Statistical Methods in AI (CS7.403)

Lecture-8: Clustering (k-means, Gaussian Mixture Models)

Ravi Kiran (ravi.kiran@iiit.ac.in)

https://ravika.github.io

Center for Visual Information Technology (CVIT)

IIIT Hyderabad

For every
$$i$$
, set

$$c^{(i)} := \arg\min_{j} ||x^{(i)} - \mu_j||^2.$$

For each j, set

Repeat until convergence: {

step, we have converged (to at least a local minimum).

points from their assigned cluster centers is reduced.

 $\sum_{k=1}^{K}\sum_{i=1}^{M_k}\left\|x_{ki}-\mu_k\right\|^2 \blacktriangleleft$

• Whenever an assignment is changed, the sum squared distances J of data

• Test for convergence: If the assignments do not change in the assignment

 The objective J is non-convex (so coordinate descent on J is not guaranteed to converge to the global minimum)

- 1. Initialize cluster centroids $\mu_1, \mu_2, \dots, \mu_k \in \mathbb{R}^n$ randomly.
- 2. Repeat until convergence: {

For every i, set

$$c^{(i)} := \arg\min_{i} ||x^{(i)} - \mu_j||^2.$$

For each j, set

$$\mu_j := \frac{\sum_{i=1}^m 1\{c^{(i)} = j\}x^{(i)}}{\sum_{i=1}^m 1\{c^{(i)} = j\}}.$$

}

$$se = \sum_{k=1}^{K} \sum_{i=1}^{n_k} ||x_{ki} - \mu_k||^2$$

- The objective J is non-convex (so coordinate descent on J is not guaranteed to converge to the global minimum)
- There is nothing to prevent k-means getting stuck at local minima.

A bad local optimum

- The objective J is non-convex (so coordinate descent on J is not guaranteed to converge to the global minimum)
- There is nothing to prevent k-means getting stuck at local minima.
- We could try many random starting points

$$\sum_{k=1}^{K} \sum_{i=1}^{n_k} \|x_{ki} - \mu_k\|^2$$

A bad local optimum

K-means++: Improving K-means initialization

- Common way to improve k-means smart initialization!
- General idea try to get good coverage of the data.
- k-means++ algorithm:
 - 1. Pick the first center randomly
 - 2. For all points $\mathbf{x}^{(n)}$ set $d^{(n)}$ to be the distance to closest center.
 - 3. Pick the new center to be at $\mathbf{x}^{(n)}$ with probability proportional to $d^{(n)2}$
 - 4. Repeat steps 2+3 until you have k centers

K-means++: Improving K-means initialization

- Common way to improve k-means smart initialization!
- General idea try to get good coverage of the data.
- k-means++ algorithm:
 - 1. Pick the first center randomly
 - 2. For all points $\mathbf{x}^{(n)}$ set $d^{(n)}$ to be the distance to closest center.
 - 3. Pick the new center to be at $\mathbf{x}^{(n)}$ with probability proportional to $d^{(n)2}$
 - 4. Repeat steps 2+3 until you have k centers

How to choose k?

Regularization

 Penalize "overly" large or "overly" small clusters

K-mediods

- Squared Euclidean distance loss function of K-means not robust.
- Use L1 loss function $J = \sum_{i=1}^{n} \sum_{k=1}^{K} r_{ik} ||x_i \mu_k||_1$ instead of squared Euclidean distance.
- Use an iterative procedure as before.
 - Prototype is the median of the points assigned to a cluster.

K-means: Additional issues

'Hard' assignments

• Euclidean → Favours 'spherical' clusters of

equal 'contribution'

Sensitive to initialization

Sensitive to outliers

Maximum Likelihood Estimation

• Data distribution p(x) assumed to be a weighted sum of K distributions

$$p(x) = \sum_{k=1}^{K} \pi_k p(x|\theta_k)$$

where π_k 's are the mixing weights: $\sum_{k=1}^K \pi_k = 1$, $\pi_k \ge 0$ (intuitively, π_k is the proportion of data generated by the k-th distribution)

• Each component distribution $p(x|\theta_k)$ represents a "cluster" in the data

• Data distribution p(x) assumed to be a weighted sum of K distributions

$$p(x) = \sum_{k=1}^{K} \pi_k p(x|\theta_k)$$

where π_k 's are the mixing weights: $\sum_{k=1}^K \pi_k = 1$, $\pi_k \ge 0$ (intuitively, π_k is the proportion of data generated by the k-th distribution)

- Each component distribution $p(x|\theta_k)$ represents a "cluster" in the data
- Gaussian Mixture Model (GMM): component distributions are Gaussians

• Data distribution p(x) assumed to be a weighted sum of K distributions

$$p(x) = \sum_{k=1}^{K} \pi_k p(x|\theta_k)$$

where π_k 's are the mixing weights: $\sum_{k=1}^K \pi_k = 1$, $\pi_k \ge 0$ (intuitively, π_k is the proportion of data generated by the k-th distribution)

- Each component distribution $p(x|\theta_k)$ represents a "cluster" in the data
- Gaussian Mixture Model (GMM): component distributions are Gaussians

$$p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

$$N(x | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$$

$$N(x | \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$$

$$p(x)$$

- · Mixture models used in many data modeling problems, e.g.,
 - Unsupervised Learning: Clustering (+density estimation)
 - Supervised Learning: Mixture of Experts models

A GMM represents a distribution as

$$p(\mathbf{x}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

with π_k the mixing coefficients, where:

$$\sum_{k=1}^K \pi_k = 1$$
 and $\pi_k \geq 0$ $orall k$

Most common mixture model: Gaussian mixture model (GMM)

A GMM represents a distribution as

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

with π_k the mixing coefficients, where:

$$\sum_{k=1}^K \pi_k = 1$$
 and $\pi_k \geq 0$ $orall k$

http://scikit-learn.sourceforge.net/0.5/auto_examples/gmm/plot_gmm_pdf.html

- Can think of the data $\{x_1, x_n, \dots, x_N\}$ using a "generative story"
 - For each example x_n , first choose its cluster assignment $z_n \in \{1, 2, ..., K\}$ as

$$z_n \sim \text{Multinoulli}(\pi_1, \pi_2, \dots, \pi_K)$$
 aka "categorical"

Now generate x from the Gaussian with id z_n

$$x_n|z_n \sim \mathcal{N}(\boldsymbol{\mu}_{z_n}, \boldsymbol{\Sigma}_{z_n})$$

Resources

- Textbook
 - PRML (Bishop) Chapter 9: 9.1,9.2,9.3.2
 - Pattern Classification (Duda, Hart, Stork)
 - 10.4.3,10.6.1,10.7.1,10.7.2,10.8,10.10
- Videos
 - https://www.youtube.com/watch?v=REypj2sy 5U&list=PLBv09BD7ez 4e9LtmK626Evn1ion6ynrt
 - https://www.youtube.com/watch?v=rVfZHWTwXSA
- Blog posts/Lecture Notes
 - https://www.cse.iitk.ac.in/users/piyush/courses/pml_winter16/slides_lec7.pdf
 - https://see.stanford.edu/materials/aimlcs229/cs229-notes8.pdf
 - https://www.cs.toronto.edu/~jlucas/teaching/csc411/lectures/lec15_16_handout.pdf
 - https://mbernste.github.io/posts/gmm_em/
 - https://www.ritchievink.com/blog/2019/05/24/algorithm-breakdown-expectation-maximization/