

Análisis de datos(I): Control de Calidad y Preprocesado

Sarai Varona Fernández

Unidad de Bioinformática

Unidades Comunes Científico Técnicas – SGAFI-ISCIII

17-28 Mayo 2021, 8ª Edición Programa Formación Continua, ISCIII

Dónde estamos

Ficheros de salida del secuenciador

454 .sff

Nanopore FAST5

PacBio RSII Bax.h5 fasta

Formato fastq

- Fácilmente se podría decir que es un fasta con calidades.
- En NGS fasta suele contener genomas y fastq fragmentos.

>SEQ ID

Secuencia

```
@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%++)(%%%).1***-+*''))**55CCF>>>>>CCCCCCC65
```

Calidades: sólo deben

ocupar un bit

Formato fastq

- Cada base corresponde con un valor de calidad.
- ¿Cómo se codifica?

- Conversión de probabilidad de error en score de calidad Phred.
- La calidad Phred se originó como aproximación algorítmica a la calidad en secuenciación Sanger.
- La **intensidad de la señal lumínica** es utilizada para calcular la probabilidad de error.

- Conversión de probabilidad de error en score de calidad Phred.
- La calidad phred en Sanger y en la versión 1.8+ de Illumina va de 0-40 en codificación decimal.

$$Q = -10 \log_{10} P$$

Phred Quality Score	Probability of Incorrect Base Call	Base Call Accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1,000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%

 Conversión de score de calidad phred en código ASCII para que ocupe un solo bit (un solo caracter)

ASC	II BASE=3	3 Illumina	, Io	n Torrent	, PacBio	and S	anger				
Q	Perror	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59;	37	0.00020	70 F
5	0.31623	38 €	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

Q	P_error	ASCII									
0	1.00000	64 @	11	0.07943	75 K	22	0.00631	86 V	33	0.00050	97 a
1	0.79433	65 A	12	0.06310	76 L	23	0.00501	87 W	34	0.00040	98 b
2	0.63096	66 B	13	0.05012	77 M	24	0.00398	88 X	35	0.00032	99 0
3	0.50119	67 C	14	0.03981	78 N	25	0.00316	89 Y	36	0.00025	100 d
4	0.39811	68 D	15	0.03162	79 0	26	0.00251	90 Z	37	0.00020	101 e
5	0.31623	69 E	16	0.02512	80 P	27	0.00200	91 [38	0.00016	102 f
6	0.25119	70 F	17	0.01995	81 Q	28	0.00158	92 \	39	0.00013	103 g
7	0.19953	71 G	18	0.01585	82 R	29	0.00126	93]	40	0.00010	104 h
8	0.15849	72 H	19	0.01259	83 S	30	0.00100	94 ^	41	0.00008	105 i
9	0.12589	73 I	20	0.01000	84 T	31	0.00079	95	42	0.00006	106 j
10	0.10000	74 J	21	0.00794	85 U	32	0.00063	96 `			

- Para Sanger y versiones actuales de Illumina se usa una codificación de Phred+33 en ASCIII. Es decir una calidad de 0 es el carácter que se corresponde con el decimal 33 que se trata del símbolo!
 - En versiones de Solexa y de Illumina 1.3 y 1.5 de hace unos años se utilizaba la codificación Phred+64. Lo que difería de lo acostumbrado por sanger y hacía falta una conversión para comparar las calidades.

• Ejemplo Phred

```
@HWI-ST731_6:1:1101:1322:1938#1@0/1
NTGACAAAGGGCTAATATCCAGAATCTACAAAGAACTTAAACAAATGTATAAGAATAAAAGTATAGTGCTAACAAT
+
#1:BDDADFDFDD@F>BGFIIIB@CFHIHICAGBC9CBCBGGIGCFF??>GGHFHIGGEGI<FECGDE=FHCHEG=
```

$$Q=-10*log10(0.001)=30$$
 ASCII 33+30 = 63

Formato fastq

Cabecera típica de Illumina

@HWUSI-EAS100R:6:73:941:1973#0/1

HWUSI-EAS100R	the unique instrument name
6	flowcell lane
73	tile number within the flowcell lane
941	'x'-coordinate of the cluster within the tile
1973	'y'-coordinate of the cluster within the tile
#0	index number for a multiplexed sample (0 for no indexing)
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only,

HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:2458:1027 1:N:0:ACAGTG AGAAAAAACCTTGGANGGAAAAAAATCAGACATTTTCTAGAGGTGGAAGGCAAACTGAACAAAGAAATAATTCACA DGGGEDHHHHGGGFE#CBACBCA<?HHHHBHHHHHHHHHHHHHEHEFEGGGGGG/GGDDDGHFHGFCHFHHEHEH8 @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3082:1029 1:N:0:ACAGTG GGTAATACAGACTGANATGATCAAAGGCATGCTGGAAACAAACCTATTAAAGATAAGCTTGGATCAAGCTTTCAT B:B:?BB/:=55177#55877<775EDD>E=B?BBBBGGGDDAG@G>GGGGGG@)EEEEBEG>GGGGGGAAA?<D @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3185:1033 1:N:0:ACAGTG CTGGGACATTGCTCNTGGCTGGGAGTCACCTGTCTGGGACATTGCTCAGGGCTGGGAGACACGTGTTGGAGGGA BC??A66;)74781<#7??;452.27'64(8,851DDG8GB?###################### @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3268:1033 1:N:0:ACAGTG ATTCAAATTAGAAGANAGTTGATCGTTCTTCATGATGCCCAAAAATTTCACTGAGAAAACCCTTTTTTAAGCCCA IIIIIIIIIIFFFFE#ABACFEEFFIIGIIIFIHE@BIIIIIIIIIHHIIFIIF>HHIHIFGDIIIIIIGFHIEGH HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3400:1035 1:N:0:ACAGTG rcctgctttaggagantcctcatgctctgacaggatgctctctatgtgagttgagctggtcttctcacttttatag IIIIIHHHIIIGGEGG#AACA@?=?BHHIIIIIHHHHIII<mark>N</mark>IHIHHHGIHIHGHGIGIHGEGGGGHG@EFGGCEFAB @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3962:1033 1:N:0:ACAGTG :CACCAACACAGTCTNCACCTTCTGTTGCTGGTGATAGATTTTTGCACCTTTCCATCCTCCAGGTTTCAAAATAGC HHFHHDHDHH>C?CA#EEEE>?A?>HHDGHEGBGBCEEEEGHHF8HEHEEHECH,=>>==EAEE>BEBBAEAACAE @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:4491:1028 1:N:0:ACAGTG AGAGAGAGAGAGAGANAGAGGACTCTGGAGATGCCGAAGCACAAGCCTGCAAGAGTCCCAGCAAAGAAAATAAAAA GADGGEGGEGBBB?B#@=@@72:64GGGFGB>GGGBDG<DBGB<DA??/?###############

Calidad en código ASCII (0-40):

- "!"#\$%" menor calidad
- "FGHI" máxima calidad

- Evaluación de la calidad de la secuenciación
 - Es el **primer paso** a realizar tras la secuenciación
 - Si realizamos una buena evaluación podremos saber cómo de fiables son nuestros resultados.
 - QC va a determinar el siguiente paso de filtrado.
 - Debemos ser consistentes con cualquier decisión de filtrado o los siguientes pasos del análisis podrían verse perjudicados.
 - Se debe realizar un control de calidad después de cada paso crítico del análisis.

- Para realizar el control de calidad se usa la información de calidad por base que hemos estado viendo hasta el momento
- Otros pasos del análisis también utilizará esta calidad por base como parámetro a tener en cuenta por los distintos algoritmos que se apliquen.

