Esercizi su esponenziali, coni, cilindri, superfici di rotazione

Esercizio 1. Risolvere

$$\exp(\exp(z)) = -i$$
.

Esercizio 2. Risolvere

$$2i\exp(z)z^4 + i\exp(z)(1+\sqrt{3}i) - 2z^4 - i\sqrt{3} - 1 = 0.$$

Esercizio 3. Risolvere

$$\exp(z) = -\frac{2i}{1+i} \,.$$

Esercizio 4. Sia data la curva di equazione

$$\gamma: \left\{ \begin{array}{ll} x &= 2+t^2 \\ y &= 2-3t+t^2 \\ z &= 3t \end{array} \right.$$

- (a) Dire (giustificando la risposta) se la curva è piana.
- (b) Scrivere le equazioni cartesiane della curva γ' proiezione ortogonale di γ sul piano x-y=0.

Esercizio 5. Siano dati la sfera S di equazione $x^2 + y^2 + z^2 - 2x - 2y - 4z + 5 = 0$ ed il piano α di equazione x - 2y + z - 2 = 0. Determinare l'equazione del cono di vertice O = (0,0,0) e direttrice l'intersezione della sfera S con il piano α .

Esercizio 6. Determinare l'equazione della superficie ottenuta dalla rotazione della retta

$$r: x = y = z$$

attorno all'asse y.

Esercizio 7. Determinare l'equazione della superficie ottenuta ruotando la retta r di equazioni

$$\begin{cases} x = 1 \\ y = 2 \end{cases}$$

attorno alla retta s di equazioni x = y = z. Determinare il raggio della circonferenza di raggio minimo contenuta nella superficie precedente.

Esercizio 8. Determinare l'equazione della superficie ottenuta dalla rotazione della curva

$$\gamma: \left\{ \begin{array}{l} x=t \\ y=0 \\ z=t^2 \end{array} \right. \quad t \in \mathbb{R}.$$

attorno all' asse z.

Esercizio 9. Verificare se la superficie di equazione $x^2 + y^2 + 2z^2 - 2xy - x - y = 0$ é di rotazione attorno alla retta di equazione $r: \left\{ \begin{array}{l} x = y \\ z = 0 \end{array} \right.$

Soluzioni

Soluzione 1.

Sia $\exp(z) = w$, dunque $\exp(w) = -i$, cioè $\exp(z) = \left(-\frac{\pi}{2} + 2k\pi\right)$, $k \in \mathbb{Z}$. Dobbiamo distinguere due casi:

1) se $-\frac{\pi}{2} + 2k\pi \ge 0$, cioè, dato che $k \in \mathbb{Z}$, se $k \ge 1$, allora

$$z = \log\left(-\frac{\pi}{2} + 2k\pi\right) + \left(\frac{\pi}{2} + 2h\pi\right), \quad h \in \mathbb{Z};$$

2) se $-\frac{\pi}{2}+2k\pi<0,$ cioè, dato che $k\in\mathbb{Z},$ se k<1,allora

$$z = \log\left(\frac{\pi}{2} - 2k\pi\right) + \left(-\frac{\pi}{2} + 2h\pi\right), \quad h \in \mathbb{Z}.$$

Soluzione 2.

$$2i \exp(z)z^4 + i \exp(z)(1+\sqrt{3}i) - 2z^4 - i\sqrt{3} - 1 = i \exp(z)(2z^4 + 1 + \sqrt{3}i) - (2z^4 + 1 + \sqrt{3}i) = (i \exp(z) - 1)(2z^4 + 1 + \sqrt{3}i) = 0.$$

Dunque le soluzioni dell'equazione di partenza sono date dall'unione delle soluzioni di a) $i\exp(z)-1=0$ e di b) $2z^4+1+\sqrt{3}i=0$. Le soluzioni di a) sono

$$z = \left(\frac{3}{2}\pi + 2k\pi\right)i \quad k \in \mathbb{Z}.$$

Le soluzioni di b) sono

$$\frac{1}{2}+i\frac{\sqrt{3}}{2},\quad -\frac{1}{2}-i\frac{\sqrt{3}}{2},\quad \frac{\sqrt{3}}{2}-i\frac{1}{2},\quad -\frac{\sqrt{3}}{2}+i\frac{1}{2}.$$

Soluzione 3.

Poichè
$$-\frac{2i}{1+i} = -i - 1 \quad \text{e} \quad -i - 1 = \sqrt{2}e^{\frac{5}{4}\pi}, \text{ si ha}$$

$$z = \log(\sqrt{2}) + i\left(\frac{5}{4}\pi + 2k\pi\right), \quad k \in \mathbb{Z}.$$

Soluzione 4.

