Topics covered in lectures-12, 13 to be discussed in Tutorial 6

- Nucleophilic substitution reactions: S_N^1 , S_N^2 : Basic features with examples, reaction profile, stereochemistry, factors affecting S_N^1 , S_N^2 reactions, effect of substrate, nucleophile, solvent, stability of carbocations, comparison between S_N^1 , S_N^2 .
- Elimination reactions: E1, E2, Zaitsev rule, mechanism, energy-profile, regioslectivity, factors affecting E2/E1 reactions, comparison between S_N^1/S_N^2 and E1/E2, stereochemistry of E2 reactions, E2 reactions, dehydohalogenation in six-membered rings, E1cB reaction.
- 1. Rank the species below in order of increasing nucleophilicity in hydroxyl solvents: CH₃CO₂-, CH₃S-, HO-, H₂O
- **2.** Draw the structures of organic products formed with correct stereochemistry at the stereogenic centre (if any) in the following reactions.

(ii)
$$Br$$
 CH_3
 CH_3S

acetone

(iii) CH_3
 C

3. What product(s) would you expect from the following solvoly is reaction? Designate the type of reaction mechanism.

4. For the following reaction, draw the product(s) of the major reaction(s). Clearly indicate any relevant stereochemistry.

5. Deduce substrate and corresponding nucleophile to prepare following molecules using S_N^1 reaction?

6. Given that the following three molecules have the absolute configurations given, show how each reactant gives a different outcome by E2.

7. Indicate the stereochemical outcome of the following S_N^2 reactions. Assume that all chiral centers are optically pure. Do these reactions all give racemic mixtures?

8. What are the products of following E2 reactions:

$$H_3C$$
 $Ph_{\prime\prime\prime\prime}$
 H
 CH_3
 K^+ -O-t-Bu