

Cylinder Materials

Heads: Machined from solid aluminum; black anodized **Tubes:** Aluminum hard anodized to 60 Rc (16 RMS finish)

Piston: Solid high alloy aluminum

Rod: Hard chrome plated ground and polished steel
Bearing: Long wearing oil impregnated porous bronze

Piston and Rod Seals: Wear compensating Buna N vee rings

Rod Wiper: PTFE

Tie Rods: High tensile steel torqued to allow for flexure

Double-Rod Cylinders

Cylinders having a common piston rod that protrudes from both ends are available in all bore sizes. In addition to providing a dual power source, double rod cylinders serve to minimize rod deflection and to facilitate the control and adjustment or rod travel.

Specify Cushions for Shock Absorption

Model DM-112 is available with adjustable cushions that decelerate the piston rod over the last ¹¹/₁₆" of stroke. They allow the user to set the degree of cushioning needed for each specific application.

Note: Cushions are not recommended for hydraulic use.

Pneumatic End-of-Stroke Sensors (Inter-Pilots®)

A miniature 3-way valve built into the cylinder head is actuated by the cylinder piston as it reaches the end of its stroke. Once contacted, the 3-way Inter-Pilot® valve emits an air signal. In this manner, sequencing is achieved without external limit switches and electric wiring.

Inter-Pilots® may be built (10-32 Ports) into either or both cylinder heads. They are not for hydraulic use. Cylinder operating pressure must not exceed pressure used to feed the Inter-Pilot®. Inter-Pilots® are not available on DM-075.

Operating Parameters

Bore Diam.	Thrust*	Thrust Mult.**	Rod Diam.(In.)	Max. Oper. Pressure Air Oil [‡]			
3/4"	44	.44	5/16	250	1000		
11/8"	100	1.00	⁵ ⁄ ₁₆	250	1000		

^{*}Pushing force of cylinder at 100 PSI inlet pressure. Pulling force will be about 10% less due to the displacement of the piston rod. Note: Actual realizable thrust could be somewhat lower due to side loading and internal friction. It is best to oversize your cylinder by about 25% to assure smooth operation.

Operating Specifications

Temp. Range: -40 to +250°F (to +400°F on request)

Lubrication: Not necessary, but will extend cylinder life when

operated with dry air.

Filtration: Not essential, but a standard 40 micron filter placed

upstream will prolong seal life.

Pneumatic Stroke Completion Sensors (SCS)

Port mounted SCS valves emit an air signal when the cylinder rod has stopped even if the piston has not contacted the end cap. SCS valves are ideal for use in situations where the full cylinder stroke is not used. See pg. 57.

Accessories			
	Bore Diameter	%4"	1 1/8"
	Flex Rod Couplers	DMA- 312	DMA- 312
	Forged Rod Clevis	DMC-5	DMC-5
	Pivot Bracket	NA	DMP-7
	(with Pin)	NA	DMR-7

Self Aligning Rod Couplers

Rod couplers simplify cylinder alignment problems by compensating

for 2° angular error and ½6″ lateral misalignment on both extension and retraction strokes. Greater reliability is achieved by reducing cylinder and component wear. Order model # DMA-312 for these small bore cylinders. For other models, see page 45 for dimensions.

Part #	Rod Thread	Cylinder Type
DMA-312	⁵ / ₁₆ -24	C-112, DM-075, DM-112
DMA-375	³ / ₈ -24	No Standard
DMA-437	⁷ / ₁₆ -20	DM-150, DM2-150, HD1-150, DM-200, DM2-200, HD1-200, DM-250, DM2-250, HD1-250
DMA-500	$\frac{1}{2}$ -20	C-150
DMA-625	⁵ ∕ ₁₈ -18	C-250
DMA-750	³ / ₄ -16	DM-325, DM2-325, HD1-325, DM-400, DM2-400, HD1-400
DMA-875	⁷ / ₈ -14	No Standard
DMA-1000	1-14	C-300, DM-600, HD1-600
DMA-1250	11/4-12	No Standard

^{**} To determine thrust at other inlet pressures, multiply factor by the desired pressure.

[‡] DM cylinders are not rated or approved for use in hydraulic circuit where an impulse or pressure spike may occur.

Small Bore Tie Rod Dimensions and Ordering Information

- * Add Stroke Length to Dimension
- ** Add 2 x Stroke Length to Dimension

3 1/8

3 1/8

- (2) On $1^{1/8}$ " bore models with ram end cushions and/or Inter-Pilots^{*}, 9^{4} 16" must be added to G, ZB, SN, and XD dimensions. For blind end cushions and/or Inter-Pilots[®], ⁵/₈" must be added to **J, ZJ, SN, and XD** dimensions.
- (3) $^{3}4''$ and $^{1}8''$ bore cylinders use spacers for fractional strokes. For dimensioning, use the next even inch stroke. For true fractional stroke cylinders, specify CL (cut to length).
- (4) $3\sqrt[4]{4}$ and $1\sqrt[4]{8}$ bore models have (4) 10-32 threaded holes for rear flush mounting.

How To Order

ZM**

Dyna-Mation Series: DM1 & DM2

Built to Last (Materials)

- Cylinder heads are machined from solid aluminum bar stock and black anodized
- Tubes (DM1) and Tube Extrusions (DM2) are aluminum hard anodized to 60 Rc (16 RMS finish)
- Pistons are solid high alloy aluminum
 - Pistons have a PTFE wear band
- Dynamic seals are high quality wear-compensating Buna N block V rings
- Rods are hard chrome plated ground and polished steel
- Rod Wipers are PTFE
- Tie Rods (DM1) are high tensile steel torqued to allow for flexure

Dyna-Mation -vs- HD Models

Dyna-Mation cylinders are designed to generate high performance in most applications. However, when operating conditions are severe, heavy duty models (HD Series, see pages 38-47) are recommended. The HD Series boasts the added benefits of a large hard-coated outboard rod bearing. The following profiles illustrate the differences of the rod end head in all three types of cylinders:

DM2

Extruded Body Design with Internal Rod Bearing

DM1

Internal Bronze Rod Bearing Tie Rod Design

HD1 Heavy Duty Hard-Coated Rod Bearing

Two Designs To Meet Application Demands

Mead Dyna-Mation cylinders are available two design series, the DM1 and the DM2. The DM1 series incorporates tie-rod construction while the DM2 series cylinders are constructed with an extruded body design, making these cylinders better suited for wash down applications and clean environments.

Specify Cushions for Shock Absorption

Adjustable cushions that decelerate the piston rod over the last "1/16" of stroke may be ordered in either or both ends of Dyna-Mation cylinders. They allow the user to set the degree of cushioning needed for each specific application.

A built-in check valve assures a fast getaway in the opposite direction. The tough cushion seal combines with the ultra-smooth controlstem to provide years of reliable service.

Operating Parameters

Bore Diam.	Thrust*	Thrust Mult.**	Rod Diam.(In.)	Max. Oper. Air	Pressure Oil [‡]
$1\frac{1}{2}$ "	177	1.77	5/8	250	1000
2"	314	3.14	5/8	250	1000
21/2"	491	4.91	5/8	250	1000
31/4"	830	8.30	1	250	700
4"	1257	12.57	1	250	650
6"	2827	28.27	1 ³ ⁄ ₈	250	435

^{*}Pushing force of cylinder at 100 PSI inlet pressure. Pulling force will be about 10% less due to the displacement of the piston rod. Note: Actual realizable thrust could be somewhat lower due to side loading and internal friction. It is best to oversize your cylinder by about 25% to assure smooth operation.

NOTE: 6" bore only available in DM1 Series.

Operating Specifications								
Temp. Range:	-40 to +250°F (to +400°F on request)							
Lubrication:	Not necessary, but will extend cylinder life when							
	operated with dry air.							
Filtration:	Not essential, but a standard 40 micron filter placed							
	upstream will prolong seal life.							

Double-Rod Cylinders

Cylinders having a common piston rod that protrudes from both ends are available in all bore sizes. In addition to providing a dual power source, double rod cylinders serve to minimize rod deflection and to facilitate the control and adjustment of rod travel. See page 35 for ordering instructions.

Right Angle Flow Controls

Control the speed of your cylinders with Mead Flow Control Valves. Right-angle flow controls can be found on page 63. For precise metering of air, see Mead Dyla-Trol Valves on page 66.

^{**} To determine thrust at other inlet pressures, multiply factor by the desired pressure.

[‡] DM cylinders are not rated or approved for use in hydraulic circuit where an impulse or pressure spike may occur.

Dyna-Mation Series: DM1 & DM2

Pivot Mount

Clevis Mount

Rear Flange

Front Flange

Accessories

Rod clevises, rod eyes, pivot brackets, clevis brackets, and pivot pins are available in each bore size to accomplish all four of the combinations illustrated below.

Rod Clevis and Pivot Bracket

Clevis Bracket and PE Cylinder

Rod Eye and Clevis Bracket

Pivot Bracket and PB Cylinder

Pneumatic End-of-Stroke Sensors (Inter-Pilots®)

A miniature 3-way valve built into the cylinder head is actuated by the cylinder piston as it reaches the end of its stroke. Once contacted, the 3-way Inter-Pilot® valve emits an air signal. In this manner, sequencing is achieved without external limit switches and electric wiring.

