

CS 553

Lecture 14
More on Analyzing AES

Instructor
Dr. Dhiman Saha

The Square Attack

Integral Cryptanalysis of AES

Basic Set of Integral Cryptanalysis

$$P_0 = (0, c_1, c_2, c_3, \ c_4, c_5, c_6, c_7, \ c_8, c_9, c_{10}, c_{11}, \ c_{12}, c_{13}, c_{14}, c_{15}),$$

$$P_1 = (1, c_1, c_2, c_3, \ c_4, c_5, c_6, c_7, \ c_8, c_9, c_{10}, c_{11}, \ c_{12}, c_{13}, c_{14}, c_{15}),$$

$$P_2 = (2, c_1, c_2, c_3, \ c_4, c_5, c_6, c_7, \ c_8, c_9, c_{10}, c_{11}, \ c_{12}, c_{13}, c_{14}, c_{15}),$$

$$\vdots$$

 $P_{255} = (255, c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8, c_9, c_{10}, c_{11}, c_{12}, c_{13}, c_{14}, c_{15}),$

$$\mathcal{P} = \{P_0, P_1, P_2, \dots, P_{255}\}$$

 P_i $0 \le i \le 255$

i	c_4	c ₈	c ₁₂
c_1	c ₅	<i>c</i> 9	c ₁₃
c_2	<i>c</i> ₆	c ₁₀	c ₁₄
<i>c</i> ₃	<i>c</i> ₇	c_{11}	c ₁₅

- Unordered Set of 256 Plaintexts
- ▶ One byte takes all values in $\{0,1\}^8$, others are fixed **△**
- $ightharpoonup c_i$ is constant
- $ightharpoonup c_1, c_2, \cdots, c_{15} \in \{0, 1\}^8$

Generally denoted by ${\cal A}$

III.

The byte in which all values appear exactly once among all the texts in the set is called the **all** property.

Generally denoted by ${\mathcal C}$

Constant

The byte in which all texts in the set have an identical value is called the **constant** property.

$$\begin{split} \mathcal{P} &= \{P_0, P_1, P_2, \dots, P_{255}\} \\ &\qquad \qquad P_i \\ 0 &\leq i \leq 255 \end{split} \qquad \begin{aligned} &i & c_4 & c_8 & c_{12} \\ &c_1 & c_5 & c_9 & c_{13} \\ &c_2 & c_6 & c_{10} & c_{14} \\ &c_3 & c_7 & c_{11} & c_{15} \end{aligned}$$

ightharpoonup The set $\mathcal P$ in terms of $\mathcal A$ and $\mathcal C$

$$\mathcal{P} = \{\mathcal{A}, \mathcal{C}, \mathcal{C}, \mathcal{C}; \ \mathcal{C}, \mathcal{C}, \mathcal{C}, \mathcal{C}; \\ \mathcal{C}, \mathcal{C}, \mathcal{C}, \mathcal{C}; \ \mathcal{C}, \mathcal{C}, \mathcal{C}, \mathcal{C}\}$$

▶ Basic idea: Study properties of P through AES

Processing P through Subkey XOR

$$\mathcal{P}^{\mathrm{AK}} = \{P_0 \oplus sk_0, P_1 \oplus sk_0, P_2 \oplus sk_0, \dots, P_{255} \oplus sk_0\}$$

$$0 \le i \le 255$$

i	c_4	c_8	c_{12}	
$sk_0[0]$	$\underset{sk_0}{\oplus}$ [4]	$sk_0[8]$	sk_0 [12]	
$\overset{c_1}{\oplus}$	<i>c</i> ₅ ⊕	<i>c</i> ₉ ⊕	$\overset{c_{13}}{\oplus}$	
sk ₀ [1]	sk ₀ [5]		sk ₀ [13]	
$sk_0[2]$	$c_6 \oplus sk_0[6]$	sk_0 [10]	$c_{14} \oplus sk_0$ [14]	
c_3 \oplus $sk_0[3]$	$c_7 \\ \oplus \\ sk_0[7]$	$c_{11} \oplus sk_0$ [11]	$c_{15} \oplus sk_0$ [15]	

	А	С	С	С
_	С	С	С	С
7	С	С	С	С
	С	С	С	С

Lemma

By XORing an (un)known constant to each of the texts in the set,

- ▶ the byte with all property still satisfies the all property, and
- ▶ the byte with constant property **still satisfies** the constant property.

Processing \mathcal{P} through SubBytes Operation

$$\mathcal{P}^{\text{SB}} = \{ \text{SB}(P_0), \, \text{SB}(P_1), \, \text{SB}(P_2), \, \dots, \, \text{SB}(P_{255}) \}$$

$0 \le i \le 255$

S(i)	$S(c_4)$	$S(c_8)$	S(c ₁₂)
$S(c_1)$	$S(c_5)$	$S(c_9)$	$S(c_{13})$
S(c ₂)	S(c ₆)	$S(c_{10})$	S(c ₁₄)
$S(c_3)$	S(c ₇)	$S(c_{11})$	S(c ₁₅)

Lemma (Recall, S-box → bijective/fixed)

By applying the S-box for each of the texts in the set,

- ▶ the byte with all property still satisfies the all property,
- ▶ the byte with constant property **still satisfies** the constant property.

Processing \mathcal{P} through ShiftRows Operation

Recall

ShiftRows only affects the byte positions.

- ► No effect on value of a byte
- ▶ Note: Integral analysis only exploits the property inside a byte

Verdict

ShiftRows operation does not violate the properties used in the integral cryptanalysis

Processing ${\mathcal P}$ through MixColumns Operation riangle

 $\mathcal{P}^{\text{MC}} = \left\{ \text{MC}(P_0), \, \text{MC}(P_1), \, \text{MC}(P_2), \, \dots \, , \, \text{MC}(P_{255}) \right\}$ $0 \le i \le 255$

MC(c ₄ , c ₅ , c ₆ , c ₇) MC(i, c ₁ , c ₂ , c ₃)	$MC(c_8, c_9, c_{10}, c_{11})$	$MC(c_{12}, c_{13}, c_{14}, c_{15})$
---	--------------------------------	--------------------------------------

Processing ${\mathcal P}$ through MixColumns Operation

$$\begin{bmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{bmatrix} \times \begin{bmatrix} i \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 2i & \oplus & 3c_1 & \oplus & c_2 & \oplus & c_3 \\ i & \oplus & 2c_1 & \oplus & 3c_2 & \oplus & c_3 \\ i & \oplus & c_1 & \oplus & 2c_2 & \oplus & 3c_3 \\ 3i & \oplus & c_1 & \oplus & c_2 & \oplus & 2c_3 \end{bmatrix}$$
$$= \begin{bmatrix} 2i \\ i \\ i \\ i \\ 3i \end{bmatrix} \oplus \begin{bmatrix} 3c_1 & \oplus & c_2 & \oplus & c_3 \\ 2c_1 & \oplus & 3c_2 & \oplus & c_3 \\ c_1 & \oplus & 2c_2 & \oplus & 3c_3 \\ c_1 & \oplus & c_2 & \oplus & 2c_3 \end{bmatrix}$$

- ➤ XORing the constant does not change the **all** property and **constant** property.
- ▶ Dependence only on *i* which has all property.
- \triangleright So, i, 2i, and 3i vary to take all the 256 values,
- ▶ Note: the order of the values changes.

Integral property for 2.5-round AES

Does any property remain after

MixColumns of Round 3?

