```
\hbox{import numpy as np}\\
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

UNDERSTANDING THE DATA

```
df=pd.read_csv('/content/Mall_Customers.csv')
df.columns = df.columns.str.replace(' ', '_')
df.head()
```

\Rightarrow		CustomerID	Gender	Age	Annual_Income_	Spending_Score_(1-100)	
	0	1	Male	19	15	39	ılı
	1	2	Male	21	15	81	
	2	3	Female	20	16	6	
	3	4	Female	23	16	77	
	4	5	Female	31	17	40	

df.shape

(200, 5)

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 200 entries, 0 to 199 Data columns (total 5 columns):

Non-Null Count Dtype # Column -------int64 0 CustomerID 200 non-null 1 Gender 200 non-null object Age 200 non-null int64 3 Annual_Income_ 200 non-null 4 Spending_Score_(1-100) 200 non-null 200 non-null int64 int64

dtypes: int64(4), object(1) memory usage: 7.9+ KB

df.isnull().any()

CustomerID False Gender False Age False Annual_Income_ False Spending_Score_(1-100) False dtype: bool

df.describe()

	CustomerID	Age	Annual_Income_	Spending_Score_(1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

df.corr()

<ipython-input-10-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only i
 df.corr()

		CustomerID	Age	Annual_Income_	Spending_Score_(1- 100)	
	CustomerID	1.000000	-0.026763	0.977548	0.013835	ıl.
VISUAL	LIZATION					
	Annual Income	0.077540	0.040000	4 000000	0.000003	
UNIVA	RIATE ANALYSIS					
	100)		v.v	0.00000		

sns.distplot(df.Age)

<ipython-input-11-b2378c9d8a20>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.Age)
<Axes: xlabel='Age', ylabel='Density'>

sns.displot(df.Age)

<seaborn.axisgrid.FacetGrid at 0x7cca86302a70>

BIVARIATE ANALYSIS

sns.scatterplot(x=df.Age,y=df.Annual_Income_)

MULTIVARIATE ANALYSIS

sns.pairplot(df)

sns.heatmap(df.corr(),annot=True)

```
<ipython-input-15-8df7bcac526d>:1: FutureWarning: The default value of numeric_only i
                                                              sns.heatmap(df.corr(),annot=True)
                                                <Axes: >
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             - 1.0
                                                                                                                                                             CustomerID -
                                                                                                                                                                                                                                                                                                                                                                                                               -0.027
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.98
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.014
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -0.012
                                                                                                                                                                                                                        Age
                                                                                                                                                                                                                                                                                                   -0.027
                                                                                                                                                                                                                                                                                                                                                                                                                                   1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 -0.33
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.2
                                                                                                                        Annual_Income_ -
                                                                                                                                                                                                                                                                                                       0.98
                                                                                                                                                                                                                                                                                                                                                                                                               -0.012
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0.0099
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.0
                                                           Spending Score (1-100) -
                                                                                                                                                                                                                                                                                                   0.014
                                                                                                                                                                                                                                                                                                                                                                                                                      -0.33
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.0099
   DATA PREPROCESSING
                                                                                                                                                                                                                                                                                                               \Box
                                                                                                                                                                                                                                                                                                                                                                                                                               ge
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0
from sklearn import cluster
                                                                                                                                                                                                                                                                                                               S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ė
df2=df.iloc[:,-2:]
df2.head()
                                                                                                                                                                                                                                                                                                                                                                                                                                                               Annual_Income_ Spending_Score_(1-100)
                                                      0
                                                                                                                                                                                            15
                                                                                                                                                                                                                                                                                                                                                                                                               39
                                                                                                                                                                                                                                                                                                                                                                                                                                                                ıl.
                                                      1
                                                                                                                                                                                            15
                                                                                                                                                                                                                                                                                                                                                                                                               81
                                                      2
                                                                                                                                                                                            16
                                                                                                                                                                                                                                                                                                                                                                                                                      6
                                                      3
                                                                                                                                                                                            16
                                                                                                                                                                                                                                                                                                                                                                                                               77
                                                       4
                                                                                                                                                                                            17
                                                                                                                                                                                                                                                                                                                                                                                                               40
error=[]
for i in range(1,11):
                 kmeans = cluster.KMeans(n_clusters=i,init = 'k-means++',random_state=4)
                 kmeans.fit(df2)
                 error.append(kmeans.inertia )
                                             /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the following of the control of the c
                                                              warnings.warn(
                                               /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con
                                                              warnings.warn(
                                             /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con
                                                              warnings.warn(
                                             /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the following of the control of the c
                                                              warnings.warn(
                                             /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the default value of `n_init' will change from the default will be applied of `
                                                              warnings.warn(
                                               /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from
                                                              warnings.warn(
                                             /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con
                                                              warnings.warn(
                                             /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the following of the foll
                                                             warnings.warn(
                                             /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from the control of the con
                                                              warnings.warn(
                                               /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con
                                                              warnings.warn(
                                         4
plt.plot(range(1,11),error)
plt.title('The Elbow point graph')
plt.xlabel('number of clusters')
plt.ylabel('error')
plt.show()
```

```
The Elbow point graph
       250000
       200000
       150000
       100000
ML APPROACH
km_model = cluster.KMeans(n_clusters=5,init = 'k-means++',random_state=0)
km_model.fit(df2)
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning
     warnings.warn(
                 KMeans
    KMeans(n_clusters=5, random_state=0)
pred = km_model.predict(df2)
pred
    4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 0, 2, 0, 2,
          1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
          0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
          0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
          0, 2], dtype=int32)
TESTING WITH RANDOM OBSERVATIONS
km_model.predict([[10,20]])
    /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but KMeans was fitte
     warnings.warn(
    array([4], dtype=int32)
km_model.predict([[11,1]])
    /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but KMeans was fitte
     warnings.warn(
    array([4], dtype=int32)
km_model.predict([[55,77]])
    /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but KMeans was fitte
     warnings.warn(
    array([1], dtype=int32)
```