Shashank Singh sss1@andrew.cmu.edu

21-373 Honors Algebraic Structures, Fall 2011

Assignment 9

Due: Wednesday, November 30

Exercise 57: Let K be a finite field, and let $\forall a,b \in K$, if $a^2 = b^2$, then (a+b)(a-b), so that a = -b. Therefore, if x is a square in K, then there are at most two distinct elements of which x is a square. Thus, if n = |K|, for $S = \{x^2 : x \in K\}$, $|S| \ge \lceil \frac{n+1}{2} \rceil$. Let $T = \{k - x : x \in S\}$. Then, f(x) = k - x is an injection from S to T, so that $|T| \ge \lceil \frac{n+1}{2} \rceil$. Therefore, since $S, T \subseteq K$, $S \cap T \ne \emptyset$ (for, if S and T were disjoint, then $|K| \ge n+1$, contradicting the choice of n). Then, for $x \in S \cap T$, $x = a^2$ and $k - x = b^2$, for some $a, b \in K$, so that $k = a^2 + b^2$.

Exercise 58: Let E be a field, and let F = E(x). Let $P, Q \in E[x]$ such that P and Q are relatively prime.

i. Let n be the degree of P, and let m be the degree of Q. For $R = \frac{P}{Q}Q - P$, $R \in E[x]$, and R(x) = 0. Thus, x is algebraic over $E(\frac{P}{Q})$. Furthermore, since $[F:E(\frac{P}{Q})]$ is the degree of which x is algebraic over $E(\frac{P}{Q})$ (as shown on the previous assignment), $[F:E(\frac{P}{Q})] \leq degree(R) = \max\{degree(P), degree(Q)\}$. It remains to show that $\frac{P}{Q}Q - P$ is irreducible, so that, since there is a unique monic, irreducible polynomial such of which x is a root (and R can be made monic be dividing by the coefficient of the leading term), $[F:E(\frac{P}{Q})] \geq degree(R)$.

ii Note that, since P,Q are relatively prime, at least one is non-constant. Suppose $\max\{degree(P), degree(Q)\} = 1$. Then $\frac{P}{Q} = \frac{ax+b}{cx+d}$, for some $a,b,c,d \in E$. Thus, for $\tau(x) = \frac{b-dx}{cx-a}$, $\tau = \sigma^{-1}$. Thus, σ is bijective, so that, since σ is an endomorphism, σ is an automorphism.

Suppose, on the other hand, that σ is an automorphism. Since σ maps F to $E(\frac{P}{Q})$ and is bijective, $|F| \leq |E(\frac{P}{Q})$, so that, since $E(\frac{P}{Q}) \subseteq |F|$, $E(\frac{P}{Q}) = F$. Therefore, $[F:E(\frac{P}{Q})] = 1$, so that, by the result of part i., $\max\{degree(P), degree(Q)\} = 1$.

Exercise 59: Note that, in the scope of this exercise, p denotes a prime integer. Clearly, $\not\exists x \in \mathbb{Z}$ such that $x^2 = -1$, $x^2 = 2$, $x^2 = -2$, or $x^4 = -1$. Thus, since, as shown below, all factorizations of $x^4 + 1$ require the existence of some such element, $x^4 + 1$ is irreducible in \mathbb{Z} .

- **i.** If p = 2, then, since 1 = -1, 1 is a root of $x^4 + 1$.
- ii. $(x^2 + b)(x^2 b) = x^4 b^2$. Thus, $x^4 + 1$ factors as $(x^2 + b)(x^2 b)$ in \mathbb{Z}_p if and only if (-1) is a quadratic residue for p. Indeed, as given, since p = 8n + 5 = 4(2n + 1) + 1, (-1) is a quadratic residue for p, so, assuming p is not of the form 8n + 1, $x^4 + 1$ factors as $(x^2 + b)(x^2 b)$ in \mathbb{Z}_p if and only if p = 8n + 1 for some $n \in \mathbb{N}$.
- iii. $(x^2 + ax + 1)(x^2 ax + 1) = x^4 + (2 a^2)x^2 + 1$. Thus, $x^4 + 1$ factors as $(x^2 + ax + 1)(x^2 ax + 1)$ in \mathbb{Z}_p if and only if 2 is a quadratic residue for p. Indeed, as given, since p = 8n + 7 = 8(n + 1) 1, 2 is a quadratic residue for p, so, assuming p is not of the form 8n + 1, $x^4 + 1$ factors as $(x^2 + ax + 1)(x^2 ax + 1)$ if and only if p = 8n + 7.
- iv. $(x^2+ax-1)(x^2-ax-1)=x^4-(2+a^2)x^2+1$. Thus, x^4+1 factors as $(x^2+ax-1)(x^2-ax-1)$ if and only if (-2) is a quadratic residue for p. The Legendre symbol of (-2) shows that, since $\left(\frac{-2}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right)$, -2 is a quadratic residue of p if and only if either both or neither of 2 and (-1) are quadratic residues for p. Since p is prime, for some $n \in \mathbb{N}$, p=8n+1, p=8n+3, p=8n+5, or p=8n+7. In the latter two cases, as shown above, one, but not both, of 2 and (-1) is a quadratic residue for p. Thus, assuming p is not of the form 8n+1, x^2+1 factors as $(x^2+ax-1)(x^2-ax-1)$ if and only if p=8n+3.

Exercise 60: i. Let E be a field of characteristic 0, and suppose $P \in E[x]$ is such that $P(x^2 + 1) = (P(x))^2 + 1$ and P(0) = 0. Let $S = |\{x \in \mathbb{N} : P(x) = x\}|$. Suppose, for sake of contradiction, that, for some $n \in \mathbb{N}$, |S| = n. Let $k = \max S$. Then, $P(k^2 + 1) = P(k)^2 + 1 = k^2 + 1 \notin S$, contradicting the choice of k. Thus, there are infinitely many solutions x to P(x) = x, so that (P - x) has infinitely many roots. Since the number of roots of a non-zero polynomial is bounded by the degree of the polynomial, then, (P - x) = 0, so that P - x.

ii. Let E be a field of characteristic p. Clearly, for P=x (the "trivial solution"), $P \in E[x]$ satisfies $P(x^2+1)=(P(x))^2+1$ and P(0)=0. Suppose that, for some $P \in E[x]$, P satisfies $P(x^2+1)=(P(x))^2+1$ and P(0)=0. As shown in class, since E is a finite field (as it is of positive characteristic), the Frobenius homomorphism on E is an automorphism on E, so that it is bijective. Thus, if f is the Frobenius homomorphism on E, $P(f(x))=P(x^p)$ satisfies $P(x^2+1)=(P(x))^2+1$ and P(0)=0. Furthermore, $P(f(f(x))),P(f(f(f(x)))),\ldots,P(f^i(x)),\ldots$ all satisfy the constraint, so that there are an infinite number of solutions $P \in E[x]$ to the constraint.

Exercise 61: Let $n \in \mathbb{N}$ with $n \geq 2$. It is easily shown by induction on n that $(x + x^{n+2})(1 - x^{n+1} + x^{2(n+1)} - \ldots + (-1)^n (x^{n+1})^{n-2}) + (-1)^{n+1} (x^{n^2})$. Thus, for $P(x, y, z) = z(1 - y + y^2 - \ldots + (-1)^n y^{n-2}) + (-1)^{n+1} x^2$, $x \equiv P(x^n, x^{n+1}, x + x^{n+2})$.

Exercise 62: Let $n, m \in \mathbb{N}$ with n = 2m and m > 1 is odd, and let $\theta = e^{2\pi i/n}$. Then, $\theta^m + 1 = e^{\pi i} + 1 = 0$. It is easily shown by induction that, $\forall x \in \mathbb{C}$, $\forall k \in \mathbb{N}$, if k is odd, then $x^k = (x+1) \left(\sum_{i=1}^k (-1)^{i+1} x^{k-i} \right)$. Thus, $\theta^m = (\theta + 1) \left(\sum_{i=1}^m (-1)^{i+1} \theta^{m-i} \right)$. Since $\theta \neq -1$ (as m > 1), $0 = \sum_{i=1}^m (-1)^{i+1} \theta^{m-i}$ and thus $1 = \sum_{i=1}^{m-1} (-1)^i \theta^{m-i}$. $1 = \sum_{i=1}^{m-1} (-1)^i \theta^{m-i}$.

Separating even and odd terms gives $1 = (1 - \theta)(\sum_{i=0}^{\frac{m-3}{2}} \theta^{2i+1})$. Thus, $(1 - \theta)^{-1} = (\sum_{i=0}^{\frac{m-3}{2}} \theta^{2i+1})$.