(a) I METODO: Consideriamo tre punti P_0, P_1, P_2 di γ non allineati ed il piano α passante per questi tre punti. Poichè α contiene tre punti di γ , se γ è piana allora sarà contenuta in α . Siano ad esempio

$$P_0 = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} \quad P_1 = \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix} \quad P_2 = \begin{pmatrix} 3 \\ 6 \\ -3 \end{pmatrix}.$$

L 'equazione del piano α è data da

$$\det \begin{pmatrix} x-2 & y-2 & z \\ 1 & -2 & 3 \\ 1 & 4 & -3 \end{pmatrix} = 0, \text{ cioè } x-y-z = 0.$$

Intersechiamo α con γ :

$$\begin{cases} x - y - z = 0 \\ x = 2 + t^2 \\ y = 2 - 3t + t^2 \\ z = 3t \end{cases}$$

Sostituendo le coordinate del generico punto P_t di γ nell'equazione di α , si ottiene l'identità 0 = 0. Quindi $\forall t, P_t \in \alpha$ e γ è una curva piana.

II METODO: se γ è piana, ci deve essere un piano α che contiene γ . Il generico punto $P_t = \begin{pmatrix} 2+t^2 \\ 2-3t+t^2 \\ 3t \end{pmatrix}$ di γ appartiene al piano α di equazione ax+by+cz+d=0 se e solo se P_t soddisfa l'equazione di α . Cioè se

$$(2a + 2b + d) + (3c - 3b)t + (a + b)t^{2} = 0.$$

Questa è verificata

$$\begin{cases} 2a + 2b + d = 0 \\ 3c - 3b = 0 \\ a + b = 0 \end{cases},$$

quindi per a=-b, c=b, d=0. Quindi il piano di equazione x-y-z=0 contiene γ che dunque è una curva piana.

III METODO: eliminando la t nell'equazione parametrica di γ si ottiene l'equazione cartesiana di γ :

$$\begin{cases} z^2 = 9(x-2)^2 \\ x - y - z = 0 \end{cases}.$$

Quindi γ è intersezione di due superfici, di cui una è un piano, dunque γ è una curva piana.

(b) γ' è l'intersezione del piano $\alpha: x-y=0$ con il cilindro $\mathcal C$ che proietta γ parallelamente alla direzione di $n_{\alpha}=\begin{pmatrix} 1\\-1\\0 \end{pmatrix}$. Le equazioni parametriche di $\mathcal C$ sono

$$\begin{cases} x = 2 + t^2 + 1 \\ y = 2 - 3t + t^2 - 1 \\ z = 3t \end{cases}$$

e l'equazione cartesiana, che si ottiene eliminando i parametri è $C: 9x+9y-49=-9z+2z^2$. Quindi l'equazione di γ' è

$$\begin{cases} 9x + 9y - 49 = -9z + 2z^2 \\ x - y = 0 \end{cases}$$

Soluzione 5.

La direttrice è la circonferenza

$$\Gamma: \left\{ \begin{array}{l} x^2 + y^2 + z^2 - 2x - 2y - 4z + 5 = 0 \\ x - 2y + z - 2 = 0 \end{array} \right.$$

Il cono \mathcal{C} che dobbiamo determinare è il luogo geometrico delle rette per l'origine e per il generico punto $P = (a, b, c) \in \Gamma$. Quindi

$$\mathcal{C}: \left\{ \begin{array}{l} a^2 + b^2 + c^2 - 2a - 2b - 4c + 5 = 0 \\ a - 2b + c - 2 = 0 \\ x = at \\ y = bt \\ z = ct \end{array} \right. \implies \left\{ \begin{array}{l} a^2 + b^2 + c^2 - 2a - 2b - 4c + 5 = 0 \\ a - 2b + c - 2 = 0 \\ \frac{x}{a} = \frac{y}{c} = \frac{z}{c} \end{array} \right.$$

da cui otteniamo $a = \frac{x}{y}b$ e $c = \frac{z}{y}b$. Sostituendo nella seconda equazione otteniamo

$$b = \frac{2y}{x - 2y + z}$$
, e quindi $a = \frac{2x}{x - 2y + z}$, $c = \frac{2z}{x - 2y + z}$.

Utilizzando questi valori nella prima equazione e semplificando:

$$5x^2 + 32y^2 + z^2 - 16xy - 2xz - 8yz = 0,$$

che é l'equazione cartesiana del cono. Notiamo che poichè il vertice coincide con l'origine si tratta di un'equazione omogenea di secondo grado nelle variabili x, y, z.

Soluzione 6.

