Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	0

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 2 per n=1, 1 per n=2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 1
- $\mathbf{B}) \propto$
- C) Nessuna delle altre risposte
- **D**) 0
- **E**) 2

Esercizio 2. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **D)** Nessuna delle altre risposte.

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 4.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- B) la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 6. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\sum_{i=1}^n z^i$
- **B**) $\frac{z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- D) non esiste
- **E**) $\frac{1}{(z-1)^2}$

Esercizio 7. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 1
- **B**) 3
- **C**) 0

- D) nessuna delle altre risposte
- **E**) $\frac{1}{2}$

Esercizio 8. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) lineare e invariante
- C) lineare e non invariante
- **D)** non lineare e invariante

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	1

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\sum_{i=1}^n z^i$
- **B**) $\frac{z}{(z-1)}$
- C) non esiste
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- **E**) $\frac{z^2+z}{(z-1)^3}$

Esercizio 2. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) lineare e invariante
- B) non lineare e non invariante
- C) non lineare e invariante
- D) lineare e non invariante

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 4.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 5. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f=\pm 2/T$ nulle.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 6. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{7}{24}$
- B) $\frac{1}{8}$
- C) nessuna delle altre risposte
- **D**) $\frac{1}{6}$
- **E**) 0

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1/2 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- **B**) 0
- **C**) 2
- **D**) $\frac{1}{2}$
- E) ∞

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau)$
- B) Nessuna delle altre relazioni è corretta
- C) $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$
- **D)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	2

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) non esiste
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 0
- B) $\frac{1}{2}$
- C) nessuna delle altre risposte
- **D**) 3
- **E**) 1

Esercizio 3. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\,1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- B) $\frac{1}{2}$

- **C**) 0
- **D)** Nessuna delle altre risposte
- **E**) 2

Esercizio 4. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- $\textbf{A)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 5. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$
- C) $R_x(\tau) = R_a(\tau)$
- **D)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$

Esercizio 7. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) lineare e invariante
- **B)** non lineare e invariante
- C) non lineare e non invariante

D) lineare e non invariante

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	3

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- $\mathbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 2. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 3. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) $\frac{z^2+4z}{(z-1)^3}$
- B) $\frac{z}{(z-1)}$
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- **D)** non esiste

E)
$$\frac{3z^2-z^3}{(z-1)^3}$$

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- $\mathbf{B}) \propto$
- **C**) 0
- **D**) $\frac{1}{2}$
- **E**) 2

Esercizio 5. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e non invariante
- B) non lineare e invariante
- C) lineare e non invariante
- **D)** lineare e invariante

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = \mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- **E)** $\mathcal{E}(x) = 2\mathcal{E}(a)$

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- B) Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 8. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. $\mathbf{x}[0]$ vale:

- **A**) $\frac{1}{6}$
- **B**) 0
- C) nessuna delle altre risposte
- D) $\frac{1}{2}$
- **E**) $\frac{1}{3}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	4

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 0
- B) $\frac{7}{24}$
- C) $\frac{1}{8}$
- D) nessuna delle altre risposte
- E) $\frac{1}{6}$

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 0
- B) Nessuna delle altre risposte
- $\mathbf{C}) \infty$
- **D**) 2
- **E**) 1

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** Nessuna delle altre risposte.

Esercizio 4.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- B) la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) non esiste
- **B**) $\frac{z}{(z-1)^3}$
- C) $\sum_{i=1}^n z^i$
- **D**) $\frac{1}{(z-1)^2}$
- **E)** $\frac{z}{(z-1)}$

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- E) Nessuna delle altre relazioni è corretta

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

2

A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

- B) Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 8. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) lineare e non invariante
- C) lineare e invariante
- D) non lineare e invariante

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	5

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 2
- B) $\frac{1}{2}$
- C) Nessuna delle altre risposte
- $\mathbf{D}) \propto$
- **E**) 0

Esercizio 2. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- **B)** $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $R_x(\tau) = R_a(\tau)$
- E) $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$

Esercizio 3.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

1

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 4. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\sum_{i=1}^n z^i$
- **B**) $\frac{z^2+z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- D) non esiste
- E) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 5. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{6}$
- **B**) $\frac{1}{8}$
- C) nessuna delle altre risposte
- **D**) 0
- **E**) $\frac{7}{24}$

Esercizio 6. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 7. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) lineare e non invariante
- B) non lineare e invariante
- C) non lineare e non invariante
- **D)** lineare e invariante

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **B)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	6

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 2. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) non lineare e invariante
- C) lineare e non invariante
- **D)** non lineare e non invariante

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

Esercizio 4. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

A) $\sum_{i=1}^n z^i$

B)
$$\frac{3z^2-z^3}{(z-1)^3}$$

C)
$$\frac{z^2+z}{(z-1)^3}$$

$$\mathbf{D)} \ \ \frac{z}{(z-1)}$$

E) non esiste

Esercizio 5. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 2
- **B**) 0
- C) Nessuna delle altre risposte
- $\mathbf{D}) \propto$
- **E**) 1

Esercizio 6. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{6}$
- B) $\frac{1}{2}$
- C) nessuna delle altre risposte
- **D**) 0
- **E**) $\frac{1}{3}$

Esercizio 7. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- **B)** $R_x(\tau) = R_a(\tau)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$

Esercizio 8. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- B) Lo spettro di x(t) è a righe, con riga in f=0 non nulla.
- C) Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	7

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 2. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) non lineare e non invariante
- C) lineare e non invariante
- **D)** non lineare e invariante

Esercizio 3. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- **B)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $R_x(\tau) = R_a(\tau)$
- **E)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$

Esercizio 4. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{2}$
- B) nessuna delle altre risposte
- **C**) 1
- **D**) 0
- **E**) 3

Esercizio 5. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 6. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos \left[\frac{2\pi}{T} t + \phi(t) \right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 1
- **B**) 0
- $\mathbf{C}) \infty$
- **D)** Nessuna delle altre risposte

E) 2

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- **A)** $\frac{z}{(z-1)^3}$
- $\mathbf{B)} \ \frac{z}{(z-1)}$
- C) $\sum_{i=1}^n z^i$
- **D)** $\frac{1}{(z-1)^2}$
- E) non esiste

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 2
- B) Nessuna delle altre risposte
- **C**) 1
- **D**) 0
- $\mathbf{E}) \infty$

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 3
- B) nessuna delle altre risposte
- C) $\frac{1}{2}$
- **D**) 1
- **E**) 0

Esercizio 3. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 4. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **B**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- **D)** non esiste
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- C) $R_x(\tau) = R_a(\tau)\cos(2\pi f_0\tau)$
- **D)** $R_x(\tau) = R_a(\tau)$
- **E)** $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0 \tau)$

Esercizio 7. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) non lineare e invariante
- C) lineare e non invariante
- **D)** non lineare e non invariante

Esercizio 8. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f=\pm 2/T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	9

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- C) $R_x(\tau) = R_a(\tau)$
- **D)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- **B**) 0
- **C**) 2
- $\mathbf{D}) \propto$
- **E**) 1

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- B) Lo spettro di x(t) è a righe, con le righe in $f=\pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 4.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 5. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) lineare e non invariante
- C) non lineare e invariante
- **D)** lineare e invariante

Esercizio 6. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{7}{12}$
- B) nessuna delle altre risposte
- C) $\frac{1}{4}$
- **D**) 0
- E) $\frac{1}{3}$

Esercizio 7. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- $\mathbf{A)} \ \ \frac{z}{(z-1)}$
- **B**) $\frac{z^2+4z}{(z-1)^3}$
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- E) non esiste

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	10

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) lineare e non invariante
- B) non lineare e non invariante
- C) lineare e invariante
- **D)** non lineare e invariante

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- **B**) 2
- **C**) 0
- D) ∞
- **E**) 1

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) $\frac{1}{8}$
- **B**) 0
- C) $\frac{1}{6}$
- **D**) $\frac{7}{24}$

Esercizio 4. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 5. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ia(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- E) Nessuna delle altre relazioni è corretta

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) non esiste
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{z}{(z-1)}$
- **D)** $\frac{3z^2-z^3}{(z-1)^3}$
- **E**) $\frac{z^2+4z}{(z-1)^3}$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	11

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- $\mathbf{D)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$

Esercizio 2. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 4. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** Nessuna delle altre risposte.

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\frac{-z^3+2z^2+z}{(z-1)^3}$
- **B**) $\frac{z}{(z-1)}$
- C) non esiste
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 6. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\,1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- **B**) 0
- **C**) 2
- D) Nessuna delle altre risposte
- **E**) $\frac{1}{2}$

Esercizio 7. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) non lineare e invariante
- B) lineare e non invariante
- C) lineare e invariante
- D) non lineare e non invariante

Esercizio 8. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. $\mathbf{x}[0]$ vale:

- **A**) $\frac{1}{3}$
- **B**) $\frac{1}{2}$
- **C**) 0
- **D)** nessuna delle altre risposte
- **E**) $\frac{1}{6}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	12

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 0
- **B**) ∞
- C) $\frac{1}{2}$
- D) Nessuna delle altre risposte
- **E**) 2

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- **B**) 3
- C) $\frac{1}{2}$
- **D**) 1
- **E**) 0

Esercizio 3. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

1

di un filtro causale, è vera la seguente affermazione:

A) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) non esiste
- B) $\frac{z}{(z-1)}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{D)} \ \sum_{i=1}^n z^i$
- **E)** $\frac{z^2+z}{(z-1)^3}$

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** Nessuna delle altre risposte.

Esercizio 7. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos\left(2\pi f_0 t\right)$$

- A) non lineare e invariante
- B) lineare e invariante
- C) non lineare e non invariante
- **D)** lineare e non invariante

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = \mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- E) Nessuna delle altre relazioni è corretta

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	13

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **D)** Nessuna delle altre risposte.

Esercizio 2. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau)$
- **B)** $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$
- C) $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- D) Nessuna delle altre relazioni è corretta
- **E)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

1

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A)** 0
- B) nessuna delle altre risposte

- C) $\frac{1}{4}$
- **D**) $\frac{1}{3}$
- **E**) $\frac{7}{12}$

Esercizio 4. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **B**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- C) non esiste
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 5. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) lineare e non invariante
- B) non lineare e non invariante
- C) non lineare e invariante
- **D)** lineare e invariante

Esercizio 6. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- B) la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 0
- $\mathbf{B}) \infty$
- C) Nessuna delle altre risposte
- **D**) 2
- **E**) 1

Esercizio 8. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe, con riga in f=0 non nulla.

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	14

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 2. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\frac{z}{(z-1)^3}$
- B) $\frac{z}{(z-1)}$
- C) $\sum_{i=1}^n z^i$
- D) non esiste
- **E**) $\frac{1}{(z-1)^2}$

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 1
- **B**) 3
- C) nessuna delle altre risposte

- **D**) $\frac{1}{2}$
- **E**) 0

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\,1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- B) Nessuna delle altre risposte
- C) $\frac{1}{2}$
- **D**) 0
- **E**) 2

Esercizio 5. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) lineare e non invariante
- B) non lineare e invariante
- C) non lineare e non invariante
- **D)** lineare e invariante

Esercizio 6.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **B)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 7. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = \mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	15

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- B) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 2
- **B**) 1
- C) Nessuna delle altre risposte
- **D**) 0
- \mathbf{E}) ∞

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

1

A)
$$\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$$

- B) Nessuna delle altre risposte.
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

Esercizio 4. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) lineare e invariante
- B) lineare e non invariante
- C) non lineare e invariante
- **D)** non lineare e non invariante

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = \mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 6. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 0
- B) nessuna delle altre risposte
- C) $\frac{1}{4}$
- **D**) $\frac{1}{3}$
- **E**) $\frac{7}{12}$

Esercizio 7. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) non esiste
- **B**) $\sum_{i=1}^{n} z^{i}$
- C) $\frac{z}{(z-1)}$
- **D**) $\frac{1}{(z-1)^2}$
- **E**) $\frac{z}{(z-1)^3}$

Esercizio 8. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f=0 non nulla.
- B) Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/T$ non nulle.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	16

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) non lineare e invariante
- B) lineare e non invariante
- C) lineare e invariante
- D) non lineare e non invariante

Esercizio 2. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

1

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) Nessuna delle altre risposte.

D)
$$\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$$

Esercizio 4. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. $\mathbf{x}[0]$ vale:

- **A**) $\frac{1}{3}$
- **B**) 0
- C) $\frac{1}{2}$
- D) nessuna delle altre risposte
- **E**) $\frac{1}{6}$

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- $\mathbf{B)} \ \ \frac{z}{(z-1)}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D)** non esiste
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 6. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- $\mathbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1/2 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) $\frac{1}{2}$
- $\mathbf{B}) \propto$
- **C**) 2
- **D)** Nessuna delle altre risposte
- **E**) 0

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta
- C) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = 4\mathcal{E}(a)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	17

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 1
- $\mathbf{B}) \propto$
- \mathbf{C}) 0
- **D)** Nessuna delle altre risposte
- **E**) 2

Esercizio 2. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 3. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

1

- $\mathbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 4. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** Nessuna delle altre risposte.

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau)$
- **B)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- C) $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- **D)** $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- E) Nessuna delle altre relazioni è corretta

Esercizio 6. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{2}$
- B) $\frac{1}{3}$
- C) $\frac{1}{6}$
- **D)** nessuna delle altre risposte
- **E**) 0

Esercizio 7. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\frac{z}{(z-1)}$
- **B**) $\frac{1}{(z-1)^2}$

- C) non esiste
- $\mathbf{D}) \sum_{i=1}^{n} z^{i}$
- **E**) $\frac{z}{(z-1)^3}$

Esercizio 8. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- ${\bf A}$) non lineare e non invariante
- B) lineare e invariante
- C) non lineare e invariante
- **D)** lineare e non invariante

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	18

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{3}$
- **B**) $\frac{1}{4}$
- **C**) 0
- D) nessuna delle altre risposte
- **E**) $\frac{7}{12}$

Esercizio 2. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) non lineare e invariante
- C) lineare e invariante
- **D)** lineare e non invariante

Esercizio 3. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- B) Nessuna delle altre relazioni è corretta
- C) $R_x(\tau) = R_a(\tau)$
- **D)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$

E) $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 1
- $\mathbf{B}) \infty$
- **C**) 2
- D) Nessuna delle altre risposte
- **E**) 0

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\frac{-z^3+2z^2+z}{(z-1)^3}$
- B) non esiste
- C) $\frac{z^2+4z}{(z-1)^3}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 6.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- B) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	19

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 0
- B) Nessuna delle altre risposte
- **C**) 2
- $\mathbf{D}) \infty$
- **E**) 1

Esercizio 2. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 3. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

1

A) $\sum_{i=1}^{n} (i-1)z^{i}$

B)
$$\frac{-z^3+2z^2+z}{(z-1)^3}$$

- C) $\frac{z^2+4z}{(z-1)^3}$
- **D)** non esiste
- E) $\frac{z}{(z-1)}$

Esercizio 4. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- $\textbf{A)} \hspace{0.2cm} h[n] \hspace{0.2cm} \text{vale} \hspace{0.2cm} \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \hspace{0.2cm} \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- **B)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 5. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e non invariante
- B) non lineare e invariante
- C) lineare e non invariante
- **D)** lineare e invariante

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau)$
- **B)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- C) $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- **D)** $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- E) Nessuna delle altre relazioni è corretta

Esercizio 7. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- **B**) $\frac{7}{12}$
- **C**) 0
- **D**) $\frac{1}{3}$

E) $\frac{1}{4}$

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	20

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- **B)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 2. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) lineare e non invariante
- C) non lineare e invariante
- **D)** lineare e invariante

Esercizio 3. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1/2 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 2
- $\mathbf{B}) \infty$
- C) Nessuna delle altre risposte
- **D**) 0

E) $\frac{1}{2}$

Esercizio 4. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **B)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- **A)** $\frac{z}{(z-1)^3}$
- B) non esiste
- C) $\frac{z}{(z-1)}$
- $\mathbf{D)} \ \sum_{i=1}^n z^i$
- **E**) $\frac{1}{(z-1)^2}$

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- B) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = \mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- **E)** $\mathcal{E}(x) = 4\mathcal{E}(a)$

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 8. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. $\mathbf{x}[0]$ vale:

- **A)** $\frac{7}{12}$
- B) nessuna delle altre risposte
- C) $\frac{1}{3}$
- D) $\frac{1}{4}$
- **E**) 0

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	21

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) non lineare e invariante
- B) lineare e non invariante
- C) lineare e invariante
- D) non lineare e non invariante

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- **B**) 1
- C) Nessuna delle altre risposte
- **D**) 0
- **E**) 2

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{8}$
- **B**) $\frac{7}{24}$
- C) nessuna delle altre risposte
- **D**) $\frac{1}{6}$

Esercizio 4. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta
- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = \mathcal{E}(a)$

Esercizio 5. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** Nessuna delle altre risposte.

Esercizio 7. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\frac{-z^3+2z^2+z}{(z-1)^3}$
- B) $\frac{z}{(z-1)}$
- **C**) $\sum_{i=1}^{n} (i-1)z^{i}$
- **D)** non esiste
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 8. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	22

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e invariante
- B) non lineare e non invariante
- C) lineare e invariante
- **D)** lineare e non invariante

Esercizio 2. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{z^2+z}{(z-1)^3}$
- B) non esiste
- C) $\frac{z}{(z-1)}$
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- E) $\sum_{i=1}^n z^i$

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

1

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau)\cos(2\pi f_0\tau)$
- **B)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = R_a(\tau)$

Esercizio 6. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- $\mathbf{B}) \infty$
- **C**) 1
- **D**) 2
- **E**) 0

Esercizio 8. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. $\mathbf{x}[0]$ vale:

- A) nessuna delle altre risposte
- **B**) $\frac{7}{12}$
- C) $\frac{1}{4}$
- **D**) $\frac{1}{3}$
- **E)** 0

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	23

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 0
- B) $\frac{1}{2}$
- C) Nessuna delle altre risposte
- **D**) 2
- \mathbf{E}) ∞

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

1

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 0
- B) nessuna delle altre risposte
- C) $\frac{7}{12}$
- **D**) $\frac{1}{4}$
- **E**) $\frac{1}{3}$

Esercizio 4. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A**) $\frac{z^2+4z}{(z-1)^3}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) non esiste
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- E) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 5. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** Nessuna delle altre risposte.

Esercizio 7. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- B) Nessuna delle altre relazioni è corretta

- C) $R_x(\tau) = R_a(\tau)$
- **D)** $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$

Esercizio 8. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e invariante
- B) lineare e non invariante
- C) lineare e invariante
- **D)** non lineare e non invariante

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	24

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{3}$
- **B**) $\frac{1}{4}$
- **C**) 0
- D) nessuna delle altre risposte
- **E**) $\frac{7}{12}$

Esercizio 2. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 3. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- B) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$

- C) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 4\mathcal{E}(a)$

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 5. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) lineare e non invariante
- C) non lineare e non invariante
- **D)** non lineare e invariante

Esercizio 6. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- $\textbf{A)} \hspace{0.2cm} h[n] \hspace{0.2cm} \text{vale} \hspace{0.2cm} \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \hspace{0.2cm} \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 0
- **B**) 2
- \mathbf{C}) ∞
- **D)** Nessuna delle altre risposte

E) 1

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) non esiste
- **B**) $\frac{z^2+4z}{(z-1)^3}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{D)} \ \frac{z}{(z-1)}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	25

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 2. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- C) $R_x(\tau) = R_a(\tau)$
- **D)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$

Esercizio 3. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\frac{z^2+4z}{(z-1)^3}$
- B) non esiste
- C) $\frac{z}{(z-1)}$

- **D**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 1
- B) Nessuna delle altre risposte
- C) ∞
- **D**) 2
- **E**) 0

Esercizio 5. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- B) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 7. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) non lineare e non invariante
- B) non lineare e invariante
- C) lineare e non invariante
- **D)** lineare e invariante

Esercizio 8. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. $\mathbf{x}[0]$ vale:

- **A**) 1
- **B**) 3
- **C**) 0
- **D)** nessuna delle altre risposte
- E) $\frac{1}{2}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	26

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- C) $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- **D)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- E) $R_x(\tau) = R_a(\tau)$

Esercizio 2. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

1

A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- **B**) 1
- **C**) 0
- $\mathbf{D}) \propto$
- **E**) 2

Esercizio 5. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A)** 0
- B) $\frac{1}{3}$
- C) $\frac{1}{2}$
- **D)** nessuna delle altre risposte
- E) $\frac{1}{6}$

Esercizio 6. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) lineare e invariante
- C) non lineare e invariante
- **D)** lineare e non invariante

Esercizio 7. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

 ${f D}$) Nessuna delle altre risposte.

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- $\mathbf{B)} \ \frac{z}{(z-1)}$
- C) non esiste
- **D)** $\frac{3z^2-z^3}{(z-1)^3}$
- **E**) $\frac{z^2+4z}{(z-1)^3}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	27

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 3
- B) $\frac{1}{2}$
- C) nessuna delle altre risposte
- **D**) 0
- **E**) 1

Esercizio 3. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{z}{(z-1)}$
- B) $\frac{3z^2-z^3}{(z-1)^3}$
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- **D)** non esiste

E)
$$\frac{z^2+4z}{(z-1)^3}$$

Esercizio 4. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- C) $\mathcal{E}(x) = \mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- E) $\mathcal{E}(x) = 4\mathcal{E}(a)$

Esercizio 5. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1/2 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 0
- $\mathbf{B}) \propto$
- **C**) 2
- **D**) $\frac{1}{2}$
- E) Nessuna delle altre risposte

Esercizio 6. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) lineare e invariante
- C) non lineare e invariante
- D) lineare e non invariante

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	28

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 2. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\frac{3z^2-z^3}{(z-1)^3}$
- **B**) $\frac{z}{(z-1)}$
- C) non esiste
- $\mathbf{D)} \ \sum_{i=1}^n z^i$
- **E**) $\frac{z^2+z}{(z-1)^3}$

Esercizio 3. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e non invariante
- **B)** non lineare e invariante
- C) lineare e invariante
- **D)** lineare e non invariante

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- **B**) 1
- \mathbf{C}) 0
- **D**) 2
- E) Nessuna delle altre risposte

Esercizio 5. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- $\mathbf{D)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 7. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{3}$
- B) nessuna delle altre risposte
- C) $\frac{7}{12}$
- **D**) $\frac{1}{4}$
- **E**) 0

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = 2\mathcal{E}(a)$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	29

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) lineare e invariante
- C) non lineare e invariante
- **D)** lineare e non invariante

Esercizio 2. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

1

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

D)
$$\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$$

Esercizio 4. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- B) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 5. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- **B**) 1
- **C**) 0
- $\mathbf{D}) \infty$
- **E**) 2

Esercizio 6. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 0
- B) $\frac{1}{2}$
- C) $\frac{1}{6}$
- D) nessuna delle altre risposte
- E) $\frac{1}{3}$

Esercizio 7. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) la risposta all'impulso h[n] non è definita

 $\mathbf{D)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\frac{-z^3+2z^2+z}{(z-1)^3}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{z}{(z-1)}$
- D) non esiste
- **E**) $\frac{z^2+4z}{(z-1)^3}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	30

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e invariante
- B) lineare e non invariante
- C) non lineare e non invariante
- **D)** lineare e invariante

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- **B**) 3
- C) $\frac{1}{2}$
- **D**) 0
- **E**) 1

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

1

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- C) Nessuna delle altre risposte.

D)
$$\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$$

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 2
- **B**) 1
- \mathbf{C}) ∞
- **D**) 0
- E) Nessuna delle altre risposte

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) non esiste
- **B**) $\frac{3z^2-z^3}{(z-1)^3}$
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- $\mathbf{D)} \ \frac{z}{(z-1)}$
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $R_x(\tau) = R_a(\tau)$
- C) $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- **D)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

2

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 8. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- $\textbf{A)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$
- **B)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** la risposta all'impulso h[n] non è definita

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	31

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) non esiste
- **B**) $\frac{z^2+4z}{(z-1)^3}$
- C) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- $\mathbf{E)} \ \frac{z}{(z-1)}$

Esercizio 2. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) la risposta all'impulso h[n] non è definita
- B) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **B)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.

D) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 4. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- **B**) 0
- C) $\frac{7}{12}$
- **D**) $\frac{1}{3}$
- E) $\frac{1}{4}$

Esercizio 5. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 6. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 0
- B) Nessuna delle altre risposte
- \mathbf{C}) ∞
- **D**) 2
- **E**) 1

Esercizio 7. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos\left(2\pi f_0 t\right)$$

- A) non lineare e non invariante
- B) lineare e non invariante
- C) non lineare e invariante
- **D)** lineare e invariante

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta
- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	32

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 1
- **B**) 2
- \mathbf{C}) ∞
- **D)** Nessuna delle altre risposte
- **E**) 0

Esercizio 2. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) non esiste
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- **E)** $\frac{z}{(z-1)}$

Esercizio 3.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **B)** la risposta all'impulso h[n] non è definita

- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 5. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A)** 0
- B) $\frac{1}{6}$
- C) $\frac{7}{24}$
- **D**) $\frac{1}{8}$
- E) nessuna delle altre risposte

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 7. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) lineare e invariante
- **B)** non lineare e invariante
- C) non lineare e non invariante
- **D)** lineare e non invariante

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- C) $R_x(\tau) = R_a(\tau)$
- **D)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	33

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **B)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 2. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- $\mathbf{B)} \ \frac{z}{(z-1)}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D)** non esiste
- E) $\frac{-z^3+2z^2+z}{(z-1)^3}$

Esercizio 3. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- B) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$

E)
$$\mathcal{E}(x) = 0.5\mathcal{E}(a)$$

Esercizio 4. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e non invariante
- B) lineare e non invariante
- C) lineare e invariante
- **D)** non lineare e invariante

Esercizio 5. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 0
- **B**) 2
- C) $\frac{1}{2}$
- D) Nessuna delle altre risposte
- $\mathbf{E}) \infty$

Esercizio 6. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 7. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 8. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. $\mathbf{x}[0]$ vale:

- **A**) 3
- **B**) 0
- **C**) 1
- D) $\frac{1}{2}$
- E) nessuna delle altre risposte

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	34

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) $\frac{1}{4}$
- **B**) $\frac{7}{12}$
- C) nessuna delle altre risposte
- **D**) 0
- **E**) $\frac{1}{3}$

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- B) Nessuna delle altre risposte
- **C**) 2
- **D**) 0
- **E**) $\frac{1}{2}$

Esercizio 3. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) non lineare e invariante
- B) lineare e invariante
- C) lineare e non invariante

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + \mathrm{j}a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = 4\mathcal{E}(a)$

Esercizio 6. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 7. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

2

- **A)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) $\frac{z^2+4z}{(z-1)^3}$
- $\mathbf{B)} \ \frac{z}{(z-1)}$
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- **D)** non esiste
- **E**) $\frac{3z^2-z^3}{(z-1)^3}$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	35

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- $\mathbf{B}) \propto$
- **C**) 0
- **D**) 1
- **E**) 2

Esercizio 2. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) lineare e invariante
- B) lineare e non invariante
- C) non lineare e non invariante
- **D)** non lineare e invariante

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

1

- **A)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **B)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 4. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- $\mathbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) non esiste
- **B**) $\frac{z^2+4z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau)$
- **B)** $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$

Esercizio 7. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- **B**) 0
- C) $\frac{1}{2}$
- **D**) 1
- **E**) 3

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	36

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 2
- $\mathbf{B}) \propto$
- C) Nessuna delle altre risposte
- **D**) 0
- **E**) 1

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{3}$
- B) nessuna delle altre risposte
- C) $\frac{1}{4}$
- **D**) 0
- **E**) $\frac{7}{12}$

Esercizio 3. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

A)
$$\mathcal{E}(x) = 0.5\mathcal{E}(a)$$

- **B)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- **E)** $\mathcal{E}(x) = \mathcal{E}(a)$

Esercizio 4. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) non lineare e invariante
- B) lineare e invariante
- C) lineare e non invariante
- **D)** non lineare e non invariante

Esercizio 5. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **B)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **D)** Nessuna delle altre risposte.

Esercizio 7. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- B) $\frac{z}{(z-1)}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- E) non esiste

Esercizio 8. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f=\pm 2/T$ nulle.
- B) Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	37

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{6}$
- B) $\frac{7}{24}$
- C) $\frac{1}{8}$
- **D)** nessuna delle altre risposte
- **E**) 0

Esercizio 2. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 3. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 2
- **B**) 0

- C) ∞
- D) Nessuna delle altre risposte
- E) $\frac{1}{2}$

Esercizio 4. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = \mathcal{E}(a)$
- E) Nessuna delle altre relazioni è corretta

Esercizio 5. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$

Esercizio 7. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) lineare e invariante
- **B)** non lineare e invariante
- C) non lineare e non invariante

 \mathbf{D}) lineare e non invariante

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{z}{(z-1)}$
- **D)** non esiste
- **E**) $\frac{z^2+4z}{(z-1)^3}$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	38

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- E) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$

Esercizio 2. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- **B)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

1

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 4. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e invariante
- B) lineare e invariante
- C) non lineare e non invariante
- **D)** lineare e non invariante

Esercizio 5. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 6. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 2
- **B**) 0
- C) Nessuna delle altre risposte
- **D**) $\frac{1}{2}$
- \mathbf{E}) ∞

Esercizio 7. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- **A**) $\frac{z}{(z-1)^3}$
- $\mathbf{B)} \ \frac{z}{(z-1)}$
- C) $\frac{1}{(z-1)^2}$
- $\mathbf{D}) \sum_{i=1}^{n} z^{i}$
- E) non esiste

Esercizio 8. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. $\mathbf{x}[0]$ vale:

- A) nessuna delle altre risposte
- **B**) $\frac{1}{4}$
- C) $\frac{7}{12}$
- **D**) $\frac{1}{3}$
- **E**) 0

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	39

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{z}{(z-1)}$
- **B**) $\frac{z^2+4z}{(z-1)^3}$
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- **D**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- E) non esiste

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{6}$
- **B**) $\frac{7}{24}$
- C) $\frac{1}{8}$
- D) nessuna delle altre risposte
- **E**) 0

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- **B**) 1
- **C**) 0
- **D**) 2
- $\mathbf{E}) \infty$

Esercizio 5. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) lineare e non invariante
- B) non lineare e invariante
- C) non lineare e non invariante
- **D)** lineare e invariante

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- $\mathbf{B)} \ \mathcal{E}(x) = 2\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- $\mathbf{D)} \ \mathcal{E}(x) = 4\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$

Esercizio 7. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 8. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) la risposta all'impulso h[n] non è definita
- $\textbf{D)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	40

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- **B)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- B) $\frac{1}{2}$
- $\mathbf{C}) \propto$
- **D**) 0
- **E**) 2

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

1

A)
$$\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$$

- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** Nessuna delle altre risposte.

Esercizio 4. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 3
- B) nessuna delle altre risposte
- C) $\frac{1}{2}$
- **D**) 0
- **E**) 1

Esercizio 5. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e non invariante
- B) lineare e non invariante
- C) non lineare e invariante
- **D)** lineare e invariante

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- C) $R_x(\tau) = R_a(\tau)$
- **D)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.

- C) Lo spettro di x(t) è a righe, con le righe in $f=\pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/2T$ nulle.

