List of Courses Taken

Zane Billings

Updated Fall 2019

Mathematics

MATH 153	Calculus I	Limits, continuity, derivatives and integrals of algebraic
		and trigonometric functions with applications.
MATH 250	Logic and Proof	Introduction to the principles of logic and methods of prof necessary for successful study of mathematics.
MATH 255	Calculus II	Derivatives and integrals of transcendental functions, tech-
MM111 200	Calculus II	niques of integration, indeterminant forms, improper inte-
3.5.45777.000	G 1 1 TTT	grals, and infinite series.
MATH 256	Calculus III	Plane curves, polar coordinates, vectors and solid analytical geometry, vector-valued functions, partial differentiation, and multiple integrals.
MATH 270	Statistical Methods I	Descriptive statistics, probability, random variables, sample
MAIII 210	Statistical Methods 1	distributions, confidence intervals, one-sample and two-
		sample hypothesis testing, chi-square inference for two-way
		tables, simple linear regression, multiple linear regression,
		and ANOVA.
MATH 310	Discrete Structures	Graph theory: planarity, Eulerian and Hamiltonian cycles,
		colorings and trees. Enumeration: permutations, combi-
		nations, binomial distribution, recurrence relations, and
		inclusion-exclusion. Basic algorithms.
MATH 320	Ordinary Differential Equations	Differential equations of first order, first degree with ap-
		plications; linear equations of higher order and numerical
		methods; special equations of second order, systems of
MATERIA 840		linear equations.
MATH 340	Scientific Computing	Survey of mathematical software and programming lan-
		guages (LATEX, spreadsheets, Mathematica, and MATLAB);
		applications in modeling and simulation; development of algorithms requiring advanced mathematical background.
MATH 370	Probability and Statistics I	Classical probability models, distributions of discrete and
MIIII 370	1 Tobability and Statistics 1	continuous random variables, joint probability distributions,
		and mathematical expectation.
MATH 375	Statistical Methods II	Least squares estimates of parameters in regression models,
		simple and multiple linear regression, hypothesis testing and
		confidence in linear regression models, testing of models,
		data analysis and appropriateness of models, time series
		models, moving average, ARIMA, forecasting with time
		series models, forecast errors. Includes analysis of real data.
MATH 362	Linear Algebra	Systems of equations, matrices, vector spaces, and linear
		transformations.

MATH 430	Mathematical Modeling	Design of models, analysis of stability and sensitivity, optimization, programming models (with Mathematica), forecasting, differential equation models, bifurcations, and controls.
MATH 441	Numerical Analysis	Numerical techniques in root-finding, interpolation, differ-
		entiation and integration, ordinary differential equations,
		linear systems, and error analysis of methods.
MATH 450	Linear Optimization	Formulation and solution of linear programming models;
		development of simplex method; duality theory; sensitivity
		analysis; software (spreadsheets and AMPL); and applica-
		tions.
MATH 479	Capstone Seminar	A course requiring written papers and oral presentations
		by students on historical and contemporary ideas from the
		current mathematical literature.

Biology

BIOL 140	Principles of Biology I	Intro to biology for majors. Basic cell structure and func-
		tion, bioenergetics, introduction to genetics and molecular
		biology.
BIOL 141	Principles of Biology II	Second course for biology majors. Comparative introduc-
	-	tion to structure, physiology, and evolutionary trends across
		organisms.
BIOL 240	Genetics	Introduction to principles of genetics, including Mendelian
		and molecular genetics. Mendelism, linkage, recombina-
		tion, DNA structure and function, genomics, evolution of
		development, and molecular evolution.
BIOL 304	General Ecology	Ecosystem and population processes, pathways of energy
		and materials, interactions between organisms and pop-
		ulations and the human role in the biosphere. Includes
		discussion of some mathematical models.
BIOL 306	Evolutionary Biology	Population genetic processes, speciation, selection mod-
		els, phylogency, reconstruction, and molecular evolution,
		including historical and analytical approaches.
BIOL 333	Molecular Biology	Genome structure; protein shape, structure, and function;
		RNA and protein synthesis; control of gene expression and
		post-transcriptional controls; recombinant DNA technology;
		membrane sstructure; protein sorting; cell communication,
		the cell cycle, and cancer.
BIOL 361	Principles of Biochemistry	Structure and properties of biomolecules; central principles
		of metabolism.
BIOL 412	Cell and Molecular Immunology	Detailed examination of the immune response, including
		antigen recognition, effector mechanisms, immunogenetics,
		immunoregulation, immunity to infection, immunopathol-
		ogy, tumor and transplantation immunology, and autoim-
		munity.
BIOL 419	Cell Biology	Structure and function of cells, and techniques for studying
		cells.
BIOL 420	Darwin's Origin of Species	A detailed reading and analysis of Darwin's landmark work,
		On the Origin of Species. Examining its historical and

cance.

philosophical context, and its social and scientific signifi-

BIOL 493	Advanced Techniques in Microscopy	In-depth examination of imaging techniques used in biomed-
		ical fields, emphasizing fluorescence microscopy. Proper-
		ties of light, refractive index, fluorescent quantum yield,
		quenching, polarization, anisotropy, FRET, FRAP, super-
		resolution, and single molecule techniques.
BIOL 493	Protein Systems Bioinformatics	Relationship between protein structure and function: lev-
		I

els of structure, structure to function; optimization and regulation of protein functions; scientific literacy.

Other

Other		
CIS 293	Visual Data Storytelling	Concepts of data visualization, effective visualizations, vi-
CS 150	Programming and Problem Solving	sualizations, dashboards, and stories with Tableau. Problem Solving and algorithm development using Python; classes, selection, iteration, arrays, and generic classes.
PAR 320	Philosophy of Lewis and Tolkien	Exploration of the philosophies of C.S. Lewis and J.R.R. Tolkien through in-depth examination of several of their works. Works covered: Mere Christianity, Perelandra, and
USI 202	Peer Tutoring	the Screwtape Letters by Lewis, The Lord of the Rings and short selections by Tolkien. For honors credit: Lewis' The Promise of Pain, Tolkien's The Silmarillion. Theory, practice, and procedures for peer tutors. Tutoring guidelines and responsibilities, communication skills, learning theory, critical thinking, study skills, and professional ethics.