

CRIBALING CONTRADACTOR OF THE CONTRACTOR OF THE

AND ALL TO WINDOW THE SELECTION SHAME COMES

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office

August 06, 2004

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE UNDER 35 USC 111.

APPLICATION NUMBER: 60/504,374 FILING DATE: September 18, 2003

Certified by

Jon W Dudas

Acting Under Secretary of Commerce for Intellectual Property and Acting Director of the U.S. Patent and Trademark Office

BEST AVAILABLE COPY

Address to: MS: Provisional Patent Application

EL997255147US Express Mail Label Number

Commissioner for Patents

PO Box 1450

Alexandria, VA 22313-1450

PATENT COVER SHEET FOR PROVISIONAL APPLICATION

Transmitted herewith for filing under 37 CFR §1.53(c) is the PROVISIONAL APPLICATION for patent of

	INVENTOR	R(S)				
Given Name (first and middle [if any])	Family Name or Surname	Residence (City and either State or Foreign Country)				
5		4000161				
Patricia	Imbach	4303 Kaiseraugst, Switzerland				
Johannes Leonhard	Roesel	CH-4125 Riehen, Switzerland				
	TITLE OF THE INVENTION	(280 characters max)				
	METHOD OF TR	REATMENT				
	CORRESPONDENCE A	DDRESS				
Direct all correspondence to the address a	ssociated with Customer No. 001	095, which is currently:				
Thomas Hoxie Novartis Corporate Intellectual Property One Health Plaza, Building 430 East Hanover, NJ 07936-1080						
EN	CLOSED APPLICATION PARTS	(check all that apply)				
 ☑ Specification (Including Any Claims ☐ Drawings - sheets ☑ Other (specify): Application Data Stephen 						
	METHOD OF PAYM	ENT				
The Commissioner is hereby authorized to charge filing fee and any additional fees required to Deposit Account Number: 19-0134 in the name of Novartis. PROVISIONAL FILING FEE AMOUNT: \$ 160						
U.S. Government agency and contract or under a contract with an agency of t		was made by an agency of the United States Government				

Date: September 18, 2003

George R. Dohmann Attorney for Applicants Reg. No. 33,593 Tel. No. (862) 778-7824

Respectfully submitted,

Method of Treatment

The present invention relates the use of pyrimidine derivatives for the treatment of proliferative disorders, such as cancer, and to pharmaceutical compositions comprising them for the treatment of such proliferative disorders.

More particularly the present invention is based on the discovery that certain pyrimidine derivatives possess valuable, pharmacologically useful properties. In particular the pyrimidine derivatives used according to the present invention exhibit specific inhibitory activities that are of pharmacological interest. They are effective especially as protein tyrosine kinase inhibitors; they exhibit, for example, powerful inhibition of the tyrosine kinase activity of anaplastic lymphoma kinase (ALK) and the fusion protein of NPM-ALK. This protein tyrosine kinase results from a gene fusion of nucleophosmin (NPM) and the anaplastic lymphoma kinase (ALK), rendering the protein tyrosine kinase activity of ALK ligand-independent. NPM-ALK plays a key role in signal transmission in a number of hematopoetic and other human cells leading to hematological and neoplastic diseases, for example in anaplastic large-cell lymphoma (ALCL) and non-Hodgkin's lymphomas (NHL), specifically in ALK+ NHL or Alkomas, in inflammatory myofibroblastic tumors (IMT) and neuroblastomas. In addition to NPM-ALK other gene fusions have been identified in human hematological and neoplastic diseases; mainly TPM3-ALK (a fusion of nonmuscle tropomyosin with ALK). The pyrimidine derivatives are useful for the inhibition of all such ALK-containing gene fusions.

The compounds that are useful as inhibitors of ALK or a gene fusion containing ALK are especially compounds of formula I

wherein

X is $=CR^0$ - or =N-:

each of R⁰, R¹, R², R³ and R⁴ independently is hydrogen; hydroxy; C₁-C₈alkyl; C₂-C₈alkenyl; C₃-C₈cycloalkyl; C₃-C₈cycloalkyl-C₁-C₈alkyl; hydroxyC₁-C₈alkyl; C₁-C₈alkoxyC₁-C₈alkyl; hydroxyC₁-C₈alkoxyC₁-C₈alkyl; arylC₁-C₈alkyl which optionally may be substituted on the ring by hydroxy, C₁-C₈alkoxy, carboxy or C₁-C₈alkoxycarbonyl;

- or R³ and R⁴ form together with the nitrogen and carbon atoms to which they are attached a 5 to 10 membered heterocyclic ring and comprising additionally 1, 2 or 3 heteroatoms selected from N. O and S:
- or R¹ and R² form together with the C-atoms to which they are attached aryl or a 5 to 10 membered heteroaryl residue comprising one or two heteroatoms selected from N, O and S; or
- each of R⁵ and R⁶ independently is hydrogen; halogen; cyano; C₁-C₈alkyl; halo-C₁-C₈alkyl; C₂-C₈alkenyl; C₂-C₈alkynyl; C₃-C₈cycloalkyl; C₃-C₈cycloalkylC₁-C₈alkyl; C₅-C₁₀arylC₁-C₈alkyl; each of R⁷, R⁸ and R⁹ is independently hydrogen; hydroxy; C₁-C₈alkyl; C₂-C₈alkenyl; halo-C₁-C₈alkyl; C₁-C₈alkoxy; C₃-C₈cycloalkyl; C₃-C₈cycloalkylC₁-C₈alkyl; arylC₁-C₈alkyl; -Y-R¹² wherein Y is a direct bond or O and R¹² is a substituted or unsubstituted 5, 6 or 7 membered heterocyclic ring comprising 1, 2 or 3 heteroatoms selected from N, O and S; carboxy; (C₁-C₈alkoxy)-carbonyl; -N(C₁₋₈alkyl)-CO-NR¹⁰R¹¹; -CONR¹⁰R¹¹; -N(R¹⁰)(R¹¹); -SO₂N(R¹⁰)R¹¹; or R⁷ and R⁸ or R⁸ and R⁹, respectively form together with the carbon atoms to which they are attached, a 5 or 6 membered heteroaryl comprising 1, 2 or 3 heteroatoms selected from N, O and S; or a 5 or 6 membered carbocyclic ring.

in free form or salt form.

Any aryl may be phenyl, naphthyl or 1,2,3,4-tetrahydronaphthyl, preferably phenyl. Heteroaryl is an aromatic heterocyclic ring, e.g. a 5 or 6 membered aromatic heterocyclic ring, optionally condensed to 1 or 2 benzene rings and/or to a further heterocylic ring.

Any heterocyclic ring may be saturated or unsaturated and optionally condensed to 1 or 2 benzene rings and/or to a further heterocyclic ring.

Examples of heterocyclic rings or heteroaryl include e.g. morpholinyl, piperazinyl, piperidyl, pyrrolidinyl, pyridyl, purinyl, pyrimidinyl, N-methyl-aza-cycloheptan-4-yl, indolyl, quinolinyl, isoquinolinyl, 1,2,3,4-tetrahydroquinolinyl, benzothiazolyl, thiazolyl, imidazolyl, benzimidazolyl, benzoxadiazolyl, benzotriazolyl, indanyl, oxadiazolyl, pyrazolyl, triazolyl, and tetrazolyl. Preferred heterocyclic rings or heteroaryl are morpholinyl, piperazinyl, piperidyl, pyrrolidinyl, pyridyl, N-methyl-aza-cycloheptan-4-yl, thiazolyl, imidazolyl and tetrazolyl.

When R⁷ and R⁸ or R⁸ and R⁹ form together with the carbon atoms to which they are attached a 5 or 6 membered carbocyclic ring, this may preferably be cyclopentyl or cyclohexyl.

Halo-alkyl is alkyl wherein one or more H are replaced by halogen, e.g. CF₃.

Any alkyl or alkyl moiety may be linear or branched. C_{1-8} alkyl is preferably C_{1-4} alkyl. C_{1-8} alkoxy is preferably C_{1-4} alkoxy. Any alkyl, alkoxy, alkenyl, cycloalkyl, heterocyclic ring, aryl or heteroaryl may be, unless otherwise stated, unsubstituted or substituted by one or more substituents selected from halogen; OH; C_1 - C_8 alkyl; C_1 - C_8 alkoxy; nitro; cyano; COOH; carbamoyl; $C(NH_2)$ =NOH; - $N(R^{10})R^{11}$; C_3 - C_6 cycloalkyl; 3 to 7 membered heterocyclic ring; phenyl; phenyl- C_{1-4} alkyl; 5 or 6 membered heteroaryl. When alkyl, alkoxy or alkenyl is substituted, the substitutent is preferably on the terminal C atom. When the heterocyclic ring or heteroaryl is substituted, e.g. as disclosed above, this may be on one or more ring carbon atoms and/or ring nitrogen atom when present. Examples of a substituent on a ring nitrogen atom are e.g. C_{1-8} alkyl, carbamoyl, - $C(NH_2)$ =NOH, - $NR^{10}R^{11}$, C_{3-8} cycloalkyl or phenyl- C_{1-4} alkyl, preferably C_{1-8} alkyl, C_{3-8} cycloalkyl or phenyl- C_{1-4} alkyl.

Preferably substituted alkyl or alkoxy as R_7 is alkyl or alkoxy substituted on the terminal C atom by OH, C_{1-4} alkoxy or a heterocyclic ring. When R^{10} or R^{11} is a 5 to 10 membered heterocyclic ring, it may be e.g. thiazolyl.

Halogen may be F, Cl, Br, or I.

Preferably at most one of R¹, R² or R³ is CONR¹⁰R¹¹ or SO₂NR¹⁰R¹¹, more preferably SO₂NR¹⁰R¹¹.

