Chapter 6

MOLECULES AND SOLIDS

OBJECTIVES:

- To understand the bonding mechanism, energy states and spectra of molecules
- To understand the cohesion of solid metals using bonding in solids
- To comprehend the electrical properties of metals, semiconductors and insulators
- To understand the effect of doping on electrical properties of semiconductors
- To understand superconductivity and its engineering applications

Molecular bonds

A stable molecule is expected at a configuration for which the potential energy function for the molecule has its minimum value.

- 1. The force between atoms is **repulsive** at very small separation distances.
- **2. 2.** At relatively at larger separations, the force between atoms is **attractive**.

Considering these two features,

$$U(r) = -\frac{A}{r^n} + \frac{B}{r^m}$$

Ionic Bonding:

When two atoms combine in such a way that one or more outer electrons are transferred from one atom to the other, the bond formed is called an ionic bond.

Example: NaCl

Total energy versus internuclear separation distance for Na⁺ and Cl⁻ ions.

Covalent Bonding:

A covalent bond between two atoms is one in which electrons supplied by either one or both atoms are shared by the two atoms. Many diatomic molecules such as H_2 , F_2 , and CO—owe their stability to covalent bonds.

Ground-state wave functions $\psi_1(r)$ and $\psi_2(r)$ for two atoms making a covalent bond. (a) The atoms are far apart, and their wave functions overlap minimally. (b) The atoms are close together, forming a composite wave function $\psi_1(r) + \psi_2(r)$ for the system.

Van der Waals Bonding: Because of the dipole electric fields, two molecules can interact such that there is an attractive force between them.

There are three types of van der Waals forces.

Dipole- dipole force: An interaction between two molecules each having a permanent electric dipole moment.

Dipole-induced dipole force: A polar molecule having a permanent electric dipole moment induces a dipole moment in a nonpolar molecule.

Dispersion force: An attractive force that occurs between two nonpolar molecules.

Hydrogen Bonding:

A hydrogen atom in a given molecule can also form a second type of bond between molecules called a **hydrogen bond**.

Energy States and Spectra of Molecules

$$E = E_{el} + E_{trans} + E_{rot} + E_{vib}$$

Rotational Motion of Molecules

$$E_{\rm rot} = \frac{1}{2}I\omega^2$$

$$I = \left(\frac{m_1 m_2}{m_1 + m_2}\right) r^2 = \mu r^2 \qquad \mu = \frac{m_1 m_2}{m_1 + m_2}$$

Rotational energy
$$6 - 21E_1$$

$$5 - 15E_1$$

$$4 - 10E_1$$

$$3 - 6E_1$$

$$2 - 3E_1$$

$$0 - (b)$$

$$L = \sqrt{J(J+1)} \ \hbar$$

$$J = 0, 1, 2, \dots$$

$$E_{\text{rot}} = E_J = \frac{\hbar^2}{2I} J \left(J + 1 \right)$$

$$J = 0, 1, 2, \dots$$

$$E_{\text{rot}} = E_J = \frac{\hbar^2}{2I}J(J+1)$$
 $J = 0, 1, 2, ...$ $E_{\text{photon}} = \frac{\hbar^2}{I}J = \frac{\hbar^2}{4\pi^2I}J$ $J = 1, 2, 3, ...$

$$J = 1, 2, 3, ...$$

Vibrational Motion of Molecules

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$

(a)

$$E_{\text{vib}} = \left(v + \frac{1}{2}\right) hf$$
 $v = 0, 1, 2, ...$

$$v = 0, 1, 2, \dots$$

 $E_{\text{vib}} = \left(v + \frac{1}{2}\right) \frac{h}{2\pi} \sqrt{\frac{k}{\mu}}$ v = 0, 1, 2, ...

$$E_{\mathrm{photon}} = \Delta E_{\mathrm{vib}} = \frac{h}{2\pi} \sqrt{\frac{k}{\mu}}$$

Molecular Spectra

$$E = \left(v + \frac{1}{2}\right)hf + \frac{\hbar^2}{2I}J(J+1)$$

$$E_{\text{photon}} = \Delta E = hf + \frac{\hbar^2}{I}(J+1)$$
 $J = 0, 1, 2, ...$ $(\Delta J = +1)$

$$E_{\text{photon}} = \Delta E = hf - \frac{\hbar^2}{I}J$$
 $J = 1, 2, 3, ...$ $(\Delta J = -1)$

$$n = n_0 e^{\frac{-\hbar^2 J(J+1)}{2Ik_B T}}$$

Intensity
$$\propto (2J+1)e^{\frac{-\hbar^2 J(J+1)}{2Ik_BT}}$$

Experimental absorption spectrum of the HCl molecule

Bonding in Solids

Ionic Solids:

$$U_{\text{attractive}} = -\alpha k_e \frac{e^2}{r}$$

where α is a dimensionless number known as the **Madelung constant.** The value of α depends only on the particular crystalline structure of the solid (α = 1.747 for the NaCl structure).

$$U_{\text{total}} = -\alpha k_e \frac{e^2}{r} + \frac{B}{r^m}$$

 $U_{\rm o}$ is called the **ionic cohesive energy** of the solid

Covalent Solids:

- Solid carbon, in the form of diamond, is a crystal whose atoms are covalently bonded.
- In the diamond structure, each carbon atom is covalently bonded to four other carbon atoms located at four corners of a cube

- (a) Each carbon atom in a diamond crystal is covalently bonded to four other carbon atoms so that a tetrahedral structure is formed.
- (b) The crystal structure of diamond, showing the tetrahedral bond arrangement

Free-Electron Theory of Metals

Metallic Solids:

- Free-electron → free to move through the metal but are trapped within a three-dimensional box formed by the metal surfaces.
- Probability of occupation of a particular energy state by an electron in a solid is given by the Fermi-Dirac distribution function :

$$f(E) = \frac{1}{\exp\left(\frac{E - E_F}{kT}\right) + 1}$$

Density of states:

The quantized energy of a particle of mass m in a one dimensional box of length L

$$E_n = \frac{h^2}{8 m L^2} n^2 = \frac{\hbar^2 \pi^2}{2 m L^2} n^2$$

In three dimension

$$E_n = \frac{\hbar^2 \pi^2}{2 m L^2} \left(n_x^2 + n_y^2 + n_z^2 \right)$$

$$n_x^2 + n_y^2 + n_z^2 = n^2$$

Number of states from E to E+dE is

 $G(E) dE = (\frac{1}{8})(4\pi n^2 dn)$ and it can be shown that

$$G(E) dE = \frac{\sqrt{2}}{2} \frac{m^{\frac{3}{2}} L^{3}}{\pi^{2} \hbar^{3}} E^{\frac{1}{2}} dE$$
 , $L^{3} = V$

$$g(E) = \frac{G(E)}{V}$$
 is the number of states per unit volume [v in normal space] per unit energy range

$$g(E) dE = \frac{8\sqrt{2} \pi m^{\frac{3}{2}}}{L^3} E^{\frac{1}{2}} dE$$
 For derivation, refer study material

g(E) is called the density-of-states function.

For a metal in thermal equilibrium, the number of electrons per unit volume, N(E) dE, that have energy between E and E+dE is

$$N(E)dE = g(E)f(E)dE$$

$$N(E) dE = \frac{8\sqrt{2} \pi m^{\frac{3}{2}}}{h^3} \frac{E^{\frac{1}{2}} dE}{\exp\left(\frac{E - E_F}{kT}\right) + 1}$$

The number of electrons per unit volume:

$$n_e = \int_{0}^{\infty} N(E) dE$$

At T = 0, f(E) = 1 for $E < E_F$ and f(E) = 0 for $E > E_F$.

$$n_e = \frac{16\sqrt{2} \pi m^{\frac{3}{2}}}{3h^3} E_F^{\frac{3}{2}}$$

FERMI ENERGY OF A METAL AT ZERO K

$$E_F(0) = \frac{h^2}{2m} \left(\frac{3 n_e}{8 \pi}\right)^{\frac{2}{3}}$$

Band Theory of Solids

- The wave functions of two atoms combine to form a composite wave function for the two-atom system when the atoms are close together.
- Thus, each energy level of an atom splits into two close energy levels when the wave functions of the two atoms overlap.

The wave functions of two atoms combine to form a composite wave function : a) symmetric-symmetric b) symmetric-antisymmetric

Splitting of 1s and 2s levels

Energy bands of a sodium crystal

Electrical Conduction in Metals, Insulators and Semiconductors

- a) Metals
- b) Insulators
- c) Semiconductors

Semiconductors

The charge carriers in a semiconductors are electrons and holes.

Crystal	E_{g} (eV)	
	0 K	300 K
Si	1.17	1.14
Ge	0.74	0.67
InP	1.42	1.34
GaP	2.32	2.26
GaAs	1.52	1.42
CdS	2.58	2.42
CdTe	1.61	1.56
ZnO	3.44	3.2
ZnS	3.91	3.6

Energy-Gat Values for Some

- Semiconductors
 - ✓ Intrinsic semiconductor
 - ✓ Doped Semiconductors → n-type and p-type

n-type semiconductor

p-type semiconductor

Superconductivity-Properties and Applications

Superconductors are the materials whose electrical resistance (R) decreases to zero below a certain temperature T_C called the critical temperature.

$$(T_C = 4.2 \text{ K for Hg}).$$

Meissner effect: Exclusion of magnetic flux from the interior of superconductors when their temperature is decreased below the critical temperature.

- A superconductor expels magnetic fields by forming surface currents.
- Surface currents induced on the superconductor's surface produce a magnetic field that exactly cancels the externally applied field inside the superconductor.

BCS Theory:

- Cooper pair behaves like a particle with integral spin (Bosons)
- Bosons do not obey Pauli's exclusion principle hence they can be in same quantum state at low temperature
- Collision with lattice atoms is origin of resistance. But Cooper pair can't give up energy as they are in ground state.
- Cooper pair can't gain energy due to energy gap
- Hence no interaction and no resistance

Applications:

- To produce high field
- Magnetic resonance imaging (MRI)
- Magnetic levitation
- Lossless power transmission