

# **Continental Engineering Services GmbH**



## Standardized SRR Interface

**Technical Documentation** 

SRR 208-21

SS/HS "Standard Sensitivity / High Sensitivity"

TC / CL

"Tracks and Collision Avoidance / Cluster (or Tracks without collision avoidance)"

Version: 1.7

Continental Engineering Services GmbH This document Vers.: 1.7 is related to SRR 208 Software Vers.: 1.0.3.0.

### Standardized SRR Interface



## **Table of Contents**

| Int  | roduction                                                       | 4                                                                                                                                                                                                                                                     |
|------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Op   | erating Conditions                                              | 4                                                                                                                                                                                                                                                     |
| Sa   | fety Information                                                | 4                                                                                                                                                                                                                                                     |
| Inte | erface                                                          | 4                                                                                                                                                                                                                                                     |
| De   | scription                                                       | 5                                                                                                                                                                                                                                                     |
| Se   | nsor Configuration                                              | 6                                                                                                                                                                                                                                                     |
| Se   | nsor Status Output                                              | 9                                                                                                                                                                                                                                                     |
| Da   | ta Output                                                       | 10                                                                                                                                                                                                                                                    |
| 8.1. | Cluster List                                                    | 10                                                                                                                                                                                                                                                    |
| 8.2. | Track List                                                      | 12                                                                                                                                                                                                                                                    |
| Co   | Ilision Detection                                               | 17                                                                                                                                                                                                                                                    |
| 9.1. | Collision Detection Configuration Input                         | 17                                                                                                                                                                                                                                                    |
|      |                                                                 |                                                                                                                                                                                                                                                       |
| 9.3. | Warning Output                                                  | 21                                                                                                                                                                                                                                                    |
|      | Op<br>Sa<br>Int<br>De<br>Se<br>Da<br>8.1.<br>8.2.<br>Co<br>9.1. | Introduction Operating Conditions Safety Information Interface Description Sensor Configuration Sensor Status Output Data Output 8.1. Cluster List 8.2. Track List Collision Detection 9.1. Collision Detection Configuration Input 9.2. State Output |

This document Vers.: 1.7 is related to



## History

| Version | Date                       | Chapter | Change description                              |
|---------|----------------------------|---------|-------------------------------------------------|
| V1.0    | 21st Nov. 2012             |         | Initial revision after takeover from ARS308     |
| V1.1    | 23 <sup>rd</sup> Nov. 2012 |         | Adaptations for SRR completed                   |
| V1.2    | 29th Nov. 2012             |         | Changed signal resolution and offset of various |
|         |                            |         | CAN signals according to the latest dbc file    |
| V1.3    | 25 <sup>th</sup> Dec. 2012 |         | Alignment of objects in figure 1                |
| V1.4    | 17 <sup>th</sup> Dec. 2012 |         | Different corrections                           |
| V1.5    | 7 <sup>th</sup> May 2013   |         | Change of Type names, Drawing 1                 |
| V1.6    | 16 <sup>th</sup> July 2014 |         | Change of diff. Rolling Counter values and CD   |
|         |                            |         | Warn Track Index                                |
| V1.7    | 15 <sup>th</sup> Feb. 2018 |         | Track speed description added                   |
|         |                            |         |                                                 |
|         |                            |         |                                                 |
|         |                            |         |                                                 |
|         |                            |         |                                                 |
|         |                            |         |                                                 |
|         |                            |         |                                                 |

SRR 208 Software Vers.: 1.0.3.0.

This document Vers.: 1.7 is related to



### 1. Introduction

The SRR 2 is a **S**hort **R**ange **R**adar Sensor System developed by Continental for the Automotive Industry to realize advanced driver assistance functions. The usual interface of this system is mainly based on indication requests to the vehicle network. For example, in order to indicate, that a vehicle is entering the blind spot of the ego vehicle.

The software of the sensor was adapted to use it also for general purposes. With the simple software interface it is possible to connect the sensor to a CAN network and to provide radar based environmental information to one or several evaluation units. The sensor can also be configured via CAN. The SRR sensor with this general purpose software interface is referred to as SRR 208.