Compute XOR sum of all the 256 texts i.e., $\bigoplus S_{3,i}^{MC}[0]$

$$\begin{split} \bigoplus_{i=0}^{255} S_{3,i}^{\text{MC}}[0] &= \bigoplus_{i=0}^{255} (2 \cdot S_{3,i}^{\text{SR}}[0] \oplus 3 \cdot S_{3,i}^{\text{SR}}[1] \oplus S_{3,i}^{\text{SR}}[2] \oplus S_{3,i}^{\text{SR}}[3]) \\ &= \bigoplus_{i=0}^{255} (2 \cdot S_{3,i}^{\text{SR}}[0]) \oplus \bigoplus_{i=0}^{255} (3 \cdot S_{3,i}^{\text{SR}}[1]) \oplus \bigoplus_{i=0}^{255} S_{3,i}^{\text{SR}}[2] \oplus \bigoplus_{i=0}^{255} S_{3,i}^{\text{SR}}[3] \\ &= 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 = 0. \end{split}$$

True for all bytes in S_3^{MC}

XOR Sum is Zero

Denoted by
$$\mathcal{B}: \ \forall j \ \bigoplus_{i=0}^{295} S_{3,i}^{MC}[j] = 0, \ 0 \leq j \leq 15$$

Integral property for three-round AES

Integral Distinguisher

- ► Verify XOR sum of 256 states = Zero
- ► Hold with probability 1 for AES 3 rounds

What about random permutation?

- ► XOR sum of 256 randomly generated bytes is 0 with probability 2^{-8}
- ► For all 16 bytes this holds with $2^{-8.16} = 2^{-128}$ i.e., negligible
- Distinguishing Complexity

$$(Data, Time, Memory) = (256, 256, negl)$$

Key Recovery Attack with Integral Cryptanalysis for Five

Rounds

Guess 8-bytes $(4 \rightarrow sk_5, sk_4)$

5-Round Key Recovery

Subkey Space Reduction

$$\bigoplus S_4^{I}[1] = \bigoplus S_4^{I}[6] = \bigoplus S_4^{I}[11] = \bigoplus S_4^{I}[12] = 0$$
 (1)

- Correct guess satisfies (1) deterministically
- ► Wrong guesses satisfy probabilistically
- ▶ The probability that randomly chosen 4 byte values become 0:

$$2^{(-8)4} = 2^{-32}$$

 \triangleright With 2⁶⁴ guesses, expected number of subkeys passing (1):

$$2^{64} \cdot 2^{-32} = 2^{32}$$

 \blacktriangleright With one set subkey space reduces by 32 bits (2⁶⁴ \rightarrow 2³²) \triangle

- For next set, reduces list is used, reduction by another 32 bits.
- ightharpoonup Expected number of subkeys passing is ≈ 1

Subkey Space Reduction

$$\bigoplus S_4^{\prime}[1] = \bigoplus S_4^{\prime}[6] = \bigoplus S_4^{\prime}[11] = \bigoplus S_4^{\prime}[12] = 0 \qquad (1)$$

- ► Correct guess satisfies (1) deterministically
- Wrong guesses satisfy probabilistically
- ▶ The probability that randomly chosen 4 byte values become 0:

$$2^{(-8)4} = 2^{-32}$$

 \triangleright With 2⁶⁴ guesses, expected number of subkeys passing (1):

$$2^{64} \cdot 2^{-32} = 2^{32}$$

 \blacktriangleright With one set subkey space reduces by 32 bits (2⁶⁴ ightarrow 2³²) $ilde{\triangle}$

lacktriangle Expected number of subkeys passing is pprox 1

Subkey Space Reduction

$$\bigoplus S_4'[1] = \bigoplus S_4'[6] = \bigoplus S_4'[11] = \bigoplus S_4'[12] = 0 \qquad (1)$$

- Correct guess satisfies (1) deterministically
- ► Wrong guesses satisfy probabilistically
- ▶ The probability that randomly chosen 4 byte values become 0:

$$2^{(-8)4} = 2^{-32}$$

 \blacktriangleright With 2⁶⁴ guesses, expected number of subkeys passing (1):

$$2^{64} \cdot 2^{-32} = 2^{32}$$

 \blacktriangleright With one set subkey space reduces by 32 bits (2⁶⁴ \rightarrow 2³²) \triangle

