Functional Analysis Notes Linear Operator and Linear Functional

Zheng Xie, Xingyu Fu

June 2, 2018

1 Linear Operator

Definition 1.1 (linear operator)

Let \mathcal{X}, \mathcal{Y} be two vector space, D is a subspace of $\mathcal{X}, T : D \to \mathcal{Y}$ is a map, D is called the **domain** of T, sometimes written as D(T), $R(T) = \{Tx | x \in D\}$ is called the **range** of T. If

$$T(\alpha x + \beta y) = \alpha Tx + \beta Ty, \forall x, y \in D, \forall \alpha, \beta \in \mathbb{K}$$

Then T is called a **linear operator**.

Definition 1.2 (linear functional)

Let f be a linear operator, if f is real-valued or complex-valued, then f is called a **linear functional**, written as f(x) or $\langle f, x \rangle$.

Definition 1.3 (continuous)

Let \mathcal{X}, \mathcal{Y} be a normed vector space, $T: D(T) \to \mathcal{Y}$ is a linear operator. T is called **continuous** at $x_0 \in D(T)$, if

$$\{x_n\} \subset D(T), x_n \to x_0 \Rightarrow Tx_n \to Tx_0$$

Proposition 1.1

Let T be a linear operator, then T is continuous in D(T) if and only if T is continuous at x=0.

Proof.

Suppose that T is continuous at 0, then for any $\{x_n\} \subset D(T), x_0 \in D(T), x_n \to x_0$, we have

$$T(x_n - x_0) \rightarrow T0 = 0$$

Thus

$$Tx_n \to Tx_0 \quad \Box$$

Definition 1.4 (bounded)

Let \mathcal{X}, \mathcal{Y} be normed vector spaces, linear operator $T : \mathcal{X} \to \mathcal{Y}$ is called **bounded** if there exists a constant $M \ge 0$ such that $\forall x \in \mathcal{X}$

$$||Tx||_{\mathcal{Y}} \le M||x||_{\mathcal{X}}$$

Proposition 1.2

Let $T: \mathcal{X} \to \mathcal{Y}$ be a linear operator, then T is continuous if and only if T is bounded. **Proof.**

⇒:

Suppose not, then we can obtain a sequence in \mathcal{X} such that for each n,

$$||Tx_n||_{\mathcal{V}} > n||x_n||_{\mathcal{X}}$$

Let $y_n = \frac{x_n}{n\|x_n\|}$ then $y_n \to 0$ while $\|Ty_n\| > 1$, leading a contradiction.

If T is bounded then it's easy to see that T is continuous at x = 0 so T is continuous. \square

Definition 1.5

Let $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ denote the set of all bounded linear operators from \mathcal{X} to \mathcal{Y} . Particularly, we denote $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ by $\mathcal{L}(\mathcal{X})$ simply and denote $\mathcal{L}(\mathcal{X}, \mathbb{K})$ by X^* .

Definition 1.6 (norm)

Let $T: \mathcal{X} \to \mathcal{Y}$ be a linear operator then the norm of T is defined by

$$||T|| = \sup_{x \in \mathcal{X} \setminus \{0\}} \frac{||Tx||}{||x||} = \sup_{||x|| = 1} ||Tx||$$

Theorem 1.1

Let \mathcal{X} be a normed vector space, \mathcal{Y} be a Banach space, then $\mathcal{L}(\mathcal{X},\mathcal{Y})$ equipped with the linear operations

$$(\alpha_1 T_1 + \alpha_2 T_2)(x) = \alpha_1 T_1 x + \alpha_2 T_2 x \quad \forall x \in \mathcal{X}$$

and the norm $\|\cdot\|$ is a Banach space.

Proof.

It's clear that $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ is a vector space. We first show that $\|\cdot\|$ is a norm.

- (1) $||T|| \ge 0$, ||T|| = 0 if and only if $\forall x \in \mathcal{X}$, Tx = 0, i.e. T = 0.
- $(2) \|\alpha T\| = \sup_{\|x\|=1} \|\alpha Tx\| = |\alpha| \sup_{\|x\|=1} \|Tx\| = |\alpha| \|T\|.$
- (3)

$$||T_1 + T_2|| = \sup_{\|x\| = 1} ||T_1 x + T_2 x||$$

$$\leq \sup_{\|x\| = 1} ||T_1 x|| + \sup_{\|x\| = 1} ||T_2 x|| = ||T_1|| + ||T_2||$$

Then we show that \mathcal{X} is complete.

Let $\{T_n\}$ be a Cauchy sequence, then for any $\epsilon > 0$, there exists N such that for any n > N and any $p \in \mathbb{N}$ we have

$$||T_{n+p} - T_n|| < \epsilon$$

i.e. for all $x \in \mathcal{X}$

$$||(T_{n+p} - T_n)(x)|| \le \epsilon ||x||$$

Fix x, then $\{T_n x\}$ is a Cauchy sequence, since \mathcal{Y} is complete, $T_n x \to y \in \mathcal{Y}$, define T by y = Tx, then $T_n \to T$. It remains to show that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. It's easy to see that T is linear.

For any $x \in \mathcal{X}$ with ||x|| = 1, there exists N such that for all n > N

$$||Tx - T_n x|| = ||y - T_n x|| \le 1$$

So

$$||Tx|| \le ||T_nx|| + 1 \le (||T_n|| + 1)||x||$$

Hence $||T|| \leq ||T_n|| + 1$, i.e. T is bounded and therefore continuous. \square

Proposition 1.3

If $T: \mathcal{X} \to \mathcal{Y}$ is a linear operator where \mathcal{X} is a finite-dimensional normed vector space, then T is continuous. **Proof.**

Note that T can be represented by a matrix (t_{ij}) , and any two norms of a finite-dimensional vector space are

equivalent. Suppose that $\mathcal{X} = \mathbb{K}^n$, $\mathcal{Y} = \mathbb{K}^m$, then we have

$$||Tx|| = \left(\sum_{i=1}^{m} |\sum_{j=1}^{n} t_{ij} x_{j}|^{2}\right)^{\frac{1}{2}}$$

$$\leq \left(\sum_{i=1}^{m} \left(\sum_{j=1}^{n} |t_{ij}|^{2} \cdot \sum_{j=1}^{n} |x_{j}|^{2}\right)\right)^{\frac{1}{2}}$$

$$= \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |t_{ij}|^{2}\right)^{\frac{1}{2}} ||x||$$

Hence T is bounded and therefore continuous. \square

2 Riesz Representation Theorem

Let \mathcal{X} be a Hilbert space, $\forall y \in \mathcal{X}$, if we define

$$f_y: x \mapsto \langle x, y \rangle, \forall x \in \mathcal{X}$$

Then it's easy to see that $f_y \in \mathcal{X}^*$.

Moreover,

$$|f_y(x)| \le ||y|| ||x||$$

It follows that $||f_y|| \le ||y||$. Since $|f_y(y)| = \langle y, y \rangle = ||y||^2$, $||f_y|| = ||y||$. The inverse proposition is also true, that is

Theorem 2.1 (Riesz Representation theorem)

Let \mathcal{X} be a Hilbert space, $f \in X^*$, then there exists a unique $y_f \in \mathcal{X}$ such that

$$f(x) = \langle x, y_f \rangle, \quad \forall x \in \mathcal{X}$$

Proof.

Assume that $f \neq 0$, then $W = ker(f) = \{x \in \mathcal{X} | f(x) = 0\}$ is a proper subspace of \mathcal{X} , so we can pick $x_0 \in W^{\perp}$ with $f(x_0) = 1$.

Then for any $x \in \mathcal{X}$,

$$f(x - f(x)x_0) = f(x) - f(x) \cdot f(x_0) = 0$$

So $x - f(x)x_0 \in W$ and it follows that

$$\langle x - f(x)x_0, x_0 \rangle = \langle x, x_0 \rangle - f(x)\langle x_0, x_0 \rangle = 0$$

Hence

$$f(x) = \langle x, \frac{x_0}{\|x_0\|^2} \rangle$$

Take $y_f = \frac{x_0}{\|x_0\|^2}$ and we have

$$f(x) = \langle x, y_f \rangle$$

Assume that there is another y'_f then

$$\langle x, y_f \rangle - \langle x, y_f' \rangle = \langle x, y_f - y_f' \rangle = 0$$

implies that $y_f = y_f'$. \square

Theorem 2.2

Let \mathcal{X} be a Hilbert space, a(x,y) be a conjugate bilinear function on \mathcal{X} , and there exists M>0 such that

$$|a(x,y)| \le M||x|| ||y||$$
, $\forall x, y \in \mathcal{X}$

Then there exists a unique $A \in \mathcal{L}(\mathcal{X})$ such that

$$a(x,y) = (x,Ay) \quad \forall x,y \in \mathcal{X}$$

and

$$||A|| = \sup_{(x,y)\in\mathcal{X}\times\mathcal{X}, (x,y)\neq 0} \frac{|a(x,y)|}{||x|| ||y||}$$

Proof.

For each $y \in \mathcal{X}$, it's easy to verify that a(x,y) is a continuous linear functional, by Riesz representation theorem, there exists z = z(y) such that $a(x,y) = \langle x,z \rangle$, then define

$$A: y \to z(y)$$

and we have $a(x, y) = (x, Ay), \forall x, y \in \mathcal{X}$.

Since

$$\begin{split} \langle x, A(a_1y_1 + a_2y_2) \rangle &= a(x, a_1y_1 + a_2y_2) \\ &= \bar{a}_1 a(x, y_1) + \bar{a}_2 a(x, y_2) \\ &= \bar{a}_1(x, Ay_1) + \bar{a}_2(x, Ay_2) \\ &= \langle x, a_1 Ay_1 \rangle + \langle x, a_2 Ay_2 \rangle \\ &= \langle x, a_1 Ay_1 + a_2 Ay_2 \rangle \quad \forall x, y_1, y_2 \in \mathcal{X}, \forall a_1, a_2 \in \mathbb{K} \end{split}$$

Thus

$$A(a_1y_1 + a_2y_2) = a_1Ay_1 + a_2Ay_2$$

Moreover,

$$||Ax||^2 = \langle Ax, Ax \rangle = a(Ax, x) \le M||Ax|| ||x||$$

So

$$||Ax|| \le M||x||$$

i.e. $A \in \mathcal{L}(\mathcal{X})$. \square

3 Baire Category And Open Mapping Theorem

Definition 3.1 (nowhere dense)

Let \mathcal{X} be a metric space, $E \subset \mathcal{X}$ is called a **nowhere dense** set if \bar{E} has empty interior.

Proposition 3.1

Let \mathcal{X} be a metric space, then $E \subset \mathcal{X}$ is nowhere dense if and only if for any ball $B(x_0, r_0)$, there exists $B(x_1, r_1) \subset B(x_0, r_0)$ such that

 $\bar{E} \cap \overline{B(x_1, r_1)} = \varnothing$

Proof.

 \Rightarrow :

Suppose that E is nowhere dense, then \bar{E} cannot contain any ball. Thus for any $B(x_0, r_0)$, there exists some $x_1 \in \underline{\bar{E}} \setminus B(x_0, r_0)$. Since \bar{E} is closed, x_1 is an interior point thus there exists a ball $B(x_1, r_1) \subset B(x_0, r_0)$ such that $B(x_1, r_1) \cap \bar{E} = \emptyset$.

(=:

Assume that E is not nowhere dense, then there exists a ball $\overline{B(x_0,r_0)} \subset \overline{E}$, thus for any ball $B(x_1,r_1) \subset B(x_0,r_0)$, we have $\overline{B(x_1,r_1)} \cap \overline{E} = \overline{B(x_1,r_1)}$, leading a contradiction. \square

Proposition 3.2

A set is nowhere dense if and only if its closure is nowhere dense.

Proof.

⇒:

Let A be a nowhere dense set, then \bar{A} has empty interior. The closure of \bar{A} is itself Hence \bar{A} is nowhere dense.

Trivial. \square

Proposition 3.3

The complement of a closed nowhere dense set is a dense open subset, and thus the complement of a nowhere dense set is a set with dense interior.

Proof.

Let A be a closed nowhere dense set, then $\bar{A} = A$ has empty interior and A^c is open. For any open set $O \subset \mathcal{X}$, O cannot be contained in A thus $O \cap A^c \neq \emptyset$. So A^c is dense. \square

Definition 3.2 (category)

Let \mathcal{X} be a metric space. E is called a (Baire) first category set if

$$E = \bigcup_{n=1}^{\infty} E_n$$

where each E_n is nowhere dense.

Other sets are called (Baire) second category sets.

Theorem 3.1 (Baire Category theorem)

A complete metric space is of second category.

Proof.

Let \mathcal{X} be a complete metric space.

Assume that \mathcal{X} is of first category, then

$$\mathcal{X} = \bigcup_{n=1}^{\infty} E_n$$

where each E_n is nowhere dense.

Pick any ball $B(x_0, r_0)$ in \mathcal{X} , since E_1 is nowhere dense, there exists a ball $B(x_1, r_1) \subset B(x_0, r_0)$ such that

$$\overline{B(x_1, r_1)} \cap \bar{E}_1 = \varnothing$$

Suppose that we have chosen the n^{th} ball $B(x_n, r_n)$ such that

$$\overline{B(x_n, r_n)} \cap \bar{E}_n = \varnothing$$

Then we can choose $(n+1)^{th}$ ball $B(x_{n+1},r_{n+1}) \subset B(x_n,r_n)$ such that

$$\overline{B(x_{n+1}, r_{n+1})} \cap \bar{E}_{n+1} = \emptyset$$

since E_{n+1} is nowhere dense. We assume that for each $n, r_n < \frac{1}{2^n}$. Hence we can obtain a sequence $\{x_n\}$ inductively. Note that for each $p \in \mathbb{N}$,

$$d(x_{n+p}, x_n) < r_n = \frac{1}{2^n} \to 0 \text{ as } n \to \infty$$

Thus $\{x_n\}$ is Cauchy and we can assume that $x_n \to x \in \mathcal{X}$ as \mathcal{X} is complete. Also note that for each $n \in \mathbb{N}$, $d(x, x_n) \le r_n = \frac{1}{2^n}$ (let $p \to \infty$), so $x \in \overline{B(x_n, r_n)}$, it follows that $x \notin E_n$. Therefore,

$$x \notin \bigcup_{n=1}^{\infty} E_n = \mathcal{X}$$

leading a contradiction. \square

Remark.

An equivalent statement of Baire Category theorem:

Let \mathcal{X} be a complete metric space, $\{U_n\}$ is a sequence of open dense sets, then $\bigcap U_n$ is also dense in \mathcal{X} .

Proof.

 \Rightarrow

Assume that $\{U_n\}$ is a sequence of open dense sets and $\bigcap_{n=1}^{\infty} U_n$ is not dense in complete metric space \mathcal{X} , then there exists a ball

$$B(x_0, r_0) \subset \mathcal{X} \setminus \bigcap_{n=1}^{\infty} U_n$$

Note that for each U_n , $E_n = U_n^c$ is closed and nowhere dense, thus

$$\mathcal{X} \setminus \bigcap_{n=1}^{\infty} U_n = \mathcal{X} \cap (\bigcap_{n=1}^{\infty} U_n)^c$$
$$= \mathcal{X} \cap \bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} E_n$$

Therefore,

$$B(x_0, r_0) \subset \bigcup_{n=1}^{\infty} E_n$$

However, $B(x_0, r_0)$ as a complete metric space can't be covered by countably many nowhere dense sets, leading a contradiction.

⇐:

Assume that complete metric space \mathcal{X} can be covered by countably many nowhere dense sets, i.e.

$$\mathcal{X} = \bigcup_{n=1}^{\infty} E_n$$

where each E_n is nowhere dense.

Naturally we can assume that each E_n is closed. However, this implies

$$\varnothing = \mathcal{X}^c = (\bigcup_{n=1}^{\infty} E_n)^c = \bigcap_{n=1}^{\infty} E_n^c$$

Let $U_n = E_n^c$, then each U_n is open and dense, therefore

$$\bigcap_{n=1}^{\infty} U_n = \emptyset$$

leading a contradiction since \varnothing can't be dense. \square

The statement is also true if \mathcal{X} is a locally compact Hausdorff space.

Theorem 3.2

Let $\mathcal{X} = C[0,1]$, $E \subset \mathcal{X}$ is the set of nowhere differentiable functions, then E^c is of first category.

Let E_n be the set of all $f \in \mathcal{X}$ for which there exists $x_0 \in [0,1]$ such that

$$|f(x) - f(x_0)| \le n|x - x_0|, \quad \forall x \in [0, 1]$$

We first show that for each $n \in \mathbb{N}$, E_n is nowhere dense.

Note that $E_n = \bar{E}_n$. In fact, if there exists a cluster point $f \in \bar{E}_n$ such that for any $x_0 \in [0,1]$ and any $x \in [0,1]$, we have

$$|f(x) - f(x_0)| > n|x - x_0|$$

Fix x and x_0 , take

$$\epsilon = \frac{1}{4}(|f(x) - f(x_0)| - n|x - x_0|)$$

There exists $g \in E_n$ such that $||f - g||_{\infty} < \epsilon$, and

$$|f(x) - f(x_0)| = |f(x) - g(x) + g(x) - g(x_0) + g(x_0) - f(x_0)|$$

$$\leq |f(x) - g(x)| + |g(x) - g(x_0)| + |f(x_0) - g(x_0)|$$

$$\leq 2\epsilon + |g(x) - g(x_0)|$$

Hence

$$|g(x) - g(x_0)| \ge |f(x) - f(x_0)| - 2\epsilon$$

$$= |f(x) - f(x_0)| - \frac{1}{2}(|f(x) - f(x_0)| - n|x - x_0|)$$

$$= \frac{1}{2}(|f(x) - f(x_0)| + n|x - x_0|)$$

$$> n|x - x_0|$$

which implies that $g \notin E_n$, leading a contradiction. So it suffices to show that each point of E_n is not an interior point. Given $\epsilon > 0$, define g_{ϵ} on [0,T] by

$$g_{\epsilon}(x) = \begin{cases} \frac{2\epsilon x}{T}, & 0 \le x < \frac{T}{4} \\ \frac{\epsilon}{2} - \frac{2\epsilon(x - \frac{T}{4})}{T}, & \frac{T}{4} \le x < \frac{3T}{4} \\ -\frac{\epsilon}{2} + \frac{2\epsilon(x - \frac{3T}{4})}{T}, & \frac{3T}{4} \le x \le T \end{cases}$$

where $T = \frac{1}{k}$, $k \in \mathbb{N}$. Then we extend g_{ϵ} to [0,1] periodicly and denote it by g(x), g(x) satisfies that $||g||_{\infty} \leq \frac{\epsilon}{2}$ For any $f \in E_n$, by Weierstrass Theorem, there exists a polynomial p(x) on [0,1] such that

$$||f - p||_{\infty} < \frac{\epsilon}{2}$$

Since p(x) is a polynomial on [0,1], we can assume that $|p'(x)| \leq M'$ for some constant M' and moreover, we can assume that for any $x_0 \in [0,1]$ and any $x \in [0,1]$, there exists some M such that $|p(x)-p(x_0)| \leq M|x-x_0|$. Now let h = p + g, then

$$||h - f||_{\infty} \le ||f - p||_{\infty} + ||f - g||_{\infty} \le \epsilon$$

And there exists some large k such that $\frac{2\epsilon}{T} > M + n$. Then for any $x_0 \in [0, 1]$ there exists some $x \in [0, 1]$ such that

$$|q(x) - q(x_0)| > M + n$$

And it follows

$$|h(x) - h(x_0)| \ge |g(x) - g(x_0)| - |p(x) - p(x_0)| \ge n$$

Hence $h \notin E_n$, so f is not an interior point.

Since f is arbitrary, we can conclude that E_n has empty interior and therefore it is nowhere dense. Note that $\forall f \in E^c$, there exists some point $x_0 \in (0,1)$ such that f is differentiable at x_0 , so $|f'(x_0)|$ exists and it is dominated by some integer. It follows that

$$E^c \subset \bigcup_{n=1}^{\infty} E_n$$

So E^c is of first category. \square

Remark

Since each E_n is closed and nowhere dense, E_n^c is open and dense. Thus

$$\bigcap_{n=1}^{\infty} E_n^c$$

is dense in C[0,1].

Moreover, $\bigcap_{n=1}^{\infty} E_n^c \subset E \subsetneq X$, thus E is also dense in C[0,1].

In general, if A^c is of first category, then A is dense. The converse proposition is not true.

Theorem 3.3 (open mapping theorem)

Let \mathcal{X} , \mathcal{Y} be Banach spaces, if $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and T is onto, then T is an open map.

Corollary 3.1 (Banach inverse mapping theorem)

Let \mathcal{X} , \mathcal{Y} be Banach spaces, if $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and T is bijective, then $T^{-1} \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$.

Definition 3.3 (closed linear operator)

Let \mathcal{X}, \mathcal{Y} be normed vector spaces, $T: \mathcal{X} \to \mathcal{Y}$ is a linear operator, T is called **closed** if

$$\begin{cases} x_n \in D(T), x_n \to x \\ Tx_n \to y \end{cases} \Rightarrow \begin{cases} x \in D(T) \\ y = Tx \end{cases}$$

Definition 3.4 (graph)

Let \mathcal{X} , \mathcal{Y} be vector spaces, $T: \mathcal{X} \to \mathcal{Y}$, then the graph of T is

$$G(T) = \{(x, Tx) | x \in D(T)\} \subset \mathcal{X} \times \mathcal{Y}$$

Note.

If \mathcal{X} and \mathcal{Y} are normed vector spaces, $T: \mathcal{X} \to \mathcal{Y}$ is a linear operator, then we can define a norm on the product space $\mathcal{X} \times \mathcal{Y}$ by

$$||x||_G = ||x||_{\mathcal{X}} + ||Tx||_{\mathcal{Y}}$$

Now we can give another equivalent definition of closed linear operator:

Let \mathcal{X} , \mathcal{Y} be normed vector spaces, $T : \mathcal{X} \to \mathcal{Y}$ is a linear operator, T is called **closed** if G(T) is closed with respect to $\|\cdot\|_G$.

Theorem 3.4 (bounded linear transformation theorem)

Let X be a normed vector space, Y be a Banach space, $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, then T can be extended to $\overline{D(T)}$ denoted by T_1 satisfying

- (1) $T_1|_{D(T)} = T$.
- (2) $||T_1|| = ||T||$.

Proof.

