III SEMESTER

SEMESTER III

Name of Department: - Computer Science and Engineering

1.	Subject Code: TCS308		Course Title:	Logic Design and Computer Organization	
2.	Contact Hours: L:	3	T: 0	P: 0	
3.	Examination Duration (Hrs):	Theo	ory 3 F	Practical 0	
4.	Relative Weight: CIE	25	MSE 25	ESE 50	
5.	Credits:	3]		
6.	Semester:	III			
7.	Category of Course:	DSC	1		

8. Pre-requisite: Basic Electronics Engineering (TEC101/ TEC201)

T-	
9. Course Outcome:	After completion of the course the students will be able to: CO1: Understand the process of minimizing Boolean function and obtaining the combinational logic circuits from Boolean functions.
	CO2: Analyse the basic storage elements in digital circuits and develop sequential circuits by applying them.
	CO3: Evaluate the design of different types of register, counter, and programmable logic devices.
	CO4: Apply the concept of digital logic circuits in computer organization & architecture and evaluate the computer performance.
	CO5: Create the arithmetic logic used in computer and describe the machine instruction execution.
	CO6: Understand the memory hierarchy of computer and how different I/O devices interact with the processing unit.

SI. No.	Contents	Contact Hours
1	Unit 1: Simplification of Boolean Function using K-map method (upto 5 variables) and Quine-Mc Clusky method. Nand and Nor Implementation. Combinational Logic: Introduction, Analysis & Design Procedure, Binary Adder & Subtractor, Decimal Adder, Binary Multiplier, Magnitude Comparator, Decoders, Encoders, Multiplexers, De-MJultiplexers, code conversion. Introduction to HDL description of combinational logic circuits	10

2	Unit 2: Sequential Logic: Introduction, Types of Sequential circuits, Basic storage elements (Latch and Flip-flops), Characteristic equations & tables, excitation table, Flip-flop conversion, Register, Universal Shift register.	
3	Unit 3: Counters: Ripple & Synchronous binary counters, BCD counter, mod-n counter, ring & Johnson counter. Mealy and Moore model. Design and analysis of synchronous sequential circuit. State diagram and state table.	
4	Unit 4: Introduction to Computer Organization & Architecture, Von Neumann and Harvard Architecture, RISC and CISC machines, Basic measures of computer performance, Amdahl's Law, Little's Law. Computer Arithmetic (Integer and Floating Point): Representation, Addition, Subtraction, Multiplication and Division. Processor structure and operation, Instruction Cycle, Basic concept of pipelining: Arithmetic, instruction, and processor level. Control unit operation and microprogrammed control.	10
5	Unit 5: Basic concept of Memory, Memory Addressability: Big-endian and Little-endian method, Memory hierarchy: Locality and performance, Cache memory: Principles and elements of design (Replacement algorithm, Effective Access Time, Hit Rate, and Miss penalty), I/O interface: External devices, I/O modules, Programmed I/O, Interrupt driven I/O, Direct Memory Access, Bus arbitration. Introduction to alternative architectures (Flynn Taxonomy).	10
	Total	48

Authors Name	Title	Edition	Publisher, Country	Year
M. Morris Mano	Digital Logic and Computer Design	1st Edition	Pearson	2016
W. Stalling	Computer Organization and Architecture,	11 th Edition	Pearson	2022

Authors Name	Title	Edition	Publisher, Country	Year
Charles H. Roth Jr., Larry L. Kinney	Fundamentals of Logic Design,	7 th Edition	CL Engineering, India	2015
John P Hayes	Computer Architecture and Organization,	3 rd Edition	McGraw Hill	2017

со	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
TCS308.1	Understand the process of minimizing Boolean function and obtaining the combinational logic circuits from Boolean functions.	1	3	,	-	-	1	-	-	1	1	-	1	2	-	-
TCS308.2	Analyze the basic storage elements in digital circuits and develop sequential circuits by applying them.	1	2	3	-	-	ı	1	1	2	1	-	1	2	2	1
TCS308.3	Evaluate the design of different types of register, counter, and programmable logic devices.	1	2	2	3	3	1	-	1	1	2	1	2	3	2	2
TCS308.4	Apply the concept of digital logic circuits in computer organization & architecture and evaluate the computer performance.	1	2	2	3	-	1	1	1	1	1	1	1	3	2	1
TCS308.5	Create the arithmetic logic used in computer and describe the machine instruction execution.	1	2	3	-	-	1	-	1	1	1	1	1	2	2	2
TCS308.6	Understand the memory hierarchy of computer and how different I/O devices interact with the processing unit.	1	2	-	-	-	-	1	1	1	1	-	1	2	2	-
	TCS 308	1	2.2	2.66	3	-	1	-	1	1.16	1.2	1	1	2	2	1.33

SEMESTER III

Name	of Department: - Computer S	Data structures with C		·h C			
1.	Subject Code: TCS 302		Cours	se Title:	Data Stre		
2.	Contact Hours: L:	3	T: 0	P: 0)		
3.	Examination Duration (Hrs)	Theor	у	3	Practical	0	
4.	Relative Weight: CIE	25	MSE 2	5	SEE	50	
5.	Credits:	3					
6.	Semester:	III					
7.	Category of Course:	DSC					
8.	Pre-requisite: Fundamenta Programming for problem s		•	& Introduc	ction to Pr	ogramming	(TCS101),

9. Course Outcome:

After completion of the course the students will be able to:
CO1: Describe the concept of Data Structures and assess how the choice of data structures impacts the performance of programs

CO2: Compare and contrast merits and demerits of various data structures in terms of time and memory complexity.

CO3: Identify and propose appropriate data structure for providing the solution to the real world problems.

CO4: Implement operations like searching, insertion, deletion, traversing mechanism etc. on various data structures

CO5: Be familiar with advanced data structures such as balanced search trees, hash tables, AVL trees, priority queues, ADT etc.

CO6: To augment merits of particular data structures on other data structure to develop innovation in subject of study.

SL. NO.	Contents	Contact Hours
1	Unit 1: Introduction: Basic Terminology, Pointer and dynamic memory allocation, Elementary Data Organization, Data Structure operations, Algorithm Complexity and Time-Space trade-off Arrays: Array Definition, Representation and Analysis, Single and Multidimensional Arrays, address calculation, application of arrays, Array as Parameters, Ordered List, Sparse	10

	Matrices. Stacks:Array. Representation and Implementation of stack, Operations on Stacks: Push & Pop, Array Representation of Stack, Linked Representation of Stack, Operations Associated with Stacks, Application of stack: Conversion of Infix to Prefix and Postfix Expressions, Evaluation of postfix expression using stack. Recursion: Recursive definition and processes, recursion in C, example of recursion, Tower of Hanoi Problem,	
	tail recursion. Unit 2:	
	Queues: Array and linked representation and implementation of queues, Operations on Queue: Create, Add, Delete, Full and Empty. Circular queue, Dequeue, and Priority Queue.	10
2	Linked list : Representation and Implementation of Singly Linked Lists, Twoway Header List, Traversing and Searching of Linked List, Overflow and Underflow, Insertion and deletion to/from Linked Lists, Insertion and deletion Algorithms, Doubly linked list, Linked List in Array, Polynomial representation and addition, Generalized linked list.	10
	Unit 3:	
3	Trees : Basic terminology, Binary Trees, Binary tree representation, algebraic Expressions, Complete Binary Tree. Extended Binary Trees, Array and Linked Representation of Binary trees, Traversing Binary trees, Threaded Binary trees. Traversing Threaded Binary trees, Huffman algorithm & Huffman tree.	9
	Searching and Hashing : Sequential search, binary search, comparison and analysis, Hash Table, Hash Functions, Collision Resolution Strategies, Hash Table Implementation	
4	Unit 4: Sorting: Insertion Sort, Bubble Sorting, Quick Sort, Two Way Merge Sort, Heap Sort, Sorting on Different Keys, Practical consideration for Internal Sorting.	9
	Binary Search Trees : Binary Search Tree (BST), Insertion and Deletion in BST, Complexity of Search Algorithm, Path Length, AVL Trees	
	Unit 5:	
5	File Structures : Physical Storage Media File Organization, Organization of records into Blocks, Sequential Files, Indexing and Hashing, Primary indices, Secondary indices, B+ Tree index Files, B Tree index Files, Indexing and Hashing Comparisons, Graph, Traversal(DFS,BFS), Minimum spanning tree	8
	Total	46

Authors Name	Title	Edition	Publisher, Country	Year
Horowitz and Sahani,	Fundamentals of data Structures	2 nd Edition	Galgotia Publication Pvt. Ltd., New Delhi	2008

R. Kruse	Data Structures and Program	2 nd	Pearson Education	2006
	Design in C	Edition	Asia,	
A. M.	Data Structures using C & C++",	2 nd	Prentice-Hall of India	2014
Tenenbaum		Edition	Pvt. Ltd., New Delhi.	
K Loudon,	Data Structures and Algorithms with Object Oriented Design Pattern in C++"	1 st Edition	Shroff Publisher & Distributors Pvt. Ltd.	2000
Bruno R Preiss,	Data Structures and Algorithms in C++",	1 st Edition	Jhon Wiley & Sons, Inc.	1998

со	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
TCS302.1	Describe the concept of Data Structures and assess how the choice of data structures impacts the performance of programs	2	3	1	1	1	-	-	-	1	1	1	-	1	2	1
TCS302.2	Compare and contrast merits and demerits of various data structures in terms of time and memory complexity.	-	3	1	-	1	-	1	1	1	1	1	1	1	2	1
TCS302.3	Identify and propose appropriate data structure for providing the solution to the real world problems.	1	2	2	3	1	-	2	2	1	1	1	1	1	2	1
TCS302.4	Implement operations like searching, insertion, deletion, traversing mechanism etc. on various data structures	1	2	3	1	1	-	1	1	1	1	1	1	1	1	1
TCS302.5	Be familiar with advanced data structures such as balanced search trees, hash tables, AVL trees, priority queues, ADT etc.	-	1	2	3	1	-	1	1	1	1	1	1	2	2	1
TCS302.6	To augment merits of particular data structures on other data structure to develop innovation in subject of study.	1	1	2	3	1	-	1	1	2	1	2	2	2	2	2
	TCS302		1.25	2	2.25	2.2	1	-	1.33	1.2	1.16	1	1.16	1.2	1.33	1.83

SEMESTER III

Name	of Department: - C	computer S	cience a	and I	Engine	ering		Ohiect	: Oriented		
1.	Subject Code:	TCS3	07	Course Title:				Programming with C++			
2.	Contact Hours:	L:	3	T:	0	P:	0				
3.	Examination Dura	ation (Hrs):	Theor	у	3	Prac	tical	0			
4.	Relative Weight:	CIE	25	2	5	1		SEE	50		
5.	Credits:		3								
6.	Semester:		III								
7.	Category of Cours	se:	DSC								
8.	Pre-requisite: Fu Programming for			•		Introduc	tion to	Progra	amming (TCS101),		

9. Course	After completion of the course the students will be able to:										
Outcome:	CO1: Demonstrate the C++ Program uses data types, operators,										
	expressions, array, strings and functions.										
	CO2: Implement Constructors (Parameterized, Copy), this pointer,										
	friend function, dynamic objects, arrays of objects.										
	CO3: Illustrate the Operator Overloading of +, -, preincrement,										
	postincrement, << and >>.										
	CO4: Implement the single, multiple, multilevel and hybrid inheritance in										
	C++.										
	CO5: Illustrate function overloading, Overriding and virtual functions.										
	CO6: Carry out exception handling techniques and provide solutions to										
	storage related problems using STL.										

SI. No.	Contents	Contact Hours
1	Unit 1: Introduction: Need of object-oriented programming, Overview of C++, Header Files and Namespaces, Sample C++ program, Different data types, operators, expressions, and statements, arrays and strings, pointers & user-defined types function components, argument	10

	passing, inline functions, recursive functions.	
2	Unit 2: Classes & Objects: Class Specification, Objects, Scope resolution operator, Access members, defining member functions, Data hiding, Constructors, Parameterized constructors, Destructors, Static data members, Friend functions, passing objects as arguments, Returning objects, Arrays of objects, Dynamic objects, Pointers to objects, Copy constructors, This Pointer. Operator overloading: Fundamentals of Operator Overloading, Overloading Binary Operators and unary operators, Operator	9
	overloading using friend functions such as +, -, pre-increment, post-increment, overloading of << and >>.	
3	Unit 3: Inheritance: Necessity of inheritance, Types of inheritance with examples, Base Class and Derived class, Public, private and protected access modifiers, inheriting multiple base classes, working of Constructors and Destructors in Inheritance, Passing parameters to base class constructors, Virtual base classes	9
4	Unit 4: Virtual functions and Polymorphism: Polymorphism, function overloading, Overriding Methods, Virtual function, Calling a Virtual function through a base class reference, Pure virtual functions, Abstract classes, Virtual Destructors, Early and late binding	9
5	Unit 5: I/O System Basics and STL: C++ stream classes, I/O manipulators, fstream and the File classes, basic file operations, function templates Exception Handling: Exception handling fundamentals, Throwing an Exception, Catching an Exception, Re-throwing an Exception, An exception example.	9
	STL: An overview, containers, vectors, lists, maps, Algorithms Total	46

Authors Name	Title	Edition	Publisher, Country	Year
Herbert Schildt	The Complete Reference C++,	4 th Edition	McGraw Hill	2017
Balagurusamy E	Object oriented Programming with C++	8 th Edition	McGraw Hill	2020

Auth	ors Name		Title			Edition	Publisher, Country	Year
Paul	Deitel	and	C++:	How	to	10 th	Pearson	2016
Harv	ey Deitel		Progra	am		Edition		

со	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
TCS307.1	Demonstrate the C++ Program uses data types, operators, expressions, array, strings and functions.	3	-	-	-	-	-	-	-	-	-	-	-	2	-	-
TCS307.2	Implement Constructors (Parameterized, Copy), this pointer, friend function, dynamic objects, arrays of objects.	2	2	3	-	-	1	1	1	1	1	-	2	2	3	-
TCS307.3	Illustrate the Operator Overloading of +, -, preincrement, postincrement, << and >>.	2	2	2	-	2	ı	1	1	1	1	-	1	2	1	1
TCS307.4	Implement the single, multiple, multilevel and hybrid inheritance in C++.	1	2	3	-	2	-	-	-	-	-	-	2	2	2	-
TCS307.5	Illustrate function overloading, Overriding and virtual functions.	2	2	2	-	2	-	-	-	-	-	-	1	2	1	-
TCS307.6	Carry out exception handling techniques and provide solutions to storage related problems using STL.	-	-	3	1	2	-	-	-	1	1	-	1	1	2	1
	TCS307		2	2	2.6	1	2		•	-	1	1	-	1.4	1.83	1.8

SEMESTER III

Name	of Department: - Computer S	Science a	and Engineering		
1.	Subject Code: TMA	316	Course Title:	Discrete Stru Combinatorio	
2.	Contact Hours: L:	3	T: 1 P:	0	
3.	Examination Duration (Hrs)	: Theory	у 3	Practical	0
4.	Relative Weight: CIE	25	MSE	25 ESE	50
5.	Credits:	3			 -
6.	Semester:	III			
7.	Category of Course:	DSC			
8. (TMA2	Pre-requisite: Engineering (01)	Mathe	matics-I (TMA101)	, Engineering	Mathematics-II

9. Course	After completion of the course the students will be able to:
Outcome:	CO1: Be able to specify and manipulate basic mathematical objects such
	as sets, functions, and relations. Demonstrate an understanding of
	partial order relations and Lattices.
	CO2: Understand the basics of discrete probability and number theory,
	and be able to apply the methods from these subjects in problem
	solving.
	CO3: Produce convincing arguments, conceive and/or analyze basic
	mathematical proofs and discriminate between valid and unreliable
	arguments.
	CO4: Discriminate, identify and prove the properties of groups and
	subgroups
	CO5: Be able to apply basic counting techniques to solve combinatorial
	problems
	CO6: Demonstrate different traversal methods for trees and graphs. Model
	problems in Computer Science using graphs and trees.

10. **Details of the Course:**

SL. NO.	Contents	Contact Hours
1	Unit 1: Relations and Functions: Review of Sets, Relations - properties, equivalence relation, matrix and Graph representation, Closure operations Functions, Types of functions, Invertability, Composition of functions and Inverse functions,Partially ordered Sets and Lattices. Lattice Properties, Lattices as Boolean Algebra	11
2	Unit 2: Probability Theory Basics of Probability, Conditional Probability; Random Variables, probability mass and density function, commutative distribution function, expected values, mean, variance and standard deviation, Distributions: Binomial. Poisson, normal, uniform,, exponential,	9
3	Unit 3: Fundamentals of Logic: Basic Connectives and Truth Tables, Logical Equivalence - The Laws of Logic, Logical Implication - Rules of Inference. The Use of Quantifiers, Methods of Proof: Different methods of proof – Direct Proof, Indirect Proof, Counter examples, Principle of Induction.	9
4	Unit 4: Groups: Definitions, Examples, and Elementary Properties, Homomorphism, Isomorphism, permutation groups and cyclic Groups, subgroups, cosets, and Lagrange's Theorem Counting: Set cardinality and counting, Sum and Product Rules, Inclusion Exclusion Principles, Pigeonhole principle, permutations and combinations, Basics of recurrence relations and, generating Functions	10
5	Unit 5: Graphs and Trees Fundamentals of Graphs Graph types - undirected, directed, weighted; - Representing graphs and graph isomorphism -connectivity-Euler and Hamilton paths, Isomorphism Tree properties, traversal techniques;	9
	Total	48

Text Books:

Authors Name	Title	Edition	Publisher, Country	Year
Kenneth H. Rosen	Discrete Mathematics and its Applications"	6 th Edition	McGraw Hill,.	2007
Jayant Ganguly	A Treatise on Discrete Mathematical Structures"	2 nd Edition	Sanguine-Pearson,.	2011

Authors Name	Title	Edition	Publisher, Country	Year
D.S. Malik and M.K. Sen	Discrete Mathematical Structures: Theory and Applications	2 nd Edition	Thomson,.	2004
Thomas Koshy	Discrete Mathematics with Applications	1 st Edition	Elsevier,.	2005, Reprint 2008
Ralph P. Grimaldi	Discrete and Combinatorial Mathematics	5 th Edition	Pearson Education,	2004
S.B.Singh, Jaikishor and Ekata,	Discrete Mathematics	3 rd Edition	Khanna Publication,.	2011

СО	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
TMA 316.1	Be able to specify and manipulate basic mathematical objects such as sets, functions, and relations. Demonstrate an understanding of partial order relations and Lattices.	3	-	-	-	-	-	-	-	1	-	1	-	-	-	1
TMA316.2	Understand the basics of discrete probability and number theory, and be able to apply the methods from these subjects in problem solving.	2	2	3	1	-	-	1	1	1	1	1	1	1	2	1
TMA316.3	Produce convincing arguments, conceive and/or analyze basic mathematical proofs and discriminate between valid and unreliable arguments.	1	1	1	2	-	ı	-	1	1	2	1	1	1	2	-
TMA316.4	Discriminate, identify and prove the properties of groups and subgroups	3	-	-	-	-	-	-	-	-	1	1	-	1	1	-
TMA316.5	Be able to apply basic counting techniques to solve combinatorial problems	1	2	3	-	-	,	-	-	1	1	1	1	-	2	-
TMA316.6	Demonstrate different traversal methods for trees and graphs. Model problems in Computer Science using graphs and trees.	-	2	-	3	1	1	1	-	1	1	1	-	1	1	-
	TMA316		2	1.75	2.33	2	1	1	1	1	1	1.2	1	1	1	1.6

SEMESTER III

Name	of Department	:: - Computer S	cience a	and Engineer	ing			
1.	Subject Code	PCS308		Course Title) :	1	Design and Comp	outer
2.	Contact Hour	s: L:	0	T: 0	P:	2		
3.	Examination	Duration (Hrs):	Theor	y	Practica	al	2	
4.	Relative Weig	jht: CIE	25	MSE	25		ESE	50
5.	Credits:		1					
6.	Semester:		III					
7.	Category of C	Course:	DSC					
8.	Pre-requisite:	Electronics E	ngineeri	ng Lab (PEC	151 / PE	C251)		
9. Cour Outc	rse ome:		stand variou y variou n elem nment.	arious logic is digital ICs entary digi	gates ar and und al circu	nd digital derstand its unde	circuits. its operation. r real and sim	ulated

SI.	List of problems for which student should develop program and execute in the	Contact
No.	Laboratory	Hours
1.	To realize two and three variable Boolean functions using basic gates and	2
	universal gates digital IC.	
2.	To design and test a half/full adder circuit using digital IC gates.	2
3.	To design and test a half/full subtractor circuit using IC gates.	2
4.	To design, implement and test the function $F(A,B,C,D) = m(1,3,5,7,9,15) + d(4,6,12,13)$ using a NOR-OR implementation.	2
5.	To design and test RS, JK, D and T flip flops using logic gates.	2
6.	To design and test shift registers using flip-flops.	2
7.	To design and test an asynchronous up/down counter.	2
8.	To design, implement and test Boolean functions using a multiplexer.	2
9.	To design and simulate the implementation of Binary to Gray code conversion and vice versa using OrCAD/PSPICE.	2

