

Описание языка Бейсик ЭпплеСофт

Точки входа во внутренние подпрограммы

Crossley - Apple Orchard Mar/Apr 1980

Это примерно то, что мы искали и не нашли в своё время ...

Перевод на русский язык Серков С.В. (Serkov S.V) 2025 (через 45 лет!) все права на данный перевод принадлежат автору перевода

Document # 43 Ex Libris David T. Craig

Внутренние точки входа Applesoft

Автор: Джон Кроссли (из Apple Orchard)

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	51
МЕТКИ	52
СОКРАЩЕНИЯ	51
ВХОДНЫЕ ПРОЦЕДУРЫ ТХТРТК	52
ПРОЦЕДУРЫ ТХТРТК В ЦЕЛЫЕ ЧИСЛА	52
ПАКЕТ МАТЕМАТИКИ С ПЛАВАЮЩЕЙ ТОЧКОЙ	
ВВЕДЕНИЕ	52
РЕГИСТРЫ	52
ОПЕРАТОРЫ	52
КОНСТАНТЫ	52
ФУНКЦИИ	53
ПРОЦЕДУРЫ ПЕРЕМЕЩЕНИЯ	53
УТИЛИТЫ	53
ПРЕОБРАЗОВАНИЯ	
ЦЕЛОЕ ЧИСЛО В FAC	53
FAC В ЦЕЛОЕ ЧИСЛО	53
TXTPTR B FAC	53
УТИЛИТЫ СТРОК	54
УСТРОЙСТВО ВХОДНЫЕ ПРОЦЕДУРЫ	54
ПРОЦЕДУРЫ ВЫХОДА УСТРОЙСТВА	54
ПРОЦЕДУРЫ ВНУТРЕННЕГО ЛОКатора	55
ПРОЦЕДУРЫ ИНИЦИАЛИЗАЦИИ	55
ПРОЦЕДУРЫ УПРАВЛЕНИЯ ХРАНИЛИЩЕМ	55
РАЗЛИЧНЫЕ ОСНОВНЫЕ КОМАНДЫ	55
ПРОЦЕДУРЫ ГРАФИКИ ВЫСОКОГО РАЗРЕШЕНИЯ	55
ПРОЦЕДУРЫ КАССЕТЫ	56
ПРОЦЕДУРЫ ОБРАБОТКИ ОШИБОК	56
ПРОЦЕДУРЫ ПРОВЕРКИ СИНТАКСИСА	56
ИНДЕКС	57

ВВЕДЕНИЕ

Это руководство для программиста машинного языка MS 6502, по использованию различных подпрограммам Applesoft. Указанные адреса подрограмм предполагают, что у пользователя ПК Apple II Plus, карта прошивки Applesoft или "Языковая карта" (Language Card). Этот список считается правильным, но имейте в виду, что описание было сделано

в свобоное от основной работы время. Если вы обнаружите ошибки, свяжитесь с вашей группой пользователей. Эти данные предназначены для опытных программистов, А НЕ ДЛЯ НОВИЧКОВ. Прочитайте справочное руководство Applesoft для получения дополнительной информации.

Обратите особое внимание на подпрограмму CHRGET. Эта подпрограмма является сердцем языка Basic Applesoft. Когда Applesoft требуется следующий символ или инструкция, он указывает TXTPTR на программу или входной буфер и выполняет JSR на CHRGET.

Когда Applesoft читает данные оператора DATA, TXTPTR временно устанавливается на последний использованный оператор DATA

