Importing the Dependencies

In [33]:

```
from sklearn import svm
from sklearn.metrics import accuracy_score
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from pandas.plotting import scatter_matrix
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
```

Data Collection and Processing

In [5]:

```
# Loading the dataset to pandas DataFrame
loan_dataset = pd.read_csv('/content/train_u6lujuX_CVtuZ9i (1).csv')
```

In [6]:

```
type(loan_dataset)
```

Out[6]:

pandas.core.frame.DataFrame

In [7]:

```
# printing the first 5 rows of the dataframe
loan_dataset.head()
```

Out[7]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coa
0	LP001002	Male	No	0	Graduate	No	5849	
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	
4								•

In [8]:

```
# number of rows and columns
loan_dataset.shape
```

Out[8]:

(614, 13)

In [9]:

```
# statistical measures
loan_dataset.describe()
```

Out[9]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	
count	614.000000	614.000000	592.000000	600.00000	564.000000	
mean	5403.459283	1621.245798	146.412162	342.00000	0.842199	
std	6109.041673	2926.248369	85.587325	65.12041	0.364878	
min	150.000000	0.000000	9.000000	12.00000	0.000000	
25%	2877.500000	0.000000	100.000000	360.00000	1.000000	
50%	3812.500000	1188.500000	128.000000	360.00000	1.000000	
75%	5795.000000	2297.250000	168.000000	360.00000	1.000000	
max	81000.000000	41667.000000	700.000000	480.00000	1.000000	
4					•	

In [10]:

```
# number of missing values in each column
loan_dataset.isnull().sum()
```

Out[10]:

Loan_ID	0
Gender	13
Married	3
Dependents	15
Education	0
Self_Employed	32
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	22
Loan_Amount_Term	14
Credit_History	50
Property_Area	0
Loan_Status	0
dtype: int64	

In [11]:

```
# dropping the missing values
loan_dataset = loan_dataset.dropna()
```

In [12]:

```
# number of missing values in each column
loan_dataset.isnull().sum()
```

Out[12]:

Loan_ID 0 Gender 0 Married 0 Dependents 0 Education 0 Self_Employed 0 ApplicantIncome 0 CoapplicantIncome LoanAmount 0 Loan_Amount_Term 0 Credit_History 0 Property_Area 0 Loan_Status 0 dtype: int64

In [13]:

```
# Label encoding
loan_dataset.replace({"Loan_Status":{'N':0,'Y':1}},inplace=True)
```

In [14]:

```
# printing the first 5 rows of the dataframe
loan_dataset.head()
```

Out[14]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coa
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	
5	LP001011	Male	Yes	2	Graduate	Yes	5417	
4								•

```
In [15]:
```

```
# Dependent column values
loan_dataset['Dependents'].value_counts()
Out[15]:
      274
0
2
       85
       80
1
3+
       41
Name: Dependents, dtype: int64
In [16]:
# replacing the value of 3+ to 4
loan_dataset = loan_dataset.replace(to_replace='3+', value=4)
```

In [17]:

```
# dependent values
loan_dataset['Dependents'].value_counts()
```

Out[17]:

0 274 2 85 80 1 41 Name: Dependents, dtype: int64

Data Visualization

In [18]:

```
# education & Loan Status
sns.countplot(x='Education',hue='Loan_Status',data=loan_dataset)
```

Out[18]:

<Axes: xlabel='Education', ylabel='count'>

In [19]:

```
# marital status & Loan Status
sns.countplot(x='Married',hue='Loan_Status',data=loan_dataset)
```

Out[19]:

<Axes: xlabel='Married', ylabel='count'>

In [35]:

```
f,ax=plt.subplots(1,2,figsize=(10,5))
loan_dataset['Loan_Status'].value_counts().plot.pie(explode=[0,0.1],autopct='%1.1f%%',ax
ax[0].set_title('Loan_Status')
ax[0].set_ylabel('')
plt.show()
```


In [37]:

from pandas.plotting import scatter_matrix
scatter_matrix(loan_dataset,figsize=(20,20));

In [38]:

sns.pairplot(data=loan_dataset, hue='Loan_Status')
plt.show()

In [39]:

```
cormat=loan_dataset.corr()
top_corr_features=cormat.index
plt.figure(figsize=(10,10))
g=sns.heatmap(loan_dataset[top_corr_features].corr(),annot=True,cmap="RdYlGn")
```


In [20]:

In [21]:

```
loan_dataset.head()
```

Out[21]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coa
1	LP001003	1	1	1	1	0	4583	
2	LP001005	1	1	0	1	1	3000	
3	LP001006	1	1	0	0	0	2583	
4	LP001008	1	0	0	1	0	6000	
5	LP001011	1	1	2	1	1	5417	
4								•

In [22]:

```
# separating the data and Label
X = loan_dataset.drop(columns=['Loan_ID','Loan_Status'],axis=1)
Y = loan_dataset['Loan_Status']
```

In [23]:

```
print(X)
print(Y)
```

```
Married Dependents Education Self_Employed ApplicantIncome
     Gender
\
1
           1
                      1
                                   1
                                               1
                                                                 0
                                                                                 4583
2
                                   0
           1
                      1
                                               1
                                                                 1
                                                                                 3000
3
           1
                      1
                                   0
                                               0
                                                                 0
                                                                                 2583
                                   0
                                               1
                                                                 0
4
           1
                      0
                                                                                 6000
           1
                                   2
                                                                 1
5
                      1
                                               1
                                                                                 5417
. .
         . . .
                    . . .
                                 . . .
                                              . . .
                                                               . . .
                                                                                   . . .
           0
                      0
                                   0
                                               1
                                                                 0
                                                                                 2900
609
610
           1
                      1
                                   4
                                               1
                                                                 0
                                                                                 4106
611
           1
                      1
                                   1
                                               1
                                                                 0
                                                                                 8072
                                               1
612
           1
                      1
                                   2
                                                                 0
                                                                                 7583
                      0
                                               1
                                                                 1
613
           0
                                   0
                                                                                 4583
     CoapplicantIncome
                           LoanAmount
                                         Loan_Amount_Term Credit_History
1
                  1508.0
                                 128.0
                                                       360.0
                                                                            1.0
2
                      0.0
                                   66.0
                                                       360.0
                                                                            1.0
3
                  2358.0
                                 120.0
                                                       360.0
                                                                            1.0
4
                      0.0
                                 141.0
                                                       360.0
                                                                            1.0
5
                  4196.0
                                 267.0
                                                       360.0
                                                                            1.0
                      . . .
                                    . . .
                                                         . . .
                                                                            . . .
. .
609
                      0.0
                                  71.0
                                                       360.0
                                                                            1.0
610
                      0.0
                                  40.0
                                                       180.0
                                                                            1.0
                                                                            1.0
611
                   240.0
                                 253.0
                                                      360.0
612
                      0.0
                                 187.0
                                                      360.0
                                                                            1.0
                      0.0
613
                                 133.0
                                                      360.0
                                                                            0.0
     Property_Area
1
                   0
2
                   2
3
                   2
4
                   2
5
                   2
. .
609
                   0
610
                   0
611
                   2
                   2
612
                   1
613
[480 rows x 11 columns]
1
        0
2
        1
3
        1
4
        1
5
        1
609
        1
610
        1
        1
611
612
        1
613
Name: Loan_Status, Length: 480, dtype: int64
```

```
In [44]:
target_name='Loan_Status'
y=loan_dataset[target_name]
X=loan_dataset.drop(target_name,axis=1)
In [41]:
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
scaler.fit(X)
SSX=scaler.transform(X)
Train Test Split
In [45]:
X_train,X_test,y_train,y_test=train_test_split(SSX,y,test_size=0.2,random_state=7)
In [46]:
X_train.shape
Out[46]:
(384, 11)
In [47]:
y_train.shape
Out[47]:
(384,)
In [48]:
X_test.shape
Out[48]:
(96, 11)
In [49]:
y_test.shape
Out[49]:
(96,)
```

In [50]:

```
from sklearn.neighbors import KNeighborsClassifier
knn= KNeighborsClassifier()
knn.fit(X_train,y_train)
```

Out[50]:

KNeighborsClassifier()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [51]:

```
from sklearn.svm import SVC
sv=SVC()
sv.fit(X_train,y_train)
```

Out[51]:

SVC()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [52]:

```
from sklearn.linear_model import LogisticRegression
lc = LogisticRegression()
lc.fit(X_train,y_train)
```

Out[52]:

LogisticRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [53]:

```
knn_pred=knn.predict(X_test)
```

In [54]:

```
sv_pred=sv.predict(X_test)
```

In [55]:

```
lc_pred=lc.predict(X_test)
```

In [56]:

```
##Accuracy
```

In [57]:

```
from sklearn.metrics import accuracy_score
```

In [58]:

```
print("Accuracy-Test of knn:",knn.score(X_train,y_train)*100)
print("Accuracy-Test of knn:",knn.score(X_test,y_test)*100)
acc_knn = accuracy_score(y_test, knn_pred)
print("Accuracy of knn:",accuracy_score(y_test,knn_pred)*100)
```

