全国信息学奥林匹克联赛复赛模拟试题

一. 题目概况

中文题目名称	操作	天梯	距离
英文题目名	operate	coding	dist
可执行文件名	operate	coding	dist
输入文件名	operate.in	coding.in	dist.in
输出文件名	operate.out	coding.out	dist.out
每个测试点时限	1s	1s	3s
测试点数目	10	20	20
每个测试点分值	10	5	5
附加样例文件	有	有	有
结果比较方式	全文比较(过滤行末空格及文末回车)		
题目类型	传统	传统	传统
运行内存上限	128M	256M	256M

二. 提交源程序文件名

对于 C++语言	operate.cpp	coding.cpp	dist.cpp
对于 C 语言	operate.c	coding.c	dist.c

三. 编译命令(不包含任何优化开关)

对于 C++语言	g++ -o operate	g++ -o coding	g++ -o dist
	operate.cpp –lm	coding.cpp –lm	dist.cpp –lm
对于 C 语言	g++ -o operate	g++ -o coding	g++ -o dist
	operate.c –lm	coding.c –lm	dist.c -lm

注意事项:

- 1、文件名(程序名和输入输出文件名)必须使用英文小写。
- 2、C/C++中函数 main()的返回值类型必须是 int ,程序正常结束时的返回值必须是 0。

操作

(operate.cpp/c)

【问题描述】

在今天的竞赛课上,老师给全班同学出了一道难题:

给出一个长度为 n 数组 $A_1, A_2, ..., A_n$, 初始值都为 0。

我现在给出m个操作,请你输出操作后的序列。

操作共有两种:

1 l r:将下标在区间 [l,r] 的元素的值都加 1。

这时, zqh_wz 便嚷嚷道: "这不是 SB 题吗?"

老师笑了: "别急别急,还有一个操作呢"

2lr:将下标在区间 [l,r] 的操作再执行一次。

【输入格式】

输入文件名 operate.in 。

第一行两个正整数 n, m , 表示数组长度与操作数量。

接下来m行,每行三个整数oplr,表示一个操作,格式如题目描述所示。

操作编号从1开始。

对于操作 1 , 保证 $1 \le l \le r \le n$; 对于操作 2 , 保证 $1 \le l \le r < id$, id 为当前操作的编号。

【输出格式】

输出文件名 operate.out 。

输出仅一行, n 个用空格隔开的数,表示操作后的数组。

由于数字可能很大,请输出对109+7取模后的结果。

【样例输入输出】

[Input1]:

- 12
- 111
- 111

[Output1]:

2

[Input2]:

5 5

112

145

212

213

234

[Output2]:

77077

【数据范围】

对于 20%的数据 , $n, m \leq 10$

对于 60%的数据 , $n, m \le 2000$

对于 100%的数据, $1 \le n, m \le 10^5$

反应强度

时间限制: 1.000 Sec 内存限制: 128 MB

题目描述

```
核聚变特征值分别为x和y的两个原子进行核聚变,
能产生数值为 sgcd(x,y)的核聚变反应强度。
其中,sgcd(x,y)表示x和y的次大公约数,
即能同时整除x,y的正整数中第二大的数。
如果次大公约数不存在则说明无法核聚变,
此时sgcd(x,y)=-1。现在有n个原子,
核聚变特征值分别为a_2,\cdots,a_n。
然后 Picks又从兜里掏出一个核聚变特征值为a_1的原子,
你需要计算出这个原子与其它n个原子分别进行
核聚变反应时的核聚变反应强度,即sgcd(a_1,a_1),sgcd(a_1,a_2),\cdots,sgcd(a_1,a_n)。
```

输入

第一行一个正整数n。

第二行n个用空格隔开的正整数,第i个为 a_i 。

输出

一行n个用空格隔开的整数,第i个表示 $sgcd(a_1, a_i)$ 。

样例输入

```
4
12450 1 2 450
8
30030 6 10 12 55 36 450 666
```

样例输出

```
6225 -1 1 75
15015 3 5 3 11 3 15 3
```

提示

```
测试点1\sim 2满足,n=1,a_i\leq 10^9
测试点3\sim 6满足,n=10^4,a_i\leq 10^9
测试点7\sim 10满足,n=10^5,a_i\leq 10^{12}
```

天梯

(coding.cpp/c)

【题目描述】

放学了, zqh_wz 回到家,打开了电脑。突然,他发现某 OJ 上的最新比赛:天梯训练赛!经过仔细的研究, zqh_wz 发现这场比赛的题目呈树形分布。AC 了第 i 道题后,你可以解锁从属于它的 m_i 道题目 $x_{i,1}, x_{i,2} \dots x_{i,m_i}$ 。最开始只有第 1 道题是已解锁的。

 zqh_wz 决定解出这上面所有的题目,根据他的评估,解决第 i 道题需要花费他 T_i 小时的时间。然而 zqh_wz 刷题时间有限,每一天只有 h 小时,同时他不喜欢把题目留到第二天做。也就是说,一道题必须完整地在一天内被解决。当然,一天之内可以做好几道题。(如果时间允许)

