Formelsammlung Zahlensysteme, Algebra:

Beispiele für Darstellungsarten:

Mathematische Darstellungsart von Zahlensystem mit verschiedener Basis: [45] 10, 45 10,

$$45_{(10)}\,,\,45_{\text{DEZ}}\,,\,45_{\text{d}}\,101101_{\text{bin}}\,,\,101101_{\text{B}}\,,\,[2D]_{16}\,,\,2D_{\text{HEX}}\,,\,2D_{\text{h}}$$

Binäre Zahlensystem, Binärzahlen, Dual-zahlen: 101101B, 0b101101, HLHHLH, '101101', in C oft nicht vorhanden.

Hexadezimales Zahlensystem, Hexadezimalzahlen (23): 0x2D (in C), 2Dh Octales Zahlensystem: 055 (in C)

Präfix: 0x, 0b, 0

Suffix: 2,10,16, d, DEZ, B, bin, Hex, H (Groß-Kleinschreibung ist egal)

Umwandlung:

Hexadezimal in Binärzahlen und umgekehrt: Die Binärzahl in 4er-Gruppen teilen und anschreiben.

4FE wird zu 0100 1111 1110, und 1001 0110 1110 1011 1100 wird zu 96EBC

Hexadezimal in Dezimalzahlen

$$4FE_{16} = 4 * 16^{2} + 15 * 16^{1} + 14 * 16^{0} = 4 * 256 + 15 * 16 + 14 * 1 = 1024 + 240 + 14 = 1278$$

Und Dezimal in Hexadezimalzahlen

1278: 16 = 79 Rest: 14 (= E) (berechne: 1278-(79*16)=14) LSB

79:16 = 4 Rest: 15 (= F) (berechne: 79-(4*16)=15)

4 Rest: 4 MSB

ergibt 4FE

Binärzahlen in Dezimalzahlen

$$11010_2 = 1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 0 * 2^0$$

 $11010_2 = 16 + 8 + 2 = 26$

Und Dezimal in Binärzahlen

26: 2 = 14 Rest: 0 LSB

13:2 = 6 Rest: 1

6:2 = 3 Rest: 0

3:2 = 1 Rest: 1

1 Rest: 1 MSB

ergibt 11010

Dezimal	Binär	Hexa- dezimal	Oktal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	8	10
9	1001	9	11
10	1010	A	12
11	1011	В	13
12	1100	С	14
13	1101	D	15
14	1110	Е	16
15	1111	F	17

Formelsammlung Logik, logische Gleichungen

	Konjunktion, UND, AND, $a \wedge b$, $a \cdot b$	Disjunktion, ODER, OR, $a \lor b$, $a + b$	XOR , $a \oplus b$
Kommutativgesetz	$a \wedge b = b \wedge a$	$a \lor b = b \lor a$	
Assoziativgesetz	$(a \wedge b) \wedge c = a \wedge (b \wedge c)$	$(a \lor b) \lor c = a \lor (b \lor c)$	
Idempotenzgesetz	$a \wedge a = a$	$a \vee a = a$	
Distributivgesetz	$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$	$a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$	
Neutralitätsgesetz	$a \wedge 1 = a$	$a \lor 0 = a$	$a \oplus 0 = a$
Extremalgesetze	$a \wedge 0 = 0$	$a \lor 1 = 1$	
Doppelnegationsge setz (Involution)	$\neg(\neg a) = \overline{\overline{a}} = a$		
De Morgansche Gesetze	$\frac{\neg(a \land b) = \neg a \lor \neg b}{(a \land b) = \overline{a} \lor \overline{b}}$	$\frac{\neg(a \lor b) = \neg a \land \neg b}{(a \lor b) = \overline{a} \land \overline{b}}$	
Komplementär- gesetz	$a \land \neg a = 0$ $a \land \overline{a} = 0$	$a \vee \neg a = 1$ $a \vee \overline{a} = 1$	$a \oplus \neg a = 1$ $a \oplus \overline{a} = 1$
Dualitätsgesetze	$\neg 0 = 1$, $\overline{0} = 1$	$\neg 1=0$, $\overline{1}=0$	
Absorptionsgesetze	$a \vee (a \wedge b) = a$	$a \wedge (a \vee b) = a$	
			$a \oplus a = 0$ $a \oplus 1 = \overline{a}$

