
IS 4831: 2019

प्रशीतन के लिए इकाईयों एवं चिन्हों की सिफारिश

(पहला पुनरीक्षण)

Recommendation on Units and Symbols for Refrigeration

(First Revision)

ICS 01.060; 27.200

© BIS 2019

भारतीय मानक ब्यूरो

BUREAU OF INDIAN STANDARDS

मानक भवन, 9 बहादुरशाह ज़फर मार्ग, नई दिल्ली-110002 MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI-110002

www.bis.gov.in www.standardsbis.in

FOREWORD

This Indian Standard (First revision) was adopted by the Bureau of Indian Standards, after the draft finalized by the Refrigeration and Air Conditioning Sectional Committee had been approved by the Mechanical Engineering Division Council.

With a view to unifying the practice followed globally in regard to the symbols and units followed in refrigeration and air-conditioning trade, need has been felt to lay down recommendations on the principal quantities primarily used in the field of refrigeration and on their symbols and units of measurement.

This standard was first published in 1968. This revision has been contemplated with a view to align with the International practices and also to include all the units and symbols used globally in the area of refrigeration.

For convenience, certain fundamental quantities and their derivatives have been included which have already been dealt with in IS/ISO 80000-4: 2006 'Quantities and units — Part 4: Mechanics' and IS/ISO 80000-5: 2007 'Quantities and units — Part 5: Thermodynamics'.

The column for remarks in Table 1 provide definitions or explanations of quantities which are not given in IS/ISO 80000-4: 2006 and IS/ISO 80000-5: 2007.

The various quantities have been grouped in a logical order so as to facilitate their location by the users of this standard. In certain cases when the same symbol may have more than one meaning, a second symbol has been proposed. The units are separated into two sections, namely, units of the International System (SI) and units of other systems which are at present very widely used. In order to obtain the SI units which are equivalent to other units, conversion factors have been included in this standard.

India has changed to metric system of weights and measures. Although this standard gives both metric and FPS units, metric units shall be used (FPS units given in this standard are for information only).

The basic and the derived units of the SI system with their definitions are given in IS/ISO 80000-2: 2009 'Quantities and units: Part 2 Mathematical signs and symbols to be used in the natural sciences and technology'.

This standard is based on ISO 80000-1: 2009 'Quantities and units: Part 1 General', on the guidelines of SI units issued by the International Organization for Standardization.

The composition of the Committee responsible for the formulation of this standard is given in Annex A.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2:1960 'Rules for rounding off numerical values (*revised*)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

IS 4831: 2019

Indian Standard

RECOMMENDATION ON UNITS AND SYMBOLS FOR REFRIGERATION

(First Revision)

1 SCOPE

This standard prescribes the units and symbols used in refrigeration.

2 QUANTITIES, SYMBOLS, DIMENSIONS AND UNITS

2.1 The quantities, symbols, dimensions and units are given in Table 1.

2.2 The conversion factors given in Table 1 shall be used as multipliers for 'other units' to obtain SI units Example: 1 ft = 0.304 8 m exactly.

Sl No.	Quantity	Symbol	Name SI Unit	Symbol SI Unit	Name Other Unit	Symbol Other Unit	Conversion Factor	Definition and Remarks
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1.	Length	1	metre	m	foot	ft	0.304 8 exactly	-
					inch	in	0.025 4 exactly	-
2.	Area, Surface	A	square metre	m ²	square foot	ft ²	0.092 903 0	-
					square inch	in ²	$6.451 \ 6 \times 10^{-4} $ exactly	-
3.	Volume	V	cubic metre	m^3	cubic foot	ft ³	28.316 8 × 10 ⁻³	-
					cubic inch	in ³	16.387 1 × 10 ⁻⁶	-
4.	Mass	m	kilogram	kg	pound	lb	0.453 592 37	-
5.	Time	t	second	S	minute	min	60	-
					hour	h	3 600	-
6.	Frequency	f	hertz	Hz	-	-	-	Also called cycles per second
7.	Rotational speed	n	rev/s	-	revolution per minute	min ⁻¹	1/60	-
8.	Density (mass density)	ρ	kilogram per cubic metre	kg/m ³	pound per cubic foot	lb/ft ³	16.018 5	-
9.	Specific volume	v	cubic metre per kilogram	m³/kg	cubic foot per pound	ft ³ /lb	0.062 4	-
10.	Mass flow rate	$q_{ m m}$	kilogram per second	kg/s	pound per hour	lb/h	126 × 10 ⁻⁶	Fluid mass flowing in unit time
11.	Volume flow rate	$q_{ m v}$	cubic metre per second	m³/s	cubic foot per hour	ft ³ /h	7.86579×10^{-6}	Fluid volume flowing in unit time

