

Chapters 12 & 14

Topics

Blending

- Blending equations
- Specifications / targets
- Typical blend stock properties

Optimization

- Economics & planning applications
- Optimization tools
 - Linear programming
 - Non-linear (geometric) programming

Adjusting upstream operations to meet downstream targets

Blending

Blending Equations

Volume blending equations

- Specific gravity
- Aromatics & olefins content (vol%)

$$X_{mix} = \sum V_i X_i = \frac{\sum V_i X_i}{\sum V_i}$$

Mass blending equations

- Sulfur & nitrogen content (wt% or ppm)
- Nickel & vanadium (ppm)
- Carbon residue (CCR, MCRT, ...)

$$X_{mix} = \sum w_i X_i = \frac{\sum V_i \gamma_{oi} X_i}{\sum V_i \gamma_{oi}}$$

Reid Vapor Pressure (RVP)

$$\left(\mathsf{RVP}\right)_{mix}^{1.25} = \frac{\sum V_i \left(\mathsf{RVP}\right)_i^{1.25}}{\sum V_i}$$

Octane numbers – Simple, by volume

$$(RON)_{mix} = \frac{\sum V_i (RON)_i}{\sum V_i}$$

$$(MON)_{mix} = \frac{\sum V_i (MON)_i}{\sum V_i}$$

Viscosity

$$\log(\log(v_{mix} + 0.7)) = \frac{\sum V_i \log(\log(v_i + 0.7))}{\sum V_i}$$

Non-Linear Octane Blending Formula

Developed by Ethyl Corporation using a set of 75 & 135 blends

$$R = \overline{R} + a_1 \left[\overline{RJ} - \overline{R} \times \overline{J} \right] + a_2 \left[\overline{\left(O^2 \right)} - \overline{O}^2 \right] + a_3 \left[\overline{\left(A^2 \right)} - \overline{A}^2 \right]$$

$$M = \overline{M} + b_1 \left[\overline{MJ} - \overline{M} \times \overline{J} \right] + b_2 \left[\overline{\left(O^2 \right)} - \overline{O}^2 \right] + b_3 \left[\overline{\left(\overline{A^2 \right)} - \overline{A}^2} \right]^2$$

"Road" Octane =
$$\frac{R+M}{2}$$

Sensitivity = $J \equiv R-M$

Volume Average =
$$\overline{X} \equiv \frac{\sum V_i \times X_i}{\sum V_i}$$

	75 blends	135 blends
a_1	0.03224	0.03324
a ₂	0.00101	0.00085
a 3	0	0
<i>b</i> ₁	0.04450	0.04285
<i>b</i> ₂	0.00081	0.00066
<i>b</i> ₃	-0.00645	-0.00632

Petroleum Refinery Process Economics, 2nd ed., by Robert E. Maples, PennWell Corp., 2000

