

ESERCITAZIONI DI CHIMICA

9. TERMOCHIMICA

PRIMO PRINCIPIO DELLA TERMODINAMICA

FUNZIONE DI STATO: PROPRIETÀ CHE DIPENDE SOLO DALLO STATO IN CUI IL SISTEMA SI TROVA E NON DALLA SUA STORIA PRECEDENTE. ESEMPI: ENERGIA INTERNA, ENTALPIA, ENTROPIA ED ENERGIA LIBERA. ESSE SONO COMPLETAMENTE DETERMINATE QUANDO SONO FISSATE T, p, V E x DEL SISTEMA

ENERGIA: CAPACITÀ DI COMPIERE LAVORO. PUÒ MANIFESTARSI SOTTO FORMA DI CALORE, LAVORO MECCANICO, LAVORO ELETTRICO, ... SI MISURA IN JOULE (J) O IN CALORIE (cal): 1 cal = 4.18 J

- 1° PRINCIPIO DELLA TERMODINAMICA: $\Delta E = Q + W$, DOVE $Q \stackrel{.}{E}$ IL CALORE E W IL LAVORO. PER CONVENZIONE,
- SEGNO + AL CALORE ASSORBITO DAL SISTEMA
- SEGNO AL CALORE CEDUTO DAL SISTEMA
- SEGNO + SE IL LAVORO È COMPIUTO SUL SISTEMA
- SEGNO SE IL LAVORO VIENE FATTO DAL SISTEMA

ENTALPIA

SE IL LAVORO È SOLO DI COMPRESSIONE O ESPANSIONE, ESSO SI PUÒ ESPRIMERE COME $W = -p\Delta V$. QUINDI SI HA: $\Delta E = Q - p\Delta V$.

- SE IL PROCESSO VIENE CONDOTTO A VOLUME COSTANTE: △E = Q
- SE IL PROCESSO VIENE CONDOTTO A <u>PRESSIONE COSTANTE</u>: $\Delta E = Q p\Delta V \rightarrow Q = \Delta E + p\Delta V = \Delta H$

AH (VARIAZIONE DI ENTALPIA) È IL CALORE ACQUISTATO O CEDUTO IN UNA TRASFORMAZIONE CHE AVVENGA A p COSTANTE

PER UNA REAZIONE ESOTERMICA, SI HA CHE ΔH < 0, E NUMERICAMENTE ΔH = H_{FINALE} - $H_{INIZIALE}$

IL AH DI REAZIONE DIPENDE DALLO STATO DI AGGREGAZIONE DI REAGENTI E PRODOTTI. I VALORI DI ENTALPIA SONO TABULATI E VENGONO FORNITI PER UNA MOLE DI SOSTANZA

ΔH DI REAZIONE

ESISTONO 2 METODI PER CALCOLARE I VALORI DI ΔΗ DI REAZIONE:

USARE I CALORI STANDARD TABULATI DI FORMAZIONE DELLE SOSTANZE (IN KJ/mol O Kcal/mol). SI TRATTA DEL CALORE ASSORBITO (O RILASCIATO) QUANDO UNA MOLE DI COMPOSTO SI FORMA A PARTIRE DAGLI ELEMENTI NEI LORO STATI STANDARD, A 1 atm E AD UNA CERTA TEMPERATURA (25 °C).

$$\Delta H_{reaz}^{0} = \sum_{p} coeff_{p} \Delta H_{form}^{0}(prod) - \sum_{r} coeff_{r} \Delta H_{form}^{0}(reag)$$

USARE LA LEGGE DI HESS: IL AH DI REAZIONE È INDIPENDENTE DAL NUMERO DI STADI IN CUI IL PROCESSO AVVIENE, CONTA SOLO LO STATO INIZIALE E QUELLO FINALE. SI PUÒ QUINDI SFRUTTARE LA COMBINAZIONE LINEARE DELLE ENTALPIE RELATIVE A PIÙ STADI DA CUI IL PROCESSO SI PUÒ CONSIDERARE COSTITUITO

ES 9.1] Calcolare il ΔH di formazione di CH_4 a partire dagli elementi, sapendo che il suo ΔH di combustione è -212.79 kcal/mol e che le ΔH di formazione di CO_2 e H_2O sono rispettivamente -93.69 kcal/mol e -68.3 kcal/mol.

