Σχετικά με το Project :

Το BabySpy είναι μια έξυπνη συσκευή παρακολούθησης παιδικού δωματίου. Σκοπός της είναι με χρήση αισθητήρων να καταγράφει μετρήσεις και ειδοποιείται ο γονέας.

Βασικές λειτουργίες της συσκευής :

- → Καταγραφή θερμοκρασίας του χώρου
- → Καταγραφή υγρασίας του χώρου
- → Δυνατότητα Live Streaming απευθείας με την συσκευή
- → Δυνατότητα απομακρυσμένης αναπαραγωγής νανουρίσματος
- → Δυνατότητα απομακρυσμένης ενεργοποίησης λάμπας φωτός

Ο γονέας θα έχει επιπλέον την δυνατότητα να δει τα καταγεγραμμένα δεδομένα της συσκευής σε μια online πλατφόρμα.

EIKONA PROJECT

Για την υλοποίηση του Project θα χρειαστούμε τα παρακάτω υλικά:

Απαραίτητα Υλικά :

Raspberry PI 3 B+

Τροφοδοτικό για Raspberry Pl

Pi Camera

nVn

Αισθητήρα ανίχνευσης κίνησης (PIR)

Αισθητήρα θερμοκρασίας και Υγρασίας (DHT11)

Μνήμη SD

6 θηλυκά - θηλυκά Καλώδια

Προαιρετικά υλικά (απαιτούνται μόνο στην εγκατάσταση) :

Οθόνη με σύνδεση ΗDMI

Καλώδιο HDMI

Πληκτρολόγιο με USB

Ποντίκι με USB

Κοστολόγηση Προϊόντων

ΠΟΣΟΤΗΤΑ	<u>YAIKO</u>	<u>TIMH</u>
1	Raspberry PI 3 B+	38.70
1	Pi Camera	29.40
1	Pir Sensor	2.80
1	DHT11 Sensor	2.20
1	Τροφοδοτικό Raspberry	9.90
1	Μνήμη SD 8GB	4.43
6	Θηλυκά - Θηλυκά καλώδια	1,00
ΣΥΝΟΛΟ	:	88.43

Προετοιμασία του Raspberry Pl

Τι Λογισμικό χρειαζόμαστε για το Raspberry PI; Για την λειτουργία του Raspberry Pi Θα χρειαστούμε να εγκαταστήσουμε το Λειτουργικό Σύστημα <u>NOOBS</u> στην μνήμη SD

Βήματα εγκατάστασης Λ.Σ. ΝΟΟΒS

1ο βήμα

Το πρώτο που χρειάζεται είναι να κάνουμε είναι να συνδέσουμε την κάρτα Micro SD με τον αντάπτορα στον υπολογιστή μας, και να τη διαμορφώσουμε κατάλληλα.Το ίδιο το NOOBS συνιστά να χρησιμοποιήσουμε την επίσημη εφαρμογή για Format σε SD, την οποία θα βρούμε στη διεύθυνση: https://www.sdcard.org/downloads/formatter_4/eula_windows/

Κατεβάζουμε την εφαρμογή κάνοντας κλικ στο Accept στο μέρος της σελίδας.

2ο βήμα

Αποσυμπιέζουμε το .zip, εγκαθιστούμε και τρέχουμε την εφαρμογή.

3ο βήμα

Στο παράθυρο της εφαρμογής επιλέγουμε το "Option", στο οποίο αλλάζουμε το Format Size Adjustment σε "ON" (εάν υπάρχει η επιλογή "Option").

4ο βήμα

Κάνουμε κλικ στο Format, και σε λίγα δευτερόλεπτα η διαδικασία διαμόρφωσης έχει ολοκληρωθεί.

<u>5ο βήμα</u>

Με την κάρτα SD μας διαμορφωμένη, μπαίνουμε στη διεύθυνση

https://www.raspberrypi.org/downloads/noobs/ και κατεβάζουμε την τελευταία έκδοση του NOOBS, είτε απευθείας από την ιστοσελίδα με μορφή συμπιεσμένου φακέλου .zip, είτε μέσω Torrent.To πλήρες Noobs έχει ενσωματωμένο το λειτουργικό σύστημα Raspbian, που είναι το πιο δημοφιλές λειτουργικό σύστημα για την εγκατάσταση Raspberry Pi, και μας δίνει πλήθος δυνατοτήτων.

6ο βήμα

Αφού κατεβάσουμε το συμπιεσμένο φάκελο .zip, κάνουμε εξαγωγή όλων των περιεχομένων του.

7ο βήμα

Ανοίγουμε το φάκελο στον οποίο έγιναν αποσυμπίεση και αντιγράφουμε όλα τα αρχεία στην κάρτα SD.

8ο βήμα

Αφού ολοκληρωθεί η αντιγραφή, κάνουμε ασφαλή αφαίρεση της κάρτας SD, για να ελαχιστοποιήσουμε την πιθανότητα καταστροφής δεδομένων.

Εγκατάσταση Raspberry Pi με το Raspbian

Εγκατάσταση μνήμης SD

Γυρίζουμε ανάποδα το Raspberry Pi για να τοποθετήσουμε την Micro SD. Υπάρχει ένας μόνο τρόπος για να μπει, και μπαίνοντας θα "κλειδώσει".

Για να αφαιρέσουμε την SD, την ξαναπατάμε προς τα μέσα, για να ξεκλειδώσει.

Σύνδεση Καλωδίων στο Raspberry PI

ΠΡΟΣΟΧΗ : Δεν συνδέουμε ακόμα την τροφοδοσία ρεύματος γιατί το Raspberry δεν έχει κουμπί on/off με αποτέλεσμα την εκκίνηση του.

Συνδέουμε όλα τα απαιτούμενα καλώδια στο Raspberry όπως:

- 1)Καλωδιο ΗDΜΙ η άλλη άκρη στην οθόνη
- 2)Πληκτρολόγιο
- 3)Ποντίκι

Πρώτη εκκίνηση του Raspberry Pi

Έχοντας συνδέσει όλα τα καλώδια και της τροφοδοσίας και έχουμε εγκαταστήσει και την μνήμη SD,είμαστε έτοιμοι για την πρώτη εκκίνηση του Raspberry.

Ξεκινώντας, θα μας δείξει μια οθόνη με διάφορα χρώματα, γνωστή και σαν rainbow screen.Σύντομα θα φορτώσει το NOOBS. Αν το Raspberry Pi δεν είναι συνδεδεμένο στο Internet, θα εμφανίσει στη λίστα μόνο το Raspbian.

Αν το Raspberry Pi είναι συνδεδεμένο στο Internet, το NOOBS θα μας δείξει και εναλλακτικά λειτουργικά συστήματα που μπορούμε να επιλέξουμε. Θα πρέπει όμως να περιμένουμε να κατεβάσει το καθένα από αυτά από το Internet. Έχοντας τσεκάρει το Raspbian και κάνοντας κλικ στο Install, το σύστημα μας προειδοποιεί πως θα διαγραψεί όλο το περιεχόμενο της SD.Επιλέγοντας "Yes", ξεκινάει η εγκατάσταση. Ανάλογα με την ταχύτητα της κάρτας SD που έχουμε βάλει, θα πάρει αρκετή ώρα.Εφόσον όλα πάνε καλά, το σύστημα θα μας εμφανίσει το μήνυμα πως το λειτουργικό σύστημα (ή τα λειτουργικά συστήματα, αν επιλέξαμε πολλαπλά) εγκαταστάθηκαν επιτυχώς.Κάνοντας κλικ στο ΟΚ, το Raspberry Pi θα κάνει επανεκκίνηση. Στην επόμενη εκκίνηση, θα μας βάλει στο περιβάλλον του Raspbian.

Το πρώτο βήμα είναι να ρυθμίσουμε την γλώσσα σε English (US) και πληκτρολόγιο us. Τα ελληνικά δεν υπάρχουν σαν επιλογή. Ο λόγος είναι πως το προεπιλεγμένο πληκτρολόγιο του Ηνωμένου Βασιλείου έχει ελαφρώς διαφορετική διάταξη από τα πληκτρολόγια που έχουμε στην Ελλάδα, κυρίως όσον αφορά κάποια σύμβολα όπως το @ και το #.

Στη συνέχεια ενημερώνουμε (update) τα πακέτα του συστήματος πληκτρολογώντας στο τερματικό:

sudo apt-get update

Μετά αναβαθμίζουμε (upgrade) τα εγκατεστημένα πακέτα με την εντολή

sudo apt-get dist-upgrade

Μόλις τελειώσατε με την εγκατάσταση και ενημέρωση του NOOBS.

Προετοιμασία του VNC για απομακρυσμένο έλεγχο

<u>1ο Βήμα</u>

Ανοίγουμε το Raspberry Pi Configuration από τις προτιμήσεις στο κυρίως μενού:

2ο Βήμα

Επιβεβαιώστε ότι το λογισμικό της κάμερας είναι ενεργοποιημένο:

Μετά την ενεργοποίηση , κάνουμε επανεκκίνηση. Μόλις ανοίξει το Raspberry , πατάμε πάνω αριστερά το εικονίδιο του VNC . Μόλις ανοίξει το VNC ,κρατάμε την την IP του Raspberry θα μας δώσει.

Εγκατάσταση του στον Υπολογιστή

Πηγαίνουμε στην ιστοσελίδα: https://www.realvnc.com/en/connect/download/viewer/ επιλέγουμε το λειτουργικό σύστημα του υπολογιστή μας ,κάνουμε λήψη το **VNC** και μετά εγκατάσταση.

ASTRAX TEAM

Ανοίγουμε το VNC Viewer Πληκτρολογούμε την ip του Raspberry PI και πατάμε enter.

Βάζουμε ως Username : 'pi', Password : 'raspberry' και τσεκάρουμε την επιλογή 'Remember password' για υπενθύμιση κωδικού πρόσβασης.Τελος πατάμε **'OK'.**

Έχουμε συνδεθεί επιτυχώς στο Raspberry

Προετοιμασία της Ρί Κάμερας

Συνδεσμολογία Κάμερας

ΠΡΟΣΟΧΗ: Το καλώδιο με τα γράμματα να κοιτάει προς την μεριά των USB

Παραμετροποίηση Raspberry PI

1ο Βήμα

Ανοίγουμε το Raspberry Pi Configuration Tool από τις προτιμήσεις στο κυρίως μενού:

2ο Βήμα

Επιβεβαιώστε ότι το λογισμικό της κάμερας είναι ενεργοποιημένο:

Προγραμματισμός της κάμερας

Πριν Ξεκινήσουμε να γράφουμε το πρόγραμμα μας , είναι απαραίτητο να εγκαταστήσουμε κάποιες Βιβλιοθήκες (Libraries).

Για το προγραμματισμό της κάμερας θα εγκαταστήσουμε την παρακάτω βιβλιοθήκη :

 pi camera | Website: https://picamera.readthedocs.io/en/release-1.13/install.html

Εγκατάσταση της βιβλιοθήκης pi camera

- 1) Ανοίγουμε το τερματικό
- 2) Ενημερώνουμε τη λίστα αποθετηρίων σας κάνοντας update στο σύστημα (εάν δεν το έχουμε κάνει):

sudo apt-get update

3) Στη συνέχεια, εγκαθιστούμε το πακέτο της κάμερας:

sudo apt-get install python-picamera python3-picamera

Προγραμματισμός της κάμερας για web streaming στο φυλλομετρητή

Καλό είναι να δημιουργήσουμε έναν φάκελο όπου θα βάλουμε εκεί όλα τα αρχεία κώδικα.

1ο Βήμα

Πηγαίνουμε στην ιστοσελίδα της Raspberry Pi κάμερας: https://picamera.readthedocs.io/en/release-1.13/index.html

2ο Βήμα

Πηγαίνουμε στην παράγραφο 4 (Advanced Recipes)

3ο Βήμα

Πηγαίνουμε στην υποπαράγραφο 4.10 (Web Streaming)

4ο Βήμα

Αντιγράφουμε τον κώδικα που μας δίνει σε έναν επεξεργαστή κειμένου (πχ. notepad++)

```
import io
import picamera
import logging
import socketserver
from threading import Condition
from http import server
PAGE=""\
<html>
<head>
<title>BabySpy Camera</title>
</head>
<body>
<h1>BabySpy Camera</h1>
<img src="stream.mjpg" width="640" height="480" />
</body>
</html>
....
class StreamingOutput(object):
  def __init__(self):
     self.frame = None
     self.buffer = io.BytesIO()
     self.condition = Condition()
  def write(self, buf):
     if buf.startswith(b'\xff\xd8'):
       # New frame, copy the existing buffer's content and notify all
       # clients it's available
       self.buffer.truncate()
       with self.condition:
          self.frame = self.buffer.getvalue()
          self.condition.notify all()
       self.buffer.seek(0)
     return self.buffer.write(buf)
class StreamingHandler(server.BaseHTTPRequestHandler):
  def do_GET(self):
     if self.path == '/':
       self.send_response(301)
       self.send_header('Location', '/index.html')
       self.end_headers()
     elif self.path == '/index.html':
       content = PAGE.encode('utf-8')
       self.send_response(200)
```

```
self.send_header('Content-Type', 'text/html')
       self.send_header('Content-Length', len(content))
       self.end_headers()
       self.wfile.write(content)
     elif self.path == '/stream.mjpg':
       self.send_response(200)
       self.send_header('Age', 0)
       self.send_header('Cache-Control', 'no-cache, private')
       self.send_header('Pragma', 'no-cache')
       self.send header('Content-Type', 'multipart/x-mixed-replace; boundary=FRAME')
       self.end_headers()
       try.
          while True:
            with output.condition:
               output.condition.wait()
               frame = output.frame
            self.wfile.write(b'--FRAME\r\n')
            self.send_header('Content-Type', 'image/jpeg')
            self.send_header('Content-Length', len(frame))
            self.end_headers()
            self.wfile.write(frame)
            self.wfile.write(b'\r\n')
       except Exception as e:
          logging.warning(
            'Removed streaming client %s: %s',
            self.client_address, str(e))
     else:
       self.send_error(404)
       self.end_headers()
class StreamingServer(socketserver.ThreadingMixIn, server.HTTPServer):
  allow_reuse_address = True
  daemon_threads = True
with picamera.PiCamera(resolution='640x480', framerate=24) as camera:
  output = StreamingOutput()
  camera.start_recording(output, format='mjpeg')
     address = (", 8000)
     server = StreamingServer(address, StreamingHandler)
     server.serve_forever()
  finally:
     camera.stop_recording()
```

