Random Matrices Meet Machine Learning: A Large Dimensional Analysis of LS-SVM ICASSP'17

Zhenyu Liao, Romain Couillet

CentraleSupélec Université Paris-Saclay Paris, France

Outline

Motivation

- Problem Statement
- Main Results
- Summary

Motivation

Performance analysis of SVM difficult:

- strongly data-driven
- implicit form
- kernel non-linearity

In addition:

- ullet results only available for number of data $n o \infty$
- ullet no prediction so far when dimension of data $p \sim n$
- when $n, p \to \infty$, completely different behavior of kernels
- ⇒ SVM for BigData not understood

In this work:

- new random matrix approach to linearize kernels
- \bullet asymptotic analysis of LS-SVM for $n,p\to\infty$
- new insights

Reminders: Binary Classification Problem

Training:

Training set: $\mathbf{x}_1, \dots, \mathbf{x}_{n_1} \in \mathcal{C}_1$, $\mathbf{x}_{n_1+1}, \dots, \mathbf{x}_n \in \mathcal{C}_2$. $\mathbf{x}_i \in \mathbb{R}^p, \forall i = 1, \dots, n$.

Test:

New datum $x \Rightarrow$ which class?

Least Squares Support Vector Machines (1)

When C_1, C_2 are linearly separable.

Optimization problem: find separating hyperplane

$$\underset{\mathbf{w}}{\operatorname{arg\,min}} \quad J(\mathbf{w}, e) = \|\mathbf{w}\|^2 + \frac{\gamma}{n} \sum_{i=1}^n e_i^2$$

$$\text{such that} \quad y_i = \mathbf{w}^\mathsf{T} \mathbf{x}_i + b + e_i$$

$$\text{for } i = 1, \dots, n$$

Least Squares Support Vector Machines (2)

When no linear separability:

⇒ Kernel method

To solve the optimization problem:

$$\underset{\mathbf{w}}{\operatorname{arg\,min}} \quad J(\mathbf{w}, e) = \|\mathbf{w}\|^2 + \frac{\gamma}{n} \sum_{i=1}^n e_i^2$$

$$\text{such that} \quad y_i = \mathbf{w}^{\mathsf{T}} \boldsymbol{\varphi}(\mathbf{x}_i) + b + e_i$$

$$\text{for } i = 1, \dots, n$$

Least Squares Support Vector Machines (3)

• Training: Solution given by $\mathbf{w} = \sum_{i=1}^{n} \alpha_i \varphi(\mathbf{x}_i)$, where

$$\begin{cases} \alpha = \mathbf{S} \left(\mathbf{I}_n - \frac{\mathbf{1}_n \mathbf{1}_n^\mathsf{T} \mathbf{S}}{\mathbf{1}_n^\mathsf{T} \mathbf{S} \mathbf{1}_n} \right) \mathbf{y} = \mathbf{S} \left(\mathbf{y} - b \mathbf{1}_n \right) \\ b = \frac{\mathbf{1}_n^\mathsf{T} \mathbf{S} \mathbf{y}}{\mathbf{1}_n^\mathsf{T} \mathbf{S} \mathbf{1}_n} \end{cases}$$
(1)

with $\mathbf{S} \equiv \left(\mathbf{K} + \frac{n}{\gamma}\mathbf{I}_n\right)^{-1}$ resolvent of kernel matrix:

$$\mathbf{K} \equiv \left\{ \varphi(\mathbf{x}_i)^\mathsf{T} \varphi(\mathbf{x}_j) \right\}_{i,j=1}^n = \left\{ f\left(\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{p} \right) \right\}_{i,j=1}^n \tag{2}$$

for some translation invariant kernel function $f: \mathbb{R}_+ \mapsto \mathbb{R}_+$, $\mathbf{y} \equiv [y_1, \dots, y_n]^\mathsf{T}$ and $\boldsymbol{\alpha} \equiv [\alpha_1, \dots, \alpha_n]^\mathsf{T}$.

Test: Decision for new x

$$g(\mathbf{x}) = \alpha^{\mathsf{T}} \mathbf{k}(\mathbf{x}) + b \tag{3}$$

where $\mathbf{k}(\mathbf{x}) = \left\{ f\left(\|\mathbf{x}_j - \mathbf{x}\|^2/p\right) \right\}_{j=1}^n \in \mathbb{R}^n.$

 \Rightarrow In practice, sign(g(x)) to predict the class.

Advantage

Explicit form, as opposed to SVM \Rightarrow easier to analyze.

