

TỬ SÁCH KỸ THUẬT ĐIỆN - ĐIỆN TỬ TS NGUYỄN TẦN PHƯỚC

ĐO LƯỜNG ĐIỆN VÀ ĐIỆN TỪ

TỬ SÁCH KỸ THUẬT ĐIỆN - ĐIỆN TỬ TS NGUYỄN TẦN PHƯỚC

ĐO LƯỜNG ĐIỆN VÀ ĐIỆN TỬ

NHÀ XUẤT BẢN HỒNG ĐỨC

TỬ SÁCH KỸ THUẬT ĐIỆN – ĐIỆN TỬ TS NGUYỄN TẦN PHƯỚC

ĐO LƯỜNG ĐIỆN VÀ ĐIỆN TỬ

Chịu trách nhiệm xuất bản: HOÀNG CHÍ DŨNG

Biên tập: HỒNG NAM

Trình bày: NGUYỄN PHƯỚC TƯỜNG VÂN

Bìa: NGUYỄN TẦN PHƯỚC

NHÀ XUẤT BẢN HỒNG ĐỰC

111 Lê Thánh Tôn - Q.1 – TP.HCM

DT: 08.8244534

ተ

Thực hiện liên doanh: NGUYỄN TẤN PHƯỚC

In lần thứ: 01 Số lượng: 1000 cuốn, Khổ: 16x24cm

Tai nhà in: Xí nghiệp in Khuyến Học Phía Nam

GPXB số: 772 - 2007 / CXB / 14-12 / HĐ ngày 10 -10 -2007

In xong và nộp lưu chiểu tháng 10 năm 2007

LỜI NÓI ĐẦU

Đo lường điện là một trong những môn học kỹ thuật cơ sở của các ngành thuộc lĩnh vực Điện – Điện tử.

Trước đây, môn Đo lường điện thường chia ra 3 phần:

- Do lường điện
- Đo lường điện tử
- Do lường các đại lượng không điện

Hiện nay, do khối lượng kiến thức các môn chuyên ngành ngày càng nhiều, quỹ thời gian dành cho các môn kỹ thuật cơ sở bị giảm; sự phát triển nhanh của linh kiện cảm biến; đồng thời, các ngành đào tạo thuộc lĩnh vực Điện – Điện tử đều có nhu cầu hiểu biết gần giống nhau; môn Đo lường điện được chia lại thành 2 phần:

- Đo lường Điện và Điện tử
- Cảm biến Đo lường và điều khiển (thay cho môn Đo lường các đại lượng không điện)

Để đáp ứng yêu cầu học tập theo phương pháp mới, giảng viên dạy không đọc chép, học sinh / sinh viên phải có giáo trình thích hợp với điều kiện hiện nay; hai giáo trình trên được biên soạn có tính thực tế, chọn lọc nội dung thích hợp, giảm bớt phần lý luận tính toán không cần thiết. Hy vọng giáo trình này sẽ được độc giả đón nhận như các giáo trình đã phát hành trong bộ giáo trình Kỹ thuật Điện – Điện tử do chúng tôi chủ trương.

Tuy đã rất cố gắng, nhưng do hạn chế về tài liệu tham khảo và thời gian nghiên cứu, giáo trình này chắc chắn còn nhiều khiếm khuyết. Rất mong nhận được sự đóng góp ý kiến của bạn đọc để sách được hoàn thiện hơn trong lần tái bản sau.

HCM, ngày 07 tháng 10 năm 2007 Tác giả

ĐO LƯỜNG ĐIỆN VÀ ĐIỆN TỬ

Mục lục

	Trang
Lời nói đầu	3
Mục lục	4
Chương 1: Khái niệm cơ bản về đo lường điện 1.1- Đại cương 1.2- Thiết bị đo – Chức năng – Đặc tính 1.3- Sai số và cấp chính xác của thiết bị đo	7
1.4- Các hệ đơn vị đo lường	
Chương 2: Các loại điện kế chỉ thị kim 2.1- Đại cương 2.2- Điện kế từ điện 2.3- Điện kế điện từ 2.4- Điện kế điện động	14
Chương 3: Đo dòng điện và điện áp DC 3.1- Đại cương 3.2- Đo dòng điện DC 3.3- Đo điện áp DC 3.4- Nội trở của Ampere kế và Volt kế	26
Chương 4: Đo dòng điện và điện áp AC 4.1- Đại cương 4.2- Đo điện áp AC 4.3- Đo dòng điện AC	39

Do lường điển và điển tử	Nguyễn Tấn Phước
Chương 5: Đo công suất và điện năng 5.1- Đo công suất dòng điện DC 5.2- Đo công suất dòng điện AC 5.3- Đo điện năng	49
Chương 6: Volt kế và Ampere kế điện tử 6.1- Volt kế DC điện tử 6.2- Volt kế AC điện tử 6.3- Ampere kế DC và AC điện tử 6.4- Mạch khuếch đại điện tích	58
Chương 7: Đo điện trở 7.1- Đại cương 7.2- Đo điện trở bằng volt kế và ampere kế 7.3- Đo điện trở bằng cầu Wheastone 7.4- Ohm kế 7.5- Megolim kế	69
Chương 8: Đo điện trở nối dất 8.1- Đại cương 8.2- Phương pháp đo trực tiếp 8.3- Máy đo tiếp đất điện tử	82
Chương 9: Đo điện dung và điện cảm 9.1- Đại cương 9.2- Đo C và L bằng volt kế và ampere kế 9.3- Đo C và L bằng volt kế AC	86
Chương 10: Máy phát sóng 10.1- Đại cương 10.2- Vấn đề đo biên độ của âm tần 10.3- Máy phát sóng sin tần số thấp 10.4- Máy phát sóng tạo hàm vuông và tam giá 10.5- Máy phát sóng sin tần số cao	93 c

Đo lường điện và điện tử	Nguyễn Tấn Phước
Chương 11: Máy dao động ký 11.1- Đại cương 11.2- Sơ đồ khối của dao động ký 11.3- Đèn CRT 11.4- Mạch khuếch đại tín hiệu lệch dọc 11.5- Tín hiệu quét ngang 11.6- Dao động ký 2 tia 11.7- Sử dụng dao động ký 11.8- Ứng dụng của dao động ký	114
Tài liệu tham khảo	144

CHUONG 1

KHÁI NIỆM CƠ BẢN VỀ ĐO LƯỜNG ĐIỆN

§1.1- ĐAI CƯƠNG

1- Các định nghĩa

- a) Đo lường: là quá trình đánh giá định lượng về đại lượng cần đo để có được kết quả bằng số đo với đơn vị đo.
- b) Đo lường học: là ngành kỹ thuật chuyên môn nghiên cứu những phương pháp và thiết bị để đo các đại lượng về lý. hoá. sinh ..., nghiên cứu mẫu và đơn vị đo.
- c) Kỹ thuật đo lường: là ngành kỹ thuật chuyên môn nghiên cứu để áp dụng thành quả của đo lường học vào phục vụ sản xuất và đời sống.

Kỹ thuật đo lường điện và đo lường điện tử là 2 ngành phát triển nhanh và được sử dụng nhiều nhất nhờ các ưu điểm: chính xác, nhanh chóng, dễ sử dụng và có khả năng đo được hầu hết các đại lượng có trong sản xuất và sinh hoạt.

2- Đại lượng đo lường

Dựa vào tính chất cơ bản của đại lượng đo, chia ra:

- Đại lượng điện
- Đại lượng không điện (như đại lượng cơ, nhiệt, hoá, sinh ...)
- a) Đại lượng điện còn được chia ra 2 loại là đại lượng điện thụ động và đại lượng điện tác động.
- Đại lượng điện thụ động như: điện trở, điện dung, điện cảm. Khi đo các đại lượng này, thiết bị đo phải cung cấp điện áp hay dòng điện cho mạch đo.

- Đại lượng điện tác động như: điện áp, dòng điện, công suất, điên năng, tần số ...
- b) Đại lượng không điện có rất nhiều trong đời sống như: nhiệt độ, ánh sáng, áp suất, từ trường, lực, tốc độ, vị trí, khoảng cách, độ ẩm ...

Để có thể đo được các đại lượng không điện bằng thiết bị đo điện hay điện tử, phải dùng các bộ cảm biến (sensor) chuyển những đại lương trên thành tín hiệu điện trước khi đưa vào thiết bị đo.

\$1.2- THIẾT BỊ ĐO - CHỨC NĂNG - ĐẶC TÍNH

1- Thiết bị đo

Là thiết bị kỹ thuật dùng để biến đổi tín hiệu đo thành số đo tiện lợi cho người sử dụng.

2- Chức năng của thiết bị đo

Thiết hị đo có chức năng cung cấp kết quả đo đại lượng dang khảo sát hay dùng kết quả đo để điều khiển lại quá trình tạo ra đại lượng cần đo.

Thí dụ: máy đo điện áp sẽ chỉ thị giá trị điện áp đo được trên bảng đo; mạch đo của bộ ổn định điện áp sẽ lấy giá trị điện áp đo được ở ngõ ra điều chỉnh lại mạch cung cấp để cho ra điện áp ổn định.

3- Đặc tính của thiết bị đo

Tuỳ thuốc cách thức đo, cấu tạo hay cách chỉ thị kết quả đo người ta phân biệt các loại thiết bị đo theo đặc tính như sau:

- Thiết bị đo điện và thiết bị đo điện tử
- Thiết bị đo tương tự và thiết bị đo chỉ thị số
- Thiết bị đo lường từ xa và thiết bị đo lường điều khiển từ xa

\$1.3- SAI SỐ VÀ CẤP CHÍNH XÁC CỦA THIẾT BỊ ĐO

1- Sai số trong đo lường

Mỗi thiết bị đo đều có cấp chính xác riêng, ngoài ra khi đo còn nhiều yếu tố ánh hưởng đến kết quả đo gây ra sai số (như: cách đo, cách đọc, nhiệt độ môi trường, điều kiện khi đo ...). Trong đo lường người ta chia ra các loại sai số là:

a) Sai số tuyệt đối: tính theo công thức (error: sai số, sai biệt)

$$e_a = \Delta X = X_0 - X_n$$
 (at absolute - tuyệt đối)

trong đó: X₀ là giá trì tin cậy được, giá trị chuẩn

X_n giá trị đo được

b) Sai số tương đối: tính theo tỉ lê %

$$e_i = \left| \frac{X_n + X_n}{X_n} \right|$$
 100% (r. relative - tương đối)

c) Độ chính xác tương đối:

$$A = 1 - \left| \frac{X_0 - X_0}{X_0} \right|$$
 tính theo %: $a = 100\% - e_r$

Thí dụ: một điện trở mẫu trị số 100Ω , dùng ohm kế đo được 99Ω .

Ta có sai số tuyệt đối là: $e_a = 100 - 99 = 1\Omega$

Sai số tương đối là:
$$e_r = \left| \frac{100 - 99}{100} \right|$$
. $100\% = 1\%$

Độ chính xác là:
$$A = 1 - \frac{|100 - 99|}{|100|} = 0.99$$

Hay: a = 100% - 1% = 99%

2- Cấp chính xác

Khi sử dụng thiết bị đo, tuỳ theo yêu cầu cụ thể của mục đích đo mà cần có kết quả chính xác ở mức độ cao hay thấp. Thiết bị đo

khi sản xuất sẽ được thiết kế và chế tạo theo một tiêu chuẩn nhất định để xác định cấp chính xác. Từ cấp chính xác này ta có thể tính được sai số của kết quả đo.

Thí dụ: máy đo cấp chính xác I có giới hạn sai số của thang là 1%.

Cấp chính xác của thiết bị đo là giá trị sai số cực đại mà thiết bị đo mắc phải. Qui định cấp chính xác của thiết bị đo chính là sai số tương đối qui đổi của thiết bị đó và được qui định cụ thể là:

$$\gamma\% = \frac{\Delta X_m}{X_m} 100\%$$

Trong đó: ΔX_m: sai số tuyệt đối cực đại

X_{ut} giá trị cực đại của thang đo

Thí dụ: một volt kế có cấp chính xác $\pm 2\%$. Ở thang đo 500V, tính giới hạn sai số khi đo điện áp 200V.

Ta có: $\gamma\% = 2\%$, $X_m = 500V$

Suy ra:
$$\Delta X_m = \gamma \% . X_m \frac{1}{100\%} = 2\% . 500 \frac{1}{100\%} = 10 \text{V}$$

Khi đo điện áp 200V có giới hạn sai số là:

$$e_r = \frac{10}{200} 100\% = 5\%$$

§1.4- CÁC HỆ ĐƠN VỊ ĐO LƯỜNG

Trước năm 1960, có nhiều hệ đại lượng là:

Hệ khối lượng các đại lượng LMT (L: length - chiều dài,
 M: mass - khối lượng và T: time - thời gian)

Trong hệ LMT, có hai hệ đo lường:

- Hệ đơn vị CGS dựa trên các đơn vị: centimet, gram và giây
- Hệ đơn vị MKS dựa trên các đơn vị: met, kilogram và giây.

2) Hệ kỹ thuật các đại lượng LFT (L: length - chiều dài, F: force - lực và T: time - thời gian)

Trong hệ LFT có hệ đo lường MKGS dựa trên các đơn vị: met, kilogram, lực và giây.

Trong quá trình phát triển của khoa học và kỹ thuật, một số đơn vị khác đã được bổ sung vào. Trong lĩnh vực nhiệt học có thêm đơn vị nhiệt độ Celcius nên cho thêm hệ đơn vị mới là: CGSC, MKSC và MKGSC. Trong lĩnh vực điện và từ học có thêm đơn vị dòng điện (ampere) và từ trường (magnetism) nên cho thêm hệ đơn vị mới là: MKSA và CGSM.

3) Hệ Đơn vị Đo lường Quốc tế SI:

Năm 1960, Hệ Đơn vị Đo lường Quốc tế viết tắt là SI (System International d'Unités) ra đời để thống nhất các hệ đơn vị cũ.

Theo hệ này có bảy đơn vị đo cơ bản là: met, kilogram, giậy, ampere, Kelvin, mol và candela ứng với bảy đại lượng vật lý cơ bản là: chiều dài, khối lượng, thời gian, dòng điện, nhiệt độ nhiệt động học, lương chất và cường đô sáng.

Ngoài ra, hệ còn thêm hai đơn vị đo bổ sung là radian và steradian để đo góc phẳng và góc khối (góc đặc).

Ngoài các đơn vị đo cơ bản trên, mỗi lĩnh vực khoa học, kỹ thuật đều có một số đơn vị bổ sung gọi là đơn vị dẫn xuất.

Bảng sau giới thiệu các đơn vị cơ bản và các đơn vị dẫn xuất trong hệ S1.

Các đại lượng	Đơn vị đo	Ký hiệu
1- Các đại lượng cơ bản		
Độ dài (1)	met	m
Khối lượng (m)	kilogram	kg
Thời gian (t)	giây	s

<u></u>	·	
Dòng điện (I)	ampere	A
Nhiệt độ (t ^u)	Kelvin	K
Số lượng vật chất (n)	mol	Mol
Cường độ ánh sáng (I)	candela	Cd
2- Các đại lượng cơ học		
Tốc độ (v hay n)	met/giây	m/s
Gia tốc (a)	met/giây bình phương	m/s ²
Năng lượng và Công (W)	Joule	J
Luc (F)	Newton	N
Công suất (P)	Watt	W
Năng lượng (A)	Watt-giây	Ws
3- Các đại lượng điện học		
Điện lượng (Q)	Coulomb	C
Điện áp, Sức điện động (U)	Volt	V
Cường độ điện trường (E)	Volt/met	V/m
Điện dung (C)	Farad	F
Điện trở (R)	Ohm	Ω
Điện trở suất (ρ)	Ohm-met	Ω .m
Hằng số điện môi tuyệt đối (ε)	Farad/met	F/m
4- Các đại lượng từ học		
Từ thông (φ)	Weber	Wb
Cám ứng từ (B)	Tesla hay Weber/m ²	T
Cường độ từ trường (H)	Ampere/met	A/m
Điện cảm (L)	Henri	Н
Hệ số từ thẩm (μ)	Henri/met	H/m
5- Các đại lượng quang học		
Luồng ánh sáng-quang thông F	Lumen	lm
Độ trưng – Độ chối (R)	Candela/met vuông	Cd/m ²
Độ rọi (E)	lux	Lx

Câu hỏi chương 1

- 1- Phân biệt độ chính xác và cấp chính xác?
- 2- Phân biệt sai số tương đối và độ chính xác tương đối?
- 2- Một volt kế có cấp chính xác $\pm 1\%$. Ở thang đo 100V, tính giới hạn sai số khi do điện áp 20V và khi đo điện áp 5V.
- 4- Cho nhận xét về giới hạn sai số khi đo để có cách chọn thang đo thích hợp nhất khi đo.
 - 5- Phân biệt đơn vị do lường căn bản và đơn vị dẫn xuất?

CHUONG 2

CÁC LOẠI ĐIỆN KẾ CHỈ THỊ KIM

§2.1- DAI CUONG

Điện kế (galvanometer) là dụng cụ đo cường độ dòng điện và là bộ phận quan trong nhất trong các thiết bị đo điện.

Điện kế chỉ thị kim, còn được gọi là cơ cấu đo chỉ thị kim, được chia ra nhiều loại theo cấu tạo như sau:

- Điện kế từ điện
- Điện kế điện từ
- Điện kế điện động

Cả ba loại điện kế này hiện nay đều còn được sử dụng làm cơ cấu chỉ thị trong các loại thiết bị đo điện, nhưng điện kế từ điện là loại thông dụng nhất.

§2.2- ĐIỆN KẾ TỪ ĐIỆN

Điện kế từ điện có ký hiệu ghi trên mặt thiết bị đo là:

1- Cấu tạo: gồm các chi tiết

- Nam châm vĩnh cữu: có dạng hình móng ngựa để tạo ra từ trường đều giữa khe hở, từ trường đi theo chiều vào cực Nam và ra ở cực Bắc. Giữa khe hở có đặt một khung quay.
- Khung quay: khung bằng nhôm hình chữ nhật, trên khung có quấn dây điện từ (loại dây đồng có tráng lớp sơn cách điện) tiết diện rất nhỏ. Khung quay có khối lượng càng nhẹ càng tốt để tránh gây ra sai số do quán tính lớn. Khung quay được đặt trên trục quay hay được treo bởi dây treo. Giữa khung quay có lõi sất non hình tru.

- Kim chỉ thị: bằng nhôm mỏng, nhỏ và nhẹ. Kim được gắn cố định trên trục quay hoặc dây treo, phía sau kim có gắn đối trọng để trọng tâm của kim nằm trên trục quay, tránh kim bị lệch theo phương ngang, khi quay sẽ cọ vào các chi tiết khác.
- Lò xo cản (cân bằng): còn gọi là lò xo kiểm soát, có nhiệm vụ giữ cho kim thăng bằng khi có lực điện từ làm quay kim và kéo kim trở về vị trí ban đầu khi mất lực điện từ.

Hình 2.1: Cấu tao của điện kế từ điện

2- Nguyên lý:

Bình thường, cuộn dây nằm trong khe hở của nam châm nên nhận được từ trường đều.

Khi cho dòng điện vào cuộn dây, dòng điện qua cuộn dây sẽ sinh ra từ trường tác dụng lên từ trường của nam châm tạo thành lực điện từ làm cuộn dây (và khung quay) quay trong khe hở của nam châm sẽ làm kim chỉ thị quay theo. Chiều của lực điện từ được xác định theo qui tắc bàn tay trái.

Nhờ có lò xo cản nên kim sẽ được giữ ở một vị trí thăng bằng ứng với lực điện từ do dòng điện cho vào cuộn đây tạo nên. Khi mất dòng điện vào cuộn dây thì lò xo sẽ kéo kim về vị trí ban đầu.

Lực điện từ do dòng điện sinh ra được tính theo công thức:

$$F = N.B.I.1 \tag{N}$$

trong đó: N- số vòng dây quấn trên cuộn dây

B- cường độ từ cám của nam châm qua cuộn dây, thường từ 0,1 đến 0,3 Tesla

I- cường độ dòng điện cho vào cuộn dây

1- chiều dài của cuôn đây

Lưc điện từ làm khung quay với momen quay là:

$$T_q = F.W = N.B.I.l.W$$
 (N.m) (T: torque)

$$T_q = k_q.I$$
 (với $k_q = N.B.I.W$)

Đồng thời khi khung dây quay sẽ làm lò xo cản bị xoắn nên lò xo sinh ra momen cản:

$$T_c = k_c . 0$$

trong đó: W- bề cao của khung quay.

k_e: hằng số xoắn của lò xo

θ : góc quay của khung hay kim chỉ thị

Kim chỉ thị sẽ cân bằng (đứng yên) ở góc quay θ sao cho:

$$T_q = T_c$$
 \Rightarrow $k_q.I = k_c.0$
Suy ra: $\theta = \frac{k_q}{k}I = kI$

Như vậy: góc quay θ của kim tỉ lệ tuyến tính với dòng điện I.

Nhân xét:

- khi đổi chiều dòng điện cho vào cuộn dây sẽ làm kim chỉ thị đổi chiều quay (theo qui tắc bàn tay trái)
- điện kế từ điện chỉ dùng để đo cường độ dòng điện DC
- do góc quay tỉ lệ tuyến tính với dòng điện cần đo nên mặt chỉ thị kết quả đo sẽ được chia các vạch đều nhau.

3- Đặc tính kỹ thuật của điện kế từ điện:

Các thông số kỹ thuật tiêu biểu của điện kế từ điện là:

a) Dòng điện quay hết khung: IFS (Full Scale)

Đây là trị số dòng điện khi cho vào cuộn đây sẽ làm khung dây và kim quay đến vị trí tối đa trên mặt hiển thị. Góc quay tối đa của điện kế từ điện thường từ 90^{0} đến 100^{0} .

Hiện có các trị số dòng I_{FS} theo tiêu chuẩn là: $50\mu A$, $100\mu A$, $500\mu A$, 1mA.

b) Điện trở một chiều của cuộn dây: R_G

Cuộn dây quấn trên khung quay có tiết diện nhỏ nên có điện trở một chiều khá lớn. Điện kế có I_{FS} càng nhỏ thì khung quay có điện trở một chiều càng lớn.

Trị số điện trở của cuộn dây ứng với các dòng điện tiêu chuẩn l_{ES} như trên là: $2k\Omega$ - $1.5k\Omega$ - 600Ω , 300Ω .

c) Điện áp quay hết khung: V_{ES}

Khi cho đồng điện có trị số I_{FS} vào cuộn để cuộn dây quay hết khung thì điện áp có trên cuộn dây gọi là điện áp quay hết khung và tính theo công thức:

$$V_{FS} = I_{FS} \cdot R_G$$

Thí dụ: - điện kế có $I_{ES} = 50\mu A$, $R_G = 2k\Omega$ thì có:

$$V_{ES} = 50.10^{-6} \cdot 2.10^3 = 0.1V$$

- điện kế có $I_{FS} = 100\mu A$, $R_G = 1.5k\Omega$ thì có:

$$V_{FS} = 100.10^{-6} . 1500 = 0.15V$$

- điện kế có $I_{ES} = 500 \mu A$, $R_G = 600 \Omega$ thì có:

$$V_{ES} = 500.10^{-6} .600 = 0.3V$$

4- Đặc điểm của điện kế từ điện

- a) Ưu điểm:
- nam châm vĩnh cữu có từ trường mạnh nên ít bị ảnh hưởng bởi từ trường nhiễu bên ngoài
- công suất tiêu thụ của điện kế nhỏ
- độ chính xác cao đến cấp chính xác là 0,5 (sai số 5%)
- góc quay tuyến tính theo dòng điện nên thang đo có khoảng chia độ đều.
 - b) Nhược điểm:
- chỉ đo được dòng điện một chiều, nếu muốn đo dòng điện xoay chiều thì phải dùng mạch nắn điện
- cuộn dây có tiết diện nhỏ nên dòng I_{FS} cũng rất nhỏ, điện kế không thể đo được dòng điện có trị số lớn, muốn đo dòng điện trị số lớn hơn I_{FS} thì phải có biện pháp mở rộng thang đo.

§2.3- ĐIỆN KẾ ĐIỆN TỪ

Điện kế điện từ được phân thành 2 loại: cuộn dây dẹt và cuộn dây tròn, còn gọi là loại lực hút và loại lực đẩy. Điện kế điện từ có ký hiệu ghi trên mặt thiết bị đo là:

1- Cấu tạo

- a) Loại cuộn dây dẹt (loại lực hút) gồm 2 phần:
- Phần tĩnh là cuộn dây phẳng 1, bên trong có khe hở không khí
- Phần động là lõi thép 2 được gắn trên trục 5, lõi thép có thể quay tự do trong khe hở không khí. Kim chỉ thị 6 được gắn dính với trục quay 5 sẽ chỉ thị kết quả trên thang đo 8.

Hình 2.2: Cấu tạo của điện kế điện từ loại lực hút

- b) Loại cuộn dây tròn (loại lực đẩy) gồm 2 phần:
- phần tĩnh là cuộn dây có mạch từ khép kín 1, bên trong có tấm kim loại cố định 2
- phần động là tấm kim loại động 3 gắn với trục quay 4, gắn ở mặt trong của cuộn dây. Trên trục quay có gắn kim chỉ thị để cho kết quả đo được trên thang đo.

Hình 2.3: Cấu tạo của điện kế điện từ loại lực đẩy

2- Nguyên lý

- Loại cuộn dây dẹt: khi cho dòng điện cần đo vào cuộn dây sẽ tạo thành một nam châm điện hút lõi 2 vào khe hở không khí tạo ra momen quay Tq. Khi lõi 2 bị hút vào sẽ làm trực 5 xoay và kim chỉ thị gắn trên trực quay theo. Lò xo cản sẽ giữ cho kim ở vị trí cân bằng ứng với trị số dòng điện cho vào cuộn dây. Khi đo dòng điện, có lực hút lõi thép vào bên trong khe hở của cuộn dây nên loại này còn được gọi là loại điện từ có lực hút.
- Loại cuộn dây tròn: khi cho dòng điện vào cuộn dây sẽ tạo ra từ trường và từ hoá các tấm kim loại tĩnh và động tạo thành nam châm. Nam châm của tấm kim loại tĩnh và động sẽ đẩy nhau làm tấm kim loại động bị xoay, trục quay 4 xoay theo làm kim chỉ thị xoay cho kết quả đo được trên thang đo. Khi do dòng diện, có lực đẩy giữa các tấm kim loại nên nên loại này còn được gọi là loại điện từ có lực đẩy.
 - Momen quay được tính theo công thức:

$$T_{ij} = \frac{dW}{d\alpha} \qquad (N.m)$$

với:

$$W = \frac{LI^2}{2}$$
 (J) là năng lượng nạp vào cuộn dây

L: điện cảm của cuộn dây, I: dòng điện cho vào cuộn dây và α là góc quay của kim.

- Thay W vào Tata có:

$$T_{q} = \frac{d\binom{LI^{2}}{2}}{d\alpha} = \frac{1}{2}I^{2}\frac{dL}{d\alpha}$$

Do có lò xo cản , khi trục xoay cũng tạo ra momen cản M_c Khi kim cân bằng thì: $T_q = T_c$.

Suy ra:
$$\frac{1}{2}I^2 \frac{dL}{d\alpha} = k_{\alpha}\alpha \implies \alpha = \frac{1}{2k_{\alpha}}I^2 \frac{dL}{d\alpha}$$

Như vậy: góc quay α của kim chỉ thị không phụ thuộc vào chiều dòng điện và tỉ lệ theo bình phương đòng điện cần đo.

3- Đặc điểm

- do không phụ thuộc vào chiều dòng điện nên điện kế điện từ có thể đo được dòng điện 1 chiều và xoay chiều
- góc quay tỉ lệ với bình phương của I nên thang đo chia không đều
- do cuộn dây nhận dòng điện cố định nên có thể quấn dây tiết diện lớn và điện kế có khả năng đo được dòng điện có trị số lớn hơn diên kế từ điện
- được sử dụng làm cơ cấu chỉ thị trong các loại volt kế và ampere kế AC có cấp chính xác là 1 hay 2.

§2.4- ĐIỆN KẾ ĐIỆN ĐỘNG

Điện kế điện động là sự phối hợp giữa điện kế từ điện (nam châm tạo từ trường đều cố định sản trong điện kế, dòng điện cho vào cuộn dây quấn trên khung làm khung và cuộn dây quay) với điện kế điện từ (cuộn dây cố định nhận dòng điện tạo ra từ trường làm trục và kim quay).

Do cấu tạo có khác nhau nên cần phân biệt điện kế điện động và điện kế sắt điện động.

Điện kế điện động có ký hiệu ghi trên máy đo là:

Điện kế sắt điện động có ký hiệu ghi trên máy đo là:

1- Cấu tạo: gồm 2 phần

- Phần tĩnh: cuộn dây phần tĩnh được chia thành 2 phần nối tiếp nhau để tạo ra từ trường đều khi có dòng điện chạy qua

- Phần động: cuộn dây di động quấn trên khung quay đặt trong cuộn dây tĩnh và gắn trên trục quay. Thông thường, cuộn dây di động không có lõi sắt non để tránh hiện tượng từ trễ và dòng điện xoáy
- Nếu cuộn dây tĩnh quấn trên lõi sắt từ thì điện kế này được gọi là điện kế sắt điện động
- Cả phần tĩnh và động được bọc kín bằng vật liệu không dẫn từ để tránh bị ảnh hưởng bởi từ trường bên ngoài khi hoạt động.

Hình 2.4: Cấu tạo của điện kế điện động và sắt điện động

2- Nguyên lý

- Khi cho dòng điện I_1 vào cuộn dây tĩnh sẽ tạo ra từ trường trong cuộn dây
- Nếu có dòng I_2 vào cuộn dây động thì từ trường do cuộn tĩnh tạo ra sẽ tác động lên dòng điện chạy vào khung quay, tạo ra momen quay làm khung quay góc α
 - Momen quay được tính theo công thức: $T_q = \frac{dW}{d\alpha}$
 - a) Nếu dòng điện I₁ và I₂ là dòng DC thì:

a) Nếu dòng điện I₁ và I₂ là dòng DC thì:

$$W = \frac{1}{2}L_1I_i^2 + \frac{1}{2}L_2I_2^2 + M_{12}I_1I_2$$

Trong đó: - L₁, L₂ là điện cảm của cuộn dây tĩnh và động

- M₁₂ là hỗ cảm giữa 2 cuộn dây
- Do L_1 , L_2 không đổi khi khung quay có cuộn động quay trong cuộn tĩnh, mà chỉ có hỗ cảm M_{12} thay đổi, nên đạo hàm của nó theo góc α bằng 0 và:

$$T_q = \frac{dW}{d\alpha} = \frac{dM_{12}}{d\alpha} I_1 I_2$$

- Khi kim ở vị trí cân bằng thì: $T_q = T_c = k_c \alpha$

- Suy ra:
$$I_1 I_2 \frac{dM_{12}}{d\alpha} = k_{\epsilon} \alpha \implies \alpha = \frac{1}{k_{\epsilon}} I_1 I_2 \frac{dM_{12}}{d\alpha}$$

- Nếu cuộn dây tĩnh và cuộn dây động mắc nổi tiếp nhau thì $I_1=I_2=I$, nên: $\alpha=\frac{1}{k}I^2\frac{dM_{12}}{d\alpha}$

- Góc quay α sẽ tỉ lệ với bình phương của dòng điện cần đo và biến thiên theo hệ số hỗ cảm giữa 2 cuộn dây.
- b) Nếu dòng điện I₁ và I₂ là dòng AC thì momen quay tức thời và moment trung bình được tính theo công thức:

$$t_q = i_1 i_2 \frac{dM_{12}}{d\alpha}$$
 \Rightarrow $T_q = \frac{1}{T} \int_0^t t_q dt$

- nếu ta có: $i_1 = I_{1m} \sin \omega t$ và $i_2 = I_{2m} \sin(\omega t - \varphi)$ thì:

$$T_q = \frac{1}{T} \int_0^T I_{1m} I_{2m} \sin \omega t. \sin(\omega t - \varphi) \frac{dM_{12}}{d\alpha} dt$$

- khi kim cân bằng có: $T_q = T_c = k_c \alpha$

$$k_1 \alpha = I_1 I_2 \frac{dM_{12}}{d_{\alpha}} \cos \varphi \implies \alpha = \frac{1}{k_1} I_1 I_2 \frac{dM_{12}}{d_{\alpha}} \cos \varphi$$

- góc quay α tỉ lệ theo tích số dòng điện và sự biến thiên hỗ cảm giữa 2 cuộn đây và góc lệch pha của 2 dòng điện.

3- Đặc điểm

- do không phụ thuộc vào chiều dòng điện nên điện kế từ điện có thể đo được dòng điện 1 chiều và xoay chiều
- góc quay tỉ lệ với bình phương của I nên thang đo chia không đều và tỉ lệ theo sự biến thiên hỗ cảm giữa 2 cuộn dây nên có độ chính xác cao
- do cuộn dây nhận dòng điện cố định nên có thể quấn dây tiết diện lớn và điện kế có khả năng đo được dòng điện có trị số lớn hơn điện kế từ điện
- được sử dụng làm cơ cấu chỉ thị trong các loại volt kế và ampere kế, watt kế AC có độ chính xác cao, cấp chính xác là 0,1 đến 0,2.

Câu hói chương 2

- 1- Cho biết nguyên lý hoạt động của điện kế từ điện và điện kế điện từ cơ bản khác nhau như thế nào?
- 2- Điện kế từ điện có thể chế tạo để đo dòng điện có trị số lơn như điện kế điện từ được không? Giải thích lý đo.
- 3- Giải thích lý do tại sao chiều quay kimchỉ thị của điện kế từ điện tuỳ thuộc chiều dòng điện, trong khi điện kế điện từ lại không bị ánh hưởng bởi chiều dòng điện.
- 4- Cho biết những điểm khác nhau của điện kế điện động và sắt điện động?
- 5- Cho biết cấu tạo của điện kế từ điện? Nhiệm vụ của lò xo xoấn?

CHUONG 3

ĐO DÒNG ĐIỆN VÀ ĐIỆN ÁP DC

§3.1- DAI CUONG

Điện kế từ điện chỉ đo được dòng điện DC và có thang đo chia độ đều nên thường được dùng làm cơ cấu chỉ thị cho ampere kế và volt kế DC.

Tuy nhiên, do trị số I_{FS} và V_{FS} của điện kế từ điện có trị số nhỏ nên muốn đo những giá trị dòng điện và điện áp lớn hơn phải dùng biện pháp mở rộng thang đo.

Điện kế từ điện có ký hiệu trên sơ đồ như hình 3.1.

§3.2- ĐO DÒNG ĐIỆN DC

1- Đo dòng điện nhỏ hơn IFS

- Cách đo: đặt <u>điên kế nối tiếp</u> với dòng điện cần đo theo đúng chiều dương âm của điện kế như hình 3.2.

Hình 3.2: Đo dòng điện trực tiếp bằng điện kế

Trị số đồng điện lớn nhất có thể đo được chính là trị số I_{FS} của điện kế.

2- Mở rộng thang đo cho điện kế

Để có thể đo được những dòng điện có trị số lớn hơn I_{ES} thì phải mở rộng thang đo bằng cách ghép thêm điện trở song song với điện kế (ghép shunt) để rẽ dòng điện như hình 3.3.

Hình 3.3: Mở rộng thang đo bằng điện trở shunt

- Cách tính trị số điện trở shunt:

Giả thiết sử dụng điện kế có $I_{FS} = 50 \mu A$, $R_G = 2k\Omega$, $V_{FS} = 0.1 V$.

 \mathring{O} thang đo $50\mu A$, dòng điện chỉ qua điện kế, điện kế có điện trở là $R_G = 2k\Omega$. Kim quay hết khung, điện áp trên điện kế là $V_{FS} = 0.1V$.

 \mathring{O} thang đo 250 μA , điện trở R_1 là điện trở shunt được tính sao cho khi đo dòng điện 250 μA thì dòng qua điện kế vẫn là 50 μA , dòng điện còn lại sẽ qua R_1

Ta có:
$$I_{R1} = I_{thang} - I_{FS}$$
.

Tương tự cho các thang đo còn lại. Công thức tính trị số điện trở shunt cho các thang đo là:

$$R_{S} = \frac{V_{FS}}{I_{thing} - I_{FS}}$$

Thí dụ: thang 250μA có trị số điện trở shunt là:

$$R_1 = \frac{0.1}{250.10^{-6} - 50.10^{-6}} = 500\Omega$$

Thí dụ: thang 50mA có trị số điện trở shunt là:

$$R_x = \frac{0.1}{50.10^{-3} - 50.10^{-6}} \approx 2\Omega$$

Sơ đồ hình 3.4 là mạch miliampere kế và ampere kế nhiều thang đo có cách ghép điện trở shunt kiểu khác để mở rộng thang đo. Với cách ghép này, điện trở nội của máy đo sẽ có trị số lớn hơn so với cách trên.

Thí dụ: ở thang đo 10mA, điện kế (2000Ω) sẽ nối tiếp với điện trở 3000Ω và cả 2 sẽ song song với 4 điện trở còn lại.

Hình 3.4: Milliampere kế và ampere kế nhiều thang đo

§3.3- ĐO ĐIỆN ÁP DC

1- Đo điện áp nhỏ hơn V_{FS}

- Cách đọ: đặt <u>điên kế song song</u> với hai điểm có điện áp cần đo đúng chiều dương âm của điện kế như hình 3.4.

<u>Hình 3.5</u>: Đo điện ấp trên R_I trực tiếp bằng điện kế

. Trị số điện áp lớn nhất có thể đo được chính là trị số $V_{\rm FS}$ của điện kế.

2- Mở rộng thang đo cho điện kế làm volt kế

Để có thể đo được những điện áp có trị số lớn hơn $V_{\Gamma S}$ thì phải mở rộng thang đo bằng cách ghép thêm điển trở nối tiếp với điện kế để phân áp như hình 3.6.

- Cách tính trị số điện trở phụ ghép nổi tiếp:

Giả thiết sử dụng điện kế có $I_{ES} = 50\mu A$, $R_G = 2k\Omega$, $V_{ES} = 0.1V$.

 \mathring{G} thang đo 0.1V, điện áp chỉ đặt trên điện kế, điện kế có điện trở là $R_G=2k\Omega$. Khi kim quay hết khung thì điện áp trên điện kế là $V_{ES}=0.1V$ và dòng qua điện kế là $I_{ES}=50\mu A$.

 \vec{O} thang đo 2,5V, điện trở R_1 là điện trở phụ được tính sao cho khi đo điện áp 2,5V thì điện áp trên điện kế vẫn là $V_{FS}=0,1V$, điện áp còn lại sẽ giảm qua R_1

Ta có:
$$V_{Ri} = V_{thang} - V_{FS}$$
.

Hình 3.6: Mở rộng thang đo bằng điện trở ghép nối tiếp

Tương tự cho các thang đo còn lại. Công thức tính trị số điện trở phụ cho các thang đo là:

$$\begin{split} R_P &= \frac{V_{thomg} - V_{TS}}{I_{FS}} = \frac{V_{thomg}}{I_{FS}} - \frac{V_{TS}}{I_{FS}} \\ R_P &= \frac{V_{thomg}}{I} - R_G \end{split}$$

hay

Thí dụ: thang 2,5V có trị số điện trở phụ là:

$$R_1 = \frac{2.5}{50.10^{-6}} - 2.10^3 = 48k\Omega$$

Thí dụ: thang 50V có trị số điện trở phụ là:

$$R_3 = \frac{50}{50 \cdot 10^{-6}} - 2.10^3 = 998k\Omega$$

Hình 3.6 có điện trở phụ riêng cho từng thang đo. Một cách mở rộng thang đo khác như hình 3.7, trong đó các điện trở phụ của các thang đo được ghép nối tiếp nhau.

Hình 3.7: Các điện trở phụ ghép nối tiếp nhau

Trường hợp này, điện trở phụ lần lượt tính theo công thức:

$$R_{1} = \frac{V_{thimg}}{I_{IN}} - R_{G}$$

$$R_{2} = \frac{V_{thimg}}{I_{IN}} - (R_{G} + R_{1})$$

$$R_{3} = \frac{V_{thimg}}{I_{IN}} - (R_{G} + R_{1} + R_{2})$$

Hình 3.8: Mạch volt kế DC 4 thang đo

Sơ đồ hình 3.8 là mạch một volt kế DC dùng điện kế có I_{ES} = $50\mu A$, R_G = $2k\Omega$, V_{ES} = 0.1V với các điện trở phụ có trị số cụ thể.

Độc giả có thể tự tính các điện trở phụ trên với volt kế dùng điện kế có $I_{FS}=100\mu A$, $R_G=1.5k\Omega$, $V_{FS}=0.15V$ theo hai cách trên.

§3.4- NÔI TRỞ CỦA AMPERE KẾ VÀ VOLT KẾ

Điện trở trong máy đo được gọi là nội trở của máy đo.

1- Nội trở của ampere kế DC

 \mathring{O} thang đo nhỏ nhất của máy đo dòng điện thì nội trở chính là điện trở R_G của điện kế. \mathring{O} các thang đo khác, nội trở chính là điện trở R_G song song với điện trở shunt của thang đo đó.

Thí dụ: hình 3.3, thang $250\mu A$ có điện trở shunt là 500Ω nên nội trở của thang này là:

$$R_{1(250 \text{uA})} = 500\Omega // 2k\Omega = 400\Omega$$

2- Nôi trở của volt kế DC

 \mathring{O} thang đo nhỏ nhất của máy đo điện áp thì nội trở cũng chính là điện trở R_G của điện kế. \mathring{O} các thang đo khác, nội trở chính là điển trở R_G nối tiếp với điện trở phụ của thang đo đó.

Thí dụ: hình 3.5, thang 2,5V có điện trở phụ là $48k\Omega$ nên nội trở của thang này là:

$$R_{i(2.5V)} = 2k\Omega + 48k\Omega = 50k\Omega$$

Mỗi thang đo sẽ có giá trị nội trở riêng. Để có khái niệm chung về nội trở của volt kế DC, người ta định nghĩa: độ nhạy của volt kế DC chính là nội trở ở thang đo IV và được tính theo công thức:

$$S = R_{die,1} = \frac{1}{I_{IS}}$$
 (S: sensitivity - d\(\text{0}\) nhay)

Độ nhạy càng lớn thì kết quả đo được càng ít sai số.

