應數一線性代數 2025 春, 期中考

學號:	_, 姓名:
-----	--------

本次考試共有 9 題。如有缺頁或漏題,請立刻告知監考人員。

考試須知:

- 請在第一及最後一頁填上姓名學號,忘記填寫扣十分!
- 不可翻閱課本或筆記。
- 計算題請寫出計算過程,閱卷人員會視情況給予部份分數。 沒有計算過程,就算回答正確答案也不會得到滿分。答卷請清楚乾淨,儘可能標記或是框出最終答案。

高師大校訓:**誠敬宏遠**

誠,一生動念都是誠實端正的。 **敬**,就是對知識的認真尊重。 **宏**,開拓視界,恢宏心胸。 **遠**,任重致遠,不畏艱難。

請尊重自己也尊重其他同學,考試時請勿東張西望交頭接耳。

1. (10 points) Let

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 4 & 2 & 3 \\ -4 & 0 & -1 \end{bmatrix}$$

Find (if exists) an invertible matrix C and a diagonal matrix D such that $D = C^{-1}AC$. Also, find the eigenvalues of A^{100} .

- If A diagonalizable, $C = \underline{\hspace{1cm}}$, $D = \underline{\hspace{1cm}}$, and $A^{100} = \underline{\hspace{1cm}}$.

2. (10 points) Let

$$A = \begin{bmatrix} -1 & 0 & -2 \\ 5 & 3 & 1 \\ 2 & 0 & 3 \end{bmatrix}$$

(a) Is A diagonalizable? (Yes / No) .

why? _____

(b) Is A orthogonal diagonalizable? ($\underline{\text{Yes}}$ / No) .

3. (15 points) Use Gram-Schmidt process to find an orthonormal basis for the subspace W of \mathbb{R}^4 spanned by the columns of A and then use it to find the QR-factorization of A, where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

Answer

4. (15 points) Let the sequence $a_0, a_1, ...$ given by $a_0 = 0, a_1 = 1$, and $a_k = a_{k-1} + 2a_{k-2}$ for $k \ge 2$. (1) Find the matrix A that can be used to generate this sequence. (2) Estimate(估計) a_k for large k.

 應數一線性代數
 期中考
 - Page 6 of 10
 04/10/20

 5. (10 points) Find the projection of [-1, 3, 2] on the subspace W = sp([1, 1, 0], [1, 0, 1]) in \mathbb{R}^3 .

Answer:

- 1. the projection = _______. 2. the W^{\perp} = ______.

應數一線性代數

期中考 - Page 7 of 10

04/10/2025

6. (15 points) Let \vec{v} be a vector in \mathbb{R}^3 with coordinate vector [3, 1, 6] relative to a ordered orthogonal basis ([2, 3, 6], [3, -6, 2], [6, 2, -3]) of \mathbb{R}^3 . Find $\|\vec{v}\|$.

Answer: $\|\vec{v}\| =$

7. (10 points) Let A is an $n \times n$ invertible matrix and if λ is an eigenvalue of A with \overrightarrow{v} as a corresponding eigenvector. Prove that (a) $\lambda \neq 0$ and (b) $1/\lambda$ is an eigenvalue of A^{-1} with \overrightarrow{v} as a corresponding eigenvector.

- 8. (15 points) Prove the statement if true; otherwise, modify it to make it true. (對的證明,錯的改正)*** 只圈對錯,沒有論述一律不給分 ***
 - (a) True False If λ is an eigenvalue of a matrix A, then λ is an eigenvalue of a matrix A+cI for all scalars c.

(b) True False Every nonzero vector in \mathbb{R}^n is in some orthonormal basis for \mathbb{R}^n .

(c) True False Given W is a subspace of \mathbb{R}^n . The intersection of W and W^{\perp} is empty.

9. (10 points) Prove that similar square matrices have the same eigenvalues with the same algebraic multiplicities.

學號: ________, 姓名: _______, 以下由閱卷人員填寫

Question:	1	2	3	4	5	6	7	8	9	Total
Points:	10	10	15	15	10	15	10	15	10	110
Score:										