This question paper contains 7 printed pages]

| Roll No. |  |  |  |  |  |  |
|----------|--|--|--|--|--|--|

S. No. of Question Paper: 5599

Unique Paper Code : 2372012402

Name of the Paper : Total Quality Management

Name of the Course : B.Sc. (Hons.) Statistics

Semester : IV

Duration: 3 Hours Maximum Marks: 90

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt *five* questions in all.

Question No. 1 is compulsory.

Also attempt three questions from Section A and one question from Section B.

Use of simple calculator is allowed.

Required Statistical tables are attached with the paper.

(a) (i) A data is given for the number of non-conforming items in each of the 25 samples, containing 50 items each. What is the appropriate control chart required to detect assignable cause of variation?
 Justify your answer.

(b)

What are the magnificent seven tools of SPC? (iii) Name the tools and techniques for control phase of six-sigma. (iv) Name the two set of tables developed by Dodge and Romig for acceptance sampling plans. (i)The chance and assignable cause terminology was developed by  $6 \times 1$ ..... in ..... (ii)In usual notations, if  $\bar{p} = 0.068$  based on 20 days data and n = 50. LCL = ..... for controlling fraction defective. (iii) The producer's risk is the probability with which a consumer will ..... (iv) If for a process, 18 out of 20 points are plotted above the CL but below the upper control limit, and only 2 of 20 are plotted between the center line and the lower control limit, then we can say the process state is ..... (v)R chart is more suitable for ...... sample size. In Six Sigma, the goal is to have a process that produces no more than ..... ppm.

## Section - A

- 2. (a) Differentiate between revised and rejection control limits by clearly discussing the concept, need and procedure to obtain them.
  - (b) Define SPC and write the magnificent seven tools of SPC. What are random causes and special causes and what part they play in the operation and interpretation of Shewhart control chart?

    9
- (a) Assuming quality characteristic is a normally distributed variable measurable on a meter scale, 24 samples of size n = 4 each are taken from a manufacturing process every hour. Discuss and derive the construction of appropriate control chart to bring the process under statistical control.
  - (b) During production of brass tube of the machine the diameter of the brass tube is noted. In a 30 subgroup of size 5 each assuming quality characteristic is normally distributed, the values of  $\sum_{i=1}^{30} \overline{x}_i = 15.45$  and  $\sum_{i=1}^{30} s_i = 2.98$  (the measurements are in inch) was computed.
    - (i) Estimate the process standard deviation on the assumption that the process is in statistical control.
    - (ii) Find the  $3\sigma$  control limits for the  $\bar{x}$  and s charts.
    - (iii) After some time, it has been observed that the value of  $\sum_{i=1}^{30} \overline{x}_i$  shifted to 17.25, whereas 's' remains the same. What fraction nonconforming would result?

- 4. (a) What are control charts for attributes? Derive control charts for proportion defectives for variable sample size by using any two methods. 9
  - (b) In an ice cream parlor, the temperature at which ice cream is served should be kept between -18°C and -36°C. The process of refrigeration has a standard deviation of 2°C and the average value of the temperature is -27°C.
    - (i) Obtain the process capability index for this process and comment on the capability of the process.
    - (ii) What is the natural tolerance limit for the refrigeration process?
    - (iii) How will the capability of the process react, if the standard deviation increases further by  $2^{\circ}$ C?
- (a) Explain the concept of quality w.r.t. product control. Define AQL, LTPD,
   AOQ and AOQL. Also, show them on an appropriate curve in sampling plan.
  - (b) Describe the double sampling plan for attributes and obtain the expressions for producer's and consumer's risk.

## Section - B

| 6. | (a) | Define the following terms in context of six-sigma:                   | 9  |
|----|-----|-----------------------------------------------------------------------|----|
| ,  | -   | (a) Black Belt                                                        | •  |
|    |     | (b) VOC                                                               |    |
|    |     | (c) CTQ                                                               |    |
|    |     | (d) Defect                                                            |    |
|    |     | (e) Six-sigma.                                                        |    |
|    | (b) | Explain various tools that can develop creative solutions based or    | n  |
|    |     | generating alternatives in the Improve Phase of DMAIC.                | 9  |
| 7. | (a) | What is Lean Manufacturing? Discuss different kind of wastes and tool | .s |
|    |     | and techniques for reducing them.                                     | 9  |
|    | (b) | Discuss various training plans that are essential for Six Sigm        | a  |
|    |     | implementation.                                                       | 9  |



| £   | 0.00      | 0.01    | 0.02    | 0.03    | 0.04    | 0.05    | 0.06    | 0.07    | 0.08    | 8.69    |
|-----|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 0.0 | 0.50000   | 0.50399 | 0.50798 | 0.51197 | 0.51595 | 0.51994 | 0.52392 | 0.52790 | 0.53188 | 0.53586 |
| 0.1 | 0.53983   | 0.54379 | 0.54776 | 0.55172 | 0.55567 | 0.55962 | 0.56356 | 0.56749 | 0.57142 | 0.57534 |
| 0.2 | 0.57926   | 0.58317 | 0.58706 | 0.59095 | 0.59483 | 0.59871 | 0.60257 | 0.60642 | 0.61026 | 0.61409 |
| 0.3 | 0.61791   | 0.62172 | 0.62551 | 0.62930 | 0.63307 | 0.63683 | 0.64058 | 0.64431 | 0.64803 | 0.65173 |
| 0.4 | 0.65542   | 0.65910 | 0.62276 | 0.66640 | 0.67003 | 0.67364 | 0.67724 | 0.68082 | 0.68438 | 0.68793 |
| 0.5 | 0.69146   | 0.69497 | 0.69847 | 0.70194 | 0.70540 | 0.70884 | 0.71226 | 0.71566 | 0.71904 | 0.72240 |
| 0.6 | 0.72575   | 0.72907 | 0.73237 | 0.73565 | 0.73891 | 0.74215 | 0.74537 | 0.74857 | 0.75175 | 0.75490 |
| 0.7 | 0.75803   | 0.76115 | 0.76424 | 0.76730 | 0.77035 | 0.77337 | 0.77637 | 0.77935 | 0.78230 | 0.78523 |
| 0.8 | 0.78814   | 0.79103 | 0.79389 | 0.79673 | 0.79954 | 0.80234 | 0.80510 | 0.80785 | 0.81057 | 0.81327 |
| 0.9 | 0.81594   | 0.81859 | 0.82121 | 0.82381 | 0.82639 | 0.82894 | 0.83147 | 0.83397 | 0.83646 | 0.83891 |
| 0.1 | 0.84134   | 0.84375 | 0.84613 | 0.84849 | 0.85083 | 0.85314 | 0.85543 | 0.85769 | 0.85993 | 0.86214 |
| 1.1 | 0.86433   | 0.86650 | 0.86864 | 0.87076 | 0.87285 | 0.87493 | 0.87697 | 0.87900 | 0.88100 | 0.88297 |
| 1.2 | 0.88493   | 0.88686 | 0.88877 | 0.89065 | 0.89251 | 0.89435 | 0.89616 | 0.89796 | 0,89973 | 0.90147 |
| 1.3 | 0.90320   | 0.90490 | 0.90658 | 0.90824 | 0.90988 | 0.91149 | 0.91308 | 0.91465 | 0.91621 | 0.91773 |
| 1.4 | 0.91924   | 0.92073 | 0.92219 | 0.92364 | 0.92506 | 0.92647 | 0.92785 | 0.92922 | 0.93056 | 0.93189 |
| 15  | 0.93319   | 0.93448 | 0.93574 | 0.93899 | 0.93822 | 0.93943 | 0.94062 | 0.94179 | 0.94295 | 0.94408 |
| 1.6 | 0.94520   | 0.94630 | 0.94738 | 0.94845 | 0.94950 | 0.95053 | 0.95154 | 0.95254 | 0.95352 | 0.95448 |
| 1.7 | 0.95543   | 0.95637 | 0.95728 | 0.95818 | 0.95907 | 0.95994 | 0.96080 | 0.96164 | 0.96246 | 0.96327 |
| 1.8 | 0.96407   | 0.96485 | 0.96562 | 0.96637 | 0.96711 | 0.96784 | 0.96856 | 0.96926 | 0.96995 | 0.97062 |
| 1.9 | 0.97128   | 0.97193 | 0.97257 | 0.97320 | 0.97381 | 0.97441 | 0.97500 | 0.97558 | 0.97615 | 0.97670 |
| 2.0 | 0.97725   | 0.97778 | 0.97831 | 0.97882 | 0.97932 | 0.97982 | 0.98030 | 0.98077 | 0.98124 | 0.98169 |
| 2.1 | 0.98214   | 0.98257 | 0.98300 | 0.98341 | 0.98382 | 0.98422 | 0.98461 | 0.98500 | 0.98537 | 0.98574 |
| 2.2 | 0.98610   | 0.98645 | 0.98679 | 0.98713 | 0.98745 | 0.98778 | 0.98809 | 0.98840 | 0.98870 | 0.98899 |
| 2.3 | - 0.98928 | 0.98956 | 0.98983 | 0.99010 | 0.99036 | 0.99061 | 0.99086 | 0.99111 | 0.99134 | 0.99158 |
| 2.4 | 0.99180   | 0.99202 | 0.99224 | 0.99245 | 0.99266 | 0.99286 | 0.99305 | 0.99324 | 0.99343 | 0.99361 |
| 2.5 | 0.99379   | 0.99396 | 0.99413 | 0.99430 | 0.99446 | 0.99461 | 0.99477 | 0.99492 | 0.99506 | 0.99520 |
| 2.6 | 0.99534   | 0.99547 | 0.99560 | 0.99573 | 0.99585 | 0.99598 | 0.99609 | 0.99621 | 0.99632 | 0.99643 |
| 2.7 | 0.99653   | 0.99664 | 0.99674 | 0.99683 | 0.99693 | 0.99702 | 0.99711 | 0.99720 | 0.99728 | 0.99736 |
| 2.8 | 0.99744   | 0.99752 | 0.99760 | 0.99767 | 0.99774 | 0.99781 | 0.99788 | 0.99795 | 0.99801 | 0.99807 |
| 2.9 | 0.99813   | 0.99819 | 0.99825 | 0.99831 | 0.99836 | 0.99841 | 0.99846 | 0.99851 | 0.99856 | 0.99861 |
| 3.0 | 0.99865   | 0.99869 | 0.99874 | 0.99878 | 0.99882 | 0.99886 | 0.99889 | 0.99893 | 0.99897 | 0.99900 |
| 3.1 | 0.99903   | 0.99906 | 0.99910 | 0.99913 | 0.99916 | 0.99918 | 0.99921 | 0.99924 | 0.99926 | 0.99929 |
| 3.2 | 0.99931   | 0.99934 | 0.99936 | 0.99938 | 0.99940 | 0.99942 | 0.99944 | 0.99946 | 0.99948 | 0.99950 |
| 3.3 | 0.99952   | 0.99953 | 0.99955 | 0.99957 | 0.99958 | 0.99960 | 0.99961 | 0.99962 | 0.99964 | 0.99965 |
| 3.4 | 0.99966   | 0.99968 | 0.99969 | 0.99970 | 0.99971 | 0.99972 | 0.99973 | 0.99974 | 0.99975 | 0.99976 |
| 3.5 | 0.99977   | 0.99978 | 0.99978 | 0.99979 | 0.99980 | 0,99981 | 0.99981 | 0.99982 | 0.99983 | 0.99983 |
| 3.6 | 0.99984   | 0.99985 | 0.99985 | 0.99986 | 0.99986 | 0.99987 | 0.99987 | 0.99988 | 0.99988 | 0.99989 |
| 3.7 | 0.99989   | 0.99990 | 0.99990 | 0.99990 | 0.99991 | 0.99991 | 0.99992 | 0.99992 | 0.99992 | 0.99992 |
| 3.8 | 0.99993   | 0.99993 | 0.99993 | 0.99994 | 0.99994 | 0.99994 | 0.99994 | 0.99995 | 0.99995 | 0.99995 |
| 3.9 | 0.99995   | 0.99995 | 0.99996 | 0.99996 | 0.99996 | 0.99996 | 0.99996 | 0.99996 | 0.99997 | 0.99997 |

Taken form a Book entitled "An introduction to SQC" by D.C. Montgomery  $% \left( 1\right) =\left( 1\right) +\left( 1\right) +\left($ 

This table is taken from "Fundamental of Applied statistics" by Gupta and Kapoor

|                | M                          | lean char | t                                                 | Standard deviation chart |       |        |       |                          | Range chart      |       |       |       |       |  |
|----------------|----------------------------|-----------|---------------------------------------------------|--------------------------|-------|--------|-------|--------------------------|------------------|-------|-------|-------|-------|--|
| Sample size    | Factors for control limits |           | Factors for Standard deviation chart central line |                          |       |        |       | Factors for central line | Range chart      |       |       |       |       |  |
| n ·            | A                          | $A_1$     | $A_2$                                             | C <sub>2</sub>           | $B_1$ | $B_2$  | $B_3$ | $B_4$                    | $\overline{d_2}$ | $D_1$ | $D_2$ | $D_3$ | $D_4$ |  |
| 2              | 2.121                      | 3.760     | 1.886                                             | 0.5642                   | 0     | 1.843  | 0     | 3.297                    | 1.128            | 0     | 3.686 | 0     | 3.267 |  |
| 3              | 1.232                      | 2.394     | 1.023                                             | 0.7236                   | 0     | 1.858  | 0     | 2.568                    | 1.693            | 0     | 4.358 | 0     | 2.575 |  |
| 4              | 1.500                      | 1.880     | 0.729                                             | 0.7979                   | 0     | 1.8080 | 0     | 2.266                    | 2.059            | 0     | 4.698 | 0     | 2.282 |  |
| <u>5.</u><br>6 | 1.342                      | 1.596     | 0.577                                             | 0.8407                   | 0     | 1.756  | 0     | 2.089                    | 2.326            | 0     | 4.918 | 0     | 2.115 |  |
| 6              | 1.225                      | 1.410     | 0.483                                             | 0.8686                   | 0.026 | 1.711  | 0.030 | 1.970                    | 2.534            | 0     | 5.078 | 0     | 2.004 |  |
| 7              | 1.134                      | 1.277     | 0.419                                             | 0.8882                   | 0.105 | 1.672  | 0.118 | 1.882                    | 2.704            | 0,205 | 5.203 | 0.076 | 1.924 |  |
| 8              | 1.061                      | 1.175     | 0.373                                             | 0.9027                   | 0.167 | 1.638  | 0.185 | 1.815                    | 2.847            | 0.387 | 5.307 | 0.136 | 1.864 |  |
| 9              | 1.000                      | 1.094     | 0.337                                             | 0.9139                   | 0.219 | 1.609  | 0.239 | 1.761                    | 2.970            | 0.546 | 5.394 | 0.184 | 1.816 |  |
| 10             | 0.949                      | 1.028     | 0.308                                             | - 0.9227                 | 0.262 | 1.584  | 0.284 | 1.716                    | 3.078            | 0.687 | 5.469 | 0.223 | 1.777 |  |
| 11             | 0.905                      | 0.973     | 0.285                                             | 0.9300                   | 0.299 | 1.561  | 0.321 | 1.679                    | 3.173            | 0.812 | 5.534 | 0.256 | 1.744 |  |
| 12             | 0.866                      | 0.925     | 0,266                                             | 0.9359                   | 0.331 | 1.541  | 0.354 | 1.646                    | 3.258            | 0.924 | 5.592 | 0.284 | 1.716 |  |
| 18             | 0.832                      | 0.884     | 0.249                                             | 0.9410                   | 0.359 | 1.523  | 0.382 | 1.618                    | 3.336            | 1.026 | 5.646 | 0.308 | 1.692 |  |
| 14             | 0.802                      | 0.548     | 0.235                                             | 0.9453                   | 0.384 | 1.507  | 0.406 | 1.594                    | 3.407            | 1.121 | 5.693 | 0.329 | 1.671 |  |
| 14<br>15       | 0.775                      | 0.816     | 0.223                                             | 0.9499                   | 0.406 | 1.492  | 0.428 | 1.572                    | 3.472            | 1.207 | 5.737 | 0348  | 1.652 |  |
| 16<br>17       | 0.759                      | 0.788     | 0.212                                             | 0.9523                   | 0.427 | 1.478  | 0.448 | 1.552                    | 3.532            | 1.285 | 5.779 | 0.364 | 1.636 |  |
| 17             | 0.0728                     | 0.762     | 0.203                                             | 0.9951                   | 0.445 | 1.465  | 0.466 | 1.534                    | 3.588            | 1.359 | 5.817 | 0.379 | 1.621 |  |
| 18             | 0.707                      | 0.738     | 0.194                                             | 0.9576                   | 0.461 | 1.454  | 0.482 | 1.518                    | 3.640            | 1,426 | 5.854 | 0.392 | 1.668 |  |
| 19             | 0.688                      | 0.717     | 0.187                                             | 0.9599                   | 0.477 | 1.443  | 0.497 | 1.503                    | 3.689            | 1.490 | 5.888 | 0.404 | 1.596 |  |
| 20             | 0.671                      | 0.697     | 0.180                                             | 9.9619                   | 0.491 | 1.433  | 0.510 | 1.499                    | 3.735            | 1.548 | 5.922 | 0.414 | 1.586 |  |
| 19<br>20<br>21 | 0.655                      | 0.679     | 6.173                                             | 0.9638                   | 0.504 | 1.424  | 0.523 | 1.477                    | 3.778            | 1.606 | 5.950 | 0.425 | 1,575 |  |
| 22             | 0.640                      | 0.662     | 0.167                                             | 0.9655                   | 0.516 | 1.415  | 0.534 | 1.466                    | 3.819            | 1.659 | 5.979 | 0.434 | 1.566 |  |
| 28             | 0.626                      | 0.647     | 0.162                                             | 0.9670                   | 0.527 | 1.407  | 0.545 | 1.455                    | 3.858            | 1.710 | 6.006 | 0.443 | 1.557 |  |
| 24             | 0.612                      | 0.632     | 0.157                                             | 0.9684                   | 0.538 | 1.399  | 0.555 | 1,445                    | 3,895            | 1.759 | 6.031 | 0.452 | 1.548 |  |
| 25             | 0.600                      | 0.610     | 0.153                                             | 0.9696                   | 0.548 | 1.392  | 0.565 | 1.435                    |                  | 1.804 | 6.058 | 0.459 | 1.541 |  |