МЕТКИ НУЛЕВОЙ СТРАНИЦЫ И ИХ АДРЕСА

A1	3C,3D	Указатель монитора Apple для подпрограмм чтения/записи на кассету
A2	3E,3F	
ARYTAB	6B,6C	1
BUF		F Буфер ввода строки
CHARAC		Используется STRLT2
CURLIN	75,76	Текущий номер строки выполняемой Бейсик-программы
		(=FF, если Бейсик в режиме диалога)
DATLIN	7B,7C	Номер строки программы оператора DATA,
		текущее чтение которых осуществляется READ
DATPTR	7D,7E	Адрес, с которого поступают следующие данные DATA, читаемые READ
DSCTMP	9D,9E,9	9F Временный строковый дескриптор (при работе со строками)
ENDCHR	0E	Используется SRTLT2
ERRFLG	D8	\$80, если ONERR активен
ERRLIN	DA,DB	Номер строки программы, в которой произошла ошибка
ERRNUM	DE	Код ошибки
ERRPOS	DC,DD	TXTPTR сохраненное для HNDLERR (адрес до адреса оператора,
	,	при выполнении которого возникла ошибка
ERRSTK	DF	Значение указателя стека до ошибки
FBUFFR		О FOUT буфер (стек)
FIRST	F0	Используется PLOTFNS
FORPNT	85,86	Общий указатель, см. СОРУ
FRESPC	71,72	Временный указатель для подпрограмм хранения строк
FRETOP	6F,70	Нижняя граница памяти для хранения текстовых переменных
H2	2C	Используется PLOITNS
HIGHDS	94,95	Используется BLTU
HIGHTR	96,97	Используется BLTU
HPAG	E6	HIRES страница для графики высокого разрешения (\$20 для HGR, \$40 для HGR2)
INDEX	5E,5F	Временный указатель для перемещения строк
INVFLG	32	Маска для обратного вывода (цвет символа, выводимого на экран
11,,120		в формате дисплейного контроллера)
LASTPT	53	Последний использованный временный указатель строки
LINNUM	50,51	Расположение 16-битного числа общего назначения
LOWTR	9B,9C	Регистр общего назначения. Используется GETARIPT FINDLN, BLTU
MEMSIZ	73,74	Адрес конца ОЗУ (верхняя граница памяти, НІМЕМ)
OLDLIN	77,78	Последняя выполненная строка
ORMASK	F3	Маска для мигающего вывода
PRGEND	AF,B0	Адрес конца текста программы пользователя
REMSTK	F8	Указатель стека сохраняется перед каждым оператором
ROT	F9	Указатель поворота фигуры для программ графики
SCALE	E7	Масштаб фигуры для программ графики
SPDBYT	F1	Значение скорости вывода информации в обратном коде.
SIBBII		Устанавливается командой SPEED.
STREND	6D,6E	Адрес верхней границы памяти хранения массивов
STRNGI		Указатель на строку. См. MOVINS
STRNG2		Указатель на строку. См. STRLT2
SUBFLG	14	\$00 индексы разрешены, \$80=нет индексов
TEMPPT	52	Последний использованный временный строковый дескриптор
TXTPTR	B8,B9	Следующий байт для чтения строки программы или данных (CHRGET)
TXTTAB	67,68	Адрес начала хранения текста программы
V2	2D	Используется PLOTFNS (знак курсора, обычно \$DE)
V2 VALTYP	2D 11	Флаг типа последней использованой переменной или операции FAC
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11	0=число, FF= строка
VARPNT	83,84	Адрес указателя к значению последней, использованной переменной.
A WINT IN I	05,04	Используется PTRGET
VARTAB	69,6A	Адрес начала области хранения переменных (LOMEM)
AULUD	07,01	лярее на наза оолаети хранения переменных (воливии)

Точки входа во внутренние подпрограммы языка Бейсик ЭпплСофт

Обозначения

А - аккумулятор процессора 6502, Х - регистр Х, У - регистр У

Z - нулевой флаг регистра состояния процессора 6502

С - флаг переноса регистра состояния 6502

А,Х — это 16-битное число, где А — старший байт, а Х — младший байт.

(Y,A) — это число или строка, адрес которой находится в Y и A, где старший бит находится в Y, а первый бит — в A.

FAC - аккумулятор чисел с плавающей точкой (запятой)

ARG - регистр аргумента при вычислениях в формате с плавающей запятой

msb - старший бит или байт

lsb - младший бит или байт

ео1 - токен конца строки (\$00)

ТХТРТК ВХОДНЫЕ ПРОЦЕДУРЫ

подпрограммы чтения строк программы/данных

CHRGET 00B1 (177) (читает символ строки увеличивая ТХТРТR)

CHRGOT 00B7(183) (без увеличения TXTPTR)

Эти процедуры загружают символ в A из TXTPTR и устанавливают определенные флаги состояния 6502.

Регистры X и Y не изменяются.

На выходе: А=прочитанный символ

Z устанавливается, если A — это «:» или eol (\$3A или \$00)

С очищается, если А — это число ASCII (от О до 9).

ТХТРТЯ В ЦЕЛОЕ ЧИСЛО

LINGET DA0C (55820)

Прочитать номер строки (целое число до 63999) из TXTPTR в LINNUM. LINGET предполагает, что регистры 6502 и А были установлены CHRGET, который извлек первую цифру. Обычно выходит через CHRGET, который извлекает символ после числа. Если число больше 63999, то LINGET выходит через SYNTAX ERROR. LINNUM равен нулю, если в TXTPTR нет числа.

GTBYTC E6F5 (59125)

Обращается к CHRGET, чтобы пропустить символ и перейти к GETBYT.

GETBYT E6F8 (59128)

Вычисляет формулу, на которую указывает TXTPTR, оставляет результат в FAC и попадает в CONINT. На входе TXTPTR должен указывать на первый символ формулы.

PLOTFNS F1EC (61932)

Получить 2 координаты построения LO-RES (графики низкого разрешения) (0-47,0-47) из TXTPTR, разделенные запятой. При вводе TXTPTR указывает на первый символ формулы для первого числа. PLOTFNS помещает первое число в FIRST и второе число в H2 и V2.

HFNS F6B9 (63161)

Получить координаты построения HI-RES (графики высокого разрешения) (0-279,0-191) из ТХТРТК. При вводе ТХТРТК указывает на первый символ формулы для первого числа. Оставляет регистры 6502 настроенными для HPOSN.

На выходе:

А=вертикальная координата, Х=младший бит горизонтальной координаты

Ү=старший бит горизонтальной координаты.

ПАКЕТ МАТЕМАТИКИ С ПЛАВАЮЩЕЙ ТОЧКОЙ

ВВЕЛЕНИЕ

Числа с плавающей точкой (запятой) это числовой формат, используемый всюду в Basic Applesoft:

Экспонента — это однобайтовое число со знаком (EXP) в форме, превышающей \$80 (к знаковому значению добавлено \$80). Мантисса — это 4 байта (НО, МОН, МО, LO). Предполагается, что двоичная точка находится справа от самого старшего бита. Поскольку в двоичной нотации с плавающей точкой старший бит всегда равен 1, знак числа хранится там, когда число хранится в упакованном виде в памяти. В то время как в математическом пакете знак хранится в отдельном байте (SGN), где значимым является только бит 7. Если экспонента равна нулю, то число равно нулю, хотя мантисса не обязательно равна нулю.

