

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/675,415	09/30/2003	Ganesh Basawapatna	50055-00030	6186
7590 12/12/2005 MARSH FISCHMANN & BREYFOGLE LLP 3151 S. VAUGHN WAY #411 AURORA, CO 80014			EXAMINER	
			SALCE, JASON P	
			ART UNIT	PAPER NUMBER
•			2614 ·	

DATE MAILED: 12/12/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 10/03)

		Application No.	Applicant(s)			
Office Action Summary		10/675,415	BASAWAPATNA ET AL.			
		Examiner	Art Unit			
		Jason P. Salce	2614			
	The MAILING DATE of this communication appears on the cover sheet with the correspondence address Period for Reply					
A SHO WHICH - Extensi after SI - If NO p - Failure Any rep	RTENED STATUTORY PERIOD FOR REPL HEVER IS LONGER, FROM THE MAILING IT ons of time may be available under the provisions of 37 CFR 1. X (6) MONTHS from the mailing date of this communication. For the maximum statutory period for reply within the set or extended period for reply will, by statutionally received by the Office later than three months after the mailing patent term adjustment. See 37 CFR 1.704(b).	DATE OF THIS COMMUNICATION 136(a). In no event, however, may a reply be tin I will apply and will expire SIX (6) MONTHS from the, cause the application to become ABANDONE	N. nely filed the mailing date of this communication. D (35 U.S.C. § 133).			
Status						
2a)□ T 3)□ S	Responsive to communication(s) filed on 16.5 his action is FINAL . 2b) This ince this application is in condition for allowallosed in accordance with the practice under	s action is non-final. ance except for formal matters, pro				
Dispositio	n of Claims					
4, 5)□ 0 6)⊠ 0 7)□ 0 8)□ 0	Claim(s) 1-42 is/are pending in the application a) Of the above claim(s) is/are withdrawalm(s) is/are withdrawalm(s) is/are allowed. Claim(s) 1-42 is/are rejected. Claim(s) is/are objected to. Claim(s) are subject to restriction and/or papers The specification is objected to by the Examination.	awn from consideration. or election requirement.				
_ A R	ne drawing(s) filed on is/are: a) acception and applicant may not request that any objection to the eplacement drawing sheet(s) including the corrected one oath or declaration is objected to by the E	e drawing(s) be held in abeyance. See ction is required if the drawing(s) is obj	e 37 CFR 1.85(a). ected to. See 37 CFR 1.121(d).			
Priority un	der 35 U.S.C. § 119					
 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: 1. Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. 						
Attachment(s						
2) Notice o	of References Cited (PTO-892) of Draftsperson's Patent Drawing Review (PTO-948) tion Disclosure Statement(s) (PTO-1449 or PTO/SB/08) lo(s)/Mail Date	4) Interview Summary Paper No(s)/Mail Da 5) Notice of Informal Pa				

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set

forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this

application is eligible for continued examination under 37 CFR 1.114, and the fee set

forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action

has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on

9/16/2005 has been entered.

Response to Arguments

2. Applicant's arguments filed 9/16/2005 have been fully considered but they are

not persuasive.

Applicant has amended the claim limitations to recite "wherein at least a portion

of the tuner/receiver/decoders in the headend can be shared so that the video channel

provided by such a shared tuner/receiver/decoder is provided via one or more service

modules to more than one interface unit".

The examiner notes that the new claim limitations still read on the prior art of

record. See the rejection below.

Claim Rejections - 35 USC § 112

The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the

art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

3. Claim 41 is rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim(s) contains subject matter, which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention.

In claim 41, the Applicant states, "wherein the video channel are not remodulated at any point after being tuned/received/decoded at the headend". The examiner notes that in a headend/subscriber station environment that this is impossible, because the tuner (as well as many other components) located at the subscriber's station (as well as the headend or selective distribution station) outputs a modulated signal. The examiner believes that Applicant meant to specify that the signal is not remodulated at the service modules, however, the examiner notes that the definition of modulation states, "The process by which some characteristic of a carrier is varied in accordance with a modulating wave", therefore the tuner at the subscriber's station, as well as other components at the headend/selective distribution station can be used to read on a signal being "re-modulated" after being modulated at the headend. Therefore a person of ordinary skill in the art could not make or use such a system. because after the headend modulates and transmits the signal, the selective distribution would not be able to retransmit the signal to the subscriber's station, let alone the subscriber station being able to tune to the specified channel in the signal in order to output a modulated signal.

Application/Control Number: 10/675,415 Page 4

Art Unit: 2614

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

- (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 4. This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).
- 5. Claims 1, 4, 10, 13, 14, 15, 20, 21, 24, 25, 26, 27 and 33-42 are rejected under 35 U.S.C. 103(a) as being unpatentable over Utsumi et al (Utsumi), U.S. Patent No. 5,729,281 in view of Bigham et al. (Bigham), U.S. Patent No. 5,740,075).

Regarding **claim 1**, Utsumi discloses a cable distribution system (Fig. **2**; col. 7, lines 16-32), comprising:

a) a headend (Fig. 2, Center Station 1; col. 7, lines 18-29);

Application/Control Number: 10/675,415

Art Unit: 2614

b) a plurality of service modules (Fig. 2; Selective Distribution Station 10₁; see detail at Fig. 3) associated with the headend, each service module receiving one or more of the multiplexed channel signals from the headend and providing it to each of a plurality of frequency converters within each service module that each convert one of the video channels to a predetermined frequency (col. 7, line 33 – col. 8, line 2); and

Page 5

a plurality of interface units (Fig. 2, Subscriber Devices 71₁-71_N)
associated with each service module, there being one interface unit for
each frequency converter of the service module, (col. 8, lines 11-15) each
interface unit being located at a customer location, each interface unit
receptive of one of the video channels converter to the predetermined
frequency, the interface unit passing a video and an audio signal in the
video channel to a video displaying apparatus (col. 8, lines 20-46).

Although Utsumi discloses a headend, Utsumi fails disclose the headend receptive of signals from a plurality of video sources, the headend including a plurality of tuner/receiver/decoders that are each controllable to tune/receive/decode a selected video channel and provide the video channel at a selected frequency, wherein certain ones of the video channels contain analog video and audio signals the video channels containing a plurality of digital and audio signals multiplexed together to create a digital multiplex, selected one of the plurality of video channels being multiplexed together by the headend to create one or more multiplexed channel signals, as claimed.

Utsumi also fails to teach that at least a portion of the tuner/receiver/decoders in the headend can be shared so that the video channel provided by such a shared tuner/receiver/decoder is provided via one or more service modules to more than one interface unit.

However, Bigham, in an analogous art, teaches a headend (Fig. 6, VNH 2104; col. 40, lines 12-26) which is receptive of signals from a plurality of video sources, wherein the headend includes a plurality of tuner/receiver/decoders that are each controllable to tune/receive/decode a selected video channel and provide the video channel at a selected frequency, wherein certain ones of the video channels contain analog video and audio signals (col. 40, line 37 – col. 41, line 33) and certain other ones of the video channels contain a plurality of digital video and audio signal multiplexed together to create a digital multiplex (col. 41, lines 34 - col. 43, line 48), selected ones of the plurality of video channels being multiplexed together by the headend to create one or more multiplexed signals (col. 43, lines 48-65) for the benefit of providing programming in analog format for legacy subscribers (i.e., subscribers capable of receiving analog programming only) and digital programming in higher quality and quantity to subscribers of digital cable (i.e., subscribers capable of receiving both the analog and digital signals) (see col. 27, lines 50-61).

Bigham further discloses that at least a portion of the tuner/receiver/decoders in the headend (video SP 2142 and RF modulator 2136') can be shared so that the video channel provided by such a shared

tuner/receiver/decoder (see Column 40, Lines 43-47, Column 40, Lines 53-55 and Column 40, Lines 56-65 for RF modulator 2136, 2136' and video SP 2142, respectively, for selecting certain channel frequencies and sharing them by assigning them to certain slots in a 6Mhz bandwidth RF channel) is provided via one or more service modules (see the output of 2136, 2136' and 2142 being provided by multiple E/O devices 2154 in Figure 6 and also multiple LVAN devices 2112 in Figure 6) to more than one interface unit (see Figures 3B, 4 and 8 for the system providing the shared video signals to multiple homes).

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the headend of Utsumi to incorporate the headend receptive of signals from a plurality of video sources, the headend including a plurality of tuner/receiver/decoders that are each controllable to tune/receive/decode a selected video channel and provide the video channel at a selected frequency, wherein certain ones of the video channels contain analog video and audio signals the video channels containing a plurality of digital and audio signals multiplexed together to create a digital multiplex, selected one of the plurality of video channels being multiplexed together by the headend to create one or more multiplexed channel signals, as taught by Bigham, for the benefit of providing programming in analog format for legacy subscribers and digital programming in higher quality and quantity to subscribers of digital cable in a cable distribution system.

Although Utsumi discloses interface units that can receive and pass to the video displaying apparatus video channels containing analog audio and video signals with the tuning of the programming occurring at a service module outside of the subscriber premises, Bigham further teaches a mixed analog and digital distribution network including subscriber reception equipment (i.e., interface units) where certain customers receive basic, analog only service and other customers are capable of receiving and displaying both digital service and the basic analog programming (col. 27, lines 5-61). Providing a mixed analog and digital network with support for both legacy (i.e., analog only) subscribers and digital and analog subscribers, and the related subscriber reception equipment for the type of programming (i.e., analog only or analog and digital) to which the viewer subscribes, provides the typical and well-known benefit of decreased network deployment costs by utilizing less expensive subscriber reception equipment to subscribers who are not paying for digital programming and providing more expensive digital and analog equipment to subscribers who are paying premium fees to receive both types of programming.

Accordingly, it would have been obvious to modify the interface units of Utsumi in view of Bigham to incorporate certain ones of the interface units can receive and decode both video channels containing a digital multiplex and video channels containing analog video and audio signals and certain other ones of the interface units can receive and pass to the video displaying apparatus video channels containing analog video and audio signals, but cannot decode and pass

to the video displaying apparatus video channels containing a digital multiplex, as further taught by Bigham, for the benefit of decreased network deployment costs by utilizing less expensive subscriber reception equipment to subscribers who are not paying for digital programming and providing more expensive digital and analog equipment to subscribers who are paying premium fees to receive both types of programming in a cable distribution system.

As for **claim 4**, the teachings of Utsumi in view of Bigham are relied upon as discussed above. Bigham further teaches cabling running between the headend and each of a plurality of service modules having sufficient bandwidth capacity to be able to efficiently carry signals as high as 750 MHz (Fig. **6**, optical fiber **2156**; col. 43, lines 61-65, where fiber optic cabling transmitting signals from a headend inherently discloses cabling having sufficient bandwidth capacity to carry signals as high as 750 MHz). Providing high bandwidth capacity cabling from a headend to service modules in a cable television system provides the typical and well-known benefit of allowing a higher magnitude of broadcast programming to be transmitted for selection by a viewer.

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the combined system of Utsumi in view of Bigham to incorporate cabling running between the headend and the plurality of service modules associated therewith, the cabling having sufficient bandwidth capacity to be able to efficiently carry signals at least as high as 750

MHz, as further taught by Bigham, for the benefit of allowing a higher magnitude of broadcast programming to be transmitted for selection by a viewer.

The limitation of **claim 10** is encompassed by the teachings of Utsumi in view of Bigham. Specifically, Utsumi discloses each of the frequency converters in each of the plurality of service modules is a programmable converter (Fig. 3; modulating portions **13**₁ to **13**_N, see col. 7, lines 45-51; col. 8, lines 29-37).

The limitation of **claim 13** is encompassed by the teachings of Utsumi in view of Bigham. Specifically, Utsumi discloses each service module utilizes the same predetermined frequencies as each other service module (col. 8, lines 11-13).

The limitation of **claim 14** is encompassed by the teachings of Utsumi in view of Bigham. Specifically, Utsumi discloses each tuner/receiver/decoder tunes, receives, and decodes a given video channel and that channel from that tuner/receiver/decoder can be displayed on every video displaying apparatus (col. 8, lines 20-46, where subscriber devices **71**₁-**71**_N can select a certain programming channel which can be displayed on receiving devices **31**₁-**31**_N).

The limitation of **claim 15** is encompassed by the teachings of Utsumi in view of Bigham. Specifically, Utsumi discloses the interface unit passes

information back upstream to its associated service module that includes channel selection information (col. 8, lines 20-30).

As for **claim 20**, the teachings of Utsumi in view of Bigham are relied upon as discussed above relative to claim 1. Utsumi teaches cabling running between each service module and the plurality of interface units associated therewith, the cabling having a home run architecture (Fig. 1; col. 5, line 60 – col. 6, line 1). A home run or "star" distribution network provides the typical and well-known benefit of enhanced reliability of signal delivery where a disruption in one signal line does not disrupt the delivery of signals on the remaining lines.

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was to modify the distribution network of Utsumi in view of Bigham to incorporate the cabling running between each service module and the plurality of interface units associated therewith, the cabling having a home run architecture, as taught by Utsumi, for the benefit of enhanced reliability of signal delivery where a disruption in one signal line does not disrupt the delivery of signals on the remaining lines in a cable distribution system.

The limitation of **claim 21** is encompassed by the teachings of Utsumi in view of Bigham. Specifically, Utsumi discloses cabling running between each service module and the plurality of interface units associated therewith, the cabling having a loop through architecture (Fig. 2; col. 7, lines 16-24).

The limitation of **claim 24** is encompassed by the teachings of Utsumi in view of Bigham. Specifically, Bigham discloses the headend is a local headend (Fig. **6**; col. 40, lines 12-26).

As for **claim 25**, Bigham further teaches a regional headend located at a location remote from the local headend, the regional headend providing video channels at selected frequencies to the local headend (Fig. **5**, Broadcast Consolidation System **2100**; col. 35, lines 32-36; col. 35, lines 44-54 and col. 38, lines 7-9) for the benefit of processing programming from video information providers prior to distributing the programming to regional headends (VNH's **2104**) (see col. 35, lines 32-43).

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the cable distribution system of Utsumi in view of Bigham to incorporate a regional headend located at a location remote from the local headend, the regional headend providing video channels at selected frequencies to the local headend, as further taught by Bigham, for the benefit of processing programming from video information providers prior to distributing the programming to regional headends in a cable distribution network.

Regarding **claim 26**, Utsumi discloses a cable distribution system (Fig. **2**; col. 7, lines 16-32) comprising:

- a) a headend (Fig. 2, Center Station 1; col. 7, lines 18-29);
- b) a plurality of service modules (Fig. 2; Selective Distribution Station 10₁; see detail at Fig. 3) associated with the headend, each service module receiving one or more of the multiplexed channel signals from the headend and providing it to each of a plurality of frequency converters within each service module that each convert one of the video channels to a predetermined frequency (col. 7, line 33 col. 8, line 2); and
- a plurality of interface units (Fig. 2, Subscriber Devices 71₁-71_N)
 associated with each service module, there being one interface unit for
 each frequency converter of the service module (col. 8, lines 11-15), each
 interface unit being located at a customer location, each interface unit
 receptive of one of the video channels converter to the predetermined
 frequency, the interface unit passing a video and an audio signal in the
 video channel to a video displaying apparatus (col. 8, lines 20-46).

Although Utsumi discloses a headend, Utsumi fails disclose the headend receptive of signals from a plurality of video sources, the headend including a plurality of tuner/receiver/decoders that are each controllable to tune/receive/decode a selected video channel and provide the video channel at a selected frequency, wherein certain ones of the video channels contain analog video and audio signals the video channels containing a plurality of digital and

audio signals multiplexed together to create a digital multiplex, selected one of the plurality of video channels being multiplexed together by the headend to create one or more multiplexed channel signals, as claimed.

Utsumi also fails to teach that at least a portion of the tuner/receiver/decoders in the headend can be shared so that the video channel provided by such a shared tuner/receiver/decoder is provided via one or more service modules to more than one interface unit.

However, Bigham, in an analogous art, teaches a headend (Fig. 6, VNH 2104; col. 40, lines 12-26) which is receptive of signals from a plurality of video sources, wherein the headend includes a plurality of tuner/receiver/decoders that are each controllable to tune/receive/decode a selected video channel and provide the video channel at a selected frequency, wherein certain ones of the video channels contain analog video and audio signals (col. 40, line 37 – col. 41, line 33) and certain other ones of the video channels contain a plurality of digital video and audio signal multiplexed together to create a digital multiplex (col. 41, lines 34 – col. 43, line 48), selected ones of the plurality of video channels being multiplexed together by the headend to create one or more multiplexed signals (col. 43, lines 48-65) for the benefit of providing programming in analog format for legacy subscribers (i.e., subscribers capable of receiving analog programming only) and digital programming in higher quality and quantity to subscribers of digital cable (i.e., subscribers capable of receiving both the analog and digital signals) (see col. 27, lines 50-61).

Application/Control Number: 10/675,415

Art Unit: 2614

Bigham further discloses that at least a portion of the tuner/receiver/decoders in the headend (video SP 2142 and RF modulator 2136') can be shared so that the video channel provided by such a shared tuner/receiver/decoder (see Column 40, Lines 43-47, Column 40, Lines 53-55 and Column 40, Lines 56-65 for RF modulator 2136, 2136' and video SP 2142, respectively, for selecting certain channel frequencies and sharing them by assigning them to certain slots in a 6Mhz bandwidth RF channel) is provided via one or more service modules (see the output of 2136, 2136' and 2142 being provided by multiple E/O devices 2154 in Figure 6 and also multiple LVAN devices 2112 in Figure 6) to more than one interface unit (see Figures 3B, 4 and 8 for the system providing the shared video signals to multiple homes).

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the headend of Utsumi to incorporate the headend receptive of signals from a plurality of video sources, the headend including a plurality of tuner/receiver/decoders that are each controllable to tune/receive/decode a selected video channel and provide the video channel at a selected frequency, wherein certain ones of the video channels contain analog video and audio signals the video channels containing a plurality of digital and audio signals multiplexed together to create a digital multiplex, selected one of the plurality of video channels being multiplexed together by the headend to create one or more multiplexed channel signals, as

taught by Bigham, for the benefit of providing programming in analog format for legacy subscribers and digital programming in higher quality and quantity to subscribers of digital cable in a cable distribution system.

As for **claim 27**, the teachings of Utsumi in view of Bigham are relied upon as discussed above (see the rejection of claim 1). Although Utsumi discloses interface units that can receive and pass to the video displaying apparatus video channels containing analog audio and video signals with the tuning of the programming occurring at a service module outside of the subscriber premises, Bigham further teaches a mixed analog and digital distribution network including subscriber reception equipment (i.e., interface units) where certain customers receive basic, analog only service and other customers are capable of receiving and displaying both digital service and the basic analog programming (col. 27, lines 5-61). Providing a mixed analog and digital network with support for both legacy (i.e., analog only) subscribers and digital and analog subscribers, and the related subscriber reception equipment for the type of programming (i.e., analog only or analog and digital) to which the viewer subscribes, provides the typical and well-known benefit of decreased network deployment costs by utilizing less expensive subscriber reception equipment to subscribers who are not paying for digital programming and providing more expensive digital and analog equipment to subscribers who are paying premium fees to receive both types of programming.

Application/Control Number: 10/675,415 Page 17

Art Unit: 2614

Accordingly, it would have been obvious to modify the interface units of Utsumi in view of Bigham to incorporate certain ones of the interface units can receive and decode both video channels containing a digital multiplex and video channels containing analog video and audio signals and certain other ones of the interface units can receive and pass to the video displaying apparatus video channels containing analog video and audio signals, but cannot decode and pass to the video displaying apparatus video channels containing a digital multiplex, as further taught by Bigham, for the benefit of decreased network deployment costs by utilizing less expensive subscriber reception equipment to subscribers who are not paying for digital programming and providing more expensive digital and analog equipment to subscribers who are paying premium fees to receive both types of programming in a cable distribution system.

Regarding **claim 33**, Utsumi discloses a cable distribution system (Fig. **2**; col. 7, lines 16-32) comprising:

- a) a headend (Fig. 2, Center Station 1; col. 7, lines 18-29);
- b) a plurality of service modules (Fig. 2; Selective Distribution Station 10₁; see detail at Fig. 3) associated with the headend, each service module receiving one or more of the multiplexed channel signals from the headend and providing it to each of a plurality of frequency converters within each service module that each convert one of the plurality of the

Application/Control Number: 10/675,415 Page 18

Art Unit: 2614

video channels to a predetermined frequency (col. 7, line 33 – col. 8, line 2);

a plurality of interface units (Fig. 2, Subscriber Devices 71₁-71_N)
associated with each service module, there being one interface unit for
each frequency converter of the service module (col. 8, lines 11-15), each
interface unit being located at a customer location, each interface having a
frequency converter that converts the frequency of the video channel
received from the service module (col. 8, lines 20-46).

Although Utsumi discloses a headend, Utsumi fails disclose the headend receptive of signals from a plurality of video sources, the headend including a plurality of tuner/receiver/decoders that are each controllable to tune/receive/decode a selected video channel and provide the video channel at a selected frequency, wherein certain ones of the video channels contain analog video and audio signals the video channels containing a plurality of digital and audio signals multiplexed together to create a digital multiplex, selected one of the plurality of video channels being multiplexed together by the headend to create one or more multiplexed channel signals, as claimed.

Utsumi also fails to teach that at least a portion of the tuner/receiver/decoders in the headend can be shared so that the video channel provided by such a shared tuner/receiver/decoder is provided via one or more service modules to more than one interface unit.

However, Bigham, in an analogous art, teaches a headend (Fig. 6, VNH 2104; col. 40, lines 12-26) which is receptive of signals from a plurality of video sources, wherein the headend includes a plurality of tuner/receiver/decoders that are each controllable to tune/receive/decode a selected video channel and provide the video channel at a selected frequency, wherein certain ones of the video channels contain analog video and audio signals (col. 40, line 37 – col. 41, line 33) and certain other ones of the video channels contain a plurality of digital video and audio signal multiplexed together to create a digital multiplex (col. 41, lines 34 – col. 43, line 48), selected ones of the plurality of video channels being multiplexed together by the headend to create one or more multiplexed signals (col. 43, lines 48-65) for the benefit of providing programming in analog format for legacy subscribers (i.e., subscribers capable of receiving analog programming only) and digital programming in higher quality and quantity to subscribers of digital cable (i.e., subscribers capable of receiving both the analog and digital signals) (see col. 27, lines 50-61).

Bigham further discloses that at least a portion of the tuner/receiver/decoders in the headend (video SP 2142 and RF modulator 2136') can be shared so that the video channel provided by such a shared tuner/receiver/decoder (see Column 40, Lines 43-47, Column 40, Lines 53-55 and Column 40, Lines 56-65 for RF modulator 2136, 2136' and video SP 2142, respectively, for selecting certain channel frequencies and sharing them by assigning them to certain slots in a 6Mhz bandwidth RF channel)

is provided via one or more service modules (see the output of 2136, 2136' and 2142 being provided by multiple E/O devices 2154 in Figure 6 and also multiple LVAN devices 2112 in Figure 6) to more than one interface unit (see Figures 3B, 4 and 8 for the system providing the shared video signals to multiple homes).

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the headend of Utsumi to incorporate the headend receptive of signals from a plurality of video sources, the headend including a plurality of tuner/receiver/decoders that are each controllable to tune/receive/decode a selected video channel and provide the video channel at a selected frequency, wherein certain ones of the video channels contain analog video and audio signals the video channels containing a plurality of digital and audio signals multiplexed together to create a digital multiplex, selected one of the plurality of video channels being multiplexed together by the headend to create one or more multiplexed channel signals, as taught by Bigham, for the benefit of providing programming in analog format for legacy subscribers and digital programming in higher quality and quantity to subscribers of digital cable in a cable distribution system.

Bigham further teaches a set top box (Fig. 4; Digital Entertainment

Terminal 100a) utilized in a mixed analog and digital cable distribution network

utilized by subscribers to digital with analog service for receiving digital and

analog programming and passing a video and audio signal in the video channel

to a video displaying apparatus (col. 27, lines 50-61; col. 8, lines 42-50; col. 29, lines 31-37). Providing the functionality of a set top box for receiving and passing and passing video channels to a video displaying apparatus in association with an interface unit for selecting and converting a programming signal provides the typical and well-known benefit of increased signal processing and user interaction capabilities, such as decoding and demultiplexing of digital programming and electronic program guide functions.

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the interface units of Utsumi in view of Bigham to incorporate a set-top box associated with at least one of the interface units, the set-top box being receptive of the video channel from the interface unit, the set-top box passing a video and audio signal in the video channel to a video displaying apparatus, as further taught by Bigham, for the benefit of increased signal processing and user interaction capabilities, such as decoding and demultiplexing of digital programming and electronic program guide functions in a cable distribution system.

Claim 34 corresponds to claim 33, where Utsumi discloses that if the headend is requested to arrange for the requested channel to be provided in the multiplexed channel signal, the headend then communicates to the particular service module associated with the customer the location of the requested channel in the multiplexed channel signal (see Column 10, Lines 4-14 for

frequencies f(1) to f(n) corresponding to receiving devices 32(1) to 32(n), therefore if receiving device 32(1) requests a channel change, frequency f(1), i.e. the location of channel to carry the selected channel to receiving device 32(1) is determined to be the channel for distribution (on frequency f(1)) to the receiving device 32(1)). Also note Column 10, Lines 19-44.

Referring to claim 35, see the rejection of claim 34.

Referring to claim 36, see the rejection of claims 1, 34 and 39 (below).

Referring to claim 37, see the rejection of claim 39 (below).

Claim 38 corresponds to claim 26, where Utsumi teaches that only a subset of the video channels available to the headend are placed in any given multiplexed channel signal, the subset being determined by which channels are requested via the interface units associated with the service module receiving that multiplexed channel signal (see Column 2, Line 66 through Column 3, Line 1).

Claim 39 corresponds to claim 33, where Utsumi further discloses that a customer can provide a channel change request to the service module via the interface unit and, in response thereto, the service module commands the frequency converter corresponding to the particular interface unit associated with the customer to convert the video channel containing the requested channel to, the predetermined frequency (see Column 2, Lines 39-43 and Column 10, Lines 19-49).

Utsumi also discloses that if the requested channel is not one of those currently contained in the multiplexed channel signal sent from the headend to the particular service module associated with the customer, the headend is requested to arrange for the requested channel to be provided in the multiplexed channel signal sent from the headend to the particular service module associated with the customer (see Column 3, Lines 2-9 for the selective distribution station (service module) requesting the center station (headend) to provide the channel in the digital multiplexed signals (see Column 3, Lines 23-30)).

Page 23

Referring to claim 40, see the rejection of claim 1.

Referring to claim 41, see the rejection of claim 1 and note the 112 1st paragraph rejection above for meeting the limitation of video channels not being re-modulated after being modulated at the headend.

Referring to claim 42, see the rejection of claim 1 and further note that Utsumi teaches that each service module communicates information to the interface units associated with the service module, the information including the predetermined frequency and/or the location of the video channel within the digital multiplex in the case of the digital multiplex being sent to the interface unit (see Column 10, Lines 19-49 for sending the information on a predetermined frequency).

5. Claims 2-3 are rejected under 35 U.S.C. 103(a) as being unpatentable over Utsumi et al (Utsumi), U.S. Patent No. 5,729,281 in view of Bigham et al. (Bigham), U.S.

Application/Control Number: 10/675,415

Art Unit: 2614

Patent No. 5,740,075), as applied to claim 1, further in view of Chen et al. (Chen), U.S. Patent No. 5,699,105.

As for **claim 2**, the teachings of Utsumi in view of Bigham are relied upon as discussed above. Although Utsumi discloses cabling running between each service module and the plurality of interface units, Utsumi in view of Bigham fails to specifically disclose the cabling being bandwidth limited so as to not efficiently carry signals appreciably above 350 MHz, as claimed.

However, Chen, in an analogous art, teaches coaxial cable links from service modules to interface units utilizing relatively narrow bandwidth cabling (e.g., a 5 to 50 MHz link) (col. 5, lines 9-26; col. 6, lines 1-9). The use of narrow bandwidth cabling, such as cabling of a lower grade, presents a greater signal attenuation to higher transmission frequencies, and thus provides the benefit of lower cost for implementation of a transmission network from a service module (i.e., node) to subscriber premises where cabling capable of transmitted high bandwidth signals is not needed.

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the cabling of Utsumi in view of Bigham to incorporate the cabling being bandwidth limited so as to not efficiently carry signals appreciably above 350 MHz, as taught by Chen, for the benefit of lower cost for implementation of a transmission network from a service module to

subscriber premises when cabling capable of transmitting high bandwidth signals is not needed in a cable distribution system.

The limitation of **claim 3** is encompassed by the teachings of Utsumi in view of Bigham, further in view of Chen. Specifically, Chen teaches metallic coaxial cabling (col. 5, lines 9-26; col. 6, lines 1-9, where coaxial cable is inherently metallic in order to electrically conduct a signal).

6. Claim 5 is rejected under 35 U.S.C. 103(a) as being unpatentable over Utsumi et al (Utsumi), U.S. Patent No. 5,729,281 in view of Bigham et al. (Bigham), U.S. Patent No. 5,740,075) as applied to claim 1, further in view of Rakib, U.S. Patent Publication No. US 2002/0019984 A1.

As for **claim 5**, the teachings of Utsumi in view of Bigham are relied upon as discussed above. The combination of Utsumi in view of Bigham fails to disclose the headend including a block of Personal Video Recorders.

However, Rakib, in an analogous art, teaches a headend comprising a block of personal video recorders (Fig. 6, Hard Disk Array 289, see paragraphs 96-97) for the benefit of reduced consumer costs in the provision of TIVO like functions by utilizing hardware located at a headend (see paragraph 7).

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the headend of Utsumi in view of

Bigham to incorporate a block of personal video recorders, as taught by Rakib, for the benefit of reduced consumer costs in the provision of TIVO like functions by utilizing hardware located at a headend in a cable distribution system.

7. Claim 6 is rejected under 35 U.S.C. 103(a) as being unpatentable over Utsumi et al (Utsumi), U.S. Patent No. 5,729,281 in view of Bigham et al. (Bigham), U.S. Patent No. 5,740,075) as applied to claim 1, further in view of Dunn et al. (Dunn), U.S. Patent No. 5,721,829.

As for **claim 6**, the teachings of Utsumi in view of Bigham are relied upon as discussed above relative to claim 1. The combination of Utsumi in view of Bigham fails to disclose the headend including a video on demand server, as claimed.

However, Dunn, in an analogous art teaches a headend including a video on demand server (Fig. 1, Continuous Media Server 40, col. 2, lines 40-50, col. 3, lines 13-19, col. 3, lines 43-63) for the benefit of allowing viewers to order video content and watch the content on their own time schedule (see col. 1, lines 63-67).

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the headend of Utsumi in view of Bigham to incorporate a video on demand server, as taught by Dunn, for the

benefit of allowing viewers to order video content and watch the content on their own time schedule in a cable distribution system.

8. Claim 7 is rejected under 35 U.S.C. 103(a) as being unpatentable over Utsumi et al (Utsumi), U.S. Patent No. 5,729,281 in view of Bigham et al. (Bigham), U.S. Patent No. 5,740,075) as applied to claim 1, further in view of Fries, U.S. Patent No. 6,317,885.

As for **claim 7**, the teachings of Utsumi in view of Bigham are relied upon as discussed above relative to claim 1. The combination of Utsumi in view of Bigham fails to disclose the headend including a personal computer, as claimed.

However, Fries, in an analogous art, teaches a headend including a personal computer (Fig. 1, Interactive Information Server 46 comprising rack mounted personal computer; col. 3, line 66 – col. 4, line 28) for the benefit of providing an interactive entertainment and information system by receiving and storing data from content providers and inserting the data into a cable transmission (see col. 1, lines 65-67 and col. 4, lines 4-16).

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the headend of Utsumi in view of Bigham to incorporate a personal computer, as taught by Fries, for the benefit of providing an interactive entertainment and information system by receiving and storing data from content providers and inserting the data into a cable transmission in a cable distribution system.

Application/Control Number: 10/675,415 Page 28

Art Unit: 2614

9. Claims 8, 9, and 19 are rejected under 35 U.S.C. 103(a) as being unpatentable over Utsumi et al (Utsumi), U.S. Patent No. 5,729,281 in view of Bigham et al. (Bigham), U.S. Patent No. 5,740,075) as applied to claim 1, further in view of Nikolich, U.S. Patent Publication No. US 2002/0073431 A1.

As for **claim 8**, Utsumi in view of Bigham fails to disclose the headend comprises a DOCSIS frequency converter, as claimed.

However, Nikolich, in an analogous art, teaches a DOCSIS frequency converter located at a headend (Fig. 1B, Modulators 108-1 – 108-N; paragraphs 27-28, describing frequency conversion of DOCSIS downstream data signals). Including DOCSIS frequency converters at a cable headend provides the typical and well-known benefit of transmitting downstream internet data to subscribers in compliance with an accepted and widely used data transmission standard.

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the headend of Utsumi in view of Bigham to incorporate the headend includes a DOCSIS frequency converter, as taught by Nikoloch, for the benefit of transmitting downstream internet data to subscribers in compliance with an accepted and widely utilized data transmission standard in a cable distribution system.

The limitation of **claim 9** is encompassed by the teachings of Utsumi in view of Bigham, further in view of Nikolich, as discussed above. Specifically, Utsumi discloses data transmitted in channels being converted for passage to the plurality of service modules and associated interface units col. 7, line 33 – col. 8, line 2). Nikolich teaches a DOCSIS frequency converter (paragraphs 27-28, where a converter for converting DOCSIS downstream data for transmission to subscriber equipment, inherently, by compliance with the DOCSIS standard, discloses DOCSIS forward channels for transmission of data).

As for **claim 19**, the teachings of Utsumi in view of Bigham are relied upon as discussed above relative to claim 1. Utsumi in view of Bigham fails to disclose the headend includes a cable modern transmission system, as claimed.

However, Nikolich, in an analogous art, teaches a headend including a cable modem termination system (Fig. **1A**; Cable Modem Termination System **10**; paragraph 17) for the benefit of providing multiple downstream data channels with space savings in a single CMTS chassis (see paragraph 8).

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the headend of Utsumi in view of Bigham to include a cable modern termination system (CMTS), as taught by Nikolich, for the benefit of providing multiple downstream data channels with space savings in a single CMTS chassis in a cable distribution system.

10. Claim 11 is rejected under 35 U.S.C. 103(a) as being unpatentable over Utsumi et al (Utsumi), U.S. Patent No. 5,729,281 in view of Bigham et al. (Bigham), U.S. Patent No. 5,740,075), as applied to claim 1, further in view of Ahmed et al. (Ahmed), U.S. Patent No. 6,519,773.

As for **claim 11**, the teachings of Utsumi in view of Bigham are relied upon as discussed above relative to claim 1. Although Utsumi discloses a plurality of frequency converters (modulating portions **13**₁ **to 13**_N) for producing a multiplexed downstream transmission containing a plurality of user selected channels, the combination of Utsumi in view of Bigham fails to specifically disclose the frequency converters including a different bandpass filter, as claimed.

However, Ahmed, in an analogous art, teaches a plurality of frequency converters each including a different bandpass filter (Fig. 3B, BPF 304A – 304N; col. 7, line 45 – col. 8, line 19). A plurality of bandpass filters provides the typical and well-known benefit of blocking other frequencies not in a specified band in a frequency division multiplexing system comprising a plurality of distinct frequency bands.

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the frequency converters of Utsumi in view of Bigham to incorporate a different bandpass filter associated with each frequency converter for the benefit of blocking other frequencies not in a

specified band in a frequency division multiplexing system comprising a plurality of distinct frequency bands in a cable distribution system.

11. Claim 12 is rejected under 35 U.S.C. 103(a) as being unpatentable over Utsumi et al (Utsumi), U.S. Patent No. 5,729,281 in view of Bigham et al. (Bigham), U.S. Patent No. 5,740,075) as applied to claim 1, further in view of DeRodeff et al. (DeRodeff), U.S. Patent No. 5,828,403.

As for **claim 12**, the teachings of Utsumi in view of Bigham are relied upon as discussed above relative to claim 1. Utsumi in view of Bigham fails to disclose each interface unit does not include a microprocessor.

However, DeRodeff, in an analogous art, teaches an interface unit that does not include a microprocessor (Fig. 1, Remote Interface Units 18a and 18b; Fig. 6, providing detail of Remote Interface Unit 18a, comprising elements I-R I/F 74 and RF Modulator 76; see Fig. 7; col. 7, lines 17-28) for the benefit of providing an inexpensive interface between a user's television and a common set-top (i.e., service module).

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the interface unit of Utsumi in view of Bigham to incorporate each interface unit does not include a microprocessor, as taught by DeRodeff, for the benefit of providing an inexpensive interface between a user's television and a service module in a cable distribution system.

12. Claim 16 is rejected under 35 U.S.C. 103(a) as being unpatentable over Utsumi et al (Utsumi), U.S. Patent No. 5,729,281 in view of Bigham et al. (Bigham), U.S. Patent No. 5,740,075), as applied to claim 15, further in view of Chen et al. (Chen), U.S. Patent No. 5,699,105, further in view of Fellows, et al., "DOCSIS Cable Modern Technology," IEEE Communications Magazine, March 2001, Vol. 39, Issue 3, pp. 202-209 (ISSN: 0163-6804) (Fellows).

As for **claim 16**, the teachings of Utsumi in view of Bigham are relied upon as discussed above relative to claim 15. Utsumi in view of Bigham fails to disclose the information passed back upstream to the service module also includes a DOCSIS return channel that is passed by the service module back to the headend and back to an internet service provider, as claimed.

However, Chen, in an analogous art, teaches passing information back upstream to a service module including data transmissions which are further passed to a headend for communication with an internet service provider for the benefit of providing access to internet based services over a cable network (col. 5, lines 38-41).

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the upstream information of Utsumi in view of Bigham to incorporate passing information upstream to the service module that is passed by the service module to the headend and back to an

internet service provider, as taught by Chen, for the benefit of providing access to internet based services over a cable network in a cable distribution network.

Although Chen teaches transmitting upstream data via a service module to a headend for communication with an internet service provider, Utsumi in view of Bigham, further in view of Chen fails to specifically disclose the upstream information including a DOCSIS return channel, as claimed.

However, Fellows, in an analogous art, teaches transmitting upstream information comprising a DOCSIS return channel (page 204, 2nd col., paragraphs 2-3). Utilizing a DOCSIS return channel in upstream data communications in a cable network provides the typical and well-known benefit of complying with an established data transmission standard and allows for the use of standardized data transceiver devices (e.g., customer cable modems and headend cable modem termination system equipment).

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the upstream information of Utsumi in view of Bigham further in view of Chen to incorporate upstream information including a DOCSIS return channel, as taught by Fellows, for the benefit of complying with an established data transmission standard and facilitating the use of standardized data transceiver devices in a cable distribution system.

13. Claims 17-18 are rejected under 35 U.S.C. 103(a) as being unpatentable over Utsumi et al (Utsumi), U.S. Patent No. 5,729,281 in view of Bigham et al. (Bigham), U.S.

Patent No. 5,740,075) as applied to claim 1, further in view of Kitamura et al. (Kitamura), U.S. Patent No. 6,188,871.

As for **claim 17**, the teachings of Utsumi in view of Bigham are relied upon as discussed above. Although Utsumi discloses a processor being functional to control the operation of the receivers (Fig. 3, Controlling Portion 17), the combination of Utsumi in view of Bigham fails to disclose the processor and an associated database in communication with the headend and service module, and the database assisting the processor in this functionality and in storing customer viewing preferences.

However, Kitamura, in an analogous art, teaches a processor (Fig. 3, CPU 904) and database (Fig. 3, Database 111) in communication with a headend and service module, the processor controlling the operation of receiver/decoders and the database assisting the processor and storing customer viewing preferences (col. 8, lines 4-9, col. 8, lines 34-51) for the benefit of enabling a subscriber to receive a desired CATV program through a simple receiver (see col. 1, line 65 – col. 2, line 7).

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the processor of Utsumi in view of Bigham to incorporate the processor and an associated database in communication with the headend and service module, and the database assisting the processor in this functionality and in storing customer viewing

Application/Control Number: 10/675,415

Art Unit: 2614

ij

preferences, as taught by Kitamura, for the benefit of enabling a subscriber to receive a desired CATV program through a simple receiver in a cable distribution system.

As for **claim 18**, the teachings of Utsumi in view of Bigham are relied upon as discussed above. Although Utsumi discloses a processor being functional to control the operation of the receivers (Fig. 3, Controlling Portion 17), the combination of Utsumi in view of Bigham fails to disclose the local service module will only convert a selected video channel to a predetermined output frequency associated with a particular interface unit if that interface unit is authorized to receive that selected channel, as claimed.

However, Kitamura, in an analogous art teaches a local service module which only converts a selected video channel to a predetermined output frequency associated with a particular interface unit if the interface unit is authorized to view the program (Fig. 7, Steps 1-4, see col. 8, lines 34-63). Verifying whether a viewer is entitled to view a program prior to transmitting a program provides the typical and well-known benefit of increasing operator revenues through offering restricted access to premium content for increased subscription fees.

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the local service module of Utsumi in view of Bigham to incorporate the only converting a selected video channel to

the predetermined output frequency associated with a particular interface unit if that interface unit is authorized to receive the selected video channel, as taught by Kitamura, for the benefit of increasing operator revenues through offering restricted access to premium content for increased subscription fees in a cable distribution system.

14. Claim 22 is rejected under 35 U.S.C. 103(a) as being unpatentable over Utsumi et al (Utsumi), U.S. Patent No. 5,729,281 in view of Bigham et al. (Bigham), U.S. Patent No. 5,740,075) as applied to claim 1, further in view of Wunderlich et al. (Wunderlich), U.S. Patent No. 5,631,693.

As for **claim 22**, although Utsumi discloses cabling running between each service module and the plurality of interface units associated therewith (col. 7, lines 16-24), the combination of Utsumi in view of Bigham fails to disclose the cabling having a tree and branch architecture, as claimed.

However, Wunderlich, in an analogous art, teaches cabling having a tree and branch architecture (Fig. 1; col. 5, lines 15-24; col. 5, lines 50-61) for the benefit of providing a convenient single point to multipoint distribution network (see col. 5, lines 58-61).

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the cabling of Utsumi in view of Bigham to incorporate the cabling having a tree and branch architecture, as

Application/Control Number: 10/675,415

Art Unit: 2614

1,

taught by Wunderlich, for the benefit of providing a convenient single point to multipoint distribution network in a cable distribution system.

15. Claim 23 is rejected under 35 U.S.C. 103(a) as being unpatentable over Utsumi et al (Utsumi), U.S. Patent No. 5,729,281 in view of Bigham et al. (Bigham), U.S. Patent No. 5,740,075) as applied to claim 1, further in view of McGowan et al. (McGowan), U.S. Patent Publication No. US 2003/0018745 A1.

As for **claim 23**, the teachings of Utsumi in view of Bigham are relied upon as discussed above. Although Bigham discloses MPEG encoded digital CATV signals, the combination of Utsumi in view of Bigham fails to specifically disclose video channels including MPEG-4 encoded information, as claimed.

However, McGowan, in an analogous art, teaches video channels including MPEG-4 encoded information (paragraph 30) for the benefits of enhanced compression rates of video content and interactive content functionality (see paragraph 30).

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the video channels of Utsumi in view of Bigham to incorporate MPEG-4 encoded information, as taught by McGowan, for the benefits of enhanced compression rates of video content and interactive content functionality in a cable distribution system.

Application/Control Number: 10/675,415

Art Unit: 2614

16. Claims 28-29 and 31 are rejected under 35 U.S.C. 103(a) as being unpatentable over Utsumi et al (Utsumi), U.S. Patent No. 5,729,281 in view of Bigham et al. (Bigham), U.S. Patent No. 5,740,075) as applied to claim 26, further in view of Decker et al. (Decker), U.S. Patent No. 6,009,465.

As for **claim 28**, the teachings of Utsumi in view of Bigham are relied upon, as discussed above. Utsumi in view of Bigham fails to disclose the video channels have been spectrally inverter prior to passage to the interface unit.

However, Decker, in an analogous art, teaches spectrally inverting video channels prior to transmission to an interface unit (col. 4, lines 59-63, describing spectral inversion performed by Channel Modulators 135 of headend (Fig. 2); col. 7, lines 16-31, describing reception and subsequent unscrambling of video channels by First Converter 124 of Converter Box 110 (Fig. 3)) for the benefit of scrambling programming data transmitted from a headend to viewer equipment to prevent unauthorized viewing.

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the video channels of Utsumi in view of Bigham to incorporate the video channels have been spectrally inverted prior to passage to the interface unit, as taught by Decker, for the benefit of scrambling programming data transmitted from a headend to viewer equipment to prevent unauthorized viewing in a cable distribution system.

Application/Control Number: 10/675,415 Page 39

Art Unit: 2614

The limitation of **claim 29** is encompassed by the teachings of Utsumi in view of Bigham, further in view of Decker, as discussed above. Specifically, Decker teaches the interface units spectrally inverts the received video channel to restore the original audio and video signal orientation before sending a set top box (col. 7, lines 16-31, describing reception and subsequent unscrambling of video channels by First Converter **124** of Converter Box **110** (Fig. **3**)).

The limitation of **claim 31** is encompassed by the teachings of Utsumi in view of Bigham, further in view of Decker, as discussed above. Specifically, Decker discloses the spectral inversion is performed at the headend (col. 4, lines 59-63, describing spectral inversion performed by Channel Modulators **135** of headend (Fig. **2**)).

17. Claim 30 is rejected under 35 U.S.C. 103(a) as being unpatentable over Utsumi et al (Utsumi), U.S. Patent No. 5,729,281 in view of Bigham et al. (Bigham), U.S. Patent No. 5,740,075) further in view of Decker et al. (Decker), U.S. Patent No. 6,009,465, as applied to claim 29, further in view of Shekel et al. (Shekel), U.S. Patent No. 3,639,840.

As for **claim 30**, Utsumi in view of Bigham, further in view of Decker, fails to disclose the interface unit includes a high side LO frequency converter, as claimed.

Application/Control Number: 10/675,415

Art Unit: 2614

However, Shekel, in an analogous art, teaches an interface unit which includes a high side LO frequency converter (Fig. **5**, Fixed Frequency Oscillator **84**; col. 5, lines 18-43) for the benefit of down-converting a cable television signal to a standard output channel for display on a user's television (see col. 5, lines 38-42).

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the interface unit of Utsumi in view of Bigham, further in view of Decker, to incorporate a high side LO frequency converter, as taught by Shekel, for the benefit of down-converting a cable television signal to a standard output channel for display on a user's television in a cable distribution system.

18. Claim 32 is rejected under 35 U.S.C. 103(a) as being unpatentable over Utsumi et al (Utsumi), U.S. Patent No. 5,729,281 in view of Bigham et al. (Bigham), U.S. Patent No. 5,740,075), further in view of Decker et al. (Decker), U.S. Patent No. 6,009,465, as applied to claim 28, further in view of Hoarty et al. (Hoarty), U.S. Patent No. 5,220,420.

As for **claim 32**, the teachings of Utsumi in view of Bigham, further in view of Decker, further in view of Hoarty are relied upon as discussed above.

Although Decker teaches scrambling programming for transmission by spectral inversion of the video signals, Utsumi in view of Bigham, further in view of Decker

fails to specifically disclose the spectral inversion being performed at the service module, as claimed.

However, Hoarty, in an analogous art, teaches scrambling programming signals which is performed at a cable system node (i.e., service module) (col. 19, lines 49-68) for the benefit of preventing unauthorized access of signals distributed by a intermediate network unit, such as a node or service module (see col. 19, line 49-51).

Accordingly, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the spectral inversion scrambling of Utsumi in view of Bigham, further in view of Decker, to incorporate the spectral inversion being performed at the service module, as taught by Hoarty, for the benefit of preventing unauthorized access of signals distributed by an intermediate network unit in a cable distribution system.

Conclusion

19. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Jason P. Salce whose telephone number is (571) 272-7301. The examiner can normally be reached on M-F 9am-6pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, John Miller can be reached on (571) 272-7353. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

> Jason P Salce Patent Examiner

December 07, 2005

form July Art Unit 2614

Page 42