Leveraging Cross-Website Coordination to Mitigate Credential Stuffing

Michael K. Reiter

Lawrence M. Slifkin Distinguished Professor University of North Carolina at Chapel Hill

Joint work with Ke Coby Wang.

1

Password Reuse :: Definition

same user,
same or similar password,
multiple websites.

The reuse of passwords is the No. 1 cause of harm on the internet.

--- Alex Stamos (former CSO, Facebook)

99% of compromised user accounts come from password reuse.

--- Patrick Heim (Head of Trust & Security, Dropbox)

Valid user ID password pairs

Credential stuffing is enormously effective due to the password reuse problem.

--- Troy Hunt (Regional Director, Microsoft)

5

Goals :: Functionality

11

11

Interfering with Password Reuse ::

Goals :: Functionality

(Re)set password

User (Alice)

Requester (Website)

12

Goals:: Deployment

- We don't require a universal adoption of our framework
- A simple estimate suggests that if these 20 websites adopted our framework, then each Internet user would have ~4-5 different and dissimilar passwords

"If multiple passwords cannot be avoided, four or five is the maximum for unrelated, regularly used passwords that users can be expected to cope with" [1]

Website	Users (M)	Websites	Users (M)
Facebook	2167	Taobao	580
YouTube	1500	Outlook	400
WhatsApp	1300	Sina Weibo	376
Yahoo!	1000	Twitter	330
Gmail	1000	Amazon	310
WeChat	980	Baidu Tieba	300
QQ	843	LinkedIn	260
Instagram	800	Snapchat	255
Tumblr	794	Reddit	250
iCloud	782	Pinterest	200

Table: Top 20 websites ranked by number of active users. In addition, there are **3.58 billion** active Internet users worldwide.

[1] Adams and M. A. Sasse, "Users are not the enemy," Communications of the ACM, vol. 42, pp. 40–46, Dec. 1999

19

19

Interfering with Password Reuse ::

Goals :: Security and Privacy

Goals :: Security and Privacy

 Account location privacy: Participating websites are not disclosed to one another

21

21

Interfering with Password Reuse ::

Goals :: Security and Privacy

- Account location privacy: Participating websites are not disclosed to one another
- Account security: Interfere with password reuse while not qualitatively degrading account security in other ways

Goals :: Security and Privacy

- Account location privacy: Participating websites are not disclosed to one another
- Account security: Interfere with password reuse while not qualitatively degrading account security in other ways

23

23

Interfering with Password Reuse ::

Goals:: Security and Privacy

- Account location privacy: Participating websites are not disclosed to one another
- Account security: Interfere with password reuse while not qualitatively degrading account security in other ways

Responders

(Websites where Alice already has accounts)

24

Design:: Limiting PMT Queries

 Directory can send the user a confirmation URL upon receiving queries from the requester and requires the user's confirmation to proceed with the protocol.

39

Interfering with Password Reuse ::

Design:: Limiting PMT Queries

 Directory can send the user a confirmation URL upon receiving queries from the requester and requires the user's confirmation to proceed with the protocol.

Interfering with Password Reuse ::

Design:: Limiting PMT Queries

 Directory can send the user a confirmation URL upon receiving queries from the requester and requires the user's confirmation to proceed with the protocol.

41

Probabilistic Model Checking

Adversary (Markov Decision Process)

(Websites where Alice already has accounts)

43

43

Interfering with Password Reuse ::

Probabilistic Model Checking

Prior knowledge about Alice's passwords (the "dictionary")

Adversary (Markov Decision Process)

(Websites where Alice already has accounts)

44

Detection Rate & Scalability

Prior Empirical Study about Password Reuse [1]

- An estimate of probability of detecting password reuse as a function of the number of similar passwords.
 - Detection rate increases sharply when set of similar passwords is small. Adding to similar-password set doesn't improve detection much, but it does increase overhead.

[1] WANG, C., JAN, S. T. K., HU, H., AND WANG, G. Empirical analysis of password reuse and modification across online service. arXiv preprint arXiv:1706.01939 (2017)

55

55

Interfering with Password Reuse ::

Detection Rate & Scalability

Prior Empirical Study about Password Reuse [1]

- An estimate of probability of detecting password reuse as a function of the number of similar passwords.
- Detection rate increases sharply when set of similar passwords is small. Adding to similar-password set doesn't improve detection much, but it does increase overhead.

