Efficient Low Diameter Clustering

with strong diameter in the CONGEST model

Christian Micheletti

About this Presentation

- 1. Distributed Algorithms
- 2. Distributed Algorithms
- 3. Network Decomposition
- 4. Computing a Clustering
- 5. Computing a Clustering
- 6. Computing a Clustering

- We want to solve graph problems on **networks**
 - Computers are like nodes in a graph

Distribution ⇒ Multiple processors

- We want to solve graph problems on networks
 - Computers are like nodes in a graph

Distribution ⇒ Multiple processors

Each node gives a partial solution

At the end they are all combined altogether

...how can we combine those partial solutions?

Distribution ⇒ Collaboration

- Arcs are direct links between computers
 - Computers have to exchange messages

A First Simple Model

- In the PN-Network a node only knows some Numbered Ports
 - Connected with a different nodes
 - Such nodes are called neighbours
- There are no self loops

A First Simple Model

Distributed Algorithms

- In the PN-Network a node only knows some Numbered Ports
 - Connected with a different nodes
 - Such nodes are called neighbours
- There are no self loops

A node can't see the whole topology

- In the PN-Network a node only knows some Numbered Ports
 - Connected with a different nodes
 - Such nodes are called neighbours
- There are no self loops

A node can't see the whole topology

All nodes appear identical

We add unique identifiers to the nodes

 $id:V\to\mathbb{N}$

where $\forall v \in V : id(v) \le n^c$ for some $c \ge 1$

We choose n^c so that we need $O(\log n)$ bits to represent an identifier, i.e. identifiers are reasonably "small"

Communication (Intuition)

- Collaboration requires exchanging messages
 - ...on a medium that is slow and unreliable

- ⇒ Communication is the main pitfall
- We measure the number of messages that an algorithm requires
 - An "efficient" algorithm will need few messages

Communication Model

W.l.o.g.¹ we adopt a model of *synchronous communication*

Each round, a node $v \in V$ performs these actions:

- 1. v sends a message $msg \in \mathbb{N}$ to its neighbours;
- 2. v receives messages from its neighbours;
- 3. ...

¹Without loss of generality.

Communication Model

W.l.o.g.² we adopt a model of *synchronous communication*

Each round, a node $v \in V$ performs these actions:

- 1. v sends a message $msg \in \mathbb{N}$ to its neighbours;
- 2. v receives messages from its neighbours;
- 3. ...
- (1.) and (2.) establish a communication round
 - Main measure of complexity
 - Few communication rounds ⇒ few messages

²Without loss of generality.

Communication Model

- 3. v executes locally some algorithm (same for each node).
 - A node can **stop** in this phase
 - Its local result won't change anymore
 - (3.) doesn't affect the algorithm's complexity

- 3. v executes locally some algorithm (same for each node).
 - A node can **stop** in this phase
 - Its local result won't change anymore
 - (3.) doesn't affect the algorithm's complexity
- When all nodes stopped the algorithm terminates

We say that an algorithm is "efficient" when it stops in polylogarithmic number of rounds

A First Example (WAVE)

- The node with id(v) = 1 "waves hello" to neighbours
 - ...sending them a message

A First Example (WAVE)

- The node with id(v) = 1 "waves hello" to neighbours
 - ...sending them a message
- When a node receives the message, forwards it to its neighbours
 - And then stops

A First Example (WAVE)

- The node with id(v) = 1 "waves hello" to neighbours
 - ...sending them a message
- When a node receives the message, forwards it to its neighbours
 - And then stops
- The running time of this algorithm on a graph G is O(diam(G))

Example: Maximal Independent Set (MIS)

- Solving it centralized is easy
- How can we solve it *distributed*?

A Second Example (Naive-MIS)

Distributed Algorithms

Let's leverage id(v) to select the next MIS node

- At round #i, node v : id(v) = i executes
 - If no neighbour is in the MIS, add the node
 - And inform the neighbours
 - Otherwise, the node is outside the MIS

Let's leverage id(v) to select the next MIS node

- At round #i, node v : id(v) = i executes
 - If no neighbour is in the MIS, add the node
 - And inform the neighbours
 - Otherwise, the node is outside the MIS
- It is correct since no node has the same id
- This algorithm runs in $O(n^c)$ (the maximum id)
 - Very bad

Running a centralized algorithm on a single node would take O(1) rounds

- We'd like to run a MIS algorithm on each node
 - ► Each must have a **local copy** of the **entire** graph
 - The algorithm must be deterministic
 - When a node stops it checks if it is included in MIS

- The algorithm Gather-All makes all nodes build a local copy of the whole graph
 - At round i, each node v knows ball(i, v)

All nodes will know the whole graph after O(diam(G)) rounds

Critique to LOCAL

• Gather-All assumes that messages size is unbounded

Requires to send the whole graph in one message

- It is not always possible to send arbitrary large messages
 - Heavy ones may be "sharded"
- We provide an upper bound for message size
 - Messages need to be reasonably "small"
 - Large messages will require more rounds to be sent

In the CONGEST model, messages size has to be $O(\log n)$

- Sending k identifiers takes O(1) rounds
- Sending a set of identifiers can take up to O(n)
- Sending the whole graph requires $O(n^2)$ rounds:
 - ► The adjacency matrix suffices...

⇒ We can't use Gather-All in the CONGEST model

Solving problems in CONGEST

• Censor-Hillel et al. [1] provided an algorithm that solves MIS in $O(diam(G) \log^2 n)$ in CONGEST

The diameter can be very large

- Worst case: diam(G) = n
- How can we improve it?

- A Network Decomposition groups nodes in colored clusters
 - Clusters with the same color are not adjacent
 - We say it to have diameter d if each cluster has diameter at most d
 - ► It has c colors

Solving MIS in a color gives a partial solution

- We can apply [1] for all colors
 - (dropping MIS neighbours after each iter)
 - ▶ This has complexity $O(c \cdot d \log^2 n)$
 - If $c = O(\log n) = d$ it would be **efficient**

How to compute one?

Network Decomposition

A *low diameter clustering* $\mathscr{C} \subseteq 2^{V}$ for a graph G with diameter d is such:

- 1. $\forall C_1 \neq C_2 \in \mathscr{C} : dist_G(C_1, C_2) \ge 2$
 - "There are no adjacent clusters"
- 2. $\forall C \in \mathscr{C} : diam(G[C]) \leq d$
 - "Any cluster has diameter at most d"

Main iteration:

- 1. Find a low diameter clustering
- 2. Assign a free color to its nodes
- 3. Repeat to discarded nodes until there are no more left

Our previous definition of diamter is also called strong diameter

We say a clustering has weak diameter when:

- 1. (unchanged) "There are no adjacent clusters"
- 2. Any cluster has "diameter in G" at most d

How to compute a low diameter clustering

Today's Algorithm

- Main accomplishments of [2]:
 - ▶ Terminates in $O(\log^6 n)$ rounds in the CONGEST model
 - Outputs a clustering with $O(\log^3 n)$ colors
 - Directly strong diameter

Today's Algorithm

- Main accomplishments of [2]:
 - ▶ Terminates in $O(\log^6 n)$ rounds in the CONGEST model
 - Outputs a clustering with $O(\log^3 n)$ colors
 - Directly strong diameter
- Previously [3] provided a l.d.c with weak diameter
 - $O(\log^7 n)$ rounds with $O(\log^3 n)$ colors
 - It's possible to turn it into strong diameter

Today's Algorithm

- Main accomplishments of [2]:
 - ▶ Terminates in $O(\log^6 n)$ rounds in the CONGEST model
 - Outputs a clustering with $O(\log^3 n)$ colors
 - Directly strong diameter
- Previously [3] provided a l.d.c with weak diameter
 - $O(\log^7 n)$ rounds with $O(\log^3 n)$ colors
 - It's possible to turn it into strong diameter
- [4] did it in $O(\log^4 n)$ rounds with $O(\log^3 n)$ colors
 - Has to pass by a weak d. intermediate solution

Objectives:

- 1. Creating connected components with "low" diameters
 - Keep track of the "center" of the c.c.
 - A.k.a. Terminal
 - We will merge c.c.s
 - Only one terminal is going to be the new center
 - Remove c.c.s with nodes "too far away"

Objectives:

- 1. Creating connected components with "low" diameters
 - Keep track of the "center" of the c.c.
 - A.k.a. Terminal
 - We will merge c.c.s
 - Only one terminal is going to be the new center
 - Remove c.c.s with nodes "too far away"
- 2. Cluster at least half of the nodes
 - Required for "few" colors network decompositions

Phases

- There are $b = \log(\max_{v \in V} id(v)) = O(\log n)$ phases
- "One phase for each bit in index"
 - ▶ Phase $i \in [0, b-1]$ computes **terminals set** Q_i

Notation:

- Q_i is the terminals set built before phase i
- Q_b is the terminals set built after phase b-1
- V_i is the set of **living nodes** at the beginning of phase i
- $V' = V_h$ is the set of **living nodes** after the last phase

- 1. Q_i is R_i -ruling, i.e. $dist_G(Q_i, v) \le R_i$ for all $v \in V$
 - We set $R_i = i * O(\log^2 n)$
 - Q₀ is 0-ruling, trivially true with Q₀ = V
 - "All nodes are terminals at the beginning"
 - Q_b is $O(\log^3 n)$ -ruling

"Each node has polylog distance from Q_b "

⇒ Each c.c. has at least one terminal

- 2. let $q_1, q_2 \in Q_i$ s.t. they are in the same c.c in $G[V_i]$. Then $id(q_1)[0..i] = id(q_2)[0..i]$
 - for i = 0 it's trivially true
 - for i = b there is ≤ 1 terminal in each c.c.

Along with invariant (1.), it means that each c.c. has polylog diameter!

3.
$$|V_i| \ge \left(1 - \frac{i}{2b}\right) |V|$$

- $V_0 \ge V$
- $V' \geq \frac{1}{2} |V|$
- "The algorithm clusters at least half of the nodes"

Objective: Keeping only terminals from which is possible to build a **forest** whose **trees** have polylog diameter

• Leaves of the trees may be connected in G

Outline:

- $2b^2$ steps, each computing a forest
- resulting into a sequence of forests $F_0..F_{2b^2}$

Inductive definition:

- F_0 is a BFS forest with roots set Q_i
- let T be any tree in F_j and r its root
 - if id(r)[i] = 0 the whole tree is red, otherwise blue
 - red vertexes stay red
 - some blue nodes stay blue
 - some others *propose* to join red trees

Proposal:

$$v \in V_j^{propose} \Leftrightarrow v \text{ is blue}$$

$$\land v \text{ is the only one in } path(v, root(v))$$

$$\text{that neighbours a red node}$$

• Define T_v the (blue) subtree rooted at v

v is the only node in T_v that is also in $V_j^{propose}$

Proposal:

- Each node in $V_j^{propose}$ proposes to an arbitrary red neighbour
- Each red tree decides to grow or not
 - If it grows, it accepts all proposing subtrees
 - If not, all proposing subtrees are frozen
- Criteria: it decides to grow if gains at least $\frac{|V(T)|}{2b}$ nodes

If a red tree doesn't decide to grow, it will neighbour red nodes only

- This means it will be able to delete nodes only once in the whole phase

 - ⇒ At most $\frac{|V|}{2b}$ nodes are lost in each phase ⇒ After the *b* phases at most $\frac{|V|}{2}$ nodes are removed

High Level Pseudocode

Computing a Clustering

1:
$$V_0 \leftarrow V$$

2: $Q_0 \leftarrow V$
3: **for** $i \in 0...b - 1$ **do**
4: INIT F_0
5: **for** $j \in 0...2b^2 - 1$ **do**
6: BUILD $V_j^{propose}$
7: $F_{j+1} \leftarrow \text{STEP}$ $O(diam(T_v))$ $b = O(\log n)$
8: $V_{i+1} \leftarrow V(F_{2b^2})$
9: $Q_{i+1} \leftarrow roots(F_{2b^2})$

Complexity

- Recall invariant (1.)
 - ► $\forall v \in V : dist_G(Q_i, v) = O(\log^3 n)$, for all $i \in 0...b$
 - ► Hence, $diam(T_v) = O(\log^3 n)$, for all $v \in V$
- Complexity is $\#steps \cdot \#phases \cdot O(diam(T_v))$
 - $= O(\log n) \cdot O(\log^2 n) \cdot O(\log^3 n)$
- \Rightarrow The algorithm runs in $O(\log^6 n)$ communication steps

- We've seen how to build a low diameter clustering
 - ► In $O(\log^6 n)$ communication steps
 - ► It clusters at least $\frac{n}{2}$ nodes

- We've seen how to build a low diameter clustering
 - ▶ In $O(\log^6 n)$ communication steps
 - It clusters at least $\frac{n}{2}$ nodes
- · We can apply that until all nodes have a color
 - $ightharpoonup O(\log n)$ steps and therefore $O(\log n)$ colors
 - Network decomposition in $O(\log^7 n)$

- We've seen how to build a low diameter clustering
 - ▶ In $O(\log^6 n)$ communication steps
 - It clusters at least $\frac{n}{2}$ nodes
- · We can apply that until all nodes have a color
 - ► O(log n) steps and therefore O(log n) colors
 - Network decomposition in $O(\log^7 n)$
- We solve MIS [1] for each color $(O(\log n) \cdot ...)$
 - ▶ In parallel in the clusters $(... \cdot O(\log^3 n \cdot \log^2 n))$

- We've seen how to build a low diameter clustering
 - ▶ In $O(\log^6 n)$ communication steps
 - It clusters at least $\frac{n}{2}$ nodes
- · We can apply that until all nodes have a color
 - ► O(log n) steps and therefore O(log n) colors
 - Network decomposition in $O(\log^7 n)$
- We solve MIS [1] for each color $(O(\log n) \cdot ...)$
 - ▶ In parallel in the clusters $(... \cdot O(\log^3 n \cdot \log^2 n))$
- \Rightarrow We end up solving MIS in $O(\log^7 n)$ rounds

Bibliography

- [1] K. Censor-Hillel, M. Parter, and G. Schwartzman, "Derandomizing Local Distributed Algorithms under Bandwidth Restrictions." [Online]. Available: https:// arxiv.org/abs/1608.01689
- [2] V. Rozhoň, B. Haeupler, and C. Grunau, "A Simple Deterministic Distributed Low-Diameter Clustering." [Online]. Available: https://arxiv.org/abs/2210.11784

- [3] V. Rozhoň and M. Ghaffari, "Polylogarithmic-Time Deterministic Network Decomposition and Distributed Derandomization." [Online]. Available: https://arxiv.org/abs/1907.10937
- [4] V. Rozhoň, M. Elkin, C. Grunau, and B. Haeupler, "Deterministic Low-Diameter Decompositions for Weighted Graphs and Distributed and Parallel Applications." [Online]. Available: https://arxiv.org/abs/2204.08254