Scalability

Victor Eijkhout

PCSE 2015

Table of Contents

- Why scalability?
- Collectives as building blocks; complexity
- 3 Scalability analysis of dense matrix-vector product
- Sparse matrix-vector product
- 5 Multicore block algorithms

Justification

You have seen how the right use of MPI and OpenMP mechanisms can have a large influence on the performance of your code. However, sometimes you have to make design decisions on a deeper level. Here you will see the effects of a fundamental design choice in a simple algorithm.

Table of Contents

- Why scalability?
- Collectives as building blocks; complexity
- 3 Scalability analysis of dense matrix-vector product
- Sparse matrix-vector product
- 5 Multicore block algorithms

Simple model of parallel computation

- α: message latency
- β: time per word (inverse of bandwidth)
- γ: time per floating point operation

Pure sends: no γ term,

pure computation: no α,β terms,

sometimes mixed: reduction

Model for collectives

- One simultaneous send and receive:
- doubling of active processors
- collectives have a αlog₂ p cost component

Broadcast

	t = 0	<i>t</i> = 1	t = 2
p_0	$x_0\downarrow, x_1\downarrow, x_2\downarrow, x_3\downarrow$	$x_0\downarrow, x_1\downarrow, x_2\downarrow, x_3\downarrow$	x_0, x_1, x_2, x_3
<i>p</i> ₁		$x_0\downarrow,x_1\downarrow,x_2\downarrow,x_3\downarrow$	x_0, x_1, x_2, x_3
p_2			x_0, x_1, x_2, x_3
p_3			x_0, x_1, x_2, x_3

On t = 0, p_0 sends to p_1 ; on t = 1 p_0 , p_1 send to p_2 , p_3 .

Optimal complexity:

$$\lceil \log_2 p \rceil \alpha + n\beta$$
.

Actual complexity:

$$\lceil \log_2 p \rceil (\alpha + n\beta).$$

Reduce

Optimal complexity:

$$\lceil \log_2 p \rceil \alpha + n\beta + \frac{p-1}{p} \gamma n.$$

Spanning tree algorithm:

$$\begin{array}{|c|c|c|c|c|c|}\hline & t=1 & t=2 & t=3 \\ p_0 & x_0^{(0)}, x_1^{(0)}, x_2^{(0)}, x_3^{(0)} & x_0^{(0:1)}, x_1^{(0:1)}, x_2^{(0:1)}, x_3^{(0:1)} & x_0^{(0:3)}, x_1^{(0:3)}, x_2^{(0:3)}, x_3^{(0:3)} \\ p_1 & x_0^{(1)} \uparrow, x_1^{(1)} \uparrow, x_2^{(1)} \uparrow, x_3^{(1)} \uparrow & & & & & & & \\ p_2 & x_0^{(2)}, x_1^{(2)}, x_2^{(2)}, x_3^{(2)} & & x_0^{(2:3)} \uparrow, x_1^{(2:3)} \uparrow, x_2^{(2:3)} \uparrow, x_3^{(2:3)} \uparrow & & & & & \\ p_3 & x_0^{(3)} \uparrow, x_1^{(3)} \uparrow, x_2^{(3)} \uparrow, x_3^{(3)} \uparrow & & & & & & \\ \end{array}$$

Running time

$$\lceil \log_2 p \rceil (\alpha + n\beta + \frac{p-1}{p} \gamma n).$$

Good enough for short vectors.

Victor Eiikhout Scalability PCSE 2015

Broadcast

- Run reduce algorithm backwards
- 'Recursive doubling'

Optimal complexity:

$$\lceil \log_2 p \rceil \alpha + n\beta$$

Attained:

$$\lceil \log_2 p \rceil (\alpha + n\beta)$$

Long vector broadcast

Combine scatter and bucket-allgather:

	t = 0	t = 1		etcetera
p_0	$x_0 \downarrow$	<i>x</i> ₀	<i>x</i> ₃ ↓	x_0, x_2, x_3
p_1	$x_1 \downarrow$	$x_0\downarrow,x_1$		x_0, x_1, x_3
p_2	$x_2 \downarrow$	$x_1 \downarrow, x_2$		x_0, x_1, x_2
<i>p</i> ₃	<i>x</i> ₃ ↓	<i>X</i> ₂	\downarrow , x_3	x_1, x_2, x_3

Complexity becomes

$$p\alpha + \beta n(p-1)/p$$

better if *n* large

Victor Eijkhout Scalability PCSE 2015 10 / 63

Allgather

Gather n elements: each processor owns n/p; optimal running time

$$\lceil \log_2 p \rceil \alpha + \frac{p-1}{p} n \beta.$$

	<i>t</i> = 1	<i>t</i> = 2	<i>t</i> = 3
p_0	<i>x</i> ₀ ↓	$x_0x_1\downarrow$	$x_0x_1x_2x_3$
p_1	$x_1 \uparrow$	$x_0x_1\downarrow$	$x_0x_1x_2x_3$
p_2	<i>x</i> ₂ ↓	$x_2x_3\uparrow$	$x_0x_1x_2x_3$
p_3	<i>x</i> ₃ ↑	$x_2x_3\uparrow$	$X_0X_1X_2X_3$

Reduce-scatter

$$\begin{array}{|c|c|c|c|c|c|} \hline & t = 1 & t = 2 & t = 3 \\ \hline p_0 & x_0^{(0)}, x_1^{(0)}, x_2^{(0)} \downarrow, x_3^{(0)} \downarrow & x_0^{(0:2:2)}, x_1^{(0:2:2)} \downarrow & x_0^{(0:3)} \\ p_1 & x_0^{(1)}, x_1^{(1)}, x_2^{(1)} \downarrow, x_3^{(1)} \downarrow & x_0^{(1:3:2)} \uparrow, x_1^{(1:3:2)} & x_1^{(0:3)} \\ p_2 & x_0^{(2)} \uparrow, x_1^{(2)} \uparrow, x_2^{(2)}, x_3^{(2)} & x_2^{(0:2:2)}, x_3^{(0:2:2)} \downarrow & x_2^{(0:3)} \\ p_3 & x_0^{(3)} \uparrow, x_1^{(3)} \uparrow, x_2^{(3)}, x_3^{(3)} & x_0^{(0:3)} \uparrow, x_1^{(1:3:2)} & x_3^{(0:3)} \\ \hline \end{array}$$

$$\lceil \log_2 p \rceil \alpha + \frac{p-1}{p} n(\beta + \gamma).$$

Victor Eijkhout Scalability PCSE 2015 12 / 63

Table of Contents

- Why scalability?
- Collectives as building blocks; complexity
- 3 Scalability analysis of dense matrix-vector product
- 4 Sparse matrix-vector product
- Multicore block algorithms

Parallel matrix-vector product; general

- Assume a division by block rows
- ullet Every processor p has a set of row indices I_p

Mvp on processor p:

$$\forall_i \colon y_i = \sum_j a_{ij} x_j$$
 $\forall_i \colon y_i = \sum_j \sum_j a_{ij} x_j$

Local and remote operations

Local and remote parts:

$$\forall_i \colon y_i = \sum_{j \in I_p} a_{ij} x_j + \sum_{q \neq p} \sum_{j \in I_q} a_{ij} x_j$$

Local part I_p can be executed right away, I_q requires communication.

Combine:

Note possible overlap

15 / 63

communication and computation; only used in the sparse case

Exercise

How much can overlap help you?

Dense MVP

- Separate communication and computation:
- first allgather
- then matrix-vector product

Cost computation 1.

Algorithm:

Step	Cost (lower bound)
Allgather x_i so that x is available	
on all nodes	
Locally compute $y_i = A_i x$	$ pprox 2rac{n^2}{P}\gamma$

Allgather

Assume that data arrives over a binary tree:

- latency αlog₂ P
- transmission time, receiving n/P elements from P-1 processors

Algorithm with cost:

Step	Cost (lower bound)
Allgather x_i so that x is available	$\lceil \log_2(P) \rceil \alpha + \frac{P-1}{P} n \beta \approx$
on all nodes	$\log_2(P)\alpha + n\beta$
Locally compute $y_i = A_i x$	$pprox 2rac{n^2}{P}\gamma$

Parallel efficiency

$$E_{p}^{1\text{D-row}}(n) = \frac{S_{p}^{1\text{D-row}}(n)}{p} = \frac{1}{1 + \frac{p\log_{2}(p)}{2n^{2}}\frac{\alpha}{\gamma} + \frac{p}{2n}\frac{\beta}{\gamma}}$$

Strong scaling, weak scaling?

Victor Eijkhout Scalability PCSE 2015 21 / 63

Optimistic scaling

Processors fixed, problem grows:

$$E_p^{1\text{D-row}}(n) = \frac{1}{1 + \frac{p\log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{p}{2n} \frac{\beta}{\gamma}}.$$

Roughly $E_p \sim 1 - n^{-1}$

Strong scaling

Problem fixed, $p \rightarrow \infty$

$$E_p^{1 \text{ D-row}}(n) = \frac{1}{1 + \frac{p \log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{p}{2n} \frac{\beta}{\gamma}}.$$

Strong scaling

Problem fixed, $p \rightarrow \infty$

$$E_p^{1 \text{D-row}}(n) = \frac{1}{1 + \frac{p \log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{p}{2n} \frac{\beta}{\gamma}}.$$

Roughly $E_p \sim p^{-1}$

Weak scaling

Memory fixed:

$$M = n^2/\rho$$

$$E_p^{1D\text{-row}}(n) = \frac{1}{1 + \frac{p\log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{p}{2n} \frac{\beta}{\gamma}} = \frac{1}{1 + \frac{\log_2(p)}{2M} \frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2\sqrt{M}} \frac{\beta}{\gamma}}$$

Weak scaling

Memory fixed:

$$M = n^2/p$$

$$E_p^{1D\text{-row}}(n) = \frac{1}{1 + \frac{p\log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{p}{2n} \frac{\beta}{\gamma}} = \frac{1}{1 + \frac{\log_2(p)}{2M} \frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2\sqrt{M}} \frac{\beta}{\gamma}}$$

Does not scale: $E_p \sim 1/\sqrt{p}$

problem in $\boldsymbol{\beta}$ term: too much communication

Two-dimensional partitioning

<i>x</i> ₀				<i>x</i> ₃				<i>x</i> ₆				<i>X</i> 9			
a_{00}	a ₀₁	a ₀₂	<i>y</i> ₀	a ₀₃	a ₀₄	a ₀₅		a ₀₆	a ₀₇	a ₀₈		a ₀₉	a _{0,10}	a _{0,11}	
a ₁₀	a ₁₁	a ₁₂		a ₁₃	a ₁₄	a ₁₅	<i>y</i> ₁	a ₁₆	a ₁₇	a ₁₈		a ₁₉	a _{1,10}	a _{1,11}	
a ₂₀	<i>a</i> 21	a22		a ₂₃	a ₂₄	a ₂₅		a ₂₆	a 27	a ₂₈	<i>y</i> 2	a 29	a _{2,10}	a2,11	
a ₃₀	<i>a</i> ₃₁	a ₃₂		<i>a</i> ₃₃	a ₃₄	a ₃₅		a ₃₇	a ₃₇	a ₃₈		<i>a</i> ₃₉	a _{3,10}	a _{3,11}	<i>y</i> 3
	<i>x</i> ₁				<i>x</i> ₄				<i>x</i> ₇				<i>x</i> ₁₀		
<i>a</i> ₄₀	a 41	<i>a</i> ₄₂	<i>y</i> 4	a43	2 44	a 45		a46	a 47	<i>a</i> 48		<i>a</i> 49	a4,10	a4,11	ļ
a_{50}	a ₅₁	a ₅₂		a ₅₃	a ₅₄	a ₅₅	<i>y</i> ₅	a ₅₆	a ₅₇	a ₅₈		a ₅₉	a _{5,10}	a _{5,11}	
a_{60}	a ₆₁	a ₆₂		a ₆₃	a ₆₄	a ₆₅		a ₆₆	a ₆₇	a ₆₈	<i>y</i> ₆	a ₆₉	a _{6,10}	a _{6,11}	
a ₇₀	a ₇₁	a ₇₂		a ₇₃	a ₇₄	a ₇₅		a ₇₇	a ₇₇	a ₇₈		a ₇₉	a _{7,10}	a _{7,11}	y 7
		<i>x</i> ₂				<i>x</i> ₅				<i>x</i> ₈				<i>x</i> ₁₁	
<i>a</i> 80	<i>a</i> 81	<i>a</i> 82	<i>y</i> 8	a ₈₃	<i>a</i> 84	<i>a</i> 85		<i>a</i> 86	a 87	<i>a</i> 88		a 89	<i>a</i> 8,10	<i>a</i> 8,11	
a ₉₀	<i>a</i> ₉₁	<i>a</i> ₉₂		a ₉₃	a ₉₄	<i>a</i> ₉₅	<i>y</i> 9	a ₉₆	<i>a</i> 97	<i>a</i> 98		<i>a</i> 99	a _{9,10}	a _{9,11}	
a _{10,0}	a _{10,1}	a _{10,2}		a _{10,3}	a _{10,4}	a _{10,5}		a _{10,6}	$a_{10,7}$	a _{10,8}	<i>y</i> ₁₀	a _{10,9}	a _{10,10}	a _{10,11}	
a _{11,0}	a _{11,1}	a _{11,2}		a _{11,3}	a _{11,4}	a _{11,5}		a _{11,7}	a _{11,7}	a _{11,8}		a _{11,9}	a _{11,10}	a _{11,11}	<i>y</i> ₁₁
												,			

Two-dimensional partitioning

<i>x</i> ₀				<i>x</i> ₃		<i>x</i> ₆		<i>x</i> ₉	
a ₀₀	a ₀₁	a ₀₂	<i>y</i> ₀						
a ₁₀	a ₁₁	a ₁₂)	1				
a ₂₀	a ₂₁	a ₂₂					<i>y</i> ₂		
a ₃₀	a ₃₁	a ₃₂							<i>y</i> 3
	<i>x</i> ₁ ↑			<i>x</i> ₄		<i>x</i> ₇		x ₁₀	
			<i>y</i> ₄						
)	′ 5				
							<i>y</i> ₆		
									y 7
		<i>x</i> ₂ ↑		<i>x</i> ₅		<i>x</i> ₈		<i>x</i> ₁₁	
			<i>y</i> 8						
)	9				
							<i>y</i> 10		
									<i>y</i> ₁₁

Key to the algorithm

- Consider block (i,j)
- it needs to multiple by the xs in column j
- it produces part of the result of row i

Algorithm

- Collecting x_j on each processor p_{ij} by an *allgather* inside the processor columns.
- Each processor p_{ij} then computes $y_{ij} = A_{ij}x_j$.
- Gathering together the pieces y_{ij} in each processor row to form y_i,
 distribute this over the processor row: combine to form a reduce-scatter.
- \bullet Setup for the next A or A^t product

Analysis 1.

Step	Cost (lower bound)
Allgather x_i 's within columns	$\lceil \log_2(r) \rceil \alpha + \frac{r-1}{p} n\beta$
	$\approx \log_2(r)\alpha + \frac{n}{c}\beta$
Perform local matrix-vector multi-	$pprox 2rac{n^2}{n}\gamma$
ply	F
Reduce-scatter y_i 's within rows	

Victor Eijkhout Scalability PCSE 2015 29 / 63

Reduce-scatter

Time:

$$\lceil \log_2 p \rceil \alpha + \frac{p-1}{p} n(\beta + \gamma).$$

Step	Cost (lower bound)
Allgather x_i 's within columns	$\lceil \log_2(r) \rceil \alpha + \frac{r-1}{p} n\beta$
	$\lceil \log_2(r) \rceil \alpha + \frac{r-1}{\rho} n\beta$ $\approx \log_2(r) \alpha + \frac{n}{c} \beta$
Perform local matrix-vector multiply	$pprox 2rac{ ho^2}{ ho}\gamma$
Reduce-scatter y_i 's within rows	$\lceil \log_2(c) \rceil \alpha + \frac{c-1}{p} n\beta + \frac{c-1}{p} n\gamma$ $\approx \log_2(r) \alpha + \frac{n}{c} \beta + \frac{n}{c} \gamma$

Efficiency

Let
$$r = c = \sqrt{n}$$
, then

$$E_p^{\sqrt{p}\times\sqrt{p}}(n) = \frac{1}{1 + \frac{p\log_2(p)}{2n^2}\frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2n}\frac{(2\beta + \gamma)}{\gamma}}$$

Strong scaling

Same story as before for $p \to \infty$:

$$E_{\rho}^{\sqrt{\rho}\times\sqrt{\rho}}(n) = \frac{1}{1 + \frac{\rho\log_2(\rho)}{2n^2}\frac{\alpha}{\gamma} + \frac{\sqrt{\rho}}{2n}\frac{(2\beta + \gamma)}{\gamma}} \sim \rho^{-1}$$

No strong scaling

Weak scaling

Constant memory $M = n^2/p$:

$$E_p^{\sqrt{p} \times \sqrt{p}}(n) = \frac{1}{1 + \frac{p \log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2n} \frac{(2\beta + \gamma)}{\gamma}}$$

Weak scaling

Constant memory $M = n^2/p$:

$$E_p^{\sqrt{p} \times \sqrt{p}}(n) = \frac{1}{1 + \frac{p \log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2n} \frac{(2\beta + \gamma)}{\gamma}} = \frac{1}{1 + \frac{\log_2(p)}{2M} \frac{\alpha}{\gamma} + \frac{1}{2\sqrt{M}} \frac{(2\beta + \gamma)}{\gamma}}$$

