МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

«Гомельский государственный технический университет имени П.О. Сухого»

КАФЕДРА «ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ»

РЕФЕРАТ

на тему

ПРОГРАММНЫЙ КОМПЛЕКС ДЛЯ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ РОЖДЕНИЯ Z' - БОЗОНОВ В ПРОТОН-ПРОТОННЫХ СТОЛКНОВЕНИЯХ С УЧЕТОМ ЭФФЕКТОВ Z - Z' СМЕШИВАНИЯ

подготовленный для прохождения итоговой аттестации по общеобразовательной дисциплине «Основы информационных технологи»

Выполнил:

магистрант гр. МАГ 40-22 специальности 1–40 80 04 «Математическое моделирование, численные методы и комплексы программ» Бурим Илья Павлович

Проверил:

доцент кафедры «Информационные технологии» Цитринов А.В.

Гомель 2017

содержание

Π	Перечень условных обозначений и сокращений			
В	веден:	ИЕ	4	
O	ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ			
1	Анализ программ моделирования процессов столкновения			
	элемен	тарных частиц при высоких энергиях	8	
	1.1 Ин	струменты имитационного моделирования	8	
	1.2 Obs	зор генератора «РҮТНІА»	10	
	1.3 Obs	зор генератора «Powheg-Box»	12	
	1.4 Of:	зор генератора «Sherpa»	14	
2	РАЗРА	БОТКА АЛГОРИТМОВ И ТЕХНОЛОГИЙ РЕШЕ-		
	П RNH	ІОСТАВЛЕННОЙ ЗАДАЧИ 19-30	15	
	2.1 Pox	ждения Z^\prime - бозонов в протон-протонных столкновениях с		
	уч€	етом эффектов Z - Z' смешивания	15	
	2.2 Ист	пользуемые средства разработки программного обеспечения	26	
3	РАЗРА	БОТКА <i>WEB</i> -ПРИЛОЖЕНИЯ 30-42	27	
4	TECT	ирование и верификация разработан-		
	НОГО	ПРИЛОЖЕНИЯ 42-50	28	
	4.1 Bep	оификация работы программы	28	
	4.2 Ан	ализ результатов верификации	28	
3	ΑΚЛЮ	иение	29	
Б	ивлио	ГРАФИЧЕСКИЙ СПИСОК	30	
П	КОПИЧ	кение А	32	

Перечень условных обозначений и сокращений

В настоящей пояснительной записке применяются следующие термины, обозначения и сокращения.

НФ – Новая Физика.

СМ – Стандартная Модель. ЛЭП – большой электрон-позитронного коллайдер. ДЯ – Дрелл-Янга. ATLAS (A Toroidal LHC ApparatuS) – один из четырёх основных экспе-риментов на Большом адронном коллайдере в Европейской организации ядерных исследований СЕRN в городе Женева (Швейцария). SLC (Virtual Reality) – коллайдер сталкивающий электроны и позитроны каждый с энергией до 50 ГэВ. БАК - Большой Адронный Коллайдер

КХД – Квантовая хромодинамика, калибровочная теория сильных взаимодейсвий.

ВВЕДЕНИЕ

Одной из основных задач современной теоретической и экспериментальной физики является проверка Стандартной модели электрослабых и сильных взаимодействий элементарных частиц (СМ) [1-15], которая осуществлялась в ускорительных экспериментах на высокоэнергетических коллайдерах, таких как LEP, SLC, Tevatron, HERA и др., а также интенсивно ведется в настоящее время на Большом адронном коллайдере LHC. Последний громкий успех СМ связан с открытием хиггсовского бозона в экспериментах CMS и ATLAS на LHC. Для более детального исследования свойств хиггсовсого бозона планируются новые коллайдерные эксперименты, такие как проекты ILC и CLIC. Стандартная модель не объясняет, что такое гравитация и как она связана с другими силами и частицами. Также она не объясняет, почему основными частицами вещества являются кварки и лептоны и сколько их должно быть. Кроме этого Стандартная модель не объясняет таких явлений, которые по праву должны учитываться при больших энергиях, а теперь исследуются ускорителями частиц. Одно их таких явлений – «темная материя». По последним данным считается, что доминирующей формой материи во Вселенной является так называемая «Темная материя». Без темной материи галактики и звезды не сформировались бы и жизни не существовало бы. Только в последние 10-15 лет ученые добились существенного прогресса в понимании свойств темной материи. Недавние наблюдения влияния темной материи на структуру Вселенной показали, что она отличается от любой формы материи, которую обнаружили или измерили в лаборатории. В то же время появились новые теории, которые могут сказать нам, что такое темная материя. В настоящее время на современных ускорителях элементарных частиц ведутся поиски кандидатов на частицы темной материи. Если эти частицы имеют массы, которые измеряются в шкале ТэВ, то они могут быть обнаружены на Большом адронном коллайдере. Однако проверка того, что эти новые частицы действительно связаны с темной материей, потребует, получение их характеристик.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Связь работы с научными программами (проектами) и темами

Диссертационная работа связана с тематикой НИР, выполняемых в рамках научно-исследовательского направления кафедры «Информационные технологии» Гомельского государственного технического университета им. П. О. Сухого. Тема диссертации соответствует приоритетным направлениям фундаментальных исследований в Республики Беларусь. Диссертационная работа выполнялась в период с 2017 по 2019 годы в рамках отдельного подзадания по государственной программе научных исследований «Конвергенция-2020», номер гос. регистрации 20162284.

Цель и задачи исследования

Целью работы является создание системы определяющий возможность рождения нового резонанса нейтрального спина 1 (Z') из доступных данных групп ATLAS для W^+W^- распадов. В качестве результатов работы будут получены ограничения на соответствующие Z-Z'-коэффициенты смешивания и на массу $M_{Z'}$. Для достижения поставленной цели были поставлены следующие задачи:

- Изучить процесс W^+W^- распадов и рождения Z^\prime бозонов на БАК;
- Описание и создание математической модели изученного процесса;
- Создание программного обеспечения для вычисления ограничений на соответствующие Z-Z'-коэффициенты смешивания и на массу $M_{Z'}$;
- Построение web-приложения для демонстрации результатов;

Изучение появления электрослабых бозонов дает мощную проверку спонтанного нарушения калибровочной симметрии стандартной модели и может быть использовано для поиска новых явлений за пределами стандартной модели. Дополнительные нейтральные векторные бозоны Z', распадающиеся на заряженные пары калибровочных векторных бозонов W^+W^- , прогнозируются во многих сценариях новой физики, включая модели с расширенным калибровочным сектором.

Научная новизна

Научная новизна работы заключается в том, что впервые получены ограничения на угл смешивания Z'-бозонов в процессе рождения W^+W^- пар в протон-протнных столкновениях для светимостей $1000~\phi f^{-1}$ и $3000~\phi f^{-1}$ на Большом Адронном коллайдер, а также создан программный модуль, позволяющий выполнять: имитационное моделирование рождения Z' в процессе W^+W^- на Большом Адронном коллайдер с учётом эффектов Z-Z' смешивания.

Положения, выносимые на защиту

Автором защищаются:

- имитационная модель процесса рождения Z'-бозонов в протонпротнных столкновениях с учетом эффектов Z-Z' смешивания;
- программный модуль для имитационного моделирования процесса рождения Z'-бозонов в протон-протиных столкновениях с учетом эффектов Z-Z' смешивания в условиях выполненных экспериментов на ATLAS;
- рассчитаные ограничения на углы смешивания Z'-бозонов в процессе рождения W^+W^- пар в протон-протнных столкновениях в условиях выполненных экспериментов на Большом Адронном коллайдер, а так же рассчитаные ограничения для светимостей 1000 фб⁻¹ и 3000 фб⁻¹.

Личный вклад соискателя

Научные и практические результаты диссертации, положения, выносимые на защиту, разработаны и получены лично соискателем или при его непосредственном участии.

Апробация результатов диссертации

Опубликованность результатов диссертации

Результаты диссертационных исследований, связанных с измерением процесса рождения W^+W^- пар в протон-протонных столкновениях и получены экспериментальные ограничения на угол смешивания Z'-бозонов ожидают публикаций.

Структура и объем диссертации

Диссертационная работа состоит из введения, четырёх глав, заключения и библиографического списка. Объем диссертации – 75 листов, включая 3 приложения и 46 иллюстраций. Библиографический список содержит 18 наименований, так же 1 публикацию соискателя.

ГЛАВА 1

Анализ программ моделирования процессов столкновения элементарных частиц при высоких энергиях

1.1 Инструменты имитационного моделирования

Физика высоких энергий — передовое направление современной науки, конечной целью которого является открытие наиболее фундаментальных законов микромира, управляющих эволюцией материи во Вселенной, начиная с момента ее рождения при Большом взрыве. Физика высоких энергий встречает XXI век реализацией гигантского проекта Большого адронного коллайдера (БАК) [1]. Этот уникальный, не имеющий себе равных по масштабам и сложности, научный проект, который находится сейчас в процессе реализации международным сообществом физиков из более чем 40 стран на базе европейской организации ядерных исследований, базирующейся в Женеве, направлен на решение краеугольных проблем современной субъядерной физики.

Для исследования отклика детектора на различные физические процессы, созданы программы, позволяющие перевести моделированное на уровне частиц событие взаимодействия протонов при соударении в формат представления данных детекторов установки ATLAS. Алгоритмы моделирования интегрированы в программную оболочку эксперимента ATLAS, именуемую Athena, использующую программный пакет GEANT4.

Генератор события создает набор частиц, который направляется в программу быстрого или полного моделирования детектора. Генераторы событий встроены в Athena. Используется большое число других, поддерживаемых авторами, генераторов, которые имеют блоки связи для использования в Athena. Основной массив модельных событий создан с помощью генераторов PYTHIA [7], включая его версию PYTHIAB, предназначенную в ATLAS для моделирования событий с рождением B-адронов.

PYTHIA - это программного пакета для визуализации результатов моделирования процессов столкновения частиц при высоких энергиях осуществляющего генерацию методом Монте-Карло физических событий.

Программы *PYTHIA* интенсивно используются для генерации событий в физике высоких энергий при описании процессов множественного рождения в столкновениях элементарных частиц. В частности задачи, что включает решаемые жесткие с взаимодействия помощью данного в столкновени-

ях e^+e^- , pp и ep, а также некоторые другие случаи. Программа предназначенна для генерации генератора полных событий, т.е. дают более детальную картину, чем мы наблюдаем в эксперименте, в рамках нашего понимания фундаментальной физики процессов. Обсуждаемые здесь программы Монте-Карло построены как ведомые системы, т.е. пользователь должен написать основную программу. Из нее различные программы вызываются для выполнения частных задач, после чего управление снова передается основной программе. Некоторые из этих задач могут быть весьма тривиальными, и достаточно высокоуровневые программы могут производить большое число вызовов подпрограмм.

Генераторы общего назначения создают событие как целое. Они используют много параметров, часть из которых относится к фундаментальным параметрам, такие как константы связи квантовой хромодинамики (КХД) и электрослабой теории, часть относится к моделям, описывающим взаимодействия на больших расстояниях, с малыми передачами импульса, т.н. «мягкой» КХД, и к электрослабым процессам.

Для корректного моделирования процессов рождения и распада частиц необходимо учитывать условия проведения эксперимента. Это условия рождения изучаемых частиц на ускорителе при соответствующих энергиях сталкивающихся пучков, полные цепочки распадов частиц до уровня «стабильных частиц», регистрируемых детектором. Для решения этих задач применяются генераторы событий, использующие метод Монте-Карло. Генератор *РҮТНІА* является широко используемой в физике высоких энергий программой моделирования столкновений различных частиц в широком диапазоне энергий. Этот генератор учитывает процессы фрагментации кварков в адроны и разыгрывает сложные цепочки адронных распадов. Стартуя с заданного пользователем процесса, (столкновение двух протонов с рождением Z-бозона и т.п.) программа случайным образом (с учетом законов сохранения и, по возможности, теоретически известной структуры взаимодействия) разыгрывает конфигурацию конечных партонов, а затем моделирует т.н. процесс адронизации - процесс превращения ненаблюдаемых кварков и глюонов в реальные стабильные и нестабильные частицы с последующим распадом нестабильных частиц. На выходе программа выдает список всех частиц, родившихся в результате столкновения заданных первичных частиц, значения их компонент импульса и энергии. Кроме того, имеется возможность проследить последовательность рождений и распадов от первичного взаимодействия до рождения данной частицы. В качестве входных параметров программы используются описания сталкивающихся частиц, их энергий и тип моделируемого процесса (например, рождение Z-бозона). Существующие версии пакета *PYTHIA* написаны на языке программирования *FORTRAN*. Результаты генерации – характеристики вторичных частиц – записываются в файл, что позволяет в дальнейшем проводить статистическую обработку событий.

1.2 Обзор генератора «РҮТНІА»

РҮТНІА это программа для генерации событий физики высоких энергий, т.е., для описания столкновений таких высокоэнергетических элементарных частиц, как электрон, позитрон, протон и антипротон в различных комбинациях. Информация для моделирования взята по большей части из собственных исследований в ЦЕРН, однако, много формул и другой информации почерпнуто из литературы

С 1997 года по нынешнее время использовалась версия этого Монте-Карло генератора, написанная в FORTRAN77 (текущая версия 6.4). Сейчас программа переписана в С++ (версия 8.1), однако, до тех пор, пока не осуществлен перевод всех возможностей, обе версии используются и поддерживаются одновременно.

Назначение генераторов физических событий:

- Дают физикам представление о типе событий, которые они надеются увидеть, и об их скорости набора;
- Помогают в планировании новых детекторных установок, то есть, оптимизировать их характеристики для изучения интересующих сценариев физических событий в рамках существующих ограничений;
- Являются инструментом для проработки стратегии анализа данных (оптимизации отношения "сигнал/шум");
- Используются в качестве метода оценки коррекций на геометрические и кинематические ограничения области чувствительности (acceptance) детекторов;
- Используются в качестве удобной рабочей оболочки для интерпретации наблюдаемых феноменов в терминах Стандартной Модели.

