Customer Analytics

Subset Selection, LASSO, Decision Trees & Random Forests

George Knox

Subset selection

reading link:

ISLR Ch. 6.1-2

From last lecture

How do we systematically search for the best model?

Best subset

There are p independent variables excluding the intercept. (23 covariates in model 1 of telco L3).

Loop over model size in steps. Start with a model that has only intercept \mathcal{M}_0 .

- 1. Fit all p models that have 1 predictor, choose the one that has the best IS \mathbb{R}^2 . Call that model \mathcal{M}_1 .
- 2. Fit all $\binom{p}{2} = \frac{p(p-1)}{2}$ models with 2 predictors, choose the one that has the IS R^2 . Call that model \mathcal{M}_2 .
- p. Fit $\binom{p}{p} = 1$ model with p predictors, choose the one that has the best IS R^2 . Call that model \mathcal{M}_p

Select best model from $\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2 \dots \mathcal{M}_p$ using cross-validation (e.g., best OOS R^2). Run it on the full data set.

Forward stepwise regression

Loop over model size in steps. Start with a model that has only intercept \mathcal{M}_0 .

- 0. Fit all p-0 models that that augment the predictors in \mathcal{M}_0 with **one additional predictor**, choose the one that has the best IS R^2 . Call that model \mathcal{M}_1 .
- 1. Fit all p-1 models that augment the predictors in \mathcal{M}_1 with **one additional predictor**, choose the one that has the best IS R^2 . Call that model \mathcal{M}_2 .
- p-1. Fit p-(p-1)=1 model that augments the predictors in \mathcal{M}_{p-1} with **one** additional predictor, choose the one that has the best IS R^2 . Call that model \mathcal{M}_p
- Select best model from $\mathcal{M}_1, \mathcal{M}_2 \dots \mathcal{M}_p$ (e.g., best OOS R^2). Run it on the full data set.

Alternative to CV

- The R function we use to do forward stepwise regression, step, uses a <u>penalized</u> deviance to select models rather than crossvalidation.
- We saw that IS deviance (and \mathbb{R}^2) tend to overfit. The idea is to penalize the IS fit measures based on how many parameters they use.
- Akaike information criterion, is used by the step program.

$$AIC = 2p + Dev$$

Telco data set

Step	Df	Deviance	Resid.	Resid.
			Df	Dev AIC
1	NA	NA	7031	8143 8145
2 + Contract	-2	1380.83	7029	6763 6769
<pre>3 + InternetService</pre>	-2	413.97	7027	6349 6359
4 + tenure	-1	284.48	7026	6064 6076
5 + PaymentMethod	-3	53.93	7023	6010 6028
6 + PaperlessBilling	-1	33.72	7022	5976 5996
<pre>7 + OnlineSecurity</pre>	-1	27.40	7021	5949 5971
<pre>8 + TotalCharges</pre>	-1	29.20	7020	5920 5944
9 + PhoneService	-1	25.16	7019	5895 5921
10 + TechSupport	-1	22.58	7018	5872 5900
11 + MonthlyCharges	-1	11.31	7017	5861 5891
12 + OnlineBackup	-1	11.41	7016	5849 5881
13 + SeniorCitizen	-1	8.92	7015	5840 5874
14 + MultipleLines	-1	4.62	7014	5836 5872
15 + Dependents	-1	3.32	7013	5832 5870
16 + DeviceProtection	-1	2.61	7012	5830 5870

Problems with forward selection

Time: Takes about 10 seconds for 7000 responses 20 covariates.

Unstable: small changes in the data lead to large differences in model selection

Alternative: estimate all coefficients but shrink the estimates towards zero.

Regularization: LASSO

Penalty term

$$\hat{\beta} = \underset{\beta}{\operatorname{arg\,min}} \left\{ \operatorname{Dev}(\beta) + \lambda \sum_{j=1}^{p} |\beta_j| \right\}, \quad \lambda \ge 0$$

The penalty weight λ shrinks the size of the β 's

- The larger λ , the more $\hat{\beta}$'s are exactly zero. LASSO performs variable selection and yields "sparse" models.
- If $\lambda = 0$, we get logistic regression

Shrinking β 's means that the predictions shrink to the mean

• Idea is the same from L2: when you don't know, shrink to the mean

Absolute value

The shape of the penalty function means that some coefficients will be exactly zero

Regularization path

- Start with a large penalty term λ_1 so that all coefficients are zero.
- There are a set of critical penalty weights values $\lambda_1 > \lambda_2 \dots > \lambda_p$, where the active set of nonzero coefficients changes. They can be solved for analytically, speeding up computation.
- Between these critical values each coefficient increases or decreases linearly.
- A smart algorithm computes the entire regularization path for about the same computational cost as ordinary regression.

