CSE 401

Computer Engineering (2)

هندسة الحاسبات (2)

4th year, Comm. Engineering
Winter 2016
Lecture #9

Dr. Hazem Ibrahim Shehata Dept. of Computer & Systems Engineering

Credits to Dr. Ahmed Abdul-Monem Ahmed for the slides

Adminstrivia

- Assignment #2:
 - —Due: Wednesday, April 13, 2016.
- Midterm:
 - —Date: Thursday, April 21, 2014
 - —Time: 10:30am 12:00pm
 - —Location: classroom #27321 (قاعة 44)
 - —Coverage: lectures #1 → #7

Website: http://hshehata.github.io/courses/zu/cse401/ Office hours: Monday 11:30am – 12:30pm

Chapter 10. Computer Arithmetic (Cont.)

Outline

- Integer Representation
 - -Sign-Magnitude, Two's Complement, Biased
- Integer Arithmetic
 - —Negation, Addition, Subtraction
 - -Multiplication, Division
- Floating-Point Representation
 - —IEEE 754
- Floating-Point Arithmetic
 - —Addition, Subtraction
 - —Multiplication, Division
 - —Rounding

Multiplication Example

Partial products

Product (143)

Complex (relative to addition)!!

1 → add & shift

0 → shift only

- Work out a partial product for each digit.
- Shift the partial product appropriately.
- Add partial products.
- Generate double-length result.

Unsigned Binary Multiplication

Execution of Example

Signed Binary Multiplication

- The straight forward multiplication algorithm doesn't work with signed numbers!!
- Evidence: In the previous example, suppose that M & Q are interpreted as signed numbers:
 - $M = (1011)_2$ which represents $(-5)_{10}$
 - $Q = (1101)_2$ which represents $(-3)_{10}$
 - Applying the algorithm results in a product value of $(1000\ 1111)_2$ which represents $(-113)_{10}$
 - This result is wrong! Correct value is supposed to be (+15)₁₀!!!!

Signed Multiplication Example: +ve Multiplier, -ve Multiplicand

Signed Multiplication Algorithm #1

- 1. If multiplier → +ve & multiplicand → +ve:
 - Follow unsigned multiplication algorithm
- 2. Else if multiplier → +ve & multiplicand → -ve:
 - Follow unsigned mult. algorithm with 2 changes:
 - a. Set the carry register (C) to 1 after first addition.
 - b. Use "arithmetic shift" instead of "logical shift", while considering C to be the sign bit!
- 3. Else if multiplier → -ve & multiplicand → +ve:
 - ➤ Negate (find 2's compl. of) multiplier & multiplicand.
 - Proceed as case 2.
- 4. Else multiplier → -ve & multiplicand → -ve:
 - Negate (find 2's compl. of) multiplier & multiplicand.
 - Proceed as case 1.

Signed Multiplication Algorithm #2

- 1. Convert multiplicand (M) & multiplier (Q) to their absolute (positive) values |M| & |Q|.
- 2. Run the unsigned multiplication algorithm on |M| & |Q| to obtain the final product (P).
- 3. Adjust the sign of P (by 2's complementation where needed) according to the following rule:
 - \triangleright sign(P) = sign(M) X sign(Q)

Signed Multiplication Algorithm #3 (Booth's Algorithm)

Booth's Algorithm – Example

0

Booth's Algorithm – Rule

Mul	tiplier	Version of multiplicand
Bit i	Bit i-1	selected by bit i
0	0	0 × M
0	1	+1 × M
1	0	-1 × M
1	1	0 × M

Booth's Algorithm Flowchart

Example on Booth's Algorithm

Booth's Algorithm, -ve Multiplier

Booth's Algorithm - Cases

Worst-case Multiplier	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	+1	-1	+1	-1	+1	-1	+1	-1	+1	-1	+1	-1	+1	-1	+1	-1
Ordinary Multiplier	1	1	0	0	0	1	0	1	1	0	1	1	1	1	0	0
	0	-1	0	0	+1	-1	+1	0	- 1	+1	0	0	0	-1	0	0
Good Multiplier	0	0	0	1	1	1	1	1	0	0	0	0	0	1	1	1
	0	0	+1	0	0	0	0	- 1	0	0	0	0	+1	0	0	-1

Booth's Algorithm – Pros:

- Treats +ve and -ve multipliers uniformly.
- Use fewer additions if the multiplier has large blocks of 1's.
- On average, has the same efficiency as the normal algorithm.

Division

- More complex than multiplication.
- Negative numbers are really bad!
- Based on long division.

Non-Restoring Division Example

<u>7/3</u>

Dealing with Signed Integers

- Given a dividend (D) and divisor (V) where both are signed integers in the 2's complement representation.
- Division can be carried out as follows:
 - 1. Convert D & V to their absolute (+ve) values |D| & |V|.
 - 2. Run either restoring or non-restoring division on |D| & |V| to obtain the quotient (Q) and the remainder (R).
 - 3. Adjust the sign of Q and R (by 2's complementation where needed) according to the following rules:
 - sign(Q) = sign(D) X sign(V)
 - \triangleright sign(R) = sign(D)

Reading Material

- Stallings, Chapter 10:
 - —Pages 331 341