线性代数期中试卷 (2017.11.18)

一. 简答题(本题共5小题,每小题8分,共40分)

1. 已知向量组 $\{\alpha_1, \alpha_2, \alpha_3\}$ 线性无关, 求参数 t 使得向量组 $\{\beta_1, \beta_2, \beta_3\}$ 线性相关, 其中 $\beta_1 = \alpha_1 + 2\alpha_2 + 3\alpha_3, \beta_2 = 2\alpha_1 + 3\alpha_2 + \alpha_3, \beta_3 = t\alpha_1 + \alpha_2 + 2\alpha_3.$

2. 己知
$$A = \begin{pmatrix} x & x & x & y \\ x & x & y & y \\ x & y & y & y \\ y & y & y & y \end{pmatrix}$$
, 求 $\mathbf{r}(A)$.

3. 己知
$$A = \begin{pmatrix} 3 & 1 & 2 \\ 2 & -1 & 1 \\ 2 & 3 & 1 \end{pmatrix}$$
,求 A^{-1} .

4. 请找出 2×2 的实数矩阵 A 和 B 满足: $(E+A)^{-1} \neq E^{-1} + A^{-1}$ 和 $(E+B)^{-1} = E^{-1} + B^{-1}$.

5. 计算行列式:
$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ 2 & 2^2 & \cdots & 2^n \\ \vdots & \vdots & & \vdots \\ n & n^2 & \cdots & n^n \end{vmatrix}.$$

二.(15分) 己知
$$A = \begin{pmatrix} 1 & 1 & 2 & -1 \\ 3 & -1 & 2 & 5 \\ 1 & 3 & 4 & -5 \\ 2 & -2 & 0 & 6 \end{pmatrix}$$
.

- (1) 求齐次方程组 $Ax = \theta$ 的基础解系
- (2) 若 $\xi = (-2, 3, 1, 1)^T$ 满足 $A\xi = 2b$,求 b 并求方程组 Ax = b 的通解.

三.(10分) 已知3维列向量组
$$\{\alpha_1,\alpha_2,\alpha_3\}$$
 和 $\{\beta_1,\beta_2,\beta_3\}$,且经过初等行变换有 $(\alpha_1,\alpha_2,\alpha_3,\beta_1,\beta_2,\beta_3) \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 2 & -1 \\ 0 & 1 & 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 1 & 1 & 3 \end{pmatrix}$.

请将 $\alpha_1, \alpha_2, \alpha_3$ 表示为 $\beta_1, \beta_2, \beta_3$ 的线性组

四.(10分) 已知存在
$$x,y$$
 使得 $A=\begin{pmatrix}1&1&2\\1&-3&1\\4&-8&x\end{pmatrix}$ 和 $B=\begin{pmatrix}1&-1&3\\-3&-2&-2\\-3&y&2\end{pmatrix}$ 相似. 求 x,y 并计算 $\operatorname{tr}(B^*)$,其中 B^* 为 B 的伴随矩阵.

五. (10分) 己知
$$P^{-1}AP = D$$
,其中 $P = \begin{pmatrix} 1 & 0 & -2 \\ -1 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix}$, $D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. 计算矩阵 $B = A^2 + (2E - A)^{-1}$ 的特征值和特征向量.

六.(15分) 设 A 为 n 阶方阵 $(n \ge 2)$.

- (1) 证明: $(A^*)^T = (A^T)^*$, 其中 A^* , $(A^T)^*$ 分别为 A 和 A^T 的伴随矩阵.
- (2) 若偶数阶方阵 A 满足 $A^T = -A$, 证明: A^* 的所有元素之和为0.