Introduction to Computer Graphics0. Overview

I-Chen Lin

Dept. of Computer Science, National Yang Ming Chiao Tung University

Before we start (about language)

- This is not an EMI (English as a Medium of Instruction) course.
- ► The lectures will be in Mandarin Chinese.
- ► The slides, homework assignments, and exam papers are in English.
 - Students are welcome to ask questions, write reports and answer sheets in Chinese or English.
- ► If you are interested in Computer Graphics but not familiar with Chinese, you are welcome to enroll in the graduate-level Computer Graphics course (EMI) that I will teach in the next semester.

About the course

- Course title: Introduction to Computer Graphics
- Lectures:
 - ► EC115, 10:10~12:00(Tues.) + asynchronous video
- Pre-requisites:
 - Computer programming skills in C/C++.
 - Data structures, such as arrays, trees, and linked lists.
 - Essential concepts about matrix computation.
- ► Teacher:
 - ▶ I-Chen Lin (林奕成)
 - ► Email: <u>ichenlin@cs.nycu.edu.tw</u>
 - ▶ Office: EC 704 (工程三館)
 - ► Tel ext: 56684

About the course (cont.)

- TAs:
 - ▶ 張綺恩、廖柏任、王嘉羽等。
 - ▶ Office: EC229b
 - Phone ext.: 56676
- Course web page: E3, NYCU
 - https://e3p.nycu.edu.tw/course/view.php?id=9314
- Participating in a Higher Education Certificate Program.
 - Students may be required to voluntarily provide some feedbacks for comparison of course design.

About the course (cont.)

► Text book:

► Edward Angel, Dave Shreiner, *Interactive Computer Graphics: A Top-Down Approach with Shader-Based OpenGL*, 6th Edition., Pearson, 2012 (or later versions).

- Donald D. Hearn, M. Pauline Baker, Warren Carithers, Computer Graphics with OpenGL (4th Edition), Pearson, 2010.
- ▶ J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes, R. L. Phillips. *Introduction to Computer* Graphics, Addison-Wesley, 1993.
- ▶ Joey de Vries, Learn OpenGL: Learn modern OpenGL graphics programming in a step-by-step fashion, Kendall & Welling, 2020.

What's CG?

- Computer Graphics.
 - ▶ Mainly focuses on 3D graphics.
 - Displays a realistic virtual environment by computers.
 - Or synthesizes virtual objects in the real world.

What's CG? (cont.)

- Or demonstrates a virtual world with specific styles. (e.g. non-photorealistic rendering)
- CG tech. is the foundation of modern 3D animation, special effects and games.

Graphics and related fields

		Outputs		
		descriptions	images	
	descriptions		Computer Graphics	
Input	images	Computer Vision & Pattern Recognition	Image Processing	

Nevertheless, the boundaries between these fields, especially CG and CV, are getting indistinct.

Applications

- Movies
- Games
- Virtual characters

Virtual reality (VR)

Virtuix Omni

Fig. from: en.wikipedia.org/wiki/Flight_simulator

- Medical diagnosis.
- Virtual Surgery.

The Karlsruhe Endoscopic Surgery Trainer

- Computer aided design (CAD)
 - Collaborating on cyberspace.
 - Ex. Cabin design (Boem Inc.)
- Visualization tools
 - Meteorology

- Augmented reality (AR)
- Advanced human computer interfaces

AR, U. Columbia

AR on iPhone, AR Toolkit
Fig. from en.wikipedia.org/wiki/Augmented_reality

Microsoft Hololens

Nowadays: Graphics + Learning

a lion reading the newspaper*

Poole et al., DreamFusion: Text-to-3D using 2D Diffusion, Google Research

Siddiqui et al., MeshGPT, CVPR'24

Note: This course may **not** cover the topics about *Graphics + Learning*.

Kerbl et al., 3D Gaussian Splatting, SIGGRAPH'23

Intended learning outcomes of this course

- On completion of this ICG course, a student will be able to:
 - Describes the fundamental concept of a computer graphics system.
 - **Explain** how an image is synthesized by a graphics system.
 - ► Apply graphics algorithms for image and animation synthesis through graphics programming language GLSL.
 - ▶ Compare classic graphics algorithms and assess their advantages and limitations.

Syllabus

- Introduction
- Graphics primitives
- Geometric transformations
- Viewing in 3D

Syllabus (cont.)

► Illumination and surface rendering

Visible-surface detection

Syllabus (cont.)

- Texture mapping
- Programming with Graphics processing unit (GPU)
- Global illumination

Samples from http://leanopengl.com

http://www.ozone3d.net/tutorials/bump_mapping.php

the Chartres Cathedral www.graphics.cornell.edu

Syllabus (cont.)

- Curves and surfaces (optional)
- Advanced topics or research in CG (optional)
- ► (Note: advanced graphics-related courses in NYCU)
 - Computer graphics (graduate-level)
 - Computer animation and visual effects
 - Image manipulation techniques and visual effects
 - Interactive shape manipulation
 - Real-time rendering
 - ➤ 3D game programming
 - **.....**

About the course (cont.)

- Grading: (provisional)
 - Assignments (3 programs)
 - ▶ OpenGL/GLSL viewer: transformation + viewing.
 - ► GLSL viewer: transformation + texture.
 - ► Shading with GLSL.
 - Project: Animation with GLSL
 - ▶ 1 ~ 2 (or 3) members (Last year: a 20~30-second animation using GLSL with three kinds of shaders).
 - Exams
 - ► Midterm (25% ± 15%)
 - ightharpoonup Final (20% ± 15%)

Note:

HW sample codes on Windows will be provided. SDK settings for MacOS will be introduced.

(Note: Apple may cease supporting OpenGL)

- Note: The numbers of exams and assignments and their percentages may vary)
- Class participation (1 ~ 10% or bonus)

Schedule

What can I obtain in this course?

Fundamentals of computer graphics techniques.

Programming ability for 3D graphics.

Preliminary concepts about graphics-related topics,
 e.g. 3D games, animation, VFX movies.

What can I obtain in this course?

- 2D image special effects?
 Somewhat
- Digital art styles 2
- Usage of editing tools ?
 - Photoshop, 3Diviay, Maya, etc.

Making a blockbuster movie/game?
Ambitious! Let's draw a triangle first!

Conclusion

- ► The role of graphics people in CS
 - Improving faithfulness or visual effects.
 - Speed-up of CG generation.
 - Exploring the use of graphics.
 - (through computer techniques)

CG gives "wizards" the "wands" and "spells"!