Charakterystyka Eulera

Weles & Kycia

Semestr zimowy 2023-24

Contents

Preliminaria		3
1.1	Kompleksy symplikacyjne	3

1 Preliminaria

Zacznijmy od przyjżenia się, czym jest **charakterystyka Eulera**, $\chi(X)$, dla poznanych już przestrzeni X:

- dla przestrzeni skończonych mamy $\chi(X) = |X|$
- jeśli zajmujemy się przestrzenią wektorową nad ciałem K, to $\chi(X) = \dim_K(X)$.

Poza tym, będziemy przyglądać się kompleksom symplikacyjnym (poniżej) oraz kompleksom łańcu-chowym (czyli uogólnieniom przestrzeni wektorowej).

1.1 Kompleksy symplikacyjne

Definicja 1.1: Kompleks symplikacyjny

Rozważmy zbiór (wierzchołków) V. Zbiór $\mathcal{K}\subseteq 2^{\overline{V}}$ nazywamy **kompleksem symplikacyjnym** na zbiorze V, jeśli

 \Longrightarrow dla każdego $v \in V$ mamy $\{v\} \in \mathcal{K}$

 \bowtie dla każdych B \subseteq A \subseteq V zachodzi A \in \mathcal{K} \Longrightarrow B \in \mathcal{K}

Będziemy głównie zajmować się $|V| < \infty$. Dla wygody często v będziemy utożsamiać z $\{v\}$.

Rodzinę $\mathcal{L} \subseteq \mathcal{K}$ nazywamy *podkompleksem* kompleksu \mathcal{K} , jeśli jest on kompleksem symplikacyjnym na zbiorze wierzchołków $V(\mathcal{L}) = \bigcup_{I \in \mathcal{L}} L$.

Definicja 1.2: Sympleks

Elementy $\sigma \in \mathcal{K}$ oraz podkompleksy zawierające wszystkie niepuste podzbiory σ są **sympleksami**. Wymiar sympleksu to dim $(\sigma) = |\sigma| - 1$.