<u>Unit -I - SET THEORY</u>

1.	A collection of all well defined objects is called	
2.	(a) set (b) group (c) coset (d) lattice Power set of empty set has exactly subset.	Ans: a
	(a) one (b) two (c) zero(d) three	Ans: a
3.	What is the Cartesian product of $A = \{1, 2\}$ and $B = \{a, b\}$?	
	a) {(1, a), (1, b), (2, a), (b, b)}	
	b) {(1, 1), (2, 2), (a, a), (b, b)}	
	c) {(1, a), (2, a), (1, b), (2, b)} d) {(1, 1), (a, a), (2, a), (1, b)}	Ans: c
4	What is the cardinality of the set of odd positive integers less than 10?	111151 C
••	(a) 10 (b) 5 (c) 3 (d) 20	Ans: b
5. V	Which of the following two sets are equal?	
	a) $A = \{1, 2\}$ and $B = \{1\}$ b) $A = \{1, 2\}$ and $B = \{1, 2, 3\}$	
	c) $A = \{1, 2, 3\}$ and $B = \{2, 1, 3\}$ d) $A = \{1, 2, 4\}$ and $B = \{1, 2, 3\}$	Ans: c
6. Y	What is the Cardinality of the Power set of the set $\{0, 1, 2\}$?	
	(a) 8 (b) 6 (c) 7 (d) 9	Ans: a
tl	In a class of 120 students numbered 1 to 120, all even numbered students opt for Physics, hose whose numbers are divisible by 5 opt for Chemistry and those whose numbers are divisible by 7 opt for Math. How many opt for none of the three subjects?	
	a) 19 b) 41 c) 21 d) 57	Ans: b
8. I	Let R be a non-empty relation on a collection of sets defined by ARB if and only if	
	$A \cap B = \emptyset$ Then (pick the TRUE statement)	
	a). R is reflexive and transitive b). R is an equivalence relation	
	c). R is symmetric and not transitive d). R is not relexive and not symmetric	Ans: c
9.	The binary relation $S = \Phi$ (empty set) on set $A = \{1, 2, 3\}$ is	
	a). transitive and relexive b). symmetric and relexive	
	c). transitive and symmetric d). neither reflexive nor symmetric	Ans: c
10.	. Number of subsets of a set of order three is	
	a) 2 b) 4 c) 6 d) 8	Ans: d
11.	. "n/m" means that n is a factor of m, then the relation T is	
	a). relexive, transitive and not symmetric b). relexive, transitive and symmetric	
	c). transitive and symmetric d). relexive and symmetric	Ans: a
12.	. Two sets are called disjoint if there is the empty set.	

a) Union b) Difference c) Intersection d) Complement	Ans: c
13. The set difference of the set A with null set is	
a) A b) null c) U d) B	Ans: a
14. An equivalence relation R on a set A is said to posses	
(a) reflexive, antisymmetric and transitive (b) reflexive, symmetric and transitive	
(c) reflexive, nonsymmetric and antisymmetric (d) irreflexive, symmetric and transitive	Ans: b
15.Relative complement of S with respect to R is defined as	
(a) $\{x \mid x \in R \text{ and } x \notin S\}$ (b) $\{x \mid x \in R \text{ and } x \in S\}$	Ans: a
(c) $\{x/x \notin R \text{ and } x \in S\}$ (d) $\{x/x \notin R \text{ and } x \notin S\}$	mis. a
16. If the relation R is reflexive, antisymmetric and transitive, then the relation R is called	
(a) equivalence relation (b) equivalence class (c) partial order relation	
(d) partially ordered set	Ans: c
17. A digraph representing the partial order relation	
(a) Helmut Hasse (b) POSET (c) graph relation (d) Hasse diagram	Ans: d
18. In a poset, the maximum number of greatest and least members if they exist are	
(a) more than one (b) unique (c) zero (d) exactly two	Ans: b
19. Equivalence class of 'a' is defined by	
(a) $\{x/(a,x) \in R\}$ (b) $\{x/(x,a) \in R\}$ (c) $\{a/(a,x) \in R\}$ (d) $\{a/(x,a) \in R\}$	Ans: a
20. If A is a non-empty set with n elements, then number of possible relations on the set A is	
(a) 2^n (b) 2^{n-1} (c) 2^{n^2} (d) 2^{n+1}	Ans: c
21. Which one of the following relations on the set $\{1, 2, 3, 4\}$ is an equivalent relation	
(a) {(2,4), (4,2)} (b) {(2,2), (2,3), (2,4), (3,2), (3,3), (3,4)}	
(c) {(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)}(d) {(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)}	Ans: d
22. From each of the following relations, determine which is one of the relation is a partial ord	
(a) $R \subseteq Z \times Z$ where aRb if a divides b (b) R is the relation on Z, where aRb if a + b is or	10
(c) $R \subseteq Z^+ \times Z^+$, where aRb if a divides b (d) none of these.	Ans: c
23. Determine which one of the following relations on the set $\{1, 2, 3, 4\}$ is a function.	
(a) $R_1 = \{(1,1), (2,1), (3,1), (4,1), (3,3)\}$ (b) $R_2 = \{(1,2), (2,3), (4,2)\}$	
(c) $R_3 = \{(4,4),(3,1),(1,2),(4,2)\}$ (d) $R_4 = \{(1,1),(2,1),(1,2),(3,4)\}$	Ans: a
24. How many possible functions we get $f: A \rightarrow B$, if $ A = m$ and $ B = n$	
(a) 2^n (b) 2^m (c) n^m (d) m^n	Ans: c
25. If $A = \{1, 2, 3\}$ and f, g are functions from A to A given by $f = \{(1, 2), (2, 3), (3, 1)\}, g = \{(1, 2), (2, 3), (2, 3), (3, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, 3), (2, 3)\}, g = \{(1, 2), (2, 3), (2, $	2), (2,1),
$(3,3)$ } then $\{(1,3), (2,2), (3,1)\}$ is the composition relation of one of the following:	
(a) $f \circ g$ (b) $g \circ f$ (c) $f \circ (f \circ g)$ (d) $f \circ (g \circ f)$	Ans: a

26. If $f(x) = ax + b$, $g(x) = 1 - x + x^2$ for $x \in A$	$\in R$, and $(g \circ f)(x) = 9x^2 - 9x + 3$. Find the val	lues of a and b.
(a) $a = 3$, $b = -1$ (or) $a = -3$, $b = 2$	(b) $a = 1, b = 3$ (or) $a = 1, b = 2$	
(c) $a = -3$, $b = -1$ (or) $a = -3$, $b = 2$	(d) $a = 3$, $b = 2$ (or) $a = -3$, $b = -1$	Ans: a
27. If $A = \{1, 2, 3, 4\}, B = \{x, y, z\}$ and $f = \{0, 1, 2, 3, 4\}, B = \{x, y, z\}$	(1,x),(2,y),(3,z),(4,x), then the function f is	
(a) both $1-1$ and onto (b) $1-1$ but	not onto	
(c) onto but not $1-1$ (d) neither 1	− 1 nor onto	Ans: c
statements is TRUE? (a) R is not an equivalence relation (b) R is an equivalence relation having (c) R is an equivalence relation having (c)	two equivalence class	
(d)R is an equivalence relation having to 29. The number of equivalence relations of	1	Ans: c
(a) 4 (c) 16 (b) 15 (d) 24 30. If R be a symmetric and transitive relation		Ans: b
(a) R is reflexive and hence an equivale		
(b)R is reflexive and hence a parital ord(c) R is not reflexive and hence not an example.		
(d)R is Reflexive	Autvarence relation	Ans: d
21 Polotion P. defined on a set N by P-((a	h) la bliadiniaiblabus) ia	
31. Relation R defined on a set N by R={(a, (a) reflexive (c) transitive	(0): $[a - b]$ is divisible by $[3]$, is	
(b)symmetric (d) Equivalence		Ans: d
32. The domain and range are same for		
	ate value function	
	est integer function	Ans: b
33. The function $f: N \rightarrow N$ given by $f(x)=x^2$	210	
(a) one-one (c) one-one and o		
(b)onto (d) in-to		Ans: a
-	ed by: $\{(x,x),(x,y),(y,x),(x,z),(y,z),(y,y),(z,z)\}$	
(a) Symmetric (c) Irreflexive (b)Reflexive (d) Anti-symmetri		Ans: b
` '	ach, then minimum number of elements in A	
(a) 3 (c) 18	,	
(b) 6 (d) 9		Ans: b
36. f: R \rightarrow R is a function defined by f (x)	= $10x - 7$. If $g = f^{-1}$, then $g(x)$	
(a) $\frac{1}{10x-7}$ (c) $\frac{x+7}{10}$		

(b) $\frac{1}{10x+7}$ (d)	2 2 7 10	Ans: c
2010 1 7	ce classes of a set A of cardinality C	
(a) has the same cardina	ality as A	
(b) forms a partition of	A	
(c) is of cardinality 2C		
(d) is of cardinality C^2		Ans: b
38. Which of the following s		
1. $X = \{x \mid x = 9, 2x = 4\}$	ii $Y = \{x x = 2x.x \neq 0\}$ iii $Z = \{x x - 8 = 4\}$	
(a) I and II only		
(b)I,II and III	· · ·	Ans: a
	Tine \sim by $x \sim y \iff x$ divide y. Then \sim is	
(a) reflexive, but no	t a parital-ordering	
(b) symmetric	1	
(c) an equivalence r (d) a parital- orderin		Ans: d
40.If $A=\{1,2,3\}$, then relation		Alis: u
(a) symmetric only	on $S = \{(1,1),(2,2) \text{ is}$	
(b)anti-symmetric only		
(c) both symmetric and		Ans: c
(d)an equivalence relat		
41.If $A = \{1,2,3,4\}$. Let $\sim =$	$\{(1,2),(1,3),(4,2).$ Then \sim is	
(a) not anti-symmetric	(c) reflexive	
(b)transitive	(d) symmetric	Ans: b
42.Let $D_{30} = \{1, 2, 3, 5, 6, 10, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15$	$\{5,30\}$ and relation I be a parital ordering on D_{30} . The all upper by	oounds of 10 and
15		
respectively is		
(a) 30 (b) 1	(c) 10 (d) 6	Ans: a
43.Let $D_{30} = \{1, 2, 3, 5, 6, 10, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15$	$\{5,30\}$ and relation I be a parital ordering on D_{30} . The lub of 10 a	and 15
respectively is		
(a) 30 (c) 10		
(b) 15 (d) 6		Ans : a
	nt partitions of a set having four elements	
a). 16 b) 8	(c) 15 d) 4	Ans: c
45.Hasse diagrams are draw	vn for	
(a) Partially ordered se		
(b)Lattics	(d) Modern Algebra	Ans: a
	$d \le$ be the partial order defined on the set $S = \{x, a_1, a_2, a_3, \dots$	
i and $a_i \le y$ for all i,where n	\geq 1. Number of total orders on the set S which contain partial	order ≤ 1
* *	e) n+1	
(b) n (d	l) n!	Ans: d

47..Let $X = \{2,3,6,12,24\}$, and \leq be the parital order defined by $X \leq Y$ if X divides Y. Number of edges in the

Hasee diagram of (X, \leq) is

- (a) 3
- (c) 5
- **(b)** 4
- (d) 6

Ans: b

UNIT-2 Combinatorics and Number theory

- 1). In how many ways can 8 Indians,4 Americans and 4 English mens can be seated in a row so all person of the same nationality sit together?
- - a) 3! 4!8!4! b) 3! 8! c) 3! 4! D) 3! 3! 8!

Answer: a

Solution:

Taking all person of same nationality as one person, then we will have only three people.

These three person can be arranged themselves in 3! Ways.

- 8 Indians can be arranged themselves in 8! Way.
- 4 American can be arranged themselves in 4! Ways.
- 4 Englishman can be arranged themselves in 4! Ways.

Hence, required number of ways = 3! 8! 4! 4! Ways.

- 2). How many permutations of the letters of the word APPLE are there?
 - **a)** 600 b) 120 c) 240 d) 60

Answer: d

Solution:

APPLE = 5 letters.

But two letters PP is of same kind.

Thus, required permutations,

=5!2!=1202=60

- 3). How many different words can be formed using all the letters of the word ALLAHABAD?
 - i). when vowels occupy the even positions ii) both L do not occur together.

- a) 7560, 60, 4200 b) 7890, 120, 650 c) 7660, 200, 4444 d) 7670, 240, 444 **Answer: a**

Solution:

ALLAHABAD = 9 letters. Out of these 9 letters there is 4 A's and 2 L's are there.

So, permutations = 9!4!.2!9!4!.2! = 7560

(a) There are 4 vowels and all are alike i.e. 4A's.

$$_2^{\text{nd}}$$
 $_4^{\text{th}}$ $_6^{\text{th}}$ $_8^{\text{th}}$ $_4^{\text{th}}$

These even places can be occupied by 4 vowels. In

4!4!4!4!

In other five places 5 other letter can be occupied of which two are alike i.e. 2L's.

Number of ways = 5!2!5!2! Ways.

Hence, total number of ways in which vowels occupy the even places = $5!2!5!2! \times 1 = 60$ ways.

(b) Taking both L's together and treating them as one letter we have 8 letters out of which A repeats 4 times and others are distinct. These 8 letters can be arranged in 8!4!8!4! = 1680 ways.

Also two L can be arranged themselves in 2! ways.

So, Total no. of ways in which L are together = $1680 \times 2 = 3360$ ways.

Now, Total arrangement in which L never occur together,

- = Total arrangement Total no. of ways in which L occur together.
- = 7560 3360 = 4200 ways

- 4). In how many ways can 10 examination papers be arranged so that the best and worst papers never come together?
 - a) 8 x 9! b) 8 x 8! c) 7 x 9! d) 9 x 8!

Answer: a

Solution:

No. of ways in which 10 paper can arranged is 10! Ways.

When the best and the worst papers come together, regarding the two as one paper, we have only 9 papers.

These 9 papers can be arranged in 9! Ways.

And two papers can be arranged themselves in 2! Ways.

No. of arrangement when best and worst paper do not come together,

 $= 10! - 9! \times 2! = 9!(10 - 2) = 8 \times 9!$

- 5). In how many ways 4 boys and 3 girls can be seated in a row so that they are alternate.
 - a) 144 b) 288 c) 12 d) 256

Answer: a

Solution:

Let the Arrangement be, BGBGBGB

4 boys can be seated in 4! Ways

Girl can be seated in 3! Ways

Required number of ways, $= 4! \times 3! = 144$

- 6). In how many ways 2 students can be chosen from the class of 20 students?
 - **a)** 190 b) 180 c) 240 d) 390

Answer: a

Solution:

Number of ways = $20C_2 = 20!2! \times 18! = 20 \times 192 = 190$

- 7) Three gentle men and three ladies are candidates for two vacancies .A voter has to vote for two Candidates .In how many ways one cast his vote?
 - **a**) 9 b) 30 c) 36 d) 16

Answer: d

Solution:

There are 6 candidates and a voter has to vote for any two of them.

So, the required number of ways is, = $6C_2 = 6! / 2! \times 4! = 15$

- 8). A question paper has two A and B each containing 10 questions, if a student has to choose 8 from part A and 5 from part B. In how many ways can he chooses questions?
 - a) 11340 b) 12750 c) 40 d) 320

Answer: a

Solution:

There 10 questions in part A out of which 8 question can be chosen as = 10C8

Similarly, 5 questions can be chosen from 10 questions of Part B as = 10C5

Hence, total number of ways,

$$=10C_8 \times 10C_5 = 11340$$

9). The number of triangles which can be formed by joining the angular points of a polygon of 8 sides as vertices.

Answer: a

Solution:

A triangle needs 3 points.

And polygon of 8 sides has 8 angular points.

Hence, number of triangle formed,

=	8	C_3	=	56

10). A drawer contains 12 red and 12 blue socks, all unmatched. A person take How many socks must be take out to be sure that he has at least two blue sock	
a) 18 b) 35 c) 28 d) 14	Answer: d
Explanation: Given 12 red and 12 blue socks so, in order to take out at least 2	
out 12 shocks (which might end up red in worst case) and then take out 2 sock blue). Thus we need to take out total 14 socks.	
11). The least number of computers required to connect 10 computers to 5 rou	ters to guarantee 5
computers can directly access 5 routers is	
a) 74 b) 104 c) 30 d) 67	Answer: c
Explanation: Since each 5 computer need directly connected with each router	
remaining 5 computer, each connected to 5 different routers, so 5 connections	
r2, r3, r4, r5	- 50 connections. Hence, e1 >11,
c2->r1, r2, r3, r4, r5 . c3->r1, r2, r3, r4, r5 . c4->r1, r2, r3, r4, r5 . c5	5->r1, r2, r3, r4, r5
c6->r1 . c7->r2 . c8->r3 . c9->r4 . c10->r5	
Now, any pick of 5 computers will have a direct connection to all the 5 rout	ers.
12). In a group of 267 people how many friends are there who have an identic that group?	al number of friends in
a) 266 b) 2 c) 138 d) 202	Answer: b
Explanation : Suppose each of the 267 members of the group has at least	1 friend. In this case,
each of the 267 members of the group will have 1 to 267-1=266 friends.	Now, consider the
numbers from 1 to n-1 as holes and the n members as pigeons. Since ther	
pigeons there must exist a hole which must contain more than one pigeon	
must exist a number from 1 to n-1 which would contain more than 1 mem	
members there must exist at least two persons having equal number of frie	ends. A similar case
occurs when there exist a person having no friends.	
13). When four coins are tossed simultaneously, in number of the ou	tcomes at most two of
the coins will turn up as heads. a) 17 b) 28 c) 11 d) 43	A nervous o
a) 17 b) 28 c) 11 d) 43 Explanation : The question requires you to find number of the outcomes in whether the control of the outcomes in which is a superior of the outcomes in	Answer: c
heads i.e., 0 coins turn heads or 1 coin turns head or 2 coins turn heads. The m	
coins turn heads is ${}^4C_0 = 1$ outcome. The number of outcomes in which 1 coin	
The number of outcomes in which 2 coins turn heads is,	turns nead is $C_1 = 0$ outcomes.
${}^{4}C_{2} = 15$ outcomes. Therefore, total number of outcomes = $1 + 4 + 6 = 11$ outc	omes.
14). How many numbers must be selected from the set {1, 2, 3, 4} to guarante	
of these numbers add up to 7?	1
a) 14 b) 5 c) 9 d) 24	Answer: b
Explanation: With 2 elements pairs which give sum as $7 = \{(1,6), (2,5), (3,4)\}$	
from each group - 4 elements (in worst case 4 elements will be either {1.2.3.4	1) or 165431) Now using

pigeonhole principle = we need to choose 1 more element so that sum will definitely be 7. So Number of elements must be 4 + 1 = 5. 15). During a month with 30 days, a cricket team plays at least one game a day, but no more than 45 games. There must be a period of some number of consecutive days during which the team must play exactly _____ number of games. b) 46 c) 124 d) 24 **Explanation**: Let al be the number of games played until day 1, and so on, ai be the no games played until i. Consider a sequence like a1,a2,...a30 where 1≤ai≤45, ∀ai. Add 14 to each element of the sequence we get a new sequence a1+14, a2+14, ... a30+14 where, $15 \le ai+14 \le 59$, $\forall ai$. Now we have two sequences 1. a1, a2, ..., a30 and 2. a1+14, a2+14, ..., a30+14. having 60 elements in total with each elements taking a value \leq 59. So according to pigeon hole principle, there must be at least two elements taking the same value \leq 59 i.e., ai = aj + 14 for some i and j. Therefore, there exists at least a period such as aj to ai, in which 14 matches are played. 16). There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two points is (a) 45 (b) 40 (c)39(d) 38. Ans: b 17). Number of sides of a polygon having 44 diagonals is (d) 22 **Ans**: c (a) 4 (b) 4! (c) 11 18). In a plane there are 10 points are there out of which 4 points are collinear, then the number of triangles formed is (a) 110 (b) $10C_3$ (c) 120(d) 116 Ans d 18). In an examination there are three multiple choice questions and each question has 5 choices. Number of ways in which a student can fail to get all answer correct is (a) 125 (b) 124 (c) 64 (d) 63Ans: b 19) Assuming that repetitions are not permitted, how many four-digit numbers are less than 4000, can be formed form the six digits 1, 2, 3, 5, 7, 8? (a) 125 (b) 124 (c) 180 (d) 63 Ans: c **Explanation:** If a 4-digit number is to be less than 4000, the first digit must be 1, 2, or 3. Hence the first space can be filled up in 3 ways. Corresponding to any one of these 3 ways, the remaining 3 spaces can be filled up with the remaining 5 digits in P(5, 3) ways. Hence, the required number = $3 \times P(5, 3)$ $= 3 \times 5 \times 4 \times 3 = 180.$ 20). How many bit strings of length 10 contain (a) exactly four 1's, (a) 200 (b) 210 (c) 220 (d) 230 Ans: b **Explanation:** A bit string of length 10 can be considered to have 10 positions. These 10 positions should be filled with four No. of required bit strings = $\frac{10!}{4! \, 6!} = 210$ 1's and six 0's

21) If we select 10 points in the interior of an equilateral triangle of side 1, then there must be at least two points whose distance apart is

a) =
$$\frac{1}{3}$$
 b) $<\frac{1}{3}$ c) $>\frac{1}{3}$ d) $\geq \frac{1}{3}$

22) In any group of six people, how many of at least ----- must be mutual friends or at least ----- must be Mutual strangers.

(a) 2 (b) 4 (c) 3 (d) 5 Ans:
$$c$$

23) The Pascal's identity in the theory of combination is

a)
$$nC_{r-1} + nC_r = (n+1)C_r$$

b) c) $nC_{r-1} + nC_{r+1} = (n+1)C_r$
d) $nC_{r-1} + nC_r = (n+1)C_{r+1}$ Ans: a

24) The number of arrangements of all the six letters in the word **PEPPER** is

(a) 70 (b) 80 (c) 60 (d) 50	Ans: c
25) How many different outcomes are possible when 5 dice are rolled?	
(a) 452 (b) 152 (c) 352 (d) 252	Ans : d
26) In a group of 100 people, several will have birth days in the same month. At least how	many must have
birth days in the same month?	
(a) 6 (b) 9 (c) 19 (d) 29	Ans: b
27) If 20 processors are interconnected and every processor is connected to at least one of	
least how many processors are directly connected to the same number of processors?	
(a) 2 (b) 3 (c) 4 (d) 1	Ans: a
28) Among 30 Computer Science students, 15 know JAVA, 12 know C++ and 5 know bot students know exactly one of the languages.	ch. How many
(a) 27 (b) 22 (c) 17 (d) 5	Ans: c
29). How many positive integers not exceeding 1000 are divisible by 7 or 11?	Ans. C
(a) 270 (b) 22 0 (c) 170 (d) 50	Ans: b
30) If there are 5 points inside a square of side length 2, prove that two of the points are	7 KHS • 10
within a distance of of each other.	
a) $\sqrt{2}$ b) $\sqrt{3}$ c) $\sqrt{5}$ d) $\sqrt{7}$	Ans: a
31) Greatest Common Divisor of two numbers is 8 while their Least Common N	
other	rumple is 144. Then the
number if one number is 16.	
(a) 108 (b) 96 (c) 72 (d) 36	Ans: c
32) LCM of two numbers is 138. But their GCD is 23. The numbers are in a rat	io 1:6. Which is the largest
number amongst the two?	
	Ans: b
33) The least common multiple of two numbers is 168 and highest common fac	tor of them is 12. If the
difference between the numbers is 60, what is the sum of the numbers?	
(a) 108 (b) 96 (c) 122 (d) 144	Ans: a
34) If least common multiple of two numbers is 225 and the highest common fa	
numbers	ictor is 5 then find the
when one of the numbers is 25?	
(a) 75 (b) 65 (c) 15 (d) 45	Ans: d
35) The greatest number of four digits which is divisible by 15, 25, 40, 75 is	11115 • 4
(a) 600 (b) 9000 (c) 9600 (d) 9400	Ans: c
36) When a number is divided by 893 the remainder is 193. What will be the re	
by	
47?	
(a) 19 (b) 5 (c) 33 (d) 23 An	s: b

Explanation:

In such cases and sums, simply follow these easy steps

Number is divided by 893. Remainder = 193.

Also, we observe that 893 is exactly divisible by 47.

So now simply divide the remainder by 47.

47	193	4
	-188	
	05	

So remainder is 5

37) The greatest length of the scale that can measure exactly 30 cm, 90 cm, 1 m 20 cm and 1 m 35 cm lengths

Is

	(a) 5 cm (b) 10 cm (c) 15 cm (d) 30 cm	Ans : c
38)	A Least Common Multiple of a, b is defined as	
	(a) It is the smallest integer divisible by both a and b	
	(b) It is the greatest integer divisible by both a and b	
	(c) It is the sum of the number a and b	
	(d) It is the difference of the number a and b	Ans: a
39)	If a, b are integers such that a > b then lcm(a, b) lies in	
	(a) $a > lcm(a, b) > b$ (b) $a > b > lcm(a, b)$ (c) $lcm(a, b) \ge a > b$ (d) $b > lcm(a, b) < b$	Ans: c
40)	The product of two numbers are 12 and their Greatest common divisor is 2 then LCM	is?
	(a) 12 (b) 2 (c) 6 (d) 16	Ans: c
41)	If LCM of two number is 14 and GCD is 1 then the product of two numbers is?	
42)	(a) 14 (b) 15 (c) 7 (d) 49 If 'a' is $2^2 \times 3^1 \times 5^0$ and 'b' is $2^1 \times 3^1 \times 5^1$ then lcm of a, b is	Ans: a
42)		
43)	(a) $2^2 \times 3^1 \times 5^1$ (b) $2^2 \times 3^2 \times 5^2$ (c) $2^3 \times 3^1 \times 5^0$ (d) $2^2 \times 3^2 \times 5^0$ The lcm of two prime numbers a and b is	Ans: a
	(a) a /b (b) ab (c) a+b (d) 1	Ans: b
44)	The prime factorization of 7007 is	
15)	(a) $7^3 \times 11 \times 13$ (b) $7^2 \times 11 \times 13$ (c) $7 \times 11 \times 13$ (d) $7 \times 11^3 \times 13$	Ans: b
43)	Which positive integer less than 21 are relatively prime to 21? (a) 18 (b) 19 (c) 21 (d) 24	Ans: b
16)	The greatest common divisor of 3^{13} , 5^{17} and 2^{12} , 3^5 is	Alis . D
40)	(a) 3^0 (b) 3^1 (c) 3^3 (d) 3^5	Ans : d
<i>4</i> 7)	The greatest common divisor of 0 and 5 is	Alis . u
17)	(a) 0 (b) 1 (c) 2 (d) 5	Ans:b
	Explanation : $gcd(0, 5) = 0^{min(1, 0)}.5^{min(0, 1)}$.	1115 . 6
48)	The lcm of 3 and 21 is if $gcd(3,21)=3$.	
)	(a) 3 (b) 12 (c) 21 (d) 42	Ans: c
49)	The linear combination of $gcd(252, 198) = 18$ is?	
	(a) 252*4 – 198*5 (b) 252*5 – 198*4 (c) 252*5 – 198*2 (d) 252*4 – 198*4	Ans : a

50) The linear combination of $gcd(117, 213) = 3$ can be written as (a) $11*213 + (-20)*117$ (b) $10*213 + (-20)*117$ (c) $11*117 + (-20)*213$ (d) $20*213 + (-25)*117$ Ans: a	
Unit-3 Mathematical logic 1. Which of the following statement is the negation of the statement "2 is even and -3 is negative"?	
a)2 is even and -3 is not negative b)2 is odd and -3 is not negative	
c)2 is not odd and -3 is not negative d)2 is odd or -3 is not negative (d)	;
2. The contra positive of $q \rightarrow p$ is $a)p \rightarrow q$ $b) \neg p \rightarrow \neg q$ $c) \neg q \rightarrow \neg p$ $d)p \rightarrow \neg q$ Answer	3
3. What is the converse of the assertion I stay only if you go?	
a) I stay if you go b)if you don't go then I don't stay	
c)if I stay then you go d)if you don't stay then you go (a)	S
4.PVT⇔T is called a)identity law b)complement law c)dominant law d)idempotent law (c)	IS
5.The statement PV¬P is a a)contradiction b)tautology c)contrapositive d)inverse (b)	ıs
6) Dual of $\neg (p \leftrightarrow Q) = (P \land \neg Q)V(\neg P \land Q)$	
$a) \neg (P \leftrightarrow Q) \equiv (PV \neg Q)V(\neg PVQ) \qquad b) (P \leftrightarrow Q) \equiv (\neg PVQ)V(PV \neg Q)$	
c) \neg (P \leftrightarrow Q) \equiv (PV \neg Q) \land (\neg PVQ) d) \neg (P \leftrightarrow Q) \equiv (\neg PVQ) \land (PV \neg Q) Ans (c)	
7.The rule if a formula S can be derived from another formula R and A set of premises, then the statement	
$R \rightarrow S$ can be derive from the set of premises is called	
a)Rule CP b)Rule T c)Rule P d)Rule US Ans (a)	
8. The statement (PVQ) \land (P \rightarrow R) \land (Q \rightarrow R) implies a)R b)P c)Q d)P \land Q Ans (a)	;
9. The statement $\neg (P \leftrightarrow Q)$ is equivalent to a) $P \leftrightarrow \neg Q$ b) $\neg P \leftrightarrow \neg Q$ c) $P \rightarrow \neg Q$ d) $\neg P \rightarrow \neg Q$ Ans (a)	;

