Ćwiczenie 3. Funkcje sklejane

Treść zadania

Dla funkcji f(x) zadanej w zadaniu dotyczącym interpolacji wyznaczyć interpolacyjną funkcję sklejaną trzeciego stopnia oraz drugiego stopnia. Dla obu rodzajów funkcji (2-go i 3-go stopnia) należy wykonać obliczenia dla co najmniej dwóch różnych warunków brzegowych. Podobnie jak poprzednio określić dokładność interpolacji – dla różnej liczby przedziałów i dla różnych warunków brzegowych. Porównać interpolację funkcjami sklejanymi drugiego i trzeciego stopnia. Graficznie zilustrować interesujące przypadki. Opisać dokładnie przyjęte warunki brzegowe.

1. Informacje techniczne

Zadanie zostało wykonane w języku Python3 na komputerze z systemem Windows 11, procesorem Intel i7-11800H, 2x8GB pamięci RAM o szybkości 3200MHz. Biblioteki z których korzystałem w zadaniu:

- import matplotlib.pyplot as plt
- import numpy as np
- import pandas as pd
- import math

2. Interpolowana funkcja:

$$f(x) = e^{-k \cdot \sin(m \cdot x)} + k \cdot \sin(m \cdot x) - 1$$

gdzie $k = 4, m = 1, x \in [-4\pi, 3\pi]$

3. Wstęp

Funkcja sklejana (potocznie splajn) to rzeczywista funkcja gładka, dla której istnieje rodzina podprzedziałów dziedziny o tej własności, że funkcja ta jest wielomianem na każdym z tych przedziałów.

W metodzie **interpolacji funkcjami sklejanymi** stosowane są funkcje zdefiniowane jako wielomiany niskiego stopnia, osobno dla każdego odcinka pomiędzy sąsiednimi węzłami interpolacyjnymi. Te lokalne wielomiany są tak dobrane, aby oprócz warunków interpolacji, spełniać warunki sklejenia w taki sposób, aby cały splajn był funkcją o odpowiedniej regularności.

3.1. Funkcje sklejane 2-go stopnia

Funkcja sklejana drugiego stopnia (quadratic spline) to funkcja, którą możemy przedstawić w następujący sposób:

Niech $S_i(x)$ oznacza wielomiany drugiego stopnia, tworzące funkcję sklejaną.

$$S_i(x) = a_i(x - x_i)^2 + b_i(x - x_i) + c_i \quad i \in [0, ..., n - 1]$$
(3.1.1)

gdzie n + 1 - liczba węzłów

Funkcja sklejana jest zdefiniowana na przedziale [a,b], za pomocą funkcji kwadratowych, z których każda jest określona na jednym z przedziałów $[x_i,x_{i+1}]$ wzorem (3.1.1), przy czym $x_0,x_1,...,x_n$ – węzły interpolacji oraz $x_0=a$, $x_n=b$. Aby wielomiany dane wzorem (3.1.1) tworzyły funkcję sklejaną drugiego stopnia, muszą spełniać następujące warunki:

a)
$$S_i(x_i) = f(x_i), i \in [0, ..., n-1]$$

b)
$$S_{i+1}(x_{i+1}) = S_i(x_{i+1}), i \in [0, ..., n-2]$$

c)
$$S'_{i+1}(x_{i+1}) = S'_i(x_{i+1}), i \in [0,...,n-2]$$

Skorzystamy z tych warunków w celu wyznaczenia wartości współczynników a_i, b_i, c_i . Przyjmijmy, że $f(x_i) = y_i$.

Zaczynając od warunku a) możemy zapisać:

$$S_i(x_i) = a_i(x_i - x_i)^2 + b_i(x_i - x_i) + c_i = y_i$$

$$S_i(x_i) = c_i = y_i$$
(3.1.2)

Wyznaczyliśmy zatem współczynnik c_i .

