BUNDESREPUBLIK DEUTSCHLAND

62)

Deutsche Kl.: 45 l, 9/02

2218 097 Offenlegungsschrift 11 Aktenzeichen: P 22 18 097.8 14. April 1972 Anmeldetag: 2 **43** Offenlegungstag: 2. November 1972 Ausstellungspriorität: Unionspriorität 9. Dezember 1971 16. April 1971 32 Datum: V. St. v. Amerika (33) Land: 134868 208041 Aktenzeichen: Herbizides Mittel und seine Verwendung Bezeichnung: 6 Zusatz zu: **@** Ausscheidung aus: Stauffer Chemical Co., New York, N.Y. (V. St. A.) 7 Anmelder: Beil, W., Dipl.-Chem. Dr. jur.; Hoeppener, A.; Vertreter gem. § 16 PatG: Wolff, H. J., Dipl.-Chem. Dr. jur.; Beil, H. Chr., Dr. jur.; Rechtsanwälte, 6230 Frankfurt Pallos, Ferenc Marcus, Walnut Creek; Als Erfinder benannt: 7 Brokke, Mervin Edward, Moraga;

Arnekley, Duane Randall, Sunnyvale; Calif. (V. St. A.)

RECHTSANWALTE
DR. JUR. DIPL.-CHEM. WALTER BEIL
ALFRED HOEPPENER
DR. JUR. DIFL.-CHEM. H.-J. WOLFF
DR. JUR. HANS CHR. BEIL

13. April 1972

623 FRANKFURT AM MAIN-HOCHST

Unsere Nr. 17 782

Stauffer Chemical Company New York, N.Y., V.St.A.

Herbizides Mittel und seine Verwendung

Die Erfindung betrifft ein herbizides Mittel, bestehend aus einem herbiziden Wirkstoff und einem Gegenmittel, sowie ein Verfahren zur Verwendung dieses herbiziden Mittels. Das Gegenmittel entspricht der Formel

$$R-C-N = R_1$$

in der R einen Halogenalkyl-, Halogenalkenyl-, Alkyl-, Alkenyl-, Cycloalkyl- oder einen Cycloalkylalkylrest, ein Halogenatom oder ein Wasserstoffatom, einen Carboalkoxy-, N-Alkenylcarbamylalkyl-, N-Alkenylcarbamyl-, N-Alkyl-N-alkinylcarbamyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkenylcarbamyl- alkoxyalkyl-, N-Alkyl-N-alkinylcarbamylalkoxyalkyl-, Alkin-oxy-, Halogenalkoxy-, Thiocyanatoalkyl-, Alkenylaminoalkyl-, Alkylcarboalkyl-, Cyanoalkyl-, Cyanatoalkyl-, Alkenylaminosulfonoalkyl-, Alkylthioalkyl-, Halogenalkylcarbonyloxyalkyl-, Alkyoxycarboalkyl-, Halogenalkenylcarbonyloxyalkyl-, Hydroxy-halogenalkyloxyalkyl-, Hydroxyalkylcarboalkyoxyalkyl-, Hydroxyalkyl-, Thienyl-, Alkyl-dithiolenyl-, Thienalkyl- oder einen Phenylrest oder einen

durch Halogenatome, Alkyl-, Halogenalkyl-, Alkoxy-, Carbamyloder Nitroreste, Carbonsäurereste und deren Salze oder Halogenalkylcarbamylreste substituierten Phenylrest, einen Phenylalkyl-, Phenylhalogenalkyl- oder einen Phenylalkenylrest oder einen durch Halogenatome, Alkyl- oder Alkoxyreste substituierten Phenylalkenylrest, einen Halogenphenoxy-, Phenylalkoxy-, Phenylalkylcarboxyalkyl-, Phenylcycloalkyl-, Halogenphenylalkenoxy-, Halogenthiophenylalkyl-, Halogenphenoxyalkyl-, Bicycloalkyl-, Alkenylcarbamylpyridinyl-, Alkinylcarbamylpyridinyl-, Dialkenylcarbamylbicycloalkenyl- oder einen Alkinylcarbamylbicycloalkenylrest bedeutet, R4 und R2 gleich oder verschieden sein und jeweils Alkenyl- oder Halogenalkenylreste, Wasserstoffatome, Alkyl-, Halogenalkyl-, Alkinyl-, Cyanoalkyl-, Hydroxyalkyl-, Hydroxyhalogenalkyl-, Halogenalkylcarboxyalkyl-, Alkylcarboxyalkyl-, Alkoxycarboxyalkyl-, Thioalkylcarboxyalkyl-, Alkoxycarboalkyl-, Alkylcarbamyloxyalkyl-, Amino-, Formyl-, Halogenalkyl-N-alkylamido-, Halogenalkylamido-, Halogenalkylamidoalkyl-, Halogenalkyl-N-alkylamidoalkyl-, Halogenalkylamidoalkenyl-, Alkylimino-, Cycloalkyl-, Alkylcycloalkyl-, Alkoxyalkyl-, Alkylsulfonyloxyalkyl-, Mercaptoalkyl-, Alkylaminoalkyl-, Alkyoxycarboalkenyl-, Halogenalkylcarbonyl-, Alkylcarbonyl-, Alkenylcarbamyloxyalkyl-, Cycloalkylcarbamyloxyalkyl-, Alkoxycarbonyl-, Halogenalkoxycarbonyl-, Halogenphenylcarbamyloxyalkyl-, Cycloalkenyl- oder Phenylreste oder durch Alkylreste, Halogenatome, Halogenalkyl-, Alkoxy-, Halogenalkylamido-, Phthalamido-, Hydroxy-, Alkylcarbamyloxy-, Alkenylcarbamyloxy-, Alkylamido-, Halogenalkylamido- oder Alkylcarboalkenylreste substituierte Phenylreste, Phenylsulfonyloder Phenylalkylreste oder durch Halogenatome, Alkyl-, Dioxyalkylen-, Halogenphenoxyalkylamidoalkylreste substituierte Phenylalkylreste, Alkylthiodiazolyl-, Piperidylalkyl-, Thiazolyl-, Alkylthiazolyl-, Benzothiazolyl-, Halogenbenzothiazolyl-, Furylalkyl-, Pyridyl-, Alkylpyridyl-, Alkyloxazolyl-, Tetrahydrofurylalkyl-, 3-Cyano-, 4,5-Polyalkylen-thienyl-, \alpha-Halogenalkylacetamidophenylalkyl-, a-Halogenalkylacetamidonitrophenylalkyl-, a-Halogenalkylacetamidohalogenphenylalkyl-,

oder Cyanoalkenylreste bedeuten können oder auch R₁ und R₂ zusammen mit dem Stickstoffatom einen Piperidinyl-, Alkylpiperidinyl-, Alkyltetrahydropyridyl-, Morpholyl-, Alkylmorpholyl-, Azo-bicyclononyl-, Benzoalkylpyrrolidinyl-, Oxazolidyl-, Alkyloxazolidyl-, Perhydrochinolyl- oder Alkylminoalkenylrest bilden können, wobei R₂ kein Wasserstoffatom oder Halogenphenylrest ist, wenn R₄ ein Wasserstoffatom darstellt.

Aus der Vielzahl der handelsüblichen Herbizide haben die Thiolcarbamate als solche oder im Gemisch mit anderen Herbiziden, wie den Triazinen, eine relativ hohe, industrielle Erfolgsquote erreicht. Bei unterschiedlicher Konzentration, die je nach der Resistenz der Unkrautarten schwankt, wirken diese Herbizide auf eine große Zahl derselben sofort toxisch. Einige Beispiele dieser Verbindungen werden in den USA-Patentschriften Nr. 2 913 327, 3 037 853, 3 175 897, 3 185 720, 3 198 786 und 3 582 314 beschrieben. Die Praxis erwies jedoch, daß die Verwendung dieser Thiolearbamate als Herbizide in Getreidefeldern (crops) bisweilen starke Schädigungen der Getreidepflanzen zur Folge hat. Erfolgt die Verwendung im Boden in den empfohlenen Mengen mit dem Ziel, eine Vielzahl von breitblättrigen Unkrautarten und Gräsern zu bekämpfen, so kommt es zu schweren Mißbildungen und Verkümmerungen der Getreidepflanzen. Dieses anomale Wachstum führt zu Ertragsschmälerungen. Bei früheren Versuchen, dieses Problem zu überwinden, wurde der Getreidesamen vor dem Pflanzen mit bestimmten Gegenmitteln behandelt; vgl. USA-Patentschrift 3 131 509. Diese Gerenmittel waren nicht besonders wirksam.

Es wurde nun gefunden, daß die Pflanzen dadurch vor Schädizungen durch die Thiolearbamate als solche oder im Gemisch mit anderen Verbindungen geschützt und/oder gegen die Wirksteffe der vorstehend genannten Patentschriften erheblich widerstandsfähiger gemacht werden können, daß man dem Boden eine Verbindung der Formel

$$R-C-N$$
 $R-C-N$
 R_2

in der R, R_1 und R_2 die vorstehend genannten Bedeutungen besitzen, zuführt.

Die Orfindungsgemäßen Verbindungen können durch Vermischen sines geeigneten Säurechlorids mit einem entsprechenden Amin synthetisiert werden. Gegebenenfalls kann ein Lösungsmittel wie Benzel eingesetzt werden. Die Reaktion wird vorzugsweise bei verminderten Temperaturen durchgeführt. Nach Abschluß der Reaktion wird das Endprodukt auf Raumtemperatur gebracht und kann leicht ebgetrennt werden.

Die nachstehenden Beispiele dienen der Erläuterung der Erfindung.

$$\begin{array}{c|c} & \text{CH}_2\text{-CH=CH}_2 \\ & \text{CH}_2\text{-CH=CH}_2 \\ & \text{CH}_2\text{-CH=CH}_2 \end{array}$$

Es wurde eine Lösung aus 3,7 g (0,025 Mol) Dichloracetyl-chlorid und 100 ml Methylendichlorid hergestellt, die dann in einem Eisbad auf etwa 5 $^{\circ}$ C abgekühlt wurde. Dann wurden 4,9 g (0,05 Mol) Diallylamin tropfenweise zugesetzt, wobei die Temperatur auf unter etwa 10 $^{\circ}$ C gehalten wurde. Das Gemisch wurde dann etwa 4 Stunden lang bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und abgestreift. Die Ausbeute betrug 4,0 g; n_D^{30} = 1,4990.

Beispiel 2

$$CHCl_2 - C - N$$
 $C_3^{H_7 - n}$
 $C_3^{H_7 - n}$

Es wurde eine Lösung aus 3,7 g (0,025 Mol) Dichloracetylchlorid und 100 ml Methylendichlorid hergestellt, die dann in einem Eisbad auf etwa 10 $^{\circ}$ C abgekühlt wurde. Dann wurden 5,1 g (0,05 Mol) Di-n-propylamin tropfenweise zugesetzt, wobei die Temperatur auf unter etwa 10 $^{\circ}$ C gehalten wurde. Das Gemisch wurde dann über Nacht bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und abgestreift. Die Ausbeute betrug 3,6 g; $n_{\rm D}^{30}$ = 1,4778.

Beispiel 3

$$CHCl_2-C-N$$

$$CH(CH_3)-C = CH$$

Es wurde eine Lösung aus 3,7 g (0,025 Mol) Dichloracetyl-

chlorid und 80 ml Methylendichlorid hergestellt, die dann in einem Eisbad auf etwa 10 °C abgekühlt wurde. Dann wurden 4,2 g (0,05 Mol) N-Methyl-N-1-methyl-3-propinylamin in 20 ml Methylendichlorid tropfenweise zugesetzt, wobei die Temperatur bei etwa 10 °C gehalten wurde. Das Gemisch wurde dann etwa 4 Stunden lang bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und abgestreift. Die Ausbeute betrug 2,9 g; n_D³⁰ = 1,4980.

Beispiel 4

Es wurde eine Lösung aus 100 ml Aceton und 5,05 g (0,1 Mol) Furfurylamin hergestellt und dann unter Zusatz von 7 ml Triäthylamin bei 15 °C gerührt. Diese Lösung wurde dann mit 5,7 g Monochloracetylchlorid versetzt und weitere 15 Minuten gerührt, während 500 ml Wasser zugesetzt wurden. Die Reaktionsmasse wurde filtriert, mit verdünnter Salzsäure in zusätzlichem Wasser gewaschen und dann auf ein konstantes Gewicht getrocknet.

Beispiel 5

Es wurde eine Lösung aus 5,7 g (0,05 Mol) Aminomethylthiazol in 100 ml Benzol und 7 ml Triäthylamin hergestellt. Diese Lösung wurde bei 10 - 15 °C gerührt und dann mit 5,2 ml (0,05 Mol) Dichloracetylchlorid tropfenweise versetzt. Das Reaktionsgemisch wurde 10 Minuten lang bei Raumtemperatur gerührt. Dann wurden 100 ml Wasser zugesetzt, und die Lösung wurde anschließend mit Benzol gewaschen, über Magnesiumsulfat getrocknet und dann zur Entfernung des Lösungsmittels filtriert.

Es wurde eine Lösung aus 200 ml Aceton, 17,5 g (0,05 Mol) 2-Amino-6-brombenzothiazol und 7 ml Triäthylamin hergestellt. Die Lösung wurde unter Kühlen bei 15 °C gerührt. Dann wurden langsam 5,2 ml (0,05 Mol) Dichloracetylchlorid zugesetzt. Diese Lösung wurde 10 Minuten lang bei Raumtemperatur gerührt. Der Feststoff wurde abfiltriert, mit Äther und dann mit kaltem Wasser gewaschen und anschließend nochmals filtriert und bei 40 - 50 °C getrocknet.

Beispiel 7

$$n-C_9H_{19}-C-N$$
 $C(CH_3)_2-C=CH$

2,4 g 3-Methyl-3-butinylamin wurden in 50 ml Methylenchlorid aclöst; diese Lösung wurde mit 4,5 g Triäthylamin und anschließend unter Rühren und Kühlen in einem Wasserbad tropfenweise mit 7,6 g Decanoylchlorid versetzt. Nach Abschluß der Ranktion wurde das Gemisch mit Wasser gewaschen, getrocknet und das Lösungsmittel abgestreift, wobei 7,1 g des Produktes erhalten wurden.

Beispiel 8

$$\begin{array}{c}
\text{CH}_{2} \\
\text{CH}_{2}
\end{array}$$

$$\begin{array}{c}
\text{CH}_{2} - \text{CH} = \text{CH}_{2} \\
\text{CH}_{2} - \text{CH} = \text{CH}_{2}
\end{array}$$

Es wurde eine Lösung aus 5,9 g Diallylamin in 15 ml Methylenchlorid und 6,5 g Triäthylamin hergestellt. Dann wurden unter

209845/1180

Rühren und Kühlen in einem Wasserbad 6,3 g Cyclopropancarbonylchlorid tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, getrocknet und das Lösungsmittel abgestreift, wobei 8,2 g des Produktes erhalten wurden.

Beispiel 9

$$\begin{array}{c} O \\ \parallel \\ C-N \end{array} \begin{array}{c} CH_2-CH=CH_2 \\ CH_2-CH=CH_2 \end{array}$$

Es wurde eine Lösung aus 4,5 g Diallylamin in 15 ml Methylenchlorid und 5,0 g Triäthylamin hergestellt. Dann wurden 7,1 g o-Fluorbenzoylchlorid unter Rühren und Kühlen in einem Wasserbad tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, getrocknet und das Lösungsmittel abgestreift, wobei 8,5 g des Produktes erhalten wurden.

Beispiel 10

Zur Herstellung von N,N-Bis(2-hydroxyäthyl)-dichloracetamid wurden 26,3 g Diäthanolamin in Gegenwart von 25,5 g Triäthylamin in 100 ml Aceton mit 37 g Dichloracetylchlorid umgc-setzt. Dann wurden 6,5 g N,N-Bis(2-hydroxyäthyl)-dichloracetamid in 50 ml Aceton gelöst und anschließend mit 4 g Methylisocyanat in Gegenwart von Dibutylzinndilaurat und Triäthylamin als Katalysatoren umgesetzt. Das Reaktionspredukt wurde unter Vakuum abgestreift, wobei 8,4 g des Produktes erhalten wurden.

$$CH_2 = CH - CH_2$$
 $N - C - CH_2 - C - N$
 $CH_2 - CH = CH_2$
 $CH_2 - CH = CH_2$
 $CH_2 - CH = CH_2$

7,8 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 5,6 g Malonylchlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 7,0 g des Produktes erhalten wurden.

Beispiel 12

$$CH_2 = CH - CH_2$$
 $N - C - CH_2 - CH_2 - C - N$
 $CH_2 - CH = CH_2$
 $CH_2 - CH = CH_2$
 $CH_2 - CH = CH_2$

7,9 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 6,2 g Bernsteinsäurechlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,7 g des Produktes erhalten wurden.

Beispiel 13

$$CH = C - CH - N - C - CH_2 - CH_2 - C - N$$
 $CH = C - CH - N - C - CH_2 - CH_2 - C - N$
 $CH - C = CH$
 CH_3
 CH_3

6,7 g N-Mathyl-1-methyl-3-propinylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise

-- 10001

zugesetzt wurden. Dann wurden 6,2 g Bernsteinsäurechlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 7,0 g des Produktes erhalten wurden.

Beispiel 14

7,9 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, wohei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 8,1 g o-Phthaloylchlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 10,9 g des Produktes erhalten wurden.

Paispiel 15

3,3 g N-Methyl-1-methyl-3-propinylamin wurden in 50 ml Methylenchlorid gelöst, wobei 4,5 g Triäthylamin tropfen-weise zugesetzt wurden. Dann wurden 9,2 g Diphenylacetyl-chlorid unter Kühlen und Rühren tropfenweise zugesetzt. Hach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,9 g des Produktes erhalten wurden.

$$\begin{array}{c|c}
 & O & CH_2 - CH = CH_2 \\
 & CH_2 - CH = CH_2 \\
 & O = C - OH
\end{array}$$

4.9 g Diallylamin wurden in 50 ml Aceton gelöst, wobei 7,4 g Fhthalsäureanhydrid portionsweise unter Rühren zugesetzt wurden. Das Lösungsmittel wurde unter Vakuum abgestreift, wobei 13,0 g des Produktes erhalten wurden.

Budepiel 17

$$C = C - ON J$$

$$C + NH - C - C = CH$$

$$C + M + C - C = CH$$

3,2 g N(1,1-Dimethyl-3-propinyl)0-phthalamidsäure wurden in 50 ml Methanol gelöst und mit 9,6 g Natriummethylat in Form einer 25 %igen Lösung in Methanol unter Rühren und Kühlen portionsweise versetzt. Das Lösungsmittel wurde unter Vakuum absostraift oder entfernt, wobei 9,0 g des Produktes erhalter wurden. Das Zwischenprodukt N(1,1-Dimethyl-3-propinyl)0-phthalamat wurde aus 29,6 g Phthalsäureanhydrid und 16,6 g 3-Amino-3-methylbutin in 150 ml Aceton hergestellt. Das Zwischenprodukt wurde mit Petroläther in Form eines weißen Foststoffes ausgefällt und ohne weitere Reinigung verwandt.

Beispiel 18

Ein 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 7,7 g Diäthylamin (0,105

209845/1180

Mol), 4,0 g Natronlauge und 100 ml Methylenchlorid in den Kolben gefüllt und in einem Trockeneis-Aceton-Bad gekühlt. Dann wurden 14,7 g (0,10 Mol) Dichloracetylchlorid portions-weise zugesetzt. Das Gemisch wurde eine weitere Stunde gerührt und in ein Eisbad getaucht. Es wurde dann einer Phasentrennung unterworfen, und die untere organische Phase wurde mit zwei Portionen von 100 ml verdünnter Salzsäure und zwei Portionen von je 100 ml einer Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum konzentriert, wobei 16,8 g des Produktes erhalten wurden.

Beispiel 19

$$CH_3-C=C-CH_2-O-C-N$$
 $CH_2-CH=CH_2$
 $CH_2-CH=CH_2$

50 ml Methylendichlorid wurden mit 4,0 g (0,025 Mol) N,N-Diallylcarbamoylchlorid versetzt. Dann wurden 1,8 g (0,025 Mol) 2-Butin-1-ol zusammen mit 2,6 g Triäthylamin in 10 ml Methylenchlorid tropfenweise zugesetzt. Das Reaktionsprodukt wurde über Nacht bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen und über Magnesiumsulfat getrocknet, wobei 4,0 g des Produktes erhalten wurden.

Beispiel 20

$$N = C-S-CH_2-C-N$$

$$CH_2-CH=CH_2$$

$$CH_2-CH=CH_2$$

9,7 g (0,1 Mol) Kaliumthiocyanat wurden in 100 ml Aceton gelöst. Dann wurden 8,7 g (0,05 Mol) N,N-Diallylchloracetamid zusammen mit 10 ml Dimethylformamid bei Raumtemperatur zugesetzt. Das Reaktionsprodukt wurde über Nacht gerührt. Das Reaktionsprodukt wurde teilweise abgestreift. Dann wurde Was-

ser zusammen mit zwei Portionen von 100 ml Äther zugesetzt. Der Äther wurde abgetrennt, getrocknet und abgestreift, wobei 7,2 g des Produktes erhalten wurden.

Beispiel 21

Es wurde eine Lösung von 50 ml Benzol, die 7,4 g (0,05 Mol) Dichloracetylchlorid enthielt, hergestellt. Diese Lösung wurde bei einer Temperatur von 5 - 10 °C mit 3,0 g (0,05 Mol) Cyclopropylamin und 5,2 g Triäthylamin in 2ml Benzol versetzt. Es bildete sich ein Niederschlag, und das Gemisch wurde zwei Stunden bei Raumtemperatur und eine Stunde bei 50 - 55 °C gerührt. Das Produkt wurde wie in den vorstehenden Beispielen aufgearbeitet, wobei 5,7 g des Produktes erhalten wurden.

