● 多类情况 2

采用每对划分,即ω_i/ω_j两分法, 此时一个判别界面只能分开两种类别, 但不能把它与其余所有的界面分开。 其判别函数为:

$$d_{ii}(\mathbf{x}) = \mathbf{w}_{ii}^T \mathbf{x}$$

若 $d_{ij}(\mathbf{x}) > 0$, $\forall j \neq i$, 则 $\mathbf{x} \in \omega_i$

重要性质: $d_{ii} = -d_{ii}$

图例:对一个三类情况, $d_{12}(x)=0$ 仅能

分开ω1和ω2类,不能分开ω1

和ω₃类。

要分开M类模式,共需M(M-1)/2个判别函数。

不确定区域: 若所有 $d_{ii}(x)$, 找不到 $\forall j \neq i$, $d_{ii}(x) > 0$ 的情况。

d负责区分是w1还是w2,而不是只区分"是否"(变成了特殊疑问句)

例:设有一个三类问题,其判别函数为:

$$d_{12}(\mathbf{x}) = -x_1 - x_2 + 5$$
, $d_{13}(\mathbf{x}) = -x_1 + 3$, $d_{23}(\mathbf{x}) = -x_1 + x_2$

若
$$\mathbf{x} = (4,3)^{\mathrm{T}}$$
, 则: $d_{12}(\mathbf{x}) = -2$, $d_{13}(\mathbf{x}) = -1$, $d_{23}(\mathbf{x}) = -1$

有:
$$\begin{cases} d_{12}(\mathbf{x}) < 0 \\ d_{13}(\mathbf{x}) < 0 \end{cases}, \begin{cases} d_{21}(\mathbf{x}) = -d_{12}(\mathbf{x}) > 0 \\ d_{23}(\mathbf{x}) < 0 \end{cases}, \begin{cases} d_{31}(\mathbf{x}) = -d_{13}(\mathbf{x}) > 0 \\ d_{32}(\mathbf{x}) = -d_{23}(\mathbf{x}) > 0 \end{cases}$$

从而 $x \in \omega_3$

若
$$x = (2.8, 2.5)^{\mathrm{T}}$$
, 则: $d_{12}(x) = -0.3$, $d_{13}(x) = 0.2$, $d_{23}(x) = -0.3$

有:
$$\begin{cases} d_{12}(\mathbf{x}) < 0 \\ d_{13}(\mathbf{x}) > 0 \end{cases}, \begin{cases} d_{21}(\mathbf{x}) > 0 \\ d_{23}(\mathbf{x}) < 0 \end{cases}, \begin{cases} d_{31}(\mathbf{x}) < 0 \\ d_{32}(\mathbf{x}) > 0 \end{cases}$$

分类失败。