CSE 417T Introduction to Machine Learning

Lecture 3

Instructor: Chien-Ju (CJ) Ho

Logistics

- Course website and Piazza
 - Website: http://chienjuho.com/courses/cse417t/
 - Piazza: http://piazza.com/wustl/spring2020/cse417t
 - Make sure you follow both regularly.
- I have synchronized the roster on Piazza with that on Canvas.
 - It should be associated with your @wustl.edu email.
 - Let me know if you can't get access

Logistics

- HW 1:
 - http://chienjuho.com/courses/cse417t/hw1.pdf
 - Due: Feb 7 (Friday), 2020.
 - You are strongly encouraged to work on it before the drop deadline (this Thu)
 - There will be two submission links: Report and Code.
 - Report: Answer all questions, including the implementation question
 - Grades are based solely on the report
 - Code: Complete and submit two matlab files in Problem 2
 - Only need to submit these two files
 - The code will only be used for correctness checking (when in doubts) and plagiarism checking.
 - Reserve time if you never used Gradescope.
 - Make sure to specify the pages for each problem. You won't get points otherwise.

Logistics: Academic Integrity

Don't violate the rules of academic integrity

Resources related to Matlab

Matlab: Access

Check if you can get access to MATLAB

Notes:

- If you are an undergraduate student, follow the instructions <u>here</u>. (<u>Portal</u>)
- If you are an engineering graduate student, you should also have access using the instructions above. If not, contact softwarelicensing@wustl.edu.
- If you are a non-engineering graduate student, check the portal first. If it's not working,
 - Try <u>computer labs</u> or use <u>remote desktop</u>.
 - You can also purchase a student copy <u>here</u> at \$53.

Matlab: Basics

• You should be able to pick up basic ideas relatively quickly if you are familiar with at least one of the popular languages.

- Some useful resources
 - Basic introduction by Prof. Marion Neumann
 https://sites.wustl.edu/neumann/resources/intro-to-matlab/
 - Cheatsheet http://web.mit.edu/18.06/www/Spring09/matlab-cheatsheet.pdf

Tutorial by Marion Neumann

• https://sites.wustl.edu/neumann/resources/intro-to-matlab/

TOPICS AND NOTES

- <u>Unit 1: Getting started</u> (MATLAB environment, help, variables, built-in functions, scripts (<u>example_script.m</u>), save & load)
- <u>Unit 2: Arrays</u> (vectors, matrices, and strings)
- <u>Unit 3: Functions</u> (<u>exampleFunction.m</u>, *Advanced topics on functions)
- Unit 4: Logicals and Random Numbers
- Unit 5: If-else and Loops (example_sinTolerance.m)
- Unit6: Plotting
- Materials (zip-file containing all examples and data for excercises)

A Matlab Cheat-sheet (MIT 18.06, Fall 2007)

Basics:

```
save 'file.mat'
                         save variables to file.mat
                         load variables from file.mat
load 'file.mat'
                record input/output to file diary
diary on
                stop recording
diary off
                list all variables currenly defined
whos
                delete/undefine all variables
clear
help command
                         quick help on a given command
                         extensive help on a given command
doc command
```

Defining/changing variables:

```
x = 3 define variable x to be 3

x = [1 \ 2 \ 3] set x to the 1×3 row-vector (1,2,3)

x = [1 \ 2 \ 3]; same, but don't echo x to output

x = [1;2;3] set x to the 3×1 column-vector (1,2,3)

A = [1 \ 2 \ 3 \ 4;5 \ 6 \ 7 \ 8;9 \ 10 \ 11 \ 12];

set A to the 3×4 matrix with rows 1,2,3,4 etc.

x(2) = 7 change x from (1,2,3) to (1,7,3)

A(2,1) = 0 change A_{2,1} from 5 to 0
```

Arithmetic and functions of numbers:

```
3*4, 7+4, 2-6 8/3 multiply, add, subtract, and divide numbers 3^7, 3^8(8+2i) compute 3 to the 7th power, or 3 to the 8+2i power sqrt(-5) compute the square root of -5 exp(12) compute e^{12} log(3), log10(100) compute the natural log (ln) and base-10 log (log<sub>10</sub>) abs(-5) compute the absolute value |-5| sin(5*pi/3) compute the sine of 5\pi/3 besselj(2,6) compute the Bessel function J_2(6)
```

Arithmetic and functions of vectors and matrices:

```
x * 3 multiply every element of x by 3
x + 2 add 2 to every element of x
       element-wise addition of two vectors x and y
        product of a matrix A and a vector y
        product of two matrices A and B
x * y not allowed if x and y are two column vectors!
x \cdot * y element-wise product of vectors x and y
         the square matrix A to the 3rd power
        not allowed if x is not a square matrix!
        every element of x is taken to the 3rd power
cos(x) the cosine of every element of x
abs (A) the absolute value of every element of A
\exp(A) e to the power of every element of A
                 the square root of every element of A
sqrt(A)
                 the matrix exponential e^A
expm(A)
                 the matrix whose square is A
sqrtm(A)
```

Constructing a few simple matrices:

```
rand(12,4)
                a 12\times4 matrix with uniform random numbers in [0,1)
                a 12×4 matrix with Gaussian random (center 0, variance 1)
randn(12,4)
                a 12×4 matrix of zeros
zeros(12,4)
                a 12×4 matrix of ones
ones(12,4)
                a 5\times5 identity matrix I ("eye")
eye(5)
eye(12,4)
                a 12×4 matrix whose first 4 rows are the 4×4 identity
linspace(1.2, 4.7, 100)
                row vector of 100 equally-spaced numbers from 1.2 to 4.7
7:15 row vector of 7,8,9,...,14,15
                matrix whose diagonal is the entries of x (and other elements = 0)
diag(x)
```

Portions of matrices and vectors:

```
x(2:12) the 2nd to the 12th elements of x

x(2:end) the 2nd to the last elements of x

x(1:3:end) every third element of x, from 1st to the last
```

 $\mathbf{x}(:)$ all the elements of x

the row vector of every element in the 5th row of A(5,1:3) the row vector of the first 3 elements in the 5th row of A(1,2) the column vector of every element in the 2nd column of A

diag(A) column vector of the diagonal elements of A

Solving linear equations:

```
for A a matrix and b a column vector, the solution x to Ax=b inv(A) the inverse matrix A^{-1}
[L,U,P] = lu(A) the LU factorization PA=LU
eig(A) the eigenvalues of A
[V,D] = eig(A) the columns of V are the eigenvectors of A, and the diagonals diag(D) are the eigenvalues of A
```

Plotting:

```
plot y as the y axis, with 1,2,3,... as the x axis
plot(y)
                plot y versus x (must have same length)
plot(x,y)
                plot columns of A versus x (must have same # rows)
plot(x,A)
loglog(x,y)
                plot y versus x on a log-log scale
semilogx(x,y)
                         plot y versus x with x on a log scale
semilogy(x,y)
                         plot y versus x with y on a log scale
fplot(@(x) ...expression...,[a,b])
                         plot some expression in x from x=a to x=b
axis equal force the x and y axes of the current plot to be scaled equally
                         add a title A Title at the top of the plot
title('A Title')
xlabel('blah')
                         label the x axis as blah
                         label the v axis as blah
ylabel('blah')
legend('foo','bar')
                                  label 2 curves in the plot foo and bar
grid include a grid in the plot
                open up a new figure window
figure
```

Pay attention to matrix operations

Transposes and dot products:

```
x.', A.' the transposes of x and A the complex-conjugate of the transposes of x and A the complex-conjugate of the transposes of x and A dot(x,y), sum(x.*y) ...two other ways to write the dot product x' * y the dot (inner) product of two column vectors x and y the outer product of two column vectors x and y
```

Specialty of Matlab

- Matlab (Matrix Laboratory) is optimized for performing matrix operations
 - If you don't care about efficiency, treating it as another language works
 - But, try to take advantage of what Matlab is good at
 - There will be big differences in both runtime efficiency and code simplicity
- Example: As part of Problem 3 in HW 1
 - You need to simulate the process of flipping 1,000 fair coins, 10 times each, and calculate the ratio of heads for each coin.
 - You can do this with a single line of codes in Matlab.
 - randi to generate random integers of a 1000 x 10 matrix
 - mean to calculate the mean of rows
 - help [command] to see how to use [command]

Matlab: Vectorization

- Vectorization: Take advantage of Matlab's ability for matrix operations
 - https://www.mathworks.com/help/matlab/matlab_prog/vectorization.html
- Ex: Computes the value of sines for 1,001 values from 0 to 10

• Matlab can often directly operates on matrix and vector, treating them as variables for basic commands.

Matlab: Homework Requirement

- Required to use Matlab for Problem 2 of HW 1
 - Generate random datasets.
 - Implement PLA and observe its performance.
- A good practice to get you familiar with Matlab
 - A lot of computations can be implemented as matrix operations
- Code submission
 - Only need to fill in and submit the two stub files

Recap

 $(set\ of\ candidate\ formulas)$

Given by the learning problem

learning model (example:

H: Perceptron

A: PLA)

Goal of Learning: Generalization

• Given training data, find a hypothesis that is close to the unknown target function on the unseen testing data.

This goal is generally impossible without assumptions.

- Key assumption in machine learning:
 - Training and testing data are i.i.d. drawn from the same (unknown) distribution.

A Thought Experiment about Probability

What can we say about μ from ν ?

Law of large numbers

• When $N \to \infty$, $\nu \to \mu$

Hoeffding's Inequality

• $\Pr[|\mu - \nu| > \epsilon] \le 2e^{-2\epsilon^2 N}$ for any $\epsilon > 0$

Connection to Learning

- Let each marble represent a point \vec{x} , drawn from unknown $P(\vec{x})$
 - We assume f is perfect for now (i.e., $f(\vec{x}) = y$)
- "Fix" a hypothesis h
 - For each marble \vec{x} ,
 - If $h(\vec{x}) = f(\vec{x})$, color it as green marble (h is correct)
 - If $h(\vec{x}) \neq f(\vec{x})$, color it as red marble (h makes error)

- With the above coloring
 - $\mu = \Pr_{\vec{x} \sim P(\vec{x})}[h(\vec{x}) \neq f(\vec{x})] \stackrel{\text{def}}{=} E_{out}(h)$ [Out-of-sample error of h]
 - $\nu = \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}[h(\vec{x}_n) \neq f(\vec{x}_n)] \stackrel{\text{def}}{=} E_{in}(h)$ [in-sample error of h]

Connection to Learning

- $E_{out}(h)$: What we really want to know but unknown to us
- $E_{in}(h)$: What we can calculate from dataset

• Fixed a h, What can we say about $E_{out}(h)$ from $E_{in}(h)$?

Hoeffding's Inequality

$$\Pr[|E_{out}(h) - E_{in}(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$$
 for any $\epsilon > 0$

• This is verification, not learning!

Verification vs. Learning

Verification

- I have a hypothesis h.
- I know $E_{in}(h)$, i.e., how well h performs in my dataset.
- I can infer what $E_{out}(h)$ (how well h will perform for unseen data) might be.

Learning

- Given a dataset *D* and hypothesis set *H*.
- Apply some learning algorithm, that outputs a $g \in H$.
- Know $E_{in}(g)$.
- Want to infer $E_{out}(g)$

- Given a finite hypothesis set $H = \{h_1, ..., h_M\}$
 - Will discuss the infinite case in the next few lectures.
- Apply some learning algorithm on D, output a $g \in H$
 - For example, choosing the hypothesis that minimizes in-sample error
 - $g = argmin_{h \in H} E_{in}(h)$
- Can we apply Hoeffding's inequality and claim $\Pr[|E_{out}(g) E_{in}(g)| > \epsilon] \le 2e^{-2\epsilon^2 N}$ for any $\epsilon > 0$

No!

Another Analogy

- If you toss a fair coin 10 times, the probability that it comes up heads 10 times is $2^{-10} \approx 1e-3$
- If you toss 1000 fair coins 10 times each, the probability that at least one coin comes up heads 10 times is

$$1 - \left(\frac{1023}{1025}\right)^{1000} \approx 62.36\%$$

- If each hypothesis is doing random guessing (i.e., tossing a fair coin), if we have 1000 hypothesis with 10 data points, more than 60% chance there will be at least one hypothesis with zero in-sample error
 - But that hypothesis is still random guessing and has 50% out-of-sample error

One More Analogy

- Three fair coins, numbered by 1, 2, 3. Each flipped 10 times
- Question: (choosing from >5, =5, or <5)
- What's the expected number of heads of the 10 flips for coin 1?
- Randomly choose a coin, what's the expected number of heads of the 10 flips for this one?
- Ans: < 5
 After observing the flips, choosing the coin with the smallest number of heads, what is the expected number of heads of the 10 flips for the coin?
- Ans: = 5 Without observing the flips, choose the coin anyway you like, what is the expected number of heads of the 10 flips for this oin?
 - You will implement a simulation for this process (with 1,000 coins) in Problem 3 of HW1.

One More Analogy

- Analogy to learning
 - Coin -> Hypothesis
 - Coin flips -> Performance of hypothesis in training data D

 Choosing the hypothesis "before" or "after" looking at the data (knowing the realization of the data drawing) makes a very big difference!

Brief Lecture Notes

The notes are not intended to be comprehensive. Let me know if you spot errors.

- Given a finite hypothesis set $H = \{h_1, ..., h_M\}$
- Apply some learning algorithm on D, output a $g \in H$

• For each $h \in H$, we have $\Pr[|E_{out}(h) - E_{in}(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$

- Since g is selected from H (it could be any $h \in H$)
- Define "bad event of h" B(h) as $|E_{out}(h) E_{in}(h)| > \epsilon$
 - Informally, you can interpret "bad event of h" as the event that we draw a "unrepresentative dataset D" that makes the in-sample errors of h to be far away from out-of-sample error of h
- What can we say about Pr[B(g)]?

$$\Pr[B(g)] \le \Pr[B(h_1) \text{ or } B(h_2) \text{ or } \dots \text{ or } B(h_M)]$$

 $\le \Pr[B(h_1)] + \Pr[B(h_2)] + \dots + \Pr[B(h_M)]$
 $< M \ 2e^{-2\epsilon^2 N}$

- Given a finite hypothesis set $H = \{h_1, ..., h_M\}$
- Apply some learning algorithm on D, output a $g \in H$
- What can we say about $E_{out}(g)$ from $E_{in}(g)$?

$$\Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$$
 for any $\epsilon > 0$

- M can be considered as a proxy of the "complexity" of the hypothesis set
 - Will talk about what happens when $M \to \infty$ in the next few lectures

More Interpretations

- Define $\delta = \Pr[|E_{out}(g) E_{in}(g)| > \epsilon]$
- We have $\delta \leq 2Me^{-2\epsilon^2N} \implies \epsilon \leq \sqrt{\frac{1}{2N}\ln\frac{2M}{\delta}}$
- ullet This means, with probability at least $1-\delta$

•
$$E_{out}(g) \le E_{in}(g) + \epsilon \le E_{in}(g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$

- Note that our goal is to have a small $E_{out}(g)$
 - A tradeoff of choosing *M*: the complexity of hypothesis set
 - Increase $M \rightarrow \text{Smaller } E_{in}(g)$ (more hypothesis to "fit" the training data)
 - Increase M -> Larger ϵ

Revisit the learning problem

Goal: $g \approx f$

- A general approach:
 - Define a error function E(h, f) that quantify how far away g is to f
 - Choose the one with the smallest error
 - For example: $g = \underset{h \in \mathcal{H}}{\operatorname{argmin}} E(h, f)$
- E is usually defined in terms of a pointwise error function $e(h, f, \vec{x})$
 - Binary error (classification): $e(h, f, \vec{x}) = \mathbb{I}[h(\vec{x}_n) \neq f(\vec{x}_n)]$ (What we have discussed so far)
 - Squared error (regression): $e(h, f, \vec{x}) = (f(\vec{x}) h(\vec{x}))^2$

How to choose the error function?

- Domain specific: Specified by domain experts
- Fingerprint recognition example:
 - Input: fingerprints
 - Outputs: whether the person is authorized

		$f(\overrightarrow{x})$	
		+1	-1
$h(\vec{x})$	+1	No error	False positive
	-1	False negative	No error

- Errors assigned to false negative/positive differ depending on applications
 - Supermarket coupons vs FBI
 - False positive is a big issue for FBI but probably fine for supermarket coupons

How to choose the error function?

- Domain specific: Specified by domain experts
- Computation considerations
 - ML Algorithm is essentially doing optimization (finding g with smallest error)

$$g = \underset{h \in \mathcal{H}}{\operatorname{argmin}} E(h, f)$$

Choosing the error that is "easier" to optimize

How to choose the error function?

- Domain specific: Specified by domain experts
- Computation considerations

- Specifying the error function is part of setting up the learning problem
 - It impact what you eventually learn.

Noisy Target

- What if there doesn't exist f such that $y = f(\vec{x})$?
 - *f* is stochastic instead of deterministic

- Common approach
 - Instead of a target function, define a target <u>distribution</u>
 - Instead of $y = f(\vec{x})$, y is drawn from a conditional distribution $P(y|\vec{x})$
 - $y = f(\vec{x}) + \epsilon$ where $\epsilon \sim N(0, \sigma^2)$

Theory of Generalization

This is going to be the most "abstract" part of this course.