6. Epoxy resin compositions characterized by containing a curative which reacts with the epoxy group of an epoxy resin to cure the resin and a tetrakisphenol compound represented by a general formula (I):

wherein X represents $(CH^2)h$, n is 0, 1, 2, or 3, and R^1 to R^6 each represents hydrogen, a lower alkyl, optionally-substituted phenyl, halogeno or a lower alkoxy, in an amount of from 0.001 to 0.1 mole based on 1 mole of the epoxy groups.

7. Curatives for epoxy resins characterized by being a clathrate comprising a tetrakisphenol compound represented by a general formula (I):

wherein X represents $(CH_2)n$, n is 0, 1, 2, or 3, and R^1 to R^8 each represents hydrogen, a lower alkyl, optionally-substituted phenyl, halogeno or a lower alkoxy; and

a compound which reacts with the epoxy group of an epoxy resin to cure the resin.

8. A curing accelerator for epoxy resins characterized by being a clathrate comprising a tetrakisphenol compound represented by a general formula (I):

wherein X represents (CN₂ n, n is 0./1, 2, or 3, and R^1 to R^8 each represents hydrogen a lower alkyl, optionally-substituted phenyl, halogeno or a lower alkoxy; and

a compound accelerating the curing of a compound which reacts with the epoxy group of an epoxy resin to cure the resin.

9. A clathrate curing accelerator for epoxy resins comprising:

a tetrakisphenol compound represented by a general

formula (I):

wherein X represents (CH^2) n, n is 0, 1, 2, or 3, and R^1 to R^8 each represents hydrogen, a lower alkyl, optionally-substituted phenyl, halogeno or a lower alkoxy; and

a compound other than the tetrakisphenol compound, which accelerates the curing of an epoxy resin, wherein the clathrate is present in the resin in a range of from 0.001 to 0.1 mole based on 1 mole of the epoxy groups.

10. Epoxy resin compositions comprising:

an epoxy resin, said epoky resin containing a clathrate curative, said clathrate curative being a tetrakisphenol compound represented by a general formula (I):

wherein X represents $(CH^2)n$, n is 0, 1, 2, or 3, and R^1 to R^8 each represents hydrogen, a lower alkyl, optionally-substituted phenyl, halogeneous a lower alkoxy; and

a compound other than the tetrakisphenol compound, which reacts with epoxy groups of the epoxy resin to cure the resin, wherein the clathrate curative is present in the resin in a range of from 0.001 to 0.1 mole based on 1 mole of the epoxy groups; and/or

a clathrate curing accelerator, said clathrate curing accelerator being a tetrakisphenol compound represented by a general formula (I):

R5 R6 R8 R8

wherein X represents (CHr)n, wherein n is 0, 1, 2, or 3, and R to R each represents hydrogen, a lower alkyl, optionally-substituted phenyl, halogeno or a lower alkoxy; and

a compound other than the tetrakisphenol compound, which accelerates the curing of an epoxy resin, wherein the clathrate is present in the resin in a range of from 0.001 to 0.1 mole based on 1 mole of the epoxy groups.