The compounds of the invention may exist in free form or in salt form, e.g. addition salts with e.g. organic or inorganic acids, for example trifluoroacetic acid or hydrochloride acid, or salts

obtainable when they comprise a carboxy group, e.g. with a base, for example alkali salts such as sodium, potassium, or substituted or unsubstituted ammonium salts.

In formula I the following significances are preferred independently, collectively or in any combination or sub-combination:

- (a) X is =CR⁰;
- (b) R⁰ is hydrogen; halogen, e.g. Cl; C₁-C₄alkyl, e.g. methyl or ethyl; C₁-₄alkoxy, e.g. methoxy; preferably hydrogen;
- (c) R¹ is hydrogen; halogen, e.g. Cl or F; OH; C₁-C₂alkyl, e.g. methyl or ethyl; substituted C₁₂alkyl, e.g. terminally OH substituted C₁₂alkyl; -SO₂N(R¹⁰)R¹¹; -N(C₁₄alkyl)C(O) C₁₄alkyl; a 5 or 6 membered heterocyclic ring optionally substituted on a ring N atom (when possible); C₁-C₂alkoxy, e.g. methoxy; aryl, e.g. phenyl; or form together with R² and the C-atoms to which R¹ and R² are attached 5 to 10 membered aryl or heteroaryl, the latter comprising 1 or 2 nitrogen atoms;
- (d) R² is hydrogen; hydroxy; C₁-C₈alkyl, e.g. methyl or ethyl; substituted C₁₋₈alkyl, e.g. terminally OH- or C₁₋₄-alkoxy substituted C₁₋₈alkyl; C₁₋₈alkoxy; C₁-C₄alkoxyC₁-C₈alkoxy; -CON(R¹⁰)R¹¹; -SO₂N(R¹⁰)R¹¹; or forms together with R¹ and the C-atoms to which R¹ and R² are attached a 5 to 10 membered aryl or heteroaryl, the latter comprising 1 or 2 nitrogen atoms;
- (e) R³ is hydrogen; halogen, e.g. CI, Br; hydroxy; C₁-C₈alkyl, e.g. methyl or ethyl; substituted C₁₋₈alkyl, e.g. terminally OH substituted C₁₋₈alkyl; carboxy; CONR¹0R¹¹; -SO₂N(R¹0)R¹¹; a 5 or 6 membered heterocyclic ring optionally substituted on a ring nitrogen atom (when possible); or forms together with R⁴ and the N and C atoms to which R³ and R⁴ are attached a 6 membered heterocyclic ring;
- (f) R⁴ is hydrogen; or forms together with R³ and the N and C atoms to which R³ and R⁴ are attached a 6 membered heterocyclic ring; preferably hydrogen;
- (g) R⁵ is hydrogen; halogen; C₁₋₄alkyl; or CF₃;
- (h) R⁶ is hydrogen;
- (i) R⁷ is hydrogen; hydroxy; C₁₋₄alkyl; substituted C₁₋₄alkyl, e.g. terminally OH substituted C₁₋₄alkyl; C₁₋₈alkoxy; substituted C₁₋₈alkoxy, e.g. terminally substituted by OH, C₁₋₄alkoxy or a heterocyclic ring; NR¹⁰R¹¹; -SO₂N(R¹⁰)R¹¹; -Y-R¹²; CF₃; or R⁷ forms together with R⁸ and the C-atoms to which R⁷ and R⁸ are attached a 5 membered heteroaryl residue, e.g. bridged by -NH-CH=CH-, -CH=CH-NH-, -NH-N=CH-, -CH=N-NH-, -NH-N=N- or -N=N-NH-;
- (k) R⁸ is hydrogen; hydroxy; C₁₋₄alkoxy; carboxy; a 5 or 6 membered heterocyclic ring optionally substituted on a ring C or N atom; N(C₁₋₄alkyl)-CO- NR¹⁰R¹¹; or forms with R⁷ or R⁹ and the C-atoms to which R⁷ and R⁸ or R⁸ and R⁹, respectively, are attached a 5 membered

heteroaryl residue, e.g. bridged by -NH-CH=CH-, -CH=CH-NH-, -NH-N=CH-, -CH=N-NH-, -NH-N=N- or -N=N-NH-;

- (I) R⁹ is hydrogen; C₁₋₄alkoxy; NR¹⁰R¹¹; or forms with R⁸ and the C atoms to which R⁸ and R⁹ are attached a 5 membered heteroaryl, e.g. bridged by –NH-CH=CH-, -CH=CH-NH-, –NH-N=N- or –N=N-NH-;
- (m) one of R¹⁰ and R¹¹, independently, is hydrogen or C₁₋₄alkyl and the other is hydrogen; OH; C₁₋₈alkyl, substituted C₁₋₈alkyl, e.g. terminally substituted by OH, C₃₋₆cycloalkyl or a heterocyclic ring; C₂₋₈alkenyl; C₃₋₈cycloalkyl; hydroxyC₁₋₈alkoxyC₁₋₈alkyl; or a 5 membered heterocyclic ring.

R³ is preferably SO₂NR¹⁰R¹¹.

The present invention also provides a process for the production of a compound of formula I, comprising reacting a compound of formula II

wherein R¹, R², R³, R⁴, R⁵, R⁶ and X are as defined above, and Y is a leaving group, preferably halogen such as bromide, iodine, or in particular chloride;

with a compound of formula III

$$R^7$$
 R^8
 R^9
(III)

wherein R7, R8 and R9 are as defined above;

and recovering the resulting compound of formula I in free or in form of a salt, and, where required, converting the compound of formula I obtained in free form into the desired salt form, or vice versa.

The process may be performed according to methods known in the art, e.g. as described in examples 1 to 4.

The compound of formula II used as starting materials may be obtained by reacting a compound of formula IV

$$\mathbb{R}^{5}$$
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}

with a compound of formula V

$$R^1$$
 R^2
 NHR^4
 (V)

wherein R¹, R², R³, R⁴, R⁵, R⁶, Y and X are as defined above.

The compounds of formula IV and V are known or may be produced in accordance with known procedures.

The following examples illustrate the invention without any limitation.

The following abbreviations are employed: APC = allophycocyanine, BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl, cDNA = complementary DNA, DCM = dichloromethane, DIAD = diisopropyl azodicarboxylate, DMAP = 4-dimethylaminopyridine, DMF = dimethylformamide, DMSO = dimethylsulfoxide, DMF = dimethylformamide; Pmc = 2,2,5,7,8-pentamethylchroman; tBu = *tert.*-butyl; DIPCDI = N,N'-diisopropylcarbodiimid; DTT = 1,4-dithio-D,L-treitol, DNA = deoxyribonucleic acid, EDTA = ethylenediaminetetra-acetic acid, Lck = lymphoid T-cell protein tyrosine kinase, LAT-11 = linker for activation of T cell , RT = room temperature; RT-PCR = reverse transcription polymerase chain reaction, MS = molecular ion (e.g. M+H¹⁺) determined by electrospray mass spectroscopy; Eu = europium.

Example 1: 2-[2-(1H-Indazol-6-ylamino)-pyrimidin-4-ylamino]-benzenesulfonamide

(a) 2-(2-Chloro-pyrimidin-4-ylamino)-benzenesulfonamide: To a suspension of 8.52 g (49.47 mmol) 2-aminobenzenesulfonamide in 200 ml isopropanol is added 22.1 g (148.42 mmol, 3 equivalent) 2,4-dichloropyrimidine and 20 ml 10 M hydrochloric acid (200 mmol, 4 equivalent). The suspension is stirred at 60°C for 2 h 15 min. The reaction mixture is dilluted with 2 l ethyl acetate and 500 ml water is added. The pH is adjusted to 8-9 by addition of sodium bicarbonate. The layers are separated and the aqueous layer is reextracted with 500 ml ethyl acetate. The organic layers are dried with sodium sulfate, filtered and evaporated to a volume of 300 ml. A crystalline precipitate is formed and removed by filtration (side product). The filtrate is evaporated to 100 ml whereupon the product crystallizes to give 2-(2-chloropyrimidin-4-ylamino)-benzenesulfonamide (97% purity by HPLC). The mother liquor of this cristallisation is further purified by column chromatography and crystallisation to give further 2-(2-chloro-pyrimidin-4-ylamino)-benzenesulfonamide.

(b) 2-[2-(1H-Indazol-6-ylamino)-pyrimidin-4-ylamino]-benzenesulfonamide: To a suspension of 7.25 g (25.46 mmol) 2-(2-Chloro-pyrimidin-4-ylamino)-benzenesulfonamide and 4.07 g (30.55 mmol, 1.2 equivalent) 6-aminoindazole in 400 ml isopropanol is added 13 ml conc. HCI* (130 mmol, 5 equivalent). The suspension is refluxed for 4 h 30 min. The reaction mixture is dilluted with 1.5 l ethyl acetate and 1 l water is added. The pH is adjusted to 8-9 by addition of sodium bicarbonate. The layers are separated and the aqueous layer is re-extracted with 500 ml ethyl acetate. The organic layers are dried with sodium sulfate, filtered and evaporated to a volume of 300 ml. A crystalline precipitate (1.01 g) is formed and removed by filtration (side product). The filtrate is purified by chromatography on 200 g silica gel eluting with ethyl acetate/methanol 95/5 v/v. Upon evaporation crystalls are formed which are filtered to give the title compound.

¹H NMR (400 MHz, DMSO-d₆): □ 9.42 (s, 1H), 8.34 (d, 1h), 8.28 (d, 1H), 8.27 (s, 1H), 7.93 (s, 1H, 7.88 (d, 1H), 7.62 (m, 2H), 7.32 (d, 1H), 7.24 (t, 1H), 6.40 (d, 1H).