IS 4831 : 2019

Table 1 — (Continued)

Sl No.	Quantity	Symbol	Name SI Unit	Symbol SI Unit	Name Other Unit	Symbol Other Unit	Conversion Factor	Definition and Remarks
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
12.	Thermodynamic or absolute temperature	Τ, Θ	kelvin	K	Rankine degree	°R	5/9	If t_c °C, t_F °F, T_K K, and T_R °R are referring to and one and same physical state, the figures t_c , t_F , T_K and T_R are evaluated as t_C =5/9(t_F -32) = T_K -273.15=5/9 T_R -273.15
13.	Customary temperature	t, θ	degree Celsius	°C	Fahrenheit degree	°F	$t_{\rm C} = 5/9(t_{\rm F} - 32)$	$t_C = T_K - 273.15$ $t_F = T_R - 459.67$
14.	Temperature difference	$\Delta t, \Delta \theta$ $\Delta T, \Delta \Theta$	kelvin	K	Fahrenheit degree	°F	5/9	The general conference of weights and measures has recommended that the world 'degree' or its abbreviation deg' should be used for temperature intervals or differences. The abbreviations K and °C are still often used.
15.	Coefficient of linear thermal expansion	α_1	per kelvin	K ⁻¹	per Fahrenheit degree	°F ⁻¹	5/9	$\alpha_l = 1/l dl/dt$
16.	Coefficient of volume expansion	$\alpha_{\rm v}$	per kelvin	K ⁻¹	per Fahrenheit degree	°F ⁻¹	9/5	$\alpha_{\rm v} = 1/{\rm v}({\rm dv}/{\rm dt})_{\rm p}$
17.	Coefficient of thermal pressure increase	β	per kelvin	K ⁻¹	per Fahrenheit degree	°F ⁻¹	9/5	$\beta = 1/p(dp/dt)_{v}$
18.	Coefficient of compressibility	χ	square metre per newton	m²/N	square inch per pound force	in ² /lb	1.450 37×10 ⁻⁴	$x_t = 1/v(dv/dp)_t$

Sl No.	Quantity	Symbol	Name SI Unit	Symbol SI Unit	Name Other Unit	Symbol Other Unit	Conversion Factor	Definition and Remarks
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
19.	Force	F	newton	N	dyne	dyn	10 ⁻⁵ exactly	-
					kilogram force	kgf	9.806 65 exactly	-
					pound force	lbf	4.448 22	-
20.	Pressure	p	pascal	Pa	bar	bar	10 ⁻⁵ exactly	1 bar = 1 hectopieze (hpz)
					kilogram force per square centimetre	kgf/cm ²	98 066.5 exactly	1 kgf/cm ² = technical atmosphere (at)
					normal atmosphere	atm	101 325 exactly	-
					pound force per square foot	lbf/ft²	47.880 3	,
					pound force per square inch	lbf/in ²	6 894.76	-
					millimetre of water	mm H ₂ O	9.806 65 exactly	-
					millimetre of mercury	mm Hg	133.322	1 mm Hg = 1 torr
					inch of water	in H ₂ O	249.089	-
					inch of mercury	in Hg	3 386.39	-
21.	Surface tension per metre	γ	newton	N/m	dyne per centimetre	dyn/cm	10 ⁻³ exactly	-
22.	Dynamic viscosity	μ	newton second	N.s/ m ²	poise	Р	0.1	-
		, ,	per square metre		kilogram force second per square metre	kgf.s/m ²	9.806 65 exactly	-
					pound force second per square foot	lbf.s/ft ²	47.880 3	-

IS 4831 : 2019

Table 1 — (Continued)

Sl No.	Quantity	Symbol	Name SI Unit	Symbol SI Unit	Name Other Unit	Symbol Other Unit	Conversion Factor	Definition and Remarks
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
23.	Kinematic viscosity	ν	square metre per	m^2/s	stokes	St	0.0001	$1 \text{ St} = 1 \text{ cm}^2/\text{s}$
			second		square foot per second	ft ² /s	0.092 903 0	-
24.	Work	W	joule	J	kilowatt hour	kWh	3.6x10 ⁶ exactly	-
					erg	erg	10 ⁻⁷ exactly	-
					kilogram force metre	kgf.m	9.806 65 exactly	-
					foot pound force	ft.lbf	1.355 82	-
25.	Power	P	watt	W	horse power	hp	745.70	1 hp = 550 ft.lbf/s
					metric horsepower	-	735.499	1 metric horsepower = 75 kgf.m/s
26.	Specific work	W	joule per kilogram	J/kg	foot pound force per pound	ft.lbf/lb	2.989 0	The work done per unit of mass
27.	Heat quantity	Q	joule	J	International kilocalorie	kcal	4 186.8 exactly	1 kWh = 859.845 kcal
					kilocalorie 15°C	kcal	4 185.5	In the refrigeration field the unit 'frigorie', extraction of 1kcal _{IS} from the body to be cooled
					British thermal unit	Btu	1 055.06	-
28.	Heat flow rate	Φ	watt	W	International kilocalorie per hour	kcal /h	1.163 exactly	kgf.m/s The work done per unit of mass 1 kWh = 859.845 kcal In the refrigeration field the unit 'frigorie', extraction of 1kcal ₁₅ from the body to be
					British thermal unit per hour	Btu/h	0.293 071	-

Sl No.	Quantity	Symbol	Name SI Unit	Symbol SI Unit	Name Other Unit	Symbol Other Unit	Conversion Factor	Definition and Remarks
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
29.	Density of heat flow rate	φ	watt per square metre	W/m²	International kilocalorie per hour square metre	kcal/(h.m ²)	1.163 exactly	-
					British thermal unit per hour square foot	Btu/(h. ft²)	3.154 59	-
30.	Heat transfer capacity (heat load)	$\Phi_{\mathbf{k}}$	watt	W	International kilocalorie per hour	kcal /h	1.163 exactly	Heat flow rate rejected to the hot body from a refrigerating machine
					kilocalorie at15°C per hour	kcal /h	1.162 6	-
					British thermal unit per hour	Btu/h	0.293 071	-
31.	Refrigerating capacity	Φ_0	watt	W	frigorie per hour	fg/h	1.162 6	1 fg/h = 1 kcal/h
					ton of refrigeration	ton	3 516.85	1 ton of refrigeration = a heat flow rate of 3 023.95 kcal/h or 12 000 Btu/h removed by the refrigerating system from the cold body
32.	Efficiency	η	-	-	-	-	-	-
33.	Indicated efficiency	$\eta_{ m d}$	-	-	-	-	-	Ratio of the indicated power of a compressor to the ideal power with isothermal compression

Table 1 — (Continued)

Sl No.	Quantity	Symbol	Name SI Unit	Symbol SI Unit	Name Other Unit	Symbol Other Unit	Conversion Factor	Definition and Remarks
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
34.	Mechanical efficiency	$\eta_{\rm m}$	-	-	-	-	-	Ratio of the indicated power of a compressor to the input power
35.	Volumetric efficiency	$\eta_{ m v}$	-	-	-	-	-	Ratio of the fluid volume drawn in during the suction time at the suction conditioning to the volume displaced in the cylinder or cylinders of compressor
36.	Isentropic efficiency of adiabatic compression	η_{i}		-	-	-	-	Ratio of the power of an isentropic compression (reversible adiabatic) to the actual power supplied to the same fluid mass flow rate from the initial to the final state(enthalpies difference)
37.	Isothermal compression efficiency	η _t	-	-	-	-	-	Ratio of the power with reversible isothermal compression to the actual power supplied to the same fluid mass flow rate from the initial to the final state

