James Tanton's Exploding Dots

Vincent Macri

© Vincent Macri, 2017 https://creativecommons.org/licenses/by-nc-sa/4.0/

Table of Contents

- 1 Mechania
- 2 Insighto
- 3 Arithmos
- 4 Antidotia
- 5 Obelus
- 6 Eks
- 7 Infinitia

$$1 \xrightarrow{2 \leftarrow 1}$$

$$2 \xrightarrow{2 \leftarrow 1}$$

$$3 \xrightarrow{2 \leftarrow 1}$$

$$4 \xrightarrow{2 \leftarrow 1}$$

$$5 \xrightarrow{2 \leftarrow 1}$$

$$13 \frac{2 \leftarrow 1}{}$$

$$1 \xrightarrow{2 \leftarrow 1} 1$$

$$2 \xrightarrow{2 \leftarrow 1}$$

$$3 \xrightarrow{2 \leftarrow 1}$$

$$4 \xrightarrow{2 \leftarrow 1}$$

$$5 \xrightarrow{2 \leftarrow 1}$$

$$13 \stackrel{2 \leftarrow 1}{=}$$

$$1 \xrightarrow{2 \leftarrow 1} 1$$

$$2 \xrightarrow{2 \leftarrow 1} 10$$

$$3 \xrightarrow{2 \leftarrow 1}$$

$$4 \xrightarrow{2 \leftarrow 1}$$

$$5 \xrightarrow{2 \leftarrow 1}$$

$$13 \stackrel{2 \leftarrow 1}{\longrightarrow}$$

$$1 \xrightarrow{2 \leftarrow 1} 1$$

$$2 \xrightarrow{2 \leftarrow 1} 10$$

$$3 \xrightarrow{2 \leftarrow 1} 11$$

$$4 \xrightarrow{2 \leftarrow 1}$$

$$5 \xrightarrow{2 \leftarrow 1}$$

$$13 \stackrel{2 \leftarrow 1}{=}$$

$$1 \xrightarrow{2 \leftarrow 1} 1$$

$$2 \xrightarrow{2 \leftarrow 1} 10$$

$$3 \xrightarrow{2 \leftarrow 1} 11$$

$$4 \xrightarrow{2 \leftarrow 1} 100$$

$$5 \xrightarrow{2 \leftarrow 1}$$

$$13 \xrightarrow{2 \leftarrow 1}$$

$$1 \xrightarrow{2 \leftarrow 1} 1$$

$$2 \xrightarrow{2 \leftarrow 1} 10$$

$$4 \xrightarrow{2 \leftarrow 1} 100$$

$$13 \xrightarrow{2 \leftarrow 1}$$

$$1 \xrightarrow{2 \leftarrow 1} 1$$

$$2 \xrightarrow{2 \leftarrow 1} 10$$

$$4 \xrightarrow{2 \leftarrow 1} 100$$

$$5 \xrightarrow{2 \leftarrow 1} 101$$

$$13 \xrightarrow{2 \leftarrow 1} 1101$$

What if...

What if we had a $3 \leftarrow 1$ machine?

What if...

What if we had a $10 \leftarrow 1$ machine?

Table of Contents

- 1 Mechania
- 2 Insighto
- 3 Arithmos
- 4 Antidotia
- 5 Obelus
- 6 Eks
- 7 Infinitia

What are these machines? Insighto

These machines are another way of handling arithmetic, but they work in any base.

A $b \leftarrow 1$ machine handles numbers in base b.

We'll use a $10 \leftarrow 1$ machine for now.

Table of Contents

- 1 Mechania
- 2 Insighto
- 3 Arithmos
- 4 Antidotia
- 5 Obelus
- 6 Eks
- 7 Infinitia

What next? Arithmos

We can count with these machines, but what else can we do?

What next? Arithmos

We can count with these machines, but what else can we do? What's the first thing you learn to do with numbers after counting?

Addition!

What is 234 + 125?

What is 234 + 125?

What is
$$234 + 125$$
?

What is 234 + 187?

What is
$$234 + 125$$
?

What is 234 + 187?

What is
$$234 + 125$$
?

What is 234 + 187?

Three hundred eleventy eleven!

But now society thinks I'm weird. Let's fix that.

Three hundred eleventy eleven in a $10 \leftarrow 1$ machine.

421

What do we learn after addition?

Arithmos

What do we learn after addition?

Multiplication!

What is 2876×3 ?

Let's fix this one together for society.

6 24 21 18

Table of Contents

- 1 Mechania
- 2 Insighto
- 3 Arithmos
- 4 Antidotia
- 5 Obelus
- 6 Eks
- 7 Infinitia

Subtraction Antidotia

Theorem 1

Subtraction does not exist.

Theorem 2

What we call subtraction is just the addition of negative numbers. Or, subtraction is the addition of the opposite.

The antidot Antidotia

The opposite of a dot is an antidot. I'll call these tods. This is one tod in one of our machines:

How do tods behave?

How do tods behave?

How do tods behave?

Examples Antidotia

What is 564 - 123?

Examples Antidotia

What is 564 - 123?

Examples Antidotia

What is
$$564 - 123$$
?

What is 441 - 254?

Examples Antidotia

What is
$$564 - 123$$
?

What is 441 - 254?

Examples Antidotia

What is 564 - 123?

What is 441 - 254?

$$\begin{array}{rrrrr} & 4 & 4 & 1 \\ - & 2 & 5 & 4 \\ \hline & 2 & -1 & -3 \end{array}$$

Let's fix this together on the board for society's sake. We'll use the exploding dots method.

Another method

Another method Antidotia

There is another way to fix this which is helpful for doing math mentally.

Another method Antidotia

There is another way to fix this which is helpful for doing math mentally.

Let's look the place values:

$$200 + -10 + -3$$

Another method Antidotia

There is another way to fix this which is helpful for doing math mentally.

Let's look the place values:

$$200 + -10 + -3$$

This is very easy to do mentally.

$$200 + -10 = 190 + -3$$
$$190 + -3 = 187$$

Table of Contents

- 1 Mechania
- 2 Insighto
- 3 Arithmos
- 4 Antidotia
- 5 Obelus
- 6 Eks
- 7 Infinitia

Division Obelus

Fun fact before we get started on division, did you know that the \div sign is called an obelus?

Long division method Obelus

What is $276 \div 12$? Don't use a calculator!

Long division method Obelus

What is $276 \div 12$? Don't use a calculator!

$$\begin{array}{r}
 23 \\
 \hline
 12)276 \\
 \underline{240} \\
 \hline
 36 \\
 \underline{36} \\
 \end{array}$$

This is stupid and convoluted. Let's use exploding dots instead.

Exploding dots method Obelus

 $276 \div 12$

276:

12:

Exploding dots solution Obelus

Exploding dots solution Obelus

Exploding dots solution Obelus

$$273 \div 12 = 23$$

What is $2783 \div 23$?

What is $2783 \div 23? 121$

What is $2783 \div 23$? 121 What is $2785 \div 23$?

What is $2783 \div 23$? 121What is $2785 \div 23$? 121 R2 or $121 + \frac{2}{23}$

Table of Contents

- 1 Mechania
- 2 Insighto
- 3 Arithmos
- 4 Antidotia
- 5 Obelus
- 6 Eks
- 7 Infinitia

What if...

What if we had a $1 \leftarrow x$ machine? What would it look like?

What if...

What if we had a $1 \leftarrow x$ machine? What would it look like?

What if...

What if we had a $1 \leftarrow x$ machine? What would it look like?

With this knowledge, we can now manipulate polynomials just like we do regular numbers.

What is
$$\frac{2x^2 + 7x + 6}{x + 2}$$
?

What is
$$\frac{2x^2 + 7x + 6}{x + 2}$$
? $2x + 3$

What is
$$\frac{2x^2+7x+6}{x+2}$$
? $2x+3$ What is $\frac{x^4+2x^3+4x^2+6x+3}{x^2+3}$?

What is
$$\frac{2x^2+7x+6}{x+2}$$
? $2x+3$ What is $\frac{x^4+2x^3+4x^2+6x+3}{x^2+3}$? x^2+2x+1

What is
$$\frac{2x^2+7x+6}{x+2}$$
? $2x+3$ What is $\frac{x^4+2x^3+4x^2+6x+3}{x^2+3}$? x^2+2x+1 What is $\frac{x^3-3x+2}{x+2}$?

What is
$$\frac{2x^2+7x+6}{x+2}$$
? $2x+3$ What is $\frac{x^4+2x^3+4x^2+6x+3}{x^2+3}$? x^2+2x+1 What is $\frac{x^3-3x+2}{x+2}$? x^2-2x+1

Table of Contents

- 1 Mechania
- 2 Insighto
- 3 Arithmos
- 4 Antidotia
- 5 Obelus
- 6 Eks
- 7 Infinitia

$$\frac{1}{1-x}$$

Geometric series formula Infinitia

Using dots and boxes, we get what is knows at the geometric series formula:

Geometric series formula Infinitia

Using dots and boxes, we get what is knows at the geometric series formula:

$$1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 \dots$$

Geometric series formula

Using dots and boxes, we get what is knows at the geometric series formula:

$$1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 \dots$$

In calculus, we would call this the Taylor series of $\frac{1}{1-x}$.

Using the dots and boxes method, find the Taylor series of:

$$\frac{1}{1-x-x^2}$$

Congratulations!

We just went from kindergarten arithmetic to advanced calculus in 40 minutes!

