

FRETing about Requirements:

Formalised Requirements for an Aircraft Engine Controller

Marie Farrell Matt Luckcuck Oisín Sheridan Rosemary Monahan

Department of Computer Science, Maynooth University, Ireland

REFSQ 2022 22nd of March 2022

Overview

- ► Our experience using NASA's Formal Requirements Elicitation Tool (FRET)^a
 - ► Alongside aerospace industrial partner
 - ► Natural-language requirements encoded in FRET
- ► Use Case:
 - Aircraft engine's software controller
 - Verification and Validation of Automated Systems' Safety and Security Project^b
- ▶ Bridge communication gap between...
 - ► Industrial Partner Aerospace industry specialists
 - ► Formal methods Our team

FRET: https://github.com/NASA-SW-VnV/fret

bVALU3S: https://valu3s.eu

- ► Formal Methods. . .
 - ▶ Broad group of mathematical approaches to software and system development
 - ► Support rigorous specification, design and verification

- ► Formal Methods...
 - ▶ Broad group of mathematical approaches to software and system development
 - ► Support rigorous specification, design and verification
- ► Formal Verification...
 - Proving or disproving the correctness of a system with respect to a certain formal specification or property

- ► Formal Methods...
 - ▶ Broad group of mathematical approaches to software and system development
 - ► Support rigorous specification, design and verification
- ► Formal Verification...
 - Proving or disproving the correctness of a system with respect to a certain formal specification or property
- ▶ High degree of reliability and robust evidence for regulators

- ► Formal Methods...
 - ▶ Broad group of mathematical approaches to software and system development
 - ► Support rigorous specification, design and verification
- ► Formal Verification...
 - Proving or disproving the correctness of a system with respect to a certain formal specification or property
- High degree of reliability and robust evidence for regulators
- ▶ There are 2 broad categories of formal method:
 - Model-checkers exhaustively examine state space
 - 2 Theorem provers provide deductive proof of correctness

Methodology

- ▶ Phase 1: Requirements...
 - ► Initial requirements
 - Eliciting detail
- Phase 2: Verification...
 - ► Automatic output from FRET (2A)
 - ► Guided by requirements in FRET (2B)
- ▶ Phase 3: Reporting...
 - ► Traceability evidence
 - ► Verification evidence

Requirements for an Aircraft Engine Software Controller

Aircraft Controller

Postlethwaite et al., 1995

Aircraft Engine Software Controller

- ► FADEC: Full Authority Digital Engine Control
- Responds to pilot input and sensor data
- Monitors and controls the engine. . .
 - ► Thrust control
 - ► Fuel control
 - Power management
 - System health monitoring
 - ► etc

Aircraft Controller

Requirements of an Aircraft Engine Software Controller

- ► Industrial partner supplied...
 - ▶ 14 English-Language requirements
 - ▶ 20 High-level test cases
 - Design in Simulink
- First, manually encoded the requirements into FRET...
- ▶ Next, added detail from the test cases...
- Then, regular elicitation meetings with industrial partner

Aircraft Controller

Requirements of an Aircraft Engine Software Controller

- ► Industrial partner supplied...
 - ▶ 14 English-Language requirements
 - ▶ 20 High-level test cases
 - ► Design in Simulink
- First, manually encoded the requirements into FRET...
- Next, added detail from the test cases...
- Then, regular elicitation meetings with industrial partner
- Essential, because we had misunderstood some requirements. . .

Natural-Language Requirement: 1

"Under sensor faults, while tracking pilot commands, control objectives shall be satisfied (e.g. settling time, overshoot, and steady state error will be within predefined, acceptable limits)"

8/21

Natural-Language Requirement: 1

"Under sensor faults, while tracking pilot commands, control objectives shall be satisfied (e.g. settling time, overshoot, and steady state error will be within predefined, acceptable limits)"

8/21

- Questions:
 - ► How do you describe a sensor fault?
 - What are the values for settling time, etc.?
 - ▶ Is this a complete list of the control objectives?
 - ▶ What does 'tracking pilot commands' mean?

Natural-Language Requirement: 13

"While tracking pilot commands, controller operating mode shall appropriately switch between nominal and surge/stall prevention operating state"

Natural-Language Requirement: 13

- "While tracking pilot commands, controller operating mode shall appropriately switch between nominal and surge/stall prevention operating state"
- Questions:
 - 'Tracking pilot commands' again...
 - What does 'appropriately' mean?
 - ▶ What triggers the mode change? Is it related to 'appropriately'?
 - Are these the only operating states?