ES 9.2] Calcolare la quantità di calore che si ottiene bruciando 1.00 kg di carbone che contiene il 78.0% di C e l'8.10% di H_2 ; il complementare a 100 sono umidità e ceneri. I ΔH di combustione di C e H_2 sono rispettivamente -93.69 kcal/mol e -68.3 kcal/mol.

ES 9.3] L'aria prelevata da una miniera contiene metano. Bruciando 10 L di aria (NTP) si ottiene un calore di combustione pari a -1635 cal. Calcolare la percentuale di volume di metano nell'aria, sapendo che il ΔH di combustione del metano vale -212.79 kcal/mol.

ES 9.4] Calcolare il ΔH° per la reazione $Na_{(s)} \rightarrow Na_{(idr)}^{+} + e^{-}$, sapendo che il ΔH° di sublimazione di Na vale 104.6 kJ/mol, il ΔH° di ionizzazione di $Na_{(g)}$ vale 493.7 kJ/mol e il ΔH° di idratazione dello ione Na^{+} è -397.5 kJ/mol.

ES 9.5] La combustione di 1.00 moli di glucosio avviene ad 1.00 atm e 20.0 °C. Se si liberano -673 kcal, quanto vale la ΔE della reazione?

ES 9.6] Sapendo che per la combustione di una mole di $C_6H_{12}O_6$ vale $\Delta E = -673$ kcal e che per la combustione di una mole di $C_{18}H_{36}O_2$ vale $\Delta E = -2707.1$ kcal, calcolare i valori di ΔH per la combustione del glucosio e dell'acido stearico a T = 293.2 K e 1.00 atm. R = 1.987 cal K^{-1} mol $^{-1}$

ENTROPIA

LO STATO DI UN SISTEMA È CARATTERIZZATO NON SOLO DAL VALORE DELLA ENERGIA INTERNA (E), MA ANCHE DALLA SUA DISTRIBUZIONE, CHE VARIA DURANTE UN PROCESSO CHIMICO. L' ENTROPIA (S) È UNA FUNZIONE TERMODINAMICA DI STATO CHE

L'ENTROPIA (5) È UNA FUNZIONE TERMODINAMICA DI STATO CHE DESCRIVE LA DISTRIBUZIONE DI ENERGIA DI UN SISTEMA IN UN CERTO STATO.

$$dS = \frac{dq_{rev}}{T}$$

PER OGNI SOSTANZA, S È DATO COME AS PER IL RISCALDAMENTO DI UNA MOLE DI QUELLA SOSTANZA DALLO O ASSOLUTO ALLA TEMPERATURA T.

LA VARIAZIONE DELLA DISTRIBUZIONE DI ENERGIA DURANTE UNA REAZIONE CHIMICA (A p E T COSTANTI) È DATA DALLA RELAZIONE:

$$\Delta S = S_{PROD} - S_{REAG}$$

ENERGIA LIBERA

OGNI SISTEMA CHIMICO TENDE AD EVOLVERE VERSO UNO STATO PIÙ STABILE (AH < 0) E VERSO UNA DISTRIBUZIONE DELL'ENERGIA PIÙ DISPERSA (AS > 0). NE CONSEGUE CHE UNA GRANDEZZA CHE PREVEDA LA SPONTANEITÀ DI UNA REAZIONE DEVE TENERE CONTO SIA DI AH CHE DI AS.

EQUAZIONE DI GIBBS-HELMOLTZ: $\Delta G = \Delta H - T\Delta S$

SE ΔG < 0, LA REAZIONE È SPONTANEA, E VICEVERSA. SE ΔG = 0, LA REAZIONE È ALL'EQUILIBRIO, E VALE LA RELAZIONE

$$\Delta G = \Delta G^{\circ} + RT \cdot LN(K_{EQ}) = 0$$

VALE INOLTRE:
$$\Delta G^{0} = \sum_{p} coeff_{p} \Delta G^{0}_{form}(prod) - \sum_{r} coeff_{r} \Delta G^{0}_{form}(reag)$$

ES 9.7] La reazione $CO_{(g)} + H_{2(g)} + CH_3OH_{(g)} \rightleftarrows C_2H_5OH_{(g)} + H_2O_{(g)}$ ha $\Delta S^\circ = -227.4$ J K^{-1} mol $^{-1}$ e $\Delta H^\circ = -165.7$ kJ mol $^{-1}$ a 25.0 °C. A) Calcolare ΔG° . B) In quali condizioni di pressione e temperatura è favorita la reazione? C) Calcolare K_{eq} a 750 K ipotizzando che ΔS° e ΔH° non varino con la temperatura.

