高等数学测试题(上册期中)

一、填空题 (每题 4 分, 共计 24 分)

1. 计算
$$\lim_{x\to 0} \frac{e^{x}-1-x}{\cos x-1} =$$
______.

2. 函数
$$f(x) = \begin{cases} \frac{1-\cos\sqrt{x}}{ax}, & x > 0 \\ b, & x \le 0 \end{cases}$$
 在 x 连续,则 $ab =$ ______.

3. 已知
$$f'(3) = 2$$
,则 $\lim_{h \to 0} \frac{f(3-h)-f(3)}{2h} =$ ______.

4. 当
$$x = ____$$
时,函数 $y = x2^x$ 取得极小值.

5. 曲线
$$y = (2x - 1)e^{\frac{1}{x}}$$
 的斜渐近线方程为______.

6. 设曲线
$$y = ax^3 + bx^2 + cx + d$$
 经过 $(-2,44)$, $x = -2$ 为驻点, $(1,-10)$ 为拐点, 则 a , b , c , d 分别为_______.

二、选择题(每题4分,共计20分)

- 1. 设数列 $\{x_n\}$ 与 $\{y_n\}$ 满足 $\lim_{n\to\infty}x_ny_n=0$,则下列断言正确的是(
- (A) 若 $\{x_n\}$ 发散,则 $\{y_n\}$ 必发散
- (B) 若 $\{x_n\}$ 无界,则 $\{y_n\}$ 必有界
- (C) 若 $\{x_n\}$ 有界,则 $\{y_n\}$ 必为无穷小
- (D) 若 $\left\{\frac{1}{x_n}\right\}$ 无穷小,则 $\left\{y_n\right\}$ 必为无穷小

2. 设函数
$$f(x) = \begin{cases} x^{\frac{5}{3}} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 在 $x = 0$ 处 $f(x)$ ()

(A) 不连续

(B) 连续,但不可导

(C) 可导,但导数不连续

(D) 可导, 且导数连续

3. 设
$$f(x) = \frac{x^2 - x}{|x|(x^2 - 1)}$$
 ,则下列结论中错误的是(

- (A) x = -1, x = 0, x = 1 为 f(x) 的间断点
- (B) x = -1 为无穷间断点
- (C) x = 0 为可去间断点
- (D) x = 1 为第一类间断点

- 4. 曲线 $\begin{cases} x = t^2 + 7 \\ y = t^2 + 4t + 1 \end{cases}$ 上对应于 t = 1 处的曲率半径为()

 (A) $\frac{\sqrt{10}}{50}$ (B) $\frac{\sqrt{10}}{100}$ (C) $10\sqrt{10}$ (D) $5\sqrt{10}$ 5. 设 f(x) = f(-x),且在 $(0,\infty)$ 内二阶可导,又 f'(x) > 0, f''(x) < 0,则 f(x) 在 $(-\infty,0)$ 内的单调性和图形的凹凸性是()
 - (A) 单调增,凸

(B) 单调减, 凸

(C) 单调增, 凹

(D) 单调减, 凹

三、计算、证明题(共计56分)

- 1. 求下列极限: (每小题 5 分, 共 10 分)
- (1) $\lim_{n\to\infty} \sqrt[n]{n^3+3^n}$;

(2)
$$\lim_{x\to 0} \left(\frac{\ln(1+x)^{(1+x)}}{x^2} - \frac{1}{x} \right)$$
.

- 2. (10 分) 设 0 < k < 1 , f(x) = kx arctanx. 证明: f(x) 在 $(0, +\infty)$ 中有 唯一的零点,即存在唯一的 $x_0 \in (0, +\infty)$,使 $f(x_0) = 0$.
- 3. (12 分) 设 y = y(x) 是由 $\sin xy = \ln \frac{x+e}{y} + 1$ 确定的隐函数, 求 y'(0).
- 4. (12 分) 设函数 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 $f(a) = f(b) = 0 , 求证: 存在 \xi \in (a,b) , 使 f(\xi) + \xi f'(\xi) = 0.$
- 5. (12分) 求函数 $f(x) = \ln \frac{1+x}{1-x}$ 的麦克劳林公式(含佩亚诺型余项).