PSO Applications

Gravitational Wave Data Analysis School in China Soumya D. Mohanty

UTRGV

Toy application

▶ Use PSO to find the GLRT and MLE for data containing the quadratic chirp signal added to colored Gaussian noise

$$L_G = \max_{\Theta} \langle \bar{y}, \bar{q}(\Theta) \rangle^2$$

- ► The fitness function to be minimized is $-\langle \bar{y}, \bar{q}(\Theta) \rangle^2$
- $\bullet \Theta = (a_1, a_2, a_3)$
- Results for WGN can be found in the textbook (Chapter 5)

fitness function (with noise) fitness function (no noise) BigDat 2019, Cambridge, UK

Fitness function crosssection

- Quadratic chirp: Multiple local minima in fitness function even in the absence of noise
- PSO has to search for the global minimum while avoiding local minima

Tuning PSO

Simulate data realizations based on assumed noise model

Each data
realization leads to a
different fitness
function ⇒ Variation
in PSO performance

Use statistical approach to tune PSO

3 2 -1 1 0 -1 -2 -3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BigDat 2019, Cambridge, UK

DATA SIMULATION

- Keep the parameters of the true signal (e.g. quadratic chirp) fixed
- Add different noise realizations
- Each data realization ⇒ one fitness function realization

Statistical tuning approach

- For the same true signal parameters, the global minimizer will be different for different data realizations
- The best fitness value will always occur away from the true parameters
 - This is why we get error in parameter estimates in the presence of noise
- This fact can be used to develop a tuning procedure

BigDat 2019, Cambridge, UK

PSO Tuning for regression problems

Key idea: The global minimum must be lower than the fitness at the true parameters

$$f^{opt} < f^{true}$$

- PSO is working well if this condition is satisfied for a sufficiently high fraction of data realizations
- Proposed in:
 - Wang, Mohanty, Physical Review D, 2010
 - Normandin, Mohanty, Weerathunga, Physical Review D, 2018

Parametric regression

- The true parameters are known for simulated data
- \Rightarrow Possible to check $f^{opt} < f^{true}$ for each data realization
- Set up a grid of values in
 - \triangleright N_{iter} : Number of iterations
 - $\triangleright N_{runs}$: Number of runs in BMR strategy
- For each combo (N_{iter}, N_{runs}) : Get fraction X of N data realizations where this condition is satisfied
- ► Get all (N_{iter}, N_{runs}) for which X is below some preset value
- Pick the combo in this set with the lowest computational cost

Results

Chapter 5 of "Swarm intelligence methods for statistical regression"

Parametric regression

Quadratic chirp:

$$f(x; \bar{\theta}) = A \sin(2\pi\Phi(x)); \ \bar{\theta} = (A, a_1, a_2, a_3)$$

 $\Phi(x) = a_1 x + a_2 x^2 + a_3 x^3$

True parameters

$$A = 0.625$$
, $a_1 = 100$, $a_2 = 20$, $a_3 = 10$

- White Gaussian Noise (WGN): iid Normal with mean =0 and variance =1
- ▶ 100 data realizations
- PSO Search space:

$$a_1 \in [10,150], a_2 \in [1,30], a_3 \in [1,15]$$

*True parameters not centered in search space

PSO SUCCESS STORIES

Applications in gravitational wave astronomy

Binary inspiral

PSO-BASED BINARY INSPIRAL SEARCH

- First use of PSO in GW data analysis:
 - Wang, Mohanty, Physical Review D, 2010
- PSO: factor of ≈ 10 fewer evaluations
 - Weerathunga, Mohanty, 2017
- On the threshold of a real-time optimal search:
 - Normandin, Mohanty, Weerathunga, 2018
 - Srivastava, Nayak, Bose, 2018

SEARCH FOR UNMODELED CHIRPS

- New approach: model the unknown functions with splines and optimize over their breakpoints
 - Soumya D. Mohanty, Physical Review D (2017).
- SEECR: Spline-Enabled Effective-Chirp Regression

Unmodeled chirps

SEECR: SIGNAL MODEL

EUSIPCO 2018, Rome, Italy

Sep 2018

TF Clustering and Chirps

0.2

0.4

0.6

TF Cluster Detection Probability

8.0

• Chirp signal: distributes signal power along well-defined tracks in the TF plane

1.2

- TF clustering performs surprisingly poorly on some simple chirp signals
 - Example: Linear chirp and cosine-chirp @SNR= 10, 12, 15

GWASNe, NAOJ, Tokyo, 2018

Large-scale PTA

Next Gen Instruments: Square Kilometer Array

- The Square Kilometre Array (SKA) is a large multi <u>radio telescope</u> project aimed to be built in <u>Australia</u> and <u>South Africa</u>.
- If built, it would have a total collecting area of approximately one square kilometre.
- 50 times more sensitive than any other radio instrument
- Construction of the SKA is scheduled to begin in 2018 for initial observations by 2020, but the construction budget is not secured at this stage.
- The SKA would be built in two phases, with Phase 1 (2018-2023) representing about 10% of the capability of the whole telescope.

Artist's impression of the 5km diameter central core of SKA antennas

SKA era PTA

Current	SKA era PTA
IPTA: About 30 pulsars	Anticipated: 6000 millisecond pulsars R. Smits et al, A & A, (2009)
A few pulsars with timing residual noise level ~ 100 ns	Several hundreds timed to better than 100 ns accuracy
1 pulsar already timed to ~ 80 ns accuracy (Arzoumanian et al, ApJ, 2016)	100 ns is conservative since SKA will have much higher sensitivity

Question: What can a SKA era PTA with 1000 pulsars achieve in terms of GW astronomy?

Answer: A realistic assessment requires overcoming a data

analysis challenge: "Pulsar phase parameters"

SMBHB GW signal

Data and signal model for single GW source:

$$\underbrace{\begin{pmatrix} d_1(t) \\ d_2(t) \\ \vdots \\ d_N(t) \end{pmatrix}}_{\text{Timing Residuals from N Pulsars}} = \begin{bmatrix} \mathbf{1} & -\begin{pmatrix} T[\tau_1] & 0 & \cdots & 0 \\ 0 & T[\tau_2] \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & T[\tau_N] \end{pmatrix} \underbrace{\begin{pmatrix} F_{+,1} & F_{\times,1} \\ F_{+,2} & F_{\times,2} \\ \vdots & \vdots \\ F_{+,N} & F_{\times,N} \end{pmatrix}}_{\text{Antenna Patterns}} \underbrace{\begin{pmatrix} h(t) \\ h_+(t) \\ h_\times(t) \end{pmatrix}}_{\text{Noise}} + \underbrace{\begin{pmatrix} n_1(t) \\ n_2(t) \\ \vdots \\ n_3(t) \end{pmatrix}}_{\text{Noise}}$$

- Here τ_i is a time delay that depends on the
 - Earth-pulsar distance: not known accurately
 - and Earth-Pulsar-SMBHB lines-of sight geometry
- Unknown signal parameters: Amplitude, sky location, frequency, Observer-Binary orbit geometry
- Time delay \Rightarrow Phase shift (Pulsar phase parameter) \Rightarrow Additional unknown parameter (1 per pulsar)

Signal detection and estimation

Global Minimization over all the signal parameters:

$$MLE \ or \ GLRT \Rightarrow \min_{\text{(parameters)}} (.) \rightarrow \min_{\text{(intrinsic)}} (\min_{\text{(extrinsic)}} (.))$$

Carrying out the inner maximization analytically/semi-analytically reduces the computational cost

Intrinsic parameters: Pulsar phases, sky location ("F-statistic" approach)			
Markov Chain Monte Carlo (MCMC)	Particle Swarm Optimization (PSO)		
Corbin & Cornish 2010Taylor et al, 2014Others	 Wang, Mohanty, Jenet, ApJ, 2014 Zhu et al, MNRAS, 2016 		

MaxPhase Algorithm

A SKA era PTA will contain **hundreds** of pulsar phase parameters! Analysis algorithm <u>must be scalable if all the pulsars are included in the analysis.</u>

Minimize: $f(x, \phi_1, \phi_2) = f_1^2(x, \phi_1) + f_2^2(x, \phi_2)$; 10 grid points along each parameter		
ϕ_1,ϕ_2 : intrinsic	Solution \hat{x} for inner minimization depends on $\phi_1, \phi_2 \Rightarrow$ Minimize: $f_1^2(\hat{x}(\phi_1, \phi_2), \phi_1) + f_2^2(\hat{x}(\phi_1, \phi_2), \phi_2) = g(\phi_1, \phi_2)$	Cost: $10 \times 10 \times 10$ Not scalable
x: intrinsic	Inner minimization: $\min_{\phi_1} f_1^2(x,\phi_1) + \min_{\phi_2} f_2^2(x,\phi_2)$ Minimize: $f_1^2(x,\hat{\phi}_1(x)) + f_2^2(x,\hat{\phi}_2(x)) = k(x)$	Cost: $(10 + 10) \times 10$ Scalable

- MaxPhase: Choose pulsar phases as extrinsic parameters
 - Semi-analytical minimization by solving quartic equations
 - Number of intrinsic parameters is fixed at 7 irrespective of the number of pulsars
 - PSO used for the outer minimization

SKA era PTA Simulation Galactic North Pole DEC (δ) 1.25 8 **Galactic Center** RA (α) 1.15 1.05

- 1000 pulsars; timing residual noise rms = 100 ns (White, Gaussian)
- 4 SMBHB locations
- Observation period: 5 years; Cadence: one sample per two weeks;
- Wang, Mohanty, Physical Review Letters, 2017

Direction Estimation

- Good condition number spots attract noise only estimates
- Location B and D show significant bias (towards nearest good condition number spot)

- Conservative error area: $2\sigma_{\alpha} \times 2\sigma_{\delta} \times \cos \delta$
- Localization to within ~ 70 to $\sim 180 \text{ deg}^2$ at $\rho = 30$.
- Search for PSO J334 (Liu et al, ApJL, 2015): 80 deg² field from Pan-STARRS1 Medium survey
- Optical counterpart searches possible for even the most distant sources (SKA + LSST)

