MySQL Database

Introduction

Introduction

Data

- ▶ 하나하나의 단편적인 정보
- ▶ 정보는 있으나 아직 체계화가 되지 않은 상태

Database

- ▶ 데이터의 집합 (a Set of Data)
- ▶ 여러 응용 시스템(프로그램)들의 통합된 정보들을 저장하여 운영할 수 있는 공용(Shared) 데이터의 집합
- ▶ 효율적으로 저장, 검색, 갱신할 수 있도록 데이터 집합들끼리 연관시키고 조직화되어야 한다

데이터베이스

- ▶ 데이터베이스의 특성
 - ▶ 실시간 접근성 (Real-time Accessibility) 사용자의 요구를 즉시 처리할 수 있다
 - ▶ 계속적인 변화 (Continuous Evolution) 정확한 값을 유지하기 위해 삽입, 삭제, 수정 작업 등을 이용하여 데이터를 지속적으로 갱신할 수 있다
 - ▶ 동시 공유성 (Concurrent Sharing) 사용자마다 서로 다른 목적으로 사용하므로 동시에 여러 사람이 동일한 데이터에 접근하고 이용할 수 있다.
 - ▶ 내용 참조 (Contents Reference) 저장한 데이터 레코드의 위치나 주소가 아닌 사용자가 요구하는 데이터의 내용, 즉 데이터 값에 따라 참조할 수 있어야 한다

- ▶ 데이터베이스 관리 시스템 (Database Management System = DBMS)
 - ▶ 데이터베이스를 관리, 운영하는 소프트웨어
 - ▶ 여러 응용 소프트웨어(프로그램) 또는 시스템이 동시에 데이터베이스에 접근하여 사용할 수 있게 한다
 - ▶ 필수 3기능
 - ▶ 정의 기능 : 데이터베이스의 논리적, 물리적 구조를 정의
 - ▶ 조작 기능 : 데이터를 검색, 삽입, 갱신, 삭제하는 기능
 - ▶ 제어 기능 : 데이터베이스의 내용 정확성과 안전성을 유지하도록 제어하는 기능
 - ▶ Oracle, Microsoft SQL Server, MySQL, DB2 등의 상용 또는 공개 DBMS가 있다

- ▶ 기존 파일 시스템의 문제
 - ▶ 데이터 종속성으로 인한 문제
 - ▶ 데이터 중복성으로 인한 문제
- ▶ 데이터베이스의 도입
 - ▶ 데이터의 종속성 보완
 - ▶ 중복성 제거

[그림 7-3] 파일관리시스템(좌)과 데이터베이스 관리시스템(우)

Database Schama

- Schema
 - ▶ 데이터베이스의 논리적 정의
- ▶ 3단계 Schema
 - ▶ External Schema (외부 스키마)
 - ▶ 각 사용자 입장에서 본 Database 구조
 - ▶ 사용자마다 서로 다른 Schema를 가짐
 - ▶ 개념 Schema에 대한 서브 Schema
 - ▶ Conceptual Schema (개념적 스키마)
 - ▶ 조직 전체의 입장에서 본 Database 구조
 - ▶ 한 개의 Schema만 존재하며, 서로 다른 사용자가 공유
 - ▶ Data 객체(개체, 관계), 제약 조건에 대한 명세를 유지
 - ▶ Physical Schema (물리적 스키마)
 - ▶ 저장 장치의 입장에서 본 Database 구조
 - ▶ 각 data 객체의 저장 구조를 표현
 - ▶ 내부 레코드의 형식
 - ▶ 저장 data 항목의 표현 방법

- ▶ 데이터베이스 관리 시스템의 장점
 - ▶ 데이터 독립성 및 중복이 최소화
 - ▶ 데이터의 일관성 및 무결성 유지
 - ▶ 데이터 보안 보장
 - ▶ 표준화되고 일관된 데이터 관리 기능
 - ▶ 응용프로그램 개발 시간의 단축
 - ▶ 데이터 동시 사용 가능
 - ▶ 데이터 회복 가능
- ▶ 데이터베이스 관리 시스템의 단점
 - ▶ 시스템 자원 요구로 운영비 증대
 - ▶ 고급 프로그래밍 필요로 자료 처리의 복잡화
 - ▶ 부분적 데이터베이스 손실이 전체 시스템을 정지
 - ▶ 장애 발생 대비를 위한 복잡한 Back Up과 Recovery 작업 필요

