Data Representation using Vectors and Matrices

Dr. Shailesh Sivan

June 10, 2025

Dr. Shailesh Sivan

Data Representation using Vectors and Matric

Vectors: Concept and Notation

- A vector is a list of values arranged in a single column or row.
- Example (feature vector of a student):

$$\mathbf{x} = \begin{bmatrix} \mathsf{Height} \\ \mathsf{Weight} \\ \mathsf{Age} \end{bmatrix} = \begin{bmatrix} 170 \\ 65 \\ 21 \end{bmatrix} \in \mathbb{R}^3$$

Introduction

- Data in computer systems is structured numerically.
- Linear algebra offers a compact and efficient framework to represent and analyze data.
- Key representations:
 - Vectors: One-dimensional arrays representing data points or features.
 - Matrices: Two-dimensional arrays representing datasets.

Dr. Shailesh Sivan

Data Representation using Vectors and Matric

Data Representation using Vectors and Matric

Data in \mathbb{R}^n : From 1D to nD

Understanding data as points in n-dimensional space:

- 1D Example (\mathbb{R}):
 - Single feature, e.g., Temperature.
 - Data: $x = [30], [32], [28] \in \mathbb{R}^1$
- 2D Example (\mathbb{R}^2):

Dr. Shailesh Sivan

- Two features, e.g., Height and Weight.
- Data: $x = \begin{bmatrix} 170 \\ 65 \end{bmatrix}, \begin{bmatrix} 160 \\ 60 \end{bmatrix} \in \mathbb{R}^2$

Data in \mathbb{R}^n : From 1D to nD

Understanding data as points in n-dimensional space:

- 3D Example (\mathbb{R}^3):
 - Three features, e.g., Height, Weight, Age.
 - Data: $x = \begin{bmatrix} 170 \\ 65 \\ 21 \end{bmatrix} \in \mathbb{R}^3$
- nD Example (\mathbb{R}^n):
 - For n features: $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \end{bmatrix} \in \mathbb{R}^n$
 - Used in ML, e.g., each image = 784D vector, BERT embedding = 768D.

Dr. Shailesh Sivan

Data Representation using Vectors and Matric

Dr. Shailesh Sivan

Data Representation using Vectors and Matric

Vector Spaces in Data

- Each data point with n features can be viewed as a vector in \mathbb{R}^n .
- A dataset with m samples becomes a collection of such vectors:

$$D = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}\} \subset \mathbb{R}^n$$

- Here, $\mathbf{x}^{(i)} = \begin{vmatrix} x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ (i) \end{vmatrix}$ represents the i^{th} sample.
- This view allows us to apply geometric and algebraic operations in *n*-dimensional space.

2D Feature Space (\mathbb{R}^2)

Each point: a 2D data vector $\in \mathbb{R}^2$

Dataset as a Vector Space in \mathbb{R}^n

- A collection of vectors in \mathbb{R}^n can span a subspace—a vector space that satisfies:
 - Closure under vector addition.
 - Closure under scalar multiplication.
- This space allows us to analyze patterns and relationships using:
 - Linear combinations: New vectors formed using existing ones.
 - Subspaces: Lower-dimensional representations of the original data.
- Example of linear combination:

$$\mathbf{y} = \alpha \mathbf{x}_1 + \beta \mathbf{x}_2, \quad \alpha, \beta \in \mathbb{R}$$

where $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$ are feature vectors.

• Such combinations span a data subspace, e.g., the plane defined by \mathbf{x}_1 and \mathbf{x}_2 in \mathbb{R}^3 .

Matrices: Concept and Notation

- A matrix organizes data as rows and columns.
- Each row: a data sample. Each column: a feature.
- Matrix $A \in \mathbb{R}^{m \times n}$:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Dr. Shailesh Sivan

Data Representation using Vectors and Matri

Matrix Visualization

	Height	Weight	Age	
S1	170	65	21	
S2	160	60	22	
S 3	180	70	20	

From Raw Data to Matrix Representation

	Student	Height	Weight	Age
Raw Tabular Data:	S1	170	65	21
	S2	160	60	22
	S3	180	70	20

Matrix Form:

$$A = \begin{bmatrix} 170 & 65 & 21 \\ 160 & 60 & 22 \\ 180 & 70 & 20 \end{bmatrix}$$
 (Rows: Students, Columns: Features)

Dr. Shailesh Sivan

Data Representation using Vectors and Matric

Dot Product: Measuring Similarity

• Dot product measures similarity between vectors:

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i$$

Also expressed as:

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos(\theta)$$

• If $\theta = 90^{\circ}$, vectors are orthogonal.

Basic Vector and Matrix Operations

- Dot Product: $\mathbf{a} \cdot \mathbf{b} = \sum a_i b_i$
- Matrix Multiplication:

$$C = AB \Rightarrow C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

• Transpose: A^T interchanges rows and columns

Dr. Shailesh Sivan

Data Representation using Vectors and Matric

Applications in Data Science

- Machine Learning: Features and weights as vectors.
- Image Processing: Pixels arranged in matrices.
- Recommendation Systems: Sparse user-item matrices.
- NLP: Word embeddings are high-dimensional vectors.

Norms and Magnitude of Vectors

Norm of a vector (length):

$$\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

• Example:

$$\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

$$\|\begin{bmatrix} 3 \\ 4 \end{bmatrix}\| = \sqrt{3^2 + 4^2} = 5$$

Dr. Shailesh Sivan

Data Representation using Vectors and Matric

Summary

- Vectors represent individual features or data samples.
- Matrices structure complete datasets.
- Linear algebra operations are central to data modeling.
- Foundation for advanced techniques like PCA, SVD, and ML.