

Fundamentos de computadores

TEMA 2. PRINCIPIOS DEL DISEÑO DIGITAL

Objetivos

- Conocer las funciones lógicas y su representación
- Diseñar circuitos lógicos sencillos
- Fundamentos del Álgebra de Boole
- Métodos de simplificación. Mapas de Karnaugh

Bibliografía

Introducción a los Computadores.

J. Sahuquillo y otros.

Ed. SP-UPV, 1997 (ref. 97.491)

Recursos de aprendizaje

- Poliformat, sección "Recursos"
 - Ejercicios sin solución.
 - Soluciones a los ejercicios.
 - Entrenador de Karnaugh.
 - Exámenes de años anteriores.
- Poliformat, sección "Lessons"
 - Módulo 2: Principios de diseño digital.
 - » Tablas de verdad.
 - » Puertas lógicas.

Índice

- Introducción
- Funciones lógicas y tablas de verdad
- Puertas lógicas
- Análisis de circuitos
- Álgebra de Boole
- Formas canónicas de representar una función lógica
- Simplificación de funciones lógicas
 - Mapas de Karnaugh

Introducción

- Transistor
 - Unidad física mínima de diseño digital
- Puerta lógica
 - Unidad lógica mínima de diseño digital
- Circuito combinacional
 - Las salidas sólo dependen del valor de las entradas en el momento actual
 - Ejemplo. Selección de la bebida en una máquina de café

Introducción

Circuito secuencial

- Las salidas dependen del valor actual de las entradas y de la secuencia de valores anteriores (historia) del circuito.
 - Ejemplo. Monedero de una máquina de café

Unidad funcional

Suma de pequeños circuitos que realizan una función definida

Índice

- Introducción
- Funciones lógicas y tablas de verdad
- Puertas lógicas
- Análisis de circuitos
- Álgebra de Boole
- Formas canónicas de representar una función lógica
- Simplificación de funciones lógicas
 - Mapas de Karnaugh

Funciones lógicas y tablas de verdad

Función lógica

- Expresión formal del comportamiento de un circuito lógico
- Permite determinar la salida del circuito en función de las entradas
- Aridad = número de variables lógicas de entrada
- Valoración = una de las combinaciones de valores de las entradas

Funciones lógicas y tablas de verdad (ii)

FCO

- Tabla de verdad
 - Forma tabular de expresar una función lógica
 - Para cada entrada o salida se asigna una columna
 - Para cada valoración se asigna una fila
 - Entradas a la izquierda, salidas a la derecha
 - Valoraciones siguiendo la numeración binaria

Tablas de verdad. Ejemplos

- Luz interior de un coche
 - A partir de dos entradas d, i (puertas derecha e izquierda),
 diseñad un circuito que encienda una luz I cuando alguna de las puertas esté abierta

d	i	ı
0	0	0
0	1	1
1	0	1
1	1	1

Tablas de verdad. Ejemplos (ii)

- Luz interior de un coche (ii)
 - Añadir una entrada m de encendido manual: Si la entrada m está activada (*m=1*) encender la luz independientemente del estado (abierto/cerrado) de las puertas

m d i l m d	I	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	
0 1 0 1 0 1	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 X	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
1 1 0 1 Tabla de	- 1/6	1ء
1 1 1 1 J Tabla ut		ار

erdad reducida

Tablas de verdad. Ejemplos (iii)

- Funciones con entradas indiferentes
 - Aquellas combinaciones de valores de entrada para las que no importa el valor de la salida, por
 - tratarse de una combinación de las entradas para la que no se ha especificado el comportamiento del circuito
 - o tratarse de una combinación de las entradas que es imposible
 - En la tabla de verdad, la salida para estas valoraciones es X

Tablas de verdad. Ejemplos (iv)

FCO

- Intermitentes de un coche
 - A partir de 3 entradas: palanca a la izquierda (*pi*), palanca a la derecha (*pd*) y avería (*a*), generar las salidas que activen los intermitentes izquierdo (*ii*) y derecho (*id*)

а	pi	pd	ii id
0	0	0	0 0
0	0	1	0 1
0	1	0	1 0
0	1	1	XX
1	0	0	1 1
1	0	1	1 1
1	1	0	1 1
1	1	1	XX

Tabla de verdad de una <u>función</u> con entradas indiferentes

Composición de funciones

FCO

- Función compuesta. Aquella en la que la salida de una (sub)función es utilizada como entrada de otra
- Ejemplo: Luz interior de coche con encendido manual

Índice

- Introducción
- Funciones lógicas y tablas de verdad
- Puertas lógicas
- Análisis de circuitos
- Álgebra de Boole
- Formas canónicas de representar una función lógica
- Simplificación de funciones lógicas
 - Mapas de Karnaugh

Puertas lógicas

 Puerta lógica. Circuito electrónico que implementa una función lógica elemental

- Tipos
 - Básicos: AND, OR, NOT
 - Otras: XOR
 - Con salida negada: NAND, NOR, XNOR

- Tecnologías. Base física de construcción
 - TTL, CMOS

Puertas lógicas (ii)

FCO

AND

- Producto lógico ("y")
- Ampliable

a	a-b
b)

b	а	a-b
0	0	0
0	1	0
1	0	0
1	1	1

OR

- Suma lógica ("o")
- Ampliable

a		a+b
b	 >	

b	а	a+b
0	0	0
0	1	1
1	0	1
1	1	1

NOT

- Negación lógica ("no")
- No ampliable

а	а
0	1
1	0

XOR

- OR Exclusiva
- No ampliable

a	_/_	
b		<u>a⊕b</u>
	-7 /	

b	a	a⊕b
0	0	0
0	1	1
1	0	1
1	1	0

Puertas lógicas con salida negada

FCO

- NAND = NOT (AND)
 - Ampliable

k	а	a-b
0	0	1
0	1	1
1	0	1
1	1	0

- NOR = NOT (OR)
 - Ampliable

b	a	a+b
0	0	1
0	1	0
1	0	0
1	1	0

- XNOR = NOT (XOR)
 - No ampliable

b	а	a⊕b
0	0	1
0	1	0
1	0	0
1	1	1

Puertas lógicas. Tecnologías

- Cada tecnología de construcción emplea diferentes tipos de elementos físicos (transistores) y tensiones para representar los valores lógicos "0" y "1"
- TTL = Transistor-Transistor Logic
 - Basada en transistores bipolares
 - Alta velocidad, alto consumo, difícil integración
- CMOS = Complementary Metal Oxide Semiconductor
 - Basada en transistores MOSFET
 - Menor velocidad, bajo consumo, alta escala de integración

Esquema físico de una NAND TTL

FCO

Puertas lógicas. Integración.

Function Table

$$Y = \overline{AB}$$

	Inp	outs 🕟 📨	Output
VIC.	Α	В	XBAY = OO
HC.	L	L	HE ato
	L	Н	Н
	Н	L	H
	Н	Н	L

H = High Logic Level

L = Low Logic Level

Esquema físico de un inversor CMOS

Índice

- Introducción
- Funciones lógicas y tablas de verdad
- Puertas lógicas
- Análisis de circuitos
- Álgebra de Boole
- Formas canónicas de representar una función lógica
- Simplificación de funciones lógicas
 - Mapas de Karnaugh

Nivel de un circuito lógico

FCO

Nivel

- Número de puertas que hay que atravesar en el peor de los casos desde las entradas a las salidas del circuito
- Es una indicación del retardo del circuito
- Cada puerta tiene un retardo T
- Nivel 0 = entradas

Análisis de circuitos

- Dado un circuito, se trata de obtener su función lógica y tabla de verdad
 - Función lógica: componiendo las subfunciones correspondientes a cada punto del circuito
 - Tabla de verdad: calculando la salida para todas las posibles combinaciones de entrada

Análisis de circuitos (ii)

Síntesis de un circuito lógico

- A partir de su función lógica:
 - Añadir e interconectar las puertas en el orden en que se evalúan los términos de la expresión lógica

Índice

- Introducción
- Funciones lógicas y tablas de verdad
- Puertas lógicas
- Análisis de circuitos
- Álgebra de Boole
- Formas canónicas de representar una función lógica
- Simplificación de funciones lógicas
 - Mapas de Karnaugh

Álgebra de Boole

FCO

- George Boole (s. XIX)
 - Matemático y filósofo inglés
 - Desarrolla una estructura algebraica con dos valores ("verdadero", "falso") y dos leyes de composición interna ("y", "o")
 - Permite formalizar las reglas del razonamiento lógico

Precedencia (si no hay paréntesis)

- Claude Shannon (1938, Lab. Bell)
 - Adapta este álgebra a la computación
 - Valores 0 y 1, leyes de composición AND y OR
 - Permite formalizar las reglas de construcción de circuitos digitales

Puerta Iógica	Símbolo estándar
NOT	_
AND	•
OR	+
XOR	\oplus

Álgebra de Boole. Axiomas

Conmutatividad

Distributividad

$$(a + b) \cdot (a + c) = a + (b \cdot c)$$

 $(a \cdot b) + (a \cdot c) = a \cdot (b + c)$

Álgebra de Boole. Axiomas (ii)

Existencia de elemento neutro

Existencia de elemento complementario

$$a + \overline{a} = 1$$

 $a \cdot \overline{a} = 0$

Álgebra de Boole. Propiedades

FCO

Asociativa

$$(a + b) + c = a + (b + c) = a + b + c$$

 $(a \cdot b) \cdot c = a \cdot (b \cdot c) = a \cdot b \cdot c$

 Permite construir puertas con mayor número de entradas a partir de puertas más pequeñas:

Álgebra de Boole. Propiedades (ii)

FCO

- Asociativa (ii)
 - ¡OJO a las puertas con salida negada!:

$$\overline{a+b+c} = \overline{(a+b)+c}$$

$$a = b$$
 $b = c$

Álgebra de Boole. Propiedades (iii)

Idempotencia

$$a + a = a$$
 $a \cdot a = a$

$$a - a = a$$

$$a + a = a$$

$$a - a = a$$

Permite construir puertas NOT a partir de NAND o NOR

$$\overline{a + a} = \overline{a} = \overline{a \cdot a}$$

$$a - \overline{a} = \overline{a} = \overline{a} - \overline{a} = \overline{a} - \overline{a}$$

Álgebra de Boole. Propiedades (iv)

FCO

Involución

$$\overline{a} = a$$

$$a \longrightarrow \overline{a} \longrightarrow a$$

Leyes de De Morgan

$$(\overline{a+b+...+n}) = \overline{a} \cdot \overline{b} \cdot ... \cdot \overline{n}$$

$$(\overline{a \cdot b \cdot ... \cdot n}) = \overline{a} + \overline{b} + ... + \overline{n}$$

$$- iOJO!$$

$$(\overline{a+b}) = \overline{a} \cdot \overline{b}$$

$$(\overline{a+b}) = \overline{a} \cdot \overline{b}$$

Álgebra de Boole. Propiedades (v)

Circuito con puertas NAND

FCO

 Aplicando adecuadamente las leyes de De Morgan, cualquier circuito lógico se puede implementar sólo con puertas NAND o NOR.

– Ejemplo:

Índice

- Introducción
- Funciones lógicas y tablas de verdad
- Puertas lógicas
- Análisis de circuitos
- Álgebra de Boole
- Formas canónicas de representar una función lógica
- Simplificación de funciones lógicas
 - Mapas de Karnaugh

Formas canónicas

 Expresión algebraica única de una función lógica formulada con maxitérminos o minitérminos

- Minitérmino de orden n
 - Producto en el que aparecen las n variables lógicas de entrada
 - Cada variable aparece complementada si su valor es 0
 - Cada valoración da lugar a un minitérmino distinto
 - Los minitérminos se numeran según la cantidad representada por la valoración correspondiente

Formas canónicas (ii)

- Maxitérmino de orden n
 - Suma en la que aparecen las n variables lógicas de entrada
 - Cada variable aparece complementada si su valor es 1
 - Cada valoración da lugar a un maxitérmino distinto
 - Los maxitérminos se numeran según la cantidad representada por la valoración correspondiente

Forma canónica disyuntiva

- Forma canónica disyuntiva o suma de productos
 - Suma de los minitérminos pertenecientes a la función
 - Pertenecen a la función los minitérminos correspondientes a las valoraciones para las que la función vale 1

 \sum (lista numerada de los minitérminos de la función)

listade vbles de la función

b	а	f	minitérmino	nº
0	0	0	<u> </u> <u> </u> a	0
0	1	1	<mark>b</mark> ⋅ a	1
1	0	0	b ⋅ a	2
1	1	1	b · a	3

Forma canónica
$$f = \sum_{b,a} (1,3) = \overline{b} \cdot a + b \cdot a$$

$$f = \sum_{b,a} (1,3) = \overline{b} \cdot a + b \cdot a$$
Expresión
algebraica equivalente

Forma canónica conjuntiva

- Forma canónica conjuntiva o producto de sumas
 - Producto de los maxitérminos de la función
 - Pertenecen a la función los maxitérminos correspondientes a las valoraciones para las que la función vale 0

 \prod (lista numerada de los maxitérminos de la función) listade vbles de la función

b	а	f	maxitérmino	n°
0	0	0	b + <u>a</u> b + <u>a</u>	0
1 1	0	0	b + a b + a	2

Forma canónica
$$f = \prod_{b,a} (0,2) = (b+a) \cdot (\overline{b}+a)$$
Expresión algebraica equivalente

Formas canónicas. Interés

- Expresión única y compacta de una función lógica.
- Primera aproximación a la síntesis de circuitos a partir de una tabla de verdad:

b	а	f	b
0 0 1 1	0 1 0 1	0 1 0 1	$f = \sum_{b, a} (1, 3) = \overline{b} \cdot a + b \cdot a$

 Cualquier función lógica puede implementarse mediante un circuito de nivel ≤ 3.

Formas canónicas. Entradas indiferentes FCO

- Formas canónicas para funciones con entradas indiferentes
 - Estas combinaciones se agrupan por separado en sumatorios o productorios del conjunto vacío Φ

	а	pi	pd	id
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
1 2 3 4 5 6	0	1	1	X
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	X

$$id = \sum_{a, pi, pd} (1, 4, 5, 6) + \sum_{\phi} (3, 7)$$

$$id = \prod_{a, pi, pd} (0, 2) \bullet \prod_{\phi} (3, 7)$$

Índice

- Introducción
- Funciones lógicas y tablas de verdad
- Puertas lógicas
- Análisis de circuitos
- Álgebra de Boole
- Formas canónicas de representar una función lógica
- Simplificación de funciones lógicas
 - Mapas de Karnaugh

Simplificación

Simplificar una función

- Consiste en hallar una expresión algebraica equivalente a la de partida, pero de menor tamaño (menos términos, términos con menos variables)
- El objetivo es reducir al máximo el circuito con el que se implementa una función lógica

Metodología

- Algebraica. Aplicación de axiomas y propiedades del álgebra de Boole
 - Elemento complementario, elemento neutro, distributiva y asociativa
- Gráfica. Mapas de Karnaugh

Simplificación por Karnaugh

Mapa de Karnaugh

- Representación matricial de una tabla de verdad
- Una celda del mapa de Karnaugh representa una fila de la tabla de verdad
- En cada celda se coloca el valor de una salida de la función
- La disposición espacial de las celdas es tal que los términos adyacentes de la función lógica están en celdas adyacentes
- Dos términos se dicen adyacentes si sus valoraciones difieren en el valor de una sola variable
- Los bordes del mapa de Karnaugh deben considerarse adyacentes

Simplificación por Karnaugh (ii)

FCO

 Mapas para funciones de 2, 3 y 4 variables variables de mayor peso

número de celda / término (2₁₀ => b=1, a=0)

numeración celdas en código Gray

celdas adyacentes a la celda 13

celdas adyacentes a la celda 10

Simplificación por Karnaugh (iii)

- Método de simplificación
 - Agrupar todas las celdas con el mismo valor, en uno o más grupos
 - Cada grupo contendrá un número de celdas adyacentes potencia de 2
 - Hacer los grupos lo más grande posible
 - El número de grupos debe ser mínimo
 - Una celda puede estar en uno o más grupos

Simplificación por unos. Método

FCO

- Agrupar las celdas de valor 1
- Cada grupo representa a un término producto (no minitérmino, puesto que no aparecerán todas las vbles. de la función). Las variables a cero aparecerán complementadas
- Un grupo de 2^k celdas elimina k variables del término resultante, y por tanto tendrá n-k variables
- En cada grupo se eliminan las variables que cambian de valor de unas celdas a otras

Simplificación por unos. Fundamento

FCO

 Cada celda a 1 representa un minitérmino que pertenece a la función

 La función sin simplificar incluiría todos los minitérminos que le pertenecen:

$$f = \sum_{c,b,a} (1,2,6) = \overline{c} \cdot \overline{b} \cdot a + \overline{c} \cdot b \cdot \overline{a} + c \cdot b \cdot \overline{a}$$

Simplificación por unos. Fundamento (ii) FCO

 Los grupos de celdas adyacentes detectan minitérminos con un factor común:

- Su suma es simplificable. Algebraicamente sería:

ASOCIATIVA DISTRIBUTIVA ELEM. COMPLEM. ELEM. NEUTRO
$$\overline{c} \cdot b \cdot \overline{a} + c \cdot b \cdot \overline{a} = \overline{c} \cdot (b \cdot \overline{a}) + c \cdot (b \cdot \overline{a}) = (\overline{c} + c) \cdot (b \cdot \overline{a}) = 1 \cdot (b \cdot \overline{a}) = b \cdot \overline{a}$$

– Karnaugh obtiene el mismo resultado:

Celda 2 (cba=010)
Celda 6 (cba=110)

$$c = 0/1$$
, se elimina
 $b = 1$, se incluye
 $a = 0$, se complementa

Simplificación por unos. Ejemplos

FCO

Ejemplos

10

Simplificación por unos. Ejemplos (ii)

FCO

• Ejemplos (cont.)

do ba	² 00)	(<u>) 1</u>	11		10
00	1	0		1 4	1	2	8
01	1	1		1 ⁵	1	3	9
11	1	3		7	1	5	11
10	1	2		6	1	4	10

Simplificación por ceros

- Agrupar las celdas de valor cero
- Cada grupo representa un término suma (no maxitérmino, puesto que no aparecerán todas las variables de la función).
 Las variables de valor uno aparecerán complementadas
- Un grupo de 2^k celdas elimina k variables del término resultante, y por tanto tendrá n-k variables
- En cada grupo se eliminan las variables que cambian de valor de unas celdas a otras

Simplificación por ceros (ii)

FCO

Ejemplos

$$f = (\overline{d} + c) \cdot (\overline{c} + \overline{b})$$

do ba	00	01	11	10
00	0	4	12	0 °
01	0	5	13	0 9
11	0 3	7	15	0 ¹¹
10	02	6	14	0 ¹⁰

ba 00	² 00	01	11	10
01	1	5	013	09
11	03	0 7	0,5	11
10	02	0 6	014	0 0

do sa	00	01	11	10
00	0	4	12	08
01	1	0 5	013	0 9
11	3	0 7	015	0 11
10	2	6	14	010

do Sa	00	01	11	10
00	0	0	0	8
01	0	05	013	09
11	03	0 ⁷	0 ¹⁵	011
10	2	0 ⁶	014	10

Simplificación. Entradas indiferentes

FCO

 Las celdas con "x" se toman como si tuvieran valor uno o valor cero, cada una como mejor convenga, para maximizar la simplificación.

d	С	b	а	f]\	$f = \sum (7, 11, 13, 14, 15) +$	$+ \sum (1, 3, 5, 6, 10, 12) =$
0	0	0	0	0	 /	d,c,b,a	$\frac{\sum_{\phi} (1, 2, 3, 3, 3, 13, 12)}{\phi}$
0	0	0	1	X			T (1 2 5 6 10 12)
0	0	1	0	0		[1] (0, 2, 4, 8, 9)	• $\prod (1, 3, 5, 6, 10, 12)$
0	0	1	1	Χ		d, c, \overline{b}, a	$-\phi^-$
0	1	0	0	0			
0	1	0	1	Х		ha ^C 00 01 11 10	6000 01 11 10
0	1	1	0	X		0 4 4 8	ba 00 01 11 10
0	1	1	1	1		$00 \mid 0^{\circ} \mid 0^{4} \mid x^{4} \mid 0^{8} \mid$	00 (0) 0 x 10 0
	0	0	0	0		1 5 13 9	$0.1 \times 1 \times 5 \times 1^{13} \times 9$
	0	0	1	0		01 x x 1 0	$01 \times x \times 1^{3} \times 1^{3} \times 1^{9}$
	0	1	0	X		3 7 4 41	3 7 15 11
11	U	<u> </u>	1	1		11 X 1 1 1 1 1 1 1 1	11 x 1 1 1 1
	1 1	0	0	X 1		02 . 6 14 .10	$10^{2} \times 1^{4} \times 10^{10}$
	1	1	1 0	1		$10 \mid 0^2 \mid x^6 \mid 1 \mid x^{10} \mid$	$10 0^2 x 1^4 x^{10} $
1	1	1	1	1		"por unos"	"por ceros"

Simplificación. Entradas indiferentes (ii)

FCO

Errores comunes:

Tomar todas las "x" por 0 o por 1

Hacer grupos con "x" innecesarios

Recursos de aprendizaje

- Poliformat, sección "Recursos"
 - Ejercicios sin solución.
 - Soluciones a los ejercicios.
 - Entrenador de Karnaugh.
 - Exámenes de años anteriores.
- Poliformat, sección "Contenidos"
 - Módulo 2: Principios de diseño digital.
 - » Tablas de verdad.
 - » Puertas lógicas.

Fundamentos de computadores

TEMA 2. PRINCIPIOS DEL DISEÑO DIGITAL