Homework 5: DFA Regular Expressions and Minimization

Traehan Arnold

Exercise 3.2.1: DFA Regular Expressions and State Elimination

Given Transition Table

$$\begin{array}{c|ccccc} & 0 & 1 \\ \hline \rightarrow q_1 & q_2 & q_1 \\ q_2 & q_3 & q_1 \\ *q_3 & q_3 & q_2 \end{array}$$

a) Initial Regular Expressions $R_{ij}^{(0)}$

•
$$R_{11}^{(0)} = \varepsilon$$
, $R_{12}^{(0)} = 0$, $R_{13}^{(0)} = \emptyset$

•
$$R_{21}^{(0)} = 1, R_{22}^{(0)} = \varepsilon, R_{23}^{(0)} = 0$$

•
$$R_{31}^{(0)} = \emptyset$$
, $R_{32}^{(0)} = 1$, $R_{33}^{(0)} = 0 \mid \varepsilon$

b) Regular Expressions $R_{ij}^{(1)}$ (using q_1 as intermediate)

Apply: $R_{ij}^{(1)} = R_{ij}^{(0)} \mid R_{i1}^{(0)}(R_{11}^{(0)})^* R_{1j}^{(0)}$

•
$$R_{11}^{(1)} = \varepsilon$$
, $R_{12}^{(1)} = 0$, $R_{13}^{(1)} = \emptyset$

•
$$R_{21}^{(1)} = 1$$
, $R_{22}^{(1)} = \varepsilon \mid 10$, $R_{23}^{(1)} = 0$

•
$$R_{31}^{(1)} = \emptyset$$
, $R_{32}^{(1)} = 1$, $R_{33}^{(1)} = 0$

c) Regular Expressions $R_{ij}^{(2)}$ (using q_1 and q_2 as intermediate)

$$\bullet \ R_{13}^{(2)} = 0(10)^*0$$

•
$$R_{11}^{(2)} = \varepsilon \mid 0(10)^*1$$

•
$$R_{12}^{(2)} = 0 \mid 0(10)^*10$$

•
$$R_{23}^{(2)} = 0 \mid 10(10)^*0$$

•
$$R_{33}^{(2)} = 0 \mid 1(10)^*0$$

d) Final Regular Expression

From q_1 (start) to q_3 (final):

$$R = 0(10)^*0$$

e) State Elimination Method

DFA diagram: Eliminate q_2 . Final expression:

$$R = (1 \mid 01)00(0)$$

Exercise 3.2.2

Given Transition Table

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \rightarrow q_1 & q_2 & q_3 \\ q_2 & q_1 & q_3 \\ *q_3 & q_2 & q_1 \end{array}$$

a) Initial Regular Expressions $R_{ij}^{(0)}$

- $R_{11}^{(0)} = \varepsilon$, $R_{12}^{(0)} = 0$, $R_{13}^{(0)} = 1$
- $R_{21}^{(0)} = 0, R_{22}^{(0)} = \varepsilon, R_{23}^{(0)} = 1$
- $R_{31}^{(0)} = 1$, $R_{32}^{(0)} = 0$, $R_{33}^{(0)} = \varepsilon$

b) $R_{ij}^{(1)}$ (using q_1 as intermediate)

Apply formula: $R_{ij}^{(1)} = R_{ij}^{(0)} \mid R_{i1}^{(0)}(R_{11}^{(0)})^* R_{1j}^{(0)}$

- $R_{12}^{(1)} = 0, R_{13}^{(1)} = 1$
- $R_{22}^{(1)} = \varepsilon \mid 00, R_{23}^{(1)} = 1 \mid 01$
- $R_{33}^{(1)} = \varepsilon \mid 11$

c) $R_{ij}^{(2)}$ (using q_1 and q_2 as intermediate)

$$R = R_{13}^{(2)} = 1 \mid 0(\varepsilon \mid 00)^*(1 \mid 01)$$

d) Final Regular Expression

$$R = 1 \mid 0(00)^*(1 \mid 01)$$

e) State Elimination

After eliminating q_2 , from q_1 to q_3 :

$$R = (1 \mid 0(00)^*1)$$

3

Exercise 4.4.1: DFA Minimization

Transition Table

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \rightarrow A & B & A \\ B & A & C \\ C & D & B \\ *D & D & A \\ E & D & F \\ F & G & E \\ G & F & G \\ H & G & D \\ \end{array}$$

a) Distinguishability Table

Final state: D Mark all pairs with one final and one non-final state. Equivalent states: \mathbf{E} , \mathbf{F} , \mathbf{G} are not marked \rightarrow indistinguishable.

b) Minimized DFA

Merge: $E, F, G \to EFG$

State	0	1	Accept?
$\rightarrow A$	В	A	No
B	A	C	No
C	D	B	No
D	D	A	Yes
EFG	EFG	EFG	No
H	EFG	D	No

Exercise 4.4.2: DFA Minimization

Transition Table

a) Distinguishability Table

Final states: C, F, I Unmarked (equivalent): C, F, I

b) Minimized DFA

Merge: $C, F, I \to \text{CFI}$

State	0	1	Accept?
$\rightarrow A$	B	E	No
B	CFI	CFI	No
CFI	D	H	Yes
D	E	CFI	No
E	CFI	H	No
G	H	B	No
H	CFI	CFI	No

DFA minimized from 9 states to 7.