學號:B03902084系級:資工四 姓名:王藝霖

1. (1%) 請說明你實作的 RNN model, 其模型架構、訓練過程和準確率為何?

Layer (type)	Output	Shape	Param #
bidirectional_4 (Bidirection	(None,	41, 1024)	2510848
dropout_6 (Dropout)	(None,	41, 1024)	0
bidirectional_5 (Bidirection	(None,	41, 1024)	6295552
dropout_7 (Dropout)	(None,	41, 1024)	0
bidirectional_6 (Bidirection	(None,	1024)	6295552
dropout_8 (Dropout)	(None,	1024)	0
dense_4 (Dense)	(None,	1024)	1049600
activation_4 (Activation)	(None,	1024)	0
dropout_9 (Dropout)	(None,	1024)	0
dense_5 (Dense)	(None,	1024)	1049600
activation_5 (Activation)	(None,	1024)	0
dropout_10 (Dropout)	(None,	1024)	0
dense_6 (Dense)	(None,	2)	2050
activation_6 (Activation)	(None,	2)	0
Total params: 17,203,202 Trainable params: 17,203,202 Non-trainable params: 0			

preprocess 部分我是使用 gensim pretrain 作業資料的 word2vec(vector size = 100) , 因此在 model 中沒有embedding 層。在每一個句子我有加上開始和結尾(<s>, </s>) , 句子的 padding 用</s> , 以及把總出現次數 < 5 的字視為 <unk>

我用了三層的 Bidirectional LSTM (512),後面再接兩層 1024 的 Dense layer,中間都有使用 Dropout(0.5),Activation 部分用的則是 relu。我使用的 batch size = 32,過程大概是在第 3 個 epoch的時候 validation acc 達到 0.82,之後從 validation 上來看大致上是收斂的穩定狀態。在 kaggle 上的準確率為 0.82578,而我的 best model 是和其他不同架構的 model ensemble 的結果。

2. (1%) 請說明你實作的 BOW model, 其模型架構、訓練過程和準確率為何

Layer (type)	Output	Shape 8484	Param #
dense_1 (Dense)	(None,	128) ×ed	12928 loss
activation_1 (Activation)	(None,	128) _{w4/prediction}	0
dropout_1 (Dropout)	(None,	128)	0
dense_2 (Dense)	(None,	256)	33024
activation_2 (Activation)	(None,	256)	0
dropout_2 (Dropout)	(None,	256)	0
dense_3 (Dense)	(None,	512) //en_three: No st	131584° di
activation_3 (Activation)	(None,	512)	0
dropout_3 (Dropout)/17fall/	(None,	512)hw4/prediction	0
dense_4 (Dense)	(None,	2) L/hw4/prediction	1026
activation_4 (Activation)	(None,	2)	0
======================================	hon3.5/di	st-packages/tensor st-packages/tensor	ELOJO PO EJIOTO PLOW/596 homy ni-surpervised training

preprocess 仍然是用 word2vec 的結果,把一整個句子的 vector 都加起來當作 dnn 的 input。用了 3 分別為 128, 256, 512 的 dense layer,activation = relu,另外在最後 output activation = softmax

訓練過程 validation acc 其實並沒有達到穩定,而 training loss 在第 12 個 epoch 開始不太會下降,此時的 validation acc 是 0.749

3. (1%) 請比較bag of word與RNN兩種不同model對於"today is a good day, but it is hot"與"today is hot, but it is a good day"這兩句的情緒分數,並討論造成差異的原因。

rnn: [2.68 1.31] / [0.50 3.49]

bow: [0.47 0.52] / [0.42 0.57]

這兩種方法是用相同的 word2vec model,其中 bow 在兩句上的差異不太明顯,我想其中原因是使用 bag of word 的方法,這兩句話基本上是相同的(一點點的差異可能是因為浮點數誤差等原因),沒辦法充分表現出字詞的順序問題。而在 rnn 上就有顯著的差異,第一句是負面,第二句是正面,成功的捕捉到這兩句話的不同。因為 rnn 有考慮到字詞的順序,並且我使用 bidirectional,因此兩個方向的 feature 都有抓到。

4. (1%) 請比較"有無"包含標點符號兩種不同tokenize的方式,並討論兩者對準確率的影響。

有: validation accuracy = 0.821

無: validation accuracy = 0.813

以上的準確率都是在除了 tokenize 不同之外其他的方法都相同的情況下,epoch = 4 時的 validation 結果,有包含標點符號的結果稍微好一點點,有可能是因為在一些情況下,符號也隱含著一些情緒方面的內容。也就是說如果 input 有一些更多的資訊,rnn 有可能可以稍微學的更好。

5. (1%) 請描述在你的semi-supervised方法是如何標記label,並比較有無 semi-surpervised training對準確率的影響。

無: validation accuracy = 0.821

有: validation accuracy = 0.824

我標記 label 的方法是取 predict nolabeled data 結果中,機率最高的前 100000 個結果(因為 labeled data 有 200000 筆),無論是正面或負面,標記的方式是直接視為 0或 1。最後再把標記的 data 送回 model 繼續 train,最後得到的 validation accuracy 比起原本只稍微好一些。推測可能的原因為,在原本的 rnn 中,就已經有非常多的參數可以 train,而 semi supervised 能夠增加的資訊量有限,因此並不能大幅度的提升結果。