Steiner-Lehmus Theorem

Presented by Xinyi Xu

History

The theorem was first mentioned in 1840 in a letter by C. L. Lehmus to C. Sturm, in which he asked for a purely geometric proof. Sturm passed the request on to other mathematicians and Steiner was among the first to provide a solution, so that's why the theorem is called Steiner-Lehmus Theorem.

What is Steiner-Lehmus Theorem?

Every triangle with two angle bisectors of equal lengths is isosceles.

In other words,

If $\angle ABD = \angle DBC$, $\angle ACE = \angle ECB$ and BD = CE, then

 $\angle B = \angle C$ $\triangle ABC$ is isosceles.

Theorem 1

Let $\triangle ABC$ be an isosceles triangle with AB = AC.

Let BH1, CH2 be heights; BM1, CM2 be medians, and BS1, CS2 be angle bisectors on sides AC, AB, respectively.

Then BH1 = CH2, BM1 = CM2, BS1 = CS2.

Proof:

- Since AB = AC, we have $\angle B = \angle C$.
- Since \angle CH1B = \angle BH2C = 90°, \angle C = \angle B, and BC is the common side, we have \triangle CH1B \sim = \triangle BH2C. Therefore BH1 = CH2.
- Since CM1 = BM2 = 1/2AB, \angle C = \angle B, and BC is the common side, we have \triangle CM1B \sim = \triangle BM2C. Therefore BM1 = CM2.
- Since \angle S1BC = \angle S2CB = 1/2 \angle B, \angle C = \angle B, and BC is the common side, we have \triangle CS2B \sim = \triangle BS1C. Therefore BS1 = CS2

Theorem 2

In triangle \triangle ABC, let BH1 and CH2 be heights. Assume that BH1 = CH2. Then \triangle ABC is an isosceles triangle.

Proof: Since BH1 = CH2, \angle BH1C = \angle CH2B = 90°, and BC is the common side. Then \triangle BH1C \sim = \triangle CH2B. Thus \angle C = \angle B and hence \triangle ABC is isosceles.

Theorem 3

In triangle \triangle ABC, let BM1 and CM2 be medians. Assume that BM1 = CM2. Then \triangle ABC is an isosceles triangle.

Proof: We draw M2M1 and extend it to K such that M1K = BC. Then since M2M1 is the midline, we have M2M1 \parallel BC, and M1K = BC, then M1BCK is a parallelogram. Thus CM2 = BM1 = CK and hence \triangle CKM2 is an isosceles triangle.

As a result, we have \angle M1BC = \angle K = \angle KM2C = \angle M2CB. Thus \triangle BM1C \sim = \triangle CM2B since BM1 = CM2 and BC is a common side. Therefore \angle C = \angle B and \triangle ABC is an isosceles triangle.

Thank you!