Politechnika Warszawska

Zakład Podstaw Konstrukcji

Wprowadzenie do PTC Creo

mgr inż. Grzegorz Kamiński grzegorz kaminski@pw.edu.pl

14 lipca 2023 Wersja 1.2

Wprowadzenie do Mechanizmów

Mechanism Design Extension (MDX) umożliwia:

- * tworzenie par kinematycznych między komponentami,
- * analizę ruchu po wprowadzeniu napędów,
- * pomiar położenia, prędkości, przyśpieszenia wybranych punktów,
- * wykrywanie kolizji podczas ruchu,
- * generowanie trajektorii ruchu i przestrzeni roboczej.

O Name Comparison Find Now New Search Ontions items found

Status Geomet

MOCOWANIE ASM

☐ Include submodels

P<mark>olite</mark>chnika Warszawska

Proces tworzenia mechanizmu

Kolejne kroki projektowania:

- * stworzenie modelu złożenia,
- * weryfikacja mechanizmu,
- * dodanie napędu,
- * definicja analizy,
- * ocen<mark>a wyników,</mark>
- * wdroż<mark>en</mark>ie wyn<mark>ik</mark>ów.

Stworzenie modelu złożenia

- stworzenie połączeń między komponentami,
- * definicja ograniczeń ruchowych.

Weryfikacja mechanizmu

- * pole<mark>ce</mark>nie Re<mark>co</mark>nnect,
 - polecenie Drag Component and Bodies.

P<mark>olite</mark>chnika Warszawska

Dodanie napędu

Definicja napędu poprzez wybranie:

- * osi ruchu (ang. Motion axes),
- * geometrii komponentu.

Przygotowanie analizy

- * definicja położenia początkowego,
- * definic<mark>ja</mark> punkt<mark>ów</mark> pomi<mark>ar</mark>owych.

Pomiar:

- * położenia,
- * pręd<mark>ko</mark>ści,
- * przysp<mark>ie</mark>szenia.

Definicja analizy

- * analiza położeń (ang. Position analysis),
- * analiza kinematyczna (ang. Kinematics analysis).

Definicja danych:

- parametrów analizy (np. czasu),
- * blokada ruchu komponentów,
- * wybór napędów.

Politechnika Warszawska

Ocena wyników analizy

Definicja napędu poprzez wybranie:

- * playback,
- * szukanie kolizji,
- * anali<mark>za punktów pomiarowych,</mark>
- <mark>* tworzenie trajekt</mark>orii,
- * tworzenie przestrzeni ruchu komponentu.

Definicja połączeń

- elementy połączone na sztywno tworzą człon sztywny,
- * pary kinematyczne (Pin, Slider, ect.) rozdzielają człony,
- * podgląd istniejących połączeń (Zakładka mechanizm Mechanizm tree).

Definicja osi obrotu

Można wprowadzić:

- * Regen Value wartość położenia członu w chwili regeneracji złożenia, którą można stosować np. w family table, relacjach,
- Zero position ustawienie aktualnego położenia jako zerowego,
- * Minimum and Maximum Limits,
- * Dynamic Properties ustawienie współczynnika tarcia i odbicia (analizy dynamiczne).

Połaczenie Rigid

Można wprowadzić:

- * brak możliwości ruchu komponentu względem wcześniejszych komponentów,
- nie należy stosować więzu do łączenia wielu członów podzłożenia (utrata ruchomości),
- * ruchome podzłożenie traci możliwość ruchu przy wstawieniu do zlożenia głównego za pomocą tego więzu.

Połaczenie Pin

- * axis alignment definicja osi obrotu,
 - * coincident definicja blokady przesuwu,
- * rotation axis -- opcje osi obrotu.

Połaczenie Slider

- * axis alignment definicja osi przesuwu,
- * coincident definicja blokady obrotu,
- * translation axis -- opcje osi przesuwu.

Połaczenie Cylinder

- * axis alignment definicja osi obrotu i przesuwu,
- * rotation axis opcje osi obrotu,
- * translation axis -- opcje osi przesuwu.

Połaczenie Planar

- * planar definicja płaszczyzny ruchu,
- * translation axis 1 opcje osi przesuwu 1,
- * transla<mark>ti</mark>on axis 2 opc<mark>je</mark> osi przesuwu 2,
- * rotation axis opcje osi obrotu.

