CSE 102

Homework Assignment 1 Solutions

1. (Problem 3.1-1) Let f(n) and g(n) asymptotically positive functions. Prove that $f(n) + g(n) = \Theta(\max(f(n), g(n)))$.

Proof:

Since f(n) and g(n) are asymptotically positive, we know that there exists a positive constant n_0 such that f(n) > 0 and g(n) > 0 for all $n \ge n_0$. For any such n we have

$$0 \le \max(f(n), g(n))$$

$$\le \min(f(n), g(n)) + \max(f(n), g(n))$$

$$\le 2 \cdot \max(f(n), g(n)).$$

But $f(n) + g(n) = \min(f(n), g(n)) + \max(f(n), g(n))$, and therefore

$$0 \le 1 \cdot \max(f(n), g(n)) \le f(n) + g(n) \le 2 \cdot \max(f(n), g(n))$$

for all
$$n \ge n_0$$
, showing that $f(n) + g(n) = \Theta(\max(f(n), g(n)))$.

Note: we really only used that f and g are asymptotically non-negative.

2. Prove or disprove: If $f(n) = \Theta(g(n))$, then $f(n)^2 = \Theta(g(n)^2)$.

Proof:

Since $f(n) = \Theta(g(n))$, there are positive constants c_1 , c_2 and n_0 such that

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$

for all $n \ge n_0$. Squaring this inequality gives $0 \le c_1^2 g(n)^2 \le f(n)^2 \le c_2^2 g(n)^2$ for all $n \ge n_0$. Thus there exist positive constants d_1 , d_2 and n_1 (namely $d_1 = c_1^2$, $d_2 = c_2^2$ and $n_1 = n_0$) such that

$$0 \leq d_1g(n)^2 \leq f(n)^2 \leq d_2g(n)^2$$

for all $n \ge n_1$. This proves $f(n)^2 = \Theta(g(n)^2)$.

3. Prove or disprove: If $f(n) = \Theta(g(n))$, then $2^{f(n)} = \Theta(2^{g(n)})$.

Solution:

The statement is false, as the following counter-example shows.

Let f(n) = 2n and g(n) = n. Then $f(n) = \Theta(g(n))$, but $2^{2n} = 4^n = \omega(2^n)$, and therefore $2^{f(n)} = \omega(2^{g(n)})$, whence $2^{f(n)} \neq \Theta(2^{g(n)})$.

4. Let f(n) and g(n) be asymptotically positive functions, and assume that $\lim_{n\to\infty} g(n) = \infty$. Prove that if $f(n) = \Theta(g(n))$, then $\ln(f(n)) = \Theta(\ln(g(n)))$.

Proof:

Assume $f(n) = \Theta(g(n))$. Then there exist positive constants c_1 , c_2 and n_0 such that

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$

for all $n \ge n_0$. Since $\lim_{n \to \infty} g(n) = \infty$, the constant n_0 can be chosen large enough so that

$$1 \le c_1 g(n) \le f(n) \le c_2 g(n)$$

for all $n \ge n_0$. Take ln() of all terms in the preceding inequality to get

$$0 \le \ln(c_1) + \ln(g(n)) \le \ln(f(n)) \le \ln(c_2) + \ln(g(n))$$

for all $n \ge n_0$. Since $\lim_{n \to \infty} g(n) = \infty$, the term $\ln(g(n))$ dominates the constants $\ln(c_1)$ and $\ln(c_2)$, whence $\ln(c_1) + \ln(g(n)) = \Omega(\ln(g(n)))$ and $\ln(c_2) + \ln(g(n)) = O(\ln(g(n)))$. The desired result $\ln(f(n)) = O(\ln(g(n)))$ now follows by Exercise 4 on page 4 of the handout on asymptotic growth rates.

5. (Problem 3.2-8) Show that if $f(n) \ln f(n) = \Theta(n)$, then $f(n) = \Theta(n/\ln n)$. Hint: use the result of the preceding problem.

Proof:

Assume $f(n) \ln f(n) = \Theta(n)$. Since $\lim_{n \to \infty} n = \infty$, we can, by the result of problem (4), take \ln () of both sides of this equation to get

$$\ln(f(n)\ln f(n)) = \Theta(\ln(n))$$

SO

$$\ln(f(n)) + \ln(\ln(f(n))) = \Theta(\ln(n)).$$

Since $\ln(\ln(f(n))) = o(\ln(f(n)))$, we can, by Exercise 10g on page 7 of the handout on asymptotic growth rates, drop the lower order term and write this as $\ln(f(n)) = \Theta(\ln(n))$. Substituting this into our original assumption gives $f(n)\Theta(\ln n) = \Theta(n)$, and therefore

$$f(n) = \Theta(n) \cdot \frac{1}{\Theta(\ln n)} = \Theta(n) \cdot \Theta\left(\frac{1}{\ln n}\right) = \Theta\left(\frac{n}{\ln n}\right)$$

where we have used Exercise 12bc on page 8 of the handout on asymptotic growth rates.