MS m/z (%): 382 (M+H, 100);

Example 2: 2-[2-(3,4,5-Trimethoxy-phenylamino)-pyrimidin-4-ylamino]-benzenesulfonamide

The title compound is prepared from 2-(2-chloro-pyrimidin-4-ylamino)-benzenesulfonamide as described in Example 1 using 3,4,5-Trimethoxy-phenylamine instead of 6-aminoindazole in step (b).

¹H NMR (400 MHz, DMSO-d₆): \Box 9.18 (s, 1H), 8.22 (d, 1H), 8.17 (d, 1H), 7.89 (d, 1H), 7.55 (t, 1H), 7.25 (t, 1H), 7.14 (s, 2H), 6.40 (d, 1H), 3.69 (s, 6H), 3.62 (s, 3H). MS m/z (%): 432 (M+H, 100);

Example 3: 2-methyl-6-[2-(3,4,5-Trimethoxy-phenylamino)-pyrimidin-4-ylamino]-benzenesulfonamide

The tilte compound is prepared as described in Example 1 with the difference that in step (a) 2-amino-6-methyl-benzenesulfonamide is used instead of 2-aminobenzenesulfonamide.

2-Amino-6-methyl-benzenesulfonamide may be prepared as described by Girard, Y et al.; J. J. Chem. Soc. Perkin Trans. I 1979, 4, 1043-1047: Under an atmosphere of nitrogen m-toluidin (32.1 g, 32.5 ml, 0.30 mmol) is added dropwise to a solution of chlorosulfonyl isocyanate (51.3 ml, 83.6 g, 0.59 mmol) in nitroethane (400 ml) at -55 - 49°C. The cold bath is removed and the mixture allowed to warm to -8°C, whereupon aluminium chloride (51 g, 0.38 mmol) is added. Heating the mixture to 100°C for 20 min forms a clear brown solution, which is cooled to RT and poured on ice. After filtration, washing with ice water and diethyl ether the precipitate is collected and dissolved in dioxane (300 ml). Water (1000 ml) and conc. HCl (1500 ml) are added to form a suspension, which is heated to 120°C for 18h. After cooling to RT the clear brown solution is washed with diethyl ether/hexane (1400 ml, 1/1 v/v) and adjusted to pH = 8 by addition of sodium carbonate. Extraction using ethyl acetate (2 x 1000 ml), washing of the organic phase with water (500 ml) and brine (500 ml), drying (magnesium sulfate) and concentration yields a

brown solid, which is purified by chromatography on silica using methylene chloride/ethanol (100/1 v/v) to yield the desired product as a white solid.

Melting point: 72-75°C (Propan-2-ol);

¹H NMR (400 MHz, DMSO-d₆): □ 2.64 (s, 3H, Me), 3.63 (s, 3H, OMe), 3.68 (s, 6H, OMe), 6.31 (d, J = 5Hz, 1H, pyrimidine CH), 7.07 (d, J = 8Hz, 1H, arom. CH), 7.15 (s, 2H, arom. CH), 7.40 (t, J = 8Hz, 1H, arom. CH), 7.65 (s, 2H, SO₂NH₂), 8.04 (d, J = 8Hz, 1H, arom. CH), 8.12 (d, J = 5Hz, 1H, pyrimidine CH), 9.14 (s, 1H, NH), 9.40 (s, 1H, NH).

MS (ES*) m/z: 446 (MH*), 468 (MNa*)

MS (EST): 444 (M-H)T

Example 4: 2-Methoxy-6-[2-(3,4,5-trimethoxy-phenylamino)-pyrimidin-4-ylamino]-benzenesulfonamide

The title compound is prepared as described in Example 1 with the difference that in step (a) 2-amino-6-methoxy-benzenesulfonamide is used instead of 2-Amino-6-methyl-benzenesulfonamide.

2-Amino-6-methoxy-benzenesulfonamide may be prepared from 12.3 g of meta-anisidine following an analogous procedure as described in Example 1a. NMR (400 MHz, DMSO-d₆): ☐3.62 (s, 3H, OMe), 3.69 (s, 6H, OMe), 3.91 (s, 3H, OMe), 6.31 (d, J = 5Hz, 1H, pyrimidine CH), 6.86 (d, J = 8Hz, 1H, arom. CH), 7.12 (s, 2H, arom. CH), 7.43 (t, J = 8Hz, 1H, arom. CH), 8.01 (d, J = 8Hz, 1H, arom. CH), 8.11 (d, J = 5Hz, 1H, pyrimidine CH), 9.18 (s, 1H, NH), 9.79 (br, 1H, NH).

MS (ES⁺): 462.2 (MH⁺), 484.2 (MNa⁺)

MS (ES'): 460.3 (M-H)

The compounds of formula X₁

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$$

wherein R³, R⁷ and R⁸ are as defined in Table 1, may be prepared by following the procedure of Example 1 but using the appropriate starting materials.

TABLE 1

Example	R ³	R'	R ⁸	MS Data		
				*ES+	*ES-	*EI
5	-OH	-O-(1-methyl)-azacyclohept- 4-yl	-H	406	404	
6	-SO ₂ NH ₂	-O-(1-methyl)-azacyclohept- 4-yl	-H	469.3		
7	-SO₂NH₂	-O-2-(1-methyl-azacyclopent- 2-yl)-ethyl	-H	469.3		
8	-OH	-O-2-(1-piperidyl)-ethyl	-OCH₃	436.3	434.4	
9	-OH	-O-2-(1-methyl-azacyclopent- 2-yl)-ethyl	-Н	406	404	
10	-SO ₂ NH ₂	-O-CH ₂ CH ₂ CH ₂ -1-imidazolyl	-OCH ₃	496	494	
11	-SO ₂ NH ₂	-O-2-(1-piperidyl)-ethyl	-OCH ₃	499.2	497.3	
12	-SO₂NH₂	-O-CH ₂ CH ₂ -1-methyl- imidazol-1-yl	-н	466	464	
13	-OH	-O-2-[1-(1,2,4-triazolyl)]-ethyl	-H	390	388	
14	-OH	-O-2-hydroxyethyl	-OCH₃	369.4	367.3	
15	-SO ₂ NH ₂	-O-2-hydroxyethyl	-OCH₃			431
16	-SO ₂ NH ₂	-O-CH ₂ CH ₂ -1-imidazolyl	-OCH₃			
17	-SO ₂ NH ₂	-O-2-[1-(1,2,4-triazolyl)]-ethyl	-H			452
18	-SO ₂ NH ₂	-NH-N=N-			381	
19	-SO₂NHCH₃	-O-CH ₂ CH ₂ -1-imidazolyl	-OCH₃	496	494	
20	-SO ₂ NH ₂	-O-2-(1-piperidyl)-ethyl	-H	469	467	
21	-SO ₂ NH ₂	-O-CH ₂ CH ₂ -1-imidazolyl	-H	452	450	
22	-OH	-O-2-(1-piperidyl)-ethyl	-H	406		
23	-COOH	-4-morpholino	-H			
24	-OH	-O-CH ₂ CH ₂ CH ₂ -1-imidazolyl	-OCH₃	433	431	
25	-SO ₂ NHCH ₃	-CH=N-NH-		396	394	
26	-SO₂NH₂	-O-2-(4-morpholino)ethyl	-H	471	469	
27	-SO₂NH₂	-OCH₃	-OCH₃	402	400	
28	-OH	-O-2-(4-morpholino)ethyl	-H	408	406	
29	-SO ₂ NH ₂	-CH=N-NH-				381
30	-SO₂NHCH₃	-O-CH₂CH₂-1-imidazolyl	-H			<u></u>

31	I-COOH	Amino	[-H	322		
32	-SO ₂ NH ₂	-O-CH ₂ CH ₂ CH ₂ -1-imidazolyl	-H	466.2	464.3	
33	-COOH	-N(CH ₃) ₂	-H			
34	-5-(1,2,3,4- tetrazolyl)	-NH-C(O)CH ₃	-H	388	386	
35	-SO₂NHCH₃	-NH-N=CH-				
36	-COOH	-OH	-H			
37	-COOH	-Н	-4- piperidyl			
38	-COOH	-CH ₂ -OH	H			
39	-OH	-O-CH ₂ CH ₂ -1-imidazolyl	-OCH3			
40	-SO ₂ NH- CH ₂ CH ₂ -OH	-O-CH₂CH₂-1-imidazolyl	-H	496	494	
41	-C(O)NH ₂	Amino	-H	321		
42	-SO ₂ NH ₂	-CH=CH-NH-		381	1	
43	-5-(1,2,3,4- tetrazolyl)	-NHCH₂-3-pyridyl	-H		435	
44	-SO ₂ NH ₂	-NH-CH=CH-			379	
45	-COOH	-Н	-4- morpholin o			
46	-cooh	-Н	-1-(4- amino)- piperidyl			
47	-SO ₂ NH ₂	-OCH ₃	-H	372	370	
48	- SO ₂ N(CH ₃) ₂	-O-CH₂CH₂-1-imidazolyl	-H	480	478	

The compounds of formula
$$X_2$$
 OCH₃ R^8

wherein R^3 and R^8 are as defined in Table 2, may be prepared by following the procedure of Example 1 but using the appropriate starting materials.

TABLE 2

Example	R ³	R ⁸	MS Data	3
			*ES+	*ES-
49	-COOH	-OCH₃	397	395
50	-SO₂NH₂	-OH		
51	-SO₂NHCH₃	-OCH₃		
52	-5-(1,2,3,4-tetrazolyl)	-OCH₃	421	
53	-SO₂NH-cyclopropyl	-OCH₃	472.2	470.3
54	-C(O)NHOH	-OCH₃	412	410
55	-SO₂NH- CH₂CH₂-OH	-OCH₃	476	474
56	-SO ₂ N(CH ₃) ₂	-OCH₃	460.3	458.3
57	-OH	-OCH₃	369	367
58	-SO ₂ NH-CH ₂ CH ₂ CH ₃	-OCH₃	474	472
59	-CH₂OH	-OCH₃		
60	-SO₂NH₂	-H	402	

The compounds of formula X₃

wherein R^1 , R^7 , R^8 and R^9 are as defined in Table 3, may be prepared by following the procedure of Example 1 but using the appropriate starting materials.

