Simple linear regression

i	1	2	3	4	5	6	7	8	9
x_i	1.5	1.8	2.4	3.0	3.5	3.9	4.4	4.8	5.0
y_i	4.8	5.7	7.0	8.3	10.9	12.4	13.1	13.6	15.3

(1) Estimate the regression line for the data

$$\sum_{i=1}^{9} x_i = \sum_{i=1}^{9} y_i = \sum_{i=1}^{9} x_i y_i =$$

$$\sum_{i=1}^{9} x_i^2 = \overline{x} = \overline{y} =$$

$$\hat{\beta} =$$

$$\hat{\alpha} =$$

Thus, the estimated regression line is given by

(2) Find a 95% confidence interval for β .

$$S_{xx} =$$

$$S_{vv} =$$

$$S_{xy} =$$

$$s^2 =$$

$$t_{0.025} =$$
 for degrees of freedom

Therefore, a 95% confidence interval for β is given by

(3) Test the hypothesis that $\beta = 2.5$ at the 0.01 level of significance against the alternative that $\beta > 2.5$.

 H_o : against H_1 :

Critical region: T >

Computations:	
t =	
Conclusion:	
Construct 050/ confidence limits for the mean response U at w	

(4) Construct 95% confidence limits for the mean response $\mu_{Y|x}$ at $x_o = 2$.

$$\hat{y}_o =$$

Therefore, a 95% confidence interval for $\mu_{\scriptscriptstyle Y|2}$ is given by

(5) Construct a 95% confidence interval for y_o when $x_o = 2$.

Therefore, a 95% confidence interval for y_0 is given by