Statistical methods for comparing mass spectra

Malo Hillairet

Supervisor : Guillaume Obozinski

Lausanne, Switzerland

Classifying molecules from mass spectrometry data

Mass spectrometry

- MSEI project : Sasa Bjelić, Lilian Gasser, Eliza Harris, Guillaume Obozinski
- Measures molecular mass with great precision (10 ppm)
- Molecular mass \Rightarrow Sum formula (ex : m/z = 146.12 \Rightarrow $C_6H_{10}O_4$)
- ullet Fragmentation spectra \Rightarrow Tell apart molecules of same formula

Classification

Acetone	C_3H_6O	
Glutaric acid	$C_5H_80_4$	

The data

MS1

- 1 molecule = 1 peak
- \bullet Measure of the molecular weight (m/z) \Rightarrow Sum formula
- ullet Example : peak at $146.12 \Rightarrow C_6 H_{10} O_4$

MS2

- Measure the m/z of fragments
- Intensity: amount of the given fragment
- Example : database search gives
 3-methylglutaric acid

The problem

Fragmentation spectra from molecules of same m/z

- Method to answer "Are molecule 1 and molecule 2 the same ?"
- Take intensities into account

Statistical hypothesis testing

Given two fragmentation spectra, we test the hypothesis

 \mathcal{H}_0 : "the spectra correspond to the same molecule"

The test procedure

- X : the data (here, the two spectra)
- t₀: the **test threshold**, a numerical quantity determined in advance
- T(X): the **test statistic** depending on X only

The likelihood ratio method

The likelihood function

Assuming $X \sim \text{Distribution}(\theta)$, the **likelihood function** $L(X, \theta)$ writes

$$L(X, \theta) = Pr(X|\theta)$$

(Probabilistic point of view \rightarrow Statistical point of view)

Example : test of $p_1 = p_2$

 $X = (X_1, X_2)$ where $X_i \sim \text{Bin}(n_i, p_i)$, p_1 on the x-axis p_2 on the y-axis

Conversion into contingency tables

1) Match the peaks of same m/z

2) Store the matching peaks into a table

Spectrum	Intensity 1	Intensity 2	 Intensity d	Sum
1	n ₁₁	n ₁₂	 n_{1d}	n_{1+}
2	n ₂₁	n ₂₂	 n _{2d}	n ₂₊

 $d={\sf nb}$ of matching peaks in each spectrum $={\sf nb}$ of columns of the table

Multinomial model

Definition

- $(n_{11}, n_{12}, \ldots, n_{1d}) \sim MN(n_{1+}; (p_{11}, p_{12}, \ldots, p_{1d}))$
- $(n_{21}, n_{22}, \dots, n_{2d}) \sim MN(n_{2+}; (p_{21}, p_{22}, \dots, p_{2d}))$
- test of $\mathcal{H}_0 = ((p_{11}, p_{12}, \dots, p_{1d})) = (p_{21}, p_{22}, \dots, p_{2d}))$ "

Comments

- Conditional with respect to n_{i+}
- $n_{i+} \sim 10^6$
- $d \in [1, 20]$ most of the time

Dirichlet-multinomial model

Definition

- $(p_{i1},\ldots,p_{id}) \sim \mathrm{Dir}((\theta_{i1},\ldots,\theta_{id});\varphi)$
- $(n_{11}, n_{12}, \ldots, n_{1d}) | \mathbf{p_i} \sim MN(n_{i+}; (p_{i1}, p_{i2}, \ldots, p_{id}))$
- test of $\mathcal{H}_0 = \text{``}(\theta_{11}, \theta_{12}, \dots, \theta_{1d})) = (\theta_{21}, \theta_{22}, \dots, \theta_{2d}))$ "

Comments

- Overdispersed multinomial model
- ullet φ controls the variance of the n_{ij}
- θ_i in DMN $\equiv \mathbf{p_i}$ in MN

Comparison between the models

Distribution	Parameters	Expectation	Covariance matrix
MN	$n_{i+}, \mathbf{p_i}$	$n_{i+}\cdot \mathbf{p_i}$	$(n_{i+}\cdot(\delta_{j,k}p_{ij}-p_{ij}p_{ik}))_{j,k}$
DMN	$n_{i+}, \boldsymbol{\theta_i}, \varphi$	$n_{i+}\cdotoldsymbol{ heta_i}$	$n_{i+}^2(\delta_{j,k}\theta_{ij}-\theta_{ij}\theta_{ik})\frac{1+(n_{i+}\varphi)^{-1}}{1+\varphi^{-1}}$

Likelihood statistic

Multinomial model (MN)

- Generalisation of binomial distributions
- Data = (n_1, n_2) where $n_i = (n_{i1}, ..., n_{id})$
- Parameters = (p_1, p_2) , $p_i = (p_{i1}, \dots, p_{id})$ of sum 1

$$T_{MN} = 2 \log \left(\frac{L(\mathbf{n}, \mathbf{p}^{(1)})}{L(\mathbf{n}, \mathbf{p}^{(0)})} \right)$$
 with $p_{ij}^{(1)} = \frac{n_{ij}}{n_{i+}}$, $p_{ij}^{(0)} = \frac{n_{+j}}{N}$

Dirichlet-multinomial model (DMN)

- ullet Additional parameter φ accounting for **overdispersion**
- Data = (n_1, n_2)
- Parameters = (θ_1, θ_2) , $\theta_i = (\theta_{i1}, \dots, \theta_{id})$ of sum 1

$$T_{DMN} = 2 \log \left(\frac{L(\mathbf{n}, \boldsymbol{\theta}^{(1)})}{L(\mathbf{n}, \boldsymbol{\theta}^{(0)})} \right)$$
 with $\theta_{ij}^{(1)} = \frac{n_{ij}}{n_{i+}}$, $\theta_{ij}^{(0)} = \frac{n_{+j}}{N}$

Error types and choice of t_0

Estimation of the type I and type II errors for 12 columns with $t_0 = 3.1 \cdot 10^4$

Adjusting φ in the DMN model

ROC curves : it works best when $\varphi \in [10^{-5}; 10^{-2}]$

Evaluating performance of the model

Issues

- Estimation of t_0
- Take into account match quality
- Bias: 1000 spectra of same label outweigh 5 spectra of same label

Solutions

- Use all of the database for both t_0 and error estimation
 - \rightarrow can handle match quality
 - \rightarrow risk of bias
- **Split** the data in : 40 % to determine t_0 , 10 % to compute errors
 - \rightarrow less bias
 - \rightarrow confidence intervals
 - \rightarrow not enough remaining data to be picky about mq

Comparison between the models

- ullet DMN seems to perform a bit better, especially for $15 \le d \le 20$
- Not enough data for significant results for d > 20

Conclusions

- Intensities can definitely be used to analyze mass spectrometry data
- Modelling peak intensities with overdispersion
- Need to make a trade-off between types of errors

Perspectives

- New models: bayesian approach, more sophisticated overdispersion
- Using both similarity index and intensities
- Comparing more than 2 spectra at a time
- Machine learning

Thank you for your attention

Additional graphics (other splitting of the data)

Comparison of errors for the MN model and DMN with $\varphi = 10^{-4}$, going for 90 % power

Additional graphics (other splitting of the data)

Additional graphics (compounds with positive match quality)

