

Test report

374507-3TRFWL

Date of issue: 2019-05-30

Applicant: Inpeco Spa a socio unico Via Givoletto 15 10040 Val della Torre TO Italy

Product: RFID Device

Model: CAN Antenna 2 coil

FCC ID: Y2K-CAB2C001 IC: 11394A-CAB2C001

Specifications:

FCC 47 CFR Part 15 Subpart C

Intentional radiators

RSS-210, Issue 9, August 2016, Section 2.5

General field strength limits

This test report may not be partially reproduced, except with the prior written permission of Nemko Spa

The test report merely corresponds to the tested sample.

The phase of sampling / collection of equipment under test is carried out by the customer.

Test location

Company name:	Nemko Spa
Address:	Via del Carroccio, 4
City:	Biassono
Province:	MB
Postal code:	20853
Country:	Italy
Site number:	FCC test site registration number: 682159

Tested by:	Daniele Guarnone
Reviewed by:	Paolo Barbieri
Date:	2019-05-30
Signature:	Dowele Guonia

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report. This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Spa authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Spa accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Table of contents

Table of	contents	3
Section 1	. Report summary	4
1.1	Applicant and manufacturer	. 4
1.2	Test specifications	. 4
1.3	Test methods	. 4
1.4	Statement of compliance	. 4
1.5	Exclusions	. 4
1.6	Test report revision history	. 4
Section 2	2. Summary of test results	5
2.1	FCC Part 15 Subpart C, general requirements test results	. 5
2.2	IC RSS-GEN, Issue 3, test results	. 5
2.3	IC RSS-210, Issue 8, test results	. 5
Section 3	B. Equipment under test (EUT) details	6
3.1	Sample information	. 6
3.2	EUT information	. 6
3.3	Technical information	. 6
3.4	Product description and theory of operation	. 6
3.5	EUT exercise details	. 6
3.6	EUT setup diagram	. 7
3.7	EUT sub assemblies	. 7
Section 4	l. Engineering considerations	8
4.1	Modifications incorporated in the EUT	. 8
4.2	Technical judgment	. 8
4.3	Deviations from laboratory tests procedures	. 8
Section 5	i. Test conditions	9
5.1	Atmospheric conditions	. 9
5.2	Power supply range	. 9
Section 6	6. Measurement uncertainty	10
6.1	Uncertainty of measurement	10
Section 7	7. Test equipment	11
7.1	Test equipment list	11
Section 8	3. Testing data	12
8.1	FCC 15.207(a) and RSS-Gen 7.2.4 AC power line conducted emissions limits	12
8.2	RSS-Gen 4.6.1 Occupied bandwidth	16
8.3	FCC 15.209(a) and RSS-210, 2.5 Radiated emissions limits	19
Section 9). Block diagrams of test set-ups	25
9.1	Radiated emissions set-up	25
9.2	Conducted emissions set-up	26

Section 1. Report summary

1.1 Applicant and manufacturer

Company name:	Inpeco Spa a socio unico Via Givoletto 15 10040 Val della Torre TO Italy
Address:	Via Givoletto 15
City:	Val della Torre
Province/State:	ТО
Postal/Zip code:	10040
Country:	Italy

1.2 Test specifications

FCC 47 CFR Part 15, Subpart C	Intentional radiators
RSS-210, Issue 9, Section 2.5	General field strength limits

1.3 Test methods

ANSI C64.3 v 2003	American National Standard for Methods of Measurement of Radio- Noise Emissions from Low-Voltage
ANSI C04.5 V 2005	Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Exclusions

None

1.6 Test report revision history

Revision #	Details of changes made to test report
TRF	Original report issued

Section 2. Summary of test results

2.1 FCC Part 15 Subpart C, general requirements test results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31(e)	Variation of power source	Pass ¹
§15.203	Antenna requirement	Pass ²
§15.209	Radiated emission limits; general requirements.	Pass

Notes: ¹ Measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, was performed with the supply voltage varied between 85 % and 115 % of the nominal rated supply voltage. No noticeable output power variation was observed

2.2 IC RSS-GEN, Issue 5, test results

Part	Test description	Verdict
4.6.1	Occupied bandwidth	Pass
4.7	Transmitter frequency stability	Pass
6.1	Receiver spurious emissions limits (radiated)	Pass
6.2	Receiver spurious emissions limits (antenna conducted)	Pass
7.2.4	AC power lines conducted emission limits	Pass

Notes: ¹ According to Notice 2012-DRS0126 (from January 2012) section 2.2 of RSS-Gen, Issue 3 has been revised. The EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receiver requirements.

2.3 IC RSS-210, Issue 9, test results

Part	Test description	Verdict
2.5	General field strength limits	
2.5.1	Transmitters with Wanted Emissions that are Within the General Field Strength Limits	Pass

Notes: None

² The Antennas are located within the enclosure of EUT and not user accessible.

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	May 20, 2019
Nemko sample ID number	374507-3

3.2 EUT information

Product name	RFID Device
Model	CAN Antenna 2 coil
Model variant	
Serial number	

3.3 Technical information

Operating band	119 kHz to 140 kHz
Operating frequency	125 kHz
Modulation type	FSK
Occupied bandwidth (99 %)	280 Hz
Emission designator	280HD1D
Power requirements	24 Vdc and CAN BUS
Antenna information	The EUT uses a unique antenna coupling/ non-detachable antenna to the intentional radiator.

3.4 Product description and theory of operation

The E.UT is a RFID device operating at 125 KHz used for detect the sample in a medical analysis system

3.5 EUT exercise details

E.UT. has been tested supplied and connected to PC with a USB CAN BUS adaptor. A dedicated software has been used to monitor the antenna status

3.6 EUT setup diagram

Figure 3.6-1: Setup diagram

3.7 EUT sub assemblies

Table 3.7-1: EUT sub assemblies

Description	Brand name	Model/Part number	Serial number
PC			
USB CAN BUS			

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	18–33 °C
Relative humidity	30–60 %
Air pressure	980–1060 hPa

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2 which has been derived from the assumed normal probability distribution with infinite degrees of freedom and for a coverage probability of 95 %;.

EUT	Туре	Test	Range and Setup features	Measurement Uncertainty	Notes
		Frequency error	0.001MHz ÷ 18 GHz	0.08 ppm	(1)
		Carrier power	1MHz ÷ 18 GHz With power meter	1.6 dB	(1)
		RF Output Power	1MHz ÷ 18 GHz With spectrum/receiver	3.0 dB	(1)
		Adjacent channel power	1MHz ÷ 18 GHz	1.6 dB	(1)
		Conducted spurious emissions	1MHz ÷ 18 GHz	4.2 dB	(1)
		Intermodulation attenuation	1MHz ÷ 18 GHz	2.2 dB	(1)
		Attack time – frequency behaviour	1MHz ÷ 18 GHz	2.0 ms	(1)
		Attack time – power behaviour	1MHz ÷ 18 GHz	2.5 ms	(1)
		Release time – frequency behaviour	1MHz ÷ 18 GHz	2.0 ms	(1)
	Conducted	Release time – power behaviour	1MHz ÷ 18 GHz	2.5 ms	(1)
Transmitter		Transient behaviour of the transmitter– Transient frequency behaviour	1MHz ÷ 18 GHz	0.2 kHz	(1)
		Transient behaviour of the transmitter – Power level slope	1MHz ÷ 18 GHz	9%	(1)
		Frequency deviation - Maximum permissible frequency deviation	0.001MHz ÷ 18 GHz	1.3%	(1)
		Frequency deviation - Response of the transmitter to modulation frequencies above 3 kHz	0.001MHz ÷ 18 GHz	0.5 dB	(1)
		Dwell time	-	3%	(1)
		Hopping Frequency Separation	0.01MHz ÷ 18 GHz	1%	(1)
		Occupied Channel Bandwidth	0.01MHz ÷ 18 GHz	2%	(1)
		Modulation Bandwidth	0.01MHz ÷ 18 GHz	2%	(1)
	Dadistad	Radiated spurious emissions	30MHz ÷ 18 GHz	6.0 dB	(1)
	Radiated	Effective radiated power transmitter	30MHz ÷ 18 GHz	6.0 dB	(1)
	Padiated	Radiated spurious emissions	30MHz ÷ 18 GHz	6.0 dB	(1)
Receiver	Radiated	Sensitivity measurement	1MHz ÷ 18 GHz	6.0 dB	(1)
	Conducted	Conducted spurious emissions	1MHz ÷ 18 GHz	4.2 dB	(1)

Section 7. Test equipment

7.1 Test equipment list

Equipment	Manufacturer	Model	Serial N°	Due date	
EMI receiver 2Hz ÷ 44 GHz	R&S	ESW44	101620	05/2019	
EMI receiver 20 Hz ÷ 8 GHz	R&S	ESU8	100202	01/2020	
Trilog Broad Band Antenna 25 MHz÷2 GHz	Schwarzbeck	VULB 9162	9162-025	07/2021	
Bilog antenna 1 ÷18 GHz	Schwarzbeck	STLP 9148	9148-123	07/2021	
Broadband preamplifier 1 ÷18 GHz	Schwarzbeck	BBV 9718	9718-137	08/2019	
Loop antenna	TESEQ	HLA 6121	45749	07/2020	
Semi-anechoic chamber	Nemko	10m semi-anechoic chamber	530	09/2021	
Shielded room	Siemens	10m control room	1947	NCR	
Trilog Broad Band Antenna 25 MHz÷2 GHz	Schwarzbeck	VULB 9162	9162-025	07/2021	
Bilog antenna 1 ÷18 GHz	Schwarzbeck	STLP 9148	9148-123	07/2021	
Broadband preamplifier 1 ÷18 GHz	Schwarzbeck	BBV 9718	9718-137	08/2019	
EMI receiver 2Hz ÷ 44 GHz	R&S	ESW44	101620	05/2019	
Semi-anechoic chamber	Nemko	10m semi-anechoic chamber	530	09/2021	
Shielded room	Siemens	10m control room	1947	NCR	
Note: N/A = Not Applicable, NCR = No Cal Required, COU = CAL On Use					

Section 8. Testing data

8.1 FCC 15.207(a) and RSS-Gen 7.2.4 AC power line conducted emissions limits

8.1.1 Definitions and limits

FCC:

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50 \, \mu H/50 \, \Omega$ line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

IC

The purpose of this test is to measure unwanted radio frequency currents induced in any AC conductor external to the equipment which could conduct interference to other equipment via the AC electrical network.

Except when the requirements applicable to a given device state otherwise, for any licence-exempt radiocommunication device equipped to operate from the public utility AC power supply, either directly or indirectly, the radio frequency voltage that is conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in Table 2. The tighter limit applies at the frequency range boundaries.

The conducted emissions shall be measured with a 50 $\Omega/50~\mu H$ line impedance stabilization network (LISN).

Table 8.1-1: Conducted emissions limit

Frequency of emission,	Conduct	ted limit, dBμV
MHz	Quasi-peak	Average
0.15–0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50

Note: * - Decreases with the logarithm of the frequency.

8.1.2 Test summary

Test date:	May 27, 2019	Temperature:	21 °C
Test engineer:	Daniele Guarnone	Air pressure:	1005 mbar
Verdict:	Pass	Relative humidity:	35 %

Section 8 Test name Testing data

RSS-Gen 4.6.1 Occupied bandwidth

Specification RSS-Gen, Issue 3

8.1.3 Observations, settings and special notes

The EUT was set up as tabletop configuration.

The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance.

A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.

Receiver settings for preview measurements:

Resolution bandwidth:	9 kHz
Video bandwidth:	30 kHz
Detector mode:	Peak and Average
Trace mode:	Max Hold
Measurement time:	1000 ms

Receiver settings for final measurements:

Resolution bandwidth:	9 kHz
Video bandwidth:	30 kHz
Detector mode:	Quasi-Peak and Average
Trace mode:	Max Hold
Measurement time:	1000 ms

8.1.4 Test data

Date: 27.MAY.2019 18:46:19

Plot 8.1-1: Conducted emissions on phase line

Frequency (MHz)	Level (dBμV)	Limit (dBμV)	Margin (dB)	Detector
0.1780	56.5	64.6	-8.0	QP
0.1780	51.1	54.6	-3.5	AV

Table 8.1-2: Quasi-Peak conducted emissions results on phase line

8.1.4 Test data, continued

Date: 27.MAY.2019 18:48:57

Plot 8.1-2: Conducted emissions on neutral line

Frequency (MHz)	Level (dBμV)	Limit (dBμV)	Margin (dB)	Detector
0.1740	51.5	54.8	-3.3	AV
0.1780	56.8	64.6	-7.8	QP
0.1860	54.4	64.2	-9.8	QP
0.1860	48.3	54.2	-5.9	AV

Table 8.1-3: Quasi-Peak conducted emissions results on neutral line

8.2 RSS-Gen 4.6.1 Occupied bandwidth

8.2.1 Definitions and limits

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99 percent emission bandwidth, as calculated or measured.

The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1 percent of the selected span as is possible without being below 1 percent. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold, may produce a wider bandwidth than actual.

The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 percent of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded.

The span between the two recorded frequencies is the occupied bandwidth.

8.2.2 Test summary

Test date:	May 27, 2019	Temperature:	21 °C
Test engineer:	Daniele Guarnone	Air pressure:	1005 mbar
Verdict:	Pass	Relative humidity:	35 %

8.2.3 Observations, settings and special notes

Spectrum analyser settings:

Resolution bandwidth:	≥1 % of span
Video bandwidth:	≥3 × RBW
Detector mode:	Peak
Trace mode:	Max Hold

8.2.4 Test data

Table 8.2-1: 99 % bandwidth results

Modulation	99 % bandwidth, Hz
FSK	280

8.2.4 Test data, continued

Date: 27.MAY.2019 19:17:05

Figure 8.2-1: 99 % bandwidth

8.2.4 Test data, continued

Date: 27.MAY.2019 19:18:22

Figure 8.2-22: 20 dB bandwidth: 280 Hz

Test name Specification

FCC Part 15 Subpart C and RSS-210

8.3 FCC 15.209(a) and RSS-210, 2.5 Radiated emissions limits

8.3.1 Definitions and limits

FCC:

- (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the Table 8.3-1 below.
- (c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
- (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

IC:

RSS-Gen includes the general field strength limits of unwanted emissions, where applicable, for transmitters and receivers operating in accordance with the provisions specified in this standard.

Unwanted emissions of transmitters and receivers are permitted to fall within the restricted bands listed in RSS-Gen, and including the TV bands, but fundamental emissions are prohibited in the restricted bands bands.

Whether or not their operation is addressed by published RSS standards, transmitters whose wanted and unwanted emissions are within the general field strength limits shown in RSS-Gen, they may operate in any of the frequency bands, other than the restricted bands listed in RSS-Gen and including the TV bands, and shall be certified under RSS-210. Under no conditions may the level of any unwanted emissions exceed the level of the fundamental emission.

Note: Devices operating below 490 kHz in which all emissions are at least 40 dB below the limit listed in RSS-Gen (General Field Strength Limits for Transmitters at Frequencies below 30 MHz) are Category II devices and are subject to RSS-310.

Field strength of emissions Measurement distance, m Frequency, MHz μV/m dBμV/m 0.009-0.490 2400/F 300 $67.6 - 20 \times \log_{10}(F)$ 24000/F 0.490 - 1.705 $87.6 - 20 \times \log_{10}(F)$ 30 1.705-30.0 30 30 29.5 30-88 100 40.0 3 88-216 150 3 43.5 216-960 200 46.0 3 above 960 500 54.0 3

Table 8.3-1: FCC §15.209 and RSS-Gen – Radiated emission limits

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

8.3.1 Definitions and limits, continued

Table 8.3-2: IC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	12.51975-12.52025	399.9–410	5.35–5.46
2.1735-2.1905	12.57675-12.57725	608-614	7.25–7.75
3.020-3.026	13.36–13.41	960–1427	8.025–8.5
4.125-4.128	16.42-16.423	1435-1626.5	9.0–9.2
4.17725-4.17775	16.69475-16.69525	1645.5-1646.5	9.3–9.5
4.20725-4.20775	16.80425-16.80475	1660-1710	10.6–12.7
5.677-5.683	25.5–25.67	1718.8–1722.2	13.25-13.4
6.215-6.218	37.5-38.25	2200-2300	14.47-14.5
6.26775-6.26825	73–74.6	2310–2390	15.35–16.2
6.31175-6.31225	74.8–75.2	2655–2900	17.7–21.4
8.291-8.294	108–138	3260–3267	22.01–23.12
8.362-8.366	156.52475-156.52525	3332–3339	23.6–24.0
8.37625-8.38675	156.7–156.9	3345.8–3358	31.2–31.8
8.41425-8.41475	240–285	3500-4400	36.43–36.5
12.29–12.293	322–335.4	4500-5150	Above 38.6

Note: Certain frequency bands listed in Table 8.3-2 and above 38.6 GHz are designated for low-power licence-exempt applications. These frequency bands and the requirements that apply to the devices are set out in this Standard

8.3.2 Definitions and limits, continued

Table 8.3-3: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9–410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5–25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108-121.94	1718.8–1722.2	13.25–13.4
6.31175-6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35-16.2
8.362-8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29-12.293	167.72-173.2	3332–3339	31.2–31.8
12.51975-12.52025	240–285	3345.8–3358	36.43–36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36–13.41			

8.3.3 Test summary

Test date:	2019-05-20	Temperature:	21 °C
Test engineer:	Daniele Guarnone	Air pressure:	1005 mbar
Verdict:	Pass	Relative humidity:	35 %

Section 8 Testing data

Test name FCC 15.209(a) and RSS-210, 2.5 Radiated emissions limits

Specification FCC Part 15 Subpart C and RSS-210

8.3.4 Observations, settings and special notes

The spectrum was searched from 30 MHz to the $10^{\rm th}$ harmonic. EUT was set to transmit with $100\,\%$ duty cycle. Radiated measurements were performed at a distance of 3 m.

Spectrum analyser settings for radiated measurements within restricted bands below 1 GHz:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyser settings for peak radiated measurements within restricted bands above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyser settings for average radiated measurements within restricted bands above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	10 Hz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyser settings for conducted spurious emissions measurements:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

8.3.4 Test data

Notes: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable.

8.3.4 Test data, continued

Figure 8.3-1: Radiated emissions

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Detector
0.1250	40.9	105.1	-64.2	QP

8.3.4 Test data, continued

Date: 20.MAY.2019 17:38:44

Antenna in vertical polarization @ 3 m

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Detector
33.7200	32.1	40.0	-7.9	QP
34.5600	30.8	40.0	-9.2	QP
43.7200	21.7	40.0	-18.3	QP
46.0000	20.8	40.0	-19.2	QP
94.7200	24.6	43.5	-18.9	QP
207.6400	11.3	43.5	-32.2	QP
260.0000	21.2	46.0	-24.8	QP
284.0000	25.9	46.0	-20.1	QP
352.0000	28.9	46.0	-17.1	QP
432.0000	26.7	46.0	-19.3	QP
473.8000	25.9	46.0	-20.1	QP

8.3.4 Test data, continued

Date: 20.MAY.2019 17:28:13

Antenna in horizontal polarization @ 3 m

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Detector
34.0200	27.3	40.0	-12.7	QP
34.5600	24.2	40.0	-15.8	QP
105.4200	30.4	43.5	-13.1	QP
144.0000	20.1	43.5	-23.4	QP
175.9800	16.2	43.5	-27.3	QP
207.9900	26.4	43.5	-17.1	QP
260.0100	25.9	46.0	-20.1	QP
276.0000	28.2	46.0	-17.8	QP
291.9900	27.6	46.0	-18.4	QP
352.0200	30.0	46.0	-16.0	QP
843.3600	23.0	46.0	-23.0	QP

Section 9. Block diagrams of test set-ups

9.1 Radiated emissions set-up

9.2 Conducted emissions set-up