Квантовая механика вносит концепцию случайности в поведение физических процессов. Достоинством генераторов событий (event generators) является то, что эта случайность может быть смоделирована при помощи метода Монте-Карло. Сущность метода заключается в том, что, вопервых подразумевается наличие генератора псевдослучайных чисел, т.е. функции, которая при вызове возвращает число R в пределах от 0 до 1, при этом

распределение R является плоским, и с достаточной точностью значения R являются нескоррелированными. Затем эти значения R используется для розыгрыша сценария конкретного цикла события (выбор конкретного значения для различных известных распределений величин, выбор времени распада и т.п.) Разыграв статистически достаточное количество событий, мы можем построить интересующие нас распределения (например, диапазон энергий для продуктов интересующего механизма реакции). Что касается упомянутых известных распределений, то, например, дифференциальное сечение реакции рассчитывается из кинематических соотношений при введении матричного элемента (известного, либо предложенного теоретиками исходя из перспективных моделей), для учета высших порядков КХД вводится значение дополнительного параметра (К-множителя). Следует заметить, что при генерации значительного числа событий (миллионов), становится актуальной проблема скоррелированости псевдослучайных чисел, и вместо встроенных в C++ Random генераторов приходится применять специально созданные программы.

С точки зрения описания физики событий полная процедура генерации события разделяется на 3 стадии:

- 1. Генерация «процесса», который определяет природу события. Зачастую это могут быть «жесткие процессы», такие как $gg \to h^0 \to ZZ \to m^+m^-qq_{bar}$ (а также другие процессы), которые могут быть просчитаны в рамках теории малых возмущений.
- 2. Генерация всех подчиненных процессов на партонном уровне, включая гамма-излучение, многократное партонные взаимодействия и структуру непровзаимодействовавшего пучка. Такие феномены приблизительно описываются теорией малых возмущений, однако непертурбативные поправки уже существенны.
- 3. Адронизация этой партонной конфигурации (фрагментация струй, распады нестабильных частиц). Только феноменологическое описание

Этим стадиям отвечают три класса ProcessLevel, PartonLevel и HaronLevel, соответственно. Классы: Event (члены класса process и event), BeamParticles, база данных Settings

С точки зрения технического устройства, взаимодействия пользователя и генератора проявляется в трех фазах:

- 1. Инициализация, когда формулируется задание.
- 2. Генерация индивидуального события (цикл события).

3. Вывод окончательной статистики.

Программа содержит теорию и модели для ряда аспектов физики, включая так называемые мягкие и жесткие взаимодействия, распределения партонов, партонные струи начального и конечного состояний, многократные партонные взаимодействия, фрагментацию и распады.

Встроенные C++ методы программы обеспечивают доступ к информации как об отдельной частице либо процессе на любом этапе розыгрыша события, так и о событии в целом. Встроенные средства вывода позволяют получить статистическую информацию и гистограммы в виде ASCII кода (который можно сохранить в файл для дальнейшего использования).

Пакет Pythia является компактной (5 Mb) независимой программой, поэтому несложно скачать и установить себе собственную локальную версию. Для этого архив установочный код (в 2011 году был 8145.tgz) можно скачать с сайта разработчика [5] или с кафедрального сайта. Затем его нужно распаковать (команда tar -xzf 8145.tgz) и скомпилировать (команда make в распакованной корневой директории, занимает 2 минут на 1x).

Быстрее всего начать работу с обучающими и своими первыми скриптами в поддиректории examples. В пакеты Pythia можно создать такой объемный процесс, как генератор моделирющий столкновение барионов на LHC с рождением топ-кварков. Так же в на сайте разработчиков бибилиотеки есть руководство в котором описываются возможности по настройке свойств процессов и получения информации (например, можно сделать бозон Z^0 стабильной частицей инструкцией pythia.readString("23:onMode=off")).

1.3 Обзор генератора «Powheg-Box»

Возмущающие вычисления КХД следующего порядка Next-to-leading order (NLO), а также Shower Monte Carlo (SMC) программы являются фундаментальными инструментами современной феноменологии физики элементарных частиц. В частности, программы SMC включают описание общего адронного столкновения высокой энергии процесс, начиная от столкновения между составляющими и развития партонного потока, что увеличивает количество частиц в конечном состоянии за счет сильно упорядоченных последующих выбросов. В конце концов, интерфейс с феноменологической моделью адронизации позволяет сравнивать с экспериментальными данными. По этим причинам они обычно используются экспериментаторами для моделировать сигнальные и фоновые процессы в физических поисках. Тем не менее, спрос на лучшие и лучшие прогнозы для экспериментов с высокой энергией требуют повышения точности существующих SMC, включая исправления NLO. Метод MC@NLO [1]

сначала показал, как достичь точности NLO для инклюзивных количеств, реализуя жесткий подпроцесс в NLO и развитие ливней в ведущем логарифмическом приближении, избегая двойного счета излучение. Таким образом можно достичь преимуществ обоих подходов: генерация исключительных конечных состояний SMC и точность расчетов NLO.

Метод POWHEG - это другое предписание для сопряжения вычислений NLO с партоном душевые генераторы. Впервые это было предложено в работе. [2], и был подробно описан в работе. [3]. Этот метод не зависит от программы Монте-Карло, используемой для последующего принятия душа и генерирует только положительные взвешенные события. В этом отношении это улучшает подход MC@NLO. До сих пор метод POWHEG был успешно применен к нескольким процессам, как на лептонные [4, 5] и адронные коллайдеры [6, 7, 8, 9, 10, 11, 12, 13, 14]. В этих реализациях это подключен к программам $SMC\ HERWIG\ [15, 16],\ PYTHIA\ [17]$ и $HERWIG\ ++\ [18]$.

В методе POWHEG самое сильное излучение генерируется первым, независимо от следующие. Схематически самое жесткое излучение распределяется в соответствии с

$$d\sigma = \bar{B}(\Phi_B)d\Phi_B[\Delta_R(p_T^{min}) + \frac{R(\Phi_R)}{B(\Phi_B)}\Delta_R(k_T(\Phi_R))d\Phi_{rad}],$$

где $B(\Phi_B)$ - вклад Борна и

$$\bar{B}(\Phi_B) = B(\Phi_B) + [V(\Phi_B) + \int d\Phi_{rad}R(\Phi_R)]$$

является дифференциальным сечением NLO при фиксированной основной кинематике Борна и интегрированной по радиационные переменные. Поперечный импульс испускаемого партона относительно пучка или другой частицы, в зависимости от особенности области, обозначается через $k_T(\Phi_R)$. нижний предел p_T^{min} необходимо, чтобы константа связи не достигала нефизических значений. $V(\Phi_B)$ и $R(\Phi_R)$ являются виртуальными и действительными поправками и в выражении внутри квадратной скобки в формуле (2) процедура, которая заботится об отмене мягких и коллинеарных особенностей, например, $Frixione\text{-}Kunszt\text{-}Signer\ (FKS)\ [19]}$ или Катани-Сеймур (CS) [20] дипольное вычитание. затем,

$$\Delta_R(P_T) = exp[-\int d\Phi_{rad} \frac{R(\Phi_R)}{B(\Phi_R)} \theta(k_T(\Phi_R) - p_T)]$$

это POWHEG Судаков, то есть вероятность того, что выброс не будет тяжелее, чем p_T . Уравнение (1) можно рассматривать как улучшение исходной формулы для наиболее сложных выбросов SMC, поскольку сечение Борна заменяется на $\bar{B}(\Phi_B)$, которое по построению нормированы на

NLO. При малых поперечных импульсах $POWHEG\ CS$ становится равным стандартному SMC. Тем не менее, NLO область излучения с высоким p_T правильно описывается реальными вкладом:

$$d\sigma \approx \bar{B}(\Phi_B)d\Phi_B \frac{R(\Phi_R)}{B(\Phi_B)}d\Phi_{rad} \approx R(\Phi_R)d\Phi_B d\Phi_{rad}$$

поскольку $\Delta_R \approx 1$ и $\bar{B}/B \approx 1 + \Theta(\alpha_s)$. После генерации самого жесткого излучения можно интерфейс с любым доступным генератором столкновений, для того, чтобы обработать остальной поток, чтобы избежать двойной регистрации частиц, SMC должен быть либо p_T -упорядоченным, либо иметь возможность наложить вето на выбросы с p_T сложнее, чем первый.

В реальном процессе столкновения присутствуют несколько цветных безмассовых партонов, либо в начальном, либо в конечное состояние. Таким образом, следует повторить процедуру, изложенную в начале главы для каждого возможного единственного числа областей, связанных с любой безмассовой цветной веткой, становящейся коллинеарной к другой, или мягкой. Для этого всё реальное сечение эмиссии раскладывается в сумму слагаемых, каждое из которых имеет не более одной коллинеарной и одной мягкой особенности. Затем излучение генерируется независимо в каждом из этих регионов, но сохраняется только самое сильное излучение, и событие генерируется в соответствии с ароматом и кинематикой, связанной с ним. Из-за этой сложности, автоматический инструмент, *POWHEG-BOX*, был построен [22], чтобы помочь включению новых процессов. С другой стороны, *POWHEG-BOX* также может рассматриваться как библиотека, где ранее реализованные процессы доступны в общей структуре. Процессы реализованы так далеко и уже доступны в публичной версии включают: W, Z/y производство одного вектора бозона, Бозон Хиггса через глюон и вектор бозон-фьюжн, однолучевой в s- и t-каналы.

Пользователь, желающий включить новый расчет *NLO*, должен знать только, как сообщить нужную информация для *POWHEG-BOX*. Это происходит либо путем определения соответствующих переменных, либо предоставляя необходимые процедуры Фортрана. Требуемые входы:

- 1. Количество ветвей в процессе Борна, например, nlegborn=5 для $pp \to (Z \to e^+e^-)j$
- 2. Список ароматов *Born* и *Real*, согласно соглашениям PDG [23], аромат определен входящий (исходящий) для входящих (исходящих) фермионных линий, например, [5,2,23,6,3,0] для $bu \to Ztsq$.
- 3. Процедура Борновского фазового пространства, которая, учитывая случайные числа в единицах измерения *ndims* гиперкуба, задайет

борновское фазовое пространство якобиана и возвращает импульсы в неизвестных x.

- 4. Подпрограммы, выполняющие инициализацию соединений и настройку шкалы факторизации и перенормировки.
- 5. Процедура амплитуды Борна в квадрате, для заданного набора импульсов и ароматов конфигурации, возвращает $B = |M|^2$ суммируется и усредняется по цвету и спирали как упорядоченные по цвету квадраты Борна, амплитуды B_{jk} и спиральность коррелировали по квадрату Борна амплитуды $B_{k,\mu\nu}$, где k пробегает все внешние глюоны.
- 6. Подпрограмма квадрата амплитуды реального излучения, которая возвращает R для заданных импульсов и список ароматов.
- 7. Конечная часть интерференции борновского и виртуального амплитудных вкладов $\nu_b = 2Re\{B \times V\}$ после вычета общего множителя $N = \frac{(4p)^\xi}{G(1-\xi)}(\frac{\mu_R^2}{Q^2})$. Эта рутина определяется импульсами и списком ароматов в качестве входных данных.
- 8. Цветовые структуры Борна в большом пределе N_c задаются через интерфейс $Les\ Houches\ [21].$

Пункты (1-7) являются обычными ингредиентами, необходимыми для выполнения расчета NLO в любом методе вычитания. Элемент (8) вместо этого необходим для обеспечения определенной цветовой структуры генератор *SMC*. Внутри *POWHEG-BOX* реализована процедура вычитания FKS.В начале пакет автоматически оценивает комбинаторику, выявляя все особые области и соответствующие базовые вклады Борна. Он также выполняет проекцию реальных вкладов на особую область и вычисляет вычитание контртермы из мягких и коллинеарных приближений реальных выбросов. Затем пакет строит ISR и FSR фазовые пространства, согласно *FKS* параметризации особой области и выполняет интеграцию. В конце концов, каждый получает дифференциальное сечение NLO. На данном этапе, можно также взаимодействовать с некоторой процедурой анализа, чтобы получить дифференциальные распределения NLO как побочный продукт. После этапа интеграции выполняется вычисление верхних границ для эффективная генерация событий, подавленных эффектом Судакова, а затем генерация сильнейшего излучения. На данный момент генерируется события, которые содержат не более одного излучения, которое должны быть переданы в стандартную программу *SMC*, для разработки остальных.

1.4 Обзор генератора «Sherpa»

ГЛАВА 2

РАЗРАБОТКА АЛГОРИТМОВ И ТЕХНОЛОГИЙ РЕШЕНИЯ ПОСТАВЛЕННОЙ ЗАДАЧИ 19-30

2.1 Рождения Z' - бозонов в протон-протонных столкновениях с учетом эффектов Z - Z' смешивания

Многие сценарии Новой Физики (НФ) отличной от Стандратной Модели (СМ)[1], включая модель суперпозиций и левую-правую симметричную модель, предсказывают существование новых нейтральных и заряженных калибровочных бозонов, которые могут быть найдены на текущих или будущих коллайдерах. Поиск нового нейтрального Z' и заряженного W' калибровочных бозонов является важным аспектом экспереметальнофизических программ на колладерах больших энергий. В этой статье мы сконцентрируемся на первом бозоне.

Предоставленные лимиты большого адронного коллайдера и виртуальные эффекты ЛЭП, через интерференцию или смешивания с Z бозонами, подразумевает что любые Z' бозоны горазда тяжелее и менее смешиваются с Z бозонами. В зависимости от рассматриваемой теоретической модели Z массы порядка 4,5 ТэВ [2] и Z-Z' углов смешивания на уровне нескольких градусов исключены [3]. Угол смешивания сильно ограничен очень высокоточными экспериментами на ЛЭП и SLC. Они включают в себя измерения из формы линии Z, из лептонных отношений ветвления, нормированных на общую адронную ширину затухания Z, а также от лептонных левоправых асимметрий. Z', легче чем 5 ТэВ, может быть обнаружен на БАК [3] с $\sqrt{s} = 14$ ТэВ в процессе Дрелл-Янга (ДЯ) $pp \to Z' \to l^+l^- + X$, где $l = e, \mu$.

После открытия Z'-бозона на БАК через процесс ДЯ, необходимо произвести некоторую диагностику связей и смешивания Z-Z', чтобы идентифицировать основную теоретическую структуру. В настоящей работе исследуются данные ATLAS [4] и CMS в канале дибозона.

$$pp \to W^+W^- + X \tag{1}$$

Для поиска Z-бозона, который возникает, например, в популярной модели с расширенным калибровочным сектором. Анализ основан на данных о столкновениях pp при энергии центра масс $\sqrt{s}=13$ собранных группами ATLAS [4] и CMS на БАК. В частности, данные используются для поиска

Z-Z' смешивание. На ATLAS события W^+W^- реконструируются через их полулептонные распады W, где один W-бозон распадается на заряженный лептон $(l=e,\mu)$ и нейтрино, а другой на две струи, тогда как на CMS W-бозон адронически распадается на две восстановленные струи.