There are **four** different types of sensors:

the SRR 208-21 SS/CL and the SRR 208-21 HS/CL (Standard Sensitivity > SS or High Sensitivity > HS transmitting Clusters or Tracks > CL (no collision avoidance))

and

the **SRR 208-21 SS/TC** and the **SRR 208-21 HS/TC** (Standard Sensitivity > SS or High Sensitivity > HS transmitting all Tracks which have been responsible for a collision warning (including Collision Avoidance) > TC).

### 2. Operating Conditions

Please refer to SRR 20X -Technical Description = Short Description.

## 3. Safety Information

Please refer to SRR 20X -Technical Description = Short Description.

### 4. Interface

The SRR sensor has one CAN interface (called CAN1). The communication network is a CAN bus as specified in ISO 11898-2 with a transmission rate of 500 KBits/s. The messages on the CAN-Bus are defined as described below.

As an example, a possible CAN bus network is shown in drawing 1 below. Since no termination resistors are included in the SRR 208 sensor, two 120 Ohm terminal resistors have to be connected to the network (separately or integrated in the CAN interface of the corresponding unit). The CAN1 connection of the SRR 208 is used for configuration, sensor state output and data output.

This document Vers.: 1.7 is related to SRR 208 Software Vers.: 1.0.3.0.

Drawing 1: CAN network (here: taken from the Radar ARS)



## 5. Description

The SRR sensor uses radar radiation to analyze its surrounding. The reflected signals are processed and after multiple steps they are available in form of clusters and tracks. A cluster consists of multiple reflections which have a similar position and movement and therefore can be combined. The information about a cluster like relative velocity and position is then transmitted on CAN1. The position is represented in an angular coordinate system, thus by distance and azimuth angle relative to the sensor. The clusters are newly evaluated every cycle. In contrast to this, tracks have a history and consist of clusters tracked over time. The position of the object is calculated relative to the sensor and output in a Cartesian coordinate system.

here: Radar seen from the front side



Figure 1: Sign Convention for the Azimuth Angle

SRR 208 Software Vers.: 1.0.3.0.



| CAN | Frame<br>Format      | Message<br>ID <sup>1</sup> | Message Name       | Content                                   | Section |
|-----|----------------------|----------------------------|--------------------|-------------------------------------------|---------|
| 1   | CAN 2.0A (11<br>Bit) | 0x200                      | RadarConfiguration | Sensor<br>configuration                   | 6       |
| 1   | CAN 2.0A (11<br>Bit) | 0x60A                      | RadarStatus        | Sensor Status<br>output                   | 7       |
| 1   | CAN 2.0A (11<br>Bit) | 0x70B                      | CAN1_ClusterStatus | Cluster status                            | 8.1     |
| 1   | CAN 2.0A (11<br>Bit) | 0x70C                      | CAN1_Cluster_1     | Cluster information 1                     | 8.1     |
| 1   | CAN 2.0A (11<br>Bit) | 0x60B                      | CAN1_TrackStatus   | Track status                              | 8.2     |
| 1   | CAN 2.0A (11<br>Bit) | 0x60C                      | CAN1_Track_1       | Track information 1                       | 8.2     |
| 1   | CAN 2.0A (11<br>Bit) | 0x60D                      | CAN1_Track_2       | Track information 2                       | 8.2     |
| 1   | CAN 2.0A (11<br>Bit) | 0x400                      | CollDetConfig      | Collision detection configuration         | 9.1     |
| 1   | CAN 2.0A (11<br>Bit) | 0x408                      | CollDetState       | Collision detection state                 | 9.2     |
| 1   | CAN 2.0A (11<br>Bit) | 0x409                      | CollDetWarn        | Collision<br>detection:<br>warning tracks | 9.3     |

Table 1: Sensor CAN messages (depending on the sensor variant not all messages are available)

## 6. Sensor Configuration

The SRR 208 can be configured via message 0x200 on CAN1 (see: Figure 2 and Table 2). This message should only be transmitted to SRR 208 when a parameter change is desired. It is not necessary to transmit this message cyclically. It is necessary to transmit the DLC of each identifier all 8 Bytes, even if there are unused Bits and Bytes.

The following parameters can be changed:

- 1. The type of the output list
  - a. SendTracks The track list will be transmitted on CAN1
  - b. SendCluster The cluster list will be transmitted on CAN1

This document Vers.: 1.7 is related to SRR 208 Software Vers.: 1.0.3.0.

