PART 12 KNAPSACK

Source: Approximation Algorithms (Vazirani, Springer Press)

Knapsack

Problem: KNAPSACK

- ▶ Given: n objects with weight $w_i \in \mathbb{Q}_+$ and profit $p_i \in \mathbb{Q}_+$, size $G \in \mathbb{Q}_+$
- ► <u>Find:</u> Subset of objects, maximizing the profit and not exceeding the weight bound:

$$OPT = \max_{I \subseteq \{1, \dots, n\}} \left\{ \sum_{i \in I} p_i \mid \sum_{i \in I} w_i \le G \right\}$$

A dynamic program for KNAPSACK

Dynamic program:

- (1) Assume restricted profits $p_i \in \{0, \dots, B\}$
- (2) Compute table entries

$$T(i,b) \quad = \quad \min_{I \subseteq \{1,\dots,i\}} \Big\{ \sum_{j \in I} w_j \mid \sum_{j \in I} p_j \ge b \Big\}$$

= minimum weight needed for a subset of the first i objects to obtain a profit of at least b

using dynamic programming

$$T(i,b) = \min \left\{ \underbrace{T(i-1,b)}_{\text{don't take } i}, \underbrace{T(i-1,b-p_i) + w_i}_{\text{take } i} \right\} \, \forall i \, \forall p = 0, \dots, B$$

(3) Reconstruct I leading to $\max\{b \in \mathbb{N}_0 \mid T(n,b) \leq G\}$

Observation

The algorithm finds optimum solutions in time $O(n \cdot B)$.

The FPTAS

Algorithm:

- (1) Scale profits s.t. $p_{\text{max}} = n/\varepsilon$
- (2) Round $p'_i := \lfloor p_i \rfloor$
- (3) Compute and return optimum solution I for weights p_i'

Analysis of FPTAS

Theorem

Let $0 < \varepsilon \le \frac{1}{2}$. The algo gives a $(1 + 2\varepsilon)$ -apx in time $O(n^2/\varepsilon)$.

- ▶ W.l.o.g. $OPT \ge p_{\text{max}} = n/\varepsilon$ (we can delete objects that even alone do not fit into the knapsack)
- ▶ Let I^* be optimum solution for original profits. Let OPT' be optimum value for profits p'. Then

$$OPT' \ge \sum_{i \in I^*} p_i' = \sum_{i \in I^*} \lfloor p_i \rfloor \ge \sum_{i \in I^*} p_i - |I^*| \ge OPT - n$$

$$\ge (1 - \varepsilon)OPT \ge \frac{OPT}{1 + 2\varepsilon}$$

 \blacktriangleright Let I be solution found by dynamic program:

$$\sum_{i \in I} p_i \ge \sum_{i \in I} p_i' = OPT' \ge \frac{OPT}{1 + 2\varepsilon}$$

▶ $B = \max\{p_i'\} \le n/\varepsilon$ hence the running time is $O(n^2/\varepsilon)$

PART 13 MULTI CONSTRAINT KNAPSACK

Source: Folklore

Multi Constraint Knapsack

Problem: MULTI CONSTRAINT KNAPSACK (MCK)

- ▶ Given: n objects with profits $p_i \in \mathbb{Q}_+$ and k many budgets B_j . Object i has requirement $a_i^j \in \mathbb{Q}_+$ w.r.t. budget j.
- ► <u>Find:</u> Subset of objects, maximizing the profit and not exceeding any budget:

$$OPT = \max_{I \subseteq \{1,\dots,n\}} \left\{ \sum_{i \in I} p_i \mid \sum_{i \in I} a_i^j \le B_j \ \forall j = 1,\dots,k \right\}$$

▶ For arbitrary k there is no $n^{1-\varepsilon}$ -apx: Take an INDEPENDENT SET instance G = (V, E). For each edge e = (u, v) add an "edge budget constraint" $a_u^e = a_v^e = 1, B_e = 1$. Then $OPT = OPT_{IS}$.

