"Dimensionality Reduction for Wasserstein Barycenter" Zachary Izzo, Sandeep Silwal and Samson Zhou, October 2021

Gonzague de Carpentier Professor: Gabriel Peyré

January 2023

Introduction

Discrete Wasserstein barycenter problem:

- Given:
 - Discrete measures: $\mu^{(i)} = \sum_{j=1}^T a_j^{(i)} \delta_{\mathbf{x}_j^{(i)}}$ where $\mathbf{x}_j^{(i)} \in \mathbb{R}^d$
- Compute:

$$u^* \in \arg\min_{\nu \in \mathcal{P}} \sum_{i=1}^k W_p(\mu^{(i)}, \nu)^p$$

where
$$\mathcal{P} = \left\{ \sum_{j=1}^n b_j \delta_{y_j}, b_j \geqslant 0, y_j \in \mathbb{R}^d \right\}$$

Issue: computation of discrete WB is NP-hard (runtime exponential in dimension) [2]

Proposed approach in [3]: dimensionality reduction

Characterization of the Wasserstein Barycenter

Let $w^{*(i)}$ be the optimal coupling between $\mu^{(i)}$ and ν^* . Then,

$$b_{j'}^* = \sum_{i} w_{j,j'}^{*(i)} \tag{1}$$

$$y_{j'}^* = \arg\min_{y} \sum_{i,j} w_{j,j'}^{*(i)} ||x_j^{(i)} - y_{j'}||^p$$
 (2)

From now on p = 2.

Johnson-Lindenstrauss projections

Let $X \subset \mathbb{R}^d$ be a set of n points. Let $A \in \mathbb{R}^{m \times d}$ be a random matrix whose entries are sampled independently from $\mathcal{N}(0, 1/m)$. Let $\varepsilon \in (0, 1/2)$. Then,

$$\mathbb{P}(\forall u, v \in X, (1-\varepsilon)||u-v||^2 \leqslant ||Au-Av||^2 \leqslant (1+\varepsilon)||u-v||^2)$$
$$\geqslant 1 - 2n^2 e^{-\varepsilon^2 m/8}$$

All distances are preserved up to a factor $1 \pm \varepsilon$ with high probability ($\geqslant 95\%$) if $m \geqslant \frac{16}{\varepsilon^2}(2 + \log(n))$. [4]

Proposed method

The authors propose following dimensionality reduction method:

- ① Project measures $\mu^{(i)}$ into \mathbb{R}^m using the projection A: $\tilde{\mu}^{(i)} = \sum_{j=1}^T a_j^{(i)} \delta_{Ax_i^{(i)}}$
- **②** Compute the Wasserstein barycenter $\tilde{\nu}^*$ of the $(\tilde{\mu}^{(i)})$ and associated weights \tilde{b}^* , support points \tilde{y}^* and optimal couplings \tilde{w}^*
- **3** Compute an approximation of the Wasserstein barycenter in \mathbb{R}^d by computing b^* and y^* from $w^*:=\tilde{w}^*$

Numerics

Experiments with k=2 measures \rightarrow WB = interpolation of the optimal transportation plans computed with **ot.emd** from the Python Optimal Transport library.

3 types of pairs of measures $(\mu^{(1)}, \mu^{(2)})$:

- Uniform weights $a_j^{(i)}=1/T$ and $x_j^{(i)}$ sampled randomly and independently from $\mathcal{N}(0,I)$ in \mathbb{R}^{300}
- ullet Same as before but with offset of 10 on the first dimension for $\mu^{(2)}$
- Aligned word vectors for French and English in dimension 300 downloaded from fastText [1].

$$\mbox{Quality ratio} = \frac{\mbox{cost of the WB computed with DR}}{\mbox{cost of the true WB}}$$

Influence of the projected dimension m on the solution quality (d=300, T=n=100)

Influence of the original dimension d on the solution quality (m = 30, T = n = 100)

Influence of the support size T on the solution quality (d = 300, m = 30)

Distance matrix distortion

For two measures $(\mu^{(1)}, \mu^{(2)})$:

- $D_{j,j'} := ||x_j^{(1)} x_{j'}^{(2)}||^2$
- $\tilde{D}_{j,j'} := ||Ax_j^{(1)} Ax_{j'}^{(2)}||^2$
- ullet Plot histogram of values $ilde{D}_{j,j'}/D_{j,j'}$

Distance matrix distortion (d = 300, T = n = 1000)

Distance matrix distortion (d = 300, T = n = 1000)

Distance matrix distortion (d = 300, T = n = 1000)

Conclusion

- Powerful method: get rid of the exponential dependence in the dimension.
- However: projected dimension proportional to $1/\varepsilon^2$.

References

- [1] Aligned word vectors · fastText. URL: https://fasttext.cc/index.html (visited on 01/04/2023).
- [2] Jason M. Altschuler and Enric Boix-Adsera. Wasserstein barycenters can be computed in polynomial time in fixed dimension. Dec. 9, 2020. arXiv: 2006.08012[cs,math]. URL: http://arxiv.org/abs/2006.08012 (visited on 12/26/2022).
- [3] Zachary Izzo, Sandeep Silwal, and Samson Zhou. Dimensionality Reduction for Wasserstein Barycenter. Oct. 18, 2021. arXiv: 2110.08991[cs,math]. URL: http://arxiv.org/abs/2110.08991 (visited on 12/26/2022).
- [4] Sham Kakade and Greg Shakhnarovich. "Random Projections". In: (2009).