

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

Отчёт

по лабораторной работе № 2 по дисциплине «Теория систем и системный анализ»

Тема: «Исследование метода случайного поиска экстремума функции одного переменного»

Вариант 15

Выполнил: Ушаков 3. М., студент группы ИУ8-31

Проверил: Коннова Н.С., доцент каф. ИУ8

Цель работы

Изучение метода случайного поиска экстремума на примере унимодальной и мультимодальной функций одного переменного.

Условие задачи

1. На интервале [0,3] задана унимодальная функция одного переменного. $f(x) = x^2 * \sin(x)$. Используя метод случайного поиска осуществить поиск минимума f(x) с заданной вероятностью попадания в окрестность экстремума P при допустимой длине интервала неопределенности ε . Определить необходимое число испытаний N. Численный эксперимент выполнить для значений P = 0,90,0,91,...,0,99 и значений $\varepsilon = (b-a) q$, где q = 0,005,0,010,...,0,100.

Последовательность действий:

- определить вероятность P1 непопадания в ε -окрестность экстремума за одной испытание;
- записать выражение для вероятности P_N непопадания в ϵ -окрестность экстремума за N испытаний;
- из выражения для P_N определить необходимое число испытаний N в зависимости от заданных $P_N = P$ и ϵ .
- 2. При аналогичных исходных условиях осуществить поиск минимума f(x), модулированной сигналом $\sin(5x)$, т.е. мультимодальной функции $f(x) * \sin 5(x)$.

Графики заданных функций

Рисунок 1 -
$$f(x) = x^2 * \sin(x)$$

Рисунок 2 - $f(x) = x^2 * \sin(x) * \sin(5x)$

Зависимость N от р и q

q\P	0.9	8.91				10.95			18.98	10.99	1
0.005		489	503	530	561	597	642	1699	789	918	ı
0.01	229	1239	251	1264	279	1298	1328	348	389	1458	
0.015	152	159	167	175	186	198	212	232	258	384	
0.02	113	119	125	131	139	148	159	173	193	1227	
0.025	198	195	199	1105	111	118	127	138	154	181	
0.03	175	179	182	187	192	198	105	115	128	151	
0.035	164	167	178	174	78	184	198	98	189	129	
0.04	156	158	61	165	168	173	178	185	195	112	
0.045	150	152	154	157	61	165	169	176	184	100	
0.05	144	146	149	51	154	158	162	168	176	189	
0.055	148	42	44	147	149	52	156	61	169	81	
0.06	37	38	48	42	45	48	52	56	163	174	
0.065	134	35	137	39	41	144	147	52	58	168	
0.07	31	33	134	36	38	41	144	148	53	163	
0.075	129	130	32	34	136	38	41	144	158	159	
0.08	127	128	38	31	33	35	38	42	146	155	
0.085	125	27	28	29	31	33	36	39	44	51	
0.09	124	125	126	28	29	31	34	37	41	148	
0.095	123	124	125	126	28	30	32	135	139	146	
0.1	21	22	123	125	126	128	130	133	137	143	

Рисунок 3 — Таблица зависимости N от p и q

Случайный поиск для заданных функций

lq\P	10.9	0.91	0.92	0.93	10.94	0.95	10.96	0.97	0.98	0.99
0.005	-122.87684	-122.87688	-122.87399	-122.87587	-122.87545	-122.86985	-122.87611	-122.87576	-122.87615	-122.87617
0.01	-122.87189	1-122.86862	-122.8755	-122.87813	-122.87686	-122.87614	-122.87483	-122.86686	-122.87684	-122.87535
0.015	-122.85888	-122.87837	-122.85968	-122.87259	-122.87289	-122.87614	-122.87617	-122.87455	-122.87282	-122.8716
8.82	-122.58798	-122.87222	-122.77887	-122.8728	-122.87596	-122.87229	-122.87617	-122.87367	-122.8746	-122.82968
8.825	-122.78331	-122.87386	-122.87617	-122.87531	-122.87859	-122.87527	-122.83854	-122.87495	-122.8714	-122.87369
0.03	-122.63615	-122.61852	-122.77196	-122.83494	-122.84667	-122.8725	-122.86282	-122.83275	-122.87366	-122.8476
0.035	-122.87617	1-122.65627	-122.84571	-122.867	-122.87577	-122.87416	1-122.79594	-122.86879	-122.85822	-122.87578
0.84	-122.87835	-122.85443	-122.87852	-122.58689	-122.87837	-122.87251	-122.82635	-122.8717	-122.86172	-122.87542
8.845	-122.84196	-122.68771	1-122.71759	1-122.86464	-122.83121	1-122.82542	-122.84365	-122.63854	-122.87682	-122.81757
8.85	-122.87479	-122.87556	-122.82343	-122.87884	-122.79818	-122.87353	-122.34777	-122.86122	-122.84999	-122.8586
8.855	-122.87859	-122.67446	-122.79893	-122.7156	-122.78964	-122.86874	-122.76829	-122.86452	-122.87481	-122.87271
18.86	-122.7251	-122.79524	-122.71422	-122.87687	-122.63881	-122.78792	-122.85327	-122.81381	-122.83685	-122.87554
0.065	-122.48985	-122.874	-122.668	-122.87881	-122.86819	-122.87689	-122.55118	-122.875	-122.86433	-122.68827
8.87	-122.59364	1-122.76695	1-122.75841	-122.84188	1-122.83673	-122.87585	-122.71889	-122.82534	-122.81582	-122.85438
0.075	-122.85715	-122.84376	-122.69985	-122.74883	-122.79297	-122.85836	-122.86528	-122.26165	-122.66776	-122.87577
8.88	-122.86919	1-122.84482	1-122.85965	-122.78591	1-122.87265	1-122.87545	-122.86888	-122.85158	-122.79134	-122.87432
0.085	-122.78188	-122.18486	-122.83627	-122.87394	-122.78888	-122.83957	-122.86651	-122.8746	-122.82343	-122.87617
8.89	-122.86878	1-122.57593	-122.87598	-122.86671	-122.7583	-122.81339	-122.73125	-122.37547	-122.87569	-122.88999
0.895	-122.87296	1-122.69742	1-122.86349	-122.5747	-122.18642	-122.75726	-122.86732	-122.87566	-122.88888	-122.87617
0.1	-122.83193	-122.57173	-122.82839	-122.87682	-122.87613	-122.4381	-122.88183	-122.88297	-122.21275	-122.87875

Рисунок 4 – Случайный поиск для функции $f(x) = x^2 * \sin(x)$

lq\P	18.9	10.91	10.92	10.93	18.94	10.95	18.96	10.97	18.98	10.99
0.885	I-189.91681	I-189.93189	I-189.94138	I-189.91697	I-189.94429	I-189.91795	I-189.94412	I-189.92878	I-189.94363	I-189.94381
0.01									1-189.71196	
0.015									1-189.84944	
0.02	I-188.61452								1-189.87837	
8.825	1-189.94428	I-189.61562	1-189.79299	1-189.93465	1-189.81742	1-189.94898	1-189.79848	I-189.68881	1-189.93573	1-189.94352
0.03	1-189.88737								1-189.88239	
0.035	1-183.65767								1-189.14784	
8.84	1-189.82256								1-189.79933	
8.845	1-189.67858								1-189,44257	
8.85	I-189.9361	1-189.94398							1-188.56865	
0.055									1-189.78182	
8.86	I-189.91664								1-189.58441	
0.065	-188.16786								-187.88114	
8.87	1-182.79711								1-189.77981	
0.075	I-185.47739		1-189.92283						1-189.67822	
0.08	1-189.79268								1-189.88645	
0.085									1-189.86488	
8.89									1-182.51822	
8.895									1-189.77755	
8.1	1-187.88413		1-183.19441		1-189-19167			1-88.838829		1-98.711345

Рисунок 1 -Случайный поиск для функции $f(x) = x^2 * \sin(x) * \sin(5x)$

Выводы

Из полученных таблиц и графиков видно, что применимость метода случайного поиска не зависит от того, является ли функция унимодальной или мультимодальной. Для увеличения вероятности попадания в заданный интервал или для уменьшения интервала неопределенности необходимо увеличивать число случайных точек.

Приложение. Исходный код программы

Файл RandomSearch.h:

```
#include <iostream>
using std::cout;
using std::endl;

// Функция заполнения вектора от начала отрезка до конца (от left_edge до right_edge) с разностью difference
```

```
double f(double x) {
template <typename type>
std::vector<std::vector<type>> MultipleTests (const std::vector<double>& P,
   std::vector<std::vector<type>> tests;
```

```
values.clear();
std::stringstream PrintMultipleTests (const std::vector<std::vector<type2>>&
tests, const std::vector<type>& P,
```

```
}
else throw std::invalid_argument("Unknown type");
return out;
}
```

Файл main.cpp:

```
#include "RandomSearch.h"

const double LEFT_EDGE_P = 0.9;
const double RIGHT_EDGE_Q = 0.99;
const double LEFT_EDGE_q = 0.005;
const double RIGHT_EDGE_q = 0.1;

int main() {
    std::vector <double> P (0);
    std::vector <double> Q (0);
    vectorFill(P, LEFT_EDGE_P, RIGHT_EDGE_P, 0.01);
    vectorFill(q, LEFT_EDGE_Q, RIGHT_EDGE_Q, 0.005);

    std::vector<std::vector<int>> values = MultipleTests<int>(P, q);
    std::stringstream out = PrintMultipleTests(values, P, q);
    cout << "Вывод таблицы зависимости N от р и q" << endl;
    std::vector<std::vector<double>> val = MultipleMin(values, 9, 12 , f);
    out = PrintMultipleTests(val, P, q);

    cout << "Вывод таблицы для унимодальной функции " << endl;
    cout << out.str() << endl;
    std::vector<std::vector<double>> multiple_function_tests =

MultipleMin(values, 9, 12 , f m);
    out = PrintMultipleTests(multiple_function_tests, P, q);

    cout << "Вывод таблицы для мультимодальной функции" << endl;
    cout << "Вывод таблицы для мультимодальной функции" << endl;
    cout << "Вывод таблицы для мультимодальной функции" << endl;
    cout << out.str() << endl;
    return 0;
}
```