TABLE 3

Example	R ¹	R' .	R ⁸	R ⁹	MS Data	
					*ES+	*ES-
61	-SO ₂ NH-CH ₂ CH ₂ - O-CH ₂ CH ₂ -OH	-н	-N(CH ₃)- C(O)CH	-H		
62	-SO ₂ NH ₂	-OCH ₃	-OCH₃	-OCH₃		
63	-SO₂NH₂	-O-CH₂CH₂-1- imidazolyl	-OCH₃	-H		
64	-SO ₂ NH-CH ₂ CH ₂ - O-CH ₂ CH ₂ -OH	-OCH ₃	-OCH₃	-OCH₃	520	518
65	-N(CH ₃) C(O)CH ₃	-OCH₃	-OCH₃	-OCH₃	424	422
66	-CH ₂ CH ₂ -OH	-SO₂NH-	-H	-H		

		CH ₂ CH ₂ CH ₂ CH ₃				
67	-SO₂NH₂	-OCH ₃	-H	-OCH₃		
68	-SO₂NH₂	-O-CH₂CH₂-1- imidazolyl	-H	-H		
69	-CH₂CH₂-OH	-O-CH₂CH₂-1- imidazolyl	-H	-H		
70	-CH ₂ CH ₂ -OH	-OCH₃	-H	-OCH₃		
71	-SO ₂ NH ₂	-OH	-H	-H		
72	-O-CH₂CH₂-OH	-O-CH₂CH₂-1- imidazolyl	-H	-H		
73	-SO₂NH-2-thiazolyl	-OCH₃	-OCH₃	-OCH₃	515	513

The compounds of formula X4

$$R^{5}$$
 N
 R^{8}
 R^{9}

wherein R², R⁵, R⁷, R⁸ and R⁹ are as defined in Table 4, may be prepared by following the procedure of Example 1 but using the appropriate starting materials.

TABLE 4

Example	R ²	R ⁵	R ⁷	R ⁸	R ⁹	MS Data	a
						*ES+	*ES-
74	-SO₂NH-2- propenyl	-Н	-OCH₃	-OCH₃	-OCH₃	472	470
75	-SO ₂ NH ₂	-H	-OCH ₃	-OCH₃	-OCH₃		
76	-OH	-н	-O-(1-methyl)- azacyclohept-4-yl	-H	-H	406.3	404.3
77	-OH	-H	-O-CH ₂ CH ₂ -OH	-OCH₃	-H	369	367
78	-SO ₂ NH ₂	-Br	-OCH₃	-OCH₃	-OCH₃	510.1/ 512.1	508.1/ 510.2
79	-SO ₂ NH ₂	-H	-CH=N-NH-		-H	382	
80	-SO ₂ NH ₂	-CH ₃	-OCH₃	-OCH₃	-OCH₃	446	444
81	-SO ₂ NH ₂	-H	-O-CH₂CH₂-1- imidazolyl	-OCH₃	-H	482	480
82	-OH	-H	-O-CH ₂ CH ₂ -1-piperidyl	-OCH₃	-H	436.3	434.3
83	-OH	-Н	-O-CH₂CH₂-1- imidazolyl	-OCH₃	-H	419	417
84	-SO₂NH₂	-H	-O-CH₂CH₂-1- imidazolyl	-H	-H	452	450
85	-CH ₃	-C≡N	-OCH₃	-OCH₃	-OCH₃	392	<u> </u>
86	-SO ₂ NH ₂	-H	-NH-N=CH-		-H	382	

87	-OH	-Н	-OCH ₃	-OCH ₃	-OCH₃	369	367
88	-	-CH ₃	-OCH₃	-OCH₃	-OCH₃	460	458
00	SO₂NHCH₃	J3) <u> </u>			
89	-OH	-H	-OH	COOH	-OCH₃		
90	-OH	-H	-O-CH ₂ CH ₂ -1-piperidyl	-H	-H	406	404
91	-SO ₂ NH-2-	-H	-O-CH ₂ CH ₂ -1-	-H	-H	492.3	490.3
3 1	propenyl		imidazolyl	[
92	-SO ₂ NH ₂	-Br	-O-CH ₂ CH ₂ -1-(1-	-H	-H	544.1/	542/
92	-00211112		methyl)-imidazolyl			546	544.2
93	-SO ₂ NH ₂	-H	-O-CH ₂ CH ₂ -OH	-OCH₃	-H		
94	-OH	-H	-O-(1-methyl)-	-H	-H		
3 4	-011	••	azacyclopent-2-yl				
95	-OH	-H	-O-CH ₂ CH ₂ -1-	-H	-Н	389	387
33	1-011	''	imidazolyl				<u> </u>
96	-OH ·	-H	-O-CH ₂ CH ₂ CH ₂ -1-	-OCH₃	-H	433.4	431.4
90	-011		imidazolyl		·		<u> </u>
97	-SO ₂ NH ₂	-H	-OCH ₃	-H	-OCH₃		<u> </u>
98	-OH	-H	-OCH₃	-OCH₃	-H	339	337
99		-H	-OCH₃	-OCH₃	-OCH₃	488	486
99	SO ₂ NHCH ₂	1	1		Ì	1	
	-			}	}		
	CH ₂ CH ₂ CH	1		1	l	i .	
	0,120112011					<u> </u>	<u> </u>
100	-SO ₂ NH-	-CH ₃	-O-CH ₂ CH ₂ -1-	-OCH₃	-H	510	508
100	CH₃		imidazolyl		<u> </u>		<u> </u>
101	- 0113	-H	-O-CH ₂ CH ₂ -1-	-H	-H	08	506
101	SO ₂ NHCH₂	1	imidazolyl	1	}	1	1
	202111.01.12	{		}			
	CH ₂ CH ₂ CH	Í	1)		İ
	3	Ì				ļ	<u> </u>
102	-OH	-H	-O-CH ₂ CH ₂ -4-	Т-H	-H	408	1
102	0		morpholino			<u> </u>	
103	-OH	-H	-NH-N=CH-		-H	319	317
104	-OH	-H	-CHN-NH-		-H	319	317
105	-OH	-H	-O-CH ₂ CH ₂ -1-	-H	-H	1	1
100	J.,		imidazolyl	1		1	
		 					
106	-SO₂NH-	† -	-OCH₃	-OCH₃	-OCH₃	474.3	472.3
100	CH ₃	CH₂-					
	03	CH ₃]	1			
107	-SO ₂ NH ₂	-H	-OCH ₃	-OCH₃	-OCH₃	1	

The compounds of formula X₅

$$R^1$$
 R^2
 R^3
 R^4
 R^4
 R^4
 R^4
 R^5
 R^6
 R^6
 R^6
 R^6
 R^6
 R^7
 R^8
 R^8
 R^8
 R^8
 R^8

wherein R⁰, R¹, R², R³ and R⁴ are as defined in Table 5, may be prepared by following the procedure of Example 1 but using the appropriate starting materials.

TA	BL	E	5

Example	R ⁰	R ¹	R²	R ³	R ⁴	MS Dat	а
						*ES+	*ES-
108	-H	-OCH₃	-OH	-H	-H		+
109	-H	nitro	-H	-OH	-H	414	412
110	-H	-N=CH-CH	=CH-	-H	-H		
111	-H	-CH=N-N	IH-	-H	-H	393	391
112	-H	-NH-N=C	H-	-H	-H	393	
113	-H	-H	-OH	-CH ₂ CH ₂ (CH ₂ -	409	407
114	-CH ₃	-H	-CH₃	-OH	-H	397	
115	-H	phenyl	-H	-SO ₂ NH ₂	-H	508	506
116	-CH₃	-H	-H	-SO ₂ NH ₂	-H	446	444

The compounds of formula X₆

$$\begin{array}{c|c}
R^5 & R^8 \\
N & N & R^9 \\
SO_2NH_2
\end{array}$$

wherein R⁵, R⁷, R⁸ and R⁹ are as defined in Table 6, may be prepared by following the procedure of Example 1 but using the appropriate starting materials.

TABLE 6

Example	R ⁵	R ⁷	R ⁸	R ⁹	*ES+	*ES-
117	-CH₃	-O-CH ₂ CH ₂ -1-imidazolyl	-H	-Н	466	
118	-CH₂CH₃	-OCH₃	-OCH ₃	-OCH₃	460	458
119	-Br	-NH-N=CH-		-H	461	
120	-CH₃	-O-CH ₂ CH ₂ -1-imidazolyl	-OCH₃	-H	496	
121	-CH₃	-OCH₃	-OCH₃	-OCH₃	446	

122	-CH₃	-N=N-NH-		-H	397.2	395. 2
123	-CH₃	-O-CH₂CH₂-1-methyl-imidazolH 1-yl		-H	480	
124	-Br	-CH=N-NH-		-H	461.3	458. 1/46 0
125	-CH₃	-NH-N=CH-		-H	396	
126	-Br	-OCH₂CH₂-(4-methyl-piperazin- 1-yl)	-H	-H	562/ 564	560/ 562

The compounds of formula X₇

wherein R¹, R², R³, R⁷ and R⁸ are as defined in Table 7, may be prepared by following the procedure of Example 1 but using the appropriate starting materials.