Inter-Pilots® may be built into either or both cylinder heads. They are not for hydraulic use. Cylinder operating pressure must not exceed pressure used to feed the Inter-Pilot*.

Inter-Pilot® Port Locations

For 1 1/2" Bore Cylinders

Note: Inter-Pilot® ports are 10-32.

Rod Position Sensors

Hall Effect and Reed Switches allow the cylinder user to sense rod position anywhere within the stroke. Switches are available for both models. For the DM1 series the switch attaches to any of the four tie-rods. For the DM2 series, a dovetail slot runs along the cylinder tube to facilitate fast and accurate position setting.

Hall Effect

Hall effect technology provides contactless switching. With contactless switching there are no moving parts; therefore, reliability and life expectancy are greatly increased. Hall Effect switches come with built-in indicator lights (3 wire), reverse polarity and surge protection standard. Order either sinking or sourcing depending on logic systems requirements. They have an IP67 protection rating.

Technica	

Operating Voltage:	5-28 DC	Working Temp:	23 to 194°F
Operating Time:	On 2 ms	Repeatability:	.001 ms
	Off .1 ms	Max. Switching Current :	.5A

Current Sinking: Load connected between output and positive supply. Current Sourcing: Load is connected between output and common.

Reed

Mead Reed Switches are epoxy encapsulated and economically priced for reliable low cost position sensing. Reed switches come with wire leads. LED (2 wire) included.

Note: Not for use with hydraulic cylinders.

Technical Information

Operating Voltage:	240 AC Max.	Working Temp:	67 to 200°F
Switch Current:	.5 Amps Max.	Operating Time:	On .5 ms
	10 Watts Max.		Off .5 ms

Pneumatic Stroke Completion Sensors (SCS)

Port mounted SCS valves emit an air signal when the cylinder rod has stopped even if the piston has not contacted the end cap. SCS valves are ideal for use in situations where the full cylinder stroke is not used. SCS valves are available in $\frac{1}{8}$ ", $\frac{1}{4}$ ", $\frac{1}{2}$ " pipe sizes. See pg. 57.

Self Aligning Rod Couplers

Rod couplers simplify cylinder alignment problems by compensating for 2° angular error and 1/16" lateral misalignment on both extension and retraction strokes. Greater reliability is achieved by reducing cylinder and component wear. All components are heat treated for wear and corrosion resistance.

^{*} see page 30 for complete listing of Mead's self aligning rod couplers.

Ordering Dyna-Mation DM1 & DM2

SELECT A BORE SIZE									
Bore	1½"	2"	21/2"	31/4"	4"	6"			
Force*	177	314	491	830	1257	2827			
Models	DM1-150	DM1-200	DM1-250	DM1-325	DM1-400	DM-600			
Available	DM2-150	DM2-200	DM2-250	DM2-325	DM2-400	NA			

^{*} Maximum force output at 100 PSI inlet pressure (in lbs.)

STEP 2:

CHOOSE STROKE LENGTH								
PISTON ROD	DIAMETER	RS:						
Bore	1½"	2"	21/2"	31⁄4″	4"	6"		
Rod Diam.	5⁄8″	5⁄8″	5/8″	1"	1"	13⁄8″		

Non Standard Piston Rods: Special rod threads or extensions are available. Please enclose a sketch of what you require.

Note: Stroke costs vary with differing bore sizes. Extra charges may be incurred for fractional strokes and strokes over 12".

STE	P 3:		SELECT	A MC	UNT	ING S	TYLE				
			Mead		E	Bore Dia	meter			NFPA	
			Code	1½″	2"	21/2"	31/4"	4"	6"	Code	Description
Flush Bottom		_	FB	•	•	•	•	•	•	MS-4	Four tapped holes on bottom of cylinder.
Long Clevis		_	РВ	•	•	•	•	•	•	MP-2	Two ears extend from rear head; (clevis is detachable)
Short Clevis		_	PF	•	•	•	•	•	NA	MP-1	Two ears extend from rear head (clevis is detachable).
Pivot		_	PE	•	•	•	•	•	•	MP-4	A single ear extends from rear head; (pivot is detachable)
Tie Rods Ext. Front			TIF	•	•	•	•	•	•	MX-3	All four tie-rods extend forward from cylinder face. Consult factory for rear extended tie-rods (or both ends).
Front Flange NFPA Std.		ŀ	FH	•	•	•	•	•	•	MF-1	Flange plate extends beyond the front head.
Rear Flange		-	FR	•	•	•	•	•	•	MF-2	Flange plate extends beyond the rear head.
Trunnion Front			TF	•	•	•	•	•	•	MT-1	Two pivot bars extend from two sides of front head. Not available with front Inter-Pilots® or front cushions.
Trunnion Rear	O	_	TR	•	•	•	•	•	•	MT-2	Two pivot bars extend from two sides of rear head. Not available with rear Inter-Pilots® or rear cushions.
Foot	0 0	=	FT	•	•	•	•	•	•	Non Std.	A plate with two holes is mounted to the bottom of each head.

STEI	P 4:	4: SELECT CYLINDER OPTIONS							
		Mead		Bore [Diamete	r			
		Code	1½"	2"	2½"	31⁄4″	4"	6"	Description
Double Rod		DR	•	•	•	•	•	•	Rod extends through both heads: (adds to cylinder rigidity)
Cushions (Not available with Trunnion Mount)		Front CF Rear CR Both CB	•	•	•	•	•	•	Dampen the impact and sound that occur at stroke completion; cushions are adjustable.
Inter-Pilots (Not available with Trunnion Mount)		Front IPF Rear IPR Both IPB	•	•	•	•	•	•	inter-Pilots emit an air signal at the end of each stroke; Integral with cylinder head; Note: Not available on hydraulic cylinders.
Non-Rotating Rod (6" Max.Stroke)		NR	NA	NA	NA	•	•	•	Internal bar prevents piston and rod rotation.
Non-Lube Seals		NL	•	•	•	•	•	•	Self-Lubricating seals are used in place of standard Buna N seals; Note: Not available on hydraulic cylinders.
High Temp. Seals (Viton)	нот	VI	•	•	•	•	•	•	Viton™ seals are suitable for high temperature environments (400°F Max.)
Magnetic Pistons		MP	•	•	•	•	•	•	Enables Reed & Hall Effect switches to sense piston location. Note: Reed switch/Hall Effect not available on all hydraulic cylinders. (Contact Mead)

Ordering Dyna-Mation DM1 & DM2

STEP 5:

When ordering Dyna-mation cylinders, list the:

- 1. Model Number
- 2. Stroke
- 3. Mounting Style
- 4. Options (If Needed)

BUILD A MC	DEL NUMBE	R	
Model Number	Stroke	Mounting Style	Options
DM2-200	x <u>10</u> -	<u>PB</u> -	<u>CF</u>
2" Bore 10" Stroke Clevis Mount (P	PB)		
Cushioned Fron	it (CF)		

Accessories							
	Bore Diameter	1 1/2"	2"	2 ½"	31/4"	4"	6"
	Flex Rod Couplers	DMA- 437	DMA- 437	DMA- 437	DMA- 750	DMA- 750	DMA- 1000
	Forged Rod Clevis	DMC-1	DMC-1	DMC-1	NA	NA	NA
	(NFPA Std.)	DMC-2	DMC-2	DMC-2	DMC-4	DMC-4	DMC-6
0	Machined Rod Eye (NFPA Std.)	DME-1	DME-1	DME-1	DME-2	DME-2	DME-3
	Pivot Bracket	DMP-1	DMP-2	DMP-3	DMP-4	DMP-5	DMP-8
	Clevis Bracket (with Pin)	DMR-1	DMR-2	DMR-3	DMR-4	DMR-5	DMR-8

NOTE: DMP and DMR Pivot and Clevis backets do not include any mounting hardware. See page 41 for

Hall Effect Switches

Sourcing

For DM1 series: CS-6200P For DM2 series: CS-7003P

Sinking

For DM1 series: CS-6200N For DM2 series: CS-7003N

Cylinders must have a magnetic piston (MP). For technical information, see page 33.

Reed Switches

For DM1 series: CS-6200R For DM2 series: CS-7003R

Plain Wire Leads

Cylinders must have a magnetic piston (MP). For technical information, see page 33.

Special Cylinders

We invite inquiries regarding non-standard cylinders. Please call 773-685-6800 or your local Mead representative.

Basic Cylinder

NOTE: DM1 Cylinders are constructed with sleeve nuts; use RT, K does not exist. DM2 use K; RT does not exist.

Bottom Flush Model FB

Rod End Trunnion Model TF

Clevis Model PB and PF

Rod End Flange Model FH*

Foot Mount Plate Model FT

Double Rod Model DR

Blind End Trunnion Model TR

Pivot Model PE

Blind End Flange Model FR*

Note: For dimensions of nose mount and tie rod extended models, consult factory.

