Ben Roth Week 6 - Jupyter Notebook (Trees Classification)

March 6, 2020

- https://scikit-learn.org/stable/modules/tree.html
- https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
- https://scikit-learn.org/stable/modules/generated/sklearn.tree.plot_tree.html

```
In [1]: import warnings
        warnings.filterwarnings("ignore", category=DeprecationWarning)
In [2]: import seaborn as sns
        import matplotlib.pyplot as plt
        %matplotlib inline
        plt.rcParams['figure.figsize'] = (20, 6)
        plt.rcParams['font.size'] = 14
        import pandas as pd
In [3]: df = pd.read_csv('../data/adult.data', index_col=False)
In [4]: golden = pd.read_csv('.../data/adult.test', index_col=False)
In [5]: golden.head()
Out [5]:
                 workclass fnlwgt
                                         education education-num
                                                                         marital-status
           age
                   Private 226802
        0
            25
                                              11th
                                                                          Never-married
                             89814
        1
            38
                   Private
                                           HS-grad
                                                                9
                                                                     Married-civ-spouse
        2
            28
                 Local-gov 336951
                                        Assoc-acdm
                                                               12
                                                                     Married-civ-spouse
            44
        3
                   Private 160323
                                      Some-college
                                                               10
                                                                     Married-civ-spouse
                         ? 103497
                                      Some-college
                                                               10
            18
                                                                          Never-married
                   occupation relationship
                                               race
                                                              capital-gain
            Machine-op-inspct
        0
                                  Own-child
                                              Black
                                                        Male
                                                                          0
                                                                          0
        1
              Farming-fishing
                                    Husband
                                              White
                                                        Male
        2
              Protective-serv
                                              White
                                                        Male
                                                                          0
                                    Husband
        3
            Machine-op-inspct
                                                                       7688
                                    Husband
                                              Black
                                                        Male
        4
                                 Own-child
                                              White
                                                      Female
                                                                          0
           capital-loss
                         hours-per-week native-country
                                                           salary
        0
                      0
                                           United-States
                                                           <=50K.
                      0
                                      50
                                           United-States
                                                           <=50K.
        1
        2
                      0
                                      40
                                           United-States
                                                           >50K.
        3
                      0
                                      40
                                           United-States
                                                            >50K.
        4
                      0
                                          United-States
                                      30
                                                           <=50K.
```

```
In [6]: df.head()
Out[6]:
                        workclass fnlwgt
                                             education education-num
           age
                                     77516
                                             Bachelors
            39
                        State-gov
                                                                    13
        1
            50
                 Self-emp-not-inc
                                     83311
                                             Bachelors
                                                                    13
        2
            38
                          Private 215646
                                               HS-grad
                                                                     9
                          Private
                                                                     7
        3
            53
                                   234721
                                                  11th
        4
            28
                          Private 338409
                                             Bachelors
                                                                    13
                marital-status
                                                       relationship
                                         occupation
                                                                        race
                                                                                  sex
        0
                 Never-married
                                       Adm-clerical
                                                      Not-in-family
                                                                       White
                                                                                 Male
        1
            Married-civ-spouse
                                    Exec-managerial
                                                             Husband
                                                                       White
                                                                                 Male
        2
                      Divorced
                                  Handlers-cleaners
                                                      Not-in-family
                                                                       White
                                                                                 Male
           Married-civ-spouse
                                  Handlers-cleaners
                                                             Husband
        3
                                                                       Black
                                                                                 Male
        4
            Married-civ-spouse
                                     Prof-specialty
                                                                Wife
                                                                       Black
                                                                               Female
                         capital-loss
           capital-gain
                                        hours-per-week
                                                        native-country
                                                                         salary
        0
                   2174