[1] WANG, C., JAN, S. T. K., HU, H., AND WANG, G. Empirical analysis of password reuse ar modification across online service. arXiv preprint arXiv:1706.01939 (2017)

56

Detection Rate & Scalability

Prior Empirical Study about Password Reuse [1]

- An estimate of probability of detecting password reuse as a function of the number of similar passwords.
- Detection rate increases sharply when set of similar passwords is small. Adding to similar-password set doesn't improve detection much, but it does increase overhead.

[1] WANG, C., JAN, S. T. K., HU, H., AND WANG, G. Empirical analysis of password reuse and modification across online service. arXiv preprint arXiv:1706.01939 (2017)

57

57

Interfering with Password Reuse ::

Detection Rate & Scalability

True detection rate maximization

Given a **target response time** constraint, how to choose **number of similar passwords** (*n*) and **number of participating responders** (*m*) to maximize **true detection rate**

		$t_{\rm goal}$ (s)								
	.01	.02	.03	.04	.05	.06	.07	.08	.09	.10
n	1	1	2	2	5	9	13	16	20	23
m	1	10	17	26	26	26	26	26	26	26
tdr	.343	.985	≈1	≈ 1	≈ 1	≈ 1	≈1	≈1	≈1	≈1

Trusted directory

		t _{goal} (s) 1.60 1.62 1.64 1.66 1.68 1.70 1.72 1.74 1.76 1.78								
	1.60	1.62	1.64	1.66	1.68	1.70	1.72	1.74	1.76	1.78
n	1	2	2	5	8	11	14	17	19	22
m	16	21	26	26	26	26	26	26	26	26
tdr	.999	≈ 1	≈ 1	≈1	≈ 1	≈1				

Untrusted directory

t_{goal}: target response time;
m: number of responders;
n: number of similar passwords;
tdr: overall true detection rate.

Max qualifying responses per sec.

	m								
n	1	6	11	16	21	26			
1	4304	1013	492	325	237	174			
10	2415	549	277	188	155	122			
20	1478	336	182	129	98	78			
30		243	124	86	63	53			
40	788	187	94	67	49	40			
50	683	159	76	52	39	33			
60	611	132	63	43	32	25			

Trusted directory (Qualifying response: <= 5s)

1	m								
n	1	6	11	16	21	26			
1	95	61	42	33	27	22			
10	87	59	40	31	25	20			
20	78	54	37	28	23	19			
30	71	51	35	27	20	16			
40	62	44	32	24	18	14			
50	53	39	26	20	15	11			
60	42	31	20	16	10	10			

Untrusted directory (Qualifying response: <= 8s)

58

Detecting Credential Stuffing ::

Evidence Trail from Credential Stuffing

c = "alice@yyy.com : alicepwd",
a leaked username-password pair
possessed by the credential stuffer

Credential Stuffer Websites where Alice has accounts

alice@yyy.com : alicepwd0

alice@yyy.com: alicepwd + 2FA

alice@yyy.com : alicepwd

69

69

Detecting Credential Stuffing ::

Login attempt with c

Evidence Trail from Credential Stuffing

c = "alice@yyy.com : **alicepwd**", a leaked username-password pair possessed by the credential stuffer

Websites where Alice has accounts

alice@yyy.con(: alicepwd0)
Suspicious: { alicepwd }

Credential Stuffer

alice@yyy.com: alicepwd + 2FA

alice@yyy.com : alicepwd

70

Detecting Credential Stuffing :: **Evidence Trail from Credential Stuffing** c = "alice@yyy.com : alicepwd", Websites where Alice a leaked username-password pair has accounts possessed by the credential stuffer alice@yyy.com: alicepwd0 Suspicious: { alicepwd } Collecting phase alice@yyy.com: alicepwd + 2FA Credential Suspicious: { alicepwd } Stuffer alice@yyy.com : alicepwd 72

detection rates

in the *counting* phase

89

+5

+1

[5] Freeman et al. (NDSS 2016)

reuse

89

Detecting Credential Stuffing :: Trading Off FDR & TDR Phishing attackers^[5]: valid passwords from same countries with same browser useragent strings of legitimate users Default (baseline) setting: some level of password reuse in a set of 4 distinct passwords across 10 accounts/sites with no 2FA deployed among them Blue curves: each for a different ADS threshold in the collecting phase Black, dashed curves: corresponding ADS's accuracy in detecting suspicious logins Black, dotted lines: random guessing 0.9 TDR_{csd} 0.7 0.5 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.0 Higher ADS Less pwd # of pwds # of accnts # of 2FA Baseline detection rates + 10 + 5 reuse in the counting phase 90 [5] Freeman et al. (NDSS 2016)

Detecting Credential Stuffing ::

Goals :: Security and Privacy

 Account location privacy: Participating websites are not disclosed to one another