Le due rette si intersecano in O=(0,0,0) e quindi la superficie di rotazione è un cono \mathcal{C} di vertice nell'origine. Sia $P=(t,t,t)\in r$. L'equazione della circonferenza descritta da P nella rotazione attorno all'asse y è data dall' intersezione del piano passante per P ed ortogonale all'asse y e della sfera di centro C=(0,t,0) (puoi scegliere un qualsiasi punto sull'asse y, la scelta di questo punto particolare serve ad agevolare i calcoli) e raggio $d(C,P)=\sqrt{2}t$. L'equazione parametrica del cono è data da:

$$C: \left\{ \begin{array}{l} x^2 + (y-t)^2 + z^2 = 2t^2 \\ y = t \end{array} \right.,$$

da cui, eliminando il parametro, otteniamo $x^2 - 2y^2 + z^2 = 0$.

Soluzione 7.

Si tratta di due rette sghembe. Sia $P=(1,2,c)\in r$. La circonferenza descritta da P nella rotazione attorno alla retta s è data dall'intersezione del piano α passante per P ed ortogonale alla retta s con la sfera di centro O=(0,0,0) (va bene un qualsiasi punto sull'asse di rotazione) e raggio $d(O,P)=\sqrt{a^2+b^2+c^2}=5+c^2$. Dunque l'equazione parametrica della superficie di rotazione è

$$\begin{cases} x^2 + y^2 + z^2 = 5 + c^2 \\ x + y + z = 3 + c \\ a = 1 \\ b = 2 \end{cases} \Rightarrow \begin{cases} x^2 + y^2 + z^2 = 5 + (x + y + z - 3)^2 \\ c = x + y + z - 3 \\ a = 1 \\ b = 2 \end{cases}$$

Si ottiene quindi l'equazione cartesiana della superficie desiderata:

$$xy + xz + yz - 3x - 3y - 3z + 7 = 0.$$

Si tratta di un iperboloide a una falda, avente per asse la retta s.

Per determinare il raggio della circonferenza di raggio minimo, è sufficiente determinare il punto della retta r che descrive il raggio minore attorno a s. Intersechiamo il piano x + y + z = 3 + c con la retta s:

$$\begin{cases} x+y+z=3+c \\ x=y \\ y=z \end{cases} \Rightarrow \begin{cases} x=1+\frac{c}{3} \\ y=1+\frac{c}{3} \\ z=1+\frac{c}{3} \end{cases}.$$

La distanza dal punto (1, 2, c) della retta r è

$$\sqrt{\left(1+\frac{c}{3}-1\right)^2+\left(1+\frac{c}{3}-2\right)^2+\left(1+\frac{c}{3}-c\right)^2}=\sqrt{\frac{2}{3}\,c^2-2\,c+2}.$$

La funzione $f(c) = \frac{2}{3}c^2 - 2c + 2$ assume minimo per $c = \frac{3}{2}$, quindi:

raggio minimo =
$$\sqrt{\frac{2}{3} \cdot \left(\frac{3}{2}\right)^2 - 2 \cdot \left(\frac{3}{2}\right) + 2} = \frac{\sqrt{2}}{2}$$
.

Soluzione 8.

La curva γ è una curva piana, in particolare è la parabola $z=x^2$. Sia $P=(t,0,t^2)\in\gamma$. L' equazione cartesiana della superficie di rotazione si ricava da

$$\left\{ \begin{array}{l} x^2 + y^2 + z^2 = t^2 + t^4 \\ z = t^2 \end{array} \right. ,$$

da cui $x^2 + y^2 = z$ (si tratta di un paraboloide di rotazione).

Soluzione 9.

Per verificare se si tratta di una superficie di rotazione attorno alla retta r possiamo considerare la curva γ che si ottiene intersecando la superficie con il piano x = y (è la scelta più conveniente per i calcoli, in generale è possibile considerare qualsiasi piano contenente la retta r):

$$\gamma: \left\{ \begin{array}{l} x^2+y^2+2\,z^2-2\,xy-x-y=0 \\ x=y \end{array} \right. \Rightarrow \left\{ \begin{array}{l} z^2-x=0 \\ x=y \end{array} \right. .$$

Sia $P = (a, b, c) \in \gamma$, l'equazione della superficie che si ottiene ruotando γ attorno alla retta r si ottiene dal sistema

$$\begin{cases} x + y = a + b \\ x^2 + y^2 + z^2 = a^2 + b^2 + c^2 \\ c^2 = a \\ a = b \end{cases} \Rightarrow \begin{cases} x + y = 2a \\ x^2 + y^2 + z^2 = 2a^2 + a \\ c^2 = a \\ a = b \end{cases},$$

da cui si ricava l'equazione della superficie di rotazione:

$$x^{2} + y^{2} + z^{2} = 2\left(\frac{x+y}{2}\right)^{2} + \frac{x+y}{2} \implies x^{2} + y^{2} + 2z^{2} - 2xy - x - y = 0;$$

La superficie coincide con S che quindi è una superificie di rotazione attorno alla retta data.