Grafi: visite

Corso di **Algoritmi e strutture dati** Corso di Laurea in **Informatica** Docenti: Ugo de'Liguoro, András Horváth

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

1/79

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

Visita in generale
 Visita in ampiezza
 Visita in profondità

Indice

2/70

Sommario

Obiettivo:

- visitare tutti nodi e archi in modo sistematico
- problema di base in molte applicazioni
- la visita fornisce informazione sul grafo visitato
- vari tipi di visite:
 - in ampiezza, breadth first search
 - in profondità, depth first search

1. Idea di base

- insieme di vertici diviso in tre sottoinsiemi:
 - bianco: nodi non ancora scoperti (non visitati)
 - grigio: vertici scoperti di cui adiacenti non sono ancora tutti scoperti (nodi da cui bisogna andare ancora avanti; la frangia)
 - nero: nodi scoperti di cui adiacenti sono già stati scoperti (nodi da cui non bisogna andare avanti più)

1. Versione "astratta" dell'algoritmo

1. Proprietà, invarianti

- proprietà I: colore di un nodo può solo passare da bianco a grigio a nero
- ▶ invariante I: se $(u, v) \in E$ e u è nero, allora v è grigio o nero
- ▶ invariante II: tutti i vertici grigi o neri sono raggiungibili da s
- ▶ invariante III: qualunque cammino da s ad un nodo bianco deve contenere almeno un vertice grigio

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

1. Proprietà, invarianti

- ▶ invariante I e II sono evidenti
- dimostrazione di invariante III:
 - ▶ se s è ancora grigio: vero
 - se s è nero: se non ci fosse nessun vertice grigio, allora ci sarebbe un nodo bianco adiacente ad uno nero, che è impossibilie per l'invariante I

1. Al termine del algoritmo

- ▶ teorema: al termine dell'algoritmo un vertice v è nero $\iff v$ è raggiungibile da s
- ⇒: dal'invariante II
- \blacktriangleright \Leftarrow : invariante III e la condizione di uscita del ciclo implicano che non ci può essere nessun vertice bianco raggiungibile da s

1. Costruzione del sottografo di predecessori

- per ogni vertice che viene scoperto, vogliamo ricordare quale vertice grigio ha permesso di scoprirlo
- vuole dire anche ricordare l'arco che ci porta alla scoperta del nodo
- associamo ad ogni nodo un attributo (variabile) che memorizza il nodo dal quale era scoperto
- inizializzazione dell'algoritmo:

```
INIZIALIZZA(G)

for \forall u \in V do

u.color \leftarrow bianco

u.\pi \leftarrow nil
```

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

9/ 79

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

1. Sottografo di predecessori

```
▶ sottografo: G_{\pi} = (V_{\pi}, E_{\pi})
```

▶
$$V_{\pi} = \{ v \in V : v \cdot \pi \neq \mathsf{nil} \} \cup \{ s \}$$

►
$$E_{\pi} = \{(v.\pi, v) \in E : v \in V_{\pi} - \{s\}\}$$

- ▶ all'termine di VISITA(G, s), V_{π} è l'insieme di tutti i vertici neri (tutti i nodi raggiungibili da s)
- ▶ teorema: il sottografo di predecessori è un albero
- dimostrazione: segue dal seguente invariante del while: $G_{\pi}=(V_{\pi},E_{\pi})$ è connesso e $|E_{\pi}|=|V_{\pi}|-1$
- ▶ il sottografo $G_{\pi} = (V_{\pi}, E_{\pi})$ è l'albero di scoperta

1. Costruzione del sottografo di predecessori

```
    VISITA(G, s)
        s.color ← grigio
        while ∃ nodo grigio do
        u ← nodo grigio
        if ∃v bianco ∈ adj[u] then
            v.color ← grigio
            v.π ← u
        else
            u.color ← black
```

proprietà II: al termine di VISITA(G, s), l'unico vertice nero con predecessore nil è s

```
1. Visitare grafi non connessi
```

- ▶ l'algoritmo precedente visita solo il componente di cui il nodo iniziale (s) fa parte
- visita tutto il grafo solo se il grafo è connesso
- visita intera di un grafo non connesso:

```
VISITA-TUTTI-VERTICI(G)
INIZIALIZZA(G)
for \forall u \in V do
if u.color = bianco then
VISITA(G, u)
```

- ▶ il sottografo di predecessori diventa una foresta (un grafo composto da più alberi) se il grafo contiene più componenti
- questa foresta si chiama foresta di scoperta

1. Cammino di scoperta

algoritmo che stampa il cammino dal sorgente della visita ad un nodo u

```
PRINT-PATH(G, s, u)

if u = s then
stampa u

else
if u.\pi = nil then
stampa "non esiste cammino da s ad u"

else
PRINT-PATH(G, s, u.\pi)
stampa u
```

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

13/79

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

. . . . _

1. Versione "concreta" dell'algoritmo

```
\begin{array}{l} \mathsf{VISITA}(G,s) \\ D \leftarrow \mathsf{MAKE-EMPTY} \\ s.color \leftarrow grigio \\ \mathsf{ADD}(D,s) \\ \textbf{while} \ \mathsf{NON-EMPTY}(D) \ \textbf{do} \\ u \leftarrow \mathsf{FIRST}(D) \\ \textbf{if} \ \exists v \ bianco \in \mathsf{adj}[u] \ \textbf{then} \\ v.color \leftarrow grigio \\ v.\pi \leftarrow u \\ \mathsf{ADD}(D,v) \\ \textbf{else} \\ u.color \leftarrow black \\ \mathsf{REMOVE-FIRST}(\mathsf{D}) \end{array}
```

1. Versione "concreta" dell'algoritmo

- ▶ una struttura dati *D* per gestire l'insieme di vertici grigi
- operazioni necessari:
 - ► MAKE-EMPTY: crea una struttura nuova
 - ► FIRST(*D*): restituisce il primo elemento (senza modificare *D*)
 - \blacktriangleright ADD(D, x): aggiunge l'elemento x a D
 - ► REMOVE-FIRST(*D*): toglie da *D* il primo elemento
 - NOT-EMPTY(D): restituisce true se D non è vuoto, false altrimenti
- ruolo di ADD(D, x):
 - ▶ aggiunge x come primo elemento → pila (stack)
 - ightharpoonup aggiunge x come ultimo elemento \rightarrow coda (queue)

1. Complessità della visita

bisogna sapere come viene implementato il test:

if $\exists v \ bianco \in adj[u]$

- assumiamo di aver realizzato il test con ciclo che percorre dall'inizio la lista di adiacenza
- ciclo finisce quando si trova il primo nodo bianco
- problema: la lista di adiacenza di un nodo u può essere percorso più volte

1. Complessità della visita

- dalla proprietà I sappiamo che un vertice grigio o nero non può ridiventare bianco
- non è necessario percorrere la lista di adiacenza dal inizio
- li ciclo può partire da dove è arrivato l'ultima volta
- associamo ad ogni vertice il valore corrente del puntatore alla lista di adiacenti
- la lista di adiacenza è percorsa una volta sola ightarrow implementazione più efficiente

1. Complessità della visita

- ► inizializzazione richiede tempo O(|V|)
- ogni vertice viene inserito (eliminato) una volta in (da) D
- assumiamo che le operazioni di inserimento e eliminazione richiedano un tempo costante
- ightharpoonup tempo totale dedicato alle operazioni su $D \in O(|V|)$
- le liste di adiacenza vengono percorse una volta
- ▶ tempo totale dedicato alla ricerca di nodi bianchi è O(|E|)
- ▶ tempo totale: O(|V| + |E|)

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

17/79

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

2. Visita in ampiezza

```
► VISITA(G, s)

D \leftarrow \mathsf{MAKE\text{-}EMPTY}
s.color \leftarrow grigio
\mathsf{ADD}(D, s)

while \mathsf{NON\text{-}EMPTY}(D) do

u \leftarrow \mathsf{FIRST}(D)

if \exists v \ bianco \in \mathsf{adj}[u] then

v.color \leftarrow grigio
v.\pi \leftarrow u
\mathsf{ADD}(D, v)

else

u.color \leftarrow black
\mathsf{REMOVE\text{-}FIRST}(D)
```

ightharpoonup D è una **coda** \rightarrow **visita in ampiezza** (breadth first search, BFS)

2. Esempio di BFS

2. Esempio di BFS

2. Esempio di BFS

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

21/79

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

22/79

2. Esempio di BFS

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

5/79

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

26/ 79

2. Esempio di BFS

2. Esempio di BFS

2. Esempio di BFS

2. Esempio di BFS

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

29/ 79

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

2. Versione modificata dell'algoritmo

li primo elemento della coda non cambia finchè ci sono adiacenti bianchi

```
 VISITA(G, s) 
 D ← MAKE-EMPTY 
 s.color ← grigio 
 ADD(D, s) 
 while NON-EMPTY(D) do 
 u ← FIRST(D) 
 for <math>\forall v : v \ e \ bianco \ ed \ e \ e \ adj[u] \ do 
 v.color ← grigio 
 v.π ← u 
 ADD(D, v) 
 u.color ← black 
 REMOVE-FIRST(D)
```

