

Europäisches Patentamt

European Patent Office

Office européen des brevets

(1) Veröffentlichungsnummer:

116 932

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 84101466.5

(22) Anmeldetag: 13.02.84

(51) Int. Cl.3: C 07 D 333/38 A 01 N 47/36

30 Priorität: 19.02.83 DE 3305866

(43) Veröffentlichungstag der Anmeldung: 29.08.84 Patentblatt 84/35

84 Benannte Vertragsstaaten: DE FR GB IT

11) Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 D-6700 Ludwigshafen(DE)

72) Erfinder: Acker, Rolf-Dieter, Dr. Tuchbleiche 8 D-6906 Leimen(DE)

2 Erfinder: Rossy, Phillip A., Dr. 39, Forest Drive Hillsdale N.J. 07642(US)

2 Erfinder: Wuerzer, Bruno, Dipl.-Landwirt, Dr. Ruedigerstrasse 13 D-6701 Otterstadt(DE)

54 Thiophen-carbonester, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung unerwünschten Pflanzenwuchses.

5) Die Erfindung betrifft Thiophen-carbonester der Formel

in der

R¹ Wasserstoff, Alkyl, Alkenyl, Alkinyl, Halogenalkyl, Alkoxyalkyl, Alkythioalkyl, Cycloalkyl, gegebenenfalls substituiertes Phenyl oder Benzyl und

Alkyl, Alkenyl, Alkinyl, gegebenenfalls substituiertes Phenylalkyl, Halogenalkyl, Alkoxyalkyl, Alkylthioalkyl, Alkylaminoalkyl, Dialkylaminoalkyl, Cycloalkyl oder gegebenenfalls substituiertes Phenyl bedeuten,

Verfahren zur ihrer Herstellung und ihre Verwendung zur Bekämpfung unerwünschten Pflanzenwuchses.

Thiophen-carbonester, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung unerwünschten Pflanzenwuchses

- Die Erfindung betrifft Thiophen-carbonester, Verfahren zu ihrer Herstellung, Herbizide, die diese Verbindungen als Wirkstoffe enthalten, sowie ein Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses mit diesen Wirkstoffen.
- 10 Es wurde gefunden, daß Thiophen-carbonester der Formel

15

25

Wasserstoff, C_1 - C_{10} -Alkyl, C_2 - C_{10} -Alkenyl, C_2 - C_{10} -Alkinyl, C_1 - C_{10} -Halogenalkyl, C_2 - C_{10} -Alkoxyalkyl, C_2 - C_{10} -Alkylthioalkyl, C_3 - C_7 -Cycloalkyl, gegebenenfalls durch Halogen oder C_1 - C_4 -Alkyl substituiertes Phenyl oder gegebenenfalls durch Halogen substituiertes Benzyl und

herbizid wirksam sind.

R¹ und R² in Formel I bedeuten unverzweigtes oder verzweigtes

C₁-C₁₀-Alkyl, vorzugsweise C₁-C₄-Alkyl, unverzweigtes oder verzweigtes

C₂-C₁₀-Alkenyl, vorzugsweise C₃-C₄-Alkenyl, unverzweigtes oder verzweig
tes C₂-C₁₀-Alkinyl, vorzugsweise C₃-C₄-Alkinyl, gegebenenfalls durch

tes C₂-C₁₀-Alkinyl, vorzugsweise C₃-C₄-Alkinyl, vorzugsweise C₈-C₉-Phenyl
alkyl, unverzweigtes oder verzweigtes C₁-C₁₀-Halogenalkyl, vorzugsweise

c₁-C₄-Halogenalkyl, unverzweigtes oder verzweigtes C₂-C₁₀-Alkoxyalkyl

oder C₂-C₁₀-Alkylthioalkyl, vorzugsweise C₂-C₄-Alkoxyalkyl oder

c₂-C₄-Alkylthioalkyl, durch Alkylamino oder Dialkylamino mit 1 bis

40 4 C-Atomen in einer Alkylgruppe substituiertes C₁-C₁₀-Alkyl, vorzugsweise

C₁-C₄-Alkyl, oder C₃-C₇-Cycloalkyl, vorzugsweise C₅-C₆-Cycloalkyl, bei
spielsweise Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec-Butyl,

tert.-Butyl, n-Pentyl, n-Hexyl, Pentyl-3, 1,2-Dimethyl-n-propyl,

1,3-Dimethyl-n-butyl, 1-Ethyl-2-methyl-n-propyl, 1,2,2-Trimethyl-n--propyl, 1,2-Dimethyl-n-hexyl, tert.-Amyl, Vinyl, Allyl, Methallyl, Crotyl, 2-Ethyl-hexen-2-yl, Hexen-5-yl, 2-Methyl-buten-2-yl, 2-Methyl--buten-1-yl-3, Butin-1-yl-3, Butin-2-yl, Buten-1-yl-3, Propargyl, Q5 2-Methyl-buten-2-yl-4, 2-Methyl-buten-2-yl-4, 3-Methyl-buten-1-yl-3, . 2-Phenylethyl, Benzyl, am Phenylring durch Halogen, wie Fluor, Chlor, Brom, Jod, substituiertes Benzyl, wie 2,6-Dichlorbenzyl, 2-Chlor-6-fluor--benzyl, 2,6-Difluorbenzyl, 3-Phenyl-n-propyl, 2-Chlorethyl, 2-Chlor-n--propyl, 3-Chlor-n-propyl, 2-Chlor-isopropyl, 1-Chlormethyl-n-propyl; 10 2-Chlorbutyl-3, 2-Chlor-2-methyl-n-propyl, 2-Fluorbutyl-3, 2-Fluor-2--methyl-n-propyl, 2-Fluor-isopropyl, Chlor-tert-butyl, 2,2,2-Trifluor--ethyl, Methoxyethyl, Ethoxyethyl, 3-Methoxy-n-propyl, Methoxyisopropyl, 3-Methoxy-n-butyl, 1-Methoxy-butyl-2, Ethoxy-tert-butyl, Methoxy-tert--butyl, 2-Methoxy-butyl, 4-Methoxy-n-butyl, Methylmercapto-ethyl, Ethyl-15 mercapto-ethyl, 3-Methylmercapto-n-propyl, 3-Methylmercapto-n-butyl, 1-Methylmercapto-butyl-2, Methylmercapto-tert-butyl, 2-Methylmercapto--n-butyl, 2-Dimethylamino-ethyl, 2-Methylamino-ethyl, 2-Diethylamino--ethyl, Dimethylaminomethyl, Dimethylaminoethyl, Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl.

