Asignatura	Datos del alumno	Fecha
Métodos Numéricos Avanzados en	Apellidos: Balsells Orellana	21/12/2020
Ingeniería.	Nombre: Jorge Augusto	21/12/2020

Laboratorio: Resolución de PVI con métodos numéricos.

1. Problema 1

1.1. Sistema de ecuaciones diferenciales transformado a primer orden.

La ecuacion original es:

$$y''(x) = 2y'(x) - 5y(x) \tag{1}$$

Teniendo como condiciones iniciales y(-1/2) = 0, $y'(-1/2) = 2e^{-1/2}$.

Igualando y(x) y y'(x) a variables auxiliares con referencia en la ecuacion 1, tenemos las siguientes ecuaciones que, al derivarlas nos dan los valores que estamos buscando.

$$y_1(x) = y(x) \longrightarrow y'_1(x) = y'(x) = y_2(x)$$
 (2)

$$y_2(x) = y'(x) \longrightarrow y'_2(x) = y''(x) = 2y'(x) - 5y(x)$$
 (3)

Sustituyendo las ecuaciones 2 y 3 en la ecuacion 1 tenemos como resultado que:

$$\mathbf{y}_1'(\mathbf{x}) = \mathbf{y}_2(\mathbf{x}) \tag{4}$$

$$\mathbf{y_2'}(\mathbf{x}) = 2\mathbf{y_2}(\mathbf{x}) - 5\mathbf{y_1}(\mathbf{x}) \tag{5}$$

dando un sistema de ecuaciones de primer orden y las condiciones iniciales para el sistema quedan como $y_1(-1/2)=0, y_2(-1/2)=2e^{-1/2}.$

Asignatura	Datos del alumno	Fecha
Métodos Numéricos Avanzados en	Apellidos: Balsells Orellana	21/12/2020
Avanzados en Ingeniería.	Nombre: Jorge Augusto	21/12/2020

```
function [dw] = PVI1(x, w)

y1 = w(1);

y2 = w(2);

dw = [y2; 2*y2 - 5*y1];

end
```

Listing 1: Función de matlab. PVI1 es la función que incluye el sistema de ecuaciones de primer orden.

1.2. Método de Heun de orden 2.

El método de Heun ha sido aplicado en la variable dependiente en función a la variable independiente, sin embargo, la variable independiente solamente está evaluada en cada subintervalo, ya que no existe ninguna otra operación de la variable independiente en la ecuacion. Es por eso que a la hora de evaluar el sistema de ecuaciones, la X es un parámetro que ingresa en el sistema pero no realiza ninguna acción.

```
function [x, y] = Heun_sis_1582(f, a, b, N, y0)

h = (b-a)/N;

x = a:h:b;

x = x(:);

y = zeros(N+1, length(y0));

y(1,:) = y0;

for k=1:N

k1 = h*feval(f, x(k), y(k,:))';

k2 = h*feval(f, x(k+1), y(k,:) + k1)';

y(k+1,:) = y(k,:) + (k1 + k2)/2;

end
end
```

Listing 2: Función de matlab. Heun_sis_1582 es el método numérico de Heun.

Asignatura	Datos del alumno	Fecha
Métodos Numéricos Avanzados en	Apellidos: Balsells Orellana	21/12/2020
Ingeniería.	Nombre: Jorge Augusto	21/12/2020

Para obtener los resultados, se llama a la función dónde se encuentra el método numérico con los parámetros de la siguiente manera:

```
[x, y] = Heun_sis_1582('PVI1', -1/2, 1/2, 40, [0,2*exp(-1/2)])
```

Listing 3: Ingreso de ecuacion y parámetros a función de método numérico en Matlab.

La siguiente tabla muestra los resultados en los valores de y(x) en los intervalos de x, dónde $x \in [-1/1, -1/4, -1/8, 0, 1/8, 1/4, 1/2]$ aproximados por el método de Heun.

×	y_1	y_2
-1/2	0	1,2131
-1/4	0,3735	1,7408
-1/8	0,6018	1,8937
0	0,8420	1,9231
1/8	1,0761	1,7910
1/4	1,2819	1,4634
1/2	1,5008	0,1265

La Figura 1 muestra gráficamente la representación del sistema de ecuaciones del problema 1 aproximado por Heun.

1.3. Método de Runge-Kutta de orden 4.

El método de Runge Kutta es un conjunto de métodos iterativos, tanto explícitos como implícitos para resolver problemas de aproximación numérica de ecuaciones diferenciales. Por su eficiencia es uno de los mas utilizados. En este caso fue aplicado de manera similar al método de Heun explicado anteriormente, solamente considerando las variantes del método numérico en el cual se calcula $x=a+ih, k_1, k_2, k_3$ y k_4 .

