Équations différentielles, primitives.

I. Définitions.

Définition : On appelle équation différentielle une équation qui relie la fonction inconnue à ses dérivées successives.

Remarque : Une équation différentielle a pour solution une fonction et non un nombre.

Exemple 1 : Les équations suivantes $5y''-4y'+4y=\cos x$ et $y'-5x.y=\ln x$ sont des équations différentielles d'inconnue y où y est une fonction.

Nous étudierons cette année des équations différentielles particulières.

Définition : Soient a et b deux nombres réels.

L'équation y'=ay+b est une équation différentielle linéaire du premier ordre à coefficients constants.

Définition : Résoudre une équation différentielle, c'est trouver l'ensemble des fonctions vérifiant l'égalité.

En particulier, résoudre les équations différentielles linéaires du premier ordre y'=ay+b, c'est déterminer toutes les fonctions f, définies et dérivables sur \mathbb{R} , telles que pour tout réel x, f'(x)=af(x)+b

Exemple 1: Soit l'équation y'=4.

- a. Vérifier que la fonction f définie sur \mathbb{R} par f(x)=4x-2 est une solution de cette équation différentielle.
- b. Déterminer une autre fonction solution de cette équation.
- c. Déterminer l'ensemble des fonctions solution de cette équation.

II. Primitive d'une fonction.

a. Définition.

Définition : Soit f une fonction définie sur un intervalle I. On appelle primitive de f sur I toute fonction F dérivable sur I telle que F'(x)=f(x) pour tout $x \in I$. F est alors solution de l'équation y'=f.

Exemple 2:

- la fonction f définie sur \mathbb{R} par f(x)=2 admet la fonction F définie par F(x)=2x comme primitive sur \mathbb{R} . Les fonctions définies sur \mathbb{R} par F(x)=2x+k, où k est un nombre réel sont des
 - primitives de f sur \mathbb{R} . Soit la fonction g définie sur $]0;+\infty[$ par $g(x)=\frac{1}{2\sqrt{x}}$.
 - a. Trouver une primitive de g sur $]0;+\infty[$.
 - b. Déterminer l'ensemble des primitives de g sur]0;+∞[.

Théorème:

1. Toute fonction continue sur un intervalle admet des primitives.

2. Soit f une fonction continue sur un intervalle I et F une primitive de f sur I.

L'ensemble des primitives de f sur I est l'ensemble des fonctions G définies sur I par G(x)=F(x)+k où k est un réel.

Démonstration : Démontrons le 2. du théorème.

- Soit G une fonction définie sur I par G(x) = F(x) + k où k est un réel.

Alors, pour tout $x \in I$, G'(x)=F'(x)=f(x).

Donc pour tout réel k, G est une primitive de f.

Réciproquement, soit G une primitive de f, et soit la fonction D définie sur I par D(x)=G(x)-F(x)

Pour tout
$$x \in I$$
, $D'(x) = G'(x) - F'(x) = f(x) - f(x) = 0$

Donc D est une fonction constante sur I, donc, il existe $k \in \mathbb{R}$ tel que pour tout $x \in I$, D(x)=k.

Par conséquent, pour tout $x \in I$, G(x)-F(x)=k, ainsi, pour tout $x \in I$, G(x)=F(x)+k.

b. Primitives et fonctions usuelles.

Fonction f	Une fonction Primitive F	Ensemble de définition
f(x)=a	F(x)=ax	IR
$f(x)=x^n, n\neq -1$	$F(x) = \frac{x^{n+1}}{n+1}$	IR
$f(x) = \frac{1}{x^n} = x^{-n}$	$F(x) = \frac{x^{-n+1}}{1-n} = \frac{1}{(1-n)x^{n-1}}$]–∞;0[ou]0 ; +∞[
$f(x) = \frac{1}{x}$	$F(x) = \ln x$]0; + ∞[
$f(x)=e^x$	$F(x)=e^x$	IR
$f(x) = \frac{1}{2\sqrt{x}}$	$F(x) = \sqrt{x}$]0;+∞[
$f(x) = \cos x$	$F(x) = \sin x$	IR
$f(x) = \sin x$	$F(x) = -\cos x$	

c. Primitives et opérations sur les fonctions.

Soient u et v deux fonctions continues et dérivables sur I de primitives U et V.

Fonction f	Primitive F	Intervalle I
<i>u</i> + <i>v</i>	U+V+k, k ∈ \mathbb{R}	I

$\lambda u, \lambda \in \mathbb{R}$	$\lambda U+k, k \in \mathbb{R}$	I
$u'u^n$, $n \in \mathbb{N}$	$\frac{u^{n+1}}{n+1} + k , \ k \in \mathbb{R}$	I
$\frac{u'}{u}$	$\ln u + k, \ k \in \mathbb{R}$	<i>u</i> > 0 sur I
$\frac{u'}{u^n}, n \in \mathbb{N}\setminus\{0,1\}$	$\frac{-1}{(n-1)u^{n-1}} + k, \ k \in \mathbb{R}$	u Ne s'annulant par sur I
$u'e^u$	$e^{u} + k$, $k \in \mathbb{R}$	IR
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}+k$, $k \in \mathbb{R}$	u >0 sur I.

Exemple 3: Déterminer une primitive des fonctions suivantes :

a.
$$f(x)=5x^3-4x^2+3x-2$$
, $x \in \mathbb{R}$.

b.
$$g(x)=e^{-3x}, x \in \mathbb{R}$$
.

d. Une unique primitive.

Propriété : Soit f une fonction définie sur un intervalle I. On suppose qu'il existe une fonction G définie sur I, primitive de f

Soit $x_0 \in I$ et $y_0 \in \mathbb{R}$, alors il existe une unique primitive de F de f sur I telle que $F(x_0) = y_0$

Démonstration : Soit G une primitive de f sur I, alors toutes les primitives F de f sont de la forme F(x)=G(x)+k, $k\in\mathbb{R}$.

$$F(x_0) = y_0$$

$$\Leftrightarrow$$
 G(x_0)+ $k = y_0$

$$\Leftrightarrow k = y_0 - G(x_0)$$

 y_0 et $G(x_0)$ étant définie de manière unique, on a donc que k existe et est unique et donc il existe une unique primitive de f sur I telle que $F(x_0) = y_0$ et qui est définie par $F(x) = G(x) + k = G(x) + y_0 - F(x_0)$

Exemple 4:

a. Déterminer la primitive F de la fonction f définie sur \mathbb{R} par $f(x)=9x^2-6x+3$ telle que F(1)=4.

b. Déterminer la primitive G de la fonction g définie sur $]0;+\infty[$ par $g(x)=\frac{1}{x^2}-\frac{4}{x}+12x^5$ telle que G(1)=0.

III. Équation y' = ay

Définition : L'équation y'=ay s'appelle une équation linéaire homogène à coefficient constant.

Théorème : Soit a un nombre réel non nul. Les solutions sur \mathbb{R} de l'équation différentielle (E) : y'=ay sont les fonctions définies sur \mathbb{R} par $f(x)=Ke^{ax}$, où K est un réel quelconque.

Démonstration:

- Soit la fonction f définie sur R par f(x)=K e^{ax}. Démontrons que f est solution de (E). f est dérivable sur R et pour tout x ∈ R, f'(x)=K a e^{ax}.
 Par conséquent, pour tout x ∈ R, f'(x)=a. K e^{ax}=af(x) et donc f est solution de l'équation différentielle y'=ay.
- Montrons qu'il n'existe pas d'autres fonctions solution de (E).
 Soit g une fonction définie sur ℝ, solution de (E), alors pour x ∈ ℝ, g'(x)=ag(x) ⇔ g'(x)-ag(x)=0
 Soit φ la fonction définie sur ℝ par φ(x)= g(x)/gax = g(x)e^{-ax}.

 e^{ax} e^{ax} e^{ax} e^{ax}

 $\phi'(x) = g'(x)e^{-ax} - ag(x)e^{-ax} = e^{-ax}(g'(x) - ag(x)) = 0$

Par conséquent, ϕ est constante sur \mathbb{R} . Il existe donc un réel K tel que $\phi(x) = g(x)e^{-ax} = K$ Nous obtenons donc que $g(x) = Ke^{ax}$, ce qui montre que toutes les solutions de l'équation (E) sont de la forme $f(x) = Ke^{ax}$.

