## **Practice Set 02**

1. The memory unit of a computer has 256K words of 32-bit each. The computer has an instruction format with four fields: an operational code field, a mode field to specify one of seven addressing modes, a register address field to specify one of 60 processor registers, and a memory address. Specify the instruction format and the number of bits in each field if the instruction is in one memory word.



- 2. A digital computer has a memory unit of  $64K \times 16$  and a cache memory of 1K words. The cache uses direct mapping with a block size of four words.
  - a. How many bits are there in the tag, index, block, and word fields of the address format?
  - b. How many bits are there in each word of cache including a valid bit?
  - c. How many blocks can the cache accommodate?

| Ma  | 2 morey unit of 64K × 16.                                      |
|-----|----------------------------------------------------------------|
|     | ≥ 2 <sup>6</sup> ·2 <sup>10</sup> × 16                         |
|     | > 216 × 16                                                     |
|     | so 16 bit address, 16 bit data                                 |
|     | cache uses direct mapping of block size of four words.         |
| A . | for four words address bit required 2[22=4].                   |
|     | cache memory size = 1 K = 210.                                 |
| a.  | to total address lines = 10.                                   |
|     | so total address lines = 10. for words, address lines = 2.     |
|     | : for block, address lines = 10-2=8.                           |
|     | 111 11mgs limes = 16.                                          |
|     | total address lines = 16.                                      |
|     | so no. of hits for tag field = 16 - (2+8) = 6.                 |
|     | so memory structure tag block word                             |
|     | 6 8 2                                                          |
|     | Index = 8+2=10                                                 |
|     |                                                                |
| Ь.  | there are 6 bits for tag                                       |
|     | 1 bit for valid bit valid tag datar                            |
|     | 1 bit for valid bit Valid tag datar  16 bit of datar 1 6 16=23 |
|     | so there are 23 bits in each word of cache.                    |
|     | = block c ON 28 = 256.                                         |
| ٥.  | cache can accommodate no of blocks as $2^8 = 256$ .            |
|     | 256 blocks of four words each.                                 |
|     |                                                                |