Byteland Itinerary

A Byteland Vacation

You're planning a vacation to Byteland. It has m cities, and you can travel between cities either by plane or by car. There are exactly k highways in Byteland, and highway i connects cities a_i and b_i . If you want to travel from some city u to some city v and there is no highway between them, you can travel the distance from v to v by plane.

One curious feature of Byteland is that the number of highways connecting some city to others is equal for each city in Byteland. More formally, let deg_u be the number of cities such that there is a highway directly connecting city u to some city, v. $deg_u = deg_v$ for all $1 \le u, v \le m$.

You want to finalize the itinerary for your Byteland vacation. You decide to visit a sequence of n cities, A, such that $1 \le a_i \le m$. During your trip, you'll visit each city in the sequence $A = \{a_1, a_2, \ldots, a_n\}$; first traveling to city a_1 , then traveling from a_1 to a_2 , then traveling from a_2 to a_3 , ..., finally traveling from a_{n-1} to a_n . Be aware that you may end up visiting certain cities more than once.

Exciting Roads

There are two ways to travel from a_i to a_{i+1} : by plane or by car. However, your preference is to travel by car because you dislike going through airport security and waiting in endless lines.

We call a continuous subsequence, (l,r), of A exciting if you can travel all the cities from a_l to a_r by car. More formally, (l,r) is exciting if for each $l \leq i \leq r-1$ there is a highway between a_i and a_{i+1} (note that a_i must not be equal to a_{i+1}).

We call r-l+1 the *length* of continuous subsequence (l,r). You want to maximize the length of maximum exciting subsequence of A.

Task

You decide to take a random itinerary, A (recall that |A|=n, and each a_i is a random city from 1 to m) and follow it. You want to know the expected maximum length of a continuous exciting subsequence in your itinerary.

Input Format

The first line contains three space-seperated non-negative integers describing the respective values of n (the number of cities in your itinerary), m (the number of cities in Byteland), and k (the number of highways in Byteland). Each line i of the k subsequent lines contain two space-separated positive integers describing the respective cities, a_i and b_i , connected by highway i in Byteland.

Constraints

- $1 \le n, m \le 10^5$
- $0 \le k \le 10^6$
- $1 \leq a_i, b_i \leq m, a_i \neq b_i$
- There are no loops and no multiple edges in Byteland road graph.
- All roads are undirected.
- Test cases with $n, m \leq 10$ are 10% of the total score.

- ullet Test cases with $n,m \leq 100$ are 25% of the total score
- \bullet Test cases with $n,m \leq 1000$ are 50% of the total score

Output Format

Let the answer be an irreducible fraction, $rac{p}{q}$. Print the result of $(p \cdot q^{-1}) \ mod \ (10^9 + 7)$.

Sample Input 0

3 2 0

Sample Output 0

1

Explanation 0

There are no roads, meaning that all the exciting subsequences have length ${f 1}.$ The expected length is also ${f 1}$

Sample Input 1

3 3 3

1 2

2 3

3 1

Sample Output 1

33333338

Explanation 1

There are exactly 27 different plans and there are highways connecting all the cities. There are 3 sequences with maximum length of exciting subsequence 1, 12 sequences with maximum length of exciting subsequence 2 and 12 sequences with maximum length of exciting subsequence 3.

The expected value of maximum length: $E=(1\cdot 3+2\cdot 12+3\cdot 12)/3^3=63/27=7/3$.

That means, we need to print $7\cdot 3^{(-1)}$ modulo $(10^9+7)=333333338$. $3^{(-1)}$ means Modulo inverse here.