

PRÁCTICA PWM

1. OBJETIVO

El alumno conocerá y aprenderá a implementar el código de programación para la configuración y uso del PWM utilizando el microcontrolador Tiva TM4C123GH6PM.

2. MARCO TEÓRICO

PWM

La modulación de ancho de pulso está formada por una señal de onda cuadrada que no siempre tiene la misma relación entre el tiempo que está en alto y el tiempo que está en bajo.

Duty Cycle

La **variación de ancho de pulso** consiste en variar los tiempos de encendido y apagado, es decir Ton y Toff. Al cambiar el valor de un PWM, en realidad se están modificando estos tiempos.

Uno de las características más importantes de una señal PWM es su ciclo de trabajo o Duty Cycle, en inglés, ya que este es el que varía en un PWM.

El ciclo de trabajo no es otra cosa que la relación entre el tiempo de encendido y el periodo o tiempo total del PWM.

Cuanto mayor sea el duty cycle, mayor tiempo estará la señal de tensión en alto, sin variar el periodo. Por consecuencia, como el periodo no vario y la suma de Ton y Toff, si el tiempo de encendido aumenta, el tiempo de apagado disminuye.

Este microcontrolador tiene dos bloques PWM como PWM0 y PWM1. Además, cada bloque PWM contiene cuatro generadores PWM y bloques de control. Además, cada generador PWM proporciona dos salidas PWM como pwmA y pwmB. Pero estas dos señales PWM comparten la frecuencia o los bloques de contador. Por lo tanto, dos salidas PWM del mismo generador tendrán la misma frecuencia, pero pueden tener un ciclo de trabajo diferente o pueden usarse como una salida complementaria para controlar medio puente y puente completo en aplicaciones de control de motores. Estas salidas complementarias también proporcionan retardos de banda muerta programables.

Los bloques generadores de PWM se utilizan para generar señales de PWM. Por otro lado, los bloques de control se utilizan para enviar señales de salida PWM a los pines GPIO del microcontrolador TM4C123.

Por lo tanto, cada generador proporciona 8 canales PWM. Por lo tanto, el microcontrolador TM4C123 admite un total de 16 salidas PWM, a saber, M0PWM_n y M1PWM_n, donde n = 0 - 7 y M0 - M1 son para el módulo 0 y el módulo 1.

Configuración PWM

- 1. Habilitar el reloj del sistema para el módulo PWM usando SYSCTL->RCGCPWM configurando los bits.
- 2. Habilitar el reloj en el puerto GPIO a través del cual aparece la salida PWM en el pin GPIO relacionado (SYSCTL->RCGCGPIO).
- Seleccionar la función de divisor de reloj del sistema antes de alimentarlo al módulo PWM. En caso de no desear reducir la frecuencia del módulo desactivarlo.
- 4. Configurar el pin GPIO de salida PWM como un pin de salida digital, seleccione su función alternativa para el módulo PWM y asignar el pin PWM al pin GPIO aplicable usando los registros GPIOF->AFSEL, GPIOF->PCTL y GPIOF->DEN, respectivamente.
- 5. Deshabilitar el contador del generador PWM antes de configurar el canal PWM.
- 6. Seleccionar el modo de contador, ya sea de cuenta ascendente o descendente, configurando o borrando el bit 1 del registro PWMn->_x_CTL.
- Seleccionar el canal PWM y seleccionar las acciones de la señal de salida cuando el contador se recarga o el contador coincide con el registro PWMxCMPx.
- 8. Calcular el valor de carga según la frecuencia requerida.
- 9. Calcular el valor del registro de comparación para el ciclo de trabajo requerido y coloque el valor en PWMx-> x CMPx
- 10. Al final, habilitar el contador del generador PWM configurando el bit D0 del registro PWMx->_x_CTL y también habilitar la salida PWM en el pin GPIO con el registro PWMx->ENABLE.

3. METODOLOGÍA

Experimento 1

Usando el módulo 0 de PWM con una frecuencia de reloj del sistema de 50,000,000 Hz, junto con el generador 1 habilitar alguno de los pwm's asociados y obtener un PWM cuya frecuencia sea de 10KHz.

Para comenzar a llevar a cabo la práctica, se inició configurando el PWM.

Inicialmente se habilito el reloj del módulo deseado, ya que en mi caso toco Módulo 0

Tabla1. Reloi Módulo 0

Al solicitar módulo 0, generador 1, fue necesario ir a la tabla de la página 1232

Fig1. PWM 0 - GENERADOR 1

Por medio de esa tabla podemos observar cual Pin Mux se va a utilizar, en este caso utilizaremos el MOPWM2.

Posteriormente se continua con la tabla de la pag 341, la cual nos dice que el pin 1 habilita el Puerto B del GPIO ya que es el que ocupamos PB4.

Fig2. Registro RCGCPWM y RCGCGPIO

|PAG. 254

Para llevar a cabo el registro RCC, primero se pusieron en cero todos los bits para limpiarlo, posteriormente, habilitamos para que se divida el reloj, por ello se le pone un 1 en el bit 20, es decir, activamos USEPWMDIV para dividir la señal del reloj. Una vez activado, se indica por cuanto se va a dividir la señal del reloj, en este caso indicamos que se dividirá entre 2.

Configure the **Run-Mode Clock Configuration (RCC)** register in the System Control module to use the PWM divide (USEPWMDIV) and set the divider (PWMDIV) to divide by 2 (000).

Fig3. Bits registro RCC

Posteriormente en el registro AFSEI indicamos que queremos que en el pin 4 del puerto B tenga una función alternativa. Después en el registro PCTL indicaremos cual es la función que hará, ya que queremos habilitar el pin PB4 la función de M0PWM2, queremos que la función sea la del bit 4 como se muestra.

Fig4. Registro AFSEL

Tabla2. Bit correspondiente M0PWM2

Fig5. Port Mux - Pin 4

Por medio del registro DEN, se indica que el pin 4 será digital. A continuación, se deshabilita el generador 1 del PWM0 para poder configurarlo.

En mi caso, elegí el generador A, ya que no se especifico cual utilizar, se le dio un valor hexadecimal de 008C para indicar que cuando coincidan los flancos, el otro

baje, es decir, se va a tener un contador descendente cuando el contador llegue al valor de la carga y va a bajar cuando sea igual al valor del comparador va a bajar, generando el pulso.

Fig6. Código en C – Configuración PWM

El siguiente paso es llevar a cabo los cálculos por medio de la siguiente formula:

$$Cuentas = \frac{fclk}{fpwm}$$
Para 10khz:
$$cuentas = (\frac{25,000,000}{10000}) = 2500$$

Se busca tener un duty cycle del 80%, por ello, el valor dado al comparador, es el 20% de 2500, lo cual da un total de 2000.

Por ultimo, se vuelve a habilitar el generador 1 del PWM0 y el PWM2 para que la señal pwm1A generada se pasa al pin MnPWM2.

```
//SE COMIENZAN A HACER LOS CALCULOS

PWM0->_1_LOAD = 2500; //cuentas=fclk/fpwm para 1khz cuentas = (25,000,000/10000)= 2500 ***Se fija a 2499 porque es 2500-1 pq inicia en 0
//Se utilizo un duty cycle de 20%

PWM0->_1_CMPB = 2000; // El duty cycle es de 80% (Es el 80% de 2499)

PWM0->_1_CMPB = 2000; // El duty cycle es 80%

PWM0->_1_CMPA = 2000; // El duty cycle es 80%

PWM0->_1_CTL |= (1<<0); // Se habilita el generador 1 del PWM0

PWM0->ENABLE = (1<<2); //habilitar el PWM2EN (Es ese porque es el modulo 0 generador 1) bloque pa que pase Pag 1247

//La señal pwm1A' generada se pasa al pin MnPWM2
```

Fig7. Cálculos – Configuración PWM

Una vez terminado el código se probó y después de varios arreglos de obtuvieron los siguientes resultados.

Fig8. PWM. C – Código final

Además, en el MAIN.c se configuro la velocidad del reloj a 50MHz y el PWM a 10KHz

```
Configurar_PLL(_50MHZ); //Confiuracion de velocidad de reloj - Experimento 1
  //Configurar_PLL(_20MHZ); //Confiuracion de velocidad de reloj - Experimento 2
  //Configura_Reg_ADC0();
  //Configurar_UART7();//Yo FCLK 50MHZ Baudrate 57600
  //Configurar_GPIO(); //Se configura GPIO
  //Configura_Reg_ADC0();
  Configura_Reg_ADC0();
Configura_Reg_PWM1(10000)://Configuro a 10khz el pwm
```

Fig9. MAIN.c - Configuración

Fig10.1. Evidencia – Experimento 1 Frecuencia 10kHz

Fig10.2. Evidencia – Experimento 1 Pin B4 | 10kHZ

EXPERIMENTO 3

Usando el módulo 0 de PWM con una frecuencia de reloj del sistema de 20,000,000 Hz junto con el generador 0,1,2 habilitar alguno de los pwm's asociados y obtener un PWM cuya frecuencia sea de 50Hz, utilizando el uart de la practica 3 se enviará dato desde interfaz de simulink para controlar la intensidad luminosa usando un led RGB externa

Para llevar a cabo este experimento, se utilizo la configuración anterior como base, se fueron siguiendo los mismos pasos. Se habilito el reloj del modulo 0, posteriormente se habilito el reloj del puerto B y E, debido a que los pines por donde nuestra señal generada saldrá son los pines E4, B4 y B6. Otra cosa que cambio fue que, en este caso, la señal del reloj se dividirá en 8, debido a que es la única forma en la que todos los bits quepan.

Todas las configuraciones se hicieron iguales para cada generador.

El arreglo que se utilizo fue:

Generador 0	Pin B6
Generador 1	Pin B4
Generador 2	Pin E4

Tabla3. Arreglo utilizado

Se llevaron a cabo los cálculos, teniendo en cuenta que en este experimento se tiene frecuencia de reloj del sistema de 20,000,000 Hz y se buscaba obtener un PWM cuya frecuencia sea de 50Hz.

De esta manera, haciendo los cálculos necesarios, se obtuvieron los siguientes resultados, logrando leer la señal en los pines B6, B4, E1, cada uno con una frecuencia de 50Hz.

Fig11. Evidencia – Experimento 3 Lectura pin B4 | 50Hz

Se adjuntan videos en el git como evidencia de la lectura en cada pin