Примеры:

EXP HO MOH MO LO SGN

Packed format -10 84 A0 00 00 00 10 84 20 00 00 00

Соглашения о вызове арифметических процедур:

Для функций с одним аргументом:

Аргумент находится в FAC. Результат остается в FAC. EXP HO MOH MO LO SGN

FAC format

-10 84 A0 00 00 00 FF 10 84 A0 00 00 00 00

Для функций с двумя аргументами:

Первый аргумент находится в ARG (см.

CONUPK).

Второй аргумент находится в FAC.

Результат остается в FAC.

РЕГИСТРЫ С ПЛАВАЮЩЕЙ ТОЧКОЙ

ПРИМЕЧАНИЕ: многие из следующих ячеек памяти используются для других целей, когда не используются пакетом математической обработки с плавающей точкой.

	FAC	ARG	TEMP1	TEMP2	TEMP3	RND
EXP	9D	A5	93	98	8A	C9
НО	9E	A6	94	99	8B	CA
MOH	9F	A7	95	9A	8C	CB
MO	A0	A8	96	9B	8D	CC
LO	A1	A9	97	9C	8E	CD
SGN	A2	AA	(компа	ктный ф	ормат)	

ПОДПРОГРАММЫ ВЫЧИСЛЕНИЯ С ПЛАВАЮЩЕЙ ТОЧКОЙ

FMULT E97F (**59775**) Переместить число в памяти, на которое указывает Y,A, в ARG и попасть в ...

FMULTT E982 (59778) Перемножить FAC и ARG. На входе A и Z отражают FACEXP.

FDIV EA66 (60006) Переместить число в памяти, на которое указывает Y,A в ARG и попасть в ...

FIDVT EA69 (60009) Разделите ARG на FAC. На входе А и Z отражают FACEXP.

FADD E7BE (59326) Переместить число в памяти, на которое указывает Y,A в ARG и попасть в ...

FADDT E7C1 (59329) Сложить FAC и ARG. На входе A и Z отрвжают FACEXP.

FSUB E7A7 (59303) Переместить число в памяти, на которое указывает Y,A в ARG и попасть в ...

FSUBT E7AA (59306) Вычесть FAC из ARG. На входе A и Z отражают FACEXP.

FPWRT EE97 (61079) Возведение в степень (ARG в FAC). На входе А и Z должны отражать значение FACEXP.

ПРИМЕЧАНИЕ: Большинство процедур перемещения FAC настраивают A и Z для отражения FACEXP, но LDA \$9D обеспечит правильные значения.

КОНСТАНТЫ С ПЛАВАЮЩЕЙ ТОЧКОЙ

Таблица адресов чисел в упакованной форме, подходящих для использования CONUPK и MOVMF.

RND	00C9	(201)	случайное число
1/4	F070	(61552)	одна четвертая
1/2	EE64	(61028)	одна вторая
-1/2	E937	(59703)	минус одна вторая
1	E913	(59667)	единица
10	EA50	(59984) десят	Ь

SQR(.5) E92D (59693) квадратный корень из 0,5 SQR(2) E932 (59698) квадратный корень из 2 LN(2) E93C (59708) натуральный логарифм 2 L0G(e)2 EEDB (61147) логарифм е в степени 2

PI/2 F063 (61539) число Пи/2 **PI*2 F06B (61547)** число Пи*2 **-32768 E0FE (57598)** 1000000000 **ED14[1E9] (60692[489])**

ФУНКЦИИ С ПЛАВАЮЩЕЙ ТОЧКОЙ

SGN EB90 (60304)

Вызывает SIGN и помещает результат в FAC. На выходе: FAC=1 Если FAC был больше 0; FAC=0 Если FAC был равен 0; FAC=1 Если FAC был меньше 0

ABS EBAF (60335) Абсолютное значение FAC

INT EC23 (60451) Наибольшее целое значение FAC. Использует QINT и делает результат плавающим.

SQR EE8D (61069) Извлечь квадратный корень из FAC

LOG E941 (59713) Логарифм по основанию е из FAC

EXP EF09 (61193) Возвести е в степень FAC

RND EFAE (61358) Сформировать «случайное» число в FAC

COS EFEA (61418) COS(FAC)

SIN EFFI (61425) SIN(FAC)

TAN F03A (61498) TAN(FAC)

ATN F09E (61598) ARCTAN(FAC)

ЧИСЛА С ПЛАВАЮЩЕЙ ТОЧКОЙ (ПОДПРОГРАММЫ ПЕРЕМЕЩЕНИЯ)

MOVFM EAF9 (60153)

Переместить память, на которую указывают Y,A, в FAC. На выходе A и Z отражают FACEXP.

M0V2F EB1E (60190)

Упаковывает FAC и перемещает его во временный регистр 2 (TEMP2). Использует MOVMF. На выходе A и Z отражают FACEXP.

