Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on

November 15, 2021

Auburn University
Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*. 3rd Ed. Pearson. 2013.

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options

For European call, if one use risk-neutral probability², then

$$C = e^{-rT} \sum_{i=0}^{n} \max(Su^{n-i}d^{i} - K, 0) \binom{n}{i} (p^{*})^{n-i} (1 - p^{*})^{i}$$

4

²One cannot have this simple expression if one uses the true probability.

FIGURE 19.1

Binomial tree (the same as in Figure 10.5) showing stock price paths, along with risk-neutral probabilities of reaching the various terminal prices. Assumes S = \$41.00, K = \$40.00, $\sigma = 0.30$, r = 0.08, t = 1.00 years, $\delta = 0.00$, and h = 0.333. The risk-neutral probability of going up is $p^* = 0.4568$. At the final node the stock price and terminal option payoff (beneath the price) are given.

_

Instead of using	the formula	to compute	the option	price,	one can	${\rm simulate}$

Example 19.1-1 Write a piece of code to simulate the binomial tree and compute the corresponding average payoff.

Solution. Check

codes/Section_19-1.py

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options

Check out the numpy.random reference³:

https://numpy.org/doc/1.16/reference/routines.random.html

³There is no need to build the wheels by ourselves.

Hello Kaylor and Andrew

$$\alpha + \sum_{n=1}^{\infty} a_n z^n$$

1	1	1	1
2	asdfadf 1	adsfadf 1	1
3	1	1	1
4	1	1	asdfadfj1
5	1	1	1asdfadj
6	1	1	1
7	1	1	1

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options

$$S_T = S_0 e^{\left(lpha - \delta - rac{1}{2}\sigma^2
ight)T + \sigma\sqrt{T}Z}$$

$$egin{aligned} S_h &= S_0 e^{\left(lpha - \delta - rac{1}{2}\sigma^2
ight)h + \sigma\sqrt{h}Z_1} \ S_{2h} &= S_h e^{\left(lpha - \delta - rac{1}{2}\sigma^2
ight)h + \sigma\sqrt{h}Z_2} \ &dots &dots \ S_{nh} &= S_{(n-1)h} e^{\left(lpha - \delta - rac{1}{2}\sigma^2
ight)h + \sigma\sqrt{h}Z_n} \end{aligned}$$

$$\Downarrow$$

$$\begin{split} S_{nh} = S_0 e^{\left(\alpha - \delta - \frac{1}{2}\sigma^2\right)h + \sigma\sqrt{h}\sum_{i=1}^n Z_i} = S_0 e^{\left(\alpha - \delta - \frac{1}{2}\sigma^2\right)h + \sigma\sqrt{T}\left[\frac{1}{\sqrt{n}}\sum_{i=1}^n Z_i\right]} \\ \text{where} \end{split}$$

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n} Z_i \sim N(0,1)$$

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options

$$V(S_0, 0) = \frac{1}{n} e^{-rT} \sum_{n=1}^{n} V\left(S_T^i, T\right)$$

where

- \triangleright S_T^1, \dots, S_T^n are n randomly drawn time-T stock prices.
- ► For European Call:

$$V(S_T^i, T) = \max\left(0, S_T^i - K\right)$$

Similarly one finds the expression for European put.

$$V(S_0, 0) = \frac{1}{n}e^{-rT}\sum_{n=1}^{n}V\left(S_T^i, T\right)$$

where

- \triangleright S_T^1, \dots, S_T^n are *n* randomly drawn time-*T* stock prices.
- ► For European Call:

$$oldsymbol{V}(oldsymbol{\mathcal{S}}_{T}^{i}, oldsymbol{T}) = \max\left(0, oldsymbol{\mathcal{S}}_{T}^{i} - oldsymbol{\mathcal{K}}
ight)$$

Similarly one finds the expression for European put.

$$V(S_0, 0) = \frac{1}{n}e^{-rT}\sum_{n=1}^{n}V\left(S_T^i, T\right)$$

where

- \triangleright S_T^1, \dots, S_T^n are *n* randomly drawn time-*T* stock prices.
- ► For European Call:

$$V(\mathcal{S}_{T}^{i}, T) = \max\left(0, \mathcal{S}_{T}^{i} - K\right)$$

Similarly one finds the expression for European put.

Example 19.4-1 Carry out the Monte Carlo valuation of the European call under the setting of the following table:

TABLE 19.2	Results of Monte Carlo valuation of European call with
	$S = \$40, K = \$40, \sigma = 30\%, r = 8\%, t = 91 \text{ days, and}$
	$\delta = 0$. The Black-Scholes price is \$2.78. Each trial uses
	500 random draws.
	500 faildoil draws.

Trial	Computed Price (\$)
	2.98
2	2.75
3	2.63
4	2.75
5	2.91
Average	2.804

Solution. Check

codes/Table_19-2.py

Example 19.4-2 Carry out the Monte Carlo valuation of the Asian call under the setting of the following table:

TABLE 19.3

Prices of arithmetic average-price Asian options estimated using Monte Carlo and exact prices of geometric average price options. Assumes option has 3 months to expiration and average is computed using equal intervals over the period. Each price is computed using 10,000 trials, assuming S=\$40, K=\$40, $\sigma=30\%$, r=8%, T=0.25, and $\delta=0$. In each row, the same random numbers were used to compute both the geometric and arithmetic average price options. σ_n is the standard deviation of the estimated arithmetic option prices, divided by $\sqrt{10,000}$.

Number of	Monte Carlo Prices (\$)		Exact	
Averages	Arithmetic	Geometric	Geometric Price (\$)	σ_n
	2.79	2.79	2.78	0.0408
3	2.03	1.99	1.94	0.0291
5	1.78	1.74	1.77	0.0259
10	1.70	1.66	1.65	0.0241
20	1.66	1.61	1.59	0.0231
40	1.63	1.58	1.56	0.0226

Solution. Check

codes/Table_19-3.py

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options

This section will be skipped for the interested students.

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options

This section will be skipped for the interested students.