Modelltheorie Übungsblatt 4

Aufgabe 1. Geben Sie zwei Theorien T_1 und T_2 in einer Sprache \mathcal{L} an, so dass T_1 und T_2 beide unendliche Modelle haben und die folgenden beiden Bedingungen gelten:

- a) Es gibt eine universelle Aussage, die T_1 von T_2 trennt.
- b) Es gibt keine universelle Aussage, die T_2 von T_1 trennt.

Hinweis: Es gibt viele derartige Theorien. Eine Möglichkeit ist es, abelsche Gruppen zu betrachten.

Aufgabe 2. Sei X ein topologischer Raum, Y_1 und Y_2 quasikompakten Teilmengen, und \mathcal{H} eine Menge von clopen (das heißt abgeschlossenen und offenen) Teilmengen von X. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- a) Es gibt $B = \bigcup_{1 \leqslant i \leqslant n} \bigcap_{1 \leqslant j \leqslant n} H_{i,j}$ mit $H_{i,j} \in \mathcal{H}$ für $1 \leqslant i, j \leqslant n$ sodass $Y_1 \subset B$ and $Y_2 \cap B = \emptyset$.
- b) Für alle $y_1 \in Y_1$ und $y_2 \in Y_2$ gibt es ein $H \in \mathcal{H}$ mit $y_1 \in H$ und $y_2 \notin H$.

Aufgabe 3. Zeigen Sie, dass eine Theorie $T \exists$ -axiomatisierbar ist genau dann wenn für alle Struktur \mathcal{A} mit eine Oberstruktur \mathcal{B} gilt $\mathcal{A} \models T \Rightarrow \mathcal{B} \models T$.

Aufgabe 4. Geben Sie überabzählbar viele 1-Typen über $(\mathbb{Q}, <)$ an. Welche dieser Typen werden in $(\mathbb{Q}, <)$ realisiert? Welche in $(\mathbb{R}, <)$? Geben Sie mindestens einen Typen an, der nicht in $(\mathbb{R}, <)$ realisiert wird.