Conceptos de Almacenes de Datos

Tema 2

Indice

- Arquitectura de un Data Warehouse
- Herramientas de Microsoft SQL Server
- El Modelo Multidimensional
- Operaciones OLAP

OLAP vs OLTP

- Sistemas de bases de datos tradicionales: diseñados y afinados para apoyar la operación del día a día:
 - garantizar, acceso simultáneo rápido a los datos
 - procesamiento de transacciones y control de concurrencia
 - Centrados en la consistencia de los datos de actualización en línea
 - Conocido como bases de datos operacionales o de procesamiento de transacciones en línea (OLTP)
- Características de los datos de las bases de datos OLTP:
 - Datos detallados
 - No incluya datos históricos
 - Altamente normalizada
 - Bajo rendimiento en consultas complejas
- El análisis de datos requiere un nuevo paradigma: el procesamiento analítico en línea (OLAP)
 - consulta típica OLTP: los pedidos pendientes para el cliente c1
 - consulta típica OLAP: cantidad total de ventas por producto y por cliente

Características OLAP

- Paradigma OLTP centrado en las transacciones, OLAP se centrado en consultas analíticas
- La normalización no es buena para consultas analíticas, la reconstrucción de datos requiere un alto número de joins
- Las bases de datos OLAP soportan una carga pesada de consultas
- Las técnicas de indexación OLTP no son eficientes en OLAP: orientada acceder a pocos registros
 - Las consultas OLAP normalmente incluyen la agregación
- La necesidad de un modelo de base de datos diferente para apoyar
 OLAP era clara: dio lugar a los almacenes de datos
- Almacén de datos: (Por lo general) grandes repositorios que consolidan datos de diversas fuentes (internas y externas a la organización), se actualizan offline, sigue el modelo de datos multidimensional, diseñado y optimizado para apoyar las consultas OLAP de manera eficiente.

Indice

- Arquitectura de un Data Warehouse
 - Esquema de una arquitectura de DW
 - Fuentes de datos: procesos y herramientas
 - El almacén de datos (DW)
 - Metadatos
 - Servidor del almacén de datos
 - Herramientas de consultas
 - Aplicaciones de DW en el mercado
- Herramientas de Microsoft SQL Server
- El Modelo Multidimensional
- Operaciones OLAP

- Arquitectura de tres capas
 - Servidor del repositorio o base de datos del almacén de datos
 - Casi siempre un SGBD Relacional
 - Servidores OLAP
 - Relational OLAP (ROLAP)
 - Extiende SGBD relacionales para permitir operaciones MD
 - Multidimensional OLAP (MOLAP)
 Directamente implementa el modelo MD en vectores

Arquitectura de tres capas (II)

- Clientes → Herramientas
 - Informes y consultas
 - OLAP (On-Line Analytical Processing)
 - Data Mining

- ¿ Por qué Data Warehouse separado ?
 - Rendimiento (Performance)
 - BD operacionales enfocadas y optimizadas a transacciones
 - Consultas OLAP complejas → Ralentización del servidor
 - Métodos de implementación, accesos, etc. distintos
 - Funcionalidad
 - Datos no existentes → históricos
 - Datos consolidados (agregados, sumados, resumidos, etc.)
 - De distintas fuentes
 - Calidad de datos
 - Diferentes fuentes → representaciones distintas, etc...

- Fuentes de datos
 - Fuentes de datos operacionales de la empresa
 - Bases de datos externas (públicas o privadas)
 - Ficheros planos
 - Datos en formato tradicional:
 - documentos, facturas, albaranes, etc.
 - Internet → Cantidad ingente de datos

- Procesos para alimentar de datos el almacén (ETL)
 - Extracción (Extraction)
 - Limpieza (Cleaning) y Transformación (Transformation)
 - Carga (Loading)
 - Refresco

- Procesos para alimentar de datos el almacén (ETL)
 - Extracción (Extraction)
 - Limpieza (Cleaning) y Transformación (Transformation)
 - Carga (Loading)
 - Refresco

- Extracción
 - Procesos que recogen los datos necesarios del almacén

- Limpieza (Cleaning)
 - Fundamental que los datos del almacén sean correctos
 - Decisiones estratégicas
 - Muchas fuentes de datos → alta probabilidad de error y anomalías
 - Longitud de campos inconsistentes
 - Descripción inconsistente (¿¿¿¿¿ Qué es dirección ????)

- Valores incoherentes
 - Universidad de Alicante
 - Univ. Alicante
 - U. de Alicante
- Valores nulos para algunos campos
- ¿¿ Violación de reglas de integridad ?? (ETL)
- Detectar herramientas que trabajen bien acopladas

- Las herramientas de limpieza se pueden clasificar en 3 tipos:
 - Data migration (Migración de datos)
 - Proceso de mover datos de un sistema a otro
 - Se necesitan funciones de preparación de datos para poder ser cargados en el destino
 - Permiten reglas de transformaciones simples
 - Ej. Reemplazar "género" por "sexo"

Fuentes de datos: procesos y herramientas

Data Scrubbing (Limpieza de datos)

- Proceso de corregir (o eliminar) registros inexactos en las fuentes de origen
- Detectar "dirty data" (incorrectos, irrelevantes o incompletos)
- Utilizan conocimiento específico del dominio
 - Ej. Direcciones postales
- Asegurar precisión y consistencia con otros conjuntos de datos en el sistema

Data Auditing tools (Auditoría de datos)

- Proceso para evaluar la calidad y utilidad de los datos de entrada para el dominio objetivo
- Escanean datos para descubrir reglas y relaciones y lanzar señales de violaciones si es necesario

Esquema de una arquitectura de DW Fuentes de datos: procesos y herramientas

- Carga (Loading)
 - Una vez que los datos se extraen, limpian y transforman → CARGAR
 - Se puede necesitar más pre-proceso antes de carga
 - Comprobar reglas de integridad de nuevo
 - Ordenar datos
 - Calcular datos agregados
 - Construir Tablas derivadas y virtuales e intermedias
 - Construir índices
 - Cantidad de datos a cargar
 - Calcular tiempo → Muchas veces por la noche
 - ¿¿ Y si multinacional ??

Esquema de una arquitectura de DW Fuentes de datos: procesos y herramientas

- Técnicas de carga
 - Cargas secuenciales
 - Mucho tiempo (~ 100 días/ TB)
 - Reemplazar antigua tabla con la nueva después de transacción
 - Utiliza comprobaciones periódicas
 - Normalmente, comenzar después de fallo
 - Procesos por lotes (batch)
 - El administrador monitoriza el proceso
 - Procesos cortos con uso secuencial de I/O
 - índices y derivados

Esquema de una arquitectura de DW Fuentes de datos: procesos y herramientas

- Procesamiento paralelo y técnicas incrementales...
 - IMPORTANTE !!!!!
 - Sólo carga las actualizaciones → no toda la tabla
 - Cuando Committ !!!
 - Reemplazar el antiguo estado con los nuevos datos
 - Mientras carga, el DW puede ser consultado
 - Utilizar Comprobaciones periodicas de inconsistencia de estados
 - Auditorias

Fuentes de datos: procesos y herramientas

Refresco

- Propagar actualizaciones sobre las fuentes de datos hacia los datos base y agregados del almacén
- ¿ Cuándo ?
 - Sobre cada actualización → muy caro
 - Sólo si datos muy actualizados. Ej. bolsa
- ¿ Cómo ? → Política
- Normalmente se hace periódicamente
- Se define una política en función de cada caso
 - No olvidar que SGBD ofrecen servidores para replicar datos

Fuentes de datos: procesos y herramientas

Refresco...

- Fundamentalmente 2 técnicas:
 - Extracción entera de las bases de datos
 - Leen tablas o bases de datos enteras → caras
 - A veces, única elección para ficheros o sistemas heredados
 - Técnicas incrementales
 - Detectan y propagan cambios → servidores para replicación
 - Imágenes (snapshots) y triggers
 Ej. Oracle
 - Transporte de transacciones (transaction shipping)
 Ej. Sybase
 - Otras: IBM data replicator

El almacén de datos: primera aproximación

Definición según W. Inmon

 "Una colección de datos orientados por tema, integrados, variables en el tiempo y no volátiles que se emplea como apoyo a la toma de decisiones estratégicas"

