AIRPORT OPERATIONAL DATABASE MANAGEMENT SYSTEM PROJECT REPORT

- By

21CSB0F28 (Marella Venkata Sai Rohith) 21CSB0F32 (Shreyas Chirasseril Sivan)

<u>Problem Statement:</u> To design an Airport Operational Database Management System to streamline and optimize various operational processes at an airport, including flight schedules, air traffic control, resource allocation, etc.

Description:

Airport Operational Database Management Systems (AODBMS) are essential for managing and coordinating various airport operations. These comprehensive software systems centralize data related to flight schedules, resource allocation, and other operational aspects. However, managing an AODBMS presents challenges such as integrating multiple systems, ensuring real-time data synchronization, and maintaining data security.

Integrating various airport systems and databases is a complex task for AODBMS. Interoperability and data consistency among these systems is crucial for accurate information management. Additionally, the dynamic nature of airport operations requires prompt updates and data synchronization. Security and data privacy are also significant concerns, as airports handle sensitive passenger information. Overcoming these challenges is crucial for the efficient functioning of AODBMS and for providing a seamless travel experience for passengers.

Database Design:

Our design involves creating a structured and efficient database schema that can effectively store and manage vast data related to airport operations. It focuses on ensuring data integrity, scalability, and performance while accommodating the complex relationships between various entities such as flights, baggage, resources, and schedules. It defines appropriate tables, establishes relationships between them, and normalizes them providing a solid foundation for the storage and retrieval of data.

Entity-Relationship Model:

- Since *security* and *terminal* have a one-many relationship we can combine the security table and the *security-terminal relation* table resulting in two tables, *security* and *terminal*.
- Since schedule and airport have a many-one relationship and schedule also has a many-one relationship with runway hence we can combine the schedule table with the schedule-airport relationship table and runway-schedule relationship resulting in three tables runway, schedule, and airport.
- Since *runway* and *ATC* have a one-many relationship we can combine the *ATC* table with the *runway-ATC relationship* table resulting in two tables *ATC* and *runway*.
- Since baggage is a weak entity set, it takes the primary key of the flight table and forms a composite primary key (flight_number, belt_no).
- Since baggage and management_staff have a one-many relationship we can combine the management_staff table and the management relation table resulting in two tables, baggage and management staff table.
- As the *flight* table has many-one relationships with *hangar*,
 flight_type, and *terminal*, we can combine the relationships table
 between them with the *flight* table to give four tables *flight*,
 flight type, *hangar*, and *terminal*.

TABLE SCHEMA:

ENTITY SET:

1. TERMINAL: The terminal table provides the relevant details regarding the terminals at an airport.

Attributes: TERMINAL_ID, FLOOR_AREA, AIRPLANE_CAPACITY.

Candidate/Primary Key: TERMINAL ID.

FOREIGN KEYS: NONE

Highest Normal Form: BCNF. All functional dependencies are

determined by the primary/candidate key.

2. FLIGHT_TYPE: This entity describes the type and build of various types of aircraft.

Attributes: TYPE ID, TYPE NAME, MAX SEAT CAPACITY,

FUEL CAPACITY, WEIGHT, MAX RANGE.

Candidate/Primary Key: TYPE ID.

FOREIGN KEYS: NONE

Highest Normal Form: BCNF. All functional dependencies are

determined by the primary/candidate key.

3. HANGAR: Gives information on the location and capacity of a particular hangar to handle aircraft.

Attributes: HANGAR_NUMBER, CAPACITY, LOCATION

Candidate/Primary Key: HANGAR_NUMBER.

FOREIGN KEYS: NONE

Highest Normal Form: BCNF. All functional dependencies are

determined by the primary/candidate key.

4. FLIGHT: This entity gives details regarding the flight numbers of various flights and the terminals each flight belongs to as well as its hangar number.

Attributes: FLIGHT_NUMBER, FLIGHT_TYPE_ID, HANGAR_NUMBER, TERMINAL ID

Candidate/Primary Key: FLIGHT NUMBER.

FOREIGN KEYS:

FLIGHT_TYPE_ID->FLIGHT_TYPE(FLIGHT_TYPE_ID),
HANGAR_NUMBER->HANGAR(HANGAR_NUMBER),
TERMINAL ID->TERMINAL(TERMINAL ID).

Highest Normal Form: BCNF. All functional dependencies are determined by the primary/candidate key.

5. BAGGAGE: Provides details of the baggage that has arrived for collection in an airport upon arrival.

Attributes: FLIGHT_NUMBER, BELT_NO

Candidate/Primary Key: (FLIGHT_NUMBER, BELT_NO).

FOREIGN KEYS: NONE

Highest Normal Form: BCNF. No partial dependencies are present

however there exist transitive dependencies.

 MANAGEMENT_STAFF: This entity contains information regarding all the staff responsible for managing baggage and other important groundwork.

Attributes: EMPLOYEE_NO, NAME, EXPERIENCE, SALARY, GENDER, DOJ, BELT NO, FLIGHT NO

Candidate/Primary Key: EMPLOYEE_NO

FOREIGN KEYS: NONE

Highest Normal Form: BCNF. All functional dependencies are determined by the primary/candidate key with no partial and transitive dependencies.

