XENOFON KARAKONSTANTIS

Hortensiavej 8, Frederiksberg C., Copenhagen Region, Denmark (+45 50234493) | xenoka@elektro.dtu.dk

orcid.org/0000-0001-6810-2028

in linked.in/xenofon-karakonstantis

github.com/xefonon

SUMMARY

- PhD student, budding researcher and engineer in acoustics, signal processing and sensor array processing
- · Involved in development, algorithms and acoustics research of high end consumer audio products

- Engaged in projects regarding data engineering for measurement and inference of room acoustics, sound source localisation and sound field analysis
- Detailed knowledge of deep learning, Bayesian inference and state of the art machine learning models for inverse problems
- · Long term musician with experience in touring and performing and trained in acoustics and psychoacoustics

TECHNICAL SKILLS

- Signal Processing: Beamforming algorithms (MVDR, MUSIC, etc.), adaptive filtering (LMS, RLS, etc.) for noise/echo cancellation
- Machine Learning: Neural networks (discriminative/generative models), Bayesian models (VAEs, HMC, analytic methods, Gaussian Processes), kernel methods
- Acoustics: Room acoustics, architectural acoustics, structure-borne sound, array signal processing, electro-acoustics
- Audio: Time-frequency signal analysis, speech, music, compressive sensing, signal enhancement, noise reduction, dereverberation and psychoacoustics
- Acoustic measurements: Microphone-loudspeaker-interface signal chains, amplifiers/preamplifiers, sampling, signal generation (sweep and noise signals), transducers
- Computational: Programming languages (R, Python, C, Matlab, Shell script) machine Learning API's (Tensorflow, Pytorch, JAX), probabilistic programming (Numpyro, Pyro, Tensorflow probability, PySTAN)

RESEARCH EXPERIENCE

Acoustic Technology Group

Technical University of Denmark

November 2020 to December 2020

Research Assistant

- Investigating generative models for bandwidth extension of aliased/corrupted room impulse responses
- Examined methods of reconstructing room impulse responses with physical models (plane wave/point source regression)
- Examined Generative Adversarial networks and Variational Auto-encoders in the context of compressive sensing for audio signals
- A publication on the topic is on way

Acoustic Technology Group

Technical University of Denmark

PhD

December 2020 to Present

- Investigating neural generative models for sound field reconstruction
- Validated methods by comparing real and simulated data of sound fields with classic regression methods
- Investigating graph neural networks and inductive (spatial) biases for sound source localisation

EDUCATION

- PhD, Data Driven Acoustic Holography, Techical University of Denmark, Present
- MSc, Engineering Acoustics, Techical University of Denmark, 2020
- MEng, Electrical and Computer Engineering, National Technical University of Athens, 2018

INDUSTRY EXPERIENCE

Student Researcher GN - Jabra (Denmark)

Audio Research

Gaming Audio

September 2019 to July 2020

- Python DSP applications for audio related tasks (sensor array processing, room acoustics)
- Deep learning framework (Tensorflow-Pytorch-ONNX) migration tasks for audio product-related applications
- Higher order ambisonics recording-processing, sensor calibration and beamforming

Student Assistant

Sennheiser Communications (Denmark)

March 2019 to September 2019

- Processing of Head-Related Transfer Functions (SOFA format) for mapping out acoustic data.
- Troubleshooting for gaming headsets, audio processors and software products and provision of statistical feedback on common issues.

TEACHING AND MENTORING EXPERIENCE

- 2019 Teaching Assistant for problem solving in the class of "Advanced Acoustics"
- Present Lab exercise responsible for classes "Advanced Acoustics" and "Acoustic Signal Processing"

CONFERENCE PRESENTATIONS

- Time lapse video sonification; watching and listening to events unfolding 15th Sound and Music Computing Conference (SMC2018) | Limassol, Cyprus
- Sound field reconstruction in rooms with deep generative models InterNoise 2021 1-5 August 2021 | Washington, DC

- Invertible neural networks for reconstructing acoustic fields 182nd Meeting of the Acoustical Society of America 23-27 May 2022 | Denver, Colorado
- Localising acoustic sources with a spherical graph neural network 24th International Congress on Acoustics 24-28 Oct 2022 | Gyeongju, S. Korea

PUBLICATIONS

- Karakonstantis, X., & Fernandez Grande, E. (2021, August). Sound field reconstruction in rooms with deep generative models. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings (Vol. 263, No. 5, pp. 1527-1538). Institute of Noise Control Engineering.
- Grande, E. F., Nozal, D. C., Hahmann, M., **Karakonstantis, X.**, & Riezu, S. A. V. (2021). Reconstruction of room impulse responses over extended domains for navigable sound field reproduction. In *International Conference on Immersive and 3D Audio*.
- Karakonstantis, X., Fernandez Grande E. & Hahmann, M., (2021, August). Localising acoustic sources with a spherical graph neural network. In 24th International Congress on Acoustics. 2022.

OTHER SKILLS

Music Multi-instrumentalist, trained in classical modern and jazz guitar, traditional balkan music (oud), toured with bands, semi-professional experience

Music Electronics Part-time electronics enthusiast, occasionally collaborate with colleagues to make guitar pedals and synthesisers

Languages English: Native. Greek: Native. Danish: Professional proficiency.