Lab1 back-propagation

資訊科學與工程研究所 313551079 張苙烜

1. Introduction

Lab1 目標是在不使用 TensorFlow 或是 PyTorch framework 下,使用 NumPy 和 Python 標準函式庫,實現一個具有兩層 hidden layers 的簡單 neuron network·並且需要完成 model 中 forward propagation 和 backpropagation 的功能·透過設定不同 epoch、learning rate、hidden layer unit numbers 和 activation function 訓練資料,並比較不同設定下的差異與 linear 和 XOR 這兩筆資料的訓練設計差別‧透過這項練習可以探討每個參數設定和 loss function 與 activation function 選用的差異性,更了解 backpropagation 中如何透過 gradient descent 去 update 權重,並且比較了 linear data 與 non-linear data 的訓練差異.

2. Implementation Details

A. Sigmoid function

Sigmoid function 是一種常見的 activation function,他可以將數字映射到 [0,1] 之間,是一個連續可微分的單調遞增函數.這個函數很適合用在二分類問題上,輸出可以看做機率分佈,在二分問題下以 0.5 作為判斷邊界·缺點是導數的最大值是 0.25,當網路層數較深時,梯度在反向傳播過程中會逐層縮小.其公式如下:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma'(x) = \frac{d}{dx} \sigma(x) = \sigma(x) (1 - \sigma(x))$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 5.0 - 7.5 - 10.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 0.0 - 2.5 - 0.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 0.0 - 2.5 - 0.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 0.0 - 2.5 - 0.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 2.5 - 0.0 - 2.5 - 0.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 7.5 - 7.5 - 0.0 - 2.5 - 0.0 - 2.5 - 0.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 7.5 - 0.0 - 2.5 - 0.0 - 2.5 - 0.0}^{1.0}$$

$$\int_{-10.0 - 7.5 - 7.5 - 0.0 - 2.5 - 0.0}^{1.0}$$

◆ 這邊實作方法與助教提供的參考相同

B. Neural network architecture

整個 NN 的架構我設定每層 hidden layer 有 10 個神經元,並且中間層可以選用 ReLU、sigmoid 或是 tanh 作為 activation function ,或是不選用 activation function 输出層則以 sigmoid 作為 activation function ·

在初始化架構中,需要先隨機初始化 weight 和 bias,之後進行 forward pass 計算預設結果,根據預測結果與 ground truth 透過 MSE 計算 loss 後對其透過 backward 計算每個節點的 gradient 後根據其設定的 learning rate 更新權重,直至準確率到達 100%或是 epoch 到達設定量.

這樣最後透過 sigmoid 的 a3 是一個 $0\sim1$ 之間的值,選用 0.5 最為邊界判斷,小於 0.5 label 為 0,反之 label 為 1,透過這樣一個設計即可很好的訓練和預測資料.

C. Backpropagation

Backpropagation 是此次 lab 的核心,主要概念為上述所提到的透過 loss function 計算 loss後,利用 gradient descent 來循環更新 W 和 b,而之所以稱作 backpropagation 是因為計算 gradient 的過程要由最後一層開始往前推·Backpropagation 基於 Chain Rule 反算,下面為反向推導的過程(這邊以 MSE 為例)

根據 gradient descent 我們需要知道 gradient 已更新 w 和 b

$$w = w - lr \cdot \frac{\partial L}{\partial w}$$
, $b = b - lr \cdot \frac{\partial L}{\partial b}$

首先根據 chain rule 為了計算 $\frac{\partial L}{\partial w_3} = \frac{\partial L}{\partial a_3} \cdot \frac{\partial a_3}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_3}$,要計算 $\frac{\partial L}{\partial a_3} = \frac{2}{m}(a_3 - y)$,

再來是
$$\frac{\partial a3}{\partial z3}$$
 ,已知 $a3=\sigma(z3)$ 因此 $\frac{\partial a3}{\partial z3}=a3(1-a3)$

最後是
$$\frac{\partial z3}{\partial w}$$
, $z3 = w3 \cdot a2 + b3$, $\frac{\partial z3}{\partial w3} = a2$

可以得知,
$$\frac{\partial L}{\partial z^3} = (a3-y)\sigma'(a3)$$
 省略常數項 $\frac{\partial L}{\partial w^3} = a2^T \cdot \frac{\partial L}{\partial z^3}$ 以此類推每一層

```
def backward(self,x,y):
   m = x.shape[0]
   dz3 = (self.a3 - y)*self.out_act.derivative(self.a3)
   dW3 = np.dot(self.a2.T,dz3)/m
   db3 = np.sum(dz3,axis=0,keepdims=True)/m
   dz2 = np.dot(dz3,self.W3.T)*self.act.derivative(self.a2)
   dW2 = np.dot(self.a1.T,dz2)/m
   db2 = np.sum(dz2,axis=0,keepdims=True)/m
   dz1 = np.dot(dz2,self.W2.T)*self.act.derivative(self.a1)
   dW1 = np.dot(x.T,dz1)/m
   db1 = np.sum(dz1,axis=0,keepdims=True)/m
   gradients = [dW1,db1,dW2,db2,dW3,db3]
   return gradients
          def update(self,gradients,learning_rate):
              self.W1 -= learning rate*gradients[0]
              self.b1 -= learning_rate*gradients[1]
              self.W2 -= learning_rate*gradients[2]
              self.b2 -= learning_rate*gradients[3]
              self.W3 -= learning_rate*gradients[4]
              self.b3 -= learning_rate*gradients[5]
```