Define T_1 on $\overline{D(T)}$ by

$$\forall x \in \overline{D(T)}, \exists x_n \in D(T), x_n \to x.$$

We shall verify that T is well-defined, i.e. the limit of Tx_n exists and doesn't depend on the selection of $\{x_n\}$. First note that T is continuous, so there exists M > 0 such that

$$||Tx|| \le M||x||, \forall x \in D(T)$$

Then for each $p \in \mathbb{N}$, we have

$$||Tx_{n+p} - Tx_n|| \le M||x_{n+p} - x_n||$$
, $\forall n \in \mathbb{N}$

This implies that $\{Tx_n\}$ is also a Cauchy sequence and therefore, converges to some point $y \in \mathcal{Y}$ as \mathcal{Y} is complete. Suppose $\{x'_n\}$ is another sequence converging to x, then

$$||Tx'_n - Tx_n|| \le M||x'_n - x_n|| \le M(||x'_n - x|| + ||x_n - x||) \to 0$$

Hence the limit doesn't depend on the selection of $\{x_n\}$. Obviously T_1 is still a linear operator and $T_1|_{D(T)} = T$. Also, $||T_1x|| \le ||T|| ||x||$, thus $||T_1|| = ||T||$. \square

Corollary 3.2 (equivalent norm theorem)

Let \mathcal{X} be a vector space, $\|\cdot\|_1$ and $\|\cdot\|_2$ are two norms on \mathcal{X} , if $(\mathcal{X}, \|\cdot\|_1)$ and $(\mathcal{X}, \|\cdot\|_1)$ are both complete and $\|\cdot\|_2$ is stronger than $\|\cdot\|_1$, then these two norms are equivalent. **Proof.**

Consider identity map $I: (\mathcal{X}, \|\cdot\|_2) \to (\mathcal{X}, \|\cdot\|_1)$, since $\|\cdot\|_2$ is stronger than $\|\cdot\|_1$, there exists M such that for each $x \in \mathcal{X}$

$$||Ix||_1 = ||x||_1 \le M||x||_2$$

So I is continuous. And since I is a bijection, by Banach theorem, I^{-1} is also continuous and thus there exists M' such that

$$||x||_2 = ||I^{-1}x||_2 \le M'||x||_1$$

Therefore $\|\cdot\|_1$ is stronger than $\|\cdot\|_2$. \square

Theorem 3.5 (closed graph theorem)

Let \mathcal{X} , \mathcal{Y} be Banach spaces. If $T: \mathcal{X} \to \mathcal{Y}$ is a closed linear operator, and D(T) is closed, then T is continuous. **Proof.**

We show that \mathcal{X} is also complete with respect to the graph norm

$$||x||_G = ||x||_{\mathcal{X}} + ||Tx||_{\mathcal{Y}}$$

Let $\{x_n\} \subset D(T)$ be a Cauchy sequence with respect to the graph norm, then for each $p \in \mathbb{N}$

$$||x_{n+p} - x_n||_G = ||x_{n+p} - x_n||_{\mathcal{X}} + ||T(x_{n+p} - x_n)||_{\mathcal{Y}} \to 0 \text{ as } n \to \infty$$

This implies $||x_{n+p} - x_n||_{\mathcal{X}} \to 0$ as $n \to \infty$.

Since $(\mathcal{X}, \|\cdot\|_{\mathcal{X}})$ is complete, $(D(T), \|\cdot\|_{\mathcal{X}})$ as a closed subspace of \mathcal{X} is also complete, we know that x_n converges to some $x \in D(T) \subset \mathcal{X}$.

For any $p \in \mathbb{N}$ and $\epsilon > 0$, there exists some N such that when n > N,

$$||T(x_{n+p}-x_n)||_{\mathcal{V}}<\epsilon$$

Hence $\{Tx_n\}$ is a Cauchy sequence, note that \mathcal{Y} is complete, so there exists $y \in \mathcal{Y}$ such that $Tx_n \to y$. Also, T is closed implies $(x,y) \in G(T)$, and therefore y = Tx,

$$||x_n - x||_G = ||x_n - x||_{\mathcal{X}} + ||Tx_n - Tx||_{\mathcal{Y}} \to 0 \text{ as } n \to \infty$$

So \mathcal{X} is also complete with respect to the graph norm.

Obviously $\|\cdot\|_G$ is stronger than $\|\cdot\|_{\mathcal{X}}$, by equivalent norm theorem, $\|\cdot\|_{\mathcal{X}}$ is stronger than $\|\cdot\|_G$, hence there exists M such that

$$||x||_{\mathcal{X}} + ||Tx||_{\mathcal{Y}} \le M||\cdot||_{\mathcal{X}}$$

Thus $||Tx||_{\mathcal{V}} \leq M||\cdot||_{\mathcal{X}}$ and therefore T is continuous. \square

Example 3.1 A closed linear operator may not be bounded.

Consider C[0,1] and $T: f \mapsto \frac{df}{dt}$, then $D(T) = C^1[0,1]$, we can show that T is closed: Suppose $\{f_n(t)\} \subset D(T)$, $f_n \to f \in D(T)$, $\frac{df_n}{dt} \to y$, note that this is uniformly convergent since the norm is $\|\cdot\|_{\infty}$, hence

$$\lim_{n\to\infty} \int_0^1 \frac{df_n(t)}{dt} dt$$

Remark

A continuous linear operator T is a closed linear operator, because by B.L.T, we can always assume that the domain of any continuous linear operator is closed, then $x_n \to x$ implies $Tx_n \to Tx$, $x \in D(T)$ so $(x, Tx) \in G(T)$.

Theorem 3.6 (uniform boundedness theorem)

Let \mathcal{X} be a Banach space, \mathcal{Y} be a normed vector space. If $W \subset \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and for each $x \in \mathcal{X}$,

$$M_x = \sup_{T \in W} ||Tx|| < \infty$$

Then there is a finite constant M such that $||T|| \leq M$ for all $T \in W$.

Proof(Version 1).

For any $x \in \mathcal{X}$, define

$$||x||_W = ||x||_{\mathcal{X}} + \sup_{T \in W} ||Tx||_{\mathcal{Y}}.$$

It's easy to verify that $\|\cdot\|_W$ is a norm on \mathcal{X} stronger than $\|\cdot\|_{\mathcal{X}}$. We want to show that two norms are equivalent, then by equivalent norm theorem, it suffices to show that $(\mathcal{X}, \|\cdot\|_W)$ is complete. Suppose $\{x_n\}$ is a Cauchy sequence with respect to $\|\cdot\|_W$, i.e.

$$||x_m - x_n|| + \sup_{T \in W} ||T(x_m - x_n)||_{\mathcal{Y}} \to 0 \text{ as } m, n \to \infty$$

Since $(\mathcal{X}, \|\cdot\|_{\mathcal{X}})$ is complete, there exists $x \in \mathcal{X}$ such that $\|x_n - x\|_{\mathcal{X}} \to 0$ as $n \to \infty$. Also, $\forall \epsilon > 0$, $\exists N = N(\epsilon)$ such that

$$\sup_{T \in W} ||Tx_m - Tx_n||_{\mathcal{Y}} < \epsilon, \quad \forall m, n > N$$

Hence for each $T \in W$,

$$||Tx_m - Tx_n||_{\mathcal{V}} < \epsilon, \quad \forall m, n > N$$

Let $n \to \infty$, then we have

$$||Tx_m - Tx||_{\mathcal{V}} \le \epsilon, \quad \forall m > N$$

Now take the supremum over W and we get

$$\sup_{T \in W} ||Tx_n - Tx||_{\mathcal{Y}} \le \epsilon, \quad \forall n > N$$

Since ϵ is arbitrary,

$$||x_n - x|| + \sup_{T \in W} ||T(x_n - x)||_{\mathcal{Y}} \to 0 \text{ as } n \to \infty$$

i.e. $||x_n - x||_W \to 0$, hence $||\cdot||_W$ and $||\cdot||_{\mathcal{X}}$ are equivalent, thus $\exists M$ such that

$$||x||_{\mathcal{X}} + \sup_{T \in W} ||Tx||_{\mathcal{Y}} = ||x||_{W} \le M||x||_{\mathcal{X}} \quad , \forall x \in \mathcal{X}$$

Therefore

$$\sup_{T \in W} ||Tx||_{\mathcal{Y}} \le M||x||_{\mathcal{X}} \quad , \forall x \in \mathcal{X}$$

So for each $T \in W$, each $x \in \mathcal{X}$

$$||Tx||_{\mathcal{Y}} \le M||x||_{\mathcal{X}}$$

That is,

$$\|T\| \leq M \quad , \forall T \in W \quad \Box$$

Proof(Version 2).

Define C_n by

$$C_n = \{ x \in \mathcal{X} : ||Tx|| \le n, \forall T \in W \}$$

Since for each $x \in \mathcal{X}$, $\sup_{T \in W} ||Tx|| < M_x < \infty$, so there exists some large n such that $x \in C_n$, therefore

$$\mathcal{X} = \bigcup_{n=1}^{\infty} C_n$$

Also, note that for each n,

$$C_n = \bigcap_{T \in W} \{ x \in \mathcal{X} : ||Tx|| \le n \}$$

Obviously, $\{x \in \mathcal{X} : ||Tx|| \leq n\}$ is closed hence C_n is closed.

By Baire Category theorem, \mathcal{X} as a complete metric space cannot be covered by countably many nowhere dense sets, therefore there exists n_0 such that C_{n_0} has non-empty interior.

So we can assume that $B(x_0, \epsilon) \subset C_{n_0}$, then for any $x \in \mathcal{X}$ with $||x|| \leq \epsilon$ and any $T \in W$

$$||T(x+x_0)|| \le n_0$$

So

$$||Tx|| \le n_0 + ||Tx_0||, \forall T \in W$$

Thus for any $x \in \mathcal{X}$ with $||x|| \leq 1$, $||\epsilon x|| \leq \epsilon$ and

$$||T\epsilon x|| \le n_0 + ||Tx_0||, \forall T \in W$$

It follows

$$||Tx|| \le \frac{n_0 + ||Tx_0||}{\epsilon}, \forall T \in W$$

Let $M = \frac{n_0 + \|Tx_0\|}{\epsilon}$ and take supremum over W, then we have $\|T\| \leq M$

Theorem 3.7 (Banach-Steinhaus)

Let \mathcal{X} be a Banach space, \mathcal{Y} be a normed vector space, D is a dense subset of \mathcal{X} , $A_n(n=1,2,\cdots)$, $A \in \mathcal{L}(\mathcal{X},\mathcal{Y})$. Then $\forall x \in \mathcal{X}$

$$\lim_{n \to \infty} A_n x = Ax$$

if and only if

(1) $||A_n|| \leq M$ for some constant M.

(2) $\forall x \in D$, $\lim_{n \to \infty} A_n x = Ax$.

Proof.

 \Rightarrow :

Since for each $x \in \mathcal{X}$, $\lim_{n\to\infty} \|A_n x\| = \|Ax\| < \infty$, by uniform boundedness theorem, there exists M such that $\|A_n\| \leq M$ for each $n \in \mathbb{N}$.

(2) is trivial.

ر

We know that there exists M such that $||A_n|| \le M'$, take $M = \max\{M', ||A||\}$.

 $\forall x \in \mathcal{X} \text{ and } \forall \epsilon > 0$, there exists $y \in D$ such that $||x - y|| < \frac{\epsilon}{3M}$ and for this y, there exists $N \in \mathbb{N}$ such that when n > N,

$$||A_n y - Ay|| < \frac{\epsilon}{3}$$

Then we have

$$||A_{n}x - Ax|| \le ||A_{n}x - A_{n}y|| + ||A_{n}y - Ay|| + ||Ay - Ax||$$

$$\le ||A_{n}|| ||x - y|| + ||A_{n}y - Ay|| + ||A|| ||x - y||$$

$$< M \cdot \frac{\epsilon}{3M} + \frac{\epsilon}{3} + M \cdot \frac{\epsilon}{3M}$$

$$= \epsilon$$

That is, $||A_n x - Ax|| \to 0$ as $n \to \infty$. \square

Theorem 3.8 (Lax-Milgram)

Let a(x,y) be a conjugate bilinear function on Hilbert space $\mathcal X$ satisfying

- (1) $\exists M > 0 \text{ s.t. } |a(x,y)| \le M||x|| ||y||, \forall x, y \in \mathcal{X}.$
- (2) $\exists \delta > 0 \text{ s.t. } |a(x,x)| \ge \delta ||x||^2, \forall x \in \mathcal{X}.$

Then there exists a unique bounded linear operator $A \in \mathcal{L}(\mathcal{X})$ with continuous inverse satisfying

$$a(x,y) = \langle x, Ay \rangle, \forall x, y \in \mathcal{X}$$

$$||A^{-1}|| \le \frac{1}{\delta}$$

Proof.