- Datos orientados por tema
 - Los sistemas OLTP están optimizados para las transacciones
 - NORMALIZAR
 - Muchas transacciones con pocos datos
 - Ej. datos de clientes en varias tablas
 - ¿ Almacén de datos normalizado ? : PROBLEMAS
 - ¿ Directivo es capaz de tener visión de todas las tablas y relaciones ?
 - Pocas transacciones que incluyen muchos datos
 - Operación MAS cara en BD: unión de tablas

- Los datos están orientados por tema
 - En un solo lugar (digamos tabla) datos referentes a un concepto que es el objeto de estudio
 - Ej. Tabla para clientes
 - Ventas
 - Compras
 - Vehículos, etc.

Integrados

- Están coherentemente agrupados a partir de datos de las fuentes de datos
- También hay datos derivados
- Para ello: procesos de limpieza y transformación
- Hay errores difíciles de detectar: iiiii Cuidado !!!!!
 - Ej. Código producto válido → Exhaustivo análisis de datos

- Integrados,.....
 - Problemas de incoherencia: resumir en 4 tipos
 - Descripción
 - J. A. Rodríguez
 - Jose A. Rodriguez
 - Codificación
 - Varón "V", Hembra "H"; en otra BD Varón "H", Hembra "M"
 - Unidades
 - Estatura: 1,70 mts; 170 cm
 - Formato
 - Número de teléfono como cadena de caracteres (965- 90 34 00)
 - Número de teléfono como entero (965903400)

No volátiles

- En sistemas OLTP se pueden modificar datos (ej. tuplas)
 - Unidades de pedido 200; si cliente modifica, se cambia.
- En DW nunca se modifican (salvo excepciones: ver dimensiones que cambian lentamente en tema IV), se añaden nuevos datos para el análisis
 - Un pedido con una fecha de 200 uds.
 - Un pedido con otra fecha de 150 uds.

- Variables en el tiempo
 - No volatibilidad → Dimensión básica: El TIEMPO
 - Datos analizados en función del tiempo
 - Ej. Anterior del pedido
 - ¿ Por qué un cliente ha variado la cantidad de su pedido en una semana ?
 - ¿ Por qué han cambiado los gustos de un cliente en varios años ?
 - Etc.

Data Marts

- Es como una vista del almacén de datos
- Se definen para satisfacer las necesidades de un departamento o sección dentro de una empresa
- Normalmente, en la práctica, suelen contener más cantidad de información agrupada que en detalle

Data Marts.....

- Para su construcción se pueden seguir dos aproximaciones:
 - (I) Definir primero el almacén de datos y, a partir de él, definir los data marts, ó
 - (II) Definir primero los data marts departamentales y, posteriormente integrarlos en un almacén de datos global para la organización
- Nota: Si la envergadura de la empresa es considerable y, la experiencia en construir DW poca, es aconsejable seguir la aproximación 2

- Resumen: Data warehouse vs. Data Marts
 - Enterprise DW
 - Información sobre "temas" de toda organización
 - Requiere complejo modelado de negocio
 - Puede llevar AÑOS para construir e implementar
 - Data Mart
 - Departamental → sub-temas
 - Ej. Marketing data mart, Clientes, productos, ventas !!!!!
 - Más rápido agregar
 - OJO !!! Integración con DW puede ser compleja

Virtual Data Warehouse

- Vistas sobre bases de datos operacionales
 - Materializan algunas vistas agregadas → consultas eficientes
 - Mayor facilidad en la construcción
 - Requieren exceso de capacidad del servidor operacional
 - Muchas empresas dicen tener DW cuando el administrador ha creado un VIRTUAL DW

Esquema de una arquitectura de DW Los metadatos

Los metadatos

- Son datos sobre datos
 - Qué dato se guarda (ej. clientes)
 - Dónde se guarda (tabla clientes)
 - Campos de la tabla
 - Con qué datos de las fuentes se corresponden
 - Niveles de agregación
 - Procesos de carga → ¿ Cuándo se actualizan ?
 - ¿ Cuándo fue la última actualización?
 - Patrón de dato válido (Ej. Apellido1 Apellido2, Nombre)

- Los metadatos ...
 - Son datos sobre datos ...
 - Reglas de transformación
 - ¿Cuándo se incorporan al almacén de datos?
 - Y muchos más...

Tipos

- Administrative metadata (Toda la información necesaria para el DW)
 - Fuentes de datos y contenidos
 - Descripciones del gateway
 - Esquema del data warehouse, vistas y datos agregados
 - Dimensiones de análisis con sus jerarquías
 - Consultas e informes predefinidos
 - Localización y contenido del los Data Marts
 - Diseño físico → particionamiento de datos

- Tipos ...
 - Administrative metadata (Toda la información necesaria para el DW) ...
 - Información de los procesos ETL
 - Reglas de refresco
 - Ficheros y grupos de usuarios
 - Seguridad → autorización, control de acceso, etc.

Tipos...

- Business metadata
 - Información y términos de negocio
 - Políticas de posesión de datos
 - Políticas de permiso de datos por usuarios (seguridad)
- Operational metadata
 - Obtiene información recogida durante el proceso del "almacén de datos"
 - Datos migrados y secuencia de transformaciones aplicadas

- Tipos....
 - Operational metadata...
 - Situación de datos: activos, archivados, eliminados ????
 - Información de monitorización
 - Estadísticas de uso de los DW
 - Informes de error
 - Auditoria

Esquema de una arquitectura de DW Servidor del almacén de datos

Esquema de una arquitectura de DW Servidor del almacén de datos

- El servidor es un SGBD que se encarga de
 - Gestionar el repositorio propio del almacén de datos
 - Coordinar los procesos ETL que alimentan el DW
 - Procesan las consultan lanzadas sobre el almacén y devuelven los datos

Generalmente son servidores relacionales

Monitorización & Administración **Análisis** Servidores Repositorio de metadatos **OLAP** Almacén de Datos Consultas/Informes Extraer Fuentes externas Transformar Servir BD operacionales Cargar Minería de datos Refrescar Fuentes de datos Herramientas **Data Marts** de consulta

- El servidor de consultas
 - En la mayoría de las arquitecturas se utiliza un servidor distinto al del almacén de datos
 - Rendimiento y mantenimiento
 - La mayoría de herramientas funcionan con esta arquitectura
 - Ejplo. MicroStrategy
 - Dos tecnologías ampliamente utilizadas
 - ROLAP
 - MOLAP

Servidores ROLAP

- Utilizan tecnología Relacional (Relational OLAP)
- Utilizan extensiones del SQL estándar para soportar el acceso multidimensional a los datos
- Métodos de implementación adecuados para representar los datos multidimensionales en tecnología relacional
- Ventaja: Basado en un estándar (SQL)
- Algunos de los más extendidos
 - Oracle (Oracle 9i/10g/11g/12c)
 - IBM (DB2 y Business solutions)
 - Adquirió Informix Dynamic Server como servidor del Almacén de Datos
 - Adquirió Redbrick para gestionar procesos ETL
 - Microsoft SQL Server Analysis Server (modo tabular)

Servidores MOLAP

- Utilizan tecnología Multidimensional (Multidimensional OLAP)
- Los datos están almacenados directamente en matrices
- Operaciones de consulta están implementadas directamente sobre estas matrices
 - No están basados en SQL estándar
- Ventaja: Suelen ser más rápidos que los ROLAP
- Inconveniente: no basados en un estándar
- Algunos de los más famosos
 - Essabse (Arbor), Accumate (Kenan)
 - Microsoft SQL Server Analysis Server (modo multidimensional)

Generación de informes

- Consultas ad-hoc e informes
 - Permiten acceso a los datos base
 - Informe se construye con "point-and-click"
 - Ej. MS Access, Platinum Pro reports
- Entornos consulta/informes de directivos
 - Muestra datos base en términos de negocio
 - Utiliza consultas predefinidas/almacenadas
 - Soporte limitado para consultas ad-hoc
 - Informes se pueden presentar como documentos
 - Ej. Busines Objects, SAS/EIS

OLAP Query Tools

- Objetivo: Dar soporte a consultas ad-hoc para el analista del negocio
 - Analistas del negocio conocen hojas de cálculo
- Extensión de hojas de cálculo para análisis del DW
 - Enriquecido semánticamente con términos del negocio
 - Análisis multidimensional de los datos
 - Hechos
 - Dimensiones
 - Ej. Oracle (OLAP, Discoverer, etc.), IBM Business Solutions ...

