Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2014

Designing logical codon reassignment – expanding the chemistry in biology

Anaëlle Dumas, ϕ^a Lukas Lercher, ϕ^a Chris Spicer, ϕ^a and Benjamin G. Davis*

SUPPLEMENTARY INFORMATION

tRNA-RS pair	Specification (mutations)	a.a. Name	a.a. Structure	Organism	Applications	Misc.	Group	Year	Journal	doi
Prokaryotic or eukaryotic cell culture										
MjTyrRS										
MjTyrRS / MjtRNATyr	Y32Q D158A E107T L162P	<i>p</i> -Methoxy- <i>L</i> - phenylalanine	1 OMe H ₂ N CO ₂ H	E. coli	First UAA incorporation by amber suppression		Schultz	2001	Science	10.1126/scienc e.1060077
MjTyrRS / MjtRNATyr	E107A D158C I159A	<i>O-</i> Allyl- <i>L</i> -tyrosine	2 H ₂ N CO ₂ H	E. coli	Speculated cross- coupling		Schultz	2002	Angew. Chem. Int. Edit.	10.1002/1521- 3773(20020802)41:15<2840::Al D- ANIE2840>3.0.C O;2-#
MjTyrRS / MjtRNATyr	Y32S E107T D158T I159Y L162A	O-Allyl-L-tyrosine	2 H ₂ N CO ₂ H	E. coli		Paper develops fluorescent method for rapid isolation of AARS/tRNA pairs	Schultz	2002	Nat. Biotechnol.	10.1038/nbt742
MjTyrRS / MjtRNATyr	Y32L D158P I159A L162Q A167V	3-(2-Naphthyl)- <i>L</i> - alanine	3 H ₂ N CO ₂ H	E. coli	Speculated novel stacking properties		Schultz	2002	J. Am. Chem. Soc.	10.1021/ja0123 07j
MjTyrRS / MjtRNATyr	H70A D158T	3-lodo- <i>L</i> -tyrosine	4 OH H ₂ N CO ₂ H	E. coli	Aid protein crystal structure deciphering		Yokoyama	2009	Structure	10.1016/j.str.20 09.01.008
MjTyrRS / MjtRNATyr	Y32G E107S D158T I159S	<i>p</i> -Benzoyl- <i>L</i> - phenylalanine (<i>p</i> Bpa)	5 H ₂ N CO ₂ H	E. coli	Photo-cross-linker	Used to cross-link GST mutants at PPI	Schultz	2002	Proc. Natl. Acad. Sci.	10.1073/pnas.1 72226299
MjTyrRS / MjtRNATyr	A31V Y32G E107P D158S I159S	<i>p-</i> Benzoyl- <i>L-</i> phenylalanine (<i>p</i> Bpa)	5 H ₂ N CO ₂ H	E. coli		Demonstration that one synthetase can have a rationally designed, broad scope	Mehl	2009	Mol. Biosyst.	10.1039/b9040 32c

MjTyrRS / MjtRNATyr	Y32G E107S D158T I159S	p-Benzoyl-L- phenylalanine (pBpa)	5 H ₂ N CO ₂ H	M. smegmatis	Amber suppression in a TB model mycobacterium		Schultz	2010	Plos One	10.1371/journal .pone.0009354
MjTyrRS / MjtRNATyr	Y32T E107N D158P L162Q	<i>p-</i> Azido- <i>L-</i> phenylalanine	6 N ₃	M. smegmatis	Amber suppression in a TB model mycobacterium		Schultz	2010	Plos One	10.1371/journal .pone.0009354
MjTyrRS / MjtRNATyr	Y32T E107N D158P L162Q	<i>p</i> -Azido- <i>L</i> - phenylalanine	6 N ₃ CO ₂ H	E. coli	Photo-cross-linker	Poorer yields for cross-linking than pBpa	Schultz	2002	J. Am. Chem. Soc.	10.1021/ja0270 07w
MjTyrRS / MjtRNATyr	Y32T E107T D158P I159L L162A	<i>p</i> -Amino- <i>L</i> - phenylalanine (<i>p</i> AF)	7 NH ₂ NCO ₂ H	E. coli		Paper develops fluorescent method for rapid isolation of AARS/tRNA pairs	Schultz	2002	Nat. Biotechnol.	10.1038/nbt742
MjTyrRS / MjtRNATyr	Y32T E107T D158P I159L L162A	<i>p</i> -Amino- <i>L</i> - phenylalanine (<i>p</i> AF)	7 NH ₂ NCO ₂ H	E. coli		Bacteria engineered to generate pAF biosynthetically. Later used as reactive handle.	Schultz	2003	J. Am. Chem. Soc.	10.1021/ja0284 153
MjTyrRS / MjtRNATyr	Y32G T102C V103A E107P D158G I159Y	p-Isopropyl- <i>L</i> - phenylalanine (pIF)	8 H ₂ N CO ₂ H	E. coli		Paper develops fluorescent method for rapid isolation of AARS/tRNA pairs	Schultz	2002	Nat. Biotechnol.	10.1038/nbt742
MjTyrRS / MjtRNATyr	Y32L D158G I159C L162R	<i>p-</i> Acetyl- <i>L</i> - phenylalanine	10 O	E. coli	Labelling with hydrazides <i>in vitro</i>		Schultz	2003	Proc. Natl. Acad. Sci.	10.1073/pnas.0 234824100
MjTyrRS / MjtRNATyr	Y32A E107P L110F D158A L162A	O-Propargyl-L-tyrosine	11 O O O O O O O O O O O O O O O O O O	E. coli	Reactive handle for azide-alkyne cycloaddition		Schultz	2005	Bioorg. Med. Chem. Lett.	10.1016/j.bmcl. 2004.12.065
MjTyrRS / MjtRNATyr	Y32L E107S D158P I159L H160N L162E	p-Nitro-L- phenylalanine (pNO₂Phe)	12 NO ₂ H ₂ N CO ₂ H	E. coli	Fluorescence quencher of Trp, used as a distance probe		Schultz	2006	J. Am. Chem. Soc.	10.1021/ja0582 62u

MjTyrRS / MjtRNATyr	Y32L E107S D158P I159L H160N L162E	p-Nitro-L- phenylalanine (pNO₂Phe)	12 NO ₂ H ₂ N CO ₂ H	M. smegmatis	Amber suppression in a TB model mycobacterium		Schultz	2010	Plos One	10.1371/journal .pone.0009354
MjTyrRS / MjtRNATyr	Y32L L65P D158G I159C L162K	Sulfo- <i>L</i> -tyrosine	13 OSO ₃ H	E. coli	Natural PTM		Schultz	2006	Nat. Biotechnol.	10.1038/nbt125 4
MjTyrRS / MjtRNATyr	Y32G L65E F108A Q109E D158G L162H	Phe-4'-azobenzene (AzoPhe)	14 N:N CO ₂ H	E. coli	Photo-isomerizable, used to block binding pockets		Schultz	2006	J. Am. Chem. Soc.	10.1021/ja0554 67u
MjTyrRS / MjtRNATyr	Y132G F65V F108T D158G L162S		16 0 0 0 H ₂ N CO ₂ H	E. coli	Labelling with hydroxylamines		Schultz	2006	Bioorg. Med. Chem. Lett.	10.1016/j.bmcl. 2006.07.094
MjTyrRS / MjtRNATyr	Y32L L65V F108W Q109M D158G	p-Cyano- <i>L</i> - phenylalanine (pCNPhe)	17 CN H ₂ N CO ₂ H	E. coli	Infrared probe		Schultz	2006	J. Am. Chem. Soc.	10.1021/ja0636 690
MjTyrRS / MjtRNATyr	Y32L L65V F108W Q109M D158G I159P	<i>p</i> -Cyano- <i>L</i> - phenylalanine	17 CN H ₂ N CO ₂ H	E. coli	FRET Probe		Brewer/Mehl	2009	Biochemistry	10.1021/bi9004 26d
MjTyrRS / MjtRNATyr	Y32Q L65E F108G Q109L L162Y	3-amino-L-tyrosine (NH₂Y)	18 OH NH ₂	E. coli	Used to probe radical propagation in ribonucleotide reductase		Stubbe	2007	J. Am. Chem. Soc.	10.1021/ja0760 43y
MjTyrRS / MjtRNATyr	Y32S L65A F108K Q109H D158G L162K	<i>p</i> -Carboxymethyl- <i>L</i> -phenylalanine (pCMF)	19 OH	E. coli	Stable phosphotyrosine mimic	Racemic a.a. used	Schultz	2007	ACS Chem. Biol.	10.1021/cb700 083w

MjTyrRS / MjtRNATyr	Y32I H70F E107S Q109M D158P I159L L162E	TfmdPhe	20 CF ₃ H ₂ N CO ₂ H	E. coli	Photo-cross-linker		Schultz	2007	ChemBioChem	10.1002/cbic.20 0700460
MjTyrRS / MjtRNATyr	Y32H L65H H70H F108W Q109M Q155Q D158G L162K	BiphenylAla (BipAla)	21 H ₂ N CO ₂ H	E. coli		Synthetase intermediate developed on way to BpyAla incorporation	Schultz	2007	Angew. Chem. Int. Edit.	10.1002/anie.2 00703397
MjTyrRS / MjtRNATyr	Y32G L65Y H70A F108F Q109Q Q155E D158G I159W L162S	(2,2'-Bipyridin-5-yl)Ala (BpyAla)	22 N N CO ₂ H	E. coli	Metal chelator (specifically Cu ²⁺)		Schultz	2007	Angew. Chem. Int. Edit.	10.1002/anie.2 00703397
MjTyrRS / MjtRNATyr	A31V Y32G E107P D158S I159S	4-Fluoro- <i>p</i> -benzoyl- <i>L</i> -phenylalanine (4F-Bpa)	23 F H ₂ N CO ₂ H	E. coli		Demonstration that one synthetase can have a rationally designed broad scope	Mehl	2009	Mol. Biosyst.	10.1039/b9040 32c
MjTyrRS / MjtRNATyr	Y32V L65M H70T F108R Q109E D158S I159S	HQ-Ala	24 OH CO ₂ H	E. coli	Metal chelator (specifically zinc ²⁺). Also fluorescent		Wang/Schultz	2009	J. Am. Chem. Soc.	10.1021/ja8083 40b
MjTyrRS / MjtRNATyr	Y32G E107P D158T I159S	2,6-Difluoro- <i>p</i> - benzoylPhe (2,6dF- Bpa)	25 F F F CO ₂ H	E. coli		Demonstration that one synthetase can have a rationally designed broad scope	Mehl	2009	Mol. Biosyst.	10.1039/b9040 32c

MjTyrRS / MjtRNATyr	Y32S L65A H70M D158S I159E	<i>p-</i> Borono- <i>L-</i> phenylalanine	26 B(OH) ₂ H ₂ N CO ₂ H	E. coli	Used for protein purification, diol conjugation, Suzuki coupling and as latent tyrosine residue		Schultz	2008	Angew. Chem. Int. Edit.	10.1002/anie.2 00803240
MjTyrRS / MjtRNATyr	Y32G E107P D158T I159S V164A	4-Iodo- <i>p</i> -benzoyl- <i>L</i> -phenylalanine (4I-Bpa)	27 O O O O O O O O O O O O O O O O O O O	E. coli		Demonstration that one synthetase can have a rationally designed broad scope	Mehl	2009	Mol. Biosyst.	10.1039/b9040 32c
MjTyrRS / MjtRNATyr	Y32G E107P D158T I159S V164A	4-Nitro- <i>p</i> -benzoyl- <i>L</i> - phenylalanine (4Nitro- Bpa)	28 NO ₂	E. coli		Demonstration that one synthetase can have a rationally designed broad scope	Mehl	2009	Mol. Biosyst.	10.1039/b9040 32c
MjTyrRS / MjtRNATyr	Y32G E107P D158T I159S V164A	3-Fluoro-4-nitro- <i>p</i> - benzoyl- <i>L</i> - phenylalanine (3F- 4nitro-Bpa)	29 NO ₂	E. coli		Demonstration that one synthetase can have a rationally designed broad scope	Mehl	2009	Mol. Biosyst.	10.1039/b9040 32c
MjTyrRS / MjtRNATyr	A31V Y32G E107P D158S I159S	Thyronine	30 OH	E. coli		Demonstration that one synthetase can have a rationally designed broad scope	Mehl	2009	Mol. Biosyst.	10.1039/b9040 32c
MjTyrRS / MjtRNATyr	Y32G E107P D158T I159S	O-Benzyl-L-tyrosine	31 COOH	E. coli		Demonstration that one synthetase can have a rationally designed broad scope	Mehl	2009	Mol. Biosyst.	10.1039/b9040 32c
MjTyrRS / MjtRNATyr	Y32G L65G H70N F108G D158S I159M L162N	o-Nitrobenzyl-2- fluoro- <i>L</i> -tyrosine	32 FOOH NO2	E. coli	Photo-caged fluoro- tyrosine		Cropp/ Deiters	2010	Biochemistry	10.1021/bi1000 13s

MjTyrRS / MjtRNATyr	Y32G L65H A67G H70G F108L Q109S Y114S D158T I159Y L162D	2-Nitro- <i>L-</i> phenylalanine	33 H ₂ N CO ₂ H	E. coli	Photo-cleavage of protein backbone	Attempted to incorporate NitroGly but unsuccesful	Schultz	2009	Chem. Biol.	10.1016/j.chem biol.2009.01.01 3
MjTyrRS / MjtRNATyr	Y32A L65S F108Q H109A D158A L162Y	<i>p</i> -OCF₃-Phe	34 OCF ₃ H ₂ N CO ₂ H	E. coli	¹⁹ F Probe for protein NMR	Development of an inducible system for aaRS expression	Geierstanger/ Schultz	2008	J. Am. Chem. Soc.	10.1021/ja8016 02q
MjTyrRS / MjtRNATyr	Q155R Q173G I176V	<i>p</i> -Hydroxy-phenyllactic acid	35 OH HO CO ₂ H	E. coli	Hydroxy acid to introduce ester linkages into protein backbone		Schultz	2008	Angew. Chem. Int. Edit.	10.1002/ange.2 00704074
MjTyrRS / MjtRNATyr	Y32R L65L H70L Q155M D158G I159L L162H	3-Nitro- <i>L</i> -tyrosine	36 OH NO ₂	E. coli	Genetically encoded marker of protein oxidative damage		Chin/ Mehl	2008	J. Am. Chem. Soc.	10.1021/ja7101 00d
MjTyrRS / MjtRNATyr	Y32T E107T D158P I159L L162A	pAMF	37 NH ₂	E. coli	Improving enzyme activity of a nitroreductase		Mehl	2006	J. Am. Chem. Soc.	10.1021/ja0610 99y
MjTyrRS / MjtRNATyr	Y32L L65A F108S H109H D158A L162M	<i>p-</i> Methyl- <i>L-</i> phenylalanine	38 CO ₂ H	E. coli	Improving enzyme activity of a nitroreductase		Mehl	2006	J. Am. Chem. Soc.	10.1021/ja0610 99y
MjTyrRS / MjtRNATyr	Y32L A67S H70N A167Q	3,4-Dihydroxy- <i>L</i> - phenylalanine	39 OH OH	E. coli	Redox active amino acid		Schultz	2003	J. Am. Chem. Soc.	10.1021/ja0382 42x

	Y32L								
MjTyrRS / MjtRNATyr	L65V F108W Q109M D158G I159P	<i>p-</i> Ethynyl- <i>L-</i> phenylalanine	41 H ₂ N CO ₂ H	E. coli	FRET Probe	Brewer/Mehl	2009	Biochemistry	10.1021/bi9004 26d
MjTyrRS / MjtRNATyr	Y32L L65A F108S H109H D158A L162M	Trifluoromethyl- <i>L</i> - phenylalanine (tfmPhe)	42 CO ₂ H	E. coli	¹⁹ F Probe for protein NMR	Mehl	2007	J. Am. Chem. Soc.	10.1021/ja0646 61t
MjTyrRS / MjtRNATyr	Y32G L65G F108E D158S L162E	o-Nitrobenzyl- <i>O</i> - tyrosine (ONBY)	43 NO ₂ NO ₂	E. coli	Photocaged tyrosine	Schultz	2006	Angew. Chem. Int. Edit.	10.1002/anie.2 00600264
MjTyrRS / MjtRNATyr		<i>p</i> -Bromo- <i>L</i> - phenylalanine	44 Br H ₂ N CO ₂ H	E. coli	Mutant GFP excitation/ emission	Schultz	2003	J. Org. Chem.	10.1021/jo0265 7u
MjTyrRS / MjtRNATyr	Y32L E107S D158P I159L L162E	<i>p</i> -lodo- <i>L</i> - phenylalanine	45 H ₂ N CO ₂ H	E. coli	Mutant GFP excitation/ emission, later used for protein crystallisation and as reactive handle	Schultz	2003	J. Org. Chem.	10.1021/jo0265 7u
MjTyrRS / MjtRNATyr	Y32L E107S D158P I159L L162E	<i>p</i> -lodo- <i>L</i> - phenylalanine	45 H ₂ N CO ₂ H	E. coli	Structural determination of proteins	Schultz	2003	Nat. Biotechnol.	10.1038/nbt101 3
MjTyrRS / MjtRNATyr	Y32L E107S D158P I159L L162E	<i>p</i> -lodo- <i>L</i> - phenylalanine	45 H ₂ N CO ₂ H	M. smegmatis	Amber suppression in a TB model mycobacterium	Schultz	2010	Plos One	10.1371/journal .pone.0009354
MjTyrRS / MjtRNATyr	Y32G L65G H70N F108G D158S I159M L162N	o-Nitrobenzyl-3- fluoro- <i>L</i> -tyrosine	46 NO ₂	E. coli	Photocaged fluoroTyr	Cropp/ Deiters	2010	Biochemistry	10.1021/bi1000 13s

