<u>Review</u>	for vector spaces V and W, have
---------------	---------------------------------

a vector space $W \otimes V = Bil(W^v, V^v)$ called their tensor product [whose elts are called tensors]

and a bilinear map W x V to W ⊗ V denoted

(w, v) mapsto $w \otimes v$,

explicitly, $w \otimes v : W^v \times V^v$ to F is def by $(w \otimes v)(\psi, \theta) = \psi(w)\theta(v)$

Rem the elts of W \otimes V taking the form w \otimes v are called <u>pure</u> tensors all other elts are called mixed tensors

today: be more concrete, assuming V, W fin. dim'l

Q what is dim W ⊗ V in terms of dim W and dim V? [pause]

 $\underline{A} \qquad \dim W \otimes V = \dim Bil(W^{v}, V^{v})$ $= (\dim W^{v})(\dim V^{v})$ $= (\dim W)(\dim V)$

Α

Q how to get a basis for W ⊗ V of this size? [pause] in terms of bases of W and V? [pause]

fix ordered bases v1, ..., vn for V w1, ..., wm for W consider the elts w_j \otimes v_i

<u>Γhm</u>	(w_j ⊗ v_	_i)_{j, i} is a	basis for $W \otimes V$
------------	-----------	-----------------	-------------------------

<u>Pf</u> this set has size $mn = dim W \otimes V$ so, enough to show it is linearly indep.

suppose sum_ $\{j, i\}$ c_ $\{j, i\}$ (w_ $j \otimes v_i) =$ **0** $for some c_<math>\{j, i\}$ in F

[idea: need to use def of w_j ⊗ v_i somehow]
our chosen bases of V and W define dual bases
θ1, ..., θn for V'
ψ1, ..., ψm for W'
[recall what dual means]

then the def of $w_j \otimes v_i$ becomes:

$$(w_j \otimes v_i)(\psi_{\ell}, \theta_k) = 1 \text{ if } (j, i) = (\ell, k)$$

0 else

so evaluating sum_{j, i} c_{j, i} (w_j \otimes v_i) (as a bilinear functional) on $(\psi \ \ell, \theta \ k)$

gives c_{ ℓ , k} (w_ $\ell \otimes v_k$)(ψ_ℓ , θ_k) = c_{ ℓ , k}

so if sum_{j, i} c_{j, i} (w_j \otimes v_i) = **0**_{W} \otimes V} then c_{l, k} = 0 for all l, k

hence the set of $w_j \otimes v_i$'s is linearly indep. \Box

Q suppose v = sum_i a_iv_i w = sum_j b_jw_j

what is the expansion of $w \otimes v$ wrt the basis $(w_j \otimes v_i)_{j, i}$?

simpler questions:

given v, v' in V and w, w' in W and c in F, how to simplify $(w + w') \otimes v$?

> $w \otimes (v + v')$? $(cw) \otimes v$? $w \otimes (cv)$?

A [mentioned last time that we would prove:]

Lem the map B : W \times V to W \otimes V def by B(w, v) = w \otimes v is bilinear

i.e., $B(w,-): V \text{ to } W \otimes V$ and $B(-,v): W \text{ to } W \otimes V$

are linear maps for any w in W, v in V

equivalently: for all v, v', w, w', and c,

1) $(w + w') \otimes v = w \otimes v + w' \otimes v$

2) $W \otimes (V + V') = W \otimes V + W \otimes V'$

3) (cw) \otimes v = c(w \otimes v) = w \otimes (cv)

Pf of 1) for any (ψ, θ) in $W^v \times V^v$:

 $((w + w') \otimes v)(\psi, \theta)$ [pause: next?] = $\psi(w + w')\theta(v)$

 $= (\psi(w) + \psi(w'))\theta(v)$

 $= \psi(w)\theta(v) + \psi(w')\theta(v)$

 $= (w \otimes v)(\psi, \theta) + (w' \otimes v)(\psi, \theta)$

 $= (\mathsf{w} \otimes \mathsf{v} + \mathsf{w}' \otimes \mathsf{v})(\psi, \, \theta)$

hence $(w + w') \otimes v = w \otimes v + w' \otimes v$

Pf of 2) similar

Pf of 3) "left to the reader"

<u>Cor</u>	given	v = sum_i a_iv_i, w = sum_j b_jw_j
	w 🛇 v	- eum si its (h iw

$$w \otimes v = sum_{j, i} (b_{jw_{j}}) \otimes (a_{iv_{i}})$$

= $sum_{j, i} b_{ja_{i}} (w_{j} \otimes v_{i})$

$$\underline{Q}$$
 what is the "simplest" mixed tensor, i.e., tensor not of the form $w \otimes v$?

if dim V = 1 or dim W = 1? no dice

take $V = W = F^2$ and (e1, e2) the standard basis

by the thm, F^2 \otimes F^2 has the basis (e1 \otimes e1, e1 \otimes e2, e2 \otimes e1, e2 \otimes e2)

any pure tensor will look like

e.g., e1 \otimes e1 + e2 \otimes e2

(b1 e1 + b2 e2)
$$\otimes$$
 (c1 e1 + c2 e2)
= b1 c1 (e1 \otimes e1) + b1 c2 (e1 \otimes e2)
+ b2 c1 (e2 \otimes e1) + b2 c2 (e2 \otimes e2)

the mixed tensors are the ones that cannot be written this way for any b1, b2, c1, c2 [pause: example?]

Rem so far we've discussed the ⊗ operation on vectors

remember that ⊗ also denotes a separate operation on vector spaces

Properties of Tensor Products of Vector Spaces

recall that $W \oplus V$ denotes the vector space formed by $W \times V$

[e.g.,
$$F^m \oplus F^n = F^m + n$$
]

[below, equality signs should be isomphm signs]

- 1) $W \otimes (V \oplus V') = W \otimes V \oplus W \otimes V'$
- 2) $(W \oplus W') \otimes V = W \otimes V \oplus W' \otimes V$
- 3) $(W \otimes V) \otimes U = W \otimes (V \otimes U)$

seem obvious but take more work: iso's, not equalities, so we must give actual maps

e.g., what's the left-to-right linear iso in 1)

 $W \otimes (V \oplus V')$ spanned by pure tensors $w \otimes (v, v')$ so enough to say where they go: [pause: where?]

$$w \otimes (v, v')$$
 mapsto $(w \otimes v, w \otimes v')$

(Axler §9B, 9D) using the associativity 3), form iterated tensor products:

Df a map μ : V_1 × V_2 × ... × V_r to U is multilinear iff,

for any index i, and choice of w_j in V_j for all $j \neq i$, the map V_i to U given by v mapsto $\mu(..., w \{i-1\}, v, w \{i+1\}, ...)$ is linear

U = F: we say μ is a <u>multilinear functional</u>

U = F and V = V_i for all i: it's an <u>r-linear form</u>

let Mult(V_1, ..., V_r) = {multilinear functionals on $V_1 \times V_2 \times ... \times V_r$ }

Thm just as V_1 \otimes V_2 satisfies
Bil(V_1, V_2) = (V_1 \otimes V_2) $^{\vee}$,
so V_1 \otimes ... \otimes V_r satisfies

 $\mathsf{Mult}(\mathsf{V}_1,\ \ldots,\ \mathsf{V}_r) = (\mathsf{V}_1 \otimes \ldots \otimes \mathsf{V}_r)^{\mathsf{v}}$

[why care?] on Wed: determinants as multilinear forms