Using Formal Requirements Elicitation Tool (FRET)

FRET

- ► Graphical User Interface
- ► Input language FRETISH
 - Structured natural-language
 - scope condition component shall timing response
- ► Textual and Graphical explanations of the requirement
- Translations...
 - ► Temporal Logic
 - Contracts for Simulink diagrams

FRETISH Example: Requirement 1

▶ Requirement 1: "Under sensor faults, while tracking pilot commands, control objectives shall be satisfied (e.g. settling time, overshoot, and steady state error will be within predefined, acceptable limits)"

FRETISH Example: Requirement 1

- ▶ Requirement 1: "Under sensor faults, while tracking pilot commands, control objectives shall be satisfied (e.g. settling time, overshoot, and steady state error will be within predefined, acceptable limits)"
- ► In FRETISH: if sensorfaults & trackingPilotCommands Controller shall satisfy controlObjectives

FRETISH Example: Requirement 1

- ▶ Requirement 1: "Under sensor faults, while tracking pilot commands, control objectives shall be satisfied (e.g. settling time, overshoot, and steady state error will be within predefined, acceptable limits)"
- scope condition component shall timing response
- ► In FRETISH: if sensorfaults & trackingPilotCommands Controller shall satisfy controlObjectives

ASSISTANT TEMPI ATES GLOSSARV

ENFORCED: in the interval defined by the entire execution, TRIGGER: first point in the interval if (sensorfaults & trackingPilotCommands) is true and any point in the interval where (sensorfaults &

trackingPilotCommands) becomes true (from false). REQUIRES: for every trigger, RES must hold at some time point between (and including) the trigger and the end of the interval.

(controlObjectives).

Diagram Semantics

Formalizations

FRETISH Example: Requirement 13

▶ Requirement 13: "While tracking pilot commands, controller operating mode shall appropriately switch between nominal and surge/stall prevention operating state"

FRETISH Example: Requirement 13

- ▶ Requirement 13: "While tracking pilot commands, controller operating mode shall appropriately switch between nominal and surge/stall prevention operating state"
- ► In FRETISH: if trackingPilotCommands Controller shall satisfy changeMode(nominal) | changeMode(surgeStallPrevention)

FRETISH Example: Requirement 13

- ▶ Requirement 13: "While tracking pilot commands, controller operating mode shall appropriately switch between nominal and surge/stall prevention operating state"
- ▶ scope condition component shall timing response
- ► In FRETISH: if trackingPilotCommands Controller shall satisfy changeMode(nominal) | changeMode(surgeStallPrevention)

ASSISTANT TEMPI ATES

ENFORCED: in the interval defined by the entire execution, TRIGGER: first point in the interval if ((trackingPilotCommands)) is true and any point in the interval where ((trackingPilotCommands)) becomes true (from false). REQUIRES: for every trigger, RES must hold at some time point between (and including) the trigger and the end of the interval.

Diagram Semantics

Formalizations

What About the Test Cases...?

- ► FRET can link requirements. . .
 - ► But no inheritance etc
- Natural-Language Requirements Parent Requirements
- ► Test Cases and New Details Child Requirements
- ► Details in the paper

Lessons Learnt and Future Improvements

An Industrial Perspective

Industrial Partner Debrief

- ► Industrial partner was new to FRET...
 - FRETISH requirements were 'much more clear' than the natural-language requirements
 - 'controlled-natural language with precise semantics is always better than natural-language'
 - ► FRET was useful 'because it forces you to think about the actual meaning behind the natural-language requirements'

Bridging the Communications Gap

- ► FRETISH provides a stepping-stone between
 - Readable natural-language requirements
 - ► Fully-formal requirements
- ► Graphical explanation useful visualisation of requirements. . .
 - Sanity-checking for both us and our industrial partner
- ► FRET can also . . .
 - Document rationale behind requirement/changes
 - Explainability

Summary

- ► Formalised requirements from industrial partner...
- ▶ via FRETISH as intermediate language
- ► Elicitation meetings with industrial partner. . .
 - Clarified requirements
 - Added new information
- Requirements now ready for use in formal verification

Summary

- ► Formalised requirements from industrial partner...
- ► via FRETISH as intermediate language
- Elicitation meetings with industrial partner. . .
 - Clarified requirements
 - Added new information
- Requirements now ready for use in formal verification

Future Work

- Adding refactoring to FRET
- 2 Adding global types to FRETISH
- 3 FRET translation to other formal languages

Summary

- ► Formalised requirements from industrial partner...
- ► via FRETISH as intermediate language
- Elicitation meetings with industrial partner...
 - Clarified requirements
 - Added new information
- Requirements now ready for use in formal verification

Future Work

- Adding refactoring to FRET
- 2 Adding global types to FRETISH
- 3 FRET translation to other formal languages

matt.luckcuck@mu.ie or marie.farrell@mu.ie