Course Overview

课程概述

Introduction to Computer Systems 1st Lecture, Sep 12, 2016

计算机系统导论 第一讲,2016年9月12日

Instructors:

Xiangqun Chen , Junlin Lu Guangyu Sun, Xuetao Guan Shiliang Zhang

教师:

陈向群,陆俊林 孙广宇,管雪涛 张史梁

提纲

- ■课程起源
- ■课程规划
- ■五个有趣的现实问题
- 注意事项

课程起源

■ 创立:

- 卡耐基梅隆大学计算机科学学院创立
- 全球超过180所大学采用了该课程教材、设立了相同或类似的课程
- 特点:注重实践(程序员视角)、强 调对系统的理解

■发展

2012年,北大信息科学技术学院与 卡耐基梅隆大学计算机科学学院联合 对该课程进行升级,并正式引入国内

合作建设课程

北京大学的课程规模

■ 2010-2011 学年,本科班级规模的初步统计

- 20 人以下的班级占所有本科课程的比例仅为3.8%, 100 人以上的课程约占27.2%(进一步统计表明,200 人以上的班级占4%)
- 在全校153 个20 人以下的小班中,大部分是外国语学院课程,大约占67%,其他为公共英语课程
- 这表明, 当时在绝大多数院系中小班教学很少开展

	20人以下	20~39人	40~49人	50~99人	100人以上	合计
课程数	153	1387	186	1205	1093	4024
百分比	3.8%	34.5%	4.6%	29.9%	27.2%	100%

北京大学本科生"研讨型小班教学"试点

■ 2012年秋开展第一批试点: 五个学院, 六门必修基础课

信息科学技术学院	《计算机系统导论》			
数学科学学院	《数学分析》、《抽象代数》			
物理学院	《量子力学》			
化学与分子工程学院	《无机化学》			
生命科学学院	《生物化学》			

提纲

- ■课程体系
- ■课程规划
- ■五个有趣的现实问题
- 注意事项

本课程在课程体系中的位置

本课程的教学方式

- 研讨型教学的两种主要方式
 - 第一种,一学期由一个教师面对一个小班的学生
 - 第二种,大班讲授课教学同时辅以小班研讨课(本课程的方式)

每周两次

大班授课

• 周一, 5~6节

• 周三, 1~2节

共30次大班课

每周一次 小班研讨

• 周四, 10~11节 共14次小班课

重要的时间点

周次	日期	说明			
_	周一9.12	大班第一次课,两班合上			
_	周三9.14	大班第二次课起,两班分上			
_	周四9.15	中秋节放假,无小班课			
•••	••••	•••••			
	周四9.22	小班第一次课			
•••	•••	•••••			
九	周一11.7	期中考试,两班统考			
•••	•••	•••••			
十六	周三12.28	大班最后一次课			
十六	周四12.29	小班最后一次课			
		期末考试,两班统考			

大班课程安排

■ 上半学期

- 1班-陆俊林(张史梁), 2班-孙广宇
- 大致覆盖教材第一部分(Part I), 即第2~6章

■ 下半学期

- 1班-陈向群(张史梁), 2班-管雪涛
- 大致覆盖教材第二、三部分(Part II/III), 即第7~12章

小班课的安排

■ 保证教学效果,严格控制小班人数

- 2012年设立14个小班(每班约13人)
- 2013年设立16个小班(每班约14人)
- 2014年设立18个小班(每班约13人)
- 2015年设立18个小班(每班约13人)
- 2016年设立19个小班

■ 投入大量优秀教师

2016年秋季小班课教师

1	陈向群	6	金芝	11	张铭	16	英向华
2	陈一峯	7	李文新	12	周明辉	17	黄铁军
3	陈钟	8	汪国平	13	易江芳	18	曹东刚
4	郭耀	9	汪小林	14	边凯归	19	许辰人
5	焦文品	10	熊英飞	15	王亚沙		

Introduction to Computer Systems, Peking University 课程特点: 大班教学和小班研讨结合

实验题系统

课程特点: 学生在指定系统上完成实验题

■ 大型特色实验题

- 从实际问题出发
- 具有很强的趣味性
- 平均每两周完成一个

■ 新颖的"实验题智能评价系统"

- 自动根据性能、时间、提交次数等对学生提交的实验题进行评分
- 实时公开发布所有同学完成情况并分步分题进行比对,鼓励学生对实验的钻研

以前作业的关文件是这样的 #include < iostream> #include < string> #include < iomanip> #include < cstdio> 这是薩普世界大作业的关文件

```
上JICS后头文件是这样的
#include <assert.h> #include <stdio.h>
#include < stdl: b.h> #include < unistd.h>
#include <string.h> #include <ctype.h>
#include < signal. h> #include < sys/types.h>
#include <fcntl.h> #include <sys/wait.h>
#include <errno.h>
              懂这些头文件了。
```


圆圆有神的北大生活

提纲

- ■课程体系
- ■课程规划

- 五个有趣的现实问题
- 注意事项

本课程关注的问题和目标

■ 本课程关注的问题:

- 计算机抽象概念与实际计算机系统之间的差异
- 计算机抽象概念在实际计算机系统上的实现方式

■ 本课程的目标:

- 为初入计算机专业的学生建立计算机系统的整体知识框架
- 训练学生养成良好的编程习惯,进而具备更为高效的编程能力,尤其是提高程序的性能、可移植性和健壮性等方面
- 为学生后续学习编译、网络、操作系统、计算机体系结构等专业课程奠定基础

本课程独特的视角

■ 本课程是从编程者角度出发,描述计算机系统如何执行程序、存储信息和通信

- 涵盖计算机系统从上到下的多个层次,包括:
 - 机器语言及其如何通过编译器优化生成
 - 程序性能评估和优化
 - 存储结构组织和管理
 - 网络技术和协议
 - 并行计算的相关知识

问题1:整型不是整数,浮点型不是实数 Ints are not Integers, Floats are not Reals

- 例1.1: x² ≥ 0永远成立吗?
 - 如果 x 是浮点型,成立
 - 如果 x 是整型
 - 40000 * 40000 → 1600000000
 - 50000 * 50000 → 负数,因为整型有上界溢出
- 例1.2: 是否满足结合律 (x + y) + z = x + (y + z)?
 - 如果x, y, z是整型,满足结合律
 - 如果x, y, z是浮点型
 - $(1e20 + -1e20) + 3.14 \rightarrow 3.14$
 - 1e20 + (-1e20 + 3.14) → 0, 因为浮点数精度不同不满足结合律

计算机系统中的算术 # 数学中的算术(1/2)

■ 整数性质

- 交换律: a+b = b+a
- 结合律: (a+b)+c=a+(b+c)
- 分配律: a·(b+c)=a·b + a·c
- 整型运算满足以上性质

■ 实数性质

- 单调性: if a ≥ b, c ≥ 0, then (a+c) ≥ (b+c)
- 浮点型运算满足单调性

计算机系统中的算术 ≠ 数学中的算术(2/2)

■ 有些性质在计算机系统中并不成立

- 计算机系统只能表示"有限大小的数":溢出问题(例1.1)
- 浮点型不满足结合律: 舍入操作会造成精度误差(例1.2)
- 需要记住计算机中不同数据类型所满足的数学性质
- 对编译器和科学计算程序员尤为重要: 因为缺少一些数学 性质会使得解决某些简单问题变得麻烦。

■ 例1.3:

■ 两个整型a和b是否相等: a == b 😃

■ 两个浮点型a和b是否相等: a == b

- 因为两个数精度可能不同
- 正确方法——作差取绝对值 fabs (a-b)<= epsilon, (epsilon是很小的数,如0.00001)

问题2: 了解汇编(1/4)

You've Got to Know Assembly

可能你永远都不会去写汇编程序,但是.....

有助于了解机器层面的程序执行模型

- 帮助查找底层实现相关的程序错误(bug)
 - **例2.1**: 比较整型(int)、无符号整型(unsigned int)
 - d = -1 < TOTAL=12, 理应输出small, 但结果却是large
 - sizeof()的返回值是unsigned int;
 - if语句作比较时,编译器认为-1是unsigned int (很大的整数)
 - 通过底层汇编代码/目标程序文件(二进制文件)查看 d 的

数值

```
int array[] = {1,2,3};
#define TOTAL sizeof(array) /* unsigned int */
void main() {
   int d = -1;
   if (d <= TOTAL)
       printf("small\n");
   else printf("large\n");
}</pre>
```

问题2: 了解汇编(2/4)

You've Got to Know Assembly

■ 程序性能调优

- **例2.2**:尝试不同代码写法,分析比较不同的底层汇编代码效率
- 两个程序似乎有相同的行为。但是fun2的效率会更高
- 通过底层代码可以看出,fun1需要6次存储器引用,而fun2只需3次

```
void fun1(int *x, int *y)
{
    *x += *y;
    *x += *y;
}
```

```
void fun2(int *x, int *y)
{
    *x += 2* (*y);
}
```

问题2: 了解汇编(3/4)

You've Got to Know Assembly

- 系统软件或嵌入式软件开发
 - 例如系统软件工程师往往会要求写小段汇编代码
 - **例2.3**: 把小段汇编代码加入C代码,来访问硬件(处理器)上的周期计数器(cycle counter)。

问题2: 了解汇编(4/4)

You've Got to Know Assembly

- 防范恶意软件或分析第三方软件的安全性
 - 分析没有源代码的软件时,需要进行反汇编
 - 常见的安全漏洞包括:缓冲区溢出、内存泄露、非 授权内存写入等
 - 对反汇编得到的代码进行**静态分析**,是一种找到已 知安全漏洞代码的有效手段
 - **例2.4**: 定位 gets() 这样不安全函数对应的汇编代码

```
void main{}
{
    char buf[1024];
    gets(buf);
    /*用户输入不做限制,缓冲区溢出*/
}
```

```
#define BUFSIZE 1024
void main{}
{
    char buf[BUFSIZE];
    fgets(buf, BUFSIZE, stdin);
    /*限制输入大小的参数*/
}
```

问题3:内存对程序性能的影响至关重要 Memory Matters Random Access Memory Is 内存是有限的 an Unphysical Abstraction

- 必须合理地分配和管理内存
- 很多程序受限于内存

■ 内存引用错误尤为严重

- 错误的危害因时间、空间而异
- 内存性能并不是始终如一的
 - 高速缓存和虚拟内存极大地影响程序性能
 - 根据存储系统的特点,可以对程序进行调优(见问题4)

内存引用错误(1/3)

```
typedef struct {
  int a[2];
  double d;
} struct_t;

double fun(int i) {
  volatile struct_t s;
  s.d = 3.14;
  s.a[i] = 1073741824; /* Possibly out of bounds */
  return s.d;
}
```

```
fun(0) → 3.14
fun(1) → 3.14
fun(2) → 3.1399998664856
fun(3) → 2.00000061035156
fun(4) → 3.14
fun(6) → segmentation fault
```

Result is system specific

内存引用错误(2/3)

```
typedef struct {
  int a[2];
  double d;
} struct_t;
```

```
fun(0) → 3.14
fun(1) → 3.14
fun(2) → 3.1399998664856
fun(3) → 2.00000061035156
fun(4) → 3.14
fun(6) → segmentation fault
```

Explanation:

内存引用错误(3/3)

- C和 C++ 并没有提供对此类错误的防范机制, 比如:
 - 数组越界错误
 - 指针错误
 - 滥用 malloc/free 函数

■ 应对措施

- 用其他语言编程,例如 Java, Ruby, Python, ML
- 使用工具来检测此类内存错误

问题4: 算法性能分析结果 ≠ 实际程序性能 There's more to performance than asymptotic complexity

- 代码写的好坏与否,可能导致程序性能的数量级差别
- 程序性能优化有多个层面
 - 算法,数据表达,过程,循环
- 只有理解了系统实现才能做到有效优化
 - 衡量程序性能的指标: 执行时间、内存占用、能耗等。
 - 了解程序的编译、执行过程中的细节,如内存访问模式
 - 例:内存访问模式影响程序性能

内存性能影响程序性能

2.0 GHz Intel Core i7 Haswell

- 内存是分层组织的
- 程序性能取决于内存访问模式
 - 例如:如何访问内存中的二维数组、多维数组

为什么性能有这些差别

问题5: 计算机网络环境下的新问题 Computers do more than execute programs

- 计算机需要输入和输出数据
 - 程序执行前,需要输入数据
 - 程序执行后,需要输出结果
 - 在网络环境下,数据输入来源
 - 本地磁盘
 - 网络中别的计算机。例如,利用上传数据到服务器,利用服务器的超强计算能力做仿真实验
- I/O 系统对程序稳定性和性能至关重要
 - 如果缺少I/O异常处理能力,就会出现程序运行错误

课程主体内容

- ① 程序与数据
- ② 处理器体系结构
- ③ 程序性能
- 分级存储器体系
- ⑤ 异常控制流
- 6 虚拟内存
- ⑦ 网络、并发

Programs and Data

Processor Architecture

Performance

The Memory Hierarchy

Exceptional Control Flow

Virtual Memory

Networking, and Concurrency

提纲

- ■课程体系
- ■课程规划
- ■五个有趣的现实问题
- 注意事项

课程主页

http://course.pku.edu.cn

课程教材

Computer Systems: A Programmer's Perspective (3rd Edition)

深入理解计算机系统(英文版·第3版)

ずかに作者。 / 羊 \ P-~dal F Bryant / David O'Hallaron

从本学期开始,教材升级到第3版

COMPUTER SYSTEMS

THIRD EDITION

这些是第2版

成绩评定

ICS期末考完是这样的

Introduction to Computer Systems, Peking University

圆圆有神的北大生活

圆圆有神的北大生活

2013-08-21

