

Parametrisierung der Allgemeinen Bodenabtragsgleichung

Markus Möller¹ & Martin Volk²

¹ Julius Kühn-Institut, Institut für Pflanzenbau und Bodenkunde, Braunschweig

² Helmholtz-Zentrum für Umweltforschung GmbH – UFZ, Department Landschaftsökologie, Leipzig

Special Publication No. 1

Pioneering Soil Erosion Prediction

The USLE Story

Laflen, J.M., Moldenhauer, W.C., 2003. The USLE story – Pioneering Soil Erosion Prediction (No. 1), Special Publication. World Association of Soil Water Conservation

Ziele

- Ableitung von ABAG-Faktoren
- Faktorenparametrisierung
 - grundlegende Prinzipien
 - existierende Datengrundlagen
 - Modellierung von Datengrundlagen

https://github.com/JKI-GDM/LSS4_Bodenerosion_ SS2023/tree/main/Parametrisierung

Wischmeier, W.H., Smith, D.D., 1978. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. Agriculture Handbook No. 537. USDA/Science and Education Administration, US. Govt. Printing Office, Washington, DC

Schwertmann, U., Vogl, W., Kainz, M., 1990. Bodenerosion durch Wasser: Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen, 2. Auflage. Ulmer: Stuttgart

USLE/RUSLE/ABAG

Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., Alewell, C., 2015. The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy 54, 438–447

USLE/RUSLE/ABAG

Deutschland

Plambeck, N.O., 2020. Reassessment of the potential risk of soil erosion by water on agricultural land in Germany: Setting the stage for site-appropriate decision-making in soil and water resources management, Ecological Indicators 118, 106732

Helbig, H., Möller, M., Schmidt, G., 2010: Bodenerosion durch Wasser in Sachsen-Anhalt. BVB-Materialien, Bd. 15., Bundesverband Boden, Berlin: Erich Schmidt Verlag, ISBN 978-3-503-12498-5

USLE/RUSLE/ABAG

Vorschriften

- USLE Wischmeier, W.H., Smith, D.D., 1978. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. Agriculture Handbook No. 537. USDA/Science and Education Administration, US. Govt. Printing Office, Washington, DC
- RUSLE Renard, K., Foster, G., Weesies, G., McCool, D., Yoder, D., 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), Agricultural Handbook No. 703, 65–100
- ABAG Schwertmann, U., Vogl, W., Kainz, M., 1990. Bodenerosion durch Wasser: Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen, 2. Auflage. Ulmer: Stuttgart
- DIN 19708 DIN 19708, 2017. Bodenbeschaffenheit Ermittlung der Erosionsgefährdung von Böden durch Wasser mit Hilfe der ABAG

$\mathbf{A} = R \times K \times L \times S \times C \times P$

Hennings, V., 2000. Methodendokumentation Bodenkunde -Auswertungsmethoden zur Beurteilung der Empfindlichkeit und Belastbarkeit von Böden Bundesanstalt für; Geowissenschaften und Rohstoffe und Staatliche; Geologische Dienste in der Bundesrepublik Deutschland, AD-HOC-AG Boden, Sonderhefte Reihe G - Geol. Jahrbuch Heft 1

R-Faktor

Der R-Faktor $(\frac{kJ \times mm}{m^2 \times h})$ einer Station ist die Summe der Erosivitäten von Einzelniederschlagsereignisse (R_e) .

$$R = \sum_{e=1}^{n} R_e \tag{1}$$

Der $R_{\rm e}$ -Wert eines Einzelniederschlagsereignisses wird aus der kinetischen Energie $E_{\rm e}$ und der Regenintensität I_{30} von mindestens 12,7 mm h $^{-1}$ berechnet, wobei zwischen den Niederschlagsereignissen mindestens 6 h liegen müssen.

$$R_e = E_e \times I_{30} \tag{2}$$

 E_e (kJ m $^{-2}$) ergibt sich aus der Unterteilung der Niederschlagssummenkurve eines Niederschlagereignisses in i Abschnitte konstanter Steigung. Jedem Abschnitt wird dabei die Intensität und die zugehörige Niederschlagshöhe N_i zugeordnet. E_e berechnet sich aus der Aufsummierung seiner i Abschnitte.