 $<sup>^1</sup>$  This is the base message ID for sensor ID 0. For other sensor IDs this is: (base message ID | (0x10  $^\ast$  sensor ID))



- 2. Unique Sensor ID For each sensor on the same CAN-Bus an ID between 0 and 7 can be assigned. The sensor then sends and receives its messages in a CAN message ID range, that depends on its Sensor ID. The Sensor ID is coded in the second digit of the message ID: (base message ID | (0x10 \* sensor ID)). Example:
  - Sensor ID 0: RadarStatus is sent on 0x60A, Configuration is received on 0x200 etc. Sensor ID 1: RadarStatus is sent via 0x61A, Configuration is received on 0x210 etc.
- 3. When the sensor ID is invalid only the RadarStatus message is transmitted. In case the user tries to reconfigure a sensor ID, which is already in use, the sensor will keep its old ID and the signal value of Radar Cfg Status will change to 0x02 (Desired ID already used).

Within this documentation it is assumed that the sensor is configured with the Sensor ID 0.

These parameters can be changed individually or both at the same time. For each of the above parameters, the message contains a validity bit. If the validity bit is set to Valid/True, the corresponding parameter will be updated in the SRR, otherwise it is ignored. If a parameter is updated, it will also be stored in non-volatile memory so that it is automatically set at startup on any subsequent power up.



Figure 2: Radar Configuration message structure (0x200) (Bytes 2-6 and Bits in white are unused)

This document Vers.: 1.7 is related to

SRR 208 Software Vers.: 1.0.3.0.



| Signal                  | Start | Len | Byte<br>Order | Value<br>Type | Res | Value Range                                                                                         |
|-------------------------|-------|-----|---------------|---------------|-----|-----------------------------------------------------------------------------------------------------|
| Radar_Output_Type_Valid | 56    | 1   | Motorola      | Unsigned      | 1   | <ul><li>0 -&gt; Invalid</li><li>1 -&gt; Valid</li></ul>                                             |
| Radar_Output_Type       | 4     | 2   | Motorola      | Unsigned      | 1   | <ul> <li>0 -&gt; (0 x 0)         SendTracks</li> <li>1 -&gt; (0 x 1)         SendCluster</li> </ul> |
| Radar_ID_Valid          | 57    | 1   | Motorola      | Unsigned      | 1   | <ul><li>0 -&gt; False</li><li>1 -&gt; True</li></ul>                                                |
| Radar_ID                | 0     | 4   | Motorola      | Unsigned      | 1   | 0 7                                                                                                 |

Table 2: Radar Configuration - message description (0x200)

| Signal                  | Start | Len | Byte<br>Order | Value<br>Type | Res | Default Factory<br>Settings |
|-------------------------|-------|-----|---------------|---------------|-----|-----------------------------|
| Radar_Output_Type_Valid | 56    | 1   | Motorola      | Unsigned      | 1   | ■ 0 -> Invalid              |
| Radar_Output_Type       | 4     | 2   | Motorola      | Unsigned      | 1   | ■ 1 -> Send<br>Cluster      |
| Radar_ID_Valid          | 57    | 1   | Motorola      | Unsigned      | 1   | ■ 0 -> Invalid              |
| Radar_ID                | 0     | 4   | Motorola      | Unsigned      | 1   | • 0                         |

Table 3: Radar Configuration message - Default factory settings (0x200)



#### **Sensor Status Output** 7.

Message 0x60A contains signals which report the state of the sensor.

After configuring a parameter, (except for the track/cluster selection) by sending message 0x200 to the SRR 208-21\_ \_/\_ \_, the signal Radar\_Cfg\_Status in message 0x60A can be checked in order to verify that the configuration change was accepted.

Figure shows the layout of the 0x60A message, while Table 4 shows the details of each signal.



