Data Mining and Predictive Analytics: Project 1

Dr. Eitel Lauria October 21st, 2020 Shashank Kala Sindhoori Kotapati

Table of Contents:

Executive Summary
Data Exploration
Identification of outliers
Handling Missing Data
Describing relationships between explanatory variables and tuition
Correlation among predictor variables
Linear Regression using stepwise, backwards, enter
Linear Regression with handled missing data using stepwise, backwards
enter
Comparison of linear regression models
Analysis of final model
Decision Tree Classification

Executive Summary

The primary objective of this project is to provide an in depth analysis and a predictive model for the U.S. Department of Education. The predictive model will carefully analyze several key variables that were gathered from higher educational institutions as described below in correlation with tuition. The purpose of this analysis is to gather insight on the relationship between these variables with tuition in a graphical and statistical sense. The investigation of these relationships will help to provide clarity on the factors that affect tuition fees for any potential college candidate.

In this project we have utilized the SPSS modeler to explore the data, identifying the outliers and missing data, and subsequently how to treat these values. The data also contained few outliers which we chose to keep as they add to the data variation. The missing data values after being identified were replaced with their field means, and statistically compared to the original data set. The variables contained in the dataset without any alterations were used to create scatter plots that exemplified the relationship between the variables with tuition and whether a linear relationship exists. Furthermore, we have investigated the type of correlation among the predictor variables to further investigate the relationship amongst these component variables. We have also explored if a linear relationship exists between the variables in both the original data set, as well as the data set with the handled missing variables using 3 methods, *stepwise*, *backwards* and *enter*. The statistical tests were compared between the models in order to determine the overall best predictive model in the case. The final model which was selected which was created using stepwise method and contained missing values. Lastly, a decision tree classification was employed in order to model public vs private colleges.

Key Component Variables

- tuition: College tuition ("out-of-state" rate for those with in-state discount).
- pcttop25: Percent of new students from the top 25% of high school class.
- sf_ratio: Student to faculty ratio.
- accrate: Fraction of applicants accepted for admission.
- graduat: Percent of students who graduate.
- pct phd: Percent of faculty with Ph.D.'s.
- fulltime: Percent of undergraduates who are full time students.
- alumni: Percent of alumni who donate.
- num enrl: Number of new students enrolled.
- public private: Is the college a public or private institution? public=0, private=1
- fac comp: Average faculty compensation.

1. Exploratory Data Analysis

- To identify missing data connect the data file to a chart audit node.

We read the field public private as Flag:

- There are 8 fields with missing data as shown above
- Pcttop25 (86.619% complete), sf_ratio (99.822% complete), accurate (99.197% complete), graduat (94.023% complete), pct_phd (97.502% complete), fulltime (98.037% complete), alumni (85.37% complete), num_enri (99.732% complete).
- There are only two fields having about 15 percent of missing values, Pcttop25 (86.619% complete) and alumni (85.37% complete).
- The data set will require some cleaning in order to handle missing values and outliers.

2. Identification of outliers

The fields that have outliers include; tuition (3), sf_ratio(3), accurate(14), graduat(1), pct_phd(7), fulltime(9),alumni(5), num_c_enrl(13), fac_comp(9). The outliers can be visualized through dot plot as shown below for accrate & fac_comp:

We have decided to consider all the outliers, as they represent the variation in the data.

3. Handling missing values and it's analysis

The summary of data with missing values is as shown below:

To handle the missing values specify impute missing as the null values and specify the method as mean shown below:

Generate missing value supernode and connect it to data audit node to see if the missing values are handled.

Let's check how the summary looks like after handling the missing data

Statistics	
Count	112
Mean	46.33
Min	
Max	100
Range	10
Variance	705.46
Standard Deviation	26.56
Standard Error of Mean	0.79
Count	1121
Statistics	
Mean	14.727
Min	0.000
Max	42.600
Range	42.600
Variance	20.093
Standard Deviation	4.482
Standard Error of Mean	0.134
crate	
Statistics	
Count	1121
Mean	0.753
Min	0.000
Max	1.000
Range	1.000
Variance	0.028
Standard Deviation	0.166
Standard Error of Mean	0.005

Statistics	
Count	1121
Mean	57.750
Min	0
Max	118
Range	118
Variance	540.830
Standard Deviation	23.256
Standard Error of Mean	0.695
ct_phd	
Ġ -Statistics	
Count	1121
Mean	68.449
Min	0
Max	103
Range	103
Variance	409.292
Standard Deviation	20.231
Standard Error of Mean	0.604
illtime	
- Statistics	
Count	1121
Mean	77.536
Min	0.000
Max	99.940
Range	99.940
Variance	384.703
Standard Deviation	19.614
Standard Error of Mean	0.586

Count	1121
Mean	18.310
Min	0
Max	64
Range	64
Variance	194.248
Standard Deviation	13.937
Standard Error of Mean	0.416
enrl	
enrl atistics Count	1
tistics	
tistics Count	
tistics Count Mean	831.
Count Mean Min	11 831.: 74
Count Mean Min Max	831.2
Count Mean Min Max Range	831.3 74

Comparison of Summary values:

Pettop 25 prior to handling the missing data had a Mean (53.493), SD (20.767), Standard error (0.666), Variance (431.258). Pettop 25 after handling the missing data had a Mean (46.335), SD (26.561) and a Standard Error of Mean (0.793), Variance of (705.461). It is clear from these two summaries that there was a decrease in mean and variance, but an increase in SD, Standard Error of Mean.

Prior to handling missing data Sf_ratio had a Mean (14.753), SD (4.443), and Standard error (0.133), Variance (19.740). After handling the missing data, Sf_ratio had a Mean (14.727), SD(4.482) Standard error of mean (0.134), Variance of (20.093). The values did not change dramatically from before and after.

Prior to handling missing data accrate had a Mean (0.759), SD (0.152) and Standard error (0.005), Variance (.023). After handling the missing data, accrate had a mean (0.753) SD (0.166) Standard error (0.005), Variance of (0.028). The values here did not have a significant change from before to after.

Prior to handling the missing data, graduat had a mean (61.421), SD (18.696), Standard Error of Mean (0.576), Variance (540.830). After handling the missing data, graduat had a mean (57.750), SD (23.256), Standard Error of Mean (0.695), Variance (349.549). The mean has decreased, the SD and Standard Error of Mean increased after, and the Variance decreased after.

Prior to handling the missing data, pct_phd had a mean (70.202), SD (17.221), Standard Error of Mean (0.521), Variance (296.575). After handling the missing data, pct_phd had a mean (68.449), SD (20.231), Standard Error of Mean (0.604), Variance (409.292). It is clear that the mean has decreased slightly, the SD increased, the Standard Error of Mean increased slightly after, and the Variance increased.

Prior to handling the missing data, fulltime had a mean (79.089), SD (16.418), Standard Error of Mean (0.495), Variance (269.543). After handling the missing data, fulltime had a mean (77.536), SD (19.614), Standard Error of Mean (0.586), Variance (384.703). From these two summaries, the mean has decreased, the SD and Standard Error of Mean increased, as well as the variance.

Prior to handling the missing data, alumni had a mean (21.448), SD (12.657), Standard Error of Mean (0.409), Variance (160.199). After handling the missing data, alumni had a mean (18.310), SD (13.937), Standard Error of Mean (0.416), Variance (194.248). The mean has decreased, the SD and Standard Error of Mean increased, as well as the variance.

Prior to handling the missing data, num_enrl had a mean (833.453),SD (923.969), Standard Error of Mean (27.634), Variance (853718.339). After handling the missing data, num_enrl had a mean (831.222), SD (923.735),Standard Error of Mean (27.590), Variance (853287.266). The mean has decreased, but the change in the other values were not significant.

Replacing the missing values with the mean is not always a good idea, especially when the data set is limited such as what we are given, and there are too many missing values. Mean imputation may cause reduction in variance and thereby creating bias in the model. But in our case the variance is not getting reduced, hence it won't create any bias.

4. Relationship between Tuition and other variables

5. Correlation among Predictor Variables

We can see that most of the predictor variables are strongly correlated and this can result in multicollinearity, which may lead to incoherent results. Although it doesn't affect the prediction of the target variable, we should ensure that it is minimum. To avoid this we can use a user defined composite. We should take the mean of standardized values of variables and then peerform the regression.

pcttop25	0.517	Strong
sf_ratio	-0.544	Strong
accrate	-0.323	Strong
graduat	0.635	Strong
pct_phd	0.386	Strong
fulltime	0.289	Strong
alumni	0.576	Strong
num_enrl	-0.166	Strong
public_private	0.609	Strong
fac_comp	0.415	Strong
op25		
Pearson Correlations		
tuition	0.517	Strong
sf_ratio	-0.304	Strong
accrate	-0.451	Strong
graduat	0.495	Strong
pct_phd	0.549	Strong
fulltime	0.390	Strong
alumni	0.392	Strong
num_enrl	0.208	Strong
public_private	0.166	Strong
fac_comp	0.550	Strong
ratio		
Pearson Correlations		
tuition	-0.544	Strong
pcttop25	-0.304	Strong
accrate	0.183	Strong
graduat	-0.396	Strong
pct_phd	-0.110	Strong
fulltime	-0.083	Strong
alumni	-0.428	Strong
num_enrl	0.247	Strong
public_private	-0.485	Strong
fac comp	-0.094	Strong

tuition	0.609	Stron	ng
pcttop25	0.166	Stron	ng
sf_ratio	-0.485	Stron	ng
accrate	-0.003	We	ak
graduat	0.465	Stron	ng
pct_phd	-0.113	Stron	ng
fulltime	0.081	Stron	ng
alumni	0.456	Stron	ng
num_enrl	-0.534	Stron	ng
fac_comp	-0.195	Stron	ng
omp			
earson Correlation		0.415	Strong
earson Correlation	1. 19	0.415	Strong
tuition			
tuition pcttop25		0.550	Strong
tuition pcttop25 sf_ratio	-	0.550 0.094	Strong
tuition pcttop25 sf_ratio accrate	-	0.550 0.094 0.500	Strong Strong
tuition pcttop25 sf_ratio accrate graduat		0.550 0.094 0.500 0.317	Strong Strong Strong Strong
tuition pcttop25 sf_ratio accrate graduat pct_phd		0.550 0.094 0.500 0.317 0.663 0.192 0.146	Strong Strong Strong Strong Strong
tuition pcttop25 sf_ratio accrate graduat pct_phd fulltime		0.550 0.094 0.500 0.317 0.663 0.192	Strong Strong Strong Strong Strong Strong

6. Multiple Linear Regression

- The dataset was partitioned 70/30, in which the target variable selected was tuition and all other variables were input. Three methods were employed, *enter*, *stepwise*, and *backwards* to create the linear regression models.
- Below are the models containing regression equation, statistical tests, and analysis for each of the 3 methods (stepwise, backwards, enter)

Method: Enter

Variable	Metric slope	Std. error	t	p
pcttop25	-4.772	6.273	-0.761	0.447
sf_ratio	-170.9	26.851	-6.363	0.000
accrate	94.94	685.663	-0.138	0.890
graduat	18.54	6.420	2.887	0.004
pct_phd	31.74	7.735	4.104	0.000
fulltime	11.67	5.762	2.025	0.043
alumni	43.41	8.419	5.156	0.000
num_enrl	-0.2936	0.133	2.202	0.028

public_private	4309.8	289.558	14.884	0.000
fac_comp	0.1441	0.012	12.351	0.000

R=0.877, R square = 0.770, Adjusted R square = 0.766, Std Error = 2010.55

Method: Stepwise

Variable	Metric slope	Std. error	t	p
sf_ratio	-165.746	26.587	-6.234	0.000
graduat	19.207	6.249	3.073	0.002
pct_phd	32.808	7.352	4.462	0.000
alumni	44.763	8.168	5.481	0.000
num_enrl	-0.278	0.131	-2.121	0.034
public_private	4305.303	286.666	15.019	0.000
fac_comp	0.141	0.011	13.144	0.000

R=0.876, R square = 0.768, Adjusted R square = 0.765, Std Error = 2013.051

Method:Backwards

Variable	Metric slope	Std. error	t	p
pcttop25				
sf_ratio	-167.703	26.542	-6.318	0.000
accrate				
graduat	17.613	6.829	2.801	0.005
pct_phd	30.266	7.452	4.062	0.000
fulltime	10.924	5.654	1.932	0.054
alumni	42.123	8.261	5.099	0.000
num_enrl	-0.303	0.131	-2.305	0.022
public_private	4299.794	285.983	15.035	0.000

fac_comp	0.141	0.011	13.211	0.000	
----------	-------	-------	--------	-------	--

R=0.877, R square = 0.770, Adjusted R square = 0.766, S = 2008.164

As we can note from above that the best models are the one created using stepwise and backward regression. We can see that the R values are almost similar in both the cases which is 0.87, we would choose the stepwise regression as our predictor variables are strongly correlated.

