```
In [144...
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          %matplotlib inline
          df = pd.read_csv('Problem1_DataSet.csv')
In [145...
          df.head()
                 Month Miles, in Millions
Out[145]:
                                 7.269
              Jan-1964
           1 Feb-1964
                                 6.775
           2 Mar-1964
                                 7.819
```

Q1 a)

Apr-1964

4 May-1964

```
In [146... x = df['Month']
y = df['Miles, in Millions']
plt.plot(x,y)
```

Out[146]: [<matplotlib.lines.Line2D at 0x7fb9b6a776d0>]

8.371

9.069

Q1 b)

```
In [147... import statsmodels.api as sm
```

In [148... sm.graphics.tsa.plot_acf(df['Miles, in Millions'], lags=50);
11 period


```
In [149... df['3day_ma'] = df.rolling(window=3).mean()
# df['4day_ma'] = df.rolling(window=4).mean()
# df['5day_ma'] = df.rolling(window=5).mean()
# df['6day_ma'] = df.rolling(window=6).mean()
```

/var/folders/91/t9hntp494tqc0sdmv_99jt1w0000gn/T/ipykernel_43712/3171510369. py:1: FutureWarning: Dropping of nuisance columns in rolling operations is d eprecated; in a future version this will raise TypeError. Select only valid columns before calling the operation. Dropped columns were Index(['Month'], dtype='object')

df['3day_ma'] = df.rolling(window=3).mean()

```
In [150... df['4day_ma'] = df.iloc[:,1].rolling(window=4).mean()
```

In [151... df.head()

Out[151]:

	Month	Miles, in Millions	3day_ma	4day_ma
0	Jan-1964	7.269	NaN	NaN
1	Feb-1964	6.775	NaN	NaN
2	Mar-1964	7.819	7.287667	NaN
3	Apr-1964	8.371	7.655000	7.5585
4	May-1964	9.069	8.419667	8.0085

```
In [199... df['12day_ma'] = df.iloc[:,1].rolling(window=12).mean()
```

```
In [200... plt.figure(figsize=(15,10))
   plt.grid(True)
   plt.plot(df['Miles, in Millions'],label='Miles')
   plt.plot(df['3day_ma'],label='SMA 3 Months')
   plt.plot(df['4day_ma'],label='SMA 4 Months')
   plt.plot(df['12day_ma'],label='SMA 12 Months')
   plt.legend(loc=2)
```

Out[200]: <matplotlib.legend.Legend at 0x7fb9b8c02a60>

The trend is increasing.

```
In []:
In [153... df2 = df[['Month', 'Miles, in Millions']].set_index(['Month'])
In [154... from statsmodels.tsa.statespace.tools import diff diff1 = diff(df2)
In [155... plt.plot(diff1,label='first difference')
Out[155]: [<matplotlib.lines.Line2D at 0x7fb9e37e7d30>]
```


In [156... diff1

Out[156]:

Miles, in Millions

Month	
Feb-1964	-0.494
Mar-1964	1.044
Apr-1964	0.552
May-1964	0.698
Jun-1964	1.179
Aug-1970	-0.090
Sep-1970	2.177
Oct-1970	-3.845
Nov-1970	-0.795
Dec-1970	1.178

83 rows × 1 columns

In [157... sm.graphics.tsa.plot_acf(diff1,lags=50);

In [158... sm.graphics.tsa.plot pacf(diff1,lags=40);

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/grap hics/tsaplots.py:348: FutureWarning: The default method 'yw' can produce PAC F values outside of the [-1,1] interval. After 0.13, the default will change tounadjusted Yule-Walker ('ywm'). You can use this method now by setting method='ywm'.

warnings.warn(

In [162... diff2

Out [162]: Miles, in Millions

Month	
Feb-1964	NaN
Mar-1964	NaN
Apr-1964	NaN
May-1964	NaN
Jun-1964	NaN
Aug-1970	-0.154
Sep-1970	0.798
Oct-1970	-0.920
Nov-1970	0.745
Dec-1970	-0.338

83 rows × 1 columns

In [163... diff2.head(15)

Out [163]: Miles, in Millions

Month	
Feb-1964	NaN
Mar-1964	NaN
Apr-1964	NaN
May-1964	NaN
Jun-1964	NaN
Jul-1964	NaN
Aug-1964	NaN
Sep-1964	NaN
Oct-1964	NaN
Nov-1964	NaN
Dec-1964	NaN
Jan-1965	NaN
Feb-1965	-0.027
Mar-1965	-0.044
Apr-1965	0.567

In [165... sm.graphics.tsa.plot_acf(diff2[12:],lags=50);

In [166... sm.graphics.tsa.plot_pacf(diff2[12:],lags=30,method='ywm');


```
In [167... plt.figure(figsize=(15,10))
   plt.plot(diff2[12:])
```