Bore 21/2 31/4 11/2 2 4 6 3/4 3/4 3/4 1 1/8 1 1/8 1 1 1/8 Α 2 1/16 1 1/2 1 1/2 1 1/2 CA $2\frac{1}{16}$ 1 3/4 СВ 3/4 3/4 1 1/4 1 1/4 $1\frac{1}{2}$ CD $\frac{1}{2}$ 1/2 $\frac{1}{2}$ 3/4 3/4 1 2 3/8 2 3/8 1 1/2 $1\frac{1}{2}$ $1\frac{1}{2}$ $3\frac{1}{8}$ CE 1/2 $\frac{1}{2}$ $\frac{1}{2}$ 5/8 5/8 3/4 CW D 1/2 1/2 1/2 7/8 7/8 1 1/8 17/64 $\frac{1}{2}$ -20 23/64 23/64 7/16 7/16 DD Ε 2 2 1/2 3 3 3/4 $4\frac{1}{2}$ $6\frac{1}{2}$ EE(NPTF)*** 1/4 1/4 1/4 1/2 $\frac{1}{2}$ $\frac{3}{4}$ 3/8 3/8 3/8 5/8 5/8 3/4 F 9/16 ⁵/₁₆ 3/8 3/8 7/16 7/16 FΒ FL 1 1/8 1 1/8 1 1/8 1 1/8 $1\frac{7}{8}$ 2 1/4 Clevis 1 7/16 1 11/16 1 11/16 G $1\frac{7}{16}$ $1\frac{7}{16}$ 2 15/16 $1\frac{3}{16}$ $1\frac{3}{16}$ $1\frac{1}{2}$ ¹⁵/₁₆ ¹⁵/₁₆ J 3/16 5/32 3/16 3/16 Κ 1/8 5/32 ΚK $\frac{7}{16}$ -20 $\frac{7}{16}$ -20 $\frac{7}{16}$ -20 3/4-16 $\frac{3}{4}$ -16 1-14 М 1/2 1/2 1/2 3/4 3/4 2 1/4 Clevis 5/8 5/8 5/8 1 1 $1\frac{3}{8}$ MM 19/32 19/32 31/32 NA 19/32 31/32 $1\frac{5}{16}$ 1/4-20 ⁵/₁₆-18 ³/₈-16 $\frac{1}{2}$ -13 $\frac{3}{4}$ -10 $\frac{1}{2}$ -13 NT $2\frac{3}{16}$ $1\frac{7}{16}$ $1^{27}/_{32}$ 2 3/4 3 21/64 4 1/8 R 1/4-28 5/16-24 5/16-24 3/8-24 3/8-24 $\frac{1}{2}$ -20 RT 21/64 ²⁵/₆₄ 33/64 33/64 17/64 33/64 SB 3/8 11/16 SJ 3/8 3/8 1/2 1/2 11/64 3/8 $\frac{3}{8}$ 3/8 1/2 $\frac{1}{2}$ SM 3/4 11/64 $\frac{3}{4}$ 3/4 1 SU 1 SW 3/16 ³/₁₆ 1/4 1/4 1/4 7/64 1 3/8 1 TD 1 1 1 1 2 3/4 3 3/8 3 1/8 $4\frac{11}{16}$ $5\frac{7}{16}$ $7^{5/8}$ TF 3/8 1/2 9/16 3/4 3/4 1 1/8 ΤK 1 1 1/8 TL 1 1 1 1 ΤN 5/8 7/8 1 1/4 $1\frac{1}{2}$ 2 1/16 3 1/4 2 3/4 3 1/4 $3\frac{3}{4}$ 4 3/4 5 1/2 7 1/8 TS 3 3/8 4 1/8 4 5/8 5 1/2 6 1/4 8 5/8 UF $5\frac{3}{4}$ $6\frac{1}{2}$ 9 1/4 UT 4 $4\frac{1}{2}$ 5 w 1 1 1 $1\frac{3}{8}$ 1 3/8 1 1 1/8 $1\frac{15}{16}$ ΧT $1\frac{15}{16}$ $1\frac{15}{16}$ $2\frac{7}{16}$ $2\frac{7}{16}$ $2\frac{13}{16}$ $2^{13}/_{16}$ $1\frac{3}{4}$ $1\frac{3}{4}$ $1\frac{3}{4}$ 2 1/4 2 1/4 XG 1 1/4 1 1/4 1 1/4 $1\frac{3}{4}$ $1\frac{3}{4}$ 2 1/2 н 2 2 2 2 5/16 2 5/16 $2\frac{15}{16}$ HA ΗВ 1/2 1/2 1/2 1/2 1/2 1/2 3/4 3/4 3/4 1 1/8 1 1/8 1 1 1/8 HC 5/8 5/8 5/8 31/32 31/32 $1\frac{3}{8}$ HD $1\frac{1}{2}$ 1 1 1 $1\frac{1}{2}$ 2 1/4 ΗE 10,000 10,000 10,000 34,000 34,000 64,000 HF Note: * Add Stoke Length to Dimensions Below ** Add Twice Stroke to ZM Dimension SN* 2 1/4 2 1/4 2 3/8 2 1/8 2 1/8 3 1/8 $5\frac{3}{8}$ $5\frac{3}{8}$ 5 1/2 $6\frac{7}{8}$ $6\frac{7}{8}$ $7\frac{7}{8}$ XC* XD* $5\frac{3}{4}$ $5\frac{3}{4}$ $5\frac{7}{8}$ $7\frac{1}{2}$ 7 1/2 7 1/2 XJ* $4\frac{1}{8}$ $4\frac{1}{8}$ $4\frac{1}{4}$ 5 5 5 1/8 6 1/8 4 1/8 4 1/8 4 3/4 5 1/8 5 1/8 ZJ* ZM** 6 1/8 6 1/8 $6\frac{1}{4}$ 7 1/2 7 1/2 8 3/4

Note: For Inter-Pilot® port locations, see page 33.

DME Interchangeable Rod Eye

DM1 & DM2 Dimensions

⊷|CD|**⊸** -CD CD CA кк

DMC Interchangeable Rod Clevis with Pin

DMR Clevis Bracket w/Pin

DMP Pivot Bracket

Self Aligning Rod Couplers

DMC-1 Forged Rod Clevis w/Pin 11/2" through 21/2" bores

^{***} For the 1-1/2", 2" and 2-1/2" Bores: 3/8" Ports Available Consult Factory.

Cylinders For Abusive Conditions

Combining NFPA dimensional interchangeability and high quality components, the "HD" Series offers excellent performance and long service life, even in the most severe of conditions.

External Bearing Ensures Smooth Motion

HD cylinders are fitted with a heavy-duty external rod bearing in the rod end head. Teflon*-impregnated and hardcoat anodized, this bearing ensures smooth rod motion while maintaining rod rigidity and stability. The entire rod gland and bearing may be quickly removed and replaced without disassembling the cylinder.

Operating Specifications

Temperature Range: -40°F to +250°F (to +400°F on request)

Lubrication: For maximum cylinder life, non-detergent

petroleum based oil is recommended.

Non-lube seals avail.

Filtration: Not essential, but a standard 40 micron filter placed

upstream will prolong seal life.

Operating Parameters

Bore Diam.	Thrust*	Thrust Mult.**	Rod Diam.	Max. Oper. Air	Pressure Oil [‡]
1 1/2"	177	1.77	5∕8″ or 1″	250	1000
2"	314	3.14	5∕8″ or 1″	250	1000
2 1/2"	491	4.91	5∕8″ or 1″	250	1000
3 1/4"	830	8.30	1" or 1 3/8"	250	700
4"	1257	12.57	1" or 1 3/8"	250	650
6"	2827	28.27	1 3/ ₈ " or 1 3/ ₄ "	250	435

*Pushing force of cylinder at 100 PSI inlet pressure. Pulling force will be about 10% less due to the displacement of the piston rod. Note: Actual realizable thrust could be somewhat lower due to side loading and internal friction. It is best to oversize you cylinder by about 25% to assure smooth operation.

**To determine cylinder thrust at other inlet pressures, multiply this factor times the desired inlet pressure.

‡HD Cylinders are not rate or approved for use in a hydraulic circuit where an impulse or pressure spike may occur.

Cylinder Construction

Rod Bearing:

Teflon-impregnated, hardcoated aluminum

Heads:

Machined from solid aluminum bar; black anodized

Tubes:

Aluminum hard anodized to 60 Rc (16 RMS finish)

Piston

Solid high alloy aluminum and fitted with a PTFE Wear Band.*

Piston Rod:

High tensile ground and polished hard chrome plated steel

Piston and Rod Seals:

Wear compensating Buna N vee rings. Non-lube seals are also available (see Option NL).

Tube Seals:

Buna N o-rings

Rod Wiper

Dupont Teflon[®]

Tie Rods:

High tensile steel torqued to allow for flexure.

NOTE: 6" Bore Cylinders do not have wear bands.

Customize Your Cylinder

The HD Series offers numerous accessories and design options. With hundreds of possible combinations available, you can "design" your own cylinder for any application.

Cushions (CR, CF, CB)

For end-of-stroke load deceleration, specify cushions in either or both ends of your cylinder. Cushions decelerate the piston rod over the last $^{11}/_{16}$ " of stroke. Adjustable, they allow you to set the degree of cushioning needed for each specific application.

A built-in check valve assures a fast getaway in the opposite direction. A pre-lubricated nitrile cushion seal provides years of reliable service.

Note: Cushions are not recommended on hydraulic cylinders.

Double Rod (DR)

Double rod cylinders have a common piston rod that protrudes from both ends of the cylinder. In addition to providing a dual power source, double rod cylinders serve to minimize rod deflection and to facilitate the control and adjustment of rod travel.

Inter-Pilots® (IP)

Mead's Inter-Pilot[®] is a miniature 3-way valve built in the cylinder head. Actuated by the cylinder's piston as it reaches the end of its stroke, the valve emits an air signal. Thus, sequencing is achieved without external limit switches and electric wiring.

Inter-Pilots may be built into either or both cylinder heads. They are not for hydraulic use. Cylinder operating pressure must not exceed pressure used to feed the Inter-Pilot*.

INTER-PILOT* PORT LOCATIONS (Port Size = 10-32)
Inter-Pilot port location style that is offered with each cylinder head

Bore (Either Head)	1 1/2"	2"	2 1/2"	3 1/4"	4"	6"
Non-Cushion	2	1	1	1	1	3
Cushion	2	1	1	1	1	3

Non-Rotating Rod (NR)

For prevention of piston and rod rotation, an internal rod is embedded internally into both cylinder heads. This rod also passes through the piston and acts as a linear guide for the piston. Note: NR option available on 3 $\frac{1}{4}$, 4" and 6" bore cylinders only.

Viton™ Seals (VI)

For high temperature environments, Viton™ seals can be specified to replace standard Buna N seals. While HD cylinders are normally rated to 250°F, cylinders with Viton seals are rated to 400°F.

Low Breakaway Option (NL)

For non-lube service, polyurethane seals replace standard piston and rod seals. These specially formulated seals have an inherent lubricity that provides low breakaway between the piston and tube. Note: NL seals are not available on hydraulic cylinders.

Magnetic Piston (MP)

If you will be using either Hall Effect or Reed switches for sensing rod position, you will need to order your cylinder with a magnetic piston.

Mead's Hall Effect and Reed switches allow the cylinder user to sense rod position anywhere within the stroke. They emit an electrical signal when the magnetized piston reaches a point opposite their location. Tie rod mounting facilitates fast and accurate position setting.

Oversized Rod (OR)

Available on all models; the HD-150, 200 and 250, you can order a 1" rod diameter rather than the standard $\frac{5}{8}$ " diameter; the HD-325 and HD-400 with a 1- $\frac{3}{8}$ " rather than the standard 1"; the HD-600 with a 1- $\frac{3}{4}$ " rather than the standard 1- $\frac{3}{8}$ ".

Accessories

Pneumatic Stroke Completion Sensors (SCS)

Port mounted SCS valves emit an air signal when the cylinder rod has stopped even if the piston has not contacted the end cap. Ideal for use in situations where the full cylinder stroke is not used. See pg. 57.

Self Aligning Rod Couplers

Rod couplers simplify cylinder alignment problems by compensating for 2° angular error and ½6" lateral misalignment on both extension and retraction strokes. Greater reliability is achieved by reducing cylinder and component wear. All components are heat treated for wear and corrosion resistance.

* see page 30 for complete listing of Mead's self aligning rod couplers.

Flow Control Valves

Dyla-Trol* - For unprecedented smoothness in cylinder speed control, use Mead's Dyla-Trol* valves with a perfectly tapering flow. Where needle type flow controls generate turbulence as they close, Dyla-Trol maintains an even 360 laminar flow regardless of the setting. Pg. 59.

Right Angle Flow Controls (RAF) - RAF flow controls feature push-in-fittings, pre-applied Teflon® based thread sealant, a recessed screw driver adjustment and convenient swivel for ease of tubing alignment. See page 66.

Order HD1 Cylinder

STEP 1:

Select A Bore Size										
Bore	1½″	2"	2½"	31⁄4″	4"	6"				
Force*	177	314	491	830	1257	2827				
Model	HD1-150	HD1-200	HD1-250	HD1-325	HD1-400	HD1-600				

^{*} Maximum force output (lbs.) at 100 PSI inlet pressure

STEP 2:

Choose Stroke Length										
PISTON ROD	DIAMETERS:									
Bore Diam.	1 1/2"	2"	21/2"	31/4"	4"	6"				
Rod Diam.	5⁄8″ or 1″	5⁄8″ or 1″	⁵ ⁄8″ or 1 ″	1" or 1 3/8"	1" or 1 3/8"	1 3/8" or 1 3/4"				

Non-Standard Piston Rods: Special rod threads or extensions are available. Please enclose a sketch of what you require.

Cylinde

OTE	2.0	Coloot A	Marrie	tina C4	. de					
STEI	P 3:	Select A	vioun	ting St	yıe					
		Mead Bore Diameter								
		Code	1½"	2"	2½"	31⁄4″	31/4" 4"		Code	Description
Flush Bottom/Front Rear		FB	•	•	•	•	•	•	MS-4	Four tapped holes in bottom and in both cylinder faces (front and rear). Rear sleeve nuts standard.
Long Clevis		РВ	•	•	•	•	•	•	MP-2	Two ears extend from rear head (clevis is detachable).
Short Clevis		PF	•	•	•	•	•	NA	MP-1	Two ears extend from rear head (clevis is detachable).
Pivot		PE	•	•	•	•	•	NA	MP-4	A single ear extends from rear head (pivot is detachable).
Tie Rods Ext. Front		TIF	•	•	•	•	•	•	MX-3	All four tie-rods extend forward from cylinder face. Consult factory for rear extended tie-rods (or both ends).
Front Flange NFPA Std.		FH	•	•	•	•	•	•	MF-1	Flange plate extends beyond the thicker front head.
Rear Flange		FR	•	•	•	•	•	•	MF-2	Flange plate extends beyond the rear head.
Trunnion Front		TF	•	•	•	•	•	•	MT-1	Two pivot bars extend from two sides of front head.; not available with front Inter-Pilots® or front cushions.
Trunnion Rear		TR	•	•	•	•	•	•	MT-2	Two pivot bars extend from two sides of rear head. Not available with rear Inter-Pilots® or rear cushions.
Foot		FT	•	•	•	•	•	•	Non Std.	A plate with two holes is mounted to the bottom of each head.

Select Cylinder Options STEP 4: Bore Diameter Mead Code 11/2" 21/2" 31/4" 6" 2" 4 Description Rod extends through both heads **Double Rod** (adds to cylinder rigidity) DR **Oversized** Standard rod is replaced by larger di-OR ameter rod. Rod Front (CF) Dampen the impact and sound that **Cushions** occur at stroke completion: Rear (CR) (Not available Adjustable; Note: Not available on with Trunnion) Both (CB) hydraulic cylinders. Inter-Pilots® emit an air signal at the Front (IPF) Inter-Pilots end of each stroke; Integral with Rear (IPR) (Not available cylinder head; Note: Not available on Both (IPB) with Trunnion) hydraulic cylinders. Non-Rotating Internal bar prevents piston and rod NR NA NA NA Rod rotation. (6" Max.Stroke) Self-Lubricating seals are used in Non-Lube NL NA place of standard Buna N seals; Note: Seals Not available on hydraulic cylinders. Viton™ seals are suitable for high High Temp. VI NA temperature environments (400°F **Seals** Max.) Enables Reed & Hall Effect switches Magnetic to sense piston. Note: Reed switch/Hall Effect not available on all MP **Pistons** hydraulic cylinders. (Contact Mead)

STEP 5:

When ordering Dyna-mation cylinders, list the:

- 1. Base Model
- 2. Stroke
- 3. Mounting Style
- 4. Options (If Needed)

Build A Mode	Number		
Base Model	Stroke	Mounting Style	Options
HD1-200 -	<u>10</u> -	PB	- <u>CF</u>
2" Bore 10" Stroke Clevis Mount (PB Cushioned Front			

Cushions or Inter-Pilots[®] are not available on the rod end head of 1½" bore cylinders with oversized rod.

Accessor	ies							
	Bore Diameter:	Rod Size	1½"	2"	2 ½"	31/4"	4"	6"
п	Fiex Rod	STD	DiviA-437	DiviA-437	DMA-437	DMA-750	DMA-750	DMA-1000
	Couplers	OR	DMA-750	DMA-/50	DMA-750	DMA-1000	DMA-1000	DMA-1250
F==1 (==1)	Forged	STD	DMC-1	DMC-1	DMC-1	NA	NA	NA
	Rod Clevis	OR	ÑÁ	ÑÂ	ÑÁ			
ELFTT	Rod Clevis	STD	DIVIC-2	DIVIC-2	DMC-2	DMC-4	DMC-4	DIVIC-6
	(NFPA Std.)	OR	DMC-4	DMC-4	DMC-4	DiviC-6	DMC-6	DMC-?
F== 3 O	iviachined Rod Eye	STD	DiviE-1	DiviE-1	DiviE-1	DiviE-2	DiviE-2	DiviE-3
<u></u>	(NFPA Std.)	OR	DME-2	DME-2	DME-2	DME-3	DME-3	DME-?
	Pivot Bracket Kit	ALL	HD40-150	HD40-200	HD40-250	HD40-325	HD40-400	DMP-8 Bracket Only
THE STATE OF THE S	Short Clevis (with Pin)	ALL	HD35S- 150	HD35S- 200	HD35S- 250	HD35S- 325	HD35S- 400	NA
Clevis Bracket Mounting Kits		ALL	HD35- 150	HD35- 200	HD35- 250	HD35- 325	HD35- 400	DMR-8 Bracket Only
Flange Mount (for front* or	rear flanges)	ALL	HD45- 150	HD45- 200	HD45- 250	HD45- 325	HD45 400	NA

NOTE: All Kits include mounting hardware; for DMC-1 Dimensions see page 37; all others see page 45.

Hall Effect Switches

Model CS-6200P Sourcing Model CS-6200N

Sinking

Cylinders must have a magnetic piston (MP). For technical information, see page 33.

Reed Switches

Model CS-6200R

Wire Leads

Cylinders must have a magnetic piston (MP). For technical information, see page 33.

Special Cylinders

We invite inquiries regarding non-standard cylinders. Please call 773-685-6800 or your local Mead representative.

Basic Cylinder

NFPA: MXO

Double Rod

NFPA: MDXO

* 6" bore HD cylinders have a rear tie rod nut, shown below as the "K" dimension. $K = \frac{1}{2} I_1 e^{-t}$

	IAIIAI																					
BORE	ROD	A	В	С	D	E	EE	F	G	J	K	KK	LAF	LB	LD	Р	R	WF	Y	zs	ZM	RD
1 ½	⁵ / ₈	3/ ₄ 1 ¹ / ₈	11/8 11/2	3/8 5/8	1/ ₂ 7/ ₈	2	1/4	3/8	1 ⁷ / ₁₆	¹⁵ / ₁₆	-	⁷ / ₁₆₋ 20 ³ / ₄₋ 16	1 ³ / ₄ 2 ¹ / ₂	3 ⁵ /8	4 ¹ / ₈	2 ¹ / ₄	1 ⁷ / ₁₆	1 1 ³ /8	1 ¹⁵ / ₁₆ 2 ⁵ / ₁₆	1 ¹ / ₄	6 ¹ / ₈ 6 ¹ / ₂	1¹/s
2	⁵ / ₈	3/ ₄ 1 1/ ₈	1 1/8 1 1/2	3/8 5/8	1/ ₂	2 ¹ / ₂	1/4	3/8	1 ⁷ / ₁₆	¹⁵ / ₁₆	-	⁷ / ₁₆₋ 20 ³ / ₄₋ 16	1 ³ / ₄ 2 ¹ / ₂	3 ⁵ /8	4 ¹ / ₈	2 ¹ / ₄	1 ²⁷ / ₃₂	1 1 ³ /8	1 ¹⁵ / ₁₆ 2 ⁵ / ₁₆	1 ¹ / ₄	6 ¹ / ₈ 6 ¹ / ₂	1¹/s
21/2	⁵ / ₈	³ / ₄	1 ¹ / ₈	3/8 5/8	1/ ₂	3	1/4	3/8	1 ⁷ / ₁₆	¹⁵ / ₁₆	-	⁷ / ₁₆₋ 20	1 ³ / ₄ 2 ¹ / ₂	3 ³ / ₄	41/4	2 ³ / ₈	2 ³ / ₁₆	1 1 ³ / ₈	1 ¹⁵ / ₁₆ 2 ⁵ / ₁₆	1³/ ₈	6 ¹ / ₄ 6 ⁵ / ₈	1 ¹ / ₂
31/4	1 1 ³ / ₈	1 ¹ / ₈ 1 ⁵ / ₈	1½ 2	3/ ₈	7/ ₈ 11/ ₈	3³/ ₄	1/2	5/8	1 ¹¹ / ₁₆	1 ³ / ₁₆	-	³/₄-16 1-14	2 ¹ / ₂ 3 ¹ / ₄	4 ¹ / ₂	43/4	2 ⁵ / ₈	2 ³ / ₄	1 ³ / ₈	2 ⁷ / ₁₆ 2 ¹¹ / ₁₆	1³/s	7 ¹ / ₂ 7 ³ / ₄	1 ³ / ₄
4	1 1 ³ / ₈	1 ¹ / ₈ 1 ⁵ / ₈	1½ 2	1/ ₂ 5/ ₈	7/8 11/8	4 ¹ / ₂	1/2	5/8	111/16	1 ³ / ₁₆	-	³/₄-16 1-14	2 ¹ / ₂ 3 ¹ / ₄	4 ¹ / ₂	43/4	2 ⁵ / ₈	3 ²¹ / ₆₄	1 ³ / ₈ 1 ⁵ / ₈	2 ⁷ / ₁₆ 2 ¹¹ / ₁₆	1³/ ₈	7 ¹ / ₂ 7 ³ / ₄	1 ³ / ₄
6	1 ³ / ₈	1 ⁵ / ₈ 2 ¹ / ₄	2 2³/ ₈	⁵ / ₈	1 ¹ / ₈	h'/2	3/4	3/4	2	1 ¹ / ₂	⁷ / ₁₆	1-14 1 ¹ / ₄ -12	3 ¹ / ₄ 3 ⁷ / ₈	5	5 ¹ / ₂	3 ¹ /8	47/8	1 ⁵ /8 1 ⁷ /8	2 ¹³ / ₁₆	1 ¹ / ₂	8³/₄ 9	2
			· 1	·	ĺ								'					'	· '			

Rear, Front & Bottom Tapped (FB)

NFPA Code: MS4

BORE	MM ROD DIA.	NT	RT	тк	TN	SN	хт
111/2	⁵ / ₈	¹/₄-20	1/4-28	³ / ₈	⁵ / ₈	21/4	1 ¹⁵ / ₁₆ 2 ⁵ / ₁₆
2	⁵ / ₈	⁵ / ₁₆₋ 18	⁵ / ₁₆₋ 24	1/2	⁷ /8	2 ¹ / ₄	1 ¹⁵ / ₁₆ 2 ⁵ / ₁₆
21/2	⁵ / ₈	³/s-16	⁵ / ₁₆₋ 24	⁹ /16	11/4	2³/s	1 ¹⁵ / ₁₆ 2 ⁵ / ₁₆
31/4	1 1 ³ / ₈	1/2-13	³/s-24	3/4	1 ¹/ ₂	2 ⁵ /8	2 ⁷ / ₁₆ 2 ¹¹ / ₁₆
4	1 1 ³ / ₈	1/2-13	³/ ₈₋ 24	3/4	2 ¹ / ₁₆	2 ⁵ / ₈	2 ⁷ / ₁₆ 2 ¹¹ / ₁₆
6	1 ³ / ₈	³/₄-10	¹/ ₂₋ 20	1 ¹/⁄8	3 ¹ / ₄	31/8	2 ¹³ / ₁₆ 3 ³ / ₁₆

NFPA: MF1

Rear Flange (FR)

NFPA: MF2

			FB(DIA.4P
		<u> </u>	
		E R	
ZJ _(+ STROKE) = ZF _(+ STROKE)	► FH		TF—

BORE	MM ROD DIA.	E	FB (BOLT)	FH	R	TF	UF	w	ZJ	ZF
1 ¹/ ₂	⁵ /8	2	5/16	3/8	1 ⁷ / ₁₆	2 ³ / ₄	3³/8	⁵ / ₈	4⁵/₃ 5	5 5¾
2	⁵ / ₈	2 ¹ / ₂	3/8	3/8	1 ²⁷ / ₃₂	3 ³/ ₈	4 ¹ / ₈	⁵ / ₈	4⁵/₃ 5	5 5¾
21/2	⁵ / ₈	3	3/8	3/8	2 ³ / ₁₆	37/8	4 ⁵ / ₈	⁵ / ₈	4 ³ / ₄ 5 ¹ / ₈	5 ¹ / ₈ 5 ¹ / ₂
31/4	1 1 ³ / ₈	3³/ ₄	⁷ / ₁₆	5/8	2 ³ / ₄	4 ¹¹ / ₁₆	5 ¹ / ₂	³ / ₄	5⁵/₅ 5′/₅	6 ¹ / ₄ 6 ¹ / ₂
4	1 1³/ ₈	4 ¹ / ₂	⁷ / ₁₆	⁵ / ₈	3 ²¹ / ₆₄	5 ⁷ / ₁₆	61/4	³ / ₄	5 ⁵ / ₈	6 ¹ / ₄ 6 ¹ / ₂
6	1 ³ / ₈	6 ¹ / ₂	⁹ / ₁₆	3/4	4 ⁷ / ₈	7 ⁵ / ₈	85/8	7/8 11/8	6 ⁵ / ₈ 6 ⁷ / ₈	7³/s 7⁵/s

Short Clevis (PF)

NFPA: MP1

Long Clevis (PB)

NFPA: MP2

Pivot (PE)

NFPA: MP4

BORE	MM ROD DIA.	СВ	CD	CW	FL	L	M	хс	XD
11//2	⁵ /8	3/4	1/2	1/2	1¹/s	³ / ₄	1/2	5 ³ / ₈ 5 ³ / ₄	5³/ ₄ 6¹/ ₈
2	⁵ / ₈	3/4	1/2	1/2	1¹/s	3/4	1/2	5 ³ / ₈ 5 ³ / ₄	5³/ ₄ 6¹/ ₈
21/2	⁵ / ₈	3/4	1/2	1/2	1 ¹ / ₈	3/4	1/2	5 ¹ / ₂ 5 ⁷ / ₈	5 ⁷ / ₈ 6 ¹ / ₄
31/4	1 1 ³ / ₈	1 ¹ / ₄	3/4	⁵ / ₈	1 ⁷ /8	1 ¹ / ₄	3/4	6 ⁷ / ₈ 7 ¹ / ₈	7 ¹ / ₂ 5 ³ / ₄
4	13/8	11/4	3/4	⁵ / ₈	1 ⁷ /8	1 ¹ / ₄	3/4	6 ⁷ /s 7 ¹ /s	7 ¹ / ₂ 7 ³ / ₄
6	1 ³ / ₈	11/2	1	3/4	2 ¹ / ₄ Clevis	-	11/6 Clevis	NA	8 ⁷ / ₈ 9 ¹ / ₈

► BB -

· 		. — — — — — — — — — — — — — — — — — — —	DD

Back End (TIR)

NFPA: MX2

	(+ STROKE)				⊢ K ⊢		- D - -	
BORE	MM ROD DIA.	AA	ВВ	АВ	BF	DD	R	ZJ
1 ¹ / ₂	⁵ / ₈	2.02	1	1 ⁵ / ₁₆	1³/s	¹ /4-28	1 ⁷ / ₁₆	4 ⁵ / ₈
2	⁵ / ₈	2.6	1 ¹/8	1 ⁵ / ₁₆	1 ¹/ ₂	⁵ / ₁₆ -24	1 ²⁷ / ₃₂	4 ⁵ / ₈ 5 4 ³ / ₄
2 ¹ / ₂	5/8	3.1	1 ¹/s	13/4	1 ¹/₂	⁵ / ₁₆ -24	2 ³ / ₁₆	51/8
31/4	1 1 ³ / ₈	3.9	1 ³/s	21/32	2	³/ ₈ -24	2 ³ / ₄	5 ⁵ /8
4	1 1 ³ / ₈	4.7	1 ³/s	2 ¹ / ₃₂	2	³/s-24	3 ²¹ / ₆₄	5 ⁵ / ₈ 5 ⁷ / ₈
6	1 ³ / ₈	6.9	1 13/16	2 ⁵ / ₁₆	2 ⁹ / ₁₆	1/2-20	4 ⁷ / ₈	6 ⁵ / ₈ 6 ⁷ / ₈

Front Trunnion (TF)

NFPA: MT1

Rear Trunnion

NFPA: MT2

+ :	<u> </u>
	TD
- TL - (! → ть - лт — →

BORE	MM ROD DIA.	TD±.001	TL	UT	XG	XJ
1 ¹/ ₂	⁵ / ₈	1	1	4	1³/₄ 2¹/₅	4¹/8 4¹/2
2	⁵ / ₈	. 1	1	4 ¹ / ₂	1 ³ / ₄ 2 ¹ / ₈	4 ¹ / ₈ 4 ¹ / ₂
2 ¹ / ₂	⁵ / ₈	. 1	1	5	1 ³ / ₄ 2 ¹ / ₈	4 ¹ / ₄ 4 ⁵ / ₈
31/4	1 1³/⁄8	. 1	1	5³/₄	2 ¹ / ₄ 2 ¹ / ₂	5 5¹/₄
4	1 1³/⁄8	. 1	1	6 ¹ / ₂	2 ¹ / ₄ 2 ¹ / ₂	5 5¹/₄
6	1 ³ / ₈	1 ³ / ₈	1³/ ₈	91/4	2 ⁵ / ₈ 2 ⁷ / ₈	5 ⁷ / ₈

Clevis Bracket

Pivot Bracket

BORE	СВ	CD	cw	DD	E	FL	M	R
1¹/₂	3/4	1/2	1/2	¹⁷ / ₆₄	2	1 ¹/⁄8	1/2	1 ⁷ / ₁₆
2	3/4	1/2	1/2	²³ / ₆₄	2 ¹ / ₂	1 ¹/⁄8	1/2	1 ²⁷ / ₃₂
21/2, 21/2*	3/4	1/2	1/2	²³ / ₆₄	3	1 ¹// ₈	1/2	23/16
31/4	11/4	3/4	5/8	7/16	3³/₄	1 ⁷ / ₈	3/4	23/4
4	11/4	3/4	⁵ / ₈	7/16	4 ¹ / ₂	1 ⁷ / ₈	3/4	3 ²¹ / ₆₄
6	1 ¹ / ₂	1	3/4	¹⁷ / ₃₂ Clevis ²¹ / ₃₂ Pivot	6 ¹ / ₂ Clevis 4 ¹ / ₂ Pivot	21/4	1¹/₃ Clevis 1¹/₄ Pivot	4 ⁷ / ₈

Rod Eye

Rod Coupler

Part # Rod Clevis Rod Eye Rod Coupler	Cylinder	A	CA	СВ	CD	CE	cw	КК	н	НА	НВ	нс	HD	HE
DMC-2 DME-1 DMA-437	HD1-150 HD1-200 HD1-250	3/4	11/2	3/4	1/2	1 ¹ / ₂	1/2	⁷ / ₁₆₋ 20	1 ¹ / ₄	2	1/2	³ / ₄	⁵ /8	1 ¹/⁄8
DMC-4 DME-2 DMA-750	HD1-150 OR HD1-200 OR HD1-250 OR HD1-325 HD1-400	1 ¹/₅	2 ¹ / ₁₆	11/4	³ /4	2 ³/8	⁵ /8	³/₄-16	1 ³ / ₄	2 ⁵ / ₁₆	⁵ / ₁₆	1 ¹/8	³¹ / ₃₂	1 ½
DMC-6 DME-3 DMA-1000	HD1-325 OR HD1-400 OR HD-600	1 ⁵ / ₈	213/16	1	1	31/8	3/4	1-14	2 ¹ / ₂	215/16	1/2	1 ⁵ / ₈	1³/s	21/4
DMC-7 DME-4 DMA-1250	HD-600 OR	1 ⁵ / ₈	37/16	2	1 ³/ ₈	4 ¹ / ₈	1	11/4-12	2 ¹ / ₂	2 ¹⁵ / ₁₆	1/2	1 ⁵ / ₈	1 ³/ ₈	21/4

Large Bore Cylinders For Abusive Conditions

Combining NFPA dimensional interchangeability and high quality components, the HD1 Large Bore Series offers excellent performance and long service life, even in the most severe of conditions. Mead offers 5", 8", 10" and 12" bore sizes to meet your needs.

Bore Diam.	Thrust*	Thrust Mult.**	Rod Diam.	Max. Oper. Air	Pressure Oil ‡
5"	1964	19.64	1" or 1 ³ / ₈ "	250	900
8″	5027	50.27	1 3/8" or 13/4"	200	500
10"	7854	78.54	13/4" or 2"	200	400
12"	11310	113.1	2" or 2 ½"	200	400

*Pushing force of cylinder at 100 PSI inlet pressure. Pulling force will be about 10% less due to the displacement of the piston rod. (Use 15% when Oversized Rods are chosen) Note: Actual realizable thrust could be somewhat lower due to side loading and internal friction. It is best to oversize you cylinder by about 25% to assure smooth operation.

**To determine cylinder thrust at other inlet pressures, multiply this factor times the desired inlet pressure.

‡HD1 Cylinders are not rate or approved for use in a hydraulic circuit where an impulse or pressure spike may occur.

Dimensions

Bottom Flush Model FB

Rod End Flange Model FH (5"Bore Only)

Large Bore Cylinder Construction

Rod Bearing

Easily removable, held in place by socket head screws to assure easy replaceability without taking entire cylinder apart

Heads

Precision broached steel blocks

Tubes:

Aluminum hard anodized to 60 Rc (16 RMS finish)

Piston:

Solid high alloy aluminum

Piston Rod:

100,000 PSI minimum yield steel, ground and polished hard chrome plated steel

Piston and Rod Seals:

Wear compensating Buna N vee rings.

Tube Seals:

Buna N o-rings

Rod Wiper

Dupont Teflon®

Tie Rods:

Alloy steel for maximum strength.

Finish:

Black Paint

Double Rod Model DR

Blind End Flange Model FR (5"Bore Only)

	IVIIVI																													
BORE	ROD	Α	В	E	EE		FΒ	G	J	K	KK	L	LB	LD.	NT	P	R	SG	SJ	SN	TF	TN	UF	W	WF	XT	Y	ZF	ZL	ZM"
5	13/	1½ 15/	11/2	5 ¹ / ₂	1/2	5/8	1/2	1 ³ / ₄	1 ³ / ₄	1/2	³/₄.16 1-14	1 ¹ / ₄	4 ¹ / ₂	5	⁵ /8-11	2 ³ / ₄	4.10	¹¹ / ₁₆	11/16	2 ⁷ /8	6 ⁵ /8	2 ¹¹ / ₁₆	7 ⁵ / ₈	3/4		2 ⁷ / ₁₆	2 ¹ / ₂	6 ¹ / ₂	6 ⁷ /8	73/4
	1 ³ / ₈ 1 ³ / ₈	I -/8	2																					'	1 ⁵ /8 1 ⁵ /8	2 ¹¹ / ₁₆ 2 ¹³ / ₁₆	2 ³ / ₄ 2 ¹³ / ₁₆	6 ³ / ₄	7 ¹ / ₈ 7 ⁷ / ₈	8 ¹ / ₄ 8 ⁷ / ₈
8	13/4	2	-	81/2	3/4	7/8	-	2	1 ¹ / ₂	5/8	1-14 1 ¹ / ₄ -12	11/2	5¹/s	5 ¹ / ₈	³/₄.10	3 ¹ / ₄	6.44	¹³ / ₁₆	¹³ / ₁₆	3 ¹ / ₄	-	41/2	-	-	1 /8 1 ⁷ /8	3 ¹ / ₁₆	3 ¹ / ₁₆	-	8 ¹ / ₈	
10	1 ³ / ₄	2		105/	1	71		21/	2	3/		21/	6³/s	6 ⁵ / ₈	1.0		7.92			41/		-1 /		_	1 ⁷ /8	3 ¹ /8	3 ³ / ₁₆			10 ³ / ₈
10	2	2 ¹ / ₄	-	10 ⁵ / ₈	'	7/8	-	2 ¹ / ₄	2	3/4	1 1/2-12	ľ			1-8	4	7.32	1	1	4 ¹ / ₈	-	5 ¹ / ₂	-	-	2	3 ¹ / ₄	3 ⁵ / ₁₆	-		10 ⁵ /8
12		21/4	-	12 ³ / ₄	1	-	-	2 ¹ / ₄	2	3/4	1 ¹ / ₄ -12 1 ⁷ / ₈ -12	21/4	6 ⁷ /8	7 1/8	1-8	4 ¹ / ₂	9.40	1	1	4 ⁵ /8	-	71/4	_	-	2	3 ¹ / ₄	35/16	-		11 ¹ /8
	2 ¹ / ₂	3		, ,	ı İ			- /-	_	'	17/8-12	_ /-	- / "	, i		7 /2	0.10			. ,,		. /-			21/4	3 ¹ / ₂	3 ⁹ / ₁₆		10 ¹ / ₈	13 ⁵ /8

NOTES: + Indicates maximum bolt diameter; * Indicates add stroke length to dimension; ** Indicates add 2x stroke length to dimension.

PB

12" Not Available

Foot Mount Model FT

Two Ears extend from rear head (detachable)

MP-1

Clevis Mount Model PB

Clevis Mount Model PF

Trunnion Front Mount Model TF

Trunnion Rear Mount Model TR

NOTE: Rod gland maybe square or round pattern depending upon mount chosen. Contact factory if further dimensional data is needed.

	IVIIVI																							Ι.	Ι.						
BORE	ROD	AA	BB	СВ	CD	CW	DD	M	MR	SB	SS	ST	SU	sv	SW	ТВ	TD	TL	TR	TS	US	UT									
5	1	5.80	13/4	11/4	3/4	5/8	¹ / ₂ -20	3/4	7/8	3/4	31/8	1	1 ¹ / ₁₆	9/16	11/16	5/8	1	1	7/8	6 ⁷ /8	8 ¹ / ₄	7 ¹ / ₂	1/4	71/8	73/4	21/4	51/4	2 ¹ / ₁₆	6³/s	7′/8	81/2
	13/8		. , .	.,.	,	,,,	/	/-	/-	/-	,,,	•	. ,	7.0	7.0	,,			/-	J , s	- / -	- /-	7/8								8 ³ / ₄
8	1 ³ / ₈	9.10	21/4	11/2	1	3/4	⁵ /8-18	1	11/4	3/4	3 ³ / ₄	1	1 ⁵ / ₁₆	1 ³ / ₁₆	11/16	3/4	1 ³ / ₈	1 ³ / ₈	1	97/8	11 ¹ / ₄	11¹/₄	-	1 1							10¹/ ₈
	1°/4		_ / ·	- /-	·	/-	, i	ļ .	. , .	/-	,	·	. ,	. ,	7.0	/-	. ,	. ,		٠,٥	, .	, .		8'/2	1 1						10³/ ₈
10	13/4	11.31	2 ⁵ /8	2	1 ³ /8	1	3/4-16	1 ³ / ₈	1 ⁵ /8	1	4 ⁵ / ₈	11/4	1 ³ / ₈	1 ¹/8	7/8	1	13/4	13/4	1¹/s	12 ³ /8	14 ¹ / ₈	14¹/ ₈	-		1						125/8
	2		Ĺ		. ,-		ľ	. ,-	ĺ		.,-	, i	ĺ	. ,-	/-	i i	. , .	. , .	ľ	/-	,	, .									12 ³ / ₄
12	2	13.30	211/16	2 ¹ / ₈	13/4	11/4	³/ ₄ -16	13/4	2	1	51/8	11/4	1³/ ₈	1 ¹/8	7/8	1	13/4	13/4	1 ½	14¹/₂	16 ¹ / ₄	16 ¹ / ₄	-	11 ¹ / ₈	-					127/8	-
-	2 ¹ / ₂		,	/-	. ,-	. /-		. ,-	_		- /0	()	,-	. ,	, "		. ,-	. /-	,-	,.	. , .	. 5 /-		11³/ ₈		3 ³ / ₈	81/8	31/8	97/8	13½	

NOTE: * Indicates add stroke length to dimension.

Low Cost Mounting

Flush bottom cylinder mounts directly onto a base plate with only two bolts...needs no mounting brackets or other hardware. The pivot bracket is built-in for easy pivoting at the inlet axis. The bracket pivots within the cylinder length to save space and to eliminate one entire bracket that would be needed to mount other cylinders.

Because Centaur's trunnions serve both as mounts and as assembly elements, they cost less than any other trunnion mount on the market.

Flush Bottom (FB)

Trunnion Rear (TR) Trunnion Front (TF)

Flush Rear (FR)

11/8" bore only

Pivot Extended (PE)

11/8", 11/2" & 2" bores only

Pivot Bracket (PB)

Flush Front (FF)

11/2", 2", 21/2" & 3" bores only

Flush Rear (FR)

11/2", 2", 21/2" & 3" bores only

Threaded Nose (NS)

Std. on all 11/8" bore mounts 11/8", 11/2" & 2" bores only

Technical Specifications

150 PSI Air, 250 PSI Hydraulic

11/8", 11/2", 2", 21/2" and 3" Bore Sizes: Hard Coated Aluminum

Oil Impregnated Porous Bronze Rod Bearing:

Temperature Range: -40°F to +250°F (to +400°F on request)

Flow Controls

Control the speed of your cylinders with Mead Flow Control Valves. Right-angle flow controls can be found on page 66. For precise metering of air, see Mead Dyla-Trol valves on page 59.

Economical & Repairable

Mead Centaur cylinders are built to match tie-rod performance, but are up to 45% less expensive and offer lubrication-free service. Centaur cylinders are not permanently crimped like most other round cylinders...so they can be disassembled for maintenance.

Teflon® Seals Create Smooth Breakaway

Centaur's unique Teflon® piston seal eliminates the forward lurch that occurs when rubber seals breakaway from the cylinder tube surface. Rod motion remains smooth throughout the stroke.

Non-Lube

self-lubricated surface.

During the cylinder break-in period, molecules -TEFLON SEAL from the unique graphite-filled Teflon® piston seal became embedded in the pores of the hard coated aluminum cylinder tube. This forms a long-lasting, super-smooth,

Built-In Bumpers Absorb Impact

Rubber bumpers are built into each cylinder head to eliminate the metallic "clank" that occurs at stroke completion.

Self Aligning Rod Couplers

Rod couplers simplify cylinder alignment problems by compensating for 2° angular error and 1/16" lateral misalignment on both extension and retraction strokes.

* see page 30 for complete listing of Mead's self aligning rod couplers.

Model	C-112	C-150	C-200	C-250	C-300
Rod Coupler	DMA-312	DMA-500	DMA-625	DMA-750	DMA-1000

Proximity Switches

Hall Effect & Reed switches can sense rod position anywhere within the stroke. A stainless steel clamp facilitates mounting at any location along the cylinder tube. Switches may be used singly or in multiples and positioned at any point around the cylinder tube. The cylinder must have a magnetic piston. For technical information see pg. 33.

Model	C-112	C-150	C-200	C-250	C-300
Sinking	N/A	CS-6100N-150	CS-6100N-200	CS-6100N-250	CS-6100N-300
Sourcing	N/A	CS-6100P-150	CS-6100P-200	CS-6100P-250	CS-6100P-300
Reed	N/A	CS-6100R-150	CS-6100R-200	CS-6100R-250	CS-6100R-300

Double Rod Cylinders

Centaur cylinders may be ordered with a one piece piston rod protruding from both ends of the cylinder for convenient stroke adjustment and for increased rigidity.

11/2

3/4

3/4-16

31/8

1/4NPSF

51/64

23/64

35/8

3/8-24

13/4

3/4

3/8-24

27/8

21/8

313/32

21/8

9/32

115/16

.731

45/8

313/16

71/8

13/16

17/8

111/16

11/2

5/8-18

11/4-12

25/8

1/4NPSF

51/64

159/64

31/2

3/8-24

11/8

3/4

1/2

5/8

11/4

11/2

5/8

5/16-24

21/4

15/8

229/32

15/8

9/32

113/16

.731

41/8

35/16

67/8

13/16

15/8

17/16

11/4

1/2

1/2-20

1-14

21/8

1/4NPSF

51/64

127/32

37/16

3/8-24

15/16

11/16

 $^{3}/_{8}$

9/16

11/8

1/2

1/4-28

21/4

15/8

213/32

11/8

9/32

19/16

.731

35/8

213/16

65/16

21/16

13/4

1-14

35/8

1/4NPSF

51/64

211/64

33/4

3/8-24

2

7/8

1/2-20

31/8

23/8

329/32

25/8

9/32

25/16

.731

51/8

45/16

71/s

Centaur Dimensions and Ordering Information

В

C1

C2

D

G

н

L

Μ

Ν

R

Z

ΑB

AC

AD

ΑE

ΑH

AJ

ΑK

ΑL

AN

AΡ

AQ

AR

ΑT

ΑV

AW

YY+ (2 X STK)

P+Stroke

Q+Stroke

Basic Dimensions

Hall Effect

Flush Bottom (FB)

Pivot Bracket (PB)

Pivot Extended (PE)

11/8", 11/2" & 2" bores only

Flush Rear (FR)

11/4" bore only

Flush Rear (FR) 11/2", 2", 21/2" & 3" bores only

Flush Front (FF)

11/2", 2", 21/2" & 3" bores only

Threaded Nose (NS) Trunnion Rear (TR)

Std. on all 11/8" bore mounts

Trunnion Front (TF)

11/8", 11/2" & 2" bores only

Accessories

Rod Clevis w/Pin (CEC)

11/8" & 11/2" bores

2" & 3" bores

Nose Nuts (CN)

11/4", 11/2" & 3" bores only

Note: For DMC-4, refer to pages 45.

Rod Clevis Accessory Dimensions

11/8"

5/8

5/8

1/2

5/16

5/16-24

3/4-16

 $2^3/_{32}$

1/8NPT*

7/16

121/64

213/64

10-32

5/8

3/8

1/4

3/8

5/8

15/8

11/4

13/4

1 13/64

31/32

.418

2⁵/₃₂

217/64

423/32

* 11/4 bore model with trunnion mounts has 1/4-28 ports.

Bore	E	CA	СВ	CE	DD
1 1/8″	-	19/64	11/32	1³/ ₁₆	5/16
11/2"	-	15/32	9/16	1 13/16	1/2
2"	1 1/ ₄	7/16	5/8	2¹/ ₁₆	1/2
21/2"	11/2	3/4	11/4	2³/s	3/4
3″	11/4	7/16	5/8	21/16	1/2
	1	· ·	· ·	· ·	, i

Model Numbers

Bore Sizes Accessory	1 ½″	11/2"	2"	21/2"	3"
Rod Clevis, Pin	CEC-112	CEC-150	CEC-200	DMC-4	CEC-300
Nose Nut	CN-112	CN-150	CN-200	-	-

Air Reservoirs

Two Centaur rear heads and a tube form an economical air tank. Consult factory for more information. Simply add AR to model.

Ordering Information

When ordering Centaur cylinders, list the model number, stroke length and mounting option(s) required. Please consult the factory for stainless steel rods, air reservoirs or any special cylinder need.

	C-112	-	4	-	NS
11/8" Bore			Ī		
4" Stroke					
Threaded Nose	Mount				

Bore	1 1/8"	1 1/2"	2"	21/2"	3"
Model	C-112	C-150	C-200	C-250	C-300
Nose Mount (NS)	•	•	•	NA	NA
Flush Bottom (FB)	•	•	•	•	•
Flush Front (FF)	NA	•	•	•	•
Flush Rear (FR)	•	•	•	•	•
Pivot Bracket (PB)	•	•	•	•	•
Pivot Extended (PE)	•	•	•	NA	NA
Trunnion Front (TF)	•	•	•	•	•
Trunnion Rear (TR)	•	•	•	•	•
Other Options:					
Double Rod (DR)	•∆	•	•	•	•
Dupont Viton™ Seals(VI)	•	•	•	•	•
Magnetic Piston (MP)	NA	•	•	•	•
Air Reservoir (AR)	•	•	•	•	•

 $[\]Delta$ Nose (NS) mounts standard on both ends of 11/6" bore model with double rod.

Offers A Wide Range Of Power

Bore	3/4"	11/8"	11/2"	2"	21/2"	3"	4"
Force @ 100 PSI (lbs.)	44	100	177	314	491	707	1257

NOTE: Pull force is approximately 10% less

Mounting Options

Uniform base thickness makes mounting easy regardless of stroke.

Perfect For Tooling

Space Saver cylinders are ideal for use on drill fixtures and other automated tooling to provide compact, lightweight holding power.

Valving

Efficient 4-way LTV valves, shown on pages 24-25, are perfect as actuators of Space Saver cylinders. Valve hookup is made easy because the top cylinder port swivels 360°.

Stroke Availability

		Stroke Lengths											
Model	Bore	1/8	3/16	1/4	3/8	1/2	5/8	3/4	1	11/2	2	21/2	3
SS-075	3/4"	X*	-	X*	Х	Х	Х	Х	Х	Х	Χ	-	-
SS-112	1 1/8"	X*	X*	X*	-	Х	-	Х	Х	Х	Χ	Х	Х
SS-150	1 1/2"	X*	-	Х	-	Х	-	Х	Х	Х	Х	Х	Х
SS-200	2"	Х	-	Х	-	Х	-	Х	Х	Х	Х	Х	Х
SS-250	2 1/2"	Х	-	Х	-	Х	-	Х	Х	Х	Χ	Х	Х
SS-300	3"	Х	-	Х	-	Х	-	Х	Х	Х	Х	Х	Х
SS-400	4"	Х	-	Х	-	Х	-	Х	Х	Х	Х	Х	Х

Includes special fitting

Note: To obtain a $\frac{1}{6}$ " or $\frac{3}{16}$ " stroke on $\frac{3}{4}$ " or $\frac{1}{6}$ " bore models, a $\frac{1}{4}$ " stroke cylinder is used

and spacers are added.

Non-standard strokes subject to special machining charge.

Full Power In Half The Space

Space Saver™ cylinders provide the power and stroke of standard cylinders in less than half the space. They are ideally suited for use in machinery where space and weight are at a premium. Best of all, Space Saver™ cylinders cost up to 50% less than standard models.

Built To Last

- Oil impregnated sintered bronze rod bearing and hard chrome plated piston rod work together to prolong cylinder life.
- Hard coated cylinder bore eliminates cylinder wall scoring.

Dimensions

NOTE: 3/4" - 2" Bore Models have (2) Mounting Holes. See Dimension M

Bore	3/4"	11/8"	11/2"	2"	21/2"	3″	4"
A*	49/ ₆₄	²⁵ / ₃₂	⁵⁹ / ₆₄	1 ½ ₁₆	1 ⁵ / ₆₄	1 ²⁵ / ₆₄	$1^{17}/_{32}$
В	1/2	1/2	1/2	9/16	9/16	3/4	3/4
D	1	1 3/ ₈	1 3/4	2 1/4	2 3/4	3 1/4	4 1/4
E	⁵ / ₁₆	1/2	1/2	5/8	5/8	3/4	3/4
Н	10-32	10-32	10-32	1/ ₈ NPT	1/ ₈ NPT	1/ ₈ NPT	1/8 NPT
J	1 3/4	2 1/8	2 1/2	3 1/8	3 3/4	4 1/4	5 ½
K	1 ¹³ / ₃₂	1 ²⁵ / ₃₂	2 ⁵ / ₃₂	$2^{23}/_{32}$	3 1/4	$3\frac{25}{32}$	$4^{25}/_{32}$
М	¹³ / ₆₄ (2)	$^{13}/_{64}$ (2)	$^{13}/_{64}$ (2)	¹³ / ₆₄ (2)	$^{17}/_{64}$ (4)	$^{17}/_{64}$ (4)	$^{17}/_{64}$ (4)
N	10-32	⁵ / ₁₆ -24	⁵ / ₁₆ -24	³ / ₈ -24	³ / ₈ -24	$\frac{1}{2}$ -20	$\frac{1}{2}$ -20
	x1/ ₄	x3/8	x ³ / ₈	x ³ / ₈	x ³ / ₈	$x^{1}/_{2}$	$x^{1}/_{2}$
R	5/32	5/32	5/32	⁵ / ₁₆	⁵ / ₁₆	21/64	21/64
S*	²⁵ / ₆₄	²⁵ / ₆₄	1/2	11/16	11/16	59/ ₆₄	1 ³ / ₆₄
T*	3/4	49/64	57 _{/64}	1 ³ / ₆₄	1 ½ ₁₆	1 ²³ / ₆₄	1 ½

^{*} Plus Stroke

Note: To obtain a 1/8" or 3/16" stroke on 3/4" or 11/8" bore models, a 1/4" stroke cylinder is used and spacers are added.

Specifications					
Pressure :	0-150 PSI Air Only				
Temperature:	-40°F to 250°F (to 400°F with Viton™)				
Lubrication:	Petroleum base oil				

Options & Ordering Information

When ordering, specify model number, stroke length, and Viton seal option if required.

Example: SS-150 x 1/4 - VI