21. Which one is the contra positive of $Q \rightarrow P$?	
a)P \rightarrow Q b) \neg P \rightarrow \neg Q c) \neg Q \rightarrow \neg P d) \neg PVQ (b)	Ans
22. The statement $(P \land Q) = P$ is a	
a)contradiction b)tautology c)inconsistent d)consistent (d)	Ans
23. The dual of \neg (PAQ)VT is	
a)(PVQ) Λ F b)(PVQ) Λ T c)(P Λ Q)VF d) \neg (PVQ) Λ F (d)	Ans
24. Which of the following is a statement?	
(A) Open the door. (B) Do your homework. (C) Switch on the fan (D) Two plus two is fo (D)	our. Ans
25. Which of the following is a statement in Logic? (A) Go away (B) How beautiful! (C) $x > 5$ (D) $2 = 3$ (D)	Ans
26. ~ $(p \lor q)$ is $(A) \sim p \lor q$ $(B) p \lor \sim q$ $(C) \sim p \lor \sim q$ $(D) \sim p \land \sim q$ (D)	Ans
27.If p: The sun has set, q: The moon has raised, then symbolically the statement 'The sun has not set or the moon has not risen' is written as (A) p^~q (B) ~q Vp (C) ~p Aq (D) ~p V~q (D)	Ans
28. The inverse of logical statement $p \rightarrow q$ is (A) $\sim p \rightarrow \sim q$ (B) $p \leftrightarrow q$ (C) $q \rightarrow p$ (D) $q \leftrightarrow p$ (A)	Ans
 29.Let p: Mathematics is interesting, q: Mathematics is difficult, then the symbol p →q means (A) Mathematics is interesting implies that Mathematics is difficult. (B) Mathematics is interesting is implied by Mathematics is difficult. (C) Mathematics is interesting and Mathematics is difficult. (D) Mathematics is interesting or Mathematics is difficult. 	Ans (A)
30. Which of the following is logically equivalent to \sim (p \land q) (A) p \land q (B) \sim p \lor ~q (C) \sim (p \lor q) (D) \sim p \land ~q 31. \sim (p \rightarrow q) is equivalent to	Ans (B)

```
(B) \sim p \ Vq (C) p \ V\sim q (D) \sim p \ \Lambda\sim q
(\mathbf{A})\mathbf{p} \wedge \sim \mathbf{q}
                                                                                                                               Ans (A)
32. Contrapositive of p \rightarrow q is
  (A) q \rightarrow p (B) \sim q \rightarrow p (C) \sim q \rightarrow \sim p (D) q \rightarrow \sim p
                                                                                                                               Ans (C)
33.A compound statement p \rightarrow q is false only when
     (A) p is true and q is false.
                                                        (B) p is false but q is true.
     (C) atleast one of p or q is false.
                                                       (D) both p and q are false.
                                                                                                                              Ans (A)
34. Every conditional statement is equivalent to
    (A) its contrapositive (B) its inverse (C) its converse (D)only itself
                                                                                                                              Ans (A)
35Statement \sim p \leftrightarrow \sim q \equiv p \leftrightarrow q is
    (A) a tautology (B) a contradiction
                                                         (C) contingency
                                                                                   (D) proposition
                                                                                                                                Ans (A)
36. Given that p is 'false' and q is 'true' then the statement which is 'false' is
                                                  (C) p \rightarrow \sim q
    (A) \sim p \rightarrow \sim q
                         (B) p \rightarrow (q \land p)
                                                                       (D) q \rightarrow \sim p
                                                                                                                                Ans (A)
37. Dual of the statement (p \land q) \lor \neg q \equiv p \lor \neg q is
     (A) (pVq) V \sim q \equiv p V \sim q
                                         (B) (p \land q) \land \neg q \equiv p \land \neg q
                                         (D) (\sim p \ V \sim q) \Lambda q \equiv \sim p \ \Lambda q
     (C) (pVq) \land \neg q \equiv p \land \neg q
                                                                                                                                Ans (C)
38.~[p V(\sim q)] is equal to
    (A) \sim p Vq
                    (B) (~p) ∧q
                                           (C) ~p V~p
                                                                (D) ~p ∧~q
                                                                                                                                Ans (B)
39. Write Negation of 'For every natural number x, x + 5 > 4'.
   (A) \forall x \in \mathbb{N}, x + 5 < 4
                                     (B) \forall x \in \mathbb{N}, x-5 < 4 (C) For every integer x, x+5 < 4
    (D) There exists a natural number x, forwhich x + 5 \le 4
                                                                                                                                 Ans (D)
40. If p is false and q is true, then
     (A) pAq is true
                             (B) p V~q is true
                                                        (C) q \rightarrow p is true (D) p \rightarrow q is true
                                                                                                                                 Ans (D)
41. If p and q have truth value 'F' then (\sim p \lor q) \leftrightarrow \sim (p \land q) and \sim p \leftrightarrow (p \rightarrow \sim q) respectively are
                                   (C) T, F
    (A) T, T
                    (B) F, F
                                                   (D) F, T
                                                                                                                                 Ans (A)
42. Which of the following is logically equivalent to \sim [p \rightarrow (p \lor \sim q)]?
                           (B) p \land (\sim p \land q)
                                                     (C) p \land (p \lor \neg q)
   (A) pV(\sim p \land q)
                                                                             (D) p V(p \land \neg q)
                                                                                                                                Ans (B)
43. If \sim q \vee p is F then which of the following is correct?
                                                   (C) q \rightarrow p is T
     (A) p \leftrightarrow q is T
                            (B) p \rightarrow q is T
                                                                           (D) p \rightarrow q is F
                                                                                                                                 Ans (B)
44. Which of the following is true?
   (A) p \land \sim p \equiv T
                          (B) p \lor \sim p \equiv F
                                                  (C) p \rightarrow q \equiv q \rightarrow p (D) p \rightarrow q \equiv (\sim q) \rightarrow (\sim p)
                                                                                                                                 Ans (D)
45. The statement (p \land q) \rightarrow p is
    (A) a contradiction. (B) a tautology .(C) either (A) or (B)
                                                                                       (D) a contingency.
                                                                                                                                 Ans (B)
46. Negation of the statement: "If Dhonilooses the toss then the team wins", is
    (A) Dhoni does not lose the toss and theteam does not win.
    (B)Dhoni loses the toss but the team doesnot win.
   (C) Either Dhoni loses the toss or the teamwins. (D) Dhoni loses the toss iff the team wins.
                                                                                                                                 Ans (A)
47. If p \Rightarrow (\sim p \lor q) is false, the truth values of p and q respectively, are
    (A) F, T \quad (B) F, F \quad (C) T, T
                                                 (D) T, F
                                                                                                                                 Ans (D)
48. The logically equivalent statement of p \leftrightarrowq is
    (A) (p \land q) \lor (q \rightarrow p) (B) (p \land q) \rightarrow (p \lor q) (C) (p \rightarrow q) \land (q \rightarrow p) (D) (p \land q) \lor (p \land q)
                                                                                                                                 Ans (C)
```

49) By induction hypothesis, the series $1^2 + 2^2 + 3^2 + + p^2$ can be proved equivalent to	
a) $\frac{p^2+2^k}{7}$ b) $\frac{p(p+1)(2p+1)}{6}$ c) $\frac{p(p+1)}{4}$ d) $p+p^2$	Ans: b
50) For any positive integer m is divisible by 4.	
a) $5m^2 + 2$ b) $3m + 1$ c) $m^2 + 3$ d) $m^3 + 3m$	Ans: d
51) According to principle of mathematical induction, if $P(k+1) = m^{(k+1)} + 5$ is true then true.	_ must be
a) $P(k) = 3m^k$ b) $P(k) = m^k + 5$ c) $P(k) = m^{k+2} + 5$ d) $P(k) = m^k$	Ans: b
52) What is the induction hypothesis assumption for the inequality m! > 2^m where m>=4?	
a) for $m = k$, $(k+1)! > 2^k$ holds b) for $m = k$, $k! > 2^k$ holds	
c) for $m = k$, $k! > 3^k$ holds d) for $m = k$, $k! > 2^{k+1}$ holds	Ans: b
53. For all $n \in \mathbb{N} - \{1\}, 7^{2n} - 48n - 1$ is divisible by	
(a) 25 (b) 26 (c) 1234 (d) 2304	
54. $\forall n \in \mathbb{N}, P(n): 2.7^n + 3.5^n - 5$ is divisible by	
(a) 64 (b) 676 (c) 17 (d) 24	
55. $\forall n \ge 2, n^2(n^4 - 1)$ is divisible by	
(a) 60 (b) 50 (c) 40 (d) 70	
56. For $n \in \mathbb{N}$, $10^{n-2} > 81n$, if	
(a) $n > 5$ (b) $n \ge 5$ (c) $n < 5$ (d) $n > 6$	
57. For each $n \in \mathbb{N}$, the correct statement is	
(a) $2^n < n$ (b) $n^2 > 2^n$ (c) $n^4 < 10^n$ (d) $2^{3n} > 7n + 1$	
58. If $a_n = 2^{2^n} + 1$, then for $n > 1$, $n \in \mathbb{N}$, last digit of a_n is	

(a) 3

(b) 5

(c) 8

(d) 7

	59.	If P	$(n):4^n$	/ (n	+ 1) <	(2n)!	$/(n!)^2$	then P(n) is t	rue for					
(a)	$n \ge$	1	(b) n >	> 0	(c) n <	< 0	$(d) n \ge 1$	$2, n \in N$	1						
∀n					nematica Ιθ ··· cos		ction, $[\theta] = \frac{1}{2}$								
(a)	sin	$2^n\theta$	$/2^n s$	in θ			(b) cos	$2^n\theta/2^n$	n sin	θ					
(c)	sin	$2^n\theta$	$/2^{n-1}$	sin θ			$(d) \sin 2$	$2^{n-1}\theta/2^n \sin^n\theta$	n θ						
							ction, $\forall n$	$n \in N$, $1)(n+2)$)}=						
(a)	n(n+	-1)/4(n+2)(n-	+ 3)			(b) n(n-	+3) /4(n+	·l)(n-	-2)					
(c)	n{n+	-2) /4	$(n+1)\{n-1\}$	+3)			(d) Non	e of these	e						
	62. F	3v pri	inciple	of ma	themati	cal inc	luction. \	$\forall n \in N$,	5^{2n}	+1 + 3	$^{n+2}.2^{n}$	ı-1 is	s divisi	ble by.	
	19	- J P	(b) 18		(c) 17		(d) 14	,		•					
` ′	63. T	The pr	oduct of	three o	consecut	ive nati	ıral numb	ers is divi	sible	by					
(a)	6		(b) 5		(c) 7		(d) 4								
	64.	∀ n	$\in N, a^n$	$-b^n$	is alwa	ys divi	sible by	(a and	b are	distinc	t ration	ıal no	os)		
		(a) 2a			(b) a+b			c) a-b					,		
	65.	If x^2	2n-1 + 1	y ^{2n - 1}	is divisi	ible by	x+y, the	n n is							
	Posi	itive i	nteger sitive in			-	(b) only	for an ev $\in N, n \ge$	-	ositive	intege	r			
	66.	The	inequal	ity n!	$> 2^{n-1}$	is true	for								
(a)	<i>n</i> >	2, n	. ∈ N	(b) n	< 2	(c) ∀	$n \in N$ (c	d) n < 1							
	67.	The	smallest p	positive	integer n	for whi	ch n! <	$\left(\frac{n+1}{2}\right)^n$ hole	ds, is .	· • • •					
(a)	1		(b) 2		(c) 3		(d) 4								
	68.	The	greatest p	ositive	integer, w	/hich div	vides (n+2)	(n+3) (n+4	l)(n+5	(n+6) ∀	$n \in N$	is	•		
(a)	120		(b) 4		(c) 240)	((1) 24							

69. $x(x^{n-1})$	$(1-n\alpha^{n-1})+\alpha^n$	(n-1) is div	risible by $(x - \alpha)^2$ for
(a) $n > 1$ (1)	b) $n > 2$ (c) \forall	$n \in N$ (d) n	< 2
70. For ea	$nch n \in N, 3^{2n} -$	1 is divisible	e by
(a) 8	(b) 16	(c) 32	(d) 18
71. For ea	$nch n \in N, 2^{3n} -$	7n-1 is div	visible by
(a) 64	(b) 36	(c) 49	(d) 25
72. For ea	$nch n \in N, 10^{2n}$	¹ + 1 is divis	sible by
(a) 11	(b) 13	(c) 9	(d) 15
73. For ea	ach $n \in \mathbb{N}, 2(4^{2n+1} +$	3^{n+1}) is divisi	ble by
(a) 2	b) 9 (c) 3	(d) 11	
		and odd intego	er. If it is assumed that $P(k)$ is true => $P(k+1)$ is true.
Therefor	re, P(n) is true		
(a) for n>1		()	$n \in N$
(c) for $n>2$		(d) fe	or n > 3
75. Let P ((n) : $3^n < n!$, $n \in I$	N, then $P(n)$ i	s true
(a) for $n \ge 6$		(b) <i>f</i>	for $n \geq 7$, $n \in N$
(c) for $n \geq 3$			'n
76. Let P ($(n): 1 + 3 + 5 + \cdots$	+(2n-1)	$= n^2$, is
(a) true for n>1		(b) 	$rue \ \forall \ n \in N$
(c) true for no n	l	(d) tı	rue for n< 1
77. If ∀ <i>n</i>	$\in N$, P(n) is a state	ement such tha	at, if $P(k)$ is true => $P(k+1)$ is true for $k \in N$, then
P(n) is to	ue		
(a) \forall <i>n</i> > 1		(b) \(\)	$\forall n \in N$
(c) $\forall n > 2$		(d) \forall	$\sqrt{n} < 2$
78. Let P ($(n): 1+3+5+\cdots$	$+(2^{n}-1)$	$= 3 + n^2$, then which of the following is true?
(a)P(1) is true			(b) $P(k)$ is true=> $P(k+1)$ is true
(c) P(k) is true,	P(k+1) is not true	(d) P	(2) is true

79. If matrix $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then which one of the following holds $\forall n \in \mathbb{N}$, (use PMI) (b) $A^n = 2^{n-1} \cdot A + (n-1)I$ (a) $A^n = n.A - (n-1)I$ (d) $A^n = 2^{n-1} \cdot A - (n-1)I$ (c) $A^n = n \cdot A + (n-1)I$

80. $S_n = 2.7^n + 3.5^n - 5$, $n \in \mathbb{N}$ is divisible by the multiple of.....

- (a) 5 (b) 7 (c) 24
 - 81. $10^n + 3(4^{n+2}) + 5$, $n \in \mathbb{N}$ is divisible by.....
- (a) 7 (b) 5 (c) 9 (d) 17

82.
$$\forall n \in \mathbb{N}, (3 + 5^{\frac{1}{2}})^n + (3 - 5^{\frac{1}{2}})^n \text{ is...}$$

- (a) Even natural number (b) Odd natural number
- (c) Any natural number (d) Rational number
 - 83. The remainder, when 5⁹⁹ is divided by 13, is
- (a) 6 (b) 8 (c)9(d) 10
 - 84. For all positive integral values of n, $n^{3n} 2n + 1$ is divisible by
- (a) 2 (b) 4(c) 8 (d) 12
 - 85. If $n \in \mathbb{N}$, then $11^{n+2} + 12^{2^{n}+1}$ is divisible by
- (a) 113 (c) 133 (b) 123 (d) 143
 - 86. If $n \in N$, $P(n): 2^n(n-1)! < n^n$ is true, if
- (a) n<2 (b) n>2(c) $n \geq 2$ (d) n > 3

Unit-4 Algebraic Structure (Group, Ring & Field)

- 1. $*: A \times A \rightarrow A$ is said to be a binary operation if
 - a) $a*b \in A$ for some $a \in A$ b) $a*b \in A$ for some $b \in A$
 - c). $a*b \in A$ for some $a,b \in A$ d) $a*b \in A$ for all $a,b \in A$
- 2. _____ is not a binary operation on the set of natural numbers.
- a) + b) c) x d) +

Ans: d

3.	is not a binary operation on the set of natural numbers.	
	a) + b) - c) x d) \div	Ans d
4.	If $a*(b*c) = (a*b)*c$, $\forall a,b,c \in S$ then * is said to be in S.	
_	a) Closed b) Commutative c) Associative d) Distributive	Ans c
5.	(S,*) is said to be a semi group ifa) * is Closed b) * is Associative c) * is both closed and Associative d) it has identity	, alamant
	Ans: c	Cicinciic
6.	The semi-group (S,*) is said to be a monoid if S has	
	a) Identity b) inverse c) satisfies commutative law d) satisfies distributive law	Ans a
7.	Let * be a binary operation on S defined by $a*b = a+b+2ab$ then the identity element w.r.t	o * is
	a) 0 b) 1 c) 2 d) 3	Ans a
8.	Let $G = Q^+$ and $a*b = \frac{ab}{2}$, $\forall a,b \in Q^+$. Then inverse of 'a' is	
	a) $\frac{1}{a}$ b) $\frac{2}{a}$ c) $\frac{3}{a}$ d) $\frac{4}{a}$	Ans:
	d	
9.	The set of all real numbers under the usual multiplication operation is not a group since a) Multiplication is not a binary operation b) Multiplication is not associative c) Identity elements does not exist d) Zero has no inverse	Ans :
	d	
10.	$G = (Z_5, \times_5)$ is	
	a) Semigroup b) Monoid c) Group d) Abelian group	Ans: b
11.	The identity element In the group $G = \{2, 4, 6, 8\}$ under multiplication modulo 10 is	
	a) 5 b) 9 c) 6 d) 12	Ans: c
12.	. If (G, .) is a group such that (ab) $^{-1}$ =a $^{-1}$ b $^{-1}$, \forall a,b \in G. Then G is a	
	a. Commutative semi c. Non-abelian group	Amar h
12	b. Abelian group d. None of the above . If (G,.) is a group such that $a^2 = e$, $\forall a \in G$, then G is	Ans: b
15.	a. semi group c. non-abelian group	
	b. abelian group d. none of above	Ans: b
14.	. The inverse of – i in the multiplication group {1,-1,i,-i} is	
	a. 1 c. i	
	b1 d. –I	Ans: c
15.	. In the group (G,.), the value of (a $^{-1}$ b) $^{-1}$ is	
	a. ab^{-1} c. $a^{-1}b$	
	b. b ⁻¹ a d. ba ⁻¹	Ans: b
16.	. If (G,.) is a group, such that (ab) $^2 = a^2 b^2$, \forall a,b \in G then G is an	
	a. Commutative semi group c. Non-abelian group	

b. abelian group	d. None of these	Ans: b
17. The identity element of a	group (G,*) is c. Infinite	
a. Unique b. Uncountable	d. None of these	Ans: a
	is a cyclic group with the generator	
a. i and –I c.1 and -1	b. i and 1 d. –i and 1	Ans: a
19. Every group of prime of		Alis. a
a.) Cyclic and hence abo	elian b) Abelian and hence cyclic	
b.) c) Not cyclic and ab	pelian d) Not abelian and cyclic	Ans : a
20. What are the generators	of the group $(Z,+)$?	
a.) 1 and 0 b) -1 and 0	c) 0 alone d) 1 and -1	Ans: d
21. The necessary and suffici	ient condition that a non-empty subset of H of a group	G to be a sub-group
is		
a) a, b \in H => a^{-1} , b^{-1}	$\in H$ b) a, b $\in H => a*b^{-1} \in H$	
c) $a, b \in H => a*b$	$\in H$ d) a, b $\in H \Rightarrow (a*b)^{-1} \in H$	Ans: b
22.Let G be a group. If a, b €	G then inverse of (a*b) is	
a) $a^{-1}*b^{-1}$ b) $a*b^{-1}$	c) $a^{-1}*b$ d) $b^{-1}*a^{-1}$	Ans : d
23. Which one of subsets of a	a group $G = \{1, -1, i, i\}$ is a sub-group of G under mult	iplication?
a.) $\{i, -i\}$ b) $\{i, i\}$ c)	{1, -i} d) {1, -1}	Ans: d
24.Order of a sub-group of a	finite group divides the order of the group is called	
a.) Lagrange's Theorem	n b) Group homomorphism	
c) Cayley's Theorem	d) Fundamental Theorem of homomorphism	Ans : c
25. A function f : (X, .) -> (Y	(,*) is said to be homomorphism	Ans: a
a.) $f(x_1-x_2) = f(x_1) * f(x_2)$	b) $f(x_1*x_2) = f(x_1) \cdot f(x_2)$	
c) $f(x_1*x_2) = f(x_1) \cdot 1/2$	$f(x_2)$ d) $f(x_1.x_2) = f(x_1*x_2)$	Ans: b
26.Every cyclic group is		
a.) Finite b) Abelian	c) Normal d) Dihedral	Ans: b
27. The order of a group G is	13, then the number of sub-groups of G is	
a.) 1 b) 2 c) 4 d) 3		Ans: b
28.Name the semi-group (M,	*) which has an identity element with respect to the ope	eration on *
a.) Group b) Sub-grou	up c) Monoid d) Cyclic	Ans : c
29.Every sub-group of a cycli	c group is	

a.) Homomorphic b) Cyclic c) Isomorphic d) Abelian	Ans: b
30. The minimum order of a non-abelian group is	
a.) 3 b) 6 c) 9 d) 4	Ans: b
31. Every sub-group of abelian group is	
a.) Normal b) Abelian c) Cyclic d) A permutation group.	Ans: a
32. Which of the following is not an integral domain?	
a) $(N, +, .)$ b) $(c, +, .)$ c) $(O, +, .)$ d) $(R, +, .)$	Ans : a
33. All integral domain S is	
a) field when S is finite b) always a field c) never field d) field when S is infinite	Ans : a
34. if $(R, +, .)$ is a ring then that $x.x = x \forall \forall x \in R$, then	
a) $x + y = 0 \Rightarrow \Rightarrow x = y$ b) $x + x \neq 0$ c) $x \neq \neq y \Rightarrow \Rightarrow x + y = 0$ d) $x + x = 0$	Ans : a
35. A ring of even integers is also a	
a) field b) division ring c) integral domain d) ring with unity	Ans : c
36. The condition for non-existence of zero divisor is	
a) $a^2 = a$, $\forall a \in R$ b) the cellation law holds for multiplication in R	
c) $(a+b)^2 = a^2 + 2ab + b^2$, $\forall a,b \in R$ d) $a^2 \neq a$, $\forall a \in R$	Ans: b
37. The ring Z of integers (mod p) is an integral domain iff	
a) p is a positive integer b) p is purely even numbers c) p is odd d) p is prime	Ans : d
38. Let $S = \{a_1, a_2, a_3\}, a_i \in Q$. Define addition and multiplication on S by	
$(a_1,a_2,a_3)+(b_1,b_2,b_3)=(a_1+b_1,a_2+b_2,a_3+b_3) \text{ and } $	
$(a_1,a_2,a_3).(b_1,b_2,b_3)=(a_1b_1,a_2b_1+a_3b_2,a_3b_3)$ then S is	
a) A non commutative ring with unity (1, 0, 1) b) A commutative ring without ur	nity
c). A non-commutative ring with unity (1, 0, 0) d) A non-commutative ring without	ut unity Ans
: a	
39. If R is a system such that it is a group under addition and multiplication, obeys the closur	re and

Ans: b

Ans : c

a) R need not be a ring b) R has to be a ring c) R is not a ring d) R is necessarily a field

- 40. Which one of the following statement is correct?
 - a) In a ring $ab = 0 \Rightarrow \Rightarrow$ either a = 0 or b = 0 b) Every finite ring is an integral domain
 - c). Every finite integral domain is a field d) a ring with zero divisors
- 41) Let $R = \{0, 1, 2, 3, 4, 5\}, +6,x6\}$ then R is
 - a) a ring with zero divisors b) a field c) a division ring d) a ring without zero divisors Ans: a
- 42). The set of all 2××2 matrices over the field of real number under the usual addition and multiplication of matrices is
 - a) not a ring b) a ring with unity c) a commutative ring d) an integral domain Ans: b
- 43) If Q and Z are the sets of rational numbers and integers respectively, then which one of the following triples is a field?

a)
$$(Q, +, x)$$
 b) $(Q, -, x)$ c) $(Z, +, x)$ d) $(Z, -, x)$

- 44) If $x = 10011 \in B^5$ then weight of x , W(x) =
- a) 2 b) 3 c) 5 d) 1 Ans: b
- 45) If $x = 10011 \in B^5$ then the length of $x = 10011 \in B^5$

- 46) The Hamming distance between the codes x = 010000 and y = 000101 is
- a) 3 b) 2 c) 6 d) 5 Ans : a

47) If
$$b = b_1 b_2b_m$$
, define $e(b) = b_1 b_2b_m b_{m+1}$, where
$$b_{m+1} = \begin{cases} 0, & \text{if } [b] \text{ is even} \\ 1, & \text{if } [b] \text{ is odd} \end{cases}$$
 then
$$e(01010) = \text{ a) } 110100 \text{ b) } 010101 \text{ c) } 010110 \text{ d) } 010100$$
 Ans : **d**

- 48) The minimum distance of encoding function is 2 then the number of errors it can detect is
 - a) 1 or less than 1 b) 2 or less than 2 c) 3 or less than three d) 0 error Ans: a
- 49) The minimum distance of encoding function is 3 then the number of errors it can correct is

a) 1 or less than 1 b) 2 or less than 2 c) 3 or less than three d) 0 error

Ans: d

50) For an encoding function $e: B^m \to B^n$, the generator matrix $G = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$ and the message

M = (0 1 1) then the code word is

- a) [0 1 1 1 1 0] b) [0 1 0 1 1 0] c) [0 0 0 1 1 0] d) [0 1 1 1 0 0]

Ans: a

- 51) In a group code { 00000, 10101, 01110 , 11011} , the inverse of 11011 is
 - a) 01110 b) 00000 c) 11011 d) 01110

Ans: c

52) The value of $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \oplus \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} =$

a)
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Ans: a

- 53) Order of $B^5 =$
 - a) 5 b) 2 c) 32 d) 10

Ans: c

- 54) For an encoding function $e: B^m \to B^{3m}$, e(100) =
 - a) 100001100 b) 100100 001 c) 100100100 d) 100000000

Ans: c

- 55) The minimum weight of the non-zero code word in a group code is equal to its
 - a) maximum distance b) minimum distance c) equl distance d) Parity check code

Ans: b

- 56.) The encoding function is
 - a) on-to function b) one to one function c) many to one function d) in to function

Ans: b

- 57) The decoding function is
 - a) on-to function b) one to one function c) many to one function d) in to function

Ans: a

Unit-5 Graph Theory

1.	How many edges are there in a group with 10 vertices each of degree 6?	
	a.) 30 b)60 c) 15 d) 16	Ans
	a	
2.	The maximum number of edges in a simple graph with n vertices is	
	a.) $n(n-1)/2$ b) $n(n+1)/2$ c) $(n-1)(n+1)/2$ d) $n/2$	Ans
	a	
3.	A simple graph with n vertices and k components can have atmost edges.	
	a.) $(n-k)(n-k-1)/2$ b) $(n-k)(n-k+1)/2$ c) $(n+k)(n+k-1)/2$ d) $(n+k)(n-k+1)/2$	Ans
	b	
4.	The complete graph on a vertices k_n where $n \ge 3$ is	Ans
	a	
	a.) Hamiltonian b) Eulerian c) Both Hamiltonian and Eulerian d) Neither Hamiltonian a	nd
	Eulerian	
5.	The maximum number of edges in a simple graph with 8 vertices is	
	a.) 40 b) 32 c) 28 d) 8!	Ans
	c	
6.	A regular graph G has 10 edges and degree of any vertex is 5, then the number of vertices is	S
	a.) 4 b) 5 c) 6 d) 25	Ans :
	a	
7.	A closed directed path containing all the edges in a diagraph G is called an	
	a.) Closed circuit b) Hamiltonian circuit c) Eulerian circuit d) Isomorphic circuit	Ans
	c	
8.	A free graph with n vertices has	
	a.) n-1 edges b) atleast one loop c) n edges d) no root	Ans :
	a	
9.	Sum of the degrees of all vertices of a group G is equal to	
	a)Thrice the number of edges b) Twice the number of edges	
	c) Number of edges d) Five times the number of the edges	Ans:
	b	
10.	. A connected graph without any circuit is called	

a) Loop b) Bipartite graph c) Tree d) Directed graph	Ans:
11. Number of edges in k ₆ graph is	
a.) 16 b) 17 c) 15 d) 20	Ans:
c	
12. In a graph G, a path which includes each edge of G exactly once is called	
a.) Eulerian path b) Hamiltonian path c) Eulerian circuit d) Hamiltonian circuit	Ans: a
13. The maximum number of edges in a simple graph with 9 vertices is	
a.) 36 b) 40 c) 32 d) 45	Ans: a
14. A regular graph G has 20 edges and degrees of any vertex is 10, then the number of ve	ertices is
a.) 6 b) 4 c) 5 d) 8	Ans:b
15. Any connected graph with n vertices and n-1 edges is	
a.) Graph b) Closed graph c) Tree d) Spanning tree	Ans : c
16. A path of a graph G is called if it includes each vertices of G exactly once	
a.) Tree b) Spanning tree c) Directed graph d) Hamiltonian path	Ans: a
a.) If all the vertices of an undirected graph are each of odd degree 5, then the number	of edges of
the graph is a multiple of a) 3 b) 2 c) 5 d) 7	Ans :
a	
17. The graph G is A B	
C D	
a)Eulerian and Hamiltonian b) Eulerian but not Hamiltonian	
c)Hamiltonian but not Eulerian d) Neither Hamiltonian but not Eulerian	Ans: a
18. A tree with 9 vertices has	
a.) 7 edges b) 6 edges c) 10 edges d) 8 edges	Ans: d
19. A connected graph is a Euler graph if and only if each of its vertices is of	
a.) Odd degree b) Even degree c) Equal degree d) Increasing degree	Ans: b
20. The number of vertices of odd degree in an undirected graph is	
a.) Even b) Odd c) 4 d) 3	Ans: a
21. A simple graph is which there is exactly one edge between each pair of distinct vertic	es is
a.) Connected graph b) Bipartite graph c) Euler graph d) Complete graph	Ans : d

 \mathbf{c}

22. Shortest path b	etween two vertice	es in a weighte	ed graph is a path of least		
a.) Vertices b) Edges c) Weigh	t d) Vertices	and Edges.	Ans: c	
24. A graph in whi	ich all nodes are of	equal degree	is called		
(a) Multi graph		(b)	non regular graph		
(c) Regular gra	ph	(d)	complete graph	Ans: c	
25. Two isomorphi	c graphs must have	2			
(a) Same numb	er of vertices	(b) Same i	number of edges		
(c) Equal numb	er of vertices	(d) all of t	hese	Ans: d	
26.Total number of	edges in a comple	te graph of ve	rtices is		
(a) n	$(b)\frac{(n-1)}{2}$	(c)	$(\mathrm{d})\frac{(n+1)}{2}$	Ans: b	
27.Number of diffe	rent rooted labelle	d trees with n	vertices is		
(a) 2^{n-1}	$(b) 2^n$	(c) n^{n-1}	(d) n ⁿ	Ans: c	
28.Maximum numb	per of edges in a n	node undirecto	ed graph without self-loop	s is	
(a) n^2	$(b)\frac{(n-1)}{2}$	(c) - 1	$(d)\frac{(n+1)}{2}$	Ans: b	
29.The minimum n	umber of spanning	trees in a con	nected graph with n nodes	s is	
(a) 1	(b) n-1 (c)	(d)	2	Ans: d	
30. The length of a	Hamiltonian path(i	f exists) in a c	onnected graph of n vertice	ces is	
(a) n-1	(b) n (c)	(d)	n+1	Ans: a	
31. A given connect	ed graph G is a Eu	ler graph if an	d only if all vertices of G	are of	
(a) Same degree	e	(b)	even degree		
(c) Odd degree		(d) differe	nt degrees	Ans: b	
32. A graph is a tree	if and only if				
(a) Is complete	ly connected	(b) is mini	mally connected		
(c) Contains a	circuit	(d) is plan	(d) is planar		
33. The degree of each	ch vertex in K _n is				
a) n-1	(b) n	(c) n-2	(d) 2n-1	Ans: a	
34. Number of	vertices of ODD	legree in a gra	ph is		
(a) Always EV	EN	(b)	Always ODD		
(c) Either EVE	N or ODD	(d)	Always ZERO	Ans: a	

35. A graph in which all node	es are of equal degree is	s called			
(a) Multi graph		(b) non regular graph			
(c) Regular graph		(d) complete graph	Ans: c		
36. K_n denotesgraph.					
a) Regular (b) Sin	nple (c) Complete	(d) Null	Ans: C		
37. Maximum number of edge	s in an n-node undirected	graph without self loops is	·		
a) $\frac{n(n-1)}{2}$ (b) n -	1 (c) n (d) $\frac{n(r)}{r}$	$\frac{i+1}{2}$	Ans: a		
38. A graph is bipartite if and o	nly if its chromatic numb	per is			
a) 1 (b) 2	(c) Odd	(d) Even	Ans: b		
39. For a symmetric digraph, th	e adjacency matrix is	·			
a) Symmetric (b) A	nti symmetric (c) asy	mmetric d) Symmetric &	asymmetric Ans: C		
40. The chromatic number of t	he chess board is				
a) 1 (b) 2	(c) 3	(d) 4	Ans: b		
41. The total number of degrees	s of an isolated node is _	·			
a) 0 (b) 2	(c) 3	(d) 1	Ans: a		
42. Every non-trivial tree has at	least vertices of d	legree one.			
a) 4 (b) 2	(c) 3	(d) 1	Ans: b		
43. Every connected graph cont	ains a				
a)Tree (b) Sub Tree	(c) Spanning tree d) S	Spanning sub tree	Ans: C		
44. Hamilton cycle is a cycle th	at contains every	of G			
a) Path (b) Cycle	(c) Vertex d) Edge		Ans: C		
45. Edges intersect only at their	ends are called				
a) Planar (b) Loop	(c) Link d) Non-Plan	nar	Ans: a		
46. Two vertices which are inci	dent with the common ec	lge are called	vertices.		
a) Distinct (b) Loop	(c) Direct d) Adjace	ent	Ans: d		
47. An edge with identical ends	is called				
a) Distinct (b) Loop	(c) Direct d) Adjace	ent	Ans: b		
48. Each edge has one end in se	et X and one end in set Y	then the graph (X, Y) is calle	edgraph.		
a) Bipartite	(b) Simple (c) Cor	mplete (d) Trivial	Ans: a		
49. The graph defined by the ve	ertices and edges of a	is bipartite.			

- a) Square
- (b) Cube
- (c) Rectangle
- (d) Square and Rectangle

is

Ans: b

50. The chromatic number of the null graph is

- a) 4
- (b) 2
- (c) 3
- (d) 1

Ans: d

51. The chromatic number of the region

- a) 4
- (b) 2
- (c)3
- (d) 1

Ans: b

52. The chromatic number of the graph

- a) 4
- (b) 2
- (c) 3
- (d) 6

Ans: d

53. The chtomatic number of the graph

- a) 4
- (b) 2
- (c)3
- (d) 6

Ans: b

54. Graph G is 2-colourable iff G is

- a) Bipartite (b) Simple
- (c) Complete
- (d) Trivial

is

Ans: a

- 55. The chromatic number of the graph
 - a) 4
- (b) 2
- (c) 3
- (d) 6

Ans: b

56. The minimum weight of the spanning treevfor the graph

- a) 60
- (b) 70
- (c) 50
- (d) 80

Ans: b

is

KTR CT-2 Question paper

 The minimum number of students in a class to be sure that three of them are born in the same month is A. 22 B. 23 C. 24 D. 25
ANSWER: D
 2. In how many ways can two letters be selected from the set {a, b, c, d} when repetition of the letters is allowed, if the order of the letters matters? A. 10 B. 20 C. 12 D. 16
ANSWER: D
 3. The number of ways in which n persons can be seated round a table is A. n! B. (n - 1)! C. (n + 1)! D. (n + 2)!
ANSWER: B
 4. From a club consisting of 6 men and 7 women, in how many ways can we select a committee of 3 men and 4 women A. 750 B. 700 C. 850 D. 600
ANSWER: B
 5. If n pigeonholes are occupied by kn + 1 pigeons, where k is a positive integer, then atleast on pigeonhole is occupied by A. k pigeons B. k + 1 pigeons C. k - 2 pigeons D. k - 3 pigeons
ANSWER: B

- 6. Using pigeonhole principle, find how many people in any group of six people can be
 - A. at least 2 must be mutual friends
 - B. at least 2 must be mutual strangers
 - C. at least 3 must be mutual friends or at least 3 must be mutual strangers
 - D. no group can be formed

ANSWER: C

- 7. Of any five points chosen within an equilateral triangle whose sides are of length one, then the any two points are within a distance of
- A. 2 distance apart
- B. 1/3 of each other
- C. 1/2 of each other
- D. 1/4 of each other

ANSWER: C

- 8. There are 250 students in a college. Of these 188 have taken a course in Mathematics, 100 have taken a course in English and 35 have taken a course in Science. Further 88 have taken courses in both Mathematics and English. 23 have taken courses in both English and Science and 29 have taken courses in both Mathematics and Science. If 19 of these students have taken all the three courses, how many of these 250 students have not taken a course in any of these three courses?
 - A. 140
 - B. 202
 - C. 58
 - D. 48

ANSWER: D

- 9. Using the inclusion-exclusion principle, find the number of integers from a set of 1 to 100 that are not divisible by 2, 3 and 5.
 - A. 22
 - B. 25
 - C. 26
 - D. 33

ANSWER: C

- 10. Let $a, b, c \in \mathbb{Z}$, the set of integers. If $a \mid b$ and $a \mid c$, then
 - A. b | ma
 - B. b | na
 - C. (m+n)|b+c
 - D. $a \mid (mb + cn)$

ANSWER: D

- 11. If n > 1 is a composite integer and p is a prime factor of n, then
 - A. $p \ge \sqrt{n}$
 - B. $p \le \sqrt{n}$
 - C. $p < \sqrt{n}$
 - D. $p > \sqrt{n}$

ANSWER: B

- 12. If a and b are coprime and a and c are coprime, then
 - A. ab and bc are coprime
 - B. a is not prime
 - C. a and bc are coprime
 - D. a and bc are not coprime

ANSWER: C

- 13. If a and b are any two integers, b>0, there exists unique integers q and r such that a = bq + r, where
 - A. $a \le r < b$
 - B. 0 > r > b
 - C. r<0
 - D. b=0

ANSWER: A

- 14. Fundamental Theorem of Arithmetic states that
 - A. Every integer n > 1 can be written as a sum of prime numbers
 - B. Every integer n > 1 can be written as a product of composite numbers
 - C. Every integer n > 1 can be written uniquely as a product of prime numbers
 - D. Every integer $n \le 1$ can be written uniquely as a product of prime numbers

ANSWER: C

- 15. If the prime factorization of a and b are $a = p_1^{a_1}.p_2^{a_2}.p_3^{a_3}...p_n^{a_n}$ and $b = p_1^{b_1}.p_2^{b_2}.p_3^{b_3}...p_n^{b_n}$, where each exponent is a non-negative integer then
 - A. $gcd(a,b) = p_1^{min(a_1,b_1)}.p_2^{min(a_2,b_2)}.p_3^{min(a_3,b_3)}...p_n^{min(a_n,b_n)}$
 - $B. \ gcd(a,b)\!=\!p_1^{max(a_1,b_1)}.p_2^{max(a_2,b_2)}.p_3^{max(a_3,b_3)}...p_n^{max(a_n,b_n)}$
 - C. $gcd(a,b) = p_1.p_2.p_3...p_n$
 - D. gcd(a,b)=ab

ANSWER: A

	A. (6, 12, 22, 27) B. (121, 122, 123) C. (30, 42, 70, 105) D. (10, 19, 24)
AN	SWER: B
17.	The gcd (1819, 3587) is A. 21 B. 19 C. 17 D. 11
AN	SWER: C
18.	Using prime factorization find the gcd and lcm of (231, 1575) A. 21, 17325 B. 19, 2100 C. 17, 1525 D. 21, 1570
AN	SWER: A
19.	If a and b are two positive numbers, then the product of gcd (a, b) and lcm (a, b) is A. a^2b^2 B. ab C. a^2b D. ab^2
AN	SWER: B
	The lcm (a, b) is always if either or both a and b are negative A. prime B. negative C. neither positive nor negative D. positive
AN	SWER: D
21.	Find the integers m and n in $512m+320n=64$. A. $m=2$, $n=-3$ B. $m=-3$, $n=2$ C. $m=-2$, $n=-3$

16. Which of the following is pairwise relatively prime numbers?

D.
$$m = -3$$
, $n = -2$

ANSWER: A

- 22. If gcd(a,b) = dthen
 - A. gcd(ad,bd)=1
 - B. $gcd(\frac{d}{a}, \frac{d}{b}) = 1$
 - C. gcd(a,b)=1
 - D. $gcd(\frac{a}{d}, \frac{b}{d}) = 1$

ANSWER: D

- 23. If gcd(a,b)=1 then for any integer c
 - A. gcd(ac, b) = gcd(c, b)
 - B. gcd(a,bc) = gcd(c,b)
 - C. gcd(a,b) = gcd(c,b)
 - D. gcd(a,bc)=1

ANSWER: A

- 24. If a = qb + r, then
 - A. gcd(a, r) = gcd(b, r)
 - B. gcd(a, b) = gcd(a, r)
 - C. gcd(a, r) = gcd(b, r)
 - D. gcd(a, b) = gcd(b, r)

ANSWER: D

- 25. If an event can occur in *m* ways and a second event in *n* ways and if the number of ways the second event occurs does not depend upon the occurrence of the first event, then the two events can occur simultaneously in
 - A. m ways
 - B. n ways
 - C. m + n ways
 - D. mn ways

ANSWER: D

26. $p \leftrightarrow q$ is equivalent to

A.
$$(\neg p \lor q) \land (\neg q \lor p)$$

B.
$$(p \lor \neg q) \land (\neg p \land q)$$

C.
$$(p \lor q) \land (\neg p \lor q)$$

D.
$$(p \land q) \land (\neg p \land q)$$

ANSWER: A

- 27. In the conclusion of the any given compound proposition if all the entries are false, then it is called a
- A. Tautology
- B. contradiction
- C. negation
- D. contrapositive

ANSWER: B

28. $P \lor T$ is equivalent to

A. neither T nor F

- B. p
- C. T
- D. F

ANSWER: C

29.
$$(p \rightarrow r) \land (q \rightarrow r) \equiv$$

- A. $(p \lor q) \to r$
- B. $(p \land q) \rightarrow r$
- C. $p \rightarrow (q \land r)$
- D. $p \rightarrow (q \lor r)$

ANSWER: A

30. $p \lor q$ is equivalent to

A.
$$p \rightarrow q$$

B.
$$p \rightarrow \neg q$$

C.
$$\neg p \rightarrow q$$

D.
$$\neg p \rightarrow \neg q$$

ANSWER: C

31. The value of the proposition $p \land (p \lor q)$ is

A. p

B.
$$p \lor q$$

D.
$$p \wedge q$$

ANSWER: A

32. The truth table for
$$(p \lor q) \lor \neg p$$
 is

A. Tautology

B. Contradiction

C. Converse of $p \rightarrow q$

D. Negation of P.

ANSWER: A

33. Which of the following proposition is equivalent?

A.
$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

B.
$$p \leftrightarrow q \equiv (p \rightarrow q) \lor (q \rightarrow p)$$

C.
$$p \rightarrow q \equiv p \vee \neg q$$

D.
$$p \leftrightarrow q \equiv \neg p \leftrightarrow q$$

ANSWER: A

34. Let p: food is good, q: food is cheap, the symbolic form of the statement "good food is not cheap" is

A.
$$p \wedge q$$

B.
$$p \rightarrow q$$

C.
$$\neg p \rightarrow q$$

D.
$$p \rightarrow \neg q$$

ANSWER: D

35. The truth table for $\neg(\neg p \lor \neg q)$ is

ANSWER: B

36. The truth table for $(p \rightarrow q) \rightarrow (q \rightarrow p)$ is

ANSWER: B

37.
$$(p \rightarrow q) \land (p \rightarrow r)$$
 is equivalent to

A.
$$p \rightarrow q$$

B.
$$p \rightarrow r$$

C.
$$p \land (q \rightarrow r)$$

D.
$$p \to (q \land r)$$

ANSWER: D

38. If $A: (\neg p \lor r) \land (\neg q \lor r)$ then the duality of A is

A.
$$(p \lor r) \lor (q \lor r)$$

B.
$$(p \wedge r) \vee (q \wedge r)$$

C.
$$(\neg p \land r) \lor (\neg q \land r)$$

D.
$$(p \wedge r) \vee (q \wedge r)$$

ANSWER: C

39. The truth table for $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ is equivalent to

F T T T T T $A. \frac{F}{F}$ $B. \frac{F}{F}$ $C. \frac{T}{F}$ $D. \frac{T}{T}$

ANSWER: D

40. The conclusion of the premises $r \rightarrow d$, $t \rightarrow \neg d$ and t is

A. $\neg r$

В. *¬d*

C. *¬t*

D. *r*

ANSWER:A

41. A set of premises $R_1, R_2, ...R_n$ is said to be an inconsistent if their conjunction implies a _____

A. Conditional statement

B. Tautological implification

C. Contradiction

D. Tautology

ANSWER: C

42. If the premises are $p \to q, q \to \neg r, r$ and $p \lor (t \land s)$ then the conclusion is

A. $p \vee q$

B. $t \wedge s$

C. q∨*s*

D. p∧*q*

ANSWER: B

43. The conclusion of the premises are $(a \rightarrow b) \land (a \rightarrow c), \neg (b \land c)$ and $(d \lor a)$ is
A. b
B. a
C. d
D. c
ANSWER: C
44. Symbolize the statement, p: It's raining; q: I get wet, "If I do not get wet then it is not raining".
A. $p \rightarrow q$
B. $q \rightarrow p$
C. $\neg p \rightarrow \neg q$
D. $\neg q \rightarrow \neg p$
ANSWER: D
45. Let p: its rain; q: there is traffic dislocation, r: sports day will be held, s: cultural programmes will go on. The symbolic form of the statement is "If it does not rain or if there is no traffic dislocation then the sports day will be held and the cultural programme will go on"
A. $\neg p \lor \neg q$
B. $\neg q \rightarrow \neg p$
$C. (\neg p \lor \neg q) \to r \land s$
D. $(\neg q \rightarrow \neg p) \rightarrow r \land s$
ANSWER: C
46. The conclusion for the set of premises $p \to q, q \to r, s \to \neg r$ and $q \land s$ is
A. $p \wedge q$
B. $q \wedge r$
C. $s \land \neg r$
D. inconsistent
ANSWER: D
47. The conclusion of the premises $p \to (q \lor r), (q \to \neg p), (s \to \neg r)$ and p is

A. $p \rightarrow s$

- B. $\neg s \rightarrow p$
- C. $p \wedge s$
- D. $p \rightarrow \neg s$

ANSWER: D

- 48. The conclusion of the premises are $r \rightarrow \neg q, r \lor s, s \rightarrow \neg q$ and $p \rightarrow q$ is
- A. r
- В. ¬р
- C. $\neg r$
- D. *¬q*

ANSWER: B

- 49. The conclusion of the premises $p \rightarrow (q \rightarrow s), \neg r \lor p$ and q is
 - A. $r \rightarrow s$
 - B. $r \wedge s$
 - C. $r \vee s$
 - D. $s \rightarrow r$

ANSWER: A

- 50. Let $P(K) = 3^{K} + 7^{K} 2$ then P(K+1) is divisible by
- A. 5
- B. 6
- C. 7
- D. 8

ANSWER: D