Vorlesung 15 | 15.12.2020 | 14:15-16:00 via Zoom

Information der Fachschaft: Dieses Jahr findet die Mathe-Weihnachtsfeier am Donnerstag, 17.12, ab 18 ct. online via Zoom statt. Alle aktuellen Informationen sind auf https://fsmath.uni-bonn.de/veranstaltungen-detail/events/virtuelle-mathe-weihnachtsfeier.html zu finden. Schaut vorbei!

Information from the Fachschaft: This year's Math Christmas party will take place at Thursday, the 17.12. starting 18 ct. online via zoom. All current information can be found on https://fsmath.unibonn.de/events-detail/events/virtual-christmas-party.html. Swing by!

Handzettel

In der letzten Vorlesungen haben wir gesehen: Schwache convergenz von Verteilungsfuktionen und von W-Maße, Konvergenz in Verteilung von Z.V., Konvergenz in W-keit von Z.V. Konvergenz in L^P , Fast sichere Konvergenz, Borel–Cantelli Lemmata.

Heutigen Vorlesung: Momenten

6 Das Gesetz der großen Zahlen

(Kapitel 6 in Bovier Skript)

Ziel dieses Kapitel ist das folgende wichtigste Verbindung zwischen Häufigkeit und Wahrscheinlichkeit zu zeigen.

Satz. (Starkes Gesetz der großen Zahlen). Sei $(X_n)_{n\geqslant 1}$ eine Folge i.i.d. Z.V. $X_n\in\mathcal{L}^1$. Dann

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n X_k = \mathbb{E}[X_1], \quad f.s.$$

6.1 Momenten

Definition 1. Sei X eine reelle Z.V. Der <u>n-th Moment</u> von X ist durch

$$M_n$$
: = $\mathbb{E}[X^n]$

definiert, falls $|X|^n \in L^1$.

Satz 2. Sei $(M_n)_{n\geqslant 1}$ eine Folge reelle Zahlen mit Eigenschaften

a)
$$M_{2n} \geqslant 0$$

b)
$$\exists c > 0 \text{ s.d. } \sum_{n \ge 1} M_{2n} \frac{c^{2n}}{(2n)!} < \infty.$$

Dann \exists höchstens ein W-Ma β \mathbb{P} auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ s.d.

$$M_n = \int_{\mathbb{R}} x^n d\mathbb{P}$$

für alle n ≥ 1.

Definition 3. Die Momenten erzeugende Funktion einer Z.V. X ist definiert durch

$$\psi(z) \coloneqq \mathbb{E}[e^{zX}], \quad z \in \mathbb{R}.$$

Lemma 4. Sei X eine Z.V. Falls $\exists h > 0$ s.d. $\psi(\pm h) < \infty$ dann

- *a*) $\psi(z)$ existiert für alle $|z| \le h$.
- b) $\psi \in C^{\infty}$ für |z| < h.

c)

$$M_n = \frac{\mathrm{d}^n}{\mathrm{d}z^n} \psi(z) \bigg|_{z=0}$$

Einige momentenerzeugende Funktionen

\mathbb{P}_X	$\psi(z) = \mathbb{E}[e^{zX}]$
$\mathcal{N}(m,\sigma^2)$	$e^{\sigma^2 z^2/2+mz}, z \in \mathbb{R}$
$\operatorname{Exp}(\lambda)$	$\frac{1}{1-z/\lambda}, z < \lambda$
$Poi(\lambda)$	$\exp(-\lambda(e^z-1)), z \in \mathbb{R}$
$\operatorname{Geo}(q)$	$\frac{1-q}{1-qe^z}, z < \log(1/q)$
Bin(n, p)	$(1-p+pe^z)^n, z \in \mathbb{R}$
Cauchy(a)	$\begin{cases} +\infty, & z \neq 0 \\ 1, & z = 0 \end{cases}$

6.2 Ungleichungen

Lemma 5. (Tchebichev Ungleichung) Sei X eine reelle Z.V. mit Verteilung \mathbb{P} . Dann $\forall a > 0$,

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge a) \le \frac{\operatorname{Var}(X)}{a^2}.$$

Lemma 6. (Markov Ungleichung) Sei X eine reelle Z.V. mit Verteilung \mathbb{P} . Dann, für alle a>0, p>0

$$\mathbb{P}(|X| \geqslant a) \leqslant \frac{\mathbb{E}[|X|^p]}{a^p}$$

Lemma 7. Sei X eine reelle Z.V. mit V erteilung \mathbb{P} , $f: \mathbb{R}_+ \to \mathbb{R}_+$ monoton wachsend. Dann für alle $a \in \mathbb{R}$:

$$\mathbb{P}(X \geqslant a) \leqslant \frac{\mathbb{E}[f(X)]}{f(a)}.$$

Folgerung 8. Sei X eine reelle Z.V.. Dann

$$\mathbb{P}(X \geqslant a) \leqslant \inf_{\lambda \geqslant 0} \left[e^{-\lambda a} \mathbb{E}[e^{\lambda X}] \right]$$

Folgerung 9. Sei $(X_n)_{n\geqslant 1}$ eine Folge i.i.d. Z.V.. Dann

$$\mathbb{P}\left(\frac{1}{n}\sum_{k=1}^{n}X_{k}\geqslant a\right)\leqslant\inf_{\lambda\geqslant0}\left[e^{-\lambda na}(\mathbb{E}\left[e^{\lambda X_{1}}\right])^{n}\right]$$