Out[167]: [<matplotlib.lines.Line2D at 0x7fb9b8277550>]


```
In [168...
          from statsmodels.tsa.stattools import adfuller
          dftest = adfuller(diff2[12:], autolag = 'AIC')
          print("1. ADF : ",dftest[0])
          print("2. P-Value : ", dftest[1])
          print("3. Num Of Lags : ", dftest[2])
          print("4. Num Of Observations Used For ADF Regression and Critical Values Ca
          print("5. Critical Values :")
          for key, val in dftest[4].items():
              print("\t",key, ": ", val)
          1. ADF : -2.6064342517214247
          2. P-Value: 0.09167471706254021
          3. Num Of Lags: 12
          4. Num Of Observations Used For ADF Regression and Critical Values Calculati
          on: 58
          5. Critical Values :
                   1%: -3.548493559596539
                   5%: -2.912836594776334
                   10%: -2.594129155766944
In [177... df['Date'] = pd.to datetime(df['Month'])
          df.head()
                Month Miles, in Millions 3day_ma 4day_ma
Out[177]:
                                                             Date
              Jan-1964
                                7.269
                                          NaN
                                                   NaN
                                                       1964-01-01
           1 Feb-1964
                                6.775
                                          NaN
                                                   NaN 1964-02-01
           2 Mar-1964
                                7.819 7.287667
                                                   NaN 1964-03-01
           3 Apr-1964
                                8.371 7.655000
                                                 7.5585 1964-04-01
           4 May-1964
                                9.069 8.419667
                                                 8.0085 1964-05-01
In [178...
          training data=df[df.Date < pd.to datetime("1970-01-01")]
          training data.head()
In [179...
                Month Miles, in Millions 3day_ma 4day_ma
Out[179]:
                                                             Date
           0 Jan-1964
                                7.269
                                          NaN
                                                   NaN
                                                        1964-01-01
           1 Feb-1964
                                6.775
                                          NaN
                                                   NaN 1964-02-01
           2 Mar-1964
                                7.819 7.287667
                                                   NaN 1964-03-01
           3 Apr-1964
                                8.371 7.655000
                                                 7.5585 1964-04-01
           4 May-1964
                                9.069 8.419667
                                                 8.0085 1964-05-01
```

```
In [205... | test data=df[df.Date >= pd.to_datetime("1970-01-01")]
          test data.head()
```

Out[205]:

	Month	Miles, in Millions	3day_ma	4day_ma	Date	12day_ma
72	Jan-1970	10.840	11.215333	11.45775	1970-01-01	12.084417
73	Feb-1970	10.436	11.145667	11.02050	1970-02-01	12.210833
74	Mar-1970	13.589	11.621667	11.75650	1970-03-01	12.376000
75	Apr-1970	13.402	12.475667	12.06675	1970-04-01	12.755167
76	May-1970	13.103	13.364667	12.63250	1970-05-01	12.802333

```
In [210... from pmdarima import auto arima
         auto arima(
             df['Miles, in Millions'],
             start p = 1, max p = 12,
             start_q = 1, max_q = 12,
             seasonal = True, trace = False).summary()
```

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/ statespace/sarimax.py:1899: RuntimeWarning: invalid value encountered in rec iprocal

return np.roots(self.polynomial reduced ar)**-1

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/ statespace/sarimax.py:1906: RuntimeWarning: invalid value encountered in rec iprocal

return np.roots(self.polynomial_reduced_ma)**-1

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/ statespace/sarimax.py:1899: RuntimeWarning: invalid value encountered in rec iprocal

return np.roots(self.polynomial reduced ar)**-1

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/ statespace/sarimax.py:1906: RuntimeWarning: invalid value encountered in rec iprocal

return np.roots(self.polynomial reduced ma)**-1

Out[210]:

SARIMAX Results

Dep. Variable:			y N o	o. Observ	ations:	84
Model:	SARII	MAX(0, 1	1, 0)	Log Like	elihood	-149.034
Date:	Mon,	31 Oct 2	022		AIC	300.068
Time:		23:06	3:48		BIC	302.486
Sample:			0		HQIC	301.039
		-	84			
Covariance Type:			opg			
coef	std err	z	P> z	[0.025	0.975]	
sigma2 2.1240	0.328	6.484	0.000	1.482	2.766	
Ljung-Box (L1) (Q):	1.26 J	arque-l	Bera (JB)	: 0.46	
Pro	b(Q):	0.26		Prob(JB)	: 0.79	
Heteroskedasticit	y (H):	5.13		Skew	: -0.18	
Prob(H) (two-si					: 3.06	

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [228... np.asarray(training data)
Out[228]: array([['Jan-1964', 7.269, nan, nan, Timestamp('1964-01-01 00:00:00')],
                 ['Feb-1964', 6.775, nan, nan, Timestamp('1964-02-01 00:00:00')],
                 ['Mar-1964', 7.819, 7.287666666666665, nan,
                  Timestamp('1964-03-01 00:00:00')],
                 ['Apr-1964', 8.371, 7.65500000000001, 7.5585,
                  Timestamp('1964-04-01 00:00:00')],
                 ['May-1964', 9.069, 8.41966666666668, 8.00850000000002,
                  Timestamp('1964-05-01 00:00:00')],
                 ['Jun-1964', 10.248, 9.2293333333335, 8.87675000000001,
                  Timestamp('1964-06-01 00:00:00')],
                 ['Jul-1964', 11.03, 10.11566666666668, 9.6795,
                  Timestamp('1964-07-01 00:00:00')],
                 ['Aug-1964', 10.882, 10.7199999999999, 10.30725,
                  Timestamp('1964-08-01 00:00:00')],
                 ['Sep-1964', 10.333, 10.748333333335, 10.62324999999999,
                  Timestamp('1964-09-01 00:00:00')],
                 ['Oct-1964', 9.109, 10.1079999999999, 10.3385,
                  Timestamp('1964-10-01 00:00:00')],
                 ['Nov-1964', 7.685, 9.042333333333334, 9.50225,
```

```
Timestamp('1964-11-01 00:00:00')],
['Dec-1964', 7.682, 8.15866666666667, 8.70225,
Timestamp('1964-12-01 00:00:00')],
['Jan-1965', 8.35, 7.90566666666668, 8.2065,
Timestamp('1965-01-01 00:00:00')],
['Feb-1965', 7.829, 7.95366666666666, 7.8865,
Timestamp('1965-02-01 00:00:00')],
['Mar-1965', 8.829, 8.336, 8.1725,
Timestamp('1965-03-01 00:00:00')],
['Apr-1965', 9.948, 8.8686666666666, 8.739,
Timestamp('1965-04-01 00:00:00')],
['May-1965', 10.638, 9.80500000000001, 9.311,
Timestamp('1965-05-01 00:00:00')],
['Jun-1965', 11.253, 10.61300000000001, 10.167,
Timestamp('1965-06-01 00:00:00')],
['Jul-1965', 11.424, 11.10500000000002, 10.81575,
Timestamp('1965-07-01 00:00:00')],
['Aug-1965', 11.391, 11.356000000000002, 11.1765,
Timestamp('1965-08-01 00:00:00')],
['Sep-1965', 10.665, 11.16000000000002, 11.18325000000001,
Timestamp('1965-09-01 00:00:00')],
['Oct-1965', 9.396, 10.48400000000002, 10.7190000000001,
Timestamp('1965-10-01 00:00:00')],
['Nov-1965', 7.775, 9.27866666666668, 9.80675000000001,
Timestamp('1965-11-01 00:00:00')],
['Dec-1965', 7.933, 8.368000000000002, 8.94225,
Timestamp('1965-12-01 00:00:00')],
['Jan-1966', 8.186, 7.9646666666666, 8.3225,
Timestamp('1966-01-01 00:00:00')],
['Feb-1966', 7.444, 7.854333333333336, 7.8345,
Timestamp('1966-02-01 00:00:00')],
['Mar-1966', 8.484, 8.03800000000002, 8.01175,
Timestamp('1966-03-01 00:00:00')],
['Apr-1966', 9.864, 8.597333333333333, 8.4945,
Timestamp('1966-04-01 00:00:00')],
['May-1966', 10.252, 9.53333333333335, 9.01100000000001,
Timestamp('1966-05-01 00:00:00')],
['Jun-1966', 12.282, 10.79933333333335, 10.2205,
Timestamp('1966-06-01 00:00:00')],
['Jul-1966', 11.637, 11.39033333333336, 11.00875,
Timestamp('1966-07-01 00:00:00')],
['Aug-1966', 11.577, 11.832, 11.43700000000001,
Timestamp('1966-08-01 00:00:00')],
['Sep-1966', 12.417, 11.877, 11.97825,
Timestamp('1966-09-01 00:00:00')],
['Oct-1966', 9.637, 11.210333333333333, 11.317,
Timestamp('1966-10-01 00:00:00')],
['Nov-1966', 8.094, 10.0493333333335, 10.43125,
Timestamp('1966-11-01 00:00:00')],
['Dec-1966', 9.28, 9.00366666666666, 9.857,
Timestamp('1966-12-01 00:00:00')],
['Jan-1967', 8.334, 8.56933333333335, 8.83625,
Timestamp('1967-01-01 00:00:00')],
```

```
['Feb-1967', 7.899, 8.504333333333333, 8.40175,
Timestamp('1967-02-01 00:00:00')],
['Mar-1967', 9.994, 8.74233333333335, 8.87675,
Timestamp('1967-03-01 00:00:00')],
['Apr-1967', 10.078, 9.32366666666666, 9.076249999999998,
Timestamp('1967-04-01 00:00:00')],
['May-1967', 10.801, 10.29100000000000, 9.693,
Timestamp('1967-05-01 00:00:00')],
['Jun-1967', 12.953, 11.27733333333333, 10.9565,
Timestamp('1967-06-01 00:00:00')],
['Jul-1967', 12.222, 11.9919999999999, 11.5135,
Timestamp('1967-07-01 00:00:00')],
['Aug-1967', 12.246, 12.473666666666666, 12.05549999999999,
Timestamp('1967-08-01 00:00:00')],
['Sep-1967', 13.281, 12.58300000000004, 12.6755,
Timestamp('1967-09-01 00:00:00')],
['Oct-1967', 10.366, 11.96433333333334, 12.02874999999999,
Timestamp('1967-10-01 00:00:00')],
['Nov-1967', 8.73, 10.79233333333334, 11.15575000000001,
Timestamp('1967-11-01 00:00:00')],
['Dec-1967', 9.614, 9.57000000000002, 10.49775,
Timestamp('1967-12-01 00:00:00')],
['Jan-1968', 8.639, 8.9943333333335, 9.337250000000001,
Timestamp('1968-01-01 00:00:00')],
['Feb-1968', 8.772, 9.00833333333335, 8.93875,
Timestamp('1968-02-01 00:00:00')],
['Mar-1968', 10.894, 9.435, 9.47975,
Timestamp('1968-03-01 00:00:00')],
['Apr-1968', 10.455, 10.04033333333335, 9.69,
Timestamp('1968-04-01 00:00:00')],
['May-1968', 11.179, 10.84266666666666, 10.325,
Timestamp('1968-05-01 00:00:00')],
['Jun-1968', 10.588, 10.74066666666666, 10.779,
Timestamp('1968-06-01 00:00:00')],
['Jul-1968', 10.794, 10.85366666666669, 10.754,
Timestamp('1968-07-01 00:00:00')],
['Aug-1968', 12.77, 11.384, 11.332749999999999,
Timestamp('1968-08-01 00:00:00')],
['Sep-1968', 13.812, 12.45866666666666, 11.991,
Timestamp('1968-09-01 00:00:00')],
['Oct-1968', 10.857, 12.47966666666668, 12.058250000000001,
Timestamp('1968-10-01 00:00:00')],
['Nov-1968', 9.29, 11.31966666666666, 11.68225,
Timestamp('1968-11-01 00:00:00')],
['Dec-1968', 10.925, 10.35733333333335, 11.221,
Timestamp('1968-12-01 00:00:00')],
['Jan-1969', 9.491, 9.9020000000001, 10.14075,
Timestamp('1969-01-01 00:00:00')],
['Feb-1969', 8.919, 9.778333333333334, 9.65625,
Timestamp('1969-02-01 00:00:00')],
['Mar-1969', 11.607, 10.00566666666668, 10.2355,
Timestamp('1969-03-01 00:00:00')],
['Apr-1969', 8.852, 9.79266666666667, 9.71725,
```

