VOLUME I, BOOK 1 FINAL REPORT

ENERGY SAVINGS OPPORTUNITY SURVEY (ESOS)

WHITE SANDS MISSILE RANGE NEW MEXICO

Approved for public released
Disminunce Unlimited

Prepared for

DEPARTMENT OF THE ARMY FORT WORTH DISTRICT, CORPS OF ENGINEERS FORT WORTH, TEXAS

Under

CONTRACT NO. DACA63-91-C-0152 EMC No. 1110-000

19971023 180

November 1992

DIE COVIMA INCLUMENTO S

By

E M C ENGINEERS, INC. 2750 South Wadsworth Blvd. Suite C-200 Denver, Colorado 80227

This study consists of VOLUME I BOOK 1, VOLUME I BOOK 2, AND VOLUME II

DEPARTMENT OF THE ADMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS P.O. BOX 9005 CHAMPAIGN, ILLINOIS 61826-9005

ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakeffeld, Librarian Engineering

EXECUTIVE SUMMARY

INTRODUCTION

Purpose

The purpose of this study is to analyze the application of selected Energy Conservation Opportunities (ECOs) to designated buildings and systems at the White Sands Missile Range (WSMR). The study has nine elements:

- 1. Perform a field survey of designated buildings.
- 2. Evaluate ten ECOs applied selectively to 45 buildings in the Main Post Area. (General ECOs).
- 3. Evaluate six specified ECOs at Building P300.
- 4. Perform complete energy surveys on Buildings P21140, P21695, and P24072.
- 5. Evaluate the refurbishment of the chilled water plant in P24066 to serve four buildings in Launch Complex 38.
- 6. Identify and evaluate other ECOs. (Contractor-identified ECOs)
- 7. Analyze historical electrical demand readings for the Main Post Area and recommend ways to reduce and limit peak demand. (Demand Side Management)
- 8. Evaluate the feasibility of constructing a consolidated chilled water plant to serve the Tech Area. Consider thermal storage and cogeneration as alternatives.
- 9. Present all findings and recommendations in a comprehensive report.

Recent Historical Energy Consumption for WSMR Lower Range

Both electrical energy consumption and peak electrical demand have been quite constant for FY89, FY90, and FY91.

Electricity	FY89	FY90	FY91
Electrical energy (kWh)	100,656,817	100,335,675	100,241,069
Average peak electrical demand (kW)	18,150	17,760	17,550

The 1991 electrical unit prices are \$0.0221/kWh and \$19.50/kW. FY91 electrical energy costs were \$2,241,268, whereas on peak demand charges were \$4,110,113. Currently, the peak demand charge is almost twice the electrical energy charge.

Natural gas consumption is decreasing slightly:

Natural Gas	FY89	FY90	FY91
Total kcf	275,184	268,695	247,931

The current unit gas price (1,031 Btu/cu ft) is \$2.2124/MBtu.

Launch Complex 38 is supplied propane gas at a unit price of \$6.71 per million BTU.

For the entire WSMR, the specific energy consumption (kBtu/SF) and goal are indicated below:

	Actual (kBtu/SF)	Goal (kBtu/SF)
FY85	133.95	-
FY91	123.34	127.52
FY2000		107.16

GENERAL ECOs

Table ES-1 below lists the general ECOs evaluated for designated buildings.

