Hochschule RheinMain, FB DCSM Studiengänge Angewandte Informatik & Technische Systeme Prof. Dr. Heinz Werntges

Einführung in die Informatik¹ (LV 1122) WS 20/21

Übungsblatt 10 (1 Punkt)

<u>Aufgabe 10.1:</u>

Welchen dezimalen Wert besitzen die folgenden Repräsentierungen von Gleitpunktzahlen im IEEE-754-Format in 32-Bit-Maschinenwörtern:

S	ch	m(23)
1	01111111	000000000
0	10000010	110100000
1	00000000	000001000
0	11111111	000000000

Aufgabe 10.2:

Betrachten Sie die Repräsentierung von Gleitpunktzahlen im IEEE-754-Format in 32-Bit-Maschinenwörtern.

- (a) Welches ist der Abstand zwischen den beiden kleinsten normalisierten positiven Zahlen?
- (b) Welchen Wert besitzt die kleinste darstellbare positive Zahl?
- (c) In welchem Zahlenbereich lassen sich noch alle aufeinanderfolgenden natürlichen Zahlen, aber keine gebrochenen Zahlen mehr darstellen?

Aufgabe 10.3

- (a) Eine Unix-Datei mit Textinhalt enthält den folgenden hexadezimalen Inhalt: 61, 0A,62, 0A. Was ist der textuelle Inhalt der Datei?
- (b) Auf einem Windows-System enthält eine Datei mit der gleichen Ausgabe wie unter (a) den hexadezimalen Inhalt 61, 0D, 0A, 62, 0D, 0A. Warum?

¹ basierend auf der Veranstaltung von Prof. Dr. Reinhold Kröger & Ergänzungen von Prof. Dr. Martin Gergeleit

(c) Ermitteln Sie die Unicode-Werte (incl. Scriptnamen / "code charts") folgender Zeichen:

@,
$$\mathbf{x}$$
, $\ddot{\mathbf{O}}$, ∞ (math.: unendlich), ⊚ ("Smiley"), $\overset{\downarrow}{\triangleright}$ ("halbe" Note)

Beispiel: A \rightarrow Basic Latin, U+0041

Hinweis: https://www.unicode.org/charts

(d) Berechnen Sie die UTF-8-Codierungen der Zeichen @, Ö, \odot , aus Teil (c) Beispiel: Ä: U+00C4 \rightarrow (C3₁₆, 84₁₆)

★ Aufgabe 10.4 (ohne Verlosung):

Das folgende Bitmuster stammt vom Eingang des ehemaligen Informatik-Gebäudes am Campus Kurt-Schumacher-Ring. Decodieren Sie es!

<u>Aufgabe 10.5 (Teil c ist freiwillig / ohne Verlosung):</u>

Beide Stereo-Kanäle eines Audiosignals werden für eine Audio-CD mit 44,1 kHz abgetastet, jeder Messwert wird mittels 16-Bit-A/D-Wandler gequantelt und als 16-Bit-Zahl repräsentiert.

- (a) Wie viele Bytes pro Sekunde sind zu verarbeiten? Welches Datenvolumen (netto, also ohne Fehlerkorrekturen) fällt für eine Stunde Musikaufnahme an?
- (b) Der Dynamikumfang L_p (gemessen in "dB") eines Signals wird definiert als $L_p := 20 \log_{10}(U_{max}/U_{min})$, wobei U_{max} bzw. U_{min} das stärkste bzw. schwächste darstellbare Signal $\neq 0$ bedeuten. Welchen maximalen Dynamikumfang besitzen Audio-CD-Aufnahmen? Welcher Dynamikumfang resultiert bei Verwendung von 8-Bit-A/D-Wandlern? Tipp: Gehen Sie von $U_{min} = 1$ aus (kleinster Wert des A/D-Wandlers $\neq 0$), wählen Sie für U_{max} den größten vom A/D-Wander lieferbaren Wert.
- (c) An einem der Stereo-Kanäle liege ein Sinus-Signal $s(t) = a * sin(2\pi f * t)$ mit Frequenz f und Amplitude a an. Es gelte f = 22,05 kHz und s(0)=0. Der Dynamikumfang werde voll ausgenutzt. Wie lauten die ersten 8 gemessenen Signalwerte? Welche Messwerte erhalten Sie für (gleichphasige) Signale mit den Frequenzen f/2 und 2f? Skizzieren Sie die Signalverläufe und die Abtastpunkte.

Aufgabe 10.6:

Gegeben sei die Codierung C:{a, b, c, d, e, f, g}→{0, 1}* mit a \mapsto 10, b \mapsto 11, c \mapsto 000, d \mapsto 001, e \mapsto 010, f \mapsto 0110, g \mapsto 0111.

- (a) Geben Sie den C entsprechenden Codebaum an.
- (b) Ist die Fano-Bedingung erfüllt?
- (c) Decodieren Sie die Bitfolge 001011011110100101000000101111110110
- (d) Wie viele Bitstellen hätte ein Blockcode benötigt?

Vorbereitungen für Übungsblatt 11:

• Vorlesung, Kapitel 4 (Codierungen): Parität, Prüfsummen, Rechteck-Code, Hamming-Code