A PTAS for k = O(1)

Algorithm:

- (1) Guess the $\lceil \frac{k}{\varepsilon} \rceil$ items I_{large} in the optimum solution with maximum profit
- (2) Let x^* be optimum basic solution to the following LP

$$\max \sum_{i=1}^{n} x_i p_i$$

$$\sum_{i=1}^{n} a_i^j x_i \leq B_j \quad \forall j = 1, \dots, k$$

$$x_i = 1 \quad \forall i \in I_{\text{large}}$$

$$x_i = 0 \quad \forall i \notin I_{\text{large}} : p_i > \min\{p_j \mid j \in I_{\text{large}}\}$$

$$0 \leq x_i \leq 1 \quad \forall i = 1, \dots, n$$

(3) Output $I := \{i \mid x_i^* = 1\}.$

The Analysis

Theorem

For constant k the algorithm has polynomial running time. Furthermore $APX \geq (1 - \varepsilon)OPT$.

- ▶ The produced solution is clearly feasible
- ▶ $LP \ge OPT$ (since we guess elements from OPT)
- ▶ Observation: $|\{i \mid 0 < x_i^* < 1\}| \le k$ since x^* is a basic solution and appart from $0 \le ... \le 1$ there are only k constraints.
- ▶ For i with $0 < x_i^* < 1$ one has $p_i \leq \frac{\varepsilon}{k}OPT$

$$APX \geq \sum_{i=1}^{n} \lfloor x_{i}^{*} \rfloor p_{i} \geq LP - \sum_{\substack{i:0 < x_{i}^{*} < 1 \\ \leq k \cdot \frac{\varepsilon}{k}OPT}} p_{i}$$

$$\geq OPT - k \cdot \frac{\varepsilon}{k}OPT = (1 - \varepsilon)OPT$$

Hardness of MultiConstraintKnapsack

Theorem

There is no FPTAS for MultiConstraintKnapsack even for 2 budgets, unless $\mathbf{NP} = \mathbf{P}$.

Problem: PARTITION

- ▶ Given: Numbers $a_1, \ldots, a_n \in \mathbb{N}$, $S := \sum_{i=1}^n a_i$, $m \in \{1, \ldots, n\}$
- ▶ Find: $I \subseteq \{1, \ldots, n\} : |I| = m, \sum_{i \in I} a_i = S/2$
- ▶ Recall: Partition is **NP**-hard.
- ▶ Define Mck instance with 2 constraints:

$$\max \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i} a_{i} \leq S/2 \sum_{i=1}^{n} x_{i} (S - a_{i}) \leq S(m - \frac{1}{2}) x_{i} \in \{0, 1\} \quad \forall i = 1, \dots, n$$

Proof

- ▶ Claim: \exists Partition solution $\Leftrightarrow OPT_{\text{MCK}} \geq m$
- ▶ ⇒ Suppose $\exists I: |I| = m, \sum_{i \in I} a_i = S/2$. Then this is a MCK solution of value m since

$$\sum_{i \in I} (S - a_i) = mS - \sum_{i \in I} a_i = S(m - \frac{1}{2})$$

 $\blacktriangleright \Leftarrow \text{Let } I \text{ be Mck solution of value } \geq m.$

$$|I| \cdot S - \frac{S}{2} \stackrel{\text{1. constr.}}{\leq} |I| \cdot S - \sum_{i \in I} a_i = \sum_{i \in I} (S - a_i) \stackrel{\text{2. const.}}{\leq} m \cdot S - \frac{S}{2}$$

- ▶ Hence |I| = m. Then ineq. holds with "="
- ▶ Thus $\sum_{i \in I} a_i = S/2$.
- Now suppose for contradiction we would have an FPTAS for McK: Then choose $\varepsilon := \frac{1}{n+1}$. Then the FPTAS would give an optimum solution for the instance resulting from the PARTITION reduction.

PART 14 BIN PACKING

Source: Combinatorial Optimization: Theory and Algorithms (Korte, Vygen)

Bin Packing

Problem: BINPACKING

- ▶ Given: Items with sizes $a_1, \ldots, a_n \in [0, 1]$
- ▶ <u>Find:</u> Assign items to minimum number of bins of size 1.

$$OPT = \min \left\{ k \mid \exists I_1 \dot{\cup} \dots \dot{\cup} I_k = \{1, \dots, n\} : \forall j : \sum_{i \in I_j} a_i \le 1 \right\}$$

▶ Define size $(I) = \sum_{i \in I} a_i$

First Fit

First Fit algorithm:

- (1) Start with empty bins
- (2) FOR i = 1, ..., n DO
 - (3) Assign item i to the bin B with least index such that $a_i + \sum_{j \in B} a_j \le 1$

Lemma

Let m be the number of used bins. Then $m \le 2 \sum_{i=1}^{n} a_i + 1 \le 2 \cdot OPT + 1$.

▶ All but m-1 bins must be filled with $\geq \frac{1}{2}$ (otherwise we would not have opened a new bin):

$$\sum_{i=1}^{n} a_i \ge \frac{1}{2}(m-1) \qquad 0.5 - \frac{1}{0}$$

▶ Hence $m \le 2 \sum_{i=1}^{n} a_i + 1$.

Linear Grouping

- ▶ INPUT: Instance $I = (a_1, ..., a_n), k \in \mathbb{N}$
- ▶ OUTPUT: Instance $I' = (a'_1, \ldots, a'_n)$ with $a'_i \ge a_i$ and $\le k$ different item sizes
- (1) Sort $a_1 \leq a_2 \leq \ldots \leq a_n$
- (2) Partition items into k consecutive groups of $\lceil n/k \rceil$ items (the last group might have less items)
- (3) Let a'_i be the size of the largest item in i's group

Linear Grouping (2)

Lemma

$$OPT(I') \le OPT(I) + \lceil n/k \rceil.$$

- ▶ Consider solution OPT(I). Assign item a'_i of group j to a space for item in group j+1
- ▶ Assign largest $\lceil n/k \rceil$ items to their own bin

An asymptotic PTAS

Algorithm of Fernandez de la Vega & Lueker:

- (1) Let $I = \{i \mid a_i > \varepsilon\}$ be set of large items (other items are small)
- (2) Apply linear grouping with $k = 1/\varepsilon^2$ groups to $I \to I'$
- (3) Compute an optimum distribution of I'
- (4) Distribute the small items over the used bins using First Fit

Lemma

The algorithm runs in polynomial time and uses at most $(1+2\varepsilon)OPT+1$ bins.

- ▶ Let $b_1, \ldots, b_{1/\epsilon^2}$ different item sizes in I'.
- ▶ Possible bin configurations $\mathcal{P} = \{p \in \{0, \dots, 1/\varepsilon\}^{1/\varepsilon^2} \mid b^T p \leq 1\}. \mid \mathcal{P} \mid \leq (1/\varepsilon^2)^{1/\varepsilon}.$
- ▶ Solution is described by $(n_p)_{p \in \mathcal{P}}$ $(n_p = \text{how many times shall I pack a bin with configuration } p?), <math>n_p \in \{0, \dots, n\}$
- $ightharpoonup \leq n^{(1/\varepsilon^2)^{1/\varepsilon}}$ possibilities for $(n_p)_{p\in\mathcal{P}}$.

An asymptotic PTAS (2)

- We need OPT(I') + # of bins additionally opened for the small items
- ▶ Note that

$$OPT(I') \leq OPT(I) + \lceil |I| \cdot \varepsilon^2 \rceil \leq OPT(I) + \lceil \varepsilon \cdot OPT(I) \rceil = (1 + 2\varepsilon) \cdot OPT$$

using $OPT(I) \geq \sum_{i \in I} a_i \geq \varepsilon \cdot |I|$ and $OPT \geq OPT(I)$.

▶ Suppose we need to open an additional bin for small items. Let m be total number of used bins. Then all but one bin are filled to $\geq 1 - \varepsilon$. Hence

$$OPT \ge \sum_{i=1}^{m} a_i \ge (1 - \varepsilon) \cdot (m - 1)$$

and

$$m \le \frac{OPT}{1-\varepsilon} + 1 \le (1+2\varepsilon)OPT + 1$$

Section 14.1 The algorithm of Karmarkar & Karp

The Algorithm of Karmarkar & Karp

Theorem (Karmarkar, Karp '82)

One can compute a BinPacking solution with $OPT + O(\log^2 n)$ many bins in polynomial time.

Assume $a_i \geq \delta := \frac{1}{n}$ (again one can distribute items that are smaller than $\frac{1}{n}$ after distributing the large items.

The Gilmore-Gomory LP-relaxation

- ▶ Let $b_i \in \mathbb{N}$ now the number of items of size a_i
- \triangleright n = number of different item sizes
- $ightharpoonup m := \sum_{i=1}^n b_i = \text{total number of items}$
- $\triangleright \mathcal{P} = \{ p \in \mathbb{Z}_+^n \mid a^T p \leq 1 \} \text{ set of feasible patterns}$
- ▶ Variable $x_p = \#$ of bins packed with pattern p

Primal

$$\min \mathbf{1}^T x \qquad (P(\mathcal{P}))$$

$$\sum_{p \in \mathcal{P}} x_p p \geq b$$

$$x \geq \mathbf{0}$$

- ▶ # var. exponential
- ▶ # constr. polynomial

Dual

$$\begin{array}{cccc} \max y^T b & & (D(\mathcal{P})) \\ p^T y & \leq & 1 & \forall p \in \mathcal{P} \\ y & \geq & \mathbf{0} \end{array}$$

- ▶ # var. polynomial
- ▶ # constr. exponential

Idea: Solve the dual with Ellipsoid!

Example

- ▶ Item sizes $a_1 = 0.3, a_2 = 0.4$
- \blacktriangleright # of items $b_1 = 31, b_2 = 7$
- Set of patterns $\mathcal{P} =$

Primal

 $\{\binom{0}{1}, \binom{0}{2}, \binom{1}{1}, \binom{2}{1}, \binom{1}{0}, \binom{2}{0}, \binom{3}{0}\}$

$$\min \mathbf{1}^{T} x
\begin{pmatrix} 0 & 0 & 1 & 2 & 1 & 2 & 3 \\ 1 & 2 & 1 & 1 & 0 & 0 & 0 \end{pmatrix} x \ge \begin{pmatrix} 31 \\ 7 \end{pmatrix}
x \ge \mathbf{0}$$

• Opt basic solution is $x = (0, 0, 0, 7, 0, 0, \frac{17}{3})$

Dual

Weak Separation Problem

 ε -Weak Separation Oracle for $P \subseteq \mathbb{R}^n$, obj.fct. $c \in \mathbb{Q}^n$

Input: Vector $z \in \mathbb{Q}^n$

OUTPUT: One of the following

- Case (A): Vector a with $a^T x \leq a^T z \ \forall x \in P$
- Case (B): Point $y \in P$ with $c^T y \ge c^T z \frac{\varepsilon}{2}$

▶ If $z \in P$, just return $z (\rightarrow case (B))$.

- ▶ INPUT: $c \in \mathbb{Q}^n, x_0 \in \mathbb{Q}^n, \varepsilon, r, R \in \mathbb{Q}_+ : B(x_0, r) \subseteq P \subseteq B(x_0, R)$
- ▶ OUTPUT: $y^* \in P$ with $c^T y^* \ge OPT_f \varepsilon$
- (1) Ellipsod $E_0 := B(x_0, R)$ with center $z_0 := x_0, y^* := x_0$
- (2) FOR $t = 0, \dots, poly$ DO
 - (4) Submit z_t to ε -weak separation oracle
 - (5) Case (A) $\rightarrow a$: Compute $E_{t+1} \supseteq E_t \cap \{x \mid a^T x \leq a^T z_t\}$
 - (6) Case (B) $\rightarrow y \in P$:
 - (7) IF $c^T y > c^T y^*$ THEN $y^* := y$
 - (8) Compute $E_{t+1} \supseteq E_t \cap \{x \mid c^T x \ge c^T z_t\}$

- ▶ INPUT: $c \in \mathbb{Q}^n, x_0 \in \mathbb{Q}^n, \varepsilon, r, R \in \mathbb{Q}_+$: $B(x_0, r) \subseteq P \subseteq B(x_0, R)$
- ▶ OUTPUT: $y^* \in P$ with $c^T y^* \ge OPT_f \varepsilon$
- (1) Ellipsod $E_0 := B(x_0, R)$ with center $z_0 := x_0, y^* := x_0$
- (2) FOR $t = 0, \dots, poly$ DO
 - (4) Submit z_t to ε -weak separation oracle
 - (5) Case (A) $\rightarrow a$: Compute $E_{t+1} \supseteq E_t \cap \{x \mid a^T x \leq a^T z_t\}$
 - (6) Case $(B) \rightarrow y \in P$:
 - (7) IF $c^T y > c^T y^*$ THEN $y^* := y$
 - (8) Compute $E_{t+1} \supseteq E_t \cap \{x \mid c^T x \ge c^T z_t\}$

- ► INPUT: $c \in \mathbb{Q}^n$, $x_0 \in \mathbb{Q}^n$, ε , r, $R \in \mathbb{Q}_+$: $B(x_0, r) \subseteq P \subseteq B(x_0, R)$
- ▶ OUTPUT: $y^* \in P$ with $c^T y^* \ge OPT_f \varepsilon$
- (1) Ellipsod $E_0 := B(x_0, R)$ with center $z_0 := x_0, y^* := x_0$
- (2) FOR $t = 0, \dots, poly$ DO
 - (4) Submit z_t to ε -weak separation oracle
 - (5) Case (A) $\rightarrow a$: Compute $E_{t+1} \supseteq E_t \cap \{x \mid a^T x \leq a^T z_t\}$
 - (6) Case $(B) \rightarrow y \in P$:
 - (7) IF $c^T y > c^T y^*$ THEN $y^* := y$
 - (8) Compute $E_{t+1} \supseteq E_t \cap \{x \mid c^T x \ge c^T z_t\}$

- ▶ INPUT: $c \in \mathbb{Q}^n, x_0 \in \mathbb{Q}^n, \varepsilon, r, R \in \mathbb{Q}_+ : B(x_0, r) \subseteq P \subseteq B(x_0, R)$
- OUTPUT: $y^* \in P$ with $c^T y^* \ge OPT_f \varepsilon$
- (1) Ellipsod $E_0 := B(x_0, R)$ with center $z_0 := x_0, y^* := x_0$
- (2) FOR $t = 0, \dots, poly$ DO
 - (4) Submit z_t to ε -weak separation oracle
 - (5) Case (A) $\rightarrow a$: Compute $E_{t+1} \supseteq E_t \cap \{x \mid a^T x \leq a^T z_t\}$
 - (6) Case $(B) \rightarrow y \in P$:
 - (7) IF $c^T y > c^T y^*$ THEN $y^* := y$
 - (8) Compute $E_{t+1} \supseteq E_t \cap \{x \mid c^T x \ge c^T z_t\}$

Case (B):

- ▶ INPUT: $c \in \mathbb{Q}^n, x_0 \in \mathbb{Q}^n, \varepsilon, r, R \in \mathbb{Q}_+ : B(x_0, r) \subseteq P \subseteq B(x_0, R)$
- OUTPUT: $y^* \in P$ with $c^T y^* \ge OPT_f \varepsilon$
- (1) Ellipsod $E_0 := B(x_0, R)$ with center $z_0 := x_0, y^* := x_0$
- (2) FOR $t = 0, \dots, poly$ DO
 - (4) Submit z_t to ε -weak separation oracle
 - (5) Case (A) $\rightarrow a$: Compute $E_{t+1} \supseteq E_t \cap \{x \mid a^T x \leq a^T z_t\}$
 - (6) Case $(B) \rightarrow y \in P$:
 - (7) IF $c^T y > c^T y^*$ THEN $y^* := y$
 - (8) Compute $E_{t+1} \supseteq E_t \cap \{x \mid c^T x \ge c^T z_t\}$

Case (B):

Analysis

Theorem

Let $OPT_f = \max\{c^T x \mid x \in P\}$. The GLS algorithm finds a $y^* \in P$ with $c^T y^* \ge OPT_f - \varepsilon$.

- ▶ Suppose for contradiction this is false.
- ▶ Let $x^* \in P$ be opt. sol.; φ input size.
- ▶ Inequalities from case (A) never cut points from *P*
- ▶ Ineq. from case (B) never cut points better than $OPT_f \frac{\varepsilon}{2}$ (otherwise we would have found a suitable y^*)
- Let $U := \operatorname{conv}\{B(x_0, r), x^*\}$ and $U' = \{x \in U \mid c^T x \geq OPT_f \frac{\varepsilon}{2}\}$. By standard volume bounds: $\operatorname{vol}(U') \geq (\frac{1}{2})^{\operatorname{poly}(\varphi)}$. But $U' \subseteq E_t \ \forall t$. After $\operatorname{poly}(\varphi)$ many it. $\operatorname{vol}(E_t) = (1 \frac{\Theta(1)}{n})^t \cdot \operatorname{vol}(E_0) < \operatorname{vol}(U')$. Contradiction!

A useful observation

Observation

Consider a run of the GLS algorithm for $P \subseteq \mathbb{R}^n$ which yields $y^* \in P$. Let $a_1^T x \leq b_1, \ldots, a_N^T x \leq b_N$ be the inequalities which the oracle are returned for Case (A).

- ▶ Each $a_i^T x \leq b_i$ is feasible for P
- $c^T y^* \ge \max\{c^T x \mid a_i^T x \le b_i \ \forall i = 1, \dots, N\} \varepsilon$

Solving $D(\mathcal{P})$

Lemma

Suppose $a_i \geq \delta$. Then we can find a feasible solution y^* to $D(\mathcal{P})$ of value $\geq OPT_f - 1$ in time polynomial in $n, m, \frac{1}{\delta}$.

▶ Apply GLS algo for $\varepsilon := 1$. Choose $y_0 = (\frac{\delta}{2}, \dots, \frac{\delta}{2})$.

$$B\left(y_0, \frac{\delta}{2}\right) \overset{(\delta, \dots, \delta)^T p \leq 1}{\subseteq} D(\mathcal{P}) \subseteq B(y_0, n)$$

• We use $\sum_{i=1}^{n} p_i \leq \frac{1}{\delta}$ for any feasible pattern $p \in \mathcal{P}$ since $a_i \geq \delta$

Solving $D(\mathcal{P})$ (2)

- We solve ε -weak separation problem for $z \in \mathbb{Q}^n$.
- ▶ If $z_i < 0 \rightarrow \text{Case (A)}$ (inequality $z_i > 0$ violated)
- ▶ If $z_i > 1 \rightarrow \text{Case (A)}$ (inequality $z^T e_i < 1$ violated)
- ▶ Round z down to nearest multiple of $\frac{1}{2m}$ and term this vector y. Solve $p^* = \operatorname{argmax}\{y^T p \mid p \in \mathcal{P}\}$ (Knapsack with profits from $0, 1 \cdot \frac{1}{2m}, 2 \cdot \frac{1}{2m}, \ldots, 1$)

Case $y^{T}p^{*} > 1$:

 $Then z^T p^* \ge y^T p^* > 1$ \rightarrow Case (A).

Case $y^T p^* \le 1$:
Then $y \in D(\mathcal{P})$. And $z^T b - y^T b \le m \cdot \frac{1}{2m} = \frac{1}{2} = \frac{\varepsilon}{2}.$ \rightarrow Case (B)

GLS yields a solution y^* mit $b^T y^* \geq OPT_f - 1$.

Finding a near optimal basic solution for P(P)

Theorem

Suppose $a_i \geq \delta$. Then we can find a basic solution x^* for $P(\mathcal{P})$ of value $\leq OPT_f + 1$ in time polynomial in $n, m, \frac{1}{\delta}$.