Negation NICHT NOT, $\neg a, \overline{a}$, \sim (Tilde) Exklusiv-Oder XOR $a \oplus b$: Bes. Gl. $a \oplus a = 0$, $a \oplus \overline{a} = 1$, $a \oplus 0 = a$, $a \oplus 1 = \overline{a}$

Wahrheitstabellen

UND	0	1	OD
0	0	0	(
1	0	1	1

ODER	0	1
0	0	1
1	1	1

Oder für die Digitaltechnik besser:

a	b	AND	NAND	OR	NOR	XOR	XNOR
0	0	0	1	0	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	0	1	0	0	1

Formelsammlung Bauformen Kondensator:

Unterscheidung: Axiale, Radiale, und SMD Bauformen

Obere Reihe, radiale Anschlüsse (v.l.): Glimmer, Keramik-Y, Keramik-Scheibe, Keramik-Mehrschicht, Folie gewickelt und vergossen, geschichteter Folienkondensator, gewickeltes und vergossenes Polystyrol, gewickelter X-Metallpapierkondensator, zwei Tantal-, zwei Aluminiumelektrolytkondensatoren, Doppelschichtkondensator Mittlere Reihe, axiale Anschlüsse: gewickelter Polypropylen-, Polystyrol-Folienkondensator, Keramik-Durchführungskondensator, bipolarer Elektrolytkondensator.

Untere Reihe, SMD-Bauformen: zwei SiO₂-, zwei Keramikkondensatoren, zwei Folienkondensatoren, Durchführungskondensator sowie SMD-Tantal- und Aluminium-Elektrolytkondensatoren.

Beschriftung:

mit Einheitenvorsatz: n33=330pF, 6R8=6,8pF

mit Einheitenvorsatz und Buchstabe (Toleranz): 12pJ = 12pF 5%

Mit Zahlencode (in pF): 332=3300pF, 476=47uF

Mit und ohne Dezimalpunkt entweder in pF (Keramikkondensa

Mit und ohne Dezimalpunkt entweder in pF (Keramikkondensator), oder in uF (Folienkondensator) 5600 = 5600pF, .68=0.68uF

Dezimalpunkt und Buchstabe .022K= 0.022uF 10%

Spannung und Kapazitätsbereiche von Kondensatoren:

Buch- stabe	Toleranz
В	±0,1 pF
С	±0,25 pF
D	±0,5 pF
F	±1 pF
G	±2 pF
H	±2,5 %
J	±5 %
K	±10 %
L	±15 %
M	±20 %
N	±30 %
P	-0%+100%
Q	-10%+30%
R	-20%+30%
S	-20%+50%
T	-10%+50%
U	-0%+80%
W	-0%+20%
Y	-0%+50%
Z	-20%+100%

Steckbrett (interne Verbindungen)

																														→ 0			-O-																								
400	¢	000	かちつ	DOT-	000	000	000	000	o o o	400	からら	000	200	000	200	000	100		A CHOICE	1		000	T. T. Carlo	5	100	CHEC	1000	000	000	0000	000	000	00000	0-0-0	000	5000	000	000	400	000	000	000	000	000	000	200	500	100	5000	5000	1000	000	900	000	000	900	400
0-0-0-0-0	0-0-0-0					d	¢	¢	ò	¢	ģ	o	0.0	d	0	C	5		0	· L	1	9	1	4	Ç	00	d	T	0.0	4	100	00	000000	4	00		000	000	000	000	4	¢	Ę.	Á.				10			10		9	0	00	00	
		5	77	357	Aller I	3			33.00	80	200	177			100	500	2.63	100	3	- 23		150		100		188	100	183	1	C-1			0.0																								