7. Multiple Linear Regression(without missing data)

Method: Enter

Variable	Metric slope	std.Error	t	P
pcttop25	0.3136	5.516	-4.045	0.955
sf_ratio	-153.5	20.805	0.057	0.000
accrate	-171.7	575.698	-7.376	0.766
graduat	18.19	5.608	-0.298	0.001
pct_phd	25.26	6.139	3.244	0.000
fulltime	19.83	5.055	4.115	0.000
alumni	37.14	7.717	3.923	0.000
num_enrl	2539	0.121	4.813	0036

public_private	4413.2	238.824	-2.095	0.000
fac_comp	0.1452	0.01	18.479	0.000

R=0.873 , Rsquare = 0.763 , Adjusted R square = 0.76

Method:Stepwise

Variable	Metric slope	Std Error	t	P
sf_ratio	-154.1	20.635	-7.467	0.000
graduat	18.42	5.540	3.325	0.001
pct_phd	25.31	5.973	4.237	0.000
fulltime	19.88	4.954	4.013	0.000
alumni	37.32	7.609	4.905	0.000
num_enrl	-0.256	0.119	-2.144	0.032
public_private	4411.2	236.069	18.686	0.000
fac_comp	0.1463	0.009	16.131	0.000

R=0.873, R square = 0.763, Adjusted R square = 0.760, Std.Error = 2095.535

Method: Backwards

Variable	Metric slope	Std Error	t	P
sf_ratio	-189.4	-18.859	-10.043	0.000
accrate	-1741.6	415.609	-4.191	0.000
graduat	14.4	5.567	2.586	0.010
pct_phd	22.994	6.017	3.822	0.000
fulltime	13.878	4.811	2.885	0.004
alumni	37.518	7.624	4.921	0.000

public_private	4402.123	206.312	21.337	0.000
fac_comp	0.123	0.008	14,755	0.000

R= 0.979, R square = 0.959, Adjusted R square = 0.959, Std.Error = 2119.439

In this case we have replaced all the missing values with their means and then performed regression. The best model in this case is the backward regression. The value of R is 0.979 which is better than the other two models. Also standard error of estimate is 2119,439 which lies in the same range as other models.

8. Comparison of multiple linear regression models

The best models selected are as follows:

a) Stepwise - When missing data was not imputed.

'Partition'	1_Training	2_Testing
Minimum Error	-8453.139	-9942.236
Maximum Error	9824.354	11376.438
Mean Error	20.307	55.082
Mean Absolute Error	1583.559	1767.481
Standard Deviation	2063.32	2387.302
Linear Correlation	0.876	0.822
Occurrences	787	334

R=0.876, R square = 0.768, Adjusted R square = 0.765, Std Error = 2013.051

b) Backwards - When missing data was imputed

'Partition'	1_Training	2_Testing
Minimum Error	-8991.88	-10702.142
Maximum Error	9841.528	10566.651
Mean Error	-24.277	-20.809
Mean Absolute Error	1603.913	1749.983
Standard Deviation	2109.841	2329.211
Linear Correlation	0.87	0.828
Occurrences	787	334

R= 0.979, R square = 0.959, Adjusted R square = 0.959, Std.Error = 2119.439

When we compare both the models, we notice that the R-value of backward (0.979) is greater than the stepwise (0.876). The standard error estimate is better in case of stepwise hence we can proceed with it and can describe it as shown in next section.