By theorem 2.2 we know that there exists a unique $A \in \mathcal{L}(\mathcal{X})$, then we shall show that A is a bijection. Suppose $a(x, y_1) = a(x, y_2)$, then $\langle x, Ay_1 \rangle = \langle x, Ay_2 \rangle$, $\forall x \in \mathcal{X}$. Particularly, $\langle y_1 - y_2, A(y_1 - y_2) \rangle = 0$. However,

$$0 = \langle y_1 - y_2, A(y_1 - y_2) \rangle = |a(y_1 - y_2, y_1 - y_2)| \ge \delta ||y_1 - y_2||^2$$

thus $y_1 = y_2$, so A is injective.

To show A is onto, it suffices to show that R(A) is closed and $R(A)^{\perp} = \{0\}$.

Let $\{y_n\}$ be any sequence in R(A), say, $y_n \to y \in \mathcal{X}$, we know that there is a corresponding sequence $\{x_n\}$

such that $y_n = Ax_n$.

Note that for each $p \in \mathbb{N}$,

$$||x_{n+p} - x_n||^2 \le \frac{1}{\delta} |a(x_{n+p} - x_n, x_{n+p} - x_n)|$$

$$= \frac{1}{\delta} \langle x_{n+p} - x_n, A(x_{n+p} - x_n) \rangle$$

$$\le \frac{1}{\delta} ||x_{n+p} - x_n|| ||A(x_{n+p} - x_n)||$$

$$= \frac{1}{\delta} ||x_{n+p} - x_n|| ||y_{n+p} - y_n||$$

Thus

$$||x_{n+p} - x_n|| \le \frac{1}{\delta} ||y_{n+p} - y_n|| \to 0 \text{ as } n \to \infty$$

Since \mathcal{X} is complete, there exists $x \in \mathcal{X}$ such that $x_n \to x$.

Note that A is continuous, so $y = \lim_{n \to \infty} Ax_n = Ax \in R(A)$, thus R(A) is closed.

Suppose there is a $x_0 \in \mathcal{X}$ such that $\langle x_0, Ay \rangle = 0$ for all $y \in \mathcal{X}$.

Then particularly, $0 = |\langle x_0, Ax_0 \rangle| = |a(x_0, x_0)| \ge \delta ||x_0||^2$, which implies that $x_0 = 0$. Hence A is onto.

By Banach theorem, $A^{-1} \in \mathcal{L}(\mathcal{X})$, and we also have

$$\delta ||x||^2 \le |a(x,x)| = |\langle x, Ax \rangle| \le ||A|| ||x||^2$$

Hence $\delta ||x|| \leq ||Ax||$, $\forall x \in \mathcal{X}$ and equivalently,

$$||A^{-1}y|| \le \frac{1}{\delta}||y||, \quad \forall y \in \mathcal{X}$$

i.e. $||A^{-1}|| \leq \frac{1}{\delta}$. \square

Theorem 3.9 (Lax)

Let \mathcal{X} and \mathcal{Y} be Banach spaces, $T_n \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and $\forall y \in \mathcal{Y}$, there exists unique x_n, x such that

$$T_n x_n = y, \quad Tx = y$$

If $\forall x \in \mathcal{X}$,

$$||Tx - T_n x|| \to 0$$
 as $n \to \infty$ (compatibility)

Then $x_n \to x$ if and only if $\exists C$ such that $||T_n^{-1}|| \le C$ for all $n \in \mathbb{N}$.

Proof.

⇒:

For fixed $y \in \mathcal{Y}$, let $x_n = T_n^{-1}y$, $x = T^{-1}y$, suppose $x_n \to x$, then

$$T_n^{-1}y \to T^{-1}y$$

This implies $\sup_n \|T_n^{-1}y\| < \infty$, by uniform boundedness theorem, there exists C such that

$$||T_n^{-1}|| \le C$$

←:

$$||x_n - x|| = ||T_n^{-1}y - T_n^{-1}T_nx||$$

 $\leq ||T_n^{-1}||||y - T_nx||$
 $\leq C||Tx - T_nx|| \to 0 \text{ (by compatibility) } \square$

4 Hahn-Banach Theorem

Definition 4.1 (sublinear functional)

Let \mathcal{X} be a vector space on \mathbb{R} , $f: \mathcal{X} \to \mathbb{R}$ is called a **sublinear functional** if

- (1) $\forall \lambda > 0, \forall x \in \mathcal{X}, f(\lambda x) = \lambda f(x)$. (positive homogeneity)
- (2) $\forall x, y \in \mathcal{X}, f(x+y) \leq f(x) + f(y)$. (subadditivity).

Theorem 4.1 (real Hahn-Banach theorem)

Let \mathcal{X} be a vector space on \mathbb{R} , \mathcal{Y} is a subspace. p is a sublinear functional on \mathcal{X} . f is a linear functional on Y dominated by p, then there exists an extension of f on \mathcal{X} denoted by F such that $F|_{\mathcal{Y}} = f$, $F \leq p$.

Proof.

Step 1.

Let S be the set of all tuples (A, g), where A = D(g), g is a linear functional, the extension of f dominated by p. S is equipped with the partial order \leq which is defined by

$$(A_1, g_1) \le (A_2, g_2)$$
 if $A_1 \subset A_2, g_2|_{A_1} = g_1$

Then S is a partially ordered set. We want to find the maximal element of S Let $C \subset S$ be any chain of S. Suppose that $C = \{(A_1, g_1), (A_2, g_2), \dots\}$, where

$$(A_k, g_k) \le (A_{k+1}, g_{k+1}), \quad \forall k \in \mathbb{N}$$

Then we need to find an upper bound for C. Define A by

$$A = \bigcup_{n=1}^{\infty} A_n$$

Then $\forall x \in A$, there exists $k \in \mathbb{N}$ such that $x \in A_k$, and we can define g by

$$g(x) = g_k(x)$$

So D(g) = A. We shall verify that $(A, g) \in S$.

- (1) Obviously, $g|_{\mathcal{Y}} = f$.
- (2) For any $x_1, x_2 \in A$, $c_1, c_2 \in \mathbb{R}$, there exists k such that $x_1, x_2 \in A_k$, and thus $c_1x_1 + c_2x_2 \in A_k$, so

$$g(c_1x_1 + c_2x_2) = g_k(c_1x_1 + c_2x_2) = c_1g_k(x_1) + c_2g_k(x_2) = c_1g(x_1) + c_2g(x_2)$$

i.e. g(x) is a linear functional.

(3) For any $x \in A$, there exists k such that $x \in A_k$, so $g(x) = g_k(x) \le p(x)$. Hence g is dominated by p on A.

Hence every chain of S has an upper bound, by Zorn's lemma, there exists a maximal element (\mathcal{X}_m, F) .

Step 2.

It remains to show that $\mathcal{X}_m = \mathcal{X}$.

Assume that $\mathcal{X}_m \subsetneq \mathcal{X}$, then $\exists x_0 \in \mathcal{X} \setminus \mathcal{X}_m$.

Now let \mathcal{X}'_m be the space spanned by \mathcal{X}_m and x_0 , i.e.

$$\mathcal{X}'_m = \mathcal{X}_m \oplus \{\lambda x_0 | \lambda \in \mathbb{R}\}\$$

So each $x \in \mathcal{X}'_m$ has a unique decomposition $x = x_m + cx_0$, where $x_m \in \mathcal{X}_m$, $c \in \mathbb{R}$ Then define F' on \mathcal{X}'_m by

$$F'(x) = F'(x_m + cx_0) = F(x_m) + ck$$

where k is a constant to be specified. (actually $k = F'(x_0)$)

For any $x_1, x_2 \in \mathcal{X}_m$,

$$F(x_1) - F(x_2) = F(x_1 - x_2) = F(x_1 + x_0 - x_2 - x_0) \le p(x_1 + x_0 - x_2 - x_0)$$

$$\le p(x_1 + x_0) + p(-x_2 - x_0)$$

So we have

$$-F(x_2) - p(-x_2 - x_0) \le -F(x_1) + p(x_1 + x_0)$$
, $\forall x_1, x_2 \in \mathcal{X}_m$

Take the infimum and supremum over \mathcal{X}_m on the right side and left side respectively, we have

$$\sup_{x \in \mathcal{X}_m} (F(-x) - p(-x - x_0)) \le \inf_{x \in \mathcal{X}_m} (-F(x) + p(x + x_0))$$

Let k be any real number in between, then for any $x = x_m + cx_0 \in \mathcal{X}'_m$,

1. if
$$c = 0$$

$$F'(x) = F(x_m) \le p(x_m) = p(x)$$

2. if
$$c > 0$$

$$F'(x) = F(x_m) + ck$$

$$\leq F(x_m) + c(-F(\frac{x_m}{c}) + p(\frac{x_m}{c} + x_0))$$

$$= F(x_m) - F(x_m) + p(x_m + cx_0) = p(x_m + cx_0)$$

3. if c < 0

$$F'(x) = F(x_m) + ck$$

$$= F(x_m) + (-c)(-k)$$

$$\leq F(x_m) + (-c) \cdot -(F(-\frac{x_m}{c}) - p(-\frac{x_m}{c} - x_0))$$

$$= F(x_m) - F(x_m) + p(x_m + cx_0) = p(x_m + cx_0)$$

So F' is dominated by p and thus $(\mathcal{X}'_m, F') \in S$, leading a contradiction. Therefore $\mathcal{X}_m = \mathcal{X}$. \square

Theorem 4.2 (complex Hahn-Banach theorem)

Let \mathcal{X} be a complex vector space, p a seminorm on \mathcal{X} , \mathcal{Y} a vector subspace of \mathcal{X} , f_0 a linear functional on \mathcal{Y} satisfying $|f_0(x)| \leq p(x)$, $\forall x \in \mathcal{Y}$, then there exists a linear functional f satisfying

 $(1) |f(x)| \le p(x), \, \forall x \in \mathcal{X}.$

(2) $f(x) = f_0(x), \forall x \in \mathcal{Y}.$

Proof.

skip.

Corollary 4.1

Let \mathcal{X} be a normed vector space, \mathcal{Y} is a vector subspace. Suppose y^* is a continuous linear functional on Y, then there exists a continuous linear functional x^* on \mathcal{X} with $||x^*|| = ||y^*||$ such that $x^*(y) = y^*(y)$ for all $y \in \mathcal{Y}$.

Proof.

Define $p(x) = ||y^*|| ||x||$ on \mathcal{X} , then y^* is dominated by p on \mathcal{Y} . By Hahn-Banach theorem, there exists a linear functional x^* on \mathcal{X} such that

$$x^*|_{\mathcal{V}} = y^*, \quad x^* \le p$$

Note that,

$$||x^*(x)|| \le ||y^*|| ||x||$$

On the other hand, by definition of operator norm, $||x^*|| \ge ||y^*||$. So $||x^*|| \le ||y^*||$, it follows $||x^*|| = ||y^*||$. \square

Corollary 4.2

Let \mathcal{X} be a normed vector space, \mathcal{Y} be a closed vector subspace, $x_0 \in \mathcal{X} \setminus \mathcal{Y}$, then there exists a $x^* \in \mathcal{X}^*$ with

$$x^*(y) = 0, \quad \forall y \in \mathcal{Y}$$

$$x^*(x_0) = 1$$

$$||x^*|| = \frac{1}{d}$$

where $d = \inf ||x_0 - y||, y \in \mathcal{Y}$

Proof.