Następnie korzystamy z warunku c). W tym celu najpierw obliczamy pochodną wyrażenia (3.1.1):

$$S_i'(x) = 2a_i(x - x_i) + b_i$$
 (3.1.3)

Podstawiając do warunku c) otrzymujemy:

$$S'_{i+1}(x_{i+1}) = 2a_{i+1}(x_{i+1} - x_{i+1}) + b_{i+1} = 2a_i(x_{i+1} - x_i) + b_i = S'_i(x_{i+1})$$

$$b_{i+1} = 2a_i(x_{i+1} - x_i) + b_i$$

$$a_i = \frac{b_{i+1} - b_i}{2(x_{i+1} - x_i)}$$
(3.1.4)

Otrzymaliśmy wzór na współczynnik a_i . Zatem pozostaje nam wyznaczyć wartości współczynnika b_i . W tym celu wykorzystamy pozostały warunek b) oraz wyznaczoną już wartość współczynnika a_i w wyrażeniu (3.1.4).

$$S_{i+1}(x_{i+1}) = S_i(x_{i+1})$$

$$a_{i+1}(x_{i+1} - x_{i+1})^2 + b_{i+1}(x_{i+1} - x_{i+1}) + c_{i+1} = a_i(x_{i+1} - x_i)^2 + b_i(x_{i+1} - x_i) + c_i$$

$$c_{i+1} = a_i(x_{i+1} - x_i)^2 + b_i(x_{i+1} - x_i) + c_i$$

Z (3.1.2) oraz (3.1.4):

$$y_{i+1} = \frac{b_{i+1} - b_i}{2(x_{i+1} - x_i)} (x_{i+1} - x_i)^2 + b_i (x_{i+1} - x_i) + y_i$$

$$y_{i+1} = (x_{i+1} - x_i) \left(\frac{b_{i+1} - b_i}{2} + b_i \right) + y_i$$

$$2 \frac{y_{i+1} - y_i}{x_{i+1} - x_i} = b_{i+1} + b_i$$

Przyjmijmy oznaczenie:

$$\frac{y_{i+1} - y_i}{x_{i+1} - x_i} = \gamma_i \tag{3.1.5}$$

$$2\gamma_i = b_{i+1} + b_i \tag{3.1.6}$$

Podstawiając kolejne wartości za $i \in [0,...,n-1]$ otrzymujemy układ równań:

$$\begin{cases}
b_0 + b_1 = 2\gamma_0 \\
b_1 + b_2 = 2\gamma_1 \\
\dots \\
b_{n-1} + b_n = 2\gamma_{n-1}
\end{cases} (3.1.7)$$

Widzimy zatem, że mamy n+1 niewiadomych a tylko n równań. Potrzebujemy zatem dodatkowego równania. W tym celu wykorzystamy warunek brzegowy.

3.1.1 Warunki brzegowe

A) Natural spline (splajn naturalny)

W przypadku tego warunku brzegowego przyjmuje się, że pochodna funkcji sklejanej w pierwszym i ostatnim węźle jest równa 0.

$$S_0'(x_0) = 0 \text{ lub } S_{n-1}'(x_n) = 0$$
 (3.1.1.1)

Wybieramy jeden z powyższych warunków brzegowych ponieważ brakuje nam tylko jednego równania. Przyjmijmy, że wybieramy $S_0'(x_0) = 0$. Wtedy podstawiając do wyrażenia (3.1.3) otrzymujemy:

$$S_0'(x_0) = 2a_0(x_0 - x_0) + b_0 = 0$$

Zatem:

$$b_0 = 0 (3.1.1.2)$$

Teraz wykorzystując układ równań (3.1.6) możemy zapisać:

$$\begin{cases} b_0 = 0 \\ b_0 + b_1 = 2\gamma_0 \\ b_1 + b_2 = 2\gamma_1 \\ \dots \\ b_{n-1} + b_n = 2\gamma_{n-1} \end{cases}$$
(3.1.1.3)

Układ równań (3.1.1.3) możemy rozwiązać w sposób rekurencyjny lub zaczynając od indeksu 0 – w sposób iteracyjny.

