Table F6. SNID templates.

SN	$t_{ m d}$ (d)	$t_{\rm ln} - t_{\rm d}$ (d)	$t_{\rm fd} - t_{\rm d}$ (d)	$t-t_{0,\ln} \ ext{(d)}$	References
1986L	2446711.1	-5.6	0.0	7,[27:33]	IAUC 4260, 1
1990E	2447937.62	-5.12	0.0	9,19	IAUC 4265, 2
.999br	2451280.9	-8.0	0.0	15,18,25,33	IAUC 7141, IAUC 7143, 3
.999em	2451480.94	-8.99	-1.43	[7:10],12,[14:16],21,26,29,31,35,39	IAUC 7294, 1, 4, 5
.999gi	2451480.94	-6.64	0.0	4,6,7,30,35,38	IAUC 7329, IAUC 7334, 5
-		-8.0		9,10,14	
.999go	2451535.7		0.0		IAUC 7337, 6
2000dc	2451765.8	-7.0	0.0	20	IAUC 7476, 7
2000dj	2451795.9	-10.413	0.0	23	IAUC 7490, IAUC 7491, 5
2000el	2451869.53	-33.83	-28.93	39	IAUC 7523, IAUC 7531, 6
2001X	2451968.3	-10.3	0.0	9,27,36	IAUC 7591, 5
2001do	2452135.7	-4.0	0.0	31,39	IAUC 7682, 7
2001fa	2452200.9	-5.0	0.0	[4:7],30,31	IAUC 7737, 7, 8
002an	2452297.02	-4.98	0.0	16,22,25	IAUC 7805, IAUC 7808, 5, 9
2002ce	2452375.378	-5.678	0.0	4	IAUC 7875, 6
2002gd^a	2452553.37	-4.09	-2.84	6,8,12,23,31,35,38	IAUC 7986, IAUC 7990, 1, 5
2003Z	2452669.2	-9.0	0.0	10,28,30	IAUC 8062, 5, 10
003bn	2452697.98	-6.48	-5.15	18,37	IAUC 8088, 1
003ej	2452779.8	-9.0	0.0	6,14,19	IAUC 8134, 1
2003hg	2452869.9	-9.0	0.0	8,32	IAUC 8184, 1, 9
2003hl	2452872.0	-9.0	0.0	12,33	IAUC 8184, 1, 5
2003iq	2452921.458	-2.988	0.0	9,16,21,29	IAUC 8219, 1, 5
2004ci	2453173.497	-4.597	-1.697	6	IAUC 8357, 6
2004er	2453273.9	-4.02	0.0	12	IAUC 8412, IAUC 8415, 1
2004et	2453275.5	-4.983	-4.017	9,20,24,30,35,38	IAUC 8413, 5, 11
2004et 2004fc	2453275.5	-4.983 -7.0	-4.017 -4.766		
				9,33	IAUC 8422, 1, 6
2004fx	2453316.94	-16.02	-10.01	19,31	IAUC 8431, 1, 6
2005ay	2453456.58	-7.459	0.0	7,8,19,23,25	IAUC 8500, IAUC 8502, 5, 8, 12
2005cs	2453550.407	-1.977	-0.997	4,5,9,11,[13:15],17,34,36	IAUC 8553, 5, 13, 14
2005dz	2453623.71	-7.91	0.0	6,20	IAUC 8598, 1, 9
2006Y	2453770.08	-6.99	0.0	26,32	IAUC 8668, 1
2006bc	2453819.15	-8.063	0.0	9	IAUC 8693, 1
2006bp	2453835.1	-1.423	-0.453	4,8,10,16,22,26,34	IAUC 8700, 15
2006it	2454009.67	-4.98	0.0	11,14	IAUC 8758, 1
2006iw	2454011.798	-2.061	0.0	19	CBET 663, 1, 16
2007hv	2454352.87	-10.37	0.0	7	CBET 1056, 8
2007il	2454353.95	-8.01	0.0	26	CBET 1062, 1
2007pk	2454414.81	-4.98	0.0	3,4,6,7,28,38	CBET 1129, 8, 17
2008bh	2454548.66	-10.09	0.0	13,38	CBET 1311, 1
2008br	2454564.265	-4.942	0.0	7,21,29,36	CBET 1332, 1
2008ho	2454796.61	-8.84	0.0	18,23	CBET 1587, 1
2008if	2454812.71	-9.98	0.0	11,[13:17],22,29	CBET 1619, 1
2008il	2454812.71	-4.95	0.0	3	CBET 1634, 1
2008in	2454827.29	-2.84	-2.34	5,6,8,9,29,32,38	CBET 1636, 1, 8, 18
2009ao	2454894.62	-8.0	0.0	28,34	CBET 1711, 1
2009bz	2454919.98	-7.95	0.0	9,23,27,36	CBET 1748, 1
2010id	2455455.83	-5.01	-1.087	4,16	CBET 2467, ATel 2862, 19
2012aw	2456003.36	-1.591	-0.011	[2:10],[12:15],24,29,40	CBET 3054, ATel 3996, 20
013am	2456373.138	-1.44	0.0	2,12,16,23,29	CBET 3440, 21, 22
2013by ^a	2456406.042	-3.17	-2.29	4,36	CBET 3506, 23
2013ej	2456498.95	-1.91	-1.325	4, [7:10], [12:14], [16:21], 23, 25, 26, 28, 35, 37, 39	CBET 3606, ATel 5237, SN Web ^b , 24, 25, 26, 27
2013 fs	2456572.96	-2.14	-1.223	[2:4], 6, 11, 18, 20, 22, 27, 29, 31, 32, 39	CBET 3671, 25, 28
2013hj	2456638.8	-3.1	0.0	9,19	CBET 3757, 25
2014G	2456672.074	-3.724	-0.963	3,4,10,14,17,26,37,39	CBET 3787, 29
LSQ14gv	2456674.8	-4.1	0.0	8	PESSTO SSDR2, 30
2014cx	2456902.97	-1.08	-0.07	8	ATel 6436, 25, 31
2014cy	2456900.5	-1.7	0.0	10	CBET 3964, 25, 30
2015bs	2456925.5	-10.0	0.0	22	32
ASAS14ha	2456910.79	-1.96	0.0	24,30,39	ATEL 6460, 25
· · · · · · · · · · · · · · · · · · ·	2 100010.10	-1.012	0.0	5,6,19,26,32	TNSTR 542, 33

Column 1: SN names. Column 2: discovery epochs. Column 3 and 4: last nondetection and first detection epochs, respectively, with respect to the discovery epoch. Column 5: Values are expressed with respect to the discovery epoch. Adjacent ages are listed in brackets. Column 6: references for data. a Explosion time constraint obtained through polynomial fit to pre-maximum VRI photometry.

"Explosion time constraint obtained through polynomial int to pre-maximum VRI photometry."

b*C. Feliciano report on the *Bright Supernova* website (http://www.rochestrastronomy.org/snimages/)*

References: (1) Gutiérrez et al. (2017); (2) Schmidt et al. (1993); (3) Pastorello et al. (2004); (4) Elmhamdi et al. (2003); (5) Faran et al. (2014a); (6) Shivvers et al. (2017); (7) Faran et al. (2014b); (8) Hicken et al. (2017); (9) Harutyunyan et al. (2008); (10) Spiro et al. (2014); (11) Sahu et al. (2006); (12) Gal-Yam et al. (2008); (13) Pastorello et al. (2009); (14) Pastorello et al. (2006); (15) Quimby et al. (2007); (16) Sako et al. (2018); (17) Inserra et al. (2013); (18) Roy et al. (2011); (19) Gal-Yam et al. (2011); (20) Dall'Ora et al. (2014); (21) Tomasella et al. (2018); (22) Zhang et al. (2014); (23) Valenti et al. (2015); (24) Valenti et al. (2014); (25) Childress et al. (2016); (26) Dhungana et al. (2016); (27) Yuan et al. (2016); (28) Yaron et al. (2018); (31) Hunga et al. (2018); (32) Anderson et al. (2018); (33) de Lagger et al. (2018) Terreran et al. (2016); (30) Valenti et al. (2016); (31) Huang et al. (2016); (32) Anderson et al. (2018); (33) de Jaeger et al. (2018).

2 Ó. Rodríguez et al.

REFERENCES

```
Anderson J. P., et al., 2018, Nature Astronomy, 2, 574
Childress M. J., et al., 2016, PASA, 33, e055
Dall'Ora M., et al., 2014, ApJ, 787, 139
Dhungana G., et al., 2016, ApJ, 822, 6
Elmhamdi A., et al., 2003, MNRAS, 338, 939
Faran T., et al., 2014a, MNRAS, 442, 844
Faran T., et al., 2014b, MNRAS, 445, 554
Gal-Yam A., et al., 2008, ApJ, 685, L117
Gal-Yam A., et al., 2011, ApJ, 736, 159
Gutiérrez C. P., et al., 2017, ApJ, 850, 89
 Harutyunyan A. H., et al., 2008, A&A, 488, 383
Hicken M., et al., 2017, ApJS, 233, 6
Huang F., et al., 2016, ApJ, 832, 139
Inserra C., et al., 2013, A&A, 555, A142
Pastorello A., et al., 2004, MNRAS, 347, 74
Pastorello A., et al., 2006, MNRAS, 370, 1752
Pastorello A., et al., 2009, MNRAS, 394, 2266
Quimby R. M., Wheeler J. C., Höflich P., Akerlof C. W., Brown
   P. J., Rykoff E. S., 2007, ApJ, 666, 1093
Roy R., et al., 2011, ApJ, 736, 76
Sahu D. K., Anupama G. C., Srividya S., Muneer S., 2006, MN-
   RAS, 372, 1315
Sako M., et al., 2018, PASP, 130, 064002
Schmidt B. P., et al., 1993, AJ, 105, 2236
Shivvers I., et al., 2017, PASP, 129, 054201
Spiro S., et al., 2014, MNRAS, 439, 2873
Terreran G., et al., 2016, MNRAS, 462, 137
Tomasella L., et al., 2018, MNRAS, 475, 1937
Valenti S., et al., 2014, MNRAS, 438, L101
Valenti S., et al., 2015, MNRAS, 448, 2608
Valenti S., et al., 2016, MNRAS, 459, 3939
Yaron O., et al., 2017, Nature Physics, 13, 510
Yuan F., et al., 2016, MNRAS, 461, 2003
Zhang J., et al., 2014, ApJ, 797, 5
de Jaeger T., et al., 2018, MNRAS, 478, 3776
```