Grafika Komputerowa. Metoda śledzenia promieni

Aleksander Denisiuk
Polsko-Japońska Akademia Technik Komputerowych
Wydział Informatyki w Gdańsku
ul. Brzegi 55
80-045 Gdańsk

denisjuk@pja.edu.pl

Metoda śledzenia promieni

Podstawy

Model oświetlenia

Algorytm

Techniki zaawansowane

Najnowsza wersja tego dokumentu dostępna jest pod adresem

http://users.pja.edu.pl/~denisjuk

Podstawy

Scena fotorealistyczna

Ray tracing

Model oświetlenia

Algorytm

Techniki zaawansowane

Podstawy

Scena fotorealistyczna

Podstawy

Scena fotorealistyczna

Ray tracing

Model oświetlenia

Algorytm

Śledzenie promieni

Podstawy

Scena fotorealistyczna

Ray tracing

Model oświetlenia

Algorytm

Czujnik cienia (shadow feeler)

Podstawy

Scena fotorealistyczna

Ray tracing

Model oświetlenia

Algorytm

Śledzenie promieni odbijanych

Podstawy

Scena fotorealistyczna

Ray tracing

Model oświetlenia

Algorytm

$$I = I_{\text{local}} + \rho_{\text{rg}} I_{\text{reflect}}$$

Promienie załamane

Podstawy

Scena fotorealistyczna

Ray tracing

Model oświetlenia

Algorytm

$$I = I_{\text{local}} + \rho_{\text{rg}}I_{\text{reflect}} + \rho_{\text{tg}}I_{\text{xmit}}$$

Podstawy

Model oświetlenia

Promienie odbijane

Promienie załamane

Całkowite oświetlenie

Algorytm

Techniki zaawansowane

Model oświetlenia

Lokalne oświetlenie i promienie odbijane

Podstawy

Model oświetlenia

Promienie odbijane

Promienie załamane

Całkowite oświetlenie

Algorytm

Techniki zaawansowane

Wektor odbijany $r_v = 2(v \cdot n) - v$.

Oświetlenie punktu na powierzchni

Podstawy

Model oświetlenia

Promienie odbijane

Promienie załamane

Całkowite oświetlenie

Algorytm

$$I = I_{\text{local}} + \rho_{\text{rg}} I_{\text{reflect}}$$

$$I_{\text{local}} = \rho_a I_a^{in,i} + \delta_i \cdot \left(\rho_{\text{d}} I_{\text{d}}^{\text{in},i}(\ell_i \cdot n) + \rho_{\text{s}} I_{\text{s}}^{\text{in},i}(r_v \cdot \ell_i)^f \right)$$

- $\delta_i=1$, jeśli punkt jest bezpośrednio oświetlony światlem i, 0 w przeciwnym przypadku.
- współczynniki ρ zależą od kolorów (częstotliwości)
- $lacktriangleright I_{
 m reflect}$ oblicza się rekurencyjnie powtarzając algorytm ray tracing

Promienie załamane

Podstawy

Model oświetlenia

Promienie odbijane

Promienie załamane

Całkowite oświetlenie

Algorytm

Techniki zaawansowane

Prawo Snelliusa

$$\frac{\sin \theta_v}{\sin \theta_t} = \eta.$$

Współczynnik załamania

Podstawy

Model oświetlenia

Promienie odbijane

Promienie załamane

Całkowite oświetlenie

Algorytm

- $\eta \approx 1, 3$ powietrze \rightarrow woda.
- $\qquad \qquad \eta \approx 1, 5 \text{powietrze} \rightarrow \text{szkło}.$
- Jeżeli $\eta^{-1}\sin\theta_v>1,$ to nie ma załamania, tylko całkowite wewnętrzne odbijanie

Obliczenie wetora t

Podstawy

Model oświetlenia

Promienie odbijane

Promienie załamane

Całkowite oświetlenie

Algorytm

$$v_{\text{lat}} = v - (v \cdot n)n$$

$$\|t_{\text{lat}}\| = \sin \theta_t = \eta^{-1} \sin \theta_v = \eta^{-1} \|v_{\text{lat}}\|$$

$$\cos \theta_t = \sqrt{1 - \sin^2 \theta_t} = \sqrt{1 - \|t_{\text{lat}}\|^2} \, (\|t_{\text{lat}}\| < 1)$$

$$t_{\text{perp}} = -\sqrt{1 - \|t_{\text{lat}}\|^2} \cdot n$$

$$t_{\text{perp}} = -\sqrt{1 - \eta^{-2} (1 - (v \cdot n)^2)} \cdot n$$

Rozszerzenie modelu Phonga

Podstawy

Model oświetlenia

Promienie odbijane

Promienie załamane

Całkowite oświetlenie

Algorytm

Rozszerzenie modelu Phonga

Podstawy

Model oświetlenia

Promienie odbijane

Promienie załamane

Całkowite oświetlenie

Algorytm

$$I_{local}^{i} = \rho_{a} I_{a}^{in,i} + \delta'_{i} \cdot \left(\rho_{dt} I_{d}^{in,i} (\ell_{i} \cdot (-n)) + \rho_{st} I_{s}^{in,i} (t \cdot \ell_{i})^{f} \right)$$

Rozszerzenie modelu Phonga

Podstawy

Model oświetlenia

Promienie odbijane

Promienie załamane

Całkowite oświetlenie

Algorytm

$$\begin{split} I_{\text{local}} = & \rho_{\text{a}} I_{\text{a}}^{\text{in}} + \rho_{\text{d}} \sum_{i=1}^{k} \delta_{i} I_{\text{d}}^{\text{in},i}(\ell_{i} \cdot n) + \\ & + \rho_{\text{s}} \sum_{i=1}^{k} \delta_{i} I_{\text{s}}^{\text{in},i}(r_{v} \cdot \ell_{i})^{f} + \rho_{\text{dt}} \sum_{i=1}^{k} \delta'_{i} I_{\text{d}}^{\text{in},i}(\ell_{i} \cdot (-n)) + \\ & + \rho_{\text{st}} \sum_{i=1}^{k} \delta'_{i} I_{\text{s}}^{\text{in},i}(t \cdot \ell_{i})^{f} + I_{\text{e}} \end{split}$$

Podstawy

Model oświetlenia

Algorytm

Algorytm Sprawdzenie przecięcia

Techniki zaawansowane

Algorytm

Algorytm

Podstawy

Model oświetlenia

Algorytm

Algorytm

Sprawdzenie przecięcia

Techniki zaawansowane

Dla każdego promienia:

- Znajdź pierwsze miejsce przecięcia ze sceną.
 - Jeśli promień nie przecina żadnego obiektu ze sceny, wykorzystuj "kolor tła".
- Oblicz oświetlenia punktu zgodnie z modelem oswietlenia.
- Wypuść promienie odbijane oraz załamane.
- Zastosuj rekurencyjnie algorytm do każdego wypuszczonego promienia.
- Dodaj wyniki obliczenia ośiwetleń.

Warunek zakończenia rekurencji: ilość odbić.

Sprawdzenie przecięcia

Podstawy

Model oświetlenia

Algorytm

Algorytm

Sprawdzenie przecięcia

- Obiekty modeluje się za pomocą prostych figur: sfera, walec, stożek, torus, wielobok płaski, wielobok o bokach w postaci powierzchi Béziera, B-spline powierzchni.
- Sprawdza się dla każdego promienia, dla każdego czujnika cieni.
- Zależy od ilości uwzględnianych odbić.
- Najbardziej kosztowne względem obliczeń działanie.

Podstawy

Model oświetlenia

Algorytm

Techniki zaawansowane

Supersampling i Antialiasing

Głębia ostrości

Rozmazywanie ruchu

Miękie cienie

Wiele kolorów

Path tracing

Backwards

Supersampling i Antialiasing

Podstawy

Model oświetlenia

Algorytm

Techniki zaawansowane

Supersampling i Antialiasing

Głębia ostrości

Rozmazywanie ruchu

Miękie cienie

Wiele kolorów

Path tracing

(a) No supersampling.

(b) Supersampling with jittered subpixel centers.

Supersampling i Antialiasing

Podstawy

Model oświetlenia

Algorytm

Techniki zaawansowane

Supersampling i Antialiasing

Głębia ostrości

Rozmazywanie ruchu

Miękie cienie

Wiele kolorów

Path tracing

(a) No supersampling.

(b) Supersampling with jittered subpixel centers.

Głębia ostrości

Podstawy

Model oświetlenia

Algorytm

Techniki zaawansowane

Supersampling i Antialiasing

Głębia ostrości

Rozmazywanie ruchu

Miękie cienie

Wiele kolorów

Path tracing

Głębia ostrości

Podstawy

Model oświetlenia

Algorytm

Techniki zaawansowane

Supersampling i Antialiasing

Głębia ostrości

Rozmazywanie ruchu

Miękie cienie

Wiele kolorów

Path tracing

Rozmazywanie ruchu

Podstawy

Model oświetlenia

Algorytm

Techniki zaawansowane

Supersampling i Antialiasing

Głębia ostrości

Rozmazywanie ruchu

Miękie cienie

Wiele kolorów

Path tracing

Miękie cienie

Podstawy

Model oświetlenia

Algorytm

Techniki zaawansowane

Supersampling i Antialiasing

Głębia ostrości

Rozmazywanie ruchu

Miękie cienie

Wiele kolorów

Path tracing

Backwards

Full illumination

Penumbra

Full shadow

Penumbra

Full illumination

Wiele kolorów

Podstawy

Model oświetlenia

Algorytm

Techniki zaawansowane

Supersampling i Antialiasing

Głębia ostrości

Rozmazywanie ruchu

Miękie cienie

Wiele kolorów

Path tracing

- Nie tylko RGB,
- Odbicie i załamanie zależy od barwy (częstotliwości fai).

Path tracing

Podstawy

Model oświetlenia

Algorytm

Techniki zaawansowane

Supersampling i Antialiasing

Głębia ostrości

Rozmazywanie ruchu

Miękie cienie

Wiele kolorów

Path tracing

Backwards

Cycles

Odwrotny ray tracing

Podstawy

Model oświetlenia

Algorytm

Techniki zaawansowane

Supersampling i Antialiasing

Głębia ostrości

Rozmazywanie ruchu

Miękie cienie

Wiele kolorów

Path tracing

Backwards

Skupienie światła