Лабораторная работа №7 «Бустинг»

Работу выполнила студентка группы 5140201/30301 Фазылова Алика

Задание 1.

Исследуйте зависимость тестовой ошибки от количества деревьев в ансамбле для алгоритма adaboost.М1 на наборе данных Vehicle из пакета mlbench (обучающая выборка должна состоять из 7/10 всех прецедентов, содержащихся в данном наборе данных). Постройте график зависимости тестовой ошибки при числе деревьев, равном 1, 11, 21, . . . , 301, объясните полученные результаты.

Решение

Построим график зависимости тестовой ошибки от количества деревьев (рисунок 1)

Рисунок 1 – Зависимость ошибки от количества деревьев

Минимальная ошибка на тестовой выборке достигается при 71 деревьях и равна 0.2244898, а максимальная 0.3387755 при 1 дереве.

На графике видно с увеличением количества деревьев ошибка в среднем уменьшается.

```
Листинг кода 1 задачи:
      library(adabag)
      library(mlbench)
      data(Vehicle)
       Vehicle
      set.seed(14)
      sample <- sample(c(TRUE, FALSE), nrow(Vehicle), replace = TRUE, prob = c(0.7, 0.3))
      train data <- Vehicle[sample, ]
      test data <- Vehicle[!sample, ]
      maxdepth <- 5
      test errors <- numeric(length = 31)
      for (i in seq(1, 301, by = 10)) {
        model \le boosting(Class \sim ..., data = train data, mfinal = i, maxdepth)
        predictions <- predict.boosting(model, newdata = test_data)</pre>
        test errors[i %/% 10 + 1] <- predictions$error
       }
      plot(seq(1, 301, by = 10), test errors, type = "b", xlab = "Number of Trees", ylab = "Test
Error",col = "blue",lwd=3)
      print(data.frame(Number of Trees = seq(1, 301, by = 10), Test Error = test errors))
      min error <- min(test errors)
      max error <- max(test errors)
      min error index <- which.min(test errors)
      max error index <- which.max(test errors)</pre>
      min error trees <- seq(1, 301, by = 10)[min error index]
      max error trees <- seq(1, 301, by = 10)[max error index]
      cat("Минимальная тестовая ошибка:", min error, "достигается при", min error trees,
"деревьях")
      cat("Максимальная тестовая ошибка:", max error, "достигается при", max error trees,
```

"деревьях")

Задание 2.

Исследовать зависимость тестовой ошибки от количества деревьев в ансамбле для алгоритма bagging на наборе данных Glass из пакета mlbench (обучающая выборка должна состоять из 7/10 всех прецедентов, содержащихся в данном наборе данных). Построить график зависимости тестовой ошибки при числе деревьев, равном 1, 11, 21, ..., 201, объясните полученные результаты.

Решение

Построим график зависимости тестовой ошибки от количества деревьев (рисунок 2)

Рисунок 1 – Зависимость ошибки от количества деревьев

Минимальная ошибка на тестовой выборке достигается при 61 дереве и равна 0.2153846, а максимальная 0.5230769 при 1 дереве.

На графике видно с увеличением количества деревьев ошибка в среднем уменьшается.

Листинг кода 2 задачи:

library(adabag)

library(mlbench)

```
data(Glass)
       set.seed(3)
       sample \leftarrow sample(c(TRUE, FALSE), nrow(Glass), replace = TRUE, prob = c(0.7, 0.3))
       train data <- Glass[sample, ]
       test data <- Glass[!sample, ]
       test errors2 <- numeric(length = 21)
       for (i in seq(1, 201, 10)) {
        model \le bagging(Type \sim ., train data, mfinal = i)
        prediction <- predict.bagging(model, test_data)</pre>
        test errors2[i %/% 10 + 1] <- prediction$error
       }
       plot(seq(1, 201, by = 10), test errors2, xlab = "Number of Trees", ylab = "Test Error", type
= "b",col = "blue",lwd=3)
       min error2 <- min(test_errors2)
       max error2 <- max(test errors2)
       min error index2 <- which.min(test errors2)
       max error index2 <- which.max(test errors2)</pre>
       min error trees2 <- seq(1, 201, by = 10)[min error index2]
       max_error_trees2 \le seq(1, 201, by = 10)[max_error_index2]
       cat("Минимальная
                                           ошибка:",
                                                          min error2,
                              тестовая
                                                                         "достигается
                                                                                           при",
min error trees2, "деревьях")
       cat("Максимальная
                                            ошибка:",
                                                          max error2,
                                                                          "достигается
                                                                                           при",
                               тестовая
max error trees2, "деревьях")
```

Задание 3.

Реализуйте бустинг алгоритм с классификатором К ближайших соседей. Сравните тестовую ошибку, полученную с использованием данного классификатора на наборах данных Vehicle и Glass, с тестовой ошибкой, полученной с использованием единичного дерева классификации.

Решение

В результате работы был реализован бустинг алгоритм с классификатором К ближайших соседей и оценены ошибки на тестовой выборке.

Для набора данных Vehicle

Ошибка на тестовой выборке для единичного дерева: 0.3755102

Ошибка на тестовой выборке для Кпп бустинг алгоритма: 0.4285714

Для набора данных Glass

Ошибка на тестовой выборке для единичного дерева: 0.296875

Ошибка на тестовой выборке для Кпп бустинг алгоритма: 0.40625

Для обоих наборов данных ошибка для единичного дерева оказалась меньше.

Листинг кода 3 задачи:

```
library(mlbench)
library(adabag)
library(dplyr)

knn_w <- function(target, train, k, w) {
  return(list(target = target, train = train, levels= levels(train[, target]), k = k, w = w))
}

knn_w_pred <- function(clfier, testdata) {
  n <- nrow(testdata)
  pred <- rep(NA_character_, n)
  trainlabels <- clfier$train[, clfier$target]
```

```
train <- clfier\train[, !(names(clfier\train) \%in\%clfier\target)]
 test <- testdata[, !(names(testdata) %in%clfier$target)]
 for (i in 1:n) {
  n_number <- order(apply(train, 1, function(x))</pre>
   sum((test[i, -x)^2))[1:clfier$k]
  myfreq <- data.frame(names = clfier$levels, freq
                = rep(0, length(clfier$levels)))
  for (t in n_number) {
   myfreq[myfreq$names == trainlabels[t], ][2] <-
     myfreq[myfreq$names == trainlabels[t], ][2] +
     clfier$w[t]
  }
  most_frequent <- clfier$levels[myfreq$freq ==</pre>
                        max(myfreq$freq)]
  pred[i] <- sample(most frequent, 1)</pre>
 }
 factor(pred, levels = levels(trainlabels))
knn boosting \leq- function(target, data, k = 11, mfinal= 2, ...) {
 n \le nrow(data)
 w \le rep(1/n, each = n)
 classifiers <- list()
 alphas <- vector()
 for (t in 1:mfinal) {
  clfier \leq- knn w(target, train = data, k = k, w)
  knn_predicted <- knn_w_pred(clfier, data)
  error <- vector()
  for (i in 1:n) {
```

}

```
if (data[[target]][i] != knn predicted[i])
     error <- append(error, w[i])
   }
  if (sum(error) \ge 0.5) {
   break()
   }
  classifiers[[t]] <- clfier
  alphas[[t]] <- log((1 - sum(error)) / sum(error)) / 2
  for (i in 1:n) {
   if (knn predicted[i] != data[[target]][i]) {
     w[i] \le w[i] * exp(alphas[[t]])
    } else {
     w[i] \le w[i] * exp(-alphas[[t]])
    }
  }
 }
 result <- list()
 result$classifiers <- classifiers
 result$alphas <- alphas
 result$levels <- levels(data[, target])
 return(result)
boosting_pred <- function(clfier, testdata) {</pre>
 n <- nrow(testdata)
 pred = rep(NA character, n)
 for (i in 1:n) {
  myfreq <- data.frame(names = clfier$levels, freq
                = rep(0, length(clfier$levels)))
```

}

```
for (j in 1:length(clfier$classifiers)) {
   prediction <-
     knn w pred(clfier$classifiers[[j]], testdata[i, ])
   myfreq[myfreq$names == prediction, ][2] <-
     myfreq[myfreq$names == prediction, ][2] +
    clfier$alphas[j]
  }
  most frequent = clfier$levels[myfreq$freq ==
                      max(myfreq$freq)]
  pred[i] <- sample(most frequent, 1)</pre>
 }
 factor(pred, levels = clfier$levels)
}
data(Vehicle)
set.seed(14)
sample <- sample(c(TRUE, FALSE), nrow(Vehicle), replace = TRUE, prob = c(0.7, 0.3))
Vehicle train <- Vehicle[sample, ]
Vehicle test <- Vehicle[!sample, ]
Vehicle rpart <- rpart(Class \sim ., data = Vehicle train, maxdepth = 5)
Vehicle rpart pred <- predict(Vehicle rpart, newdata= Vehicle test, type = 'class')
tbl rpart <- table(Vehicle rpart pred, Vehicle test$Class)
error.rpart <- 1 - (sum(diag(tbl rpart)) / sum(tbl rpart))
cat("Ошибка для единичного дерева (Vehicle):",error.rpart)
clfier <- knn boosting('Class', Vehicle train,mfinal = 1)
pred <- boosting pred(clfier, Vehicle test)</pre>
tbl knn <- table(Vehicle test$Class, pred)
error.kknn <- 1 - sum(diag(tbl knn)) / sum(tbl knn)
cat("Ошибка для KNN-бустинг алгоритма (Vehicle):",error.kknn)
data("Glass")
```

```
set.seed(14)
sample <- sample(c(TRUE, FALSE), nrow(Glass), replace = TRUE, prob = c(0.7, 0.3))
Glass_train <- Glass[sample, ]
Glass_test <- Glass[!sample, ]
Glass_rpart <- rpart(Type ~ ., data = Glass_train, maxdepth = 5)
Glass_rpart_pred <- predict(Glass_rpart, Glass_test,type = 'class')
tbl_rpart <- table(Glass_rpart_pred,Glass_test$Type)
error.rpart <- 1 - (sum(diag(tbl_rpart)) / sum(tbl_rpart))
cat("Ошибка для единичного дерева (Glass):",error.rpart)

clfier <- knn_boosting('Type', Glass_train, mfinal = 1)
pred <- boosting_pred(clfier, Glass_test)
tbl_knn <- table(Glass_test$Type, pred)
error.kknn <- 1 - sum(diag(tbl_knn)) / sum(tbl_knn)
cat("Ошибка для KNN-бустинг алгоритма (Glass):",error.kknn)
```