

FORMATO DE SYLLABUS

Código: AA-FR-003

Macroproceso: Direccionamiento Estratégico

Versión: 01

Proceso: Autoevaluación y Acreditación Fecha de Aprobación: 27/07/2023

SIGUD V

FACULTAD:		Tecnológica						
PROYECTO CURRICULAR:			Tecnología en Electrónica Industrial			CÓDIGO PLAN DE ESTUDIOS:		
			I. IDENTIF	ICACIÓN DEL ESPACIO A	CADÉMICO			
NOMBRE DEL E	SPACIO ACAI	DÉMICO: PROCESAMIEN	TO DIGITAL DE SEÑALES D	DE AUDIO Y VIDEO				
Código del espacio académico:			24705	Número de créditos académicos: 2				2
Distribución horas de trabajo:			HTD	2	нтс	2	нта	2
Tipo de espacio académico:			Asignatura	Х	Cátedra			
			NATUR/	ALEZA DEL ESPACIO ACA	DÉMICO:			
Obligatorio Básico	х	_	gatorio mentario		Electivo Intrínseco		Electivo Extrínseco	
			CARÁ	CTER DEL ESPACIO ACAD	ÉMICO:			
Teórico		Práctico		Teórico-Práctico	x	Otros:		Cuál:
			MODALIDAD	DE OFERTA DEL ESPACIO	ACADÉMICO:			
Presencial	х	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:
			II. SUGERENCIAS	S DE SABERES Y CONOCIN	/IENTOS PREVIOS			

Se sugiere que el estudiante haya cursado asignaturas de señales y sistemas, algebra lineal, fundamentos de programación, y manejo básico de entornos como MATLAB o Python. Es recomendable que conozca conceptos básicos de Fourier y que tenga interés en el análisis e implementación de sistemas digitales orientados al procesamiento de datos multimedia.

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

El crecimiento de las tecnologías de la información ha incrementado la demanda por aplicaciones que involucran audio y video digital: desde videollamadas hasta sistemas de vigilancia, edición audiovisual, streaming y reconocimiento automático de patrones. Este curso dota al estudiante de herramientas teóricas y prácticas para el procesamiento eficiente de señales multimedia, aplicando algoritmos modernos con herramientas de software y hardware que son ampliamente usadas en la industria.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Aplicar técnicas de procesamiento digital para el análisis, modificación y compresión de señales de audio y video en entornos industriales, educativos y de entretenimiento.

Objetivos Específicos:

Comprender los fundamentos del procesamiento de señales en tiempo discreto.

Implementar filtros digitales y transformaciones frecuenciales aplicadas a audio y video.

Analizar y mejorar la calidad de señales multimedia mediante algoritmos DSP.

Emplear plataformas de programación para simulación, procesamiento en tiempo real y aplicación en sistemas embebidos.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de formación:

Desarrollar habilidades para el modelado digital de señales de audio y video.

Fortalecer la capacidad para diseñar y evaluar sistemas DSP de aplicación multimedia.

Fomentar el uso de software libre y herramientas abiertas en la implementación de soluciones reales.

Resultados de aprendizaje:

Analiza señales de audio y video mediante herramientas computacionales.

Diseña filtros digitales y aplica transformaciones para mejorar la calidad de señales.

Implementa sistemas de procesamiento en plataformas embebidas como Raspberry Pi.

Evalúa el desempeño de algoritmos DSP usando métricas objetivas y perceptuales.

VI. CONTENIDOS TEMÁTICOS

1. Fundamentos del Procesamiento Digital

Representación de señales y sistemas.

Muestreo, cuantización y aliasing.

Operaciones básicas: convolución, correlación, SNR.

2. Procesamiento de Audio Digital

Grabación, edición y normalización de audio.

Transformada de Fourier discreta y STFT.

Eliminación de ruido, ecualización y efectos DSP.

3. Procesamiento de Video Digital

Formatos, resoluciones y estructuras de video.

Detección de movimiento y estabilización.

Segmentación, detección de objetos y análisis de color.

4. Filtros Digitales y Transformaciones

Filtros FIR e IIR.

Diseño en frecuencia y transformada Z.

Implementación en Python y MATLAB.

5. Compresión y Codificación de Medios

MP3, AAC, JPEG, MPEG, H.264.

Algoritmos de compresión con y sin pérdida.

Evaluación de calidad perceptual.

6. Aplicaciones en Sistemas Embebidos

Procesamiento en Raspberry Pi y Jetson Nano.

Aplicaciones en vigilancia, domótica y entretenimiento.

Proyectos finales con hardware y software libre.

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

La metodología de la asignatura estará centrada en el desarrollo de proyectos, la experimentación con datos reales y el aprendizaje basado en problemas. Se realizarán laboratorios semanales y sesiones de programación asistida. Se fomentará el trabajo colaborativo, el uso de foros para resolución de dudas y la implementación de soluciones usando entornos reales de aplicación.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se cuenta con laboratorio de cómputo con MATLAB, Python (OpenCV, SciPy, Librosa), Audacity, ffmpeg y OBS Studio. Asimismo se requiere Raspberry Pi, micrófonos, cámaras, sensores y altavoces

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Se podrán realizar visitas a estudios de grabación, laboratorios de medios digitales o emisoras universitarias. Se incentivará la participación en hackatones de tecnologías audiovisuales, ferias de innovación o competencias de procesamiento multimedia.

XI. BIBLIOGRAFÍA

Oppenheim, A. V., Schafer, R. W. (2010). Discrete-Time Signal Processing. Pearson. Proakis, J. G., Manolakis, D. K. (2007). Digital Signal Processing. Prentice Hall. Mitra, S. K. (2011). Digital Signal Processing: A Computer-Based Approach. McGraw-Hill. Bovik, A. (2000). Handbook of Image and Video Processing. Academic Press.

McClellan, J. H., Schafer, R. W., Yoder, M. A. (2003). DSP First. Pearson.

Steinmetz, R., Nahrstedt, K. (2004). Multimedia Systems. Springer.

XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS Fecha revisión por Consejo Curricular: Fecha aprobación por Consejo Curricular: Número de acta: