Programación Científica y HPCI

Máster Universitario en Ingeniería Matemática y Computación

Docente: Jesús Cigales Canga

Tema 3

¿Cómo estudiar este tema?

- Introducción y objetivos
- Complejidad en tiempo vs espacio
- Notaciones asintóticas

Material Complementario

Complejidad algorítmica ejemplos de Python

Análisis de algoritmos y complejidad

Introduction to Big O Notation and Time Complexity

Practicar conceptos avanzados de git en el navegador

Referencia rápida de git en español

Lecciones magistrales

La complejidad

- Comparar el rendimiento de diferentes algoritmos y elegir el mejor para resolver un problema concreto.
 - Complejidad temporal → cantidad de tiempo que tarda un algoritmo en ejecutarse en función de la longitud de la entrada
 - Complejidad espacial → cuantifica la cantidad de espacio o memoria que necesita un algoritmo para ejecutarse en función de la longitud de la entrada.
- Al analizar el algoritmo se considera solo un factor, el tiempo de ejecución

Fuente de la imagen: https://rootear.com/desarrollo/complejidades-algoritmos

Función de complejidad t(n)

numero de instrucciones elementales (unidades de tiempo) que debe ejecutar (necesita) una máquina ideal para resolver un ejemplar de tamaño n

Lecciones magistrales

Función de complejidad t(n)

numero de instrucciones elementales (unidades de tiempo) que debe ejecutar (necesita) una máquina ideal para resolver un ejemplar de tamaño n

Función de complejidad t(n) y su orden

$$f(n) = n^{2} + 2n \ g(n) = n^{3}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \le cte => f(n) \in O(n^{3}) \ pero \ g(n) \notin O(f(n))$$

$$in^{2} + 2n \in O(n^{2})?$$

$$f(n) = n^{2} + 2n \ g(n) = n^{2}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1 \le cte => f(n) \in O(n^{2}) \ y \ g(n) \in O(f(n))$$

$$in^{2} + 2n \in O(n)?$$

$$f(n) = n^{2} + 2n \ g(n) = n$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \le cte => f(n) \notin O(n) \ y \ g(n) \in O(f(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = cte > 0$$

$$\int_{n}^{\infty} f(n) = n^2 + 2n \ g(n) = n^3$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \Rightarrow f(n) \notin \theta(n^3)$$

$$\int_{n}^{\infty} f(n) = 0 \Rightarrow f(n) \notin \theta(n^3)$$

$$\int_{n}^{\infty} f(n) = n^2 + 2n \ g(n) = n^2$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1 > 0 \Rightarrow f(n) \in \theta(n^2)$$

$$\int_{n}^{\infty} f(n) = 1 \Rightarrow 0 \Rightarrow f(n) \in \theta(n^2)$$

$$\int_{n}^{\infty} f(n) = n$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \not \leq cte \Rightarrow f(n) \notin \theta(n)$$

Ordenes de complejidad

Orden	Nombre
0(1)	constante
$O(\log n)$	logarítmica
O(n)	lineal
O(nlog n)	cuasi lineal
$O(n^2)$	cuadrática
$O(n^3)$	cúbica
$O(a^n)$	exponencial
O(n!)	factorial

Fuente: https://ichi.pro/es/entendiendo-la-notacion-big-o-2145609214246

Se descartan los coeficientes constantes y los términos menos significativos

Jerarquía

$$0(1) \subset 0(\log n) \subset 0(n) \subset 0(n\log n) \subset 0(n^2) \subset 0(n^3) \subset 0(a^n) \subset 0(n!)$$

Orden de complejidad

def cte: x=3 x+=1	0(1)
<pre>def func(n): suma = 0 n=10 for i in range(1,n+1):</pre>	O(n)
<pre>def func(a,x,menor,mayor): medio = (menor+((menor-mayor)//2)) if: ans = func(a,x,menor,medio) elif: ans =func(a,x,medio+1,mayor) else: </pre>	$O(\log n)$ $(2^k \ge n)$
<pre>def func(n): suma = 0 n=10 for i in range(1,n+1): for j in range(1,n+1):</pre>	$O(n^2)$
<pre>def func(n): if n==1 or n==2: return else func(n-1)+func(n-2)</pre>	$O(c^n)$

www.unir.net