R¹ und R² können auch einen gegebenenfalls durch Halogen, wie Fluor, Chlor, Brom, Iod, oder C_1 - C_4 -Alkyl substituierten Phenylrest, wie Phenyl, 4-Chlorphenyl, 2,4-Dichlorphenyl, 4-Isopropylphenyl, 4-tert.-Butylphenyl, bedeuten.

Bevorzugte Thiophen-carbonester sind Verbindungen der Formel I, wobei R^1 C_1-C_4 -Alkyl, insbesondere Methyl, und R^2 C_1-C_4 -Alkyl oder C_5-C_6 -Cycloalkyl bedeuten.

30 Man erhält die Thiophen-carbonester der Formel I

a) durch Umsetzung von Dihydrothiophencarbonestern der Formel

$$R^{2}-NH-C-HN CO_{2}R^{1}$$
 (II),

in der R^1 und R^2 die obengenannten Bedeutungen haben, mit Dehydrie-40 rungsmitteln, wie Sulfurylchlorid,

oder

o.z. 0050/36386

durch Umsetzung von Aminoverbindungen der Formel

05

in der $\mathbb{R}^{\mathbf{l}}$ die obengenannten Bedeutungen hat, oder ihrer Salze mit einem Isocyanat der Formel

10

in der R² die obengenannten Bedeutungen hat.

Die Verfahrensvariante a) wird bei einer Temperatur im Bereich zwischen O 15 und 150°C, vorzugsweise 20 und 60°C, gegebenenfalls unter Zusatz eines inerten organischen Lösungsmittels durchgeführt.

Geeignete Dehydrierungsmittel sind beispielsweise Sulfurylchlorid und Chloranil.

20

Zur Erhöhung der Ausbeute kann das entstehende Wasser azeotrop abdestilliert werden. Verbindung II kann in einem Überschuß oder Unterschuß von bis zu 25 Mol%, bezogen auf das Dehydrierungsmittel, eingesetzt werden.

25 Die Dihydrothiophen-carbonester der Formel II lassen sich beispielsweise durch Umsetzung von Ketoestern der Formel

30

in der

 R^1 die obengenannten Bedeutungen hat, mit Harnstoffen der Formel

35

in der

 ${\it R}^2$ die obengenannten Bedeutungen hat, herstellen.

40

Die Umsetzung wird bei einer Temperatur im Bereich zwischen O und 150°C, vorzugsweise 50 und 120°C, gegebenenfalls unter Zusatz eines inerten organischen Lösungsmittels durchgeführt. Zweckmäßigerweise wird dem

Reaktionsgemisch ein Kondensationsmittel zugesetzt, beispielsweise p-Toluolsulfonsäure, Phosphorsäure, Polyphosphorsäure oder Schwefelsäure. Die Menge an Kondensationsmittel beträgt 0,1 bis 20 Mol%, bezogen auf Verbindung V.

05

Zur Erhöhung der Ausbeute kann das entstehende Wasser azeotrop abdestilliert werden. Verbindung V kann in einem Überschuß oder Unterschuß von bis zu 25 Mol%, bezogen auf Verbindung VI, eingesetzt werden.

10 Ketoester der Formel V, in der R^1 Methyl bedeutet, sind bekannt (J. Org. Chem. $\underline{45}$, 617 (1980)). Ketoester der Formel V, in der R¹ die für Formel I genannten Bedeutungen, mit Ausnahme von Methyl und Wasserstoff, hat, werden durch Umesterung von C_1-C_3 -Alkylestern der Formel V mit Hydroxylverbindungen der Formel R $^{\mathrm{l}}$ OH, in der R $^{\mathrm{l}}$ die für Formel I genannten Bedeu-15 tungen, mit Ausnahme von Methyl und Wasserstoff, hat, erhalten.

Bei dieser Reaktion werden zweckmäßigerweise basische oder saure Katalysatoren in Mengen von 0,1 bis 20 Mol.%, bezogen auf Verbindung V, zugesetzt.