Consider vector subspace $\mathcal{X}' = \mathcal{Y} \oplus \{\lambda x_0 | \lambda \in \mathbb{R}\}$ and define f on \mathcal{X}' by

$$f(y + \lambda x_0) = \lambda$$

It's easy to verify that f is a continuous linear functional on \mathcal{X}' , then by corollary 4.1, there exists a continuous linear functional x^* such that

$$x^*|_{\mathcal{X}'} = f$$

$$x^*(x_0) = 1$$

$$||x^*|| = ||f||$$

Now it suffices to show that $||f|| = \frac{1}{d}$.

Note that \mathcal{Y} is closed, so by definition of d, there exists a point $y' \in \mathcal{Y}$ such that $||y' - x_0|| = d$, then $|f(y'-x_0)| \le ||f||d$, so $||f|| \ge \frac{1}{d}$. On the other hand, $\forall x \in \mathcal{X}', x = y + \lambda x_0, y \in \mathcal{Y}$,

$$||x|| = ||y + \lambda x_0|| = |\lambda| ||\frac{y}{\lambda} + x_0||$$

 $\ge |\lambda| \cdot d = |f(y + \lambda x_0)| \cdot d = |f(x)| \cdot d$

So $||f|| \leq \frac{1}{d}$ and therefore $||f|| = \frac{1}{d}$. \square

Corollary 4.3

Let \mathcal{X} be a normed vector space, $x_0 \in \mathcal{X}$, $x_0 \neq 0$, then there is a $x^* \in \mathcal{X}^*$ such that

$$|x^*(x_0)| = ||x_0||$$

$$||x^*|| = 1$$

Proof.

Consider subspace $Y = \{0\}$ then apply Corollary 4.2, there exists a $f \in \mathcal{X}^*$ such that

$$f(x_0) = 1$$

$$||f|| = \frac{1}{d} = \frac{1}{||x_0||}$$

Then let $x^* = ||x_0|| f$. \square

Definition 4.2 (maximal vector subspace)

Let \mathcal{X} be a vector space, $M \subset \mathcal{X}$ be a proper subspace, if $\forall M_1 \subset \mathcal{X}, M_1 \supset M$, we have $M_1 = \mathcal{X}$, then we call M a maximal vector subspace.

Note.

This definition is not true for the infinite-dimensional vector space, consider a infinite orthonormal basis $\{e_n\}$ of \mathcal{X} , then $M = span\{e_n\}$ is a proper subspace but it cannot satisfy the following proposition.

Proposition 4.1

Let \mathcal{X} be a vector space, $M \subset \mathcal{X}$ is a maximal vector subspace if and only if M is a proper subspace and there exists $x_0 \in \mathcal{X}$ such that

$$\mathcal{X} = M \oplus \{\lambda x_0 | \lambda \in \mathbb{K}\}$$

Definition 4.3 (hyperplane)

Let \mathcal{X} be a vector space, $M \subset \mathcal{X}$ be a maximal vector subspace, then for any $x_0 \in \mathcal{X}$,

$$L = M + x_0$$

is called a hyperplane.

Theorem 4.3

Let \mathcal{X} be a normed vector space, $L \subset \mathcal{X}$ be a hyperplane if and only if there exists a non-zero linear functional f and $r \in \mathbb{R}$, such that

$$L = H_f^r = \{x \in \mathcal{X} | f(x) = r\}$$

Particularly, L is a closed hyperplane if and only if f is a continuous linear functional.

Proof.

⇒:

Suppose L is a hyperplane, and $L = M + x_0$, where M is a maximal subspace of \mathcal{X} and $x_0 \in \mathcal{X}$. If $x_0 \notin M$, then $\mathcal{X} = \bar{M} \oplus \{\lambda x_0 | \lambda \in \mathbb{R}\}$.

Now we can define a linear functional f on \mathcal{X} by

$$f(m + \lambda x_0) = \lambda, \quad \forall m \in M, \lambda \in \mathbb{R}$$

Also, for each $x \in L = M + x_0$,

$$f(x) = f(m + x_0) = 1$$

So $L = H_f^1$.

If $x_0 \in M$, then pick any $x_1 \notin M$, similarly define f by

$$f(m + \lambda x_1) = \lambda, \quad \forall m \in M, \lambda \in \mathbb{R}$$

Then $L = M = H_f^0$.

 \Leftarrow

If $L = H_f^r$ where f is a non-zero linear functional on \mathcal{X} , first note that

$$ker(f) = H_f^0$$

is a vector subspace.

Pick any $y \in \mathcal{X} \setminus ker(f)$, then $\forall x \in \mathcal{X}$,

$$x - \frac{f(x)}{f(y)}y \in ker(f)$$

i.e. $\exists x_0 \in ker(f)$ such that $x = x_0 + \frac{f(x)}{f(y)}y$, so $\mathcal{X} = ker(f) \oplus \{\lambda y | \lambda \in \mathbb{R}\}.$

Hence $ker(f) = H_f^0$ is a maximal vector subspace.

Since f is linear, we can assume that f(y) = r, then $\forall x \in H_f^r$,

$$f(x-y) = f(x) - f(y) = r - r = 0, \quad x - y \in ker(f)$$

So $H_f^r = ker(f) + y$ is a hyperplane.

Moreover, if L is a closed hyperplane, then ker(f) is closed.

Assume that the corresponding linear functional f is not continuous, then $\forall n \in \mathbb{N}$, we can find $x_n \in \mathcal{X}$ with $||x_n|| = 1$, $|f(x_n)| > n$.

Pick $y \in \mathcal{X} \setminus ker(f)$ such that f(y) = 1, then $y - \frac{y}{f(x_n)}x_n$ is a sequence in ker(f) converging to y and thus $y \in ker(f)$, leading a contradiction.

On the other hand, if f is continuous, then consider any sequence $\{x_n\} \subset ker(f)$, say $x_n \to x$, then $f(x_n) \to f(x)$, since $f(x_n) = 0$ for each n, so f(x) = 0 and thus $x \in ker(f)$. Hence ker(f) is closed and therefore L is closed. \square

Definition 4.4 (separation)

Let \mathcal{X} be a normed vector space, $L = H_f^r$ be a hyperplane, $E, F \subset \mathcal{X}$, E and F are **separated** by L if

$$\forall x \in E, \quad f(x) \ge r$$

$$\forall x \in F, \quad f(x) \le r$$

Theorem 4.4 (geometric Hahn-Banach theorem)

Let \mathcal{X} be a normed vector space on \mathbb{R} , $C \subset \mathcal{X}$ is a proper convex subset, containing 0 as an interior point, suppose $x_0 \notin C$, then there exists a hyperplane L separating x_0 and C.

Proof.

First note that $p(x_0) \ge 1$. Then consider subspace $\mathcal{Y} = \{\lambda x | \lambda \in \mathbb{R}\}.$

Define f_0 on \mathcal{Y} by

$$f_0(\lambda x_0) = \lambda p(x_0)$$

Then $f_0(\lambda x_0) = \lambda p(x_0) \le p(\lambda x_0)$.

By Hahn-Banach theorem, there exists a linear functional f on $\mathcal X$ such that

$$f|_{\mathcal{V}} = f_0, \quad f \leq p \text{ for all } x \in \mathcal{X}$$

Consider hyperplane $L = H_f^1$, note that $f(x_0) = f_0(x_0) = p(x_0) \ge 1$ and for each $x \in C$,

$$f(x) \le p(x) \le 1$$

Note.

In fact, C can be any proper convex set containing non-empty interior. (By translation)

Moreover, we can show that H_f^r is closed. Note that p(x) is uniformly continuous since C has non-empty interior, so there exists M with

$$|p(x-y)| \le M||x-y||$$

Also,

$$|f(x)| \le \max\{p(x), p(-x)\}$$

which yields

$$|f(x)| \le M||x||$$

So f is bounded and therefore H_f^r is closed.

Theorem 4.5

Let \mathcal{X} be a normed vector space, $C_1, C_2 \subset \mathcal{X}$ be two convex subset with

$$\mathring{C}_1 \neq \varnothing, \quad \mathring{C}_1 \cap C_2 = \varnothing$$

Then there exists $s \in \mathbb{R}$ and non-zero continuous linear functional f such that H_f^s separates C_1 and C_2 , i.e.

$$f(x) \le s, \quad \forall x \in C_1$$

$$f(x) \ge s, \quad \forall x \in C_2$$

Proof.

Define $C = C_1 - C_2$, then it's easy to verify that C is a non-empty convex set with non-empty interior and $0 \notin \mathring{C}$ since $\mathring{C}_1 \cap C_2 = \varnothing$.

Then by geometric Hahn-Banach theorem, there exists a closed hyperplane $L = H_f^r$ separates \mathring{C} and 0.

Assume that there exists $r \in \mathbb{R}$ such that $f(x) \leq r \leq f(0), \forall x \in \check{C}$.

Since f is linear, $r \leq 0$. Moreover, since f is continuous, $\forall x \in C$, we have $f(x) \leq r \leq 0$.

By definition of C, $\forall y \in C_1$, $\forall z \in C_2$,

$$f(y-z) \le 0, \quad f(y) \le f(z)$$

Take supremum over C_1 and infimum over C_2 respectively, and pick any s in between, then we have

$$\sup_{x \in C_1} f(x) \le s \le \inf_{x \in C_2} f(x)$$

i.e. H_f^s separates C_1 and C_2 . \square

Corollary 4.4 (Ascoli)

Let \mathcal{X} be a normed vector space on \mathbb{R} , $C \subset \mathcal{X}$ is a closed convex set, then $\forall x_0 \in \mathcal{X} \setminus C$, $\exists f \in \mathcal{X}^*$ and $a \in \mathbb{R}$ such that

$$f(x) < a < f(x_0), \quad \forall x \in C$$

Proof.

Since C is closed, we can find an open ball $B = B(x_0, \epsilon)$ with $B \cap C = \emptyset$.

Then apply Theorem 4.5 and we know that there exists $f \in \mathcal{X}^*$ and $s \in \mathbb{R}$ such that

$$\sup_{x \in C} f(x) \le s \le \inf_{x \in B} f(x)$$

There must exists $y \in \mathcal{X}$ with f(y) = -1 and we can also find sufficiently small δ with $0 < \delta < \frac{\epsilon}{\|y\|}$ such that $x_0 + \delta y \in B$.

Let $a = f(x_0 + \delta y)$, then

$$\sup_{x \in C} f(x) < a < f(x_0) \quad \Box$$

Corollary 4.5 (Mazur)

Let \mathcal{X} be a normed vector space, $C \subset \mathcal{X}$ is a closed convex set with non-empty interior, $F \subset \mathcal{X}$ is a linear manifold, $\mathring{C} \cap F = \emptyset$.

Then there exists a closed hyperplane L containing F such that C is on one side of L.

Proof.

Suppose $F = x_0 + M$, where $x_0 \in \mathcal{X}$, M is a vector subspace.

By theorem 4.5, there exists a hyperplane H_f^r separates C and F, such that

$$f(E) \le r \le f(F) = f(x_0 + M)$$

Let $r_0 = r - f(x_0)$, then we have $f(M) \ge r - f(x_0) = r_0$.

Since f is linear and M is a subspace, it's easy to verify that $f(M) \equiv 0$, i.e. $M \subset ker(f)$. Hence $F = x_0 + M \subset x_0 + ker(f) = H_f^s$, where $s = f(x_0)$.

Note that $f(C) \leq r \leq f(x_0 + M) = s$, therefore $L = H_f^s$ is what desired. \square

5 Dual Space And Weak Convergence

Definition 5.1 (dual space)

Let \mathcal{X} be a normed vector space, the set of all continuous linear functional on \mathcal{X} is a Banach space equipped with the supremum norm

$$||f|| = \sup_{\|x\|=1} |f(x)|$$

It is called the **dual space** of \mathcal{X} , denoted by \mathcal{X}^* .

Note.

By theorem 1.1 we know that X^* is complete.