$$E_e = \sum_{e=1}^{n} (11,89 + 8,73 \log I_i) \times N_i$$
 (3)

Schwertmann, U., Vogl, W., Kainz, M., 1990. Bodenerosion durch Wasser: Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen, 2. Auflage. Ulmer: Stuttgart

R-Faktor

Interpolierte Stationsdaten

DWD-Wetterstationen 55.0 52.5 50.0

10.0

Longitude

12.5

15.0

Sauerborn, P., 1994. Die Erosivität der Niederschläge in Deutschland – Ein Beitrag zur quantitativen Prognose der Bodenerosion durch Wasser in Mitteleuropa. In: Bonner Bodenkundliche Abhandlungen, Band 13, Bonn.

47.5

7.5

R-Faktor

Auerswald, K., Fischer, F.K., Winterrath, T., Brandhuber, R., 2019. Rain erosivity map for Germany derived from contiguous radar rain data. Hydrol. Earth Syst. Sci. 23, 1819–1832

Fischer, F., Hauck, J., Brandhuber, R., Weigl, E., Maier, H., Auerswald, K., 2016. Spatio-temporal variability of erosivity estimated from highly resolved and adjusted radar rain data (RADOLAN). Agricultural and Forest Meteorology 223, 72–80

Die Erodibilitat des Bodens ist der Abtrag pro R-Faktoreneinheit am Einheitshang.

$$K = 2,77 \times 10 - 6 \times M1,14 \times (12 - OS) + 0,043 \times (A - 2) + 0,033 \times (4 - D)$$

mit M (Schluff+Feinstsand)×(Schluff+Sand) jeweils in [%M]; OS – organische Substanz [%]; A – Aggregatklasse; D – Durchlässigkeitsklasse

$$K = (K_b \times K_h + K_a + K_d) \times K_s \Rightarrow \frac{t \times h}{ha \times N}.$$

mit $K_b =$ bodenabhängiger Anteil des K-Faktors; $K_h =$ humusabhängiger Anteil des K-Faktors; $K_a =$ aggregierungsabhängige Anteil des K-Faktors; $K_d =$ wasserdurchlässigkeitsabhängiger Anteil des K-Faktors; $K_s =$ steinbedeckungsabhängiger Anteil des K-Faktors

Schwertmann, U., Vogl, W., Kainz, M., 1990. Bodenerosion durch Wasser: Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen, 2. Auflage. Ulmer: Stuttgart

Bodenart des obersten Horizonts

Bodenart nach [1]	Къ	Bodenart Kurzzeichen	Къ	Bodenart Kurzzeichen	Кb	Bodenart Kurzzeichen	Кb
Ss	0,13	Uu	0,71	Lt2	0,26	Tu2	0,14
Su2	0,23	Us	0,63	Lt3	0,21	Tu3	0,32
Su3	0,35	Uls	0,50	Tu3	0,32	ffS	0,74
Su4	0,45	Ut2	0,61	Lts	0,15	fS	0,34
Slu	0,40	Ut3	0,56	Ts2	0,04	fSms	0,25
SI2	0,21	Ut4	0,53	Ts3	0,06	fSgs	0,25
SI3	0,26	Ls2	0,35	Ts4	0,08	mS	0,07
SI4	0,24	Ls3	0,28	TI	0,09	mSfs	0,16
St2	0,11	Ls4	0,19	Tt	0,02	mSgs	0,07
St3	0,10	Lu	0,41	Tu4	0,45	gS	0,07

Hennings, V., 2000. Methodendokumentation Bodenkunde - Auswertungsmethoden zur Beurteilung der Empfindlichkeit und Belastbarkeit von Böden Bundesanstalt für; Geowissenschaften und Rohstoffe und Staatliche; Geologische Dienste in der Bundesrepublik Deutschland, AD-HOC-AG Boden, Sonderhefte Reihe G - Geol. Jahrbuch Heft 1

Ein Boden ist umso erosionsanfälliger, je höher der Schluff- plus Feinstsandgehalt, je geringer der Tongehalt, je geringer der Humusgehalt, je gröber die Aggregate und je geringer die Wasserdurchlassigleit ist.