Połączenie Ball

- * point coincident -- Zgodność punktów,
- * brak op<mark>c</mark>ji wprowadzenia ogranic<mark>z</mark>eń osi obrotu.

Połączenie Weld

- związek między układami współrzędnych elementu wstawianego i złożenia docelowego,
- * odebranie wszystkich stopni swobody,
- * zachowanie ruchomości podzłożenia w złożeniu głównym.

Połączenie Bearing

- * point alignment -- punkt na linii, 🍙
- * translation axis -- definicja położenia względem bazy.

Połaczenie General

- * najbardziej ogólny typ połączenia,
- * jedno albo dwa ograniczenia na ruch,
- * liczba opcji definiujących osie ruchu zależy od wprowadzonych ograniczeń,
- * nie można stosować styczności, związku punkt na krzywej, związku punkt na powierzchnia krzywoliniowa.

Połaczenie Slot

- point alignment punkt na linii,
- slot axis opcje krzywej ruchu (definicja punktu startowego i końcowego).

Połączenie krzywkowe

- * dostępne z zakładki Mechanizmy,
- * tworzone pomiędzy elementami, które mają już zdefiniowane połączenia (dodatkowy więz),
- * definicja Cam1 and Cam2 (pracujące profile),
- * depth display settings (przy wyborze powierzchni płaskiej),
- * properties (enable liftoff możliwość odblokowania połączenia w czasie ruchu; współczynnik tarcia).

Połączenie krzywkowe

Uwagi:

- * ruch może być nierzeczywisty (np. tipping),
- * można połączyć z tylko jedną krzywką (duplikacja połączenia przy wielokrotnym, różnym zastosowaniu),
- * unikać połączenia podążania płaszczyzny po linii.

Połaczenie 3D Contact

- bazuje na właściwościach materiałowych elementów kontaktujących się ze sobą,
- definicja tarcia statycznego i kinematycznego.

Połaczenie Gear

Definicja przełożenia:

- * średnice podziałowe,
- * niezależna definicja.

Parametry koła zębatego:

- * pitch diameter,
- * pressure angle (kat przyporu),
- * helix angle ("skręcenie" koła),
- * bevel angle,
- * screw angle.

P<mark>olite</mark>chnika Warszawska

Połaczenie Belt

- Połączenie dla obracających się kół
 - * definicja ścieżki obiegania,
 - * definicja długości paska,
 - * elastyczność paska,
- Korzystając z polecenia "Create a part" można stworzyć fizyczną reprezentację (detal).

Połaczenie Belt

- * belt direction kierunek ruchu,
- * pull<mark>ey</mark> diame<mark>te</mark>r,
- * number of Wraps liczba oplotów,
- * belt length,
- belt plane wybór płaszczyzny definiującej symetrię,
- * flexibility iloczyn Modułu Younga i pola przekroju,
- * body definition definicja członu zawierającego koło napędowe.

P<mark>olite</mark>chnika Warszawska

Drag and Snapshot

- point drag,
- * body drag,
- snapshots,
- * constraints dodawanie i odejmowanie więzów,
- * advanced drag options –
 zaawansowane opcje (definicja
 wartości przesunięcia obrotu)
 dostępna z trybu Mechanism.

MOCOWANIE.ASM ☐ Include submodels Status Geometr O Name Comparison Welding O Property Find Now New Search Ontions items found E16/1: EILLET WELD ID 1701

Bibliografia

T. Kucharski. Mechanika ogólna: rozwiązywanie zagadnień z MATHCAD-em. Wydawnictwa Naukowo-Techniczne, 2015. isbn:

L. W. Kurmaz and O. L. Kurmaz. *Podstawy konstruowania węzłów i części maszyn: podręcznik konstruowania*. Samodzielna Sekcja "Wydawnictwo Politechniki Świetokrzyskiej", 2011. isbn: 9788388906343.

E. Lisowski. Integracja modelowania 3D, kinematyki i wytrzymałości w programie Creo Parametric. Wydawnictwo PK, 2013. isbn:

E. Mazanek, A. Dziurski, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Łożyska, sprzęgła i hamulce, przekładnie mechaniczne, tom 2. WNT. 2015. isbn: 9788393491360.

E. Mazanek, A. Dziurski, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Połączenia, sprężyny, zawory, wały maszynowe.

E. Winter. Using Pro/Weld in Creo 2.0.

