<u>Painel</u> / Meus cursos / <u>SC26EL</u> / <u>2-Projeto de Controlador de Atraso pelo Método do Lugar das Raízes</u>

/ <u>Questionário sobre Projeto de Controlador de Atraso por Lugar das Raízes</u>

Iniciado em	domingo, 4 jul 2021, 21:27	
Estado	Finalizada	
Concluída em	domingo, 4 jul 2021, 21:29	
Tempo	1 minuto 55 segundos	
empregado		
Notas	3,6/4,0	
Avaliar	9,1 de um máximo de 10,0(91 %)	
Questão 1 Correto Atingiu 1,0 de 1,0		
	um compensador de atraso para um sistema $G(s)=rac{1}{(s+2)(s+4)}$ com realimentação unitária de forma que o erro el e para uma referência do tipo degrau seja 0,05. Para isso, a constante de erro estático de posição deve	
	e para uma referencia do tipo degrad seja 0,05. Para isso, a constante de erro estatico de posição deve	
valer		
19		
✓ . Assim, o parân	netro eta do controlador deve valer	
152		
132		
✓ .		
	um compensador de atraso para um sistema $G(s)=\frac{1}{s(s+10)}$ com realimentação unitária de forma que o erro em e para uma referência do tipo rampa seja 0,1. Para isso, a constante de erro estático de velocidade \checkmark deve	
valer		
10		
	natus da controlador dora valor	
	netro eta do controlador deve valer	
100		
~ .		
Questão 3		
Correto		
Atingiu 1,0 de 1,0		
Calcule o valor de \vec{k}	$\hat{\mathcal{K}}_c$ para a condição de módulo $\left \hat{\mathcal{K}}_c rac{(s+0.01)}{(s+0.001)} rac{2}{s(s+2)} ight _{s=-0,99+j0,99} = 1.$	
Resposta: 0.995	✓	

Questão 4 Parcialmente correto Atingiu 0,6 de 1,0 Considere o sistema descrito na figura abaixo onde $G(s) = \frac{20}{(s+1)(s+4)}$. Deseja-se projetar um controlador de atraso C(s) para que o sistema, em malha fechada, tenha erro em regime permanente de 0,05 para uma referência do tipo degrau. Adicionalmente, a adição do controlador não deve alterar, significativamente, a resposta transitória do sistema em malha fechada sem o controlador. Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos. C(s) G(s) Os polos de malha fechada do sistema sem compensação são: $s_{1,2} =$ -2.500 **✓** ±j 4.213 🗸 . O coeficiente de amortecimento desses polos é: $\zeta =$ 0.5103 🗸 . A frequência natural desses polos é: $\omega_n =$ ✓ rad/s. Para atender os requisitos de projeto, a constante de erro estático de posição deve valer 19 \checkmark . Consequentemente, o parâmetro β do controlador deve valer 3.800 Considerando que o zero do compensador esteja em -0,1, o polo do compensador deve estar em s=**X** . Para manter o mesmo coeficiente de amortecimento dos polos de malha fechada originais do sistema sem o compensador, os polos de malha fechada, após a inserção do compensador devem estar em: $s_{1,2} =$ \mathbf{x} $\pm j$ Para os novos polos de malha fechada do sistema compensado, o ganho do compensador projetado é $\hat{K}_c =$ **x** . Script Python

Seguir para...

Videoaula: Projeto de Controlador de Avanço-Atraso pelo Método do Lugar das Raízes ►