1. Lebesgue-tétel

1.1. Tétel: Lebesgue-tétel

Legyen (X, Ω, μ) mértéktér, $p \in [1, +\infty]$, valamint az $f_n \in L^p$ $(n \in \mathbb{N})$ egy olyan függvénysorozat, amelyre a következők igazak:

- i) majdnem mindenhol létezik a $\lim(f_n)$ pontonkénti limesz;
- ii) alkalmas $F\in L^+,\ \|F\|_p<+\infty$ függvénnyel minden $n\in\mathbb{N}$ indexre

$$|f_n(x)| \le F(x)$$
 (μ -m.m. $x \in X$).

Ekkor

a) van olyan $f: X \to \mathbb{R}$ mérhető függvény, hogy

$$f = \lim_{n \to \infty} f_n \quad \mu\text{-m.m.};$$

b) minden a)-beli f függvényre $f \in L^p$, továbbá $p \in [1, +\infty)$ esetén

$$\lim_{n\to\infty} \|f_n - f\|_p = 0.$$

Bizonyítás. Az i) és ii) feltétel figyelembe vételével van olyan $A \in \Omega$, hogy

$$\mu(A) = 0, \qquad \lim_{n \to \infty} f_n(x) \in \mathbb{R}, \qquad |f_n(x)| \le F(x) < +\infty$$

fennáll minden $x \in X \setminus A$ helyen és $n \in \mathbb{N}$ index
re. Legyen

$$f(x) := \begin{cases} \lim_{n \to \infty} f_n(x), & \text{ha } x \in X \setminus A, \\ 0, & \text{ha } x \in A. \end{cases}$$

Ekkor az $f = \lim(f_n)$ majdnem mindenhol, és az f mérhető és véges, mert

$$|f(x)| \le F(x) < +\infty \qquad (x \in X).$$

Ha az $f:X\to\mathbb{R}$ függvény eleget tesz az a)-nak, akkor a ii) feltétel alapján

$$|f(x)| \le F(x)$$
 $(\mu\text{-m.m. } x \in X).$

Ekkor az integrál monotonitása miatt

$$||f||_n \le ||F||_n < +\infty \implies f \in L^p.$$

Azt kell már csak megmutatnunk, hogy $\lim_{n\to\infty} \|f-f_n\|_p = 0$. Legyen ehhez

$$g_n := |f - f_n|^p \qquad (n \in \mathbb{N}).$$

Mivel g_n nemnegatív és mérhető minden $n \in \mathbb{N}$ indexre, ezért $g_n \in L^+$, és

$$g_n = |f - f_n|^p \le (|f| + |f_n|)^p \le 2^p \cdot F^p$$
 μ -m.m.

Tehát az f függvény nem más, mint a

$$g_n := f_n \cdot \chi_{X \setminus A} \quad (n \in \mathbb{N})$$

mérhető függvényekből álló sorozat

$$f = \lim(g_n)$$

határfüggvénye, ami szintén mérhető.

Alkalmazva a Fatou-lemma második állítását

$$\limsup_{n \to \infty} \int g_n \, \mathrm{d}\mu \le \int \limsup_{n \to \infty} g_n \, \mathrm{d}\mu = \int \lim_{n \to \infty} g_n \, \mathrm{d}\mu = 0.$$

Tehát

$$\limsup_{n \to \infty} \|f_n - f\|_p = \liminf_{n \to \infty} \|f_n - f\|_p = \lim_{n \to \infty} \|f_n - f\|_p = 0.$$

Megjegyzések:

i) Speciálisan p=1 esetén a Lebesgue-tétel következménye, hogy

$$\int f \, \mathrm{d}\mu = \lim_{n \to \infty} \int f_n \, \mathrm{d}\mu.$$

Ugyanis figyelembe véve az

$$\left| \int f \, \mathrm{d}\mu - \int f_n \, \mathrm{d}\mu \right| \le \int \left| f - f_n \right| \, \mathrm{d}\mu = \|f - f_n\|_1 \longrightarrow 0 \qquad (n \to \infty).$$

ii) Speciálisan tegyük fel, hogy a μ véges és az (f_n) függvénysorozat egyenletesen korlátos majdnem minden pontban, vagyis tetszőleges $n \in \mathbb{N}$ indexre

$$|f_n(x)| \le C$$
 $(\mu\text{-m.m. } x \in X).$

Ekkor teljesül a Lebesgue tétel második feltétele, ugyanis $F \equiv C$ mellett

$$||F||_p = \left(\int C^p d\mu\right)^{1/p} = C \cdot (\mu(X))^{1/p} < +\infty.$$

1.2. Tétel: Kis Lebesgue-tétel

Legyen (X,Ω,μ) mértéktér, μ véges, valamint az $f_n\in L$ $(n\in\mathbb{N})$ olyan függvénysorozat, amelyre a következők igazak:

- i) majdnem mindenhol létezik a $\lim(f_n)$ pontonkénti limesz;
- ii) megadható olyan C konstans, hogy minden $n \in \mathbb{N}$ indexre

$$|f_n(x)| \le C$$
 $(\mu\text{-m.m. } x \in X).$

Ekkor van olyan $f \in L$ függvény, hogy majdnem mindenhol $f = \lim(f_n)$ és

$$\int f \, \mathrm{d}\mu = \lim_{n \to \infty} \int f_n \, \mathrm{d}\mu.$$

Tétel (Fatou-lemma II.). Ha egy

$$(h_n): \mathbb{N} \to L^+$$

sorozathoz van olyan $G \in L^+$, hogy

$$\int G \,\mathrm{d}\mu < +\infty, \quad h_n \le G \ \mu\text{-m.m.},$$

akkor

$$\limsup_{n \to \infty} \int h_n \, \mathrm{d}\mu \le \int \limsup_{n \to \infty} h_n \, \mathrm{d}\mu$$

akkor

2. Teljesség

2.1. Tétel: Az L^p teljessége

Legyen (X, Ω, μ) mértéktér, valamint $1 \le p \le +\infty$ esetén $f_n \in L^p$ $(n \in \mathbb{N})$.

Tegyük fel, hogy bármely $\varepsilon > 0$ -hoz van olyan $N \in \mathbb{N}$ küszöbindex, amivel

$$||f_m - f_n||_n < \varepsilon$$
 $(m, n > N).$

Ekkor van olyan $f \in L^p$ függvény, hogy $\lim_{n \to \infty} \|f - f_n\|_p = 0$.

Bizonyítás. A Cauchy-kritérium miatt van olyan (n_k) indexsorozat, hogy

$$||f_{n_{k+1}} - f_{n_k}||_p < \frac{1}{2^k} \qquad (k \in \mathbb{N}).$$
 (*)

Ekkor a Beppo Levi-tétel alapján létezik az L^+ -beli

$$g_k \coloneqq f_{n_{k+1}} - f_{n_k} \quad (k \in \mathbb{N}), \qquad g \coloneqq \sum_{k=0}^{\infty} |g_k|$$

összegfüggvény, amelyre

$$||g||_p \le \sum_{k=0}^{\infty} ||g_k||_p < \sum_{k=0}^{\infty} \frac{1}{2^k} = 2.$$

Következésképpen g majdnem mindenhol véges, így a $\sum (g_k)$ teleszkopikus összegfüggvény μ -m.m. abszolút konvergens. Ugyanakkor

$$\sum_{k=0}^{\ell-1} (f_{n_{k+1}} - f_{n_k}) = f_{n_\ell} - f_{n_0} \qquad (1 \le \ell \in \mathbb{N}),$$

tehát az (f_{n_ℓ}) részsorozat majdnem mindenhol konvergens. Innen

$$|f_{n_{\ell}}| = \left| \sum_{k=0}^{\ell-1} g_k + f_{n_0} \right| \le g + |f_{n_0}| \qquad (1 \le \ell \in \mathbb{N})$$

majdnem mindenhol igaz, továbbá a Minkowski-egyenlőtlenség miatt

$$|||f_{n_0}| + g||_p \le ||f_{n_0}||_p + ||g||_p < +\infty.$$

Teljesülnek a Lebesgue-tétel feltételei. Ekkor van olyan $f \in L^p$, hogy

$$f = \lim_{\ell \to \infty} f_{n_{\ell}} \quad \mu\text{-m.m.}$$

Jól ismert, hogy amennyiben egy Cauchy-sorozatnak van konvergens részsorozata, akkor maga a teljes sorozat is konvergens, továbbá a határértékeik azonosak. Ennél fogva az (f_n) függvénysorozat is konvergens és

$$f = \lim_{n \to \infty} f_n \quad \mu\text{-m.m.}$$

Eddig a pontig p értéke tetszőleges lehetett.

1. Ha $p < +\infty$, akkor szintén a Lebesgue-tétel alapján

$$\lim_{n \to \infty} \|f_n - f\|_p = 0.$$

 $(n_k): \mathbb{N} \to \mathbb{N}$ szigorúan monoton növő.

Lásd Minkowski-egyenlőtlenség és (*).

Tétel (Minkowski-egyenlőtlenség).

$$||f + h||_n \le ||f||_n + ||h||_n$$

bármilyen $f, h \in L^p$ függvényre.

2. Ha $p = +\infty,$ akkor (*) alapján tetszőleges m < k indexre

$$|f_{n_m} - f_{n_k}| = \left| \sum_{i=m}^{k-1} (f_{n_i} - f_{n_{i+1}}) \right| \le \sum_{i=m}^{k-1} ||f_{n_i} - f_{n_{i+1}}||_{\infty} \le \sum_{i=m}^{k-1} \frac{1}{2^i}.$$

Ekkor a határérték és a rendezés kapcsolata miatt

$$|f_{n_m} - f| = \lim_{k \to \infty} |f_{n_m} - f_{n_k}| \le \sum_{i=m}^{\infty} \frac{1}{2^i} = 2^{1-m} \quad (m \in \mathbb{N}).$$

Tehát a végtelen-norma definíciója, majd a közrefogási elv-miatt

$$\lim_{m \to \infty} \|f - f_{n_m}\|_{\infty} = \lim_{n \to \infty} \|f - f_n\|_{\infty} = 0.$$

A Lebesgue-tétel nem alkalmazható!

Az itt szereplő mértani sorösszeg

$$\sum_{i=m}^{\infty} \frac{1}{2^i} = \frac{1}{2^m} \cdot \frac{1}{1 - 1/2} = \frac{2}{2^m}.$$

Hiszen $m \to \infty$ mellett

$$0 \le |f_{n_m} - f| \le ||f_{n_m} - f||_{\infty} \longrightarrow 0.$$