28

Geeignete saure Katalysatoren sind beispielsweise anorganische Säuren, wie Salzsāure, Schwefelsāure, Phosphorsāure, Polyphosphorsāure, oder auch aromatische Carbonsäuren oder Sulfonsäuren, insbesondere p-Toluolsulfonsäure. Als basische Katalysatoren kommen tertiäre Amine, Erdalkaliverbin-25 dungen, Ammoniumverbindungen und Alkaliverbindungen sowie entsprechende Gemische in Betracht. Auch Zinkverbindungen können verwendet werden. Beispiele hierfür sind: Kaliumhydroxid, Natriumhydroxid, Kaliumcarbonat, Natriumcarbonat, Lithiumhydroxid, Lithiumcarbonat, Natriumhydrogencarbonat, Kaliumhydrogencarbonat, Calciumhydroxid, Calciumoxid, Barium-30 oxid, Magnesiumhydroxid, Magnesiumoxid, Bariumhydroxid, Calciumcarbonat, Magnesiumcarbonat, Magnesiumhydrogencarbonat, Magnesiumacetat, Zinkhydroxid, Zinkoxid, Zinkcarbonat, Zinkacetat, Natriumformiat, Natriumacetat, Trimethylamin, Triethylamin, Tripropylamin, Triisopropylamin, Tributylamin, Triisobutylamin, Tri-sec-butylamin, Tri-tert.-butylamin, 35 Tribenzylamin, Tricyclohexylamin, Triamylamin, Diisopropylethylamin, Trihexylamin, N,N-Dimethylanilin, N,N-Diethylanilin, N,N-Dipropylanilin, N,N-Dimethyltoluidin, N,N-Diethyltoluidin, N,N-Dipropyltoluidin, N,N-Dimethyl-p-aminopyridin, N,N-Diethyl-p-aminopyridin, N,N-Dipropyl-p-aminopyridin, N-Methylpyrrolidon, N-Ethylpyrrolidon, N-Methylpiperidin, 40 N-Ethylpiperidin, N-Methylpyrrolidin, N-Ethylpyrrolidin, N-Methylimidazol, N-Ethylimidazol, N-Methylpyrrol, N-Ethylpyrrol, N-Methylmorpholin, N-Ethylmorpholin, N-Methylhexamethylenimin, N-Ethylhexamethylenimin, Pyridin, Chinolin, alpha-Picolin, beta-Picolin, gamma-Picolin, Isochinolin, Pyrimidin, Acridin, N,N,N°,N°-Tetramethylethylendiamin, N,N,N°,N°-Tetraethylethylendiamin, Chinoxalin, Chinazolin, N-Propyldiiso-propylamin, N,N°-Dimethylcyclohexylamin, 2,6-Lutidin, 2,4-Lutidin, Tri-furylamin, Triethylendiamin.

85

Außer den vorgenannten anorganischen Basen kommen außerdem z.B. Natriumpropionat, Natriumbutyrat, Natriumisobutyrat, Kaliumformiat, Kaliumacetat, Kaliumpropionat, Kaliumbutyrat, Kaliumisobutyrat, Natriummethylat, Natriumethylat, Natriumethylat, Natriumethylat, Natriumethylat, Natriumisobutylat, Natriumbutylat, Natriumisobutylat, Natriumbutylat, Natriumisobutylat, Natriumethylenglykolat, Natriumpropylen-(1.2)-glykolat, Natriumpropylen-(1.3)-glykolat, Natriumdiethylenglykolat, Natriumtriethylenglykolat, Natriumdipropylen-(1,2)-glykolat, Kaliumethylat, Kaliumethylat, Kalium-n-propylat, Kaliumisopropylat, Kalium-n-butylat, Kalium-isobutylat, Kalium-sec-butylat, Kalium-tert.-butylat, Kaliummethylenglykolat, Kaliumpropylen-(1,2)-glykolat, Kaliumpropylen-(1,3)-glykolat, Kaliumdiethylenglykolat, Kaliumtriethylenglykolat, Kaliumtriethylenglykolat, Kaliumtriethylenglykolat, Kaliumtriethylenglykolat, Kaliumtriethylenglykolat, Kaliumtriethylenglykolat, Kaliumdiethylenglykolat, Kaliumtriethylenglykolat, Kaliumdiethylenglykolat, Kaliumtriethylenglykolat, Kaliumdiethylenglykolat, Kaliumtriethylenglykolat, Kaliumdiethylenglykolat, Kaliumtriethylenglykolat, Kaliumdiethylenglykolat, Kaliumtriethylenglykolat, Kaliumdiethylenglykolat, Kaliumtriethylenglykolat, Kaliumdiethylenglykolat in Betracht.

Die Herstellung eines Dihydrothiophen-carbonesters der Formel II wird 20 durch folgendes Beispiel erläutert:

15,1 Gew.-Teile 3-Keto-1,5-dihydro-thiophen-4-carbonsäuremethylester,
14,2 Gew.-Teile Cyclohexylharnstoff und 0,5 Gew.-Teile p-Toluolsulfonsäure werden in 100 Gew.-Teilen Xylol 4 Stunden unter Rückfluß bei Verwendung eines Wasserabscheiders gekocht. Nach dem Abkühlen wird der Rückstand abgesaugt und aus Toluol umkristallisiert. Man erhält 20,3 Gew.-Teile N-Cyclohexyl-N*-(3-methoxycarbonyl-2,5-dihydro-thien-4-yl)-harnstoff
vom Fp. 154 bis 155°C.

30 Entsprechend können beispielsweise folgende Dihydrothiophen-carbonester der Formel II erhalten werden.

	R ¹	R ²	Fp [°C]
35	CH ₃	CH ₃	203-212
•	CH ₃	C2H5	118-120
	CH ₃	n-C ₃ H ₇	160-161
	CH ₃	1-C ₃ H ₇	123-125
	CH ₃	n-C4H9	135-137
40	CH ₃	Cyclohexyl	154-155
	CH ₃	Phenyl	168-171
	CH ₃	4-Chlorphenyl	184-187
	CH ₃	3-Chlorphenyl	183-185

	R ^l	R ²	Fp [°C]
	CH ₃	C1CH ₂ CH ₂	133-137
	CH ₃	CH3CH(C1)CH2	136-139
05	C ₂ H ₅	CH ₃	154-157
	1-C ₃ H ₇	CH3	156-159
	CH ₃	2-Phenylethyl	117-119
	n-C ₄ H ₉	n-C4H9	100-103

Die Verfahrensvariante b) wird mit ungefähr stöchiometrischen Substanzmengen, d.h. in einem Mengenverhältnis von etwa 0,8 bis 1,2 Mol Verbindung III zu Verbindung IV, gegebenenfalls in Gegenwart eines inerten organischen Lösungsmittels bei einer Temperatur von -20 bis +50°C durch-15 geführt. Falls Verbindung III als Salz vorliegt, kann eine Base zugesetzt werden. Es kann dann entweder das freie Amin isoliert werden, oder es werden Verbindungen der Formel IV direkt zugegeben. Nach dem Einengen der Lösung reinigt man die Verbindungen der Formel I durch Umkristallisation oder Chromatographie.

20

Geeignete Basen sind tertiäre Amine, Erdalkaliverbindungen, Ammoniumverbindungen und Alkaliverbindungen sowie entsprechende Gemische in Betracht. Auch Zinkverbindungen können verwendet werden. Beispiele hierfür sind: Kaliumhydroxid, Natriumhydroxid, Kaliumcarbonat, Natrium-25 carbonat, Lithiumhydroxid, Lithiumcarbonat, Natriumhydrogencarbonat, Kaliumhydrogencarbonat, Calciumhydroxid, Calciumoxid, Bariumoxid, Magnesiumhydroxid, Magnesiumoxid, Bariumhydroxid, Calciumcarbonat, Magnesiumcarbonat, Magnesiumhydrogencarbonat, Magnesiumacetat, Zinkhydroxid, Zinkoxid, Zinkcarbonat, Zinkacetat, Natriumformiat, Natriumacetat, 30 Trimethylamin, Triethylamin, Tripropylamin, Triisopropylamin, Tributylamin, Triisobutylamin, Tri-sec-butylamin, Tri-tert.-butylamin, Tribenzylamin, Tricyclohexylamin, Triamylamin, Diisopropylethylamin, Trihexylamin, $N,N-Dimethylanilin,\ N,N-Diethylanilin,\ N,N-Dipropylanilin,\ N,N-Dimethyl$ toluidin, N,N-Diethyltoluidin, N,N-Dipropyltoluidin, N,N-Dimethyl-p-amino-35 pyridin, N,N-Diethyl-p-aminopyridin, N,N-Dipropyl-p-aminopyridin, N-Methylpyrrolidon, N-Ethylpyrrolidon, N-Methylpiperidin, N-Ethylpiperidin, N-Methylpyrrolidin, N-Ethylpyrrolidin, N-Methylimidazol, N-Ethylimidazol, N-Methylpyrrol, N-Ethylpyrrol, N-Methylmorpholin, N-Ethylmorpholin, N-Methylhexamethylenimin, N-Ethylhexamethylenimin, 40 Pyridin, Chinolin, alpha-Picolin, beta-Picolin, gamma-Picolin, Isochinolin, Pyrimidin, Acridin, $N,N,N^{\alpha},N^{\alpha}$ -Tetramethylethylendiamin, $N,N,N^{\alpha},N^{\alpha}$ --Tetraethylethylendiamin, Chinoxalin, Chinazolin, N-Propyldiisopropylamin, N,N°-Dimethylcyclohexylamin, 2,6-Lutidin, 2,4-Lutidin, Trifurylamin, Triethylendiamin.

Außer den vorgenannten anorganischen Basen kommen außerdem z.B. Natriumpropionat, Natriumbutyrat, Natriumisobutyrat, Kaliumformiat, Kaliumacetat, Kaliumpropionat, Kaliumbutyrat, Kaliumisobutyrat, Natriummethylat, Natriumethylat, Natriumpropylat, Natriumisopropylat, Natriumbutylat, Natriumisobutylat, Natrium-sec-butylat, Natrium-tert.-butylat,
Natriumethylenglykolat, Natriumpropylen-(1,2)-glykolat, Natriumpropylen-(1,3)-glykolat, Natriumdiethylenglykolat, Natriumtriethylenglykolat,
Natriumdipropylen-(1,2)-glykolat, Kaliummethylat, Kaliumethylat, Kalium-n-propylat, Kaliumisopropylat, Kalium-n-butylat, Kalium-isobutylat, Kalium10 -sec-butylat, Kalium-tert.-butylat, Kaliummethylenglykolat, Kaliumpropylen-(1,2)-glykolat, Kaliumpropylen-(1,3)-glykolat, Kaliumdiethylenglykolat, Kaliumtriethylenglykolat, Kaliumdipropylen-(1,2)-glykolat in
Betracht.

- 15 Als Lösungsmittel kommen für beide Verfahrensvarianten a) und b) sowie für das Verfahren zur Herstellung der Dihydrothiophen-carbonester der Formel II z.B. Halogenkohlenwasserstoffe, insbesondere Chlorkohlenwasserstoffe, z.B. Tetrachlorethylen, 1,1,2,2- oder 1,1,1,2-Tetrachlorethan, Dichlorpropan, Methylenchlorid, Dichlorbutan, Chloroform, Chlornaphtha-20 lin, Dichlornaphthalin, Tetrachlorkohlenstoff, 1,1,1- oder 1,1,2-Trichlorethan, Trichlorethylen, Pentachlorethan, o-, m-, p-Difluorbenzol, 1,2-Dichlorethan, 1,1-Dichlorethan, 1,2-cis-Dichlorethylen, Chlorbenzol, Fluorbenzol, Brombenzol, Jodbenzol, o-, p- und m-Dichlorbenzol, o-, p-, m-Dibrombenzol, o-, m-, p-Chlortoluol, 1,2,4-Trichlorbenzol; Ether, z.B. 25 Ethylpropylether, Methyl-tert.-butylether, n-Butylethylether, Di-n-butylether, Diisobutylether, Diisoamylether, Diisopropylether, Anisol, Phenetol, Cyclohexylmethylether, Diethylether, Ethylenglykoldimethylether, Tetrahydrofuran, Dioxan, Thioanisol, beta,beta^s-Dichlordiethylether; Nitrokohlenwasserstoffe, wie Nitromethan, Nitroethan, Nitrobenzol, 30 o-, m-, p-Chlornitrobenzol, o-Nitrotoluol; Nitrile, wie Acetonitril, Butyronitril, Isobutyronitril, Benzonitril, m-Chlorbenzonitril; aliphatische, cycloaliphatische oder aromatische Kohlenwasserstoffe, z.B. Heptan, Pinan, Nonan, o-, m-, p-Cymol, Benzinfraktionen innerhalb eines Siedepunktintervalls von 70 bis 190°C, Cyclohexan, Methylcyclohexan, 35 Dekalin, Petrolether, Hexan, Ligroin, 2,2,4-Trimethylpentan, 2,2,3-Trimethylpentan, 2,3,3-Trimethylpentan, Octan, Toluol, o-, m-, p-Xylol, Tetralin; Ester, z.B. Ethylacetat, Acetessigester, Isobutylacetat; Amide,
 - Tetralin; Ester, Z.B. Ethylacetal, Acetessigester, Isobotylacetat, American z.B. Formamid, Methylformamid, Dimethylformamid; Ketone, z.B. Aceton, Methylethylketon; und entsprechende Gemische in Betracht. Zweckmäßiger-weise verwendet man das Lösungsmittel in einer Menge von 100 bis 2000 Gew.%, vorzugsweise von 200 bis 700 Gew.%, bezogen auf Ausgangsstoff II bzw. IV.

Beide Verfahren können kontinuierlich oder diskontinuierlich, drucklos oder unter Druck, durchgeführt werden; der Einfachheit halber wird Atmosphärendruck bevorzugt.

Q5 Beispiel 1

9,3 Gev.-Teile 3-Amino-4-methoxycarbonyl-thiophen-hydrochlorid, 6,0 Gew.-Teile Triethylamin, 7,4 Gew.-Teile Cyclohexylisocyanat und 30 Gew.-Teile Acetonitril werden zusammengegeben und 3 Stunden bei 25°C 10 gerührt. Nach dem Einengen wird der Rückstand mit Wasser gewaschen und aus Toluol umkristallisiert. Man erhält 4,5 Gev.-Teile N-Cyclohexyl--Nº-(3-methoxycarbonyl-thien-4-yl)-harnstoff vom Fp. 108 bis 114°C.

Beisoiel 2

15

9,0 Gew.-Teile N-(n-Propyl)-Nº-(3-isobutoxycarbonyl-2,5-dihydro-thien-4--yl)-harnstoff werden in 55 Teilen trockenem Chloroform vorgelegt. 2,6 Teile Sulfurylchlorid werden bei 30 bis 40°C zugetropft. Die Mischung wird 7 Stunden bei 40°C gehalten. Nach dem Abdestillieren des Lösungs-20 mittels bleibt ein viskoses Öl zurück, das durch Verteilung in Wasser/Methylenchlorid gereinigt werden kann. Man erhält 7,6 Teile $N-(n-Propyl)-N^s-(3-isobutoxycarbonyl-thien-4-yl)-harnstoff.$

 l_{H-NMR} : d = 7,7 und 8,0 (2 Dubletts, 2 Thiophen-H)

25

Entsprechend können beispielsweise folgende Thiophen-carbonester der Formel I erhalten werden.

			_	
	Nr.	R ¹	R ²	Fp [°C]
30	1	CH ₃	CH ₃	113-114
	2	CH ₃	C ₂ H ₅	94- 99
	3	. CH ₃	n-C ₃ H ₇	152-155
	-	_	i-C ₃ H ₇	122-124
	4	CH ₃	n-CAH9	117-119
35	- 5	CH3		,
	6	CH ₃	s-C ₄ H ₉	
	7	CH ₃	t-C4H9	•
	8	CH ₃	n-C5H ₁₁	
	9	CH ₃	1-C ₅ H ₁₁	
40	10	CH ₃	Cyclohexyl	108-144
	11	CH ₃	Allyl	
	12	CH ₃	Propargyl	•
	13	сн ₃	Phenyl	

	Nr.	R ¹	R ²	Fp [ºC]
	14	CH ₃	4-Chlorphenyl	
	15	CH ₃	3-Chlorphenyl	
05	16	CH ₃	CH3OCH2CH2	
	17	CH ₃	CH35CH2CH2	
	18	CH ₃	C1CH2CH2	
	19	СН3	CH3CH(C1)CH2	
	20	CH ₃	$(CH_3)_2NCH_2CH_2$	
10	21.	Н	CH ₃	
	22	Н	^С 2 ^Н 5	
•	23	н	n-C3H7	
	24	. н	1-0 ₃ H ₇	
	25	н	n-C ₄ H ₉	
15	26	H	1-C4H9	
	27	с ₂ н ₅	CH ₃	
	28	с ₂ н ₅	C2H5	
	29	C2H5	n-C ₃ H ₇	
•	30	C2H5	1-C ₃ H ₇	
20	31	С ₂ Н ₅	n-C ₄ H ₉	
	32	n-C ₃ H ₇	CH ₃	
	33	n=C3H7	C ₂ H ₅	
	34	n-C ₃ H ₇	Cyclohexyl	•
	35	1-C3H7	CH ₃	
25	36	1-C3H7	C ₂ H ₅	•
	37	1-C3H7	n-C ₃ H ₇	à.
	38	1-03H7	1-C3H7	•
	39	n-C ₄ H ₉	CH ₃	
	40	n-C ₄ H ₉	n-C ₃ H ₇	
30		n-C ₄ H ₉	C2H5	
	42	Cyclohexyl	CH ₃	
	43	Cyclohexyl	С ₂ Н ₅ . сн ₃	
	44 .	Phenyl		
_	45	Phenyl Phenyl	^C 2 ^H 5 1-C3 ^H 7	
3.		Phenyl	n-C ₃ H ₇	
	47 48	4-Chlorphenyl	CH ₃	
		3-Chlorphenyl	CH ₃	
	49 50.	4-Fluorphenyl	CH ₃	
		4-Isopropyl-	. CH ₃	
4	51	phenyl	•	
	52	CH ₃	2-Phenyl-ethyl	153-157
	53	1-C ₃ H ₇	2-Phenyl-ethyl	
			· ·	

	NI.	R ¹	R ²	Fp [°C]
	54	1-C3H7	Cyclohexyl	114-118
	55	n-C4H9	n-C ₄ H ₉	viskos
05	56	1-C4H9	n-C ₃ H ₇	
	57	n-C ₃ H ₇	n-C ₄ H ₉	

Die Thiophen-carbonester der Formel I können beispielsweise in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Benzol, Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, z.B. Methanol, Ethanol, Propanol, Butanol, Chloroform, Tetrachlorkohlenstoff, Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoron, stark polare Lösungsmittel, wie z.B. Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon, Wasser, in Betracht.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulvern, Öldispersionen) durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze

40 von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Alkali- und Erdalkalisalze
der Dibutylnaphthalinsulfonsäure, Laurylethersulfat, Fettalkoholsulfate,
fettsaure Alkali- und Erdalkalisalze, Salze sulfatierter Hexadecanole,

Heptadecanole, Octadecanole, Salze von sulfatiertem Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sorbitester, Lignin, Sulfitablaugen und Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an festen Trägerstoffen hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Silicagel, Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver und andere feste Trägerstoffe.

Die Formulierungen enthalten zwischen 0,1 und 95 Gewichtsprozent, vorzugsweise zwischen 0,5 und 90 Gewichtsprozent, Wirkstoff.

Beispiele für Formulierungen sind:

25

30

- I. Man vermischt 90 Gewichtsteile der Verbindung Nr. 1 mit 10 Gewichtsteilen N-Methyl-alpha-pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist.
- 35 II. 20 Gewichtsteile der Verbindung Nr. 3 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen Xylol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-mono-ethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gewichtsprozent des Wirkstoffs enthält.

30 ·

35

40

- III. 20 Gewichtsteile der Verbindung Nr. 2 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gewichtsprozent des Wirkstoffs enthält.
- 10 IV. 20 Gewichtsteile der Verbindung Nr. 4 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanol, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an I Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gewichtsprozent des Wirkstoffs enthält.
- V. 20 Gewichtsteile der Verbindung Nr. 10 werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalin-alpha-sulfonsäure,
 20 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20 000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gewichtsprozent des Wirkstoffs enthält.
 - VI. 3 Gewichtsteile der Verbindung Nr. 1 werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gewichtsprozent des Wirkstoffs enthält.
 - VII. 30 Gewichtsteile der Verbindung Nr. 2 werden mit einer Mischung aus 92 Gewichtsteilen pulverförmigem Kieselsäuregel und 8 Gewichtsteilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit.
 - VIII. 20 Teile der Verbindung Nr. 1 verden mit 2 Teilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Teilen Fettalkohol-polyglykolether, 2 Teilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondensates und 68 Teilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

Die Applikation der Wirkstoffe bzw. der Mittel kann im Vorauflaufverfahren oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für die Kulturpflanzen weniger verträglich, so können auch Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritz-05 geräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).

10 Die Aufwandmengen an Wirkstoff betragen je nach Bodenart, Jahreszeit, Zielpflanzen und Wachstumsstadium 0,1 bis 5 kg/ha und mehr, vorzugsweise 0,5 bis 3 kg/ha.

Die herbizide Wirkung von Verbindungen der Formel I wird durch Gewächs-. 15 hausversuche gezeigt:

Als Kulturgefäße dienen Plastikblumentöpfe mit 300 cm³ Inhalt und lehmigem Sand mit etwa 1,5 % Humus als Substrat.

20 Die Samen der Testpflanzen werden nach Arten getrennt flach eingesät. Unmittelbar danach werden die Wirkstoffe bei Vorauflaufbehandlung auf die Erdoberfläche aufgebracht. Sie werden hierzu in Wasser als Verteilungsmittel suspendiert oder emulgiert und mittels fein verteilender Düsen gespritzt. Die Aufwandmengen betragen dabei 3,0 und 1,0 kg Wirkstoff/ha. 25 Nach dem Aufbringen der Mittel werden die Gefäße leicht beregnet, um Keimung und Wachstum in Gang zu bringen. Danach werden die Gefäße mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen sind. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wird.

Für die Nachauflaufbehandlung werden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm angezogen und danach behandelt. Die für die Nachauflaufanwendung eingesetzten Soja- und Reispflanzen werden in einem mit Torfmull (peat) angereicherten Substrat 35 angezogen, um ein günstigeres Wachstum zu gewährleisten. Zur Nachauflaufbehandlung werden entweder direkt gesäte und in den gleichen Gefäßen aufgewachsene Pflanzen ausgewählt, oder aber sie werden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt. Eine Abdeckung unterbleibt bei der Nachauflauf-AO behandlung. Die Aufwandmenge beträgt beispielsweise 1,0 kg Wirkstoff/ha.

Die Versuchsgefäße werden im Gewächshaus aufgestellt, wobei für wärmeliebende Arten wärmere Bereiche (20 bis 30°C) und für solche gemäßigter

20

Klimate 15 bis 25°C bevorzugt werden. Die Versuchsperiode erstreckt sich über 2 bis 4 Wochen. Während dieser Zeit werden die Pflanzen gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wird ausgewertet. Bevertet wird nach einer Skala von 0 bis 100. Dabei bedeutet 0 keine Schädigung oder normaler Auflauf und 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile.

Die Testpflanzen setzen sich aus folgenden Arten zusammen:
Arachys hypogaea (Erdnüsse), Avena fatua (Flughafer), Chenopodium album
(Weißer Gänsefuß), Galium aparine (Klettenlabkraut), Gossypium hirsutum
(Baumwolle), Lamium amplexicaule (stengelumfassende Taubnessel), Mercurialis annua (einjähriges Bingelkraut), Oryza sativa (Reis), Sinapis alba
(weißer Senf), Solanum nigrum (schwarzer Nachtschatten), Triticum aestivum (Weizen) und Veronica spp. (Ehrenpreisarten).

