Section 1.6

Inverse Trig Functions

Review

If y = f(x) is represented by $y = x^2$ find x = f(y)

Does $f^{-1}(x)$ exist?

State the domain and range for each. Thurko

No. y= fai does not pass the horizontal line test (or x=f(y) does not pass the vertical line test).

So it is an inverse relation not an inverse function,

Find and sketch the inverse function of $y=x^3$.

This is an inverse function (fix). $x = y^3$ $y = x^{1/3}$ $y = x^{1/3}$

In this section we will learn about **inverse trigonometry functions**.

Since we want inverse functions we will have to restrict the domain and range.

To indicate this is an inverse function $f^1(x)$ we use special notation.

$$y=\sin^{-1}(x)=\arcsin(x)$$

WARNING!!

y=sin⁻¹(x) DOES NOT MEAN
$$y = \frac{1}{\sin x} = \csc x$$

$$y = (\sin x)^{-1} = \frac{1}{\sin x} = \csc x$$

Domain: [-1,1]

Domain: [-1,1]

Domain: $(-\infty, \infty)$

Range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Range: $[0, \pi]$ Range: $(-\frac{\pi}{2}, \frac{\pi}{2})$

Domain: $(-\infty, \infty)$ Domain:

Domain:

Range: $(0, \pi)$

 $x \le -1 \text{ or } x \ge 1$ $x \le -1 \text{ or } x \ge 1$

Range:

 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], y \neq 0$

Range:

 $[0,\pi]y\neq \frac{\pi}{2}$

Solve for x on the given interval. Round to 4th decimal if necessary.

a.
$$\cos x = 0.4$$
 [0, π)
 $X = \cos^{-1} 0.4 = 1.1593$

b.
$$\sin x = \frac{-3}{4}, \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

 $x = Sin^{-1} - \frac{3}{4} = -0.8481$

c.
$$\tan x = 2, \left[-\frac{\pi}{2}, \frac{\pi}{2} \right)$$

$$X = tan 2 = 1.1071$$

Find the exact value of each expression.

a.
$$\cos^{-1}(0.5)$$
 = $\frac{11}{5}$

b.
$$\sin^{-1}\left(\frac{\sqrt{2}}{2}\right) = 1$$

c.
$$tan^{-1}(-\sqrt{3}) = - 1$$

d.
$$\cos\left[\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)\right] = \cos\left[\frac{11}{3}\right] = \frac{1}{2}$$

e.
$$\tan \left[\sin^{-1} \left(\frac{2}{5} \right) \right]$$

Homework: p51-53

#27 - 41 odd

$$X_{5}+\lambda_{5}=1$$
 OB $\left(\frac{L}{X}\right)_{5}+\left(\frac{L}{A}\right)_{5}=$