Asymptotic Regime: Growth Rate Assumptions

- \bullet Large dimension: $n,p\to\infty$ and $\frac{p}{n}\to c_0$
- Gaussian mixture model: for $a \in \{1, 2\}$:

$$\mathbf{x}_i \in \mathcal{N}(oldsymbol{\mu}_a, \mathbf{C}_a)$$

- Non-trivial regime: to ensure $P(\mathbf{x}_i \to \mathcal{C}_b \mid \mathbf{x}_i \in \mathcal{C}_a) \not\to 0$ nor 1
 - $\| \boldsymbol{\mu}_2 \boldsymbol{\mu}_1 \| = O(1)$
 - $\|\mathbf{C}_a\| = O(1)$ and $\operatorname{tr}(\mathbf{C}_2 \mathbf{C}_1) = O(\sqrt{n})$
 - \Rightarrow If relaxed, perfect classification from $\|\mathbf{x}_i\|$
- Technical assumptions:
 - $ightharpoonup \mathbf{C}^{\circ} \equiv c_1 \mathbf{C}_1 + c_2 \mathbf{C}_2$, $c_1 \equiv \frac{n_1}{n}$ and $c_2 \equiv \frac{n_2}{n} = 1 c_1$
 - Key Notation: $\tau \equiv \frac{2}{n} \operatorname{tr} C^{\circ}$

Kernel linearization (1)

Recall

- kernel matrix \mathbf{K} : $\mathbf{K}_{i,j} = f\left(\frac{\|\mathbf{x}_i \mathbf{x}_j\|^2}{p}\right)$
- growth rate assumptions

$$\|\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1\| = O(1)$$

$$\|\mathbf{C}_a\| = O(1) \text{ and } \operatorname{tr}(\mathbf{C}_2 - \mathbf{C}_1) = O(\sqrt{n})$$

• Gaussian data: $\mathbf{x}_i \sim \mathcal{N}(\boldsymbol{\mu}_a, \mathbf{C}_a)$ or $\mathbf{x}_i = \boldsymbol{\mu}_a + \mathbf{w}_i$ where $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_a)$

For
$$\mathbf{x}_i \in \mathcal{C}_a$$
 and $\mathbf{x}_j \in \mathcal{C}_b$

$$\frac{1}{p} \|\mathbf{x}_i - \mathbf{x}_j\|^2 = \frac{1}{p} \|\mathbf{w}_i - \mathbf{w}_j\|^2 + \underbrace{\frac{1}{p} \|\boldsymbol{\mu}_a - \boldsymbol{\mu}_b\|^2}_{O(n^{-1})} + \underbrace{\frac{2}{\sqrt{p}} (\boldsymbol{\mu}_a - \boldsymbol{\mu}_b)^\mathsf{T} (\mathbf{w}_i - \mathbf{w}_j)}_{O(n^{-1})}$$

$$= \underbrace{\frac{\mathbb{E}[\|\mathbf{w}_i\|^2] + \mathbb{E}[\|\mathbf{w}_j\|^2]}{p}}_{P} + \underbrace{\frac{\|\mathbf{w}_i\|^2 - \mathbb{E}[\|\mathbf{w}_i\|^2]}{p}}_{O(n^{-1/2})} + \underbrace{\frac{\|\mathbf{w}_j\|^2 - \mathbb{E}[\|\mathbf{w}_j\|^2]}{p}}_{O(n^{-1/2})} - \frac{2}{p} \mathbf{w}_i^\mathsf{T} \mathbf{w}_j + O(\frac{1}{n})$$

$$= \frac{1}{p} \operatorname{tr} \mathbf{C}_a + \frac{1}{p} \operatorname{tr} \mathbf{C}_b + O(\frac{1}{\sqrt{n}}) = \underbrace{\frac{2}{p} \operatorname{tr} \mathbf{C}^\circ}_{\mathbb{E}(1)} + \underbrace{\frac{1}{p} \operatorname{tr} (\mathbf{C}_a - \mathbf{C}^\circ) + \frac{1}{p} \operatorname{tr} (\mathbf{C}_b - \mathbf{C}^\circ)}_{O(n^{-1/2})} + O(\frac{1}{\sqrt{n}})$$

$$\Rightarrow \frac{1}{p} \|\mathbf{x}_i - \mathbf{x}_j\|^2 = \tau + O(n^{-1/2})$$

Kernel linearization (2)

Recall: kernel matrix

$$\mathbf{K}_{i,j} = f\left(\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{p}\right)$$

For $\mathbf{x}_i \in \mathcal{C}_a$ and $\mathbf{x}_j \in \mathcal{C}_b$: $\frac{1}{p} \|\mathbf{x}_i - \mathbf{x}_j\|^2 = \tau + O(n^{-1/2})$, thus for $\mathbf{K}_{i,j}$

$$\mathbf{K}_{i,j} = f\left(\tau + O(n^{-1/2})\right) = f(\tau) + f'(\tau)[\ldots] + f''(\tau)[\ldots] \ldots$$

or in matrix form

$$\mathbf{K} = f(\tau)\mathbf{1}_n\mathbf{1}_n^{\mathsf{T}} + f'(\tau)[\ldots] + f''(\tau)[\ldots] + \ldots$$

