1. Определенный интеграл

1.1. Задача и определение

Задача. Дана криволинейная фигура:

Надо найти ее площадь S

Произведем ее дробление на маленькие элементарные фигуры, площадь которых мы можем посчитать:

Уменьшаем дробление, чтобы свести погрешность к 0 (погрешность между истинной площадью и суммарной площадью прямоугольников)

Сведем задачу к простейшей в ДПСК:

- 1. Вводим разбиение отрезка [a;b] (a < b) точками $a < x_0 < \cdots < x_n < b$ $T = \{x_i\}_{i=0}^n$
- 2. Выбираем средние точки на частичных отрезках $[x_{i-1}, x_i]_{i=1}^n$ $\{\xi_i\}_{i=1}^n$ набор средних точек $\Delta x_i \stackrel{\text{обозн.}}{=} x_i x_{i-1}$ длина отрезка
- 3. Строим элементарные прямоугольники
- 4. Составляем сумму площадей всех таких прямоугольников:

$$\sigma_n = \sum_{i=1}^n \Delta x_i f(\xi_i)$$

- интегральная сумма Римана
- 5. Заменяя разбиение, выбор ξ_i при каждом n, получаем последовательность $\{\sigma_n\}$ При этом следим, чтобы ранг разбиения $\tau = \max_{1 \le i \le n} \Delta x_i \to 0$ при $n \to \infty$ Иначе получим неуничтожаемую погрешность
- 6. **Def.** Если существует конечный предел интегральной суммы и он не зависит от типа, ранга дробления и выбора средних точек, то он называется определенным интегралом

$$\lim_{n\to\infty,\ \tau\to 0} \sigma_n = \lim_{n\to\infty,\ \tau\to 0} \sum_{i=1}^n \Delta x_i f(\xi_i) \stackrel{\text{def}}{=} \int_a^b f(x) dx$$

Nota. Независимость от дробления и выбора средних точек существенна

$$Ex. \ \mathcal{D} = \begin{cases} 1, \ x \in [0, 1], x \notin \mathbb{Q} \\ 0, \ x \in [0, 1], x \in \mathbb{Q} \end{cases}$$

Сумма Римана для этой функции неопределенна, так как все зависит от выбора средних точек:

- если средние точки иррациональные, то сумма равна единице
- иначе сумма равна нулю

В обозначении определенного интеграла a и b называют нижним и верхним пределами интегрирования соответственно

Дифференциал dx имеет смысл Δx , понимается как б. м., то есть:

f(x)dx - площадь элементарных прямоугольников, тогда

$$\int_a^b f(x)dx$$
 - сумма этих прямоугольников

1.
$$\int_{a}^{a} f(x)dx \stackrel{\text{def}}{=} 0$$
2.
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

Можно доказать, что определенный интеграл существует для всякой непрерывной на отрезке функции

Геом. смысл. Заметим в определении площадь подграфика функции $(f(x) \ge 0)$

Заметим, что для
$$f(x) \le 0$$
 $\int_a^b f(x)dx = -S$

1.2. Свойства

1. Линейность пределов \Longrightarrow линейность пределов

$$\lambda \int_{a}^{b} f(x)dx + \mu \int_{a}^{b} g(x)dx = \int_{a}^{b} (\lambda f(x) + \mu g(x))dx \quad (\lambda, \mu \in \mathbb{R})$$

2. Аддитивность (часто для кусочно-непрерывных функций с конечным числом точек разбивается на участки непрерывности)

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

Доказательства строятся на свойствах конечных сумм и пределов

3. Оценка определенного интеграла

f(x) непрерывна на [a;b] (имеет наимен. (m) и наибол. (M) значения). Тогда:

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a)$$

□ Док-во:

По теореме Вейерштрасса 2 f(x) принимает наименьшее и наибольшее значения и для всякого x из [a;b]: m <= f(x) <= M

Так как все средние точки принадлежат [a;b], то

$$m \le f(\xi_i) \le M \quad \forall \xi_i$$

$$m\Delta_i \le f(\xi_i)\Delta_i \le M\Delta_i$$

$$m\sum_{i=1}^{n} \Delta x_i \le f(\xi_i)\sum_{i=1}^{n} \Delta x_i \le M\sum_{i=1}^{n} \Delta x_i$$

Предельный переход

$$\lim_{n \to \infty, \ \tau \to 0} m \sum_{i=1}^{n} \Delta x_{i} \le \int_{a}^{b} f(x) dx \le \lim_{n \to \infty, \ \tau \to 0} M \sum_{i=1}^{n} \Delta x_{i}$$

$$m \lim_{n \to \infty, \ \tau \to 0} \sum_{i=1}^{n} \Delta x_{i} \le \int_{a}^{b} f(x) dx \le M \lim_{n \to \infty, \ \tau \to 0} \sum_{i=1}^{n} \Delta x_{i}$$

$$m(b-a) \le \int_{a}^{b} f(x) dx \le M(b-a)$$

4. Тh. Лагранжа о среднем (в интегральной форме)

$$f(x) \in C'_{[a,b]} \Longrightarrow \exists \xi \in (a,b) \ f'(\xi) = \frac{f(b) - f(a)}{b - a}$$
 Тогда найдется такая средняя точка, что
$$f(x) \in C_{[a,b]} \Longrightarrow \exists \xi \in (a,b) \ f(\xi)(b-a) = \int_a^b f(x) dx$$

$$\square$$

$$m \leq \underbrace{\frac{1}{b-a} \int_a^b f(x) dx}_{\text{некоторое мисло.}} \le M$$
 по свойству выше

По теореме Больцано-Коши f(x) непрерывна, поэтому пробегает все значения от m до M

Значит найдется такая точка ξ , что $f(\xi) = \frac{1}{h-a} \int_{-a}^{b} f(x) dx$

5. Сравнение интегралов

$$f(x), g(x) \in C_{[a,b]} \quad \forall x \in [a,b] \quad f(x) \ge g(x)$$
Тогда
$$\int_a^b f(x) dx \ge \int_a^b g(x) dx$$

$$\int_a^b f(x) dx - \int_a^b g(x) dx = \int_a^b (f(x) - g(x)) dx = \lim_{n \to \infty, \ \tau \to 0} \sum_{i=1}^n \underbrace{(f(\xi_i) - g(\xi_i))}_{\ge 0} \underline{\Delta x_i} \ge 0$$

6. Интеграл и модуль

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty, \ \tau \to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i} = \lim_{n \to \infty} \sigma_{n}$$

$$\int_{a}^{b} |f(x)| dx = \lim_{n \to \infty, \ \tau \to 0} \sum_{i=1}^{n} |f(\xi_{i})| \Delta x_{i}$$
Докажем, что
$$\lim_{n \to \infty} |\sigma_{n}| = |\lim_{n \to \infty} \sigma_{n}|$$

Так как определен $\int_a^b f(x)dx = \lim_{n \to \infty} \sigma_n = S \in \mathbb{R}$, то можно рассмотреть случаи

$$S > 0$$
: $\exists n_0 \ \forall n > n_0 \ \sigma_n > 0 \ ($ вблизи S $)$

$$\lim_{n\to\infty} |\sigma_n| = |\lim_{n\to\infty} \sigma_n|$$

$$\lim_{n\to\infty} |\sigma_n| = |\lim_{n\to\infty} \sigma_n|$$

$$S > 0: \quad \exists n_0 \ \forall n > n_0 \ \sigma_n < 0 \ (\text{вблизи } S)$$

$$\lim_{n\to\infty} |\sigma_n| = -\lim_{n\to\infty} \sigma_n = |\lim_{n\to\infty} \sigma_n|$$

$$S = 0: \lim_{n\to\infty} |\sigma_n| = |\lim_{n\to\infty} \sigma_n| = 0$$

$$\lim_{n\to\infty} |\sigma_n| = -\lim_{n\to\infty} \sigma_n = |\lim_{n\to\infty} \sigma_n|$$

$$S = 0$$
: $\lim_{n \to \infty} |\sigma_n| = |\lim_{n \to \infty} |\sigma_n| = 0$

$$\left|\int_{a}^{b} f(x) dx\right| = \left|\lim_{n \to \infty} \sigma_{n}\right| = \lim_{n \to \infty} |\sigma_{n}| = \lim_{n \to \infty, \ \tau \to 0} \left|\sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}\right| \leq \lim_{n \to \infty, \ \tau \to 0} \sum_{i=1}^{n} |f(\xi_{i})| \Delta x_{i} \quad \text{(модуль суммы меньше или равен сумме модулей)}$$

Nota. Интеграл и разрыв

Изъятие из отрезка не более, чем счетного числа точек, не меняет значение интеграла, что позволяет считать интеграл на интервале

Nota. Сходимость интеграла - в определении интеграла подчеркивается, что это число. Если предел интегральных сумм не существует или бесконечен, говорят, что интеграл расходится

Nota. Вычисления

Определение дает способ вычисления и его можно упростить:

$$\forall i \ \Delta x_i = \Delta x, \quad \xi_i = \begin{bmatrix} x_{i-1} \\ x_i \end{bmatrix}$$
 - концы отрезка

Так вычисляют «неберущиеся интегралы»

Для функций, у которых первообразные выражаются в элементарных функциях используется не этот метод, а формула Ньютона-Лейбница

1.3. Вычисление определенного интеграла