ELEC 3035: Practice problems for part 1

Lecturer: Ivan Markovsky

1. Angle between vectors and a length of a vectors Verify that the triangle in \mathbb{R}^2 with vertexes (1/2,1/2), (2,-1), and (4,4) is a right triangle and verify that the Pythagorean theorem holds for it.

	Solution:
2.	Inverse of a 2×2 matrix and related graph Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$. Visualize the mapping
	$u \stackrel{A}{\mapsto} y := Au \stackrel{A^{-1}}{\mapsto} z := A^{-1}y$ by drawing a graph from u_1, u_2 to y_1, y_2 and from y_1, y_2 to z_1, z_2 . Since $z = u$, the
	graph from u_1, u_2 to z_1, z_2 is simple: $u_1 \mapsto u_1 \\ u_2 \mapsto u_2$. Think of $y := Au$ as a decoder and of $u = A^{-1}y$ as an encoder.
	(For larger matrices you have to relay on a computer for doing the coding and decoding operations for you.)
	Solution:
3.	Distance to a subspace Find the distance from a given point $y \in \mathbb{R}^n$ to the line $\mathcal{L}_a := \{ \alpha a \mid \alpha \in \mathbb{R} \}$, where $a \in \mathbb{R}^n$ is a given vector defining the line \mathcal{L}_a . Apply the general solution to the special case $y = (1,0)$, $a = (1,1)$.
	Solution:
4.	Distance from the origin to an affine space Find the distance from the point $0 \in \mathbb{R}^n$ to the line $\mathscr{A}_{a,y} := \{u \mid a^\top u = y\}$, where $a \in \mathbb{R}^n$ and $y \in \mathbb{R}$ are given vector and scalar that define the line $\mathscr{A}_{a,y}$. Apply the general solution to the special case $a = \begin{bmatrix} 1 & 1 \end{bmatrix}$, $y = 1$.
	Solution:
5.	Hand computation of eigenvalues and eigenvectors of a 2×2 matrix Find the eigenvalues and a set of linearly independent eigenvectors of the matrix $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$.
	Solution:
6.	Fibonacci numbers F_1, F_2, \ldots are defined by
	$F_1 = 1$, $F_2 = 2$, and $F_{t+1} = F_t + F_{t-1}$, for $t = 3, 4, \dots$ (FN)
	Find the 50th Fibonacci numbers F_{50} .
	(Hint: (FN) defines an autonomous linear dynamical system. Find modal state space representation of (FN).)
	Solution:
7.	Harmonic oscillator The differential equation defining the behaviour of a harmonic oscillator is
	$\frac{\mathrm{d}^2}{\mathrm{d}t^2}y = -ky,$
	where k is a positive constant. (A physical example of a harmonic oscillator is a unit mass attached to a spring, in which case k is the spring constant. You have seen harmonic oscillators also in circuit theory.) Find a state space representation of the harmonic oscillator. Give a formula for the trajectories of the system, starting from a given initial condition.
	Solution:
8.	Feedforward control Given a static system $\mathscr{B}_2 = \{(u,y) \mid y = A_2 u\}$ (the plant) explain how to find a system $\mathscr{B}_1 = \{(r,u) \mid u = A_1 r\}$ (feedforward controller), such that the series connection of \mathscr{B}_1 and \mathscr{B}_2 (the controlled system) matches or is as close as possible to a given system $\mathscr{B}_3 = \{(r,y) \mid y = A_3 u\}$ (reference model).
	Solution:

9. [Lue79, Chapter 2, Problem 2] A bank offers 7% annual interest. What would be the overall annual rate if the 7% interest were compounded quarterly?

Solution: Let y(k) denote the amount in the account at the beginning of season k and the bank pays interest at the end of each season. If the 7% interest were compounded quarterly, then the quarter interest is 7/4% and the account balance is governed by

$$y(k+1) = (1+7/4\%)y(k).$$

For an year, suppose y(k) is the amount in the account at the beginning of this year, then y(k+4) is the amount in the account at the beginning of following year. In order to know the overall annual rate, we should specify the relationship between y(k) and y(k+4). We have

$$y(k+4) = (1+7/4\%)y(k+3) = (1+7/4\%)^2y(k+2)$$
$$= (1+7/4\%)^3y(k+1) = (1+7/4\%)^4y(k).$$

Thus, the annual rate is

$$(1+7/4\%)^4 - 1 = 7.1859\%$$
.

