Equivalência entre AFD e AFN

Autômato Finito Não-Determinístico (AFN)

A função programa, ao processar um entrada (estado corrente e símbolo lido), tem como resultado um conjunto de novos estados.

O não determinismo é uma importante generalização dos modelos de máquinas, sendo de fundamental importância no estudo da teoria da computação e das linguagens formais. Qualquer AFN pode ser simulado por um AFD.

Pode-se entender que o AFN assume simultaneamente todas as alternativas de estados possíveis $\{p_0, p_1, ..., p_n\}$ a partir do estado atual (q) e do símbolo lido (a).

Exemplo

$$L = \{ w \mid w \in (\mathbf{a}^* \!\mid\! \mathbf{a}^+ \mathbf{b}^*) \ \}$$

- $\bullet\,$ o ciclo em q_0 realiza uma varredura pela entrada de símbolos a's
- ullet o caminho q_0/q_1 garante a ocorrência de a antes da ocorrência de b's

AFN - Definição

- $M = (\Sigma, Q, \delta, q_0, F)$
 - Σ alfabeto de símbolos de entrada
 - $-\ Q$ conj. de estados possíveis do autômato o qual é finito
 - δ função de transição
 - $-q_0$ estado inicial $(q_0 \in Q)$
 - -F conjunto dos estados finais tal que F está contido em ${\bf Q}$

Exercício

 $L = \{w \mid w \text{ possui aaa como sufixo}\}$

A linguagem aceita por um autômato finito não-determinístico $M=(\Sigma,Q,\delta,q_0,F)$ denotada por ACEITA(M), ou L(M) é o conjunto de todas as palavras pertencentes a Σ^* tais que existe pelo menos um caminho alternativo que aceita a palavra.

Analogamente, REJEITA(M) é o conjunto de todas as palavras pertencentes a Σ^* rejeitadas por todos os caminhos alternativos de M (a partir de q_0).

Exercícios

Desenvolver AFNs que reconheçam as seguintes linguagens sobre $\Sigma = \{a,b\}$

- 1. $L_1 = \{w \mid \text{o prefixo de } w \text{ \'e aa}\}$
- 2. $L_2 = \{ w \mid w \text{ possui aa ou bb como subpalavra} \}$
- 3. $L_3 = \{w \mid w \text{ possui um número par de a e b}\}$
- 4. $L_4 = \{w|w \text{ possui um número ímpar de a}\}$

Possíveis soluções:

δ	a	b
q_0	$\{q_1\}$	-
q_1	$\{q_2\}$	-
q_2	$\{q_2,q_3\}$	$\{q_2,q_3\}$
q_3	-	-

$$\begin{array}{ll} \text{2.} & M_2 &= (\Sigma, Q, \delta, q_0, F) \\ & \Sigma = \{a, b\} \\ & Q = \{q_0, q_1, q_2, q_f\} \\ & F = \{q_f\} \end{array}$$

$$\begin{array}{c|cccc} \delta & \mathbf{a} & \mathbf{b} \\ \hline q_0 & \{q_0,q_1\} & \{q_0,q_2\} \\ q_1 & \{q_f\} & - \\ q_2 & - & \{q_f\} \\ q_f & \{q_f\} & \{q_f\} \end{array}$$

3.
$$M_3 = (\Sigma, Q, \delta, q_0, F)$$

 $\Sigma = \{a, b\}$
 $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8\}$
 $F = \{q_0\}$

δ	a	b
q_0	$\{q_1,q_3\}$	$\{q_2, q_6\}$
q_1	$\{q_0\}$	-
q_2	-	$\{q_0\}$
q_3	$\{q_0\}$	$\{q_4\}$
q_4	$\{q_5\}$	$\{q_3\}$
q_5	$\{q_4\}$	$\{q_0\}$
q_6	$\{q_7\}$	$\{q_0\}$
q_7	$\{q_6\}$	$\{q_8\}$
q_8	$\{q_0\}$	$\{q_7\}$

$$\begin{array}{ll} \textbf{4.} & M_4 &= (\Sigma,Q,\delta,q_0,F) \\ & \Sigma = \{a,b\} \\ & Q = \{q_0,q_1,q_2,q_3\} \\ & F = \{q_1,q_2\} \end{array}$$

δ	a	Ъ
q_0	$\{q_1,q_2\}$	$\{q_0\}$
q_1	-	$\{q_1\}$
q_2	$\{q_3\}$	$\{q_2\}$
q_f	$\{q_2\}$	$\{q_3\}$

Equivalência entre AFD e AFN

- Um autômato finito não-determinístico pode se transformar em um autômato finito determinístico equivalente.
- Dois autômatos são considerados equivalentes se aceitam a mesma linguagem.

Embora a facilidade de não-determinismo seja, aparentemente, um significativo acréscimo ao Autômato Finito, na realidade não aumenta seu poder computacional. Assim, para cada AFN, é possível construir um AFD equivalente que realiza o mesmo processamento. O contrário também é verdadeiro.

Equivalência entre AFD e AFN

Para construir um AFD a partir de um AFN qualquer, devemos realizar os seguintes passos:

- 1. Construir a tabela de transições do AFN (φ) .
- 2. Construir a tabela de transições do AFD (δ) através do produto cartesiano dos estados de φ , incluindo como último conjunto o vazio.
- 3. Mostrar todos os conjuntos que contém como elemento estados finais como novo estado final de δ .

Exemplo: Considere o AFN seguinte:

1. Construir a tabela de transições do AFN (φ) :

$$egin{array}{c|ccc} arphi & \mathsf{a} & \mathsf{b} \\ \hline q_0 & \{q_1,q_2\} & - \\ q_1 & \{q_2\} & \{q_0,q_2\} \\ q_2 & \{q_2\} & \{q_0\} \end{array}$$

2. Construir a tabela de transições do AFD (δ) através do produto cartesiano dos estados de φ , incluindo como último conjunto o vazio:

δ	a	b
$S_0 = \{q_0\}$		
$S_1 = \{q_1\}$		
$S_2 = \{q_2\}$		
$S_3 = \{q_0, q_1\}$		
$S_4 = \{q_0, q_2\}$		
$S_5 = \{q_1, q_2\}$		
$S_6 = \{q_0, q_1, q_2\}$		
$S_7 = \{ \}$		

Obs.: Sempre existirá 2^k combinações, onde k é o número de estados do AFN.

3. Mostrar todos os conjuntos que contém como elemento estados finais como novo estado final de δ :

δ	a	b
$S_0 = \{q_0\}$		
$S_1 = \{q_1\}$		
$\mathbf{S_2} = \{\mathbf{q_2}\}$		
$S_3 = \{q_0, q_1\}$		
$\mathbf{S_4} = \{\mathbf{q_0}, \mathbf{q_2}\}$		
$\mathbf{S_5} = \{\mathbf{q_1}, \mathbf{q_2}\}$		
$\mathbf{S}_6 = \{\mathbf{q}_0, \mathbf{q}_1, \mathbf{q}_2\}$		
$S_7 = \{ \}$		

Equivalência entre AFD e AFN

- 4. Verificar a ocorrência de cada conjunto de δ em relação a um símbolo e colocar como resultado o conjunto correspondente que pertence a δ . Quando existir mais de um elemento no conjunto a ocorrência passa a ser a união das ocorrências de todas as transições.
- 5. Eliminar as linhas que possuem transições somente com saídas (não existe transição que chega até ela, isto é, estado inacessível).
- 4. Verificar a ocorrência de cada conjunto de δ em relação a um símbolo e colocar como resultado o conjunto correspondente que pertence a δ . Quando existir mais de um elemento no conjunto a ocorrência passa a ser a união das ocorrências de todas as transições:

δ	a	b
$S_0 = \{q_0\}$	S_5	S_7
$S_1 = \{q_1\}$	S_2	S_4
$\mathbf{S_2} = \{\mathbf{q_2}\}$	S_2	S_0
$S_3 = \{q_0, q_1\}$	S_5	S_4
$\mathbf{S_4} = \{\mathbf{q_0}, \mathbf{q_2}\}$	S_5	S_0
$\mathbf{S_5} = \{\mathbf{q_1}, \mathbf{q_2}\}$	S_2	S_4
$\mathbf{S}_6 = \{\mathbf{q}_0, \mathbf{q}_1, \mathbf{q}_2\}$	S_5	S_4
$S_7 = \{ \}$	S_7	S_7

 Eliminar as linhas que possuem transições somente com saídas, ou seja, não existe nenhuma transição que chega até ela (estado inacessível):

δ	а	b
$S_0 = \{q_0\}$	S_5	$\overline{S_7}$
$\mathbf{S_2} = \{\mathbf{q_2}\}$	S_2	S_0
$\mathbf{S_4} = \{\mathbf{q_0}, \mathbf{q_2}\}$	S_5	S_0
$\mathbf{S_5} = \{\mathbf{q_1}, \mathbf{q_2}\}$	S_2	S_4
$S_7 = \{ \}$	S_7	S_7

Equivalência entre AFD e AFN

- 6. Montar o AFD a partir de δ .
- 7. Eliminar os estados que não possuem saída para outro estado e não são finais.
- 8. Verificar se uma cadeia que pertencia ao AFN também pertence ao AFD gerado.
- 6. Montar o AFD a partir de δ :

7. Eliminar os estados que não possuem saída para outro estado e não são finais:

8. Verificar se uma cadeia ababaaba que pertencia ao AFN também pertence ao AFD gerado:

1.
$$p_0 = \{q_0\}$$

 $p_1 = \{q_0, q_1\}$
 $p_2 = \{q_0, q_1, q_2\}$
 $p_3 = \{q_0, q_1, q_2, q_3\}$

Sugestão de exercícios: você pode transformar os AFNs da aula 4 em AFDs.