

Module 3202C Modélisation mathématique Automates cellulaires

Sommaire

- Présentation globale
- Les automates cellulaires
- Évolution du projet
- État Final
- Notions mathématiques

Présentation globale

Une simulation scientifique...

Simulation de la propagation d'un virus au sein d'une population

- Caractéristiques de la maladie
- Déplacements de population

...pour sauver des vies

Comprendre la propagation d'un virus afin de réduire la diffusion des épidémies dans le monde.

Les automates cellulaires

Systèmes complexes

Permet de modéliser des systèmes complexes de manière simplifiée.

Évolution dans le temps

Les cellules évoluent dans le temps en fonctions de règles précises

Évolution du projet

Cellules

Type

- Saine
- Infectée
- Guérie
- Morte
- Vide
- Eau

Age moyen

Entre 0 et 100 ans

Virus

Plusieurs paramètres

- Taux de reproduction
- Taux de létalité
- Durée minimale et maximale d'infection
- Taux de vulnérabilité en fonction de l'âge

Zones urbaines

Concentrations de population.

- Métropoles
 - Villes
 - Villages
- Zones peuplées

Fleuves

Entravent la propagation du virus

Déplacements

Entre deux zones urbaines

D'une rive à l'autre

État final

Notions mathématiques

$$\Delta I_{B} = \frac{1}{2\pi |\mathcal{K}|} \qquad \omega = 2\pi f \qquad \varphi = \frac{2\pi |\mathcal{K}|}{2\pi |\mathcal{K}|} \qquad \varphi = \frac{2\pi |\mathcal{K}|}{2\pi |\mathcal{K}$$

Matrices

- Matrice de « Cellule »
- Corps de la modélisation

Incidence proportionnelle

$$F(S, I) = \beta(SI / S+I)$$

Densité des zones urbaines

$$f(x) = (-75/rayonZone)x + 100$$

Algorithme de Prim

Conclusion