Figure 3: RadarStatus message Structure (0x60A) (Bits in white are unused)

| Signal            | Start | Len | Byte<br>Order | Value<br>Type | Res | Value Range                                                                                                                                                                                            |
|-------------------|-------|-----|---------------|---------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACTL_Mode         | 0     | 6   | Motorola      | Unsigned      | 1   | <ul> <li>0 -&gt; Unused</li> <li>1 -&gt; Normal operation</li> <li>2 -&gt; Hardware defect</li> <li>3 -&gt; Unused</li> <li>4 -&gt; Appl. Initialisation</li> <li>5 -&gt; Over temperature</li> </ul>  |
| Radar_Cfg_Status  | 12    | 4   | Motorola      | Unsigned      | 1   | <ul> <li>0 -&gt; Last learned cfg used</li> <li>1 -&gt; New config is used</li> <li>2 -&gt; Desired ID already used</li> <li>3 -&gt; Nvm reading failed</li> <li>4 -&gt; Nvm writing failed</li> </ul> |
| RadarSt_RollCount | 8     | 2   | Motorola      | Unsigned      | 1   | 0 -> 3<br>tpcl.: 0->3                                                                                                                                                                                  |

Table 4: RadarStatus message description (0x60A)

SRR 208 Software Vers.: 1.0.3.0.



The following is a detailed description of each of the signals in message 0x60A:

- 1. ACTL Mode Shows the internal sensor state
  - a. *Normal operation* sensor is operational
  - b. *Hardware defect* sensor hardware is defective
  - c. **Overtemperature** sensor temperature is too high
- 2. **Radar\_Cfg\_Status** Represents the status of the sensor configuration. Indicates whether the configuration parameters could be read out or written into the NVM successfully. In case the sensor ID is reconfigured, the signal indicates whether a sensor with the desired sensor ID is already connected to the CAN network.
  - a. **Last learned cfg used** the configuration parameter stored in NVM are used (default value after sensor startup)
  - b. **New cfg is used** the configuration parameters were successfully changed in the current power cycle
  - c. **Desired ID already used** the signal value indicates that the user tried to configure a sensor ID, which is already in use.
  - d. **Nvm reading failed** the last learned configuration parameter could not be read out of the NVM.
  - e. **Nvm writing failed** the last attempt to write a configuration parameter into the NVM was not successful.

## 8. Data Output

The data about detected clusters or tracks is transmitted on CAN1. Clusters are newly determined by the processing of the detected radar reflections every cycle. The tracks in turn are evaluated by tracking the clusters over time, so that they include a history over multiple cycles.

#### 8.1. Cluster List

The cluster list output consists of two messages: CAN1\_Cluster\_Status (0x70B) and CAN1\_Cluster\_1 (0x70C). The message CAN1\_Cluster\_Status contains general information about the cluster list itself, for example the number of clusters it currently contains. CAN\_Cluster1 contains cluster specific attributes like position and relative velocity. While the message CAN1\_Cluster\_Status is sent only once during one cluster transmission cycle, CAN\_Cluster1 is sent multiple times, once for each cluster in the cluster list. Since the number of CAN\_Cluster1 messages can reach a maximum value of 128, an updated cluster list is sent only once in every second radar cycle. Two radar cycles correspond to approx. 66 milliseconds. Otherwise the cycle time is 33 ms.

This document Vers.: 1.7 is related to SRR 208 Software Vers.: 1.0.3.0.





Figure 4: CAN1\_Cluster\_Status message structure (0x70B) (Bytes 2-7 are unused)

| Signal              | Start | Len | Byte<br>Order | Value<br>Type | Res | Offset | Value<br>Range            |
|---------------------|-------|-----|---------------|---------------|-----|--------|---------------------------|
| NoOfCluster         | 0     | 8   | Motorola      | unsigned      | 1   | 0      | 0 -> 255<br>tpcl.: 1->128 |
| ClusterSt_RollCount | 8     | 3   | Motorola      | unsigned      | 1   | 0      | 0 -> 3<br>tpcl.: 0->3     |

Table 5 CAN1\_Cluster\_Status message description (0x70B)

The following is a detailed description of each of the signals in message 0x70B:

- 1. NumOfCluster Number of clusters in the current cluster list
- 2. ClusterStRollCount The rolling counter is incremented with each valid message



Figure 5: CAN1\_Cluster\_1 message structure (0x70C)

This document Vers.: 1.7 is related to

SRR 208 Software Vers.: 1.0.3.0.

February 15, 2018 page 11



| Signal             | Start | Len | Byte<br>Order | Value<br>Type | Res                   | Offset | Value<br>Range        |
|--------------------|-------|-----|---------------|---------------|-----------------------|--------|-----------------------|
| Cluster_Index      | 0     | 8   | Motorola      | Unsigned      | 1                     | 0      | 0 -> 127              |
| Cluster1_RollCount | 38    | 2   | Motorola      | Unsigned      | 1                     |        | 0 -> 3<br>tpcl.: 0->3 |
| Cluster_RCSValue   | 8     | 8   | Motorola      | Unsigned      | $0.5  \mathrm{dBm^2}$ | -50    | -50 -> 30             |
| Cluster_Range      | 16    | 8   | Motorola      | Unsigned      | 0.2 m                 | 0      | 0 -> + 51             |
| Cluster_Azimuth    | 24    | 7   | Motorola      | Unsigned      | 2 deg                 | -90    | -90 -> + 90           |
| Cluster_Vrel       | 40    | 11  | Motorola      | Unsigned      | 0.05 m/s              | -35    | -35 -> +35            |

Table 6: CAN1\_Cluster\_1 message description (0x70C)

The following is a detailed description of each of the signals in message 0x70C:

- 1. Cluster\_Index Current index of the cluster in the cluster list
- 2. **Cluster1\_RollCount** The rolling counter is incremented with each valid message
- 3. Cluster RCSValue Radar cross section
- 4. **Cluster\_Range** Radial distance of the cluster
- 5. *Cluster\_Azimuth* Cluster angle
- 6. *Cluster\_Vrel* Relative velocity of the cluster

#### 8.2. Track List

The track list output consists of three messages: CAN1\_VersionID (0x700), CAN1\_Track\_Status (0x60B), CAN1\_Track\_1 (0x60C) and CAN1\_Track\_2 (0x60D). The message CAN1\_Track\_Status contains general information about the track list itself, for example the number of tracks it currently contains. The messages CAN\_Track1 and CAN1\_Track2 contain track specific attributes like position and relative velocity. While the message CAN1\_Track\_Status is sent only once during one transmission cycle, CAN1\_Track1 and CAN1\_Track2 are sent multiple times as message pairs for each track in the track list. The maximum number of tracks in the track list cannot exceed 25, therefore (in contrast to the cluster lists) it is possible to send an updated track list each radar cycle. One radar cycle corresponds to approx. 33 milliseconds.

This document Vers.: 1.7 is related to

February 15, 2018 page 12 SRR 208 Software Vers.: 1.0.3.0.





Figure 6: CAN1\_Track\_Status message structure (0x60B) (Bytes 2 to 7 are not used)

| Signal            | Start | Len | Byte<br>Order | Value<br>Type | Res | Offset | Value<br>Range                              |
|-------------------|-------|-----|---------------|---------------|-----|--------|---------------------------------------------|
| NumOfTracks       | 0     | 8   | Motorola      | Unsigned      | 1   | 0      | 0 -> 255<br>tpcl.: 0 -> 25                  |
| TrackSt_RollCount | 8     | 2   | Motorola      | Unsigned      | 1   | 0      | 0 -> 65535<br>Recount starts<br>after 65535 |

Table 7: CAN1\_Track\_Status message description (0x60B)

The following is a detailed description of each of the signals in message 0x60B:

- 1. NumOfTracks Number of measured tracks
- 2. TrackStRollCount The rolling counter is incremented with each valid message





Figure 7: CAN1\_Track\_1 message structure (0x60C)

| Signal           | Start | Len | Byte<br>Order | Value<br>Type | Res      | Offset | Value Range           |
|------------------|-------|-----|---------------|---------------|----------|--------|-----------------------|
| Track_ID         | 8     | 16  | Motorola      | Unsigned      | 1        | 0      | 0 -> 65535            |
| Track_LongDispl  | 29    | 9   | Motorola      | Unsigned      | 0.1 m    | 0      | 0 -> 51.1             |
| Track_LatDispl   | 46    | 10  | Motorola      | Unsigned      | 0.1 m    | -51.1  | -51.1 -> 51.2         |
| Track_Index      | 24    | 5   | Motorola      | Unsigned      | 1        | 0      | 0 -> + 24             |
| Track_VrelLong   | 50    | 12  | Motorola      | Unsigned      | 0.02 m/s | -35    | -35 -> + 35           |
| Track_VrelLat    | 56    | 8   | Motorola      | Unsigned      | 0.25 m/s | -32    | -32 -> 31.75          |
| Track1_RollCount | 48    | 2   | Motorola      | Unsigned      | 1        | 0      | 0 -> 3<br>tpcl.: 0->3 |

