Spring 2018: COT3210–Computability and Automata Test 01-Answers

1. Draw the state diagram of the DFA M_1 defined by $(\{q_0,q_1,q_2\},\{0,1\},\delta,q_0,\{q_1,q_2\})$, where the transition function δ is given by the following table.

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \to q_0 & q_0 & q_1 \\ q_1^* & q_2 & q_1 \\ q_2^* & q_1 & q_2 \\ \end{array}$$

State Diagram:

2. Let ${\cal L}(M_2)$ be the language of the DFA M_2 whose state diagram is as shown below.

Answer the following questions:

- $\text{a.} \quad \text{Yes. } 001110 \in L(M_2).$
- b. Sequence of states reached for 001110:

$$q_2 \xrightarrow{0} q_1 \xrightarrow{0} q_1 \xrightarrow{1} q_2 \xrightarrow{1} q_3 \xrightarrow{1} q_3 \xrightarrow{0} q_2$$

- c. No. $101 \notin L(M_2)$?.
- d. Sequence of states reached for 101:

$$q_2 \xrightarrow{\ 1\ } q_3 \xrightarrow{\ 0\ } q_2 \xrightarrow{\ 1\ } q_3$$

3. Let $\Sigma = \{a, b\}$. Give the state diagram of the DFA that accepts the language $\{w \mid w \text{ is of the form an odd number of a's followed by an even number of b's}.$

4. Let $\Sigma=\{0,1\}.$ Give the state diagram of the DFA that accepts the language $\{w\,|\,w \text{ is a string of length 4 that ends in 01}\}.$

5. Let $\Sigma=\{0,1\}.$ Draw the state diagram of a DFA M_3 with $L(M_3)=\{w\,|\, {\rm The\ number\ of\ 1s\ in}\ w\ {\rm is\ a\ multiple\ of\ 4}\}.$

6. Let $\Sigma=\{0,1\}$. Let M_4 be the DFA for which the state transition diagram is given below. Show its transition table.

0 1	
$\begin{array}{cccc} q_1 & q_2 \\ q_1 & q_3 \\ q_2 & q_2 \end{array}$	$q_1 q_2$
$q_1 q_3$	$q_1 q_3$
$q_2 q_2$	$q_2 q_2$

- 7. Indicate whether each of the following statemens is TRUE or FALSE.
 - i. A finite automaton can have no states. False
 - ii. A finite automaton can have zero accepting states.
 - iii. Every state in a finite automaton can be an accepting state.
 - iv. ε concatenated to any string produces the same string.
 - v. The empty set concatenated to any language produces the same language.
- 8. Let $\Sigma=\{0,1\}.$ Draw the state diagram of a DFA M_5 with

 $L(M_5)=\{w\,|\,w\;\mathrm{does}\;\mathrm{not}\;\mathrm{end}\;\mathrm{in}\;\mathrm{000}\}.$

9. Let $\Sigma = \{0,1\}$. Draw the state diagram for the DFA M_6 with

 $L(M_6) = \{w \mid w \text{ contains an even number of 0s OR an odd number of 1s}\}.$

Use the Cartesian product construction (discussed in class) in which you will first construct two separate machines (call them M_a and M_b), and then combine them to get M_6 . Place the state diagrams for the DFAs in separate boxes provided below. For each DFA, the start state and the final state(s) must be shown clearly.

 M_a : The DFA that accepts strings containing an even number of 0s.

 ${\cal M}_b$: The DFA that accepts strings containing an odd number of 1s.

 M_{6} : The DFA that accepts strings containing an even number of 0s OR an odd number of 1s.

