Tetrahydrides of third-row transition elements: Spin-orbit coupling effects on the stability of rhenium tetrahydride

Shiro Koseki, ^{1,2,a)} Taka-aki Hisashima, ¹ Toshio Asada, ^{1,2} Azumao Toyota, ³ and Nikita Matsunaga⁴

¹Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

²The Research Institute for Molecular Electronic Devices (RIMED), Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan

³Department of Chemistry, Faculty of Education, Yamagata University, Yamagata 990-8560, Japan ⁴Department of Chemistry and Biochemistry, Long Island University, Brooklyn, New York 11201, USA

(Received 23 July 2010; accepted 10 September 2010; published online xx xx xxxx)

The potential energy surface of low-lying states in rhenium tetrahydride (ReH₄) was explored by using the multiconfiguration self-consistent field (MCSCF) method together with the SBKJC effective core potentials and the associated basis sets augmented by a set of f functions on rhenium atom and by a set of p functions on hydrogen atoms, followed by spin-orbit coupling (SOC) calculations to incorporate nonscalar relativistic effects. The most stable structure of ReH₄ was found to have a D_{2d} symmetry and its ground state is 4A_2 . It is found that this is lower in energy than the dissociation limit, ReH₂+H₂, after dynamic correlation effects are taken into account by using second-order multireference Møller-Plesset perturbation (MRMP2) calculations. This reasonably agrees with previous results reported by Andrews et al. [J. Phys. Chem. 107, 4081 (2003)]. The present investigation further revealed that the dissociation reaction of ReH4 cannot occur without electronic transition from the lowest quartet state to the lowest sextet state. This spin-forbidden transition can easily occur because of large SOC effects among low-lying states in such heavy metal-containing compounds. The minimum-energy crossing (MEX) point between the lowest quartet and sextet states is proved to be energetically and geometrically close to the transition state for the dissociation reaction on the potential energy surface of the lowest spin-mixed state. The MEX point (C₂ symmetry) was estimated to be 9184 cm⁻¹ (26.3 kcal/mol) higher than the ⁴A₂ state in D_{2d} symmetry at the MRMP2 level of theory. After inclusion of SOC effects, an energy maximum on the lowest spin-mixed state appears near the MEX point and is recognized as the transition state for the dissociation reaction to ReH2+H2. The energy barrier for the dissociation, evaluated to be MEX in the adiabatic picture, was calculated to be 5643 cm⁻¹ (16.1 kcal/mol) on the lowest spin-mixed state when SOC effects were estimated at the MCSCF level of theory. © 2010 American Institute of Physics. [doi:10.1063/1.3495680]

35 I. INTRODUCTION

3

4

5

6

7

8

9

10

11

12

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

33

Recently, much attention has been paid to relativistic effects in molecules in many theoretical studies. 1-3 Several research groups have solved two-component or even four-component Dirac equations of molecules 1-11 and reported interesting results. Most of the theoretical studies, however, employed nonrelativistic Schrödinger equations of molecules together with relativistic effective core potential (RECP) and/or model core potential approximations. 12-20 In these investigations, the spin-independent (scalar) parts (mass-velocity and Darwin terms) of the relativistic effects are considered to be included in the core potentials and the spin-dependent parts (spin-orbit and spin-spin couplings) are described as a perturbation after orbital and geometrical optimizations.

In the series of studies in our research project, spin-orbit coupling (SOC) effects in chemical reactions have been ex-

plored since SOCs can explain electronic transitions between 52 states of different spin-multiplicities, the so-called intersys- 53 tem crossing or spin-forbidden reaction. Until now, potential 54 energy curves of low-lying (spin-mixed) states were calcu- 55 lated for monohydrides of transition elements²¹ and SOC ef- 56 fects were analyzed on dissociation potential energy curves, 57 in which the one-electron approximation or effective nuclear 58 charge (Z_{eff}) method was used for the Breit-Pauli 59 Hamiltonian.^{3,22} The calculated results have been reported 60 for monohydrides of groups 3–7 transition elements.²¹ This 61 method has also been applied to investigation of the stabili- 62 ties of dihydrides and tetrahydrides of third-row transition 63 elements. 23,24 For applying SOC calculations to larger mol- 64 ecules, it would be useful to evaluate the reliability and use- 65 fulness of Z_{eff} approximation and to accumulate basic data 66 on SOC effects in small molecules. Recently, it was success- 67 ful to explain the phosphorescent processes in Pt and Ir com- 68 plexes by using our computational methods. 25,26 These com- 69 plexes are known to be the parent molecules of organic 70 electroluminescence (EL) compounds or organic light- 71

a) Author to whom correspondence should be addressed. Electronic mail: shiro@c.s.osakafu-u.ac.jp.

FIG. 1. Orbital correlation diagram. Electron occupations correspond to the main configuration of the ground states at the T_d and D_{4h} structures in Re H_4 (M=Re).

72 emitting diodes. The derivatives of these complexes are now 73 under investigation in order to adjust wavelengths of phos-74 phorescent spectra for the design of more effective EL com-75 pounds in industrial developments. Although the SBKJC ba-76 sis sets are comparatively small and further investigation 77 using larger basis sets may need to be performed, our theo-78 retical investigations using the SBKJC basis sets provided 79 reasonable explanations so far.

As for tetrahydrides of third-row transition elements, in-81 teresting results have been reported in our previous paper;²⁴ 82 the T_d structures of HfH_4 , TaH_4 , WH_4 , and OsH_4 were found 83 to be explicitly lower in energy than the corresponding dis-84 sociation limits, MH_2+H_2 or $M+2H_2$ (M=third-row transi-85 tion elements). The T_d structures are the most stable in HfH_4 86 and OsH_4 since the lowest states (ground states) have closed-87 shell electronic structures (Fig. 1),

HfH₄(
1
A₁):(core)(5s)²(5p)⁶(a₁)²(t₂)⁶,

OsH₄(
$${}^{1}A_{1}$$
):(core)(5s) ${}^{2}(5p)^{6}(a_{1})^{2}(t_{2})^{6}(e)^{4}$.