Non trivial RMT calculus: $\mathbf{A}_{ij} \to 0 \not\Leftrightarrow \|\mathbf{A}\| \to 0$

Consequence

Asymptotic statistics of K, thus of

$$g(\mathbf{x}) = \boldsymbol{\alpha}^\mathsf{T} \mathbf{k}(\mathbf{x}) + b$$

Asymptotic Behavior of the Decision Function

Theorem

Under previous assumptions, for $\mathbf{x} \in \mathcal{C}_a$, $a \in \{1, 2\}$

$$n\left(g(\mathbf{x}) - G_a\right) \stackrel{d}{\to} 0$$

where $G_a \sim \mathcal{N}(E_a, Var_a)$ with

$$E_{a} = \begin{cases} \frac{c_{2} - c_{1} - 2c_{2} \cdot c_{1}c_{2}\gamma \mathfrak{D}}{c_{2} - c_{1} + 2c_{1} \cdot c_{1}c_{2}\gamma \mathfrak{D}}, & a = 1\\ \frac{c_{2} - c_{1} + 2c_{1} \cdot c_{1}c_{2}\gamma \mathfrak{D}}{c_{2}^{2}c_{1}^{2}c_{2}^{2}(\mathcal{V}_{1}^{a} + \mathcal{V}_{2}^{a} + \mathcal{V}_{3}^{a})} \end{cases}$$

and

$$\begin{split} \mathfrak{D} &= -\frac{2f'(\tau)}{p} \|\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1\|^2 + \frac{f''(\tau)}{p^2} \left(\operatorname{tr} \left(\mathbf{C}_2 - \mathbf{C}_1 \right) \right)^2 + \frac{2f''(\tau)}{p^2} \operatorname{tr} \left((\mathbf{C}_2 - \mathbf{C}_1)^2 \right) \\ \mathcal{V}_1^a &= \frac{\left(f''(\tau) \right)^2}{p^4} \left(\operatorname{tr} \left(\mathbf{C}_2 - \mathbf{C}_1 \right) \right)^2 \operatorname{tr} \mathbf{C}_a^2 \\ \mathcal{V}_2^a &= \frac{2 \left(f'(\tau) \right)^2}{p^2} \left(\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1 \right)^\mathsf{T} \mathbf{C}_a \left(\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1 \right) \\ \mathcal{V}_3^a &= \frac{2 \left(f'(\tau) \right)^2}{p^2} \left(\frac{\operatorname{tr} \mathbf{C}_1 \mathbf{C}_a}{c_1} + \frac{\operatorname{tr} \mathbf{C}_2 \mathbf{C}_a}{c_2} \right) \end{split}$$

Simulations on Gaussian data

Figure: Gaussian approximation of $g(\mathbf{x})$, $n=256, p=512, c_1=1/4, c_2=3/4, \gamma=1$, Gaussian kernel with $\sigma^2=1$, $\mathbf{x}\in\mathcal{N}(\boldsymbol{\mu}_a,\mathbf{C}_a)$ with $\boldsymbol{\mu}_a=[\mathbf{0}_{a-1};3;\mathbf{0}_{p-a}], \mathbf{C}_1=\mathbf{I}_p$ and $\{\mathbf{C}_2\}_{i,j}=.4^{\lfloor i-j \rfloor}(1+\frac{5}{\sqrt{p}}).$

Figure: Performance of LS-SVM, $c_0=2$, $c_1=c_2=1/2$, $\gamma=1$, Gaussian kernel $f(x)=\exp(\frac{x}{2\sigma^2})$. $\mathbf{x}\in\mathcal{N}(\boldsymbol{\mu}_a,\mathbf{C}_a)$, with $\boldsymbol{\mu}_a=[\mathbf{0}_{a-1};2;\mathbf{0}_{p-a}]$, $\mathbf{C}_1=\mathbf{I}_p$ and $\{\mathbf{C}_2\}_{i,j}=.4^{|i-j|}(1+\frac{4}{\sqrt{p}})$.

Simulations on MNIST data

Figure: Samples from the MNIST database, without and with 0dB noise.

Figure: Gaussian approximation of $g(\mathbf{x})$, $n=256, p=784, c_1=c_2=1/2, \gamma=1$, Gaussian kernel with $\sigma^2=1$, MNIST data (numbers 1 and 7) without and with 0dB noise.

Discussion

Some consequences:

- imbalanced training data: $c_2 - c_1 \neq 0$ ⇒ Decision boundary $c_2 - c_1$ instead of 0!
- ② $\mathfrak D$ as large as possible: conditions of f $\Rightarrow f'(\tau) < 0$ and $f''(\tau) > 0$
- influence of γ:
 ⇒ (asymptotically) not important!
- dominant difference in means ⇒ irrelevant kernel choice!

Theorem

$$n\left(g(\mathbf{x}) - G_a\right) \overset{d}{\to} 0 \text{ and } G_a \sim \mathcal{N}(\mathrm{E}_a, \mathrm{Var}_a) \text{ with}$$

$$\mathrm{E}_a = \begin{cases} c_2 - c_1 - 2c_2 \cdot c_1 c_2 \gamma \mathfrak{D} , & a = 1 \\ c_2 - c_1 + 2c_1 \cdot c_1 c_2 \gamma \mathfrak{D} , & a = 2 \end{cases}$$

$$\mathrm{Var}_a = 8\gamma^2 c_1^2 c_2^2 \left(\mathcal{V}_1^a + \mathcal{V}_2^a + \mathcal{V}_3^a\right)$$

and

$$\begin{split} \mathfrak{D} &= -\frac{2f'(\tau)}{p} \|\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1\|^2 + \frac{f''(\tau)}{p^2} \left(\operatorname{tr} \left(\mathbf{C}_2 - \mathbf{C}_1 \right) \right)^2 \\ &+ \frac{2f''(\tau)}{p^2} \operatorname{tr} \left((\mathbf{C}_2 - \mathbf{C}_1)^2 \right) \\ \mathcal{V}_1^a &= \frac{(f''(\tau))^2}{p^4} \left(\operatorname{tr} \left(\mathbf{C}_2 - \mathbf{C}_1 \right) \right)^2 \operatorname{tr} \mathbf{C}_a^2 \\ \mathcal{V}_2^a &= \frac{2\left(f'(\tau) \right)^2}{p^2} \left(\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1 \right)^\mathsf{T} \mathbf{C}_a \left(\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1 \right) \\ \mathcal{V}_3^a &= \frac{2\left(f'(\tau) \right)^2}{p^2} \left(\frac{\operatorname{tr} \mathbf{C}_1 \mathbf{C}_a}{2} + \frac{\operatorname{tr} \mathbf{C}_2 \mathbf{C}_a}{2} \right) \end{split}$$

Kernel evaluation for MNIST data

Table: Empirical estimation of (normalized) differences in means and covariances of MNIST data.

	Without noise	With 0dB noise
$\ \mu_2 - \mu_2\ ^2$	429	178
$\left(\operatorname{tr}\left(\mathbf{C}_{2}-\mathbf{C}_{1}\right)\right)^{2}/p$	63	11
$\operatorname{tr}\left((\mathbf{C}_2-\mathbf{C}_1)^2\right)/p$	35	6

Figure: Performance of LS-SVM, $n=256, p=784, c_1=c_2=\frac{1}{2}, \gamma=1$, Gaussian kernel, MNIST data with & without noise.

Kernel comparison¹

Recall: kernel matrix

$$\mathbf{K}_{i,j} = f\left(\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{p}\right)$$

Table: Performance of different kernels

Success rate
91.4%
91.2%
33.6%
67.1%

- \bullet No.1: same $f(\tau), f'(\tau), f''(\tau)$ as Gaussian kernel.
- \bullet No.2: same $f(\tau)$ and $f^{\prime\prime}(\tau),$ while $f^{\prime}(\tau)$ of opposite sign.
- \bullet No.3: same $f(\tau)$ and $f'(\tau),$ while $f''(\tau)$ of opposite sign.

 $^{^1\}text{Gaussian mixture data with }\mu_a=\left[\mathbf{0}_{a-1};2;\mathbf{0}_{p-a}\right]$, $\mathbf{C}_1=\mathbf{I}_p$ and $\left\{\mathbf{C}_2\right\}_{i,j}=.4^{\lfloor i-j \rfloor}(1+\frac{4}{\sqrt{p}})$. $n_{\text{test}}=n=256, p=512, \gamma=1$.

Summary

Take-away messages:

- New random matrix framework for SVM analysis
- Kernel with same $f(\tau), f'(\tau), f''(\tau)$ asymptotically equivalent
- \Rightarrow Key parameters are $f^{(k)}(\tau)$, not $\sigma!$ (of Gaussian kernel)
 - Allows for analysis of other kernel methods: kernel PCA, clustering, etc

Future work:

- Extension to SVM: difficulty due to implicit formulation
- Possible extension beyond kernels: neural networks (shallow, deep, recurrent...)

References:

- Z. Liao, R. Couillet, "A Large Dimensional Analysis of Least Squares Support Vector Machines", (submitted to) Journal of Machine Learning Research, 2016.
- C. Louart, Z. Liao, R. Couillet, "A Random Matrix Approach to Neural Networks", (submitted to) Annals of Applied Probability, 2017.

Thank you!

Thank you!