Teoria da Informação Ficha Teórico-Prática nº 1

"Teoria da Informação"

Período de execução: 1 aula teórico-prática

Objectivo: Pretende-se que o aluno adquira sensibilidade para as questões fundamentais de teoria da informação, em particular informação, entropia exacta e aproximada e incerteza.

Trabalho

- 1. Numa imagem binária 20x20, 200 pixels são pretos.
 - a) Sem efectuar quaisquer cálculos, indique a informação e a entropia de cada pixel.
 - b) Considere agora que 240 pixels são pretos. Calcule a informação e a entropia de cada pixel (em bits). Qual a relação entre a informação de cada pixel e a probabilidade da sua ocorrência?
 - c) Nessa mesma imagem, verificou que a probabilidade de ocorrência de 2 pixies consecutivos <preto, preto> é de 0.6, <branco, branco> é de 0.2, <preto, branco> é de 0.1 e <branco, preto> é de 0.1. Calcule a entropia de cada pixel. Compare-a com a calculada na alínea anterior e tire conclusões.
 - d) Assumindo agora que 2/3 dos pixeis são pretos, verificou que a probabilidade de um pixel preto suceder a outro pixel preto é 0.6, um branco suceder a um branco é de 0.2 e um preto suceder a um branco é de 0.8 e um branco suceder a um preto é de 0.4. Calcule a entropia associada a cada pixel.
- 2. Considere uma fonte de informação com a seguinte estatística de segunda ordem (P(x,y))

x/y	0	1
0	1/3	1/3
1	0	1/3

- a) Determina $H(X) \in H(Y)$.
- b) Determine $H(X|Y) \in H(Y|X)$.
- c) Determine H(X,Y)
- d) Determine I(X;Y)
- 3. Demonstre as seguintes propriedades elementares:
 - a) $H(x) \ge 0$
 - b) H(x) ≤ log2 (N), em que N representa a cardinalidade do alfabeto da fonte de informação.

١.		/ · · /	r	., .		1 1
\sim 1	H(x,y) = H(x) + H	(V) SE E SO SE Y E	y torem	Wariaweis	: Ind	enendentes
\sim 1	111/2/1/11/2/11/11		, , , , , , , , , ,		, II I G	CDCHGCHICS.

4. Considere a seguinte fonte de informação, X, que regista as temperaturas ao longo do dia com intervalo de duas horas:

		12 14 16 1	8 20 22 22 20 18 16 14 12
	b)	que minimize o valo a) Para aprender o	atégia de modelação da fonte de informação
símbo dessa	los S={	1,2}. Assuma que c são P(1 1)=0.8, P(2	ormação composta por um alfabeto de dois as probabilidades condicionadas de ordem 1 2 1)=0.2, P(1 2)=0.6 e P(2 2)=0.4. (note que
(1,2)		Comente a seguint	e afirmação: "Um codificador que assuma que dependentes terá que usar, em média, pelo
	b)	menos 0.95 bits por Considere que p informação usando	símbolo." Fundamente com cálculos. rocede à modelização da sua fonte de o um modelo de Markov de primeira ordem. ias, qual é o melhor desempenho possível do
espos	=a/2, sta(s) c	uma variável estocá	ástica $X \in \{1,2,3\}$ tal que $P(X=1)=a/2$, $P(X=2)=1-a$ e ircunstâncias observa-se que (assinale a(s)
u) 11(^	.) e ma	□ a = 1 □ a = 1/2	□ a = 1/3□ nenhuma das anteriores
၁)	□ H(X)		□ H(X) ≤ 2□ nenhuma das anteriores
c)	-	(X) = H(X) (X) = H(X) + H(X X)	□ H(X,X) =H(X)+H(X)□ nenhuma das anteriores
c)	□ I(X;)	(x) = 0 (x) = H(x)	□ I(X;X) = H(X X)□ nenhuma das anteriores
d)	□ I(X;)	 é máximo quando é máximo quando é máximo quando huma das anteriores 	a = 1 a = 0.5

7. Considere que Y = log2(2X+2). Assumindo que D() representa a distância KL, assinale as opções corretas:

8. Considere um esquema de codificação de canal em que o codificador triplica cada bit transmitido, isto é, cada bit t o codificador codifica t1t2t3. O descodificador para cada sequencia r1r2r3 descodifica a mensagem s=mediana{r1r2r3}. Assuma que a probabilidade de erro de transmissão de cada bit é de 10% e que os acontecimentos são independentes. Determine a probabilidade de erro de cada mensagem.

9^{*}. Uma moeda de 1€ é lançada até que ocorra a primeira cara.

- a) Sendo X o número requerido de lançamentos, calcule a entropia de X em bits. Assuma a situação genérica em que a moeda possa estar viciada, sendo f a probabilidade de ocorrência de caras.
- b) Qual a entropia quando a moeda é totalmente equilibrada?

Utilize os seguintes resultados:

$$\sum_{n=1}^{\infty} r^n = \frac{r}{1-r} \qquad \sum_{n=1}^{\infty} nr^n = \frac{r}{(1-r)^2}$$

Teoria da Informação

^{*} Exercício adaptado de Cover and Thomas, "Elements of Information Theory", p. 42.

^{**} Exercício adaptado de Cover and Thomas, "Elements of Information Theory", p. 44.

11. Demonstre, de uma dada equiprováveis.	com recurso ao princípio da máxima entropia, que a entropia variável aleatória X é máxima quando os acontecimentos são