4ο Βήμα

Αποθηκεύουμε το αρχείο με όνομα **camera** με κατάληξη **.py** και το εκτελούμε

5ο Βήμα

Ανοίγουμε τον browser και πληκτρολογούμε την διεύθυνση:

http://pi-address:8000/

Όπου pi-address η διεύθυνση τοπικού δικτύου του Raspberry Pl.

EIKONA

Προετοιμασία του αισθητήρα θερμοκρασίας και υγρασίας (DHT11)

Συνδεσμολογία Αισθητήρα

ASTRAX TEAM

Σύνδεση καλωδίου Ρεύματος (5V)

Απο την μια άκρη του θηλυκού καλωδίου (πορτοκαλί χρώμα) συνδέουμε το Raspberry σε ενα pin ρεύματος (5V) και την άλλη άκρη την συνδέουμε στο μεσαίο pin του DHT11.

Σύνδεση καλωδίου Γείωσης (GROUND)

Απο την μια άκρη του θηλυκού καλωδίου (γκρι χρώμα) συνδέουμε το Raspberry σε ενα pin γείωσης (GND) και την άλλη άκρη την συνδέουμε στο δεξί pin του DHT11.

Σύνδεση καλωδίου δεδομένων (GPIO)

Απο την μια άκρη του θηλυκού καλωδίου (μπλέ χρώμα) συνδέουμε το Raspberry στο pin δεδομένων (GPIO) και την άλλη άκρη την συνδέουμε στο αριστερό pin του DHT11.

Μόλις τελειώσουμε την σύνδεση των καλωδίων πάμε στο προγραμματιστικό κομμάτι.

Προγραμματισμός του αισθητήρα DHT11

Πριν Ξεκινήσουμε να γράφουμε το πρόγραμμα μας , είναι απαραίτητο να εγκαταστήσουμε κάποιες Βιβλιοθήκες (Libraries).

Για το προγραμματισμό του αισθητήρα DHT11 θα χρειαστούμε να εγκαταστήσουμε την παρακάτω βιβλιοθήκη :

Adafruit_DHT | https://github.com/adafruit/Adafruit_Python_DHT

Εγκατάσταση της βιβλιοθήκης DHT11

- 1) Ανοίγουμε το τερματικό
- 2) Εγκαθιστούμε την βιβλιοθήκη ρίρ γράφοντας :

sudo apt-get update sudo apt-get install python3-pip sudo python3 -m pip install --upgrade pip setuptools wheel

3) Εγκαθιστούμε την βιβλιοθήκη της Adafruit :

sudo pip3 install Adafruit_DHT

Προγραμματισμός Raspberry για εμφάνιση στην οθόνη την θερμοκρασία και την υγρασία του δωματίου

