

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

CKE 2013	UZUP	PEŁNIA ZDAJĄCY	miejsce
ny © (KOD	PESEL	miejsce na naklejkę
graficzi			
Układ			

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM ROZSZERZONY

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 24 strony (zadania 1–11). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

ı	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш
ı		Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш		Ш	Ш
١			Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш		II	Ш

UZUPEŁNIA ZESPÓŁ
NADZORUJĄCY

Uprawnienia zdającego do:

dostosowania
kryteriów oceniania
nieprzenoszenia
zaznaczeń na kartę

9 MAJA 2019

Godzina rozpoczęcia: 9:00

Czas pracy: 180 minut

Liczba punktów do uzyskania: 50

MMA-R1 **1**P-192

Zadanie 1. (5 pkt)

Funkcja f jest określona wzorem $f(x) = \frac{|x+2|}{x+2} - x + 3|x-1|$, dla każdej liczby rzeczywistej $x \neq -2$. Wyznacz zbiór wartości tej funkcji.

	Nr zadania	1.	
Wypełnia egzaminator	Maks. liczba pkt	5	
	Uzyskana liczba pkt		

Zadanie 2. (3 pkt)

Udowodnij, że dla dowolnych dodatnich liczb rzeczywistych x i y, takich że x < y, i dowolnej dodatniej liczby rzeczywistej a prawdziwa jest nierówność $\frac{x+a}{y+a} + \frac{y}{x} > 2$.

Egzamin maturalny z matematyki Poziom rozszerzony

	Nr zadania	2.	
Wypełnia	Maks. liczba pkt	3	
egzaminator	Uzyskana liczba pkt		

Zadanie 3. (3 pkt)

Dany jest trójkąt równoramienny ABC, w którym |AC| = |BC|. Na ramieniu AC tego trójkąta wybrano punkt M ($M \neq A$ i $M \neq C$), a na ramieniu BC wybrano punkt N, w taki sposób, że |AM| = |CN|. Przez punkty M i N poprowadzono proste prostopadłe do podstawy AB tego trójkąta, które wyznaczają na niej punkty S i T. Udowodnij, że $|ST| = \frac{1}{2}|AB|$.

Egzamin maturalny z matematyki Poziom rozszerzony

	Nr zadania	3.
Wypełnia	Maks. liczba pkt	3
egzaminator	Uzyskana liczba pkt	

Zadanie 4. (5 pkt)

Ciąg (a, b, c) jest geometryczny, ciąg (a+1, b+5, c) jest malejącym ciągiem arytmetycznym oraz a+b+c=39. Oblicz a, b, c.

	Nr zadania	4.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 5. (6 pkt)

Dane są okręgi o równaniach $x^2 + y^2 - 12x - 8y + 43 = 0$ i $x^2 + y^2 - 2ax + 4y + a^2 - 77 = 0$. Wyznacz wszystkie wartości parametru a, dla których te okręgi mają dokładnie jeden punkt wspólny. Rozważ wszystkie przypadki.

	Nr zadania	5.
Wypełnia egzaminator	Maks. liczba pkt	6
	Uzyskana liczba pkt	

Zadanie 6. (5 pkt)

Wielomian określony wzorem $W(x) = 2x^3 + (m^3 + 2)x^2 - 11x - 2(2m+1)$ jest podzielny przez dwumian (x-2) oraz przy dzieleniu przez dwumian (x+1) daje resztę 6. Oblicz m oraz pierwiastki wielomianu W dla wyznaczonej wartości m.

Odpowiedź:

	Nr zadania	6.
Wypełnia egzaminator	Maks. liczba pkt	5
	Uzyskana liczba pkt	

Zadanie 7. (4 pkt)

Rozwiąż równanie $\cos 2x = \sin x + 1$ w przedziale $\langle 0, 2\pi \rangle$.

	Nr zadania	7.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 8. (4 pkt)

Punkt D leży na boku AB trójkąta ABC oraz |AC|=16, |AD|=6, |CD|=14 i |BC|=|BD|. Oblicz obwód trójkąta ABC.

	Nr zadania	8.
Wypełnia egzaminator	Maks. liczba pkt	4
	Uzyskana liczba pkt	

Zadanie 9. *(6 pkt)*

Wyznacz wszystkie wartości parametru m, dla których funkcja kwadratowa f określona wzorem

$$f(x) = (2m+1)x^2 + (m+2)x + m - 3$$

ma dwa różne pierwiastki rzeczywiste x_1 , x_2 spełniające warunek $(x_1 - x_2)^2 + 5x_1x_2 \ge 1$.

Odpowiedź:

	Nr zadania	9.
Wypełnia	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

Zadanie 10. (3 pkt)

Ze zbioru {1, 2, 3, 4, 5, 6, 7, 8, 9} losujemy kolejno ze zwracaniem trzy liczby. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że dokładnie dwie spośród trzech wylosowanych liczb będą równe. Wynik zapisz w postaci ułamka nieskracalnego.

Wypelnia egzaminator	Nr zadania	10.
	Maks. liczba pkt	3
	Uzyskana liczba pkt	

Zadanie 11. *(6 pkt)*

Podstawą ostrosłupa ABCDS jest prostokąt ABCD, którego boki mają długości |AB|=32 i |BC|=18. Ściany boczne ABS i CDS są trójkątami przystającymi i każda z nich jest nachylona do płaszczyzny podstawy ostrosłupa pod kątem α . Ściany boczne BCS i ADS są trójkątami przystającymi i każda z nich jest nachylona do płaszczyzny podstawy pod kątem β . Miary kątów α i β spełniają warunek: $\alpha+\beta=90^\circ$. Oblicz pole powierzchni całkowitej tego ostrosłupa.

	Nr zadania	11.
Wypełnia egzaminator	Maks. liczba pkt	6
	Uzyskana liczba pkt	

BRUDNOPIS (nie podlega ocenie)