

Electronic Organ

Hsi-Pin Ma

http://lms.nthu.edu.tw/course/38127
Department of Electrical Engineering
National Tsing Hua University

Note Generation

- The buzzer frequency is obtained by dividing crystal frequency 100MHz by N.
- The buzzer clock (b_clk) is periodically inverted for every N/2 clock cycles. (*determine the sound*)
- Note frequency
 - Mid Do: 261 Hz
 - Mid Re: 293 Hz
 - Mid Mi: 330 Hz

Note Frequency Table

Tone	Do	Re	Me	Fa	So	La	Si
Low (Hz)						220	245
Mid (Hz)	261	293	330	349	392	440	494
High (Hz)	524	588	660	698	784	880	988

Hsi-Pin Ma

Electronic Organ

Hsi-Pin Ma

Buzzer Control

```
module buzzer control(
 clk, // clock from crystal
 rst n, // active low reset
 note_div, // div for note generation
 audio left, // left sound audio
 audio_right // right sound audio
);
// I/O declaration
input clk; // clock from crystal
input rst n; // active low reset
input [19:0] note div; // div for note generation
output [15:0] audio_left; // left sound audio
output [15:0] audio right; // right sound audio
// Declare internal signals
reg [19:0] clk_cnt_next, clk_cnt;
reg b_clk, b_clk_next;
```

```
// Note frequency generation
always @(posedge clk or negedge rst n)
if (~rst n)
 begin
  clk cnt <= 20'd0;
  b clk <= 1'b0;
end
 else
begin
  clk cnt <= clk cnt next;
  b clk <= b clk next;
end
always @*
if (clk cnt == note div)
 begin
  clk cnt next = 20'd0;
  b clk next = \simb clk;
 end
 else
 begin
  clk_cnt_next = clk_cnt + 1'b1;
  b \ clk \ next = b \ clk;
 end
// Assign the amplitude of the note
assign audio left = (b clk == 1'b0) ? 16'h4000 : 16'h3FFF;
assign audio right = (b clk == 1'b0) ? 16'h4000 : 16'h3FFF;
endmodule
```