Victor Eiikhout Scalability PCSE 2015 34 / 63

Weak scaling

Constant memory $M = n^2/p$:

$$E_p^{\sqrt{p} \times \sqrt{p}}(n) = \frac{1}{1 + \frac{p \log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2n} \frac{(2\beta + \gamma)}{\gamma}} = \frac{1}{1 + \frac{\log_2(p)}{2M} \frac{\alpha}{\gamma} + \frac{1}{2\sqrt{M}} \frac{(2\beta + \gamma)}{\gamma}}$$

Weak scaling:

for $p \to \infty$ this is $\approx 1/\log_2 P$: only slowly decreasing.

Victor Eijkhout Scalability PCSE 2015 34 / 63

LU factorizations

- Needs a cyclic distribution
- This is very hard to program, so:
- Scalapack, 1990s product, not extendible, impossible interface
- Elemental: 2010s product, extendible, nice user interface (and it is way faster)

Table of Contents

- Why scalability?
- Collectives as building blocks; complexity
- Scalability analysis of dense matrix-vector product
- Sparse matrix-vector product
- Multicore block algorithms

Local and remote operations

Local and remote parts:

$$\forall_i : y_i = \sum_{j \in local} a_{ij} x_j + \sum_{j \in remote} a_{ij} x_j$$

Local part I_p can be executed right away, I_q requires communication.

Combine:

Note possible overlap communication and computation; only used in the sparse case

Sparse matrix operations

• Traditional: PDE, discussed next

New: graph algorithms and big data, discussed later

Operator view of spmvp

Difference stencil

Parallel operator view

induces ghost region:

Limited number of neighbours, limited buffer space

Matrix vs operator view

- Domain partitioning: processor 'owns' variable i
- owns all connections from i to other js
- ullet \Rightarrow processor owns whole matrix row
- ullet \Rightarrow 1D partitioning of the matrix, always

Scaling

- Same phenomenon as with dense matrix:
- n^2 variables, memory needed is cn^2/p
- 1D partitioning of domain does not weakly scale
 - Message size is one line: n
 - is $\sqrt{p}\sqrt{M}$, goes up with processors
- 2D partitioning of domain scales weakly.
 - message size $n/\sqrt{p} = \sqrt{M}$
 - constant in M

Table of Contents

- Why scalability?
- Collectives as building blocks; complexity
- 3 Scalability analysis of dense matrix-vector product
- Sparse matrix-vector product
- Multicore block algorithms

Cholesky algorithm

$$\text{Chol}\begin{pmatrix} A_{11} & A_{21}^t \\ A_{21} & A_{22} \end{pmatrix} = LL^t \quad \text{where} \quad L = \begin{pmatrix} L_{11} & 0 \\ \tilde{A}_{21} & \text{Chol}(A_{22} - \tilde{A}_{21}\tilde{A}_{21}^t) \end{pmatrix}$$

and where $\tilde{A}_{21} = A_{21}L_{11}^{-t}$, $A_{11} = L_{11}L_{11}^{t}$.

Implementation

```
for k = 1, nblocks:
```

Chol: factor $L_k L_k^t \leftarrow A_{kk}$

Trsm: solve $\tilde{\mathbf{A}}_{>k,k} \leftarrow \mathbf{A}_{>k,k} \mathbf{L}_k^{-t}$

Gemm: form the product $\tilde{A}_{>k,k}\tilde{A}^t_{>k,k}$

Syrk: symmmetric rank-k update $A_{>k,>k} \leftarrow A_{>k,>k} - \tilde{A}_{>k,k} \tilde{A}^t_{>k,k}$

Blocked implementation

$$\begin{pmatrix}
 & \text{finished} \\
\hline
 & A_{kk} & A_{k,k+1} & A_{k,k+2} \cdots \\
\hline
 & A_{k+1,k} & A_{k+1,k+1} & A_{k+1,k+2} \cdots \\
 & A_{k+2,k} & A_{k+2,k+2} & \\
 & \vdots & \vdots & \end{pmatrix}$$

Extra level of inner loops:

for
$$k=1, \mathrm{nblocks}$$
:
 Chol: factor $L_k L_k^t \leftarrow A_{kk}$
for $\ell > k$:
 Trsm: solve $\tilde{A}_{\ell,k} \leftarrow A_{\ell,k} L_k^{-t}$
for $\ell_1, \ell_2 > k$:
 Gemm: form the product $\tilde{A}_{\ell_1,k} \tilde{A}_{\ell_2,k}^t$
for $\ell_1, \ell_2 > k, \, \ell_1 \leq \ell_2$:
 Syrk:symmmetric rank- k update $A_{\ell_1,\ell_2} \leftarrow A_{\ell_1,\ell_2} - \tilde{A}_{\ell_1,k} \tilde{A}_{\ell_2,k}^t$

You can graph this

Sometimes...

