BMSC1101 & BMSN1601 Dr. C.W. Ma

Gas Exchange & Transport

Overall process of gas exchange & transport

- Oxygen (O₂) enters blood at lungs & leaves at tissues
- Carbon dioxide (CO₂) enters blood at tissues & leaves at lungs

External respiration

Site: alveoli (at respiratory zone)

- · Account for most of lungs volume
- Provide tremendous surface area for gas exchange
- Surrounded by fine elastic fibers
- Densely covered with a cobweb of pulmonary capillaries

Cell types of alveoli

- Type I cells: Single layer of squamous epithelial cells that form <u>alveolar wall</u>
- Type II cells: Secrete surfactant that coats the alveolar surfaces exposed to gas
- Macrophages: Keep alveolar surfaces sterile

Respiratory membrane

- Barrier across which gases are exchanged between alveolar air & blood
- Consists of alveolar epithelium, capillary endothelium & joined basement membranes

Factors affecting gas movement across respiratory membrane

- Partial pressure gradients & gas solubilities
- Structural characteristics of respiratory membrane
- Matching of alveolar ventilation & pulmonary blood perfusion
- Pressure gradients promote gas exchange across <u>respiratory membrane</u> in **lungs**
 - PO₂ in alveoli > PO₂ in pulmonary artery
 - PCO₂ in pulmonary artery > PCO₂ in alveoli

Internal respiration

- Pressure gradients promote gas exchange across systemic <u>capillary membranes</u> in **body tissues**
 - PO₂ in systemic arterial blood > PO₂ in tissue
 - PCO₂ in tissue > PCO₂ in systemic arterial blood

Oxygen transport

- (1) Dissolved in plasma
- (2) Bound to hemoglobin (Hb) within RBCs (each Hb molecule binds 4 O2 molecules)
 - Affinity between Hb & O₂ molecules is regulated by:
 - PO₂, PCO₂, temperature, blood pH, concentration of 2,3-bisphosphoglycerate (BPG)

Influence of PO2 on Hb saturation

- In lungs: PO₂ in arterial blood is high (100 mmHg)
- At tissue cells: PO₂ in capillaries decreases (to 40 mmHg)
 - 5 mL O₂ (per 100 mL of blood) is released to tissues (only 75% saturation of Hb)

Bohr effect

• Blood pH declines → weaken hemoglobin-oxygen bond → faster oxygen unloading

Carbon dioxide transport

- (1) Dissolved in plasma
- (2) Bound to hemoglobin (carbaminohemoglobin)
- (3) Bicarbonate ions in plasma (70%)