TIEI 2018
Formal Languages and Automata

Pushdown Automata Examples

Pushdown Automaton -- PDA

Input String

Initial Stack Symbol

bottom special symbol Appears at time 0

The States

stack

stack

stack

Non-Determinism

PDAs are non-deterministic

Allowed non-deterministic transitions

 λ – transition

Example PDA

$$PDA M$$
:

$$L(M) = \{a^n b^n : n \ge 0\}$$

$$L(M) = \{a^n b^n : n \ge 0\}$$

Basic Idea:

Execution Example: Time 0

Input

Input

A string is accepted if there is a computation such that:

All the input is consumed AND

The last state is an accepting state

we do not care about the stack contents at the end of the accepting computation

Input

Input

Input

Input

Input

Stack

reject

There is no accepting computation for aab

The string aab is rejected by the PDA

Another PDA example

PDA
$$M: L(M) = \{vv^R : v \in \{a, b\}^{i}\}$$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 $\downarrow q_0$ $\lambda, \lambda \rightarrow \lambda$ $\downarrow q_1$ $\lambda, \$ \rightarrow \$$ $\downarrow q_2$

Basic Idea:

$$L(M) = \{vv^R : v \in \{a, b\}^{i}\}$$

Execution Example: Time 0

 $\lambda, \lambda \rightarrow \lambda$

Input

$$a, \lambda \rightarrow a$$
 $b, \lambda \rightarrow b$

Input

$$a, a \rightarrow \lambda$$

 $b, b \rightarrow \lambda$

$$\lambda$$
, $\lambda \rightarrow \lambda$

Input

$$a, a \rightarrow \lambda$$
 $b, b \rightarrow \lambda$

$$q_1 \qquad \lambda, \$ \rightarrow \$$$

$$q_2$$

Input

Guess the middle of string

Stack

$$a, \lambda \rightarrow a$$
 $b, \lambda \rightarrow b$

$$\lambda, \lambda \rightarrow \lambda$$

 $a, a \rightarrow \lambda$ $b, b \rightarrow \lambda$

Input

Input

Input

Stack

 $a, a \rightarrow \lambda$

accept

Rejection Example:

Time 0

Input

Stack

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

 $\lambda, \lambda \rightarrow \lambda$

Input

$$\lambda$$
, $\lambda \rightarrow \lambda$

Input

Input

Guess the middle of string

Stack

$$a, \lambda \rightarrow a$$
 $b, \lambda \rightarrow b$

$$\lambda, \lambda \rightarrow \lambda$$

 $a, a \rightarrow \lambda$ $b, b \rightarrow \lambda$

Input

Input

There is no possible transition.

Input is not consumed

$$a, a \rightarrow \lambda$$

 $b, b \rightarrow \lambda$

Another computation on same string:

Input

$$a, a \rightarrow \lambda$$

 $b, b \rightarrow \lambda$

$$\lambda, \lambda \rightarrow \lambda$$

Input

Input

Input

 $\lambda, \lambda \rightarrow \lambda$

$$\begin{array}{c} a, \lambda \rightarrow a \\ b, \lambda \rightarrow b \end{array}$$

Input

No accept state is reached

$$a, \lambda \rightarrow a$$

$$b \quad \lambda \rightarrow b$$

$$b, \lambda \rightarrow b$$

$$\uparrow q_0 \qquad \lambda, \lambda \rightarrow \lambda$$

$$a, a \rightarrow \lambda$$

 $b, b \rightarrow \lambda$

There is no computation that accepts string abbb

 $abbb \not\in L(M)$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 $\downarrow q_0$ $\lambda, \lambda \rightarrow \lambda$ $\downarrow q_1$ $\lambda, \$ \rightarrow \$$ $\downarrow q_2$

Pushing & Popping Strings

Example:

Another PDA example

$$L(M) = \{w \in \{a,b\}^{i}: n_{a}(w) = n_{b}(w)\}$$

PDA M

$$a,\$ \rightarrow 0\$$$
 $b,\$ \rightarrow 1\$$
 $a,0 \rightarrow 00$ $b,1 \rightarrow 11$
 $a,1 \rightarrow \lambda$ $b,0 \rightarrow \lambda$

$$\lambda,\$ \rightarrow \$$$

$$q_1$$

Execution Example: Time 0

Input

$$a, \$ \rightarrow 0 \$$$

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$

$$b, 1 \rightarrow 11$$

$$a, 1 \rightarrow \lambda$$

$$b, 0 \rightarrow \lambda$$

current

$$\lambda$$
, $\$ \rightarrow \$$

Input

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$

$$b, 1 \rightarrow 11$$

$$a, 1 \rightarrow \lambda$$

$$b, 0 \rightarrow \lambda$$

$$\lambda$$
, $\$ \rightarrow \$$

Input

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$

$$b,1 \rightarrow 11$$

$$a, 1 \rightarrow \lambda$$

$$b, 0 \rightarrow \lambda$$

Stack

Input

Input

Input

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$

$$b, 1 \rightarrow 11$$

$$a, 1 \rightarrow \lambda$$

$$b, 0 \rightarrow \lambda$$

Stack

Input

$$b, \$ \rightarrow 1\$$$

$$b, 1 \rightarrow 11$$

$$a, 1 \rightarrow \lambda$$

$$b, 0 \rightarrow \lambda$$

Stack

Input

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$

$$b, 1 \rightarrow 11$$

$$a, 1 \rightarrow \lambda$$

$$b, 0 \rightarrow \lambda$$

Formalities for PDAs

$$q_1 \xrightarrow{a, w_1 \rightarrow w_2} q_2$$

Transition function:

$$\delta(q_1, a, w_1) = \{(q_2, w_2)\}$$

Transition function:

$$\delta(q_1, a, w_1) = \{(q_2, w_2), (q_3, w_3)\}$$

Formal Definition

Pushdown Automaton (PDA)

Instantaneous Description

Example:

Instantaneous Description

 $(q_1,bbb,aaa\$)$

Input

 $a, \lambda \rightarrow a$

 $\lambda, \lambda \rightarrow \lambda$

Stack

a

a

a

 q_0

 $b, a \rightarrow \lambda$

 $\lambda, \$ \rightarrow \$$

 $b, a \rightarrow \lambda$

Example:

Instantaneous Description

 $(q_2, bb, aa\$)$

Time 5:

 $a, \lambda \rightarrow a$

a

We write:

$$(q_1,bbb,aaa\$) > (q_2,bb,aa\$)$$

Time 4

Time 5

A computation:

$$(q_0, aaabbb,\$) \succ (q_1, aaabbb,\$) \succ \idelta$$
 $\idelta(q_1, aabbb, a\$) \succ (q_1, abbb, aa\$) \succ (q_1, bbb, aa\$) \succ (q_2, bb, aa\$) \succ (q_2, b, a\$) \succ (q_2, \lambda, \$) \succ (q_3, \lambda, \$)$

$$(q_0, aaabbb,\$) \succ (q_1, aaabbb,\$) suc$$

 $(q_1, aabbb, a\$) \succ (q_1, abbb, aa\$) \succ (q_1, bbb, aaa\$) \succ$
 $(q_2, bb, aa\$) \succ (q_2, b, a\$) \succ (q_2, \lambda,\$) \succ (q_3, \lambda,\$)$

For convenience we write:

$$(q_0, aaabbb,\$) \stackrel{\iota}{\iota} (q_3, \lambda,\$)$$

Language of PDA

Language L(M) accepted by PDA M:

Example:

$$(q_0, aaabbb,\$) \stackrel{\iota}{\iota} (q_3, \lambda,\$)$$

 $aaabbb \in L(M)$

PDA M

$$(q_0, a^n b^n, \$) \stackrel{!}{\iota} (q_3, \lambda, \$)$$

$$a^n b^n \in L(M)$$

PDA M:

Therefore:
$$L(M) = \{a^n b^n : n \ge 0\}$$

PDA M:

