Modeling Data with Hierarchies and Time Intelligence

Agenda

- Creating Dimensional Hierarchies
- Understanding the Evaluation Context
- Extending the Data Model using Calendar Tables
- Writing DAX Expressions with Time Intelligence
- Writing DAX Code with Contextual Awareness

Dimensional Hierarchies

- Hierarchy created from two or more columns
 - All columns in hierarchy must be from the same table
 - Defines parent-child relationship between columns
 - Provides path to navigate through data
 - Provides path to drill down into greater level of detail

Pulling Columns for Hierarchy into Single Table

- Sometimes hierarchy columns are spread across tables
 - Use RELATED function from DAX to pull columns into single table

× ✓	Sa	Sales Region = RELATED(SalesRegions[SalesRegion])							
Customer		Customer Type	Age	Age Group	Sales Region	State Name			
Lucile Blake		One-time Customer	48	Ages 40 TO 49	Western Region	California			
Rochelle Owen		One-time Customer	74	Ages 65 and over	Western Region	California			
Corinne Finch		One-time Customer	73	Ages 65 and over	Western Region	California			
Twila Massey		One-time Customer	25	Ages 18 TO 23	Western Region	California			

Then create hierarchy in the table with all the columns

Agenda

- Creating Dimensional Hierarchies
- Understanding the Evaluation Context
- Extending the Data Model using Calendar Tables
- Writing DAX Expressions with Time Intelligence
- Writing DAX Code with Contextual Awareness

A Tale of Two Evaluation Contexts

Row Context

- Context includes all columns in iteration of current row
- Used to evaluate DAX expression in calculated column
- Only available in measures with iterator function (e.g. SUMX)

Filter Context

- Context includes filter(s) defining current set of rows
- Used by default to evaluate DAX expressions in measures
- Can be fully ignored or partially ignored using DAX code
- Not used to evaluate DAX in calculated columns

Understanding Row Context

Row context used to evaluate calculated columns

>	City = [City Name] & ", " & [State]								
	Age Group	Sales Region	State Name	SalesRegionSort	City				
48	Ages 40 TO 49	Western Region	California	1	San Jose, CA				
74	Ages 65 and over	Western Region	California	1	San Jose, CA				
73	Ages 65 and over	Western Region	California	1	San Jose, CA				
25	Ages 18 TO 23	Western Region	California	1	San Jose, CA				
61	Ages 50 TO 65	Western Region	California	1	San Jose, CA				
65	Ages 65 and over	Western Region	California	1	San Jose, CA				

× ✓	Ag	Age = Floor((TODAY()-Customers[BirthDate])/365, 1)						
Customer		Customer Type	Age	Age Group	Sales Region	State Name		
Lucile Blake		One-time Customer	48	Ages 40 TO 49	Western Region	California		
Rochelle Owen		One-time Customer	74	Ages 65 and over	Western Region	California		
Corinne Finch		One-time Customer	73	Ages 65 and over	Western Region	California		

Understanding Iterators Like SUMX

- Standard aggregation functions (e.g. sum) have no row context
 - You can use SUM to sum values of a single column
 - You cannot use SUM to sum results of an expressions

```
Gross Margin = SUM( Sales[SalesAmount]-Sales[ProductCost] )

The SUM function only accepts a column reference as an argument.
```

Iterator functions (e.g. SUMX) iterate through rows in target table

```
X ✓ Gross Margin = SUMX(Sales, Sales[SalesAmount]-Sales[ProductCost] )
```

- First argument accepts expressions that evaluates to table of rows
- Second argument accepts expression that is evaluated for each row

DAX Table Iterator Functions

- The following DAX functions create row context
 - AVERAGEX
 - COUNTAX
 - COUNTX
 - MAXX
 - MINX
 - SUMX

Understanding Filter Context

Visuals apply various filters in different evaluation contexts

Filter context also affected by slicers and other filters

Using the CALCULATE Function

- CALCULATE function provides greatest amount of control
 - First argument defines expression to evaluate
 - Second argument defines table on which to evaluate expression
 - You can evaluate expressions with or without current filter context

```
Pct of All Products =
DIVIDE(
    SUM( Sales[SalesAmount] ),
    CALCULATE(
        Sum (Sales[SalesAmount] ),
        ALL(Products[Category], Products[Subcategory], Products[Product])
    )
)
```

```
Pct of Product Category =
DIVIDE(
    SUM( Sales[SalesAmount] ),
    CALCULATE(
        Sum (Sales[SalesAmount] ),
        ALL( Products[Subcategory], Products[Product] )
    )
)
```


DAX Functions that Return a Table

- ALL
- ALLEXCEPT
- CALCULATETABLE
- DISTINCT
- FILTER
- RELATEDTABLE
- VALUES

Agenda

- Creating Dimensional Hierarchies
- ✓ Understanding the Evaluation Context
- Extending the Data Model using Calendar Tables
- Writing DAX Expressions with Time Intelligence
- Writing DAX Code with Contextual Awareness

