PHY101: Introduction to Physics I

Monsoon Semester 2024 Lecture 5

Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR

Previous Lecture

Incremental length, surface, and volume element
Introduction to scalars and vectors

This Lecture

<u>Properties of vectors</u> <u>Geometrical addition, multiplication of vectors etc.</u>

Properties

Addition and Subtraction:

Vectors can be added and subtracted.

Geometrical Addition of vectors

Triangle law

Formulas for its magnitude and direction of \vec{R}

Ref: 1) https://www.cuemath.com/calculus/triangle-law-of-vector-addition/

Parallelogram law

Formulas for its magnitude and direction of \vec{R}

Ref: 1) https://www.cuemath.com/calculus/parallelogram-law-of-vector-addition/

Properties

Vectors

Addition and Subtraction:

Geometrical Addition of vectors

Example 1: Two forces of magnitudes **4N** and **7N** act on a body and the angle between them is **45°**. Determine the magnitude and direction of the resultant vector with the 4N force.

$$|\mathbf{R}| = \sqrt{(P^2 + Q^2 + 2PQ \cos \theta)}$$

$$= \sqrt{(4^2 + 7^2 + 2 \times 4 \times 7 \cos 45^\circ)}$$

$$= \sqrt{(16 + 49 + 56/\sqrt{2})}$$

$$= \sqrt{(65 + 56/\sqrt{2})}$$

$$\approx 10.22 \text{ N}$$

$$\beta = \tan^{-1}[(7 \sin 45^\circ)/(4 + 7 \cos 45^\circ)]$$

$$= \tan^{-1}[(7/\sqrt{2})/(4 + 7/\sqrt{2})]$$

$$\approx 28.95^\circ$$

Parallelogram law

Solution:

Answer: The magnitude is approximately 12 N and the direction is 28.95°.

Properties

Addition and Subtraction:

Geometrical Addition of vectors

Polygon law

It is stated that if a number of vectors can be represented in magnitude and direction by the sides of a polygon taken in the same order, then their resultant can be represented in magnitude and direction by the closing side of a polygon taken in the opposite order.

Properties

Addition and Subtraction:

Properties of vector addition (symbolic representation)

$$\vec{A} + \vec{B} = \vec{B} + \vec{A}$$

Commutative law

$$\vec{A} + (\vec{B} + \vec{C}) = (\vec{A} + \vec{B}) + \vec{C}$$

Associative law

$$c(d\vec{A}) = (cd)\vec{A}$$
$$(c+d)\vec{A} = c\vec{A} + d\vec{A}$$
$$c(\vec{A} + \vec{B}) = c\vec{A} + c\vec{B}$$

Distributive law

Properties

Addition and Subtraction:

Geometric construction of commutative law of addition

$$\vec{A} + \vec{B} = \vec{B} + \vec{A}$$

Ref: 1) Physics for Scientists and Engineers with Modern Physics" by Serway & Jewett (Thomson Learning, Inc., 2008)

Scalar and Vectors

Properties

Addition and Subtraction:

Geometric construction of associative law of addition

$$\vec{A} + (\vec{B} + \vec{C}) = (\vec{A} + \vec{B}) + \vec{C}$$

Properties

Addition and Subtraction:

Geometric construction of distributive law of vector addition

$$c(\vec{A} + \vec{B}) = c\vec{A} + c\vec{B}$$

Properties

Addition and Subtraction:

Geometric construction of distributive law of Scalar Addition

$$(b+c)\vec{A} = b\vec{A} + c\vec{A}$$

Properties

Addition and Subtraction:

Geometrical Subtraction

Base Vectors

Components of Vector in 2D

$$\vec{\mathbf{A}} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}}$$

Components of Vector in 3D

$$\vec{\mathbf{A}} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}$$

$$A = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

 $\hat{i}, \hat{j}, \hat{k}$ are the base vectors which are a set of orthogonal unit vectors

Next Lecture

Dot product and cross product of vectors

Properties

Addition and Subtraction:

Geometrical Addition of vectors

Parallelogram law

Two vectors can be arranged as adjacent sides of a parallelogram such that their tails attach with each other and the sum of the two vectors is equal to the diagonal of the parallelogram whose tail is the same as the two vectors

- **Step 1:** Draw the vectors **P** and **Q** such that their tails touch each other.
- Step 2: Complete the parallelogram by drawing the other two sides.
- Step 3: The diagonal of the parallelogram that has the same tail as the vectors P and Q represents the <u>sum of</u> the two vectors. i.e., P + Q = R.

Ref: 1) https://www.cuemath.com/calculus/parallelogram-law-of-vector-addition/