Beispiel 22

4,7 g (0,032 Mol) Piperonylamin und 1,2 g Natriumhydroxid in 30 ml Methylenchlorid und 12 ml Wasser wurden bei -5° bis 0°C mit 4,4 g (0,03 Mol) Dichloracetylchlorid in 15 ml Methylenchlorid versetzt. Man rührte das Gemisch weitere 10 Minuten bei etwa 0°C und ließ es sich dann unter Rühren auf Raumtemperatur erwärmen. Die Schichten wurden abgetrennt, und die organische Schicht wurde mit verdünnter Salzsäure, einer 10 zigen Natriumcarbonatlösung und mit Wasser gewaschen und getrocknet, wobei 5,9 g des Produktes erhalten wurden.

Eine Lösung von 75 ml Benzol, die 5,7 g m-Chlorcinnamylchlorid enthielt, wurde hergestellt. Diese Lösung wurde bei einer Temperatur von 5 - 10 °C mit 3,2 g Diallylamin und 3,3 g Triäthylamin in 2 ml Benzol versetzt. Es bildete sich ein Niederschlag, und das Gemisch wurde zwei Stunden bei Raumtemperatur und eine Stunde bei 55 °C gerührt. Das Produkt wurde gewaschen und aufgearbeitet, wobei 5,8 g des Produktes erhalten wurden.

Beispiel 24

$$CHC1_2 - C - N - CH_3$$

Ein 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 11,9 g 2,4-Dimethylpiperidin, 4,0 g Natronlauge und 100 ml Methylenchloril in den Kolben gefüllt, und das Gemisch wurde in einem Trockencis-Aceton-Bad gekühlt. Dann wurden 14,7 g (0,10 Mol) Dichloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde eine Stunde lang gerührt und in das Eisbad getaucht. Dann wurde es einer Phasentrennung unterworfen, wobei die untere organische Phase mit zwei Portionen von 100 ml verdünnter Salzsäure und zwei Portionen von je 100 ml einer 5 %igen Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und in einem Rotationsverdampfer unter einem mit einer Wasserstrahlpumpe erzeugten Vakuum konzentriert wurde. Dabei wurden 13,3 g des Produktes erhalten.

Brispicl 25

Tropftrichter versehen. Dann wurden 14,6 g (0,105 MoI) cie-trans-Decahydrochinolin und 4,0 g Natronlauge zusammen mit 160 ml Methylenchlorid zugesetzt. Dann wurden 14,7 g. Dichloracetylchlorid portionsweise zugesetzt. Das Reaktions-camisch wurde aufgearbeitet, wobei es etwa eine Stunde lang gerührt, in ein Eisbad getaucht und dann einer Phasentrennung untervorfen wurde; dann wurde die untere organische Phase mit zwei Fortionen von 100 ml verdünnter Salzsäure und zwei Fortionen von je 100 ml 5 %igem Natriumcarbonat gewaschen, über Magnesiumsulfat getrocknet und konzentriert, wobei 22,3 g des Produktes erhalten wurden.

Esispic1 25

$$\begin{array}{c} \text{CHCl}_{2} - \text{C-N} \\ \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{2} - \text{NH} - \text{C-CHCl}_{2} \\ \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{2} - \text{NH} - \text{C-CHCl}_{2} \\ \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{2} - \text{NH} - \text{C-CHCl}_{2} \\ \text{O} \end{array}$$

Ein 500 ml-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 13,6 g (0,104 Mol) 3,3'-Iminobis-propylamin zusammen mit 12,0 g Natronlauge und 150 ml Methylenchlorid zugesetzt. Anschließend wurde das Gemisch in einem Trockeneis-Accton-Bad gekühlt, und 40,4 g (0,300 Mol) Dichloracetylchlorid wurden portions-weise zugesetzt. Dabei bildete sich ein öliges Produkt, das in Methylenchlorid nicht löslich war; dieses Produkt vurde abgetrennt, mit zwei Portionen von 100 ml verdünnter Selzsäure gewaschen und über Nacht stehen gelassen. Am nächsten Morgen wurde das Produkt mit zwei Portionen von je 100 12 5 bigem Natriumearbonat gewaschen, und das Produkt wurde

in 100 ml Äthanol aufgenommen, über Magnesiumsulfat getrocknet und konzentriert, wobei 21,0 g des Produktes erhalten wurden.

Boispiel 27

Ein 500 mi-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 7,5 g (0,0525 Mol) Tetrobydrofurfuryl-n-propylamin, 2,0 g Natronlauge und 100 ml Mathylenchlorid zugesetzt. Anschließend wurden 7,4 g (0,05 Mol) Dichloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde eine weitere Stunde in einem Eisbad gerührt und dann einer Fhasentrennung unterworfen; danach wurde die untere organische Phase mit zwei Portionen von 100 ml versühnter Salzsäure und zwei Fortionen von 100 ml einer 5 %igen Matriumearbonatlösung gewaschen, über Magnesiumsulfat getricknet und konzentriert, wobei 12,7 g des Produktes erschaften wurden.

Beispiel 28

Das Beispiel 27 werde vollständig wiederholt, mit der Ausnahme, daß 8,9 g Piperidin als Amin verwandt wurden.

beispiel 29

Das Beispiel 28 wurde i. w sentlichen vollständig wiederhilt; mit der Ausnahm, daß 9,1 / Morpholin als Amin verwaudt war den.

209845/1180

3,2 g Benzaldehyd und 7,7 g Dichloracetamid wurden mit 100 ml Benzol und etwa 0,05 g Paratoluolsulfonsäure vereint. Das Gemisch wurde solange unter Rückfluß erhitzt, bis kein Wasser mehr überging. Beim Abkühlen kristallisierte das Produkt aus Benzol, wobei 7,0 g des Produktes erhalten wurden.

Beispiel 31

$$\begin{array}{c|c}
CH_2 & C-NH-C-C = CH \\
CH_3 & CH_3
\end{array}$$

2,5 3-Amino-3-methylbutin wurden in 50 ml Aceton gelöst, und dann wurden 3,5 g Triäthylamin zugesetzt. Anschließend wurden 6,0 g Adamantan-1-carbonylchlorid unter Rühren und Kühlen tropfenweise zugesetzt. Das Gemisch wurde in Wasser gegossen, und der feste Stoff wurde durch Filtrieren aufgefangen und unter Vakuum getrocknet, wobei 6,5 g des Produktes erhalten wurden.

Beispiel 32

$$N = C - C - NH - C$$

$$CH^{3} \qquad CH^{3}$$

5,1 ${\it g}$ 2-Cyanoisopropylamin wurden in 50 ml Aceton gelöst,

und dann wurden 6,5 g Triäthylamin zugesetzt. Anschließend wurden 5,3 g Benzol-1,3,5-tricarbonsäurechlorid unter Rühren und Kühlen tropfenweise zugesetzt. Das Gemisch wurde in Wasser gegossen, und das feste Produkt wurde durch Filtrieren aufgefangen und unter Vakuum getrocknet, wobei 7,6 g des Produktes erhalten wurden.

Beispiel 33

6,0 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, und dann wurden 6,5 g Triäthylamin zugesetzt. Anschließend wurden 6,6 g 3,6-Endomethylen-1,2,3,6-tetrahydrophthaloylchlorid unter Rühren und Kühlen tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,3 g des Produktes erhalten wurden.

und dann wurden 4,5 g Triäthylamin zugesetzt. Anschließend wurden 7,2 g trans-2-Phenyleyelopropanearbenylehlorid unter Künlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrecknet und unter Vakuum abgestreift, wobei 9,2 g des Froduktes erhalten wurden.

Es wurde eine Lösung aus 4,0 g (0,03 Mol) 2-Methylindolin, 7,0 ml Triäthylamin und 100 ml Methylenchlorid hergestellt. Dann wurden 2,9 ml Dichloracetylchlorid im Verlauf von et einer Minute zugesetzt, wobei die Temperatur durch Kühlung mit Trockeneis unter 0 °C gehalten wurde. Nachdem sich die Lösung auf Raumtemperatur erwärmt hatte, wurde sie eine Stunde lang stehen gelassen; anschließend wurde sie mit Wasser und dann mit verdünnter Salzsäure gewaschen, über Magnesiumsulfat getrocknet und eingedampft, wobei ein Feststoff erhalten wurde, der mit n-Pentan gewaschen wurde. Dabei wurden 5,0 g des Produktes erhalten.

Ein 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 8,9 g Cyclooctyl-n-propylamin, 2,0 g Natronlauge und 100 ml Methylenchlorid in den Kolben gefüllt, und das Gemisch wurde in einem Trockeneis-Aceton-Bad gekühlt. Dann wurden 5,6 g Chloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde etwa eine weitere Stunde gerührt, in das Eisbad getaucht und dann einer Phasentrennung unterworfen. Die untere organische Phase wurde mit zwei Portionen von 100 ml verdünnter Salzsäure und zwei Portionen von 100 ml einer 5 %igen Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und konzentriert, wobei 9,5 g des Produktes erhalten wurden.

$$\mathsf{CH_2^{C1-C-N}} \overset{\mathsf{C}_2^{\mathsf{H}_5}}{\overset{\mathsf{CH}_2^{\mathsf{CH}_3}}{\overset{\mathsf{CH}_3^{\mathsf{C}_2^{\mathsf{H}_5}}}{\overset{\mathsf{C}_2^{\mathsf{H}_5}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}}{\overset{\mathsf{C}_2}}{\overset{\mathsf{C}_2}}}{\overset$$

Ein 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 7,8 g (0,0525 Mol) p-Methylbenzyläthylamin, 2,0 g Natronlauge und 100 ml Methylenchlorid in den Kolben gefüllt. Das Gemisch wurde in einem Trockeneis-Aceton-Bad gekühlt. Dann wurden 5,6 g (0,05 Mol) Chloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde etwa eine weitere Stunde gerührt, in das Eisbad getaucht und dann einer Phasentrennung unterworfen, wobei die untere organische Phase mit zwei Portionen von 100 ml verdünnter Salzsäure und anschließend mit zwei Portionen von 100 ml einer 5 %igen Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und konzentriert wurde. Dabei wurden 9,5 g des Produktes erhalten.

4,7 g Aminopyridin wurden zusammen mit 100 ml Aceton in ein Reaktionsgefäß gefüllt und bei 10 - 15 °C gerührt.

Dann wurden 7,0 ml Triäthylamin tropfenweise zugesetzt.

Danach wurde das Reaktionsgemisch im Verlauf von fünf Aceton
Minuten mit 5,25 ml Dichloracetylchlorid in 10 ml/versetzt und bei Raumtemperatur gerührt. Die Feststoffe wurden abfiltriert und mit Aceton gewaschen, wobei 10,0 g des Produktes erhalten wurden.

Beispiel 39

Eine Lösung von 8,1 g (0,05 Mol) 4-Aminophthalimid in 100 ml Dimethylfuran wurde im Verlauf von 5 Minuten bei 0 - 10 °C unter Rühren mit 5,0 g Dichloracetylchlorid versetzt. Dann wurden 7,0 ml Triäthylamin zugesetzt. Die Reaktionsmasse wurde eine halbe Stunde lang bei Raumtemperatur gerührt, und dann wurde ein Liter Wasser zugesetzt. Anschließend wurde sie mit Wasser filtriert und getrocknet, wobei 12,0 g des Produktes erhalten wurden.

Zur Herstellung der Verbindung dieses Beispiels wurden 5,4 g N,N-Bis(2-hydroxyäthyl)-dichloracetamid mit 4,3 g Isopropylisocyanat in 50 ml Aceton in Gegenwart von Dibutylzinndilaurat und Triäthylendiamin als Katalysatoren umgesetzt. Dabei wurden 8,2 g des Produktes erhalten.

Beispiel 41

Zur Herstellung der Verbindung dieses Beispiels wurden 3,6 g N,N-Bis(2-hydroxyäthyl)-chloracetamid in Gegenwart von 50 ml Aceton und Dibutylzinndilaurat und Triäthylendiamin als Katalysatoren mit 5,0 g Cyclohexylisocyanat umgesetzt. Die Reaktionsmasse wurde auf Rückflußtemperatur erhitzt und unter Vakuum abgestreift. Dabei wurden 6,9 g des Produktes erhalten.

15 g Aceton und 12,2 g Äthanolamin wurden in 150 ml Benzol vereint und solange unter Rückfluß erhitzt, bis kein weiteres Wasser mehr überging. Bei der Untersuchung der so entstandenen Lösung ergab sich, daß sie 2,2-Dimethyl-1,3-oxazolidin enthielt. Ein Viertel der Benzollösung (0,05 Mol) wurde. mit 7,4 g Dichloracetylchlorid und 5,5 g Triäthylamin umgesetzt, mit Wasser gewaschen, getrocknet und unter Vakuum abgestreift, wobei ein leicht dunkelgelber Feststoff erhalten wurde. Ein Teil dieses Feststoffes wurde aus Äther umkristallisiert, wobei ein weißes Produkt erhalten wurde.

Analog hierzu wurden weitere Verbindungen unter Verwendung der entsprechenden Ausgangsmaterialien wie vorstehend aufgeführt hergestellt. In nachstehender Tabelle werden Beispiele erfindungsgemäßer Verbindungen zusammengestellt. Die den Verbindungen zugeordneten Nummern werden im folgenden beibehalten.

		Tabelle I:	
	E	R-C-N R ₁	
Verbindung Nr.	떠	R ₁	R ₂
Н.	-CH(CH ₃)Br	-CH2-CH=CH2	-CH2-CH=CH2
	-c(cH ₃) ₂ Br	-CH2-CH=CH2	-CH2-CH=CH2
М	-cc12-cH3	-CH2-CH=CH2	-CH2-CH=CH2
4	-cc1=cc1 ₂	-CH2-CH=CH2	-ch-ch-ch ₂
īV.	-CF2-C2F5	-CH2-CH=CH2	-CH2-CH=CH2
9	-CHC1 ₂	-CH2-CH=CH2	-CH2-CH-CH2
7	-cH2c1	-CH2-CH=CH2	-CH2-CH=CH2
00	-CHC12	-CH ₂ -C == N	$-cH_2-c=N$
σ.	-cHC1 ₂	-CH2-CH=CH2	Ħ
10	-chc1 ₂	-03H7	-C3H7
11	-CHC12	$-c(cH_3)_2-c-c$	Ħ
12	-cH ₂ Cl	$-c(c_{\rm H_3})_2$ -c: c	Ħ
13	-6613	-OH2-CH=CH2	щ

(Fortsetzung:
ы
9
H
ெ
ام
<u>@</u>
티

Verbindung Nr.	뜨 .	ដ	. R2
14	-661 ₃	-CH2-CH-CH2	-CH2-CH=CH2
15	-CH2C1	-0(0H2)2-C == CH	и НО .
16	-CHC12	$-c(cH_3)_2-c=cH$	Ħ
17	-6613	$-c(cH_3)_2-c=cH$	H
18	-chc1 ₂	-cH ₃	-сн(сн ₃)-с — сн
19	-cec1 ₂	-CH2-CH=CH2	
50	-cH ₂ C1	щ	-CH2-0
21	-chc1 ₂	#	-CH ₂ -
			C2H2
22	-CH2C1	щ	

209845/1180

Tabelle I (Fortsetzung):

R2 C2H5	\bigcirc	S. J.	S II OH S	S ——— CH ₃	Z O	Br
R.	m	111	ш	щ	tra	щ
æ	-CHC1 ₂	-chc1 ₂	-сяс1 ₂	-chc1 ₂	-c#c1 ₂	-CHC1 ₂
Verbindung Nr.	23	24	25	56	27	

	••
	ÞΦ
	8
	2
	ဌ
	ò
	Ø
	÷
	Ă
	Forts
٠	·
•	ن
•	ت ⊢ا
•) H
•) E
•) H
•) I elle
•) I elle
•) I elle
•	11e I (

	Tabelle I (I	Fortsetzung:	
Verbindung Nr.	æ	. H	R ₂
4	:0 = 1		
ος . Ν	+C=C=C ₂ H ₅	-¢H ₃ -	-сн(сн ₃)-с = он
) E		
30	-C-C-CH ₅	-CH2-CH-CH2	-CH ₂ -CH=CH ₂
12	$-cH_2-cH(cH_3)-cH_2-t-c_4H_9$	¤	$-c(cH_{\frac{3}{2}})_{2}-c\equiv cH$
32	-c(cH ₂) ₂ =c ₃ H ₇	-ch2-ch=ch2	-CH2-CH=CH2
33.	-cH2-t-c4H9	-CH ₃	-CH(CH ₃)-C=CH
.34	-cH2-t-c4H9	#	$-c(cH_3)_{2}-c=N$
35	-сн(сн ₃)-с ₃ н ₇	-cH2-cH=CH2	-CH2-CH-CH2
36	~сн(сн ₃)-с ₃ н ₇	-0H ₂	-0H(cH ₂)-c - CH
37	-сн(сн ₃)-с ₃ н ₇	Ħ	-с(сн ₃) ₂ -с := сн
38	1-c _{3H7}	- CH ₃	-сн(сн ₃)с - : сн

Fortsetzung:
H
οl
Ã١
H١
o)
اقر
임
H

	Tabelle I	Tabelle I (Fortsetzung:	
Verbindung Nr.	<u>с</u>	H.	R.2
65	$-c_{13}^{H_{27}}$	CH2-CH=CH2	-CH2CH=CH2
40	-C ₁₁ H ₂₃	CH2-CH=CH2	-ch2ch=ch2
41 .	-c ₁₁ H ₂₃	щ	$-c(cH_3)_2-c = cH$
42	-c ₉ H ₁₉	-CH ₂ -CH=CH ₂	-cH ₂ -CH=CH ₂
43	-c ₉ H ₁₉	н	$-c(cH_3)_2-c=cH$
44	-c ₆ H ₁₃	-CH2-CH+CH2	-CH2-CH=CH3
45	-c6H ₁₃	-CH ₃	-сн(сн ³)-с == сн
46	-c6H13	щ	-c(cH ₃) ₂ -c == cH
47	-C4H9	щ	$-c(cH_3)_2-c\equiv cH$
48	-C3H7	-ch2-ch=ch2	-ch2-ch=ch2
49	-c ₂ H ₇	-cH ₃	-сн(сн ²)-с = сн
50.	-c ₅ H ₇	Ħ	$-c(cH_3)_2c=cH$
51		-CH ₂ -CH=CH ₂	-CH ₂ -CH=CH ₂

** %*
ğ
Fortsetzung
96
ij
6
_
H
Tabelle I (

	Tabelle I	le I (Fortsetzung:	-
Verbindung Nr.	æ	H.	д. 2
52	-CH ₂	 , ta	$-c(cH_3)_2-c = cH$
53	-c(сн ₃)-сн ₂	щ	$-c(cH_3)_2-c\equiv cH$
. 54	-CE=CE-CH ₃	-ch-ch-ch2	-CH2-CH-CH2
55	-CH-CH-CH ₃	#	$-c(cH_3)_2-c=cH$
56	-CH-C(CH ₃) ₂	- CH ₃	-CH(CH2)-C == CH
57	-CE-C(CH ₃) ₂	,	$-c(cH_3)_2-c=cH$
58	-CH-CH-CH-CH ₂	-ch-ch-ch	-ch2-ch=ch2
59	-CH=CH-CH=CH-CH	, pa	$c(cH_3)_2^c\equiv cH$
. 09	CH CH2	-ch2-ch=ch2	-сн ₂ -сн=сн ₂
61	CH CH2	-CH ₃	-сн (сн ₃)-с == сн

	R2	-c(ch3)2-c = ch	-CH ₂ -CH=CH ₂	-сн (сн ³)-с = сн	-c(ch ₃) ₂ -c -: ch	-ch-ch-ch2	-он(он ³)-с = сн
Tabelle I (Fortsetzung:	H H	#4	-CH ₂ -CH=CH ₂	-сн ₃	ш	-CH ₂ -CH=CH ₂	-on ₃
Tabelle	æ	CH2 -CH / CH2	S S	S	S	-CH ₂ -CH ₂ (s)	-CH ₂ -CH ₂ S
	Verbindung Nr.	62	.29	. 64	65	99	

	R ₂	-CH2-CH=CH2	-сн (сн ³)-с сн	-с(сн ₃) ₂ -стон	-ch2-ch=ch2	но - о-(во)но-	-c(cH ₃) ₂ -c — CH	-CH2-CH=CH2
Tabelle I (Fortsetzung:	R.	-сн ₂ -сн ₂ -сн ₂	-CH ₂	m	-CH2-CH=CH2	-cH ₃	щ	-CH2-CH=CH2
Tabelle	æ	E E		1 E		-ch=ch ₂	-CH=CH2	CH ₂ - S
	Verbindung Nr.	89	69	70	7.1	72	73	74

	R ₂	$-cH(cH_3)-c \equiv cH$	$-c(cH_3)_2-c = cH$	-сн ₂ -сн=сн ₂	-сн(сн ²)-с сн	-сн (сн ²)-с = сн	$-c(cH_3)_2-c=cH$
Tabelle I (Fortsetzung):	. RJ	-CH ₃		д -сн ₂ -сн=0н ₂		-CH ₃	TH.
	per	-cH ₂	-0H2-(s)	CF3	() CF3		\(\rightarrow\)

Verbindung Nr.
75
77
78
78
80

Fortsetzung:
<u>ب</u>
H
اب
7
-
ΦĮ
رم,
ø
H

R ₂	-CH2-CH-CH2	-сн(сн ₃)-с сн	-c(cH ₃) ₂ -c CH	-c(ch3)2-c n	-CE2-CH-CH2	-CH(CH ₃)C CH	-CH2CH-CH2	-cr(ch3)-c = ch	-ce2-ce≈ce2	-сн(сн ³)-с сн
H ₁	-CH2-CH=CH2	-cH ₃	III	щ	ţ z ţ	-ch ₃	-CH2CH=CH2	-ch ₃	-CH2-CH=CH2	-сн ₃
e	-CBr ₃	-CBr ₃	-cBr ₃	-cBr ₃	-cBr ₃	-CC1-CHC1	$-(c_{\mathrm{H}_2})_4$ - c_{H_2} -Br	$-(cH_2)_4-cH_2-Br$	្សិន	E To
Verbindung Nr.	8	85	83	84	85	98	18	88	68	96