Możemy zapisać kolejne równania:

$$\begin{array}{l} b_0 = 0 \\ b_1 = 2\gamma_0 \\ b_2 = 2(\gamma_1 - \gamma_0) \\ b_3 = 2(\gamma_2 - \gamma_1 + \gamma_0) \\ b_n = 2(\gamma_{n-1} - \gamma_{n-2} + \gamma_{n-3} - \dots \pm \gamma_0) \end{array}$$

Co możemy zapisać w następującej postaci:

$$b_n = 2\sum_{i=0}^{n-1} \gamma_i * (-1^{n-1+i})$$
(3.1.1.4)

Zatem korzystając z wzorów (3.1.2), (3.1.4), (3.1.1.4) jesteśmy w stanie wyznaczyć wartości wszystkich współczynników.

B) Clamped Boundary (splajn zaciskany)

Przyjmujemy, że pochodna funkcji sklejanej na pierwszym lub ostatnim przedziale jest znana bądź przybliżona ilorazem różnicowym.

$$S_0'(x_0) = f_0'(x_0) \text{ lub } S'_{n-1}(x_n) = f'_{n-1}(x_n)$$
 (3.1.1.5)

W naszym wypadku będziemy przybliżać wartość pochodnej na pierwszym przedziale przy pomocy ilorazu różnicowego.

$$f_0'(x_0) = \frac{y_1 - y_0}{x_1 - x_0}$$

Podstawiając do (3.1.1.5):

$$S_0'(x_0) = \frac{y_1 - y_0}{x_1 - x_0}$$

Korzystając z (3.1.3):

$$S_0'(x_0) = 2a_0(x_0 - x_0) + b_0 = \frac{y_1 - y_0}{x_1 - x_0}$$

Zgodnie z przyjętym oznaczeniem (3.1.5):

$$b_0 = \gamma_0 {(3.1.1.6)}$$

Teraz ponownie wykorzystując układ równań (3.1.6) możemy zapisać:

$$\begin{cases} b_0 = \gamma_0 \\ b_0 + b_1 = 2\gamma_0 \\ b_1 + b_2 = 2\gamma_1 \\ \dots \\ b_{n-1} + b_n = 2\gamma_{n-1} \end{cases}$$
(3.1.1.7)

Układ równań (3.1.1.7) rozwiązujemy w podobny sposób co układ (3.1.1.3)

Możemy zapisać kolejne równania:

$$b_0 = \gamma_0$$

$$b_1 = \gamma_0$$

$$b_2 = 2\gamma_1 - \gamma_0$$

$$b_3 = 2(\gamma_2 - \gamma_1) + \gamma_0$$

$$b_n = 2(\gamma_{n-1} - \gamma_{n-2} + \gamma_{n-3} - \dots \pm \gamma_1) \pm \gamma_0$$

Co możemy zapisać w następującej postaci:

$$b_n = 2\sum_{i=1}^{n-1} \gamma_i * (-1^{n-1+i}) + \gamma_0 * (-1^{n+1})$$
 (3.1.1.8)

dla n>1.

$$b_0 = b_1 = \gamma_0 \tag{3.1.1.9}$$

Zatem korzystając z wzorów (3.1.2), (3.1.4), (3.1.1.8) oraz (3.1.1.9) jesteśmy w stanie wyznaczyć wartości wszystkich współczynników.

3.2. Funkcje sklejane 3-go stopnia

Funkcja sklejana trzeciego stopnia (cubic spline) to funkcja, którą możemy przedstawić w następujący sposób:

Niech $S_i(x)$ oznacza wielomiany trzeciego stopnia, tworzące funkcję sklejaną.