Thí dụ 1: volt kế dùng điện kế có $I_{FS} = 50\mu A$ thì độ nhạy của volt kế là: $S = \frac{1}{50.10^{-6}} = 20 k\Omega$

Trên máy đo ghi: $20k\Omega/VDC$ (ở góc dưới bên trái mặt kính)

Thí dụ 2: Volt kế dùng điện kế có $I_{FS} = 100\mu A$ thì độ nhạy của volt kế là: $S = \frac{1}{100 \cdot 10^{-6}} = 10 k\Omega$

Trên máy đo ghi: 10kΩ/VDC (ở góc dưới bên trái mặt kính)

3- Ảnh hưởng của nội trở khi đo

a) Nội trở của máy đo dòng điện: (mA kế hay A kế)

Dòng I trong hình 3.9a có trị số theo tính toán là:

$$I = \frac{U_{IX}}{R} = \frac{0.2}{500} = 0.4 mA$$

Nếu dùng máy đo dòng điện thang $250\mu A$ thì mạch có thêm nội trở của máy đo là $R_{i(250\mu A)}=400\Omega$ và thành hình 3.9b.

Hình 3.9b: Đo dòng điện sẽ gây ra sai số do nội trở

Dòng I bây giờ khi đo được sẽ có trị số:

$$I = \frac{U_{DX}}{R + R} = \frac{0.2}{500 + 400} = 0.22 mA$$

Như vậy kết quả đo được sẽ bị sai số so với tính toán.

b) Nội trở của Volt kế:

Trong mạch điện hình 3.10a, điện áp trên điện trở R_{\pm} được tính theo công thức:

$$U_{R1} = U_{DC} \frac{R_1}{R_1 + R_2} = 10 \frac{200.10^3}{200.10^3 + 200.10^3} = 5V$$

Hình 3.10b: Đo điện áp sẽ gây ra sai số do nôi trở

Nếu dùng volt kế thang 10V để đo thì sẽ có nội trở là $R_{1(10V)} = 200k\Omega$ ghép song song với $R_1 = 200k\Omega$. Điện trở tương đương của R_1 và R_1 chỉ còn $100k\Omega$. Điện áp đo được trên mạch như hình 3.8b sẽ là:

$$U_{R1} = U_{DC} \frac{R_1 // R_2}{(R_1 // R_1) + R_2} = 10 \frac{100.10^3}{100.10^3 + 200.10^3} = 3.3V$$

- c) Nhận xét:
- khi dùng ampere kế hay volt kế để đo dòng và áp đều bị sai số do nội trở của máy đo.
 - ampere kế có nội trở càng nhỏ sẽ ít bị sai số
 - Volt kế có nội trở càng lớn sẽ ít bị sai số
- điện kế có I_{FS} càng nhỏ, R_G càng lớn thì khi được dùng làm cơ cấu chỉ thi cho ampere kế và volt kế sẽ ít gây ra sai số.

4- Thang đo chung của volt kế và milliampere kế

Khi dùng trực tiếp điện kế để đo dòng điện thì trị số của thang đo là I_{FS} , nhưng nếu để đo điện áp thì trị số của thang đo là V_{FS} . Trên máy đo đa năng có một vị trí thang đo ghi 2 trị số, đó chính là I_{FS} và V_{FS} .

Từ 2 trị số này ta có thể tính ra giá trị điện trở một chiều của điện kế theo công thức:

$$R_G = \frac{V_{FS}}{I_{FS}}$$

Thí dụ: các máy đo Trung quốc có thang đo chung ghi

$$-50\mu A = 0.1V \implies I_{ES} = 50\mu A, V_{ES} = 0.1V \implies R_G = 2k\Omega$$

hay
$$-100\mu A - 0.15V \implies I_{FS} = 100\mu A, V_{FS} = 0.15V \implies R_G = 1.5k\Omega$$

<u>Hình 3.11</u>: Mặt ngoài máy đo VOM (volt kế, ohm kế và miliampere kế)

Câu hỏi

- 1- Phân biệt cách đo của ampere kế và volt kế? Nếu đo sai theo cách ngược lại sẽ xảy ra hiện tượng gì? Giải thích.
- 2- Mở rộng thang đo cho mA kế bằng những điện trở shunt độc lập nhau (hình 3.3) và bằng những điện trở shunt nối tiếp nhau (như hình 3.4) có ưu điểm và nhược điểm như thế nào?
- 3- Mở rộng thang đo cho volt kế bằng những điện trở phụ độc lập nhau (hình 3.6) và bằng những điện trở phụ nối tiếp nhau (như hình 3.7) có ưu điểm và nhược điểm như thế nào?

Bài tập

- 1- Tính điện trở shunt cho milliampere kế có 4 thang đo: $100\mu A$, $500\mu A$, 5mA và 25mA. Cho biết điện kế từ điện có I_{FS} = $100\mu A$, R_G = $1.5k\Omega$.
- 2- Tính điện trở phụ R_P cho volt kế có 4 thang đo: 0.3V-10V-50V-250V. Cho biết điện kế từ điện có $I_{FS}=500\mu A,\,R_G=600\Omega$.
- 3- Cho hiết độ nhạy của volt kế nếu dùng các loài điện kế từ điện có trị số I_{FS} như sau: 50μA, 100μA, 500μA và 1mA.
- 4- Tính trị số các điện trở shunt trong mạch điện sau để mở rộng các thang đo dòng điện theo hình vẽ.

5- Tính trị số các điện trở phụ trong mạch điện sau để mở các thang đo điện áp theo hình vẽ.

CHƯƠNG 4 ĐO ĐIỆN ÁP VÀ DÒNG ĐIỆN AC

§4.1- ĐẠI CƯƠNG

Để đo điện áp và dòng điện AC, có thể dùng điện kế từ điện, điện từ hay điện động để làm cơ cấu chỉ thị. Trong các máy đo chuyên dùng để đo điện áp AC hay đo dòng điện AC và chỉ có một thang đo duy nhất thì thường điện kế điện từ, lúc đó, việc tính toán điện trở phụ hay điện trở shunt sẽ đơn giản.

Đối với các loại máy đo đa năng, thường chọn điện kế từ điện vì loại này có thang chia độ đều. Tuy nhiên, điện kế từ điện chỉ đo được dòng điện DC, để đo được điện áp và dòng điện AC, trong máy đo phải có mạch nắn điện để đổi từ dòng điện AC ra DC.

Trong chương này chỉ phân tích mạch đo điện áp và dòng điện AC trong máy đo dùng điện kế từ điện.

§4.2- ĐO ĐIỆN ÁP AC

1- Mạch điện

2- Nguyên lý

Trong sơ đồ hình 4.1, địod D₁ là mạch nắn điện bán kỳ, lấy bán kỳ dương cho dòng điện qua cùng chiều âm dương của điện kế, diod D2 dẫn điện ở bán kỳ âm, có tác dụng nối tắt dòng điện qua điên kế.

Mạch nắn điện bán kỳ cho điện áp ra trung bình được tính theo công thức:

$$\overline{U_{DC}} = \frac{U_P}{\pi} = 0.318U_P \qquad (U_P: \text{diện áp đỉnh})$$

hay
$$\overline{U_{DC}} = \frac{\sqrt{2}U_{AC}}{\pi} = 0.45U_{AC}$$
 (U_{AC}: điện áp hiệu dụng)

Thí dụ: khi đo điện áp AC có trị số 10V thì điện áp DC trung bình đặt vào máy đo chỉ là:

$$\overline{U_{DC}} = 0.45.10 = 4.5V$$

Điện trở phụ cho từng thang đo của volt kế AC được tính theo công thức:

$$R_P = 0.45 \frac{U_{thang} - V_D}{I_{ES}} - R_G$$
 (V_D: điện áp trên diod)

Diod nắn điện dùng trong volt kế AC thường là diod mũi nhọn nên có $V_D = 0.2V$.

Thí dụ: giả thiết dùng điện kế có $I_{FS} = 50\mu A$, $R_G = 2k\Omega$, $V_{FS} = 2k\Omega$ 0,1V, thang 10V có điện trở phu là

$$R_1 = 0.45 \frac{10 - 0.2}{50.10^{-6}} - 2.10^3 = 86.2 k\Omega$$

Thang 250V có điện trở phụ là:

$$R_3 = 0.45 \frac{250 - 0.2}{50.10^{-6}} - 2.10^3 = 2246.2k\Omega$$

<u>Lưu ý: khi đo AC không cần phân biệt 2 đầu đo dương và âm.</u>

3- Mạch nắn điện toàn kỳ

Volt kế AC có thể dùng mạch nắn điện toàn kỳ có sơ đồ mạch như hình 4.2a (2 diod và 2 R_P) hay hình 4.2b (cầu diod và 1 R_P).

a) Dùng 2 diod và 2 R_P cho mỗi thang đo:

Khi có bán kỳ dương, diod D_1 dẫn, đồng điện qua điện kế theo chiều mũi tên liền nét, qua điện trở phụ R_P bên phải. Khi có bán kỳ âm, diod D_2 dẫn, dòng điện qua điện kế theo chiều mũi tên rời nét, qua điện trở phụ R_P bên trái.

Mạch nắn điện toàn kỳ cho diện áp ra trung bình được tính theo công thức:

$$\overline{U_{DC}} = \frac{2U_p}{\pi} = 0.636U_p \qquad (U_P: \text{diện áp đỉnh})$$
 hay
$$\overline{U_{DC}} = \frac{2\sqrt{2}U_{AC}}{\pi} = 0.9U_{AC} \qquad (U_{AC}: \text{diện áp hiệu dụng})$$

Thí dụ: khi đo điện áp AC có trị số 10V thì điện áp DC trung bình đặt vào máy đo chỉ là:

$$\overline{U_{190}} = 0.9.10 = 9V$$

Điện trở phụ cho từng thang đo của volt kế AC được tính theo công thức:

$$R_p = 0.9 \frac{U_{thing} - V_D}{I_{ES}} - R_o$$
 (V_D: điện áp trên diod)

Thí dụ: giả thiết dùng điện kế có $I_{FS}=50\mu A$, $R_G=2k\Omega$, $V_{FS}=0.1V$, thang 10V có điện trở phụ là:

$$R_P = 0.9 \frac{10 - 0.2}{50.10^{-6}} - 2.10^3 = 174.4k\Omega$$

b) Dùng 4 diod và 1 R_P cho mỗi thang đo:

Khi có bán kỳ dương ở ngõ +, dòng điện theo chiều mũi tên liền nét qua R_P , D_I , điện kế, qua D_3 rồi trở về nguồn ở ngõ -.

Khi có bán kỳ âm ở ngõ + (hay có bán kỳ dương ở ngõ -), dòng điện theo chiều mũi tên rời nét qua D_2 , điện kế, D_4 , qua R_P rồi trở về nguồn ở ngõ +.

Trường hợp này, dòng điện qua 2 diod nên công thức tính điện trở phụ có thay đổi (giảm $2V_D$):

$$R_P = 0.9 \frac{U_{thang} - 2V_D}{I_{tot}} - R_C$$

4- Nội trở của volt kế AC (độ nhay)

Tương tự volt kế DC, công thức tính nội trở của volt kế AC theo từng thang đo là:

a) Mạch nắn điện bán kỳ: $R_r = 0.45 \frac{V_{thong}}{I_{ES}}$

b) Mạch nắn điện toàn kỳ: $R_{j} = 0.9 \frac{V_{thang}}{I_{ES}}$

Trên máy đo cũng có ghi độ nhạy của volt kế AC là:

 $S = R_{i,iCT} = 0.45 \frac{1}{I_{is}}$ (nắn điện bán kỳ)

hay:

$$S = R_{HCV} = 0.9 \frac{1}{I_{ES}}$$
 (nắn điện toàn kỳ)

Thí dụ: volt kế AC dùng điện kế có $I_{FS}=50\mu A,$ nắn điện bán kỳ, có độ nhay là:

$$S = 0.45 \frac{1}{50.10^{-6}} = 9k\Omega / VAC$$

Muốn volt kế AC có nội trở lớn (hay có độ nhạy cao) thì phải dùng mạch nắn điện toàn kỳ.

§4.3- ĐO DÒNG ĐIỆN AC

1- Mạch điện

Tương tự volt kế AC, máy đo dòng điện (mA kế AC hay Ampere kế AC) phải có mạch nắn điện.

Mạch điện hình 4.3a là milliampere kế AC dùng mạch nắn điện bán kỳ. Dòng điện trung bình qua điện kế vẫn tính theo công thức:

$$\overline{I_{DC}} = \frac{\sqrt{2}I_{AC}}{\pi} = 0.45I_{AC}$$

Mạch điện hình 4.3b là milliampere kế AC dùng mạch nắn điện toàn kỳ. Dòng điện trung bình qua điện kế vẫn tính theo công thức:

$$\overline{I_{DC}} = \frac{2\sqrt{2}I_{AC}}{\pi} = 0.9I_{AC}$$

$$+ \frac{1}{100} = \frac{1}{100} = 0.9I_{AC}$$

$$+ \frac{1}{100}$$

2- Đo dòng điện AC trị số lớn

a) Đo trực tiếp:

Trong công nghiệp, dòng điện tải của thiết bị điện thường có trị số lớn (từ vài ampere đến vài chục hay vài trăm ampere). Việc

đo dòng điện tải AC sẽ không thể thực hiện bằng phương pháp <u>đo</u> trưc tiếp như đo dòng điện DC hay AC có trị số nhỏ như đã trình bày vì rất nguy hiểm và rất khó chế tạo máy đo có khả năng thích hợp.

Đo bằng phương pháp trực tiếp là gở rời mạch điện cần đo dòng, đặt máy đo nối tiếp với mạch điện như hình 4.4.

Để đo dòng AC có trị số lớn, người ta đo gián tiếp qua bộ biến dòng.

b) Bộ biến dòng: CT (do chữ Current Transformer)

Hình 4.5: Cấu tạo của bộ biến dòng, lõi thép

Về cấu tạo, bộ biến dòng gồm 3 phần chính là:

- Mạch từ là một lõi thép hình vành xuyến (hai chữ C ghép ngược)
- Cuộn đây sơ cấp n_1 là cuộn dây nhận dòng điện tải I_1 có trị số lớn, dây quấn có tiết diện lớn, quấn ít vòng

- Cuộn dây thứ cấp n₂ là cuộn dây cảm ứng đòng điện tải qua mạch từ cho ra đòng I₂, dây quấn có tiết diện nhỏ, quấn nhiều vòng.

Nguyên lý: bộ biến dòng hoạt động như nguyên lý của bộ biến áp, dòng điện ở sơ và thứ cấp tỉ lệ ngược với số vòng dây. Do cuộn sơ cấp có ít vòng, cuộn thứ cấp có nhiều vòng dây nên dòng điện thứ cấp I_2 sẽ có trị số nhỏ hơn dòng I_1 nhiều lần theo công thức:

$$\frac{I_1}{I_2} = \frac{n_2}{n_1}$$

Suy ra:
$$I_2 = I_1 \frac{n_1}{n_2}$$

Tỉ số $\frac{n_1}{n_2}$ còn gọi là tỉ số của biến dòng và là thông số kỹ thuật đặc trưng của biến dòng.

Thí dụ: biến dòng có tỉ lệ 100/1 thì dòng thứ cấp sẽ nhỏ hơn sơ cấp 100 lần. Dòng điện định mức vào sơ cấp là 100A, dòng ra ở thứ cấp là 1A.

Các tỉ số biến dòng theo tiêu chuẩn là: 50/1, 100/1, 250/1, 500/1 và 1000/1.

c) Đo gián tiếp bằng biến dòng:

Trong thực tế, bộ biến dòng không quấn cuộn dây sơ cấp mà lấy dây dẫn điện cấp cho tải cần đo dòng điện để làm sơ cấp. Dòng điện ra ở thứ cấp có trị số nhỏ hơn sẽ được đưa vào máy đo dòng điện (ampere kế hay milliampere kế) như hình 4.6.

Hình 4.6: Đo gián tiếp bằng biến dòng

Máy đo dòng điện AC có bộ biến dòng được gọi là ampere kế kẹp hay ampere kế kềm như hình 4.7.

<u>Hình 4.7:</u> Ampere kế kẹp

Câu hỏi

- 1- Cho biết nhiệm vụ của diod D_2 trong sơ đồ hình 4.1. Nếu không có diod này thì máy có bị ảnh hưởng gì không? Giải thích.
- 2- Nếu không có sơ đồ mạch điện, dựa vào yếu tố nào để có thể biết volt kế AC dùng mạch nắn điện bán kỳ hay toàn kỳ? Giải thích.
- 3- Phân biệt cấu tạo và nguyên lý của biến áp và bộ biến dòng?
 - 4- Cho biết ý nghĩa của tỉ số ghi trên biến dòng.

Bài tấp

- I- Tính trị số các điện trở phụ của volt kế AC có các thang đo: 10V, 50V, 250V và 1000V. Cho biết điện kế từ điện có I_{FS} = 100μA, R_G = 1500 Ω và dùng mạch nắn điện toàn kỳ.
- 2- Tính trị số các điện trở phụ của volt kế AC có các thang đo: 30V, 150V, 300V và 1000V. Cho biết điện kế từ điện có I_{FS} = 50 μ A, R_G = 2000 Ω và dùng mạch nắn điện bán kỳ.

CHUONG 5

ĐO CÔNG SUẤT VÀ ĐIỆN NĂNG

§5.1- ĐO CÔNG SUẤT DÒNG ĐIỆN DC

Để đo công suất của dòng điện một chiều, có thể dùng phương pháp đo gián tiếp hay đo trực tiếp.

1- Đo gián tiếp

Đo gián tiếp là dùng volt kế để đo điện áp và ampere kế để đo dòng điện, sau đó lấy tích số của U và I để có công suất P.

Với cách đo của hình 5.1, điện áp trên volt kế có cả điện áp trên ampere kế nên công suất được tính theo công thức:

$$\begin{aligned} \mathbf{U}_{L} &= \mathbf{U} - \mathbf{U}_{A} \\ \mathbf{P} &= \mathbf{U}_{L}.\mathbf{I}_{L} = (\mathbf{U} - \mathbf{U}_{A}).\mathbf{I}_{L} = \mathbf{U}.\mathbf{I}_{L} - \underline{\mathbf{U}_{A}}.\mathbf{I}_{L}^{2} \end{aligned}$$

Với cách đo này sẽ gây ra sai số do nội trở của ampere kế. Phần sai số là $U_A.I_L^2$.

Với cách đo của hình 5.2, dòng điện trên ampere kế có cá dòng điện qua volt kế nên công suất được tính theo công thức:

$$I_L = I - I_V$$

 $P = I_L . U_L = (I - I_V) . U_L = I . U_L - I_V . U_L$

Với cách đo này sẽ gây ra sai số do nội trở của volt kế. Phần sai số là $\underline{I_V.U_L}$.

2- Đo trực tiếp bằng watt kế

a) Watt kế:

Watt kế là loại cơ cấu chỉ thị điện động gồm 2 cuộn dây: cuộn dây đòng điện (1-2) là cuộn cố định quấn ít vòng dây, dây có tiết diện lớn; cuộn dây điện áp (3-4) là cuộn dây di động quấn nhiều vòng dây, dây có tiết điện nhỏ. Ký hiệu của watt kế như hình 5.3.

Khi đo công suất, dòng điện tải qua cuộn dây 1-2, điện áp trên tải tỉ lệ với dòng điện qua cuộn dây điện áp 3-4.

Hình 5.4: Watt kế có cuộn dòng điện mắc trước, cuộn điện áp mắc sau

Góc quay của kim chỉ thị trên watt kế được tính theo công

$$\alpha = k.I_1.I_S$$

$$I_{\infty} = \frac{U}{R_{\infty} + R_{\Sigma}}$$
 (R₂ là điện trở của cuộn điện áp)

Suy ra:
$$\alpha = kI_1 \frac{U}{R_S + R_S}$$
 (U \(\text{\text{\$\sigma}}\) U_L)

Như vậy góc quay α sẽ tuỳ thuộc công suất tiêu thụ trên tải là $P = I_L.U_L$. Điện trở R_S dùng để giới hạn dòng điện qua cuộn dây điện áp là cuộn dây di động. Khi điện áp U càng lớn thì điện trở R_S càng lớn để có I_S gần như hằng số.

Hình 5.5: Watt kế có cuộn điện áp mắc trước, cuộn dòng điện mắc sau

Việc mắc cuộn dây điện áp trước hay sau cuộn dây dòng điện đều có gây ra sai số nhỏ giống như trong mạch đo công suất gián tiếp bằng voit kế và ampere kế.

§5.2- ĐO CÔNG SUẤT ĐÒNG ĐIỆN AC

Tương tự mạch đo công suất DC, để đo công suất AC cũng có thể dùng phương pháp đo gián tiếp. Tuy nhiên trong thực tế người ta chỉ dùng cách đo trực tiếp bằng watt kế.

Trong mạch xoay chiều, điện áp và dòng điện trên tải là:

$$U = U_m \sin \omega t$$
 $I = I_m \sin(\omega t + \phi)$

Góc quay α sẽ tỉ lệ với dòng điện tải qua cuộn dây dòng điện và tỉ lệ với điện áp đặt lên cuộn dây điện áp nối tiếp với điện trở R_s .

Hình 5.7: Watt kế đo công suất xoay chiều 3 pha

Hình 5.6 và 5.7 là cách mắc watt kế để đo công suất xoay chiều l pha và 3 pha.

§5.3- ĐO ĐIỆN NĂNG

1- Cấu tạo của công tơ điện (điện năng kế)

Để đo điện năng tiêu thụ của tải trong mạch điện xoay chiều với tần số xác định, người ta dùng công tơ điện hay điện năng kế. Tùy theo tải tiêu thụ là một pha hay ba pha mà người ta dùng loại công tơ điện tương ứng. Công tơ điện có cơ cấu hoạt động dựa trên nguyên tắc cơ cấu cảm ứng điện từ, và gồm các phần như sau (hình 5.8).