- Data Mining (Minería de datos)
 - Descubre tendencias y patrones (minería interpretativa)
 - Crean modelos y hacen predicciones (minería predictiva)
 - Utilizan los datos existentes para detectar tendencias y crear modelos
 - Aplican los patrones y modelos a datos nuevos
 - Importante → Adaptación de modelos según nuevos datos

Esquema de una arquitectura de DW Representación

Indice

- Arquitectura de un Data Warehouse
- Herramientas de Microsoft SQL Server
- El Modelo Multidimensional
- Operaciones OLAP

Herramientas de SQL Server

- SQL Server: Plataforma integrada para construir aplicaciones analíticas
- Componentes principales:
 - Analysis Services: Herramienta OLAP capacidades analíticas y de minería de datos
 - Permite definir, consultar, modificar y gestionar bases de datos OLAP
 - MDX (Multi-Dimensional eXpressions) lenguaje para recuperar datos
 - Acceso a datos OLAP mediante herramientas cliente (Excel u otros)
 - Proporciona algoritmos de minería de datos. DMX (Data Mining eXtensions) lenguaje para crear y consultar modelos de minería de datos
 - Integration Services: Servicios ETL
 - Reporting Services: Define, genera, almacena y gestiona informes
 - Desde distintas fuentes, incluidos cubos OLAP

Herramientas de SQL Server

- SQL Server 2016:
 - SQL Server Data Tools, plataforma de desarrollo integrada con Microsoft Visual Studio
 - Soporta proyectos de Analysis Services, Reporting Services, e Integration Services
 - SQL Server Management Studio proporciona Gestión integrada de todos los componentes SQL Server
- Business Intelligence Semantic Model (BISM):
 - Multidimensional. Aplicaciones BI y grandes volúmenes de datos.
 Lenguaje: MDX
 - Tabular. Más fácil de entender y más rápido de construir.
 Lenguaje: DAX

Indice

- Arquitectura de un Data Warehouse
- Herramientas de Microsoft SQL Server
- El Modelo Multidimensional
- Operaciones OLAP

Modelo Multidimensional

- Vistas de datos en un espacio n-dimensional: Cubo de datos
- Se compone de dimensiones y hechos

Ejemplo: Cubo tridimensional para los datos de ventas con las dimensiones: Producto, Tiempo y Almacén

- Los atributos describen las dimensiones. Producto tiene Tipo, Precio y Código.
- Las celdas o hechos tienen datos numéricos: medidas
- En el ejemplo, cada dato del cubo representa Cantidad de unidades vendidas por Provincia,
 Tipo de Producto y Mes

Modelo Multidimensional

- Granularidad. Nivel de detalle al que se representan las medidas para cada dimensión del cubo.
 - Por ejemplo: Cifras de Ventas agregadas por Tipo, Trimestre y Ciudad.
- Las instancias de una dimensión se denominan Miembros.
 - Por ejemplo: Comida, Bebida son miembros de Producto en la granularidad Tipo
- Un cubo contiene varias medidas. P.e. Cantidad indica la cantidad de ventas total.
- Un cubo puede ser disperso (lo normal) o denso.
 - P.e. No todos los clientes han pedido productos de todos los tipos en todos los meses
- Jerarquías. Permite ver los datos en distintas granularidades
 - Define una sucesión de relaciones que van desde los detallados de nivel inferior, a los de nivel más alto
 - El nivel inferior se llama hijo (child) y el nivel más alto se llama el padre
 - La estructura jerárquica de una dimensión se llama el esquema de la dimensión
 - Una instancia de la dimensión comprende todos los miembros de todos los niveles de la dimensión
 - Podemos querer cifras de ventas con una granularidad más fina (un día), o con una granularidad más gruesa (País)

Modelo Multidimensional

 Dimensiones: Producto, Almacén, Tiempo. Caminos de jerarquía por los que agregar

Medidas (atributos del hecho)

Atómicos

Ej. Cantidad vendida, precio, etc.

