Due Date: 29.12.2017

CENG 313 – Operating Systems Homework #3

In this homework you are expected to cover two concepts of OS given below;

- Processes
- IPC (Pipes)
- Scheduling

Implement a C program that is explained below using WinAPI. You should implement a multi-process program that schedules processes by Shortest Job First (SJF). There should be 5 processes in your program. Each process has their own CPU burst time. The initial estimated value of CPU burst (τ_0) are given below:

Process #1: 300 ms Process #2: 220 ms Process #3: 180 ms Process #4: 45 ms Process #5: 255 ms

To calculate the predicated value for next CPU burst you should use the formula given below. The α value is set to 0.5. To calculate each process's actual length of n^{th} CPU burst, you should assign a random value for each execution time. The random value should vary between 50 ms $\leq t_n \leq$ 300 ms.

- 1. t_n = actual length of n^{th} CPU burst
- 2. τ_{n+1} = predicted value for the next CPU burst
- 3. α , $0 \le \alpha \le 1$
- 4. Define:

$$\tau_{n+1} = \alpha t_n + (1 - \alpha)\tau_n.$$

Program should run the program 5 times. At each run you should calculate the new predicted value for the next CPU burst (t_{n+1}) and you should schedule your processes according to these burst times. Therefore, you should schedule your processes 5 times consecutively.

After each scheduling print the execution order with their t_n , t_{n+1} and t_n . Consider the 5 processes as child process, when the child process starts and ends it should notify the parent process and with a pipe.

EXAMPLE OUTPUT:

First Execution Order <P4, P3, P2, P5, P1>

(On parent process screen)

P4 started.

P4 ended.

P3 started.

P3 ended.

P2 started.

P2 ended.

P5 started.

P5 ended.

P1 started.

P1 ended.

Process	$ au_n$	t_n (Actual Length)	$ au_{n+1}$
P4	45	-	-
Р3	180	-	-
P2	220	-	-
P5	255	-	-
P1	300	-	-

(NOTE: At this point, Actual lengths are calculated randomly)

Process	$ au_n$	t_n (Actual Length)	$ au_{n+1}$
P4	45	70	-
Р3	180	180	-
P2	220	150	-
P5	255	250	-
P1	300	100	-

(NOTE: At this point, for each process au_{n+1} values are calculated)

Process	$ au_n$	$oldsymbol{t_n}$ (Actual Length)	$ au_{n+1}$
P4	45	70	57.5
P3	180	180	180
P2	220	150	185
P5	255	250	257.5
P1	300	100	200

Second Execution Order <P4, P3, P2, P1, P5>

(On parent process screen)

P4 started.

P4 ended.

P3 started.

P3 ended.

P2 started.

P2 ended.

P1 started.

P1 ended.

P5 started.

P5 ended.

Process	$ au_n$	$oldsymbol{t_n}$ (Actual Length)	$ au_{n+1}$
P4	57.5	-	-
Р3	180	-	-
P2	185	-	-
P1	200	-	-
P5	257.5	-	-

continues...

ASSIGNMENT RULES!

- Cheating will <u>NOT</u> be tolerated!
- For any detected cheating will be graded as 0.
- Late Submissions will not be allowed.

GRADE REDUCTIONS

Since you are Junior students you are expected that you are aware of; error handlings, controls, software design etc. This lecture should be taken seriously and will take a crucial part in your work lives. Please code your programs wisely. Possible grade reductions,

- Lack of comment usage!
- Missing controls!
- No error handling!
- Unused/dead codes!
- Naming conventions!

Please do not discuss with us why your grades decreased just because you have done the programming sins listed above!

NOTE: Do not ask from us about the possible errors that could occur. From this lecture and labs, you are expected to be aware of the possible errors.