同时,刚学过DFS的zqh_wz决定使用类似DFS的方式来做这些题,具体来讲:

- 1. 有一个栈 S, 初始时只包含第1道题。
- 2. 弹出栈顶的题目x。
- 3. 花费 Tx 小时完成这一道题;如果今天时间不够了,就到明天再完成。
- 4. 完成后,会解锁 m_x 道题目,将它们以**某一顺序**压入栈中,回到第 2 步骤。 zqh_wz 想要你帮他算一算他完成这些题目所需要的最少天数。

【输入格式】

第一行包括两个正整数 n 和 h ,表示题目数量与 zqh_wz 一天能够刷题的时间。

第二行包括 n 个由空格分隔的正整数 $T_1, T_2, T_3 \dots T_n$,表示 zqh_wz 解决每一道题分别需要的时间。

接下来 n 行描述题目的结构。第 x 行首先包括一个非负整数 m_x ,然后是 m_x 个正整数,表示解决第 x 题后会解锁的 m_x 个题目的编号 $x_{i,1},x_{i,2}...x_{i,m_t}$ 。

【输出格式】

输出仅一行,表示zqh_wz解决所有题目所需要的最少天数。

【样例输入输出】

[Input1]:

5 24

13 24 22 12 16

13

0

【样例解释】

在第一组数据中,每一天最多都只能完成一道题,因此做完所有题需要5天。 对于第二组数据,zqh_wz可以按照以下顺序完成题目:

第一天:完成第1、5题 第二天:完成第6、9题

第三天:完成第7、8、10题 第四天:完成第2、3、4题

【数据范围】

测试点编号	n	m_i	约定
1	= 1	= 0	
2			
3	≤ 10	≤ 5	
4			
5		≤ 1	
6	≤ 100		
7	≤ 300	≤ 3	
8	. 500	. =	
9	≤ 500	≤ 5	
10	≤ 1000		4 4 77 4 1 4 2 4
11	≤ 2000	≤ 8	$1 \le T_i \le h \le 24$
12			
13	~ 2000		
14	≤ 3000	≤ 9	
15	4000		
16	≤ 4000		
17			
18	4 5000	≤ 10	
19	≤ 5000		
20			

距离

(dist.cpp/c)

【题目描述】

zqh_wz 发现他的哥哥 zqh_zj 在研究一个神奇的图!

这个图有n个点,神奇的地方在于:

- 1. 对于每一个满足 $1 \le i < n$ 的点 i ,都有一条长度为 A_i 的单向边从点 i 连向点 i + 1 。
- 2. 对于每一个满足 $1 \le i < n-1$ 的点 i ,都有一条长度为 B_i 的单向边从点 i 连向点 i+2 。
- 3. 对于每一个满足 $1 \le i < n-2$ 的点 i ,都有一条长度为 C_i 的单向边从点 i 连向点 i+3 。

定义距离值 d(i,j) 表示从 i 点到 j 点的最短路的长度。

zqh_zi 想请你帮他计算 d(1,n) 的值。

就在此时,xiaoC突然出现,觉得这一道题太简单了。于是他请你求出下式的值:

$$\sum_{i=1}^{n} \sum_{j=i+1}^{n} d(i,j)$$

【输入格式】

第一行一个正整数n,表示图中点的个数。

第二行包括 n-1 个正整数, 第 i 个数表示 A_i 。

第三行包括 n-2 个正整数, 第 i 个数表示 B_i 。

第四行包括 n-3 个正整数, 第 i 个数表示 C_i 。

【输出格式】

输出仅一行,一个整数,代表答案。保证答案在64位有符号整数范围内。

【样例输入输出】

[Input1]:

4

111

11

1

[Output1]:

6

[Input2]:

5

1234

234

3 4

[Output2]:

31

[Input3]:

见附加文件 dist.in。

[Output3]:

见附加文件 dist.ans。

【样例解释】

在第一组数据中,所有的距离值都是1。

【数据范围】

测试点编号	n	约定	
1,2	≤ 100		
3,4	≤ 2000	无	
5,6	≤ 5000		
7,8		$B_{i} = A_{i} + A_{i+1}, C_{i} = A_{i} + A_{i+1} + A_{i+2}$	
9,10	≤ 100000		
11,12		$C_i = A_i + A_{i+1} + A_{i+2}$	
13,14	≤ 50000		
15,16	≤ 100000	_	
17,18	- 150000		
19,20	≤ 150000		

对于所有的数据, $1 \le A_i, B_i, C_i \le 10000$ 。