Feng Chia University 110-2 Purdue Calculus II TEST II

(Time: 90 minutes. Pages: Three Pages, Total 100 points)

Name: _____ SID: ____

A · Computations : (Total 100%, 10 points each, Show all your work, NO DETAIL WORK, NO POINTS!!)					
1. Find the Maclaurin polynomial $P_3(x)$ of	2. Find the power series representation of				
the function $f(x) = \cos \sqrt{x}$	the function $f(x) = \frac{x-1}{2+x}$ centered at $x=1$				
3. Find the power series representation of $f(x) = \tan^{-1}\frac{x}{2} \text{ centered at 0}$	4. (a) Find the power series representation of $f(x) = \frac{x}{1+x^2}$ centered at 0. (b) Fine the series representation of $\ln 2$ by (a).				

5. Find the limit if it exists, $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y}$

6.	Is the function $f(x, y)$	y) co	ontinuous at
	(0,0), if $f(x,y) =$		
	\int_{0}^{∞}	for	(x,y)=(0,0)
	J		_
	$\begin{cases} \sqrt{x^2 + y^2} \ln(\sqrt{x^2}) \\ f \end{cases}$ Prove your answer.	$+y^2$	²).
	f	or	$(x,y)\neq (0,0)$
	Prove your answer.		

7. Given
$$f(x,y) = \cos(x^2 + xy)$$
, find the limit $\lim_{h\to 0} \frac{f(\frac{\sqrt{\pi}}{2},h)-f(\frac{\sqrt{\pi}}{2},0)}{h}$.

8. Let
$$f(x,y) = \ln(x^2 + y^2)$$

- (a) Find differential df and
- (b) Find the linearly approximation to f(x,y) at the point (1,1).
- (c) Use (b), to approximate f(1.01, 0.98)(Hint: $\ln 2 = 0.693$)

9. Find $\frac{dy}{dx}$ if $x^3 - 4xy + 2y^2 = 3$.	10. Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ if $w = e^{(x^2y + xy^2)}$ and $x = sr$ and $y = 2s + 3r$ if $r = 1$, $s = -1$.