Asignatura	Datos del alumno	Fecha
Métodos Numéricos Avanzados en	Apellidos: Balsells Orellana	21/12/2020
Avanzados en Ingeniería.	Nombre: Jorge Augusto	21/12/2020

Figura 1: Gráfico de sistema de ecuaciones aproximado por Heun.

```
function [x, y] = RungeKutta(f, a, b, N, y0)
               h = (b-a)/N;
               x = a:h:b;
               x = x(:);
               y = zeros(N+1, length(y0));
               y(1,:) = y0
               for k=1:N
10
                   k1 = h*feval(f, x(k), y(k,:))';
11
                   k2 = h*feval(f, x(k) + (h/2), y(k,:) + (k1/2))';
12
                   k3 = h*feval(f, x(k) + (h/2), y(k,:) + (k2/2))';
13
                   k4 = h*feval(f, x(k) + h, y(k,:) + k3)';
14
                   y(k+1,:) = y(k,:) + (k1 + 2*k2 + 2*k3 + k4)/6;
16
                   x(k+1) = a + k *h;
17
18
               end
           end
19
```

Asig	natura	Datos del alumno	Fecha
	Numéricos zados en	Apellidos: Balsells Orellana	21/12/2020
	zados en eniería.	Nombre: Jorge Augusto	21/12/2020

Listing 4: Función de matlab de método numérico de aproximación RungeKutta.

Métodos de Runge Kutta de orden superior, Página 214, 215 y 216 del Libro. [2].

La siguiente tabla muestra los resultados en los valores de y(x) en los intervalos de x, dónde $x \in [-1/1, -1/4, -1/8, 0, 1/8, 1/4, 1/2]$ aproximados por el método de Runge Kutta.

х	y_1	y_2
-1/2	0	1,2131
-1/4	0,3734	1,7403
-1/8	0,6015	1,8930
0	0,8415	1,9221
1/8	1,0753	1,7900
1/4	1,2808	1,4625
1/2	1,4992	0,1270

La Figura 1 muestra gráficamente la representación del sistema de ecuaciones del problema 1 aproximado por Heun, sin embargo, al graficar el sistema de ecuaciones aproximados por Runge Kutta, no es variante en cuánto a la resolución de la gráfica. Para fines llustrativos puede servir la misma.

1.4. Estimación numérica.

$$y(x) = 2e^x + C \longrightarrow \mathbf{y}(\mathbf{x}) = 2e^x - 2e^{-1/2}$$
(6)

La ecuación 6 muestra la ecuacion exacta con la cual se debe hacer la estimación.

[x1, y1] = Heun_sis_1582('PVI1',
$$-1/2$$
, $1/2$, 40, $[0,2*exp(-1/2)]$);

Asignatura	Datos del alumno	Fecha
Métodos Numéricos Avanzados en	Apellidos: Balsells Orellana	21/12/2020
Avanzados en Ingeniería.	Nombre: Jorge Augusto	21/12/2020

```
solex1 = 2*exp(x1) - 2*exp(-1/2);
           error40 = max(abs(y1-solex1));
           [x2, y2] = Heun_sis_1582('PVI1', -1/2, 1/2, 80, [0,2*exp(-1/2)]);
           solex2 = 2*exp(x2) - 2*exp(-1/2);
           error80 = max(abs(y2-solex2));
           errorTot = error40/error80
           [x1, y1] = RungeKutta('PVI1', -1/2, 1/2, 40, [0,2*exp(-1/2)]);
           solex1 = 2*exp(x1) - 2*exp(-1/2);
10
           error40 = max(abs(y1-solex1));
11
           [x2, y2] = RungeKutta('PVI1', -1/2, 1/2, 80, [0,2*exp(-1/2)]);
           solex2 = 2 * exp(x2) - 2 * exp(-1/2);
13
           error80 = max(abs(y2-solex2));
14
15
           errorTot = error40/error80
```

El codigo anterior, muestra el orden del error en Heun y en Runge Kutta. En ambos casos el orden del error es 1.

Problema 1 resuelto siguiendo los pasos ordenados a seguir para resolución de problemas por métodos numéricos. [1].

2. Problema 2

2.1. Sistema de ecuaciones diferenciales transformado a primer orden.

Las ecuaciones originales son:

$$u''(t) + u(t) - 2v(t) + 10t = 4\cos t - 8\sin t \tag{7}$$

$$v''(t) = tv'(t) - u(t) = 5t - 2t^2 \cos t \tag{8}$$

En $t \in [0,2]$ Teniendo como condiciones iniciales u(0) = 0, u'(0) = 0, v(0) = 0 y v'(0) = 5. Al tener 2 ecuaciones de orden 2, consideramos que se transformará en un sistema de 4 ecuaciones de orden

Asignatura	Datos del alumno	Fecha
Métodos Numéricos Avanzados en	Apellidos: Balsells Orellana	21/12/2020
Avanzados en Ingeniería.	Nombre: Jorge Augusto	21/12/2020

uno con 4 condiciones iniciales. Las 4 ecuaciones de primer orden estarían formuladas tal y como se ha hecho en el ejercicio 1, sólo que esta vez con dos ecuaciones, por lo cual, las 4 ecuaciones útiles quedan de la siguiente manera:

$$\mathbf{u}_{1}'(\mathbf{t}) = \mathbf{u}_{2}(\mathbf{t}) \tag{9}$$

$$\mathbf{v_1'}(\mathbf{t}) = \mathbf{v_2}(\mathbf{t}) \tag{10}$$

$$u_2' = 4\cos t - 8t\sin t - u_1 + 2v_1 - 10t \tag{11}$$

$$\mathbf{v}_{2}' = 5\mathbf{t} - 2\mathbf{t}^{2}\cos\mathbf{t} - \mathbf{t}\mathbf{v}_{2} + \mathbf{u}_{1}$$
 (12)

y las condiciones iniciales quedarán cómo $u_1 = 0, u_2 = 0, v_1 = 0, v_2 = 5.$

```
function [dw] = PVI2(t, w)

u1 = w(1);

u2 = w(2);

v1 = w(3);

v2 = w(4);

dw = [u2; 4*cos(t)-8*t*sin(t)-u1+2*v1-10*t; v2; ...

5*t-2*(t^2)*cos(t)-t*v2+u1];

end
```

Listing 5: Función de matlab con 4 ecuaciones de primer orden reformuladas a partir de 2 ecuaciones de segundo orden.

2.2. Método de Runge-Kutta de orden 4 con paso de 0.1.

Al resolver en el intervalo $t \in 0, 2$ tomando como paso h = 0, 1, lo que resolvemos es cuantos intervalos pueden generarse, siendo este valor obtenido el de N.

Asignatura	Datos del alumno	Fecha
Métodos Numéricos Avanzados en	Apellidos: Balsells Orellana	21/12/2020
Ingeniería.	Nombre: Jorge Augusto	21/12/2020

Figura 2: Gráfico de sistema de 4 ecuaciones aproximado por Runge Kutta h=0.1.

$$N = (b - a)/h \longrightarrow N = (2 - 0)/0, 1 = 20$$
 (13)

Utilizamos el Método de Runge Kutta del problema anterior considerando los valores y las ecuaciones actuales, ya que está diseñado para ingresar n ecuaciones con n valores iniciales.

Listing 6: Ingreso de ecuaciones a Funcion de Runge Kutta.

En la Figura 2 se observan los gráficos de las ecuaciones diferenciales de primer orden obtenidas en este problema. De igual manera, se observa en la siguiente tabla, los valores de u(t) y v(t) para t.

Asignatura	Datos del alumno	Fecha
Métodos Numéricos Avanzados en	Apellidos: Balsells Orellana	21/12/2020
Avanzados en Ingeniería.	Nombre: Jorge Augusto	21/12/2020

t	u_1	u_2	v_1	v_2
0	0	0	0	5
0.5	0,4388	1,5155	2,5	5
1	1,0806	0,4783	5	5
1.5	0,3183	-4,0643	7,5	5
2	-3,3292	-10,6035	10	5

2.3. Método de Runge-Kutta de orden 4 con paso de 0.2.

Al resolver en el intervalo $t \in 0,20$ tomando como paso h=0,2, lo que resolvemos es cuántos intervalos pueden generarse, siendo este valor obtenido el de N.

$$N = (b-a)/h \longrightarrow N = (20-0)/0, 2 = 100$$
 (14)

Utilizamos el Método de Runge Kutta del problema anterior considerando los valores y las ecuaciones actuales, ya que está diseñado para ingresar n ecuaciones con n valores iniciales.

[x, y] = RungeKutta('PVI2', 0, 20, 100,
$$[0,0,0,5]$$
)

Listing 7: Ingreso de ecuaciones a Función de Runge Kutta.

En la Figura 3 se observan los gráficos de las ecuaciones diferenciales de primer llegando a un límite, luego de ese punto, los valores generados empiezan a surgir como NaN(Not a Number) al ser una frontera. De igual manera, se observa en la siguiente tabla, los valores de u(t) y v(t) para t.

https://www.overleaf.com/project/5fdd1a9929fad94055f5eaf0

Asignatura	Datos del alumno	Fecha	
Métodos Numéricos Avanzados en	Apellidos: Balsells Orellana	21/12/2020	
Ingeniería.	Nombre: Jorge Augusto	21/12/2020	

Figura 3: Gráfico de sistema de 4 ecuaciones aproximado por Runge Kutta h=0.2.

t	u_1	u_2	v_1	v_2
14	53,6191	-380,6393	69,9246	6,0501
16	-490,3266	86,2604	78,6306	27,0358
20	$-3,0802E^7$	$6,2151E^{8}$	$-6,1779E^9$	$1,2387E^{11}$

Problema 2 resuelto siguiendo los pasos ordenados a seguir para resolución de problemas por métodos numéricos. [1].

Referencias

- [1] Neus. Torregrosa Juan R. Cordero, Alicia. Garrido. Apuntes de clase de métodos numéricos avanzados en ingeniería., 2020.
- [2] Annette M. Burden. Richard L. Burden, Douglas J. Faires. Análisis numérico. 10a edición., 2017.