                                                                          <=50K
                                     0
                                                         United-States
                                                    40
                                     0
        1
                      0
                                                    13
                                                         United-States
                                                                          <=50K
        2
                      0
                                     0
                                                    40
                                                         United-States
                                                                          <=50K
        3
                                     0
                                                         United-States
                                                                          <=50K
                      0
                                                    40
        4
                      0
                                     0
                                                    40
                                                                   Cuba
                                                                          <=50K
In [7]: df.columns
Out[7]: Index(['age', 'workclass', 'fnlwgt', 'education', 'education-num',
               'marital-status', 'occupation', 'relationship', 'race', 'sex',
               'capital-gain', 'capital-loss', 'hours-per-week', 'native-country',
               'salary'],
              dtype='object')
In [8]: from sklearn import preprocessing
In [9]: enc = preprocessing.OrdinalEncoder()
In [10]: transform_columns = ['sex']
         non_num_columns = ['workclass', 'education', 'marital-status',
                               'occupation', 'relationship', 'race', 'sex',
                               'native-country']
In [11]: pd.get_dummies(df[transform_columns]).head()
Out[11]:
            sex_Female
                         sex_ Male
         0
                      0
         1
                      0
                                  1
         2
                      0
                                  1
         3
                      0
                                  1
         4
                                  0
                      1
```

```
In [12]: x = df.copy()
         x = pd.concat([x.drop(non_num_columns, axis=1),
                        pd.get_dummies(df[transform_columns])], axis=1,)
         x["salary"] = enc.fit_transform(df[["salary"]])
In [13]: x.head()
Out[13]:
            age fnlwgt education-num capital-gain capital-loss hours-per-week \
                  77516
                                                 2174
             39
                                    13
                                                                                 40
         1
            50
                83311
                                    13
                                                   0
                                                                  0
                                                                                 13
         2
            38 215646
                                     9
                                                    0
                                                                                 40
                                                                  0
         3
            53 234721
                                     7
                                                    0
                                                                  0
                                                                                 40
             28 338409
                                                                  0
                                    13
                                                                                 40
            salary sex_ Female sex_ Male
         0
               0.0
                              0
               0.0
         1
                              0
                                         1
         2
               0.0
                              0
                                         1
                              0
         3
               0.0
                                         1
         4
               0.0
                              1
                                         0
In [14]: xt = golden.copy()
         xt = pd.concat([xt.drop(non_num_columns, axis=1),
                        pd.get_dummies(golden[transform_columns])], axis=1,)
         xt["salary"] = enc.fit_transform(golden[["salary"]])
In [15]: xt.salary.value_counts()
Out[15]: 0.0
                12435
                 3846
         1.0
         Name: salary, dtype: int64
In [16]: enc.categories_
Out[16]: [array([' <=50K.', ' >50K.'], dtype=object)]
In [17]: from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.ensemble import GradientBoostingClassifier
Choose the model of your preference: DecisionTree or RandomForest
In [18]: model = RandomForestClassifier(criterion='entropy')
In [19]: model = DecisionTreeClassifier(criterion='entropy', max_depth=None)
```

```
In [20]: model.fit(x.drop(['fnlwgt', 'salary'], axis=1), x.salary)
Out [20]: DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=None,
                                max_features=None, max_leaf_nodes=None,
                                min_impurity_decrease=0.0, min_impurity_split=None,
                                 min_samples_leaf=1, min_samples_split=2,
                                 min_weight_fraction_leaf=0.0, presort=False,
                                 random_state=None, splitter='best')
In [21]: model.tree_.node_count
Out[21]: 8321
In [22]: list(zip(x.drop(['fnlwgt', 'salary'], axis=1).columns, model.feature_importances_))
Out[22]: [('age', 0.32291554471892336),
          ('education-num', 0.16238431110494822),
          ('capital-gain', 0.22779935087425895),
          ('capital-loss', 0.07844540364173368),
          ('hours-per-week', 0.15302090309108082),
          ('sex Female', 0.054375187001441436),
          ('sex_ Male', 0.0010592995676135919)]
In [23]: list(zip(x.drop(['fnlwgt','salary'], axis=1).columns, model.feature_importances_))
Out[23]: [('age', 0.32291554471892336),
          ('education-num', 0.16238431110494822),
          ('capital-gain', 0.22779935087425895),
          ('capital-loss', 0.07844540364173368),
          ('hours-per-week', 0.15302090309108082),
          ('sex_ Female', 0.054375187001441436),
          ('sex_ Male', 0.0010592995676135919)]
In [24]: x.drop(['fnlwgt','salary'], axis=1).head()
Out [24]:
                 education-num capital-gain capital-loss hours-per-week
            age
         0
             39
                            13
                                         2174
                                                          0
                                                                          40
         1
             50
                            13
                                            0
                                                          0
                                                                          13
         2
             38
                             9
                                                          0
                                                                          40
                             7
                                            0
                                                                          40
         3
             53
                                                          0
             28
                            13
                                                                          40
            sex_ Female
                        sex_ Male
                      0
         0
                                  1
         1
                      0
                                  1
         2
                      0
                                  1
         3
                      0
                                  1
```

