COMP20003 Algorithms and Data Structures Graph: Shortest Paths

Nir Lipovetzky
Department of Computing and
Information Systems
University of Melbourne
Semester 2

Example weighted graph

Adjacency List

$$0\rightarrow 1\rightarrow 2$$

$$1 \rightarrow 0 \rightarrow 2 \rightarrow 3$$

$$2 \rightarrow 0 \rightarrow 1 \rightarrow 3$$

$$3\rightarrow 1\rightarrow 2$$

Previous visit order from node 0:

But if these are restaurants and nightclubs, and we want to go to a nearby nightclub from restaurant 0...

...in this case the answer is easy. But if you scale it...

COMP 20003 Algorithms and Data Structures

Example weighted graph 2 4 Restaurant 6 What if we have a certain nightclub in mind, say Best Club...

No direct route, several possible paths.

Example weighted graph bfs

Length of a path:

Sum of paths along the way.

Length of R->B->H->D->Best:

Distance between nodes:

Length of shortest path.

O What are the shortest distances from any node to any other node?

Single Source Shortest Path Problem

- Given:
 - Directed graph G(V,E)
 - Source vertex s in V
- Determine:
 - Shortest distance path

from s to every other vertex in V

- For each vertex v_i:
 - Enumerate all paths from s to v_i
 - Calculate cost of each path $s \rightarrow v_i$
 - Pick minimum cost.
- How many possible paths from s to v_i ?
 - For a dense graph O(V!)
 - V=20: 2432902008176640000 paths
 - Not feasible!

Dijkstra's algorithm for single source shortest path

- Greedy algorithm:
 - Based on idea that any subpath along a shortest path is also a shortest path.
 - NodeA $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow NodeX \rightarrow NodeY$
 - If shortest path from A to Y is through X,
 - then this path from A to X is also a shortest path.
- Dijkstra, E. W., Numerische Mathematik 1: 269– 271,1959

Dijkstra's algorithm for single source shortest path

- Greedy algorithm:
 - Based on idea that any subpath along a shortest path is also a shortest path.
 - NodeA $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow NodeX \rightarrow NodeY$
 - If shortest path from A to Y is through X,
 - then this path from A to X is also a shortest path.
- Assumes no negative edges, so:
 - Distance A→X ≤ Distance A→Y

Dijkstra's algorithm for single source shortest path

- Algorithm will give us a shortest path tree.
- Root = source node.
 - Every other node is connected to the root through its shortest path.

Image from R. Sedgewick, Lecture Notes http://www.cs.princeton.edu/courses/archive/ fall05/cos226/lectures/shortest-path.pdf

Dijkstra's Algorithm: Overview

- For every vertex v, maintain estimate dist[v], of minimum distance $\delta(s,v)$.
- dist[v]: length of a known path s→v, but not necessarily the shortest path.
- dist[v] $\geq \delta(s, v)$. Always.
- Where dist[v]=∞, there is no estimate (yet).
- Initially dist[s]=0, all other dist[v]= ∞ .

- Process vertices one-by-one, updating dist[v] until $dist[v] = \delta(s,v)$ for every vertex v.
- (Along the way, keep track of path information in pred[].)
- When algorithm finishes:
 - Have shortest distances in dist[].
 - Can reconstruct shortest path from pred[].

Relaxation: Updating estimated distances

- Relaxation:
 - Estimate the solution by answering an easier problem (relax the conditions).
 - Keep updating the relaxed estimate until it is the solution to the original problem.
- For shortest paths:
 - Estimate: known distance of some path.
 - Solution: shortest possible distance.

Relaxation: Updating estimated distances

Example:

dist[u]: 28

dist[v]: 30

pred[v]: u

dist[v]: 35

pred[v]: n

Relaxation: Updating estimated distances

Example:

```
10
     25
Update relax(u,v)
   if dist[u] + edgeweight(u,v) < dist[v]
     dist[v] = dist[u] + edgeweight(u,v);
     pred[v] = u;
```

Relaxation: Updating estimated distances

Example:


```
Note: pred[v] = u;
    pred[u] = n;
    ...
    pred[j] = s;
```

Reconstruct path s>v going backwards through pred[].

Dijkstra's algorithm: successive relaxations

- How do we pick the next node to look at?
- Process vertices in order of estimated closeness to source, value of dist[v].
- Priority queue to store vertex v and dist[v] value.


```
/* Find shortest paths in graph G from
source s*/
/* vertices identified by number for
convenience */
dijkstra(G,s)
     int dist[V], pred[V];
     initialize(G,V,s,pred,dist);
     run(G,V,s,pred,dist);
     reconstruct(s,pred,dist);
```



```
initialize(G,V,s,pred,dist)
{
    int i;
    for(i=0;i<V;i++)
        dist[i] = MAX_INT;
    dist[s] = 0;
    for(i=0;i<V;i++) pred[i]) = NULL;
}</pre>
```



```
run(G,V,s,pred,dist)
 pq node_t *pq;
 pq = makePQ(G); /* vertices into min PQ,
            dist from s as in Graph, as key */
 while(!emptyPQ(pq))
   u = deletemin(pq);
    for(/*each v reached from u */)
      if(dist[u] + edgeweight(u,v) < dist[v])</pre>
          update(v,pred,dist,pq);
   /* vertex u has been processed,
    * i.e. dist[u] =\delta(s,u) */
```



```
update(v,pred,dist,pq)
{
    dist[v] = dist[u] + edgeweight(u,v);
    pred[v] = u;
    decreaseweight(pq,v,dist[v]);
}
```


Example:

Step 0: Initialization.

