Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №3 «Численное интегрирование»

по дисциплине «Вычислительная математика»

Вариант: 1

Преподаватель:

Машина Екатерина Алексеевна Малышева Татьяна Алексеевна

Выполнил:

Бондарев Алексей Михайлович

Группа: Р3212

<u>Цель работы</u>: найти приближенное значение определенного интеграла с требуемой точностью различными численными методами.

1. Вычислительная реализация задачи

1. Вычислить интеграл, приведенный в таблице 1, точно:

$$I = \int_0^2 \! \left(-x^3 - x^2 - 2x + 1
ight) dx$$

$$F(x) = \int (-x^3 - x^2 - 2x + 1) \, dx = -rac{x^4}{4} - rac{x^3}{3} - x^2 + x$$

$$I=F(2)-F(0)=\left(-rac{16}{4}-rac{8}{3}-4+2
ight)-0=-rac{26}{3}pprox -8.666\,666\,667$$

2. Вычислить интеграл по формуле Ньютона–Котеса при n = 6:

$$\text{IIIar } h = \frac{b-a}{6} = \frac{2}{6} = \frac{1}{3}.$$

Узлы $x_i=a+i h$, i=0.6.

Нормированные веса (таблица НК-6):

$$\omega = \Big[rac{41}{840}, rac{9}{35}, rac{9}{280}, rac{34}{105}, rac{9}{280}, rac{9}{35}, rac{41}{840}\Big], \qquad \sum \omega_i = 1$$

$$I_{NC6} = (b-a)\sum_{i=0}^6 \omega_i\, f(x_i) = 2(\ldots) = -rac{26}{3} = -8.666\,666\,667$$

i	Xi	вес ω _i	f(x _i)	вклад $2\omega_i f(x_i)$
0	0.000	41/84041/84041/840	1.000000	0.097619
1	0.333	9/359/359/35	0.185185	0.095238
2	0.667	9/2809/2809/280	-1.074074	-0.069048
3	1.000	34/10534/10534/105	-3.000000	-1.942857
4	1.333	9/2809/2809/280	-5.814815	-0.373810
5	1.667	9/359/359/35	-9.740741	-5.009524
6	2.000	41/840	-15.00000	-1.464286

$$I_{NC6} = 2 \sum \omega_i f(x_i) = \boxed{-8.666\ 666\ 667} \quad (\Delta = 0)$$

Метод точен для кубического полинома, погрешность 0.

3. Вычислить интеграл по формулам средних прямоугольников, трапеций и Симпсона при n=10:

$$h = \frac{b-a}{n} = \frac{2-(0)}{10} = \frac{1}{5}$$

• Метод средних прямоугольников:

$$I_{\text{ср.прям}} = h \sum_{i=1}^{n} y_{i-\frac{1}{2}}$$

i	середина $x(i + \frac{1}{2})$	$f(x(i+\frac{1}{2}))$	вклад <i>h f</i>
0	0.100	0.789000	0.157800
1	0.300	0.283000	0.056600
2	0.500	-0.375000	-0.075000
3	0.700	-1.233000	-0.246600
4	0.900	-2.339000	-0.467800
5	1.100	-3.811000	-0.762200
6	1.300	-5.665000	-1.133000
7	1.500	-7.917000	-1.583400
8	1.700	-10.583000	-2.116600
9	1.900	-13.679000	-2.735800

$$I_{
m mid} = \sum hf = \boxed{-8.640000} \qquad arepsilon_{
m oth} = 0.00308$$

• Метод трапеций:

$$I_{ ext{trap}} = rac{h}{2} \Big[f_0 + 2\!(f_1 + \cdots + f_9) + f_{10} \Big]$$

i	Xi	вес	f(x _i)	вклад <i>hw f</i>
0	0.0	1/2	1.000000	0.100000
1	0.2	1	0.552000	0.110400
2	0.4	1	-0.024000	-0.004800
3	0.6	1	-0.776000	-0.155200
4	0.8	1	-1.752000	-0.350400
5	1.0	1	-3.000000	-0.600000
6	1.2	1	-4.568000	-0.913600
7	1.4	1	-6.504000	-1.300800
8	1.6	1	-8.856000	-1.771200
9	1.8	1	-11.672000	-2.334400
10	2.0	1/2	-15.000000	-1.500000

$$I_{ ext{trap}} = \sum hwf = \boxed{-8.720000} \qquad arepsilon_{ ext{oth}} = 0.00615$$

• Метод Симпсона:

$$I_S = rac{h}{3} \Big[f_0 + 4 \sum_{i ext{ Heq}} f_i + 2 \sum_{i ext{ q\"et}} f_i + f_{10} \Big]$$

i	Xi	вес (1-4-2)	f(x _i)	вклад $\frac{h}{3}$ wf
0	0.0	1	1.000000	0.066667
1	0.2	4	0.552000	0.147200
2	0.4	2	-0.024000	-0.003200
3	0.6	4	-0.776000	-0.206933
4	0.8	2	-1.752000	-0.233600
5	1.0	4	-3.000000	-0.800000
6	1.2	2	-4.568000	-0.304533
7	1.4	4	-6.504000	-1.734400
8	1.6	2	-8.856000	-0.590400
9	1.8	4	-11.672000	-3.112533
10	2.0	1	-15.000000	-1.000000

$$I_S = \sum rac{h}{3} w f = \boxed{-8.666\ 666\ 667} \qquad arepsilon_{ ext{oth}} pprox 0$$

4. Сравнить результаты с точным значением интеграла:

Точное значение интеграла на интервале вычислено как $\frac{-26}{3} = -8.66666667$

1. Для метода **Ньютона–Котеса** при n=6: $I_{\text{точн}}=I_{cotes}=-8.666$ 666 667 , **значения совпадают**.

2. Для метода **средних прямоугольников** при n=10: $I_{\text{ср.прям}}=-8.6400$.

$$R = \left| I_{\text{точн}} - I_{\text{ср.прям}} \right| = \left| \frac{-26}{3} - (-8.6400) \right| = 0.00308$$

3. Для метода **трапеций** при n=10: $I_{\text{трапеция}}=-8.720000$.

$$R = \left| I_{\text{точн}} - I_{\text{трапеция}} \right| = \left| \frac{-26}{3} - (-8.720000) \right| = 0.00615$$

4. Для метода Симпсона при n=10: $I_{\text{точн}}=I_{\text{Симпсона}}=-8.666$ 666 667 , значения совпадают.

5. Определить относительную погрешность вычислений для каждого метода.

- 1. Для метода **Ньютона–Котеса**: $R = 0 \rightarrow$ **погрешности нет.**
- 2. Для метода **средних прямоугольников**: $\Delta \approx 0.308\%$
- 3. Для метода **трапеций**: $\Delta \approx 0.615\%$
- 4. Для метода Симпсона: $R = 0 \rightarrow$ погрешности нет.

Как видно из результатов, все методы дали относительно малую погрешность, особенно при использовании формулы Ньютона—Котеса и Симпсона. Наилучший результат был получен при использовании формулы Ньютона—Котеса с n=6 и формулы Симпсона с n=10, при которых значения интеграла полностью совпали.

2. Программная реализация задачи

https://github.com/666Daredevil666/calmath/tree/main/lab3

Результаты выполнения программы при различных исходных данных:

```
== Численное интегрирование (включая несобственные) ===
                                                 Программа для численного интегрирования.
                                                 Доступные функции:
1) -x^3 - x^2 - 2x + 1
                                                 1) f(x) = -x^3 - x^2 - 2x + 1
2) x^2
3) \sin(x)
                                                 2) f(x) = x^2
4) ln(x)/sqrt(x) (разрыв в а)
                                                 3) f(x) = \sin(x)
5) 1/sqrt(1-x)
                       (разрыв в b)
6) 1/sqrt(|x-0.5|)
                      (разрыв внутри)
                                                 Выберите номер функции (1/2/3): 1
Выберите номер функции: 4
                                                 Введите нижний предел интегрирования а: 0
                                                 Введите верхний предел интегрирования b: 2
Нижний предел а: 1
                                                 Введите требуемую точность (например, 0.1): \theta.01
Верхний предел b: 5
Требуемая точность eps (например 1e-6): \theta.1
                                                 Доступные методы:
Методы:
                                                 1) Левые прямоугольники
1) Левые прямоугольники
                                                 2) Правые прямоугольники
2) Правые прямоугольники
                                                 3) Средние прямоугольники
3) Средние прямоугольники
4) Трапеции
                                                 4) Трапеции
5) Симпсон
                                                 5) Симпсон
Номер метода: 3
                                                 Выберите номер метода (1..5): 1
Несобственный интеграл? (у/N) y
                                                 --- Результаты вычисления ---
----- Результаты ------
                                                 Выбранная функция: №1
         Средние прямоугольники
                                                Пределы интегрирования: [0.0, 2.0]
             несобственный (с усечением хвоста)
Алгоритм:
Интервал:
                                                 Метод: Левые прямоугольники
eps:
            0.1
                                                 Требуемая точность: 0.01
Значение I: 2.2631951996044446
Разбиений n: 8
                                                 Приближённое значение интеграла: -8.658855438232422
                                                 Число разбиений для достижения точности: 2048
```

Вывод

В ходе выполнения данной лабораторной работы мною были изучены численные методы интегрирования с использованием Python. В результате работы мною были рассмотрены различные численные методы вычисления определенных интегралов: метод прямоугольников (левых, правых, средних), метод трапеций, метод Ньютона-Котеса и метод Симпсона. Была реализована программа, позволяющая выбрать одну из предложенных функций, задать пределы интегрирования, точность и начальное значение числа разбиения интеграла интегрирования. Написав реализации всех трех методов решения интегралов, можно сделать вывод, что самым точным и быстрым является метод Симпсона. В ходе вычислительной реализации задачи были рассчитаны интегралы различными методами и проведено сравнение результатов с точными значениями интегралов. Также была выполнена дополнительная задача по установлению сходимости рассматриваемых несобственных интегралов 2 рода и их вычислению заданными численными методами в случаях, когда подынтегральная функция терпит бесконечный разрыв в точке а, в точке b или на отрезке интегрирования.