BIG MART SALES PREDICTION

- Big Mart is a big supermarket that sales different products across stores in different cities.
- The dataset was taken from Kaggle website (<u>BigMart Sales Data | Kaggle</u>).
- The dataset contains 8523 entries and 12 features

Detail Compact Column							/
▲ Item_Ident =	# Item_Weight =	▲ Item_Fat =	# Item_Visibi =	▲ Item_Type 🖃	# Item_MRP =	▲ Outlet_lde =	4
FDA15	9.3	Low Fat	0.016047301	Dairy	249.8092	0UT049	1
DRC01	5.92	Regular	0.019278216	Soft Drinks	48.2692	OUT018	2
FDN15	17.5	Low Fat	0.016760075	Meat	141.618	0UT049	1
FDX07	19.2	Regular	0	Fruits and	182.095	OUT010	1

- From Big Mart dataset I am going to:
 - analyze customer behavior
 - understand the properties of products and stores which play a key role in increasing sales.
- My goal is to create a model that can predict the sales per product for each store.

- Before Analyzing and exploring the data I do the following:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8523 entries, 0 to 8522
Data columns (total 12 columns):
                             Non-Null Count Dtype
 # Column
    Item Identifier
                             8523 non-null
                                            object
1 Item Weight
                            7060 non-null float64
2 Item Fat Content
                            8523 non-null object
 3 Item Visibility
                             8523 non-null float64
 4 Item_Type
                             8523 non-null
                                           object
 5 Item MRP
                             8523 non-null float64
 6 Outlet Identifier
                                           object
                             8523 non-null
7 Outlet_Establishment_Year 8523 non-null
                                            int64
8 Outlet Size
                             6113 non-null
                                           object
9 Outlet Location Type
                             8523 non-null
                                           object
10 Outlet Type
                             8523 non-null
                                           object
11 Item Outlet Sales
                             8523 non-null float64
dtypes: float64(4), int64(1), object(7)
memory usage: 799.2+ KB
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8523 entries, 0 to 8522
Data columns (total 12 columns):
    Column
                             Non-Null Count Dtype
    Item Identifier
                              8523 non-null
                                            object
    Item Weight
                             8523 non-null
                                            float64
                             8523 non-null int32
2 Item Fat Content
                             8523 non-null float64
3 Item Visibility
    Item Type
                                            object
                             8523 non-null
   Item MRP
                             8523 non-null float64
6 Outlet Identifier
                             8523 non-null
                                            object
7 Outlet Establishment Year 8523 non-null
                                            int64
8 Outlet Size
                             8523 non-null
                                           int32
9 Outlet Location Type
                             8523 non-null
                                            int32
10 Outlet_Type
                             8523 non-null
                                            object
11 Item Outlet Sales
                             8523 non-null float64
dtypes: float64(4), int32(3), int64(1), object(4)
memory usage: 699.3+ KB
```

- Before Analyzing and exploring the data I do the following:

```
: Low Fat 5089
Regular 2889
LF 316
reg 117
low fat 112
```

Low Fat 5517
Regular 3006
Name: Item_Fat_Content, dtype: int64

- From analyzing and exploring the data I answer some questions such as:
- Which product people bought more low fat or regular fat?
- Which product have more profitable the low fat or regular fat?

- What kind of product people bought more?
- What product have most profit?

- Which outlet have the top sales?

Heatmap Correlations

Before building my model, I do some future engineering.

- Label encoding on: Item_Fat_Content, Outlet_Size, and Outlet_Location_Type.
- One hot encoder on: Item_Type and Outlet_Type.

And I drop some columns:

- Item_Identifier, Outlet_Identifier ,Outlet_Establishment_Year, Outlet_Type, Item_Type.

-I split my data to (80% for train / validation) / (20% for test) I fit the models on train set ,and test on validation and test set.

- I used a Regression Supervised Machine Learning algorithms

	Models	R^2
0	Degree 2 polynomial regression	0.612
2	Random Forest Regression	0.584
4	Linear Regression	0.574
1	Cross-Validation	0.558
3	Random Forest with Hyper Parameter Tuning	0.556
5	Ridge Regression	-7536.000

Show the difference between the Actual numbers and Predicted numbers

	Actual	Predicted
7186	3649.2498	4661.0
2283	1845.5976	1523.0
2206	2675.1844	3226.0
5446	675.7870	1415.0
6380	3755.1120	3149.0
2879	491.3604	313.0
6094	165.7842	308.0
1598	1225.0720	1020.0
8012	3146.5708	3031.0
7756	2563.3300	2749.0

1705 rows x 2 columns

- I also try to train my model on data split (80% for train) / (20% for test).
- I fit the models on train set, and test on test set.

	Models	R^2
2	Degree 2 polynomial regression	0.595
1	Random Forest Regression	0.589
3	Lasso	0.563
0	Linear Regression	0.562

Thank You

Done by:

Tahani al shedoukhi