PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-129627

(43) Date of publication of application: 19.05.1998

(51)Int.Cl.

B65B 55/08

A61L 2/14

(21)Application number: 08-

(71)Applicant: FUJIMORI KOGYO

KK

(22)Date of filing:

06.11.1996 (72)Inventor: MIZUNO AKIRA

NAGATA MASANORI

KONNO SHIGEKI **ISHIDA TOSHIO**

(54) STERILIZATION DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a sterilization device which can sterilize continuously a sheet material and sterilize a material to be sterilized safely, reliably, efficiently in a short time without deterioration of the material. SOLUTION: This sterilization device is provided with a plasma generator 12 generating plasma at the atmospheric pressure, a chamber 14 to which a sterilizing factor generated by plasma from the plasma generator is supplied from the generator, transfer rolls 24 conveying a sheet F to be treated, a pressure adjuster

16 keeping the air pressure in the chamber 14 constantly, and a clean booth 28 supplied with clean air and connected to the chamber 14 and provided with winding-up device 26 for the sheet to be sterilized in the inside thereof. At least a part of a mixture of gas and liquid can be ionized by a pulse electric source. The ionized mixture obtained in such a way works as the sterilizing factor.

LEGAL STATUS

[Date of request for examination] 25.09.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-129627

(43)公開日 平成10年(1998) 5月19日

(51) Int.Cl.⁶

識別記号

FΙ

B65B 55/08 A61L 2/14

B 6 5 B 55/08 A61L 2/14 Z

審査請求 未請求 請求項の数2 OL (全 8 頁)

(21)出願番号

特願平8-294083

(22)出願日

平成8年(1996)11月6日

(71)出願人 000224101

藤森工業株式会社

東京都中央区日本福馬喰町1丁目4番16号

(72)発明者 水野 彰

愛知県豊橋市北山町東浦2番地の1

(72)発明者 永田 政令

東京都品川区西大井3-16-40

(72)発明者 今野 茂樹

神奈川県川崎市川崎区小田2-9-20

(72)発明者 石田 敏雄

東京都昭島市緑町2-4-13

(74)代理人 弁理士 中島 淳 (外4名)

(54) 【発明の名称】 滅菌装置

(57)【要約】

シート状物品を連続的に滅菌し得る、安全 で、被処理物を変質させることが少なく、信頼性の高い 滅菌を短時間で効率よく行い得る滅菌装置を提供する。

【解決手段】 滅菌装置30は、大気圧でプラズマを 発生させるプラズマ発生器 12と、プラズマ発生器から のプラズマにより生成される殺菌因子がプラズマ発生器 より供給されるチャンバー14と、チャンバー14内に 配置されて、被処理物シートFを搬送する搬送ロール2 4と、チャンパー14内の気圧を一定に保つ圧力調整器 16と、チャンバー14とつながっている、クリンエア が供給され、且つ、被処理物シートを巻き取り得る巻取 装置26を内部に備えたクリーンブース28を備える。 プラズマ発生器12においては、パルス電源を用いて気 体と液体の混合物の少なくとも一部を電離させることが でき、かくして得られた電離混合物が殺菌因子となる。

【特許請求の範囲】

【請求項1】 大気圧でブラズマを発生させるブラズマ 発生器と、

該ブラズマ発生器からのプラズマにより生成される殺菌 因子がプラズマ発生器より供給されるチャンパーと、 該チャンバー内に配置されて、被処理物シートを搬送す る搬送ロールと、

該チャンバー内の気体を排気可能に配置されてチャンバ 一内の気圧を一定に保つ圧力調整器と、

を有する滅菌装置。

【請求項2】 大気圧でプラズマを発生させるプラズマ 発生器と、

該ブラズマ発生器からのプラズマにより生成される殺菌 因子がプラズマ発生器より供給されるチャンバーと、 該チャンバー内に配置されて、被処理物シートを搬送す る搬送ロールと、

該チャンパー内の気体を排気可能に配置されてチャンバ 一内の気圧を一定に保つ圧力調整器と、

該チャンバーとつながっている、クリンエアが供給さ れ、且つ、被処理物シートを巻き取り得る巻取装置を内 20 部に備えたクリーンブースと、

を有する滅菌装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、滅菌装置に関し、 詳しくは、無菌状態で供給することが必要なシート又は フィルムを、安全に、かつ連続的に効率よく滅菌できる 滅菌装置に関する。

[0002]

【従来の技術】医療材料や食料品などの包装に用いられ 30 るシート又はフィルムは、包装に供される場合に無菌状 態で供給することが必要である。このようなシートの滅 菌方法としては、酸化エチレンガス等の殺菌剤を用いる 方法、ガンマ線や電子線等の放射線を照射する方法、過 酸化水素水などの滅菌用の液体に浸漬し、乾燥させる方 法等が知られている。

【0003】酸化エチレンガス等の殺菌剤を用いる殺菌 方法は、使用する殺菌剤そのものが毒性を有することが 多い。そのため、密閉系で処理しなければならず、連続 処理が困難であり、さらに、被処理物に殺菌剤が残存す る虞もある。

【0004】ガンマ線や電子線等の放射線を照射する方 法は、前記殺菌剤を用いた場合の如き殺菌因子が残存す る虞はない。しかし、放射線照射により被処理物の機械 的強度を低下させたり、物品が樹脂である場合には、樹 脂が分解等して悪臭を発生したり、変色する等の問題点 がある(特公平3-73309号公報参照)。

【0005】また、滅菌用の液体に浸漬し、乾燥させる 方法は連続的な処理は容易であるが、浸漬後、乾燥させ てから巻取が行われるため、時間が掛り処理効率が低い 50 率よく行い得る。

ものであった。

【0006】 これら従来技術が有する課題を解決できる 殺菌方法としてブラズマを用いる方法が知られている (特開平5-229530号)。この方法は、例えば、 複合酸化物からなるエネルギー変換体に電磁波を照射 し、励起したエネルギー変換体と希ガス等を接触させた ブラズマ状態とし、ブラズマ状になった希ガス等を被殺 菌体と接触させるものである。このプラズマを用いる方 法は、包装材料等の被処理物を安全で、容易に殺菌で 10 き、かつ殺菌した物品を変質させることが少なく、優れ た方法といえる。本発明者らはプラズマを用いる方法に ついて検討を進め、先に、より小型の装置で実施しう る、安全性の高い殺菌方法を見出し、出願を行った(特 開平8-168516号)。本発明は、その殺菌方法の 応用であり、その方法を連続的なシートに適用するため の好適な装置に関するものである。

2

[0007]

【発明が解決しようとする課題】即ち、本発明の目的 は、医療材料、食品の包装用材料の如きシート状物品を 連続的に滅菌し得る、安全で、被処理物を変質させると とが少なく、信頼性の高い滅菌を短時間で効率よく行い 得る滅菌装置を提供することにある。

[0008]

【課題を解決するための手段】本発明は、大気圧プラズ マを応用した滅菌装置であり、本発明の滅菌装置は、大 気圧でプラズマを発生させるプラズマ発生器と、該プラ ズマ発生器からのプラズマにより生成される殺菌因子が ブラズマ発生器より供給されるチャンパーと、該チャン バー内に配置されて、被処理物シートを搬送する搬送口 ールと、該チャンバー内の気体を排気可能に配置されて チャンバー内の気圧を一定に保つ圧力調整器と、を有す ることを特徴とする。

【0009】また、本発明の滅菌装置は、大気圧でプラ ズマを発生させるプラズマ発生器と、該プラズマ発生器 からのプラズマにより生成される殺菌因子がプラズマ発 生器より供給されるチャンバーと、該チャンパー内に配 置されて、被処理物シートを搬送する搬送ロールと、該 チャンバー内の気体を排気可能に配置されてチャンバー 内の気圧を一定に保つ圧力調整器と、該チャンバーとつ 40 ながっている、クリンエアが供給され、且つ、被処理物 シートを巻き取り得る巻取装置を内部に備えたクリーン ブースと、を有することを特徴とする。

【0010】通常は、信頼性の高い滅菌処理を完了する ために相当の時間を要するものであるが、本発明の滅菌 装置においては、被処理物を滅菌するチャンバー内に配 置された搬送ロールの位置を調整して被処理物がチャン バー内に存在して滅菌因子と接触する時間を制御すると とにより、相当量の殺菌因子を短時間で被処理物に接触 させることができるため、連続的に有効な滅菌処理を効

3

【0011】また、このチャンバー内の気体を吸排してチャンパー内の気圧を一定に保つ圧力調整器とを備えることにより、容易にチャンバー内を滅菌に好適な像加圧状態とすることができる。

【0012】また、滅菌処理を終了した被処理物シートの巻取り装置を前記チャンバーと連結されたクリーンブース内で行うことにより、被処理物の再汚染を防止するとともに、被処理物の取り出し作業による滅菌チャンバー内の汚染をも防止することができ、作業をより効率よく行うことができる。

[0013]

【発明の実施の形態】以下に本発明の実施の形態につい て詳細に説明する。

【0014】本発明の滅菌装置に用いる大気圧でプラズマを発生させるブラズマ発生器は、電界を発生させるためにパルス電圧を用い、気体と液体との混合物の少なくとも一部を電離させる機能を有している。本発明の滅菌装置においては、この気体と液体との混合物を電離させて得た殺菌因子を被処理物に接触させて滅菌することが特徴である。

【0015】図1は本発明の滅菌装置の一態様を示す概略断面図である。滅菌装置10は、ブラズマ発生器12を備えたチャンバー14とからなり、チャンバー14には、チャンバー内の気体を排気可能に配置されて内部の気圧を一定に保つ圧力センサーと開閉バルブとからなる圧力調整器16が連結されている。

【0016】チャンパー14には、被処理物を供給する 導入口18からフィルム繰り出し装置より供給されるフィルムが導入される。導入口18近傍には導入口18か らの埃や塵などの混入を防止し、チャンパー14内を所 30 定の圧力に保持するため、エアーカーテン発生管22を 配置することができる。

【0017】チャンパー14内に導入されたフィルムドは、内部に配置された複数の搬送ロール24によりチャンパー14内を搬送され、チャンパー14内に貯留された殺菌因子と接触して滅菌が行われれ、滅菌処理されたフィルムドは巻取り装置26に巻き取られる。チャンパー14の天井側には、攪拌翼を有する攪拌装置49が設置されている。この攪拌装置49は発生した殺菌因子を均一に拡散することにより、チャンパー内における被処40理物と殺菌因子との接触をより確実にし、滅菌効果を向上させるために設置されたものであり、この目的に適合する他の装置、例えば、攪拌翼以外の手段によるサーキュレーター、超音波振動装置等を設置することもできる

【0018】図2は、チャンバー14につなげて形成されたクリーンブース28を有する滅菌装置30の態様を示す概略断面図である。滅菌装置30は、プラズマ発生器12を備えたチャンバー14と、隣接して配置されたクリーンブース28とからなる。チャンバーには、圧力50

調整器16が連結されている。

【0019】滅菌処理されたフィルムFは、排出口32より、隣接して配置されたクリーンブーズ28内に搬送され、クリーンブース28内に備えられた巻き取り装置26により巻き取られて、滅菌処理が完了する。排出口32近傍には、滅菌因子のもれや埃や塵などのチャンバー14への混入を防止し、チャンバー14内を所定の圧力に保持するため、クリーンエアによるエアーカーテン発生管を配置してもよい。

10 【0020】とのチャンパー14に備えられたプラズマ 発生器12においては、パルス電源でプラズマを発生させ、それを用いて気体と液体の混合物の少なくとも一部 を電離させるととができ、かくして得られた電離混合物 が殺菌因子となる。チャンパー14には、前記と同じ目 的で、天井側に攪拌装置49が設置されている。

【0021】 ことで、気体と液体の混合物の少なくとも一部を電離させるために印加する電界は、例えば、大気圧プラズマ発生器12内に少なくとも1対の高圧電極と接地電極とを用い、この電極間に一定以上の電圧を与え 20 ることで発生させることができる。

【0022】図3は、本発明の滅菌装置10、30に好適に用いられる大気圧ブラズマ発生器12の一例を示す概略断面図である。石英被覆電極36と金属電極37によって筒状の接地電極38を構成しており、その筒状の接地電極38の略中央部には棒状の金属電極40が配置されて高圧電極を構成する。電流を印加することにより、この接地電極38と高圧電極40との間に電界が形成される。ここに気体又は気体と液体の混合物の導入管(パイプ42)及び気体と液体の混合物の導入管(パイプ44)が配置されている。

【0023】パイプ42は、図示していないが、過酸化水素水等の液体を満たしたネプライザーを介してまた直接気体の供給源と連絡している。また、パイプ44は、図示していないが、過酸化水素水等の液体を満たしたネプライザーを介して気体の供給源と連絡している。

【0024】気体と液体との混合物を直接電離させる場合には、気体を過酸化水素水等の液体を満たしたネブライザーに通して得られる霧状の混合物をパイプ42から電界中に供給する。接地電極38と高圧電極40の間を通過したガスは、少なくとも一部が電離し、殺菌因子を形成する。この場合には、パイプ44は使用しない。また、気体を電離させ、次いで電離した気体と、気体と液体との混合物を混合する場合には、電離用の気体をパイプ42から導入し、パイプ44からは、気体を過酸化水素水等の液体を満たしたネプライザーに通して得られる霧状の混合物を導入する。接地電極38と高圧電極40との間を通過した気体は、少なくとも一部が電離し、この電離気体はパイプ44から供給される霧状の混合物と混合され、殺菌因子を形成する。

【0025】このような電界の発生装置は、例えばコロ

ナ放電等に用いられる高圧電極と接地電極とをそのまま 用いることができ、高圧電極及び接地電極の少なくとも いずれか一方の表面が固体誘電体で被覆されているもの を用いることができる。なお、固体誘電体には特に制限 はないが、例えば石英等のセラミックスやハイパロンラ パー、ポリエチレンテレフタレート等のポリエステルの 積層体等を用いることができる。また、高圧電極40及 び接地電極38のいずれもが、金属電極であることもで きる。

【0026】また、大気圧プラズマ発生器 12の高圧電 10 極40と接地電極38の数及び形状等には特に制限はな く、発生させた電界内を通過する気体又は気体と液体の 混合物をどの程度電離させる必要があるか否かにより適 宜決定できる。例えば、気体又は気体と液体の混合物の 流量が多い場合は 電離の方法には、電界中に気体と液 体の混合物を通して、前記混合物の少なくとも一部を電 離させる方法と、電界中に気体を通して得られる少なく とも―部を電離させた気体と、気体と液体の混合物とを 前記電界外で混合して少なくとも一部が電離した気体と 液体の混合物を得る方法とがある。

【0027】とれら、殺菌因子の原料となる気体、液体 を一定以上の割合で電離させる目的で、電界中における 滞在時間が長くなるように調整するととができ、その手 段としては、高圧電極と接地電極を並列に複数設けた り、或いは高圧電極と接地電極の少なくとも一方を帯状 の形状にすることもできる。また、局部放電を防止する 目的で、高圧電極の表面積を大きくするために、電極に 突起や凹凸等を設けることもできる。

【0028】本発明の滅菌装置に用いられる大気圧ブラ ズマ発生装置において、殺菌因子を発生させるための、 パルス電圧の立ち上がり速度は、いずれも0.01kV /n s~10k V/n sの範囲にあることが適当であ る。パルス電圧の立ち上がり速度が0.01kV/ns 未満では、滅菌効果も低下する傾向がある。パルス電圧 の立ち上がり速度が10kV/n sを超えても、滅菌効 果に悪影響はないが、電圧発生が困難となる。

【0029】パルス電圧の立ち上がり速度の好ましい節 囲は0.1kV/ns~1kV/nsの範囲である。

【0030】また、上記パルス電圧のパルス幅は10-3 秒~10-1秒の範囲にあることが適当である。パルス幅 40 が滅菌効果には大きな影響はないが、発振可能なパルス 幅は上記の範囲である。パルス幅の好ましい範囲は10 -*秒~10-*秒である。

【0031】パルス電圧のピーク電圧は1kVp~10 Ok Vpの範囲にあることが適当である。ピーク電圧が 1 k V p 未満では、電界強度が小さく、ピーク電圧が1 00kVpを超えると装置を大型化する必要がでてくる 等の問題がある。ピーク電圧の好ましい範囲は8~50 k V p である。

2の範囲であることが適当である。周波数が1 H z 未満 では、滅菌効率が低下し、100kHzを超えると電界 内のガスの温度が大幅に上昇する。パルス電圧の周波数 の好ましい範囲は、50Hz~500Hzの範囲であ

【0033】殺菌因子である電離混合物発生のために、 大気圧プラズマ発生器内で電界を通過させる原料となる 気体は、前記の電界中で電離可能な気体である。そのよ うな気体として、例えば、酸素、窒素、希ガス(アルゴ ン、ヘリウム及びネオン)、水素、空気等を挙げること ができる。希ガス中でも、アルゴンは電離し易く、コス ト的に優れているので好ましい。また、ヘリウムは電離 が連続的になり易いという観点から好ましい。特に、ア ルゴンは、ヘリウムよりも比重が空気により近く、大気 圧下での取扱が容易であるため、より好適に使用すると とができる。また、上記気体の2種以上を混合して併用 するとともできる。

【0034】また、液体は、例えば、水、過酸化水素 水、過酢酸、過酢酸水溶液、エタノール、エタノールと 20 水との混合物等であることができる。

【0035】過酸化水素水を用いる場合、過酸化水素水 の濃度は、市販され、入手が容易であるという観点から は、例えば過酸化水素濃度50%以下のものであること が適当である。それ以下の濃度においては、滅菌条件等 を考慮して、市販の過酸化水素水を水で希釈して適宜濃 度を調整することができる。但し、滅菌効果を考慮する と1%以上の過酸化水素水を用いることが好ましい。

【0036】上記液体は、霧状であることが好ましく、 霧状の液体は、液体の供給源と接続しているネブライザ 30 一に上記気体をキャリアーガスとして通すことにより発 生させることができる。また、霧状の気体は、これらに キャリアーガスをパブリングさせることによっても発生 させることができる。また、気体の一部をキャリアーガ スとし、気体とキャリアーガスとで得られた霧状物を残 りの気体と混合することによっても調製することができ

【0037】気体(キャリアーガスも含む全ての気体) と液体との割合は、特に制限はないが、気体 1 リットル 当たり1mg~100mgの範囲とすることが、放電持 続と被処理物への圧力と言う観点から適当である。

【0038】さらに、霧状物の粒子径は、例えば約5~ 3000 μmの範囲とすることが局所放電防止と言う観 点から好ましい。

【0039】電界中を通過させる気体又は気体と液体の 混合物は、前記の如く少なくとも一部が電離して殺菌因 子を形成することが必要である。そこで、気体又は気体 と液体の混合物の流量、電界発生のため投入する電圧及 び電流(電力)量、電極の数及び形状、等は、気体又は 気体と液体の混合物は、少なくとも一部が電離できるよ 【0032】パルス電圧の周波数は1Hz~100kH 50 うに適宜決定する。又、ガス圧は、通常は大気圧付近で

あることが、操作が容易であることから好ましい。 【0040】このプラズマ発生器12を作動させて、気体又は気体と液体の混合物を電離して得られた殺菌因子をチャンバー14内に供給する。有効量の殺菌因子を供給するために、プラズマ発生器12の電離混合物生成能力から予め設定された所定時間、プラズマ発生器12を作動させ、その後、滅菌処理を開始することが好ましい。

【0041】チャンパー14内には、被処理物シート(フィルムF)を搬送する複数の搬送ロール24が配置 10 されている。フィルムFは複数の搬送ロールによってチャンパー14内を搬送されながら、チャンパー14内に供給され、チャンパー14内に充満している殺菌因子と接触することにより、滅菌処理が行われる。

【0042】 CCで、搬送ロールの配置数と、フィルム Fの走行速度とを制御して、フィルムFがチャンバー1 4内に存在する、即ち、チャンバー1 4内にある殺菌因子と接触する時間を調整する。チャンバー1 4内に十分な殺菌因子の貯留がなされた場合には、チャンバー1 4内での滞留時間は15秒間以上、好ましくは30秒間程 20度で十分な滅菌処理を行うととができる。

【0043】とのとき、チャンパー14内が大気圧よりやや加圧状態(大気圧より最大1気圧までの陽圧)になるようにして操作するととが、滅菌効果を高めるととができるという観点から好ましい。従って、チャンパー14に連結して配置された圧力調整器16を作動させてチャンパー14内の気圧が所定の範囲に保持されるように調整する。

【0044】このように被処理物(フィルムF)を搬送するチャンパー14内は、前記のように大気圧よりやや30加圧状態(本発明ではこの大気圧よりやや加圧状態とした状態を陽圧状態と称する)、例えば、2~10mmH。O、好ましくは2.5~5mmH。O程度の微加圧状態(陽圧)として処理を行うことが、滅菌効果の向上の観点から好ましい。また、チャンパー14内を陽圧にすることにより、チャンパー14内の無菌状態を維持することが容易となる。

【0045】チャンバー14を構成する材料は気密性や耐オゾン性などの物性の要求を満たす限りにおいて特に制限はないが、強度、耐久性及び入手容易性の観点から、SUS304などの金属材料、硬質樹脂材料、セラミック等を好適に挙げることができる。また、搬送ロールも同様であり、SUS314などの金属材料、セラッミック等が好ましい。

【0046】処理が終了した後、フィルムFは巻取り装置により巻き取られる。この巻取り装置は、無菌のチャンバー14内に配置されてもよく、チャンバー14に連続して設けられたクリーンブース等の無菌状態に保持された別のブース又はチャンバー内に配置してもよい。

【0047】連続的な滅菌処理を完了した後、チャンバ 50 m、高さ2.0mのサイズの直方体に成形されている。

8

-14内に残存する気体の排気は、圧力調整器16を介して排出パイプ46により排出されるが、排気中に残存する殺菌因子による環境への影響を低減するため、排出パイプ46には、排気ガス分解装置(排気処理装置)48が配置され、オゾンなどの有害物質が分解処理された後、外気へと排出される。

【0048】この態様においては、殺菌因子が残存する 排気は排気ガス分解装置(排気処理装置)48により処 理された後、外気へと排出されるが、この殺菌因子が残 存する排気を排出せずに、移送管を設けてチャンバー1 4からブラズマ発生器12へ移送して再利用することも できる。このように、殺菌因子が残存する排気を循環、 再利用することは、環境及び処理効率の観点から好ましい。

【0049】本発明の滅菌装置で滅菌しうる被処理物に は特に限定はないが、例えば、カテーテル、注射針など の医療材料を包装するためのシートやフィルム、食料 品、飲料、医薬品などを包装するためのシートやフィル ムに対して、好適に使用することができる。即ち、本発 明の滅菌装置は、常温で、且つ、被処理物の物性に影響 を与えることなく滅菌処理を行い得るため、被処理物の 形状がシートやフィルム状であれば、何れのものにも適 用することができ、例えば、包装用シート、フィルム、 シュリンクパック用の熱収縮フィルム、袋を形成するた めの円筒状シートやシート状に加工された食料品そのも の、医療用等に用いられるガーゼ、不織布などの繊維か らなるシート等を挙げることができる。また、熱収縮率 の異なる異種素材の積層体、例えば、PETとポリエチ レンやポリアミド (ナイロン) とポリエチレンなどの精 層フィルムやボリエチレン等の樹脂をラミネートした金 属薄膜などにも適用することができ、応用範囲は広い。 【0050】滅菌できる細菌にも特に限定はない。本発 明の滅菌装置を用いれば、例えば、大腸菌(E. col i)、サルモネラ・ティフィ (Sal. typhi)、 枯草菌(B. subtilis)、黄色ブドウ球菌(S taphylococcus. aureus), アスペ

【0051】本発明の滅菌装置は、加熱を行わず、常温 40 で、且つ、僅かな加圧条件で滅菌処理を行うことができ るため、耐圧性チャンバーや加熱装置等の高価な装置や 多大なエネルギーを要さず、効率よく、信頼性の高い滅 菌処理を行うことができる。

ルギルス・ニガー (Asp. niger)等の菌を滅菌

[0052]

することができる。

【実施例】以下本発明を実施例によりさらに説明する。 (実施例1)図2に示す滅菌装置を用いて、食品包装用ポリエチレンテレフタレート(PET)フィルムの滅菌処理を行った。チャンパー14は肉厚2m/mのステンレス鋼(sus304)で、長さ1.0m、幅2.0m、高さ2.0mのサイズの直方体に成形されている

チャンバー (滅菌室) 14内部には、ステンレス鋼(s us314)で形成された搬送ロール24が、上部に1 0本、下部に11本、スパン40Mとなるように配置さ れている。また、チャンバー14の底部には、中央部に 1か所、コーナー部に4か所の排気口50が配置されて おり、それぞれの排気パイプは1本のパイプに連結さ れ、該パイプに圧力調整器16と排気ガス分解装置48 が連結されて配置されている。

【0053】さらに、チャンバーの天井側には、発生し た殺菌因子を均一に拡散するための攪拌装置49が設置 10 されている。

【0054】プラズマ発生器12として、高電圧方形波 パルス発生器(ピーク電圧18~20kV、波形:方形 波、周波数:240Hz~328.5Hz)を用い、さ らに気体と液体の混合にはネブライザーを用い、パイプ 42から気体(O,、供給量400リットル/分)と液体 (35%H, O,)の混合物を電界内に供給した。ま た、液体の消費量は130g/hrであった。

【0055】まず、プラズマ発生器12を30分間作動 させてチャンバー14内に殺菌因子を貯留した後、圧力 20 調整器16を稼働させて、チャンバー14内の圧力が 2. 5mmH₂ Oになった場合、排気を停止し、3. 5 mmH、Oになった場合にはバルブを開放して排気する ようになしてチャンパー14内の圧力を微陽圧2.5~ 3. 5 mm H、 Oに調整しながら滅菌処理をスタートす

【0056】フィルム繰り出し装置より供給されるフィ ルムFは、チャンバー14壁面に開口された90cm 幅、高さ0.5cmの導入口18からチャンバー14内 に供給される。導入口18の近傍には、3.0mmH, 〇の圧力で導入口18向けてエアーを吹きつけるエアー カーテン発生管22が配置され、エアーを吹きつけると とにより、チャンパー14内の圧力を保持し、埃などの 混入を防止している。

*【0057】フィルムFは搬送ロール24によりチャン バー14内を搬送されるうちに、内部の殺菌因子と接触 することにより滅菌処理が行われる。滅菌処理工程を終 了したフィルムFは、チャンバー14のクリーンブース 28と接する壁面に形成された90cm幅、高さ0.5 cmの排出口32からクリーンブース28へ搬送され、 クリーンブース28内に配置された巻取り装置により巻 き取られる。排出口32の近傍には、3.0mmH、0 の圧力で排出口32に向けて無菌エアーを吹きつけるエ アーカーテン発生管34が配置され、エアーを吹きつけ ることにより、チャンパー14内の圧力を保持し、クリ ーンブース28内への滅菌因子の流出を防止している。 【0058】処理が終了した後の排気は、図示しない循 環パイプによって再び、プラズマ発生器12へと搬送さ れ、再利用されるが、最終的に処理が完了し、滅菌処理 を完了する場合には、チャンバー14内に滞留する排気 は排気ガス分解装置(排気処理装置)48によって排気 中に残存する殺菌因子や有害なオゾン等を除去された 後、外気へと排出される。

【0059】本実施例では、被処理物としては、PET フィルムを用い、滅菌効果の確認のために同フィルムの 一部に、枯草菌(バシルス・スプチリス: B. subt ilis) の芽胞子 (endspore) を1ピース当 たり1×10°個になるように付着させて強制汚染し、 滅菌処理後に無菌状態で当該部分を切断したのち、菌数 の測定を行った。また、同じ装置で圧力調整装置16を 作動させず、チャンバー14内の圧力を常圧(大気圧) として滅菌処理を行い、同様の評価を行った。

【0060】滅菌処理後の被処理物に残存する菌数を以 下の方法で算出した。フィルムの搬送速度を変えて、チ ャンパー14内に滞留する時間を変化させ、滯留時間と 菌数の測定結果を下記表1 に示した。

[0061]

【表1】

フィルム 走行速度 (m/分)	2 0	4 0	6 0	8 0	100	1 2 0	140	160	対照
チャンパー 内 滞留時間 (ひ)	120	6 0	4 0	3 0	2 4	2 0	1 7	1 5	_
生菌数(陽圧)	0	0	0	0	0	0	0	1 ×101	1×10 ⁴
生菌数(常圧)	0	0	0	0	1 × 10'	1×10 ²	1×10²	1×104	1 ×10°

【0062】評価方法(残存胞子数検査)

殺菌試験に供した被処理物を、滅菌した界面活性剤0. 2%トゥイーン80 (Tween 80: 商品名、東京化 成工業(株)製)を含む生理食塩水10m1に1時間浸 漬後攪拌して、残存胞子を抽出した。得られた残存胞子 50 にて放置したものであり、残存胞子数は1.1×10°

抽出液を、標準寒天培地を用いて、35℃で72時間培 養した。培養後、出現したコロニー数から1ピース当た りの残存胞子を算出した。結果を表1に示す。なお、表 1中、未処理品とは、滅菌処理を行わず、同じ時間常温 (胞子数/ピース) であった。

【0063】表1に明らかな如く、本発明の滅菌装置を用いることにより、連続するフィルムの滅菌処理装置内における滞留時間が17秒間という短時間のうちに、所望の滅菌処理が完全に達成された、また常圧の条件下でも30秒間で所望の滅菌処理が完全に達成されることがわかった。このことから、チャンバー内を陽圧にすることにより、さらに、滅菌処理効率が向上することがわかった。

【0064】同程度の滅菌処理に通常の過酸化水素水を 10 用いた場合数分の時間を要し、エチレンオキサイドガス 滅菌によれば、数時間を要し、且つ、殺菌用の薬剤残留 の危険性が常に伴うことから、本実施例の滅菌装置が効 率よく、信頼性の高い滅菌処理を達成しうることがわか る。また、被処理物であるPETフィルムの変質は見られなかった。

[0065]

【発明の効果】本発明の滅菌装置によれば、医療材料、 食品の包装材料の如きシート状物品を連続的に滅菌する ことができ、安全で、被処理物を変質させることが少な 20 く、信頼性の高い滅菌を短時間で効率よく行い得るとい う効果を奏する。 *

* 【図面の簡単な説明】

【図1】本発明の滅菌装置の一態様を示す概略断面図である。

12

【図2】実施例1の滅菌装置を示す概略断面図である。 【図3】本発明の滅菌装置に好適に用いられる大気圧ブ

【符号の説明】

10 滅菌装置

12 大気圧プラズマ発生器

ラズマ発生器を示す概略断面図である。

10 14 チャンパー

16 圧力調整器

20 繰り出しロール

24 搬送ロール

26 巻取り装置

28 クリーンブース

36 石英被覆電極

37 金属電極

38 接地電極

40 高圧電極

20 48 排気ガス分解装置(排気処理装置)

49 攪拌装置(超音波振動装置)

【図1】

【図2】

