Analysis I und Lineare Algebra für Ingenieurwissenschaften Hausaufgabe 03 - Geuter 29

Moaz Haque, Felix Oechelhaeuser, Leo Pirker, Dennis Schulze

August 27, 2020

Contents

1	Aufgabe 1	2
	1.1 a)	2
	1.2 b)	
2	Aufgabe 2	2
	2.1 a)	2
	2.2 b)	
3	Aufgabe 3	4
	3.1 a	4
	3.2 b	
	3.3 c	
4	Aufgabe 4	4
	4.1 a	4
	4.2 b	4
	4.3 c	
5	Aufgabe 5	4
	5.1 a	4
	5.2 b	4
6	Aufgabe 6	4
	6.1 a	4
	6.2 b	
	0.4 0	-

1 Aufgabe 1

1.1 a)

$$p(z) = z^{2} + 3z - 1 + 2i$$

$$= (z^{2} - 2z) + (5z - 5) + (4 + 2i)$$

$$= 2T_{2}(z) + 5T_{1}(z) + (4 + 2i)T_{0}(z)$$

1.2 b)

$$\sin\left(x + \frac{\pi}{3}\right) = \sin(x)\cos\left(\frac{\pi}{3}\right) + \cos(x)\sin\left(\frac{\pi}{3}\right)$$
$$= \sin(x)\frac{1}{2} + \cos(x)\frac{\sqrt{3}}{2}$$

2 Aufgabe 2

2.1 a)

Umformung der Regel von T_1 :

$$0 = 3x_1 - 2x_2$$

$$\Leftrightarrow 2x_2 = 3x_1$$

$$\Leftrightarrow x_2 = \frac{3}{2}x_1$$

Damit gilt für T_1 :

$$T_1 = \left\{ \begin{bmatrix} x_1 \\ \frac{3}{2}x_1 \end{bmatrix} \in \mathbb{R}^2 \right\}$$
$$= \operatorname{span} \left\{ \begin{bmatrix} 1 \\ \frac{3}{2} \end{bmatrix} \right\}$$

Damit gelten die Addition und Skalarmultiplikation in \mathcal{T}_1 . Und daraus folgt:

$$T_1 \subset \mathbb{R}^2$$

Umformung der Regel von T_2 :

$$1 = x_1 x_2^3$$

$$\Leftrightarrow \frac{1}{x_1} = x_2^3$$

$$\Leftrightarrow \frac{1}{\sqrt[3]{x_1}} = x_2$$

Damit gilt für T_2 :

$$T_2 = \left\{ \begin{bmatrix} x_1 \\ \frac{1}{\sqrt[3]{x_1}} \end{bmatrix} \in \mathbb{R}^2 \right\}$$

Daraus folgt, dass keiner der Vektoren in T_2 als vielfaches eines anderen Vektors aus T_2 dargestellt werden kann. Ebenso gibt es keine zwei Vektoren $v, w \in T_2, v \neq -w$ für die gilt $v + w \in T_2$.

Daraus folgt:

$$T_2 \not\subset \mathbb{R}^2$$

2.2 b)

 $\forall f,g \in T$ gilt $f+g \in T$, da alle f und g an der Stelle x=-2 eine Nullstelle besitzen und f+g muss dem zu folge ebenfalls bei x=-2 eine Nullstelle besitzen. Analog gilt auch $\forall f \in T$ mit $\lambda \in \mathbb{R}$, dass $\lambda f \in T$. Auch hier hat f eine Nullstelle bei x=-2, die bei λf erhalten bleibt.

Also gilt:

$$T\subset V$$

- 3 Aufgabe 3
- 3.1 a
- 3.2 b
- 3.3 c
- 4 Aufgabe 4
- 4.1 a
- 4.2 b
- **4.3** c
- 5 Aufgabe 5
- **5.1** a
- **5.2** b
- 6 Aufgabe 6
- **6.1** a
- 6.2 b