Процесс рождения пары W^-W^+ -бозонов (1) важен для изучения электрослабой калибровочной симметрии. Общие свойства слабых калибровочных бозонов тесно связаны с нарушением электрослабой симметрии и структуры калибровочного сектора, как и существование и структура трилинейных связей. Кроме того, канал распада дибозонов Z' исследует толщину калибровочной связи между новым и калибровочными бозонами стандартной модели. Кроме того, сила связи очень влияет на элементы распада и естественную ширину такого нового калибровочного бозона. Таким образом, детальное рассмотрение процесса (1) с высокой точностью проверяет калибровочный сектор СМ и может пролить свет на бозоны, которые могут появиться за пределами СМ. Здесь мы рассмотрим возможность наблюдения Z'-бозона в W^+W^- парного процесса на БАК, который в отличие от процесса ДЯ не является основным каналом поиска, но может помочь понять происхождение новых калибровочных бозонов.

Поиски тяжелого WW резонанса были выполнены на Теватроне исследовательскими группами CDF и $D\theta$. Группа $D\theta$ изучала резонансное рождение дибозонов до $700~\Gamma$ эВ в каналах распада lvl'v' и lvjj [5]. Группа CDF также исследовала резонанс в WW в канале распада evjj, что в результате привело к обнаружения нижних лимитов масс Z' и W'-бозонов, за исключением масс превышающих $900~\Gamma$ эВ, зависящих от параметра смешивания.

Исследования WW-резонансов группами ATLAS и CMS с использованием, соответственно, полулептонных и адронных событий распада в pp столкновениях при 13 ТэВ устанавливают массовые пределы 3 ТэВ для этих резонансов [4].

В дипломной работе изучается возможность рождения нового резонанса нейтрального спина 1 (Z') из доступных данных групп ATLAS для W^+W^- распадов. В качестве результатов работы будут получены ограничения на соответствующие Z-Z'-коэффициенты смешивания и на массу $M_{Z'}$. Выполнено моделирование событий рождения Z' бозонов в процессе распада на фотонную пару и моделирование событий рождения гравитонов в процессе lvl'v'. Создано web-приложение для демонстрации результатов вычисления.

Несмотря на впечатляющий успех в описании экспериментов, Стандартная модель не может считаться окончательной теорией элементарных частиц. У нее есть свои трудности. Физики уверены, что она должна быть частью некоторой более глубокой теории строения микромира, той частью,

которая видна в экспериментах на коллайдерах при энергиях ниже примерно 1 ТэВ. Главная задача Большого адронного коллайдера — получить хотя бы первые намеки на то, что это за более глубокая теория.

Теоретики разработали большое число кандидатов на такую теорию. Все они, естественно, включают какие-то элементы, которые отсутствуют в Стандартной модели. Часто такие теории коллективно называют «Новая физика» или «За пределами Стандартной модели». На этой странице перечислены некоторые из активно изучаемых вариантов Новой физики [5].

Суперсимметрия — это гипотетическая симметрия между фермионами и бозонами. Теории, использующие эту идею, оказываются удивительно мощными, и потому именно с суперсимметрией многие связывают надежды на открытие физики за пределами Стандартной модели. Однако до сих пор не было получено ни одного убедительного доказательства в пользу того, что суперсимметрия реализуется в нашем мире. Ее поиск является одной из главных задач Большого адронного коллайдера. Константы свя-

Рисунок 2.1 – Константы связи трех типов взаимодействий

зи трех взаимодействий частиц в микромире сходятся к одному значению, если имеющиеся сейчас данные экстраполировать в область очень высоких

энергий. Это совпадение считается неслучайным и воспринимается физиками как намек на то, что все три взаимодействия при больших энергиях объединяются в одно.

В XIX веке физики обнаружили, что электричество и магнетизм — это две стороны одной медали, электромагнитного взаимодействия. Век спустя, при создании Стандартной модели, электромагнетизм и слабые ядерные силы были объединены в рамках единого электрослабого взаимодействия. (Точнее говоря, внутри электрослабого взаимодействия имеются попрежнему две разные силы, а электромагнитное и слабое взаимодействия возникают как комбинации этих сил). Каждое такое объединение упрощало теорию, уменьшало количество введенных в нее «сущностей», переводило наше понимание микромира на новый уровень.

Сейчас физики имеют сразу несколько причин подозревать, что при очень высоких энергиях происходит объединение электрослабого и сильного взаимодействий (рисунок 2.1). Модели, использующие эту идею (так называемые Теории великого объединения) разрабатываются уже давно. В идеале хотелось бы, чтобы такая теория естественным образом объясняла, почему фундаментальных взаимодействий именно столько и именно с такими свойствами, а также имела четкие предсказания, доступные проверке в современных экспериментах.

При энергиях элементарных частиц, доступных на ускорителях, гравитация по-прежнему остается исключительно слабой, так что заметить ее проявления не удается. Однако ее сила растет с ростом энергии, и при энергиях столкновения порядка планковской она станет столь же важной, как и другие взаимодействия. В этом случае в полный рост встает исключительно сложный вопрос о том, как включить гравитацию в квантовое описание микромира. Поскольку гравитация в современной физике считается проявлением кривизны пространства-времени, успешная теория с сильной гравитацией должна описывать в рамках единого формализма не только все взаимодействия и всё вещество, но и структуру пространствавремени.

Одним из наиболее привлекательных путей решения этого вопроса является теория суперструн и ее дальнейшее развитие в виде теории бран и М-теории. В этих теориях считается, что фундаментальными объектами, существующими в многомерной вселенной, являются не точечные частицы, а протяженные объекты — струны, мембраны и еще более многомерные образования. В этой теории были получены впечатляющие успехи при высоких энергиях, однако при попытке вывести свойства нашего низко-энергетического мира из теории суперструн возникает обескураживающая неопределенность предсказаний.

Долгое время казалось, что проверка предсказаний теории суперструн лежит далеко за пределами возможностей человечества, поскольку речь идет об энергиях, на 15 порядков превышающих энергии современных ускорителей. Однако примерно 10 лет назад возникло новое направление развития теории, в котором гравитация становится сильной на энергиях порядка 1 ТэВ. Такая возможность возникает в том случае, если наш мир более чем трехмерный и если при этом новые дополнительные пространственные размерности достаточно протяженны: либо они бесконечны, либо свернуты в многомерные петельки размером много больше ядерного масштаба.

В этом случае на *LHC* следует ожидать целый ряд совершенно замечательных эффектов, отсутствующих в Стандартной модели, например, рождение гравитонов, которые будут улетать из нашего мира в дополнительные измерения, и микроскопических черных дыр, тут же испаряющихся с испусканием множества обычных частиц. Будут также наблюдаться сильные отклонения от предсказаний Стандартной модели в столкновении обычных частиц. Стоит, впрочем, подчеркнуть, что пока нет никаких экспериментальных подтверждений того, что эта красивая гипотеза имеет отношение к нашему миру.

