Programação Linear - dualidade

Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

22 de outubro de 2019

Dualidade

antes

 A programação linear visa seleccionar as actividades que melhor usam os recursos disponíveis.

Guião

- A um problema de programação linear, podemos associar um problema dual, um problema equivalente, visto de outra perspectiva.
- As variáveis de decisão do problema dual têm um significado económico, relacionado com o valor dos recursos.
- O problema dual visa encontrar o valor dos recursos usados nas actividades.

depois

 A teoria da dualidade fornece limites para o valor da solução óptima, com utilização, por exemplo, em programação inteira.

Conteúdo

- Problema dual
- Informação primal e dual num quadro simplex
- Significado económico das variáveis duais
- Relação entre os problemas primal e dual
 - Teorema fraco da dualidade
 - Teorema forte da dualidade
 - Teorema da folga complementar
- Método simplex dual

Motivação: um limite superior combinando restrições

 Multiplicando as funções lineares das restrições por valores não-negativos, e somando-as, pode obter-se a função objectivo.

Exemplo:

$$\max z = 30x_1 + 20x_2 + 10x_3$$

$$1x_1 + 1x_2 + 2x_3 \le 40 \quad (y_1)$$

$$2x_1 + 2x_2 + 1x_3 \le 150 \quad (y_2)$$

$$2x_1 \quad 1x_2 \quad \le 20 \quad (y_3)$$

$$-1x_1 \quad \le 0 \quad (u_1)$$

$$-1x_2 \quad \le 0 \quad (u_2)$$

$$-1x_3 \le 0 \quad (u_3)$$

$$30x_1 + 20x_2 + 10x_3 \le LS$$

 Do mesmo modo, do lado direito, obtém-se um limite superior (designado por LS) para o valor do óptimo do problema de maximização.

Exemplos

Exemplo 1: o valor do óptimo não pode exceder 1200:

Exemplo 2: ou melhor, o valor do óptimo não pode exceder 500:

Qual o modelo para encontrar o menor limite superior?

Qual o modelo para encontrar o menor limite superior?

O seguinte problema designa-se por problema dual:

Há relações muito fortes entre o problema dual e o original!

Problema Dual

Dado um problema (primal) de programação linear:

$$\begin{array}{ll} \text{max} & \quad cx \\ \text{suj. a} & \quad Ax \leq b \\ & \quad x \geq 0 \end{array}$$

sendo
$$\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m \times 1}, \mathbf{c} \in \mathbb{R}^{1 \times n}, \mathbf{x} \in \mathbb{R}^{n \times 1},$$

 o problema dual é construído associando a cada restrição i do problema (primal), i = 1,...,m, uma variável de decisão dual y_i:

$$\begin{array}{ll} \text{min} & yb \\ \text{suj. a} & yA \geq c \\ & y \geq 0 \end{array}$$

sendo $\mathbf{y} = (y_1, ..., y_i, ..., y_m) \in \mathbb{R}^{1 \times m}$ um vector de *variáveis duais*.

Exemplo

	PRIMAL	DUAL			
	max cx	min yb			
s	uj. a	suj. a yA≥c			
	$x \ge 0$	y ≥ 0			
max	$30x_1 + 20x_2 + 10x_3$	min $40y_1 + 150y_2 + 20y_3$			
suj. a	$1x_1 + 1x_2 + 2x_3 \le 40$	suj. a $1y_1 + 2y_2 + 2y_3 \ge 30$			
	$2x_1 + 2x_2 + 1x_3 \le 150$	$1y_1 + 2y_2 + 1y_3 \ge 20$			
	$2x_1 + 1x_2 \leq 20$	$2y_1 + 1y_2 \ge 10$			
	$x_1, x_2, x_3 \ge 0$	$y_1, y_2, y_3 \ge 0$			

Para construir o problema dual, o problema original deve estar numa das Formas:

- Problema de max com todas as restrições de ≤.
- Problema de min com todas as restrições de ≥.
- O problema dual do problema dual é o problema primal.
- No que se segue, designa-se o problema de maximização por primal.

