Optimization in dimension 1

- Methods of order zero (without derivatives)
- Methods of order one and above (with derivatives)

Beniamin Bogosel Computational Maths 2 49/78

Using derivatives...

Assumptions: f is unimodal on [a, b] and is smooth (admits as many derivatives as we want) Suppose that x^* is a local minimum of f on [a, b]

Proposition 9 (Classical result - optimality conditions)

- If $x^* \in (a, b)$ then $f'(x^*) = 0$ (x^* is a critical point)
- If $x^* = a$ then $f'(x^*) > 0$
- If $x^* = b$ then $f'(x^*) \le 0$
- * The second and third conditions are called Euler inequalities

Beniamin Bogosel Computational Maths 2 50/78

Towards an algorithm...

 \star Direct consequence of unimodality: if $a < x^* < b$ is the minimizer of f on [a,b] then

$$f'(x) < 0$$
 for $x \in [a, x^*)$ and $f'(x) > 0$ for $x \in (x^*, b]$

- * Therefore, if we choose one intermediary point $a < x_n < b$ then we know the position of x^* w.r.t. x_n by looking at $f'(x_n)$
- * Note that, compared to zero-order methods, one intermediary point is enough in order to reduce the size of the search interval

Beniamin BOGOSEL Computational Maths 2 51/78

Simplest algorithm

Algorithm 4 (Bisection)

Initialization: $S_0 = [a_0, b_0]$, i = 1 **Loop**:

- choose $x_i = 0.5(a_{i-1} + b_{i-1})$
- compute $f'(x_i)$
 - if $f'(x_i) < 0$ then $S_i = [x_i, b]$
 - **if** $f'(x_i) > 0$ then $S_i = [a, x_i]$
 - if $f'(x_i) = 0$ then $x^* = x_i$ and stop
- ullet replace i with i+1 and continue until the desired precision is reached
- \star the third option ($f'(x_i) = 0$ can (almost) never be verified numerically) when working with fixed machine precision for general functions f

Beniamin BOGOSEL Computational Maths 2 52/78

Simplest algorithm

Algorithm 4 (Bisection)

Initialization: $S_0 = [a_0, b_0]$, i = 1 **Loop**:

- choose $x_i = 0.5(a_{i-1} + b_{i-1})$
- compute $f'(x_i)$
 - if $f'(x_i) < 0$ then $S_i = [x_i, b]$
 - if $f'(x_i) > 0$ then $S_i = [a, x_i]$
 - if $f'(x_i) = 0$ then $x^* = x_i$ and stop
- ullet replace i with i + 1 and continue until the desired precision is reached
- \star the third option ($f'(x_i) = 0$ can (almost) never be verified numerically) when working with fixed machine precision for general functions f

Beniamin Bogosel Computational Maths 2 52/78

Convergence rate

Proposition 10

The Bisection algorithm converges linearly with ratio 0.5.

Proof: $|S_i| = 0.5|S_{i-1}|$ therefore

$$|x^* - x_N| \le 0.5^N (b - a).$$

- * Already better than the Fibonacci/Golden search algorithms.
- \star Is there a contradiction between the optimality of their claimed optimal rate/ratio of convergence and the result stated above?

Beniamin BOGOSEL Computational Maths 2 53/78

Proposition 10

The Bisection algorithm converges linearly with ratio 0.5.

Proof: $|S_i| = 0.5|S_{i-1}|$ therefore

$$|x^* - x_N| \le 0.5^N (b - a).$$

- * Already better than the Fibonacci/Golden search algorithms.
- \star Is there a contradiction between the optimality of their claimed optimal rate/ratio of convergence and the result stated above?

Answer: No, since the Bisection algorithm uses information about derivatives $f'(x_i)$ of the function f while Fibonacci/Golden search algorithms use only the values of f.

Beniamin BOGOSEL Computational Maths 2 53/78

Convergence rate

Proposition 10

The Bisection algorithm converges linearly with ratio 0.5.

Proof: $|S_i| = 0.5|S_{i-1}|$ therefore

$$|x^* - x_N| \le 0.5^N (b - a).$$

- * Already better than the Fibonacci/Golden search algorithms.
- \star Is there a contradiction between the optimality of their claimed optimal rate/ratio of convergence and the result stated above?

Answer: No, since the Bisection algorithm uses information about derivatives $f'(x_i)$ of the function f while Fibonacci/Golden search algorithms use only the values of f.

 \star Bisection method can be seen as a search for a zero of f'. For a general function f such that $f'(a)f'(b) \leq 0$ it will converge to a critical point of f

Beniamin Bogosel Computational Maths 2 53/78

Proposition 10

The Bisection algorithm converges linearly with ratio 0.5.

Proof:
$$|S_i| = 0.5|S_{i-1}|$$
 therefore

$$|x^* - x_N| \le 0.5^N (b - a).$$

- * Already better than the Fibonacci/Golden search algorithms.
- * Is there a contradiction between the optimality of their claimed optimal rate/ratio of convergence and the result stated above?

Answer: No, since the Bisection algorithm uses information about derivatives $f'(x_i)$ of the function f while Fibonacci/Golden search algorithms use only the values of f.

- \star Bisection method can be seen as a search for a zero of f'. For a general function f such that $f'(a)f'(b) \leq 0$ it will converge to a critical point of f
- \star Can we reach machine precision using the bisection method? The answer is yes: we compare the values of f' with 0!

Beniamin Bogosel Computational Maths 2 53/78

Further improvements...

- \star all methods presented so far possess global linear convergence assuming that f is unimodal.
- ★ Can we hope for something better?

Beniamin BOGOSEL Computational Maths 2 54/78

Further improvements...

- \star all methods presented so far possess global linear convergence assuming that f is unimodal.
- ★ Can we hope for something better?

Use curve fitting: approximate f locally by a simple function with analytically computable minimum.

Basic ideas:

- for each iteration: a set of working points for which we compute the values and (eventually) the derivatives
- construct an approximating polynomial p
- find analytically the minimum of p and update the family of working points

Beniamin Bogosel Computational Maths 2 54/78

 \star suppose that given x we can compute f(x), f'(x), f''(x)

Algorithm 5 (Newton method in dimension one)

Initialization: Choose the starting point x_0

Step i:

• Compute $f(x_{i-1}), f'(x_{i-1}), f''(x_{i-1})$ and approximate f around x_{i-1} by its second-order Taylor expansion

$$p(x) = f(x_{i-1}) + f'(x_{i-1})(x - x_i) + \frac{1}{2}f''(x_{i-1})(x - x_{i-1})^2.$$

• choose x_i as the critical point of the quadratic function p:

$$x_i = x_{i-1} - \frac{f'(x_{i-1})}{f''(x_{i-1})}.$$

ullet replace i with i+1 and loop

Beniamin BOGOSEL Computational Maths 2 55/78

$$f(x) = x^6/6 - x^2/2 + x$$
 on $[-2.5, 2.5]$, $x_0 = 2$.

Beniamin BOGOSEL Computational Maths 2 56/78

Fast convergence...

Proposition 11

Let $x^* \in \mathbb{R}$ be a local minimizer of a smooth function f such that $f'(x^*) = 0$ and $f''(x^*) > 0$. Then the Newton method converges to x^* quadratically, provided that the starting point x_0 is close enough to x^* .

Beniamin BOGOSEL Computational Maths 2 57/78

Fast convergence...

Proposition 11

Let $x^* \in \mathbb{R}$ be a local minimizer of a smooth function f such that $f'(x^*) = 0$ and $f''(x^*) > 0$. Then the Newton method converges to x^* quadratically, provided that the starting point x_0 is close enough to x^* .

All the hypotheses are essential!

- What happens for $f(x) = x^4$? Which hypothesis is not verified? Does the algorithm converge for every starting point x_0 ? What is the observed convergence rate of the algorithm?
- What happens for $f(x) = \sqrt{1 + x^2}$? Does the algorithm converge for every starting point x_0 ?

Beniamin BOGOSEL Computational Maths 2 57/78

Fast convergence...

Proposition 11

Let $x^* \in \mathbb{R}$ be a local minimizer of a smooth function f such that $f'(x^*) = 0$ and $f''(x^*) > 0$. Then the Newton method converges to x^* quadratically, provided that the starting point x_0 is close enough to x^* .

All the hypotheses are essential!

- What happens for $f(x) = x^4$? Which hypothesis is not verified? Does the algorithm converge for every starting point x_0 ? What is the observed convergence rate of the algorithm?
 - Answer: $x^* = 0$, $f''(x^*) = 0$, $x_i = \frac{2}{3}x_{i-1}$. The convergence rate is linear.
- What happens for $f(x) = \sqrt{1 + x^2}$? Does the algorithm converge for every starting point x_0 ?
 - Answer: $x^* = 0$, $f''(x^*) > 0$, $x_i = -x_{i-1}^3$. The convergence rate is cubic when $|x_0| < 1$, but the algorithm does not converge at all for $|x_0| \ge 1$.

