

Course Title (in English)Principles of Applied StatisticsCourse Title (in Russian)Прикладная статистикаLead Instructor(s)Panov, Maxim

Is this syllabus complete, or do you plan to edit it again before sending it to the Education Office?

The syllabus is a work in progress (draft, won't appear anyware)

Contact Person

Maxim Panov

Contact Person's E-mail

m.panov@skoltech.ru

1. Annotation

Course Description

Standard courses in mathematical statistics focus on classical statistical methods. However, in practice, modern statistical methods are often used, for example, bootstrap, nonparametric estimation, smoothing based on decomposition in orthogonal bases, methods for reducing dimensionality and sensitivity analysis, etc. Understanding the theory underlying these methods, as well as the ability to apply them in practice, is absolutely necessary for anyone working in mathematical statistics and data analysis.

Аннотация

В типичных курсах математической статистики основное внимание уделено классическим статистическим методам. Однако, на практике зачастую применяются современные методы статистики, например, бутстреп, непараметрическое оценивание, сглаживание на основе разложения по ортогональным базисам, методы снижения размерности и анализа чувствительности и т.д. Понимание теории, лежащей в основе этих методов, а также умение применить их на практике, абсолютно необходимо каждому, кто занимается математической статистикой и анализом данных.

2. Structure and Content

Course Academic Level

Master-level

Number of ECTS credits

3

Topic	Summary of Topic	Lectures (# of hours)	Seminars (# of hours)	Labs (# of hours)
Main problems and methods of mathematical statistics	Parametric and nonparametric models. Main problems: point estimates, confidence sets, hypothesis thesting, prediction. Empirical distribution function. Statistical functionals.	2		
Bootstrap	Monte-Carlo modelling, bootstrap. Variance Estimation based on bootstrap. Confidence intervals based on bootstrap. Jackknife.	1	2	
Parametric estimation	Method of moments. Maximum likelihood estimation. Delta-method. Parametric bootstrap. Confidence intervals. Sufficient statistic. Exponential family. EM- algorithm.	2	2	
Hypothesis testing	Basics of hypothesis testing. Wald criterion. p-values. Chi-squared distribution and Pearson criterion. Permutation test. Likelihood ratio test. Multiple testing.	2	2	
Nonparametric estimation	Bias-variance tradeoff. Histograms. Kernel density estimation. Non-parametric regression.	2	2	
Bayesian estimation	Bayes formula. Gaussian processes.	2	2	
Design of Experiments	Space-filling Design of Experiments. Optimal design of experiments for linear regression models. Design of experiments based on Gaussian processes. Bayesian optimization.	2	2	
Sampling and MCMC	Markov Chain Monte Carlo	2	2	
Variational Inference	Variational Inference. Normalizing Flows	2	2	

3. Assignments

Assignment Type	Assignment Summary	
Homework	Series of problems on hypothesis testing	
Homework	Experimental comparison of different methods for density estimation	
Homework	Experimental comparison of different methods for sampling	
Team Project	Final project	

4. Grading

Type of Assessment

Graded

Grade Structure

Activity Type	Activity weight, %
Homework Assignments	50
Midterm Exam	20
Team Project	30

Grading Scale

A: 86

B: 76

C: 66

D: 56

E: 46

F: 0

Attendance Requirements Optional with Exceptions

5. Basic Information

Maximum Number of Students

	Maximum Number of Students
Overall:	50
Per Group (for seminars and labs):	25

Course Stream Science, Technology and Engineering (STE)

Course Term (in context of Academic Year)

Term 2

Course Delivery Frequency

Every year

Students of Which Programs do You Recommend to Consider this Course as an Elective?

Masters Programs	PhD Programs	
Data Science Information Science and Technology		

Course Tags

Math Statistics

6. Textbooks and Internet Resources

Required Textbooks	ISBN-13 (or ISBN-10)
Hastie T., Tibshirani R., Friedman J. The elements of statistical learning: data mining, inference, and prediction. Springer, 2001.	9780387848570
Wasserman L. All of Nonparametric Statistics. Springer, 2006.	9780387251455

7. Facilities

	Software
Python	

8. Learning Outcomes

Knowledge

How the ideas from mathematical statistics can be applied in modern methods of data analysis and processing

Skill

Be able to formulate in mathematical terms a real-world problem, built a corresponding probabilistic model, select an appropriate statistical method

Experience

Obtain a sufficient experience during practical exercises and project activities to become a qualified user of statistical methods.

9. Assessment Criteria
Input or Upload Example(s) of Assigment 1:
Input or Upload Example(s) of Assigment 2:
Input or Upload Example(s) of Assigment 3:
Input or Upload Example(s) of Assigment 4:
Input or Upload Example(s) of Assigment 5:
10. Additional Notes