10.	To design and simulate the implementation of 4-bit binary adder-subtractor circuit using OrCAD/PSPICE.	2
11.	To design and simulate the implementation of 2-bit binary multiplier circuit using OrCAD/PSPICE.	2
12.	To design and simulate the implementation of Ring and Johnson counter using OrCAD/PSPICE.	2
13.	To design and simulate Booths Algorithm using Verilog HDL.	2
14.	To design and simulate 32-bit Floating-Point multiplier using Verilog HDL.	2
15.	To design and simulate 8-bit ALU using Verilog HDL.	2
	Total	30

Authors Name	Title	Edition	Publisher, Country	Year
M. Morris Mano, Michael D. Ciletti	Digital Design: With an Introduction to the Verilog HDL, VHDL, and System Verilog,	6 th Edition	Pearson	2018

Authors Name	Title	Edition	Publisher, Country	Year
John P Hayes	Computer Architecture and Organization,	3 rd Edition	McGraw Hill	2017

СО	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PCS308.1	Understand various logic gates and digital circuits.	2	1							2	1		1	1		1
PCS308.2	Identify various digital ICs and understand its operation.	1	3	2		1	1		1	2	1		1	2	1	2
PCS308.3	Design elementary digital circuits under real and simulated environment.	1	2	2	2	3		1	1	2	1	1	2	2	2	1
PCS308.4	Simulate various logic circuits using simulation tool.	1	2	2	2	3		2	1	2	1		2	2	2	2
	PCS 308		1.25	2	2	2	2.33	1	1.5	1	2	1	1	1.5	1.75	1.66

SEMESTER III

Name of Department: - Computer Science and Engineering

1.	Subject Code:	PCS3	802	Course Title:	Data structures Lab
2.	Contact Hours:	L:	0	T: 0 P: 2	
3.	Examination Dura	ation (Hrs):	Theor	у 0	Practical 2
4.	Relative Weight:	CIE	25	MSE 25	SEE 50
5.	Credits:		1		
6.	Semester:		III		
7.	Category of Cours	se:	DSC		

8. Pre-requisite: Fundamental of Computer & Introduction to Programming (TCS101), Programming for problem solving (TCS201)

9.	Course	After completion of the course the students will be able to:
Outcome:		CO1: Implement Stack, Queues using array in C programming language.
		CO2: Create Linked lists (single, double, circular) and perform various operations on Linked lists and implement Stack, Queue using Linked list in C programming language.
		CO3: Create Binary Search tree and perform operations such as traversal, deletion and execute Linear, Binary search, hashing and simple graph structure.
		CO4: Implement the sorting algorithm (Bubble, insertion, selection, merge, quick) and compare the performance of these algorithms

SI. No.	List of problems for which student should develop program and execute in the Laboratory	Contact Hours
	ARRAYS	
1.	Week 1:	
	 Write a C program to calculate the sum of all even elements in an array. Write a C program to determine the union of two given arrays. 	

2.	 Write a C program to determine the intersection of two given arrays. Write a C program to store N elements in an array and print the contents of the array in reverse order. Week 2: Write a C program to find the element with the maximum value from an array. Write a C program to create a dynamic array. Write a C program to Implementation Stack Using Array. 	
3.	 Week 3: Write a C program to Implementation queue Using Array. Write a C program to convert infix expression into postfix expression. Write a C program to evaluate any postfix expression. 	
4.	 Week 4: Write a C program to create and display a Singly Linked List. Write a C program to insert a new node at the beginning, middle and end of a Singly Linked List. Write a C program to insert a new node at any given position in a singly linked list. 	
5.	 Write a C program to search for an existing element in a singly linked list. Write a C program that allows the user to input a key for searching in a singly linked list. The program should delete the node containing the key value and update the linked list accordingly. If the key is not found, display the message "Unsuccessful Search." Write a C program to merge two sorted singly linked lists into a single sorted linked list. 	
6.	 Week 6: Write a C program to create and display a doubly linked list. Write a C program to insert a node at the beginning, middle and end of a doubly linked list. Write a C program to insert a new node at any given position in a doubly linked list. Write a C program to search for an element in a doubly linked list and delete that element from the list. 	
7.	 Week 7: Write a C program to create and display a Circular linked list. Write a C program to insert a node at the beginning, middle and end of a Circular linked list. 	

	 Write a C program to insert a new node at any given position in a Circular linked list. Write a C program to search for an element in a Circular linked list and then delete that element from the list. 	
	Week 8:	
8.	 Write a C program to insert string in linked list in alphabetical order. Write a C program to remove duplicates from a linked list. Write a C program to create and reorder a linked list placing all even-numbered nodes ahead of all odd-numbered nodes. 	
	Week 9:	
9.	 Write a C program to implement Stack Using linked List. Write a C program to implement queue using double pointers. Write a C program to implement Queue Using Linked List. 	
	TREES AND GRAPHS	
	 Week 10: Write a C program to create Binary search tree and perform following 	
10.	operations on it.	
	 i) Insert node ii) Delete node iii) Search node. Write a C program to perform Inorder, Preorder and Postorder traversal on a Binary Search Tree. Write a C program to delete a node from a Binary Search Tree. 	
	Week 11:	
11.	 Write a C program to calculate the height of a Binary Search Tree. Write a C program to find the minimum and maximum values and total number of nodes in a Binary Search Tree. Write a C program to check if a Binary Search Tree is balanced. 	
	Week 12:	
12.	 Write a C program to implement the Breadth-First Search (BFS) algorithm on a graph. Write a C program to implement the Depth-First Search (DFS) algorithm on a graph. Write a C program to create a simple graph structure using adjacency lists. 	
	SORTING TECHNIQUES and SEARCHING TECHNIQUES	
13.	 Week 13: Write a C program to sort an array using Bubble Sort technique. Write a C program to sort an array using Selection Sort technique. Write a C program to sort an array using Insertion Sort technique. 	
	Week 14:	
14.	 Write a C program to sort an array using Merge Sort technique. Write a C program to sort an array using Quick Sort technique. 	

Write a C program to implement Linear Search and Binary Search.	
Total	

Authors Name	Title	Edition	Publisher, Country	Year
Ellis Horowitz and Sartaj Sahni,	Fundamentals of Data Structures in C,	2 nd Edition	Universities Press	2014
Yashavant Kanetkar	Data Structures Through C	3 rd Edition	ВРВ	2019

Authors Name	Title	Edition	Publisher, Country	Year
Seymour Lipschutz,	Data Structures Schaum's Outlines	1 st Edition	McGraw Hill Education	2017
Amol M. Jagtap, Ajit S. Mali	Data Structures Using C A Practical Approach for Beginners	1 st Edition	CRC	2021

СО	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PCS302.1	Implement Stack, Queues using array in C programming language	1	2	3	3	2			2	2	2		2	2	2	1
PCS302.2	Create Linked lists (single, double, circular) and perform various operations on Linked lists and implement Stack, Queue using Linked list in C programming language.	1	2	3	3	2		1	2	2	2		2	2	2	1
PCS302.3	Create Binary Search tree and perform operations such as traversal, deletion and execute Linear, Binary search, hashing and simple graph structure.	1	2	2	2	2	1		2	2	2		2	2	2	2
PCS302.4	Implement the sorting algorithm (Bubble, insertion, selection, merge, quick) and compare the performance of these algorithms	1	2	3	3	2		1	2	2	2	1	2	2	2	2
	PCS302		1	2	2.75	2.75	2	1	1	2	2	2	1	2	2	2

SEMESTER III

Name of Department: - Computer Science and Engineering

1.	Subject Code:	PCS307		Cou	urse Tit	le:		OOP WITH C++ LAB		
2.	Contact Hours:	L:	0	T : [0	P:	2			
3.	Examination Dura	ation (Hrs):	Theory	y [0		Pract	tical	2	
4.	Relative Weight:	CIE	50		MSE	25			SEE	50
5.	Credits:		1							
6.	Semester:		III							
7.	Category of Cours	se:	DSC							
8	Pre-requisite: Co	mouter Lat	b-L (PC:	S151) Com	nuter I	ah - II	(PCS251)		

0	A6 12 60 0 1 1 1 1 1 1 1 1 1
9. Course	After completion of the course the students will be able to:
Outcome**:	CO1: Evaluate the basic difference between object-oriented programming
	and procedural language and their data types.
	CO2: Implement the programs using C++ features such as object
	creation, compile time polymorphism, inheritance, abstraction,
	encapsulation etc.
	CO3: Design and solve programs that incorporates the use of object-
	oriented techniques such as abstract classes, pure virtual functions,
	and constructors.
	CO4: Create programs based on the concepts of virtual base classes,
	virtual functions and STL to solve real time problems

SI.	List of problems for which student should develop program and	Contact
No.	execute in the Laboratory	Hours
1.	An electricity board charges the following rates to domestic users to discourage large consumption of energy. For the first 100 units: -60 P per unit For the next 200 units: -80 P per unit Beyond 300 units: -90 P per unit All users are charged a minimum of Rs 50 if the total amount is more than Rs 300 then an additional surcharge of 15% is added. Implement a C++ program to read the names of users and number of units consumed and display the charges with names	
2.	Construct a C++ program that removes a specific character from a given string and return the updated string. Typical Input: computer science is the future Typical Output: compuer science is he fuure	

3. Implement a C++ program to find the non-repeating characters in string. Typical Input: graphic era university

Typical Output: c g h n p s t u v y

You are given an array of elements. Now you need to choose the best index of this array. An index of the array is called best if the special sum of this index is maximum across the special sum of all the other indices. To calculate the special sum for any index you pick the first element that is and add it to your sum. Now you pick next two elements i.e., and and add both of them to your sum. Now you will pick the next elements, and this continues till the index for which it is possible to pick the elements. Find the best index and in the output print its corresponding special sum. Note that there may be more than one best index, but you need to only print the maximum special sum.

Input

4.

First line contains an integer as input. Next line contains space separated integers denoting the elements of the array **Output** In the output you have to print an integer that denotes the maximum special sum

5. Implement a C++ program to demonstrate the concept of data abstraction using the concept of Class and Objects

6.	Define a class Hotel in C++ with the following specifications Private	
	Implement a Program in C++ by defining a class to represent a bank account. Include the following to the fo	
7.	Palance amount in the account Member Functions	
	 To assign initial values To deposit an amount To withdraw an amount after checking the balance To display name and balance 	

Anna is a contender for valedictorian of her high school. She wants to know how many students (if any) have scored higher than her in the exams given during this semester.

Create a class named Student with the following specifications:

- An instance variable named scores holds a student's 5 exam scores.
- ➤ A void input () function reads 5 integers and saves them to scores.
- An int calculateTotalScore() function that returns the sum of the student's scores.

Input Format

In the void Student::input() function, you must read 5 scores from standard input and save them to your scores instance variable.

Output Format

8. In the int Student::calculateTotalScore() function, you must return the student's total grade (the sum of the values in scores).

The code in the editor will determine how many scores are larger than Anna's and print that number to the console.

Sample Input

The first line contains n, the number of students in Anna's class. The n subsequent lines contain each student's 5 exam grades for this semester.

