Лекція 7

Глава 2 Побудова математичних моделей базових фізичних процесів

§ 1. Математичні моделі розповсюдження тепла та дифузії речовини

Для запису математичної моделі введемо величини:

$$x = (x_1, x_2, x_3) \in G \subset E^3$$
 - об'єм тіла, t – час;

u(x,t) – температура в точці x у момент часу t;

c(x) – теплоємність (кількість тепла, яка необхідна, для підняти температуру одиниці маси тіла на один градус);

k(x) – теплопровідність речовини (здатність проводити тепло);

 $\rho(x)$ – щільність речовини;

f(x,t) - інтенсивність джерел теплової енергії в точці x в момент часу t

Закон збереження теплової енергії

Складемо баланс теплової енергії для довільного об'єму тіла G за довільний інтервал часу $t_1 < t < t_2$. Для цього обчислимо кількість тепла, яка міститься в нескінченно малому об'ємі dG:

$$\rho(\mathbf{x})dG \cdot c(\mathbf{x}) \cdot u(\mathbf{x},t) \tag{1.1}$$

та в об'ємі
$$G$$
 в момент часу t $Q_1(t) = \iiint_G c(x)\rho(x)u(x,t)dG$ (1.2).

Припустимо, що з часом температура змінилася від значення $u\left(x,t_{1}\right)$ до значення $u\left(x,t_{2}\right)$. Обчислимо кількість тепла, витрачену на зміну температури:

$$\Delta Q_1(t_1, t_2) = Q_1(t_2) - Q_1(t_1) = \iiint_G c(x) \rho(x) [u(x, t_2) - u(x, t_1)] dG$$
 (1.3).

Температура в об'ємі G може змінюватись за рахунок таких факторів:

- 1) нерівномірності нагрівання тіла, викликає потік тепла через поверхню S , яка обмежує уявне тіло об'єму G ;
 - 2) зміна кількості тепла за рахунок внутрішніх теплових джерел.

Нехай ${\bf n}$ — зовнішня нормаль до поверхні S . Обчислимо кількість тепла, яка поступає всередину об'єму G через елементарну поверхню dS в одиницю часу:

$$dQ(x,t) = k(x)\frac{\partial u(x,t)}{\partial n}dS$$
(1.4).

Формула (1.4) є математичним виразом фізичного закону Фур'є.

Кількість тепла, яка проходить через всю поверхню S за час від t_1 до t_2

обчислюється за формулою
$$Q_2(t_1,t_2) = \int_{t_1}^{t_2} \iint_S k(x) \frac{\partial u(x,t)}{\partial n} dS dt$$
 (1.5).

Кількість тепла за рахунок теплових джерел в об'ємі $\,G\,$ можна обчислити у

вигляді:
$$Q_3(t_1, t_2) = \int_{t_1}^{t_2} \iiint_G f(x, t) dG dt$$
 (1.6).

Таким чином можна записати закон збереження теплової енергії:

 $\Delta Q_1(t_1,t_2) = Q_2(t_1,t_2) + Q_3(t_1,t_2)$, або після підстановки усіх величин маємо інтегральний закон збереження теплової енергії:

$$\iiint_{G} c(x) \rho(x) \Big[u(x,t_{2}) - u(x,t_{1}) \Big] dG = \int_{t_{1}}^{t_{2}} \iint_{S} k(x) \frac{\partial u(x,t)}{\partial n} dS dt + \int_{t_{1}}^{t_{2}} \iiint_{G} f(x,t) dG dt$$
 (1.7).

Для перетворення першого інтегралу лівої частини (1.7) застосуємо формулу Остроградського Гауса, $\iint_S \langle A, n \rangle ds = \iiint_G {
m div} \vec{A} dG$, де \vec{A} векторне поле. В результаті отримаємо:

$$\int_{t_1}^{t_2} \iiint_G c(x) \rho(x) \frac{\partial u(x,t)}{\partial t} dG dt = \int_{t_1}^{t_2} \iiint_G \operatorname{div}(k \operatorname{grad} u) dG dt + \int_{t_1}^{t_2} \iiint_G f(x,t) dG dt \tag{1.8},$$

де div(A) =
$$\frac{\partial A_1}{\partial x_1} + \frac{\partial A_2}{\partial x_2} + \frac{\partial A_3}{\partial x_3}$$
.

Враховуючи, що рівність (1.8) отримана для довільного об'єму G та

довільних моментів часу t_1, t_2 , можна зробити висновок, що рівність (1.8) має місце тоді і лише тоді, коли має місце рівність підінтегральних виразів:

$$c(x)\rho(x)\frac{\partial u(x,t)}{\partial t} = \operatorname{div}(k(x,t)\operatorname{grad}u(x,t)) + f(x,t), \ x \in G, t > 0$$
 (1.9).

Рівняння (1.9) повинно виконуватись для кожної точки x реального фізичного об'єму тіла (збережемо для нього позначення G , а для його поверхні позначення S), та для кожного моменту часу t>0 .

Для виділення єдиного розв'язку рівняння (1.9) окрім диференціального рівняння (1.9) необхідно задавати додаткові умови на границі просторово — часової області. Будемо використовувати фізичні міркування для задавання таких умов.

- а) Якщо на границі області відома температура тіла, тоді на границі тіла задають умову: $u\left(x,t\right)|_{x\in S}=v\left(x,t\right)$ (1.10).
- Умову (1.10) називають граничною умовою першого роду, або умовою Дірихле.
- б) Якщо на границі області відомий тепловий потік в одиницю часу, який поступає всередину тіла через одиничну площадку, тоді на границі задають граничну умову: $k\left(x,t\right)\frac{\partial u(x,t)}{\partial n}\bigg|_{x\in S}=q\left(x,t\right)$ (1.11).

Умову (1.11) називають граничною умовою другого роду, або умовою Неймана.

в) Якщо на границі тіла відбувається конвективний теплообмін з оточуючим середовищем відомої температури згідно до закону Ньютона, тоді на границі задають граничну умову: $k \frac{\partial u(x,t)}{\partial n} \bigg|_{x \in S} = \alpha(x,t) \big(v(x,t) - u(x,t) \big) |_{x \in S}$ (1.12).

Умову (1.12) називають граничною умовою третього роду або умовою Ньютона. $\alpha(x,t)>0$ - коефіцієнт теплообміну, v(x,t) - температура оточуючого середовища.

г) В початковий момент часу задають температура усіх внутрішніх точок тіла.

$$u(x,t)|_{t=0} = u_0(x)$$
 (1.13),

Умову (1.13) називають початковою умовою, а $u_0(x)$ - початковою температурою тіла.

Частинні випадки рівняння теплопровідності

У випадку, коли коефіцієнт теплопровідності та інтенсивність теплових джерел залежить не лише від точки простору і часу, а і від самої температури k(u,x,t), f(u,x,t), лінійне рівняння (1.9) стає квазілінійним, тобто лінійним відносно старших похідних.

Окрім загального вигляду рівняння теплопровідності, у практичних випадках часто використовуються частинні випадки рівняння.

Зокрема, можна розглядати розповсюдження тепла в одновимірних та двовимірних тілах:

(пластина)
$$\operatorname{div}(k \operatorname{grad} u)_2 = \frac{\partial}{\partial x_1} \left(k \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial x_2} \left(k \frac{\partial u}{\partial x_2} \right)$$
 (1.14),

(стрижень)
$$\operatorname{div}(k \operatorname{grad} u)_1 = \frac{\partial}{\partial x} \left(k \frac{\partial u}{\partial x} \right)$$
 (1.15).

Для однорідних тіл усі коефіцієнти рівняння можна вважати константами, зокрема $c=c_0$, $ho=
ho_0$, $k=k_0$ В результаті рівняння (1.9) буде мати вигляд

$$\frac{\partial u}{\partial t} = a^2 \Delta u + \frac{1}{c_0 \rho_0} f(x, t) \tag{1.16},$$

де
$$a^2 = \frac{k_0}{c_0 \rho_0}$$
, $\Delta u = \operatorname{div}(\operatorname{grad} u) = \sum_{i=1}^n \frac{\partial^2 u}{\partial x_i^2}$ – оператор Лапласа.

Зокрема одновимірне рівняння теплопровідності має вигляд:

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + \frac{1}{c_0 \rho_0} f(x, t)$$
 (1.17).

Рівняння дифузії речовини

Процес дифузії речовини це процес вирівнювання концентрації речовини у

розчинах, розплавах або в сумішах. Фізика вирівнювання температури в тілах та концентрації у розчинах чи розплавах має багато схожих рис і з цього приводу навіть процес розповсюдження тепла називають дифузією тепла.

Для отримання моделі дифузії речовини використаємо наступну таблицю аналогії.

Дифузія	Теплопрові	Пояснення
	дність	
u(x,t)	u(x,t)	Концентрація речовини в розчині,
		або у розплаві
c(x)	$c(x)\rho(x)$	Коефіцієнт пористості, відображає
		відношення об'єму пор до загального
		об'єму тіла і вказує на кількість речовини
		необхідну для зміни концентрації на
		одну одиницю в одиниці об'єму.
$D\frac{\partial u}{\partial n}dS$	$k\frac{\partial u}{\partial n}dS$	Закон Нерста, описує кількість
		речовини, яка поступає всередину тіла
		через його поверхню в одиницю часу за
		рахунок нерівномірності концентрації.
f(x,t)	f(x,t)	Інтенсивність джерела речовини в
		середині об'єму.
$D\frac{\partial u}{\partial n} = \alpha(v - u) _{S}$	$k\frac{\partial u}{\partial n} = \alpha(v - u) _{s}$	Кількість речовини, яка поступає
		через поверхню S тіла за законом,
		аналогічним закону Ньютона,
		ν– відома концентрація речовини
		в тому чи іншому середовищі;
		α-коефіцієнт проникності
		поверхні.

Побудови математичної моделі процесу дифузії відбувається за аналогією згідно до попередньої таблиці.

Кількість речовини, яка витрачена для зміни концентрації від $u(x,t_1) \! o \! u(x,t_2)$, $t_1 \! < \! t_2$ має вигляд:

$$\Delta Q_{1}(t_{1},t_{2}) = Q_{1}(t_{2}) - Q_{1}(t_{1}) = \iiint_{G} c(x) \Big[u(x,t_{2}) - u(x,t_{1}) \Big] dG$$
 (1.3').

Кількість речовини, яка проходить через всю поверхню S за час від $t_1 \rightarrow t_2$:

$$Q_2(t_1, t_2) = \int_{t_1}^{t_2} \iint_S D(x, t) \frac{\partial u}{\partial n} dS dt$$
 (1.5').

Кількість речовини, яка поступає за рахунок джерел речовини в об'ємі G за

час від
$$t_1$$
 до t_2 : $Q_3(t_1,t_2) = \int_{t_1}^{t_2} \iiint_G f(x,t) dG dt$ (1.6').

Отже, закон збереження маси має вигляд: $\Delta Q_1(t_1,t_2) = Q_2(t_1,t_2) + Q_3(t_1,t_2)$. Інтегральний закон збереження маси:

$$\iiint_{G} c(x) \left[u(x,t_{2}) - u(x,t_{1}) \right] dG = \int_{t_{1}}^{t_{2}} \iint_{S} D(x,t) \frac{\partial u}{\partial n} dS dt + \int_{t_{1}}^{t_{2}} \iiint_{G} f(x,t) dG dt$$
 (1.7').

Після застосування формули Остроградського — Гауса та прирівнювання підінтегральних виразів отримаємо рівняння дифузії речовини у вигляді:

$$c(x)\frac{\partial u}{\partial t} = \operatorname{div}(D(x,t)\operatorname{grad} u) + f(x,t), \quad x \in \mathsf{G}, \ t > 0$$
(1.17).

Додаткові умови на границі області задають аналогічно умовам для рівняння теплопровідності $u\big|_{S}=v\big(x,t\big)$ (1.18),

відома концентрація речовини на поверхні.

$$D\frac{\partial u}{\partial n}\big|_{S} = g(x,t) \tag{1.19},$$

на границі відомий потік речовини.

$$D\frac{\partial u}{\partial n} = \alpha(v - u)|_{S} \tag{1.20},$$

на границі відбувається обмін речовиною з оточуючим середовищем через

напівпроникливу мембрану за законом аналогічним закону Ньютона.

$$u(x,0) = u_0(x)$$
 (1.21),

в початковий момент часу відома концентрація речовини.