In [25]: set(x.columns) - set(xt.columns)

```
Out[25]: set()
In [26]: list(x.drop('salary', axis=1).columns)
Out[26]: ['age',
          'fnlwgt',
          'education-num',
          'capital-gain',
          'capital-loss',
          'hours-per-week',
          'sex_ Female',
          'sex_ Male']
In [27]: predictions = model.predict(xt.drop(['fnlwgt', 'salary'], axis=1))
         predictionsx = model.predict(x.drop(['fnlwgt', 'salary'], axis=1))
In [28]: from sklearn.metrics import (
             accuracy_score,
             classification_report,
             confusion_matrix, auc, roc_curve
         )
In [29]: accuracy_score(xt.salary, predictions)
Out [29]: 0.8205269946563479
In [30]: accuracy_score(xt.salary, predictions)
Out[30]: 0.8205269946563479
In [31]: confusion_matrix(xt.salary, predictions)
Out[31]: array([[11459,
                          976],
                [ 1946, 1900]], dtype=int64)
In [32]: print(classification_report(xt.salary, predictions))
              precision
                           recall f1-score
                                               support
         0.0
                   0.85
                             0.92
                                        0.89
                                                 12435
         1.0
                   0.66
                             0.49
                                        0.57
                                                  3846
                                        0.82
                                                 16281
    accuracy
                                        0.73
                                                 16281
  macro avg
                   0.76
                             0.71
weighted avg
                             0.82
                   0.81
                                        0.81
                                                 16281
```

In [33]: print(classification_report(xt.salary, predictions))

	precision	recall	f1-score	support
0.0	0.85	0.92	0.89	12435
1.0	0.66	0.49	0.57	3846
accuracy			0.82	16281
macro avg	0.76	0.71	0.73	16281
weighted avg	0.81	0.82	0.81	16281

In [34]: accuracy_score(x.salary, predictionsx)

Out[34]: 0.8955806025613464

In [35]: confusion_matrix(x.salary, predictionsx)

Out[35]: array([[24097, 623],

[2777, 5064]], dtype=int64)

In [36]: print(classification_report(x.salary, predictionsx))

	precision	recall	f1-score	support
0.0	0.90	0.97	0.93	24720
1.0	0.89	0.65	0.75	7841
accuracy			0.90	32561
macro avg	0.89	0.81	0.84	32561
weighted avg	0.90	0.90	0.89	32561

In [37]: print(classification_report(x.salary, predictionsx))

	precision	recall	f1-score	support
0.0	0.90	0.97	0.93	24720
1.0	0.89	0.65	0.75	7841
accuracy			0.90	32561
macro avg	0.89	0.81	0.84	32561
weighted avg	0.90	0.90	0.89	32561

- 1 For the following use the above adult dataset. Start with only numerical features/columns.
- 2 1. Show the RandomForest outperforms the DecisionTree for a fixed max_depth by training using the train set and precision, recall, f1 on golden-test set.

```
In [38]: rf = RandomForestClassifier(criterion='entropy', max_depth = 10)
         dt = DecisionTreeClassifier(criterion='entropy', max_depth = 10)
         transform_columns = ['sex']
         non_num_columns = ['workclass', 'education', 'marital-status',
                              'occupation', 'relationship', 'race', 'sex',
                              'native-country']
         df["salary"] = enc.fit_transform(df[["salary"]])
         golden["salary"] = enc.fit_transform(golden[["salary"]])
         df_drop = df.drop(columns = non_num_columns)
         gold_drop = golden.drop(columns = non_num_columns)
         rf.fit(df_drop.drop(['fnlwgt','salary'], axis=1), df_drop.salary)
         dt.fit(df_drop.drop(['fnlwgt','salary'], axis=1), df_drop.salary)
         preds_rf = rf.predict(gold_drop.drop(['fnlwgt','salary'], axis=1))
         preds_dt = dt.predict(gold_drop.drop(['fnlwgt', 'salary'], axis=1))
C:\Users\rothb13\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\ensemble\forest.p
  "10 in version 0.20 to 100 in 0.22.", FutureWarning)
In [39]: print('The Classification Report for the Random Forest Model is:')
         print(classification_report(gold_drop.salary, preds_rf))
         print('\n\nThe Classification Report for the Decision Model is:')
         print(classification_report(gold_drop.salary, preds_dt))
The Classification Report for the Random Forest Model is:
              precision
                           recall f1-score
                                              support
         0.0
                   0.85
                             0.96
                                       0.90
                                                12435
         1.0
                   0.78
                             0.44
                                       0.56
                                                 3846
                                       0.84
                                                16281
   accuracy
  macro avg
                             0.70
                                       0.73
                                                16281
                   0.81
weighted avg
                   0.83
                             0.84
                                       0.82
                                                16281
```

The Classification Report for the Decision Model is: precision recall f1-score 0.0 0.85 0.94 0.90 12435 1.0 0.72 0.48 0.58 3846 accuracy 0.83 16281 0.78 0.71 0.74 16281 macro avg weighted avg 0.82 0.83 0.82 16281

3 2. For RandomForest or DecisionTree and using the adult dataset, systematically add new columns, one by one, that are non-numerical but converted using the feature-extraction techniques we learned. Show [precision, recall, f1] for each additional feature added.

```
In [40]: from sklearn.preprocessing import LabelEncoder
         import numpy as np
         df = pd.read_csv('.../data/adult.data', index_col=False)
         golden = pd.read_csv('.../data/adult.test', index_col=False)
         df["salary"] = enc.fit_transform(df[["salary"]])
         golden["salary"] = enc.fit_transform(golden[["salary"]])
         for col in non_num_columns:
             df[col] = LabelEncoder().fit_transform(df[col].values)
             golden[col] = LabelEncoder().fit_transform(golden[col].values)
             df_num = df.select_dtypes([np.number])
             gold_num = golden.select_dtypes([np.number])
             rf = RandomForestClassifier(criterion='entropy', max_depth = 10)
             dt = DecisionTreeClassifier(criterion='entropy', max_depth = 10)
             rf.fit(df_num.drop(['fnlwgt', 'salary'], axis=1), df_num.salary)
             dt.fit(df_num.drop(['fnlwgt','salary'], axis=1), df_num.salary)
             preds_rf = rf.predict(gold_num.drop(['fnlwgt', 'salary'], axis=1))
             preds_dt = dt.predict(gold_num.drop(['fnlwgt', 'salary'], axis=1))
             print('The columns in the model data is: ', df_num.columns)
```

print('The Classification Report for the Random Forest Model (adding ', col, ' to
print(classification_report(gold_num.salary, preds_rf))

print('\n\nThe Classification Report for the Decision Model (adding ', col, ' to 'print(classification_report(gold_num.salary, preds_dt))

C:\Users\rothb13\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\ensemble\forest.pg
"10 in version 0.20 to 100 in 0.22.", FutureWarning)

The columns in the model data is: Index(['age', 'workclass', 'fnlwgt', 'education-num', 'capic', 'capital-loss', 'hours-per-week', 'salary'],

dtype='object')

The Classification Report for the Random Forest Model (adding workclass to the data) is: precision recall f1-score support

