Padrões Arquiteturais: Da Desordem a Estrutura

Eduardo Figueiredo

http://www.dcc.ufmg.br/~figueiredo

Da Desordem a Estrutura

- Layered Architecture
 - Arquitetura em Camadas

- Blackboard
 - Arquitetura de Repositório

- Pipes and Filters
 - Dutos e Filtros

Arquitetura em Camadas

Arquitetura em Camadas

- Organiza o sistema em um conjunto de camadas
 - Cada camada oferece um conjunto de serviços

- Uma camada somente
 - Solicita serviços da camada inferior
 - Fornece serviços para a camada superior

Exemplo 1: Protocolos OSI

Modelo de camadas para sistemas de comunicação

Exemplo 2: Três Camadas

Vantagens

 Favorece o modelo de desenvolvimento incremental

- As camadas podem ser facilmente substituídas por equivalentes
 - Requer interfaces estáveis
- Mudanças em uma camada teoricamente só impacta a camada superior
- Camadas superiores podem ser independentes de plataforma/hardware

Desvantagens

- Pode ser difícil identificar quais os serviços elementares das camadas inferiores
- Muitas camadas podem comprometer o desempenho do sistema
 - A requisição tem que trafegar pelas várias camadas até ser atendida

Arquitetura de Repositório

Arquitetura de Repositório

- Também conhecido como Blackboard
- Os subsistemas manipulam a mesma base de dados
 - Um (ou mais) subsistema gera os dados
 - Vários subsistemas leem os dados
- Adotado principalmente quando dados são compartilhados em grandes quantidades

Exemplo de Repositório

Subsistema de Subsistema de Subsistema de Controle de Vendas Compras Estoque Banco de Dados de **Produtos**

Vantagens

 Maneira eficiente de compartilhar dados

- Backup é centralizado (mais fácil)
- Formas de proteção dos dados podem ser implementadas
- Os subsistemas que gravam dados não necessitam saber quem os usa
- Fácil integrar novos subsistemas

Desvantagens

- Os subsistemas devem entender o formato dos dados gravados
- ?
- Manter e evoluir grandes volumes de dados pode ser difícil / caro
- Subsistemas diferentes podem ter requisitos diferentes
 - Mais segurança ou maior disponibilidade
- Dificuldade para distribuir os dados
 - Dados redundantes ou inconsistentes

Dutos e Filtros

Dutos e Filtros

- Padrão de organização da dinâmica de um sistema
- Dois papéis principais
 - Dutos: componentes que conduzem ou distribuem os dados
 - Filtros: componentes que transformam os dados
- Usado principalmente em aplicações de processamento de dados

Dinâmica do Padrão

- Os dados de entrada se movem pelos dutos
- Os dados são transformados pelos filtros até serem convertidos em dados de saída
 - As transformações podem ocorrem em sequência ou em paralelo

Exemplo de Dutos e Filtros

- Entradas: Faturas e Pagamentos
- Saídas: Recibos e Lembretes

Vantagens

 O módulo de transformação (filtro) é bem modular

- Facilmente reusável e substituível
- O estilo de workflow é aderente a muitos processos de negócios
- É simples evoluir o sistema pela adição de filtros
- Se aplica tanto a sistemas sequênciais quanto a sistemas concorrentes

Desvantagens

- O formato dos dados trafegados deve ser acordado entre os módulos
- Pode haver um overhead causado pela padronização dos dados

 Incompatibilidade no formato dos dados pode dificultar a reutilização de filtros

Bibliografia

- lan Sommerville. Engenharia de Software, 9a. Edição. 2011.
 - Cap. 6 (Seções 6.3 e 6.4)
- F. Buschmann et al. Pattern-Oriented
 Software Architecture: A System of Patterns. John Wiley & Sons, 1996.
 - Cap. 2 Architectural Patterns