

Feuille de TD n° 2

Exercice 1. 1. Soit $Q \in \mathbb{R}[X]$ défini par $Q = X^4 + 2\alpha X^3 + \beta X^2 + 2X + 1$. Trouver $(\alpha, \beta) \in \mathbb{R}^2$ pour Q soit le carré d'un polynome de $\mathbb{R}[X]$

2. Déterminer les réels a,b et c tels que $P=X^5-2X^4-6X^3+aX^2+bX+c$ soit factorisable par $Q=(X^2-1)(X-3)$.

Exercice 2. Soit $P = X^4 + \frac{1}{4}X^2 - \frac{3}{4}X + \frac{1}{4}$

- 1. Montrer que $\frac{1}{2}$ est une racine multiple de P.
- 2. En déduire la factorisation de P dans $\mathbb{R}[X]$ et dans $\mathbb{C}[X]$.

Exercice 3. Pour $n \in \mathbb{N}$

- 1. Montrer que le polynôme $P_n = (X-1)^{n+2} + X^{2n+1}$ est divisible par $Q = X^2 X + 1$.
- 2. Déterminer le reste de la division euclidienne de $P = X^n + X + 1$ par $Q = (X 1)^2$.
- 3. Quel est le reste de la division euclidienne de $P = X^n$ par $Q = (X 1)^2$.

Exercice 4. Déterminer le pgcd(P,Q) dans les cas suivants

1.
$$P = X^4 - 3X^3 + X^2 + 4$$
, $Q = X^3 - 3X^2 + 3X - 2$.

2.
$$P = X^5 - 3X^3 + X^2 + 4$$
, $Q = X^3 - 3X^2 + 3X - 2$.

3.
$$P = X^{n-1} - 1$$
, $Q = X^{m-1} - 1$, pour $m, n \ge 1$.

Exercice 5. Soit $P = X^4 - 6X^3 + 9X^2 + 9$

- 1. Décomposer $X^4 6X^3 + 9X^2$ en produit de facteurs irréductibles dans $\mathbb{R}[X]$.
- 2. En déduire une décomposition de P en produit de facteurs irréductibles dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$.

Exercice 6. Soit $P = X^5 + X^4 + 2X^3 + 2X^2 + X + 1$

- 1. Calculer le PGCD de P et P'.
- 2. Quelles sont les racines communes de P et P'?
- 3. Quelles sont les racines multiples de P dans $\mathbb{C}[X]$?
- 4. Montrer que $(X^2 + 1)^2$ divise P.
- 5. Factoriser P dans $\mathbb{R}[X]$