Balakrishna Prabhu B. N.¹ Supervised By: Dr. Ronald Benjamin ²

> ¹Centre for Integrated Studies, CUSAT. ²Department of Physics, CUSAT.

> > August 11, 2021

Contents

Introduction

Interpreting The Systems

Simple Pendulum

Physical Pendulum

Chaotic Ratchet

Conclusion

References

Contents

000000

Introduction

Linear Dynamics

Introduction

- ► In Classical mechanics, Newton's equations can be used to represent the systems[1].
- For linear systems, it is possible to analytically solve the differential equations and obtain the required information about the system.
- ▶ In the 17th century when newton had discovered his laws of motion, it was used along with his theory of gravity to explain Kepler's laws of the planetary motion[2].
- Newton was able to successfully solve the two-body problem, but his tools fell short in regards to the three-body problem.

Non-Linear Dynamics

000000

- Systems where the output is not directly proportional to the input are called Non-linear systems.
- ▶ The non-linearity in the system makes it difficult for us to solve the differential equation of the complex system analytically.
- For the three-body problem, Poincarè suggested an alternative approach to interpreting the system.
- Instead of the quantitative solution to the system, he suggested looking at the overall picture and discussed the stability of the systems[2].
- He developed geometrical tools which help us understand such characteristics of the system.

Introduction to chaos

Introduction

- ▶ With the advancement in technology and development of high-speed computers in the 1950's[2], scientists were able to solve the equations numerically and with great precision.
- ▶ In the 1960's Edward N. Lorenz, while working on a system of equations describing the atmosphere, observed that a very slight change in initial conditions altered the system's trajectory vastly.
- He used a simplified system with 3 parameters and observed a similar result.
- ▶ He saw that the system had very sensitive dependence on initial conditions and published his findings in the paper 'Deterministic non-periodic flow'[3].

The Butterfly Effect

Introduction

- ▶ In 1972, Lorenz presented a paper at the '139th Meeting of the American Association or The Advancement Of Science' titled 'Predictability; Does the flap of a Butterfly's Wings in Brazil set off a Tornado in Texas?' [4].
- ► The title of this paper inspired many to call this sensitive dependence on initial conditions the 'Butterfly Effect.'
- ➤ Coincidentally, the Phase-space diagram of Lorenz's paper from 1963 for the simplified 3 parameter system, in the three dimensions resembles a butterfly[3].

Introduction

The Butterfly Effect

000000

Figure 1: Phase-Space diagram, using 2 of the 3 parameters from

Lorenz's simulation.[3] > (3)

Contents

Introduction

Interpreting The Systems

Simple Pendulum

Physical Pendulum

Chaotic Ratchet

Conclusion

References

- Every continuous system can be represented using a set of differential equations.
- These differential equations represent the relations between different variables of the system.
- We can study the relationships between these variables more efficiently by using graphs.
- different types of graphs can give us different ideas about the characteristics of the system.

Space-Time Diagram

- ▶ The most common and intuitive graph representing a system.
- Describes how the system evolves with time.

Figure 2: Shows the motion of a particle which is traveling along the x axis with a uniform velocity of 5 $\,$ m/s

Figure 3: Shows the phase-space diagram of the same particle. The straight line represents a never-ending trajectory, which is non periodic.

Phase-Space Diagram

- ▶ The phase-space diagram explores the relation between the variables that perfectly define the particle.
- Each point in the phase-space uniquely describes a state of the system.
- ► The trajectory for a given initial condition would be unique, and hence lines in the phase-space diagram never intersect.
- ► The phase-space diagram can have different possible characteristics, which can be broadly categorized as follows.

Interpreting the phase-space diagram

- The system converges to a single point.
 - ► This is called the fixed point attractor.
 - ▶ This represents a stable system which has attained equilibrium.
 - Example :: A damped oscillator.
- The system forms a loop
 - ► This represents a stable system which is periodic.
 - Example :: A simple pendulum.
- The system neither converges to a point nor forms a loop
 - ► This represents a non periodic system.
 - ► This system can be predictable like in the case of the particle with a constant velocity or be unpredictable and chaotic.

The Poincarè Map

000000

Interpreting The Systems

- A Poincarè map is the intersection of the phase-space diagram of a system with a lower-dimensional subspace called the Poincarè section.
- In usual cases, we use the driving force or a periodic function that is related to the system to generate the Poincarè map.
- In our case, to generate a Poincarè map, we plot the phase-space diagram by selecting the points that are in phase with the driving force.

Contents

Introduction

Interpreting The Systems

Simple Pendulum

Physical Pendulum

Chaotic Ratchet

Conclusion

References

The Simple Pendulum

- The simple pendulum is an ideal case of a linear pendulum which consists of a mass suspended from a frictionless pivot.
- ► The only forces acting on the bob of the pendulum are gravity and tension in the string.
- The net force acting on the bob at an angle θ can be given as $F_{\theta} = -mg \sin \theta$ where the negative sign signifies the the force is always opposite in direction to the displacement of the bob.

Figure 4: A Simple Pendulum.

Modeling the system

- The equation of motion of the system is represented as $\frac{d^2\theta}{dt^2} = -\frac{g}{I}\theta$, with the approximation of $\sin\theta \approx \theta$
- ► This can be simplified into a system of first order equations and solved using numerical methods to calculate values of the variables as follows.

- Fuler Method
 - $\omega_{i+1} = \omega_i (g/I)\theta_i \Delta t$
 - $\theta_{i+1} = \theta_i + \omega_i \Delta t$
 - $t_{i+1} \equiv t_i + \Delta t$

Euler-Cromer Method

$$\theta_{i+1} = \theta_i + \omega_{i+1} \Delta t$$

$$t_{i+1} = t_i + \Delta t$$

Method Comparison

- ► The Euler Method of integration does not conserve energy[5] [6].
- As seen in the graph the amplitude of Oscillation keeps increasing.
- Euler-Cromer Method conserves energy and hence is better suited to solve System with constant energy.

Figure 5: Comparison of Euler and Euler-Cromer Methods of Integration.

Method Comparison

- The same can be seen from the phase-space diagram of the pendulum.
- The Euler method takes the system into an outward spiral which is an unstable system.
- The Euler-Cromer method keeps the system in a closed loop which is a conserved energy state.

Figure 6: Comparison of Euler and Euler-Cromer Methods of Integration.

Non-Linear Simple Pendulum

- If we remove our approximation $\sin \theta \approx \theta$, the system becomes non-linear.
- ► This non-linearity causes the system to be heavily dependent on initial conditions.
- We can use the Euler-Cromer method to Solve the system for different initial conditions and then study its variations.
- We can also compare the system with that of the linear pendulum to see how non-linearity affects the system.

Comparison Using the space-time diagram

Figure 7: Phase-Space Comparison of Different Initial conditions for a linear pendulum.

Figure 8: Phase-Space Comparison of Different Initial conditions for a non-linear pendulum.

Comparison Using the phase-space diagram

Figure 9: Phase-Space Comparison of Different Initial conditions for a linear pendulum.

Figure 10: Phase-Space Comparison of Different Initial conditions for a non-linear pendulum.

Contents

Physical Pendulum

The Physical Pendulum

- We can make the system less ideal and more realistic by introducing factors such as damping, friction and driving forces.
- The system of the physical pendulum can be represented by the differential equation : $\frac{d^2\theta}{dt^2} = -\frac{g}{I} - q\frac{d\theta}{dt} + F_D \sin(\Omega_D t)$
- Where, $q \frac{d\theta}{dt}$ is the damping force which is proportional to velocity(like friction) with a damping constant q. $F_D \sin(\Omega_D t)$ is the driving force with F_D being the amplitude of the force and Ω_D the driving frequency.
- In order to view the graphs more efficiently we can also constrain the value of θ between $-\pi$ and π .

Numerical Solution

- ▶ The differential equation can be solved using the Euler-Cromer method using the following algorithm.
 - $\omega_{i+1} = \omega_i + [-(g/I)\sin\theta_i g\omega_i + F_D\sin(\Omega_D t)]\Delta t$
 - $\theta_{i+1} = \theta_i + \omega_{i+1} \Delta t$
 - $\theta_{i+1} \pm 2\pi$
 - $ightharpoonup t_{i+1} = t_i + \Delta t$
- This can be repeated to calculate the values of the variable and hence the trajectory of the system.
- In order to study the variations in the system we fix all the quantities except for the value of the driving force F_D . i.e. $q = 0.5, I = g = 9.8, \Omega_D = 2/3, dt = 0.04$ and initial conditions as $\theta_0 = 0.2$ and $\omega_0 = 0$

Damped Oscillations, $F_D = 0$

Figure 11: Space-Time Diagram for a damped oscillator.

Figure 12: Phase-Space Diagram for a Damped Oscillator.

Stable, Driven Oscillations, $F_D = 0.5$

Figure 13: Space-Time Diagram for a Stable, Driven Oscillator.

Figure 14: Phase-Space Diagram for a Stable, Driven Oscillator.

Chaotic Oscillations, $F_D = 1.2$

Figure 15: Space-Time Diagram for a Chaotic Oscillator.

Figure 16: Phase-Space Diagram for a Chaotic ${\sf Oscillator}.$

From the Space-Time graph it is pretty evident that we cannot predict the trajectory that the system follows.

- It might seem that it is random, but looking at the Phase-Space diagram, a pattern is evident.
- Every Initial condition will eventually flow towards the surface that we can see in the graph.
- ▶ We plot all points in the Phase-Space diagram that are in phase with the driving force. (i.e points where, $\Omega_D t = 2n\pi$, where n is an integer.)
- This is called the Poincare Map of the system.

Poincarè Map

Figure 17: Poincarè Map of the Physical Pendulum at the chaotic regime at $F_D=1.2\,$

Route to Chaos

- ▶ The system is periodic when the driving force is low and is chaotic at some higher value of the driving force
- ▶ We can look at the case from $F_D = 1.35$ to $F_D = 1.485$, to identify the transition from order to chaos.
- We then plot the bifurcation diagram to represent the number of periods of the system to qualitatively explain how the transition to chaos occurs.

Period-1

Figure 18: Space-Time graph at $F_D=1.35$ showing a Period-1 Oscillation, where the Time period of oscillation of the pendulum is equal to the period of the driving force.

Period-2

Figure 19: Space-Time graph at $F_D = 1.44$ showing a Period-2 Oscillation, where the Time period of oscillation of the pendulum is twice that of the driving force.

Period-4

Figure 20: Space-Time graph at $F_D = 1.465$ showing a Period-2 Oscillation, where the Time period of oscillation of the pendulum is four times that of the driving force.

Bifurcation Diagram

Figure 21: Bifurcation diagram showing the Route to chaos.

The Feigenbaum

- The bifurcation diagram gives us a qualitative understanding of the transition to chaos.
- The spacing between period-doubling transitions becomes smaller as we approach chaos.
- \triangleright We define F_n as the driving force where the transition to period- 2^n takes place.
- Now we define $\delta_n = \frac{F_n F_{n-1}}{F_{n+1} F_n}$
- As $n \to \infty$, δ converges to a value $\delta \approx 4.669$.[7]
- ightharpoonup This δ is called the Feigenbaum.

Contents

Introduction

Interpreting The Systems

Simple Pendulum

Physical Pendulum

Chaotic Ratchet

Conclusion

References

Introduction

► A Ratchet is a device that allows continuous motion in only one direction.

Figure 22: A Mechanical Ratchet[8], (1:Gear 2:Pawl 3:Mounting Base).

▶ In our case, instead of using mechanical gears and pawls, we will be considering a particle in a one-dimensional potential field, driven by a periodic driving force[9].

The Chaotic Ratchet System

- The dimensionless equation of motion of the particle in the ratchet is given as, $\ddot{x} + b\dot{x} + \frac{dV(x)}{dx} = a\cos(\omega t)$
- Where the Dimensionless potential is given as

$$V(x) = C - [\sin 2\pi (x - x_0) + 0.25 \sin 4\pi (x - x_0)]/4\pi^2 \delta$$

- δ is defined as $\delta = \sin(2\pi |x_0'|) + \sin(4\pi |x_0'|)$
- The parameters for the simulation are ::
 - $x_0 \simeq -0.19$. $\delta \simeq 1.6$. $C \simeq 0.0173$
 - We vary the parameter a and fix b = 0.1 and w = 0.67.

Numerical Solution

The dimensionless equation is written as,

$$\frac{dx}{dt} = v \qquad \therefore dx = vdt$$

$$\frac{dv}{dt} = a\cos(\omega t) - bv - \frac{dV(x)}{dx} \qquad \therefore dv = \dot{v}dt$$

Where,

$$\dot{v} = a\cos(\omega t) - bv - \frac{dV(x)}{dx} = F(t, x, v)$$

$$\frac{dV(x)}{dx} = \frac{2\cos(2\pi(x - x0) + \cos(4\pi(x - x0)))}{4\pi\delta}$$

41/58

Runge-Kutta(4th order) Algorithm

We use the RK4 Algorithm to solve the system of equations.

$$dx_{1} = hv dv_{1} = hF(t, x, v)$$

$$dx_{2} = h(v + \frac{dv_{1}}{2}) dv_{2} = hF(t + \frac{h}{2}, x + \frac{dx_{1}}{2}, v + \frac{dv_{1}}{2})$$

$$dx_{3} = h(v + \frac{dv_{2}}{2}) dv_{3} = hF(t + \frac{h}{2}, x + \frac{dx_{2}}{2}, v + \frac{dv_{2}}{2})$$

$$dx_{4} = h(v + dv_{3}) dv_{4} = hF(t + h, x + dx_{3}, v + dv_{3})$$

$$dx = \frac{dx_{1} + 2dx_{2} + 2dx_{3} + dx_{4}}{6} dv = \frac{dv_{1} + 2dv_{2} + 2dv_{3} + dv_{4}}{6}$$

$$x(t + h) = x(t) + dx v(t + h) = v(t) + dv$$

$$dv_{2} = hF\left(t + \frac{h}{2}, x + \frac{dx_{2}}{2}, v + \frac{dv_{2}}{2}\right)$$

$$dv_{3} = hF\left(t + \frac{h}{2}, x + \frac{dx_{2}}{2}, v + \frac{dv_{2}}{2}\right)$$

$$dv_{4} = hF\left(t + h, x + dx_{3}, v + dv_{3}\right)$$

$$dv = \frac{dv_{1} + 2dv_{2} + 2dv_{3} + dv_{4}}{6}$$

Bifurcation Diagram

▶ We draw v, as a function of a, to show how the period doubles and view the bifurcation diagram.

Figure 23: Bifurcation Diagram of the particle in the chaotic

ratchet.

42/58

Space-Time Diagrams

- This bifurcation diagram helps us to select the points for further observation by providing information about the periodicity of the particle in the ratchet.
- In order to study specific states of the system, we can plot the Space-Time graph of the particle in the ratchet at different driving forces.

Positive Current, a = 0.074

Figure 24: Space-Time diagram of the system showing positive current.

Negative Current, a = 0.081

Figure 25: Space-Time diagram of the system showing negative current.

Chaotic Regime, a = 0.0805

Figure 26: Space-Time diagram of the system showing Chaos.

Poincarè Map, a = 0.0805

Figure 27: Poincarè Map showing the Chaotic Attractor at a = 0.0805.

Poincarè Map

Figure 28: Poincarè Map showing the Chaotic(a = 0.0805) and the Period-4 Attractor(a = 0.081)

Observations

- ▶ We can see that it is the 4-period that helps the particle climb in the negative direction.
- In order to advance one step towards the left, the particle moves one step to the right and then two steps to the left. Thus, the net current is negative.
- Although counter-intuitive, we see that the transport of particles through a ratchet in the negative direction is possible due to the close vicinity of the Period-4 system to that of the chaotic system.
- ▶ We also can see that The periodic attractor lies on top of the chaotic attractor at points where it forms closed loops.

Contents

Introduction

Interpreting The Systems

Simple Pendulum

Physical Pendulum

Chaotic Ratchet

Conclusion

References

Conclusions

- ► The study of Non-linearity and chaos and the ability to create accurate predictions are necessary as the world we live in is non-linear.
- Counter-intuitive phenomena such as negative current in the chaotic ratchets occur due to the non-linearity in the system.
- Understanding such systems would help us efficiently solve weather predictions, encryption, understanding ECGs, etc., efficiently.

Future Plans

- ► The next stage of analysis is to identify patterns in the data distribution within a bifurcation diagram.
- It can be seen that some values occur more often than others.
- We also plan to study the bifurcation diagram quantitatively and apply the statistical concept of microstates and entropy to understand the diagram and the system better[10].

Contents

Introduction

Interpreting The Systems

Simple Pendulum

Physical Pendulum

Chaotic Ratchet

Conclusion

References

References I

 Charles Poole, John Safko, and Albert Goldstein. Classical mechanics.
 Pearson Education, 2001.

- [2] Steven H Strogatz.
 - Nonlinear dynamics and chaos with student solutions manual: With applications to physics, biology, chemistry, and engineering.

CRC press, 2018.

[3] Edward N Lorenz. Deterministic nonperiodic flow. Journal of atmospheric sciences, 20(2):130–141, 1963.

References II

- [4] Edward Lorenz.

 Predictability: does the flap of a butterfly's wing in Brazil set off a tornado in Texas?

 na, 1972.
- [5] Daan Frenkel, Berend Smit, and Mark A Ratner. Understanding molecular simulation: from algorithms to applications, volume 2. Academic press San Diego, 1996.
- [6] RL Burden, JD Faires, and AM Burden. Numerical analysis: Cengage learning. Brooks/Cole, 2010.

References III

- [7] Nicholas J Giordano. Computational physics. Pearson Education India, 2012.
- [8] Dr. Schorsch.
 Ratchet diagram.

```
https://commons.wikimedia.org/w/index.php?curid=14826635, 2011.
[Own work, CC BY-SA 3.0,].
```

[9] José L Mateos. Chaotic transport and current reversal in deterministic ratchets.

Physical review letters, 84(2):258, 2000.

References IV

[10] Harvey Gould and Jan Tobochnik. Statistical and Thermal Physics. Princeton University Press, 2010.

Balakrishna Prabhu B. N.¹ Supervised By: Dr. Ronald Benjamin ²

> ¹Centre for Integrated Studies, CUSAT. ²Department of Physics, CUSAT.

> > August 11, 2021