MjTyrRS / MjtRNATyr	Y32G L65G H70M F108G D158S I159M L162E	o-Nitrobenzyl-2,6- difluoro- <i>L</i> -tyrosine	47 O NO ₂	E. coli	Photocaged fluoroTyr		Cropp/ Deiters	2010	Biochemistry	10.1021/bi1000 13s
MjTyrRS / MjtRNATyr	Y32L A67S H70N A167Q	PhenylselenoCys	48 se H ₂ N CO ₂ H	E. coli	Precursor of Dha		Schultz	2007	Angew. Chem. Int. Edit.	10.1002/ange.2 00702305
MjTyrRS / MjtRNATyr	Y32L D158E I159P H160Q Y161G L162R G163D	<i>m</i> -Acetyl- <i>L</i> - phenylalanine	51 CO ₂ H O	E. coli	Labelling with hydrazides, both <i>in</i> <i>vitro</i> and on cell surfaces	Coupling efficiencies comparable to p- derivative. First labelling on cell surface by amber suppression	Schultz	2003	Biochemistry	10.1021/bi0300 231
MjTyrRS / MjtRNATyr	Y32E L65H A67G H70G F108Y Q109H D158G L162G	7-MethylCoumarinyl- ethylGly	52 H ₂ N CO ₂ H	E. coli	Improving enzyme activity of a phosphotriesterase		Jackson	2011	J. Am. Chem. Soc.	10.1021/ja1064 16g
MjTyrRS / MjtRNATyr	Y32E L65H A67G H70G F108Y Q109H D158G L162G	(7-Hydroxycoumarin- 4-yl)ethylGly	53 H ₂ N CO ₂ H	E. coli	Fluorescent amino acid used to probe unfolding, and later used to improve enzyme activity		Schultz	2006	J. Am. Chem. Soc.	10.1021/ja0626 66k
MjTyrRS / MjtRNATyr	Y32E L65A A107E F108P Q109S D158G L162G	4-(6-methyl-s-tetrazin- 3-yl)amino- <i>L</i> - phenylalanine	54 NH	E. coli	Reactive handle for tetrazine ligation		Mehl	2012	J. Am. Chem. Soc.	10.1021/ja2109 745

MjTyrRS / MjtRNATyr	Y32I L65I Q109M D158G L162V V164G	p-(2-tetrazole) -L- phenylalanine	55 N=N N-N N-N	E. coli	Reactive handle for 'Photo-click' reaction	Lin	2010	J. Am. Chem. Soc.	10.1021/ja1043 50y
MjTyrRS / MjtRNATyr	Y32V L65Y F108H Q109G D158G L162E D286R	p-Acrylamido-(S)-L- phenylalanine (AcrF)	56 H ₂ N CO ₂ H	E. coli	Reactive handle for Michael additions, cross-linker	Schultz / Kim	2014	J. Am. Chem. Soc.	10.1021/ja5028 51h
MjTyrRS / MjtRNATyr	Y32G L65Y F108H Q109G D158G I159L L162Q D286R	p-Vinylsulfonamido- (S)-L-phenylalanine (VSF)	57 H ₂ N CO ₂ H	E. coli	Reactive handle for Michael additions, cross-linker	Schultz / Kim	2014	J. Am. Chem. Soc.	10.1021/ja5028 51h
MjTyrRS / MjtRNATyr	Y32E L65T D158S I159A H160P Y161T L162Q A167W D286R or Y32E L65V K90E I159A H160W Y161G L162Q A167I D286R	2-amino-3-(6-hydroxy- 2-naphthyl)-propanoic acid (NpOH)	134 OH H ₂ N COOH	E. coli	Reactive handle for azo coupling	Tsao	2013	Bioconjugate Chem.	10.1021/bc400 168u

EcTyrRS										
E. coli TyrRS/tRNA	Y37V D182S F183M	<i>p</i> -Methoxy- <i>L</i> - phenylalanine	1 OMe H ₂ N CO ₂ H	S. cerevisiae		Range of UAA's incorporated into yeast cells	Schultz	2003	Science	10.1126/scienc e.1084772
E. coli TyrRS/B. Steareothermophil us tRNATyr	Y37V Q195C	3-lodo- <i>L</i> -tyrosine	4 OH CO ₂ H	Mammalian cells (CHO)	Speculated reactive handle, thyroid modelling	First UAA Incorporation in mammalian cells by amber suppression	Yokoyama	2002	Nucleic Acid Res.	10.1093/nar/gk f589
E. coli TyrRS/tRNA	H70A D158T	3-lodo- <i>L-</i> tyrosine	4 OH CO ₂ H	E. coli		E. coli wt Tyr synthetase replaced by M. jann., and then mutant E. coli TyrRS used to incorporate UAA's	Sakamoto	2010	Nucleic Acid Res.	10.1093/nar/gk q080
E. coli TyrRS/tRNA	Y37G D182G L186A	p-Benzoyl- <i>L</i> - phenylalanine (pBpa)	5 CO ₂ H	Neural Stem Cells		First UAA incorporation in neural stem cells	Wang	2011	Stem Cells	10.1002/stem.6 79
E. coli TyrRS/tRNA	Y37G D182G L186A	p-Benzoyl- <i>L</i> - phenylalanine (<i>p</i> Bpa))	5 0 H ₂ N CO ₂ H	S. cerevisiae		Range of UAA's incorporated into yeast cells	Schultz	2003	Science	10.1126/scienc e.1084772
E. coli TyrRS/tRNA	Y37L D182S F183M L186A	<i>p</i> -Azido <i>L</i> - phenylalanine	6 N ₃ CO ₂ H	S. cerevisiae		Range of UAA's incorporated into yeast cells	Schultz	2003	Science	10.1126/scienc e.1084772
E. coli TyrRS/tRNA	Y37I D182G F183M L186A	<i>p-</i> Acetyl- <i>L</i> - phenylalanine	10 O	S. cerevisiae		Range of UAA's incorporated into yeast cells	Schultz	2003	Science	10.1126/scienc e.1084772
E. coli TyrRS/tRNA	Y37V D182S F183Y	<i>p</i> -lodo- <i>L</i> - phenylalanine	45 H ₂ N CO ₂ H	S. cerevisiae		Range of UAA's incorporated into yeast cells	Schultz	2003	Science	10.1126/scienc e.1084772
E. coli TyrRS/tRNA	H70A D158T	3-Azido-L-tyrosine	75 OH N ₃ CO ₂ H	E. coli		E. coli wt Tyr synthetase replaced by M. Jann., and then mutant E. coli	Sakamoto	2010	Nucleic Acid Res.	10.1093/nar/gk q080

						TyrRS used to				
						incorporate UAA's				
E. coli LeuRS										
E. coli LeuRS/tRNA	M40L L41E Y499R Y527A H537G	O-Methyl-L-tyrosine	1 H ₂ N CO ₂ H	S. cerevisiae			Schultz	2004	J. Am. Chem. Chem. Soc.	10.1021/ja0401 75z
E. coli LeuRS/tRNA	M40W L41S Y499I Y527A H537G	<i>O-</i> Nitrobenzyl <i>-L-</i> cysteine	15 NO ₂	S. cerevisiae	Photocaged cysteine		Schultz	2004	J. Am. Chem. Chem. Soc.	10.1021/ja0401 75z
E. coli LeuRS/tRNA	M40A L41N T252A Y499I Y527G H537T	DansylAla	O=S=O 58 H ₂ N CO ₂ H	S. cerevisiae	Fluorescent amino acid		Schultz	2006	Proc. Natl. Acad. Sci.	10.1073/pnas.0 603965103
E. coli LeuRS/tRNA	M40A L41N Y499I Y527G H537T	DansylAla	O=S=O 58 H ₂ N CO ₂ H	Neural Stem Cells	Fluorescence measuring of ion channels	First UAA incorporation in neural stem cells	Wang	2011	Stem Cells	10.1002/stem.6 79
E. coli LeuRS/tRNA	M40G L41Q T252A Y499L Y527G H537F	4,5-Dimethoxy-2- nitrobenzylserine	OMe OMe NO ₂ 59	S. cerevisiae	Photocaged serine		Schultz	2007	Nat. Chem. Biol	10.1038/nchem bio.2007.44
E. coli LeuRS/tRNA	E20K M40V L41S T252R Y499S Y527L H537G		60 H ₂ N CO ₂ H	S. cerevisiae	Reactive handle e.g. for olefin metathesis		Schultz	2010	Angew. Chem. Int. Edit.	10.1002/anie.2 00905590
E. coli LeuRS/tRNA	M40V L41M Y499L	α-Aminocaprylic acid	61 H ₂ N CO ₂ H	S. cerevisiae			Schultz	2004	J. Am. Chem. Chem. Soc.	10.1021/ja0401 75z

