Freestyle Prediction

How to be hired?

Data preparation

```
hired <- read.csv('HireTrainApr10.csv',stringsAsFactors = T)
v <- sample(1:nrow(hired))
hiredScrambled <- hired[v,]

train <- hiredScrambled[1:1900,]
valid <- hiredScrambled[(nrow(hiredScrambled)-99):nrow(hiredScrambled),]</pre>
```

- First, I imported 'HireTrainApr10.csv' as a dataset.
- Number of rows of hired dataset: 2000
- For 1-step cross validation, I separated train dataset and valid dataset.

- To be familiar with my dataset, I conducted same code as textbook snippet.
- Used colnames, summary, unique, table function.

```
#Get to know your data
colnames(train)
summary(train)
unique(train$Coding)
unique(train$Impression)
unique(train$Major)
unique(train$College)
table(train$Coding,train$Hired)
table(train$Impression,train$Hired)
table(train$Major,train$Hired)
table(train$College,train$Hired)
```

```
> table(train$Coding,train$Hired)
             No Yes
  Excellent 35 598
             93 534
  0K
            576 64
  Weak
> table(train$Impression,train$Hired)
             No Yes
  Confident 168 304
           177 308
  Nerdy
  Outgoing 139 312
            220 272
  Shy
> table(train$Major,train$Hired)
               No Yes
  CS
              171 316
  DataScience 172 301
  IT
              182 282
             179 297
  Stats
> table(train$College,train$Hired)
               No Yes
  BestCollege 208 176
  BYU
              145 252
              120 256
  Peters
  PJIT
              119 221
  Redbrick
              112 291
```

```
> colnames(train)
[1] "Coding"
                                           "College"
                                                        "Hired"
                 "Impression" "Major"
> summary(train)
       Coding
                     Impression
                                         Major
                                                          College
                                                                     Hired
                                                   BestCollege:384
 Excellent:633
                Confident:472
                                            :487
                                                                     No: 704
                          :485
                                                   BYU
          :627
                 Nerdy
                                 DataScience:473
                                                               :397
                                                                     Yes:1196
 OK
                 Outgoing:451
 Weak
          :640
                                 ΙT
                                            :464
                                                               :376
                                                   Peters
                          :492
                                            :476
                                                   PJIT
                 Shy
                                                               :340
                                 Stats
                                                   Redbrick
                                                               :403
> unique(train$Coding)
[1] Excellent OK
                        Weak
Levels: Excellent OK Weak
> unique(train$Impression)
                                  Confident
[1] Outgoing Nerdy
                        Shy
Levels: Confident Nerdy Outgoing Shy
> unique(train$Major)
[1] DataScience CS
                            ΙT
                                        Stats
Levels: CS DataScience IT Stats
> unique(train$College)
[1] Peters
                BYU
                            BestCollege Redbrick
                                                    PJIT
Levels: BestCollege BYU Peters PJIT Redbrick
```

Bayesian

 Tried Odds of being hired when you are from Best College.

#Odds of being hired when you are from BestCollege

LikelihoodRatio<-round(TruePositive/FalsePositive,2)

PosteriorOdds <-LikelihoodRatio * PriorOdds

Posterior <-PosteriorOdds/(1+PosteriorOdds)

PriorOdds<-round(Prior/(1-Prior),2)</pre>

Prior

PriorOdds

TruePositive

FalsePositive

PosteriorOdds

Posterior

LikelihoodRatio

Prior<-nrow(hired[hired\$College=='BestCollege',])/nrow(hired)</pre>

```
> #Odds of being hired when you are from BestCollege
                                                                                                                            > Prior<-nrow(hired[hired$College=='BestCollege',])/nrow(hired)</pre>
                                                                                                                            > Prior
                                                                                                                            [1] 0.201
                                                                                                                            > PriorOdds<-round(Prior/(1-Prior),2)</pre>
                                                                                                                            > PriorOdds
                                                                                                                            [1] 0.25
                                                                                                                            > TruePositive<-round(nrow(hired[hired$Hired=='Yes' & hired$College=='BestCollege',])/nrow(hired[hired$Hired=='Yes',]),2)
                                                                                                                            > TruePositive
                                                                                                                            [1] 0.15
                                                                                                                            > FalsePositive<-round(nrow(hired[hired$Hired!='Yes' & hired$College=='BestCollege',])/nrow(hired[hired$Hired!='Yes',]),2)
                                                                                                                            > FalsePositive
                                                                                                                            [1] 0.29
                                                                                                                            > LikelihoodRatio<-round(TruePositive/FalsePositive,2)</pre>
                                                                                                                            > LikelihoodRatio
                                                                                                                            [1] 0.52
                                                                                                                            > PosteriorOdds <-LikelihoodRatio * PriorOdds</pre>
                                                                                                                            > PosteriorOdds
                                                                                                                            Γ17 0.13
                                                                                                                            > Posterior <-PosteriorOdds/(1+PosteriorOdds)</pre>
                                                                                                                             > Posterior
                                                                                                                            [1] 0.1150442
TruePositive<-round(nrow(hired[hired$Hired=='Yes' & hired$College=='BestCollege',])/nrow(hired[hired$Hired=='Yes',]),2)
FalsePositive<-round(nrow(hired[hired$Hired!='Yes' & hired$College=='BestCollege',])/nrow(hired[hired$Hired!='Yes',]),2)
```

- From the dataset analysis, we could know the distribution of the data and type of values for each column.
- In table (train\$Coding, train\$Hired), I could observe that most of 'Excellent' or 'Ok' coding skill could get a job while 'Weak' code skill could not get a job.
- From this analysis, I tried to focus on the coding skill first.

