

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ **09.03.01 Информатика и вычислительная техника** БАКАЛАВРСКАЯ ПРОГРАММА **09.03.01/03 Вычислительные машины, комплексы, системы и сети**

ОТЧЕТ ПО ПРОИЗВОДСТВЕННОЙ ПРАКТИКЕ

Тип практики	Преддипломная практика			
Название предприятия	«НУК ИУ МГТУ им.	Н.Э.Баумана		
Студент ИУ6-83Б			А.А. Бушев	
		(Подпись, дата)	(И.О. Фамилия)	
Руководитель практики			М.В.Фетисов	
		(Подпись, дата)	(И.О. Фамилия)	
Оценка				

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ЗАДАНИЕ

на производственную практику

по теме адаптивный серв	ер моделирования	
Студент группы <u>ИУ6-83Б</u>		
Бушев Антон Алекс	сеевич	
Фамилия, им		
Направление подготовки <u>09.03.01 Информатика и 1</u>	вычислительная техни	<u>ka</u>
Бакалаврская программа 09.03.01/03 Вычислитель	ные машины, комплен	ксы, системы и сети
Тип практики <u>Преддипломная практика</u>		
Название предприятия НУК ИУ МГТУ им. Н.	Э. Баумана	
<i>Техническое задание</i> <u>реализовать сервер мо</u>	делирования, реали	зовать плагин для
подключения сервера моделирования	к интегрированной	среде разработке
Оформление отчета по практике:		
Отчет на 15-25 листах формата A4.		
Перечень графического (иллюстративного) материала (ч	ертежи, плакаты, слайды и	т.п.)
<u>нет</u>		
Дата выдачи задания « <u>07</u> » <u>февраля</u> <u>2023</u> г.		
Руководитель практики		М.В. Фетисов
	(Подпись, дата)	(И.О. Фамилия)
Студент	(Подпись, дата)	А.А. Бушев (И.О. Фамилия)
	(подпись, дата)	(и.о. Фамилия)

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	5
1 Выбор технологии и языка программирования	6
2 Выбор подхода разработки	6
3 Разработка схемы структурной информационной системы	6
4 Разработка диаграмм последовательностей	8
5 Разработка диаграмм классов предметной области	11
6 Разработка схемы алгоритмов модуля сцены	12
ЗАКЛЮЧЕНИЕ	17
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ	18

ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

ПП – программный продукт

ООП – объектно-ориентированное программирование

scriptC0 – первый скриптовый язык SIMODO

ВВЕДЕНИЕ

Целью преддипломной практики является описание структуры разрабатываемого продукта и реализация этапов проектирования приложения ВКРБ. В процессе работы будет выбрана технология программирования, разработан алгоритм моделирования, разработана диаграмма последовательностей и диаграмма классов предметной области.

1 Выбор технологии и языка программирования

В качестве технологии программирования было выбрано объектноориентированное программирование. ООП является основой всех современных
приложений и имеет удобное и практическое применение. При использовании
этого метода вся программа разбивается на объекты, с каждым из которых
работа происходит по отдельности, что позволяет в будущем расширять
программный продукт путем добавления новых объектов.

Для написания настольных приложений существует множество языков программирования. Наиболее популярные[1] — это С#, С++ и Python, которые являются кроссплатформенными языками.

Для разрабатываемого приложения был выбран язык C++, так как он используется в разработке адаптивной среды разработки SIMODO[2].

2 Выбор подхода разработки

В качестве жизненного цикла разработки была выбрана спиральная модель. Этот метод позволяет в конце каждого цикла иметь работающий продукт, который можно продемонстрировать[3]. Это дает возможность своевременно оценить и протестировать продукт, чтобы сразу вносить какиелибо правки и исправлять ошибки, не дожидаясь окончания разработки. Нахождение багов на каждом этапе позволяет избежать «волнового» исправления ошибок. А также этот метод позволяет детальнее подойти к каждому этапу разработки по отдельности.

Также при разработке было решено использовать нисходящий подход[4], реализуя сначала модули верхнего уровня (интерфейс пользователя), а после переходя к модулям нижнего уровням (логика работы программы).

3 Разработка схемы структурной информационной системы

Структурная схема программного продукта показывает разделение программы на её главные составляющие. На основе анализа технического

задания, в разрабатываемом приложении, которое выполняет имитационное моделирование, выявлено две подсистемы:

- подсистема интеграции с адаптивной средой разработки: подсистема интеграции с адаптивной средой разработки преобразует входные данные в понятный для сервера моделирования вид и преобразует исходящие от сервера моделирования данные в приемлемый для среды разработки вид; включает в себя две подсистемы:
 - 1) в подсистеме ввода вывода происходит работа с процессом, в котором работает сервер моделирования;
 - 2) в подсистеме обработки сообщений происходит обработка сообщений, приходящих от сервера;
- подсистема имитационного моделирования включает в себя три подсистемы:
 - 1) в подсистеме ввода вывода происходит получение и отправка данных в рамках протокола сервера моделирования;
 - 2) в подсистеме обработки сообщений происходит обработка сообщений, приходящих от редактора;
 - 3) подсистема интерпретации отвечает за процесс имитационного моделирования в рамках интерпретатора scriptC0; включает в себя три подсистемы:
 - а) интерпретатор отвечает за исполнение скриптов на языке scriptC0
 - б) менеджер модулей обеспечивает интерпретатор исходными текстами модулей, запрашиваемых в процессе интерпретации
 - в) модуль сцены является модулем scriptC0; отвечает за расчёт моделей в виде систем дифференциальных уравнений с помощью численных методов.

На основе выявленных подсистем была составлена структурная схема ПП, показанная на рисунке 1.

Рисунок 1 – Структурная схема информационной системы

4 Разработка диаграмм последовательностей

Сервер имитационного моделирования принадлежит к третьему уровню в архитектуре интегрированной среды разработки SIMODO. Сервер выполняется в отдельном процессе, с которым взаимодействует плагин расширяемого редактора для передачи исходных текстов моделей, скриптов запуска моделирования или других программных модулей. В свою очередь, сервер отправляет информацию о состоянии моделей и ходе моделирования. Серверу может понадобится дополнительная информация (например, модель использует внешние модули), поэтому он может запросить дополнительные ресурсы у плагина (например, исходные тексты внешних модулей). Запуск и остановка сервера имитационного моделирования SIMODO, запуск, временная и полная остановка моделирования должны программно контролироваться плагином расширяемого редактора.

Таким образом, можно выделить следующие сообщения, передаваемые между плагином расширяемого редактора и процессом сервера имитационного моделирования SIMODO:

Инициализация с грамматиками языков программирования в качестве аргументов: инициализация сервера имитационного моделирования SIMODO с предоставление исходных текстов

- грамматик языков программирования, используемых во время имитационного моделирования.
- Запуск моделирования с основным сценарием в качестве аргумента:
 запуск интерпретации исходного текста основного сценария моделирования.
- Запрос внешнего ресурса по его адресу: сигнал адаптивной среде разработке о необходимости в исходном тексте модуля, который указан в основном сценарии моделирования или в уже полученных модулях.
- Отправка исходного текста ресурса: передача серверу имитационного моделирования исходного текста модуля, который был запрошен по определённому адресу.
- Установка пары ключ-значение: передача информации серверу имитационного моделирования в процессе имитационного моделирования для управления ходом имитационного моделирования.
- Сообщение информации: передача информации адаптивной среде разработки о ходе имитационного моделирования.
- Приостановка моделирования: сигнал серверу имитационного моделирования об обратимом прерывании хода имитационного моделирования.
- Возобновление моделирования: сигнал серверу имитационного моделирования о возобновлении хода имитационного моделирования.
- Остановка: сигнал серверу имитационного моделирования о необратимом прерывании хода имитационного моделирования.
- Остановка сервера: сигнал серверу имитационного моделирования о прерывании работы сервера имитационного моделирования;
 требуется ожидание момента завершения процесса, в котором исполняется сервер имитационного моделирования.

Рисунок 2 – Диаграммы последовательностей

На рисунке 2 изображена диаграмма последовательности[5] сообщений между плагином и сервером имитационного моделирования SIMODO при нормальном ходе моделирования, т.е. без возникновения ошибок при обмене сообщениями.

Основная концепция взаимодействия между процессом плагина и процессом сервера моделирования заключается в том, что после запуска

процесса, на котором работает сервер моделирования, плагин инициирует запуск, управление и остановку моделирования, в свою очередь предоставляя серверу необходимые ресурсы.

В первую очередь плагин запускает процесс сервера моделирования, после чего плагин должен отправить сообщение инициализации серверу. О готовности сервера плагин может узнать отправив запрос на получение информации о состоянии сервера. В ответ на запрос сервер отправит запрашиваемую информацию стандартным сообщением данных.

Моделирование запускается на инициализированном сервере моделирования и передаётся сценарий моделирования. После этого нормальным считается следующее поведение:

- Запрос сервером моделирования дополнительных ресурсов и отправка соответствующих ресурсов плагином.
- Отправка плагину данных о ходе моделирования.
- Отправка серверу моделирования команд управления, которые обрабатываются в соответствии со сценарием моделирования.
- Временная приостановка хода моделирования и возобновления хода моделирования. Завершение хода моделирования возможно в соответствии с логикой сценария моделирования (не приведено на рисунке 2) или при получении сообщения остановки моделирования.

Сервер моделирования позволяет проводить моделирование неограниченное число раз в общем случае с разными сценариями моделирования.

5 Разработка диаграмм классов предметной области

После окончания разработки ПО была разработана диаграмма классов предметной области, чтобы представить созданные классы с их полями и методами. Диаграмма классов[6] сервера имитационного моделирования показана на рисунке 3. Диаграмма классов модуля сцены показана на рисунке 4.

Основные классы сервера имитационного моделирования:

- Сервер класс, организующий конфигурацию сервера имитационного моделирования.
- СервисВводаВывода интерфейс, обеспечивающий получение и отправку сообщений через абстрактный канал.
- Обработчик Событий интерфейс, позволяющий наращивать функционал сервера созданием нового объекта.
- Интерпретатор интерфейс, обеспечивающий ход имитационного моделирования.

Основные классы модуля сцены:

- Сцена класс, отвечающий за управление имитационным моделированием и обеспечением режима реального времени, если он активирован.
- Актор интерфейс участника сцены; позволяет потенциально использовать любые модели.
- Модель класс, отвечающий за представление системы дифференциальных уравнений в понятном для сцене виде.
- Композиция класс, отвечающий за объединение моделей в единицу, которую можно трактовать как отдельную модель; позволяет выстраивать иерархическую структуру сложных моделей.

6 Разработка схемы алгоритмов модуля сцены

Одной из основных подсистем приложения является модуль сцены. Алгоритм работы модуля сцены необходимо разработать так, чтобы обеспечить пересчёт всех акторов, и если активирован режим реального времени, выполнить пересчёт акторов с адекватной реальному времени задержкой.

Схемы алгоритмов[5] модуля сцены представлены на рисунках 5-6.

Рисунок 3 — Диаграммы классов сервера имитационного моделирования

Рисунок 4 – Диаграммы классов модуля сцены

Рисунок 5 – Схемы алгоритмов модуля сцены

Рисунок 6 – Схемы алгоритмов модуля сцены

ЗАКЛЮЧЕНИЕ

В процессе прохождения преддипломной практики были описаны этапы разработки программного продукта. Создана структура приложения, разработана диаграмма последовательностей, определены основные функции приложения и разработан алгоритм моделирования, разработана диаграмма последовательностей и диаграмма классов предметной области.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. Десять популярных языков программирования для настольных приложений в 2021 году. [Электронный ресурс]. URL: https://www.decipherzone.com/blog-detail/top-programming-languages-for-desktop-apps-in-2021 (дата обращения: 07.02.2023)
- 2. SIMODO в репозитории МГТУ им. Н.Э. Баумана. [Электронный ресурс]. URL: https://bmstu.codes/lsx/simodo (дата обращения: 07.02.2023).
- 3. Ещё раз про семь основных методологий разработки / Хабр [Электронный ресурс]. URL: https://habr.com/ru/company/edison/blog/269789 (дата обращения: 07.02.2023)
- 4. Иванова, Г.С. Технология программирования: Учебник для вузов М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. 238 с.
- 5. IBM Developer [Электронный ресурс]. URL: https://developer.ibm.com (дата обращения: 07.02.2023).
- 6. ГОСТ 19.701-90 «ЕСПД. Схемы алгоритмов, программ, данных и систем. Обозначения условные и правила выполнения»