0.0	0.85	0.96	0.90	12435
1.0	0.79	0.43	0.55	3846
accuracy			0.84	16281
macro avg	0.82	0.70	0.73	16281
weighted avg	0.83	0.84	0.82	16281

The Classification Report for the Decision Model (adding workclass to the data) is:

recall f1-score

0.0	0.85	0.95	0.90	12435
1.0	0.74	0.47	0.57	3846
accuracy			0.84	16281
macro avg	0.80	0.71	0.74	16281
weighted avg	0.83	0.84	0.82	16281

precision

C:\Users\rothb13\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\ensemble\forest.pg
"10 in version 0.20 to 100 in 0.22.", FutureWarning)

support

The columns in the model data is: Index(['age', 'workclass', 'fnlwgt', 'education', 'education', 'capital-gain', 'capital-loss', 'hours-per-week', 'salary'],

dtype='object')

The Classification Report for the Random Forest Model (adding education to the data) is: precision recall f1-score support

0.0	0.85	0.96	0.90	12435
1.0	0.77	0.45	0.56	3846

accuracy			0.84	16281
macro avg	0.81	0.70	0.73	16281
weighted avg	0.83	0.84	0.82	16281

The Classification Report for the Decision Model (adding education to the data) is: precision recall f1-score support

	r			
0.0	0.85	0.95	0.90	12435
1.0	0.75	0.47	0.57	3846
accuracy			0.84	16281
macro avg	0.80	0.71	0.74	16281
weighted avg	0.83	0.84	0.82	16281

C:\Users\rothb13\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\ensemble\forest.pg
"10 in version 0.20 to 100 in 0.22.", FutureWarning)

The columns in the model data is: Index(['age', 'workclass', 'fnlwgt', 'education', 'education', 'marital-status', 'capital-gain', 'capital-loss', 'hours-per-week', 'salary'],

dtype='object')

The Classification Report for the Random Forest Model (adding marital-status to the data) is precision recall f1-score support

0.87	0.96	0.91	12435
0.79	0.53	0.63	3846
		0.86	16281
0.83	0.74	0.77	16281
0.85	0.86	0.84	16281
	0.79	0.79	0.79 0.53 0.63 0.86 0.83 0.74 0.77

The Classification Report for the Decision Model (adding marital-status to the data) is: precision recall f1-score support

	0.0	0.89	0.92	0.91	12435
	1.0	0.71	0.64	0.68	3846
accur	acy			0.85	16281
macro	avg	0.80	0.78	0.79	16281
weighted	avg	0.85	0.85	0.85	16281

C:\Users\rothb13\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\ensemble\forest.pg
"10 in version 0.20 to 100 in 0.22.", FutureWarning)

The columns in the model data is: Index(['age', 'workclass', 'fnlwgt', 'education', 'education', 'marital-status', 'occupation', 'capital-gain', 'capital-loss', 'hours-per-week', 'salary'],

dtype='object')

The Classification Report for the Random Forest Model (adding occupation to the data) is:

precision recall f1-score support

•				
0.0	0.87	0.96	0.91	12435
1.0	0.79	0.53	0.63	3846
accuracy			0.86	16281
macro avg	0.83	0.74	0.77	16281
weighted avg	0.85	0.86	0.85	16281

The Classification Report for the Decision Model (adding occupation to the data) is:

support

	•			••
0.0	0.8	0.9	0.91	12435
1.0	0.7	71 0.6	0.68	3846
accuracy			0.85	16281
macro avg	0.8	30 0.7	8 0.79	16281
weighted avg	0.8	0.8	0.85	16281

precision recall f1-score

C:\Users\rothb13\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\ensemble\forest.pg
"10 in version 0.20 to 100 in 0.22.", FutureWarning)

The columns in the model data is: Index(['age', 'workclass', 'fnlwgt', 'education', 'education', 'marital-status', 'occupation', 'relationship', 'capital-gain', 'capital-loss', 'hours-per-week', 'salary'],

dtype='object')

The Classification Report for the Random Forest Model (adding relationship to the data) is: precision recall f1-score support

