Глава 1

Векторски простори

1.1 Векторски простори

1. Нека је \mathbb{R}_0^+ скуп свих ненегативних реалних бројева. Доказати да је $(\mathbb{R}_0^+,+,\cdot,\mathbb{R})$ реалан векторски простор ако су операције дефинисане са

$$(\forall x, y \in \mathbb{R}_0^+) \ x + y = x \cdot y,$$

$$(\forall \alpha \in \mathbb{R})(\forall x \in \mathbb{R}_0^+) \ \alpha \cdot x = x^{\alpha}.$$

2. Нека су $\varphi_1, \varphi_2 \in [o, 2\pi)$ такви да $\varphi_1 \leq \varphi_2$. Нека је $S = \{z \in \mathbb{C} : Arg(z) \in [\varphi_1, \varphi_2]\}$. Испитати да ли је $(S, +, \cdot, \mathbb{R})$ векторски простор.

1.2 Векторски потпростори

1. Нека је $W\subset\mathbb{R}^3$ скуп свих (a,b,c) таквих да је систем

$$\begin{cases} x + 2y + 3z = a \\ 4x + 5y + 6z = b \\ 7x + 8y + 9z = c \end{cases}$$

сагласан. Доказати да је W векторски потпростор простора $\mathbb{R}^3.$

2. Нека је $W \subset \mathbb{R}^3$ скуп свих (a,b,c) таквих да је систем

$$\begin{cases} x + 2y + 3z = a \\ 4x + 5y + 6z = b \\ 6x + 9y + 12z = c \end{cases}$$

сагласан. Доказати да је W векторски потпростор простора \mathbb{R}^3 .

- 3. Нека је дат простор V и његова два потпростора W_1 и W_2 . Унија два потпростора $W_1 \cup W_2$ је потпростор ако и само ако важи $W_1 \subset W_2$ или $W_2 \subset W_1$. Доказати.
- 4. Навести примјер два нетривијална потпростора простора $_{3\times3}$ таква да им је унија потпростор.

1.3 Линеарна зависност и независност вектора

1. У векторском простору $P_3[\mathbb{R}]$ задани су вектори $p_1(x)=1,\ p_2(x)=3x^2$ и $p_3(x)=x+x^2-3x^3.$ Одредити вектор $p_4(x)$ тако да вектори буду линеарно независни.

1.4 Линеарни омотач

линеала ако је то могуће.

- 2. За потпростор W из претходног задатка одредити потпростор U такав да важи $W \oplus U = M_{3 \times 3}(\mathbb{R}).$
- 3. Нека је V векторски простор и нека су $S_1, S_2 \subseteq V$ подскупови скупа V. Тада важи: ако је $S_1 \subseteq S_2$ тада је $Lin(S_1)$ потпростор од $Lin(S_2)$. Доказати.
- 4. Нека је V векторски простор и нека су $S_1, S_2 \subseteq V$ подскупови скупа V. Тада важи: ако је $S_1 \subseteq S_2$ и $S_2 \subseteq Lin(S_1)$ тада је $Lin(S_1) = Lin(S_2)$. Доказати.

1.5 База и димензија векторског простора

1. Нека су $B=(b_1,b_2,b_3)$ и $C=(c_1,c_2,c_3)$ двије различите базе (тродимензионог) векторског простора V при чему важи

$$\begin{cases} c_1 = b_1 + 3b_2 + 3b_3 \\ c_2 = 4b_2 + 5b_3 \\ c_3 = 2b_3. \end{cases}$$

Одредити скуп свих вектора простора V који имају исте координате у обије базе. Испитати да ли је тај скуп векторски простор и ако јесте одредити му димензију и базу.

2. Нека је $B_1=\{b_1,b_2,b_3\}$ база реалног векторског простора V. Показати да је скуп вектора $B_2=\{c_1,c_2,c_3\}$, при чему важи $c_1=b_1+2b_2+3b_3$, $c_2=b_1+3b_2+2b_3$ и $c_3=2b_1+3b_2+b_3$, такође база истог векторског простора. Одредити координате вектора $v=10b_1+15b_2+14b_3$ по бази B_2 .

- 3. Одредити једну базу и димензију простора W из задатка 1 из Векторских потпростора.
- 4. Одредити једну базу и димензију простора W из задатка 2 из Векторских потпростора.

1.6 Збир и пресјек потпростора

1. (30.01.2017.) Наћи димензије и по једну базу збира и пресјека линеарних омотача скупова вектора у \mathbb{R}^4

$$S = \left\{ (1, 1, 1, 1), (1, -1, 1, -1), (1, 3, 1, 3) \right\}$$

$$T = \{(1, 2, 0, 2), (1, 2, 1, 2), (3, 1, 3, 1)\}.$$

- 2. Нека је $\{b_1, b_2, b_3\}$ база векторског простора V. Испитати да ли је $Lin\{b_1+b_2+b_3, b_3+b_2+b_1, b_3\} \cap Lin\{b_1+b_2, b_1-b_2\}$ потпростора V. Ако јесте, одредити му димензију и базу.
- 3. Нека је $\{b_1,b_2,b_3\}$ база векторског простора V. Нека су дати вектори $v_1=b_1+b_2+b_3$ и $v_2=3b_1-2b_2$. Одредити потпростор W такав да важи $U\oplus W=\mathbb{R}^3$ ако је $U=Lin\{v_1,v_2\}$.
- 4. Нека је $W_1=Lin\{(1-1,-3),(3,0,-3),(1,2,3),(4,5,6)\}$ и $W_2=Lin\{(6,3,7),(0,0,11),(-4,-2,0)\}.$ Одредити димензију и базу простора $W_1+W_2.$