Bei Vorauflaufanwendung zeigen beispielsweise die Verbindungen Nr. 1, 2, 3 und 10 eine beachtliche herbizide Aktivität, insbesondere gegen Sinapis alba. Ferner bekämpft Verbindung Nr. 4 bei dieser Anwendungsmethode unerwünschte breitblättrige Pflanzen selektiv in Weizen.

Bei Nachauflaufanwendung bekämpft beispielsweise Verbindung Nr. 1 eine ganze Reihe unerwünschter breitblättriger Pflanzen.

In Anbetracht der Verträglichkeit und der Vielseitigkeit der Applikations-25 methoden, können die erfindungsgemäßen Verbindungen noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden.

In Betracht kommen beispielsweise folgende Kulturen:

30 Deutscher Name Botanischer Name Küchenzwiebel Allium cepa Ananas. Ananas comosus Erdnuß 35 Arachis hypogaea Spargel Asparagus officinalis Hafer Avena sativa Zuckerrübe Beta vulgaris spp. altissima Futterrübe Beta vulgaris spp. rapa Rote Rübe 40 Beta vulgaris spp. esculenta Raps. Brassica napus var. napus Kohlrübe Brassica napus var. napobrassica Weiße Rübe Brassica napus var. rapa

	Botanischer Name	Deutscher Name
	Brassica rapa var. silvestris	Rübsen
	Camellia sinensis	Teestrauch
05	Carthamus tinctorius	Saflor - Färberdistel
	Carya illinoinensis	Pekannußbaum
	Citrus limon	Zitrone'
	Citrus maxima	Pampelmuse
	Citrus reticulata	Mandarine
10	Citrus sinensis	Apfelsine, Orange
	Coffea arabica (Coffea canephora, Coffea liberica)	Kaffee
	Cucumis melo	Melone
	Cucumis sativus	Gurke
15	Cynodon dactylon	Bermudagras
	Daucus carota	Möhre
	Elaeis guineensis	Ölpalme ·
	Fragaria vesca	Erdbeere
	Glycine max	Sojabohne
20	Gossypium hirsutum (Gossypium arboreum	number .
	Gossypium herbaceum Gossypium vitifolium)	Baumwolle
	Helianthus annuus	Sonnenblume
25	Helianthus tuberosus	Topinambur
	Hevea brasiliensis	Parakautschukbaum
	Hordeum vulgare	Gerste
	Humulus lupulus	Hopfen
	Ipomoea batatas	Süßkartoffeln
30	Juglans regia	WalnuGbaum
	Lactua sativa	Kopfsalat
	Lens culinaris	Linse
	Linum usitatissimum	Faserlein
	Lycopersicon lycopersicum	Tomate
35	Malus spp.	Apfel
	Manihot esculenta	Maniok
	Medicago sativa	Luzerne
-	Mentha piperita	Pfefferminze
	Musa spp.	Obst- u. Mehlbanane
4 1	Nicotiana tabacum (N. rustica)	Tabak
	Olea europaea	ŭlbaum -
	Oryza sativa	Reis

	Botanischer Name	Deutscher Name
	Panicum miliaceum	Rispenhirse
	Phaseolus lunatus	Mondbohne
85	Phaseolus mungo	Erdbohne
-	Phaseolus vulgaris	Buschbohnen
	Pennisetum glaucum	Perl- oder Rohrkolbenhirse
	Petroselinum crispum spp. tuberosum	Murzelpetersilie
18	Picea abies	Rotfichte
:	Abies alba	Weißtanne
	Pinus spp.	Kiefer
	Pisum sativum	Gartenerbse
	Prunus avium	Süßkirsche
15	Prunus domestica	Pflaume
•	Prunus dulcis	Mandelbaum
•	Prunus persica	Pfirsich
	Pyrus communis	Birne
	Ribes sylvestre	Rote Johannisbeere
20	Ribes uva-crispa	Stachelbeere
	Ricinus communis	Rizinus
	Saccharum officinarum	Zuckerrohr
	Secale cereale	Roggen
	Sesamum indicum	Sesam
25	Solanum tuberosum	Kartoffel
	Sorghum bicolor (s. vulgare)	Hohrenhirse
	Sorghum dochna	Zuckerhirse
	Spinacia oleracea	Spinat
	Theobroma cacao	Kakaobaum
30	Trifolium pratense	Rotklee
	Triticum aestivum	Reizen
	Vaccinium carymbosum	Kulturheidelbeere
	Vaccinium vitis-idaea	PreiBelbeere
	Vicia faba	Pferdebohnen
35	yigna sinensis (V. unguiculata)	Kuhbohne
	Zea mays	Mais

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die Thiophen-carbonester der Formel I mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoff-gruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner Diazine, 4H-3,1-Benzoxazinderivate, Benzothiadiazinone, 2,6-Dinitroaniline, N-Phenylcarbamate, Thiolcarbamate, Halogen-

carbonsäuren, Triazine, Amide, Harnstoffe, Diphenylether, Triazinone, Uracile, Benzofuranderivate, Cyclohexan-1,3-dionderivate und andere in Betracht.

Außerdem kann es von Nutzen sein, die Thiophen-carbonester der Formel I bzw. sie enthaltende herbizide Mittel allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist Schädlingen der phytopathogenen Pilzen bzw. Bakterien. Von Behebung von ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- oder Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische üle und ülkonzentrate zugesetzt werden.