TABLE 7

Ex	R1	R ²	R ³	R ⁷	R ⁸	*ES+	*ES-
127	-OCH₃	-OH	-H	-OH	- OCH₃		
128	-H	-CH₃	- SO₂NH₂	-O-CH₂CH₂-1-imidazolyl	-H	466	464
129	-OCH₃	-OH	-H	-O-CH ₂ CH ₂ -1-imidazolyl	- OCH₃		
130	-OCH₃	-OH	-H	-O-CH₂CH₂-OH	- OCH₃	399	397
131	-OCH₃	-OH	-H	-O-(1-methyl-azacyclohept-4-yl)	-H	436	
132	-CH₃	-Н	- SO₂NH₂	-O-CH ₂ CH ₂ -1-imidazolyl	-H	466	464
133	-OCH₃	-OH	-H	-O-CH ₂ CH ₂ -(1-methyl)- azacyclopent-2-yl	-H	436	434
134	-OCH₃	-OH	-H	-CF ₃	-H		<u> </u>
135	-N=C	H-CH=CH-	-H	-O-CH ₂ CH ₂ -1-imidazolyl	- OCH₃		
136	-OCH₃	-OH	-H	-O-CH₂CH₂CH₂-1-imidazolyl	- OCH₃	463	461
137	-OCH₃	-OH	-H	-O-CH₂CH₂-1-piperidyl	- OCH₃	466.4	464.4
138	-CI	H=N-NH-	-H	-NH-N=CH-			
139	-CI	H=N-NH-	-H	-CH-N=NH-		<u> </u>	

140	-OCH₃	-OH	-H	-O-CH ₂ CH ₂ -1-piperidyl	-H	436	434
141	-H	-OCH₃	-	-O-CH ₂ CH ₂ -1-pyrrolidinyl	-H	485.3	483.3
			SO ₂ NH ₂				
142	-H	-OCH₃	-	-O-CH ₂ CH ₂ -1-pyrrolidinyl	-CH₃	499.2	497.3
	}		SO ₂ NH ₂				
143	-H	-OCH₃	-	-O-CH ₂ CH ₂ CH ₂ -morpholino	-	545.2	545.3
			SO ₂ NH ₂		OCH ₃		
144	-H	-OCH(CH ₃) ₂	-	-O-CH₂CH₂-(4-methyl-	-	572.2	570.3
			SO ₂ NH ₂	piperazin-1-yl)	OCH ₃		
145	-H	-OCH₃	-	-O-CH₂CH₂-1-piperidinyl	-H	499.2	497.3
			SO ₂ NH ₂			5 10 0	
146	-CH₃	-OCH₃		-O-CH ₂ CH ₂ CH ₂ -1-pyrrolidinyl	-	543.2	
			SO ₂ NH ₂		OCH ₃	540.0	
147	-CH₃	-OCH₃	- CO NIII	-O-CH ₂ CH ₂ CH ₂ -1-pyrrolidinyl	-H	513.2	511.2
440	 	OCH(CH)	SO ₂ NH ₂	O CH CH 1 pinosidinul	-H	527.2	525 2
148	-H	-OCH(CH ₃) ₂	SO VIII	-O-CH₂CH₂-1-piperidinyl	-	527.2	525.3
140		CI	SO ₂ NH ₂	-N(CH ₃) ₂	 	429.3	427.3
149	-H	-CH₃	SO ₂ NH ₂	-14(OH3)2	OCH₃	423.3	421.5
150	СП	-CH₃	302NH2	-O-CH ₂ CH ₂ CH ₂ -1-pyrrolidinyl	00113	527.2	525.3
150	-CH₃	<u>-СП3</u>	SO ₂ NH ₂		OCH ₃	321.2	525.5
151	-OCH₃	-H	-	-O-CH ₂ CH ₂ CH ₂ -1-pyrrolidinyl	-	529.2	527.3
131	-00/13	-3,	SO ₂ NH ₂	2 3.123.123.12 1 pyrionality	OCH ₃		
152	-H	-F	-	-N(CH ₃) ₂	-	433.1	
102	''	•	SO ₂ NH ₂		OCH₃	1]
153	-H	-CH ₃	-	-O-CH ₂ CH ₂ -(1-methyl-	-H		
		_	SO ₂ NH ₂	pyrrolidin-2-yl)			
154	-H	-OCH₃	-	-O-CH ₂ CH ₂ -OH	-H	432.2	430.2
			SO ₂ NH ₂				
155	-H	-CH₃	-	-O-CH₂CH₂-(1-methyl-	-	513.2	511.3
			SO ₂ NH ₂	pyrrolidin-2-yl)	OCH₃	L	
156	-OCH₃	-H	-	-O-CH₂CH₂-1-piperidinyl	-H	499.2	497.3
		ļ.,	SO ₂ NH ₂	0.011.011.4	 	5450	640.0
157	-OCH₃	-H	-	-O-CH₂CH₂-1-pyrrolidinyl	-	515.2	513.2
	ļ	0.1	SO ₂ NH ₂	0.011.011.011	OCH ₃	446.2	444.2
158	-H	-CH₃	CO NIU	-O-CH₂CH₂-OH	OCH -	440.2	444.2
450			SO ₂ NH ₂	O CH CH 1 pyrrolidinyl	OCH ₃	513.3	511.3
159	- U	-H	SO ₂ NH ₂	-O-CH ₂ CH ₂ -1-pyrrolidinyl	-CH3	313.3	311.3
100	OC ₂ H ₅	-OCH₃	SU2INIT2	-O-CH ₂ CH ₂ -(4-methyl-	+	574.2	572.2
160	-OCH₃	- 	SO ₂ NH ₂	piperazin-1-yl)	OCH ₃	017.2	3, 2.2
161	-H	-CI	- 00214112	-(4-methyl-piperazin-1-yl)	-H	474.5	472.5
101	-11	-01	SO ₂ NH ₂	(month piperazin-1 ji)	''		
162	-H	-CH ₃	-	-O-CH ₂ CH ₂ -(4-cyclopentyl-	-H	552.3	550.3
102] - ' '	J. 13	SO ₂ NH ₂	piperazin-1-yl)			
163	-CH=C	CH-CH=CH-	-	-(4-methyl-piperazin-1-yl)	-H	490.5	488.4
.55	5,,_\		SO ₂ NH ₂	,			
164	-H	-H	-	-O-CH ₂ CH ₂ -piperazin-1-yl	-H	470.2	468.3
			SO ₂ NH ₂				
165	-H	-OCH₃		-Н	T-	402.2	400.2

			SO ₂ NH ₂		OCH ₃		
166	-H	-OCH₃	- SO₂NH₂	-O-CH ₂ CH ₂ -(4-benzyl- piperazin-1-yl)	-H	590.3	588.3
167	-CH₃	-H	- SO₂NH₂	-O-CH₂CH₂-1-pyrrolidinyl	-H	469.2	467.3
168	-Br	-H	- SO₂NH₂	-O-CH₂CH₂-1-piperidinyl	-H	549.1	547.2

The compounds of formula X₈

$$R^1$$
 R^2
 R^3
 R^3
 R^4
 R^8

wherein R¹, R², R³ and R⁸ are as defined in Table 8, may be prepared by following the procedure of Example 1 but using the appropriate starting materials.

TABLE 8

Ex	R ¹	R ²	R ³	R ⁸	*ES+	*ES-
169	4-morpholino	-H	-H	-H		
170	-CH=	N-NH-	-H	-H	363	361
171	-OCH₃	-OH	-H	-H		
172	-CH ₃	-H	-SO₂NH₂	-OCH₃	446	

The compounds of formula X9

wherein R⁷, R⁸ and R⁹ are as defined in Table 9, may be prepared by following the procedure of Example 1 but using the appropriate starting materials.

TABLE 9

Exampl	R ⁷	R ⁸	R ⁹	*ES+	*ES-
e		1			l
173	-O-CH ₂ CH ₂ -1-piperidyl	-OCH₃	-H	470.3	468.3
174	-O-(1-methyl-azacyclohept-4-yl)	-Н	-H	440	
175	-O-(1-methyl-azacyclopent-2-yl)	-H	-H	440	438

176	-O-CH ₂ CH ₂ -CH ₂ -1-imidazolyl	-OCH₃	-H	467	465
177	-OCH₃	-OCH₃	-		
			OCH ₃		
178	-O-CH ₂ CH ₂ -1-(1,2,4-triazolyl)	-H	-H	424	422
179	-O-CH ₂ CH ₂ -1-piperidyl	-H	-H		
180	-O-CH ₂ CH ₂ -OH	-OCH₃	-H		
181	-O-CH ₂ CH ₂ -4-morpholino	-H	-H	442	440
182	-O-CH ₂ CH ₂ CH ₂ -1-imidazolyl	-H	-H		

The compounds of formula X₁₀

wherein R¹, R⁷ and R⁹ are as defined in Table 10, may be prepared by following the procedure of Example 1 but using the appropriate starting materials.

TABLE 10

EX	R ¹	R ⁷	R ⁹	*ES+	*ES-
183	-CH ₂ CH ₂ -OH	-OCH₃	- OCH₃	411	409
184	-SO₂NH₂	-O-CH ₂ CH ₂ -1- imidazolyl	-H	496.3	494.3

The compounds of formula X₁₁

wherein R⁸ is -OCH₃ (Example 185) or -OH (Example 186), may be prepared by following the procedure of Example 1 but using the appropriate starting materials.

The compounds of formula X_{12}

wherein R^0 , R^1 , R^7 , R^8 and R^9 are as defined in Table 12, may be prepared by following the procedure of Example 1 but using the appropriate starting materials.

TABLE 12

Example	R ⁰	R1	R ⁷	R ⁸	R ⁹
187	-H	-H	-H	-SO₂NH₂	-H
188	-H	-H	-H	-H	-CH ₃
189	-H	-H	-H	-CH₃	-H
190	-H	-F	-OCH₃	-OCH₃	-OCH₃
191	-H	-H	-H	-CH₃	-CH₃
192	-H	-Н	-CH₃	-H	-CH ₃
193	-H	-H	-OCH₃	-CH₃	-H
194	I-H	-H	-H	-H	-N(CH ₃) ₂
195	-H	-H	-OCH(CH ₃) ₂	-H	-H
196	-H	-H	-H	-OCH(CH ₃) ₂	-H
197	-H	-H	-CH(CH ₃) ₂	-H	-H
198	-H	-H	-H	-CH=1	
199	-H	-H	-OCH₃	-CH₃	-OCH₃
200	-	-H	-OCH₃	-OCH₃	-OCH₃
1	OCH ₃				
201	-H	-H	-H	-H	-H
202	-CH ₃	-CI_	-OCH₃	-OCH₃	-OCH₃
203	-H	-H	-H	-H	-CF ₃
204	-CI	-CH₃	-OCH₃	-OCH₃	-OCH₃
205	-H	-H	-H		CH=N-
206	-H	-H	-H	-N(-CH ₂ CH ₂ CH ₂ -4-n	norpholino)-CH=CH-
207	-H	-H	-CH	I ₂ CH ₂ - CH ₂ -	<u>-H</u>

The compounds of formula X_{13}

wherein R1, R2, R3 and R5 are as defined in Table 13, may be prepared by following the procedure of Example 1 but using the appropriate starting materials.

TABLE 13 R⁵ *ES-*ES+ R^3 R^2 \overline{R}^1 Example 514.0 -CF₃ -SO₂NHCH₃ -H 208 -H -Br -H -SO₂NHC₃H₇ -H 209 -H -SO2NH-CH2CH--Br -H 210 cyclopropyl -SO₂NHCH₃ -CH₃ -H -H 211 -Br -SO₂N(CH₃)₂ -H -H 212 -CI -SO₂NHCH₃ -H -H 213 -1 . -SO₂NHCH₃ -H -H 214 -Br -H -SO2NHCH3 -H 215 474 476 -SO₂NH₂ -H -OCH₃ 216 -CH₃ 513.4 515.5 -SO₂NH₂ -H piperidino -H 217 -H 517.4 515.4 -SO₂NH₂ -H morpholin 218

The compounds of formula X₁₄

-H

-H

-H

-H

219

220

221

222

-C₂H₅

-CH₃

-CH₃

phenyl

-SO₂NH₂

-SO₂NH₂

-SO₂NH₂

-SO₂NHCH₃

wherein R2, R3, R5, R7 R8 and R9 are as defined in Table 14, may be prepared by following the procedure of Example 1 but using the appropriate starting materials.

-H

-CI

-H

-H

460.4

508.2

506.3

TABLE 44

				TABLE 14				T . = = -
Ex	R²	R ³	R ⁵	R ⁷	R ⁸	R	*ES	*ES-
223	-OCH₃	SO ₂ NH ₂	-Н	-Н	-CH N(C			424
224	-OCH₃	- SO ₂ NH ₂	-H	-O-CH ₂ CH ₂ -OCH ₃	-OCH₃	-H	476. 2	474.3

225	-OCH(CH ₃) ₂	SO ₂ NH ₂	-H	-O-CH ₂ CH ₂ - piperidino	-OCH₃	-H	551. 2	555.3
226	-OCH₃	SO ₂ NH ₂	-H	-O-CH₂CH₂-(4- methyl-piperazin-1- yl)	-H	-H	514. 3	512.3
227	-OCH₃	- SO₂NH₂	-H	-morpholino	-OCH₃	-H	487. 1	485.2
228	-CH₃	SO ₂ NH ₂	-H	-O-CH₂CH₂CH₂- piperidino	-OCH₃	-H	527. 3	
229	-CH₃	SO ₂ NH ₂	-H	-O-CH ₂ CH ₂ CH ₂ -1- pyrrolidinyl	-OCH₃	-H	513. 2	511.3
230	-O-CH ₂ CH ₂ - OCH ₃	- SO₂NH₂	-H	-H	-CH: N(CI		539	537
231	-(4-methyl- piperazin-1-yl)	- SO₂NH₂	-H	-OCH₃	-OCH₃	OCH	530. 4	528.4
232	-OCH₃	SO ₂ NH ₂	-H	-O-CH₂CH₂-OH	-OCH₃	-H	462. 2	460.3
233	-OCH₃	- SO₂NH₂	-Br	-O-CH₂CH₂-OCH₃	-OCH₃	-H		
234	-CH₃	- SO₂NH₂	-H	-O-CH ₂ CH ₂ -(4- methyl-piperazin-1- yl)	-OCH₃	-H	528. 2	526.3
235	-CH₃	- SO₂NH₂	-H	-O- CH ₂ CH ₂ - N(CH ₃) ₂	-H	-H	443. 2	441.3
236	-H	- SO₂NH₂	-H	-O-CH ₂ CH ₂ -1- pyrrolidinyl	-OCH₃	-H	485. 2	483.3
237	-CH₃	SO ₂ NH ₂	-H	-H	-N(CI N=C	H₃)- :H-	410	
238	-CH₃	- SO₂NH₂	-H	-CH₃	-OCH₃	OCH 3		
239	-CH ₃		-Br	-O-CH ₂ CH ₂ -OCH ₃	-OCH₃	-H	538/	
		SO ₂ NH ₂					540	
240	-OCH₃	- SO₂NH₂	-H	-OCH₃	-H	-Н	402. 2	400.2
241	-Н	- SO₂NH₂	÷H	-H	-CO- NH- CH ₂ C H ₂ - OCH ₃	-н		

ES+ means electrospray MS positive mode; ES- means electrospray MS negative mode; and EL means electron impact MS.

The compounds of formula I and their pharmaceutically acceptable salts, exhibit valuable pharmacological properties when tested in in vitro assays, and are therefore useful as pharmaceuticals. They are effective especially as protein tyrosine kinase inhibitors; they exhibit,

for example, powerful inhibition of the tyrosine kinase activity of anaplastic lymphoma kinase (ALK) and the fusion protein of NPM-ALK. This protein tyrosine kinase results from a gene fusion of nucleophosmin (NPM) and the anaplastic lymphoma kinase (ALK), rendering the protein tyrosine kinase activity of ALK ligand-independent. NPM-ALK plays a key role in signal transmission in a number of hematopoetic and other human cells leading to hematological and neoplastic diseases, for example in anaplastic large-cell lymphoma (ALCL) and non-Hodgkin's lymphomas (NHL), specifically in ALK+ NHL or Alkomas, in inflammatory myofibroblastic tumors (IMT) and neuroblastomas. (Duyster J et al. 2001 Oncogene 20, 5623-5637). In addition to NPM-ALK other gene fusions have been identified in human hematological and neoplastic diseases; mainly TPM3-ALK (a fusion of nonmuscle tropomyosin with ALK).

The ALK inhibitory activity and inhibitory activity against ALK-containing gene fusions of the compounds described herein make them useful pharmaceutical agents for the treatment of proliferative diseases. A proliferative disease is mainly a tumor disease (or cancer) (and/or any metastases). The inventive compounds are particularly useful for treating a tumor which is a breast cancer, genitourinary cancer, lung cancer, gastrointestinal cancer, epidermoid cancer, melanoma, ovarian cancer, pancreas cancer, neuroblastoma, head and/or neck cancer or bladder cancer, or in a broader sense renal, brain or gastric cancer; in particular (i) a breast tumor; an epidermoid tumor, such as an epidermoid head and/or neck tumor or a mouth tumor; a lung tumor, for example a small cell or non-small cell lung tumor; a gastrointestinal tumor, for example, a colorectal tumor; or a genitourinary tumor, for example, a prostate tumor (especially a hormone-refractory prostate tumor); or (ii) a proliferative disease that is refractory to the treatment with other chemotherapeutics; or (iii) a tumor that is refractory to treatment with other chemotherapeutics due to multidrug resistance.

In a broader sense of the invention, a proliferative disease may furthermore be a hyperproliferative condition such as leukemias, hyperplasias, fibrosis (especially pulmonary, but also other types of fibrosis, such as renal fibrosis), angiogenesis, psoriasis, atherosclerosis and smooth muscle proliferation in the blood vessels, such as stenosis or restenosis following angioplasty. Proliferative diseases treated according to the present method include tumors of blood and lymphatic system (e.g. Hodgkin's disease, Non-Hodgkin's lymphoma, Burkitt's lymphoma, AIDS-related lymphomas, malignant immunoproliferative diseases, multiple myeloma and malignant plasma cell neoplasms, lymphoid leukemia, acute or chronic myeloid leukemia, acute or chronic lymphocytic leukemia, monocytic leukemia, other leukemias of specified cell type,

leukemia of unspecified cell type, other and unspecified malignant neoplasms of lymphoid, haematopoietic and related tissues, for example diffuse large cell lymphoma, T-cell lymphoma or cutaneous T-cell lymphoma). Myeloid cancer includes e.g. acute or chronic myeloid leukaemia.

Where a tumor, a tumor disease, a carcinoma or a cancer are mentioned, also metastasis in the original organ or tissue and/or in any other location are implied alternatively or in addition, whatever the location of the tumor and/or metastasis.

The compound is selectively toxic or more toxic to rapidly propiferating cells than to normal cells, particularly in human cancer cells, e.g., cancerous tumors, the compound has significant antiproliferative effects and promotes differentiation, e.g., cell cycle arrest and apoptosis.

