EXACT VALUE OF THE GROUND STATE ENERGY OF THE LINEAR ANTIFERROMAGNETIC HEISENBERG CHAIN WITH NEAREST AND NEXT-NEAREST NEIGHBOUR INTERACTIONS

P.M. van den BROEK

Department of Applied Physics, Twente University of Technology, Enschede, The Netherlands

Received 4 March 1980

It is shown that the ground state energy of the hamiltonian $H = \sum S_i \cdot S_{i+1} + \gamma \sum S_i \cdot S_{i+2}$ for the linear antiferromagnetic Heisenberg chain with nearest and next-nearest neighbour interactions is equal to $-\frac{3}{2}$ if $\gamma = \frac{1}{2}$.

We consider the linear antiferromagnetic Heisenberg chain with nearest and next-nearest neighbour interactions with hamiltonian

$$H_N(\gamma) = \sum_{i=1}^{N-1} S_i \cdot S_{i+1} + \gamma \sum_{i=1}^{N-2} S_i \cdot S_{i+2} , \qquad (1)$$

where N is the number of spins $\frac{1}{2}$ in the chain. Let the lowest eigenvalue of $H_N(\gamma)$ be $E_N(\gamma)$. We are interested in the energy per spin in the ground state in the limit of large N:

$$E(\gamma) = \lim_{N \to \infty} E_N(\gamma)/N . \tag{2}$$

E(0) is known exactly [1,2]; it is equal to $1-4\ln 2$ (= -1.7726, ...). For $\gamma \neq 0$ only approximations and upper and lower bounds for $E(\gamma)$ are known [3-8]. Majumdar and Ghosh [3,4] have found that for small finite chains $(N \leq 10)$ with an even number of spins and periodic boundary conditions $E_N(\frac{1}{2})$ is equal to $-\frac{3}{2}N$. Moreover they showed that $-\frac{3}{2}N$ is an eigenvalue of $H_N(\frac{1}{2})$ for all even N. The same is true for open chains with N even [5]. Thus $E(\frac{1}{2}) \leq -\frac{3}{2}$. The aim of this note is to show that $E(\frac{1}{2})$ is equal to $-\frac{3}{2}$ and that $E(\gamma)$ takes its maximal value at $\gamma = \frac{1}{2}$.

Divide the chain into $\frac{1}{2}N$ cells of 2 spins. Let the state $|\psi\rangle$ of the chain be the direct product of the states. $2^{-1/2}(|+-\rangle - |-+\rangle)$ for the cells. Then it is easy to verify that

$$H_N(\frac{1}{2})|\psi\rangle = -\frac{3}{2}N|\psi\rangle \,, \tag{3}$$

and that

$$\langle \psi | H_N(\gamma) | \psi \rangle = -\frac{3}{2} N. \tag{4}$$

Therefore

$$E(\gamma) \leqslant -\frac{3}{2} \,. \tag{5}$$

This shows that $E(\gamma)$ takes its maximal value $-\frac{3}{2}$ at $\gamma = \frac{1}{2}$ if we show that $E(\frac{1}{2}) = -\frac{3}{2}$. To show that $E(\frac{1}{2}) = -\frac{3}{2}$ we calculate a lower bound for $E(\gamma)$.

The hamiltonian H_N can be written as

$$H_N(\gamma) = \sum_{i=1}^{N-2} H_i(\gamma) + \frac{1}{2} S_1 \cdot S_2 + \frac{1}{2} S_{N-1} \cdot S_N, \qquad (6)$$

where

$$H_i(\gamma) = \frac{1}{2} S_i \cdot S_{i+1} + \frac{1}{2} S_{i+1} \cdot S_{i+2} + \gamma S_i \cdot S_{i+2}. \tag{7}$$

Since, in general, the lowest eigenvalue of a sum of operators is not less than the sum of the lowest eigenvalues of these operators, the lowest eigenvalue of $H_N(\gamma)$ is not less than $(N-2)E_i(\gamma)-3$ if $E_i(\gamma)$ is the lowest eigenvalue of $H_i(\gamma)$. $E_i(\gamma)$ can be calculated immediately; we find

$$E_i(\gamma) = \gamma - 2, \quad \text{if } \gamma \leq \frac{1}{2},$$

$$= -3\gamma, \quad \text{if } \gamma \geq \frac{1}{2}.$$
(8)

Since $E_i(\frac{1}{2}) = -\frac{3}{2}$ it follows that $E_N(\frac{1}{2}) \ge -\frac{3}{2}N$. It

follows that $E(\frac{1}{2}) \ge -\frac{3}{2}$ which proves that $E(\frac{1}{2}) = -\frac{3}{2}$.

It is a pleasure to acknowledge some useful discussions with Prof. Dr. W.J. Caspers.

References

- [1] H. Bethe, Z. Phys. 71 (1931) 205.
- [2] L. Hulthén, Ark. Mat. Astron. Fys. 26A (1938) No. 11.

- [3] C.K. Majumdar and D.P. Ghosh, J. Math. Phys. 10 (1969) 1388.
- [4] C.K. Majumdar and D.P. Ghosh, J. Math. Phys. 10 (1969) 1399.
- [5] P.M. van den Broek, W.J. Caspers and M.W.M. Willemse, submitted to J. Stat. Phys.
- [6] Th. Niemeyer, J. Math. Phys. 12 (1971) 1487.
- [7] H.P. van de Braak, W.J. Caspers, C. de Lange and M.W.M. Willemse, Physica 87A (1977) 354.
- [8] H.P. van de Braak, W.J. Caspers, P.K.H. Gragert and M.W.M. Willemse, J. Stat. Phys. 20 (1978) 577.