Wherever you see **red characters**, these need to be replaced by your information. This includes the <> symbols!

Plotting a One-Variable Bar Plot with Counts

Note: This bar plot has the variable names on the x-axis. If the names are squished, then you should use $\mathbf{y} = 1$ instead of $\mathbf{x} = 1$.

Plotting a One-Variable Bar Plot with Proportions

Note: This bar plot has the variable names on the x-axis. If the names are squished, then you should use $\mathbf{y} = \mathbf{x}$ instead of $\mathbf{x} = \mathbf{x}$.

Plotting a Two-Variable Bar Plot

Note: You should fill by whichever variable has **fewer** values.

Note: If you want a side-by-side bar plot you need to change position to "dodge". If you want a filled bar plot, you need change position to "fill".

Creating a Summary Table of Observations of One Variable

```
<NAME OF DATASET> |>
count(<NAME OF VARIABLE>)
```

Wherever you see **red characters**, these need to be replaced by your information. This includes the <> symbols!

Creating a Summary Table of Observations from Two Variables

```
<NAME OF DATASET> |>
count(<NAME OF VARIABLE 1>, <NAME OF VARIABLE 2>)
```

Creating a Contingency Table of Observations from Two Variables

Note: Your explanatory variable should be in the rows and your response variable should be in the columns. So, the variable you insert into names_from should be the response variable you are interested in.

Performing a Chi-Squared Goodness-of-Fit Test (One Variable)

Performing a Chi-Squared Independence / Homogeneity Test (Two Variables)

Obtaining the Sample X-Squared Statistic

Note: This step must be done before you find your p-value!

Obtaining 1000 Permuted X-Squared Statistics – Assuming the Null Hypothesis is True

Wherever you see **red characters**, these need to be replaced by your information. This includes the <> symbols!

Plotting the Simulated Null Distribution

Note: This step must come after you have obtained the permuted differences in means!

Obtaining a p-value from a Null Distribution

Note: This step **must** come after you have obtained the bootstrapped differences in means **and** the observed difference in means!

Note: In a Chi-Squared test we **always** use a greater than alternative, since we only look in the right tail!