EXERCICES DE BASE

1 Activités mentales

Pour les exercices suivants , ABCDEFGH est un pavé droit; I, J, K et L sont les milieux respectifs de [DH], [HG], [AB] et [BF].

EXERCICE 1:

Donner la position relative des deux droites citées :

- **1.** (*DB*) et (*EF*);
- **2.** (*IJ*) et (*AF*);
- **3.** (*IC*) et (*AB*);
- **4.** (*JF*) et (*EH*).

EXERCICE 2:

Donner la position relative des deux plans cités :

- **1.** (*DCG*) et (*AEF*);
- **2.** (*IJA*) et (*HDC*);
- **3.** (*IJE*) et (*CKL*).

EXERCICE 3:

Donner la position relative de la droite et du plan cités :

- **1.** (*IJ*) et (*ABF*);
- **2.** (*IJ*) et (*BCG*);
- **3.** (*KE*) et (*ABF*).

EXERCICE 4:

ABCDEFGH est un cube et *I* est le milieu de [*AB*].

Quelle est la nature de la section du cube par :

- **1.** le plan (*IFG*)?
- **2.** le plan (*IFC*)?

EXERCICE 5:

ABCDEFGH est un cube et I est le milieu de [AB].

Les droites suivantes sont-elles orthogonales?

- **1.** (*IF*) et (*FG*)?
- **2.** (*IF*) et (*FH*)?
- **3.** (BF) et (EH)?
- **4.** (BF) et (AC)?

EXERCICE 6:

ABCDEFGH est un cube et I est le milieu de [AB].

Compléter les égalités vectorielles suivantes :

- 1. $\overrightarrow{AI} + \overrightarrow{CD} \overrightarrow{CI} = \overrightarrow{F}$...
- 2. $\overrightarrow{AH} + \overrightarrow{CD} \overrightarrow{FG} = \overrightarrow{B}$...
- 3. $\overrightarrow{FD} + \overrightarrow{CB} + \overrightarrow{DG} = ...$

EXERCICE 7:

ABCDEFGH est un cube et *I* est le milieu de [*AB*] (voir figure de l'exercice 4).

- 1. Exprimer le vecteur \overrightarrow{FI} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AE} .
- 2. O étant le centre du cube, exprimer le vecteur \overrightarrow{AO} en fonction des vecteurs \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{AE} .

EXERCICE 8:

Dans un repère $(O; \vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère les points A(-3;2;4); B(-1;1;0) et C(2;-3;5).

- 1. Donner les coordonnées des vecteurs \overrightarrow{AB} ; \overrightarrow{AC} et \overrightarrow{BC} .
- 2. Donner les coordonnées des vecteurs :

$$\overrightarrow{u} = 2\overrightarrow{AB} - \overrightarrow{AC}$$
 et $\overrightarrow{v} = \overrightarrow{AC} + 3\overrightarrow{BC}$.

EXERCICE 9:

Dans un repère $(0; \vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère les points A(2;5;-1); B(0;3;4) et le vecteur $\overrightarrow{u}(2;-1;4)$.

- 1. Déterminer les coordonnées du point C défini par $\overrightarrow{AC} = \overrightarrow{u}$
- **2.** Déterminer les coordonnées du vecteur \overrightarrow{AB} puis celles du point D tel que ABDC soit un parallélogramme.
- **3.** Déterminer les coordonnées du centre *K* de ce parallélogramme.

EXERCICE 10:

Dans un repère $(0; \vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère les points A(2;5;-1); B(2;-3;4) et le vecteur $\vec{u}(2;-1;4)$.

- 1. Déterminer une représentation paramétrique de la droite Δ passant par A et de vecteur directeur \vec{u} .
- **2.** Le point *B* appartient-il à Δ ?

EXERCICE 11:

Dans un repère $(O; \vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère la droite Δ de représentation paramétrique :

$$\begin{cases} x = -3 + 4t \\ y = 2 \\ z = -t \end{cases}, t \in \mathbb{R}$$

Donner un vecteur directeur de Δ et un point de Δ .

2 Étude de positions relatives

Pour les exercices suivants, *ABCDEFGH* est un cube et *I*, *J* et *K* sont les milieux respectifs de [*FG*], [*AD*] et [*DH*].

EXERCICE 12:

Déterminer en justifiant les positions relatives des droites ci-dessous. On donnera leur intersection éventuelle.

1. (*IB*) et (*GC*).

3. (*GC*) et (*BA*).

2. (*HB*) et (*GA*).

EXERCICE 13:

Déterminer en justifiant les positions relatives des droites ci-dessous. On donnera leur intersection éventuelle.

1. (*JK*) et (*AH*).

3. (*IB*) et (*HJ*).

2. (*FD*) et (*GH*).

EXERCICE 14:

Déterminer en justifiant les positions relatives des droites et plans ci-dessous. On donnera leur intersection éventuelle.

1. (*EJ*) et (*HDA*).

3. (*IJ*) et (*AFG*).

2. (*JK*) et (*ABE*).

EXERCICE 15:

Déterminer en justifiant les positions relatives des droites et plans ci-dessous. On donnera leur intersection éventuelle.

1. (*FH*) et (*ACE*).

3. (*IJ*) et (*ABE*).

2. (*EJ*) et (*BCG*).

EXERCICE 16:

Déterminer en justifiant les positions relatives des plans ci-dessous. On donnera leur intersection éventuelle.

1. (*ABJ*) et (*GIC*).

2. (*KGI*) et (*EAD*).

3. (*KGI*) et (*ABE*).

EXERCICE 17:

Déterminer en justifiant les positions relatives des plans ci-dessous. On donnera leur intersection éventuelle.

- **1.** (*EBG*) et (*HDC*).
- **2.** (*EBI*) et (*HDC*).
- **3.** (*IJK*) et (*HDC*).

EXERCICE 18:

ABCD est un tétraèdre, I, J et K sont les milieux respectifs de [BC], [CD] et [AC]. Déterminer en justifiant les positions relatives des éléments ci-dessous. On donnera leur intersection éventuelle.

- **1.** (*IK*) et (*AD*).
- **2.** (*IK*) et (*AB*).
- **3.** (*IJ*) et (*AID*).
- **4.** (*ABJ*) et (*ACD*).
- **5.** (*DIK*) et (*ABD*).
- **6.** (*IJ*) et (*KBD*).

EXERCICE 19:

ABCDE est une pyramide de sommet A à base rectangulaire et I est un point du segment [AE].

- 1. Justifier que la droite (BC) est parallèle au plan (EAD).
- 2. En déduire l'intersection des plans (IBC) et (EAD).

EXERCICE 20:

A, B, C et D sont quatre points non coplanaires et Δ est la droite parallèle à (BC) passant par D. I est le milieu de [AC]. Quelle est l'intersection de Δ avec :

- **1.** Le plan (*IBD*)?
- **2.** Le plan (*ABC*)?

EXERCICE 21:

ABCDS est une pyramide dont la base ABCD est un trapèze.

Reproduire la figure et construire les intersections des plans :

- **1.** (*SAB*) et (*SDC*);
- **2.** (SAD) et (SBC).

EXERCICE 22:

ABCDEFGH est un pavé droit, I le point du segment [AE] tel que $AI = \frac{3}{4}AE$ et J le point du segment [CG] tel que $CJ = \frac{1}{4}CG$.

Les droites suivantes sont-elles coplanaires?

- **1.** (*AB*) et (*IF*);
- **2.** (*DJ*) et (*IF*);
- **3.** (BC) et (AE);
- **4.** (*EH*) et (*IJ*).

3 Sections

EXERCICE 23:

- 1. Reproduire la figure de l'exercice précédent.
- 2. Tracer l'intersection du plan (BIJ) avec la face EABF.
- **3.** Tracer l'intersection du plan (BIJ) avec la face DCGH.
- 4. Terminer la construction de la section du pavé *ABCDEFGH* par le plan (*BIJ*).

EXERCICE 24:

- 1. Reproduire la figure de l'exercice précédent.
- **2.** Tracer l'intersection du plan (*DIJ*) avec la face *EADH*.
- **3.** Tracer l'intersection du plan (DIJ) avec la face DCGH.
- **4.** Tracer l'intersection du plan (*DIJ*) avec la face *BCGF*.
- **5.** Terminer la construction de la section du pavé *ABCDEFGH* par le plan (*DIJ*).

EXERCICE 25:

ABCDEFGH est un cube et I et J les points tels que $I \in [HD]$ et $HI = \frac{2}{3}HD$; $J \in [FG]$ et $FJ = \frac{3}{4}FG$. Construire la section du cube par le plan (EIJ).