Chisq test

- I conducted Chisq Test to check which columns are dependent from hired status.
- Coding, Impression, College columns' p-value are less than 0.05. So, we can say they are kinda dependent to the hired status.
- (But, Never say never as professor said.)

```
#chisq test
chisq.test(train$Coding,train$Hired)
chisq.test(train$Impression,train$Hired)
chisq.test(train$Major,train$Hired)
chisq.test(train$College,train$Hired)
     > #chisq test
     > chisq.test(train$Coding,train$Hired)
            Pearson's Chi-squared test
     data: train$Coding and train$Hired
     X-squared = 1171.7, df = 2, p-value < 2.2e-16
    > chisq.test(train$Impression,train$Hired)
            Pearson's Chi-squared test
     data: train$Impression and train$Hired
    X-squared = 20.393, df = 3, p-value = 0.0001407
    > chisq.test(train$Major,train$Hired)
            Pearson's Chi-squared test
     data: train$Major and train$Hired
    X-squared = 1.8822, df = 3, p-value = 0.5972
     > chisq.test(train$College,train$Hired)
            Pearson's Chi-squared test
```

data: train\$College and train\$Hired

X-squared = 67.958, df = 4, p-value = 6.123e-14

Mosaic Plots to find irregular points

• As I mentioned before, most of 'Excellent' or 'ok' coding skills got a job, and 'Weak' coding skill couldn't get a job. So, I set default value for 'Excellent' or 'OK' to 'Yes' and 'Weak' to 'No'. But, there are still irregulars with this standard. To find irregular points, I conducted this codes.

```
#Mosaic plots to view
#coding
excellentCoding <- train[train$Coding== 'Excellent',]</pre>
mosaicplot(excellentCoding$Impression~excellentCoding$Hired,xlab='Impression',ylab='hired')
mosaicplot(excellentCoding$Major~excellentCoding$Hired,xlab='Major',ylab='hired')
mosaicplot(excellentCoding$College~excellentCoding$Hired,xlab='College',ylab='hired')
a <- excellentCoding[excellentCoding$Major=='CS',]</pre>
okCoding <- train[train$Coding== 'OK',]
mosaicplot(okCoding$Impression~okCoding$Hired,xlab='Impression',ylab='hired')
mosaicplot(okCoding$Major~okCoding$Hired,xlab='Major',ylab='hired')
mosaicplot(okCoding$College~okCoding$Hired,xlab='College',ylab='hired')
a <- okCoding[okCoding$College=='PJIT',]</pre>
weakCoding <- train[train$Coding=='Weak',]</pre>
mosaicplot(weakCoding$Impression~weakCoding$Hired,xlab='Impression',ylab='hired')
mosaicplot(weakCoding$Major~weakCoding$Hired,xlab='Major',ylab='hired')
mosaicplot(weakCoding$College~weakCoding$Hired,xlab='College',ylab='hired')
a<-weakCoding[weakCoding$Impression=='Shy' & weakCoding$Major=='Stats',]
```

From Excellent Coding Skills

- From this mosaic plots, we can observe some weird points.
- Nerdy, IT, or Best College has more 'No's for hired column. So, I tried to focus on that parts.

Excellent Impression Distribution

Excellent Major Distribution

Excellent College distribution

College

Excellent Coding

```
temp <- excellentCoding[ excellentCoding$Hired=='No',]</pre>
```

• With this code, many of Nerdy, Best College, IT students could not get a job. I also checked for other conditions like the below, irregular point is only at Nerdy IT Best college students.

```
isbyu <- excellentCoding[excellentCoding$College=='BYU' & excellentCoding$Major=='CS',]
table(isbyu$Hired)</pre>
```

• I saw what happens in this section and the result was like this. So, I added this rule.

```
hypothesis <- train[train$College=='BestCollege' & train$Impression=='Nerdy' & train$Major=='IT',]
table(hypothesis$Hired)</pre>
```

