Database and Big Data Systems

Lab 4

Today

- Recap
- Schema Design

Recap - Functional Dependencies

More formally, A functional dependency $X_1, ..., X_m \rightarrow Y_1, ..., Y_n$ holds in a relation R if:

 $\forall t, t' \in R, \ t[X_1] = t'[X_1] \cap \cdots \cap t[X_m] = t'[X_m] \rightarrow t[Y_1] = t'[Y_1] \cap \cdots \cap t[Y_n] = t'[Y_n]$

sid	name	address
123	Agus	Labrador Park
456	Bron	Bukit Brown
789	Hannah	Sungei Buloh
012	Dewi	Bukit Puaka

Let you specify constraints

Functional Dependencies

How to derive other FDs: Armstrong Axioms

Reflexivity:

$$Y \subseteq X \implies X \longrightarrow Y$$

e.g., $\{$ sid $\} \subseteq \{$ sid,course $\} \rightarrow \{$ sid $\}$

Augmentation:

$$X \longrightarrow Y \implies XZ \longrightarrow YZ$$

e.g., sid → name, so, sid,course → name,course

Transitivity:

$$X \longrightarrow Y \land Y \longrightarrow Z \Longrightarrow X \longrightarrow Z$$

e.g., sid,course → sid and sid → name, so sid,course → name

Functional Dependencies

- Canonical cover:
 - Given a set F of FDs {f₁, ..., f_n}
 - Canonical cover: smallest F_c such that F_c⁺ = F⁺
 - Let you find super key

Functional Dependencies

How to compute the canonical cover?

- 1. Put FDs in into standard forms. i.e. all FDs have single attribute on the RHS
- Minimize the LHS of each FD. i.e. there are some other FDs among the LHS attributes
- 3. Delete redundant FDs. i.e. duplicate, or can be derived through transitivity.

Extraneous: removing the attributes doesn't affect the closure

Normalization

- Data normalization = refining relations
 - Given relation R, with FDs
 - Identify bad FDs
 - Bad →redundancy
 - Decompose it to better relations
 - "Better" = some normal forms
 - Desirable ones: 3NF and BCNF
 - Any decomposition?
 - Lossless-join
 - Dependency preserving

Decomposition

loans(bname, bcity, assets, cname, loan Id, amt)

bname	bcity	assets	cname	loanId	amt
Downtown	Pittsburgh	\$9M	Andy	L-17	\$1000
Downtown	Pittsburgh	\$9M	0swin	L-23	\$2000
Compton	Los Angeles	\$2M	Andy	L-93	\$500
Downtown	Pittsburgh	\$9M	Damian	L-17	\$1000

- → Motivation: Avoid information loss.
- → Goal: No noise introduced when reconstituting universal relation via joins.
- → Test: At each decomposition $R=(R_1 \cup R_2)$, check whether $(R_1 \cap R_2) \rightarrow R_1$ or $(R_1 \cap R_2) \rightarrow R_2$.

bname	assets	 cname	loanId	
Downtown	\$9M	Andy	L-17	
Downtown	\$9M	0swin	L-23	
Compton	\$2M	Andy	L-93	
Downtown	\$9M	Damian	L-17	

loanId	bcity	amt
L-17	Pittsburgh	\$1000
L-23	Pittsburgh	\$2000
L-93	Los Angeles	\$500

bname	bcity	assets	cname	loanId	amt
Downtown	Pittsburgh	\$9M	Andy	L-17	\$1000
Downtown	Pittsburgh	\$9M	0swin	L-23	\$2000
Compton	Los Angeles	\$2M	Andy	L-93	\$500
Downtown	Pittsburgh	\$9M	Damian	L-17	\$1000

Decomposition

To test whether the decomposition

 $R=\{R_1,...,R_n\}$ preserves the FD set F:

- → Compute F*
- \rightarrow Compute **G** as the union of the set of FDs in **F**⁺ that are covered by $\{R_1,...,R_n\}$
- → Compute G⁺
- \rightarrow If $F^+ = G^+$, then $\{R_1,...,R_n\}$ is Dependency Preserving

$$F+ = \{A \rightarrow B, AB \rightarrow D, A \rightarrow D, C \rightarrow D\}$$

R1(A,B,C) R2(C,D)

How about?

R1(A,B,D) R2(C,D)

Normal Forms

- 1NF:
 - Flat schema
- 2NF:
 - All non-key attributes fully dependent of candidate key
- BCNF:
 - \circ For any non-trivial X \rightarrow Y in F+, then X is a super key
- 3NF:
 - \circ For any non-trivial X \rightarrow Y in F+, then
 - X is a super key
 - Or, Y is part of a candidate key

BCNF

```
Given a relation R and a FD set F:
Step #1 – Compute F+
Step \#2 - Result \leftarrow \{R\}
Step #3 – While R_i \in Result not in BCNF, do:
\rightarrow (a) Choose (X\rightarrowY) \in F+ such that (X\rightarrowY) is covered
    by R<sub>i</sub> and X→R<sub>i</sub>
\rightarrow (b) Decompose \mathbb{R}_i on (X\rightarrowY):
                             ← R<sub>i1</sub> includes Y
                             ← R<sub>i,2</sub> does <u>not</u> include Y
     Result \leftarrow (Result - {R<sub>i</sub>}) \cup {R<sub>i,1</sub>, R<sub>i,2</sub>}
```

BCNF Decomposition

- More optimized algorithm:
 - Fewer sub-tables
 - We'll be using this instead of the simple one

```
Normalize(R)

C \leftarrow \text{ the set of all attributes in } R

find X \text{ s.t. } X^+ \neq X \text{ and } X^+ \neq C

if X is not found

then "R is in BCNF"

else

decompose R into R_1(X^+) and R_2((C - X^+) \cup X)

Normalize(R_1)

Normalize(R_2)
```

Given the relation R(A,B,C,D,E) with the following FDs:

 $C \rightarrow E$

BD→AE

 $A \rightarrow BC$

Find a candidate key.

BD → ABDCE

Given the relation R(A,B,C,D,E) with the following FDs:

 $C \rightarrow F$

BD→AE

 $A \rightarrow BC$

Find a candidate key.

What is the minimal cover?

Step 1. $C \rightarrow E$, $BD \rightarrow A$, $BD \rightarrow E$, $A \rightarrow B$, $A \rightarrow C$

Step 2. Same as above, can't further simplify LHSs

Step 3. BD \rightarrow E is redundant, BD \rightarrow A, A \rightarrow C, C \rightarrow E \Rightarrow trans BD \rightarrow E C \rightarrow E, BD \rightarrow A, A \rightarrow B, A \rightarrow C

Given the relation R(A,B,C,D,E) with the following FDs:

 $C \rightarrow E$

 $BD \rightarrow AE$

 $A \rightarrow BC$

Find a candidate key.

What is the attribute closure?

 $C \rightarrow E$, $BD \rightarrow A$, $A \rightarrow B$, $A \rightarrow C$

 $C+ = \{ C, E \}$

 $BD+ = \{ B, D, A, C, E \}$

 $A + = \{A, B, C, E\}$

Given the relation R(A,B,C,D,E) with the following FDs:

 $C \rightarrow E$

BD→AE

 $A \rightarrow BC$

Find a candidate key.

 $BD \rightarrow ABDEC$ AD $\rightarrow ADBCE$

Given the relation R(A,B,C,D,E) with the following FDs:

 $A \rightarrow C$

 $C \rightarrow DE$

 $B \rightarrow AE$

Candidate keys

Fc = { A \rightarrow C, C \rightarrow D, C \rightarrow E, B \rightarrow A} (Note B \rightarrow E is redundant)

 $\mathsf{A} + = \{\mathsf{A},\,\mathsf{C},\,\mathsf{D},\,\mathsf{E}\},\;\;\mathsf{C} + = \{\mathsf{C}\,\,,\,\mathsf{D},\,\mathsf{E}\,\},\;\mathsf{B} + = \{\mathsf{A},\,\mathsf{B},\,\mathsf{C},\,\mathsf{D},\,\mathsf{E}\},\;\mathsf{D} + = \{\mathsf{D}\},\;\mathsf{E} + = \{\mathsf{E}\}$

Thus, B is the candidate key.

Given the relation R(A,B,C,D,E) with the following FDs:

 $A \rightarrow C$

 $C \rightarrow DE$

 $B \rightarrow AE$

Is R in 2NF?

 $B \rightarrow AECDB$

 $A \rightarrow C$ and $C \rightarrow DE$ are fine, because neither A or C is part of a candidate key.

Thus R is in 2NF!

Is R in BCNF?

R is not in BCNF, because A is not a super key!

Given the relation R(A,B,C,D,E) with the following FDs:

 $A \rightarrow C$

 $C \rightarrow DE$

 $B \rightarrow AE$

Is R in 2NF?

Yes, B is candidate key

Is R in BCNF?

No, $A \rightarrow C$, but A is not a super key

Given the relation R(A,B,C,D,E,F,G) with the following FDs:

 $E \rightarrow C$

 $G \rightarrow AD$

 $\mathsf{B} \to \mathsf{E}$

 $C \rightarrow BF$

What attributes that E functionally determines?

 $E \rightarrow ECBF$

Decompose R into BCNF, using the more optimized algorithm.

Given the relation R(A,B,C,D,E,F,G) with the following FDs:

 $E \rightarrow C$

 $G \rightarrow AD$

 $\mathsf{B} \to \mathsf{E}$

 $C \rightarrow BF$

What attributes that E functionally determines?

 $\mathsf{E} \to \mathsf{ECBF}$

 $E+ = \{B,C,E,F\}$

Decompose R into BCNF, using the more optimized algorithm.

```
Given the relation R(A,B,C,D,E,F,G) with the following FDs:
      E \rightarrow C
      G \rightarrow AD
      B \rightarrow F
      C \rightarrow BF
Decompose R into BCNF, using the less optimized algorithm.
      R(A,B,C,D,E,F,G)
             R1(E,C)
             R2(A,B,D,E,F,G)
                    R21(G,A,D)
                    R22(B,E,F,G)
                          R221(B,E)
                          R222(B,F,G) \leftarrow this is not in BCNF, because of B \rightarrow E \rightarrow C \rightarrow F
                            R2221(B,F)
```

R2222(B,G)

Given the relation R(A,B,C,D,E,F,G) with the following FDs:

 $E \rightarrow C$

 $G \rightarrow AD$

 $B \rightarrow E$

 $C \rightarrow BF$

Decompose R into BCNF, using the more optimized algorithm.

```
R(A,B,C,D,E,F,G)

E+ = {B,C,E,F}

R1(B,C,E,F)

R2(A,D,E,G)

G+ = {G,A,D}

R21(G,A,D)

R22(G,E)
```

Exercise 4: Optional

Given the relation R(A,B,C,D,E,F,G) with the following FDs:

 $E \rightarrow C$

 $G \rightarrow AD$

 $B \rightarrow E$

 $C \rightarrow BF$

Decompose R into 3NF with FD preserved.

Exercise 4: Optional

Given the relation R(A,B,C,D,E,F,G) with the following FDs:

 $E \rightarrow C$

 $G \rightarrow AD$

 $B \rightarrow E$

 $C \rightarrow BF$

Decompose R into 3NF with FD preserved. From exercise 3, we have R1(B,C,E,F), R21(G,A,D), R22(G,E)

Compute minimal cover, $E \rightarrow C$, $G \rightarrow A$, $G \rightarrow D$, $B \rightarrow E$, $C \rightarrow B$, $C \rightarrow F$ F1 = { $E \rightarrow C$, $B \rightarrow E$, $C \rightarrow B$, $C \rightarrow F$ } F21 = { $G \rightarrow A$, $G \rightarrow D$ }

Hence the above is also 3NF and FDs are preserved.

Consider an extra $C \rightarrow A$, which is not preserved by the above decomposition, we need to add R3(A,C)