Patentansprüche

1. Thiophen-carbonester der Formel

$$R^{1}O_{2}C$$

$$NH-CO-NH-R^{2}$$
(1),

in der

30

- 10 R¹ Wasserstoff, C_1-C_{10} -Alkyl, C_2-C_{10} -Alkenyl, C_2-C_{10} -Alkinyl, C_1-C_{10} -Halogenalkyl, C_2-C_{10} -Alkoxyalkyl, C_2-C_{10} -Alkylthicalkyl, C_3-C_7 -Cycloalkyl, gegebenenfalls durch Halogen oder C_1-C_4 -Alkyl substituiertes Phenyl oder gegebenenfalls durch Halogen substituiertes Benzyl und
- 15 R^2 C_1-C_{10} -Alkyl, C_2-C_{10} -Alkenyl, C_2-C_{10} -Alkinyl, gegebenenfalls durch Halogen substituiertes C_7-C_{10} -Phenylalkyl, C_1-C_{10} -Halogenalkyl, C_2-C_{10} -Alkoxyalkyl, C_2-C_{10} -Alkylthioalkyl, durch Alkylamino oder Dialkylamino mit 1 bis 4 C-Atomen in einer Alkylgruppe substituiertes C_1-C_{10} -Alkyl, C_3-C_7 -Cycloalkyl oder gegebenenfalls durch Halogen oder C_1-C_4 -Alkyl substituiertes Phenyl bedeuten.
 - Thiophen-carbonester der Formel I gemäß Anspruch 1, dadurch gekennzeichnet, daß
- 25 R¹ Wasserstoff, C_1-C_4 -Alkyl, C_3-C_4 -Alkenyl, C_3-C_4 -Alkinyl, C_1-C_4 -Halogenalkyl, C_2-C_4 -Alkoxyalkyl, C_2-C_4 -Alkylthioalkyl, C_5-C_6 -Cycloalkyl und
 - $m R^2$ $m C_1-C_4-Alkyl, C_3-C_4-Alkenyl, C_3-C_4-Alkinyl, C_8-C_9-Phenylalkyl, <math>
 m C_1-C_4-Halogenalkyl, C_2-C_4-Alkoxyalkyl, C_2-C_4-Alkylthioalkyl, durch Alkylamino oder Dialkylamino mit 1 bis 4 C-Atomen substituiertes <math>
 m C_1-C_4-Alkyl$ oder $m C_5-C_6-Cycloalkyl$ bedeuten.
- 3. Thiophen-carbonester der Formel I gemäß Anspruch 1, dadurch gekenn-zeichnet, daß R^1 C_1 - C_4 -Alkyl und R^2 C_1 - C_4 -Alkyl oder C_5 - C_6 -Cyclo-alkyl bedeuten.
 - 4. Thiophen-carbonester der Formel I gemäß Anspruch 3, <u>dadurch gekenn-</u>
 <u>zeichnet</u>, daß R¹ Methyl bedeutet.
- 40 5. Verfahren zur Herstellung von Thiophen-carbonestern der Formel I gemäß Anspruch 1, <u>dadurch gekennzeichnet</u>, daß man

a) einen Dihydrothiophen-carbonester der Formel

in der \mathbb{R}^1 und \mathbb{R}^2 die im Anspruch 1 genannten Bedeutungen haben,

mit einem Dehydrierungsmittel oder

b) eine Aminoverbindung der Formel

$$\begin{array}{c}
\text{H}_{2}N & \text{CO}_{2}R^{1} \\
\text{S}
\end{array}$$

in der

R¹ die im Anspruch 1 genannten Bedeutungen hat, oder Salze
dieser Aminoverbindung mit einem Isocyanat der Formel

$$R^2$$
-NCO (IV),

in der R² die im Anspruch l genannten Bedeutungen hat, gegebenenfalls in Gegenwart einer Base in einem inerten Lösungsmittel umsetzt.

- Herbizid, enthaltend einen Thiophen-carbonester der Formel I gemäß An spruch 1.
 - 7. Herbizid, enthaltend inerte Zusatzstoffe und einen Thiophen-carbonester der Formel I gemäß Anspruch 1.
- 35 8. Herbizid nach Anspruch 6, dadurch gekennzeichnet, daß es einen Thiophen-carbonester der Formel I enthält, wobei R^1 C_1 - C_4 -Alkyl und R^2 C_1 - C_4 -Alkyl oder C_5 - C_6 -Cycloalkyl bedeuten.
- 9. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, <u>dadurch</u>

 <u>gekennzeichnet</u>, daß man die unerwünschten Pflanzen und/oder die von
 unerwünschtem Pflanzenwuchs freizuhaltenden Flächen mit einer herbizid wirksamen Menge eines Thiophen-carbonesters der Formel I gemäß
 Anspruch 1 behandelt.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

84.10 1466

Kategorie	EINSCHLÄGIG Kennzeichnung des Dokuments der maßgeb	mit Angabe, soweit erforderlich,	Betrifft Anspruch	KLASSIFIKATI ANMELDUNG	
Y	DE-A-2 040 579 (* Ansprüche *	MAY & BAKER)	1-9	C 07 D A 01 N	
Y	DE-A-2 122 636 (* Seiten 3,4; Ans	ESSO) prüche *	1-9		
Y	US-A-3 931 204 (* Spalte 8, Zeil 12, Zeilen 15-23	en 50-60; Spalte	1,5		· .
A ·	US-A-2 453 564 (* Ansprüche *	B.R. BAKER)	1		
P,Y	EP-A-0 090 309 (* Ansprüche *	BASF)	1-9	RECHERCH SACHGEBIETE	
				C 07 D A 01 N A 01 N	47/00
	(
·					.* ;
	er varliegende Recherchenbericht wurd	e für alle Patentansprüche erstellt.			
	Recherchenort DEN HAAG	Abschlußdatum der Recherch 22-05-1984	CHOUL	Prüfer LY J.	

X: von besonderer Bedeutung allein betrachtet
Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
A: technologischer Hintergrund
O: nichtschriftliche Offenbarung
P: Zwischenliteratur
T: der Erlindung zugrunde liegende Theorien oder Grundsätze

D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument

[&]amp; : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument