

extRpolateS: A Shiny-Based Interactive Platform for Time-to-Event Data Modeling in Health Technology Assessments

R for HTA workshop 2025

Máté Szilcz, PhD

Postdoc @ Karolinska Institutet, Sweden CEO & Founder of Viti Science

Agenda

1. Introduction

2. Background

3. Demo

4. Discussion

extRpolateS – HTA Survival Analyis Platform

Read more. Join the waitlist!

Purpose-built platform for robust survival extrapolation for HTA

Caters to novices & advanced users

Standardised, yet flexible

Cloud-based R-Shiny web app with high security (AuthO, AWS S3 data storage, MS Azure deployment)

Background

Read more. Join the waitlist!

Clinical trials often have limited follow-up time

Trials are primarily designed for regulatory approval

Median follow-up times between **24–60 months** for many pivotal studies

For HTA estimating **long-term survival differences** between treatment options are crucial

Extrapolation bridges the gap

Read more. Join the waitlist!

HTA require lifetime horizon

Current way of extrapolating survival

Read more. Join the waitlist!

Individual patient level data (IPD)

Reconstructed IPD from Kaplan-Meier (KM) plots

When IPD is available

Do the analysis in R (or your choice of software, but it should really be R)

Several R packages are available for the different modeling options (e.g. survHE)

Needs highly specialised programming knowledge

Time consuming

When IPD is <u>NOT</u> available

Same steps as before

BUT first we need to

Reconstructed IPD from published KM curve

When IPD is **NOT** available

Read more. Join the waitlist!

Reconstruct IPD from published KM curve

Display 1. Published KM Curve (Guyot 2012)

Source: PharmaSUG 2024 - Paper RW-125

9

When IPD is **NOT** available

Read more. Join the waitlist!

Reconstruct IPD from published KM curve

4	А	В	C	4	Α	В	C	D	Code IPD from KM D804 - Copy.R* × Code IPD from KM D804.R* ×
1	Coordinat	Time	Proportion	nri	isk	trisk	lower	upper	⇔
2	1	0	1		331	0	1	. 3	11 ###FUNCTION INPUTS
3	2	0.595812	0.993397		323	2	4	6	path<-"H:/New Folder/" digisurvfile<-"data initials study2 figA arm1 time1.txt" #Input survival times from graph rea nriskfile<-"nrisk study2 figA arm1 time1.txt" #Input reported number at risk KMdatafile<-"KMdata study3 figA arm1 time1 ne.txt" #Output file events and cens KMdataIPDfile<-"KMdataIPD study3 figA arm1 time1 ne.txt" #Output file for IPD tot.events<-NA #tot.events = total no. of events reported. If not reported, then tot.events=" arm.id<- 1 #arm indicator ###END FUNCTION INPUTS
1	3	1.167244	0.993397		314	4	7	11	
,	4	2.25816	0.993397		303	6	12	18	
,	5	2.959463	0.981056		285	8	19	24	
	6	3.712714	0.972829		268	10	25	30	
8	7	4.439991	0.972829		250	12	31	. 35	
9	8	4.621811	0.960489		199	14	36	40	20
0	9	5.11532	0.960489)	168	16	41	46	21 #Read in survival times read by digizeit 22 surv_times <- read.csv("Test_plot_1.csv")
1	10	5.60883	0.952261	1	116	18	47	53	digizeit<- data.matrix(surv_times) digizeit[1,2]=0 t.S<-digizeit[,2] S<-digizeit[,3]
2	11	5.7387	0.948148	2	81	20	54	57	
3	12	6.414028	0.944034	3	51	22	58	59	
4	13	6.595848	0.931694	1	26	24	60	62	
5	14	6.621823	0.923467	5	9	26	63	63	28 #Read in published numbers at risk, n.risk, at time, t.risk, lower and upper
6	15	7.245203	0.911126						29 # indexes for time interval 30 prick trick <= read excel("Test prick trick vlsv")

Source: PharmaSUG 2024 - Paper RW-125

10

extRpolateS – HTA Survival Analyis Platform

Read more. Join the waitlist!

https://extrpolates.app.vitiscience.se/

Read more. Join the waitlist!

Upcoming features

Import your extrapolated survival curves directly into a template-driven PSM

Probabilistic survival curves

SaaS or Enterprise deployment

Suggestions are welcomed!

Discussion – questions & suggestions?

mate.szilcz@vitiscience.se

https://www.linkedin.com/in/mateszilcz/

Scan for LinkedIn!

Thank you