

Stamford University Bangladesh Department of Computer Science and Engineering (CSE) Course Outline

Course Code :	CSI 315	Trimester :	Fall 2019
Course Title :	Theory of Computing	Course Level :	L3T2
Credit Hours :	3.0 Hours/Week	Program :	CSE
Prerequisite :	None		

Course Teacher	❖ Taslim Taher Assistant Professor taslimstamford@gmail.com	Mehedi Hasan Lecturer mhj.cse@gmail.com
	Nusrat Jahan Farin	
	Lecturer	
	nusratfarin89@gmail.com	

Course Objective

The objective of this course is to learn how to construct finite state machines and the equivalent regular expressions where students will be able to prove the equivalence of languages described by finite state machines and regular expressions. This course teaches the pushdown automata and the equivalent context free grammars, the equivalence of languages described by pushdown automata and context free grammars, Turing machines and Post machines. The students also learn about NP-Hard Problem in this course.

Textbook	1. Introduction to Automata theory, Languages and Computation,
	Hopcroft, Rajeev, Ullman, 5th edition.

Reference	1. Introduction to Theory of Computation , by Michael Sipser, 3 rd
Books	Edition, published by Thomson.
	2. Introduction to Languages and Theory of Computation , by John C
	Martin, 3 rd Edition, published by McGraw-Hill.
	•

Lesson Plan	Week	Lecture	Topic	Textbook/ References
	Week-1	1	 What is Automata Theory, Languages and Grammars, Alphabet, Strings, Powers of alphabets, Languages Finite Automata Examples 	(Ch. 1)
		2	Definition of a Deterministic Finite Automata, how a DFA	(Ch. 2)

Week-2	3	processes string, Examples of DFA Extending Transition Function to Strings, Extending Transition Function to Strings, Examples of Extending Transition Function Definition of a Non-Deterministic Finite Automata, Language of NFA Designing of NFA, Equivalence of DFA and NFA Applications of Finite Automata	(Ch. 2)
	4	 Class Test-1 Finite Automata with Epsilon Transitions Eliminating Epsilon Transitions 	(Ch. 2)
Week-3	5	 What is Regular Expression, Use of Regular expressions Applications of Regular expressions Operators of Regular Expressions, Building Regular Expressions, Precedence of RE operators 	(Ch. 3)
	6	 Converting a DFA to a regular expression Regular Expression in Unix Lexical Analysis, Algebraic law for Regular Languages-Associativity and Commutatively, Identities and Annihilators, The idempotent law 	(Ch. 3)
Week-4	7	 Class Test-2 Properties of Regular Languages The Pumping Lemma for Regular Languages. 	(Ch. 4)
	8	 Closure under Union Closure under complementation Intersection, Difference, Reversal 	(Ch. 4)
Week-5	9	 Definition of Context Free Grammars, CFG Notation Recursive Inference using CFG Left-most and Right most Derivations 	(Ch. 5)

		Language of a Context Free Grammar	
	10	 CFG Exercises, Constructing Parse Tree, Applications of CFG Ambiguous Grammar, Removing Ambiguity Applications of Ambiguous Grammar 	(Ch. 5)
Week-6	11	 Normal Forms for Context free Grammars Eliminating Useless Symbols Eliminating Epsilon Productions. 	(Ch. 7)
	12	Eliminating Unit ProductionsChomsky Normal Form	(Ch. 7)
Week-7	13	Cont'dClosure Properties of CFL	
	14	Review of Mid Exam Syllabus	
		Mid Term Examination	(0) ()
Week-8	15	Definition of a Pushdown Automata, The Formal definition of PDA A Craphical Notation for PDA	(Ch. 6)
		 A Graphical Notation for PDA Instantaneous Description of PDA. 	(0) (2)
	16	The Languages of a PDAAcceptance by Final State.	(Ch. 6)
Week-9	17	• Cont'd	
	18	Introduction to Turing MachinesNotation for the Turing Machine,	(Ch. 8)
Week-10	19 20	 Cont'd Turing Machines and Halting. 	(Ch. 8)
Week-11	21	 Class Test-3 Recursive Languages Complements of Recursive and RE languages 	(Ch. 9)
	22	• Cont'd	(Ch. 9)
Week-12	23	Nondeterministic Polynomial TimeAn NP Example-TSP	(Ch. 10)
	24	• Cont'd	(Ch. 10)
Week-13	25	NP Complete ProblemsSatisfiability Problem	(Ch. 10)
	26	Review of Final Exam	
		Final Examination	

Learning	Problem discussion, Class tests, Assignments, Examinations etc.
Activities	

Assessment	Attendance	10%
	Class Tests	10%+10%
	Assignments	5%+5%
	Mid-term Exam	30%
	Final Exam	30%

Grade References	Percentage	Letter Grade	Grade Point
	80% or above	A+	4.00
	75% to less than 80%	A	3.75
	70% to less than 75%	A-	3.50
	65% to less than 70%	B+	3.25
	60% to less than 65%	В	3.00
	55% to less than 60%	B-	2.75
	50% to less than 55%	C+	2.50
	45% to less than 50%	С	2.25
	40% to less than 45%	D	2.00
	Less than 40%	F	0.00

Plagiarism	Any form of unfair means is strictly prohibited in the exams/assignment
Policy	

THE END