Partial Differential Equation - HW 3

SungBin Park, 20150462

November 20, 2018

Problem 1

I'll use the proof in Evans.

Proof. Before starting, let's arrange the index of Γ_j so that the adjacent curve of Γ_j be Γ_{j-1} and Γ_{j+1} . Fix x^0 be in end point of Γ_j and assume that x^0 is also a end point of Γ_{j+1} . Let v_j be the tangential vector of Γ_j such that v_j is toward the Γ_j . In other words, if $\Gamma_j:[a,b]\to\mathbb{R}^2$ and $x_0=\Gamma_j(b)$, then $v_j=\lim_{h\to 0+}\frac{\Gamma_j(b-h)-\Gamma_j(b)}{h}$. For v_{j+1} , set it be tangential vector of Γ_{j+1} toward Γ_{j+1} curve. If v_j and v_{j+1} are parallel, Γ_j and Γ_{j+1} can be connected with C^1 property, I'll ignore the case. Let the angle between

 v_j and v_{j+1} be $\theta > 0$. Let e_0 be a unit vector such that parallel with $\frac{v_j + v_{j+1}}{2}$ and inward direction, i.e., $x_0 + \lambda e_0 \in \text{int } \Omega$ for small enough λ . (This requires Jordan curve theorem.)

As Γ_j , Γ_{j+1} are C^1 , there exists r > 0 such that with $B(x_0, r)$, the tangential direction of Γ_j and Γ_{j+1} does not change much. More precisely, if we let w_j be a tangential vector of Γ_j at $y \in B(x_0, r)$, then the angle between w_j and v_j is less than $\theta/10$, and this is true for Γ_{j+1} . Let w_j^1 (resp. w_j^2) be the vector made by rotating v_j by $\theta/10$ clockwise (resp. counter-clockwise). Do the same for w_{j+1}^1 , w_{j+1}^2 .

Now, let's repeat proof in Evans. Let's consider $U \cap B(x_0,r)$ and $V \coloneqq U \cap B(x_0,r/2)$. Define $x_{\epsilon} \coloneqq x + \epsilon e_0$ for $x \in V$, small enough $\epsilon > 0$ satisfying $x + \epsilon e_0 \in U \cap B(x_0,r)$. WLOG, I'll assume that x is inside the interior enclosed by Γ_j and the line through x_0 with tangential vector e_0 . Now, we draw lines through x such that the tangential vectors w_j^1 and w_j^2 . Then, we know that the angle between e_0 and w_j^1 or w_j^2 is $(1/2 - 1/10)\theta$ and there is a room to set small enough $\lambda < 1$ such that $B(x + \epsilon e_0, \lambda \epsilon) \subset U \cap B(x_0, r)$. In this room, we can mollify $u_{\epsilon}(x) = u(x_{\epsilon})$ and denote it v_{ϵ} , and make $\epsilon \to 0$. The remaining part is same as the proof in Evans: Since ∂U is compact, we can choose finitely many points $x_0^i \in \partial U$ including end point of Γ_j and make Global approximation.

Problem 2

- 1. $W_0^{1,p}(\Omega)$ is a vector space: For $f=0, f\in W_0^{1,p}(\Omega)$, so $W_0^{1,p}(\Omega)\neq \phi$. For $f_1,f_2\in W_0^{1,p}(\Omega)$, there exists f_1^j,f_2^j such that $(f_1^j),(f_2^j)\in C_c^\infty(\Omega)$ and $f_1^j\to f_1, f_2^j\to f_2$ in $W^{1,p}(\Omega)$. Since union of two compact set in Ω is compact in $\Omega, f_1^j+f_2^j\in C_c^\infty(\Omega)$ and for large enough N satisfying $\left\|f_1^j-f_1\right\|_{W^{1,p}(\Omega)}, \left\|f_2^j-f_2\right\|_{W^{1,p}(\Omega)}\leq \epsilon/2$ for $j>N, \left\|f_1^j+f_2^j-f_1-f_2\right\|_{W^{1,p}(\Omega)}\leq \left\|f_1^j-f_1\right\|_{W^{1,p}(\Omega)}+\left\|f_2^j-f_2\right\|_{W^{1,p}(\Omega)}\leq \epsilon$. Therefore, $f_1^j+f_2^j\to f_1+f_2$ in $W^{1,p}(\Omega)$, so $f_1+f_2\in W_0^{1,p}(\Omega)$. Also, $\lambda f^j\to \lambda f$ in $W^{1,p}(\Omega)$ for scalar λ . Therefore, $W_0^{1,p}$ is vector space.
- 2. With the norm $\|\cdot\|_{W^{1,p}(\Omega)}$, $W_0^{1,p}(\Omega)$ is Banach space: Let f_j be a cauchy sequence in $W_0^{1,p}(\Omega)$. Since $W^{1,p}(\Omega)$ is Banach space, $f_j \to f$ in $W^{1,p}(\Omega)$. Since Ω is bounded and $\partial \Omega$ is C^1 , there exists bounded linear operator $T: W^{1,p}(\Omega) \to L^p(\partial \Omega)$ and $Tf_j \equiv 0$ on ∂U as $f_j \in W_0^{1,p}(\Omega)$. Then,

$$\lim_{j \to \infty} ||Tf_j - Tf||_{W^{1,p}(\Omega)} = \lim_{j \to \infty} ||T(f_j - f)||_{W^{1,p}(\Omega)} \le \lim_{j \to \infty} ||T||_{W^{1,p}(\Omega)} ||f_j - f||_{W^{1,p}(\Omega)} = 0$$

as $||T||_{W^{1,p}(\Omega)}$ is bounded. Therefore, $Tf_j \to Tf$ in $W^{1,p}(\Omega)$ and $\lim_{j \to \infty} ||Tf_j||_{W^{1,p}(\Omega)} = ||Tf||_{W^{1,p}(\Omega)} = 0$. As a result, $f \in W_0^{1,p}(\Omega)$ and it implies Cauchy sequence in $W_0^{1,p}(\Omega)$ converges.

Therefore, $W_0^{1,p}(\Omega)$ is Banach space.

Problem 3

For $k \in \mathbb{N}$ and $\alpha \in (0,1]$,

$$C^{k,\alpha}(\bar{\Omega}) \coloneqq \{ u \in C^k(\bar{\Omega}) : \|u\|_{C^{k,\alpha}(\bar{\Omega})} < \infty \}$$

Before starting, I need to show that $\|\cdot\|_{C^{k,\alpha}(\bar{\Omega})}$ is a norm on $C^{k,\alpha}(\bar{\Omega})$.

Proof. 1. By the definition of $C^{k,\alpha}(\bar{\Omega})$, we know that $||u||_{C^{k,\alpha}(\bar{\Omega})} < \infty$ for any $u \in C^{k,\alpha}(\bar{\Omega})$. Let $u,v \in C^{k,\alpha}(\bar{\Omega})$. Then

$$\begin{split} \|u+v\|_{C^{k,\alpha}(\bar{\Omega})} &= \sum_{|\alpha| \leq k} \|D^{\alpha}(u+v)\|_{C(\bar{\Omega})} + \sum_{|\alpha| = k} \left[D^{\alpha}(u+v)\right]_{C^{0,\alpha}(\bar{\Omega})} \\ &= \sum_{|\alpha| \leq k} \sup_{x \in \Omega} |D^{\alpha}(u+v)| + \sum_{|\alpha| = k} \sup_{\substack{x,y \in \Omega \\ x \neq y}} \left\{ \frac{|D^{\alpha}(u+v)(x) - D^{\alpha}(u+v)(y)|}{|x-y|^{\alpha}} \right\} \\ &\leq \sum_{|\alpha| \leq k} \sup_{x \in \Omega} |D^{\alpha}u| + \sup_{x \in \Omega} |D^{\alpha}v| + \sum_{|\alpha| = k} \sup_{\substack{x,y \in \Omega \\ x \neq y}} \left\{ \frac{|D^{\alpha}u(x) - D^{\alpha}u(y)| + |D^{\alpha}v(x) - D^{\alpha}v(y)|}{|x-y|^{\alpha}} \right\} \\ &\leq \sum_{|\alpha| \leq k} \sup_{x \in \Omega} |D^{\alpha}u| + \sup_{x \in \Omega} |D^{\alpha}v| + \sum_{|\alpha| = k} \sup_{\substack{x,y \in \Omega \\ x \neq y}} \left\{ \frac{|D^{\alpha}u(x) - D^{\alpha}u(y)|}{|x-y|^{\alpha}} \right\} + \sup_{\substack{x,y \in \Omega \\ x \neq y}} \left\{ \frac{|D^{\alpha}v(x) - D^{\alpha}v(y)|}{|x-y|^{\alpha}} \right\} \\ &= \|u\|_{C^{k,\alpha}(\bar{\Omega})} + \|v\|_{C^{k,\alpha}(\bar{\Omega})} \end{split}$$

Therefore, $||u+v||_{C^{k,\alpha}(\bar{\Omega})} \le ||u||_{C^{k,\alpha}(\bar{\Omega})} + ||v||_{C^{k,\alpha}(\bar{\Omega})}$.

2. For $\lambda \in \mathbb{R}$,

$$\begin{aligned} \|\lambda u\|_{C^{k,\alpha}(\bar{\Omega})} &= \sum_{|\alpha| \le k} \sup_{x \in \Omega} |D^{\alpha} \lambda u| + \sum_{|\alpha| = k} \sup_{\substack{x,y \in \Omega \\ x \ne y}} \left\{ \frac{|D^{\alpha} \lambda u(x) - D^{\alpha} \lambda u(y)|}{|x - y|^{\alpha}} \right\} \\ &= |\lambda| \sum_{|\alpha| \le k} \sup_{x \in \Omega} |D^{\alpha} u| + |\lambda| \sum_{|\alpha| = k} \sup_{\substack{x,y \in \Omega \\ x \ne y}} \left\{ \frac{|D^{\alpha} u(x) - D^{\alpha} u(y)|}{|x - y|^{\alpha}} \right\} \\ &= \lambda \|u\|_{C^{k,\alpha}(\bar{\Omega})}. \end{aligned}$$

3. For $u=0, \|u\|_{C^{k,\alpha}(\bar{\Omega})}=0$. Conversely, if $\|u\|_{C^{k,\alpha}(\bar{\Omega})}=0$, then $\|u\|_{C(\Omega)}=0$ with continuity of u, so u=0 on $\bar{\Omega}$.

Therefore, $\|\cdot\|_{C^{k,\alpha}(\bar{\Omega})}$ is a norm.

(a) Clearly, $0 \in C^{k,p}(\bar{\Omega})$. For $f_1, f_2 \in C^{k,p}(\bar{\Omega})$, $f_1 + f_2 \in C^k(\Omega)$ and $||f_1 + f_2||_{C^{k,\alpha}(\bar{\Omega})} \leq ||f_1||_{C^{k,\alpha}(\bar{\Omega})} + ||f_2||_{C^{k,\alpha}(\bar{\Omega})} < \infty$. Therefore, $f_1 + f_2 \in C^{k,\alpha}(\bar{\Omega})$. $f_1 + f_2 = f_2 + f_1$ and for scalar λ , $\lambda f_1 \in C^{k,\alpha}(\bar{\Omega})$ for $||\lambda f_1||_{C^{k,\alpha}(\bar{\Omega})} = |\lambda| ||f_1||_{C^{k,\alpha}(\bar{\Omega})} \leq \infty$. Therefore, $C^{k,p}(\bar{\Omega})$ is a vector space.

- (b) Fix $x \in \Omega$ and take an open neighborhood $B(x,r) \subset \Omega$ for some r > 0. Then there exists $N \in \mathbb{N}$ such that for $\frac{1}{N} < \epsilon$, then $B(x, \frac{1}{n}) \subset \Omega$ for n > N. I'll use C^{∞} Urysohn lemma to show that there exists infinitely many linearly independent elements in $C^{k,\alpha}(\bar{\Omega})$. For n>N, take $K_n=\overline{B(x,\frac{1}{n+1})}$ and $U_n = B\left(x, \frac{1}{n+1} + \left(\frac{1}{n} - \frac{1}{n+1}\right)/2\right)$. Using C^{∞} Urysohn lemma, take $\phi^n \in C^{\infty}$ such that 1 on K_n and has support in U. Take finite elements in the set: $\{\phi^j\}_{j=N_1}^{N_n}$ with $N_i < N_j$ for i < j and let $\sum_{i=1}^{n} \lambda_i \phi^i = 0. \text{ For } x \in U_{N_1} \setminus B_{N_1+1}, \ \phi^{N_1}(x) = 1 \text{ but } \phi^{N_i}(x) = 0 \text{ for } i > 1. \text{ Therefore, } \lambda_1 = 0. \text{ Repeating}$ this argument, we can show that $\lambda_i = 0$ for all i and it means ϕ^n is linearly independent for all n > Nand consequently, $C^{k,\alpha}(\bar{\Omega})$ has infinite dimension.
- (c) Let $\{u_i\}$ be a Cauchy sequence in $C^{k,p}(\bar{\Omega})$. For fixed $\epsilon > 0$, there exists N such that $i,j > N \Rightarrow$ $||u_i - u_j||_{C^{k,p}(\bar{\Omega})} \leq \epsilon$. It implies

$$\begin{cases} \|D^{\alpha}u_{i} - D^{\alpha}u_{j}\|_{C(\bar{\Omega})} \leq \epsilon & \text{For } |\alpha| \leq k \\ [D^{\alpha}u_{i} - D^{\alpha}u_{j}]_{C^{0,\gamma}(\bar{\Omega})} \leq \epsilon & \text{For } |\alpha| = k. \end{cases}$$

Since $D^{\alpha}u_i$ is uniformly Cauchy for $|\alpha| \leq k$, $D^{\alpha}u_i$ converges to u_{α} for $|\alpha| \leq k$ pointwisely. Also, these convergences are uniform. Therefore, $D^{\alpha}u = u_{\alpha}$ for all $|\alpha| \leq k$.

Letting $i \to \infty$, $[D^{\alpha}u - D^{\alpha}u_j]_{C^{0,\gamma}(\bar{\Omega})} \le \epsilon$ for j > N. Also,

$$\frac{|D^{\alpha}u(x) - D^{\alpha}u(y)|}{|x - y|^{\gamma}} - \sup_{\substack{x,y \in \Omega \\ x \neq y}} \left\{ \frac{|D^{\alpha}u_j(x) - D^{\alpha}u_j(y)|}{|x - y|^{\gamma}} \right\} \leq \frac{|D^{\alpha}u(x) - D^{\alpha}u(y)|}{|x - y|^{\gamma}} - \frac{|D^{\alpha}u_j(x) - D^{\alpha}u_j(y)|}{|x - y|^{\gamma}}$$

$$\leq \frac{|D^{\alpha}(u - u_j)(x) - D^{\alpha}(u - u_j)(y)|}{|x - y|^{\gamma}}$$

$$\leq [D^{\alpha}u - D^{\alpha}u_j]_{C^{0,\gamma}(\bar{\Omega})} \leq \epsilon$$

 $\text{for all } x,y\in\Omega, x\neq y. \text{ Therefore, } \frac{|D^{\alpha}u(x)-D^{\alpha}u(y)|}{|x-y|^{\gamma}}\leq [D^{\alpha}u_j]_{C^{0,\gamma}(\bar{\Omega})}+\epsilon \text{ and } [D^{\alpha}u]_{C^{0,\gamma}(\bar{\Omega})}<\infty. \text{ Therefore, } \frac{|D^{\alpha}u(x)-D^{\alpha}u(y)|}{|x-y|^{\gamma}}\leq D^{\alpha}u_j$ $u \in C^{k,\alpha}(\bar{\Omega})$. It means $C^{k,\alpha}(\bar{\Omega})$ is Banach space.

Problem 4

Proof. Since U is bounded, open subset of \mathbb{R}^n , and $\partial\Omega$ is C^1 ,

$$W^{1,p}(\Omega) \subset C^{0,\alpha}(\bar{\Omega}), \ \|u\|_{C^{0,\alpha}(\bar{\Omega})} \le C \|u\|_{W^{1,p}(\Omega)}$$

for $\alpha = 1 - n/p$ and C depends only on p, n and Ω . Also, $C^{0,\alpha}(\bar{\Omega}) \subset C^{0,\tilde{\alpha}}(\bar{\Omega})$ since $||u||_{C(\bar{U})}$ is same for both norm and if $[u]_{C^{0,\alpha}(\bar{\Omega})} < \infty$, then as $|x-y| \to 0$, $\frac{|u(x)-u(y)|}{|x-y|^{\bar{\alpha}}} \to 0$ because $\frac{|u(x)-u(y)|}{|x-y|^{\alpha}} < \infty$ for all $x,y \in \Omega$, $x \neq y$, $[u]_{C^{0,\tilde{\alpha}}(\bar{\Omega})} < \infty$ and $u \in C^{0,\tilde{\alpha}}(\bar{\Omega})$.

Now, we need to show that each bounded sequence in $W^{1,p}(\Omega)$ is precompact in $C^{0,\alpha}(\bar{\Omega})$. Let a bounded sequence in $W^{1,p}(\Omega)$: $\{u_m\}_{m=1}^{\infty}$ and $\sup_{m} \{\|u_m\|_{W^{1,p}(\Omega)}\} = K$. By Morney's inequality, we can assume that $\{u_m\}\subset C^{0,\alpha}(\bar{\Omega})\subset C^{0,\tilde{\alpha}}(\bar{\Omega})$ and there exists constant K' such that $\|u\|_{C^{0,\alpha}(\bar{\Omega})}\leq K'$ for all m: For $|x-y|\leq 1$, $\frac{|u(x)-u(y)|}{|x-y|^{\tilde{\alpha}}} \leq \frac{|u(x)-u(y)|}{|x-y|^{\alpha}}|x-y|^{-\tilde{\alpha}+\alpha} \leq \frac{|u(x)-u(y)|}{|x-y|^{\alpha}}R^{-\tilde{\alpha}+\alpha} \text{ where } R \text{ is a constant such that } \Omega \subset B(0,R).$ To use Arzela-Ascoli theorem, we need functions having compact domain. I'll denote $\bar{u_m}$ be a a function

such that $\bar{u}_m = u_m$ in Ω and for $x \in \partial \Omega$, $u_m(x) = \lim_{x \to 0} u_m(y)$ where $y \in B(x,r) \cap \Omega$. I'll show that \bar{u}_m is

continuous function on $\bar{\Omega}$. Fix $x \in \partial \Omega$. Since u is bounded, $u_m(x)$ is uniformly bounded in $\partial \Omega$ if they exist.

Fix
$$r > 0$$
 and let $a = \lim_{r \to 0} \left\{ \inf_{y \in B(x,r) \cap \Omega} u_m(y) \right\}$ and $b = \lim_{r \to 0} \left\{ \sup_{y \in B(x,r) \cap \Omega} u_m(y) \right\}$. If $a \neq b$, then it means

there exists $x, y \in \Omega$ such that |x - y| < r but |f(x) - f(y)| > (b - a)/2 for all r > 0 which is contradiction to continuity of u. Therefore, the limit $u_m(x)$ for $x \in \partial \Omega$ is well defined and \bar{u}_m is continuous on $\bar{\Omega}$.

Let's check the condition for Arzela-Ascoli theorem for \bar{u}_m .

- 1. For each m, \bar{u}_m is continuous on compact set $\bar{\Omega}$.
- 2. Since $\|\bar{u}_m\|_{C(\bar{\Omega})} \leq K'$, $\{\bar{u}_m\}$ is pointwisely bounded.
- 3. Assume $\tilde{\alpha} > 0$ $\frac{|\bar{u}_m(x) \bar{u}_m(y)|}{|x-y|^{\alpha}} \leq K'$ for all $x, y \in \Omega$, $x \neq y$. Therefore, $|\bar{u}_m(x) \bar{u}_m(y)| \leq K' |x-y|^{\alpha}$ for $x, y \in \bar{\Omega}$ for all m and it means $\{u_m\}$ is equicontinuous on $\bar{\Omega}$.

Therefore, we can use Arzela-Ascoli theorem and find a uniformly convergent subsequence $\{\bar{u}_{m_j}\}$ in $C^{0,\tilde{\alpha}}(\bar{\Omega})$ and it means $\{u_{m_j}\}$ is uniformly converges in $C^{0,\tilde{\alpha}}(\bar{\Omega})$. Since $C^{0,\tilde{\alpha}}(\bar{\Omega})$ is Banach space, the converging point is in $C^{0,\tilde{\alpha}}(\bar{\Omega})$. Hence,

$$W^{1,p}(\Omega) \subset\subset C^{0,\tilde{\alpha}}(\bar{\Omega})$$

for all $\tilde{\alpha} \in (0, \alpha)$. If $\tilde{\alpha} = 0$, then find $0 < \tilde{\alpha}' < \alpha$ and do the same procedure above. Since $C^{0,\tilde{\alpha}'}(\bar{\Omega}) \subset C^{0,0}(\bar{\Omega})$, the above compact inclusion is true for $\tilde{\alpha} = 0$.

Problem 5

Fix $\epsilon > 0$. Define $\Omega_{\epsilon} := \{x \in \Omega | d(x, \partial \Omega) > \epsilon\}$. Let's mollify the u with standard mollifier η_{ϵ} and denote it u^{ϵ} . Then,

$$Du^{\epsilon} = \eta_{\epsilon} * Du = 0$$

in Ω_{ϵ} . It implies that if $B(x,r) \subset \Omega_{\epsilon}$ for small enough r > 0, u^{ϵ} is constant on B(x,r) since the derivative of u^{ϵ} is zero on the set. In other words, it is locally constant in Ω_{ϵ} .

Let $x \in U$ and B(x,r) be an open neighborhood of x in Ω and it is compactly embedded, then there exists ϵ such that $B(x,r) \subset \Omega_{\epsilon}$ and by previous, we know that u^{ϵ} is constant on B(x,r). Let the constant value c^{ϵ} . We know that $u^{\epsilon} \to u$ as $\epsilon \to 0$ and it means on u is constant a.e. on B(x,r). (If not, there always exists non measure zero set such that u^{ϵ} is different with u on B(x,r).) Also, it behave well since all any compactly embedded open neighborhood B(x,r'), the constant value should be same as B(x,r) since u is constant in $B(x,r') \cup B(x,r)$. Therefore, u is locally constant function in a.e. sense).

Let take a partition such that $x \sim y$ if for $B(x, r_x) \subset\subset \Omega$ and $B(y, r_y) \subset\subset \Omega$, the constant values of the functions on the balls are same. Since Ω is locally constant, any element in partition is open set. Assume that there exists at least two element in the partition. This is impossible since Ω is connected set. Therefore, u is a.e. constant function.

Problem 6

First, I'll show that $u \in L^n(B_1(\mathbf{0}))$. Note that u is symmetric function about rotation, so we can show that integral on $B_1(\mathbf{0})$ is finite by showing that integral is finite for r. Also, we can restrict the range of r to $\left(0, \frac{1}{e-1}\right)$ since u is bounded in outside of the range. In other words,

$$\int_{B_1(\mathbf{0})} u dx \le C \int_0^{\frac{1}{e-1}} \left| \log \log \left(1 + \frac{1}{r} \right) \right|^n r^{n-1} dr$$

for some constant $C < \infty$. Let $y = \log \left(1 + \frac{1}{r}\right)$, then

$$\left| \int_{0}^{\frac{1}{e-1}} \left(\log \log \left(1 + \frac{1}{r} \right) \right)^{n} r^{n-1} dr \right| \leq \int_{1}^{\infty} (\log y)^{n} \frac{e^{y}}{(e^{y} - 1)^{n+1}} dy$$

$$\leq \int_{1}^{\infty} (\log y)^{n} \frac{2^{n+1} e^{y}}{e^{(n+1)y}} dy$$

$$\leq \int_{1}^{\infty} y^{n} 2^{n+1} e^{-ny} dy < \infty$$

Therefore, $u \in L^n(B_1(\mathbf{0}))$, and $u \in L^1(B_1(\mathbf{0}))$.

Next, I'll show that u has weak derivative in $B_1(\mathbf{0})$ and belongs to $L^n(B_1(\mathbf{0}))$. Since u goes to ∞ as $x \to 0$, we need to care when we compute weak derivative. However, we can ignore at $\mathbf{0}$ by the following argument. Let V be a compactly embedded set in U and ϕ be a C^{∞} function having support V. Assume $\mathbf{0} \in V$. Without $\mathbf{0}$, Du should be $\partial_{x_i} u$ for some i. Since u, $D^{\alpha} \phi$ for all α are L^1 function on V, we can use Fubini theorem, and rewrite the integral by

$$\int_{U} uD\phi \ dx = \int_{-1}^{1} (\cdots) dx_{i}$$

for $1 \le i \le n$. Since n > 1, we know that the (n-1) dim plane through 0 is measure zero set and it does not effect integral to delete 0 from integral range of x_1 . Therefore, the weak derivative is just derivative of u except $\mathbf{0}$ More explicitly, for $\partial_{x_i}\phi$, take $j \ne i$. Then,

$$\int_{U} u \partial_{x_{i}} \phi dx = \int_{(-1,1)} \cdots \int_{x_{1}}^{x_{2}} u \partial_{x_{i}} \phi \ dx_{i} \cdots dx_{j}$$

$$= \int_{(-1,1)\backslash\{0\}} \cdots \int_{x_{1}}^{x_{2}} u \partial_{x_{i}} \phi \ dx_{i} \cdots dx_{j}$$

$$= \int_{(-1,1)\backslash\{0\}} \cdots \int_{x_{1}}^{x_{2}} \phi \partial_{x_{i}} u \ dx_{i} \cdots dx_{j} = \int_{U} \phi \partial_{x_{i}} u \ dx.$$

Also, for any compact set not containing $\mathbf{0}$, we can just use $\int_U u \partial_{x_i} \phi \ dx = \int_U \phi \partial_{x_i} u \ dx$. Thus, $\partial_{x_i} u$ is weak derivative of u except $\mathbf{0}$.

I'll show that Du is in $L^n(B_1(\mathbf{0}))$. Computing partial derivative:

$$|\partial_{x_i} u| = \left| \frac{1}{\log\left(1 + \frac{1}{|x|}\right)} \frac{1}{1 + \frac{1}{|x|}} \frac{x_i}{|x|^3} \right| \le \frac{1}{\left|\log\left(1 + \frac{1}{r}\right)\right|} \frac{1}{r+1} \frac{1}{r}.$$

Then, by the same reason before, we just need to check whether the integral in finite for r in $\left(0, \frac{1}{e-1}\right)$.

$$\int_0^{\frac{1}{e-1}} \left(\frac{1}{\log\left(1 + \frac{1}{r}\right)} \frac{1}{r+1} \frac{1}{r} \right)^n r^{n-1} dx \le \int_0^{\frac{1}{e-1}} \left(\frac{1}{\log\left(1 + \frac{1}{r}\right)} \right)^n \frac{1}{r} dr$$

Let $x = \log\left(1 + \frac{1}{r}\right)$, then the integral becomes

$$\int_{1}^{\infty} \frac{1}{x^n} \frac{e^x}{e^x - 1} dx$$

For sufficiently large R, $\frac{e^x}{e^x-1} < 2$ for x > R and we know that $\int_1^\infty \frac{1}{x^n}$ converges for n > 1. Therefore, $Du \in L^n(B_1(\mathbf{0}))$ and $u \in W^{1,n}(B_1(\mathbf{0}))$.

Problem 7

Since $u \in L^2(\mathbb{R}^n)$, $u = (\hat{u})^{\vee}$ by Theorem 2 in chapter 4.3 Evans. Then,

$$\begin{aligned} |u(x)| &\leq \int_{\mathbb{R}^n} \left| e^{ikx} \hat{u}(k) \right| dk \leq \int_{\mathbb{R}^n} |\hat{u}(k)| dk \\ &= \int_{\mathbb{R}^n} (1 + |k|^2)^{s/2} (1 + |k|^2)^{-s/2} |\hat{u}(k)| dk \\ & \left(\leq \int_{\mathbb{R}^n} (1 + |k|^2)^s |\hat{u}|^2 dk \right)^{1/2} \left(\int_{\mathbb{R}^n} (1 + |k|^2)^{-s} dk \right)^{1/2} \end{aligned}$$

For |k| > 1, $(1 + |k|^2)^s > |k|^{2s}$ and

$$\int_{|k|>1} k^{-2s} dk = \sigma(S^{n-1}) \int_1^\infty r^{-2s} r^{n-1} dr < \infty$$

since -2s+n-1<-1 and $\int_1^\infty r^\alpha dr<\infty$ for $\alpha<-1$. Therefore,

$$|u(x)| \le C \left(\int_{\mathbb{R}^n} (1 + |y|^2)^s |\hat{u}|^2 dy \right)^{1/2} = C ||u||_{H^s(\mathbb{R}^n)}$$

for some constant C > 0 depends only on s and n. This is true for a.e. x, so

$$||u||_{L^{\infty}(\mathbb{R}^n)} \le C||u||_{H^s(\mathbb{R}^n)}$$