EXERCICE 26:

ABCDEFGH est un cube et I; J et K les points tels que $I \in [EF]$ et $EI = \frac{1}{3}EF$; $J \in [BC]$ et $BJ = \frac{1}{2}BC$; $K \in [HG]$ et $HK = \frac{3}{4}HG$.

Construire la section du cube par le plan (*IJK*).

EXERCICE 27:

ABCDEFGH est un cube et I; J et K les milieux respectifs des segments [BC], [CD] et [EH].

Construire la section du cube par le plan (IJK).

EXERCICE 28:

ABCDEFGH est un cube et I; J et K les points tels que $I \in [AE]$ et $AI = \frac{1}{4}AE$; $J \in [DH]$ et $DJ = \frac{3}{4}DH$; $K \in [FG]$ et $FK = \frac{1}{3}FG$.

Construire la section du cube par le plan (IJK).

EXERCICE 29:

ABCDEFGH est un cube; I est le milieu de [EH]; J est le milieu de [BC] et K le point du segment [GH] tel que : $HK = \frac{2}{3}HG$. Déterminer et construire la section du cube par le plan (IJK).

EXERCICE 30:

ABCDEFGH est un cube et I; J et K les points tels que : $I \in [AD]$ et $AI = \frac{1}{3}AD$; $J \in [FG]$ et $FJ = \frac{2}{3}FG$; $K \in [AB]$ et $AK = \frac{1}{3}AB$.

Déterminer et construire la section du cube par le plan (*IJK*).

EXERCICE 31:

On considère une pyramide à base carrée SABCD comme ci-dessous.

- 1. Reproduire la figure et placer les points *I* et *J* milieux respectifs des segments [*SD*] et [*AB*]
- **2.** Construire en justifiant la section de la pyramide par le plan (*CIJ*).

EXERCICE 32:

On considère un tétraèdre régulier ABCD comme ci-dessous avec I, J et K les milieux respectifs des segments [BC], [AB] et [AD].

- 1. Reproduire la figure.
- **2.** Construire en justifiant la section du tétraèdre par le plan (*IJK*).
- 3. Quelle est la nature de cette section? Justifier.

4 Orthogonalité

Pour les exercices suivants, ABCDEFGH est un cube.

Page 6 sur 12 Exercices de base

EXERCICE 33:

- **1.** Citer six droites orthogonales à la droite (EA);
- **2.** Citer six droites orthogonales à la droite (EB);
- **3.** Citer deux droites orthogonales au plan (BCG);
- **4.** Citer deux droites orthogonales au plan (AFG).

EXERCICE 34:

- 1. Démontrer que la droite (AB) est orthogonale au plan (BCG).
- **2.** En déduire que les droites (AB) et (CF) sont orthogonales.

EXERCICE 35:

Les droites suivantes sont-elles orthogonales? Le démontrer.

2. (<i>EB</i>) et (<i>EG</i>);	5. (<i>BD</i>) et (<i>EC</i>);
1. (EG) et (GC);	4. (AC) et (HF);

3. (AF) et (BC); **6.** (CE) et (AG).

EXERCICE 36:

ABCD est un tétraèdre régulier, S est le pied de la hauteur issue de A relativement à la base BCD et I est le milieu de [BC].

- 1. Démontrer que les droites (AS) et (BC) sont orthogonales.
- **2.** En déduire que la droite (BC) est orthogonale au plan (AIS).
- **3.** En déduire que les points A, I, S et D sont coplanaires et que les points I, S et D sont alignés.

5 Vecteurs

Pour les exercices suivants, ABCDEFGH est un cube et I; J; K et L les milieux respectifs de [BC], [GH], [AD] et [EH].

Page 7 sur 12 Exercices de base

EXERCICE 37:

Compléter les égalités vectorielles suivantes :

$$\mathbf{1.} \ \overrightarrow{A...} = \frac{1}{2} \overrightarrow{BC}$$

2.
$$\overrightarrow{KJ} = \overrightarrow{AE} + \frac{1}{2}\overrightarrow{E}...$$

3.
$$\overrightarrow{AK} + \overrightarrow{EF} = \overrightarrow{A...}$$

EXERCICE 38:

Compléter les égalités vectorielles suivantes :

1.
$$\overrightarrow{R} = \frac{1}{2} \overrightarrow{AC}$$

2.
$$\overrightarrow{L...} = \overrightarrow{EA} + \overrightarrow{FE} + \overrightarrow{AI}$$

3.
$$\overrightarrow{A}... = \overrightarrow{GJ} + 3\overrightarrow{AK} + \overrightarrow{AB} + \overrightarrow{JL}$$

EXERCICE 39:

Dans chacun des cas suivants, les vecteurs sont-ils coplanaires? Le justifier.

