Natural Language Processing (8)

Parsing (2): Dependency Parsing

Daisuke Kawahara

Department of Communications and Computer Engineering,

Waseda University

Lecture Plan

- 1. Overview of Natural Language Processing
- 2. Formal Language Theory
- 3. Word Senses and Embeddings
- 4. Topic Models
- 5. Collocations, Language Models, and Recurrent Neural Networks
- 6. Sequence Labeling and Morphological Analysis
- 7. Parsing (1)
- 8. Parsing (2)
- 9. Transfer Learning
- 10. Knowledge Acquisition
- 11. Information Retrieval, Question Answering, and Machine Translation
- 12. Guest Talk (1)
- 13. Guest Talk (2)
- 14. Project: Survey or Programming
- 15. Project Presentation

Table of Contents

- Dependency formalism
- Graph-based parsing
- Transition-based parsing
- Japanese dependency parsing

Review: Phrase Structure

Dependency Structure

Dependency Parsing (1/2)

- Outputs a dependency tree from an input sentence where...
 - node of a (directed) graph: word
 - arc of a graph: dependency with a syntactic role

Non-projective / Projective

Dependency Parsing (2/2)

- Successfully employed for...
 - machine translation
 - knowledge acquisition

— ...

- Research on data-driven dependency parsing is a boom
 - dependency treebanks
 - resources of the CoNLL shared tasks
 - Universal dependencies

CoNLL-X shared task (2006)

Data sets. Tok = number of tokens ($\times 1000$); Sen = number of sentences ($\times 1000$); T/S = tokens per sentence (mean); Lem = lemmatization present; CPoS = number of coarse-grained part-of-speech tags; PoS = number of (fine-grained) part-of-speech tags; MSF = number of morphosyntactic features (split into atoms); Dep = number of dependency types; NPT = proportion of non-projective dependencies/tokens (%); NPS = proportion of non-projective dependency graphs/sentences (%).

Language	Tok	Sen	T/S	Lem	CPoS	PoS	MSF	Dep	NPT	NPS
Arabic	54	1.5	37.2	yes	14	19	19	27	0.4	11.2
Bulgarian	190	14.4	14.8	no	11	53	50	18	0.4	5.4
Chinese	337	57.0	5.9	no	22	303	0	82	0.0	0.0
Czech	1,249	72.7	17.2	yes	12	63	61	78	1.9	23.2
Danish	94	5.2	18.2	no	10	24	47	52	1.0	15.6
Dutch	195	13.3	14.6	yes	13	302	81	26	5.4	36.4
German	700	39.2	17.8	no	52	52	0	46	2.3	27.8
Japanese	151	17.0	8.9	no	20	77	0	7	1.1	5.3
Portuguese	207	9.1	22.8	yes	15	21	146	55	1.3	18.9
Slovene	29	1.5	18.7	yes	11	28	51	25	1.9	22.2
Spanish	89	3.3	27.0	yes	15	38	33	21	0.1	1.7
Swedish	191	11.0	17.3	no	37	37	0	56	1.0	9.8
Turkish	58	5.0	11.5	yes	14	30	82	25	1.5	11.6

[Nivre and McDonald 2011]

Universal Dependencies

http://universaldependencies.org/introduction.html

Two Approaches

- Graph-based parsing
 - finds an entire tree among all possible trees
 - with globally optimized models

- Transition-based parsing
 - greedily adds an arc step by step to make a tree
 - with locally optimized models

R. McDonald, J. Nivre, Computational Linguistics, 2011

- Analyze these two kinds of parsers
 - Actually, both obtain similar parsing accuracies

Language	Graph-based	Transition-based
Arabic	66.91	66.71
Bulgarian	87.57	87.41
Chinese	85.90	86.92
•••		
Average	80.83	80.75

Notation

• Let $L = \{l_1, \dots, l_{|L|}\}$ be arc labels

• Let $x = w_0, w_1, ..., w_n$ be an input sentence - where $w_0 = \text{ROOT}$

Table of Contents

- Dependency formalism
- Graph-based parsing
- Transition-based parsing
- Japanese dependency parsing

Notation

- Dependency graph/tree: G = (V, A)
 - -V: a set of nodes (vertices)
 - -A: a set of arcs (directed edges)
 - A dependency: $(i, j, l) \in A$
 - a linear precedence order < on V (word order)
- Conditions on dependency graphs
 - G is connected
 - if $i, j \in V$ then $i \leftrightarrow^* j$
 - -G is acyclic
 - if $i \rightarrow j$ then not $j \rightarrow^* i$
 - G obeys the single-head constraint
 - if $i \rightarrow j$ then not $i' \rightarrow j$ for any $i' \neq i$

Graph-based Parsing

MST: Maximum Spanning Tree

- The last step is finding the tree that ...
 - has all the nodes of the dense graph
 - maximizes the sum of the arc scores

- This is a maximum spanning tree problem
 - $-O(n^2)$ algorithm by [Chu and Liu 1965] [Edmonds 1967]
 - Do exhaustive search quickly

Chu-Liu-Edmonds Algorithm

Practice

Use the Chu-Liu-Edmonds algorithm to find the dependency structure of "boys often play games" and its score.

