5G Implementation in Defect Inspection Facility

5G Network Foundation Course Finals

Inspection Facility

- Focus in Automotive parts
- Have 5 Inspection Line

Scenario Information: What we working on? Parts to be Inspect

Piston

Gearbox Housing

Suspension Rods

Body Panel

Wheel Rim

Inspection Requirements

Detection Surface				
6 (4 in High Res)	6 (2 in High Res)	8 (3 in High Res)	4 (1 in High Res)	6 in Normal Res
Minimum Defect Size				
1 mm/pixel	1 mm/pixel	1 mm/pixel	1 mm/pixel	3 mm/pixel
Detection Details				

- High resolution indicates 1920x1080 / Normal resolution is 800x600 (pixel).
- Camera record in 30 Frame per Second (fps) is capable to detect defects accurately.
- All the recordings and detection results have to sent to central database for QC reports.

Project Objectives: Trade-offs

- Design and validate URLLC network slices to meet sub-10 ms latency for high-precision streams.
- Integrate Multi-Access Edge Computing (MEC) nodes at the factory floor to offload inference and minimize core-network latency
- Benchmark open-source 5G stacks under mixed URLLC/eMBB traffic replicating our five inspection lines.

Defect-Detection Performance Requirements

Default 0.32

Bitrate (bps) = Width (px) \times Height (px) \times Frame rate (fps) \times BPP

Critical inspection faces (1920x1080)

- End-to-end latency ≤ 10 ms
- Packet-loss rate ≤ 10⁻⁵

 $1920 \times 1080 \times 30 \times 0.32 \approx 19,907,712 \text{ bps} \not\approx 19.9 \text{ Mbps}$

Non-Critical inspection faces (800x600)

- Support ≥ N simultaneous streams
- Average one-way latency ≤ 50 ms

 $800 \times 600 \times 30 \times 0.32 \approx 4,608,000 \text{ bps} \approx 4.6 \text{ Mbps}$

Mapping to 5G QoS

URLLC slice

- Latency Budget: ≤ 10 ms
- Reliability ≥ 99.999% (packet-loss ≤ 10⁻⁵)
- Guaranteed Bitrate

eMBB slice

- Throughput 5 Mbps per 600p stream
- Latency Target: ≤ 50 ms
- lower than URLLC but above standard best-effort