Vehicle Dynamics and Simulation

Dr B Mason

Mean value model creation

System representation (naturally aspirated/gasoline)

Note: Boosted engines will also have wastegate position / duty cycle

Mean value engine model

- Origin of air flow is induction into cylinder.
- Airflow is throttled.
- Volumetric flow is given;

$$\dot{V} = V_{disp} \frac{N_{eng}}{120}$$

Mass flow (speed density equation);

$$\dot{m} = \frac{P_{man}}{RT_{man}} \frac{V_{disp}}{120} N_{eng}$$

Easy so far? Things get worse from here!

Mean value engine model – volumetric efficiency

• Volumetric efficiency, η

$$\dot{m} = \eta \, rac{P_{man}}{RT_{man}} rac{V_{disp}}{120} \, N_{eng}$$
 0.5< η < 1.2 Max is \approx 1 for Naturally aspirated

- Modifies the speed density equation
- Depends on;
 - Intake and exhaust geometry
 - Intake and exhaust manifold pressure
 - Engine speed
 - Valve timing
 - Acoustic and inertial air effects
 - etc
- Perhaps the most important parameter in all of the mean value models!

Throttle

- Can be modelled as Laval nozzle of variable throat area (projected cross sectional area).
- For $\frac{P_{man}}{P_{atm}} > 0.528$ mass flow depends on P_{atm} and P_{man} ;

$$\dot{m} = \frac{C_d A_{th} P_{atm}}{\sqrt{R T_{atm}}} \left(\frac{P_{man}}{P_{atm}}\right)^{\frac{1}{\gamma}} \left\{ \frac{2\gamma}{\gamma - 1} \left[1 - \left(\frac{P_{man}}{P_{atm}}\right)^{\frac{\gamma - 1}{\gamma}} \right] \right\}^{\frac{1}{2}}$$

• For $\frac{P_{man}}{P_{atm}} \le 0.528$ flow depends on P_{in} alone (sonic/choked flow);

$$\dot{m} = \frac{C_d A_{th} P_{atm}}{\sqrt{RT_{atm}}} \sqrt{\gamma} \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

At max throat flow velocity;

$$\frac{P_{man}}{P_{atm}} = \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma}{\gamma - 1}}$$

Projected Open Area

Equivalent NozzleThroat Area

Throttle effective area

$$A_{th} = \frac{\pi D^2}{4} \left\{ \left(1 - \frac{\cos \psi}{\cos \psi_0} \right) + \frac{2}{\pi} \left[\frac{a}{\cos \psi} (\cos^2 \psi - a^2 \cos^2 \psi_0)^{\frac{1}{2}} - \frac{\cos \psi}{\cos \psi_0} \sin^{-1} \left(\frac{a \cos \psi_0}{\cos \psi} \right) - a(1 - a^2)^{\frac{1}{2}} + \sin^{-1} a \right] \right\}$$

Where

$$a = \frac{d}{D}$$

Throttle max occurs when

$$\psi = \cos^{-1}(a\cos\psi_0)$$

ullet So that at ψ_{max}

$$A_{th} \approx \frac{\pi D^2}{4} - dD$$

Closed

Throttle

- Model is valid for frictionless, adiabatic flow through smoothly convergent-divergent nozzle only!
- Discharge coefficient, \mathcal{C}_d is used to 'correct' for reality i.e.
- C_d is not constant it depends on;
 - Throttle position, α
 - Throttle pressure ratio, $\frac{P}{P_{amb}}$
- In reality this tends to be mapped for a specific throttle using a flow bench

Intake manifold

- Can be represented as open system of constant volume.
- System stores mass and energy, represented by state variables P and T.

Energy balance;

$$\frac{dE}{dt} = \dot{m}_{in} h_{0_{in}} - \dot{m}_{out} h_{0_{out}} + \dot{Q}$$
 (2)

Where;

$$h_0 = C_p T + \frac{u^2}{2}$$

And the energy within the volume is;

$$E = mc_v T + \frac{mu^2}{2} + mgz$$

Intake manifold

- Making some assumptions
 - GPE change is 0
 - KE change is 0
- So that;

$$E = mc_{v}T$$

$$h_{0} = c_{p}T \qquad (3)$$

• Taking the derivative of $E = mc_v T$ wrt to t;

$$\frac{dE}{dt} = c_v T \frac{dm}{dt} + c_v m \frac{dT}{dt} \tag{4}$$

And by substitution (1, 3, 4 into 2);

$$c_v T(\dot{m}_{in} - \dot{m}_{out}) + c_v m \frac{dT}{dt} = \dot{m}_{in} C_p T_{in} - \dot{m}_{out} c_p T_{out} + \dot{Q}$$
 (5)

Intake manifold

Coupling the energy and mass balances using the ideal gas law;

$$m = \frac{PV}{RT} \tag{6}$$

Taking the derivative;

$$\frac{dm}{dt} = \frac{V}{RT} \frac{dP}{dt} - \frac{PV}{RT^2} \frac{dT}{dt} \tag{7}$$

• Substituting (1, 6 and 7 into 5) and assuming $T_{out} = T$;

$$\frac{dT}{dt} = \left[c_p \dot{m}_{in} T_{in} - c_p \dot{m}_{out} T - c_v T \dot{m}_{in} + \frac{dQ}{dt}\right] \frac{RT}{c_v PV}$$
 (8)

$$\frac{dP}{dt} = \left[c_p \dot{m}_{in} T_{in} - c_p \dot{m}_{out} T + \frac{dQ}{dt} \right] \frac{R}{c_v V} \tag{9}$$

And;

$$\frac{dQ}{dt} = hA_{wall}(T_{wall} - T) \tag{7}$$

Torque model

- Torque produced is a function of;
 - Spark advance
 - Inducted air mass flow
 - AFR
- Data is usually obtained experimentally and incorporated within a regression model.
- Friction torque is deducted (imep bmep) to establish output torque.
- Fmep is calculated;

$$fmep = 0.97 + 0.15 \left(\frac{N}{1000}\right) + 0.05 \left(\frac{N}{1000}\right)^2$$

And;

$$T_f = \frac{fmepV_{sw}}{4\pi} = \frac{0.97 + 0.15\left(\frac{N}{1000}\right) + 0.05\left(\frac{N}{1000}\right)^2 V_{sw}}{4\pi}$$

Parameterisation effort

- Model has 5 unknown parameters, C_d , η_{vol} , h, V and V_{disp} .
- With $\eta_{vol} = f(P, T, N, IVO, EVC)$
- η_{vol} is obtained by experiment at some P, T, N, IVO, EVC. Recall;

$$\eta = \frac{120\dot{m}_{actual}}{\rho V_{disp} N_{eng}}$$

- C_d is also experimentally obtained (usually on flow rigs)
- Obtaining h in reality is very difficult and this is normally one of the tuned parameters.
- V and V_{disp} are obtained relatively easily but can also be used to tune the model response to match reality.

Other considerations

- Adding a turbocharger complicates matters significantly and introduces a causality loop.
 - The loop is normally broken by a delay.
- Heat transfer from the exhaust manifold has a significant effect on the turbo performance.
- Errors in the 'turbo loop' are accumulated within the loop.
- Each additional volume adds two model states (T and P) increasing significantly the computational burden.
- Volumes of very different sizes result in stiff models i.e. slow and fast dynamics.

Engine Timing Model with Closed-Loop Control

Copyright 1990-2012 The Math Works, Inc.

Throttle

Intake Manifold

Torque Generation