9. Analysis of final model

For the final (chosen) model

Stepwise Regression without alterations to missing data

a. Write out the estimated regression equation and explain the meaning of the coefficients

The estimated regression for the stepwise model shown in Q6 is described below

The intercept is indicated by (-2292.6). When all other variables are held constant, a slope of (-165.7) indicates that a unit decrease of student to faculty ratio will decrease the tuition. A slope of 19.21 indicates that when all the other variables are held constant, a unit increase of the percent of students who graduate will increase the tuition. The slope of 32.81 indicates that when you keep other variables constant, the unit increase of percent faculty with Ph. D.'s will increase the tuition subsequently. A slope of 44.76 indicates that when every other variable is constant, the unit increase of the percent of alumni who donate will increase the tuition by 44.76. A slope of num_enrl*(-0.2777) indicates that when every other variable is constant, the unit decrease of the number of students enrolled will decrease the tuition by .28. A slope of public_private*(4305.3) indicates that when every other variable is constant, the unit increase of the type of school will increase the tuition by 4305.3. A slope of fac_comp*0.1411 indicates that when every other variable is constant, the unit increase of the average faculty compensation will increase tuition by 0.14.

b. Provide a full report of the chosen regression model and report its metrics

(goodness of fit, predictive performance) and statistics on training and test data

- Results for output field tuition

- Comparing \$E-tuition with tuition

'Partition'	1_Training	2_Testing
Minimum Error	-8453.139	-9942.236
Maximum Error	9824.354	11376.438
Mean Error	20.307	55.082
Mean Absolute Error	1583.559	1767.481
Standard Deviation	2063.32	2387.302
Linear Correlation	0.876	0.822
Occurrences	787	334

Predictor Importance Target: tuition

Model Summary					
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	
1	.603ª	.364	.363	3316.144	
2	.836 ^b	.699	.698	2281.640	
3	.859°	.737	.736	2135.605	
4	.869 ^d	.755	.753	2064.943	
5	.873 ^e	.763	.761	2032.419	
6	.875 ^f	.766	.764	2019.304	
7	.876 ⁹	.768	.765	2013.051	

- a. Predictors: (Constant), public_private
- b. Predictors: (Constant), public_private, fac_comp
- c. Predictors: (Constant), public_private, fac_comp, alumni
- d. Predictors: (Constant), public_private, fac_comp, alumni, sf_ratio
- e. Predictors: (Constant), public_private, fac_comp, alumni, sf_ratio, pct_phd
- f. Predictors: (Constant), public_private, fac_comp, alumni, sf_ratio, pct_phd, graduat
- g. Predictors: (Constant), public_private, fac_comp, alumni, sf_ratio, pct_phd, graduat, num_enrl

Variable	Metric slope	Std. error	t	p
sf_ratio	-165.746	26.587	-6.234	0.000
graduat	19.207	6.249	3.073	0.002
pct_phd	32.808	7.352	4.462	0.000
alumni	44.763	8.168	5.481	0.000
num_enrl	-0.278	0.131	-2.121	0.034
public_private	4305.303	286.666	15.019	0.000
fac_comp	0.141	0.011	13.144	0.000

R=0.876, R square = 0.768, Adjusted R square = 0.765, Std Error = 2013.051

10. Decision tree classification

Steps:

1. Convert the public_private into categorical variable as shown below using derive node

2. Now using filter node, remove the original public_private as we have a new categorical variable.

3. Connect it to the C5.0 model and select target variables, variable as shown below:

4. Run the model and connect it to analysis

Predictor Importance Target: Derive2

The coincidence matrix is as shown below:

References

- 1. Data Mining and Predictive Analytics, Daniel T. Larose ,Chantal D.Larose
- 2. https://statisticsbyjim.com/regression/interpret-r-squared-regression/#:~:text=R%2Dsquared%20e <a href="https://statisticsbyjim.com/regression/interpret-r-squared-regression/#:~:text=R%2Dsquared%20e <a href="https://statisticsbyjim.com/regression/interpret-r-squared-regression/#:~:text=R%2Dsquared%20e <a href="https://statisticsbyjim.com/regression/interpret-r-squared-regression/#:~:text=R%2Dsquared%20e <a href="https://statisticsbyjim.com/regression/interpret-r-squared-regression/#:~:text=R%2Dsquared%20e https://statisticsbyjim.com/regression/interpret-r-squared-regression/#:~:text=R%2Dsquared%20e <a href="https://statisticsbyjim.com/regression/#:~:text=R%2Dsquared%20e <a href="https://statisticsbyjim.com/regression/#:~:text=R%2Dsquared%20e
- $3. \quad \underline{https://www.sciencedirect.com/topics/mathematics/standard-error-of-estimate}$