DISTRIBUIÇÕES DE PROBABILIDADE

Distribuições de Probabilidade Discretas

- Distribuição de Bernoulli
- Distribuição Binomial
- Distribuição de Poisson

Distribuições de Probabilidade Contínuas

- Distribuição Uniforme
- Distribuição Normal (Gaussiana)
- Distribuição Exponencial
- Distribuição Qui-Quadrado
- Distribuição t-student
- Distribuição F

Prof^a Ana Cristina Braga, DPS

Distribuição de Bernoulli

Uma variável aleatória tem distribuição de Bernoulli, se e só se a sua função de probabilidade é dada por:

$$f(x;\theta) = \theta^x (1-\theta)^{1-x}$$
 para $x = 0$ ou 1

"sucesso" \Rightarrow probabilidade igual a θ

"insucesso" \Rightarrow probabilidade igual a 1- θ

Prof^a Ana Cristina Braga, DPS

3

Distribuição Binomial

Uma variável aleatória tem distribuição Binomial, se e só se a sua função de probabilidade é dada por:

$$\begin{split} f\left(x;n,\pi\right) &= C_x^n \pi^x \left(1-\pi\right)^{n-x} & \text{para} \quad x = 0,1,\cdots,n \\ \text{Notação:} \quad X &\sim Bin(n,\pi) \\ \text{Notação:} \quad X &\sim Bin(n,\pi) \end{split} \quad \text{Média:} \quad \mu = n.\pi \quad \text{variância:} \quad \sigma^2 = n.\pi \left(1-\pi\right) \end{split}$$

Exemplo: Encontre a probabilidade de obter 5 caras e 7 coroas em 12 lançamentos de uma moeda equilibrada.

Resolução:

$$n = 12$$
 $\pi = \frac{1}{2}$ "sucesso" = sair cara $X \sim Bin\left(12, \frac{1}{2}\right)$
$$P(x = 5) = C_5^{12} \left(\frac{1}{2}\right)^5 \left(1 - \frac{1}{2}\right)^{12 - 5} \cong 0.19$$

Prof^a Ana Cristina Braga, DPS

Distribuição de Poisson

Uma variável aleatória tem distribuição de Poisson, se e só se a sua função de probabilidade é dada por:

$$f(x;\lambda)=rac{\lambda^x.e^{-\lambda}}{x!}$$
 para $x=0,1,2,\cdots$ Notação: $X\sim Poi(\lambda)$ variância: $\sigma^2=\lambda$

Prof^a Ana Cristina Braga, DPS

5

Exemplo 1: Aproximação à binomial


```
n = 150 \pi = 0.05 \lambda = 7.5

x P(X = x) Binomial P(X = x) Poisson

0 0.0005 0.0006

6 0.1384 0.1367

12 0.0355 0.0366
```

Exemplo 2: Se 2% dos livros de uma certa impressora têm defeitos, determine a probabilidade de que 5 de entre 400 livros tenham defeito.

```
X \to v. a. que designa nº de livros com defeito

x = 5 \pi = 0.02 \ \lambda = n.\pi = 400 \times 0.02 = 8

P(x = 5; \lambda = 8) = \frac{8^s e^{-8}}{5!} = 0.0916
```

A distribuição de Poisson pode servir de modelo para o número de sucessos que ocorre durante um dado intervalo de tempo ou uma região específica, quando:

- o número de sucessos ocorrendo em intervalos não sobrepostos são independentes;
- a probabilidade de um único sucesso ocorrendo num certo intervalo é proporcional ao comprimento do intervalo;
- a probabilidade de mais de um sucesso ocorrer num pequeno intervalo é negligível.

Prof^a Ana Cristina Braga, DPS

Exemplo 3: O número de pessoas que chegam a um determinado Centro de Saúde numa dada cidade num período de 15 minutos é 12. Qual a probabilidade de num qualquer período de 15 minutos cheguem a este C.S. menos de 9 pessoas?

 $X \rightarrow v$. a. que designa nº de pessoas que chegam ao C.S./15 minutos $\lambda = 12$

$$P(x < 9; \lambda = 12) = \sum_{x=0}^{8} p(x; \lambda = 12) = p(x = 0) + p(x = 1) + ... + p(x = 8) = 0.1550$$

Exemplo 4: Encontre a probabilidade de 7 de 10 pessoas recuperarem de uma doença tropical, assumindo independência, e com probabilidade de 0.8 que qualquer um deles recupere da doença.

