NRC · CNRC

From Discovery to Innovation...

Atomistic tight binding theory of optical properties of quantum dots and nanocrystals

M. Korkusinski, M. Zielinski, A. Voznyy, P. Hawrylak

Quantum Theory Group, Institute for Microstructural Sciences

National Research Council of Canada, Ottawa

email: marek.korkusinski@nrc-cnrc.gc.ca

SEMICONDUCTOR NANOSTRUCTURES

NANOCRYSTALS

~1000 ATOMS, ~10⁴ ELE.

EFROS, EFIMOV

R. WILLIAMS, P. POOLE

InAs/GaAs SELF-ASSEMBLED

QDOTS: 2 MLN ATOMS, ~10⁷ ELE.

MANY GROUPS WORLDWIDE

GRAPHENE NANOISLANDS 500 ATOMS, ~10³ ELE.

InAs/InP QDOTS ON
PATTERNED SUBSTRATES:

10 MLN ATOMS, $\sim 10^8$ ELE.

THEORETICAL TOOLS

- 1. METHODS TREATING ALL ELECTRONS:
 - * CONFIGURATION-INTERACTION: ~10 e, 2 ATOMS
 - * DENSITY FUNCTIONAL THEORY: ~1000 e
- 2. ATOMISTIC QUASIPARTICLE APPROACHES:
 - **CONDUCTION ELECTRON, VALENCE HOLE:**
 - * EMPIRICAL PSEUDOPOTENTIAL A. ZUNGER 106 ATOMS
 - * EBOM MODEL Y.C. CHANG, MK, PH 10⁷ EFFECTIVE SITES
 - * TIGHT BINDING –

KLIMECK, BRYANT, MK, MZ, PH – 10⁷ ATOMS

- 3. EFFECTIVE MASS APPROACHES:
 - * K * P 10²⁴ ATOMS
 - * SINGLE-BAND EMA 10²⁴ ATOMS

WHY ATOMISTIC MODELS?

- •LACK OF INVERSION SYMMETRY OF THE LATTICE
- •INTERFACES, INTERFACE ROUGHNESS
- •STRAIN
- •ATOMISTIC DISORDER
- •RANDOM ALLOYING
- •ELECTRON-HOLE EXCHANGE AND EXCITON FINE STRUCTURE
- •IMPURITIES (ALSO MAGNETIC)

COMPUTATIONAL PROCEDURE

TIGHT BINDING APPROACH - FROM BULK TO NANOSTRUCTURE

(J. Slater and G. Koster, G. Klimeck, T. Boykin, G. Bryant,.....)

TIGHT BINDING APPROACH

(J. Slater and G. Koster, G. Klimeck, T. Boykin, G. Bryant)

BASIS ORBITALS FOR THE VALENCE ELECTRON

NRC-CNRC

$$--- |s^*,\sigma\rangle$$

$$igg|d_i,\sigma
angle$$

$$=$$
 $|p_i,\sigma\rangle$

SLATER ORBITALS A "HOLLOW SPHERE"

$$|s,\sigma\rangle$$

$$\langle r | s \rangle = N_{\alpha\beta} r^{\alpha} e^{-\beta r} Y_{00}(\theta, \varphi)$$

ORBITALS

TIGHT-BINDING HAMILTONIAN

LCAO APPROACH

$$\varphi_{l}(r) = \sum_{R=1}^{N} \sum_{\alpha=1}^{20} \phi_{l,\alpha}(R) u_{\alpha}(r-R)$$

ATOMIC ORBITALS

R = ATOM INDEX

 $\alpha = ORBITAL INDEX (INCLUDING SPIN)$

TIGHT-BINDING HAMILTONIAN

WE DO NOT COMPUTE THE ELEMENTS YET

TIGHT-BINDING PARAMETRIZATION WITH 1st NEAREST NEIGHBORS

$$\widehat{H} = \sum_{\substack{atoms \ R \\ bands}} \sum_{\alpha=1}^{20} \varepsilon_{R\alpha} c_{R\alpha}^+ c_{R\alpha}^- + \sum_{\substack{atoms \ R \\ bands}} \sum_{\alpha=1}^{20} \sum_{\alpha' \neq \alpha}^{20} \lambda_{R\alpha\alpha'}^{SO} c_{R\alpha}^+ c_{R\alpha'}^-$$

$$+\sum_{atoms\,R}\sum_{atoms\,R'=1}^{4nn}\sum_{\alpha=1}^{20}\sum_{\alpha'=1}^{20}t_{R\alpha,R'\alpha'}c_{R\alpha}^{+}c_{R'\alpha'}$$

$$+\sum_{atoms\,R}\sum_{atoms\,R'=1}^{4nn}\sum_{\alpha=1}^{20}\sum_{\alpha'=1}^{20}t_{R\alpha,R'\alpha'}c_{R\alpha}^{+}c_{R'\alpha'}$$

CASE OF SIMPLE CUBIC LATTICE

ZINCBLENDE LATTICE: TETRAHEDRAL COORDINATION

SLATER-KOSTER RULES – EXPRESSIONS FOR ANY PAIR OF ORBITALS

Table I. Energy integrals for crystal in terms of two-center integrals.

$E_{s,s}$	$(ss\sigma)$
$E_{s,x}$	$l(sp\sigma)$
$E_{x, x}$	$l^{2}(pp\sigma)+(1-l^{2})(pp\pi) \leftarrow l^{2}(pp\sigma)+(1-l^{2})(pp\pi)$
$E_{x,y}$	$lm(pp\sigma)-lm(pp\pi)$
$E_{x,z}$	$ln(pp\sigma)-ln(pp\pi)$
$E_{s,xy}$	$\sqrt{3}lm(sd\sigma)$
E_{s,x^2-y^2}	$\frac{1}{2}\sqrt{3}\left(l^2-m^2\right)\left(sd\sigma\right)$
$E_{s,3z^2-r^2}$	$[n^2 - \frac{1}{2}(l^4 + m^2)](sd\sigma)$ 100 RULES
$E_{x, xy}$	$\sqrt{3}l^2m(pd\sigma)+m(1-2l^2)(pd\pi)$
$E_{x,yz}$	$\sqrt{3}lmn(pd\sigma)-2lmn(pd\pi)$ REDUCE 100 HOPPING TERMS
$E_{x, zx}$	$\sqrt{3}l^2n(ho d\sigma)+n(1-2l^2)(ho d\pi)$
E_{x,x^2-y^2}	$\frac{1}{2}\sqrt{3}l(l^2-m^2)(pd\sigma)+l(1-l^2+m^2)(pd\pi)$ TO 21 NONTRIVIAL PARAMETERS
E_{y,x^2-y^2}	$\frac{1}{2}\sqrt{3}m(l^2-m^2)(pd\sigma)-m(1+l^2-m^2)(pd\pi)$
E_{z,x^2-y^2}	$\frac{1}{2}\sqrt{3}n(l^2-m^2)(pd\sigma)-n(l^2-m^2)(pd\pi)$
$E_{x,3z^2-r^2}$	$l \left[n^2 - \frac{1}{2} (l^2 + m^2) \right] (p d\sigma) - \sqrt{3} l n^2 (p d\pi)$
$E_{y,3z^2-r^2}$	$m[n^2 - \frac{1}{2}(l^2 + m^2)](pd\sigma) - \sqrt{3}mn^2(pd\pi)$
$E_{z,\Im z^2-r^2}$	$n[n^2 - \frac{1}{2}(l^2 + m^2)](pd\sigma) + \sqrt{3}n(l^2 + m^2)(pd\pi)$
$E_{xy,xy}$	$3l^2m^2(dd\sigma) + (l^2 + m^2 - 4l^2m^2)(dd\pi) + (n^2 + l^2m^2)(dd\delta)$
$E_{xy,yz}$	$3lm^2n(dd\sigma) + ln(1-4m^2)(dd\pi) + ln(m^2-1)(dd\delta)$
$E_{xy,zx}$	$3l^2mn(dd\sigma)+mn(1-4l^2)(dd\pi)+mn(l^2-1)(dd\delta)$
E_{xy,x^2-y^2}	$rac{3}{2}lm(l^2-m^2)(dd\sigma)+2lm(m^2-l^2)(dd\pi)+rac{1}{2}lm(l^2-m^2)(dd\delta)$
E_{yz,x^2-y^2}	$\frac{3}{2}mn(l^2-m^2)(dd\sigma)-mn[1+2(l^2-m^2)](dd\pi)+mn[1+\frac{1}{2}(l^2-m^2)](dd\delta)$
E_{zx, x^2-y^2}	$\tfrac{3}{2} n l(l^2 - m^2) (dd\sigma) + n l \big[1 - 2 (l^2 - m^2) \big] (dd\pi) - n l \big[1 - \tfrac{1}{2} (l^2 - m^2) \big] (dd\delta)$
$E_{xy, 3z^2-r^2}$	$\sqrt{3}lm[n^2 - \frac{1}{2}(l^2 + m^2)](dd\sigma) - 2\sqrt{3}lmn^2(dd\pi) + \frac{1}{2}\sqrt{3}lm(1 + n^2)(dd\delta)$
$E_{yz,3z^2-r^2}$	$\sqrt{3}mn[n^2-rac{1}{2}(l^2+m^2)](dd\sigma)+\sqrt{3}mn(l^2+m^2-n^2)(dd\pi)-rac{1}{2}\sqrt{3}mn(l^2+m^2)(dd\delta)$
$E_{zx,3z^2- au^2}$	$\sqrt{3}ln[n^2 - \frac{1}{2}(l^2 + m^2)](dd\sigma) + \sqrt{3}ln(l^2 + m^2 - n^2)(dd\pi) - \frac{1}{2}\sqrt{3}ln(l^2 + m^2)(dd\delta)$
$E_{x^2-y^2,x^2-y^2}$	$\tfrac{3}{4}(l^2-m^2)^2(dd\sigma) + \big[l^2+m^2-(l^2-m^2)^2\big](dd\pi) + \big[n^2+\tfrac{1}{4}(l^2-m^2)^2\big](dd\delta)$
$E_{x^2-y^2,3z^2-r^2}$	$\tfrac{1}{2}\sqrt{3}\left(l^2-m^2\right)\left[n^2-\tfrac{1}{2}\left(l^2+m^2\right)\right](dd\sigma)+\sqrt{3}n^2(m^2-l^2)\left(dd\pi\right)+\tfrac{1}{4}\sqrt{3}\left(1+n^2\right)\left(l^2-m^2\right)\left(dd\delta\right)$
$E_{3z^2-r^2,3z^2-r^2}$	$ [n^2 - \frac{1}{2}(l^2 + m^2)]^2 (dd\sigma) + 3n^2 (l^2 + m^2) (dd\pi) + \frac{3}{4}(l^2 + m^2)^2 (dd\delta) $

J. SLATER & G. KOSTER, PHYS. REV. 94, 1498 (1954)

TIGHT-BINDING HAMILTONIAN

$\lceil arepsilon ceil$	$s_{s\downarrow}^{a}$	0	0	0	0					
		$oldsymbol{\mathcal{E}}^a_{PX}{}_{\downarrow}$	$i\Delta$	0	0				$-\Delta$	
			$i\Delta \ arepsilon_{PY\downarrow}^a$	0	0				$-\Delta$ $-i\Delta$	
				$oldsymbol{arepsilon}_{PZ}^{a}_{\downarrow}$	0		Δ	$i\Delta$		
					$oldsymbol{arepsilon}_{S^*\!\downarrow}^a$					
						$oldsymbol{arepsilon}_{S^{igstyle}}^a$	$0 \ arepsilon_{PX}^a{}_{\uparrow}$	0	0	0
							$oldsymbol{arepsilon}_{PX}^a{}_{\uparrow}$	$-i\Delta$	0	0
								$oldsymbol{\mathcal{E}}^a_{PY}{}^{\uparrow}$	0	0
		ΔΝ	OIV	N					$oldsymbol{\mathcal{E}}^a_{PZ}{}^{\uparrow}$	0
			110	11						$oldsymbol{arepsilon}_{S^*\uparrow}^a$
L										

h.c.

t_{SS}	t_{SPX}	t_{SPY}	t_{SPZ}	t_{SS^*}					-
t_{PXS}	t_{PXPX}	t_{PXPY}	t_{PXPZ}	t_{PXS*}					
t_{PYS}	t_{PYPX}	t_{PYPY}	t_{PYPZ}	t_{PYS^*}					
t_{PZS}	t_{PZPX}	t_{PZPY}	t_{PZPZ}	t_{PZS^*}					
	t_{S*PX}	t_{S*PY}	t_{S*PZ}	t_{S*S*}					
					t_{SS}	t_{SPX}	t_{SPY}	t_{SPZ}	t_{SS*}
					t_{PXS}	t_{PXPX}			
						t_{PYPX}	t_{PYPY}	t_{PYPZ}	
					t_{PZS}	t_{PZPX}	t_{PZPY}	t_{PZPZ}	t_{PZS^*}
							t_{S*PY}		
						D 111			
$oldsymbol{arepsilon}_{S\downarrow}^c$	0	0	0	0		J 111			
$oldsymbol{arepsilon}_{S\downarrow}^c$	$0 \ arepsilon_{{\scriptscriptstyle PX}}{\downarrow}$	0 <i>i</i> ∆	0	0 0		<i>5</i> 111		$-\Delta$	
$\mathcal{E}_{S\downarrow}^{c}$	$0 \ arepsilon_{{\scriptscriptstyle PX}} \downarrow$		0						
$oldsymbol{arepsilon}_{S\downarrow}^c$	$0 \ arepsilon_{_{PX}\downarrow}$	$i\Delta$	0	0		Δ	$i\Delta$	$-\Delta$	
$\mathcal{E}^{c}_{S\downarrow}$	$0 \ arepsilon_{ ho_{X}\downarrow}^{c}$	$i\Delta$		0 0 0		Δ	$i\Delta$	$-\Delta$ $-i\Delta$	
$\mathcal{E}_{S\downarrow}^{c}$	$0 \ arepsilon_{ ho_{X}\downarrow}^{c}$	$i\Delta$	0	0 0		Δ	$i\Delta$	$-\Delta$ $-i\Delta$	
$\mathcal{E}_{S\downarrow}^c$	$0 \ arepsilon_{ ho_{X}\downarrow}^{c}$	$i\Delta$	0	0 0 0	$oldsymbol{arepsilon}_{S^{\uparrow}}^c$	Δ	$i\Delta$	$-\Delta$ $-i\Delta$	
${oldsymbol{arepsilon}}_{S\downarrow}^c$	$0 \ arepsilon_{ ho_{X}\downarrow}^{c}$	$i\Delta$	0	0 0 0		Δ	$i\Delta$	$-\Delta$ $-i\Delta$	
$oldsymbol{arepsilon}^c_{S\downarrow}$		$i\Delta$	$egin{array}{c} 0 \ 0 \ arepsilon^c_{PZ} \downarrow \end{array}$	0 0 0		Δ	$i\Delta$	$-\Delta$ $-i\Delta$	
$arepsilon_{S\downarrow}^c$		$i\Delta \ arepsilon_{PY}^c \$	$egin{array}{c} 0 \ 0 \ arepsilon^c_{PZ} \downarrow \end{array}$	0 0 0		Δ		$-\Delta$ $-i\Delta$	

SPIN-ORBIT INTERACTION AFTER CHADI ET AL., PHYS. REV. B

$$\widehat{H} = \sum_{\substack{atoms\,R\\bands}} \sum_{\alpha=1}^{20} \varepsilon_{R\alpha} c_{R\alpha}^+ c_{R\alpha}^- + \sum_{\substack{atoms\,R\\bandsbands}} \sum_{\alpha=1}^{20} \sum_{\alpha'\neq\alpha}^{20} \lambda_{R\alpha\alpha'}^{SO} c_{R\alpha}^+ c_{R\alpha'}^- + \sum_{\substack{atoms\,R\\bandsbands}} \sum_{\substack{atoms\,R\\bandsbands}}^{4nn} \sum_{\alpha=1}^{20} \sum_{\alpha'=1}^{20} t_{R\alpha,R'\alpha'} c_{R\alpha}^+ c_{R'\alpha'}^- + \sum_{\substack{atoms\,R\\bandsbands}} \sum_{\substack{atoms\,R\\bandsbands}}^{20} \sum_{\alpha'=1}^{20} t_{R\alpha,R'\alpha'} c_{R\alpha'}^+ c_{R\alpha'}^- + \sum_{\substack{atoms\,R\\bandsbands}} \sum_{\substack{atoms\,R\\bandsbands}}^{20} \sum_{\alpha'=1}^{20} t_{R\alpha,R'\alpha'}^- c_{R\alpha'}^+ c_{R\alpha'}^- + \sum_{\substack{atoms\,R\\bandsbands}}^{20} \sum_{\alpha'=1}^{20} \sum_{\alpha'=1}^{20} t_{R\alpha,R'\alpha'}^- c_{R\alpha'}^- c_{R\alpha'}^- + \sum_{\substack{atoms\,R\\bandsbands}}^{20} \sum_{\alpha'=1}^{20} \sum_{\alpha'=1}^{20} t_{R\alpha,R'\alpha'}^- c_{R\alpha'}^- c_{R\alpha'}^-$$

WE REQUIRE:

- •4 ONSITE ENERGIES FOR ANION (S, P, D, S* ORBITALS)
- •4 ONSITE ENERGIES FOR CATION
- •2 SPIN-ORBIT CONSTANTS (ONE ANION, ONE CATION)
- •21 HOPPING PARAMETERS

WE SET UP THE TB HAMILTONIAN FOR THE BULK AND FIT THE CHARACTERISTIC POINTS OF THE BRILLOUIN ZONE

TREATMENT OF BULK

BASIS OF BLOCH SUMS

$$|\Psi_{ANION}\rangle = \sum_{\alpha=1}^{20} A_{\alpha}^{ANION} \left(\frac{1}{\sqrt{N}} \sum_{i,BLUE} e^{ikR_i} \varphi_{\alpha} (\vec{r} - \vec{R}_i)\right)$$

$$\left|\Psi_{CATION}\right\rangle = \sum_{\alpha=1}^{20} B_{\alpha}^{CATION} \left(\frac{1}{\sqrt{N}} \sum_{j,RED} e^{ikR_j} \varphi_{\alpha} \left(\vec{r} - \vec{R}_j\right)\right)$$

FITTING PROCEDURE

ENERGIES AND AVAILABLE
EFFECTIVE MASSES FITTED
USING GENETIC ALGORITHM

EXAMPLE: InAs

NONLOCAL PSEUDOPOTENTIAL, CHELIKOVSKY & COHEN, PRB

ELECTRONIC STRUCTURE CALCULATION TIGHT BINDING BULK BANDSTRUCTURE

CHELIKOVSKY&COHEN

Tight binding

OUR FIT

BULK BAND STRUCTURE OF CdSe

DFT + SCISSOR OPERATOR

OUR FIT

TREATMENT OF NANOSTRUCTURE

INTERFACES

- •TB PARAMETERS ACROSS THE INTERFACE
 - -INTERFACE PARAMETERS NOT A PROBLEM FOR GaAs/InAs
 - -BAND OFFSETS IN DIAGONAL MATRIX ELEMENTS
- •CONSEQUENCES OF MODIFIED ATOMIC POSITIONS

STRAIN

ATOMISTIC SIMULATION OF STRAIN

MINIMIZE TOTAL ELASTIC ENERGY

$$\begin{split} E_{TOT} &= \frac{1}{2} \sum_{i} \sum_{j=1}^{4} A_{ij} \left(\left(\mathbf{R}_{i} - \mathbf{R}_{j} \right)^{2} - \left(d_{ij}^{0} \right)^{2} \right)^{2} \\ &+ \sum_{i} \sum_{j=1}^{3} \sum_{k=j+1}^{4} B_{ijk} \left(\left(\mathbf{R}_{j} - \mathbf{R}_{i} \right) \left(\mathbf{R}_{k} - \mathbf{R}_{i} \right) - \cos \theta d_{ij}^{0} d_{ik}^{0} \right)^{2} \end{split}$$

OPTIMAL DISPLACEMENT FIELD FOUND WITH CONJUGATE-GRADIENT METHOD

(P. Keating, A. Zunger, C. Pryor)

INCLUSION OF STRAIN

RESCALE MATRIX ELEMENTS BY DIRECTIONAL COSINES AND BOND STRETCHING TERMS (HARRISON'S LAW)

NO STRAIN

WITH STRAIN

$$\vec{d}' = d'(l'\hat{x} + m'\hat{y} + n'\hat{z})$$

$$t'_{sa,zc} = n'V_{sa,pc\sigma} \left(\frac{d}{d_0}\right)^{\eta_{SPz}}$$

SHIFTS OF DIAGONAL TERMS

LOEWDIN-ORTHOGONALIZED BASIS:

$$|\Phi\rangle_i = |R,\alpha\rangle - \frac{1}{2} \sum_{R'\beta} S_{R\alpha,R'\beta} |R',\beta\rangle$$

S MATRIX CHANGES AS ATOMS ARE DISPLACED

T.B. BOYKIN, G. KLIMECK, PRB

SHIFTS OF DIAGONAL TERMS

DIAGONAL HAMILTONIAN ELEMENTS

$$\varepsilon_{R\alpha} = \left\langle \Phi \left| H \right| \Phi \right\rangle_{i} \approx \left\langle R, \alpha \left| H \right| R, \alpha \right\rangle - \sum_{R', \beta} S_{R\alpha, R', \beta} \left\langle R, \alpha \left| H \right| R', \beta \right\rangle$$

SENSITIVE TO STRAIN!

T.B. BOYKIN, G. KLIMECK, PRB

SHIFTS OF DIAGONAL TERMS

PROCEDURE: USE EXTENDED HUECKEL RULE:

$$S_{R\alpha,R'\beta} \approx A \frac{t_{R\alpha,R'\beta}}{\varepsilon_{R\alpha}^{ATOM} + \varepsilon_{R'\beta}^{ATOM}}$$
 "BARE" ATOMIC ENERGIES

$$\varepsilon_{\vec{R}\alpha} = \varepsilon_{\vec{R}\alpha}^0 + \sum_{\vec{R}' \in nn} \sum_{\beta} C_{(\vec{R}\alpha, \vec{R}'\beta)} \frac{\left(t_{\vec{R}\alpha, \vec{R}'\beta}^0\right)^2 - \left(t_{\vec{R}\alpha, \vec{R}'\beta}^{'}\right)^2}{\varepsilon_{\vec{R}\alpha}^0 + \varepsilon_{\vec{R}'\beta}^0 - \Delta E_{ATOM}}$$

C – PARAMETERS TO BE FITTED