Accuracy-Test of knn: 80.98958333333334

Accuracy-Test of knn: 78.125 Accuracy of knn: 78.125

In [59]:

```
print("Accuracy-Test of Support vector:",sv.score(X_train,y_train)*100)
print("Accuracy-Test of Support vector:",sv.score(X_test,y_test)*100)
acc_sv = accuracy_score(y_test, sv_pred)
print("Accuracy of Support vector:",accuracy_score(y_test,sv_pred)*100)
```

In [60]:

```
print("Accuracy-Test of Linear Regression:",lc.score(X_train,y_train)*100)
print("Accuracy-Test of Linear Regression:",lc.score(X_test,y_test)*100)
acc_lc = accuracy_score(y_test, lc_pred)
print("Accuracy of Linear Regression:",accuracy_score(y_test,lc_pred)*100)
```

In [61]:

```
## CONFUSION MATRIX
```

In [62]:

```
from sklearn.metrics import classification_report,confusion_matrix
cm=confusion_matrix(y_test,sv_pred)
cm
```

Out[62]:

```
array([[15, 20], [0, 61]])
```

In [63]:

```
sns.heatmap(confusion_matrix(y_test,sv_pred),annot=True,fmt="d")
```

Out[63]:

<Axes: >

In [64]:

TN=cm[0,0] FP=cm[0,1] FN=cm[1,0] TP=cm[1,1]

In [65]:

TN,FP,FN,TP

Out[65]:

(15, 20, 0, 61)

In [66]:

TP,FP

Out[66]:

(61, 20)

```
In [67]:
```

```
Precision=TP/(TP+FP)
Precision
```

Out[67]:

0.7530864197530864

In [68]:

```
recall_score=TP/float(TP+FN)*100
print('recall_score', recall_score)
```

recall_score 100.0

In [69]:

```
from sklearn.metrics import f1_score
print('f1_score:',f1_score(y_test,sv_pred)*100)
```

f1_score: 85.91549295774648

In [70]:

```
#F1-SCORE, PRECISION, RECALL----KNN
```

In [71]:

```
from sklearn.metrics import classification_report,confusion_matrix
cm=confusion_matrix(y_test,knn_pred)
cm
```

Out[71]:

```
array([[15, 20], [ 1, 60]])
```

In [72]:

```
sns.heatmap(confusion_matrix(y_test,knn_pred),annot=True,fmt="d")
```

Out[72]:

<Axes: >

In [73]:

TN=cm[0,0]
FP=cm[0,1]
FN=cm[1,0]
TP=cm[1,1]

In [74]:

TN,FP,FN,TP

Out[74]:

(15, 20, 1, 60)

In [78]:

Precision=TP/(TP+FP)*100
Precision

Out[78]:

75.0

```
In [76]:
```

```
recall_score=TP/float(TP+FN)*100
print('recall_score',recall_score)
```

recall_score 98.36065573770492

In [77]:

```
from sklearn.metrics import f1_score
print('f1_score:',f1_score(y_test,knn_pred)*100)
```

f1_score: 85.10638297872339

In []:

#F1-SCORE,PRECISION,RECALL----LC

In [79]:

```
from sklearn.metrics import classification_report,confusion_matrix
cm=confusion_matrix(y_test,lc_pred)
cm
```

Out[79]:

```
array([[14, 21],
[ 1, 60]])
```

In [81]:

```
sns.heatmap(confusion_matrix(y_test,lc_pred),annot=True,fmt="d")
```

Out[81]:

<Axes: >

In [82]:

TN=cm[0,0] FP=cm[0,1] FN=cm[1,0] TP=cm[1,1]

In [83]:

TN,FP,FN,TP

Out[83]:

(14, 21, 1, 60)

In [84]:

Precision=TP/(TP+FP)*100
Precision

Out[84]:

74.07407407407408

```
In [85]:
```

```
recall_score=TP/float(TP+FN)*100
print('recall_score', recall_score)
```

recall_score 98.36065573770492

In [86]:

```
from sklearn.metrics import f1_score
print('f1_score:',f1_score(y_test,lc_pred)*100)
```

f1_score: 84.50704225352112

In [93]:

In [94]:

print(df)

```
Metric Value

0 Accuracy <function accuracy_score at 0x7f7512afddc0>
1 Precision 74.074074
2 Recall 98.360656
3 F1 Score <function f1_score at 0x7f7512b0a160>
```