Bengala Inteligente

DESENHO DA APLICAÇÃO

Ana Paula Cavalcante Santos - SP3072096

Eduardo Massaru Tutui - SP3056945

Felipe Gustavo de Lima Santos - SP3093875

Gabriel Nogueira - SP3099636

Paulo Eduardo Martins - SP3095614

Raissa Santos Lages - SP3095631

PatentPending IFSP-SPO CAPA 2024 - 04 - 10 1/36

Sumário

- 1 Introdução
- Gerenciamento do Projeto
- Desenvolvimento do Projeto
- Viabilidade financeira

Introdução (1)

Problema

Introdução

- A pessoa com deficiência visual
- Viver com deficiência visual e seus desafios

Objetivo

• Por que desenvolver a bengala inteligente?

Justificativa

• Para quê desenvolver a bengala inteligente?

Público Alvo

- Deficientes visuais de todas as idades
- Indivíduos de diversos graus de deficiência visual
- Busca ou necessidade por tecnologias que garantem maior autonomia
- Implementação de soluções de acessibilidade por órgãos públicos

PatentPending

Análise da Concorrência

- Dividida em 5 fases:
- 1. Identificação produtos e soluções competitivas
- 2. Avaliação de recursos e funções
- 3. Análise de preços e estratégia comercial
- 4. Mapeamento de benefícios e oportunidades
- 5. Avaliações e experiências de clientes

Gerenciamento (2) do Projeto

Organização das Tarefas

- Abordagem mais flexível para descentralizar o conhecimento dos integrantes sobre o projeto
- Adaptação às mudanças de escopo e prioridades
- Mitigar a dependência de um membro da equipe a uma área específica

Jira

Kanban

Blog

PatentPending

Canal do Youtube

WhatsApp

PatentPending

Segmentação do Projeto

Desenvolvimento da bengala

- Modelagem física •
- Seleção e testes dos componentes
 - Desenvolvimento do software
 - Montagem do circuito
 - Documentação •

Gestão do Projeto

- Postagens no blog
- Edição dos vídeos do canal no Youtube
- Formatação para o LaTex
- Desenvolvimento das apresentações
- Gestão geral do projeto

Atividades	Ana Paula	Eduardo	Felipe	Gabriel	Paulo	Raíssa
Modelagem física		X	X			
Seleção e teste dos componentes				X		X
Desenvolvimento do sotware				X	X	X
Montagem do circuito		X		X	X	
Documentação	X					X

Atividades	Ana Paula	Eduardo	Felipe	Gabriel	Paulo	Raíssa
Postagens no Blog						X
Edição dos vídeos no canal do Youtube		X				
Formatação para o LaTex	X					
Desenvolvimento dos slides			X			
Gestão geral do projeto						X

O que a bengala inteligente é

- Ferramenta de assistência para portadores de deficiência visual Detecta obstáculos sólidos no
 - Detecta obstáculos sólidos no ambiente
- Fornece feedback tátil ou auditivo Voltada para garantir longa
 - duração de bateria

O que a bengala inteligente não é

- Ferramenta para mapear os componentes de um ambiente
- Atuar como um GPS
- Curar ou corrigir deficiências visuais
- Solução única para todas as necessidades de mobilidade de deficientes visuais

Referência	Nome
RF01	Identificação de objetos
RF02	Altura de objetos
RF03	Detecção em ambientes escuros
RF04	Modo de vibração
RF05	Diferença entre os modos de vibração

Referência	Nome
RF06	Recarga da bengala
RF07	Indicador de carga completa
RF08	Desligamento
RF09	Indicador de desligamento
RF10	Alarme sonoro para caso de perda

Requisitos Não Funcionais

Referência	Nome
RNF01	Tempo de vibração
RNF02	Tempo de detecção
RNF03	Precisão
RNF04	Integração ergonômica
RNF05	Entrada do carregador

Referência	Nome
RNF06	Proteção contra sobrecarga
RNF07	Autonomia de bateria
RNF08	Resistência da entrada
RNF09	Conforto
RNF10	Distribuição do peso
RN11	Informações na bengala

Histórias de Usuário

Resposta tátil

- 1. Vibração suave e contínua quando a distância for segura
- 2. Aumento gradual da intensidade ao se aproximar de um obstáculo
- 3. Vibração será forte e intermitente quando a distância for perigosamente próxima
- 4. Resposta tátil deve ser clara e compreensível

IFSP-SPO

Histórias de Usuário

Recarga da bengala

- Processo deve ser simples e intuitivo, conexão através de um cabo USB comum no mercado
- 2. Indicador sonoro quando a recarga for completa
- 3. Tempo de recarga deve ser razoável para o uso diário
- 4. Proteção contra sobrecarga, curto-circuito ou superaquecimento
- 5. Duração ideal da bateria de 8 horas entre recargas

IFSP-SPO

Histórias de Usuário

Desligar circuito

- 1. Mecanismo de desligamento fácil, mapeado de forma tátil
- 2. Quando desligada, a bengala não deve consumir energia da bateria
- 3. Indicador sonoro ao desligar a bengala

IFSP-SPO

- 4. O processo de ligar e desligar a bengala deve ser rápido e conveniente
- 5. Mecanismo de desligamento robusto e confiável, evitando desligamentos acidentais

Módulo Motor de Vibração

Módulo Sensor de Distância Ultrassônico HC-SR04

Sensor Capacitivo Touch TTP223B

Protoboard

Placa Arduino Uno

Módulo de carregamento CN3065

Bateria Li-Íon 3,7V 5200mAh

Modelagem 3D

Simulação dos Circuitos

Demonstração dos funcionamento dos sensores e componentes eletrônicos.

Produto Mínimo Viável (PMV)

Integração do circuito em uma bengala com a funcionalidade de reconhecimento de objetos.

Produto Final

Bengala com todas as funcionalidades propostas nos requisitos do projeto.

Muito obrigado!