90 TaH_4 (2E) and WH_4 (3A_2) have singly occupied nonbonding 91 degenerate orbitals and, as a result, are considered to be relaged tively stable. When attention is paid to geometrical deforma-

tion from the D_{4h} structure to the T_d structure, the spin- 93 multiplicity of the lowest state is maintained along the 94 deformation paths in HfH_4 (singlet), TaH_4 (doublet), and 95 WH₄ (triplet). On the other hand, in OsH_4 , the lowest state is 96 quintet at the D_{4h} structure, while its T_d structure has a stable 97 singlet ground state (see Table I). Therefore, as long as only 98 the lowest state is considered along the deformation path 99 from the D_{4h} structure to the T_d structure, it is not necessary 100 to consider interaction among the states of different spin-101 multiplicities in HfH_4 , TaH_4 , and WH_4 , but the interaction 102 among the states of different spin-multiplicities, namely, 103 SOC effects, must be taken into account in OsH_4 for the 104 purpose of exploring the deformation potential energy sur-105 face from the D_{4h} structure to the T_d structure, as described 106 in our previous paper. ²⁴

High symmetry species with multiple unpaired electrons 108 can lower its symmetry through the Jahn–Teller effect. The 109 lowest state at the T_d structure of ReH₄ has three electrons in 110 the doubly degenerate nonbonding orbitals, characterized as 111 "e" irreducible representation, and thus its state symmetry is 112 2 E (Fig. 1),

$$ReH_4(^2E):(core)(5s)^2(5p)^6(a_1)^2(t_2)^6(e)^3$$
.

Accordingly, this T_d structure can be distorted into a D_{2d} 115 structure by Jahn–Teller effects. In fact, Wang and 116 Andrews²⁷ reported the 2A_1 state in ReH₄ with a D_{2d} struc- 117 ture. They also reported that ReH₄ is more stable than the 118 dissociation limit by 26 kcal/mol based on the IR spectra and 119 their density functional theory (DFT) calculations. Unfortunately, this result does not match well with our previous 121 result that the energy difference between the lowest state at 122 the T_d structure and its dissociation limit ReH₂+H₂ is rather 123 small. Although there are only small amount of rhenium 124 compounds in nature, it has been reported that these compounds can be used as effective catalyzes for the activation 126 of C–H bonds^{28,29} as well as hydrogen strorages. 127

In the light of ReH_4 possibly possessing the Jahn–Teller 128 distortion, along with large SOC, it would be interesting for 129 us to explore further the potential energy surface of ReH_4 . 130 This paper focuses on SOC effects on the stability of ReH_4 . 131 Computational methods are described in detail in the next 132 section. In the third section, the deformation paths of ReH_4 133 AQ:

TABLE I. Comparison of the stabilities of MH_4 , MH_2+H_2 , and $M+2H_2$, where M is a transition element in the third series. The geometrical structures were optimized using the MCSCF/SBKJC method and their relative energies were refined at the MCSCF+MRMP2/SBKJC+p level of theory.

LaH ₄	$T_{\rm d}$		$\mathrm{D}_{4\mathrm{h}}$		MH_2+H_2		$M+2H_2$	
	51.0	$^{2}T_{2}$	60.8	$^{2}E_{u}$	0.0	$^{2}A_{1}$	12.3	^{2}D
HfH_4	-42.6	$^{1}A_{1}$	14.5	$^{1}A_{1g}$	0.0	$^{1}A_{1}$	24.1	^{3}F
TaH_4	-40.0	^{2}E	11.1	$^{2}A_{1g}$	0.0	4A_2	8.0	4 F
WH_4	-24.6	$^{3}A_{2}$	54.5	$^{3}E_{g}$	0.0	$^{5}\mathrm{B}_{2}$	15.1	7 S
ReH_4	-5.8	$^{2}\mathrm{E}$	44.8	$^{6}E_{\mathrm{u}}^{\mathrm{c}}$	0.0	$^6\Sigma_g^+$	-2.7	6 S
OsH_4	-42.8	$^{1}A_{1}$	15.9	$^{5}\mathrm{B}_{\mathrm{2g}}$	0.0	$^{3}B_{1}^{\circ}$	5.4	⁵ D
IrH_4	-0.2	$^{2}T_{2}$	77.1	$^{2}A_{2u}$	0.0	$^{2}A_{1}$	32.2	4 F
PtH_4	61.3	$^{3}T_{2}$	74.4	$^{3}E_{u}$	0.0	$^{1}A_{1}$	54.1	^{3}D
							62.2	^{3}F
AuH_4	70.1	4A_1	34.6	$^{2}E_{u}$	0.0	$^{2}\mathrm{B}_{2}$	-9.3	^{2}S
HgH_4	132.7	¹ E	48.0	$^{1}A_{1g}$	0.0	$^{1}\Sigma_{g}^{+}$	-26.1	^{1}S

134 within an adiabatic picture are first discussed, and then, the 135 dissociation path from the most stable structure of ReH₄ is 136 carefully explored and the energy barrier for the dissociation 137 is estimated. It is revealed that SOC effects play essential 138 roles in the dissociation reaction of ReH₄.

139 II. METHODS OF CALCULATION

1-3

140 Optimization of the stationary structures for ReH₄ was 141 performed using the full optimized reaction space multicon-142 figuration self-consistent field (MCSCF) method with the 143 SBKJC RECPs and the associated basis sets for Re atom¹² 144 and the 31G basis set for H atoms, where they are augmented 145 by a set of polarization functions, respectively.³⁰ The MC-146 SCF active space includes 13 orbitals correlating to the 5d, 147 6s, and 6p orbitals of Re atom and 1s orbitals of H atoms in 148 the dissociation limit, and 11 electrons are included in this 149 MCSCF active space. The relative energies of the stationary 150 structures were recalculated by using the second-order mul-**151** tireference Møller–Plesset perturbation (MRMP2) method, ³¹ 152 where the results were excluded when intruder states ap-153 peared.

154 The SOC integrals at all points on the potential energy 155 surfaces of low-lying states were computed using 156 MCSCF/SBKJC+p optimized orbitals by the state-averaged 157 technique with equal weights (see discussion below). 32 Since 158 SBKJC belongs to RECP basis sets, one-electron approxima-159 tion [or effective nuclear charge (Z_{eff}) approximation] should **160** be employed for estimation of SOC effects. ²² In order to 161 keep the size of SOC matrices computationally tractable, 162 adiabatic states whose energies are lower in energy than a 163 specific upper limit of energies were included in SOC 164 matrices.