Forma canónica e solução do problema dual

Transformação na forma canónica

$$\min z = yb \qquad \min z = yb$$

 $yA \ge c \rightarrow yA - u = c$
 $y \ge 0 \qquad yA - u = c$

sendo $u \in \mathbb{R}^{1 \times n}_+$ um vector de variáveis de folga da mesma dimensão que $c \in \mathbb{R}^{1 \times n}$.

Solução do problema dual é:

- variáveis de decisão do dual: $\mathbf{y} = c_B B^{-1}$,
- variáveis de folga do dual: $\mathbf{u} = c_B B^{-1} A c$ $(\mathbf{u} = yA c)$.
- Valor da função objectivo do dual: $yb = (c_B B^{-1})b$.
- Solução do problema dual é admissível quando $\mathbf{y}, \mathbf{u} \ge 0$.

Valores das variáveis duais no quadro simplex

O quadro simplex fornece os valores das:

- variáveis de decisão do dual: $c_B B^{-1} = \mathbf{y} = (y_1, y_2, y_3) = (5, 0, 15),$
- variáveis de folga do dual: $c_B B^{-1} A c = \mathbf{u} = (u_1, u_2, u_3) = (5, 0, 0),$
- e da função objectivo da solução dual: $yb = (c_B B^{-1})b = 500$.

	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
<i>X</i> 3	-1/2	0	1	1/2	0	-1/2	10
s 2	-3/2	0	0	-1/2	1	-3/2	100
<i>x</i> ₂	2	1	0	0	0	-1/2 -3/2 1	20
						15	

Modelo dual	Verificação da solução dual
min $40y_1 + 150y_2 + 20y_3$	min $40(5) + 150(0) + 20(15) = 500$
suj. $1y_1 + 2y_2 + 2y_3 \ge 30$	suj. $1(5) + 2(0) + 2(15) \ge 30$ (folga $u_1 = 5$)
$1y_1 + 2y_2 + 1y_3 \ge 20$	$1(5) + 2(0) + 1(15) \ge 20$ (folga $u_2 = 0$)
$2y_1 + 1y_2 \ge 10$	$2(5) + 1(0) \ge 10$ (folga $u_3 = 0$)
$y_1, y_2, y_3 \ge 0$	

Variáveis duais têm um significado económico

• O valor da variável dual $(c_B B^{-1})_i$ é o preço-sombra do recurso i.

		z	x_1	<i>x</i> ₂	<i>X</i> 3	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	
	X3							-1/2	
Quadro Óptimo	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
	<i>x</i> ₂	0	2	1	0	0	0	1	20
	Z	1	5	0	0	5	0	15	500

Preço-sombra: valor que o decisor atribui a uma unidade do recurso,

medido pelo aumento do valor da função objectivo resultante de se usar uma unidade adicional do recurso.

- $(c_B B^{-1})_i = \delta z / \delta(-s_i)$, ou seja,
- o valor da função objectivo aumenta $\delta z/\delta(-s_i)$ unidades por cada unidade adicional do recurso i.
- A unidade dimensional de $\delta z/\delta(-s_i)$ é: [unidade da função objectivo / unidade de recurso].

Preço-sombra dos recursos 1 e 2

Quadro Óptimo

	z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
-X3	0	-1/2	0	1	1/2	0	-1/2	10
<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
<i>x</i> ₂	0	2	1	0	0	0	-1/2 -3/2 1	20
Z	1	5	0	0	5	0	15	500

- O preço-sombra do recurso 1 é $\delta z/\delta(-s_1)=+5$ (o valor da função objectivo aumenta 5 unidades por cada unidade adicional do recurso 1).
- O preço-sombra do recurso 2 é $\delta z/\delta(-s_2)$ = +0 (variável dual com valor nulo).
- Não há interesse em ter unidades adicionais de recurso 2: o aumento do recurso 2 não aumenta o valor da função objectivo, só aumenta a folga s₂.

Como se forma o valor da solução óptima, $c_B B^{-1} b$?

Perspectiva primal:

 $c_B(B^{-1}b) = f(valor das vars decisão (c_{ij}), nível das vars decisão (x_{ij}))$ exemplo:

$$c_B (B^{-1}b) = \begin{bmatrix} 10 & 0 & 20 \\ & 100 & 20 \end{bmatrix} * \begin{bmatrix} 10 \\ & 100 \\ & 20 \end{bmatrix} = 500$$

Perspectiva dual:

 $(c_B B^{-1})$ $b = f(valor dos recursos <math>(y_i)$, nível dos recursos (b_i)) exemplo:

$$(c_B B^{-1})$$
 $b = \begin{bmatrix} 5 & 0 & 15 \\ & 20 \end{bmatrix} * \begin{bmatrix} 40 \\ 150 \\ 20 \end{bmatrix} = 500$

Como se forma o valor da solução óptima, $c_B B^{-1} b$?

Perspectiva primal:

 $c_B(B^{-1}b) = f(valor das vars decisão (c_{ij}), nível das vars decisão (x_{ij}))$ exemplo:

$$c_B (B^{-1}b) = \begin{bmatrix} 10 & 0 & 20 \\ & 100 & 20 \end{bmatrix} * \begin{bmatrix} 10 \\ & 100 \\ & 20 \end{bmatrix} = 500$$

Perspectiva dual:

 $(c_B B^{-1})$ $b = f(valor dos recursos <math>(y_i)$, nível dos recursos (b_i)) exemplo:

$$(c_B B^{-1})$$
 $b = \begin{bmatrix} 5 & 0 & 15 \\ & 20 \end{bmatrix} * \begin{bmatrix} 40 \\ 150 \\ 20 \end{bmatrix} = 500$

Teorema fraco da dualidade

Teorema

Se \hat{x} for uma solução válida do problema primal (max.) e \hat{y} for uma solução válida do problema dual (min.), então

$$c\hat{x} \leq \hat{y}b$$

Prova:

- Se \hat{y} é uma solução válida do dual, então $\hat{y} \ge 0$, e podemos pré-multiplicar por \hat{y} as restrições $A\hat{x} \le b$, obtendo $\hat{y}A\hat{x} \le \hat{y}b$.
- Se \widehat{x} é uma solução válida do primal, então $\widehat{x} \ge 0$, e podemos pós-multiplicar por \widehat{x} as restrições $\widehat{y}A \ge c$, obtendo $\widehat{y}A\widehat{x} \ge c\widehat{x}$.
- Conjugando as duas relações, obtém-se $c\hat{x} \leq \hat{y}b$.

i.e., qualquer solução válida do problema de maximização tem um valor de função objectivo menor do que ou igual a qualquer solução válida do problema de minimização.

Teorema fraco da dualidade: exemplo

	PRIMAL	DUAL			
	max cx		min yb		
	$Ax \leq b$		$yA \ge c$		
	$x \ge 0$		<i>y</i> ≥ 0		
max	$30x_1 + 20x_2 + 10x_3$	min	$40y_1 + 150y_2 + 20y_3$		
suj.	$1x_1 + 1x_2 + 2x_3 \le 40$	suj.	$1y_1 + 2y_2 + 2y_3 \ge 30$		
	$2x_1 + 2x_2 + 1x_3 \le 150$		$1y_1 + 2y_2 + 1y_3 \ge 20$		
	$2x_1 + 1x_2 \leq 20$		$2y_1 + 1y_2 \ge 10$		
	$x_1, x_2, x_3 \ge 0$		$y_1, y_2, y_3 \ge 0$		

- $(\widehat{x}_1, \widehat{x}_2, \widehat{x}_3)^t = (10,0,0)^t$ é um ponto válido do problema primal.
- $(\hat{y}_1, \hat{y}_2, \hat{y}_3) = (30,0,0)$ é um ponto válido do problema dual.
- cx = 30(10) + 20(0) + 10(0) = 300
- yb = 40(30) + 150(0) + 20(0) = 1200
- este par de pontos verifica o teorema fraco da dualidade: $cx \le yb$, i.e., $300 \le 1200$.