Table 1 — (Continued)

Sl No.	Quantity	Symbol	Name SI Unit	Symbol SI Unit	Name Other Unit	Symbol Other Unit	Conversion Factor	Definition and Remarks
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
38.	Coefficient of performance	3	-	W/W	International kilocalorie per watt hour	kcal/Wh	1.163	Ratio of refrigerating capacity to the absorbed power (for a cycle, a machine, a compressor etc)
					British thermal unit per horse power hour	Btu/hp.h	0.000 393	-
					British thermal unit per watt hour	Btu/Wh	0.293	-
					Ton of refrigeration per horse power	Ton/hp	4.716	-
39.	Refrigeration	q _o	joule per cubic	J/m³	frigorie per kilocalorie	fg/kcal	-	-
	capacity per unit volume		metre		International kilocalorie per cubic metre	kcal _{IT} /m ³	4 186.8 exactly	Ratio of the refrigerating capacity to the volume flow rate in a clearly defined condition
40.	Internal energy	U	joule	J	International kilocalorie	kcal	4 186.8 exactly	E = (H-He) - Te (S-Se)
					British thermal unit	Btu	1 055.06	Also called 'vaporization enthalpy difference', 'fusion enthalpy difference', 'Latent heat' etc. The type of transformation should be indicated in each case

Table 1 — (Continued)

Sl No.	Quantity	Symbol	Name SI Unit	Symbol SI Unit	Name Other Unit	Symbol Other Unit	Conversion Factor	Definition and Remarks
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
41.	Enthalpy	Н	joule	J	International kilocalorie	kcal	4 186.8 exactly	E = (H-He) - Te (S-Se)
					British thermal unit	Btu	1 055.06	Also called 'vaporization enthalpy difference', 'fusion enthalpy difference', 'Latent heat' etc. The type of transformation should be indicated in each case
42.	Free energy	F	joule	J	International kilocalorie	kcal	4 186.8 exactly	E = (H-He) - Te (S-Se)
					British thermal unit	Btu	1 055.06	Also called 'vaporization enthalpy difference', 'fusion enthalpy difference', 'Latent heat' etc. The type of transformation should be indicated in each case
43.	Free enthalpy	G	joule	J	International kilocalorie	kcal	4 186.8 exactly	E = (H-He) - Te (S-Se)
					British thermal unit	Btu	1 055.06	Also called 'vaporization enthalpy difference', 'fusion enthalpy difference', 'Latent heat' etc. The type of transformation should be indicated in each case

Sl No.	Quantity	Symbol	Name SI Unit	Symbol SI Unit	Name Other Unit	Symbol Other Unit	Conversion Factor	Definition and Remarks
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
44.	Energy	Е	joule	J	International kilocalorie	kcal	4 186.8 exactly	E = (H-He) - Te (S-Se)
					British thermal unit	Btu	1 055.06	Also called 'vaporization enthalpy difference', 'fusion enthalpy difference', 'Latent heat' etc. The type of transformation should be indicated in each case
45.	Latent heat	L	joule	J	International kilocalorie	kcal	4 186.8 exactly	E = (H-He) - Te (S-Se)
					British thermal unit	Btu	1 055.06	Also called 'vaporization enthalpy difference', 'fusion enthalpy difference', 'Latent heat' etc. The type of transformation should be indicated in each case
46.	Specific internal energy	u	joule per kilogram	J/kg	International kilocalorie per kilogram	kcal /kg	4 186.8 exactly	e = (h-he)-Te (s-se)
					British thermal unit per pound	Btu/lb	2 326 exactly	
47.	Specific enthalpy	h	joule per kilogram	J/kg	International kilocalorie per kilogram	kcal /kg	4 186.8 exactly	e = (h-he)-Te (s-se)
					British thermal unit per pound	Btu/lb	2 326 exactly	

1

51.

52.

53.

Specific latent heat

of transformation

Specific humidity

Relative humidity

joule per

kilogram

ω

φ

J/kg

IS 4831 : 2019

Table 1 — (Continued) Sl No. Quantity Symbol Name Symbol **Conversion Factor Definition and Remarks** Symbol Name SI Unit SI Unit Other Unit Other Unit (8) (9) (1) (2) (3) (4) (5) (6) (7) Specific free energy joule per International kilocalorie 4 186.8 exactly e = (h-he)-Te (s-se)f kcal /kg 48. J/kg kilogram per kilogram British thermal unit per 2 326 exactly Btu/lb pound Specific free International kilocalorie 49. joule per J/kg kcal /kg 4 186.8 exactly e = (h-he)-Te (s-se)g enthalpy kilogram per kilogram British thermal unit per Btu/lb 2 326 exactly pound Specific energy joule per International kilocalorie 50. J/kg kcal /kg 4 186.8 exactly e = (h-he)-Te (s-se)e kilogram per kilogram British thermal unit per Btu/lb 2 326 exactly

pound

International kilocalorie

per kilogram

British thermal unit per

pound

kcal /kg

Btu/lb

4 186.8 exactly

2 326 exactly

e = (h-he)-Te (s-se)

Ratio of the mass of

moisture in humid air to the mass of dry air present in the mixture

Ratio of the water vapour

partial pressure to the saturation pressure of pure water vapour at the same

temperature

Sl No.	Quantity	Symbol	Name SI Unit	Symbol SI Unit	Name Other Unit	Symbol Other Unit	Conversion Factor	Definition and Remarks
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
54.	Saturation ratio	Φ	-	-	-	-	-	Ratio of the actual specific humidity to the Specific humidity of saturated air at the same temperature NOTE- For temperatures less than 0°C the values in general apply to pure water ice. If it is concerning sub-cooled water the symbols are to be qualified by a particular index.
55.	Entropy	S	joule per kelvin	J/K	International kilocalorie per kelvin degree	kcal /K	4 186.8 exactly	-
					British thermal unit per Rankine degree	Btu/°R	1 899 exactly	-
56.	Specific entropy	S	joule per kilogram kelvin	J/(kg.K)	International kilocalorie per kilogram kelvin	kcal /(kg.K)	4 186.8 exactly	
					British thermal unit per pound Rankine degree	Btu/(lb.°R)	4 186.8 exactly	-
57.	Heat capacity	С	joule per kelvin	J/K	International kilocalorie per kelvin	kcal/K	4 186.8	-
					British thermal unit per degree Fahrenheit	Btu/°F	1 899 exactly	-
58.	Specific heat capacity	С	joule per kilogram kelvin	J/ (kg.K)	International kilocalorie per kilogram degree	kcal/(kg.de g)	4 186.8 exactly	-
					British thermal unit per pound degree Fahrenheit	Btu/lb. °F	4 186.8 exactly	-

Table 1 — (Continued)

Sl No.	Quantity	Symbol	Name SLU-:4	Symbol	Name Other Heit	Symbol Other Unit	Conversion Factor	Definition and Remarks
(1)	(2)	(3)	SI Unit (4)	SI Unit (5)	Other Unit (6)	(7)	(8)	(9)
59.	Specific heat capacity at constant	c_p	joule per kilogram kelvin	J/ (kg.K)	International kilocalorie per kilogram degree	kcal/(kg.de g)	4 186.8 exactly	-
	pressure				British thermal unit per pound degree Fahrenheit	Btu/lb. °F	4 186.8 exactly	-
60.	Specific heat capacity at constant	C _v	joule per kilogram kelvin	J/ (kg.K)	International kilocalorie per kilogram degree	kcal/(kg.de g)	4 186.8 exactly	
	volume				British thermal unit per pound degree Fahrenheit	Btu/lb. °F	4 186.8 exactly	-
61.	Specific heat capacity ratio	γ, χ	-	-	-	-	-	γ , $x = c_p/c_v$
62.	Thermal conductivity	k, λ	watt per metre kelvin	W/(m.K)	International kilocalorie per hour metre degree	kcal/(h.m.d eg)	1.163 exactly	$\lambda_e = d/\Sigma (di/\lambda i)$ where d is the total thickness of a wall, and di and λi the thickness and conductivities of the wall components
					British thermal unit per hour foot degree Fahrenheit	Btu/(h. ft. °F)	1.730 73	-

