GMS: High-performance modeling for 3D geologic maps

Forward modeling expected gravity for Delta Velocity Model

- Goals:
 - Improve model consistency
 - o where is change needed?
 - Geology
 - Velocity (velocity-geology relation)
 - Velocity-density relation
 - Develop change strategies
 - Avoid change via Ad Hoc modifications
 - Change that impacts seismic shaking

Forward modeling gravity for Delta Velocity Model

- Delta velocity model: 100 x 60 x 12 km (86,000 km³)
- Density estimated using velocity-density relations:
 - Nafe-Drake curve (Ludwig et al 1970)
 - Zelt (1989)
 - Gardner et al (1974)
 - Brocher (2005)

Exploring the model

- Delta velocity model converted to density via Brocher
- Density contrast vs 2.67 g/cc

Edge-corrected Brocher model showing significant misfit with observed data

Gardner model has similar misfit to Brocher model

Separating differences in shape from differences in scale: Z-score transform [(x - mean) / stddev]

Cross-section of two surfaces with different scaling but same shape. The z-score transform shows the similarity between the two.

Cross-section of two surfaces with different scaling and shape. The z-score transform highlights the areas that are of similar and different shape.

Edge-corrected Brocher model showing scaled differences (shape)

Filled Contours

-110 -- -105

Vertically integrated contribution per square km

Next steps: working together!

- How do we improve the Delta model's internal consistency?
 - Propose alternatives to current geologic model
 - Indications from shape mismatch
 - Evidence for basement / basin density variations
 - Modify velocities
 - Revisit interpolation / extrapolation
- Delta model update strategy as a blueprint for future 3D maps / models

Estimation of the edge correction

- Assume effect of variable density within model, on gravity stations outside of model, ~= effect of variable density outside model on gravity stations within model
- Calculate effect of model density with distance away from model edge (1)
- Calculate effect of equivalent homogeneous model density with distance away from model edge
- Subtract homogeneous from total to estimate effect of variability with distance away from model edge
- Add effect of variability back to gravity stations within model as a function of distance from model edge

>60% of model volume in the Basement

Comparison of velocity → density models

