Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра компьютерных систем в управлении и проектировании (КСУП)

РАЗРАБОТКА ПЛАГИНА "РАМА ОКНА" ДЛЯ САПР "КОМПАС-3D"

ПРОЕКТ СИСТЕМЫ

по дисциплине

«Основы разработки САПР» (ОРСАПР)

		Выполнил:
		студент гр. 580-1
_		Казаков Н.Б.
<u> </u>	<u> </u>	2023 г.
		Руководитель:
	к.т.н.	, доцент каф. КСУП
		Калентьев А.А.
(>>	2023 г.

Содержание

1. Описание САПР	3
1.1 Информация о выбранной САПР	3
2 Описание предмета проектирования	
3 Проект системы	
3.1 Диаграмма классов	11
3.2 Макеты пользовательского интерфейса	
Список используемых источников	

1. Описание САПР

1.1 Информация о выбранной САПР

САПР "Компас-3D" - это комплекс программных средств для трехмерного моделирования и проектирования изделий любой сложности. Он позволяет создавать 3D-модели, производить расчеты, создавать чертежи и документацию.

Основные возможности САПР "Компас-3D":

- Создание 3D-моделей изделий различной сложности;
- Работа с поверхностями, твердотельными объектами, сборками;
- Импорт и экспорт данных в различных форматах;
- Создание технологических процессов;
- Построение чертежей и документации [2].

Аналогами САПР "Компас-3D" могут быть такие программные средства, как SolidWorks, AutoCAD, CATIA, Inventor, PTC Creo. Однако, каждая из них имеет свои особенности и применяется в разных областях.

Выбор САПР "Компас-3D" обусловлен его удобством и доступностью для начинающих пользователей, а также широким функционалом и возможностью интеграции с другими программными продуктами.

1.2 Описание АРІ

API (Application Programming Interface) - это набор инструментов, функций и протоколов, которые позволяют разработчикам создавать приложения, взаимодействующие с другими программными продуктами.

Для САПР "Компас-3D" существует API, называемый KOMPAS-3D API. Он позволяет разработчикам создавать свои собственные приложения, расширяющие функционал САПР "Компас-3D".

Для работы с KOMPAS-3D API необходимо установить специальный пакет разработчика (SDK) и документацию. В SDK входят необходимые библиотеки и инструменты для создания приложений на языке С#, а также примеры кода и документация.

Работа с KOMPAS-3D API требует знаний программирования на языке С# и понимания основных принципов работы САПР "Компас-3D" [3].

Далее описаны таблицы для основных классов, которые будут использоваться из этой API

Таблица 1.1 – Используемые свойства класса KompasObject

Название Тип данных		Описание	
visible	bool	Свойство видимости приложения.	

Таблица 1.2 – Используемые метода класса KompasObject

		, ,	<u> </u>
Название	Входные	Тип	Описание
	параметры	возвращаемых	
		данных	
ActiveDocum	-	ksDocument3D	Получить указатель на
ent3D			интерфейс текущего документа
			трехмерной модели.
Document3D	-	ksDocument3D	Получить указатель на
			интерфейс документа
			трехмерной модели.

Таблица 1.3 – Используемые свойства класса ksDocument3D

Название	Тип данных	Описание
author	ksDocument3D	Имя автора документа.

Таблица 1.4 – Используемые метода класса ksDocument3D

Название	Входные	Тип	Описание
	параметры	возвращаемых	
		данных	
Create	Invisible, typeDoc	ksDocument3D	Создать документ модель
			(деталь или сборку).
GetPart	type	ksPart	Получить указатель на
			интерфейс компонента в
			соответствии с заданным типом.

Таблица 1.5 – Используемые свойства класса ksSketchDefinition

Название	Тип данных	Описание
angle	double	Угол поворота эскиза относительно проекции системы координат модели на плоскость эскиза (в градусах).

Таблица 1.6 – Используемые метода класса ksSketchDefinition

Название	Входные Тип возвращаемых		Описание
	параметры	данных	
BeginEdit	-	ksDocument2D.	Войти в режим редактирования
			эскиза (ksDocument2D).
EndEdit	-	ksSketchDefinition	Выйти из режима
			редактирования эскиза.
SetPlane	plane	bool	Изменить базовую плоскость
			эскиза.

Таблица 1.7 – Используемые свойства класса ksEntity

Twenting II, The next be of the result of the result of				
Название	Тип данных	Описание		
name	string	Имя элемента трехмерной модели (оси, плоскости, формообразующего элемента).		

Таблица 1.8 – Используемые метода класса ksEntity

Название	Входные	Тип	Описание
	параметры	возвращаемых	
		данных	
Create	-	bool	Создать объект в модели.
GetDefinition	-	IDispatch	Получить указатель на
			интерфейс параметров объектов
			и элементов.
NewEntity	objType	ksEntity	Создать новый интерфейс
			объекта и получить указатель на
			него.

Таблица 1.9 – Используемые свойства класса ksBossExtrusionDefinition

Название	Тип данных	Описание
directionType	short	Направление выдавливания.

Таблица 1.10 – Используемые метода класса ksBossExtrusionDefinition

Название	Входные	Тип	Описание
	параметр	возвращаемых	
	Ы	данных	
ExtrusionParam	-	ksExtrusionParam	Получить указатель на
			интерфейс параметров элемента
			выдавливания.
ThinParam	-	ksThinParam	Получить указатель на
			интерфейс параметров тонкой
			стенки.
SetSketch	sketch	bool	Изменить указатель на
			интерфейс эскиза элемента.

Таблица 1.11 – Используемые свойства класса ks Extrusion Param

Название	Тип данных	Описание	
1 127 1	1 11	F 6	
depthNormal	double	Глубина выдавливания в прямом	
		направлении.	
direction	long	Направление выдавливания.	
typeNormal	short	Тип выдавливания в прямом	
		направлении.	

Таблица 1.12 – Используемые свойства класса ksRectangleParam

1	11011011101		
Название	Входные	Тип	Описание
	параметры	возвращаемых	
		данных	
height	double	ksRectangleParam	Высота прямоугольника.
style	long	ksRectangleParam	Стиль линии.
width	double	ksRectangleParam	Ширина прямоугольника.
x, y	double	ksRectangleParam	Координаты базовой точки
			прямоугольника одной из его
			вершин.

Для работы с этими интерфейсами понадобится Kompas6API5.dll и Kompas6Constants3D.dll.

1.3 Обзор аналогов плагина

Aluminum Window Generator - это плагин, который эффективен для автоматического создания 3D-моделей окон в 3ds Max, Cinema 4D. Благодаря 28 стилям оформления окон, его можно гибко применять в проектах архитектурной визуализации, экономя при этом много времени для 3D-художников. Рисунок 1.1.

Рисунок 1.1 – Приложение «Aluminum Window Generator v2.0»

2 Описание предмета проектирования

Оконная рама - несущая конструкция для оконных элементов. Рама монтируется в стеновом проеме и передает на него функциональные нагрузки. Рама обычно состоит из прямоугольного каркаса, и импостов разделяющие части окна.

На рисунке 2.1 представлена модель оконной рамы.

Рисунок 2.1 — Модель рамы окна с обозначениями

Изменяемые параметры для плагина (также все обозначения показаны на рис. 2.1):

- длина рамы окна w1 (50мм 300мм);
- высота рамы окна h2 (50мм 700мм);
- общая ширина рамы окна th(30мм-50мм)
- общая ширина створок окна tm(30мм-50мм)
- общая высота 1 створки окна g1 (45мм 700мм)
- общая высота 3 створки окна g3 (10мм 30мм)

Высота створок не должна превышать заданную высоту рамы окна: g(1,3) <= h2

Ширина створок окна не может превышать общую ширину рамы окна, и не может быть меньше чем 20мм:

$$tm <= th(tm > 20)$$

АС должна иметь пользовательский интерфейс с возможностью изменения значений, представленных выше, и последующим построении объекта «Рама окна» в САПР КОМПАС 3D. В плагине должны проходить проверки значений, вводимых пользователем. Реализуемый плагин должен обеспечивать обработку ошибочных ситуаций, возникающих в процессе работы. При нажатии на кнопку «Построить» должна проходить проверка правильности ввода данных. Если данные некорректные, то должно высветиться окно с ошибкой построения и не будут применяться введенные параметры.

3 Проект системы

3.1 Диаграмма классов

Для графического описания абстрактной модели проекта, а также пользовательского взаимодействия (сценарии действия) использован стандарт UML.

UML язык графического описания для объектного моделирования в области разработки программного обеспечения. UML является языком широкого профиля, это — открытый стандарт, использующий графические обозначения для создания абстрактной модели системы, называемой UML — моделью. UML был создан для определения, визуализации, проектирования и документирования, в основном, программных систем [6].

При использовании UML были простроена диаграмма классов (Рисунок 3.1).

Рисунок 3.1 — Архитектура плагина, вызывающегося из САПР

Основные классы проекта:

- MainForm является главным окном приложения. Хранит в себе параметры и объект класса строителя модели;
- WindowFrameParameters класс, хранящий в себе все параметры модели;
 - WindowFrameBuider класс строитель модели;
- Котрав 3DW гаррет класс обертка API САПР. В нем находятся все нужные методы создания примитивов и документов, которые пригодятся для построения модели.

Примерная архитектура может состоять из следующих проектов:

- Model хранит часть моделей бизнес-логики: валидаторы, классы, связанные с объектом построения;
 - View хранит в себе пользовательский интерфейс плагина;
- Wrapper хранит в себе обертку API и класс построения модели. Класс обертки Kompas 3DWrapper; класс построения WindowFrameBuilder.

3.2 Макеты пользовательского интерфейса

Макет пользовательского интерфейса представлен на рисунке 3.2.

Рисунок 3.2 — Пользовательский интерфейс

Ниже представлен интерфейс с неправильно введенными значениями параметров (Рисунок 3.3):

Рисунок 3.3 — Интерфейс с неправильно введенными значениями параметров

Список используемых источников

- 1. Работы студенческие по направлениям подготовки и специальностям технического профиля. Общие требования и правила оформления, Томск 2021 г., 52 с.
- 2. КОМПАС-3D. [Электронный ресурс]. Режим доступа: https://ascon.ru/products/kompas-3d/ (дата обращения 14.10.2023).
- 3. SDK КОМПАС-3D. [Электронный ресурс]. Режим доступа: https://help.ascon.ru/KOMPAS_SDK/22/ru-RU/index.html (дата обращения 14.10.2023).
- 4. Picture Frame Generator. [Электронный ресурс]. Режим доступа: https://trek-soft.net/raznoe/2190-sozdanie-ramok-izobrazhenij-archviztools-picture-frame-generator-12.html (дата обращения 14.10.2023).
- 5. Рамка для фотографий. [Электронный ресурс]. Режим доступа: https://translated.turbopages.org/proxy_u/en-ru.ru.e9c7f506-652e5eec-eb050dae-74722d776562/https/en.wikipedia.org/wiki/Picture_frame (дата обращения 14.10.2023).
- 6. UML. [Электронный ресурс]. Режим доступа: http://www.uml.org/ (дата обращения 14.10.2023).