Derivados

- Utilizan una fórmula para calcularlos
- Ej. Precio_total = precio * cantidad_vendida

Aditividad

- Conjunto de operadores de agregación que se pueden aplicar para agregar los valores de medidas a lo largo de las jerarquías
- Es aditiva → SUM sobre todas las dimensiones
- Semi-aditiva → SUM sólo sobre algunas dimensiones. Inventario → Tiempo
- No aditiva → SUM sobre ninguna dimensión. Precio, Coste por unidad

Indice

- Arquitectura de un Data Warehouse
- Herramientas de Microsoft SQL Server
- El Modelo Multidimensional
- Operaciones OLAP

Sobre jerarquías (I)

 Jerarquías de las dimensiones Product, Time and Customer

Sobre jerarquías (II)

Miembros de una jerarquía Producto -> Categoría

Roll-up

 Agregar valores de medidas a lo largo de jerarquías de clasificación

grupo

famil

tipo

marca

Roll-up

ROLLUP(Sales, Customer -> Country, SUM(Quantity))

Beverages Condiments

Product (Category)

Original cube

Roll-up to the Country level

ROLLUP(CubeName, (Dimension -> Level)*, AggFunction(Measure)*)

Roll-up extendido: las dimensiones no indicadas se hace un roll-up hacia "all"

¿Qué hace?

ROLLUP*(Sales, Customer -> Country, SUM(Quantity))

Drill-down

Desagregar valores de medidas a lo largo de jerarquías de familiaC clasificación

grupo

nombre

tipo

comunidad

marc*(*

Producto.Grupo = "alimentación" Comida Bebida Ventas Refresco Alcohol Fresca Cong. Albatera 100 200 300 400 Almacén. Alicante Elche 500 600 700 800 Comunidad= "Comunidad 900 1000 1100 1200 Burjasot Valencia Valenciana" 1300 1400 1600 1500 Cullera Zona Ventaso

ciudad provincia

Almacén

Drill-down

DRILLDOWN(Sales, Time -> Month)

Beverages Condiments
Product (Category)

Original cube

Drill-down to the Month level

DRILLDOWN(CubeName, (Dimension -> Level)*)

Slice-dice

- Definir restricciones sobre niveles de jerarquías
 - Ej. Analizar datos donde el año sea 1999, la ciudad "Alicante" y el tipo de Producto sea "Comida"

Ventas'			Producto.Grupo = "Alimentación" Comida	
			Congelada	Fresca
Almacén. Comunidad = "Comunidad Valenciana"	Alicante	Albatera	100	200
	Afficalite	Elche	500	600

Slice-dice (cont.)

Otro ejemplo

SLICE(Sales, Customer, City = 'Paris')

Time (Quarter)

Slice-dice (cont.)

SLICE(CubeName, Dimension, Level = Value)

Seafood Condiments Beverages Paris Customer (City) Lyon 12 13 14 11 Berlin 33 28 35 Köln 23 25 24 Q1 Q2 Q3 Q4

Time (Quarter)

Pivot

10 18 35 Q2 27 14 11 30 Q3 26 12 35 32 Q4 20 31 Produce Seafood **Beverages Condiments** Product (Category)

DICE(CubeName, condición booleana)

DICE(Sales, (Customer.City = 'Paris' OR Customer.City = 'Lyon') AND (Time.Quarter = 'Q1' OR Time.Quarter = 'Q2'))

Slice on City='Paris'

Product (Category)

Dice on City='Paris' or 'Lyon' and Quarter='Q1' or 'Q2'

Pivoting

PIVOT(CubeName, (Dimension -> Axis)*)

- Reorientar la vista multidimensional de los datos, es decir, cambiar la distribución de filas/columnas
 - Algunos autores consideran también el intercambio de medidas y hechos como pivoting (kimball, 1996) (Inmon,

PIVOT(Sales, Time -> X, Customer -> Y, Product -> Z)

Operaciones OLAP

- Drill-across
 - Dados dos cubos se construye un nuevo cubo con las medidas de ambos en cada celda
 - Consultar medidas de varios hechos en el mismo cubo
 - Ej. Que en la tabla MD analizáramos el ratio de ventas respecto de compras.
 - **1000 / 400**
 - OJO: será necesario tener nombres de cubos diferentes y medidas diferentes -> uso de RENAME

Operaciones OLAP: Drill-across y Rename

RENAME(CubeName, (SchemaElement -> NewName)*)

