MECH 463 -- Tutorial 2

1. Measurement of the logarithmic decrement provides a common experimental way to determine the damping factor of a lightly damped 1-DOF vibrating system. The logarithmic decrement δ is the logarithmic ratio of the amplitudes of successive samesign vibration peaks, $\delta = \ln(x_n/x_{n+1})$. Given that the response of a damped 1-DOF vibrating system is $x = e^{-\zeta_{pot}}$ (A $\cos \omega_d t$ - B $\sin \omega_d t$), determine the relationship between damping factor and logarithmic decrement.

Given solution for the transient response is:

$$sl = e^{-\frac{\pi}{2}}$$
 but $(A \cos \omega_{0}t - B \sin \omega_{0}t)$

To simplify the algebra, we shall choose the witial time olatum, $t = 0$ such that $A = 0$ ($sl = 0$ at $t = 0$). This means that we need only work with one constant, B .

 $\Rightarrow sl = -Be^{-\frac{\pi}{2}}$ bunt $sin' \omega_{0}t$

A vibration peak occurs when $\frac{\partial lel}{\partial t} = 0$
 $\Rightarrow \frac{\partial lel}{\partial t} = Be^{-\frac{\pi}{2}}$ bunt $(\frac{\pi}{2})$ sin' $\omega_{0}t - \omega_{0}t$ cos $\omega_{0}t = 0$

In general, $Be^{-\frac{\pi}{2}}$ bunt $(\frac{\pi}{2})$ sin' $\omega_{0}t - \omega_{0}t$ cos $\omega_{0}t = 0$
 $\Rightarrow tan \omega_{0}t = \frac{\sin \omega_{0}t}{\cos \omega_{0}t} = \frac{\omega_{0}t}{p\omega_{0}t}$ repeats every tl , or tl for tl sin' tl sin

2. The equation of motion of a 1-DOF damped vibrating system with harmonic forced excitation is $m \ddot{x} + c \ddot{x} + kx = F \cos(\omega_f t)$. Using the fourth of the four solution forms discussed in class (the one involving the constant D), determine the steady state response of the system.

Using complex notation:

$$f(t) = F\cos \omega_f t = Re \left[F(\cos \omega_f t + i \sin \omega_f t) \right] = Re \left[Fe^{i\omega_f t} \right]$$
Substitute $x = De^{i\omega_f t}$ to get particular solution:

$$mxi + cxi + kxi = Fe^{i\omega_f t} \qquad (using whole solution)$$

$$\Rightarrow (-m\omega_f^2 + i c \omega_f + k) De^{i\omega_f t} = Fe^{i\omega_f t}$$
This must be true for all $t \Rightarrow e^{i\omega_f t} \neq 0$

$$\Rightarrow D = \frac{F}{k - m\omega_f^2 + i c \omega_f} = \frac{F/k}{(1 - r^2) + i 2 gr}$$
where $\omega_n^2 = \frac{k}{m} \qquad r = \frac{\omega_f}{\omega_n} \qquad g = \frac{c}{2 \sqrt{km}}$
Response amplitude = $|D|$ phase = AD

Magnification = $\frac{|D|}{F/k} = \frac{1}{\sqrt{(1 - r^2)^2 + (2 gr)^2}}$

Phase lead = $AD = tan^{-1} \left(\frac{-2 gr}{1 - r^2} \right)$

3. The diagram shows an accelerometer. Use the result from Q2 to determine an equation for the frequency response curve of the accelerometer (= spring stretch amplitude per unit acceleration amplitude vs. normalized frequency).

acceleration amplitude vs. normalized frequency).

From FBD: $\sum F - msi + c(si - y) + k(si - y) = 0$ $\sum msi + cz + pz = -msi$ For siniusoidal motion: $y = y \cos \omega_f t$ Acceleration $y = -\omega_f^2 y \cos \omega_f t = y \cos \omega_f t$

Substitute in equation of motion: $R(x-y) \downarrow C$ $mz + Cz + kz = -mY \cos \omega_f t$ This is the same form as in Q2 with $F \rightarrow -mY$

Accel.
$$|D| = \frac{|D|}{\sqrt{k}} = \frac{|D|}{-F/m} - \frac{m}{R} \frac{|D|}{F/R} = \frac{-1/\omega^2}{\sqrt{(1-r^2)^2 + (2gr)^2}}$$