	R ₂	ноо-(² но)но-	-ch ₂ ch=ch ₂	-сн(сн ²)-с - сн	-c(cH ₃) ₂ -с сн	-CH ₂ -CH=CH ₂	-с(сн ₃) ₂ -с сн	-сн(сн₂)-с = сп
(Fortsetzung:	R.	-c _H 3	-cH2cH=cH2	-cH ₃	Ħ	-CH2-CH=CH2	· #	- CH 3
Tabelle I	pet	() ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		10 -\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	19 >>	√ \\.0-CH ₃	o-cH₂	O CH2
	Verbindung Nr.		92	93	94	95	96	

:
Fortsetzung
(F)
Н
1e
Tabelle I

	R2	-сн ₂ -сн - сн ₂	-сн(сн ₃)-с сн	-CH2-CH=CH2	но - о-(² но)но-	-с(сн ₃) ₂ -с сн	-сн(сн ³)-с сн
Tabelle I (Fortsetzung):	R 1	-cH ₂ -cH=cH ₂	-CH ₂	-CH2-CH=CH2	€H0-	#	-CH ₃
Tabell	,#	CH ₃	CH ₃	€ HO ()	- CHD	[€] HD · · . —	
	erbindung Wr.	103	104	105	106	107	108

(Fortsetzung):	
Н	I
Tabelle	

•	но .	CH		но.		CH	
R2	-с(сн ₃) ₂ -с сн	-сн(сн ³)-с	-CH ₂ -CH=CH ₂	но _ o-([£] но)но-	-CH2-CH=CH2	-c(cH ₃) ₂ -c	-CH3-CH3-
R ₁	¤	-cH ₃	-CH2-CH=CH2	-0H ₃	-cH2-cH=CH2	щ	-CH2-CH=CH2
æ		10 01	A Br	Br	! <u>-</u> -		~~~\ ~~~\
Verbindung Nr.	109	110	111	112	113	114	115

Tabelle I (Fortsetzung):

R2	-с(сн ³) ² -с ;= сн	-с ₂ н ₄ он	-сн2-сн2-снс12	-сн ₂ -сн-о-sо ₂ -сн ₃	-сн(сн ₃)-с :- сн	-сн(сн ₃)-с = сн	$-cH(cH_3)-c \equiv cH$	-с(сн ₃) ₂ -с 🚎 сн
R.	щ	-с ₂ н ₄ ов о	-CH2-CH2-O-C-CHC12	-cH2-CH2-0-SO2-CH3	-cH ₃	· - CH ₃	-CH ₂	ш
æ	S	-CHC1 ₂	-chc1 ₂	-chc1 ₂			-CHBr-CH3	-CHBr-CH ₃
Verbindung Nr.	116	. 711	118	119	120	121	122	123

belle I (Fortsetzung):
EI	

R2	-сн ₂ -св=сн ₂ -сн(сн ₃)-с =сн	$-c(cH_3)_2-c = cH$ $-c(cH_3)_2-c = cH$	-сн ₂ -сн≐сн ₂ -сн(сн ₃)-с -тсн	c(ch ₃) ₂ -c≡ch -ch ₂ -ch ₂ ci	-CH ₂ -CH ₂ -O-C-NH-CH ₃	" -сн ₂ -сн-о-с-о-сн ₃
R.	-ch2-ch=ch2 -ch3	ш ш	-сн ₂ -сн=сн ₂ -сн ₃	н -сн ₂ -сн ₂ с1	0 " -CH ₂ -CH ₂ -0-C-NH-CH ₃ 0	"-0H2-CH2-0-C-0-CH3
œ	-CH ₂ -CH ₂ C1	-CH ₂ -CH ₂ Cl -CBr(CH ₃) ₂	-CH ₂ I	-CH2I	-CEC12	-CHC12
Verbindung Nr.	124 125	126 127	128	150	132	133

	R2	о -сн ₂ -сн ₂ -о-с-с ₂ н ₅ о	-ch2-ch2-0-c-s-c2H5	-ch2-ch=ch2	но о-(² но)-с	-с(сн ₃) ₂ -с ≕ сн	-ch2-ch=ch2	$-cH(cH_3)-c \equiv cH$
Tabelle I (Fortsetzung):	R	о -сн ₂ -сн ₂ -о-с-с ₂ н ₅	-CH2-CH2-0-C-S-C2H5	-CH2-CH=CH2	-cH ₃	Ħ	-CH2-CH=CH2	-cH ₃
Tabe	æ	-chc1 ₂	-chc1 ₂	-CH2	-CH2	-CH2	-CH2-CH2	-CH2-CH2-
	Verbindung Mr.	134	135	136	137	138	139	140

	R2	-сн ₂ -сн=сн ₂	но = o-(² но)но-	-CH2-CH=CH2	-сн(сн₂)-с == сн	-c(cH ₃) ₂ -с : - сн	² -сн ₂ -сн=сн ₂	-CH(CH ₃)-0 CH
Tabelle I (Fortsetzung):	R	-CH2-CH=CE	-0H ₃	-CH2-CH=CH2	- C田 ₂	Ħ	-CH2-CH=CH2	H -CH ₃
Tabelle I	E			-CH ₂ -C-N(CH ₂ -CH-CH ₂) ₂	-CH ₂ -C-N-CH-C === CH CH ₃ CH ₃	о -сн ₂ -с-мн-с(сн ₃) ₂ с сн о	$-c-N(cH_2-cH=cH_2)_2$	$-c-N(cH_3)-cH(cH_3)-c = CH$
	Verbindung Nr.	141	142	143	144	145	146	147

Tabelle I (Fortsetzung):

Verbindung Nr.	es	R ₁	R2
148	0 " $-c-nH-c(cH_3)_2-c \equiv cH$	щ	с(сн ₃) ₂ -с сн
149	оне се	-ch ₂ -ch=ch ₂	-сн2-сн=сн2
150	-сн ₂ -с-м(сн ₃)-сн(сн ₃)-с с с с	-CH ₂	-св(сн ³)-с
151 -	-(сн ₂) ₅ -с-м(сн ₂ -сн - сн ₂) ₂	-ch2-ch=ch2	-cH ₂ -cH≖cH ₂
152	$-(cH_2)_3-c-N(cH_3)-cH(cH_3)-c\equiv cH$	-cH ₂	-сн(сн ₃)-с ≡ сн
153	-(cH ₂) ₄ -c-N(cH ₂ -cH=cH ₂) ₂	-cH ₂ -cH=cH ₂	-сн ₂ -сн=сн ₂

	••	
	$\overline{}$	
	3.0	
	9	
	-54	
	Þ	
	12	
	4,	
	(Fortsetzung	
	m	
	+	
	ы	
	ڀ	
	ഥ	
٠	_	
	_	
	Н	
	41	
	a	
	Н	
	_	
	٠.,	
	Tabell	
	മ	
	·~	
	۳	
	ᆸ	

Verbindung Nr.	æ	H ₁	R ₂
	0		ł.
154	$-(cH_2)_4$ -c-N(cH ₃)-cH(cH ₃)-c == CH	-ch3	-сн(сн ₃)-с == св
155	$-c(cH_2)_2-c-M(cH_3)-cH(cH_3)-c=cH$	-CH ₂	$-cH(cH_3)-c = cH$
156	$-(cH_2-c(cH_3)_2-cH_2-c-NH-c(cH_3)_3-c-=cH$	— CB н	-с(сн ₃) ₂ -с сн
157	о -сн ₂ -о-сн ₂ -с-м(сн ₂ -сн=сн ₂) ₂	-сн ₂ -сн+сн ₂	-сн ₂ -сн=он ₂
158	$cH_2-c-cH_2-c-N(cH_3)-cH(cH_3)-c = cH$	н -сн ₂	-сн(сн₂)-с == сн
159		-ch-ch-ch2	-ch ₂ -ch=ch ₂
	N (HO HO HO)		***

	R2	но : _ о-(² но) но-	-с(св ₃) ₂ -с = сн	-CH(CH ₃)-C= CH	-CH2 CH= CH2
Tabelle I (Fortsetzung):	r r	-CH ₃	tzi	-CH ₃	-CH2CH=CH2
Tabelle	æ J	$\int_{0}^{0} \int_{0}^{\infty} \int_{0$	0=c	- o -	$N(CH_3)-CH(CH_3)-C = CH$ $O = C$ $N(CH_2CH-CH_2)_2$
·	Verbindung Nr.	160	161	162	163

	н 2	-CH2-CH=CH2	-0(CH ₃) ₂ -c=CH	-сн ₂ -сн _{=сн} 2	-c(cH ₃) ₂ -c. OH	-CH2-CH=CH2	$-cE(cH_3)-c = cH$
ortsetzung);	R	-CH2-CH=CH2	щ	-сн ₂ -сн=сн ₂	щ	-сн ⁵ -сн=он ⁵	-CH ₂
Tabelle I (Fortsetzung)	O	$-c(cH_5)_2-c-N(cH_2-cH=cH_2)_2$	"-с(сн ₃) ₂ -с-ин-с(сн ₃) ₂ -с сн	Nos	NON	$\langle \rangle$	-(/- NO ₂
	Verbindung Nr.	164	165	166	167	168	169

-	. R2	-с(сн ₃) ₂ -с <u>н</u> се	-CH2-CH=CH2	-сн(сн ²)-с сн	-с(сн ₃) ₂ -с :сн	но ≕ о-([€] но)но-	-CH ₂ -CH=CH ₂
Tabelle I (Fortsetzung):	R	ш	-CH2-CH=CH2	-сн ₃	н	· CH ²	-сн ₂ -сн=сн ₂
	et	NO ₂	— OHO1 —	— CHC1 —	—CHC1 —	# L	HO-3=0
	Terbindung Nr.	. 170	171	172	173	174	175

	R2	-с(сн ₃) ₂ с · · сн	-6(CH ₂) ₂ C CH	-с(сн ₃) ₂ с - он	-С ₂ н ₅ -Сн ₂ -Сн = Сн ₂
e I (Fortsetzung):	et	ш	ini.	Ħ	-C ₂ H ₅ i-C ₃ H ₇
Tabelle I	æ	HO-0=0	O=C-ONS	0=c-0_NH3+c(cH3)-c== CH	-CHC1 ₂
	Verbindung Nr.	176	177	178	179

<u>:</u>
Fortsetzung
Tabelle I

Verbindung Mr.	æ	R1	R2
181	-cacr ⁵	-c ₃ H ₇	-CH2-CH-CH2
182	-CHC12	n-C4H9	-CH2-CH=CH2
183	-chc1 ₂	-cH2-CH=CH2	-cH ₂ -ccl=cH ₂
184	-cHC1 ₂	-C3H7	$-cH_2-ccl=cH_2$
185	-chc1 ₂	i-C4H9	-ch2-ch=ch2
786	-cucı ₂	-cH2-c(CH3)=CH2	-cH2-CHacH2
187		n-c4H9	sec-C4H9
188	-cHC12	n-C4H9	1-C4H9
189	-chc1 ₂	n-C4H9	$i-c_3H_7$
190	-chc1 ₂	i-C4H9	i-C3H7
191	-CHC12	i-c4H9	n-C3H7
192	-CHC12	sec-C4H9	n-C ₂ H ₇

	R2	n-C ₃ H ₇	i-C4H9	o' N	_ 	-NH ₂	-CH2-CH=CH2	=c/W(CH ₃) ₂ -7 ₂	$=c\sqrt{N}(cH_3)_2\sqrt{2}$	-CH2-CH-CH2
Tabelle I (Fortsetzung):	H.	n-C4H9	-C ₂ H ₅		щ	€HD-	-CH ₂ -CH=CH ₂	,7 ₀ =	/o=	-CH ₂ -CH - CH ₂
Tabe	H	снс12	-CHC1 ₂		-chc1 ₂	-chc1 ₂	Cl	-chc1 ₂	-сн ₂ с1	$-0-cH_2-c = c-cH_3$
	Verbindung Nr.	193	194		195	196	197	198	199	200

Tabelle I (Fortsetzung:)

R2	-CH ₂ -CH=CH ₂ -CH ₂ -CH=CH ₂	-CH2-CH=CH2	-CH ₂ -CH=CH ₂	-CH ₂ -CH=CH ₂	0 -N(CH ₃)-C-CHC1 ₂	0 " -N(c-cec1 ₂) ₂	-CH2CH=CH2
H.	-сн ₂ -сн=сн ₂ -сн ₂ -сн=сн ₂	-сн ₂ -сн=сн ₂	-CH2-CH=CH2	-ch ₂ -ch=ch ₂	:#	-cH ₃	-ch2-ch=ch2
ਸ਼	-0-c ₂ H ₄ C1 -0-CH ₂ -CHC1 ₂	-0-\\\\-0-	-CH2-S-C=N	$-cH_2-N(cH_2-cH=cH_2)_2$	-CHC1 ₂	-CEC1 ₂	-CH2-C-CH3
Verbindung Nr.	201	203	204	205	206	207	508

	R2	-CH ₂ CH=CH ₂ -CH ₂ CH=CH ₂	"-CH ₂ -CH ₂ -O-C-CHCl ₂	-CH ₂ -CH-C == N		C2H5	CH ₂
Tabelle I (Fortsetzung):	R	-CH ₂ -CH=CH ₂ -CH ₂ -CH=CH ₂	-C2H2	-ch ₂ -ch ₂ -c = N	ш	m	Ħ
	æ	$-cH_2 - c = N$ $-cH_2 - 0 = N$	-CEC1 ₂	-CHC12	-chc1 ₂	-cHC1 ₂	-¢HC1 ₂
	Verbindung Nr.	209	211	212	213	214	215

	R ₂	1-C ₂ H ₇	-сн ² -сн(сн ³) ²	CH ₂ -CH CH ₂	i-C4H9	t-C4H9	t-C4H9	$-cH(cH_3)-cH_2-cH(cH_3)-cH_3$
Tabelle I (Fortsetzung:)	EH H	. #	æ	#	Ħ	p t	Ħ	#
	æ	-cHC1 ₂	-cH ₂ C1	-cHC1 ₂	-chc1 ₂	-ch2cl	-chc1 ₂	-cH2c1
	Verbindung Nr.	216	217	218	219	220	221	222

	R.2	(S)	-сн2	-0H2-/C1	$-cH_2 - \langle \ \ \rangle - c1$	-CH2-() - 0 0-CH2	-CH2-CH=CH2
Tabelle I (Fortsetzung:)	R	Ħ	щ	щ	ш	ш	-CH2-CH=CH2
	H	-CHC1 ₂	-cHC1 ₂	-chc1 ₂	-cuc1 ₂	-chcl ₂	-0H-CH
	Verbindung Nr.	223	224	225	226	227	228

	. R2	-CH2-CH=CH2	-CH2-CH=CH2	-CH2-CH=CH2	-ch ₂ -ch=ch ₂	-CH=CH-CH2-CH	-CH=CH=CH2-CH	c CH2-CH3	-сн-сн-сн
Tabelle I (Fortsetzung):	R.	-CH ₂ -CH=CH ₂	-CH ₂ -CH=CH ₂	-CH2-CH=CH2		-t-C4H9	-c(cH ₃) ₂ -c -cH	-c ₂ H ₅	$n-c_4H_9$.
<u> </u>	æ	-сн=сн—(— сн ₃	-0H=0H-/-	, — Y— HD=HD-	-CHC1 ₂	-chcl ₂	-CHC1 ₂	-CHC1 ₂	-снс12
	Verbindung Nr.	229	230	231	232	233	234	235	236

(Fortsetzung):	.)
Н	
ø	ı
he	į
7	
Φ	İ
۾	1
ੁਲ	ı
Tabel1	ł

Verbindung Nr.	æ	R ₁	R2
237	-GEC1 ₂	\Diamond	n-03H7
238	-chc1 ₂	-c(cH ₃)-cH-CH ₂ -CH ₃	n-C ₂ H ₇
- 539	$-cH_2-so_2-iv(cH_2-cH=cH_2)$	-CH2-CH=CH2	-CH2-CH=CH2
240	-cH(s-c ₂ H ₅) ₂	-CH2-CH=CH2	-сн ₂ -сн=сн ₂
241	-CHC1 ₂	-сн ₃	-N=C(CH ₃) ₂
242	-CH ₂ -0-C-CHCl ₂	-сн ₂ -сн=сн ₂	-CH2-CH=CH2
243	$-cH(0-\sqrt{\frac{1}{2}})$ c1) ₂	-сн ₂ -сн=сн ₂	-CH ₂ -CH=CH ₂
244	-chc1 ₂	sec-C4H9	-c ₂ _H ₅

•	R	-C2H5	-c ^{2H} 5	-C2H5	S	(8)	-CH2-	sec-c ₅ H ₁₁	sec-C _{5H11}
Tabelle I (Fortsetzung):	R ₁	t-C4H9	sec-C ₅ H ₁₁	i-c ₃ H ₇	-CH ₃	-C2H5	n-C ₂ H ₇	CH ₂	7 ^E 5 ^{O−n}
	24	-chc1 ₂	-chc1 ₂	-cHcl ₂	-CHC12	-chc1 ₂	-CEC1 ₂	-chc1 ₂	-chc1 ₂
	Verbindung Nr.	245	246	247	248	249	250	251	252

•
(Fortsutzung
Tabelle 1

8):	R2	n-c ₅ H ₁₁	sec-C ₄ H ₉	1-C ₃ H ₇	$-cH(cH_3)-cH(cH_3)-cH_3$	CH ₂	S CH2	S CH ₃	$^{6}^{ m H_9}$
Tabelle 1 (Fortstrung	RI	-n-C ₃ H ₇	i-C4H9	-CH ₂	-cH ₃	-c ₂ H ₅	-C ₂ H ₅	-C ₂ H ₅	−c _H ≥
	ㅂ	-cHC12	-chcl ₂	-cHC12	-chc1 ₂	-chc1 ₂	-CHC12	-cHC1 ₂	-cHC1 ₂
	Verbindung Nr.	253	254	255	256	257	258	259	260

Fortsetzung):
돈
) H
Tabelle

	. R2	n-C6H13	t-C4H9	-CH(CH ₃)-CH(CH ₃)-CH ₃	Ÿ	-CH2 - CH3	$-cH_2$ CH_3 CH_3	-0H ₂ -//->	CH ₂ CH ₃ CH ₃
Tabelle I (Fortsetzung):	я	-c ₂ H ₅	n-c ₂ H ₇	n-C ₂ H ₇	n-C ₂ H ₇	n-C ₂ H ₇	л-С ₃ Н ₇	n-C ₃ H ₇	-c ² H ²
·	e4	-chc1 ₂	-chc1 ₂	-chc1 ₂	-cHC1 ₂	-chc1 ₂	-chc1 ₂	-chc1 ₂	-CHC1 ₂
	Verbindung Nr.	261	262	263	264	265	266	267	. 268

	R2			*		2(3
Tabelle I (Fortsetzung):	H ₁		CH ₂ CH ₃	C ₂ H ₅	$\bigoplus_{CH_3} C_{2^{\mathbf{H}_5}}$	(CH(CH ₂)
Tab	· ·					
	pt	-CHC12	-ceci ₂	-CHC12	-CHC12	-CEC12
	Nr.				•	:
٠.	Verbindung Nr.	692	270	271	272	273

	R2				·	
Tabelle I (Fortsetzung):	R ₁	$C_{3}^{H_7}$	CH ₃	CH ₃		Co _H c
	æ	-CHC1 ₂	-CEC12	-CEC12	-chc1 ₂	-CHC12
	Verbindung Nr.	274	275	576	277.	278 .

	R ₂			-cH ₂ -	-CH ₂ -//	-CH ₂
Tabelle I (Fortsetzung:)	H.	CH2 CH3	C2H5	-сн ₃	-сн ₃	-cH ₃
	Nr. H	-снс1 ₂	-cecı ₂	-chc1 ₂	-CHC1 ₂	-CHG1 ₂
	Verbindung Nr.	279	280	281	282	. 583

<u></u>
(Fortsetzung
lle I
Tabel

	R ₂	-CH ₂ CH ₃	$\begin{array}{c} \text{CH}_2 \\ -\text{CH}_2 \\ \end{array}$			0 " -CH ₂ -CH ₂ -W(C ₂ H ₅)-C-CHCl ₂
Tabelle I (Fortsetzung):	R	-с ₂ н ₅	n-C ₂ H ₇			. сн ₃
	et	-CHC1 ₂	-chc1 ₂	-chcl ₂	-chc1 ₂	-0HC1 ₂
	Verbindung Nr.	284	285	286	287	. 288

: (Bu	R ₂	-ch ₂ -ch ₂ -N(c ₂ h ₅)-c-chc ₁ ₂	-с ₃ н ₆ -ин-й-снс1 ₂ .	-сн ₂ -с-о-с _н 2-	\(\s\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	S	$-cH_{2} \leftarrow \bigcirc $	n-0 ₂ H ₇
Tabelle I (Fortsetzung):	R ₁	-C ₂ H ₅	"-c ₃ H ₆ -NH-c-chcl ₂		-ch2-ch-ch2	-C2H5	n-C ₂ H ₅	-CH2-(10)
	es	-CHC1 ₂	-chc1 ₂	-chc1 ₂	-cHC1 ₂	-chc1 ₂	-CHC1 ₂	-chc1 ₂
	Verbindung Nr.	289	290	291	292	293	294	295

tzung):	R2	n-C ₂ H ₇		n-C6H13	-c ₂ H ₄ -0-cH ₃	-c ₂ H ₄ -0-c ₂ H ₅	-CH2 -√.	-CH2-	-CH2
Tabelle I (Fortsetzung):	R	-CH2-	n-C ₃ H ₇	n-C ₃ H ₇	-c2H4-0-CH3	-c2H4-0-c2H5	-C2H5	n-C ₂ H ₇	i-c ₃ H ₇
	æ	-CHC1 ₂	-chc1 ₂	-CHC12	-chol2	-chc12	-chc1 ₂	-cucl ₂	-chc1 ₂
	Verbindung Nr.	296	297	298	299	300	301	302	303

KIHAIAA ===

	R2	-CH2					
rtsetzung:)		C _O H _E	1 YHV	CH ₃		0	
Tabelle I (Fortsetzung:	H.	n-C ₄ H9				٠	-cH ₂
				•		·	
•	æ	-CHC1 ₂	-CHC12	-chc1 ₂	-снс1	-cao1 ₂	- cac1 ₂
	Verbindung Nr.	304	505	906	307	308	309

209845/1180

DAN ADIGHIAE

; (Su	. R2						-сн ₂ -сн ₂ он	-CH2-CH2-C N	
Tabelle I (Fortsetzung):	R ₁	-C ₂ H ₅	n-C ₃ H ₇	i-C ₃ H ₇	n-C ₄ H ₉	sec-C ₄ H ₉	t-C4H9	-CH ₃	
	*	-CHC1 ₂	-chc12	-chc1 ₂	-снс12	-cHC1 ₂	-cHC1 ₂	-chc1 ₂	-CHC1 ₂
	Verbindung Nr.	310	311	. 312	515	514	315	316	317

Tabelle I (Fortsetzung):	R ₁	$n-c_{H_{13}}$ $n-c_{H_{13}}$	-сн ₂ сн ₂ -сн ₂ -сн ₂ он		-ch2-ch2-sh	н — -c(c ₂ H ₅) ₂ -c ≡ ∵ м	$H = -c(c_2H_5)_2 - c = N$	H C1	H
	æ	-CHC12	-chc1 ₂	-chc1 ₂	-сно12	-chc1 ₂	-ch2c1	-chc1 ₂	_ CHO]_
	Verbindung Nr.	318	519	320	321	322	323	324	325

	^{Н2} СН3			3	G2H5	0-C ₂ H ₅
Tabelle I (Fortsetzung:)	ł					
Tabelle	R	.	:::1	H	III	.
	<u>г.</u> В	-CHC12	-CH2C1	-CHC12	-CEC12	-CHC1 ₂
	Verbindung Nr.	326	. 327	328	329	530

	E1	Tabelle I (Fortsetzung):	·
Verbindung Nr.	H	R	R ₂
331	-chc1 ₂	Ħ	GH ₂
. 332	-CHC1 ₂	Ħ	-0H2-c(CH3)=CH2
333	-cH2cl	ш	-CH2-C(CH3)=CH2
534	-chc1 ₂		-CH2-CH2-0-CH3
335	-снс1 ₂		-CH ₂ -CH ₂ -
356	-cH2c1	-CH ₂	ED : 0-ZHO-
337	-снс1 ₂	-cH ₃	-СН ₂ -С — СН

	R ₂	$\langle s \rangle^2$	-CH2-CH2-N(C2H5)2	-сн ₂ -сн(осн ₃) ₂	o -ch ₂ -ch ₂ -nhc-chc1 ₂	-ch ₂ -ch=ch ₂	о -сн(мн-с-снс1 ₂)—()	-CH(NH-C-CHC1 ₂)(NO ₂	
Tabelle I (Fortsetzung:)	R	Ħ	н	Ħ	Ħ	-сн ₂ -сн=сн ₂ -	н	н	
	æ	-chc1 ₂	-CHC1 ₂ .	-CHC1 ₂	-CHC1 ₂	-CH=CH	-cHC1 ₂	-сно1 ₂	
·	Verbindung Nr.	338	339	340	541	342	543	344	

	H22	
Tabelle I (Fortsetzung):	R ₁	•

Verbindung Nr.

345

-CEC12

346

49

347

æ	- 1	Tabelle I (Fortsetzung):	
erbindung Nr.	æ	H.	R2
353	C-NH-C(CH ₃) ₂ -C = N C-NH-C(CH ₃) ₂ -C = N C-NH-C(CH ₃) ₂ -C = N	3)2-C≡N H 3)2-C=™	-с(сн ₃) ₂ -с=п
354	-CH (OCH ₂)-(CH2-CH2-	-сн ₂ -сн≠сн ₂
355	-cH(0-c-cH ₂)	ш	-с(ся ³) ₂ -с == ся
356	-CH(O-C-CH ₃)	щ	-c(cH ₃) ₂ -c == N

H

	Tabelle	Tabelle I (Fortsetzung):	
Verbindung Nr.	est	E	R2
357	0 c-N(CH ₂ -CH=CH ₂) ₂	-сн ₂ -сн=сн ₂	-ch2-ch≈ch2
358	CH-C(CH ₃) ₂ C; CH	-CH2-CH=CH2	-CH2-CH=CH2
359	$(cH_2-cH-cH_2)-N-c$ $(cH_2-cH-cH_2)-N-c$	-ch2-ch=ch2	-сн ₂ -сн=сн ₂
960	$HC = C - C(CH_3)_2 - NH - C CH_2$	щ	-c(cH ₃) ₂ -c==
361	S.	-сн ⁵ -сн=сн ⁵	-CH ₂ -CH=CH ₂

H Z	-с (сн ₃) ₂ -с== сн	-с(сн ₃) ₂ -с=— сн	-c(cH ₃)=cH-c=N	-сн ₂ -сн=сн ₂	NH-C-CHC12	
R.	m	щ	Ħ	-сп ₂ -сп=сп ₂	μ	
dung Nr. R	S	-сн ₂ -сн ₂ -сн ₃	-CHC12	S CH2	5 -CHC1 ₂	7 -CHC1 ₂
Verbindung Nr	362	363	364	365	3992	367

* (Su	R2	-CH2-CH(CH ₃) ₂	-сн ₂ -сн(сн ₃) _{.2}	-c(cH ₂) ₃	-c(cH ₃) ₃	$-c(cH_3)_2-c \Longrightarrow cH$	-он(сн ³)-с - сн	-c(cH ₂) ₂ -c= N
Tabelle I (Fortsetzung):	H ₁	-0-CH2	0Н0-	ш	щ	ш	CH ₃	н
	p#	CHC12	CEC1 ₂	₹ 5°	-CH=CH	P		
	Verbindung Nr.	368	569	570	371	572	373	374

tzung):	R2	-c(cH ₂) ₂ -c N	$-c(cH_{3})_{2}-c \rightleftharpoons N$	$-c(cH_{3})_{2}-c = CH$	-c(сн ₃) ₂ -с = он	-c(cH ₃) ₂ -c ≔CH	$-c(cH_3)_2-c \Longrightarrow N$
Tabelle I (Fortsetzung)	ж	m	-0H ₂ -c(cH ₃) ₃	$-cH(c_2H_5)$ \longrightarrow H	H CH2 THC	осн ₃ н	H \\
	Ferbindung Nr.	375 -CH ₂	376 · - CH ₂ ·	377 - СН ((378 -CH=CH-	379 - CH=CH	380 - CH=CH

(Fortsetzung):	
Tabelle I	

Verbindung Nr.	м	R	# Z
			0 61
387	-cH ₂ cl	щ	$-cH_2-NH-\ddot{c}-cH_2-O-\left\langle \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
388	-cc ₁₃	щ	" -CH ₂ -NH-C-CH ₂ C1 OH
389	-chcl ₂	Ħ	0=
990	-cHC1 ₂	Ħ	0-C-NH-C ₂ H ₅
391	-cecl ₂	Ħ	O-C-NH-CH ₂ -CH=CH ₂
392	-chcl ₂	щ	-C-O-C ₂ H ₅

Tabelle I (Fortsetzung):

Verbindung Nr.	ਬ	R ₁	2 _H
393	-chc1 ₂	н	-c-o-c ₂ H ₄ c1
394	c _{H2}	m	-с(сғ ₃) ₂ -он
395	-CHC1 ₂	¤	NH-C-CHCI
965	-chc1 ₂	щ	MH-C-C2H5
765	-сн ₂ -о-с(снс1 ₂) ₂ -он	· -ch2-ch=ch2	-CH2-CH=CH2
398	-сн ₂ -о-с(снс1 ₂)(сс1 ₃)-он	-ch2-ch=ch2	-CH ₂ -CH=CH ₂

	Tabe	Tabelle I (Fortsetzung):	
Verbindung Nr.	ozi	ద	
599	-ch ₂ cl	ш	-CH(\\)-NH-C-CH ₂ C1
400	C1 -0- -0-	#	CH=CH-C-C(CH ₃) ₃ 0 -/ 0 0 CH=CH-C-C(CH ₃) ₃
401	C1 (#1	((E m) () () () () () () () () ()
402	-сн ₂ сл	n-C4 ^H 9	-CE=CH ₂
403	-c)c-o-cH ₂)=c(cH ₂)-OH	щ	
404	-cH2c1	-cH ₃	-ch2-ch2-c≡N

	R2	u-ceH13		-0H2	-CH ₂	-CH ₂	-CH ₂ (CH ₂ -CJ ₃ CH ₃ CH ₃	-0H2
Tabelle I (Fortsetzung):	R	n-c ₆ H ₁₃	-c ₂ H ₅	n-6 ₂ H ₇	i-C ₃ H ₇	-сн ₃	-CH ₂	-c2H5
	æ	-cH2C1	-сн ₂ сл	-сн2с1	-cH2c1	-CH2C1	-сн ₂ с1	-сн ⁵ сл
	Verbindung Nr.	405	406	407	408	409	410	411

	-	·	· ·				13)-CH3
	R2	∇				1-C3H7	-сн (сн ³) - сн (сн ₃) - сн ₃
: (Bunz				G2H5	5-2	·	
Tabelle I (Fortsetzung	R ₁	n-C ₃ H ₇				-0H2	-CH2
ה ן	ez	-om ² cı	-сн ₂ сл	-cH2cl	-cH ₂ c1	-cH2c1	-cH2cl
	Verbindung Mr.	412	413	414	415	416	417

Fortsetzung
- ⊢
Tabelle

1g):	. H2	CED - CEE -	i-c4H9	sec-C ₅ H ₁₁₁	t-C4H9	sec-C4H9	sec-C4H9	1-0 ₂ H ₇	1-C ₅ H ₇	i-c ₄ H9	-cH2-CH2-O-CH3
Tabelle I (Fortsetzung):	R ₁	-c ² H ²	n-c ₂ H ₇	r-c ₃ H ₇	n-C ₂ H ₇	i-C4 ^H 9	-c ² H ²	1-C4H9	n-C4H9	n-C4H9	-сн ₂ -сн ₂ -о-сн ₃
		-cH ₂ c1	-cH2c1	-cH ₂ cl	-cH ₂ c1	-cH2c1	-cH2cl	-cH2cl	-cH ₂ c1	-cH2cl	-cH ₂ Cl
	Verbindung Nr.	418	419	420	421	422	423	424	425	426	427

		Tabelle I (Fortsetzung):	
rbindung Nr.	æ	m 1	R 2
428	GH2C1	-сн ₂ -сн ₂ -о-с ₁ н ₂ -	-ch2-ch2-0-c2H5
429	CH2CI	-CH2-	-n-C ₂ H ₇
430	OH2 CI	-cH2	-n-C ⁵ H ₇
431	CH ₂ C1	-n-C ₂ H ₇	-0H ₂ -/ - 01
432	CH2 G1	-n-C ₂ H-7	-CH ₂
55	CH2 C1	² н-С ₂ н-	

	R2	-CH2	-CH2 CH3	-CH ₂ CH ₃	-CH2 -() - CH3	-CH ₂
Tabelle I (Fortsetzung):	R	-c ₂ H ₅	-C2H5	n-C ₂ H ₇	-G _H 2	cH ₃
	et .	CH ₂ C1	CH ₂ Cl	cH ₂ cl	CH ₂ Cl	cH ₂ c1
	Verbindung Nr.	434	435 .	436	437	438

	R2	-0H ₂	-cH2-// CH3	-0H ₂ (CH ₃	-CH2-(-) -CH3	$-c_{\rm H_2}$	n-C4H9
Tabelle I (Fortsetzung):	R	-cH ₃	-с ₂ н ₅	n-C ₃ H ₇	-C2H5	-C2H5	-сн ₃
	년	- 0H01 ₂	-cHC12	-chc1 ₂	-CHC12	-снс1 ₂	-chci ₂
	Verbindung Nr.	439	440	441	442	443	444

••	f.2	n-C4H9	sec-C4H9	sec-C4H9	$n-c_{5}H_{7}$	$^{\mathrm{H}^{C}}$ 2-u	t-C4H9	sec-C4H9	sec-C4H9	n-C ₅ H ₁₁	n-c ₅ H ₁₁	sec-C _{5H11}
Tabelle I (Fortsetzung):	R	-cH ₃	-ch ₃	-cH ₂	-cH ₃	-CH ₃	-n-C4H9	1-C3H7	1-C3H7	1-C3H7	i-C3H7	i-c ₃ H ₇
	œ.	-cH ₂ Cl	-GEG1 ₂	-ch ₂ cl	-chc1 ₂	-сн2с1	-chc1 ₂	-chc1 ₂	-cH ₂ cl	-CHC1 ₂	-cH ₂ Cl	-cacl ₂
	erbindung Nr.	445	446	447	448	449	450	451	452	£ 453	454	455

Tabelle - (Fortsetzung)

ક (ક	R2	C2H5	о " с (сн ₃)=сн-с-о-с ₂ н ₅ о	"-NH-C-CHC12	E	-C-CHC1 ₂	$-(cH_2)_3$ -0-cH $(cH_3)_2$
Tabelle I (Fortsetzung):	R ₁	-сн ₂ -о-сн ₃	щ	EE	- СНО	-CH ₂ -CH(CH ₃) ₂	Щ
	с	-CHC1 ₂	-CHC1 ₂	-cec1 ₂	-chc1 ₂	-CEC12	-CEC12
	Verbindung Nr.	461	462	463	464	465	466

MAD ORIGINAL

-	R ₂	-0H ₂	-с(c ₂ H ₅)(сн ₃) ₂	-CH(CH ₃)	-c(c _{2H5})(cH ₃) ₂	-c2H4-0-CH3	-сн ₂ -сн(осн ₃) ₂	$-c(cH_3)_2-c=N$
etzung):					·. ·.			
Tabelle I (Fortsetzung):	H _L	ш	¤ ,	щ	m	#4	щ	щ
티	ra	-CHC12	-снс12	-cHC1 ₂	-cH2c1	-cH ₂ C1	-сн2с1	-сн-сн-
	Verbindung Nr.	467	468	469	470	471	472	475

		Tabelle I (Fortsetzung):	
Verbindung Nr.	nt	R	R2
474	O " " NH-C-CH ₂ C1	2c1 H 0	-с(сн ₃) ₂ -с≅сн о
475	-chc1 ₂	-cH ₂ -cH ₂ -0-c-N(cH ₃) ₂	$-cH_2-cH_2-0-c-N(cH_3)_2$
476	-chc1 ₂	-CH ₂ -CH ₂ -O-C-NH-C ₂ H ₅	-сн ₂ -сн ₂ -о-с-ин-с ₂ н ₅
477	-chc1 ₂	"-CH2-CH2-O-C-NH-CH2-CH-CH2	24 сно=но-сно-сно-сно-сно-сно- 34 сно=но-сно-сно-сно-сно-сно-сно-сно-сно-сно-с
478	-CHC1 ₂	-CH ₂ -CH ₂ -0-C-NH-i-C ₃ H ₇	O -CH ₂ -CH ₂ -O-C-NH-i-C ₃ H ₇
479	-CHC1 ₂	-CH ₂ -CH ₂ -O-C-NH-C ₄ H ₉	-CH ₂ -CH ₂ -O-C-NH-C ₄ H ₉
. 480	-cH2cl	-CH2-CH2-0-C-NH-CH3	-CH ₂ -CH ₂ -0-C-NH-CH ₃
481	-cH2cl	0 -CH ₂ -CH ₂ -O-C-NH-CH ₂ -CH=CH ₂	-CH ₂ -CH ₂ -O-C-NH-CH ₂ -CH=CH ₂

	.R.2	$-c_{H_2-c_{H_2}-o-c-NH} - \langle s \rangle$	$c_{L_2-c_{H_2}-o-c-NH} \leftarrow c_1$	-сн2-сн2-он	-сн ₂ -сн ₂ -он	-сн ⁵ -сн(он)(сн ³)	-(cH ₂) ₃ -0H	-он ₂ -сн(он)(сн ₃)	CH ₃
Tabelle I (Fortsetzung:)	H.	$\begin{array}{c} 0 \\ -cH_2 - cH - O - C - NH \\ 0 \end{array}$	" -сн ₂ -сн ₂ -о-с-ин —// /, сл	ш	-сн ₂ -сн ₂ -он	Ħ	m	-сн ₂ -сн(он)(сн ₃)	CH ₂
	84	-cH2c1	-cH ₂ Cl	-cHCl ₂	-cH2cl	-CHC12	-CHC12	-cHC1 ₂	-снс12
	rbindung Nr.		483	484	485	486	487	. 488	489

	R2	-c2H5	-502-/17:	-сн ₂ -сн(сн ₃) ₂	-c ₂ H ₅	-so ₂ c1		-02H7	
Tabelle I (Fortsetzung):	R	-c ₂ H ₅		щ	-0 ₂ H ₅	H CH ₂	CH ₂	-C3H2	نر
莊	pet	-ch ₂ oh	-сн ₃	-cH ₂ -s - C1	-cH2-SO2-0-CH3	-c ₃ H ₆ Br	-CHC1 ₂	-6613	-6613
	Verbindung Nr.	490	491	492	493	494	495	496	497

·	R2			-CH ₂	-c ₂ H ₄ Br	-C2H4Br	-C2H4Br	-n-C4H9	-1-C ₃ H ₇
setzung):	СН ₂	CH ₃	CH3	•					L_1
Tabelle I (Fortsetzung):	H.			-cH ₃	щ	щ	щ	-C2H5	-1-0 ₃ H ₇
	æ	-001 ₃	-cH ₂ C1	-001 ₃	-cH ₂ cl	-cc1 ₅	-CHC12	-chc1 ₂	-chc12
	Terbindung Nr.	498	499	500	501	502	503	504	505

	R2	-n-c4H9	-n-c4H9	i-C ₃ H ₇	-i-C4H9	$c_2^{H_5}$	$-c(cH_3)(c_2H_5)-c = N$	$-c(cH_3)(c_2H_5)-c = N$	$-c(cH_3)(c_2H_5)-c = N$
Tabelle I (Fortsetzung):	R	-n-C ₄ H ₉	-c ₂ H ₅	-i-C ₃ H ₇	-1-C4H9	Ħ	ш	н	Ħ _.
	e	-cHC12	-cc1 ₃ -	-cc1 ₃ -	-cc1 ₃ -	-chc1 ₂	-6613	-cH2cl	-cHC1 ₂
	Verbindung Nr.	506	507	508	509	. 510	511	512	513

Die erfindungsgemäßen Mittel wurden wie folgt getestet.

Versuch 1: Verwendung im Boden

Kleine Kästen wurden mit lehmigem Felton-Sandboden gefüllt. Herbizid und Herbizid-Gegenmittel wurden getrennt oder zusammen in den Boden eingearbeitet, während dieser in einem 19-Liter-Zementmischer gemischt wurde. Für die getrennte Verwendung von Herbizid und Gegenmittel wurden von jeder Verbindung folgende Vorratslösungen hergestellt: Vorratslösungen des Herbizids wurden durch Verdünnen von etwa 1g eines Wirkstoffkonzentrats mit 100 ml Wasser erhalten. Für das Gegenmittel wurden 700 mg technisches Material mit 100 ml Aceton verdünnt. 1 ml dieser Vorratslösungen entsprach 7 mg Wirkstoff oder 0,112 g/m², wenn der damit behandelte Boden in die 20,32 x 30,48 x 7,62 cm großen Kästen gefüllt wurde. Nach Behandlung des Bodens mit dem Herbizid und dem Gegenmittel in dem gewünschten Verhältnis wurde die Erde von Zementmischer in die 20,32 x 30,48 x 7,62 cm großen Kästen gebracht, um die Einsaat durchzuführen. Zuvor wurde von jedem Kasten etwa ein halber Liter Boden (1 Pinte) zum späteren Abdecken der Samenkörner weggenommen. Die Erde in den Kästen wurde eingeebnet, und es wurden in jedem Kasten 12,7 mm tiefe Rillen angelegt. Die Samenkörner wurden jeweils in ausreichender Menge für guten Stand ausgesät. Anschließend bedeckte man die Samenkörner mit dem etwa halben Liter Boden, der kurz vor dem Einsäen entnommen wurde.

100

Die Kästen wurden dann auf Bänke bei 21 - 32°C ins Gewächshaus gestellt. Bis zur Auswertung wurden sie so besprengt, daß gutes Pflanzenwachstum sichergestellt war. Die Ertragstoleranz wurde nach 3 bis 6 Wochen ermittelt. Die Ergebnisse sind in der Tabelle II zusammengestellt.

