MAT 345 - Homework 5

Due Wednesday, October 31, 2018, in class

1. (4 points) For each of the data sets in the attached file HW5data.xls, assume \mathbf{x} denotes the input and y the output. Run through the Linear Regression Algorithm to find \mathbf{w} that gives the best approximation

$$y \approx \mathbf{w}^T \mathbf{x}$$
.

Do not use Excel's regression feature and use the algorithm discussed in class instead, showing your steps (include the computed matrix A and weight vector \mathbf{w} in your answer).

- 2. (4 points) Use the Gradient Descent Algorithm to estimate the value of \mathbf{x} where the function f attains its minimum, by using the given fixed step η and the starting point \mathbf{x}_0 :
 - (a) f(x) = (x-1)(x-2)(x-5) with

$$(i)\eta = 0.1, x_0 = 3$$

$$(iii)\eta = 0.05, x_0 = 6$$

$$(iii)\eta = 0.01, x_0 = 1$$

(b)
$$f(x,y) = x^2 - 2xy^2 + y^4$$
 with

$$(i)\eta = 0.1, x_0 = 1, y_0 = 2$$

(ii)
$$\eta = 0.1$$
, $x_0 = 4$, $y_0 = -2$

$$(iii)\eta = 0.05, x_0 = 0, y_0 = 3$$

3. (2 points) Consider the following selling data from sample of 10 Corvette cars, aged 1-6 years, available from the $Kelley\ Blue\ Book$. Here x denotes the age of the car and y denotes the selling price, in hundreds of dollars:

Use the gradient descent algorithm to solve this linear regression question. That is, instead of inverting matrices to find the optimal \mathbf{w}_{lin} , as was done in the group worksheet, use the sample data set and the gradient descent algorithm to minimize the error function

$$f(\mathbf{w}) = \frac{1}{N} \sum_{k=1}^{N} (\mathbf{w}^T \mathbf{x}_k - y_k)^2.$$

Recall that we found the gradient of the error function to be

$$\nabla f(\mathbf{w}) = \frac{2}{N} [X^T X \mathbf{w} - X^T \mathbf{y}].$$

Start the gradient descent algorithm with $\mathbf{w}(0) = \mathbf{0}$ and use a step $\eta = 0.04$. Stop when neither w_0 , nor w_1 change by more than 10^{-3} in a given iteration.