Álgebra

Anillos

Generalidades

Definición 1.1 (Anillo) Un anillo es una estructura $(A, +, \cdot)$ con las propiedades:

- (A, +) es un grupo conmutativo
- Asociatividad: (xy)z = x(yz)
- Distributividad: (x+y)z = xz+yz, x(y+z) =xy + xz

Se denota al elemento unitario de (A, +) por 0_A y al unitario de $(A, +, \cdot)$, si existe, por 1_A . $A^* = A/\{0\}$. $0_A = 1_A \iff A = \{0\}.$

Definición 1.6 Si $1_A \in A$, entonces A es un **anillo unitario**. Una **unidad** de A es un elemento xque tiene su inverso y: xy = 1. El conjunto de unidades es U(A). El inverso, si existe, se puede denotar por x^{-1} y $x/y = xy^{-1}$.

Definición 1.8 Un **cuerpo** es un anillo *K* tal que K^* es un grupo. O, un anillo unitario con inverso.

Definición 1.10 Un divisor de cero es un elemento $x \in A^*$ tal que, para algún $y \in A^*$, $xy = 0_A$. Un cuerpo nunca tiene divisores de cero: $x = x(yy^{-1}) = (xy)y^{-1} = 0y^{-1} = 0$

Definición 1.11 Se denomina dominio de integridad a un anillo unitario sin divisores de cero. El producto de dos anillos conmutativos $C = A \times B$ nunca es un dominio de integridad, pues $(a, 0) \neq$ 1_A , $(0, b) \neq 1_B$ y $(a, 0) \times (0, b) = (0, 0) = 0_C$.

A un dominio de integridad se le puede asociar un cuerpo mediante el cuerpo de fracciones de **un dominio**. Dada la relación $(x, y)R(x', y') \iff$ xy' = x'y, para el producto de dominios $A \times A^*$ entonces para la clase de equivalencia [x, y], las operaciones [x, y] + [x', y'] = [xy' + y'x, yy'], [x, y]. [x', y'] = [xx', yy'] forman un cuerpo, K, con $0_K = [0, 1], 1_K = [1, 1], y [x, y]^{-1} = [y, x].$

junto $I \subset A$ tal que

- I es subgrupo de A
- $\forall i \in I, a \in A, ia \in I$.

A, $\{0\}$ son los **ideales triviales**, y si $I \neq A$, I es un **ideal propio**. Si $1_A \in I$, I = A: $\forall a \in A$, $a = a \cdot 1$, y como $1 \in I$, $a \in I$.

Definición 1.16 Dado un ideal *I* de *A*, dada la relación $xRy \iff x - y \in I$, se forma el anillo cociente A/I con las clases de equivalencia $[x] = x + I = \{x + a \mid a \in I\}$. Las operaciones suma y producto definidas por (x + I) + (y + I) =(x + y) + I, (x + I)(y + I) = xy + I, son inyectivas.

Definición 1.17 - 1.19 Sea *A* un anillo conmutativo y *L* un subconjunto de *A*. El conjunto *I* de sumas finitas $a_1x_1 + ... + a_lx_l$, $a_i \in A$, $l_i \in L$ es un **ideal** generado por L. Además, I es el mínimo ideal que contiene a *L*. Si *L* es finito, *I* es **finitamente generado**; y si L tiene un solo elemento, es decir, I = Al, el ideal es **principal**.

En los ideales se definen la (1) suma: I + J está dado por $a_1, \dots, a_r, b_1, \dots, b_s \in A, x_1, \dots, x_r \in$ $I, y_1, \dots, y_s \in J, a_1x_1 + \dots + a_rx_r + b_1y_1 + \dots + a_rx_r + a_rx_$ $b_s y_s = x + y$; (2) producto: IJ = $x_1 y_1 + \cdots + y_s + y_s = x_1 y_1 + \cdots + y_s + y_s = x_1 y_1 + \cdots + y_s + y_s = x_1 y_1 + \cdots + y_s + y_s = x_1 y_1 + \cdots + y_s + y_s = x_1 y_1 + \cdots + y_s + y_s = x_1 y_1 + \cdots + y_s + y_s = x_1 y_1 + \cdots + y_s + y_s = x_1 y_1 + \cdots + y_s + y_s = x_1 y_1 + \cdots + y_s + y_s = x_1 y_1 + \cdots + y_s + y_s = x_1 y_1 + \cdots + y_s + y_s = x_1 y_1 + y_1 + y_1 + y_2 + y_1 + y_2 + y_1 + y_2 + y_2 + y_3 + y_3 + y_4 + y_5 + y_5$ $x_r y_r, x_1, \dots, x_r \in I, y_1, \dots, y_r \in J$, (3) intersección I ∩ J.

Definición 1.21 Un ideal es **maximal** si (1) A/I es un cuerpo y (2) I es propio y ningún otro ideal propio lo contiene. (1) \iff (2). Si A/I es un cuerpo, luego contiene una unidad. Ninguna unidad i de A/I puede estar en $I^* = I + i$ porque entonces $I^* = A$.

Definición 1.22 Sean *A* unitario e *I* un ideal. Se dice que I es **primo** si (1) A/I es un dominio de integridad y (2) I es propio, y $\forall x, y \in A$, si $xy \in I$, $x \in I$ o $y \in I$. (1) \iff (2). Demostración. Si $xy \in I$, 0 + I = xy + I = (x + I)(y + I). Como A/I es **Definición 1.14 (Ideal) Un ideal es un subcon**- dominio, $x + I = 0 + I \rightarrow x \in I$ o $y + I = 0 + I \rightarrow y \in I$.

Definición 1.24 Un **homomorfismo** de los anillos A, B es una aplicación $f: A \rightarrow B$ definida por:

- f(x+y) = f(x) + f(y)
- f(xy) = f(x)f(y)
- $f(1_A) = 1_B$

 $f(x)(f(1_A)-1_B)=f(x)f(1_A)-f(x)1_B=f(x\cdot 1_A)-f(x)=0.$ Si $f(1_A)\neq 1_B$, f(A) son divisores de 0. La aplicación composición $\phi:A\to A:g\mapsto g\circ f$ es homeomorfismo.

Definición 1.26 (Núcleo e imagen) Se define el **núcleo** de f al ideal: ker $f = \{x \in A \mid f(x) = 0\}$, y se define la **imagen** de f al anillo im $f = \{y \in B \mid \exists x \in A, f(x) = y\}$.

Proposición 1.27 / 1.30 Teorema de isomorfía. Dado un homomorfismo *f* , el diagrama

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow^{p} & & \downarrow^{\widehat{f}} \\
A/\ker f & \xrightarrow{\overline{f}} & \operatorname{im} f
\end{array}$$

Con $p: x \mapsto x + \ker f$ sobreyectiva / **epimorfismo**, $f: x + \ker f \mapsto f(x)$ biyectiva / **isomorfismo**, $j: y \mapsto y$ inyectiva / **monomorfismo**; es conmutativo. Si f es monomorfismo entonces $\ker f = \{0\}$. Dos anillos conmutativos son **isomorfos** $(A \simeq B)$ si existe un isomorfismo entre ellos.

Divisibilidad

Definición 2.1 x es un divisor de y o y es un múltiplo de x, x|y si existe $a \in A$, y = ax. Si $(x) = \{kx \mid k \in \mathbb{Z}\}$, entonces $x|y \iff (y) \subset (x)$. x está relacionado con y si $(x) = (y) \iff x|y,y|x$. En ese caso, existe una unidad $a \in U(A)$ tal que $y_b = \underbrace{x}_b = \underbrace{x}_b$

Denotamos div (y) al conjunto de divisores de y. Si y genera un ideal primo, entonces decimos que y es primo. y es irreducible si sus divisores son las unidades y productos de y por unidades. Todo primo es irreducible, pero NO TODO irreducible es primo (hay irreducibles que no generan ideales primos).

Definición 2.6 Se dice que A es un **dominio euclídeo DE** si existe una aplicación $\|\cdot\|:A\to\mathbb{N}$ tal que

- $||x|| = 0 \iff x = 0$
- $\bullet ||xy|| = ||x|| \cdot ||y||$
- Si $x, y \in A^*$ existe $r \in A$ tal que y | (x r) y ||r|| < ||y||

 \mathbb{Z} es DE porque el valor absoluto cumple la función. En $\mathbb{Z}[i]$ la función $||a+bi|| = a^2 + b^2$ cumple las propiedades y $\mathbb{Z}[i]$ es DE.

Proposición 2.8 Si *A* es DE, entonces $U(A) = \{x \in A \mid ||x|| = 1\}. \rightarrow) ||1_A|| = 1$ porque $||1_A|| = ||1_A \cdot 1_A|| = ||1_A|| ||1_A||$, y como $||1_A|| \neq 0$, $||1_A|| = 1$. Si $x \in A$, existe x^{-1} y $||x|| ||x^{-1}|| = ||xx^{-1}|| = 1$ y como $||x|| \in \mathbb{N}$, $||x|| = ||x^{-1}|| = 1$

Proposición 2.10/ Definición 2.11 En un **dominio de ideales principales DPI** todos los ideales son principales. Un DE es un DIP. Elegimos x tal que $\|x\| = \min\{\|y\| \mid 0 \neq y \in I\}$. Entonces x > 0 y I está generado por x, ya que si $y \neq 0, y \in I$, existe $r \in A$ tal que $x|(y-r), \|r\| < \|x\|$. Entonces $y-r \in I$ y como $y \in I$, $r \in I$, pero como $\|r\| < \|x\|$, $y \|x\|$ es el mínimo en I, r = 0 y $y \in (x)$.

Proposición 2.12 Si A es un DIP, todo elemento irreducible $a \in A^*$ genera un ideal maximal. Sea I, $(a) \subset I$. Entonces I = (a) o I = A. Sea $b \in A$ tal que I = (b). Entonces $(a) \subset I = (b)$, b|a. Como a es irreducible, o bien b = ua, $u \in U(A)$, y (a) = (b) = I o $b \in U(A)$, y I = (b) = A.

Definición 2.13 (Característica de un dominio de integridad) Definimos $\phi = \phi_A : \mathbb{Z} \to A : k \mapsto k \cdot 1_A = 1_A + \dots + 1_A \ (k > 0), 0 \ (k = 0), -((-k) \cdot 1_A) \ (k < 0). \ \phi$ es un homomorfismo. Si $\ker \phi = \{0\}, \mathbb{Z} \subset A$, y tiene característica 0; y si $\ker \phi \neq \{0\}$, A tiene característica positiva. En este caso, como A es dominio de integridad y $\mathbb{Z}/\ker \phi \simeq \operatorname{im} A \subset A$, $\mathbb{Z}/\ker \phi$ también es dominio y $\ker \phi = (p)$ es un ideal primo.

Definición 2.14 Sean $x, y \in A^*, z \in A$. z es un **máximo común divisor** si z|x, z|y, y z divide cualquier otro divisor de ambos. z es un **mínimo común múltiplo** si x|z, y|z y z divide a cualquier otro múltiplo de ambos. Estos elementos son únicos.

Proposición 2.17 / 2.18 / 2.19. Para un dominio de integridad A^* :

- $\forall x, y \in A^*$ tiene mcd: $(x) + (y) \subset (mcd)$.
- $\forall x, y \in A^*$ tiene mcm: $(x) \cap (y) = (mcm)$.
- $xy = mcm \cdot mcd$.

Si se cumple cualquiera de los dos primeros puntos MC, todo elemento irreducible es primo P

•

Proposición 2.20 (Identidad de Bezout B). Si $x, y \in A^*$ generan un ideal principal, existe z = mcd(x, y) y existen $a, b \in A$ tales que z = ax + by.

Definición 2.21 Dos elementos $x, y \in A^*$ son primos entre sí si no comparten más divisores que las unidades, es decir, $mcd(x, y) = 1_A$.

Definición 2.23 Un dominio de factorización única, **DFU**, es un dominio de integridad donde todo elemento irreducible es primo (**P**) y todo elemento no unitario es producto de elementos irreducibles (**F**).

$$DE \longrightarrow DIP \longrightarrow DFU \longrightarrow F$$

$$\downarrow \qquad \qquad \downarrow$$

$$B \longrightarrow MC \longrightarrow P$$

Proposición 2.26 Ecuaciones diofánticas lineales con dos incógnitas. Las ecuaciones son de la forma c = aX + bY, de un dominio. Si se cumple la identidad de Bezout, y d = mcd(a, b), entonces se cumple que $d = \alpha a + \beta b$. Por tanto, existen $a_0, b_0, c_0 \in A$ tales que $c = c_0 d$, $a = a_0 d$, $b = b_0 d$, y $1 = \alpha a_0 + \beta b_0$, de modo que la nueva ecuación a resolver es

Multiplicando por α y sustituyendo $\alpha a_0 = 1 - \beta b_0$ tenemos $X = \alpha c_0 + b_0(\beta X - \alpha Y)$. Igualmente, multiplicando por β y sustituyendo $\alpha a_0 = 1 - \beta b_0$ tenemos $Y = \beta c_0 - a_0(\beta X - \alpha Y)$. Así, si $t = \beta x - \alpha y$, para algunos x, y, tenemos las ecuaciones $x = \alpha c_0 + b_0 t$; $y = \beta c_0 - a_0 t$.

Así, primero hallamos $d = \alpha a + \beta b$, con lo cual obtenemos α , β , a, b, y de ahí sacamos $a_0 = a/\text{mcd}$, $b_0 = b/\text{mcd}$, $c_0 = c/\text{mcd}$. Para obtener $d = \alpha a + \beta b$ empleamos el algoritmo de Euclides.

Proposición 2.27 Algoritmo de Euclides. Este algoritmo sólo es válido en DIPs, ya que en ellos se da B y MC. Ponemos un ejemplo práctico con 4329/132:

$$4329 = 132 \cdot 32 + 105, \quad 132 = 105 \cdot 1 +$$

27,
$$105 = 27 \cdot 3 + 24$$
, $27 = 24 \cdot 1 + 8$, $24 = 8 \cdot 3$

Si tenemos la ecuación diofántica 4329X + 132Y = 33, vemos que tiene solución pues mcd(4329,132) = 3 y 3|33. Para encontrar las soluciones primero necesitamos reconstruir la ecuación $d = \alpha a + \beta b$, con a = 4329, b = 132. Para ello vamos sustituyendo el cociente de cada una de las ecuaciones por la siguiente.

$$a = 32b + x_2 \iff x_2 = a - 32b \mid b = x_2 + x_3 \iff x_3 = b - x_2 \mid x_2 = 3x_3 + x_4 \iff x_4 = x_2 - 3x_3$$

Finalmente, $3 = x_3 - x_4$. De aquí empezamos a sustituir todas las secuencias, al reves, hasta llegar con a, b. $3 = x_3 - x_4 = 4x_3 - x_2 = 4b - 5x_2 = 164b - 5a$. Luego $3 = 164b - 5a = \beta b + \alpha a$. Así, $\beta = 164$, $\alpha = -5$. Si, además, $a_0 = a/\text{mcd} = 4329/3 = 1443$, $b_0 = b/\text{mcd} = 132/3 = 44$, $c_0 = c/\text{mcd} = 33/3 = 11$, tenemos las ecuaciones $x = -5 \cdot 11 + 44t$; $y = 164 \cdot 11 - 1443t$.

Proposición 3.7 (Teoreama chino del resto) Si (a,b) son enteros primos entre sí, $\mathbb{Z}/ab\mathbb{Z} = \mathbb{Z}/(ab) \simeq \mathbb{Z}/(a) \times \mathbb{Z}/(b)$. Así, el sistema de congruencias $X \equiv m \mod a$; $X \equiv n \mod b$.

Proposición 3.8 Sean n > 1 y $k \in \mathbb{Z}$. Son equivalentes:

- $[k] \in U(\mathbb{Z}/(n))$
- mcd(k, n) = 1
- $[k] \neq 0$ y k no es divisor de cero en $\mathbb{Z}/(n)$.

Definición 3.9 (Identidad de Euler) Sea m positivo. Definimos $\phi(m)$ como el número de enteros coprimos con m.

- $\phi(ab) = \phi(a)\phi(b) \iff \operatorname{mcd}(a,b) = 1$
- $\phi(p^a) = p^a p^{a-1} = p^a(1 1/p)$ si p primo
- $\phi(m) = m \prod_{i=1}^{s} (1 1/p_i)$

Proposición 3.12 Para cada entero n, $n = \sum_{d|n,d\geq 1} \phi(d)$. Consideramos el grupo aditivo $H = \mathbb{Z}/(n)$, que es cíclico de orden n. Para $1 \leq d \leq n$, H_d es el cjto de elementos de H con orden d. Por el Tma de Lagrange, para ser H_d subgrupo, d|n. Además, para cada d H_d es disjunto (dos elementos diferentes no pueden tener el mismo orden),

luego $H = \bigcup_{d|n} H_d$. Finalmente, se puede demostrar que $o(H_d) = \phi(d)$.

Proposición 3.13, 3.14 (Euler, p. t. de Fermat) Si mcd(k,n) = 1, $k^{\phi(n)} \equiv 1 \mod n$. Si p es primo, $k^{p-1} \equiv 1 \mod p$. Basta ver que $Z_n^* tiene\phi(n)$ elementos, luego si mcd(k,n) = 1, $o(k) = o(Z_n^*) = \phi(n)yk^{\phi(n)} = 1$.

Proposición 3.15 (Teorema de Wilson) Sea p primo. Entonces $(p-1)! \equiv -1 \mod p$. Demo basada en el libro de EA, que me gusta más. $(Z/p\ Z, \cdot)$ es grupo. Quitando [1], [-1], o([a]) > 2, ya que $[a][b] \equiv -1 \text{ o } 1 \iff a = (p+1), b = (p-1)o(p+1)$. Como o(x) = o(-x), para cada [a] existe un [b] tal que [a][b] = [1], y denotamos a ese cjto M. Entonces, $M = \{[2], [p-2], [3], [p-3], \cdots, [(p-1)/2], [(p+1)/2]\}$ y [p-1]! = [p-1]([p-2]!) = [p-1][1] = [-1] y $(p-1)! \equiv -1 \mod p$.

Corolario 3.16 Sea $p \neq 2$ primo. Entonces si q = (p-1)/2, $(q!)^2 \equiv (-1)^{q+1} \mod p$.

Polinomios

Generalidades

Definición 1.1 Un polinomio es una construcción que necesita un anillo conmutativo unitario B y un subanillo A. Cada elemento f de B se escribe como la suma $f = \sum_{v=(v_1, \cdots, v_n)} a_v X_1^{v_1} \cdots X_n^{v_n}$ donde cada $X_i \in B$ y $a \in A$. $v = (v_1, \cdots, v_n)$ son las posibles combinaciones distintas de cero de los exponentes para las variables X_i . Este anillo se denomina **anillo de polinomios en** n **indeterminadas con coeficientes en** A y se representa por $A[X_1, \cdots, X_n]$.

Los polinomios cumplen la unicidad, y pueden sumarse y multiplicarse de la siguiente manera:

$$f+g=\sum_{v}(a_v+b_v)X_1^{v_1}\cdots X_n^{v_n}$$

$$fg = \sum_{v} \left(\sum_{v=\lambda+\mu} a_{\lambda} b_{\mu} \right) X_{1}^{v_{1}} \cdots X_{n}^{v_{n}}$$

Definición 1.4 Si $\phi: A \to A'$ es un homomorfismo entre anillos, entonces ϕ induce un anillo entre polinomios: $\Phi: A[X_1, \cdots, X_n] \to A'[X_1, \cdots, X_n]$ tal que $\sum_v a_v X_1^{v_1} \cdots X_n^{v_n} \to \sum_v \phi(a_v) X_1^{v_1} \cdots X_n^{v_n}$. Además, Φ es epi/monomorfismo ssi lo es ϕ .

Definición 1.5 Evaluación de polinomios. Dado un polinomio f, y dados $x_1, \dots, x_n \in B$, definimos la evaluación de un polinomio como $ev: A[X_1, \dots, X_n] \rightarrow B; f(x_1, \dots, x_n) = \sum_{v} a_v x_1^{v_1} \dots x_n^{v_n}$.

El teorema de isomorfía garantiza que $A[X_1, \dots, X_n]/\ker(ev) \simeq A[x_1, \dots, x_n]$. Los **ceros** de f son los elementos del núcleo $(f(x_1, \dots, x_n) = 1_B)$, y en polinomios de una variable (A[T]) se llaman **raíces**.

Definición 1.5.3 Sustitución. Los polinomio permiten el cambio de unas variables x_1, \dots, x_n a unas nuevas h_1, \dots, h_n . Por ejemplo, si denotamos t = a + T en A[T], entonces podemos definir la sustitución $\phi_a : A[T] \longrightarrow A[T]$; $f \mapsto f(a+T)$.

Definición 1.5.4 Los ideales de un polinomio son de la forma (X_i) : $A[X_1, \dots, X_n]; x_i =$

 X_j si $j \neq i$, 0 si j = i, es decir, cuando eliminamos una de las variables. Así, $A[X_1, \dots, X_n]/(X_i) \simeq A[X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n]$.

Definición 1.6 Funciones polinomiales. Sea $f = A[X_1, \dots, X_n]$. Se define una **función polinomial**, $F : B \times \dots \times B \longrightarrow B$; $(x_1, \dots, x_n) \mapsto f(x_1, \dots, x_n)$.

Definición 1.7 Dado un polinomio no nulo $f = \sum_{v=(v_1, \cdots, v_n)} a_v X_1^{v_1} \cdots X_n^{v_n}$ se define el **grado** del polinomio, ∂f , a la máxima suma de exponentes de variables, es decir, $\max(d)|v_1+\cdots+v_n=d$, $a_v\neq 0$. El **grado parcial** es $\partial_i f: \max(d)|v_i=d$, es decir, el exponente más alto de la variable X_i . Por convenio, $\partial 0 = \partial_i 0 = -\infty$. Se verifica que $\partial(f+g) \leq \max(\partial f, \partial g)$ y $\partial(fg) \leq \partial f + \partial g$. Ídem para grados parciales.

En polinomios de una variable $f = a_0 + a_1T + \cdots + a_nT^n$, el **coeficiente director** es a_n . Si $a_n = 1$, decimos que f es **mónico**.

Definición 1.8 Dado un polinomio f de grado p, las **componentes homogéneas**, f_0, f_1, \cdots, f_p son los sumandos de igual grado total. Los **monomios** son las componentes homogéneas de un solo sumando, $a_v X_1^{v_1} \cdots X_n^{v_n}$. Dadas dos formas homogéneas de grados p y q, su producto tiene grado p + q.

Proposición 1.9/Corolario 1.10 $A[X_1, \dots, X_n]$ es dominio de integridad ssi lo es A. Entonces $\partial(fg) = \partial f + \partial g$.

Corolario 1.11 Si A es dominio, $U(A) = U(A[X_1, \dots, X_n])$. Si $a \in U(A)$, existe a^{-1} en U(A), y es inverso en $A[X_1, \dots, X_n]$, luego $a \in U(A[X_1, \dots, X_n])$. Por otra parte, si $f \in U(A[X_1, \dots, X_n])$, existe g tal que 1 = fg, $y = 0 = \partial 1 = \partial (fg) = \partial f + \partial g \iff \partial f = \partial g = 0$, luego $f \in U(A)$.

Definición 1.12.2 El cuerpo $K(X_1, \dots, X_n)$ es el **cuerpo de funciones racionales** con coeficientes en K en n indeterminadas, y sus elementos vienen dados como $f/g; f, g \in K[X_1, \dots, X_n]$, donde K es el cuerpo de fracciones

de A. Así, cada elemento f/g es de la forma **Proposición 2.13** (simplificada). Sea A dominio y $\sum_{\lambda} a_{\lambda} X_1^{\lambda_1} \cdots X_n^{\lambda_n} / \sum_{\mu} b_{\mu} X_1^{\mu_1} \cdots X_n^{\mu_n}.$

Definición 1.13 Derivación. Dado un anillo A[T], la derivada de un polinomio $f = a_0 + a_1T + \cdots +$ a_pT^p es el polinomio $\frac{\partial f}{\partial T}=a_1+\cdots+pa_pT^{p-1}$. Se comprueba que $\frac{\partial (f+g)}{\partial T}=\frac{\partial f}{\partial T}+\frac{\partial g}{\partial T}$ y $\frac{\partial fg}{\partial T}=$ $f\frac{\partial g}{\partial T} + g\frac{\partial f}{\partial T}$.

División de polinomios

Lema 2.1 Sea $g \in A[T]$ y $a \neq 0$ su coeficiente director. Entonces para cualquier $f \in A[T]$ existen $Q, R \in A[T]$ únicos tales que $a^r f = Qg + R$ y $\partial R < \partial g$; siendo $r = \max(0, \partial f - \partial g + 1)$.

Corolario 2.2 Regla de Ruffini. Sea $c \in A$ fijo. Para cada $f \in A[T]$ existe un $Q \in A[T]$ tal que f = Q(T-c) + f(c). En particular, $(T-c)|f \iff$ f(c) = 0. Aplicando g = T - c obtenemos f = Q(T - c) + R, y como $\partial R < \partial g = 1$, $\partial R = 0$ y $R \in A$. Evaluamos la expresión en c y tenemos f(c) = Q(c)(c - c) + R(c) = R y resulta el lema.

Corolario 2.3 Un polinomio no nulo $f \in A[T]$ tiene a lo sumo ∂f ceros distintos en A.

Corolario 2.4 Sea A un dominio infinito. Sean $f,g \in A[X_1,\cdots,X_n]$ dos polinomio tal que existe otro $l \in A[X_1, \dots, X_n]$ tal que para todo $(x_1, \dots, x_n), f(x_1, \dots, x_n) \neq 0, y f(x_1, \dots, x_n) =$ $g(x_1, \dots, x_n)$, entonces f = g.

Lema 2.5 Para los polinomios A[T] la aplicación $||\cdot||: A[T] \longrightarrow \mathbb{N}$; $f \mapsto ||f|| = 2^{\partial f}$ define a A[T], si A es cuerpo, como DE.

Proposición 2.6 A es cuerpo \iff A[T] es DE \iff A[T] es DIP.

Proposición 2.7 A es DFU \iff A[T] es DFU \iff $A[X_1, \cdots, X_n]$ es DFU.

Definición 2.10.1 Se llama contenido de un polinomio $f \in A[T]$ y se denota por cf, al máximo común divisor de sus coeficientes. Así, $\mathbf{c}(f)|f$ y $f = \mathbf{c}(f)f_1.$

Observación 2.11 Un polinomio $f \in A[T]$ con contenido 1 es irreducible en A[T] ssi lo es en K[T].

 $f \in A[T]$, con grado n. Entonces existe un cuerpo $L \supset A$ y elementos $a_0, x_1, \dots, x_n \in L$ tales que $f = a_0(T - x_1) \cdots (T - x_n).$

Factorización

Proposición 3.2 (Factorización de Kronecker) Sea $f \in A[T]$, A de característica 0 y U(A) es finito, $\mathbf{c}(f) = 1$, $\partial f > 0$ y sea s el mayor entero $\leq \partial f/2$. Entonces la factorización, si existe, se da en los siguientes pasos:

- Elegir s + 1 elementos distintos $n_0, ..., n_s$ tales que $f(n_0)$, $f(n_1)$, \cdots , $f(n_s) \neq 0$.
- \bullet Creamos, para cada n_i , el conjunto de divisores D_i en A de $f(n_i)$, y establecemos $D = D_0 \times \cdots \times D_s$.
- Para cada $M = (m_0, \dots, m_s) \in D$ creamos el polinomio

$$f_M = \sum_{k=1}^{s} m_k \prod_{l \neq k}^{s} \frac{T - n_l}{n_k - n_l} \in K[T]c$$

• Si $f_M|f$, hemos encontrado un polinomio divisor. Si ningún f_M es divisor de f, f es irreducible.

Proposición 3.4 Sea $f \in K[T]$, $2 \le \partial f \le 3$. Entonces f es reducible ssi f tiene alguna raíz de en Κ.

Proposición 3.5 Sea $f = a_0 + a_1T + \cdots + a_pT^p \in$ A[T], $a_p \in U(A)$. Entonces toda raíz en K está en A y es divisor de $a_0 = f(0)$ en A.

Proposición 3.7 (Eisenstein) Sea $f = a_0 + a_1T + a_1T$ $\cdots + a_p T^p \in A[T]$ con contenido 1 y $d \in A$ irreducible. Si $d|a_0, \dots, d|a_{p-1}, d \nmid a_p, d^2 \nmid a_0$ entonces f es irreducible.

Proposición 3.8 Sea $f \in A[T]$. f es irreducible en A[T] ssi para cada $a \in A$, f(a + T) es irreducible ssi existe a tal que f(a + T) es irreducible.

Proposición 3.10 (criterio del módulo finito) Sea $f = a_0 + \cdots + a_p T^p \in A[T], a_p \in U(A)$. Supongamos que existe $d \in A$ irreducible tal que en A/(d)[T] el polinomio $\overline{f} = \overline{a_0} + \cdots + \overline{a_p}T^p, \overline{a} =$ a + (d) es irreducible. Entonces f es irreducible.