D= 2m 30° LAW Resultant force (FR) of the water of the air on the gate is FR= SPdA -P= Po + ggh h= D+ ysun 30° dA = co dy P = gg (D + nsin 30°), ignore lo ao it is on both sides of the gate Substituting -FR = [39(D+ 7sin 30°) wan

$$= ggw \int (D + \eta \sin 30^{\circ}) d\eta$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[DL + L^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[DL + L^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[DL + L^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[DL + L^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[DL + L^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

$$= ggw \left[D\eta + \eta^{2} \sin 30^{\circ} \right]_{0}^{0}$$

Dir" of force is I to the surface

2.
$$V = 50 \text{ ms}^{-1}$$
 $T = \frac{-3}{500} 2 + 15$

calculate material derivative

 $DT = 2T + V \cdot DT$
 $Dt = V \cdot DT$
 $Steady$
 $Aake$
 $DT = V \cdot DT$
 $DT =$

= 0.3°C8-1 As

For freely calling namemeter,

For freely falling namometer, $P_A - P_R = 1$