Exemple 5 : Résoudre les équations suivantes : a. y'=8y

b.
$$y'-7y=0$$

IV.Équation y'=ay+b

Théorème : Soient a et b deux nombres réels non nuls. Les solutions sur $\mathbb R$ de l'équation différentielle (E) : y'=ay+b sont les fonctions f définies sur $\mathbb R$ par $f(x)=\mathrm K$ $\mathrm e^{ax}-\frac{b}{a}$ où $\mathrm K$ est un réel quelconque.

Démonstration:

- Soit la fonction f définie sur \mathbb{R} par $f(x) = K e^{ax} - \frac{b}{a}$. Montrons que f est solution de (E).

f est dérivable et pour tout $x \in \mathbb{R}$ $f'(x) = K a e^{ax}$

Or pour tout
$$x \in \mathbb{R}$$
, $af(x) + b = a\left(Ke^{ax} - \frac{b}{a}\right) + b = aKe^{ax} - b + b = aKe^{ax} = f'(x)$

Donc f est bien solution de (E).

- Montrons qu'il n'existe pas d'autres fonctions solution de (E).

Soit g une fonction définie sur \mathbb{R} solution de (E). Donc pour tout $x \in \mathbb{R}$,

$$g'(x)=ag(x)+b$$
. Soit ϕ la fonction définie sur \mathbb{R} par $\phi(x)=g(x)+\frac{b}{a}$.

La fonction ϕ est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$,

$$\phi'(x) = g'(x) = ag(x) + b = a\left(g(x) + \frac{b}{a}\right) = a\phi(x)$$
.

Nous pouvons donc en déduire que ϕ est solution de l'équation y'=ay.

Donc d'aprés le III, ϕ est de la forme $\phi(x) = K e^{ax}$ où K est un nombre réel.

Par suite, pour tout $x \in \mathbb{R}$, $g(x) = \phi(x) - \frac{b}{a} = K e^{ax} - \frac{b}{a}$, ce qui montre que toutes les

solutions de l'équation (E) sont de la forme $f(x) = K e^{ax} - \frac{b}{a}$.

Exemple 6: Soit (E) l'équation différentielle y' + 5y = 3.

a. Résoudre (E).

$$y' = -5 y + 3$$

b. Déterminer la fonction f solution de (E) telle que f(0)=5.

V. Équation y'=ay+g où g est une fonction.

Définition : L'équation y'=ay+g, où $a\in\mathbb{R}$ et g est une fonction, est une équation différentielle linéaire du premier ordre avec second membre.

Le second membre est g', car y'-ay=g

L'équation homogène associée est y'=ay

Théorème : Soit (E) : y'=ay+g où g est une fonction continue.

On note f_p une solution particulière de (E).

Alors, toutes les solutions de (E) s'écrivent sous la forme $f = f_h + f_p$ où f_h est solution de l'équation homogène associée : $f_h = K e^{ax}$, $K \in \mathbb{R}$.

Remarque : Ce théorème permet de retrouver les solutions du théorème du IV où la solution générale de l'équation différentielle y'=ay+b est $f(x)=Ke^{ax}-\frac{b}{a}$.

Exemple 7: Soit (E) l'équation différentielle y'=2y+8x+10.

la fonction g définie sur \mathbb{R} par g(x)=8x+10 est le second membre de cette équation.

1. Déterminer les réels a et b tels que $f_p(x) = ax + b$ soit solution de (E).

- 2. Écrire et résoudre l'équation homogène associée à (E).
- 3. Déterminer l'ensemble des solutions de (E)