Все три перечисленные выше направления «Новой физики» опираются на глубокие теоретические гипотезы об устройстве нашего мира (суперсимметрия, единство сил, квантово-гравитационная вселенная). Однако кроме этих направлений теоретики также рассматривают разнообразные теории «статусом пониже». В этих теориях просто отмечается, что текущие экспериментальные данные не запрещают те или иные экзотические объекты или явления, и разрабатываются их следствия. Вот несколько примеров таких моделей разной степени экзотичности.

Неминимальные хиггсовские модели. Поскольку хиггсовские бозоны — единственные частицы Стандартной модели, до сих пор не открытые экспериментально, теоретики изучают самые разные варианты устройства этого сектора теории. Новые поколения фермионов. Можно предположить, что кроме трех известных поколений кварков и лептонов существуют и другие поколения. Частицы из этих поколений должны быть очень тяжелыми, иначе бы их уже давно открыли в эксперименте.

Новые короткодействующие силы. В таких моделях предполагается, что в нашем мире есть и иные силовые взаимодействия, отличные от сильных, слабых и электромагнитных, но они настолько короткодействующие, что до сих пор никак не проявлялись в эксперименте. На Большом адронном коллайдере благодаря его рекордной энергии удается «прощупать» взаимодействия частиц на исключительно малых расстояниях (менее 10–19 метра), а значит, появляется шанс эти взаимодействия обнаружить. Они могут

Рисунок 2.2 - Кварки

проявляться либо как рождение и распад частицы-переносчика новых сил (такие гипотетические частицы обозначают Z'), либо как усиленное рассеяние частиц на большие углы.

Лептокварки. В Стандартной модели и в подавляющем большинстве теорий Новой физики кварки и лептоны взаимодействуют друг с другом опосредованно, путем обмена квантами силовых полей. Однако можно представить себе возможность того, что кварки и лептоны исходно являлись фермионами одного типа и лишь потом расщепились на два разных сорта. В таком случае должны существовать новые тяжелые частицы — лептокварки, которые распадаются прямо на кварк и лептон. Подобные частицы встречаются в теориях Великого объединения.

Квирки. Одним из очень необычных и любопытных вариантов новых сил является гипотеза квирков (quirks). Эта модель построена по типу обычного сильного взаимодействия: в ней предполагается, что существует новое силовое поле с конфайнментом и новые частицы, его чувствующие. Если частицы очень тяжелые, то между ними будут натягиваться длинные, даже макроскопические силовые струны, которые не смогут порваться (рисунок 2.2).

Слабое взаимодействие – короткодействующее фундаментальное взаимодействие между элементарными частицами, ответственное за бета-

распад атомных ядер и медленные распады частиц. Слабое взаимодействие значительно слабее сильного и электромагнитного, но гораздо сильнее гравитационного. В слабом взаимодействии участвуют все фундаментальные фермионы (кварки и лептоны) и все адроны. Единственными частицами, которые участвуют только в слабом взаимодействии являются три типа нейтрино v_e, v_μ, v_τ и их античастицы антинейтрино $\bar{v_e}$, антинейтрино $\bar{v_u}$, антинейтрино \bar{v}_{τ} . В нем не участвуют переносчики сильного, электромагнитного и гравитационного взаимодействий – глюон, фотон и гравитон. В процессе слабого взаимодействия частицы обмениваются переносчиками слабого взаимодействия промежуточными (фундаментальными) бозонами: имеющими электрический заряд W^{\pm} и нейтральным Z. Эти бозоны, в отличие от переносчиков остальных фундаментальных сил безмассовых глюона, фотона и гравитона, имеют огромные массы $m_W = 80.4 \, \, \Gamma$ э ${
m B/c}^{-2}$ и $m_Z = 91.2 \, \Gamma$ э $\mathrm{B/c^2}$ (примерно как у атомов циркония или ниобия), что приводит к очень малому радиусу действия слабых сил ≈10-18 см (что на три порядка меньше радиуса сильного взаимодействия) и очень низкой по сравнению с сильными и электромагнитными процессами вероятности (скорости) слабых процессов.

Несмотря на малую величину и короткодействие слабые силы играют очень важную роль в природе. Так без них погасло бы Солнце, так как внутри него остановился бы процесс превращения 4 протонов в ядро гелия-4, являющийся основным источником энергии Солнца.

Слабое взаимодействие выделяется тем, что в нём не соблюдается ряд запретов, присущих сильному и электромагнитному взаимодействиям. Так в слабых процессах кварки одного типа (аромата) превращаются в кварки других ароматов [9].

Особенности слабого взаимодействия

- Их слабость (медленноеть), выражающаяся в том, что вероятность этих процессов на много порядков меньше вероятностей сильных и электромагнитных процессов.
- Малый радиус взаимодействия —как минимум на два порядка меньший, чем радиус сильного взаимодействия. Ни в одном из слабых процессов не удалось до 1982 г. обнаружить каких-либо отклонений от точечного четырех- фермионного взаимодействия.
- Сильное, максимально возможное несохранение пространственной и зарядовой четностей. Так, в заряженные токи входят только левые компоненты спиноров, описывающих частицы, и только правые компоненты спиноров, описывающих античастицы.

- Несохранение CP-четности.
- Несохранение ароматов (странности, чарма и т. д.).
- То обстоятельство, что только в слабых взаимодействиях принимают участие нейтрино.

Тем поразительней, что, несмотря на столь резкие отличия, слабые и электромагнитные взаимодействия представляют собой, по-видимому, проявление одного и того же взаимодействия, которое в последние годы получило название электрослабого.

Согласно электрослабой теории слабые взаимодействия заряженных токов обусловлены обменами W-бозонами, а нейтральных — Z-бозонами, подобно тому как взаимодействие электромагнитных токов обусловлено обменом фотонами. При этом слабость и малый радиус слабого взаимодействия объясняются тем, что, в отличие от фотонов, W и Z-бозоны — очень тяжелые частицы Остальные особенности слабого взаимодействия прямо заложены в предположении о форме исходных фермионных токов теории. Так что в злектрослабой теории удивляться надо не тому, что слабое взаимодействие зеркально-асимметрично, а то- му, что электромагнитное — зеркально-симменгричное.

Слабое взаимодействие переносится массивными W^{\pm} - и Z-бозонами. Обмен заряженными W^+ и W^- -бозонами приводит к изменению электрического заряда взаимодействующих фермионов. Эти процессы происходят за счет заряженных токов.

В физических программах экспериментов на современных дронных (LHC) и планируемых на электрон-позитронных (ILC, CLIC) коллайдерах вопросу поиск «новой» физики, выходящей за рамки Стандартной модели (CM), традиционно уделяется большое внимание. К числу подобных теоретических построений, являющихся обобщением CM, относятся модели C расширенным к либровочным сектором, такие как лево-правосимметричные модели (LR), альтернативные лево-правосимметричные модели (ALR), E_6 -модели и др. [8]. Их исследование (теоретическое и экспериментальное) представляет значи-тельный интерес. Эти модели являются одними из простейших расширений CM, характеризующихся элементарной структурой хиггсовского сектора. Общим для данных моделей является то, что они предсказывают новые физические объекты и явления на масштабе энергий CM (1 ТэВ), связанные, например, с наличием тяжелых нейтральных CM0 калибровочных бозонов, обусловленных дополнительными калибровочными симме-триями CM1.

