MathDNN HW 8

2018-13260 차재현

1 Problem 1

T: Linear?

Regard a domain of \mathcal{T} as $(\mathbb{R}^4)^{m/2 \times n/2}$, where each \mathbb{R}^4 is 2×2 submatrix of domain which shrinks to \mathbb{R} by \mathcal{T} . In this case, we can express \mathcal{T} as

$$[\mathcal{T}] = egin{pmatrix} I'_{1 imes4} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & I'_{1 imes4} & \cdots & \mathbf{0} \\ dots & dots & dots \\ \mathbf{0} & \mathbf{0} & \cdots & I'_{1 imes4} \end{pmatrix},$$

where $I'_{1\times 4}=\left(\frac{1}{4}\ \frac{1}{4}\ \frac{1}{4}\right)$ and $\mathbf{0}=(0\ 0\ 0)$. Since transpose is unique and it is independent of choice of basis (because so does dual map), we have matrix expression

$$[\mathcal{T}]^{\top} = egin{pmatrix} I'_{1 imes4}^{\top} & \mathbf{0}^{\top} & \cdots & \mathbf{0}^{\top} \\ \mathbf{0}^{\top} & I'_{1 imes4}^{\top} & \cdots & \mathbf{0}^{\top} \\ dots & dots & dots \\ \mathbf{0}^{\top} & \mathbf{0}^{\top} & \cdots & I'_{1 imes4}^{\top} \end{pmatrix}$$

under same basis. This means following. If a down-sampled image Y is given, its scale-up image X given by \mathcal{T}^{\top} can be written as (using zero-based index)

$$X_{2i,2j} = X_{2i+1,2j} = X_{2i,2j+1} = X_{2i+1,2j+1} = \frac{Y_{i,j}}{4}.$$

Note that, also, this is a nearest-neighbor by Cauchy-Schwartz inequality

$$(a^2 + b^2 + c^2 + d^2)(4) \ge (a + b + c + d)^2 = 1,$$

where equation holds when a = b = c = d = 1/4.

2 2018-13260 차재현

2 Problem 3

(a) The measure $d\mu = p_Y(x)dx$ is a probability measure, so Jensen's inequality concludes

$$D_f(X||Y) = \int f\left(\frac{p_X(x)}{p_Y(x)}\right) p_Y(x) dx \ge f\left(\int \frac{p_X(x)}{p_Y(x)} p_Y(x) dx\right) \ge f(1) = 0.$$

(b) First of all, since both function is defined only on t > 0

$$(-\log t)'' = \frac{1}{t^2} > 0,$$
 $(t \log t)'' = \frac{1}{t} > 0,$

so both are convex. Also, f(1) = 0 for both cases.

Take $f(t) = -\log t$. In this case,

$$D_f(X||Y) = \int p_Y(x) \log p_Y(x) - p_Y(x) \log p_X(x) dx,$$
 (1)

which is a generalization of

$$D_{KL}(Y||X) = \sum_{x} p_Y(x) \log p_Y(x) - p_Y(x) \log p_X(x).$$
 (2)

Explicitly, (2) is just (1) with discrete measure.

Next, take $f(t) = t \log t$. In this case,

$$D_f(X||Y) = \int p_X(x) \log \frac{p_X(x)}{p_Y(x)} = \int p_X(x) \log p_X(x) - p_X(x) \log p_Y(x) dx,$$

which is a generalization of $D_{KL}(X||Y)$, by the same argument.

3 Problem 4

Being CDF, F is nondecreasing.

By the definition of G

$$\{u \in [0,1] \mid G(u) \le t\} = \{u \in [0,1] \mid \inf_{x} \{u \le F(x)\} \le t\}.$$

Since F is nondecreasing, $x_1 \leq x_2$ is equivalent to $F(x_1) \leq F(x_2)$. Thus we can restrict inside of inf in right side to u = F(x). Then

$$\{u \in [0,1] \mid G(u) \le t\} = \{u \in [0,1] \mid \inf_x \{u = F(x)\} \le t\}.$$

Let $x_0 = \inf_x \{u = F(x)\}$. Such x_0 exists because $\lim_{x \to -\infty} = 0$ and well-ordered property of \mathbb{R} . If x_0 is the unique inverse image of F at u, trivially $F(x_0) = u$.

MathDNN HW 8

Suppose otherwise. Since F is nondecreasing, $F(x) \ge F(x_0)$ for all $x \ge x_0$. Then there is $x_1 > x_0$ satisfying $F(x_1) = u$. Thus $F(x_0) \le u$. By the definition of x_0 , no $x \in (x_0, x_1)$ has its function value F(x) strictly less than u. Then, right continuity of F gives

$$F(x_0) = \lim_{x \to x_0 +} F(x) = u.$$

Thus we get

$$\{u \in [0,1] \mid G(u) \le t\} = \{u \in [0,1] \mid u = F(x), x \le t\}.$$

Applying nondecreasing property once again, this reduces to

$$\{u \in [0,1] \mid G(u) \le t\} = \{u \in [0,1] \mid u \le F(t)\}.$$

Taking union over all $u \in U$, therefore, we conclude

$$\mathbb{P}(G(U) \le t) = \mathbb{P}(U \le F(t)) = F(t).$$

4 Problem 5

Since A is invertible, we have $Y = A^{-1}(X - b)$. Take $\phi(x) = A^{-1}(x - b)$. For $y = \phi(x)$, we have

$$p_X(x) = p_Y(y) \left| \det \frac{\partial \phi}{\partial x}(x) \right| = \frac{1}{\sqrt{(2\pi)^n}} e^{-\frac{\|y\|^2}{2}} \left| \det \frac{\partial \phi}{\partial x}(x) \right| \tag{3}$$

We make some modifications on previous expressions. First, since ϕ is a combination of transpose and linear, its derivative is equal to the derivative of linear part. That is,

$$\left| \det \frac{\partial \phi}{\partial x}(x) \right| = |\det A^{-1}| = |(\det A)|^{-1}.$$

Also, since $\det A = \det A^{\top}$, we can rewrite as

$$\left|\det\frac{\partial\phi}{\partial x}(x)\right| = \sqrt{\det A \det A^\top}^{-1} = \sqrt{\det\Sigma}^{-1}.$$

Next, definition of norm in vector space gives

$$||y||^2 = \langle y, y \rangle = y^\top y = (A^{-1}(x-b))^\top A^{-1}(x-b)$$
$$= (x-b)^\top (AA^\top)^{-1}(x-b)$$

4 2018-13260 차재현

$$= (x-b)^{\top} \Sigma^{-1} (x-b)$$

Substituting both results to (3) gives

$$p_X(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-b)^\top \Sigma^{-1}(x-b)}.$$

5 Problem 6

For me, it is more convenient to use python code instead of pseudocode. I append the answer.

6 Problem 7

- (a) Given x, the i-th element of $P_{\sigma}x$ is $e_{\sigma(i)}^{\top}x = x_{\sigma(i)}$.
- (b) Since each $e_{\sigma(i)}$ is a unit vector, inner product of rows $\langle e_{\sigma(i)}, e_{\sigma(j)} \rangle = \delta_{ij}$, where δ_{ij} is usual dirac symbol. Thus rows of P_{σ} consists orthonormal system, so P_{σ} is unitary. Thus we get $P_{\sigma}^{\top} = (P_{\sigma})^{-1}$. Next, take $x = e_j$ in (a) over $j = 1, \dots, n$, we get $P_{\sigma}x_j = x_{\sigma(j)}$. This is equivalent to $(P_{\sigma})^{-1}x_{\sigma(j)} = x_j$, and since σ is one-to-one, $(P_{\sigma})^{-1}x_j = x_{\sigma^{-1}(j)}$. We conclude $(P_{\sigma})^{-1} = P_{\sigma^{-1}}$.
- (c) From (b) and the identity $\det A = \det A^{\top}$, we have

$$1 = \det I = \det(P_{\sigma} P_{\sigma}^{-1}) = \det(P_{\sigma} P_{\sigma}^{\top}) = (\det P_{\sigma})^{2}.$$