TABLE ES-1 ECOS TO BE EVALUATED FOR DESIGNATED BUILDINGS

ECO #	Short Title	Designated Buildings
2	Add roof insulation	T117, P1830
4	Lower ceiling	P1782, P1830, P1530
7	Install air curtains	P160
9	Replace windows with energy efficient windows	P100, P102, P124, P128, P129, P143, P501, P502, P503, P504
10.	Install instantaneous domestic water heaters (point-of-use)	P102, P124, P153, P236, P254, P260, P300, P380, P464, P1504, P1506, P1512, P1526, P1528, P1530, S1558, P1621, P1622, P1624, P1751, S1753, S1790, P1794
12	Replace existing lighting fixtures	P1743, P1751, S1753, S1790, P1794, P1830, P1845
13	Replace old fluorescent fixtures with efficient fixtures, lamps and ballasts	P1743, P1751, S1753, S1790, P1794, P1830, P1845
17	Install infra-red or radiant gas heaters in high bay areas	S1550, S1554, P1644, S1680, P1751, S1753, P1788, P1794, P1827, P1833
19	Install thermostatically controlled radiator/convector valves	P100, P124
20	Modify heating controls	P100, P124
29	Install a steam booster heater on a dishwasher	P1330
30	Install a boiler for summer domestic hot water load	P236

ECO #4 (lower ceiling) was not evaluated for Buildings P1530 and P1782, as during the survey it was determined that energy would not be saved.

The Consolidated Mess, Building P160, was not evaluated for ECO #7 (air curtains) because air curtains are already installed on the entries and exits.

ECO #10 (electric point-of-use water heaters) is not practically feasible for P236 (gymnasium) and P1621 (photo lab).

ECO #19 applies to Building P100. ECO #20 applies to P124. Both involve modifying heating controls, and are evaluated as a single ECO.

ECO #29 (install steam booster heater on a dishwasher) was not evaluated at Building P1330, because one is already in place.

The results of the evaluations are shown in Tables ES-2 and ES-3.

TABLE ES-2 RECOMMENDED GENERAL ECOs

				F			
			_	Energy			
			Energy	Dollar	Construction		
Bldg.	ECO	ECO	Savings	Savings	Cost	SPB	SIR
No.	No.	Description	(MBtu/yr)	(\$/yr)	(\$)	(yrs)	
		Install heating control					
P124	19-20	valves/modify heating	747.3	1,779	5,191	3.3	3.8
		controls					
		Replace lighting fixtures					
S1790	12-13	with efficient fixtures,	57.0	369	9,643	5.0	2.9
		iamps and ballasts					
		Replace lighting fixtures					
P1794	12-13	with efficient fixtures,	135.1	875	24,962	5.5	2.7
		lamps and ballasts					
		Replace lighting fixtures					
P1743	12-13	with efficient fixtures,	119.3	773	26,824	6.7	2.2
		lamps and ballasts					
		Replace lighting fixtures					
P1845	12-13	with efficient fixtures,	1.1	7	281	7.4	2.0
		lamps and ballasts			`		
		Replace lighting fixtures					
P1751	12-13	with efficient fixtures,	38.0	246	9,515	7.5	2.0
		lamps and ballasts			, , , , ,		
		Install heating control	7.5				
P100	19-20	valves/modify heating	839.4	2,082	12,071	6.5	1.9
		controls			·		
		Replace lighting fixtures					
P1830	12-13	with efficient fixtures,	45.7	296	12,211	8.0	1.9
		lamps and ballasts					
		Replace lighting fixtures					
S1753	12-13	with efficient fixtures,	26.6	174	7,396	8.2	1.8
		lamps and ballasts					
T117	2	Add roof insulation	45.6	109	1,450	14.9	1.3
P1794	17	Infrared heaters in	369.4	906	14,602	9.7	1.2
		high-bay areas					
P1788	17	Infrared heaters in	111.8	270	5,677	10.3	1.1
		high-bay areas					
P1827	17	Infrared heaters in	226.0	517	10,695	11.5	1.0
		high-bay areas					
P1751	17	Infrared heaters in	223.3	532	10,584	11.7	1.0
		high-bay areas					

2,985.0 8,93

TABLE ES-3 NONRECOMMENDED GENERAL ECOs

				Energy		********	
		/	Engrey	Energy Dollar	Construction		
ا ا	F00	500	Energy		1	000	
Bldg.	ECO	ECO	Savings	Savings	Cost	SPB	SIR
No.	No.	Description	(MBtu/yr)		(\$)	(yrs)	
P1833	17	Infrared heaters in	117.2	278	8,268	13.8	0.8
S1644	17	high-bay areas	05.0	000	0.070	40.0	
31044	17	Infrared heaters in	65.3	232	3,873	13.9	0.8
S1753	17	high-bay areas Infrared heaters in	91.3	201	6,793	14.4	0.8
31/33	17	high-bay areas	91.3	221	6,793	14.4	0.8
		Replace windows with					
P502	9	energy efficient windows	30.0	187	29,046	17.6	0.8
1 302	9	-grey glass	30.0	107	29,040	17.0	0.8
		Replace windows with					
P502	9	energy efficient windows	30.3	196	26,747	21.2	0.7
1 302	3	-clear glass	30.3	190	20,747	21.2	0.7
S1550	17	Infrared heaters in	140.6	531	10,313	18.0	0.6
0.000	''	high-bay areas	140.0	351	10,515	10.0	0.0
S1554	17	Infrared heaters in	140.6	531	10,313	18.0	0.6
		high-bay areas	140.0	301	10,515	.0.0	0.0
S1680	17	Infrared heaters in	241.6	577	10,530	20.3	0.6
		high-bay areas	1		,,,,,		5.5
		Replace windows with					
P501A	9	energy efficient windows	33.0	213	42,361	24.2	0.6
		-grey glass			,		0.0
		Replace windows with					
P501A	9	energy efficient windows	33.0	213	39,008	26.9	0.6
		-clear glass					
S1790	10	Install instantaneous	28.9	53	2,334	49.2	0.4
		DHW heaters					
P1751	10	Install instantaneous	21.2	39	2,324	67.3	0.3
		DHW heaters					
P1506	10	Install instantaneous	86.3	106	9,176	96.4	0.3
		DHW heaters					
P1512	10	Install instantaneous	37.4	72	8,458	131.8	0.2
		DHW heaters					
P1830	4	Lower ceiling	66.9	114	93,109	124.9	0.1
P124	9	Replace windows with	312.4	764	102,092	149.0	0.1
		energy efficient windows					
		Replace windows with					
P501B	9	energy efficient windows	69.0	160	27,507	154.4	0.1
		-clear glass					
P129	9	Replace windows with	73.4	240	37,866	175.6	0.1
D4 42		energy efficient windows					
P143	9	Replace windows with	73.4	240	37,866	175.6	0.1
Dio	_	energy efficient windows					
P128	9	Replace windows with	135.9	402	72,187	200.1	0.1
D150	10	energy efficient windows	12:	ļ			
P153	10	Install instantaneous	10.1	11	2,314	243.1	0.1
<u> </u>	L	DHW heaters	<u> </u>	<u> </u>	1		

TABLE ES-3 NONRECOMMENDED GENERAL ECOs (Concluded)