	Y527L									
	H537G									
E. coli LeuRS / EctRNALeu	M40I Y499I Y527A H537G	2-Aminocaprylic acid	61 H ₂ N CO ₂ H	S. cerevisiae		Probable background incorporation of Leu, Gln, Thr, Lys	Schultz	2008	Bioorg. Med. Chem. Lett.	10.1016/j.bmcl. 2008.09.050
E. coli LeuRS / EctRNALeu	M40 Y499I Y527A H537G	2-Aminononanoic acid	62 H ₂ N CO ₂ H	S. cerevisiae		Probable background incorporation of Leu, Gln, Thr, Lys	Schultz	2008	Bioorg. Med. Chem. Lett.	10.1016/j.bmcl. 2008.09.050
E. coli LeuRS / EctRNALeu	M40I Y499I Y527A H537G	2-Aminodecanoic acid	63 H ₂ N CO ₂ H	S. cerevisiae		Probable background incorporation of Leu, Gln, Thr, Lys	Schultz	2008	Bioorg. Med. Chem. Lett.	10.1016/j.bmcl. 2008.09.050
E. coli LeuRS / EctRNALeu	M40I Y499I Y527A H537G		64 SMe CO ₂ H	S. cerevisiae		Probable background incorporation of Leu, Gln, Thr, Lys	Schultz	2008	Bioorg. Med. Chem. Lett.	10.1016/j.bmcl. 2008.09.050
E. coli LeuRS / EctRNALeu	M40I Y499I Y527A H537G		65 SMe	S. cerevisiae		Probable background incorporation of Leu, Gln, Thr, Lys	Schultz	2008	Bioorg. Med. Chem. Lett.	10.1016/j.bmcl. 2008.09.050
E. coli LeuRS / EctRNALeu	M40I Y499I Y527A H537G		66 SH H ₂ N CO ₂ H	S. cerevisiae		Probable background incorporation of Leu, Gln, Thr, Lys	Schultz	2008	Bioorg. Med. Chem. Lett.	10.1016/j.bmcl. 2008.09.050
E. coli LeuRS / EctRNALeu	M40I Y499I Y527A H537G		67 sh H ₂ N CO ₂ H	S. cerevisiae		Background incorporation of Leu, Gln, Thr, Lys	Schultz	2008	Bioorg. Med. Chem. Lett.	10.1016/j.bmcl. 2008.09.050
E. coli LeuRS / EctRNALeu	M40I Y499I Y527A H537G		68 SH CO ₂ H	S. cerevisiae		Background incorporation of Leu, Gln, Thr, Lys	Schultz	2008	Bioorg. Med. Chem. Lett.	10.1016/j.bmcl. 2008.09.050
E. coli LeuRS/tRNA	E20K M40V L41S T252R Y499S Y527L H537G	Alliin	69 \$\$0 CO2 H	S. cerevisiae	Reactive handle e.g. for olefin metathesis		Schultz	2010	Angew. Chem. Int. Edit.	10.1002/anie.2 00905590

E. coli LeuRS/tRNA	E20K M40V L41S T252R Y499S Y527L H537G		70 H ₂ N CO ₂ H	S. cerevisiae	Reactive handle e.g. for olefin metathesis		Schultz	2010	Angew. Chem. Int. Edit.	10.1002/anie.2 00905590
E. coli LeuRS/tRNA	E20K M40V L41S T252R Y499S Y527L H537G		71 0 H ₂ N CO ₂ H	S. cerevisiae	Reactive handle e.g. for olefin metathesis		Schultz	2010	Angew. Chem. Int. Edit.	10.1002/anie.2 00905590
E. coli LeuRS/tRNA	E20K M40V L41S T252R Y499S Y527L H537G		72 H ₂ N CO ₂ H	S. cerevisiae	Reactive handle e.g. for olefin metathesis		Schultz	2010	Angew. Chem. Int. Edit.	10.1002/anie.2 00905590
E. coli LeuRS/tRNA	L38F M40G L41P Y499V Y500L Y527A H537G5 L538S F541C A560V	3-(6- Acetylnaphthalen-2- ylamino)-2- aminopropanoic acid (Anap)	73 NH CO ₂ H	S. cerevisiae	Highly environmentally sensitive fluorescent probe		Schultz	2009	J. Am. Chem. Soc.	10.1021/ja9048 96s
E. coli LeuRS/tRNA	M40G L41P Y499G Y527A H537T	3-(Naphthalen-2- ylamino)-2- aminopropanoic acid (Nap)	74 NH H ₂ N CO ₂ H	S. cerevisiae		Synthetase intermediate developed on way to Anap incorporation	Schultz	2009	J. Am. Chem. Soc.	10.1021/ja9048 96s

Mm/Mb PylRS										
MmPylRS / MmtRNAPyl	N346A C348A	<i>p</i> -Methoxy- <i>L</i> - phenylalanine	1 OMe H ₂ N CO ₂ H	E. coli		Low incorporation efficiency. This mutant does not incorporate phenylalanine analogues with small orthosubstituents	Liu	2012	J. Am. Chem. Soc.	10.1021/ja2119 72x
MmPyIRS / MmtRNAPyI	A302T N346T C348T	p-Benzoyl- <i>L</i> - phenylalanine (<i>p</i> Bpa)	5 CO ₂ H	E. coli		Improved evolution strategy (small-intelligent mutagenesis)	Wang	2013	ChemBioChem	10.1002/cbic.20 1300400
MmPyIRS / MmtRNAPyI	N346A C348L	Phenylalanine	9 H ₂ N CO ₂ H	E. coli			Liu	2011	Mol. Biosyst.	10.1039/c0mb0 0217h
MmPyIRS / MmtRNAPyI	N346A C348A	O-propargyl-L-tyrosine	11 O CO ₂ H	E. coli	Reactive handle for azide-alkyne cycloaddition		Liu	2012	J. Am. Chem. Soc.	10.1021/ja2119 72x
MmPyIRS / MmtRNAPyI	N346A C348A	O-Benzyl-L-tyrosine	31 COOH	E. coli			Liu	2012	J. Am. Chem. Soc.	10.1021/ja2119 72x
MmPyIRS / MmtRNAPyl	L305M Y306L L309S N346S C348M	<i>p</i> -Bromo- <i>L</i> - phenylalanine	44 H ₂ N CO ₂ H	E. coli			Liu	2011	Mol. Biosyst.	10.1039/c0mb0 0217h
MmPyIRS / MmtRNAPyI	L305M Y306L L309S N346S C348M	p-lodo- <i>L</i> - phenylalanine	45 H ₂ N CO ₂ H	E. coli			Liu	2011	Mol. Biosyst.	10.1039/c0mb0 0217h
MmPyIRS / MmtRNAPyI	N346A C348A	<i>O-tert</i> -butyl- <i>L</i> -tyrosine	50 O'Bu	E. coli			Liu	2012	J. Am. Chem. Soc.	10.1021/ja2119 72x
MmPylRS / MmtRNAPyl	N346A C348A	<i>m</i> -Acetyl- <i>L</i> - phenylalanine	51 CO ₂ H	E. coli	Reactive handle for oxime formation		Liu	2013	ACS Chem. Biol.	10.1021/cb300 512r

MmPylRS / MmtRNAPyl	R61K G131E L309A C348V Y384F	<i>N</i> [€] -Benzyloxycarbonyl- lysine (ZLys)	76 H ₂ N CO ₂ H	Mammalian cells (HEK), E. coli and S. cerevisiae		Evolved in <i>E. col</i> i	Yokoyama	2008	Biochem. Biophys. Res. Comm.	10.1016/j.bbrc. 2008.04.164
MmPylRS / MmtRNAPyl	Y306A Y384F	<i>N^E</i> -Benzyloxycarbonyl- <i>L</i> -lysine (ZLys)	76 H ₂ N CO ₂ H	E. coli			Yokoyama	2008	Chem. Bio.	10.1016/j.chem biol.2008.10.00 4
MmPyIRS / MmtRNAPyI	Y384F	N ^E -(tert- Butoxycarbonyl)-L- lysine (BocLys)	77 H ₂ N CO ₂ H	E. coli			Yokoyama	2008	Chem. Bio.	10.1016/j.chem biol.2008.10.00 4
MmPyIRS / MmtRNAPyI	R61K, G131E, Y384F	N ^E -(tert- Butoxycarbonyl)-L- lysine (BocLys)	77 H ₂ N CO ₂ H	S. cerevisiae			Yokoyama	2008	Biochem. Biophys. Res. Comm.	10.1016/j.bbrc. 2008.04.164
MbPyIRS / MbtRNAPyI	Wild type	ε- <i>N,N</i> -Dimethyl- <i>L</i> - lysine	HN CO₂H	E. coli	Precursor to <i>N,N</i> -dimethyllysine		Chin	2010	Chem. Biol.	10.1016/j.chem biol.2010.07.01 3

MmPyIRS / MmtRNAPyI	L3051 Y306F L309A C348F	N ^e -Acetyllysine (AcLys)	78 H ₂ N CO ₂ H	Mammalian cells			Yokoyama	2008	Biochem. Biophys. Res. Comm.	10.1016/j.bbrc. 2008.04.164
MbPyIRS / MbtRNAPyI	D76G L266V L270I Y271F L274A C313F	N ^e -Acetyllysine (AcLys)	78 H ₂ N CO₂H	E. coli			Chin	2008	Nat. Chem. Biol	10.1038/nchem bio.73
MbPyIRS / SctDNA ^{Arg} _{UCU} - MmtDNA ^{Pyi} _{CUA}	L266M L270I Y271F L274A C313F	<i>N</i> ^ε -Acetyllysine (AcLys)	78 H ₂ N CO ₂ H	S. cerevisiae		Special expression cassette developed for the expression of the tRNA in yeast	Chin	2010	J. Am. Chem. Soc.	10.1021/ja1046 09m
MbPyIRS / MbtRNAPyI	Wild type	Pyrrolysine (Pyl)	79 H ₂ N CO ₂ H	E. coli		First incorporation of Pyl in another organism	Krzycki	2004	Nature	10.1038/nature 02895
MmPyIRS / MmtRNAPyI	Y306A Y384F	Νε-(ο- Azidobenzyloxycarbon yl)- <i>L</i> -lysine (AzZLys)	80 H ₂ N CO ₂ H	E. coli	Reactive handle for Staudinger ligation	Photo-sensitive	Yokoyama	2008	Chem. Bio.	10.1016/j.chem biol.2008.10.00 4
MbPyIRS / MbtRNAPyI	Wild type	<i>N[€] -D-</i> Prolyl- <i>L</i> -lysine	81 H ₂ N CO ₂ H	E. coli		Does not work with <i>L</i> -prolyl analogue	Ambrogelly	2006	FEBS Lett.	10.1016/j.febsle t.2006.11.028