G		Gegenmittel	ttel		Schädig	Schädigung der Pfl	Pflanzen
Herbizid	Anwendungs- verhältnis g/m^2	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art	3 Wochen	7 nach 4 Wochen	6 Wochen
EPTC	0,672	7	200,0	Mais	0	0	, .
EPTC	0,672	9	0,014	Mais	0	0	۰.
EPTC	0,672	9	0,056	Mais	0	0	0
EPTC	0,672	9	0,112	Mais	0	o	0
EPTC	0,672	9	0,224	Mais	0	0	0
EPTC	0,672	9	0,560	Mais	0	0	0
1	·	9	0,560	Mais	0	0	0
BPTC	0,672	10	0,014	Mais	20 M	•:	
EPTC	0,672	11	0,014	Mais	0		
EPTC	0,672	12	0,014	Mais	10 M		
EPTC	0,672	13	0,014	Mais	M 09	· · · · · · · · · · · · · · · · · · ·	
DILE	0,672	15	0,014	Mais	0	٠	
EPTC	0,672	91	0,014.	Mais	N OT		
BPTC	0,672	1.8	0,014	Mais	0		
EPTC	0,672	σ	0,056	Mais		20 国	•
BPTC	0,672	60	0,224	Mais		0	
BPAC	0,672	2	0,224	Mais		45 M	

Tabelle II

Tabelle II (Fortsetzung):

			Tabel	Tabelle II (Fortsetzung):	zung):		
	1	Gegenmittel	ttel		Schädigung d	gung der P in % nach	der Pflanzen nach
Herbizid	Anwendungs-verhältnis	Verbin- dung Nr.	Anwendungs-verhältnis g/m^2	Getreide- art	3 Wochen	4 Wochen	6 Wochen
EPTC	0,336	_	0,448	Mais	0	•	
EPTC	0,672	1	ı	Mais	94 M	м 16	M 86
S-Athyldiiso- butyl-thio- carbamat	-os 0,896	7	0,224	Mais	15 K		
S-Äthyldiiso- butyl-thio- carbamet	968.0	7	. 0,448	Mais	0		
S-Athyldiiso- butyl-thio- carbamat	-os -0,896	1	ı	Mais	75 M		
S-2,3,3-fri- chlorallyl- disopropyl- thiolcarba- mat	 0,112	9	0,448	Weisen	20 V		
S-2,3,3-Tri- chlorallyl- difaopropyl- thiolograpa- mat	0,112	. •		Weizen	M 06		

	Schädigung der Pflanzen in % nach	3 wochen 4 Wochen 6 Wochen	0		C		М 56		0	•	0
(Fortsetzung):		Getreide- art	Meis		α.		Mais		Mais		Mais
Tabelle II	ttel	Anwendungs- verhältnis g/m ²	0,014		0.224	•	· · · · · · · · · · · · · · · · · · ·		0,014		0,224
	Gegenmittel	Verbin- dung Nr.	9	٠	9		,		9	• •	9
		Anwendungs- verhältnis g/m ²	0,672 +	0,672 +	0,112	0,672 +	0,112	0,672 +	0,112	0,672 +	0,112
		Herbizid	DPTC + 2-Chlor-4-äthyl- amino-6-isopropyl- amino-s-triazin	EPIC +	2-Chlor-4-äthyl- amino-6-isopro- pylamino-s-tria- zin	EPTC	2-Chlor-4-äthyl- amino-6-isopro- pyl-amino-s-tri- azin	EPIC +	2-Chlor-4,6-bis- (äthylamino)-s- triazin	EPTC +	2-Chlor-4,6-bis- (äthylamino)-s- triazin

					- 1	03 -				
	anzen	6 Wochen		·						
	Schädigung der Pflanzen in % nach	4 Wochen		ўч 06		0		80 M		0
	Schädigu	3 Tochen								
:(Bu				٠						
(Fortsetzung):		Getreide- art		Mais		Mais		Mais		ਘੌai s
Tabelle II	tel	Anwendungs- verhältnis g/m ²		ı	÷	0,014	·			0,014
	Gegenmittel	Verbin- dung Nr.				9		ı.		9
		Anwendungs- verhältnis g/m ²	0,672 +	0,112	•	hyl- 0,112	0,672 +	- hyl- 0,112	0,672 +	•
		Herbizid A	EPTC +	2-Chlor-4,6-bis- (äthylamino)-s- triazin EPTC +	2(4-Chlor-6-äthyl-amino-s-triazin-	2-yl-amino)-2-methyl- propionitril 0,	EPTC +	2(4-Chlor-6-äthyl-amino-s-triazin-2-yl-amino)-2-methyl-propionitril 0	EPTC	2-Chlor-4-cyclo- propylamino-6-iso- propylamino-s- triazin

				•	-	1-0-4	-	٠			•	
	lanzen	6 Wochen							. •			• • • •
	ung der Pflanzen in % nach	4 Wochen			ом об	0	10 V	50 B		3 K		0
	Schädigung in ?	3 Wochen				٠.	•		•			
(80	ı					•					•	
(Fortsetzung)		Getreide- art			Mais	Mais	Meis	Mais	:	Mais		Mais
Tabelle II		Anwendungs- verhältnis g/m^2				0,014	0,224	•		0,014		0,224
. *.	Gegenmittel	Verbin- dung Nr.	. <u>.</u>		t .	v o	9	ı		9	. :	9
. •	9	Anwendungs- verhältnis g/m ²	0,672 +		0,112	0,672 +	9,672 0,112	0,672 + 0,112	0,672 +	0,112	0,672 +	0,112
		Herbizid	EPTC +	2-Chlor-4-cyclo- propylamino-6-	rsopropyramino-s- triazin	EPTC + 2,4-D	EPTC + 2,4-D	EPTC + 2,4-D	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-ëthyl-	amino-6-isopropyl- amino-s-triazin	S-Propyldipropyl- thiolcarbamat +	z-curor-4-a myr- amino-6-isopropyl- amino-s-triazin

	Schädigung der Pflanzen in % nach	3 Wochen 4 Wochen 6 Wochen		- 10 5 -	70 M	м 06	
(Fortsetzung):		Getreide- art	Mais	Mais	Meis	Mais	Mais
Tabelle II		Anwendungs- verhältnis g/m ²	0,014	0,014	ı		0,014
	Gegenmittel	Verbin- dung Nr.	vo	ø		1	9
	.	Anwendungs- verhältnis g/m ²	0,672 +	0,336 +	0,336 +	0,672	0,672 +
		An Herbizid ve	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-äthyl- amino-6-isopropyl- amino-s-triazin	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-äthyl- amino-6-isopropyl- amino-s-triazin	S-Propyldipropyl- thiologrbamet + 2-Chlor-4-äthyl- amino-6-isopropyl- amino-s-triazin	S-Propyldipropyl- thiologrhemat + 2-Chlor-4-äthyl- amino-6-isopropyl- amino-s-triazin	S-Propyldipropylthiolesthanat 2-Chlor-4,6-bis- (äthylamino)-s- triazin

		•		•		•		·	•
Pflanzen	б йосьеп	v. 					•	•	•
Schädigung der P in % nach	4 Wochen		0		м о2		. 0	. · .	M 76
Schädi	3 Wochen					•			٠.
	Getreide- art .		Mais		Mais	•.	Mais	.•	Mais
	Anwendungs- verhältnis g/m ²		0,224		1	į.	0,014		
Gegenmittel	Verbin- dung Nr.		. 49			•	9		
હૈ	Anwendungs- verhältnis g/m ²	0,072 +	0,112	0,672 +	0,112	0,672 +	0,112	0,672 +	0,112
	Ar Herbizid ve	S_propyldipropyl- thiologrammat + 2-Chlor-4,6-bis-	(atnylamino)-s- triazin	S-Propyldipropyl- thiologrhamat +	z-onior-4,0-013- (Ethylamino)-s- triagin	S-Propyldipropyl- thiologramat + 2(4-Chlor-6-sthyl-	amino-s-triazin- 2-yl-amino)-2- methylpropionitril	S-Propyldipropyl- thiologramst +	amino-s-triazin-2- yl-amino)-2-methyl- propionitril

4 Wochen 6 Wochen Schädigung der Pflanzen 60 V, M in % nach 92 M 0 0 0 3 Wochen Tabelle II (Fortsetzung: Getreide-Mais Mais Mais Mais Mais art Anwendungsverhältnis 0,014 0,014 0,224 g/m² Gegenmittel Verbindung Φ 9 Q Anwendungs-0,672 + 0,672 verhältnis 0,672 0,112 0,672 0,112 0,672 0,112 g/m² propylamino-6-isopropylamino-6-iso-S-Propyldipropyl-S-Propyldipropyl-S-Propyldipropyl-S-Propyldipropyl-S-Propyldipropyl-2-chlor-4-cyclo-2-Chlor-4-cyclothiolcarbamat + thiolcarbamat + thiolcarbamat + thiolcarbamat + thiolcarbamat + propylamino-spropylamino-s-Herbizid triazin triazin 2,4-D

Tabelle II (Fortsetzung)	Gegenmittel	Verbin- Anwendungs- Getreidedung verhältnis art $8/m^2$	6 0,014 Mais	6 0,224 Mais	Mais		6 0,014 Mais		6 0,224 Mais		Mais
	9. J	Anwendungs- Ver verhältnis dun g/m ² Nr.	S-Propyldipropyl- thioloarbamat 0,672	S-Propyldipropyl- thiologramat 0,672	S-Propyldipropyl- thiologrhamat 0,672	S-Athyldiisobutyl- thiolearbamat + 0,896 +	z-chior-4-athyt- amino-6-isopropyl- amino-s-triazin 0,112 6	S-Athyldiisobutyl- thiolearbamat + 0,036 + 2-Chlor-4-äthyl-	amino-6-isopropyl- amino-s-triazin 0,112	S-Athyldiisobutyl- thiolcarbamat + 0,896 + 2-Chlor-4-äthyl-	amino-6-isopropyl- amino-s-triazin 0,112

Tabelle II (Fortsetzung):

					- 1 0 9 -	•			. ,	
	lanzen	6 Wochen	·							- - -
	Schädigung der Pflanzen in % nach	4 Wochen		0		0		0		0
	Schädigu	3 Wochen								•
setzung):		Getreide- art		Mais		Mais		Mais		Mais
Tabelle II (Fortsetzung):	ittel	Anwendungs-verhältnis g/m^2		0,014	·	0,224		,		0,014
Tab	Gegenmittel	Verbin- dung Nr.		9		9		ı		9
		Anwendungs- verhältnis g/m ²	+ 968.0	0,112	+ 968*0	0,112	+ 968.0	0,112	+ 968.0	1-0,112
		Ar Herbizid ve	S-Athyldiisobutyl- thiolcarbamat + 2-Chlor-4,6-bis-	triazin .	S-Athyldiisobutyl- thiologramat + 2-Chlor-4,6-bis-	(ëthylamino)-e- triazin	S-Athyldiisobutyl- thiolcarbamat + 2-Chlor-4,6-bis-	(ëthylamino)-s- triazin	S-Äthyldiisobutyl- thiolcarbamat + 2(4-chlor-6-äthyl-	amino-s-triazin- 2-yl-amino)-2-methyl- propionitril

••	
$\overline{}$	
8	
gunz	
ţ	
Ò	
ts	
я	
<u>0</u>	

	•	터	Tabelle II (Fc	(Fortsetzung):	,			
		Gegenmittel	ttel		Schädigung	ng der Pflanzen % nach	anzen	
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs- verhältnis g/m^2	Getreide- art	3 Wochen	4 Wochen	6 Wochen	
S-Athyldiisobutyl- thiolcarbamat + 2(4-Chlor-6-athyl-	+ 968*0						•	
amino-s-virazin- 2-yl-amino)-2- methylpropionitril	0,112	ı	•	Mais		20 M		
S-Athyldiisobutyl- thiologrammat + 2-Chlor-4-cyclo-	+ 968,0						M	720 -
propyramino-0-150- propylamino-6- triazin	0,112	vo .	0,014	Meis	·	0		
S-Athyldiisobutyl- thiologrbamat + 2-Chlor-4-cyclo-	+ 968 + 0			•				
propylamino-6-180- propylamino-8- triazin 8-8+6-144480000000000000000000000000000000000	0,112	1 1 1 1 1 1 1 1 1 1 1	•	Mais		10 M		•
thiolcarbamat + 2,4-D	0,896 +	9	0,014	Mais		0	· ·	

•
κÒ
Д
gun
N
خب
à
ŝ
حدٍ
Н
0

				-	111	-				
	Pflanzen	6 Wochen								
	Schädigung der Pf. in % nach	4 Wochen	0	0	0	0	20 V	ΙΟ Φ	30 V	70
	Schädig	3 Wochen							٠	
(Fortsetzung):		Getreide- art	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Weizen
Tabelle II (Fortse	Gegenmittel	Anwendungs- verhältnis g/m ²	0,224	•	0,014	0,224	ı	0,014		0,560
		Verbin- dung Nr.	9	1	9	9	1	9	ı	9
		Anwendungs-verhältnis g/m	0,896 + 0,112	0,896 + 0,112	968*0	968.0	968,0	968.0	968*0	.0,336
		Herbizid	S-Äthyldiisobutyl- thiolcarbamat + 2,4-D	S-Athyldiisobutyl- thiolcarbamat + 2,4-D	S-Athyldiisobutyl- thiolcarbamat	S-Äthyldiisobutyl- thiolcarbamat	S-Äthyldiisobutyl- thiolcarbamat	S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	S-2,3,3-Trichlor- allyl-diisopropyl- thiolearbamat	S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat

		ET.	Tabelle II (Fo)	(Fortsetzung):			
		Gegenmittel	tel.		Schädigung in % na	digung der Pflanzen in % nach	lanzen
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs-verbältnis g/m^2	Getreide- art	3 Wochen	4 Wochen	6 Wochen
S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	0,336	i	1	Teizen	•	95	
S-2,3,3-Trichlor-allyl-diisopropyl-thiolearbamat	0,336	. 9	0,560	Mohrenhirse		(·.
S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	0,336	ı		Sorgnum vulgare Wohrenhirse	are)	0 06	· ·
2-Ghlor-2',6'-di- äthyl-N-(methoxy- methyl)-acetanilid	0,336	9	0,560 M	Wohrenhirse	•	20	
2-Chlor-2',6'-di- äthyl-N-(methoxy- methyl)-acetanilid	0,336	1	ZI I	Mohrenhirse	·	70	
S-Athylhexahydro- lH-azepin-l-carbo- thioat	0,336	9	0,560 B	Reis		. 0	
S-äthylhexahydro- lH-azepin-l-carbo- thioat	0,336		J	Reis		50	

		·	Tabelle II (F	(Fortsetzung):	••			
		Gegenmittel	tel		Schädig	Schädigung der Pflanzen in % nach	lanzen	
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art	3 Wochen	4 Wochen	6 Wochen	
2-Chlor-N-iso- propylacetanilid	0,336	vo	0,560	Weizen		20		
2-Chlor-N-iso- propylacetanilid	. 926.0		ı	Weizen		40		
N,N-Diallyl-2- chloracetamid	0,448	9	0,560	Mohrenhirse		20		-
N,N-Diallyl-2- chloracetamid	0,448	•	i	Mohrenhirse	9 8	70		II) -
S-4-chlorbenzyl- diäthylthiol- carbamat	0,672	ı	i	Reis		50		
S-4-chlorbenzyl- diäthylthiol- carbamat	0,672	9	0,560	Reis		30		
S-4-chlorbenzyl- diëthylthiol- carbamat	1,344		•	Reis		06	·	

	~ ~ 4	
_	-	
-		_

		H)	Tabelle II (Fortsetzung	rtsetzung):				
		Gegenmittel	;te]		Schädi	Schädigung der Pflanzen in % nach	flanzen	
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art	3 Wochen	4 Wochen	6 Wochen	
S-4-Chlorbenzyl- diäthylthiol- carbamat	1,344	9	0,560	Reis		30		
S-4-Chlorbenzyl- diäthylthiol- carbamat	1,344	, .		Mais		40		
S-4-Chlorbenzyl- liäthylthiol- sarbamat	1,344	9	. 0,560	Mais	· ·	0		- 1
5-Äthylcyclohexyl- ithylthiocarbamat	0,672	9	0,011	Mais		50 M		4
5-Athyloyclohexyl- ithylthiocarbamat	0,672		1	Mais		80 M		
EPTC = S-Ät V = Verk	<pre>EPTC = S-Äthyl-N,N-dipropylthiocarbamat V = Verkümmerung;</pre>	pylthiocar	bamat ;					

= MiBbildung;

2,4-Dichlorphenoxyessigsäure.

116

Versuch 2: Behandlung des Getreidesaatguts

Kleine Kästen wurden mit lehmigem Felton-Sandboden gefüllt. Zu diesem Zeitpunkt wurde das Herbizid in den Boden eingebracht. Die Erde eines jeden Kastens wurde in einen 19-Liter-Zementmischer gefüllt und darin gemischt, während das Herbizid in Form einer Vorratslösung, die durch Verdünnen von etwa 1 g eines Wirkstoffkonzentrats mit 100 ml Wasser hergestellt worden war, eingearbeitet wurde. Dabei wurde jeweils 1 ml Vorratslösung in einer Vollpipette pro gewünschte 0,112 g Herbizid pro m² in die Erde eingebracht. 1 ml Vorratslösung enthielt 7 mg Herbizid, was bei der Anwendung auf den Boden in den 20,32 x 30,48 x 7,62 cm großen Kästen 0,112 g/m² entsprach. Nach Einarbeitung des Herbizids wurde der Boden in die Kästen zurückgebracht.

Kästen mit durch das Herbizid vorbehandelter Erde und mit unbehandelter Erde standen nun bereit für die Einsaat. Zuvor wurde jedem Kasten etwa ein halber Liter Boden netnommen und zur späteren Verwendung zum Abdecken der Samenkörner neben den Kasten gelegt. Dann ebnete man die Erde ein und legte 12,7 mm tiefe Rillen an. Abwechselnd wurden die Rillen mit behandeltem und mit unbehandeltem Getreidesaatgut eingesät. Bei jedem Versuch wurden 6 oder mehr Samenkörner in jede Reihe gelegt. Im Kasten betrug der Reihenabstand etwa 3,8 cm. Zur Behandlung des Saatguts mit dem Gegenmittel bzw. Saatschutzmittel füllte man 50 mg dafür vorgesehenen Verbindung und 10 g Saat in einen geeigneten Behälter und schüttelte, bis die Körner gleichmäßig damit bedeckt waren. Die Verbindungen (Saatschutz-

114

mittel) zur Saatgutbehandlung wurden als flüssige Aufschlämmungen und als Pulver- oder Staubgut aufgebracht. Manchmal wurde Aceton verwandt, um pulverisierte oder feste Verbindungen zu lösen, so daß sie wirksamer auf das Saatmaterial aufgebracht werden konnten.

Nach der Einsaat wurden die Kästen mit der kurz zuvor entnommenen und auf die Seite gelegten Erde bedeckt. Sie wurden auf Bänke ins Gewächshaus bei 21 - 32°C gestellt und so besprengt, wie es gutes Pflanzenwachstum erforderte. Die prozentualen Auswertungen der Schädigung erfolgten zwei bis vier Wochen nach den Behandlungen.

Bei jedem Versuch wurde einmal das Herbizid allein, einmal das Herbizid in Verbindung mit dem Saatschutzmittel und schließlich das Saatschutzmittel allein angewandt, um die Phytotoxizität feststellen zu können. Die Ergebnisse dieser Versuche sind in Tabelle III zusammengestellt.

••	B
Н	I
Н	I
Н	I
	Į
Φ	l
ᅥ	ł
G.	l
ă	ł
6	ĺ
H	ı

	# .						,	14 8	}									
·	tes Saatgut achbarten	4 Wochen						0	٠			•						
	Unbehandeltes Saatg in der benachbarten Reihe	2 Wochen						0			30 M	S N	10 M	5 M	15 14	50 M	5 V	5 V
n %	Saat-	4 Wochen	60 V, M	40 V, M	60 V, M	70 V, M	30 V, M	0	30 V	0								
Schädigung in %	Behandeltes gut	2 Wochen	20 🗷	10 V	0	10 V	0	0			10 V	10 V	10 V	100 K	100 K	10 V	100 K	10 V
Sch	Getrei- deart		Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais
tel	Behand- lungsver- hältnis % Gew./Gew.		0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,05	0,5	0,5	0,5	0,5	0,5	0,5	0,5	6,0
Gegenmittel	Verbin- dung Nr.		Н	7	8	4	r.	9	-	Ф	σ	01	11	12	13	14	15	16
I	Anwendungs- verhältnis g/m ²		0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Ierbizid		EPTC	EPTC	EPTC	正子中の	EPTC	田子中の	EPTC	EPIC	EPTC	RPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC

Tabelle III (Fortsetzung):

				1				
Herbi- zid	Anwendungs- verhältnis	Ver- bindung Nr.	Behand- lungsver- hältnis	Getrei-	Behandeltes gut	deltes Saat- gut	Unbehandeltes in der benach Reihe	deltes Saatgut benachbarten
	E / X0	·	% сеж./сеж.	1805	2 Wochen	4 nochen	2 Wochen	4 Wochen
EPTC	0,672	17	0,5	Mais	20 V	•	25 国	
EPTC	0,672	18	0,5	Mais	0		5 V	
EPTC	0,672	19	0,5	Mais	0		50 M	
BPTC	0,672	20	0,5	Mais	10 Φ	10 V	30 班	65 M
EPTC	0,672	21	0,5	Mais	0	0	10 M	55 M
EPTC	0,672	22	0,5	Mais	W 09	70 M	85 M	80 M
EPTC	0,672	23	0,5	Mais	20 14	40 M	85 M	80 M
EPTC :	0,672	24	0,5	Mais	10 V	TO V	75 M	80 M
EPTC	0,672	25	0,5	Mais	O	30 M	й 09	M 09
EPTC	0,672	56	0,5	Mais	0	10 M	83 M	80 M
EPTC	0,672	27	0,5	Mais	70 M		M 09	
EPTC	0,672	28	0,5	Mais	30 V,		75 M	
EPTC	0,672	29	6,0	Mais	M 09		70 M	
EPTC	0,672	30	0,5	Mais	₩ 09	•	Yo M	
EPTC	0,672	31	0,5	Mais	N 07	·	80 M	
EPTC	0,672	32	0,5	Mais	9 09		75 M	•

Tabelle III (Fortsetzung):

		Gegenmittel	ttel		Schädigung in %	g in %		
Herbi-	Anwendungs- verhältnis	Ver- bindung Nr.	Behand- lungsver- hältnis	Getrei.	Behandeltes Eut	ltes Saat-	Unbehandeltes in der benach Reihe	ehandeltes Saatgut der benachbarten he
777	# /v0		% Сем./Сем.	1 TRAN	2 Wochen	4 Wochen	2 Wochen	4 Wochen
EPTC	0,672	23	0,5	Mais	50 V, M		75 M	
EPTC	0,672	34	0,5	Mais	₩ 09		80 M	
EPTC	0,672	35	0,5	Mais	50 M		75 M.	
EPTC	0,672	36	0,5	Mais	M 09		85 M	
EPTC	0,672	37	0,5	Meis	40 V, M		85 M	
BPTC	0,672	38	0,5	Mais	M 09		80 M	
EPTC	0,672	. 62	0,5	Mais	₩ 09		70 M	
EPTC	0,672	40	0,5	Mais	50 M		₩ 08	
EPTC	0,672	41	0,5	Mais	10 V,M	50 M	75 M	65 M
EPTC	0,672	42	0,5	Mais	м 09		₩ 08	
EPTC	0,672	43	0,5	Mais	No V or	50 M	85 M	80 M
EPTC	0,672	44	0,5	Mais	40 M		70 M	
EPTC	0,672	. 45	6,0	Mais	₩ 09		85 M	
EPTC	0,672	46	. 0°5	Mais	40 V,M		85 站	
EPTC	0,672	47	6,0	Mais	M 09		80 M	
EPTC	0,672	48	0,5	Mais	№ 1 05		₩ 08	

Tabelle III (Fortsetzung:

		Gegenmittel	e1	•	Schädigung in %	in %		-
Herbî- zid	ungs- tnis	Ver- bindung	Beband- lungsver-	Getrei-	Behandeltes gut	Saat-	Unbehandeltes gut in der ber ten Reihe	ses Saat- benachbar-
·	g/m ²	NF.	haltnis % Gew./Gew.	deart	2 Wochen	4 Wochen		4 Wochen
EPTC	0,672	49	5,0	Mais	м 09		M 07	
EPTC	0,672	20	0,5	Mais	₩ 09		M 06	
EPTC	0,672	. 51	0,5	Mais	₩ 09		70 M	
BPTC	0,672	52	0,5	Mais	M. V 09	-	80 M	
EPTC	0,672	53	0,5	Mais	50 M		70 班	
EPTC	0,672	54	0,5	Kais	M 09		₩ 0 <i>L</i>	٠
EPTC	0,672	55	ر د د	Mais	™ 09		80 M	
EPTC	0,672	99	0,5	Mais	M 09		80 M.	<u>-</u> .
EPTC	0,672	57	0,5	Mais	₩ 09	•	₩ · 69	
EPTC	0,672	58	0,5	Mais	20 №	,	75 M	
EPTC	0,672	59	0,5	Mais	M. V 09		₩ 08	
EPTC	0,672	09	0,5	Meis	м' л 09		75 M	
EPTC	0,672	· 19	0,5	Mais	M 09		85 M	·
EPTC	0,672	62	0,5	Mais	40 V,M	M 09	₩ 08	м о2
EPTC	0,672	63	6.0	Mais	30 4 近	м 09	70 M	70 M
olai.	0,672	64	0,5	Mais	M. v o€	50 M	M 59	70 M

Tabelle III (Fortsetzung:

	ʊ	Gegenmittel	el		Schädigung	g in %			
Herbi- zid	Anwendungs- verhältnis «/m²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	tes Saat-	Unbehande gut in de barten Re	Unbehandeltes Saat- gut in der benach- barten Reihe	
EPTC	0,672	65	0,5	Mais		4 Wochen 70 M	2 Wochen 75 M	4 Wochen 80 M	
EPTC EPTC	0,672	66 67	ບຸ 0	Mais Mais	50 V, K		80 kg	. •	
EPIC	0,672	68	0,5	Mais	M 09		80 M		
EPTC	0,672	69	0,5	Mais	20 V,M	50 M	70 M	70 M	
BPTC	0,672	70	5.0	Mais	40 V,M	50 V,M	80 M	M 08	
EPTC	0,672	7.1	0,5	Mais	40 V,M		¥ 08		
BPTC	0,672	72	0,5	Mais	M 09		65 M		
BPTC	0,672	73	0,5	Mais	M 09		80 M		
EPTC	0,672	74	0,5	Mais	M 09		80 M		
EPTC	0,672	75	0,5	Mais	м. О 09		80 M		
SPTC	0,672	16	0,5	Mais	M. V 0€		75 M		
EPTC	0,672	77	0,5	Mais	N 09		75 M	•	
EPTC	0,672	18	0,5	Mais	M. V 09		75 M		
अध्यक्ष	0,672	79	0,5	Mais	M. V OS		75 M		
EPTC	0,672	80	0,5	Mais	M 09	M 09	65 h	70	
EPTC	0,672	81	0,5	Mais	10 V	20 k	50 M	50 M	
BPTC	0,672	82	0,5	Mais	30 V	30 S	50 №	50 M	

Tabelle III (Fortsetzung):

									•				•	. .				
	ldeltes Saat- der benach- Reihe	4 Wochen	25 M	20 译	45 M	-		-		80 M		-	M 52	-	•			•
	Unbehandeltes gut in der ben barten Reihe	2 Wochen	20 M	15 K	35 M	75 M	75 M	70 M	80 M	80 M	80 M	80 M	75 K	₩ 08	M 06	80 M	75 国	•
ng in %	tes Sast-	4 Wochen	20 S	10 V	10 V	-				30 V M	٠.		20 V		•	· .		
Schädigung in %	Behandel tes gut	2 Wochen	20 V	TO V	30 V	50 V.M	30 V,M	50 V,M	M 09	20 V,M	40 V,M	M, V O≷	Δ 09	30 V.M	100 K	30 V,M	30 V,™	
-	Getrei- deart		Mais	Mais	Mats	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	
7	Behandlungs- verhältnis % Gew./Gew.		0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	
Gegenmittel	Verbin- dung Nr.		83	84	85	98	87	88	. 68	8	16	35	93	46	95	96	26	
ँ ।	Anwendungs- verbältnis g/m ²		0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	
	Herbi- zid		EPTC	BPTC	EPTC	EPTC	BPTC	EPTC	EPTC	BPTC	BPTC	BPTC	BPIC	BPIC	EPIIC	EPTC	BPTC	

Tabelle III (Fortsetzung):

		Gegenmi	ttel	1	Schädigung in %	ng in %	·	
Herbi-	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandel tes gut	tes Saat-	Unbehandeltes gut in der be barten Reihe	ideltes Saat- der benach- Reihe
					2 Wochen	4 Wochen	2 Wochen	4 Wochen
EPTC	0,672	98	0,5	Mais	M. V 09		75 M	
EPTC	0,672	66	0,5	Mais	30 V	Me V 0€	85 M	80 M
EPTC	0,672	100	0,5	Mais	40 V,M		65 站	
EPTC	0,672	101	0,5	Mais	M, V 0€		75 M	
EPTC	0,672	102	0,5	Mais	M, V O€	50 M	85 M	80 M
EPTC	0,672	103	0,5	Mais	50 M		層 08	
EPTC	0,672	104	6,0	Mais	40 V,M		85 M	
EPTC	0,672	105	6,0	Mais	50 V,M		85 M	
EPTC	0,672	901	0,5	Mais	40 V,M		80 M	
EPTC	0,672	107	0,5	Mais	30 V	20 V,M	85 座	80 M
EPTC	0,672	108	0,5	Mais	40 V,M		₩ 06	
EPTC	0,672	109	0,5	Mais	M, V O€		M 06	
EPTC	0,672	110	0,5	Mais	40 V,M		85 M	
EPTC	0,672	111.	0,5	Mais	40 V,M		75 点	
EPTC	0,672	112	0,5	Mais	χ, V 09	30 M	85 M	80 M
БРТС	0,672	113	5.0	Mais	M. V O€		₩ 08	
EPTC	0,672	114	0,5	Mais	30 V,M		80 M	

125

		Gegenmittel	ttel	1	Schädigung	ung in %			
Herbi-	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Qew.	Getrei- deart	Behandeltes gut	ltes Saat-	Unbehandeltes gut in der ber barten Reihe	deltes Saat- der benach- Reihe	
					2 Wochen	4 Wochen	2 Wochen	4 Wochen	
EPTC	0,672	115	0,5	Mais	40 V,M		M 06	•	
EPTC	0,672	911	0°0	Mais	30 ₹	30 V	75 M	80 M	
BPTC	0,672	71.1	0 10	Meis	20 V,M		70 M	•	
EPTC	0,672	118	0,5	Mais	M. V 0€		70 M		
EPTC	0,672	119	0,5	Mais	30 ₹		70 M		
EPTC	0,672	120	0.5	Mais	M, V 0€		75 M		•
SPTC	0,672	121	0,5	Mais	M. V 04	•	75 M		
SPTC	0,672	122	0,5	Mais	№ 100.		35 ™	}	
B PTC	0,672	123	0,5	Mais	20 Φ	20 Т	10 M	20 M	
SPTC	0,672	124	0,5	Mais	五,▼ 05	• .	75 M		
SPTC	0,672	125	0,5	Mais	40 V,M		图 08		
SPTC	0,672	126	0,5	Mais	40 V.M		80 M	:	
SPTC	0,672	127	0,5	Mais	M 09		河 08		
SPTC.	0,672	128	0,5	Mais	50 M		55 M		
EPTC	0,672	129	0,5	Mais	30 V,B	30 V,B	50 M	M 09	

Tabelle III (Fortsetzung):

		Gegenmit	ttel		Schädigung in %	in %		
Herbi- zid	Anwendungs-verhältnis g/π^2	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Benandel tes gut	Saat-	Unbehandeltes gut in der be barten Reihe	deltes Sast- der benach- Reibe
					2 Wochen	4 Wochen	2 Wochen	4 Wochen
EPTC	0,672	130	0,5	Kais	30 V	30 V	40 M	四 09
BPTC	0,672	131	0,5	Mais	10 V	0	25 M	55 k
BPTC	0,672	132	0,5	Male	0	0	45 M	
BPIC	0,672	133	٠ 0 ، 0	Mais	40 M		65 54	
EPIC	0,672	134	0,5	Mais	死• △ ○ ○		₩ 02	
EPIC	0,672	135	0,5	Mais	40 V.M		70 M	
BPTC	0,672	136	0,5	Mais	M, V 05	-	80 M	
EPTC	0,672	157	0,5	Mais	M, V 05		85 M	•
BPTC	0,672	138	0,5	Mais	M. V 0€	-	75 M	
EPIC	0,672	139	0,5	Mais	50 V.E		₩ 90	
BPTC	0,672	140	0,5	Mals	N. V 0€		75 K	
SPTC	0,672	141	0,5	Maje	20 V,M	30 V,M	80 M	80 M
EPTC	0,672	142	0,5	Mais	20 V,M	50 M	75 kk	70 №
BPTC	0,672	143	0,5	Mais	M, V OI	50 M	85 M	M 08
EPTC	2,00	144	0,5	Mais	50 V,M		85 M	
BPTC	0,672	145	0,5	Mais	20 V,M		80 M	
EPTC	0,672	146	0,5	Mais	20 V,M	20 V,M	65 M	70 M

- 126 -

4 Wochen Behandeltes Saat- Unbehandeltes Saatgut in der benach-80 ⋈ Ξ 80 barten Reihe 2 Wochen 65 M 9 8 85 2 Wochen 4 Wochen Sohëdigung in % 0 30 V,™ 20 V,M 50 V k 30 V M 50 V. 50 V.M 40 9 20 00 20 S 20 20 30 9 Getreideart Mais Mais Mais Mais Mais Mais Maie Mets Mais Mais Male Mais Mais Mais Mais Mais Mais Behandlungs. verhältnis % Gew./Gew. 0,5 0,0 0,5 0,5 0,5 0,5 ດ້ວ 0,0 0,0 0,5 0,0 0,2 0,0 Gegenmittel Verbindung Nr. 158 154 155 156 160 161 162 163 149 150 152 153 157 151 Anwendungs-verhältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-BPTC EPTC EPTC EPIC EPTC EPTC EPTC EPTC EPIC 国PTC EPTC BPTC EPTC BPTC EPTC **BPTC**

Tabelle III (Fortsetzung):

Tabelle III (Fortsetzung):

							•										
	ltes n der be- n Reihe	4 Wochen			W 09			80 M				₩ 08					
	Unbehandelte Saatgut in d nachbarten R	2 Wochen	70 M	75 M	75 M	75 M	₩ 08	80 M	80 M	75 M	75 pt	80 M	. N 08	85 M	85 班	85 M	80 M
Schädigung in %	Ltes Saat-	4 Wochen			M 09			30 V				50 対					
Schädig	Behandeltes gut	2 Wochen	W 09	M 09	40 V,M	50 V,M	M. V 09	30 V	M. V O€	M 09	40 M	M, V O€	м, ∨ оэ	30 V,M	40 V,M	30 V,M	M, V O€
1	Getrei- deart		Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais
ittel	Behandlungs- verhältnis % Gew./Gew.		0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Gegenmitt	Verbin- dung Nr.		164	165	99 L	167	168	169	170	171	172	173	174	175	921	±77	178
	Anwendungs-verhältnis g/m^2		0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbi- zid		EPTC	BPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC

••
8
tzu
86
ort
Ĕ
II
위
<u>[]</u>
Tab

	Saat- lach-	l en						_			,							
		4 Wochen	υ ຊ	0	0	0	0	15 M	30 M	0	45 M	45 M	35 M	15 ·M	50 M	40 ™	35 延	25 M
	Unbehandeltes gut in der ber barten Reihe	2 Wochen	0	0	0	0	0	5 M	3 M	o	5 الا	13 14	5 社	0	3 K	5 Z	10 M	0
ung in %	tes Saat-	4 Wochen	0	0		0	0	0	0	0	0	0		0	0	0	0	0
Schädigung in	Behandeltes gut	2 Wochen	0	0	0	0	0	0		0	0	0		0	0	0	0	
•	Getreide.		Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais
ttel	Behandlungs- verhältnis % Gew /Gew		0,5	0,5	0,5	5.0	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Gegenmit.	Verbin- dung Nr.		179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194
	Anwendungs- verhältnis	g/m	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbi-	zid	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	BPTC	EPTC	EPTC	EPTC	BPTC	BPTC	EPTC	EPTC	EPTC	EPTC

Tabelle III (Fortsetzung)

		Gegenmittel	tel		Schäd	Schädigung in %			
Herbi- zid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs . verhältnis % Gew./Gew.	Getrei	Behandeltes gut	eltes Saat- t	Unbehandeltes gut in der ber barten Reihe	ideltes Saat der benach- Reihe	•
					2 Wochen	n 4 Wochen	2 Wochen	4 Wochen	
EPTC	0,672	195	0,5	Mais	M. V O€		55 M		
BPTC	0,672	196	0,5	Mais	100 K		55 M	•	
EPTC	0,672	197	0,5	Mais	M 09		75 M		
EPTC	0,672	198	0,5	Mais	30 V,M	30 E	75 ₩	₩ 08	
EPTC	0,672	199	0,5	Mais	50 V,M		80 M		
EPTC	0,672	200	0,5	Mais	M 09		80 M		
正子正の	0,672	201	0,5	Mais	40 V M		28 88		
EPTC	0,672	202	0,5	Mais	50 k		¥ 09		
BPTC	0,672	203	0 n	Mais	50 点		₩ 59		
EPTC	0,672	204	0 v.	Mais	20 V	TO V	×	50 M	
EPTC	0,672	205	0,0	Meis	30 V,™		Ħ		
EPTC	0,672	506	0,0	Mais	20 V,™	20 V.M	×	55 K	
EPTC	0,672	207	0,5	Mais	100 K		Ħ	1	
EPTC	0,672	208	0,5	Mais	M. V 09	,	对 02		
EPTC	0,672	509	0,5	Mais	0	0	Ħ	40 M	

Tabelle III (Fortsetzung):

		Gegenmittel			Sohëdigung in	g in %			
Herbi-	Anwendunge- verhältnis	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandel tes gut	Sapt-	Unbehandeltes gut in der be barten Reihe	deltes Saat der benach- Reihe	
5 1 7	m/8				2 Wochen	4 Woohen	4 ,	4 Wochen	
おアゴム	0,672	210	2.0	Mais	O	ν οι	N A	35 M	
田子正の	0,672	211	0 . T.	Mais	0	0	25 M	50 M	
EPTC	.0,672	212	0,5	Mais		TO A	18 M	20 km	
田子中の	0,672	213	0,5	Meis	50. V	30 V	₩ 0.	70 M	
EPTO	0,672	214	0,5	Mais	0	10 V	50 M	65 M	
BPTC	0,672	215	0,0	Mais	10 V	0	85 M	M 02	·.
BPTC	0,672	216	0,5	Mais	10 V	Ne V ol	95 M	呂 06	
EPTC	0,672	217	0,5	Mais	100 K	100 K	30 M	45 M	٠.
EPTC	0,672	218	0,5	Mais	10 V	10 V	20 M	15 M	;
EPTC	0,672	219	0,5	Mais	100 K		45 K	. ·	٠
SPTG	0,672	220	0,5	Meis	0	10 4	0	0	
EPTC	0,672	221	0,5	Mais	0	10 V	15 区	35 M	
EPTC	0,672	222	0,5	Mais	100 K		50 M	· .	•
EPTC	0,672	223	0,5	Mais	10 Δ	20 V	70 ™	70 M	. ·
EPTC .	0,672	224	0,5	Mais	50 ₹	30 V	45 M	80 M	
EPTC	0,672	225	0,5	Mais	30 V	30 V	70 M	M 08	• • • •
						•			٠

Tabelle III (Fortsetzung):

	ideltes Saat- der benach. Reihe	Wochen	Ma	JH C					¥		¥	M	M C	M			M	Ħ
		Wochen 4 W	80	80					9		9	65	45	65			55	45
	Unbehar gut in barten	8	93 M	85 M	93 M	₩ 60	95 M	88 №	55 M	202	55 H	70 M	30 M	M 69	75 M	80 ¥	25 M	45 M
Schädigung in %	tes Saat-	4 Wochen	10 V	20 Φ					0		10 V	10 V	0	10 V			10 M	0
Schädigu	Behandeltes gut	2 Wochen	20 V	20 V	4.0 V,M	40 V,M	40 V,M	40 V,M	0	30 V,M	0	10 V	0	0	M, V 0€	50 V,™	0	0
	Getrei- deart		Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais
1	Behandlungs- verhältnis % Gew./Gew.		0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Gegenmittel	Verbin- dung Nr.		226	227	228	229	230	231	232	233	234	. 235	236	237	238	239	. 240	241
91	Anwendungs-verhältnis g/m^2		0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbi- zid		DLAS	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC

Tabelle III (Fortsetzung):

		Gegenmitte]	tel	· į	Schädigung in %	g in %			
Herbi-	Anwendungs- verhältnis. 2	Verbin- dung	Behandlungs- verhältnis % Gew./Gew.	Getrei-	Behandeltes gut	es Saat-	Unbehandeltes gut in der be barten Reihe	deltes Saat- der benach- Reibe	•
zid	g/m_				2 Wochen	4 Wochen	2 Wochen	4 Wochen	
BPTC	0,672	242	0,5	Mais	30 V,M		50 M		
EPTC	0,672	243	0,5	Mais	N. V OI	30 M	75 M	™ 07	
EPIC	0,672	244	0,5	Mais	0		20 M		
EPTC	0,672	245	0,5	Mais	10 V		28 M		•
EPTC	0,672	246	0,5	Mais	0		M 8	•	
EPTC	0,672	247	0,5	Mais	10 V		2 M		
EPTC	0,672	248	0,5	Mais	20 V	-	70 M		
EPTC	0,672	249	0,5	Mais	10 V		70 M		
EPTC	0,672	250 .	0,5	Mais	0		65 M		
EPTC	0,672	251	0,5	Mais	ο.	-	20 M	-	
DIAB	0,672	252	0,5	Mais		•	15 M		
EPTC	0,672	253	0,5	Mais	0		2 8		
EPTC	0,672	254	0,5	Mais	5 M	:	50 M		
EPIC	0,672	255	0,5	Mais	0	-	5 K		
EPTC	0,672	256	0,5	Mais	0		15 M		
EPTC	0,672	257	0.0	Mais	0	•	70 M		
EPTC	0,672	258	0,5	Mais	0		M OI	• .	- '

- 133 -

Unbehandeltes Saat-4 Wochen gut in der benachbarten Reihe 2 Wochen 15 区 70 K 50 kg Schädigung in % Behandeltes Saat-2 Wochen 4 Wochen Ħ 0 0 Getreide-Mais Mais Behandlungs-% сем./сем. verhältnis 0,0 Gegenmittel Verbindung 266 260 265 268 269 270 261 262 263 264 267 271 272 Anwendungsverhältnis 8/m² 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC **EPTC** EPTC EPIC EPTC EPTC EPTC EPTC EPTC 四下で **瓦PTC** E-10 PTC EPTC EPTC zid

Tabelle III (Fortsetzung)

209845/1180

Tabelle III (Fortsetzung):

	p p		•												•		•	•
	Unbehandeltes Saatgut in der benachbarten Reihe 2 Wochen 4 Wochen	40 M	40 M	35 M	40 M	33 E	50 M	65 M	38 M	₩ 08	35 座	75 M	м о2	75 M	35 班	35 M	50 M	50 k
Schädigung in %	Behandeltes Saat- gut 2 Wooben 4 Woohen	0	0.	10 Φ	0	0	0	0	10 B	0			10 Φ	10 Λ	10 Λ	0	0	o
	Getrei- deart	Mais	Mais	Mais	Mais	Mais	Mais	Vais	Mais									
ttel	Behandlungs- verbältnis % Gew./Gew.	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	5,0	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Gegenmittel	Verbin- dung Nr.	275	276	277	278	279	280	281	282	283	284	285	. 982	287	288	289	290	291
	Anwendungs- verhältnis g/m ²	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbi- zid	田子中の	EPTC	EPHC	EPTC	EPTC	BPTC	EPTC	EPTC	RPTC	EPTC							

Tabelle III (Fortsetzung):

	eltes in der be- en Reihe	4 Wochen																
% **	Unbehandeltes Saatgut in de nachbarten Re	2 Wochen	30 M	55 M	M 09	25 M	15 超	10 M	5 M	20 M	0	23 M	25 M	15 站	40 M	35 M	15 M	15 班
Schädigung in %	Behandeltes Saat- gut	Wochen 4 Wochen	0	0	0	0	0	0	0	0	0	0		0	0	0	0	
ŧ	B Getrei- deart	2	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais
tel	Behandlungs- verhältnis % Gew./Gew.		0,5	6,0	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Gegenmittel	Verbin- dung Nr.		292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307
	Anwendungs- verhältnis «/m²	- 10	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbi- zid		EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPIC	EPIC	EPTC	EPTC	EPTC

Tabelle III (Fortsetzung):

		Gegenmittel	tel		Schädigung in %	%
Anvendungs- verhältnis	1	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat-gut	Unbehandeltes Saatgut in der benachbarten Reihe
m/0					2 Wochen 4 Wochen	2 Wochen 4 Wochen
0,672		308	. 5.0	Mais	0	. 8 M
0,672		309	0,5	Mais	0	25 M
0,672		310	0,5	Mais	0	45 M
0,672		1116	0, 7,	Mais	0	30 M
0,672		312	0,5	Mais		M 07
0,672		313	0,5	Mais	0	₩ 59
0,672		314	0,5	Mais	30 V,M	₩ 09
0,672		315	0,5	Mais	50 M	₩ O.Z
0,672		316	0,5	Mais	0	0
0,672		317	0,5	Vais	0	₩ 0 <i>L</i> .
0,672		318	0,5	Mais	30 V,M	₩ 09
0,672		319	0,50	Mais	M. V O€	₩ 09
0,672		320	0,5	Mais	0	0
0,672		321	0 10	Mais	0	65 M
0,672		322	0,5	Mais	10 V	10 M
0,672		323	0,5	Mais	TO V	40 M
					•	

