Exercise 3.3

Nolan Hauck

Last updated Wednesday 28th February, 2024 at 15:35

Let ν be a signed measure on (X, \mathcal{M}) .

- **a.** $L^1(\nu) = L^1(|\nu|)$.
- **b.** If $f \in L^1(\nu)$ then $\left| \int f d\nu \right| \leq \int |f| d|\nu|$.
- **c.** If $E \in \mathcal{M}$ then $|\nu|(E) = \sup\{\left|\int_{E} f d\nu\right| : |f| \le 1\}.$

Solution (INCOMPLETE). a. Note for a positive measurable function F and positive measures μ_1 and μ_2 on the same space we have $\int Fd(\mu_1 + \mu_2) = \int Fd\mu_1 + \int Fd\mu_2$. Thus for the positive measures ν^+ and ν^- and a measurable function f, we have the following:

$$\int |f| \, d\nu^+ + \int |f| \, d\nu^- = \int |f| \, d(\nu^+ + \nu^-) = \int |f| \, d|\nu| \,. \tag{1}$$

If $f \in L^1(\nu)$ then $f \in L^1(\nu^+)$ and $f \in L^1(\nu^-)$ by definition, so that $\int |f| d|\nu| < \infty$ and thus $f \in L^1(|\nu|)$. Conversely, if $f \in L^1(|\nu|)$, then the right hand side of equation (1) is finite, meaning the two parts of the sum on the left hand side are finite, and that $f \in L^1(\nu)$.

b. Note that for a positive measure μ and a measurable function F, $\left| \int F d\mu \right| \leq \int |F| d\mu$. If $f \in L^1(\nu)$, then again by the note in part **a.** and since $\nu^{\pm} \geq 0$, we have

$$\left| \int f d\nu \right| = \left| \int f d\nu^{+} - \int f d\nu^{-} \right|$$

$$\leq \left| \int f d\nu^{+} \right| + \left| \int f d\nu^{-} \right|$$

$$\leq \int |f| d\nu^{+} + \int |f| d\nu^{-}$$

$$= \int |f| d(\nu^{+} + \nu^{-})$$

$$= \int |f| d|\nu|.$$
(2)

c. It should be mentioned that although it is not stated in the problem, this assumes that the f in the collection over which we are taking the supremum must be in $L^1(\nu)$ as otherwise their integrals with respect to ν would not be defined. Using the bound in part **b.**, we find that for any $f \in L^1(\nu)$ so that $|f| \leq 1$

$$\left| \int_{E} f d\nu \right| \le \int_{E} |f| \, d|\nu| \le \int_{E} d|\nu| = |\nu| \, (E). \tag{3}$$

Thus $|\nu|(E)$ is an upper bound for the set $\{\left|\int_{E}fd\nu\right|:|f|\leq 1\}$. If $|\nu|(E)=0$, then $\left|\int_{E}fd\nu\right|=\left|\int_{E}fd\nu^{+}-\int_{E}fd\nu^{-}\right|=0$ since $\nu^{+}(E)=\nu^{-}(E)=0$. Now suppose $|\nu|(E)=\infty$. Then either $\nu^{+}(E)$ or $\nu^{-}(E)$ is ∞ . Assume that $\nu^{+}(E)=\infty$.

So let $0 < |\nu|(E) < \infty$. Then $\int_E 1d|\nu| < \infty$, so the function f(x) = 1 for all $x \in E$ is in $L^1(|\nu|)$. By part **a.**, f is also in $L^1(\nu)$ and $|f| \le 1$ obviously, so f is in the collection of functions over which we take the supremum. But this means $|\int_E d\nu|$ is in the set over which we take the supremum

Then for any $\epsilon > 0$,

$$|\nu|(E) - \epsilon = \int_{E} \left(1 - \frac{\epsilon}{|\nu|(E)} \right) d|\nu|. \tag{4}$$

Since $|\nu|(E)$ is positive and finite, we can choose ϵ small enough so that $\frac{\epsilon}{|\nu|(E)} < 1$. Then $\left|1 - \frac{\epsilon}{|\nu|(E)}\right| = 1 - \frac{\epsilon}{|\nu|(E)} < 1$. Thus the function $g(x) = 1 - \frac{\epsilon}{|\nu|(E)}$ is measurable as a constant function and sits in $L^1(E, |\nu|)$ since it has a finite integral over E. By part \mathbf{a}_{\bullet} , $g \in L^1(E, \nu)$ as well. So we have

$$\int_{E} \left(1 - \frac{\epsilon}{|\nu|(E)} \right) d|\nu| \le \int_{E} d|\nu| = |\nu|(E)$$
(5)

and g is in the collection of functions over which we take the supremum.