- ▶ Run GLS to obtain sol. y^* to $D(\mathcal{P})$ with $b^T y^* \geq OPT_f 1$
- Let $y^T p \leq 1$, $p \in \mathcal{P}'$ be inequalities returned by oracle for case (A). $\mathcal{P}' \subset \mathcal{P}$ has polynomial size and

$$D(\mathcal{P}) \overset{y^* \text{ valid for } D(\mathcal{P})}{\geq} b^T y^* \geq D(\mathcal{P}') - 1 \qquad (1)$$

$$D(\mathcal{P}) \overset{y^* \text{ valid for } D(\mathcal{P})}{\geq} b^T y^* \geq D(\mathcal{P}') - 1 \qquad (1)$$

▶ Compute optimum basic solution x^* for $P(\mathcal{P}')$ in poly-time.

$$\mathbf{1}^T x^* = P(\mathcal{P}') \stackrel{\text{duality}}{=} D(\mathcal{P}') \stackrel{(1)}{\leq} D(\mathcal{P}) + 1 \stackrel{\text{duality}}{=} P(\mathcal{P}) + 1$$

▶ x^* is also a (non-optimal) basic solution for $P(\mathcal{P})$

Geometric Grouping

- ▶ INPUT: Instance $I = (a_1, ..., a_n)$, $size(I) = \sum_{i=1}^n a_i b_i \le n$, $a_i > \delta$
- ▶ OUTPUT: Rounded up instance I' with n/2 diff. item sizes $OPT_f(I') \leq OPT_f(I)$ plus waste of $O(\log \frac{1}{\delta})$
- (1) Sort items w.r.t. sizes $e_1 \leq e_2 \leq \ldots \leq e_m$ (a_i appears b_i times)
- (2) Let $G_1 = \{e_1, \ldots, e_{\ell_1}\}$ be minimal set of items with $\sum_{i \in G_1} e_i \geq 2$, then continue with G_2, \ldots Let $\ell_i := |G_i|$ be number of items in G_i ℓ_1 ℓ_2 ℓ_3 ℓ_4 ℓ_5
- (3) Remove first and last group \rightarrow waste
- (4) From G_i throw away smallest $\ell_i \ell_{i+1}$ items \rightarrow waste
- (5) Round up items in G_i to largest item $\to I'$

Geometric Grouping (2)

Lemma

Size of waste is $O(\log \frac{1}{\delta})$.

- \triangleright Size of 1st and last group is O(1)
- ▶ Consider group G_i . Total size of items in G_i is ≤ 3 .
- ▶ Num of groups is $\leq n/2$. Cleary $\frac{2}{\delta} \geq \ell_1 \geq \ell_2 \geq \ldots$
- ▶ The $n_i := \ell_i \ell_{i+1}$ smallest items in G_i have size $\leq 3 \frac{n_i}{\ell_i}$.

$$\text{waste} \leq 3 \sum_{i} \frac{n_i}{\ell_i} \leq 3 \sum_{j=1}^{\ell_1} \frac{1}{j} \stackrel{\ell_1 \leq 2/\delta}{=} O(\log \frac{1}{\delta})$$

$$\ell_i \text{ items of total size} \leq 3$$

$$G_i$$

The algorithm

Algorithm:

- (1) Compute a basic solution x to $P(\mathcal{P})$ with $\mathbf{1}^T x \leq OPT_f + 1$
- (2) Buy $\lfloor x_p \rfloor$ times pattern p, let I be remaining instance
- (3) Apply geometric grouping to I (with n different item sizes) $\rightarrow I'$ (with n/2 different item sizes)
- (4) Recurse

Theorem

One has $APX \leq OPT_f + O(\log^2 n)$.

- ▶ Since x is basic solution, $|\{p \mid x_p > 0\}| \le n$.
- After (2) $size(I) \le \sum_{p} (x_p \lfloor x_p \rfloor) \le n$.
- ▶ Let x^t be solution x in iteration t. We buy $\sum_p \lfloor x_p^t \rfloor$ bins, but OPT_f decreases by the same quantity.
- ▶ We pay in total OPT_f + total waste. We have $O(\log n)$ recursions; in each recursion we have a waste of $O(\log \frac{1}{\lambda}) = O(\log n)$.

State of the art

▶ Computing OPT exactly is **NP**-hard even if the numbers a_i are unary encoded (i.e. BINPACKING is strongly **NP**-hard).

Open question

One can compute a BIN PACKING solution with $\leq OPT + 1$ bins in poly-time?

Mixed Integer Roundup Conjecture

One has $OPT \leq \lceil OPT_f \rceil + 1$.