Tabelle III (Fortsetzung):

		Gegenmittel	_tel	• •	Schädigung in %	
Herbi- zid	Anwendungs-verhältnis	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehandeltes Saatgut in der benachbarten Reihe
	m /20				2 Wochen 4 Wochen	2 Wochen 4 Wochen
EPTC	0,672	324	0,5	Mais	ж 09	75 M
EPTC	0,672	325	0,5	Mais	₩ 09	. M 08
EPTC	0,672	326	0,5	Mais	20 V	70 M
EPIC	0,672	327	0,5	Mais	30 V, M	75 M
EPTC	0,672	328	0,5	Mais	л° д 09	75 M
EPTC	0,672	329	0,5	Mais	0	M 09
EPTC	0,672	330	0,5	Mais	30 V,M	65 M
EPTC	0,672	331	0,5	Mais	10 V	70 M
EPTC	0,672	332	0,5	Mais	0	M C
EPTC	0,672	333	0,5	Mais	0	15 M
EPTC	0,672	334	0,5	Mais	0	23 M
EPTC	0,672	335	0,5	Mais	20 V,B	35 M
EPTC	0,672	336	0,5	Mais	95 V	30 M
EPTC	0,672	337	0,5	Mais	0	. H
EPTC	0,672	338	0.5	Mais	0	M 09
EPTC	0,672	339	0,5	Mais	30 M	75 M

Tabelle III (Fortsetzung):

	: 0 0	崩	•					•							٠		· <u>.</u>	
	Unbehandeltes Sastgut in der b nachbarten Reihe	2 Woohen 4 Woohen	25 M	30 M	M. 08	45 M	75 M	75 M	€5 M	80 M	м 59	75 M	80 M	75 M	₩ 08	75 M	80 M	70 M
Schädigung in %	Behandeltes Saat- gut	2 Woohen 4 Woohen		0	60 M	Ö	io v	0	10 V	50 V,M	0	м. Ф 09	№ 09	м. т 09	M. V 09	M. v O9	50 V,M	π , ∇ 09
	Getrei- deart		Kais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais						
tel	Behandlungs- verbältnis % Gew./Gew.		6.0	0,5	7.	0,5	0,5	0,5	0,5	0,5	0,5	. 540	0,5	0,5	0,5	0,5	0,5	0,5
Gegenmittel	erbin- lung ir.	1	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355
	Anwendungs- verhältnis , 2	B/8	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbi-		EPEC STATE	EPTC	BPTC	EPIC	EPTC	BPTC	EPTC	EPIC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	BPTC

Tabelle III (Fortsetzung):

	Unbehandeltes Saatgut in der be- nachbarten Reihe 2 Wochen 4 Wochen	70 M			75 M .	70 M			80 M	55 M	M 59	65 kg					2 6	3
Schädigung in %	Behandeltes Saat- gut 2 Wochen 4 Wochen	50 V ₃ B		30 V	№ 0 05	№ 4 05		Δ	М, V	10 V	20 ∨,м	0		0	0	70 B 70 M	۸	•
ı	Getrei- deart	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	
tel	Behandlungs- verhältnis % Gew./Gew.	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	6,0	0,5	0,5	0,5	0,5	0,5	0,5	o, 0,	
Gegenmittel	Verbin- dung Nr.	356	357	358	359	360	361	362	363	364 ··	365	996	267	368	369	370	371	
	Anwendungs- verhältnis g/m ²	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	
	Herbi- zid	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	BPTC	SPTC	RPTC	EPTC	EPTC	EPTC	LPTC	EPTC	

141

						•			: ·								100	•
	deltes Saat- der benach- Reihe	an 4 Wochen	图 08	•		BO M					80 M	M 08		108	图0 14			
	Unbehandeltes gut in der be barten Reihe	2 Wochen	₩ 08	75_M	85 M	M 06	₩ 06	№ 02		85 M.	河 06	85 M	₩ 08	M 06	™ 07	85 M	五 57	80 M
g in %		4 Wochen	40 V,M			30 M	:				20 ₪	40 M		30 V	10 V		30 函	
Schädigung	w 1	2 Wochen	30 V	30 V,™, B	M 09	50 V,B	50 №	40 V,™	80 M	20 №	10 V	20 ₪	50 M	50 V,B	20 V	M 09	10 V	M 09
:	Getrei- deart		Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais
ttel	Behandlungs- verhältnis % Gew./Gew.		0,5	0,5	0,5	0,5	0,5	O,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Gegenmittel	Verbin- dung Nr.		372	373	574	375	376	377	378	379	380	381	382	383	384	385	386	387
	Anwendungs- verbältnis g/m ²		0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbi- zid		EPTC	EPTIC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC

Tabelle III (Fortsetzung):

		٠	Tab	Tabelle III	(Fortsetzung):	s (Sun	
		Gegenmittel	tel		Schädigung in %	og in %	
Herbi-	• • • • • • • • • • • • • • • • • • •	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei-	Behandeltes gut	tes Saat-	Unbehandeltes Saat- gut in der benach-
חדמ	8/B			deart	2 Wochen	4 Wochen	2 Wochen 4 Wochen
EPTC	0,672	388	0,5	Mais	100 K		55 M
EPTC	0,672	389	0,5	Mais	10 V	0	75 M
EPTC	0,672	390	0,5	Mais	15 V,M		M 08
EPTC	0,672	391	0,5	Mais	10 V	0	80 M
EPTC	0,672	392	0,5	Mais	М. Ф ОЭ		75 M
EPTC	0,672	393	0 5.	Mais	M 09		M 08
EPTC	0,672	394	0,5	Mais	M. V 0€	~	₩ 08
EPTC	0,672	395	0,5	Mais	10 V	NO IN	65 M
EPTC	0,672	396	0,5	Mais	10 V	0	75 M
EPTC	0,672	397	0,5	Mais	10 V	20 M	W 09
EPTC	0,672	398	0,5	Mais	M 09		80 M
EPTC	0,672	399	0,5	Mais	M 09		80 M
EPTC	0,672	400	0,5	Mais	м 09		75. M
EPTC	0,672	401	0,5	Mais	M 09		80 M
EPTC	0,672	402	0,5	Mais	M. V 04		75 M
EPTC	0,672	403	0,5	Mais	M. V 09		₩ 08

								•	173	•		•					•		•
	Unbehandeltes Saatgut in der be- nachbarten Reihe	2 Wochen 4 Wochen	80 M	.80 M	80 M	80 M	80 M	80 M	80 減	80 M	M 08	80 M							
Schädigung in %	Behandeltes Saat- gut	2 Wochen 4 Wochen	70 м	₩ 02	70 M	70 M	М, о.	70 M	м о2	60 M	70 M	70 M	70 M	. м о2	70 M	M 09	№ 02	70 M	№ 02
	Getrei- deart		Mais	Mais	Mais	Meis	Mais	Mais											
e]	Behandlungs- verhältnis % Gew./Gew.		0,5	0,5	0,5	0,5	. 0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	6,0
Gegenmitte]	Verbin- dung Nr.		404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420
	Anwendungs-verhältnis		0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbi- zid		EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPIC	EPTC	EPTC	BPTC	EPTC	EPIC	EPTC	EPTC	EPTC	EPTC	LPTC

- 143-

144

Unbehandeltes Saatgut in der benach-2 Wochen 4 Wochen barten Reihe 80 M 80 M 80 M 8 2 Wochen 4 Wochen Behandeltes Saat-Schädigung in % gut M. V 09 M, V OY M, V OY M, V 07 70 M 70 M 70 区 70 14 70 M 70 M Getreideart Mais Verbin- Behandlungs-% Gew./Gew. verhältnis 0,5 0,5 0,5 0,5 0,5 0,5 0,5 Gegenmittel dung 421 426 428 423 425 429 430 431 432 427 Anwendungsverhältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC EPTC EPTC EPTC EPTC EPTC BPTC EPTC EPTC EPTC EPTC EPTC EPTC EPTC EPTC EPTC

Tabelle III (Fortsetzung):

- 344 - 145

Tabelle III (Fortsetzung):

	پاچل					•								•		•	
	Unbehandeltes Saat- gut in der benach- barten Reihe	2 Wochen 4 Wochen	75 M	80 M	75 M	死 59	75 M	70 M	死 08	65 M	75 M	65 M	· M 08	№ 02	居 08	80 M	7o M
Schädigung in %	Behandeltes Saat- gut	2 Wochen 4 Wochen	50 V,M	Mev or	20 V	10 V	30 V	10 V	10 V	A OT	₩ 02	20 V	м 09	№ л об	70 M	м. и 09	20 V
	Getrei-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Wais	Mais	Mais	Mais
te]	Behandlungs- verhältnis % Gew./Gew.		0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Gegenmittel	Verbin- dung Nr.		437	438	439	440	441	442	443	444	445	446	447	448	449	450	451
91	Anwendungs- verhältnis ø/m ²	_ 1	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbi- zid		EPTC	EPTC	EPTC	EPTC	BPTC	EPTC	BPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	BPTC	EPTC

146

		Gegenmittel	tel		Schädigung in %	
Herbi- zid	Anwendungs-verhältnis g/m^2	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehande gut in de barten Re
EPTC	0,672	452	0,5	Mais	# ###### A O	80 M
EPTC	0,672	453		Mais	20 V	班 09
EPTC	0,672	454	0,5	Mais	M OL	75 M
EPTC	0,672	455	0,5	Mais	20 V	65 M
EPTC	.0,672	456	0,5	Mais	M, V 09	75 M
EPTC	0,672	457	0,5	Mais	M, v or	80 M
EPTC	0,672	458	.0,5	Mais	№ 20 05	70 M
EPTC	0,672	459	0,5	Mais	40 V,M	80 M
EPTC	0,672	460	0,5	Mais	м. по	80 M
EPTC	0,672	461	0,5	Mais	10 V	80 M
EPTC	0,672	462	0,5	Mais	м € л о с	75 M
EPTC	0,672	463	0,5	Mais	70 M	80 M
EPTC	0,672	464	0,5	Mais	70 M	80 M
EPTC	0,672	465	0,5	Mais	50 V,M	80 M
EPTC	0,673	466	0,5	Mais	20 V.M	70 M

Tabelle III (Fortsetzung);

- 146 -

147

			Tal	elle III	Tabelle III (Fortsetzung):	
	O,	Gegenmittel	te]	,	Schädigung in %	
ierbi- zíd	Anwendungs-verhältnis	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	te s	+2 -51
SPTC	0,672	467	0,5	Mais	O margar 4 margar 7	75 M
SPTC	0,672	468	0,5	Mais	м € о о 9	80 M
EPTC	0,672	469	0,5	Mais	10 V	80 M
PTC	0,672	470	0,5	Mais	M 09	75 M
SPTC	0,672	471	0,5	Mais	50 V, M	65 W
SPTC	0,672	472	0,5	Mais	20 V,M	25 M
SPTC	0,672	473	0,5	Mais	70 ™	80 M
EPTC	0,672	474	5.0	Mais	. w ol	80 M
EPTC	0,672	475	0,5	Mais	20 V, M	70 M
SPTC	0,672	476	0,5	Mais	10 Ф	75 M
EPTC	0,672	477	0,5	Mais	30 V,M	80 M
SPTC	0,672	478	0,5	Mais.	20 V,M	80 M
RPTC	0,672	479	0,5	Mais	м ⁴ л · 09	80 M
EPTC	0,672	480	O , U	Mais	To V ₂ M	M 08
EPTC	0,672	481	. 0,5	Mais	_ M oL	80 M
EPTC	0,672	482	0,5	Mais	М, Ф О О О	80 M

- 347 -148

Unbehandeltes Saatgut in der benach-2 Wochen 4 Wochen 98 M 呂 × Ħ 2 20 85 75 barten Reihe ۷,٩ 80 M 75 ki 77 M 80 M 40 M 55 蓝 95 ₩ 98 斌 . 08 80 2 2 0 Behandeltes Saat-4 Wochen Tabelle III (Fortsetzung): N_e ∇ Þ. W, M 50 V,M 30 V Schädigung in . 52 2 2 Wochen gut 50 V, M 40 V.M M. V O7 30 V, M ₩ 09 70 M 10 V 50 E . 02 2 9 10 20 20 Getreideart Mais Behandlungs-% сем./сем. verhältnis 0,5 0,5 0,5 0,5 0,5 0,5 Gegenmittel Anwendungs- Verbindung 483 484 488 489 490 485 486 487 492 493 494 495 496 498 491 497 verhältnis 8/m² 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC EPTC EPTC EPTC EPTC EPTC EPTC EPTC EPTC EPTC BPTC EPTC EPTC EPTC EPTC BPTC

Tabelle III (Fortsetzung):

		Gegenmittel	ttel		Sohëdigung in %	1g in %			
Herbi- zid		Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	tes Saat-	Unbehandeltes Saa gut in der benach barten Reihe	ltes Saat- ir benach- ihe	
	g/m				2 Wochen	4 Wochen	2 Wochen	4 Wochen	
EPTC	0,672	499	0,5	Mais	M 09		₩ 86		
EPTC	0,672	500	0,5	Mais	TO V	20 V	78 M	. m L6	
EPTC	0,672	501	. 0,5	Mais	TO V	20 V	50 座	02	
EPTC	0,672	502	0,5	Mais	100 K	100 K	55 M	图 09	
EPTC	0,672	503	0,5	Mais	100 K	100 K	30 M	₩ 04	
EPTC	0,672	504	0,5	Mais	0	0	5 E	30 M	
EPTC	0,672	505	0,5	Mais	30 V	30 V	0	0	
EPTC	0,672	909	0,5	Mais	10 V	25 M	58 M		
EPTC	0,672	507	0,5	Mais	20 V,M		M 69	·	
EPTC	0,672	508	0,5	Mais	TO V		78 M		
EPTC	0,672	509	. 6,5	Mais	40 V,M		M.68		
EPTC	0,672	510	0,5	Mais	0	0	84 延	94	
EPTC	0,672	511	0,5	Mais	100 K	100 K	45 W	50 M	
EPTC	0,672	515	0,5	Mais	100 K	100 K	0	0	
EPTC	0,672	513	0,5	Mais	100 K	100 K	O	o .	

			Tabelle III (Fortsetzung)	I (Forts	etzung):	
		Gegenmittel	tel		Schädigung in %	
Herbizid	Anwendungs- verhältnis	Verbin- dung Nr.	Behandlungs- verbältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehandeltes Saatgut in der be- nachbarten Reihe
	æ/æ				2 Wochen 4 Wochen	2 Wochen 4 Wochen 2 Wochen 4 Wochen
EPTC	0,672	ı		Mais	M 99	
S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	0,112	9	0,25	Weizen	5 V	·
S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	- 0,112	9	0,5	Weizen	20 V	
S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	- 0,112		1	Weizen	M 06	
EPTC +	0,672 +					•
2-Chlor-4-äthyl- amino-6-isopropyl- amino-s-triazin	. 0,112	9	1,0	Wais	0	• •
EPTC +	0,672 +					
2-Chlor-4-äthyl- amino-6-isopropyl- amino-s-triazin	- 0,112	9	0,01	Mais	0	

Tabelle III (Fortsetzung):

		Gegenmittel	te]		Schädigung in %	in %		
Herbizid	Anwendungs- verhältnis	Verbin- dung	Behandlungs- verhältnis	Getrei-	Behandeltes gut	န လူ အရာ (၁)	Unbehandeltes Saatgut in de nachbarten Re	eltes in der be- en Reibe
	8/m ²	Nr.	% Gew./Gew.	deart	2 wochen 4	Wochen	2 Wochen 4	4 Wochen
EPTC +	0,672 +							
2-Chlor-4,6-bis (Äthylamino)-s- triazin	0,112	· · ·	1,0	Mais	0	0	0	. 0
EPTC +	0,672 +							
2-Chlor-4,6-bis äthylamino)-s- triazin	0,112	9	0,01	Mais	0	0		
EPTC +	0,672 +						٠	
2(4-Chlor-6- äthylamino-s- triazin-2-yl-					· ·			
<pre>' amino)-2-methyl- propionitril</pre>	0,112	9	1,0	Mais	0	0	Ö	
EPTC +	0,672 +	•	·					
2(4-chlor-6- äthylamino-s- +risgin-2-rl-	•		· · · · · · · · · · · · · · · · · · ·					
amino)-2-methyl- propionitril	0,112	•	0,01	Mais	0			•

Tabelle III (Fortsetzung):

		Gegenmittel	tel		Schädigung in %	<i>F</i> 0		-
Herbizid	Anwendungs-verhältnis g/m^2	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Sag gut	Saat- Un gu ba	Unbehandeltes gut in der ben barten Reihe	deltes Saat- der benach- Reihe
EPTC +	0.672 ±				2 Wochen 4 Wochen	0	Wochen 4	Tochen
2-Chlor-4-cyclo- propylamino-6-iso- propylamino-s- triazin	0,112	. 9	1,0	Mais	0		c	c
EPTC +	0,672 +)	o
2-Chlor-4-cyclo- propylamino-6-iso- propylamino-s-	ı							
triazin	0,112	9	0,01	Mais	0			
EPTC + 2,4-D	0,672 + 0,112	9	1,0	Mais	0			C
EPTC + 2,4-D	0,672 + 0,112	9	0,01	Mais	0		ı	
S-Propyldipro- pylthiol-carbamat + 0,672 + 2-Chlor-4-äthyl-	+ 0,672 +			•				
amino-s-triazin	- 0,112	9	1,0	Mais	0	0		0
S-Propyldipropyl- thiolcarbamat	0,672	1	i	Mais	a 90 kg			

Tabelle III (Fortsetzung):

				• .		•		•	
	•		- 1	52 - 1	53				·
lbehandeltes latgut in der lachbarten Reihe	Wochen 4 Wochen	:	0		0		0		. 0
Saat.	4 Wochen	·	0		0	•	0		0
	2 W		O 8.		o		ه. ه		٥
G e t			Mai		Mai		Mai		Mais
Behandlungs verhältnis % Gew./Gew.			0,01		1,0		0,01		1,0
Verbin- dung Nr.			9		9		, ,	_	••••••••••••••••••••••••••••••••••••
awendungs- erhältnis /m²		0,672 +	0,112	0,672 +	0,112	0,672	0,112	0,672 +	hyl- 0,112
Herbizid An ve 8/		S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-äthyl-	amino-6-isopropyl- amino-s-triazin	S-Propyldipropyl- thiolcarbamet + 2-chlor-4,6-bis	(āthylamino)-s- triazin	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4,6-bis	(äthylamino)-s- triazin	S-Propyldipropyl- thiolcarbamat + 2(4-Chlor-6-äthyl-	amino-s-triazin- 2-yl-amino)-2-methyl- propionitril
	Anwendungs- Verbin- Behandlungs - Behandeltes Saat- Unbehandelt verhältnis dung verhältnis Getrei- gut Saatgut in g/m^2 Nr. % Gew./Gew. deart	Anwendungs-Verbin-Behandlungs-verhältnis dung verhältnis Getrei-gut Saatgut in d g/m² Nr. % Gew./Gew. deart 2 Wochen 4 Wochen 2 Wochen 4	Anwendungs- Verbin- Behandlungs - Behandeltes Saat- Unbehandelte verhältnis dung verhältnis getrei- gut Saatgut in d Saatgut in d Saatgut in d benachbarten bamat + 0,672 + 4-äthyl-	Anwendungs- Verbin- Behandlungs - Seatch Unbehandeltes Saat- Verbings verhältnis dung verhältnis dung verhältnis getrei- gut Saatgut in deart Saat Voohen 4 Wochen 2 Woohen 4 Voohen 5 Voohen 4 Voohen 5 Voohen 4 Voohen 5 Voohen 4 Voohen 5 Voohen 5 Voohen 5 Voohen 6 Voohen 7 Voohen 8 Voohen 7	Anwendungs- Verbin- Behandlungs - Saatu- Unbehandeltes Saat- Unbehandeltes Saatureltes Saa	Anwendungs- Verbin- Behandlungs - Behandlungs g/m^2 dung verhältnis dung g/m^2 g	Anwendungs- Verbin- Behandlungs - Seat- Inbehandeltes seat- verbiltnis dung verbiltnis dung verbiltnis dung verbiltnis dung verbiltnis dung verbiltnis dung verbiltnis derr get Seat- Inbehandeltes Seat- Seatut in der Seatut in der bamat + 0.672 + 4-äthyl- triazin 0,112 6 0,01 Mais 0 0 0 0 0 0 0 dipropyl- bamat + 0.672 + 4.6-bis ino)-s- 0,112 6 1,0 Mais 0 0 0 0 0 0 0 dipropyl- bamat + 0.672 + 4.6-bis ino)-s- 4.6-bis	### Anwendungs - Verbin behandlungs - Verbin der gut	Anwendungs- Verbin- Behandlungs - Saat- Unbehandeltes Sat- Vorbaltais dung g/m²

Tabelle III (Fortsetzung):

	be- e a				
	es der Reih Yoch		C)	. •
	Unbehandelte Saatgut in e nachbarten 1		c		0
ng in %	tes Saat-	0	Ó	,	0 0
Schädigung in %	Behandel gut 2 Wochen	0	0		0 0
·	Getrei- deart	Mais	Wais		Wais Mais
	Behandlungs- verhältnis % Gew./Gew.	. 0,01	1,0		0,01
Gegenmittel	Verbin- dung Nr.	9	9		v v
90	Anwendungs- verhältnis g/m ²	0,672 +	0,572 +	t t	0,112 0,672 + 0,112
	A Herbizid v	S-Propyldipropyl- thiolcarbamat + 2(4-Chlor-6-äthyl- amino-s-triazin- 2-yl-amino)-2- methylpropioni- tril	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-cyclo- propylamino-6- isopropylamino- s-triazin	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-cyclo- propylamino-6-iso- propylamino-s-	triazin S-Propyldipropyl- thiolcarbamat + 2,4-D

