Tehnici de Optimizare

Facultatea de Matematica si Informatica Universitatea Bucuresti

Department Informatica-2021

Tehnici de Optimizare

- Curs + seminar/laborator;
- Vom folosi platforma Teams pentru toate orele
- Modul de evaluare va fi prezentat in cursul viitor
- Materiale pe Moodle si Teams

Optimizare

 Regasim actul de "optimizare" in multe dintre domeniile fundamentale si chiar actiunile umane (constiente sau inconstiente)

- Scurta lista de aplicatii:
 - Minimizarea riscului (e.g. invatarea automata)
 - Prelucrarea imaginilor (e.g. eliminare zgomot, tomografie)
 - Alocare de resurse
 - Detectie de anomalii

Predictie (Regresie)

Andrew doreste sa aprecieze (prin rating) un hypermarket (e.g. Lidl) inspirandu-se din experienta colegilor sai.

	Market	Alex	Paul		Andrew
x^1	Cora	1.5	2	2	(y_1)
x^{z}	Carrefour	3	1	1.5	(y_2)
x^t	Lidl	4	2		?

Bazat pe rating-urile precedente x^1, x^2 ale lui Paul si Alex si pe propriile aprecieri ale acestora, se doreste predictia rating-ului lui Andrew pentru magazinul Lidl in acest context.

Predictie (Regresie)

Aproximam ipoteza h cu o **functie liniara**:

$$h(x) \coloneqq h_{\theta}(x) = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

unde θ reprezinta vectorul parametrilor.

Modelele de regresie liniara se reduc la gasirea parametrilor optimali care minimizeaza eroarea dintre valoarea functiei-decizie h(x) si valorile de iesire reale y_i :

$$\min_{\theta} \frac{1}{2m} \sum_{i=0}^{\infty} \left(h_{\theta}(x^{i}) - y_{i} \right)^{2} = \min_{\theta} \frac{1}{2m} \|X\theta - y\|_{2}^{2} \left(||Ax-b||^{2} \right)$$

- Ce putem spune despre vectorul optim de parametri? $X^T(X\theta y) = 0 \Rightarrow \theta^* = (X^TX)^{-1}X^Ty$
- Accesibil pentru dimensiuni mari?

Support Vector Machine

ps://towardsdatascience.com/support-vector-machine-vs-logistic-regression-94cc2975433f

Hiperplan:

- In 2D este o dreapta
- In 3D este un plan
- In nD, o multime de forma: $H = \{x \in R^n : w^T x = b\}$

Separare:

- Daca $w^T x < b$ atunci x se afla in clasa 1
- Daca $w^T x > b$ atunci x se afla in clasa 2

Problema: Se da setul de date compus din exemple ale celor doua clase. Determinati hiperplanul care da *cea mai ferma separare* intre doua clase.

Support Vector Machine

$$\min_{w,b} ||w||^{2}$$
s. t. $y_{i}(w^{T}x_{i} - b) \ge 1$ $i = 1, ..., m$

- y_i reprezinta etichetele exemplului x_i ; w si b reprezinta variabilele de cautare
- Pentru m mare, avem un numar mare de constrangeri
- Functie de minimizat se numeste cost sau functie obiectiv
- Relatiile la care se supun variabilele de cautare se numesc **constrangeri** (sau restrictii) si formeaza **multimea fezabila**

Detectie anomalii

Intr-un set dat de tranzactii financiare, se realizeaza detectia transferurilor anormale de bani intr-un grup limitat de client.

Source Client	Destination Client	Amount	Date
A	В	200000	01.01.2020
Z	F	1050	02.01.2020
В	A	200000	07.01.2020
M	F	50	02.01.2020
A	В	700000	01.01.2020
N	W	70	01.01.2020
В	A	700000	07.01.2020

In contextul transactional dat, transferurile dintre clientii A si B devin **suspecte de frauda** datorita circuitului inainte-inapoi si, de asemenea, sumelor mari.

Problema: Fie setul de date $\{x^i\}$, care contine colectia de tranzactii, sa se evidentieze (ne) supervizat tranzactiile suspecte.

SVDD (Support Vector Data Description)

Tehnica pentru clasificare cu o singura clasa (one-class classification):

$$\min_{c,R} R^2 + sum(z)$$
s.t. $||x^i - c|| \le R + z_i \ i = 1, ... 7$

Normal: $||x^j - c|| < R$

Anormal: $||x^j - c|| > R$

Problema determina centrul si raza unei (hiper)sfere cu frontiera in jurul **majoritatii** datelor.

Exemplele ramase in afara sferei (outliers) se considera anomalii.

Filtrare de semnal (Signal denoising)

Procesele ingineresti implica achizitia/prelucrarea si comunicatia semnalelor.

La achizitie/comunicatie apar modificari nedorite ale semnalelor (zgomot).

Problema: Modelati problema si "filtrati" semnalul pentru a elimina zgomotul (ne)gaussian.

Filtrare de semnal (Signal denoising)

$$\min_{Y \in \mathbb{R}^{m \times n}} \frac{1}{2} \|Y - X\|^2 + TV(Y)$$

TV = "total variation" functie cuantificare variatiei totala

► $TV(y) = \sum_{i,j} |y_{i+1,j} - y_{i,j}| + |y_{i,j+1} - y_{i,j}|$; Rezultate (noisy image/denoised image):

Optimizare matematica

$$\min_{x} f(x)$$
s. t. $g_1(x) \le 0, ..., g_m(x) \le 0,$
 $h_1(x) = 0, ..., h_p(x) = 0$

- Functie de minimizat f se numeste cost sau functie obiectiv
- Functiile g_i , h_i definesc constrangerile (restrictiile). Q reprezinta multimea punctelor ce satisfac constrangerile (i.e. **multimea fezabila**)
- Domeniul optimizarii isi propune analiza si rezolvarea de modele de optimizare cu ajutorul algoritmilor iterativi
- Evident, este necesara o intelegere a notiunilor de baza folosite pentru analiza; deci reamintim diferentiabilitate, gradient, Hessiana
- Rezolvarea modelelor generice este extrem de dificila!

Optimizare matematica

- ▶ Punctul $x^* \in \mathbb{R}^n$ este un *punct de minim global* (adesea denumit *minim global*) daca si numai daca $x^* \in X$ si $f(x^*) \leq f(x)$ oricare ar fi $x \in X$.
- ▶ Punctul $x^* \in \mathbb{R}^n$ este *minim local* daca si numai daca $x^* \in X$. si exista o vecinatate \mathcal{N} a lui x^* (e.g. o bila deschisa cu centrul în x^*) astfel încât $f(x^*) \leq f(x)$ oricare ar fi $x \in X \cap \mathcal{N}$.

Optimizare matematica

O functie $f: \mathbb{R}^n \to \mathbb{R}$ de n variabile este diferentiabila in punctul x daca exista $a \in \mathbb{R}^n$ astfel incat, pentru orice $d \in \mathbb{R}^n$:

$$f(x+d) = f(x) + a^{T}d + o(d),$$

$$o(r)este \ o \ functie \ de \ r \ge 0 \ ast felincat \lim_{r \to 0} \frac{o(r)}{r} = 0 \ si \ o(0) = 0.$$

Gradientul functiei
$$f$$
 in x : $\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$

$$Matricea\ Hessiana\ functiei\ f\ in\ x:\ \nabla^2 f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1 \partial x_1} & \cdots & \frac{\partial f(x)}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(x)}{\partial x_n \partial x_1} & \cdots & \frac{\partial f(x)}{\partial x_n \partial x_n} \end{bmatrix}$$

Exemple

Functia liniara:
$$f(x) = a^T x + b = \sum a_i x_i + b$$
;
Exemplu: $f(x_1, x_2) = x_1 + x_2$, deci in acest caz $\nabla f(x) = [1 \ 1]^T$;

In general, $\nabla f(x) = a$, $\nabla^2 f(x) = 0$.

Functia patratica:
$$f(x) = \frac{1}{2}x^THx + a^Tx + b$$

Exemplu:
$$f(x_1, x_2) = 0.5(x_1^2 + x_2^2) = \frac{1}{2} [x_1 \ x_2] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix};$$

In general,
$$\nabla f(x) = Hx + a$$
, $\nabla^2 f(x) = H$

In cadrul cursului vom utiliza urmatoarele notatii:

Vectori (considerati intotdeauna vector coloana) cu litere mici,

i.e.
$$x \in \mathbb{R}^n$$
, $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$

Alte notatii

- Produs scalar in spatiul Euclidian: $\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$
- Norma Euclidiana standard $||x|| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + \dots + x_n^2}$
- Multimi cu litere mari: $S, Q, U \subseteq \mathbb{R}^n$ (\mathbb{R}^n_+ orthantul nenegativ, S^n_+ multimea matricelor pozitiv semidefinite)
- Matrice cu litere mari: $A, B, C, H \in \mathbb{R}^{n \times m}$
- Norma spectrala a unei matrici $||A|| = \sqrt{\lambda_{max}(A^TA)}$
- Matrice pozitiv definita: $A \succ 0$, si pozitiv semidefinita $A \succeq 0$