

Hyun-Lim YANG

Department of Information and Communication Engineering

DGIST

2017.08.09

DGVIS

Contents

Chapter 7. Regularization for Deep Learning

Part 1

- 7.1 Parameter Norm Penalties
- 7.2 Norm Penalties as Constrained Optimization
- 7.3 Regularization and Under-Constrained Problems
- 7.4 Dataset Augmentations
- 7.5 Noise Robustness
- 7.6 Semi-Supervised Learning
- 7.7 Multi-Task Learning
- 7.8 Early Stopping

Part 2

- 7.9 Parameter Tying and Parameter Sharing
- 7.10 Sparse Representations
- 7.11 Bagging and Other Ensemble Methods
- 7.12 Dropout
- 7.13 Adversarial Training
- 7.14 Tangent Distance, Tangent Prop, and Manifold Tangent Classifier

Chapter 7. Regularization for Deep Learning

Part 1

- 7.1 Parameter Norm Penalties
- 7.2 Norm Penalties as Constrained Optimization
- 7.3 Regularization and Under-Constrained Problems
- 7.4 Dataset Augmentations
- 7.5 Noise Robustness
- 7.6 Semi-Supervised Learning
- 7.7 Multi-Task Learning
- 7.8 Early Stopping

Part 2

- 7.9 Parameter Tying and Parameter Sharing
- 7.10 Sparse Representations
- 7.11 Bagging and Other Ensemble Methods
- 7.12 Dropout
- 7.13 Adversarial Training
- 7.14 Tangent Distance, Tangent Prop, and Manifold Tangent Classifier

Chapter 7. Regularization for Deep Learning

Part 1

- 7.1 Parameter Norm Penalties
- 7.2 Norm Penalties as Constrained Optimization
- 7.3 Regularization and Under-Constrained Problems
- 7.4 Dataset Augmentations
- 7.5 Noise Robustness
- 7.6 Semi-Supervised Learning
- 7.7 Multi-Task Learning
- 7.8 Early Stopping

Part 2

- 7.9 Parameter Tying and Parameter Sharing
- 7.10 Sparse Representations Discuss in Chapter 14. Autoencoder
- 7.11 Bagging and Other Ensemble Methods
- 7.12 Dropout
- 7.13 Adversarial Training
- 7.14 Tangent Distance, Tangent Prop, and Manifold Tangent Classifier Chapter 14.

Parameter Tying and Parameter Sharing

Parameter Tying

Parameter dependency

- L^2 regularization (or weigh decay) penalizes model parameters for deviating from the fixed value of zero
- Sometimes we need other ways to express prior knowledge of parameters
- We may know from domain and model architecture that there should be some dependencies between model parameters

The goal of parameter tying

- We want to express that certain parameters should be close to one another

A scenario of parameter tying

- Two models performing the same classification task (with same set of classes) but with somewhat different input distributions
- Model A with parameter $w^{(A)}$
- Model B with parameter $w^{(B)}$
- The two models will map the input to two different, but related output:

$$\hat{y}^{(A)} = f(w^{(A)}, x)$$

$$\hat{y}^{(B)} = g(w^{(B)}, x')$$

L^2 penalty for parameter tying

If the tasks are similar enough (perhaps with similar input and output distributions) then we believe that the model parameters should be close to each other:

$$\forall i, w_i^{(A)} \approx w_i^{(B)}$$

- We can leverage this information via regularization
- Use a parameter norm penalty (other choices are also possible)

$$\Omega(w^{(A)}, w^{(B)}) = \|w^{(A)} - w^{(B)}\|_{2}^{2}$$

Regularized objective function

Penalty term

$$\tilde{J}(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) = J(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) + \alpha \Omega(\boldsymbol{\theta})$$

Original objective function

Multi-Task Learning (MTL)

- Sharing the representation between related tasks
 - We can enable out model to generalize better on our original task
 - Another approach of bagging (with different cost functions)
- MTL is also known as:
 - Joint learning, Learning to learn, learning with auxiliary tasks
- Optimizing more than one loss function
- Improves generalization by leveraging the domain-specific information contained in the training data
 - Even if the problem optimizing one loss functions, there might be the chances to improve performance by adding an auxiliary task upon the major task
- Motivated by human learning process

Two MTL Methods

Hard parameter sharing

- Greatly reduce the risk of overfitting
- Similar concept of bagging

Soft parameter sharing

 Take a role of regularization

Learning task relationship with Regularization

Notation

- Task T, for each task t, we have a model m_t with parameters a_t of dimensionality d
- The parameter vector a_t and parameter matrix A is:

Learning task relationship

$$\Omega = \|ar{a}\|^2 + rac{\lambda}{T} \sum_{t=1}^T \|a_{\cdot,t} - ar{a}\|^2$$
 where, $ar{a} = (\sum_{t=1}^T a_{\cdot,t})/T$

Regularized objective function Penalty term
$$\widetilde{J}(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) = J(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) + \alpha \Omega(\boldsymbol{\theta})$$
 Original objective function

Parameter Sharing

- Parameter sharing forces sets of parameters to be equal
- Only a subset of parameters (the unique set) need to be stored in memory (memory efficient than parameter tying, especially in CNN)
- Example case : parameter sharing in a convolution layer of CNN

Image from Hugo Larochelle's lecture on YouTube (https://www.youtube.com/watch?v=aAT1t9p7ShM)

Example of CNN filters

96 filters from AlexNet

Bagging and Other Ensemble Methods

The Concept of Bagging

Tree Based Bagging

More Details of Bagging

- Short for Boostrap aggregation
- Technique for reducing generalization error by combining several models
- a.k.a., model averaging or ensemble methods
- Procedure
 - Split the input data to K clusters with N' examples (sampling with replacement)
 - Train a classifier with a random sampled cluster
 - For testing, take each examples of test data to all classifier
 - Each classifier votes on the output, take majority

Why dose the Bagging work? (1)

- Consider the K regression models (with minimize MSE)
- Suppose that each model make an error ϵ_i on each model
 - Errors drawn from a zero-mean multivariate normal dist.

variance
$$v = \mathbb{E}[\epsilon_i^2]$$
 covariance $c = \mathbb{E}[\epsilon_i \epsilon_j]$

Error made by the average prediction of models is:

$$\frac{1}{k}\sum_{i}\epsilon_{i}$$

The expected squared error of the ensemble predictor is:

$$\mathbb{E}\left[\left(\frac{1}{k}\sum_{i}\epsilon_{i}\right)^{2}\right] = \frac{1}{k^{2}}\mathbb{E}\left[\sum_{i}\left(\epsilon_{i}^{2} + \sum_{i\neq j}\epsilon_{i}\epsilon_{j}\right)\right]$$

$$= \frac{1}{k^{2}}\left\{k\mathbb{E}\left[\epsilon_{i}^{2}\right] + k(k-1)\mathbb{E}\left[\epsilon_{i}\epsilon_{j}\right]\right\}$$

$$= \frac{1}{k}v + \frac{k-1}{k}c$$

Why dose the Bagging work? (2)

The expected squared error of the ensemble predictor is:

$$\frac{1}{k}v + \frac{k-1}{k}c$$

- If the errors are perfectly correlates, c = v, it will not work at all
- If the errors are perfectly uncorrelated, c = 0, error will be only $\frac{1}{k}v$
- Intuitive example

Why dose the Bagging work? (3)

Machine Learning Example

- Trend regression on the data
 Ozone-Temperature
- Gray line is regression line with each samples
- Red line is average line

- The case should not apply bagging
 - When the sample data size is small
 - When the data is noisy
 - When the data have dependencies

Tacit rules in Bagging

- OOB (Out-of-Bag) sampling
 - Special rule for sampling with replacement
 - If we sample the example with random sampling replacement, the selecting probability of each example is:

$$1 - \left(1 - \frac{1}{N}\right)^{N}$$
 If N is large enough, then
$$\lim_{n \to \infty} \left\{1 - \left(1 - \frac{1}{N}\right)^{N}\right\} = 1 - \frac{1}{e} \approx 0.632$$

- Bagging in Neural Networks
 - Random initialization
 - Random selection of minibatches
 - Differences in hyperparameter
 - ...
- Usually discouraged when benchmarking algorithms for scientific papers, because of its power and reliability
 - It's the benefit from the price of increased computations and memory

Dropout

References:

- [1] Nitish Srivastava et al., "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", Journal of Machine Learning Research 15 (2014), 1929-1958
- [2] Hinton, Geoffrey E., et al., "Improving neural networks by preventing co-adaptation of feature detectors." arXiv preprint arXiv:1207.0580 (2012).
- [3] Krizhevsky, Alex et al., "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012.
- [4] Wan, Li, et al. "Regularization of neural networks using dropconnect." Proceedings of the 30th international conference on machine learning (ICML-13). 2013.
- [5] Baldi, Pierre, and Peter Sadowski. "The dropout learning algorithm." Artificial intelligence 210 (2014): 78-122.

Overfitting

Excessive focus on train data, resulting in worse results on actual test data

Solutions for Overfitting

- Regularization
 - L1-norm penalty
 - L2-norm penalty
- Data augmentation
- Dropout (2012)
 - A method of bagging applied to neural networks
 - An inexpensive but powerful method of regularizing a broad family of models
- Batch Normalization (2015)
 - It is described further in Chapter 8. Optimization

Research in Dropout

- First proposed by G.E. Hinton (2012)^[2]
- Became popular by AlexNet (2012)^[3]
 - Winner in ILSVRC-2012 (ImageNet challenge)
 - AlexNet outperforms the other models at most 2x
 - CNN model with ReLU, Dropout, Data augmentation, GPU
 - Applied the dropout at Full-Connected layer

- Reinforced by S. Nitish (2014)^[1]
 - Strengthen the theoretical background, extend to convolutional layer

Dropout

- A technique that omits a portion of the network
 - We can surly improve the performance by model combination like as Bagging concept
 - However, if neural network is too deep to build the multiple models, it might be costly and inefficient
 - Also, it takes long time to inference the input with multiple models
- Dropout addressed the two problems
 - Omit the neurons, to mimic the voting in ensemble technique, instead of building the multiple models
 - Product the probability that a neurons will survive to weight, at inference level

Dropout

(a) Standard Neural Net

(b) After applying dropout.

Effect of Dropout

Avoid the co-adaptation[2]

- Co-adaptation: the trend that some neurons tend to represent similar features
- Capture the clear features by avoiding co-adaptation

Effect of Dropout

Effects on image classification models for MNIST

(a) Without dropout

(b) Dropout with p = 0.5.

Dropout Modeling

(a) Standard network

$$egin{array}{lll} z_i^{(l+1)} & = & \mathbf{w}_i^{(l+1)} \mathbf{y}^l + b_i^{(l+1)}, \ y_i^{(l+1)} & = & f(z_i^{(l+1)}), \end{array}$$

(b) Dropout network

$$r_j^{(l)} \sim \text{Bernoulli}(p),$$
 $\widetilde{\mathbf{y}}^{(l)} = \mathbf{r}^{(l)} * \mathbf{y}^{(l)},$
 $z_i^{(l+1)} = \mathbf{w}_i^{(l+1)} \widetilde{\mathbf{y}}^l + b_i^{(l+1)},$
 $y_i^{(l+1)} = f(z_i^{(l+1)}).$

Dropout Modeling

Ensemble of Sub-Networks

Dropout Performance

MNIST : a standard toy data set of handwritten digits

Dropout Performance

MNIST results

Method	Unit Type	Architecture	Error %
Standard Neural Net (Simard et al., 2003)	Logistic	2 layers, 800 units	1.60
SVM Gaussian kernel	NA	NA	1.40
Dropout NN	Logistic	3 layers, 1024 units	1.35
Dropout NN	ReLU	3 layers, 1024 units	1.25
Dropout $NN + max$ -norm constraint	ReLU	3 layers, 1024 units	1.06
Dropout $NN + max$ -norm constraint	ReLU	3 layers, 2048 units	1.04
Dropout $NN + max$ -norm constraint	ReLU	2 layers, 4096 units	1.01
Dropout $NN + max$ -norm constraint	ReLU	2 layers, 8192 units	0.95
Dropout NN + max-norm constraint (Goodfellow et al., 2013)	Maxout	2 layers, (5×240) units	0.94

Dropout Performance

MNIST results

- With fixed dropout rate, for different architectures

Dropout another effect: Sparsity

Can capture salient features

- Makes neurons more sparse
- **Prevent co-adaptation**

(b) Dropout with p = 0.5.

Hyper parameter p: the Dropout rate

- (a) fixed number of neurons, variable p
 - Relatively constant test error on $0.4 \sim 0.8 \Rightarrow$ usually use p = 0.5
- (b) fixed value of pn
 - Lower test error on low $p \rightarrow$ increase number of neurons for low p

Figure 9: Effect of changing dropout rates on MNIST.

Effect of data set size on Dropout

Dropout is more powerful for larger dataset

DropConnect

- A generalization of Dropout [4]
 - Dropout omit the all connections which related to the unit
 - DropConnect only omit the connections and leave the unit alive

Original

Dropout

DropConnect

DropConnect Modeling

- Notation
 - $h_i(I)$ is output value of a neuron
 - w_{ij} is weight of connections j to i
 - I_i is input of a neuron
- The standard neural networks
- Dropout neural networks
- DropConnect neural networks

$$h_i(I) = \sum_{j=1}^n w_{ij} I_j$$

$$h_i(I) = \sum_{j=1}^n w_{ij} r_j I_j$$

$$h_i(I) = \sum_{j=1}^n r_{ij} w_{ij} I_j$$

DropConnect Performance

neuron	model	error(%)	voting
		5 network	error(%)
relu	No-Drop	1.62 ± 0.037	1.40
	Dropout	1.28 ± 0.040	1.20
	DropConnect	1.20 ± 0.034	1.12
sigmoid	No-Drop	1.78 ± 0.037	1.74
	Dropout	1.38 ± 0.039	1.36
	DropConnect	1.55 ± 0.046	1.48
tanh	No-Drop	1.65 ± 0.026	1.49
	Dropout	1.58 ± 0.053	1.55
	DropConnect	1.36 ± 0.054	1.35

Adversarial Training

References:

[1] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014).

[2] Szegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint arXiv:1312.6199 (2013).

Adversarial Examples

Definition

- Applying an imperceptible non-random perturbation to a test image, it is possible to arbitrarily change the network's prediction [2]

Examples

With the same predict model,

Y = "panda"

With 0.577 confidence

Y = "gibbon"

With 0.993 confidence

Adversarial Examples

Definition

- Applying an imperceptible non-random perturbation to a test image, it is possible to arbitrarily change the network's prediction [2]

Examples

With the same predict model,

Y = "panda"

With 0.577 confidence

=

Y = "gibbon"

With 0.993 confidence

Adversarial Examples

Correctly predicted sample

Adversarial examples

Adversarial Training

Formal description[2]

Minimize
$$\|\eta\|_2$$
 subject to $f(x+\eta)=l$ noise: η $x+\eta\in[0,1]^m$ $label: l$ $f(x)\neq l$

More general description for neural network training[1]

Training as a regularization term

$$\tilde{J}(\theta, x, y) = \alpha J(\theta, x, y) + (1 - \alpha)J(\theta, x + \eta)$$
where,
$$\eta = \epsilon \operatorname{sign}(\nabla_x J(\theta, x, y))$$

Current research

Different lighting conditions:

The next Deep Learning Seminar

Chapter 8. Optimization for Training Deep Models

- 8.1 How Learning Differs from Pure Optimization
- 8.2 Challenges in Neural Network Optimization
- 8.3 Basic Algorithms
- 8.4 Parameter Initialization Strategies
- 8.5 Algorithms with Adaptive Learning Rates
- 8.6 Approximation Second-Order Methods
- 8.7 Optimization Strategies and Meta-Algorithms

Thank you

Any Questions?

