Package 'matrisk'

May 2, 2023

Description The Macroeconomics-at-Risk (MaR) approach is based on a two-step semi-parametric es-
timation procedure that allows to forecast the full conditional distribution of an economic vari-
able at a given horizon, as a function of a set of factors. These density fore-
casts are then be used to produce coherent forecasts for any downside risk measure, e.g., value-
at-risk, expected shortfall, downside entropy. Initially intro-
duced by Adrian et al. (2019) <doi:10.1257 aer.20161923=""> to reveal the vulnerability of eco-</doi:10.1257>
nomic growth to financial conditions, the MaR approach is currently extensively used by interna-
tional financial institutions to provide Value-at-Risk (VaR) type fore-
casts for GDP growth (Growth-at-Risk) or inflation (Inflation-at-Risk). This package pro-
vides methods for estimating these models. Datasets for the US and the Eurozone are avail-
able to allow testing of the Adrian et al (2019) model. This package constitutes a useful tool-
box (data and functions) for private practitioners, scholars as well as policymakers.
Depends R (>= 2.10)
License GPL-3
Encoding UTF-8
RoxygenNote 7.2.3
Imports stats, quantreg, sn, dfoptim, plot3D
NeedsCompilation no
Author Quentin Lajaunie [aut, cre], Guillaume Flament [aut]

R topics documented:

Repository CRAN

Christophe Hurlin [aut]

Date/Publication 2023-05-02 08:30:05 UTC

Maintainer Quentin Lajaunie <quentin_lajaunie@hotmail.fr>

Title Macroeconomic-at-Risk

Version 0.1.0

data_euro	2
data_US	2
f_compile_quantile	3

2 data_US

	f_distrib																		4
	f_distrib_histo	٠.																	5
	f_ES																		7
	f_VaR																		8
Index																			9

data_euro

Historical data for the eurozone (GDP and Financial Conditions) from 2008:Q4 to 2022:Q3

Description

data_euro contains: - Quarterly annualized GDP, from 2008:Q4 to 2022:Q3 - Financial Condition Index of the euro Area, from 2008:Q4 to 2022:Q3 - Composite Indicator of Systemic Stress, from 2008:Q4 to 2022:Q3 Sources: https://sdw.ecb.europa.eu/browseExplanation.do?node=9689686 https://webstat.banque-france.fr/ws_wsen/browseSelection.do?node=DATASETS_FCI https://fred.stlouisfed.org/series/CLVMEURSCAB1GQEA1

Usage

```
data("data_euro")
```

Format

A data frame with 57 observations on the following 4 variables.

DATE Vector of dates.

GDP Vector of annualized PIB.

FCI Historical values of the Financial Condition Index (FCI).

CISS Historical values of the Composite Indicator of Systemic Stress (CISS).

data_US Historical data for the US (GDP and Financial Conditions) from 1973:Q1 to 2022:Q3

Description

data_euro contains: - Quarterly annualized GDP, from 1973:Q1 to 2022:Q3 - National Financial Condition Index of the US, from 1973:Q1 to 2022:Q3 Sources: https://www.chicagofed.org/research/data/nfci/current-data https://fred.stlouisfed.org/series/A191RL1Q225SBEA

Usage

```
data("data_US")
```

f_compile_quantile 3

Format

A data frame with 200 observations on the following 4 variables.

DATE Vector of dates.

GDP Vector of annualized PIB.

NFCI Historical values of the National Financial Condition Index (NFCI).

f_compile_quantile Estimation of quantiles

Description

Predicted values based on each quantile regression (Koenker and Basset, 1978), at time=t_trgt, for each quantile in qt_trgt.

Usage

```
f_compile_quantile(qt_trgt, v_dep, v_expl, t_trgt)
```

Arguments

qt_trgt	Numeric vector, dim k, of k quantiles for different qt-estimations
v_dep	Numeric vector of the dependent variable
v_expl	Numeric vector of the (k) explanatory variable(s)
t_trgt	Numeric time target (optional)

Value

Numeric matrix with the predicted values based on each quantile regression, at time fixed in input

References

Koenker, Roger, and Gilbert Bassett Jr. "Regression quantiles." Econometrica: journal of the Econometric Society (1978): 33-50.

```
# Import data
data("data_euro")

#' # Data process
PIB_euro_forward_4 = data_euro["GDP"][c(5:length(data_euro["GDP"][,1])),]
FCI_euro_lag_4 = data_euro["FCI"][c(1:(length(data_euro["GDP"][,1]) - 4)),]
CISS_euro_lag_4 = data_euro["CISS"][c(1:(length(data_euro["GDP"][,1]) - 4)),]
quantile_target <- as.vector(c(0.10,0.25,0.75,0.90))
results_quantile_reg <- f_compile_quantile(qt_trgt=quantile_target,</pre>
```

f_distrib

```
v_dep=PIB_euro_forward_4,
v_expl=cbind(FCI_euro_lag_4, CISS_euro_lag_4),
t_trgt = 30)
```

f_distrib

Distribution

Description

This function is used to estimate the parameters of the distribution (mean and standard deviation for Gaussian, xi, omega, alpha, and nu for skew-t) based on the quantile regression results (Koenker and Basset, 1978). See Adrian et al. (2019) and Adrian et al. (2022) for more details on the estimation steps.

Usage

```
f_distrib(type_function, compile_qt, starting_values)
```

Arguments

type_function String argument: "gaussian" for normal distribution or "skew-t" for t-student distribution

compile_qt Numeric matrix containing different quantiles and associated values starting_values

Numeric vector with initial values for optimization

Value

a data.frame with the parameters of the distribution

References

Adrian, Tobias, Nina Boyarchenko, and Domenico Giannone. "Vulnerable growth." American Economic Review 109.4 (2019): 1263-89.

Adrian, Tobias, et al. "The term structure of growth-at-risk." American Economic Journal: Macroeconomics 14.3 (2022): 283-323.

Koenker, Roger, and Gilbert Bassett Jr. "Regression quantiles." Econometrica: journal of the Econometric Society (1978): 33-50.

```
# Import data
data("data_euro")

# Data process
PIB_euro_forward_4 = data_euro["GDP"][c(5:length(data_euro["GDP"][,1])),]
```

f_distrib_histo 5

```
FCI_euro_lag_4 = data_euro["FCI"][c(1:(length(data_euro["GDP"][,1]) - 4)),]
CISS_euro_lag_4 = data_euro["CISS"][c(1:(length(data_euro["GDP"][,1]) - 4)),]
# for a gaussian
quantile_target <- as.vector(c(0.25,0.75))</pre>
results_quantile_reg <- f_compile_quantile(qt_trgt=quantile_target,</pre>
v_dep=PIB_euro_forward_4,
v_expl=cbind(FCI_euro_lag_4, CISS_euro_lag_4),
t_trgt = 30
results_g <- f_distrib(type_function="gaussian",</pre>
compile_qt=results_quantile_reg,
starting_values=c(0, 1))
# for a skew-t
quantile_target <- as.vector(c(0.10,0.25,0.75,0.90))
results_quantile_reg <- f_compile_quantile(qt_trgt=quantile_target,</pre>
v_dep=PIB_euro_forward_4,
v_expl=cbind(FCI_euro_lag_4, CISS_euro_lag_4),
t_{tgt} = 30
results_s <- f_distrib(type_function="skew-t",</pre>
compile_qt=results_quantile_reg,
starting_values=c(0, 1, -0.5, 1.3))
```

f_distrib_histo

Historical distributions

Description

This function is based on f_distrib function (Adrian et al., 2019; Adrian et al., 2022) and is used to get historical estimation of empirical distributions and associated parameters. Results allow to realize a 3D graphical representation.

Usage

```
f_distrib_histo(
   qt_trgt,
   v_dep,
   v_expl,
   type_function,
   starting_values,
   step,
   x_min,
   x_max
)
```

6 f_distrib_histo

Arguments

Numeric vector, dim k, of k quantiles for different qt-estimations qt_trgt v_dep Numeric vector of the dependent variable Numeric vector of the (k) explanatory variable(s) v_expl type_function String argument: "gaussian" for normal distribution or "skew-t" for t-student distribution starting_values Numeric vector with initial values for optimization step Numeric argument for accuracy graphics abscissa Numeric optional argument (default value = -15) x_min Numeric optional argument (default value = 10) x_max

Value

A list with:

distrib_histo Numeric matrix with historical values of x, y and t

param_histo Numeric matrix containing the parameters of the distribution for each period

References

Adrian, Tobias, Nina Boyarchenko, and Domenico Giannone. "Vulnerable growth." American Economic Review 109.4 (2019): 1263-89.

Adrian, Tobias, et al. "The term structure of growth-at-risk." American Economic Journal: Macroeconomics 14.3 (2022): 283-323.

```
# Import data
data("data_euro")
# Data process
PIB_euro_forward_4 = data_euro["GDP"][c(5:length(data_euro["GDP"][,1])),]
FCI_euro_lag_4 = data_euro["FCI"][c(1:(length(data_euro["GDP"][,1]) - 4)),]
CISS_euro_lag_4 = data_euro["CISS"][c(1:(length(data_euro["GDP"][,1]) - 4)),]
results_histo <- f_distrib_histo(qt_trgt=c(0.10,0.25,0.75,0.90), v_dep=PIB_euro_forward_4,
v_expl=cbind(FCI_euro_lag_4,CISS_euro_lag_4),
type_function="skew-t",
starting_values=c(0, 1, -0.5, 1.3),
step=5, x_min=-10, x_max=5)
library(plot3D) # load
scatter3D(results_histo$distrib_histo[,3],
results_histo$distrib_histo[,1],
results_histo$distrib_histo[,2],
pch = 10, theta = 70, phi = 10,
main = "Distribution of GDP Growth over time - Euro Area",
```

f_ES 7

```
xlab = "Date",
ylab ="Pib",
zlab="", cex = 0.3)
```

f_ES

Expected Shortfall

Description

The function allows to calculate Expected-shortfall for a given distribution. It takes as parameters alpha (risk level), a distribution and the parameters associated with this distribution. For example, for a normal distribution, the user must enter the mean and the standard deviation. Currently, the function can calculate the Expected-shortfall for the normal distribution and for the skew-t distribution (Azzalini and Capitianio, 2003)

Usage

```
f_ES(alpha, dist, params, accuracy = 1e-05)
```

Arguments

alpha	Numeric argument for Expected-Shortfall, between 0 and 1
dist	String for the type of distribution (gaussian or skew-t)
params	Numeric vector containing parameters of the distribution
accuracy	Scalar value which regulates the accuracy of the ES (default value 1e-05)

Value

Numeric value for the expected-shortfall given the distribution and the alpha risk

References

Azzalini, Adelchi, and Antonella Capitanio. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65.2 (2003): 367-389.

Azzalini, Adelchi, and Maintainer Adelchi Azzalini. "Package 'sn'." The skew-normal and skew-t distributions (2015): 1-3.

```
f_ES(0.95, "gaussian", params=c(0,1)) f_ES(0.95, "gaussian", params=c(0,1), accuracy=1e-05) f_ES(0.95, "gaussian", params=c(0,1), accuracy=1e-04)
```

 f_{VaR}

f_VaR Value-at-Risk	
---------------------	--

Description

The function allows to calculate Value-at-Risk for a given distribution. It takes as parameters alpha (risk level), a distribution and the parameters associated with this distribution. For example, for a normal distribution, the user must enter the mean and the standard deviation. Currently, the function can calculate the Value-at-Risk for the normal distribution and for the skew-t distribution (Azzalini and Capitianio, 2003)

Usage

```
f_VaR(alpha, dist, params)
```

Arguments

alpha	Numeric argument for Expected-Shortfall, between 0 and 1
dist	String for the type of distribution (gaussian or skew-t)
params	Numeric vector containing parameters of the distribution

Value

Numeric value for the Value-at-Risk given the distribution and the alpha risk

References

Azzalini, Adelchi, and Antonella Capitanio. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65.2 (2003): 367-389.

Azzalini, Adelchi, and Maintainer Adelchi Azzalini. "Package 'sn'." The skew-normal and skew-t distributions (2015): 1-3.

```
f_VaR(0.95, "gaussian", params=c(0,1))
```

Index

```
data_euro, 2
data_US, 2

f_compile_quantile, 3
f_distrib, 4
f_distrib_histo, 5
f_ES, 7
f_VaR, 8
```