- 6. Consider the statement: $f(cn) = \Theta(f(n))$.
 - a. Determine a function f(n) and a constant c > 0 for which the statement is false.

Example:

Let $f(n) = 2^n$ and c = 2. Then the statement says $2^{2n} = \Theta(2^n)$, i.e. $4^n = \Theta(2^n)$. This is false since $4^n = \omega(2^n)$ by Exercise 10e on page 7 of the handout on Asymptotic Growth Rates, and since $\omega(2^n) \cap \Theta(2^n) = \emptyset$ by Exercise 7 on page 5 of the same handout.

b. Determine a function f(n) for which the statement is true for all c > 0.

Example:

Let f(n) = n. Then the statement says $cn = \Theta(n)$. This is true for any c > 0 by Exercise 2 on page 3 of the handout on Asymptotic Growth Rates.

7. Determine the asymptotic order of the expression $\sum_{i=1}^{n} a^{i}$ where a > 0 is a constant, i.e. find a simple function g(n) such that the expression is in the class $\Theta(g(n))$. (Hint: consider the cases a = 1, a > 1, and 0 < a < 1 separately.)

Solution: In the case a=1 we have $\sum_{i=1}^{n} a^{i} = n = \Theta(n)$. Now assume $a \neq 1$ and use the formula for the sum of a geometric series:

$$\sum_{i=1}^{n} a^{i} = a \left(\sum_{i=0}^{n-1} a^{i} \right) = a \left(\frac{a^{n} - 1}{a - 1} \right) = \left(\frac{a}{a - 1} \right) \cdot a^{n} - \left(\frac{a}{a - 1} \right)$$

If a > 1 then $a^n \to \infty$ as $n \to \infty$, so the first term dominates the second, and $\sum_{i=1}^n a^i = \Theta(a^n)$. If 0 < a < 1 then $a^n \to 0$, so the constant term (which is positive in this case) dominates, and therefore $\sum_{i=1}^n a^i = \Theta(1)$. Thus we have

$$\sum_{i=1}^{n} a^{i} = \begin{cases} \Theta(1) & \text{if } 0 < a < 1 \\ \Theta(n) & \text{if } a = 1 \\ \Theta(a^{n}) & \text{if } a > 1 \end{cases}$$

8. Use induction to prove that $\sum_{k=1}^{n} k^4 = \frac{n(n+1)(6n^3 + 9n^2 + n - 1)}{30}$ for all $n \ge 1$.

Proof:

I.
$$\sum_{k=1}^{1} k^4 = 1 = \frac{2 \cdot 15}{30} = \frac{1 \cdot (1+1) \cdot (6 \cdot 1^3 + 9 \cdot 1^2 + 1 - 1)}{30}$$
, and the base case is established.

II. Let $n \ge 1$. Assume for this *n* that

$$\sum_{k=1}^{n} k^4 = \frac{n(n+1)(6n^3 + 9n^2 + n - 1)}{30}$$

We must show that

$$\sum_{k=1}^{n+1} k^4 = \frac{(n+1)(n+2)(6(n+1)^3 + 9(n+1)^2 + (n+1) - 1)}{30}$$

We have

$$\sum_{k=1}^{n+1} k^4 = \left(\sum_{k=1}^n k^4\right) + (n+1)^4$$

$$= \frac{n(n+1)(6n^3 + 9n^2 + n - 1)}{30} + (n+1)^4 \quad \text{by the induction hypothesis}$$

$$= \frac{(n+1)[n(6n^3 + 9n^2 + n - 1) + 30(n+1)^3]}{30}$$

$$= \frac{(n+1)[6n^4 + 39n^3 + 91n^2 + 89n + 30]}{30}$$

$$= \frac{(n+1)(n+2)[6n^3 + 27n^2 + 37n + 15)]}{30}$$

$$= \frac{(n+1)((n+1)+1)[6(n+1)^3 + 9(n+1)^2 + (n+1) - 1)]}{30}$$

Thus the formula holds for n + 1 as well. The formula is valid for all n by induction.