 $X \rightarrow v$. a. que designa nº de pessoas que recuperam n=10 $\pi=0.8$ "sucesso" = recuperar da doença

 $X \sim Bin(10, 0.8)$

$$P(x=7) = C_7^{10} (0.8)^7 (1-0.8)^{10-7} = 0.20$$

Prof^a Ana Cristina Braga, DPS

7

Distribuição Uniforme

Uma variável aleatória contínua segue a distribuição uniforme se e só se a sua função densidade é dada por

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \alpha < x < \beta \\ 0 & \text{outros valores} \end{cases}$$

$$\mu = \frac{\beta + \alpha}{2} \qquad \sigma^2 = \frac{1}{12} (\beta - \alpha)^2$$

Prof^a Ana Cristina Braga, DPS

Exemplo...

Uma fábrica produz folhas de cartão com uma espessura uniforme entre 0.8 e 1.2 cm. Qual a percentagem de folhas abaixo de 1 cm?

$$P(x<1) = \int_{0.8}^{1} \frac{1}{1.2 - 0.8} dx = \frac{1}{0.4} x \Big|_{0.8}^{1} = \frac{0.2}{0.4} = 0.5$$

Prof^a Ana Cristina Braga, DPS

9

Distribuição Exponencial Negativa

Uma variável aleatória segue a distribuição Exponencial Negativa, se e só se a sua função densidade de probabilidade é dada por:

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0 \in \theta > 0 \\ 0, & x \le 0 \end{cases}$$

Notação: $X \sim EN(\frac{1}{\theta})$

Média: $\mu = \theta$

Variância: $\sigma^2 = \theta^2$

Função distribuição acumulada:

$$F(x;\theta) = \begin{cases} 1 - e^{-\frac{x}{\theta}} &, x > 0 \text{ e } \theta > 0 \\ 0 & x \le 0 \end{cases}$$

Prof^a Ana Cristina Braga, DPS

Exponencial

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-x/\theta} & x > 0, \theta > 0 \\ 0 & \text{outros valores} \end{cases}$$

Prof^a Ana Cristina Braga, DPS

11

Propriedades

• Falta de memória

$$P(X > s + t | X > s) = P(x > t)$$
, para todo $s, t \ge 0$

Isso significa que a probabilidade de que seja necessário esperar, por exemplo, mais que 3 minutos até que o evento aconteça, dado que esse evento não aconteceu antes de 2 minutos, é a mesma de que esse evento ocorra depois do 1º minuto.

Prof^a Ana Cristina Braga, DPS

Exemplo...

Um componente eletrónico requer, em média, uma reparação de 2 em 2 anos. Qual a probabilidade de que funcione por pelo menos 3 anos?

$$P(x > 3) = 1 - P(x < 3) = 1 - \int_0^3 \frac{1}{2} e^{-\frac{x}{2}} dx = 1 - \left(-e^{-\frac{x}{2}}\right) \Big|_0^3 = e^{-\frac{3}{2}} = 0.2231$$

Sabendo que o componente dura há já dois anos, qual a probabilidade de funcionar durante mais um ano?

$$P(x>3 \mid x>2) = \frac{P(x>3 \cap x>2)}{P(x>2)} = \frac{P(x>3)}{P(x>2)} = \frac{e^{-\frac{3}{2}}}{e^{-\frac{2}{2}}} = e^{-\frac{1}{2}} = 0.6065$$

$$P(x > 3 \mid x > 2) = P(x > 1) = 1 - F(1) = 1 - \left(1 - e^{-\frac{1}{2}}\right) = e^{-\frac{1}{2}}$$
Prof® Ana Cristina Braga, DPS

Distribuição Normal ou Gaussiana

Uma variável aleatória segue a distribuição Normal, se e só se a sua função densidade de probabilidade é dada por:

$$f(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} - \infty < x < +\infty \text{ com } \sigma > 0$$

Notação: $X \sim N(\mu, \sigma^2)$

Média: $\mu = \mu_X$ Variância: $\sigma^2 = \sigma_X^2$

Gráfico da distribuição Normal

Profa Ana Cristina Braga, DPS

A distribuição Normal em $\mu=0$ e $\sigma=1$ é designada por **Normal Padrão** ou **Standard**, e tem como função densidade de probabilidade:

$$f(z) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2}z^2}$$

 $Z \sim N(0,1)$

Se X tem uma distribuição Normal com média μ e desvio padrão σ , então:

$$Z = \frac{X - \mu_X}{\sigma_Y} \sim N(0,1)$$

tem uma distribuição Normal Padrão.

