SURF Object Recognition Algorithm

Outline

- Overview of SURF
- Implementation
- Summary
- References
- Concepts

Overview of SURF

- SURF Speeded Up Robust Features
- Fast, robust object detection algorithm
- Works by identifying sets of feature points for an object and matching these between images
- Differences with SURF
 - Detectors and descriptors modified to improve speed of execution
 - Invariance to affine transforms is assumed to occur as a side effect of the primary efforts
 - In general, lessons learned from other methods are taken into account

Procedure:

- 1)Interest point detection
- 2)Represent each point by a distinctive feature vector
- 3) Match descriptor vectors between images

Interest Point Detection

Hessian matrix:

$$\mathcal{H}(\mathbf{x},\,\sigma) = \begin{bmatrix} L_{xx}(\mathbf{x},\,\sigma) & L_{xy}(\mathbf{x},\,\sigma) \\ L_{xy}(\mathbf{x},\,\sigma) & L_{yy}(\mathbf{x},\,\sigma) \end{bmatrix}$$

Based on Gaussian second derivatives:

$$L_{xx}(\mathbf{x}, \sigma) \qquad \frac{\partial^2}{\partial x^2} g(\sigma)$$

Interest Point Detection

Approximation to the Gaussian second order derivatives:

- Interest Point Detection
 - Scale space invariance is achieved in a manner similar to SIFT
 - Scale is increased by convolving Gaussian derivatives with different window sizes, to the original image
 - Next octave is reached by downsampling the last image

- Interest Point Detection
 - Extrema of the determinant of the Hessian are detected
 - Interpolation used in both scale and image space
 - Result is points of "interest"

- Descriptor (feature vector) Assignment
 - Orientation Assignment
 - Compute Haar-wavelet responses in a circular region about the interest point
 - Scale = s = sigma
 - Radius 6*s
 - Side length of Haar wavelet = 4*s
 - Dominant orientation estimated by summing responses in sliding orientation window

- Descriptor Assignment
 - Descriptor Components
 - Square region aligned with dominant direction
 - Side length = 20*s
 - Break square into 4x4 sub-regions

- Descriptor Assignment
 - Descriptor Components
 - Compute features at 5x5 spaced points in sub-regions
 - Each point Gaussian weighted by 3.3*s
 - Haar wavelet respones dx, dy for each point summed for each sub-region
 - Absolute values also summed
 - Invariant to illumination, which acts as offset

$$\mathbf{v} = (\sum d_x, \sum d_y, \sum |d_x|, \sum |d_y|)$$

- Descriptor Assignment
 - Descriptor Components
 - Compute features at 5x5 spaced points in sub-regions
 - This vector is 4-dimensional
 - Each sub-region region contains one vector
 - The point's Laplacian is also stored: This indicates "bright" or "dark" region

- Match descriptor vectors between images
 - Nearest-neighbor algorithm
 - Euclidean distance between feature vectors in feature space
 - Similarity-threshold based algorithm
 - Some approximation to the distance found without checking all point sets

Summary

- SURF is an object detection algorithm designed to be robust to scale and rotation
- More simplistic implementation than SIFT
- Shown experimentally to be invariant to smallmagnitude affine transforms
- 3 times faster than SIFT
- 5 times faster than Hessian-Laplace

Summary

Performance summary

detector	threshold	nb of points	comp. time (msec)
Fast-Hessian	600	1418	120
Hessian-Laplace	1000	1979	650
Harris-Laplace	2500	1664	1800
DoG	default	1520	400

References

1. "SURF: Speeded Up Robust Features,"
Herbert Bay, Tinne Tuytelaars, Luc Van Gool,
Katholieke Universiteit Leuven

Finite differences

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\phi_{ij,x}^{n} = \frac{\phi_{i+1j}^{n} - \phi_{i-1j}^{n}}{2h}$$

$$\phi_{ij,x}^{n} = \frac{\phi_{ij+1}^{n} - \phi_{ij-1}^{n}}{2h}$$

$$\phi_{ij,xx}^{n} = \frac{\phi_{i+1j}^{n} - 2\phi_{ij}^{n} + 2\phi_{i-1j}^{n}}{h^{2}}$$

$$\phi_{ij,xx}^{n} = \frac{\phi_{ij+1}^{n} - 2\phi_{ij}^{n} + 2\phi_{ij-1}^{n}}{h^{2}}$$

$$\phi_{ij,xy}^{n} = \frac{\phi_{i+1j+1}^{n} - 2\phi_{i-1j+1}^{n}}{h^{2}} - \frac{\phi_{i+1j-1}^{n} - \phi_{i-1j-1}^{n}}{2h}$$

Finite differences

Generalized definition (forward, central, backward):

$$\Delta_h^n[f](x) = \sum_{i=0}^n (-1)^i \binom{n}{i} f(x + (n-i)h),$$

$$\nabla_h^n[f](x) = \sum_{i=0}^n (-1)^i \binom{n}{i} f(x - ih),$$

$$\delta_h^n[f](x) = \sum_{i=0}^n (-1)^i \binom{n}{i} f\left(x + \left(\frac{n}{2} - i\right)h\right)$$

Gaussian smoothing

$$G(x, y, \sigma) = \frac{1}{2\pi\sigma^2}e^{-(x^2+y^2)/2\sigma^2}$$

- Laplacian
 - Sum of the second-order, non-mixed partial derivative of a scalar function
 - Denoted by the "Laplacian operator"

$$\nabla \cdot \nabla f = \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$