Notes: In the sequel, it is advisable to use the command

randn('seed',0)

before generating the data sets, in order to initialize the Gaussian random number generator to 0 (or any other fixed number). This is important for the reproducibility of the results.

Gaussian generator: Generate N l-dimensional vectors from a Gaussian distribution with mean m and covariance matrix S, using the mvnrnd MATLAB function.

Solution

Just type

mvnrnd(m,S,N)

1.

- **a.** Generate a data set X_1 of N=1,000 two-dimensional vectors that stem from three equiprobable classes modeled by normal distributions with mean vectors $m_1 = [1, 1]^T$, $m_2 = [12, 8]^T$, $m_3 = [16, 1]^T$ and covariance matrices $S_1 = S_2 = S_3 = 4I$, where I is the 2×2 identity matrix.
- **b.** Apply the Bayesian, the Euclidean, and the Mahalanobis classifiers on X_1 .
- Compute the classification error for each classifier.

2.

- a. Generate a data set X_2 of N = 1,000 two-dimensional vectors that stem from three equiprobable classes modeled by normal distributions with mean vectors $m_1 = [1, 1]^T$, $m_2 = [14, 7]^T$, $m_3 = [16, 1]^T$ and covariance matrices $S_1 = S_2 = S_3 = \begin{bmatrix} 5 & 3 \\ 3 & 4 \end{bmatrix}$.
 - (b)-(c) Repeat steps b) and (c) of experiment 2.2, for X_2 .

3.

- **a.** Generate a data set X_3 of N=1,000 two-dimensional vectors that stem from three equiprobable classes modeled by normal distributions with mean vectors $m_1 = [1, 1]^T$, $m_2 = [8, 6]^T$, $m_3 = [13, 1]^T$ and covariance matrices $S_1 = S_2 = S_3 = 6I$, where I is the 2×2 identity matrix.
 - (b)-(c) Repeat (b) and (c) from experiment 2.2, for X_3 .

4.

- a. Generate a data set X_4 of N=1,000 two-dimensional vectors that stem from three equiprobable classes modeled by normal distributions with mean vectors $m_1 = [1,1]^T$, $m_2 = [10,5]^T$, $m_3 = [11,1]^T$ and covariance matrices $S_1 = S_2 = S_3 = \begin{bmatrix} 7 & 4 \\ 4 & 5 \end{bmatrix}$.
 - (b)-(c) Repeat steps (b) and (c) of experiment 2.2, for X_4 .

5.

- a. Generate two data sets X_5 and X_5' of N=1,000 two-dimensional vectors each that stem from three classes modeled by normal distributions with mean vectors $m_1 = [1, 1]^T, m_2 = [4, 4]^T, m_3 = [8, 1]^T$ and covariance matrices $S_1 = S_2 = S_3 = 2I$. In the generation of X_5 , the classes are assumed to be equiprobable, while in the generation of X_5' , the *a priori* probabilities of the classes are given by the vector $P = [0.8, 0.1, 0.1]^T$.
- **b.** Apply the Bayesian and the Euclidean classifiers on both X_5 and X_5' .
- c. Compute the classification error for each classifier for both data sets and draw your conclusions.

6.

Consider the data set X_3 (from experiment (2.4)). Using the same settings, generate a data set Z, where the class from which a data vector stems is known. Apply the k nearest neighbor classifier on X_3 for k = 1 and k = 11 using Z as the training set and draw your conclusions.