3

30 40 45 10 10

40 40 40 10 10

50 20 30 10 10

Sample Output

1

Construct a Program in C++ to show the working of function overloading(compile time polymorphism) by using a function named calculate Area () to calculate area of square, rectangle and triangle using different signatures as required.

Create a class called Invoice that a hardware store might use to represent an invoice for an item sold at the store. An Invoice should include four pieces of information as instance. **Data Members** partNumber (type String) partDescription (type String) quantity of the item being purchased (type int) 10 price per item (type double) Your class should have a constructor that initializes the four instance variables. Provide a set and a get method for each instance variable. In addition, provide a method named getInvoiceAmount() that calculates the invoice amount (i.e., multiplies the quantity by the price per item), then returns the amount as a double value. If the quantity is not positive, it should be set to 0. If the price per item is not positive, it should be set to 0.0. Write a test application named invoiceTest that demonstrates class Invoice's capabilities. Imagine a tollbooth with a class called TollBooth. The two data items are of type unsigned int and double to hold the total number of cars and total amount of money collected. A constructor initializes both of these data members to 0. A member function called payingCar()increments the car total and adds 0.5 to the cash total. Another function called nonPayCar() 11 increments the car total but adds nothing to the cash total. Finally a member function called display() shows the two totals. Include a program to test this class. This program should allow the user to push one key to count a paying car and another to count a non paying car. Pushing the ESC key should cause the program to print out the total number of cars and total cash and then exit. Create a class called Time that has separate int member data for hours, minutes and seconds. One constructor should initialize this data to 0, and another should initialize it to fixed values. A member function should display

12 it in 11:59:59 format. A member function named add() should add two objects of type time passed as arguments. A main () program should create two initialized values together, leaving the result in the third time variable. Finally it should display the value of this third variable.

Create class SavingsAccount. Use a static variable annualInterestRate to 13 store the annual interest rate for all account holders. Each object of the class contains a private instance variable savingsBalance indicating the amount deposit. Provide method the saver currently has on

	calculateMonthlyInterest() to calculate the monthly interest by multiplying the savingsBalance by annualInterestRate divided by 12. This interest should be added tosavingsBalance. Provide a static method modifyInterestRate() that sets the annualInterestRate to a new value. Write a program to test class SavingsAccount. Instantiate two savingsAccount objects, saver1 and saver2, with balances of Rs2000.00 and Rs3000.00, respectively. Set annualInterestRate to 4%, then calculate the monthly interest and print the new balances for both savers. Then set the annualInterestRate to 5%, calculate the next month's interest and print the new balances for both savers	
14	Create a class Complex having two int type variable named real & img denoting real and imaginary part respectively of a complex number. Overload +, -, == operator to add, to subtract and to compare two complex numbers being denoted by the two complex type objects	
	Using the concept of operator overloading. Implement a program to overload the following:	
15	a. Unary –	
	b. Unary ++ preincrement, postincrement	
	c. Unary predecrement, postdecrement	
	Using the concept of operator overloading. Implement a program to overload the following:	
16	With the help of friend function	
10	a. Unary –	
	b. Unary ++ preincrement, postincrement	
	c. Unary predecrement, postdecrement	
17	Create a Base class that consists of private, protected and public data members and member functions. Try using different access modifiers for inheriting Base class to the Derived class and create a table that summarizes the above three modes (when derived in public, protected and private modes) and shows the access specifier of the members of base class in the Derived class.	
18	You are given three classes A, B and C. All three classes implement their own version of func. In class A, func multiplies the value passed as a parameter by 2. In class B, func multiplies the value passed as a parameter by 3. In class C, func multiplies the value passed as a parameter by 5. You are given class D such that You need to modify the class D and implement the function update_val which sets D's val to new_val by manipulating the value by only calling the func defined in classes A, B and C.It is guaranteed that new_val has only 2, 3 and 5 as its prime factors. Implement class D's function update_val. This function should update D's val only by calling A, B and C's func. Sample Input	

	new_val = 30	
	Sample Output	
	A's func called 1 times	
	B's func called 1 times	
	C's func called 1 times	
19	Create a class called Student that contains the data members like age, name, enroll_no, marks. Create another class called Faculty that contains data members like facultyName, facultyCode, salary,deptt, age, experience, gender. Create the function display() in both the classes to display the respective information. The derived Class Person demonstrates multiple inheritance. The program should be able to call both the base classes and displays their information. Remove the ambiguity (When we have exactly same variables or same methods in both the base classes, which one will becalled?) by proper mechanism	
20	Implement a real case scenario by a proper C++ code to provide the solution to Diamond Problem in C++	
21	Create a base class called shape. Use this class to store two double type values that could be used to compute the area of figures. Derive two specific classes called triangle and rectangle from base shape. Add to the base class, a member function get_data() to initialize base class data members and another member function display_area() to compute and display the area of figures. Make display_area() as a virtual function and redefine this function in the derived class to suit their requirements. Using these three classes, design a program that will accept dimensions of a triangle or a rectangle interactively and display the area. Remember the two values given as input will be treated as lengths of two sides in the case of rectangles and as base and height in the case of triangle and used as follows: Area of rectangle = x * y	
	Area of triangle = $\frac{1}{2}$ *x*y	
21.	Create a base class called CAL_AREA(Abstract). Use this class to store float type values that could be used to compute the volume of figures. Derive two specific classes called cone, hemisphere and cylinder from the base CAL_AREA. Add to the base class, a member function getdata () to initialize base class data members and another member function display volume() to compute and display the volume of figures. Make display volume () as a pure virtual function and redefine this function in the derived classes to suit their requirements. Using these three classes, design a program that will accept dimensions of a cone, cylinder and hemisphere interactively and display the volumes. Remember values given as input will be and used as follows:	

	Volume of cone = $(1/3)\pi r^2 h$	
	Volume of hemisphere = $(2/3)\pi r^3$	
	Volume of cylinder = $\pi r^2 h$	
	The task is to debug the existing code to successfully execute all provided test files. You are required to extend the existing code so that it handles the std::invalid_argument exception properly. More specifically, you have to extend the implementation of the process_input function. It takes integer n as an argument and has to work as follows: 1. It calls function largest_proper_divisor(n). 2. If this call returns a value without raising an exception, it should print in a single line result=d where d is the returned value. 3. Otherwise, if the call raises an invalid_argument exception, it has to print in a single line the string representation of the raised exception, i.e., its message. 4. Finally, no matter if the exception is raised or not, it should print in a single	
22.	line returning control flow to the caller after any other previously printed output. Input Format The input is read by the provided locked code template. In the only line of the input, there is a single integer n, which is going to be the argument passed to function process input.	
22.	Output Format	
	The output should be produced by the function process_input as described in the statement. Sample Input 0	
	Sample Output	
	the largest proper divisor is not defined for n=0 returning control flow to the caller Explanation 1	
	In the first sample, n = 0, so the call largest_proper_divisor(0) raises an exception. In this case, the function process_input prints two lines. In the first of them, it prints the string representation of the raised exception, and in the second line, it prints returning control flow to the caller. Sample Input 9	
	Sample Output result=3	
23.	Templates are the foundation of generic programming, which involves writing code in a way that is independent of any particular type. Write a program that can create a list (create a class list) of given type (int, float, char etc.) and perform insertion and deletion on list object.	

24.	Construct a C++ program to demonstrate different methods of List, Vector								
24.	and Map in STL (Standard Template Library)								
	You are provided with a vector of N integers. Then, you are given 2 queries.								
	For the first query, you are provided with 1 integer, which denotes a position								
	in the vector. The value at this position in the vector needs to be erased.								
	The next query consists of 2 integers denoting a range of the positions in								
	the vector. The elements which fall under that range should be removed.								
	The second query is performed on the updated vector which we get after								
	performing the first query.								
	Input Format								
	The first line of the input contains an integer N. The next line contains N								
	space-separated integers (1-based index). The third line contains a single								
	integer x, denoting the position of an element that should be removed from								
	the vector. The fourth line contains two integers a and b denoting the range that should be erased from the vector inclusive of a and exclusive of b.								
	Output Format								
25.	Print the size of the vector in the first line and the elements of the vector								
20.	after the two erase operations in the second line separated by space.								
	Sample Input								
	6								
	146289								
	2								
	2 4								
	Sample Output								
	3								
	189								
	Explanation								
	The first query is to erase the 2nd element in the vector, which is 4. Then, a								
	modified vector is {1 6 2 8 9}, we want to remove the range of 2~4, which								
	means the 2nd and 3rd elements should be removed. Then 6 and 2 in the								
	modified vector are removed and we finally get {1 8 9}								
	Total								

Authors Name	Title	Edition	Publisher, Country	Year
Herbert Schildt	The Complete Reference C++,	4 th Edition	McGraw Hill	2017
Balagurusamy E	Object oriented Programming with C++	8 th Edition	McGraw Hill	2020

Authors Name	Title	Edition	Publisher, Country	Year
Paul Deitel and Harvey Deitel	C++: How to Program	10 th Edition	Pearson	2016

со	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PCS307.1	Evaluate the basic difference between object-oriented programming and procedural language and their data types.	1	3	-	-	2	1	-	2	1	2	-	1	2	1	2
PCS307.2	Implement the programs using C++ features such as object creation, compile time polymorphism, inheritance, abstraction, encapsulation etc.	1	2	2	3	2	1	-	1	1	2	-	2	3	1	1
PCS307.3	Design and solve programs that incorporates the use of object-oriented techniques such as abstract classes, pure virtual functions, and constructors.	3	1	З	-	2	1	-	2	1	2	-	2	2	З	3
PCS307.4	Create programs based on the concepts of virtual base classes, virtual functions and STL to solve real time problems	2	2	3	1	3	2	1	1	2	2	1	2	2	2	3
PCS307		1.75	2	2.66	2	2.25	1.25	1	1.5	1.25	2	1	1.75	2.25	1.75	2.25

SEMESTER III

Name	Name of Department: - Computer Science and Engineering Fundamental of Cloud										
1.	Subject Code: TO	S351	Course Title:	Computing and Bigdata							
2.	Contact Hours: L:	3	T: 1 P: 0								
3.	Examination Duration (Hr	s): Theory	y 3 Praction	cal 0							
4.	Relative Weight: CIE	25	MSE 25	ESE 50							
5.	Credits:	3		· — —							
6.	Semester:	III									
7.	Category of Course:	DSE]							
8	Pre-requisite: NA										

9. Course	After completion of the course the students will be able to:
Outcome:	CO1: Identify the importance of cloud computing services for the digital ag technologies.
	CO2: Differentiate the services and deployment models of cloud computing.
	CO3: Evaluate the case studies of the different types of cloud computin applications.
	CO4: Analyze the cloud computing services management techniques providers, and standards.
	CO5: Distinguish the cloud computing services using Bigdata and big dat analytics.
	CO6: Design and deploy a cloud based web application.

