Higher-order partial derivatives, the Laplacian, 21and the multinomial theorem

Definition 21.1. (C^r and C^{∞} functions)

Let $U \subseteq \mathbb{R}^k$ be open, $f: U \to \mathbb{R}$, and $r \in \mathbb{N}$.

The standard notations for the second derivative are

$$\frac{\partial}{\partial x_j} \left[\frac{\partial f}{\partial x_i} \right] = \frac{\partial^2 f}{\partial x_j \partial x_i} = \partial_{x_j} \partial_{x_i} f = \partial_{ji}^2 f = \partial_j \partial_i f = \partial_{x_i x_j} f = f_{ij}, \text{ and } \frac{\partial}{\partial x_i} \left[\frac{\partial f}{\partial x_i} \right] = \frac{\partial^2 f}{\partial x_i^2} = \partial_i^2 f.$$

We say that f is of class C^r on U

if all of its partial derivatives of order $\leq r$ exist and are continuous on U.

We say that f is of class C^{∞} on U

if all of its partial derivatives of all orders exist and are continuous on U.

Theorem 21.2. (reordering of partial derivatives)

Let $S \subseteq \mathbb{R}^k$ be open, $f: S \to \mathbb{R}$, $a \in S$, and $1 \le i, j \le k$.

If $\partial_i f, \partial_j f$, and $\partial_{ji}^2 f$ exist on S, and $\partial_{ji}^2 f$ is continuous at a,

then $\partial_{ij}^2 f(a)$ exists and $\partial_{ij}^2 f(a) = \partial_{ji}^2 f(a)$.

For $\partial_{ij}^2 f(a) \neq \partial_{ji}^2 f(a)$, refer to the example $f(x,y) = \begin{cases} 0, & \text{if } (x,y) = (0,0), \\ \frac{xy(x^2 - y^2)}{x^2 + x^2}, & \text{otherwise.} \end{cases}$

Corollary 21.3. (C^r and reordering of partial derivatives)

Let $S \subseteq \mathbb{R}^k$ be open and $f: S \to \mathbb{R}$.

- 1. If f is C^2 on S, then $\partial_{ij}^2 f = \partial_{ij}^2 f$ on S for all $1 \le i, j \le k$.
- 2. If f is C^r on S for some $r \in \mathbb{N}$, then $\partial^r_{i_1 i_2 \cdots i_r} f = \partial^r_{j_1 j_2 \cdots j_r} f$ on S for all $1 \le i_1, i_2, \cdots, i_r \le k$, where (j_1, j_2, \cdots, j_r) is a reordering of (i_1, i_2, \cdots, i_r) .

Proposition 21.4. (the Laplacian of f)

Let $S \subseteq \mathbb{R}^2$ be open and let $f: S \to \mathbb{R}$ be C^2 on S and be denoted by $(x, y) \mapsto f(x, y)$.

The **Laplacian** of f is defined to be $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial u^2}$.

then
$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2}$$

Definition 21.5

For a k-tuple $\alpha = (\alpha_1, \dots, \alpha_k)$ of nonnegative integers, we call it a **multi-index**

and define the sum of components $|\alpha|_c = \alpha_1 + \alpha_2 + \cdots + \alpha_k$, the product of components $\alpha! = \alpha_1!\alpha_2!\cdots\alpha_k!$,

 $x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_k^{\alpha_k}, \text{ where } x = (x_1, x_2, \cdots, x_k) \in \mathbb{R}^k,$ and $\partial^{\alpha} f = \partial_1^{\alpha_1} \partial_2^{\alpha_2} \cdots \partial_k^{\alpha_k} f = \frac{\partial^{|\alpha|_C} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \cdots \partial x_k^{\alpha_k}}, \text{ where both } \partial_i^0 \text{ and } \partial x_i^0 \text{ are conventionally neglected.}$

Notice that $\alpha \in \mathbb{N}_0^k \subseteq \mathbb{R}^k$ and $|\alpha|_c \neq ||\alpha||$ when $k \geq 2$.

Theorem 21.6 (the multinomial theorem).

For any $x = (x_1, x_2, \dots, x_k) \in \mathbb{R}^k$ and $n \in \mathbb{N}$,

For any
$$x = (x_1, x_2, \dots, x_k) \in \mathbb{R}^k$$
 and $n \in \mathbb{N}$,

we have $(x_1 + x_2 + \dots + x_k)^n = \sum_{\substack{\alpha \in \mathbb{N}_0^k, |\alpha|_c = n \\ 0 \le \alpha_1, \alpha_2, \dots, \alpha_k \le n}} \frac{n!}{\alpha_1! \alpha_2! \cdots \alpha_k!} x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_k^{\alpha_k}.$

If $k = 2$, the characteristic called the binomial theorem.

If k = 2, the above result is called the binomial theorem

Theorem 21.7 (the high-dimensional binomial theorem). (exercise)

For two vectors
$$x = (x_1, \dots, x_k), y = (y_1, \dots, y_k) \in \mathbb{R}^k$$
 and a multi-index $\gamma = (\gamma_1, \dots, \gamma_k) \in \mathbb{N}_0^k$, we have $(x + y)^{\gamma} = \sum_{\substack{\alpha, \beta \in \mathbb{N}_0^k, \alpha + \beta = \gamma \\ 0 \le \alpha_i, \beta_i \le \gamma_i}} \frac{\gamma!}{\text{for all } 1 \le i \le k} \frac{\gamma_1! \dots \gamma_k!}{\alpha_1! \dots \alpha_k! \beta_1! \dots \beta_k!} x_1^{\alpha_1} \dots x_k^{\alpha_k} y_1^{\beta_1} \dots y_k^{\beta_k}$.

Proposition 21.8 (the product rule for partial derivatives). (exercise)

Let
$$S \subseteq \mathbb{R}^k$$
 be open, $f, g: S \to \mathbb{R}$ be C^r differentiable on S , and $\gamma = (\gamma_1, \dots, \gamma_k) \in \mathbb{N}_0^k$.
Then $\partial^{\gamma}(fg) = \sum_{\alpha, \beta \in \mathbb{N}_0^k, \alpha + \beta = \gamma} \frac{\gamma!}{\alpha!\beta!} (\partial^{\alpha}f)(\partial^{\beta}g) = \sum_{\substack{\alpha_i + \beta_i = \gamma_i \text{ for all } 1 \le i \le k \\ 0 \le \alpha_i, \beta_i \le \gamma_i}} \frac{\gamma_1! \cdots \gamma_k!}{\alpha_1! \cdots \alpha_k!\beta_1! \cdots \beta_k!} (\partial_1^{\alpha_1} \partial_2^{\alpha_2} \cdots \partial_k^{\alpha_k} f)(\partial_1^{\beta_1} \partial_2^{\beta_2} \cdots \partial_k^{\beta_k} g).$

Taylor's theorem in one variable 22

Theorem 22.1 (Taylor's theorem I with integral remainder).

Let $f: I \to \mathbb{R}$ be C^{m+1} on I and $c \in I$,

where $I \subseteq \mathbb{R}$ is an open interval and $m \ge 0$ is an integer.

Then for any $x \in I$,

$$f(x) = \sum_{n=0}^{m} \frac{f^{(n)}(c)}{n!} (x-c)^n + \frac{\int_0^1 (1-t)^m f^{(m+1)}(c+t(x-c)) dt}{m!} (x-c)^{m+1};$$

here conventionally we write $f^{(0)}(c) = f(c)$.

The summation term $\sum_{n=0}^{m} \frac{f^{(n)}(c)}{n!} (x-c)^n$ is called the **mth-order Taylor polynomial** for f about c on I.

The difference $f(x) - \sum_{n=0}^{m} \frac{f^{(n)}(c)}{n!} (x-c)^n$ is called the mth-order Taylor remainder for f about c on I and is denoted by $R_{f,c,m}(x-c)$.

If, in addition, there exists $M \in [0, \infty)$ such that $|f^{(m+1)}(y)| \le M$ for all $y \in I$, then for any $x \in I$, we have $|R_{f,c,m}(x-c)| \le \frac{M}{(m+1)!}|x-c|^{m+1}$.

Theorem 22.2 (Taylor's theorem II with integral remainder).

Let $f: I \to \mathbb{R}$ be C^m on I and $c \in I$,

where $I \subseteq \mathbb{R}$ is an open interval and $m \ge 1$ is an integer.

Then for any $x \in I$,

$$f(x) = \sum_{n=0}^{m} \frac{f^{(n)}(c)}{n!} (x-c)^n + \frac{\int_0^1 (1-t)^{m-1} \left[f^{(m)} \left(c + t(x-c) \right) - f^{(m)}(c) \right] dt}{(m-1)!} (x-c)^m$$

and the mth-order Taylor remainder for f about c satisfies $\lim_{x\to c} \frac{R_{f,c,m}(x-c)}{(x-c)^m} = 0$.

Theorem 22.3 (Taylor's theorem with Lagrange's remainder and Taylor series).

Let $f: I \to \mathbb{R}$ be differentiable of order m+1 on I and $c \in I$,

where $I \subseteq \mathbb{R}$ is an open interval and $m \ge 0$ is an integer.

Then for any $x \in I$, there exists z between x and c such that

$$f(x) = \sum_{n=0}^{m} \frac{f^{(n)}(c)}{n!} (x-c)^n + \frac{f^{(m+1)}(z)}{(m+1)!} (x-c)^{m+1}.$$

If, in addition, f is C^{∞} on I, that is, f has derivatives of all orders on I and $\lim_{m\to\infty}\frac{f^{(m+1)}(z)}{(m+1)!}(x-c)^{m+1}=0$ for all $x\in I$ and all z between x and c,

then we call the series $\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$ the **Taylor series** for f about c at $x \in I$; which, in general, needs NOT converge to the function f(x), refer to Example 22.6 and Corollary 69.2.

Notice that if there exists $M \in [0, \infty)$ such that $|f^{(n)}(y)| \leq M^n$ for all $y \in I$ and integers $n \geq 0$, then $\lim_{m\to\infty} \frac{f^{(m+1)}(z)}{(m+1)!} (x-c)^{m+1} = 0$ for all $x \in I$ and all z between x and c,

Example 22.4. (the Taylor series for elementary functions)

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \text{ on } (-1,1), \ e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n \text{ on } \mathbb{R}, \ \ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)} x^{n+1} \text{ on } (-1,1],$$

$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \text{ on } \mathbb{R}, \text{ and } \cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} \text{ on } \mathbb{R}.$$

Definition 22.5.

Let $f: I \to \mathbb{R}$ be a C^{∞} function, where $I \subseteq \mathbb{R}$ is an open interval.

We say that f is **analytic** on I

if for any $c \in I$, there exists a $\delta > 0$ such that $(c - \delta, c + \delta) \subseteq I$ and for any $x \in (c - \delta, c + \delta)$, one has $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x - c)^n$.

Example 22.6.

Define
$$f: \mathbb{R} \to \mathbb{R}$$
 by $f(x) = \begin{cases} e^{-1/x}, & \text{if } x > 0, \\ 0, & \text{if } x \leq 0. \end{cases}$

Then f is C^{∞} on \mathbb{R} , analytic on $\mathbb{R}\setminus\{0\}$, and is not analytic at the origin.

23 Taylor's theorem in several variables

Theorem 23.1 (Taylor's theorem in several variables).

Let $S \subseteq \mathbb{R}^k$ be an open convex set, $c = (c_1, c_2, \dots, c_k) \in S$, and $m \ge 1$ be an integer.

1. If $f: S \to \mathbb{R}$ be C^m on S, then for any $x = (x_1, x_2, \dots, x_k) \in S$,

$$f(x) = \sum_{\substack{n=0\\\alpha_1+\alpha_2+\cdots+\alpha_k=n\\0\leq\alpha_1,\alpha_2,\cdots,\alpha_k\leq n}}^{m} \frac{\partial_1^{\alpha_1}\partial_2^{\alpha_2}\cdots\partial_k^{\alpha_k}f(c)}{\alpha_1!\alpha_2!\cdots\alpha_k!} (x_1-c_1)^{\alpha_1} (x_2-c_2)^{\alpha_2}\cdots(x_k-c_k)^{\alpha_k} + R_{f,c,m}(x-c),$$

where

 $R_{f,c,m}(x-c)$

$$= \sum_{\substack{\alpha_1+\alpha_2+\cdots+\alpha_k=m\\0\leq\alpha_1,\alpha_2,\cdots,\alpha_k\leq m}} \frac{\int_0^1 (1-t)^{m-1} \left[\partial_1^{\alpha_1}\partial_2^{\alpha_2}\cdots\partial_k^{\alpha_k} f(c+t(x-c))-\partial_1^{\alpha_1}\partial_2^{\alpha_2}\cdots\partial_k^{\alpha_k} f(c)\right] dt}{\frac{\alpha_1!\alpha_2!\cdots\alpha_k!}{m}} (x_1-c_1)^{\alpha_1} (x_2-c_2)^{\alpha_2}\cdots (x_k-c_k)^{\alpha_k}$$

and satisfies $\lim_{x\to c} \frac{R_{f,c,m}(x-c)}{\|x-c\|^m} = 0$.

If, in addition, there exits $M_1 > 0$ and $\lambda > 0$ such that for any $0 \le \alpha_1, \alpha_2, \cdots, \alpha_k \le m$ satisfying $\alpha_1 + \alpha_2 + \cdots + \alpha_k = m$ and for any $x, y \in S$,

$$|\partial_1^{\alpha_1}\partial_2^{\alpha_2}\cdots\partial_k^{\alpha_k}f(x)-\partial_1^{\alpha_1}\partial_2^{\alpha_2}\cdots\partial_k^{\alpha_k}f(y)| \leq M_1||x-y||^{\lambda},$$

then there exists $M_2 > 0$ such that $|R_{f,c,m}(x-c)| \le M_2 ||x-c||^{\lambda+m}$ for all $x \in S$.

2. If $f: S \to \mathbb{R}$ be C^{m+1} on S with $m \ge 1$, then for any $x = (x_1, x_2, \dots, x_k) \in S$,

$$f(x) = \sum_{\substack{n=0\\\alpha_1+\alpha_2+\cdots+\alpha_k=n\\0\leq\alpha_1,\alpha_2,\cdots,\alpha_k\leq n}}^{m} \frac{\partial_1^{\alpha_1}\partial_2^{\alpha_2}\cdots\partial_k^{\alpha_k}f(c)}{\alpha_1!\alpha_2!\cdots\alpha_k!} (x_1-c_1)^{\alpha_1}(x_2-c_2)^{\alpha_2}\cdots(x_k-c_k)^{\alpha_k} + R_{f,c,m}(x-c),$$

where

$$R_{f,c,m}(x-c) = \sum_{\substack{\alpha_1 + \alpha_2 + \dots + \alpha_k = m+1 \\ 0 \le \alpha_1, \alpha_2, \dots, \alpha_k \le m+1}} \frac{\int_0^1 (1-t)^m \partial_1^{\alpha_1} \partial_2^{\alpha_2} \dots \partial_k^{\alpha_k} f(c+t(x-c)) dt}{\frac{\alpha_1! \alpha_2! \dots \alpha_k!}{m+1}} (x_1 - c_1)^{\alpha_1} (x_2 - c_2)^{\alpha_2} \dots (x_k - c_k)^{\alpha_k}.$$

and we also have that there exists z between x and c such that

$$R_{f,c,m}(x-c) = \sum_{\substack{\alpha_1+\alpha_2+\dots+\alpha_k=m+1\\0\leq\alpha_1,\alpha_2,\dots,\alpha_k\leq m+1}} \frac{\partial_1^{\alpha_1}\partial_2^{\alpha_2}\dots\partial_k^{\alpha_k}f(z)}{\alpha_1!\alpha_2!\dots\alpha_k!} (x_1-c_1)^{\alpha_1} (x_2-c_2)^{\alpha_2}\dots(x_k-c_k)^{\alpha_k}.$$

If, in addition, there exists $M \in [0, \infty)$ such that $|\partial_1^{\alpha_1} \partial_2^{\alpha_2} \cdots \partial_k^{\alpha_k} f(y)| \le M$ for all $y \in S$ and all $0 \le \alpha_1, \alpha_2, \cdots, \alpha_k \le m+1$ with $\alpha_1 + \alpha_2 + \cdots + \alpha_k = m+1$, then for any $x \in S$, $|R_{f,c,m}(x-c)| \le \frac{M}{(m+1)!} (|x_1 - c_1| + \cdots + |x_k - c_k|)^{m+1}$.

The uniqueness of the Taylor polynomial and 24 the second derivative test in two variables

Theorem 24.1 (the uniqueness of the Taylor polynomial).

Let $S \subseteq \mathbb{R}^k$ be an open convex set, $c = (c_1, c_2, \dots, c_k) \in S$, and $m \ge 1$ be an integer.

Let $f: S \to \mathbb{R}$ be C^m on S and f(x) = Q(x-c) + E(x-c) for all $x \in S$, where $Q: \mathbb{R}^k \to \mathbb{R}$ is a polynomial in x-c of degree $\leq m$

and $E: \mathbb{R}^k \to \mathbb{R}$ is a function with $\lim_{x \to c} \frac{E(x-c)}{\|x-c\|^m} = 0$.

Then for any
$$x = (x_1, x_2, \dots, x_k) \in S$$
,
$$Q(x-c) = \sum_{\substack{n=0 \\ 0 \le \alpha_1, \alpha_2, \dots, \alpha_k \le n}}^{m} \frac{\partial_1^{\alpha_1} \partial_2^{\alpha_2} \dots \partial_k^{\alpha_k} f(c)}{\alpha_1! \alpha_2! \dots \alpha_k!} (x_1 - c_1)^{\alpha_1} (x_2 - c_2)^{\alpha_2} \dots (x_k - c_k)^{\alpha_k},$$

i.e., Q(x-c) is the mth-order Taylor polynomial for f about c on S.

If k = 1, we may only require f is C^{m-1} on S and $f^{(m)}(c)$ exists. (exercise)

Recall 24.2. (the critical point theorem in several variables)

Let $S \subseteq \mathbb{R}^k$ be open and $f: S \to \mathbb{R}$ be differentiable at $c \in S$.

If f has a local maximum or a local minimum at c,

then c is a **critical point** of f, i.e., $\nabla f(c) = 0$.

Theorem 24.3 (the second derivative test in several variables).

Let $S \subseteq \mathbb{R}^k$ be open, $f: S \to \mathbb{R}$ be C^2 at $c \in S$, and c is a critical point of f.

Let
$$H_f(c) = \begin{bmatrix} \partial_{11}^2 f(c) & \cdots & \partial_{1k}^2 f(c) \\ \vdots & \ddots & \vdots \\ \partial_{k1}^2 f(c) & \cdots & \partial_{kk}^2 f(c) \end{bmatrix}$$
, called the **Hessian** of f at c .

- 1. If all eigenvalues of $H_f(c)$ are positive (resp. negative), then f has a local minimum (resp. maximum) at c.
- 2. If f has a local minimum (resp. maximum) at c, then all eigenvalues of $H_f(c)$ are nonnegative (resp. nonpositive).

Theorem 24.4 (the second derivative test in two variables).

Let $S \subseteq \mathbb{R}^2$ be open, $f: S \to \mathbb{R}$ be C^2 at $c \in S$, and c is a critical point of \underline{f} .

Let
$$H_f(c)$$
 be the **Hessian** of f at c , that is, $H_f(c) = \begin{bmatrix} \partial_{11}^2 f(c) & \partial_{12}^2 f(c) \\ \partial_{21}^2 f(c) & \partial_{22}^2 f(c) \end{bmatrix}$.

- 1. If $det(H_f(c)) > 0$ and $\partial_{11}^2(c) > 0$, then f has a local minimum at c.
- 2. If $det(H_f(c)) > 0$ and $\partial_{11}^2(c) < 0$, then f has a local maximum at c.
- 3. If $det(H_f(c)) < 0$, then c is a saddle point of f, that is, there are two eigenvalues of $H_f(c)$ which are of opposite signs.
- 4. If $det(H_f(c)) = 0$, that is, the critical point c is said to be **degenerate**, then conclusions vary depending high-order derivatives.

Theorem 24.5 (extreme value theorem for C^r functions). (exercise)

Let $f:(a,b)\to\mathbb{R}$ be a C^r function on (a,b), where $r\in\mathbb{N}$, and let $c\in(a,b)$. If $f^{(n)}(c) = 0$ for all $1 \le n < r$ and $f^{(r)}(c) \ne 0$, then the followings hold.

- 1. If r is even and $f^{(r)}(c) > 0$, then f has a local minimum at c.
- 2. If r is even and $f^{(r)}(c) < 0$, then f has a local maximum at c.
- 3. If r is odd, then f has neither a local minimum nor a local maximum at c.

25 Extreme value problem and Lagrange's method for constraint

Theorem 25.1 (extreme value problem on a closed and unbounded region). Let $S \subseteq \mathbb{R}^k$ be closed and unbounded and $f: S \to \mathbb{R}$ be continuous on S.

1. If $\lim_{\|x\| \to +\infty \atop x \in S} f(x) = +\infty$ (resp. $\lim_{\|x\| \to +\infty \atop x \in S} f(x) = -\infty$),

then f has a global minimum but no global maximum on S (resp. a global maximum but no global minimum on S).

2. If $\lim_{\|x\|\to +\infty \atop x\in S} f(x) = 0$ and there is a point $a\in S$ such that f(a)<0 (resp. f(a)>0), then f has a global minimum (resp. a global maximum) on S.

Theorem 25.2 (Lagrange's method for constraints).

Let $S \subseteq \mathbb{R}^k$ be open and let $f: S \to \mathbb{R}$ and $g: S \to \mathbb{R}^m$ be two C^1 functions on S with m < k and write $g = (g_1, \ldots, g_m)$. Let $T = \{x \in S : g(x) = 0\}$ and $a \in T$. If the restriction of f on T, $f|_T$, has a local maximum or a local minimum at a and the the vectors $\nabla g_1(a), \ldots, \nabla g_m(a)$ are linearly independent $(\nabla g_1(a) \neq 0 \text{ for } m = 1)$, then there exists m real numbers $\lambda_1, \ldots, \lambda_m$ such that

$$\nabla f(a) + \lambda_1 \nabla g_1(a) + \dots + \lambda_m \nabla g_m(a) = 0.$$

Here the numbers $\lambda_1, \ldots, \lambda_m$ are called **Lagrange's multipliers**.

In practice, one solves the system of (m+k) equations $g_i(x) = 0$ and $\frac{\partial f(x)}{\partial x_j} + \lambda_1 \frac{\partial g_1(x)}{\partial x_j} + \dots + \lambda_m \frac{\partial g_m(x)}{\partial x_j} = 0$ for $1 \le i \le m$ and $1 \le j \le k$ for (m+k) variables λ_i and x_j for $1 \le i \le m$ and $1 \le j \le k$, where $x = (x_1, \dots x_k)$, which are the candidates of local extreme points on T.

26 The Fréchet derivative, Jacobian, and chain rule

Definition 26.1 (Fréchet derivative for vector-valued functions in several variables).

Let $S \subseteq \mathbb{R}^k$ be open and $f: S \to \mathbb{R}^m$.

We say that f is **differentiable** at $x \in S$

if there is a linear transformation A from \mathbb{R}^k to \mathbb{R}^m such that $\lim_{h\to 0,h\in\mathbb{R}^k}\frac{\|f(x+h)-f(x)-Ah\|}{\|h\|}=0;$

by linear transformation, we means that $A(c_1x + c_2y) = c_1A(x) + c_2A(y)$ for all vectors $x, y \in \mathbb{R}^k$ and all scalars $c_1, c_2 \in \mathbb{R}$, and one often writes Ax instead of A(x) due to linearity.

In this case, such a linear transformation is unique and

it is called the (**Fréchet**) derivative of f at x and is denoted by Df(x) or Df_x .

One can define Df(x) to be the linear transformation such that f(x+h) = f(x) + Df(x)h + o(h), where o(h) is a vector-valued function such that $\lim_{h\to 0,h\in\mathbb{R}^k}\frac{o(h)}{\|h\|}=0$, called in **Landau notation**.

Once when we fix bases of \mathbb{R}^k and \mathbb{R}^m and write vectors in column form,

the linear transformation Df(x) can be represented by a unique $m \times k$ matrix, denoted by Df(x) without ambiguity, the value Df(x)h of the linear transformation becomes the matrix Df(x) acting on the column vector h,

moreover, the column vector $h \in \mathbb{R}^k$ is regarded as an $k \times 1$ matrix,

and the action Df(x)h can also be treated as a multiplication of matrices; we call Df(x) the **Jacobian matrix** of f at x (depending on the given bases).

If m = k, then the Jacobian matrix Df(x) is a $k \times k$ matrix,

the function $J_f: S \to \mathbb{R}$ given by $x \mapsto det(Df(x))$ is called the **Jacobian** of f, which dose not depend on the bases used to construct the Jacobian matrix.

Proposition 26.2.

Let us fix bases of \mathbb{R}^k and \mathbb{R}^m , and

Let us fix bases of
$$\mathbb{R}$$
 and \mathbb{R} , and let $S \subseteq \mathbb{R}^k$ be open, $f: S \to \mathbb{R}^m$ with $f = (f_1, \dots, f_m)^T$ written as a column in \mathbb{R}^m , and $a \in S$. Then f is differentiable at $a \iff each$ of its components f_1, \dots, f_m is differentiable at a .

In this case, $Df(a) = \begin{bmatrix} \nabla f_1(a) \\ \vdots \\ \nabla f_m(a) \end{bmatrix} = \begin{bmatrix} \partial_1 f_1(a) & \cdots & \partial_k f_1(a) \\ \vdots & \ddots & \vdots \\ \partial_1 f_m(a) & \cdots & \partial_k f_m(a) \end{bmatrix}$.

If m = 1, then $Df(a) = \nabla f(a)$ and $Df(a)h^T = \nabla f(a) \cdot h$, while ∇f and h were written in row form before. in some textbook, vectors and gradients are written in column form then $Df(a)^T = \nabla f(a)$ and $Df(a)h = \nabla f(a) \cdot h$.

Theorem 26.3 (chain rule for vector-valued functions).

Let $g: \mathbb{R}^k \to \mathbb{R}^m$ be differentiable at $a \in \mathbb{R}^k$ and let $f: \mathbb{R}^m \to \mathbb{R}^n$ be differentiable at g(a).

Then the composition $f \circ g : \mathbb{R}^k \to \mathbb{R}^n$ is differentiable at a and $D(f \circ g)(a) = Df(g(a))Dg(a)$.

Definition 26.4. (directional derivative of a vector-valued function)

Let $f: \mathbb{R}^k \to \mathbb{R}^m$ be a function and $a \in \mathbb{R}^k$ be a point.

Let u be a unit vector in \mathbb{R}^k , that is, ||u|| = 1.

The (two-sided) directional derivative, or Gâteaux derivative, of f at a, in the direction of u is defined to be

$$\partial_u f(a) = \frac{d}{dt} f(a+tu) \Big|_{t=0} = \lim_{t \to 0} \frac{f(a+tu) - f(a)}{t} \text{ provided the limit exists (as a vector in } \mathbb{R}^m).$$

If k = 1, then the one-sided directional derivative with fit well with one-side derivative.

Theorem 26.5.

Differentiability of implies the existence of all directional derivatives and $Df(a)u = \partial_u f(a)$, where $f: \mathbb{R}^k \to \mathbb{R}^m$ is differentiable at $a \in \mathbb{R}^k$ and $u \in \mathbb{R}^k$ is a unit vector written as a column vector.

Let $L(\mathbb{R}^k, \mathbb{R}^m)$ be the set of all linear transformation from the vector space \mathbb{R}^k to the vector space \mathbb{R}^m .

For $A \in L(\mathbb{R}^k, \mathbb{R}^m)$, define $||A|| = \sup\{\frac{||Ax||}{||x||} : x \in \mathbb{R}^k, x \neq 0\}$, called the **operator norm** or **induced norm** on $L(\mathbb{R}^k, \mathbb{R}^m)$ and for $A, B \in L(\mathbb{R}^k, \mathbb{R}^m)$, define d(A, B) = ||A - B||.

Then $L(\mathbb{R}^k, \mathbb{R}^m)$ with d is a metric space.

If S is a metric space, a_{ij} is a real-valued continuous function on S for all $1 \le i \le m$ and $1 \le j \le k$, and for each $z \in S$, $A(z) \in L(\mathbb{R}^k, \mathbb{R}^m)$ has a matrix representation with entries $a_{ij}(z)$ while the bases of \mathbb{R}^k and \mathbb{R}^m are fixed, then the function $z \mapsto A(z)$ is a continuous function from S to $L(\mathbb{R}^k, \mathbb{R}^m)$.

Theorem 26.7. (C^1 functions)

Let $S \subseteq \mathbb{R}^k$ be open and $f: S \to \mathbb{R}^m$ with $f = (f_1, \dots, f_m)$.

Then the partial derivatives $\partial_i f_i$ all exist and are continuous on S

 \iff f is continuously differentiable on S,

that is, f is differentiable on S and $Df: S \to L(\mathbb{R}^k, \mathbb{R}^m)$ is continuous on S (in this case we say that f is C^1 on S or $f \in C^1(S)$). (advanced exercise)

27 The mean value theorem and the implicit function theorem

Theorem 27.1 (the mean value theorem for vector-valued functions). Let $S \subseteq \mathbb{R}^k$ be open and let $f: S \to \mathbb{R}^m$ a function.

- 1. If $a, b \in S$ such that $L := \{a + t(b a) : 0 \le t \le 1\} \subseteq S$, and if f is continuous on L and is differentiable on $L\setminus\{a,b\}$, then for any vector $u \in \mathbb{R}^m$ written as a column vector, there exists $c \in L$ such that $u \cdot (f(b) - f(a)) = u \cdot (Df(c)(b-a))$, where b-a is written as a column vector in \mathbb{R}^k . In particular, if m = 1, then there exists $c \in L$ such that $f(b) - f(a) = \nabla f(c) \cdot (b - a)^T$, where $\nabla f(c) := (\partial_1 f(c), \dots, \partial_k f(c))$ and $(b-a)^T$ is rewritten as a row vector, identical to Theorem 19.1.
- 2. If S is convex, f is differentiable on S, and there exists $M \in [0, \infty)$ such that $||Df(x)|| \leq M$ for all $x \in S$, $where \ \|Df(x)\| \coloneqq \max\{\|Df(x)y\| : y \in \mathbb{R}^k, \|y\| = 1\} = \sup\{\frac{\|Df(x)y\|}{\|y\|} : y \in \mathbb{R}^k, y \neq 0\}, \ called \ the \ \textit{norm of } Df(x), \|Df(x)\| = 1\}$ then $||f(b) - f(a)|| \le M||b - a||$ for all $a, b \in S$. (Note that the usual mean value theorem does not hold, e.g., the function $t \mapsto (\cos(t), \sin(t))$ on $[0, 2\pi]$.)

Theorem 27.2 (the implicit function theorem in one variable). Let $f: \mathbb{R}^k \times \mathbb{R} \to \mathbb{R}$ be C^1 on some neighborhood of $(a,b) \in \mathbb{R}^k \times \mathbb{R}$ and write $(x,y) \mapsto f(x,y)$. If f(a,b) = 0 and $\partial_{k+1} f(a,b) \neq 0$, then there exist $r_0 > 0$ and $r_1 > 0$ such that for any $x \in B_{r_0}(a)$ there exists a unique $y \in B_{r_1}(b)$ such that f(x,y) = 0, where $B_{r_0}(a) = \{x \in \mathbb{R}^k : ||x - a|| < r_0\} \text{ and } B_{r_1}(b) = \{y \in \mathbb{R} : |y - b| < r_1\}\};$ denote this y by g(x), then $g: B_{r_0}(a) \to B_{r_1}(b)$ is a C^1 function on $B_{r_0}(a)$ with g(a) = b and for all $x \in B_{r_0}(a)$, f(x,g(x)) = 0 and $\partial_i g(x) = -\frac{\partial_i f(x,g(x))}{\partial_{k+1} f(x,g(x))}$ for all $1 \le i \le k$.

Corollary 27.3.

Let $f: \mathbb{R}^k \to \mathbb{R}$ be C^1 on \mathbb{R}^k and let $\gamma = \{x \in \mathbb{R}^k : f(x) = 0\}$. If $a \in \gamma$ with $\nabla f(a) \neq 0$,

then there exists a neighborhood U of a in \mathbb{R}^k such that $\gamma \cap U$ is the graph of a C^1 function.

Theorem 27.4 (the implicit function theorem in several variables). Let $f: \mathbb{R}^k \times \mathbb{R}^m \to \mathbb{R}^m$ be C^1 on some neighborhood of $(a,b) \in \mathbb{R}^k \times \mathbb{R}^m$ and write $(x,y) \mapsto f(x,y)$ and $f = (f_1, \dots, f_m)$.

and write
$$(x,y) \mapsto f(x,y)$$
 and $f = (f_1, \dots, f_m)$.

If $f(a,b) = 0$ and $det(A) \neq 0$, where $A = \begin{bmatrix} \partial_{k+1} f_1 & \cdots & \partial_{k+m} f_1 \\ \vdots & \ddots & \vdots \\ \partial_{k+1} f_m & \cdots & \partial_{k+m} f_m \end{bmatrix} (a,b)$,

then there exist $r_0 > 0$ and $r_1 > 0$ such that

then there exist $r_0 > 0$ and $r_1 > 0$ such tha

for any $x \in B_{r_0}(a)$ there exists a unique $y \in B_{r_1}(b)$ such that f(x,y) = 0, where $B_{r_0}(a) = \{x \in \mathbb{R}^k : ||x - a|| < r_0\} \text{ and } B_{r_1}(b) = \{y \in \mathbb{R}^m : ||y - b|| < r_1\};$ denote this y by g(x), then $g: B_{r_0}(a) \to B_{r_1}(b)$ is a C^1 function on $B_{r_0}(a)$ with g(a) = band for all $x \in B_{r_0}(a)$, f(x,g(x)) = 0 and $\partial_i g(x)$ for $1 \le i \le k$ can be computed by differentiating f(x,g(x)) = 0 with respect to x_i

and solving the resulting linear system of equations for $\partial_i g_1, \dots, \partial_i g_m$, where $g = (g_1, \dots, g_m)$ as follows:

$$\begin{bmatrix} \partial_1 f_1 & \cdots & \partial_k f_1 \\ \vdots & \ddots & \vdots \\ \partial_1 f_m & \cdots & \partial_k f_m \end{bmatrix} + \begin{bmatrix} \partial_{k+1} f_1 & \cdots & \partial_{k+m} f_1 \\ \vdots & \ddots & \vdots \\ \partial_{k+1} f_m & \cdots & \partial_{k+m} f_m \end{bmatrix} \begin{bmatrix} \partial_1 g_1 & \cdots & \partial_k g_1 \\ \vdots & \ddots & \vdots \\ \partial_1 g_m & \cdots & \partial_k g_m \end{bmatrix} = 0.$$

28 Curves in the plane and surfaces in the space

Definition 28.1 (C^1 curve and surface).

```
1. A set \gamma \subseteq \mathbb{R}^2 is called a C^1 curve if every a \in \gamma has a neighborhood U such that \gamma \cap U is the graph of a C^1 function g (either y = g(x) or x = g(y)).
```

```
2. A set \gamma \subseteq \mathbb{R}^3 is called a C^1 surface if every a \in \gamma has a neighborhood U such that \gamma \cap U is the graph of a C^1 function g (either z = g(x, y), y = g(x, z), or x = g(y, z)).
```

Theorem 28.2 (sufficient conditions for C^1 curves in \mathbb{R}^2).

```
1. (a non-parametric form)

Let S \subseteq \mathbb{R}^2 be open, f: S \to \mathbb{R} be C^1 on S, and \gamma = \{(x,y) \in S: f(x,y) = 0\}.

If a \in \gamma and \nabla f(a) \neq 0,

then there exists a neighborhood U of a in \mathbb{R}^2

such that \gamma \cap U is the graph of a C^1 function g (either y = g(x) or x = g(y)).
```

```
2. (a parametric form)

Let f:(a,b) \to \mathbb{R}^2 be C^1 on (a,b).

If t_0 \in (a,b) and Df(t_0) = f'(t_0) \neq 0,

then there exists an open interval I of t_0 in (a,b)

such that the set \{f(t): t \in I\} is the graph of a C^1 function g

(either y = g(x) or x = g(y)).
```

Theorem 28.3 (sufficient conditions for C^1 surface in \mathbb{R}^3).

```
1. (a non-parametric form) Let S \subseteq \mathbb{R}^3 be open, f: S \to \mathbb{R} be C^1 on S which is denoted by (x,y,z) \mapsto f(x,y,z), and let \gamma = \{(x,y,z) \in S : f(x,y,z) = 0\}. If a \in \gamma and \nabla f(a) \neq 0, then there exists a neighborhood U of a in \mathbb{R}^3 such that \gamma \cap U is the graph of a C^1 function g (either z = g(x,y), y = g(x,z), or x = g(y,z)).
```

2. (a parametric form)
Let $S \subseteq \mathbb{R}^2$ be open and $f: S \to \mathbb{R}^3$ be C^1 on S, denoted by $(s,t) \mapsto f(s,t)$.

If $(s_0,t_0) \in S$ and the vectors $\frac{\partial f}{\partial s}(s_0,t_0)$ and $\frac{\partial f}{\partial t}(s_0,t_0)$ are linearly independent (equivalently, if $(s_0,t_0) \in S$ and the cross product $\frac{\partial f}{\partial s}(s_0,t_0) \times \frac{\partial f}{\partial t}(s_0,t_0) \neq 0$), then there exists a neighborhood U of (s_0,t_0) in S such that the set $\{f(s,t):(s,t) \in U\}$ is the graph of a C^1 function g (either z = g(x,y), y = g(x,z), or x = g(y,z))..

29 Curves in \mathbb{R}^3 and *n*-dimensional manifolds in \mathbb{R}^k

```
Definition 29.1. (curves in \mathbb{R}^3)
```

A C^1 curve γ in \mathbb{R}^3 is defined to be one of the following:

- 1. (the non-parametric form) the set $\gamma = \{x \in U : f(x) = 0\}$, where $U \subseteq \mathbb{R}^3$ be open and $f: U \to \mathbb{R}^2$ is a C^1 function with $f = (f_1, f_2)$ such that the vectors $\nabla f_1(x)$ and $\nabla f_2(x)$ are linearly independent at each $x \in \gamma$, or equivalently, the matrix Df(x) has rank 2 at every $x \in \gamma$.
- 2. (the parametric form) the set $\gamma = \{f(t) : t \in V\}$, where $V \subseteq \mathbb{R}$ is open and $f : V \to \mathbb{R}^3$ is a C^1 function such that $f'(t) \neq 0$ at each $t \in V$.

Definition 29.2. (manifold in \mathbb{R}^k)

A C^1 n-dimensional manifold γ in \mathbb{R}^k with n < k is defined to be one of the following:

- 1. (the non-parametric form) the set $\gamma = \{x \in U : f(x) = 0\}$, where $U \subseteq \mathbb{R}^k$ be open and $f: U \to \mathbb{R}^{k-n}$ is a C^1 function with $f = (f_1, \ldots, f_{k-n})$ such that the vectors $\nabla f_1(x), \ldots, \nabla f_{k-n}(x)$ are linearly independent at each $x \in \gamma$, or equivalently, the matrix Df(x) has rank k-n at every $x \in \gamma$.
- 2. (the parametric form) the set $\gamma = \{f(t): t \in V\}$, where $V \subseteq \mathbb{R}^n$ is open and $f: V \to \mathbb{R}^k$ is a C^1 function such that $\frac{\partial f(t)}{\partial t_i}$, $i = 1, \ldots, n$, are **linearly independent** at each $t \in V$, or equivalently, the matrix Df(t) has rank n at each $t \in V$.

In fact, in the theory of Differential Geometry, we define a C^1 n-dimensional manifold γ by using local charts so that γ is locally like \mathbb{R}^n , then the above becomes sufficient conditions for γ being a C^1 n-dimensional manifold and the tangent space of γ at each point on it is well defined.

The inverse function theorem and the higher order Fréchet derivative 30

Theorem 30.1 (the inverse function theorem).

Let $U, V \subseteq \mathbb{R}^k$ be open and $f: U \to V$ be C^1 on U.

If $a \in U$ and the Jacobian $det(Df(a)) \neq 0$,

then there exist open neighborhoods $U_1 \subseteq U$ of a and $V_1 \subseteq V$ of f(a)

such that f is one-to-one from U_1 onto V_1 ,

the inverse function $f^{-1}: V_1 \to U_1$ is C^1 , and $Df^{-1}(f(x)) = [Df(x)]^{-1}$ for all $x \in U_1$.

Remark 30.2. (globally one-to-one)

Let $U, V \subseteq \mathbb{R}^k$ be open. Suppose $f: U \to V$ is C^1 and $det(Df(x)) \neq 0$ for all $x \in U$. Is f one-to-one on U?

- 1. If k = 1, the answer is YES.
- 2. If k > 1, the answer is NO.

Problem 30.3 (Jacobian conjecture).

Let $f: \mathbb{R}^k \to \mathbb{R}^k$ be a map whose component functions are all polynomials.

Suppose det(Df(x)) = 1 for all $x \in \mathbb{R}^k$.

Is f one-to-one on \mathbb{R}^k ?

(If yes, then one can prove that the inverse of f is a map defined on \mathbb{R}^k

whose component functions are also all polynomials.)

The conjecture that the answer is yes is called **Jacobian conjecture**;

this is a famous unsolved problem.

Remark 30.4. (higher order Fréchet derivative)

The Fréchet derivative of a function $f: U \subseteq \mathbb{R}^k \to \mathbb{R}^m$ gives a function $Df: U \to L(\mathbb{R}^k, \mathbb{R}^m)$, that is, $Df(x) \in L(\mathbb{R}^k, \mathbb{R}^m)$) such that $\lim_{h\to 0} \frac{\|f(x+h)-f(x)-Df(x)h\|_{\mathbb{R}^m}}{\|h\|_{\mathbb{R}^k}} = 0$,

where $L(\mathbb{R}^k, \mathbb{R}^m)$ is the set of all linear transformations from \mathbb{R}^k to \mathbb{R}^m with the metric induced from the operator norm, which is isomorphic to the Euclidean space \mathbb{R}^{km} .

Similarly, the Fréchet derivative of the function Df gives a function $D(Df): U \to L(\mathbb{R}^k, L(\mathbb{R}^k, \mathbb{R}^m))$,

called the **second derivation** of f, denoted by $x \mapsto D^2 f_x := D(Df)(x)$, that is, $D(Df(x) \in L(\mathbb{R}^k, L(\mathbb{R}^k, \mathbb{R}^m))$ such that

$$\lim_{h\to 0} \frac{\|Df(x+h) - Df(x) - D(Df)(x)(h)\|_{L(\mathbb{R}^k,\mathbb{R}^m)}}{\|h\|_{\mathbb{R}^k}} = 0,$$

where $L(\mathbb{R}^k, L(\mathbb{R}^k, \mathbb{R}^m))$ is isomorphic to the set of maps in $L(\mathbb{R}^k \times \mathbb{R}^k, \mathbb{R}^m)$ which are linear in each factor of \mathbb{R}^k separately, called the set of all **bilinear maps** from \mathbb{R}^k to \mathbb{R}^m and denote by $L^2(\mathbb{R}^k, \mathbb{R}^m)$, and so we write $D^2 f_x(h, v) = D^2 f_x(h)(v)$.

 $Assume \ that \ f \ is \ C^2 \ on \ U. \ Then \ \partial^2_{ij}f(x) = \partial^2_{ji}f(x) \ for \ all \ 1 \leq i,j \leq k,, \ which \ is \ a \ vector \ in \ \mathbb{R}^m.$ Let $\{e^i: 1 \le i \le k\}$ denote the standard basis of \mathbb{R}^k . Then for vectors $h = \sum_{i=1}^k h_i e^i$ and $v = \sum_{i=1}^k v_i e^i$, we have

$$D^{2} f_{x}(h, v) = \sum_{1 \leq i, j \leq k} \partial_{ij}^{2} f(x) h_{i} v_{j} = \sum_{1 \leq i, j \leq k} \partial_{ji}^{2} f(x) v_{j} h_{i} = D^{2} f_{x}(v, h)$$

which makes $D^2 f_x$ a symmetric bilinear function from $\mathbb{R}^k \times \mathbb{R}^k$ to \mathbb{R}^m .

Similarly, one can define the r-derivative of f at x, which is a symmetric r-linear form, $D^r f_x \in L^r(\mathbb{R}^k, \mathbb{R}^m)$. Moreover, one has the chain rule

$$D^{2}(g \circ f)_{x}(h, v) = D^{2}g_{f(x)}(Df_{x}h, Df_{x}v) + Dg_{f(x)}D^{2}f_{x}(h, v),$$

and the Taylor theorem for C^r function $f: U \subseteq \mathbb{R}^k \to \mathbb{R}^m$

$$f(x) = \sum_{n=0}^{r} \frac{D^{n} f_{c}(x - c, \dots, x - c)}{n!} + R_{f,c,r}(x - c),$$

satisfying $\lim_{x\to c} \frac{R_{f,c,r}(x-c)}{\|x-c\|^r} = 0$.

Assume that m = 1, that is, the codomain is the base field.

Then D^2f_x is a symmetric bilinear form with the $k \times k$ matrix $\left(\partial_{ji}^2 f(x)\right)_{1 \leq j \leq k}$, that is, the Hessian matrix of f at x, and it gives a quadratic form $D^2 f_c(x-c,x-c) = (x-c)^T D^2 f_c(x-c) = \sum_{1 \le i,j \le k}^{-\infty} \partial_{ji}^2 f(x)(x_j-c_j)(x_i-c_i)$.