METODE WASPAS

(Weighted Aggregated Sum Product Assessment)

Saifur Rohman Cholil, S.Kom., M.Kom.

- ☐ Metode WASPAS merupakan metode pengambilan keputusan yang menggabungkan jumlah tertimbang dan produk tertimbang (WSM dan WPM) yang dikembangkan oleh Zavadskas pada tahun 2012 (Rudnik et al., 2021).
- ☐ Metode WASPAS merupakan kombinasi dari pendekatan Multi Criteria Decision Making (MCDM) yaitu Weighted Sum Model (WSM) dan Weighted Product Model (WPM) (Kizielewicz, 2021).

- ☐ Metode WASPAS merupakan metode yang dapat mengurangi kesalahan-kesalahan atau mengoptimalkan dalam penaksiran atau pemilihan nilai tertinggi dan terendah (Agrawal et al., 2020).
- Metode WASPAS sangat efisien dalam situasi pengambilan keputusan yang kompleks dan juga hasil model yang sangat akurat (Mohammadi et al., 2022).

1. Membuat matriks keputusan (X)

Setelah ada nilai kriteria (C), nilai bobot pada kriteria (W) dan alternatif (A). Berikutnya menyusun tabel matriks keputusan.

$$x = \begin{bmatrix} x_{11} & \dots & x_{12} & \dots & x_{1n} \\ x_{21} & \dots & x_{22} & \dots & x_{2n} \\ x_{m1} & \dots & x_{m2} & \dots & x_{mn} \end{bmatrix}$$
 Keterangan : m = alternatif n = kriteria

2. Melakukan normalisasi matriks (X) Kriteria Benefit:

$$\bar{x}_{ij} = \frac{x_{ij}}{Max_i \ x_{ij}}$$

Kriteria Cost:

$$\bar{x}_{ij} = \frac{min_i x_{ij}}{x_{ij}}$$

 x_{ij} = nilai performa dari alternatif i terhadap kriteria j Max_i = nilai terbesar alternatif

 Min_i = nilai terkecil alternatif

$$Q_i = 0.5 \sum_{j=1}^n x_{ij} w + 0.5 \prod_{j=1}^n (x_{ij})^{wj}$$

$$x_{ij}w$$
 = perkalian nilai x_{ij} dengan bobot (w)

$$(x_{ij})^{wj}$$
 = nilai x_{ij} dipangkat dengan bobot (w)

4. Melakukan perangkingan

Perangkingan dilakukan dengan melihat hasil dari perhitungan nilai Qi. Nilai yang terbesar ditetapkan menjadi alternatif terbaik (A_i).

Contoh:

- ☐ Sebuah perusahaan akan melakukan rekrutmen kerja terhadap 5 calon pekerja untuk posisi operator mesin.
- ☐ Posisi yang dibutuhkan hanya 2 orang.
- ☐ Kriteria :
 - ✓ Pengalaman kerja (disimbolkan C1) → Benefit
 - ✓ Pendidikan (C2) → Benefit
 - ✓ Usia (C3) → Benefit
 - ✓ Status perkawinan (C4) → Cost
 - ✓ Alamat (C5) → Cost

☐ Pembobotan (w)

Kriteria	Bobot
C1	0,3
C2	0,2
C3	0,2
C4	0,15
C5	0,15
Total	1

- □ Ada lima orang yang menjadi kandidat (alternatif) yaitu :
 - ✓ Doni Prakosa (disimbolkan A1)
 - ✓ Dion Pratama (A2)
 - ✓ Dina Ayu Palupi(A3)
 - ✓ Dini Ambarwati (A4)
 - ✓ Danu Nugraha (A5)

☐ Penilaian alternatif untuk setiap kriteria

Alternatif	kriteria				
	C1	C2	C3	C4	C5
A1	0,5	1	0,7	0,7	0,8
A2	0,8	0,7	1	0,5	1
A3	1	0,3	0,4	0,7	1
A4	0,2	1	0,5	0,9	0,7
A5	1	0,7	0,4	0,7	1

Jawab:

1. Membuat matriks keputusan (X):

	0,5	1	0,7	0,7	0,8
	0,8	0,7	1	0,5	1
X =	1	0,3	0,4	0,7	1
	0,2	1	0,5	0,9	0,7
	1	0,7	0,4	0,7 0,5 0,7 0,9 0,7	1

Alternatif	kriteria				
	C1	C2	C3	C4	C5
A1	0,5	1	0,7	0,7	0,8
A2	0,8	0,7	1	0,5	1
А3	1	0,3	0,4	0,7	1
A4	0,2	1	0,5	0,9	0,7
A5	1	0,7	0,4	0,7	1

2. Melakukan normalisasi matriks (\overline{X}) Max = $\{0,5;0,8;1;0,2;1\}$ Min = $\{0,5;0,8;1;0,2;1\}$

Min =
$$\{0,5; 0,8; 1; 0,2; 1\}$$

= 0,2
Kriteria C1:

= 0,2
Kriteria C1 :

$$\bar{x}_{11} = \left(\frac{0,5}{1}\right) = 0,5$$

 $\bar{x}_{31} = \left(\frac{1}{1}\right) = 1$

 $\bar{x}_{51} = \left(\frac{1}{1}\right) = 1$

 $\bar{x}_{41} = \left(\frac{0.2}{1}\right) = 0.2$

Kriteria C1:

$$\bar{x}_{11} = \left(\frac{0.5}{1}\right) = 0.5$$

 $\bar{x}_{21} = \left(\frac{0.8}{1}\right) = 0.8$

$$x_{ij}$$

= 1
Min = {1; 0,7; 0,3; 1; 0,7}
= 0,3
Kriteria C2:

$$\bar{x}_{12} = (\frac{1}{-}) = 1$$

Max = $\{1; 0,7; 0,3; 1; 0,7\}$

$$\frac{\text{iteria C2:}}{2} = \left(\frac{1}{1}\right) = 1$$

$$\frac{1}{2} = \left(\frac{1}{1}\right) = 1$$

$$\frac{1}{2} = \left(\frac{0.7}{1}\right) = 0.7$$

$$\begin{array}{l}
 _{12} = \left(\frac{1}{1}\right) = 1 \\
 _{22} = \left(\frac{0.7}{1}\right) = 0.7
 \end{array}$$

$$\bar{x}_{22} = \left(\frac{0.7}{1}\right) = 0.7$$
 $\bar{x}_{32} = \left(\frac{0.3}{1}\right) = 0.3$

$$_{32} = \left(\frac{0,3}{1}\right) = 0,3$$
 $_{42} = \left(\frac{1}{1}\right) = 1$

$$\bar{x}_{42} = \left(\frac{1}{1}\right)^{2} = 1$$
 $\bar{x}_{52} = \left(\frac{0.7}{1}\right)^{2} = 0.7$

$$=\frac{x_i}{Max}$$

Kriteria Cost:
$$\frac{Min_i x_i}{x_i}$$

$$= 1$$
Min = {0,7; 1; 0,4; 0,5; 0,4}
= 0,4

iteria C3:

Max = $\{0.7; 1; 0.4; 0.5; 0.4\}$

Kriteria C3:
$$\bar{x}_{13} = \left(\frac{0.7}{1}\right) = 0.7$$

Kriteria C3:

$$\bar{x}_{13} = \left(\frac{0.7}{1}\right) = 0.7$$

 $\bar{x}_{22} = \left(\frac{1}{1}\right) = 1$

$$\frac{11011203}{13} = \left(\frac{0.7}{1}\right) = 0.7$$

$$23 = \left(\frac{1}{1}\right) = 1$$

 $\bar{x}_{33} = \left(\frac{0.4}{1}\right) = 0.4$

 $\bar{x}_{43} = \left(\frac{0.5}{1}\right) = 0.5$

 $\bar{x}_{53} = \left(\frac{0.4}{1}\right) = 0.4$

$$\frac{1}{3} = \left(\frac{0.7}{1}\right) = 0.7$$

$$3 = \left(\frac{1}{1}\right) = 1$$

iteria C3:
$$3 = \left(\frac{0.7}{1}\right) = 0.7$$

$$3 = \left(\frac{1}{1}\right) = 1$$

$$= 0,4$$
iteria C3:
$$= (0,7)$$

$$= 0,7$$

$$=\frac{x}{Max}$$

$$in_i x_{ii}$$

$$\frac{u_i x_{ij}}{x_{ij}}$$

$$\frac{u_i x_{ij}}{x_{ii}}$$

$$= 0.9$$
Min = {0,7; 0,5; 0,7; 0,9; 0,7}
= 0,5

Kriteria C4:
$$\bar{x}_{14} = \left(\frac{0.5}{0.7}\right) = 0.714$$

$$\bar{x}_{24} = \left(\frac{0.5}{0.5}\right) = 1$$

 $\bar{x}_{34} = \left(\frac{0.5}{0.7}\right) = 0.714$

 $\bar{x}_{44} = \left(\frac{0.5}{0.9}\right) = 0.556$

 $\bar{x}_{54} = \left(\frac{0.5}{0.7}\right) = 0.714$

Max = $\{0.7; 0.5; 0.7; 0.9; 0.7\}$

Kriteria Benefit:
$$\bar{x}_{ij} = -\frac{1}{2}$$

= 1
Min = {0,8; 1; 1; 0,7; 1}
= 0,7
iteria C5:
= =
$$\left(\frac{0,7}{0}\right)$$
 = 0.875

Max = $\{0,8;1;1;0,7;1\}$

Kriteria C5:
$$\bar{x}_{15} = \left(\frac{0.7}{0.8}\right) = 0.875$$

$$a = \left(\frac{0.7}{0.8}\right) = 0.875$$

$$a = \left(\frac{0.7}{1}\right) = 0.7$$

$$f_{15} = \left(\frac{0.7}{0.8}\right) = 0.875$$

$$f_{25} = \left(\frac{0.7}{1}\right) = 0.7$$

$$f_{35} = \left(\frac{0.7}{1}\right) = 0.7$$

$$\bar{x}_{25} = \left(\frac{0.7}{1}\right) = 0.7$$

$$\bar{x}_{35} = \left(\frac{0.7}{1}\right) = 0.7$$

$$a_{5} = \left(\frac{0.7}{1}\right) = 0.7$$
 $a_{5} = \left(\frac{0.7}{0.7}\right) = 1$

$$\bar{x}_{35} = \left(\frac{1}{1}\right) = 0.7$$

$$\bar{x}_{45} = \left(\frac{0.7}{0.7}\right) = 1$$

$$\bar{x}_{55} = \left(\frac{0.7}{1}\right) = 0.7$$

0,5 1 0,7 0,7

$$=\frac{x}{Max}$$

$$\frac{x_{ij}}{x_{ij}}$$

Hasil normalisasi matriks:

	0,5	1	0,7	0,714	0,875
	0,8	0,7	1	1	0,7
$\overline{X} =$	1	0,3	0,4	0,714	0,7
	0,2	1	0,5	0,556	1
	1	0,7	0,4	0,714	0,7

$$Q_1 = (0,5) \sum ((0,5\times0,3) + (1\times0,2) + (0,7\times0,2) + (0,714\times0,15) + (0,875\times0,15))$$

$$= (0,5) \sum ((0,15) + (0,2) + (0,14) + (0,107) + (0,131))$$

$$= (0,5) (0,728)$$

$$= 0,364$$

=
$$(0.5) \prod (0.5)^{0.3} * (1)^{0.2} * (0.7)^{0.2} * (0.714)^{0.15} * (0.875)^{0.15}$$

= $(0.5) \prod (0.812) * (1) * (0.931) * (0.951) * (0.980)$
= $(0.5) (0.705)$

	$Q_i = 0.5 \sum_{j=1}^{\infty} x_{ij} w + 0.5 \prod_{j=1}^{\infty} (x_{ij})^{wj}$
	$x_{ij}w$ = perkalian nilai x_{ij} dengan bobot (w)
	$(x_{ij})^{wj}$ = nilai x_{ij} dipangkat dengan bobot (w)
	0,5 = nilai ketetapan rumus
	Qi = nilai dari Q ke i
I	$\begin{bmatrix} 0.5 & 1 & 0.7 & 0.714 & 0.875 \end{bmatrix}$

Kriteria	Bobot
C1	0,3
C2	0,2
C3	0,2
C4	0,15
C5	0,15
	1, 1, 1, 1, 1

$$Q_2 = (0.5) \sum ((0.8 \times 0.3) + (0.7 \times 0.2) + (1 \times 0.2) + (1 \times 0.15) + (0.7 \times 0.15))$$

$$= (0.5) \sum ((0.24) + (0.14) + (0.2) + (0.15) + (0.105))$$

$$= (0.5) (0.835)$$

$$= 0.418$$

$$= (0.5) \prod (0.8)^{0.3} * (0.7)^{0.2} * (1)^{0.2} * (1)^{0.15} * (0.7)^{0.15}$$

$$= (0.5) \prod (0.935) * (0.931) * (1) * (1) * (0.948)$$

$$= (0.5) (0.825)$$

$$= (0,5) (0,825)$$

 $= 0,413$

Kriteria	Bobot
C1	0,3
C2	0,2
C3	0,2
C4	0,15
C5	0,15
	1,11,11

$$Q_3 = (0,5) \sum ((1x0,3)+(0,3x0,2)+(0,4x0,2)+(0,714x0,15)+(0,7x0,15))$$

$$= (0,5) \sum ((0,3)+(0,06)+(0,08)+(0,107)+(0,105))$$

$$= (0,5) (0,652)$$

$$= 0,326$$

$$= (0,5) \prod (1)^{0,3}*(0,3)^{0,2}*(0,4)^{0,2}*(0,714)^{0,15}*(0,7)^{0,15}$$

$$= (0,5) \prod (1)*(0,786)*(0,833)*(0,951)*(0,948)$$

$$= (0,5) (0,590)$$

= 0.295

Kriteria	Bobot
C1	0,3
C2	0,2
C3	0,2
C4	0,15
C5	0,15

$$Q_4 = (0,5) \sum ((0,2x0,3) + (1x0,2) + (0,5x0,2) + (0,556x0,15) + (1x0,15))$$

$$= (0,5) \sum ((0,060) + (0,2) + (0,1) + (0,083) + (0,15))$$

$$= (0,5) (0,593)$$

$$= 0,297$$

$$= (0,5) \prod (0,2)^{0,3} * (1)^{0,2} * (0,5)^{0,2} * (0,556)^{0,15} * (1)^{0,15}$$

$$= (0,5) \prod (0,617) * (1) * (0,871) * (0,916) * (1)$$

$$= (0,5) (0,492)$$

$$= 0,246$$

$$= 0,297 + 0,246$$

Kriteria	Bobot
C1	0,3
C2	0,2
С3	0,2
C4	0,15
C5	0,15
	7, 7, 7, 7, 7

$$Q_5 = (0,5) \sum ((1x0,3)+(0,7x0,2)+(0,4x0,2)+(0,714x0,15)+(0,7x0,15))$$

$$= (0,5) \sum ((0,3)+(0,14)+(0,08)+(0,107)+(0,105))$$

$$= (0,5) (0,732)$$

$$= 0,366$$

$$= (0,5) \prod (1)^{0,3}*(0,7)^{0,2}*(0,4)^{0,2}*(0,714)^{0,15}*(0,7)^{0,15}$$

$$= (0,5) \prod (1)*(0,931)*(0,833)*(0,951)*(0,948)$$

$$= (0,5) (0,699)$$

Kriteria	Bobot
C1	0,3
C2	0,2
С3	0,2
C4	0,15
C5	0,15
	7, 1, 1, 1, 1

4. Melakukan Perangkingan

$$Q_1 = 0,717$$

$$Q_2 = 0.830$$

$$Q_3 = 0.621$$

$$Q_4 = 0,543$$

 $Q_5 = 0,715$

- □ Nilai terbesar ada pada A2 = 0,830 dan A1 = 0,717 sehingga Dion Pratama dan Doni Prakosa adalah alternatif yang terpilih sebagai alternatif terbaik.
- □ Dengan kata lain, Dion Pratama dan Doni Prakosa terpilih untuk posisi operator mesin.

Ref	erence:	
	Ordered fuzzy WASPAS method for selection of improvement projects-Katarzyna Rudnik, Grzegorz Bocewicz, Aneta Kucinska-Landw ojtowicz , Izabela D. CzabakGorska (2021)	
	Comparison of Fuzzy TOPSIS, Fuzzy VIKOR, Fuzzy WASPAS and Fuzzy MOORA methods in the housing selection problem-Bartłomiej Kizielewicz, Aleksandra Baczkiewicz (2021)	Za Frankow Za (2)
	Evaluating solutions to overcome humanitarian supply chain management barriers: A hybrid fuzzy SWARA – Fuzzy WASPAS approach-Sachin Agarwal, Ravi Kant, Ravi Shankar (2020)	a γ P=2 b θ a γ

Ref	erence:	
	Compilation and prioritizing human-wildlife conflict management strategies using the WASPAS method in Iran-Forogh Mohammadi, Hossein Mahmoudi, Yasaman Ranjbaran, Faraham Ahmadzadeh (2022)	a W P=2
	Strategic supplier selection for renewable energy supply chain under green capabilities (fuzzy BWM-WASPAS-COPRAS approach)-Behzad Masoomi, Iman Ghasemian Sahebi, Masood Fathi, Figen Yıldırım, Shahryar Ghorbani (2022)	
	Human risk assessment of Panchet Dam in India using TOPSIS and WASPAS Multi-Criteria Decision-Making (MCDM) methods)-Sumanta Bid, Giyasuddin Siddique (2019)	