Makerfabs UWB AT Module AT Command Manual V1.0.7

Author: Vincent

Time: 2023/10/13

Date	Versions	Description	
20230815	v1.0.0	Introduction to Use & Function	
		Correct clerical errors	
		2) Anchor&Tag Software integration	
20230823	V1.0.1	3) Improve the Run Led pin description	Jerry
		4) Improve the Tx Led pin description	
		5) Improve the Rx Led pin description	
		6) Improved UART2 RX /RESET /WAKEUP pin description	
		1) Add frequency option for 850K rate	
		2) Modify the boot log	
20230829	V1.0.2	3) Modify command, AT+SETCFG	Jerry
		4) Modify command, AT+GETCFG?	
		5) Modify command , AT+RANGE	
20230926	V1.0.3	Improve documentation	Jerry
		2) Add hardware application circuits	
20230926	V1.0.4	Added package size diagram	Jerry
20231013	V1.0.5	First edition of translation	
20240227	V1.0.6	The maximum number of labels increased to 64	
20240315	V1.0.7	second edition of translation	

Contents

1 Product description		3
1.1 Introduction		4
1.2 Feature		.4
1.3 Functional block	diagram	.5
1.4 Product size		5
2 Module hardware desc	cription	6
2.1 Module hardwar	e pin definition	.6
2.2 Module hardwar	e package size	8
2.2 Power interface.		.9
2.3 UART application	on circuit	9
2.4 LED application	circuit1	0
2.5 Reset interface		1
2.6 Download interf	ace1	2
3 Description of the mod	dule AT command1	3
3.1 Command summ	nary description1	3
3.2 Command: AT	?1	4
3.3 Command: AT	+GETVER?1	4
3.4 Command: AT	+RESTART1	4
3.5 Command: AT	+RESTORE1	.5
3.6 Command: AT	+SAVE	5
3.7 Command: AT	+SETCFG1	5
3.8 Command: AT	+GETCFG?1	6
3.9 Command: AT	+SETANT1	6
3.10 Command: A	Γ+GETANT?1	6
3.11 Command: A	Γ+SETCAP1	7
3.12 Command: A	Γ+GETCAP?1	7
3.13 Command: A	Γ+SETRPT1	.7
3.14 Command: A	T+GETRPT?1	8
3.15 Command: A	Γ+RANGE1	8
3.16 Command: A	Γ+SLEEP1	9

1 Product description

1.1 Introduction

This module describes the high-precision real-time positioning module developed by our company based on Qorvo DW3000 series chips. The module integrates MCU and all RF circuits, antennas, power management and clock circuits. The module can be quickly configured and used by AT command. The target readers are software and hardware engineers, UWB learners and users. This module is based on TOF (TWR) two-sided distance measurement and a variety of filtering algorithms to achieve distance calculation. After combination and collocation between multiple modules, it can be adapted to most of the location application scenarios, which is convenient for users to learn and research and rapid product application. Its ranging accuracy may be less than 10cm; And the module supports data transfer rates of up to 6.8Mbps.

1.2 Feature

- 1) Comply with IEEE802.15.4-2011 ultra-wideband standard;
- 2) Easy to integrate without additional RF design;
- 3) Support CH5 (6489.6MHZ) RF band;
- 4) Strong resistance to multi-path fading;
- 5) Two modes of data transmission rate of 850kbps and 6.8Mbps;
- 6) The maximum packet length is 1023 bytes, which meets the application requirements of high data volume exchange;
 - 7) The system supports 8 Anchor 64 tags.
 - 8) The module supports free configuration of refresh rate, up to 100Hz;
 - 9) Module serial port communication baud rate 115200;
 - 10) Module (Tag) deep hibernation working current as low as 35uA, working current 34mA;
 - 11) Support AT command;

1.3 Functional block diagram

1.4 Product size

2 Module hardware description

2.1 Module hardware pin definition

Index	Pin	Function
1	3V3	Power 3.3v
2	3V3	Power 3.3v
3	I2CSDA	Reserve pin(NC)
4	I2CSCL	Reserve pin(NC)
5	SWCLK	Module download port
6	SWDIO	Module download port

7	GND	GND
8	GND	GND
9	RUN LED	Module running indicator, Anchor/Tag universal
		(except for Tag entering Sleep)
		Configuration status: Blinking slowly (1 second)
		Working status: Blinking at short intervals (0.1
		seconds)
10	UART2 TX	Reserve pin(NC)
11	UART2	Function 1: Pull down 3 seconds reset (reset
	RX/RESET/WAKEUP	function)
		Function 2: Tag low power state, pull down any
		time to wake up (wake up function, only valid Tag)
12	TX LED	Module UWB transmit indicator (Anchor valid, Tag
		invalid)
13	RX LED	Module UWB acceptance indicator (Anchor
		valid,Tag invalid)
14	UART1 TX	Module serial TX port
15	UART1 RX	Module serial RX port
16	GND	GND

2.2 Module hardware package size

2.2 Power interface

Index	Pin	Function
1 2	3V3	Power supply 3.3V (Note: If the
		power supply voltage exceeds 3.3,
		the module will be damaged)
7 8 16	GND	GND

IDO voltage regulator chip is used to increase 100UF tantalum capacitor and 100NF capacitor to stabilize voltage and reduce interference caused by power supply.

2.3 UART application circuit

Index	Pin	Function
14	UART1 TX	Module TX
15	UART1 RX	Module RX

Serial port communication level is 3.3VTTL, different level systems should do level matching.

2.4 LED application circuit

Index	Pin	Function
9	RUN LED	Module running
		indicator,Anchor/Tag universal
		(except for Tag entering Sleep)
		Configuration status: Blinking
		slowly (1 second)
		Working status: Blinking at short
		intervals (0.1 seconds)
12	TX LED	Module UWB transmit indicator
		(Anchor valid,Tag invalid)
13	RX LED	Module UWB acceptance indicator
		(Anchor valid,Tag invalid)

LED output High level LED is on, low level LED is off.

2.5 Reset interface

Index	Pin	Function
11	UART2	1: Pull down 3 seconds reset (reset
	RX/RESET/WAKEUP	function)
		2: Label low power state, pull down
		any time to wake up (wake up
		function, only valid label)

It is recommended to use an open set or open drain drive circuit to control $\ensuremath{\mathsf{RESET}}.$

2.6 Download interface

Index	Pin	Function
5	SWCLK	Module download port
6	SWDIO	Module download port

Firmware upgrades for hardware modules can be performed via ST-LINK.

3 Description of the module AT command

3.1 Command summary description

Index	Command	Function	Role
1	AT?	Serial port test	Tag/Anchor
2	AT+GETVER?	Get version	Tag/Anchor
3	AT+RESTART	Restart module	Tag/Anchor
4	AT+RESTORE	Restore configuration	Tag/Anchor
5	AT+SAVE	Save configuration	Tag/Anchor
6	AT+SETCFG	Set role message	Tag/Anchor
7	AT+GETCFG?	Get role message	Tag/Anchor
8	AT+SETANT	Set antenna delay	Tag/Anchor
9	AT+GETANT?	Get antenna delay	Tag/Anchor
10	AT+SETCAP	Set the Anchor/Tag capacity of the	Tag/Anchor
		system	
11	AT+GETCAP?	Get the Anchor/Tag capacity of the	Tag/Anchor
		system	
12	AT+SETRPT	Set the automatic reporting status	Tag/Anchor
13	AT+GETRPT?	Get the automatic reporting status	Tag/Anchor
14	AT+RANGE	Active reporting command	Tag/Anchor

15 AT+SLEEP Sleep command Tag	
-------------------------------	--

3.2 **Command:** AT?

Command	AT?
Parameter	
Return	
Example	AT?
Lxample	OK
Function	Verify that the serial port communication of the module is normal

3.3 **Command:** AT+GETVER?

Command	AT+GETVER?
Parameter	
Return	x1: indicates the software version
	x2: Hardware version
Example	AT+GETVER?
	AT+GETVER=software:v01_00_000,hardware:v01_03_000
Function	Obtain the module software version and hardware version

3.4 **Command:** AT+RESTART

Command	AT+RESTART
Parameter	
Return	
Example	AT+RESTART OK
Function	Reset module

3.5 **Command:** AT+RESTORE

Command	AT+RESTORE
Parameter	
Return	
Example	AT+RESTORE
	OK
Function	Restore factory mode (clear all configuration information)

3.6 **Command:** AT+SAVE

Command	AT+SAVE
Parameter	
Return	
Example	AT+SAVE OK
Function	Save the configuration parameters (after configuring the information, be sure to save and write to the flash)

3.7 **Command:** AT+SETCFG

Command	AT+SETCFG=(x1),(x2),(x3),(x4)
Parameter	x1:Device ID(Anchor 0-7, Tag 0-63) x2:Device Role(0:Tag / 1:Anchor) x3:Equipment communication rate(0:850K/1:6.8M, Default:6.8M) x4:Range filtering is enabled(0:Close / 1:Open)
Return	
Example	AT+SETCFG=0,1,1,1 OK
Function	Set basic module parameters

3.8 **Command:** AT+GETCFG?

Command	
Parameter	
	x1:Device ID(Anchor 0-7, Tag 0-63)
Doturn	x2:Device Role(0:Tag / 1:Anchor)
Return	x3:Equipment communication rate(0:850K/1:6.8M, Default:6.8M)
	x4:Range filtering is enabled(0:Close / 1:Open)
Example	AT+GETCFG?
	AT+GETCFG=0,0,1,1
Function	Obtain basic module parameters

3.9 **Command:** AT+SETANT

Command	AT+SETANT=(x1)
Parameter	x1:Device antenna delay
Return	
Example	AT+SETANT=16536 OK
Function	Set module antenna delay (antenna delay is used to: calibrate distance values)

3.10 **Command:** AT+GETANT?

Command	AT+GETANT?
Parameter	
Return	x1:Device antenna delay
Example	AT+GETANT?
	AT+GETANT=16536
Function	Get module antenna delay (antenna delay for: calibrating distance values)

3.11 **Command:** AT+SETCAP

Command	AT+SETCAP=(x1),(x2)
Parameter	x1:Tag capacity (default: 10, maximum: 64) x2: Time of a single time slot (6.8M not less than 10ms,850K not less than 15ms) (Note: The refresh rate relationship is as follows: label capacity x single slot time, Example 1: If x1=10 and x2=10, the refresh rate is 10Hz Example 2: If x1=5 and x2=10, the refresh rate is 20Hz Example 3: x1=1 x2=10, then refresh rate = 100Hz)
Return	
Example	AT+SETCAP=10,10 OK
Function	Set system base station/label capacity (refresh rate)

3.12 **Command:** AT+GETCAP?

Command	AT+GETCAP?
Parameter	
	x1:Tag capacity (default: 10, maximum: 64)
Return	x2: Time of a single time slot (6.8M not less than 10ms,850K not less than 15ms)
	(Note: The refresh rate relationship is as follows: label capacity x single slot time,
	Example 1: If $x1=10$ and $x2=10$, the refresh rate is $10Hz$
	Example 2: If $x1=5$ and $x2=10$, the refresh rate is $20Hz$
	Example 3: $x1=1$ $x2=10$, then refresh rate = 100 Hz)
Example	AT+GETCAP?
	AT+GETCAP=10,10
Function	Get system base station/label capacity (refresh rate)

3.13 **Command:** AT+SETRPT

Command	AT+SETRPT=(x1)
Parameter	x1: Whether the report is reported automatically (0: off 1: on)
Return	

Example	AT+SETRPT=1 OK
Function	Enable whether the module actively reports distance data.

3.14 **Command:** AT+GETRPT?

Command	AT+GETRPT?
Parameter	x1: Whether the report is reported automatically (0: off 1: on)
Return	
Example	AT+GETRPT? AT+GETRPT=1
Function	Enable whether the module actively reports distance data.

3.15 **Command:** AT+RANGE

Command	AT+RANGE=tid:x1,mask:x2,seq:x3,range:(x4,x5,x6,x7,x8,x9,x10,x11),
Command	rssi:(x12,x13,x14,x15,x16,x17,x18,x19)
Parameter	
	tid:x1(Tag ID, in decimal format)
	mask:x2(Significance bit, in hexadecimal format)
	seq:x3(Tag communication sequence, in decimal format)
	range0:x4(The distance from Tag to Abchor0 ,in cm, in decimal format)
	range1:x5(Tag to Anchor 1)
	range2:x6(Tag to Anchor 2)
	range3:x7(Tag to Anchor 3)
	range4:x8(Tag to Anchor 4)
Return	range5:x9(Tag to Anchor 5)
Retuiii	range6:x10(Tag to Anchor 6)
	range7:x11(Tag to Anchor 7)
	rssi0:x12(Signal strength value from Tag to Anchor 0, in dBm, floating point type)
	rssi1:x13(Signal strength value from Tag to Anchor 1)
	rssi2:x14(Signal strength value from Tag to Anchor 2)
	rssi3:x15(Signal strength value from Tag to Anchor 3)
	rssi4:x16(Signal strength value from Tag to Anchor 4)
	rssi5:x17(Signal strength value from Tag to Anchor 5)
	rssi6:x18(Signal strength value from Tag to Anchor 6)

		rssi7:x19(Signal strength value from Tag to Anchor 7)
	Example	AT+RANGE=tid:0,mask:80,seq:197,range:(0,0,0,0,0,0,0,0),
		rssi:(0.00,0.00,0.00,0.00,0.00,0.00,0.00)
	F	After the 3.12 command is set, the distance value is actively reported (common to
	Function	Tag and Anchor).

3.16 **Command:** AT+SLEEP

Command	AT+SLEEP=(x1)
	x1: Sleep time(Unit: ms)[Range: 0-65535,65535=Forever]
Parameter	(Wake up mode: ① serial port wake up (send any data) ②UART2 RX drop-down wake up at any time)
Return	ОК
Example	AT+SLEEP=1000 OK
Function	Set the device sleep time (valid for Tags only)