Hình 5.8: Cấu tạo của điện năng kế một pha

- Cuộn dây dòng điện (số vòng ít, tiết diện dây lớn) được quấn trên lỗi thép A, và mắc nối tiếp với tải.
- Cuộn điện áp (số vòng nhiều, tiết diện dây nhỏ) được quấn trên lõi thép B, và mắc song song với tải.
- Dĩa nhôm nằm trong khe hở của mạch từ cuộn áp và mạch từ cuộn dòng.
- Cơ cấu hiển thị số có bánh răng ăn khởp với trục quay của dĩa nhôm.

- Trục quay.
- Bánh răng khía và bánh số.
- Nam châm vĩnh cửu.
- Ngoài ra để chống lấy cấp điện năng, người ta còn bố trí thêm trên trục quay các bánh răng và bánh số chỉ quay theo một chiều, không quay được theo chiều ngược lại.

2- Nguyên lý làm việc

Khi có dòng điện đi vào 2 cuộn dây áp và cuộn dây dòng sẽ tạo ra từ thông ϕ trên các lõi thép. Điện áp V cung cấp cho tải tạo nên dòng i $_V$ trong cuộn dây điện áp và từ thông ϕ_V trong lõi thép B, đồng thời trên cuộn dây dòng điện cũng sinh ra từ thông ϕ_I trong lõi thép A.

Hai từ thông ϕ_V và ϕ_I lệch pha nhau một góc 90^0 và móc vòng qua nhau xuyên qua đĩa nhôm, tạo ra dòng điện xoáy trên dĩa nhôm. Do có sự tương tác giữa từ thông và dòng điện xoáy nên tạo ra lực điện từ làm quay dĩa nhôm, dòng điện và điện áp càng lớn thì từ thông càng mạnh làm cho lực điện từ càng mạnh, dẫn tới tốc độ quay của dĩa nhôm càng nhanh, kéo theo hệ thống bánh răng chuyển động làm xoay các chữ số chỉ lượng điện năng tiêu thụ của tải. Do đó, điện năng tiêu thụ của tải phụ thuộc vào vòng quay của dĩa nhôm.

3- Ký hiệu trên công tơ điện

Thường trên công tơ điện sẽ có những ký hiệu sau:

220V 10(20)A 50Hz $600^{r}/kWh$ K = 0.2 nghĩa là:

- Điện áp định mức 220V
- Dòng điện cho phép qua công tơ 10 ÷ 20A
- Tần số 50Hz
- 600 /kWh khi đĩa nhôm quay 600 vòng, tải tiêu thụ 1 kW

- K = 0.2 đĩa nhôm quay một vòng, tải tiêu thụ 0.2W

4- Kiểm tra và hiệu chỉnh công tơ điện

Để kiểm tra xem công tơ điện chạy có chính xác không ta có thể kiểm tra và hiệu chỉnh như sau:

- Mắc công tơ với phụ tải 100W
- Tính số vòng quay trong 1 phút là:

$$N_{1 \text{ phút}} = \frac{600 \times 100}{60 \times 1000} = 1 \text{ vòng/phút}$$

 Hiệu chỉnh: Nếu đĩa nhôm quay nhanh hơn so với kết quả kiểm tra trên, ta hiệu chỉnh nam châm vĩnh cửu ra xa đĩa nhôm. Còn dĩa nhôm quay chậm, ta sẽ hiệu chỉnh nam chám gần đĩa nhôm.

5- Cách mắc công tơ điện

Hình 5.9: Sơ đồ mắc dây công tơ điện

Để mắc công tơ điện một cách chính xác, ta phải xem sơ đồ của từng loại công tơ. Nếu ta mắc không đúng dây nguồn vào và dây của phụ tải sẽ dẫn đến làm dĩa nhôm không quay, hoặc quay ngược làm công tơ bị hư hỏng. Thông thường cách mắc như sau:

- Đầu số 1 và 3 sẽ mắc ra nguồn điện áp vào.
- Đầu số 2 và 4 sẽ mắc ra phụ tải

6- Đo điện năng của tải ba pha

Để đo điện năng của tải ba pha, ta có các cách đo như sau:

a) Công tơ điện 3 pha 3 phần tử:

Công tơ điện 3 pha 3 phần tử dùng cho hệ thống điện 3 pha 4 dây. Cách mắc công tơ điện 3 pha 3 phần tử được trình bày như hình 5.10. Cả 3 phần tử sẽ làm quay 3 đĩa nhôm có cùng trục quay, hoặc 1 dĩa nhôm. Trục quay này được các bánh răng truyền động sang bộ số để hiển thi kết quả đo.

Hình 5.10: Công tơ điện 3 pha 3 phần tử

(1-2-3: cuộn áp; 4-5-6: cuộn dòng)

b) Công tơ điện 3 pha 2 phần tử:

Công tơ điện 3 pha 2 phần tử được cấu tạo như loại 3 phần tử, nhưng có 2 phần tử làm quay 2 đĩa nhôm. Cách mắc mạch như hình 5.11.

Hình 5.11: Công tơ điện 3 pha 2 phần tử

(1-2: cuộn áp; 3-4: cuộn dòng)

Câu hỏi

- 1- Trường hợp phụ tải có điện áp cao hay có dòng điện lớn hoặc có cả 2 yếu tố trên, mạch đo điện năng tiêu thụ của phụ tải sẽ được thiết kế như thế nào?
- 2- Giải thích ý nghĩa của các thông số ghi trên công tơ như sau: $110V = 30A = 50Hz = 1200^{r}/kWh = K = 0.1$.

CHUONG 6

VOLT KÉ VÀ AMPERE KÉ ĐIỆN TỬ

§6.1- VOLT KẾ DC ĐIỆN TỬ

Volt kế DC dùng điện kế từ điện có nội trở thay đổi theo thang đo. Thang đo điện áp càng nhỏ thì nội trở càng nhỏ, nếu nội trở của máy đo nhỏ đáng kể so với điện trở bên ngoài của mạch đo sẽ gây ra sai số lớn. Để tránh sai số do nội trở của máy đo, người ta dùng linh kiện điện tử trong máy đo và gọi là volt kế điện tử.

1- Volt kế dùng transistor lưỡng nổi

a) Mạch điện:

Trong sơ đồ hình 6.1, hai transistor T_1 và T_2 , là hai transistor cùng tên hay là transistor đôi để có thông số kỹ thuật giống nhau, được ráp theo kiểu khuếch đại vi sai, tạo thành mạch cầu đo. Điện kế từ điện G được đặt giữa 2 cực E để nhận dòng điện khi có sự chênh lệch điện áp giữa V_{E1} và V_{E2} .

Điện áp cần đo có thể đặt vào cực B_1 (hay cực B_2) so với mass hoặc đặt vào giữa 2 cực B theo kiểu vi sai.

Hình 6.1: Volt kế dùng transistor BJT

b) Nguyên lý:

Bình thường, hai transistor được phân cực giống nhau nên $V_{E1} = V_{F2}$. Lúc đó không có dòng qua điện kế, kim chỉ mức 0V.

Giả sử điện áp cần đo V_1 đặt vào cực B_1 , và nếu $V_1>0V$ sẽ làm T_1 dẫn mạnh hơn T_2 . Lúc đó:

$$V_{B1} > V_{B2} \Rightarrow I_{B1} > I_{B2} \Rightarrow I_{E1} > I_{E2} \Rightarrow V_{E1} > V_{E2}$$

Như vậy sẽ có dòng qua điện kế từ cực E_1 sang cực E_2 , kim điện kế quay theo chiều thuận chỉ điện áp dương.

Ngược lại, nếu $V_1 < 0V$ sẽ làm T_1 dẫn yếu hơn T_2 . Lúc đó:

$$V_{B1} < V_{B2} \Rightarrow I_{B1} < I_{B2} \Rightarrow I_{E1} < I_{E2} \Rightarrow V_{E1} < V_{E2}$$

Như vậy sẽ có dòng qua điện kế từ cực E_2 sang cực E_1 , kim điện kế quay theo chiều ngược chỉ điện áp âm.

Mạch sẽ được tính toán sao cho khi T_1 dẫn bão hoà thì mức chênh lệch điện áp $V_{\rm E1}$ - $V_{\rm E2}$ = 1V.

Điện trở R_S được tính sao cho ở mức điện áp này kim điện kế quay hết khung.

Thí dụ: điện kế loại $I_{FS} = 50 \mu A$, $R_G = 2k\Omega$. Tính trị số R_S .

$$R_S = \frac{1}{I_{FS}} - R_G = \frac{1}{50.10^{-6}} - 2.10^3 = 18k\Omega$$

Để có thể đo nhiều mức điện áp khác nhau, ở ngõ vào sẽ có cầu phân áp như các sơ đồ giới thiệu trong phần sau.

c) Mạch điều chỉnh mức 0V:

Trong thực tế, hai transistor và các điện trở sẽ không giống nhau một cách lý tưởng, do đó, khi không đo kim sẽ không ở vị trí 0V.

Để bù trừ cho điều kiện cân bằng lý tưởng, mạch phải có biến trở điều chỉnh VR như hình 6.2. Trước khi đo phải điều chỉnh cho kim chỉ 0V, ứng với trạng thái $V_{\rm EI}=V_{\rm E2}$.

Hình 6.2: Volt kế có biến trở điều chỉnh 0V

2- Volt kế dùng transistor JFET

a) Mạch điện: Hình 6.3: Volt kế dùng JFET

Trong sơ đồ hình 6.3, T_3 là JFET kênh N ráp kiểu D chung. Việc dùng JFET nhằm mục đích tăng tổng trở ngõ vào của máy đo, điều này có tác dụng làm giảm sai số do ảnh hưởng bởi nội trở của volt kế như đã phân tích trong chương 3. Trị số điện trở ngõ vào của máy đo, chính là mạch phân áp, có thể chọn rất lớn và giống nhau cho tất cả thang đo như trong sơ đồ $(1M\Omega)$.

b) Nguyên lý:

Điện áp cần đo đặt vào hai đầu của cầu phân áp (từ R_1 đến R_4). Như vậy, nội trở của máy đo có trị số không đổi cho tất cả thang đo.

Điện áp đặt vào cực G của FET sẽ tỉ lệ theo trị số điện trở của thang đo được chọn. Thí dụ:

- để đo điện áp $V_1 = 0.5V$ phải chọn thang đo 1V để nhận điện áp trên toàn mạch phân áp. Điện áp tối đa đo được là 1V.
- để đo điện áp V₁ = 2V phải chọn thang 5V. Lúc đó điện áp nhân được ở cực G là:

$$V_G = V_1 \frac{R_2 + R_3 + R_4}{R_1 + R_2 + R_3 + R_4}$$
$$V_G = 2 \frac{(100 + 60 + 40) \cdot 10^3}{(800 + 100 + 60 + 40) \cdot 10_3} = 0.4V$$

- nếu điện áp $V_1 = 5V$ thì điện áp nhận được ở cực G là 1V.

Do FET rấp kiểu cực D chung, transistor T_1 rấp kiểu E chung nên độ khuếch đại điện áp là $A_V=1$. Điện áp đặt vào cực G của T_3 cũng chính là V_{E1} - V_{E2} .

Biến trở VR cũng dùng để điều chỉnh mức 0V, bù trừ cho điều kiện lý tưởng của mạch.

c) Volt kế dùng 2 JFET

Trong sơ đồ hình 6.4 dùng 2 JFET được dùng làm mạch vi sai. Với mạch này, chỉ cần dùng nguồn $+V_{CC}$ và biến trở điều chỉnh mức 0V đặt giữa 2 điện trở R_S .

Trị số điện trở của cầu phân áp có thể chọn rất lớn để làm tăng nội trở của máy đo. Đây là ưu điểm rất lớn của volt kế điện tử.

Hình 6.4: Volt kế dùng 2 JFET

§6.2- VOLT KẾ AC ĐIỆN TỬ

1- Đại cương

Trong các máy đo điện tử, linh kiện và điện kế đều làm việc với nguồn một chiều. Do đó, khi đo điện áp xoay chiều phải dùng mạch nắn điện chuyển sang điện áp một chiều trước hoặc sau mạch khuếch đại điện tử.

Trong volt kế AC loại từ điện, điện áp lấy ra sau mạch nắn điện có giá tri trung bình là:

- mạch nấn điện bán kỳ có:

$$\overline{V}_{DC}^{-} = \frac{V_{P}}{\pi} = \frac{\sqrt{2}V_{DC}}{\pi} = 0.45V_{DC}$$

- mach nắn điện toàn kỳ có:

$$\overline{V_{i\kappa}} = \frac{2V_{i'}}{\pi} = \frac{2\sqrt{2}V_{i\ell'}}{\pi} = 0.9V_{i\ell}$$

2- Volt kế AC điện tử

Hình 6.5: Volt kế AC dùng mạch nắn điện bán kỳ

Hình 6.6: Volt kế AC nắn điện toàn kỳ đặt sau mạch khuếch đại

Trong mạch volt kế AC hình 6.5, diod D nắn điện bán kỳ trước khi đưa vào mạch khuếch đại dùng op-amp. Điện trở R_2 được tính toán sao cho dòng điện qua điện kế G hiển thị giá trị điện áp AC cần đo được đặt ở ngô vào.

Trong mạch volt kế AC hình 6.6, cầu diod thực hiện mạch nấn điện toàn kỳ được đặt sau mạch khuếch đại là một cách thiết kế khác của volt kế điện tử.

3- Hệ số dạng sóng

Tuy nhiên, khi cho kết quả trên cơ cấu chỉ thị thì giá trị điện áp lại là giá trị hiệu dụng. Người ta đưa ra khái niệm hệ số dạng sóng của điện áp cần đo là tỉ số giữa điện áp hiệu dụng và điện áp

trung bình như sau:
$$k_i = \frac{V_{Al}}{V_{IX}}$$
 (F: form – hình dạng)

Thí dụ: mạch nắn điện bán kỳ dòng điện xoay chiều hình sin có hệ số dạng sóng là: $k_F = \frac{V_{AC}}{V_{IX}} = \frac{1}{0.45} = 2.22$

- mạch nắn điện toàn kỳ dòng điện xoay chiều hình sin có hệ số dạng sóng là: $k_F = \frac{V_{AC}}{V_{DC}} = \frac{1}{0.9} = 1,11$

Trường hợp đo các dòng điện không phải hình sin, phải xác định hệ số dạng sóng của dòng điện đó, để xác định mức sai số, từ đó quy đổi sang giá trị thực của điện áp cần đo.

Thí dụ: khi đo điện áp của dòng điện hình vuông thì phải xác định giá trị hiêu dụng và giá trị trung bình:

- giá trị hiệu dụng:
$$V_{hd} = \left[\frac{1}{T} \int_{0}^{t} u^2 dt\right]^{1/2} = V_p$$
 (p: đính)

- giá trị trung bình khi nắn toàn kỳ:
$$\overline{V_{IK'}} = \frac{2}{T} \int_{0}^{T^{2}} u t = V_{P}$$

Như vậy hệ số dạng sóng của hình vuông là:

$$k_{F} = \frac{V_{hd}}{\overline{V_{px}}} = \frac{V_{P}}{V_{P}} = 1$$

Khi dùng volt kế điện tử đo điện áp của dòng điện xoay chiều hình vuông sẽ bị sai số do khác hệ số dạng sóng. Mức sai số tương đối là: $e_r = \frac{1.11-1}{1}.100\% = 11\%$

Để có giá trị điện áp đúng khi đo dòng điện hình vuông bằng volt kế định chuẩn theo hình sin thì phải theo qui đổi công thức:

$$V_{\text{thure}} = V_{\text{do dutte}} \cdot \frac{100}{111}$$

4- Volt kế AC dùng FET và nắn điện tăng đôi điện áp

Hình 6.7: Volt kế AC dùng JFET và nắn điện tăng đôi điện áp

Để có tổng trở vào của volt kế lớn, người ta dùng JFET. Trường hợp đo điện áp AC có trị số nhỏ, có thể dùng mạch nắn điện tăng đôi điện áp như hình 6.7.

§6.3- AMPERE KẾ DC VÀ AC ĐIỆN TỬ

1- Đại cương

Trong ampere kế từ điện, dòng điện cần đo sẽ trực tiếp qua điện kế để chỉ thị kết quả (nếu dòng điện có trị số lớn thì dùng điện trở shunt).

Đối với ampere kế điện tử, dòng điện cần đo sẽ được đổi thành điện áp bằng cách cho dòng điện cần đo đi qua điện trở phụ R_S . Lúc đó, mạch đo sẽ là mạch đo điện áp (DCV hay ACV) và các linh kiện được tính sao cho trị số hiển thị là giá trị dòng điện cần đo.

2- Đo dòng điện DC

Hình 6.8: Ampere kế điện tử

Dòng I_{DC} cần đo được qua điện trở R_1 tạo thành điện áp một chiều đặt vào ngỗ + của op-amp. Mạch khuếch đại thuật toán cho điện áp ra tỉ lệ theo dòng điện DC ở ngỗ vào.

Để mở rộng thang đo cho ampere kế DC, dùng cầu phân áp như hình 6.9. Thang đo II là thang có giới hạn đo nhỏ nhất. Thang đo có giá trị lớn thì điện trở càng giảm trị số.

Thí dụ: Thang II -10mA, thang I2 -50mA, thang I3 -250mA và thang I4 -1A.

Hình 6.9: Ampere kế DC có nhiều thang đo

3- Đo dòng điện AC

Để đo dòng điện AC, người ta cho dòng điện cần đo qua điện trở phụ để đổi thành điện áp AC, sau đó dùng mạch nắn điện bán kỳ hay toàn kỳ để đổi thành điện áp DC và dùng mạch đo điện áp DC để đo rồi nhân với hê số hình dang của điện áp AC.

Trường hợp đo dòng AC có trị số lớn, mạch đo cần dùng bộ biến dòng để đổi từ dòng điện tải có trị số lớn ở sơ cấp sang dòng điện có trị số nhỏ ở thứ cấp trước khi đưa vào mạch đo dòng điện AC điện tử.

Câu hỏi

- 1- Cho biết ưu điểm của volt kế điện tử dùng FET so với Volt kế điện tử dùng BJT.
- 2- Giải thích nguyên lý mạch nắn điện tăng đôi điện áp trong mạch điện hình 6.7?
- 3- Cho biết đặc điểm của mạch vi sai trong các mạch điện của volt kế và ampere kế điện tử?

Bài tập

1- Cho mạch volt kế AC như hình vẽ sau. Điện kế có $I_{FS} = 50\mu A, R_G = 2k\Omega, V_{FS} = 0.1V.$

Nếu mạch thiết kế ở thang đo 1V, hãy tính trị số điện trở R_S để kim quay hết khung khi đo điện áp 1V.

2- Cho mạch đo như hình vẽ câu 1 ứng với thang đo 1V.

Nếu muốn đo những điện áp lớn hơn 1V, cho biết mạch có sơ đồ như thế nào? Tính các trị số điện trở trong mạch ứng với các thang đo: 10V, 50V, 100V và 500V?

CHUONG 7

ĐO ĐIỆN TRỞ

§7.1- ĐẠI CƯƠNG

Điện trở là đại lượng điện thụ động nên khi đo điện trở sẽ không có dòng điện cấp cho điện kế. Như vậy, trong máy đo điện trở (ohm kế) phải có nguồn một chiều để tạo ra dòng điện qua điện kế. Từ trị số dòng điện đo được sẽ suy ra giá trị điện trở cần đo.

Tuy nhiên có thể đo gián tiếp bằng cách dùng volt kế và ampere kế để đo điện trở mà không cần nguồn một chiều trong máy đo.

Một cách khác để đo điện trở thường dùng trong phòng thí nghiệm là dùng cầu Wheastone để có kết quả với độ chính xác cao.

§7.2- ĐO ĐIỆN TRỞ BẰNG VOLT KẾ VÀ AMPERE KẾ

1- Mạch đo volt kế đặt trước ampere kế

Hình 7.1: Volt kế đặt trước ampere kế

 R_X là điện trở cần đo trị số sẽ được tính theo công thức:

$$R_{\chi} = \frac{U}{I}$$

U: điện áp đo được trên volt kế

I: dòng điện đo được trên ampere kế

Điện áp U chính là điện áp U_X trên R_X và U_A trên ampere kế nên có trị số là:

$$U = U_A + U_X$$

Điều này sẽ gây ra sai số và trị số đúng của điện trở là:

$$R_X = \frac{U_X}{I} = \frac{U - U_A}{I}$$

2- Mạch đo volt kế đặt sau ampere kế

Hình 7.2; Volt kế đặt sau ampere kế

Rx là điện trở cần đo trị số sẽ được tính theo công thức:

$$R_{\Lambda} = \frac{U}{I}$$

U: điện áp đo được trên volt kế

I: dòng điện đo được trên ampere kế

Dòng điện I chính là dòng điện I_X qua R_X và I_V qua volt kế nên có trị số là:

$$I = I_V + I_X$$

Điều này sẽ gây ra sai số và trị số đúng của điện trở là:

Chương 7 Đo điện trở

$$R_X = \frac{U}{I} = \frac{U}{I - I_V}$$

§7.3- ĐO ĐIỆN TRỞ BẰNG CẦU WHEATSTONE

1- Mạch điện

Hình 7.3: Cầu Wheatstone đo điện trở

 R_X là điện trở cần đo, R_1 và R_2 là 2 điện trở cố định để tạo tỉ lệ, R_3 là biến trở có giá trị thay đổi rất nhỏ (từng 1Ω hay $0,1\Omega$).

2- Nguyên lý

Biến trở R_3 được thay đổi sao cho dòng điện qua điện kế bằng 0, nghĩa là điện áp trên R_2 và R_X có trị số bằng nhau. Lúc đó ta có tỉ lệ:

$$\frac{R_1}{R_2} = \frac{R_3}{R_X} \qquad \Longrightarrow \qquad R_X = \frac{R_2 \cdot R_3}{R_1}$$

§7.4- OHM KẾ

1- Nguyên tắc

Hình 7.4: Nguyên tắc đo điện trở

Mạch đo điện trở trong ohm kế có sơ đồ như hình 7.4. Nguồn điện E thưởng là pin 1,5V hay 3V, R_1 là điện trở phụ của từng thang đo, R_X là điện trở cần đo.

Dòng điện qua điện kế G là:

$$I = \frac{E}{R_X + R_1 + R_0}$$

Khi $R_X \rightarrow \infty$ thì I = 0 (không có dòng điện qua điện kế)

Khi $R_X = 0$ thì $I = I_{FS}$ (kim quay hết khung)

Như vậy, khi để hở 2 que đo, không có dòng điện qua điện kế, vị trí này có trị số $\propto \Omega$. Khi nối tắt 2 que đo, dòng điện qua lớn nhất, kim quay hết khung và vị trí này có trị số 0Ω (hình 7.5).

Giá tri điện trở cần đo R_X được tính theo công thức:

$$R_{x} = \frac{E}{I} - (R_{i} + R_{G})$$

Công thức trên cho thấy giá trị điện trở R_X không tỉ lệ tuyến tính theo dòng điện qua điện kế. Như vậy thang đo của ohm kế sẽ được chia không đều.

Hình 7.5: Giới hạn

thang đo của ohm kế

Giá trị điện trở cần đo R_X được tính theo công thức:

$$R_{\chi} = \frac{E}{I} - (R_1 + R_{\epsilon_r})$$

Công thức trên cho thấy giá trị điện trở R_X không tỉ lệ tuyến tính theo dòng điện qua điện kế. Như vậy thang đo của ohm kế sẽ được chia không đều.

Thí dụ: điện kế có I_{FS} = 100 μA , R_G = 1,5 $k\Omega$. Điện trở thang đo R_1 = 28,5 $k\Omega$.

- Khi có dòng qua ½ thang đo là I = $100\mu A/2 = 50\mu A$ thì giá trị điện trở R_X là:

$$R_{\chi} = \frac{3}{50.10^{-6}} - (28.5 + 1.5).10^{3} = 30k\Omega$$

- Khi có đồng qua 1/4 thang đo là I = $100\mu A/4 = 25\mu A$ thì giá tri điển trở R_X là:

$$R_{\chi} = \frac{3}{25 \cdot 10^{-6}} - (28.5 + 1.5).10^3 = 90k\Omega$$

- Khi có đồng qua 3/4 thang đo là $I=3 \times 100 \mu A/4 = 75 \mu A$ thì giá tri điện trở R_X là:

$$R_{\chi} = \frac{3}{75.10^{-6}} - (28.5 + 1.5).10^3 = 10k\Omega$$

Thí dụ trên cho thấy thang đo của ohm kế sẽ được phân độ không đều.

2- Mạch điện

<u>Hình 7.7</u>: Mạch điện trong ohm kế

Nguồn một chiều trong ohm kế hình 7.7 là 2 pin khô 1,5V. Biến trở VR dùng để bù trừ cho sự thay đổi sức điện động của pin theo thời gian.

Điện trở R_B và biến trở ghép shunt với điện kế để giới hạn dòng qua điện kế tối đa là I_{FS} . Điện trở R ghép nối tiếp để giảm áp, có trị số tuỳ nguồn một chiều.

Các điện trở R_1 , R_2 , R_3 là điện trở shunt cho từng thang đo. Thang đo có hệ số nhân lớn nhất (Rx1k) được thiết kế không có điện trở shunt.

3- Cách tính trị số các điện trở

a) Điện trở mạch chính: R, RA, RB và VR

Đối với ohm kế, khi tính toán trị số điện trở phải xác định giá trị dòng điện tối đa qua mạch điện ở từng thang đo.

Theo hình ò664 thiết kế với:

- thang Rx1k có dòng tối đa là 150μA
- thang Rx100 có dòng tối đa là 1,5mA
- thang Rx10 có dòng tối đa là 15mA
- thang Rx1k có dòng tối đa là 150mA

Chọn điện áp $V_{AM}=V_{MB}\approx 1,5V.$ Giả thiết điện kế có $I_{FS}=50\mu A$ và $R_G=2k\Omega.$

* Xét thang Rx Ik:

Khi nối tắt 2 que đo + và -, dòng điện tối đa qua mạch là $I_{Rxtk} = 150 \mu A$. Điện trở R có trị số là:

$$R = \frac{V_{AM}}{I_{BM}} = \frac{1.5}{150.10^{-6}} = 10.10^3 = 10k\Omega$$
 (1)

-Tính tri số điện trở RA:

$$R_A = \frac{V_{MH}}{I_{IN}} - R_{c_t} = \frac{1.5}{50.10^{-6}} - 2.10^3 = 28.10^3 = 28k\Omega$$
 (2)

-Tính trị số điện trở R_B và biến trở VR:

Dòng điện qua R_B là:

$$I_{RB} = I_{Rx1k} - I_{FS} = 150\mu A - 50\mu A = 100\mu A$$

$$R_B + VR = \frac{V_{MR}}{I_{RR}} = \frac{1.5}{100.10^{-6}} = 15.10^3 = 15k\Omega$$
 (3)

Như vậy, có thể chọn: $R_B = 10k\Omega$ và $VR = 10k\Omega$ (khi VR chính ở giá trị trung bình sẽ có trị số là $5k\Omega$).

- b) Tính điện trở shunt cho từng thang đo:
- * Xét thang Rx100;

Khi nối tắt 2 que đo + và -, dòng điện tối đa qua mạch là $I_{R\times 100} = 1.5 mA$.

Dòng điện qua điện trở R₁ là:

$$I_{R3} = I_{Rx100} - I_{Rx1k} = 1.5 \cdot 10^{-3} - 150 \cdot 10^{-6} = 1.35 \cdot 10^{-3} A$$

Tính trị số điện trở R₁:

$$R_1 = \frac{V_{AB}}{I_{B1}} = \frac{3}{1,35,10^{-3}} \approx 2,2.10^3 \approx 2,2k\Omega$$

* Xét thang Rx10:

Khi nối tắt 2 que đo + và -, dòng điện tối đa qua mạch là $I_{R\times 10} = 15 \text{mA}$.

Dòng điện qua điện trở R₂ là:

$$I_{R2} = I_{Rx/10} - I_{Rx/1k} = 15.10^{-3} - 150.10^{-6} = 14.85.10^{-3} A$$

Tính trị số điện trở R2:

$$R_2 = \frac{V_{.18}}{I_{H2}} = \frac{3}{14.85.10^{-3}} \cong 202\Omega$$

* Xét thang Rx1:

Khi nối tắt 2 que đo + và -, dòng điện tối đa qua mạch là I_{Rx1} = 150mA.

Dòng điện qua điện trở R₃ là:

$$I_{R3} = I_{Rx1} - I_{Rx1k} = 150.10^{-3} - 150.10^{-6} = 149.85.10^{-3}A$$

Tính trị số điện trở R2:

$$R_3 = \frac{V_{.1R}}{I_{R3}} = \frac{3}{149,85.10^{-3}} \cong 20.02\Omega$$

4- Ohm kế có thang đo Rx10k

Nhiều loại ohm kế có thang đo Rx10k thì phải có nguồn pin 9V và bộ giao hoán chọn thang đo có cấu tạo đặc biệt, khi dùng thang Rx10k thì mạch tự đổi sang nguồn pin 9V.

Hình 7.8: Ohm kế có thang Rx10k

Mạch điện hình 7.8 là loại ohm kế có thang Rx10k và có cách thiết kế khác với các điện trở shunt nổi tiếp nhau.

Lưu Ý: Đối với ohm kế, nguồn pin có đầu âm nối ra que đo dương và đầu dương pin nối ra que âm của máy đo. Khi dùng ohm kế để kiểm tra linh kiện bán dẫn, cần biết điều này để có thể xác đinh chính xác các chân linh kiện.

§7.5- MEGOHM KÉ

Trong công nghiệp, thiết bị điện thường dùng với nguồn điện áp 220V, 380V hay cao hơn là 3,3kV hoặc 6,6kV ...

Để đảm bảo an toàn cho thiết bị và cho người sử dụng, cần kiểm tra độ cách điện giữa võ kim loại và dây dẫn điện bên trong. Điện trở cách điện của thiết bị điện hạ áp yêu cầu khá lớn để có dòng điện rĩ nhỏ.

Theo yêu cầu về an toàn điện, dòng điện rĩ cho phép của thiết bị điện hạ áp là 1mA.

Như vậy, điện trở cách điện của thiết bị điện dùng ở cấp điện áp 220V là:

$$R_{CD} = \frac{U}{I_n} = \frac{220}{10^{-3}} = 220k\Omega$$

Ohm kế có thể đo được những điện trở có trị số đến vài chục MΩ, nhưng nguồn điện trong ohm kế chỉ có 1,5V hay 3V nên không thể kiểm tra độ cách điện của thiết bị điện hạ áp hay trung áp được. Để kiểm tra độ cách điện của thiết bị điện hạ áp hay trung áp phải dùng máy đo điện trở có trị số lớn chuyên dùng, gọi là Megohm kế.

Có 2 loai Megohm kế:

- Megohm kế loại máy phát điện
- Megohm kế điện tử.

1- Cấu tạo của Megohm kế

Điện kế dùng trong Megohm kế loại máy phát điện là tỉ số kế từ điện gồm có 2 cuộn dây:

- Cuộn đây lệch
- Cuộn dây kiểm soát

Cả hai cuộn đây được quấn trên trục quay mang kim chỉ thị. Moment do hai cuộn đây này sinh ra là:

$$T_1 = k_1(0).I_1$$
 và $T_2 = k_2(0).I_2$

trong đó k_1 và k_2 là hàm số theo góc quay θ của kim, I_1 và I_2 là dòng điện qua cuộn dây lệch và cuộn dây kiểm soát.

Hai moment này luôn đối kháng nhau khi có đồng điện đi qua. Khi hai moment bằng nhau thì kim sẽ ở vị trí ổn định. Lúc đó:

$$T_1 = k_1(\theta).I_1 = T_2 = k_2(\theta).I_2$$

Suy ra:
$$\frac{I_2}{I_1} = \frac{k_1(\theta)}{k_2(\theta)} = k(\theta)$$

Vậy góc quay của kim phụ thuộc tỉ số dòng điện I₁ và I₂.

Kim chỉ thị không có lò xo cân bằng hay dây treo nên khi chưa đo kimsẽ ở vị trí bất kỳ.

2- Nguyên lý đo

Để có nguồn điện áp cao, người ta chế tạo Megohm kế như một máy phát quay tay tạo nguồn một chiều cấp cho mạch (hình 7.9).

Dòng điện I₁ qua cuộn dây kiểm soát là:

$$I_1 = \frac{E}{R_1 + r_1}$$
 (E: sức điện động của máy phát)

(R₁: điện trở chuẩn, r₁: điện trở cuộn kiểm soát)

Dòng điện l₂ qua cuộn dây lệch là:

$$I_2 = \frac{E}{R_X + R_2 + r_1}$$
 (R_X: điện trở cần đo)

(R₂: điện trở chuẩn, r₂: điện trở cuộn lệch)

Khi điện trở cách điện $R_X \rightarrow \infty$ thì $I_2 = 0$. Lúc đó, chỉ có dòng điện I_1 qua cuộn kiểm soát và moment T_1 sẽ kéo kim chỉ thị về phía trái thang đo chỉ tri số $\propto \Omega$.

Khi điện trở cách điện $R_X=0\Omega$ thì I_2 sẽ có giá trị cực đại (tuỳ trị số điện trở R_2). Lúc đó, tỉ số đòng điện I_2/I_1 sẽ đạt giá trị cực đại và kéo kim chỉ thị sang phía phải thang đo chỉ trị số 0Ω .

Khi điện trở cách điện có trị số bất kỳ, kim chỉ thị có góc quay θ và lúc đó 2 moment cân bằng. Ta có:

$$I_1 = \frac{E}{R_1 + r_1}$$
 và $I_2 = \frac{E}{R_3 + R_2 + r_1}$

Suy ra:
$$\frac{I_2}{I_1} = \frac{R_1 + r_1}{R_2 + R_2 + r_2} = k(\theta)$$

Góc quay θ tuỳ thuộc trị số R_X hay suy ra:

$$R_X = \frac{R_1 + r_1}{k(\theta)} - (R_2 + r_2)$$

3- Điện trở cách điện tiêu chuẩn

Tuỳ thuộc cấp điện áp sử dụng của thiết bị điện mà điện trở cách điện theo qui định có giá trị tiêu chuẩn khác nhau.

Sau đây là giá trị điện trở cách điện của thiết bị điện hạ áp ở nhiệt độ môi trường khoảng $30^{\circ}C - 35^{\circ}C$:

- > 100MΩ: rất tốt - 50MΩ - 100MΩ: tốt

- $10M\Omega$ - $50M\Omega$: khá tốt - $5M\Omega$ - $10M\Omega$: khá

- $1M\Omega - 5M\Omega$: đạt yêu cầu - $500k\Omega - 1M\Omega$: trung bình

< 500kΩ: kém - < 100kΩ: rất kém

Thực tế thì giá trị điện trở cách điện của thiết bị thay đổi theo nhiệt độ làm việc, các trị số trên chỉ có ý nghĩa tương đối.

Câu hỏi

- 1- Đo điện trở bằng phương pháp gián tiếp có độ sai số tuỳ thuộc yếu tố nào? Giải thích lý do?
 - 2- Cho biết cách tính nội trở của ohm kế theo từng thang đo.

Bài tập

1- Một ohm kế có sơ đồ như sau:

Tính trị số các điện trở trong mạch điện của ohm kế trên.

Cho biết điện kế có: $I_{ES} = 100 \mu A$ và $R_G = 1.5 k\Omega$.

2- Trường hợp có thang đo Rx10k, mạch điện thay đổi như thế nào? Vẽ và giải thích nguyên lý.

CHUONG 8

ĐO ĐIỆN TRỞ NỐI ĐẤT

§8.1- ĐẠI CƯƠNG

Trong kỹ thuật an toàn điện, hai phương pháp bảo vệ an toàn điện cho hai loại lưới hạ áp trung tính nối đất và trung tính không nối đất là phương pháp nối đất bảo vệ và nối trung tính bảo vệ.

Để kiểm tra hệ thống bảo vệ an toàn điện cho hai loại lưới trên, người ta phải thường xuyên kiểm tra điện trở nối đất của hệ thống. Thiết bị kiểm tra là máy đo điện trở nối đất.

§8.2- PHƯƠNG PHÁP ĐO TRỰC TIẾP

1- Các định nghĩa

- Điện trở nối đất: điện trở tiếp xúc giữa đất và cọc nối đất của thiết bị điện. Thực tế giá trị điện trở này có thay đổi theo vùng đất có cọc nối đất. Để tránh bị ảnh hưởng lớn bởi điện trở của vùng đất, người ta qui định cụ thể phương pháp đo.
- Cọc đo điện trở nối đất: cọc kim loại (thường làm bằng đồng), dài 0,4m 0,5m. Các cọc đo sẽ được đóng xuống đất và nối vào mạch đo.
- Cọc nối đất: tuỳ loại thiết bị điện cần bảo vệ mà cọc nối đất sẽ có cấu tạo khác nhau. Đối với các cột thu lôi thì cọc nối đất thường là những cọc kim loại dài khoảng 1m (thường có 3 cọc) được đóng sâu xuống đất và được nối lại bằng dây dẫn điện dẹp. Đối với các trạm trung áp cần có mạng nối đất chung thì thường dùng những tấm kim loại có diện tích khoảng 1m² 2m² đặt sâu dưới lòng đất rồi nối lên bằng dây đồng trần gọi là dây nối đất.

- Khoảng cách giữa các cọc đo và cọc nối đất: các cọc đo và cọc nối đất phải cách nhau tối thiểu 15m – 20m để kết quả đo được không bị ảnh hưởng bởi điện trở của đất (các vùng đất cách cọc đo ngoài 10m thì nằm trong vùng đẳng thế).

2- Đo điện trở nối đất bằng volt kế và ampere kế

Đây là phương pháp đo trực tiếp. Mạch đo có 3 cọc gồm:

- Cọc E: cọc nối đất của thiết bị điện cần kiểm tra (E: earth)
- Coc P: coc do phu để đo điện áp (P: potentiometer)
- Cọc C: cọc đo phụ để đo dòng điện (C: current)

Hình 8.1: Đo điện trở nối đất bằng volt kế và ampere kế

Nguồn điện V_S qua biến áp tấy một phần cấp cho mạch đo. Dòng điện I từ nguồn qua ampere kế, qua cọc C, qua đất để về điểm dưới của biến áp. Khi dòng điện đi từ cọc P qua cọc E sẽ tạo ra điện áp giữa hai cọc này và điện áp được đo trên volt kế.

Bỏ qua các sai số do điện trở đất, điện trở tiếp xúc của các cọc phu, dòng điện rẽ qua volt kế thì điện trở nối đất của cọc E được tình theo công thức:

$$R_X = \frac{U}{I}$$
 U: điện áp đo được trên volt kế

I: dòng điện đo được qua ampere kế

Phương pháp đo gián tiếp phức tạp, không được thông dụng.

§8.3- MÁY ĐO TIẾP ĐẤT ĐIỆN TỬ (Automatic Earth Tester)

Hiện nay đã có máy đo điện trở nối đất chuyên dùng sử dụng mạch điện tử và được sử dụng rộng rãi.

1- Phụ tùng

- có 2 cọc nối đất phụ P (Auxiliary earth terminal for voltage: cọc nối đất phụ đo điện áp) và C (Auxiliary earth terminal for current: cọc nối đất phụ đo dòng điện).
 - bốn dây đo: 5m, 10m, 15m, 0,2m.
 - nguồn pin 1,5 V x8 = 12 V

2- Các thang đo

- đo điện trở nối đất: 10Ω , 100Ω , 1000Ω
- đo điện áp rơi trên đất: 30V

3- Nguyên lý

Khi ấn nút Power, trong máy đo, mạch điện tử tạo ra nguồn dòng điện ổn định (Regulated Current Source) có trị số $I_{AC} = 3mA$, tần số là f = 2kHz. Dòng điện này đi từ cọc C sang cọc E.

Điện áp giữa cọc P và E sẽ được đo bằng mạch volt kế trong máy để có trị số E_X . Điện trở nối đất được tính theo công thức sau và hiển thị trên điện kế:

$$R_X = \frac{E_X}{I}$$
 I = 3mA (hằng số)

Như vậy, R_X tỉ lệ tuyến tính theo E_X . Điện kế được sử dụng là loại điện kế từ điện vì có thang đo chia đều theo dòng điện qua điện kế.

4- Đo điện áp rơi trong đất

Cách đo giống như đo điện trở nối đất nhưng không ấn nút Power và dùng thang đo 30VAC. Lúc đó, mạch volt kế AC trong máy sẽ đo điện áp giữa cọc E và cọc P.

Việc đo điện áp rơi trong đất nhằm mục đích kiểm tra dây trung tính. Nếu có điện áp rơi trong đất có nghĩa là dây trung tính bị đứt và dòng điện cấp cho tải được kín mạch qua điện trở của đất.

Câu hỏi

- 1- Phân biệt hai loại nguồn hạ áp trung tính nối đất và trung tính không nối đất.
- 2- Biện pháp bảo vệ an toàn điện cho lưới trung tính không nối đất?
- 3- Biện pháp bảo vệ an toàn điện cho lưới trung tính không nối đất?
- 4- Ý nghĩa cuả việc đo điện trở nối đất cuả hệ thống điện công nghiệp?
- 5- Có cần kiểm tra điện trở nối đất cuả các cột thu lôi hay không? Giải thích lý do.

CHUONG 9

ĐO ĐIỆN DUNG VÀ ĐIỆN CẨM

§9.1- DAI CUONG

Điện dung C và điện cảm L là hai đại lượng điện thụ động (như điện trở R), nhưng C và L có giá trị thay đổi theo tần số của dòng điện đi qua nên khi muốn đo C và L phải sử dụng nguồn điện xoay chiều có tần số cụ thể.

§9.2- ĐO ĐIỆN DUNG, ĐIỆN CẢM BẰNG VOLT KẾ VÀ AMPERE KẾ

1- Đo điện dung C

Hình 9.1: Đo C bằng volt kế và ampere kế

Trong mạch đo hình 9.1, dung kháng của tụ được tính theo công thức:

$$X_C = \frac{V_C}{I_C}$$
 $V_C : C$

 V_C : điện áp đo được trên volt kế

I_C: dòng điện đo được trên ampere kế

Từ đó, suy ra điện dung C theo công thức:

$$X_C = \frac{1}{C\omega} = \frac{V_C}{I_C}$$
 \Rightarrow $C = \frac{I_C}{V_C\omega}$ (với $\omega = 2\pi f$)

2- Đo điệπ cảm L

Hình 9.2: Đo L bằng volt kế và ampere kế

Trong mạch đo hình 9.2, cảm kháng của cuộn dây được tính theo công thức:

$$X_{t} = \frac{V_{t}}{I_{t}}$$
 V_{L} : điện áp đo được trên volt kế

I_L: dòng điện đo được trên ampere kế

Từ đo suy ra điện cảm L theo công thức:

$$X_{L} = L\omega = \frac{V_{L}}{I_{L}}$$
 \Rightarrow $L = \frac{V_{L}}{I_{L}\omega}$ (với $\omega = 2\pi f$)

3- Đo hệ số hỗ cảm M

Khi hai cuộn dây đặt gần nhau hay quấn chung trên cùng một mạch từ thì sẽ có hiện tượng cảm ứng qua lại giữa hai cuộn dây. Hệ số hỗ cảm là đại lượng đặc trưng cho hiện tượng cảm ứng này.

