Dérivées/Primitives usuelles

On pose $P=\frac{\pi}{2}+\pi\mathbb{Z}$. f est supposée dérivable sur un domaine D_f , g est supposée dérivable sur un domaine D_g , et on suppose que $f(D_f)$ est inclus dans D_g . Enfin, pour la dernière dérivée uniquement, on suppose que f est injective à valeurs dans un ensemble J.

<u>Fonctions</u>	<u>Dérivées</u>	<u>Domaines</u>
$x \mapsto x^n n \in \mathbb{Z}$	$x \mapsto nx^{n-1}$	\mathbb{R} si $n \ge 0$, \mathbb{R}^* si $n < 0$
$x \mapsto \frac{1}{x}$	$x \mapsto -\frac{1}{x^2}$	R*
$x \mapsto x^a a \in \mathbb{R}$	$x \mapsto ax^{a-1}$	R ^{+*}
$x \mapsto e^{cx} c \in \mathbb{C}$	$x \mapsto ce^{cx}$	\mathbb{R}
$x \mapsto \ln(x)$	$x \mapsto \frac{1}{x}$	R ^{+*}
$x \mapsto \cos(x)$	$x \mapsto -\sin(x)$	R
$x \mapsto \sin(x)$	$x \mapsto \cos(x)$	R
$x \mapsto \tan(x)$	$x \mapsto 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	$\mathbb{R}-P$
$x \mapsto \mathrm{ch}(x)$	$x \mapsto \operatorname{sh}(x)$	R
$x \mapsto \operatorname{sh}(x)$	$x \mapsto \mathrm{ch}(x)$	\mathbb{R}
$x \mapsto \operatorname{th}(x)$	$x \mapsto 1 - \operatorname{th}^2(x)$	\mathbb{R}
$x \mapsto \operatorname{Arccos}(x)$	$x \mapsto \frac{-1}{\sqrt{1 - x^2}}$]-1;1[
$x \mapsto \operatorname{Arcsin}(x)$	$x \mapsto \frac{1}{\sqrt{1 - x^2}}$]-1;1[
$x \mapsto \operatorname{Arctan}(x)$	$x \mapsto \frac{1}{1+x^2}$	R

Page 1/3 2023/2024

MP2I Lycée Faidherbe

<u>Fonctions</u>	<u>Dérivées</u>	<u>Domaines</u>
$x \mapsto (f(x))^n n \in \mathbb{Z}$	$x \mapsto nf'(x)(f(x))^{n-1}$	$D_f \text{ si } n \ge 0, \{x \in D_f \mid f(x) \ne 0\} \text{ si } n < 0$
$x \mapsto (f(x))^{\alpha} \alpha \in \mathbb{R}$	$x \mapsto \alpha f'(x) (f(x))^{\alpha - 1}$	$\left\{x \in D_f \mid f(x) > 0\right\}$
$x \mapsto \frac{1}{f(x)}$	$x \mapsto \frac{-f'(x)}{f(x)^2}$	$\left\{x \in D_f \mid f(x) \neq 0\right\}$
$x \mapsto e^{f(x)}$	$x \mapsto f'(x)e^{f(x)}$	D_f
$x \mapsto \ln(f(x))$	$x \mapsto \frac{f'(x)}{f(x)}$	$\left\{x \in D_f \mid f(x) > 0\right\}$
$x \mapsto \ln f(x) $	$x \mapsto \frac{f'(x)}{f(x)}$	$\left\{x\in D_f\mid f(x)\neq 0\right\}$
$x \mapsto f(ax+b) (a,b) \in \mathbb{R}^2$	$x \mapsto af'(ax+b)$	La flemme
$x \mapsto g \circ f(x)$	$x \mapsto f'(x) \times g' \circ f(x)$	D_f
$x \mapsto f^{-1}(x)$	$x \mapsto \frac{1}{f'(f^{-1}(x))}$	$\left\{ x \in J \mid f'\left(f^{-1}(x)\right) \neq 0 \right\}$

<u>Fonctions</u>	<u>Primitives</u>	<u>Domaines</u>
$x \mapsto (x-c)^n n \in \mathbb{Z} - \{-1\}, c \in \mathbb{R}$	$x \mapsto \frac{(x-c)^{n+1}}{n+1}$	\mathbb{R} si $n \ge 0$, $\mathbb{R} - \{c\}$ si $n < 0$
$x \mapsto (x-c)^{\alpha} \alpha \in \mathbb{R} - \{-1\}, c \in \mathbb{R}$	$x \mapsto \frac{(x-c)^{\alpha+1}}{\alpha+1}$] <i>c</i> ;+∞[
$x \mapsto e^{cx} c \in \mathbb{C}^*$	$x \mapsto \frac{e^{cx}}{c}$	R
$x \mapsto \frac{1}{x - c} c \in \mathbb{R}$	$x \mapsto \ln x - c $	$\mathbb{R}-\{c\}$
$x \mapsto \ln(x)$	$x \mapsto x \ln(x) - x$	R+*
$x \mapsto \cos(x)$	$x \mapsto \sin(x)$	R
$x \mapsto \sin(x)$	$x \mapsto -\cos(x)$	R
$x \mapsto \tan(x)$	$x \mapsto -\ln \cos(x) $	$\mathbb{R}-P$
$x \mapsto \operatorname{ch}(x)$	$x \mapsto \operatorname{sh}(x)$	R
$x \mapsto \operatorname{sh}(x)$	$x \mapsto \operatorname{ch}(x)$	R
$x \mapsto \frac{1}{1+x^2}$	$x \mapsto \operatorname{Arctan}(x)$	R
$x \mapsto \frac{1}{1 - x^2}$	$x \mapsto \frac{1}{2} \ln \left(\left \frac{1+x}{1-x} \right \right)$	ℝ \{±1}

Page 2/3 2023/2024

MP2I Lycée Faidherbe

<u>Fonctions</u>	<u>Primitives</u>	<u>Domaines</u>
$x \mapsto f'(ax+b) (a,b) \in \mathbb{R}^2$	$x \mapsto \frac{f(ax+b)}{a}$	La flemme
$x \mapsto f'(x)f(x)^n n \in \mathbb{Z} - \{-1\}$	$x \mapsto \frac{f(x)^{n+1}}{n+1}$	$D_f \text{ si } n \ge 0, \{x \in D_f \mid f(x) > 0\} \text{ si } n < 0$
$x \mapsto f'(x)f(x)^{\alpha} \alpha \in \mathbb{R} - \{-1\}$	$x \mapsto \frac{f(x)^{\alpha+1}}{\alpha+1}$	$\{x \in D_f \mid f(x) > 0\}$
$x \mapsto f'(x)e^{f(x)}$	$x \mapsto e^{f(x)}$	D_f
$x \mapsto \frac{f'(x)}{f(x)}$	$x \mapsto \ln f(x) $	$\left\{x\in D_f\mid f(x)\neq 0\right\}$
$x \mapsto f'(x)e^{f(x)}$	$x \mapsto e^{f(x)}$	D_f
$x \mapsto f'(x) \times g' \circ f(x)$	$x \mapsto g \circ f(x)$	D_f

$$\triangle \frac{g \circ f(x)}{f'(x)}$$
 n'est pas une primitive de $g' \circ f(x)$!!!!!!

histoire!

> 2023/2024 Page 3/3