No Yes

‡	Coding •	Impression •	Major ^	College [‡]	Hired 🗘
	Excellent	Outgoing	CS	BestCollege	No
BestCo	Excerlent	Confident	CS	BYU	No
1692	Excellent	Confident	CS	BYU	No
728	Excellent	Shy	CS	BYU	No
1277	Excellent	Shy	CS	BYU	No
1190	Excellent	Nerdy	CS	Redbrick	No
1561	Excellent	Outgoing	CS	Redbrick	No
1090	Excellent	Nerdy	DataScience	BestCollege	No
1762	Excellent	Outgoing	DataScience	BestCollege	No
1593	Excellent	Confident	DataScience	BestCollege	No
1517	Excellent	Nerdy	DataScience	BYU	No
1003	Excellent	Confident	DataScience	Peters	No
714	Excellent	Nerdy	IT	BestCollege	No
1661	Excellent	Nerdy	IT	BestCollege	No
1096	Excellent	Nerdy	IT	BestCollege	No
320	Excellent	Nerdy	IT	BestCollege	No
1943	Excellent	Shy	IT	BestCollege	No
1369	Excellent	Nerdy	IT	BestCollege	No
408	Excellent	Shy	IT	BestCollege	No
1302	Excellent	Nerdy	IT	BestCollege	No
299	Excellent	Nerdy	IT	BestCollege	No
808	Excellent	Nerdy	IT	BestCollege	No
134	Excellent	Nerdy	IT	BestCollege	No
61	Excellent	Nerdy	IT	BestCollege	No
1800	Excellent	Outgoing	IT	BYU	No
1599	Excellent	Confident	IT	Peters	No
1427	Excellent	Shy	IT	PJIT	No
7	Excellent	Outgoing	IT	Redbrick	No
725	Excellent	Outgoing	Stats	BYU	No

From OK Coding Skills

- From the mosaic plots of OK coding skills, we could find some tendency. Generally, you can get a job with OK coding skills.
- From impression plot, Nerdy and Shy personalities are more likely to get 'No'.
- From College plot, BestCollege is more likely to get No than the others.

OK College Distribution

OK Impression Distribution

OK Major Distribution

Major

OK Coding Skills

temp7 <- train[train\$Coding=='OK' & train\$College=='BestCollege',]
mosaicplot(temp7\$Impression~temp7\$Hired,xlab='Impression',ylab='hired')</pre>

- With upper code, I made a plot.
- From OK coding skills in best college, most of students with nerdy and shy personalities couldn't get a job.

NULL

Impression

From Weak coding skills

- From the plots, we could observe most of students with weak coding skill could not get a job.
- People from Redbrick college & people with Nerdy personality are more likely to get a job.

Weak Major Distribution

Weak College Distribution

Weak Impression Distribution

Impression

Weak Coding Skills

• From the code below, I could find nerdy students from Redbridge could get a job even though they have weak coding skills.

```
temp <- weakCoding[weakCoding$College=='Redbrick'& weakCoding$Hired=='Yes',]
summary(temp)
temp <- weakCoding[weakCoding$Impression=='Nerdy' & weakCoding$Hired=='Yes',]
summary(temp)

temp <- train[train$College=='Redbrick' & train$Impression=='Nerdy' & train$Coding=='Weak',]
table(temp$Hired)</pre>
```

```
> summary(temp)
       Coding
                    Impression
 Excellent: 0
                               DataScience: 9
                                                                  Yes:33
                Outgoing : 2
                                                           : 0
                               Stats
                                                PJIT
                                                 Redbrick :33
> temp <- weakCoding[weakCoding$Impression=='Nerdy' & weakCoding$Hired=='Yes',]</pre>
> summary(temp)
       Coding
                    Impression
                                                                 Hired
 Excellent: 0
                Confident: 0
                               DataScience: 8
                                                                  Yes:35
                Outgoing : 0
 Weak
                                                PJIT
                                                            : 2
                               Stats
                                                           :27
                                                 Redbrick
> temp <- train[train$College=='Redbrick' & train$Impression=='Nerdy' & train$Cod
> table(temp$Hired)
 No Yes
```

3 27

Decision

```
decision <- rep('Yes',nrow(valid))
decision[valid$Coding=='Weak'] <- 'No'
decision[valid$Coding=='Weak' & valid$Impression=='Nerdy' & valid$College=='Redbrick'] <- 'Yes'
decision[valid$Major == 'IT' & valid$College=='BestCollege' & valid$Impression=='Nerdy'] <- 'No'
decision[valid$Coding=='OK' & valid$College=='BestCollege' & valid$Impression=='Nerdy'] <- 'No'
decision[valid$Coding=='OK' & valid$College=='BestCollege' & valid$Impression=='Shy'] <- 'No'
error <- mean(valid$Hired != decision)
error</pre>
```

- From my analysis, I conducted rules.
- 1. Fill all rows with 'Yes'.
- 2. If the students have 'Weak' coding skills, set them to 'No'.
- 3. But If they weak coding students come from 'Redbrick' and have 'Nerdy' personalities, set them to 'Yes'.
- 4. If coding skill is 'OK' and come from 'BestCollege' and their Impression are 'Nerdy or Shy', set them to 'No'.
- 5. Students from 'BestCollege' and 'IT' major and have 'Nerdy' impressions are 'No'.

Result

- I conducted 10 tests with this rules.
- My lowest error was 0.02, highest error was 0.06. So, I think my attempt is fair.
- Image is the result from Kaggle.

