1 previous chapters TODO

2 (ch2)

2.1 Analytic Functions

A function is analytic

3 Elementary Functions

. . .

3.1 Branches of the Logarithm

Let $\alpha \in \mathbb{R}$. Let

$$D_{\alpha} = \left\{ z = re^{i\theta} : r > 0, \alpha < \theta < \alpha + 2\pi \right\}.$$

For $z \in D_{\alpha}$ define

$$\log_{\alpha}(z) := \log(|z|) + i \arg(z)$$

where $\alpha < \arg(z) < \alpha + 2\pi$

Note. In the notation for $\log_{\alpha}(z)$, α does <u>NOT</u> denote the base of the logarithm. This function is called a branch of the logarithm function.

Theorem 3.1. Let $\alpha \in \mathbb{R}$. The function

$$\log_{\alpha}: D_{\alpha} \to \mathbb{C}$$

is analytic and

$$\frac{\mathrm{d}}{\mathrm{d}z}\log_{\alpha}(z) = \frac{1}{z}.$$

Example. Let $\alpha = \frac{\pi}{2}$. Find

(i) $\log_{\frac{\pi}{2}}(-i)$ and (ii) $\log_{\frac{\pi}{2}}(1)$.

(i) $\arg(-i) = \frac{-\pi}{2} + 2\pi n \ (n \in \mathbb{Z})$ Choose n = 1. Then $\arg(-i) = \frac{-\pi}{2} + 2\pi = \frac{3\pi}{2}$. Then $\log_{\frac{\pi}{2}}(-i) = \log(|-i|) + i\left(\frac{3\pi}{2}\right) = \log(1) + \frac{3\pi i}{2} = \frac{3\pi i}{2}$.

(2) $\log_{\frac{\pi}{2}}(1) = \log(|1|) + i(0 + 2\pi) = 2\pi i$.

Note that $\log_{\frac{\pi}{2}}(z) = \log(|z|) + i\arg(z)$, where $\frac{\pi}{2} < \arg(z) < \frac{5\pi}{2} = \frac{\pi}{2} + 2\pi$.

Note. The principal branch of the logarithm, Log(z), is equal to $\log_{-\pi}(z)$. (Choose $\alpha = -\pi$)

Properties

Let $z, z_1, z_2 \in \mathbb{C}$.

- 1. $\exp(\log(z)) = z$ if $z \neq 0$.
- 2. $\log(\exp(z)) = z + 2\pi ni$ where $n \in \mathbb{Z}$.
- 3. $\operatorname{Log}(\exp(z)) = z \text{ if } -\pi < \operatorname{Im}(z) \le \pi.$
- 4. $\log(z_1 z_2) = \log(z_1) + \log(z_2)$ if $z_1, z_2 \neq 0$.

Proof. (3.) Let
$$z = x + iy$$
, where $x, y \in \mathbb{R}$. Then $\operatorname{Log}(\exp(z)) = \operatorname{Log}(e^x e^{iy}) = \operatorname{log}(\left|e^x e^{iy}\right|) + i\operatorname{Arg}(e^x e^{iy}) = \operatorname{log}(e^x) + iy = x + iy = z$ when $-\pi < y = \operatorname{Im}(z) \le \pi$.

Note. In general it is **NOT TRUE** that

$$\operatorname{Log} z_1 z_2 = \operatorname{Log}(z_1) + \operatorname{Log}(z_2).$$

But $\log(z_1 z_2) = \log(z_1) + \log(z_2)$ if $z_1, z_2 \neq 0$.

Example. Let $z_1 = z_2 = -1 + i$.

Then
$$|z_1| = |z_2| = \sqrt(2)$$
 and $Arg(z_1) = Arg(z_2) = \frac{3\pi}{4} \in (-\pi, \pi]$.

Also
$$z_1 z_2 = (-1+i)^2 = 1 - 2i + i^2 = -2i$$
, so $|z_1 z_2| = |-2i| = 2$, and $\operatorname{Arg}(z_1 z_2) = \operatorname{Arg}(-2i) = \frac{-\pi}{2}$.

Thus
$$Log(z_1z_2) = log(|z_1z_2|) + i Arg(z_1z_2) = log(2) + i \left(\frac{-\pi}{2}\right)$$
.

However,
$$Log(z_1) + Log(z_2) = 2 Log(z_1) = 2 (log(|z_1|) + i Arg(z_1)) = 2 (log(\sqrt{2})) + i (\frac{3\pi}{4})) = log(2) + i (\frac{3\pi}{2})$$
.

So for $z_1 = z_2 = -1 + i$, $Log(z_1 z_2) \neq Log(z_1) + Log(z_2)$.

3.2 Trigonometric Functions

Let $\theta \in \mathbb{R}$. Then

$$\begin{split} e^{i\theta} &= \cos(\theta) + i\sin(\theta) \\ e^{-i\theta} &= \cos(-\theta) + i\sin(-\theta) = \cos(\theta) - i\sin(\theta) \\ 2\cos(\theta) &= e^{i\theta} + e^{-i\theta} \\ 2i\sin(\theta) &= e^{i\theta} - e^{-i\theta} \end{split}$$

We find that

$$\cos(\theta) = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right)$$

and

$$\sin(\theta) = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$$

Definition 3.1. Let $z \in \mathbb{C}$. We define

$$\cos(\theta) \coloneqq \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right)$$

and

$$\sin(\theta) := \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right).$$

Properties

- 1. $\sin(z)$ and $\cos(z)$ are entire functions.
- 2. $\frac{d}{dz}\sin(z) = \cos(z)$ and $\frac{d}{dz}\cos(z) = -\sin(z)$.
- 3. $\sin(z_1 + z_2) = \sin(z_1)\cos(z_2) + \cos(z_1)\sin(z_2)$.
- 4. $\cos(z_1 + z_2) = \cos(z_1)\cos(z_2) \sin(z_1)\sin(z_2)$.
- 5. $\sin^2(z) + \cos^2(z) = 1$.
- 6. $\sin(z + \frac{\pi}{2}) = \cos(z)$.
- 7. $\sin(z + \pi) = -\sin(z)$.
- 8. $\cos(z + \pi) = -\cos(z)$.
- 9. $\sin(z + 2\pi) = \sin(z)$ and $\cos(z + 2\pi) = \cos(z)$
- 10. $|\sin(z)|^2 =$
- 11. $|\cos(z)|^2 =$

Proof. (1.) Since $\exp(z)$ is entire, so is $\exp(iz)$ and $\exp(-iz)$. Hence

$$\sin(z) = \frac{1}{2i} \left(\exp(iz) - \exp(-iz) \right)$$
$$\cos(z) = \frac{1}{2} \left(\exp(iz) + \exp(-iz) \right)$$

are entire.

(2.)

$$\sin(z) = \frac{1}{2i} (\exp(iz) - \exp(-iz))$$

$$\frac{d}{dz} \sin(z) = \frac{1}{2i} (i \exp(iz) - (-i \exp(-iz)))$$

$$= \frac{i}{2i} (\exp(iz) + \exp(-iz))$$

$$= \frac{1}{2} (\exp(iz) + \exp(-iz))$$

$$= \cos(z)$$

Exercise. Show $\frac{d}{dz}\cos(z) = -\sin(z)$.

(3.) $\sin(z_1 + z_2) = \frac{1}{2i} \left(\exp(i(z_1 + z_2)) - \exp(-i(z_1 + z_2)) \right)$ But $\sin(z_1) \cos(z_2) + \cos(z_1) \sin(z_2) = \exp(-i(z_1 + z_2))$

 $\frac{1}{4i} \left(\exp(iz_1) - \exp(-iz_2) \right) \left(\exp(iz_2) + \exp(-iz_1) \right) \dots$ fix and simplify

(5.)

3.3 Review of Hyperbolic Functions

Let $x \in \mathbb{R}$. Define

$$\sinh(x) \coloneqq \frac{1}{2} \left(e^x - e^{-x} \right)$$

and

$$\cosh(x) := \frac{1}{2} \left(e^x + e^{-x} \right).$$

Then

$$\frac{\mathrm{d}}{\mathrm{d}x}\sinh(x) = \frac{1}{2}\left(e^x + e^{-x}\right) = \cosh(x)$$

and

$$\frac{\mathrm{d}}{\mathrm{d}x}\cosh(x) = \frac{1}{2}\left(e^x - e^{-x}\right) = \sinh(x)$$

See that $\sinh^2(x) = \left(\frac{1}{2}(e^x - e^{-x})\right)^2 = \frac{1}{4}(e^{2x} - 2 + e^{2x})$ and $\cosh^2(x) = \left(\frac{1}{2}(e^x + e^{-x})\right)^2 =$. Then $\cosh^2(x) = \sinh^2(x) = stuff = 1$.

some more stuff...

$$\overline{\exp(z)} = \exp(\overline{z})$$