1.
$$\overrightarrow{AG}$$
, \overrightarrow{DH} et \overrightarrow{EG} ;

2.
$$\overrightarrow{AB}$$
, \overrightarrow{BD} et \overrightarrow{BF} ;

3.
$$\overrightarrow{AG}$$
, \overrightarrow{BG} et \overrightarrow{HG} ;

4.
$$\overrightarrow{HF}$$
, \overrightarrow{DC} et \overrightarrow{AD} .

EXERCICE 40:

Le point M est défini par $\overrightarrow{EM} = 2\overrightarrow{EF}$

- 1. En fonction des vecteurs \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{AE} exprimer les vecteurs suivants : \overrightarrow{EM} ; \overrightarrow{HC} ; \overrightarrow{BD} ; \overrightarrow{BJ} ; \overrightarrow{KM} et \overrightarrow{MJ} .
- **2.** Les droites (BK) et (MJ) sont-elles parallèles? Le démontrer en utilisant la question précédente.
- **3.** Que peut-on en déduire concernant les points *B*, *K*, *M* et *J*?

EXERCICE 41:

On considère les points M et N définis par :

$$\overrightarrow{AM} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AD} + \frac{2}{3}\overrightarrow{AE}$$
et
$$\overrightarrow{AN} = \frac{2}{3}\overrightarrow{AB} + \overrightarrow{BF} + \frac{2}{3}\overrightarrow{FG}.$$

- 1. Construire la figure.
- 2. Démontrer que les points C, E et M sont alignés.
- **3.** Démontrer que les points *E*, *F*, *H* et *N* sont coplanaires.

EXERCICE 42:

Répondre par vrai ou faux en justifiant :

- 1. Les vecteurs \overrightarrow{HI} , \overrightarrow{AB} et \overrightarrow{DH} sont coplanaires.
- **2.** Les vecteurs \overrightarrow{HG} , \overrightarrow{KB} et \overrightarrow{LE} sont coplanaires.
- **3.** Les vecteurs \overrightarrow{HJ} , \overrightarrow{AB} et \overrightarrow{DH} sont coplanaires.

EXERCICE 43:

ABCDEFGH est un cube.

On considère le point K défini par $\overrightarrow{HK} = \frac{5}{4} \overrightarrow{HF}$ et M un point du segment [BF].

- 1. Que peut-on dire des points D, M, K et H?
- **2.** Montrer qu'il existe un unique réel $t \in [0;1]$ tel que $\overrightarrow{BM} = t\overrightarrow{BF}$.
- **3.** Montrer que si $t = \frac{4}{5}$, les points D, M et K sont alors alignés.

EXERCICE 44:

Dans un repère $(O; \vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère les points A(-3;2;4); B(-1;1;0) et C(2;-3;5). Déterminer les coordonnées des points M, N et P définis par :

- 1. $\overrightarrow{AM} = 2\overrightarrow{BC} \overrightarrow{BA}$
- 2. $\overrightarrow{NB} = 4\overrightarrow{CA} 3\overrightarrow{BC}$
- 3. $2\overrightarrow{PA} 3\overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{0}$

EXERCICE 45:

Dans un repère $(O; \vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère les points A(-4;2;3), B(1;5;2), C(0;5;4) et D(-6;-1;-2).

- 1. Démontrer que $\overrightarrow{AD} = 2\overrightarrow{AB} 3\overrightarrow{AC}$.
- **2.** Que peut-on en déduire concernant les points *A*, *B*, *C* et *D*?

EXERCICE 46:

Dans un repère $(O; \vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère les points A(0;3;-1), B(2;-2;0), C(4;1;5) et D(2;21;12).

- 1. Montrer que les points A, B et C définissent un plan.
- **2.** Le point D appartient-il à ce plan?

EXERCICE 47:

Dans un repère $(O; \vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère les points A(1; -1; -1), B(5; 0; -3), C(2; -2; -2) et D(0; 5; -2).

