

Schätzung der Korrespondenzen:

Die zwei vorhandenen Sets von Feature-Deskriptoren, welche aus den Keypoints berechnet wurden, können nun verwendet werden um Korrespondenzen zu schätzen. Bei kleineren Datensets kann es auch Sinn machen, die Keypoint- und Feature-Deskriptor-Schätzung auszulassen und die Korrespondenzen nur mittels Koordinaten der Punkte zu schätzen.

Eine Korrespondenz beschreibt zwei Punkte oder Feature-Deskriptoren aus verschiedenen Datensätzen, welche den gleichen Punkt im Raum repräsentieren.

Ablehnung von Korrespondenzen:

Nachdem die Korrespondenzen geschätzt wurden, müssen schlechte Korrespondenzen verworfen werden.

Hierzu gibt es diverse Algorithmen, worunter der RANSAC Algorithmus am weitesten verbreitet ist. Eine weitere Möglichkeit die Anzahl an Korrespondenzen zu senken, ist das Filtern von Korrespondenzen die zwar den gleichen Source-Punkt, aber unterschiedlichen Punkten im Ziel-Datensatz korrespondieren. Hierbei kann die Korrespondenz mit der kleinsten Distanz gewählt werden. Die anderen Korrespondenzen werden verworfen.

Schätzung der Transformation:

In einem Finalen Schritt wird die Transformationsmatrix geschätzt. Diese Matrix beschreibt die Translation und Rotation, welche notwendig ist um

die Punktewolke A zur Punktewolke B zu transformieren.

Die Schätzung der Transformation passiert mittels, auf den Korrespondenzen basierenden, Metriken. Ein Beispiel für eine solche Metrik ist die mittlere qudratische Abweichung der Korrespondenzen. Die Punktewolke wird transformiert und die Metriken ausgewertet. Dieser Vorgang wird solange wiederholt bis ein Abbruch-Kriterium erfüllt ist. Ein solches Abbruch-Kriterium ist z.B. das Unterschreiten eines Grenzwertes für die mittlere Qudratische Abweichung. Auch eine Überschreitung einer bestimmten Anzahl an Iterationen kann zum Abbruch führen.

Point Cloud Registration im Rahmen dieser Arbeit

Die Datensätze dieser Arbeit sind mit unter 1000 Punkten recht klein. Somit ist eine Schätzung von Keypoints wenig Sinnvoll und teilweise auch nicht umsetzbar.

In der Theorie verringert das Berechnen von Feature-Deskriptoren die Laufzeit und verbessert das Ergebnis. Selbst durchgeführten Tests ergaben jedoch, dass die Laufzeit sich verschlechterte und das Ergbenis auch ohne die Nutzung von Feature-Deskriptoren ausreichend genau ist. Das lässt sich durch die geringe Anzahl an Punkten innerhalb unserer Datensätze und der Nutzung von lediglich zwei Dimensionen erklären. Eine solche Berechnung ist also, im Rahmen der Arbeit, ebenfalls wenig Sinnvoll.

Für die Schätzung der Korrespondenzen sowie der Ablehnung schlechter Korrespondenzen und der Schätzung der Transformationsmatrix wird eine Implementierung des Iterative Closest Point (ICP)-Algorithmus der **pcl!** (**pcl!**) verwendet. Die **pcl!** ist eine C++ Bibliothek, die ein effizientes Arbeiten mit Punktewolken ermöglicht und diverse Algorithmen für unterschiedlichste Operationen mitbringt. Genauere Infos zur Implementierung des ICP-Algorithmus Kapitel ??slamImplementierung).

6 Simulation des Ausweichalgorithmus

In diesem Kapitel wird beschrieben, wwarum eine Simulation hilfreich für die Entwicklung eines sicherheitskritischen Algorithmus, wie zum Beispiel ein Ausweichalgorithmus, sein kann. Ausßerdem wird beschrieben, welche Aspekte der Simulation relevant für den Übertrag der Ergebnisse auf die Realität sind.

6.1 Was ist eine Simulation?

Bevor damit begonnen werden kann die verschiedenen Aspekte einer Simulation zu beleuchten, ist zu klären, was eine Simulation ist. Nach der Aussage von A. Maria ist eine Simulation eine Ausführung eines Modells eines Systems [7][p. 1, ch. 2]. Der Begriff des Modells wird ebenfalls in der Arbeit beschrieben. Ein Modell ist eine vereinfachte, funktionierende Repräsentation des Systems, das betrachtet werden soll [7][p. 1, ch. 1].

In der Simulationstechnik gibt es unterschiedliche Arten von Simulation. In diesem Kontext von Bedeutung ist die Unterscheidung zwischen realer Simulation und Computersimulation. Reale Simulationen kommen zum Einsatz, wenn durch einen Fehler keine Gefahr für Personen und Umwelt besteht. Außerdem kann es sein, dass ein Nachstellen der Umweltbedingungen so komplex ist, dass eine Nachbildung am Computer nicht ausreichend möglich oder zeitlich zu aufwendig ist. Computersimulationen kommen dann zum Einsatz, wenn ein Fehler schädliche Folgen für Perosnen und Umwelt herbeiführen könnten und sich die Einflussfaktoren auf das System am Computer nachahmen lassen [17]. Eine Computersimulation kann auch dann genutzt werden, wenn das Erstellen eines realen Modells nicht möglich oder nicht rentabel ist. Ein weiterer Anwendungsfall einer Computersimulation tritt ein, wenn das reale Modell noch in der Entwicklungsphase ist. In diesen Fällen stellt die Simulation sicher, dass erste Versuche mit Algorithmen, die unabhängig vom Modell funktionieren, möglich sind. Dadurch kann damit begonnen werden an Technologien und Methodiken zu arbeiten, ohne auf eine reale Umsetzung warten zu müssen.

6.2 Simulation im Kontext eines Ausweichalgorithmus

Im Rahmen dieser Arbeit hat die Implementierung einer Simulation mehrere Vorteile. Es wird parallel an der Entwicklung des Autos und der zugehörigen Software gearbeitet.

Da die Implementierung der Software von Grund auf neu gestartet wird, wäre ein Warten auf die Fertigstellung des Autos aud zeitlichen Gründen nicht möglich. Die Situation ist also eine der Situationen die in 6.1 beschrieben sind, in denen der Einsatz einer Simulation sinnvoll ist.

Ein weiterer Grund für den Einsatz einer Simulation ist ebenfalls in 6.1 beschrieben ist, ist ein möglicher Schadensfall. Das Auto ist von den Dimensionen nicht ausreichend groß, um einem Menschen zu verletzten, daher wären bei der Nutzung des realen Fahrzeuges kein Personenschaden zu befürchten. Die Problematik in diesem Kontext ist die Anfälligkeit des Autos. Das Auto ist so konstruieert, das es mit wenig Leistung auskommt und nur die Elemente verbaut sind, dass es fahren kann. Aus diesem Grund wurden auf schützende Anbauteile wie Stoßdämpfer oder ähnliches verzichtet. Deshalb könnte eine Kollision des Fahrzeuges mit einem Hindernis problematisch. Eine Kollision könnte Schäden am Fahrzeug verursachen, die nur aufwendig, oder eventuell gar nicht repariert werden können. Da die Algorithmik in frühen Entwicklungsstufen kritsiche, noch unerkannte Fehler beinahlten kann, wäre es ein unnötiges Risiko die Software direkt auf dem Fahrzeuge auszuprobieren. Ein weiterer Grund der für den Einsatz einer Simulation spricht, ist die Abhängigkeit vom Entwicklungsfortschritt des Autos. Sollte es dazu kommen, dass das Auto nicht rechtzeitig zur Verfügung steht, kann die Algorithmik

6.3 Aufbau der Simulation

zumindest mit Hilfe der Simulation ausprobiert werden.

Um die Ergebnisse und Erfahrungen der Simulation nutzen zu können, ist es wichtig, dass die Inhalte der Simulation möglichst nah an die Realität herankommen. Jede vorhandene Abweichung resultiert in erhöhtem Risiko. Ziel ist es eine Umgebung und ein Fahrzeug zu simulieren, um so die notwendigen Daten zu erhalten die der Ausweich-Algorithmus benötigt. Dabei sollen Eigenschaften des Fahrzeuges, wie der maximale Lenkwinkel, berücksichtigt werden, um eine möglichst realitätsnahe Simulation zu erhalten.

Um eine Simulation zu implenentieren, ist zu klären, ob diese Funktionalität in einer Simulation realitätsnah möglich ist, oder ob eine vereinfachte Version simuliert werden muss.

6.3.1 Kritische Funktionalitäten

Zunächst müssend die Funktionalitäten identifiziert werden, die in der Simulation Probleme veruursachen könnten.

- 1. Sensordaten
- 2. Umgebung

- 3. Ausweichen
- 4. Lokalisierung
- 5. Fahrzeug

Sensordaten

Die Sensordaten bilden die Grundlage für die gesamte Simulation. Auf den Sensordaten basiert die Lokalisierung im Raum und das Erkennen und Ausweichen eines Hindernisses. Die Simulation dieser Daten stellt damit die größte Herausforderung in der Simulation dar, da die Daten in Scan-Frequenz und Aufbau den realen Daten möglichst genau entsprechen sollten. Vor allem der Aufbau der Daten sollte den realen Daten so nahe wie möglich kommen, da zusätzliche oder fehlende Daten in der Qualität der Auswertung deutlich zu erkennen sein könnten. Außerdem bedeutet eine Abweichung in der Datenstruktur eine notwendige Anpassung der Implementierung bei einem Umstieg auf reale Daten, die nicht notwendig wäre, wenn die Datenstruktur übereinstimmen würde. Gibt es Unterschiede in der Scan-Frequenz sind die Auswirkungen weniger problematisch. Ist die Scan-Frequenz langsamer als in der Simulation, kann dies durch eine langsamere Geschwindigkeit des Fahrzeuges kompensiert werden. Eine Scan-Frequenz, die die Geschwindigkeit der Berechnungen überschreitet, kann durch das auslassen von einzelnen Scans kompensiert werden. Die Bewegung des Fahrzeuges zwischen zwei Scans ist so gering, dass das Ignorieren von zum Beispiel jedem zweiten Scan, kaum einen Einfluss auf das Ergebnis des Algorithmus haben sollte.

Die genauen Auswirkungen von Abweichungen der Scan-Frequenz sind nicht bekannt, weswgen hier eine genaue Analyse notwendig wäre.

Umgebung

Die Umgebung ist ebenfalls ein essentieller Bestandteil. Denn die Umgebung muss so simuliert werden, dass diese von den Sensoren erkannt werden kann. Ist das nicht der Fall, ist jede Simulation der Sensorik unbrauchbar, da dann keine Daten für den Ausweichalgorithmus zur Verfügung stehen und dann auch der simulierte LiDAR keine validen Daten liefert. Eine 2D-Simulation der Umgebung ist ausreichend, da der LiDAR 2D-Daten liefert. Unter der Voraussetzung der validen Datenerzeugung auf Basis der simulierten Umgebung, ist die genaue Implementierung der Umgebung nicht von Bedeutung.

Ausweichen

Das Ausweichen ist der zentrale Bestandteil der Software. Die Implementierung in der Simulation soll auch in der Implementierung für die Steuerung

des realen Autos zum Einsatz kommen. Der Algorithmus selbst wird nicht simuliert, aber die verwendeten Daten kommen aus der Simulation. Außerdem wird der Output des Algorithmus in der Simulation Visualisiert. Daher ist es notwendig, den Output in einer Form zu generieren, dass er in der Simulation Visualisiert werdem kann. Zum Output gehört die aktuelle Fahrzeugposition und der berechnete Weg zum Ziel.

Das Ziel der Visualisierung ist eine optische Validierung ob der berechnete Weg tatsächlich um die Hindernisse führt. Neben der Validierung des Weges kann auch die Berechnung der Fahrzeugposition in Ansätzen validiert werden, da erkennbar wird, ob die neue Position ungefähr dem erwarteten Wert entspricht. Die genaue Position kann durch die Visualisierung alleine nicht validiert werdem.

Lokalisierung

Die Simulation der Lokalisierung ist vor allem zum Testen der Lokalisierungs-Algorithmik wichtig. Der Ausweichalgorithmus kann nur korrekt arbeiten, wenn die aktuelle Position des Fahrzeuges ausreichend genau bestimmt werdem kann. Da die Lokalisierung in einer unbekannten Umgebung eine große Herausforderung ist, kann die Simulation genutzt werden, um zuverlässige Daten für den Algorithmus zu bekommen. Dies ist möglich, da die genaue Fahrzeugposition anhand der erfassten Steurerbefehle für das simulierte Fahrzeug bestimmt werden kann. Die Positions-Daten des simulierten Fahrzeugs können zudem als Richtwert genutzt werden um die Funktionalität und Genauigkeit der implementierten Lokalisierungs-Algorithmik zu testen.

Fahrzeug

Das Fahrzeug ist der wichtigste Teil der Simulation. Es beinhaltet Daten wir Position und Rotation. Außerdem ist es möglich das Fahrzeug manuell oder per Algorithmus zu steuern. Dadurch wird sowohl das präzise Erstellen von Testdaten, wie auch das Testen des Ausweichalgorithmus ermöglicht. Die visuelle Darstellung des Fahrzeuges ist rein kosmetisch und kann daher stark vereinfacht werden.

6.3.2 Prüfung der kritischen Funktionalitäten

In diesem Abschnitt werden die einzelnen Funktionalitäten auf Umsetzbarkeit geprüft. Ist eine Umsetzung möglich, kann diese Funktionalität so in der Simulation implenentiert werden, andernfalls muss eine Alternative erarbeitet werden.

Sensordaten

Da aktuell nur die LiDAR-Daten genutzt werden, müssen auch nur die Daten dieses Sensors simuliert werden. Der LiDAR rotiert um 360° und sendet in bestimmten Abständen Lichtstrahlen aus. Die Höhe der gesendeten Strahlen entspricht der Höhe des LiDAR-Sensors. Wie in 3.1 beschrieben, können Hindernisse mit einer Distanz zwischen 0.15 - 12 Metern akkurat identifiziert werden. Das Datenformat und die Frequenz, mit welcher die Datensätze generiert werden, können dem Datenblatt [12] entnommen werden.

Die Frequenz kann entsprechend simuliert werden und die Daten entsprechend dem Datenblatt genreriert werden. Um den Distanzbereich des realen Sensors zu simulieren ist eine entsprechende Skalierung der Simulation notwendig. Die Distanzen vom Fahrzeug bis zu den Hindernissen können über etablierte Algotithmen, wie zum Beispiel Ray-Casting, oder eine angepasste Version dieser Algotithmen realisiert werden.

Die Sensordaten können also gut simuliert werdem, so dass keine Probleme entstehen sollten.

Umgebung

Die Komplexität einer simulierten Umgebung ist als gering einzuschätzen. Die Umgebung muss lediglich so implementiert werden, dass basiernd darauf korrekte Sensor-Daten genreriert werdem können. Alle anderen Details der Implementierung für die Umgebung können stark vereinfacht werden, so dass eine Umsetzung problemlos möglich sein sollte.

Ausweichen

Das Ausweichen um Hindernisse lässt sich in einer bekannten Umgebung mit gegebenem Ziel abstrahieren. Die Abstraktion an dieser Stelle ergibt einen Path-Finding Algorithmus. Für diese Art von Algorithmen gibt es bereits viele Lösungen die unterschiedliche Stärken haben. Basierend auf den bereits existierenden Lösungen kann ein Ausweichalgorithmus mit den genannten Einschränkungen ohne Probleme implementiert werdem.

Lokalisierung

Die Simulation der Daten, welche für die Lokalisierung genutzt werden können, ist recht simpel. Das liegt daran, dass es sich bei den Daten nur um Positionsdifferenz und Rotationsdifferenz handelt. Diese sind einfach zu ermitteln, da die Position und Rotation des simulierten Fahrzeugs einfach ausgelesen werden. Somit stellt die Generierung der Bewegungsdaten kein Problem da. Diese Daten können jedoch nur im Rahmen der Simulation verwendet werden. Auf Grund der fehlender Bewegungsdaten und begrenzter Performance, ist

es außerhalb der Simulation nicht möglich zu jeder Zeit die genaue Bewegung zu berechnen. Deshalb ist mit Abweichungen zu rechnen, die einen additiven Fehler in der berechneten Position verursachen. Bei der Bewegungsberechnung mittels Lokalisierungs-Algorithmus können die simulierten Daten als Referenzwert dienen.

Fahrzeug

Da die Simulation des Fahrzeuges ist weniger komplex und kann problemlos umgesetzt werdem. Es muss lediglich beachtet werden, dass die Ansteuerung des simulierten Fahrzeugs äquivalent zu der Ansteuerung des echten Fahrzeugs ist. Außerdem ist auf eine korrekte Simulation des Lenkwinkels und somit der Kurvenfahrt zu achten.

6.3.3 Auswertung der Prüfung

Basierend auf den einzelnen Teilbereichen der Simulation ergibt sich die Einschätzung, dass die Simulation ein sinnvolles und umsetzbares Mittel in der Entwicklung einer solchen Algorithmik ist. Sie ermöglicht nicht nur das Testen der Algorithmik ohne Zugriff auf physische Hardware, sondern auch eine optimale Referenz um die Genauigkeit der Lokalisierung zu überprüfen. Außerdem bietet sie eine Möglichkeit vorhandene Daten, wie z.B. die erstellte Map und der berechnete Pfad, zu visualisieren.

7 Implementierung

In dem folgenden Kapitel wird beschrieben, wie die Theorie aus den vorherigen Kapiteln in der Implementierung umgesetzt wurden und die Implementierung an sich beschrieben. Dabei wird zunächst der oberflächliche Aufbau der Implementierung erklärt und dann auf die einzelnen Bestandteile der Implementierung eingegangen. Zur Verdeutlichung werden außerdem noch Besonderheiten aus der erstellten Implementierung aufgezeigt und deren Umsetzung beschrieben.

7.1 Aufbau der Implementierung

Der gesamte Aufbau der Implementierung ist in drei Projekte aufgeteilt: Core, Simulation und LiDAR. Das Core-Projekt ist eine Library, welche keine ausführbare Datei und lediglich die Implementierungen der Algorithmen bzw. die Logik für das Steuern und Ausweichen des Fahrzeugs enthält. Das Simulation-Projekt dient für die Simulation des autonomen Fahrzeugs und zum Testen der implementierten Algorithmen. Das LiDAR-Projekt enthält den Code, welcher auf das eigentliche Fahrzeug, bzw. den Raspberry Pi des Fahrzeugs, geladen und auf diesem ausgeführt wird. Das Simulationund LiDAR-Projekt benutzen das Core-Projekt, um die Logik zur Steuerung des autonomen Fahrzeugs auszuführen und verwenden dazu Schnittstellen in Form von Implementierungen mehrerer Interfaces, wodurch unter anderem das Fahrzeug gesteuert und LiDAR Daten ausgelesen werden können. Nachfolgend werden die einzelnen Projekte und die Schnittstellen, in Form der Interfaces, zwischen den Projekten näher beschrieben.

7.1.1 Core-Projekt

Wie bereits beschrieben enthält das Core-Projekt die Implementierungen der verwendeten Algorithmen und die Logik zum Steuern des Fahrzeugs. Damit die Algorithmen auf Daten von Sensoren, sowie die Steuerung des Autos zuzugreifen kann, werden Interfaces als Schnittstellen verwendet, welche die Funktionen für die Algorithmen bereitstellen. Diese Interfaces werden im Core-Projekt lediglich definiert und nicht implementiert. Die Implementierung der Interfaces erfolgt in den Simulation- und LiDAR-Projekt. Dort können die Interfaces so implementiert werden, dass durch Verwendung des Interfaces die richtige Aktion im jeweiligen Projekt ausgeführt wird. So stellt z. B. das Interface zum Auslesen der LiDAR Daten im Simulations-Projekt Daten, welche den aktuellen Stand der Simulation widerspiegeln, und im LiDAR-Projekt Daten, welche über die RPLiDAR SDK aus dem verbaut-

en LiDAR ausgelesen wurden, zurückgegeben werden. Damit die Implementierungen der Interfaces an das Core-Projekt übergeben werden können und abhängig von der aktuellen Verwendung des Core-Projektes die richtige Implementierung verwendet wird, wird das Dependency Injection Design Pattern angewandt. Dieses Design Pattern besagt, dass Abhängigkeiten, wie z. B. die Logik für das Auslesen der LiDAR Daten, ausgelagert und über festgelegt Schnittstellen von einem Injector zur Verfügung gestellt werden. In diesem Projekt werden die Schnittstellen in Form der Implementierungen der Interfaces bei der Initialisierung der Klasse, welche die Abhängigkeiten, also die Interfaces, benutzt von dem aufrufendem Code übergeben, welcher in diesem Fall als Injector fungiert [13].

Neben den Interfaces für das Auslesen der LiDAR Daten und der Steuerung des Fahrzeugs befinden sich außerdem noch den Ausweichalgorithmus und den SLAM-Algorithmus, welcher ebenfalls durch Interfaces abstrahiert sind, damit auch diese einfach ausgetauscht werden können. Die gesamte Logik für das autonome Fahrzeug ist in der Klasse "Selfdriving Vehicle" gebündelt. Diese besitzt eine Methode "update", welche in der Hauptschleife des jeweiligen Programms aufgerufen wird. Der Ablauf in der "update" Methode, ist:

1. Auslesen der LiDAR Daten

Hier wird über das LiDAR Interface die aktuellen Daten des LiDARs ausgelesen und für die nächsten Schritte gespeichert.

2. Ausführen des SLAM-Algorithmus

Hierfür werden die ausgelesenen LiDAR Daten, sowie die Odometrie Daten übergeben. Je nach Implementierung der Interfaces sind die Odometrie Daten Leer, da sie nicht vorhanden sind, oder werden nicht für die Ausführung des SLAM-Algorithmus verwendet.

3. Ausführen des Ausweichalgorithmus

Dem Algorithmus wird die Karte, die Position und die Rotation des Fahrzeugs übergeben, welche im Schritt davor durch den SLAM-Algorithmus berechnet wurde. Daraus wird mit einem zuvor definierten Ziel ein Pfad berechnet, welcher um die erkannten Hindernisse fährt. Mit dieser wird dann berechnet, wie der Motor und die Lenkung gesetzt werden, damit das Fahrzeug auf diesem Pfad fährt.

4. Updaten der Motor- und Lenksteuerung

In diesem Schritt werden mit den Werten aus dem vorherigen Schritt die Steuerung für den Motor und die Lenkung geändert. Dies wird über das Interface zur Motor- und Lenksteuerung gemacht.

Da die gesamte Ausführung alle Schritte nicht jeden Durchlauf der Schleife nicht Nötig und mit der vorhandenen Hardware nicht effizient wäre, ist zusätzlich noch eine Überprüfung der Zeit, seit der letzten Ausführung, vorhanden. Die Zeitdifferenz, nach welcher die nächste Ausführung startet, kann variabel gesetzt werden, sollte aber zwischen 500 und 1000 ms betragen [/src/core/src/selfdrivingVehicle.cpp].

7.1.2 Simulation-Projekt

Die Simulation dient dazu, die Logik aus dem Core-Projekt zu testen, ohne dass das eigentliche Fahrzeug benötigt wird. Damit das Fahrzeug sowohl gesteuert als auch gesehen werden kann, was durch die Algorithmen berechnet wurde. Deshalb wurde die Simulation in zwei Fenster aufgeteilt, welche bei Ausführung des Programms zusammen geöffnet werden. Das erst Fenster, nachfolgend Control Window genannt, dient zur Steuerung des Fahrzeugs und der Simulation im allgemein. Es stellt in Bezug auf das autonome Fahrzeug die Realität dar. Das zweite Fenster zeigt die Ergebnisse der Algorithmen. Dabei wird die Karte, die Position und Rotation des Fahrzeugs auf der Karte, sowie der berechnete Pfad mit dem aktuellen Ziel angezeigt. In Bezug auf das autonome Fahrzeug stellt dieses Fenster die Sicht des Fahrzeugs dar. Nachfolgend wird die Funktionen und die Logik der beiden Fenster genauer erläutert. Außerdem wird noch SFML vorgestellt, was für die Umsetzung der grafischen Oberflächliche benutzt wurde.

SFML

SFML (Simple and Fast Multimedia Library) ist eine Library, mit welcher grafische Anwendungen erstellt werden können. Die Anwendung können dabei auf den gängigen Plattformen, wie Windows, Linux und MacOS laufen und können in unterschiedlichen Programmiersprachen erstellt werden, darunter auch C++ [14].

Control Window

In dem Control Window kann das simulierte Fahrzeug direkt über die "WASD"-Tasten gesteuert werden. Außerdem können weitere Hindernisse platziert und das Ziel geändert werden, zu welchem das Fahrzeug fahren soll. TODO Timo [/src/simulation/src/controlWindow.cpp].

Visualize Window

TODO Timo [/src/simulation/src/visualizeWindow.cpp].

7.1.3 LiDAR-Projekt

TODO Time

7.2 Erläuterung der Implementierung

Nachdem nun der Aufbau der Implementierung erläutert wurde, werden nun einige Besonderheiten aus der Implementierung näher erläutert.

7.2.1 Simulation des LiDARs

Ein Teil der Simulation des autonomen Fahrzeugs ist die Simulation des Li-DARs. Hierfür wird die Methode des Raycasting verwendet, bei welchem Strahlen, also Vektoren, von dem Zentrum des LiDARs in alle Richtungen ausgestrahlt werden und die Schnittpunkte mit den Hindernissen gespeichert werden. Umgesetzt wurde dies, indem der gesamte Umfang des LiDARs in 360 bzw. 720 Winkel unterteilt wurde, welche die Rays darstellen, und dann für jeden Ray die Schnittpunkte für alle Hindernisse berechnet wurden. Zusätzliche wurde auch der Rahmen des Fensters als hinzugefügt, da dieser die Wände des Raums und somit auch ein Hindernis darstellt. Da alle Hindernisse, eingeschlossen Fensterrahmen, Rechtecke sind, müssen also lediglich die Schnittpunkte zwischen einem Rechteck und einem Ray, also einer Geraden, berechnet werden. Dies kann weiter unterteilt werden in den Schnittpunkt zweier Geraden, da ein Rechteck aus vier Geraden besteht. Für diesen Zweck wurde eine Funktion erstellt, welche für diesen Fall einen Schnittpunkt berechnet, falls dieser existiert. In dieser wird zunächst überprüft, ob die beiden Geraden überhaupt einen Schnittpunkt besitzen oder ob diese parallel sind. Dies kann einfach über das Berechnen des Kreuzproduktes gemacht werden. Ist das Ergebnis des Kreuzproduktes gleich 0, sind die beiden Geraden parallel und es gibt keinen Schnittpunkt. Als Grundlage für eigentliche Berechnung des Schnittpunktes wurde die Formel zur Berechnung des Schnittpunktes zweier Geraden benutzt, in welcher lediglich zwei Geraden in Parameter form (Stuetzvektor + Parameter * Richtungsvektor)

gleichgestellt werden. Da für die Berechnung der Schnittpunkte angenommen wird, dass der LiDAR bei (0,0) liegt, kann dieser in der Gleichung weggelassen werden.

$$s * \begin{pmatrix} rayDirection_x \\ rayDirection_y \end{pmatrix} = \begin{pmatrix} v1_x \\ v1_y \end{pmatrix} + t * \begin{pmatrix} v12_x \\ v12_y \end{pmatrix}$$

Aus dieser Formel wird ein lineares Gleichungssystem gemacht, welches anschließend nach dem Parameter t aufgelöst wird.

$$t = \frac{v1_x * rayDirection_x - v1_y * rayDirection_y}{v12_x * rayDirection_x - v12_y * rayDirection_y}$$

Durch Einsetzen in eine der beiden Gleichungen des LGS kann auch der Parameter s berechnet werden.

$$s = \frac{v1_x + t * v12_x}{rayDirection_x}; s = \frac{v1_y + t * v12_y}{rayDirection_y}$$

Nun muss überprüft werden, ob der Punkt nicht nur auf beiden Geraden, sondern auch zwischen den beiden Punkten des Rechtecks, sowie vor dem LiDAR liegt. Dafür wird geschaut, ob der Wert von t (Parameter für die Kante des Rechtecks) zwischen 0 und 1 liegt. Außerdem wird geschaut, ob der Wert von s (Parameter für den Ray) größer oder gleich 0 ist. Sollte beides gegeben sein, wird der Schnittpunkt zur Liste aller Schnittpunkte des aktuellen Rays hinzugefügt [src/simulation/src/intersection.cpp].

```
bool intersects(const sf::Vector2f &rayOrigin, const sf::Vector2f &
    rayDirection, const sf::Vector2f &p1, const sf::Vector2f &p2, std::
    vector<sf::Vector2f> &intersectionPoints)
{
    sf::Vector2f v1 = p1 - rayOrigin;
    sf::Vector2f v2 = p2 - rayOrigin;
    sf::Vector2f v12 = v2 - v1;

    const float cross = crossProduct(rayDirection, v12);

    if (cross == 0)
    {
        return false; // ray and edge are parallel
    }

    const float t = crossProduct(v1, rayDirection) / cross; // Parameter
        for Edge
    const float s = rayDirection.x != 0 ? ((v1.x + t * v12.x) /
        rayDirection.x) : ((v1.y + t * v12.y) / rayDirection.y); //
        Parameter for Ray

if (t >= 0 && t <= 1 && s >= 0) // Is between points and in positive
        direction of Ray
{
        const sf::Vector2f intersectionPoint = v1 + rayOrigin + t * v12;
```

```
intersectionPoints.push_back(intersectionPoint);
    return true;
}
return false;
}
```

Listing 7.1: Berechnung des Schnittpunktes zweier Geraden

Nachdem alle Schnittpunkte berechnet wurden, muss anschließend der Schnittpunkt bestimmt werden, der am nächsten am LiDAR, also dem Stützvektor des Rays, ist. Dafür wird die Liste mit den Schnittpunkten nach dem Abstand zum LiDAR sortiert, indem der quadrierte Abstand zwischen Schnittpunkt und LiDAR berechnet. Der Vorteil des quadrierten Abstandes gegenüber dem normalen Abstand ist, dass die Reihenfolge einzelner Punkte gleich bleibt, aber die Berechnung über die Wurzel vermieden wird, welche vergleichsweise aufwendig ist [16]. Nach der Sortierung kann dann das erste Element der Liste als Schnittpunkt für diesen Ray verwendet werden. Da aktuell nur die Koordinaten des Schnittpunktes bekannt sind, ein LiDAR aber nur den Winkel und die Entfernung eines Punktes kennt, müssen für die Simulation diese Werte noch berechnet werden [src/simulation/src/intersection.cpp, src/simulation/src/lidarSensorSim.cpp].

7.2.2 Implementierung des LiDARs mit der RPLIDAR SDK

Wie bereits in der Technologie-Entscheidung beschrieben, wird für die Ansteuerung des LiDARs die RPLIDAR SDK verwendet. Zusätzlich wird die Library pigpio beutzt, um die GPIO Pins des Raspberry Pis zu verwenden. Dies wird benötigt, da der Motor des LiDAR über ein PWM-Signal gesteuert wird [src/lidar/src/a1lidarSensor.cpp].

TODO wie funktioniert auslesen, warum komische Werte

```
void A1LidarSensor::getScanData(lidar_point_t *data, size_t count)
{
    rplidar_response_measurement_node_hq_t scanData[count];
    u_result res = drv->grabScanDataHq(scanData, count);

    if (res == RESULT_OK)
    {
        printf("Grabbed scan data\n");
    }
    else
    {
        printf("Failed to grab scan data\n");
        printf("Error code: %d\n", res);
        return;
    }

    for (int i = 0; i < count; i++)</pre>
```

```
{
    const double angle = scanData[i].angle_z_q14 * (90.f / 16384.f);
    const double distance = scanData[i].dist_mm_q2 / 4000.0f;
    data[i].radius = distance;
    data[i].angle = angle;
    data[i].x = distance * cos(angle);
    data[i].y = distance * sin(angle);
    data[i].y = distance * sin(angle);
    data[i].quality = scanData[i].quality;
    data[i].valid = scanData[i].quality > 7;
}
```

Listing 7.2: Auslesen der LiDAR Daten

7.2.3 Umsetzung des Ausweichalgorithmus

TODO Timo

7.2.4 Umsetzung von SLAM

TODO Justin

8 Fazit

Im Folgenden werden die Ergebnisse der Arbeit nochmal aufgezählt, erläutert und evaluiert. Des Weiteren wird auf Möglichkeiten zur Optimierung und sinnvolle Änderungen eingegangen.

8.1 Rückblick

In diesem Kapitel wird auf die diversen Probleme eingegangen, welche während der Bearbeitung der Studienarbeit aufkamen. Zusätzlich wird auch darauf eingegangen, was für Ergebnisse erzielt wurden und ob die Ziele der Arbeit erreicht sind.

Probleme

In sämtlichen Bereichen der Studienarbeit kam es zu Problemen, welche gelöst werden mussten.

1. Kommunikation mit dem LiDAR

Das erste größere Problem welches gelöst werden musste, war die Kommunikation mit dem LiDAR. Der LiDAR kommuniziert über eine serielle Schnittstelle. Zusätzlich gibt es einen Pin zur Steuerung der Motordrehzahl. 8.1

Abbildung 8.1: RPLiDAR A1 Pins Reference Design. Quelle: [11, p. 12]

Standardmäßig liegt dem Slamtec RPLiDAR A1M8-R6 ein Adapter bei. Dieser ermöglicht es, über Standard USB-A, mittels SDK mit dem LiDAR zu kommunizieren und auch den Motor des LiDAR anzusteuern. Bei unserem Exemplar des LiDAR lag ein solcher Adapter jedoch nicht bei. Anstelle des Adapters stand lediglich ein Kabel zur Verfügung, dass an den LiDAR angeschlossen werden konnte. Das andere Ende des Kabels war nicht terminiert, so dass die einzelnen Kabel direkt an den Pins des Raspberry Pi angeschlossen werden mussten.

Zu Beginn funtkionierte die serielle Kommunikation überhaupt nicht. Es stellte sich jedoch raus, dass die Kabel lediglich an den falschen Pins des Raspberry Pi angeschlossen wurden. Durch korrektes Anschließen der Kabel zur seriellen Kommunikation wurde das Problem gelöst.

Eine weitere Folge des fehlenden Adapters war, dass die Motorsteuerung mittels SDK nicht länger möglich war. Um den Motor zu steuern musste ein entsprechendes PWM-Signal an dem korrekten Pin des Raspberry Pi manuell gesetzt werden. Zur Vereinfachung dieses Prozess wurde ein Interface implementiert, welches den Motor bei Bedarf automatisch startet und stoppt.

2. Simulation des LiDAR

Das größte Problem, welches bei der Entwicklung der Simulation auftrat, war die Umsetzung der LiDAR Simulation. Da ein solcher Sensor mit Lichtstrahlen arbeitet, erschien eine Umsetzung mittels Ray Castig am sinnvollsten. Die Simulation der Umgebung und den darin enthaltenen Hindernissen funktionierte bereits. Jedoch gab es Probleme bei der Berechnung der Schnittpunkte der simulierten Lichtstrahlen und den Hindernissen.

