1 Lámina de material polar de espesor d sobre un sustrato metálico infinito

Figure 1: Lámina polar (medio 2) de espesor d sobre metal perfecto; superstrate ϵ_1 .

Descripción. L'amina de material polar de espesor d sobre un sustrato met'alico infinito, que supondremos que se comporta como un conductor perfecto. Estudiar el caso l'imite $d \to .$

Ecuación característica. Ecuación dada:

$$-\epsilon_1 + \epsilon_{\infty,2} \frac{\omega_{L2}^2 - \omega^2}{\omega_{T2}^2 - \omega^2} + e^{2dk_x} \left(\epsilon_1 + \epsilon_{\infty,2} \frac{\omega_{L2}^2 - \omega^2}{\omega_{T2}^2 - \omega^2} \right) = 0.$$

$$\implies \left[\epsilon_2(\omega) = -\epsilon_1 \tanh\left(\frac{dk_x}{2}\right) \right].$$

Relación de dispersión Sea $t := \tanh\left(\frac{dk_x}{2}\right)$. Resolver $\epsilon_{\infty,2} \frac{\omega_{L^2}^2 - \omega^2}{\omega_{T^2}^2 - \omega^2} = -\epsilon_1 t$ para $u = \omega^2$ da

$$\omega^{2}(k_{x})_{Polar-d} = \frac{\epsilon_{\infty,2} \,\omega_{L2}^{2} + \epsilon_{1} \,t \,\omega_{T2}^{2}}{\epsilon_{\infty,2} + \epsilon_{1} \,t} \,, \qquad t = \tanh\left(\frac{dk_{x}}{2}\right). \tag{1}$$

O bien de forma que nos será más útil en el futuro:

$$\omega^{2}(k_{x})_{Polar-d} = \frac{\epsilon_{\infty,2} \omega_{L2}^{2} C + \epsilon_{1} \omega_{T2}^{2}}{\epsilon_{\infty,2} C + \epsilon_{1}}, \qquad C = \coth\left(\frac{dk_{x}}{2}\right).$$
 (2)

Definición y uso de la frecuencia de interfase. Definimos la frecuencia de interfase (límite $t \to 1$, i.e., $k_x \to \infty$ o $d \to \infty$):

$$\omega_{(2|1)}^2 := \frac{\epsilon_{\infty,2} \,\omega_{L2}^2 + \epsilon_1 \,\omega_{T2}^2}{\epsilon_{\infty,2} + \epsilon_1}$$
(3)

Limites $k_x \to 0 \ (t \to 0)$:

$$\omega^2(k_x)_{Polar-d} \to \frac{\epsilon_{\infty,2} \, \omega_{L2}^2}{\epsilon_{\infty,2}} = \omega_{L2}^2 \quad \Rightarrow \quad \left[\omega(k_x)_{Polar-d} \to \omega_{L2} \right].$$

 $k_x \to \infty \ (t \to 1)$:

$$\omega^2(k_x)_{Polar-d} \to \omega^2_{(2|1)} \quad \Rightarrow \quad \boxed{\omega(k_x)_{Polar-d} \to \omega_{(2|1)}}$$

 $d \to \infty$ (a k_x fijo): $t \to 1$ y de nuevo $\omega \to \omega_{(2|1)}.$

Figure 2: Aluminio

Figure 3: Silicio