# FLT Seminar Series<sup>1</sup>, Session 4 Feature Learning Theory for Image Data

#### Chen Yanbo<sup>2</sup>

Ph.D. Candidate School of Computer Science, Wuhan University 430072, Wuhan, Hubei, China

Jun. 15st, 2025



<sup>&</sup>lt;sup>1</sup>This project is open for collaboration. For details, see our project page at https://github.com/yanboc/feature-learning-theory.

## Outline

#### How FLT Characterizes Vision Tasks?

- Highlights from our last sessions
  - FLT for sequential data (Session 3)
  - The methodology of FLT (Sessions 2 & 3)
- Yet another simplified example: how FLT characterize image data?
  - How to characterize image classification tasks.
  - A simplified FLT analysis setting for sequential tasks.

2/13

Chen Yanbo (WHU) FLT-4 Jun. 15st, 2025

## **Table of Contents**

Highlights from our last sessions

2 How FLT characterize vision tasks?

3 / 13

Chen Yanbo (WHU) FLT-4 Jun. 15st, 2025

# How FLT Characterizes sequential tasks?

## The 4 core elements for sequential tasks

- *Data*. Token sequences  $(v_1, v_2, \dots, v_t)$ , where the tokens  $v_i$   $(i \in [t])$  are chosen from an (abstract) vocabulary set V.
- Hypothesis classes. **Transformers (TFs)** and others (e.g., mamba)
  - Transformer Explainer (which help me better understand TFs)
  - Major simplifications:  $x \in \mathbb{R}^d$  as raw input, only one attention head (often integrated with MLP and LM heads)
- Algorithm. Similar to other topics. **FLT mostly focuses on GD.**
- Evaluation<sup>a</sup>. It is task-specific, e.g.,
  - Sentiment Analysis: token sequence → class label
  - Machine Translation: token sequence → token sequence
  - ► Generation: token sequence → next token (collapse to classification)
  - (\*) most tasks can be characterized as classification or regression.

<sup>&</sup>lt;sup>a</sup>Including generalization ability, robustness, etc. For simplicity, we only discuss accuracy (w.r.t. specific loss function) on training data.

# The methodology of FLT (Sessions 2 & 3)

## • Specify everything - what is the problem to solve?

- Create a "virtual environment" (theoretical framework, assumptions, parameters, ...) to perform further analysis.
- There is a trade-off between triviality & tractability.
- ► The no-free-lunch theorem in FLT (Session 3)
- specified setting + existing proof techniques = determinate results.
- **Seek symmetry** how to solve the problem?
  - Existing proof techniques (Delayed to Session 5!)
  - The symmetric structures (e.g., self-similarities of GD steps and the orthonormal assumption of M) in FLT frameworks make it sufficient to analyze a single part of a symmetric system rather than all the parts.
- **Programmatic thinking** -what defines a "good" problem?
  - Find definitions and simplify them according to real-world practice.
  - There are many parameters in the analysis that require careful tuning.

Chen Yanbo (WHU) FLT-4 Jun. 15st, 2025 5/13

## **Table of Contents**

Highlights from our last sessions

Mow FLT characterize vision tasks?

6/13

Chen Yanbo (WHU) FLT-4 Jun. 15st, 2025

## A brief introduction to vision tasks

## The 4 core elements for vision tasks

- Data. Structured pixel matrices  $z \in \mathbb{R}^{C \times d^2}$  (channels  $\in \{1, 3\}$ )
- *Hypothesis class*. CNNs, ViTs<sup>a</sup>, and others.
- Algorithm. Similar to other topics. FLT mostly focuses on GD.
- Evaluation. Variants of CE and MSE losses, or essentially,
  - compare the generated matrix with ground-truth matrix (Regression)
  - calculated weighted possibility score for different classes (Classification)

<sup>&</sup>lt;sup>a</sup>Vision Transformers provably learn spatial structure, lelassi et al., NeurIPS 2022 (https://arxiv.org/abs/2210.09221)



Figure: Image as structured pixel matrix, one channel.

# Feature learning intuition

#### Recall the **no-free-lunch theorem** in FLT:

If a type of network structure performs well on a certain class of data, then it necessarily pays for that with degraded performance on other classes of data.

# Why convolutional networks perform well on image data?

- The "tokens" in the images are the **patches** (pixel  $\rightarrow$  characters)
- The conv. ops. (\*) with  $stride = 1^2$ ,  $kernel size = 3^2$ , and no paddings

$$\mathbf{z} * \mathbf{w} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 2 \\ 0 & 3 \end{bmatrix}, \tag{1}$$

which assigns higher scores to specific patterns (e.g, edges and shapes).

• The features are stored in the convolution kernels.

# How FLT characterizes image data and convolution?

# P-patch data model [Allen-Zhu & Li, ICLR 2023]

- The *input image* is characterized as  $z = (x_1, x_2, \dots, x_P) \in \mathbb{R}^{d \times P}$ , in which  $x_i \in \mathbb{R}^d$  called the *patches* of z.
- The *convolution* is characterized as inner product  $\mathbf{x} * \mathbf{w} = \langle \mathbf{x}, \mathbf{w} \rangle$ , where the convolution kernels  $\mathbf{w} \in \mathbb{R}^d$ . (stride = kernel size, no paddings)
- (\*) The internal structures of x and w are neglected.

| <b>x</b> <sub>1</sub>  | <b>x</b> <sub>2</sub>  | <b>x</b> <sub>3</sub>  | <b>X</b> 4             |
|------------------------|------------------------|------------------------|------------------------|
| <b>x</b> <sub>5</sub>  | <b>x</b> <sub>6</sub>  | <b>X</b> 7             | <b>x</b> <sub>8</sub>  |
| <b>X</b> 9             | <b>x</b> <sub>10</sub> | <b>x</b> <sub>11</sub> | <b>x</b> <sub>12</sub> |
| <b>x</b> <sub>13</sub> | <b>x</b> <sub>14</sub> | <b>x</b> <sub>15</sub> | <b>x</b> <sub>16</sub> |

Figure: An example of P-patch data (P = 16). The 7-th patch is highlighted.

# The multi-view data assumption

**Question:** What is the distribution of the patches  $x_{[P]}$  in z?

## Multi-view data assumption

- Features  $v_{[d]}$  are characterized as orthonormal basis in  $\mathbb{R}^d$ .
- Intuition: in each class (e.g., in cat vs. vehicle classification), some features are essential for classification, and others are auxiliary.
- A given patch  $\mathbf{x}_i$  ( $i \in [P]$ ) can be characterized as the combination of a feature  $\mathbf{v}_i$  ( $j \in [d]$ ) and a noise vector  $\xi$ . ( $\mathbf{x}_i$  contains  $\mathbf{v}_i$ )
- The distribution of  $z \rightarrow$  random sampling from  $v_{[d]}$ .









Figure: Illustration of images with multiple views [Allen-Zhu & Li, ICLR 2023].

# The Philosophy of FLT

# Philosophy No.5., Controlling the randomness of the system

FLT introduces randomness to *enrich the expressiveness* of the theoretical framework at initialization, while the rest of the analysis is *determinate*.

- Data assumption:  $\mathbf{z} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_P)$  with  $\mathbf{x}_i = \mathbf{v}_j + \xi$ .
  - The probability of "z contains  $v_j$ " for any  $j \in [d]$  is fixed. **Essential** features is assigned with high probability.
  - The order of  $v_i$  in z is not essential.
  - The size of  $\xi$  is relatively small compared to  $v_i$ .
- Network initialization, mostly from Gaussian distribution. (Making use of the concentration inequalities, delayed to Session 5).

For simplicity, let  $v_1$  and  $v_2$  be the essential vectors for a binary classification.

Chen Yanbo (WHU) FLT-4 Jun. 15st, 2025 11/13

# Hypothesis Class (i.e., Network Structure)

**learning goal**: predict the label of x



## A common setting in most analysis

Consider the CNN as follows

$$f_t(x; \boldsymbol{w}^{(t)}) = \sum_{k=1}^m \sum_{i=1}^P \text{ReLU}\left(\langle \boldsymbol{w}_i^{(t)}, \boldsymbol{x}_i \rangle - b_k^{(t)}\right)$$
(2)

The convolution kernels would assign higher score to  $v_1$  and  $v_2$  in the data.

Chen Yanbo (WHU) FLT-4 Jun. 15st, 2025

# Thanks for your participation!



Welcome to join our WeChat group! If this expires, please don't hesitate to contact me at yanboch@126.com.