The compounds of the present invention may be administered alone or in combination with other anticancer agents, such as compounds that inhibit tumor angiogenesis, for example, the protease inhibitors, epidermal growth factor receptor kinase inhibitors, vascular endothelial growth factor receptor kinase inhibitors and the like; cytotoxic drugs, such as antimetabolites, like purine and pyrimidine analog antimetabolites; antimitotic agents like microtubule stabilizing drugs and antimitotic alkaloids; platinum coordination complexes; anti-tumor antibiotics; alkylating agents, such as nitrogen mustards and nitrosoureas; endocrine agents, such as adrenocorticosteroids, androgens, anti-androgens, estrogens, anti-estrogens, aromatase inhibitors, gonadotropin-releasing hormone agonists and somatostatin analogues and compounds that target an enzyme or receptor that is overexpressed and/or otherwise involved a specific metabolic pathway that is upregulated in the tumor cell, for example ATP and GTP phosphodiesterase inhibitors, protein kinase inhibitors, such as serine, threonine and tyrosine kinase inhibitors, for example, Abelson protein tryosine kinase and the various growth factors. their receptors and kinase inhibitors therefore, such as, epidermal growth factor receptor kinase inhibitors, vascular endothelial growth factor receptor kinase inhibitors, fibroblast growth factor inhibitors, insulin-like growth factor receptor inhibitors and platelet-derived growth factor receptor kinase inhibitors and the like; methionine aminopeptidase inhibitors, proteasome inhibitors, and cyclooxygenase inhibitors, for example, cyclooxygenase-1 or -2 inhibitors. Such antiproliferative agents further include, aromatase inhibitors, antiestrogens, topoisomerase I inhibitors, topoisomerase II inhibitors, microtubule active agents, alkylating agents, histone deacetylase inhibitors, farnesyl transferase inhibitors, COX-2 inhibitors, MMP inhibitors, mTOR inhibitors, antineoplastic antimetabolites, platin compounds, compounds decreasing the protein

kinase activity and further anti-angiogenic compounds, gonadorelin agonists, anti-androgens, bengamides, bisphosphonates, antiproliferative antibodies and temozolomide (TEMODAL®).

The term "aromatase inhibitors" as used herein relates to compounds which inhibit the estrogen production, i.e. the conversion of the substrates androstenedione and testosterone to estrone and estradiol, respectively. The term includes, but is not limited to steroids, especially exemestane and formestane and, in particular, non-steroids, especially aminoglutethimide, vorozole, fadrozole, anastrozole and, very especially, letrozole. A combination of the invention comprising an antineoplastic agent which is an aromatase inhibitor may particularly be useful for the treatment of hormone receptor positive breast tumors.

The term "antiestrogens" as used herein relates to compounds which antagonize the effect of estrogens at the estrogen receptor level. The term includes, but is not limited to tamoxifen, fulvestrant, raloxifene and raloxifene hydrochloride.

The term "topoisomerase I inhibitors" as used herein includes, but is not limited to topotecan, irinotecan, 9-nitrocamptothecin and the macromolecular camptothecin conjugate PNU-166148 (compound A1 in WO99/17804).

The term "topoisomerase II inhibitors" as used herein includes, but is not limited to the antracyclines doxorubicin (including liposomal formulation, e.g. CAELYX™), epirubicin, idarubicin and nemorubicin, the anthraquinones mitoxantrone and losoxantrone, and the podophillotoxines etoposide and teniposide.

The term "microtubule active agents" relates to microtubule stabilizing and microtubule destabilizing agents including, but not limited to the taxanes paclitaxel and docetaxel, the vinca alkaloids, e.g., vinblastine, especially vinblastine sulfate, vincristine especially vincristine sulfate, and vinorelbine, discodermolide and epothilones, such as epothilone B and D.

The term "alkylating agents" as used herein includes, but is not limited to cyclophosphamide, ifosfamide and melphalan.

The term "histone deacetylase inhibitors" relates to compounds which inhibit the histone deacetylase and which possess antiproliferative activity.

The term "farnesyl transferase inhibitors" relates to compounds which inhibit the farnesyl transferase and which possess antiproliferative activity.

The term "COX-2 inhibitors" relates to compounds which inhibit the cyclooxygenase type 2 enyzme (COX-2) and which possess antiproliferative activity such as celecoxib (Celebrex®), rofecoxib (Vioxx®) and lumiracoxib (COX189).

The term "MMP inhibitors" relates to compounds which inhibit the matrix metalloproteinase (MMP) and which possess antiproliferative activity.

The term "antineoplastic antimetabolites" includes, but is not limited to 5-fluorouracil, tegafur, capecitabine, cladribine, cytarabine, fludarabine phosphate, fluorouridine, gemcitabine, 6-mercaptopurine, hydroxyurea, methotrexate, edatrexate and salts of such compounds, and furthermore ZD 1694 (RALTITREXED™), LY231514 (ALIMTA™), LY264618 (LOMOTREXOL™) and OGT719.

The term "platin compounds" as used herein includes, but is not limited to carboplatin, cis-platin and oxaliplatin.

The term "compounds decreasing the protein kinase activity and further anti-angiogenic compounds" as used herein includes, but is not limited to compounds which decrease the activity of e.g. the Vascular Endothelial Growth Factor (VEGF), the Epidermal Growth Factor (EGF), c-Src, protein kinase C, Platelet-derived Growth Factor (PDGF), Bcr-Abl tyrosine kinase, c-kit, Flt-3 and Insulin-like Growth Factor I Receptor (IGF-IR) and Cyclin-dependent kinases (CDKs), and anti-angiogenic compounds having another mechanism of action than decreasing the protein kinase activity.

Compounds which decrease the activity of VEGF are especially compounds which inhibit the VEGF receptor, especially the tyrosine kinase activity of the VEGF receptor, and compounds binding to VEGF, and are in particular those compounds, proteins and monoclonal antibodies generically and specifically disclosed in WO 98/35958 (describing compounds of formula I), WO 00/09495, WO 00/27820, WO 00/59509, WO 98/11223, WO 00/27819, WO 01/55114, WO 01/58899 and EP 0 769 947; those as described by M. Prewett et al in Cancer Research 59 (1999) 5209-5218, by F. Yuan et al in Proc. Natl. Acad. Sci. USA, vol. 93, pp. 14765-14770, December 1996, by Z. Zhu et al in Cancer Res. 58, 1998, 3209-3214, and by J. Mordenti et al in

Toxicologic Pathology, vol. 27, no. 1, pp 14-21, 1999; in WO 00/37502 and WO 94/10202; Angiostatin[™], described by M. S. O'Reilly et al, Cell 79, 1994, 315-328; and Endostatin[™], described by M. S. O'Reilly et al, Cell 88, 1997, 277-285;

compounds which decrease the activity of EGF are especially compounds which inhibit the EGF receptor, especially the tyrosine kinase activity of the EGF receptor, and compounds binding to EGF, and are in particular those compounds generically and specifically disclosed in WO 97/02266 (describing compounds of formula IV), EP 0 564 409, WO 99/03854, EP 0520722, EP 0 566 226, EP 0 787 722, EP 0 837 063, WO 98/10767, WO 97/30034, WO 97/49688, WO 97/38983 and, especially, WO 96/33980;

compounds which decrease the activity of c-Src include, but are not limited to, compounds inhibiting the c-Src protein tyrosine kinase activity as defined below and to SH2 interaction inhibitors such as those disclosed in WO97/07131 and WO97/08193;

compounds inhibiting the c-Src protein tyrosine kinase activity include, but are not limited to, compounds belonging to the structure classes of pyrrolopyrimidines, especially pyrrolo[2,3-d]pyrimidines, purines, pyrazopyrimidines, especially pyrazo[3,4-d]pyrimidines,

pyrazopyrimidines, especially pyrazo[3,4-d]pyrimidines and pyridopyrimidines, especially pyrido[2,3-d]pyrimidines. Preferably, the term relates to those compounds disclosed in WO 96/10028, WO 97/28161, WO97/32879 and WO97/49706;

compounds which decreases the activity of the protein kinase C are especially those staurosporine derivatives disclosed in EP 0 296 110 (pharmaceutical preparation described in WO 00/48571) which compounds are protein kinase C inhibitors;

further specific compounds that decrease protein kinase activity and which may also be used in combination with the compounds of the present invention are Imatinib (Gleevec®/Glivec®), PKC412, Iressa[™] (ZD1839), PKI166, PTK787, ZD6474, GW2016, CHIR-200131, CEP-7055/CEP-5214, CP-547632 and KRN-633;

anti-angiogenic compounds having another mechanism of action than decreasing the protein kinase activity include, but are not limited to e.g. thalidomide (THALOMID), celecoxib (Celebrex), SU5416 and ZD6126.

The term "gonadorelin agonist" as used herein includes, but is not limited to abarelix, goserelin and goserelin acetate. Goserelin is disclosed in US 4,100,274.

The term "anti-androgens" as used herein includes, but is not limited to bicalutamide (CASODEX™), which can be formulated, e.g. as disclosed in US 4,636,505.

The term "bengamides" relates to bengamides and derivatives thereof having aniproliferative properties.

1

The term "bisphosphonates" as used herein includes, but is not limited to etridonic acid, clodronic acid, tiludronic acid, pamidronic acid, alendronic acid, ibandronic acid, risedronic acid and zoledronic acid.

The term "antiproliferative antibodies" as used herein includes, but is not limited to trastuzumab (Herceptin™), Trastuzumab-DM1, erlotinib (Tarceva™), bevacizumab (Avastin™), rituximab (Rituxan®). PRO64553 (anti-CD40) and 2C4 Antibody.

The structure of the active agents identified by code nos., generic or trade names may be taken from the actual edition of the standard compendium "The Merck Index" or from databases, e.g. Patents International (e.g. IMS World Publications).

The compositions of the invention may be administered by any conventional route, in particular parenterally, for example in the form of injectable solutions or suspensions, enterally, e.g. orally, for example in the form of tablets or capsules, topically, e.g. in the form of lotions, gels, ointments or creams, or in a nasal or a suppository form. Pharmaceutical compositions comprising an agent of the invention in association with at least one pharmaceutical acceptable carrier or diluent may be manufactured in conventional manner by mixing with a pharmaceutically acceptable carrier or diluent. Unit dosage forms for oral administration contain, for example, from about 0.1 mg to about 500 mg of active substance. Topical administration is e.g. to the skin. A further form of topical administration is to the eye.

The compounds of formula I may be administered in free form or in pharmaceutically acceptable salt form, e.g. as indicated above. Such salts may be prepared in conventional manner and exhibit the same order of activity as the free compounds.

