Self-Adjoint Operators

A bounded operator A:H-H, in a Hilbert space H is called self-adjoint or symmetric if and only if for all x,y&H,

$$\langle A \times_{1} A \rangle = \langle X A \rangle$$

Proposition: The point spectrum to of a self-adjoint operator A satisfies

TP(A) \le R

Proof: let $\lambda \in T_P$ (eigenvalues), $Ax = \lambda \times (x \neq 0)$ $\lambda ||x||^2 = \langle Ax, x \rangle = \langle x, Ax \rangle = \langle x, \lambda x \rangle$ $= \overline{\lambda} ||x||^2$

then $\lambda = \overline{\lambda}$, therefore $\lambda \in \mathbb{R}$.

Proposition: If $\lambda_1, \lambda_2 \in \mathcal{T}_p$ and $Ax_1 = \lambda_1 x_1$, $Ax_2 = \lambda_2 x_2$, then $x_1 \perp x_2$.

Proof: (et $\lambda_1 \langle X_1, X_2 \rangle = \langle A_{X_1}, X_2 \rangle = \langle X_1, A_{X_2} \rangle = \overline{\lambda_2} \langle X_1, X_2 \rangle$ but $\lambda_1 \neq \lambda_2$ $\langle X_1, X_2 \rangle = 0$.

A subspace L is invariant with respect to an operator A if and only if A(L)=L

Proposition: If L is invariant with respect to a self-adjoint operator Ar then L' is invariant.

Proposition: If A and B are self-adjoint and AB=BA, AB is self-adjoint

Proposition: Let $C = \sup\{Ax, x\}\$, then if A is self-adjoint, $C = \|A\|$.

Proof: first we will show C= 11A11.

 $|\langle A_{X}, \chi \rangle| \leq ||\chi|| ||\chi|| \leq ||\chi|| ||\chi||^2 \longrightarrow ||\langle A_{X}, \chi \rangle| \leq ||\chi||, \forall \chi \neq 0$ $||\chi||^2$

then CS |All.

The other direction $\langle A(x+y), x+y\rangle - \langle A(x-y), x-y\rangle = 2\langle\langle Ax,y\rangle + \langle Ay,x\rangle\rangle$ by the triangle neguality

2KAx, y > t < Ay, x > l < A(x + y), x + y > t + KA(x - y), x - y > lfrom the definition of C and by the parallelogian law $|(Ax, y) + (Ay, x)| \le 1 C(||x + y||^2 + ||x - y||^2)$ $= 1 C(||x||^2 + ||y||^2)$

taking any $x \in \mathcal{H}$, ||x||=1, $y=\frac{Ax}{||Ax||} \leq C$, $\forall x \in \mathcal{H}$, ||x||=1.

Therefore 11A11 CC.

Proposition: <Ax, x> ER, 4 x & H if and only if A is self-adjoint.
Proof: Let

 $\langle Y - X \rangle = \langle X + Y \rangle + \langle Y + X \rangle = \langle Y + X \rangle = \langle Y + X \rangle = \langle Y + X \rangle + \langle Y + Y \rangle + \langle Y \rangle + \langle Y \rangle + \langle Y \rangle + \langle Y \rangle = \langle Y \rangle + \langle Y \rangle + \langle Y \rangle + \langle Y \rangle = \langle Y \rangle + \langle Y \rangle +$

changing positions of x,4 and taking the complex conjugate the right hand side does not change.

 $\langle A, X \rangle = \langle X, A_{\gamma} \rangle$

therefore

 $\langle A_{\times}, q \rangle = \langle \times, Aq \rangle$.

Proposition: Let A be a self-adjoint operator, and let $||A|| = M = \sup\{|A \times A \times A \times A| : ||X|| = 1\}$ then M or -M is an element of $\sigma(A)$.

Proof: let x_n , $||x_n||=1$ and $|\langle Ax_n, x_n \rangle| \rightarrow M$ (which is possible because c=||A||).

let

 $\langle A \chi_{\Lambda_1} \chi_{\Lambda} \rangle \longrightarrow \lambda$, $\lambda = \pm M$

 $0 > \|A \times_{\Lambda} - \lambda \times_{\Lambda}\|^{2} = \|A \times_{\Pi}\|^{2} - 2 \lambda \langle A \times_{\Lambda}, X_{n} \rangle + \lambda^{2} \|X_{n}\|^{2}$ $\leq 2 \lambda^{2} - 2 \lambda \langle A \times_{\Lambda}, X_{n} \rangle$ $(\leq \lambda^{2})$

taking $n \longrightarrow \infty$, the right hand side converge to zero, then $\lambda \in \tau(A)$.

Self-Adjoint Compact operators

Proposition: If A is compact, self-adjoint, then A has a eigenvalue λ , such that $|\lambda| = ||A||$, moreover, the maximum of $|\langle Ax, x \rangle|$ for ||x|| = 1, is obtained in the eigenvector with eigenvalue λ .

Proof: the existence of $\lambda \in T_{p}(A)$, such that $|\lambda| = ||A||$, it follows the above proposition, but $\sigma(A) = \sigma_{p}(A) \cup \{0\}$.