CLAIMS

What is claimed is:

1	1.	An apparatus comprising:					
2		a configurable link which permits					
3		a first level of access if a computer's central processing unit (CPU)					
4	is in	a first power management state; and					
5		a second level of access if the computer's CPU is in a second power					
6	man	management state.					
1	2.	The device of claim 1, wherein the first power management state					
2	and	and the second power management state each comprises a set of power					
3	man	management states.					
1	3.	The apparatus of claim 1, further comprising:					
2		a first peripheral device communicatively coupled to the					
3	con	figurable link wherein the first level of access the peripheral device is					
4	capa	able of operating as a conventional peripheral device.					
1	4.	The apparatus of claim 1, further comprising:					
2		a first peripheral device communicatively coupled to the					
3	con	figurable link wherein the second level of access the peripheral					
4	dev	ice is capable of operating as the default bus master for the computer					
5	with	nout assistance from the CPU.					

1	5. The apparatus of claim 4, wherein a peripheral device coupled to
2	the configurable link causes the configurable link to operate in the
3	second level of access when the CPU is in a second power management
4	state

- 1 6. The apparatus of claim 1, wherein the second power management 2 state the computer's CPU is in a sleeping state.
- 7. The apparatus of claim 1, wherein the second power management state includes power modes S3–S5 as defined in the Advanced
 Configuration and Power Interface (ACPI) specification.
- 1 8. The apparatus of claim 1, wherein the second level of access the 2 transfer rate over the configurable link is different than in the first level 3 of access.
- 9. The apparatus of claim 1, further comprising:
 a first peripheral device coupled to the configurable link; and
 an input/output hub communicatively coupling the configurable
 link and the central processing unit (CPU).
- 1 10. The apparatus of claim 9, wherein the first level of access, the CPU
 2 manages the input/output hub to control communications to and from
 3 the first peripheral device.
- 1 11. The apparatus of claim 9, wherein the second level of access, the configurable link enables the first peripheral device to manage the

1

2

4

6 7

1

2

3

1

	4239	0P9728				
3	input/output hub to control communications to and from the first					
4	peripheral device.					
1	12.	The apparatus of claim 9, further comprising				
2		a second peripheral device communicatively coupled to the				
3	input/output hub.					
1	13.	The apparatus of claim 12, wherein the second level of access, the $$				
2	first peripheral device can communicate directly with the second					
3	peripheral device without assistance from the CPU.					

14. A method comprising:

configuring a link to provide a first level of access to a computer's resources if the computer's central processing unit (CPU) is in a first power management state; and

configuring the link to provide a second level of access to the computer's resources if the computer's CPU is in a second power management state.

- 15. The method of claim 14, further comprising:
- coupling a peripheral device to the configurable link wherein the second level of access the peripheral device is capable of operating as the default bus master for the computer.
 - 16. The method of claim 15, wherein the first level of access the peripheral is capable of operating as a conventional peripheral device.

- 1 17. The method of claim 14, wherein the second power management state the computer's CPU is in a sleeping state.
- 1 18. The method of claim 14, wherein the second power management
- state includes power modes S3-S5 as defined in the Advanced
- 3 Configuration and Power Interface (ACPI) specification.
- 1 19. The method of claim 14, wherein a peripheral device coupled to
- the configurable link causes the configurable link to operate in the
- 3 second level of access when the CPU is in a second power management
- 4 state.
- 1 20. The method of claim 14, wherein configuring the link to provide a
- second level of access also requires configuring an input/output hub to
- which the link couples to allow the peripheral device to become the
- 4 default bus master.
 - 21. A system, comprising:
- a sub-system to detect the power management state of a central
- 3 processor;

1

- a sub-system to determine whether the central processor is in a
- first power management state or a second power management state;
- a sub-system to allow the central processor to manage data flow
- over an input/output hub if the central processor is in a first power
- 8 management state; and

2				

a sub-system to configure a link coupling the input/output hub to
a first peripheral device to allow the first peripheral device to manage
data flow over the hub if the central processor is in a second power
management state.

22. The system of claim 21, further comprising:

a sub-system to initiate a data transfer from the first peripheral
 device if the central processor is in the second power management state.

23. The system of claim 21, further comprising:

a sub-system to buffer data at the first peripheral device if the central processor is in the second power management state.

24. The system of claim 21, further comprising:

a sub-system to allow the first peripheral device to directly access and communicate with a second peripheral device without assistance from the central processor.

25. The system of claim 21, further comprising:

a sub-system to delay the central processor from transitioning from the second power management state to the first power management state.