Stability means this scales to many big data app's

Choose λ such that K-fold CV deviance is minimized

Deviance divided by number of obs

Τl	ha	ıt ı	m	od	el	is
	10			U U	\sim 1	ıJ

Note no standard errors

2 variables didn't
make the cut

(Intercept) telco.tenure	0.0480 -0.0548
telco.MonthlyCharges	•
telco.TotalCharges	0.2604
SeniorCitizen	0.2136
PartnerYes	•
DependentsYes	-0.1475
PhoneServiceYes	-0.5920
MultipleLinesYes	0.2475
InternetServiceFiber.optic	0.7701
InternetServiceNo	-0.7711
OnlineSecurityYes	-0.3918
OnlineBackupYes	-0.1557
DeviceProtectionYes	-0.0359
TechSupportYes	-0.3688
StreamingTVYes	0.1972
StreamingMoviesYes	0.2067
ContractOne.year	-0.6548
ContractTwo.year	-1.3247
PaperlessBillingYes	0.3402
<pre>PaymentMethodCredit.cardautomatic.</pre>	-0.0735
PaymentMethodElectronic.check	0.3163
PaymentMethodMailed.check	-0.0352

Decision Trees

Reading:

BKN Ch. 17

ISLR Ch. 8.1

Motivation

We want a model that is simple to understand and communicate

Closer look

Root node

Every leaf (terminal node) has a prediction: the average response rate of that group


```
How it fits the data
```

```
Leaf (terminal) nodes## Classification tree:
## tree(formula = respmail ~ ., data = subset(ebeer, select = c(respmail,
## F, student)), mindev = 0.005)
## Number of terminal nodes: 5
## Residual mean deviance: 0.505 = 2500 / 4950
## Misclassification error rate: 0.124 = 616 / 4952
```

A simple tree

How does it decide where to split?

CRT: Gini impurity

100

0

Gini impurity is a measure of how often a randomly chosen element from the set would be incorrectly labeled if it were randomly labeled according to the distribution of labels in the subset.

Gini index of impurity

$$i(t) = 1 - \sum_{j} p(j|t)^2$$

$$i(t_1) = 1 - 1^2 - 0^2 = 0$$

$$i(t_2) = 1 - 0.5^2 - 0.5^2 = 0.5$$

Minimal impurity

Response

No response

Maximal impurity

100

100

Response 100 100 No response 0 100

$$i(t) = 1 - \sum_{j} p(j|t)^2$$

$$i(t_1) = 1 - 1^2 - 0^2 = 0$$

$$i(t_2) = 1 - \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = \frac{1}{2}$$

Response 100 100

No response 0 100

$$i(t) = 1 - \sum_{j} p(j|t)^2$$

$$i(t_1) = 1 - 1^2 - 0^2 = 0$$

$$i(t_2) = 1 - \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = \frac{1}{2}$$

Decrease in impurity by split S

$$\Delta i(S,t) = i(t) - \left(\frac{n_1}{n}\right)i(t_1) - \left(\frac{n_2}{n}\right)i(t_2)$$

$$\Delta i(S,t) = \frac{4}{9} - \frac{1}{3} * 0 - \frac{2}{3} * \frac{1}{2} = \frac{1}{9}$$
TILBURG • UNIVERSITY

$$\Delta i(S,t) = \frac{1}{9}$$

$$\Delta i(S,t) = \frac{4}{9} - \frac{1}{2} * 0 - \frac{1}{2} * \frac{4}{9} = \frac{2}{9}$$

$$\Delta i(S,t) = i(t) - \left(\frac{n_1}{n}\right)i(t_1) - \left(\frac{n_2}{n}\right)i(t_2)$$

Decrease in impurity by split 1 at node t

$$\Delta i(x,t) = \frac{1}{9}$$

Decrease in impurity by split 2 at node t

$$\Delta i(x,t) = \frac{1}{9}$$
$$\Delta i(y,t) = \frac{2}{9}$$

Decrease in impurity is larger when we split with Y than X, so choose Y split.

We stop when the decrease is smaller than some threshold, or when leaves are small (few observations)

Decision Tree vs. Logistic regression

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_p x_p$$

$$p = \beta_1 1\{X \in \text{Leaf}_1\} + \beta_2 1\{X \in \text{Leaf}_2\} + \dots$$

Non-parametric: no assumption made about relationship between x and p.

We can fit the in-sample data arbitrarily well

We lower the threshold for improvement to zero, the tree grows as complex as the data.

We can fit the in-sample data arbitrarily well

What problems do you foresee?

Decision trees

- Advantages:
 - Interpretability
 - Nonparametric: more flexible than logistic regression
- Disadvantages:
 - Unstable -> irrelevant variables can change the model results
 - Tendency to overfit the data

K-fold cross validation

- Here K = 5.
- Data randomly split into 5 equally sized groups of 20% each.
- 4 groups used to fit, one group to validate.
- Repeat so that all data is used.

Comparing OOS error

No improvement over 4

Random Forests

Reading:

ISLR Ch. 8.2

Extension: bagging

- Idea: averaging a set of observations reduces variance
 - One tree has high variance, but an average of many trees will have low variance
- Bagging = bootstrap aggregation
- From L1: bootstrap sampling = take a sample of same size from the original dataset, but with replacement
 - Same observation can occur multiple times

Extension: random forest

- Idea: averaging a set of uncorrelated observations reduces variance even further than correlated observations
- \bullet Each time a split is considered, only a <u>random</u> sample of m predictors is chosen as split candidates from the full set of p predictors

$$m \approx \sqrt{p}$$

 Random sample of 3 out of 8 predictors at each split considered

example

Random sample of m = 3 predictors

If we choose m=p, then random forest is the same as bagging

Mhàs

- Under bagging, models are highly correlated
 - A strong predictor will appear in all bagged trees, and predictions across bagged trees will be correlated
 - An average over many correlated models
- Random forests de-correlate models
 - Even a strong predictor will have a $\frac{p-m}{p}$ fraction of times not in the tree

Random forest variable importance

