LTUFPJ

soluciones

Emmanuel Buenrostro

July 4, 2022

Problem (USAJMO 2022/1). Para cuales enteros positivos m existe una sucesion aritmetica infinita de enteros a_1, a_2, \ldots y una sucesion geometrica infinita g_1, g_2, \ldots que satisfagan las siguientes propiedades

- $a_n g_n$ es divisible por m para todos los enteros $n \ge 1$.
- $a_2 a_1$ no es divisible por m.

Solution. Por hipotesis $a_n \equiv g_n \mod m$) para toda $n \ge 1$.

Sea $a_n = k(n-1) + a_1$ y $g_n = x^{(n-1)}g_1$. Además $k, x \not\equiv 0 \mod m$.

Además $x \not\equiv 1(m)$ porque entonces todas las g_n tendrian el mismo modulo m, entonces tambien todas las a_n y entonces $k \equiv 0(m)$ una contradicción. Entonces tenemos que

$$g_2 = xg_1 \equiv xa_1 \equiv a_2 = k + a_1 \Rightarrow k \equiv a_1(x-1) \mod m$$

Vamos a llamar esta ecuacion (1).

Ahora vamos a escribir

$$m = \prod_{i=1}^{z} p_i^{\alpha_i}$$

con p_i primo y $a_i \ge 1$

Ahora notemos que sustituyendo $n = p_i$ para algun i tenemos que

$$a_p = k(p-1) + a_1 \equiv x^{p-1}a_1 \equiv a_1 \Rightarrow -k \equiv 0 \mod p$$

Asi que

$$(\prod_{i=1}^{z} p_i)|k$$

pero como $k \not\equiv 0(m)$ entonces para algun i se tiene que $a_i \geq 2$, a esta propiedad le llamaremos (2)

Ahora sustituyendo (1) en a_{n+1} tenemos que para $n \geq 2$

$$a_{n+1} = kn + a_1 \equiv a_1(xn - n + 1) \equiv x^n g_1 \equiv x^n a_1 \Rightarrow a_1(x^n - xn + n - 1) \equiv 0 \mod m$$

Vamos a tomar un (x-1) tal que $(x-1)^2 \equiv 0 \mod m \land x \not\equiv 1 \mod m$, entonces podemos tomar este valor

$$x - 1 = \prod_{i=1}^{z} p_i^{\lceil \frac{\alpha_i}{2} \rceil}$$

1

y por (2) 0 < x - 1 < m.

Ahora vamos a demostrar mediante inducción que $x^n - xn + n - 1 \equiv 0 \mod m$ Con n = 2 tenemos que $x^2 - 2x + 1 = (x - 1)^2 \equiv 0 \mod m$ entonces para n = 2 funciona Entonces para algun n = y asumimos que funciona, entonces para n = y - 1 tenemos que

$$n^{y+1} - x(y+1) + y = n^y - xy + y - 1 + (x-1)(x^{y+1} - 1) \equiv (x-1)((\prod_{i=1}^{z} p_i^{\lceil \frac{\alpha_i}{2} \rceil} + 1)^{y+1} - 1)$$

por Binomio de Newton tenemos que

$$\equiv (x-1)((y+1)(\prod_{i=1}^z p_i^{\lceil \frac{\alpha_i}{2} \rceil}) + 1 - 1) = (x-1)((y+1)(x-1)) = (x-1)^2(y+1) \equiv 0 \text{ mod } m$$

Entonces queda terminada la inducción, y probando que para todo m con algun $a_i \geq 2$ funciona tomando

$$x - 1 = \prod_{i=1}^{z} p_i^{\lceil \frac{\alpha_i}{2} \rceil}$$

y
$$k = a_1(x-1)$$
 para cualquier a_1