Discrete Optimization Assignment 1

Mehdi Nadif & Viktor Hansen

October 3, 2017

Abstract

This is the first weekly assignment for the Discrete Optimization course offered at The Department of Computer Science, Uni. Copenhagen.

Theoretical part - formulation and lower bounds

1.1

1.2

We may first note that

$$\sum_{i=0}^{n} \binom{n}{i} = 2^n$$

Since 2^n is the total number of subsets of a set of size n. Since we are only looking at subsets of size between 2 and n-2, the number of subsets must be

$$2^{n} - \binom{n}{0} - \binom{n}{1} - \binom{n}{n-1} - \binom{n}{n}$$

$$= 2^{n} - 1 - n - n - 1$$

$$= 2^{n} - 2n - 2$$

since there are as many constraints as subsets, this is also the number of constraints.

1.3

The number of constraints is equivalent to the number of combinations of $i \in V, j \in V \setminus \{1\}$. As |V| = n, there must therefore be n(n-1) constraints.

1.4

1.5

Since v_1 is in a cycle, it will have two incident edges that are part of the cycle it is in. Let the additional edge e_{add} be the second lowest cost edge adjacent to v_1 , and add it to the tree to create a cycle. If we do not include e_{add} , we have a subset of edges of G that form a tree. The optimal of such a tree is equivalent to a minimum spanning tree, which we will call \mathcal{M} . Now, consider a Hamiltonian tour \mathcal{H} . From \mathcal{H} , we remove the most costly of the two edges incident to v_1 , which we call e_{max} . Removing this edge, we now have a tree, and therefore we can safely say that

$$cost(\mathcal{H}) - cost(e_{max}) \ge cost(\mathcal{M})$$

Since \mathcal{M} is the tree with lowest possible cost. By definition, we must have that $e_{\text{max}} \geq e_{\text{add}}$ since e_{add} was the second lowest cost of all edges and e_{max} was chosen to be the most costly among two edges. Therefore

$$cost(\mathcal{M}) + cost(e_{add}) \le cost(\mathcal{M}) + cost(e_{max}) \le cost(\mathcal{H})$$

Implementation part - branch-and-bound

- 2.1
- 2.2
- 2.3