2. Terza versione (ancora più "concreta")

Ogni elemento nella lista di adiacenti ha due campi:

- ▶ vtx è la vertice
- next è il prossimo elemento nella lista

```
VISITA(G, s)
  D \leftarrow \mathsf{MAKE}\text{-}\mathsf{EMPTY}
  s.color \leftarrow grigio
  ADD(D, s)
  while Non-Empty(D) do
       u \leftarrow \mathsf{FIRST}(D)
       ptr \leftarrow adj[u]
      while ptr \neq nil do
           v \leftarrow ptr.vtx
           if v.color = bianco then
                v.color \leftarrow grigio
                v.\pi \leftarrow u
                ADD(D, v)
           ptr \leftarrow ptr.next
       u.color \leftarrow black
       REMOVE-FIRST(D)
```

2. Albero di BFS

- ▶ albero di BFS viene costruito a livelli
- \blacktriangleright la costruzione del livello n+1 non comincia prima di concludere la costruzione del livello n

associamo ad ogni nodo un attributo (d) che ricorda il livello del nodo

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

33/79 Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

2. Albero di BFS

- ▶ algoritmo di visita BFS col calcolo del livello :
- ► INIZIALIZZA(G) for $\forall u \in V$ do

u.color ← bianco

 $u.\pi \leftarrow nil$

 $u.d \leftarrow \infty$

2. Albero di BFS

VISITA(G, s) $D \leftarrow \mathsf{MAKE}\text{-}\mathsf{EMPTY}$ $s.color \leftarrow grigio$ *s.d* ← 0 ADD(D, s)while Non-Empty(D) do $u \leftarrow \mathsf{FIRST}(D)$ for $\forall v : v \text{ è bianco ed } ellipse ellipse$ $v.color \leftarrow grigio$ $v.\pi \leftarrow u$ $v.d \leftarrow u.d + 1$ ADD(D, v)u.color ← black REMOVE-FIRST(D)

2. Albero di BFS

▶ albero dipende dal ordine in cui i nodi sono elencati nelle liste di adiecenza:

lista di adiecenza in ordine alfabetico:

lista di adiecenza in ordine inverso:

2. Proprietà della visita BFS

Ma ogni nodo rimane allo stesso livello:

teorema: al termine della visita BFS

$$\forall v \in V, v.d = \delta(s, v)$$

dove $\delta(s,v)$ indica la distanza di v dal sorgente s della visita (lunghezza di cammino minimo)

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

37/79

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

2. Proprietà della visita BFS

cammino minimo

▶ per ogni vertice *v* raggiungibile da *s*, il cammino da *s* a *v* nell'albero BFS è un

▶ il livello di un nodo nell'albero ottenuto con la visita BFS è indipendente dal

ordine in cui sono memorizzati i vertici nelle liste di adiacenza

3. Visita in profondità

```
► VISITA(G, s)

D \leftarrow \mathsf{MAKE-EMPTY}
s.color \leftarrow grigio
\mathsf{ADD}(D, s)

while \mathsf{NON-EMPTY}(D) do

u \leftarrow \mathsf{FIRST}(D)

if \exists v \ bianco \in \mathsf{adj}[u] then

v.color \leftarrow grigio
v.\pi \leftarrow u
\mathsf{ADD}(D, v)

else

u.color \leftarrow black
\mathsf{REMOVE-FIRST}(D)
```

ightharpoonup D è una pila ightharpoonup visita in profondità (depth first search, DFS)

3. Esempio di DFS

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

3. Esempio di DFS

Pila D:									
А	В								

3. Esempio di DFS

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

41/79

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

42/79

3. Esempio di DFS

3. Esempio di DFS

3. Esempio di DFS

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

3. Esempio di DFS

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

3. Esempio di DFS

3. Esempio di DFS

45/79

3. Esempio di DFS

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

3. Esempio di DFS

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

3. Ordine di scoperta di nodi

- due ordini tra i nodi:
 - l'ordine in cui i nodi diventano grigi (scritto nel nodo)
 - l'ordine in cui i nodi diventano neri (scritto accanto al nodo)
- liste di adiacenza in ordine alfabetico

3. Ordine di scoperta di nodi

▶ liste di adiacenza in ordine contrario

3. Ordine di scoperta di nodi

- un unico contatore che viene incrementato quando un nodo cambia colore
- ▶ ogni nodo viene marcato due volte con questo numero (bianco → grigio, grigio → nero)

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

3. Versione sbagliata (non funziona)

```
▶ VISITA(G, s)

D \leftarrow \mathsf{MAKE-EMPTY}
s.color \leftarrow grigio
\mathsf{ADD}(D, s)

while \mathsf{NON-EMPTY}(D) do

u \leftarrow \mathsf{FIRST}(D)
\mathsf{for} \ \forall v : v \ \grave{e} \ bianco \ \mathsf{ed} \ \grave{e} \in \mathsf{adj}[u] \ \mathsf{do}
v.color \leftarrow grigio
v.\pi \leftarrow u
\mathsf{ADD}(D, v)
u.color \leftarrow black
\mathsf{REMOVE-FIRST}(D)
```

3. Perchè non funziona?

- ▶ se *v* è bianco, diventa grigio e finisce sul top di *D*
- ▶ la lista di adiacenti da considerare dovrebbe essere quella del nuovo nodo sul top di D
- invece nella condizione del **for** rimane il vertice precedente

3. Una versione corretta

perchè non funziona?

```
VISITA(G, s) \\ D \leftarrow \mathsf{MAKE-EMPTY} \\ s.color \leftarrow grigio \\ \mathsf{ADD}(D, s) \\ \textbf{while } \mathsf{NON-EMPTY}(D) \textbf{ do} \\ \textbf{while } \exists v : v \ \grave{e} \ bianco \ \mathsf{ed} \ \grave{e} \in \mathsf{adj}[\mathsf{FIRST}(D)] \textbf{ do} \\ v.color \leftarrow grigio \\ v.\pi \leftarrow \mathsf{FIRST}(D) \\ \mathsf{ADD}(D, v) \\ u.color \leftarrow black \\ \mathsf{REMOVE-FIRST}(D) \\ \mathsf{REMOVE-FIRST}(D)
```

3. E una versione corretta e più concreta

```
VISITA(G,s) \\ D \leftarrow \mathsf{MAKE-EMPTY} \\ s.color \leftarrow grigio \\ \mathsf{ADD}(D,s) \\ \textbf{while} \ \mathsf{NON-EMPTY}(D) \ \textbf{do} \\ \textbf{while} \ \mathsf{FIRST}(D).ptr \neq nil \ \textbf{do} \\ v \leftarrow \mathsf{FIRST}(D).ptr.vtx \\ \mathsf{FIRST}(D).ptr \leftarrow \mathsf{FIRST}(D).ptr.next \\ \textbf{if} \ v.color = bianco \ \textbf{then} \\ v.color \leftarrow grigio \\ v.\pi \leftarrow \mathsf{FIRST}(D) \\ \mathsf{ADD}(D,v) \\ \mathsf{FIRST}(D).color \leftarrow black \\ \mathsf{REMOVE-FIRST}(D) \\ \\
```

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

3. Inizializzazione

- ▶ naturalmente l'attributo *ptr* va inizializzato
- INIZIALIZZA(G) for $\forall u \in V$ do $u.color \leftarrow bianco$ $u.\pi \leftarrow nil$

 $u.ptr \leftarrow adj[u]$

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth 55

3. Un altro esempio di DFS

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

61/79

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

62/79

3. Un altro esempio di DFS

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

3. Un altro esempio di DFS

3. Struttura di "attivazione"

- gli intervalli di "attivazione" di una qualunque coppia di nodi sono:
 - disgiunti oppure
 - ▶ uno interamente contenuto nell'altro

3. Struttura di "attivazione"

- un vertice non viene "disattivato" finchè non sono stati "attivati" e "disattivati" tutti i suoi discendenti
- ▶ è l'ordine in cui si percorre l'albero delle chiamate ricorsiva di una procedura ricorsiva
- progettiamo una versione ricorsiva dell'algoritmo di visita in profondità

3. Versione ricorsiva della visita in profondità

```
VISITA(G, s)

s.color \leftarrow grigio

while \exists v : v \in bianco ed \in adj[s] do

v.\pi \leftarrow s

VISITA(G, v)

s.color \leftarrow nero
```

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

69/7

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

10/13

3. Corrispondenza fre la versione ricorsiva e iterativa

- c'è corrispondenza fra lo stack della versione iterativa e lo stack delle attivazioni della procedura ricorsiva
- > supponiamo che le due versioni visitino gli adiacenti nello stesso ordine
- ▶ se il contenuto dello stack della versione iterativa è $\{v_1, ..., v_r\}$ $(v_1 = s e v_r è al top dello stack)$
- ▶ allora la sequenza di attivazioni per la procedura ricorsiva è $\{Visita(G, v_1),...,Visita(G, v_r)\}$
- può essere dimostrata per induzione sul numero di elementi nello stack

3. Versione estesa per raccogliere altre informazioni

- introduciamo un contatore "time" per ricordare l'ordine delle attivazioni e disattivazioni
- ► VISITA(G, s) $s.color \leftarrow grigio$ $s.d \leftarrow time$ $time \leftarrow time + 1$ while $\exists v : v \text{ è bianco ed è } \in \text{adj}[s]$ do $v.\pi \leftarrow s$ VISITA(G, v) $s.f \leftarrow time$ $time \leftarrow time + 1$ $s.color \leftarrow nero$

3. Versione estesa per raccogliere altre informazioni

bisogna inizializzare le nuove variabili:

```
INIZIALIZZA(G)

for \forall u \in V do

u.color \leftarrow bianco

u.\pi \leftarrow nil

u.d \leftarrow \infty

u.f \leftarrow \infty

time \leftarrow 1
```

tempi di un nodo non visitato rimangono infiniti

3. Visita in profondità di tutti i nodi

- ▶ l'algoritmo precedente visita solo il componente di cui il nodo iniziale (s) fa parte
- visita tutto il grafo solo se il grafo è connesso
- visita intera di un grafo non connesso:

```
VISITA-TUTTI-VERTICI(G)
INIZIALIZZA(G)
for \forall u \in V do
if u.color = bianco then
VISITA(G, u)
```

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

3/79

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

3. Proprietà della visita in profondità di tutti i nodi

- ► Teorema delle parentesi: in ogni visita DFS in un grafo (orientato o non orientato), per ogni coppia di nodi *u*, *v*, una e una sola delle seguente condizioni è soddisfatta:
 - ▶ *u.d*<*v.d*<*v.f*<*u.f* e *u* è un antenato di *v* in un albero della foresta DFS
 - ▶ v.d<u.d<u.f<v.f e u è un discendente di v in un albero della foresta DFS
 - u.d<u.f<v.d<v.f o v.d<v.f<u.d<u.f e non esiste relazione antenato-discendente tra u e v nella foresta DFS
- ogni caso implica caratteristiche del grafo:
 - ightharpoonup u.d < v.d < v.f < u.f: nel grafo esiste un cammino da u a v
 - v.d<u.d<u.f<v.f: nel grafo esiste un cammino da v a u</p>
 - u.d<u.f<v.d<v.f e u e v fanno parte di due alberi distinti: nel grafo non esiste cammino da u a v
 - v.d<v.f<u.d<u.f<e u e v fanno parte di due alberi distinti: nel grafo non esiste cammino da v a u

3. Proprietà della visita in profondità di tutti i nodi

- classificazione degli archi del grafo durante DFS
 - arco dell'albero: arco inserito nella foresta DFS
 - arco all'indietro: arco che collega un nodo ad un suo antenato
 - arco in avanti: arco che collega un nodo ad un suo discendente
 - arco di attraversamento: arco che collega due vertici che non sono in relazione antenato-discendente

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

3. Proprietà della visita in profondità di tutti i nodi

- ▶ teorema: in una visita DFS di un grafo non orientato, ogni arco è un arco dell'albero o un arco all'indietro
- ► teorema: un grafo, orientato o non orientato, è aciclico se e solo se una visita DFS (qualunque) non produce archi all'indietro

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

79/ 79

77/ 79

3. Proprietà della visita in profondità di tutti i nodi

- un arco (u, v) viene classificato quando si esamina v nella lista di adiacenti adj[u]
- ▶ in quel momento *v.color* può essere:

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

- bianco: (u, v) è un arco della foresta DFS
- ightharpoonup grigio: u è un discendente di v in un albero della foresta DFS, (u, v) è un arco all'indietro
- ▶ nero: la visita di v è già terminata (e quindi v.f < u.f), (u, v) è un arco
 - in avanti se v è un discendente di u, in tal caso $u.d < v.d \implies u.d < v.d < v.f < u.f$
 - ightharpoonup di attraversamento altrimenti, in tal caso $v.d < u.d \implies v.d < v.f < u.d < u.f$
- ▶ i precedenti casi forniscono un criterio per la classificazione
