The Causal Tree Estimator for Heterogeneous Treatment Effects: Optimal Data Splitting Rules in Small Samples

Nomin Margad-Erdene

CEU

June 9, 2021

Outline

- Introduction
 - Heterogeneous Treatment Effects
 - Causal Tree Setup
 - Honest Split
 - Modified Causal Tree: θ
- Estimation Design
 - Data Generation Process
 - Monte-Carlo Simulations
 - Reported Statistics
- Results
 - Robustness Checks
- Conclusion

Heterogeneous Treatment Effects

- HTE estimation is applied in:
 - Drug R&D
 - Policy interventions
 - Marketing, advertisement, A/B tests¹
- Identifying the groups:
 - High dimensional data
 - Avoid data mining to manipulate results
- Other tree-based supervised machine learning algorithms:
 - Bayesian Additive Regression Trees (Green and Kern, 2012)
 - Minimum Impurity Decision Assignment Trees (Laber and Zhao, 2015)
 - Decision Lists (Lakkaraju and Rudin, 2017)
 - Random Forests (Foster et. al, 2011)

¹A/B testing: comparing the user response to two versions of a website or advertisement, by showing the variants to different people

Causal Tree Setup

Model introduced by Athey and Imbens (2016)

- N i.i.d observations indexed as i = 1, 2, ..., N
- Randomly assigned a binary treatment $D_i \in \{0,1\}$
- Potential outcome model:

$$Y_i(D_i) = \begin{cases} Y_i(0) & \text{if } D_i = 0 \\ Y_i(1) & \text{if } D_i = 1 \end{cases}$$
 (1)

- X_i is a $(N \times K)$ matrix of covariates or features
- Conditional Average Treatment Effect:

$$\tau(x) = \mathbb{E}[Y_i(1) - Y_i(0)|X_i = x]$$

Causal Tree Setup

Figure 1: Example of a tree based method

- Decision Tree: conditional expectation
 - $\mu(x,\Pi) = \mathbb{E}[Y_i|X_i \in I(x,\Pi)]$
- Causal Tree: conditional average treatment effect
 - $\mu(D, x, \Pi) = \mathbb{E}[Y_i(1) Y_i(0)|X_i \in I(x, \Pi)]$

Causal Tree Setup: Honest Split

- **1** 2 mutually exclusive subsamples S_{Tr} with N^{Tr} observations and S_{Est} with N^{Est} observations
- ② Use S_{Tr} to train the tree (find partitions)
- **3** Use S_{Est} to calculate the treatment effect.

Modified Causal Tree: θ

- So far: $N^{Tr} = N^{Est}$
- $\theta \in (0,1)$ represents the share of observations allocated to the estimation subsample
- If $N^{Tr} + N^{Est} = 100$ and $\theta = 0.7$, $N^{Est} = 70$
- I test for $\theta \in [0.2, 0.8]$ with step size 0.1

Data Generation Process

 Three DGPs with 2, 4 and 8 distinct conditional average treatment effects respectively.

•

for D = {0,1}
$$\begin{cases} Pr(D_i = 1) = 0.5 \\ Pr(D_i = 0) = 0.5 \end{cases}$$
 (2)

Potential outcome structure

$$Y_i = D \cdot \gamma(X_i) + \eta(X_i) + \epsilon_i \tag{3}$$

- $\gamma(x)$: treatment effect, $\eta(x)$: mean effect.
- $X_i \sim \mathcal{N}(0,1)$ is a $(N \times K)$ vector of covariates independent of ϵ_i .
- $\epsilon_i \sim \mathcal{N}(0, Var(e))$
- $Var(\epsilon) = [0.01, 1.0, 2.5], N^{Tr} + N^{Est} = [500, 300, 100]$

Data Generation Process

• **DGP 1:**
$$Y_i = \underbrace{-1.5D + 3D \cdot \mathbb{I}_{\{x_1 \geq 0\}}}_{\text{treatment effect}} + \underbrace{\sum_{k=2}^{5} x_k}_{\text{mean effect}} + e_i$$

$$\begin{array}{c|cccc} \bullet & x_1 \geq 0 & x_1 < 0 \\ \hline \tau & 1.5 & -1.5 \end{array}$$

• DGP 2:

$$Y_i = \underbrace{-2D + 3D \cdot \mathbb{I}_{\{x_1 \geq 0\}} + D \cdot \mathbb{I}_{\{x_2 \geq 0\}} + D \cdot \mathbb{I}_{\{x_1 \geq 0 \text{ \& } x_2 \geq 0\}}}_{\text{treatment effect}} + \underbrace{\sum_{k=3}^{5} x_k}_{\text{mean effect}} + e_i$$

