

Determination of α_s from inclusive jet cross sections

PDF@CMS monthly meeting, CERN

October 24, 2017

Daniel Britzger, Klaus Rabbertz, <u>Daniel Savoiu</u>, Georg Sieber, Markus Wobisch

INSTITUT FÜR EXPERIMENTELLE TEILCHENPHYSIK (ETP) · FAKULTÄT FÜR PHYSIK

Introduction

- gaining precision:
 - α_s is a fundamental physical parameter, but it is only known to $\sim 1\%$
 - → room for improvement
 - many processes depend on $α_s$ → large impact

- understanding of fundamentals:
 - proton structure → Parton Distribution Functions
 - hard parton scattering → strong force at different scales
 - jets → experimental handle on QCD in the final state

- \rightarrow determine $\alpha_s(M_Z)$ using inclusive jet cross sections
 - high production cross section
 - definition unambiguous, independent of process and experimental choices
 - many measurements available

Challenges

NLO calculation → missing higher orders?

PDF $\alpha_s(M_7)$ dependence sensitive to $\alpha_{\rm s}({\rm M}_7)$

perturbative expansion

convolution with PDFs

hard process cross section

theory predictions

renormalization and factorization scales

processes at different energy scales → RGE/DGLAP evolution

parameter estimation

measurement

data from many experiments → uncertainties and correlations

consistent treatment of:

- theory predictions
- experimental data
- uncertainties

estimate and analyze:

- $-\alpha_s(M_7)$
- uncertainty on $\alpha_s(M_7)$

Strategy?

often: "weighted average" combination of pre-determined values

Our Strategy

 use data from multiple experiments simultaneously in a consistent fitting procedure

Advantages

- data and theory on equal footing
- can identify and characterize tensions
- a single uncertainty model
 - → uncertainty decomposition possible

New fitting tool – Alpos

interfaces to many software packages:

- many popular tools supported
- consistent propagation of shared parameters

Data sets and past determinations of $\alpha_s(M_Z)$

- use recent double-differential inclusive jet cross section data:
 - hadron-hadron colliders:

LHC (ATLAS, CMS), **Tevatron** (CDF, DØ)

lepton-hadron colliders:

HERA (H1, ZEUS)

heavy ion colliders:

RHIC (STAR)

different initial state

different experimental setups

large phase space covered

- starting point: three published $\alpha_s(M_Z)$ determinations
 - V. Khachatryan et al. "Constraints [...] and extraction of the strong coupling constant [...] at $\sqrt{s} = 7$ TeV", Eur. Phys. J. C **75** (2015), p. 288. arXiv: 1410.6765 [hep-ex]
 - V.M. Abazov et al. "Determination of the strong coupling constant [...] at $\sqrt{s} = 1.96$ TeV", Phys. Rev. D **80** (2009), p. 111107. arXiv: 0911.2710 [hep-ex]
 - V. Andreev et al. "Measurement [...] and determination of the strong coupling constant α_s ", Eur. Phys. J. C **75** (2015), p. 65. arXiv: 1406.4709 [hep-ex]

Collaboration fit methods

- published $\alpha_s(M_Z)$ determinations from CMS, DØ and H1 collaborations
 - → different fitting methods
- reimplement methods in our own framework
 - → consistency check
 - → can also apply to other data
- methods give mostly consistent results
 - compatible with world average
 - some variation observed
- χ² / n_{degrees of freedom} as fit quality indicator
 - hint at possible issues with some data sets (esp. ATLAS, ZEUS)

Common fit method

- fit all data sets with a consistent fitting method
 - direct minimization of χ^2 quantity:

theory

- NLO QCD calculation (NLOJet++)
- fast recomputation with fastNLO
- fixed PDF for $\alpha_s = 0.118$

uncertainties in χ² definition

experimental

from nonperturbative effects

$$\chi_{\text{unified}}^2 = \sum_{ij} (\ln m_i - \ln t_i) \left[\left(\mathbf{V}_{\text{exp}}^{(\text{rel})} + \mathbf{V}_{\text{PDF}}^{(\text{rel})} + \mathbf{V}_{\text{NP}}^{(\text{rel})} \right)^{-1} \right]_{ij} (\ln m_j - \ln t_j)$$

log-normal distribution

from PDFs

well-suited for data spanning multiple orders of magnitude

additional uncertainties on $\alpha_s(M_Z)$ by refitting with parameter variations:

choice of PDF set

choice of PDF $\alpha_s(M_Z)$

"scale" (missing higher orders)

Results

- re-fit all data sets with our common fit method
 - enable determination using all data sets simultaneously:

$$\alpha_{s}(M_{Z}) = 0.1192 \quad (12)_{exp} \quad (5)_{NP}$$

$$(7)_{PDF}$$

$$(5)_{PDF} \alpha_{s} \quad (11)_{PDF} \text{ set}$$

$$(^{+59}_{-38})_{scale}$$

- χ²/n_{dof} as fit quality indicator
 - HERAPDF2.0 → consistently higher values for all data sets except H1
 - confirm high/low values for ATLAS and ZEUS, respectively
 - → conservative option: ATLAS data not included in common fit

Status of inclusive jet production

- data is well described by theory at NLO
 - → but: missing higher orders cause of largest uncertainty
- probe of QCD across>3 orders of magnitude in p_T
- promising tool for understanding experimental data
 - → preparation for studies involving PDFs,
 - \rightarrow in particular, simultaneous PDF+ $\alpha_s(M_Z)$ determinations

Summary

systematic study of α_s(M_Z) at NLO using inclusive jet cross sections from multiple experiments:

ATLAS, CDF, CMS, DØ, H1, STAR, ZEUS

• determination of $\alpha_s(M_7)$ in a **simultaneous** fit to a well-understood data subset:

$$\alpha_s(M_Z) = 0.1192 (12)_{exp} (^{+60}_{-41})_{theo}$$

- agreement with the world average
- reduced experimental uncertainty
- largest contribution → missing higher orders in perturbation theory
- consistent handling of data and theory in a single common fitting procedure
 - implemented in new fitting tool Alpos → flexible data/uncertainty specification, fastNLO interface
- to be submitted for publication
- all components in place for a determination at NNLO, as soon as theory becomes available