7. RUNWAY: Provides details of the dimensions of the runway.

Attributes: RUNWAY_ID, WIDTH, LENGTH

Candidate/Primary Key: RUNWAY_ID

FOREIGN KEYS: NONE

Highest Normal Form: BCNF. All functional dependencies are determined by the primary/candidate key with no partial and transitive dependencies.

8. AIRPORT: Contains data regarding several other destination airports.

Attributes: IATA AIRPORT CODE, AIRPORT NAME, COUNTRY, CITY,

TIMEZONE, ALTITUDE, LATITUDE, LONGITUDE

Candidate/Primary Key: IATA_AIRPORT_CODE

FOREIGN KEYS: NONE

Highest Normal Form: BCNF. All functional dependencies are determined by the primary/candidate key with no partial and transitive dependencies.

9. SCHEDULE: This entity contains details regarding the schedule of several flights such as their source and destinations, arrival and departure time, etc.

Attributes: FLIGHT_NUMBER, SOURCE, DESTINATION,

BOARDING_TIME, ARRIVAL_TIME, RUNWAY_ID

Candidate/Primary Key: FLIGHT_NUMBER.

FOREIGN KEYS:

FLIGHT_NUMBER->FLIGHT(FLIGHT_NUMBER),
SOURCE->AIRPORT(IATA AIRPORT CODE),

DESTINATION->AIRPORT(IATA AIRPORT CODE)

Highest Normal Form: BCNF. All functional dependencies are determined by the primary/candidate key with no partial and transitive dependencies.

10. SECURITY: Provides details about the security staff in and around the airport.

Attributes: EMPLOYEE NO, NAME, EXPERIENCE, SALARY, GENDER, DOJ,

DESIGNATION, TERMINAL ID

Candidate/Primary Key: EMPLOYEE_NO

FOREIGN KEYS:

TERMINAL ID->TERMINAL(TERMINAL ID)

Highest Normal Form: BCNF. All functional dependencies are determined by the primary/candidate key with no partial and transitive dependencies.

11. ATC_STAFF: Contains details of all the air traffic control staff, managing the runway and air traffic.

Attributes: EMPLOYEE_NO, NAME, EXPERIENCE, SALARY, GENDER, DOJ,

COMMUNICATION_FREQ, RUNWAY_ID

Candidate/Primary Key: EMPLOYEE NO

FOREIGN KEYS:

RUNWAY ID->RUNWAY(RUNWAY ID)

Highest Normal Form: BCNF. All functional dependencies are determined by the primary/candidate key with no partial and transitive dependencies.

RELATIONS (TABLES):

• TERMINAL

	♦ TERMINAL_ID	∯ FLOOR_AREA	# AIRPLANE_CAPACITY
1	1	1200	12
2	2	1300	16
3	3	1500	15

• FLIGHT_TYPE

	♦ TYPE_ID	TYPE_NAME	MAX_SEAT_CAPACITY	FUEL_CAPACITY		MAX_RANGE
1	11	BOEING 737	220	94770	78130	7040
2	21	BOEING 767	180	90700	80100	10400
3	3 2	AIRBUS A220	160	21500	54400	6290
4	4 2	AIRBUS A320	170	27200	58900	6200
5	5 2	AIRBUS A330	405	139100	158700	11720
6	61	BOEING 777	380	181300	134800	15000
7	7 1	BOEING 787 DREAMLINE	R 300	126200	119900	13500
8	8 1	DOUGLAS DC8	270	88500	54300	4800
9	9 2	AIRBUS A300	230	68000	127000	7500
10	10	AIRBUS A310	200	61000	127000	8000

HANGAR

	HANGAR_NUMBER	♦ CAPACITY	♦ LOCATION		
1	1	25	SECTOR 1		
2	2	27	SECTOR 1		
3	3	31	SECTOR 2		
4	4	18	SECTOR 3		
5	5	15	SECTOR 3		

• FLIGHT

	FLIGHT_NUMBER	\$ FLIGHT_TYPE_ID	HANGAR_NUMBER	↑ TERMINAL_ID
1	101	1	1	3
2	102	2	2	3
3	103	1	3	2
4	104	7	4	3
5	105	9	5	1
6	106	4	2	2
7	107	6	4	3
8	108	6	5	2
9	109	5	3	1
10	110	8	1	1

• BAGGAGE

	\$ FLIGHT_NUMBER	BELT_NO
1	101	1
2	102	2
3	103	3
4	104	4
5	105	5
6	106	6
7	107	7
8	108	8
9	109	9
10	110	10

• MANAGEMENT_STAFF

	♦ EMPLOYEE_NO	♦ NAME		SALARY	♦ GENDER	∯ DOJ	♦ BELT_NO	∳ FLIGHT_NO
1	10101	SHREYAS	1	10000	М	12-JAN-22	1	101
2	10102	ROHITH	3	10000	М	12-JAN-20	2	102
3	10103	SHRAVAN	18	50000	M	22-JUL-05	3	103
4	10104	KUMAR	18	50000	M	30-MAR-05	4	104
5	10105	RAM	21	155000	M	02-APR-02	5	105
6	10106	SITA	5	30000	F	24-JAN-18	6	106
7	10107	DIVYA	2	10000	F	28-FEB-21	7	107
8	10108	ANAND	3	20000	M	30-MAY-20	8	108
9	10109	AMAN	3	20000	M	22-JUN-20	9	109
10	10110	ROHAN	2	10000	M	11-JAN-21	10	110

• RUNWAY

	RUNWAY_ID	₩IDTH	↓ LENGTH
1	1	45	4000
2	2	45	3500
3	3	60	3700

• AIRPORT

			⊕ CITY	♦ TIMEZONE		♦ LATITUDE	LONGITUDE
1 MCT	MUSCAT INTERNATIONAL AIRPORT	OMAN	MUSCAT	GST	15	23.6017	58.29
2 DXB	DUBAI INTERNATIONAL AIRPORT	UAE	DUBAI	GST	19	25.2531	55.3656
3 HYD	RAJIV GANDHI INTERNATIONAL AIRPORT	INDIA	HYDERABAD	IST	617	17.2403	78.4294
4 MAA	CHENNAI INTERNATIONAL AIRPORT	INDIA	CHENNAI	IST	16	12.9941	80.1709
5 COK	COCHIN INTERNATIONAL AIRPORT	INDIA	COCHI	IST	9	10.1518	76.393
6 TRV	THIRUVANANTHAPURAM INTERNATIONAL AIRPORT	INDIA	THIRUVANANTHAPURAM	IST	3	8.4834	76.9198
7 BOM	CHHATRAPATI SHIVAJI MAHARAJ INTERNATIONAL AIRPORT	INDIA	MUMBAI	IST	11	19.0902	72.8628
8 SIN	SINGAPORE CHANGI AIRPORT	SINGAPORE	CHANGI	SGT	6	1.3545	101.9886

• SCHEDULE

	♦ FLIGHT_NUMBER	SOURCE	♦ DESTINATION	♦ BOARDING_TIME		RUNWAY_ID
1	101	HYD	DXB	15:00	19:00	3
2	102	HYD	MCT	05:00	09:00	3
3	103	DXB	HYD	10:00	14:00	2
4	104	BOM	HYD	21:00	22:30	1
5	105	MAA	HYD	01:00	02:30	2
6	106	HYD	SIN	13:00	17:40	2
7	107	COK	HYD	11:00	12:25	1
8	108	HYD	TRV	10:20	11:50	2
9	109	HYD	BOM	12:00	13:20	1
10	110	SIN	HYD	18:00	22:40	3

• SECURITY_STAFF

	♠ EMPLOYEE_NO	♦ NAME		SALARY	∯ GENDER	∯ DOJ		♦ TERMINAL_ID
1	10201	SHREYAS	1	10000	М	12-JAN-22	HEAD SECURITY	1
2	10202	ROHITH	3	10000	М	12-JAN-20	ASSISTANT SECURITY	1
3	10203	MARUTI	18	50000	M	22-JUL-05	OFFICER	3
4	10204	SHIVA	18	50000	М	30-MAR-05	OFFICER	2
5	10205	RAMN	21	155000	М	02-APR-02	ASSISTANT SECURITY	3
6	10206	LAKSHMI	5	30000	F	24-JAN-18	OFFICER	2
7	10207	DEVI	2	10000	F	28-FEB-21	OFFICER	1
8	10208	LAXMAN	3	20000	М	30-MAY-20	OFFICER	3
9	10209	ARON	3	20000	М	22-JUN-20	OFFICER	3
10	10210	RAHUL	2	10000	M	11-JAN-21	OFFICER	2

• ATC STAFF

		NAME		♦ SALARY		∯ DOJ	♦ COMMUNICATION_FREQ	\$ RUNWAY_ID
1	10301	SHREYAS	1	10000	М	12-JAN-22	120	1
2	10302	ROHITH	3	10000	М	12-JAN-20	130	1
3	10303	RUDRA	18	50000	М	22-JUL-05	122	3
4	10304	RAJAT	18	50000	М	30-MAR-05	134	2
5	10305	KRISHNA	21	155000	M	02-APR-02	128	3
6	10306	DEEPTI	5	30000	F	24-JAN-18	131	2
7	10307	DHRITI	2	10000	F	28-FEB-21	132	1
8	10308	BALRAM	3	20000	M	30-MAY-20	133	3
9	10309	BHARAT	3	20000	М	22-JUN-20	125	3
10	10310	ARJUN	2	10000	М	11-JAN-21	124	2

(Note: All values inserted are for demonstration purposes only.)

CONCLUSION:

The Airport Operational Database Management System (AODBMS) optimizes airport operations and enhances efficiency. It integrates systems, facilitates coordination, and improves passenger satisfaction. Implementing an AODBMS brings benefits such as improved communication, enhanced safety, increased efficiency, and cost reduction. Successful implementation requires planning, training, and maintenance. The AODBMS is essential for modern airports to stay competitive in the industry.