※ 逻辑代数基础 ※

逻辑代数的公理

$$(1)$$
若 $A \neq 0$ 则 $A = 1$;

$$(2)\overline{1} = 0;\overline{0} = 1$$

$$(3)1 \cdot 1 = 1;0 + 0 = 0$$

$$(4)1 \cdot 0 = 0 \cdot 1 = 0; 0 + 1 = 1 + 0 = 1$$

$$(5)0 \cdot 0 = 0; 1+1=1$$

$$(1)$$
若 $A \neq 0$ 则 $A = 1$; 若 A $1 \cdot A = A; 0 \cdot A = 0;$

逻辑代数的基本公式

- (1) 交换律: A·B=B·A; A+B=B+A
- (2) 结合律: A·(B·C) = (A·B)·C;

$$\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$$

(3) 分配律: A·(B+C) = A·B+A·C;

$$A+B \cdot C = (A+B) \cdot (A+C)$$

(4) 01定律: 1·A=A; 0+A=A

$$0 \cdot A = 0; 1 + A = 1$$

(5) 互补律:
$$A \cdot \overline{A} = 0$$
; $A + \overline{A} = 1$

(7) 还原律:
$$\overline{A} = A$$

(8) 反演律 (De. Morgan定理):

$$\overline{A \cdot B} = \overline{A} + \overline{B}; \overline{A + B} = \overline{A} \cdot \overline{B}$$

证明:

A	В	$\overline{A \cdot B}$	\bar{A} + \bar{B}	
0	0	1	1	
0	1	1	1	
1	0	1	1	•
1	1	0	0	

$$\overline{A \cdot B} = \overline{A} + \overline{B};$$

同理:
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

注:

- 1、若两个逻辑函数具有完全相同的真值 表,则这两个逻辑函数相等。证明以上定律 的基本方法均采用真值表法。
 - 2、逻辑代数与普通代数是不同的。

$$\overline{A}B + A\overline{B} + AB = A + B + AB,$$

但当
$$A = B = 1$$
时: $\overline{A}B + A\overline{B} \neq A + B$

逻辑代数的常用公式(吸收律)

$$(1)A + AB = A;$$
 $A(A + B) = A$

$$(2)AB + A\overline{B} = A; \qquad (A+B)(A+\overline{B}) = A$$

$$(3)A + \overline{A}B = A + B;$$
 $A(\overline{A} + B) = AB$

逻辑代数的常用公式(吸收律)

异或运算

1、异或运算定义:

$$A \oplus B = AB + AB \Rightarrow A \setminus B$$
相异为1,相同为0;

$$A OB = AB + AB \Rightarrow A \setminus B$$
相同为1,相异为0;

可见: $\mathbf{A} \odot \mathbf{B} = \overline{A \oplus B}$

异或门逻辑符号

同或门逻辑符号

异或运算

思考: A⊙B ⊙ C ?

 $A \oplus B \oplus C$

Α	В	С	A⊙B ⊙ C	$A \oplus B \oplus C$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

解答:由真值表对比不难推出:

$A \odot B \odot C = A \oplus B \oplus C$

由归纳法可得出推论: 偶数个变量同或的结果与异或的结果互非; 奇数个变量同或的结果与异或的结果相等。

2、异或运算应用实例——数据加密:

加密数据输出端

明文: 01001110101…1011101

⊕ 密钥: 10100010101…0100110

密文: 111011000000…1111011

密文: 111011000000…1111011<──□□

加密数据接收端

⊕ 密钥: 10100010101…0100110

明文: 01001110101…1011101

3、异或运算的性质:

- (1) 交換律: $A \oplus B = B \oplus A$
- (2) 结合律: $(A \oplus B) \oplus C = A \oplus (B \oplus C)$
- (3) 分配律: $A(B \oplus C) = AB \oplus AC$

【证】右=
$$\overline{AB} \cdot AC + AB \cdot \overline{AC}$$

$$= (\overline{A} + \overline{B}) \cdot AC + AB \cdot (\overline{A} + \overline{C})$$

$$= \overline{B} \cdot AC + AB \cdot \overline{C}$$

$$= A \cdot (\overline{BC} + B\overline{C})$$

$$= A \cdot (B \oplus C) = \pm$$

- 3、异或运算的性质:
- (4) 常量与变量:

$$A \oplus 1 = \overline{A}$$
; $A \oplus 0 = A$; $A \oplus A = 0$; $A \oplus \overline{A} = 1$

(5) 因果互换关系:

【证】::
$$A \oplus B = C$$
, :: $A \oplus (A \oplus B) = A \oplus C$
即 $(A \oplus A) \oplus B = A \oplus C$
:: $A \oplus C = (A \oplus A) \oplus B = 0 \oplus B = B$

(6) 多变量异或运算:

在多变量异或运算中,若变量为1的个数为<mark>奇数</mark>,异或运算结果为1,若变量为1的个数为偶数,异或运算结果为0,与变量为0的个数无关。即:

(7) 多变量同或运算:

在多变量同或运算中,若变量为0的个数为偶数,同或运算结果为1,若变量为0的个数为奇数,同或运算结果为0,与变量为1的个数无关。即:

逻辑代数基本定律总结表

定律名称	公式		
0-1律	$A \cdot 0 = 0$	A + 1 = 1	
自等律	$A \cdot 1 = A$	A+0=A	
重叠律	$A \cdot A = A$	A + A = A	
互补律	$A \cdot \overline{A} = 0$	$A + \overline{A} = 1$	
交换律	$A \cdot B = B \cdot A$	A + B = B + A	
结合律	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	A + (B+C) = (A+B) + C	
分配律	$A \cdot (B+C) = AB + AC$	A + BC = (A + B)(A + C)	
还原律	= A	$\left(A^{^{\ast}}\right)^{^{\ast}}=A$	
反演律	$\overline{A \cdot B} = \overline{A} + \overline{B}$	$\overline{A+B} = \overline{A} \cdot \overline{B}$	
吸收律 (一)	$AB + A\overline{B} = A$	$(A+B)(A+\overline{B}) = A$	
吸收率 (二)	A + AB = A	$A \cdot (A+B) = A$	
吸收率 (三)	$A + \overline{A}B = A + B$	$A \cdot (\overline{A} + B) = AB$	
吸收率 (四)	$AB + \overline{AC} + BC = AB + \overline{AC}$	$(A+B)(\overline{A}+C)(B+C) = (A+B)(\overline{A}+C)$	