- ▶ 데이터베이스의 종류
 - ▶ 관계형 데이터베이스 (Relational Database = RDB)
 - ▶ 1970년 IBM E. F. Codd에 의해 제안되어 수십년 동안 주류 데이터베이스로 성장 확대
 - ▶ 키와 값들의 간단한 관계를 테이블화 시킨 매우 간단한 원칙의 개념을 가진 데이터베이스
 - ▶ 일련의 정형화된 테이블로 구성된 데이터 항목들의 집합이며 각 테이블은 데이터의 성격에 따라 여러 개의 컬럼(키)이 포함된다
 - ▶ 사용자는 SQL이라는 표준 질의어를 통해 데이터를 조작 또는 조회할 수 있다
 - ► SQL (Structured Query Language)
 - ▶ 객체지향 데이터베이스 (Object Oriented Database = OODB)
 - ▶ 정보를 객체의 형태로 표현하는 데이터베이스
 - ▶ 객체 모델이 그대로 데이터베이스에도 적용되어 데이터 모델을 그대로 응용프로그램에 적용, 데이터 변환과 질의 작업이 필요하지 않은 장점이 있다

- ▶ 데이터베이스의 종류
 - ▶ 객체관계형 데이터베이스 (Object Relation Database = ORDB)
 - ▶ 관계형 데이터베이스에서 사용하는 데이터를 확장
 - ▶ 관계형 데이터베이스를 객체 지향 모델링과 데이터를 관리하는 기능을 갖도록 확장한 것

NoSQL

- ▶ 대용량 데이터, 비정형 데이터의 웹 서비스와 SNS, 클라우드 컴퓨팅의 확대 보급과 대중화로 최근 주목받고 있는 데이터베이스 기술
- ▶ 그외
 - ▶ Hierachical Database
 - ▶ Network Database

▶ 논리적(개념적) 데이터 모델링과 물리적인 데이터베이스

- ▶ RDBMS의 이해
 - ▶ Relation 또는 2차원 Table을 이용하여 정보 저장
 - ▶ Relation = Table 간의 연관
 - ► Attribute = Column
 - ► Tuple = Row

▶ ERD 예시를 통해 보는 관계

: 대표값 – PK(Primary Key)

* : NOT NULL

) : NUL 가능

1. 어떤 부서는 사원을 배치 받지 않을 수 있다 (점선)

2. 사원은 특정 부서에 소속되어 있다 (실선)

3. 한 부서에는 여러 명의 사원이 소속되어 있다 (다중선)

4. 한 사원은 하나의 부서에만 속한다 (단일선)

▶ 테이블 Table Student column(Attribute)

1							
student_id	name	grade	dept				
1	정성진	1	컴퓨터				
2	박현진	2	수학		row(record)		
3	홍길동	4	물리				
•••	•••		•••				
fi	eld		field	-			

테이블: RDBMS의 기본적 저장 구조. 한 개 이상의 column과 0개 이상의 row로 구성 열(Column): 테이블상에서의 단일 종류의 데이터를 나타냄. 특정 데이터 타입 및 크기를 가지고 있음 행(Row): Column 값들의 조합. 튜플, 레코드라고 함.

기본키(PK)에 의해 구분된다. 기본키는 중복을 허용하지 않으며 없어서는 안된다

Field: Row와 Column의 교차점으로 Field는 데이터를 포함할 수 있고 없을 때는 NULL 값을 가지고 있다.

: 무결성 제약조건(Integrity Constraint)

- ▶ 개체 무결성(Entity Integrity)
 - ▶ Table은 중복된 ROW를 가질 수 없으며 모든 Table은 각각의 ROW를 유일하게 식별할 수 있는 Column의 집합을 가진다. 이러한 Column의 집합 중에서 대표되는 컬럼을 Primary Key(PK)로 정의한다
 - ▶ Primary Key의 값은 항상 유일(Unique)하며 널(Null)을 허용해서는 안된다
- ▶ 참조 무결성(Referential Integrity)
 - ▶ Table들은 Foreign Key(FK)를 통해 서로 연결되어 있다. Foreign Key는 다른 Table 또는 자신 Table의 PK 값을 참조하기 위해 복사하여 가지고 있는 Column을 말한다
 - ▶ 참조 무결성이 지켜지기 위해서 FK Column의 값은 참조하는 PK 컬럼 값 중의 하나이거나 Null이어야 한다
- ▶ 무결성 제약은 DBMS 시스템이 자동으로 수행한다