10. [Lue79, Chapter 2, Problem 5] Find the second order linear homogeneous difference equation which generates the sequence 1, 2, 5, 12, 29, 70, 169. What is the limiting ratio of consecutive terms?

Solution: By observing the sequence we find the relationship among three consecutive terms is

$$5 = 2 \cdot 2 + 1$$

$$12 = 2 \cdot 5 + 2$$

$$29 = 2 \cdot 12 + 5$$

$$70 = 2 \cdot 29 + 12$$

$$169 = 2 \cdot 70 + 29$$

This relation can be written as a second-order linear homogeneous difference equation

$$y(k+2) = 2y(k+1) + y(k)$$
.

By dividing both sides of the equation by y(k+1), the equation becomes

$$\frac{y(k+2)}{y(k+1)} = 2 + \frac{y(k)}{y(k+1)}.$$

Here $\frac{y(k+1)}{y(k)}$ is the ratio of two consecutive term. When $k \to \infty$, the ratio converges to a constant which defines as a. Therefore

$$\frac{y(k+2)}{y(k+1)} = \frac{y(k+1)}{y(k)} = a, \qquad k \to \infty.$$

The limiting ratio a satisfy an equation

$$a = 2 + \frac{1}{a} \implies a^2 = 2a + 1 \implies a = 1 \pm \sqrt{2}.$$

However, all terms of the sequence are positive so that the ratio of consecutive terms is positive. Therefore, the limiting ratio $a = 1 + \sqrt{2}$.

11. [Lue79, Chapter 2, Problem 10] Consider the second order difference equation

$$y(k+2) - 2ay(k+1) + a^2y(k) = 0.$$

Its characteristic polynomial has both roots equal to $\lambda = a$.

(a) Show that both

$$y(k) = a^k$$
 and $y(k) = ka^k$

are solutions.

(b) Find the solutions of this equation that satisfies the auxiliary conditions y(0) = 1 and y(1) = 0.

Solution:

(a) To check $y(k) = a^k$, we note that $y(k+2) = a^{k+2}$ and $y(k+1) = a^{k+1}$

$$a^{k+2} - 2a \cdot a^{k+1} + a^2 \cdot a^k = a^{k+2} - 2a^{k+2} + a^{k+2} = 0.$$

Thus, $y(k) = a^k$ is a solution.

Checking $y(k) = ka^k$ we have

$$(k+2)a^{k+2} - 2a(k+1)a^{k+1} + a^2ka^k = (k+2)a^{k+2} - 2(k+1)a^{k+2} + ka^{k+2}$$
$$= (k+2-2k-2+k)a^{k+2} = 0.$$

Thus, $y(k) = ka^k$ is also a solution.

(b) A second-order linear difference equation has two degrees of freedom in its general solution, i.e., two linearly independent solutions can form a fundamental set of solutions. We have found two solutions a^k and ka^k . It is easy to prove that these two solutions are linear independent. Because we can't find two constant c_1 and c_2 at least one of which is nonzero to satisfy

$$c_1 a^k + c_2 k a^k = 0$$

for all k = 0, 1, 2, ..., N. Thus, any solution y(k) can be expressed as a linear combination of the fundamental set of solutions a^k and ka^k .

$$y(k) = c_1 a^k + c_2 k a^k,$$

where c_1 and c_2 are constant. Using two auxiliary conditions y(0) = 1 and y(1) = 0 to find constant c_1 and c_2 .

$$y(0) = c_1 a^0 = 1 \implies c_1 = 0$$

 $y(1) = c_1 a + c_2 a = a + c_2 a = 0 \implies c_2 = -1.$

Thus, the solution to this equation is

$$y(k) = a^k - ka^k.$$

References

[Lue79] D. G. Luenberger. Introduction to Dynamical Systems: Theory, Models and Applications. John Wiley, 1979.