MATHEMATICAL METHODS OF QUANTUM MECHANICS SUMMARY

YANNIS BÄHNI

Abstract.

Contents

Postulates of Quantum Mechanics	1
Unbounded Operators	2
The Spectral Theorem	2
Projection Valued Measures	2
The Spectral Theorem	3
The Schrödinger Equation	3

Postulates of Quantum Mechanics

Quantum mechanical system	Hilbert space \mathcal{H}
State	$\psi \in \mathcal{H}, \ \psi\ = 1$
Observables	Self-adjoint operators on ${\mathcal H}$
Expected Value of an observable A in the state ψ	$\langle \psi, A\psi \rangle$
Variance of an observable A in the state ψ	$\Delta A_{\psi} := \langle \psi, A^2 \psi \rangle - \langle \psi, A \psi \rangle^2$

Lemma 1.1 (Heisenberg Uncertainity Principle). Let A and B two self-adjoint operators on a Hilbert space \mathcal{H} . Then for any state ψ

$$\Delta A_{\psi} \Delta B_{\psi} \geq \frac{1}{4} \left| \langle \psi, [A,B] \psi \rangle \right|^2.$$

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

Unbounded Operators

Definition 1.1 (Linear Operator). Let \mathcal{H} be a Hilbert space. A (linear) operator on \mathcal{H} is simply a linear map $A: D(A) \to \mathcal{H}$, where D(A) is a linear subspace of \mathcal{H} .

Definition 1.2 (Closed Operator). An operator A on \mathcal{H} is said to be **closed**, iff Γ_A is closed in $\mathcal{H} \times \mathcal{H}$.

Definition 1.3 (Closable Operator). An operator A on \mathcal{H} is said to be **closable**, iff $\overline{\Gamma}_A$ is a linear graph, i.e. $(0, y) \in \Gamma_A$ implies y = 0. The corresponding operator associated to $\overline{\Gamma}_A$ is denoted by \overline{A} and called the **closure** of A. Clearly $A \subseteq \overline{A}$.

Definition 1.4 (Adjoint). Let A be a densly defined operator on \mathcal{H} . Set

$$D(A^*) := \{ \psi \in \mathcal{H} : \exists \eta \in \mathcal{H} \text{ s.t. } \forall \varphi \in D(A) \langle A\varphi, \psi \rangle = \langle \varphi, \eta \rangle \},$$

and $A^*\psi := \eta$. The operator A^* is called the **adjoint** of A.

Theorem 1.1. Let A be a densly defined operator on \mathcal{H} . Then:

- (a) A^* is closed.
- (b) A is closable if and only if $D(A^*)$ is dense.
- (c) If A is closable, then $(\bar{A})^* = A^*$.

Definition 1.5 (Symmetric Operator). A density defined operator A is said to be **symmetric**, iff $A \subseteq A^*$.

Definition 1.6 (Self-adjoint Operator). A densly defined operator is said to be **self-adjoint**, iff $A = A^*$.

Definition 1.7 (Essentially Self-adjoint Operator). A A symmetric operator A is said to be essentially self-adjoint, iff \overline{A} is self-adjoint.

The Spectral Theorem

Projection Valued Measures.

Definition 1.8 (Projection Valued Measure). Let \mathcal{H} be a Hilbert space. A function $P: \mathcal{B}(\mathbb{R}) \to \mathcal{L}(\mathcal{H})$ is said to be a **projection valued measure**, iff

(i) For all $\Omega \in \mathcal{B}(\mathbb{R})$, $P(\Omega)$ is an orthogonal projection, i.e.

$$P(\Omega)^2 = P(\Omega) = P(\Omega)^*$$
.

- (ii) $P(\mathbb{R}) = \mathrm{id}_{\mathcal{H}}$.
- (iii) If $(\Omega_n)_{n\in\omega}$ is a sequence of pairwise disjoint elements of $\mathcal{B}(\mathbb{R})$, then

$$P(\Omega)\psi = \sum_{n \in \omega} P(\Omega_n)\psi,$$

for all $\psi \in \mathcal{H}$.

Definition 1.9 (Resolution of the Identity). Let \mathcal{H} be a Hilbert space and $P: \mathcal{B}(\mathbb{R}) \to \mathcal{L}(\mathcal{H})$ a projection valued measure. The function $p: \mathbb{R} \to \mathcal{L}(\mathcal{H})$ defined by

$$p(\lambda) := P(-\infty, \lambda],$$

is called the resolution of the identity associated to a projection valued measure.

The Spectral Theorem.

Theorem 1.2 (Spectral Theorem). Let A be a self-adjoint operator. Then there exists a unique projection valued measure P^A such that $D(A) = \{ \psi \in \mathcal{H} : \int |\lambda|^2 d\mu_{\psi}^A(\lambda) \}$ and

$$A = \int \lambda dp^A(\lambda).$$

The Schrödinger Equation.

Theorem 1.3. Let \mathcal{H} be a Hilbert space and $H:D(H)\to\mathcal{H}$ be self adjoint. Moreover, set $U(t):=\exp(-iHt)$ for $t\in\mathbb{R}$. Then:

- (a) U(t) is a strongly continuous one parameter unitary group.
- (b) The limit

$$\lim_{t\to 0}\frac{U(t)-1}{t}\psi$$

exists if and only if $\psi \in D(H)$. Then

$$\lim_{t\to 0}\frac{U(t)-1}{t}\psi=-iH\psi.$$

- (c) U(t)D(H) = D(H) and [U(t), H] = 0 on D(H).
- (d) Let $\psi_0 \in D(H)$. Then $U(t)\psi_0$ uniquely solves the initial value problem

$$\begin{cases} i \,\partial_t \psi(t) = H \psi(t) \\ \psi(0) = \psi_0, \end{cases} \tag{1}$$

called the Schrödinger equation.