CS 4124 Solutions to Homework Assignment 5 Collin McDevitt

April 12, 2024

[50] 1. Let \mathcal{R}_1 be the (simplified) regular expression $(ba)^* + (abb)(abb)^*$.

Construct an ε -NFA N_1 that accepts the language denoted by \mathcal{R}_1 . You should employ the construction given in class or in the textbook for inspiration, but you do not have to follow the construction precisely. Use reason to construct your N_1 and justify your reasoning. Give N_1 as a labeled directed graph or state diagram. Please draw it neatly!

This was constructed by first creating two ε -NFA the first one located at the top recognizes $(ba)^*$ this is seen as it accepts the empty string and if it does receive a string in order for it to accept it must take the path $q_1 \longrightarrow q_2 \longrightarrow q_3 \longrightarrow q_1$ which can only be traversed by the string $ba\varepsilon$. The epsilon ensures that $(ba)^*$ will be recognized.

The second ε -NFA is located at the bottom and recognizes $(abb)(abb)^*$ this is seen as it first must traverse $q_4 \longrightarrow q_5 \longrightarrow q_6 \longrightarrow q_7$ to reach an accepting state. This can only be done by the string abb after it is in state q_7 there is an epsilon transition back to q_4 which ensures that $(abb)(abb)^*$ will also be recognized. Both these ε -NFA are combined with the initial state q_0 and a ε transition to their initial states.

- [50] 2. Let N_2 be the ε -NFA in Figure ??.
 - A. Compute the ε -reachability set E(q) of each state q of N_2 .

$$E(q_0) = \{q_0, q_1, q_2\}$$

$$E(q_1) = \{q_1\}$$

$$E(q_2) = \{q_2\}$$

В.

bb	$q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_2$
cb	$q_0 \xrightarrow{\varepsilon} q_1 \xrightarrow{c} q_1 \xrightarrow{b} q_2$
ε	$q_0 \xrightarrow{\varepsilon} q_2$
c	$q_0 \xrightarrow{c} q_2$
b	$q_0 \xrightarrow{\varepsilon} q_1 \xrightarrow{b} q_2$
ab	$q_0 \xrightarrow{\varepsilon} q_1 \xrightarrow{a} q_0 \xrightarrow{\varepsilon} q_1 \xrightarrow{b} q_2$
cc	$q_0 \xrightarrow{\varepsilon} q_1 \xrightarrow{c} q_0 \xrightarrow{c} q_2$
ac	$q_0 \xrightarrow{\varepsilon} q_1 \xrightarrow{a} q_0 \xrightarrow{c} q_2$
ca	$q_0 \xrightarrow{\varepsilon} q_1 \xrightarrow{c} q_1 \xrightarrow{a} q_0 \xrightarrow{\varepsilon} q_2$
ba	$q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{\varepsilon} q_2$
a	$q_0 \xrightarrow{\varepsilon} q_1 \xrightarrow{a} q_0 \xrightarrow{\varepsilon} q_2$

C. Use the power set construction to obtain a DFA M_2 equivalent to N_2 . Give M_2 as a labeled directed graph or state diagram. Please draw it neatly!