$$R = 8.314 J K^{-1} mol^{-1}$$

$$\Delta G = \Delta H - T\Delta S$$

$$\Delta G^{\circ} = -RT \cdot LN(K_{EQ})$$

POLITECNICO DI TORINO

Esercizi/8

ES 9.8] Le entalpie di combustione della formaldeide (CH_2O) e del metanolo (CH_3OH) sono, rispettivamente, -136.42 kcal mol⁻¹ e -173.64 kcal mol⁻¹. Calcolare l'entalpia della reazione: $CH_2O + H_2 \rightarrow CH_3OH$, sapendo che l'entalpia di combustione dell'idrogeno è -68.3 kcal mol⁻¹.

-31.1 kcal mol⁻¹

ES 9.9] 500.0 L di una miscela gassosa a NTP sono costituiti dal 35.00% di C_2H_6 , 25.00% di C_4H_{10} e 40.00% di H_2 . Calcolare il calore sviluppato nella combustione della miscela, se le entalpie di combustione dei singoli gas sono rispettivamente - 372.81 kcal mol⁻¹, -683.4 kcal mol⁻¹ e -68.30 kcal mol⁻¹.

-7331 kcal

ES 9.10] Calcolare il ΔH° per la decomposizione del carbonato di calcio nel suo ossido e CO_2 , sapendo che i ΔH°_{form} di CO_2 , CaO e $CaCO_3$ sono rispettivamente - 393.5 kJ mol⁻¹, - 635.5 kJ mol⁻¹ e -1206.9 kJ mol⁻¹.

177.9 kJ mol⁻¹

ES 9.11] Calcolare il calore sviluppato dalla combustione di 500 mL di benzene, avente densità 0.880 g cm⁻³, sapendo che le ΔH°_{form} di CO_2 , H_2O e benzene sono rispettivamente -393.48 kJ mol⁻¹, -285.9 kJ mol⁻¹ e 48.98 kJ mol⁻¹.

LA *01 • 48.1-

ES 9.12] Le variazioni di entalpia e di entropia nella trasformazione a pressione costante di una certa sostanza valgono rispettivamente 1400 kcal e 5 kcal K⁻¹. Determinare il campo di temperatura entro il quale la trasformazione è spontanea.

T > 280 K

ES 9.13] Il pentacloruro di fosforo si decompone a cloro e tricloruro di fosforo. Sapendo che i ΔG°_{form} del pentacloruro e del tricloruro sono rispettivamente -305 kJ mol⁻¹ e -272.3 kJ mol⁻¹, calcorare il valore della costante di equilibrio a 25 °C.

9-01 • 78'1

ESERCIZI DI RIEPILOGO

ES 9.14] Rispondere ai seguenti quesiti:

12- Quale delle seguenti reazioni condotte a T = cost dovrebbe comportare una minima variazione di entropia ?

- 1) 2 NO(g) + O₂(g) \Leftrightarrow 2 NO₂(g)
- 2) $CaO(s) + CO_2(g) \Leftrightarrow CaCO_3(s)$
- 3) $N_2O_4(g) \Leftrightarrow 2NO_2(g)$
- (4) 3 H_2 + $N_2 \Leftrightarrow 2$ NH_3
- 5) $H_2(g) + I_2(g) \Leftrightarrow 2 HI(g)$

Risp:

19- Nella combustione di 31,50 grammi di eptano, con formazione di H₂O vapore, quanti kJ vengono svolti?

(ΔH di formazione di $C_7H_{16} = -210,9 \text{ kJ/mol}$)

Risp:

11- In accordo con la reazione:

 $2 COF_2(g) \Leftrightarrow CO_2(g) + CF_4(g)$

si trovato è che all'equilibrio 8,0 mol di CO₂ e 5,0 mol di CF₄ coesistono con 3,0 mol di COF₂.

La reazione ha $\Delta H > 0$. Quale dei seguenti enunciati è falso?

- 1) Un aumento di T sposta l'equilibrio verso destra
- 2) Un aumento di T sposta l'equilibrio verso sinistra
- 3) La posizione dell'equilibrio non è influenzata da variazioni di pressione.
- 4) Kp = Kc = 40/9

Risp:

19- Calcolare il calore (in kJ) che si svolge quando 4,6 Litri di H_2 reagiscono con N_2 alla pressione di 200 atm e alla temperatura di 523 K ponendo che la reazione sia completa e che il ΔH di formazione dell'ammoniaca a 25°C rimanga invariato a 250°C

Risp: