# CSC 339 – Theory of Computation Fall 2023-2024

2. Languages

#### Outline

- Alphabet and strings
- String operations
- Languages
- Operations on languages
- The membership problem

#### General concepts

- Language: a set of strings
- String: a sequence of symbols from some alphabet
- Example:

Strings: cat, dog, house

Language: {cat, dog, house}

Alphabet:  $\Sigma = \{a, b, c, \dots, z\}$ 

## General Concepts

Languages are used to describe computation problems

$$PRIMES = \{2,3,5,7,11,13,17,\ldots\}$$

$$EVEN = \{0, 2, 4, 6, ...\}$$

Alphabet: 
$$\Sigma = \{0, 1, 2, ..., 9\}$$

## Alphabets and Strings

An alphabet is a set of symbols

Example Alphabet: 
$$\Sigma = \{a, b\}$$

A string is a sequence of symbols from the alphabet

#### **Example Strings:**

 $\boldsymbol{a}$ 

ab

u = ab

abba

v = bbbaaa

w = abba

aaabbbaabab

## Alphabets and Strings

```
Examples of strings  \begin{array}{c} \text{Decimal numbers alphabet} \ \ \Sigma = \{0,1,2,\ldots,9\} \\ 102345 \\ 567463386 \\ \text{Binary numbers alphabet} \ \ \Sigma = \{0,1\} \\ 100010001 \\ 101101111 \\ \text{Unary numbers alphabet} \ \ \Sigma = \{1\} \\ 1 \ 11 \ 111 \ 1111 \end{array}
```

## **String Operations**

$$w = a_1 a_2 \cdots a_n$$

abba

$$v = b_1 b_2 \cdots b_m$$

bbbaaa

#### Concatenation

$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$
 abbabbbaaa

# **String Operations**

$$w = a_1 a_2 \cdots a_n$$

ababaaabbb

#### Reverse

$$w^R = a_n \cdots a_2 a_1$$

bbbaaababa

# String Length

$$w = a_1 a_2 \cdots a_n$$

- Length: |w| = n
- Examples:

$$|abba| = 4$$
$$|aa| = 2$$
$$|a| = 1$$

#### Length of Concatenation

$$|uv| = |u| + |v|$$

• Examples: u = aab, |u| = 3v = abaab, |v| = 5

$$|uv| = |aababaab| = 8$$
  
 $|uv| = |u| + |v| = 3 + 5 = 8$ 

# Empty String $\varepsilon$ or $\lambda$

- A string with no letters is denoted:  $|\varepsilon| = 0$
- Observations:

$$\varepsilon w = w \varepsilon = w$$
  
 $\varepsilon abba = abba \varepsilon = ab\varepsilon ba = abba$ 

# Substring

• Substring of string:

-a subsequence of consecutive characters

String Substring

abbab ab

abbab abba

abbab b

abbab bbab

#### Prefix and Suffix

String: abbab

Prefixes Suffixes

 $\varepsilon$  abbab

a bbab

ab bab

abb ab

abba b

abbab  $\varepsilon$ 



# **Another Operation**

$$w^n = \underbrace{ww\cdots w}_n$$

- Example:  $(abba)^2 = abbaabba$
- Definition:  $w^0 = \varepsilon$   $(abba)^0 = \varepsilon$

## The \* Operation

-  $\Sigma$  \*: the set of all possible strings from alphabet  $\Sigma$ 

$$\Sigma = \{a, b\}$$
  
$$\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

#### The + Operation

 $\Sigma^+$ : the set of all possible strings from alphabet  $\Sigma$  except  $\mathcal{E}$ 

$$\Sigma = \{a, b\}$$

 $\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$ 

$$\Sigma^+ = \Sigma * -\varepsilon$$

 $\Sigma^{+} = \{a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$ 

## Languages

- A language over alphabet  $\Sigma$  is any subset of  $\Sigma^*$
- Examples:

$$\Sigma = \{a, b\}$$
  
$$\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, \ldots\}$$

Language:  $\{\mathcal{E}\}$ 

Language:  $\{a, aa, aab\}$ 

Language:  $\{\varepsilon, abba, baba, aa, ab, aaaaaaa\}$ 

Alphabet 
$$\Sigma = \{a,b\}$$
  $L = \{a^nb^n : n \ge 0\}$ 

• An infinite language

$$\begin{array}{c} \varepsilon \\ ab \\ aabb \\ aaaaabbbbb \end{array} \in L \qquad abb \not\in L$$

#### Prime numbers

Alphabet:  $\Sigma = \{0, 1, 2, ..., 9\}$ 

Language:

 $PRIMES = \{x : x \in \Sigma^* \text{ and } x \text{ is prime} \}$ 

$$PRIMES = \{2,3,5,7,11,13,17,...\}$$

#### Even and odd numbers

```
Alphabet: \Sigma = \{0,1,2,...,9\}

EVEN = \{x : x \in \Sigma^* \text{ and } x \text{ is even}\}

EVEN = \{0,2,4,6,...\}

ODD = \{x : x \in \Sigma^* \text{ and } x \text{ is odd}\}

ODD = \{1,3,5,7,...\}
```

**Unary Addition** 

Alphabet:  $\Sigma = \{1, +, =\}$ 

Language:

ADDITION = 
$$\{x + y = z : x = 1^n, y = 1^m, z = 1^k, n + m = k\}$$

$$11+111=111111 \in ADDITION$$

$$111+111=111 \notin ADDITION$$

#### Squares

Alphabet:  $\Sigma = \{1, \#\}$ 

Language:

$$SQUARES = \{x \# y : x = 1^n, y = 1^m, m = n^2\}$$

$$11\#1111 \in SQUARES$$
  
 $111\#11111 \notin SQUARES$ 

# Important Notes

$$\emptyset = \{ \} \neq \{ \mathcal{E} \}$$

$$|\{\ \}| = |\varnothing| = 0$$

$$|\{\varepsilon\}| = 1$$

$$|\varepsilon| = 0$$

## Operations on Languages

• The usual set operations

$${a,ab,aaaa} \cup {bb,ab} = {a,ab,bb,aaaa}$$
  
 ${a,ab,aaaa} \cap {bb,ab} = {ab}$   
 ${a,ab,aaaa} - {bb,ab} = {a,aaaa}$ 

• Complement:  $\overline{L} = \Sigma^* - L$   $\overline{\{a,ba\}} = \{\varepsilon,b,aa,ab,bb,aaa,\ldots\}$ 

#### Reverse

- Definition:  $L^R = \{w^R : w \in L\}$
- Examples:

$${ab,aab,baba}^R = {ba,baa,abab}$$

$$L = \{a^n b^n : n \ge 0\}$$
  $L^R = \{b^n a^n : n \ge 0\}$ 

#### Concatenation

- Definition:  $L_1L_2 = \{xy : x \in L_1, y \in L_2\}$
- Example:

$${a,ab,ba}{b,aa}$$

 $= \{ab, aaa, abb, abaa, bab, baaa\}$ 

#### **Another Operation**

- Definition:  $L^n = \underbrace{LL\cdots L}_n$   $\{a,b\}^3 = \{a,b\}\{a,b\}\{a,b\} =$  $\{aaa,aab,aba,abb,baa,bab,bba,bbb\}$
- Special case:

$$L^{0} = \{\varepsilon\}$$
$$\{a, bba, aaa\}^{0} = \{\varepsilon\}$$

# **Another Operation**

• Example:

$$L = \{a^n b^n : n \ge 0\}$$

$$L^2 = \{a^n b^n a^m b^m : n, m \ge 0\}$$

$$aabbaaabbb \in L^2$$

## Star-Closure (Kleene \*)

- All strings that can be constructed from L• Definition:  $L^* = L^0 \cup L^1 \cup L^2 \cdots$
- Example:

$$\{a,bb\}^* = egin{cases} arepsilon, \ a,bb, \ aa,abb,bba,bbb, \ aaa,aabb,abba,abbb, \ldots \end{cases}$$

#### Positive Closure

• Definition:  $L^+ = L^1 \bigcup L^2 \bigcup \cdots$ Same with  $L^*$  but without the  $\mathcal{E}$ 

$$\{a,bb\}^{+} = \begin{cases} a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \dots \end{cases}$$

## The Membership Problem

Given a string  $w \in \sum^*$  and a language L over  $\sum$ , decide whether or not  $w \in L$ .

#### Example:

Let w = 100011

Question)

Is  $w \in \text{the language of strings with an equal number of 0s and 1s?}$