SI. No	Contents	Contact Hours
1	Unit 1: Introduction to Cloud Computing, Vision, History, Evolution, and Characteristics of Cloud Computing (NIST), Characteristic, Advantages and Disadvantages of Cloud Computing, Cloud computing vs. Cluster computing vs. Grid computing, Importance of Open Standards for digital age technologies.	9
2	Unit 2: Working of Cloud Computing, Cloud Computing comparison with traditional computing architecture (client/server), Impact of Networks, Web Development and User Interface (UI) on Cloud computing. Cloud Deployment Models: Public cloud, Private cloud, Hybrid cloud, Community cloud.	9
3	Unit 3: Cloud Service Models: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS). Infrastructure as a Service (IaaS): IaaS definition, Virtualization, Hypervisors, Machine Image, Virtual Machine (VM), Resource Virtualization, Server, Storage, Networking, Virtual Machine (resource) provisioning and manageability, Data centre physical plant/building, Networking firewalls/security, Data storage in cloud computing (storage as a service), Amazon Elastic Compute Cloud (EC2), Eucalyptus, Open Stack, Case Study of IaaS. Platform as a Service (PaaS): PaaS definition, Service Oriented Architecture (SOA), Cloud Platform and Management, Development tools, database management, business analytics, Operating systems, Google App Engine, Microsoft Azure, and Salesforce, Case Study of PaaS. Software as a Service (SaaS): SaaS definition, Web services, Web 2.0, Case Study of SaaS.	9
4	Unit 4: Introduction to Big Data, Characteristics, Architectures, Technologies, Applications, Advantages and Disadvantages of Big Data, Tools and Techniques applied in Big Data: Association rule learning, Classification tree analysis, Genetic algorithms, Machine learning, Regression analysis, Sentiment analysis, Social network analysis, Difference between big data and big data analytics. Introduction to Big Data analytics, Data Analysis Techniques: A/B testing, Data fusion and data integration, Data mining, Machine learning, Natural language processing (NLP), Statistics. Case study of Big Data.	9
5	Unit 5: Foundations Services of AWS: Savings, Security, Compliance and DRaaS Development Operations. AWS Services: Amazon Lambda, Amazon Relational Database Service (Amazon RDS), Amazon S3, Amazon CloudFront, Amazon Glacier, and Amazon SNS.	9

General Cloud Computing Risks, (Performance, Network Dependence, Reliability, Outages, Safety Critical Processing Compliance and Information Security. Design and Deploy an Online Video Subscription Application on the Cloud.	45
Service Management in Cloud Computing: Service Level Agreements (SLAs), Billing & Accounting. Economics of Cloud Computing: SWOT Analysis and Value Proposition,	

Authors Name	Title	Edition	Publisher, Country	Year
Rajkumar Buyya	Cloud Computing Principles and Paradigms,	1 st Edition	Wiley,	2013
Kannammal,	Fundamentals of Cloud Computing	1 st Edition	Cengage Learning,	2015
Barrie Sosinsky,	Cloud Computing Bible	1 st Edition	Wiley-India	2011

Authors Name	Title	Edition	Publisher, Country	Year
Jared Dean,	Bigdata Data Mining and Machine Learning	1 st Edition	Wiley,	2014
Vince Reynolds,	Bigdata for Beginners, Create space	1 st Edition	Independent Publishing Platform,	2016

со	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
TCS351.1	Identify the importance of cloud computing services for the digital age technologies.	1	-	-	-	-	-	-	-	-	2	1	-	-	-	1
TCS351.2	Differentiate the services and deployment models of cloud computing.	1	2	3	-	2	-	2	2	2	1	2	1	1	1	2
TCS351.3	Evaluate the case studies of the different types of cloud computing applications.	1	3	-	-	1	1	-	1	1	1	1	1	-	-	2
TCS351.4	Analyze the cloud computing services management techniques, providers, and standards.	1	2	-	3	1	2	-	1	1	1	1	-	-	-	1
TCS351.5	Distinguish the cloud computing services using Bigdata and big data analytics.	1	2	3	1	2	1	2	1	1	1	2	1	-	1	2
TCS351.6	Design and deploy a cloud based web application.	2	2	3	-	3	-	3	2	1	1	2	1	2	3	1
	TCS351	1.16	2.2	3	2	1.8	1.33	2.33	1.4	1.2	1.166	1.5	1	1.5	1.66	1.5

High correlation (3); Medium correlation (2); Low correlation (1), No correlation (-)

SEMESTER III

Name	Name of Department: - Computer Science and Engineering								
1.	Subject Code: TCS392		Course Title:				Introduction to Cryptography		
2.	Contact Hours: L	: 3	T:	1	P : [0			
3.	Examination Duration (Hrs): Theory 3 Practical								
4.	Relative Weight: C	IE 25	5	MSE	25		ESE	50	
5.	Credits:	3							
6.	Semester:	Ш							
7.	Category of Course:		DSE						
8.	Pre-requisite: NA								

9. Course	After completion of the course the students will be able to:
Outcome:	CO1: Classify security vulnerabilities involved in data communication over Internet and makeuse of classical algorithms to address the vulnerabilities. CO2: Apply symmetric block ciphers to secure data transmission and storage CO3: Analyze the various public key cryptographic systems and usage of hashing CO4: Appreciate the design of Public Key algorithms, mathematical background and make useof the same for data communication and message authentication CO5: Categorize types of viruses, worms, intrusion and decide measures to counter thethreats. CO6: Understand the legal aspects related to Cybercrime, Intellectual Property, Privacy, Ethical Issues.

10. **Details of the Course:**

SI. No.	Contents	Contact Hours
1	Unit – 1: Introduction: Computer Security Concepts: The OSI Security Architecture, Security Attacks, Security Services, Security	8

For batches admitted in 2023-24 and 2024-25 onwards, Applicable from Academic Session 2024-25

	Total	45
5	Unit 5: System Security: Intruders, Intrusion Detection, Password Management, Types of Malicious Software, Viruses, Virus Countermeasures, Worms and Principles of Firewalls Legal and Ethical Aspects: Cybercrime and Computer Crime, Intellectual Property, Privacy, Ethical Issues.	9
4	Unit 4: Public-Key Cryptography: Public-Key Encryption Structure, Applications for Public-Key Cryptosystems, Requirements for Public-Key Cryptography, The RSA Public-Key Encryption Algorithm. Message Authentication: Approaches to Message Authentication, Authentication Using Conventional Encryption, Message Authentication without Message Encryption, MD5 Hash Algorithm.	9
3	Unit – 3: Symmetric key distribution using symmetric encryption: A Key Distribution Scenario, Session Key Lifetime, A Transparent Key Control Scheme, Decentralized Key Control, Controlling Key Usage Mathematical Background for cryptography: prime number, Euclidean algorithm for GCD, Extended Euclidean algorithm for multiplicative inverse, Euler's totient function, their programming implementation.	10
2	Steganography. Unit – 2: Modern Cryptography: Symmetric Encryption and Message Confidentiality: Symmetric Encryption Principles, Fiestal structure. Symmetric Block Encryption Algorithms, Simple DES, double DES, Stream Ciphers and RC4, Random and Pseudorandom Numbers.	9
	Mechanisms, a Model for Network Security, Standards Cryptography fundamentals and terminology; Cryptanalysis andBrute-Force Attack, Fundamental techniques of cryptography Substitution and Transposition; Classical Ciphers; Basics of	

Authors Name	Title	Edition	Publisher, Country	Year
William Stallings	Network Security Essentials Applications and Standards,	6 TH Edition	Pearson	2018
William Stallings,	Cryptography and Network Security	7 TH Edition	Pearson	2017

Authors Name		Title	1	Edition	Publisher, Country	Year
Behrouz Forouzan	Cryptograp Network Se	-	d 3	3 rd Edition	McGraw Hill	2015
Atul Kahate,	Cryptograp Network Se	-	d 3	3 rd Edition	McGraw Hill	2017

со	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
TCS392.1	Classify security vulnerabilities involved in data communication over Internet and make use of classical algorithms to address the vulnerabilities.	2	-	-	1	2	-	1	1	1	1	-	2	2	2	1
TCS392.2	Apply symmetric block ciphers to secure data transmission and storage	1	2	-	-	1	-	1	1	1	1	-	1	2	3	2
TCS392.3	Analyze the various public key cryptographic systems and usage of hashing	1	3	-	-	1	-	-	-	2	1	-	1	3	2	1
TCS392.4	Appreciate the design of Public Key algorithms, mathematical background and make use of the same for data communication and message authentication	1	1	3	-	-	-	-	-	2	1	-	1	3	3	2
TCS392.5	Categorize types of viruses, worms, intrusion and decide measures to counter thethreats.	-	1	2	1	-	-	-	1	1	1	-	1	2	2	3
TCS392.6	Understand the legal aspects related to Cybercrime, Intellectual Property, Privacy, Ethical Issues.	1	-	-	-	-	1	1	3	1	1	1	3	1	2	2
	TCS392	1.2	1.75	2.5	1	1.33	1	1	1.5	1.33	1	1	1.5	2.166	2.33	1.833

High correlation (3); Medium correlation (2); Low correlation (1), No correlation (-)

SEMESTER III

Name of Department: - Computer Science and Engineering

1.	Subject Code:	TCS3	31	Course	e Title:		Fundan	nental of IoT
2.	Contact Hours:	L:	3	T: [0 F	P: 0		
3.	Examination Dura	ation (Hrs):	Theor	у	Pra	actical		0
4.	Relative Weight:	CIE	25	MSE	25		ESE	50
5.	Credits:		3					
6.	Semester:		III					
7.	Category of Cours	se:	DSE					
8.	Pre-requisite: NA	١						

9.Course	After completion of the course the students will be able to:					
Outcome:	CO1: Explain the terms used in IoT.					
	CO2: Describe key technologies in Internet of Things.					
	CO3: Identify components needed to provide a solution for certain					
	applications.					
	CO4: Analyze security requirements in an IoT system.					
	CO5: Design wireless sensor network architecture and its framework					
	along with WSN applications.					
	CO6: Understand business models for the Internet of Things.					