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{B)} \ \sum_{i=1}^n z^i$
- C) $\frac{z^2+z}{(z-1)^3}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- E) non esiste

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	41

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) lineare e non invariante
- B) lineare e invariante
- C) non lineare e invariante
- D) non lineare e non invariante

Esercizio 2. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- B) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 4. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 1
- **B**) 0
- C) $\frac{1}{2}$
- **D**) 3
- E) nessuna delle altre risposte

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = \mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) $\frac{1}{2}$
- **B**) 2
- C) Nessuna delle altre risposte
- **D**) 0
- $\mathbf{E}) \infty$

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) non esiste
- B) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **E**) $\frac{z^2+4z}{(z-1)^3}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	42

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{8}$
- B) nessuna delle altre risposte
- C) $\frac{1}{6}$
- **D**) $\frac{7}{24}$
- **E**) 0

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 2
- B) Nessuna delle altre risposte
- \mathbf{C}) ∞
- D) $\frac{1}{2}$
- **E**) 0

Esercizio 3. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

A)
$$\mathcal{E}(x) = 2\mathcal{E}(a)$$

- B) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = 4\mathcal{E}(a)$

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- B) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A**) $\frac{z^2+z}{(z-1)^3}$
- B) non esiste
- C) $\sum_{i=1}^n z^i$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- **E**) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 6. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- **A)** non lineare e invariante
- B) non lineare e non invariante
- C) lineare e invariante
- **D)** lineare e non invariante

Esercizio 7. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- $\mathbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	43

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- B) non esiste
- C) $\frac{z}{(z-1)}$
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- **E**) $\frac{-z^3+2z^2+z}{(z-1)^3}$

Esercizio 2. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) lineare e non invariante
- C) lineare e invariante
- **D)** non lineare e invariante

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{2}$
- **B**) 3
- **C**) 1
- **D**) 0
- E) nessuna delle altre risposte

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 0
- \mathbf{B}) ∞
- **C**) 1
- **D**) 2
- E) Nessuna delle altre risposte

Esercizio 5. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **B)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 6. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 7. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

2

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- C) $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- **D)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = R_a(\tau)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	44

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** Nessuna delle altre risposte.

Esercizio 2. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- B) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = \mathcal{E}(a)$
- E) Nessuna delle altre relazioni è corretta

Esercizio 3.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

1

B) la risposta all'impulso h[n] non è definita

- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 0
- **B**) 2
- C) Nessuna delle altre risposte
- **D**) 1
- \mathbf{E}) ∞

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\frac{z}{(z-1)}$
- B) non esiste
- C) $\frac{z}{(z-1)^3}$
- **D**) $\frac{1}{(z-1)^2}$
- $\mathbf{E)} \sum_{i=1}^{n} z^{i}$

Esercizio 6. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 7. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) non lineare e invariante
- B) lineare e non invariante
- C) non lineare e non invariante
- **D)** lineare e invariante

Esercizio 8. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. $\mathbf{x}[0]$ vale:

- **A**) 1
- **B**) $\frac{1}{2}$
- **C**) 3
- **D)** nessuna delle altre risposte
- **E**) 0

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	45

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 2. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 3. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

1

Il limite per $n \to \infty$ di y[n] vale

A) Nessuna delle altre risposte

- **B**) 2
- $\mathbf{C}) \propto$
- **D**) 0
- **E**) 1

Esercizio 4.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- B) la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- $\mathbf{D)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)}$

Esercizio 5. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) non lineare e non invariante
- B) lineare e non invariante
- C) lineare e invariante
- **D)** non lineare e invariante

Esercizio 6. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) non esiste
- **B**) $\frac{z^2+z}{(z-1)^3}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- E) $\sum_{i=1}^n z^i$

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **B)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 8. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. $\mathbf{x}[0]$ vale:

- **A**) $\frac{1}{2}$
- B) nessuna delle altre risposte
- **C**) 3
- **D**) 1
- **E)** 0

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	46

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\frac{z^2+z}{(z-1)^3}$
- B) non esiste
- C) $\sum_{i=1}^n z^i$
- $\mathbf{D)} \ \frac{z}{(z-1)}$
- E) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- **B**) 3
- **C**) 0
- **D**) $\frac{1}{2}$
- **E**) 1

Esercizio 3. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- A) $R_x(\tau) = R_a(\tau)\cos(2\pi f_0\tau)$
- **B)** $R_x(\tau) = R_a(\tau)$
- C) $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$

- **D)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- E) Nessuna delle altre relazioni è corretta

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- B) $\frac{1}{2}$
- **C**) 2
- **D**) 0
- E) Nessuna delle altre risposte

Esercizio 5. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) lineare e invariante
- B) lineare e non invariante
- C) non lineare e invariante
- **D)** non lineare e non invariante

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **D)** Nessuna delle altre risposte.

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.

D) Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/2T$ nulle.

Esercizio 8. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- $\textbf{A)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- $\mathbf{D)} \ \ h[n] \ \text{vale} \ \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	47

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) $\frac{1}{8}$
- **B**) 0
- C) $\frac{1}{6}$
- **D**) $\frac{7}{24}$
- E) nessuna delle altre risposte

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1/2 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 0
- **B**) 2
- \mathbf{C}) ∞
- **D)** Nessuna delle altre risposte
- E) $\frac{1}{2}$

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

1

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = \mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta
- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 6. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- B) non esiste
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- E) $\frac{z}{(z-1)}$

Esercizio 7.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- **B)** la risposta all'impulso h[n] non è definita

- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- $\textbf{D)} \ \ h[n] \ \text{vale} \ \delta[n] + 2\delta[n-1] + \delta[n-2] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$

Esercizio 8. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) lineare e invariante
- B) non lineare e non invariante
- C) non lineare e invariante
- D) lineare e non invariante

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	48

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) lineare e invariante
- B) non lineare e invariante
- C) non lineare e non invariante
- **D)** lineare e non invariante

Esercizio 2. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) $\frac{z}{(z-1)}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- D) non esiste
- **E**) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 3. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- B) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 2\mathcal{E}(a)$

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 5. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) $\frac{1}{2}$
- B) Nessuna delle altre risposte
- **C**) 0
- **D**) 2
- $\mathbf{E}) \infty$

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 7. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) $\frac{1}{8}$
- **B**) $\frac{7}{24}$
- C) nessuna delle altre risposte
- **D**) $\frac{1}{6}$

E) 0

Esercizio 8. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- $\textbf{A)} \ \ h[n] \ \text{vale} \ \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$
- $\textbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** la risposta all'impulso h[n] non è definita

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	49

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 2. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{3}$
- B) nessuna delle altre risposte
- \mathbf{C}) 0

- **D**) $\frac{1}{4}$
- **E**) $\frac{7}{12}$

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe, con riga in f=0 non nulla.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- **A)** $\frac{1}{(z-1)^2}$
- B) non esiste
- C) $\sum_{i=1}^n z^i$
- **D)** $\frac{z}{(z-1)^3}$
- E) $\frac{z}{(z-1)}$

Esercizio 6. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) non lineare e invariante
- B) lineare e invariante
- C) lineare e non invariante
- D) non lineare e non invariante

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 0
- **B**) 2
- \mathbf{C}) ∞
- **D**) 1
- E) Nessuna delle altre risposte

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- B) Nessuna delle altre relazioni è corretta
- C) $R_x(\tau) = R_a(\tau)\cos(2\pi f_0\tau)$
- **D)** $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$
- **E)** $R_x(\tau) = R_a(\tau)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	50

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 2. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero-
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 3. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1/2 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

A) 2

- **B**) $\frac{1}{2}$
- \mathbf{C}) ∞
- D) Nessuna delle altre risposte
- **E**) 0

Esercizio 4. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e invariante
- B) lineare e invariante
- C) lineare e non invariante
- D) non lineare e non invariante

Esercizio 5. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- B) $\frac{1}{8}$
- **C**) 0
- D) $\frac{1}{6}$
- E) $\frac{7}{24}$

Esercizio 6. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A**) $\frac{3z^2-z^3}{(z-1)^3}$
- B) non esiste
- C) $\frac{z}{(z-1)}$
- $\mathbf{D}) \sum_{i=1}^{n} z^{i}$
- **E**) $\frac{z^2+z}{(z-1)^3}$

Esercizio 7.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **B)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- **E)** $\mathcal{E}(x) = \mathcal{E}(a)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	51

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{6}$
- B) nessuna delle altre risposte
- C) $\frac{7}{24}$
- **D**) $\frac{1}{8}$
- **E**) 0

Esercizio 2. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) non esiste
- **B**) $\frac{3z^2-z^3}{(z-1)^3}$
- C) $\frac{z^2+z}{(z-1)^3}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- E) $\sum_{i=1}^n z^i$

Esercizio 3. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 1
- **B**) 0

- C) Nessuna delle altre risposte
- **D**) 2
- \mathbf{E}) ∞

Esercizio 4. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** Nessuna delle altre risposte.

Esercizio 5. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = \mathcal{E}(a)$
- E) $\mathcal{E}(x) = 2\mathcal{E}(a)$

Esercizio 7.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

- **B)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 8. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) non lineare e invariante
- B) lineare e invariante
- C) non lineare e non invariante
- **D)** lineare e non invariante

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	52

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) non lineare e invariante
- C) lineare e non invariante
- **D)** non lineare e non invariante

Esercizio 2. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

1

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

D) Nessuna delle altre risposte.

Esercizio 4.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- $\mathbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)}$
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 5. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- B) ∞
- **C**) 2
- **D**) 0
- **E**) 1

Esercizio 6. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) non esiste
- **B)** $\sum_{i=1}^{n} z^{i}$
- C) $\frac{z}{(z-1)}$
- **D**) $\frac{1}{(z-1)^2}$
- **E**) $\frac{z}{(z-1)^3}$

Esercizio 7. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{3}$
- B) nessuna delle altre risposte
- C) $\frac{1}{2}$
- **D**) 0
- **E**) $\frac{1}{6}$

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = 2\mathcal{E}(a)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	53

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\,1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 2
- B) $\frac{1}{2}$
- **C**) 0
- D) Nessuna delle altre risposte
- \mathbf{E}) ∞

Esercizio 2. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 3. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

A) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

1

- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 4. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{4}$
- **B**) 0
- C) $\frac{7}{12}$
- D) nessuna delle altre risposte
- **E**) $\frac{1}{3}$

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = \mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- E) $\mathcal{E}(x) = 2\mathcal{E}(a)$

Esercizio 6. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 7. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

2

- A) $\frac{3z^2-z^3}{(z-1)^3}$
- B) non esiste
- C) $\frac{z^2+4z}{(z-1)^3}$

D)
$$\sum_{i=1}^{n} (i-1)z^{i}$$

E)
$$\frac{z}{(z-1)}$$

Esercizio 8. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) non lineare e non invariante
- C) non lineare e invariante
- **D)** lineare e non invariante

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	54

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{2}$
- **B**) 0
- C) $\frac{1}{2}$
- **D)** nessuna delle altre risposte
- E) $\frac{1}{6}$

Esercizio 3. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- **B)** $R_x(\tau) = R_a(\tau)$

- C) Nessuna delle altre relazioni è corretta
- **D)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 5. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 2
- $\mathbf{B}) \infty$
- C) Nessuna delle altre risposte
- **D**) 0
- **E**) 1

Esercizio 6. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{z^2+z}{(z-1)^3}$
- B) non esiste
- C) $\sum_{i=1}^n z^i$
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- E) $\frac{z}{(z-1)}$

Esercizio 7. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

A)
$$\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$$

- **B)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 8. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) lineare e invariante
- C) non lineare e invariante
- D) lineare e non invariante

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	55

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) non esiste
- **B**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 2. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 3. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 0
- $\mathbf{B}) \infty$

- **C**) 1
- D) Nessuna delle altre risposte
- **E**) 2

Esercizio 4. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **D)** Nessuna delle altre risposte.

Esercizio 5. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) $\frac{1}{4}$
- **B**) 0
- C) nessuna delle altre risposte
- **D**) $\frac{7}{12}$
- E) $\frac{1}{3}$

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ia(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- E) Nessuna delle altre relazioni è corretta

Esercizio 7. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

D) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 8. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) non lineare e invariante
- C) non lineare e non invariante
- **D)** lineare e non invariante

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	56

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A)** 0
- B) $\frac{1}{2}$
- C) $\frac{1}{6}$
- **D**) $\frac{1}{3}$
- E) nessuna delle altre risposte

Esercizio 2. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) lineare e invariante
- B) non lineare e non invariante
- C) non lineare e invariante
- **D)** lineare e non invariante

Esercizio 3. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- B) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = \mathcal{E}(a)$
- E) Nessuna delle altre relazioni è corretta

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 5. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- **B**) 2
- **C**) 0
- $\mathbf{D}) \propto$
- **E**) 1

Esercizio 6. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- $\textbf{A)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 7. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

2

- A) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- **B**) $\frac{z^2+4z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- E) non esiste

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	57

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **B)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A)** 0
- **B**) $\frac{1}{3}$
- C) nessuna delle altre risposte
- **D**) $\frac{1}{6}$
- E) $\frac{1}{2}$

Esercizio 3. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\,1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) $\frac{1}{2}$
- **B**) ∞

- **C**) 2
- D) Nessuna delle altre risposte
- **E**) 0

Esercizio 4. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- B) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = \mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = 2\mathcal{E}(a)$

Esercizio 5. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) non lineare e invariante
- C) non lineare e non invariante
- **D)** lineare e non invariante

Esercizio 6. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\sum_{i=1}^n z^i$
- B) non esiste
- C) $\frac{z^2+z}{(z-1)^3}$
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{E)} \ \frac{z}{(z-1)}$

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** Nessuna delle altre risposte.

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	58

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 0
- **B**) 2
- C) $\frac{1}{2}$
- D) Nessuna delle altre risposte
- \mathbf{E}) ∞

Esercizio 2. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e invariante
- B) lineare e non invariante
- C) lineare e invariante
- D) non lineare e non invariante

Esercizio 3. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

1

D) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $R_x(\tau) = R_a(\tau)$
- C) $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- **D)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** Nessuna delle altre risposte.
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$

Esercizio 7. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- **B**) $\frac{7}{12}$
- C) $\frac{1}{3}$

- **D**) 0
- **E**) $\frac{1}{4}$

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A**) $\frac{3z^2-z^3}{(z-1)^3}$
- B) non esiste
- C) $\frac{z^2+z}{(z-1)^3}$
- $\mathbf{D)} \sum_{i=1}^{n} z^{i}$ $\mathbf{E)} \frac{z}{(z-1)}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	59

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{z^2+4z}{(z-1)^3}$
- **B**) $\frac{3z^2-z^3}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- E) non esiste

Esercizio 2. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 3. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- **B)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$

- C) $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- **D)** $R_x(\tau) = R_a(\tau)$
- E) Nessuna delle altre relazioni è corretta

Esercizio 4. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{6}$
- **B**) $\frac{1}{3}$
- **C**) 0
- D) nessuna delle altre risposte
- **E**) $\frac{1}{2}$

Esercizio 5. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1/2 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) $\frac{1}{2}$
- \mathbf{B}) ∞
- **C**) 2
- **D)** Nessuna delle altre risposte
- **E**) 0

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 7. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) lineare e invariante

- C) non lineare e invariante
- **D)** lineare e non invariante

Esercizio 8. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- $\mathbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	60

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = \mathcal{E}(a)$
- B) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- **E)** $\mathcal{E}(x) = 2\mathcal{E}(a)$

Esercizio 2. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) lineare e invariante
- B) non lineare e invariante
- C) non lineare e non invariante
- **D)** lineare e non invariante

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 4. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{2}$
- **B**) $\frac{1}{6}$
- C) $\frac{1}{3}$
- D) nessuna delle altre risposte
- **E**) 0

Esercizio 5. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- B) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 6. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1/2 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 0
- **B**) $\frac{1}{2}$
- $\mathbf{C}) \propto$
- **D**) 2
- E) Nessuna delle altre risposte

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- **A)** $\frac{1}{(z-1)^2}$
- B) $\frac{z}{(z-1)^3}$
- C) non esiste
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- $\mathbf{E)} \ \sum_{i=1}^n z^i$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	61

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- B) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 2. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **D)** Nessuna delle altre risposte.

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

1

A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} \frac{1}{2} & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- **B**) 1
- **C**) 0
- $\mathbf{D}) \propto$
- **E**) 2

Esercizio 5. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- $\mathbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 6. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) lineare e non invariante
- C) non lineare e non invariante
- **D)** non lineare e invariante

Esercizio 7. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 0
- B) $\frac{1}{8}$
- C) $\frac{1}{6}$
- **D)** nessuna delle altre risposte

E) $\frac{7}{24}$

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{z^2+z}{(z-1)^3}$
- $\mathbf{B)} \ \sum_{i=1}^n z^i$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- **D**) non esiste
- $\mathbf{E)} \ \ \frac{z}{(z-1)}$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	62

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 2. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** Nessuna delle altre risposte.

Esercizio 3. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) lineare e non invariante
- B) lineare e invariante
- C) non lineare e invariante

Esercizio 4. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{7}{12}$
- **B**) 0
- C) nessuna delle altre risposte
- **D**) $\frac{1}{3}$
- E) $\frac{1}{4}$

Esercizio 5. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} \frac{1}{2} & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 0
- **B**) 2
- \mathbf{C}) ∞
- D) Nessuna delle altre risposte
- **E**) 1

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- B) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- E) Nessuna delle altre relazioni è corretta

Esercizio 7. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) non esiste
- B) $\frac{z^2+4z}{(z-1)^3}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{D)} \ \frac{z}{(z-1)}$

E)
$$\sum_{i=1}^{n} (i-1)z^{i}$$

Esercizio 8. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- $\mathbf{D)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	63

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A)** 0
- B) nessuna delle altre risposte
- C) $\frac{1}{4}$
- D) $\frac{7}{12}$
- E) $\frac{1}{3}$

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\,1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) $\frac{1}{2}$
- **B**) 2
- C) Nessuna delle altre risposte
- **D**) 0
- $\mathbf{E}) \infty$

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 4. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) non lineare e invariante
- C) lineare e non invariante
- **D)** lineare e invariante

Esercizio 5.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- $\mathbf{B)} \ \mathcal{E}(x) = 0.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$

Esercizio 7. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

D) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) non esiste
- **B**) $\frac{3z^2-z^3}{(z-1)^3}$
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- **D)** $\frac{z^2+4z}{(z-1)^3}$
- **E)** $\frac{z}{(z-1)}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	64

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta
- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = \mathcal{E}(a)$
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 2. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) non lineare e non invariante
- B) lineare e invariante
- C) lineare e non invariante
- **D)** non lineare e invariante

Esercizio 3.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- **B)** h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f=\pm 2/T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- **A)** $\frac{1}{(z-1)^2}$
- **B**) $\frac{z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- D) non esiste
- **E**) $\sum_{i=1}^n z^i$

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** Nessuna delle altre risposte.
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\,1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 2
- **B**) $\frac{1}{2}$
- $\mathbf{C}) \infty$
- **D**) 0
- E) Nessuna delle altre risposte

Esercizio 8. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. $\mathbf{x}[0]$ vale:

- **A**) $\frac{1}{4}$
- B) nessuna delle altre risposte
- C) $\frac{1}{3}$
- **D**) $\frac{7}{12}$
- **E**) 0

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	65

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- **B**) 1
- **C**) 0
- **D**) 3
- E) $\frac{1}{2}$

Esercizio 2. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) non lineare e invariante
- C) lineare e non invariante
- **D)** lineare e invariante

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

D)
$$\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$$

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\,1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 0
- **B**) 2
- C) Nessuna delle altre risposte
- **D**) $\frac{1}{2}$
- \mathbf{E}) ∞

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\frac{z}{(z-1)}$
- B) non esiste
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- D) $\sum_{i=1}^n z^i$
- **E**) $\frac{z^2+z}{(z-1)^3}$

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- B) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- $\mathbf{D)} \ \mathcal{E}(x) = 0.5\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$

Esercizio 7. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- B) la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 8. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/2T$ nulle.
- B) Lo spettro di x(t) è a righe, con le righe in $f=\pm 2/T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	66

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

A) Nessuna delle altre risposte.

B)
$$\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$$

C)
$$\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$$

D)
$$\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$$

Esercizio 2. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ia(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

A) Nessuna delle altre relazioni è corretta

- B) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 4\mathcal{E}(a)$

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

1

A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 4.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 5. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 1
- **B**) $\frac{1}{2}$
- **C**) 0
- D) nessuna delle altre risposte
- **E**) 3

Esercizio 6. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\frac{-z^3+2z^2+z}{(z-1)^3}$
- B) $\frac{z}{(z-1)}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- E) non esiste

Esercizio 7. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e invariante
- B) non lineare e non invariante
- C) lineare e non invariante
- **D)** lineare e invariante

Esercizio 8. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 0
- $\mathbf{B}) \propto$
- **C**) 2
- **D**) 1
- E) Nessuna delle altre risposte

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	67

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 2. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta
- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 3. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) $\frac{z}{(z-1)}$
- **B**) $\frac{z^2+4z}{(z-1)^3}$
- C) non esiste

- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **E**) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- B) $\frac{1}{2}$
- **C**) 2
- D) Nessuna delle altre risposte
- **E**) 0

Esercizio 5. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) lineare e invariante
- B) non lineare e invariante
- C) lineare e non invariante
- **D)** non lineare e non invariante

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 7. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- B) $\frac{1}{4}$
- **C**) 0
- **D**) $\frac{7}{12}$
- **E**) $\frac{1}{3}$

Esercizio 8. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- $\mathbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** la risposta all'impulso h[n] non è definita

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	68

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- B) $\frac{7}{12}$
- C) $\frac{1}{4}$
- **D**) $\frac{1}{3}$
- **E**) 0

Esercizio 2. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

A)
$$\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$$

- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** Nessuna delle altre risposte.

Esercizio 4. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) lineare e non invariante
- B) non lineare e non invariante
- C) lineare e invariante
- D) non lineare e invariante

Esercizio 5. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- $\mathbf{A}) \infty$
- **B**) 0
- **C**) 2
- **D**) 1
- E) Nessuna delle altre risposte

Esercizio 6. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- B) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 7. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{z}{(z-1)}$
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- E) non esiste

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = \mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- E) Nessuna delle altre relazioni è corretta

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	69

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 2. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) lineare e non invariante
- C) lineare e invariante
- **D)** non lineare e invariante

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- B) $\frac{1}{2}$
- C) $\frac{1}{6}$
- **D**) 0

E) $\frac{1}{3}$

Esercizio 4. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** Nessuna delle altre risposte.

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = \mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 6. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\,1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- B) $\frac{1}{2}$
- **C**) 0
- $\mathbf{D}) \infty$

E) 2

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- **A)** $\frac{1}{(z-1)^2}$
- $\mathbf{B)} \ \sum_{i=1}^n z^i$
- C) $\frac{z}{(z-1)^3}$
- $\mathbf{D)} \ \frac{z}{(z-1)}$
- E) non esiste

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	70

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A)** 0
- B) $\frac{1}{2}$
- C) nessuna delle altre risposte
- **D**) $\frac{1}{6}$
- **E**) $\frac{1}{3}$

Esercizio 2. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = \mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = 2\mathcal{E}(a)$

Esercizio 3. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e invariante
- B) lineare e invariante
- C) lineare e non invariante

Esercizio 4. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\frac{-z^3+2z^2+z}{(z-1)^3}$
- **B**) $\frac{z^2+4z}{(z-1)^3}$
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- **D**) $\frac{z}{(z-1)}$
- E) non esiste

Esercizio 6. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 7. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **D)** Nessuna delle altre risposte.

Esercizio 8. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} 1 & n \text{ pari, } n \ge 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 2 per n=1, 1 per n=2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- **B**) 2
- C) ∞
- **D**) $\frac{1}{2}$
- **E**) 0

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	71

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 2. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) non lineare e invariante
- B) lineare e invariante
- C) non lineare e non invariante
- **D)** lineare e non invariante

Esercizio 3. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1/2 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 2
- **B**) $\frac{1}{2}$
- **C**) 0

- D) Nessuna delle altre risposte
- \mathbf{E}) ∞

Esercizio 4. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{4}$
- **B**) $\frac{7}{12}$
- **C**) 0
- D) nessuna delle altre risposte
- **E**) $\frac{1}{3}$

Esercizio 5. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 6. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- **A)** $\frac{1}{(z-1)^2}$
- B) non esiste
- C) $\sum_{i=1}^n z^i$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- $\mathbf{E)} \ \frac{z}{(z-1)^3}$

Esercizio 7. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = \mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta
- C) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = 2\mathcal{E}(a)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	72

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- **E)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 2. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) lineare e non invariante
- B) lineare e invariante
- C) non lineare e non invariante
- **D)** non lineare e invariante

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 1
- **B**) 3
- C) $\frac{1}{2}$
- **D)** nessuna delle altre risposte
- **E**) 0

Esercizio 4. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\frac{z}{(z-1)}$
- **B**) $\frac{3z^2-z^3}{(z-1)^3}$
- C) non esiste
- **D**) $\frac{z^2+z}{(z-1)^3}$
- E) $\sum_{i=1}^n z^i$

Esercizio 5. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 6. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- $\mathbf{D)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe, con riga in f=0 non nulla.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 8. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} \frac{1}{2} & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 2 per n=1, 1 per n=2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 2
- $\mathbf{B}) \propto$
- **C**) 1
- **D**) 0
- E) Nessuna delle altre risposte

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	73

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) lineare e non invariante
- B) lineare e invariante
- C) non lineare e non invariante
- **D)** non lineare e invariante

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) $\frac{1}{6}$
- **B**) 0
- C) $\frac{1}{3}$
- **D)** nessuna delle altre risposte
- **E**) $\frac{1}{2}$

Esercizio 3. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- B) non esiste
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- E) $\frac{z}{(z-1)}$

Esercizio 4. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 5. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 0
- B) Nessuna delle altre risposte
- **C**) 1
- $\mathbf{D}) \propto$
- **E**) 2

Esercizio 6. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 7.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta
- C) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	74

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1/2 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) $\frac{1}{2}$
- **B**) 2
- C) Nessuna delle altre risposte
- $\mathbf{D}) \propto$
- **E**) 0

Esercizio 2. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) non lineare e invariante
- C) lineare e invariante
- **D)** lineare e non invariante

Esercizio 3. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\frac{z}{(z-1)}$
- B) $\frac{z^2+z}{(z-1)^3}$
- C) $\sum_{i=1}^n z^i$
- D) non esiste
- **E**) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 5. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{3}$
- B) $\frac{1}{4}$
- C) $\frac{7}{12}$
- **D**) 0
- E) nessuna delle altre risposte

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau)$
- **B)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- C) $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- **D)** $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- E) Nessuna delle altre relazioni è corretta

Esercizio 7. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

2

- A) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **B)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** Nessuna delle altre risposte.

Esercizio 8. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- $\mathbf{B})$ la risposta all'impulso h[n]non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	75

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{3}$
- **B**) 0
- C) $\frac{7}{12}$
- **D**) $\frac{1}{4}$
- E) nessuna delle altre risposte

Esercizio 3.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

1

di un filtro causale, è vera la seguente affermazione:

A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)

- **B)** h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 2
- B) Nessuna delle altre risposte
- \mathbf{C}) ∞
- **D**) 0
- **E**) 1

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = \mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- **E)** $\mathcal{E}(x) = 4\mathcal{E}(a)$

Esercizio 6. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e invariante
- B) non lineare e non invariante
- C) lineare e non invariante
- **D)** lineare e invariante

Esercizio 7. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{z^2+4z}{(z-1)^3}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{z}{(z-1)}$
- **D)** non esiste
- E) $\frac{-z^3+2z^2+z}{(z-1)^3}$

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	76

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- \mathbf{B}) ∞
- **C**) 1
- **D**) 2
- **E**) 0

Esercizio 2. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- A) $R_x(\tau) = R_a(\tau)$
- **B)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

1

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

Esercizio 4. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) non lineare e non invariante
- B) lineare e invariante
- C) lineare e non invariante
- **D)** non lineare e invariante

Esercizio 5. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 0
- B) $\frac{1}{3}$
- C) nessuna delle altre risposte
- **D**) $\frac{1}{2}$
- E) $\frac{1}{6}$

Esercizio 6. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{z}{(z-1)}$
- B) $\frac{z^2+4z}{(z-1)^3}$
- C) non esiste
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- E) $\frac{-z^3+2z^2+z}{(z-1)^3}$

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

D) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 8.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- $\textbf{D)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	77

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 2. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta
- C) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = \mathcal{E}(a)$
- E) $\mathcal{E}(x) = 2\mathcal{E}(a)$

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{7}{24}$
- **B**) 0

- C) $\frac{1}{6}$
- D) $\frac{1}{8}$
- E) nessuna delle altre risposte

Esercizio 4. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) non lineare e non invariante
- C) non lineare e invariante
- D) lineare e non invariante

Esercizio 5. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 2
- $\mathbf{B}) \propto$
- C) Nessuna delle altre risposte
- **D**) 0
- **E**) 1

Esercizio 6. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 7. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- B) $\frac{z}{(z-1)}$
- C) non esiste
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- **E**) $\frac{-z^3+2z^2+z}{(z-1)^3}$

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** Nessuna delle altre risposte.

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	78

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 2. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\sum_{i=1}^n z^i$
- **B**) $\frac{z}{(z-1)^3}$
- C) non esiste
- $\mathbf{D)} \ \frac{z}{(z-1)}$
- **E**) $\frac{1}{(z-1)^2}$

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 0
- **B**) $\frac{1}{2}$
- C) $\frac{1}{3}$

- D) $\frac{1}{6}$
- E) nessuna delle altre risposte

Esercizio 4. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- E) Nessuna delle altre relazioni è corretta

Esercizio 6. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e invariante
- B) non lineare e non invariante
- C) lineare e invariante
- **D)** lineare e non invariante

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- B) Nessuna delle altre risposte
- **C**) 2
- **D**) 1
- **E**) 0

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	79

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

A) non esiste

B)
$$\frac{z^2+4z}{(z-1)^3}$$

C)
$$\sum_{i=1}^{n} (i-1)z^{i}$$

$$\mathbf{D)} \ \ \frac{z}{(z-1)}$$

E)
$$\frac{-z^3+2z^2+z}{(z-1)^3}$$

Esercizio 2. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

A) Nessuna delle altre risposte.

B)
$$\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$$

C)
$$\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$$

D)
$$\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$$

Esercizio 3. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

1

Il limite per $n \to \infty$ di y[n] vale

- **A)** 0
- B) Nessuna delle altre risposte

- **C**) 1
- **D**) 2
- $\mathbf{E}) \infty$

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- B) Lo spettro di x(t) è a righe, con riga in f=0 non nulla.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 5. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 3
- B) $\frac{1}{2}$
- **C**) 1
- **D**) 0
- E) nessuna delle altre risposte

Esercizio 6. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) lineare e non invariante
- B) lineare e invariante
- C) non lineare e invariante
- **D)** non lineare e non invariante

Esercizio 7. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

 $\textbf{D)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- $\mathbf{B)} \ \mathcal{E}(x) = 0.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- **E)** $\mathcal{E}(x) = 4\mathcal{E}(a)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	80

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **B)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 2. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- **E)** $\mathcal{E}(x) = \mathcal{E}(a)$

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- **B**) 0

- C) $\frac{1}{3}$
- **D**) $\frac{1}{4}$
- **E**) $\frac{7}{12}$

Esercizio 4. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\sum_{i=1}^n z^i$
- **B**) $\frac{1}{(z-1)^2}$
- C) $\frac{z}{(z-1)}$
- **D)** non esiste
- **E**) $\frac{z}{(z-1)^3}$

Esercizio 5. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 2
- B) Nessuna delle altre risposte
- \mathbf{C}) ∞
- **D**) 0
- **E**) 1

Esercizio 6. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e invariante
- B) non lineare e non invariante
- C) lineare e invariante
- **D)** lineare e non invariante

Esercizio 7. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

D)
$$\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$$

Esercizio 8. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- $\textbf{A)} \ \ h[n] \ \text{vale} \ \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- $\mathbf{D)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	81

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 2 per n=1, 1 per n=2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- **B**) $\frac{1}{2}$
- **C**) 0
- **D**) 2
- E) Nessuna delle altre risposte

Esercizio 2. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) non lineare e invariante
- B) lineare e invariante
- C) non lineare e non invariante
- D) lineare e non invariante

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 0
- **B**) $\frac{1}{6}$
- C) $\frac{1}{3}$
- **D**) $\frac{1}{2}$

Esercizio 4. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\frac{z^2+z}{(z-1)^3}$
- B) $\frac{z}{(z-1)}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- **D)** non esiste
- E) $\sum_{i=1}^n z^i$

Esercizio 5. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$

Esercizio 6. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 7. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- $\mathbf{D)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$

2

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- A) $R_x(\tau) = R_a(\tau)$
- **B)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	82

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 2. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) lineare e invariante
- B) non lineare e non invariante
- C) lineare e non invariante
- **D)** non lineare e invariante

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

1

- A) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **B)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- C) Nessuna delle altre risposte.

D) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 0
- **B**) 1
- C) ∞
- **D)** Nessuna delle altre risposte
- **E**) 2

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{z}{(z-1)}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- E) non esiste

Esercizio 6. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 7. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A)** $\frac{7}{12}$
- **B**) $\frac{1}{3}$
- C) nessuna delle altre risposte
- **D**) 0
- **E**) $\frac{1}{4}$

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- B) Nessuna delle altre relazioni è corretta
- C) $R_x(\tau) = R_a(\tau)$
- **D)** $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$
- **E)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	83

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 1
- B) nessuna delle altre risposte
- **C**) 3
- **D**) 0
- **E**) $\frac{1}{2}$

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

1

A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 4. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\sum_{i=1}^n z^i$
- B) non esiste
- C) $\frac{z}{(z-1)}$
- **D**) $\frac{z^2+z}{(z-1)^3}$
- **E**) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 5. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 6. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) lineare e non invariante
- B) non lineare e invariante
- C) non lineare e non invariante
- **D)** lineare e invariante

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\,1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 0
- **B**) 2
- C) Nessuna delle altre risposte
- **D**) $\frac{1}{2}$
- $\mathbf{E}) \infty$

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- **B)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- C) $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- D) Nessuna delle altre relazioni è corretta
- **E)** $R_x(\tau) = R_a(\tau)$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	84

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{z}{(z-1)}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- E) non esiste

Esercizio 2. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e invariante
- B) lineare e non invariante
- C) lineare e invariante
- **D)** non lineare e non invariante

Esercizio 3. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 4. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** Nessuna delle altre risposte.

Esercizio 5. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) $\frac{1}{2}$
- $\mathbf{B}) \infty$
- **C**) 2
- **D**) 0
- E) Nessuna delle altre risposte

Esercizio 6. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A)** 0
- B) $\frac{1}{2}$
- **C**) 1
- D) nessuna delle altre risposte
- **E**) 3

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/2T$ nulle.

D) Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	85

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = \mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) $\frac{1}{2}$
- **B**) 0
- C) ∞
- **D)** Nessuna delle altre risposte
- **E**) 2

Esercizio 3. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) lineare e non invariante
- B) non lineare e invariante

- C) non lineare e non invariante
- **D)** lineare e invariante

Esercizio 4. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- $\textbf{A)} \hspace{0.2cm} h[n] \hspace{0.2cm} \text{vale} \hspace{0.2cm} \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \hspace{0.2cm} \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- B) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 5. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 6. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 0
- B) $\frac{1}{6}$
- C) $\frac{1}{2}$
- D) $\frac{1}{3}$
- E) nessuna delle altre risposte

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) non esiste
- $\mathbf{B)} \ \ \frac{z}{(z-1)}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- **D)** $\frac{z^2+4z}{(z-1)^3}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	86

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) lineare e non invariante
- B) lineare e invariante
- C) non lineare e invariante
- D) non lineare e non invariante

Esercizio 2. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- B) non esiste
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- $\mathbf{D)} \ \frac{z}{(z-1)}$
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero-
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 6. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{6}$
- **B**) 0
- C) $\frac{1}{3}$
- **D)** nessuna delle altre risposte
- E) $\frac{1}{2}$

Esercizio 7. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 8. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} 1 & n \text{ pari, } n \ge 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 2 per n=1, 1 per n=2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) $\frac{1}{2}$
- **B**) 0
- C) Nessuna delle altre risposte
- $\mathbf{D}) \propto$
- **E**) 2

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	87

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- **B**) 0
- C) $\frac{7}{12}$
- D) $\frac{1}{4}$
- **E**) $\frac{1}{3}$

Esercizio 2. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta
- C) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = 2\mathcal{E}(a)$

Esercizio 3. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e non invariante
- B) lineare e invariante
- C) non lineare e invariante

Esercizio 4. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\frac{z^2+4z}{(z-1)^3}$
- B) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- D) non esiste
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 5. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

Esercizio 6. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 8. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- **B**) 2
- \mathbf{C}) ∞
- **D**) 1
- **E**) 0

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	88

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = \mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = 2\mathcal{E}(a)$

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\ 1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- B) $\frac{1}{2}$
- **C**) 0
- $\mathbf{D}) \propto$
- **E**) 2

Esercizio 3. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) lineare e invariante
- B) non lineare e non invariante

- C) lineare e non invariante
- **D)** non lineare e invariante

Esercizio 4. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 5. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 6. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 3
- **B**) 0
- C) nessuna delle altre risposte
- **D**) 1
- E) $\frac{1}{2}$

Esercizio 7. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\frac{z^2+z}{(z-1)^3}$
- **B**) $\sum_{i=1}^{n} z^{i}$
- C) non esiste
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$

$$\mathbf{E)} \ \frac{z}{(z-1)}$$

Esercizio 8. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- $\textbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	89

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

Esercizio 2. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- A) $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- **B)** $R_x(\tau) = R_a(\tau)$
- C) $R_x(\tau) = R_a(\tau)\cos(2\pi f_0 \tau)$
- **D)** $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- E) Nessuna delle altre relazioni è corretta

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- $\mathbf{B}) \propto$
- C) 2
- **D**) 1
- **E**) 0

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{z}{(z-1)}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) non esiste
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- E) $\frac{-z^3+2z^2+z}{(z-1)^3}$

Esercizio 6. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e invariante
- B) lineare e invariante
- C) lineare e non invariante
- **D)** non lineare e non invariante

Esercizio 7. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) la risposta all'impulso h[n] non è definita

D) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 8. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. $\mathbf{x}[0]$ vale:

- **A**) $\frac{1}{3}$
- **B**) $\frac{1}{2}$
- C) $\frac{1}{6}$
- D) nessuna delle altre risposte
- **E**) 0

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	90

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 2
- **B**) 0
- \mathbf{C}) ∞
- **D**) $\frac{1}{2}$
- E) Nessuna delle altre risposte

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{7}{24}$
- B) nessuna delle altre risposte
- C) $\frac{1}{8}$
- **D**) 0
- E) $\frac{1}{6}$

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 4. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- B) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- E) $\mathcal{E}(x) = 2\mathcal{E}(a)$

Esercizio 5. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) non lineare e non invariante
- C) non lineare e invariante
- **D)** lineare e non invariante

Esercizio 6.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 7. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) non esiste
- **B**) $\frac{z}{(z-1)}$
- C) $\frac{z^2+z}{(z-1)^3}$
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- E) $\sum_{i=1}^n z^i$

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	91

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A**) $\frac{z^2+z}{(z-1)^3}$
- **B**) $\sum_{i=1}^{n} z^{i}$
- C) $\frac{z}{(z-1)}$
- **D)** non esiste
- **E**) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 2. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 3. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$

- C) $R_x(\tau) = R_a(\tau)$
- **D)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- E) $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$

Esercizio 4.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 5. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 6. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 1
- **B**) 0
- C) Nessuna delle altre risposte
- **D**) 2
- \mathbf{E}) ∞

Esercizio 7. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A)** 0
- **B**) $\frac{1}{3}$

- C) nessuna delle altre risposte
- **D**) $\frac{1}{6}$
- **E**) $\frac{1}{2}$

Esercizio 8. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) lineare e non invariante
- ${f B}$) non lineare e invariante
- C) non lineare e non invariante
- **D)** lineare e invariante

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	92

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- B) $\frac{1}{2}$
- **C**) 3
- **D**) 0
- **E**) 1

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

1

A) Lo spettro di x(t) è a righe, ed ha modulo dispari.

- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 4. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{z}{(z-1)}$
- **B**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- E) non esiste

Esercizio 5. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) lineare e non invariante
- B) non lineare e non invariante
- C) non lineare e invariante
- **D)** lineare e invariante

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- B) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = 2\mathcal{E}(a)$

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 0
- $\mathbf{B}) \infty$
- **C**) 1
- **D**) 2
- E) Nessuna delle altre risposte

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** Nessuna delle altre risposte.

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	93

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 1
- **B**) 2
- $\mathbf{C}) \propto$
- **D**) 0
- E) Nessuna delle altre risposte

Esercizio 2. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** Nessuna delle altre risposte.

Esercizio 3. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) non esiste
- **B**) $\frac{z}{(z-1)^3}$

- C) $\frac{1}{(z-1)^2}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- E) $\sum_{i=1}^n z^i$

Esercizio 4.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- **B)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- $\mathbf{D)} \ \ h[n] \ \text{vale} \ \delta[n] + 2\delta[n-1] + \delta[n-2] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$

Esercizio 5. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) lineare e non invariante
- B) non lineare e invariante
- C) non lineare e non invariante
- **D)** lineare e invariante

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = \mathcal{E}(a)$

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 8. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. $\mathbf{x}[0]$ vale:

- **A)** 0
- **B**) $\frac{1}{6}$
- C) $\frac{7}{24}$
- **D)** nessuna delle altre risposte
- **E**) $\frac{1}{8}$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	94

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) non esiste
- $\mathbf{B)} \ \frac{z}{(z-1)}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- E) $\frac{-z^3+2z^2+z}{(z-1)^3}$

Esercizio 2.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- **B)** h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

1

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A)** 0
- B) nessuna delle altre risposte
- C) $\frac{7}{24}$
- **D**) $\frac{1}{6}$

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 5. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) lineare e non invariante
- B) non lineare e non invariante
- C) lineare e invariante
- **D)** non lineare e invariante

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = \mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = 2\mathcal{E}(a)$

Esercizio 7. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 8. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 2
- **B**) 1
- **C**) 0
- D) Nessuna delle altre risposte
- E) ∞

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	95

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

A) Nessuna delle altre risposte.

- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- **B**) 1
- \mathbf{C}) 0
- $\mathbf{D}) \infty$
- **E**) 2

Esercizio 3. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos\left(2\pi f_0 t\right)$$

- A) non lineare e invariante
- B) lineare e non invariante

- C) lineare e invariante
- **D)** non lineare e non invariante

Esercizio 4. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- B) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = \mathcal{E}(a)$

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\sum_{i=1}^n z^i$
- **B**) $\frac{z^2+z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- D) non esiste
- **E**) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 6. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 0
- **B**) $\frac{1}{6}$
- C) nessuna delle altre risposte
- **D**) $\frac{1}{2}$
- E) $\frac{1}{3}$

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.

D) Lo spettro di x(t) è a righe, con le righe in $f=\pm 2/T$ nulle.

Esercizio 8.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- $\mathbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + 2\delta[n-1] + \delta[n-2] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	96

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 2. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 3. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

1

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- B) non esiste
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D)** $\frac{-z^3+2z^2+z}{(z-1)^3}$

E)
$$\frac{z}{(z-1)}$$

Esercizio 4. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- C) $\mathcal{E}(x) = \mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- E) Nessuna delle altre relazioni è corretta

Esercizio 5. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) lineare e invariante
- B) non lineare e non invariante
- C) lineare e non invariante
- D) non lineare e invariante

Esercizio 6. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{2}$
- **B**) $\frac{1}{6}$
- C) nessuna delle altre risposte
- **D**) $\frac{1}{3}$
- **E**) 0

Esercizio 7. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 8. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\,1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 0
- $\mathbf{B}) \propto$
- **C**) 2
- D) Nessuna delle altre risposte
- E) $\frac{1}{2}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	97

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

Esercizio 2. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e invariante
- B) non lineare e non invariante
- C) lineare e non invariante
- **D)** lineare e invariante

Esercizio 3. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau)\cos(2\pi f_0 \tau)$
- **B)** $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$
- C) $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- **D)** $R_x(\tau) = R_a(\tau)$

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 5. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- B) la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- $\mathbf{D)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$

Esercizio 6. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 2
- **B**) 1
- \mathbf{C}) ∞
- **D)** Nessuna delle altre risposte
- **E**) 0

Esercizio 7. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- **B**) $\frac{1}{3}$
- C) $\frac{7}{12}$

- **D**) $\frac{1}{4}$
- **E**) 0

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{-z^3+2z^2+z}{(z-1)^3}$ B) $\frac{z}{(z-1)}$
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- **D)** $\frac{z^2+4z}{(z-1)^3}$
- E) non esiste

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	98

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) non esiste
- B) $\frac{z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- **D**) $\frac{1}{(z-1)^2}$
- $\mathbf{E)} \ \sum_{i=1}^n z^i$

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 0
- $\mathbf{B}) \infty$
- **C**) 1
- **D)** Nessuna delle altre risposte
- **E**) 2

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

1

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- B) Lo spettro di x(t) è a righe, con le righe in $f=\pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 4. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{6}$
- B) nessuna delle altre risposte
- \mathbf{C}) 0
- D) $\frac{7}{24}$
- **E**) $\frac{1}{8}$

Esercizio 5. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) lineare e non invariante
- C) non lineare e invariante
- **D)** non lineare e non invariante

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 7.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) la risposta all'impulso h[n] non è definita

D) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- **B)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $R_x(\tau) = R_a(\tau)$
- **E)** $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	99

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- B) la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 2. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) lineare e non invariante
- B) non lineare e non invariante
- C) lineare e invariante
- **D)** non lineare e invariante

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- B) $\frac{1}{8}$
- **C**) 0
- D) $\frac{1}{6}$
- **E**) $\frac{7}{24}$

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 0
- **B**) 2
- \mathbf{C}) ∞
- **D**) 1
- E) Nessuna delle altre risposte

Esercizio 5. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 6. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) non esiste
- $\mathbf{B)} \ \frac{z}{(z-1)}$
- C) $\frac{1}{(z-1)^2}$
- **D**) $\frac{z}{(z-1)^3}$
- **E**) $\sum_{i=1}^n z^i$

Esercizio 7. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

2

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = \mathcal{E}(a)$
- E) $\mathcal{E}(x) = 2\mathcal{E}(a)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	100

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 2. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) lineare e invariante
- B) lineare e non invariante
- C) non lineare e invariante
- **D)** non lineare e non invariante

Esercizio 3. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- B) Nessuna delle altre risposte
- **C**) 2

- **D**) $\frac{1}{2}$
- **E**) 0

Esercizio 4. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 5. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{6}$
- B) $\frac{1}{8}$
- **C**) 0
- **D**) $\frac{7}{24}$
- E) nessuna delle altre risposte

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

Esercizio 7. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) non esiste
- **B**) $\frac{1}{(z-1)^2}$
- C) $\frac{z}{(z-1)}$
- **D**) $\frac{z}{(z-1)^3}$
- $\mathbf{E)} \sum_{i=1}^{n} z^{i}$

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = \mathcal{E}(a)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	101

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 2. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 3. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

1

- A) lineare e non invariante
- **B)** non lineare e invariante
- C) non lineare e non invariante
- **D)** lineare e invariante

Esercizio 4. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- B) Nessuna delle altre relazioni è corretta
- C) $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$
- **D)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = R_a(\tau)$

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **B**) $\frac{z^2+4z}{(z-1)^3}$
- C) non esiste
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- E) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 6. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 2
- **B**) 0
- C) Nessuna delle altre risposte
- **D**) 1
- E) ∞

Esercizio 7. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 0
- B) nessuna delle altre risposte
- **C**) 1
- **D**) $\frac{1}{2}$
- **E**) 3

Esercizio 8. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe in k/T, con k intero.
- B) Lo spettro di x(t) è a righe, con le righe in $f=\pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/2T$ nulle.

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	102

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 2. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **D)** Nessuna delle altre risposte.

Esercizio 3. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- **B**) 1

- C) Nessuna delle altre risposte
- **D**) 2
- **E**) 0

Esercizio 4. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) non lineare e invariante
- B) lineare e invariante
- C) lineare e non invariante
- **D)** non lineare e non invariante

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 6. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 7. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{2}$
- **B**) 3
- C) nessuna delle altre risposte
- **D**) 1

E) 0

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) $\frac{z}{(z-1)}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D)** non esiste
- **E**) $\frac{3z^2-z^3}{(z-1)^3}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	103

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{z}{(z-1)}$
- D) non esiste
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 0
- B) $\frac{1}{2}$
- **C**) 2
- $\mathbf{D}) \propto$
- E) Nessuna delle altre risposte

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

1

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{7}{24}$
- **B**) $\frac{1}{8}$

- C) nessuna delle altre risposte
- **D**) $\frac{1}{6}$
- **E**) 0

Esercizio 4. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e invariante
- B) lineare e non invariante
- C) lineare e invariante
- **D)** non lineare e non invariante

Esercizio 5. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- $\mathbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 7. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- B) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = \mathcal{E}(a)$
- E) $\mathcal{E}(x) = 4\mathcal{E}(a)$

Esercizio 8. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \left\{ \begin{aligned} 0 & \text{ per } 0 < t < T \\ \pi & \text{ per } T < t < 2T \end{aligned} \right.$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- B) Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/2T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f=\pm 2/T$ nulle.

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	104

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- B) Nessuna delle altre risposte
- **C**) 1
- **D**) 2
- **E**) 0

Esercizio 3. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

1

A)
$$\frac{3z^2-z^3}{(z-1)^3}$$

B)
$$\frac{z^2+z}{(z-1)^3}$$

- C) non esiste
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- E) $\sum_{i=1}^n z^i$

Esercizio 4. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) non lineare e invariante
- B) non lineare e non invariante
- C) lineare e invariante
- **D)** lineare e non invariante

Esercizio 5. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- B) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 6. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{4}$
- B) $\frac{1}{2}$
- C) nessuna delle altre risposte
- **D**) 0
- **E**) $\frac{7}{12}$

Esercizio 7. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $\mathcal{E}(x) = \mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = 4\mathcal{E}(a)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	105

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 2. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) non lineare e non invariante
- C) lineare e non invariante
- **D)** non lineare e invariante

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

1

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$

D) Nessuna delle altre risposte.

Esercizio 4.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- **B)** h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = \mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- E) Nessuna delle altre relazioni è corretta

Esercizio 6. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{3}$
- B) nessuna delle altre risposte
- C) $\frac{1}{6}$
- **D**) 0
- E) $\frac{1}{2}$

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\,1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** $\frac{1}{2}$
- B) Nessuna delle altre risposte
- $\mathbf{C}) \infty$
- **D**) 0

E) 2

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{z}{(z-1)}$
- B) non esiste
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	106

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- B) $\frac{1}{3}$
- C) $\frac{7}{12}$
- **D**) 0
- E) $\frac{1}{4}$

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 2
- B) Nessuna delle altre risposte
- \mathbf{C}) 0
- **D**) 1
- \mathbf{E}) ∞

Esercizio 3. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

1

di un filtro causale, è vera la seguente affermazione:

A) la risposta all'impulso h[n] non è definita

- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 4. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) $\frac{z}{(z-1)}$
- B) non esiste
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = \mathcal{E}(a)$
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 6. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 7. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) lineare e invariante
- B) lineare e non invariante
- C) non lineare e non invariante
- **D)** non lineare e invariante

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **D)** Nessuna delle altre risposte.

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	107

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- B) Nessuna delle altre risposte
- **C**) 1
- **D**) 0
- **E**) 2

Esercizio 2. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\frac{z}{(z-1)}$
- B) non esiste
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- **D)** $\frac{z^2+z}{(z-1)^3}$
- E) $\sum_{i=1}^n z^i$

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{4}$
- **B**) $\frac{7}{12}$

- C) nessuna delle altre risposte
- **D**) $\frac{1}{3}$
- **E**) 0

Esercizio 4. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) non lineare e invariante
- C) lineare e invariante
- **D)** lineare e non invariante

Esercizio 5. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

Esercizio 6. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 7. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

D) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + \mathrm{j}a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	108

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) lineare e non invariante
- B) non lineare e non invariante
- C) non lineare e invariante
- **D)** lineare e invariante

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 1
- B) $\frac{1}{2}$
- C) nessuna delle altre risposte
- **D**) 0
- **E**) 3

Esercizio 3. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 4. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) non esiste
- B) $\sum_{i=1}^n z^i$
- C) $\frac{z}{(z-1)}$
- **D**) $\frac{z}{(z-1)^3}$
- **E**) $\frac{1}{(z-1)^2}$

Esercizio 5. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 6. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- $\textbf{A)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 2
- $\mathbf{B}) \propto$
- **C**) 1
- **D**) 0
- E) Nessuna delle altre risposte

Esercizio 8. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f=\pm 2/T$ nulle.

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	109

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **B)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 2. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- **B**) 0

- C) $\frac{1}{4}$
- **D**) $\frac{1}{3}$
- **E**) $\frac{7}{12}$

Esercizio 4. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\frac{z^2+z}{(z-1)^3}$
- B) $\frac{z}{(z-1)}$
- C) $\sum_{i=1}^n z^i$
- **D)** non esiste
- E) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 5. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\,1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- B) Nessuna delle altre risposte
- C) 2
- **D**) 0
- **E**) $\frac{1}{2}$

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 7. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) lineare e non invariante
- C) non lineare e invariante
- **D)** non lineare e non invariante

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- B) Nessuna delle altre relazioni è corretta
- C) $R_x(\tau) = R_a(\tau)$
- **D)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	110

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- **B)** $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = R_a(\tau)$

Esercizio 2. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **B)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 3. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

A) 0

- **B**) 2
- \mathbf{C}) ∞
- D) Nessuna delle altre risposte
- **E**) 1

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 5. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) non lineare e non invariante
- C) lineare e non invariante
- **D)** non lineare e invariante

Esercizio 6. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\sum_{i=1}^n z^i$
- **B**) $\frac{z}{(z-1)^3}$
- C) non esiste
- **D)** $\frac{1}{(z-1)^2}$
- $\mathbf{E)} \ \ \frac{z}{(z-1)}$

Esercizio 7. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{2}$
- B) nessuna delle altre risposte
- \mathbf{C}) 0
- **D**) 1

E) 3

Esercizio 8. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- $\textbf{A)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- $\mathbf{B)} \ \ h[n] \ \text{vale} \ \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** la risposta all'impulso h[n] non è definita

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	111

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) lineare e non invariante
- C) non lineare e non invariante
- **D)** non lineare e invariante

Esercizio 2. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

1

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

D) Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1/2 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 0
- \mathbf{B}) ∞
- C) Nessuna delle altre risposte
- D) $\frac{1}{2}$
- **E**) 2

Esercizio 5. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **B)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 6. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- **B**) $\frac{7}{24}$
- C) $\frac{1}{8}$
- D) $\frac{1}{6}$
- **E**) 0

Esercizio 7. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- B) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

E) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) non esiste
- **B**) $\frac{z^2+z}{(z-1)^3}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{D}) \sum_{i=1}^{n} z^{i}$
- $\mathbf{E)} \ \frac{z}{(z-1)}$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	112

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

Esercizio 2. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 3. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

A) 0

- $\mathbf{B}) \infty$
- C) Nessuna delle altre risposte
- **D**) 1
- **E**) 2

Esercizio 4. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **B**) $\frac{3z^2-z^3}{(z-1)^3}$
- C) non esiste
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- E) $\frac{z}{(z-1)}$

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- B) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- E) Nessuna delle altre relazioni è corretta

Esercizio 6.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 7. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) lineare e non invariante
- B) lineare e invariante
- C) non lineare e invariante
- **D)** non lineare e non invariante

Esercizio 8. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. $\mathbf{x}[0]$ vale:

- **A)** 0
- **B**) $\frac{1}{2}$
- C) $\frac{1}{3}$
- **D)** nessuna delle altre risposte
- E) $\frac{1}{6}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	113

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

A) Nessuna delle altre risposte.

B)
$$\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$$

C)
$$\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$$

D)
$$\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$$

Esercizio 2. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

A)
$$\frac{3z^2-z^3}{(z-1)^3}$$

B)
$$\frac{z}{(z-1)}$$

C) non esiste

D)
$$\sum_{i=1}^{n} (i-1)z^{i}$$

E)
$$\frac{z^2+4z}{(z-1)^3}$$

Esercizio 3. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

1

A)
$$R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$$

B)
$$R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$$

C)
$$R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$$

- D) Nessuna delle altre relazioni è corretta
- **E)** $R_x(\tau) = R_a(\tau)$

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) $\frac{1}{2}$
- **B**) 0
- C) ∞
- **D**) 2
- E) Nessuna delle altre risposte

Esercizio 5. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) la risposta all'impulso h[n] non è definita
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 6. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{3}$
- **B**) $\frac{1}{2}$
- C) $\frac{1}{6}$
- **D**) 0
- E) nessuna delle altre risposte

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

2

A) Lo spettro di x(t) è a righe equispaziate di 1/T.

- B) Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/T$ non nulle.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con riga in f=0 non nulla.

Esercizio 8. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) lineare e invariante
- B) lineare e non invariante
- C) non lineare e invariante
- **D)** non lineare e non invariante

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	114

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 2. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e invariante
- B) lineare e non invariante
- C) lineare e invariante
- **D)** non lineare e non invariante

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

1

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

D) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 4. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- **E)** $\mathcal{E}(x) = 2\mathcal{E}(a)$

Esercizio 5. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 0
- **B**) $\frac{1}{2}$
- **C**) 1
- D) nessuna delle altre risposte
- **E**) 3

Esercizio 6.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- B) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- $\mathbf{D)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)}$

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1/2 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 0
- **B**) $\frac{1}{2}$
- C) Nessuna delle altre risposte
- $\mathbf{D}) \infty$

E) 2

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) non esiste
- $\mathbf{B)} \ \frac{z}{(z-1)}$
- C) $\frac{1}{(z-1)^2}$
- $\mathbf{D)} \sum_{i=1}^{n} z^{i}$
- E) $\frac{z}{(z-1)^3}$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	115

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 2. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** Nessuna delle altre risposte.

Esercizio 3. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

1

- A) lineare e non invariante
- B) lineare e invariante
- C) non lineare e invariante
- D) non lineare e non invariante

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau)$
- **B)** $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$

Esercizio 6. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\frac{z}{(z-1)}$
- $\mathbf{B}) \sum_{i=1}^{n} z^{i}$
- C) $\frac{z^2+z}{(z-1)^3}$
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- E) non esiste

Esercizio 7. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- **B**) 0
- C) $\frac{7}{12}$
- **D**) $\frac{1}{3}$
- E) $\frac{1}{4}$

Esercizio 8. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} \frac{1}{2} & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 2 per n=1, 1 per n=2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 1
- $\mathbf{B}) \propto$
- **C**) 0
- D) Nessuna delle altre risposte
- **E**) 2

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	116

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

A) nessuna delle altre risposte

- **B**) $\frac{7}{12}$
- C) $\frac{1}{3}$
- **D**) 0
- **E**) $\frac{1}{4}$

Esercizio 2. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$

Esercizio 3. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\,1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

1

Il limite per $n \to \infty$ di y[n] vale

A) $\frac{1}{2}$

- $\mathbf{B}) \propto$
- **C**) 0
- **D**) 2
- E) Nessuna delle altre risposte

Esercizio 4. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\frac{z}{(z-1)}$
- **B**) $\frac{1}{(z-1)^2}$
- C) $\sum_{i=1}^{n} z^i$
- D) non esiste
- **E**) $\frac{z}{(z-1)^3}$

Esercizio 5. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 6. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e invariante
- B) lineare e non invariante
- C) non lineare e non invariante
- **D)** lineare e invariante

Esercizio 7. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- A) la risposta all'impulso h[n] non è definita
- $\mathbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

2

D) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	117

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta
- C) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = 4\mathcal{E}(a)$

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- **B**) 0
- C) $\frac{1}{6}$
- **D**) $\frac{7}{24}$
- E) $\frac{1}{8}$

Esercizio 3. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e invariante
- B) non lineare e non invariante
- C) lineare e invariante

Esercizio 4. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 5. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 6. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 2
- B) $\frac{1}{2}$
- \mathbf{C}) 0

- $\mathbf{D}) \propto$
- E) Nessuna delle altre risposte

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{z}{(z-1)}$
- **B**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- **C**) $\sum_{i=1}^{n} (i-1)z^{i}$
- **D)** non esiste
- **E**) $\frac{z^2+4z}{(z-1)^3}$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	118

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{z}{(z-1)}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- E) non esiste

Esercizio 2.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **B)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 3. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- **B**) 0
- **C**) 2

- D) Nessuna delle altre risposte
- **E**) $\frac{1}{2}$

Esercizio 4. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) lineare e non invariante
- C) non lineare e non invariante
- **D)** non lineare e invariante

Esercizio 5. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{7}{24}$
- B) $\frac{1}{8}$
- C) nessuna delle altre risposte
- D) $\frac{1}{6}$
- **E**) 0

Esercizio 6. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f=0 non nulla.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 7. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

2

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = \mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- E) Nessuna delle altre relazioni è corretta

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	119

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) non lineare e non invariante
- B) lineare e invariante
- C) lineare e non invariante
- **D)** non lineare e invariante

Esercizio 2. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) non esiste
- B) $\frac{1}{(z-1)^2}$
- C) $\frac{z}{(z-1)^3}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- $\mathbf{E)} \ \sum_{i=1}^n z^i$

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- B) Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 4. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

A) Nessuna delle altre relazioni è corretta

- **B)** $R_x(\tau) = R_a(\tau)$
- C) $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- **D)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$

Esercizio 5. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A)** $\frac{7}{24}$
- B) nessuna delle altre risposte
- \mathbf{C}) 0
- **D**) $\frac{1}{6}$
- E) $\frac{1}{8}$

Esercizio 6. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- $\textbf{A)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- **B**) 1
- C) Nessuna delle altre risposte
- **D**) 0
- **E**) 2

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	120

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** Nessuna delle altre risposte.

