Name:

Date:

Instructions: Though calculators can be used for the entire exam, all problems require you to show your work. Any answer without proper justification will receive **ZERO** credit. Only **EXACT** answers will receive full credit unless otherwise noted. Proper Interval and Limit Notation must be used to receive credit. Each question is worth 5 points.

1. Fill out the following table for the function f shown below:

C	f(c)	$\lim_{x\to c^-} f(x)$	$\lim_{x\to c^+} f(x)$	$\lim_{x\to c} f(x)$	Is $f(x)$ continuous at $x = c$?
-5	UNDEFINED	4	4	4	NO
-2	-7	-7	-7	-7	Yes
2	1	8	1	DNE	No
6	-3	3	3	3	NO
8	UNDEFINED	-00	00	00	NO

2. Find the average rate of change of
$$f(x) = \cos(x) + x$$
 on $\left[0, \frac{\pi}{2}\right]$.

After the average rate of change of $f(x) = \cos(x) + x$ on $\left[0, \frac{\pi}{2}\right]$.

$$\frac{\cos(\pi/2) + \pi/2}{\pi/2 - 0} = \frac{\pi/2 - 2}{\pi/2} = 1 - \frac{2}{\pi}$$

3. Create a table of at least 6 entries to determine $\lim_{x\to 0} \frac{8\tan(x)}{\sin(x)}$. {Round each entry to six decimal places.}

x	$8\tan(x)$		
	$\sin(x)$		
1	8,040167		
-,01	8.000400		
-,001	8,000004		
0			
. 001	8.000004		
•01	8.0004		
. 1	8.040167		

$$\lim_{x\to 0} \frac{8\tan(x)}{\sin(x)} = \underline{8}$$

Determine the following limits and justify your answers using the properties of limits and algebraic means. Do not rely on tables or graphs.

4.
$$\lim_{x\to 3} (8x^2 + 7x - 5) = 88$$
Direct Substitution

5.
$$\lim_{x \to 4^{-}} \frac{x+3}{x^2-16} = -\infty$$

6.
$$\lim_{x \to \frac{7\pi}{6}} (\sec^2 x - \tan^2 x)$$

$$Try Identity = Constant$$

$$\lim_{x \to 7\pi/6} (1) = 1$$

$$x \to 7\pi/6$$

7.
$$\lim_{x \to 1} \frac{x-1}{\sqrt{x+3}-2}$$
 $\frac{6}{0}$ use folical conjugates

 $\lim_{x \to 1} \frac{x-1}{\sqrt{x+3}-2} \frac{(\sqrt{x+3}+2)}{(\sqrt{x+3}+2)}$
 $\lim_{x \to 1} \frac{(x-1)(\sqrt{x+3}+2)}{(\sqrt{x+3}+2)} = \lim_{x \to 1} (\sqrt{x+3}+2)$
 $\lim_{x \to 1} \frac{(x-1)(\sqrt{x+3}+2)}{(x+3)-4} = \lim_{x \to 1} (\sqrt{x+3}+2)$
 $\lim_{x \to 1} \frac{(x-1)(\sqrt{x+3}+2)}{(x+3)-4} = \lim_{x \to 1} (\sqrt{x+3}+2)$

8.
$$\lim_{x \to -\infty} \frac{4\sin(x)}{e^{4x}} = DNE$$
For $x < 0$, $e^{4x} = DNE$

i. $[-4, 4] \cdot larger + larger pos$.

i. Oscillater Ltwn large

Neg + las Numbers

9.
$$\lim_{x \to 1} \left\{ \begin{array}{l} \frac{x^2 - 3x + 4}{x - 1}, x \neq 1 \\ 5, x = 1 \\ \times 71 - \frac{x^2 - 3x + 4}{x - 1} = \frac{1}{5n \cdot 1} = -\infty \end{array} \right.$$

$$\lim_{x \to 1^+} \frac{x^2 - 3x + 4}{x - 1} = \frac{1}{5n \cdot 1} = \infty$$

$$\lim_{x \to 1^+} \frac{x^2 - 3x + 4}{x - 1} = \frac{1}{5n \cdot 1} = \infty$$

10. Assume
$$\lim_{x \to b} f(x) = -1$$
 and $\lim_{x \to b} g(x) = 12$, determine $\lim_{x \to b} \left[\frac{2g(x)}{f(x) - 5} \right]^{\frac{3}{2}}$

$$\left[\lim_{x \to b} \frac{2g(x)}{f(x) + 5} \right]^{\frac{3}{2}} = \left[\frac{2 \lim_{x \to b} g(x)}{\lim_{x \to b} f(x) - \lim_{x \to b} f(x)} \right]^{\frac{3}{2}} = \left[\frac{2 \lim_{x \to b} g(x)}{\lim_{x \to b} f(x) - \lim_{x \to b} f(x)} \right]^{\frac{3}{2}} = \left[-4 \right]^{\frac{3}{2}}$$

$$\left[-4 \right]^{\frac{3}{2}} \text{ is an imaginary } \#, \text{ is an imaginary$$

11. Use the Intermediate Value Theorem to show $\frac{\sqrt{x^3+1}}{x^2+3} = \frac{5}{12}$ has a

12. Determine all the asymptotes (vertical and horizontal), if any, of k(x). Justify the type of asymptote using the concept of limits.

Horizontal,
$$\lim_{x\to 2} k(x) = \frac{(\chi - 3)(x+5)}{(2x+7)(\chi - 3)} = \frac{\chi + 5}{2x+7}$$

therizontal, $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal, $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x) = \frac{1}{2} = \lim_{x\to 2} k(x)$

therizontal $\lim_{x\to 2} k(x)$

13. Determine a piecewise function,
$$g(x)$$
, that "fixes" any **removable** discontinuities in $k(x)$.

14. There are three instances where differentiability of a function (at a point) can fail.

15. Use the limit of the difference quotient to determine the instantaneous rate of change

Use $f(x) = 3x^2 - 5x + 7$ for questions 16 – 18:

16. Determine the slope of tangent line to f(x) at x = -4 by using the limit of the

17. Determine the equation of the tangent line to the graph of f(x) at x = -4.

Slope:
$$m_{tan} = -29$$

 $p+: (-4, 7-4)) = (-4, 7-8)$
 $y-75=-29(x+4)$
 $y=-29x-41$

18. Where will
$$f'(x) = 13$$

$$|3 = 6x - 5|$$

$$|3 = 3$$

19. Use the graph of g(x), whose domain is $[-6,0) \cup (0,6]$, to determine each of the following:

- a) Estimate g'(2). $A_{+} \approx -1$
- b) Where on (-6, 6) will g(x) have horizontal tangent lines? at x=-3,-1/2, 3
- c) What type of discontinuity does g(x) have at x = 0? Asymptotic
- 20. For each of the following, circle the correct answer: (T = True, F = False). If false, provide justification.
 - \widehat{F} : Differentiability at a point on f(x) **DOES NOT** guarantee continuity at the same point on f(x). Differentiability Does guarantee Continuity. Continuity does not granantee Differentiality
 - F: The derivative at a point of f(x) is the same as the slope of the **tangent** line that passes through said point on the graph of f(x).
 - If $\lim_{x \to 3^{-}} f(x) = 7$ and $\lim_{x \to 3^{+}} f(x) = -2$, then f(x) has a hole at x = 3.
 - F: The limit of the difference quotient is used when determining an average rate of change.
 - T F: Zero is an even number.