1st オーダーボードに対するレポート

2018/11/17

1 はじめに

今回初めての基板作成に当たって、製造の結果や、納期、仕上がったものの 問題点などまとめておく

2 製造したもの

ごく単純な, トランス, ダイオード型の直流発生回路. AC100V から, DC5V, 3.3V を生成する.

3 製造納期

今回, Elecrow に発注をかけたところ, 2 日で In Production にステータスが変わり, 6 日後に Shipped に変化した。そこから ANA を選んだ結果, 2 日ほどで到着した。つまり, 概ね 10 日が納期となる。

4 製造コスト

6 枚で 18 ドルなので、おおよそ 300 円. サイズは 40*100 なので、面積に比例して大きくなるかもしれない、ちなみに、送料が含め、3200 円.

5 仕上がり

設計した通りにできていた. ちまたで言われているような, シルクのズレも特にない. 今回単純な基板だったからかもしれない.

6 問題点

そもそも回路図や、フットプリントに間違いがあったのと、パターン設計的 によくない部分があった.

6.1 回路図間違い

レギュレータの回路で、In 側にセラコン、Out 側に電解コンをつけなければならなかったのに、それが逆転していた.

6.2 フットプリント間違い

レギュレータは, In,GND,Out の順で, ピン番号としては, 1,3,2 になっているが, ピンヘッダを代わりに使用したので, 2,3 が逆転している.

6.3 フットプリント選定ミス

ダイオード直後の平滑コンが, 基板のパターンに対し, でかすぎる. それゆえに, ダイオードに物理的に被っている. また, レギュレータ用の発振抑止コンが, 基板のパターンに対し小さすぎる.

6.4 AC100V のパターンラインが細すぎる

AC100V のパターンラインが、他のところと共通になっており、細い

6.5 AC ラインの近くに GND ベタがある

今回, 測定の結果からすると, 影響はほとんど出ていないようだが, AC ラインの付近に GND ベタを貼ると, GND 揺れを起こす可能性があり, アイソレーションした方がよい.