Introduction to Machine Learning

Regularization Lasso Regression

Learning goals

- Lasso regression / L1 penalty
- Know that lasso selects features
- Support recovery

Another shrinkage method is the so-called **lasso regression** (least absolute shrinkage and selection operator), which uses an L1 penalty on θ :

$$\begin{aligned} \hat{\boldsymbol{\theta}}_{\text{lasso}} &= \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(\boldsymbol{y}^{(i)} - \boldsymbol{\theta}^{T} \mathbf{x}^{(i)} \right)^{2} + \lambda \sum_{j=1}^{p} |\theta_{j}| \\ &= \arg\min_{\boldsymbol{\theta}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\theta} \right)^{\top} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\theta} \right) + \lambda \|\boldsymbol{\theta}\|_{1} \end{aligned}$$

Optimization is much harder now. $\mathcal{R}_{\text{reg}}(\theta)$ is still convex, but in general there is no analytical solution and it is non-differentiable.

Let
$$y = 3x_1 - 2x_2 + \epsilon$$
, $\epsilon \sim N(0, 1)$. The true minimizer is $\theta^* = (3, -2)^T$. LHS = $L1$ regularization; RHS = $L2$

With increasing regularization, $\hat{\theta}_{lasso}$ is pulled back to the origin, but takes a different "route". θ_2 eventually becomes 0!

Contours of regularized objective for different λ values.

Green = true minimizer of the unreg.objective and red = lasso solution.

Regularized empirical risk $\mathcal{R}_{\text{reg}}(\theta_1,\theta_2)$ using squared loss for $\lambda\uparrow$. L1 penalty makes non-smooth kinks at coordinate axes more pronounced, while L2 penalty warps \mathcal{R}_{reg} toward a "basin" (elliptic paraboloid).

We can also rewrite this as a constrained optimization problem. The penalty results in the constrained region to look like a diamond shape.

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(y^{(i)} - f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right) \right)^{2} \text{ subject to: } \|\boldsymbol{\theta}\|_{1} \leq t$$

The kinks in *L*1 enforce sparse solutions because "the loss contours first hit the sharp corners of the constraint" at coordinate axes where (some) entries are zero.

L1 AND L2 REG. WITH ORTHONORMAL DESIGN

For special case of orthonormal design $\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}$ we can derive a closed-form solution in terms of $\hat{\theta}_{OLS} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{\top}\mathbf{y}$:

$$\hat{m{ heta}}_{\mathsf{lasso}} = \mathsf{sign}(\hat{m{ heta}}_{\mathsf{OLS}})(|\hat{m{ heta}}_{\mathsf{OLS}}| - \lambda)_{+} \quad (\mathsf{sparsity})$$

Function $S(\theta,\lambda):= \mathrm{sign}(\theta)(|\theta|-\lambda)_+$ is called **soft thresholding** operator: For $|\theta| \leq \lambda$ it returns 0, whereas params $|\theta| > \lambda$ are shrunken toward 0 by λ . Comparing this to $\hat{\theta}_{\mathrm{Ridge}}$ under orthonormal design:

$$\hat{\boldsymbol{\theta}}_{\mathsf{Ridge}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = ((1+\lambda)\mathbf{I})^{-1}\hat{\boldsymbol{\theta}}_{\mathsf{OLS}} = \frac{\hat{\boldsymbol{\theta}}_{\mathsf{OLS}}}{1+\lambda} \quad (\mathsf{no} \; \mathsf{sparsity})$$

COMPARING SOLUTION PATHS FOR *L*1/*L*2

- Ridge results in smooth solution path with non-sparse params
- \bullet Lasso induces sparsity, but only for large enough λ

SUPPORT RECOVERY OF LASSO > Zhao and Yu 2006

When can lasso select true support of θ , i.e., only the non-zero parameters? Can be formalized as sign-consistency:

$$\mathbb{P}\big(\text{sign}(\hat{\theta}) = \text{sign}(\theta)\big) o 1 \text{ as } n o \infty \quad (\text{where sign}(0) := 0)$$

Suppose the true DGP given a partition into subvectors $\theta = (\theta_1, \theta_2)$ is

$$\mathbf{Y} = \mathbf{X}\mathbf{\theta} + \mathbf{\varepsilon} = \mathbf{X}_1\mathbf{\theta}_1 + \mathbf{X}_2\mathbf{\theta}_2 + \mathbf{\varepsilon}$$
 with $\mathbf{\varepsilon} \sim (\mathbf{0}, \sigma^2\mathbf{I})$

and only θ_1 is non-zero. Let \mathbf{X}_1 denote the $n \times q$ matrix with the relevant features and X_2 the matrix of noise features. It can be shown that $\hat{\theta}_{lasso}$ is sign consistent under an irrepresentable condition:

$$|(\mathbf{X}_2^{\top}\mathbf{X}_1)(\mathbf{X}_1^{\top}\mathbf{X}_1)^{-1}\operatorname{sign}(\boldsymbol{\theta}_1)|<\mathbf{1} \; (\text{element-wise})$$

In fact, lasso can only be sign-consistent if this condition holds. Intuitively, the irrelevant variables in X₂ must not be too correlated with (or representable by) the informative features Meinshausen and Yu 2009