				Engrav	<u> </u>		
			F	Energy	0		
DI-i-		F00	Energy	Dollar	Construction	1	
Bldg.	ECO	ECO	Savings	Savings	Cost	SPB	SIR
No.	No.	Description	(MBtu/yr)		(\$)	(yrs)	
S1753	10	Install Instantaneous	9.7	10	2,314	251.2	0.1
		DHW heaters					
P100	9	Replace windows with	188.2	251	57,602	256.3	0.1
		energy efficient windows					
P102	9	Replace windows with	43.1	101	27,622	305.2	0.1
		energy efficient windows					
P504	9	Replace windows with	46.3	118	32,969	310.4	0.1
		energy efficient windows					
P503	9	Replace windows with	54.9	133	40,750	342.5	0.1
		energy efficient windows					
P380	10	Install instantaneous	11.3	21	7,620	400.8	0.1
		DHW heaters					
P1622	10	Install instantaneous	44.2	32	12,378	430.6	0.1
		DHW heaters					
P254	10	Install instantaneous	18.4	10	4,628	529.2	0.1
		DHW heaters					
P1528	10	Install instantaneous	33.3	8	6,234	857.7	0.1
		DHW heaters		<u> </u>			
P102	10	Install instantaneous	33.5	10	7,820	891.6	0.1
		DHW heaters					
P124	10	Install instantaneous	36.1	19	16,158	927.4	0.1
		DHW heaters					
P260	10	Install instantaneous	11.9	3	3,830	1382.8	0.1
		DHW heaters					
P1794	10	Install instantaneous	13.6	10	12,374	1410.7	0.1
		DHW heaters					
P300	10	Install instantaneous	78.7	14	20,826	1704.1	0.1
		DHW heaters					
P1624	10	Install instantaneous	39.3	2	10,892	7394.5	0.1
		DHW heaters					
P1504	10	Install instantaneous	27.7	(4)	3,830	N/A	N/A
		DHW heaters		\ ''	,,,,,,		
P464	10	Install instantaneous	9.0	(8)	4,588	N/A	N/A
		DHW heaters	5.5	()	4,000	1	100
S1558	10	Install instantaneous	15.2	(13)	7,666	N/A	N/A
01000		DHW heaters	10.2	(13)	7,000	IVA	IVA
P1530	10	Install instantaneous	45.0	(47)	10.400	AI/A	NI/A
1 1330	10		45.6	(47)	12,408	N/A	N/A
DIESS	- 10	DHW heaters					
P1526	10	Install instantaneous	7.0	(51)	6,104	N/A	N/A
5 455		DHW heaters					
P1621	10	Install instantaneous	212.0	(1,210)	2,314	N/A	N/A
		DHW heaters					

BUILDING P300: RANGE CONTROL

The following ECOs were designated in the Scope of Work for P300:

- 1. Use more efficient lighting fixtures.
- 2. Reduce lighting levels.
- 3. Use recovered waste heat.
- 4. Use dry bulb economizers.
- 5. Reduce outside air quantities.
- 6. Use thermal storage for demand reduction.
- 7. Convert constant volume air handlers to variable air volume.
- 8. Consolidate multiple air-cooled chillers onto two high-efficiency, water-cooled centrifugal chillers.

ECO #2 was not evaluated because lighting energy conservation is widely practiced in the building. ECO #5 was not evaluated because makeup air is currently a fixed rate that is in compliance with ventilation standards.

Tables ES-4 and ES-5 present the results of the evaluated ECOs.

TABLE ES-4 RECOMMENDED ECOs, P300

Bldg. No.	ECO No.	ECO Description	Energy Savings (MBtu/yr)	Total Dollar Savings (\$/yr)	Construction Cost (\$)	SPB (yrs)	SIR
P300	6	Thermal storage	(224.3)	40,2 85	165,000	4.6	3.3
P300	8	Convert existing chiller plant to consolidated chiller plant	635.0	4,112	56,100	5.2	2.9
P300	1	Replace lighting fixtures with efficient fixtures, lamps, & ballasts	190.0	1,305	38,783	6.0	2.5
P300	7	Convert existing AHUs to variable- air-volume	4877.6	28,301	268,913	6.0	1.8

TABLE ES-5 NONRECOMMENDED ECOS

Bldg. No.	ECO No.	ECO Description	Energy Savings (MBtu/yr)	Total Dollar Savings (\$/yr)	Construction Cost (\$)	SPB (yrs)	SIR
P300	3	Waste heat recovery from chiller plant	2607.8	7375	91,996	7.4	2.2
P300	4	Dry bulb economizers on AHUs	(798)	3,970	149,536	14.9	0.7

BUILDING ENERGY SURVEYS

Complete energy surveys were performed at Buildings P21140, Temperature Test Facility, P21695, Special Weapons Assembly Building (SWAB), and P24072, Helicopter Drone Maintenance Facility.

The TRACE 600 program was used to model the existing building baseline and ECO configurations. Each of these buildings was constructed as a special use facility, and applicable ECOs are very limited.

Table ES-6 presents baseline energy consumption data, and Tables ES-7 and ES-8 present ECO evaluation results.

TABLE ES-6 BASELINE ENERGY DATA

	A	Annual Energy Consumption				
Building	Elec. (kWh)	Elec. Demand (kW)	Gas (MBtu)	Specific (Btu/SF)		
P21140 (no temperature test energy use included)	458,686	94	0	66,250		
P21695	252,112	81.3	869.6	99,147		
P24072	452,691	61.9	(Propane) 659.0	61,989		

TABLE ES-7 RECOMMENDED ECOs, P21140, P21695, P24072

Bldg. No.	ECO Description	Energy Savings (MBtu/yr)	Energy Dollar Savings (\$/yr)	Construction Cost (\$)	SPB (yrs)	SIR
P21695	Setback/ thermostats	517.4	1,675	136	0.1	128.0
P24072	Modify HVAC Controls	359.2	2,366	2,016	0.7	16.6
P24072	Replace lighting fixtures with efficient fixtures, lamps & ballasts; disconnect lighting in non-use areas	376.8	2,361	11,338	1.9	6.9
P21140	Replace lighting fixtures with efficient fixtures, lamps & ballasts	1.1	7.3	281	7.4	2.0
P21695	Replace lighting fixtures with efficient fixtures, lamps & ballasts	6.4	90	4,259	8.2	1.8
21140	Reduce stratification	12.8	234	4,077	13.6	1.1

TABLE ES-8 NONRECOMMENDED ECOs, P21140, P21695, 24072

Bldg. No.	ECO Description	Energy Savings (MBtu/yr)	Energy Dollar Savings (\$/yr)	Construction Cost (\$)	SPB (yrs)	SIR
P24072	Dry-bulb economizer on AHU	10.2	66.2	2,047	21.7	0.5
P21695	Replace windows with energy efficient windows	6.0	29.0	5,107	83.0	0.2
P21695	Dry-bulb economizer on AHU	0.6	5.0	997	242	0.1

LAUNCH COMPLEX 38

The chilled water plant located in P24066 was surveyed to determine the feasibility of refurbishing the plant and using it to supply P24072, P23638, P23640, and P23642 in Launch Complex 38. It was determined that the condenser water side of the plant is too deteriorated to refurbish and the two 550-ton chillers are much too large in capacity to efficiently supply the load on the four buildings. While, P24066 is adjacent to P24072, it is a mile away from the other three buildings. Piping costs are prohibitive.

Four chilled water (CW) plant alternatives were identified and evaluated:

- Alt. #1A: Install a CW plant near P23638 with air-cooled chillers to supply the four buildings.
- Alt. #1B: Install a CW plant near P23638 with water-cooled chillers to serve the four buildings.
- Alt. #2A: Install CW plant near P23642 with air-cooled chillers to serve P23638, P23640, and P23642. Use the existing air-cooled chillers at P24072 to serve that building.
- Alt. #2B: The same as for Alt. #2A except use water-cooled chillers in the new plant.

The results are shown in Table ES-9.

TABLE ES-9 SUMMARY OF ECOs, LC38

Bldg. No.	ECO No.	ECO Description	Energy Savings (MBtu/yr)	Energy Dollar Savings (\$/yr)	Construction Cost (\$)	SPB (yrs)	SIR
LC38 Chiller Plant Study	Alt #2B	130-ton water-cooled chiller plant	4,161	26,966	367,262	7.8	2.2
LC38 Chiller Plant Study	Alt #2A	140-ton air-cooled chiller plant	3,974	25,751	325,091	9.4	1.9
	Alt #1A	200-ton air-cooled chiller plant	4,505	29,190	371,979	11.5	1.6
	Alt #1B	150-ton water-cooled chiller plant	4,691	30,398	703,072	15.8	1.1

At the time of the interim report presentation and review conference (May 28, 1992), it was learned that new air-cooled chillers have been installed at P23640. Also, a work order for new air-cooled chillers for P23638 has been requested. As a result, it is not feasible to proceed with any of the 4 alternatives considered, and none is recommended for implementation.

CONTRACTOR-IDENTIFIED ECOs

Buildings P23640 and P23642 were constructed as special purpose mission support buildings for the Nike Zeus program, which was discontinued about 30 years ago. The buildings are currently used to support new missions, totally incompatible with the original building designs. Several ECOs at each building were identified that potentially would save energy and correct severe building discrepancies for the current occupants.

In the case of both buildings, a modified configuration consisting of several ECOs was evaluated and compared to the baseline configuration.

Modified Configurations

P23640:

- Upgrade AHU-2 by installing a chilled water coil, repairing the makeup air damper actuator, and installing a dry bulb economizer control.
- Replace the fan motor on AHU-1 with a high efficiency motor and reduce supply airflow rate to 1.5 cfm/SF.

- Optimize the supply air temperature setpoint on AHU-1 and AHU-2.
- Install a 6°F chilled water setpoint reset on the two 50 ton chillers and control the returned chilled water to 55°F.
- Replace standard fluorescent lamps and ballasts with low wattage lamps and ballasts.

P23642:

- Replace standard fluorescent lamps and ballasts with low wattage lamps and ballasts.
- Reduce supply cfm on all 3 AHUs.
- Install dry bulb economizers on all 3 AHUs.
- Replace fan motors on all AHUs with smaller, high efficiency motors.

<u>Results</u>: The baseline and modified configuration were evaluated for each building using the TRACE 600 program. The results for the modified configurations are shown in Table ES-10 below.

TABLE ES-10 RECOMMENDED ECOs, P23640, P23642

Bldg. No.	Description	Energy Savings (MBtu/yr)	Energy Dollar Savings (\$/yr)	Construction Cost (\$)	SPB (yrs)	SIR
P23640	Modified configuration	1,065	6,938	15,025	1.1	10.2
P23642	Modified configuration	171	1,104	24,053	4.3	2.5

DEMAND SIDE MANAGEMENT (DSM)

Copies of El Paso Electric Utility demand meter records for January, July, and October for 1989, 1990 and 1991 were analyzed, and measures to reduce and control on peak electrical demand were recommended.

<u>Typical Demand Profiles</u>: The following data characterize typical workday and nonworkday electrical demand profiles at the Main Post Area. On peak refers to the period from 0730 hours to 1630 hours, and off peak to the rest of the day. The demand kW values shown are nominal maximums.

Workdays	Offpeak kW	On Peak kW	Rise kW
January 1991	5,000	7,800	2,800
July 1991	6,000	11,700	5,700
October 1991	5,000	8,500	3,700
Nonworkdays			
January 1991	5,500	5,300	-200
July 1991	6,000	6,700	700
October 1991	4,800	5,500	700

The average El Paso Electric Company peak demand for WSMR is 10,150 kW, and is referred to as the conjunctive peak. It is the sum of peak kW readings recorded at each of the six substations corresponding to the date and time of the highest monthly demand registered. Usually the peak demand occurs at the time the Main Post substation peaks. Note that the Main Post Area peak demand occurs in July, and is nominally 11,700 kW, or about two-thirds of the conjunctive peak. The demand profiles at the other 5 substations are relatively flat, so the opportunities for DSM exist primarily at the Main Post Area.

<u>DSM Opportunities</u>: The significant opportunities to reduce peak electrical demand are shown in the matrix below. The electric service contract contains no demand ratchet clause, which increases opportunities for reducing demand charges.

Opportunity	Priority	Annual Dollars Saved (\$/kW)
Install efficient lighting systems	High	427.60
Thermal storage for chillers	Medium	234.00
Reduce excessive supply airflows	Medium	234.00
Install high efficiency motors	Low	427.60
Convert AHUs to VAV	High	234 to 427.60

At the time of this report submittal, the only DSM rebate available from El Paso Electric Company is \$190.00 per kW of shifted load, which applies only to thermal storage.

CONSOLIDATED CHILLED WATER PLANT TO SERVE THE TECH AREA

<u>General</u>: Nine buildings in the Tech Area have chilled water systems, and there is a continuous chilled water load in a few buildings. It is necessary to operate some chillers all year long. Most of the existing refrigeration units are air-cooled cold generators and are quite inefficient in hot ambient temperature conditions. Four consolidated chilled water plant alternatives were evaluated, each using water-cooled equipment.

- Alt. #1: Consolidated chilled water plant without chilled water thermal storage.
- Alt. #2: Same as Alt. #1 but with chilled water thermal storage.
- Alt. #3: Cogeneration plant with gas turbine-generator set, steam driven rotary chillers, and heat recovery steam generator.
- Alt. #4: Same as Alt. #3 except the chillers are steam powered double effect absorption chillers.

Each alternative includes a chilled water loop to serve the nine buildings, sized for the summer peak load. Alt. #3 and Alt. #4 include a steam and condensate loop that serves all heated buildings in the Tech Area.

Table ES-11 presents the results. None of the alternatives qualifies for implementation under the ECIP guidelines.

TABLE ES-11 NONRECOMMENDED ECOs, TECH AREA

Bldg. No.	ECO No.	ECO Description	Energy Savings (MBtu/yr)	Energy Dollar Savings (\$/yr)	Construction Cost (\$1,000)	SPB (yrs)	SIR
Technical Area Chiller Plant Study	Alt. #1	Consolidated chiller plant w/o thermal storage	7,654	49,559	1,681	N/A	0.53
	Alt. #2	Consolidated chiller plant w/chilled water storage	7,410	47,981	2,378	N/A	0.37
	Alt. #3	Cogeneration plant w/steam turbinedriven chillers	(54,001)	(93,273)	4,814	142	0.01
	Alt. #4	Cogeneration plant w/absorption chillers	(45,646)	(50,767)	4,592	114	0.04

The recommended solution for the Tech Area chilled water systems is to continue to use the existing air-cooled chillers, but to install precoolers on each air-cooled chiller. This will reduce the kW demand somewhat, and will conserve electrical energy. Replacement with water-cooled equipment would provide better demand reduction, but would significantly increase maintenance and saving requirements, is is therefore not recommended.

IDENTIFIED ENERGY RETROFIT PROJECTS

Four buildings were identified for energy retrofit projects:

- No. 1 Modifications to P300 to include:
 - convert air handlers to VAV
 - replace one air-cooled chiller with a water-cooled unit
 - replace all standard 40 watt fluorescent lamps and standard ballasts with reduced wattage lamps and ballasts
 - install a chilled water thermal storage system
- No. 2 Modifications to P24072 to include:
 - improved fluorescent lighting system
 - setback thermostat
 - install cooling coil control valve
- No. 3 Modifications to P23640 to include:
 - improved fluorescent lighting
 - modifications to both air handlers
- No. 4 Modifications to P23642 to include:
 - improved fluorescent lighting
 - modifications to three air handlers

Project energy savings and economic parameters are presented in Table ES-12.

TABLE ES-12 DATA SUMMARY FOR ENERGY PROJECTS

Bldg. No.	Project Description	Construction Cost (\$)	Funding Authority	Energy Savings (MBtu/yr)	Energy Dollar Savings (\$/yr)	SPB (yrs)	SIR
P300	Modified configuration	446,296	ECIP	5,488	32,367	4.7	2.3
P24072	Improve fluorescent lighting, setback thermostat, install cooling coil control valve	13,355	OMA & unit funds	8,662.4	5,741	1.5	7.3
P23640	Improve fluorescent lighting, modify both AHUs	15,025	OMA & unit funds	1,064.7	6,938	1.1	10.2
P23642	Improve fluorescent lighting, modify 3 AHUs to reduce air flow	24,053	OMA & unit funds	171.5	1,103	4.3	2.5

50b-total - 15,5 = 40,408 0 = M, P= =5-4 2,98=6 8,935 Total - 18,37: 2 49,343