Final Algebra 04/03/2024

Nahuel Prieto enprieto@dc.uba.ar

1 Ejercicio 1

Se define por recurrencia la sucesión $(a_n)_{n\in\mathbb{N}}$ de la siguente manera

$$a_1 = 4, a_2 = 5$$

$$a_{n+2} = a_{n+1} - 10a_n \quad \forall n \in \mathbb{N}$$

Probar que $a_n \equiv 4^n \pmod{11} \ \forall n \in \mathbb{N}$ y calcular el resto de la division por 11 de $\sum_{n=1}^{2024} a_n$

Solucion:

Probamos por induccion

$$P_{(n)}: a_n \equiv 4^n \pmod{11}$$

Paso Inductivo: $\forall h \in \mathbb{N}, \ \vdots P_{(h)} \land P_{(h+1)}$ verdadera? $\Rightarrow \ \vdots P_{(h+2)}$ verdadera?

HI:
$$a_h \equiv 4^h \pmod{11} \land a_{h+1} \equiv 4^{h+1} \pmod{11}$$

Qpq: $a_{h+2} \equiv 4^{h+2} \pmod{11}$

obs:
$$a_h \equiv 4^h(11) \iff a_h = 11k + 4^h, \quad k \in \mathbb{Z}$$

 $a_{h+1} \equiv 4^{h+1}(11) \iff a_{h+1} = 11j + 4^{h+1}, \quad j \in \mathbb{Z}$

por def:
$$a_{h+2} = a_{h+1} - 10a_h$$

$$\therefore a_{h+2} = (11j + 4^{h+1}) - 10(11k + 4^h)$$

$$a_{h+2} = 11j + 4^{h+1} - 10.11k - 10(4^h)$$

$$a_{h+2} = 11\underbrace{(j-10k)}_{Q} - 6.4^h$$

$$a_{h+2} + 6.4^h = 11Q \iff 11 \mid a_{h+2} + 6.4^h$$

$$\begin{array}{c} \therefore \quad a_{h+2} + 6.4^h \equiv 0(11) \\ \quad a_{h+2} \equiv -6.4^h(11) \\ \quad -a_{h+2} \underset{(-1)}{\equiv} 6.4^h(11) \\ \quad -2a_{h+2} \underset{(2)}{\equiv} 4^h(11) \\ \quad 9a_{h+2} \equiv 4^h(11) \\ \quad 144a_{h+2} \underset{(4^2)}{\equiv} 4^h.4^2(11) \quad \Longleftrightarrow \quad a_{h+2} \equiv 4^{h+2}(11) \quad \text{tal como se queria probar} \\ \text{obs: } 144 = 11.13 + 1 \\ \end{array}$$

obs:
$$144 = 11.13 + 1$$

 $\therefore 144 \equiv 1(11)$

Como se probo el caso base y el paso inductivo, se concluye que $P_{(n)}$ es verdadera $\forall n \in \mathbb{N}$

Ahora voy a calcular el resto de dividir

$$\sum_{n=1}^{2024} a_n \quad \text{por} \quad 11$$

Probamos anteriormente que $a_n \equiv 4^n(11)$

$$\therefore \sum_{n=1}^{2024} a_n = \sum_{n=1}^{2024} 4^n$$

Me interesa saber $r_{11}(4^n) \quad \forall n \in \mathbb{N}$ voy aplicar PTF, $11 \nmid 4 \implies 4^n \equiv 4^{r_{10}(n)}(11)$

$r_{10}(n)$	0	1	2	3	4	5	6	7	8	9
$r_{11}(4^{r_{10}(n)})$	1	4	5	9	3	1	4	5	9	3

Viendo la tabla de restos se puede observar que cada 5 sucesiones se vuelven a repetir los mimos restos

$$\sum_{n=1}^{2024} \underbrace{4^1 + 4^2 + 4^3 + 4^4 + 4^5}_{\text{5 sucesiones}} + \dots + 4^{2024}$$
$$4^1 + 4^2 + 4^3 + 4^4 + 4^5 \equiv 4 + 5 + 9 + 3 + 1 \equiv 22 \equiv 0(11)$$

Voy a pensar las 5 sucesiones como que son un bloque, en 2024 = 5.404 + 4 es decir tengo 404 bloques de 5 sucesiones todos esos bloques son congruentes a 0(11). Por lo que en la sumatoria sobreviven $4^{2021} + 4^{2022} + 4^{2023} + 4^{2024}$ que por tabla de restos se que:

$$4^{2021} + 4^{2022} + 4^{2023} + 4^{2024} \equiv 4 + 5 + 9 + 3 \equiv 21 \equiv 10$$
 (11)

$$\therefore \sum_{n=1}^{2024} a_n \equiv \sum_{n=1}^{2024} 4^n \equiv 10 \quad (11)$$

se concluye que $r_{11}(\sum_{n=1}^{2024} a_n) = 10$

2 Ejercicio 2

a) Enunciar la definicion de divisibilidad para enteros y determinar si la relacion \Re sobre $\mathbb Z$ dada por

$$a\Re b \iff a \mid b \quad \forall a, b \in \mathbb{Z}, \quad a \neq 0$$

es reflexiva, simetrica, antisimetrica y transitiva.

b) Calcular el cardinal del conjunto

$$\{a \in \mathbb{Z} : a \Re 14580000 \land a \equiv 0 (15)\}$$

Solucion: a)