- Programas de Control de Calidad
- FastQC

• Fastp

fastp report

S	
Summary	
General	
fastp version:	0.20.1 (https://github.com/OpenGene/fastp)
sequencing:	paired end (149 cycles + 149 cycles)
mean length before filtering:	116bp, 116bp
mean length after filtering:	117bp, 117bp
duplication rate:	1.704150%
Insert size peak:	95
Detected read1 adapter:	${\tt CACCTAAGTTGGCGTATACGCGTAATATATCTGGGTTTTCTACAAAATCATACCAGTCCT}$
Detected read2 adapter:	CACCTAAGTTGGCGTATACGCGTAATATATCTGGGTTTTCTACAAAATCATACCAGTCCT
Before filtering	
total reads:	1.296756 M
total bases:	151.424921 M
Q20 bases:	143.112834 M (94.510754%)
Q30 bases:	137.905419 M (91.071812%)
GC content:	40.410939%
After filtering	
total reads:	854.250000 K
total bases:	100.537720 M
Q20 bases:	99.598139 M (99.065444%)
Q30 bases:	97.968091 M (97.444115%)
GC content:	39.665634%
Filtering result	
reads passed filters:	854.250000 K (65.875924%)
reads with low quality:	352.272000 K (27.165635%)
reads with too many N:	84 (0.006478%)
reads too short:	90.150000 K (6.951963%)

• Otros: NGSQCToolkit, fastx-toolkit, sfftools, etc...

- Artefactos en preparación de librería
 - Restos de adaptadores.
 - Alto porcentaje de duplicados.
 - Sesgo en zonas GC.
- Artefactos en secuenciación
 - Baja calidad en extremos (Phasing).
 - Dificultad en determinadas zonas:
 - Repeticiones
 - Homopolímeros
 - Alto contenido GC

- Ejemplos
- Buena secuenciación de Illumina

Per base sequence quality

Per sequence quality scores

• Contenido por base

Per base sequence content

• Porcentaje de QC

Per sequence GC content

• Porcentaje de duplicados

Sequence Duplication Levels

- Ejemplos
- Mala secuenciación de Illumina

OPer base sequence quality Per sequence quality scores Quality scores across all bases (Illumina 1.5 encoding) Quality score distribution over all sequences Average Quality per read 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 2 3 4 5 6 7 8 9 10 14 16 Mean Sequence Quality (Phred Score) Position in read (bp)

• Contenido por base

Per base sequence content

• Porcentaje de QC

Per sequence GC content

21/05/2021 23

• Porcentaje de duplicados

Sequence Duplication Levels

• Asimetría en MiSeq

Preprocesamiento: filtrado

- Quitar adaptadores residuales
 - Según librería utilizada
- Distintos parámetros de filtrado
 - Filtro por calidad
 - Media de calidad del read
 - Porcentaje de calidad
 - o Extremo del read
 - Ventana deslizante
 - Filtro por tamaño del read.
 - Tamaño fijo del read
 - Tamaño restante después de filtrado

Preprocesamiento: filtrado

• Ejemplo filtro por porcentaje de bases por debajo de Q

Preprocesamiento: filtrado

• Ejemplo de estadísticas finales que se obtienen

1. Preprocessing: Filter and Quality Control

Filtering Options:

- Single-End
 - o 70 % of the bases with more than 30 phred quality
 - o Trimming: trim bases from the rigth with less than 30 phred quality without allowing less than length 70.
- Paired-End
 - o 70 % of the bases with more than 30 phred quality
 - No trimming

Sample	3233-S.fastq	3233-T.fastq	3353-S.fastq	3353-T.fastq
Pre-Filter			20.00	
Sequence length	75-76	75-76	75-76	75-76
Total Sequences	101204363	128694353	134984248	127907012
%GC	44	45	46	46
Post-Filter				
Sequence length	70-76	70-76	70-76	70-76
Total Sequences	83027834	104199275	108632895	102735796
%GC	43	44	44	44

Objetivos de la práctica

- Visualización de ficheros fastq reales.
- Contabilización de número de reads.
- Pasar de fastq a fasta fácilmente.
- Ejecución de fastQC en muestras dummy
- Ejecución de Fastp de muestas dummy

¿Preguntas?