Week 4

???

4.1 Representation Ring; Character Basis

10/16:

- Announcements.
 - Reminder: Midterm 11/10.
 - OH this week in-person at normal times.
 - PSet 3 should be fun.
- Today: Finish proving some character things.
- Recall: The main picture.
 - Rudenko redraws Figure 3.1.
 - We have a finite group G and we are studying finite-dimensional G-reps over \mathbb{C} .
 - $\mathbb{C}_{\mathrm{cl}}[G]$ is a ring.
 - The map...
 - Respects addition;
 - Sends tensor multiplication to (pointwise) functional multiplication;
 - Sends duality to conjugation;
 - Respects a kind of inner product, whether it be either side of $\dim_{\mathbb{C}} \operatorname{Hom}_{G}(V, W) = \langle f_{1}, f_{2} \rangle$.
- Today, we will see that $\mathbb{C}_{\mathrm{cl}}[G] \cong \mathbb{C}^k$, where k is the number of conjugacy classes.
 - In other words, we will see that the number of irreps is also exactly equal to k, that there is a bijection $\{V_i\} \to \{\chi_i\}$, and that the χ_1, \ldots, χ_k form an orthonormal basis of $\mathbb{C}_{\mathrm{cl}}[G]$.
- Visualizing the vector space $\mathbb{C}_{\mathrm{cl}}[G]$.

Figure 4.1: Visualizing the space of class functions on G.

- It's a "cone" emanating from the origin with only lattice points.
 - If dim $\mathbb{C}_{cl}[G] = 2$, the vector space consists of all the blue points in Figure 4.1.
- Why is it only lattice points instead of a continuous function space?
 - The restrictions on coefficients are inherited from the restrictions on what kinds of spaces you can build of the form $V_1^{n_1} \oplus V_2^{n_2}$.
 - Indeed, if it were continuous, that would imply that there is some meaning to the point $0.3\chi_1 + 2.5\chi_2$, i.e., there is a space $V_1^{0.3} \oplus V_2^{2.5}$. But of course, we cannot define such a space!
- Why is it only nonnegative integer coefficients and not all integer coefficients?
 - We don't have subtraction to get us to a full ring.
 - Additionally, we can only scale and linearly combine the χ_i 's with nonnegative integer coefficients because, as said above, those are the types of reducible rep decompositions we have.
- Let [V] denote the **isomorphism class** of the representation V.
- Isomorphism class (of V): The set of all vector spaces W that are isomorphic to V as representations.
- This allows us to define the **representation ring**.
- Representation ring (of G): The ring $(R, +, \cdot)$, where R is the free abelian group generated by all isomorphism classes of the representations of G, quotiented by the span of all linear combinations of the form $[V \oplus W] [V] [W]$; + is well-defined via the construction of R, which yields $[V] + [W] = [V \oplus W]$ for all [V], [W] in the ring; and \cdot is defined by $[V] \cdot [W] = [V \otimes W]$. Denoted by $[V] \cdot [W] = [V \otimes W]$.
 - Basis: $[V_1], \ldots, [V_k]$.
 - Thus, structurally,

$$R(G) \cong \mathbb{Z}^k$$

- Elements are of the form $[V_1] + 2[V_2] 3[V_3]$.
- Multiplication is slightly complicated because $V_i \otimes V_j = \bigoplus V_k^{n_{ijk}}$; it follows that

$$[V_i] \cdot [V_j] = \sum n_{ijk} [V_k]$$

- Alternative construction of R(G): Take the subring of the class ring $\mathbb{C}_{\mathrm{cl}}[G]$ that is generated by the characters.
 - To do so, define a map $R(G) \to \mathbb{C}^k$ where the image is linear combinations of characters χ_i with \mathbb{Z} -class.
 - Clarify this construction??
- Virtual representation: An element of R(G).
 - We need this term because some elements of R(G) like -[V], for instance may not correspond to an actual representation.
 - Indeed, note that -[V] is not V^* ; it is just some thing that when you add it to [V], you get the zero representation.
- Example: Let $G = \mathbb{Z}/2\mathbb{Z} = \{e, x\}.$
 - Then $R(G) = \mathbb{Z}^2 = \mathbb{Z}e \oplus \mathbb{Z}x$ has basis [1], [-1] (corresponding to the trivial and alternating representations) where we define

$$[1]^2 = [1]$$
 $[1][-1] = [-1]$ $[-1]^2 = [1]$

• One reason people like this R(G) is as follows.