 $\begin{array}{c|cccc}
 & x_1 \ge 0 & x_1 < 0 \\
\hline
 & x_2 \ge 0 & 3 & -1 \\
 & x_2 < 0 & 1 & -2 \\
\end{array}$

Data Generation Process

• DGP 3:

$$Y_i = \underbrace{-5D + 6D \cdot \mathbb{I}_{\{x_1 \geq 0\}} + 2.5D \cdot \mathbb{I}_{\{x_2 \geq 0\}} + 1.5D \cdot \mathbb{I}_{\{x_3 \geq 0\}}}_{\text{treatment effect}} + \underbrace{\sum_{k=4}^{k=4} x_k}_{\text{mean effect}} + e_i$$

Monte-Carlo Simulations

FLOWCHART

Table 1: Input Parameters

Name	Param.	Values	Description				
$N^{Tr} + N^{Est}$	n	500, 300, 100	number of observations in $N^{Tr} + N^{Est}$ sample				
N ^{Te}	n_test	5000	number of observations in test sample				
θ	est_size	[0.2 : 0.1 : 0.8]	share of n devoted to the estimation subsample				
R	reps	500	Monte-Carlo repetitions				
Var(e)	var_e	0.01, 1.0, 2.5	variance of error term in DGP				

Monte-Carlo and Modified Causal Tree Scripts here

Reported Statistics

• MSE, Bias and Variance of Conditional Average Treatment Effects (CATE):

$$\widehat{BIAS}_{CATE} = \frac{1}{R} \sum_{r=1}^{R} (\widehat{CATE}_r(\mathbf{X}) - CATE_{True})$$

$$\widehat{VAR}_{CATE} = \frac{1}{R} \sum_{r=1}^{R} (\widehat{CATE}_r(\mathbf{X}) - \widehat{CATE})^2$$

$$\widehat{MSE}_{CATE} = \widehat{BIAS}_{CATE}^2 + \widehat{VAR}_{CATE}$$

Reported Statistics

Total MSE, Toal Bias and Total Variance of Individual Treatment Effects:

$$\widehat{\textit{BIAS}}_{T}^{2} = \frac{1}{\textit{N}^{\textit{Te}}} \sum_{i \in S_{\textit{Te}}} (\overline{\hat{\tau}}(\textit{X}_{i}) - \tau_{i}(\textit{X}_{i}))^{2}$$

where:

$$\overline{\hat{\tau}}(X_i) = \frac{\sum_{r=1}^{R} \hat{\tau}_{ir}}{R} \quad \forall \ i \in S_{Te}$$

$$\widehat{VAR}_T = \frac{1}{N^{Te}} \sum_{i \in S_{Te}} \widehat{V(\tau)}_i(X_i)$$

where:

$$\widehat{V(\tau)}_{i}(X_{i}) = \frac{\sum_{r=1}^{R} (\widehat{\tau}_{ir} - \overline{\widehat{\tau}}_{i})^{2}}{R} \quad \forall \ i \in S_{Te}$$

Results

Figure 2: CATE bias, variance and MSE for DGP 1

Results

Table 2: Summary of results (Design 1 with 2 ATEs)

N^{Tr+Est}	500		300			100						
Var(e)	0.01	1.00	2.50	0.01	1.00	2.50	0.01	1.00	2.50			
Minimum MSE of ATE	0.113	0.170	0.618	0.230	0.380	1.237	1.180	1.503	2.380			
θ where MSE is minimzed	0.6	0.5	0.5	0.5	0.5	0.5	0.6	0.7	0.8			
heta where variance is minimzed	0.6	0.5	0.6	0.5	0.6	8.0	0.8	8.0	8.0			
heta where bias is minimzed	0.3	0.4	0.4	0.4	0.4	0.3	0.5	0.3	0.3			
SD of MSE ($\theta \in [0.2 : 0.8]$)	0.059	0.087	0.268	0.139	0.203	0.354	0.473	0.446	0.773			
SD of MSE ($\theta \in [0.3:0.7]$)	0.018	0.033	0.125	0.059	0.097	0.117	0.230	0.247	0.472			

Robustness Checks

Figure 3: Average number of estimated leaves for cases when $N^{Tr+Est} = 100$

Conclusion

- In large samples: $\theta \in [0.3, 0.7]$
- In small samples and in data sets with noise: $\theta \in [0.5, 0.7]$
- Optimal to set $\theta = 0.6$ in small samples

Limitations:

- Adjustment to the existing estimation method
- Only 3 DGPs of same type (may not be generalizable)