Línea Rota

Azerbaijan es famosa por sus alfombras. Como un diseñador de alfombras maestro tu quieres crear un nuevo diseño dibujando una **línea rota**. Una línea rota es una secuencia de t segmentos de línea en un plano bidimensional, el cual está definido por una secuencia de t+1 puntos p_0,\ldots,p_t como sigue. Por cada $0 \le j \le t-1$ hay un segmento conectando puntos p_i y p_{i+1} .

Con el fin de crear este nuevo diseño, tú tienes ya marcados n **puntos** en un plano bidimensional. Las coordenadas del punto i ($1 \le i \le n$) son (x[i], y[i]). **No existen dos puntos que tengan la misma coordenada x o la misma coordenada y**

Quieres encontrar una secuencia de puntos $(sx[0], sy[0]), (sx[1], sy[1]), \ldots, (sx[k], sy[k])$, que definan una línea rota que

- empiece en (0,0) (que es, sx[0] = 0 y sy[0] = 0),
- contiene todos de los puntos (no necesariamente como las terminaciones de los segmentos), y
- consista solamente de segmentos horizontales o verticales (dos puntos consecutivos definiendo la línea rota tienen una igual coordenada x o y).

La línea rota está permitida de intersectar o sobreponerse a si misma en cualquier forma. Formalmente, cada punto del plano podría pertenecer a cualquier número de segmentos de la línea rota.

Esta es una tarea de única-salida con puntaje parcial. Tienes 10 archivos de entrada especificando las ubicaciones de los puntos. Por cada archivo de entrada, debes enviar un archivo de salida describiendo una línea rota con las propiedades requeridas. Por cada archivo de salida que describa una línea rota válida tu puntaje dependerá de el **número de segmentos** en la línea rota (vea la Puntuación a continuación).

Se supone que no debes enviar ningún código fuente para esta tarea.

Formato de entrada

Cada archivo de entrada tiene el siguiente formato:

- línea 1: n
- línea 1+i (para $1 \le i \le n$): x[i] y[i]

Formato de salida

Cada archivo de salida debe tener el siguiente formato:

- línea 1: k
- línea 1+j (para $1 \le j \le k$): sx[j] sy[j]

Note que la segunda línea contiene sx[1] y sy[1] (ejemplo, la salida **no debería** contener sx[0] y sy[0]). Cada sx[j] y sy[j] debe ser un entero.

Ejemplo

Para el ejemplo de entrada:

4

2 1

3 3

4 4

5 2

una posible salida válida es:

6

2023

5 3

5 2

444

 Por favor, note que este ejemplo no forma parte de las entradas de esta tarea.

Restricciones

- $1 \le n \le 100\,000$
- $1 \le x[i], y[i] \le 10^9$
- Todos los valores de x[i] y y[i] son enteros.
- No existen dos puntos que tengan el mismo x o el mismo y como coordenadas, por ejemplo, $x[i_1] \neq x[i_2]$ y $y[i_1] \neq y[i_2]$ para $i_1 \neq i_2$.
- $-2 \cdot 10^9 \le sx[j], sy[j] \le 2 \cdot 10^9$
- El tamaño de cada archivo enviado (ya sea una salida o un archivo zippeado) no puede exeder los 15MB.

Puntaje

Para cada caso de prueba, puedes obtener hasta 10 puntos. Tu salida para un caso de prueba obtendrá 0 puntos si esta no especifica una línea rota con las propiedades requeridas. De otra manera, el puntaje será determinado usando una secuencia decreciente c_1, \ldots, c_{10} , la cual varía por caso de prueba.

Asume que tu solución es una línea rota válida que consiste de k segmentos. Luego, tú obtendrás

- i puntos, si $k=c_i$ (for $1\leq i\leq 10$),
- ullet $i + rac{c_i k}{c_i c_{i+1}}$ puntos, si $c_{i+1} < k < c_i$ (para $1 \leq i \leq 9$),
- 0 puntos, si $k > c_1$,
- 10 puntos, si $k < c_{10}$.

La secuencia c_1, \ldots, c_{10} para cada caso de prueba se da a continuación.

Testcases	01	02	03	04	05	06	07-10
n	20	600	5 000	50 000	72018	91 891	100 000
c_1	50	1 200	10 000	100 000	144036	183782	200 000
c_2	45	937	7607	75 336	108 430	138292	150475
c_3	40	674	5213	50 671	72824	92801	100 949
c_4	37	651	5125	50 359	72446	92371	100 500
c_5	35	640	5 081	50 203	72257	92156	100275
c_6	33	628	5037	50047	72067	91 941	100 050
c_7	28	616	5020	50025	72044	91 918	100027
c_8	26	610	5012	50 014	72033	91 906	100 015
c_9	25	607	5 008	50 009	72027	91 900	100 009
c_{10}	23	603	5 003	50 003	72021	91 894	100 003

Visualizador

En los archivos adjuntos de esta tarea, hay un script que te permite visualizar los archivos de entrada y salida.

Para visualizar un archivo de entrada, use el siguiente comando:

```
python vis.py [input file]
```

Además puedes visualizar tu solución para alguna entrada, usando el siguiente comando. Debido a limitaciones técnicas, el visualisador provisto muestra solamente **los primeros** 1000 **segmentos** del archivo de salida.

```
python vis.py [input file] --solution [output file]
```

Ejemplo:

```
python vis.py examples/00.in --solution examples/00.out
```