- 1. Montrer que les points A, B et C définissent un plan.
- 2. Le point D appartient-il à ce plan?

EXERCICE 48:

On reprend l'énoncé de l'exercice 42 en se plaçant dans le repère $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$.

- 1. Écrire les coordonnées des points de la figure. On écrira les coordonnées de M en fonction de t.
- **2.** Démontrer à l'aide des coordonnées que *D*, *M* et *I* sont alignés si et seulement si $t = \frac{4}{5}$.

6 Représentations paramétriques

Dans toute cette partie, on munit l'espace d'un repère $(O; \vec{i}, \vec{j}, \vec{k})$.

EXERCICE 49:

On considère les points A(-3; 2; 4) et B(-1; 1; 0). Écrire une représentation paramétrique de la droite (AB).

EXERCICE 50:

Soit
$$\Delta$$
 la droite de représentation paramétrique :
$$\begin{cases} x=1-4t\\ y=3+t\\ z=1-t \end{cases},\ t\in\mathbb{R}$$

1. Donner un vecteur directeur de la droite Δ et un point de $\Delta.$

Page 9 sur 12 Exercices de base

- **2.** Le point M(-3;4;1) appartient-il à la droite Δ ?
- 3. Donner les coordonnées de trois points de la droite Δ .
- 4. Déterminer une autre représentation paramétrique de Δ .

EXERCICE 51:

Soit Δ la droite de représentation paramétrique :

$$\begin{cases} x = t - 2 \\ y = 4 \\ z = 2t - 1 \end{cases}, t \in \mathbb{R}$$

- 1. Donner un vecteur directeur de la droite Δ et un point de Δ .
- **2.** Le point M(-3;4;-3) appartient-il à la droite Δ ?
- **3.** Donner les coordonnées de trois points de Δ .
- **4.** Déterminer une autre représentation paramétrique de la droite Δ .

EXERCICE 52:

Soient A(-4;1;2) et B(-1;2;5). Donner une

représentation paramétrique de chacun des objets géométriques suivants :

- **1.** La droite (*AB*);
- **2.** Le segment [*AB*];
- **3.** La demi-droite [AB).

EXERCICE 53:

Donner une représentation paramétrique de :

- 1. La droite $(O; \overrightarrow{i});$
- **2.** La droite $(O; \overrightarrow{i})$;
- **3.** La droite $(O; \overrightarrow{k})$.

EXERCICE 54:

On considère les points A(-3; 2; 4), B(-1; 1; 0) et C(-5; 4; 6).

Vérifier que A, B et C définissent un plan et écrire une représentation paramétrique du plan (ABC).

EXERCICE 55:

Soit \wp le plan de représentation paramétrique :

$$\begin{cases} x = 3 - t + 5t' \\ y = 1 + t' \\ z = -5t + 3t' \end{cases} \quad t \in \mathbb{R}, t' \in \mathbb{R}$$

- 1. Donner les coordonnées d'un couple de vecteurs directeurs de φ et un point de φ .
- **2.** Le point M(6;2;-6) appartient-il à \wp ?
- 3. Donner les coordonnées de trois points de \wp .
- **4.** Déterminer une autre représentation paramétrique de \wp .

EXERCICE 56:

Soient A(-4;1;2); B(-1;2;5) et C(1;0;6).

- **1.** Vérifier que les points *A*, *B* et *C* définissent un plan.
- **2.** Déterminer une représentation paramétrique de la droite (AB).

- **3.** Déterminer une représentation paramétrique du plan (*ABC*).
- **4.** Démontrer que le point D(-3; -4; 1) appartient au plan (ABC).
- **5.** Déterminer une autre représentation paramétrique du plan (*ABC*).

EXERCICE 57:

Donner une représentation paramétrique des plans suivants :

- 1. Le plan $(O; \overrightarrow{i}, \overrightarrow{j});$
- **2.** Le plan $(O; \overrightarrow{i}, \overrightarrow{k});$
- **3.** Le plan $(O; \overrightarrow{j}, \overrightarrow{k})$.

EXERCICE 58:

Soit Δ la droite de représentation paramétrique :

$$\begin{cases} x = 1 - t \\ y = -2 + 3t \\ z = -1 + t \end{cases}, t \in \mathbb{R}$$

Dans chacun des cas suivants, étudier la position de la droite Δ avec la droite d de représentation paramétrique :

1.
$$\begin{cases} x = -k \\ y = 3 + 2k \\ z = 4 - k \end{cases}$$
, $k \in \mathbb{R}$

2.
$$\begin{cases} x = 1 + k \\ y = -2k \\ z = 3 - k \end{cases}$$
, $k \in \mathbb{R}$

3.
$$\begin{cases} x = k - 2 \\ y = 7 - 3k \\ z = 2 - k \end{cases}$$
, $k \in \mathbb{R}$

EXERCICE 59:

Soit Δ la droite de représentation paramétrique :

$$\begin{cases} x = 8 + 2t \\ y = -5 - 4t \\ z = 3 + 2t \end{cases}$$
, $t \in \mathbb{R}$

Dans chacun des cas suivants, étudier la position de la droite Δ avec la droite d de représentation paramétrique :

1.
$$\begin{cases} x = 2 + 3t \\ y = 7 - 6t \\ z = -3 + 3t \end{cases}$$
, $t \in \mathbb{R}$

2.
$$\begin{cases} x = 1 - t \\ y = 4 - t \\ z = 2 \end{cases}$$
, $t \in \mathbb{R}$

3.
$$\begin{cases} x = -1 + t \\ y = 7 - 2t \\ z = -2 + 3t \end{cases}$$
, $t \in \mathbb{R}$

EXERCICE 60:

Soit \(\rho \) le plan de représentation paramétrique :

$$\begin{cases} x = t - 2t' \\ y = 1 + 3t + t' & t \in \mathbb{R}, t' \in \mathbb{R} \\ z = 2 - 5t \end{cases}$$

Déterminer la nature de $\wp \cap \wp'$ dans chacun des cas suivants où \wp' est définie par une représentation paramétrique :

1.
$$\begin{cases} x = -2 - 3t - t' \\ y = 2 - 2t + 4t' & t \in \mathbb{R}, t' \in \mathbb{R} \\ z = 2 + 5t - 5t' \end{cases}$$

2.
$$\begin{cases} x = 4 - 3t + 5t' \\ y = -2t + t' \\ z = 5 + 5t - 5t' \end{cases} \quad t \in \mathbb{R}, t' \in \mathbb{R}$$

3.
$$\begin{cases} x = -3 + 2t + t' \\ y = 2 - t + 2t' \\ z = 1 + t \end{cases} \quad t \in \mathbb{R}, t' \in \mathbb{R}$$

EXERCICE 61:

Soit \wp le plan de représentation paramétrique :

$$\begin{cases} x = 4 - t + 3t' \\ y = 1 - t + 5t' \quad t \in \mathbb{R}, t' \in \mathbb{R} \\ z = t - t' \end{cases}$$

Dans chacun des cas suivants, déterminer une représentation paramétrique de la droite d'intersection de \wp et du plan :

1.
$$(O; \overrightarrow{i}, \overrightarrow{j})$$

2.
$$(O; \overrightarrow{i}, \overrightarrow{k})$$

3.
$$(O; \overrightarrow{j}, \overrightarrow{k})$$

EXERCICE 62:

Soit \wp le plan de représentation paramétrique :

$$\begin{cases} x = 4 - t + 3t' \\ y = 1 - t + 5t' \quad t \in \mathbb{R}, t' \in \mathbb{R} \\ z = t - t' \end{cases}$$

Dans chacun des cas suivants, déterminer l'intersection de \wp avec la droite d donnée par une représentation paramétrique:

1.
$$\begin{cases} x = 2 + t \\ y = 3 + 3t \\ z = 5 - t \end{cases}, t \in \mathbb{R}$$
2.
$$\begin{cases} x = 1 + 4t \\ y = 10t \\ z = -3t \end{cases}, t \in \mathbb{R}$$

3.
$$\begin{cases} x = 1 + 2t \\ y = -2 \\ z = -3 + t \end{cases}$$
, $t \in \mathbb{R}$

2.
$$\begin{cases} x = 1 + 4t \\ y = 10t \\ z = -3t \end{cases}$$
, $t \in \mathbb{R}$

EXERCICE 63:

Soit *ABCDEFGH* un cube; *I* et *J* les milieux respectifs de [*EG*] et [*GH*]. On munit l'espace du repère $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$.

- 1. Déterminer une représentation paramétrique de la droite (AI) puis de la droite (DJ).
- 2. Démontrer que les droites (AI) et (DJ) sont sécantes en un point dont on déterminera les coordonnées.

	Exercice 1:	0/
	1. (DB) et (EF) non coplanaires;	
4.	2. (<i>IJ</i>) et (<i>AF</i>) parallèles;	
	3. (<i>IC</i>) et (<i>AB</i>) non coplanaires;	
	4. (<i>JF</i>) et (<i>EH</i>) sécantes.	
	Exercice 2:	0.1
	Exercice 2:	0/
	1. (DCG) et (AEF) parallèles;	
3.	2. (IJA) et (HDC) sécants selon (IJ) ;	
	3. (IJE) et (CKL) parallèles.	
	Exercice 3:	0/
	1. (IJ) parallèle à (ABF) ;	
3.	2. (<i>IJ</i>) et (<i>BCG</i>) sécants;	
	3. (<i>KE</i>) est incluse dans (<i>ABF</i>).	
	Exercice 4:	0/
2.	1. un rectangle	
	$2.\;\;\mathrm{un}\;\mathrm{triangle}\;\mathrm{isocèle}\;\mathrm{en}\;I$	
	Exercice 5:	0/
	1. (IF) et (FG) sont orthogonales.	
	2. (<i>IF</i>) et (<i>FH</i>) ne sont pas orthogonales	
4.	3. (BF) et (EH) sont orthogonales.	
	4. (<i>BF</i>) et (<i>AC</i>) sont orthogonales.	
	Exercice 6:	0/
	1. $\overrightarrow{AI} + \overrightarrow{CD} - \overrightarrow{CI} = \overrightarrow{FG}$;	
3.	2. $\overrightarrow{AH} + \overrightarrow{CD} - \overrightarrow{FG} = \overrightarrow{BE}$;	
	$3. \ \overrightarrow{FD} + \overrightarrow{CB} + \overrightarrow{DG} = \overrightarrow{0}.$	
	Exercice 7:	0/
	\rightarrow $1 \rightarrow$ \rightarrow	
2.	$1. \ \overrightarrow{FI} = -\frac{1}{2}\overrightarrow{AB} - \overrightarrow{AE}.$	
	2. $\overrightarrow{AO} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD} + \frac{1}{2}\overrightarrow{AE}$.	
	Exercice 8:	0/

	1. $\overrightarrow{AB}(2;-1;-4)$; $\overrightarrow{AC}(5;-5;1)$ et $\overrightarrow{BC}(3;-4;5)$.	
2.	2. $\overrightarrow{u}(-1;3;-9)$ et $\overrightarrow{v}(14;-17;16)$.	
	Exercice 9:	0/
	1. C(4;4;3);	
3.	2. $\overrightarrow{AB}(-2; -2; 5)$ et $D(2; 2; 8)$;	
	3. <i>K</i> (2;3,5;3,5).	
	Exercice 10:	0/
2.	1. Représentation paramétrique de la droite Δ : $\begin{cases} x = 2 + 2t \\ y = 5 - t \\ z = -1 + 4t \end{cases}$	
	2. Le point B n'appartient pas à Δ .	
	Exercice 11:	0/
	$\overrightarrow{u}(4;0;-1)$ dirige Δ et $A(-3;2;0)$ appartient à Δ .	
	Exercice 12:	0/
	Exercice 13:	0/
	Exercice 14:	0/
	Exercice 15:	
	Exercice 16:	0/
	Exercice 17:	0/
	Exercice 18:	0/
	Exercice 19:	0/
	Exercice 20:	0/
	Exercise 21:	0/
	Exercise 22:	0/
	Exercice 23:	

3.

2.

1.

2.
$$\overrightarrow{CM} = \overrightarrow{CA} + \overrightarrow{AM} =$$

$$-\overrightarrow{AB} - \overrightarrow{AD} + \frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AD} + \frac{2}{3}\overrightarrow{AE} =$$

$$-\frac{2}{3}\overrightarrow{AB} - \frac{2}{3}\overrightarrow{AD} + \frac{2}{3}\overrightarrow{AE} \text{ et}$$

$$\overrightarrow{CE} = -\overrightarrow{AB} - \overrightarrow{AD} + \overrightarrow{AE} = \frac{3}{2}\overrightarrow{CM}.$$

Donc \overrightarrow{CE} et \overrightarrow{CM} sont colinéaires et les points C, E et M sont alignés.

