Bioinformatics for Pathway Enrichment Analysis Part 1

Veronique Voisin and Ruth Isserlin

Computer Ontario Summer school 2025

Course outline

- General concept of pathway enrichment analysis using a defined gene list.
- What are the steps to perform pathway enrichment analysis?
- Example: frequently mutated genes
- Practical lab: pathway enrichment analysis using R

Learning Objectives

- Be able to understand:
 - the main goal of pathway enrichment analysis
 - the general workflow of pathways enrichment analysis (what is the step1 (input data) and what is the output?)
 - the advantages of pathway enrichment analysis

General Workflow of pathway enrichment analysis

What Is a Gene List?

A gene list is a set of genes identified through an experiment or analysis. Shared features among genes in a list may suggest:

- •Involvement in the same biological system (e.g., pathway, protein complex, or physical interactions)
- •Similar molecular function (e.g., all encode protein kinases)
- •Expression in the same cell type or tissue
- •Proximity on the genome (e.g., due to linkage or copy number variations)

Where Do Gene Lists Come From?

Gene lists are generated through various types of **high-throughput experiments** and **computational analyses**:

Molecular Profiling

- •Transcriptomics (e.g., RNA-seq → gene expression changes)
- •Proteomics (e.g., mass spectrometry → protein abundance)

Functional Genomics

- •Genetic screens (e.g., CRISPR, RNAi, knockout libraries)
- •Perturbation studies (e.g., drug treatment, environmental stress)

Genetic Variation Studies

- •Genome-wide association studies (GWAS) (SNPs linked to disease or traits)
- •Structural variation (Copy number variants (CNVs), insertions, deletions)
- •And more....

Pathway enrichment analysis using bioinformatic tools save time compared to the traditional approach

Benefits of Pathway Enrichment Analysis

vs. analysis of individual transcripts, proteins, SNPs...

- Results are easier to interpret
 - Familiar concepts e.g. cell cycle
- Improves statistical power
 - Fewer tests, aggregates data from multiple genes into one pathway
- More reproducible
 - E.g. gene expression signatures
- Facilitates integration of multiple data types
- Identifies possible causal mechanisms
- Predicts new roles for genes

Pathways vs. Networks

EGFR-centered Pathway

- Detailed, high-confidence consensus
- Biochemical reactions
- Small-scale, fewer genes
- Concentrated from decades of literature

EGFR-centered Network

- Simplified cellular logic, noisy
- Abstractions: directed, undirected
- Large-scale, genome-wide
- Constructed from omics data integration

Pathway: proteins that are known to work together in a defined biological process. A network is a representation of a pathway, built using information stored in pathway database

Pathway database

What GO Covers?

- GO terms divided into three aspects:
 - cellular component
 - molecular function
 - biological process

glucose-6-phosphate isomerase activity

GO Structure

- Terms are related within a hierarchy
 - is-a
 - part-of
- Describes multiple levels of detail of gene function
- Terms can have more than one parent or child

Another database: Reactome

What a Pathway File Looks Like: Displaying a Few Entries

negative regulation of protein complex assembly	DACT1	ADD2	SOST	PFN1	ULK1	HEY2	MAPRE1	TUBB4A	TBCD
mesenchymal stem cell proliferation	SIX2								
interneuron axon guidance	LHX1	LHX9							
peptidyl-lysine oxidation	LOXL3	LOXL4	LOXL1	LOX	LOXL2				
negative regulation of skeletal muscle cell proliferation	EPHB1	MSTN	AKIRIN1						
tetrapyrrole catabolic process	HMOX1	BLVRB	UGT1A4	HMOX2	BLVRA	UGT1A1	AMBP		
regulation of adenylate cyclase-inhibiting adrenergic receptor signaling pathway	RGS2								
Purkinje myocyte action potential	SCN1B	TRPM4	SCN5A						
negative regulation of calcineurin-mediated signaling	FHL2	MYOZ1	HOMER2	MYOZ2	GSK3B	CHP1	RCAN1	PRNP	ACTN3
DNA endoreduplication	ZPR1								
protein maturation by protein folding	AIP	CALR	FKBP1A	CHCHD4	FKBP1B	WFS1			
regulation of histone H4-K16 acetylation	AUTS2	SMARCB1	PIH1D1	SIRT1	BRCA1				
sterol esterification	LCAT	SOAT1	ACAT1	SOAT2					
regulation of fat cell proliferation	TFDP1	GATA2	E2F1	E2F3	PID1	VSTM2A	PER2		
regulation of transcription from RNA polymerase II promoter in response to hypoxia	RBX1	NOTCH1	HIF1AN	HIGD1A	PSMD10	PSMD12	STOX1	RBPJ	CITED2
regulation of caveolin-mediated endocytosis	CLN3	PROM2	NEDD4L	SRC	UNC119				
blastocyst growth	ACVR1C	ZPR1							
desmosome assembly	PKP3	PRKCA	JUP	PKP2					
nuclear retention of unspliced pre-mRNA at the site of transcription	PRPF18	EXOSC10							
response to zinc ion	ATP13A2	MT1HL1	CRIP1	GLRA1	GLRA2	КНК	MT1DP	HVCN1	HAAO
immune response-activating signal transduction	HSP90AA1	KIR2DS2	TIRAP	TRAF3	TRAF6	CLEC4C	NOD2	EIF2B4	EIF2B3
negative regulation of very-low-density lipoprotein particle remodeling	APOA2	NR1H4	APOA1	APOC3					
rRNA processing	BMS1	HELB	RPUSD1	RPUSD2	RPL7L1	UTP11	POP5	WDR43	NOLC1
specification of mesonephric tubule identity	OSR1								
regulation of heart induction	GATA5	DKK1	ROBO2	ROBO1	MESP1	WNT3A			
lateral attachment of mitotic spindle microtubules to kinetochore	CENPE								
histone H2B ubiquitination	DTX3L	LEO1	RNF8	RNF40	UBE2E1	RNF20	WAC	PAF1	CTR9
monoacylglycerol biosynthetic process	MOGAT3	MOGAT2	PLA2G4A	DGAT2L6	AWAT2	DGAT2	DGAT1		
hard palate development	FOXE1	SOX11							
positive regulation of wound healing	F2R	INSL3	SERPINE1	FERMT2	APOH	SMOC2	OCLN	HRAS	PLEK
thalamus development	LRP6	PTCHD1	CHRNB2	CNTNAP2					
dendritic cell homeostasis	GPR183								
positive regulation of trophectodermal cell proliferation	IGF1								
positive regulation of nuclear-transcribed mRNA catabolic process, deadenylation-depen	CPEB3	NANOS1	NANOS2	CNOT7	CNOT1	POLR2G	DHX36	NANOS3	TNRC6C

18000 pathways in file

Yellow: genes that match with my list

BaderLab EM_Genesets

http://download.baderlab.org/EM_Genesets/

Pathway enrichment analysis is a way to summarize your protein list into pathways to ease biological interpretation of the data

Two types of gene lists: defined or ranked gene list.

- Fisher's Exact Test, aka Hypergeometric Test
- GSEA for ranked lists.
- Multiple test corrections:
 - Bonferroni correction
 - False Discovery Rate computation using Benjamini-Hochberg procedure

Types of pathway enrichment analysis

- <u>Defined gene list</u>(e.g. abundance change > 2-fold)
 - Answers the question: Are any pathways (gene sets) surprisingly enriched in my protein list?
 - Statistical test: Fisher's Exact Test (aka Hypergeometric test)
- Ranked gene list (e.g. by differential abundance)
 - Answers the question: Are any pathways (gene sets) ranked surprisingly high or low in my ranked list of proteins?
 - Statistical test: GSEA, Wilcoxon rank sum test (+ others we won't discuss)

Workflow

Outputs

Pathway	P-value	Q-value		
POSITIVE REGULATION OF RAS PROTEIN SIGNAL TRANSDUCTION%GOBP%GO:0046579	0.00304414	0.0056384853		
REGULATION OF INTERFERON-GAMMA-MEDIATED SIGNALING PATHWAY/GOBP/GO:0060334	0.0	0.0038799183		
POSITIVE REGULATION OF RHO PROTEIN SIGNAL TRANSDUCTION%GOBP%GO:0035025	0.004622496	0.008516296		

Pathway enrichment analysis using a defined gene list

- Given:
 - 1. Gene list: e.g. RRP6, MRD1, RRP7, RRP43, RRP42 (yeast)
 - 2. Pathways (gene-sets) or annotations: e.g. The Gene Ontology, transcription factor binding sites in promoter
- Question: Are any of the pathways(gene-sets) surprisingly enriched in the gene list?
- Details:
 - Where do the **gene lists** come from?
 - How to assess "surprisingly" (statistics)
 - How to correct for repeating the tests

Pathway enrichment analysis calculates the overlap between our protein list and a pathway

The background represents all the proteins that could have been captured in my omics experiment

estimated 20,000-25,000 human protein-coding genes

How many proteins could have been captured in your experiment? : about 6,000?

RFX2

How do simple enrichment tests work?

Do you need to learn more about Fisher's exact test?

StatQuest with Josh Starmer

gene sets (pathways)(

Background

My "sample" = my gene list

On the left, all the m&m's in the bag sorted using the different colors. I take a random "sample" of m&m's from the bag, and I would like to determine if my sample is special.

VIDEO the M&M's examples:

https://www.youtube.com/watch?v=udyAvvaMjfM

The Fisher's exact test

a.k.a., hypergeometric test

Background population: 500 black m&m's, 4500 red m&m's

1 gene-set/pathway

g:Profiler

T (term): pathway that is being tested

Q (query): my gene list

TnQ: overlap between pathway and gene list

U (universe): background

Not in protein list

2x2 contingenc y table

	list	
In pathway	25	27
Not in pathway	19	266

In protein

Fisher's exact test

We are testing many pathways at the same time

We need to correct for multiple hypothesis testing

Correction for Multiple Hypothesis Testing

How to win the p-value lottery

Random draws

... 7,834 draws later ...

Background population: 500 black genes, 4500 red genes

Expect a random draw with observed enrichment once every 1 / P-value draws

1 gene-set (apoptosis)

Correction for Multiple Hypothesis Testing

1. Simple P-value correction: Bonferroni

If M = # of gene-sets (pathways) tested:

2. False discovery rate (FDR)

FDR is the expected **proportion** of the observed enrichments due to random chance.

- Typically, FDR corrections are calculated using the Benjamini-Hochberg procedure.
- FDR threshold is often called the "q-value" or "adjusted pvalue"

NAME	SIZE	ES	NES	NOM p	∕ al	FDR q-val
COFACTOR CATABOLIC PROCESS%GOBP%GO:0051187	25	0.7750398	2.368539		0	5.02E-04
ANTIBIOTIC CATABOLIC PROCESS%GOBP%GO:0017001	21	0.78641075	2.2833898		0	0.00219077
HYDROGEN PEROXIDE METABOLIC PROCESS%GOBP%GO:0042743	16	0.8221468	2.2569728		0	0.00275445
PEPTIDE CHAIN ELONGATION%REACTOME%R-HSA-156902.2	75	0.5671107	2.19405		0	0.00696158
RESPONSE OF EIF2AK4 (GCN2) TO AMINO ACID DEFICIENCY%REACTOME%R-HSA-96	82	0.56710726	2.1913495		0	0.00576
EUKARYOTIC TRANSLATION ELONGATION%REACTOME%R-HSA-156842.2	78	0.56959534	2.1875012		0	0.00536845
VIRAL MRNA TRANSLATION%REACTOME%R-HSA-192823.3	76	0.56925994	2.180141		0	0.00501747
HALLMARK_SPERMATOGENESIS%MSIGDB_C2%HALLMARK_SPERMATOGENESIS	45	0.61634994	2.1523428		0	0.00671322
L13A-MEDIATED TRANSLATIONAL SILENCING OF CERULOPLASMIN EXPRESSION%RE	95	0.5357858	2.1477811		0	0.00651045
EUKARYOTIC TRANSLATION INITIATION%REACTOME DATABASE ID RELEASE 72%72	103	0.52849996	2.1412485		0	0.00688575
EUKARYOTIC TRANSLATION TERMINATION%REACTOME%R-HSA-72764.4	79	0.56097984	2.1397927		0	0.00634908
CAP-DEPENDENT TRANSLATION INITIATION%REACTOME DATABASE ID RELEASE 729	103	0.52849996	2.1329718		0	0.00658981
GTP HYDROLYSIS AND JOINING OF THE 60S RIBOSOMAL SUBUNIT%REACTOME DAT	97	0.535648	2.132473		0	0.0060829

Extract the pathways that are significant at FDR 0.05 or less

EXAMPLE WITH A DEFINED GENE LIST

Frequently mutated genes

nature > articles > article

Article Open access | Published: 16 October 2013

Mutational landscape and significance across 12 major cancer types

Cyriac Kandoth, Michael D. McLellan, Fabio Vandin, Kai Ye, Beifang Niu, Charles Lu, Mingchao Xie,

Qunyuan Zhang, Joshua F. McMichael, Matthew A. Wyczalkowski, Mark D. M. Leiserson,

<u>Christopher A. Miller, John S. Welch, Matthew J. Walter, Michael C. Wendl, Timothy J. Ley, Richard</u>

K. Wilson, Benjamin J. Raphael & Li Ding □

Nature **502**, 333–339 (2013) Cite this article

201k Accesses | 228 Altmetric | Metrics

Data used for practical lab:

Dataset: Mutational landscape and significance across 12

major cancer types

https://www.nature.com/articles/nature12634 (2013)

Exome sequencing Tumor samples and matched control tissues

Detection of points mutations and small insertions/deletions: somatic variant calls in each cancer type and in each tumor

Calculation of mutation frequency: genes mutated in at least 5% of tumors were selected

Genes positively correlated with number of mutation per sample

127 'significantly mutated genes'

gene list

g:Profiler

g:GOSt performs functional enrichment analysis, also known as over-representation analysis (ORA) or gene set enrichment analysis, on input gene list. It maps genes to known functional information sources and detects statistically significantly enriched terms. We regularly retrieve data from Ensembl database and fungi, plants or metazoa specific versions of Ensembl Genomes, and parasite specific data from WormBase Par-

aSite. In addition to Gene Ontology, we include pathways from KEGG Reactome and WikiPathways; miRNA targets from miRTarBase and regulatory motif matches from TRANSFAC; tissue specificity from Human Protein Atlas; protein complexes from CORUM and human disease phenotypes from Human Phenotype Ontology. g:GOSt supports close to 500 organisms and accepts hundreds of identifier types.

Explore results

Note: observe that same genes are included in several enriched genesets (pathways).

During the practical lab: We will run g:Profiler from R

Summary of the Steps

1) Get our gene list

- Identification of genes with mutations present in at least 5% of the tumor samples
- Format gene list using official gene symbol

2) Perform pathway enrichment analysis (g:Profiler) or other equivalent tools

- the first step is to calculate the overlap size between each tested pathway and our list of proteins
- the second step is to estimate the probability (p value) that the enrichment happened by chance only using a Fisher's exact test
- the pvalue is corrected for multiple hypothesis testing (adjusted p value)
- the output is a list of pathways that are enriched in our list of proteins; we select the pathways enriched with a corrected pvalue less than 0.05.

3) Visualized the results as a network (optional, see part2)

- The output table contains a lot of pathways that are similar and share some proteins in common; the table might be difficult to read or interpret.
- We can visualize the table as a network which will group the similar pathways together and enables us to identify the main groups of biological functions enriched in our gene list.

This module is taken from CBW Pathway and Network Analysis Workshop 2024

Original source of the slides: Quaid Morris/Gary Bader/Lincoln Stein/Juri Reimand

2025 Canadian Bioinformatics Workshop Please visit the website to see workshops presently offered

https://bioinformatics.ca/workshops/current-workshops/

Time for practical lab