Project - mini_cpu

디지털 논리회로

전기공학부

201920xx 한O윤 (팀장)

201920xx 전O태 (팀원)

교류학과

2024xxxx 한O헌 (팀원)

프로젝트 목표

- 1. HDL(Hardware Description Language) 언어에 대한 이해를 높인다.
- 2. CPU의 동작 원리를 학습한다.
- 3. Verilog를 사용하여 간단한 ALU 동작을 구현하는 mini CPU를 설계한다.
- 4. Place&Route 과정을 통해 결과를 분석한다.

CPU 동작 원리

Memory

CPU 동작 원리

CPU RTL 회로도

ADD_SUB

Booth_Mul

ADD_SUB/Booth_MUL

Booth_Sub

Barrel_Shifter

Comparator

Comparator

전체 Simulation

CLK _																	
RST N	J																
		PC	100														
0000			morv	1102	(1303	1204	1405	1506	(1600	1700) (1807	1808	(1809) (1f0a			
0		MĂ	R (100	(101	(102	(103	104	105	(106	(107	(108	109	(110	(111	(112	113	
0000		MB		1001	1102	1303	1204	1405	1506	1600	1700	1807	1808	1809	9 (1f0a		
(Decode)																	
00				(01													
0000		OPO	CODE		(0001	(0011	(0010	(0100	(0101	(0110	(0111	(1000			(1111		
0		ADI	DRESS	1	(2	(3	(4	(5	(6	(0		7	(8	(9	(10		
(Excute)																	
0		Me	mory	(16	(4	(8	7	(4	(3	χo		(300	(306	X 400	(0		
0		ΔR	RESU		(16	(20	160	153	2448	306	307	(306					
			IVE-26								G	REAT	FR				
											Ä	QUAI					
												REAT QUAL ESS					
0																306	
0														Memory[10	0]	306	

Result & Assembly

```
// instruction
mem[100] = 16'b0001 mov.b mem[1],ar // ar = 16
mem[101] = 16'b0001 add.b mem[2],ar // ar = 16 + 4 = 20
mem[102] = 16'b0001 mul.w mem[3],ar // ar = 20 * 8 = 160
mem[103] = 16'b0001 sub.w mem[4],ar // ar = 160 - 7 = 153
mem[104] = 16'b0001 shl.w mem[5],ar // ar = 153 < 4 = 153 * 16 = 2448
mem[105] = 16'b0001 shr.w mem[6], ar \frac{1}{3} = 153 / 8 = 306
mem[106] = 16'b0001_{inc.w} ar // ar = 306 + 1 = 307
mem[107] = 16'b0001_ dec.w ar // ar = 307 - 1 = 306
mem[108] = 16'b0001_{cmp.w} mem[7],ar // great = 1
mem[109] = 16'b0001_{cmp.w} mem[8],ar // equal = 1
mem[110] = 16'b0001_ cmp.w mem[9],ar // less = 1
mem[111] = 16'b0001 mov.w ar, mem[10] // mem[10] = 306
```

Place & Route

finish report_tns
tns 0.00
finish report_wns
wns 0.00
finish report_worst_slack
worst slack INF

Place & Route

finish report_power									
Group	Internal Power	Switching Power	Leakage Power	Total Power	(Watts)				
Sequential Combinational Clock Macro Pad	3.09e-04 8.69e-03 0.00e+00 0.00e+00 0.00e+00	2.65e-04 7.87e-03 0.00e+00 0.00e+00 0.00e+00	7.43e-06 4.32e-05 0.00e+00 0.00e+00 0.00e+00	5.82e-04 1.66e-02 0.00e+00 0.00e+00 0.00e+00	3.4% 96.6% 0.0% 0.0% 0.0%				
Total	9.00e-03 52.4%	8.13e-03 47.3%	5.06e-05 0.3%	1.72e-02	100.0%				

finish report_design_area

Design area 2250 u^2 61% utilization.

[WARNING GUI-0076] QStandardPaths: XDG_RUNTIME_DIR not set, defaulting to '/tmp/runtime-root' Elapsed time: 0:03.37[h:]min:sec. CPU time: user 1.98 sys 0.33 (68%). Peak memory: 195156KB.

역할분담

₫ 한O윤: 전반적인 CPU 설계 및 마무리, P & R 결과 분석.

₫ 전O태: 자료 조사 및 ALU 기초 설계, 테스트 벤치 실행, P & R 결과 분석.

① 한O헌: 자료 조사 및 보고서 초안 작성.

참고문헌

bRd 3D. "CPU는 어떻게 작동할까?" YouTube, 2021, https://www.youtube.com/watch?v=Fg00LN30Ezg&t=777s

https://github.com/The-OpenROAD-Project