Table 8: CAN1\_Track\_1 message description (0x60C)



The following is a detailed description of each of the signals in message 0x60B:

- 1. *Track\_ID* Unique track ID
- 2. Track\_LongDispl Longitudinal displacement
- 3. Track\_LatDispl Lateral displacement
- 4. **Track Index** Current index of the track in the track list
- 5. **Track\_VrelLong** Relative longitudinal velocity (Obstacles which oncoming have got a negative prefix and leaving obstacles are positive.)
- Track\_VrelLat Relative lateral velocity
   (Obstacles which move from left to right have got a negative prefix and from right to left, they are positive.)
- 7. *Track1\_RollCount* The rolling counter is incremented with each valid message



Figure 1: CAN1\_Track\_2 message structure (0x60D) (Bytes 5-7 are unused)

| Signal           | Start | Len | Byte<br>Order | Value<br>Type | Res                  | Offset | Value<br>Range        |
|------------------|-------|-----|---------------|---------------|----------------------|--------|-----------------------|
| Track_RCSValue   | 0     | 8   | Motorola      | Unsigned      | 0.5 dBm <sup>2</sup> | -50    | - 50 -> + 30          |
| Track_Lifetime   | 16    | 16  | Motorola      | Unsigned      | 0.1 s                | 0      | 0 -><br>+ 6553.5      |
| Track_Index2     | 24    | 5   | Motorola      | Unsigned      | 1                    | 0      | 0 -> 24               |
| Track2_RollCount | 32    | 2   | Motorola      | Unsigned      | 1                    | 0      | 0 -> 3<br>tpcl.: 0->3 |

Table 9: CAN1\_Track\_2 message description (0x60D)

February 15, 2018 page 15

Continental Engineering Services GmbH

SRR 208 Software Vers.: 1.0.3.0.



The following is a detailed description of each of the signals in message 0x60D:

- 1. **Track\_RCSValue** Radar cross section (RCS) is the measure of the reflective strength of a cluster or in other words it is the measure of power scattered in a given spatial direction when a cluster is illuminated by an incident wave.
- 2. **Track\_Lifetime** The current lifetime of the track. In case the lifetime exceeds 6553.5, the value remains at this maximum value. No overflow takes place.
- 3. **Track\_Index2** Current track list index of this track
- 4. *Track2\_RollCount* The rolling counter is incremented with each valid message

SRR 208 Software Vers.: 1.0.3.0.



### 9. Collision Detection

For the two sensor variants (SRR 208-21 SS/HS / TC) (TC = Tracks and/or Collision Avoidance) a collision detection functionality is available. The additional CAN messages are described in the following sections.

### 9.1. Collision Detection Configuration Input

This message is used for configuration of the collision detection warning function.



Figure 9: CollDetConfig message structure (0x400)

| Signal                       | Start | Len | Byte<br>Order | Value<br>Type | Res | Offset | Value<br>Range                     |
|------------------------------|-------|-----|---------------|---------------|-----|--------|------------------------------------|
| ResetAllWarnings             | 38    | 1   | Motorola      | Unsigned      | 1   | 0      | 0 -> Idle<br>1 -> Reset<br>warning |
| CollisionDetectionActivation | 11    | 1   | Motorola      | Unsigned      | 1   | 0      | 0 -> deactivated 1 -> activated    |
| ObjDetectionTimeSetFlag      | 9     | 1   | Motorola      | Unsigned      | 1   | 0      | 0 -> Idle<br>1 -> Change<br>time   |

This document Vers.: 1.7 is related to

SRR 208 Software Vers.: 1.0.3.0.