Prof^a Ana Cristina Braga, DPS

15

NORMAL

Prof^a Ana Cristina Braga, DPS

Aproximação Normal à distribuição Binomial

A distribuição Normal fornece uma boa aproximação à distribuição Binomial quando n, número de tentativas é grande, e π , a probabilidade de um sucesso numa tentativa é próxima de 0.5.

Teorema: Se X é uma variável aleatória seguindo uma distribuição binomial com parâmetros n e π , então:

$$Z = \frac{X - n.\pi}{\sqrt{n.\pi.(1 - \pi)}}$$

aproxima-se da distribuição Normal quando $n \rightarrow \infty$.

Condições: $n.\pi > 5$ e $n.(1-\pi) > 5$

Prof^a Ana Cristina Braga, DPS

17

71 U

Prof^a Ana Cristina Braga, DPS

Exemplo: Suponha que a quantidade de radiação cósmica que uma pessoa é exposta ao viajar de avião é uma variável aleatória Normal com média $\mu=4.35~mrcm$ e o desvio padrão é $\sigma=0.59~mrcm$. Qual é a probabilidade de que uma pessoa seja exposta a mais de 5.20~mrcm de radiação cósmica?

$$X \sim N(4.35, 0.59^2)$$

$$z = \frac{5.20 - 4.35}{0.59} = 1.44$$

$$P(x > 5.20) = P(z > 1.44) =$$

$$= 1 - P(z < 1.44) = 1 - 0.9251 = 0.0749$$

Algumas propriedades:

- $P(a \le Z \le b) = \Phi(b) \Phi(a)$
- $-\Phi(-z) = 1 \Phi(z)$

Prof^a Ana Cristina Braga, DPS

19

Exemplo: Use a aproximação Normal à distribuição binomial para determinar a probabilidade de obter 6 caras e 10 coroas em 16 lançamentos de uma moeda equilibrada.

 $X \rightarrow v$. a. que designa nº de caras

$$n = 16$$
 $\pi = 0.5$ "sucesso" = sair cara

$$X \sim Bin(16, 0.5)$$

$$P(x=6) = C_6^{16} (0.5)^6 (1-0.5)^{16-6} = 0.1222$$

Utilizando a aproximação:

$$\mu = n.\pi = 16*0.5 = 8$$

$$\sigma = \sqrt{n.\pi.(1-\pi)} = 2$$

$$P(x=6) = P(5.5 < x < 6.5) = P(-1.25 < z < 0.75) =$$

= $\Phi(0.75) - \Phi(-1.25) = 0.2266 - 0.1056 = 0.1210$

Prof^a Ana Cristina Braga, DPS

Distribuição do Qui-quadrado

Uma variável aleatória segue a distribuição de Qui-quadrado com vgraus de liberdade, se a sua função densidade de probabilidade é dada por

$$f(x) = \begin{cases} \frac{1}{2^{\nu/2} \Gamma(\nu/2)} x^{\frac{\nu-2}{2}} e^{-x/2} & x > 0\\ 0 & \text{outros valores} \end{cases}$$