1ο Βήμα

Σε έναν επεξεργαστή κειμένου (πχ. notepad++) αντιγράφουμε τον παρακάτω κώδικα:

```
#εισαγωγή απαιτούμενων βιβλιοθηκών
import Adafruit DHT
import time
while True:
 #δηλώνουμε τον αισθητήρα
  sensor = Adafruit_DHT.DHT11
  #δηλώνουμε την θέση στην οποία συνδέσαμε τον αισθητήρα θερμοκρασίας
  pin = 15
  #δημιουργούμε μεταβλητες για την υγρασία και τη θερμοκρασία
  humidity, temperature = Adafruit DHT.read retry(sensor, pin)
  #Λέμε στο πρόγραμμα να κάνει παύση για 4 δευτερόλεπτα
  time.sleep(5)
  #έλεγχος για αποτυχια
  if humidity is not None and temperature is not None:
    #τύπωσε στην οθόνη την θερμοκρασία και την υγρασία
    print('Θερμοκρασία={0:0.1f}*C Υγρασία={1:0.1f}%'.format(temperature, humidity))
  else:
    print('Αποτυχία!')
```

<u>2ο Βήμα</u>

Αποθηκεύουμε το αρχείο με όνομα **dhtsensop** και με κατάληξη **.py** και το εκτελούμε.

EIKONA

Προετοιμασία του αισθητήρα κίνησης (PIR Sensor)

Συνδεσμολογία Αισθητήρα

Σύνδεση καλωδίου Ρεύματος (5V)

Απο την μια άκρη του θηλυκού καλωδίου (κόκκινο χρώμα) συνδέουμε το Raspberry σε ενα pin ρεύματος (5ν) και την άλλη άκρη την συνδέουμε στο δεξί pin του PIR.

Σύνδεση καλωδίου Γείωσης (GROUND)

Απο την μια άκρη του θηλυκού καλωδίου (μαύρο χρώμα) συνδέουμε το Raspberry σε ενα pin γείωσης (GND) και την άλλη άκρη την συνδέουμε στο αριστερό pin του PIR.

Σύνδεση καλωδίου δεδομένων (GPIO)

Απο την μια άκρη του θηλυκού καλωδίου (κίτρινο καλώδιο) συνδέουμε το Raspberry στο pin δεδομένων (GPIO) και την άλλη άκρη την συνδέουμε στο μεσαίο pin του PIR.

Μόλις τελειώσουμε την σύνδεση των καλωδίων πάμε στο προγραμματιστικό κομμάτι.

Προγραμματισμός του PIR

Πριν Ξεκινήσουμε να γράφουμε το πρόγραμμα μας , είναι απαραίτητο να εγκαταστήσουμε κάποιες Βιβλιοθήκες (Libraries).

Για το προγραμματισμό του αισθητήρα PIR θα χρειαστεί να εγκαταστήσουμε την παρακάτω βιβλιοθήκη :

gpiozero | Website : https://gpiozero.readthedocs.io/en/stable/

Εγκατάσταση της βιβλιοθήκης gpiozero

- 1) Ανοίγουμε το τερματικό
- 2) Ενημερώνουμε τη λίστα αποθετηρίων σας(εάν δεν το έχετε κάνει):

sudo apt-get update

3) Στη συνέχεια, εγκαθιστούμε το πακέτο για το Python 3:

sudo apt install python3-gpiozero

Προγραμματισμός του αισθητήρα για εμφάνιση στην οθόνη εάν βρέθηκε κίνηση στο δωμάτιο

1ο Βήμα

Σε έναν επεξεργαστή κειμένου (πχ. notepad++) αντιγράφουμε τον παρακάτω κώδικα:

```
#εισαγωγή απαιτούμενων βιβλιοθηκών
from apiozero import MotionSensor
from signal import pause
import time
#δηλώνουμε την θέση στην οποία συνδέσαμε το PIR
pir=MotionSensor(14)
#για να δημιουργήσουμε μια συνεχόμενη επανάληψη #χρησιμοποιούμε το while True
while True:
  #Λέμε στο πρόγραμμα να κάνει παύση για 4 δευτερόλεπτα
  time.sleep(4)
  #έλεγχος εάν βρέθηκε κίνηση
  if pir.motion_detected:
    #κίνηση βρέθηκε
    print ('Βρέθηκε Κίνηση')
  else:
    #κίνηση δεν βρέθηκε
    print ('Δεν Βρέθηκε Κίνηση')
```

2ο Βήμα

Αποθηκεύουμε το αρχείο με ένα όνομα pirsensor και με κατάληξη .py και το εκτελούμε.

Πώς μπορούμε να βρούμε την IP του Raspberry PI από τον υπολογιστή μας

Πηγαίνουμε στην ιστοσελίδα : https://www.advanced-ip-scanner.com/gr/ κάνουμε λήψη το Advanced IP Scanner και μετά εγκατάσταση

10ο Βήμα

Ανοίγουμε το Advanced IP Scanner και πατάμε σάρωση