DRILLACROSS(CubeName1, CubeName2, [Condition])

RENAME(Sales, Sales -> Sales2012, Quantity -> Quantity2012) Sales2011-2012 <- DRILLACROSS(Sales2011, Sales2012)

Operaciones OLAP: AddMeasure, DropMeasure

 Es posible calcular nuevas medidas a partir de las existentes con ADDMEASURE

ADDMEASURE(CubeName, (NewMeasure = Expression)*)

- Estas medidas se agregarán a las existentes en el hecho
- Si queremos borrar alguna medida que no nos interese utilizaremos DROPMEASURE

DROPMEASURE(CubeName, Measure*)

Operaciones OLAP: AddMeasure, DropMeasure

 Podemos añadir el porcentaje de cambio en las ventas entre los años 2011 y 2012:

ADDMEASURE(Sales2011-2012, PercChange = (Quantity2011-Quantity2012)/Quantity2012)

Percentage change

Si queremos borrar las medidas anteriores:

DROPMEASURE(Sales2011-2012, Quantity2011, Quantity2012)

Operaciones OLAP: Funciones de agregación

- Las funciones de agregación en OLAP pueden ser:
 - Acumulativo: calcular el valor de la medida de una celda partir de otras celdas; algunos ejemplos son SUM, COUNT y AVG
 - Filtrado: Filtra los miembros de una dimensión que aparecen en el resultado; algunos ejemplos son MIN y MAX
 - Las funciones de filtrado no sólo calculan el valor agregado, sino también los miembros de la dimensión que pertenecen al resultado (e.g. el valor máximo y el elemento que proporciona ese máximo)
- Para agregar medidas de un cubo en la granularidad actual sin realizar un roll-up:

AggFunction(CubeName, Measure) [BY Dimension*]

Ejemplo: Total de ventas por trimestre y ciudad:

SUM(Sales, Quantity) BY Time, Customer

Operaciones OLAP: Funciones de agregación

- Agregación:
- Ejemplo "Cantidad **total** global": produce una sola celda cuyas coordenadas para las tres o n dimensiones son iguales a all SUM(Sales, Quantity)
- Agregación sin cambiar granularidad:
- Máximas de ventas por trimestre y ciudad

MAX(Sales, Quantity) BY Time, Customer

- produciendo un cubo en el que sólo las celdas que contienen el máximo por trimestre y ciudad tendrán valores, los demás serán null
- Los dos primeros máximos de ventas por producto y de ciudad

MAX(Sales, Quantity, 2) BY Time, Customer

Promedio de una ventana de tres meses para las ventas:

ADDMEASURE(Sales, MovAvg = AVG(Quantity) OVER Time 2 CELLS PRECEDING)

Suma de año hasta la fecha:

ADDMEASURE(Sales, YTDQuantity = SUM(Quantity) OVER Time ALL CELLS PRECEDING)

 La ventana contiene la celda actual y todas los anteriores (indicado por ALL CELLS PRECEDING)

Operaciones OLAP: Funciones de agregación

Beverages Condiments
Product (Category)

Maximum sales by quarter and city

Product (Category)
Three-months moving average

Top two sales by quarter and city

Product (Category)

Year-to-date sum

Operaciones OLAP: Porcentajes e índices

- Para calcular porcentajes es necesario indicar el tipo de ordenación, utilizando la operación TOPPERCENT
- "Mostrar las ventas por ciudad y categoría ordenadas por trimestre hasta que se cubra el el 70% del total de ventas"

TOPPERCENT(Sales, Quantity,70) BY City, Category ORDER BY Quarter ASC

Operaciones OLAP: Porcentajes e índices

- Para calcular porcentajes es necesario indicar el tipo de ordenación, utilizando la operación TOPPERCENT
- "Mostrar las ventas por ciudad y categoría ordenadas por cantidad hasta que se cubra el el 70% del total de ventas"

TOPPERCENT(Sales, Quantity, 70) BY City, Category ORDER BY Quantity DESC

35

32

31

35

47

Operaciones OLAP: Porcentajes e índices

- La operación RANK permite generar un índice o ranking tras especificar el orden de las celdas
- "Mostrar el ranking de trimestres (referidas a las ventas) por ciudad y categoría y ordenadas descendentemente por cantidad"