Teorema fraco da dualidade: ilustração gráfica

Teorema fraco da dualidade: caso valor óptimo ilimitado

Corolário (do teorema fraco da dualidade)

Se o problema primal de maximização tiver uma solução óptima ilimitada, então o problema dual é impossível.

Prova:

- Não pode haver nenhuma solução admissível do problema dual com um valor de função objectivo maior do que o valor da solução óptima ilimitada do problema primal,
- porque os coeficientes da função objectivo do problema dual são finitos.
- Portanto, o domínio do dual é vazio, e o problema dual é impossível.

Usando o mesmo argumento, se o problema dual de minimização tiver uma solução óptima ilimitada, então o problema primal é impossível.

Teorema forte da dualidade

Teorema (Teorema Forte da Dualidade)

Se o problema primal tiver uma solução óptima com valor finito, então o problema dual tem, pelo menos, uma solução óptima com valor finito, e os valores das soluções óptimas são iguais, i.e.,

$$cx^* = y^*b$$

sendo

- x*: solução óptima do problema primal
- y*: solução óptima do problema dual

Prova: O quadro simplex óptimo apresenta soluções válidas para o problema primal e para o problema dual com o mesmo valor <u>finito</u> de função objectivo:

$$y^*b = (c_BB^{-1})b = c_B(B^{-1}b) = cx^*.$$

Teorema forte da dualidade: quadro óptimo

				<i>s</i> ₁			
<i>X</i> 3	-1/2	0	1	1/2	0	-1/2 -3/2 1	10
s 2	-3/2	0	0	-1/2	1	-3/2	100
<i>x</i> ₂	2	1	0	0	0	1	20
	5	0	0	5	0	15	500

- Solução é válida para o problema primal se:
 - variáveis de decisão e de folga do primal: $B^{-1}b \ge 0$,
 - ou seja, todos os elementos do lado direito do quadro simplex não-negativos.
- Solução é válida para o problema dual se:
 - variáveis de decisão do dual: $y = c_B B^{-1} \ge 0$
 - variáveis de folga do dual: $u = c_B B^{-1} A c \ge 0$,
 - ou seja, todos os elementos da linha da função objectivo do quadro simplex não-negativos.
- No quadro óptimo, há pontos válidos dos problemas primal e do dual que têm o mesmo valor de função objectivo.
- ... São as soluções óptimas dos problemas respectivos.

Teorema forte da dualidade: ilustração gráfica

Teorema forte da dualidade: exemplo

	PRIMAL	DUAL		
	max cx		min yb	
	$Ax \leq b$		$yA \ge c$	
	$x \ge 0$		<i>y</i> ≥ 0	
max	$30x_1 + 20x_2 + 10x_3$	min	$40y_1 + 150y_2 + 20y_3$	
suj.	$1x_1 + 1x_2 + 2x_3 \le 40$	suj.	$1y_1 + 2y_2 + 2y_3 \ge 30$	
	$2x_1 + 2x_2 + 1x_3 \le 150$		$1y_1 + 2y_2 + 1y_3 \ge 20$	
	$2x_1 + 1x_2 \leq 20$		$2y_1 + 1y_2 \ge 10$	
	$x_1, x_2, x_3 \ge 0$		$y_1, y_2, y_3 \ge 0$	

- $x^* = (x_1, x_2, x_3)^t = (0, 20, 10)^t$ é o ponto óptimo do problema primal.
- $y^* = (y_1, y_2, y_3) = (5,0,15)$ é o ponto óptimo do problema dual.
- $cx^* = 30(0) + 20(20) + 10(10) = 500$
- y*b = 40(5) + 150(0) + 20(15) = 500
- o óptimo é finito, e verifica o teorema forte da dualidade: $cx^* = y^*b = 500$.

Teorema da folga complementar

Teorema

No ponto óptimo, se uma variável for positiva, a variável dual correspondente é nula.

