

Estatística

Sérgio Manuel Salazar dos Santos, Nº: 1020881

13 de Dezembro de 2019

Conteúdo

.1	Introdu	ıção			 																1
.2	O conji	unto de	dados		 																1
.3	Metodo	ologia E	Estatístic	a.	 																4
	.3.1	TEE	$IC_{95\%}$		 																4
	.3.2	NEE			 																4
.4	Resulta	ados e in	nterpreta	ação																	4
.5	Conclu	sões .			 																4

Resumo

Este trabalho consiste no estudo de Estatística das Entregas Expresso em duas regiões $\bf A$ e $\bf B$, as variaveis em estudo é o tempo de demora das entregas e a variavel de numero de encomendas entregues num determinado unidade de tempo [u.t.]. Nestas situações foram retiradas 120 e 90 amostras nas duas regiões respectivamente.

A primeira é uma distribuição continua, o tempo, e a segunda uma distribuição discreta.

As materias abordadas vai ser Amostragem, Estimação de parâmetros e Testes de Hipóteses

.1 Introdução

As variáveis consideradas são:

 Regiao (REG): variável nominal com dois niveis Regiao A Região B

- Tempo de entrega (TEE), por encomenda: Variável expressa em u.t.
- Número de encomendas entregues (NEE) por u.t.

Admitindo que a amostra disponível é uma amostra aleatória representativa das populações.

Neste relatorio esta-se a trabalhar com duas grandezas precisamente o tempo (TEE) e quantidade por u.t (NEE), temos recolhidos 120 registos **TEE** na qual pela regra de sturges c = int(1+3.3log(n)), determina-se que é necesario sete [7] classes.

Podemos obter a amplitude de cada classe h = b - a e sua marca $x_i = \frac{a+b}{2}$.

.2 O conjunto de dados

 X_{Ai} - "Variavel aleatoria que representa o tempo de demora na Região **A** da entrega de uma encomenda Expresso em u.t." i=1,2,3,....,117

 X_{Bi} - "Variavel aleatoria que representa o tempo de demora na Região **B** da entrega de uma encomenda Expresso em u.t." i=1,2,3,....,120

Abaixo o resultado da tabela TEE:

h_i	CLASSE	MARCA	nA_i	nB_i	$\frac{nA_i}{h_i}$	$\frac{nB_i}{h_i}$	$f_i(A)$	$f_i(B)$	$F_i(A)$	$F_i(B)$
4	[5,10[7,5	5	0	1,25	0	0,0427	0	0,0427	0
4	[10,15[12,5	16	19	4	4,75	0,1368	0,1583	0,1795	0,1583
4	[15,20[17,5	40	28	10	7	0,3419	0,2333	0,5214	0,3917
4	[20,25[22,5	25	41	6,25	10,25	0,2137	0,3417	0,7350	0,7333
4	[25,30[27,5	26	22	6,5	5,5	0,2222	0,1833	0,9573	0,9167
4	[30,35[32,5	5	8	1,25	2	0,0427	0,0667	1	0,9833
5	[35,40]	37,5	0	2	0	0,4	0	0,0167	1	1
			n=117	n=120						

Recorrendo ao excell obeteve-se os seguintes resultados:

Média aritmetica dados classificados
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{c} x_i n_i = \sum_{i=1}^{c} x_i f_i$$
 Variância de uma amostra dados classificados $\bar{x} = \frac{1}{n} \sum_{i=1}^{c} (x_i - \bar{x})^2 n_i$

Estatística	X_A	X_B
Mínimo	7,5	12,5
$Q_1:1^o$ Quartil	17,5	17,5
m_d : mediana	17,5	22,5
$Q_3:3^o$ Quartil	27,5	27,5
Máximo	32,5	37,5
\bar{X} : Média	20,3205	21,5833
s: desvio-padrão	6,1020	6,0106
m_o : moda	17,5	22,5
Tamanho amostral [n]	117	120

Figura 1: TEE

Na Região **A** a Média > Moda = Mediana com skew = -0,02876 e kurt = -0,50909 Na Região **B** a Média < Moda = Mediana com skew = 0,14205 e kurt = -212187

Na prática, considera-se que a qualidade da aproximação é suficientemente boa quando $n \geqslant 30$. Pode-se tomar que $\delta \cong s$.