 Initially, understanding this group is not easy because even to get started, you have to find all your characters.

- But, we know that

$$R(G) \otimes_{\mathbb{Z}} \mathbb{C} \cong \mathbb{C}_{\mathrm{cl}}[G]$$

- So we have a ring that's hard to understand, but if we do something called an **extension of scalars** (shown above) we get an easy ring!
- Why?? Clarify this construction.
- This is interesting because we can look at the intermediate objects. For example, could we describe $R(G) \otimes \mathbb{R}$ or $R(G) \otimes \mathbb{Q}$. Interestingly, **Artin's theorem** describes $R(G) \otimes \mathbb{Q}$ completely.
- If we try to understand $R(S_n)$, this is still hard work, but if we take $\bigoplus_{n\geq 0} R(S_n)$, we obtain an object that is remarkably, surprisingly simple. That's where we're going. This is why rep theory of finite groups is simultaneously very hard and very simple.
- Lemma: Let G be a finite group, let f be a complex-valued^[1] class function, and let V be a G-rep. Then the linear map

$$F = \sum_{g \in G} f(g) \cdot g : V \to V$$

is a morphism of G-representations, that is, $F \in \text{Hom}_G(V, V)$.

Proof. To prove that $F \in \text{Hom}_G(V, V)$, it will suffice to show that xF = Fx for every $x \in G$. Let $x \in G$ be arbitrary. Then

$$F(xv) = \sum_{g \in G} f(g)gxv$$

Since ρ is a group homomorphism, the functions $\rho(g) \in GL(V)$ act just like the elements $g \in G$. This is what justifies us to basically move everything around all willy-nilly. Thus, continuing from the above, we have

$$= \sum_{g \in G} f(g)(xx^{-1})gxv$$
$$= \sum_{g \in G} f(g)x(x^{-1}gx)v$$

Since $x = \rho(x)$ is in the general linear group, i.e., is a linear map, we can factor it out of the sum of functions to get

$$= x \left(\sum_{g \in G} f(g) x^{-1} g x \right) v$$

Since f is a class function by hypothesis, we have $f(g) = f(x^{-1}gx)$, so

$$= x \left(\sum_{g \in G} f(x^{-1}gx)x^{-1}gxv \right)$$
$$= x \sum_{g \in G} f(g)gv$$
$$= x(Fv)$$

as desired.

¹This "complex-valued" hypothesis was not stated in class, but I have to imagine it's true. Is it??

- Recall that previously, we had $(1/|G|) \sum_{g \in G} g : V \to V^G$.
 - He will put something about this being a class function on the midterm?? Review how to prove that this is a class function!
- Another comment: A slightly refined question.
 - Suppose you have a class function f and an irrep V.
 - Then we know that $F = \sum f(g)g : V \to V$ is a G-morphism, so it is a **homothety** by Schur's lemma.
 - So let's find λ .
 - Thinking a big more carefully, we know that F above is

$$\sum_{g \in G} f(g)\rho_V(g) = \lambda I_{d_V}$$

where d_V denotes the **degree** of V.

- Now, we will compute λ using the trace. Take the trace of both sides. Then

$$\operatorname{tr}\left(\sum_{g \in G} f(g)\rho_{V}(g)\right) = \operatorname{tr}(\lambda I_{d_{V}})$$

$$\sum f(g)\operatorname{tr}(\rho_{V}(g)) = \lambda d_{V}$$

$$\sum f(g)\chi_{V}(g) = \lambda d_{V}$$

$$\lambda = \frac{|G|}{d_{V}} \frac{1}{|G|} \sum_{g \in G} f(g) \overline{\chi_{V^{*}}(g)}$$

$$= \frac{|G|}{d_{V}} \langle f, \chi_{V^{*}} \rangle$$

- Homothety: A map $F: V \to V$ for which there exists $\lambda \in \mathbb{C}$ such that $Fv = \lambda v$ for all $v \in V$.
 - It just means that we're scaling.
- **Degree** (of V): The dimension of V as a vector space. Denoted by $\mathbf{d}_{\mathbf{V}}$. Given by

$$d_V = \dim V$$

- Now, we can prove the theorem to which we've been building up the whole time.
- \bullet Theorem: Let G be a finite group. Then the number of irreps up to isomorphism is equal to the number of conjugacy classes.

Proof. Let k be the number of conjugacy classes of G, and let χ_1, \ldots, χ_s be the characters of the irreps. By the theorem from last Wednesday's class, it follows that χ_1, \ldots, χ_s are orthonormal vectors in $\mathbb{C}_{\mathrm{cl}}[G]$. Thus, by the corollary to the aforementioned theorem, $s \leq k$.

Now, suppose for the sake of contradiction that s < k. Then there exists a nonzero $f \in \mathbb{C}_{cl}[G]$ such that $\langle f, \chi_{V_i} \rangle = 0$ $(i = 1, \ldots, s)$. By Gram-Schmidt, we can choose f to be another orthonormal vector in the list, extending it to $\chi_1, \ldots, \chi_s, f$. We will now build up to proving that f(g) = 0 for all $g \in G$ (i.e., f = 0), which we will do by using the above lemma to construct a linear independence argument as follows. The first step is to let V_i be an arbitrary irrep of G. Then by the above comment, $F: V_i \to V_i$ may be evaluated on any $v \in V_i$ as follows.

$$F(v) = \lambda I v = \frac{|G|}{d_{V_i}} \left\langle f, \chi_{V_i^*} \right\rangle \cdot v = \frac{|G|}{d_{V_i}} \overline{\left\langle f, \chi_{V_i} \right\rangle} \cdot v = \frac{|G|}{d_{V_i}} \overline{0} \cdot v = 0$$

It follows that F=0 on any representation since by complete reducibility, they're all direct sums of irreps. In particular, $F:V_{\text{reg}}\to V_{\text{reg}}$ is the zero operator, where $V_{\text{reg}}\cong V_1^{d_{V_1}}\oplus\cdots\oplus V_s^{d_{V_s}}$ is the regular representation. Thus, for example, $F(e_e)=0$. But we also know that

$$F(e_e) = \sum_{g \in G} f(g) \cdot ge_e = \sum_{g \in G} f(g) \cdot e_g$$

Consequently, by transitivity, we have that

$$0 = \sum_{g \in G} f(g) \cdot e_g$$

But since the e_g are all linearly independent by the definition of the regular representation, we have that each f(g) = 0, as desired. This means that f = 0, contradicting our original supposition.

- That is the end of this story.
- Here's one consequence of the above theorem.
 - We now know that the space of class functions has an orthonormal basis $\chi_{V_1^*}, \ldots, \chi_{V_h^*}$.
 - If we denote the conjugacy classes of G by C_1, \ldots, C_k , then another obvious basis of $\mathbb{C}_{\mathrm{cl}}[G]$ is $\delta_{C_1}, \ldots, \delta_{C_k}$ defined by

$$\delta_{C_i}(g) = \begin{cases} 1 & g \in C_i \\ 0 & g \notin C_i \end{cases}$$

- This new basis is orthogonal: We have

$$\left\langle \delta_{C_i}, \delta_{C_j} \right\rangle = \frac{1}{|G|} \sum_{g \in G} \delta_{C_i}(g) \delta_{C_j}(g) = \begin{cases} 0 & i \neq j \\ \frac{|C_i|}{|G|} & i = j \end{cases}$$

- Justifying this computation: If $i \neq j$, then at least one of δ_{C_i} , δ_{C_j} will be zero; if i = j, then they're both nonzero and equal to 1 for all $|C_i|$ elements $g \in C_i$.
- What is the change of basis matrix between $\{\delta_{C_i}\}$ and $\{\chi_{V_i^*}\}$? It's the character table.
 - The orthogonality condition for characters then just comes from the fact that we're going from one orthogonal basis to another.
 - What are the exact bases we change between??