INFORME DE EVALUACIÓN DE PROYECTO Sistema de Predicción Geoespacial de Tarifas Eléctricas en Chile

Curso de Geoinformática - 2° Semestre 2025 Universidad de Santiago de Chile

Profesor: Dr. Francisco Parra O. Tipo de Proyecto: Comercial

Agosto 2025

Índice

1.	Resumen Ejecutivo	3
	1.1. Evaluación General	. 3
2.	Análisis Técnico Detallado	3
	2.1. Arquitectura del Sistema	. 3
	2.1.1. Capa de Datos	. 3
	2.1.2. Capa de Procesamiento	. 4
	2.1.3. Capa de Visualización	. 4
	2.2. Variables Clave y Justificación	. 5
	2.3. Metodología de Machine Learning	. 5
	2.3.1. Preprocesamiento Espacial	. 5
	2.3.2. Modelo Predictivo	. 5
3.	Evaluación de Complejidad y Alcance	7
	3.1. Aspectos Destacables	. 7
	3.2. Matriz de Riesgos y Mitigación	
4.	Plan de Implementación Recomendado	8
	4.1. Fase 1: Preparación de Datos (3 semanas)	. 8
	4.2. Fase 2: Desarrollo del Modelo (4 semanas)	. 8
	4.3. Fase 3: Sistema de Visualización (3 semanas)	. 8
	4.4. Fase 4: Validación y Ajustes (2 semanas)	. 8
5.	Mejoras y Extensiones Sugeridas	8
	5.1. Mejoras Técnicas Inmediatas	. 8
	5.2. Extensiones Comerciales	. 9
6.	Impacto Esperado	10
	6.1. Beneficiarios Directos	. 10
	6.2. Métricas de Éxito	
7.	Conclusiones y Recomendaciones	10
	7.1. Fortalezas del Proyecto	. 10
	7.2. Recomendaciones Finales	
	7.3. Siguientes Pasos	. 11
8.	Referencias Técnicas Sugeridas	11

1. Resumen Ejecutivo

El proyecto propuesto representa una **excelente integración** de tecnologías geoespaciales avanzadas para resolver un problema crítico del mercado energético chileno. La propuesta combina:

- Google Earth Engine para obtención de variables climáticas
- Machine Learning con algoritmos de series temporales
- Análisis espacial del sistema eléctrico nacional
- Visualización interactiva de predicciones georreferenciadas

1.1. Evaluación General

Criterio	Puntuación	Observación
Relevancia técnica	9.5/10	Uso avanzado de GEE y ML espacial
Viabilidad	9.0/10	Datos disponibles públicamente
Innovación	8.5/10	Enfoque novedoso para mercado chileno
Impacto comercial	9.0/10	Alto valor para múltiples stakeholders
Complejidad apropiada	9.5/10	Desafiante para 8° semestre
TOTAL	91/100	PROYECTO SOBRESALIENTE

2. Análisis Técnico Detallado

2.1. Arquitectura del Sistema

El proyecto propone una arquitectura de tres capas bien definida:

2.1.1. Capa de Datos

- Datos Satelitales (Google Earth Engine)
 - MODIS para temperatura superficial (LST)
 - ERA5 para radiación solar
 - Sentinel-2 para índices espectrales (NDWI, NDSI)

Datos del Mercado Eléctrico

- Costos marginales históricos (Coordinador Eléctrico Nacional)
- Precios de combustibles fósiles
- Capacidad instalada por tecnología

2.1.2. Capa de Procesamiento

```
# 1. Extraccion de variables GEE
   import ee
   ee.Initialize()
   def extract_climate_variables(roi, date_range):
       # Temperatura superficial
6
       lst = ee.ImageCollection('MODIS/006/MOD11A1')\
           .filterDate(date_range[0], date_range[1])\
8
           .filterBounds(roi) \
9
           .select('LST_Day_1km')\
10
           .mean()
11
12
       # Radiacion solar
13
       solar = ee.ImageCollection('ECMWF/ERA5/DAILY')\
14
           .filterDate(date_range[0], date_range[1])\
15
           .select('surface_solar_radiation_downwards')\
16
           .mean()
17
18
       # Indices de sequia
19
       ndwi = calculate_ndwi(roi, date_range)
20
21
       return ee.Image.cat([lst, solar, ndwi])
22
   # 2. Modelo predictivo
   from sklearn.ensemble import RandomForestRegressor
   import xgboost as xgb
26
   def train_price_model(features, targets):
28
       # Features: variables climaticas + historicos
29
       # Targets: costos marginales por zona
30
       model = xgb.XGBRegressor(
32
           n_estimators=500,
33
           max_depth=8,
34
           learning_rate=0.01,
           objective='reg:squarederror'
36
37
       # Incluir lags temporales
       features_with_lags = add_temporal_lags(features, [1, 7, 30,
40
           365])
41
       # Validacion cruzada espacial
42
       cv_scores = spatial_cross_validation(model,
43
          features_with_lags, targets)
44
       return model.fit(features_with_lags, targets)
45
```

Listing 1: Pipeline de procesamiento propuesto

2.1.3. Capa de Visualización

- Dashboard interactivo con Streamlit/Dash
- Mapas de calor con predicciones usando Folium

API REST para integración con sistemas externos

2.2. Variables Clave y Justificación

Variable	Fuente	Justificación	Resolución
NDWI (Índice de	Sentinel-2	Nivel de embalses afec-	10m, quincenal
Agua)		ta generación hidroeléctrica	
		(40 % matriz Chile)	
NDSI (Índice de	MODIS/Sentinel-2	Predictor de deshielo y dis-	500m, diaria
Nieve)		ponibilidad hídrica futura	
LST (Temperatu-	MODIS	Correlación con demanda	1km, diaria
ra)		por climatización	
Radiación Solar	ERA5	Predictor directo de genera-	30km, horaria
		ción solar (20 % matriz nor-	
		te)	
Velocidad Viento	ERA5	Generación eólica en centro-	30km, horaria
		sur	
Precipitación	GPM/CHIRPS	Afluentes futuros para hi-	10km, diaria
		droeléctricas	
CMg Histórico	CEN	Variable objetivo y feature	Por barra, hora-
		lag	ria
Precio Combusti-	CNE	Costo generación térmica de	Nacional, sema-
bles		respaldo	nal

2.3. Metodología de Machine Learning

2.3.1. Preprocesamiento Espacial

- 1. Zonificación del territorio: División en 5 macrozonas eléctricas
- 2. Agregación temporal: Promedios mensuales para predicción estratégica
- 3. Normalización: StandardScaler para variables climáticas
- 4. Feature engineering:
 - Ratios inter-zonales de variables
 - Anomalías respecto a promedios históricos
 - Índices compuestos (ej: stress hídrico = f(NDWI, precipitación, temperatura))

2.3.2. Modelo Predictivo

```
import xgboost as xgb
from sklearn.model_selection import TimeSeriesSplit
from sklearn.metrics import mean_absolute_percentage_error
import geopandas as gpd

class SpatialElectricityPricePredictor:
    def __init__(self, zones_shapefile):
```

```
self.zones = gpd.read_file(zones_shapefile)
8
           self.models = {} # Un modelo por zona
       def train(self, climate_data, market_data):
11
           for zone_id in self.zones['id']:
12
                # Filtrar datos por zona
13
                zone_features = self.extract_zone_features(
14
                    climate_data, zone_id
16
17
                # Configurar modelo con hiperparametros optimizados
18
                self.models[zone_id] = xgb.XGBRegressor(
19
                    n_estimators=1000,
                    max_depth=10,
21
                    learning_rate=0.01,
22
                    subsample=0.8,
23
                    colsample_bytree=0.8,
24
                    gamma=0.1,
25
                    reg_alpha=0.1,
26
                    reg_lambda=1.0,
27
                    objective='reg:squarederror',
                    eval_metric='mape'
29
30
31
                # Validacion temporal
32
                tscv = TimeSeriesSplit(n_splits=5)
33
                cv_scores = []
34
35
                for train_idx, val_idx in tscv.split(zone_features)
                    X_train = zone_features.iloc[train_idx]
37
                    y_train = market_data['cmg'].iloc[train_idx]
38
39
                    X_val = zone_features.iloc[val_idx]
                    y_val = market_data['cmg'].iloc[val_idx]
40
41
                    self.models[zone_id].fit(
42
                        X_{train}, y_{train},
43
                        eval_set=[(X_val, y_val)],
44
                        early_stopping_rounds=50,
45
                        verbose=False
46
                    )
47
48
                    predictions = self.models[zone_id].predict(
49
                       X_val)
                    mape = mean_absolute_percentage_error(y_val,
50
                       predictions)
                    cv_scores.append(mape)
51
52
                print(f"Zona {zone_id} - MAPE promedio: {np.mean(
53
                   cv_scores):.2%}")
54
       def predict_spatial(self, future_climate):
55
           predictions = {}
56
           for zone_id in self.zones['id']:
57
                zone_features = self.extract_zone_features(
58
59
                    future_climate, zone_id
60
```

Listing 2: Implementación del modelo XGBoost

3. Evaluación de Complejidad y Alcance

3.1. Aspectos Destacables

1. Integración Multidisciplinaria

- Teledetección satelital
- Ciencia de datos espaciales
- Economía energética
- Meteorología aplicada

2. Desafíos Técnicos Apropiados

- Manejo de big data satelital en GEE
- Sincronización de múltiples fuentes temporales
- Modelado de dependencias espaciales
- Optimización de hiperparámetros en ML

3. Escalabilidad

- Arquitectura cloud-ready
- Procesamiento paralelo por zonas
- API para integración empresarial

3.2. Matriz de Riesgos y Mitigación

Riesgo	Probabilidad	Impacto	Mitigación
Calidad datos	Baja	Alto	Validación con estaciones
GEE			meteorológicas in-situ
Overfitting mo-	Media	Medio	Cross-validation espacial y
delo			temporal rigurosa
Cambios regula-	Baja	Medio	Diseño modular para adap-
torios			tar nuevas variables
Latencia predic-	Media	Bajo	Cache de resultados y pro-
ciones			cesamiento asíncrono

4. Plan de Implementación Recomendado

4.1. Fase 1: Preparación de Datos (3 semanas)

- Configurar cuenta Google Earth Engine
- Desarrollar scripts de extracción de variables climáticas
- Obtener y limpiar datos históricos del CEN
- Crear base de datos espacial con PostGIS

4.2. Fase 2: Desarrollo del Modelo (4 semanas)

- Análisis exploratorio de correlaciones
- Feature engineering espacial y temporal
- Entrenamiento y optimización de modelos
- Validación con métricas espaciales (Moran's I)

4.3. Fase 3: Sistema de Visualización (3 semanas)

- Dashboard interactivo con Streamlit
- Mapas de predicción con Folium
- API REST con FastAPI
- Documentación técnica

4.4. Fase 4: Validación y Ajustes (2 semanas)

- Backtesting con datos históricos
- Análisis de sensibilidad
- Optimización de performance
- Presentación final

5. Mejoras y Extensiones Sugeridas

5.1. Mejoras Técnicas Inmediatas

1. Incorporar Autocorrelación Espacial

```
from pysal.lib import weights
from pysal.model import spreg

# Crear matriz de pesos espaciales
w = weights.Queen.from_dataframe(zones_gdf)
```

```
# Modelo con lag espacial
model = spreg.ML_Lag(
y, X, w,
name_y='cmg',
name_x=feature_names
)
```

2. Análisis de Incertidumbre

- Intervalos de confianza con bootstrap
- Propagación de error desde inputs satelitales
- Escenarios probabilísticos

3. Deep Learning Espacial

```
import torch
   import torch_geometric
3
   class SpatialGNN(torch.nn.Module):
       """Graph Neural Network para prediccion
5
       considerando conectividad de la red electrica"""
6
       def __init__(self, num_features, hidden_dim):
           super().__init__()
           self.conv1 = GCNConv(num_features, hidden_dim)
           self.conv2 = GCNConv(hidden_dim, hidden_dim)
11
           self.fc = torch.nn.Linear(hidden_dim, 1)
12
13
       def forward(self, x, edge_index):
14
           x = self.conv1(x, edge_index).relu()
15
           x = self.conv2(x, edge_index).relu()
16
           return self.fc(x)
17
```

5.2. Extensiones Comerciales

1. Módulo de Optimización para Generadoras

- Recomendaciones de despacho óptimo
- Análisis what-if para mantenimientos
- Alertas de oportunidades de arbitraje

2. Integración con Trading Energético

- Señales de compra/venta en mercado spot
- Valorización de contratos PPA
- Gestión de riesgo de portafolio

3. Servicios para Consumidores Industriales

- Optimización de consumo por horario
- Evaluación de autogeneración
- Negociación de contratos

6. Impacto Esperado

6.1. Beneficiarios Directos

• Generadoras eléctricas: Optimización de estrategias de oferta

• Comercializadoras: Mejor gestión de riesgo de precio

• Grandes consumidores: Planificación de consumo y costos

• Reguladores: Monitoreo de comportamiento del mercado

• Inversionistas: Evaluación de proyectos renovables

6.2. Métricas de Éxito

Métrica	Objetivo	Método de Medición
MAPE predicción	j15 %	Backtesting 2023-2024
Cobertura espacial	95% territorio	Zonas con predicción
Latencia API	500 ms	Monitoring en producción
Usuarios activos		Google Analytics
ROI para clientes		Encuesta post-implementación

7. Conclusiones y Recomendaciones

7.1. Fortalezas del Proyecto

1. Alta relevancia: Aborda problema crítico del sector energético chileno

2. Innovación técnica: Integración novedosa de GEE + ML + mercado eléctrico

3. Viabilidad demostrada: Todos los datos necesarios son accesibles

4. Escalabilidad comercial: Múltiples modelos de negocio viables

5. Aprendizaje integral: Cubre todos los objetivos del curso de Geoinformática

7.2. Recomendaciones Finales

RECOMENDACIÓN DEL PROFESOR

El proyecto debe ser APROBADO y recibir máximo apoyo.

Representa exactamente el tipo de aplicación innovadora de geoinformática que el curso busca promover. La combinación de:

- Procesamiento masivo de datos satelitales
- Machine learning espacial avanzado
- Problema de alto impacto económico
- Solución técnicamente sofisticada

Lo convierte en un proyecto ejemplar que podría:

- 1. Publicarse en conferencias de energía y geoinformática
- 2. Convertirse en startup o spin-off universitario
- 3. Servir como caso de estudio para futuras generaciones

Calificación sugerida: 7.0 (con potencial de nota máxima según ejecución)

7.3. Siguientes Pasos

- 1. Inmediato: Reunión con el estudiante para afinar alcance
- 2. Semana 1: Configurar accesos a GEE y datos del CEN
- 3. Semana 2: Definir arquitectura técnica detallada
- 4. Semana 3: Iniciar desarrollo con prototipo mínimo viable
- 5. Mensual: Revisiones de avance con feedback técnico

8. Referencias Técnicas Sugeridas

- 1. Gorelick, N. et al. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. *Remote Sensing of Environment*.
- 2. Pérez-Arriaga, I. (2013). Regulation of the Power Sector. Springer.
- 3. Hong, T. et al. (2016). Probabilistic electric load forecasting: A tutorial review. *International Journal of Forecasting*.
- 4. Coordinador Eléctrico Nacional (2024). Informe de Operación del Sistema Eléctrico Nacional.
- 5. Zhang, Y. et al. (2023). Deep learning for renewable energy forecasting: A taxonomy, and systematic literature review. *Journal of Cleaner Production*.

6. Chilean Energy Ministry (2024). Política Energética Nacional 2050.

Dr. Francisco Parra O.

Profesor Curso Geoinformática Universidad de Santiago de Chile francisco.parra.o@usach.cl

Agosto 2025