ALGORITHMIC DESIGN - HOMEWORK 3 - BINARY HEAPS 2

KEERTHANA C J

September 2020

1 Heap without swapping keys

The binary heap has been implemented without the necessity of swapping the keys with the help of two arrays. The time needed to delete the minimum from the heap is compared for the two implementations. The time needed is

Size of instance	Heaps	Heaps without swapping keys
0	0.000009	0.000027
1820	0.079779	0.674651
3640	0.120430	2.158138
5461	0.216084	4.485764
7281	0.273035	8.136988
9102	0.346384	12.792705
10922	0.391069	18.218128
12743	0.565134	28.181985
14563	0.600841	39.668851
16384	0.700654	52.495281

Table 1: Time needed to extract the minimum value from a heap vs from a heap without swapping keys

considerably higher and is nearer to that of extracting the minimum value from an array.

2 Complexity

- 1. When is_empty $\in \Theta(1)$, extract_min $\in \Theta(|D|)$ **Answer**: Complexity $= \Theta(1) + |D| \cdot \Theta(|D|) = \Theta(|D|^2) = \Theta(|A|^2) \simeq \text{Selection Sort}$
- 2. When build $\in \Theta(|A|)$ is_empty $\in \Theta(1)$, extract_min $\in O(log|D|)$ Answer: Complexity $= \Theta(|A|) + \Theta(1) + |D| \cdot O(log|D|) = O(|A|log|A|) \simeq$ Heap Sort