

PERTEMUAN 12

Konsep Deep Learning

DL memberikan hasil terobosan dalam pengenalan suara dan klasifikasi gambar

From this Hinton et al 2012 paper:

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/38131.pdf

modeling	#params	WE	ER
technique	$[10^6]$	Hub5'00-SWB	RT03S-FSH
GMM, 40 mix DT 309h SI	29.4	23.6	27.4
NN 1 hidden-layer×4634 units	43.6	26.0	29.4
+ 2×5 neighboring frames	45.1	22.4	25.7
DBN-DNN 7 hidden layers×2048 units	s 45.1	17.1	19.6
+ updated state alignment	45.1	16.4	18.6
+ sparsification	15.2 nz	16.1	18.5
GMM 72 mix DT 2000h SA	102.4	17.1	18.6

task	hours of	DNN-HMM	GMM-HMM	GMM-HMM
	training data		with same data	with more data
Switchboard (test set 1)	309	18.5	27.4	18.6 (2000 hrs)
Switchboard (test set 2)	309	16.1	23.6	17.1 (2000 hrs)
English Broadcast News	50	17.5	18.8	
Bing Voice Search	24	30.4	36.2	
(Sentence error rates)				
Google Voice Input	5,870	12.3		16.0 (>>5,870hrs)
Youtube	1,400	47.6	52.3	

go here: http://yann.lecun.com/exdb/mnist/

From here:

http://people.idsia.ch/~juergen/cvpr2012.pdf

Dataset	Best result of others [%]	MCDNN [%]	Relative improv. [%]
MNIST	0.39	0.23	41
NIST SD 19	see Table 4	see Table 4	30-80
HWDB1.0 on.	7.61	5.61	26
HWDB1.0 off.	10.01	6.5	35
CIFAR10	18.50	11.21	39
traffic signs	1.69	0.54	72
NORB	5.00	2.70	46
	'		

Apa sebenarnya *deep Learning*? mengapa umumnya lebih baik daripada metode lain pada gambar (*IMAGE*), ucapan (*Speech*) dan jenis data tertentu lainnya?

The short answers

- 'Deep Learning' berarti menggunakan jaringan syaraf (neural network)
 dengan beberapa lapisan node antara input dan output
- 2. Serangkaian lapisan antara input & output lakukan identifikasi dan pemrosesan fitur dalam serangkaian tahapan, seperti otak kita tampaknya.

jaringan saraf multilayer telah ada selama 25 tahun.

Apa yang sebenarnya baru?

Terdapat selalu memiliki algoritma yang baik untuk mempelajari bobot dalam jaringan dengan 1 lapisan tersembunyi

tetapi algoritma ini tidak pandai mempelajari bobot untuk jaringan dengan lapisan yang lebih tersembunyi

Apa yang terbaru: algorithms for training many-later

networks

Jawaban yang lebih panjang

- pengingat / penjelasan singkat tentang bagaimana bobot jaringan saraf dipelajari;
- 2. gagasan pembelajaran fitur tanpa pengawasan (unsupervised feature learning) (mengapa 'fitur menengah' penting untuk tugas klasifikasi yang sulit, dan bagaimana NN tampaknya mempelajarinya secara alami)
- 3. 'Terobosan' trik sederhana untuk melatih jaringan saraf yang dalam

-0.06

$$f(x) = \frac{1}{1 + e^{-x}}$$

W2

W1

W3

1.4

-2.5

-0.06

$$f(x) = \frac{1}{1 + e^{-x}}$$

 \setminus

-2.5 -8.6

f(x)

0.002

$$x = -0.06 \times 2.7 + 2.5 \times 8.6 + 1.4 \times 0.002 = 21.34$$

1.4

A dataset

Fiel	lds		class
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0
etc	• • •		

Training the neural network

Fie	lds		class
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0
etc			

<i>Fie</i>	lds		class
1.4	2.7	1.9	O
3.8	3.4	3.2	O
6.4	2.8	1.7	1
4.1	0.1	0.2	0
etc	• • •		

Initialise with random weights

_Fiel	ds		class
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0
etc.	• •		

Present a training pattern

Fie	lds		class
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0
etc			

Feed it through to get output

Fields		class
1.4 2.7	1.9	0
3.8 3.4	3.2	0
6.4 2.8	1.7	1
4.1 0.1	0.2	0
etc		

Compare with target output

Fields		class
1.4 2.7	7 1.9	0
3.8 3.4	3.2	0
6.4 2.8	3 1.7	1
4.1 0.1	0.2	0
etc		

Adjust weights based on error

Fields		class
1.4 2.7	1.9	0
3.8 3.4	3.2	0
6.4 2.8	1.7	1
4.1 0.1	0.2	0
etc		

Present a training pattern

	O		
Fie	lds		class
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0
etc			

Feed it through to get output

Fields		class
1.4 2.7	1.9	0
3.8 3.4	3.2	0
6.4 2.8	1.7	1
4.1 0.1	0.2	0
etc		

Compare with target output

Fields		class
1.4 2.7	1.9	0
3.8 3.4	3.2	0
6.4 2.8	1.7	1
4.1 0.1	0.2	0
etc		

Adjust weights based on error

Training data Fields class 1.4 2.7 1.9 0 0 3.8 3.4 3.2 0 0 6.4 2.8 1.7 1 1 4.1 0.1 0.2 0 0 etc ... 0