RANK(Sales, Time) BY City, Category ORDER BY Quantity DESC

Operaciones OLAP: Unión y Diferencia

- La operación **Union** fusiona dos cubos que tienen el mismo esquema, pero instancias inconexas.
- Ejemplo: Si SalesSpain es un cubo con el mismo esquema que el cubo original, pero que contiene sólo las ventas a clientes españoles, que pueden llevar a cabo:

UNION(Sales, SalesSpain)

4

Operaciones OLAP: Unión y Diferencia

- Difference elimina las celdas en un cubo que pertenecen a otro; los dos cubos deben tener el mismo esquema
- Ejemplo: Dados los cubos TopTwoSales y la original, calcular un cubo con todas las medidas de ventas excepto las dos primeras ventas por trimestre y ciudad

DIFFERENCE(Sales, TopTwoSales)

Resumen Operaciones OLAP

Operator	Purpose
Add measure	Adds a new measure to a cube computed from other measures or dimensions.
Aggregation opera-	Aggregates the cells of a cube, possibly after performing a grouping of cells.
tors	
Dice	Keeps the cells that satisfy a Boolean condition over dimension levels, attributes, and
	measures.
Difference	Removes the cells of a cube that are in another cube. Both cubes must have the same
	schema.
Drill-across	Merges two cubes that have the same schema and instances using a join condition.
Drill-down	Disaggregates measures along a dimension hierarchy to obtain data at a finer granular-
	ity. It is the opposite of the roll-up operation.
Drill-through	Shows data in the operational systems from which the cube was derived. This operation
	does not formally belong to the OLAP algebra since the result is not a cube.
Drop measure	Removes one or several measures from a cube.
Pivot	Rotates the axes of a cube to provide an alternative presentation of its data.
Recursive roll-up	Performs an iteration of roll-ups over a recursive hierarchy until the top level is reached.
Rename	Renames one or several schema elements of a cube.
Roll-up	Aggregates measures along a dimension hierarchy to obtain data at a coarser granular-
	ity. It is the opposite of the drill-down operation.
Roll-up*	Shorthand notation for a sequence of roll-up operations.
Slice	Removes a dimension by fixing a single value in a level of the dimension.
Sort	Orders the members of a dimension according to an expression.
Union	Combines the cells of two cubes that have the same schema but disjoint members.

- Un almacén de datos de un proveedor de teléfono consiste en 5 dimensiones, a saber: cliente emisor, cliente receptor, tiempo, tipo de llamada y programa de llamada. También incluye tres medidas: número de llamadas, duración y cuantía. Define las operaciones OLAP que hacen las siguientes consultas:
- 1. Cuantía total percibida por cada programa de llamadas en 2012.
- 2. La duración total de las llamadas realizadas por los clientes de Bruselas en 2012.
- Número total de llamadas realizadas por los clientes de fin de semana desde Bruselas a los clientes en Amberes en 2012.
- 4. Duración total de las llamadas internacionales iniciadas por los clientes en Bélgica en 2012.
- 5. Total recaudado por los clientes en Bruselas que están inscritos en el programa corporativo en 2012.

Ejercicio II

- Un almacén de datos de una compañía de trenes contiene información acerca de los trayectos de tren entre estaciones. Se compone de seis dimensiones, a saber: la estación de partida, la estación de llegada, el viaje, el tren, la hora de llegada y la hora de salida, y tres medidas, a saber, el número de pasajeros, la duración y el número de kilómetros. Define las operaciones OLAP que se lleva a cabo con el fin de responder a las consultas. Proponer jerarquías de dimensión cuando sea necesario.
- 1. Número total de kilómetros realizados por los trenes "Alstom" durante el año 2012 partiendo de estaciones de Francia o Bélgica.
- 2. Duración total de viajes internacionales durante el año 2012, es decir, viajes partiendo de una estación situada en un país y llegando a una estación ubicado en otro país.
- 3. Número total de viajes con origen o destino París durante Julio de 2012.
- 4. Duración media de los trayectos de trenes en Bélgica en 2012.
- 5. Para cada viaje, el número promedio de pasajeros por trayecto, es decir, tomar todos los trayectos de cada viaje, y el promedio del número de pasajeros.