ECG DATASET

Alma Paulina González Sandoval A01631256 Paola Félix Torres A00227869 Herbert Eduardo Euroza Hernández A01635715 Jared Andres Silva Villa A01068244

INTRODUCCIÓN

Las enfermedades cardiovasculares (ECV) son la principal causa de muerte a nivel mundial, con 16.7 millones de fallecimientos anuales.

El Electrocardiograma (ECG) es una herramienta clave para detectar anomalías cardíacas y enfrenta retos en su interpretación debido a ruido y limitaciones clínicas.

Machine learning ha revolucionado el análisis de ECG, mejorando la clasificación de latidos y detección de anomalías.

Modelos avanzados como redes neuronales han demostrado alta precisión, sensibilidad y especificidad, optimizando el diagnóstico y la toma de decisiones en la salud cardíaca.

METODOLOGÍA CRISP-DM

- A Se cargan los datos en el código.
- B Se limpian los datos de manera correcta.
- C Se transforman los datos.
- D Se selecciona el modelo más adecuado a la problemática.
- E Se configura el modelo.
- **F** Se entrena el modelo.
- G Se separan los datos y se comparan.
- H Se seleccionan las métricas adecuadas.

Exploración y limpieza de datos.

MIT DATABASE

TRAIN

TEST

- N(0) = Ritmo Normal
- S(1) = Arritmias supraventriculares.
- Q(2) = Desconocido o sin clasificar.
- V(3)= Arritmias ventriculares.
- F(4) = Latidos de fusión.

PTB DATABASE

VISUALIZACIÓN

LIMPIEZA

DATOS NORMALIZADOS

```
21892.000000 21892.000000 21892.000000 21892.000000 21892.000000
                                      0.208711
                         0.228572
                                                  0.177727
              0.218659
                          0.251197
                                                  0.082873
              0.912319
                         0.583991
                                                 0.259211
21892.000000 21892.000000 21892.000000 21892.000000 21892.000000
              0.177946
                          0.176142
              0.000000
                          0.000000
                                      0.000000
                                                  0.000000
                          0.065997
             0.144068
                          0.144509
                                      0.150422
                                                  0.149029
                         0.294563
                                                  0.282956
                         1.000000
 .. 21892.000000 21892.000000 21892.000000 21892.000000
      0.004588 0.004327 0.004020
                                          0.003789
                  0.000000
                                           0.000000
                  0.000000
                                          0.000000
       182
                   183
                              184
                                           185
21892.000000 21892.000000 21892.000000 21892.000000 21892.000000
  0.003638 0.003459 0.003166 0.003000 0.002946
              0.037717 0.035903
                          0.000000
                                                  0.000000
                                                  0.000000
                                                  0.000000
                          0.000000
                                      0.000000
                                                  0.000000
```

DATOS NULOS

```
Total de valores nulos para ptbdb_abnormal: 0
Total de valores nulos para ptbdb_normal: 0
Total de valores nulos para mitbih_train: 0
Total de valores nulos para mitbih_test: 0
```


Prueba de modelos

Modelos utilizados	Exactitud
Regresión logística sin balanceo	0.91
Random Forest (RandomUnderSample)	0.85
SVM (RandomUnderSample)	0.80
K-Nearest Neighbors (RandomUnderSample)	0.75

Modelos utilizados	Exactitud
Decision Tree (RandomUnderSample)	0.71
Naive Bayes (RandomUnderSample)	0.17
Gradient Boosting (RandomUnderSample)	0.79
AdaBoost (RandomUnderSample)	0.48

REPORTES DE CLASIFICACIÓN

Regresión logística sin balanceo

Reporte de cla	sificación:				
	precision	recall	f1-score	support	
0.0	0.92	0.98	0.95	21828	
1.0	0.85	0.39	0.53	627	
2.0	0.64	0.33	0.43	1704	
3.0	0.63	0.20	0.30	200	F
4.0	0.95	0.88	0.92	1908	
accuracy			0.91	26267	
macro avg	0.80	0.56	0.63	26267	
weighted avg	0.90	0.91	0.90	26267	

K-Nearest Neighbors

Reporte de clasificación:							
		precision	recall	f1-score	support		
	0.0	0.98	0.74	0.84	14452		
	1.0	0.19	0.81	0.31	465		
	2.0	0.51	0.84	0.63	1183		
	3.0	0.09	0.88	0.16	127		
	4.0	0.77	0.93	0.85	1283		
accur	acy			0.76	17510		
macro	avg	0.51	0.84	0.56	17510		
weighted	avg	0.91	0.76	0.81	17510		

Gradient Boosting

Reporte d	de cla	asificación:			
		precision	recall	f1-score	support
	0.0	0.98	0.78	0.87	14452
	1.0	0.24	0.80	0.37	465
	2.0	0.56	0.89	0.69	1183
	3.0	0.09	0.87	0.17	127
	4.0	0.85	0.93	0.89	1283
accur	acy			0.80	17510
macro	avg	0.55	0.86	0.60	17510
weighted	avg	0.92	0.80	0.84	17510

REPORTES DE CLASIFICACIÓN

4.0

accuracy

macro avg

weighted avg

0.91

0.59

0.93

0.95

0.88

0.86

0.93

0.86

0.65

0.88

1283

17510

17510

17510

SVM

Reporte d	de cla	asificación:			
		precision	recall	f1-score	support
	0.0	0.98	0.80	0.88	14452
	1.0	0.33	0.75	0.46	465
	2.0	0.59	0.86	0.70	1183
	3.0	0.08	0.87	0.14	127
	4.0	0.83	0.91	0.87	1283
accur	acy			0.81	17510
macro	avg	0.56	0.84	0.61	17510
weighted	avg	0.92	0.81	0.85	17510

AdaBoost

					Reporte de clasificación:				
						precision	recall	f1-score	support
					0.0	0.93	0.36	0.51	14452
D 6	مور مام مر	Гои	4		1.0	0.05	0.55	0.09	465
KQ	ındom	1 FOr	est		2.0	0.25	0.62	0.35	1183
					3.0	0.06	0.83	0.11	127
oorte de cl	asificación:				4.0	0.65	0.90	0.75	1283
	precision	recall	f1-score	support					
	0.00	0.05	0.04	44450	accuracy			0.42	17510
0.0	0.99	0.85	0.91	14452	macro avg	0.39	0.65	0.36	17510
1.0	0.34	0.80	0.47	465					
2.0	0.62	0.92	0.74	1183	weighted avg	0.83	0.42	0.51	17510
3.0	0.13	0.88	0.22	127					

SOLUCION

RANDOM FOREST

Ranmdon Forest es un modelo de aprendizaje automático, este se basa en combinaciones de múltiples aboles de decisión para realizar una predicción.

La idea principal es construir un "bosque" de árboles de decisión, que hacen predicciones mediante el voto mayoritario de todos los árboles.

PRIMER MODELO

Entrenamiento

Número de ejemplos por clase después de balancear:

Clase 1.0: 10506 ejemplos Clase 0.0: 10505 ejemplos

Evaluación con mitbih_test

Reporte de Cl	asificación precision	_	st - Random f1-score	Forest: support
0.0 1.0	0.90 0.66	0.94 0.51	0.92 0.57	18118 3774
accuracy macro avg weighted avg	0.78 0.86	0.73 0.87	0.87 0.75 0.86	21892 21892 21892

Número de ejemplos por clase después de balancear:

Clase 1.0: 10506 ejemplos Clase 0.0: 5046 ejemplos

Reporte d	de Cl	asificación - precision		Forest con f1-score	Undersampling: support	
	0.0 1.0	0.88 0.96	0.93 0.94	0.91 0.95	5046 10506	
accur macro weighted	avg	0.92 0.94	0.93 0.94	0.94 0.93 0.94	15552 15552 15552	

🚁 Número de ejemplos por clase después de balancear:

Clase 1.0: 10506 ejemplos Clase 0.0: 5546 ejemplos

Reporte de Cl	asificación precision	mitbih_tes recall		Forest: support
0.0 1.0	0.95 0.39	0.74 0.81	0.83 0.52	18118 3774
accuracy macro avg weighted avg	0.67 0.85	0.77 0.75	0.75 0.68 0.78	21892 21892 21892

REPORTE DEL PRIMER MODELO

Reporte de Cl	lasificación - precision		Forest con f1-score	Undersampling: support
0.0 1.0	0.92 0.96	0.94 0.95	0.93 0.95	6546 10506
accuracy macro avg weighted avg	0.94 0.94	0.94 0.94	0.94 0.94 0.94	17052 17052 17052

Evaluación con mitbih_test

Reporte de Cl	asificación m precision	nitbih_test recall f		Forest: support
0.0	0.94	0.79	0.86	18118
1.0	0.43	0.76	0.55	3774
accuracy			0.78	21892
macro avg	0.68	0.77	0.70	21892
weighted avg	0.85	0.78	0.80	21892

SEGUNDO MODELO

REPORTE DEL SEGUNDO MODELO

Reporte de C	lasificación precision		Forest con f1-score	Undersampling: support
1.0	0.89	0.94	0.91	2223
2.0	0.96	0.92	0.94	5788
3.0	0.66	0.93	0.77	641
4.0	0.99	0.97	0.98	6431
accuracy			0.94	15083
macro avg	0.87	0.94	0.90	15083
weighted avg	0.95	0.94	0.94	15083

- S = Arritmias supraventriculares.
- Q = Desconocido o sin clasificar.
- V= Arritmias ventriculares.
- F = Latidos de fusión.

Evaluación con mitbih_test

Reporte	de Clasifi	cación m	itbih_test	- Random	Forest:	
	prec	ision	recall f	1-score	support	
	1.0	0.98	0.93	0.95	556	
	2.0	0.95	0.98	0.97	1448	
	3.0	0.84	0.81	0.83	162	
	4.0	0.99	0.99	0.99	1608	
accu	racy			0.97	3774	
macro	avg	0.94	0.93	0.94	3774	
weighted	avg	0.97	0.97	0.97	3774	
macro	2.0 3.0 4.0 racy avg	0.95 0.84 0.99	0.98 0.81 0.99	0.97 0.83 0.99 0.97 0.94	1448 162 1608 3774 3774	

¿COMO PODEMOS MEJORAR NUESTRO MODELO?

OPTIMIZACIÓN DE HIPERPARÁMETROS

 Exploración más profunda de los parámetros del modelo

En ejecución (2 h 28 min 5 s) <cell line: 19>

En ejecución (3 h 19 min 31 s) <cell line: 19> >

En ejecución (4 h 33 min 19 s) <cell line: 19> >

DATOS ADICIONALES

 Incorporación de datos adicionales relevantes para mejorar el modelo

MODELOS ENSAMBLADOS

• Combinación de modelos para mejorar la precisión.

CONCLUSIÓN

En problemas de clasificación, como lo es el análisis de electrocardiogramas (ECG), la capacidad del clasificador para detectar correctamente los casos anormales es de suma importancia. La mayoría de los caos anormales suelen ser raros y críticos, por lo que se requiere de una atención inmediata.

La continua mejora de los modelos nos ayudarán para que en un futuro estos problemas de malas detecciones se reduzcan considerablemente.

EVIDENCIA DE HIPERPARAMETROS

Reporte de Cl	asificación - precision		Forest con f1-score	Mejor Parámetro support	(Randomized Search)
0.0	0.97	0.94	0.95	10506	
1.0	0.94	0.97	0.95	10506	
accuracy			0.95	21012	
macro avg	0.95	0.95	0.95	21012	
weighted avg	0.95	0.95	0.95	21012	
Exactitud (Ac	curacy): 0.95				

GRACIAS!

