Simply Ramified Curves on Ruled Surfaces

Ziquan Yang

September 1, 2015

For $X = \mathbb{P}^1 \times \mathbb{P}^1$ over \mathbb{F}_q we proved the following:

Theorem 0.1. Let $X = \mathbb{P}^1 \times \mathbb{P}^1$, $A = \mathcal{O}_X(1,0)$, $E = \mathcal{O}_X(0,1)$, n = 3 and $R_{n,d} = H^0(X, \mathcal{O}_X(nA + dE))$. Suppose $p = \operatorname{char}\mathbb{F}_q \neq 2$. Let $\pi : X \to \mathbb{P}^1$ be the projection to the second component. Then

$$\lim_{d\to\infty} \frac{|f\in R_{n,d}: H_f \text{ is simply ramified w.r.t. } \pi|}{|R_{n,d}|} = \zeta_{\mathbb{P}_{\mathbb{F}_q}}(2)^{-2}$$

We would like to extend the result to ruled surfaces. The first thing that we need to do is to find an appropriate set $R_{n,d}$ of sections, so that we may end up with something like:

Theorem 0.2. Let $\pi: X \to C$ be a ruled surface.

$$\lim_{d \to \infty} \frac{|f \in R_{n,d} : H_f \text{ is simply ramified } w.r.t\pi|}{|R_{n,d}|} = \zeta_{\mathbb{P}_{\mathbb{F}_q}}(2)^{-2}$$