0.0	0.87	0.95	0.91	12435
1.0	0.79	0.54	0.64	3846

accuracy			0.86	16281
macro avg	0.83	0.75	0.78	16281
weighted avg	0.85	0.86	0.85	16281

The Classification Report for the Decision Model (adding relationship to the data) is:

precision recall f1-score support

	brecipion	recarr	11 20016	support
0.0	0.89	0.92	0.91	12435
1.0	0.72	0.64	0.68	3846
26017267			0.86	16281
accuracy macro avg	0.80	0.78	0.30	16281
weighted avg	0.85	0.86	0.85	16281

C:\Users\rothb13\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\ensemble\forest.pg
"10 in version 0.20 to 100 in 0.22.", FutureWarning)

The columns in the model data is: Index(['age', 'workclass', 'fnlwgt', 'education', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'capital-gain', 'capital-loss', 'hours-per-week', 'salary'], dtype='object')

The Classification Report for the Random Forest Model (adding race to the data) is: precision recall f1-score support

0.0	0.87	0.95	0.91	12435
1.0	0.79	0.54	0.64	3846
accuracy			0.86	16281
macro avg	0.83	0.75	0.78	16281
weighted avg	0.85	0.86	0.85	16281

The Classification Report for the Decision Model (adding race to the data) is:

	precision	recall	f1-score	support
0.0	0.89	0.92	0.91	12435
1.0	0.72	0.64	0.68	3846
accuracy			0.86	16281
macro avg	0.80	0.78	0.79	16281
weighted avg	0.85	0.86	0.85	16281

C:\Users\rothb13\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\ensemble\forest.pg "10 in version 0.20 to 100 in 0.22.", FutureWarning)

The columns in the model data is: Index(['age', 'workclass', 'fnlwgt', 'education', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'salary'], dtype='object')

The Classification Report for the Random Forest Model (adding sex to the data) is: precision recall f1-score support

_				
0.0	0.87	0.95	0.91	12435
1.0	0.79	0.56	0.65	3846
accuracy			0.86	16281
macro avg	0.83	0.76	0.78	16281
weighted avg	0.85	0.86	0.85	16281

The Classification Report for the Decision Model (adding sex to the data) is: recall f1-score support

	F			- FF	
0.0	0.89	0.92	0.91	12435	
1.0	0.72	0.64	0.68	3846	
accuracy			0.86	16281	
macro avg	0.80	0.78	0.79	16281	
weighted avg	0.85	0.86	0.85	16281	

precision

C:\Users\rothb13\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\ensemble\forest.pg "10 in version 0.20 to 100 in 0.22.", FutureWarning)

```
The columns in the model data is: Index(['age', 'workclass', 'fnlwgt', 'education', 'education',
       'marital-status', 'occupation', 'relationship', 'race', 'sex',
       'capital-gain', 'capital-loss', 'hours-per-week', 'native-country',
       'salary'],
```

dtype='object')

The Classification Report for the Random Forest Model (adding native-country to the data) is precision recall f1-score support

(0.0	0.87	0.96	0.91	12435
	1.0	0.79	0.53	0.63	3846
accura	acy			0.86	16281

macro	avg	0.83	0.74	0.77	16281
weighted	avg	0.85	0.86	0.85	16281

The Classification Report for the Decision Model (adding native-country to the data) is:

precision recall f1-score support

0.0	0.89	0.92	0.91	12435
1.0	0.71	0.64	0.68	3846
accuracy			0.85	16281
macro avg	0.80	0.78	0.79	16281
weighted avg	0.85	0.85	0.85	16281

4 3. Optional: Using gridSearch find the most optimal parameters for your model

Warning: this can be computationally intensive and may take some time. - https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html - https://scikit-learn.org/stable/modules/grid_search.html

The Classification Report for the Random Forest Model is:

precision

0.0	0.88	0.94	0.91	12435
1.0	0.77	0.60	0.67	3846
ccuracy			0.86	16281

recall f1-score

macro	avg	0.83	0.77	0.79	16281
weighted	avg	0.86	0.86	0.86	16281