

We will use FastQC http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ Widely used but not the only one

Our Goal

Get the best possible input for de novo assembler

Which data to use? All or selected lanes? Trimmed? Quality filtered?

We expect

Genome subset: 3,252,223 bp 8 sequences

Launch FastQC

- 1) Process raw data
- 2) Process non-redundant data

We will use FASTX-Toolkit http://http://hannonlab.cshl.edu/fastx_toolkit/ To trim and filter Illumina reads

FASTX-Toolkit

Trim by quality

\$ fastq_quality_trimmer -h

Trim by coodinates

\$ fastx_trimmer -h

Input Files

Process lanes of raw OR nonredundant data

\$ ls DNA-seq/Raw
\$ ls DNA-seq/Nr

Output to

\$ DNA-seq/Clean

Keeping Track

#!/usr/bin/env bash

currentDir=\${PWD}
inDir=\$currentDir/DNA-seq/Nr
outDir=\$currentDir/DNA-seq/Clean

mkdir -p \$outDir

myFiles=(`find \$inDir -name *.fastq`)

for inFile in \${myFiles[@]}

do

fastx_trimmer -f XXX -l YYY -i \$inFile -o \$outDir/\$outFile

exit 0

Genome Assembly

De Novo

Best Practices

http://assemblathon.org/

In Resume

Every genome is a special case

So, know your genome as much as you can **BEFORE** doing sequencing

Choose appropriate strategy based on what is known

Red Fire Ant

Very repetitive genome with some repeats being very long

Ideally: use libraries with insert size > repeat size

The Hardest Way

We used long insert 454 libraries for the official genome release

You will try to see what happens when such libraries are not available

Assembly

We will use SOAPdenovo

http://soap.genomics.org.cn/soapdenovo.html

SOAPdenovo

The package consists of 4 programs: pregraph, contig, map and scaff

With paired end data the simplest is to run all programs in a single command

\$ SOAPdenovo-127mer all -s config_file -o output_prefix

Config file

[LIB]
#average insert size
avg_ins=344
##f sequence needs to be reversed
reverse_seq=0
#in which part(s) the reads are used
asm_flags=3
#cut the reads from the current librar

rd_len_cutoff=100
#in which order the reads are used while scaffolding

cutoff of pair number for a reliable connection (default 3)
pair_num_cutoff=3

#minimal mapped length to contigs for a reliable read location (default 32) map_len=60

Config file

q1=lane4_pair1.fast q2=lane4_pair2.fast q1=lane7_pair1.fast

All our reads come from the same sequencing library, so we define only 1 LIB

Keeping track

To find optimal parameters run multiple assemblies.

We will do at least 2 using launch scripts

\$ Is SOAPdenovo/Assembly conf01-lanes47_maplen60 Run_conf01-RL200D.sh #change THIS
myconf=conf01-lanes47_maplen60

#DO NOT CHANGE
mypref='echo \$myconf | cut -f1 -d'-"
runDir=\$PWD
myconf=\$runDir/\$myconf

#change THIS
L=200

#change THIS
for K in 35 65
do
DO NOT CHANGE
mydir="\$mypref"_K"\$K"_R_L"\$L"_D
mkdir -p "\$mydir"
cd \$mydir
SOAPdenovo-127mer all -p 1 -s "\$myconf" -K "\$K" -L "\$L" -R -D -o out &> LOG
cd ...
done

K-mer

The most influential parameter

Should be at least 1/3 of read length

Additional criteria may apply depending on the software used

N50 etc We will use script from Abyss \$ abyss-fac -t 200 scaffold.fasta \$ cd SOAPdenovo/Assembly/ \$./get.stats.sh > ../Statistics/stats

50 assemblies Different data and configs \$ \text{Is /scratch/cluster/monthly/oribagro/summer2012/SOAPdenovo/Assembly/}

What is in there?

Use available independent sequences:

Conserved gene sets (for eukaryotes http://korflab.ucdavis.edu/Datasets/cegma/)

Sequences in public databases

Independently assembled transcriptome

De Novo Transcriptome

We will use Trinity to assemble the transcriptome

http://trinityrnaseq.sourceforge.net/

Add this line to .bashrc

\$ echo "source /mnt/common/DevTools/DevTools.bashrc" >> .bashrc

RNA-Seq Data

\$ cd /scratch/cluster/weekly/username \$ ls RNA-seg/Raw/

Pick 1 file to run Trinity on it

\$ outDir=Trinity

\$ mkdir -p \$outDir \$ cd \$outDir

\$ cd \$outDir \$ Trinity.pl -h Genome to transcriptome alignments

Cross validation

9

