

ELG 5142 Ubiquitous Sensing for Smart Cities Assignment 3

Setup required Libraries

!pip install pycaret[full]

!pip install markupsafe==2.0.1

Load Data

1. Load the dataset : Dataset_to_be_used_in_anomaly_detection

	Follower_measure_x_follower	Follower_measure_y_follower	Leader_measure_x_leader	Leader_measure_y_leader
0	-1.042570	-0.241098	-1.267957	0.414568
1	-1.056986	-0.245590	-1.165454	0.411869
2	-1.071858	-0.256787	-1.028780	0.407472
3	-1.084518	-0.257502	-0.850609	0.367564
4	-0.974811	-0.105985	-0.625045	0.236174
5	-0.808289	-0.008651	-0.417019	0.035897
6	-0.732102	-0.051811	-0.258204	-0.238741
7	-0.499133	-0.205854	-0.178043	-0.506508
8	-0.372178	-0.405159	-0.193983	-0.766137
9	-0.345284	-0.627297	-0.318578	-1.035780

2. Load the second dataset : Dataset_to_be_used_in_performance_comparison

	Follower_measure_x_follower	Follower_measure_y_follower	Leader_measure_x_leader	Leader_measure_y_leader
0	-1.042570	-0.241098	-1.267957	0.414568
1	-1.056986	-0.245590	-1.165454	0.411869
2	-1.071858	-0.256787	-1.028780	0.407472
3	-1.084518	-0.257502	-0.850609	0.367564
4	-0.974811	-0.105985	-0.625045	0.236174
5	-0.808289	-0.008651	-0.417019	0.035897
6	-0.732102	-0.051811	-0.258204	-0.238741
7	-0.499133	-0.205854	-0.178043	-0.506508
8	-0.372178	-0.405159	-0.193983	-0.766137
9	-0.345284	-0.627297	-0.318578	-1.035780

3. Get the Labels for comparison

4. Algorithms implementation

4.1 KNN

implement the KNN

```
# implementing the algorithm using Pychart
exp_name = setup(data = anomalyTrainingData,session_id=123)
knn = create_model('knn')
# return the predicted labels
knn_predictions = predict_model(model = knn, data = anomalyTestingData)
```


Anomly D	etect:	ion Report	for KNN Mo	odel	
		precision	recall	f1-score	support
		0.00	0.00	0.03	0.0
	0	0.89	0.99	0.93	86
	1	0.50	0.08	0.14	12
accu	racy			0.88	98
macro	avg	0.69	0.54	0.54	98
weighted	avg	0.84	0.88	0.84	98

3d TSNE Plot for Outliers

plot the 2D TSNE to see both anomaly and normal instances

implement the PCA

```
exp_name = setup(data = anomalyTrainingData)
pca = create_model('pca')
pca_predictions = predict_model(model = pca, data = anomalyTestingData)
```


plot 3D TSN so we can see both anomaly and normal instances

3d TSNE Plot for Outliers

plot the 2D TSNE to see both anomaly and normal instances

implement SVM

```
exp_name = setup(data = anomalyTrainingData)
svm = create_model('svm')
svm_predictions = predict_model(model = svm, data = anomalyTestingData)
```


plot 3D TSN so we can see both anomaly and normal instances

3d TSNE Plot for Outliers

plot the 2D TSNE to see both anomaly and normal instances

implement DBSCAN using sklearn Library

Grid search to find the best parameter

```
[22] from math import nan
     max_acc=0
     best_epsilon=0.3
     best_min_samples=2
     parameters = {'eps':[0.3,0.4,0.5,0.6,0.7], 'min_samples':[2, 15]}
     for eps in tqdm(np.arange(0.3, 0.71,0.01)):
       for ms in range(2, 16):
        model = DBSCAN(eps=eps, min_samples=ms)
         predLabels = model.fit_predict(anomalyTrainingData)
         DBscananomalypredLabels=[]
         for val in predLabels :
           if(val!=-1):
             DBscananomalypredLabels.append('0')
             DBscananomalypredLabels.append('1')
         DBscananomalypredLabels = [int(i) for i in DBscananomalypredLabels ]
         Dbscan_acc = accuracy_score(anomalyTestingLabels, DBscananomalypredLabels)*100
         if max_acc<Dbscan_acc:</pre>
           max_acc=Dbscan_acc
           best_epsilon=eps
           best_min_samples=ms
     print(max_acc)
     print(best_epsilon)
     print(best_min_samples)
                   | 41/41 [00:02<00:00, 17.49it/s]96.93877551020408
     0.6100000000000000
     10
```

```
from math import nan

model = DBSCAN(eps=best_epsilon, min_samples=best_min_samples)
predLabels = model.fit_predict(anomalyTrainingData)

DBscananomalypredLabels=[]
for val in predLabels :
   if(val!=-1):
    DBscananomalypredLabels.append('0')
   else:
    DBscananomalypredLabels.append('1')

DBscananomalypredLabels = [int(i) for i in DBscananomalypredLabels ]
```


plot 2D TSN so we can see both anomaly and normal instances

Performance Evaluation

We got a high accuracy by using DBSCAN algorithm

PCA and SVM give us the same accuracy but not as good as DBSCAN.

KNN is the worst accuracy regarding to the other accuracies.

Conclusion

To see the effect of the model that can detect anomlies we ploted the data using one feature which is "Follower_measure_x_follower"

At the beginning we ploted the real anomlies regarding to our dataset.

Then we ploted the anomlies regarding to what each model detect .

The DBSCAN model detect more than the other models .

