La variable aléatoire F qui, à tout échantillon aléatoire prélevé avec remise et de taille n, associe la proportion du caractère considéré dans

l'échantillon suit approximativement la loi normale $\mathcal{N}\left(p \; ; \; \frac{p(1-p)}{n}\right)$.

La proportion f dans un échantillon peut être encadrée avec une probabilité de 95 %. Cet intervalle f est appelé **intervalle** de fluctuation asymptotique au seuil de 95 %.

$$I = \left[p - 1,96 \times \sqrt{\frac{p(1-p)}{n}} ; p + 1,96 \times \sqrt{\frac{p(1-p)}{n}} \right].$$

Plus généralement, si l'on fixe un seuil 1 - α , alors :

L'intervalle
$$I = \left[p - u_{\alpha} \sqrt{\frac{p(1-p)}{n}} \; ; \; p + u_{\alpha} \sqrt{\frac{p(1-p)}{n}} \right], \; u_{\alpha} \; \text{\'etant l'unique}$$
 réel tel que $P(-u_{\alpha} \leq Z \leq u_{\alpha}) = 1 - \alpha \; \text{où } Z \; \text{suit la loi normale } \mathcal{N}(0 \; ; \; 1),$ est l'intervalle de fluctuation de f au seuil $1 - \alpha$.

$$P(-u_{\alpha} \le Z \le u_{\alpha}) = 1 - \alpha$$
 équivaut à $P(Z \le u_{\alpha}) = 1 - \frac{\alpha}{2}$ et on obtient u_{α} avec une calculatrice.

• si
$$\alpha = 0.01$$
; $1 - \alpha = 0.99$; $u_{\alpha} = 2.58$;
• si $\alpha = 0.05$; $1 - \alpha = 0.95$; $u_{\alpha} = 1.96$

Valeurs courantes:

• si
$$\alpha = 0.05$$
; $1 - \alpha = 0.95$; $u_{\alpha} = 1.96$
• si $\alpha = 0.1$; $1 - \alpha = 0.9$; $u_{\alpha} = 1.645$.

Remarque : on peut aussi déterminer l'intervalle de fluctuation d'une proportion au seuil $1 - \alpha$ avec une calculatrice ou un logiciel en cherchant les réels a et b tels que :

 $P(a \le F \le b) = 1 - \alpha$.

2. Intervalle de fluctuation d'une moyenne

Dans une population d'effectif N de moyenne m et d'écart type σ , la variable aléatoire \overline{X} qui, à tout échantillon de taille n prélevé avec remise, associe la moyenne de cet échantillon suit approximativement la loi normale $\mathcal{N}\left(m;\frac{\sigma^2}{n}\right)$.

Remarque: dans la plupart des cas où la population a un grand effectif, on assimile un tirage sans remise à un tirage avec remise.

La moyenne m_e du caractère dans un échantillon peut être encadrée avec une probabilité $1-\alpha$.