| CfgObjMinDetectionTime  | 0  | 8 | Motorola | Unsigned | 0.1   | 0   | 0 -> 25.5 s                             |
|-------------------------|----|---|----------|----------|-------|-----|-----------------------------------------|
| ClearAllCollDetSettings | 12 | 1 | Motorola | Unsigned | 1     | 0   | 0 -> Idle<br>1 -> Clear all<br>regions  |
| RegionActivation        | 8  | 1 | Motorola | Unsigned | 1     | 0   | 0 -> deactived 1 -> activated           |
| CfgRegionID             | 13 | 1 | Motorola | Unsigned | 1     | 0   | 0 -> 7                                  |
| CoordinatesSetFlag      | 10 | 1 | Motorola | Unsigned | 1     | 0   | 0 -> Idle<br>1 -> Change<br>coordinates |
| CfgRegionPoint1X        | 16 | 8 | Motorola | Unsigned | 0.2 m | 0   | 0 -> 51                                 |
| CfgRegionPoint1Y        | 39 | 9 | Motorola | Unsigned | 0.2 m | -51 | -51 -> +51.2                            |
| CfgRegionPoint2X        | 40 | 8 | Motorola | Unsigned | 0.2 m | 0   | 0 -> 51                                 |
| CfgRegionPoint2Y        | 63 | 9 | Motorola | Unsigned | 0.2 m | -51 | -51 -> 51.2                             |

Table 10: CollDetConfig message description (0x400)

The following is a detailed description of each of the signals in message 0x400:

- 1. **ResetAllWarnings** Reset currently active warnings<sup>2</sup>
- 2. **CollisionDetectionActivation** De-/activate collision detection function<sup>2</sup>
- 3. **ObjDetectionTimeSetFlag** Allow change of time parameter<sup>2</sup>
- 4. **CfgObjMinDetectionTime** Minimum time an object needs to be detected before a warning is triggered<sup>2</sup>
- 5. Clear All Coll Det Settings Clear all collision detection settings<sup>2</sup>
- 6. **RegionActivation** De-/activate current region<sup>3</sup>
- 7. CfgRegionID ID of current region to configure<sup>3</sup>
- 8. **CoordinatesSetFlag** Allow change of current regions coordinates<sup>3</sup>
- 9. **CfgRegionPoint1X** 1<sup>st</sup> X coordinate of region<sup>3</sup>
- 10. CfgRegionPoint1Y 1st Y coordinate of region3

This document Vers.: 1.7 is related to SRR 208 Software Vers.: 1.0.3.0.

Continental Engineering Services GmbH

February 15, 2018 page 18

<sup>&</sup>lt;sup>2</sup> This is a global, region independent setting, which is valid for all warning regions.

<sup>&</sup>lt;sup>3</sup> This is a local resp. region dependent setting, which is valid only for the warning region, specified by the signal CfgRegionID.



- 11. CfgRegionPoint2X 2<sup>nd</sup> X coordinate of region<sup>3</sup>
- 12. CfgRegionPoint2Y 2<sup>nd</sup> Y coordinate of region<sup>3</sup>

### 9.2. State Output

This message shows region specific information for the respective region, specified by the signal RegionIDState. If the collision detection functionality is active, this message is sent 8 times (once for each region). The message is sent even if the corresponding region is deactivated.



Figure 10: CollDetState message structure (0x408)

SRR 208 Software Vers.: 1.0.3.0.

February 15, 2018 page 19



| Signal                  | Start | Len | Byte<br>Order | Value<br>Type | Res   | Offset | Value Range                                                   |
|-------------------------|-------|-----|---------------|---------------|-------|--------|---------------------------------------------------------------|
| RegionStatus            | 2     | 2   | Motorola      | Unsigned      | 1     | 0      | 0 -> No warning 1 -> Track warning 2 -> Reserved 3 -> Warning |
| CollSt_RollCount        | 0     | 2   | Motorola      | Unsigned      | 1     | 0      | deactivated 0 -> 3                                            |
| NumOfWarn Tracks        | 8     | 5   | Motorola      | Unsigned      | 1     | 0      | tpcl.: 0->3<br>0 25                                           |
| ObjMinDetection<br>Time | 16    | 8   | Motorola      | Unsigned      | 0.1 s | 0      | 0 25.5                                                        |
| RegionIDState           | 42    | 3   | Motorola      | Unsigned      | 1     | 0      | 0 7                                                           |
| NumberOf<br>Regions     | 45    | 3   | Motorola      | Unsigned      | 1     | 0      | 0 7                                                           |
| RegionPoint1X           | 24    | 8   | Motorola      | Unsigned      | 0.2 m | 0      | 0 51                                                          |
| RegionPoint1Y           | 49    | 9   | Motorola      | Unsigned      | 0.2 m | -51    | - 51 51.2                                                     |
| RegionPoint2X           | 32    | 8   | Motorola      | Unsigned      | 0.2 m | 0      | 0 51                                                          |
| RegionPoint2Y           | 56    | 9   | Motorola      | Unsigned      | 0.2 m | -51    | - 51 51.2                                                     |