Beniamin BOGOSEL Computational Maths 2 57/78

Proof ideas

- Denote g = f' and observe that $g(x^*) = 0$, $g'(x^*) > 0$, $g(x^*) = g(x_i) + g'(x_i)(x^* x_i) + \frac{1}{2}g''(\xi_i)(x^* x_i)^2$
- Use $g(x^*) = 0$ and reformulate:

$$\frac{g(x_i)}{g'(x_i)} + (x^* - x_i) = -\frac{g''(\xi_i)}{2g'(x_i)}(x^* - x_i)^2.$$

Use the definition of the Newton iterations to see that

$$x^* - x_{i+1} = \frac{-g''(\xi_i)}{2g'(x_i)}(x^* - x_i)^2.$$

use the hypotheses to conclude!

Beniamin BOGOSEL Computational Maths 2 58/78

Another point of view

 \star Newton's method can be seen a linearization method for finding the zeros of g = f'.

* Indeed,
$$g(x) = g(x_{i-1}) + g'(x_{i-1})(x - x_{i-1}) + o(|x - x_{i-1}|)$$

* Imposing that the linear part is zero amounts to

$$x = -\frac{g(x_{i-1})}{g'(x_{i-1})} + x_{i-1}$$

which is exactly the Newton method

Beniamin BOGOSEL Computational Maths 2 59/78

Modified Newton: degenerate case

- \star it is possible to show that when $f''(x^*) = 0$ then the rate of convergence is linear
- \star if the multiplicity m of the root x^* of f' is known then the following modified Newton method converges quadratically (if it is well defined...)

$$x_{n+1} = x_n - m \frac{f'(x_n)}{f''(x_n)}.$$

 \star in practice this does not really help: you don't know the multiplicity a priori for a general function f!

Beniamin BOGOSEL Computational Maths 2 60/78

A second example: Regula Falsi

- \star approximate f again by a quadratic polynomial
- * we consider two working points with first order information
- \star given the two last iterates x_{i-1} and x_{i-2} we may approximate $f''(x_{i-1})$ using finite differences

$$f''(x_{i-1}) \approx \frac{f'(x_{i-1}) - f'(x_{i-2})}{x_{i-1} - x_{i-2}}$$

Beniamin BOGOSEL Computational Maths 2 61/78

Algorithm 6 (False Position Method)

Initialization: Choose the starting points x_0, x_1 .

Step $i \ge 2$:

• Compute $f(x_{i-1}), f'(x_{i-1}), f'(x_{i-2})$ and approximate f around x_{i-1} with a second-order polynomial

$$p(x) = f(x_{i-1}) + f'(x_{i-1})(x - x_i) + \frac{1}{2} \frac{f'(x_{i-1}) - f'(x_{i-2})}{x_{i-1} - x_{i-2}} (x - x_{i-1})^2.$$

• choose x_i as the minimizer of the quadratic function p:

$$x_i = x_{i-1} - f'(x_{i-1}) \frac{x_{i-1} - x_{i-2}}{f'(x_{i-1}) - f'(x_{i-2})}.$$

ullet replace i with i+1 and loop

Beniamin BOGOSEL Computational Maths 2 61/78

Remarks

* The method is symmetric with respect to x_{i-1} and x_{i-2} . It is equivalent to

$$x_i = x_{i-2} - f'(x_{i-2}) \frac{x_{i-1} - x_{i-2}}{f'(x_{i-1}) - f'(x_{i-2})}$$

- \star this can be viewed again as a search for a zero of g = f': approximate f' by a straight line through points $(x_{i-1}, f'(x_{i-1}))$ and $(x_{i-2}, f'(x_{i-2}))$.
- \star for a non degenerate minimizer x^* of a smooth function f $(f'(x^*) = 0, f''(x^*) > 0)$ and for x_0, x_1 close enough to x^* the method converges to x^* superlinearly with order of convergence

 $\lambda = (1 + \sqrt{5})/2.$

* the Regula Falsi method has a slower convergence rate than Newton's method, but it does not need the knowledge of the second derivative

Beniamin Bogosel Computational Maths 2 62/78

Proof ideas

- **Lemma:** Let (r_n) be a sequence of positive reals verifying $r_{n+1} \leq r_n r_{n-1}$ for n > 1. If $r_0, r_1 \in (0, 1)$ then there exists a constant C > 0 such that $r_n \leq Cr^{\lambda^n}$, where $r \in (0,1)$ and $\lambda = \frac{\sqrt{5}+1}{2}$ is the golden ratio
- Show that the errors $e_n = |x^* x_n|$ verify an inequality of the form $e_{n+1} < Me_n e_{n-1}$.

Beniamin BOGOSEL Computational Maths 2 63/78

Cubic fit

- \star consider two working points x_1 and x_2 with zero and first order information
- * define the cubic polynomial such that

$$p(x_1) = f(x_1), p(x_2) = f(x_2), p'(x_1) = f'(x_1), p'(x_2) = f'(x_2)$$

- \star as the next iterate, choose the local minimizer of p.
- \star if x^* is non degenerate and the method starts sufficiently close to x^* then the method converges quadratically
- ★ formulas: complicated, if you are interested, ask for references
- * curve fitting is used with polynomials of small degree: we need to be able to compute analytically position of the minima: therefore, there is no point using approximating polynomials of degree higher than four!

Beniamin BOGOSEL Computational Maths 2 64/78

Conclusion: curve fitting - towards descent methods

- when the algorithm works we achieve superlinear convergence
- the convergence results are local
- when applying these methods in the general case they might converge to a local maximum or a critical point
- What to do when these methods do not work?
 - alternate zero-order or bisection search methods with curve fitting (in cases where curve fitting gives iterates outside the desired search region)
 - at each iteration be sure to decrease the objective function using a line-search method

Beniamin Bogosel Computational Maths 2 65/78

Descent direction in 1D

- if $f'(x) \neq 0$ there are only two options: go left or go right
- choose the direction $d \in \{-1, +1\}$ which decreases f.
- first order Taylor expansion:

$$f(x + \gamma d) = f(x) + \gamma d \cdot f'(x) + o(\gamma)$$

• if $d \cdot f'(x) < 0$ then if γ is small enough then

$$f(x + \gamma d) < f(x)$$

Examples when $f'(x) \neq 0$

- 1. d = -f'(x)
- 2. The Newton direction d = -f'(x)/f''(x) is a descent direction if and only if f''(x) > 0.
- 3. The direction $d = -f'(x_{i-1}) \frac{x_{i-1} x_{i-2}}{f'(x_{i-1}) f'(x_{i-2})}$ from the Secant method is a descent direction if f is strictly convex.

Beniamin BOGOSEL Computational Maths 2 66/78

Inexact line search

- * big question: how to choose a descent step?
- * the 1D reasoning will be useful in higher dimensions

Denote q(t) = f(x + td) where d is a descent direction (with $d \in \{\pm 1\}$ in 1D or general in nD), sometimes called merit function.

* Note that if d is a descent direction, then $q'(0) = d \cdot f'(x) < 0$

We perform a test for t, with three options

- a) t is good
- b) t is too big
- c) t is too small

We should be able to answer these questions by looking at q(t) and q'(t).

- \star perform an iterative process for constructing confidence interval $[t_l, t_r]$ for t
- * ideally the condition a) should be attained as quickly as possible!

Beniamin Bogosel Computational Maths 2 67/78

Generic line-search algorithm

Algorithm 7 (Line-search)

```
Start with t_l = 0, t_r = 0 and pick an initial t > 0.
```

Iterate:

Step 1:

```
If a) then exit: you found a good t
```

If b) then $t_r = t$: you found a new upper bound for t

If c) then $t_l = t$: you found a new lower bound for t

Step 2:

If no valid t_r exists we choose a new $t > t_l$, like $t = 2t_l$ (extrapolation step)

Else choose a new $t \in (t_l, t_r)$, like $t = 0.5(t_l + t_r)$ (interpolation step)

- \star a), b), c) should form a partition of \mathbb{R}_+
- \star if t is big enough c) should be false
- \star each interval $[t_l, t_r]$ should contain a non-trivial sub-interval verifying a)

Beniamin BOGOSEL Computational Maths 2 68/7

Armijo's rule

- \star $m_1 \in (0,1)$ and $\eta > 1$ are chosen constants.
- \star we fix an initial choice of $t=t_0$ (for example t=1)
- \star recall that q'(0) < 0

a)
$$\frac{q(t)-q(0)}{t} \leq m_1 q'(0) \Longleftrightarrow q(t) \leq q(0) + t(m_1 q'(0))$$
 (t is good)

b)
$$m_1q'(0) < \frac{q(t) - q(0)}{t} \iff q(t) > q(0) + t(m_1q'(0))$$
 (t is too big, $t_r = t$)

- c) never
- \star if t is too big, then the next t is chosen as t/η (a popular choice is $\eta=2$).

