Serie numeriche, limiti di serie numeriche #Analisi1

Definizione:

Data una successione a_n (di numeri reali) costruiamo la SUCCESSIONE DELLE SOMME PARZIALI

$$S_N = {}^N \Sigma_{n=0} a_n = a_0 + a_1 + ... + a_N \quad \forall N \in N$$

Chiamiamo serie degli a_n la scrittura formale $\sum_{n=0}^{\infty} a_n$ che si legge serie di a_n e indica formalmente la somma degli infiniti termini a_n

Diremo che la serie degli a_n converge ad $S \in R$ se $\exists \text{Lim}_{N->\infty} S_N = S \in R$ e scriveremo $\sum_{n=0}^{\infty} a_n = S \in R$

S si dice somma della serie degli a_n

Diremo che la serie degli a diverge a $\pm \infty$ se $\exists \text{Lim}_{N->\infty} S_N = \pm \infty$ e $\pm \infty$ si dirà somma della serie

Se la serie degli $\mathbf{a}_{n'}^{\infty} \mathbf{\Sigma}_{n=0} \mathbf{a}_{n'}$ converge o diverge, diremo che essa è regolare

Se $\nexists \text{Lim}_{N->\infty}$ S_N in R* diremo che la serie $^{\infty}\Sigma_{n=0}$ a_n è irregolare o indeterminata

Osservazione:

- La somma della serie è S = ${}^{\infty}\Sigma_{n=0}$ a_n = Lim_{N-> ∞} S_N in R* (se esiste)
- $S_{N+1} = S_N + a_{N+1}$ $\forall N \in N$ $S_0 = a_0$
- Studiare il carattere di una serie significa stabilire se essa sia convergente, divergente a $\pm\infty$ o irregolare, se la serie è convergente calcolare esplicitamente il valore $S = {}^\infty \Sigma_{n=0} \; a_n \in R$ è in generale un problema molto difficile
- Studiare una serie coinvolge due successioni, a_n e S_N
- In una serie, termini vanno sommati nel giusto ordine, senza alterarlo $S_0 = a_0$; $S_1 = a_0 + a_1$; $S_2 = a_0 + a_1 + a_2$; ...
- Calcolare la somma S di una serie $^{\infty}\Sigma_{n=0}$ a $_n$ convergente è in generale molto difficile, il problema è che spesso non si riesce a determinare una formula "esplicita" per S $_N = {}^N\Sigma_{n=0}$ a $_n$ diventa essenziale determinare condizioni necessarie/sufficienti affinché una serie converga o diverga, successivamente se la serie converge si può provare a calcolare un valore approssimato della sua somma
- I primi $n_0 \in \mathbb{N}$ termini della successione a_n sono ininfluenti per determinare il carattere della serie ${}^\infty\Sigma_{n=0}$ a_n cioè essi sono ininfluenti

per determinare se la serie converga, diverga a $\pm\infty$ o sia irregolare. Se la serie converge, allora ovviamente ogni termine della successione a_n

è rilevante per stabilire il valore di S = ${}^{\infty}\Sigma_{n=0}$ a $_{n} \in R$

Esempio:

$$\begin{array}{lll} - \ a_n = (-1)^n \ \forall n \in \mathbb{N} & S_N = {}^N \Sigma_{n=0} \ a_n = {}^N \Sigma_{n=0} \ (-1)^n \ \{ se \ N \ pari \ = 1; \\ & se \ N \ dispari \ = -1 \} \ => \ \nexists \text{Lim}_{N->\infty} \ S_N \ => \ {}^\infty \Sigma_0 \ (-1)^n \ indeterminata \end{array}$$

Esempio:

Serie geometrica di ragione
$$q a_n = q^n$$

$$\sum_{n=0}^{\infty} z_{n=0} = \sum_{n=0}^{\infty} q^n$$

$$S_N = {}^{N}\Sigma_{n=0} q^n = 1 + q + q^2 + ... + q^N$$

Osserviamo che $q*S_N = q + q^2 + ... + q^N + q^{N+1} => S_N - q*S_N = 1 - q^{n+1}$

Esempio:

 \nexists se q \leq -1}

$$y = 1/2$$
 serie geometrica $\sum_{n=0}^{\infty} 1/2^n = 1 + 1/2 + 1/4 + ... + 1/2 + 1/4 + .$

Esempio:

$$r \in Q$$
 $r = \pm a_0, a_1 a_2 ... a_n ...$ $r = \pm a_0 + 0, a_1 + 0, 0a_2 = \pm (a_0 + a_1/10 + a_2/100 + ...)$ $r = \pm {}^{\infty} \Sigma_{n=0} a_n/10^n$

Esempio:

$$r \in [0,1] \quad r = {}^{\infty}\Sigma_{n=1} \, a_n/10^n \qquad 0,\underline{9} = 1$$

$$0,\underline{9} = {}^{\infty}\Sigma_{n=1} \, 9/10^n = 9 * {}^{\infty}\Sigma_{n=1} \, 1/10^n = 9*(({}^{\infty}\Sigma_{n=0} \, 1/10^n) - 1) = \text{serie}$$
 geometrica= $9*(1/(1-1/10) - 1) = 1$

Osservazione:

dal teorema sull'algebra dei limiti e sull'aritmetica parziale di ∞ , segue che: date due serie ${}^{\infty}\Sigma_{n=0}$ a_n e ${}^{\infty}\Sigma_{n=0}$ b_n e ∂ , β \in R vale

 $^{\infty}\Sigma_{n=0} \ (\partial^*a_n + \beta^*b_n) = \partial^* \ ^{\infty}\Sigma_{n=0} \ a_n + \beta^* \ ^{\infty}\Sigma_{n=0} \ b_n \ \ (^*)$ se $^{\infty}\Sigma_{n=0} \ a_n \ e^{-\infty}\Sigma_{n=0} \ b_n \ \text{ sono convergenti o divergenti e se}$ l'espressione a destra dell'uguale in (*) non è forma di indeterminazione