Example 5.1 (L^p spaces)

Let p > 1, then $(L^p)^* = L^q$, where q is the conjugate index of p. $(\frac{1}{p} + \frac{1}{q} = 1)$

Particularly, $(L^1)^* = L^{\infty}$.

Given $p \geq 1$, for each $q \in L^q$, we define a continuous linear functional on L^p by

$$F_g(f) = \int_X f(x)g(x)d\mu, \quad \forall f \in L^p$$

where μ is Lebesgue measure.

It can be shown that

$$\sigma: g \mapsto F_g$$

is surjective and isometric.

Definition 5.2 (double dual space)

Let \mathcal{X} be any normed vector space, then the dual space of X^* , denoted by X^{**} , called the **double dual space** of \mathcal{X} .

Theorem 5.1

Let \mathcal{X} be a normed vector space, then there is an isometric embedding $T: \mathcal{X} \to \mathcal{X}^{**}$.

Proof.

For each $x \in \mathcal{X}$, we can define $J_x : X^* \to \mathbb{K}$ by $J_x(f) = f(x), \forall f \in \mathcal{X}^*$.

It's easy to verify that J_x is a linear functional on X^* and moreover

$$|J_x(f)| = |f(x)| \le ||f|| ||x||$$

Hence $||J_x|| \le ||x||, J_x \in X^{**}$.

Consider canonical map $T: \mathcal{X} \to \mathcal{X}^{**}, x \mapsto J_x$. Still, it's easy to verify that T is linear, injective and

$$||Tx|| = ||J_x|| \le ||x||$$

implies T is continuous, and thus by Banach theorem T is an embedding.

Moreover, by Hahn-Banach, for any given $x \in \mathcal{X}$, we can find an $f_x \in \mathcal{X}^*$ such that $f_x(x) = ||x||$, $||f_x|| = 1$, so $||J_x|| \ge |J_x(f_x)| = |f_x(x)| = ||x||$ and therefore $||J_x|| = ||x||$, i.e. T is an isometry. \square

Definition 5.3 (reflexive space)

Let \mathcal{X} be a normed vector space, if canonical map $T: \mathcal{X} \to \mathcal{X}^{**}$ is onto, then \mathcal{X} is called **reflexive**.

Note.

For p > 1, L^p is reflexive but for $p = 1, \infty$, L^p is not reflexive.

Definition 5.4 (adjoint operator)

Let \mathcal{X} , \mathcal{Y} be normed vector spaces, $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, then the **adjoint operator** of T, denoted by T^* , is defined by

$$T^*: \mathcal{Y}^* \to \mathcal{X}^*$$
$$f(Tx) = (T^*f)(x), \quad \forall f \in \mathcal{Y}^*, \forall x \in \mathcal{X}$$

Theorem 5.2

Let \mathcal{X} , \mathcal{Y} be two normed vector spaces, then $*: T \mapsto T^*$ is an isometric embedding from $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ to $\mathcal{L}(\mathcal{Y}^*, \mathcal{X}^*)$. **Proof.**

First we show that * is linear.

For any $x \in \mathcal{X}$, $f \in \mathcal{Y}^*$, $\alpha, \beta \in \mathbb{K}$,

$$(\alpha T_1 + \beta T_2)^*(f)(x) = f((\alpha T_1 + \beta T_2)(x))$$

$$= f(\alpha T_1(x) + \beta T_2(x))$$

$$= \alpha f(T_1(x)) + \beta f(T_2(x))$$

$$= \alpha T_1^*(f)(x) + \beta T_2^*(f)(x)$$

$$= (\alpha T_1^* + \beta T_2^*)(f)(x)$$

So $*(\alpha T_1 + \beta T_2) = (\alpha T_1 + \beta T_2)^* = \alpha T_1^* + \beta T_2^* = \alpha * (T_1) + \beta * (T_2)$. Then we check * is an isometry. For each $f \in \mathcal{Y}^*$,

$$|T^*(f)| = |f \circ T| \le ||f|| ||T||$$

So $||T^*|| \le ||T||$.

For each $x \in \mathcal{X}$ and each $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, by Hahn-Banach we can find an $f \in \mathcal{Y}^*$ such that

$$f(Tx) = ||Tx||, ||f|| = 1$$

Hence we have

$$||T^*|||x|| = ||T^*|||f|||x|| \ge |T^*(f)(x)| = |f(Tx)| = ||Tx||$$

So $||T^*|| \ge ||T||$. Therefore $||T^*|| = ||T||$ and T is an isometry. \square

Definition 5.5 (weak convergence)

Let \mathcal{X} be a normed vector space, $\{x_n\} \subset \mathcal{X}$, $x \in \mathcal{X}$, say $\{x_n\}$ converges to x weakly if $\forall f \in \mathcal{X}^*$, we have

$$\lim_{n \to \infty} f(x_n) = f(x)$$

denoted by $x_n \rightharpoonup x$. x is called the **weak limit** of $\{x_n\}$.

We can also define the weak convergence of operators.

Let \mathcal{Y} also be a normed vector space and $T_n, T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, then $T_n \rightharpoonup T$ if for any $f \in \mathcal{Y}^*$, $x \in \mathcal{X}$

$$\lim_{n\to\infty} f(T_n x) = f(Tx)$$
 (or equivalently, $f\circ T_n\to f\circ T$)

Proposition 5.1

If weak limit exists, then it's unique. If strong (norm) limit exists then it is also the weak limit.

Proof.

If x and y are both weak limits of $\{x_n\}$, then for each $f \in \mathcal{X}^*$,

$$f(x) = \lim_{n \to \infty} f(x_n) = f(y)$$

Via Hahn-Banach we know that x = y.

Also, for each $f \in \mathcal{X}^*$

$$|f(x_n) - f(x)| \le ||f|| ||x_n - x|| \to 0$$

Thus $x_n \rightharpoonup x$. \square

Remark.

We have shown that if $x_n \to x$, then $x_n \rightharpoonup x$, but it's not true conversely. In fact, $x_n \to x$ if and only if $x_n \rightharpoonup x$ and $||x_n|| \to ||x||$.

Theorem 5.3 (Mazur)

Let \mathcal{X} be a normed vector space, $x_n \rightharpoonup x_0$, then $\forall \epsilon > 0$, $\exists n \in \mathbb{N}$ and $\lambda_i \geq 0$ $(i = 1, 2, \dots, n)$ with $\sum_{i=1}^n \lambda_i = 1$ such that

$$||x_0 - \sum_{i=1}^n \lambda_i x_i|| \le \epsilon$$

Proof.

Let $M = \overline{conv(\{x_n\})}$, then M is a closed convex subset of \mathcal{X} . It suffices to show $x_0 \in M$. Assume that $x_0 \notin M$, then by Ascoli theorem, there exists $f \in \mathcal{X}^*$ and $a \in \mathbb{R}$ such that

$$f(M) < a < f(x_0)$$

Hence for each $n \in \mathbb{N}$, $f(x_n) < a < f(x_0)$, which is contradict to $x_n \rightharpoonup x_0$. \square

For any normed vector space \mathcal{X} , since X^* is a Banach space, we can also consider weak convergence in X^* . Suppose $\{f_n\} \subset \mathcal{X}^*$, $f \in \mathcal{X}^*$, then $f_n \rightharpoonup f$ if $\forall x^{**} \in X^{**}$,

$$x^{**}(f_n) \rightarrow x^{**}(f)$$

We know $\mathcal{X} \subset \mathcal{X}^{**}$, sometimes it's not necessary to introduce \mathcal{X}^{**} especially for the case that \mathcal{X} is not reflexive. Hence we shall consider another kind of convergence:

Definition 5.5 (weak-* convergence)

Let \mathcal{X} be a normed vector space, $\{f_n\} \subset \mathcal{X}^*$, $f \in \mathcal{X}^*$, say $\{f_n\}$ is weak-* convergent to f, if $\forall x \in \mathcal{X}$, $f_n(x) \to f(x)$. f is called the **weak-* limit** of $\{f_n\}$, denoted by $f_n \xrightarrow{w*} f$.

Remark.

Since $\mathcal{X} \subset \mathcal{X}^{**}$, the weak convergence on X^* implies the weak-* convergence on \mathcal{X}^* , i.e. if $\{f_n\} \subset \mathcal{X}^*$, $f \in \mathcal{X}^*$, then

$$f_n \rightharpoonup f \Rightarrow f_n \xrightarrow{w*} f$$

Obviously, if \mathcal{X} is reflexive, then they are equivalent.

Theorem 5.4

Let \mathcal{X} be a normed vector space, M^* is a dense subset of \mathcal{X}^* , $\{x_n\} \subset \mathcal{X}$, $x \in \mathcal{X}$, then $x_n \rightharpoonup x$ if and only if

- (1) $||x_n|| \le C$ for some $C \in \mathbb{R}$.
- $(2) \ \forall f \in M^*, \ f(x_n) \to f(x).$

Proof.

Since $\mathcal{X} \subset \mathcal{X}^{**}$, hence each x_n can be viewed as an operator on \mathcal{X}^* , denoted by J_{x_n} . Then by Banach-Steinhaus it's done. \square

Theorem 5.5

Let \mathcal{X} be a Banach space, M is a dense subset of \mathcal{X} , $\{f_n\} \subset \mathcal{X}^*$, $f \in \mathcal{X}^*$, then $f_n \xrightarrow{w*} f$ if and only if

(1) $||f_n|| \le C$ for some $C \in \mathbb{R}$.

(2) $\forall x \in M, f(x_n) \to f(x).$

Proof.

Apply Banach-Steinhaus. \square

Remark.

In general, we have

uniform convergence \Rightarrow strong convergence \Rightarrow weak convergence

The converse proposition is not true.

Some important counter-examples are as follows.

Example 5.2 (convergent strongly but not uniformly)

Consider l^2 and $T \in l^2$ defined by

$$T: x = (x_1, x_2, \dots, x_n, \dots) \mapsto Tx = (x_2, x_3, \dots, x_n, \dots)$$

Let $T_n \triangleq T^n$, then

$$T_n x = (x_{n+1}, x_{n+2}, \cdots), \quad \forall x = (x_1, x_2, \cdots) \in l^2$$

Since $T^n(e_{n+1}) = e_1$, $||e_n|| = 1$, $\forall n \in \mathbb{N}$, so $||T_n|| \ge ||T_n(e_{n+1})|| = 1$. Hence T_n cannot converge to 0 uniformly, but for each $x \in l^2$,

$$||T_n x|| = (\sum_{i=1}^{\infty} |x_{n+i}|^2)^{\frac{1}{2}} \to 0 \text{ as } n \to \infty$$

So $T_n \to 0$.

Example 5.3 (convergent weakly but not strongly)

Consider l^2 and $S \in l^2$ defined by

$$S: x = (x_1, x_2, \dots, x_n, \dots) \mapsto Tx = (0, x_1, x_2, \dots, x_n, \dots)$$

Let $S_n \triangleq S^n$, then $||S_n x|| = ||x||$, $\forall x \in l^2$, so $S_n \to 0$. But for each $f = (y_1, y_2, \dots) \in l^2$,

$$|f(S_n(x))| = |\sum_{i=1}^{\infty} y_{i+n} x_i| \le (\sum_{i=1}^{\infty} |y_{i+n}|^2)^{\frac{1}{2}} ||x|| \to 0 \text{ as } n \to \infty$$

So $S_n \rightharpoonup 0$. \square

Definition 5.6 (weak sequentially compact)

A is called **weak sequentially compact**, if any sequence $\{x_n\} \subset A$ has a weak convergent subsequence.

Definition 5.7 (weak-* sequentially compact)

A is called **weak-* sequentially compact**, if any sequence $\{x_n\} \subset A$ has a weak-* convergent subsequence.

Theorem 5.6

Let \mathcal{X} be a separable normed vector space, then any bounded sequence $\{f_n\} \subset \mathcal{X}^*$ has a weak-* convergent subsequence.

Proof.

Suppose $D = \{x_n\}$ is a countable dense subset of \mathcal{X} , $||f_n|| \leq M$.

First consider sequence $\{f_n(x_1)\}$, by Bolzano-Weierstrass there exists a convergent subsequence $\{f_n^{(1)}(x_1)\}$.

Then consider sequence $\{f_n^{(1)}(x_2)\}$, still, we can find a convergent subsequence $\{f_n^{(2)}(x_2)\}$ and so on we obtain countable convergent subsequences like $\{f_n^{(m)}(x_m)\}$, $\forall m \in \mathbb{N}$.

Now define $g_k(x) = f_k^{(k)}(x)$, then for each $x_m \in D$, $g_n(x_m)$ converges.

Since g_n as a subsequence of f_n is bounded, then by Banach-Steinhaus,

$$\forall x \in \mathcal{X}, \lim_{n \to \infty} g_n(x) = g(x)$$

That is,

$$g_n \xrightarrow{w*} g \quad \square$$

Theorem 5.7 (Banach)

Let \mathcal{X} be a normed vector space, if \mathcal{X}^* is separable, then \mathcal{X} is separable.

Proof.

Suppose $\{f_n\}$ is a dense subset of \mathcal{X}^* , let

$$g_n = \frac{f_n}{\|f_n\|}$$

Then $\forall g \in S_1 = \{f \in \mathcal{X}^* | ||f|| = 1\}$, we know that there is a subsequence $\{f_{n_k}\}$ such that $f_{n_k} \to g$, and since $||f_{n_k}|| \to 1$,

$$||g_{n_k} - g|| \le ||g_{n_k} - f_{n_k}|| + ||f_{n_k} - g||$$

$$= ||\frac{f_{n_k}}{||f_{n_k}||} - f_{n_k}|| + ||f_{n_k} - g|| \to 0$$

Hence $\{g_n\}$ is a countable dense subset of S_1 .

Since for each g_n , $||g_n|| = 1$, so by definition we can find an $x_n \in \mathcal{X}$ with $||x_n|| = 1$ such that

$$|g_n(x_n)| \ge \frac{1}{2}$$

Let $\mathcal{X}_0 = \overline{span\{x_n\}}$, obviously \mathcal{X}_0 is a separable closed subspace of \mathcal{X} .

In fact, $\mathcal{X}_0 = \mathcal{X}$, suppose not, then we can pick $y \in \mathcal{X} \setminus \mathcal{X}_0$ with ||y|| = 1, by Hahn-Banach, there is an $f \in \mathcal{X}^*$ with $f(\mathcal{X}_0) = 0$, f(y) = 1, ||f|| = 1.

Since $f \in S_1$, there is a sequence $\{g_{n_k}\}$ such that $g_{n_k} \to f$, then for each $k \in \mathbb{N}$

$$||f - g_{n_k}|| = \sup_{\|x\|=1} |f(x) - g_{n_k}(x)|$$

$$\geq |f(x_{n_k}) - g_{n_k}(x_{n_k})|$$

$$= |g_{n_k}(x_{n_k})| \geq \frac{1}{2}$$

leading a contradiction. \square

Theorem 5.8 (Pettis)

Let \mathcal{X} be a reflexive space, then any closed subspace $\mathcal{X}_0 \subset \mathcal{X}$ is also reflexive.

Proof.

We shall show that, if $z_0 \in \mathcal{X}_0^{**}$, then $z_0 \in \mathcal{X}_0$, i.e. $\exists x_0 \in \mathcal{X}_0$ such that

$$z_0(f_0) = f_0(x_0), \quad \forall f_0 \in \mathcal{X}_0^*$$

Define $P: \mathcal{X}^* \to \mathcal{X}_0^*$ by

$$P: f \mapsto f|_{\mathcal{X}_0}$$

Since

$$||P(f)|| = ||f|_{\mathcal{X}_0}|| \le ||f||$$

Also it's easy to verify P is linear so $P \in \mathcal{L}(\mathcal{X}^*, \mathcal{X}_0^*), P^* \in \mathcal{L}(\mathcal{X}_0^{**}, \mathcal{X}^{**}).$

Then define $z \triangleq P^*(z_0), z \in \mathcal{X}^{**}$, since \mathcal{X} is reflexive, there is an $x \in \mathcal{X}$ such that

$$z(f) = f(x), \quad \forall f \in \mathcal{X}^*$$

In fact, $x \in \mathcal{X}_0$, suppose not, there exists $g \in \mathcal{X}^*$ with

$$g(x) = 1, \quad g(\mathcal{X}_0) = 0$$

It follows P(g) = 0, however

$$0 = \langle z_0, P(g) \rangle = \langle P^*(z_0), g \rangle = z(g) = g(x) = 1$$

leading a contradiction.

So far we have shown that, given $z_0 \in \mathcal{X}_0^{**}$, there is an $x \in \mathcal{X}_0$ such that

$$\langle P^*(z_0), f \rangle = \langle f, x \rangle, \quad \forall f \in \mathcal{X}^*$$

It remains to show that $\langle z_0, f_0 \rangle = \langle f_0, x \rangle, \, \forall f_0 \in \mathcal{X}_0^*$.

By Hahn-Banach, given $f_0 \in \mathcal{X}_0^*$, there is an extension $f \in \mathcal{X}^*$ with

$$f|_{\mathcal{X}_0} = f_0, \quad ||f|| = ||f_0||$$

Hence $f_0 = P(f)$, and we have

$$\langle z_0, f_0 \rangle = \langle z_0, P(f) \rangle = \langle P^*(z_0), f \rangle$$

= $\langle f, x \rangle = \langle f_0, x \rangle \quad \Box$

Theorem 5.9 (Eberlein-Smulian)

Let \mathcal{X} be a reflexive space, then the unit ball of \mathcal{X} is weak sequentially compact.

Moreover, the closed unit ball is weak self-sequentially compact.

Proof.

We show that any bounded sequence $\{x_n\} \subset \mathcal{X}$ has a weak convergent subsequence.

Let $\mathcal{X}_0 = \overline{span\{x_n\}}$, obviously \mathcal{X}_0 is a closed separable subspace.

By Pettis, since \mathcal{X} is reflexive, \mathcal{X}_0 is also reflexive and thus \mathcal{X}_0^{**} is separable, by Banach \mathcal{X}_0^* is also separable. Now define $J_n = Tx_n$, where T is the canonical map from \mathcal{X}_0 to \mathcal{X}_0^{**} , then $\{J_n\}$ is also bounded.

Consider separable space \mathcal{X}_0^* and bounded sequence $\{J_n\} \subset X_0^{**}$, apply theorem 5.6, there exists a weak-* convergent subsequence $\{J_{n_k}\}$ and $J_0 \in \mathcal{X}_0^{**}$ with

$$J_{n_k} \xrightarrow{w*} J_0$$

Since X_0^{**} is reflexive, there exists $x_0 = T^{-1}J_0$, so for each $f_0 \in \mathcal{X}_0^*$,

$$f_0(x_{n_k}) = J_{n_k}(f_0) \to J_0(f_0) = f_0(x_0)$$

For any $f \in \mathcal{X}^*$, define $P: f \mapsto f|_{\mathcal{X}_0}$, it's clear that $P \in \mathcal{L}(\mathcal{X}^*, \mathcal{X}_0^*)$, and

$$P^* \in \mathcal{L}(\mathcal{X}_0^{**}, \mathcal{X}^{**}) = \mathcal{L}(\mathcal{X}_0, \mathcal{X})$$

So for each $y_0 \in \mathcal{X}_0$, naturally we have $y_0 = P^*y_0$, moreover

$$f(x_{n_k}) = \langle f, x_{n_k} \rangle = \langle f, P^*(x_{n_k}) \rangle = \langle P(f), x_{n_k} \rangle$$
$$= \langle f_0, x_{n_k} \rangle = f_0(x_{n_k}) \to f_0(x_0) = f(x_0)$$

i.e. $\forall f \in \mathcal{X}^*, f(x_{n_k}) \to f(x_0), \text{ hence } x_{n_k} \rightharpoonup x_0.$

Therefore, any bounded subset of \mathcal{X} is weak sequentially compact, particularly, the unit ball is weak sequentially compact.

Then consider closed unit ball, suppose $x_{n_k} \rightharpoonup x_0$ and $||x_{n_k}|| \le 1$, then by Hahn-Banach, there exists $f \in \mathcal{X}^*$

$$f(x_0) = ||x_0||, ||f|| = 1$$

Hence,

$$||x_0|| = f(x_0) = \lim_{k \to \infty} f(x_{n_k}) \le ||f|| \sup_{k \to \infty} ||x_{n_k}|| \le 1$$

which implies that x_0 is in the closed unit ball, so the closed unit ball is weak self-sequentially compact. \square

6 Spectrum

Definition 6.1 (spectrum)

Let \mathcal{X} be a Banach space, $T:D(T)\subset\mathcal{X}\to\mathcal{X}$ is a closed linear operator. Suppose $\lambda\in\mathbb{C}$, then if

- (1) $\lambda I T$ is not injective (i.e. $(\lambda I T)^{-1}$ doesn't exist) Then λ is an **eigenvalue**, the set of all eigenvalues denoted by $\sigma_p(T)$ is called the **point spectrum** of T.
- (2) $\lambda I T$ is injective, and $R(\lambda I T) = \mathcal{X}$ Then λ is an **regular value**, the set of all regular values denoted by $\rho(T)$ is called the **resolvent set** of

Since T is a closed linear operator, so $\lambda I - T$ is a closed operator hence $(\lambda I - T)^{-1}$ is also closed, by closed graph theorem, $(\lambda I - T)^{-1} \in \mathcal{L}(\mathcal{X})$, therefore $\rho(T)$ can also be defined as

$$\rho(T) = \{ \lambda \in \mathbb{C} | (\lambda I - T)^{-1} \in \mathcal{L}(\mathcal{X}) \}$$

- (3) $\lambda I T$ is injective, and $R(\lambda I T) \neq \mathcal{X}$, $\overline{R(\lambda I T)} = \mathcal{X}$ The set of all these λ 's, denoted by $\sigma_c(T)$, is called the **continuous spectrum** of T.
- (4) $\lambda I T$ is injective, and $R(\lambda I T) \neq \mathcal{X}$, $\overline{R(\lambda I T)} \neq \mathcal{X}$ The set of all these λ 's, denoted by $\sigma_r(T)$, is called the **residual spectrum** of T.

The **spectrum** of T, denoted by $\sigma(T)$, is defined by

$$\sigma(T) = \mathbb{C} \setminus \rho(T)$$

Also, it's clear that

$$\sigma(T) = \sigma_n(T) \cup \sigma_c(T) \cup \sigma_r(T)$$

Note.

For finite-dimensional spaces, $\forall \lambda \in \mathbb{C}$, λ is either eigenvalue or regular value (i.e. $(\lambda I - A)^{-1} \in \mathcal{L}(\mathcal{X})$)

Example 6.1

Let $\mathcal{X} = C[0,1]$, $A: u(t) \mapsto tu(t)$, then A is a bounded linear operator and $\sigma(A) = \sigma_r(A) = [0,1]$

 $\forall \lambda \notin [0,1]$, then $(\lambda I - A)^{-1} = (\lambda - t)^{-1}$ is linear and bounded since

$$\|\frac{1}{\lambda - t}x(t)\| \le \sup_{t \in [0,1]} \frac{1}{|\lambda - t|} \|x\|$$

So $\sigma(A) \subset [0,1]$.

 $\forall \lambda \in [0,1]$, the unique solution of equation

$$(\lambda - t)u(t) = 0$$

is $u(t) \equiv 0$, so $\lambda I - A$ is injective.