48 / 63

DAG schedulers

- Directed Acyclic Graph (dataflow)
- Each node has dependence on other nodes, can execute when dependencies available
- Quark/DaGue (TN): dependence on memory area written pretty much limited to dense linear algebra
- OpenMP has a pretty good scheduler
- Distributed memory scheduling is pretty hard

Table of Contents

- Why scalability?
- Collectives as building blocks; complexity
- 3 Scalability analysis of dense matrix-vector product
- Sparse matrix-vector product
- Multicore block algorithms

Graph algorithms

• Traditional: search, shortest path, connected components

New: centrality

Traditional use of graph algorithms

1990s use of graph algorithms

2010 use of graph algorithms

2010 use of graph algorithms

Traditional graph algorithm

```
Input: A graph, and a starting node s
Output: A function d(v) that measures the distance from s to v
Let s be given, and set d(s) = 0
Initialize the finished set as U = \{s\}
Set c=1
while not finished do
   Let V the neighbours of U that are not themselves in U
   if V = \emptyset then
       We're done
   else
       Set d(v) = c + 1 for all v \in V.
       U \leftarrow U \cup V
       Increase c \leftarrow c + 1
```

Computational characteristics

- Uses a queue: central storage
- Parallelism not self-evident
- Flexible assignment of work to processors, so no locality

Matrix formulation

Let

$$x_i = \begin{cases} 1 & i = s \\ \infty & \text{otherwise} \end{cases}$$

Let x zero except in i, then x^tG nonzero in j if there is an edge (i,j)

Matrix algorithm

Define a product as

$$y^t = x^t G \equiv \forall_i \colon (y^t)_j = \min_{i \colon G_{ij} \neq 0} x_i + 1,$$

Iterate

$$x, x^t G, x^t G^2, \dots$$

After k (diameter) iterations $(x^t G^k)_i$ is the distance d(s, i).

Single Source Shortest Path

Similar to previous, but non-unit edge weights

Let
$$s$$
 be given, and set $d(s) = 0$
Set $d(v) = \infty$ for all other nodes v
for $|E| - 1$ times do
for all edges $e = (u, v)$ do
Relax: if $d(u) + w_{uv} < d(v)$ then
Set $d(v) \leftarrow d(u) + w_{uv}$

$$y^t = x^t G \equiv \forall_i \colon y_j = \min\{x_j, \min_{i \colon G_{ij} \neq 0} \{x_i + g_{ij}\}\},$$

Victor Eijkhout Scalability PCSE 2015 60 / 63

All-pairs shortest path

$$\Delta_{k+1}(u,v) = \min\{\Delta_k(u,v), \Delta_k(u,k) + \Delta_k(k,v)\}. \tag{1}$$

Algebraically:

for
$$k$$
 from zero to $|V|$ do
 $D \leftarrow D_{\text{-min}}[D(:,k) \min \cdot_{+} D(k,:)]$

Similarity to Gaussian elimination

Pagerank

T stochastic: all rowsums are 1.

Prove
$$x^t e = 1 \Rightarrow x^t T = 1$$

Pagerank is essentially a power method: x^t, x^tT, x^tT^2, \dots modeling page transitions.

Prevent getting stuck with random jump:

$$x^t \leftarrow sx^tT + (1-s)e^t$$

Solution of linear system:

$$x^t(I-sT)=(1-s)e^t$$

Observe

$$(I-sT)^{-1} = I + sT + s^2T^2 + \cdots$$

'Real world' graphs

- Graphs imply sparse matrix vector product
- ... but the graphs are unlike PDE graphs
- differences:
 - low diameter
 - high degree
 - power law
- treat as random sparse: use dense techniques
- 2D matrix partitioning: each block non-null, but sparse

Parallel treatment

- Intuitive approach: partitioning of nodes
- equivalent to 1D matrix distribution
- not scalable ⇒ 2D distribution
- equivalent to distribution of edges
- unlike with PDE graphs, random placement may actually be good