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3 \quad i \in [0, ..., n - 1]$$
(3.2.1)

gdzie n + 1 - liczba węzłów

Funkcja sklejana jest zdefiniowana na przedziale [a,b], za pomocą funkcji sześciennych, z których każda jest określona na jednym z przedziałów $[x_i,x_{i+1}]$ wzorem (3.2.1), przy czym $x_0,x_1,...,x_n$ – węzły interpolacji oraz $x_0=a$, $x_n=b$. Aby wielomiany dane wzorem (3.2.1) tworzyły funkcję sklejaną trzeciego stopnia, muszą spełniać następujące warunki:

- a) $S_i(x_{i+1}) = f(x_{i+1}), i \in [0, ..., n-1]$
- b) $S_i(x_{i+1}) = S_{i+1}(x_{i+1}), i \in [0, ..., n-2]$
- c) $S'_{i}(x_{i+1}) = S'_{i+1}(x_{i+1}), i \in [0, ..., n-2]$
- d) $S''_{i}(x_{i+1}) = S''_{i+1}(x_{i+1}), i \in [0,...,n-2]$

Ponieważ $S_i(x)$ jest funkcją sześcienną, to $S''_i(x)$ jest funkcją sześcienną na przedziale $[x_i,x_{i+1}]$. Wprowadźmy następujące oznaczenie: $h_i=x_{i+1}-x_i$. Wtedy funkcję $S''_i(x)$ możemy zapisać w postaci liniowej niezależności:

$$S''_{i}(x) = S''_{i}(x_{i}) \frac{x_{i+1} - x}{h_{i}} + S''_{i}(x_{i+1}) \frac{x - x_{i}}{h_{i}}$$
(3.2.2)

Po dwukrotnym scałkowaniu wyrażenia (3.2.2) otrzymujemy:

$$S_i(x) = \frac{S''_i(x_i)}{6h_i}(x_{i+1} - x)^3 + \frac{S''_i(x_{i+1})}{6h_i}(x - x_i)^3 + C(x - x_i) + D(x_{i+1} - x)$$
(3.2.3)

Gdzie C, D – stałe całkowania, które obliczamy z warunku a) interpolacji. Po ich obliczeniu i wstawieniu do równania (3.2.3) otrzymujemy:

$$S_{i}(x) = \frac{S''_{i}(x_{i})}{6h_{i}}(x_{i+1} - x)^{3} + \frac{S''_{i}(x_{i+1})}{6h_{i}}(x - x_{i})^{3} + \left(\frac{y_{i+1}}{h_{i}} - \frac{S''_{i}(x_{i+1})h_{i}}{6}\right)(x - x_{i}) + \left(\frac{y_{i}}{h_{i}} - \frac{S''_{i}(x_{i})h_{i}}{6}\right)(x_{i+1} - x)$$

$$(3.2.4)$$

Nie znamy $S''_i(x)$, zatem obliczamy je korzystając z warunku ciągłości pierwszej pochodnej c). Różniczkujemy $S_i(x)$:

$$S'_{i}(x) = -\frac{h_{i}}{3}S''_{i}(x_{i}) - \frac{h_{i}}{6}S''_{i}(x_{i+1}) - \frac{y_{i}}{h_{i}} + \frac{y_{i+1}}{h_{i}}$$
(3.2.5)

Dla przejrzystości wprowadzamy oznaczenia:

$$\sigma_i = \frac{1}{6} S_i^{\prime\prime}(x_i) \tag{3.2.6}$$

$$\Delta_i = \frac{y_{i+1} - y_i}{h_i} \tag{3.2.7}$$

Wstawiamy do wzoru (3.2.5):

$$S'_{i}(x) = \Delta_{i} - h_{i}(\sigma_{i+1} + 2\sigma_{i})$$
 (3.2.8)

Natomiast od drugiej strony:

$$S'_{i-1}(x) = \Delta_{i-1} - h_{i-1}(2\sigma_i + \sigma_{i-1})$$
(3.2.9)

Wykorzystując teraz wspomniany warunek c) oraz (3.2.6), (3.2.7) otrzymujemy finalną postać równania:

$$\Delta_{i} - h_{i}(\sigma_{i+1} + 2\sigma_{i}) = \Delta_{i-1} - h_{i-1}(2\sigma_{i} + \sigma_{i-1})$$

Po przekształceniach otrzymujemy:

$$h_{i-1}\sigma_{i-1} + 2(h_{i-1} + h_i)\sigma_i + h_i\sigma_{i+1} = \Delta_i - \Delta_{i-1}, i$$

= 1.2....n - 2 (3.2.10)

Mamy zatem n niewiadomych, a tylko n-2 równań, zatem konieczne jest określenie dwóch dodatkowych warunków.

3.2.1 Warunki brzegowe

A) Natural spline (splajn naturalny)

W przypadku tego warunku brzegowego przyjmuje się, że druga pochodna funkcji sklejanej w pierwszym i ostatnim węźle jest równa 0.

$$S_0''(x_0) = S_{n-1}''(x_n) = 0$$
 (3.2.1.1)

Korzystając teraz z oznaczenia $\sigma_i = \frac{1}{6}S_i^{\prime\prime}(x_i)$ wprowadzonego w (3.2.6) możemy zapisać:

$$\sigma_{0} = \frac{1}{6} S_{0}^{"}(x_{0}) = 0$$

$$\sigma_{0} = 0$$

$$\sigma_{n-1} = \frac{1}{6} S_{n-1}^{"}(x_{n-1}) = 0$$

$$\sigma_{n-1} = 0$$
(3.2.1.2)
(3.2.1.3)

Otrzymaliśmy zatem dwa dodatkowe równania. Możemy zapisać teraz układ równań w postaci macierzowej:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & 0 & 0 & 0 \\ 0 & h_1 & 2(h_1 + h_2) & h_2 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & h_{n-3} & 2(h_{n-3} + h_{n-2}) & h_{n-2} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \sigma_0 \\ \sigma_1 \\ \sigma_2 \\ \vdots \\ \sigma_{n-2} \\ \sigma_{n-1} \end{bmatrix} = \begin{bmatrix} 0 \\ \Delta_1 - \Delta_0 \\ \Delta_2 - \Delta_1 \\ \vdots \\ \Delta_{n-2} - \Delta_{n-3} \\ 0 \end{bmatrix}$$
(3.2.1.4)

Po wyliczaniu wartości σ_i możemy obliczyć wartości wszystkich współczynników:

$$\begin{cases} a_{i} = y_{i} \\ b_{i} = \frac{y_{i+1} - y_{i}}{h_{i}} - h_{i} * (\sigma_{i+1} + 2\sigma_{i}) \\ c_{i} = 3\sigma_{i} \\ d_{i} = \frac{\sigma_{i+1} - \sigma_{i}}{h_{i}} \end{cases}$$
(3.2.1.5)

$$a_i = y_i$$

$$b_i = \frac{y_{i+1} - y_i}{h_i} - h_i * (\sigma_{i+1} + 2\sigma_i)$$

$$c_i = 3\sigma_i$$

$$d_i = \frac{\sigma_{i+1} - \sigma_i}{h_i}$$

B) Cubic spline (splajn sześcienny)

Wprowadźmy następujące oznaczenia:

 $C_0(x)$ - funkcja sześcienna przechodząca przez pierwsze 4 punkty $C_{n-1}(x)$ - funkcja sześcienna przechodząca przez ostatnie 4 punkty Zatem możemy zapisać:

$$S_0'''(x_0) = C_0''' \text{ oraz } S_{n-1}'''(x_{n-1}) = C_{n-1}'''$$
 (3.2.1.6)

