Database Management system

Assignment #1

Chapter #1 & Chapter #2

Instructions:

- ✓ Deadline: Friday 07-10-2022 11:59 pm
- ✓ You must solve all the questions
- ✓ Put the answers in one pdf file name it with 120201234-FirstName-LastName.pdf
- ✓ Cheating will give a zero grade for both students.
- ✓ You must solve this assignment with handwriting and put your name and student id on the top of every single page.

Chapter #1

- 1. List four significant differences between a file-processing system and a DBMS.
- 2. Explain the concept of physical data independence and its importance in database systems.
- 3. Explain the difference between two-tier and three-tier application architectures. Which is better suited for web applications? Why?
- 4. What are the responsibilities of database administrator? (In Arabic)
- 5. What is data abstraction? what are the differences between its levels?

Chapter #2

1. Depending on the following schema answer the following questions:

employee (<u>ID</u>, person_name, street, city)
works (<u>ID</u>, company_name, salary)
company (company_name, city)
manages (<u>ID</u>, manager_id)

- o What are the appropriate primary keys?
- o List the foreign keys in the database?
- o Find the name of each employee who lives in city "Miami".
- o Find the name of each employee whose salary is greater than \$100000.
- Find the name of each employee who lives in "Miami" and whose salary is greater than \$100000.
- o Find the ID and name of each employee who works for "BigBank".
- o Find the ID, name, and city of residence of each employee who works for "BigBank".
- Find the ID, name, street address, and city of residence of each employee who works for "BigBank" and earns more than \$10000.
- Find the ID and name of each employee in this database who lives in the same city as the company for which she or he works.

- Find ID and name of each employee who lives in the same city and on the same street as does her or his manager.
- o Find the name of the employee and the name of his/her manager
- o Find ID and name of each employee who earns more than the salary of her or his manager.
- 2. List two reasons why null values might be introduced into a database.

branch(branch_name, branch_city, assets)
customer (ID, customer_name, customer_street, customer_city)
loan (loan_number, branch_name, amount)
borrower (ID, loan_number)
account (account_number, branch_name, balance)
depositor (ID, account_number)

- 3. According to the bank database write the appropriate relational algebra expression to get the following:
 - o Find each loan number with a loan amount greater than \$10000.
 - Find the ID of each depositor who has an account with a balance greater than \$6000.
 - Find the ID of each depositor who has an account with a balance greater than \$6000 at the "Uptown" branch.

4. Given the following schema R1(c1, c2, c3) are the following relational algebra expressions equivalents? explain?

C1	c2	с3
5	16	11
4	10	11
4	10	12

$$\sigma_{C1=4}(\sigma_{C2=10}(\sigma_{C3=11}(R1)))$$

 $\sigma_{C3=11}(\sigma_{C1=4}(\sigma_{C2=10}(R1)))$

5. Give the result of the following operation if possible. If not explain why?

$$\prod_{course_id} (\sigma_{semester="Fall" \ A \ year=2017} (section)) \cap$$

 $\prod_{course_id, \ year} (\sigma_{semester="Spring" \ A \ year=2018} (section))$

course_id	sec_id	semester	year	building	room_number	time_slot_id
BIO-101	1	Summer	2017	Painter	514	В
BIO-301	1	Summer	2018	Painter	514	Α
CS-101	1	Fall	2017	Packard	101	Н
CS-101	1	Spring	2018	Packard	101	F
CS-190	1	Spring	2017	Taylor	3128	E
CS-190	2	Spring	2017	Taylor	3128	Α
CS-315	1	Spring	2018	Watson	120	D
CS-319	1	Spring	2018	Watson	100	В
CS-319	2	Spring	2018	Taylor	3128	C
CS-347	1	Fall	2017	Taylor	3128	Α
EE-181	1	Spring	2017	Taylor	3128	C
FIN-201	1	Spring	2018	Packard	101	В
HIS-351	1	Spring	2018	Painter	514	C
MU-199	1	Spring	2018	Packard	101	D
PHY-101	1	Fall	2017	Watson	100	Α

6. depending on the following database find the result of the following relational algebra expressions:

loan-number	branch-name	amount
L-170	Downtown	3000
L-230	Redwood	4000
L-260	Perryridge	1700

customer-name	loan-number
Jones	L-170
Smith	L-230
Hayes	L-155

loan borrower

- Loan ⋈ borrower
- Loan X Borrower
- Write an operation to list the names of the borrowers who have a loan greater than or equal to 3000
- Solve the previous question using assignment criteria.