Boden mit 65 % Schluff plus Feinstsand, 5 % Sand (ohne Feinstsand), 3 % organische Substanz

Schwertmann, U., Vogl, W., Kainz, M., 1990. Bodenerosion durch Wasser: Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen, 2. Auflage. Ulmer: Stuttgart

Quelle: BGR

Disaggregierung

- 55 Kartenblätter mit jeweils einer Blattlegende
- GEN_ID = Generallegendeneinheit
- BF_ID = Bodenform-ID
- pro GEN_IDs mehrere BF_IDs möglich

Plambeck, N.O., 2020.
Reassessment of the potential risk of soil erosion by water on agricultural land in Germany:
Setting the stage for site-appropriate decision-making in soil and water resources management, Ecological Indicators 118, 106732

Feldhaus, D., Hartmann, K.-J., 2006. Bodenbericht 2006 – Böden und Bodeninformationen in Sachsen-Anhalt, Mitteilungen zur Geologie und Bergwesen in Sachsen-Anhalt, Bd. 11, Landesamt für Geologie und Bergwesen Sachsen-Anhalt (LAGB), Halle (Saale)

Datengrundlagen

- keine Genauigkeitsmaße
- unterschiedliche Maßstäbe
- unterschiedliche Nomenklaturen
 - KA5
 - TGL 24300
 - Bodenschätzung
 - . . .
- verschiedene Ansätze der Heterogenität und Bodenvergesellschaftung
- Abgrenzung der Bodengrenzen nicht nachvollziehbar

Möller, M., Steininger, M., Thürkow, F., Kainz, W., Helbig, H. (2018): ProBoSA - Pilotstudie "Entwicklung eines Expertensystems zur Prognose hoch- und grundwasserbeeinflusster Böden in Sachsen-Anhalt, Projektbericht, Martin-Luther-Universität Halle-Wittenberg, Professur Landwirtschaftliche Betriebslehre im Auftrag des Landesamtes für Geologie und Bergwesen Sachsen-Anhalt

Möller, M.; Zepp, S.; Wiesmeier, M.; Gerighausen, H.; Heiden, U., 2022: Scale-specific Prediction of Topsoil Organic Carbon Contents using Terrain Attributes and SCMaP Soil Reflectance Composites. Remote Sensing, 14(10), 2295.

Jedes Prognoseprodukt ist durch Genauigkeitsmaße charakterisiert! Möller, M.; Zepp, S.; Wiesmeier, M.; Gerighausen, H.; Heiden, U., 2022: Scale-specific Prediction of Topsoil

Möller, M.; Zepp, S.; Wiesmeier, M.; Gerighausen, H.; Heiden, U., 2022: Scale-specific Prediction of Topsoil Organic Carbon Contents using Terrain Attributes and SCMaP Soil Reflectance Composites. Remote Sensing, 14(10), 2295.

Möller, M.; Zepp, S.; Wiesmeier, M.; Gerighausen, H.; Heiden, U., 2022: Scale-specific Prediction of Topsoil Organic Carbon Contents using Terrain Attributes and SCMaP Soil Reflectance Composites. Remote Sensing, 14(10), 2295.

Gebauer, A., Sakhaee, A., Don, A., Poggio, M., Ließ, M., 2022. Topsoil Texture Regionalization for Agricultural Soils in Germany—An Iterative Approach to Advance Model Interpretation. Front. Soil Sci. 1, 770326

Jacobs, A., Flessa, H., Don, A., Heidkamp, A., Prietz, R., Dechow, R., Gensior, A., Poeplau, C., Riggers, C., Schneider, F., Tiemeyer, B., Vos, C., Wittnebel, M., Müller, T., Säurich, A., Fahrion-Nitschke, A., Gebbert, S., Jaconi, A., Kolata, H., Laggner, A., 2018. Landwirtschaftlich genutzte Böden in Deutschland - Ergebnisse der Bodenzustandserhebung. Braunschweig: Johann Heinrich von Thünen-Institut, Thünen Report 64

Gebauer, A., Sakhaee, A., Don, A., Poggio, M., Ließ, M., 2022. Topsoil Texture Regionalization for Agricultural Soils in Germany—An Iterative Approach to Advance Model Interpretation. Front. Soil Sci. 1, 770326

Gebauer, A., Sakhaee, A., Don, A., Poggio, M., Ließ, M., 2022. Topsoil Texture Regionalization for Agricultural Soils in Germany—An Iterative Approach to Advance Model Interpretation. Front. Soil Sci. 1, 770326

Safanelli, J.L., Chabrillat, S., Ben-Dor, E., Demattê, J.A.M., 2020. Multispectral Models from Bare Soil Composites for Mapping Topsoil Properties over Europe. Remote Sensing 12, 1369.

Keller A., Grob U., Herzog M., Zahner D., Greiner L., Stumpf F., Petter G., Wallner M., Sprafke T., Racine S., Carrera E., Baumann P. und Behrens T. (2023). Neue Methoden in der Bodenkartierung – Pilotprojekt Diemerswil. KOBO-Bericht Nr. 3. BFH-HAFL. CH-3052 Zollikofen-Bern

$$LS = \left(\frac{l}{22}\right)^m \times \frac{N}{9} \times \left(\sqrt{\frac{N}{9}}\right)$$

mit LS = Relieffaktor (Hangneigung, erosive Hanglänge); I = Hanglänge [m]; m = Hanglängenkoeffizient; N = Hangneigung [%]

Schwertmann, U., Vogl, W., Kainz, M., 1990. Bodenerosion durch Wasser: Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen, 2. Auflage. Ulmer: Stuttgart

$$I = EZG_s = EZG/b$$

- \bullet EZG = Einzugsgebiet
- EZG_s = spezifisches EZG
 (Anzahl der Zellen, die in eine Zelle entwässern
- b = Breite des Einzugsgebietes

Moore I.D., Wilson J.P., 1992. Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation. Journal of Soil and Water Conservation, 47: 423–428

Parameter zur Ableitung des LS-Faktors

Wurbs, D., Steininger, M., 2011. Wirkungen der Klimaänderungen auf die Böden. UBA-Texte 16/2011, Dessau-Roßlau: Umweltbundesamt

Beispiel Könnern

Möller, M., 2019. Bildungsmodule für Klimaanpassungen für den Agrarsektor Sachsen-Anhalts (BIKASA) – Endbericht Arbeitspakete AP4/5, TERRASYS geodatenanalyse im Auftrag der Martin-Luther-Universität Halle-Wittenberg, Institut für Geowissenschaften und Geographie. AG Geoökologie. Halle (Saale)

Einflussgrößen

- Rasterzellengröße
- Verfahren der Fließakkumulationsberechnung
- LS-Faktorenberechnungsvariante
- Berücksichtigung von Barrieren

Hrabalíková, M., Janeček, M., 2017. Comparison of different approaches to LS factor calculations based on a measured soil loss under simulated rainfall. Soil Water Res. 12, 69–77

Khanifar, J., Khademalrasoul, A., 2020. Multiscale comparison of LS factor calculation methods based on different flow direction algorithms in Susa Ancient landscape. Acta Geophys. 68, 783–793

Wurbs, D., Steininger, M., 2011. Wirkungen der Klimaänderungen auf die Böden. UBA-Texte 16/2011, Dessau-Roßlau: Umweltbundesamt

- Vegetationsbedeckung und Oberbodenzustand bestimmen die Erosionsanfälligkeit zu jedem Zeitpunkt der Kultur.
- Der Relative Bodenabtrag (RBA) gibt das Verhältnis des Bodenabstrages einer Fläche unter einer bestimmten Kultur bei einem bestimmten Entwicklungszustand zu dem einer gleichen Fläche unter Schwarzbrache an.
- Der RBA-Wert eines Entwicklungszustandes wird dem korrespondierenden R-Faktorenanteil zugeordnet.

Schwertmann, U., Vogl, W., Kainz, M., 1990. Bodenerosion durch Wasser: Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen, 2. Auflage. Ulmer: Stuttgart

RBA für verschiedene Kulturpflanzen

	Periode						
	1a	1 b	2	3	4	5	6
	wen-	wen- nicht- Saat- Bodenbedeckung				kung	Ernte
	dend	wen-	bett	10%	50%	75%	bis
		dend	bis	bis	bis	bis	BB
Frucht und Bestelltechnik	BB	BB	10%	50%	75%	Ernte	
N Bestelltechnik	bis Sa	atbett					
1 Getreide konvent.	32	_	46	38	3	1	2
2 dto Minimal-BB	_	8	8	6	1	1	2
3 Raps	32	***	46	38	3	1	2
* 4 Kartoffeln	32	-	80	40	5	7,5	44
* 5 Zuckerrüben	32	-	85	45	5	3	44
* 6 dto Mulchsaat	20	8	9	6	3	3	15
* 7 Mais konventionell	32	_	94	45	12	8,5	44
* 8 dto Spurlockerung	32	-	54	45	12	8,5	44
* 9 dto WG Reihen	32	_	36	21	12	8,5	44
*10 dto Mulchsaat	20	8	11	7	2	1	10
*11 dto Minimal-BB		8	8	6	2	1	10

^{*} Bei Blattfruchtanteilen in der Fruchtfolge von 50% und mehr sind die RBA-Werte der Blattfrüchte in den Perioden 2-6 mit 1,5 zu multiplizieren, um den stärkeren Gefügebelastungen der Böden Rechnung zu tragen.

Schwertmann, U., Vogl, W., Kainz, M., 1990. Bodenerosion durch Wasser: Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen, 2. Auflage. Ulmer: Stuttgart

C-Faktor für die Fruchtfolge Silomais/Winterweizen/Wintergerste

1	2	3		4	5	6	7	8
Frucht	Periode	Datum		R-Faktor-Anteil			RBA	C-
		Beg.	Ende	Beg.	Ende	Diff	100	Faktor-
						100		Anteil
Silo-	BB-SB	15.11.	20. 4.	97,9	2,8	0,049	0,32	0,016
mais	SB-10	20. 4.	6. 6.	2,8	18,6	0,158	0,94	0,149
	10 - 50	6. 6.	30. 6.	18,6	42,8	0,242	0,45	0,109
	50 - 75	30. 6.	15. 7.	42,8	51,5	0,087	0,12	0,010
	75-E	15. 7.	5. 10.	51,5	94,7	0,432	0,085	0,037
	E-BB	5. 10.	17.10.	94,7	96,1	0,014	0,44	0,006
Winter-	BB-SB	17.10.	20.10.	96,1	96,7	0,006	0,32	0,002
weizen	SB-10	20.10.	10. 3.	96,7	0,77	0,041	0,46	0,019
	10-50	10. 3.	15. 4.	0,77	2,1	0,013	0,38	0,005
	50-75	15. 4.	24. 4.	2,1	3,5	0,014	0,03	0,000
	75-E	24. 4.	15. 8.	3,5	75,3	0,718	0,01	0,007
	E-BB	15. 8.	15. 9.	75,3	90,2	0,149	0,02	0,003
Winter-	BB-SB	15. 9.	20. 9.	90,2	91,8	0,016	0,32	0,005
gerste	SB-10	20. 9.	10.10.	91,8	95,3	0,035	0,46	0,016
	10 - 50	10.10.	10.11.	95,3	97,7	0,024	0,38	0,009
	50 - 75	10.11.	10. 3.	97,7	0,77	0,031	0,03	0,001
	75-E	10. 3.	20. 7.	0,77	55,8	0,550	0,01	0,006
	E-BB	20. 7.	15.11.	55,8	97,9	0,421	0,02	0,008
Summe der C-Faktor-Anteile =							0,408	

Schwertmann, U., Vogl, W., Kainz, M., 1990. Bodenerosion durch Wasser: Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen, 2. Auflage. Ulmer: Stuttgart

Möller, M., Wurbs, D., 2016. DynaC: Zeitliche und räumliche Dynamisierung des C-Faktors mittels simulierter Sentinel-2-Daten zur Lokalisierung von Gefährdungsflächen der wassergebundenen Bodenerosion: Schlussbericht. Martin-Luther-Universität Halle-Wittenberg, Institut für Geowissenschaften, Fachgebiet Geofernerkundung und Kartographie

Möller, M., Wurbs, D., 2016. DynaC: Zeitliche und räumliche Dynamisierung des C-Faktors mittels simulierter Sentinel-2-Daten zur Lokalisierung von Gefährdungsflächen der wassergebundenen Bodenerosion: Schlussbericht. Martin-Luther-Universität Halle-Wittenberg, Institut für Geowissenschaften, Fachgebiet Geofernerkundung und Kartographie

Möller, M., Wurbs, D., 2016. DynaC: Zeitliche und räumliche Dynamisierung des C-Faktors mittels simulierter Sentinel-2-Daten zur Lokalisierung von Gefährdungsflächen der wassergebundenen Bodenerosion: Schlussbericht. Martin-Luther-Universität Halle-Wittenberg, Institut für Geowissenschaften, Fachgebiet Geofernerkundung und Kartographie

\Rightarrow Datenschutz

European Court of Auditors, 2016. The Land Parcel Identification System: a useful tool to determine the eligibility of agricultural land - but its management could be further improved. Special report No 25, 2016, Publications Office

Preidl, S., Lange, M., Doktor, D., 2020. Introducing APiC for regionalised land cover mapping on the national scale using Sentinel-2A imagery. Remote Sensing of Environment 240, 111673

Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., Hostert, P., 2022. Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment 269. 112831

d'Andrimont, R., Verhegghen, A., Lemoine, G., Kempeneers, P., Meroni, M., van der Velde, M., 2021. From parcel to continental scale – A first European crop type map based on Sentinel-1 and LUCAS Copernicus in-situ observations. Remote Sensing of Environment 266, 112708

Tetteh, G.O., Gocht, A., Conrad, C., 2020. Optimal parameters for delineating agricultural parcels from satellite images based on supervised Bayesian optimization. Computers and Electronics in Agriculture 178, 105696

Möller, M., Lymburner, L., Volk, M., 2007. The comparison index: A tool for assessing the accuracy of image segmentation. International Journal of Applied Earth Observation and Geoinformation 9, 311–321

Möller, M., Gerstmann, H., Gao, F., Dahms, T.C., Förster, M., 2017. Coupling of phenological information and simulated vegetation index time series: Limitations and potentials for the assessment and monitoring of soil erosion risk. CATENA 150, 192–205

Gerstmann, H., Doktor, D., Gläßer, C., Möller, M., 2016. PHASE: A geostatistical model for the Kriging-based spatial prediction of crop phenology using public phenological and climatological observations. Computers and Electronics in Agriculture 127, 726–738

Möller, M., Boutarfa, L., Strassemeyer, J., 2020. PhenoWin – An R Shiny application for visualization and extraction of phenological windows in Germany. Computers and Electronics in Agriculture 175, 105534

 $10-\mathsf{Bodenbearbeitung} \mid 12-\mathsf{Auflaufen} \mid 67-\mathsf{L\"{angenwa}chstum} \mid 5-\mathsf{Bl\"{u}te} \mid 65-\mathsf{Fahnenschieben} \mid 19-\mathsf{Milchreife} \mid 20-\mathsf{Teigreife} \mid 21-\mathsf{Gelbreife} \mid 24-\mathsf{Ernte} \mid \mathsf{BL-Brache} \mid \mathsf{VI-Vegetationsindex} \mid \mathsf{PI-Starkniederschlagsindex} \mid \mathsf{DOY-Kalendertag}$

Bodenerosionsmodellierung

Herausforderungen

- Ableitung von schlagspezifischen und dynamischen Parametern zur Ableitung von Bodenindikatoren
- Etablierung von nachvollziehbaren Prozessketten zur Generierung von Parametern mit Genauigkeitsmaßen
- Etablierung von Geodateninfrastrukturen

Bodenerosionsmodellierung

Herausforderungen

- Ableitung von schlagspezifischen und dynamischen Parametern zur Ableitung von Bodenindikatoren
- Etablierung von nachvollziehbaren Prozessketten zur Generierung von Parametern mit Genauigkeitsmaßen
- Etablierung von Geodateninfrastrukturen

Werbung

Wir betreuen Qualifizierungsarbeiten im Kontext digitaler Geodatenmodellierung!