Quasiconvex Subgroups of Acylindrically Hyperbolic Groups

Ping Wan

Department of Mathematics, Statistics, and Computer Science University of Illinois Chicago

May 30, 2025

Hyperbolic Groups

Hyperbolic group

A group G is hyperbolic if some Cayley graph $\Gamma(G,X)$ is connected and hyperbolic.

Quasiconvex subgroup

A subgroup H of G is quasiconvex if the inclusion map is a quasi-isometric embedding.

Figure: Cayley graph of \mathbb{F}^2

Hyperbolic Groups

Hyperbolic group

A group G is hyperbolic if some Cayley graph $\Gamma(G, X)$ is connected and hyperbolic.

Quasiconvex subgroup

A subgroup H of G is quasiconvex if the inclusion map is a quasi-isometric embedding.

Figure: \mathbb{Z} is a quasiconvex subgroup of \mathbb{F}^2

Acylindrically Hyperbolic Groups

(G, \mathcal{P}) -graph [Martínez-Pedroza and Rashid, 2021]

A graph Γ is a (G, \mathcal{P}) -graph if G acts on Γ and

- 1. Γ is connected and hyperbolic,
- 2. there are finitely many G-orbits of vertices,
- 3. G-stabilizers of vertices are finite or conjugates of $P \in \mathcal{P}$,
- 4. G-stabilizers of edges are finite, and
- 5. Γ is fine at each vertex of infinite stabilizer.

Acylindrically hyperbolic group

A group G is acylindrically hyperbolic if there exists a (G, \mathcal{P}) -graph.

Acylindrically Hyperbolic Groups

Acylindrically hyperbolic group [2]

A group G is acylindrically hyperbolic if some coned-off Cayley graph of G along some collection of infinite subgroups \mathcal{P} is connected, hyperbolic and fine at cone vertices.

Figure: Coned-off Cayley graph of $\mathbb{Z}\oplus\mathbb{Z}$ along \mathbb{Z}

(G, \mathcal{P}) -Quasiconvex Subgroups

Acylindrically hyperbolic group [1]

A group G is acylindrically hyperbolic if there exists a (G, \mathcal{P}) -graph.

(G, \mathcal{P}) -quasiconvex subgroup [1] [Wan]

A group H is (G, \mathcal{P}) -quasi-convex if there exists a (G, \mathcal{P}) -graph K, and a nonempty connected, H-invariant and quasi-isometrically embedded subgraph L of K so that L has finitely many H-orbits of vertices.

(G, \mathcal{P}) -Quasiconvex Subgroups

Acylindrically hyperbolic group [2]

A group G is acylindrically hyperbolic if some coned-off Cayley graph of G along some collection of infinite subgroups \mathcal{P} is connected, hyperbolic and fine at cone vertices.

(G, \mathcal{P}) -quasiconvex subgroup [2] [Wan]

If a group H is (G, \mathcal{P}) -quasi-convex, then there exists a compatible \mathcal{D} , and a quasi-isometric embedding $\hat{\Gamma}(H, \mathcal{D}, Y) \hookrightarrow \hat{\Gamma}(G, \mathcal{P}, X)$.

Thank You

References

Martínez-Pedroza, E. and Rashid, F. (2021).