SL. NO.	Contents	Contact Hours
1	Unit 1: INTRODUCTION Introduction to Internet of Things: History of IoT, About IoT, Overview and Motivations, Examples of Applications, Internet of Things Definitions and Frameworks: IoT Definitions, IoT Architecture, General Observations, ITU-T Views, Working Definition, IoT Frameworks, Basic Nodal Capabilities.	8

5	INTERNET OF THINGS PRIVACY, SECURITY AND GOVERNANCE Vulnerabilities of IoT, Security requirements, Threat analysis, Use cases and misuse cases, IoT security tomography and layered attacker model, Identity establishment, Access control, Message integrity, Non-repudiation and availability, Security model for IoT. Internet of Things Application: Smart Metering Advanced Metering Infrastructure, e-Health Body Area Networks, City Automation, Automotive Applications, Home Automation, Smart Cards.	10
4	Unit 4: RESOURCE MANAGEMENT IN THE INTERNET OF THINGS Clustering, Software Agents, Clustering Principles in an Internet of Things Architecture, Design Guidelines, and Software Agents for Object Representation, Data Synchronization. Identity portrayal, Identity management, various identity management models: Local, Network, Federated and global web identity, user-centric identity management, device centric identity management and hybrid-identity management, Identity and trust. Unit 5:	10
3	Unit 3: RADIO FREQUENCY IDENTIFICATION TECHNOLOGY RFID: Introduction, Principle of RFID, Components of an RFID system, Issues EPCGlobal Architecture Framework: EPCIS & ONS, Design issues, Technological challenges, Security challenges, IP for IoT, Web of Things. Wireless Sensor Networks: History and context, WSN Architecture, the node, Connecting nodes, Networking Nodes, Securing Communication WSN specific IoT applications, challenges: Security, QoS, Configuration, Various integration approaches, Data link layer protocols, routing protocols and infrastructure establishment.	10
2	Unit 2: FUNDAMENTAL IoT MECHANISMS AND KEY TECHNOLOGIES Identification of IoT Objects and Services, Structural Aspects of the IoT, Environment Characteristics, Traffic Characteristics, Scalability, Interoperability, Security and Privacy, Open Architecture, Key IoT Technologies, Device Intelligence, Communication Capabilities, Mobility Support, Device Power, Sensor Technology, RFID Technology, Satellite Technology.	10

Authors Name	Title	Edition	Publisher, Country	Year
Daniel Minoli	Building the Internet of Things with IPv6 and MIPv6: The	1 st Edition	Willy Publications	2013

	Evolving World of M2M Communications",			
Bernd Scholz- Reiter, Florian Michahelles	Architecting the Internet of Things",	1 st Edition	Springer	2011
Parikshit N. Mahalle & Poonam N. Railkar	Identity Management for Internet of Things",	1 st Edition	River Publishers,	2015

Authors Name	Title	Edition	Publisher, Country	Year
HakimaChaouchi,	"The Internet of Things Connecting Objects to the Web"	1 st Edition	Willy Publications	2010
Olivier Hersent, David Boswarthick, Omar Elloumi	The Internet of Things: Key Applications and Protocols,	1 st Edition	Willy Publications	2015
Daniel Kellmereit, Daniel Obodovski	The Silent Intelligence: The Internet of Things"	1 st Edition	Lightning Source Inc;	2014
Fang Zhaho, Leonidas Guibas	"Wireless Sensor Network: An information processing approach",	1 st Edition	Elsevier,	2005

со	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
TCS331.1	Explain the terms used in IoT	1	-	-	-	-	-	-	1	1	2	1	-	1	-	1
TCS331.2	Describe key technologies in Internet of Things.	1	1	-	1	-	-	-	1	1	2	1	1	1	1	1
TCS331.3	Identify components needed to provide a solution for certain applications.	1	2	2	-	1	-	1	1	1	1	1	-	-	1	1
TCS331.4	Analyze security requirements in an IoT system.	2	3	-	1	1	-	-	2	1	-	2	-	1	-	1
TCS331.5	Design wireless sensor network architecture and its framework along with WSN applications.	1	2	-	2	2	1	-	-	1	-	1	2	2	1	2
TCS331.6	Understand business models for the Internet of Things.	1	3	ı	-	2	1	-	1	1	1	2	1	1	2	1
	TCS331	1.166	2.5	2	1.5	1.5	1	1	1.25	1	1.66	1.33	2	1.2	1.33	1.16

High correlation (3); Medium correlation (2); Low correlation (1), No correlation (-)

SEMESTER III

Name	Name of Department: - Computer Science and Engineering								
Ivallie	oi Departinent Comput	ei ocieni	e and	Liigiilee	iiig		Fundamenta	al of Infor	mation
1.	Subject Code: T	TCS332		urse Titl	e:		Security and		
2.	Contact Hours: L	3	T:	1	P :	0			
3.	Examination Duration (H	Hrs): The	eory	3	Pract	ical	-		
4.	Relative Weight: C	IE 25	5	MSE	25		ı	ESE	50
5.	Credits:	3							
6.	Semester:	III							
7.	Category of Course:		DSE						
8.	Pre-requisite: NA	Ĺ							

9. Course Outcome:	After completion of the course the students will be able to: CO1: Explain information security and blockchain
Caissine	CO2: Know the working of information security techniques
	CO3: Analyze the different information security protocols
	CO4 Use Blockchain to implement information security protocols
	CO5 Apply information security techniques in different applications
	CO6: Develop blockchain enabled information security protocols

SI. No.	Contents	Contact Hours
1	Unit – 1: Introduction to information security What is information security, why we need information security, the zero trust model, overview of ethical hacking Protection against- unauthorised modification, unauthorised deletion and unauthorised access, different types of user authentication techniques, access control techniques	9

	Total	45
5	Unit 5: Blockchain mechanisms: Details of distributed ledger, smart contracts, bitcoins networks, mining process, consensus algorithms, proof of work, proof of stake, proof of weight, proof of capacity.	8
4	Unit 4: Overview of blockchain- Overview of blockchain, structure of a block, block header, block identifiers: block header hash and block height, genesis block, linking of blocks, merkle trees, and use of merkle root in payment verification	10
3	Unit – 3: Basics of Network and Web Security TCP 3-way handshake, netcat - The Swiss Army Knife of TCP/IP Connections, use netcat to Listen on a port, pushing a command shell back to listener, transfer files, ICMP and Ping command Cross site scripting (XSS) attack, Phishing, Spear Phishing, Sql Injection Attack, Wireshark - A Packet Sniffing Tool	10
2	Unit – 2: Linux Basics and Scripting for Information Security Bash, linux commands, man page, adding and deleting, users and adding them to sudo group, switching users, creating, copying, moving and removing file, writing and appending text to a file, file permissions, working with editors, grep, cut command, starting and stopping services Introduction to bash scripting- basics of bash or shell scripting, conditional statements, loops, manipulating files Introduction to python - Basics of python, conditional statements, loops, list, tuple, dictionary, functions	8
	Pillars of information security - confidentiality, availability and integrity Steps to fix a cyber crime - Identify cyber threats, analyse and evaluate threat, treatment Type of hackers - white hat, grey hat, black hat Penetration testing and its phases - reconnaissance, scanning, gaining access, maintaining access, covering tracks	

Authors Name	Title	Edition	Publisher, Country	Year
Georgia Weidman	Penetration Testing: A Hands-on Introduction to Hacking", No Starch Press,	1 st Edition	No Starch Press,	2020
George Icahn	Blockchain: the complete guide to understanding	1 st Edition	Createspace Independent Pub	2017

	blockchain technology",			
Antony lewis	The basics of bitcoins and blockchains: an introduction to cryptocurrencies and the technology that powers them"	3 rd Edition	Mango Media	2018

Authors Name	Title	Edition	Publisher, Country	Year
Andreas M. Antonopoulos,	Mastering Bitcoin: unlocking digital cryptocurrencies",	2 nd Edition	O'Reilly Media,	2017
Roger Wattenhofer,	Distributed Ledger Tehnology, The science of the Blockchain",	2 nd Edition	Inverted Forest Publishing,	2017
Antonopoulos, Andreas M. and Wood, Gavin	Mastering Ethereum.	2 nd Edition	O'Reilly Media,.	2018

со	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
TCS332.1	Explain information security and blockchain	-	1	-	-	-	1	-	-	1	2	-	-1	2	2	3
TCS332.2	Know the working of information security techniques	1	2	-	-	-	-	-	-	1	1	-	1	2	1	3
TCS332.3	Analyze the different information security protocols	1	3	-	1	-	1	-	-	1	1	-	2	3	2	1
TCS332.4	Use Blockchain to implement information security protocols	1	2	-	3	2	-	-	-	1	1	-	2	2	2	3
TCS332.5	Apply information security techniques in different applications	3	-	-	-	1	1	-	-	1	-	2	2	2	3	2
TCS332.6	Develop blockchain enabled information security protocols	1	1	3	1	1	1	1	-	2	1	2	2	2	2	3
	TCS332	1.4	1.8	3	1.66	1.33	1	-	-	1.16	1.2	2	1.8	2.16	2	2.5

High_(3); Medium correlation (2); Low correlation (1), No correlation (-)

SEMESTER III

Name of Department: - Computer Science and Engineering

1.	Subject Code: TCS346		Course Title:	Python	Programming
2.	Contact Hours: L: 3	3	T: 0	P: 0	
3.	Examination Duration (Hrs):	Theo	ry 3 P	ractical	0
4.	Relative Weight: CIE	25	MSE 25	ESE	50
5.	Credits:	3			
6.	Semester:	3			
7.	Category of Course:	DSC			
0	Due ne suieite. Eurodementel	-f O-=			 Dua

8. Pre-requisite: Fundamental of Computer & Introduction to Programming (TCS101), Programming for problem solving (TCS201)

9. Course Outcome:	After completion of the course, the students will be able to:										
	CO1: Identify and describe the fundamental data types and basic										
	operators used in Python programming.										
	CO2: Explain the purpose and usage of functions in Python,										
	including parameters, return values, and modules.										
	CO3: Apply data structures like lists, tuples, and dictionaries to										
	organize and manipulate data for engineering problems.										
	CO4: Analyze the differences between object-oriented										
	programming concepts like inheritance, polymorphism, and										
	encapsulation, and their impact on program design.										
	CO5: Evaluate the suitability of various libraries like NumPy,										
	Pandas, Matplotlib, and Seaborn for specific tasks related to										
	numerical computing, data analysis, and visualization in										
	engineering applications.										
	CO6: Design and implement Python programs using										
	fundamental concepts, data structures, and libraries to solve										
	basic engineering problems involving data cleaning,										
	analysis, and visualization.										

SI. No.	Contents	Contact Hours								
	UNIT 1: Python Basics and Functions and Modules									
	Syntax and Semantic Basics: Data types: strings, integers, floats,									
	Variable assignments and expressions, Basic input/output									
1	operations	10								
	Defining and calling functions: Function parameters and return									
	values- Using built-in modules, Creating and using custom									
	modules, Exception handling basics									
	UNIT 2: Data Handling									
	Lists: creation, indexing, slicing, and methods									
2	Tuples: usage and when to use	8								
	Dictionaries: creating, accessing, and manipulating									
	Reading from and writing to files: text and binary files									
	UNIT 3: Object-Oriented Programming									
	Introduction to classes and objects, Attributes and methods,									
3	Inheritance: extending classes	10								
	Polymorphism: using a unified interface									
	Encapsulation: private and public members									
	UNIT 4: Libraries for AI/ML									
	NumPy: arrays, array operations, indexing, reshaping									
4	Pandas: DataFrame operations, indexing, merging, grouping	10								
	Matplotlib: basic plotting, figures, and axes									
	Seaborn: statistical data visualization									
	UNIT 5: Intro to Data Science									
_	Data cleaning techniques, Exploratory data analysis (EDA):	8								
5	summary statistics, correlation, Visualization techniques:									
	histograms, scatter plots, box plots									
	Total	46								

Authors Name	Title	Edition	Publisher, Country	Year
Eric Matthes	Python Crash Course: A Hands- On, Project-Based Introduction to Programming	3 rd Edition	No Starch Press, USA	2023
Mark Lutz	Learning Python	5th Edition	O'Reilly Media, USA	2013
Wes McKinney	Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython	2nd Edition	O'Reilly Media, USA	2017

Authors Name	Title	Edition	Publisher, Country	Year
Joel Grus	Data Science from Scratch: First Principles with	2nd Edition	O'Reilly Media, USA	2019
	Python			
Al Sweigart	Automate the Boring Stuff with Python: Practical Programming for Total Beginners	2nd Edition	No Starch Press, USA	2019

СО	Statement	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
TCS346.	Identify and describe the fundamental data types and basic operators used in Python programming	1	2	-	1	-	-	-	-	-	-	-	2	3	2	1
TCS346.	Explain the purpose and usage of functions in Python, including parameters, return values, and modules.	1	-	2	1	1	1	1	1	-	,	-	-	2	1	1
TCS346.	Apply data structures like lists, tuples, and dictionaries to organize and manipulate data for engineering problems.	-	-	3	1	1	-	1	1	-	-	-	-	3	1	1
TCS346.	Analyze the differences between object-oriented programming concepts like inheritance, polymorphism, and encapsulation, and their impact on program design.	-	3	-	-	-	-	-	-	-	-	-	2	3	2	1
TCS346. 5	Evaluate the suitability of various libraries like NumPy, Pandas, Matplotlib, and Seaborn for specific tasks related to numerical computing, data analysis, and visualization in engineering applications.	3	-	1	1	2	-	1	1	-	1	-	-	2	2	1
TCS346. 6	Design and implement Python programs using fundamental concepts, data structures, and libraries to solve basic engineering problems involving data cleaning, analysis, and visualization.	3	-	2	3	3	-	-	-	-	-	-	3	3	2	2
	TCS346	2	2.5	2.33	1.66	2.5	-	-	-	-	-	-	2.33	2.66	1.66	1.16

High correlation (3); Medium correlation (2); Low correlation (1), No correlation (-)

SEMESTER III

Name	of Department: -	Computer Science	e and Engineering Fundamentals of Artificial
1.	Subject Code:	TCS364	Course Title: Intelligence and Machine Learning
2.	Contact Hours:	L: 3	T: 0 P: 0
3.	Examination Du	ration (Hrs): Theo	ory 3 Practical 0
4.	Relative Weight	: CIE 25	MSE 25 ESE 50
5.	Credits:	3	
6.	Semester:	III	
7.	Category of Cou	urse: DSC	
8.	Pre-requisite: F	undamental of Co	mputer & Introduction to Programming (TCS101)
9. Co	urse Outcome:	CO1: Define Arti Deep Learn CO2: Explain pro strategies I CO3: Choose a Regression CO4: Compare accuracy, models. CO5: Evaluate th learning tea a given tas CO6: Design a sii	of the course, the students will be able to: ificial Intelligence (AI), Machine Learning (ML), and ning, and differentiate between them. oblem-solving frameworks in AI and describe search like breadth-first, depth-first, and A*. appropriate classification techniques like Logistic n, KNN, or SVM based on specific data characteristics. and contrast different performance metrics like precision, recall, and F1-score for evaluating ML ne strengths and limitations of specific unsupervised chniques like K-means and hierarchical clustering for ok. mple machine learning pipeline involving data pre- n, model selection, and evaluation for a classification

SI. No.	Contents	Contact Hours
1	UNIT 1: Overview of Al and Intelligent Agents Definition and history of Al, Differences between Al, ML, and deep learning, Applications and impact of Al in various sectors, Agents and environments, Types of agents (simple reflex, model-based, goal-based, utility-based), Agent architecture and environments Problem Solving: Problem-solving frameworks, Search strategies: breadth-first, depth-first, A* Heuristics: designing and applying heuristics	9
2	UNIT 2: Knowledge and Reasoning Knowledge-based AI, Logic and Reasoning: propositional and predicate logic, Inference in first-order logic, Building knowledge bases. Uncertainty Handling: Probabilities and Bayesian networks, Decision making: Expected utility- Markov decision processes	9
3	UNIT 3: Introduction to ML and Data Preprocessing What is Machine Learning? Types of Machine Learning: Supervised, Unsupervised, Reinforcement- ML in practice: Applications and case studies, Importance of data preprocessing, Data cleaning, normalization, and transformation, Feature selection, and dimensionality reduction. Regression Analysis Linear regression, Polynomial regression, Regularization methods: Ridge, Lasso	10
4	UNIT 4: Classification Techniques Logistic regression, K-nearest neighbors (KNN), Support vector machines (SVM) Decision Trees and Random Forests Building decision trees, Overfitting and pruning, Ensemble methods: Random Forests and boosting	10
5	UNIT 5: Evaluation of ML Models and Clustering and Association Training and testing data splits, Performance metrics: accuracy, precision, recall, F1-score, Confusion matrix and ROC curves K-means clustering, Hierarchical clustering, Apriori algorithm for association rule learning	10
	Total	48

Authors Name	Title	Edition	Publisher, Country	Year
Stuart Russell and Peter	Artificial	4th Edition	Pearson Education	2024
Norvig	Intelligence: A Modern		Limited, USA	
	Approach			
Melanie Mitchell	Introduction to Artificial Intelligence	2nd Edition	McGraw-Hill Education, USA	2024
Tom M. Mitchell,	Machine Learning	1st Edition	Mc Graw Hill Publisher	2017
Manaranjan Pradhan, U Dinesh Kumar	Machine Learning using Python	1 st Edition	Wiley, India	2017

Authors Name	Title	Edition	Publisher, Country	Year
Richard E. Neapolitan and Kevin Goda	Artificial Intelligence: Foundations and Applications	4th Edition	Elsevier Science & Technology, Netherlands	2024
Aurélien Géron	Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow	2nd Edition	O'Reilly Media, Inc., USA	2024
E. Alpaydin,	Introduction to Machine Learning	3 rd Edition	PHI Publisher	2015

со	Statement	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
TCS364.1	Define Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning, and differentiate between them	1	2	-	-	-	-	-	-	-	-	-	2	2	1	1
TCS364.2	Explain problem-solving frameworks in AI and describe search strategies like breadth-first, depth-first, and A*	1	2	-	-	-	-	-	-	-	1	ı	1	2	2	1
TCS364.3	Choose appropriate classification techniques like Logistic Regression, KNN, or SVM based on specific data characteristics	2	-	-	2	-	-	-	-	-	-	-	2	2	2	1
TCS364.4	Compare and contrast different performance metrics like accuracy, precision, recall, and F1-score for evaluating ML models	-	-	-	2	-	-	-	-	-	-	-	1	3	1	1
TCS364.5	Evaluate the strengths and limitations of specific unsupervised learning techniques like K-means and hierarchical clustering for a given task	1	2	-	-	-	-	-	-	-	-	-	1	3	1	1
TCS364.6	Design a simple machine learning pipeline involving data pre-processing, model selection, and evaluation for a classification task	-	-	3	-	-	-	-	-	-	-	-	2	3	2	1
	TCS364	1.33	2	3	2	-	-	-	-	-	-	-	1.5	2.5	1.5	1

 $High \ correlation \ (3); \ Medium \ correlation \ (2); \ Low \ correlation \ (1), \ No \ correlation \ (\ -\)$

SEMESTER III

Name	of Department: - Computer S	cience and Engineer	ing
1.	Subject Code: TCS-343	Course Title	Mathematical Foundations for Artificial Intelligence
2.	Contact Hours: L:	T: 1	P: 0
3.	Examination Duration (Hrs):	Theory 3	Practical 0
4.	Relative Weight: CIE	25 MSE 25	ESE 50
5.	Credits:	3	
6.	Semester:	3	
7.	Category of Course:	DSE	
8.	Pre-requisite: (TMA 101) Mathematics II	Engineering Mathe	ematics I, (TMA 201) Engineering

9.	Course	After completion of the course, the students will be able to: CO1:
Outcome:		Understand the basic concepts of Linear Algebra such as
		System of Linear Equation, Matrices, Vector Space, Rank, etc.
		CO2: Understand the basic principles of probability, Bayes theorem, understand the definitions of discrete, continuous, and joint random variables, compute the mean, variance and covariance of random variables. CO3: Solve problems on matrix decompositions such as
		Choleskey Decomposition, Eigen Decomposition and Diagonalization, Singular Value Decomposition
		CO4: Describe the vector calculus concepts such as differentiation of Univariate Function, Partial Differentiation and Gradients.
		CO5: Analyze various mathematical concepts, that are required to build AI & ML models.
		CO6: Create an AI & ML models by applying the concepts of mathematics such as Linear Algebra, Analytical Geometry, Matrix, Calculus, Probability, etc.

