$U_i^{\delta},\,W_j^{\delta}$ and V_2^{δ} be d-, (d+1)- and (d+2)-dimensional currents such that:

$$P_{\delta} - T = U_0^{\delta} + \partial W_0^{\delta}, \qquad \qquad \mathbb{F}(P_{\delta} - T) = \mathcal{M}(U_0^{\delta}) + \mathcal{M}(W_0^{\delta}), \qquad (3.18a)$$

$$X - X_{\delta} = U_1^{\delta} + \partial W_1^{\delta}, \qquad \qquad \mathbb{F}(X - X_{\delta}) = \mathcal{M}(U_1^{\delta}) + \mathcal{M}(W_1^{\delta}), \qquad (3.18b)$$

$$S - S_{\delta} = W_2^{\delta} + \partial V_2^{\delta}, \qquad \qquad \mathbb{F}(S - S_{\delta}) = \mathcal{M}(W_2^{\delta}) + \mathcal{M}(V_2^{\delta}). \tag{3.18c}$$

To clarify the notation, we adopt the convention that variables with a δ subscript are chains on the simplicial complex K_{δ} whereas a δ superscript merely indicates dependence on δ .

Let K_{δ} be any simplicial complex that triangulates P_{δ} , X_{δ} and S_{δ} separately as well as the convex hull of their union. We may assume (applying the subdivision algorithm of Edelsbrunner and Grayson [18] and Theorem 3.3.6 if necessary) that the currents U_0 , U_1 , W_0 , W_1 , and W_2 can be pushed to K_{δ} with expansion bound at most L and the maximum diameter Δ of a simplex of K_{δ} satisfies

$$\Delta \le \frac{\delta}{\max\{1, M(\partial U_0^{\delta}), M(\partial U_1^{\delta}), M(\partial W_0^{\delta}), M(\partial W_1^{\delta}), M(\partial W_2^{\delta})\}}.$$
 (3.19)

Claim 3.3.7.1. $\mathbb{F}(T) \leq \lim_{\delta \downarrow 0} \mathbb{F}_{K_{\delta}}(P_{\delta})$

Proof of claim. By the triangle inequality and since any simplicial flat norm decomposition is a candidate decomposition for the flat norm, we have

$$\mathbb{F}(T) \le \mathbb{F}(T - P_{\delta}) + \mathbb{F}(P_{\delta})$$
$$\le \mathbb{F}(T - P_{\delta}) + \mathbb{F}_{K_{\delta}}(P_{\delta}).$$

The claim follows from letting $\delta \downarrow 0$ and noting that $\mathbb{F}(T - P_{\delta}) \to 0$.

Claim 3.3.7.2. $\mathbb{F}(T) = \lim_{\delta \downarrow 0} \mathbb{F}_{K_{\delta}}(P_{\delta})$

Proof of claim. In light of Claim 3.3.7.1, we must show that $\mathbb{F}(T) \geq \lim_{\delta \downarrow 0} \mathbb{F}_{K_{\delta}}(P_{\delta})$.