Generation based Conversational Al

An Introduction

Thy Thy Tran, PhD

06.2021

Outline

- Introduction
- Building a Conversational Agent
- Summary

Two Main Types of Dialogue Systems

How is the weather today?

Right now is 21 degrees with cloudy.

Is it good to go out for dinner at 6 pm?

Absolutely, the sky will be clear by 6.

Ok. Then please book me a table for 2 at Sushi Bar at 6 pm

Confirm a table for 2 at 6 pm. Anything else?

That's it. Thanks.

Happy to help

Information consumption

Decision Support

Task completion

Task-oriented conversations

help users achieve some goals/tasks complete requests with **least turns**

Open-domain chit chat

free-form, open-domain engage users for long conversations

[Fung et al., 2020]

Conversational AI Applications

How is the weather today?

Right now is 21 degrees with cloudy.

Is it good to go out for dinner at 6 pm?

Absolutely, the sky will be clear by 6.

Ok. Then please book me a table for 2 at Sushi Bar at 6 pm

Confirm a table for 2 at 6 pm. Anything else?

That's it. Thanks.

Happy to help

Lots of applications

- Personal assistants [Siri, Google, Alexa, Cortana, etc.]
- Education [Kerry et al., 2008, Mesgar et al., 2019]
- Health care: therapy chatbot
 [Fitzpatrick et al., 2017]
- Customer service: [Cui et al., 2017]
- o ...

Challenges of Generation Dialogue Systems

Building a Conversational Agent

4-step recipe

[Fung et al., 2020]

- 1. Data
- 2. Model
- 3. Training
- 4. Evaluation

Building a Conversational Agent

Types of Conversational Corpora

4-step recipe

[Fung et al., 2020]

- 1. Data
- Model
- 3. Training
- 4. Evaluation

MultiWOZ, DSTC

Twitter, Reddit, OpenSubtitles, Persona Chat,

- Machine to machine
 - Generated from dialog templates
 - Issues: data quality, naturalness, noises
- Human to machine
 - Collected from existing dialog systems
 - Issues: limited domains, biases, noises
- Human to human
 - Twitter, Reddit, etc.
 - Customer service
 - Issues: small size, limited domains

Some Terms

4-step recipe

[Fung et al., 2020]

- Data
- Model
- Training
- Evaluation

Dialogue history

How is the weather today? Utterance Right now is 21 degrees with cloudy. Is it good to go out for dinner at 6 pm? Absolutely, the sky will be clear by 6. Ok. Then please book me a table for 2 at Sushi Bar at 6 pm Confirm a table for 2 at 6 pm. Anything else? That's it. Thanks. Happy to help

Response

Basic Architecture of Generation based Conversational Models

4-step recipe

- 1. Data
- Model
- 3. Training
- 4. Evaluation

Input and Output

- Open-domain chit chat
 - Input
 - Dialogue history

- Output
 - Response

- Task-oriented dialogs
 - Input
 - Dialogue history
 - Belief state
 - Database/API results (state)
 - Output
 - Response
 - Belief state
 - Database query
 - API Service

Each input/output is by itself a sequence of tokens

Dialog History

User: I would like to find an expensive restaurant that severs Chinese food.

System: sure, which area do you prefer?

User: How about in the north part of town.

Belief State

Restaurant {
 pricerange = expensive,
 food = Chinese,
 area = north

DB State

Restaurant 1 match

Response

Delexicalized Response:

The [restaurant_name] is a great [value_food] restaurant. Would you like to book a table there?

System Response:

The Peony Kitchen is a great Chinese food restaurant. Would you like to book a table there?

Peng et al., 2020

Each input/output is by itself a sequence of tokens

Dialog History

User: I would like to find an expensive restaurant that severs Chinese food.

System: sure, which area do you prefer?

User: How about in the north part of town.

Belief State

Restaurant {
 pricerange = expensive,
 food = Chinese,
 area = north

DB State

Restaurant 1 match

Response

Delexicalized Response:

The [restaurant_name] is a great [value_food] restaurant . Would you like to book a table there?

System Response:

The Peony Kitchen is a great Chinese food restaurant. Would you like to book a table there?

(1)

Peng et al., 2020

Each input/output is by itself a sequence of tokens

Dialog History

User: I would like to find an expensive restaurant that severs Chinese food.

System: sure, which area do you prefer?

User: How about in the north part of town.

(1

Belief State

Restaurant {
 pricerange = expensive,
 food = Chinese,
 area = north

DB State

Restaurant 1 match

Response

Delexicalized Response:

The [restaurant_name] is a great [value_food] restaurant . Would you like to book a table there?

System Response:

The Peony Kitchen is a great Chinese food restaurant. Would you like to book a table there?

- 0 match
- >1 match

[Peng et al., 2020]

Each input/output is by itself a sequence of tokens

Dialog History

User: I would like to find an expensive restaurant that severs Chinese food.

System: sure, which area do you prefer?

User: How about in the north part of town.

Belief State

Restaurant {
 pricerange = expensive,
 food = Chinese,
 area = north

DB State

Restaurant 1 match

Response

Delexicalized Response:

The [restaurant_name] is a great [value_food] restaurant . Would you like to book a table there?

System Response:

The Peony Kitchen is a great Chinese food restaurant. Would you like to book a table there?

(1)

2.1 system action

Peng et al., 2020

Encoder-Decoder

Autoregressive Generation [AG]

Issue with AG

- Error accumulation
 - o worse generation at one step → even worse at following steps

Encoder-Decoder

Issues with NAG

- Need to know target sequence length to generate all words in parallel
- Token repetition: conditional independence
 - → repeat high probability tokens

Non-Autoregressive Generation [NAG]

Encoder-Decoder

Non-Autoregressive Generation [NAG]

Output Generation

Autoregressive Generation [AG]

- Starts with [bos] (begin-of-sequence)
- At each step
 - take previous generated token
 - generate a distribution over the vocabulary
- Stops by [eos] (end-of-sequence)
 - Terminate when [eos] is predicted
 - Stop when max target sequence length is reached

Output Generation: Decoding Strategies

	Greedy	Beam Search	Top-k Sampling	Top-p (Nucleus) Sampling
At each step	Pick the best word	Try a few best words	Random sample from top-k	smallest set with cumulative probability > p
Output	One sequence	Several partial sequences	One sequence	One sequence

Output Generation: Greedy Decoding

	Greedy	Beam Search	Top-k Sampling	Top-p (Nucleus) Sampling
At each step	Pick the best word	Try a few best words	Random sample from top-k	smallest set with cumulative probability > p
Output	One sequence	Several partial sequences	One sequence	One sequence

Weakness

Repetition as always select the most frequent token

Output Generation: Beam Search

Output Generation: Top-k Sampling

	Greedy	Beam Search	Top-k Sampling	Top-p (Nucleus) Sampling
At each step	Pick the best word	Try a few best words	Random sample from top-k	smallest set with cumulative probability > p
Output	One sequence	Several partial sequences	One sequence	One sequence

Common k: 5, 10, 20

Note

 $k=1 \rightarrow$ Greedy algorithm $\uparrow k \rightarrow$ more diverse/risky $\downarrow k \rightarrow$ more generic/safe

[Holtzman et al., 2019]

Output Generation: Top-p (Nucleus) Sampling

Greedy	Beam Search	Top-k Sampling	Top-p (Nucleus) Sampling
Pick the best word	Try a few best words	Random sample from top-k	smallest set with cumulative probability > p
One sequence	Several partial sequences	One sequence	One sequence
0.95	0.95	0.95	
	have	a	e
	Pick the best word One sequence	Pick the best words One sequence Several partial sequences 0.95 0.95 like	Pick the best Try a few best Random sample from top-k One sequence Several partial sequences 0.95 0.95 0.95 0.95 0.95 cat

[Holtzman et al., 2019]

Output Generation: Decoding Strategies

	Greedy	Beam Search	Top-k Sampling	Top-p (Nucleus) Sampling
At each step	Pick the best word	Try a few best words	Random sample from top-k	smallest set with cumulative probability > p
Output	One sequence	Several partial sequences	One sequence	One sequence

Training

4-step recipe

[Fung et al., 2020]

- 1. Data
- 2. Model
- 3. Training
- 4. Evaluation

- Teacher forcing: Maximum Likelihood Estimation (MLE)
 - Maximize the conditional probability of target sequence
- Unlikelihood training [Welleck et al., 2020]
 - Minimize likelihood of undesired tokens

What makes a good conversation?

Human judgment of conversational aspects

Avoiding Repetition

internal repetition; repetition across responses; partner repetition

Interestingness

interesting response: knowledge, engagingness

Making sense

coherent response

Fluency

grammatically correct

Listening

response related to user's utterance

Inquisitiveness

response and ask information about user

[See et al., 2019]

Some Methods to Make a Good Conversation

- Large pretrained models: BART, T5, GPT-1/2/3
 - → more **fluent** & **diverse response** thanks to large scale pretraining

- Decoding strategies
 - Top-k sampling, top-p (nucleus) sampling
 - \rightarrow reduce repetition
 - Guided decoding

- Input modification
 - Integrating attribute description
- Type embeddings
 - Using learned attribute embeddings
- Reinforcement learning

Large Scale Pretraining

Large pretrained models: BART, T5, GPT- $1/2/3 \rightarrow$ proposed for general text generation

<u>PLATO</u>	<u>DialoGPT</u>	Meena	<u>BlenderBot</u>	TOD-BERT
Twitter, Reddit (En)	Reddit (En)	public domain social media conversations (En)	Reddit discussions (En)	9 task-oriented datasets (En)
BERT	GPT-2	<u>Evolved</u> <u>Transformer</u>	Poly-encoder Transformer + Seq2seq	BERT
Response generationLatent act recognition	- Response generation - Maximum Mutual Information	- Minimize perplexity of next token	- Masked LM- Ranking for retrieval- Response generation- Retrieve & refine- Unlikelihood training	- Masked LM - Response contrastive loss

Guided Decoding

- 1. Define an attribute model to score the generated sequence
- 2. Guide the decoding process
 - Re-sampling if not satisfy attribute guide
 - Modify the probability distribution with attribute scores [Madotto et al., 2020]

Guided Decoding

Safety in Open-domain chatbots

Dialogue systems trained on large scale data may inherit biases from such data

[Fung et al., 2020]

Input Modification

E.g., Dialog history + [positive]; [sad] + Dialog history

Knowledge

- Retrieval methods:
 - IR systems (TF-IDF, BM25)
 - Neural retriever: dense vectors
 - Generating API query
- Knowledge to text \rightarrow add to input

E.g., "Input" + [restaurant] Sushi Bar

Input Modification

Personalization: <u>TransferTransfo</u> Model

Attribute Embeddings

- Embeddings of the target attributes
 - Learned during training the conversational model
 - Obtained from additional methods such as clustering, link prediction for knowledge base integration

Attribute Embeddings

Personalization: Speaker Model

Attribute Embeddings

Empathy: <u>CAiRE</u>

Reinforcement learning

- Reinforcement learning
 - Cast a text generation model as markov decision process
 - State: dialog history + previous generated tokens
 - Actions: possible tokens
 - Policy: conversational model + decoding strategy
 - Rewards: attribute models for a good conversation
 - Politeness, sentiment, ...

Reinforcement learning

Personalization:

- Reward function: capture consistency between a response and persona facts
 - Persona consistency
 - Topical coherence
 - Fluency
 - Repeated tokens

Figure 1: An abstract view of our RL approach.

[Mesgar et al., 2021]

Evaluation

4-step recipe

[Fung et al., 2020]

- 1. Data
- 2. Model
- 3. Training
- 4. Evaluation

Human Evaluation

Ji et al., 2020

Automatic Evaluation

Compare with reference response

System: The brown fox jumps

Reference: The fox

- Main categories
 - Perplexity: how likely a model generate the reference response
 - N-gram based overlap: BLEU, ROUGE-L
 - Distinct N-gram: diversity
 - → Weakness: surface level, correlate poorly with human judgement
 - Model based metrics: BERTScore [<u>Zhang et al., 2020</u>], Adversarial Success
 [<u>Kannan & Vinyals, 2017</u>; <u>Li et al., 2017</u>]
 - → Weakness: not interpretable, not always align with human judgement

Human Evaluation

- Interaction setup
 - Dialogue history, gold response, generated response
 - Directly interact with systems
- Evaluation setup
 - Likert: give ratings according to some criteria, e.g., fluency, consistency, factual etc.
 - Selection preference: select one system among presented systems (usually btw 2)
- Weaknesses
 - Expensive & time consuming
 - Difficult quality control, inconsistency in evaluation

Summary: Evaluation

4-step recipe

[Fung et al., 2020]

- 1. Data
- 2. Model
- 3. Training
- 4. Evaluation

Human Evaluation

- Improper or offensive language
- Factual consistency

Ji et al., 2020

Summary

- A lot efforts have been made
- But still many improvements ahead in Conversational Al
- Evaluation remains a huge challenge
 - Need better ways of automatic evaluation
- Most exciting areas of NLP!