36710-36752, Fall 2020 Homework 1

Due Wed, Sept 16 by 5pm.

Questions 5, 6 and 7 are no longer part of this assignment. They will be on Homework 2

1. Limits superior and inferior.

- (a) Let A_n be (-1/n, 1] if n is odd and (-1, 1/n] if n is even. Find $\limsup_n A_n$ and $\lim \inf_n A_n$.
- (b) **Bonus Problem**. Let A_n the interior of the ball in \mathbb{R}^2 with unit radius and center $\left(\frac{(-1)^n}{n},0\right)$. Find $\limsup_n A_n$ and $\liminf_n A_n$.
- (c) Show that $(\limsup_n A_n)^c = \liminf_n A_n^c$ and $(\liminf_n A_n)^c = \limsup_n A_n^c$.
- 2. Let \mathcal{A} be a collection of subsets of Ω . Let \mathcal{F} be the intersection of all σ -fields that include \mathcal{A} as a subset. Show that \mathcal{F} is also a σ -field and it is the smallest σ -field that includes \mathcal{A} as a subset.
- 3. Exercise 6 in Lecture Notes Set 1.
 - Let $\mathcal{F}_1, \mathcal{F}_2, \ldots$ be classes of sets in a common space Ω such that $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ for each n. Show that if each \mathcal{F}_n is a field, then $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ is also a field.
 - If each \mathcal{F}_n is a σ -field, then $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ is not necessarily a σ -field. Think about the following case: Ω is the set of nonnegative integers and \mathcal{F}_n is the σ -field consisting of the power set of $\{0, 1, \ldots, n\}$.
 - Hint: You can prove this in more than one way. For instance show that the set of even numbers can be obtained as a countable unions of sets in $\bigcup_n \mathcal{F}_n$ but it cannot belong to $\bigcup_n \mathcal{F}_n$. Alternatively, show that the smallest σ -field containing $\bigcup_n \mathcal{F}_n$ must be 2^{Ω} , which is uncountable since Ω is infinite (...why?).
- 4. Let μ be a counting measure on a countably infinite set Ω . Show that there exists a decreasing sequence of sets $\{A_n\}$ such that $A_n \downarrow \emptyset$ but $\mu(A_n) = \infty$ for all n (and therefore $\lim_n \mu(A_n) \neq 0$). (This should help addressing Exercise 13 in the lecture notes).
- 5. No longer part of this assignment! Let (Ω, \mathcal{F}) be a measurable space and $\{f_n\}_{n=1,2,...}$ be a sequence of real valued measurable function on Ω . Show that the set $\{\omega \in \Omega : \lim_n f_n(\omega) \text{ exists}\}$ is measurable (i.e. it belongs to \mathcal{F}).
- 6. No longer part of this assignment! Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, (S, \mathcal{A}) a measurable space and $f: \Omega \to S$ a measurable function. Show that, for arbitrary subsets A, A_1, A_2, \ldots of S,

- (a) $f^{-1}(A^c) = (f^{-1}(A))^c$;
- (b) $f^{-1}(\cup_n A_n) = \bigcup_n f^{-1}(A_n)$ and
- (c) $f^{-1}(\cap_n A_n) = \bigcap_n f^{-1}(A_n)$.

(The last two identities actually hold also for uncountable unions and intersections). Let \mathcal{A} be a σ -field over S. Prove that the collection $f^{-1}(\mathcal{A}) = \{f^{-1}(A), A \in \mathcal{A}\}$ of subsets of Ω is a σ -field over Ω (in fact, the smallest σ -field on Ω that makes f measurable).

7. No longer part of this assignment! (The induced measure is a measure) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, (S, \mathcal{A}) a measurable space and $f: \Omega \to S$ a measurable function. Show that the measure induced by f and μ , i.e. the function ν over \mathcal{A} given by

$$A \mapsto \mu\left(f^{-1}(A)\right), \quad A \in \mathcal{A},$$

is a measure. Show by example that ν need not be σ -finite if μ is σ -finite.