

# Hogeschool Toegepaste Natuurwetenschappen

# **VOORBLAD TOETS**

versie VJ16.1

| Naam:                                                                                                                                              |                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Onderwijsgroep:                                                                                                                                    |                           |
| Studentnummer:                                                                                                                                     |                           |
| Toets opgesteld door:                                                                                                                              | Toets gecontroleerd door: |
| roets opgesteld door.                                                                                                                              | roets gecontroleera aoor. |
| Paraaf                                                                                                                                             | Paraaf                    |
| Studiejaar :                                                                                                                                       |                           |
| Opleiding :                                                                                                                                        |                           |
| Toets : Toetscode :                                                                                                                                |                           |
| Datum :                                                                                                                                            |                           |
| Tijd :                                                                                                                                             |                           |
| Lokaal :                                                                                                                                           |                           |
| Aantal pagina's inclusief voorblad :                                                                                                               |                           |
| Toegestane hulpmiddelen (conform stud<br>☐ Geen<br>☐ Anders, nl.: Niet-programmeerbare reke                                                        | <u>.</u>                  |
| Inleveren*:                                                                                                                                        |                           |
| <ul><li>☑ De toetsbundel</li><li>☑ Uitwerkingen op een apart vel inleveren</li><li>☑ Uitwerkingen op de toetsbundel</li><li>☑ Kladpapier</li></ul> |                           |
| Overige opmerkingen*:                                                                                                                              |                           |
| <ul><li>☐ Toetsbundel niet uit elkaar halen</li><li>☐ Schrijf op elke pagina je naam, onderwi</li><li>☐ Kladpapier toegestaan</li></ul>            | jsgroep en studentnummer  |

#### **Commentaarformulier:**

Bij de surveillant, of achteraf bij de balie van het bedrijfsbureau, kun je een formulier vragen waarop je opmerkingen kunt plaatsen.

<sup>\*</sup>Aankruisen wat van toepassing is. Geen items verwijderen

Achterzijde voorblad toets

# Opgave 1 (3 pt)

- a) Geef het kwantumgetal / (orbital angular momentum quantum number) voor een 2s energielevel. (1pt)
- b) Geef de selectieregel van kwantumgetal / in een atoom. (1pt)
- c) Geef de elektron configuratie van Chloor. (1 pt)

#### Opdracht 2 (4 pt)

Geef per stelling aan of hij juist of onjuist is, en **leg bij elke stelling uit waarom het** (on)juist is.

- a) Een stikstofatoom in de grondtoestand heeft drie ongepaarde elektronen. (1pt)
- b) De vormen van de 5 degenerate/ontaarde d-orbitalen zijn allemaal hetzelfde, ze hebben alleen een andere oriëntatie. (1 pt)
- c) In een helium atoom heeft 2s een hogere energie eigenwaarde dan 2p. (1 pt)
- d) Het 3s elektron van Natrium is makkelijker te ioniseren dan het 2p elektron van Neon, omdat de nucleus van Ne een hogere lading heeft. (1 pt)

#### Opdracht 3 (6 pt)

- a) Geef de elektronconfiguraties voor B, Cl. (1pt)
- b) Voorspel welke hybridisatie het centrale atoom in een BCl<sub>3</sub> atoom zal ondergaan, en leg uit waarom (1pt)
- c) Identificeer de mogelijke molecuul structuur van het BCI molecuul door de orbitalen die meedoen in bindingen ten opzichte van elkaar te schetsen (2pt)
- d) Geef per binding aan of het om een  $\pi$  of een  $\sigma$  binding gaat (1pt)
- e) Leg uit of B-Cl bindingen polair zijn, en leg uit of het BCl<sub>3</sub> molecuul polair is. (1pt)

#### Opdracht 4 (5 pt)

- a) Teken de energie diagrammen van de MO elektronconfiguratie voor  $B_2^+$ ,  $Li_2^+$ ,  $N_2^+$  en label de MO's. **Gegeven**: de volgorde van de energieën van de orbitalen (zonder dat daar andere orbitaal energieën tussen vallen) is in alle gevallen:  $2\sigma_u$ ,  $1\pi_g$ ,  $2\sigma_g$  (3 pt)
- b) Geef voor alle bovenstaande ionen aan of de bond order toeneemt of afneemt bij het toevoegen van een elektron (1 pt).
- c) Welke heeft een hogere bond dissociatie energie: N<sub>2</sub> of B<sub>2</sub>? (1 pt)

# Opdracht 5 (4 pt)

- a) Schets het bonding en antibonding orbitaal van een HCl molecuul (1 pt) HCl is een rigide rotor met bond lengte R = 0,127 nm
  - b) Bereken de rotatie constante voor dit molecuul in golfgetallen. (2pt)
  - c) Schets hoe het pure rotatie spectrum van dit molecuul er uit ziet (laat kwantitatief zien hoe de absorptielijnen liggen ten opzichte van elkaar, maar negeer de intensiteitsdistributie t.g.v. de Boltzman distributie). (1pt)

#### Opdracht 6 (4 pt)

In de "Free Electron Molecular Orbital" (FEMO) theorie worden gedelocaliseerde  $\pi$ -elektronen in een molecuul vereenvoudigd tot individuele deeltjes in een box (particle in a box) van lengte L.

- a) Hoeveel pi elektronen zitten er in Butadiene (C<sub>4</sub>H<sub>6</sub>)? Leg uit. (1pt)
- b) Schets de eerste 3 oplossingen van de particle in a box (In de FEMO theorie zijn dit dus de 3 molecuul  $\pi$ -orbitalen met de laagste energie). (0,5pt)
- c) Welke van de orbitalen in (b) zijn gevuld met pi-elektronen in butadiene? (0,5pt)

Gegeven: Butadiene heeft een lengte van 4R (R=140 pm, de C-C bondlengte). Energie eigenwaarden particle in a box:  $E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}$ 

d) Hoeveel energie kost het om in dit systeem een elektron van de HOMO naar de LUMO te exciteren? Bij welke golflengte verwacht je een absorptiepiek? (2pt)

# Opdracht 7 (4 pt)

Bij lage resolutie is de sterkste absorptieband van het infrarood absorptie spectrum van HBr gecentreerd bij 0,3169 eV. Bij hoge resolutie blijkt dit spectrum in twee banden op te splitsen, elk bestaande uit pieken die erg dicht bij elkaar liggen, zoals in figuur 1.



Figuur 1: Infrarood absorptie spectrum van HBr

De pieken liggen telkens ongeveer 0,0014 eV van elkaar af. Neem aan dat het molecuul een harmonische oscillator en een rigide rotor is.

- a) Wat is het fundamentele vibratie golfgetal van het HBr molecuul? (1pt)
- b) Wat is de stijfheid (veerconstante) voor dit molecuul? (1pt)
- c) Wat is de rotatieconstante  $\tilde{B}$  voor dit molecuul? (1pt)
- d) Wat is de H-Br bondlengte? (1pt)

#### Opdracht 8 (3 pt)

Geef aan of de onderstaande stellingen (on)juist zijn, en leg uit waarom

- a) De kwantisatie van rotatie energieën van een molecuul wordt veroorzaakt door een discontinuïteit in de rotatie golfoplossing van de Schrödinger vergelijking.
   (1pt)
- b) De rotatie energie eigenwaarden voor een rigide rotor volgen uit de Schrödinger vergelijking voor de rigide rotor. (1pt)
- c) Een molecuul in de J=3 rotatie toestand kan op 7 verschillende oriëntaties ten opzichte van de laboratorium as roteren. (1pt)

# Opdracht 9 (3 pt)

Geef aan of de onderstaande stellingen (on)juist zijn, en leg uit waarom

- a) De correcte volgorde van absorptie banden in een vibratie spectrum van een anharmonische oscillator is: hot band, fundamental band, 1st overtone, 2nd overtone. (1pt)
- b) Het rotatie-vibratie spectrum van een CO2 molecuul bevat zowel een PR als een PQR bandprofiel. (1 pt)
- c) De R branch in een rotatie-vibratie spectrum wordt veroorzaakt door  $J \rightarrow J-1$  transities.

#### Opdracht 10 (5 pt)

- a) Waarom ontstaat een lijnenspectrum in atoomspectroscopie en een bandenspectrum in molecuulspectroscopie? (1pt)
- b) Leg uit, met de Laporte selectieregel, dat een d-d transitie eigenlijk niet toegestaan is. (1pt) Waarom gebeurt het toch? (1pt)
- c) Waarom wordt in een moleculaire potentiele energie diagram een elektronische transitie altijd met een verticale pijl getekend? (1pt)
- d) Waarom is een transitie van een singlet naar een triplet state niet toegestaan?
  (1pt)
- e) Waarom heeft een charge transfer transitie een veel hogere intensiteit heeft dan een  $\pi^* \leftarrow \pi$  transitie? (1 pt)

# Bijlage Fysische Chemie A1

# **Formuleblad**

#### Constanten:

Lichtsnelheid in vacuüm:  $c = 3,00 \cdot 10^8 \ m/s$ Constante van Planck:  $h = 6,626 \cdot 10^{-34} \ J \cdot s$ 

Constante van Dirac:  $\hbar = 1,055 \cdot 10^{-34} J \cdot s \ (\hbar = \frac{h}{2\pi})$ 

Boltzmannconstante:  $k=1.381\cdot 10^{-23}\,J\cdot K^{-1}$  Getal van Avogadro:  $N_A=6{,}022\cdot 10^{23}\,mol^{-1}$  Atomaire massa-eenheid:  $u=1.660\cdot 10^{-27}\,kg$  Elementaire lading:  $e=1{,}602\cdot 10^{-19}\,C$ 

Massa van elektron:  $m_e = 9.10938356 \cdot 10^{-31} \, kg$ J naar eV conversie:  $1 \, \text{J} = 6,24150913^*10^{18} \, \text{eV}$ 

# Vergelijkingen

Bond order  $b = \frac{1}{2}(n - n^*)$ 

Heisenberg relatie  $\delta E \approx \frac{\hbar}{\tau}$ 

Rotatie constante  $\tilde{B} = \frac{\hbar}{4\pi c I_b}$ 

Massatraagheidsmoment

rigide rotor  $I = \mu R^2$ 

Gereduceerde massa

rigide rotor  $\mu = \frac{m_1 m_2}{m_1 + m_2} \ (= m_{eff})$ 

Rotatie energieën rigide rotor  $\tilde{F}(J) = \tilde{B}J(J+1)$  [cm<sup>-1</sup>]; J = 0, 1, 2, ...

Rotatie energieën prolate rotor  $\tilde{F}(J) = \tilde{B}J(J+1) + (\tilde{A}-\tilde{B})K^2$ ; K = 0, ±1, ..., ±J Rotatie energieën oblate rotor  $\tilde{F}(J) = \tilde{B}J(J+1) + (\tilde{B}-\tilde{C})K^2$ ; K = 0, ±1, ..., ±J

Boltzman vergelijking  $\frac{N_J}{N_0} = (2J+1)e^{\frac{J(J+1)\hbar/(2I)}{kT}}$ 

Harmonische trilling:  $v = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$ 

Pot. vibratie energie  $U(r) = \frac{1}{2}k(r - r_e)^2$ 

Fund. Vibratie constante  $\widetilde{v_0} = \frac{1}{2\pi c} \sqrt{\frac{k_f}{m_{eff}}}$ 

Vibratie energieën  $\widetilde{G}(v) = (v + \frac{1}{2})\widetilde{v_0}$  [cm-1];  $\Delta v = \pm 1$ 

Anharmonische oscillator  $\tilde{G}(v) = \left(v + \frac{1}{2}\right)\tilde{v_0} - \left(v + \frac{1}{2}\right)^2 \chi_e \tilde{v_0}; \Delta v = \pm 1, \pm 2, \dots$ 

Totale rotatie-vibratie energie  $\tilde{S}(v, J) = \tilde{F}(J) + \tilde{G}(v)$ 

Wet van Lambert-Beer  $I = I_0 10^{-\varepsilon[J]LL}$  en  $T = \frac{I}{I_0}$  en  $A = \log \frac{I_0}{I} = -\log T$ 

# Periodieke systeem der elementen

|                            |                             |                              |                     | _         |                            |           | _  |    | _         | _   | _        | _     |
|----------------------------|-----------------------------|------------------------------|---------------------|-----------|----------------------------|-----------|----|----|-----------|-----|----------|-------|
| 2<br><b>He</b><br>4.002602 | 10<br>Ne<br>20.1797         | 18<br><b>Ar</b><br>39.948    |                     | 83.80     | Xe<br>Xe                   |           | 98 | Rn | (222)     | 118 |          | (293) |
|                            | 9<br><b>F</b><br>18.9984032 | 17<br><b>CI</b><br>35.4527   | 35<br><b>Br</b>     | 79.504    | 53                         | 126.90447 | 85 | At | (210)     |     |          |       |
|                            | 8<br>O<br>15.9994           | 16<br><b>S</b><br>32.066     | 34<br>Se            | 78.96     | <sup>52</sup><br><b>Te</b> | 127.60    | 84 | Ьо | (506)     | 116 |          | (586) |
|                            | 7<br>N<br>14.00674          | 15<br><b>P</b><br>30.973761  | 33<br>As            | 74.92160  | 51<br>Sb                   | 121.760   | 83 | B. | 208.58038 |     |          |       |
|                            | <b>C</b> 12.0107            | 14<br><b>Si</b><br>28.0855   | 32<br>Ge            | 72.61     | 50<br>Sn                   | 118.710   | 82 | Pb | 207.2     | 114 | (588)    | (287) |
|                            | 5<br><b>B</b><br>10.811     | 13<br><b>AI</b><br>26.581538 | 31<br>Ga            | 69.723    | 49<br><b>In</b>            | 114.818   | 81 | F  | 204.3833  |     |          |       |
|                            |                             |                              | 30<br>Zn            | 62.39     | 48<br>Cd                   |           |    | 원  | 200.59    | 112 |          | (277) |
|                            |                             |                              | 29<br>Cu            | 63.545    | Aq                         | 196.56655 | 79 | Au | 196.56655 | 111 |          | (272) |
|                            |                             |                              | 788<br><b>Z</b>     | 58.6534   | <sup>46</sup> Pd           | 106.42    | 78 | Pt | 195.078   | 110 |          | (566) |
|                            |                             |                              | <sup>27</sup><br>Co | 58.933200 | 45<br>Rh                   | 102.90550 | 77 | _  | 192.217   | 109 | Ĭ        | (596) |
|                            |                             |                              | <sup>26</sup><br>Fe | 55.845    | Ru<br>Ru                   |           |    | Os | 500       | 108 | Hs       | (592) |
|                            |                             |                              | Mn Mn               | 54.938049 | 43<br>TC                   | (86)      | 75 | Re | 186.207   | 107 | Bh       | (292) |
|                            |                             |                              | <sup>24</sup><br>Cr | 12        | 42<br>Mo                   | 95.94     | 74 | ≥  | 183.84    | 106 | Sq       | (263) |
|                            |                             |                              | 23<br>V             | 50.9415   | Nb                         | 92.90638  | 73 | Та | 180.94.79 | 105 | Pb<br>Db | (292) |
|                            |                             |                              | 75<br>Ti            | 47.867    | 40<br>Zr                   | 91.224    | 72 | Ħ  | 178.49    | 104 | Rf       | (261) |
|                            |                             |                              | 21<br>SC            | 44.955910 | 39                         | 88.90585  | 57 | Гa | 138.9055  | 68  | Ac       | (227) |
|                            | 4<br><b>Be</b><br>9.012182  | 12<br><b>Mg</b><br>24.3050   | <sup>20</sup><br>Ca | 40.078    | 38<br>Sr                   | 87.62     | 26 | Ba | 137.327   | 88  | Ra       | (526) |
| 1<br>H<br>1.00794          | 3<br><b>Li</b><br>6.941     | 11<br><b>Na</b><br>22.989770 | 19<br><b>X</b>      | 39.0983   | 37<br>Rb                   | 85.4678   | 55 | CS | 132.90545 | 87  | Ŧ        | (223) |
|                            |                             |                              |                     |           |                            |           |    |    |           |     |          |       |

| 28      | 26         | 09        | 61    | 62     | 63      | 64     | 65        | 99     | 29        | 89     | 69        | 70     | 71      |
|---------|------------|-----------|-------|--------|---------|--------|-----------|--------|-----------|--------|-----------|--------|---------|
| G       | Pr         | PZ        | Pm    | Sm     | Eu      | P<br>P | Tp        | Ò      | 운         | Er     | Tm        | γþ     |         |
| 140.116 | 140.50765  | 144.24    | (145) | 150.36 | 151.964 | 157.25 | 158.92534 | 162.50 | 164.93032 | 167.26 | 168.93421 | 173.04 | 174.967 |
| 90      | 91         | 92        | 93    | 94     | 95      | 96     | 6         | 86     | 66        | 100    | 101       | 102    | 103     |
| 님       | Pa         | $\supset$ | Np    | Pu     | Am      | CH     | BK        | ᠸ      | Es        | Fm     | Md        | Š      | ۲       |
| 32.0381 | 231.035888 | 238.0289  | (237) | (244)  | (243)   | (247)  | (247)     | (251)  | (252)     | (257)  | (258)     | (259)  | (292)   |