RSA*Conference2016

San Francisco | February 29 – March 4 | Moscone Center

Connect **to** Protect

EXP-W04

Machine Learning and the Cloud: Disrupting Threat Detection and Prevention

Mark Russinovich

CTO, Microsoft Azure Microsoft Corporation @markrussinovich

Microsoft's daily cloud security scale

10s of PBs of logs

1+ billionAzure Active
Directory logons

300+
million
active Microsoft
Account users

Detected/
reflected attacks

> 10,000 location-detected attacks

1.5 million compromise attempts deflected

Security data explosion

Useful Data	Web server logs	Windows Event logs, Linux syslog	Network logs
	Fabric	Data center security token service	Cloud service logs

RSA*Conference2016

Challenges with Standard Security Detection Systems

Weak independent alert streams

Burden of triage

Interpretability of alerts

Lack of feedback loop

How Machine Learning can help

Reduce triage of burden by PRIORITIZING ALERTS

COMBINING INDEPENDENT ALERT STREAMS and providing informed scoring

Account Name	Overall Triage Status
	Triage-P1
	Triage-P1
	Triage-P1
	Not-For-Ticketing

Each alert combines multiple points:

- Is the sequence of API calls unusual for this account?
- Is the IP address unusual?
- Does the time of access look normal?

For our DevOps anomaly detection, we combine over 8 different weaker streams.

How Machine Learning can help

Incorporating analyst/user feedback TO IMPROVE THE SYSTEM SIGNAL

PROVIDING INTERPRETABLE RESULTS

From: Sent: To: Subject: [ACTION REQUIRE							
recent account activity							
We detected the following activity and from							
Was this you?							
Yes, this was me	No, something's not right						

When we get an alert, we're informed exactly why the ML system feels it is anomalous. Not a black box.

Unusual UserAgent	Logins Eval	Unusual Location	Failed Login	Unusual IP	Unusual Activity	Overall Score
1	1	0	0	37	324	197106
0	0	0	0	0	64	134460
0	5	0	0	25	0	521308
5	3	0	0	0	0	33648
0	0	0	0	3048	0	129
0	2	0	1	3	0	94

RSA*Conference2016

Machine Learning for Security

An Introduction

How ML is different

Traditional Programming

Machine Learning

Source: Lecture by Prof. Domingos

Components of a ML system

TASK

E.g: Predict number of Logons in a end-system

LEARNER

Linear Regression

FEATURE

Count of logons over time

DATA

Security Event logs

Number of Successful Logons = 225 * Time + 875

Machine Learning for security is difficult

Lack of ground truth

Data labeled as an attack is rare

Datasets are imbalanced

Disproportionate cost of false negative (missing an attack)

Constantly changing environment

Adversarial setting: deliberately avoiding detection

The data labelling challenge

PROBLEM

You don't know what anomalous activity looks before hand

PROBLEM

Difficult to determine 'good' behavior

SOLUTION

CRAWL: Use publically available data sets to test

CON: Attacker has access to this too! Also, not every dataset is applicable

RUN: Have a Red Team validate your detection as part of an exercise

WALK: Set up Honeypots to collect attack data

CON: Data is not generated on-demand.

Microsoft has access to high quality attack data through MSRC, O365 Advanced Threat Protection, MMPC, DCU.

RS∧°Conference2016

ML Algorithms for Security

DevOps anomalies

- Identify user and service accounts
- Detect and alert on privileged access anomalies

DevOps anomaly detection

The anomaly detection problem

Two Features or Dimension

N=12 i.e. 12 examples

Number of Operations
0
1
4
5
6
7
20
25
35
45
60
75

Given a new example, is it anomalous or not?

Principal Component Analysis (PCA)

Principal Components can intuitively be thought of as those directions that capture the most variation in the data.

Essentially, any point can be reconstructed as a linear combination of the principal components

Outlier = Any point that has high reconstruction error

PCA at Azure's scale

 $O(Nd^2)+O(d^3)$

Traditional PCA:

Nxd matrix of data, N examples, d features

Azure scale:

- N = 100,000,000+ data points and d = 1,000,000 features
- Order of 10²³ operation

O(dkN)

Azure uses Distributed PCA with Random Projection

- Random Projection: We pick the directions/degrees of freedom to find interesting data
- Time complexity becomes *O*(*dkN*), where *k* < *d*
- Model builds in 8 minutes

Red team detection

Red Team abused 3
APIs in from a
DevOps account in
Azure Service

Machine learning model threw a P1-alert in the order of minutes with reason "Suspicious API activity"

RSA Conference 2016

Timestamp	Country	City, State	Service	State
Tue Nov 26, 13 21:45	US	New York, NY	Storage	Normal
Tue Nov 26, 13 22:57	US	New York, NY	Storage	Normal
Tue Nov 26, 13 23:24	US	New York, NY	Storage	Normal
Tue Nov 27, 13 01:27	IE	Dublin	Storage	Normal
Tue Nov 27, 13 07:31	CN	Shanghai	Storage	Suspicious
Tue Nov 27, 13 08:32	CA	Vancouver, BC	SQL	Suspicious

Intuitive geo anomaly detection

- Cache the last 10 locations of the user
- For current location:
 - If current location != cached locations, challenge user
 - If false positive, add current location to cache

Problems with rules only system

NOISY RESULTS

Company Proxy
Cellphone Networks
Vacations/Travel

A former rules-based Microsoft system scored

28% of logins as suspicious

1 billion logins per day =

280 million

"suspicious" logins

After applying

Machine Learning
the rate dropped
to less than

0.001%

Accurate geo anomaly detection

SECURITY DUALITY

Maximize calling suspicious login behavior, Minimize friction/false positives caused by normal business routines (e.g. conferences, VPN's)

SOLUTION

Simple rules for determining suspicious login, large graph based machine learning approach for determining normal behavior

- Build up expected behavior by incorporating behavior of users similar behavior (but not all users)
- Model travel heuristics and device familiarity requirements
- Flag unexplainable remainder

Understanding user login patterns

Capture past login history

45 day window

Weighted based on frequency/time last seen

Calculate user-user similarity

Partial mapping between locations

Constrained within tenants

Enumerate possible locations

Random walk with restarts

Partial mapping to other similar Geo locations

	user^	user	l User	3 User a
User 1	1.0	0.8	0.7	
User 2	0.8	1.0	0.7	
User 3	0.7	0.7	1.0	0.3
User 4			0.3	1.0

<u>User</u>	<u>Location</u>	<u>Reachability</u>
User 3	Comcast-Bellevue	965.0
User 3	Comcast-Redmond	875.0
User 3	Microsoft-Redmond	978.0
User 3	Verizon-Seattle	425.0
User 3	Verizon-Bellevue	350.0
User 3	Microsoft-Cambridge	275.0
User 3	Verizon-Boston	152.0

RSAConference2016

Random walk example

User 1

User 2

User 3

User 4

Location	Walk 1	Wall		Walk 3	JAN V	Comcast- Bellevue		Walk	1000	Re	eachabili	ity
Comcast-Bellevue	0.7	0.8	User 1	0.7	1.0			Used Used	1.9 User	Use	965,4	
Comcast-Redmond	0.6	0.7		0.6		Microsoft- Redmond	User 1	1.0	0.8	0.7		
Microsoft-Redmond	0.9	1.0	User 2	0.9	0.8	Verizon-		0.8	4.0	0.7		
Verizon-Seattle	0.4	1.0		0.1	0.4	Seattle	User 2	0.8	1.0	0.7		
Verizon-Bellevue	0.3	0.3	User 3	0.5	91	Microsoft-	User 3	0.7	0.7	1.0	0.3	
Microsoft-Cambridge	0.5	0.0		0.2	6,1		User 4			0.3	1.0	
Verizon-Boston	0.2	0.1		0.0	0.4	Verizon-	0361 4	,	.,		152.0	
			User 4			Boston						

- Training: Training of algorithm using Map-Reduce like framework (2 days)
- Evaluation: Approximations using Spectral Clustering and Linear Models allows fast evaluations (individual evaluation ~8ms)

How likely is a user in a location?

- Logging into location increases likelihood of being in a location, decreases likelihood of being in past locations
- Amplitude of change affected by speed of travel and the reachability of location
- Users logging into unlikely location with low probability are flagged as suspicious

Location	Time	Reachability
Seattle, WA -Comcast	Mar 02, 11:31 AM	800.1
Portland, OR-Verizon	Mar 02, 3:15 PM	119.2
Hartford, CT - Comcast	Mar 02, 4:16PM	45.8

Case study: phishing campaign

TimeStamp	Application	ClientIP	Country	City/State	Reachability	Call	Device
8/21/2015 1:21	Other	86.139.x	GB	Oundle	607.8	Normal	Windows 8.1;outlook.exe(Tablet PC)
8/23/2015 23:20	Other	5.148.x	GB	Kensington	279.2	Normal	Windows 8.1;outlook.exe(Tablet PC)
8/24/2015 7:23	Other	5.148.x	GB	Kensington	357.3	Normal	Windows 8.1;outlook.exe(Tablet PC)
8/24/2015 23:15	Other	5.148.x	GB	Kensington	357.3	Normal	Windows 8.1;outlook.exe(Tablet PC)
8/24/2015 23:22	Other	5.148.x	GB	Kensington	375.8	Normal	Windows 8;winword.exe(Tablet PC)
8/25/2015 1:17	Office 365	5.148.x	GB	Kensington	375.8	Normal	Windows 8.1;IE 11.0
8/25/2015 3:42	Office 365	41.206.x	NG	Lagos	44.5	Suspicious	Windows 7;Firefox 40.0
8/25/2015 7:18	Other	5.148.x	GB	Kensington	691.1	Normal	Windows 8.1;outlook.exe(Tablet PC)
8/25/2015 8:14	Other	5.148.x	GB	Kensington	691.1	Normal	Windows 8;excel.exe(Tablet PC)
8/25/2015 23:19		5.148.x	GB	Kensington	691.1	Normal	Windows 8.1;outlook.exe(Tablet PC)
8/25/2015 23:58		5.148.x	GB	Kensington	709.6	Normal	Windows 8.1;outlook.exe(Tablet PC)
8/26/2015 7:21		5.148.x	GB	Kensington	709.6	Normal	Windows 8.1;outlook.exe(Tablet PC)
				J			
8/26/2015 7:34	Other	5.148.x	GB	Kensington	709.6	Normal	Windows 8;excel.exe(Tablet PC)

RS∧Conference2016

DEMO

Azure Active Directory anomaly detection

RS∧°Conference2016

Rules versus Machine Learning

RULES

- Use when you know exactly what known-bad looks like
 - IOCs,
 - Signatures
 - Known-bad techniques
- Use when your detection strategy is atomic e.g: Look for xp_cmdshell in SQL logs

Rules decay quickly over time

MACHINE LEARNING

- Helps identify bad activity when simple heuristics fail
- Must have sufficient historical datasets, including labeled attack data
- Requires security experts who can provide feedback on quality of results
- Use when detection strategy is computation and behavioral e.g. Detecting unusual processes running on a host

ML systems, when periodically retrained, do not decay over time

Many solutions will incorporate both rules & ML

Security ML requirements

Machine
Learning
expertise to
think beyond
standard
toolkits

Data across the stack

Host (Event logs, syslog, AV logs)

Network logs

Service & application logs

Secure and scalable platform

Eyes on glass

Testing with real attack data

Azure Machine Learning

Next steps

Next week

Next month

In 3-6 months

Tinker around with this ML Network Intrusion Detection system!

EXPLORE

ML as a service and security-as-a-service solutions

Develop an architecture to collect high-quality attack data

Make it a habit to identify and investigate security anomalies

Summary

Recall ML for security improves

Interpretability

Actionability

Burden of triage

Keys to successful detection

Data is key

Secure and scalable platform

Specialized investment beyond standard machine learning toolkits

It is important to establish the credibility of the system by testing its simulated adversaries

Mark Russinovich CTO, Microsoft Azure markruss@microsoft.com @markrussinovich