UFCG/CCT/Unidade Acadêmica de Matemática e Estatística	NOTA:
DISCIPLINA: Álgebra Linear I	PERÍODO: 2022.1
PROFESSOR:	TURNO: Tarde
ALUNO(A):	DATA:/02/2023
Curso de Graduação: $N^{\underline{o}}$ da matrícula:	

Reposição do $3^{\underline{0}}$ ESTÁGIO

Atenção! 1) Não retire o grampo da prova. 2) Use apenas o papel da prova. 3) Não apague as contas. 4) Desligue o(s) seu(s) celular(es).

- 1. Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$ dada por T(x,y,z) = (x-y-z,x-y-z).
 - a) $(1,0 \ ponto)$ Determine uma base da imagem de T e justifique porque T não é sobrejetora.
 - b) (1,0 ponto) Determine o núcleo de T e justifique porque T não é injetora.
- **2.** $(1,0 \ ponto)$ Determine o operador linear $T: \mathbb{R}^2 \to \mathbb{R}^2$, tal que T tenha autovalores $\lambda_1 = 1$ e $\lambda_2 = -1$ associados aos autovetores $v_1 = (1,0)$ e $v_2 = (-1,1)$ respectivamente.
- **3.** Considere a transformação linear $T: \mathbb{R}^3 \to P_2(\mathbb{R})$ definida por $T(a,b,c) = at^2 + (-a+b-c)t + c$.
 - a) $(1,0 \ ponto)$ Mostre que T é um isomorfismo.
 - **b)** $(1, 0 \ ponto)$ Determine $T^{-1}(at^2 + bt + c)$.

4. Sejam as transformações lineares
$$T_1: \mathbb{R}^3 \to \mathbb{R}^2$$
 definida pela matriz $[T_1]^{\alpha}_{\beta} = \begin{bmatrix} 1/2 & 0 & -1/2 \\ 0 & 1 & 1 \end{bmatrix}$ e $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ definida pela matriz $[T_2]^{\beta}_{\beta} = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$, onde $\alpha = \{(-1,0,0),(0,0,-1),(0,1,0)\}$ é a base de \mathbb{R}^3 e β é a base canônica de \mathbb{R}^2 . Determine:

- **a)** $(1, 0 \ ponto) \ [T_2 \circ T_1]^{\alpha}_{\beta}$.
- **b)** $(1, 0 \ ponto) \ (T_2 \circ T_1)(x, y, z).$
- **5.** Considere o operador linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ definido por T(x,y,z) = (-2x+4z,x-2z,0). Determine:
 - a) $(1,0 \ ponto) \ [T]^{\alpha}_{\alpha} \text{ onde } \alpha = \{(0,1,0), (0,0,1), (1,0,0)\}.$
 - b) $(1,0 \ ponto)$ Os autovalores de T (Sugestão: utilize a matriz $[T]^{\alpha}_{\alpha}$).
 - c) (1,0 ponto) Uma base para cada autoespaço.

Boa Prova!