- 154 -155

Tabelle III (Fortsetzung):

		•		ハウン				
	tes der be- neihe						<u>.</u>	
	ltes n der n meib		0			0		•
	ibehandel ietzut in ichbarten			• .	٠.			
	Unbehandeltes Saatzut in de nachbarten ne	5 5 5 1	Ó			. 0		
	Saat-				,		-	
in %			0	0		. 0		o _
gun	andelte gut			٠,			-	
Schädigung in	Behandeltes gut		. 0	0		O		0
	Getrei- deart	Mais	Mais	Mais	•	Mais	. •	Ø
		Ma	Ma	Ma		Ma		Mais
l	ngs- is ew.				•	•		
	Behandlungs- verhältnis % Gew./Gew.	0,01	0,1	0,01		1,0	• • • • • • • • • • • • • • • • • • • •	0,01
Gegenmittel	Verbin- dung Mr.		·					•
Genm		9	9	. 9		- 9		. • •
မြ	mgs- mis	+			+		+	
	Anwendungs- verhältnis g/m ²	0,672 0,112	0,672	0,672	0,896	0,112	0,896	0,112
	An							
		dipr	dipr(- +	dipro-	iiso. 01- 4-	no-6. lamin n	iiso. ol-	4- no-6. lami1
	Herbizid	S-Propyldipro- pylthiol- carbamat + 2,4 D	S-Propyldipro- pylthiol- carbamat +	S-Propyldipro- pylthiol- carbamat	S-Athyldiiso- butylthiol- carbamat + 2-Chlor-4-	lami ropy iazi	S-Äthyldiiso- butylthiol- carbamat +	2-Chlor-4- äthylamino-6- isopropylamino s-triazin
	Herb	S-Propyldi pylthiol- carbamat + 2,4 D	S-Pr pylt carb	S-Pr pylt carb	S-Athyldiis butylthiol- carbamat + 2-Chlor-4-	äthylamino-6- isopropylamino- s-triazin	S-Ät buty carb	2-Chlor-4- äthylamino-6- isopropylaminc s-triazin
				•	•			•

Tabelle III (Fortsetzung):

			- 255 - 156		
	deltes t in der be- cten Reihe		,		
	Unbehandeltes Saatgut in de nachbarten Re	. 0		0	
Schädigung in %	Behandeltes Saat- gut Z Wochen 4 Wochen	4	0	0	o
Schäd	Behandel gut	1	0	0	0
	Getrei- deart	Mais	Mais	ŭ ais	Mais
ttel	Verbin- Behandlungs- dung verhältnis Nr. % Gew./Gew.	1,0	0,01	1,0	0,01
Gegenmit1	Verbin- dung Nr.	. 9	9	9	9
8	Anwendungs- verhältnis g/m ²	0,896 +	0,896+	1- 0,896 + 1- ril 0,112	1- 0,896+ 1- 2-y1- pro- 0,112
	A. Herbizid v	S-Äthyldiisobu- tylthiol- carbamat + 2-Chlor-4,6-bis (äthylamino)-s- triazin	S-Äthyldiisobutyl- thiolcarbamat + 2-Chlor-4,6-bis (äthylamino)-s- triazin	S-Athyldiisobutyl- thiolearbamat + 0,896 + 2(4-Chlor-6-äthyl- amino-s-triazin- 2-yl-amino)-2- methyl-propionitril 0,112	S-Äthyldiisobutyl- thiolcarbamat + 2(4-Chlor-6-äthyl- amino-s-triazin-2-yl- amino)-2-methyl-pro- pionitril

Tabelle III (Fortsetzung):

	9	Gegenmittel		Μ	Schädigung in	7%		
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	Saat	Unbehandeltes Saatgut in de benachbarten Reihe	altes in der rten
					2 Wochen	4 Wochen		4 Wochen
S-Athyldiisobutyl- thiolcarbamat + 2-Chlor-4-cyclo-	1- 0,896 +)
propylamino-6-iso- propylamino-s-tri- azin	i- 0,112		1,0	Mais	. 0	0	0	0
S-Athyldiisobutyl- thiol-carbamat +		 •						
2-Chlor-4-cyclo- propylamino-6-iso- propylamino-s-			Ç) ا ع	c	c		
triazin S-Athyldiisobutyl-		٥ .	10.0	3 T 12 T	D	· •		
thiolcarbamat + 2,4-D	0,896 + 0,112	9	1,0	Mais	0	0	.o	
S-Äthyldiisobutyl- thiolcarbamat + 2,4-D	1- 0,896 + 0,112	. 9	0,01	Mais	0	0		
S-Athyldiisobutyl- thiolcarbamat	1- 0,896	9	1,0	Mais	0		0	. 0

Tabelle III (Fortsetzung):

•	OI	Gegenmittel	ר		Schädigung in %	~ 0		
Herbizid	Anwendungs-verhältnis g/m^2	. Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut		Unbehandeltes Saatgut in der benachbarten	eltes in der rten
S-Athyldiso.					2 Wochen 4 Wochen	• •	Keihe 2 Wochen	Reine 2 Wochen 4 Wochen
butylthiol- carbamat	σ	.	0,01	Mais	0		0	C
S-2,3,3-Tri- chlorallyl-di-		٠					1)
isopropyl-thiol carbamat	ω	9	1,0	Mais	0		,0	
S-2,3,5-Trichlor- allyldiisopropyl-	유 - 단							
thiolcarbamat	Φ	9	10,0	Mais	0		0	0
S-Athyldiiso- butylthiol -								
carbamat	89	ı	ı	Mais	20 M			
S-2,3,5-Trichlor- allyl-diisopro-								
pyl-tnloicarbamat	at 8	ŧ	ı	Mais	30 V			
EPTC = S- V = Ve	= S-Athyl-N,N-di = Verkümmerung; - Wighilding:	propyl thi	propylthiocarbamat;					

單其百

= MiBbildung; = Keimhemmung; = Blattverbrennung (leaf burn).

Die erfindungsgemäß eingesetzten Gegenmittel können in jeder geeigneten Form angewandt werden. So können sie beispielsweise zu emulgierbaren Flüssigkeiten, emulgierbaren Konzentraten, zu einer Flüssigkeit, zu einem benetzbaren Pulver, zu Staubmitteln, zu einem Granulat oder zu einer anderen zweckmäßigen Form verarbeitet werden. Vorzugsweise die Gegenmittel den Thiolcarbamaten beigemischt und vor oder nach dem Einsäen der Saat in den Boden eingearbeitet. Doch kann natürlich auch zuerst das Thiolcarbamat-Herbizid und danach das Gegenmittel in den Boden eingearbeitet werden. Des weiteren kann das Saatgut mit dem Gegenmittel behandelt und im Boden eingesät werden, der entweder bereits mit Herbizid versehen oder nicht damit behandelt wurde und anschließend einer Herbizid-Behandlung unterzogen wird. Durch die Art und Weise, wie das Gegenmittel zugesetzt wird, wird die herbizide Wirksamkeit der Carbamat-Verbindungen nicht beeinträchtigt.

Die Menge des Gegenmittels kann zwischen etwa 0,0001 und etwa 30 GeY-Teilen Gew.-Teil Thiolcarbamat-Herbizid schwanken, wird jedoch gewöhnlich exakt danach ermittelt, welches Verhältnis sich im Hinblick auf die wirksamste Quantität als wirtschaftlich erweist.

In den Ansprüchen der vorliegenden Anmeldung soll der Ausdruck "wirksame herbizide Verbindung" die wirksamen Thiolcarbamate als solche oder die Thiolcarbamate umfassen, die
mit anderen wirksamen Verbindungen, wie z.B. den s-Triazinen und der 2,4-Dichlorphenoxyessigsäure oder den wirksamen Acetaniliden und dergl. vermischt sind. Außerdem ist
die wirksame herbizide Verbindung von der als Gegenmittel
eingesetzten Verbindung verschieden.

Die Klassen der vorliegend beschriebenen und erläuterten herbiziden Mittel sind als wirksame, solche Wirkung aufweisende Herbizide charakterisiert. Der Grad dieser herbiziden Wirkung ist bei den spezifischen Verbindungen und Kombinationen spezifischer Verbindungen innerhalb der Klassen unterschiedlich. Der Wirkungsgrad ist auch bei den einzelnen Pflanzensorten, für die eine spezifische herbizide Verbindung oder Kombination verwandt werden kann, bis zu einem gewissen Grade unterschiedlich. Eine spezifische herbizide Verbindung oder Kombination zur Bekämpfung unerwünschter Pflanzensorten läßt sich also leicht auswählen. Erfindungsgemäß läßt sich die Schädigung einer gewünschten Nutzpflanze (crop species) in Gegenwart einer spezifischen herbiziden Verbindung oder Kombination verhindern. Durch die spezifischen, in den Beispielen verwandten Nutzpflanzen sollen die Nutzpflanzen, die mit diesem Verfahren geschützt werden können, nicht beschränkt werden.

Die im erfindungsgemäßen Verfahren verwädten herbiziden Verbindungen sind wirksame Herbizide allgemeiner Art. D.h. die Mittel dieser Klasse weisen gegenüber einem großen Bereich von Planzensorten eine herbizide Wirksamkeit auf, ohne daß ein Unterschied zwischen erwünschten oder unerwünschten Pflanzensorten gemacht wird. Zur Bekämpfung des Pflanzenwuchses wird eine herbizid wirksame Menge der hier beschriebenen herbiziden Verbindungen auf die Fläche oder dort, wo eine Bekämpfung von Pflanzen erwünscht ist, aufgebracht.

Unter "Herbizid" versteht man vorliegend eine Verbindung,

mit der Pflanzenwachstum bekämpft oder modifiziert wird. Zu solchen Formen der Bekämpfung oder Modifizierung gehören alle Abweichungen von der natürlichen Entwicklung, z.B. Vernichtung, Entwicklungsverzögerung, Entblätterung, Austrocknung, Regulierung, Verkümmerung, Bestockung (tillering), Stimulierung, Zwergwuchs und dergl. Unter "Pflanzen" versteht man keimende Samen, auflaufende Sämlinge und vorhandenen Pflanzenwuchs einschließlich der Wurzeln und der über dem Boden befindlichen Teile.

Die in den Tabellen genannten Herbizide wurden in solchen Mengen verwandt, mit denen der unerwünschte Pflanzen-wuchs wirksam bekämpft wird. Die Mengen liegen innerhalb des vom Hersteller empfohlenen Bereichs. Die Unkrautbekämpfung ist aus diesem Grunde innerhalb der gewünschten Menge in jedem Fall kommerziell annehmbar.

In der vorstehenden Beschreibung der als Gegenmittel eingesetzten Verbindungen gilt folgendes für die verschiedenen Substituentengruppen: Zu den Alkylresten gehören, falls nichts anderes vorgesehen ist, alle gerad- oder verzweigtkettigen Reste mit 1 bis 20 Kohlenstoffatomen, zu den Alkenylresten, falls nichts anderes vorgesehen ist, alle gerad- oder verzweigtkettigen, mindestens eine olefinische Doppelbindung aufweisenden Reste mit 2 bis 20, vorzugsweise 2 bis 12, Kohlenstoffatomen, und zu den Alkinylresten, falls nichts anderes vorgesehen ist, alle gerad- oder verzweigtkettigen, mindestens eine acetylenische Dreifachbindung aufweisenden Reste mit 2 bis 20, vorzugsweise 2 bis 12 Kohlenstoffatomen.

Patentansprüche:

1. Herbizides Mittel, gekennzeichnet durch einen Gehalt an einem herbiziden Wirkstoff und einem Gegenmittel der Formel

$$\begin{array}{c} 0 \\ \text{N} \\ \text{R-C-N} \end{array} \begin{array}{c} \text{R}_1 \\ \text{R}_2 \end{array}$$

in der R einen Halogenalkyl-, Halogenalkenyl-, Alkyl-, Alkenyl-, Cycloalkyl- oder einen Cycloalkylalkylrest, ein Halogenatom oder ein Wasserstoffatom, einen Carboalkoxy-, N-Alkenylcarbamylalkyl-, N-Alkenylcarbamyl-, N-Alkyl-Nalkinylcarbamyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkenylcarbamylalkoxyalkyl-, N-Alkyl-N-alkinylcarbamylalkoxyalkyl-, Alkinoxy-, Halogenalkoxy-, Thiocyanatoalkyl-, Alkenylaminoalkyl-, Alkylcarboalkyl-, Cyanoalkyl-, Cyanatoalkyl-, Alkenylaminosulfonoalkyl-, Alkylthioalkyl-, Halogenalkylcarbonyloxyalkyl-, Alkoxycarboalkyl-, Halogenalkenylcarbonyloxyalkyl-, Hydroxyhalogenalkyloxyalkyl-, Hydroxyalkylcarboalkoxyalkyl-, Hydroxyalkyl-, Alkoxysulfonoalkyl-, Furyl-, Thienyl-, Alkyldithiolenyl-, Thienalkyl- oder einen Phenylrest oder einen durch Halogenatome, Alkyl-, Halogenalkyl-, Alkoxy-, Carbamyl- oder Nitroreste, Carbonsäurereste und deren Salze oder Halogenalkylcarbamylreste substituierten Phenylrest, einen Phenylalkyl-, Phenylhalogenalkyl- oder einen Phenylalkenylrest oder einen durch Halogenatome, Alkyl- oder Alkoxyreste substituierten Phenylalkenylrest, einen Halogenphenoxy-, Phenylalkoxy-, Phenylalkylcarboxyalkyl-, Phenylcycloalkyl-, Halogenphenylalkenoxy-, Halogenthiophenylalkyl-, Halogenphenoxyalkyl-,

Bicycloalkyl-, Alkenylcarbamylpyridinyl-, Alkinylcarbamylpyridinyl-, Dialkenylcarbamylbicycloalkenyl- oder einen Alkinylcarbamylbicycloalkenylrest bedeutet, R_1 und R_2 gleich oder verschieden sein und jeweils Alkenyl- oder Halogenalkenylreste, Wasserstoffatome, Alkyl-, Halogenalkyl-, Alkinyl-, Cyanoalkyl-, Hydroxyalkyl-, Hydroxyhalogenalkyl-, Halogenalkylcarboxyalkyl-, Alkylcarboxyalkyl-, Alkoxycarboxyalkyl-, Thioalkylcarboxyalkyl-, Alkoxycarboalkyl-, Alkylcarbamyloxyalkyl-, Amino-, Formyl-, Halogenalkyl-N-alkylamido-, Halogenalkylamido-, Halogenalkylamidoalkyl-, Halogenalkyl-N-alkylamidoalkyl-, Halogenalkylamidoalkenyl-, Alkylimino-, Cycloalkyl-, Alkylcycloalkyl-, Alkoxyalkyl-, Alkylsulfonyloxyalkyl-, Mercaptealkyl-, Alkylaminoalkyl-, Alkoxycarboalkenyl-, Halogenalkylcarbonyl-, Alkylcarbonyl-, Alkenylcarbamyloxyalkyl-, Cycloalkylcarbamyloxyalkyl-, Alkoxycarbonyl-, Halogenalkoxycarbonyl-, Halogenphenylcarbamyloxyalkyl-, Cycloalkenyl- oder Phenylreste oder durch Alkylreste, Halogenatome, Halogenalkyl-, Alkoxy-, Halogenalkylamido-, Phthalamido-, Hydroxy-, Alkylcarbamyloxy-, Alkenylcarbamyloxy-, Alkylamido-, Halogenalkylamido- oder Alkylcarboalkenylreste substituierte Phenylreste, Phenylsulfonyloder Phenylalkylreste oder durch Halogenatome, Alkyl-, Dioxyalkylen- oder Halogenphenoxyalkylamidoalkylreste substituierte Phenylalkylreste, Alkylthiodiazolyl-, Piperidylalkyl-, Thiazolyl-, Alkylthiazolyl-, Benzothiazolyl-, Halogenbenzothiazolyl-, Alkylthiazolyl-, Bonzothiazolyl-, Halogenbensothiazolyl-, Furylalkyl-, Pyridyl-, Alkylpyridyl-, Alkyloxazolyl-, Tetrahydrofurylalkyl-, 3-Cyano-4,5-polyalkylen-thienyl-, α-Halogenalkylacetamidophenylalkyl-, α-Halogenalkylacetamidonitrophenylalkyl-, α-Halogenalkylacetamidohalogenphenylalkyl-, oder Cyano-

alkenylreste bedeuten können oder auch R_1 und R_2 zusammen mit dem Stickstoffatom einen Piperidinyl-, Alkylpiperidinyl-, Alkyltetrahydropyridyl-, Morpholyl-, Alkylmorpholyl-, Azobicyclononyl-, Benzoalkylpyrrolidinyl-, Oxazolidyl-, Alkyloxazolidyl-, Perhydrochinolyl- oder Alkylaminoalkenylrest bilden können, wobei R_2 kein Wasserstoffatom oder Halogenphenylrest ist, wenn R_1 ein Wasserstoffatom darstellt.

- 2. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R ein Wasserstoffatom, ein Halogenatom, einen Alkyl-, Halogenalkyl-, Cycloalkyl-, Cycloalkylalkyl-, Alkenyl-, Halogenalkenyl-, Halogenalkoxy-, Alkinoxy-, Hydroxyalkyl-, Alkylthioalkyl- oder einen Hydroxyhalogenalkoxyalkylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Wasserstoffatome, Alkyl-, Halogenalkyl-, Alkenyl-, Halogenalkenyl-, Alkinyl-, Hydroxy-alkyl-, Hydroxyhalogenalkyl-, Cycloalkyl-, Alkylcycloalkyl-, Alkoxyalkyl- oder Cycloalkenylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 3. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen Halogenalkylrest bedeutet und R₁ und R₂ zusammen mit dem Stickstoffatom einen Piperidinyl-, Alkylpiperidinyl-, Alkyltetrahydropyridyl-, Morpholyl-, Alkylmorpholyl-, Azabicyclononyl-, Benzoalkylpyrrolidinyl-, Oxazolidyl-, Alkyloxazolidyl-, Perhydrochinolyl oder einen Alkylaminoalkenylrest bilden können.

A65

- 4. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen Phenylrest oder einen durch Halogenatome, Alkyl-, Halogenalkyl-, Alkoxy- oder Nitroreste, Carbonsäuren und deren Salze oder Carbamyl- oder Halogenalkyl-carbamylreste substituierten Phenylrest, einen Phenylalkenylrest oder einen durch Halogenalkyl- oder einen Phenylalkenylrest oder einen durch Halogenatome, Alkyl- oder Alkoxyreste substituierten Phenylalkenylrest, einen Halogenphenoxy-, Phenylalkoxy-, Phenylalkylcarboxyalkyl-, Phenylcycloalkyl-, Halogenphenylalkenoxy-, Halogenthiophenylalkyl- oder einen Halogenphenoxyalkylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Wasserstoffatome, Alkyl-, Alkenyl- oder Alkinylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 5. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen N-Alkenylcarbamylalkyl-, N-Alkenylcarbamyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkenylcarbamylalkoxyalkyl-, N-Alkyl-N-alkinylcarbamylalkoxyalkyl-, Dialkenylcarbamylbicycloalkenyl- oder einen Alkinylcarbamylbicycloalkenylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Wasserstoffatome, Alkyl-, Alkenyl- oder Alkinylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 6. Herbizides Mittel nach Anspruch 1, dadurch gekenn-zeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen Halogenalkylrest oder ein Wasserstoffatom bedeutet und R_1 und R_2 gleich oder verschieden sein und jeweils

Alkyl- oder Alkenylreste, Wasserstoffatome, Alkoxyalkyloder Phenylreste oder durch Alkylreste, Halogenatome, Halogenalkyl-, Alkoxy-, Halogenalkylamido-, Pthalamido-, Hydroxy-, Alkylcarbamyloxy-, Alkenylcarbamyloxy-, Alkylamido-, Halogenalkylamido oder Alkylcarboalkenylreste substituierte Phenylreste, Phenylalkanylreste oder durch Halogenatome, Alkyl-, Dioxyalkylen- oder Halogenphenoxy-alkylamidoalkylreste substituierte Phenylalkylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.

- 7. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen Halogenalkyl-, Alkyl-, Cyanoalkyl-, Thiocyanatoalkyl-, Cyanatoalkyl-, Cycloalkyl-, Bicycloalkyl-, Halogenphenyl-, Phenylalkenyl- oder einen Halogenphenyl-alkenylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Cyanoalkylreste, Wasserstoffatome, Alkenyl- oder Alkylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 8. Herbizides Mittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es als herbiziden Wirkstoff S-Äthyl-N,N-dipropylthiolcarbamat, S-Äthyldiisobutylthiol-carbamat, S-Propyldipropylthiolcarbamat, S-2,3,3-Trichlor-allyl-diisopropylthiolcarbamat, S-Äthylcyclohexyläthylthio-carbamat, 2-Chlor-2',6'-diäthyl-N-(methoxymethyl)-acet-anilid, S-Äthylhexahydro-1H-azepin-1-carbothioat, 2-Chlor-N-isopropylacetanilid, N,N-Diallyl-2-chloracetamid, S-4-Chlorbenzyldiäthylthiolcarbamat, 2-Chlor-4-äthylamino-6-isopropylamino-s-triazin, 2-Chlor-4,6-bis-(äthylamino)-s-triazin, 2(4-Chlor-6-äthylamino-s-triazin-2-yl-amino)-2-methylpropionitril, 2-Chlor-4-cyclopropylamino-6-isopropyl-

amino-s-triazin, 2,4-Dichlorphenoxyessigsäure oder deren Gemische enthält.

- 9. Herbizides Mittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Gegenmittel in einer Menge im Bereich von etwa 0,0001 bis etwa 30 Gew.-Teile pro Gew.-Teil des herbiziden Wirkstoffs vorliegt.
- 10. Verfahren zur Bekämpfung von Unkrautarten, dadurch gekennzeichnet, daß man dem Boden, in dem sich die Unkrautarten befinden, eine herbizid wirksame Menge des herbiziden Mittels nach einem der Ansprüche 1 bis 9 zusetzt.

Für: Stauffer Chemical Company New York, N.Y., V.St.A.

(Dr.H.J.Wolff)
Rechtsanwalt