Esercizio 2. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

1

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 3
- B) nessuna delle altre risposte

- **C**) 1
- **D**) 0
- **E**) $\frac{1}{2}$

Esercizio 4. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) lineare e invariante
- B) non lineare e non invariante
- C) lineare e non invariante
- **D)** non lineare e invariante

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{B)} \ \sum_{i=1}^n z^i$
- C) non esiste
- $\mathbf{D)} \ \frac{z}{(z-1)}$
- **E**) $\frac{z^2+z}{(z-1)^3}$

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ia(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- $\mathbf{B)} \ \mathcal{E}(x) = 4\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- **E)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} 1 & n \text{ pari, } n \ge 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

- **A)** 0
- $\mathbf{B}) \propto$
- C) Nessuna delle altre risposte
- **D**) 2
- **E**) $\frac{1}{2}$

Esercizio 8. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- $\mathbf B)$ la risposta all'impulso h[n]non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	121

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\frac{z}{(z-1)}$
- **B**) $\sum_{i=1}^{n} z^{i}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- **D**) $\frac{z^2+z}{(z-1)^3}$
- E) non esiste

Esercizio 2. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $\mathcal{E}(x) = \mathcal{E}(a)$
- C) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = 4\mathcal{E}(a)$

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- B) $\frac{1}{4}$
- **C**) 0
- **D**) $\frac{7}{12}$

E) $\frac{1}{3}$

Esercizio 4. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e non invariante
- B) lineare e invariante
- C) lineare e non invariante
- **D)** non lineare e invariante

Esercizio 5. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **B)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 6. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- B) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

- A) ∞
- **B**) 2
- \mathbf{C}) 0
- **D)** Nessuna delle altre risposte
- **E**) 1

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	122

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 2. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) lineare e non invariante
- B) non lineare e non invariante
- C) lineare e invariante
- **D)** non lineare e invariante

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

1

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) Nessuna delle altre risposte.

D)
$$\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$$

Esercizio 4. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- **B**) $\frac{z^2+z}{(z-1)^3}$
- C) $\sum_{i=1}^n z^i$
- **D)** non esiste
- E) $\frac{z}{(z-1)}$

Esercizio 5.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- $\mathbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)}$
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 6. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 0
- **B**) $\frac{1}{3}$
- C) nessuna delle altre risposte
- **D**) $\frac{1}{2}$
- E) $\frac{1}{6}$

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

- **A)** 0
- **B**) 2
- C) Nessuna delle altre risposte
- **D**) 1
- $\mathbf{E}) \propto$

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- C) $\mathcal{E}(x) = \mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	123

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta
- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$

Esercizio 2. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) lineare e non invariante
- C) non lineare e invariante
- D) non lineare e non invariante

Esercizio 3. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1 per n = 1 e 0 altrove, ottenendo in uscita y[n].

- **A)** 0
- B) Nessuna delle altre risposte
- \mathbf{C}) ∞
- **D**) 2

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 5. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

Esercizio 6. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{2}$
- B) $\frac{1}{3}$
- \mathbf{C}) 0
- **D)** nessuna delle altre risposte
- $\mathbf{E}) \frac{1}{6}$

Esercizio 7.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- $\mathbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)}$
- C) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

D) la risposta all'impulso h[n] non è definita

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) non esiste
- B) $\frac{z}{(z-1)}$
- C) $\frac{1}{(z-1)^2}$
- **D)** $\frac{z}{(z-1)^3}$
- $\mathbf{E)} \sum_{i=1}^{n} z^{i}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	124

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

A) Nessuna delle altre relazioni è corretta

- B) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 4\mathcal{E}(a)$

Esercizio 2. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\sum_{i=1}^n z^i$
- $\mathbf{B)} \ \frac{z}{(z-1)}$
- C) $\frac{1}{(z-1)^2}$
- D) non esiste
- **E**) $\frac{z}{(z-1)^3}$

Esercizio 3. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

1

- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 5. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A)** 0
- **B**) $\frac{1}{2}$
- **C**) 1
- D) nessuna delle altre risposte
- **E**) 3

Esercizio 6. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) lineare e non invariante
- B) non lineare e invariante
- C) lineare e invariante
- **D)** non lineare e non invariante

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

- **A)** 0
- $\mathbf{B}) \propto$
- **C**) 2
- **D)** Nessuna delle altre risposte
- **E**) 1

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	125

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{8}$
- **B**) $\frac{7}{24}$
- **C**) 0
- **D**) $\frac{1}{6}$
- E) nessuna delle altre risposte

Esercizio 2. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- **A)** $\frac{z}{(z-1)^3}$
- B) $\frac{z}{(z-1)}$
- C) $\frac{1}{(z-1)^2}$
- **D)** non esiste
- **E**) $\sum_{i=1}^n z^i$

Esercizio 3. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

1

- A) Nessuna delle altre risposte.
- B) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

C)
$$\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$$

D)
$$\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$$

Esercizio 4.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- $\mathbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)}$
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 5. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1/2 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) $\frac{1}{2}$
- **B**) 0
- \mathbf{C}) ∞
- **D**) 2
- E) Nessuna delle altre risposte

Esercizio 6. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 7. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) lineare e invariante
- **B)** non lineare e invariante
- C) lineare e non invariante

D) non lineare e non invariante

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = 2\mathcal{E}(a)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	126

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\sum_{i=1}^n z^i$
- **B**) $\frac{z^2+z}{(z-1)^3}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- D) non esiste
- $\mathbf{E)} \ \frac{z}{(z-1)}$

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1/2 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- **B**) 0
- C) $\frac{1}{2}$
- $\mathbf{D}) \propto$
- **E**) 2

Esercizio 3. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) lineare e non invariante
- B) lineare e invariante
- C) non lineare e invariante
- **D)** non lineare e non invariante

Esercizio 4.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- B) la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 5. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **D)** Nessuna delle altre risposte.

Esercizio 6. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 7. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = 4\mathcal{E}(a)$

Esercizio 8. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. $\mathbf{x}[0]$ vale:

- A) nessuna delle altre risposte
- **B**) $\frac{1}{4}$
- C) $\frac{7}{12}$
- **D**) $\frac{1}{3}$
- **E**) 0

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	127

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{6}$
- B) $\frac{1}{3}$
- C) nessuna delle altre risposte
- **D**) 0
- E) $\frac{1}{2}$

Esercizio 2. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ia(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta
- C) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 3. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

 $\textbf{A)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$

1

- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

D) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 4. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e invariante
- B) lineare e non invariante
- C) non lineare e non invariante
- **D)** lineare e invariante

Esercizio 5. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 6. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\sum_{i=1}^n z^i$
- **B**) $\frac{1}{(z-1)^2}$
- C) non esiste
- **D)** $\frac{z}{(z-1)^3}$
- E) $\frac{z}{(z-1)}$

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1 per n = 1 e 0 altrove, ottenendo in uscita y[n].

- **A**) 2
- $\mathbf{B}) \infty$
- C) Nessuna delle altre risposte
- **D**) 1
- **E**) 0

Esercizio 8. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	128

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A**) $\frac{3z^2-z^3}{(z-1)^3}$
- B) non esiste
- C) $\frac{z}{(z-1)}$
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 2. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- $\textbf{A)} \hspace{0.2cm} h[n] \hspace{0.2cm} \text{vale} \hspace{0.2cm} \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \hspace{0.2cm} \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 3. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} \frac{1}{2} & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

- A) Nessuna delle altre risposte
- **B**) 1
- \mathbf{C}) ∞

- **D**) 0
- **E**) 2

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 5. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** Nessuna delle altre risposte.

Esercizio 6. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e invariante
- B) non lineare e non invariante
- C) lineare e invariante
- **D)** lineare e non invariante

Esercizio 7. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta
- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$

Esercizio 8. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. $\mathbf{x}[0]$ vale:

- **A**) $\frac{1}{2}$
- B) nessuna delle altre risposte
- C) $\frac{1}{6}$
- **D**) 0
- **E**) $\frac{1}{3}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	129

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) lineare e invariante
- B) non lineare e invariante
- C) lineare e non invariante
- D) non lineare e non invariante

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{3}$
- **B**) $\frac{7}{12}$
- C) $\frac{1}{4}$
- **D**) 0
- E) nessuna delle altre risposte

Esercizio 3. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

1

- **A)** $\frac{z^2+z}{(z-1)^3}$
- $\mathbf{B)} \ \ \frac{z}{(z-1)}$
- C) $\sum_{i=1}^n z^i$
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- E) non esiste

Esercizio 4. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

A) Nessuna delle altre risposte.

B)
$$\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$$

C)
$$\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$$

D)
$$\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$$

Esercizio 5. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 0
- B) Nessuna delle altre risposte
- **C**) 1
- **D**) 2
- $\mathbf{E}) \infty$

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- **B)** $R_x(\tau) = R_a(\tau)$
- C) $R_x(\tau) = R_a(\tau)\cos(2\pi f_0 \tau)$
- **D)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- E) Nessuna delle altre relazioni è corretta

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

D) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 8. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- $\textbf{A)} \hspace{0.2cm} h[n] \hspace{0.2cm} \text{vale} \hspace{0.2cm} \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \hspace{0.2cm} \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	130

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- B) non esiste
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 2. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n=-\infty}^{+\infty} x(t-4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

Esercizio 3. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

1

- A) non lineare e non invariante
- B) lineare e invariante
- C) non lineare e invariante
- **D)** lineare e non invariante

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- **B)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- C) $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- **D)** $R_x(\tau) = R_a(\tau)$
- E) Nessuna delle altre relazioni è corretta

Esercizio 6.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- B) la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 7. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{3}$
- B) $\frac{1}{6}$
- **C**) 0
- **D**) $\frac{1}{2}$
- E) nessuna delle altre risposte

Esercizio 8. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} \frac{1}{2} & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 2 per n=1, 1 per n=2 e 0 altrove, ottenendo in uscita y[n].

- **A**) 1
- B) Nessuna delle altre risposte
- **C**) 0
- **D**) 2
- E) ∞

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	131

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 0
- **B**) 2
- C) Nessuna delle altre risposte
- D) $\frac{1}{2}$
- \mathbf{E}) ∞

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A)** 0
- **B**) $\frac{7}{24}$
- C) $\frac{1}{8}$
- **D**) $\frac{1}{6}$
- E) nessuna delle altre risposte

Esercizio 3. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

1

A) $\sum_{i=1}^{n} (i-1)z^{i}$

B)
$$\frac{-z^3+2z^2+z}{(z-1)^3}$$

- C) $\frac{z^2+4z}{(z-1)^3}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- E) non esiste

Esercizio 4. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- $\textbf{A)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta
- C) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** Nessuna delle altre risposte.

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

- B) Lo spettro di x(t) è a righe, con riga in f=0 non nulla.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/T$ non nulle.

Esercizio 8. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) lineare e non invariante
- B) lineare e invariante
- C) non lineare e invariante
- **D)** non lineare e non invariante

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	132

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- B) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\,1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- **B**) 2
- \mathbf{C}) ∞
- **D**) 0
- E) $\frac{1}{2}$

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A)** 0
- **B**) $\frac{1}{4}$

- C) $\frac{1}{3}$
- D) nessuna delle altre risposte
- **E**) $\frac{7}{12}$

Esercizio 4. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- B) non esiste
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- E) $\frac{z}{(z-1)}$

Esercizio 5. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **B)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$

Esercizio 7. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) lineare e non invariante
- B) non lineare e non invariante
- C) non lineare e invariante
- **D)** lineare e invariante

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = \mathcal{E}(a)$
- C) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- **E)** $\mathcal{E}(x) = 4\mathcal{E}(a)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	133

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) $\frac{7}{12}$
- **B**) $\frac{1}{3}$
- C) $\frac{1}{4}$
- **D**) 0
- E) nessuna delle altre risposte

Esercizio 2. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 3. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

1

- A) $\frac{z^2+4z}{(z-1)^3}$
- **B**) $\frac{z}{(z-1)}$
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- D) non esiste

E)
$$\frac{-z^3+2z^2+z}{(z-1)^3}$$

Esercizio 4. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- **A)** $\mathcal{E}(x) = \mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 5. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **D)** Nessuna delle altre risposte.

Esercizio 6. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 7. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) lineare e non invariante
- C) non lineare e invariante
- **D)** non lineare e non invariante

Esercizio 8. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\,1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- **B**) 0
- **C**) 2
- **D**) $\frac{1}{2}$
- E) Nessuna delle altre risposte

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	134

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\frac{z}{(z-1)^3}$
- B) non esiste
- C) $\frac{z}{(z-1)}$
- $\mathbf{D}) \sum_{i=1}^{n} z^{i}$
- **E**) $\frac{1}{(z-1)^2}$

Esercizio 2. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 3. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

1

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- B) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta

- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 4\mathcal{E}(a)$

Esercizio 4. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) $\frac{1}{4}$
- **B**) $\frac{1}{3}$
- C) $\frac{7}{12}$
- D) nessuna delle altre risposte
- **E**) 0

Esercizio 5. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- $\mathbf{A}) \infty$
- B) Nessuna delle altre risposte
- **C**) 1
- **D**) 0
- **E**) 2

Esercizio 6. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) non lineare e invariante
- C) lineare e non invariante
- **D)** non lineare e non invariante

Esercizio 7.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- B) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 8. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe equispaziate di 1/T.
- B) Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe, con riga in f=0 non nulla.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	135

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 2.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- B) h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{6}$
- **B)** nessuna delle altre risposte
- \mathbf{C}) 0

- **D**) $\frac{1}{8}$
- **E**) $\frac{7}{24}$

Esercizio 4. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 5. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) lineare e invariante
- C) non lineare e invariante
- **D)** lineare e non invariante

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta
- C) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = \mathcal{E}(a)$

Esercizio 7. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\sum_{i=1}^n z^i$
- B) non esiste
- C) $\frac{z^2+z}{(z-1)^3}$
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{E)} \ \ \frac{z}{(z-1)}$

Esercizio 8. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 2
- $\mathbf{B}) \propto$
- **C**) 0
- **D**) 1
- E) Nessuna delle altre risposte

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	136

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) $\frac{z}{(z-1)}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- E) non esiste

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 2
- **B**) 0
- C) Nessuna delle altre risposte
- **D**) 1
- $\mathbf{E}) \propto$

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{4}}{1 - 4z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) 0
- **B**) $\frac{1}{3}$

- C) nessuna delle altre risposte
- **D**) $\frac{1}{4}$
- **E**) $\frac{7}{12}$

Esercizio 4. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- B) Nessuna delle altre relazioni è corretta
- C) $R_x(\tau) = R_a(\tau)$
- **D)** $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$
- **E)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$

Esercizio 5. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) lineare e non invariante
- C) non lineare e non invariante
- **D)** non lineare e invariante

Esercizio 6. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 7. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

C) Nessuna delle altre risposte.

D)
$$\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$$

Esercizio 8. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- $\textbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$
- $\textbf{C)} \hspace{0.2cm} h[n] \hspace{0.2cm} \text{vale} \hspace{0.2cm} \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \hspace{0.2cm} \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- $\mathbf{D})$ la risposta all'impulso h[n]non è definita

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	137

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{6}$
- B) nessuna delle altre risposte
- **C**) 0
- **D**) $\frac{1}{2}$
- **E**) $\frac{1}{3}$

Esercizio 2. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- B) Nessuna delle altre relazioni è corretta
- C) $R_x(\tau) = R_a(\tau)\cos(2\pi f_0\tau)$
- **D)** $R_x(\tau) = R_a(\tau)$
- **E)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$

Esercizio 3. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) non esiste
- B) $\frac{z^2+z}{(z-1)^3}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$

- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- E) $\sum_{i=1}^n z^i$

Esercizio 4. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 5. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **D)** Nessuna delle altre risposte.

Esercizio 6. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\,1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 2
- B) Nessuna delle altre risposte
- **C**) 0
- **D**) $\frac{1}{2}$
- \mathbf{E}) ∞

Esercizio 7. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

2

A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/2T$ nulle.

Esercizio 8. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) lineare e invariante
- C) lineare e non invariante
- **D)** non lineare e invariante

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	138

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1/2 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- **B**) 0
- **C**) 2
- D) $\frac{1}{2}$
- E) Nessuna delle altre risposte

Esercizio 3. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) lineare e invariante
- C) non lineare e invariante

Esercizio 4. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{3}$
- **B**) $\frac{1}{2}$
- C) $\frac{1}{6}$
- **D**) 0
- E) nessuna delle altre risposte

Esercizio 5. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau)\cos(2\pi f_0\tau)$
- B) Nessuna delle altre relazioni è corretta
- C) $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- **D)** $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = R_a(\tau)$

Esercizio 7. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{B}) \sum_{i=1}^{n} z^{i}$
- C) $\frac{z}{(z-1)}$
- **D**) $\frac{z^2+z}{(z-1)^3}$
- E) non esiste

Esercizio 8. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe, con riga in f=0 non nulla.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	139

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) non esiste
- $\mathbf{B)} \ \ \frac{z}{(z-1)}$
- C) $\sum_{i=1}^n z^i$
- **D**) $\frac{z}{(z-1)^3}$
- **E**) $\frac{1}{(z-1)^2}$

Esercizio 2. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 3. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **B)** la risposta all'impulso h[n] non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

1

D) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- **B**) 1
- **C**) 0
- **D**) 2
- $\mathbf{E}) \infty$

Esercizio 5. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) non lineare e invariante
- B) non lineare e non invariante
- C) lineare e non invariante
- **D)** lineare e invariante

Esercizio 6. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- B) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 7. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A)** 0
- B) nessuna delle altre risposte
- C) $\frac{7}{24}$
- **D**) $\frac{1}{8}$
- **E**) $\frac{1}{6}$

Esercizio 8. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- B) Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f=\pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	140

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 2. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) non lineare e invariante
- B) lineare e invariante
- C) lineare e non invariante
- **D)** non lineare e non invariante

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

1

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{6}$
- **B**) 0
- C) $\frac{7}{24}$
- **D**) $\frac{1}{8}$
- E) nessuna delle altre risposte

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\,1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- **B**) 2
- **C**) 0
- $\mathbf{D}) \propto$
- **E**) $\frac{1}{2}$

Esercizio 5. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **B)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 6. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 7. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

A)
$$\frac{3z^2-z^3}{(z-1)^3}$$

- $\mathbf{B}) \sum_{i=1}^{n} z^{i}$
- C) non esiste
- $\mathbf{D)} \ \frac{z}{(z-1)}$
- **E**) $\frac{z^2+z}{(z-1)^3}$

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau)$
- **B)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- C) $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$
- **D)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- E) Nessuna delle altre relazioni è corretta

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	141

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\sum_{i=1}^n z^i$
- **B**) $\frac{z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- D) non esiste
- **E**) $\frac{1}{(z-1)^2}$

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{2}$
- B) nessuna delle altre risposte
- \mathbf{C}) 0
- D) $\frac{1}{6}$
- E) $\frac{1}{3}$

Esercizio 3. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- B) Nessuna delle altre risposte

- **C**) 0
- **D**) 2
- **E**) $\frac{1}{2}$

Esercizio 4. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) lineare e non invariante
- C) non lineare e invariante
- **D)** lineare e invariante

Esercizio 5. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 6. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- $\textbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 7. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** Nessuna delle altre risposte.

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **E)** $\mathcal{E}(x) = 4\mathcal{E}(a)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	142

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- **B)** h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 2. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{z}{(z-1)}$
- B) non esiste
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

1

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{6}$
- **B**) $\frac{1}{8}$
- ${f C}$) nessuna delle altre risposte
- **D**) $\frac{7}{24}$

Esercizio 4. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n=0, 1 per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A**) 2
- $\mathbf{B}) \propto$
- **C**) 1
- **D**) 0
- E) Nessuna delle altre risposte

Esercizio 5. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- A) $R_x(\tau) = R_a(\tau)$
- **B)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- **E)** $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$

Esercizio 6. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e non invariante
- B) lineare e non invariante
- C) non lineare e invariante
- **D)** lineare e invariante

Esercizio 7. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

2

- **A)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- B) Nessuna delle altre risposte.
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

Esercizio 8. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f=0 non nulla.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	143

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) $\frac{1}{2}$
- **B**) 3
- C) nessuna delle altre risposte
- **D**) 1
- **E**) 0

Esercizio 2. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) Nessuna delle altre relazioni è corretta
- **B)** $\mathcal{E}(x) = \mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

1

A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

- B) Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 4. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t)\cos(2\pi f_0 t)$$

- A) non lineare e non invariante
- B) non lineare e invariante
- C) lineare e invariante
- **D)** lineare e non invariante

Esercizio 5. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) la risposta all'impulso h[n] non è definita
- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- $\mathbf{D)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] \ \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 7. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\frac{z}{(z-1)}$
- $\mathbf{B}) \sum_{i=1}^{n} z^{i}$
- C) non esiste
- **D**) $\frac{z}{(z-1)^3}$
- **E**) $\frac{1}{(z-1)^2}$

Esercizio 8. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\,1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- $\mathbf{B}) \propto$
- C) $\frac{1}{2}$
- **D**) 2
- **E**) 0

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	144

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) non esiste
- **B**) $\frac{z^2+4z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- E) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 2. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **D)** Nessuna delle altre risposte.

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

1

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 4. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- $\mathbf{B)} \ \mathcal{E}(x) = 0.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta
- **E)** $\mathcal{E}(x) = 2\mathcal{E}(a)$

Esercizio 5. (Punti 1.)Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = 4 + e^{x(t)}$$

- A) lineare e invariante
- B) lineare e non invariante
- C) non lineare e invariante
- D) non lineare e non invariante

Esercizio 6. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{6}$
- **B**) $\frac{1}{3}$
- \mathbf{C}) 0
- **D)** nessuna delle altre risposte
- E) $\frac{1}{2}$

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- **A)** 0
- **B**) $\frac{1}{2}$
- C) Nessuna delle altre risposte
- $\mathbf{D}) \infty$
- **E**) 2

Esercizio 8. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{1 - z^{-5}}{1 - z^{-1}}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- $\mathbf B)$ la risposta all'impulso h[n]non è definita
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- $\textbf{D)} \hspace{0.2cm} h[n] \hspace{0.2cm} \text{vale} \hspace{0.2cm} \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \hspace{0.2cm} \text{definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	145

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

(Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^4 - z^3}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- **B)** h[n] vale $\delta[n] + 2\delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** la risposta all'impulso h[n] non è definita

Esercizio 2. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A)** 0
- B) $\frac{1}{2}$
- C) nessuna delle altre risposte
- **D**) 3
- **E**) 1

Esercizio 3. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

1

A) Lo spettro di x(t) è a righe equispaziate di 1/T.

- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 4. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\frac{z}{(z-1)}$
- B) non esiste
- C) $\frac{z^2+z}{(z-1)^3}$
- $\mathbf{D}) \sum_{i=1}^{n} z^{i}$
- **E**) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 5. (Punti 1.) Un segnale numerico

$$x[n] = \left\{ \begin{array}{ll} 1 & n \text{ pari, } n \ge 0 \\ 0 & \text{altrove} \end{array} \right.$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- **B**) 2
- C) $\frac{1}{2}$
- D) Nessuna delle altre risposte
- **E**) 0

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) Nessuna delle altre risposte.
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 7. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau)$
- **B)** $R_x(\tau) = R_a(\tau) \cos(2\pi f_0 \tau)$

- C) $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- **D)** $R_x(\tau) = 0.5 R_a(\tau) \cos(2\pi f_0 \tau)$
- E) Nessuna delle altre relazioni è corretta

Esercizio 8. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e non invariante
- B) lineare e non invariante
- C) non lineare e invariante
- **D)** lineare e invariante

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	146

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) lineare e invariante
- B) lineare e non invariante
- C) non lineare e non invariante
- **D)** non lineare e invariante

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per $n=0,\,1/2$ per n=1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- **B**) 2
- \mathbf{C}) ∞
- **D**) 0
- E) $\frac{1}{2}$

Esercizio 3. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- **B**) 0
- C) $\frac{7}{24}$

- D) $\frac{1}{8}$
- **E**) $\frac{1}{6}$

Esercizio 4. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- C) Nessuna delle altre relazioni è corretta
- **D)** $\mathcal{E}(x) = 2\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$

Esercizio 5. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\frac{z^2+4z}{(z-1)^3}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{z}{(z-1)}$
- D) non esiste
- **E**) $\frac{-z^3+2z^2+z}{(z-1)^3}$

Esercizio 6. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- C) $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **D)** Nessuna delle altre risposte.

Esercizio 7. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^4 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- B) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) h[n] vale $\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)

Esercizio 8. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/T$ non nulle.
- B) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con riga in f=0 non nulla.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	147

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

A) Nessuna delle altre risposte.

- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$
- C) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **D)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ pari, } n \ge 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- B) Nessuna delle altre risposte
- \mathbf{C}) 0
- **D**) $\frac{1}{2}$
- **E**) 2

Esercizio 3. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

1

di un filtro causale, è vera la seguente affermazione:

 $\mathbf{A})$ la risposta all'impulso h[n]non è definita

- B) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro con risposta all'impulso finita (FIR)

Esercizio 4. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - 5z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{6}$
- **B**) $\frac{1}{2}$
- C) $\frac{1}{3}$
- **D**) 0
- E) nessuna delle altre risposte

Esercizio 5. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 6. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = x(t) + \cos(2\pi f_0 t)$$

- A) lineare e invariante
- B) non lineare e invariante
- C) lineare e non invariante
- **D)** non lineare e non invariante

Esercizio 7. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- **B)** $\mathcal{E}(x) = 2.5\mathcal{E}(a)$
- C) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- D) Nessuna delle altre relazioni è corretta

E) $\mathcal{E}(x) = 2\mathcal{E}(a)$

Esercizio 8. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- **B**) $\frac{z^2+4z}{(z-1)^3}$
- C) non esiste
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- $\mathbf{E)} \ \frac{z}{(z-1)}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	148

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 2. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} 1 & n \text{ dispari, } n > 0 \\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 1 per n = 1 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) Nessuna delle altre risposte
- $\mathbf{B}) \infty$
- **C**) 1
- **D**) 0
- **E**) 2

Esercizio 3. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{z}{(z-1)}$
- B) non esiste

- C) $\frac{z^2+4z}{(z-1)^3}$
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- E) $\frac{-z^3+2z^2+z}{(z-1)^3}$

Esercizio 4. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- **A)** la risposta all'impulso h[n] non è definita
- $\textbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$
- C) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)

Esercizio 5. (Punti 1.5) Si consideri un segnale x(t) = 2 - |t| per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- A) $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- **B)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- C) Nessuna delle altre risposte.
- **D)** $\sum_{i=0}^{+\infty} 1/(2i+1)^4 = \pi^2/96$

Esercizio 6. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{6}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{8}}{1 - 2z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- A) nessuna delle altre risposte
- B) $\frac{1}{8}$
- C) $\frac{7}{24}$
- **D**) $\frac{1}{6}$
- **E**) 0

Esercizio 7. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e invariante
- B) non lineare e non invariante
- C) lineare e invariante
- **D)** lineare e non invariante

Esercizio 8. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = a(t)\cos(2\pi f_0 t) + a(t)\sin(2\pi f_0 t)$$

 $con f_0 > 2B_a.$

Indicando con $R_x(\tau)$ la funzione di autocorrelazione di x(t) e con $R_a(\tau)$ la funzione di autocorrelazione di a(t), dire quale delle seguenti relazioni è corretta:

- **A)** $R_x(\tau) = R_a(\tau)\cos(2\pi f_0\tau)$
- **B)** $R_x(\tau) = R_a(\tau) \sin(2\pi f_0 \tau)$
- C) $R_x(\tau) = R_a(\tau)$
- **D)** $R_x(\tau) = 0.5R_a(\tau)\cos(2\pi f_0\tau)$
- E) Nessuna delle altre relazioni è corretta

28 Agosto 2008

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	149

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri la sequenza x[n] non causale la cui trasformata z vale

$$X(z) = \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{2}}{1 - 3z^{-1}}$$

e per la quale la regione di convergenza include il cerchio di raggio unitario. x[0] vale:

- **A**) $\frac{1}{2}$
- **B**) 3
- **C**) 0
- D) nessuna delle altre risposte
- **E**) 1

Esercizio 2. (Punti 1.5) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 3. (Punti 1.) Si consideri un segnale a(t) ad energia finita con spettro A(f) nullo per $|f| > B_a$ ed il segnale

$$x(t) = 2a(t)\cos(2\pi f_0 t) + ja(t)\sin(2\pi f_0 t)$$

con $f_0 > 2B_a$.

Dire quale delle seguenti relazioni è corretta:

- A) $\mathcal{E}(x) = 4\mathcal{E}(a)$
- B) Nessuna delle altre relazioni è corretta

- C) $\mathcal{E}(x) = 2\mathcal{E}(a)$
- **D)** $\mathcal{E}(x) = 0.5\mathcal{E}(a)$
- E) $\mathcal{E}(x) = 2.5\mathcal{E}(a)$

Esercizio 4. (Punti 1.) Discutere linearità e invarianza temporale del sistema specificato dalla seguente relazione tra entrata e uscita:

$$y(t) = tx(t) + x^2(t)$$

- A) non lineare e non invariante
- B) non lineare e invariante
- C) lineare e invariante
- **D)** lineare e non invariante

Esercizio 5. (Punti 1.5) Si consideri un segnale x(t) = 1 - |t|/2 per $|t| \le 2$ e nullo altrove e la sua versione periodica

$$\overline{x}(t) = \sum_{n = -\infty}^{+\infty} x(t - 4n)$$

Utilizzando la formula di Poisson che lega $\overline{x}(t)$ ai campioni dello spettro di x(t), cioè a X(i/4), è possibile dimostrare che

- **A)** $\sum_{i=1}^{+\infty} 1/i^2 = \pi^2/6$
- **B)** $\sum_{i=0}^{+\infty} 1/(2i+1)^2 = \pi^2/8$
- C) $\sum_{i=1}^{+\infty} 1/i^4 = \pi^2/90$
- **D)** Nessuna delle altre risposte.

Esercizio 6. (Punti 1.5) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{z^2+4z}{(z-1)^3}$
- B) non esiste
- **C**) $\sum_{i=1}^{n} (i-1)z^{i}$
- D) $\frac{z}{(z-1)}$
- **E**) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 7. (Punti 1.) Un segnale numerico

$$x[n] = \begin{cases} \frac{1}{2} & n \text{ dispari, } n > 0\\ 0 & \text{altrove} \end{cases}$$

viene filtrato da un filtro FIR che ha risposta all'impulso h[n] che vale 1 per n = 0, 2 per n = 1, 1 per n = 2 e 0 altrove, ottenendo in uscita y[n].

Il limite per $n \to \infty$ di y[n] vale

- A) ∞
- **B**) 2
- **C**) 1
- **D)** Nessuna delle altre risposte
- **E**) 0

Esercizio 8. (Punti 1.) Data la funzione di trasferimento:

$$H(z) = \frac{z^5 - 1}{z^5 - z^4}$$

di un filtro causale, è vera la seguente affermazione:

- A) h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2]$ definisce un filtro non ricorsivo con risposta all'impulso finita (FIR)
- $\mathbf{B)} \ \ h[n] \ \text{vale} \ \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] \ \text{definisce un filtro con risposta all'impulso finita (FIR)}$
- C) la risposta all'impulso h[n] non è definita
- **D)** h[n] vale $\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$ definisce un filtro ricorsivo con risposta all'impulso infinita (IIR)