Lab Test-1

Computer Systems

November 12, 2020

Date: November 12, 2020 **Time**: 2:30 P.M. – 5:30 P.M.

Given an undirected, unweighted graph G=(V,E) with each vertex is colored with either red or blue, write a C/C++ program that prints three types of cycles, namely (i) red cycles, (ii) blue cycles, and (iii) red-blue cycles, if exist in G.

The red cycles consist of the red vertices V_R only. The blue cycles consist of the blue vertices V_B only. The red-blue cycles consist of vertices of both the colors. Note that we can have three types of edges in G. The set E_{RR} represents the edges between red vertices (red edges), the set E_{BB} represents the edges between blue vertices (blue edges), and the set E_{RB} represents the edges with an edge between a red vertex and a blue vertex (green edges). That is, $V = V_R \cup V_B$, and $E = E_{RR} \cup E_{BB} \cup E_{RB}$.

Print all the cycles while encountering a back edge. Note that it may not print all the cycles.

Input: 7

Output:

Graph Adjacency List

$$[r] 0 \rightarrow 6 \rightarrow 5 \rightarrow 4$$

[b]
$$1 \rightarrow 5 \rightarrow 6 \rightarrow 3$$

$$[r] \ 2 \rightarrow 4 \rightarrow 5 \rightarrow 3$$

$$[b] \ 3 \to 2 \to 6 \to 1$$

$$[r]$$
 4 \rightarrow 2 \rightarrow 5 \rightarrow 0

$$[r]$$
 5 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 0

$$[b] \ 6 \rightarrow 3 \rightarrow 0 \rightarrow 1$$

Red Adjacency List

- $[r] \ 0 \rightarrow 5 \rightarrow 4$
- $[r] \ 2 \rightarrow 4 \rightarrow 5$
- [r] 4 \rightarrow 2 \rightarrow 5 \rightarrow 0
- [r] 5 \rightarrow 4 \rightarrow 2 \rightarrow 0

Blue Adjacency List

- [b] $1 \rightarrow 6 \rightarrow 3$
- [b] 3 \rightarrow 6 \rightarrow 1
- [b] 6 \rightarrow 3 \rightarrow 1

Red Cycles

- $5[r] \ 4[r] \ 2[r]$
- $0[r] \ 5[r] \ 4[r]$

Blue Cycles

1[b] 6[b] 3[b]

Red-Blue Adjacency List

- $[r] \ 0 \rightarrow 6 \rightarrow 5$
- [b] $1 \rightarrow 5 \rightarrow 6$
- [r] 2 \rightarrow 4 \rightarrow 3
- [b] 3 \rightarrow 2 \rightarrow 6
- [r] 4 \rightarrow 2 \rightarrow 5
- [r] 5 \rightarrow 1 \rightarrow 4 \rightarrow 0
- $[b] \ 6 \rightarrow 3 \rightarrow 0 \rightarrow 1$

Red-Blue Cycles

- $6[b] \ 3[b] \ 2[r] \ 4[r] \ 5[r] \ 1[b]$
- $0[r] \ 6[b] \ 3[b] \ 2[r] \ 4[r] \ 5[r]$

Submission Instruction:

File Name: LT1_RollNo.c/cpp

Email to: joy@iitbbs.ac.in with subject line: LT1_RollNo