AMENDMENTS TO THE CLAIMS

- (Currently amended) A process for the production of a resin composition comprising 100 parts by weight of an aromatic polycarbonate (Component A) and 0.01 to 50 parts by weight of a silicate filler (Component B), wherein,
- (I) Component B being is a silicate filler prepared by introducing at least one compound (Component B-1) selected from the group consisting of (i) an organosilicon compound (Component B-1-i) containing a hydrolyzable group and/or a hydroxyl group bonded to a silicon atom, and (ii) an organic titanate compound (Component B-1-ii), into a lamellar silicate (Component B-2) having a cation exchange capacity of 50 to 200 milliequivalents/100 g,
- (II) the process comprising reacting a polymer precursor of Component A by means of an interfacial polycondensation reaction in the presence of Component B and in the absence of an amine compound, a quaternary ammonium salt compound and a quaternary phosphonium salt compound as a polymerization catalyst,

wherein the polymer precursor is a product obtained by reacting a dihydric phenol and a carbonate precursor, which lead to a structural unit of Component A, in the presence of an acid binder, an organic solvent and water.

2. (Cancelled)

- 3. (Original) The process of claim 1, wherein Component B is a silicate filler obtained by dispersing Component B-2 in a polar solvent and then adding Component B-1.
- 4. (Currently amended) The process of claim 1, wherein Component B-2 is a lamellar silicate having an average particle diameter of at least 0.1 μm but less than 5 μm, wherein said average particle diameter being a particle diameter corresponding corresponds to an accumulation degree of 50 % in particle diameters measured by a laser diffraction scattering method.
- (Original) The process of claim 1, wherein Component B-1-i is an organosilicon compound of the following formula (I),

$$X_n$$
— Si — R_{4-n}

wherein n is an integer of 1 to 3, R is a monovalent organic group having 2 to 30 carbon atoms, which may contain a hetero atom, X is a hydrolyzable group or a hydroxyl group, each of X's in a quantity of n may be the same as, or different from, the other or every other and each of R in an quantity of 4-n may be the same as, or different from, the other or every other.

(Withdrawn) The process of claim 1, wherein Component B-1-ii is at least one
organic titanate compound selected from the group consisting of compounds of the following
formulae (II), (III) and (IV),

$$(R^1 O)_m T i - R^2_{4-m}$$

in the formula (II), R^1 is an alkyl group having 1 to 6 carbon atoms, R^2 is a monovalent organic group having 4 to 20 carbon atoms and m is an integer of 1 to 3,

$$R^{3}$$
 $Ti-(R^{4})_{2}$ (III)

in the formula (III), R^3 is a divalent organic group having 1 to 6 carbon atoms and R^4 is a monovalent organic group having 4 to 20 carbon atoms,

$$(R^5O)_4$$
—Ti· $[P(OR^6)_2OH]_2$ (IV)

and in the formula (IV), R^5 is a monovalent organic group having 1 to 20 carbon atoms and R^6 is an alkyl group having 4 to 20 carbon atoms.

7. (Original) The process of claim 1, wherein Component B has an organic content of 0.1 to 50 % by weight.

July 08, 2009

8. (Currently amended) The process of claim 1, wherein a mixture of Component B with the a polar solvent are added to the polymer precursor for Component A, and then the interfacial

polycondensation reaction is carried out.

9. (Original) The process of claim 1, wherein the interfacial polycondensation reaction is carried out in an emulsified state

10. (Previously presented) The process of claim 1, which comprises the steps of

(I) reacting a dihydric phenol and a carbonate precursor, which lead to a structural unit

for Component A, in the presence of an acid binder, an organic solvent and water to obtain a

polymer precursor (step-i).

(II) adding a mixture of Component B with a polar solvent to the thus-obtained polymer

precursor to obtain a liquid mixture (step-ii),

(III) causing a shear force to act on the thus-obtained liquid mixture to bring said liquid

mixture into an emulsified state and then reacting the polymer precursor by means of interfacial polycondensation in the emulsified state without substantially causing the shear force to act

thereon (step-iii), and

(IV) separating the organic solvent and water from a mixture obtained by the reaction, to

obtain a resin composition in a solid state (step-iv).

11. (Currently amended) The process of claim 10, further comprising which comprises

the step of adding a monohydric phenol as a terminal stopper to the polymer precursor (step-a)

after the step-i and before the step-iii.

12. (Cancelled)

13. (Original) The process of claim 10, wherein the step-iv is a step in which the organic

solvent and water are removed from the mixture obtained after the reaction and an isolated

residue is washed with water to obtain the resin composition in a solid state.

Koichi Imamura et al. Attorney Docket No. 2006_1405A Serial No. 10/590,722 July 08, 2009

- 14. (Original) A resin composition produced by the process of claim 1.
- 15. (Original) The resin composition of claim 14, which satisfies the following expression,

$$400X + 1,500 \le Y \le 1,400X + 1,500 \tag{1}$$

wherein X is a content, expressed by a unit of % by weight, of an inorganic compound calculated from a weight ratio of an ashed residue after the resin composition is treated at 600° C in an electric furnace for 6 hours, Y is a storage elastic modulus, expressed by a unit of MPa, of the resin composition at 40° C.