Ausgabe: 14.12.2022 Abgabe: 03.01.2023

Aufgabe 6

Beweisen oder widerlegen Sie, dass es sich bei den gegebenen Abbildungen um eine Norm für Vektoren des Vektorraums \mathbb{R}^n handelt.

a)

$$||x|| = \sum_{i=1}^n x_i$$

b)

$$||x|| = \left| \prod_{i=1}^{n} x_i \right|$$

c)

$$||x|| = \min_{i=1,\dots,n} |x_i|$$

Lösung 6

Nach Definition 3.114, Seite 106 heißt eine Abbildung $\|\cdot\|:V\to\mathbb{R}$ Norm, genau dann, wenn

• **N0** : $||a|| \in \mathbb{R}$

• **N1**: $||a|| \ge 0$

• **N2**: $||a|| = 0 \Leftrightarrow a = 0$

• **N3**: $\forall \lambda \in \mathbb{K} : \|\lambda \cdot a\| = |\lambda| \cdot \|a\|$

• N4: $||a+b|| \le ||a|| + ||b||$.

Lösung 6a

Bei der Abbildung $||x|| = \sum_{i=1}^{n} x_i$ handelt es sich nicht um eine Norm, da für den Vektor x = (-1) die Bedingung N1, $||a|| \ge 0$ verletzt ist.

Darüber hinaus wäre für den Vektor $x = (1; -1)^T$ die Bedingung N2 verletzt und für $\lambda < 0$ auch die Bedingung N3.

Lösung 6b

Bei der Abbildung $||x|| = |\prod_{i=1}^{n} x_i|$ ist die Bedingung N2 verletzt, da für jeden Vektor a mit einer beliebigen Komponente $a_i = 0$ die Norm ||a|| = 0 wäre.

Ausgabe: 14.12.2022 Abgabe: 03.01.2023

Lösung 6c

Auch bei der Abbildung $||x||=\min_{i=1,\dots,n}|x_i|$ handelt es sich nicht um eine Norm, weil die Bedingung N4 verletzt ist: Sei $a=(1;2)^T$, $b=(2;1)^T$ dann ist

$$\|(3;3)^T\| = 3 \le \|(1;2)^T\| + \|(2;1)^T\| = 1 + 1 \ \text{$\rlap/ $\rlap/$}.$$