CH-231-A Algorithms and Data Structures ADS

Lecture 35

Dr. Kinga Lipskoch

Spring 2020

Minimum Spanning Tree: Problem

- ▶ Given a connected undirected graph G = (V, E) with weight function $w : E \to \mathbb{R}$.
- ► Compute a minimum spanning tree (MST), i.e., a tree that connects all vertices with minimum weight

$$w(T) = \sum_{(u,v)\in T} w(u,v).$$

Why of interest? One example would be a telecommunications company laying out cables to a neighborhood.

Example Spanning Tree

Example MST

Optimal Substructure

- ightharpoonup Consider an MST T of graph G (other edges not shown).
- ▶ Remove any edge $(u, v) \in T$.
- ▶ Then, T is partioned into subtrees T_1 and T_2 .

MST: Theorem

- (a) Subtree T_1 is a MST of graph $G_1 = (V_1, E_1)$ with V_1 being the set of all vertices of T_1 and E_1 being the set of all edges $\in G$ that connect vertices $\in V_1$.
- (b) Subtree T_2 is a MST of graph $G_2 = (V_2, E_2)$ with V_2 being the set of all vertices of T_2 and E_2 being the set of all edges $\in G$ that connect vertices $\in V_2$.

Proof (only (a), (b) is analogous):

- (1) $w(T) = w(T_1) + w(T_2) + w(u, v)$
- (2) Assume S_1 was a MST for G_1 with lower weight than T_1 .
- (3) Then, $S = S_1 \cup T_2 \cup \{(u, v)\}$ would be an MST for G with lower weight than T.
- (4) Contradiction.

Greedy Choice Property (1)

Theorem:

- ▶ Let T be the MST of graph G = (V, E) and let $A \subset V$.
- ▶ Let $(u, v) \in E$ be the edge with least weight connecting A to $V \setminus A$.
- ▶ Then, $(u, v) \in T$.

Greedy Choice Property (2)

Proof:

- ▶ Suppose (u, v) is not part of T.
- ▶ Then, consider the path from *u* to *v* within *T*.
- Replace the weight of the first edge on this path that connects a vertex in A to a vertex in $V \setminus A$ with the weight of (u, v).
- ► This results in a spanning tree with smaller weight. Contradiction.

Prim's Algorithm

Idea:

- ▶ Develop a greedy algorithm that iteratively increases A and, consequently, decreases $V \setminus A$.
- Maintain $V \setminus A$ as a min-priority queue Q (min-priority queue analogous to max-priority queue).
- ► Key each vertex in *Q* with the weight of the least weight edge connecting it to a vertex in *A* (if no such edge exists, the weight shall be infinity).
- ▶ Then, always add the vertex of $V \setminus A$ with minimal key to A.

ADS Spring 2020 9 / 14

Min-Priority Queues

Definition (recall):

A priority queue is a data structure for maintaining a set S of elements, each with an associated value called a key.

Definition (implementation as min-heap):

A min-priority queue is a priority queue that supports the following operations:

- ▶ Minimum(S): return element from S with smallest key. [O(1)]
- Extract-Min(S): remove and return element from S with smallest key. $[O(\lg n)]$
- ▶ Decrease-Key(S, x, k): decrease the value of the key of element x to k, where k is assumed to be smaller or equal than the current key. $[O(\lg n)]$
- ▶ Insert(S, x): add element x to set S. $[O(\lg n)]$

Prim's Algorithm Pseudocode

$$\begin{aligned} Q &\leftarrow V \\ key[v] &\leftarrow \infty \text{ for all } v \in V \\ key[s] &\leftarrow 0 \text{ for some arbitrary } s \in V \\ \textbf{while } Q \neq \varnothing \\ \textbf{do } u &\leftarrow \text{EXTRACT-MIN}(Q) \\ \textbf{for each } v \in Adj[u] \\ \textbf{do if } v \in Q \text{ and } w(u,v) < key[v] \\ \textbf{then } key[v] \leftarrow w(u,v) \\ \pi[v] \leftarrow u \end{aligned}$$

- ▶ The output is provided by storing predecessors $\pi[v]$ of each node v.
- ▶ The set $\{(v, \pi[v])|v \in V\}$ forms the MST.

Example (1)

Example (2)

Example (3)

