- 2. Egyszerű osztályok II.
- 1. Adott síkbeli pontok közül hány esik rá egy adott kör lemezére?



Megj: Ha az x egy [1..n] indexelésű tömb lenne, akkor a tömb elemeinek felsorolását egy i=1..n számlálós ciklussal is végezhetnénk; az e változó helyett pedig x[i]-t kellene használni.

Kör és a Pont típusa. Ábrázoljuk a köröket a középpontjukkal és a sugarukkal, a pontokat a koordinátájukkal.

### Típusdefiníciók:

| Kor                 |                               |  |
|---------------------|-------------------------------|--|
| körök               | l := p∈k (k:Kör, p:Pont, l:L) |  |
| c : Pont            | l := \( \overline{\cup r} \)  |  |
| r : ℝ<br>Inv: r > 0 |                               |  |

| Pont    |                                                       |
|---------|-------------------------------------------------------|
| pontok  | $d :=  \overline{q, p}   (p, q : Pont, d:\mathbb{R})$ |
| x, y :ℝ | d := $\sqrt{(p.x - q.x)^2 + (p.y - q.y)^2}$           |

Megj: A tervezés során inkább a "felülről-lefelé" irányt követjük, de az objektum-orientált kódolás az "alulról-felfelé" építkezést szereti.

#### Osztályok:



Megj: Két pont távolsága, illetve egy pontnak egy másiktól való távolsága nem eltérő fogalmak, ám metódusként való leírásuk különbözhet. Itt a második értelmezés jelenik meg: egy adott pontra (c) kell meghívni a Távolság() metódust egy másik ponttal (p), hogy a két pont távolságát kiszámoljuk: c.Távolság(p). A további példákban viszont két egyenlő súlyú objektum műveleteivel találkozunk, amelyeket ezért osztályszintű metódusként vezetünk be.

2. Síkvektorok típusa (összeg, nyújtás, skaláris szorzat műveleteivel). Döntsük el, hogy adott síkvektorok összege merőleges-e egy másik síkvektorra (a skaláris szorzatuk nulla-e).

Típusdefiníció: Vector

| síkvektorok | c := a+b                             | (a, b, c : Vector)  |  |
|-------------|--------------------------------------|---------------------|--|
|             | s := a∙b                             | (a, b: Vector, s:ℝ) |  |
| x, y:ℝ      | c.x, c.y := a.x+b.x, a.y+b.y         |                     |  |
|             | $s := a.x \cdot b.x + a.y \cdot b.y$ |                     |  |

A programok leírásában meg kell különböztetnünk, hogy mikor beszélünk az 'a', a 'b', vagy a 'c' vektor x koordinátájáról: a.x, b.x, illetve c.x.

## Osztály:



Az összeadás és a skaláris szorzás bemenete nem egy vektorról szól: a bemenetük két vektor, az összeadásnak a kimenete egy harmadik. Nem lenne elegáns (bár megtehetnénk), ha ezeket a műveleteket egyetlen Vector típusú objektum műveleteiként vezetnénk be. Ehelyett ezek a Vector osztály (osztályszintű) metódusai lesznek, és ezeket nem egy kitüntetett vektor objektumra kell meghívni úgy, hogy paraméterként adjuk a másik vektort, hanem olyan metódusként, amelynek két vektor partamétere van, az összeadás esetében pedig a Vector típusú visszatérési értéke.

#### Feladat:

Adott síkvektorok összege merőleges-e egy adott síkvektorra (skaláris szorzatuk nulla-e).

#### Specifikáció:

A = ( v:Vector 
$$^n$$
, w:Vector, I:  $\mathbb{L}$  )  
Ef = ( v=v'  $\wedge$  w=w' )  
Uf = ( Ef  $\wedge$  I = ( ( $\Sigma_{i=1...n}$   $v[i]$ )\* $w=0.0$  ) )

# Algoritmus:



3. Racionális számok. (Ábrázoljuk a racionális számokat egész számpárokkal.) *Típusdefiníció:* 

| Q                                | $c := a \pm b$ $(a:\mathbb{Q}, b:\mathbb{Q}, c:\mathbb{Q})$ $c := a \cdot b$ $(a:\mathbb{Q}, b:\mathbb{Q}, c:\mathbb{Q})$ $c := a / b$ $(b \neq 0)$ $(a:\mathbb{Q}, b:\mathbb{Q}, c:\mathbb{Q})$ |  |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| n, d: ℤ                          | c.n, c.d := $a.n \cdot b.d \pm a.d \cdot b.n$ , $a.d \cdot b.d$                                                                                                                                  |  |  |
| Inv: d≠0                         | c.n, c.d := a.n · b.n, a.d · b.d                                                                                                                                                                 |  |  |
|                                  | if b.n=0 then error endif                                                                                                                                                                        |  |  |
| c.n, c.d := a.n · b.d, a.d · b.n |                                                                                                                                                                                                  |  |  |

A típusinvariáns lehetne a d>0 is, vagy "n és d relatív prím" is.

#### Osztálydiagram:



4. Komplex számok. (Ábrázoljuk a komplex számokat az algebrai alakjukkal (x+y·i).)

#### Típusdefiníció:

| C        | c := a±b                                                                   | (a: ℂ, b:ℂ, c:ℂ)                           |  |  |
|----------|----------------------------------------------------------------------------|--------------------------------------------|--|--|
|          | c := a*b                                                                   | $(a:\mathbb{C},b:\mathbb{C},c:\mathbb{C})$ |  |  |
|          | c := a/b (                                                                 | (b≠0) (a:ℂ, b:ℂ, c:ℂ)                      |  |  |
| x, y: ℝ  | $c.x$ , $c.y$ := $a.x \pm b.x$ , $a.y \pm b.y$                             |                                            |  |  |
| // x+i·y | $c.x, c.y := a.x \cdot b.x - a.y \cdot b.y, a.x \cdot b.y + a.y \cdot b.x$ |                                            |  |  |
|          | if b.x=0 or b.y=0 then error endif                                         |                                            |  |  |
|          | c.x, c.y := $(a.x \cdot b.x + a.y \cdot b.y) / (b.x^2 + b.y^2)$ ,          |                                            |  |  |
|          | $(a.y \cdot b.x - a.x \cdot b.y) / (b.x^2 + b.y^2)$                        |                                            |  |  |

#### Osztálydiagram:

