

Problem R-13A. Assign several of the protons and analyze multiplets of a steroid.

(a) Assign and analyze the following signals (report multiplicity and J values).	Use the steroid numbering on the
structure:	

δ 3.55_		
δ 4.55		
a 		

(b) Assign the 2-proton signal between δ 2.4 and δ 2.7. Briefly provide a rationale for this assignment. What kind of multiplet is this?_____

(c) Analyze this multiplet in a mathematically correct fashion (also show a coupling tree), using the frequencies given. Report coupling constants and chemical shifts. If two solutions are possible present them, and provide a rationale for choosing one of them.

6

Problem R-13A. Assign several of the protons and analyze multiplets of a steroid.

(a) Assign and analyze the following signals (report multiplicity and J values). Use the steroid numbering on the structure:

$$\delta$$
 3.55 H^3 , tdd, J = 11, 7, 6 Hz
 δ 4.55 H^{15} , ddd, J = 7, 5, 2 Hz
 δ 5.40 H^6 , dt, J = 5, 2 Hz

(b) Assign the 2-proton signal between δ 2.4 and δ 2.7. Briefly provide a rationale for this assignment. What kind of multiplet is this?_____ AB of ABX

Apart from H³, H¹⁵ and H⁶, the H¹⁶ protons will be the most downfield. The large ²J (19 Hz) also means the protons must be next to the keto group

(c) Analyze this multiplet in a mathematically correct fashion (also show a coupling tree), using the frequencies given. Report coupling constants and chemical shifts. If two solutions are possible present them, and provide a rationale for choosing one of them.

$$c_{-} = 693.8$$
 $\Delta v_{ab-} = 15.3$ $c_{-} \pm \Delta v_{ab}/2 = 701.51, 686.15$ $c_{+} = 690.4$ $\Delta v_{ab+} = 21.2$ $c_{+} \pm \Delta v_{ab+}/2 = 700.95, 679.86$

Solution 1 Solution 2 1	671.99
J _{AB} 19.1 19.1 2	666.91 691.12
J _{AX} 0.6 -14.8 4	685.71
J_{BX} 6.3 21.6	696.54
v _A 701.2 693.5 7	695.1 715.5
v _B 683.0 690.7 8	713.5
ν _{AB} 18.2 2.9	
i14=i15 0.0074 0.47	
δ _A 2.60 2.57	
δ_{B} 2.53 2.56	

Solution 1 is correct - can't have a negative ³J, as in Sol 2. Also the Sol. 2 couplings are unreasonably large

10

Problem R-13A

270 MHz ¹H NMR Spectrum in CDCl₃ Source: leva Reich (3/27)