And for each $v \in R(\lambda I - A)$, then $v(\lambda) = 0$, hence $1 \notin \overline{R(\lambda I - A)}$ Hence $[0, 1] \subset \sigma_r(A)$. Since $[0, 1] \subset \sigma_r(A) \subset \sigma(A) \subset [0, 1]$, we have

$$\sigma_r(A) = \sigma(A) = [0,1]$$

Example 6.2

Let $\mathcal{X} = L^2[0,1]$, $A: u(t) \mapsto tu(t)$, then A is a bounded linear operator and $\sigma(A) = \sigma_c(A) = [0,1]$

Similarly we have $\sigma(A) \subset [0,1]$.

 $\forall \lambda \in [0,1], \lambda I - A \text{ is injective.}$

Note that

$$\frac{1}{\lambda - t} \notin \mathcal{X}$$

Thus $1 \notin R(\lambda I - A)$, so $R(\lambda I - A) \neq \mathcal{X}$.

Fix $\lambda \in [0,1]$, $\forall f \in \mathcal{X}$ and $\forall \epsilon > 0$, we can define g by

$$g(x) = \begin{cases} 0, & x \in B(\lambda, \epsilon) \\ f(x), & \text{otherwise} \end{cases}$$

Since

$$||f - g||_{L^2}^2 = \int_{B(\lambda, \epsilon) \cap [0, 1]} |f|^2 d\mu \to 0 \text{ as } \epsilon \to 0$$

So $f \in \overline{R(\lambda I - A)}$, i.e. $\overline{R(\lambda I - A)} = \mathcal{X}$, hence $[0, 1] \subset \sigma_c(A)$ and therefore

$$\sigma_c(A) = \sigma(A) = [0, 1]$$

Definition 6.2 (resolvent)

Given closed linear operator A, consider operator-value function

$$R_{\lambda}(A): \rho(A) \to \mathcal{L}(\mathcal{X}), \lambda \mapsto (\lambda I - A)^{-1}, \quad \forall \lambda \in \rho(A)$$

 $R_{\lambda}(A)$ is called the **resolvent** of A.

Theorem 6.1

Let $T \in \mathcal{L}(\mathcal{X})$, ||T|| < 1, then $(I - T)^{-1} \in \mathcal{L}(\mathcal{X})$, and

$$||(I-T)^{-1}|| \le \frac{1}{1-||T||}$$

Proof(Version 1).

Suppose (I-T)(x) = 0, then x = Ix = Tx. ||T|| < 1 implies x = 0, so I-T is injective and its inverse exists. Obviously $(I-T)^{-1}$ is linear.

Now given any $y \in \mathcal{X}$, consider $S_y : \mathcal{X} \to \mathcal{X}, x \mapsto y + Tx$, then for any $x_1, x_2 \in \mathcal{X}$,

$$||S_{y}x_{1} - S_{y}x_{2}|| = ||Tx_{1} - Tx_{2}|| \le ||T|| ||x_{1} - x_{2}|| < ||x_{1} - x_{2}||$$

So S_y is a contraction mapping and thus the fixed point x exists, thus we have $x = S_y x = y + Tx$, it follows

$$||x|| = ||y + Tx|| \le ||y|| + ||T|| ||x||$$

$$||x|| \le \frac{||y||}{1 - ||T||}$$

Also,

$$x = (I - T)^{-1}y, \quad \|(I - T)^{-1}y\| = \|x\| \le \frac{\|y\|}{1 - \|T\|}$$

i.e.

$$||(I-T)^{-1}|| \le \frac{1}{1-||T||}$$

$Proof(Version\ 2).$

Since

$$\sum_{k=0}^{n} T^{k}(I-T) = I - T^{n+1}$$

And

$$||T^n - 0|| = ||T^n|| \le ||T||^n \to 0$$

We have

$$\sum_{k=0}^{\infty} T^k(I-T) = I$$

which implies

$$(I-T)^{-1} = \sum_{k=0}^{\infty} T^k$$

So

$$\|(I-T)^{-1}\| = \|\sum_{k=0}^{\infty} T^k\| \le \sum_{k=0}^{\infty} \|T\|^k = \frac{1}{1 - \|T\|}$$

And it's easy to verify $\sum_{k=0}^{\infty} T^k$ is linear, hence $(I-T)^{-1} \in \mathcal{L}(\mathcal{X})$. \square

Remark.

If ||T|| < 1, then

$$(I-T)^{-1} = \sum_{k=0}^{\infty} T^k$$

Corollary 6.1

Let A be a closed linear operator, then $\rho(A)$ is open.

Proof.

Suppose $\lambda_0 \in \rho(A)$, then

$$\lambda I - A = (\lambda - \lambda_0)I + (\lambda_0 I - A)$$

= $(\lambda_0 I - A)(I + (\lambda - \lambda_0)(\lambda_0 I - A)^{-1})$

when $|\lambda - \lambda_0| < \|(\lambda_0 I - A)^{-1}\|^{-1}$, define B by

$$B \triangleq [I + (\lambda - \lambda_0)(\lambda_0 I - A)^{-1}]^{-1}$$

Then

$$\|(\lambda - \lambda_0)(\lambda_0 I - A)^{-1}\| \le |\lambda - \lambda_0| \|(\lambda_0 I - A)^{-1}\| < 1$$

Hence

$$||B|| \le \frac{1}{1 - ||(\lambda - \lambda_0)(\lambda_0 I - A)^{-1}||} < \infty$$

i.e. $B \in \mathcal{L}(\mathcal{X})$.

And thus

$$(\lambda I - A)^{-1} = [(\lambda_0 I - A)B^{-1}]^{-1}$$
$$= B(\lambda_0 I - A)^{-1}$$
$$= BR_{\lambda_0}(A) \in \mathcal{L}(\mathcal{X})$$

That is, for each $\lambda_0 \in \rho(A)$, we can find a ball

$$B(\lambda_0, \epsilon) \subset \rho(A)$$
, where $\epsilon = \|(\lambda_0 I - A)^{-1}\|^{-1}$

Therefore $\rho(A)$ is open. \square

Theorem 6.2 (first resolvent identity)

Let $\lambda, \mu \in \rho(A)$, then

$$R_{\lambda}(A) - R_{\mu}(A) = (\mu - \lambda)R_{\lambda}(A)R_{\mu}(A)$$

Proof.

$$(\lambda I - A)^{-1} = (\lambda I - A)^{-1} (\mu I - A) (\mu I - A)^{-1}$$

= $(\lambda I - A)^{-1} ((\mu - \lambda)I + \lambda I - A) (\mu I - A)^{-1}$
= $(\mu - \lambda)(\lambda I - A)^{-1} (\mu I - A)^{-1} + (\mu I - A)^{-1}$

i.e.

$$R_{\lambda}(A) = (\mu - \lambda)R_{\lambda}(A)R_{\mu}(A) + R_{\mu}(A) \quad \Box$$

Remark.

Given any $\lambda \in \rho(A)$, $R_{\lambda}(A) = (\lambda I - A)^{-1}$ exists, and $R_{\lambda}(A) \neq 0$ since 0 is not invertable. Hence for any $\lambda, \mu \in \rho(A)$, by first resolvent identity, $\lambda = \mu$ if and only if $R_{\lambda}(A) = R_{\mu}(A)$.

Theorem 6.3

 $R_{\lambda}(A)$ is an operator-value holomorphic function on $\rho(A)$.

Proof.

First we show $R_{\lambda}(A)$ is continuous.

Let $\lambda_0 \in \rho(A)$, suppose

$$|\lambda - \lambda_0| < \frac{1}{2\|(\lambda_0 I - A)^{-1}\|}$$

It follows

$$\|(\lambda - \lambda_0)(\lambda_0 I - A)^{-1}\| \le |\lambda - \lambda_0| \|(\lambda_0 I - A)^{-1}\| < \frac{1}{2}$$

Then define B by

$$B \triangleq [I + (\lambda - \lambda_0)(\lambda_0 I - A)^{-1}]^{-1}$$

We have

$$||B|| \le \frac{1}{1 - ||(\lambda - \lambda_0)(\lambda_0 I - A)^{-1}||} < 2$$

and

$$||R_{\lambda}(A)|| = ||BR_{\lambda_0}(A)||$$

$$\leq ||B|| ||R_{\lambda_0}(A)||$$

$$< 2||R_{\lambda_0}(A)||$$

Then by first resolvent identity,

$$||R_{\lambda}(A) - R_{\lambda_0}(A)|| \le |\lambda - \lambda_0| ||R_{\lambda}(A)|| ||R_{\lambda_0}(A)||$$

$$< 2|\lambda - \lambda_0| ||R_{\lambda_0}(A)||^2 \to 0$$

as $\lambda \to \lambda_0$.

Then we show that $R_{\lambda}(A)$ is differentiable, still, by first resolvent identity,

$$\lim_{\lambda \to \lambda_0} \frac{R_{\lambda}(A) - R_{\lambda_0}(A)}{\lambda - \lambda_0} = -\lim_{\lambda \to \lambda_0} R_{\lambda}(A) R_{\lambda_0}(A) = -[R_{\lambda_0}(A)]^2$$

(The last equality holds since $R_{\lambda}(A)$ is continuous) \square

Theorem 6.4

Let A be a bounded linear operator, then $\sigma(A) \neq \emptyset$.

Proof.

Assume that $\rho(A) = \mathbb{C}$, then $R_{\lambda}(A)$ is holomorphic on \mathbb{C} .

When $|\lambda| > 2||A||$, we have

$$R_{\lambda}(A) = \frac{1}{\lambda} (I - \frac{A}{\lambda})^{-1}$$
$$\|R_{\lambda}(A)\| \le \frac{1}{|\lambda|} \cdot \frac{1}{1 - \|\frac{A}{\lambda}\|} = \frac{1}{|\lambda| - \|A\|} \le \frac{1}{\|A\|} < \infty$$

So $R_{\lambda}(A)$ is bounded on \mathbb{C} , say $||R_{\lambda}(A)|| \leq M$.

For each $f \in (\mathcal{L}(\mathcal{X}))^*$, consider function

$$u_f(\lambda) \triangleq f(R_{\lambda}(A))$$

Note that u_f is holomorphic on \mathbb{C} since f as a continuous linear functional is holomorphic, and

$$|u_f(\lambda)| = |f(R_{\lambda}(A))| \le ||f|| ||R_{\lambda}(A)|| \le ||f|| M < \infty$$

implies u_f is a bounded entire function, by Liouville

$$u_f(\lambda) \equiv C_f$$

where C_f is a constant which doesn't depend on λ .

Since f is arbitrary, by Hahn-Banach, $R_{\lambda}(A)$ is also a constant which doesn't depend on λ , which is contradict to the first resolvent identity. \square

Remark.

We know that for finite-dimensional Banach spaces, each bounded linear operator can be viewed as matrix whose eigenvalue always exists (and thus it has non-empty spectrum). Theorem 6.4 implies any bounded linear operator has non-empty spectrum even for infinite-dimensional spaces.

Definition 6.3 (spectral radius)

Let $A \in \mathcal{L}(\mathcal{X})$, the **spectral radius** of A is defined by

$$r_{\sigma}(A) \triangleq \sup\{|\lambda| | \lambda \in \sigma(A)\}$$

Note.

If $|\lambda| > ||A||$, then

$$(\lambda I - A)^{-1} = \sum_{k=0}^{\infty} \frac{A^k}{\lambda^{k+1}} \in \mathcal{L}(\mathcal{X})$$

So $\lambda \notin \sigma(A)$, this implies

$$r_{\sigma}(A) \le ||A||$$

Theorem 6.5 (Gelfand)

Let \mathcal{X} be a Banach space, $A \in \mathcal{L}(\mathcal{X})$, then

$$r_{\sigma}(A) = \|A^n\|^{\frac{1}{n}}$$