◆ 最後根據 gradient update 參數

3. Experimental Results

A. Screenshot and comparison figure

超參設定: 2 × hidden layer(10), epoch 100000 (accuracy 到達 100% 提前停止), learning rate 0.001, output activation function sigmoid(hidden layer use ReLu), 下面分別顯示 linear 和 XOR 的結果

Linear training steps	Linear testing steps
epoch 4700 loss: 0.0562889909531398, acc: 0.9900 epoch 4800 loss: 0.0545770208369056, acc: 0.9900 epoch 4900 loss: 0.0530146813663937, acc: 0.9900 epoch 5000 loss: 0.0515673218788730, acc: 0.9900 epoch 5100 loss: 0.0502331715426095, acc: 0.9900 epoch 5200 loss: 0.0489965428957398, acc: 0.9900 epoch 5300 loss: 0.0448478118056776, acc: 0.9900 epoch 5400 loss: 0.0467683955412130, acc: 0.9900 epoch 5500 loss: 0.0457598576575927, acc: 0.9900 epoch 5600 loss: 0.0448131824228233, acc: 0.9900 epoch 5700 loss: 0.0439097619700750, acc: 0.9900 epoch 5800 loss: 0.0439504709701624, acc: 0.9900 epoch 5900 loss: 0.042305576578647, acc: 0.9900 Training stopped early at epoch 5959 with 100% accuracy	Iter89 Ground truth: 0.0 prediction: 0.27406 Iter90 Ground truth: 1.0 prediction: 0.80309 Iter91 Ground truth: 0.0 prediction: 0.49999 Iter92 Ground truth: 1.0 prediction: 0.58962 Iter93 Ground truth: 0.0 prediction: 0.04249 Iter94 Ground truth: 1.0 prediction: 0.86636 Iter95 Ground truth: 1.0 prediction: 0.98409 Iter96 Ground truth: 0.0 prediction: 0.10470 Iter97 Ground truth: 1.0 prediction: 0.83070 Iter98 Ground truth: 0.0 prediction: 0.40939 Iter99 Ground truth: 1.0 prediction: 0.68076 Iter100 Ground truth: 1.0 prediction: 0.94507 loss=0.04176 accuracy=100.00%
XOR training steps XOR testing steps	
epoch 5800 loss: 0.0449733987212019, acc: 0.9524 epoch 5900 loss: 0.0440890305410489, acc: 0.9524 epoch 6000 loss: 0.0432938024163580, acc: 0.9524 epoch 6100 loss: 0.0425003813172234, acc: 0.9524 epoch 6200 loss: 0.0417147422840187, acc: 0.9524 epoch 6300 loss: 0.0409451099259470, acc: 0.9524 epoch 6400 loss: 0.0409451099259470, acc: 0.9524 epoch 6500 loss: 0.0394553013780882, acc: 0.9524 epoch 6600 loss: 0.0387291733642781, acc: 0.9524 epoch 6600 loss: 0.0387291733642781, acc: 0.9524 epoch 6600 loss: 0.0387315308803435, acc: 0.9524 epoch 6900 loss: 0.0365713720127167, acc: 0.9524 Training stopped early at epoch 6900 with 100% accuracy	Iter10 Ground truth: 1.0 prediction: 0.60364 Iter11 Ground truth: 0.0 prediction: 0.16543 Iter12 Ground truth: 0.0 prediction: 0.16548 Iter13 Ground truth: 1.0 prediction: 0.50002 Iter14 Ground truth: 0.0 prediction: 0.16676 Iter15 Ground truth: 1.0 prediction: 0.88533 Iter16 Ground truth: 0.0 prediction: 0.17439 Iter17 Ground truth: 1.0 prediction: 0.98355 Iter18 Ground truth: 0.0 prediction: 0.18242 Iter19 Ground truth: 1.0 prediction: 0.99676 Iter20 Ground truth: 0.0 prediction: 0.19074 Iter21 Ground truth: 1.0 prediction: 0.99934 loss=0.03617 accuracy=100.00%

可以看出這兩個 data 最後都有成功收斂完成任務分類。

B. Show the accuracy of your prediction (40%) (achieve 90% accuracy) 由上表結果可以看出兩者準確率都可以到達 100%,雖然根據不同的超參數設定,不一定每次都能收斂到 100%,但依舊可以保有 90%以上的準確率觀察正確率可以發現在前面幾個 epochs 就可以收斂到一定的正確率,推測其可能停在 local minimum 後需要花一定的時間跳出 local minimum,有可能對於這項任務來說 0.01 的 learning rate 過大,或是 loss function 需要重新設計。

C. Learning curve (loss-epoch curve)

兩者的 loss function 都有穩定下降的趨勢,因此此 loss 設計符合訓練 data

D. Anything you want to present

嘗試中間 hidden layer units 改用 sigmoid 作為 activation function, 在 learning rate 設為 0.001 的設定下無法好好的收斂結果。Sigmoid 導函數最大為 0.25 的限制下,容易有梯度消失的問題,加上過小的學習率一直無法收斂到結果。調大學習率之後能提高收斂的機率,抑或是轉用 cross entropy 作為損失函數。

4. Discussion

A. Try different learning rates

以 1e5,1e4,0.001,0.01,0.1分別做測試,太快收斂或無法收斂都不是一個好的學習率,太快收斂可能會造成結果容易停滯在局部最優解,因此選用 0.001 作為最終學習率。

B. Try different numbers of hidden units

嘗試不同後大部分在迭代次數夠多之後都可以收斂到正確率,差別在於 loss 是否有穩定下降,以結果來看選擇 10~20 之間是較好的選擇。

C. Try without activation functions

5. Questions

- A. What is the purpose of activation functions? (6%) activation function 類似於人類大腦的激活電位,決定了訊號是否要傳遞到下一個神經元。在這裡的 activation function 選用 sigmoid 或是 ReLU 這類非線性的轉換除了上述的功能外,也讓訓練中可以輸出非線性的組合,不然原始沒有 activation function 下矩陣相乘的更新只能組合出線性結果,能夠解決更複雜的問題。
- B. What might happen if the learning rate is too large or too small? (7%)

學習率過大	雖然從上面的實驗結果看不出來,但學習率太大,權重
	更新幅度會過大,可能導致梯度下降時在損失函數的全
	局最優解中擺盪,不斷跳做最優解的位置,甚至會使結
	果發散。模型可能無法收斂,訓練過程不穩定
學習率過小	步伐太小更新權重速度太慢會導致模型收斂速度非常
	慢,甚至可能停滯在局部極小值或平坦區域,失去有效
	的動量,訓練效率低下

C. What is the purpose of weights and biases in a neural network? (7%)

weight	决定了每個 input feature 的重要性比重,可以將 input 映射到
	不同的 feature space。權重的大小和方向決定模型更注重什麼
	特徵,以梯度下降這個優化方式來說,預測輸出 weight 會和
	input 相乘,因此 weight 大大影響訓練結果
bias	讓預設的輸出可以透過 bias 平移,增加模型訓練的靈活性,
	這樣每個神經元也不會強制一定要通過原點。同時也避免了如
	果輸入很小,activation function 會沒辦法激活的問題。

6. Extra

A. Implement different optimizers. (2%)

這邊嘗試了改進版本的梯度下降優化法, momentum·引入動量概念, 使權重更新時考慮「過去的梯度影響」, 讓更新方向更加平滑、穩定·其公式如下

$$\begin{split} V_t &= \, \beta_{v_t-1} + (1-\beta) \nabla L \\ W &= W - lr \cdot V_t \end{split}$$

```
elif self.optimizer == 'momentum':
    self.v_W1 = self.beta * self.v_W1 + (1 - self.beta) * dW1
    self.v_b1 = self.beta * self.v_b1 + (1 - self.beta) * db1
    self.v_W2 = self.beta * self.v_W2 + (1 - self.beta) * dW2
    self.v_b2 = self.beta * self.v_b2 + (1 - self.beta) * db2
    self.v_W3 = self.beta * self.v_W3 + (1 - self.beta) * dW3
    self.v_b3 = self.beta * self.v_b3 + (1 - self.beta) * db3

self.W1 -= learning_rate * self.v_W1
    self.b1 -= learning_rate * self.v_b1
    self.W2 -= learning_rate * self.v_W2
    self.W3 -= learning_rate * self.v_b2
    self.W3 -= learning_rate * self.v_W3
    self.b3 -= learning_rate * self.v_b3
```


XOR data (lr = $0.01/\text{relu}/\beta = 0.9$)

從實驗結果可以觀察到,在學習率較小的情況下,momentum 確實能夠加速收斂,使模型更快達到較高的準確率。同時,在較複雜或困難的任務(如損失函數存在多個局部最優解,或梯度變化過於平緩的區段)中,momentum 透過累積動量,可以幫助模型突破局部最優解,並保持較為穩定的更新方向。在學習率足夠大的情況下,momentum 雖然仍能加速收斂,但對最終的準確率提升有限,因為主要影響的是訓練的速度,而非模型的最終能力。因此,momentum 的優勢主要體現在加速收斂和改善梯度更新的穩定性,而非顯著提高最終準確率

B. Implement different activation functions. (3%)

嘗試不同的 hidden layer unit activation function 在 XOR 的問題上,發現若 sigmoid 選用作為中間無法很好的厂收斂,推測因為 Sigmoid 的輸出範圍是 (0,1) 之間,導致梯度變得很小,影響學習效率,最後導致無法收斂且降低損失函數。