91

91

Detecting Credential Stuffing ::

Goals :: Security and Privacy

- Account location privacy: Participating websites are not disclosed to one another
- Login privacy: Hide where the user is currently trying to log in from other participating websites

Detecting Credential Stuffing ::

Goals:: Security and Privacy

- Account location privacy: Participating websites are not disclosed to one another
- Login privacy: Hide where the user is currently trying to log in from other participating websites
- Account security: Detect credential stuffing while not qualitatively degrading account security in other ways

93

93

Detecting Credential Stuffing :: Framework :: Directory PMT query PMT response User ID, Password **PMT Responses** PMT query Requester Directory PMT response Credential Responders Stuffer (Websites where the user already has accounts) **S**_i: Suspicious-password-set for the user at responder *i* 94

Detecting Credential Stuffing ::

Our PMT :: Cuckoo Filters

- An approximate membership query (AMQ) scheme proposed by Fan et al. (2014)
- Time needed by a membership test is constant with respect to the set size
- Space-efficient storage with tunable false positive rates
 - More space-efficient than Bloom filters when false positive rates are low (e.g., < 3%)

100

Detecting Credential Stuffing ::

Our PMT :: Cuckoo Filters :: Membership Test

A fingerprint function: fp()

<u>Two hash functions</u>: $h_1() = hash()$

 $h_2() = hash() \oplus hash(fp())$

101

101

Detecting Credential Stuffing ::

Our PMT :: Cuckoo Filters :: Membership Test

A fingerprint function: fp()

<u>Two hash functions</u>: $h_1() = hash()$

 $h_2() = hash() \oplus hash(fp())$

102

Detecting Credential Stuffing ::

Our PMT :: Encryption

Additively Homomorphic Encryption

106

Detecting Credential Stuffing ::

Our PMT :: Encryption

Additively Homomorphic Encryption

 $+_{pk}$: homomorphic addition (only pk is needed) pk: public key (or "encryption key")

sk : public key (or "encryption key")

107

107

Detecting Credential Stuffing ::

Our PMT :: Encryption

Additively Homomorphic Encryption

 $+_{pk}$: homomorphic addition (only pk is needed) pk: public key (or "encryption key")

sk : private key (or "decryption key")

108

Detecting Credential Stuffing ::

Our PMT:: Properties

 Rounds: One round of interaction, due to the integration of Cuckoo filters and partially homomorphic encryption

125

125

Detecting Credential Stuffing ::

Our PMT :: Properties

- Rounds: One round of interaction, due to the integration of Cuckoo filters and partially homomorphic encryption
- Response size: constant number of ciphertexts, due to the adoption of Cuckoo filters

Detecting Credential Stuffing ::

Our PMT:: Properties

- Rounds: One round of interaction, due to the adoption of Cuckoo filters and partially homomorphic encryption schemes
- Response size: constant number of ciphertexts, due to the adoption of Cuckoo filters
- Requester privacy: Information leakage to a malicious responder is negligible if the underlying encryption scheme is CPA secure

127

127

Detecting Credential Stuffing ::

Our PMT :: Properties

- Rounds: One round of interaction, due to the adoption of Cuckoo filters and partially homomorphic encryption schemes
- Response size: constant number of ciphertexts, due to the adoption of Cuckoo filters
- Requester privacy: Information leakage to a malicious responder is negligible if the underlying encryption scheme is CPA secure
- Responder privacy: Information leakage to a malicious requester is not significantly more than the answer to the PMT query

Detecting Credential Stuffing ::

Scalability

	Credential-stuffing login attempts per day	Proportion that succeed	Proportion of all login attempts
Airline	1.4 Million	1.00%	60%
Hotel	4.3 Million	1.00%	44%
Retail	131.5 Million	0.50%	91%
Consumer banking	g 232.2 Million	0.05%	58%

Table: Credential stuffing estimates for four major U.S. industries $^{\text{[6]}}$

Total number of PMT queries per second:

- If ADS false & true detection rates are 0.30 & 0.95 (against phishing attackers): 660
- If ADS false & true detection rates are 0.10 & 0.99 (against researching attackers): 227

[6] Shape Security, "2018 Credential spill report"

130

Parting Thoughts

- Coordination across websites for improving user security is (IMO) a rich opportunity
- Where and how can it be done securely? Privately? In a way that gains acceptance from users?
- How much user inconvenience is too much?

135

135

Parting Thoughts

- Coordination across websites for improving user security is (IMO) a rich opportunity
- Where and how can it be done securely? Privately? In a way that gains acceptance from users?
- How much user inconvenience is too much?

Thank you!