Hình 9.3: Đo M bằng volt kế và ampere kế

Hình 9.3 là mạch đo hỗ cảm giữa hai cuộn dây L_1 và L_2 .

Hệ số hỗ cảm M được tính theo công thức:

$$M = \frac{V_{L2}}{I_{L1}}$$

V_{L2}: điện áp đo được trên L₂

ILI: dòng điện đo được qua LI

89.3- ĐO C VÀ L BẰNG VOLT KẾ AC

Hiện nay có nhiều máy đo đa năng (VOM) được thiết kế có thêm thang đo điện dung và điện cảm với đơn vị μF và mH. Tuy nhiên cũng có nhiều máy đo đa năng không có các thang đo này.

Trong phần này, chúng ta sẽ phân tích nguyên lý đo C và L bằng volt kế AC để có thể đo và tính ra trị số cụ thể bằng một phép tính đơn giản.

1- Đo điện dung C

Hình 9.4: Đo C bằng volt kế AC

b) Nguyên lý:

Mạch đo hình 9.4 là mạch RC trong mạch điện xoay chiều, trong đó, điện trở có dòng điện I_R và điện áp V_R đồng pha nhau còn tụ điện có dòng điện I_C sớm pha hơn điện áp V_C một góc 90^0 .

Mạch đo hình 9.4 có thể phân tích thành mạch tương đương như hình 9.5 và tam giác điện áp như hình 9.6.

Hình 9.5: Mạch RC ghép nối tiếp

Điện trở R_V là nội trở của volt kế ở thang đo đang sử dụng.

Theo cách đo này, nguồn điện V_S phải có trị số bằng trị số thang đo của volt kế. Thường chọn thang 50V hay thang 10V.

Giả thiết volt kế thang 50V, dùng mạch nắn điện bán kỳ và điện kế từ điện có $I_{FS} = 50\mu A$, $R_G = 2k\Omega$. Nội trở của volt kế là: $9k\Omega/VAC$. Suy ra nội trở của volt kế ở thang 50V là:

$$R_{V(50V)} = 9k\Omega \times 50 = 450k\Omega$$

Từ tam giác điện áp ta có:

$$V_C = \sqrt{V_S^2 - V_R^2}$$

$$\text{trong d\'o:} \qquad V_C = I_C . X_C \qquad \text{v\'oi:} \qquad X_C = \frac{1}{C\omega} = \frac{1}{2\pi f C}$$
(2)

$$Va: I_{c'} = I_R = \frac{V_R}{R_{c'}} (3)$$

Thay (2) và (3) vào (1) ta có:

$$X_{e^{-}} = \frac{R_{V} \sqrt{{V_{S}}^{2} - {V_{R}}^{2}}}{V_{R}} = \frac{1}{2\pi fC}$$

Suy ra:
$$C = \frac{V_R}{2\pi t R_V \sqrt{{V_S}^2 - {V_R}^2}}$$

Trong đó: - V_S là điện áp nguồn bằng giá trị của thang đo

- V_R là điện áp đo được trên máy đo
- Ry là nội trở của volt kế ở thang đo tương ứng

2- Đo điện cảm L

Hình 9.7: Đo L bằng volt kế AC

b) Nguyên lý:

Mach đo hình 9.7 là mach RL trong mach điện xoay chiều, trong đó, điện trở có dòng điện I_R và điện áp V_R đồng pha nhau còn cuộn dây có đòng điện I_L trễ pha hơn điện áp V_L một góc 90^0 .

Mạch đo hình 9.7 có thể phân tích thành mạch tương đương như hình 9.8 và tam giác điện áp như hình 9.9.

Hình 9.8: Mạch RL ghép nối tiếp

Tương tự ta vẫn có điện trở R_V là nội trở của volt kế ở thang đo đang sử dụng và nguồn điện V_S phải có trị số bằng trị số thang đo của volt kế. Thường chọn thang 50V hay thang 10V.

Giả thiết volt kế thang 50V, dùng mạch nắn điện bán kỳ và điện kế từ điện có $I_{FS}=50\mu A,~R_G=2k\Omega.$ Nội trở của volt kế là: $9k\Omega/VAC.$ Suy ra nội trở của volt kế ở thang 50V là:

$$R_{V(50V)} = 9k\Omega \times 50 = 450k\Omega$$

Hình 9.9: Tam giác điện áp mạch RL

Từ tam giác điện áp ta có:

$$V_{t} = \sqrt{{V_{S}}^{2} - {V_{R}}^{2}} \tag{1}$$

trong đó: $V_L = I_L X_t$ với: $X_T = \omega L = 2\pi f L$ (2)

$$I_L = I_R = \frac{V_R}{R_L} \tag{3}$$

Thay (2) và (3) vào (1) ta có:

$$X_{L} = \frac{R_{\Gamma} \sqrt{{V_{S}}^{2} + {V_{R}}^{2}}}{V_{R}} = 2\pi f L$$

Suy ra: $L = \frac{R_{11} \sqrt{{V_{13}}^2 - {V_{12}}^2}}{2\pi f V_{12}}$

Trong đó: - V_S là điện áp nguồn bằng giá trị của thang đo

- V_R là điện áp đo được trên máy đo
- Ry là nội trở của volt kế ở thang đo tương ứng

Câu hỏi

- 1- Giải thích ý nghĩa của tam giác điện áp?
- 2- Phân biệt đặc tính của tụ điện và cuộn dây trong mạch điện xoay chiều?

Bài tập

- 1- Dùng volt kế AC thang 10V đo tụ điện C_X . Nếu máy đo chỉ điện áp 4V, tính trị số của tụ? Cho biết máy đo có điện kế với I_{FS} = $100\mu A$, R_G = $1.5k\Omega$ và dùng mạch nắn điện toàn kỳ. Nguồn điện V_S có tần số f = 50Hz.
- 2- Dùng volt kế AC thang 50V đo cuộn dây L_X . Nếu máy đo chỉ điện áp 45V, tính trị số điện cảm L? Cho biết máy đo có điện kế với $I_{FS}=50\mu A$, $R_G=2k\Omega$ và dùng mạch nắn điện toàn kỳ. Nguồn điện V_S có tần số f=50Hz.

CHUONG 10

MÁY PHÁT SÓNG

§10.1- DAI CUONG

Trong kỹ thuật điện tử, để phục vụ cho việc khảo sát, tính toán, thiết kế hay sửa chữa, người ta cần dùng các loại máy phát sóng để có các dang sóng với tần số và biên độ chuẩn.

1- Phân loại máy phát sóng

Máy phát sóng (còn gọi là máy phát tín hiệu: signal generators) được chia ra:

- máy phát sóng sin tần số thấp (LF: low frequency sine wave generators)
- máy phát sống tần số cao (RF: radio frequency sine wave generators)
- máy phát sóng tạo hàm (function generators)
- máy phát tín hiệu xung (pulse generators)
- máy phát tần số quét (sweep frequency generators)

2- Phân loại tần số của sóng điện (tín hiệu)

- Hạ tần: 0Hz 30kHz được chia ra:
 - 0Hz 20Hz: ngoại âm
 - 20Hz 20kHz: âm tần
 - 20kHz 30kHz; siệu âm
- Trung tần: 30kHz 300kHz
- Cao tần: từ 300kHz trở lên và được chia ra

- 300kHz 3MHz: dùng cho radio (HF do High Frequency: tần số cao)
- 3MHz 30MHz: dùng cho Tivi (VHF do Very High Frequency: tần số rất cao)
- 30MHz 300MHz; dùng cho Tivi và Radar (UHF do Ultra High Frequency; tần số cực cao)
- 300MHz 3GHz: cho truyền hình vệ tinh (SHF do Super High Frequency: tần số siêu cao)
- 3GHz trở lên: dùng cho liên lạc vệ tinh (EHF do Extra High Frequency: tần số ngoại hạng)

\$10.2- VẤN ĐỀ ĐO BIÊN ĐỘ CỦA ÂM TẦN

Trong kỹ thuật điện tử, để đo độ khuếch đại của mạch điện tử, đáp ứng biên độ của mạch lọc ... người ta thường dùng đơn vị deciBel (dB; 1deciBel = 0,1Bel).

Để đo biên độ âm tần, người ta cũng dùng đơn vị này và qui định điên trở tải có tri số là 600Ω .

Đối với ngõ vào của mạch, nếu muốn tính theo đơn vị này cũng phải có tổng trở là 600Ω .

Hình 10.1: Qui định tải và tổng trở vào

Đơn vị dB được định nghĩa: "Nếu có công suất P = ImW ra trên điện trở tải $R = 600\Omega$ thì điện áp âm tần trên tải là 0 dB".

Ta có công thức:
$$P = RI^2 = \frac{U^2}{R}$$

Suy ra:
$$U^2 = PR$$
 hay $U = \sqrt{P.R}$

Như vậy:
$$U = \sqrt{10^{-3}.600} = 0,775V = 0dB$$

Trường hợp tính gần đúng thì có thể qui tròn $1V \cong 0dB$.

Độ khuếch đại công suất được tính theo công thức:

$$A_P = \frac{P_O}{P_I}$$

Người ta cầm nhận âm thanh không tỉ lệ tuyến tính theo công suất mà theo hàm logarit thập phân.

Đô khuếch đai tính theo dB là:

$$A_P(dB) = 10 \log \frac{P_O}{P_O}$$
 (log10 = 1; log1 = 0)

$$\Rightarrow A_{P}(dB) = 10 \log \frac{U_{O}^{2}}{|U_{I}|^{2}} = 10 \log \frac{U_{O}^{2}}{|U_{I}|^{2}} \qquad (\text{do } R_{O} = R_{I})$$

$$R_{I}$$

$$\Rightarrow A_p(dB) = 10 \log \left(\frac{U_o}{U_I}\right)^2 = 20 \log \frac{U_o}{U_I}$$

Trên các thiết bị thu phát âm tần, người ta không ghi đơn vị là Volt mà ghi là dB (với ngõ vào $U_1 = 1V \cong 0 dB$).

Thí dụ:

- Nếu có:
$$U_0 = 1V$$
 \Rightarrow $A_P = 0dB$

- Nếu có: $U_0 = 10V \implies A_P = +20dB$

- Nếu có: $U_0 = 100V \implies A_P = +40dB$

- Nếu có: $U_0 = 0,1V \implies A_P = -20dB$

- Nếu có: $U_O = 0.01V \Rightarrow A_P = -40dB$

§10.3- MÁY PHÁT SÓNG SIN TẦN SỐ THẤP

1- Nguyên tắc

Mạch dao động hình sin dựa trên hiện tượng nạp xả của mạch RC hay cộng hưởng của mạch LC, kết hợp với mạch khuếch đại hối tiếp để tạo tín hiệu.

Để có tín hiệu hình sin ra, mạch khuếch đại hồi tiếp phải thỏa điều kiên sau:

Hình 10.2: Mạch khuếch đại hồi tiếp

Có nhiều cách dao động để tạo sóng sin được sử dụng trong các máy phát sóng. Mạch dao động dùng cầu Wien (Wein) là mạch cho ra tín hiệu có tần số và biên độ ổn định với độ méo dạng thấp nên được sử dụng nhiều nhất.

2- Mạch dao động dùng cầu Wien

Mạch điện hình 10.3 là mạch dao động dùng cầu Wien có mạch khuếch đại thuật toán là mạch khuếch đại không đảo để thực hiện hồi tiếp dương.

Cầu Wien gồm các linh kiện là: R₁, R₂, R₃, R₄, C₁, và C₂.

Hình 10.3: Mạch dao động dùng cầu Wien

Cầu Wien sẽ đạt trạng thái cân bằng khi thỏa điều kiện:

$$\frac{R_3}{R_4} = \frac{R_1}{R_2} + \frac{C_2}{C_1} \tag{1}$$

Tần số dao động của mạch là:

$$f = \frac{1}{2\pi \sqrt{R_1 C_1 R_2 C_2}}$$
 (2)

Trường hợp: $R_1 = R_2$, và $C_1 = C_2$ thì từ biểu thức (1) ta có:

$$R_3 = R_4$$

và từ biểu thức (2) cho ra: $f = \frac{1}{2\pi RC}$

Ở tần số cân bằng của cầu thì điện áp tín hiệu vào cùng pha với điện áp tín hiệu ngõ ra. Đây chính là điều kiện của mạch hồi tiếp dương. Ở những tần số khác sẽ không có sự đồng pha giữa tín hiệu vào và ra, dẫn đến tín hiệu ra bị suy giảm biên độ.

Độ khuếch đại điện áp của mạch là:

$$A_{VF} = \frac{R_3 + R_4}{R_4} = 3$$
 (vi: R₃ = 2R₄)

Thực tế, độ khuếch đại của mạch phải lớn hơn 3 một chút để duy trì dao động.

3- Mạch dao động thay đổi tần số

Để có thể thay đổi tần số của tín hiệu ở ngõ ra, người ta dùng mạch điện hình 10.4. Trong sơ đồ có 6 tụ điện chia ra 3 cặp trị số được chọn bằng công-tắc đôi có 3 vị trí $(S_1 \text{ và } S_2)$ để chọn khoảng tần số. Biến trở đôi R_1 và R_2 dùng để thay đổi tần số vô cấp.

Hình 10.4: Mạch dao động thay đổi tần số

Thí dụ:

- vị trí 1 có tần số thay đổi trong khoảng 100Hz đến 1kHz
- vị trí 2 có tần số thay đổi trong khoảng 1kHz đến 10kHz
- vị trí 3 có tần số thay đổi trong khoảng 10kHz đến 100kHz

4- Mạch điều chính biên độ ngõ ra

Ngõ ra của máy phát sóng có yêu cầu điều chỉnh được biên độ, đồng thời phải có tổng trở ra nhỏ để không làm suy giảm biên độ của tín hiệu.

Mạch điện hình 10.5 dùng Op-Amp ráp theo kiểu mạch lặp để có tổng trở ra nhỏ. Công-tắc S dùng để chọn mức biên độ ra giữa 2 khoảng, biến trở dùng để điều chỉnh vô cấp biên độ tín hiệu ra.

Hình 10.5: Mạch điều chỉnh biên độ ra

5- Mạch đổi từ sóng sin ra sóng vuông

Các máy phát sóng hạ tần thường cho ra cả 2 dạng sóng sin và vuông (square wave). Để có thể sử dụng chung các công-tắc và biến trở điều chỉnh tần số, người ta không dùng mạch tạo xung

vuông độc lập với sóng sin mà dùng mạch đổi từ sóng sin ra vuông như mạch điện hình 10.6.

Hình 10.6: Mạch đổi sóng sin ra sóng vuông

Tín hiệu ra sau Op-Amp sẽ bị cất ngọn bởi hai diod zener Z_1 và Z_2 . Diod D_1 dẫn khi có bán kỳ đương, diod D_2 dẫn khi có bán kỳ âm.

Như vậy, biên độ của xung vuông ra bị giới hạn ở mức:

$$V_O = \pm (V_Z + V_D)$$

6- Sơ đồ khối máy phát sóng hạ tần

- Oscillator: mạch dao động tạo sóng sin
- Square wave generetor: mạch tạo sóng vuông
- Power supply: khối cấp nguồn
- Fine adjuster: nút điều chỉnh biên độ phẳng
- Output control: chọn biên độ ngô ra
- Multiplier High / Low: mạch tạo 2 mức biên độ cao / thấp

Hình 10.7: Sơ đồ khối máy phát sóng hạ tần

7- Hình dáng bên ngoài và các nút chỉnh (hình 10.8)

8- Sơ đồ chi tiết máy phát sóng AG-26014 (Đài loan)

(hình 10.9) UNMARKED- AF P-PF UNHARKED = OHM AW PWRON 菜 3 (E) ¥ 15953 CURCUIT DIAGRAM 8 E P P 2 3 50 ioK. V 150 #8

Hình 10.9: Sơ đồ chi tiết máy phát sóng hạ tần

Nút 1: chọn khoảng tần số dao động cho ra. Có 5 vị trí: x1, x10, x100, x1k, x10k.

Nút 2: chỉnh tần số sóng sin hay vuông ra tương ứng với các vị trí của nút 1: x1: từ 10Hz đến 100Hz

x10: từ 100Hz đến 1kHz

x100: từ 1kHz đến 10kHz

x1k: từ 10kHz đến 100kHz

x10k: từ 100kHz đến 1MHz

Công-tắc 3: công-tắc đóng / ngắt nguồn AC 220V

Đèn 4: đèn báo hiệu có nguồn

Nút 5: công-tắc chọn dạng sóng ra sin / vuông

Lỗ cắm 6: ngõ vào của tín hiệu đồng bộ bên ngoài

Nút 7: biến trở điều chỉnh biên độ phẳng

Nút 8: công-tắc chọn biên độ ra mức cao / thấp

Lỗ cắm 9: lỗ cắm lấy tín hiệu ra

9- Một ứng dụng của máy phát sóng

Hình 10.10: Dùng máy phát sóng kết hợp dao động ký kiểm tra chất lượng mạch khuếch đại

§10.4- MÁY PHÁT SÓNG TẠO HÀM VUÔNG VÀ TAM GIÁC

1- Sơ đồ

Để tạo sóng vuông và tam giác, người ta không lấy từ sin mà kết hợp mạch tích phân và mạch Schmitt trigger như sơ đồ hình 10.11.

Hình 10.11: Máy phát sống vuông và tam giác

2- Nguyên lý

- a) Op-Amp 2 là mạch Schmitt trigger: hoạt động theo nguyên tắc:
 - khi điện áp ngỗ vào tăng lên hơn mức cao (UTP: upper trigger point) thì op-amp bão hoà dương, ngỗ ra có điện áp cao: $V_O = V_H \cong +V_{CC}$ 1V
 - khi điện áp ngô vào giảm dưới mức thấp (LTP: lower trigger point) thì op-amp bão hoà âm, ngô ra có điện áp thấp: V₀ = Vț ≅ -(V₀ 1V)

Tín hiệu ở ngõ ra của op-amp 2 là tín hiệu hình vuông.

Giả thiết độ khuếch đại vòng hở của op-amp là 200.000 lần thì điện áp ngõ vào đủ để op-amp dẫn bão hoà là:

$$V_{I} = \frac{\pm (V_{CC} - 1V)}{200,000}$$

Thí dụ:
$$V_{CC} = 12V$$
 thì $V_I = \frac{\pm (12-1)}{200.000} = 55mV$

Khi op-amp bão hoà thì điện áp ngỗ ra lại đưa về và tạo điện áp trên điện trở R_3 theo công thức:

$$V_{R3} = \pm (V_{CC} - 1V), \frac{R_3}{R_3 + R_1}$$

Từ đó ta có thể tính được giá trị mức cao UTP và mức thấp LTP ở ngõ vào để có thể làm đổi trạng thái của op-amp.

Thí dụ: mạch Schmitt trigger có $\pm V_{CC} = 12V$, $R_3 = 5.6k\Omega$ và $R_4 = 22k\Omega$. Tính trị số mức cao UTP và mức thấp LTP.

Điện áp ngõ ra khi bão hoà:

$$V_{cr} = \pm (V_{cr} - 1V) = \pm (12 - 1) = \pm 11V$$

Tính mức cao khi ngỗ ra bão hoà âm, $V_0 = -11V$. Lúc đó, ngỗ cộng xem như nổi mass, điện áp trên điện trở R_4 là: $V_{R4} = 11V$.

Dòng I₄ có trị số:
$$I_4 = \frac{V_{R4}}{R_1} = \frac{11}{22.10^3} = 0.5 mA$$

Ta có:

$$I_3 = I_4$$

nên:

$$V_{\mu_3} = I_3.R_3 = 0.5.10^{-3}.5.6.10^3 = +2.8V = UTP$$

Tương tự, tính mức thấp khi ngỗ ra bão hoà dương, $V_0 = +11V$. Lúc đó, ngỗ cộng xem như nối mass, điện áp trên điện trở R_4 là: $V_{R4} = -11V$.

Dòng I₄ có trị số:
$$I_4 = \frac{V_{R4}}{R_1} = \frac{-11}{22.10^3} = -0.5 mA$$

Ta có:

$$I_3 = I_4$$

nên:

$$V_{R3} = I_3.R_3 = -0.5.10^{-3}.5.6.10^3 = -2.8V = LTP$$

b) Op-amp 1 là mạch tích phân đảo:

Tín hiệu hình vuông ra của op-amp 2 đưa về ngõ vào của op-amp 1, biên độ được chọn nhờ biến trở R_1 . Mạch tích phân có tín hiệu vào ngõ đảo nên khi ngõ vào nhận mức cao thì ngõ ra có biên độ giảm xuống và ngược lại.