Możemy określić stałe $C_0^{\prime\prime\prime}$ i $C_{n-1}^{\prime\prime\prime}$ bez znajomości funkcji $C_0(x)$ i $C_{n-1}(x)$. Zrobimy to wykorzystując związek między ilorazami różnicowymi a pochodnymi:

$$f[x_0, ..., x_n] = \frac{f^{(n)}(\eta)}{n!}, \ \eta \in [x_0, ..., x_n], \ \eta$$
-pewien punkt (3.2.1.7)

$$\begin{array}{l} \Delta_i^{(1)} = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} \text{ - przybliża pierwszą pochodną,} \\ \Delta_i^{(2)} = \frac{\Delta_{i+1}^{(1)} \cdot \Delta_i^{(1)}}{x_{i+2} - x_i} \text{ ; } 2\Delta_i^{(2)} \text{ - przybliża drugą pochodną} \\ \Delta_i^{(3)} = \frac{\Delta_{i+1}^{(2)} \cdot \Delta_i^{(2)}}{x_{i+3} - x_i} \text{ ; } 6\Delta_i^{(3)} \text{ - przybliża trzecią pochodną} \end{array}$$

Uwaga: $\Delta_i^{(n)}$ powyżej oznacza co innego niż Δ_i w (3.2.7). Czyli aby otrzymać przybliżenie pochodnej $f_i^{(n)}$ mnożymy $\Delta_i^{(n)}$ przez n!. Różniczkując wzór na S''(x) na przedziale [x_i, x_{i+1}] otrzymujemy:

$$S_{i}^{""}(x) = \frac{-S_{i}^{"}(x_{i})}{h_{i}} + \frac{S_{i}^{"}(x_{i+1})}{h_{i}} = \frac{-6\sigma_{i}}{h_{i}} + \frac{6\sigma_{i+1}}{h_{i}}$$
 (3.2.1.8)

Wykorzystując (3.2.1.6) możemy zapisać:

$$S_0^{\prime\prime\prime}(x_0) = C_0^{\prime\prime\prime}(x_0) = \frac{6}{h_0}(\sigma_1 - \sigma_0) = 6\Delta_0^{(3)}$$

$$S_{n-1}^{\prime\prime\prime}(x_{n-1}) = C_{n-1}^{\prime\prime\prime}(x_{n-1}) = \frac{6}{h_{n-2}}(\sigma_{n-1} - \sigma_{n-2}) = 6\Delta_{n-4}^{(3)}$$

Po przekształceniu otrzymujemy finalnie:

$$\begin{cases}
-h_0\sigma_0 + h_0\sigma_1 = h_0^2 \Delta_0^{(3)} \\
h_{n-2}\sigma_{n-2} - h_{n-2}\sigma_{n-1} = -h_{n-2}^2 \Delta_{n-4}^{(3)}
\end{cases}$$
(3.2.1.9)

Otrzymaliśmy zatem dwa dodatkowe równania. Możemy zapisać teraz układ równań w postaci macierzowej:

$$\begin{bmatrix} -h_0 & h_0 & 0 & 0 & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & 0 & 0 \\ 0 & h_1 & 2(h_1 + h_2) & h_2 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & h_{n-3} & 2(h_{n-3} + h_{n-2}) & h_{n-2} \\ 0 & 0 & 0 & h_{n-2} & -h_{n-2} \end{bmatrix} \begin{bmatrix} \sigma_0 \\ \sigma_1 \\ \sigma_2 \\ \vdots \\ \sigma_{n-2} \\ \sigma_{n-1} \end{bmatrix} = \begin{bmatrix} h_0^2 \Delta_0^{(3)} \\ \Delta_1 - \Delta_0 \\ \Delta_2 - \Delta_1 \\ \vdots \\ \Delta_{n-2} - \Delta_{n-3} \\ -h_{n-2}^2 \Delta_{n-4}^{(3)} \end{bmatrix}$$

$$(3.2.1.10)$$

Po wyliczaniu wartości σ_i możemy obliczyć wartości wszystkich współczynników korzystając z tych samych wzorów (3.2.1.5) co dla splajnu naturalnego.

