Grundwissen Chemie 9. Jahrgangsstufe G8

Ionennachweise	Man nutzt die Schwerlöslichkeit vieler Salze (z.B. AgCl) zum Nachweis und zur quantitativen Bestimmung der Ionen.
Nachweis molekular gebauter Stoffe	 - Kohlenstoffdioxid: Trübung von Kalkwasser - Sauerstoff: Glimmspanprobe - Wasserstoff: Knallgasprobe
Räumlicher Bau von Molekülen	Aufgrund der gegenseitigen Abstoßung sind e - Paare und damit auch die gebundenen Atome in bestimmter Weise um ein Zentralatom angeordnet. Beispiele: - Kohlenstoffdioxid CO ₂ : lineares Molekül - Wasser H ₂ O: gewinkeltes Molekül - Ammoniak NH ₃ : pyramidales Molekül - Methan CH ₄ : tetraedrisches Molekül
Relative Atommasse m _a	Die relative Atommasse m _a ist die Masse eines Atoms angegeben in der Einheit u.

Molare Masse M	Die molare Masse M ist die Masse von einem Mol eines Stoffes. Einheit: g/mol
Molares Volumen V _M	Ein Mol eines Gases nimmt im Normalzustand (0°C, 1013 hPa) den Raum 22,4 Liter ein. Einheit: I/mol
Stoffmenge n	Man verwendet als Einheit der Stoffmenge n das Mol. Ein Mol eines Stoffes enthält 6,023 10 ²³ Teilchen = N _A Teilchen
Avogadro – Konstante N _A	6,023 10 ²³ 1/mol

Größengleichungen	$n = m/M$ $n = V/V_M$ $n = N/N_A$
Orbital	Ein Orbital kennzeichnet den Raum um den Atomkern, in dem sich ein Elektron e mit größter Wahrscheinlichkeit aufhält.
Zwischenmolekulare Kräfte	Zwischenmolekulare Kräfte wirken zwischen Teilchen. Es gibt: - Van der Waals - Kräfte - Dipol - Dipol - Kräfte - Wasserstoffbrücken - Dipol - Ionen - Kräfte bei Hydratisierung Zwischenmolekulare Kräfte beeinflussen den Siedepunkt und die Löslichkeit von Stoffen.
Van der Waals - Kräfte	Van der Waals - Kräfte sind schwache zwischenmolekulare Kräfte zwischen einem kurzfristigen Dipol und einem dadurch im Nachbarmolekül induzierten Dipol.

Wasserstoffbrücken	Wasserstoffbrücken entstehen zwischen einem stark polar gebundenen H - Atom und dem freien e ⁻ - Paar eines Atoms im Nachbarmolekül.
Hydratisierung	Unter Hydratisierung versteht man die Anlagerung von Wasserdipolen an die Teilchen des Lösestoffs.
Elektronegativität EN und polare Atombindung	Die Elektronegativität EN ist ein Maß für die Kraft eines Atoms, in einer Atombindung Bindungselektronen zu sich zu ziehen. Atombindungen zwischen Atomen mit unterschiedlicher EN können polar sein. Das bindende e ⁻ - Paar befindet sich näher beim stärker elektronegativen Atom. Dadurch tragen die Atome Teilladungen.

Dipol	Ein Molekül mit Teilladungen ist ein <i>Dipol</i> , wenn die Schwerpunkte der positiven und negativen Teilladungen nicht aufeinander fallen.
-------	--

Säure (nach Brönsted)	Eine Säure ist ein Stoff, der Protonen abgibt. Säuren sind <i>Protonendonatoren</i> .
Base (nach Brönsted)	Eine Base ist ein Stoff, der Protonen aufnimmt. Basen sind <i>Protonenakzeptoren</i> .
Ampholyt	Ein Ampholyt ist ein Stoff, der sowohl als Säure (Protonendonator) als auch als Base (Protonenakzeptor) reagieren kann.
Oxoniumion	H₃O⁺ Das Oxoniumion entsteht, wenn ein Wassermolekül ein Proton aufnimmt.

Hydroxidion	OH ⁻ Das Hydroxidion entsteht, wenn ein Wassermolekül ein Proton abgibt.
Säure - Base - Reaktion	Bei einer Säure - Base - Reaktion wird ein Proton von einer Säure auf eine Base übertragen.
Neutralisation	Bei einer Neutralisationsreaktion reagieren Oxoniumionen und Hydroxidionen zu Wassermolekülen.
Stoffmengenkonzentration c	Die Stoffmengenkonzentration c gibt an, welche Stoffmenge n in einem bestimmten Volumen V einer Lösung enthalten sind. c = n/V

Indikator	Ein Indikator ist ein Farbstoff, der bei Zugabe einer Säure oder einer Base die Farbe ändert.
pH - Wert	Der pH - Wert ist der negative dekadische Logarithmus der Oxoniumionen - Konzentration in einer wässrigen Lösung. pH = - log c(H ₃ O ⁺)
pH - Skala	14 13 12 11 zunehmend basisch 10 9 8 7 neutral 6 5 4 3 zunehmend sauer 2 1
Oxidation	Oxidation ist die Abgabe von Elektronen.

Reduktion	Reduktion ist die Aufnahme von Elektronen.
Redox - Reaktion	Unter Redoxreaktionen versteht man Elektronenübergänge zwischen Teilchen. Redoxreaktionen bestehen aus Oxidations- und Reduktionsreaktion.
Oxidationsmittel	Ein Oxidationsmittel ist ein Stoff, der Elektronen aufnimmt. Oxidationsmittel sind <i>Elektronenakzeptoren</i> .
Reduktionsmittel	Ein Reduktionsmittel ist ein Stoff, der Elektronen abgibt. Reduktionsmittel sind <i>Elektronendonatoren</i> .

Oxidationzahlen	Die Oxidationszahlen helfen zu erkennen, ob es sich bei einer chemischen Reaktion um eine Redoxreaktion handelt, und welcher Reaktionspartner oxidiert oder reduziert wird. Sie werden als römische Ziffern über die Elementsymbole geschrieben. Erhöhung der Oxidationszahl bedeutet Oxidation.
	Erniedrigung der Oxidationszahl bedeutet Reduktion.
Ermittlung von Oxidationzahlen	 Elemente haben die Oxidationszahl 0. In einfachen Ionen entspricht die Oxidationszahl der Ladung. In Molekülen werden die Bindungselektronen dem jeweils elektronegativeren Atom zugerechnet.