Theorem 3-6

If two lines are cut by a transversal and same-side interior angles are supplementary, then the lines are parallel.

Given: Transversal t cuts lines k and n;

 $\angle 1$ is supplementary to $\angle 2$.

Prove: $k \parallel n$

 $\frac{k}{n}$

The proof is left as Exercise 22.

Theorem 3-7

In a plane two lines perpendicular to the same line are parallel.

Given: $k \perp t$; $n \perp t$

Prove: $k \parallel n$

The proof is left as Exercise 23.

Example 1 Which segments are parallel?

Solution

(1) \overline{HI} and \overline{TN} are parallel since corresponding angles have the same measure:

$$m \angle HIL = 23 + 61 = 84$$

 $m \angle TNI = 22 + 62 = 84$

(2) \overline{WI} and \overline{AN} are *not* parallel since $61 \neq 62$.

Example 2 Find the values of x and y that make $\overline{AC} \parallel \overline{DF}$ and $\overline{AE} \parallel \overline{BF}$.

Solution

If
$$m \angle CBF = m \angle BFE$$
,
then $\overline{AC} \parallel \overline{DF}$. (Why?)
 $3x + 20 = x + 50$
 $2x = 30$
 $x = 15$

If $\angle AEF$ and $\angle F$ are supplementary, then $\overline{AE} \parallel \overline{BF}$. (Why?) (2y - 5) + (x + 50) = 180(2y - 5) + (15 + 50) = 180

$$2y = 120$$
$$y = 60$$