3.3. Obliczanie błędów

Niech K = 1000 oznacza liczbę równomiernie rozłożonych w przedziale punktów $x_1, x_1, ..., x_K$, dla których obliczamy błędy interpolacji.

Błąd bezwzględny:

$$\max_{\mathbf{x} \in \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_K\}} |f(\mathbf{x}) - S(\mathbf{x})|$$

Błąd średniokwadratowy:

$$\frac{1}{K} \sum_{x \in \{x_1, x_2, \dots, x_K\}} (f(x) - S(x))^2$$

4. Opracowanie

Przypomnijmy jeszcze raz wzór interpolowanej funkcji:

$$f(x) = e^{-k \cdot \sin(m \cdot x)} + k \cdot \sin(m \cdot x) - 1$$

gdzie
$$k = 4, m = 1, x \in [-4\pi, 3\pi]$$

4.1. Wykres funkcji f(x)

Wykres funkcji f(x)

Wykres 4.1.1

4.2. Analiza interpolacji 2-go i 3-go stopnia dla różnej liczby węzłów *N* **Uwaga 4.2.1.** – w poniższej analizie rozpatruję tylko węzły równoodległe.

Uwaga 4.2.2: wartości funkcji f(x) w węzłach są zaznaczone na wykresach czerwonymi kropkami.

\bullet N=6

W przypadku funkcji sklejanej 2-go stopnia dla 6 węzłów możemy zobaczyć wpływ warunków brzegowych na otrzymaną funkcję. W przypadku clamped boundary początek funkcji sklejanej jest podobny do linii prostej, o nachyleniu równym pochodnej w pierwszym punkcie.

• N = 5

W przypadku funkcji sklejanej 3-go stopnia dla 5 węzłów, możemy zauważyć, że natural spline ma mniejsze oscylacje w pierwszym i ostatnim przedziale, tzn. wolniej zmienia swoją wartość niż cubic function. Jest to spowodowane tym, że dla naturalnego warunku brzegowego założyliśmy, że wartość drugiej pochodnej na krańcach przedziału jest równa 0.

• N = 8

Dla 8 węzłów w każdym przypadku dostajemy funkcję sklejaną stale równą 0 (wykresy 4.2.3, 4.2.4), ponieważ wszystkie węzły są miejscami zerowymi funkcji f(x).

• N = 20

Funkcje 2-go stopnia

Funkcje 3-go stopnia

	Natural spline	Clamped	Natural spline	Cubic
		boundary		Function
Błąd bezwzględny	55.2249	55.8968	20.5448	20.5448
Błąd średniokwadratowy	554.5991	572.4569	23.051	23.0505

Tabela 4.2.1 Wartości błędów interpolacji dla 20 węzłów

Jak możemy zobaczyć na wykresach 4.2.5 i 4.2.6 oraz w tabeli 4.2.1, funkcja sklejana 3-go stopnia przybliża interpolowaną funkcję z większą dokładnością. Spline 2-go. stopnia charakteryzują duże oscylacje w środku przedziału.

N = 35 i N = 36
-dla funkcji sklejanej 2-go stopnia:

35 węzłów

36 węzłów

	Błąd	Błąd	Błąd	Błąd
	średniokwadratowy	bezwzględny	średniokwadratowy	bezwzględny
Natural spline	135.4298	26.1213	1.1506	3.3848
Clamped boundary	130.2534	25.7463	0.8657	3.0232

Tabela 4.2.2 Wartości błędów interpolacji dla funkcji sklejanej 2-go. stopnia.

Funkcja sklejana 2-go. stopnia zachowuje się bardzo nieregularnie. Przykładowo dla 35 węzłów są widoczne spore oscylacje, a już dla 36 następuje duże lepsze dopasowanie, po czym dla 37 węzłów funkcja sklejana znów wygląda tak jak na wykresie 4.2.7.