And so on

Ulangi ini ribuan, mungkin jutaan kali - setiap kali mengambil contoh pelatihan acak, dan membuat sedikit penyesuaian berat badan

Algoritma untuk penyesuaian berat dirancang untuk membuatnya perubahan yang akan mengurangi kesalahan

Inti yang akan dilakukan

- weight-learning algorithms (algoritma pembelajaran berat) untuk
 NNs are dumb
- mereka bekerja dengan membuat ribuan penyesuaian kecil, masing-masing membuat jaringan melakukan lebih baik pada pola terbaru, tetapi mungkin sedikit lebih buruk pada banyak lainnya
- tetapi, karena keberuntungan, akhirnya ini cenderung cukup baik pelajari pengklasifikasi yang efektif untuk banyak aplikasi nyata

Beberapa inti lainnya

Detail dari standar algoritma pembelajaran bobot NN - nanti

Jika f (x) non-linear, jaringan dengan 1 lapisan tersembunyi, secara teori, dapat mempelajari dengan sempurna masalah klasifikasi. Ada set bobot yang dapat menghasilkan target dari input. Masalahnya adalah menemukan nya.

Beberapa poin lain nya

Jika f (x) linier, NN hanya dapat menggambar batas keputusan langsung (bahkan jika ada banyak lapisan unit)

Beberapa poin lain nya

NN menggunakan nonlinear f (x) sehingga mereka dapat menggambar batas yang kompleks, tetapi menjaga data tidak berubah

Beberapa poin lain nya

NN menggunakan nonlinear f (x) sehingga mereka dapat menggambar batas yang kompleks, tetapi menjaga data tidak berubah

SVM hanya menggambar garis lurus tetapi mereka mengubah data terlebih dahulu dengan cara yang membuat itu OK

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

Feature detectors

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

what is this unit doing?

Apa yang dideteksi unit ini?

www.bsi.ac.id

Apa yang dideteksi unit ini?

UNIVERSITAS BINA SARANA INFORMATIKA

Copyright © September 2022

Apa yang dideteksi unit ini?

www.bsi.ac.id

Apa yang dideteksi unit ini?

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

What features might you expect a good NN to learn, when trained with data like this?

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

Tapi bagaimana dengan invarian posisi ??? detektor unit contoh diatas terikat bagian tertentu dari gambar

successive layers can learn higher-level features ...

<u>1</u> 5 10 15 20 25 ...

detect lines in Specific positions

Higher level detetors (horizontal line, "RHS vertical lune" "upper loop", etc...

successive layers can learn higher-level features ...

detect lines in Specific positions

Higher level detetors (horizontal line, "RHS vertical lune" "upper loop", etc...

What does this unit detect?

So: multiple layers make sense

So: multiple layers make sense

Your brain works that way

So: multiple layers make sense

Banyak-lapisan Arsitektur Neural Network (jaringan saraf) harus mampu mempelajari fitur-fitur mendasar yang sebenarnya dan 'logika fitur', dan karenanya menggeneralisasi dengan sangat baik

Tetapi, hingga saat ini, algoritma pembelajaran berat tidak berfungsi pada arsitektur multi-layer

Kemudian datanglah "Deep Learning"

Train **this** layer first

Train this layer first

then this layer

Train this layer first

then this layer

then this layer

Train this layer first

then this layer

then **this** layer then **this** layer

Train this layer first

then this layer

then this laver

then this laver

finally this layer

SETIAP lapisan (non-output) dilatih untuk menjadi auto-encoder

Pada dasarnya, ia dipaksa untuk mempelajari fitur-fitur bagus yang menggambarkan apa yang berasal dari lapisan sebelumnya

sebuah auto-encoder dilatih, dengan algoritma penyesuaian berat yang benar-benar standar untuk mereproduksi input

sebuah auto-encoder dilatih, dengan algoritma penyesuaian berat yang benar-benar standar untuk <u>mereproduksi input</u>

Dengan mewujudkan hal ini dengan (banyak) unit lebih sedikit daripada input, ini memaksa unit 'lapisan tersembunyi' untuk menjadi pendeteksi fitur yang baik

lapisan menengah masing-masing dilatih untuk menjadi penyandi otomatis (atau serupa)

Lapisan akhir dilatih untuk memprediksi kelas berdasarkan keluaran dari lapisan sebelumnya

Penutup

- Ada banyak banyak jenis pembelajaran mendalam (*Deep Learning*), berbagai jenis autoencoder, variasi arsitektur dan algoritma pelatihan, dll ...
- Area penelitian yang tumbuh sangat cepat

