Kínai karakterek felismerése generált minták alapján

Szilvási Péter

TDK konferencia, Miskolci Egyetem, 2018. április 25.

Kínai karakterek felismerése

Vonások, vonás sorrend

- A vízszintes vonások megelőzik a függőleges vonásokat.
- A balra lejtő vonások megelőzik a jobbra lejtő vonásokat.
- Az írásjegyek írását felülről kell kezdeni.
- Az írásjegyet balról jobbra haladva építik fel.
- A felülről keretezett írásjegyeknél előbb a keretet kell meghúzni.
- 6 Az alulról keretezett írásjegyeknél a keretet legvégül kell meghúzni.
- 🛮 A teljes keretet mindig legvégül kell bezárni.

OCR megvalósítások

- Dokumentumok digitalizálása
- OCR részei: szekennelő fej + szoftver
- Feldolgozási szintek:
 - lacktriangle Alacsony szintű: zajos kép ightarrow előfeldolgozás ightarrow javított kép
 - \blacksquare Középső szintű: kép \to szegmentálás \to kép jellemzők
 - \blacksquare Magas szintű: jellemzők \to osztályozás \to osztálycímke

OCR megvalósítások

- OCR típus:
 - Online
 - Offline

Kínai karakter felismerés

- Zaj szűrés: pontszerű, elmosódás, forgatás, kontraszt
- Jellemző kivonás

OCR megvalósítások

Song Fang Kai Hei 多体汉字识别 多体汉字识别 多体汉字识别 外体汉字识别

Használt algoritmus

Funkció kivonás

$$d_i = \frac{l_i}{\sqrt{\sum_{k=1}^8 l_k^2}}$$

- Tanítás
- Tesztelés

Font	Song	Fang	Kai	Hei
Train	99.82	99.64	99.81	99.57
Test	99.71	99.50	99.80	99.09

Minták generálása

- Tanító mintapontok előállítása (sorrend, vonal vastagság)
- Képernyő

```
img = np.zeros((512,512,3),np.uint8)
img[0:512] = (255,255,255)
```

Ecset

```
cv2 . ellipse (img , center , axes , angle , start \_ angle , end \_ angle , color , thickness=1, lineType=8, shift=0)
```

Karakterek kirajzolása

- Poligonos közelítés
- Procedurális rajzolás

- Hermit iv: $\mathbf{H}(u) = \mathbf{a}_0 u^3 + \mathbf{a}_1 u^2 + \mathbf{a}_2 u + \mathbf{a}_3$
- Pontonkénti színszámítás

Tanítóminták zajosítása

- Pontszerű: zaj mátrix (M ⊕ N)
- **2** Elmosódás: normalizált szűrő, gauss szűrő, medián szűrő $g(i,j) = \sum_{k,l} f(i+k,j+l)h(k,l)$
- Forgatás: $M = \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}$. (cv2.getRotationMatrix2D())
- Vágás: crop_img = img[y:y+h, x:x+w]
- Takarás: festő algoritmus

Mesterséges neurális hálók

Tanítóalgoritmus, backpropagation

Konvolúciós neurális háló

A hálózat architektúrája, használt topológia

A háló felépítése

4.10-es ábra

A hálózat architektúrája

5.2 ábra

Az offline adatbázis

Kb. 3x4 karakter az 5.1 ábrából

Validáció

Tesztelés módja, helyesség ellenőrzése

A felismerés hatékonysága

Eredmények konkrét százalékokkal

Összegzés

Hivatkozások

Köszönöm szépen a figyelmet!