Gọi điện áp vào là V_1 thì dòng I_2 nạp vào tụ được tính theo công thức: $I_2 = \frac{V_1}{R_2}$

Mức điện áp nạp được trên tụ được tính theo công thức:

$$\Delta V = \frac{Q}{C} = \frac{h}{C}$$

$$v\hat{\sigma}i: \Delta V = UTP - LTP$$

$$I = I_2 \text{ và } C = C_1$$

Như vậy: $t = \frac{C.\Delta V}{I}$

Chu kỳ: T = 2t

Tần số của xung ra là: $f = \frac{I}{2\Delta V.C}$

Thí dụ: mạch tích phân có $C=0,1\mu F;\ R_1=1k\Omega;\ R_2=10k\Omega.$ Tính khoảng tần số mạch tạo ra.

* Khi biến trở chỉnh ở vị trí đỉnh thì: $V_1 = V_0 = \pm 11V$.

Tính dòng 12:

$$I_2 = \frac{V_1}{R_2} = \frac{11}{10.10^3} = 1.1 mA$$

$$\Delta V = UTP - LTP = 2.8 - (-2.8) = 5.6V$$

Tần số ra ở vị trí này là:

$$f = \frac{I}{2C\Delta V} = \frac{1,1.10^{-3}}{2.0,1.10^{-6}.5,6} = 982Hz \approx 1kHz$$

* Khi biến trở chỉnh ở vị trí 10% của đỉnh thì: $V_1 = 0.1V_0 = \pm 1.1V$.

Tính dòng I2:

$$I_2 = \frac{V_1}{R_2} = \frac{1.1}{10.10^3} = 0.11 mA$$

$$\Delta V = UTP - LTP = 2.8 - (-2.8) = 5.6V$$

Tần số ra ở vi trí này là:

$$f = \frac{I}{2C\Delta V} = \frac{0.11.10^{-3}}{2.0.1.10^{-6}.5.6} = 98Hz \approx 100Hz$$

Tần số ra này cũng chính là tần số của xung vuông sau opamp 2.

3- Mạch tạo sóng có nhiều khoảng tần số

Hình 10.12: Đổi tần số bằng tụ điện

\$10.5- MÁY PHÁT SÓNG SIN TẦN SỐ CAO

1- Đại cương

Máy phát sóng sin tần số cao có khoảng tần số ra từ 100kHz đến 40GHz. Máy phát sóng sin tần số cao gồm các khối:

- mạch dao động cao tần
- mach khuếch đại
- mạch định chuẩn biên độ tín hiệu ra
- mạch hiển thị biên độ tín hiệu ra

Mạch dao động tạo sóng sin trong máy phát sóng cao tần thường là mạch dao động Hartley hay mạch dao động Colpitts.

2- Mạch đao động Hartley

Mạch dao động Hartley còn gọi là mạch dao động ba điểm điện cảm có sơ đồ như hình 10.13.

Transistor được rấp cực E chung nên có tín hiệu vào cực B và tín hiệu ra ở cực C là hai tín hiệu đảo pha nhau. Mạch LC song song là mạch cộng hưởng để chọn tần số dao động trong đó:

$$L = L_1 + L_2 + 2M$$

L₁-L₂: điện cảm (Lentz)

M: hệ số hỗ cảm (Mutual)

Hình 10.13: Mạch dao động Hartley

Tần số dao động là:
$$f_O = \frac{1}{2\pi \sqrt{LC}}$$

Diều kiện phát sinh dao động là:
$$\beta \ge \frac{L_1 + M}{L_2 + M}$$

Ở tần số dao động f₀, mạch LC có tổng trở cực đại nên điện áp của tín hiệu f₀ có trị số lớn nhất sẽ được đưa vào cực B của transistor để khuếch đại.

Nhờ cuộn dây L có điểm giữa nối mass nên tín hiệu ra trên cực C qua đường hồi tiếp về cực B là mạch LC song song sẽ tạo lại tín hiệu đồng pha với tín hiệu ở ngõ vào để có hồi tiếp dương theo điều kiện của mạch dao động.

Cuộn dây L gồm hai phần L_1 và L_2 có điểm giữa nối mass nên mạch được gọi là mạch dao động ba điểm điện cảm.

Tụ C_E là tụ phân dòng để lọc tín hiệu trên cực E, bỏ tác dụng hồi tiếp âm của R_E . Các tụ C_1 - C_2 - C_3 là tụ liên lạc thường có trị số khá lớn so với tụ C.

3- Mạch dao động Colpitts

Mạch dao động Colpitts còn gọi là mạch dao động ba điểm điện dung có sơ đồ như hình 10.14.

Trong mạch dao động Colpitts, transistor ráp kiểu E chung là mạch khuếch đại đảo, mạch LC song song là mạch cộng hưởng để chọn tần số dao động, trong đó, tụ C có điện dung tương đương điện dung tụ C_1 và C_2 ghép nối tiếp.

$$C = \frac{C_1 \cdot C_2}{C_1 + C_2}$$

Tần số dao động là:
$$f_{ij} = \frac{1}{2\pi\sqrt{LC}}$$

Mạch dao động Colpitts có nguyên lý tương tự mạch dao động Hartley nhưng thay hai cuộn dây L_1 - L_2 nối tiếp bằng hai tụ C_1 - C_2 nối tiếp để có điểm giữa mạch cộng hưởng nối mass. Nhờ đó, mạch LC song song có hai tín hiệu ở hai đầu là hai tín hiệu đảo pha nên tao ra hồi tiếp dương theo điều kiện của mạch dao động.

Điều kiện phát sinh dao động là: $\beta \ge \frac{C_1}{C_2}$

4- Sóng cao tần điều chế biên độ (AM: Amplitude modulation)

Hầu hết các máy phát sóng cao tần đều bao gồm mạch điều chế biên độ hay tần số hay cả hai loại.

Hình 10.15: Sóng cao tần điều chế biên độ

Mạch điều chế biên độ cơ bản có sơ đồ như hình 10.15. Trong sơ đồ, transistor Q_1 là mạch khuếch đại cao tần. Nếu không có transistor Q_2 (FET) thì Q_1 có độ khuếch đại điện áp là:

$$A_V = -\frac{R_3}{R_4}$$

Transistor Q_2 ghép với R_4 qua tụ liên lạc C_2 nên không có ảnh hưởng đến trạng thái 1 chiều của Q_1 .

Khi có Q2, độ khuếch đại điện áp của mạch trở thành:

$$A_{\nu} = -\frac{R_3}{R_4 //R_D}$$
 R_D: điện trở cực thoát của Q₂

Khi cho tín hiệu tần số thấp vào cực G của Q_2 sẽ làm thay đổi giá trị điện trở R_D . Như vậy, độ khuếch đại của Q_1 sẽ bị thay đổi

và biên độ của sóng cao tần ra sẽ bị thay đổi theo biên độ của sóng âm tần đặt vào cực G.

5- Sóng cao tần điều chế tần số (FM: Fryquency modulation)

Mạch điều chế tần số lại được thực hiện tại mạch dao động của máy phát sóng cao tần (thay vì tại mạch khuếch đại như điều chế biên đô).

Một cách điều chế tần số là dùng diod biến dung (VVC diod: variable voltage capacitor diod). Đây là loại diod có điện dung biến đối khi thay đổi mức điện áp ngược đặt vào diod.

Mạch điều chế tần số cơ bản có sơ đồ như hình 10.16. Trong sơ đồ, transistor Q_1 là mạch dao động cao tần dùng mạch cộng hưởng LC ghép song song.

Hình 10.16: Sóng cao tần điều chế tần số

Tần số cộng hưởng của mạch được tính theo công thức:

$$f = \frac{1}{2\pi\sqrt{LC}}$$

Trong đó, điện dung C là điện dung tương đương của C4 và

C_D. Ta có:
$$C = \frac{C_4 \cdot C_D}{C_4 + C_D}$$
 (C₄ // C_D)

Theo sơ đồ, diod biến dung được phân cực ngược nên khi điện áp trên tải $R_{\rm C}$ bị thay đổi sẽ làm thay đổi điện dung $C_{\rm D}$.

Khi cho tín hiệu tần số thấp vào cực B, transistor khuếch đại sẽ làm điện áp V_C thay đổi. Điều này làm điện dung C_D thay đổi sẽ làm thay đổi tần số cộng hưởng trên mạch LC.

Câu hỏi

- 1- Cho biết ýnghĩa của việc chọn đơn vị và đo mức âm tần?
- 2- Giải thích nguyên lý mạch dao động dùng cầu Wien?
- 3- Cho biết các phương pháp thay đổi tần số trong mạch dao động dùng cầu Wien?
 - 4- Giải thích nguyên lý mạch đổi từ sóng sin ra sóng vuông?
- 5- Giải thích nguyên lý sơ đồ chi tiết máy phát sóng AG-26014 (Đài loan)?
 - 6- Cho biết các ứng dung cơ bản của máy phát sóng hạ tần?
 - 7- Giải thích nguyên lý máy tạo hàm sin và vuông?
- 8- Phân biệt nguyên lý mạch dao động Hartley và mạch dao động Colpitts?
- 9- Cho biết nguyên lý điều chế biên độ sóng sin? Ứng dụng trong thực tế?
- 10- Cho biết nguyên lý điều chế biên độ sóng sin? Ứng dụng trong thực tế?

CHUONG 11

MÁY DAO ĐỘNG KÝ (OSCILLOSCOPES)

§11.1- DAI CUONG

Máy dao động ký phổ biến nhất là máy dao động ký tia âm cực (cathode – ray oscilloscopes) gồm các phần chính là:

- đèn tia âm cực (ống phóng tia điện tử)
- mạch điều khiển
- mạch nhận tín hiệu vào
- 1- Đèn tia âm cực (viết tắt là CRT: cathode ray tube) là đèn chân không mà điện tử được phát ra bằng cách đốt nóng âm cực và tạo thành chùm tia họp, với tác dụng của điện áp cao ở dương cực, điện tử sẽ được hút và đập mạnh vào màn hình có quét lớp phosphor để phát ra ánh sáng.
- 2- Mạch điều khiển có nhiệm vụ làm tia điện tử đồng thời bị kéo lệch theo chiều ngang và chiều dọc. Lực quét tia điện tử ngang trên màn hình nhờ một xung điện hình răng cưa với thời gian được xác định (mạch tạo gốc thời gian time base) và có thể thay đổi theo tần số của tín hiệu ở ngõ vào. Lực quét dọc trên màn hình do sự thay đổi điện áp của tín hiệu áp dụng ở ngõ vào. Kết quả trên màn hình sẽ hiển thì dang sóng của tín hiệu vào.
- 3- Mạch nhận tín hiệu vào có thể chọn biên độ thích hợp nhờ cầu phân áp có nhiều nấc từ nhỏ đến lớn để dạng sóng trên màn hình có độ cao thích hợp.

Hiện nay, hầu hết máy dao động ký đều là loại có 2 tia âm cực, để đồng thời có thể hiển thị hai dạng sóng. Dao động ký được ứng dụng để đo điện áp, tần số hay góc pha của các sóng điện. Nhiều trường hợp còn được dùng để kiểm tra hay khảo sát độ rộng

xung, độ dốc, thời gian trễ của các tín hiệu điện. Những đặc tuyến của linh kiện điện tử cũng có thể hiển thị trên màn hình của dao động ký.

§11,2- SƠ ĐỒ KHỐI CỦA MÁY DAO ĐỘNG KÝ

Hình 11.1: Sơ đồ khối máy dao động ký

Tín hiệu Y là tín hiệu cần khảo sát qua mạch phân áp, mạch khuếch đại rồi đưa đến 2 bản cực điều khiển kéo tia điện tử theo chiều dọc. Tín hiệu này còn được đưa đến mạch đồng bộ để điều khiển mạch tạo xung răng cưa, qua mạch khuếch đại X, cấp cho 2 bản cực điều khiển kéo tia điện tử theo chiều ngang.

Tín hiệu đồng bộ còn có thể lấy trực tiếp từ bên ngoài và có thể không qua mạch tạo xung răng cưa nếu biên độ đủ lớn.

Để đo điện áp tín hiệu Y, phải dùng biên độ chuẩn trong máy, xác định giá trị từng ô dọc trên màn hình rồi mới đo biên đô của Y để so với giá trị chuẩn.

Để đo tần số hay chu kỳ của tín hiệu Y, phải sử dụng mạch chuẩn thời gian, chuẩn giá trị từng ô ngung trên màn hình rỗi mới đo chu kỳ của tín hiệu Y, sau đó qui ra tần số.

§11.3- ĐÈN CRT

1- Cấu tạo

Đèn CRT có cấu tạo khá phức tạp, gồm các bộ phận cơ bản đặt trong một ống thủy tinh đã hút hết không khí là:

- Tim đèn F, âm cực K, lưới G
- Các dương cực A₁, A₂, A₃
- Các bản cực làm lệch tia điện tử
- Màn hình phát quang

<u>Hình 11.2</u>: Cấu tạo của đèn CRT

2- Nguyên lý hoạt động

- a) Tim đèn F: làm bằng dây tungstene được đốt nóng bởi nguồn điện áp xoay chiều 6,3V.
- b) Cathod K: làm bằng niken, có dạng hình trụ bao quanh tim đèn nên được tim đèn sưởi nóng, mặt đáy phẳng phủ lớp oxit để tăng khả năng bức xạ điện tử. Cathod được cấp điện áp âm (-2kV) từ khối nguồn để tạo chênh lệch lớn so với điện áp ở màn hình.
- c) Lưới G: cũng làm hằng niken dạng chiếc cốc, đáy có lỗ nhỏ để điện tử phát ra từ âm cực đi đến màn hình là 1 tia nhỏ. Lưới có điện áp khoảng -2,05kV (âm hơn âm cực).

d) Các Anod (dương cực):

- * Anod thứ nhất A_1 có dạng hình trụ, điện áp của A_1 là 0V nên dương khá cao so với âm cực. Điều này sẽ làm gia tốc tia điện tử từ âm cực qua lưới đến anod.
- * Anod thứ hai A₂ (còn gọi là lưới hội tự) có dạng hình trụ rỗng, nối vào điện áp âm -2kV, để tập trung tia điện tử thành tia thật nhỏ; anod thứ ba A₃ cũng có dạng hình trụ rỗng, nối vào điện áp 0V (cao hơn âm cực) để tao ra trường gia tốc trước khi đến màn hình.

e) Bản cực lệch dọc và ngang:

Trong đèn CRT còn bố trí các bản cực kéo tia điện tử theo chiều ngang (trục X), theo chiều dọc (trục Y). Giữa các bản cực lệch ngang và dọc có tấm lá chấn cách điện để ngăn ảnh hưởng điện trường giữa các bản cực.

Điện áp đặt trên các bản cực lệch tia là +E/2 và -E/2 nên điện áp chênh lệch giữa 2 bản cực là E. Điện tử bị hút về bản cực dương, đồng thời bị đẩy bởi bản cực âm nên tia điện tử bị làm lệch đi. Điện áp đặt vào hai bản cực lệch ngang là điện áp xoay chiều làm tia điện tử liên tục bị kéo qua lại sẽ cho đường sáng theo hàng ngang. Điện áp đặt vào hai bản cực lệch dọc là tín hiệu Y cần khảo

sát, tuỳ dạng sóng mà tia điện tử sẽ bị kéo lên xuống, kết hợp lực kéo ngang, tia điện tử sẽ đập vào màn hình và cho ra dạng sóng của tín hiệu Y.

f) Màn hình phát quang:

- Màn hình được chế tạo bằng thủy tinh có phủ lớp phospho ở mặt trong. Khi chùm tia điện tử đập vào màn hình, điện tử trong lớp phospho có mức năng lượng tăng lên rất cao và phát quang khi trở về mức năng lượng thường. Độ sáng có thể duy t rì vài milli giây đế vài giây. Màu phát ra có thể là xanh, đỏ, lục hay trắng.
- Chất liệu phospho cách điện, nhưng do phát xạ thứ cấp, màn hình chứa một điện áp âm, lâu dần tích luỹ sẽ đẩy các điện tử dội ra. Để tránh hiện tựng này, người ta phủ một lớp than (adaquag) quanh cổ đèn hình, điện tử phát xạ thứ cấp bị hấp thu bởi lớp than nên không tích luỹ và không tạo được điện áp âm. Môt số đèn khác, màn hình có một lớp nhôm mỏng tráng lên mặt đèn hình để hút điện tử thứ cấp xuống mass.

§11.4- MACH KHUẾCH ĐẠI TÍN HIỆU LỆCH DOC

1- Sơ đồ (Hình 11.3)

2- Nguyên lý

Điện áp cần khảo sát ở ngõ vào sẽ được biến đổi thành hai điện áp bằng nhau và ngược chiều là +E/2 và -E/2. Mạch khuếch đại vi sai đối xứng trong hình 11.3 có tác dụng đổi từ một tín hiệu ngõ vào (DC hay AC) thành hai tín hiệu ra vi sai.

Transistor Q_1 và Q_4 là hai transistor ráp kiểu C chung (ra ở cực E) để có tổng trở vào lớn (yêu cầu đối với các thiết bị đo lường). Transistor Q_2 và Q_3 là mạch khuếch đại vi sai ráp kiểu cực E chung. Điện áp ra giữa cực C_2 và cực C_3 là điện áp đặt vào hai bản cực lệch ngang.

Hình 11.3: Mạch khuếch đại tín hiệu lệch dọc

Khi điện áp vào cực B_1 = 0V, nếu cực B_4 cũng điều chỉnh nhờ R_{10} cũng ở mức 0V, cả hai transistor Q_1 và Q_4 đều cho ra V_{E1} và V_{E4} < 0V. Lúc đó, V_{B1} và V_{B4} < 0V, Q_2 và Q_3 sẽ dẫn điện và được tính sao cho V_{C2} = V_{C3} = 0V.

Biến trở R_4 được điều chỉnh bù trừ cho sự sai biệt các thông số của mạch để có trạng thái cân bằng ở ngõ ra.

Khi có điện áp xoay chiều áp dụng ở ngõ vào, nếu điện áp > 0V, Q_1 và Q_2 dẫn mạnh, Q_3 và Q_4 dẫn yếu đưa đến điện áp ra V_{C2} và V_{C3} biến thiên ngược nhau theo nguyên lý mạch khuếch đại vi sai.

Biến trở R_{10} dùng để điều chỉnh điện áp V_{B4} làm thay đổi mức điện áp một chiều sẽ dịch chuyển chùm tia điện tử lên xuống trên hoặc dưới đường ngang giữa màn hình.

§11.5- TÍN HIỆU QUÉT NGANG (BỘ TẠO GỐC THỜI GIAN)

Để thực hiện việc kéo tia điện tử qua lại từ trái sang phải của màn hình, trong máy dao động ký dùng một tín hiệu tạo gốc thời gian đặt vào hai bản cực X và gọi là tín hiệu quét ngang. Tín hiệu quét ngang có dạng hình răng cưa. Nếu tần số của tín hiệu Y cần khảo sát lớn hơn tần số tín hiệu quét n lần thì trên màn hình sẽ hiển thị n chu kỳ của tín hiệu Y.

Hình 11.4a: Dạng sóng tín hiệu quét ngang, tín hiệu vào là sin

Hình 11.4b: Dạng sóng tín hiệu quét ngang, tín hiệu vào là tam giác

(c) Display at CRT screen

Nếu tỉ số của hai tần số là một trị số nguyên thì trên màn hình sẽ có dạng sóng đứng yên, nếu tỉ số của hai tần số là một số lẻ thì dạng sóng sẽ chuyển động (rung hay chạy ngang) và không quan sát được. Như vậy cần có sự đồng bộ giữa tín hiệu vào và tín hiệu quét. Trên dao động ký được thiết kế có núm vi chỉnh tần số quét để đạt được sự đồng bộ chính xác.

Hình 11.5: Mạch tạo tín hiệu quét ngang

Mạch điện 1.5 là mạch tạo tín hiệu quét ngang còn gọi là mạch tạo gốc thời gian. Tín hiệu đồng bộ được đưa vào ngõ đảo ngõ -), tụ C_2 là tụ liên lạc để cách ly điện áp một chiều, điện trở R_7 nhận điện áp đồng bộ. Op-amp là mạch Schmitt Trigger nhận tín hiệu răng cưa lấy từ ngõ ra V_1 đưa vào ngõ không đảo (ngõ +) qua trở R_6 .

Op-amp có độ khuếch đại vòng hở rất lớn (khoảng 200.000 lần) nên chỉ cần một sự sai biệt điện áp rất nhỏ ở ngõ vào cũng đủ làm cho mạch Schmitt Trigger bão hoà và điện áp ra V_2 sẽ đạt mức gần bằng nguồn. Khi bão hoà dương có: $V_2 = +(V_{CC} - 1V)$, khi bão hoà âm có: $V_2 = -(V_{EE} - 1V)$.

Khi ngỗ + có điện áp mức tối thiểu $(V_1^+ < V_1^-)$, op-amp bão hoà âm. Lúc đó, điện áp V_{B2} âm, T_2 ngưng dẫn, dòng I_1 không qua T_2 mà nạp vào tụ C_1 làm điện áp trên tụ tăng lên, tức là V_1 tăng lên. Khi V_1 tăng lên đủ lớn, $(V_1^+ > V_1^-)$, mạch Schmitt Trigger đổi trạng thái và op-amp bão hoà đương.

Khi op-amp bão hoà dương, dòng I_{B2} qua R_4 điều khiển T_2 bão hoà, dòng điện I_1 sẽ qua T_2 xuống nguồn $-V_{EE}$. Lúc đó, tụ C_1 sẽ xả điện làm điện áp V_1 giảm nhanh. Quá trình nạp điện và phóng điện của tụ C_1 tạo ra sóng răng cưa, thời gian nạp điện dài, thời gian xả điện ngắn. Hình 11.6 minh hoạ dạng sóng ra của V_1 và V_2 .

Tại thời điểm tức thời đổi trạng thái, dòng điện qua điện trở

$$I = \frac{V_2 - 0}{R_5} = \frac{(V_{ex} - 1V)}{R_5}$$

Dòng điện này cũng chính là dòng điện qua R_6 được cho ra bởi điện áp ngõ vào:

$$IR_6 = \frac{(V_{ee} - W)}{R_5} R_6$$

Đây chính là điện áp trigger (điện áp ngường):

triggervoltage =
$$(V_{ee} - W) \frac{R_b}{R_s}$$

Trong sơ đồ hình 11.5, transistor Q_1 chính là mạch nguồn đòng điện ổn định (constant current source). Cầu phân áp R_1 và R_2 dùng phân cực ổn định cho cực B_1 , điện áp trên R_3 chính là:

$$V_{R3} = V_{H1} - V_{RE}$$

Dòng điện IEI là hằng số và được tính theo công thức:

$$I_{F+} = \frac{V_{B+} - V_{BF}}{R_3} = I_1$$

Muốn thay đổi trị số dòng I_1 thì có thể thay đổi điện trở R_3 bằng biến trở.

Dòng điện này nạp vào tụ C_1 khi Q_2 ngưng và dòng này trở thành dòng I_{C2} khi Q_2 bão hoà.

Do dòng nạp vào tụ là hằng số nên điện áp trên tụ tăng tuyến tính theo thời gian theo công thức:

$$\Delta V_1 = \frac{I_1.T}{C_1}$$
 T: chu kỳ xung rặng cưa

Suy ra:
$$T = \frac{\Delta V_1.C_1}{I_1}$$

Chu kỳ của xung răng cưa tuỳ thuộc dòng điện I_1 và tụ C_1 Để thay đổi chu kỳ quét, người ta dùng cách thay đổi trị số của tụ bằng nút chọn Time/Div (thời gian / vạch chia). Biến trở R_3 dùng để điều chính vô cấp (Sweep) trong từng nấc của nút chọn Time/Div cho ra tần số quét ngang đồng bộ chính xác với n lần tần số của tín hiệu lệch dọc. Việc đồng bộ giữa tín hiệu đo và tín hiệu quét được thực hiện tự động theo nguyên lý trên.

§11.6- DAO ĐÔNG KÝ HAI TIA

Hiện nay hầu hết dao động ký đều là loại hai tia để có thể khảo sát đồng thời hai tín hiệu. Để tạo ra hai tia, có thể thực hiện theo hai phương pháp:

- Dùng hai ống phóng tia điện tử riêng biệt, mỗi tia cho ra một dang sóng (hình 11.7a)
- Dùng một ống phóng tia điện tử nhưng chùm tia được tách làm hai phần riêng trước khi đi qua các bắn cực làm lệch tia (hình 11.7b).

(a) CRI with two electroniques

(b) Split beam (RT

Hình 11.7: Ống phóng tia điện tử dao động ký 2 tia

Dao động ký sử dụng hai phương pháp trên đều chỉ dùng một bộ bản cực quét ngang. Tín hiệu răng cưa của mạch tạo sóng quét ngang được đưa vào hai bản cực lệch ngang để đồng thời làm lệch ngang hai chùm tia của hai tín hiệu lệch dọc cần khảo sát.

1- Hai ống phóng tia điện tử

Sơ đồ hình 11.8 là sơ đồ khối của dao động ký có hai ống phóng điện tử riêng. Hai tín hiệu cần khảo sát vào hai kênh riêng biệt A và B. Mỗi kênh đều có mạch khuếch đại tín hiệu lệch dọc để đưa đến hai cặp bản cực lệch dọc, mạch tạo gốc thời gian vả mạch khuếch đại ngang điều khiển đồng thời cả hai tia nhờ một cặp bản cực lệch ngang.

Hình 11.8: Sơ đồ khối của dao động ký có hai ống phóng điện tử riêng

2- Một ống phóng tia điện tử chia làm hai tia

Sơ đồ hình 11.9 là sơ đồ khối của dao động ký có một ống phóng điện tử được tách làm hai chùm riêng. Hai tín hiệu cần khảo sát vào hai kênh riêng biệt A và B. Hai tín hiệu này được chuyển

mạch luân phiên giữa kênh A và B nhờ khối chuyển mạch điện tử lệch dọc. Tần số chuyển mạch được lấy từ mạch tạo gốc thời gian của khối quét ngang.

(b) Deflection system for single-beam dual-trace oscilloscope

<u>Hình 11.9:</u> là sơ đồ khối của dao động ký có một ống phóng điện tử được tách làm hai chùm riêng

Đối với dao động ký loại này, tần số chuyển mạch cần có trị số cao để tránh trường hợp dạng sóng hiển thị bị đứt nét khi khảo sát những tín hiệu có tần số cao. Hình 11.10 minh họa cho hai trường hợp này.

- (a) Tín hiệu vào kênh A hình sin, kênh B hình tam giác
- (b) Gốc thời gian.
- (c) Điện áp vào mạch khuếch đại quét dọc
- (d) Hai dạng sóng cùng hiển thi

Hình 11.10: Khảo sát hai dạng sóng cùng lúc

§11.7- SỬ DUNG ĐAO ĐỘNG KÝ

Hình 11.11 là mặt trước của một dao động ký tiêu biểu với các nút chỉnh, hình 11.12 là mặt sau với phần hướng dẫn chọn nguồn cung cấp và các lưu ý quan trọng.

1- Các nút cấp nguồn và chỉnh CRT: (Power supply and CRT)

- 1) Power switch ON/OFF: ấn vào nút này để mở nguồn, ấn lần thứ hai làm nút bật ra là ngắt nguồn vào máy.
 - 2) Power lamp: đèn sáng báo máy đang được cấp nguồn.
- 3) Intensity knob: nút chỉnh độ sáng của dạng sống trên màn hình.
- Focus knob: nút chỉnh độ sắc nét của dạng sóng cho dễ nhìn nhất,

Hình 11.11a: Mặt trước của dao động ký và các nút chỉnh

Hình 11.11b: Mặt trước của dao động ký

Hình 11.12: Mặt sau của dao động ký

- 5) Trace rotation: nút chỉnh làm xoay tia quét cho song song với các đường kẻ ngang trên màn hình.
- 6) Scale Illum knob: điều chỉnh mức độ sáng. Nút này được sử dụng khi máy hoạt động trong vùng tối hay khi muốn chụp lấy ảnh của dạng sóng.
- 37) Fuse holder/ Line voltage converter: chỗ đặt cầu chì và đổi nguồn điện cấp cho máy.
 - 38) AC Receptacle: ổ cắm dây nối nguồn AC.

2- Các nút chỉnh hàng dọc: (Vertical axis section)

- 30) CH 1 input connector: ngỗ vào của tín hiệu cần khảo sát. Khi ở phương thức X-Y thì đây là ngỗ vào của trục X.
- 24) CH 2 input connector; ngõ vào của tín hiệu cần khảo sát. Khi ở phương thức X-Y thì đây là ngỗ vào của trục Y.
- 22) và 29) AC-GND-DC: nút gạt để chọn cách ghép tín hiệu vào mạch khuếch đại hàng dọc.
- Vị trí AC: ngỗ vào ghép qua tụ điện, mức điện áp DC của tín hiệu bị loại bỏ, chỉ có mức AC được hiển thị.
 - Vị trí GND: ngỗ vào của mạch khuếch đại dọc bị nổi mass.
- Vị trí DC: ngỗ vào ghép trực tiếp, tín hiệu ngỗ vào cả thành phần AC và DC đều được hiển thi trên màn hình.
- 25) và 33) Volts/Div selector switch: (Division) bộ giao hoán để chọn độ nhạy cho tín hiệu lệch dọc. Chọn vị trí sao cho biên độ tín hiệu trên màn hình dễ đọc nhất. Nếu probe (cọc đo) chon vị trí 10:1 thì độ cao đo được phải nhân lên 10 lần.

Có các nấc: 5,10,20,50mV và 0.1, 0.2, 0.5, 1, 2, 5V.

26) và 32) Var knob: nút chỉnh phẳng biên độ của tín hiệu lệch dọc. Nếu chỉnh hết meo chiều ngược chiều kim đồng hồ thì

biên độ bị giảm còn 1/2,5 lần của trị số Volts/Div đang chọn. Thường thì nút này được xoay hết theo chiều kim đồng hồ.

- 20) và 36) x 5 Mag: nếu kéo nút này ra thì độ cao theo trục đọc được tăng lên 5 lần, độ nhạy cao nhất trở thành ImV/Div.
- 23) và 35) Position : nút chỉnh vị trí tín hiệu di chuyển lên xuống theo chiều dọc của 2 kênh CH1 và CH2.
- 21) Invert push Button Swich: khi ấn nút này thì tín hiệu cho vào ngõ CH2 bị đảo ngược lại (đảo pha). Chức năng này thuận lợi khi so sánh 2 tín hiệu khác pha nhau hay khi hiển thị hai dạng sóng kênh 1 và 2 dùng kiểu ADD (cộng biên độ 2 tín hiệu).
- 34) Bật ra: chỉ có tín hiệu vào CH1 hiển thị trên màn hình, ấn vào: chỉ có tín hiệu vào CH2 hiển thị trên màn hình.
- 28) Dual: cá hai tín hiệu cho vào 2 ngõ CH1 và CH2 đều đồng thời hiến thị trên màn hình. Chop: cả hai tín hiệu được hiển thị đồng thời theo kiểu chia nhó ra.
- 31) ALT (alternate): cả hai tín hiệu cho vào 2 ngõ CH1 và CH2 luân phiên hiển thị trên màn hình.
- 28) và 31) ADD: ấn cùng lúc 2 nút này, hiển thị tổng đại số điện áp của hai kênh CH1 và CH2. Sự khác biệt điện áp giữa 2 kênh sẽ hiển thị khi ấn nút Invert.
- 40) CH1 singal output connector (mặt sau); cọc nối tín hiệu ngõ ra của kênh 1.

3) Các nút chỉnh hàng ngang: (Horizontal axis section)

- 14) Horizontal Position: nút chỉnh vị trí tín hiệu di chuyển qua lại theo chiều ngang.
- 15) Time/Div selector switch: chọn tốc độ quốt từ 0,1 μs/Div đến 0,2s/Div trong 20 nấc chuẩn.

- 12)X,Y: hiển thị tín hiệu của 2 kênh CH1 và CH2 như một đổ thị X,Y. Tín hiệu quét đọc cho vào ngõ CH1 và tín hiệu quét ngang cho vào ngõ CH2.
- 11) Sweep Var Control: khi nút này xoay hết theo chiều kim đồng hồ, việc quét sẽ được chỉ thị bởi công tắc chọn Time.Div. Nếu xoay hết theo chiều ngược lại thì việc quét sẽ nhỏ hơn 1/2.5 của nút chọn Time/Div.
- 9) (x5) x10 Push Button: khi ấn nút này thì độ rộng của tín hiệu sẽ tăng lên (5) 10 lần. Thời gian quét sẽ trở thành 1/10 gía trị của vị trí Time/Div đang chọn.

4) Phần chon xung kích

- 18) Trigger source selector switch: chọn nguồn tạo xung quét. Có 4 vị trí:
 - Int: tín hiệu vào CH1 hay CH2 trở thành tín hiệu xung kích
 - CH2: tín hiệu vào ngõ CH2 trở thành tín hiệu xung kích
 - Line: tần số nguồn điện lưới trở thành tín hiệu xung kích
- Ext: tín hiệu ngoài đặt vào ngõ TRIG input trở thành tín hiệu xung kích
- 19) Ext input connector: cọc nối nhận tín hiệu xung kích bên ngoài
- 17) Trig level knob; nút chỉnh biên độ điểm trên dạng xung kích sẽ khởi động quét
- 10) Slope knob: nút chọn cực tính của đường dốc của dạng xung quét.
 - (+) đốc lên hay bắt đầu bằng bán kỳ đương khi nút bật ra
 - (-) đốc xuống hay bắt đầu bằng bán kỳ âm khi nút bị đẩy vào

Hình 11.13: Một vài hiệu dao động ký thông dụng

§11.8- ỨNG DỤNG CỦA DAO ĐỘNG KÝ

Trong kỹ thuật điện tử, dao động ký được sử dụng phục vụ cho việc học tập, thí nghiệm, thiết kế, kiểm tra hay sửa chữa các thiết bị điện tử.

Những ứng dụng quan trọng nhất của đao động ký là: đo điện áp, đo chu kỳ hay tần số, góc pha của các tín hiệu xoay chiều.

1- Đo điện áp và tần số của tín hiệu

Điện áp đỉnh đến đỉnh V_{PP} của các dạng sóng sẽ được hiển thị đồng thời với tần số trên màn hình khi khảo sát bằng dao động ký.

Hình 11.14: Đo điện áp và tần số của tín hiệu

Theo hình 11.14, dạng sóng A có biên độ đỉnh đến đỉnh là 4,5 ô; dạng sóng B có biện độ 2 ô. Dạng sóng A có 2 chu kỳ, dạng sóng B có 6 chu kỳ.

Nút chọn Time / Div ở vị trí 0,5 ms / Div; nu1t chọn Volts / Div ở vị trí 100 mV.

Biên độ đỉnh của 2 tín hiệu là:

$$V_A = (4,5 \text{ Div}) \times 100 \text{ mV} / \text{Div} = 450 \text{ mV}$$

$$V_B = (2 \text{ Div}) \times 100 \text{ mV} / \text{Div} = 200 \text{ mV}$$

Chu kỳ của 2 tín hiệu là:

$$2T_A = (8.8 \text{ Div}) \times 0.5 \text{ ms} / \text{Div} = 4.4 \text{ ms}$$

$$T_A = 2.2 \text{ ms}$$
 \Rightarrow $f_A = \frac{1}{2.2 \cdot 10^{-3}} = 450 \text{ Hz}$

$$6T_B = (8.8 \text{ Div}) \times 0.5 \text{ ms} / \text{Div} = 4.4 \text{ ms}$$

$$T_B = 0.73 \text{ ms}$$
 \Rightarrow $f_A = \frac{1}{0.73.10^{-3}} = 1370 \text{Hz}$

2- Đo góc lệch pha của 2 tín hiệu

Hình 11.15a: Đo góc lệch pha

Trong hình 11.15, hai dạng sóng lệch pha nhau nhưng có cùng chu kỳ là 8 ô. Mỗi chu kỳ có 360^{0} nên mỗi ô là:

$$1div = \frac{360}{8} = 45^{\circ}$$

Hai dạng sóng lệch nhau 1,4 ô nên góc lệch pha là:

$$1.4 div = 1.4.x45^{\circ} = 63^{\circ}$$

Hình 11.15b: Đo góc lệch pha của 2 tín hiệu khác biên độ

3- Khảo sát đặc tính của linh kiện điện tử

a) Khảo sát đặc tính của diod:

Diod là linh kiện bán dẫn có đặc tính quan trọng nhất là quan hệ giữa dòng điện I_D theo điện áp V_D . Thiết lập mạch điện như hình 11.16, tín hiệu răng cưa phải có biên độ thích hợp với sức chịu dựng của diod và điện trở R_1 .

Theo hình vẽ, $R_1=1k\Omega$. Nếu dòng điện qua diod là I=1mA thì điện áp rơi trên R_1 là: $V_R=1mA$ x $1k\Omega=1V$.

Nút Volts / Div chọn vị trí 1V / Div thì mỗi ô sẽ tương ứng với giá trị 1mA.

Hình 11.16: Khảo sát đặc tính thuận của diod

Tín hiệu hình răng cưa nên có tần số trong khoảng 100Hz đến 1kHz. Nút Time / Div chọn vị trí thích hợp là 0,1ms / Div hay 0,2ms / Div.

Điện áp trên điện trở R_1 được đưa vào ngỗ hàng dọc (vertical input) của dao động ký, điện áp trên diod được đưa vào ngỗ hàng ngang (horizontal input) của dao động ký.

Trên đặc tuyến được hiển thị có trục tung chỉ dòng I_D (mỗi ô là 1mA), trục hoành chỉ điện áp V_D (mỗi ô là 0,1V). Đây là đặc tuyến khi phân cực thuận diod.

b) Khảo sát đặc tính của transistor:

(a) Circuit for displaying transistor collector characteristics

 Oscilloscope display of transistor collector characteristics

Hình 11.17: Khảo sát đặc tính ngỗ ra của transistor

Transistor là linh kiện bắn dẫn có đặc tính quan trọng nhất là quan hệ giữa đòng điện I_C theo điện áp V_{CE} . Thiết lập mạch điện như hình 11.17, tín hiệu răng cửa phải có biên độ thích hợp với sức chịu đựng của transistor và điện trở R_{\perp} .

Tín hiệu răng cưa được áp dụng vào cực C giống như trong mạch khảo sát diod. Cực B được cấp nguồn phân cực có thể điều chỉnh được điện áp để thay đổi dòng điện I_B.

Điện áp trên điện trở R_1 được đưa vào ngỗ hàng dọc (vertical input) của dao động ký, điện áp trên transistor được đưa vào ngỗ hàng ngang (horizontal input) của dao động ký.

Mỗi trị số I_B sẽ cho ra một đường đặc tính trên trục toạ độ, cho thấy quan hệ giữa I_C và V_{CE} .

4- Hình Lissajou

Dao động ký còn có khả năng hiển thị sự sai lệch góc pha giữa hai tín hiệu sin có cùng tần số bằng những đường đặc sắc, gọi là hình Lissajou.

Khi gốc thời gian của đạo động ký được ngắt và tín hiệu hình sin được áp dụng vào cả hai ngõ hàng dọc và ngang, kết quả hiển thị sẽ tuỳ thuộc sự quan hệ giữa 2 tín hiệu này.

Hình 11.18a: Chỉ có tín hiệu vào ngõ hàng dọc

Hình 11.18b: Chỉ có tín hiệu vào ngõ hàng ngang

Hình 11.18c: Hai tín hiệu vào đồng pha

Hình 11.18d: Hai tín hiệu vào đảo pha

Hình 11.18e: Hai tín hiệu lệch pha 90°

<u>Hình 11.18f</u>: Hai tín hiệu lệch pha từ 0^0 đến 90^0

Hình 11.18g: Hai tín hiệu lệch pha từ 900 đến 1800

TÀI LIỆU THAM KHẢO

- 1- Câm biến Đo lường và điều khiển -Nguyễn Tấn Phước, NXB Hồng Đức – 2007
- 2- Đo lường các đại lượng điện và không điện Nguyễn Văn Hoà, NXB Khoa học và Kỹ thuật 2003
- 3- Kỹ thuật đo Nguyễn Ngọc Tân và Ngô Văn Ky,
 NXB Khoa học và Kỹ thuật 1998
- 4- Các hệ đơn vị đo lường Nguyễn Văn Hướng. NXB Giáo duc - 2006
- 5- Electronic Instrumentation and measurements David A. Bell, Prentice Hall International Editions
- 6- Electrical Measurements V. Bopov, Mir Publisher Moscow 1982

TỦ SÁCH KỸ THUẬT ĐIỆN - ĐIỆN TỬ CỦA TÁC GIẢ NGUYỄN TẦN PHƯỚC

* GIÁO TRÌNH ĐIỆN TỬ KỸ THUẬT 1- Linh kiện điện tử (khổ 16x24) (tái bản lần thứ 11) 2- Mạch điện tử - Tập 1 (tái bản lần thứ 6) (tái bản lần thứ 5) 3- Mach điện tử - Tập 2 4- Mach điện tử - Tập 3 (sắp xuất bản) 5- Mach số - tập 1, 2 (đã xuất bản) 6- Mạch tương tự (khổ 16x24) (tái bản lần thứ 3) * GIÁO TRÌNH ĐIỆN TỬ CÔNG NGHIỆP 1- Linh kiên điều khiển (tái bản lần thứ 6) (tái bản lần thứ 4) 2- Kỹ thuật xung căn bản và nâng cao 3- Điện tử ứng dụng trong công nghiệp- Tập 1 (tái bản lần thứ 4) (sắp xuất bản) 4- Điện tử ứng dung trong công nghiệp- Tập 2 5- Điện tử công suất (tái bản lần thứ 2) * GIÁO TRÌNH ĐIỆN CÔNG NGHIỆP 1- Điện kỹ thuật (sắp xuất bản) (tái bản lần thứ 1) 2- Đo lường điện và điện tử (khổ 16x24) 3- Khí cu điện - Truyền động điện (sắp xuất bản) 4-Trang bi điện (sắp xuất bản) * GIÁO TRÌNH ĐIỆN TỬ TỰ ĐỘNG HÓA 1- Lập trình với PLC Logo, Easy và S7-200 (tái bản lần thứ 6) 2- Lập trình với PLC Zen, CPM2A và Inverter Omron (tái bản lần thứ 4) (tái bản lần thứ 1) 3- Cảm biến -Đo lường và điều khiển (khổ 16x24) 4 -Trang bị điện không tiếp điểm-Thang máy công nghiệp (sắp xuất bản) * GIÁO TRÌNH DẠY NGHỀ - HƯỚNG NGHIỆP (khổ 14x20) 1- Sửa chữa Thiết bi Điện - Điện tử gia dung (đã xuất bản) 2- Điện và Điện tử căn bản (đã xuất bản) 3- Điện tử công nghiệp và Cảm biến - Tập 1 (đã xuất bản) 4- Điện tử công nghiệp và Cảm biến - Tập 2 (sắp xuất bản)

5- Ampli - Lý thuyết và Thực hành

Giá: 26.000 đồng

(sắp xuất bản)