function gen
$$\begin{array}{c|c} C1 & R & Q1 \\ \hline 10\mu & 2N3904 & C2 \\ \hline R2 & Re \\ \hline R & xx & \end{array}$$

1)
$$I_e = I_e = 10 \text{ mR}$$
 $V_{RE} = I_e \cdot R_E$ $V_{RE} = 1 \text{ V}$ $R_E = \frac{V_{RE}}{I_E}$ $R_E = \frac{1}{10 \text{ M}}$ $R_E = 100 \text{ M}$

3)
$$I_{c} = \beta I_{b}$$

$$I_{B} = \frac{I_{c}}{\beta}$$

$$I_{R_{L}} = I_{R_{2}} = 10 \cdot I_{B}$$

$$= 10 \cdot (0.1m)$$

$$I_{B} = \frac{10 \cdot 10^{3}}{100}$$

$$I_{R_{1},R_{2}} = 1_{mA}$$

$$I_{B} = 0.1mA$$

4)
$$V_b = ?$$
 $V_b = V_{eb} + V_{RE}$
 $V_{re} = 1V$ $V_b = 0.7 + 1$ $V_b = 1.7V$

6)
$$V_{b} = V_{cc} \left(\frac{R_{2}}{P_{11} + P_{2}} \right) \Rightarrow \left(\frac{17}{8} \right) \left(P_{11} + P_{2} \right) = P_{2}$$

$$1.7 = 8 \left(\frac{R_{2}}{P_{11} + P_{2}} \right) \qquad \frac{1.7}{8} \left(P_{000} \right) = P_{2}$$

$$\frac{1.7}{8} = \frac{P_{2}}{P_{11} + P_{2}} \qquad P_{12} = 1700 \text{ sc}$$

function gen and the first section of the first section
$$R_{R}$$
 and R_{R} a

$$R_1 + R_2 = 8000$$
 $R_1 + 1700 = 8000$
 $R_1 = 6300 \Omega$

Emitter and Collectors currents are very close to equal.

Base convert is small compared to

 $\alpha = \frac{\beta}{\beta+1}, \quad \beta = \frac{\alpha}{1-\alpha}$

collector and emitter current.

1)
$$R_{E} = \frac{V_{RE}}{I_{E}} = \frac{1}{10\times10^{3}} = \boxed{100}$$

2)
$$V_{CPNP} = 3V$$

$$T_{C} = 10 \text{ MA}$$

$$P_{C} = \frac{3V}{10 \cdot 10^{3}}$$

$$V_{RC} = V_{CPNP}$$

$$P_{C} = 300 \text{ A}$$

3)
$$I_{c} = \beta I_{b}$$
 $I_{h_{L}} = I_{h_{2}} = 10 \cdot I_{B}$ $\frac{U_{1} - 0}{R_{1} + R_{2}} = 0.001$ $I_{B} = \frac{10 \cdot 10^{3}}{100}$ $I_{h_{1} + R_{2}} = 10001$ $I_{h_{1} + R_{2}} = \frac{8}{0001}$ $I_{h_{1} + R_{2}} = \frac{8}{0001}$ $I_{h_{1} + R_{2}} = \frac{8}{0001}$

4)
$$V_b = ?$$
 $V_{\epsilon} = V_1 - V_{RE}$ $V_b = V_{\epsilon} - V_{eb}$ $V_{b} = 7 - 0.7$ $V_{\epsilon} = ?$ $V_{\epsilon} = 70$ $V_{\epsilon} = 70$

5) Using voltage divider equation

6)
$$V_b = V_{cc} \left(\frac{R_2}{P_{tr} + P_{t2}} \right)$$

$$6.3 = 8 \left(\frac{R_2}{R_1 + R_1} \right)$$

$$R_1 + R_2 = 8000$$

$$R_1 + 6300 = 800$$

$$R_2 = \frac{6.3}{8} \left(P_{11} + P_{12} \right) = R_2$$

$$R_2 = \frac{6.3}{8} \left(8000 \right)$$