3. ICP Performance

Ein weiteres Problem war die schlechte Performance der zuerst verwendeten Implementierung eines Iterative Closest Point (ICP)-Algorithmus. Die verwendete Implementation hatte seit sieben Jahren kein Update erhalten und entstand vermutlich als Projekt einzelner Personen. Trotz der geringen Anzahl an Punkten, aus denen die einzelnen Scans bestanden, brauchte der Algorithmus teilweise mehrere Sekunden zur Berechnung der Transformationsmatrix. Da der gesamte Ausweichalgorithmus eine Laufzeit von unter 500ms haben sollte, war die Laufzeit des ICP-Algorithmus zu hoch. Ein erster Versuch die Laufzeit zu verbessern bestand darin, die Anzahl an Punkten zu verringern. Hierzu wurde sich dazu entscheiden die n nähsten Punkte zu verwenden. Das hatte jedoch zur Folge, dass das Ergebnis des Algorithmus deutlich ungenauer wurde. Zudem entstand

durch die geringe Anzahl an Punkten, welche sich zudem meistens nur in einem kleinen Bereich des 360° Sichtfeld des Sensors befanden, eine hohe Fehleranfälligkeit bei Bewegungen nahe des Sensors. Diese entstanden vor allem dann, wenn das Fahrzeug sich einem Hinderniss näherte.

Um das Problem zu lösen wurde sich dazu entschieden die Implementation der Point Cloud Library zu nutzen. 5.3.2 Da diese open-source Bibliothek für die Arbeit mit Punktewolken gedacht ist, bietet sie verschiedenste ICP-Algorithmen, welche nicht nur extrem optimiert sind, sonder auch deutlich mehr Konfigurationsmöglichkeiten als die ursprünglich verwendete Implementation bieten.

Durch die Nutzung der PCL-Implementation konnte die Laufzeit erheblich verbessert werden Somit konnte das Ziel von einer Laufzeit unter 500ms, selbst bei Nutzung von 720 Punkten pro Scan, erreicht werden.

4. Koordinatensysteme

Zusätzlich zu dem Problem der Laufzeit, gab es das Problem, das die Werte für die X und Y Translation, welche der ICP-Algorithmus berechnete, ungenau waren. Vor allem bei Bewegungen des Fahrzeug auf der Y-Achse unterschieden sich die berechneten Werte deutlich von den tatsächlichen Werten.

Ausführliches Debugging ergab, dass der ICP-Algorithmus die Punktewolken nahezu perfekt übereinander legte. Das Problem war jedoch, das die resultierenden Werte für X- und Y-Translation basierten auf dem lokalen Koordinatensystem des Autos. Das kommt daher, dass das Auto die Scans erzeugt, diese jedoch keine Informationen über die aktuelle Rotation des Fahrzeugs, relativ zum globalen Koordinatensystem der Karte, enthalten.

So lange sich das Auto nicht drehte und nur vorwärts oder rückwärts fuhr, stimmten die Koordinaten-Achsen des Autos mit den gloablen Koordinaten-Achsen überein. Somit stimmte auch das Ergebnis des ICP-Algorithmus. Fuhr das Auto jetzt aber vorwärts entlang der Y-Achse, also um 90 Grad verdreht, nahm der ICP-Algorithmus das als Bewegung auf der X-Achse war. Das lag daran, dass er das lokale Koordinatensystem des Autos nutzte, bei der die X-Achse nach vorne (0 Grad) gerichtet ist, Sämtliche, nach vorne gerichtete Bewegung, wurde also als Bewegung in X-Richtung interpretiert.

Das Problem wurde gelöst, indem die Punktewolken, um die Rotation des Autos zum Zeitpunkt der Erstellung der ersten Punktewolke, gedreht wurden. Dies hatte zur Folge, dass das Koordinatensystem des Scans auf das

globale Koordinatensystem gelegt wurde. Dadurch stimmte die berechnete Translation wieder mit den realen Werten überein.

5. ICP Genauigkeit

Ein weiteres Problem bei der Implementierung des ICP-Algorithmus war die Genauigkeit des Ergebnis. Die anfänglich eher schlechte Genauigkeit, konnte durch Anpassen der Konfigurations-Parameter erheblich verbessert werden. Hierzu wurden verschiedene Werte in unterschiedliche Situationen getestet und ausgewertet. Hierbei war es wichtig die Laufzeit des Algorithmus im Auge zu behalten. Je enger die Parameter gesetzt werden, desto genauer ist das Ergebnis des Algorithmus, jedoch steigt dadurch auch die Menge an Iterationen und somit die Laufzeit.

Es fiel auf, das der ICP-Algorithmus, selbst mit etwas lockerer gesetzten Parametern ausreichend gute Ergebnisse liefert. Nur in seltenen Fällen war ein Ergebnis suboptimal, was sich durch einen hohen Fittness-Wert des Ergebnis auszeichnete. Um die Laufzeit weiter zu verbessern wurde eine interne Schleifen implementiert, welche den Fitness-Score des Ergebnis als Abbruchkriterium hat. Somit wird der ICP-Algorithmus mindestens einmal durchgeführt. Sollte das Ergebnis nicht genau genug sein, wird der Algorithmu ein weiteres Mal aufgerufen. Diesmal mit dem vorherigen Ergebnis als Input. Des weiteren werden mit jeder Iteration die Parameter enger gesetzt.

Leider kam es in seltenen Fällen dazu, dass die Berechnung auf diese Art und Weise, mehrere Sekunden dauerte. Daher wurde eine maximale Anzahl an ICP-Iterationen festgelegt.

Somit ist die Laufzeit des Algorithmus weiterhin optimal, jedoch kann es dazu kommen, das einige Ergebnisse einen nicht zu vernachlässigbaren Fehler haben. Auch die Ergebnisse, welche eine ausreichende Genauigkeit haben, sind nicht zu 100 Prozent genau. Da mehrere Scans pro Sekunde verglichen werden, addiert sich dieser Fehler. Zudem resultiert ein Fehler in der berechneten Rotation des Fahrzeugs dazu, dass das oben beschriebene Problem mit den Koordinaten-Achsen nicht mehr so gut ausgeglichen werden kann. Das hat zur Folge, dass sich der Fehler exponentiell erhöht.

Eine mögliche Lösung für dieses Problem, wären die Verwendung weiterer Sensoren zum Messen der Bewegung des Fahrzeugs. Durch zusätzliche Odometrie-Daten und einer Gewichtung der Ergebnisse, kann die Lokalisierung des Fahrzeugs erheblich verbessert werden. Eine weitere Lösung wäre die Integration von Filtern, welche die Ergebnisse des ICP-Algorithmus filtern.

Zum jetzigen Zeitpunkt sind jedoch keine Lösungen für das Problem implemntiert. Der Fehler ist, vor allem zu Beginn, vernachlässigbar und beschränkt sich auf die Position und Rotation des Fahrzeugs. Da sich der LiDAR auf dem Fahrzeug befindet, ist die Erkennung von Hindernissen unabhängig von der Position des Fahrzeugs. Lediglich die Erstellung der Karte und somit auch die Navigation zum Zielort wird mit der Zeit ungenauer.

6. Ausweichalgorithmus

Die Implementierung des Ausweichalgorithmus war ebenfalls herausfordernd.

Zur Umsetzung wird der A-Stern Path-Finding-Algorithmus verwendet. Anfänglich nahm dieser keine Rücksicht auf die eingeschränkten Bewegungsmöglichkeiten des Autos. Somit wurden Pfade berechnet, welche z.B. Zick-Zack-Bewegungen enthielten. Da sich das Auto nicht auf der Stelle drehen kann, waren diese Pfade nicht für das Auto abfahrbar.

Dieses Problem konnte nicht vollständig behohben werden. Es wurde versucht, den Winkel in dem sich die Punkte befinden, welche der Algorithmus als nächsten Schritt in Erwähgung zieht, einzuschränken. Das resultierte darin, dass der Pfad nahe am Auto, den Lenkwinkel einhält und der Pfad somit abfahrbar ist. Je weiter der Pfad von dem Auto entfernt ist, desto schlechter wird die Qualität. Da das Auto den Pfad jedoch nach jedem Positions-Update neu berechnet, ist das ein rein optisches Problem, dass sich nicht auf die Funktionalität auswirkt.

Des Weiteren neigte der Algorithmus dazu, Pfade zu generieren, welche duch Wände führten. Wie sich herausstellte, war das Problem die Darstellung der Koordinaten. Die Implementierung des Algorithmus repräsentierte Punkte in der Form (x,y). Die Werte, welche zeigen ob sich an einem Punkt ein Hinderniss befindet, werden jedoch in einer Matrix gespeichert. Diese wird in der Form (Zeile, Spalte) angesprochen. Sieht man die Matrix nun als Koordinaten-System, entsprechen die Zeilen der, nach unten gerichteten Y-Achse. Die Spalten entsprechen der, nach rechts gerichteten X-Achse. Somit muss, um den korrekten Wert aus der Matrix auslesen zu können, diese in der Form (y,y) angesprochen werden. Ein einfaches Tauschen der Koordinaten bei der Abfrage des Matrix-Wert löste das Problem.

Ergebnisse

Die Umsetzung der Studienarbeit erzielte diverse Ergebnisse auf welche im Folgenden genauer eingegnagen werden soll.

1. Simulation

Das Fahrzeug selbst wird so simuliert, dass es über entsprechende Steuerungsbefehle gesteuert werden kann. Des Weiteren wird auf den maximalen Lenkwinkel rücksicht genommen.

Ein Kollisionserkennung sowie manuelle Steuerung wurde ebenfalls, zu Debug-Zwecken, implementiert. Eine statische Umgebung kann ebenfalls erfolgreich simuliert werden. Neben den zum Start bereits vorhandenen Hindernissen, können weitere Hindernisse manuell hinzugefügt werden.

Der LiDAR-Sensor kann ebenfalls realitätsnah simuliert werden. Die Anzahl an Punkten pro Scan lässt sich variabel einstellen. Die Scan-Daten des Sensors lassen sich entweder manuell per Knopfdruck in einer Datei speichern, oder per Methode in Form einer Matrix auslesen. Die hierbei ausgelesene Matrix hat die gleiche Datenstruktur wie die Matrix, die als Ergebnis eines Scans mit dem realen Sensor zurückgegeben wird.

2. Map-Erstellung

Die Sensordaten können genutzt werden um eine Map aufzubauen. Basierend auf einkommenden Daten, werden Werte innerhalb der Felder eines Grids angepasst. Somit kann erfasst werden, an welchen Stellen der Karte ein Hinderniss erkannt wurde und an welchen Stelle frei ist.

Die größe der Karte, sowie die größe des Grids können beliebig angepasst werden. Eine zu große Karte hat jedoch deutlich längere Laufzeiten zu Folge.

Sofern die Fahrzeug-Position zum Zeitpunkt des Scans bekannt ist, kann die Karte beliebig erweitert werden. Hierbei ist darauf zu achten, dass die Fahrzeug-Position nicht außerhalb der Karte liegt.

3. Lokalisierung

Zur Lokalisierung des Fahrzeugs wird ein ICP-Algorithmus der Point Cloud Library verwendet. Dieser berechnet, basierend auf zwei aufeinanderfoglenden Scans, die Positionsifferenz des Fahrzeug zwischen den Scans. Somit kann, sofern der Startpunkt bekannt ist, die Fahrzeugposition nach jedem Scan angepasst werden.

Aufgrund der Frequenz mit welcher die Scans erstellt werden, ist die Differenz recht gering. Das hat zur Folge, dass der ICP-Algorithmus sehr schnell und sehr präzise arbeiten kann.

Wie bereits in 8.1 beschrieben ist der Algorithmus nicht zu 100 Prozent akkurat. Aufgrund fehlender Filter und Bewegungsdaten des Fahrzeugs, kann dieser Fehler nicht korrigiert werden. Somit addiert er sich immer

weiter auf. Das Ergebnis ist eine, immer weiter von der Realität abweichende, berechnete Position und Rotation des Fahrzeugs.

Da die Hindernisse basierend auf der berechneten Position und Rotation des Fahrzeug in die Map eingetragen werden, sind die Abstände zu den Hindernissen weiterhin akkurat. Die resultierende Map ist jedoch verzerrt was zu Problemen bei der Navigation führen kann.

4. Ausweichen

Die Möglichkeit auszuweichen wurde mittels Path-Finding und der generierten Karten umgesetzt.

Dem Path-Finding-Algorithmus wird die aktuelle Position des Roboters, sowie die Zielkoordinate übergeben. Daraufhin wird, mit Hilfe der Map-Daten, ein Pfad um die Hindernisse herum berechnet. Bei der Berechnung des Pfades wird auf den maximalen Lenkwinkel des Autos Rücksicht genommen. Eine autonome Steuerung ist noch nicht möglich, da der Algorithmus weder mit dem simulierten noch dem realen Auto kommunizieren kann.

Da der Pfad bei jedem Positions-Update neu berechnet wird, können so auch Ziele angefahren werden, welche sich in noch unbekanntem Gebiet der Karte befinden. In dem Fall wird die Karte erstellt sobald der Bereich für den LiDAR sichtbar wird.

Die Eingabe der Zielkoordinaten erfolgt über die Simulierte Umgebung.

8.2 Evaluation

Im Folgenden werden wichtige Aspekte der Arbeit beleuchtet und evaluiert.

Ziele

Die gesetzten Ziele waren zeitlich machbar. Ein Großteil der Ziele konnte auch umgesetzt werden. Jedoch kam es, aufgrund verschiedenster Probleme, zu Verzögerungen. Aufgrund mangelnder Zeit konnten daher einige Ziele nicht erreicht werden.

Kommunikation

Die Kommunikation innerhalb der Gruppe war gut. Regelmäßige Meetings und absprachen sorgten für einen größtenteils reibungslosen Ablauf.

Die Kommunikation mit der anderen Gruppe hingegen war eher mangelhaft. Meetings wurden selten gehalten und das Kommunizieren wichtiger Informationen dauerte teilweise viel zu lange. Deutlichere und häufigere Kom-

munikation wäre wichtig gewesen und hättte den Fortschritt des Projektes vorangebracht.

Aufgabenteilung

Die Aufgabenteilung war gut. Es wurde umfangreich geplant wodurch jeder zu jedem Zeitpunkt konkrete Aufgaben hatte. Somit konnte die Zeit gut genutzt werden.

8.3 Ausblick

Das Ergebnis der Arbeit bietet eine gute Grundlage für die autonome Hindernisserkennung und Umgehung. Allerdings gibt es diverse Verbesserungsvorschläge und Erweiterungen, welche das Ergebnis verbessern.

Steuerung des Fahrzeugs

Der wohl wichtigste Punkt ist die Nutzung des Algorithmus zur Steuerung des Fahrzeugs. Zum aktuellen Zeitpunkt ist der Algorithmus lediglich in der Lage, eine Pfad zu berechnen.

