(i)
$$29 = 5.5 + 4$$
, $5 = 1.5 + 0$, $1 = 0.5 + 1$
 $29 = (104)_{5}$

(ii)
$$3 = 14.5 + 3$$
, $14 = 2.5 + 4$, $2 = 0.5 + 2$
 $3 = (2.4.3)_5$

1.5.1 Let
$$A = \begin{bmatrix} 3 & -2 & 5 \\ 2 & 1 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}$ of $C = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & -1 \\ 2 & 0 & 8 \end{bmatrix}$.

(a)
$$a_{12} = -2$$
, $a_{22} = 1$ and $a_{23} = 2$.

(b)
$$b_{ij} = 3$$
 and $b_{3i} = 4$.

(c)
$$c_{13} = 4$$
, $c_{23} = -1$ and $c_{33} = 8$.

1.5.5
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 1 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 1 & 2 \\ 2 & 3 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -2 & 3 \\ 4 & 2 & 5 \\ 3 & 1 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} -3 & 2 \\ 4 & 1 \end{bmatrix},$$

$$E = \begin{bmatrix} 3 & 2 & -1 \\ 5 & 4 & -3 \\ 0 & 1 & 2 \end{bmatrix} \quad \text{and} \quad F = \begin{bmatrix} -2 & 3 \\ 4 & 5 \end{bmatrix}.$$

(a) C+E=
$$\begin{bmatrix} 1 & -2 & 3 \\ 4 & 2 & 5 \\ 3 & 1 & 2 \end{bmatrix}$$
 + $\begin{bmatrix} 3 & 2 & -1 \\ 5 & 4 & -3 \\ 0 & 1 & 2 \end{bmatrix}$ = $\begin{bmatrix} 4 & 0 & 2 \\ 9 & 6 & 2 \\ 3 & 2 & 4 \end{bmatrix}$.

(b)
$$AB = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 2 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 7 & 13 \\ -3 & 0 \end{bmatrix}$$

(C) CB+F: Note that C is 3×3 and B is 3×1 , so CB is 1×3 . Since F is 2×2 the sum CB+F isn't defined.

1.5.9 (a)
$$A^{T}(D+F) = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 1 & -2 \end{bmatrix}^{T} \left(\begin{bmatrix} -3 & 2 \\ 4 & 1 \end{bmatrix} + \begin{bmatrix} -2 & 3 \\ 4 & 5 \end{bmatrix} \right) = \begin{bmatrix} 2 & 4 \\ 1 & 1 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} -5 & 5 \\ 8 & 6 \end{bmatrix} = \begin{bmatrix} 22 & 34 \\ 3 & 11 \\ -31 & 3 \end{bmatrix}.$$

(b)
$$(BC)^T$$
: Since B is 3×2 and C is 3×3 , then BC is not defined.

 $C^T B^T$: Since C^T is 3×3 and B^T is 2×3 , then $C^T B^T$ is not defined.

$$(C) \quad (\mathcal{D}^{\mathsf{T}} + A) \ C \quad = \quad \left(\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 2 & 1 & 3 \\ 4 & 1 & -2 \end{bmatrix} \right) \begin{bmatrix} 1 & -2 & 3 \\ 4 & 2 & 5 \\ 3 & 1 & 2 \end{bmatrix} \ = \begin{bmatrix} 2 & 2 & 5 \\ 5 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 3 \\ 4 & 2 & 5 \\ 3 & 1 & 2 \end{bmatrix} \ = \begin{bmatrix} 25 & 5 & 26 \\ 20 & -3 & 32 \end{bmatrix} .$$

(d)
$$(\mathcal{D}^T + E)F : \mathcal{D}^T + E$$
 is not defined, as \mathcal{D}^T is 2×2 and E is 3×3 .

Compute AVB, AAB and AOB.

(a)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$.

$$A \vee B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$A \wedge B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$A \wedge B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.

$$A \vee B = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$A \wedge B = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$A \otimes B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

(c)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$.
 $A \lor B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$, $A \lor B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$, $A \circlearrowleft B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$.

1.5.33 Let $F = [f_{ij}]$ be a pxq matrix.

(d) Upper right corner:
$$f_{1q}$$
(c) Generic element in row r of f^T : f_{ir}

1.6.4 Determine closure wrt. operation.

For Boolean materices A and B, then AAB again Boolean, so the structure is closed with meet.

We see that 2+2=4 isn't prime, so the structure isn't closed under addition.

1.6.6 (a) Show that " is associative.

$$(Q \square Q) \square Q = Q \square Q = Q \square (Q \square Q)$$
 $(Q \square | P | = | \square | = Q \square (| \square |)$

$$(on O)$$
 0 1 = 0 0 (001) $(ln O)$ 0 1 = ln = ln (001)

$$(0 \times 1) \times 0 = 1 \times 0 = 0 \times (1 \times 0)$$
 $(1 \times 1) \times 0 = 0 \times 0 = 1 \times (1 \times 0)$

$$(| a 0) a 0 = | a 0 = | a (0 a 0)$$
 $(|a|) a | a 0 a | a | a (|a|)$

Thus I is associative.

6) Show that V is associative.

Thus V is associative.

2.1.10 Which is the negation of "2 is even and -3 is negative".

2.1.15 (a)
$$\forall z \exists y \ R(z,y)$$

For every integer z, there is an integer y such that z=y is even.

There is an integer 2 such that for every integer y, 2+y is even.

2.1.16 (a)
$$\forall z (\sim G(z))$$
No integer is grime.

An odd integer exists.

_ P	9	r	~ p	~PV4	~ r	(~ P v q) 1 ~ r
Т	Т	Т	F	Т	F	F
Т	т	F	F	Т	Т	Τ
τ	F	т	£	F	F	F
Ŧ	F	F	F	F	Т	F
F	т	т	т	T	F	F
F	т	F	τ	T	T	T
f	F	т	т	Τ	F	F
F	F	F	7	Т	Т	Т

2.1.37 Replace the guard P α with $\sim P(\alpha)$. IF($x \neq max$ and y > H) THEN take action.

IF (z=maz or y=4) THEN take action.

2.2.1 (a)
$$p \Rightarrow q$$

Absurdity

Contingency

2.2.11 (a)
$$p \Rightarrow (q \Rightarrow p)$$
 $p \Rightarrow (q \Rightarrow p)$ $p \Rightarrow$

Tautology

Contingency

- (a) ~ (p ⇒ q) False
- (b) (~p) => r True
- (c) (p => s) 1 (s => t) False
- (d) t => ~ q True

- (a) Converse: c => a v b. (i)
- (b) Contrapositive: ~ c => ~a ~ ~b. (iv)

2.2.27
$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

P	4	r	441	P ^ (9vr)	P 4 4	PAT	(PAq) v(PAr)
Т	Т	Т	Т	T	Т	Τ	T
Т	τ	F	Τ	Т	Т	F	$\boldsymbol{ au}$
т	F	т	T	Т	F	T	Τ
τ	F	F	F	F	F	F	F
F	т	т	Т	F	F	F	F
F	т	F	Т	F	F	F	F
f	F	т	Т	F	F	F	F
F	F	F	F	F	F	F	F

2. 2.28
$$\sim (p \wedge q) \equiv (\sim p) \vee (\sim q)$$
 $p \mid q \mid$

P	9	~ p	~ q	P19	~ (P1q)	(~P) v (~ 4)
Т	Т	F F T T	F	Т	F	F
Т	F	F	Τ	F	T	Τ
F	Т	τ	F	F	T	Τ
F	F	Ι Τ	$ \tau $	F	τ	T