У випадку, коли коефіцієнти рівняння та граничних умов не залежать від часу t, розв'язок рівняння не залежить від часу в результаті отримаємо стаціонарне рівняння теплопровідності та дифузії:

$$\operatorname{div}(k(x)\operatorname{gradu}) = -f(x) \tag{1.22}$$

$$\operatorname{div}(D(x)\operatorname{gradu}) = -f(x) \tag{1.22'}$$

Задача Стефана

(задача про остигання та затвердіння розплавленого металу)

Вертикальний циліндричний посуд заповнений розплавленим металом, який знаходиться при заданій температурі $U_0 > U_{nn}$. Починаючи з моменту часу t_0 вільна поверхня розплавленого металу підтримується при постійній температурі $U_1 < U_{nn}$. Поставимо задачу про остудження та затвердіння металу, якщо дно і бокова поверхня посуду теплоізольовані. Термічними деформаціями об'єму процес розповсюдження тепла відбувається лише Введемо позначення:

 $ho_{_{\mathcal{D}}},
ho_{_{\mathit{m}}}$ - щільність твердої та рідкої фази металу;

 $c_{\scriptscriptstyle p}, c_{\scriptscriptstyle m}$ - теплоємність твердої та рідкої фази металу;

 $k_{_{\cal P}}, k_{_{\it m}}$ - теплопровідність твердої та рідкої фази металу;

 $\xi(t)$ - положення границі розділу твердої та рідкої фаз;

L - висота циліндру, S - площа основи циліндру;

 λ - питома теплота плавлення;

u(x,t) - температура в момент часу t в точці x .

Отримаємо рівняння теплового балансу для нескінченно малого об'єму розплавленого металу, який знаходиться між перерізами x та $x+\Delta x$ за проміжок часу від t до $t+\Delta t$.

Обчислимо кількість тепла, яка необхідна для зміни температури у виділеному елементарному об'ємі від значення u(x,t) до значення $u(x,t+\Delta t)$. Кількість тепла, що міститься в виділеному об'ємі в момент часу t можна обчислити за формулою $dQ(t)=c_p\rho_p S\Delta x u(x,t)$. Аналогічно для моменту часу $t+\Delta t$ кількість тепла дорівнює $dQ(t+\Delta t)=c_p\rho_p S\Delta x u(x,t+\Delta t)$. При цьому нехтуємо, зміною температури по просторовій змінній у середині елементарного об'єму. Тоді кількість тепла, необхідна для зміни температури всередині об'єму дорівнює: $\Delta Q(t,t+\Delta t)=c_p\rho_p S\Delta x (u(x,t+\Delta t)-u(x,t))$.

Ця зміна може відбуватися за рахунок теплових потоків, через перерізи x та $x+\Delta x$. Підрахуємо кількість тепла, яка поступає всередину тіла через переріз $x+\Delta x$ за час Δt

$$dQ(x + \Delta x) = k_p \frac{\partial u(x + \Delta x, t)}{\partial n} S\Delta t = k_p \frac{\partial u(x + \Delta x, t)}{\partial x} S\Delta t$$

Напрям нормалі в цьому перерізі співпадає з напрямом вісі x.

Кількість тепла, яка поступає всередину тіла через переріз x за час Δt можна записати у вигляді:

$$dQ(x) = k_p \frac{\partial u(x,t)}{\partial n} S\Delta t = -k_p \frac{\partial u(x,t)}{\partial x} S\Delta t$$

Таким чином можна скласти рівняння теплового балансу:

$$\Delta Q(t, t + \Delta t) = dQ(x + \Delta x) + dQ(x)$$

Або після підстановки відповідних значень поділених на $\Delta x \Delta t$ отримаємо:

$$\frac{c_{p}\rho_{p}S\Delta x(u(x,t+\Delta t)-u(x,t))}{\Delta x\Delta t}=k_{p}\left(\frac{\partial u(x+\Delta x,t)}{\partial x}-\frac{\partial u(x,t)}{\partial x}\right)\frac{S\Delta t}{\Delta x\Delta t}$$

Після граничного переходу коли Δx та Δt прямують до нуля, отримаємо

диференціальне рівняння:

$$c_{p}\rho_{p}\frac{\partial u(x,t)}{\partial t} = k_{p}\frac{\partial^{2}u(x,t)}{\partial x^{2}}, \ \xi(t) < x < L, \ t > t_{0}$$
(1.23).

