物理学的研究方法

1. 物理学的理论体系

物理学的研究对象一一自然的原理。

物理学的理论体系——数学,用严格的数学理论阐述、推导和研究物理学的规律。

可以说,物理学就是将自然界的原理用数学理论加以

阐述的科学体系。

《自然哲学的数学原理》, Newton著

2. 物理学是一门实验科学一切结论都来自于实验,一切结论都要经过实验的检验。

3. 物理模型

为了概括对象的本质和特征,需要建立研究对象的物理模型。

所谓模型,就是模拟真实的一种形象化的构型。 从模型,可以得出新的结论。

结论必须同实验结果进行对比,"自治"。 新模型的建立,标志着新理论的建立,模型被修正,符合新的实验结果,则标志着物理学有了新的发展。

光学教材及教学参考书

• 吴强《光学》,科学出版社

该书一直用作我校乙型 光学教材

光学教材及教学参考书

• 崔宏滨 李永平 段开敏 《光学》

•赵凯华 钟锡华《光学》

北京大学出版社

科学出版社 配多 媒体光盘

Born & Wolf < Principles of Optics>

Eugene Hecht <Optics>

• 7th Edition

Fourth Edition

http://www.light2015.org/Home.html

http://www.lightchina.org.cn/

2015: 光学领域里众多程碑式发现发明的周年纪念

1015年 海什木 (Alhazen) 五卷本光学著作

1815年 菲涅尔 (Fresnel) 光波概念

1865年 麦克斯韦 (Maxwell) 光电磁传播理论

1905年 爱因斯坦 (Einstein) 光电效应 (1921年诺奖) 1915年广义相对论

1965年 彭齐亚斯 (Penzias) 和威尔逊 (Wilson) 宇宙微波背景 (1978年诺奖)

1965年 高锟 (Kao) 光纤传输 (2009年诺奖)

展览 电灯泡外的光学

幻日现象 (冰晶折射)

光纤 (全反射)

X光下的灯泡

紫外波段的太阳 (滤波)

咳嗽药水与柠檬酸钠结晶 (偏光成像)

老鼠视网膜 (激光扫描显微镜)

欧当归草 (偏光成像)

2015 国际光年-光•诺贝尔奖

http://www.lightchina.org.cn/index.php?s=/b/93.html

2014诺贝尔物理学奖

获奖理由: "发明了高效蓝光二极管,带来了明亮而节能的白色光源"

实现半导体工艺的突破

2014诺贝尔化学奖

白兹格 Eric Betzig 美国

赫尔 Stefan Hell 罗马尼亚裔德籍

莫尔纳尔 William Moemer 美国

获奖理由: "在超高分辨率荧光显微技术领域的贡献"

图1 德国耶拿大学纪念Ernst Abbe的雕塑近照

物理方法, 数学方法的超分辨

http://weibo.com/p/1001603763718755367755?

from=page_100206_profile&wvr=6&mod=wenzhangmod

http://blog.sciencenet.cn/blog-382850-835449.html

2015诺贝尔物理学奖

Takaaki Kajita 日本梶田隆章

Arthur B. McDonald 加拿大阿瑟•麦克唐纳

获奖理由:发现中微子振荡,证实了中微子有质量

2016诺贝尔物理学奖

大卫•索利斯

邓肯•霍尔丹

David J. Thouless F. Duncan M. Haldane J. Michael Kosterlitz 迈克尔•科斯特利茨

获奖理由是"理论发现拓扑相变和拓扑相物质"

光的拓扑物理态

蝴蝶型能谱

人类首次直接探测到引力波!

激光干涉引力波天文台

Laser Interferometer Gravitational-Wave Observatory, LIGO

Observation of Gravitational Waves from a Binary Black Hole Merger PRL 116, 061102 (2016)

2017诺贝尔物理学奖

Rainer Weiss

雷纳•韦斯

Barry C. Barish

巴里•巴里什

Kip S. Thorne

基普•索恩

获奖理由是"对LIGO探测器和引力波观测的决定性贡献"

2017诺贝尔化学奖

Jacques Dubochet

雅克•杜波切特

Joachim Frank

乔基姆•弗兰克

Richard Henderson

理查德•亨德森

获奖理由是"研发出冷冻电镜,用于溶液中生物分子结构的高分辨率测定"

2018诺贝尔物理学奖

获奖理由是"激光物理学领域开创性的发明"

"光学镊子及其在生物系统中的应用" "产生高强度、超短光脉冲方法"

光是什么?

本性: 光线、光子、电磁波(波长、频率、偏振)

光学是什么?

产生: 电灯、LED、激光...

传播: 反射, 折射, 干涉, 衍射,

探测: 眼睛,光电管,CCD,光电二极管,......

光学应用: 成像、传感、通讯、诊断 ...

光是光线 (几何光学)

光是电磁波 (波动光学)

格里马迪在一个小光源照明的小棍阴影中观察到光带,胡克和波意耳发现了第一个干涉现象,即薄膜产生的彩色。

麦克斯韦方程,预言了电磁波的存在,发现电磁波速度与光速一致。

光不仅是波,光还是粒子(量子光学)

光电效应,黑体辐射

光的波粒二象性的新发展

光呈现波-粒叠加状态,突破了玻尔互补原理设定的传统对立界限

光学理论适用原则

- h ~ 0,λ ~ 0: 量子性和波动性均可忽略。光学现象遵从几何光学的规律,其理论基础是费马原理。光可视作牛顿的光微粒,遵从经典力学的基本规律。
- h ~ 0,λ ≠ 0: 光必须看成一种波动。只要不考虑光的电磁性质,光 遵从经典力学的规律,将呈现所有波动现象共有的特征,如干涉和 衍射。
- $h \sim 0, \lambda \neq 0$ 且必须考虑光的电磁性的场合。光视作电磁波,遵从麦克斯韦方程组。
- $h \neq 0$ 的场合,光的量子特性显著,是量子化的电磁场。必须用量子理论来描述。
- h 普朗克常量 6.62606957 × 10⁻³⁴ m² kg/s

λ 波长 可见光波段

几何光学

以<u>光线</u>概念为基础研究光的传播和成像规律,光线传播的路径和方向代表光能传播的路径和方向。

几何光学研究的是障碍物尺度比光波长大得多的情况下的传播规律。这种情况下,相对而言可认为波长趋近于零,几何光学是波动光学在一定条件下的近似。

1. 光路可逆性原理

2. 几何光学三定律

- (1) 光的直线传播定律:
- (2) 光的反射定律和折射定律:
- (3) 光的独立传播定律

(1) 光的直线传播定律:

在均匀的透明介质中, 光沿直线传播。

光学"均匀"介质---折射率处处相等。同一介质,N不同,光线弯曲

自然渐变折射率

•海市蜃楼

海面温度梯度

 H^{\uparrow} T^{\uparrow} N^{\downarrow}

(2) 光的反射定律和折射定律:

$$i_1 = i_1'$$

$$n_1 \sin i_1 = n_2 \sin i_2$$

斯涅尔定律

折射光线、入射光线可在法线同侧吗? 负折射效应 Metamaterial (超材料)

棱镜的折射

偏向角:

$$\delta = i_1 - i_2 + i_1' - i_2'$$

$$i_2 + i_2' = \alpha$$

$$i_2 + i'_2 = \alpha$$
 $\delta = i_1 + i'_1 - \alpha$ (1)

最小偏向角: 入射光线和出射光线关于 棱镜对称

$$i_2 = i_2' = \frac{\alpha}{2}$$

$$i_1 = i_1' = \frac{\alpha + \delta_{\min}}{2}$$

E点: $\sin i_1 = n \sin i_2$

方法:对(1)求微分及折射定律

n'

光学实验: 最小偏向角法测棱镜的折射率

 $n = \frac{\sin\frac{\alpha + \delta_{\min}}{2}}{\sin\frac{\alpha}{2}}$

分光计

http://www.bb.ustc.edu.cn/jpkc/guojia/dxwls y/kj/part3/introduction/spectrometer.html 光在折射时,不同波长的光将分散开来——色散(介质折射率 不仅与介质种类有关,而且与光的波长有关,介质的折射率随 频率或波长而改变所产生的光学现象)

随堂练习:

顶角很小的棱镜称为光楔。证明光楔使垂直入射的光线产生偏向角

$$\delta = (n-1)\alpha$$

n 为光楔的折射率

根据折射定律

$$n\sin i_2 = \sin i_2'$$

并且有几何关系

$$i_2 = \alpha$$

在 $\alpha \ll 1$ 时

$$\sin \alpha \approx \alpha, \sin i_2' \approx i_2'$$

所以

$$n\alpha = i_2'$$

所以偏向角为

$$\delta = i_2' - i_2 = n\alpha - \alpha = (n-1)\alpha$$

3. 光的全内反射

当光从**光密介质**入射到光疏介质时,这种情况下的反射, 叫作内反射。

内反射时,折射角随着入射角增大而增大,当折射角等于 90^{0} 时,对应的入射角为 i_{c} ,称作临界角。

$$n_1 \sin 90^0 = n_2 \sin i_c$$

$$i_c = \arcsin \frac{n_{1(\text{±}\tilde{m})}}{n_{2(\text{±}\tilde{m})}}$$

当入射角大于等于 i_c 时,全部光能量都反回原介质这种反射叫作光的全反射,或全内反射。

全内反射的应用举例:

(1) 全反射棱镜

被广泛应用在各种光学仪器和各种实验光路中

(2) 光学纤维

(a) 原理

光学纤维:中央折射率 大,表层折射率小的透 明细玻璃丝.

光进入光学纤维后,多次 在内壁上发生全内反射, 光从纤维的一端传向另 一端.

阶跃型光纤

$$n_{0}sini_{0} = n_{g}sini'$$

$$n_{c} = n_{g}sin\left(\frac{\pi}{2} - i'\right) = n_{g}cosi'$$

$$n_{0}sini_{0} = \sqrt{n_{g}^{2} - n_{c}^{2}} \qquad \vec{i}_{0}$$

凡是入射角小于 i_0 的入射光,都将通过多次全反射从一端 传向另一端

 $n_0 \sin i_0$ 称为光纤的<mark>数值孔径</mark>,决定了可经阶跃光纤传递的光束的入射角。

$$i_0 = \arcsin(\frac{1}{n_0} \sqrt{n_g^2 - n_c^2})$$

光纤通信的优点:

- 1)低损耗 窗玻璃 几千分贝/公里
 光学玻璃 500分贝/公里
 雨后清澄的大气 1分贝/公里
 石英光纤 0.2分贝/公里
- 2) 信带宽、容量大、速度快
- 3) 电气绝缘性能好 无感应 无串话
- 4) 重量轻 线径细 可绕性好
- 5) 耐火 耐腐蚀 可用在许多恶劣环境下
- 6) 资源丰富 价格低

铺设1000公里的同轴电缆大约需要500吨铜,改用光纤通信只需几公斤石英就可以了

费马原理

描述光线传播行为的普遍规律

光程: 在均匀介质中,光程为光在介质中通过的几何路径S与所经过的介质折射率n的乘积

$$l = ns$$

光在介质中走过的光程,等于以相同的时间在真空中走过的 距离。光在不同介质中传播所需时间等于各自光程除以光速C

$$t = \frac{S}{V} = \frac{S}{c/n} = \frac{l}{c}$$

光从A点经过几种不同的均匀介质到达B点,所需时间为:

$$t = \frac{S_1}{v_1} + \frac{S_2}{v_2} + \Lambda + \frac{S_k}{v_k} = \sum_{i=1}^{i=k} \frac{S_i}{v_i}$$

介质的折射率

$$n_i = c/v_i$$
,

所以
$$t = \frac{1}{c} \sum_{i=1}^{i=k} n_i S_i.$$

若由A到B充满着折射律 连续变化的介质,则光 由A到B的总光程为

$$l = \int_{A}^{B} n ds$$

所用时间为
$$t = \frac{1}{c} \int_{A}^{B} n ds$$

费马原理的表述及讨论

? 光从A—B的路径?

(F就是实际光线所受的一种约束或所遵循的规律)

F: 空间两点间的实际光线路径是光程为平稳值的路径。

"平稳",指的是当光线以任何方式对该路径有无限小的偏离时,相应**光程**的一阶改变量为零

$$\delta[L] = \delta \begin{bmatrix} \int_{A}^{B} n ds \end{bmatrix} = 0 \qquad \delta t = \delta \begin{bmatrix} \frac{1}{c} \int_{A}^{B} n ds \end{bmatrix} = 0$$

也可表示:空间中两点间的实际光线路径,与其他相邻的可能路径相比较,其光程(或传播时间)取极值(MAX,MIN,CONS)。光程极值原理或时间极值原理

多数: MIN,该原理亦曾称为最小时间(或光程)原理

光程为极值的例子:

(1) 光程为极小值

由A点发出的光线经界面D点反射 后通过B点,符合反射定律,其 光程较其他任一光线ACB'的光程 都小。

由A到B,符合折射定律的光线 ABD的光程,比任何其他由A至B 的路径的光程都小。

(2) 反射等光程的例子 汽车车灯、手电筒、凹面镜

椭圆: $\overline{MF_1} + \overline{MF_2} = 2a$, F焦点,a长半轴

抛物线: $\overline{MF} = \overline{ME}, F$ 焦点, OE' = E'F/2

双曲线: $\overline{MF_1} + (-\overline{MF_2}) = 2a, F$ 焦点,2a顶点间距

旋转椭球面、

旋转抛物面、

旋转双曲面

(3) 光程为极大值

反射镜MM'与旋转椭球切于D点,由A点发出过D点符合反射定律的光线,必过椭球另一焦点B,光线的光程比任何路径的光程都大。

费马原理对几何光学规律的概括:

- 1、根据直线是两点间最短距离,对于均匀介质或真空,F 直接引导到光线的直线传播定律
- 2、F只涉及光线传播的路径,并没涉及到光线的传播方向。 若路径AB的光程取极值,则其逆路径BA的光程亦取极值。 因此该原理可很自然地导出光路可逆性原理。

3、费马原理可导出光的反射、折射定律

几何光学的定律受费马原理的支配。

用Fermat原理证明反射、折射定律

$$L(QOP) = n_1 \sqrt{(QQ')^2 + x^2} + n_2 \sqrt{(PP')^2 + (p-x)^2} = L(x)$$

Fermat原理 $\frac{dL(x)}{dx} = 0$

$$\frac{1}{2}n_1 \frac{1}{\sqrt{(QQ')^2 + x^2}} \cdot 2x - \frac{1}{2}n_2 \frac{1}{\sqrt{(PP')^2 + (p - x)^2}} \cdot 2(p - x) = 0$$

$$\Rightarrow n_1 \sin i_1 = n_2 \sin i_2$$

费马原理成功解释了几何光学的三个 实验定律,因此可以说费马原理是几 何光学的理论基础。几何光学是有其 限度的,费马原理也是有限度的。

凡是基于这三个实验定律而推演并研 究的各种光线传播问题,也可由费马 原理出发而得以解决,如成像问题。

物像等光程原则

理想光学系统的成像满足费马原理,可导出物像等光程原则。

透镜为什么要做成曲面?做成怎样的曲面?

费马原理
$$L(MF) = L(M'O') + L(O'F)$$

$$r(\theta) = n(r(\theta)\cos\theta - r_0) + r_0$$

$$r(\theta) = \frac{(1-n)r_0}{1-n\cos\theta}$$

Geometrical optics (ray optics) is the simplest version of optics.

作业: 1.5;1.7;1.8;1.9