Sistemas Distribuidos Resumen

Dorian Wozniak

Índice

1	COORDINACIÓN BÁSICA			4
	1.1	Modelo	os temporales	2
		1.1.1	Modelo asíncrono	2
		1.1.2	Modelo síncrono	4
		1.1.3	Modelo parcialmente síncrono	2
	1.2	Relojes	3	2
		1.2.1	Relojes físicos	2
		1.2.2	Relojes lógicos	2
	1.3	Estado	s globales	٠
		1.3.1	Historia local	٠
		1.3.2	Estado del proceso	٠
		1.3.3	Historia global	٠
		1.3.4	Corte	٠
		1.3.5	Algoritmo de Chandy-Lamport (instantáneas)	٠
2	COORDINACIÓN DE RECURSOS COMPARTIDOS			
	2.1		emos distribuidos centralizados	4
	2.2	_	mos distribuidos descentralizados	
		_	Algoritmo de Lamport	
		2.2.2	Algoritmo de Ricart-Agrawala	
		2.2.3	Algoritmo de Suzuki-Kasami (paso de testigo)	
			Algoritmo de Raymond	4
			·	
3	TOLERANCIA A FALLOS			
	3.1		os de fallo	
	3.2	Detecc	ión de fallos	
	2.2	Coatión	n do fallos	ľ

Capítulo 1

COORDINACIÓN BÁSICA

1.1 Modelos temporales

- Modelo asíncrono 1.1.1
- 1.1.2 Modelo síncrono
- 1.1.3 Modelo parcialmente síncrono

1.2 Relojes

1.2.1 Relojes físicos

Relojes lógicos 1.2.2

Los relojes lógicos se basan en relaciones de causalidad entre eventos. Si un proceso P_i secuencial observa un evento e antes que e', se conoce como una **relación de orden local** $(e \to_i e')$. Importan especialmente las relaciones entre envíos y recepciones entre procesos.

1.2.2.1 Relojes escalares (de Lamport)

En los relojes de Lamport se establecen relaciones de orden global (happened before) entre eventos. Si a ocurre antes que b, $(a \rightarrow b)$ y a afecta casualmente a b.

- Los eventos se ordenan causalmente
- La relación es transitiva
- La relación es de orden parcial (no reflexiva), pero puede ser de orden total si se incluye los identificadores
- Si $a \not\to b$ y $b \not\to a$, son eventos **concurrentes** (a||b)

Los relojes C_i deben satisfacer las siguientes condiciones:

- Si $a \to b$ en el proceso P_i , $C_i(a) < C_i(b)$
- Si a es un envío desde P_i , y b es una recepción en P_i , $C_i(a) < C_i(b)$

Se siguen las siguientes reglas de implementación:

- Cada evento local de P_i se estampilla con $C_i = C_i + 1$
- Al realizar un envío de un mensaje m de P_i a P_j

 - P_i envía C_i junto a m, siendo $C_i = C_i + 1$ P_j guarda el mensaje, siendo $C_j = max(C_i, C_j) + 1$

En eventos no locales, C(a) < C(b) no implica automaticamente que a ocurra antes que b puesto que no hay traza de donde procede el avance del reloj.

1.2.2.2 Relojes vectoriales

En un sistema de N procesos, cada uno contiene un vector $V_i[N]$, donde $V_i[j]$ contiene el mejor valor conocido por el proceso P_i de un proceso P_j , y $V_i[i]$ contiene su reloj.

Se siguen las siguientes reglas de implementación:

- Cada evento local de P_i se estampilla con $V_i[i] = V_i[i] + 1$
- Al realizar un envío de un mensaje m de P_i a P_j
 - P_i envía V_i junto a m, siendo $V_i[i] = V_i[i] + 1$
 - $-\ P_j$ guarda el mensaje, siendo V_j :

 - $* $V_j[j] = V_j[j] + 1$ $* V_j[k] = max(V_i[k], V_j[k]) \quad \forall k \neq j$

Los relojes cumplen las siguientes propiedades:

- Un proceso tiene siempre la versión mas actualizada de su propio reloj
- $a \to b$ solo si V[a] < V[b]
- Dados dos relojes vectoriales:
 - $-V = V' \text{ si } V[i] = V'[i] \quad \forall i \in 1..N$ $-V \ge V' \text{ si } V[i] \ge V'[i] \quad \forall i \in 1..N$ $-V > V' \text{ si } V \ge V' \text{ y } V \ne V'$

 - $-V||V' \text{ si } V \not\geq V' \text{ y } V' \not\geq V$

1.3 Estados globales

1.3.1 Historia local

Cada proceso P_i contiene una historia (secuencia de eventos): $h_i = [e_i^0, e_i^1, e_i^2, ...]$

- La historia puede ser finita o infinita
- Un k-prefijo de h_i es la historia de h_i hasta k: h_i^k
- Cada evento puede ser local o de comunicación

1.3.2 Estado del proceso

 s_i^k es el estado de un proceso P_i antes del evento e_i^k

- s_i^k memoriza todos los eventos en $h_i^k 1$ s_i^0 es el estado inical de P_i

1.3.3 Historia global

1.3.4 Corte

1.3.5 Algoritmo de Chandy-Lamport (instantáneas)

Capítulo 2

COORDINACIÓN DE RECURSOS COMPARTIDOS

- 2.1 Algoritmos distribuidos centralizados
- 2.2 Algoritmos distribuidos descentralizados
- 2.2.1 Algoritmo de Lamport
- 2.2.2 Algoritmo de Ricart-Agrawala
- 2.2.3 Algoritmo de Suzuki-Kasami (paso de testigo)
- 2.2.4 Algoritmo de Raymond

Capítulo 3

TOLERANCIA A FALLOS

- 3.1 Modelos de fallo
- 3.2 Detección de fallos
- 3.3 Gestión de fallos