Software Construction and User Interfaces (SE/ComS 319)

Ali Jannesari

Department of Computer Science

Iowa State University, Spring 2019

GUIDELINES FOR SYSTEM MODELING – GROUP PROJECT

Use case diagrams (UML)

- Use case diagrams are used during the requirement engineering to represent the externally visible behavior of the system
- An actor specifies a role of a user or other system that interacts with the system we are analyzing
- A use case represents a class of functions offered by the system
- A use case model is the set of all use cases that describe the entire functionality of the system
- A use case diagram includes
 - Actors, use cases, associations, system boundary

Actors

- An actor is a model for an external entity that interacts with the system:
 - Administrator, end user, environment, external systems, ...
- An actor has a unique name and optionally a description
- Example:
 - Student: A person who is studying or training at a university or college
 - Random number generator

Use cases – How to describe them?

- Use cases can be described with text, with a focus on the interaction between actor and system
- The description of a use case with text consists of 6 parts:
 - Unique name
 - Participating actors
 - Input actions
 - Output actions
 - Event flow
 - Special requirements
- They also can be described with activity diagram

Use case diagram – Example

Scenarios

- A scenario...
 - ... is the description of an event or sequence of actions and events
 - ... is the description of how to use a textual system from a user's perspective
 - ... can contain text, images, videos, and schedules, as well as details about the workplace, the social environment, and resource constraints

Scenarios – Example "Burning warehouse"

- While Bob drives his main car along the main road, he notices smoke rising from a warehouse. His colleague, Alice, reports the emergency from the vehicle.
- Alice enters the address of the warehouse into her mobile computer, a brief description of the location (e.g., north-west corner) and a priority.
- She confirms her entry and waits for a confirmation.
- John, the dispatcher at the control room, is alerted to the emergency by a beep on his computer. He analyzes the information Alice sent him and confirms the message. He alerts the fire department and passes the expected time of arrival to Alice.
- Alice receives the confirmation and expected arrival time.

Use case from scenario

- Find all use cases in the example scenario that all instances specify how to report a fire
 - Example: "Report Emergency" in the first paragraph of the scenarios is a candidate for a use case
- Describe each of these use cases as accurately as possible:
 - Participating actors
 - Describe their input actions
 - Describe their event flow
 - Describe their output actions
 - Describe exceptions
 - Describe non-functional requirements

Use case: "Report emergency" (1)

- Name of use case: Report emergency
- Participating actors:
 - Policeman (Bob and Alice in this scenario)
 - Dispatcher (John in this scenario)
- Exceptions:
 - The police officer will be notified immediately if the connection between the terminal and the headquarters breaks.
 - The dispatcher is notified immediately when the connection between a police officer and the headquarters breaks.

Use case: "Report emergency" (2)

Event flow:

- The policeman activates the "Report Emergency" feature on his terminal.
 FRIEND system [an external system] responds by displaying a form.
- The police officer completes the form by entering the emergency level, the type of assignment, the address, and a brief description of the situation. The policeman also describes a reaction to the emergency situation.
- The dispatcher creates an incident in the database by calling the "Open Incident" use case. He chooses a reaction and confirms the message.
- The policeman receives the confirmation and chooses the reaction.
- Nonfunctional requirements:
 - The police report will be confirmed within 30 seconds. The answer arrives at the police no later than 30 seconds after being sent by the dispatcher.

Use case: "Request resources" (1)

Actors:

- Operations Manager: The person responsible for the deployment
- Resource Requester: Responsible for requesting and releasing resources managed by the FRIEND system.
- Dispatcher: enters incidents, updates and deletes incidents in the system.
 He is also responsible for closing incidents.
- Policeman: Reports incidents

Use case: "Request resources" (2)

- Name of Use Case: Request resources
- Participating actors:
 - Policeman (Bob and Alice in this scenario)
 - Dispatcher (John in this scenario)
 - Resource requester
 - Operations manager
- Input actions:
 - The resource requester has selected an available resource
- Flow of events:
 - The resource requester chooses an incident
 - The resource is assigned to the incident

Use case: "Request resources" (3)

- Output actions:
 - The use case is ready when the resource has been assigned.
 - The selected resource is not available for other requests.
- Special requirements:
 - The Operations Manager is responsible for the use of resources

How to formulate use cases?

- Name of the use case:
 - For example: Report emergency
- Find the actors:
 - Generalize the concrete names ("Bob") to participating actors ("Policeman")
 - Participating actors:
 - Policeman (Bob and Alice in the example scenario)
 - Dispatcher (John in the example scenario)
- Find the event flow:
 - Described in natural language

Use case model – Report emergency

<<extend>> Relationship

- Use cases can be related (associated) to each other.
- Extend relationship represents rarely-called use cases or exceptional functionality.
 - A relationship between one use case which is extended by some optional use case (added features).
 - For example, use withdraw money can be extended by use case process overdraw

<<include>> Relationship

- Include relationship represents functionality that is used by more than one use case.
 - A relationship between one use case which requires the existence of another use case, and the latter, in isolation, is not meaningful to the user.
 - For example, validate password use case is included in login use case

Use case text – Describing use case in text format

- Use case name
- Main scenario
 - Steps
- Extensions
 - Extension condition; steps
- Specify what to do, not how to do
- Do not specify user interface
- Optional: priority, trigger, pre-condition, post-condition (guarantees), sub-use case

Use case text – Example

- Name:
 - Create homework
- Participating actor:
 - College student
- Input condition:
 - Student receives exercise sheet
 - Student is healthy
- Output condition:
 - Student makes solution

Flow of events:

- Student brings current exercise sheet
- Student reads through the tasks
- Student solves the task and enters it into the computer
- Student prints the solution
- Student submit the solution
- Special requirements:
 - No

Activity diagrams

- An activity multiple actions
 - Can be used to describe a use case
 - Can represent parallel relationship
- An activity diagram describes a procedure
 - Operational or business processes
 - Technical processes of workflows and use cases
 - Concrete algorithmic processes in programs
- Activity diagrams consist of
 - Action, object nodes and control nodes, as well
 - Object flows and control flows.

Activity diagram – Main components

- Main components
 - Start
 - Actions
 - Fork/Join
 - Decision/Merge
 - Flow
 - Final

Example – Waterfall software process model

Software development Object nodes Requirements Activity diagram name Project plan **Estimations Planning** Specification **GUI-Description** User's guide **Anlysis** Design documents Module Start node descriptions **Control flow** Design Object flow Components Documentation Test generation Implementation System Testing & Action (Action nodes, aka step or Acceptance activity) Deployment & End node -Maintenance

Activity (also: Activity diagram)

Activity diagram symbols and elements (1)

- Actions
 - Elementary action
 - Nested action
- Nodes
 - Starting node
 - Starting point of a process
 - End nodes
 - Ends all actions and control flows
 - Flow final
 - Ends a single object flow and control flow

Activity diagram symbols and elements (2)

- Decision
 - Conditional branching
- Merging
 - "or" connecting
- Forking
 - Dividing a control flow
- Synchronization
 - "and" joining

Activity diagram – Example: Order management

An activity
 diagram for order
 processing

Source:

https://www.tutorialspoint.com/uml/

Activity diagram symbols and elements (5)

- Partitions (areas of responsibility)
 - Partitions describe who or what is responsible for a node or what common feature characterizes it.
 - For example, partitions could be different computers working together (e.g. server and client)

Activity diagram – Example with partitions

 An activity diagram with partitions

Source: https://sourcemaking.com/uml/

Summary

- Use cases (UML)
- Use case text
- Activity diagram