Y

X→Y	boys	often	play	games
ROOT	8	5	8	6
boys		2	2	1
often	2		9	2
play	9	8		10
games	0	1	1	

X

Learning an Arc Scoring Function

- Target: dependency arc scoring function s
 - $-s:(i,j,l)\to s(i,j,l)\in\mathbb{R}$
 - (i, j, l): arc of dependency $w_i \rightarrow w_j$ with label l
 - -s(i,j,l) is often defined as w * f(i,j,l)

Feature vector of arc

 Optimize parameters to maximize the difference in score between correct/incorrect trees

Characterization of Graph-based Approach

- The learning procedure is global because ...
 - optimizing the global score of an entire tree
 - not just over single arc attachment decisions

- Restricted scope of feature sets for f(i, j, l)
 - e.g., lexical and surface syntactic features

Training MST Parser

- Two-stage approach
 - First predict arcs, then arc labels
- 1. Arc score $s(i,j) = \mathbf{w} * \mathbf{f}(i,j)$
 - Labels are ignored
 - Online large-margin training algorithm
- 2. Label score $s(l|i,j) = \mathbf{w} * \mathbf{f}(i,j,l)$
 - A label is conditioned on a fixed arc (i, j)
 - Log-linear arc-labeler

Features of MSTParser

Features for MSTParser. ∧ indicates a conjunction of features. † indicates that all back-off versions of a conjunction feature are included as well. A back-off version of a conjunction feature is one where one or more base features are disregarded. ‡ indicates that all back-off versions are included where a single base feature is disregarded.

```
Lexical features: Identity of w_i, w_i \in x
Affix features: 3-gram lexical prefix/suffix identity of Pref(w_i)/Suff(w_i), w_i \in x
Part-of-speech features: Identity of PoS(w_i), w_i \in x
Morphosyntactic features: For all morphosyntactic features MSF_k for a word w_i, identity of MSF_k(w_i), w_i \in x
Label features: Identity of l in some labeled arc (i, j, l)
                                                                                 (b) PoS-context features for unlabeled arc (i, j)
(a) Head-modifier features for unlabeled arc (i, j)
                                                                                 \forall k, i < k < j : PoS(w_i) \land PoS(w_k) \land PoS(w_i)
w_i \wedge PoS(w_i) \wedge w_i \wedge PoS(w_i) \dagger
                                                                                 PoS(w_{i-1}) \wedge PoS(w_i) \wedge PoS(w_{i-1}) \wedge PoS(w_i) \ddagger
\operatorname{Pref}(w_i) \wedge \operatorname{PoS}(w_i) \wedge \operatorname{Pref}(w_i) \wedge \operatorname{PoS}(w_i) \dagger
                                                                                 PoS(w_{i-1}) \wedge PoS(w_i) \wedge PoS(w_i) \wedge PoS(w_{i+1}) \ddagger
Suff(w_i) \wedge PoS(w_i) \wedge Suff(w_j) \wedge PoS(w_j) \dagger
                                                                                 PoS(w_i) \wedge PoS(w_{i+1}) \wedge PoS(w_{i-1}) \wedge PoS(w_i) \ddagger
\forall k, k' : \mathsf{MSF}_k(w_i) \land \mathsf{PoS}(w_i) \land \mathsf{MSF}_{k'}(w_i) \land \mathsf{PoS}(w_i) \dagger
                                                                                 PoS(w_i) \wedge PoS(w_{i+1}) \wedge PoS(w_i) \wedge PoS(w_{i+1}) \ddagger
(c) Head-modifier features for unlabeled arc pair (i, j \diamond k)
                                                                                      (d) Arc-label features for labeled arc (i, j, l)
w_i \wedge w_k
                                                                                      w_i \wedge PoS(w_i) \wedge w_i \wedge PoS(w_i) \wedge l \dagger
w_i \wedge \text{PoS}(w_k)
                                                                                      \forall k, i < k < j : PoS(w_i) \land PoS(w_k) \land PoS(w_j) \land l
PoS(w_i) \wedge w_k
                                                                                      PoS(w_{i-1}) \wedge PoS(w_i) \wedge PoS(w_{i+1}) \wedge l \dagger
PoS(w_i) \wedge PoS(w_k)
                                                                                      PoS(w_{i-1}) \wedge PoS(w_i) \wedge PoS(w_{i+1}) \wedge l \dagger
PoS(w_i) \wedge PoS(w_i) \wedge PoS(w_k)
```

Base features for sentence: $x = w_0, w_1, \dots, w_n$

Table of Contents

- Dependency formalism
- Graph-based parsing
- Transition-based parsing
- Japanese dependency parsing

Transition-based Parsing

Parsing based on transitions

- Building the output dependency tree step by step
 - Each c_i defines a partially built dependency graph
 - The last c_m defines the output dependency tree

Transition-based Parsing

- State: triple
 - $-\sigma$: stack of partially processed words
 - $-\beta$: buffer of remaining input words
 - A: set of labeled dependency arcs

Transitions

- Shift: move the first word in the buffer to the stack
- Left Arc: remove w_i from the stack, with the dependency relation from w_i to w_i ($w_i \leftarrow w_i$)
- Right Arc: remove w_j from the stack, with the dependency relation from w_i to w_i ($w_i \rightarrow w_i$)

^{*} w_i, w_j are the rightmost words in the stack

Stack	Buffer
	John saw Mary with a telescope
	Shift
John	saw Mary with a telescope
	Shift
John saw	Mary with a telescope
	Left Arc
saw	Mary with a telescope
John	Shift
saw Mary	with a telescope
John	Right Arc
saw	with a telescope
John Mary	Shift
saw with	a telescope
John Mary	

Transition-based Parsing

 Use some transition scoring function to choose next transition

- Repeat taking the optimal transition at each step
 - Greedy search of O(n)

Learning a Transition Scoring Function

- Target: transition scoring function s
 - $-s:(c,t)\to s(c,t)\in\mathbb{R}$
 - c: current state
 - t: transition that will be scored
 - Transition set is finite → classification problem

- Discriminative learning methods (such as SVMs)
 - Training data: history of states and gold standard transitions

Characterization of Transition-based Approach

- The learning procedure is <u>local</u>
 - only single transitions are scored
 - not entire transition sequences
- Rich feature sets
 - e.g., the entire dependency graph built so far

Available (dependency graph)

- Greedy search may lead to error propagation
 - False early predictions may eliminate correct trees

Training Malt Parser

- $c = (\sigma_c, \beta_c, A_c)$: current state
 - $-\sigma_c^i$: i-th element from the top of stack σ_c
 - $-\beta_c^i$: i-th element from the head of buffer β_c

Features:

- $\text{Pos}(w), w \in \{\sigma_c^0, \sigma_c^1, \beta_c^0, \beta_c^1, \beta_c^2, \beta_c^3\}$
- $-w, w \in \{\sigma_c^0, \beta_c^0, \beta_c^1\} \text{ or } (\sigma_c^0, w, l) \in A_c$
- $-l, (w, w', l) \in A_c$ and $w \in \{\sigma_c^0, \sigma_c^1\}$

Comparison

Training algorithms

	MST (graph-based)	Malt (transition-based)
Algorithm	Large-margin learning (Online algorithm)	Large-margin learning (Support Vector Machines)
Model	Globally trained	Locally trained

Feature representation

MST (graph-based)	Malt (transition-based)
Restricted, local features	Rich, global features
(Neighboring words and POS tags)	(History of previous decisions)

Comparison

- Inference
 - Malt is far quicker: O(n) vs. $O(n^2)$
 - Malt may cause error propagation

Exhaustive inference algorithm & global learning

Trade-off

Expressiveness of feature representation

Sentence Length

[McDonald and Nivre 2011]

Dependency Length

Tree Depth (Distance to Root)

Part of Speech of Dependents

Dependency Type: Root, Subject, Object

Phrase Structure vs. Dependency Structure

- Phrase structure
 - Phrases (nonterminal nodes)
 - Functional categories (functional labels)
 - Structural categories (nonterminal labels)

- Dependency structure
 - Head-modifier relations (directed arcs)
 - Functional categories (arc labels)
 - No structural categories
 - Easy to convert to predicate-argument structures

Neural Network-based Dependency Parsing

[Chen and Manning 2014]

Transition-based Model with Stack LSTM

[Dyer+ 2015]

Head Selection

[Zhang+ 2017]

Stack-Pointer Networks

[Ma+ 2018]

Stack-Pointer Networks

		English		Chinese		German	
System		UAS	LAS	UAS	LAS	UAS	LAS
Chen and Manning (2014)	T	91.8	89.6	83.9	82.4	-	(
Ballesteros et al. (2015)	T	91.63	89.44	85.30	83.72	88.83	86.10
Dyer et al. (2015)	T	93.1	90.9	87.2	85.7	_	_
Bohnet and Nivre (2012)	T	93.33	91.22	87.3	85.9	91.4	89.4
Ballesteros et al. (2016)	T	93.56	91.42	87.65	86.21	-	-
Kiperwasser and Goldberg (2016)	T	93.9	91.9	87.6	86.1	_	_
Weiss et al. (2015)	T	94.26	92.41	i—	XX	_	_
Andor et al. (2016)	T	94.61	92.79	-	3 -1	90.91	89.15
Kiperwasser and Goldberg (2016)	G	93.1	91.0	86.6	85.1	<u> </u>	<u> </u>
Wang and Chang (2016)	G	94.08	91.82	87.55	86.23	_	
Cheng et al. (2016)	G	94.10	91.49	88.1	85.7	_	-
Kuncoro et al. (2016)	G	94.26	92.06	88.87	87.30	91.60	89.24
Ma and Hovy (2017)	G	94.88	92.98	89.05	87.74	92.58	90.54
BIAF: Dozat and Manning (2017)	G	95.74	94.08	89.30	88.23	93.46	91.44
BIAF: re-impl	G	95.84	94.21	90.43	89.14	93.85	92.32
STACKPTR: Org	T	95.77	94.12	90.48	89.19	93.59	92.06
STACKPTR: +gpar	T	95.78	94.12	90.49	89.19	93.65	92.12
STACKPTR: +sib	T	95.85	94.18	90.43	89.15	93.76	92.21
STACKPTR: Full	Т	95.87	94.19	90.59	89.29	93.65	92.11

[Ma+ 2018]

Bottom-up Hierarchical Pointer Networks

Hierarchical Pointer Network with Outside-in Order

[Fernández-González and Gómez-Rodríguez 2021]

Table of Contents

- Dependency formalism
- Graph-based parsing
- Transition-based parsing
- Japanese dependency parsing

Japanese Dependency Parsers

- KNP http://nlp.ist.i.kyoto-u.ac.jp/index.php?KNP (In Japanese)
 - A probabilistic model based on case frames
 - Phrase dependency
- CaboCha http://code.google.com/p/cabocha/ (In Japanese)
 - Transition-based
 - Phrase dependency
 - SVMs
- EDA http://plata.ar.media.kyoto-u.ac.jp/tool/EDA/home_en.html
 - MST with pointwise edge score estimation
 - Word dependency

Japanese Dependency Parsers

- 1. Word segmentation
- 2. POS tagging

- 3. Phrase chunking
- 4. Parsing

Kyoto University Text Corpus

- 40K Mainichi newspaper articles annotated with syntactic information
 - Word segmentation
 - POS
 - Dependency
- 10K articles annotated with relation information
 - Predicate-argument structures
 - Relations between nouns
 - Anaphora and coreference

[Kurohashi&Nagao 1998]

KU Web Document Leads Corpus

[Hangyo+ 2014]

- Lead 3 sentences of 5K web documents annotated with various linguistic information
 - Annotated by linguists
 - Word segmentation
 - POS
 - Dependency
 - Predicate-argument structures
 - Anaphora and coreference
 - Annotated by crowdworkers
 - Discourse relations

今回は様々な保険について ([著者]ガ)([読者]二)説明しています。丁寧に([著者]ガ) ([読者]二)(保険ヲ)解説したつもりですが、逆接 ([読者]ガ) 分からない部分もあるかもしれません。原因・理由 疑問点はどんどん([読者]ガ) ([著者] ニ)コメントしてください。50

Dependency Parsing based on Case Frames (KNP)

クロールで 泳いでいる女の子を見た 望遠鏡で 泳いでいる女の子を見た

Case frames

```
{人,子,...}が
{クロール,平泳ぎ,...}で
{海,大海,...}を<mark>泳ぐ</mark>
```

```
{人,者,...}が
{双眼鏡,望遠鏡,...}で
{姿,人,...}を<mark>見る</mark>
```

Probabilistic Model (KNP)

Pointwise Edge Score Estimation (EDA)

- Trainable from partially annotated sentences
 - Only some words are annotated
 - Practical for domain adaptation

BERT-based Dependency Parsing

[柴田+2019]

Based on head selection [Zhang+ 2017]

$$s(t_j, t_i) = \boldsymbol{v}_h^{\mathrm{T}} \tanh(U_h \boldsymbol{t}_j + W_h \boldsymbol{t}_i)$$

Phrase-based Performance (F1)

Error Analysis

Coordination

Others

Tree: Gold tree

▼: System output

Compound nouns


```
またa、*------
既存nのp¬
おp客nさまsのp¬ ▼
おp申込みn¬
受付nもp----
2011n年s¬
2n月s¬
28n日sにてp¬
終了nいたしvますs。
```

Topic markers (wa)

```
備えn付けnのp---
食器n--
食器n--
洗浄n-
器nはp- ▼---
器nはp- ▼---
ほとんどa--
使用nさvれてsおらsずx、*-- P
新品n--
同様のj--
状態nですc。*
```

Summary

- Dependency formalism
- Graph-based parsing
- Transition-based parsing
- Japanese dependency parsing