\boldsymbol{v}	s	а	b	С	d
d[v]	0	∞	∞	∞	∞
pred[v]	nil	nil	nil	nil	nil
color[v]	W	W	W	W	W

Step 1: As $Adj[s] = \{a, b\}$, work on a and b and update information.

$oldsymbol{v}$	s	а	b	С	d
d[v]	0	2	7	∞	∞
pred[v]	nil	S	S	nil	nil
color[v]	В	W	W	W	W

From lecture notes by Mordechai Golin, Univ Science and Technology, Hong Kong: http://www.cse.ust.hk/faculty/golin/COMP271Sp03/Notes/MyL09.pdf

Step 2: After Step 1, a has the minimum key in th priority queue. As $Adj[a] = \{b, c, d\}$, work on b, c, and update information.

\boldsymbol{v}	s	а	b	С	d
d[v]	0	2	5	10	7
pred[v]	nil	s	а	а	а
color[v]	В	В	W	W	W

Step 3: After Step 2, b has the minimum key in the priority queue. As $Adj[b] = \{a, c\}$, work on a, c and update information.

$oldsymbol{v}$	s	а	b	С	d
d[v]	0	2	5	6	7
pred[v]	nil	s	а	b	а
color[v]	В	В	В	W	W

Priority Queue:
$$\begin{array}{c|cccc} v & c & d \\ \hline d[v] & 6 & 7 \end{array}$$

Step 4: After Step 3, c has the minimum key in the ority queue. As $Adj[c] = \{d\}$, work on d and up information.

$oldsymbol{v}$	s	а	b	С	d
d[v]	0	2	5	6	7
pred[v]	nil	s	а	b	а
color[v]	В	В	В	В	W

Priority Queue: $egin{array}{c|c} v & \mathsf{d} \\ \hline d[v] & \mathsf{7} \end{bmatrix}$

Step 5: After Step 4, d has the minimum key in the priority queue. As $Adj[d] = \{c\}$, work on c and update information.

$oldsymbol{v}$	s	а	b	С	d
d[v]	0	2	5	6	7
pred[v]	nil	s	а	b	а
prea[v]	1 1111	3	ч		ч

Priority Queue:
$$Q = \emptyset$$
.

Dijkstra's Algorithm: Analysis

- Cost depends on implementation of PQ.
- Using a heap:
 - makePQ() O(V)
 - V deletemin() operations @O(log V)
 - O(E) decreaseweight() ops @O(log V)
 - Total: O((V+E) log V)
- More or less using other PQ implementations.

Dijkstra's Algorithm: Limitations

- Assumes no negative edges:
 - Good for physical distances.
 - Distances are static
- Negative edges:
 - Use Bellman-Ford algorithm.
 - Cannot deal with negative cycles.
 - O(V*E)

Dijkstra's Algorithm: Limitations

- Negative cycles:
 - What is the shortest path?
 - Problem is not well-formed, intractible.
 - Bellman-Ford detects negative cycles (algorithm does not terminate, keeps shortening paths).

Applications

- More applications.
 - Robot navigation.
 - Texture mapping.
 - Typesetting in TeX.
 - Urban traffic planning.
 - Optimal pipelining of VLSI chip.
 - Telemarketer operator scheduling.
 - Routing of telecommunications messages.
 - Network routing protocols (OSPF, BGP, RIP).
 - Exploiting arbitrage opportunities in currency exchange.
 - Optimal truck routing through given traffic congestion pattern.

Negative Cycle Detection: Arbitrage

- Common example in CS materials is arbitrage:
 - currency 1 → currency 2 → currency 3 → currency 1'
 - If currency 1' > currency 1, you have made money.
- Model problem as a graph:
 - Vertices = currency
 - Edges = log₂(exchange rate)
 - Detect negative cycle and change money → get rich!
- Not realistic!
 - D.J.Fenn et al., "The Mirage of Triangular Arbitrage in the Foreign Currency Exchange Market", Int. J. Theoretical and Applied Finance 12(8), 1105-1123, 2009.

Edsger W. Dijkstra

- The question of whether computers can think is like the question of whether submarines can swim.
- Computer science is no more about computers than astronomy is about telescopes.
- How do we convince people that in programming simplicity and clarity —in short: what mathematicians call "elegance"— are not a dispensable luxury, but a crucial matter that decides between success and failure?
- Elegance is not a dispensable luxury but a quality that decides between success and failure.

Turing award 1972

 A very nice explanation of Dijkstra's algorithm by Mordechai Golin can be found at

http://www.cse.ust.hk/faculty/golin/COMP271Sp03/Notes/MyL09.pdf