Table 11: CollDetState message description (0x408)

The following is a detailed description of each of the signals in message 0x408:

- 1. RegionStatus The status of the respective region. See Table 11 for details.
- 2. **CollState\_RollCount** The rolling counter is incremented with each valid message
- 3. **NumOfWarnTracks** Number of tracks in an active warning region
- 4. **ObjMinDetectionTime** Value of configured minimum object detection time
- 5. RegionIDState Region ID
- 6. **NumberOfRegions** Number of active regions
- 7. **RegionPoint1X** 1<sup>st</sup> X coordinate of region
- 8. RegionPoint1Y 1st Y coordinate of region

This document Vers.: 1.7 is related to SRR 208 Software Vers.: 1.0.3.0.



- 9. **RegionPoint2X** 2<sup>nd</sup> X coordinate of region
- 10. *RegionPoint2Y* 2<sup>nd</sup> Y coordinate of region

## 9.3. Warning Output

This type of message shows information about the tracks in an active warning region. It is only sent if a warning for an active region was triggered. If none of the regions are in warning state no CollDetWarn message is sent.

The collision detection function is implemented and activated in the sensortype SRR 208-21 SS/HS / TC (TC = Tracks and/or Collision Avoidance). It cannot be switched on or off. It is not possible to transmit clusters on the CAN 1, because each track in each region which is relevant in the warning mode is transmitted to the CAN 1. This could be all detected tracks if the region is determined by the max. geometrical dimensions by the parameters "Region Point X" and Region "Point Y"

(that is why: (SRR 208-21 SS/HS / TC)).



Figure 11: CollDetWarn message structure (0x409)

This document Vers.: 1.7 is related to

February 15, 2018 page 21



| Signal             | Start | Len | Byte<br>Order | Value<br>Type | Res         | Offset | Value Range |
|--------------------|-------|-----|---------------|---------------|-------------|--------|-------------|
| CD_TrackID         | 8     | 16  | Motorola      | Unsigned      | 1           | 0      | 0 65535     |
| CD_WarnTrackIndex  | 19    | 5   | Motorola      | Unsigned      | 1           | 0      | 0 24        |
| RegionID           | 16    | 3   | Motorola      | Unsigned      | 1           | 0      | 0 7         |
| CD_Track_LongDispl | 38    | 9   | Motorola      | Unsigned      | 0.1 m       | 0      | 0 +51.1     |
| CD_Track_LatDispl  | 44    | 10  | Motorola      | Unsigned      | 0.1 m       | -51.1  | -51.1 +51.2 |
| CD_Track_VrelLong  | 48    | 12  | Motorola      | Unsigned      | 0.02<br>m/s | -35    | -35 +35     |
| CD_Track_VrelLat   | 56    | 8   | Motorola      | Unsigned      | 0.25<br>m/s | -32    | -32 +31.75  |

Table 12: CollDetWarn message description (0x409)

The following is a detailed description of each of the signals in message 0x409:

- 1. **CD\_TrackID** Unique track ID
- 2. **CD\_WarnTrackIndex** Index of the warning
- 3. *RegionID* Region ID, to which the message belongs.
- 4. **CD\_TrackLongDispl** Longitudinal displacement of the warning track
- 5. **CD\_TrackLatDispl** Lateral displacement of the warning track
- 6. **CD\_Track\_VrelLong** Longitudinal velocity of the warning track
- 7. **CD\_Track\_VrelLat** Lateral velocity of the warning track