

Altitude

 $+\Delta H_{i}$

Temperature

 $K = {}^{\circ} C + 273.15$ $R = ^{\circ} F + 459.67$ $^{\circ}C = [^{\circ}F - 32]\frac{5}{9}$ $^{\circ}F = \frac{9}{5} ^{\circ}C + 32$

 T_{Ti}

 $+\Delta T_{ic}$

Std Sea Level Conditions $T_0 = 15^{\circ} \text{C} = 288.15 \text{ K} = 518.7 \text{ R}$

 $a_0 = 1116.45 \text{ ft/s} = 661 \text{ KTAS} = 761.14 \text{ mph} = 340.3 \text{ m/s}$

 $P_o = 2116.22 \text{ lb/ft}^2 = 29.92 \text{ in.Hg} = 101325 \text{ Pa}$

 $\rho_o = .0023689 \text{ slg/ft}^3 = 1.225 \text{ kg/m}^3$

g = 32.17 ft/sec² = 9.80665 m/sec²

$$M \equiv \frac{V_T}{a} = \frac{V_T}{a_o \sqrt{\theta}}$$

$$M(<1) = \sqrt{5[(\frac{q_c}{P_a} + 1)^{\frac{2}{7}} - 1]}$$

$$q_c \equiv P_T - P_a$$
 ; $q_{cic} \equiv P_p - P_s$
 $\Delta P_T \equiv P_P - P_T$; $\Delta P_s \equiv P_s - P_a$
 $\Delta P_T, \Delta P_s$, = total & static **errors**

Common definitions:

 P_a = true ambient pressure,

 P_T = true total pressure,

 P_s = instrument-corrected static press.

 P_P = instrument-corrected pitot press.

SUPERSONIC EQUATIONS

Calculations require consistent units (e.g. ft/s, lb/ft²) for all inputs & outputs. $ft/s = knots \times 1.68781 = mph \times 1.4666$ m/s = knots x .51444 = ft/s x .30386knots = .54 x Km/hr = mph x .869 $Pa = lb/ft^2 \times 47.88 = lb/in^2 \times .3325$

Can replace $\frac{V_e}{a\sqrt{\delta}}$ with M

stipulates ΔPT and ΔPs are errors to be subtracted while ΔH_{pc} and ΔV_{pc} are corrections to be added.

 $\Delta H_{pc} = \frac{\Delta P_s}{}$

Airspeed

 $+\Delta V_{ic}$

 $+\Delta V$

Sign Convention Note that SFTE sign convention

 M^2

If using known pressure alt.

 $\frac{T_s}{T}$ H_G = geometric (tapeline) altitude T_s = std temp at test altitude (abs.) $T_a = \text{test day ambient temp (abs.)}$

 $\theta = \frac{T_a}{T_o}$

Note: Must use absolute temperatures (K or R) whencalculating θ.

 $\delta = \frac{P_a}{P_o} = [1 - 6.876 \times 10^{-6} \times H_c]^{5.25}$ <36,088 ft (<11,000 m)

 δ =.223358 $e^{-.00004806[H_c-36,088]}$

>36,088 ft (>11,000 m)

If using known V

 ΔP_T often ≈ 0 for fixed-wing A/C in normal flight. Exact solution requires multiple tests or noseboom with P_T reference.

Subsonic ΔV_c from scale altitude (a.k.a. compressibility) correction chart, or from $\Delta V_c = V_e - V_c$ where

If using known V_T