(ver no diapositivo seguinte a correspondência entre variáveis primais e duais) **Prova:**

• No óptimo, $cx^* = y^*Ax^* = y^*b$. Há duas equações:

$$\begin{cases} y^*Ax^* &= y^*b \\ cx^* &= y^*Ax^* \end{cases} \begin{cases} y^*(b-Ax^*) &= 0 \\ (y^*A-c)x^* &= 0 \end{cases}$$

- Na primeira equação, $(b-Ax^*)=s^*$ é o vector das variáveis de folga do problema primal.
- Para o produto escalar $y^*s^* = 0$, como $y^* \ge 0$ e $s^* \ge 0$,
- se $y_i^* > 0 \Rightarrow s_i^* = 0$; se $s_i^* > 0 \Rightarrow y_i^* = 0$, i = 1,...,m.

O mesmo resultado aplica-se à segunda equação $(y^*A - c)x^* = 0$.

Correspondência entre variáveis primais e duais

Regra de correspondência:

(var. folga de uma restrição) \Leftrightarrow (var. decisão dual associada à restrição).

	PRIMAL		DUAL
max	$30x_1 + 20x_2 + 10x_3$	min	$40y_1 + 150y_2 + 20y_3$
suj.	$1x_1 + 1x_2 + 2x_3 + s_1 = 40$	suj.	$1y_1 + 2y_2 + 2y_3 - u_1 = 30$
	$2x_1 + 2x_2 + 1x_3 + \frac{s_2}{2} = 150$		$1y_1 + 2y_2 + 1y_3 - \mathbf{u_2} = 20$
	$2x_1 + 1x_2 + s_3 = 20$		$2y_1 + 1y_2 - u_3 = 10$
	$x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$		$y_1, y_2, y_3, u_1, u_2, u_3 \ge 0$

Correspondência entre Variáveis				
PRIMAL		DUAL		
	$(s_1 \Leftrightarrow y_1)$			
var. folga	$\left\{\begin{array}{c} s_1 \Leftrightarrow y_1 \\ s_2 \Leftrightarrow y_2 \end{array}\right\}$	var. decisão		
	$(s_3 \Leftrightarrow y_3)$			
	$(x_1 \Leftrightarrow u_1)$			
var. decisão	$\left\{ \begin{array}{c} x_2 \Leftrightarrow u_2 \\ x_3 \Leftrightarrow u_3 \end{array} \right\}$	var. folga		
	$(x_3 \Leftrightarrow u_3)$			

Teorema da folga complementar: exemplo

	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
X3	-1/2	0	1	1/2	0	-1/2	10
<i>s</i> ₂	-3/2	0	0	-1/2	1	-3/2	100
<i>x</i> ₂	2	1	0	0	0	-1/2 -3/2 1	20
	5	0	0	5	0	15	500

Folga complementar no quadro simplex óptimo:

- Para uma variável básica do problema primal ≥ 0 ⇒ coeficiente da linha da função objectivo (variável dual correspondente) é nulo.
- Exemplo: $x_2 = 20$, $u_2 = 0$, e $x_2u_2 = 0$.
- Para um coeficiente da linha da função objectivo (variável do problema dual) ≥ 0 ⇒ variável não-básica primal correspondente é nula.
- Exemplo: $y_3 = 15$, $s_3 = 0$, e $y_3 s_3 = 0$.

Quadro de Síntese

Relação entre os valores dos óptimos do primal e do dual

Primal		Dual
óptimo finito	\Leftrightarrow	óptimo finito
óptimo ilimitado	\Rightarrow	problema impossível
problema impossível		∫ óptimo ilimitado
problema impossivei	\Rightarrow	problema impossível

Método simplex dual

- Estratégia
- Algoritmo
- Exemplo

Método simplex dual: estratégia

Teorema: um quadro simplex é óptimo se a solução:

- for admissível para o problema primal,
- for admissível para o problema dual, e
- obedecer ao teorema da folga complementar.

ou seja: um quadro simplex é óptimo se:

- os coeficientes do lado direito forem todos ≥ 0 ,
- os coeficientes da linha da função objectivo forem
 - todos ≤0 num problema de minimização, ou
 - todos ≥ 0 num problema de maximização,
- a matriz identidade existir.

Estratégia:

 Quando existe uma solução admissível para o problema dual, o algoritmo simplex dual mantém a solução admissível para o dual, e procura encontrar uma solução admissível para o primal.

Método simplex dual: como começar?

Para obter a matriz $I_{m \times m}$ no quadro simplex:

• dado um problema de minimização em que $c \ge \widetilde{0}$:

$$min z = cx$$

$$Ax - u = b$$

$$x, u \ge 0$$

resolver:

$$min z = cx$$

$$-Ax + u = -b$$

$$x, u \ge 0$$

O quadro simplex irá apresentar:

- uma solução (primal) não-admissível, porque pode haver elementos do lado direito com valores < 0.
- uma solução dual admissível.

Exemplo

• Dado o quadro simplex sem uma matriz identidade $(I_{m \times m})$ e em que os elementos da linha da função objectivo são não-negativos:

	z_D	y_1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
	0	-1	0	3	1	1	12
	0	0	-1	2	2	0	10
z_D	1	0	0	-120	-80	-30	0

• obtém-se a $I_{m \times m}$ multiplicando as equações das restrições por (-1):

	z_D	<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> ₅	
<i>y</i> ₁	0	1	0	-3	-1	-1	-12
<i>y</i> 2	0		1	-2	-2	0	-10
z_D	1	0	0	-120	-80	-30	0

A selecção do elemento pivô no método simplex dual destina-se a:

- manter os elementos da linha da função objectivo com valor ≤ 0
 (i.e., manter a solução dual admissível).
- procurar tornar os valores dos elementos do lado direito ≥ 0 (i.e., procurar obter uma solução (primal) admissível).

Algoritmo simplex dual (problema de minimização):

- Vértice dual admissível inicial (todos os coeficientes da função objectivo são não-negativos, *i.e.*, $c \ge \widetilde{0}$) (*)
- Repetir
 - Selecção da linha pivô:
 - Coeficiente mais negativo do lado direito
 - (em caso de empate, escolha arbitrária)
 - Se não existir coef.<0, solução óptima.
 - Selecção da coluna pivô:
 - Menor valor de razão (f.objectivo/linha pivô) negativa (coef.linha<0)
 - Se n\u00e3o existir coef.linha <0, problema \u00e9 imposs\u00edvel.
 - Fazer eliminação de Gauss
- Enquanto (solução não for óptima)
- nota: o elemento pivô tem sempre valor negativo.

(*) ou seja, todos os coeficientes da linha da função objectivo do quadro simplex são ≤ 0 .

Exemplo: primeira iteração do método simplex dual

	z_D	<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₁	0	1	0	-3 -2	-1	0	-12
<i>y</i> 2	0	0	1	-2	-2	0	1
z_D	1	0	0	-120	-80	-30	0

- Linha pivô: linha de y_1 (coeficiente mais negativo é -12).
- Coluna pivô: coluna de y_5 (menor valor das razões negativas é 30):
 - coluna de y_3 : -120/-3 = 40
 - coluna de y_4 : -80/-1 = 80
 - coluna de y_5 : -30/-1 = 30

	z_D	<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₅	0	-1	0	3	1	1	12
<i>y</i> 2	0	0	1	-2	-2	0	-10
z_D	1	-30	0	-30	-50	0	360

Exemplo: restantes iterações do método simplex dual

	z _D	y_1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₅	0	-1	0	3	1	1	12
<i>y</i> 2	0	0	1	-2	-2	0	-10
z_D	1	-30	0	-30	-50	0	360
	z_D	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> 5	0	-1	3/2	0	-2	1	-3
<i>y</i> 3	0	0	-1/2	1	1	0	5
z_D	1	-30	-15	0	-20	0	510
	z_D	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> 4	0	1/2	-3/4	0	1	-1/2	3/2
<i>y</i> 3	0	-1/2	1/4	1	0	1/2	7/2
z_D	1	-20	-30	0	0	-10	540

Solução óptima.

Método simplex dual: problema impossível

Um problema (primal) é impossível se existir:

- uma linha com um coeficiente negativo do lado direito e com todos os coeficientes das variáveis não-básicas não-negativos (≥0).
- Exemplo:

	z_D	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₁	0	1	0	3	1	1	-12
<i>y</i> 2	0	0	1	-2	-2	0	-10
z_D	1	0	0	-120	-80	-30	0

- Nota: na linha de y₁, os coeficientes das variáveis y₃, y₄ e y₅ são ≥ 0 (não há um elemento pivô negativo).
- O problema é impossível, porque nenhum conjunto
 y₁, y₂, y₃, y₄, y₅ ≥ 0 satisfaz a restrição: y₁ + 3y₃ + y₄ + y₅ = -12.
- Neste caso, o problema dual tem uma solução óptima ilimitada (⇒ problema primal impossível, da teoria da dualidade).

Conclusão

- As variáveis duais traduzem o valor dos recursos, e explicam como se forma o valor de uma actividade.
- As actividades seleccionadas s\u00e30 aquelas que atribuem um maior valor aos recursos.
- O problema do produtor de rações é o problema dual do problema da dieta (ver Quiz sobre dualidade), e os dois problemas mostram duas perspectivas diferentes da mesma realidade.
- Há muitos outros exemplos de pares de problemas primal-dual.

Apêndice

Método Simplex Dual ou 2 Fases?

- O método simplex dual só pode ser usado se os coeficientes da linha da função objectivo do quadro simplex tiverem todos o sinal que devem ter na solução óptima, ou seja, se forem:
 - todos não-positivos (≤0) num problema de minimização, ou
 - todos não-negativos (≥0) num problema de maximização.
- Caso haja algum coeficiente da linha da função objectivo que não tenha o sinal devido, o Método Simplex Dual não pode ser usado, e é necessário recorrer ao Método das 2 Fases, ou seja, usar a primeira fase para obter uma solução admissível inicial para o problema primal, e depois usar o método simplex (primal).

√ Voltar

O que significa o valor $c_B B^{-1} A_j - c_j$ da actividade j?

$$c_B B^{-1} A_j = \sum_{i=1}^m (c_B B^{-1})_i \times a_{ij}, \ \forall j,$$

- $(c_B B^{-1})_i$ é o valor para o decisor de uma unidade de recurso i,
- a_{ij} é a quantidade de recurso i usado numa unidade da actividade j.
- Portanto, $c_B B^{-1} A_j$ é o valor dos recursos usados numa unidade da actividade j.
- c_j é o valor de venda de uma unidade da actividade j.

Na solução óptima de um problema de maximização,

- se c_BB⁻¹A_j c_j > 0, o valor dos recursos usados é maior do que o valor da venda; é melhor não fazer esta actividade (variável não-básica); há outras actividades que usam melhor os recursos,
- se $c_B B^{-1} A_j c_j = 0$, o valor de venda iguala o valor dos recursos usados; esta actividade (variável básica) dá o maior valor possível aos recursos.

Exemplo

		z	x_1	<i>x</i> ₂	<i>X</i> 3	<i>s</i> ₁	<i>s</i> ₂	<i>5</i> 3	
	<i>s</i> ₁	0	1	1	2	1	0	0	40
Quadro Inicial	<i>s</i> ₂	0	2	2	1	0	1	0	150
	s 3	0	2	1	0	0	0	1	20
	Z	1	-30	-20	-10	0	0	0	0
		z	<i>x</i> ₁	<i>X</i> 2	<i>X</i> 3	s ₁	s 2	s 3	
Quadro Óptimo	<i>X</i> 3	0	-1/2	0	1	1/2	0	-1/2	10
	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
	<i>x</i> ₂	0	2	1	0	0	0	1	20
	Z	1	5	0	0	5	0	15	500

Actividade 1:
$$c_B B^{-1} A_1 - c_1 = \begin{bmatrix} 5 & 0 & 15 \end{bmatrix} * \begin{bmatrix} 1 & 2 & -30 = 5 \\ 2 & & & \\ \end{bmatrix}$$
Actividade 2: $c_B B^{-1} A_2 - c_2 = \begin{bmatrix} 5 & 0 & 15 \end{bmatrix} * \begin{bmatrix} 1 & 2 & -20 = 0 \\ 1 & & & \\ \end{bmatrix}$

Fim