```
Timestamp('1969-04-01 00:00:00')],
['May-1969', 12.537, 10.998666666666667, 10.47875,
Timestamp('1969-05-01 00:00:00')],
['Jun-1969', 14.759, 12.0493333333335, 11.93874999999999,
Timestamp('1969-06-01 00:00:00')],
['Jul-1969', 13.667, 13.6543333333335, 12.45375,
Timestamp('1969-07-01 00:00:00')],
['Aug-1969', 13.731, 14.05233333333335, 13.6735,
Timestamp('1969-08-01 00:00:00')],
['Sep-1969', 15.11, 14.169333333333334, 14.31675,
Timestamp('1969-09-01 00:00:00')],
['Oct-1969', 12.185, 13.675333333333334, 13.67325,
Timestamp('1969-10-01 00:00:00')],
['Nov-1969', 10.645, 12.64666666666667, 12.91775,
Timestamp('1969-11-01 00:00:00')],
['Dec-1969', 12.161, 11.66366666666666, 12.52525,
Timestamp('1969-12-01 00:00:00')]], dtype=object)
```

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to estimate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16N = 3 M = 10

At X0 0 variables are exactly at the bounds

At iterate 0 f= 1.45847D+00 | proj g|= 7.42216D-02

At iterate 5 f= 1.21765D+00 | proj g| = 4.60395D-02

At iterate 10 f= 1.20223D+00 | proj g|= 4.57948D-03

At iterate 15 f= 1.20156D+00 | proj g|= 2.98707D-03

At iterate 20 f= 1.20146D+00 | proj g|= 1.23112D-03

At iterate 25 f= 1.20144D+00 | proj g|= 1.22053D-04

ys=-7.837E-07 -gs= 9.270E-07 BFGS update SKIPPED

Bad direction in the line search;

refresh the lbfgs memory and restart the iteration.

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F
3 28 78 2 1 0 1.779D-06 1.201D+00
F = 1.2014435116070783

CONVERGENCE: NORM_OF_PROJECTED GRADIENT <= PGTOL

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to estimate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

RUNNING THE L-BFGS-B CODE

* * *

Bad direction in the line search;

refresh the lbfgs memory and restart the iteration.

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to estimate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F
3 28 78 2 1 0 1.779D-06 1.201D+00
F = 1.2014435116070783

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16

 $N = 3 \qquad M = 10$

At X0 0 variables are exactly at the bounds

At iterate 0 f= 1.45847D+00 | proj g|= 7.42216D-02

At iterate 5 f= 1.21765D+00 | proj g|= 4.60395D-02

At iterate 10 f= 1.20223D+00 | proj g|= 4.57948D-03

At iterate 15 f= 1.20156D+00 | proj g|= 2.98707D-03

At iterate 20 f= 1.20146D+00 | proj g|= 1.23112D-03

At iterate 25 f= 1.20144D+00 | proj g|= 1.22053D-04

ys=-7.837E-07 -gs= 9.270E-07 BFGS update SKIPPED

Bad direction in the line search;

refresh the lbfgs memory and restart the iteration.

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F
3 28 78 2 1 0 1.779D-06 1.201D+00
F = 1.2014435116070783

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16

 $N = 3 \qquad M = 10$

At X0 0 variables are exactly at the bounds

At iterate 0 f= 1.45847D+00 | proj g|= 7.42216D-02

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to estimate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'
This problem is unconstrained.

```
At iterate
             5
                  f = 1.21765D + 00
                                     |proj g| = 4.60395D-02
At iterate
            10
                  f= 1.20223D+00
                                    |proj q| = 4.57948D-03
At iterate
                  f= 1.20156D+00
                                     |proj g|= 2.98707D-03
            15
                                     |proj g|= 1.23112D-03
At iterate
            20
                  f = 1.20146D+00
At iterate
            25
                  f = 1.20144D+00
                                     |proj g| = 1.22053D-04
  ys=-7.837E-07 -gs= 9.270E-07 BFGS update SKIPPED
```

Bad direction in the line search;

refresh the lbfgs memory and restart the iteration.

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to estimate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F
3 28 78 2 1 0 1.779D-06 1.201D+00
F = 1.2014435116070783

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16

 $N = 3 \qquad M = 10$

At XO 0 variables are exactly at the bounds

At iterate 0 f= 1.45847D+00 | proj g|= 7.42216D-02

At iterate 5 f= 1.21765D+00 | proj g|= 4.60395D-02

At iterate 10 f= 1.20223D+00 | proj g|= 4.57948D-03

At iterate 15 f= 1.20156D+00 | proj g|= 2.98707D-03

At iterate 20 f= 1.20146D+00 | proj g|= 1.23112D-03

At iterate 25 f= 1.20144D+00 | proj g|= 1.22053D-04

ys=-7.837E-07 -gs= 9.270E-07 BFGS update SKIPPED

Bad direction in the line search;

refresh the lbfgs memory and restart the iteration.

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to estimate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F
3 28 78 2 1 0 1.779D-06 1.201D+00
F = 1.2014435116070783

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16

 $N = 3 \qquad M = 10$

At X0 0 variables are exactly at the bounds

At iterate 0 f= 1.45847D+00 | proj g|= 7.42216D-02

At iterate 5 f= 1.21765D+00 | proj g|= 4.60395D-02

At iterate 10 f= 1.20223D+00 | proj g|= 4.57948D-03

At iterate 15 f= 1.20156D+00 | proj g|= 2.98707D-03

At iterate 20 f= 1.20146D+00 | proj g|= 1.23112D-03

At iterate 25 f= 1.20144D+00 | proj g|= 1.22053D-04

ys=-7.837E-07 -gs= 9.270E-07 BFGS update SKIPPED

Bad direction in the line search;

refresh the lbfgs memory and restart the iteration.

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to estimate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F
3 28 78 2 1 0 1.779D-06 1.201D+00
F = 1.2014435116070783

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16

 $N = 3 \qquad M = 10$

At X0 0 variables are exactly at the bounds

At iterate 0 f= 1.45847D+00 | proj g|= 7.42216D-02

At iterate 5 f= 1.21765D+00 | proj g|= 4.60395D-02

At iterate 10 f= 1.20223D+00 | proj g|= 4.57948D-03

At iterate 15 f= 1.20156D+00 | proj g|= 2.98707D-03

At iterate 20 f= 1.20146D+00 | proj g|= 1.23112D-03

At iterate 25 f= 1.20144D+00 | proj g|= 1.22053D-04

ys=-7.837E-07 -gs= 9.270E-07 BFGS update SKIPPED

Bad direction in the line search;

refresh the lbfgs memory and restart the iteration.

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to estimate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F
3 28 78 2 1 0 1.779D-06 1.201D+00
F = 1.2014435116070783

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16

 $N = 3 \qquad M = 10$

At XO 0 variables are exactly at the bounds

At iterate 0 f= 1.45847D+00 | proj g|= 7.42216D-02

At iterate 5 f= 1.21765D+00 | proj g|= 4.60395D-02

At iterate 10 f= 1.20223D+00 | proj g|= 4.57948D-03

At iterate 15 f= 1.20156D+00 | proj g|= 2.98707D-03

At iterate 20 f= 1.20146D+00 | proj g|= 1.23112D-03

At iterate 25 f= 1.20144D+00 | proj g|= 1.22053D-04

ys=-7.837E-07 -gs= 9.270E-07 BFGS update SKIPPED

Bad direction in the line search;

refresh the lbfgs memory and restart the iteration.

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to estimate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F
3 28 78 2 1 0 1.779D-06 1.201D+00
F = 1.2014435116070783

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16

 $N = 3 \qquad M = 10$

At X0 0 variables are exactly at the bounds

At iterate 0 f= 1.45847D+00 | proj g|= 7.42216D-02

At iterate 5 f= 1.21765D+00 | proj g|= 4.60395D-02

At iterate 10 f= 1.20223D+00 | proj g|= 4.57948D-03

At iterate 15 f= 1.20156D+00 | proj g|= 2.98707D-03

At iterate 20 f= 1.20146D+00 | proj g|= 1.23112D-03

At iterate 25 f= 1.20144D+00 | proj g|= 1.22053D-04

ys=-7.837E-07 -gs= 9.270E-07 BFGS update SKIPPED

Bad direction in the line search;

refresh the lbfgs memory and restart the iteration.

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to estimate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F
3 28 78 2 1 0 1.779D-06 1.201D+00
F = 1.2014435116070783

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16

 $N = 3 \qquad M = 10$

At X0 0 variables are exactly at the bounds

At iterate 0 f= 1.45847D+00 | proj g|= 7.42216D-02

At iterate 5 f= 1.21765D+00 | proj g|= 4.60395D-02

At iterate 10 f= 1.20223D+00 | proj g|= 4.57948D-03

At iterate 15 f= 1.20156D+00 | proj g|= 2.98707D-03

At iterate 20 f= 1.20146D+00 | proj g|= 1.23112D-03

At iterate 25 f= 1.20144D+00 | proj g|= 1.22053D-04

ys=-7.837E-07 -gs= 9.270E-07 BFGS update SKIPPED

Bad direction in the line search;

refresh the lbfgs memory and restart the iteration.

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to estimate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F
3 28 78 2 1 0 1.779D-06 1.201D+00
F = 1.2014435116070783

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16

 $N = 3 \qquad M = 10$

At X0 0 variables are exactly at the bounds

At iterate 0 f= 1.45847D+00 | proj g|= 7.42216D-02

At iterate 5 f= 1.21765D+00 | proj g|= 4.60395D-02

At iterate 10 f= 1.20223D+00 | proj g|= 4.57948D-03

At iterate 15 f= 1.20156D+00 | proj g|= 2.98707D-03

At iterate 20 f= 1.20146D+00 | proj g|= 1.23112D-03

At iterate 25 f= 1.20144D+00 | proj g|= 1.22053D-04

ys=-7.837E-07 -gs= 9.270E-07 BFGS update SKIPPED

Bad direction in the line search;

refresh the lbfgs memory and restart the iteration.

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to estimate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F
3 28 78 2 1 0 1.779D-06 1.201D+00
F = 1.2014435116070783

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16

 $N = 3 \qquad M = 10$

At X0 0 variables are exactly at the bounds

At iterate 0 f= 1.45847D+00 | proj g|= 7.42216D-02

At iterate 5 f= 1.21765D+00 | proj g|= 4.60395D-02

At iterate 10 f= 1.20223D+00 | proj g|= 4.57948D-03

At iterate 15 f= 1.20156D+00 | proj g|= 2.98707D-03

At iterate 20 f= 1.20146D+00 | proj g|= 1.23112D-03

At iterate 25 f= 1.20144D+00 | proj g|= 1.22053D-04

ys=-7.837E-07 -gs= 9.270E-07 BFGS update SKIPPED

Bad direction in the line search;

refresh the lbfgs memory and restart the iteration.

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to estimate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F
3 28 78 2 1 0 1.779D-06 1.201D+00
F = 1.2014435116070783

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16

 $N = 3 \qquad M = 10$

At X0 0 variables are exactly at the bounds

At iterate 0 f= 1.45847D+00 | proj g|= 7.42216D-02

At iterate 5 f= 1.21765D+00 | proj g|= 4.60395D-02

At iterate 10 f= 1.20223D+00 | proj g|= 4.57948D-03

At iterate 15 f= 1.20156D+00 | proj g|= 2.98707D-03

At iterate 20 f= 1.20146D+00 | proj g|= 1.23112D-03

At iterate 25 f= 1.20144D+00 | proj g|= 1.22053D-04

ys=-7.837E-07 -gs= 9.270E-07 BFGS update SKIPPED

Bad direction in the line search;

refresh the lbfgs memory and restart the iteration.

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to estimate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F
3 28 78 2 1 0 1.779D-06 1.201D+00
F = 1.2014435116070783

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16

 $N = 3 \qquad M = 10$

At XO 0 variables are exactly at the bounds

At iterate 0 f= 1.45847D+00 | proj g|= 7.42216D-02

At iterate 5 f= 1.21765D+00 | proj g|= 4.60395D-02

At iterate 10 f= 1.20223D+00 | proj g|= 4.57948D-03

At iterate 15 f= 1.20156D+00 | proj g|= 2.98707D-03

At iterate 20 f= 1.20146D+00 | proj g|= 1.23112D-03

At iterate 25 f= 1.20144D+00 | proj g|= 1.22053D-04

ys=-7.837E-07 -gs= 9.270E-07 BFGS update SKIPPED

Bad direction in the line search;

refresh the lbfgs memory and restart the iteration.

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to estimate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F
3 28 78 2 1 0 1.779D-06 1.201D+00
F = 1.2014435116070783

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16

 $N = 3 \qquad M = 10$

At X0 0 variables are exactly at the bounds

At iterate 0 f= 1.45847D+00 | proj g|= 7.42216D-02

At iterate 5 f= 1.21765D+00 | proj g|= 4.60395D-02

At iterate 10 f= 1.20223D+00 | proj g|= 4.57948D-03

At iterate 15 f= 1.20156D+00 | proj g|= 2.98707D-03

At iterate 20 f= 1.20146D+00 | proj g|= 1.23112D-03

At iterate 25 f= 1.20144D+00 | proj g|= 1.22053D-04

ys=-7.837E-07 -gs= 9.270E-07 BFGS update SKIPPED

Bad direction in the line search;

refresh the lbfgs memory and restart the iteration.

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to estimate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'
This problem is unconstrained.

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient
F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F
3 28 78 2 1 0 1.779D-06 1.201D+00
F = 1.2014435116070783

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16N = 3 M = 10

At XO 0 variables are exactly at the bounds

At iterate 0 f= 1.45847D+00 |proj g|= 7.42216D-02

At iterate 5 f= 1.21765D+00 | proj g|= 4.60395D-02

At iterate 10 f= 1.20223D+00 | proj g|= 4.57948D-03

At iterate 15 f= 1.20156D+00 | proj g|= 2.98707D-03

At iterate 20 f= 1.20146D+00 | proj g|= 1.23112D-03

At iterate 25 f= 1.20144D+00 |proj g|= 1.22053D-04 ys=-7.837E-07 -gs= 9.270E-07 BFGS update SKIPPED

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F
3 28 78 2 1 0 1.779D-06 1.201D+00
F = 1.2014435116070783

CONVERGENCE: NORM OF PROJECTED GRADIENT <= PGTOL

p q AIC BIC 0 0 0 179.007866 183.497388 1 0 1 179.007866 183.497388 2 0 2 179.007866 183.497388

