José Gómez Torrecillas y Antonio R. Garzón

Tipología de examen: Recuperación

Este examen pertenece al Banco de Exámenes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen.

- 1. a) (1 pt) Si A es un anillo conmutativo e I es un ideal suyo, construye el anillo cociente A/I y demuestra su propiedad universal.
 - b) (1 pt) Calcula el menor número de alumnos que se pudo presentar a un examen sabiendo que si se contaban de 7 en 7 sobraba 1, que el doble de ellos menos 1 era múltiplo de 5 y que, si contáramos a los dos profesores presentes, la cantidad de personas en el aula era múltiplo de 4.
- 2. Decidir razonadamente si las siguientes afirmaciones son verdaderas o falsas.
 - a) (0,5 pts) Si $f: X \to Y$ es una aplicación inyectiva entonces la aplicación inducida $f^*: P(Y) \to P(X)$ es sobreyectiva.
 - b) (0,5 pts) La última cifra del número 87^{95} es 3.
 - c) (0,5 pts) Una solución de la congruencia $263^{62}x \equiv 2 \pmod{50}$ es 37.
 - d) (0,5 pts) Hay ocho anillos cociente distintos del anillo producto $A = \mathbb{Z}_2 \times \frac{\mathbb{Z}}{(126\mathbb{Z} + 45\mathbb{Z}) \cap 11\mathbb{Z}}$.
- 3. (1,5 pts) Sea $\alpha = \sqrt{2} + \sqrt{3} \in \mathbb{R}$. Demostrar que $I = \{f(x) \in \mathbb{Q}[x] : f(\alpha) = 0\}$ es un ideal principal no nulo de $\mathbb{Q}[x]$. Decidir si $\mathbb{Q}[x]/I$ es un cuerpo.
- 4. Consideremos el ideal I de $\mathbb{R}[x]$ dado que $I = \langle 2x^4 + 3x^2 + 1 \rangle + \langle 3x^3 + 2x^2 + 3x + 2 \rangle$.
 - a) (1 pt) Calcular un generador del ideal I.
 - b) (0,5 pts) Demostrar que existe un elemento $\alpha \in \mathbb{R}[x]/I$ tal que $\alpha^2 = -1 + I$.
- 5. Decidir razonadamente si las siguientes afirmaciones son verdaderas o falsas.
 - a) (0,5 pts) Si a, b son elementos de un dominio euclidiano con $b \neq 0$, entonces el resto de dividir a entre b es único.
 - b) (0,5 pts) Existe un cuerpo con 4 elementos.
 - c) (0,5 pts) El anillo $\mathbb{Z}[\sqrt{3}]/\langle\sqrt{3}\rangle$ es un cuerpo con 3 elementos.
 - d) (0,5 pts) Todo polinomio de grado 1 en $\mathbb{Z}[x]$ es un elemento primo de $\mathbb{Z}[x]$.
 - e) (0,5 pts) Sea $f(x) \in \mathbb{Z}[x]$ un polinomio primitivo tal que su reducción módulo 2 es $(x^2 + x + 1)^2$, y su reducción módulo 3 es (x + 1)g(x), para cierto $g(x) \in \mathbb{Z}[x]$ de grado 3. Entonces f(x) es irreducible en $\mathbb{Z}[x]$.
 - f) (0,5 pts) Los anillos $\mathbb{Z}_2[x]/\langle x^2 \rangle$ y $\mathbb{Z}[i]/\langle 2 \rangle$ son isomorfos.