MbPyIRS / MbtRNAPyI	Wild type	N [€] - Cyclopentyloxycarbon yl- <i>L</i> -lysine (Cyc)	82 H ₂ N CO ₂ H	E. coli			Ambrogelly	2006	FEBS Lett.	10.1016/j.febsle t.2006.11.028
MmPylRS / MmtRNAPyl	Wild type	N [€] - Cyclopentyloxycarbon yl- <i>L</i> -lysine (Cyc)	82 H ₂ N CO ₂ H	<i>E. coli,</i> mammalian cells			Geigerstanger / Schultz	2009	Angew. Chem. Int. Edit.	10.1002/anie.2 00900683
MbPyIRS / MbtRNAPyI	Wild type	2-Amino-6- (cyclopentanecarboxy amino)hexanoic acid (Cpn-Lys)	83 H ₂ N CO ₂ H	E. coli			Chan / Krzycki	2009	J. Mol. Biol.	10.1016/j.jmb.2 008.11.032
MbPyIRS / MbtRNAPyI	Wild type	2-Amino-6-((<i>R</i>)- tetrahydrofuran-2- carboxyamido) hexanoic acid (2Thf- Lys)	HN CO₂H	E. coli		Does not work with 3Thf-Lys or 4Thf-Lys	Chan / Krzycki	2009	J. Mol. Biol.	10.1016/j.jmb.2 008.11.032
MmPyIRS / MmtRNAPyI	Wild type		85 H ₂ N CO ₂ H	E. coli	Reactive handle for azide-alkyne cycloaddition		Chan	2009	Angew. Chem. Int. Edit.	10.1002/anie.2 00805420

MbPyIRS / MbtRNAPyI	Wild type	N^{ϵ} -[(2-Propynyloxy)carbonyl] - <i>L</i> -lysine	86 H ₂ N CO ₂ H	E. coli	Reactive handle for azide-alkyne cycloaddition	Does not work if carbamate is replaced by amide	Deiters / Chin	2009	J. Am. Chem. Soc.	10.1021/ja9005 53w
MbPyIRS / MbtRNAPyI	L274A C313V Y349F	N^{ϵ} -[(2-Propynyloxy)carbonyl] - <i>L</i> -lysine	86 H ₂ N CO ₂ H	E. Coli			Guo	2013	Org. Biomol. Chem.	10.1039/c3ob2 7116a
MbPyIRS / SctDNA ^{Arg} UCU ⁻ MmtDNA ^{PyI} CUA	Wild type	N [€] -[(2- Propynyloxy)carbonyl] - <i>L</i> -lysine	86 H ₂ N CO ₂ H	S. cerevisiae		Special expression cassette developed for the expression of the tRNA in yeast	Chin	2010	J. Am. Chem. Soc.	10.1021/ja1046 09m
PyIRS / tRNAPyI	Wild type	N ^e -(((1R,2R)-2- azidocyclopentyloxy)c arbonyl)-L-lysine (ACPK)	87 H ₂ N CO ₂ H	Enteropathog enic <i>E. coli</i> (EPEC), Shigella, Salmonella	Labelling of bacterial effectors	Unconventional promoter needed in Salmonella	Chen	2011	J. Am. Chem. Soc	10.1021/ja2090 08w
MbPyIRS / MbtRNAPyI	L274A C313V Y349F	N ^e −(((1R,2R)-2- azidocyclopentyloxy)c arbonyl)-L-lysine (ACPK)	87 N ₃	E. coli, mammalian cells (HEK)	Reactive handle for azide-alkyne cycloaddition	Poor incorporation with wild type. Better incorporation than aliphatic azide	Chen	2011	Chem. Comm	10.1039/c1cc00 024a

MbPyIRS / MbtRNAPyI	L270F L274M N311G C313G	o-Nitrobenzyl- <i>O-</i> tyrosine	88 NO ₂	E. coli, mammalian cells (HEK)	Photocaged tyrosine to study tyrosine phosphorylation	Evolved in <i>E. coli</i>	Chin	2012	J. Am. Chem. Soc	10.1021/ja3046 958
MmPyIRS / MmtRNAPyI	Y384F Y306A	<i>N[€]-</i> Benzyl- oxycarbonyl- <i>L</i> -lysine	89 Se H ₂ N CO ₂ H	E. coli			Liu	2012	Biochemistry	10.1021/bi3005 35a
MbPyIRS / MbtRNAPyI	Wild type		90 H ₂ N CO ₂ H	E. coli	Reactive handle for azide-alkyne cycloaddition		Deiters / Chin	2009	J. Am. Chem. Soc.	10.1021/ja9005 53w
MmPyIRS / MmtRNAPyI	Y306M L309A C348A Y384F	o-Nitrobenzyl- oxycarbonyl-N ^e -L- lysine	91 H ₂ N CO ₂ H	<i>E. coli,</i> mammalian cells			Geigerstanger / Schultz	2009	Angew. Chem. Int. Edit.	10.1002/anie.2 00900683
MmPyIRS / MmtRNAPyI	Wild type	D-Cys-ε-Lys ("(S,S)")	HS NH ₂ HN O 92 H ₂ N CO ₂ H	E. coli	Reactive handle for NCL	(R,S) incorporation much less efficient	Chan	2009	Angew. Chem. Int. Edit.	10.1002/anie.2 00904472

MbPyIRS / MbtRNAPyI	C313V	N ^ε -Cysteinyl- <i>L</i> -lysine	HS NH ₂ HN O 92 H ₂ N CO ₂ H	E. coli	Reactive handle for NCL		Chin	2011	J. Am. Chem. Soc	10.1021/ja2031 11c
MbPyIRS / SctDNA ^{Arg} _{UCU} - MmtDNA ^{PyI} _{CUA}	L270I Y271L L274A C313F	<i>N</i> [€] - Trifluoroacetyllysine	93 H ₂ N CO ₂ H	S. cerevisiae		Special expression cassette developed for the expression of the tRNA in yeast	Chin	2010	J. Am. Chem. Soc.	10.1021/ja1046 09m
MbPyIRS / SctDNA ^{Arg} UCU ⁻ MmtDNA ^{PyI} CUA	M241F A267S Y271F L274A C313F	N^{ϵ} -[(1-(6-Nitrobenzo [d][1,3]dioxol-5yl) ethoxy)carbonyl]- L -lysine	94 H ₂ N CO ₂ H	S. cerevisiae		Special expression cassette developed for the expression of the tRNA in yeast	Chin	2010	J. Am. Chem. Soc.	10.1021/ja1046 09m
MbPyIRS / MbtRNAPyI	M241F A267S Y271C L274M	N^{ϵ} -[{1-(6-Nitrobenzo [d][1,3]dioxol-5yl) ethoxy)carbonyl]- L -lysine	94 H ₂ N CO ₂ H	Mammalian cells (HEK 293)	Subst. of NLS for photocaged nuclear localization of GFP and p53		Deiters / Chin	2010	J. Am. Chem. Soc.	10.1021/ja9106 88s
MbPyIRS / MbtRNAPyI	M241F A267S Y271C L274M	N^{ϵ} -[(1-(6-Nitrobenzo [d][1,3]dioxol-5yl) ethoxy)carbonyl]- L -lysine	94 H ₂ N CO ₂ H	Mammalian cells (HEK)	Light-activated gene expression		Deiters	2013	J. Am. Chem. Soc.	10.1021/ja4051 026
MbPyIRS / SctDNA ^{Arg} ucu ⁻ MmtDNA ^{Pyi} cua	Wild type	N ^e -[(2-(3-Methyl-3H- diazirin-3- yl)ethoxy)carbonyl]- <i>L</i> - lysine	95 H ₂ N CO ₂ H	Yeast	Photo-cross-linker	Special expression cassette developed for the expression of the tRNA in yeast	Chin	2010	J. Am. Chem. Soc.	10.1021/ja1046 09m

MbPyIRS / MbtRNAPyI	Wild Type	N ^E -[(2-(3-Methyl-3H-diazirin-3-yl)ethoxy)carbonyl]- <i>L</i> -lysine	95 H ₂ N CO ₂ H	E. coli, mammalian cells (HEK)	Photo-cross-linker		Deiters / Chin	2011	Chem. Sci.	10.1039/c0sc00 373e
MbPyIRS / MbtRNAPyI	Wild type	N [¢] -(<i>tert-</i> Butoxycarbonyl)-N [¢] - methyl-L-lysine	97 N CO ₂ H	E. coli	Precursor to <i>N</i> -methyllysine		Chin	2009	J. Am. Chem. Soc.	10.1021/ja9066 03s
MbPyIRS / MbtRNAPyI	L274A C313S Y349F	(3-(3-Methyl- <i>3H</i> -diazirine-3-yl)-propaminocarbonyl-N [€] - <i>L</i> -lysine (DiZPK)	96 N=N	E. coli, Mammalian cells (CHO)	Photo-cross-linker	Much more efficient than pBpa.	Chang / Chen	2011	Nat. Chem. Biol	10.1038/nchem bio.644
PyIRS / tRNAPyI	Wild type	(3-(3-Methyl- <i>3H</i> -diazirine-3-yl)-propaminocarbonyl-N [€] - <i>L</i> -lysine (DiZPK)	96 N=N	Enteropathog enic <i>E. coli</i> (EPEC), Shigella, Salmonella	Photo-cross-linker	Unconventional promoter needed in Salmonella	Chen	2011	J. Am. Chem. Soc	10.1021/ja2090 08w
MmPyIRS / MmtRNAPyI	Y306M L309A C348T T364K		98 H ₂ N CO ₂ H	E. coli	Photocaged methyllysine		Liu	2010	Mol. Biosyst.	10.1039/c0021 55e

MbPyIRS / MbtRNAPyI	Y271M L274G C313A	BCN (exo isomer)	99exo H ₂ N CO ₂ H	E. coli, mammalian cells (HEK)	Reactive handle for SPAAC	Chin	2012	J. Am. Chem. Soc.	10.1021/ja3028 32g
MmPylRS / MmtRNAPyl	Y306A Y384F	BCN (endo isomer)	99endo H ₂ N CO ₂ H	E. coli, mammalian cells (HeLa)	Reactive handle for SPAAC	Delft / Lemke	2012	ChemBioChem	10.1002/cbic.20 1200407
MmPylRS / MmtRNAPyl	Y306A Y384F	тсо	100 HN OO2H	E. coli, mammalian cells (HeLa)	Reactive handle for IEDDA.	C. Schultz / Lemke	2012	Angew. Chem. Int. Edit.	10.1002/anie.2 01108231
MbPyIRS / MbtRNAPyI	Y271A L274M C313A	тсо	100 H ₂ N CO ₂ H	E. coli, mammalian cells (HEK)	Reactive handle for IEDDA	Chin	2012	J. Am. Chem. Soc.	10.1021/ja3028 32g
MmPyIRS / MmtRNAPyI	Y306A Y384F		101) ₃	E. coli, mammalian cells (HeLa)	Reactive handle for IEDDA.	C. Schultz / Lemke	2012	Angew. Chem. Int. Edit.	10.1002/anie.2 01108231
MmPylRS / MmtRNAPyl	Y306A Y384F		102 H) ₃ H ₂ N CO ₂ H	E. coli, mammalian cells (HeLa)	Reactive handle for SPAAC	C. Schultz / Lemke	2012	Angew. Chem. Int. Edit.	10.1002/anie.2 01108231

MbPyIRS / MbtRNAPyI	L266M L270I Y271L L274A C313I	N [€] -(1- Methylcycloprop-2- enecarboxamido)lysin e (CpK)	103 H ₂ N CO ₂ H	E. coli, mammalian cells (HEK)	Reactive handle for 'photo-click'	Stable to glutathione	Wang / Lin	2012	Angew. Chem. Int. Edit.	10.1002/anie.2 01205352
MbPyIRS / MbtRNAPyI	A267S C313V M315F D344G	<i>N[€]-L</i> -Thiapropyl- <i>L</i> - lysine	104 H ₂ N CO ₂ H	E. coli	Precursor to NCL reactive handle		Chin	2011	J. Am. Chem. Soc	10.1021/ja2031 11c
MmPyIRS / MmtRNAPyI	Wild Type		105 H ₂ N CO ₂ H	E. coli	Reactive handle for azide-alkyne cycloaddition		Chan	2010	Chem. Asian J.	10.1002/asia.20 1000205
MmPyIRS / MmtRNAPyl	Wild Type		106 H ₂ N CO ₂ H	E. coli	Reactive handle for azide-alkyne cycloaddition that can subsequently be hydrolysed		Chan	2013	Chembiochem	10.1002/cbic.20 1300124
MmPyIRS / MmtRNAPyI	Y384F	N ^e -Allyloxycarbonyl-I- lysine (AlocLys)	HN CO₂H	E. coli			Yokoyama	2008	Chem. Bio.	10.1016/j.chem biol.2008.10.00 4
MbPyIRS / MbtRNAPyI	L274A C313V Y349F	N ^ε -Allyloxycarbonyl-I- lysine (AlocLys)	107 H ₂ N CO ₂ H	E. coli			Liu / Chen	2012	Chem.Sci.	10.1039/c2sc20 433a

MbPyIRS / MbtRNAPyI	L274A C313V Y349F	BlocLys	108 HN O H ₂ N Co ₂ H	E. coli	Reactive handle for thiol-ene reaction	Used for double incorporation/ dual labelling	Liu / Chen	2012	Chem.Sci.	10.1039/c2sc20 433a
MbPyIRS / MbtRNAPyI	L274A C313V Y349F	PlocLys	109 HN O O O O O O O O O O O O O O O O O O	E. coli			Liu / Chen	2012	Chem.Sci.	10.1039/c2sc20 433a
MmPylRS / MmtRNAPyl	Wild type	Boc-LysOH	110 HO CO ₂ H	E. coli			Sakamoto / Yokoyama	2009	J. Mol. Biol.	10.1016/j.jmb.2 008.11.059
MbPyIRS / MbtRNAPyI	L274A C313V Y349F	Boc-LysOH	110 Ho CO ₂ H		Hydroxy acid to introduce ester linkages into protein backbone		Liu / Chen	2012	ACS Chem. Biol.	10.1021/cb300 020s
MmPylRS / MmtRNAPyl	L301M Y306L L309A C348F Y384W	<i>N[€]</i> -Acryloyl- <i>L</i> -lysine	111 H₂N COOH	E. coli	Reactive handle for 1,4-cycloadditions, radical copolymerisation and 1,3-dipolar cycloaddition	Synthetase also incorporates propyl butyl and crotyl analogues	Liu	2013	ACS Chem. Biol.	10.1021/cb400 267m
MbPyIRS / MbtRNAPyI	D76G L266M L270I Y271F L274A C313F	<i>N[€]-</i> Acryloyl- <i>L</i> -lysine	111 H ₂ N COOH	E. coli, Mammalian CHO-cells, plant (A. thaliana)	Reactive handle for 'photo-click'	First UAA incorporation in a plant	Wang	2013	Angew. Chem. Int. Edit.	10.1002/anie.2 01303477

MbPyIRS / MbtRNAPyI	L274A C313V Y349F		112 HN O CO ₂ H	E. coli			Guo	2013	Org. Biomol. Chem.	10.1039/c3ob2 7116a
MbPyIRS / MbtRNAPyI	L274A C313V Y349F		113 HN O O O O O O O O O O O O O O O O O O	E. coli	Reactive handle for thiol-yne reaction	Most efficiently incorporated of the 3 alkyne analogues described	Guo	2013	Org. Biomol. Chem.	10.1039/c3ob2 7116a
MbPyIRS / MbtRNAPyI	L274A C313S Y349F		113 HN O H ₂ N CO ₂ H	Enteropathog enic <i>E. coli</i> (EPEC), Shigella, Salmonella	Reactive handle for <i>in</i> vitro and <i>in vivo</i> Sonogashira coupling	Not incorporated by wtPyIRS	Chen	2013	J. Am. Chem. Soc.	10.1021/ja4024 24j
MbPyIRS / MbtRNAPyI	L274A C313S Y349F		114 HN 0 114 D) 3 H ₂ N CO ₂ H	Enteropathog enic <i>E. coli</i> (EPEC), Shigella, Salmonella	Reactive handle for <i>in</i> vitro and <i>in vivo</i> Sonogashira coupling	Not incorporated by wtPyIRS	Chen	2013	J. Am. Chem. Soc.	10.1021/ja4024 24j
MmPylRS / MmtRNAPyl	Wild type	N ^E -(Spiro[2.3]hex-1- ene-5- methoxycarbonyl)-L- lysine	115 H ₂ N CO ₂ H	E. coli	Reactive handle for photo-click chemistry		Lin	2014	J. Am. Chem. Soc.	10.1021/ja5012 542

MmPylRS / MmtRNAPyl	Y306G, Y384F	pNO ₂ ZLys	116 HN O H ₂ N CO ₂ H	E. coli, mammalian HEK and CHO- cells	Photo-cross-linker		Sakamoto / Yokoyama	2012	Mol. Biosyst.	10.1039/c2mb0 5321g
MmPylRS / MmtRNAPyl	Y306G, Y384F	TmdZLys	117 HN O O O O O O O O O O O O O O O O O O	E. coli, mammalian- cells (HEK, CHO)	Photo-cross-linker		Sakamoto / Yokoyama	2012	Mol. Biosyst.	10.1039/c2mb0 5321g
MbPyIRS / MbtRNAPyI	D76G L266V L270I Y271F L274A C313F	2-Amino-8- oxononanoic acid (KetoK)	118 H ₂ N CO ₂ H	E. coli			Liu	2010	Bioorg. Med. Chem. Lett.	10.1016/j.bmcl. 2009.12.077
MmPylRS / MmtRNAPyl	Wild Type	<i>N</i> [€] -Propionyl- <i>L</i> -lysine (Kpr)	119 H ₂ N CO ₂ H	E. coli	Natural PTM	Nicotinamide necessary to inhibit enzyme responsible of decrotylation	Carell	2013	Chem. Commun.	10.1039/C2CC3 7836A
MmPyIRS / MmtRNAPyI	Wild Type	N [€] -Butyryl- <i>L</i> -lysine (Kbu)	120 H ₂ N CO ₂ H	E. coli	Natural PTM	Nicotinamide necessary to inhibit enzyme responsible of decrotylation	Carell	2013	Chem. Commun.	10.1039/C2CC3 7836A

MmPyIRS / MmtRNAPyI	L274A C313F Y349F	N [€] -Crotonyl- <i>L</i> -lysine (Kcr)	121 H ₂ N CO ₂ H	E. coli, mammalian cells (HEK293T)	Natural PTM	Nicotinamide necessary to inhibit enzyme responsible of decrotylation	Schultz	2012	Angew. Chem. Int. Edit.	10.1002/anie.2 01203349
MmPyIRS / MmtRNAPyI	Wild Type	N [€] -Crotonyl- <i>L</i> -lysine (Kcr)	121 H ₂ N CO ₂ H	E. coli	Natural PTM	Nicotinamide necessary to inhibit enzyme responsible of decrotylation	Carell	2013	Chem. Commun.	10.1039/C2CC3 7836A
MmPyIRS / MmtRNAPyI	Y306A Y384F		122 H ₂ N COOH	E. coli, mammalian cells (HeLa)	Reactive handle for IEDDA.		C. Schultz / Lemke	2012	Angew. Chem. Int. Edit.	10.1002/anie.2 01108231
MbPyIRS / MbtRNAPyI	Wild type	<i>N</i> ^E -5-Norbornene-2- yloxycarbonyl- <i>L</i> -lysine	122 H ₂ N COOH	E. coli	Reactive handle for IEDDA		Chin	2012	Nat. Chem.	10.1038/nchem .1250
MmPyIRS / MmtRNAPyI	A302T N346G C348T V401I W417Y	L-3-(2-Naphtyl)alanine (Nap)	128 H ₂ N CO ₂ H	E. coli		Improved evolution strategy (small-intelligent mutagenesis)	Wang	2013	ChemBioChem	10.1002/cbic.20 1300400
MbPyIRS / MbtRNAPyI (<i>E. coli</i>) Or MmPyIRS / MmtRNAPyI (mammalian)	L270I Y271F L274G C313F Y349F		129 N N H ₂ N COOH	E. coli, mammalian cells (HEK)			Schultz	2014	ACS Chem. Biol.	10.1021/cb500 032c

MbPyIRS / MbtRNAPyI (E. coli) Or MmPyIRS / MmtRNAPyI (mammalian)	L270I Y271F L274G C313F Y349F	130 S Br	E. coli, mammalian cells (HEK)		Schultz	2014	ACS Chem. Biol.	10.1021/cb500 032c
MbPyIRS / MbtRNAPyI (<i>E. coli</i>) Or MmPyIRS / MmtRNAPyI (mammalian)	L270I Y271F L274G C313F Y349F	131 S H ₂ N COOH	E. coli, mammalian cells (HEK)		Schultz	2014	ACS Chem. Biol.	10.1021/cb500 032c
MbPyIRS / MbtRNAPyI (<i>E. coli</i>) Or MmPyIRS / MmtRNAPyI (mammalian)	L270I Y271F L274G C313F Y349F	132 N H ₂ N COOH	E. coli, mammalian cells (HEK)		Schultz	2014	ACS Chem. Biol.	10.1021/cb500 032c
MbPyIRS / MbtRNAPyI (<i>E. coli</i>) Or MmPyIRS / MmtRNAPyI (mammalian)	L270I Y271F L274G C313F Y349F	133 °COOH	E. coli, mammalian cells (HEK)		Schultz	2014	ACS Chem. Biol.	10.1021/cb500 032c
MmPyIRS / MmtRNAPyI	N346A C348A	135 H ₂ N COOH	E. coli	Over 40 substrates for single synthetase mutant	Liu	2014	Chem. Commun.	10.1039/c3cc49 068h
MmPyIRS / MmtRNAPyI	N346A C348A	136 O N ₃	E. coli	Over 40 substrates for single synthetase mutant	Liu	2014	Chem. Commun.	10.1039/c3cc49 068h
MmPyIRS / MmtRNAPyI	N346A C348A	137 H ₂ N COOH	E. coli	Over 40 substrates for single synthetase mutant	Liu	2014	Chem. Commun.	10.1039/c3cc49 068h
MmPyIRS / MmtRNAPyI	N346A C348A	138 H ₂ N COOH	E. coli	Over 40 substrates for single synthetase mutant	Liu	2014	Chem. Commun.	10.1039/c3cc49 068h

	Т	1		1	T	T	ı	T	1	-
MmPyIRS / MmtRNAPyI	Y306A L309M Y384F		139 N-0.	E. coli	Spin label		Drescher / Summerer	2014	J. Am. Chem. Soc.	10.1021/ja4115 35q
MmPyIRS / MmtRNAPyI	Y306A Y384F	N ^ε -[2-(furan-2- yl)ethoxy]carbonyl lysine	140 H ₂ N COOH	E. coli	Reactive handle for cross-linking DNA with red light		Summerer	2013	Angew. Chem. Int. Edit.	10.1002/anie.2 01300754
MbPyIRS / MbtRNAPyI (E. coli) Or MmPyIRS / MmtRNAPyI (mammalian)	N311Q C313A V366M		141 s	E. coli, mammalian cells (HEK)	Photo-caged cysteine		Chin	2014	J. Am. Chem. Soc.	10.1021/ja4121 91m
MmPyIRS / MmtRNAPyI	N346A C348A		142 n=2-5 H ₂ N COOH	E. coli		Over 40 substrates for single synthetase mutant	Liu	2014	Chem. Commun.	10.1039/c3cc49 068h
MmPyIRS / MmtRNAPyI	A302T N346A C348A Y384F W417T		143 () CI n = 3 H ₂ N COOH	E. coli			Wang	2014	Angew. Chem. Int. Edit.	10.1002/anie.2 01308794
MmPyIRS / MmtRNAPyI	A302T N346A C348A Y384F W417T		144 O N N N N N N N N N N N N N N N N N N	E. coli	Reactive handle for cross linking proteins at cysteine		Wang	2014	Angew. Chem. Int. Edit.	10.1002/anie.2 01308794
MmPyIRS / MmtRNAPyI	A302T N346A C348A Y384F W417T		145 0 1 1 1 1 1 1 1 1 1	E. coli			Wang	2014	Angew. Chem. Int. Edit.	10.1002/anie.2 01308794
MmPyIRS / MmtRNAPyI	N346A C348A	3-Formyl- <i>L</i> - phenylalanine	146 H ₂ N COOH	E. coli	Reactive handle for reaction with hydroxylamine dyes		Liu	2014	Chem. Commun.	10.10.1039/c4c c02000f

MmPyIRS / MmtRNAPyI	N346A C348A	3-Ethynyl- <i>L</i> - phenylalanine	147 COOH	E. coli	Reactive handle for azide-alkyne cycloaddition or Sonogashira coupling		Liu	2013	ACS Chem. Biol.	10.1021/cb300 512r
MmPylRS / MmtRNAPyl	N346A C348A	2-Chloro- <i>L</i> - phenylalanine	149 H ₂ N COOH	E. coli, mammalian cells		Over 40 substrates for single synthetase mutant	Liu	2014	ACS Chem. Biol.	10.1021/cb400 917a
MmPylRS / MmtRNAPyl	N346A C348A	2-Bromo- <i>L</i> - phenylalanine	150 H ₂ N COOH	E. coli, mammalian cells		Over 40 substrates for single synthetase mutant	Liu	2014	ACS Chem. Biol.	10.1021/cb400 917a
MmPylRS / MmtRNAPyl	N346A C348A	2-lodo- <i>L</i> - phenylalanine	151 H ₂ N COOH	E. coli, mammalian cells		Over 40 substrates for single synthetase mutant	Liu	2014	ACS Chem. Biol.	10.1021/cb400 917a
MmPylRS / MmtRNAPyl	N346A C348A	2-Methyl- <i>L</i> - phenylalanine	152 H ₂ N COOH	E. coli, mammalian cells		Over 40 substrates for single synthetase mutant	Liu	2014	ACS Chem. Biol.	10.1021/cb400 917a
MmPyIRS / MmtRNAPyI	N346A C348A	2-Methoxy- <i>L</i> - phenylalanine	153 H ₂ N COOH	E. coli, mammalian cells		Over 40 substrates for single synthetase mutant	Liu	2014	ACS Chem. Biol.	10.1021/cb400 917a
MmPyIRS / MmtRNAPyI	N346A C348A	2-Nitro- <i>L</i> - phenylalanine	0₂N 154 H₂N COOH	E. coli, mammalian cells		Over 40 substrates for single synthetase mutant	Liu	2014	ACS Chem. Biol.	10.1021/cb400 917a
MmPyIRS / MmtRNAPyI	N346A C348A	2-Cyano- <i>L</i> - phenylalanine	155 H ₂ N COOH	E. coli, mammalian cells		Over 40 substrates for single synthetase mutant	Liu	2014	ACS Chem. Biol.	10.1021/cb400 917a
MmPyIRS / MmtRNAPyI	N346A C348A		156 n=2-6 H ₂ N COOH	E. coli		Over 40 substrates for single synthetase mutant	Liu	2014	Chem. Commun.	10.1039/c3cc49 068h