```
179.007866 183.497388
3
    0
       3
    1
4
          179.007866 183.497388
5
    1
      1
         179.007866 183.497388
6
    1
       2
          179.007866 183.497388
7
    1
       3
          179.007866 183.497388
8
    2
          179.007866 183.497388
    2
9
       1
          179.007866
                     183.497388
   2
10
       2
         179.007866 183.497388
11
    2
       3
          179.007866 183.497388
12
    3
       0
          179.007866 183.497388
13
   3
       1
          179.007866 183.497388
14
    3
          179.007866
                     183.497388
15
   3
       3
          179.007866 183.497388
                 AIC
    р
       q
                             BIC
0
    0
         179.007866 183.497388
       0
1
    0
          179.007866 183.497388
       1
2
    0
          179.007866 183.497388
3
    0
       3
          179.007866 183.497388
4
    1
          179.007866 183.497388
5
    1
       1
          179.007866 183.497388
6
    1
          179.007866 183.497388
7
    1
       3
         179.007866 183.497388
8
    2
       0
         179.007866 183.497388
9
    2
       1
          179.007866 183.497388
10
   2
         179.007866 183.497388
   2
11
          179.007866 183.497388
   3
12
      0
         179.007866 183.497388
   3
          179.007866 183.497388
13
      1
14
   3
          179.007866 183.497388
       2
15
    3
       3
          179,007866
                     183.497388
Bad direction in the line search;
```

We observe that model of order=(3,1,2), seasonal_order=(3,1,2,12) seems to be a good fit as the data is approx. normally distributed

refresh the lbfgs memory and restart the iteration.

```
In [241... model=sm.tsa.statespace.SARIMAX(training_data["Miles, in Millions"], order =
    results=model.fit()
    df['forecast']=results.predict(start=73,end=84,dynamic=True)
    df[['Miles, in Millions','forecast']].plot(figsize=(12,8))
    results.summary()

//Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/
    statespace/sarimax.py:978: UserWarning: Non-invertible starting MA parameter
    s found. Using zeros as starting parameters.
    warn('Non-invertible starting MA parameters found.'
    //Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/
    statespace/sarimax.py:866: UserWarning: Too few observations to estimate sta
    rting parameters for seasonal ARMA. All parameters except for variances will
    be set to zeros.
    warn('Too few observations to estimate starting parameters%s.'
```

This problem is unconstrained.

RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16 11 10 At X0 O variables are exactly at the bounds f= 1.19660D+00 |proj g|= 4.80597D-01 At iterate At iterate 5 f = 9.75391D - 01|proj g| = 3.48860D-02At iterate f = 9.66705D-01 |proj g|= 8.61401D-03 10 At iterate 15 f= 9.63328D-01 |proj g| = 6.80125D-02At iterate f = 9.61443D-01 | proj g | = 5.39761D-03 20 25 f= 9.60650D-01 |proj g|= 5.18187D-03 At iterate 30 f= 9.60470D-01 At iterate |proj g| = 2.36152D-03At iterate 35 f = 9.60410D - 01 | proj g | = 6.15600D - 04 |proj q| = 1.20860D-03At iterate 40 f= 9.60385D-01

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/base/model.py:604: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle retvals

|proj g| = 2.61715D-03

warnings.warn("Maximum Likelihood optimization failed to "

At iterate 50 f= 9.60342D-01 | proj g|= 7.98183D-04

f= 9.60367D-01

* * *

45

At iterate

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F 11 50 56 1 0 0 7.982D-04 9.603D-01 F = 0.96034181236898852

STOP: TOTAL NO. of ITERATIONS REACHED LIMIT

> /Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/ statespace/kalman_filter.py:2290: ValueWarning: Dynamic prediction specified to begin during out-of-sample forecasting period, and so has no effect. warn('Dynamic prediction specified to begin during'

Out[241]:

SARIMAX Results

Dep. Variable:	Miles, in Millions	No. Observations:	72
Model:	SARIMAX(3, 1, 2)x(3, 1, 2, 12)	Log Likelihood	-69.145
Date:	Mon, 31 Oct 2022	AIC	160.289
Time:	23:48:02	BIC	183.142
Sample:	0	HQIC	169.210
	- 72		
Covariance Type:	ong		

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	-0.0946	0.769	-0.123	0.902	-1.602	1.413
ar.L2	0.0539	0.484	0.111	0.911	-0.894	1.002
ar.L3	0.2049	0.358	0.572	0.567	-0.497	0.907
ma.L1	-0.4597	17.494	-0.026	0.979	-34.748	33.828
ma.L2	-0.5390	9.335	-0.058	0.954	-18.836	17.758
ar.S.L12	-0.3944	293.474	-0.001	0.999	-575.592	574.803
ar.S.L24	0.8346	138.076	0.006	0.995	-269.789	271.458
ar.S.L36	0.3465	32.092	0.011	0.991	-62.552	63.245
ma.S.L12	-0.0069	1348.669	-5.1e-06	1.000	-2643.350	2643.336
ma.S.L24	-0.9794	413.236	-0.002	0.998	-810.907	808.949
sigma2	0.5190	204.368	0.003	0.998	-400.035	401.074

Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 44.67 Prob(Q): 0.98 Prob(JB): 0.00 Heteroskedasticity (H): 5.16 Skew: -0.81 Prob(H) (two-sided): 0.00 **Kurtosis:** 6.94

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).


```
In [180... wine_data = pd.read_csv('TotalWine.csv')
    wine_data.head()
```

Out[180]:		Time (Quarter)	TotalWine
	0	1	1.486
	1	2	1.915
	2	3	1.844
	3	4	2.808
	4	5	1.287

```
In [181... x = wine_data['Time (Quarter)']
y = wine_data['TotalWine']
plt.plot(x,y)
```

Out[181]: [<matplotlib.lines.Line2D at 0x7fb9903a0400>]

In [182... from statsmodels.tsa.seasonal import seasonal_decompose
 seasonal = seasonal_decompose(wine_data['TotalWine'],period=4,model='multiple')

In [183... seasonal.plot();

As it can be observed from the graph above the seasonal period for this Time Series is 4.

```
In [184... wd2 = wine_data[['Time (Quarter)', 'TotalWine']].set_index(['Time (Quarter)'
In [185... wd2
```

Out [185]: TotalWine

 Time (Quarter)

 1
 1.486

2	1.915
3	1.844
4	2.808
5	1.287
6	1.861
7	2.034
8	2.739
9	1.656
10	1.918
11	2.265
12	2.902
13	1.691
14	2.033
15	2.141
16	2.932
17	1.847
18	2.157
19	2.318
20	2.974
21	1.977
22	2.328
23	2.479
24	3.099
25	2.141
26	2.299
27	2.606
28	3.330
29	2.290
30	2.499
31	2.524
32	2.887
33	2.007

34	2.330
35	2.384
36	3.696
37	2.157
38	2.529
39	2.395
40	3.447
41	2.499
42	2.499
43	2.504
44	3.834
45	2.246
46	2.538
47	2.704
48	3.321
49	2.433
50	2.673
51	2.647

```
In [186... diff1_wd = wd2.diff()
   plt.plot(diff1_wd)
```

Out[186]: [<matplotlib.lines.Line2D at 0x7fb9b84841f0>]


```
In [187... diff2_wd = wd2.diff(2)
   plt.plot(diff2_wd)
```

Out[187]: [<matplotlib.lines.Line2D at 0x7fb9b85f1730>]


```
In [188... diff4_wd = wd2.diff(4)
   plt.plot(diff4_wd)
```

Out[188]: [<matplotlib.lines.Line2D at 0x7fb9b86db130>]


```
In [189... diff6_wd = wd2.diff(6)
   plt.plot(diff6_wd)
```

Out[189]: [<matplotlib.lines.Line2D at 0x7fb9b8735970>]


```
In [192... plt.figure(figsize=(15,10))
   plt.grid(True)
   plt.plot(wd2['TotalWine'],label='Wine')
   plt.plot(diff1_wd['TotalWine'],label='lag-1')
   plt.plot(diff2_wd['TotalWine'],label='lag-2')
   plt.plot(diff4_wd['TotalWine'],label='lag-4')
   plt.plot(diff6_wd['TotalWine'],label='lag-6')
   plt.legend(loc=2)
```

Out[192]: <matplotlib.legend.Legend at 0x7fb9b7044580>


```
In [193... sm.graphics.tsa.plot_acf(wine_data['TotalWine'], lags=50);
```


In [195... sm.graphics.tsa.plot_pacf(wine_data['TotalWine'],lags=20,method='ywm');

In [101... import statsmodels.api as sm
from statsmodels.tsa.ar_model import AutoReg, ar_select_order

In [201... diff4_wd.dropna(inplace=True)

In [215... diff4_wd.head()

Out [215]: TotalWine

Time	(Quarter)

5	-0.199
6	-0.054
7	0.190
8	-0.069
9	0.369

```
In [214... from sklearn.model_selection import train_test_split
```

```
In [216... y = diff4_wd['TotalWine']
X = diff4_wd['Time (Quarter)']
```

```
Traceback (most recent call last)
        KeyError
        File ~/opt/anaconda3/lib/python3.9/site-packages/pandas/core/indexes/base.py
        :3621, in Index.get loc(self, key, method, tolerance)
           3620 try:
        -> 3621
                   return self. engine.get loc(casted key)
           3622 except KeyError as err:
        File ~/opt/anaconda3/lib/python3.9/site-packages/pandas/ libs/index.pyx:136,
        in pandas. libs.index.IndexEngine.get loc()
        File ~/opt/anaconda3/lib/python3.9/site-packages/pandas/ libs/index.pyx:163,
        in pandas. libs.index.IndexEngine.get loc()
        File pandas/ libs/hashtable class helper.pxi:5198, in pandas. libs.hashtable
        .PyObjectHashTable.get item()
        File pandas/ libs/hashtable class helper.pxi:5206, in pandas. libs.hashtable
        .PyObjectHashTable.get item()
        KeyError: 'Time (Quarter)'
        The above exception was the direct cause of the following exception:
        KeyError
                                                  Traceback (most recent call last)
        Input In [216], in <cell line: 2>()
              1 y = diff4 wd['TotalWine']
        ----> 2 X = diff4 wd['Time (Quarter)']
        File ~/opt/anaconda3/lib/python3.9/site-packages/pandas/core/frame.py:3505,
        in DataFrame. getitem (self, key)
           3503 if self.columns.nlevels > 1:
                    return self. getitem multilevel(key)
        -> 3505 indexer = self.columns.get_loc(key)
           3506 if is_integer(indexer):
           3507
                    indexer = [indexer]
        File ~/opt/anaconda3/lib/python3.9/site-packages/pandas/core/indexes/base.py
        :3623, in Index.get loc(self, key, method, tolerance)
           3621
                    return self. engine.get loc(casted key)
           3622 except KeyError as err:
                   raise KeyError(key) from err
           3624 except TypeError:
                   # If we have a listlike key, check indexing error will raise
           3625
                    # InvalidIndexError. Otherwise we fall through and re-raise
           3626
           3627
                   # the TypeError.
           3628
                   self._check_indexing_error(key)
        KeyError: 'Time (Quarter)'
In [ ]: X train, X test, y train, y test = train test split(
                X, y, test size=0.33, random state=42)
```

```
In [202... mod = ar_select_order(diff4_wd, maxlag=10, seasonal=True, period=4,ic='aic')
mod.ar_lags
res = mod.model.fit()
print(res.summary())
```

print(res.summ	nary())					
		AutoReg Mc				
=======================================	:=======	========	:=======	========	======	======
Dep. Variable:		TotalWine	No. Observations:			
Model:	Seas. AutoReg(4)		Log Likelihood		15.5	
Method:	Conditional MLE		S.D. of innovations		0.1	
Date:	Mon,	31 Oct 2022	AIC			-13.0
Time: 49		22:51:02	BIC			2.8
Sample: 57		4	HQIC			-7.1
		47				
=======================================	:=======	========	:=======		=======	======
975]	coef	std err	Z	P> z	[0.025	0.
const	0.1450	0.053	2.738	0.006	0.041	0
s(2,4) .103	-0.0387	0.072	-0.534	0.593	-0.181	0
s(3,4)	-0.0430	0.072	-0.597	0.551	-0.184	0
s(4,4) .121	-0.0243	0.074	-0.328	0.743	-0.169	0
TotalWine.L1	0.0024	0.116	0.020	0.984	-0.224	0
TotalWine.L2 .277	0.0512	0.115	0.444	0.657	-0.175	0
TotalWine.L3 .278	0.0525	0.115	0.456	0.649	-0.173	0
TotalWine.L4 .453	-0.6940	0.123	-5.644	0.000	-0.935	-0
			ots			
=				Modulua		
У	Real	Imagin	ary	Modulus	F.	requenc
	-0.7680	-0.76	371	1.0830		-0.375
AR.1 4 AR.2	-0.7680	+0.76	_	1.0830		0.375
A1(• 4	-0.7000	+0.70	. J	1.0030		0.3/3

4 AR.3	0.8058	-0.7610j	1.1084	-0.120
5		-		
AR.4 5	0.8058	+0.7610j	1.1084	0.120

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/ base/tsa_model.py:471: ValueWarning: An unsupported index was provided and w ill be ignored when e.g. forecasting.

self._init_dates(dates, freq)

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/ base/tsa model.py:471: ValueWarning: An unsupported index was provided and w ill be ignored when e.g. forecasting.

self._init_dates(dates, freq)

In [203... out=res.predict() out

```
Time (Quarter)
Out[203]:
                  0.151167
           6
                 -0.014414
           7
                  0.191458
           8
                 -0.095833
           9
                  0.087382
           10
                 -0.047672
                  0.015060
           11
           12
                  0.120505
           13
                  0.021976
           14
                  0.197943
           15
                  0.114882
                  0.052453
           16
           17
                  0.032075
           18
                 -0.011544
           19
                  0.107560
           20
                  0.072339
           21
                  0.002950
           22
                  0.005185
           23
                  0.041414
           24
                  0.036758
           25
                  0.145363
           26
                  0.034114
                 -0.021697
           27
           28
                  0.046884
           29
                 -0.060080
           30
                  0.120796
           31
                  0.404355
           32
                  0.327316
           33
                  0.258131
           34
                  0.249786
           35
                 -0.422611
           36
                  0.051360
           37
                 -0.043093
           38
                  0.098781
           39
                  0.310217
           40
                 -0.087382
           41
                  0.152157
           42
                  0.033814
           43
                 -0.158636
           44
                  0.331710
           45
                  0.063972
                 -0.053788
           46
           47
                       NaN
           48
                       NaN
           49
                       NaN
           50
                       NaN
           51
                       NaN
           dtype: float64
```

```
In [217... plt.plot(out)
    plt.plot(diff4_wd,color='red')
```


In [235... | from sklearn.metrics import mean_squared_error

In [238... diff4_wd.dropna(inplace=True)

In []: mean_squared_error(diff4_wd['TotalWine'],out)

Train RMSE: 0.6589154504130144 Test RMSE: 0.8170648442164431

In []: