Cvičení 4 – Polynomy

21. října 2025

Příklad 1. Dělte se zbytkem následující polynomy:

- a) $x^4 + 3x^3 + 4x^2 + x + 3$ a $x^2 + 2$ v $\mathbb{Z}[x]$,
- b) $x^4 + 3x^3 + 4x^2 + x + 3$ a $x^2 + 2$ v $\mathbb{Z}_5[x]$,
- c) $x^{10} + x^9 + x^7 + x^5 + x^3 + x^2 + x$ a x + 1 v $\mathbb{Z}_2[x]$,
- d) x^n-1 a x^m-1 v oboru $\mathbb{Z}[x]$ pro $n\geq m$ přirozená čísla.

Příklad 2. Dokažte, že $x^m - 1|x^n - 1$ v $\mathbb{Z}[x]$ právě když m|n.

Příklad 3. Ukažte, že existuje nekonečně mnoho polynomů v $\mathbb{Z}[x]$ takových, že definují stejné polynomiální zobrazení $m \colon \mathbb{Z}_2 \to \mathbb{Z}_2$.

Příklad 4. Najděte kořeny následujících polynomů:

- a) $x^2 + 2x + 3 \text{ nad } \mathbb{Z}_5$,
- b) $x^4 5x^2 + 4 \text{ nad } \mathbb{Z}$,
- c) $x^2 + 4 \text{ nad } \mathbb{Z}_{12}$,
- d) $x^2 7 \text{ nad } \mathbb{Z}_{15}$,
- e) $x^2 2\sqrt{2}x + 2 \text{ nad } \mathbb{Z}[\sqrt{2}].$

Příklad 5. Pro polynom $f \in \mathbb{C}[x]$ značíme V(f) jako množinu všech kořenů f. Mějme polynom $f = -8 + 44x - 102x^2 + 129x^3 - 96x^4 + 42x^5 - 10x^6 + x^7 \in \mathbb{C}[x]$. Určete V(f) a najděte $g \in \mathbb{C}[x]$ takový, že V(g) = V(f) a přitom platí, že g má nejmenší možný stupeň. Odvoďte obecné pravidlo.

Příklad 6. Najděte lineární polynom v $\mathbb{Z}_4[x]$ takový, že nemá žádný kořen v \mathbb{Z}_4 .

Příklad 7. Máme zadaný obor D. Určete podmínky, za jakých má polynom $a_1x + a_0 \in D[x]$ kořen.

Příklad 8. Najděte $m \in N$ takové, že $x^2 - 1$ má 3 kořeny v \mathbb{Z}_m .

Příklad 9. Mějme R okruh. Určete všechny invertibilní polynomy z R[x] za předpokladu, že:

- a) R je těleso,
- b) R je obor.

Příklad 10. Najděte okruh R a nenulový polynom f takový, že f má nekonečně mnoho kořenů v R.

Příklad 11. Ukažte, že pro každé konečné těleso T existuje polynom $f \in T[x]$ takový, že nemá žádný kořen v T.

Domácí úkol. Charakterizujte tělesa T taková, že libovolné zobrazení $m\colon T\to T$ je polynomiální.

Hint: Pro konečná tělesa si definujte vektorový prostor polynomů $f \in T[x]$ takových, že deg(f) < |T|, a ukažte, že zobrazení $L: f \mapsto (a \mapsto f(a))$ je prosté. Pro nekonečná tělesa argumentujte kardinalitou.