	l					ı		1	1	
MmPyIRS / MmtRNAPyI	N346A C348A	3-Nitro- <i>L</i> - phenylalanine	157 H ₂ N COOH	E. coli			Liu	2013	ACS Chem. Biol.	10.1021/cb300 512r
MmPyIRS / MmtRNAPyI	N346A C348A	3-Cyano- <i>L</i> - phenylalanine	158 H ₂ N COOH	E. coli			Liu	2013	ACS Chem. Biol.	10.1021/cb300 512r
MmPyIRS / MmtRNAPyI	N346A C348A	3-Azido- <i>L</i> - phenylalanine	159 _{H₂N} COOH	E. coli	Reactive handle for azide-alkyne cycloaddition		Liu	2013	ACS Chem. Biol.	10.1021/cb300 512r
MmPyIRS / MmtRNAPyI	N346A C348A	3-Fluoro- <i>L</i> - phenylalanine	160 F H ₂ N COOH	E. coli			Liu	2013	ACS Chem. Biol.	10.1021/cb300 512r
MmPyIRS / MmtRNAPyI	N346A C348A	3-Chloro- <i>L</i> - phenylalanine	161 COOH	E. coli			Liu	2013	ACS Chem. Biol.	10.1021/cb300 512r
MmPyIRS / MmtRNAPyI	N346A C348A	3-Bromo- <i>L</i> - phenylalanine	162 H ₂ N COOH	E. coli			Liu	2013	ACS Chem. Biol.	10.1021/cb300 512r
MmPyIRS / MmtRNAPyI	N346A C348A	3-lodo- <i>L-</i> phenylalanine	163 H ₂ N COOH	E. coli			Liu	2013	ACS Chem. Biol.	10.1021/cb300 512r
MmPyIRS / MmtRNAPyI	N346A C348A	3-Methyl- <i>L</i> - phenylalanine	164 COOH	E. coli			Liu	2013	ACS Chem. Biol.	10.1021/cb300 512r
MmPyIRS / MmtRNAPyI	N346A C348A	3-Trifluoromethyl- <i>L</i> - phenylalanine	165 CF ₃	E. coli	¹⁹ F Probe for protein NMR		Liu	2013	ACS Chem. Biol.	10.1021/cb300 512r

MmPylRS / MmtRNAPyl	N346A C348A	3-Methoxy- <i>L</i> - phenylalanine	166 H ₂ N COOH	E. coli			Liu	2013	ACS Chem. Biol.	10.1021/cb300 512r
MmPylRS / MmtRNAPyl	N346A C348A		167 O 1 2-3	E. coli	Speculated bioorthogonal reactive handle (CuAAC)		Liu	2012	J. Am. Chem. Soc.	10.1021/ja2119 72x
Misc. RS										
M. acetivorans TyrRS/tRNA	Y33A H71A Q113I D162E I163L	3-lodo- <i>L</i> -tyrosine	4 OH H ₂ N CO ₂ H	E. coli			Nishikawa	2013	J. Biochem.	10.1093/jb/mvs 153
M. acetivorans TyrRS/tRNA	Y33A H71A Q113I D162E I163L	3-Azido- <i>L</i> -tyrosine	75 OH N ₃	E. coli	Photo-cross-linker		Nishikawa	2013	J. Biochem.	10.1093/jb/mvs 153
P. horikoshii PhtRNA _u ccu/Lys-RS	E41I Y268S	Homoglutamine	123 H ₂ N CO ₂ H	E. coli		Can be incorporated via quadruplet suppression and used in conjunction with amber suppression	Schultz	2004	Proc. Natl. Acad. Sci.	10.1073/pnas.0 401517101
M. maripaludis SepRS / MjtRNACys	tRNA: C20U G34C C35U	Phosphoserine	168 _{ОРО3} н н₂N соон	E. coli	Natural post- translational modification		Söll	2011	Science	10.1126/scienc e.1207203
01145511515								-		
QUADRUPLET	D:h = 01							-		
MjTyrRS / tRNATyr _{uccu}	Ribo-Q1: A1196G A1197G; RS: Y230 C231K P232K H283Q D286S	<i>p</i> -Azido- <i>L</i> - phenylalanine (AzPhe)	6 N3 CO2H	E. coli	Double substitution with N6-[(2- propynyloxy)carbonyl] -L-lysine for protein cyclisation	Orthogonal to MbPyIRS / MbtRNAPyI Use of orthogonal ribosome ribo-Q1	Chin	2010	Nature	10.1038/nature 08817

MmPyIRS / tRNAPyl _{uccu}	trna: A28G C29A A35C U36C C38U G39A OR U25G A28G A35U U36C C38G G39C. Pylrs: Y384F	<i>N^E-(tert-</i> Butoxycarbonyl)- <i>L-</i> lysine (BocLys)	H ₂ N CO₂H	E. coli		Guo	2013	ACS Chem. Biol.	10.1021/cb400 1662
MmPyIRS / tRNAPyI _{uccu}	trna: U25G A28G A35U U36C C38G G39C Pylrs: Y384F	N [€] -(<i>tert</i> - Butoxycarbonyl)- <i>L</i> - lysine (BocLys)	77 H ₂ N CO ₂ H	Mammalian cells (HEK 293T)		Guo	2013	ACS Chem. Biol.	10.1021/cb400 1662
MmPyIRS / tRNAPyI _{UCUA}	tRNA: A31G A38U U39C C40U	N ^e -(<i>tert</i> - Butoxycarbonyl)- <i>L</i> - lysine (BocLys)	HN CO₂H	E. coli		Chin	2014	Nat. Chem.	10.1038/nchem .1919
MmPyIRS / tRNAPyI _{UACU}	tRNA: G29U A31G A38U U39C C41U	N [€] -[(2- Propynyloxy)carbonyl] - <i>L</i> -lysine	86 H ₂ N CO ₂ H	E. coli		Chin	2014	Nat. Chem.	10.1038/nchem .1919
MmPyIRS / tRNAPyI _{uccu}	tRNA: G29C G30C A31U C40A C41G		HN 0 107 d) ₃ H ₂ N CO₂H	E. coli		Chin	2014	Nat. Chem.	10.1038/nchem .1919

MmPyIRS / tRNAPyI _{UACU}	tRNA: G29U A31G A38U U39C C41U PyIRS: Y384F Y306G I405R		122 H ₂ N COOH	E. coli			Chin	2014	Nat. Chem.	10.1038/nchem .1919
Pyrococcus horikoshii LysRS / tRNALys _{uccu}	tRNA: G1U C4U A37C G69A C71U C72A. RS: E41I Y286S truncation after S357 for decreased toxicity	Homoglutamine	123 H ₂ N CO ₂ H	E. coli		Orthogonal to MjTyrRS / MjtRNATyr mutant for OMe- Tyr. Simultaneous incorporation via amber and quadruplet suppression. Natural ribosome used.	Schultz	2004	Proc. Natl. Acad. Sci.	10.1073/pnas.0 401517101
ANIMALS										
E. coli TyrRS / tRNATyr	Y37T D182T L183M D265R	O-Methyl-L-tyrosine	1 OMe H ₂ N CO ₂ H	C.elegans	Labelling of muscles (global)		Wang	2012	ACS Chem. Biol.	10.1021/cb200 542j
E. coli TyrRS / Yam (suppressor tRNA derived Bacillus stearothermophilu s)	Y37G D182G L186A	<i>p</i> -Benzoyl- <i>L</i> - phenylalanine (<i>p</i> Bpa)	5 H ₂ N CO ₂ H	Xenopus Iaevis oocytes			Paoletti	2013	ChemBioChem	10.1002/cbic.20 1200515
E. coli TyrRS / Yam (suppressor tRNA derived Bacillus stearothermophilu s)	Y37L D182S F183M L186A	<i>p-</i> Azido- <i>L-</i> phenylalanine (AzPhe)	6 N ₃ CO ₂ H	Xenopus laevis oocytes	Photo-cross-linker	Leaky suppression	Paoletti	2013	ChemBioChem	10.1002/cbic.20 1200515
<i>E. coli</i> LeuRS / tRNALeu	M40A L41N T252A Y499I Y527G H537T	2-Amino-3-(5- (dimethylamino)napth alene-1- sulfonamido)propanoi c acid (DanAla)	0=S=0 58 NH H ₂ N CO ₂ H	C.elegans	Labelling of muscles (global)	Dipeptide (DanAla-Ala) required for uptake and bioavailability	Wang	2012	ACS Chem. Biol.	10.1021/cb200 542j

MmPyIRS / MmtRNAPyI	Wild type	N ^E -(tert- Butoxycarbonyl)-L- lysine (BocLys)	177 H ₂ N CO ₂ H	C.elegans		Extra- chromosomal array (low stability), biolistic bombardment. Scattered in different places in animal.	Chin	2011	J. Am. Chem. Soc.	10.1021/ja2054 034
MmPylRS / MmtRNAPyl	Wild type	N [€] -(<i>tert-</i> Butoxycarbonyl)- <i>L</i> - lysine (BocLys)	77 H ₂ N CO ₂ H	D. melanogaster (cells, embryos and adult flies)		Tissue specific	Chin	2012	Nat. Chem. Biol.	10.1038/nchem bio.1043
MmPyIRS / MmtRNAPyI	Wild type	N^{ϵ} -[(2-Propynyloxy)carbonyl] - L -lysine	86 H ₂ N CO ₂ H	C.elegans	Reactive handle for azide-alkyne cycloaddition	Extra- chromosomal array (low stability), biolistic bombardment. Scattered in different places in animal.	Chin	2011	J. Am. Chem. Soc.	10.1021/ja2054 034
MmPyIRS / MmtRNAPyI	Wild type	N^{ϵ} -[(2- Propynyloxy)carbonyl] - L -lysine	86 H ₂ N CO ₂ H	D. melanogaster (cells, embryos)			Chin	2012	Nat. Chem. Biol.	10.1038/nchem bio.1043
MmPyIRS / MmtRNAPyI	Wild type		122 H ₂ N COOH	D. melanogaster cells	Reactive handle for IEDDA		Chin	2012	Nat. Chem. Biol.	10.1038/nchem bio.1043