Аналогічні міркування дозволяють отримати рівняння для твердої фази:

$$c_{m}\rho_{m}\frac{\partial u(x,t)}{\partial t} = k_{m}\frac{\partial^{2}u(x,t)}{\partial x^{2}}, \ 0 < x < \xi(t), t > t_{0}$$
(1.24).

Отримаємо співвідношення на границі розділу фаз.

В першу чергу відмітимо, що температура при переході через границю розділу фаз повинна змінюватись неперервно і співпадати з температурою плавлення металу, тобто повинно виконуватись співвідношення : $u(\xi(t)-0,t)=u(\xi(t)+0,t)=U_{nt} \tag{1.25}.$

Отримаємо рівняння теплового балансу для елементарного об'єму обмеженого перерізами $\xi(t) - \Delta x$ та $\xi(t) + \Delta x$

За час Δt затвердіє об'єм металу рівний $(\xi(t+\Delta t)-\xi(t))S$. При цьому буде виділено кількість тепла рівна $dQ_m=(\xi(t+\Delta t)-\xi(t))S\lambda \rho_m$.

Кількість тепла, яка надійде всередину об'єму за рахунок теплових потоків через відповідні перерізи за час Δt може бути записана у вигляді:

$$\Delta t S \left(k_p \frac{\partial u(\xi(t) + \Delta x)}{\partial x} - k_m \frac{\partial u(\xi(t) - \Delta x)}{\partial x} \right)$$

Оскільки фазовий перехід відбувається при постійній температурі, то в околі границі розділу фаз $\xi(t)$ зміною температури по змінній t можна нехтувати, в зв'язку з чим можна не враховувати кількість тепла, яка витрачається на зміну температури у виділеному елементарному об'ємі.

Рівняння теплового балансу для елементарного об'єму обмеженого перерізами $\xi(t) - \Delta x$ та $\xi(t) + \Delta x$ можна записати у вигляді:

$$(\xi(t+\Delta t)-\xi(t))S\lambda\rho_{m}=\Delta tS\left(k_{p}\frac{\partial u(\xi(t)+\Delta x)}{\partial x}-k_{m}\frac{\partial u(\xi(t)-\Delta x)}{\partial x}\right)$$
(1.26).

Поділивши обидві частини на Δt , скоротивши на S і спрямувавши $\Delta x, \Delta t$ до

нуля отримаємо співвідношення:

$$\lambda \rho_{m} \frac{\partial \xi(t)}{\partial t} = \left(k_{p} \frac{\partial u(\xi(t) + 0)}{\partial x} - k_{m} \frac{\partial u(\xi(t) - 0)}{\partial x} \right) \qquad t > t_{0}$$
 (1.27).

Умови (1.25), (1.27) називають внутрішніми граничними умовами, або умовами спряження.

Запишемо початкові умови та умови на верхній та нижній основі циліндру:

В початковий момент часу задана температура розплавленого металу:

$$u(x,t_0) = U_0, \ 0 < x < L$$
 (1.28).

На верхній основі задана температура:

$$u(0,t) = U_1, t > t_0$$
 (1.29).

Нижня основа теплоізольована, тобто тепловий потік, який поступає всередину тіла дорівнює нулю:

$$\frac{\partial u(L,t)}{\partial x} = 0, \ t > t_0 \tag{1.30}.$$

В початковий момент часу положення границі фазового переходу співпадає з верхньою основою циліндру:

$$\xi(0) = 0 \tag{1.31}.$$

Таким чином до моменту часу, коли весь метал затвердіє постановка задачі Стефана включає в себе рівняння (1.23) та (1.24), умови спряження (1.25) та (1.27), початкові умови (1.28) та (1.31) та граничні умови (1.29) та (1.30).

Після повного затвердіння металу, тобто коли $\xi(t_1) = L$, процес буде описуватись рівнянням (2) для $t > t_1$ з граничними умовами (1.29), (1.30) та початковою температурою $u(x,t_1)$.