The inhibition of ALK tyrosine kinase activity is measured using known methods, for example using the recombinant kinase domain of the ALK in analogy to the VEGF-R kinase assay described in J. Wood et al. Cancer Res. <u>60</u>, 2178-2189 (2000). The table below reports the IC50 values for several compounds of the present invention. Each compound is tested twice, once each with two different preparations of ALK.

compound	IC50 µM
Ex. 48	0.048
Ex. 48	0.083
Ex. 58	0.046
Ex. 58	0.090
Ex. 56	0.18
Ex. 56	0.086

The compounds of formula I potently inhibit the growth of human NPM-ALK overexpressing murine BaF3 cells. The expression of NPM-ALK is achieved by transfecting the BaF3 cell line with an expression vector pClneo™ (Promega Corp., Madison WI, USA) coding for NPM-ALK and subsequent selection of G418 resistant cells. Non-transfected BaF3 cells depend on IL-3 for cell survival. In contrast NPM-ALK expressing BaF3 cells (named BaF3-NPM-ALK) can proliferate in the absence of IL-3 because they obtain proliferative signal through NPM-ALK kinase. Putative inhibitors of the NPM-ALK kinase therefore abolish the growth signal and result in antiproliferative activity. The antiproliferative activity of putative inhibitors of the NPM-ALK kinase can however be overcome by addition of IL-3 which provides growth signals through an NPM-ALK independent mechanism. [for an analogous cell system using FLT3 kinase see E Weisberg et al. Cancer Cell; 1, 433-443 (2002). The inhibitory activity of the compounds of formula I is determined, briefly, as follows: BaF3-NPM-ALK cells (15 000/microtitre plate well) are transferred to 96-well microtitre plates. The test compounds [dissolved in dimethyl sulfoxide (DMSO)] are added in a series of concentrations (dilution series) in such a manner that the final concentration of DMSO is not greater than 1 % (v/v). After the addition, the plates are incubated for two days during which the control cultures without test compound are able to undergo two cell-division cycles. The growth of the BaF3-NPM-ALK cells is measured by means of Yopro™ staining (T Idziorek et al. J. Immunol. Methods; 185:249-58 [1995]): 25 µl of lysis buffer consisting of 20 mM sodium citrate, pH 4.0, 26.8 mM sodium chloride, 0.4 % NP40, 20 mM EDTA and 20 mM was added to each well. Cell lysis was completed within 60 min at room temperature and total amount of Yopro bound to DNA was determined by measurement using the Cytofluor II 96-well reader (PerSeptive Biosystems) with the following settings: Excitation (nm) 485/20 and Emission (nm) 530/25.

IC₅₀ values are determined by a computer-aided system using the formula:

$$IC_{50} = [(ABS_{test} - ABS_{start})/(ABS_{control} - ABS_{start})] \times 100.$$

The IC₅₀ value in those experiments is given as that concentration of the test compound in question that results in a cell count that is 50 % lower than that obtained using the control

without inhibitor. The compounds of formula I exhibit inhibitory activity with an IC₅₀ in the range from approximately 0.01 to 1 μ M.

The antiproliferative action of the compounds of formula I can also be determined in the human KARPAS-299 lympoma cell line (described in WG Dirks et al. Int. J. Cancer 100, 49-56 (2002) using the same methodology described above for the BaF3-NPM-ALK cell line. The compounds of formula I exhibit inhibitory activity with an IC₅₀ in the range from approximately 0.01 to 1 μ M.

The following compounds are tested in the cellular assays in the BaF3 cell lines and the KARPAS-299 cell line as described above:

	BaF3	BaF3	KARPAS- 299
	NPM-ALK with IL3	NPM-ALK without IL3	
	IC50 (μM)	IC50 (µM)	IC50 (µM)
Ex. 56	2.7	0.41	0.15
Ex. 58	2.6	0.56	0.33
Ex. 48	1.4	0.55	0.27

Claims:

1. A method of treating or preventing a condition susceptible to treatment with an ALK inhibiting agent which comprises inhibiting ALK or a gene fusion thereof with a compound of formula I

wherein

X is $=CR^0$ - or =N-:

- each of R⁰, R¹, R², R³ and R⁴ independently is hydrogen; hydroxy; C₁-C₈alkyl; C₂-C₈alkenyl; C₃-C₈cycloalkyl; C₃-C₈cycloalkyl-C₁-C₈alkyl; hydroxyC₁-C₈alkyl; C₁-C₈alkoxyC₁-C₈alkyl; hydroxyC₁-C₈alkoxyC₁-C₈alkyl; arylC₁-C₈alkyl which optionally may be substituted on the ring by hydroxy, C₁-C₈alkoxy, carboxy or C₁-C₈alkoxycarbonyl;
- or R³ and R⁴ form together with the nitrogen and carbon atoms to which they are attached a 5 to 10 membered heterocyclic ring and comprising additionally 1, 2 or 3 heteroatoms selected from N, O and S;
- or each of R¹, R² and R³, independently, is halogen; halo-C₁-C₂alkyl; C₁-C₂alkoxy; halo-C₁-C₂alkoxy; hydroxyC₁-C₂alkoxy; C₁-C₂alkoxyC₁-C₂alkoxy; aryl; arylC₁-C₂alkoxy; heteroaryl; heteroaryl-C₁-C₄alkyl; 5 to 10 membered heterocyclic ring; nitro; carboxy; C₂-C₂alkoxycarbonyl; C₂-C₂alkylcarbonyl; -N(C₁-C₂alkyl)C(O) C₁-C₂alkyl; -N(R¹0)R¹¹; -CON(R¹0)R¹¹; -SO₂N(R¹0)R¹¹; or -C₁-C₄-alkylene-SO₂N(R¹0)R¹¹; wherein each of R¹0 and R¹¹ independently is hydrogen; hydroxy; C₁-C₃alkyl; C₂-C₃alkenyl; C₃-C₃cycloalkyl; C₃-C₃cycloalkyl-C₁-C₃alkyl; C₁-C₃alkyl; hydroxyC₁-C₃alkyl; hydroxyC₁-C₃alkyl; hydroxyC₁-C₃alkyl; (C₁-C₃alkyl)-carbonyl; arylC₁-C₃alkyl which optionally may be substituted on the ring by hydroxy, C₁-C₃alkoxy, carboxy or C₂-C₃alkoxycarbonyl; or 5 to 10 membered heterocyclic ring;
- or R¹ and R² form together with the C-atoms to which they are attached aryl or a 5 to 10 membered heteroaryl residue comprising one or two heteroatoms selected from N, O and S; or
- each of R⁵ and R⁶ independently is hydrogen; halogen; cyano; C₁-C₈alkyl; halo-C₁-C₈alkyl; C₂-C₈alkenyl; C₂-C₈alkynyl; C₃-C₈cycloalkyl; C₃-C₈cycloalkylC₁-C₈alkyl; C₅-C₁₀arylC₁-C₈alkyl; each of R⁷, R⁸ and R⁹ is independently hydrogen; hydroxy; C₁-C₈alkyl; C₂-C₈alkenyl; halo-C₁-C₈alkyl; C₁-C₈alkoxy; C₃-C₈cycloalkyl; C₃-C₈cycloalkylC₁-C₈alkyl; arylC₁-C₈alkyl;

-Y-R¹² wherein Y is a direct bond or O and R¹² is a substituted or unsubstituted 5, 6 or 7 membered heterocyclic ring comprising 1, 2 or 3 heteroatoms selected from N, O and S; carboxy; (C_1 - C_8 alkoxy)-carbonyl; -N(C_{1-8} alkyl)-CO-NR¹⁰R¹¹; -CONR¹⁰R¹¹; -N(R¹⁰)(R¹¹); -SO₂N(R¹⁰)R¹¹; R⁷ and R⁸ or R⁸ and R⁹, respectively form together with the carbon atoms to which they are attached, a 5 or 6 membered heteroaryl comprising 1, 2 or 3 heteroatoms selected from N, O and S; or a 5 or 6 membered carbocyclic ring.

in free form or salt form.

- 2. A method according to claim 1 wherein at most one of R^1 , R^2 or R^3 is -CON(R^{10}) R^{11} ; or -SO₂N(R^{10}) R^{11} .
- 3. A method of claim 1 wherein the condition is a proliferative disease.
- 4. A method of claim 1 wherein a gene fusion containing ALK is inhibited.

<u>Abstract</u>

There is provided a method of preventing or treating proliferative disorders by inhibiting ALK activity with compounds of formula I

wherein X, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ and R⁹ are as indicated in claim 1.

INVENTOR INFORMATION

Inventor One Given Name:: Patricia

Family Name:: Imbach

Postal Address Line One:: Mattenweg 7

City:: 4303 Kaiseraugst Country:: Switzerland

Citizenship Country:: Switzerland Inventor Two Given Name:: Johannes L

Family Name:: Roesel

Postal Address Line One:: Unterm Schellenberg 211

City:: CH-4125 Riehen Country:: Switzerland

Citizenship Country:: Germany

CORRESPONDENCE INFORMATION

Correspondence Customer Number:: 001095

APPLICATION INFORMATION

Title Line One:: Method of Treatment

Total Drawing Sheets:: 0 Formal Drawings?:: No

Application Type:: Provisional

Docket Number:: 4-33371P1

Secrecy Order in Parent Appl.?:: No

REPRESENTATIVE INFORMATION

Representative Customer Number:: 1095

Source:: PrintEFS Version 2.0

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP04/010466

International filing date: 17

17 September 2004 (17.09.2004)

Document type:

Certified copy of priority document

Document details:

Country/Office: US

Number:

60/504,374

Filing date:

18 September 2003 (18.09.2003)

Date of receipt at the International Bureau: 11 November 2004 (11.11.2004)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потиер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.