CS364A Exercise Set 2

Deming Chen cdm@pku.edu.cn

November 1, 2022

Exercise 9

In a single-item auction, the feasible allocation set X is the set of 0-1 vectors that have at most one 1. We need show that besides not giving all bidders the item, always awarding the good to the highest bidder and charging losers 0 is unique monotone allocation rule $\mathbf{x}: \mathbf{b} \to X$ with permutation symmetry (i.e. swapping two bidder's bids results in swapping their allocation).

Assume there are n bidders $(n \ge 2)$. If for some **b** (assuming $b_1 \ge b_2 \ge \cdots \ge b_n$), the good is not given to the first bidder, but the ith bidder (i > 1). Increasing b_i to b_1 when fixing other bids, x_i will still be 1 (because of monotonicity), so other bidders' allocation stay 0. Then decrease b_1 to initial b_i , and x_1 stay 0. The procedure described above is just swapping b_1 and b_i , but x_1 and x_i does not swap, which contradicts the permutation symmetry.

Furthermore, permutation symmetry is essential. Consider an allocation rule that gives the good to the bidder with the highest b_i/i . This rule is also monotone, but does not make sense.

Exercise 10

The "sandwich inequality" $\forall 0 \leq y < z$:

$$z \cdot [x(y) - x(z)] \leqslant p(y) - p(z) \leqslant y \cdot [x(y) - x(z)]. \tag{1}$$

It implies that $(y-z) \cdot [x(y)-x(z)] \ge 0$. That is, if an allocation rule is implementable, it is monotone.

Exercise 11

Suppose that x(z) is differentiable, so that

$$p(z) = \int_0^z wx'(w)dw.$$
 (2)

Figure 1: A bidder's payment when the allocation rule is not monotone. Fixing other bidders' bids, $x(z) = x_i(\cdot, \mathbf{b}_{-i})$. p(z) is equal to the area of the purple region minus the area of the blue region.

If x(z) is not monotone, as shown in Figure 1,

$$p(z) = \int_0^z wx'(w)dw$$

$$= \int_0^{z_1} wx'(w)dw + \int_{z_1}^z wx'(w)dw$$

$$= S_{OABD} - S_{ECBD}$$

$$= S_{OAE} - S_{ABC}.$$
(3)

Suppose the bidder's valuation is v. If v > b but x(v) < x(b), as shown in Figure 2 (a). The bidder's utility is $u(b) = S_{OCAD}$, which is larger than the utility he or her get when bidding truthfully $u(v) = S_{OCBD}$. If v < b but x(v) > x(b), as shown in Figure 2 (b). The bidder's utility is $u(b) = S_{OABCED}$, which is larger than the utility he or her get when bidding truthfully $u(v) = S_{OABD}$.

Figure 2: The bidder's utility if he or she does not bid truthfully when x(z) is not monotone. The area of the orange region equals to the bidder's utility of bid b.

Exercise 12

Assume $x_i(\cdot, \mathbf{b}_{-i}) = x(\cdot)$ a monotone and piecewise differentiable function. A jump Δx at z means

$$\left. \frac{\partial x_i}{\partial b_i} \right|_{b_i = z} = \Delta x \cdot \delta(b_i - z)$$

where $\delta(\cdot)$ is the Dirac- δ function. The payment

$$p(z) = \int_0^z wx'(w)dw. \tag{4}$$

Since x(z) is non-decreasing, $x'(z) \ge 0$. No matter whether z < v or $z \ge v$,

$$\int_{z}^{v} (v - w) \cdot x'(w) dw \geqslant 0. \tag{5}$$

So,

$$\int_{z}^{v} w \cdot x'(w) dw \leqslant \int_{z}^{v} v \cdot x'(w) dw = v[x(v) - x(z)]. \tag{6}$$

Then,

$$v \cdot x(z) - \int_0^z w \cdot x'(w) dw \leqslant v \cdot x(v) - \int_0^v w \cdot x'(w) dw, \tag{7}$$

which implies that $v \cdot x(z) - p(z) \le v \cdot x(v) - p(v)$. As a result, a bidder can maximize their utility by bidding their valuation truthfully.

Exercise 13

Assume truthful bidding. The surplus-maximizing allocation rule is

$$\mathbf{x}(\mathbf{b}) = \underset{(x_1, x_2, \dots, x_n) \in X}{\operatorname{argmax}} \sum_{i=1}^{n} b_i \beta_i x_i, \tag{8}$$

where (x_1, x_2, \dots, x_n) is a permutation of $(\alpha_1, \alpha_2, \dots, \alpha_k, 0, \dots, 0)$ The allocation rule is to assign the *j*th highest slot to the bidder with *j*th highest $b\beta$.

For bidder i, fix other bidders' bids b_{-i} . Raising b_i is equivalent to raising $b_i\beta_i$. It only increase bidder i's position in the sorted order of bids, which can only not he or she a higher slot. So, this allocation rule is monotone.

Sort and re-index the bidders so that $b_1\beta_1 \geqslant b_2\beta_2 \geqslant \cdots \geqslant b_n\beta_n$. the per-click payment of bidder i is

$$p_i(\mathbf{b}) = \sum_{l=i}^k \frac{b_{l+1}(\alpha_l \beta_i - \alpha_{l+1} \beta_i)}{\alpha_i \beta_i} = \sum_{l=i}^k \frac{b_{l+1}(\alpha_l - \alpha_{l+1})}{\alpha_i}.$$
 (9)

Exercise 14

For $\mathbf{b} = (b_1, b_2, \dots, b_n)$, assume the surplus-maximizing allocation is $(x_1^*, x_2^*, \dots, x_n^*)$. Without losing of generality, let's increase b_1 by $\Delta b > 0$. Now $\mathbf{b}' = (b_1 + \Delta b, b_2, \dots, b_n)$, and the surplus-maximizing allocation is $(x_1', x_2', \dots, x_n')$.

Suppose $x_1' < x_1^*$. Since $(x_1', x_2', \dots, x_n')$ maximize the surplus,

$$(b_1 + \Delta b)x_1' + b_2x_2' + \dots + b_nx_n' \geqslant (b_1 + \Delta b)x_1^* + b_2x_2^* + \dots + b_nx_n^*. \tag{10}$$

Add $-\Delta bx_1' > -\Delta bx_1^*$ to inequality (10):

$$b_1 x_1' + b_2 x_2' + \dots + b_n x_n' > b_1 x_1^* + b_2 x_2^* + \dots + b_n x_n^*, \tag{11}$$

which implies that $(x_1^*, x_2^*, \dots, x_n^*)$ is not the optimal allocation initially, a contradiction. Therefore, the surplus-maximizing allocation rule is monotone.

Exercise 15

Given a winner set S, the social surplus

$$V(\mathbf{b}) = \sum_{i \in S} b_i$$

is a continuous function of \mathbf{b} . Since "max" is also a continuous function, the maximal social surplus

$$V^*(\mathbf{b}) = \max_{S} \sum_{i \in S} b_i \tag{12}$$

is continuous.

Fix other bidders' bids \mathbf{b}_{-i} and assume they bid truthfully. $V^*(b_i, \mathbf{b}_{-i})$ is also a continuous function. Let b_i^* denote bidder i's critical bid. If $b_i = b_i^* - \varepsilon$, where ε is a very small positive real number, bidder i will loss. In this case, $V^*(b_i^* - \varepsilon, \mathbf{b}_{-i})$ is just maximum surplus of a feasible set that excludes i. If $b_i = b_i^* + \varepsilon$,

$$V^* = b_i^* + \varepsilon + \sum_{j \in S^* \setminus \{i\}} v_j. \tag{13}$$

When $\varepsilon \to 0$, $V^*(b_i^* - \varepsilon, \mathbf{b}_{-i})$ and $V^*(b_i^* + \varepsilon, \mathbf{b}_{-i})$ should approach the same value, which means that b_i^* equals to the difference between the maximum surplus of a feasible set that excludes i and the surplus of the bidders other than i in the chosen outcome S^* .

Exercise 16

For bidder i, the maximum surplus of a feasible set that excludes i is

$$V_{-i} = \sum_{j \neq i} b_j \cdot x_j(0, \mathbf{b}_{-i}). \tag{14}$$

The surplus of the bidders other than i in the chosen outcome is

$$V_{-i}^* = \sum_{j \neq i} b_j \cdot x_j(\mathbf{b}). \tag{15}$$

According to the previous exercise, the payment of bidder i is $(V_{-i} - V_{-i}^*)$.

Exercise 18

In a knapsack auction, a bidder either wins (getting w_i) or loses (getting nothing). To prove that an allocation rule is monotone, we just need to prove that given bids of other bidders \mathbf{b}_{-i} , for some b_i , if $x_i(b_i, \mathbf{b}_{-i}) = 1$, then for any $b > b_i$, $x_i(b, \mathbf{b}_{-i}) = 1$.

If b_i is the highest among all bids, and i gets the goods because i's surplus is greater than that of the step (2) solution, then increasing b_i can also makes b_i the highest bid.

If i get the good because of step (2), then increasing b_i can makes b_i/w_i larger, therefore $x_i(b, \mathbf{b}_{-i}) = 1$.