- ► For next set, reduces list is used, reduction by another 32 bits.
- ightharpoonup Expected number of subkeys passing is ≈ 1

- ightharpoonup The attacker prepares sets of 256 plaintexts \mathcal{P} .
- Guesses 64 bits of subkeys
- \blacktriangleright Each set of 256 plaintexts \mathcal{P} can reduce the subkey space by a factor of 232
- ▶ In order to reduce the subkey space to 1, two sets of 256 plaintexts \mathcal{P} are required.
- $ightharpoonup 2 \cdot 256 = 512$ plaintexts are passed to the encryption oracle
- ► The attacker obtains the corresponding **two** sets of 256 ciphertexts

Data Complexity = 2^9 Chosen Plaintexts

- ► For first set, the **two-round** decryption is performed for each of the 2⁶⁴ subkey guesses and 2⁸ ciphertexts in the set
- Computational cost for first set is

$$2\cdot 2^{64+8} = 2^{73}$$
 round function computations

► Equivalent to

$$2^{73}/5 = 2^{70.7}$$
 five-round AES computations

- ► Effort for second set cheaper by a factor of 2³² (ignored)
- ► This is repeated twice for remaining two columns
- ► Followed by exhaustive search for last column
- ► Effort for exhaustive search is again cheaper (ignored)
- ► Time complexity is

$$3\cdot 2^{70.7}\approx 2^{72.3}$$
 5-round AES computations

- For first set, the **two-round** decryption is performed for each of the 2⁶⁴ subkey guesses and 2⁸ ciphertexts in the set
- Computational cost for first set is

$$2\cdot 2^{64+8} = 2^{73}$$
 round function computations

Equivalent to

$$2^{73}/5 = 2^{70.7}$$
 five-round AES computations

- ► Effort for second set cheaper by a factor of 2³² (ignored)
- ► This is repeated twice for remaining two columns
- Followed by exhaustive search for last column
- ► Effort for exhaustive search is again cheaper (ignored)
- ► Time complexity is

$$3\cdot 2^{70.7}\approx 2^{72.3}$$
 5-round AES computations

- ► For first set, the **two-round** decryption is performed for each of the 2⁶⁴ subkey guesses and 2⁸ ciphertexts in the set
- Computational cost for first set is

$$2 \cdot 2^{64+8} = 2^{73}$$
 round function computations

► Equivalent to

$$2^{73}/5 = 2^{70.7}$$
 five-round AES computations

- ► Effort for second set cheaper by a factor of 2³² (ignored)
- ► This is repeated twice for remaining two columns
- ► Followed by exhaustive search for last column
- ► Effort for exhaustive search is again cheaper (ignored)
- ► Time complexity is

$$3 \cdot 2^{70.7} \approx 2^{72.3}$$
 5-round AES computations

- ► For first set, the **two-round** decryption is performed for each of the 2⁶⁴ subkey guesses and 2⁸ ciphertexts in the set
- Computational cost for first set is

$$2 \cdot 2^{64+8} = 2^{73}$$
 round function computations

Equivalent to

$$2^{73}/5 = 2^{70.7}$$
 five-round AES computations

- ▶ Effort for second set cheaper by a factor of 2³² (ignored)
- ► This is repeated twice for remaining two columns
- ► Followed by exhaustive search for last column
- ► Effort for exhaustive search is again cheaper (ignored)
- ▶ Time complexity is
 - $3\cdot 2^{70.7}\approx 2^{72.3}$ 5-round AES computations

- Need to store reduced subkey list from first set
- ► To use as base list for second setv
- ► Memory required reduced subkey space

2³² 8-byte information

► Equivalent to

2³¹ AES states

► Memory requirement for other part is negligible

Memory Complexity 2³¹ AES states

The complexity of this attack is 🔊

(Data, Time, Memory) =
$$(2^9, 2^{72.3}, 2^{31})$$