3. $\overrightarrow{EN} = \overrightarrow{EA} + \overrightarrow{AN} = \overrightarrow{FB} + \frac{2}{3}\overrightarrow{AB} + \overrightarrow{BF} + \frac{2}{3}\overrightarrow{FG} = \frac{2}{3}\overrightarrow{EG}$. Donc $N \in (EFG)$ et les points E, F, H et N sont coplanaires.

Exercice 42:	0/
Exercice 43:	0/
Exercice 44:	0/
Exercice 45:	0/

1. $\overrightarrow{AD}(-2; -3; -5)$. D'autre part : $\overrightarrow{AB}(5; 3; -1)$ donc $2\overrightarrow{AB}(10; 6; -2)$ et $\overrightarrow{AC}(4; 3; 1)$ donc $-3\overrightarrow{AC}(-12; -9; -3)$. Ainsi $2\overrightarrow{AB} - 3\overrightarrow{AC}(-2; -3; -5)$. Donc $\overrightarrow{AD} = 2\overrightarrow{AB} - 3\overrightarrow{AC}$

2. On en déduit que les vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} sont coplanaires, et que les points A, B, C et D sont coplanaires.

Exercice 46:	0/
Exercice 47:	0/
Exercice 48:	0/

Exercice 49:	0/
Exercice 50:	0/
Exercice 51:	0/
Exercice 52:	0/
Exercice 53:	0/
Exercice 54:	0/
Exercice 55:	0/
Exercice 56:	0/
Exercice 57:	0/
Exercice 58:	0/

 Δ a pour vecteur directeur $\overrightarrow{u}(-1; 3; 1)$

1. d a pour vecteur directeur \vec{v} (-1; 2; -1) qui n'est pas colinéaire avec \vec{u} . Δ et d sont donc soit sécantes, soit non coplanaires.

$$\begin{cases} x = 1 - t \\ y = -2 + 3t \\ z = -1 + t \\ x = -k \\ y = 3 + 2k \\ z = 4 - k \end{cases} \Leftrightarrow \begin{cases} -k = 1 - t \\ 3 + 2k = -2 + 3t \\ 4 - k = -1 + t \\ x = -k \\ y = 3 + 2k \\ z = 4 - k \end{cases} \Leftrightarrow \begin{cases} k = 2 \\ t = 3 \\ t = 3 \\ x = -2 \\ y = 7 \\ z = 2 \end{cases}$$

Les droites d et Δ sont donc sécantes en A(-2; 7; 2).

2. d a pour vecteur directeur $\vec{v}(1; -2; -1)$ qui n'est pas colinéaire avec \vec{u} . Δ et d sont donc soit sécantes, soit non coplanaires.

$$\begin{cases} x = 1 - t \\ y = -2 + 3t \\ z = -1 + t \\ x = 1 + k \\ y = -2k \\ z = 3 - k \end{cases} \Leftrightarrow \begin{cases} 1 + k = 1 - t \\ -2k = -2 + 3t \\ 3 - k = -1 + t \\ x = 1 + k \\ y = -2k \\ z = 3 - k \end{cases} \Leftrightarrow \begin{cases} k = -t \\ t = 2 \\ 3 = -1!!! \\ x = 1 + k \\ y = -2k \\ z = 3 - k \end{cases}$$

Le système n'admet pas de solution et les droites d et Δ sont donc non coplanaires.

3. d a pour vecteur directeur $\overrightarrow{v}(1; -3; -1)$ qui est pas colinéaire avec $\overrightarrow{u} \cdot \Delta$ et d sont donc parallèles. $B(1; -2; -1) \in \Delta$. Vérifions si $B \in d$ pour savoir si elles sont confondues :

$$\begin{cases} 1 = 1 + k \\ -2 = -2k \\ -1 = 3 - k \end{cases} \Leftrightarrow \begin{cases} k = 0 \\ k = 1 \\ k = 4 \end{cases}$$

Il n'existe pas de réel k tel que les coordonnées de B vérifient le système, donc B n'appartient pas à d et les droites d et Δ sont strictement parallèles.

Exercice 59:	<mark>0</mark> /
Exercice 60:	0/
Exercice 61:	0/
Exercice 62:	<mark>0</mark> /
Exercice 63:	0/

3.