Complex numbers

Textbook: Section 5.1

Motivation

We have seen that the matrix $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ has the characteristic polynomial $c_A(\lambda) = \lambda^2 + 1$ which has no real roots. A root would be a square root $\sqrt{-1}$. Complex numbers solve this problem.

Definition

The set of complex number $\mathbb C$ is the set vector space $\mathbb R^2$ with an additional multiplication of two complex numbers

$$\begin{pmatrix} a \\ b \end{pmatrix} * \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} ac - bd \\ ad + bc \end{pmatrix}$$

Remark

One often writes these coordinate tuples as vectors in the basis $\{1, i\}$. The coordinate vector $\begin{pmatrix} a \\ b \end{pmatrix}$ corresponds then to a + ib.

Discussion

- 1. Express $\binom{2}{3}$ and $\binom{-1}{4}$ in the basis and determine $\binom{2}{3}*\binom{-1}{4}$
- 2. Let $W = \text{span}\{1\} \subseteq \mathbb{C}$. Show that W is closed under the multiplication *.
- 3. Can we say that W is isomorphic to \mathbb{R} ? If so, why?

Definition

Let $z = a + ib \in \mathbb{C}$. We call Re(z) = a the real part of z and Im(z) = b the imaginary part of z.

Discussion

Let $p(x) = x^2 + 1$ and $q(x) = x^4 + 1$.

- 1. Find all roots of p(x) in \mathbb{C} .
- 2. Find all solutions to the equation $i \cdot z = 1$. Can you now give meaning to the expression i^{-1} ?
- 3. Find all roots of q(x) in \mathbb{C} .
- 4. What is the inverse of a complex number a + ib in general?

Discussion

Let w=a+ib and consider $\mathbb{C}\xrightarrow{T_w}\mathbb{C}$ to be $T_w(z)=w\cdot z.$

- 1. Is T_w a linear transformation between real vector spaces? If it is, what is the matrix representing it?
- 2. Under what condition is T_w invertible?

Discussion

Let $\mathbb{C} \xrightarrow{T} \mathbb{C}$ to be the function T(a+ib) = a-ib.

- 1. Is T_w a linear transformation between real vector spaces? If it is, what is the matrix representing it?
- 2. What are eigenvalues and eigenspaces of T?
- 3. What is $T \circ T$? Is T invertible?

Fields

Textbook: Section 5.1

Goal

We would like to replace for vector spaces real numbers \mathbb{R} with complex numbers \mathbb{C} because of their obvious advantage that some characteristic polynomials have roots in \mathbb{C} but not in \mathbb{R} . In order to do so, we axiomatize all properties that our prototypes \mathbb{R} and \mathbb{C} satisfy.

Definition (5.1.4)

A field is a set F together with two operations called addition (+) and multiplication (\cdot) if the following axioms are satisfied:

Discussion

Which of the following sets are fields? If they are not field, explain one axiom that does not hold.

N

 \mathbb{Z}

 \mathbb{Q}

 \mathbb{R}

 \mathbb{C}