Investigations on Primitive Roots and Quadratic Residues Pre-class, Week 9

In this pre-class, we will investigate two topics: primitive roots and quadratic residues.

Primitive roots modulo n are the elements whose orders are the maximum possible value. We know that any a relatively prime to n satisfies $a^{\phi(n)} \equiv 1 \pmod{n}$. For most a's, $\phi(n)$ is not the order, but for some select a's, it is. These a's are called the *primitive roots* modulo n.

1. What are all the primitive roots modulo 13? (Note: Use $(-a)^k \equiv (-1)^k a^k \pmod{n}$ to find the order of half of the numbers without much work.)

A	2	3	4	5	6	7	8	9	10	11	12
order	12	3	6	4	12	12	7	3	6	12	2_
ı	A	1	•		A	A	7	I	3	A	,

2. Pick one of your primitive roots from problem 1, call it g. Write all non-zero elements modulo 13 in terms of powers of g.

\wedge	2	3	7	5	6	7	8	9	10	1/	12
9 2	4	8	3	6	12		9	5	0	7	

3. Take the same g as above. What is the order of g^2 modulo 13? What about g^3 ? Or more generally g^i ?

order of
$$9^{2}$$
 is $\frac{1^{2}}{2} = 6$

$$0(de(0fg^{i})) \frac{12}{9cl(12,i)}$$

4. Take the same g as above. Can you find all other primitive roots modulo 13 in terms of g? How many such primitive roots do you have?

$$\frac{12}{96(12,i)} = 12$$
 iff $96(12,i) = 1$

The number of primitive roots mod 13 is
$$\phi(12)$$

= $\phi(\phi(13))$

We have tools to solve linear congruence equations, including systems, but we have yet to learn how to solve a quadratic congruence equation. One important step in working with a quadratic equation is finding a "square root" which will translate into finding for which $a, x^2 \equiv a \pmod{n}$ has a solution.

5 a. Find all a for which $x^2 \equiv a \pmod{11}$ has a solution. (Hint: It might be easier to think about this as finding the squares of all numbers module 11.)

finding the squares of all numbers modulo 11.)

X		2	3	14	5	6	7	8	9	10	
X X 1/	l	7	9	5	3	3	5	9	7	1	
	I		1				J		l	1	

b. We know that 2 is a primitive root modulo 11. We also know that any element modulo 11 can be expressed as 2^i . Express all the elements as 2^i and using your results for part a, come up with an easy test for which a's are squares.

\mathcal{A}		2	3	4	5	6	7	8	9	0	
2 ^è	2 ^{la}	2 '	28	2	2	29	2	23	26	25	
Stradi	7	\wedge	Y	Y	Y	~	\mathcal{N}	\nearrow	Y	$ \wedge $	
(%2	0	\	0	0	0	1	1)	0		

Let p be a prime. We call the relatively prime squares modulo p quadratic residues modulo p. In other words, a is a quadratic residue if gcd(a, p) = 1 and $x^2 \equiv a \pmod{p}$ has a solution. If $x^2 \equiv a \pmod{p}$ does not have a solution, then a is a quadratic nonresidue.

For example, modulo 17, 8 is a quadratic residue because $5^2 \equiv 8 \pmod{17}$ while 3 is a quadratic nonresidue since there is no x whose square is congruent to 3 modulo 17.

6 a. How many quadratic residues are there modulo 11? How many quadratic non-residues are there?

5

b. What about modulo 13?

6 6 6

c. Can you make a conjecture as to the number of quadratic residues and nonresidues for an odd prime?

 $\frac{\beta-1}{2}$ & $\frac{\beta-1}{2}$