$$\begin{cases} \mu & \Longrightarrow \\ \delta & \bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} \sim N(\mu; \frac{\delta^2}{n}) \\ \bar{x}_{A_0} = 20,3205 & \bar{x}_{B_0} = 21,5833 \\ \delta_A = 6,1020 & \delta_B = 6,0106 \end{cases}$$

Tratamento dos dados da Segunda Variavel Aleatótia

 Y_{Ai} - "Variavel aleatoria que representa o numero de encomendas entregues pela Expresso na Regiao **A** por u.t." $i=1,2,3,\ldots,90$

 Y_{Bi} - "Variavel aleatoria que representa a numero de encomendas entregues pela Expresso na Regiao **B** por u.t." $i=1,2,3,\ldots,90$

Abaixo o resultado da tabela NEE:

Y_i	nA_i	nB_i	$f_i(A)$	$f_i(B)$	$F_i(A)$	$F_i(B)$
3	6	3	0,0667	0,0333	0,0667	0,0333
4	8	6	0,0889	0,0667	0,1556	0,1
5	19	13	0,2111	0,1444	0,3677	0,2444
6	15	7	0,1667	0,0778	0,5333	0,3222
7	13	19	0,1444	0,2111	0,6778	0,5333
8	11	15	0,1222	0,1667	0,8	0,7
9	6	8	0,0667	0,0889	0,8667	0,7889
10	5	11	0,0556	0,1222	0,9222	0,9111
11	4	3	0,0444	0,0333	0,9667	0,9444
12	0	2	0	0,0222	0,9667	0,9667
13	2	1	0,0222	0,0111	0,9889	0.9778
14	1	0	0,0111	0	1	0,9778
15	0	1	0	0,0111	1	0,9889
16	0	1	0	0,0111	1	1

Estatística	Y_A	Y_B
Mínimo	3	3
$Q_1:1^o$ Quartil	5	6
m_d : mediana	6	7
$Q_3:3^o$ Quartil	8	9
Máximo	14	16
\bar{Y} : Média	6,6889	7,5111
s: desvio-padrão	2,4062	2,5139
m_o : moda	5	7
Tamanho amostral [n]	90	90

Figura 2: NEE

$$\begin{cases} \mu & \Longrightarrow \\ \delta & \\ \bar{y}_{A_0} = 6,6889 & \bar{y}_{B_0} = 7,5111 \\ \delta_A = 2,4062 & \delta_B = 2,5139 \end{cases}$$

$$\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n} \sim N(\mu; \frac{\delta^2}{n})$$

.3 Metodologia Estatística

.3.1 TEE IC_{95%}

Estimação do tempo médio para as regiões A e B com um indice de confiança de 95%.

$$IC_{1-\alpha} = [A, B]$$
; para $1 - \alpha = 0.95$, $\alpha = 0.05$, $\frac{\alpha}{2} = 0.025$
Zona critica $Z_c = \Phi^{-1}(0.025) \approx 1.96$
 $P(A \le \mu \le B) = 1 - \alpha$
 $\triangle = Z_c \times \frac{\delta}{\sqrt{n}}$
 $A = \bar{x} - \triangle$ and $B = \bar{x} + \triangle$
 \therefore
 $IC_{A_{0.95}} = [19.2148, 21.4262]$ and $IC_{B_{0.95}} = [20.5078, 22.6587]$

Pode-se estimar que o tempo médio $[\mu]$ de entrega na população esta dentro dos intervalos acima mencionados com 95% de confiança.

.3.2 *NEE*

Verificar se os dados permitem afirmar que existe diferença significativa entre a % de períodos com menos de 6 entregas por u.t. na região A e na região B. Responda com base num intervalo de confiança de 97%.

$$P(X_A < 6) = ?$$
 e $P(X_B < 6) = ?$ then $P_A - P_B$ then $IC_{97\%}$

.4 Resultados e interpretação

fazer tabela só com resultados

.5 Conclusões

Lista de Figuras

1	TEE	1
2	NEE	3
П		

Bibliografia

- [1] Probabilidades e estatística Volume 1. McGraw-Hill, 1990.
- [2] Probabilidades e Processos Estocásticos. Universidade de Aveiro, 2002.

1

¹Apontamentos Estatistica