Partial Functions and Preference for ARC: Domains, Interpolation, and Adaptation (Research Note)

Cristiano Calcagno

2025-10-31

Abstract

We formalize Abstraction and Reasoning Corpus (ARC) tasks using partial functions over grids and a numeric preference function on programs. The central concept is the *behavioural domain* that encodes the programmer's intended coverage. We give a short calculus for behavioural definedness under boolean connectives, characterize interpolation, generalisation, and adaptation to novelty, and work through a representative example where generalisation succeeds precisely by extending the behavioural domain to include a previously unhandled color.

1 Model

Definition 1 (Objects). Let \mathcal{G} be the set of grids. Candidate programs are partial functions $f: \mathcal{G} \rightharpoonup \mathcal{G}$; write $Dom_b(f) \subseteq \mathcal{G}$ for the (behavioural) domain of f, i.e. the set of inputs on which f specifies behaviour. Let \mathcal{F} denote a chosen hypothesis class of such programs.

Definition 2 (Preference). A numeric scoring function $P : \mathcal{F} \to \mathbb{R}$ induces a strict preference: f_1 is preferred to f_2 iff $P(f_1) > P(f_2)$.

Definition 3 (ARC puzzles). An ARC puzzle (instance) consists of training pairs $\{(i_k, o_k)\}_{k=1}^n \subseteq \mathcal{G} \times \mathcal{G}$ and a test input $i \in \mathcal{G}$.

Definition 4 (Interpolants). For training pairs $\{(i_k, o_k)\}_{k=1}^n$, a program f interpolates the training set if for all k, $i_k \in \text{Dom}_b(f)$ and $f(i_k) = o_k$. Let $\mathcal{I} = \{f \in \mathcal{F} \mid f \text{ interpolates } \{(i_k, o_k)\}_{k=1}^n\}$ denote the set of all interpolants.

Definition 5 (Tentative solution, solution, ambiguity/void). A tentative solution is any interpolant $f \in \mathcal{I}$ such that $i \in \text{Dom}_b(f)$. Let

$$S = \{ f \in \mathcal{I} \mid i \in \mathrm{Dom}_b(f) \}.$$

The intended solution is any $f^* \in \arg\max_{f \in \mathcal{S}} P(f)$ (i.e., the element of \mathcal{S} that maximizes P). The instance is void if $\mathcal{S} = \emptyset$ and ambiguous if $|\arg\max_{f \in \mathcal{S}} P(f)| > 1$.

Definition 6 (Generalisation and adaptation to novelty). Generalisation is moving between interpolants $f, g \in \mathcal{I}$ with P(g) > P(f). The top-scoring interpolant $f^{\dagger} \in \arg\max_{f \in \mathcal{I}} P(f)$ (the interpolant maximizing P) may fail to cover the test input $(i \notin \text{Dom}_b(f^{\dagger}))$. Adaptation to novelty selects a tentative solution $g^{\star} \in \arg\max_{f \in \mathcal{S}} P(f)$; since $\mathcal{S} \subseteq \mathcal{I}$, necessarily $P(g^{\star}) \leq P(f^{\dagger})$.

This formulation clarifies the tension in ARC: generalisation seeks higher-scoring interpolants (simpler, more elegant programs), while adaptation prioritizes coverage of the test input. When the test introduces novel features absent in training (e.g., a new color), the top interpolant f^{\dagger} may exclude that case from Dom_b , forcing a trade-off: accept a lower-preference tentative solution g^{\star} that extends the behavioural domain, or stick with f^{\dagger} and risk failure.

2 Behavioural domain

We focus on the **behavioural domain** $\operatorname{Dom}_b(e)$: the inputs on which the specification intends to define behaviour (coverage). We assume standard short-circuit evaluation for expressions; runtime definedness is incidental here and not our emphasis.

Definedness calculus (examples). For boolean expressions E, F and comparisons x=c,

$$Dom_b(\neg E) = Dom_b(E), \tag{1}$$

$$Dom_b((x=c \land E) \lor F) = (x=c \land Dom_b(E)) \lor Dom_b(F). \tag{2}$$

For a DSL primitive $g(\cdot)$, we assume a given predicate $Dom_b(g)$.

3 Worked example

We illustrate the role of the behavioural domain using ARC-AGI-2 task dfadab01. The puzzle is available at https://arcprize.org/play?task=dfadab01; the full solver analysis at https://gist.github.com/cristianoc/e86779cee94658567ecba429133d6667.

Consider the following (corrected) DSL function:

```
def valid_anchor(grid: Grid, anchor: Anchor) -> bool:
row, col, color = anchor
return not (
    (color == 2 and guard_nw_eq(grid, (row, col), 4))
    or (color == 5 and guard_nw_eq(grid, (row, col), 6))
)
```

Example 1 (Behavioural domain). If the intended specification handles only colors 2 (red) and 5 (gray), the behavioural domain must be:

```
Dom_b(\textit{valid\_anchor}) = (color = 2 \land Dom_b(\textit{guard\_nw\_eq}(grid, (row, col), 4))) \\ \lor (color = 5 \land Dom_b(\textit{guard\_nw\_eq}(grid, (row, col), 6))).
```

This captures the explicit color-specific guards: only when color is 2 do we check the guard for color 4, and only when color is 5 do we check the guard for color 6. Any other color falls outside the intended behavioural domain.

Remark 1 (Novelty at test time). If the test input has color=8 (sky blue), then the expression computationally evaluates (no guard is forced), but $i \notin Dom_b(valid_anchor)$ by the behavioural domain example above. Generalisation must therefore extend the behavioural domain (e.g. add a new branch or a principled fallback) so that 8 becomes covered.

4 Practical Implications

The model suggests a concrete operating procedure and design tips:

- Selection rule. Among interpolants, pick the tentative solutions that cover the test (S) and choose the P-maximizer; if $S = \emptyset$ the instance is void, and if multiple maximizers remain it is ambiguous.
- Novelty handling. If the top-scoring interpolant f^{\dagger} does not cover the test $(i \notin Dom_b(f^{\dagger}))$, extend the behavioural domain with the minimal, principled change that includes i, accepting a possible decrease in P.

Figure 1: Before/after comparison showing domain extension failure and recovery: the initial solver explicitly handles only red (2) and gray (5). When sky blue (8) appears in the test input (corresponding to an X-pattern motif with orange (7) borders), the solver incorrectly stamps the motif because $8 \notin \text{Dom}_b(\text{valid_anchor})$. The simplified version introduces guard_color (deriving the guard color 7 from the motif's top-left cell) to uniformly treat all motifs, extending Dom_b to include color 8 and preventing spurious stamping.

- Make coverage explicit. Encode intended coverage via guard-style case-splits with no default else; this makes Dom_b visible and simplifies reasoning about what inputs are intentionally handled.
- **Debugging checklist.** On failures, first distinguish evaluation errors from coverage gaps: compute or approximate $Dom_b(e)$ for the failing expression and check whether the test input lies outside it.

5 Summary

Modeling ARC programs as partial functions with a numeric score yields a compact account of interpolation, generalisation, and adaptation. The *behavioural domain* is essential: many failures are not evaluation errors but *coverage* gaps. In the example, the initial solver fails on the test because color 8 is outside Dom_b ; the generalised solution succeeds precisely by extending Dom_b to include that case.