№26 Экстремумы функций нескольких переменных. Необходимые условия экстремума. Достаточные условия экстремума.

Экстремумы функций нескольких переменных

Определение: Точки локального минимума/максимума называются точками экстремума.

Определение: M_0 -точка локального максимума(минимума) функции $u = u(x_1, x_2, ...x_n)$, если суще-

ствует окрестность ε точки M_0 , такая, что $u(M) < u(M_0)$ ($u(M) > u(M_0)$),и все $M \in \varepsilon(M_0)$

Необходимые условия экстремума

Теорема о необходимых условиях экстремума: Если M_0 -точка экстремума, то частные производные функции в этой точке равны 0 или не существуют.

Доказательство: Пусть $u=u(x_1,x_2,...x_n)$; если рассматриваем $\frac{\partial u}{\partial x_i}$, то все остальные переменные фиксируем (принимаем за const), и в точке в точке экстремума производная по этой переменной равно 0 или не существет согласно необходимому условию экстремума фунции одной переменной. Определение: Точки, в которых все частные производные равны 0 или не существуют, называются

Достаточные условия экстремума

критическими (стационарными).

Теорема о достаточных условиях экстремума: Пусть $u=u(x_1,x_2,...x_n)$ имеет непрерывные частные производные 2-ого порядка, и M_0 -критическая точка, тогда $\frac{\partial u}{\partial x_1}=0$; $\frac{\partial u}{\partial x_n}=0$ и du=0, тогда формула Тейлора в M_0 : $u(M) = u(M_0) + \frac{1}{2}d^2u(M_0) + 0(\rho^2)$

Доказательство(правдоподобное рассуждение): Так как остаточный член $(0(\rho^2))$ вносит меньший вклад в прирощение, чем второе слагаемое $(\frac{1}{2}d^2u(M_0))$, то все зависит от второго диффиренциала.

 $\int \mathrm{d}^2 u(M_0) > 0$, значит M_0 -точка минимума.

 $\int {
m d}^2 u(M_0) < 0,$ значит M_0 -точка максимума.

 $\mathrm{d}^2 u(M_0)$ -принимает значение разных знаков, значит M_0 -не является точкой экстремума.

Теорема: Пусть z=z(x,y) имеет непрерывные частные производные 2-ого порядка, M_0 -критическая. Обозначим $A=\frac{\partial^2 z}{\partial x_{|M_0}^2},\,B=\frac{\partial^2 z}{\partial x\partial y_{|M_0}},\,C=\frac{\partial^2 z}{\partial y_{|M_0}^2}.$

 $D=B^2-AC$, тогда $\begin{cases} {\rm D}>0, {\rm M}_0\text{-не является точкой экстремума.} \\ {\rm D}<0, {\rm M}_0\text{-является точкой экстремума.} \\ 1){\rm A}>0, {\rm M}_0\text{-точка минимума.} \\ 2){\rm A}<0, {\rm M}_0\text{-точка максимума.} \end{cases}$

D = 0-неясно.