GamelT Retro GameBou

Practical Electronics Project PE12 Krishang Agarwal (30325) | Praneel Bhatia (30688)

► TABLE OF CONTENTS •

Production Issues

Inspiration

▶ The Gameboy - Nintendo •

- -Easy to fit in pocket
- -Portable
- -Elegant
- -Minimal
- -FUN

Circutry and PCB^[2]

Shape +

PCB Design 4

Features

- + 3 Action Buttons to control games
- + Interchangeable ATTiny85 chip for different games
- + Can run 15+ games such as:

Space Invaders 🕌	PACMAN
BATBonanza	Frogger (Crossy road)
Tetris	UFO Stacker

- + Buzzer for enhanced game experience with sound
- + Convenient and easily available power source CR2032 battery
- + Bright OLED display
- + Flashing Pins embedded onto the PCB for onboard flashing
- + Compact and aesthetic design

Programming

4

- + Dedicated Flashing SPI Pins on PCB
- + Arduino as ISP to flash the ATTiny85
- + Programming using Arduino IDE

```
Board: "ATtiny25/45/85 (No bootloader)"

Chip: "ATtiny85"

Clock Source (Only set on bootload): "8 MHz (internal)"

Timer 1 Clock: "CPU (CPU frequency)"

LTO (1.6.11+ only): "Enabled"

millis()/micros(): "Enabled"

Save EEPROM (only set on bootload): "EEPROM retained"

B.O.D. Level (Only set on bootload): "B.O.D. Disabled (saves power)"

Port

Get Board Info

Programmer: "Arduino as ISP"

Burn Bootloader
```


Parts

128x64 Display

On-Off Switch

SMD Orange LED

Power indicator

Ekulit Buzzer

Game Sounds

Push Button 3

Left Button

SPI Pins

Flashing ATTiny85

CR2032 Holder & 3.3V Battery

ATTINY85

Microcontroller

Push Button 1

Fire Button

Push Button 2

Right Button

Parts

- + Single color Display, available in Blue,

White, yellow and more

+ i2c communication protocol

- + 0,96" Screen making it suitable for compact design
- + 128x64 resolution, clear enough to display

BitMaps and text

- + Works with 3.3 V and 5V logic
- + Low cost

FURTHER SPECIFICATIONS	
Connection	4 pole
Interface	I ² C
SSD-Controller	SSD1306
Voltage supply	3.3 5 V

DEBO OLED2 0.96" 128x64 Display

Parts

[4] ATTiny85 Datasheet

ATTINY85

Microcontroller

- + Operating voltage: 2.7V ~ 5.5V
- + 6 programmable I/O Lines
- + Clock Speed: 1, 8, 16 MHz
- + Industrial Temperature Range: -40°C + 85°C
- + SPI and i2c interface
- + PWM pins
- + 8KB of flash memory and 512 bytes of SRAM and
- EEPROM to run and store games
- + Power Efficient

Push Button's 📲

PDIF	/SOIC/TSSOP
(PCINT5/RESET/ADC0/dW) PB5 🗆	8 □ VCC
(PCINT3/XTAL1/CLKI/OC1B/ADC3) PB3 ☐ 2	7 PB2 (SCK/USCK/SCL/ADC1/T0/INT0/PCINT2)

[4] ATTiny85 Datasheet

Symbol	Parameter	Condition	Min.	Typ. ⁽¹⁾	Max.	Units
V _{IH3}	Input High-voltage, RESET pin as I/O	V _{CC} = 1.8V - 2.4V V _{CC} = 2.4V - 5.5V	0.7V _{CC} ⁽²⁾ 0.6V _{CC} ⁽²⁾		V _{CC} +0.5 V _{CC} +0.5	V V

[4] ATTiny85 Datasheet

Push Button 1

Fire Button

We used a voltage divider to bring the voltage within the appropriate range according to the datasheet to use as I/O pin

Push Button 2
Right Button

Push Button 3

Left Button

1k ohm Pull down resistor to read 0 when button is not pressed

Power Supply 🔸

GameIT

From breadboard to leaderboard

Buzzer

- →+ 3.3V output with 3V nominal voltage
- + 225mAh nominal capacity for longer game time
- + Small, lightweight and easily interchangeable
- + Maintains a relatively stable voltage for longer duration
- + Dedicated power switch with orange LED indicator

[8]Panasonic CR2032 Datasheet

On-Off Switch

SMD Orange LED Power indicator

GND VCC SCL SDA

ery Holder CR2032

TO THE STATE OF THE S

CR2032 Holder & 3.3V Battery

► Power Consumption ◀

CR2032

225mAh

Part number

Nominal voltage

Nominal capacity

-We have the following known Values using multimeter and Power supply:

Measured Values

$> V_{\text{supply}} = 1$	3.0V	(Suppl	ied)
---------------------------	------	--------	------

> I_{standby} = 13.4mA (Measured)

> I_{ingame} = 17mA (Measured)

 \Rightarrow $I_{avg} = (I_{standby} + I_{ingame}) / 2 = 15.2mA$

Power consumed

> Formula: $P = I_{avg}^*V$

 $>> P_{consumed} = 3.0 \text{ V} * 15.2 \text{ mA} = 45.6 \text{ mW}$

Battery Life

><u>Formula</u>: Battery Life = Battery Capacity(mAh)/Load

Current(mAh)

>Battery Capacity of CR2032 from datasheet^[3]: 225mAh

>>Battery Life = 225mAh/13.5mA =>

Breadboard 4

Schematic

Routing

Final Routing

HSRW Version ...

PCB Fabrication

PCB Fabrication 📲

PCB Fabrication 🚽

PCB Fabrication 4

► PCB Fabrication ◀

PCB Fabrication

There were many....

Design Issues

- 1. VCC and GND switched
- 2. Disconnected ground planes
- 3. Connectivity break between vias and pads

4. No ground plane

5. Isolated vias instead of connectedvias

Design Issues

Design Issues

Fire Button not Working

We had to change the Vout of the voltage divider so that it doesn't fall into the range of RESET Pin Threshold voltage.

Symbol	Parameter	Condition	Min.	Typ. ⁽¹⁾	Max.	Units
V _{IH3}	Input High-voltage, RESET pin as I/O	V _{CC} = 1.8V - 2.4V V _{CC} = 2.4V - 5.5V	0.7V _{CC} ⁽²⁾ 0.6V _{CC} ⁽²⁾		V _{CC} +0.5 V _{CC} +0.5	V V

[4] ATTiny85 Datasheet

We swapped out the 6.8k ohm Resistor to a 4.7k ohm Resistor.

According to **datasheet**:

Min V =
$$0.6^{\circ}$$
V_{cc} = 0.6° 3V = 1.8 V

Max $V = V_{cc} + 0.5 = 3.5V$

Range: 1.8V ~ 3.5V

Measured values:

$$V_{cc} = 3V$$

 $V_{\text{fire,button}} = 2.40V$

[5] Voltage Divider formula

^{*}measured with multimeter

. Live Demo

References +

- [1] OIP.7ES9VNWH3EirBbn2WE6byWAAAA (474×351). (n.d.). https://th.bing.com/th/id/OIP.7ES9VNwH3eirBbn2wE6bywAAAA?rs=1&pid=ImgDetMain
- [2] OIP.YS58WI7_Mn2ExBONObTJHWHaFJ (474×355). (n.d.). https://th.bing.com/th/id/OIP.yS58WI7_mn2exbONobtJhwHaFj?pid=ImgDet&w=474&h=355&rs=1
- [3] *R.aa2d5eb95546e9f1df7e17ee4e2baa3e* (4160×3120). (n.d.).
- $\frac{\text{https://th.bing.com/th/id/R.aa2d5eb95546e9f1df7e17ee4e2baa3e?rik=ew4rU6eh3IDuRw\&riu=http%3a\%2f\%2fbcscalibration.ie\%2fwp-content\%2fuploads\%2f2019\%2f06\%2fIMG_20190609_121856.jpg\&ehk=mwSgPH5VI01oFTGgdUvzwOJ5OHEvSyGRNn2ne%2boeJJw%3d&risl=1&pid=ImgRaw&content\%2fuploads\%2f2019\%2f06\%2fIMG_20190609_121856.jpg\&ehk=mwSgPH5VI01oFTGgdUvzwOJ5OHEvSyGRNn2ne%2boeJJw%3d&risl=1&pid=ImgRaw&content\%2fuploads\%2f2019\%2f06\%2fIMG_20190609_121856.jpg\&ehk=mwSgPH5VI01oFTGgdUvzwOJ5OHEvSyGRNn2ne%2boeJJw%3d&risl=1&pid=ImgRaw&content\%2fuploads\%2f2019\%2f06\%2fIMG_20190609_121856.jpg\&ehk=mwSgPH5VI01oFTGgdUvzwOJ5OHEvSyGRNn2ne%2boeJJw%3d&risl=1&pid=ImgRaw&content\%2fuploads\%2f2019\%2f06\%2fIMG_20190609_121856.jpg\&ehk=mwSgPH5VI01oFTGgdUvzwOJ5OHEvSyGRNn2ne%2boeJJw%3d&risl=1&pid=ImgRaw&content\%2fuploads\%2f2019\%2f06\%2fIMG_20190609_121856.jpg\&ehk=mwSgPH5VI01oFTGgdUvzwOJ5OHEvSyGRNn2ne%2boeJJw%3d&risl=1&pid=ImgRaw&content\%2fuploads\%2f2019\%2f06\%2fIMG_20190609_121856.jpg\&ehk=mwSgPH5VI01oFTGgdUvzwOJ5OHEvSyGRNn2ne%2boeJJw%3d&risl=1&pid=ImgRaw&content%2fuploads%2f20190609_121856.jpg&ehk=mwSgPH5VI01oFTGgdUvzwOJ5OHEvSyGRNn2ne%2boeJJw%3d&risl=1&pid=ImgRaw&content%2fuploads%2f20190609_121856.jpg&ehk=mwSgPH5VI01oFTGgdUvzwOJ5OHEvSyGRNn2ne%2boeJJw%3d&risl=1&pid=ImgRaw&content%2f20190609_121856.jpg&ehk=mwSgPH5VI01oFTGgdUvzwOJ5OHEvSyGRNn2ne%2boeJJw%3d&risl=1&pid=ImgRaw&content%2f20190609_121856.jpg&ehk=mwSgPH5VI01oFTGgdUvzwOJ5OHEvSyGRNn2ne%2boeJJw%3d&risl=1&pid=ImgRaw&content%2f20190609_121856.jpg&ehk=mwSgPH5VI01oFTGgdUvzwOJ5OHEvSyGRNn2ne%2boeJJw%3d&risl=1&pid=ImgRaw&content%2f20190609_121856.jpg&ehk=mwSgPH5VI01oFTGgdUvzwOJ5OHEvSyGRNn2ne%2boeJJw%3d&risl=1&pid=ImgRaw&content%2boeJJw%3d&risl=1&pid=ImgRaw&content%2boeJJw%3d&risl=1&pid=ImgRaw&content%2boeJJw%3d&risl=1&pid=ImgRaw&content%2boeJJw%3d&risl=1&pid=ImgRaw&content%2boeJJw%3d&risl=1&pid=ImgRaw&content%2boeJJw%3d&risl=1&pid=ImgRaw&content%2boeJJw%3d&risl=1&pid=ImgRaw&content%2boeJJw%3d&risl=1&pid=ImgRaw&content%2boeJJw%3d&risl=1&pid=ImgRaw&content%2boeJJw%3d&risl=1&pid=ImgRaw&content%2boeJJw%3d&risl=1&pid=ImgRa$
- [4] Microchip ATTINY85-20PU. (n.d.). Mouser Electronics. https://www.mouser.de/ProductDetail/Microchip-Technology/ATTINY85-20PU?qs=8jWOYweyg6NCijaOb5GI9O%3D%3D
- [5] Voltage Divider Conversion Calculator | DigiKey. (n.d.). https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-voltage-divider
- [6] reichelt elektronik GmbH Internet Team (<u>webmaster@reichelt.de</u>). (n.d.). *DEBO OLED2 0.96 EntwicklerBoards Display*, 0,96", *OLED-Display*, SSD1306. Elektronik Und Technik Bei Reichelt Elektronik Günstig Bestellen. https://www.reichelt.de/entwickrerboards-display-0-96-oled-display-ssd1306-debo-oled2-0-96-

p266107.html?&trstct=pos_0&nbc=1

- [7] Atmel Attiny85 Datasheet (April, 2013). https://ww1.microchip.com/d ownloads/en/devicedoc/atmel-2586-avr-8-bit-microcontroller-attiny25-attiny45-attiny85_datasheet.pdf
- [8] CR2032: Lithium batteries. (n.d.). https://industrial.panasonic.com/ww/products/pt/lithium-batteries/models/CR2032