Достижение порога рождения Z'-бозона явилось бы прямым доказательством про-явления «новой» физики. Однако в данном случае интервал по-

иска масс Z' ограничен максимальной энергией коллайдера, на котором проводятся эксперименты. Значительно более широкий интервал масс можно исследовать с помощью пропагаторных эффектов. В этом случае ведется поиск отклонений различных наблюдаемых от соответствующих предсказаний СМ. Если экспериментальные данные при достигнутом уровне точности согласуются с СМ, т. е. отклонений от предсказаний СМ нет, то эту экспериментальную информацию можно использовать для получения ограничений на динамические параметры и массы Z'-бозонов.

Потенциальные возможности e^+e^- -коллайдеров для прямого рождения новых калибровочных бозонов гораздо скромнее по сравнению с адронными машинами из-за более низких энергий пучков. Кроме того, современные ограничения на массы Z'-бозонов для большинства моделей превосходят планируемую энергию электрон-позитронного коллайдера ILC, $\sqrt{s} << M_{Z'}$. Тем не менее основным достоинством этих машин является возможность проведения экспериментов по измерению наблюдаемых величин с высокой степенью точности и получения однозначной информации о косвенных (виртуальных) эффектах новых Z'-бозонов, а также эффектах бозонного Z-Z'-смешивания. Последние, в моделях с расширенным калибровочным сектором, зависят от структуры хиггсовского сектора модели. Тем самым экспериментальное исследование процессов рождения пар W^\pm -бозонов может не только пролить свет на возможное существование «новой» физики, но и дать косвенные указания на хиггсовскую природу, а также установить структуру модели.

На основе данных, полученных из низкоэнергетических экспериментов по нейтральным токам, результатов на e^+e^- -коллайдерах LEP и SLC [8], а также недавно выполненных экспериментов по поиску прямого адронного рождения Z'-бозонов в процессе Дрелла-Яна.

$$pp \to Z' \to l^+l^- + X$$

 $(l=e,\mu)$ на коллайдере LHC при энергии $\sqrt{s}=7$ и 8 ТэВ с интегральной светимостью соответственно $L_int=5$ и 20 фб $^{-1}$ [8] можно заключить, что для большинства расширенных калибровочных моделей граничные значения для масс дополнительных Z'- бозонов находятся в интервале $\sim 2,5$ -3,0 ТэВ (в зависимости от модели), а современный масштаб ограничений на угол смешивания составляет $\mathcal{O}(\varphi) - 10^{-2}$ — 10^{-3} рад. При этом наиболее точная информация об угле смешивания была получена преимуще¬ственно из экспериментов на электрон-позитронных коллайдерах LEP1 [12] и SLC по измерению резонансных наблюдаемых физических величин при энергии начальных состояний, равной массе стандартного Z-бозона, $\sqrt{s}=M_Z$, в процессах

$$e^+e^- \rightarrow f\bar{f}$$

где конечными фермионными состояниями f были заряженные лептоны и кварки [11]. Высокая точность, достигнутая в экспериментах на коллайдерах LEP1 и SLC, объясняется прежде всего возможностью набора большого объема данных в резонансной области энергии.

Кроме того, эта информация дополнялась данными, полученными на коллайдере тэватрон, по точному измерению массы M_W , на основе которых определялся параметр бозонного Z-Z'-смешивания с использованием соотношения между массами нейтральных и заряженных калибровочных бозонов, $M_Z = M_W/(\sqrt{p_0}\cos\theta_W)$, имеющего место в расширенных моделях. Очевидно также, что эти данные будут дополнены новой информацией, которая в ближайшем будущем будет получена в экспериментах на коллайдере LHC при энергии 13 и 14 ТэВ. Вместе с тем из этих данных нельзя сделать однозначный вывод о природе «новой» физики, который мог бы вызвать отклонение наблюдаемых величин от их поведения, предсказываемого СМ. Дело в том, что параметр p, который содержится в выражениях для векторных и аксиально-векторных констант связи фермионов с учетом петлевых поправок, зависит, в частности, от структуры хиггсовского сектора модели, которая изначально неизвестна. Кроме того, новые тяжелые фермионы и скалярные частицы, предсказываемые моделями с расширенным калибровочным сектором, могут давать вклад в параметр р на петлевом уровне. Все эти неопределенности приводят к появлению систематических (теоретических) погрешностей, которые могут быть весьма существенными при измерении параметра p и, в конечном счете, могут повлиять на точность определения параметра Z-Z'-смешивания.

Процессы парного рождения заряженных W^{\pm} -бозонов в адронных столкновениях на LHC

$$pp \to W^+W^- + X$$

электрон-позитронной аннигиляции на LEP2 и в большей степени на ILC

$$e^+e^- \to W^+W^-$$

Являются весьма эффективным инструментом поиска эффектов Z-Z'-смешивания при высоких энергиях и, таким образом, играют роль основного поставщика информации об угле Z-Z'-смешивания [8]. С теоретической точки зрения процессы парного рождения заряженных калибровочных бозонов в адронных и электронпозитронных столкновениях интересны тем, что их сечения пропорциональны углу Z-Z'-смешивания, который, как отмечалось выше, в расширенных калибровочных моделях зависит от структуры хиггсовского сектора [13].

Прямой поиск тяжелых резонансов в процессе $p\bar{p} \to W^+W^- + X$ осуществлялся экспериментальными группами CDF и D0 на коллайдере тэватрон. Коллаборация D0 исследовала возможность рождения резонанса в канале его дибозонного распада, используя чисто лептонные lvl'v' и полулептонные vjj моды. Здесь $l=e,\mu;jj$ — две адронные струи. Коллаборация CDF также осуществляла поиск тяжелых резонансов в канале их распада в пару заряженных калибровочных бозонов W^+W^- с последующим распадом в полулептонные evjj конечные состояния. Обе коллаборации установили ограничения на массы тяжелых резонансов, таких как новые нейтральные Z'- и заряженные калибровочные W^\pm -бозоны, гравитоны Рэндалл-Сандрума. Кроме того, в настоящее время поиск тяжелых резонансов на LHC в WW-канале интенсивно ведется коллаборациями ATLAS и CMS. В частности, уже получена экспериментальная информация о процессе в лептонном канале lvl'v' при энергии коллайдера 7 ТэВ и интегральной светимости 4,7 фб $^{-1}$ [10].

Из анализа экспериментальных данных по измерению процесса электрон-позитронной аннигиляции на коллайдере LEP2 были впервые получены прямые ограничения на угол Z-Z'-смешивания. Точность измерения угла смешивания оказалась не очень высокой, $|\phi|$ 5—10 %, так как сам коллайдер работал в интервале энергий, незначительно превышающем порог реакции, $\sqrt{s} >> 2M_W$. Как было установлено ранее, чувствительность процесса электрон-позитронной аннигиляции к эффектам «новой» физики значительно усиливается при высоких энергиях, $\sqrt{s} >> 2M_W$, где важную роль играет механизм калибровочного сокращения. Дело в том, что вклад Z'-бозона в сечение процесса нарушает механизм калибровочного сокращения, играющий важную роль в СМ. Действие механизма калибровочного сокращения состоит в том, что он обеспечивает «правильное» поведение сечения процесса электрон-позитронной аннигиляции с ростом энергии, которое не нарушает унитарный предел, несмотря на быстро растущие с энергией отдельные вклады в сечение. Вместе с тем эффекты, индуцированные появлением дополнительного калибровочного бозона, нарушают механизм калибровочного сокращения в энергетическом интервале $2M_W << \sqrt{s} << M_{Z'}$, что проявляется в виде «разбалансировки» отдельных вкладов в сечение и, как следствие, в возникновении существенно иной по сравнению со СМ энергетической зависимостью сечений. Этим обусловлено действие так называемого механизма усиления эффектов «новой» физики в процессе электрон-позитронной аннигиляции. Именно в силу этого обстоятельства линейный коллайдер ILC является одним из основных инструментариев для поиска эффектов «новой» физики при исследовании процесса электрон-позитронной аннигиляции.

