	Teste de Matemática A					
	2019 / 2020					
Teste N.º 1						
Matemática A						
Duração do Teste: 90 minutos						
NÃO É PERMITIDO O USO DE CALCULADORA						
10.º Ano de Escolaridade						
Nome do aluno:	N.º: Turma:					

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Sejam $a \in b$ dois números reais, com $a \neq -b$. Sabe-se que a + b = -8(a - b).

Qual é o valor de $\sqrt[3]{a^2 - b^2} : (\sqrt[3]{a + b})^2$?

- **(A)** -2
- **(B)** $-\frac{1}{2}$
- (C) $\frac{1}{2}$
- **(D)** 2
- **2.** A expressão racionalizada de $\frac{6}{\sqrt{3}(\sqrt{5}-\sqrt{3})}$ é:
 - **(A)** $\frac{\sqrt{15}+3}{6}$
 - **(B)** $\sqrt{15} 3$
 - **(C)** $\frac{\sqrt{5}+\sqrt{3}}{6}$
 - **(D)** $\sqrt{15} + 3$
- 3. Na figura está representada uma peça constituída por um cilindro e uma pirâmide quadrangular regular. A base da pirâmide está inscrita numa das bases do cilindro e o vértice da pirâmide é o centro da outra base do cilindro. Sabe-se que:

- o raio da base do cilindro mede r unidades de comprimento;
- a altura do cilindro é o triplo do raio da sua base.

Prove que a área da superfície total da pirâmide é igual a $(2 + 2\sqrt{19})r^2$ unidades de área.

 Num referencial cartesiano do plano, considere a representação gráfica da figura.

Na figura está representado:

 um arco de circunferência de centro na origem do referencial e raio igual a 1;

Qual das seguintes expressões define a região a sombreado?

(A)
$$y \ge -2x + 3 \land x^2 + y^2 \ge 1 \land x \ge 0 \land y \ge 0$$

(B)
$$y \le -2x + 3 \land x^2 + y^2 \ge 1 \land x \ge 0 \land y \ge 0$$

(C)
$$y \le -2x + 3 \land x^2 + y^2 \le 1 \land x \ge 0 \land y \ge 0$$

(D)
$$y \le -2x + 3 \lor x^2 + y^2 \ge 1 \lor x \ge 0 \lor y \ge 0$$

- **5.** Considere, num plano munido de um referencial o.n. Oxy, os pontos P(2,-1), Q(12,4) e R(14,15).
 - **5.1.** Escreva a equação reduzida da circunferência de diâmetro [PQ].
 - **5.2.** Determine as coordenadas do ponto *S*, de modo que [*PQRS*] seja um losango.
 - **5.3.** Determine as coordenadas do vetor colinear com \overrightarrow{PQ} , de sentido contrário ao de \overrightarrow{PQ} e de norma 5.
- **6.** A expressão $\sqrt[6]{18a^3} \times (2a^{-3}b^{12})^{-\frac{1}{6}}$ é igual, para quaisquer números reais positivos a e b, a:
 - **(A)** $\sqrt[3]{3}ab^2$
 - $\textbf{(B)}\,\frac{\sqrt[3]{3}b}{a^2}$
 - (C) $\frac{\sqrt[3]{3}a}{b^2}$
 - **(D)** $\frac{\sqrt[3]{3}}{a b^2}$
- 7. Considere, num referencial o.n. 0xy, a região definida pela condição:

$$(x+1)^2 + (y-1)^2 \le 2 \land y + x \le 0$$

Qual é a área dessa região?

(A) $\frac{\pi}{4}$

(B) $\frac{\pi}{2}$

(C) π

- **(D)** 2π
- 8. Na figura está representado, num referencial o.n. Oxy, o trapézio [ABCD].

Sabe-se que:

- o ponto *A* tem coordenadas (2,0);
- o ponto *B* tem coordenadas (0, 1);
- o ponto C tem coordenadas (0,5);
- o ponto D tem coordenadas $\left(a, \frac{a}{3}\right)$, com $a \in \mathbb{R}$;
- as retas AB e CD são paralelas.

Determina o valor de a.

9. Na figura estão representadas, num referencial o.n. 0xy, a circunferência definida pela condição $x^2 + y^2 + 4x - 2y = 4$, uma reta r e o triângulo [ABC].

Sabe-se ainda que:

 A e B são os pontos de interseção da circunferência com o eixo Oy, sendo B o ponto de menor ordenada;

- a reta r passa no ponto A e no centro da circunferência;
- o ponto C é o ponto de interseção da reta r com o eixo Ox.
- **9.1.** Prove que o centro da circunferência tem coordenadas (-2,1).
- **9.2.** Prove que a reta r pode ser definida vetorialmente por $(x,y)=\left(0,1+\sqrt{5}\right)+k\left(2,\sqrt{5}\right),k\in\mathbb{R}.$
- **9.3.** Determine a área do triângulo [ABC].

FIM

COTAÇÕES

Item													
Cotação (em pontos)													
1.	2.	3.	4.	5.1.	5.2.	5.3.	6.	7.	8.	9.1.	9.2.	9.3.	
8	8	20	8	20	20	20	8	8	20	20	20	20	200