All of these calculations were carried out using the **166** GAMESS suite of program codes.³⁴

167 III. RESULTS AND DISCUSSION

168 A. Jahn-Teller and pseudo-Jahn-Teller deformation

In order to systematically explore the potential energy 169 170 surface of the lowest state in ReH₄, Jahn–Teller and pseudo-171 Jahn-Teller theories were applied. The highest symmetries 172 for tetrahydrides are D_{4h} and T_d , and the lowest states 173 (ground states) in ReH₄ are found to be ${}^{6}E_{u}$ and ${}^{2}E$ at the D_{4h} 174 and T_d structures, respectively, at the MRMP2 level of 175 theory (see Table I).²⁴

176 1. D_{4h} structure

The D_{4h} structure has ⁶E_u ground state and is remarkably 178 higher in energy than the T_d structure (Fig. 1). Unfortunately, 179 normal-mode analysis could not be performed for such a **180** doubly degenerate state, but single-point energy calculations 181 at the distorted geometries along appropriate nuclear dis-182 placements suggest that this state has two imaginary frequen-183 cies for b_{2g} and e_u modes. The b_{2g} geometrical deformation 184 is explained by Jahn-Teller effects as follows. Based on Tay-185 lor expansion of an electronic Hamiltonian in the power series of a nuclear displacement Q at the D_{4h} structure (Q 186 =0), the total energy $E_0(Q)$ of the lowest state at a displaced 187 structure can be expanded into

$$E_{0}(Q) = \langle 0|H(Q)|0\rangle = \left\langle 0 \middle| H(0) + \left(\frac{\partial H}{\partial Q}\right)_{0} Q + \frac{1}{2} \left(\frac{\partial^{2} H}{\partial Q^{2}}\right)_{0} Q^{2} + \cdots \middle| 0 \right\rangle,$$
189

$$= \langle 0 | H(0) | 0 \rangle + \left\langle 0 \left| \left(\frac{\partial H}{\partial Q} \right)_0 \right| 0 \right\rangle Q$$

$$+ \frac{1}{2} \left\langle 0 \left| \left(\frac{\partial^2 H}{\partial Q^2} \right)_0 \right| 0 \right\rangle Q^2 + \cdots$$
192

190

When $|0\rangle \approx |{}^{6}E_{u}\rangle$ is used, Q (or $\partial H/\partial Q$) needs to belong to 193 the irreducible representation provided by the product of E_u 194 (bra) and E_n (ket) in order to obtain Jahn–Teller stabilization 195 $\langle 0|(\partial H/\partial Q)_0|0\rangle < 0$. The product of state symmetry (${}^{6}E_{n}$) 196 provides four irreducible representations,

$$E_{\mathbf{u}} \otimes E_{\mathbf{u}} = a_{1\mathbf{g}} \oplus a_{2\mathbf{g}} \oplus b_{1\mathbf{g}} \oplus b_{2\mathbf{g}}.$$

A totally symmetric a_{1g} motion does not provide any energy 199 lowering or any geometrical deformation since the geometry 200 has been optimized within D_{4h} symmetry. There is no a_{2g} 201 motion for this molecule. The b_{1g} and b_{2g} motions provide 202 rhombic and rectangular structures [see Fig. 2(a)]. Geometri- 203 cal optimizations with the constraint of D_{2h} symmetry prove 204 that on the lowest sextet potential energy surface, no stable 205 rhombic structures exist while two identical rectangular 206 structures have been found. The lowest states at the two rect- 207 angular structures (D_{2h}) are ${}^6B_{2u}$ and ${}^6B_{3u}$, which are com- 208 pletely identical except for the 90° rotation around the C₂ 209 axis perpendicular to the molecular plane. 35 These rectangu- 210 lar structures have one imaginary-frequency mode, $b_{3\mu}$ (or 211 b₂₁₁), which is described as pseudo-Jahn-Teller distortion 212 along this mode to produce a planar C_{2v} structure. Geometry 213 optimization with the constraint of planar C_{2v} symmetry pro- 214 vides the dissociation to $ReH_2(^6\Sigma_g^+) + H_2(^1\Sigma_g^+)$.

As mentioned above, another geometrical deformation 216 of the D_{4h} structure needs to be considered: a geometrical 217 displacement along the e_u motion derives two identical pla- 218 nar C_{2v} structures. These deformations can be explained by 219 pseudo-Jahn-Teller theory. The lowest state at the C_{2v} struc- 220 ture is ⁶A₁ and geometry optimization for this state provides 221 the dissociation to linear ReH₂($^{6}\Sigma_{g}^{+}$)+H₂($^{1}\Sigma_{g}^{+}$). Thus, no en- 222 ergy minima are located on the potential energy surface of 223 the lowest sextet state when a planar structure is chosen as 224 the initial geometry. We also examined the displacements 225 along out-of-plane modes, but no energy lowering was ob- 226 tained on the potential energy surface of the lowest sextet 227 state.

2. T_d structure

The lowest state (ground state) at the optimized T_d struc- 230 ture is ²E as described above. The present MCSCF calcula- 231 tions suggest that the T_d structure on the potential energy 232 surface of the lowest state is slightly deformed into two dif- 233 ferent D_{2d} structures and that the lowest states of these D_{2d} 234 1-4 Koseki et al. J. Chem. Phys. **133**, 1 (2010)

FIG. 2. Geometrical deformation paths on the potential energy surfaces of (a) the lowest sextet state, (b) the lowest doublet state, and (c) the lowest quartet state. The total energy explicitly rises along the red-crossed paths.

235 structures are 2A_1 and 2B_1 , respectively, the 2B_1 state being 236 slightly lower in energy than the 2A_1 state [see Fig. 2(b)]. 237 However, dynamic correlation effects estimated by using the 238 MRMP2 method make the T_d structure (2E state) slightly 239 lower than the D_{2d} ones (2A_1 and 2B_1 states) and indicate 240 that no Jahn–Teller distortion occurs in this 2E state at the T_d 241 structure.

As shown in Table II, the 2 E state at the T_d structure is 243 the most stable on the potential energy surface of the lowest 244 doublet state. This state is apparently lower in energy than 245 the lowest doublet state in the dissociation limit. However, 246 the ground state in the dissociation limit is $ReH_2(^6\Sigma_g^+)$ 247 $+H_2(^1\Sigma_g^+)$ and is lower in energy than the T_d structure (2E) 248 by 12.9 kcal/mol at the MCSCF level of theory. Again, dy-249 namic correlation effects estimated by using the MRMP2 250 method make the T_d structure lower in energy than the 251 ground state in the dissociation limit by 6.7 kcal/mol. Further 252 investigation suggested that the other stationary structures on 253 the lowest doublet state are apparently higher in energy than 254 the T_d structure, as shown in Table II.

3. Lowest quartet state

The potential energy surfaces of the lowest doublet and 256 sextet states in the target molecule were explored in the pre-257 vious two sections. It is necessary to examine the potential 258 AQ: energy surface of the lowest quartet state of this molecule as 259 well. The lowest quartet states are relatively low-lying in 260 energy at both D_{4h} and T_d structures, as shown in Table II, in 261 comparison with their ground states.

255

Two relatively stable stationary structures were found on 263 the lowest quartet potential energy surface, $D_{2d}(^4A_2)$ and 264 planar $C_{2v}(^4B_2)$ structures [see Fig. 2(c)]. The 4B_2 state at the **265** planar C_{2v} structure is higher in energy than the most stable 266 doublet state (²E at the T_d structure) by only 1.6 kcal/mol 267 (MRMP2). The planar $C_{2v}(^4B_2)$ structure has one imaginary 268 frequency and its motion is out-of-plane. Geometry optimi- 269 zation starting at a displaced structure along this out-of-plane 270 motion finally provides the $D_{2d}(^4A_2)$ structure. The 4A_2 state 271 at the D_{2d} structure is lower in energy than the most stable $\ensuremath{ ext{272}}$ doublet state (${}^{2}E$ at the T_{d} structure) by 2.1 kcal/mol 273 (MRMP2). Even though the $D_{2d}(^4A_2)$ structure also has one 274 imaginary frequency at the MCSCF level of theory, it is 275 found after the inclusion of dynamic correlation effects 276 (MRMP2) that the deformation to a nonsymmetrical struc- 277 ture is an artifact. Thus, it can be concluded that the global 278 energy minimum for ReH₄ is the $D_{2d}(^4A_2)$ structure and it is 279 lower in energy than the dissociation limit by 8.8 kcal/mol at 280 the MRMP2 level of theory (see Table II). This conclusion is 281 consistent with the previous experimental suggestion re- 282 ported by Wang and Andrews.27

B. Deformation paths

Since strong SOC effects are expected in such heavy 285 metal compounds, it would be interesting to investigate po-286 tential energy surfaces of low-lying states between the stable 287 structures of different spin-multiplicities. In the present in-288 vestigation, one of H–Re–H angles is taken as the reaction 289 coordinate from the T_d structure (2E) to the D_{2d} structure 290 (4A_2), and D_{2d} symmetry is maintained along the whole 291 range of the reaction path [see 3-2 in Fig. 2(c)].

The lowest state (${}^{2}E$) at the T_d structure is split into ${}^{2}A_{1}$ 293 and ${}^{2}B_{1}$, when the structure is deformed into a D_{2d} structure, 294 while the lowest state $({}^{4}A_{2})$ at the D_{2d} structure correlates 295 with the lowest quartet state $({}^{4}T_{1})$ at the T_{d} structure. Since 296 the 4T_1 state is split into 4A_2 and 4E states by geometrical 297 deformation of the T_d structure to a D_{2d} structure, state av- 298 eraging was performed over four states, the lowest ²A₁, ²B₁, ²⁹⁹ ⁴A₂, and ⁴E states. Figure 3 shows potential energy curves of **300** low-lying adiabatic and spin-mixed states obtained at the 301 four-state-averaged MCSCF level of theory with equal 302 weights. Although the ²B₁ state becomes slightly stable at **303** the beginning of displacement from the T_d structure, the po- 304 tential energy curves of both doublet states (${}^{2}B_{1}$ and ${}^{2}A_{1}$) 305 finally increase [Fig. 3(a)]. The potential energy curve of the 306 lowest E state increases immediately, while that of the lowest 307 ⁴A₂ state rapidly decreases, and this state becomes the lowest 308 state in the vicinity of the stable D_{2d} structure. Since the 309 spin-multiplicities of the lowest states at the T_d and D_{2d} 310 1-5

TABLE II. Stationary geometries of ReH₄. The geometrical structures were optimized using the MCSCF/SBKJC+p method and their relative energies were refined at the MCSCF+MRMP2/SBKJC+p level of theory.

Structure	Symmetry	State	Re–H (Å)	H–Re–H (deg)	MCSCF (kcal/mol)	MRMP2 (kcal/mol)	Imaginary frequency ^a (cm ⁻¹)
Planar	$\mathrm{D_{4h}}$	⁶ E _u	1.801	90.0	55.1	44.6	
		$^{4}E_{u}$	1.828	90.0	57.2	48.4	
		$^{2}E_{u}$	1.779	90.0	97.6	91.9	
		$^{2}A_{1g}$	1.781	90.0	96.4	93.4	i2512
							i2255
							i1138
							(e)
	C_{2v}	4B_2	1.761	63.7	4.9	-5.1	i109
			1.667	154.7			
		$^{2}A_{1}$	1.643	57.5	42.6	33.8	i2133
			1.770	156.4			i441
Tetrahedral	T_d	^{2}E	1.671	109.5	12.9	-6.7	
		$^{4}T_{1}$	1.714	109.5	24.0	8.4	
	D_{2d}	4A_2	1.716	73.5	5.5	-8.8	i2633
				130.0			(e)
		$^{2}B_{1}$	1.671	107.47	3.2	-5.4	p.d.
				113.55			
Rhombic	D_{2h}	$^{6}B_{2u}$	1.798	90.0	53.7	45.6	i1723
			1.802				i751
Rectangular	D_{2h}	$^{6}B_{2u}$	1.781	57.0	40.8	29.1	i891
				123.0			
Square pyramidal	C_{4v}	$^{2}A_{1}$	1.646	73.3	17.0	5.8	i2201
		^{4}E	1.707	79.5	24.1	9.2	i2011
Distorted-pyramidal	C_{2v}	$^{2}A_{1}$	1.641	75.9	15.2	6.0	p.d.
Re $H_2(^6\Sigma_g^+) + H_2(^1\Sigma_g^+)$			1.820	180.0	0	0	
Re $H_2(^4\Pi_g) + H_2(^1\Sigma_g^+)$			(1.820)	180.0	50.8	47.2	
Re $H_2(^2\Sigma_g^+) + H_2(^1\Sigma_g^+)$			(1.820)	180.0	74.9	66.7	
$Re(^{6}S) + 2H_{2}(^{1}\Sigma_{g}^{+})$					-5.4	-2.8	

^a"p.d." means "positive definite."

311 structures are different, their potential energy curves of the 312 doublet and quartet states run across each other within an 313 adiabatic picture, as shown in Fig. 3(a).

When SOC effects are considered within D_{2d} symmetry, 315 both 2A_1 and 2B_1 states belong to $E_{1/2}$ in the double-group 316 representation, while the 4A_2 state is split into $E_{1/2}$ and $E_{3/2}$. 317 — Accordingly, avoided crossings occur among the poten-318 tial energy curves of $E_{1/2}$ states and among those of $E_{3/2}$ 319 states. Because of the large SOC integrals in such heavy 320 metal compounds, large energy splittings among spin-mixed 321 states make the lowest spin-mixed state considerably low-322 ered.

This is the reason why the potential energy curve of the 324 lowest spin-mixed state monotonically decreases along the 325 deformation path from the T_d structure to the D_{2d} structure 326 [Fig. 3(b)]. This result is explained as follows: the lowest 327 $E_{1/2}$ state principally has a 2B_1 adiabatic component near the 328 T_d structure, while it mainly has a 4A_2 adiabatic component 329 after the crossing (H–Re–H<100°) between the potential 330 energy curves of the adiabatic 2B_1 and 4A_2 states. Thus, as a 331 result, no energy barrier is obtained along the geometrical 332 deformation from the T_d structure to the D_{2d} structure in a 333 relativistic picture.

C. Dissociation paths into ReH₂+H₂

As described in Sec. III A, the lowest state (^6E_u) at the 335 AQ: D_{4h} structure is very high in energy and no energy barrier is 336 found along the C_{2v} dissociation paths starting at the D_{4h} 337 structure to the ground state $ReH_2(^6\Sigma_g^+)+H_2(^1\Sigma_g^+)$ in the dissociation limit. On the other hand, the global minimum has a 339 D_{2d} structure and its lowest state is not sextet but quartet 340 $(^4A_2)$, as discussed in the previous section. In such heavy 341 metal compounds, it is necessary to consider the SOC effects 342 AQ: #8 among low-lying quartet and sextet states in order to obtain 343 reasonable dissociation paths. Note that the dissociation limit 344 ReH_3+H , as well as $Re+2H_2$, is apparently higher in energy 345 than $ReH_2(^6\Sigma_g^+)+H_2(^1\Sigma_g^+)$.

When the reaction coordinate is assumed to be the dis- 347 tance between the Re atom and the geometrical center of the 348 leaving hydrogen molecule and molecular symmetry (C_{2v}) is 349 maintained along the whole range of the dissociation path 350 [see 3-3 in Fig. 2(c)], the potential energy curves of low- 351 lying states were calculated, as shown in Fig. 4, where the 352 horizontal axis in this figure is taken as the distance between 353 the Re atom and one of the leaving hydrogen atoms. State 354 averaging was performed over two states, the lowest 4A_2 355 state (lowest state at the D_{2d} structure) and the lowest 6A_1 356 state (ground state in the dissociation limit) along the C_{2v} 357

1-6 Koseki et al. J. Chem. Phys. **133**, 1 (2010)

FIG. 3. Potential energy curves of (a) low-lying adiabatic states obtained using four-state averaged MCSCF methods with equal weights and (b) low-lying spin-mixed states obtained after inclusion of SOC effects. (c) Geometrical changes along the $C_{2\nu}$ dissociation path (see the text).

FIG. 4. Potential energy curves of (a) low-lying adiabatic states obtained using four-state averaged MCSCF methods with equal weights and (b) low-lying spin-mixed states obtained after inclusion of SOC effects. (c) Geometrical changes along the $C_{2\nu}$ dissociation path (see the text).

358 dissociation path. Since it is meaningless for the geometry to 359 be optimized for the lowest quartet or the lowest sextet state 360 at each point of the dissociation path, the linear dissociation 361 path is assumed. (Optimized geometry will be reported in the 362 following discussion.)

As shown in Fig. 4(a), the potential energy curve of the 363 lowest quartet state rapidly rises as the Re-H distance in- 364 creases. The energy maximum appears at the Re-H distance 365 of 2.944 Å on the lowest quartet state $(^{4}A_{2})$. The energy 366 barrier on the lowest quartet state for the dissociation reac- 367

368 tion is estimated to be very high, partly because geometry 369 optimization has not yet been performed. Within an adiabatic 370 picture, this quartet state correlates not to the ground state, 371 $\operatorname{ReH}_2(^6\Sigma_g^+) + \operatorname{H}_2(^1\Sigma_g^+)$, but to one of the excited states, 372 $\operatorname{ReH}_2(^4\Pi) + \operatorname{H}_2(^1\Sigma_g^+)$, in the dissociation limit. On the other 373 hand, the lowest sextet state $(^6A_1)$ holds a local minimum at 374 around 2 Å and peaked at 2.5 Å; subsequently, the energy 375 remarkably decreases as the Re–H distance increases and 376 dissociates into the ground state $\operatorname{ReH}_2(^6\Sigma_g^+) + \operatorname{H}_2(^1\Sigma_g^+)$ in the 377 dissociation limit.

When describing the dissociation reaction within an 379 adiabatic picture, the D_{2d} structure (4A_2) should overcome 380 the energy maximum on the potential energy surface of the 381 lowest quartet and then be deactivated into the ground state, 382 or it should be promoted to the lowest sextet state first, and 383 then the dissociation reaction is accelerated on the repulsive 384 potential energy surface of the lowest sextet state. The main 385 configurations of the lowest quartet and sextet states within 386 C_{2v} symmetry are

387
$${}^{4}A_{2}$$
:(core) $(1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(1b_{1})^{2}(1a_{2})^{1}(3a_{1})^{1}(4a_{1})^{1}$

388 and

$${}^{6}A_{1} : (core)(1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(1b_{1})^{2}(1a_{2})^{1}(3a_{1})^{1}(4a_{1})^{1}(2b_{2})^{1}.$$

390 The transition from the 4A_2 state to the 6A_1 state corresponds 391 principally to the transition from the $1b_1$ orbital to the $2b_2$ 392 orbital. However, since large SOCs occur between the lowest 393 quartet and sextet states in such heavy metal compounds, it 394 can be easily understood that the crossing point between the 395 potential energy curves of the lowest quartet and sextet states 396 is energetically and geometrically close to a transition state 397 on the potential energy surface of the lowest spin-mixed state 398 after inclusion of SOC effects. This is explained as follows: 399 the lowest quartet state 4A_2 and the lowest state 6A_1 split into 400 two and three spin-mixed states because of SOC effects, re-401 spectively, and all these spin-mixed states belong to $E_{1/2}$ in 402 C_{2v} double-group representation. Accordingly, avoided 403 crossings occur among the potential energy curves of these 404 spin-mixed states, as shown in Fig. 4(b).

The potential crossing point between the lowest quartet 406 and sextet states appears at the Re-H distances of 2.784 Å **407** [see Fig. 4(a)] and is apparently lower in energy than the 408 energy maximum on the potential energy curve of the lowest 409 quartet state. The energy difference between this crossing **410** point and the reactant [namely, the stable D_{2d} structure **411** $(^{4}A_{2})$] is calculated to be 29 071 cm⁻¹ (83.1 kcal/mol) at the 412 MCSCF level of theory. When the SO effects are included, 413 the energy maximum on the potential energy curve of the 414 lowest spin-mixed state appears at the Re-H distances of 415 2.875 Å and it is higher in energy than the reactant by 416 26 394 cm⁻¹ (75.5 kcal/mol). As mentioned above, the ge-417 ometry has not yet been optimized for either the lowest quar-418 tet state or the lowest sextet state, so that the energy barrier is 419 apparently overestimated. Unfortunately, geometry optimiza-420 tion cannot be performed after inclusion of SOC effects at **421** the present stage, but the minimum-energy crossing (MEX) 422 point^{36–38} between the lowest quartet and sextet states must

be energetically and geometrically close to the true transition 423 state on the potential energy surface of the lowest spin-mixed 424 state, as discussed above. 425

First, the MEX point has been searched within $C_{2\nu}$ sym-426 metry. The geometry at the $C_{2\nu}$ MEX point is found to have 427 Re–H bonds of 1.762 Å with the H–Re–H angle of 86.1° for 428 the ReH $_2$ moiety and the Re–H distances of 2.698 Å with the 429 H–H distance of 1.430 Å for the leaving hydrogen molecule. 430 The energy difference between the MEX point and the reactant is calculated to be 23 539 cm $^{-1}$ (67.3 kcal/mol) with 432 state-specific MCSCF calculations having been performed 433 for both lowest quartet and sextet states. The MRMP2 calculations raise this difference to 28 080 cm $^{-1}$ (80.3 kcal/mol). 435 Note that the reactant is lower in energy than the dissociation 436 limit by 3442 cm $^{-1}$ (9.8 kcal/mol) at the MRMP2 level of 437 theory, as described in the previous section.

It is natural to consider that the geometrical deformation 439 from the C_{2v} MEX point to a lower symmetry MEX point 440 may provide a lower energy barrier obtained after inclusion 441 of SOC effects. In the present investigation, MEX point 442 searches were carried out using twisted (C₂) and bent (C_s) 443 structures [see 3-3 in Fig. 2(c)]. The calculated results indi- 444 cate that the geometrical deformation from the C_{2v} structure 445 to a C2 structure and to a Cs structure remarkably reduces the 446 energy difference between the MEX point and the reactant to 447 6807 cm $^{-1}$ (19.5 kcal/mol) for C₂ symmetry and to 448 9748 cm⁻¹ (27.9 kcal/mol) for C_s symmetry. The results 449 show that the C_2 path is more preferred for the dissociation. 450 The geometry at the C₂ MEX point has Re-H bonds of 451 1.704 Å with the H-Re-H angle of 86.1° and Re-H dis- 452 tances of 2.169 Å with the H-H distance of 0.794 Å for the 453 leaving hydrogen molecule. The twisted angle from the C_{2v} 454 to C_2 structure is only 1.6°. The stabilization of the C_2 MEX 455 point would be caused by the fact that the H-H distance is 456 considerably shortened in comparison with that for the C_{2v} 457 MEX point [Fig. 4(c)]. We also examined whether or not a 458 lower C₁ MEX point exists, but no lower C₁ MEX point was 459

In order to confirm that there is no energy barrier be- 461 tween the C₂ MEX point and the reactant on the lowest quar- 462 tet potential energy surface and between the C2 MEX point 463 and the dissociation limit $ReH_2(^6\Sigma_g^+) + H_2(^1\Sigma_g^+)$ on the lowest 464 sextet potential energy surface, steepest descent paths start- 465 ing at the C₂ MEX point were generated on the potential 466 energy surfaces of both lowest quartet and sextet states. Fig- 467 ure 5(a) shows that no energy barrier exists for both paths 468 from the C₂ MEX point to the reactant and to the dissocia- 469 tion limit. Note that Fig. 5(c) shows the dependency of the 470 Re-H distances and the H-Re-H angle for the leaving hy- 471 drogen molecule on the reaction coordinate "s." As described 472 above, after inclusion of SOC effects, avoided crossing oc- 473 curs for the potential energy curves of the lowest two spin- 474 mixed states $(E_{1/2})$ [see Fig. 5(b)], which originates from the 475 quartet and sextet adiabatic states. In these calculations, in- 476 stead of state-specific MCSCF methods, state averaging was 477 performed over two states, the lowest ⁴A₂ and ⁶A₁ states, so 478 that the crossing point between these states is about 479 1800 cm⁻¹ (5.1 kcal/mol) higher in energy that obtained by 480 using state-specific MCSCF methods. After inclusion of 481

AQ:

531
532 FIG. 5. Potential energy curves of (a) lowest quartet (red) and lowest sextet
533 (black) states obtained using state-specific MCSCF methods (solid lines)
534 and four-state averaged MCSCF methods with equal weights (broken lines)
535 (b) Low-lying spin-mixed states (blue) obtained after inclusion of SOC effects. (c) Re–H distance and H–Re–H angle for the leaving hydrogen mol537 ecule along the minimum-energy paths on the lowest quartet (negative s)
538 and sextet (positive s) states.

530

SOC effects [see Fig. 5(b)], the energy maximum on the lowest spin-mixed state appears near the C₂ MEX point and it is the transition state for the dissociation reaction. The energy barrier is calculated to be 5643 cm⁻¹ (16.1 kcal/mol) on the potential energy surface of this lowest spin-mixed state. Note that on the basis of our experiences described in the previous sections, the state-specific MCSCF method makes this barrier smaller, but MRMP2 calculations make it larger because of larger effects of dynamic correlation in the reactant (see Table II).

IV. SUMMARY

The potential energy surface of low-lying states in rhenium tetrahydride was explored by using the MCSCF method together with the SBKJC basis sets augmented by a set of f functions on rhenium atom and by a set of p functions on hydrogen atoms, followed by SOC calculations. The relative energies at the stationary geometries were recalculated by the MRMP2 method.

The most stable structure of ReH₄ has a D_{2d} structure and its ground state is ⁴A₂. It was found that this is lower in energy than the dissociation limit, $ReH_2(^{6}\Sigma_g^+) + H_2(^{1}\Sigma_g^+)$, by 8.8 kcal/mol after dynamic correlation effects are considered by using the MRMP2 method. This is consistent with previous results reported by Andrews et al. 27 Since the spinmultiplicities of the lowest states are different, the dissociation reaction of ReH4 cannot occur without electronic transition from the lowest quartet state to the lowest sextet state. This transition can easily occur because of the strong SOC effects among low-lying states in such heavy metal compounds. First, the C2v MEX point was located and the geometrical deformations to C2 and Cs symmetries were examined. Finally, it was revealed that the C2 MEX point is higher in energy than the reactant with D_{2d} structure (4A_2) by 6807 cm⁻¹ (19.5 kcal/mol) at the MCSCF level of theory and by 9184 cm⁻¹ (26.3 kcal/mol) at the MRMP2 level of theory. After inclusion of SOC effects, the potential energy surfaces of the lowest quartet and sextet states avoid across each other and an energy maximum appears on the potential energy surface of the lowest spin-mixed state [see Fig. 5(b)]. This energy maximum is recognized as the transition state for the dissociation reaction, $ReH_4 \rightarrow ReH_2 + H_2$.

ACKNOWLEDGMENTS

This work was partly supported by a Grant-in-Aid for Scientific Research on Priority Areas "Molecular Theory for Real Systems" from the MEXT of the Japanese Government (Grant Nos. 19029040 and 20038042).

¹B. A. Heß, C. M. Marian, and S. D. Peyerimhoff, in *Modern Electronic Structure Theory, Part I*, edited by D. R. Yarkony (World Scientific, Singapore, 1995), p. 152; C. M. Marian, in *Problem Solving in Computational Molecular Science*, edited by S. Wilson and G. H. F. Diercksen (Kluwer Academic, Dordrecht, 1997), p. 291; C. M. Marian, in *Reviews in Computational Chemistry*, edited by K. B. Lipowitz and D. B. Boyd (Wiley-VCH, New York, 2001), Vol. 17, p. 99.

²K. Balasubramanian, *Relativistic Effects in Chemistry, Part A and B* (Wiley, New York, 1997).

³D. G. Fedorov, S. Koseki, M. W. Schmidt, and M. S. Gordon, Int. Rev. Phys. Chem. **22**, 551 (2003); D. G. Fedorov, M. W. Schmidt, S. Koseki,

Mol. Phys. 93, 79 (1998).

539 and M. S. Gordon, Recent Advances in Relativistic Molecular Theory 540 (World Scientific, Singapore, 2004), Vol. 5, p. 107. 541 ⁴L. L. Foldy and S. A. Wouthhuysen, Phys. Rev. 78, 29 (1950). ⁵ M. Douglas and N. M. Kroll, Ann. Phys. **82**, 89 (1974). 542 ⁶ K. G. Dyall, I. P. Grant, C. T. Johnson, F. A. Parpia, and E. P. Plummer, 543 544 Comput. Phys. Commun. 55, 425 (1989). ⁷T. Yanai, H. Nakano, T. Nakajima, T. Tsuneda, S. Hirata, Y. Kawashima, 545 546 T. Nakao, M. Kamiya, H. Sekino, and K. Hirao, Lect. Notes Comput. Sci. 547 **2660**, 84 (2003) and references therein. 548 M. Reiher and A. Wolf, J. Chem. Phys. 121, 2037 (2004); M. Reiher and A. Wolf, ibid. 121, 10945 (2004); A. Wolf and M. Reiher, ibid. 124, 549 550 064102 (2006); A. Wolf and M. Reiher, ibid. 124, 064103 (2006). ⁹P. Krekora, Q. Su, and R. Grobe, Phys. Rev. A **70**, 054101 (2004). 551 ¹⁰D. Kędziera, J. Chem. Phys. **123**, 074109 (2005). 552 ¹¹Y. Watanabe, H. Tatewaki, and T. Koga, J. Comput. Chem. 27, 48 553 554 (2006); T. Tsuchiya, M. Abe, T. Nakajima, and K. Hirao, J. Chem. Phys. 555 **115**, 4463 (2001). ¹²W. J. Stevens and M. Krauss, Chem. Phys. Lett. **86**, 320 (1982); W. J. 556 557 Stevens, H. Basch, and M. Krauss, J. Chem. Phys. 81, 6026 (1984); W. 558 J. Stevens, H. Basch, M. Krauss, and P. Jasien, Can. J. Chem. 70, 612 559 (1992); T. R. Cundari and W. J. Stevens, J. Chem. Phys. 98, 5555 (1993). ¹³P. J. Hay and W. R. Wadt, J. Chem. Phys. **82**, 270 (1985); W. R. Wadt 560 561 and P. J. Hay, ibid. 82, 284 (1985); P. J. Hay and W. R. Wadt, ibid. 82, 562 299 (1985). 563 W. C. Ermler, R. B. Ross, and P. A. Christiansen, Adv. Quantum Chem. 19, 139 (1988); R. B. Ross, J. M. Powers, T. Atashroo, W. C. Ermler, L. 564 565 A. Lajohn, and P. A. Christiansen, J. Chem. Phys. 93, 6654 (1990). ¹⁵W. Küchle, M. Dolg, H. Stoll, and H. Preuss, Mol. Phys. 74, 1245 566 567 (1991); M. Kaupp, P. R. Schleyer, H. Stoll, and H. J. Preuss, J. Chem. 568 Phys. 94, 1360 (1991); A. Bergner, M. Dolg, W. Kuechle, H. Stoll, and H. Preuss, Mol. Phys. 80, 1431 (1993); M. Dolg, H. Stoll, H. Preuss, and 569 R. M. Pitzer, J. Phys. Chem. 97, 5852 (1993). 570 ¹⁶ Y. Sakai, Y. E. Miyoshi, M. Klobukowski, and S. Huzinaga, J. Comput. 571 572 Chem. 8, 226 (1987); Y. Sakai, E. Miyoshi, M. Klobukowski, and S. Huzinaga, ibid. 8, 256 (1987); Y. Sakai, E. Miyoshi, M. Klobukowski, 573 574 and S. Huzinaga, J. Chem. Phys. 106, 8084 (1997); E. Miyoshi, Y. Sakai, K. Tanaka, and M. Masamura, J. Mol. Struct.: THEOCHEM 451. 73 575 576 (1998); Y. Sakai, E. Miyoshi, and H. Tatewaki, *ibid.* 451, 143 (1998). 577 S. Huzinaga, Can. J. Chem. 73, 619 (1995); M. Klobukowski, S. Huzi-578 naga, and Y. Sakai, in Computational Chemistry: Reviews of Current Trends, edited by J. Leszczynski (World Scientific, Singapore, 1999), Vol. 579 580 3, pp. 49-74; C. C. Lovallo and M. Klobukowski, J. Comput. Chem. 24, 581 1009 (2003); 25, 1206 (2004). 582 ¹⁸S. A. Decker and M. Klobukowski, J. Chem. Inf. Comput. Sci. 41, 1 583 (2001).¹⁹Y. Osanai, T. Noro, and E. Miyoshi, J. Chem. Phys. **117**, 9623 (2002). 584 ²⁰D. G. Fedorov and M. Klobukowski, Chem. Phys. Lett. **360**, 223 (2002). 585

²¹S. Koseki, Y. Ishihara, H. Umeda, D. G. Fedorov, and M. S. Gordon, J.

Phys. Chem. A 106, 785 (2002); S. Koseki, Y. Ishihara, H. Umeda, D. G.

Fedorov, M. W. Schmidt, and M. S. Gordon, ibid. 108, 4707 (2004); S.

1-9

586

587

588

```
Koseki, T. Matsushita, and M. S. Gordon, ibid. 110, 2560 (2006); S. 589
  Koseki and M. S. Gordon (unpublished).
<sup>22</sup> S. Koseki, M. W. Schmidt, and M. S. Gordon, J. Phys. Chem. 96, 10768 591 AQ:
  (1992); S. Koseki, M. S. Gordon, M. W. Schmidt, and N. Matsunaga, 592 #12
  ibid. 99, 12764 (1995); N. Matsunaga, S. Koseki, and M. S. Gordon, J. 593
  Chem. Phys. 104, 7988 (1996); S. Koseki, M. W. Schmidt, and M. S. 594
  Gordon, J. Phys. Chem. A 102, 10430 (1998); S. Koseki, D. G. Fedorov, 595
  M. W. Schmidt, and M. S. Gordon, ibid. 105, 8262 (2001).
<sup>23</sup>S. Koseki, Computational Methods in Sciences and Engineering, Theory 597
  and Computation: Old Problems and New Challenges, edited by G. Ma- 598
  roulis and T. Simos, (■, ■, 2008), Vol. 1, p. 257; S. Koseki, N. Shi- 599
  makura, Y. Fujimura, T. Asada, and H. Kono, J. Chem. Phys. 131, 600
  044122 (2009).
                                                                           601 AQ:
<sup>24</sup>T. Hisashima, T. Matsushita, T. Asada, and S. Koseki, Theor. Chem. Acc. 602 #13
  120, 85 (2008).
                                                                           603
<sup>25</sup>T. Matsushita, T. Asada, and S. Koseki, J. Phys. Chem. A 110, 13295 604
  (2006); J. Phys. Chem. C 111, 6897 (2007).
                                                                           605
<sup>26</sup>S. Koseki, T. Asada, and T. Matsushita, J. Comput. Theor. Nanosci. 6, 606
  1352 (2009); T. Asada, S. Hamamura, T. Matsushita, and S. Koseki, Res. 607
  Chem. Intermed. 35, 851 (2009).
                                                                           608
<sup>27</sup> X. Wang and L. Andrews, J. Phys. Chem. 107, 4081 (2003).
                                                                           609
<sup>28</sup> Y. Kuninobu, A. Kawata, and K. Takai, J. Am. Chem. Soc. 127, 13498 610
  (2005); Y. Kuninobu, Y. Tokunaga, A. Kawata, and K. Takai, ibid. 128, 611
  202 (2006); Y. Kuninobu, Y. Nishina, M. Shouho, and K. Takai, Angew. 612
  Chem., Int. Ed. ■, ■ (2006); Y. Kuninobu, A. Kawata, and K. Takai, 613
  Org. Lett. 7, 4823 (2005).
<sup>29</sup>T. Oshiki, H. Yamashita, K. Sawada, M. Utsunomiya, K. Takahashi, and 615 AQ:
  K. Takai, Organometallics 24, 6287 (2005).
                                                                           616 #14
^{30}The exponent of 0.869 was used for f functions in Re atom.
                                                                           617
<sup>31</sup> H. Nakano, J. Chem. Phys. 99, 7983 (1993).
                                                                           618
<sup>32</sup>Unfortunately, first-order or second-order configuration interaction wave 619
  functions could not be used, since it is too time-consuming to carry out 620
  such calculations in our laboratory.
                                                                           621
<sup>33</sup>The SOC matrices include all electronic states that total energies are 622
 lower than -80.190 hartree.
                                                                           623
<sup>34</sup> M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, 624
 J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. 625
  Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 626
                                                                           627
^{35}There is the arbitrariness that irreducible representations of D_{2h} point 628
  group depend on the choice of coordinate axes.
                                                                           629
<sup>36</sup>H. Köuppel, L. S. Cederbaum, and W. Domcke, Adv. Chem. Phys. 57, 59 630
                                                                           631 AQ:
<sup>37</sup>D. R. Yarkony, Int. Rev. Phys. Chem. 11, 195 (1992); J. Am. Chem. Soc. 632 #15
  114, 5406 (1992); D. R. Yarkony, Conical Intersections, edited by W. 633
  Domcke, D. R. Yarkony, and H. Köppel (World Scientific, New Jersey, 634
  2004), Chap. 3, p. 129.
                                                                           635
<sup>38</sup>N. Matsunaga and D. R. Yarkony, J. Chem. Phys. 107, 7825 (1997); 636
```

AUTHOR QUERIES — 056037JCP

- #1 Au: Please check changes in full title, byline and affiliations.
- #2 Au: Abstract must be self-contained. Please check our insertion.
- #3 Au: Please check definition of DFT added.
- #4 Au: Please cite specific section if possible.
- #5 Au: Please check display equation that follows.
- #6 Au: Please cite specific sections if possible.
- #7 Au: Please verify citation of Sec. IIIA.
- #8 Au: Please cite specific section if possible.
- #9 Au: Please cite specific section if possible.
- #10 Au: Please cite specific sections if possible.
- #11 Au: Please verify that the first author should be "Heß" not "Hess" in Ref. "Hess, Marian, Peyerimhoff, 1995".
- #12 Au: Please update Ref. 21(d) if possible.
- #13 Au: Please provide publisher and location for Ref. 23(a) and check page no. in Ref. 23(b).
- #14 Au: Please provide volume and page no. for Ref. 28(c).
- #15 Au: Please verify accuracy of author in Ref. 36.
- #16 Au: Please check changes in Table I.
- #17 Au: Please check changes in Table II.