DETERMINATION OF MAGNETIC FIELD INTENSITY

<u>AIM:</u> a) To determine Magnetic field Intensity at the centre of a circular coil carrying current using deflection method.

b) To determine Radius of the circular coil

<u>APPARATUS</u>: Circular coil, Power supply, Switching keys, Magnetic needle, Sliding compass box

INTRODUCTION:

Magnetic field Intensity at any point on the axis of a plane circular current loop

Consider a current loop of radius R carrying current I.For the small current element dl subtending an angle θ , the flux density at P is

$$dB = \overrightarrow{dB} = \frac{\mu I dI \sin \theta}{4\pi r^2}$$

$$\overrightarrow{dB} = \frac{\mu I R d\theta}{4\pi r^2} \qquad dI = R d\theta$$

$$\overrightarrow{B} = \int dB = \frac{\mu I}{4\pi R} \int_0^{2\pi} d\theta$$

$$\overrightarrow{B} = \frac{\mu I}{2R} \hat{a}$$

$$\overrightarrow{H} = \frac{I}{2R} \hat{a}$$

The direction is perpendicular to plane containing dl and the radius vector and in to the page.

A vertical circular coil carrying current produces a magnetic field at right angles to the plane of the circle. The plane of the circle is placed in magnetic meridian so that the magnet experiences a couple twisting it out of the meridian, while the Earth's horizontal component of magnetic field $B_{\rm H}$ tends to retain it in the meridian.

Deflecting couple = B_{Coil} .m. $\cos \theta$

Restoring couple = B_H .m. $\sin \theta$

Here m is the magnetic moment of the magnet of the magnetometer

$$B_{Coil}.m.\cos\theta = B_{H}.m.\sin\theta$$
 $\mu H = B_{H}.\tan\theta$
 $H = \frac{B_{H}}{\mu}\tan\theta$
 $H_{centre} = \frac{nI}{2r}$
 $Current = \frac{2rH}{n}$

FORMULA:

Magnetic field Intensity
$$H = \frac{B_H \tan \theta}{\mu_o}$$
 (A/m)

Where

 $B_{\rm H}$ is the horizontal component of earth's magnetic field in T

 θ is the angle of deflection in the magnetometer in degree

 μ_0 is the permeability of free space in Hm⁻¹

Radius of the circular coil $R = \frac{n}{2} \times \frac{1}{Slope}$ (m)

n is number of turns in the coil

$$Slope = \frac{BC}{AC}$$

Nature of graph:

CIRCUIT DIAGRAM:

OBSERVATIONS:

Permeability of free space $\mu_o = 4\pi \ x \ 10^{-7} \ H/m$

Relative permittivity $\mu_r = 1$ (for Air)

Number of turns in the circular coil $n = \dots$

Magnetic field Intensity
$$H = \frac{B_H}{\mu} \tan \theta$$

 B_H is the Horizontal component of Earth's field = 0.36 X 10⁻⁴ T

TABULAR COLUMN:

Tr. no	Current I (A)	Magnetometer reading θ (deg)	tan⊖	$H = \frac{B_H}{\mu_0} \tan \theta$
				(A/m)
1		10		
2		20		
3		30		
4		40		
5		50		
6		60		

PROCEDURE:

- 1. The coil is set in magnetic meridian by orienting the plane of the coil parallel to the North-South direction. Look a little above the coil and rotate the instrument till the coil, magnetic needle and its image in the mirror lie in same vertical plane.
- 2. Rotate the magnetometer so that the pointer reads 0^0 - 0^0 .
- 3. Connect the circuit as shown in the figure.
- 4. Adjust the current so the magnetometer gives a deflection of the order $60^{\circ}-70^{\circ}$.