Eine notwendige Ergänzung ist somit die Verbindung des simulierten und des realen Fahrzeugs mit dem Algorithmus. Die Logik des Algorithmus ist vollständig von der Quelle der Daten abstrahiert.

Die Schnittstelle für die Kommunikation mit dem simulierten Auto existiert bereits, der Algorithmus ist jedoch noch nicht in der Lage diese zur Steuerung des simulierten Fahrzeugs zu verwenden.

Die Schnittstelle für die Kommunikation mit dem realen Auto ist noch gar nicht implementiert. Der Aufbau der Schnittstelle sollte von der schnittstelle des Simulierten Autos kopiert werden. Anstelle von Methoden-Aufrufen zur steuerung des Autos, muss die Schnittstelle für das reale Auto Pins des Raspberry Pi setzten. Die entsprechende Python-Implementierung der Hardware-Gruppe ist vorhanden und muss nur in C++ übersetzt werden.

Handy-Stuerung

Die Übermittlung der Zielkoordinaten erfolgt bei der Simulation über einen Mausklick innerhalb der simulierten Umgebung.

Eine Möglichkeit die Zielkoordinaten an das reale Fahrzeug zu übermitteln ist das Erstellen einer Handy-App. Da der Raspberry Pi über WLAN und Bluetooth verfügt, ist es möglich, eine App zu erstellen, welche die generierte Karte anziegt. Zur Zeit wird eine solche Karte, bei Nutzung der Simulation, in einem zweiten Fenster angezeigt. Die Eingabe einer Zielkoordinaten könnte dann mittels Klick auf die Karte erfolgen.

Zusätzliche Sensorik

Es wurden bereits zusätzliche Ultraschall-Sensoren an dem Fahrzeug verbaut. Eine Integration dieser in die bestehnde Logik ist eine weitere, sinnvolle Ergänzung.

Da diese Sensoren unterhalb des LiDAR, vorne an dem Fahrzeug angebracht sind, können sie genutzt werden um flache Hindernisse, welche sich unterhalb des LiDAR-Sensors befinden, zu erkenne. Außerdem können sie als fail-safe dienen, falls das Fahrzeug auf ein Hindernis zusteuert, diesem aber nicht ausweicht. Ein solcher fail-safe dient vor allem dem Schutz der Hardware. welche fragil und teuer ist.

Neben Ultraschall-Sensoren macht auch die Erweiterungen um eine Beschleunigungs-Sensor Sinn. Ein solcher Sensor kann genutzt werden, um zusätzliche Bewegungsdaten zu sammeln. Diese können verwendet werden, um z.B. durch Gewichtung, die Ergebnisse der Lokalisierung zu verbessern.

Filter

Eine weitere wichtige Ergänzung zur Verbesserung der Loakalisierung sind Filter.

Filter sind eine reine Software-Lösung und können somit ohne zusätliche Materialkosten integriert werden. Ein solcher Filter sorgt dafür, dass schlechte Ergebnisse gefiltert werden. Hierdurch kann der durchschnittliche Fehler, welcher die Ergebnisse des ICP-Algorithmus haben, gesenkt werden.

A Anhang 39

A Anhang

Literatur 40

Literatur

[1] Neil Ashby. "Relativity in the global positioning system". In: Living Reviews in relativity 6 (2003), S. 1–42.

- [2] Chetan Desai, David Janzen und Kyle Savage. "A survey of evidence for test-driven development in academia". In: SIGCSE Bull. 40.2 (2008), S. 97–101. ISSN: 0097-8418. DOI: 10.1145/1383602.1383644. URL: https://doi.org/10.1145/1383602.1383644.
- [3] GitHub: Slamtec/rplidar_ros. 2023. URL: https://github.com/slamtec/rplidar_ros (besucht am 05.02.2024).
- [4] GitHub: Slamtec/rplidar_sdk. 2023. URL: https://github.com/Slamtec/rplidar_sdk (besucht am 05.02.2024).
- [5] Leihui Li, Riwei Wang und Xuping Zhang. "A Tutorial Review on Point Cloud Registrations: Principle, Classification, Comparison, and Technology Challenges". In: *Mathematical Problems in Engineering* 2021.1 (2021), S. 9953910. DOI: https://doi.org/10.1155/2021/9953910. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1155/2021/9953910. URL: https://onlinelibrary.wiley.com/doi/abs/10.1155/2021/9953910.
- [6] Yanjie Liu u.a. "Improved LiDAR Localization Method for Mobile Robots Based on Multi-Sensing". In: Remote Sensing 14.23 (2022). ISSN: 2072-4292. DOI: 10.3390/rs14236133. URL: https://www.mdpi.com/2072-4292/14/23/6133.
- [7] Anu Maria. Introduction to modeling and simulation. 1997. URL: https://dl.acm.org/doi/pdf/10.1145/268437.268440 (besucht am 23.01.2024).
- [8] Premal B Nirpal und KV Kale. "A brief overview of software testing metrics". In: *International Journal on Computer Science and Engineering* 3.1 (2011), S. 204–211.
- [9] Raspberry Pi 4 Model B. Techn. Ber. Raspberry Pi Ltd, 2023. URL: https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-product-brief.pdf (besucht am 31.01.2024).
- [10] ROS: Home. 2023. URL: https://www.ros.org/(besucht am 05.02.2024).
- [11] RPLIDAR A1 Development Kit User Manual. 2023. URL: https://www.slamtec.ai/wp-content/uploads/2023/11/LD108_SLAMTEC_rplidar_datasheet_A1M8_v3.0_en.pdf (besucht am 08.07.2024).

Literatur 41

[12] RPLIDAR A1 - Introduction and Datasheet. 2020. URL: https://www.slamtec.ai/wp-content/uploads/2023/11/LD108_SLAMTEC_rplidar_datasheet_A1M8_v3.0_en.pdf (besucht am 31.01.2024).

- [13] Niko Schwarz, Mircea Lungu und Oscar Nierstrasz. "Seuss: Decoupling Responsibilities from Static Methods for Fine-Grained Configurability". In: Journal of Object Technology 11.1 (2012), 3:1-3:23. DOI: 10.5381/jot.2012.11.1.a3. URL: https://www.jot.fm/issues/issue_2012_04/article3.pdf.
- [14] SFML. SFML. https://www.sfml-dev.org/index.php.
- [15] Ltd Shanghai Slamtec Co. RPLIDAR A1: Low Cost 360 Degree Laser Range Scanner. Revision 3.0. Shanghai Slamtec Co., Ltd. Shengyin Tower, 666 Shengxia Rd., Shanghai, China, Okt. 2020.
- [16] Game Dev Stackexchange. Are There Any Disadvantages of Using Distance Squared Checks Rather than Distance? Forum Post. Feb. 2012.
- [17] The Editors of Encyclopaedia Britannica. computer simulation. 2023. URL: https://www.britannica.com/technology/computer-simulation (besucht am 23.01.2024).
- [18] The PCL Registration API. 2023. URL: https://pcl.readthedocs.io/projects/tutorials/en/latest/registration_api.html.
- [19] Alan Mathison Turing u. a. "On computable numbers, with an application to the Entscheidungsproblem". In: *J. of Math* 58.345-363 (1936), S. 5.