- ▶ Primary Key (PK): 기본키
 - ▶ 관계(Relation)에서 튜플을 구분하기 위하여 사용하는 기본 키
 - ▶ 하나의 애트리뷰트, 또는 애트리뷰트의 집합(복합키) 가능
 - ▶ 관리자에 의해 릴레이션 생성시 정의된 (자동으로 Index 생성)
 - ▶ 동일한 PK를 지닌 레코드는 존재할 수 없음
- ▶ 기타
 - ▶ Candidate Key (후보키): 튜플을 식별할 수 있는 최소한의 애트리뷰트 집합
 - ▶ 하나의 릴레이션에는 PK가 될 수 있는 키가 여러 개 있을 수 있음
 - ▶ 유일성과 희소성이 있으면 Candidate Key가 될 수 있음
 - ▶ Alternative Key (대체키): 후보키 중 기본 키가 아닌 것
 - ▶ Composite Key (복합키): 둘 이상의 애트리뷰트가 하나의 Key를 이루는 것

▶ 학생

▶ 기본키:학번

▶ 후보키:기본키와 동일

▶ 주민등록번호 등이 있다면 후보키가 될 수 있음

학생 (STUDENT)

<u> </u>	이름	학년	학과 (Dept)		
(Sno)	(Sname)	(Year)			
100	나 수 영	4	컴퓨터		
200	이 찬 수	3	전기		
300	정 기 태	1	컴퓨터		
400	송 병 길	4	컴퓨터		

▶ 등록

▶ 기본키:(학번, 과목번호)

▶ 후보키:기본키와 동일

▶ 학번이나 과목번호만으로는 키가 되지 못합

등록 (ENROL)

J음

<u> </u>	<u> 과목번호</u>	성적
(Sno)	(Cno)	(Grade)
100	C413	Α
100	E412	А
200	C123	В
300	C312	А

▶ 등록번호와 같이 별도의 단일키를 추가하여 PK로 지정할 수도 있음

- ▶ Foreign Key (FK) : 외래키
 - ▶ 기본키를 참조하는 애트리뷰트
 - ▶ 다른 릴레이션의 튜플을 대표
 - ▶ 릴레이션 간의 관계를 나타내기 위해 사용
 - ▶ NULL 가능 (참조되지 않음을 의미)

			-	EMP							
<u>PK</u>			FK								
EMPN0	ENAME	JOB	MGR	HIREDATE	SAL	COMM	DEPTNO				
7369	SMITH	CLERK	7902	80/12/17	880		20]	PK	DEPT	
7499	ALLEN	SALESMAN	7698	81/02/20	1760	300	30				
7521	WARD	SALESMAN	7698	81/02/22	1375	500	30	DE	PTNO	DNAME	LOC
7566	JONES	MANAGER	7839	81/04/02	2975		20				
7654	MARTIN	SALESMAN	7698	81/09/28	1375	1400	30		10	ACCOUNTING	NEW YORK
7698	BLAKE	MANAGER	7839	81/05/01	2850		30			RESEARCH	DALLAS
7782	CLARK	MANAGER	7839	81/06/09	2450		10			SALES	CHICAGO
7788	SCOTT	ANALYST	7566	87/04/19	3000		20			OPERATIONS	BOSTON
7839	KING	PRESIDENT		81/11/17	5000		10		40	OI ENHITOIIS	0031011
7844	TURNER	SALESMAN	7698	81/09/08	1650	0	30		T		
7876	ADAMS	CLERK	7788	87/05/23	1210		20		1		
7900	JAMES	CLERK	7698	81/12/03	1045		30		1		
7902	FORD	ANALYST	7566	81/12/03	3000		20				
7934	MILLER	CLERK	7782	82/01/23	1430		10				
	,		<u> </u>						!		
1 =			1				i		_'		

SQL(Structured Query Language) 개요

- ▶ 데이터베이스 스키마 생성, 자료의 검색, 수정, 그리고 데이터베이스 객체 접근 관리 등을 위해 고안된 언어
 - ▶ 비절차식 언어
 - ▶ 1970년대 IBM의 SYSTEM R 프로젝트를 통해 개발
- ▶ 다수의 데이터베이스 관련 프로그램의 표준 언어
 - ▶ RDBMS에서 사용하기 위해 ANSI에서 책정한 표준 언어
 - ▶ DBMS 제품별로 SQL에 대한 추가 및 확장