-Dla funkcji sklejanej 3-go stopnia:

35 węzłów

36 węzłów

	Błąd	Błąd	Błąd	Błąd
	średniokwadratowy	bezwzględny	średniokwadratowy	bezwzględny
Natural spline	0.56	2.9417	0.9872	3.2928
Cubic function	0.5594	2.9417	0.9865	3.2928

Tabela 4.2.3 Wartości błędów interpolacji dla funkcji sklejanej 3-go. stopnia.

W przypadku funkcji sklejanych 3-go stopnia otrzymywane funkcje dla kolejnych węzłów są do siebie podobne, z podobną dokładnością przybliżają interpolowaną funkcję.

• N = 44 i N = 50 (dla funkcji sklejanej 2-go stopnia):

44 węzłów

50 węzłów

	Dlad	Dlad	Dla d	Dlad
	Błąd	Błąd	Błąd	Błąd
	średniokwadratowy	bezwzględny	średniokwadratowy	bezwzględny
Natural spline	2.8859	4.9125	0.1109	1.3854
Clamped boundary	2.3974	4.6383	0.1506	1.6133

Tabela 4.2.4 Wartości błędów interpolacji dla funkcji sklejanej 2-go. stopnia.

Wraz z rosnącą ilością węzłów, oscylacje funkcji sklejanej drugiego stopnia maleją, a jej dokładność przybliżenia rośnie. Dla 44 węzłów oscylacje są już znacznie mniejsze niż dla 35. Natomiast od 50 węzłów nie są już one widoczne na wykresie.

• N = 500

Funkcje 2-go stopnia

Funkcje 3-go stopnia

	, , ,		3 3 .	
	Natural spline	Clamped	Natural spline	Cubic
		boundary		Function
Błąd bezwzględny	4.9841e-04	0.003628	1.418e-03	2.5618e-05
Błąd średniokwadratowy	1.9266e-08	0.000007	4.3605e-09	2.5218e-11

Tabela 4.2.5 Wartości błędów interpolacji dla 500 węzłów

Dla funkcji sklejanej 2-go stopnia możemy zauważyć, że natural spline jest znacznie bardziej dokładny od clamped boundary. Mimo to funkcja 3-go stopnia jest bardziej dokładna. W jej przypadku cubic function wykazuje się lepszym dopasowaniem od natural spline.

• N = 10000

	Funkcje 2-go stopnia		Funkcje 3-go stopnia	
	Natural spline	Clamped	Natural spline	Cubic
		boundary		Function
Błąd bezwzględny	4.4527e-08	9.6314e-06	1.7248e-10	1.7248e-10
Błąd średniokwadratowy	2.1478e-16	4.9475e-11	8.1462e-22	8.1462e-22

Tabela 4.2.5 Wartości błędów interpolacji dla 10 000 węzłów

Widzimy, że funkcja sklejana 3-go stopnia jest znacznie bardziej dokładna. Dla 10 000 węzłów w jej przypadku Natural spline oraz Cubic function mają już takie same błędy, bo komputer nie jest w stanie zapamiętać tak małych różnic.

4.3. Zestawienie wszystkich funkcji sklejanych na jednym wykresie.

5. Podsumowanie i wnioski

- Funkcje sklejane 3-go stopnia przybliżają interpolowaną funkcję z większą dokładnością, niż funkcje sklejane 2-go stopnia.
- W zależności od warunków brzegowych, które zastosujemy, otrzymane funkcje sklejana różnią się na tych brzegach, co jest widoczna na wykresach dla małej ilości węzłów.
- W przypadku funkcji sklejanych 2-go stopnia warunek brzegowy natural spline pozwala przybliżać funkcje z większą dokładnością niż clamped boundary
- W przypadku funkcji 3-go stopnia to cubic function jest bardziej dokładny od natural spline, jednak dla dużych ilości węzłów, różnice w błędach, które otrzymujemy są na tyle małe, że dostajemy te same wyniki.