Metody Optymalizacji w Zarządzaniu

Spis treści

1	Przy	ydział miejsc w parlamencie
	1.1	Tu kilka stron o początkowych tematach
	1.2	Tijdeman
		1.2.1 Sformułowanie problemu
		1.2.2 Rozwiązanie
		1.2.3 Wyznaczanie oddziałów spełniających nierówność
	1.3	PRV
	1.4	Problem Liu-Laylanda
		1.4.1 Algorytm statyczny
		1.4.2 Algorytm dynamiczny
	1.5	MAD - Mean Absolute Deviation
		1.5.1 Sformułowanie problemu
		1.5.2 Własności problemu
	1.6	WSAD weighted sum of absolute deviations
		1.6.1 Sformułowanie problemu
		1.6.2 Własności
	1.7	WSAD unrestriced
	1.8	WSAD restriced
		1.8.1 Właściwości
		1.8.2 Omówienie algorytmu
	1.9	Wsad z elastycznym czasem wykonania zadania
		1.9.1 Sformułowanie problemu
		1.9.2 Funkcja celu
		1.9.3 Właściwości
	1.10	Problem z symetrycznymi wagami
		1.10.1 Sformułowanie problemu
		1.10.2 Funkcja celu
		1.10.3 Własności
		1.10.4 Algorytm programowania dynamicznego
	1.11	TWET - total weighted
		1.11.1 Sformułowanie problemu
		1.11.2 Funkcja celu
		1.11.3 Własności
		1.11.4 Algorytm pełnego przeglądu
	1.12	CTV - Completion Time Variance
		1.12.1 Sformułowanie problemu
		1.12.2 Cel
		1.12.3 Własności
		1 12 / Algorytm

	1.12.5	Algorytm programowania dynamicznego	12
1.13	Ten alg	gorytm z tym takim wykresem fajnym	13
	1.13.1	Sformułowanie problemu	13
	1.13.2	Funkcja celu	13
	1.13.3	Dodatkowe ograniczenie	13
	1.13.4	Właściwości	13
	1.13.5	Programowanie liniowe	13
	1.13.6	Przykład algorytm zachłanny	14

1 Przydział miejsc w parlamencie

1.1 Tu kilka stron o początkowych tematach

1.2 Tijdeman

1.2.1 Sformułowanie problemu

k oddziałów towarzystwa

 $\lambda \mathbf{i}$ znormalizowana liczba członków w oddziale i, i=1,..,k

$$\sum_{i}^{K} \lambda i = 1 \tag{1}$$

 ωi numer oddziału, którego pochodził przewodniczący w okresie j; j=1,..;

 $\mathbf{A}\omega(\mathbf{i},\mathbf{n})$ liczba przewodniczących z oddziału i w okresie [1,n];

zminimalizować $D(\omega)=$

1.2.2 Rozwiązanie

$$\min_{i,n} |\lambda in - A\omega(i,n)| \le 1 - \frac{1}{2K - 2} \tag{2}$$

1.2.3 Wyznaczanie oddziałów spełniających nierówność

$$\sigma i = \lambda i n - A\omega(i, n - 1) \geqslant \frac{1}{2K - 2} \tag{3}$$

$$\frac{1 - \frac{1}{2K - 2} - \sigma i}{\lambda i} \to min \tag{4}$$

1.3 PRV

1.4 Problem Liu-Laylanda

- jeden proces,
- n cyklicznych, niezależnych, podzielnych zadań o czasie wykonania Ci i okresie Ti,
- zadanie musi być wykonane w okresie Ti

1.4.1 Algorytm statyczny

- posortuj zadania rosnąco według okresów Ti
- zadanie o krótszym okresie ma większy priorytet
- wykonuj zadanie tak długo jak nie pojawi się zadanie o wyższym priorytecie

1.4.2 Algorytm dynamiczny

- wyznacz dla każdego zadania linię krytyczną
- zadanie posiadające najbliższą linię krytyczną ma największy priorytet
- współczynnik wykorzystania pracy procesora

$$U = \sum_{i=1}^{n} \frac{Ci}{Ti} \tag{5}$$

• dla algorytmu ze stałym priorytetem

$$U = m(\sqrt[m]{2} - 1) \tag{6}$$

1.5 MAD - Mean Absolute Deviation

1.5.1 Sformułowanie problemu

- szeregowanie zadań na jednej maszynie
- n niezależnych i niepodzielnych zadań
- jeden, wspólny, żądany termin zakończenia dla wszystkich zadań di=d dla wszystkich i
- ti czas wykonania zadania i
- fi(ei)=ei; gi(ti)=ti
- wyprowadzenie funkcji celu

$$\sum_{i=1}^{n} |Ci - d| \tag{7}$$

1.5.2 Własności problemu

- najdłuższe zadanie uszeregowane jako pierwsze
- no idle time brak przerwy mieędzy zadaniami
- V-shape uszeregowane zadania przed terminem zakończenia są uporządkowane według nierosnących czasów wykonania zadania, natomiast zadania które są uszeregowane po terminie zakończenia są uporządkowane według niemalejących czasów wykonania
- \bullet jedno zadanie kończy się dokładnie w żadanym terminie zakończenia $\left\lceil\frac{n}{2}\right\rceil$ zadań kończy się przed lub w żądanym terminie zakończenia
- problem restryktywny może przecinać zadanie

Algorym Kaneta

- 1. $E=\phi$, $T=\phi$
- 2. WHILE $J \neq \phi$ DO

BEGIN Remove a job k from J such that pi = maxpi Insert job k into the last position in E. If J!=0 DO BEGIN remove a job k from J such taht pi=max(pi) insert a job k into the first position in T END END S=(E,T) (konkatenacja)

1.6 WSAD weighted sum of absolute deviations

1.6.1 Sformułowanie problemu

- n niezależnych, niepodzielnych zadań
- pi czas wykonania zadania i, i=1,..,n
- d wspólny, żądany termin zakończenia
- \bullet α jednostkowy koszt wykonania zadania przed terminem
- \bullet β jednostkowy koszt wykonania zadania po terminie
- cel: zminimalizować

$$\sum_{i=1}^{n} (\alpha ei + \beta ti) \tag{8}$$

1.6.2 Własności

- no idle time
- V-shape
- \bullet dla problemu unrestricted zadanie k
, gdzie $\left\lceil k^* = \frac{\beta n}{\alpha + \beta} \right\rceil$ kończy się w chwili d

1.7 WSAD unrestriced

Algorytm unrestricted (Bagchi, Sullivan, Chang, 1987)

- Zadania uporządkowane są według LPT (od najdłuższego)
- —E— liczba zadań w zbiorze E (przed terminem)
- —T— liczba zadań w zbiorze T (po terminie)

Krok 1. Zbiór E, T=0 Krok 2 For k=1 TO n DO BEGIN usuń zadanie k ze zbioru J IF $(\alpha*|E|)<(\beta*(|T|+1))$ dodaj zadanie jako ostatnie do zbioru E ELSE dodaj na początek zbioru T END S=(E+T)

1.8 WSAD restriced

1.8.1 Właściwości

- NP trudny w zwykłym sensie
- zadania uporządtkowane SPT (niemalejąco)

1.8.2 Omówienie algorytmu

Szereguję zadanie (k+1)

• szereguję z lewej strony

$$h_{k+1}^{L} = \left[\max(s + p_{k+1} - d, 0)\beta + \alpha \max(d - s - p_{k-1}, 0) \right] + h_{k}^{*}(s + p_{k+1})$$

• szereguję z prawej strony

$$h_{k+1}^p = \beta \left| (s + \sum\limits_i^k p_i \right| + h_k^*(s),$$
dla spełnionego warunku $(s + \sum\limits_{i=1}^{|n|} p_i \geqslant d)$

- $h_{k+1}^*(s) = \min(h_{k+1}^L(s), h_{k+1}^p(s))$
- $\bullet \ h_n^* = \min h_n^*(s)$

1.9 Wsad z elastycznym czasem wykonania zadania

1.9.1 Sformułowanie problemu

- n zadań niezależnych i niepodzielnych
- $\bullet \ p_i$ nominalny czas wykonania zadania i
- \bullet m_i maksymalne skrócenie zadania i
- $\bullet \ p_i'$ rzeczywisty czas po skróceniu
- x_i rzeczywiste skrócenie
- $\bullet \ \gamma_i$ koszt skrocenia zadania i o jednostkę
- \bullet $\alpha,\,\beta,$ d jak poprzednio, d nierestryktywne

1.9.2 Funkcja celu

Zminimalizować $\sum_{i}^{n} (\alpha e_i + \beta t_i + \gamma_i x_i)$

1.9.3 Właściwości

- no idle time
- V-shape względem czasów p'_i
- k kończy się w d
, $k = \left\lceil \frac{n\beta}{\alpha + \beta} \right\rceil$
- Wzór na długość zadań przed i po terminie wykonania:

$$\sum = \alpha(L_1 + 2L_2 + \dots + (k-1)L_k) + \beta((n-k)R_1 + (n-k-1)R_2 + \dots + R_{n-k})$$

- koszt uszeregowania zadania i na pozycji k: $C_{ik} = p_i \omega_k$
- $\gamma_i < \omega_k, \gamma_i = \omega_k$ opłaca się skracać maksymalnie
- $\gamma_i > \omega_k$ nie opłaca się skracać

•
$$C_{ik} = \begin{cases} p'_i \omega_k + m_i \gamma_i, \text{ gdy } \gamma_i < \omega_k \\ p_i \omega_k, \text{ gdy } \gamma_i > \omega_k \end{cases}$$

- Problem przydziału
 - Zminimalizować $\sum_{i=1}^{n} \sum_{k=1}^{n} C_{ik} y_{ik}$ przy ograniczeniach:

$$-\sum_{i=1}^{n} y_{ik} = 1, k=1,...,n$$

$$-\sum_{i=1}^{k} y_{ik} = 1, i=1,...,n$$

$$-y_{ik} = \{0,1\}$$

$$-y_{ik} = \begin{cases} 1, \text{ gdy zadanie i jest uszeregowane na pozycji k} \\ 0, \text{ w przeciwnym razie} \end{cases}$$

1.10 Problem z symetrycznymi wagami

1.10.1 Sformułowanie problemu

- n niepodzielnych, niezależnych zadań
- \bullet p_i czas wykonania zadania i
- $\alpha_i = \beta_i$ jednostkowy koszt wykonania zadania przed lub po terminie
- d wspólny żądany termin zakończenia

1.10.2 Funkcja celu

Wyprowadzenie:
$$\sum_{i=1}^{n} (e_i \alpha_i + \beta_i t_i) = \sum_{i=1}^{n} \alpha_i (e_i + t_i) = \sum_{i=1}^{n} \alpha_i |C_i - d|$$
Funkcja celu:
$$\sum_{i=1}^{n} \alpha_i |C_i - d|$$

1.10.3 Własności

- no idle time
- $\bullet\,$ V-shape względem $\frac{p_i}{\alpha_i}$
- NP-trudny, nawet w wersji nieretryktywnej
- $\bullet\,$ zadania posortowane według niemalejącej wartości $\frac{p_i}{\alpha_i}$

1.10.4 Algorytm programowania dynamicznego

•
$$h_k^L(s) = h_{k-1}^*(s+p_k) + \alpha_k |d - (s+p_k)|$$

•
$$h_k^p(s) = h_{k-1}^*(s) + \alpha_k \left| \sum_{i=1}^k p_k + s - d \right|$$

- $h_k^*(s) = \min(h_k^L(s), h_k^p(s))$
- $h_0 = 0$
- $h_n^* = h_k^*(s), s = 0, 1, ...$

1.11 TWET - total weighted...

1.11.1 Sformułowanie problemu

- n niezależnych, niepodzielnych zadań
- pi czas wykonania zadania i
- \bullet αi jednostkowy koszt wykonania zadania i przed terminem
- \bullet βi jednostkowy koszt wykonania zadania i po terminie
- d wspólny żądany termin zakończenia

1.11.2 Funkcja celu

zminimalizować $\sum_{i=1}^{n} (\alpha i e i + \beta i t i)$

1.11.3 Własności

- no idle time
- non-restriced jedno zadanie kończy się w due-date
- NP-trudny nawet dla przypadku nierestryktywnego
- $E \in \{Ci < d\}, T \in \{Ci \ge d\}$, zadania w zbiorze T są uszeregowane według niemaljącej wartości $\frac{pi}{\beta i}$, a zadania w zbiorze E są uszeregowane według nierosnącej wartości $\frac{pi}{\alpha i}$
- uszeregowanie optymalne

$$\sum_{i \in T} \beta i \leqslant \sum_{j \in E_i} \alpha j \tag{9}$$

• jeżeli znamy optymalny podział zadań na zbiory E i T, to znalezienie uszeregowania optymalnego jest łatwe

• istnieje algorytm pseudo-wielomianowy dla szczególnego przypadku, gdy dla każdego i i j

$$\left(\frac{pi}{\alpha i} < \frac{pj}{\alpha j}\right) \Rightarrow \left(\frac{pi}{\beta i} < \frac{pj}{\beta j}\right) \tag{10}$$

1.11.4 Algorytm pełnego przeglądu

- 1. Porządkowanie zadań według nierosnących wartości $\frac{pi}{\alpha i}$
- 2. Wszystkie zadania umieszczamy w zbiorze E
- 3. Na każdym poziomie przenosimy jedno zadanie ze zbioru ${\bf E}$ na początek zbioru ${\bf T}$
- 4. Jeżeli naruszone są warunki (I) lub (II) to kończymy gałąź. Jeżeli uszeregowanie jest dopuszczalne, to obliczamy jego koszt.
- 5. Rozwijamy drzewo do sprawdzenia wszystkich dopuszczalnych uszeregowań

1.12 CTV - Completion Time Variance

1.12.1 Sformułowanie problemu

- n niezależnych, niepodzielnych zadań
- d wspólny, żądany termin zakończenia
- pi czas wykonania zadania i=1,..,n
- $\alpha i = \beta i = 1 \text{ i=1,...,n}$

1.12.2 Cel

Zminimalizować $\sum_{i=1}^{n} (Ci - d)^2$

1.12.3 Własności

- $d = \frac{1}{n} \sum_{i=1}^{n} nCi$
- $\sum_{i=1}^{n} (C_i \frac{1}{n} \sum_{i=1}^{n} C_i)^2 = \sum_{i=1}^{n} (C_i \bar{C}_i)^2$ wariancja Ci
- no idle time

- najdłuższe zadanie uszeregowane jako pierwsze
- V-shape
- Algorytm Kaneta nie daje poprawnego rozwiazania problemu
- problem NP-trudny
- Zminimalizować $\sum_{i=1}^{n} (C_i d)^k k > 0$
 - 0<k \leq 1 problem wielomianowy, algorytm Kaneta
 - -k \geqslant 2 problem NP-trudny
 - -1 < k < 2 problem otwarty

1.12.4 Algorytm

- algorytm programowania dynamicznego
- algorytm podziału i ograniczeń
- metaheurystyki
- algorytmy spektralne

1.12.5 Algorytm programowania dynamicznego

- zamiast wartości bezwzględnej, kwadrat
- $h_k^L(s) = h_{k-1}^*(s+p_k) + (s+p_k-d)^2$
- $h_k^p(s) = h_{k-1}^*(s) + (s + \sum_{i=1}^k p_k d)^2$
- $\bullet \ h_k^* = \min\{h_k^L(s), h_k^p(s)\}$
- $h_0^*(s) = 0$
- $\bullet \ h_n^* = \min_n h_n^*(s)$

1.13 Ten algorytm z tym takim wykresem fajnym

1.13.1 Sformułowanie problemu

- n niezależnych, niepodzielnych zadań
- jedna maszyna
- \bullet d_i żądany termin zakończenia zadania i
- \bullet α_i jednostkowy koszt wykonania zadania i przed terminem
- \bullet β_i jednostkowy koszt wykonania zadania i po terminie

1.13.2 Funkcja celu

$$\sum_{i=1}^{n} (\lambda_i e_i + \beta_i t_i)$$

1.13.3 Dodatkowe ograniczenie

brak przerw w pracy procesora

1.13.4 Właściwości

- $\bullet\,$ nawet dla przypadku $\alpha_i=\beta_i=1$ problem jest silnie NP-trudny
- w literaturze rozważa się również przypadek z dodatkowym ograniczeniem na brak przerw w pracy procesora
- dla znanej sekwencji zadań ich optymalne położenie na osi czasu można znaleźć w czasie O(n) (wielomianowym zależnym od liczby zadań)
 - model programowania liniowego
 - algorytm zachłanny $O(nlog_n)$

1.13.5 Programowanie liniowe

- Zmienna decyzyjna C_i (termin zakończenia zadania i)
- Funkcja celu $\sum_{i=1}^{n} (\alpha_i e_i + \beta_i t_i)$
- Ograniczenia

$$-e_i \geqslant d_i - C_i$$

$$-e_{i} \geqslant 0$$

$$-t_{i} \geqslant C_{i} - d_{i}$$

$$-t_{i} \geqslant 0$$

$$-C_{i+1} \geqslant C_{i} + p_{i+1}$$

$$-C_{1} \geqslant p_{1}$$

- Liczba zmiennych: 3n
- Liczba ograniczeń: 5n

1.13.6 Przykład algorytm zachłanny

I tutaj ten wykresik. Wymiekam