Локально любое подмногообразие — регулярный прообраз

Замечание

Локально верно и обратное: для любого подмногообразия $M^{n-k}\subset \mathbb{N}^n$ и любой точки $p\in M$ существует окрестность $U\subset N$ точки p и субмерсия $f\colon U\to \mathbb{R}^k$ такая, что $M\cap U=f^{-1}(0)$.

Доказательство.

Возьмем композицию подходящей карты и проекции на \mathbb{R}^k .

Пример

Рассмотрим функцию $f:\mathbb{R}^3 \to \mathbb{R}$, заданную формулой

$$f(x, y, z) = x^2 + y^2 - z^2$$

Её дифференциал имеет матрицу [2x, 2y, -2z]Его ранг меньше 1 только при (x, y, z) = (0, 0, 0).

 \implies При $c \neq 0$ множество решений уравнения $x^2 + y^2 - z^2 = c$ (гиперболоид) — гладкое 2-мерное многообразие (поверхность) в \mathbb{R}^3 .

Лекция 6 30 марта 2022 г.

2/13

Пример

Рассмотрим функцию $f:\mathbb{R}^3 o \mathbb{R}$, заданную формулой

$$f(x, y, z) = x^2 + y^2 - z^2$$

Её дифференциал имеет матрицу [2x, 2y, -2z]Его ранг меньше 1 только при (x, y, z) = (0, 0, 0).

 \implies При $c \neq 0$ множество решений уравнения $x^2 + y^2 - z^2 = c$ (гиперболоид) — гладкое 2-мерное многообразие (поверхность) в \mathbb{R}^3 .

Легко видеть, что при c=0 решение (конус) не является даже топологическим многообразием в окрестности точки (0,0,0).

Если выколоть (0,0,0), то остаётся гладкая поверхность. Это следует из теоремы, применённой к сужению f на $\mathbb{R}^3 \setminus \{(0,0,0\})$.

Касательное пространство регулярного прообраза

Теорема

Пусть N и K — гладкие многообразия, $f:N\to K$ — гладкое отображение, $q\in K$ — регулярное значение, $M=f^{-1}(q)$ — подмногообразие, $p\in M$. Тогда

$$T_p M = \ker d_p f$$
.

Доказательство.

В разделе "Разные взгляды на касательное пространство подмногообразия" было свойство 1:

$$d_p(f|_M) = (d_p f)|_{T_p M}$$

Т.к. $f|_M = const$, то $d_{
ho}(f|_M) = 0 \implies (d_{
ho}f)|_{T_{
ho}M} = 0$.

 $\implies T_p M \subset \ker d_p f$.

Обратное включение следует из равенства размерностей.

Трансверсальные пересечения

Определение

Пусть N^n — гладкое многообразие, M^m и K^k — его подмногообразия. M и K пересекаются трансверсально (трансверсальны), если для любой точки $p\in M\cap K$ верно, что

$$T_pM + T_pK = T_pN$$

Обозначение: $M \uparrow K$.

Замечание

Определение содержательно только при $m + k \ge n$.

При m + k < n пересечение трансверсально \iff пусто.

Трансверсальное пересечение – подмногообразие

Теорема

Пусть N^n — гладкое многообразие, M^m и K^k — его подмногообразия, $m+k\geq n,\ M\pitchfork K.$

Тогда $M \cap K$ — гладкое подмногообразие размерности m+k-n.

Док-во: Докажем, что $M \cap K$ — гладкое подмногообразие в окрестности точки $p \in M \cap K$.

Шаг 1:

В достаточно малой окрестности $U\ni p,\ M$ и K являются прообразами регулярных значений функций $f\colon U\to\mathbb{R}^{n-m}$ и $g\colon U\to\mathbb{R}^{n-k}$.

Считаем, что $M \cap U = f^{-1}(0)$ и $K \cap U = g^{-1}(0)$.

Построим $H: U \to \mathbb{R}^{n-m} \times \mathbb{R}^{n-k}$:

$$H(x) = (f(x), g(x)).$$

Заметим, что $M \cap K \cap U = H^{-1}(0)$.

Трансверсальное пересечение – подмногообразие

Продолжаем док-во теоремы:

Шаг 2:

Проверим, что p — регулярная точка H.

$$\dim \ker d_p H = \dim (\ker d_p f \cap \ker d_p g) = m + k - n$$

из формулы для размерности пересечения линейных подпространств

$$\implies$$
 rank $d_p H = n - (m + k - n) = 2n - k - n$

 $\implies p$ — регулярная точка H.

Шаг 3:

Так как множество регулярных точек открыто, в некоторой окрестности $V \ni p \; (p \in V \subset U \subset N)$ все точки регулярные

$$\implies M \cap K \cap V$$
 — гладкое подмногообразие размерности $m+k-n$

 \implies (так как p произвольная) $M \cap K$ — гладкое подмногообразие размерности m+k-n

Касательное пространство пересечения

Теорема

Пусть $M,K\subset N$ — гладкие подмногообразия, $M\pitchfork K$, $p\in M\cap K$. Тогда

$$T_p(M\cap K)=T_pM\cap T_pK$$

Доказательство.

Включение $T_p(M\cap K)\subset T_pM\cap T_pK$ следует из включений $M\cap K\subset M$ и $M\cap K\subset K$.

Обратное включение — из равенства размерностей.

Для информации

Теорема (Уитни)

Любое гладкое многообразие M вкладывается в \mathbb{R}^N при достаточно большом N.

Можно даже взять $N=2\dim M$.

Теорема (Сард)

Пусть M, K — гладкие многообразия, $f: M \to K$ — гладкое отображение.

Тогда регулярными значениями f являются все точки K, кроме множества меры 0.

Под «множеством меры 0» в многообразии понимается множество, образ которого в любой карте имеет меру 0.

Доказательство будет в 6 семестре.

Риманова геометрия

Гладкие векторные поля

Определение

Пусть M – гладкое многообразие, U открыто в M. Гладкое отображение $X\colon U\to T(M)$ такое, что $X(p)\in T_p(M)$ для всех $p\in U$, называется гладким векторным полем в U на M.

Как правило будем рассматривать случай U=M.

Обозначение: $\mathfrak{X}(M)$ – множество всех гладких векторных полей на M.

Гладкие векторные поля

Пример

Пусть (U,φ) – некоторая карта на M, и $p\in U$ – произвольная точка. Каждому i можно сопоставить координатное векторное поле X_i , переводящее точку p в i-ый базисный вектор стандартного базиса в $T_p(M)$.

Поле X_i задано только в карте U. Чтобы продолжить X_i на всё M построим гладкий спуск с единицы, т.е. такие окрестности $V_1(p)$, $V_2(p)$ и гладкую функция $h\colon U\to [0,1]$, что

- $h(x)=egin{cases} 1,& ext{если }x\in \overline{V}_1(p),\ 0,& ext{если }x\in U\setminus V_2(p),\ x\in V_2(p)\setminus \overline{V}_1(p). \end{cases}$ и $0\leq h(x)<1$, если

Тогда hX_i — координатные векторные поля в карте (V_1, φ) , которые очевидном образом продолжаются до гладких полей на всем M.

Лекция 6 30 марта 2022 г.

11 / 13

Риманова структура

Определение

Говорят, что на гладком многообразии M задана риманова структура, если в каждом касательном пространстве $T_p(M)$ определено скалярное произведение $\langle \cdot, \cdot \rangle$ (т.е. симметричная положительно определенная билинейная форма), гладко зависящее от точки p.

Последнее означает, что для любых гладких векторных полей X,Y на M функция $\langle X,Y \rangle \colon M \to \mathbb{R}$ является гладкой.

Римановым многообразием называется связное гладкое многообразие, на котором задана риманова структура.

Замечание

- Синонимы римановой структуры: риманова метрика, метрический тензор.
- ullet Другие обозначения римановой структуры: $g = \{g_p\}_{p \in M}$.

Определение

Два римановых многообразия M,N называются изометричными, если между ними можно установить такой диффеоморфизм $f:M\to N$, что для любой точки $p\in M$ и любых векторов $u,v\in T_pM$

$$\langle u, v \rangle_p = \langle d_p f(u), d_p f(v) \rangle_{f(p)}.$$

30 марта 2022 г.

12 / 13

Коэффициенты римановой метрики

Определение

Пусть M^n — риманово многообразие, (U,φ) — некоторая карта на M, и $X_1,\ldots X_n$ — координатные поля этой карты.

 $g_{ij} = \langle X_i, X_j
angle \colon U o \mathbb{R}$ – коэффициенты римановой метрики (метрические коэффициенты).

<u>Л</u>емма

следующие условия эквивалентны:

- **①** для любых гладких векторных полей X,Y на M функция $\langle X,Y \rangle \colon M \to \mathbb{R}$ является гладкой.
- 2 в каждой карте метрические коэффициенты гладкие функции.