

Méthodes régime transitoire

Régime transitoire :

Diviseur de tension :

Le pont diviseur de tension est beaucoup plus utilisé que le pont diviseur de courant, donc entraîne-toi plus sur des exercices faisant intervenir le pont diviseur de tension.

Le schéma général du pont diviseur de tension est le suivant :

Le principe est le suivant : au numérateur on a la tension « totale » ainsi que la résistance R1 (si on va calculer U1) car U1 est la tension aux bornes de R1, et au dénominateur on a la somme des deux résistances.

Diviseur de courant :

Dans le pont diviseur de courant, les résistances ne sont pas en série mais en parallèle :

lci on va chercher la relation entre i1 et i, ou entre i2 et i.

Les formules sont les suivantes :

M

$$i_1 = \frac{R_2 i}{R_1 + R_2}$$
 et $i_2 = \frac{R_1 i}{R_1 + R_2}$

Réponse à un échelon de tension d'un circuit d'ordre 1 : RC Série

Cas ou le condensateur est chargé :

$$U_c(t) = U_0 \text{ pour } t < 0$$

$$U_c(t) = E + (U_0 - E)e^{-t/\tau}$$
 pour t > 0

Cas ou le condensateur est déchargé :

$$U_c(t) = 0$$
 pour $t < 0$

$$U_c(t) = E(1 - e^{-t/\tau}) \text{ pour } t > 0$$

et

$$i(t) = 0$$
 pour $t < 0$

$$i(t) = \frac{C}{\tau} E e^{-t/\tau}$$
 pour t > 0

Réponse à un échelon de tension d'un circuit d'ordre 1 : RL Série

$$i(t) = 0$$
 pour $t < 0$

$$i(t) = \frac{E}{R} (1 - e^{-t/\tau})$$
 pour t > 0

M

et
$$U_L(t) = 0 \text{ pour } t < 0$$

$$U_L(t) = Ee^{-t/\tau} \text{ pour } t > 0$$

Réponse à un échelon de tension d'un circuit d'ordre 2 : RLC Série

Réponse complète :

 $U_{c}(t)$ = Réponse du régime transitoire ($U_{c\,tr}(t)$) + Réponse du régime permanent (E)

Cas de régime pseudo périodique : $U_{ctr}(t) = Ce^{-\beta t}cos(\omega t + \varphi)$

Cas de régime apériodique : $U_{ctr}(t) = e^{-\alpha t} (A_1 e^{-\omega t} + A_2 e^{\omega t})$

Cas de régime critique : $U_{ctr}(t) = (a + bt)e^{-\omega_0 t}$