Следует отметить также, что коллаборация CDF на коллайдере тэватрон одной из первых получила прямые ограничения на угол Z-Z'-смешивания из обработки данных по измерению процесса адронного рождения W^+W^- -бозонов. И вновь относительно небольшая энергия установки и низкая светимость не позволили улучшить ограничения, полученные на коллайдере LEP2, а лишь повторить их [14].

Возможности коллайдера LHC по обнаружению эффектов Z-Z'смешивания в процессе рождения пар заряженных калибровочных W^{\pm} -бозонов с их последующим распадом по чисто лептонному каналу lvl'v'. Несмотря на очевидное достоинство данного канала, связанное с подавленностью фона, особенно при больших инвариантных массах W^{\pm} бозонов, у него имеется заметный недостаток, связанный с присутствием в конечных фермионных состояниях двух нейтрино, что не позволяет восстановить распределение по инвариантной массе бозонных пар из экспериментальных данных. В то же время распад пары W^{\pm} -бозонов по полулептонному каналу lvjj свободен от указанного недостатка. В процессе $pp \to Z' \to WW + X \to lvjj + X$ существует возможность реконструировать распределение по инвариантной массе W^+W^- - пары и тем самым исследовать резонансную структуру Z'-бозона. Еще одним достоинством настоящего полулептонного процесса является то, что он имеет сечение, существенно превосходящее сечение чисто лептонного канала. Вместе с тем полулептонный канал, в отличие от лептонного канала lvl'v', имеет большой КХД-фон, вызванный рождением W_{ii} , а также Z_{ii} -состояний [15]. В последнем случае предполагается, что Z-бозон распадается по лептонному каналу, а в процессе детектирования лептонов один из них теряется. Кроме перечисленных выше КХД фоновых процессов имеется еще один, который играет важную роль в оценке всей фоновой составляющей. Это процесс рождения пар $t\bar{t}$ -кварков. Однако большой КХД-фон может быть редуцирован путем наложения кинематических ограничений на поперечные импульсы заряженных лептонов и адронных струй в резонансном сигнале рождения Z'-бозонов [8].

2.2 Используемые средства разработки программного обеспечения

ГЛАВА 3

РАЗРАБОТКА WEB-ПРИЛОЖЕНИЯ 30-42

ГЛАВА 4

ТЕСТИРОВАНИЕ И ВЕРИФИКАЦИЯ РАЗРАБОТАННОГО ПРИЛОЖЕНИЯ 42-50

- 4.1 Верификация работы программы
- 4.2 Анализ результатов верификации

ЗАКЛЮЧЕНИЕ

Выполнена обработка экспериментальных данных коллабораци ATLAS на Большом адронном коллайдере LHC (с энергией 13 ТэВ и светимостью $36,1~ \phi 6^{-1}$) по измерению процесса рождения W^+W^- пар в протонпротонных столкновениях и получены экспериментальные ограничения на угол смешивания Z'-бозонов в модели SSM, которые составили $\xi < 0,0004$, что на порядок лучше результатов полученных ранее из глобального анализа электрослабых данных. А так же рассчитаны ограничения для светимостей $1000~ \phi 6^{-1}$ и $3000~ \phi 6^{-1}$, которые составили 10^{-4} и $6*10^{-5}$ соотвественно.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Назаров, С. В. Современные операционные системы: учебное пособие / С. В. Назаров, А. И. Широков. Москва : Национальный Открытый Университет «ИНТУИТ», 2012.
- 2. Основные понятия ОС [Электронный ресурс]. Режим доступа: http://technomag.bmstu.ru/doc/48639.html Дата доступа: 11.12.2017.
- 3. Операционные системы Linux [Электронный ресурс]. Режим доступа: http://help.ubuntu.ru/wiki/linux Дата доступа: 11.12.2017.
- 4. Linux-2017: самые перспективные дистрибутивы [Электронный ресурс]. Режим доступа: https://habrahabr.ru/company/ruvds/blog/320002/ Дата доступа: 11.12.2017.
- 5. За пределами Стандартной модели [Электронный ресурс]. Режим доступа: https://elementy.ru/LHC/HEP/SM/beyondSM Дата доступа: 11.12.2017.
- 6. Н. В. Красников, В. А. Матвеев. Поиск новой физики на LHC [Электронный ресурс]. Режим доступа: http://nuclphys.sinp.msu.ru/ATLAS_exp/at03.htm Дата доступа: 11.12.2017.
- 7. Official documentation [Электронный ресурс]. Режим доступа: http://home.thep.lu.se/ torbjorn/Pythia.html Дата доступа: 11.12.2017.
- 8. Бобовников, И.Д. Эффекты Z-Z'-смешивания в процессах рождения пары W^{\pm} -бозонов на адронных и лептонных коллайдерах высоких энергий / И.Д. Бобовников, А.А. Панков. Письма в ЭЧАЯ, 2016. Т. 13, №1(199). С.8-35
- 9. Слабое взаимодействие [Электронныйресурс]. Режим доступа: http://nuclphys.sinp.msu.ru/enc/e149.htm Дата доступа: 11.12.2017.
- 10. Osland, P. Probing Z-Z' mixing with ATLAS and CMS resonant diboson production data at the LHC at $\sqrt{s}=13$ TeV / P. Osland,

- A.A. Pankov, A.V. Tsytrinov // Physical Review D. 2012. Vol. 86. P. 12.
- 11. Andreev, V. V. Constraints on the Z-Z' mmixing angle from data measured for the process $e^+e^- \to W^+W^-$ at the LEP2 collider / V.V. Andreev, A.A. Pankov // Phys. At. Nucl. 2012. Vol. 75. P. 76.
- 12. ALEPH and DELPHI and L3 and OPAL and SLD Collaborations and LEP Electroweak Working Group and SLD Electroweak Group and SLD Heavy Flavour Group / Schael, S. [et al.] // Precision electroweak measurements on the Zresonance, Phys. Rep. 2006. P. 427.
- 13. Search for massive resonances decaying into WW, WZ or ZZ bosons in proton-proton collisions at $\sqrt{s} = 13$ TeV / Sirunyan, A. M. [et al.] // J. High Energy Phys. 2017. Vol. 162. P. 56.
- 14. Measurement of W^+W^- -production in pp collisions at $\sqrt{s}=7$ TeV with the ATLAS detector and limits on anomalous WWZ and WW_y couplings / Ada, G. [et al.] // Phys. Rev. D. 2013. Vol. 88. P. 29.
- 15. Search for new phenomena in the $WW \to lvl'v'$ final state in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector / Ada, G. [et al.] // Physics Letters B. -2013. Vol. 3. P. 878.

приложение а

ыыыыыыыыыы