Exercise 11.10. If $\phi: G \to H$ is a group homomorphism and G is cyclic, prove that $\phi(G)$ is also cyclic.

Proof. Let γ be a generator for G. Then for each $g \in G$, $g = \gamma^n$ for some $n \in \mathbb{N}$. Then

$$\begin{split} \phi(g) &= \phi\left(\gamma^n\right) \quad \text{because } \gamma \text{ generates } G \\ &= \phi\left(\underbrace{\gamma \cdot \gamma \cdot \ldots \cdot \gamma}_{n \text{ times}}\right) \\ &= \underbrace{\phi\left(\gamma\right) \circ \phi\left(\gamma\right) \circ \cdots \circ \phi\left(\gamma\right)}_{n \text{ times}} \quad \text{as } \phi \text{ is a homomorphism so } \phi\left(g_1 \cdot g_2\right) = \phi\left(g_1\right) \circ \phi\left(g_2\right) \\ &= \phi^n\left(\gamma\right) \end{split}$$

So for all $\phi(g) \in \phi(G)$, we have $\phi(g) = \phi^n(\gamma)$ for some $n \in \mathbb{N}$. So $\phi(\gamma)$ generates $\phi(G)$; so $\phi(G)$ is cyclic.

Lemma 11.1. If G_1, G_2 are groups with an isomorphism $\phi: G_1 \to G_2$ and there exists $g_1 \in G_1$ such that $\operatorname{ord}(g_1) = n$ for some $n \in \mathbb{N}$. Then $\operatorname{ord}(\phi(g_1)) = n$.

Proof. If $g_1^n = e_1$ then

$$e_2 = \phi\left(e_1\right)$$
 by Proposition 1.11.1
= $\phi\left(g_1^n\right)$ because ord $\left(g_1\right) = n$
= $\phi^n\left(g_1\right)$ because ϕ is an isomorphism

So ord $(\phi(g_1)) = n$.

Exercise 11.14. Prove or disprove: $\mathbb{Q}/\mathbb{Z} \simeq \mathbb{Q}$.

Proof. Consider $\frac{1}{2} + \mathbb{Z} \in \mathbb{Q}/\mathbb{Z}$ which has order 2 as $(\frac{1}{2} + \mathbb{Z}) + (\frac{1}{2} + \mathbb{Z}) = 1 + \mathbb{Z} \equiv \mathbb{Z}$ and \mathbb{Z} is the identity in \mathbb{Q}/\mathbb{Z} . Consider for a contradiction that there exists a non-zero $q \in \mathbb{Q}$ with order 2. That is, $q + q = 0 \iff 2q = 0$ which has no solution in $\mathbb{Q} \setminus \{0\}$. So there is no element of order 2 in \mathbb{Q} . So by Lemma 11.1, the two groups cannot be isomorphic.

Exercise 11.5 (Addition Exercises: Automorphism #5). Let G be a group and i_g be an inner automorphism of G, and define a map

 $\psi:G\to \operatorname{Aut}\left(G\right)$

by

$$g \mapsto i_g$$
.

Prove that this map is a homomorphism with image $\operatorname{Inn}(G)$ and kernel Z(G). Use this result to conclude that

$$G/Z(G) \simeq \operatorname{Inn}(G)$$
.

Proof. Recall

$$\begin{array}{rcl} \operatorname{Aut}\left(G\right) &:= & \left\{\text{all isomorphisms } \phi:G\to G\right\} \\ \operatorname{Given}\,g\in G, & i_g:G\to G & \text{by} & x\mapsto gxg^{-1} \\ & \operatorname{Inn}\left(G\right) &:= & \left\{i_g \text{ for all } g\in G\right\} \\ & Z(G) &:= & \left\{x\in G: gx=xg \text{ for all } g\in G\right\} \end{array}$$

 ψ is a homomorphism as

$$\begin{split} \psi\left(g_1\cdot g_2\right) &= i_{g_1\cdot g_2}\left(x\right) \quad \text{by definition of } \psi \\ &= \left(g_1\cdot g_2\right)\cdot \left(x\right)\cdot \left(g_1\cdot g_2\right)^{-1} \quad \text{by definition of } i_g \\ &= \left(g_1\cdot g_2\right)\cdot \left(x\right)\cdot \left(g_2^{-1}\cdot g_1^{-1}\right) \\ &= g_1\cdot \left(g_2\cdot x\cdot g_2^{-1}\right)\cdot g_1^{-1} \quad \text{because } G \text{ is a group so elements associate} \\ &= g_1\cdot \left(i_{g_2}(x)\right)\cdot g_1^{-1} \quad \text{by definition of } i_g \\ &= \left(i_{g_1}\circ i_{g_2}\right)\left(x\right) \quad \text{by definition of } i_g \end{split}$$

So ψ is a homomorphism.

