

MANIPAL INSTITUTE OF TECHNOLOGY

MAHE, MANIPAL

FIRST SEMESTER B.Tech. END-SEMESTER MAKE-UP EXAMINATION

SUBJECT: ENGINEERING PHYSICS (PHY1051)

Time: 3 Hrs. Max. Marks: 50

Note: Any missing data may suitably be assumed.

Physical Constants:

Speed of light in vacuum = 3.00×10^8 m/s Electron charge = 1.60×10^{-19} C Electron mass = 9.11×10^{-31} kg Planck's constant = 6.63×10^{-34} J.s

Boltzmann constant = 1.38×10^{-23} J/ K

- **1A.** Discuss qualitatively, the Fraunhofer diffraction at a single-slit. [4]
- **1B.** A converging lens of diameter d=32 mm has a focal length f=24 cm. What angular separation (θ_R) must two distant point objects have to satisfy Rayleigh's criterion? Assume that the wavelength is $\lambda=550$ nm. How far apart (Δx) are the centers of the diffraction patterns in the focal plane of the lens?
- **1C.** The intensity on the screen at a certain point in a double-slit interference pattern is **64.0%** of the maximum value. **(i)** What minimum phase difference (in radians) between sources produces this result? **(ii)** Express this phase difference as a path difference for **486.1nm** light. **[3]**
- **2A.** Solve the Schrödinger equation for a quantum particle of mass **m** trapped in a one-dimensional infinite potential well (box) of length **L** and obtain the expressions for wave-functions of the particle. **[5]**
- **2B.** A **30** eV electron is incident on a square barrier of height **40** eV. What is the probability that the electron will tunnel through the barrier if its width is **0.10** nm? [3]
- **2C.** Distinguish between unpolarized and linearly polarized light. [2]
- **3A.** Which are the features of photoelectric effect-experiment explained by Einstein's photoelectric equation? [4]
- 3B. Explain (i) Stefan's law (ii) Wien's displacement law (iii) Plank's law.[4]
- **3C.** An electron has a kinetic energy of 3.0 eV. Find its de Broglie wavelength. [2]

- **4A.** Sodium is a monovalent metal having a density of 971 kg/m³ and a molar mass of 0.023 kg/mol. Use this information to calculate (a) the density of charge carriers and (b) the Fermi energy. $(N_A = 6.023 \times 10^{23})$ **[51]**
- **4B.** Explain the following terms with respect to LASER (i) spontaneous emission (ii) stimulated emission (iii) population inversion. [3]
- **4C.** Explain the origin of continuous X-rays. [2]
- **5A.** Based on the allowed states of a particle in a three dimensional box, derive the density-of-states function. [5]
- **5B.** The J = 0 to J = 1 rotational transition of the CO molecule occurs at a frequency of 1.15×10^{11} Hz. (i) Use this information to calculate the moment of inertia of the molecule. (ii) Calculate the bondlength of the molecule. (Mass number: Carbon 12, Oxygen 16 and mass of proton $m_p = 1.67 \times 10^{-27}$ kg) [3]
- **5C.** Most solar radiation has a wavelength of $1 \mu m$. What energy gap should the material in solar cell have in order to absorb this radiation?