MOVIF EB21 (60193)

Упаковывает FAC и перемещает его во временный регистр 1 (TEMP1). Использует MOVMF. На выходе A и Z отражают FACEXP.

MOVML EB23 (60195)

Упаковывает FAC и перемещает его в область нулевой страницы, на которую указывает X. Использует MOVMF. На выходе A и Z отражают FACEXP.

MOVMF EB2B (60203)

Упаковывает FAC и перемещает его в память, на которую указывают Y, X. На выходе A и Z отражает FACEXP.

MOVFA EB53 (60243)

Переместить ARG в FAC. На выходе A=FACEXP и Z установлен.

MOVAF EB63 (60259)

Переместить FAC в ARG. На выходе A=FACEXP и Z устанавливается.

CONUPK E9E3 (59875)

Загрузить ARG из памяти, на которую указывают Y, A. На выходе A и Z отражают FACEXP.

Сводная таблица подпрограмм перемещений:

FAC => (Y,A) EB2B FAC => (0,X) EB23 FAC => TEMP1 EB21 FAC => TEMP2 EB1E FAC => ARG EB63 (Y,A) => FAC EAF9 (Y,A) => ARG E9E3 ARG => FAC EB53

ЧИСЛА В ФОРМАТЕ С ПЛАВАЮЩЕЙ ТОЧКОЙ (УТИЛИТЫ)

SIGN EB82 (60290)

Установить A в соответствии со значением FAC

На выходе: A=1, если FAC положительный; A=0, если FAC=0; A=FF, если FAC отрицательный

FOUT ED34 (60724)

Создает строку в FBUFFR, эквивалентную значению FAC. На выходе Y,A указывает на строку. Строка заканчивается нулем. FAC перемешивается. Используйте STROUT, чтобы затем вывести число.

FCOMP EBB2 (60338)

Сравнить FAC и упакованное число в памяти, на которое указывает Y,A.

На выходе: A=1 если (Y,A)<FAC; A=0 если (Y,A)=FAC; A=FF если (Y,A)>FAC

NEGOP EEDO (61136) Превратить FAC в -FAC

FADDH E7A0 (59296) Прибавить 1/2 к FAC

DIVIO EA55 (**59989**) Разделить FAC на 10. Возвращает только положительные числа.

MULIO EA39 (59961) Умножить FAC на 10. Работает как для положительных, так и для отрицательных чисел.

ПРЕОБРАЗОВАНИЯ ЦЕЛОГО ЧИСЛА В FAC

SNGFLT E301 (58113)

Преобразует беззнаковое целое число в У в формат с плавающей точкой. Загружает его в FAC.

GIVAYF E2F2 (58098)

Преобразует целое число со знаком в А,У в формат с плавающей точкой. Загружает его в FAC.

FLOAT EB93 (60307)

Преобразует целое число со знаком, загружая его из А, в формат с плавающей точкой и загружает его в FAC.

ПРЕОРАЗОВАНИЯ FAC В ЦЕЛОЕ ЧИСЛО

CONINT E6FB (59131)

Преобразует FAC в однобайтовое число, вовращая его в регистре X и FACLO. Обычно выходит через CHRGET. Если FAC > 255 или < 0, то CONINT выходит через ошибку "ILLEGAL QUANTITY ERROR" (ОШИБОЧНОЕ ЗНАЧЕНИЕ).

AYINT E10C (**57612**) Если FAC меньше +32767 и больше -32767, то выполнит QINT.

QINT EBF2 (60402)

Быстрая функция наибольшего целого числа. Оставляет INT (FAC) в FACHO, MO, LO со знаком. QINT принимает FAC до 2 в степени 23 (8388608 в десятичной системе)

GETADR E752 (59218)

Преобразует число в FAC (-65535 в +65535) в 2-байтовое целое число (0-65535), помещая его в LINNUM.

GETNUM E746 (59206)

Считать 2-байтовое число в LINNUM из TXTPTR, проверить наличие запятой и получить однобайтовое число в X. При вводе TXTPTR указывает на первый символ формулы для первого числа, использует подпрограммы FRMNUM GETADR, CHKCOM, GETBYT.

COMBYTE E74C (59212)

Проверить наличие запятой и получить байт в Х. Использует СНКСОМ, GETBYT. При указатель в ТХТРТК.

TXTPTR TO FAC

FRMEVL DD7B (56699)

Вычислить формулу, на которую указывает ТХТРТR, используя CHRGET и оставить результат в FAC. <u>Это основная подпрограмма для команд, которые используют формулы и работают как со строками, так и с числами</u>. Если формула является строковым литералом, FRMEVL пропускает открывающую кавычку и выполняет STRLIT и ST2TXT.

FRMNUM DD67 (56679)

Вычислить формулу в ТХТРТR, поместить ее в FAC и проверить, что это число. При вводе ТХТРТR указывает на первый символ формулы. Выдает ошибку "ТҮРЕ MSMATCH ERROR" ("ОШИБКА ТИПА"), если формула является строкой.

FIN EC4A (60490)

Ввести число формата с плавающей точкой в FAC из CHRGET. FIN предполагает, что регистры 6502 и А были настроены CHRGET, который извлек первую цифру.

СТРОКОВЫЕ УТИЛИТЫ

В Applesoft строки состоят из трех частей: дескриптор, указатель на дескриптор и строка ASCII.

Дескриптор строки содержит длину строки и адрес ее первого символа. См. стр. 137 Справочного руководства Applesoft. В большинстве процедур дескриптор остается в памяти, а указатель хранится в FAC. Указатель — это адрес дескриптора. Фактическая строка может находиться где угодно в памяти. В программе 10 А\$="HI" оставит дескриптор, указывающий на текст начала программы.

CAT E597 (58775)

Объединить две строки. FACMO,LO указывает на дескриптор первой строки, а TXTPTR указывает на знак «+».

STRINI E3D5 (58325)

Получить место для создания строки в памяти и создать дескриптор для нее в DSCTMP. На входе А=длина строки.

STRSPA E3DD (58333)

Обратиться к GETSTA (JSR GETSPA) и сохранить указатель и длину строки в DSCTMP.

COPY DAB7 (55991)

Освободить строку, на которую временно указывает Y,A и переместите ее в память, на которую указывает FORPNT.

MOVINS E5D4 (58836)

Переместить строку, на дескриптор которой указывает STRNG1, в память, на которую указывает FRESPA.

MOVSTR E5E2 (58850)

Переместить строку, на которую указывают Y,X длиной A в память, на которую указывает FRESPA.

STRTXT DE81 (56961)

Устанавливает Y, A равным TXTPTR плюс C и переходит к STRUT.

STRLIT E3E7 (58343)

Сохраните литерал в ENDCHR и CHARAC, чтобы STRLT2 остановился на ней.

STRLT2 E3ED (58349)

Взять строковый литерал, на первый символ которого указывает Y,A, и создать для него дескриптор. Дескриптор строится в DSCTMP, но PUTNEW переводит его во временный и оставляет указатель на него в FACMO,LO. Символы, отличные от нуля, которые завершают строку, должны быть сохранены в CHARAC и ENDCHR. Ведущие кавычки должны быть пропущены перед STRLT2. При выходе на символ после строкового литерала указывает STRNG2. Переходит в PUTNEW.

PUTNEW E42A (58410)

Некоторые строковые функции возвращают результат в DSCTMP. Переместить DSCTMP во временный дескриптор, поместить указатель на дескриптор в FACMO,LO и отметить результат как строку.

GETSPA E452 (58450)

Получить место для строки символов. Может принудительно запустить сборку мусора. Перемещает FRESPC и FRETOP вниз достаточно для сохранения строки. При входе A =количество символов в строке. Возвращает A неизмененным и указатель на место строки в Y,X, FRESPC и FRETOP. Если места в памяти нет, то выдать ошибку "OUT OF MEMORY" (НЕТ ПАМЯТИ).

FRESTR E5FD (58877)

Проверить, что последний результат FAC был строкой и перейти в ...

FREFAC E600 (58880)

Загрузить указатель дескриптора строки в FACMO, LO в Y и A и перейти к FRETMP.

FRETMP E604 (58884)

Освобождение временной строки. При входе указатель на дескриптор находится в Y,A. Проверяется, является ли дескриптор временным, выделенным PUTNEW. Если да, то временный освобождается путем обновления ТЕМРРТ. Если временный освобождается, выполняется дополнительная проверка, чтобы увидеть, является ли строка самой низкой в памяти. Если да, то эта область памяти также освобождается путем обновления FRETOP. При выходе адрес строки находится в INDEX и Y,X, а длина строки в A.

FRETMS E635 (58933)

Удалить временный дескриптор строки, не удаляя строку. На входе Y,А указывает на дескриптор, который нужно удалить. На выходе Z устанавливается, если что-то было освобождено.

ПРОЦЕДУРЫ ВВОДА ДАННЫХ с УСТРОЙСТВА

INLIN D52C (54572) (Без приглашения)

INLIN+2 D52E (54574)

В регистре X-символ подсказки. Ввести строку текста с текущего устройства ввода во входной буфер BUF и перейти к GDBUFS.

GDBUFS D539 (54985)

Помещает ноль в конец входного буфера, BUF, и маскирует старший бит во всех байтах.

На входе: Х=конец входной строки (длина? символ конца строки?)

На выходе: A=0, X=FF, Y=1

INCHR D553 (54611)

Получить один символ из текущего устройства ввода в A и замаскировать старший бит. INCHR использует основные процедуры ввода Apple и поддерживает обычное приветствие.

ПРОЦЕДУРЫ ВЫВОДА НА УСТРОЙСТВО

STROUT DB3A (56122)

Печать строки, на которую указывают Ү,А. Строка должна заканчиваться нулем или кавычками.

STRPRT DB3D (56125)

Печать строки, на дескриптор которой указывает FACMO, FACLO.

OUTDO DB5C (56156)

Печать символа в A. Действуют INVERSE, FLASH и NORMAL.

CRDO DAFB (56059)

Печать возврата каретки.

OUTSPC DB57 (56151)

Печать пробела.

OUTQST DB5A (56154)

Печать вопросительного знака.

INPRT ED19 (60697)

Печатает "IN" и текущий номер строки из CURLIN. Использует LINPRT.

LINPRT ED24 (60708)

Печатает 2-байтовое беззнаковое число в Х,А.

PRNTFAC ED2E (60718)

Печатает текущее значение FAC. FAC уничтожается. Использует FOUT и STROUT.

ВНУТРЕННИЕ ПОИСКОВЫЕ ПРОЦЕДУРЫ

PTRGET DFE3 (57315)

Чтение имени переменной из CHRGET и поиск его в памяти. При входе TXTPTR указывает на первый символ имени переменной. При выходе адрес значения переменной находится в VARPNT и Y,A. Если PTRGET не может найти простую переменную, он создает ее. Если он не может найти массив, он создает один размерностью до 10 и устанавливает все элементы равными нулю.

GETARYPT F7D9 (63449)

Чтение имени переменной из CHRGET и поиск его в памяти. При входе TXTPTR указывает на первый символ имени переменной. Эта процедура оставляет LOWTR, указывающим на имя массива переменных. Если массив не найден, результатом будет ошибка "OUT OF DATA ERROR" (НЕТ ДАННЫХ).

FNDLIN D61A (54810)

Выполняет поиск в программе строки, номер которой находится в LINNUM.

При выходе:

- 1. Если С установлен, LOWTR указывает на поле ссылки нужной строки.
- 2. Если С очищен, то строка не найдена. LOWTR на следующую более высокую строку.

DATA D995 (55701)

Переместить TXTPTR в конец оператора. Ищет ':' или eol (0).

DATAN D9A3 (55715)

Рассчитайте смещение по Y от TXTPTR до следующего «:» или eol (0).

REMN D9A6 (55718)

Рассчитать смещение по Y от TXTPTR до следующего конца строки (0).

ADDON D998 (55704)

Добавить Y TXTPTR.

ПРОЦЕДУРЫ ИНИЦИАЛИЗАЦИИ

SCRTCH D64B (54859) Команда "NEW". Очищает программу, переменные и стек.

CLEARC D66C (54892) Команда "CLEAR". Очищает переменные и стек.

STKINI D683 (54915) Очищает стек.

RESTOR D849 (55369) Устанавливает указатель DATA, DATPTR, в начало программы.

STXTPT D697 (54935) Устанавливает ТХТРТК в начало программы.

ПРОЦЕДУРЫ УПРАВЛЕНИЯ ХРАНЕНИЕМ

BLTU D393 (54163)

Передача блока (страницы ?) освобождает место, перемещая все вперед.

На входе: Y,A и HIGHDS=назначение высокого адреса +1; LOWTR=самый низкий адрес для перемещения; HIGHTR=самый высокий адрес для перемещения + 1

На выходе: LOWTR не изменяется; HIGHTR=LOWTR - \$100; HIGHDS=самый низкий адрес для перемещения - \$100

REASON D3E3 (54243)

Убеждается, что в памяти достаточно места, проверяет, что адрес Y,A меньше FRETOP.

Может вызвать сборку мусора. Вызывает OMERR (?), если места нет.

GARBAG E484 (58500)

Сборка мусора. Переместить все используемые в данный момент строки в памяти как можно дальше. Это максимизирует свободную область памяти для большего количества строк или числовых переменных.

РАЗНОЕ. ОСНОВНЫЕ КОМАНДЫ

Обратите внимание, что многие команды не документированы, поскольку они переходят вновый выборщик операторов и не могут использоваться как подпрограмма.

CONT D898 (55448)

Перемещает OLDTXT и OLDLIN в TXTPTR и CURLIN. Начало выполнения программы пользователя.

NEWSTT D7D2 (55250)

Выполнить новый оператор. При вводе TXTPTR указывает на ':', предшествующий оператору, или на ноль в конце предыдущей строки. Используйте NEWSTT для перезапуска программы с CONT. <u>! Эта подпрограмма не</u> возвращается (нет RETURN)

RUN D566 (54630)

Запуск Бейсик-программы. ! Нет возврата (нет RETURN)

GOTO D93E (55614)

Использует LINGET и FNDLIN для обновления TXTPTR.GOTO предполагает, что регистры 6502 и А были установлены CHRGET, который извлек первую цифру номера перехода к строке

LET DA46 (55878)

Использует CHRGET для получения адреса переменной, '=', вычисления формулы и сохранения ее. При вводе TXTPTR указывает на первомый символ имени переменной.

ПОДПРОГРАММЫ ГРАФИКИ ВЫСОКОГО РАЗРЕШЕНИЯ

ПРИМЕЧАНИЕ: Независимо от того, какой экран отображается, HPAG (расположение \$E6) определяет, на каком экране происходит рисование. (\$20 для HGR, \$40 для HGR2)

HGR2 F3D8 (62424)

Инициализация и очистка страницы 2 HIRES.

HGR F3E2 (62434)

Инициализация и очистка страницы 1 HIRES.

HCLR F3F2 (62450)

Очистка экрана HIRES до черного цвета.

BKGND F3F6 (62454)

Очистка экрана HIRES до последнего цвета, нанесенного на график.

HPOSN F411 (62481)

Позиционирует курсор HIRES без построения графика, HPAG определяет, на какую страницу направлен курсор. При входе: Горизонтально = Y, X; Вертикально = A.

HPLOT F457 (62551)

Вызовает HPOSN, затем пытается нанести на график точку в позиции курсора. Точка не может быть нанесена, если нанесен не белый цвет на координату X дополнительного цвета.

При вводе: Горизонтально=Ү,Х; Вертикально=А.

HLIN F53A (62778)

Рисует линию от последней нанесенной на карту точки или конечной точки линии до координаты в регистрах 6502.

При входе: Горизонтально=Х,А; Вертикально=Ү.

HFIND F5CB (62923)

Преобразует положение курсора HIRES в координаты X-Y. Используется после SHAPE

для поиска того, где вы остановились. При выходе: \$E0=горизонтальный Isb; \$El=горизонтальный msb; \$E2=вертикальный.

DRAW F601 (62977)

Рисует форму, на которую указывают Y,X используя текущий HCOLOR. При входе A=коэффициент вращения.

XDRAW F65D (63069)

Рисует фигуру, на которую указывает Ү, Х, инвертировав существующий цвет точек, которые составляют фигуру. При входе А= коэффициент вращения.

SETHCOL F6EC (63212) Установить цвет HIRES их регистра X. X должен быть меньше 8.

SHLOAD F775 (63349)

Загружает таблицу фигур в память с ленты выше MEMSIZ (HIMEM) и устанавливает указатель на \$E8.

ПОДПРОГРАММЫ МАГНИТОФОННОЙ ЛЕНТЫ

SAVE D8B0 (55472) Сохранить программу из памяти на ленте.

LOAD D8C9 (55497) Загрузить программу с ленты.

VARTIO D8F0 (55536) Настроить A1 и A2, чтобы сохранить 3 байта (\$50-\$52) для длины.

PROGIO D901 (55553) Настройть A1 и A2, чтобы сохранить текст программы.

ПОДПРОГРАММЫ ОБРАБОТКИ ОШИБОК

ERROR D412 (54290)

Проверяет ERRFLG и переходит к HNDLERR, если ONERR активен.В противном случае он выводит [c/r] '?' [сообщение об ошибке § X] 'ERROR'. Если это происходит во время выполнения программы, то он также выводит 'IN' и CURLIN.

HANDLERR F2E9 (62185)

COXPAHAET CURLIN B ERRLIN, TXTPTR B ERRPOS, X B ERRNUM U REMSTK B ERRSTK. REMSTK pabhaetca указателю стека 6502 и устанавливается в начале каждого оператора. Х содержит код ошибки. Это может использоваться для прерываниявыполнения программы BASIC. См. Applesoft Reference Manual на стр. 136 для значения Х для данной ошибки.

RESUME F317 (62231)

Восстанавливает CURLIN из ERRLIN и TXTPTR из ERRPOS и переносит ERRSTK в указатель стека 6502.

ПРОЦЕДУРЫ ПРОВЕРКИ СИНТАКСИСА

ISCNTC D858 (55384)

Проверяет клавиатуру Apple на наличие Упр — С (\$83).Выполняет процедуру BREAK если нажата УПР — С.

СНКNUM DD6A (56682) Проверить, что в FAC содержится число. См. СНКVAL.

CHKSTR DD6C Проверить, что FAC является строкой См. CHKVAL.

CHKVAL DD6D (56685)

Проверяет результат последней операции FAC, чтобы узнать, является ли он строкой или числовой переменной. Если FAC и C не совпадают, возникает ошибка "ТҮРЕ MISMATCH ERROR" (ОШИБКА ТИПА).

При входе: С=1 проверяет наличие строк; С=0 проверяет наличие числовых данных

ERRDIR E306 (58118)

Вызывает "ILLEGAL DIRECT ERROR" (НЕ В ДИАЛОГЕ), если программа не запущена. Х изменен.

ISLETC E07D (57469)

Проверяет А на наличие буквы ASCII (от 'A' до 'Z'). На выходе С устанавливает, является ли А буквой.

PARCHK DEB2 (57010)

Проверяет символ строки на совпадение с открывающей скобкой (', вычисляет формулу и проверяет наличие закрывающей скобки ')'.Использует CHKOPN и FRMEVL, затем переходит к CHKCLS.

CHKCLS DEBS (57016) Проверяет в TXTPTR на наличие ')'. Использует SYNCHR.

СНКОРN DEBB (57019) Проверяет ТХТРТК на наличие '(', Использует SYNCHR.

СНКСОМ DEBE (57022) Проверяет ТХТРТК на наличие ','. Использует SYNCHR.

SYNCHR DEC0 (57024)

Проверяет TXTPTR на наличие символа в A. TXTPTR не изменяется. Обычно выходит через CHRGET. Выходит с "SYNTAX ERROR" (СИНТАКСИЧЕСКАЯ ОШИБКА), если они не совпадают.

All About Applesoft 56

Указатель

— A—	— F —			— I —		- Q $-$		
A1 3C.3D	51	FADO E7BE	52	INDEX 5E,5F	51	QINT EBF2	53	
A2 3E,3F	51	FADDH E7A0	53	INCUR D553	54	Ç		
ABS EBAF	53	FADDT E7C1	52	INLIN D52C	54	— R—		
ADDON D998	55	FBUFFR 100-1FF	51	INLIN+2 D52E	54			
ARYTAB 6B,6C	51	FCOMP EBB2	53	INPRT ED19	54	REASON D3E3	55	
ATN F09E	53	FDIV EA66	52	INT ED23	53	REMN D9A6	55	
AYINT EIOC	53	FDIVT EA69	52	INVFLG 32	51	REMSTK F8	51	
		FIN EC4A	53	ISCNTC D858	56	RESTOR D849	55	
— B—		FIRST FO	51	ISLETC E07D	56	RESUME F317	56	
		FLOAT EB93	53			RND EFAE	53	
BKGND F3F2	55	FMULT E97F	52	- L $-$		ROT F9	51	
BLTU D393	55	FMULTT E982	52			RUN D566	55	
BUF 200-2FF	51	FNDLIN D61A	55	LASTPT 53	51			
		FORPNT 85,86	51	LET DA46	55			
— C—		FOUT ED34	53	LINGET DAOC	52	- S -		
		FPWRT EE97	52	LINNUM 50,51	51			
CAT E597	54	FREFAC E600	54	LINPRT ED24	54	SAVE D8B0	56	
CHARAC 0D	51	FRESPC 71,72	51	LOAD D8C9	56	SCALE E7	51	
CHKCLS DEBS	56	FRESTR E5FD	54	LOG E941	53	SCRTCH D64B	55	
CHKCOM DEBE	56	FRETMP E604	54	LOWTR 9B,9C	51	SETHCOL F6EC	56	
CHKNUM DD6A	56	FRETMS E635	54			SGN EB80	53	
CHKOPN DEBB	56	FRETOP 6F,70	51	— M—		SHLOAD F775	56	
CHKSTR DD6C	56	FRMEVL DD7B	53			SIGN EB82	53	
CHKVAL DD6D	56	FRMNUM DD67	54	MEMSIZ 73,74	51	SIN EFFI	53	
CHRGET OOBI	52	FSUB E7A7	52	MOVIF EB21	53	SNGFLT E301	53	
CHRGOT 00B7	52	FSUBT E7AA	52	M0V2F EB1E	53	SPDBYT FI	51	
CLEARC D66C	55			MOVAF EB63	53	SQR EE8D	53	
COMBYTE E74C	53	— G—		MOVFA EB53	53	STKINI 0683	55	
CONINT E6FB	53			MOVFM EAF9	53	STREND 6D,6E	51	
CONT D898	55	GARBAG E484	55	MOVINS E5D4	54	STRINI E3D5	54	
CONUPK E9E3	53	GDBUFS D539	54	MOVMF EB2B	53	STRLIT E3E7	54	
COPY DAB7	54	GETADR E752	53	MOVML EB23	53	STRLT2 E3ED	54	
COS EFEA	53	GETARYPT F7D9	55 53	MOVSTR E5E2	54	STRNGI AB,AC	51	
CRDO DAFB	54	GTBYTC E6F5	52	MULIO EA39	53	STRNG2 AD,AE	51	
CURLIN 75,76	51	GETBYT E6F8	52	NT.		STROUT DB3A	54 54	
D		GETNUM E746 GETSPA E452	53	— N —		STRPRT DB3D	54 54	
— D —		GIVAYF E2F2	54 53	NEGOP EEDO	53	STRSPA E3D0	54 54	
DATA D995	55	GOTO D93E	55 55	NEWSTT D7D2	55 55	STRTXT DE81 STXTPT D697	55	
DATAN 09A3	55 55	GO TO D93E	33	NEWSII D/DZ	33	SUBFLG 14	51	
DATAN 09A3 DATLIN 7B,7C	51	— H —		- 0-		SYNCHR DEC0	56	
DATERY 7B,7C DATPTR 7D,7E	51	— II —		_ 0_		STACIIK DECO	50	
DIVIO EA55	53	H2 2C	51	OLDLIN 77,78	51	— T —		
DRAW F601	55	HANOLERR F2E9	56	ORMASK F3	51	1		
OSCTMP 9D-9F	51	HCLR F3EE	55	OUTDO DB5C	54	TAN F03A	53	
OBCIMI 7D 71	31	HFIND F5CB	55	OUTQST DB5A	54	TEMPPT 52	51	
— E—		HFNS F6B9	52	OUTSPC DB57	54	TXTPTR B8,B9	51	
L		HGR F3DE	55	OCIDI C DB37	51	TXTTAB 67,68	51	
ENDCHR OE	51	HGR2 F3D4	55	— P—		111111111111111111111111111111111111111	51	
ERRDIR E306	56	HIGHDS 94,95	51	-		_ V_		
ERRFLG D8	51	HIGHTR 96,97	51	PARCHK DEB2	56	·		
ERRLIN DA,DB	51	HLIN F530	55	PLOTFNS FIEC	52	V2 20	51	
ERRNUM DE	51	HPAG E6	51	PRGENO AF,BO	51	VALTYP 11	51	
ERROR D412	56	HPLOT F453	55	PROG 10 D901	56	VARPNT 83,84	51	
ERRPOS DC,DD	51	HPOSN F40D	55	PRNTFAC ED2E	54	VARTAB 69,6A	51	
ERRSTK DF	51			PTRGET DFE3	55	VARTIO D8F0	56	
EXP ER09	53			PUTNEW E42A	54			
						— X—		
						XDRAW F650	56	

All About Applesoft **57** "DTCA2DOC-043-07.PICT" 242 KB 2001 -04-03 dpi: SOOh x 300v pix: 221 4h x 2994v Source: David T Craig Page 0008 of 0008