HEARTS AND TOWERS IN STABLE ∞-CATEGORIES

DOMENICO FIORENZA, FOSCO LOREGIAN, GIOVANNI MARCHETTI

1. Histoire d' $\mathcal{O}(J)$

Recall that a lower set in a poste J is a subset $L \subseteq J$ such that if $x \in L$ and $y \le x$ then $y \in L$. Dually, one defines upper sets.

Definition 1.1: Let J be a poset. A *slicing* of J is a pair (L, U), where L is a lower set in J, U is an upper set, $L \cap U = \emptyset$ and $L \cup U = J$. The collection of all slicings of J will be denoted by $\mathcal{O}(J)$.

Remark 1.2: Since the complement of an upper set is a lower set and vice versa, the projection on the second factor is a bijection

$$\mathcal{O}(J) \xrightarrow{\sim} \{\text{upper sets of } J\}$$

This induces a natural partial order on $\mathcal{O}(J)$: we set $(L_1, U_1) \leq (L_2, U_2)$ if and only if $U_2 \subseteq U_1$. Notice that $\mathcal{O}(J)$ has a minimum given by the slicing (\emptyset, J) and a maximum given by the slicing (J, \emptyset) .

Remark 1.3: If J is a \mathbb{Z} -poset, then so is $\mathcal{O}(J)$. The natural \mathbb{Z} -action on $\mathcal{O}(J)$ is given by

$$(L, U) + n = (L + n, U + n),$$

where $L + n = \{x + n \mid x \in L\}$ and $U + n = \{x + n \mid x \in U\}$.

Remark 1.4: Every element x in J determines two slicings of J: $((-\infty, x), [x, +\infty))$ and $((-\infty, x], (x, +\infty))$. Here $(-\infty, x)$ is the lower set $\{y \in J \mid y < x\}$, and similarly for $(-\infty, x], (x, +\infty)$ and $[x, +\infty)$. This gives two natural morphisms of posets $J \longrightarrow \mathcal{O}(J)$. If J is a \mathbb{Z} -poset, then these morphisms are \mathbb{Z} -equivariant.

Example 1.5 : The morphism $n \mapsto [n, +\infty)$ induces an isomorphism of \mathbb{Z} -posets $\mathbb{Z} \cup \{\pm \infty\} \xrightarrow{\sim} \mathcal{O}(\mathbb{Z})$. The morphisms $x \mapsto (x, +\infty)$ and $x \mapsto [x, +\infty)$ together induce an isomorphism of posets \mathbb{Z} -posets

$$\mathbb{R} \times_{\operatorname{lex}} \Delta^1 \cup \{\pm \infty\} \xrightarrow{\sim} \mathcal{O}(\mathbb{R}),$$

Date: April 10, 2017.

2

where Δ^1 is the totally ordered set $\{0,1\}$ with 0 < 1.

Before introducing the main definition of this section, let us recall that a *t-structure* on a stable ∞ -category \mathbf{C} consists of a pair $\mathfrak{t} = (\mathbf{L}, \mathbf{U})$ of full sub- ∞ -categories satisfying the following properties:

- (i) orthogonality: $\mathbf{C}(X,Y)$ is contractible for each $X \in \mathbf{U}, Y \in \mathbf{L}$;
- (ii) one has $U[1] \subseteq U$ and $L[-1] \subseteq L$;
- (iii) Any object $X \in \mathbf{C}$ fits into a (homotopy) fiber sequence $X_{\mathbf{U}} \longrightarrow X_{\mathbf{L}}$, with $X_{\mathbf{U}}$ in \mathbf{U} and $X_{\mathbf{L}}$ in \mathbf{L} .

The categories \mathbf{L} and \mathbf{U} are called the lower sub- ∞ -category and the upper sub- ∞ -category of the t-structure \mathfrak{t} , respectivley. The collection $\mathrm{TS}(\mathbf{C})$ of all t-structures on a stable ∞ -category \mathbf{C} is a poset with respect to following order relation: given two t-structures $\mathfrak{t}_1 = (\mathbf{L}_1, \mathbf{U}_1)$ and $\mathfrak{t}_2 = (\mathbf{L}_2, \mathbf{U}_2)$, one has $\mathfrak{t}_1 \leq \mathfrak{t}_2$ iff $\mathbf{U}_2 \subseteq \mathbf{U}_1$. The ordered group \mathbb{Z} acts on $\mathrm{TS}(\mathbf{C})$ in a way that is fixed by the action of the generator +1; this maps a t-structure $\mathfrak{t} = (\mathbf{L}, \mathbf{U})$ to the *shifted* t-structure $\mathfrak{t}[1] = (\mathbf{L}[1], \mathbf{U}[1])$. Since $\mathfrak{t} \leq \mathfrak{t}[1]$ one sees that $\mathrm{TS}(\mathbf{C})$ is naturally a \mathbb{Z} -poset. Finally, the poset $\mathrm{TS}(\mathbf{C})$ has a minimum and a maximum given by $(\mathbf{C}, \mathbf{0})$ and $(\mathbf{0}, \mathbf{C})$, respectively. These are called the $trivial\ t$ -structures.

Definition 1.6: Let (J, \leq) be a \mathbb{Z} -poset. A J-slicing of a stable ∞ -category \mathbf{C} is a \mathbb{Z} -equivariant morphism of posets $\mathfrak{t} \colon \mathcal{O}(J) \longrightarrow \mathrm{TS}(\mathbf{C})$ respecting minima and maxima on both sides.

More explicitly, a *J*-family is a family $\{\mathfrak{t}_{(L,U)}\}_{(L,U)\in\mathcal{O}(J)}$ of *t*-structures on **C** such that

- (1) $\mathfrak{t}_{(L_1,U_1)} \leq \mathfrak{t}_{(L_2,U_2)}$ if $(L_1,U_1) \leq (L_2,U_2)$ in $\mathcal{O}(J)$;
- (2) $\mathfrak{t}_{(L,U)+1} = \mathfrak{t}_{(L,U)}[1]$ for any $(L,U) \in \mathcal{O}(J)$.
- (3) $\mathfrak{t}_{(J,\emptyset)} = (\mathbf{C}, \mathbf{0}) \text{ and } \mathfrak{t}_{(\emptyset,J)} = (\mathbf{0}, \mathbf{C}).$

Notation 1.7: We will denote the lower and the upper sub- ∞ -categories of the t-structure $\mathfrak{t}_{(L,U)}$ by \mathbf{C}_L and \mathbf{C}_U , respectively, i.e., we write $\mathfrak{t}_{(L,U)}=(\mathbf{C}_L,\mathbf{C}_U)$. For $i\in J$, we will write $\mathbf{C}_{\geq i}$, $\mathbf{C}_{>i}$, $\mathbf{C}_{\leq i}$ and $\mathbf{C}_{< i}$ for $\mathbf{C}_{[i,+\infty)}$, $\mathbf{C}_{(i,+\infty)}$, $\mathbf{C}_{(-\infty,i]}$ and $\mathbf{C}_{(-\infty,i)}$, respectively. Note that, by \mathbb{Z} -equivariancy, we have $\mathbf{C}_{\geq i+1}=\mathbf{C}_{\geq i}[1]$, and similarly for the other cases.

Example 1.8 : By Lemma ?? and Example 1.5, a \mathbb{Z} -slicing on \mathbb{C} is equivalent to the datum of a t-structure $\mathfrak{t}_0 = (\mathbb{C}_{<0}, \mathbb{C}_{\geq 0})$. One has $\mathfrak{t}_n = (\mathbb{C}_{\geq n}, \mathbb{C}_{< n})$ for any $n \in \mathbb{Z}$, consistently with the Notation 1.7, $\mathfrak{t}_{-\infty} = (\mathbb{C}, \mathbf{0})$ and $\mathfrak{t}_{+\infty} = (\mathbf{0}, \mathbb{C})$. Notice that by our Remark ??, as soon

as $\mathbf{C}_{\geq 1}$ is a proper subcategory of $\mathbf{C}_{\geq 0}$, then the inclusion $\mathbf{C}_{\geq n+1} \subseteq \mathbf{C}_{\geq n}$ is proper for all $n \in \mathbb{Z}$, i.e. the orbit $\mathfrak{t} + \mathbb{Z}$ is an infinite set.

Example 1.9: By Example 1.5, \mathbb{R} -slicing on \mathbb{C} is the datum of two t-structures $(\mathbf{C}_{<\lambda}, \mathbf{C}_{\geq \lambda})$ and $(\mathbf{C}_{\leq \lambda}, \mathbf{C}_{>\lambda})$ on \mathbb{C} for any $\lambda \in \mathbb{R}$ in such a way that $\mathbf{C}_{\geq \lambda+1} = \mathbf{C}_{\geq \lambda}[1]$, etc., and with the inclusions $\mathbf{C}_{>\lambda} \subseteq \mathbf{C}_{\geq \lambda}$ for any $\lambda \in \mathbb{R}$ and

$$\mathbf{C}_{>\lambda_2}\subseteq\mathbf{C}_{\geq\lambda_2}\subseteq\mathbf{C}_{>\lambda_1}\subseteq\mathbf{C}_{\geq\lambda_1}$$

for any $\lambda_1 < \lambda_2$ in \mathbb{R} . \mathbb{R} -slicings have been introduced in [?], where they are called simply "slicings". Actually [?] imposes more restrictive conditions to ensure "compactness" of the factorization, we will come back to this later. Compare also [?].

Remark 1.10: Since the subcategories \mathbf{C}_L and \mathbf{C}_U are the lower and the upper subcategories of a t-structure $\mathfrak{t}_{(L,U)}$ they are reflexive and coreflexive, respectively. In particular we have reflexion and coreflection functors

$$R_L \colon \mathbf{C} \longrightarrow \mathbf{C}_L; \qquad S_U \colon \mathbf{C} \longrightarrow \mathbf{C}_U.$$

For X an object in \mathbf{C} we will usually write X_L for R_LX and X_U for S_UX , and similarly for morphisms. Finally, by composing R_L and S_U with the inclusions of \mathbf{C}_L and \mathbf{C}_U in \mathbf{C} , we can look at R_L and S_U as endofunctors of \mathbf{C} .

Lemma 1.11: (It is possible this lemma requires J to be totally ordered or some order relation between the slicing (L_1, U_1) and the slicing (L_2, U_2) : check!) Let (L_1, U_1) and (L_2, U_2) two slicings of J and let \mathfrak{t} be a J-slicing of \mathbb{C} . Then we have natural isomorphisms

$$R_{L_1}R_{L_2} \cong R_{L_2}R_{L_1};$$
 $S_{U_1}S_{U_2} \cong S_{U_2}S_{U_1};$
 $R_{L_1}S_{U_2} \cong S_{U_2}R_{L_1};$ $S_{U_1}R_{L_2} \cong R_{L_2}S_{U_1}$

Moreover, if $(L_1, U_1) \leq (L_2, U_2)$ then we have natural isomorphisms

$$R_{L_1}R_{L_2} \cong R_{L_1}; \qquad S_{U_1}S_{U_2} \cong S_{U_2}$$

Aggiungere qualche riga sulle composizioni $R_{L_1}R_{L_2}$ e $S_{U_1}S_{U_2}$ con $(L_1, U_1) \leq (L_2, U_2)$.

1.1. A tale of intervals. Although a few of the statements we are going to prove hold more generally for arbitrary \mathbb{Z} -posets, for the remainder of this section we will restrict our attention to \mathbb{Z} -posets which are totally ordered sets.

Definition 1.12 : Let J be a totally ordered set. An *interval* in J is a subset $I \subseteq J$ which can be written as the intersection of an upper set and a lower set.

Lemma 1.13 : In a totally ordered set, the upper set and the lower set intersecting in a nonempty interval I are uniquely determined by I.

Proof. Let $I \subseteq J$ be a interval and let

$$U_I = \bigcap_{U \supseteq I} U; \qquad L_I = \bigcap_{L \supseteq I} L,$$

with U and L ranging over the upper sets and the lower sets in J containing I, respectively. Then it is clear that $I \subseteq U_I \cap L_I$ and we want to show that actually $I = U_I \cap L_I$ and that if $I = U_0 \cap L_0$ then $U_0 = U_I$ and $L_0 = L_I$. By definition of interval there exist an upper set U_0 and a lower set L_0 such that $I = U_0 \cap L_0$. By definition of U_I and L_I we have $U_I \subseteq U_0$ and $L_I \subseteq L_0$. Therefore $I \subseteq L_I \cap U_I \subseteq L_0 \cap U_0 = I$ and so $I = U_I \cup L_I$. Now we want to show that $U_I = U_0$. Since $U_I \subseteq U_0$ we only need to show that $U_0 \subseteq U_I$. Let $x \in U_0$ and let $y \in I$. Since J is totally ordered, either $x \leq y$ or $x \geq y$. In the first case, since L_0 is a lower set, we have $x \in L_0$ and so $x \in L_0 \cup U_0 = I \subseteq U_I$. In the second case, since U_I is an upper set, we have directly $x \in U_I$.

By the above lemma, the following definition is well-posed.

Definition 1.14: Let J be a totally ordered \mathbb{Z} -poset and let $\mathfrak{t} \colon \mathcal{O}(J) \longrightarrow TS(\mathbf{C})$ be a J-sliciang on a stable ∞ -category \mathbf{C} . For every nonempty interval $I = L_I \cup U_I$ in J we set

$$\mathbf{C}_I = \mathbf{C}_{L_I} \cap \mathbf{C}_{U_I}.$$

We also set $\mathbf{C}_{\emptyset} = \{\mathbf{0}\}.$

Remark 1.15: The whole of J is an interval, with $L_J = U_J = J$. From Definition 1.14 we obtaon $\mathbf{C}_J = \mathbf{C}$, as expected. Also, every upper set U is an interval, with $U_U = U$ and $L_U = J$. So from Definition 1.14 we find that the subcategory of \mathbf{C} associated to U as an interval is precisely the subcategory \mathbf{C}_U associated to U as an upper set. The same happens for lower sets. This shows that the notation introduced in Definition 1.14 is consistent with the notation for J-slicings.

Example 1.16: For every i, j in J with $i \leq j$ one has the four intervals (i, j), (i, j], [i, j), [i, j] and consequently the four subcategories $\mathbf{C}_{(i,j)}$, $\mathbf{C}_{(i,j)}$, $\mathbf{C}_{[i,j)}$ and $\mathbf{C}_{[i,j]}$ of \mathbf{C} . In particular for every $i \in J$ we have the

intervale [i, i] consisting of the single element i. To avoid cumbersome notation, we will always write \mathbf{C}_i for $\mathbf{C}_{[i,i]}$. The subcategories \mathbf{C}_i with i ranging in J are called the *slices* of the J-slicing \mathfrak{t} .

Definition 1.17 : Let \mathfrak{t} be a *J*-slicing on \mathbf{C} . We say that \mathbf{C} is *J*-bounded if

$$\mathbf{C} = \bigcup_{i,j \in J} \mathbf{C}_{[i,j]}.$$

Similarly, we say that **C** is *J-left-bounded* if $\mathbf{C} = \bigcup_{i \in J} \mathbf{C}_{[i,+\infty)}$ and *J-right-bounded* if $\mathbf{C} = \bigcup_{i \in J} \mathbf{C}_{(-\infty,i]}$. This notion is well known in the classical as well as in the quasicategorical setting: see [?,?].

Remark 1.18 : Since $\mathbf{C}_{[i,j]} = \mathbf{C}_{[i,+\infty)} \cap \mathbf{C}_{[-\infty,j]}$ one immediately sees that \mathbf{C} is J-bounded if and only if \mathbf{C} is both J-left- and J-right-bounded.

Lemma 1.19 : Let L and U be a lower and an upper set in J, respectively, let $I = L \cap U$, and let \mathbf{C}_I be the corresponding subcategory of \mathbf{C} , for a given J-slicing. Then the restriction of S_U to \mathbf{C}_L and the restriction of R_L to \mathbf{C}_U both take values in \mathbf{C}_I .

Proof. Let U_L be the upperset given by the complement of L in J, so that the t-structure with lower category \mathbf{C}_L is $(\mathbf{C}_L, \mathbf{C}_{U_L})$. We split the proof in two cases. If $I = \emptyset$ then $U \subseteq U_L$ and so for any X in \mathbf{C}_L we have $X_U \cong (X_{U_L})_U \cong \mathbf{0}_U = \mathbf{0}$. So $S_U|_{\mathbf{C}_L}$ does take its values in $\mathbf{C}_I = \mathbf{C}_\emptyset = \{\mathbf{0}\}$ in this case. If $I \neq \emptyset$, let $x \in U_L$ and $y \in I$. If $x \leq y$ then, since L is a lower set, we have $x \in L$ and so $x \in L \cap U_L = \emptyset$, which is clearly impossible. Therefore, since J is totally ordered, we have $x \geq y$ and so $U_L \subseteq [y, +\infty) \subseteq U$. Since S_U takes values in \mathbf{C}_U , we only need to show that it maps \mathbf{C}_L into itself. In other words we want to show that if $X \in \mathbf{C}_L$ then $X_U \xrightarrow{\sim} (X_U)_L$. From the fiber sequence (non riesco a fare le frecce, kodi mi dà errore)

$$(X_U)_{U_L}$$
 X_U

$$0 (X_U)_L$$

we see we are reduced to showing that $(X_U)_{U_L} \cong \mathbf{0}$. Since $U_L \subseteq U$, we have $(X_U)_{U_L} \cong X_{U_L}$. But, since $X \in \mathbf{C}_L$ we have $X_{U_L} \cong \mathbf{0}$. This concludes the proof in the case $I \neq \emptyset$. The proof for R_L is completely analogous.

By the above lemma we can give the following

Definition 1.20 : Let $I = L \cap U \subseteq J$ be an interval, and let $\mathfrak{t} \colon \mathcal{O}(J) \longrightarrow TS(\mathbf{C})$ be a J-sliciang on a stable ∞ -category \mathbf{C} . The functor

$$\mathcal{H}^I \colon \mathbf{C} \longrightarrow \mathbf{C}_I$$

is defined as the composition $\mathcal{H}^I = R_U S_L = S_L R_U$.

Fino a qui

Remark 1.21: As it is natural to expect, if $i \geq j$, then $\mathbf{C}_{[i,j)}$ is contractible. Namely, since $j \leq i$ one has $\mathbf{C}_{< j} \subseteq \mathbf{C}_{< i}$ and so

$$\mathbf{C}_{[i,j)} = \mathbf{C}_{\geq i} \cap \mathbf{C}_{\leq j} \subseteq \mathbf{C}_{\geq i} \cap \mathbf{C}_{\leq i} = \mathbf{C}_{\geq_i 0} \cap \mathbf{C}_{\leq_i 0}$$

which corresponds to the contractible subcategory of zero objects in **C** (this is immediate, in view of the definition of the two classes).

Remark 1.22 : Let \mathfrak{t} be a \mathbb{Z} -family of t-structures on \mathfrak{C} . Then \mathfrak{C} is \mathbb{Z} -bounded (resp., \mathbb{Z} -left-bounded, \mathbb{Z} -right-bounded) if and only if \mathfrak{C} is bounded (resp., left-bounded, right-bounded) with respect to the t-structure \mathfrak{t}_0 , agreeing with the classical definition of boundedness as given, e.g., in [?].

Remark 1.23 : For any i, j, h, k in J with $j \leq h$ one has

$$\mathbf{C}_{[i,j)} \subseteq \mathbf{C}^{\boxtimes}_{[h,k)},$$

i.e., $\mathbf{C}(X,Y)$ is contractible whenever $X \in \mathbf{C}_{[h,k)}$ and $Y \in \mathbf{C}_{[i,j)}$ (one says that $\mathbf{C}_{[i,j)}$ is *right-orthogonal* to $\mathbf{C}_{[h,k)}$.Indeed, since $\mathbf{C}_{< j} = \mathbf{C}_{< j0} = \mathbf{C}_{\geq j0}^{\boxtimes} = \mathbf{C}_{\geq j}^{\boxtimes}$, and passing to the orthogonal reverses the inclusions, we have

$$\mathbf{C}_{[i,j)} \subseteq \mathbf{C}_{< j} = \mathbf{C}^{\boxtimes}_{\geq j} \subseteq \mathbf{C}^{\boxtimes}_{\geq h} \subseteq \mathbf{C}^{\boxtimes}_{[h,k)}.$$

Definition 1.24: Let $(\mathbf{C}, \mathfrak{t})$ be a stable ∞ -category endowed with a t-structure, arising from the normal torsion theory $\mathbb{F} = (\mathcal{E}, \mathcal{M})$. For each $n \in \mathbb{Z}$, let $\mathbf{C}_{\geq n}$ and $\mathbf{C}_{< n}$ be the reflective and coreflective subcategories of \mathbf{C} determined by the t-structure \mathfrak{t} .

Then \mathfrak{t} is said to be

• bounded if $\bigcup \mathbf{C}_{\geq n} = \mathbf{C}$;

• *limited* if every $f: X \longrightarrow Y$ fits into a fiber sequence

$$F \xrightarrow{\longrightarrow} X \xrightarrow{\longrightarrow} 0$$

$$m[a] \downarrow \qquad \qquad \downarrow f \qquad \qquad \downarrow e[b]$$

$$0 \xrightarrow{\longrightarrow} Y \xrightarrow{\longrightarrow} C$$

where $F = \text{fib}(f), C = \text{cofib}(f), \text{ and } m[a] \in \mathcal{M}[a], e[b] \in \mathcal{E}[b]$ for suitable integers $a, b \in \mathbb{Z}$;

• narrow if $\mathbf{C} = \bigcup_{a \leq b} \mathbf{C}_{[a,b)}$, where $\mathbf{C}_{[a,b)} = \mathbf{C}_{\geq a} \cap \mathbf{C}_{< b}$.

Proposition 1.25: Let (C, \mathfrak{t}) be a stable ∞ -category endowed with a t-structure. Then \mathfrak{t} is narrow if and only if it is bounded, if and only if it is limited.

M: Dipartimento di Matematica "Guido Castelnuovo", Università degli Studi di Roma "la Sapienza", P.le Aldo Moro 2 – 00185 – Roma. fiorenza@mat.uniroma1.it

II: DEPARTMENT OF MATHEMATICS AND STATISTICS MASARYK UNIVERSITY, FACULTY OF SCIENCES KOTLÁŘSKÁ 2, 611 37 BRNO, CZECH REPUBLIC loregianf@math.muni.cz

 Ω : Dipartimento di Matematica "Guido Castelnuovo", Università degli Studi di Roma "la Sapienza", P.LE Aldo Moro 2 – 00185 – Roma. ??!!??