SQL(Structured Query Language) 개요: SQL 명령어의 종류

- DML(Data Manipulation Language)
 - ▶ 데이터 처리를 위해 응용프로그램과 데이터베이스 관리 시스템간의 인터페이스를 위한 언어
 - ▶ 데이터 처리를 위한 연산의 집합으로 데이터의 검색, 삽입, 수정 및 삭제하기 위한 수단을 제공
 - ► SELECT, INSERT, UPDATE, DELETE, MERGE
- DDL(Data Definition Language)
 - ▶ 데이터베이스 구조, 데이터 형식, 접근 방식 등 데이터베이스를 구축, 변경할 목적으로 사용하는 언어
 - ▶ DDL 컴파일러가 컴파일한 후 데이터 사전에 저장
 - ▶ 데이터의 논리적, 물리적 구조를 생성, 변경, 삭제하는 기능을 제공
 - ► CREATE, ALTER, DROP, RENAME
- DCL(Data Control Language)
 - ▶ 보안 및 권한 제어, 무결성, 회복, 병행 제어를 위한 언어
 - ▶ : 데이터에 대한 권한 관리 및 트랜잭션 제어
 - ▶ GRANT, REVOKE 등

MySQL 8과 Workbench 설치

About MySQL

- ▶ 세계에서 가장 인기 있는 Open Source Database Management System
- ▶ 1995년 첫 공식 버전 출시
- ▶ 2001년 GNU GPL 등록
- ▶ 2008년 1월, Sun Microsystems에서 인수
- ▶ 2010년 1월, Oracle이 Sun Microsystems와 함께 인수
- ▶ Open Source LAMP Stack으로 급성장

About MySQL

- ▶ 주요 기능
 - ▶ 최상의 신뢰성과 보안성을 제공하는 오픈 소스 데이터베이스
 - ▶ Stored Procedure, Trigger, View 등 RDBMS로서 기본 기능에 충실
 - ▶ 사용자의 편의에 따른 Pluggable Storage Engine 기능
 - ▶ 다양한 Third Party 엔진 지원
 - ▶ 마법사 툴을 이용한 쉬운 설치 및 환경 설정
 - ▶ 다양한 관리자용 GUI Tool 제공(Administration, Migration, Backup, Workbench, Query Browser 등)
 - ▶ 중앙 집중 관리(보안, 스키마 관리, Replication, 성능 모니터링 등)
 - ▶ 다양한 플랫폼과 다양한 언어 지원
 - ▶ 가격 대비 최대 성능 효과의 TCO 절감 DBMS

: MySQL 8.0

- ▶ MySQL 홈페이지에서 MySQL 8.0 Community 다운로드 후 설치
- ▶ 직접 다운로드 경로
 - https://dev.mysql.com/downloads/mysql/
 - ▶ 시스템 운영체제에 맞는 설치 파일 선택 후 다운로드
- ▶ 다운로드 받은 Installer를 실행

Installation : MySQL 8.0

▶ License 허용 > Next

: MySQL 8.0

Setup Type : Developer Default > Next

Installation : MySQL 8.0

- ▶ 설치할 Product 선택 > Execute
- ▶ 설치 완료 후 > Next

: MySQL 8.0

- Product Configuration
 - ▶ Standalone MySQL Server 선택 > Next

: MySQL 8.0

- Product Configuration
 - ▶ MySQL 접속 정보 설정
 - ▶ MySQL의 기본 포트는 3306

Installation : MySQL 8.0

▶ 인증 방식의 설정 > Next

: MySQL 8.0

- ▶ 관리자 계정 암호 설정
 - ▶ MySQL의 관리자 계정은 root
 - ▶ root 계정은 DB의 모든 기능을 조작, 제어할 수 있으므로 root 계정의 암호는 주의해서 관리 및 사용

: MySQL 8.0

- ▶ Windows Service에 등록
 - ▶ Service에 등록하면 윈도우가 실행될 때 자동으로 관리되고 실행되도록 설정할 수 있음

: MySQL 8.0

► 설정 저장 > Execute

▶ Production 별로 추가 설정해야 할 내용이 있다면 Instruction을 따라서 설정 후 반영

Connect to Database

: with Shell Command

- ► Win + R > cmd
- ▶ 쉘 프롬프트에 다음과 같이 입력

```
mysql -uroot -p
```

▶ root 계정의 비밀번호 입력

```
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 15
Server version: 8.0.12 MySQL Community Server - GPL
...
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql>
```

: with Shell Command

▶ 보유 데이터베이스 확인

```
mysql> SHOW DATABASES;
 Database
 information_schema
  mysql
  performance_schema
  sakila
  Sys
  world
6 rows in set (0.02 sec)
```

▶ 데이터베이스 사용

```
mysql> USE sakila
Database changed
mysql> SHOW TABLES;
 Tables_in_sakila
 actor
  actor_info
  address
 staff
  staff_list
  store
23 rows in set (0.01 sec)
```

: with Shell Command

▶ 테이블 구조 확인

```
mysql> DESCRIBE actor;
 Field
              Type
                                      Null | Key | Default
                                                                      Extra
 actor_id | smallint(5) unsigned |
                                      NO
                                             PRI | NULL
                                                                      auto_increment
 first_name | varchar(45)
                                    | NO
                                                  NULL
             | varchar(45)
 last_name
                                    l NO
                                            MUL | NULL
 last_update | timestamp
                                      NO
                                                  CURRENT_TIMESTAMP | on update CURRENT_TIMESTAMP
4 rows in set (0.00 sec)
```

- ▶ DESCRIBE 명령은 DESC로 줄여 사용할 수 있다
- ▶ 연습) 다른 테이블의 구조도 확인해 봅시다

: with Shell Command

▶ 간단한 쿼리 실행

- ▶ 대부분 MySQL 문장은 semicolon(;)으로 끝난다
- ▶ MySQL은 찾은 전체 row를 출력하고 마지막에 전체 row 수와 쿼리 실행에 걸린 시간을 표시한다.

: with Shell Command

- ▶ 키워드는 대소문자 구별을 하지 않는다
- ▶ 다음 쿼리들은 모두 같다

```
mysql> SELECT VERSION(), CURRENT_DATE;
mysql> select version(), current_date;
mysql> SeLeCt VeRsIoN(), current_DATE;
```

▶ 다양한 수학 함수를 내장하고 있으며 계산식의 처리도 수행

: with Shell Command

▶ 여러 문장을 세미콜론(;)을 붙여 연속으로 입력하면 여러 쿼리를 순차적으로 실행할 수 있다.

```
mysql> SELECT VERSION(); SELECT NOW();
| VERSION() |
8.0.12
1 row in set (0.00 sec)
NOW()
2018-10-17 14:14:00
1 row in set (0.00 sec)
```

: with Shell Command

- Multi-Line Commands
 - ▶ MySQL은 세미콜론(;)을 문장의 마지막으로 인식하기 때문에, 여러 줄에 거쳐 문장을 쓰는 것도 가능
 - ▶ 긴 쿼리 작성시 가독성을 높이고자 할 때 유용

: with Shell Command

- ▶ Command 취소
 - ▶ 긴 쿼리를 작성하다가 중간에 취소해야 하는 경우 즉시 \c를 붙여 쿼리 작성을 중단할 수 있다.

```
mysql> SELECT
   -> USER()
   -> \c
mysql>
```

▶ MySQL Shell 종료 (연결 끊기)

```
mysql> QUIT
mysql> EXIT
```

Sample Database

- ▶ Employees Database 설치
 - ▶ https://github.com/datacharmer/test_db 저장소 다운로드
 - ▶ 쉘 프롬프트에서 다음과 같이 **sql** 파일을 실행

```
C:>mysql -uroot -p < employees.sql
```

▶ 데이터베이스가 잘 설치되었는지 확인

Sample Database

- ▶ 사용자 생성
 - ▶ 사용자 생성을 위해서는 'CREATE USER' command 이용

```
CREATE USER 'dev'@'localhost' IDENTIFIED BY '{password}';
```

▶ 특정 데이터베이스에 접근할 권한을 주려면 'GRANT' command 이용

```
GRANT all privileges ON employees.* TO 'dev'@'localhost';
```

- ▶ 사용자 삭제
 - ▶ 사용자 삭제를 위해서는 'DROP USER' command 이용

```
DROP USER 'dev'@'localhost';
```

▶ dev@localhost 사용자를 만들고 employees의 모든 테이블에 대해 전체 권한을 부여한 후, 해당 계정으로 데이베이스에 접속하여 employees 데이터베이스를 사용해 봅니다.

Sample Database

: 연습

- ▶ 저장소의 sql 파일을 받아 hr 샘플 데이터베이스를 설치해 봅니다.
 - ▶ SQL 디렉터리 hr.sql
- ▶ bituser@localhost 사용자를 생성하고 hr 데이터베이스에 대한 모든 권한을 부여해 봅니다.
- ▶ hr-schema.pdf 파일을 통해 HR 데이터베이스의 구성을 살펴 봅시다.