Predict the **Best Team** for Fantasy remier eague 2018-2019

WQD7011 Numerical Optimization

- 1. Aswadi Abdul Rahman (WQD180082)
- 2. Lee Kwan Li (WQD180019)
- 3. Chai Kun Ting (WQD180040)
- 4. Zulkanain Hasan (WQD180031)

Contents

- 1. Introduction
- 2. Problem Statement
- 3. Dataset
- 4. Objective Function
- 5. Constraints
- 6. Results
- 7. Discussion
- 8. Conclusion

Introduction

- Team managers spend lots of time in constructing what he perceive to be the winning formula.
- Everybody has their way, their approach towards the game and it requires strategic and analytical thinking, along with a huge chunk of luck.

Problem Statement

- Ideally, as a team manager, he/she can select whichever player should be playing for any games.
- In reality, a team manager has a problem to select only 15 players for every game due to normally total team consists of 20 to 30 players.
- As a consequence, team board management normally set the budget for the team manager to set their best team in order to win the games.
- Thus, as a proposal Linear Optimization to be used to help the team manager to select their best teams will conditions to fulfill all the requirements/ constraints.

Objective Functions

Maximize the point =>
$$56*x_0 + 72*x_1 + 169*x_2 + 102*x_3 + ...$$
 Points*x_n

To maximize the point earn by using Constraint Optimization (Linear Optimization) algorithm with given a budget (total cost) 1200 and 15 players (2GKP, 5DEF, 5MID, 3FWD)

Constraints

- 1. Cash constrain: 45*x 0 + 45*x 1 + 110*x 2 + 50*x 3 + ... Cost*x n <= 1200
- 2. GKP Player Position: x 1 + x 30 + x 38 + x 48 + ... x n (GKP position ONLY) = 2
- 3. DEF Player Position: $x \cdot 0 + x \cdot 3 + x \cdot 5 + x \cdot 6 + ... \times n$ (DEF position ONLY) = 5
- 4. MID Player Position: x 4 + x 8 + x 10 + x 11 + ... x n (MID position ONLY) = 5
- 5. FWD Player Position: $x + 2 + x + 12 + x + 15 + x + 18 + \dots \times x + x + 18 + \dots \times x$
- 6. Total assist constraint: 3*x 0 + 6*x 2 + 3*x 3 + ...Cost*x n >= 90
- 7. Total yellow card constraint: 6*x 0 + 2*x 1 + 2*x 2 + 5*x 3 + ... Cost*x n <= 20
- 8. Total goals scored constraint: $x \cdot 0 + 21*x \cdot 2 + 2*x \cdot 3 + \dots$ Goals_scored*x n >= 150
- 9. Total minutes played constraint: 2067*x 0 + 1710*x 1 + 1960*x 2 + 3352*x 3 + ... Cost*x n >= 44100

Results

Total Cost : 1190

Total Points : 2577

Total Goals : 152

Total Assists : 92

Total Yellow Cards: 20

Total Minutes : 44186

Discussion

Results:

Achieved objective function.

Constraint	Plan	Actual	Status
Cost	≤ 1200	1190	OK
GKP	2	2	OK
DEF	5	5	OK
MID	5	5	OK
FWD	3	3	OK
Goals	≥ 150	152	OK
Assists	≥ 90	92	OK
Yellow Cards	≤ 20	20	OK
Minutes	≥ 44100	44186	OK
Points		2577	GOOD

Conclusion

Linear Optimization can be used as a tool to solve for any constraint problem.

Question: Linear Optimization can be used in Football or other sports for reality?

Answer: Yes, but in reality another constraint should be consider i.e. Players Fitness. Thus, this additional data must be recorded and monitored by Team Management.