Sl No.	Quantity	Symbol	Name SI Unit	Symbol SI Unit	Name Other Unit	Symbol Other Unit	Conversion Factor	Definition and Remarks
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
63.	Equivalent conductivity	k_e, λ_e	watt per metre kelvin	W/(m.K)	International kilocalorie per hour metre degree	kcal/(h.m.d eg)	1.163 exactly	$\lambda_e = d/\Sigma (di/\lambda i)$ where d is the total thickness of a wall, and di and λi the thickness and conductivities of the wall components
					British thermal unit per hour foot degree Fahrenheit	Btu/(h. ft. °F)	1.730 73	-
64.	Convection coefficient of heat transfer	h	watt per square metre kelvin	W/(m ² K)	International kilocalorie per hour square metre degree	kcal/(h.m ³ . deg)	1.163 exactly	-
					British thermal unit per hour foot degree Fahrenheit	Btu/(h.ft². ° F)	5.678	_
	Overall coefficient of heat transfer	U	watt per square metre kelvin	W/(m ² K)	International kilocalorie per hour square metre degree	kcal/(h.m³. deg	1.163 exactly	-
					British thermal unit per hour foot degree Fahrenheit	Btu/(h.ft². ° F)	5.678	-
66.	Thermal diffusivity	α	square metre per second	m²/s	square meter per hour	m ² /h	0.000 278	-
			Second		square foot per hour	ft²/h	0.000 025 8	-

ANNEX A

(Foreword)

COMMITTEE COMPOSITION

Refrigeration and Air Conditioning Sectional Committee, MED 03

Organization Representative (s)

Indian Institute of Technology, Roorkee Prof (Dr.) RAVI KUMAR (*Chairman*)

Annapurna Electronics and Services Ltd, Hyderabad Shri G. K. Prasad

SHRI J. S. SASTRY (Alternate)

Bureau of Energy Efficiency, New Delhi Shri Saurabh Diddi

SHRI MANJEET SINGH (Alternate)

Blue Star Ltd, Mumbai Shri Jitendra Bhambure

SHRI SUNIL JAIN (Alternate)

Carrier Aircon Ltd, Gurgaon Shri Bimal Tandon

SHRI D. BHATTACHARYA (Alternate)

Central Power Research Institute, Bangalore Shri A. R. Ravi Kumar

SHRI GUJJALA B. BALARAJA (Alternate)

Centre for Science and Environment, New Delhi Shri Chandra Bhushan

Consumer Education and Research Centre, Ahmedabad Ms Sweta Mahajan

Danfoss Industries Pvt Ltd, Gurgaon Shri Deepak Verma

SHRI K. L. NAGAHARI (Alternate)

Electrical Research and Development Association, Vadodara Shri Gautam Brahmbhatt

SHRI RAKESH PATEL (Alternate)

Emerson Climate Technologies (India) Pvt Ltd, Karad Shri Chethan Tholpady

SHRI D. P. DESPANDE (Alternate)

Godrej & Boyce Mfg Co Ltd, Mumbai Shri Burzin J. Wadia

SHRI ABHIJIT A. ACHAREKAR (Alternate)

Honeywell International India Pvt Ltd, Gurgaon Shri Sudhir Kavalath

DR NITIN KARWA (Alternate)

Indian Institute of Chemical Engg, Kolkata Dr D. Sathiyamoorthy

DR SUDIP K. DAS (Alternate)

Indian Society of Heating, Refrigerating and Air Conditioning Engineers

(ISHRAE), New Delhi

Dr Jyotirmay Mathur Shri Ashish Rakheja

Ingersoll Rand, Bangalore Shri Mittakola Venkanna

SHRI JEYAPRAKASH GURUSAMY (Alternate)

International Copper Association India, Mumbai Shri Sanjeev Ranjan

SHRI SHANKAR SAPALIGA (Alternate)

Intertek India Pvt Ltd, New Delhi Shri Balvinder Arora

Shri C. M. Pathak (Alternate)

LG Electronics India Pvt Ltd, New Delhi Shri Gaurav Kochhar

SHRI S. T. HAQUE FARIDI (Alternate)

National Thermal Power Corporation, Noida Shri D. K. Suryanarayan

SHRI S. K. JHA (Alternate)

Refrigeration & Airconditioning Mfr Association, New Delhi Shri Gurmeet Singh

Shri R. K. Mehta (Alternate)

Samsung India Electronics Pvt Ltd, Noida Shri Gaurav Choudhary

SHRI KALICHARAN SAHU (Alternate)

IS 4831: 2019

Organization Representative (s)

Spirotech Heat Exchanger Pvt Ltd, Bhiwadi Shri Sunil Bhardwaj

SHRI DWIJESH GAUTAM (Alternate)

SRF Ltd, Gurugram Shri Rabindeer N. Kaul

The Chemours India Pvt Ltd, Gurgaon Shri Vikas Mehta

SHRI NISHIT SHAH (Alternate)

The Energy and Resources Institute, New Delhi Shri P. S. Chidambaram

Shri Girish Sethi (Alternate)

UL India Pvt Ltd, Bengaluru Shri V. Manjunath

SHRI SATISH KUMAR (Alternate)

Voltas Ltd, Mumbai Shri Ritesh Singh

Shri A. D. Kumbhar (Alternate)

Voluntary Organizationn in Interest of Consumer Voice, New Delhi Shri H. Wadhwa

SHRI B. K. MUKHOPADHYAY (Alternate)

In personal capacity (H.No. 03, Savita Vihar, Delhi) Shri J. K. AGRAWAL

In personal capacity (506/2, Kirti Apartments, Mayur Vihar,

Phase -1 Extension, Delhi)

SHRI P. K. MUKHERJEE

BIS Directorate General Shri Rajneesh Khosla Scientist 'E' and Head (MED)

[Representing Director General (Ex-officio)]

Member Secretary

Ms Khushbu Jyotsna Kindo
Scientist 'B' (MED), BIS

Bureau of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards Act*, 2016 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Catalogue' and 'Standards: Monthly Additions'.

This Indian Standard has been developed from Doc No.: MED 03 (1389).

Amendments Issued Since Publication

Amendment No.	Date of Issue	Text Affected

BUREAU OF INDIAN STANDARDS

Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002

Telephones: 2323 0131, 2323 3375, 2323 9402 Website: www.bis.gov.in

Regional Offices:	Telephones
Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg NEW DELHI 110002	(2323 7617 (2323 3841
Eastern : 1/14, C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi KOLKATA 700054	(2337 8499, 2337 8561 (2337 8626, 2337 9120
Northern: Plot No. 4-A, Sector 27-B, Madhya Marg, CHANDIGARH 160019	(26 50206 (265 0290
Southern: C.I.T. Campus, IV Cross Road, CHENNAI 600113	2254 1216, 2254 1442 2254 2519, 2254 2315
Western: Manakalaya, E9 MIDC, Marol, Andheri (East) MUMBAI 400093	(2832 9295, 2832 7858 (2832 7891, 2832 7892

Branches: AHMEDABAD. BENGALURU. BHOPAL. BHUBANESWAR. COIMBATORE. DEHRADUN. DURGAPUR. FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. JAMMU. JAMSHEDPUR. KOCHI. LUCKNOW. NAGPUR. PARWANOO. PATNA. PUNE. RAIPUR. RAJKOT. VISAKHAPATNAM.