SI. No.	Contents	Contact Hours						
1	Unit 1: Linear Algebra: System of Linear Equation, Matrices, Solving system of Linear	10						
	Equation, Vector Spaces, Linear Independences, Basis and Rank, Linear Mappings, Affine Space.							
2	Unit 2: Analytic Geometry: Norms, Inner Products, Lengths and Distances, Angles and Orthogonality, Orthonormal basis, Orthogonal Compliment, Inner	10						
	Product of Function, Orthogonal Projections, Rotations.							
3	Unit 3: Matrix Decomposition Determinant and Trace, Eigen Values and Eigen Vectors, Choleskey Decomposition, Eigen Decomposition and Diagonalization, Singular Value Decomposition, Matrix Approximation, Matrix Pylogency	10						
4	Unit 4: Vector Calculus Differentiation of Univariate Function, Partial Differentiation and Gradients, Gradients of Vector-Valued Functions, Gradients of Matrices, Linearization and Multivariate Taylor Series	10						
5	Unit 5: Probability and Distribution Discrete and Continuous Probability, Sum Rule, Product Rule, Bayes' Theorem, Gaussian Distribution, Change of Variables/Inverse Transform	10						
	Total	50						

Authors Name	Title	Edition	Publisher, Country	Year
Marc Peter	MATHEMATICS	1 st	Cambridge	2020
<u>Deisenroth</u> , <u>A.</u>	FOR MACHINE		University ,Press	
Aldo	LEARNING			
<u>Faisal</u> , <u>Cheng</u>				
Soon Ong,				
Jay Dawani,	Hands-On	1 st	Packt Publishing	2020
	Mathematics for		Limited, UK	
	Deep Learning:			
	Build a solid			
	mathematical			
	foundation for			
	training efficient			
	deep neural			
	networks			

Authors Name	Title	Edition	Publisher, Country	Year
<u>Tamoghna</u>	Shravan Kumar	1 st	BPB	2022
Ghosh,	Belagal Math,		Publications ,India	
Shravan	Practical			
<u>Kumar</u>	Mathematics for			
<u>Belagal</u>	Al and Deep			
	Learning			

СО	Statement	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
TCS343.1	Understand the basic concepts of Linear Algebra such as System of Linear Equation, Matrices, Vector Space, Rank, etc.	2	3	-	1	1	ı	1	1	1	1	1	-	1	2	1
TCS343.2	Understand the basic principles of probability, Bayes theorem, understand the definitions of discrete, continuous, and joint random variables, compute the mean, variance and covariance of random variables.	-	3	-	1	1	-	-	1	1	1	1	1	1	2	1
TCS343.3	Solve problems on matrix decompositions such as Choleskey Decomposition, Eigen Decomposition and Diagonalization, Singular Value Decomposition	1	2	2	3	1	1	2	2	1	1	1	1	1	2	1
TCS343.4	Describe the vector calculus concepts such as differentiation of Univariate Function, Partial Differentiation and Gradients.	1	2	3	1	1	ı	ı	1	1	1	1	1	1	1	1
TCS343.5	Analyze various mathematical concepts, that are required to build AI & ML models.	-	1	2	3	1	-	1	1	1	1	1	1	2	2	1
TCS343.6	Create an AI & ML models by applying the concepts of mathematics such as Linear Algebra, Analytical Geometry, Matrix, Calculus, Probability, etc.	1	1	2	3	1	-	1	1	2	1	2	2	2	2	2
	TCS 343	1.25	2.00	2.25	2.20	1.00	-	1.33	1.20	1.17	1.00	1.17	1.20	1.33	1.83	1.17

High correlation (3); Medium correlation (2); Low correlation (1), No correlation (-)

For batches admitted in 2023-24 and 2024-25 onwards, Applicable from Academic Session 2024-25

SEMESTER III

Name of Department: - Computer Science and Engineering

1.	Subject Code:	TCS 342		Course Title:	Introduction to	Statistical Data Science
2.	Contact Hours:	L: 3	3	T: 1 F	P: 0	
3.	Examination Du	ration (Hrs):	Theo	ry 3 Pra	actical 0	
4.	Relative Weight	CIE	25	MSE 25	ESE 50	
5.	Credits:		3			
6.	Semester:		III			
7.	Category of Cou	ırse:	DSE	J		
8.	Pre-requisite: F	undamental	of Con	nputer & Introducti	on to Program	nming (TCS101
		CO1: Critical asset probection of check continuous cont	ically ess bestlems ince textual stical textual elop the dersta ence a tegies naracte y know	st practice guida n specific contex e and evaluate key echniques and s in practical situa- lize, implement s cools ne ability to build a and fundamental applications and t to address proce- eristics. wledge about algo- earning or data	eal methodol nce when ap ts y concepts of assess whe ations tatistical mod and assess d principles of technologies essing of data orithms for st	ogies in order to oplied to real-world of statistics and data en to apply such dels using different ata-based models, statistics and data in order to provide asets with a variety statistical analysis, new areas within

SI. No.	Contents	Contact Hours
1	Unit 1: Introduction to data science: Introduction to modern data analysis, Data science components, Data Science Applications. Fundamental Statistics- Probability Distribution: Introduction to Probability, Probability Distribution (Continuous and discrete- Normal, Bernoulli, Binomial, Negative Binomial, Geometric and Poisson distribution)	10
2	Unit 2: Discrete random variables, Continuous random variable, Markov- chain Monte Carlo, Descriptive Statistics- Sample covariance, Sample covariance matrix, Outlier.	10
3	Unit 3: Concepts of Correlation, Regression, Linear square estimation, Simple Linear Regression, Multiple Regression	9
4	Unit 4: Naïve Bayes' Theorem, Bayesian classification, Central Limit theorem, Data Exploration & preparation, Confidence Interval, The hypothesis-testing, Z-Score.	8
5	Unit 5: Parametric Testing: t-Test and Z-Test, Non-parametric Testing: ANOVA and chi-Square	10
	Total	47

Authors Name	Title	Edition	Publisher, Country	Year
Douglas C. Montgomery , George C. Runger	Applied Statistics and Probability for Engineers	6 th	Wiley, United States	2016
M. Ross	Introduction to Probability and Statistics for Engineers and Scientists	4 th	Academic Press, United States	2009
James D. Miller	Statistics for Data Science	1 st	Packt Publishing Limited ,UK	2017

Authors Name	Title	Edition	Publisher, Country	Year
Dr. D.C. Agarwal &	Probability &	1 st	Shree Sai	2022
Dr. Pradeep K.	Statistics for	•	Prakashan,India	
Joshi	Data Science			
Dr. Mark Gardener,	The Statistical	1 st	John willey& Sons,	2012
"Beginning R	Programming		USA	
	Language			

CO	Statement	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
TCS342.1	Critically analyze statistical methodologies in order to assess best practice guidance when applied to real-world problems in specific contexts	3	1	1	1	1	-	1	-	-	-	-	-	2	-1	-1
TCS342.2	Investigate and evaluate key concepts of statistics and data science techniques and assess when to apply such techniques in practical situations	2	2	3	-	-	-	-	-	-	-	-	2	2	3	-
TCS342.3	Contextualize, implement statistical models using different statistical tools	2	2	2	ı	2	-	ı	-	-	-	-	1	2	1	ı
TCS342.4	Develop the ability to build and assess data- based models.	1	2	3	-	2	-	-	-	-	-	-	2	2	2	-
TCS342.5	Understand fundamental principles of statistics and data science applications and technologies in order to provide strategies to address processing of datasets with a variety of characteristics.	2	2	2	ı	2	-	-	-	-	-	-	1	2	1	-
TCS342.6	Apply knowledge about algorithms for statistical analysis, machine learning or data extraction in new areas within data science.	-	-	3	1	2	-	-	-	1	1	-	1	1	2	1
	TCS342	2.00	2.00	2.60	1.00	2.00	-	-	-	1.00	1.00	#DIV/0!	1.40	1.83	1.80	1.00

High $_{-}$ (3); Medium correlation (2); Low correlation (1), No $_{-}$ (-)										
For batches admitted in 2023-24 and 2024-25 onwards, Applicable from Academic Session 2024-25										

SEMESTER III

Name of Department: - Computer Science and Engineering											
1.	Subject Code:	TCS-324	Course Title:	Information Security Foundations							
2.	Contact Hours:	L: 3	T: 1	P: 0							
3.	Examination Du	ration (Hrs): The	eory 4 F	Practical 0							
4.	Relative Weight	: CIE 25	MSE 25	ESE 50							
5.	Credits:	3									
6.	Semester:	3									
7.	Category of Cou	urse: DSE	!								
8.	Pre-requisite: F solving (TCS 2		Computers (TCS	5 101), Programming for problem							
9.	Course	After completion	n of the course t	he students will be able to:							
Outc	ome:	CO1: Explain symmetric and asymmetric key cryptosystems.									
		CO2: Know the working of cryptography techniques.									
		CO3: Analyze the different types of cryptosystems.									
		, ,	CO4: Use cryptographic techniques to implement information security protocols.								
		CO5: Apply cryptographic techniques in different applications.									
		CO5: Apply cry	ptographic techr	niques in different applications.							

SI. No.	Contents	Contact Hours
1	Unit 1: Introduction to information security What is information security, why we need information security, the zero trust model, overview of ethical hacking Protection against- unauthorized modification, unauthorized deletion and unauthorized access, different types of user authentication techniques, access control techniques Pillars of information security - confidentiality, availability and integrity Steps to fix a cyberc rime - Identify cyber threats, analyze and evaluatethreat, treatment Type of hackers - white hat, grey hat, black hat Penetration testing and its phases - reconnaissance, scanning, gaining access, maintaining access, covering tracks. SSL and Transport layer security.	10
2	Unit 2: Basics of cryptography What is cryptography, what is confidentiality, data integrity, authentication, and nonrepudiation, applications of cryptography - chip based payment cards, digital currencies, computer passwords, digital communications, plaintext, cipher-text, cipher - characteristics of a good cipher, encryption, decryption, Key - significance of key length, symmetric and asymmetric key cryptography, cryptanalysis, OSI security architecture- security attacks, security services, security mechanisms	10
3	Unit 3: Mathematics applied in information security Concept of divisibility, prime numbers, importance of prime numbers in cryptography, euclid theorem for GCD, extended euclidean algorithm, modular arithmetic, random number generators, deterministic and nondeterministic random number generators, XOR, bit shifts, euler's totient theorem, chinese remainder theorem.	8

4	Unit 4: Symmetric key cryptosystem Secret Key (symmetric) cryptography - stream and block ciphers, additive and multiplicative ciphers, rail fence technique, playfair cipher, hill cipher, vernam cipher, Vigenère Cipher, RC4 algorithm, DES, 2DES, 2-3DES, 3DES, AES, block cipher modes of operations.	10
5	Unit 5: Asymmetric key cryptosystem, digital signature, and message integrity RSA, Diffie Hellman key exchange protocol, Elliptic curve cryptography (ECC), ElGamal encryption system. DSS algorithm, RSADS algorithm, ECDSA algorithm, Message integrity, hash functions, MAC functions, HMAC	8
	Total	46

Authors Name	Title	Edition	Publisher, Country	Year
William Stallings	Cryptography and Network Security: Principles and Practice	8 th	Pearson Publication, India	2020

Authors Name	Title	Edition	Publisher, Country	Year
Charles P.	Security in	5 th	Prentice Hall, India	2015
Pfleeger,	Computing", 5th			
Shari	Edition			
Lawrence				
Pfleeger,				
Jonathan				
Margulies				
William	Network Security	6 th	Prentice Hall, India	2016
Stallings	Essentials:			
	Applications and			
	Standards			

СО	Statement	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
TCS324.1	Explain symmetric and asymmetric key cryptosystems.	2											1	1	2	1
TCS324.2	Know the working of cryptography techniques.		2	1		1							1	2	1	1
TCS324.3	Analyze the different types of cryptosystems.		2	1		1							1	2	1	1
TCS324.4	Use cryptographic techniques to implement information security protocols.	2			1	2							1	1	2	1
TCS324.5	Apply cryptographic techniques in different applications.		2	1									1	2	1	1
TCS324.6	Develop symmetric and asymmetric key cryptosystems.	2	1									1	2	1	1	1
	TCS 324	2.00	1.75	1.00	1.00	1.33	-	-	-	-	-	1.00	1.17	1.50	1.33	1.00

High correlation (3); Medium correlation (2); Low correlation (1), No correlation (-)