ELETRICIDADE APLICADA - INSTALAÇÕES ELÉTRICAS

DISPOSITIVOS DE PROTEÇÃO

Fusíveis

Elo fusível

Curva característica

Fusível rolha e cartucho

Fusível do tipo rolha

Correntes nominais (A)

10 15 20 25 30

Fusível do tipo cartucho

Correntes nominais (A) - Tipo faca

A 70 75 80 90 100 125 150 200 250 300 350 400 500 600

Correntes nominais (A) - Tipo virola

A 6 10 15 20 25 30 40 35 40 45 50 60

Fusível diazed e NH

Fusível do tipo diazed

Correntes nominais (A)

2	4	6	10	20	25	25	EΩ	62	90	100
2	4	O	10	20	25	35	50	03	80	TOO

Fusível do tipo NH

Tempos convencionais e correntes de fusão

Fusível do tipo diazed

Corrente nominal - IN (A)	Tempo convencional (h)					
IN ≤ 63	1					
63 < IN ≤ 160	2					
160 < IN ≤ 400	3					
400 < IN	4					

Corrente nominal - IN (A)	IF	INF		
$IN \leq 4$	2,1 • IN	1,5 • IN		
$4 < IN \le 10$	1,9 • IN	1,5 • IN		
$10 < SF \leq 25$	1,75 • IN	1,4 • IN		
$25 < IN \le 100$	1,6 • IN	1,3 • IN		
$100 < IN \le 1000$	1,6 • IN	1,2 • IN		

Fusível do tipo NH

Chave seccionadora fusível - Siemens

Tabela de escolha

Time			2ND40 40 2)	2ND40 70	20042 70	2ND42 70	201044 70
Tipo			3NP40 10 ²⁾	3NP40 70	3NP42 70	3NP43 70	3NP44 70
Corrente permanente $I_u \Delta I_{th}$							
		(A)	100	160	250	400	630
Corrente nominal de serviço I_e							
400 V	AC-21 B, AC-22 B	(A)	100	160	250	400	630
	AC-23 B	(A)	100	100	250	400	630
500 V	AC-21 B	(A)	100	160	250	400	630
	AC-22 B	(A)	100	100	250	400	630
	AC-23 B	(A)	40	40	-	-	-
Proteção de curto-circuito ¹⁾							
Fusíveis NH (gL / gG) (tamanho)		000	00 e 000	1 e 0	2 e 1	3 e 2	
		(A)	100	160	250	400	630
Dimensões (mm)							
		89	108	184	210	256	
Î		Н	143	161	243	288	300
Ţ		Р	72	82	112	128	143
-		P ³⁾	173	190	290	346	360
Secção dos condutores							
Cabo com terminal (mm²)		1,5 - 50 ⁴⁾	2,5 - 70	70 - 150	120 - 240	150 - 300	
Barra (mm)		-	22 × 5	30 × 10	30 × 10	40 × 10	

- 1. Veja *Tabela de escolha* para fusíveis ultrarrápidos no verso.
- 2. Minisseccionador com fusíveis tamanho 000 e largura 21 mm.
- 3. Seccionadores na posição aberta.
- 4. Cabo para conexão direta, não necessita uso do terminal.

Disjuntor termomagnético

Unipolar

Bipolar

Tripolar

- 1 Terminais
- 2 Bobina de disparo magnético
- 3 Elemento bimetálico envolto pela resistência de aquecimento
- 4 Gatilho do mecanismo de disparo
- 5 Manopla
- 6 Cordoalha
- 7 Contato móvel
- 8 Contato fixo
- 9 Câmara

Disjuntor termomagnético Curva de atuação, valores nominais

 Característica de atuação com partida a frio a uma temperatura ambiente de 20° C. Disjuntores de 10 a 70 A.

 Característica de atuação com partida a frio a uma temperatura ambiente de 40° C. Disjuntores de 90 a 100 A.

I = Corrente efetiva

 I_n = Corrente nominal do disjuntor

Padrão IEC	(A)	6	10	16	20	25	32	40	50	63	80	100	125
Padrão Nema	(A)	5	10	15	20	25	30	40	50	60	70	80	100

Dimensionamento

Na coordenação entre os dispositivos de proteção e os condutores, devemos satisfazer duas condições simultaneamente:

1ª condição

 $I \leq IN \leq IZ$

2ª condição

 $12 \le 1,45.1Z$

Para fusíveis: 12 = IF

Para disjuntores: 12 = ID = 1,35.IZ

Sendo:

IB = corrente de projeto do circuito (A);

IN = corrente nominal do dispositivo de proteção (A);

IZ = capacidade de condução de corrente do condutor, definida nas tabelas a seguir, multi-pli-cada pelos fatores de correção, quando utilizados (veja a observação a seguir);

I2 = valor de corrente que assegura o acionamento do dispositivo de proteção, sem que ocor-ra dano ao condutor, no limite de 45% de sobrecarga, num tempo inferior ao tempo convencional indicado na tabela a seguir;

IF = corrente de fusão (A), definida na *Tabela 8.2*

ID = corrente de disparo térmico (A), (ID = 1,35 IN padrão DIN ou ID = 1,45 IN padrão Nema)

Efeitos da corrente elétrica no corpo humano

Zona 1 (\leq **0,5 mA**): normalmente, nenhum efeito perceptível.

Zona 2: sente-se a passagem de corrente, mas não se manifesta nenhuma reação do corpo humano.

Zona 3: zona em que se manifesta o efeito de agarramento: uma pessoa empunhando o elemento causador do choque elétrico não consegue mais largá-lo, todavia não há se-qu-elas após a interrupção da corrente.

Zona 4: probabilidade, crescente com a intensidade e duração da corrente, de ocor-rência do efeito mais perigoso do choque elétrico, que é a fibrilação ventricular.

Sistemas de aterramento

TN-S

TN-C-S

TN-C

Massas

PΕ

Funcionamento do DR

Situação normal

Acontecendo corrente de fuga para a terra

Ocorre o desligamento

Bipolar

Tetrapolar

Quadro de distribuição com DR e DPS, e circuito de iluminação

Quadro com DR e DPD e circuito de tomadas

Circuito de tomadas de uso geral (TUGs) em quadro de distribuição com DR e DPS

Quadro com DR e DPS com TUE

Circuito para tomada de uso específico ou ponto de força com instalação de DR e DPS

DPS junto à caixa de distribuição ou seccionadora

Instalação DPS na caixa seccionadora ou de distribuição Barra de cobre 2" x 5/16" Caixa "D" para instalação 725 de DPS e dos respectivos Barra de cobre DP (Disjuntores) 1 1/2" x 3/16" 250 300 250 Dobradicas 200 200 invioláveis Chave Chave Chave Dispositivo para selagem fusível fusível fusível seccion. seccion. seccion. Parafuso de segurança 400 A 400 A 400 A Fus. 315 A Fus. 315 A Fus. 315 A 300 **BEP** Neutro 400 400 600 600 009 Condutor de cobre isolado Eletroduto Nível do piso acabado Laje ou piso Vai ao eletrodo de Eletroduto

aterramento da edificação