The image of ψ is clearly Inn(G) as $\text{Im}(\psi) := \{\psi(g) \text{ for all } g \in G\} = \{i_g \text{ for all } g \in G\} =: \text{Inn}(G)$.

 $\ker(\psi) := \{g \in G : \psi(g) = id\} \text{ and } \psi(g) = id \iff gxg^{-1} = x \iff gx = xg. \text{ So } \ker(\psi) = Z(G).$

By the First Isomorphism Theorem, $G/\ker(\psi) \simeq \operatorname{Im}(\psi)$, so we have $G/Z(G) \simeq \operatorname{Inn}(G)$.

Exercise 13.3. Find all of the abelian groups of order 720 up to isomorphism.

Solution. $720 = 2^4 \cdot 3^2 \cdot 5$, so, by The Fundamental Theorem of Finite Abelian Groups, all of the abelian groups of order 720 up to isomorphism are:

1.
$$\mathbb{Z}_2^4 \times \mathbb{Z}_3^2 \times \mathbb{Z}_5$$

2.
$$\mathbb{Z}_4 \times \mathbb{Z}_2^2 \times \mathbb{Z}_3^2 \times \mathbb{Z}_5$$

3.
$$\mathbb{Z}_4^2 \times \mathbb{Z}_3^2 \times \mathbb{Z}_5$$

4.
$$\mathbb{Z}_8 \times \mathbb{Z}_2 \times \mathbb{Z}_3^2 \times \mathbb{Z}_5$$

5.
$$\mathbb{Z}_{16} \times \mathbb{Z}_3^2 \times \mathbb{Z}_5$$

6.
$$\mathbb{Z}_2^4 \times \mathbb{Z}_9 \times \mathbb{Z}_5$$

7.
$$\mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_3^2 \times \mathbb{Z}_5$$

8.
$$\mathbb{Z}_4^2 \times \mathbb{Z}_9 \times \mathbb{Z}_5$$

9.
$$\mathbb{Z}_8 \times \mathbb{Z}_2 \times \mathbb{Z}_9 \times \mathbb{Z}_5$$

10.
$$\mathbb{Z}_{16} \times \mathbb{Z}_9 \times \mathbb{Z}_5$$

Exercise 13.5. Show that the infinite direct product $G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \cdots$ is not finitely generated.

Proof. Suppose for a contradiction that G is finitely generated and has n generators. Because G is abelian and every element is of order 2, so $|G| \le 2^n$, which is a contradiction to the assumption that G is infinite.

Exercise 13.14. Let G be a solvable group. Prove that any sub-group of G is also solvable.

Proof. content...

Exercise 14.2. Computer all the X_q and all G_x for each of the following permutation groups.

(a) $X = \{1, 2, 3\},\$ $G = S_3 = \{(1), (12), (13), (23), (123), (132)\}$

(b) $X = \{1, 2, 3, 4, 5, 6\},\$ $G = \{(1), (12), (345), (354), (12)(345), (12)(354)\}$

Solution. Recall $X_g := \{x \in X \text{ such that } gx = x\}$ and $G_x := \{g \in G \text{ such that } gx = x\}$

(a)
$$\bullet X_{(1)} = X$$
 $\bullet X_{(13)} = \{2\}$ $\bullet X_{(123)} = X_{(132)} = \emptyset$ $\bullet G_2 = \{(1), (13)\}$

•
$$X_{(12)} = \{3\}$$
 • $X_{(23)} = \{1\}$ • $G_1 = \{(1), (23)\}$ • $G_3 = \{(1), (12)\}$

(b)
$$\bullet X_{(1)} = X$$
 $\bullet X_{(345)} = X_{(354)} = \{1, 2, 6\}$ $\bullet G_1 = G_2 = \{(345), (354)\}$ $\bullet G_6 = G$

• $X_{(12)} = \{3, 4, 5, 6\}$ • $X_{(12)(345)} = X_{(12)(354)} = \{6\}$ • $G_3 = G_4 = G_5 = \{(1), (12)\}$

Exercise 14.5. Let $G = A_4$ and suppose that G acts on itself by conjugation; that is, $(g,h) \mapsto ghg^{-1}$.

- (a) Determine the conjugacy classes (orbits) of each element of G.
- (b) Determine all the isotropy sub-groups for each element of G.

Proof. Recall if $\sigma = (\sigma_1, \dots, \sigma_n)$ and $\tau = (\tau_1, \dots, \tau_n)$ are permutations then $\tau \sigma \tau^{-1} = (\tau(\sigma_1), \dots, \tau(\sigma_n))$.

(a)
$$A_4 = \{(234), (243), (134), (143), (124), (142), (123), (132), (12)(34), (13)(24), (14)(23), id\}$$
, so

- $\mathcal{O}_{id} = \{id\}$
- $\bullet \ \mathcal{O}_{(234)} = \{(234), (423), (241), (213), (431), (132), (314), (124), (143), (412), (321), (234)\} = \{(234), (124), (132), (143)\}$
- $\bullet \ \mathcal{O}_{(243)} = \{(324), (243), (214), (231), (413), (123), (341), (142), (134), (421), (312), (243)\} = \{(243), (142), (123), (134)\}$

- $\mathcal{O}_{(12)(34)} = \{(13)(42), (14)(23), (32)(41), (42)(13), (24)(31), (41)(32), (23)(14), (31)(24), (12)(34), (43)(12), (43)(12), (12)(34)\} = \{(13)(24), (14)(23), (12)(34)\}$
- (b) Recall given an element $x \in G$, G_x is the isotropy sub-group defined by $G_x := \{g \in G \text{ such that } gx = x\}$

Exercise 16.1. Which of the following sets are rings with respect to the usual operations of addition and multiplication? If the set is a ring, is it also a field?

(b) \mathbb{Z}_{18}

(e)
$$\mathbb{Z}\left[\sqrt{3}\right] = \left\{a + b\sqrt{3} : a, b \in \mathbb{Z}\right\}$$

(c) $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}\$

(d)
$$\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} : a, b, c, d \in \mathbb{Q}\}$$

(f)
$$R = \left\{ a + b\sqrt[3]{3} : a, b \in \mathbb{Q} \right\}$$

Proof.

- (b) \mathbb{Z}_{18} is a ring; however it is not a field because not every every element has an inverse.
- (c) $\mathbb{Q}\left(\sqrt{2}\right) = \left\{a + b\sqrt{2} : a, b \in \mathbb{Q}\right\}$ is both a ring and a field: the inverse of any given $a + b\sqrt{2} \in \mathbb{Q}\left(\sqrt{2}\right)$ is given by $\frac{a}{a^2 2b^2} + \frac{b}{2b^2 a^2}\sqrt{2}$. Notice this is always well defined except when $a^2 2b^2 = 0$, which cannot be the case because $a, b \in \mathbb{Q}$.
- (d) $\mathbb{Q}\left(\sqrt{2},\sqrt{3}\right) = \left\{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} : a,b,c,d \in \mathbb{Q}\right\}$ is a ring but not a field. $\mathbb{Q}\left(\sqrt{2},\sqrt{3}\right)$ is closed as one can check that

$$\left(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}\right) \left(\alpha + \beta\sqrt{2} + \gamma\sqrt{2} + \delta\sqrt{2}\right) = \left(a\alpha + 2b\beta + 3c\gamma + 6d\delta\right) + \left(b\alpha + a\beta + 3d\gamma + 3c\delta\right)\sqrt{2}$$

$$+ \left(c\alpha + 2d\beta + a\gamma + 2b\delta\right)\sqrt{3} + \left(d\alpha + c\beta + b\gamma + a\delta\right)\sqrt{6}$$

$$\in \mathbb{Q}\left(\sqrt{2}, \sqrt{3}\right)$$

However, $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is not closed under inverses so it is not a field.

(e) $\mathbb{Z}\left[\sqrt{3}\right] = \left\{a + b\sqrt{3} : a, b \in \mathbb{Z}\right\}$ is a ring but not a field.

(f)
$$R = \left\{ a + b\sqrt[3]{3} : a, b \in \mathbb{Q} \right\}$$
 is a ring but not a field.

Exercise 16.2. Let R be the ring of 2×2 matrices of the form

$$\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix},$$

where $a, b \in \mathbb{R}$. Show that although R is a ring that has no identity, we can find a sub-ring S of R with an identity.

Proof. Consider $S := \{ \begin{bmatrix} c & 0 \\ 0 & 0 \end{bmatrix}$ such that $c \in \mathbb{R} \} \subseteq R$. By Proposition 16.2, to show that $S \subseteq R$ is a sub-ring of R, it is sufficient to show

- 1. $S \neq \emptyset$
- 2. $rs \in S$ for all $r, s \in S$
- 3. $r s \in S$ for all $r, s \in S$
- 1. $S \neq \emptyset$ as $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in S$.
- 2. S is closed under multiplication as for $\begin{bmatrix} c & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} \gamma & 0 \\ 0 & 0 \end{bmatrix} \in S$, $\begin{bmatrix} c & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \gamma & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} c\gamma & 0 \\ 0 & 0 \end{bmatrix} \in S$.
- 3. S is closed under subtraction as for $\begin{bmatrix} c & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} \gamma & 0 \\ 0 & 0 \end{bmatrix} \in S$, $\begin{bmatrix} c & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \gamma & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} c \gamma & 0 \\ 0 & 0 \end{bmatrix} \in S$. \checkmark

So S is a sub-ring of R. Furthermore, S is a sub-ring with unity as for any $\begin{bmatrix} c & 0 \\ 0 & 0 \end{bmatrix} \in S$, $\begin{bmatrix} c & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} c & 0 \\ 0 & 0 \end{bmatrix}$.

Exercise 16.3. List or characterize all of the units in each of the following rings.

777
//ɹ10

(d) $\mathbb{M}_2(\mathbb{Z})$, the 2×2 matrices with entries in \mathbb{Z}

- (b) \mathbb{Z}_{12}
- (c) \mathbb{Z}_7

(e) $\mathbb{M}_2(\mathbb{Z}_2)$, the 2×2 matrices with entries in \mathbb{Z}_2 .

Proof. (a) The units of \mathbb{Z}_{10} are $\{x \in \mathbb{Z}_{10} \text{ such that } \gcd(10, x) = 1\} = \{1, 3, 7, 9\}.$

- (b) The units of \mathbb{Z}_{12} are $\{x \in \mathbb{Z}_{12} \text{ such that } \gcd(12, x) = 1\} = \{1, 5, 7, 11\}.$
- (c) The units of \mathbb{Z}_7 are $\{x \in \mathbb{Z}_7 \text{ such that } \gcd(7,x)=1\}=\mathbb{Z}_7$ as 7 is prime.
- (d) The units of $\mathbb{M}_2(\mathbb{Z})$ are $GL_2(\mathbb{Z})$
- (e) The units of $\mathbb{M}_2(\mathbb{Z}_2)$ are $GL_2(\mathbb{Z}_2) = \mathbb{M}_2(\mathbb{Z}_2) \setminus \{\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\}$

Exercise 16.4. Find all of the ideals in each of the following rings. Which of these ideals are maximal and which are prime?

(a) \mathbb{Z}_{18}

(b) \mathbb{Z}_{25}

Proof.

- (a) The ideals of \mathbb{Z}_{18} are $\{0\}$, \mathbb{Z}_{18} , $2\mathbb{Z}_{18}$, $3\mathbb{Z}_{18}$, $6\mathbb{Z}_{18}$, and $9\mathbb{Z}_{18}$.
- (b) The ideals of \mathbb{Z}_{25} are $\{0\}$, \mathbb{Z}_5 , and \mathbb{Z}_{25} .

Exercise 16.9. What is the characteristic of the field formed by the set of matrices

$$F = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$

with entries in \mathbb{Z}_2 ?

Proof. The characteristic of F is 2 because $2r = \left[\begin{smallmatrix} 0 & 0 \\ 0 & 0 \end{smallmatrix} \right]$ for all $r \in F$.