Ablate the number of necessary MRI sequences for glioma classification using 3D-ResNet

Begüm Altunbas, Görkem Güzeler and Hanna Mykula

Motivation

Glioma is a challenging type of brain tumor, that presents diagnostic complexities. Deep learning has emerged as a promising non-invasive method for glioma classification. However, acquiring multiple brain MRI modalities (T1, T1C, T2, FLAIR) can be tedious. This project aims to answer the following research question:

Which is the optimal sequence of brain MRI modalities that yields the highest performance in glioma classification?

Dataset

Our final dataset consists of 7 publicly available datasets containing brain MRI scans:

- Each scan consists of 4 modalities: T1,
 T1C, FLAIR, T2, and a tumor segmentation mask
- Unlabeled datasets were dropped in the preprocessing step
- TCGA dataset was kept out for testing, the rest of the datasets were used for training/validation
- Astrocytoma and oligodendroglioma were combined under Class 0
- Glioblastoma represents Class 1

Img. 1: Dataset names and distribution of glioma classes among them.

Challenges

1. Class imbalance

Solution:
Applying weighted sampler to the training data

Img. 2: Class distribution among training data after

2. Bad model generalizability

Img. 3: Examples of applied transformations: Contrast and Smooth

3. Modalities have different resolutions

Solution:
Crop images around
tumor regions based on
given segmentations
instead of resizing them

Img. 4: Examples of cropping for desired image size 96

Results

We conducted **4 stages** of experiments*:

1. To identify the **best training set-up** for ResNet34 for combination of all modalities:

Mode	Cropped	ACC	F1	MCC	AUROC
Training from scratch	True	0.78	0.85	0.50	0.86
Training from scratch	False	0.71	0.78	0.36	0.74
Fine-tune all weights**	True	0.75	0.82	0.44	0.80
Fine-tune only last Residual block**	True	0.57	0.69	0.00	0.49

** MedicalNet: 3D-ResNet pre-trained on medical data[1]

2. To identify the **best combination of modalities** with the best set-up from *step 1*:

Model Nr.	Modalities	ACC	F1	MCC ♦	AUROC	
M1	flair, t1c, t2	0.84	0.88	0.64	0.88	
M2	t1c	0.82	0.87	0.60	0.87	
M3	t1c, t2	0.81	0.86	0.57	0.85	
•••						
M14	flair, t1	0.66	0.76	0.23	0.67	
M15	+1	0.59	0.73	0.00	0.56	

3. To compare if deeper network (i.e., ResNet50) produces better results on top 3 combinations from step 2:

Modalities	ACC	F1	MCC	AUROC
flair, t1c, t2	0.80	0.85	0.57	0.86
t1c, t2	0.78	0.82	0.54	0.88
t1c	0.70	0.78	0.32	0.77

4. In the final step we **extended our method to semi-supervised** by labelling unlabeled images using **Model M1**, thus, enhancing our training dataset. We then trained ResNet34 on best combination from step 2 using enhanced dataset:

Modalities	ACC	F1	MCC	AUROC
flair, t1c, t2	0.83	0.88	0.62	0.86

*in the experiments with >1 modality, the modalities were stacked and each modality was treated as a separate input chanel

Discussion

- T1C, being a contrast-enhanced modality, has the greatest impact on the model's performance, as anticipated when examining blood-brain barrier breakdown, such as tumors (Img. 5)
- The utilization of all modalities or complex architectures like ResNet50 introduces increased model complexity, resulting in suboptimal performance compared to simpler models
- Cropping images around the tumor leads to substantial performance improvement by directing the model's attention to the tumor area

References

- [1] https://huggingface.co/TencentMedicalNet/MedicalNet-Resnet34
- [2] MONAI: An open-source framework for deep learning in healthcare