$$\mu = v$$
 $\sigma^2 = 2v$

Prof^a Ana Cristina Braga, DPS

2

Qui-quadrado

Prof^a Ana Cristina Braga, DPS

QUI-QUADRADO

		_							
	g.l.	0,995	0,990	0,975	0,950	0,050	0,025	0,010	0,005
	1	0,000	0,000	0,001	0,004	3,841	5,024	6,635	7,879
	2	0,010	0,020	0,051	0,103	5,991	7,378	9,210	10,597
		0,072	0,115	0,216	0,352	7,815	9,348	11,345	12,838
	4	0,207	0,297	0,484	0,711	9,488	11,143	13,277	14,860
	5	0,412	0,554	0,831	1,145	11,070	12,833	15,086	16,750
	6	0,676	0,872	1,237	1,635	12,592	14,449	16,812	18,548
	7	0,989	1,239	1,690	2,167	14,067	16,013	18,475	20,278
	8	1,344	1,646	2,180	2,733	15,507	17,535	20,090	21,955
	9	1,735	2,088	2,700	3,325	16,919	19,023	21,666	23,589
	10	2,156	2,558	3,247	3,940	18,307	20,483	23,209	25,188
	11	2,603	3,053	3,816	4,575	19,675	21,920	24,725	26,757
	12	3,074	3,571	4,404	5,226	21,026	23,337	26,217	28,300
	13	3,565	4,107	5,009	5,892	22,362	24,736	27,688	29,819
	14	4,075	4,660	5,629	6,571	23,685	26,119	29,141	31,319
	15	4,601	5,229	6,262	7,261	24,996	27,488	30,578	32,801
	16	5,142	5,812	6,908	7,962	26,296	28,845	32,000	34,267
	17	5,697	6,408	7,564	8,672	27,587	30,191	33,409	35,718
	18	6,265	7,015	8,231	9,390	28,869	31,526	34,805	37,156
	19	6,844	7,633	8,907	10,117	30,144	32,852	36,191	38,582
	20	7,434	8,260	9,591	10,851	31,410	34,170	37,566	39,997
	21	8,034	8,897	10,283	11,591	32,671	35,479	38,932	41,401
	22	8,643	9,542	10,982	12,338	33,924	36,781	40,289	42,796
	23	9,260	10,196	11,689	13,091	35,172	38,076	41,638	44,181
	24	9,886	10,856	12,401	13,848	36,415	39,364	42,980	45,559
	25	10,520	11,524	13,120	14,611	37,652	40,646	44,314	46,928
	26	11,160	12,198	13,844	15,379	38,885	41,923	45,642	48,290
	27	11,808	12,879	14,573	16,151	40,113	43,195	46,963	49,645
	28	12,461	13,565	15,308	16,928	41,337	44,461	48,278	50,993
	29	13,121	14,256	16,047	17,708	42,557	45,722	49,588	52,336
	30	13,787	14,953	16,791	18,493	43,773	46,979	50,892	53,672
	40	20,707	22,164	24,433	26,509	55,758	59,342	63,691	66,766
	50	27,991	29,707	32,357	34,764	67,505	71,420	76,154	79,490
	60	35,534	37,485	40,482	43,188	79,082	83,298	88,379	91,952
	70	43,275	45,442	48,758	51,739	90,531	95,023	100,425	104,215
	80	51,172	53,540	57,153	60,391	101,879	106,629	112,329	116,321
	90	59,196	61,754	65,647	69,126	113,145	118,136	124,116	128,299
Prof ^a Ana C	100	67,328	70,065	74,222	77,929	124,342	129,561	135,807	140,169
. IOI Alia O	notina bra	iga, Di o							

23

Qui-quadrado

- Se X segue uma distribuição normal padrão, então X² segue a distribuição de Qui-Quadrado com 1 grau de liberdade.
- Se $X_1, X_2, ..., X_n$ são variáveis aleatórias independentes que seguem uma distribuição de Qui-Quadrado com $v_1, v_2, ..., v_n$, graus de liberdade, então

$$Y = \sum X_i$$

segue a distribuição de Qui-Quadrado com $\nu_1 + \nu_2 + ... + \nu_n$, graus de liberdade.

Prof^a Ana Cristina Braga, DPS

QUI-QUADRADO

Se \overline{x} e s^2 são a média e a variância de uma amostra aleatória de tamanho n de uma população normal com média μ e desvio padrão σ , então

- \bar{x} e s^2 são independentes,
- a variável aleatória $(n-1)s^2/\sigma^2$ segue uma distribuição de Qui-Quadrado com n-1 graus de liberdade.

Prof^a Ana Cristina Braga, DPS

25

Distribuição t-Student

Se y e z são variáveis aleatórias independentes, y com uma distribuição de Qui-quadrado com ν graus de liberdade e z uma distribuição normal padrão, então a distribuição de

$$t = \frac{z}{\sqrt{y/v}}$$

é dada por

$$f(t) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi\nu}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{\frac{\nu+1}{2}} - \infty < t < \infty$$

Prof^a Ana Cristina Braga, DPS

t-Student

27

※ ○

t-Student

Se \overline{x} e s^2 são a média e a variância de uma amostra aleatória de tamanho n de uma população normal com média μ e desvio padrão σ , então

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

segue uma distribuição t-Student com n-1 graus de liberdade.

Prof^a Ana Cristina Braga, DPS

t-Student

g.l.	0,25	0,15	0,10	0,05	0,025	0,010	0,005
1	1,000	1,963	3,078	6,314	12,706	31,821	63,657
2	0,816	1,386	1,886	2,920	4,303	6,965	9,925
		1,250	1,638	2,353	3,182	4,541	5,841
4	0,741	1,190	1,533	2,132	2,776	3,747	4,604
5	0,727	1,156	1,476	2,015	2,571	3,365	4,032
6	0,718	1,134	1,440	1,943	2,447	3,143	3,707
7	0,711	1,119	1,415	1,895	2,365	2,998	3,499
8		1,108	1,397	1,860	2,306	2,896	3,355
9		1,100	1,383	1,833	2,262	2,821	3,250
10	0,700	1,093	1,372	1,812	2,228	2,764	3,169
11	0,697	1,088	1,363	1,796	2,201	2,718	3,106
12		1,083	1,356	1,782	2,179	2,681	3,055
13	0,694	1,079	1,350	1,771	2,160	2,650	3,012
14		1,076	1,345	1,761	2,145	2,624	2,977
15		1,074	1,341	1,753	2,131	2,602	2,947
16		1,071	1,337	1,746	2,120	2,583	2,921
17	0,689	1,069	1,333	1,740	2,110	2,567	2,898
18	0,688	1,067	1,330	1,734	2,101	2,552	2,878
19		1,066	1,328	1,729	2,093	2,539	2,861
20		1,064	1,325	1,725	2,086	2,528	2,845
21	0,686	1,063	1,323	1,721	2,080	2,518	2,831
22		1,061	1,321	1,717	2,074	2,508	2,819
23	0,685	1,060	1,319	1,714	2,069	2,500	2,807
24	0,685	1,059	1,318	1,711	2,064	2,492	2,797
25	0,684	1,058	1,316	1,708	2,060	2,485	2,787
26		1,058	1,315	1,706	2,056	2,479	2,779
27	0,684	1,057	1,314	1,703	2,052	2,473	2,771
28		1,056	1,313	1,701	2,048	2,467	2,763
29	0,683	1,055	1,311	1,699	2,045	2,462	2,756
30		1,055	1,310	1,697	2,042	2,457	2,750
40	0,681	1,050	1,303	1,684	2,021	2,423	2,704
60		1,045	1,296	1,671	2,000	2,390	2,660
120		1,041	1,289	1,658	1,980	2,358	2,617
∞	0,674	1,036	1,282	1,645	1,960	2,326	2,576

Profa Ana Cristina Braga, DPS

29

Distribuição F

Se U e V são variáveis aleatórias independentes seguindo distribuições de Qui-Quadrado com v_1 e v_2 graus de liberdade, então

$$x = \frac{U/\nu_1}{V/\nu_2}$$

é uma variável aleatória seguindo a distribuição F com v_1 e v_2 graus de liberdade.

Prof^a Ana Cristina Braga, DPS

Distribuição F

$$f(x) = \begin{cases} \frac{\Gamma\left(\frac{\nu_1 + \nu_2}{2}\right)}{\Gamma\left(\frac{\nu_1}{2}\right)\Gamma\left(\frac{\nu_2}{2}\right)} \left(\frac{\nu_1}{\nu_2}\right) x^{\frac{\nu_1}{2} - 1} \left(1 + \frac{\nu_1}{\nu_2}x\right)^{-\frac{1}{2}(\nu_1 + \nu_2)} & x > 0\\ 0 & \text{outros valores} \end{cases}$$

Prof^a Ana Cristina Braga, DPS

31

Distribuição F

Prof^a Ana Cristina Braga, DPS

DISTRIBUIÇÃO F

Se s_1^2 e s_2^2 são as variâncias de variáveis aleatórias independentes de dimensão n_1 e n_2 de populações normais com variâncias σ_1^2 e σ_2^2 , então

$$F = \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2} = \frac{\sigma_2^2 s_1^2}{\sigma_1^2 s_2^2}$$

é uma variável aleatória seguindo a distribuição F com $n_1\text{-}1$ e $n_2\text{-}1$ graus de liberdade.

Prof^a Ana Cristina Braga, DPS