TBaMS 3

Бабаев Минходж Зафарович

Задача 6 (ДЗ). Бросают пару игральных костей. Найдите распределение, математическое ожидание и дисперсию суммы выпавших очков.

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12
Х	2	3	4	5	6	
Р	1/36	1/18	1/12	1/9	5/36	
		_	-			
X	7	8	9	10	11	12
P	1/6	5/36	1/9	1/12	1/18	1/36

$$\begin{split} \mathbb{E}X &= \sum_{i=2}^{12} p_i \cdot i = \tfrac{1}{36} \cdot 2 + \tfrac{1}{18} \cdot 3 + \tfrac{1}{12} \cdot 4 + \tfrac{1}{9} \cdot 5 + \tfrac{5}{36} \cdot 6 + \tfrac{1}{6} \cdot 7 + \tfrac{5}{36} \cdot 8 + \tfrac{1}{9} \cdot 9 + \tfrac{1}{12} \cdot 10 + \tfrac{1}{18} \cdot 11 + \tfrac{1}{36} \cdot 12 = 7 \\ \mathbb{D}X &= \mathbb{E}X^2 - (\mathbb{E}X)^2 = \tfrac{329}{6} - 49 = \tfrac{35}{6} \\ \mathbb{E}X^2 &= \tfrac{1}{36} \cdot 2^2 + \tfrac{1}{18} \cdot 3^2 + \tfrac{1}{12} \cdot 4^2 + \tfrac{1}{9} \cdot 5^2 + \tfrac{5}{36} \cdot 6^2 + \tfrac{1}{6} \cdot 7^2 + \tfrac{5}{36} \cdot 8^2 + \tfrac{1}{9} \cdot 9^2 + \tfrac{1}{12} \cdot 10^2 + \tfrac{1}{18} \cdot 11^2 + \tfrac{1}{36} \cdot 12 + \tfrac$$

$$\mathbb{E}X^2 = \frac{1}{36} \cdot 2^2 + \frac{1}{18} \cdot 3^2 + \frac{1}{12} \cdot 4^2 + \frac{1}{9} \cdot 5^2 + \frac{5}{36} \cdot 6^2 + \frac{1}{6} \cdot 7^2 + \frac{5}{36} \cdot 8^2 + \frac{1}{9} \cdot 9^2 + \frac{1}{12} \cdot 10^2 + \frac{1}{18} \cdot 11^2 + \frac{1}{36} \cdot 12^2 = \frac{329}{6}$$

Задача 7 (ДЗ). Для оценки числа некоторого редкого вида рыб в озере биологи выловили 5рыб и пометили их. На следующий день они выловили 2 рыбы. Случайная величина X – число помеченных рыб среди выловленных. При каком количестве N рыб в озере вероятность P(X=1)максимальна. Найдите распределение случайной величины X при таком N, $\mathbb{E}X$, $\mathbb{D}X$.

Пусть n - количество рыб. Тогда
$$f(n)=rac{C_{n-5}^1\cdot C_5^1}{C_n^2}=rac{10n-50}{n^2-n}$$

Вычислим производную, чтобы найти максимум:

Критические точки: -0.5 и $9.4 \Rightarrow$

Рассмотрим случаи N = 9 и N = 10

$$N=9: \ P(x=0)=rac{1}{6} \ P(x=1)=rac{5}{9} \ P(x=2)=rac{5}{18}$$

$$\mathbb{E}x = 0 \cdot \frac{1}{6} + 1 \cdot \frac{5}{9} + 2 \cdot \frac{5}{18} = \frac{10}{9}$$

$$\mathbb{D}x = \mathbb{E}x^2 - (\mathbb{E}x)^2 = -\frac{100}{81} + \frac{5}{3} = \frac{35}{81}$$

$$N = 10:$$

$$P(x = 0) = \frac{2}{9}$$

$$P(x = 1) = \frac{5}{9}$$

$$P(x = 2) = \frac{2}{9}$$

$$\mathbb{E}x = 0 \cdot \frac{2}{9} + 1 \cdot \frac{5}{9} + 2 \cdot \frac{2}{9} = 1$$

$$\mathbb{D}x = \mathbb{E}x^2 - (\mathbb{E}x)^2 = -1 + \frac{13}{9} = \frac{4}{9}$$

Задача 9 (ДЗ). Боб загадал случайным образом число от 0 до 4. Алиса получает свое число так: подкидывает монетку и в случае орла прибавляет к числу Боба 1, а в случае решки вычитает 1 (всё по модулю 5). Найдите распределение каждого из полученных чисел, а также их совместное распределение.

Боб	0	1	2	3	4
Р	1/5	1/5	1/5	1/5	1/5
Алиса	0	1	2	3	4
Р	1/5	1/5	1/5	1/5	1/5

Таблица совместного распределния

Б\А	0	1	2	3	4
0	0	1/10	0	0	1/10
1	1/10	0	1/10	0	0
2	0	1/10	0	1/10	0
3	0	0	1/10	0	1/10
4	1/10	0	0	1/10	0

Задача 12 (ДЗ). При исследовании больного имеется подозрение на одно из трех заболеваний A_1 , A_2 и A_3 , а их вероятности в данных условиях равны $p_1 = 1/2$, $p_2 = 1/3$ и $p_3 = 1/6$ соответственно. Для уточнения диагноза назначен некоторый анализ, дающий положительный результат с вероятностью 0.1 в случае A_1 , с вероятностью 0.2 в случае A_2 , и с вероятностью 0.8 в случае A_3 . Анализ был произведен четыре раза и дал три раза положительный результат и один раз отрицательный. Какова вероятность каждого заболевания после анализа?

Пусть B_1- больной с болезнью A_1 , B_2- болеет болезнью A_2 , B_3- болезнью A_3 , и А - результат анализа Тогда:

$$Pr(A|B_1) = 0, 1^3 \cdot 0, 9 = 0,0009$$

$$Pr(A|B_2) = 0, 2^3 \cdot 0, 8 = 0,0064$$

$$Pr(A|B_3) = 0,8^3 \cdot 0,2 = 0,1024$$

Далее воспользуемся формулой $Pr(B_i|A) = rac{Pr(A|B_i) \cdot Pr(B_i)}{Pr(A)}$

$$Pr(B_1|A)=rac{9}{20000\cdot Pr(A)}$$
 $Pr(B_2|A)=rac{4}{1875\cdot Pr(A)}$ $Pr(B_3|A)=rac{9}{20000\cdot Pr(A)}$ Знаем $Pr(B_1|A)+Pr(B_2|A)+Pr(B_3|A)=1\Rightarrow Pr(A)=rac{393}{20000}$

Следовательно

$$egin{aligned} Pr(B_1|A) &= rac{3}{131} \ Pr(B_2|A) &= rac{128}{1179} \ Pr(B_3|A) &= rac{1024}{1179} \end{aligned}$$