THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MATH1020

Exercise 11

Produced by Jeff Chak-Fu WONG

(Properties of the Dot Product)

(i)
$$\mathbf{a} \cdot \mathbf{b} = 0$$
 if $\mathbf{a} = \mathbf{0}$ or $\mathbf{b} = \mathbf{0}$

(ii)
$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$
 commutative law

(iii)
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \cdot \mathbf{b}) + (\mathbf{a} \cdot \mathbf{c})$$
 distributive law

(iv)
$$\mathbf{a} \cdot (k\mathbf{b}) = (k\mathbf{a}) \cdot \mathbf{b} = k(\mathbf{a} \cdot \mathbf{b}), k \text{ a scalar}$$

(v)
$$\mathbf{a} \cdot \mathbf{a} \ge 0$$

(vi)
$$\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$$

Exercise 1 Show that $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \cdot \mathbf{b}) + (\mathbf{a} \cdot \mathbf{c})$.

Solution: Let $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$, $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ and $\mathbf{c} = c_1 \mathbf{i} + c_2 \mathbf{j} + c_3 \mathbf{k}$. Then

$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = (a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}) \cdot ((b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}) + (c_1 \mathbf{i} + c_2 \mathbf{j} + c_3 \mathbf{k}))$$

$$= (a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}) \cdot ((b_1 + c_1) \mathbf{i} + (b_2 + c_2) \mathbf{j} + (b_3 + c_3) \mathbf{k})$$

$$= a_1 (b_1 + c_1) + a_2 (b_2 + c_2) + a_3 (b_3 + c_3)$$

$$= a_1 b_1 + a_1 c_1 + a_2 b_2 + a_2 c_2 + a_3 b_3 + a_3 c_3$$

$$= (a_1 b_1 + a_2 b_2 + a_3 b_3) + (a_1 c_1 + a_2 c_2 + a_3 c_3)$$

$$= \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}.$$

Exercise 2 Let $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$ and $\mathbf{i} + \mathbf{j} + 2\mathbf{k}$. Find (a)comp_ba and (b)comp_ab.

Solution:

(a) We first form a unit vector in the direction of **b**:

Then using

$$\mathrm{comp}_{\mathbf{b}}\mathbf{a} = \mathbf{a} \cdot \Big(\frac{\mathbf{b}}{|\mathbf{b}|}\Big),$$

we have

$$comp_{\mathbf{b}}\mathbf{a} = (2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}) \cdot \frac{1}{\sqrt{6}}(\mathbf{i} + \mathbf{j} + 2\mathbf{k}) = -\frac{3}{\sqrt{6}}.$$

(b) By modifying

$$comp_{\mathbf{b}}\mathbf{a} = \mathbf{a} \cdot \left(\frac{\mathbf{b}}{|\mathbf{b}|}\right),$$

accordingly, we have

$$\mathrm{comp}_{\mathbf{a}}\mathbf{b} = \mathbf{b} \cdot \left(\frac{\mathbf{a}}{|\mathbf{a}|}\right).$$

Then

$$|\mathbf{a}| = \sqrt{2}9 \text{ so } \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{1}{\sqrt{2}9} (2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}),$$

and

$$comp_{\mathbf{a}}\mathbf{b} = (\mathbf{i} + \mathbf{j} + 2\mathbf{k}) \cdot \frac{1}{\sqrt{29}}(2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}) = -\frac{3}{\sqrt{29}}.$$