Proposition 12

Suppose that q is of class C^1 and q'(0) < 0. Then the line-search with Armijo's rule finishes in a finite number of steps.

Armijo's rule may lead to slow convergence: we choose once and for all a **maximal step**.

Beniamin BOGOSEL Computational Maths 2 69/78

Goldstein-Price rule

- $\star m_1 < m_2 \in (0,1)$ are chosen constants
- \star recall that q'(0) < 0
 - a) $m_2 q'(0) \le \frac{q(t) q(0)}{t} \le m_1 q'(0)$ $\iff q(0) + t(m_2 q'(0)) \le q(t) \le q(0) + t(m_1 q'(0)) \text{ (good } t)$
 - b) $m_1q'(0)<rac{q(t)-q(0)}{t}\Longleftrightarrow q(t)>q(0)+t(m_1q'(0))$ (t is too big)
 - c) $\frac{q(t)-q(0)}{t} < m_2 q'(0) \Longleftrightarrow q(t) < q(0) + t(m_2 q'(0))$ (t is too small)

Proposition 13

Suppose that $q \in C^1$ is bounded from below and q'(0) < 0. Then the line-search with the Goldstein-Price rule finishes in a finite number of steps.

* What about the choice of the constants m_1, m_2 ?

Beniamin BOGOSEL Computational Maths 2 70/78

Wolfe rule

- \star $m_1 < m_2 \in (0,1)$ are chosen constants
- \star recall that q'(0) < 0
 - a) $\frac{q(t)-q(0)}{t} \leq m_1 q'(0)$ and $q'(t) \geq m_2 q'(0)$ (good t)
 - b) $\frac{q(t)-q(0)}{t} > m_1 q'(0)$ (t is too big)
 - c) $\frac{q(t)-q(0)}{t} \leq m_1 q'(0)$ and $q'(t) < m_2 q'(0)$ (t is too small)

Proposition 14

Suppose that $q \in C^1$ is bounded from below and q'(0) < 0. Then the line-search with the Wolfe rule finishes in a finite number of steps.

- \star The condition on q'(t) is called curvature condition. Wolfe's rule is widely used in line-search algorithms: it gives good convergence properties
- \star the first condition in a) assures that the value of f decreases while the second assures that the slope reduces
- * What about the choice of the constants m_1, m_2 ?

Beniamin Bogosel Computational Maths 2 71/78

The quadratic case

Proposition 15

Suppose that q is quadratic with minimum t^* : $q(t) = (x - t^*)^2 + a$. Then: $q'(t) = 2(x - t^*)$ and $q(t^*) = q(0) + \frac{1}{2}q'(0)t^*$.

 \star we should not refuse the optimal step when q is quadratic!

$$\frac{q(t^*) - q(0)}{t^*} = \frac{1}{2}q'(0).$$

Armijo: $\frac{1}{2}q'(0) \leq m_1q'(0)$

Goldstein-Price: $m_2q'(0) \le \frac{1}{2}q'(0) \le m_1q'(0)$ **Wolfe:** $\frac{1}{2}q'(0) \le m_1q'(0)$ and $q'(t^*) \ge m_2q'(0)$

In conclusion it is recommended to:

 \star choose $m_1 < 0.5$ (for Armijo, Goldstein-Price and Wolfe)

 \star choose $0.5 < m_2 < 1$ (for Goldstein-Price)

Beniamin BOGOSEL Computational Maths 2 72/78

Finally...

Algorithm 8 (Generic gradient descent algorithm)

Initialization: Choose an initial point x_0 and the eventual parameters for the line-search algorithm

Step i:

- compute the function value $f(x_{i-1})$ and the derivative $f'(x_{i-1})$
- perform the line-search algorithm in order to find a descent step t.
- choose the next iterate

$$x_i = x_{i-1} - tf'(x_{i-1}).$$

Stopping criterion: $|f'(x_i)|$ is small, $|f(x_{i-1}) - f(x_i)|$ is small, the descent step t is too small, maximum number of iterations reached, etc.

- $\star f'(x_{i-1})$ can be replaced with any descent direction d.
- \star various simplified variants exist: fixed descent step, variable descent step
- * the generalization to higher dimensions is straightforward

Beniamin Bogosel Computational Maths 2 73/78

Convergence rate?

- ★ it is a order 1 algorithm so a priori we cannot expect more than linear convergence
- \star if $f(x) = x^2$ and we use a fixed step algorithm then the update at each iteration is

$$x_i = x_{i-1} - tf'(x_{i-1}) = (1-2t)x_{i-1}.$$

therefore, for t < 0.5 we have linear convergence to the optimum.

 \star the function $f(x) = x^2$ is strictly convex and quadratic: the ideal case.

Therefore we cannot expect something better.

 \star locally, around a minimizer x^* the function f is convex. Therefore, if convergence is proved for convex functions, it will follow, that locally, around the minimizer, the convergence of GD is linear

Beniamin Bogosel Computational Maths 2 74/78

Proposition 16 (Convergence rate for the gradient descent with fixed step)

Suppose that $f: \mathbb{R} \to \mathbb{R}$ is of class C^2 with f' Lipschitz continuous on \mathbb{R} : there exists M > 0 such that

$$|f'(x) - f'(y)| \le M|x - y|, \ \forall x, y \in \mathbb{R}.$$

Moreover, suppose that f is α -strictly convex (f"(x) $\geq \alpha > 0$) and that f is ∞ at infinity (so that a minimizer exists).

Then the Gradient Descent algorithm with fixed step t converges to the minimum linearly when t is small enough.

Proof. Define the application $\mathcal{F}: \mathbb{R} \to \mathbb{R}$

$$\mathcal{F}(x) = x - tf'(x)$$

and prove that for t small enough \mathcal{F} is a contraction:

$$|\mathcal{F}(x) - \mathcal{F}(y)| \le k|x - y|, \quad k \in (0, 1).$$

 \star then we know that the fixed point iteration $x_{n+1} = \mathcal{F}(x_n)$ converges to the unique fixed point, which is exactly the optimum.

Beniamin BOGOSEL Computational Maths 2 75/78

Example of local result

Proposition 17 (Local convergence rate)

Suppose that $f:[a,b] \to \mathbb{R}$ is unimodal and has a unique minimizer x^* in [a,b]. Then if f is of class C^2 and $f''(x^*) > 0$ the gradient descent algorithm with fixed step t converges linearly to x^* if t is chosen small enough and x_0 is close enough to x^* .

- \star Taylor expansion for f' around x^* gives a recurrence relation for the error!
- \star the condition $f''(x^*) > 0$ cannot be ommited: degenerate minimizers will lead to sublinear rate of convergence. Example $f(x) = x^4$.
- \star using more involved techniques, it is possible to prove that the gradient descent always converges to a local minimizer, with an eventual sublinear rate of convergence
- \star various convergence results can be formulated when using line-search procedures instead of a fixed step: guaranteeing descent is essential for convergence
- * Wolfe's rule gives good convergence results!

Beniamin Bogosel Computational Maths 2 76/78

Improve the speed of convergence

- * we saw that Newton's method or the Secant method give superlinear convergence under the right hypotheses, but they offer no guarantee of convergence
- * modify the gradient descent algorithm by changing the descent direction:

$$x_{i+1} = x_i + \gamma d_i$$

where d_i is either

- $-f'(x_i)/f''(x_i)$ (if $f''(x_i) > 0$)
- \bullet $-f'(x_i) \frac{x_i x_{i-1}}{f'(x_i) f'(x_{i-1})}$ (if this is indeed a descent direction)
- \star combine this with a line-search procedure with initial step size t=1.
- \star the new algorithm will eventually attain a superlinear rate of convergence provided we can choose the step $\gamma=1$ for all iterations $i\geq n_0$
- \star this idea is useful in higher dimensions where the family of descent directions is richer

Beniamin BOGOSEL Computational Maths 2 77/78

Conclusions - optimization in dimension one

- there are efficient zero-order algorithms (when derivatives are not available)
- as soon as derivatives can be computed, the convergence is accelerated
- curve-fitting methods give increased convergence rates, but they are sensitive to the initialization
- line-search procedures play an important role even in higher dimensions
- inexact line-search: sometimes searching for an optimum is not the main objective but attaining a significant decrease in the objective function is enough
- gradient descent algorithms (almost) always converge to a local minimzer, but the rate of convergence is linear at best

Beniamin Bogosel Computational Maths 2 78/78