

THORMANG3 Tutorial

Assembly Manual

Table of Context

	THORMANG3.0 ID MAP	
2.	Arm	4-9
	Leg	
4.	Upper Body	19-28
5.	Whole Body (Arm, Leg, Whole assembly)	29-31
6.	Assembly Process Reference	
	Arm	33
	Angular Ball Bearing	33-34
	Bearing Module	35-36
	Belt Module Assembly	37-42
	Belt Module Idler Bearing	43
	Wiring of the Foot/Arm	44-45
	Additional caution tips	16-17

ID Map

*Cable (Longest one used from the gripper, 20W actuators do not require PW-cables)

*PW-Cable 400mm, 600mm, 800mm * 2 *4Pin-Cable 140mm, 240mm, 300mm * 4

1. Arm

(1) Upper Arm

*Quantity 2 (One each for left & right arm)

*Frame

PR15_B03_ARM_PR0FILE-54_1_PR23 * 1 EA

NX05 B03 ADAPTOR-2-2 * 1EA

NX05_B03_HINGE_PR23_SH_01 * 1EA

*Symmetry (Frames that are symmetric)

PR15 B03 ARM PROFILE-54 1 PR23 * 1 EA

NX05_B03_ADAPTOR-2-2 * 1EA

NX05 B03 HINGE PR23 SH 01 * 1EA

*Locking

WB M3 * 8mm

1. Arm

(2) Forearm

*Quantity 2 (One each for left & right arm)

*Frame

PR23_FRM_FOREARM * 2EA

DUMMY_NX05_CRB * 1EA

*Symmetry

Wiring, limiter

*Locking

WB M3 * 8mm

1. Arm

(3) Wrist

*Quantity 2 (One each for left & right arm)

*Frame & Actuators

PR23_FRM_WRIST * 1 EA H42-20-S500-R * 3EA (ID 9,11,13) NX03_B03_HINGE-7G * 2EA DUMMY NX03 CRB * 2EA

*Symmetry

PR23_FRM_WRIST * 1 EA H42-20-S500-R * 3EA (ID 10,12,14) NX03_B03_HINGE-7G * 2EA DUMMY_NX03_CRB * 2EA

*Locking

WB M3 * 8mm

[Assembly/Wiring Procedure]

1. ID9 or 10 - NX03_B03_HINGE-7G

2. NX03 B03 HINGE-7G - ID11 or 12

3. ID11 or 12 - PR23_FRM_WRIST

4. PR23_FRM_WRIST - ID13 or 14

5. ID13 or 14 - NX03_B03_HINGE-7G

Use 4Pin (300mm) from ID 1-3 Use 4Pin (140mm) from the gripper to ID 5

Limiter location shown below

1. Arm

(4) Elbow

*Quantity 2 (One each for left & right arm)

*Frame & Actuators

H54-100-S500-R * 1EA (ID 7) NX05_B03_HINGE-5C * 1EA Fore-arm Part

*Symmetry

H54-100-S500-R * 1EA (ID 8) NX0-5_B03_HINGE-5C * 1EA

Fore-arm Part

*Locking

WB M3 * 6mm WB M3 * 8mm FHS M3 * 8mm

Calibrate the origin of the actuator to the yellow marked circle

1. Arm

(5) Upper Arm Wiring/Assembly

*Quantity 2 (One each for left & right arm)

*Frame & Actuators

H54-100-S500-R * 2EA (ID 3,5) NX05_B03_HINGE-PR23_SH_01 * 1EA

Upper Arm Frame

*Symmetry

H54-100-S500-R * 2EA (ID 4,6) NX05_B03_HINGE-PR23_SH_01

* 1EA

Upper Arm Part

*Locking

WB M3 * 6,8 mm FHS M3 * 8mm

Calibrate the origin of the actuator to the yellow marked circle

*Repeat the same procedure for the other (left/right) arm. The two arms should be symmetric

*Cable

*PW-Cable 100mm, 500mm, 600mm 800mm, 1000mm, 1200mm * 2EA *4Pin-Cable 300mm,*8EA 600mm * 2EA

(Longest PW-Cable used from the Foot & Ankle, so the order will go 1200,1000,800,600,500,100 from the bottom to the top)

Total of 4 Belt Module Set needs to be made (2 on the left & 2 on the right)

Make your way up from the Foot Ankle to the Belt Module connected to the thigh

Thigh & Calf

Make sure all the wires are not damaged

2. Leg (1) Foot & Ankle

*Quantity 2 (One each for left & right foot)

*Frame & Sensor

PR23 A01 FOOT * 1EA

PR23_FRM_HINGE_X_02_B * 1 set

ATI FT sensor * 1EA

*Symmetry (The foot frame are symmetrical

not identical)

PR23_A01_FOOT * 1EA

PR23_FRM_HINGE_X_02_B * 1 set

ATI FT sensor * 1EA

*Locking

WB M4 * 10mm FHS M4 * 10mm

FT sensors must be located as shown exactly below

2. Leg

(2) Belt Module Set (Assembly & Wiring)

* Quantity 2 (One each for left & right arm)

* Frame & Actuator

PR23_A01_FOOT * 1EA

PR23_FRM_HINGE_X_02_B * 1 set

ATI FT sensor * 1EA

*Symmetry

PR23_A01_FOOT * 1EA

PR23_FRM_HINGE_X_02_B * 1 set

ATI FT sensor * 1EA

*Locking

WB M5 * 10mm FHS M4 * 10mm

Assembly Process (Leg) Step by step procedures

Actuators needed for the belt module set are ID 17 & ID 19 (Right Thigh), ID 18 & ID 20(Left Thigh), ID 23 & ID 25 (Right Ankle), ID 24 & ID 26(Left Ankle). Need a total of 2 set (Right and left leg)

Follow the instruction to assemble ID 24 & ID 26 (Left Ankle) belt module set. Other three modules are assembled with the same procedure.

Reference p42 for ID 24 actuator assembly Reference p43 for Belt Module Idler Bearing

Assembly Process (Leg) Step by step procedures

2 Leg

(3) Thigh & Calf

*Quantity 2
*Frame & Actuator

Belt Module set x 1EA

Belt Module Idler Bearing x 1EA

Idler Bearing x 2EA

ID17 ~ 24(odd)

PR23_FRM_THIGH_L_B

PR23_FRM_CALF_L_B

PR23_FRM_CALF_HINGE

PR23_FRM_CALF_HINGE_MIR

*Symmetry

Actuator location & Wiring

*Locking

WB M3 * 6, 8mm

The frame has a groove by the red box shown above where the wires can exit

Attach the ATI FT sensor Board to the back side of the foot as shown on the left

Attach the cover case to protect the wires as shown on the right

Final assembly of the leg

*Repeat the same procedure for the other (left/right) leg.
The two legs should be symmetric

1. Upper Body (1) Chest

* Quantity 1

*Frame & Actuator

PR23_FRM_CHEST_01 * 1EA PR23_FRM_BACK_01 * 1EA H54-100-S500-R * 3EA [1,2,27] H42-20-S500-R * 1EA [28] Angular Ball Bearing Set * 1EA

* No symmetry

* Locking

WB M3 * 6, 8mm

Calibrate the origin of the actuator to the yellow marked circle

Attach the front chest frame once all the wiring is complete

Align the yellow mark of the ball angular ball bearing with the yellow mark of the actuator

[RED Circle]: Insert ID 27 to the Angular Ball Bearing by using the Press Machine

Reference p33-34 for assembling the Angular Ball Bearing

[Wiring] – [Green Line]: 4Pin-100/140mm

ID1 - ID27, ID2 - ID28

[Others]: through 'PR23_FRM_BACK_01' hole

PW-200mm x 3 EA

4Pin-240mm x 2 EA

Make sure actuator ID 1 and ID 2 are pointing the ceiling and actuator ID 28 is pointing to the right (3 O'clock direction)

Bolt the power expansion board and the 4Pin expansion board in the order shown below

PW - 4Pin - 4Pin - PW

[Yellow Square] Don't bolt these location since it's used for speaker [Red Circle] Inter RealSense Cable [Blue Triangle] Speaker Cable: Wire from the back plate through the chest Attach the chest plate once all the wiring is complete

(1) Upper Body (2) Head

*Quantity 1

*Frame & Actuator

Assembled Upper Body * 1EA Logitech WEBCAM * 1EA Intel Realsense * 3EA [1,2,27]

LIDAR * 1EA [28] Camera frame * 1EA H42-20-S500-R * 1EA [29] H42 Hinge Frame * 1EA

*Symmetry None

*Locking

WB M3 * 6, 8mm Camera Fixing Bolt

Attach the actuator ID 28 to the hinge frame and the actuator ID 29 frame. Then wire the cable as shown above. Other cables should come out from the back plate (shown in the red square) and connected to the expansion board

Attach the camera frame to the actuator ID29

Do not use an electric drill. Do it manually by hand since it can cause damage.

Connect the bottom of the LIDAR to the camera frame. Use WB Me*12 mm. Also do it by hand

Control Box

* Control Box assemble procedure

PC

USB Hub

PCB_FTDI_USB_COM485_PLUS4(under)
PR15_B04_SW_E-STOP

PR15_B03_ASSY_ELEC_BOARD -DLINK_DIR_806A(over)

CBSS (PC locking)
PR23_FRM_CHEST & BACK
Vibration-proof supporter
PC_PL(PC Plate)

Create a groove about 13mm from the end of the 40mm hexagon supporter. Use a dremel for this procedure. This protocol will fix the USBtoDYNAMIXEL in place.

Do not use the port for the power supply. Place a scotch tape on it.

Be cautious with wiring

Place the USBtoDYNAMIXEL, organize the 4 Pin cables Ch.0 – Upper Right Ch.1 – Upper Left CH.2,3 – Bottom

E-stop SW placement 2 short wires – Arm 2 long wires – Battery, Leg 1 longest wire - Leg

12V MPC	12V Lidar	12V	5V network HUB	5V SPEAKER
12V PPC	12V	12V	5V PPC USB HUB	5V MPC USB HUB

Be cautious with wiring

Be cautious with wiring

Be cautious with wiring

Assembly Process (Whole Body)

(1) Whole Body

(1) Pelvis

*Quantity

*Frame

Upper Body (Upper Body + Arms)

Lower Body (Legs + hip) PR23_FRM_PELV_01,02,03

H54-100-S500-R * 2EA [15,16]

*Symmetry

None

*Locking

WB M3 * 8 mm WB M4 * 10 mm

Assembly Process (Whole Body)

Attach the Upper Body with the H54 hip frame

Attach both legs

Organize the wiring. Insert shorter wires to the closest port

Assembly Process (Whole Body)

Attach the battery frame both front and back

Enclose the frame with a cover

(1) Reference

(1) Arm Frame

(1) NX05_B03_HINGE_PR23_SH_01,02 <NX05_B03_HINGE_PR23_SHLD>

*Quantity 5

*Frame

NX03_B03_HINGE-H-T-7 * 1 EA NX03_B03_HINGE-H-T-S-GA * 1 EA NX03_B03_HINGE-H-T-S-GB * 1 EA

*Symmetry None

*Locking

SHAFT M2x6.9mm WB M3 x 12mm

(1) Reference

(1) Arm Frame

2

(2) NX03_B03_HINGE-7G

*Quantity

*Frame

NX05_B03_HINGE-5C_PR23_SHLD_T1 * 1 EA NX05_B03_HINGE-5C_PR23_SHLD_S1 * 1 EA NX05_B03_HINGE-5C_PR23_SHLD_S2 * 1 EA

*Symmetry

*Locking

NX05_B03_HINGE-5C_PR23_SHLD_T1_MIR * 1 E/ NX05_B03_HINGE-5C_PR23_SHLD_S1 * 1 EA

NX05_B03_HINGE-5C_PR23_SHLD_S2 * 1 EA

SHAFT M2x6.9mm (Use the Press Machine) WB M3 x 8mm

(1) Reference

(1) Arm Frame

2

(3) NX05_B03_HINGE-5C

*Quantity

*Frame

NX05_B03_HINGE-H-T-5 * 1 EA

NX05_B03_HINGE-H-S-CA * 1 EA NX05_B03_HINGE-H-S-CB * 1 EA

*Symmetry

NX05_B03_HINGE-H-T-5 * 1 EA

NX05_B03_HINGE-H-S-CA_MIR * 1 EA

NX05_B03_HINGE-H-S-CB_MIR * 1 EA

*Locking

SHAFT M2x6.9mm

WB M3 x 8mm

(1) Reference

(2) Bearing Module

1

(1) Angular Ball Bearing

*Quantity

* Frame

PR23_FRM_WAIST_TOP * 1EA

PR15_A03_WAIST_SHAFT * 1EA

PR15_B04_WAIST_BEARING_HOUSING * 1EA
YK-31397(SUPER PRECISION BEARINGS) * 2EA

*Symmetry None

* Locking

WB M4 * 8mm

[Caution]
Align the V mark that is on the bearing to form a rhombus shape \diamondsuit , as shown on the left

Use the Press Machine to insert the housing

(HOUSING SET)
PR15_B04_WAIST_BEARING_HOUSING - YK-31397
YK-31397 - PR15_A03_WAIST_SHAFT

(HOUSING SET) – PR23_FRM_WAIST_TOP

(1) Reference

(2) Bearing Module

(2) PR15_MODULE_IDLER

*Quanity 12

*Frame

PR15_B04_IDLER_HOUSING * 1EA

PR15_B03_BELT_BEARING_6707 * 1EA

PR15_B04_IDLER_SHAFT * 1EA

PR15_B04_IDLER_SHAFT_RTN * 1EA

PR15_B04_ILDER_HOUSING_RTN * 1EA

*Symmetry None

*Locking

WB M3 x 8mm

FHS M3 x 8mm

[Support] WB M3 x 12mm x 2EA

(HOUSING PART)
PR15_B04_IDLER_HOUSING
PR15_B03_BELT_BEARING_6707
PR15_B04_IDLER_HOUSING_RTN

Locking: FHS M3 x 8mm

HOUSING PART – PR15_B04_IDLER_SHAFT ↑
Place the top part face the floor as shown in the picture on the right
HOUSING PART –
PR15_B04_IDLER_SHAFT_RTN

[Tip]
Firmly screw the WB M3*12mm on opposite sides as shown on the far left bottom picture. Place a screwdriver or anything that can restrict the rotation when using the drill. Make sure to place the screwdriver on the correct direction. This method will save a lot of time since 12 sets need to be made

(1) Reference

(3) Belt Module(PR23_FRM_MODULE_BELT_BASE)

(1) Strain Part

*Quantity 8

*Frame

1 * 1EA 2 * 1EA

3 * 1EA

*Symmetry None

*Locking 2-3-1

Use the Press Machine

(1) Reference

(3) Belt Module(PR23_FRM_MODULE_BELT_BASE)

(2) Belt Module Assembly

*Quantity *Frame

4

Strain Part * 2EA (P37)
Belt Module Base * 1EA
Belt Module Cover * 1EA
Belt Module Gear * 2EA

Belt * 1EA

Belt Module Bearing * 4EA

C ring * 2EA

*Symmetry None

*Locking

FWB M4 * 10mm WB M3 * 8mm

grease(AL)

Pace the bearing on each side of the C ring

Belt Module Base - Bearing * 2EA - Gear * 2EA - Bearing * 2EA

Use cable organizer to clean up the wiring (Make sure that the wires do not touch the belt)

Use PHS M2 * 5 for the cable organizer

M3*6 – 6EA

M3*6 - 6EA M4*10 - 2EA

(1) Reference

(5) Belt Module Assembly

*Quantity 4

*Frame

Assembled Belt Module* 1EA

H54-200-S500-R * 1 EA [ID 19,20,23,24] Belt Module Gear * 1EA [A,B type]

*Symmetry

None

*Lock

WB M3 * 12 mm 5Pin-Cable

Detach Part M (DYNAMIXEL BODY) from part N

Place the 5Pin Cable as shown above

Insert the A type gear into part T Insert the B type gear into part B

Once the Belt Module Base and the actuator are attached correctly, the origin should be pointing to the direction shown above (yellow mark)

(1) Reference

(4) Belt Module Idler Bearing

*Quantity *Frame

4

PR23_FRM_THIGH_HINGE * 1EA

PR15 B03 BELT BEARING 6707 * 1EA

PR15_B04_IDLER_SHAFT * 1EA

PR15 B04 IDLER SHAFT RTN * 1EA

PR15_B04_ILDER_HOUSING_RTN * 1EA

PR15_B04_ADAPTOR-1_REV2 * 1 EA

*Symmetry *Locking

FHS M3 * 6mm WB M3 * 8mm

[Support] WB M3 * 12 mm

Reference p35 for Bearing Module

(1) Reference

(5) Foot FT sensor Wiring

*Cable

6Pin-Cable: 250mm, 500mm * 2EA

[Yellow]: FT sensor cable – PCB

[Red]: 6Pin-Cable 250mm ID25,26 - PCB

[Blue]: 6Pin-Cable 500mm ID23,24 - PCB

[Green square]: FT sensor PCB

Sensor cable length & path

[Yellow] 250mm [Red] 500mm [Blue Circle] Through a hole

Be cautious that the 6Pin does not get damaged when sliding the actuator to the frame. There is a groove for the wire that slide through as shown above. If done correctly, the 6Pin wire will not be damaged and the frame will slide in.

(1) Reference

(6) Arm FT sensor Wiring Need two more additional frames

*Cable

6Pin-Cable: 250mm, 500mm * 2EA

[RED] FT sensor(wrist) – FT sensor PCB [BLUE] FT sensor PCB – ID 11,12 [YELLOW] FT sensor PCB – ID13,14 [GREEN circle] Starting Point