Creating Calendar Table as Calculated Table

Use New Table command in ribbon

Create calendar table using DAX CALENDAR function

Adding Columns to Calendar Table

Creating the Year column

Creating the Quarter column

Creating the Month column

Configuring Sort Columns

- Month column will not sort in desired fashion by default
 - For example, April will sort before January, February and March
- Creating a sort column for the Month column
 - MonthSort sorts alphabetically & chronologically at same time

× •	MonthSor	t = FORMAT('	Calendar'[D	lendar'[Date], "yyyy-MM")		
Date	Year	Quarter	Month	MonthSort		
1/1/2012	2012	2012-Q1	Jan 2012	2012-01		
1/2/2012	2012	2012-Q1	Jan 2012	2012-01		

Configure Month column with MonthSort as sort column

Columns for Month in Year and Day in week

Creating the Month in Year column

Creating the MonthInYearSort column

Creating the Day of Week column

Creating the DayOfWeekSort column

Integrating Calendar Table into Data Model

Calendar table needs relationship to one or more tables

Creating Visuals with a Calendar Table

Year for row labels and Month in Year as column labels

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
2012	\$3,063	\$33,218	\$49,213	\$40,434	\$83,840	\$136,670	\$144,244	\$197,952	\$215,097	\$239,513	\$376,503	\$424,240	\$1,943,986
2013	\$307,182	\$291,942	\$346,186	\$380,869	\$377,376	\$353,586	\$391,202	\$476,884	\$504,532	\$577,439	\$579,507	\$769,473	\$5,356,177
2014	\$629,969	\$609,637	\$628,618	\$661,588	\$748,193	\$814,333	\$788,469	\$869,143	\$890,958	\$988,789	\$999,574	\$1,644,980	\$10,274,251
2015	\$959,863	\$969,330	\$675,533	\$722,456	\$698,311	\$785,793	\$921,994	\$1,084,189	\$1,088,863	\$1,211,810	\$1,305,029	\$1,732,932	\$12,156,103
Total	\$1,900,077	\$1,904,126	\$1,699,551	\$1,805,347	\$1,907,720	\$2,090,382	\$2,245,908	\$2,628,168	\$2,699,449	\$3,017,551	\$3,260,613	\$4,571,625	\$29,730,517

Month in Year for row labels and Year as column labels

Month in Year 📤	2012	2013	2014	2015	Total
Jan	\$3,063	\$307,182	\$629,969	\$959,863	\$1,900,077
Feb	\$33,218	\$291,942	\$609,637	\$969,330	\$1,904,126
Mar	\$49,213	\$346,186	\$628,618	\$675,533	\$1,699,551
Apr	\$40,434	\$380,869	\$661,588	\$722,456	\$1,805,347
May	\$83,840	\$377,376	\$748,193	\$698,311	\$1,907,720
Jun	\$136,670	\$353,586	\$814,333	\$785,793	\$2,090,382
Jul	\$144,244	\$391,202	\$788,469	\$921,994	\$2,245,908
Aug	\$197,952	\$476,884	\$869,143	\$1,084,189	\$2,628,168
Sep	\$215,097	\$504,532	\$890,958	\$1,088,863	\$2,699,449
Oct	\$239,513	\$577,439	\$988,789	\$1,211,810	\$3,017,551
Nov	\$376,503	\$579,507	\$999,574	\$1,305,029	\$3,260,613
Dec	\$424,240	\$769,473	\$1,644,980	\$1,732,932	\$4,571,625
Total	\$1,943,986	\$5,356,177	\$10,274,251	\$12,156,103	\$29,730,517

• Month in Year for row labels and Year as column labels

Day of Week	2012	2013	2014	2015	Total
Mon	\$314,471	\$801,337	\$1,460,373	\$1,682,345	\$4,258,527
Tue	\$262,321	\$791,863	\$1,553,063	\$1,726,955	\$4,334,202
Wed	\$269,499	\$671,754	\$1,525,827	\$1,786,688	\$4,253,768
Thu	\$246,499	\$777,814	\$1,427,989	\$1,749,475	\$4,201,776
Fri	\$329,852	\$803,028	\$1,445,129	\$1,790,611	\$4,368,620
Sat	\$289,566	\$747,619	\$1,447,230	\$1,736,439	\$4,220,853
Sun	\$231,779	\$762,762	\$1,414,640	\$1,683,591	\$4,092,772
Total	\$1,943,986	\$5,356,177	\$10,274,251	\$12,156,103	\$29,730,517

Hierarchical Row Labels in a Matrix

Dimensional hierarchy can be visualized using matrix

2012 T 2013	Quarter 2012-Q1 2012-Q2 2012-Q3 2012-Q4	5,023 15,845 30,979 75,386	\$85,494 \$260,944 \$557,293	\$40,088 \$130,287	Profit \$45,406 \$130,657	
T 2013	2012-Q2 2012-Q3 2012-Q4 Fotal	15,845 30,979 75,386	\$260,944			
1 2013	2012-Q3 2012-Q4 Fotal	30,979 75,386		\$130,287	\$120 CE7	
T 2013	2012-Q4 Fotal	75,386	\$557,293		\$130,037	
2013	Γotal			\$269,314	\$287,979	
2013		427 222	\$1,040,256	\$540,222	\$500,034	
	2042 04	127,233	\$1,943,986	\$979,909	\$964,077	
	2013-Q1	71,064	\$945,310	\$517,474	\$427,836	
	2013-Q2	127,830	\$1,111,831	\$557,730	\$554,101	
	2013-Q3	302,557	\$1,372,617	\$571,187	\$801,430	
	2013-Q4	494,231	\$1,926,420	\$864,530	\$1,061,889	
T	Fotal	995,682	\$5,356,177	\$2,510,921	\$2,845,256	
2014	2014-Q1	492,123	\$1,868,225	\$892,244	\$975,981	
	2014-Q2	542,615	\$2,224,114	\$1,081,051	\$1,143,063	
	2014-Q3	417,331	\$2,548,569	\$1,332,729	\$1,215,840	
	2014-Q4	642,513	\$3,633,343	\$1,877,978	\$1,755,365	
T	Fotal	2,094,582	\$10,274,251	\$5,184,002	\$5,090,249	
2015	2015-Q1	406,989	\$2,604,726	\$1,364,369	\$1,240,357	
	2015-Q2	216,311	\$2,206,560	\$1,219,892	\$986,669	
	2015-Q3	308,970	\$3,095,046	\$1,724,893	\$1,370,153	
	2015-Q4	402,278	\$4,249,771	\$2,358,468	\$1,891,304	
T	Fotal	1,334,548	\$12,156,103	\$6,667,621	\$5,488,482	
otal		4,552,045	\$29,730,517	\$15,342,453	\$14,388,064	

Agenda

- Creating Dimensional Hierarchies
- ✓ Understanding the Evaluation Context
- Extending the Data Model using Calendar Tables
- Writing DAX Expressions with Time Intelligence
- Writing DAX Code with Contextual Awareness

Calculated Fields for QTD and YTD Sales

TOTALQTD function calculates quarter-to-date totals

TOTALYTD function calculates year-to-date totals

Creating Running Total using CALCULATE

- Calculate a running total of sales revenue across years
 - This must be done using CALCULATE function

```
Data Type: "
                                                  Format: $ English (United States) *
  Manage
                New
                               New
                                        Sort By
              Measure Column Table
Relationships
                                       Column ▼
Relationships
                    Calculations
                                         Sort
                                                            Formatting
                     Sales Revenue RT =
1.1
                     CALCULATE(
                          SUM(Sales[SalesAmount]),
FILTER(
                              ALL('Calendar'),
唱
                              'Calendar'[Date] <= MAX('Calendar'[Date])
```


Matrix Visual with To-Date Running Totals

Running totals calculated using DAX

Year	Quarter	Month	Sales Revenue	Sales Revenue QTD	Sales Revenue YTD	Sales Revenue RT
2014	2014-Q1	Jan 2014	\$629,969	\$629,969	\$629,969	\$7,930,132
		Feb 2014	\$609,637	\$1,239,606	\$1,239,606	\$8,539,770
		Mar 2014	\$628,618	\$1,868,225	\$1,868,225	\$9,168,388
	2014-Q2	Apr 2014	\$661,588	\$661,588	\$2,529,812	\$9,829,976
		May 2014	\$748,193	\$1,409,780	\$3,278,005	\$10,578,168
		Jun 2014	\$814,333	\$2,224,114	\$4,092,338	\$11,392,502
	2014-Q3	Jul 2014	\$788,469	\$788,469	\$4,880,807	\$12,180,970
		Aug 2014	\$869,143	\$1,657,611	\$5,749,950	\$13,050,113

Question: when did Wingtip reach \$10,000,000 in sales

Year	Quarter	Month	Sales Revenue	Sales Revenue QTD	Sales Revenue YTD	Sales Revenue RT
2014	2014-Q1	Jan 2014	\$629,969	\$629,969	\$629,969	\$7,930,132
		Feb 2014	\$609,637	\$1,239,606	\$1,239,606	\$8,539,770
		Mar 2014	\$628,618	\$1,868,225	\$1,868,225	\$9,168,388
	2014-Q2	Apr 2014	\$661,588	\$661,588	\$2,529,812	\$9,829,976
		May 2014	\$748,193	\$1,409,780	\$3,278,005	\$10,578,168
		Jun 2014	\$814,333	\$2,224,114	\$4,092,338	\$11,392,502
	2014-Q3	Jul 2014	\$788,469	\$788,469	\$4,880,807	\$12,180,970

Agenda

- Creating Dimensional Hierarchies
- ✓ Understanding the Evaluation Context
- Extending the Data Model using Calendar Tables
- ✓ Writing DAX Expressions with Time Intelligence
- Writing DAX Code with Contextual Awareness

Sales Growth PM Measure - First Attempt

Create a measure named Sales Growth PM

```
Sales Growth PM =
DIVIDE(
   SUM(Sales[SalesAmount]) -
   CALCULATE(
    SUM(Sales[SalesAmount]),
    PREVIOUSMONTH(Calendar[Date])
),
   CALCULATE(
   SUM(Sales[SalesAmount]),
   PREVIOUSMONTH(Calendar[Date])
)
)
```

- Use measure in matrix evaluating month and quarter
 - Measure returns correct value when filtered by Month
 - Measure returns large, erroneous value when filtered by Quarter

				=	
Year	Quarter	Month	Sales Revenue	Sales Growth PM	
2014	2014-Q1	Jan 2014	\$629,969	-18.13 %	
		Feb 2014	\$609,637	-3.23 %	
		Mar 2014	\$628,618	3.11 %	4
		Total	\$1,868,225	142.79 %	$\langle \Box$
	2014-Q2	Apr 2014	\$661,588	5.24 %	4
		May 2014	\$748,193	13.09 %	
		Jun 2014	\$814,333	8.84 %	4
		Total	\$2,224,114	253.81 %	$\langle \Box$
	2014-Q3	Jul 2014	\$788,469	-3.18 %	7_

Using the ISFILTERED Function

ISFILTERED function used to determine when perform evaluation

```
Sales Growth PM =
IF(
    ( ISFILTERED(Calendar[Month]) && NOT(ISFILTERED(Calendar[Date])) ),
    DIVIDE(
        SUM(Sales[SalesAmount]) -
        CALCULATE(
        SUM(Sales[SalesAmount]),
        PREVIOUSMONTH(Calendar[Date])
    ),
        CALCULATE(
        SUM(Sales[SalesAmount]),
        PREVIOUSMONTH(Calendar[Date])
    ),
        PREVIOUSMONTH(Calendar[Date])
    ),
    BLANK()
)
```

Expression returns Blank value when evaluation context is invalid

-				=	
Year	Quarter	Month	Sales Revenue	Sales Growth PM	
2014	2014-Q1	Jan 2014	\$629,969	-18.13 %	
		Feb 2014	\$609,637	-3,23 %	
		Mar 2014	\$628,618	3.11 %	4
		Total	\$1,868,225		< =
	2014-Q2	Apr 2014	\$661,588	5.24 %	7
		May 2014	\$748,193	13.09 %	
		Jun 2014	\$814,333	8.84 %	4
		Total	\$2,224,114	<	$\langle \neg$
	2014-Q3	Jul 2014	\$788,469	-3.18 %	7
		Aug 2014	\$869,143	10.23 %	

Simulating KPIs with Power BI Desktop

- KPIs are not directly support in data model
 - But you can create something similar using measures

```
Sales Growth PM Eval =
IF( ISNUMBER([Sales Growth PM]),
    SWITCH(TRUE(),
        ([Sales Growth PM] >= 0.2), "EXCELLENT",
        ([Sales Growth PM] >= 0.1), "GOOD",
        ([Sales Growth PM] >= 0), "OK",
        ([Sales Growth PM] < 0), "BAD"
))</pre>
```

				=	
ear	Quarter	Month	Sales Revenue	Sales Growth PM	Sales Growth PM Eval
2014	2014-Q1	Jan 2014	\$629,969	-18.13 %	AWFUL
		Feb 2014	\$609,637	-3.23 %	BAD
		Mar 2014	\$628,618	3.11 %	OK
		Total	\$1,868,225		
	2014-Q2	Apr 2014	\$661,588	5.24 %	OK
		May 2014	\$748,193	13.09 %	GOOD
		Jun 2014	\$814,333	8.84 %	OK
		Total	\$2,224,114		
	2014-Q3	Jul 2014	\$788,469	-3.18 %	BAD
		Aug 2014	\$869,143	10.23 %	GOOD
		Sep 2014	\$890,958	2.51 %	OK
		Total	\$2,548,569		

Summary

- Creating Dimensional Hierarchies
- ✓ Understanding the Evaluation Context
- Extending the Data Model using Calendar Tables
- ✓ Writing DAX Expressions with Time Intelligence
- ✓ Writing DAX Code with Contextual Awareness

