

Search: overview

Course plan

Application: route finding

Objective: shortest? fastest? most scenic?

Actions: go straight, turn left, turn right

Application: robot motion planning

Objective: fastest path

Actions: acceleration and throttle

CS221 6

Application: robot motion planning

Objective: fastest? most energy efficient? safest? most expressive?

Actions: translate and rotate joints

Application: multi-robot systems

Objective: fastest? most energy efficient?

Actions: acceleration and steering of all robots

CS221 1

Application: solving puzzles

Objective: reach a certain configuration

Actions: move pieces (e.g., Move12Down)

Application: machine translation

la maison bleue

the blue house

Objective: fluent English and preserves meaning

Actions: append single words (e.g., the)

CS221 14

Beyond reflex

Classifier (reflex-based models):

$$x \longrightarrow \boxed{f} \longrightarrow \text{single action } y \in \{-1, +1\}$$

Search problem (state-based models):

$$x \longrightarrow \boxed{f} \longrightarrow \text{action sequence } (a_1, a_2, a_3, a_4, \dots)$$

Key: need to consider future consequences of an action!

16

Paradigm

Modeling

Inference

Learning

Roadmap

Modeling

Learning

Modeling Search Problems

Structured Perceptron

Algorithms

Tree Search

Dynamic Programming

Uniform Cost Search

Programming and Correctness of UCS

A*

A* Relaxations