Typical Gasoline Blend Stock Properties

No.	Component	RVP, psi	(R+M)/2	MON	RON	°API
1	iC4	71.0	92.5	92.0	93.0	
2	nC4	52.0	92.5	92.0	93.0	
3	iC5	19.4	92.0	90.8	93.2	
4	nC5	14.7	72.0	72.4	71.5	
5	iC6	6.4	78.8	78.4	79.2	
6	LSR gasoline (C5-180°F)	11.1	64.0	61.6	66.4	78.6
7	LSR gasoline isomerized once-through	13.5	82.1	81.1	83.0	80.4
8	HSR gasoline	1.0	60.5	58.7	62.3	48.2
9	Light hydrocrackate	12.9	82.6	82.4	82.8	79.0
10	Hydrocrackate, C5-C6	15.5	87.4	85.5	89.2	86.4
11	Hydrocrackate, C6-190°F	3.9	74.6	73.7	75.5	85.0
12	Hydrocrackate, 190-250°F	1.7	77.3	75.6	79.0	55.5
13	Heavy hydrocrackate	1.1	67.5	67.3	67.6	49.0
14	Coker gasoline	3.6	63.7	60.2	67.2	57.2
15	Light thermal gasoline	9.9	76.8	73.2	80.3	74.0
16	C6+ light thermal gasoline	1.1	72.5	68.1	76.8	55.1
17	FCC gasoline, 200-300°F	1.4	84.6	77.1	92.1	49.5
18	Hydrog. light FCC gasoline, C5+	13.9	82.1	80.9	83.2	51.5
19	Hydrog. C5-200°F FCC gasoline	14.1	86.5	81.7	91.2	58.1
20	Hydrog. light FCC gasoline, C6+	5.0	80.2	74.0	86.3	49.3
21	Hydrog. C5+ FCC gasoline	13.1	85.9	80.7	91.0	54.8
22	Hydrog. 300-400°F FCC gasoline	0.5	85.8	81.3	90.2	48.5
23	Reformate, 94 RON	2.8	89.2	84.4	94.0	45.8
24	Reformate, 98 RON	2.2	92.3	86.5	98.0	43.1
25	Reformate, 100 RON	3.2	94.1	88.2	100.0	41.2
26	Aromatic concentrate	1.1	100.5	94.0	107.0	
27	Alkylate, C3=	5.7	89.1	87.3	90.8	
28	Alkylate, C4=	4.6	96.6	95.9	97.3	70.3
29	Alkylate, C3=, C4=	5.0	93.8	93.0	94.5	
30	Alkylate, C5=	1.0	89.3	88.8	89.7	
31	Polymer	8.7	90.5	84.0	96.9	59.5

Table 12.1 Blending Component Values for Gasoline Blending Streams

Petroleum Refining Technology & Economics – 5th Ed. by James Gary, Glenn Handwerk, & Mark Kaiser, CRC Press, 2007

Updated: July 5, 2017 Copyright © 2017 John Jechura (jjechura@mines.edu)

Gasoline Blending Considerations

What is available?

- Amounts
- Properties
 - Appropriate to determine product properties
- Associated costs / values

What are you trying to make?

- Amount(s)
- Properties
 - Volatility / RVP (maximum)
 - Octane number (minimum)
 - Drivability Index
 - Distillation
 - o T10 (minimum)
 - T50 (range)
 - T90 (maximum)
 - Composition
 - Sulfur (maximum)
 - Benzene & total aromatics (maximums)
 - Olefins (maximum)
- Value

Gasoline Blend Example – 2 Blend Stocks, 1 Spec

Example, blending LSR only with Reformate – one case 100 RON, other 94 RON

To make Regular or Premium spec, essentially diluting the Reformate

94 RON Reformate alone cannot bring LSR up to final spec

Gasoline Blend Example – 3 Blend Stocks, 2 Specs

Use 3 blend stocks to make regular gasoline (87 road octane) for both summer (9 psi RVP) & winter (15 psi RVP)

$$\left(\frac{\text{R+M}}{2}\right) = (92.5)v_{\text{nC4}} + (64.0)v_{\text{LSR}} + (94.1)v_{\text{Ref}}$$

$$\left(\text{RVP}\right)^{1.25} = (71.0)^{1.25}v_{\text{nC4}} + (11.1)^{1.25}v_{\text{LSR}} + (3.2)^{1.25}v_{\text{Ref}}$$

$$1 = v_{\text{nC4}} + v_{\text{LSR}} + v_{\text{Ref}}$$

				Regular,	Regular	Regular
	Blei	nd Stocks		no nC4	Summer	Winter
Volume Fractions:						
n-Butane	1				0.038	0.107
LSR (C5 - 180°F)		1		0.236	0.234	0.230
Reformate, 100 RON			1	0.764	0.729	0.663
RVP [psi]	71.0	11.1	3.2	5.3	9.0	15.0
RON	93.0	66.4	100.0	92.1	91.9	91.5
MON	92.0	61.6	88.2	81.9	82.1	82.5
(R+M)/2	92.5	64.0	94.1	87.0	87.0	87.0
Volume Ratios:						
Total:LSR				4.2	4.3	4.3
Reformate:LSR				3.2	3.1	2.9

Diesel Blending Considerations

Available blend stocks

- Amounts
- Properties
 - Appropriate to determine product properties
- Associated costs / values

Specification of final product(s)

- Amount(s)
- Properties
 - Cetane index (minimum)
 - Flash Point (minimum)
 - Distillation
 - T90 (minimum & maximum)
 - Cold properties
 - Cloud point (minimum)
 - Pour point (minimum)
 - Composition
 - Sulfur (maximum)
 - Aromaticity (maximum)
 - Carbon residue (maximum)
 - Color
- Value

Optimization

Optimization for Economics & Planning

What **should** be done rather than what **can** be done

Optimization

- Combines models to...
 - Describe operations
 - Constraints to operations
- Economics added to define costs & benefits to all actions
- "Optimal" is best of the "feasible" possibilities

Optimization models tend to be data-driven rather than mathematical model driven.

Economics & Planning Applications

Crude oil evaluation

- Incremental value of an opportunity crude compared to base slate
- Take into account change in products produced

Production planning

Day-to-day operations optimization

Product blending & pricing

 May have opportunity to separately purchase blend stocks

Shutdown planning

Multi time periods, must take into account changes in inventories

Multirefining supply & distribution

Yearly budgeting

Investment studies

Environmental studies

Technology evaluation

Modeling Hierarchy

Unit Representations

Simple vector model

	Yield Vector
Feedstock	
Butylene	-1.0000
Isobutane	-1.2000
Product	
n-Butane	0.1271
Pentane	0.0680
Alkylate	1.5110
"Alky Bottoms	0.1190
Tar	0.0096
Utilities	
Steam, Ib	7.28
Power, kWh	2.45
Cooling Water, M gal	2.48
Fuel, MMBtu	0.69

For every unit of Butylene consumed, must also consume the relative amount of isobutane, produce the shown amounts of products, & use the shown amounts of utilities

Delta-Base model

	Feed	Base Yield	Delta K _w	Delta API
Feed	1.0	-1.0		
Hydrogen		-1500		
C5-180		8.1	1.0	3.6
180-400		28.0	-5.5	11.0
Kw	-12.1	10.9	1.2	
API	-22.0	20.0		4.0
Relative Activity	1	1	1	0.5

Relative activities calculated from actual properties – the Kw & API rows are zero

$$API = -\frac{1 \times (-22.0) + 1 \times 20.0}{4.0} = 0.5$$

Correct base yields to take into account actual properties & relative activities

$$C5-180 = \frac{1 \times 8.1 + 1 \times 1.0 + 0.5 \times 3.6}{1} = 10.9$$

What is "Linear Programming"?

Word "programming" used here in the sense of "planning"

For N independent variables (that can be zero or positive) <u>maximize</u>

$$z = a_{01}X_1 + a_{02}X_2 + \cdots + a_{0N}X_N$$

subject to M additional constraints (all bn positive)

$$a_{i1}X_1 + a_{i2}X_2 + \dots + a_{iN}X_N \le b_i$$

$$a_{j1}X_1 + a_{j2}X_2 + \dots + a_{jN}X_N \ge b_j$$

$$a_{k1}X_1 + a_{k2}X_2 + \dots + a_{kN}X_N = b_k$$

Terminology

- Objective Function function z to be maximized
- Feasible Vector set of values x₁, x₂,
 ..., x_N that satisfies all constraints
- Optimal Feasible Vector feasible vector that maximizes the objective function

Solutions

- Will tend to be in the "corners" of where the constraints meet
- May not have a solution because of incompatible constraints or area unbounded towards the optimum

Change Blending Equations to Fit Linear Form

Sum of blending factors must be removed from the denominator

Volume blending equations

$$X_{mix} = \sum V_i X_i = \frac{\sum V_i X_i}{\sum V_i} \implies 0 = \sum V_i (X_i - X_{mix})$$

Mass blending equations

$$X_{mix} = \sum w_i X_i = \frac{\sum V_i \gamma_{oi} X_i}{\sum V_i \gamma_{oi}} \implies 0 = \sum V_i \left[\gamma_{oi} \left(X_i - X_{mix} \right) \right]$$

Non-Linear Programming

Non-linear blending rules can more closely match the physics of the problem

Example: octane blending models

$$R = \overline{R} + 0.03324 \left[\overline{RJ} - \overline{R} \cdot \overline{J} \right] + 0.00085 \left[\overline{\left(O^2 \right)} - \overline{O}^2 \right]$$

$$M = \overline{M} + 0.04285 \left[\overline{MJ} - \overline{M} \cdot \overline{J} \right] + 0.00066 \left[\overline{\left(O^2 \right)} - \overline{O}^2 \right] - 6.32 \times 10^{-7} \left[\overline{\left(A^2 \right)} - \overline{A}^2 \right]$$

Guarantees of solutions are more tenuous

- Not necessarily at constraints
- Discontinuous feasible regions possible

Types of optimization algorithms

- Local optimization
 - Based on following gradients
 - Excel's Solver based on GRG2
- Global optimization
 - Randomly search overall region before switching to local optimization technique
 - Simulated annealing

Blending Example with Optimization

Brewery receives order for 100 gal of 4% beer. Only have in stock 4.5% & 3.7% beers (beers A & B). Will make order by mixing these two beers and water <u>at</u> <u>minimum ingredient cost</u>.

Values:

Beer A \$0.32 per gallon Beer B \$0.25 per gallon

Water No cost

- Constraints:
 At least 10 gal Beer A
- Extreme solutions:

Α

B 0 gallons
Water 11.1 gallons
A 37.5 gallons
B 62.5 gallons
Water 0 gallons

88.9

gallons

Associated costs:

No Beer B \$28.44

No Water \$27.63

Beer A — 32 ¢/gal

Beer B/Water Mixed to Make 100 gal & 4% Sales Beer Specs

Legend — Beer B Cost (¢/gal)

Gasoline Blending Considerations

What is available?

- Amounts
- Properties
 - Appropriate to determine product properties
- Associated costs / values

What are you trying to make?

- Amount(s)
- Properties
 - Volatility / RVP (maximum)
 - Octane number (minimum)
 - Drivability Index
 - Distillation
 - o T10 (minimum)
 - T50 (range)
 - T90 (maximum)
 - Composition
 - Sulfur (maximum)
 - Benzene & total aromatics (maximums)
 - Olefins (maximum)
- Value

Gasoline Blending Example – All Into Regular

Properties for Blending Calculations

12.9

24.43

0.90

RVP^{1.25}

Benzene

28.0

64.46

0.48

Nam i laccinais	rioperties for b	criaing carcula	10115					
_	RON	MON	(R+M)/2	RVP	RVP ^{1.25}	Aromatics	Olefins	Benzene
Butane	93.0	92.0	92.5	54	146.4	0.0	0.0	0.00
Straight Run Naphtha	78.0	76.0	77	11.2	20.5	2.2	0.9	0.7
Isomerate	83.0	81.1	82.05	13.5	25.9	1.6	0.1	0.0
Reformate (High Octane)	100.0	88.2	94.1	3.2	4.3	94.2	0.6	1.8
Reformate (Low Benzene)	93.7	84.0	88.85	2.8	3.6	61.1	1.0	0.1
FCC Naphtha	92.1	77.1	84.6	1.4	1.5	35.2	32.6	1.0
Alkylate	97.3	95.9	96.6	4.6	6.7	0.5	0.2	0.0
_	Cost & Availabil	ity	U	Usage				
_	Cost	Minimum	Maximum				Minimum	Maximum
	(\$/gal)	Required	Available	Regular	Premium	Total	Slack	Slack
Butane	0.85	0	30,000	30,000	0	30,000	30,000	
Straight Run Naphtha	2.05	0	35,000	35,000	0"	35,000	35,000	(
Isomerate	2.20	0	0	0	0 "	0	0	
Reformate (High Octane)	2.80	0	60,000	60,000	0 _	60,000	60,000	
Reformate (Low Benzene)	2.75	0	0	0	0	0	0	(
FCC Naphtha	2.60	0	70,000	70,000	0"		70,000	
Alkylate	2.75	0	40,000	40,000	0	40,000	40,000	(
Products	Lower & U	pper Limits on F	Properties		Price & Producti	ion Requiremen	ets	
_						Price	Minimum	Maximum
		Lower	Upper			(\$/gal)	Required	Allowed
Regular	Octane	87	110		Regular	2.75	1	1,000,000
	RVP	0.0	15.0		Premium	2.85	1	:
	RVP ^{1.25}	0.0	29.5					
	Benzene	0.0	1.1					
Premium	Octane	91	110		Cost & Revenue	2		
	RVP	0.0	15.0		Revenue (\$)	\$646,250	\$1	\$646,25
	RVP ^{1.25}	0.0	29.5		Cost(\$)	\$557,250	\$1	\$557,25
	Benzene	0.0	1.1		Profit (\$)	\$89,000	\$0	\$89,00
Product Calculations					Linear-Form F	roduct Const		
Volumes & Properties	5 1	. ·	-) / I	Lower Slack	Upper Slack
	Regular	Premium	Total		Regular	Volume	234,999	765,00
Produced	235,000	0	235,000			Vol*Octane	457,000	4,948,00
RON	93.02	83.24				Vol*RVP ^{1.25}	5,741,488	1,195,67
MON	84.87	81.59				Vol*Benzene	210,750	47,75
(R+M)/2	88.9	82.4			Premium	Volume	-1	
D) /D	400					1/ 1/0 /	_	

Updated: July 5, 2017 Copyright © 2017 John Jechura (jjechura@mines.edu)

Raw Materials

25

11

-14

Vol*Octane

Vol*RVP1.25

Vol*Benzene

Gasoline Blending Example – Only Regular (Optimized)

Raw Materials	Properties for Blending Calculations							
	RON	MON	(R+M)/2	RVP	RVP ^{1.25}	Aromatics	Olefins	Benzene
Butane	93.0	92.0	92.5	54	146.4	0.0	0.0	0.00
Straight Run Naphtha	78.0	76.0	77	11.2	20.5	2.2	0.9	0.73
Isomerate	83.0	81.1	82.05	13.5	25.9	1.6	0.1	0.00
Reformate (High Octane)	100.0	88.2	94.1	3.2	4.3	94.2	0.6	1.85
Reformate (Low Benzene)	93.7	84.0	88.85	2.8	3.6	61.1	1.0	0.12
FCC Naphtha	92.1	77.1	84.6	1.4	1.5	35.2	32.6	1.06
Alkylate	97.3	95.9	96.6	4.6	6.7	0.5	0.2	0.00
		l leano						

	Cost & Availabil	ity		Usage				
	Cost	Minimum	Maximum				Minimum	Maximum
	(\$/gal)	Required	Available	Regular	Premium	Total	Slack	Slack
Butane	0.85	0	30,000	30,000	0	30,000	30,000	0
Straight Run Naphtha	2.05	0	35,000	35,000	0	35,000	35,000	0
Isomerate	2.20	0	0	0	0 "	0	0	0
Reformate (High Octane)	2.80	0	60,000	12,628	0 "	12,628	12,628	47,372
Reformate (Low Benzene)	2.75	0	0	0	0	0	0	0
FCC Naphtha	2.60	0	70,000	70,000	0 "	70,000	70,000	0
Alkylate	2.75	0	40,000	39,999	1"	40,000	40,000	0

Products		Lower & Upper Limits on Properties				
			Lower	Upper		
	Regular	Octane	87	110		
		RVP	0.0	15.0		
		RVP ^{1.25}	0.0	29.5		
		Benzene	0.0	1.1		
	Premium	Octane	91	110		
		RVP	0.0	15.0		
		RVP ^{1.25}	0.0	29.5		

Price & Producti	on Requirement	ts	
	Price	Minimum	Maximum
	(\$/gal)	Required	Allowed
Regular	2.75	1	1,000,000
Premium	2.85	1	1
Cost & Revenue			
Cost & Revenue Revenue (\$)	\$515,973	\$3	\$515,976
		\$3 \$2	\$515,976 \$424,607
Revenue (\$)	\$515,973		

Product Calculations			
Volumes & Properties			
	Regular	Premium	Total
Produced	187,627	1	187,628
RON	91.25	91.75	
MON	84.03	90.25	
(R+M)/2	87.6	91.0	
RVP	15.0	15.0	
RVP ^{1.25}	29.52	29.52	
Ronzono	0.66	0.10	

Linear-Form I	Linear-Form Product Constraints						
		Lower Slack	Upper Slack				
Regular	Volume	187,626	812,373				
	Vol*Octane	120,652	4,194,760				
	Vol*RVP ^{1.25}	5,538,708	0				
	Vol*Benzene	123,111	83,278				
Premium	Volume	0	0				
	Vol*Octane	0	19				
	Vol*RVP ^{1.25}	30	0				
	Vol*Benzene	0	1				

Updated: July 5, 2017 Copyright © 2017 John Jechura (jjechura@mines.edu)

Due du et Calaulatiana

Gasoline Blending Example – Only Premium (Optimized)

Raw Materials	Properties for B	lending Calculat	ions					
	RON	MON	(R+M)/2	RVP	RVP ^{1.25}	Aromatics	Olefins	Benzene
Butane	93.0	92.0	92.5	54	146.4	0.0	0.0	0.00
Straight Run Naphtha	78.0	76.0	77	11.2	20.5	2.2	0.9	0.73
Isomerate	83.0	81.1	82.05	13.5	25.9	1.6	0.1	0.00
Reformate (High Octane)	100.0	88.2	94.1	3.2	4.3	94.2	0.6	1.85
Reformate (Low Benzene)	93.7	84.0	88.85	2.8	3.6	61.1	1.0	0.12
FCC Naphtha	92.1	77.1	84.6	1.4	1.5	35.2	32.6	1.06
Alkylate	97.3	95.9	96.6	4.6	6.7	0.5	0.2	0.00
	Coot O Acciloti	· .		11				
	Cost & Availabil	Minimum		Usage			Minimum	Maximum
			Maximum	Dogulou	Duamaiuma	Total	Slack	
Butane	(\$/gal) 0.85	Required 0	Available 30,000	Regular 0	Premium 30,000	Total 30,000	30,000	Slack
		0	•	0	17,433		•	
Straight Run Naphtha Isomerate		0	35,000 0	0	17,433	17,433 0	17,433 0	17,567 0
Reformate (High Octane)		0	60,000	0	60,000	60,000	60,000	0
Reformate (Low Benzene)		0	00,000	Ö	00,000	00,000	00,000	0
FCC Naphtha		Ö	70.000	Ö	32,959	32,959	32,959	37,041
Alkylate		Ö	40,000	Ö	40,000	40,000	40,000	0
Alkylute	2.75	•	40,000	•	40,000	10,000	40,000	•
Products	Lower & Up	per Limits on P	Properties		Price & Producti	ion Requirement	ts	
				_		Price	Minimum	Maximum
		Lower	Upper			(\$/gal)	Required	Allowed
Regular	Octane	87	110		Regular	2.75	1	1
	RVP	0.0	15.0		Premium	2.85	1	1,000,000
	RVP ^{1.25}	0.0	29.5					
	Benzene	0.0	1.1					
Premium	Octane	91	110	_	Cost & Revenue	•		
	RVP	0.0	15.0		Revenue (\$)	\$3	\$514,115	\$514,118
	RVP ^{1.25}	0.0	29.5		Cost(\$)	\$2	\$424,930	\$424,932
	Benzene	0.0	1.1		Profit (\$)	\$0	\$89,186	\$89,186
Product Calculations					Linear-Form F	Product Const	raints	
Volumes & Properties						rounce comse	Lower Slack	Upper Slack
	Regular	Premium	Total	-	Regular	Volume	0	0
Produced		180,391	180,392			Vol*Octane	0	23
RON		94.67	,			Vol*RVP ^{1.25}	30	0
MON		87.33				Vol*Benzene	1	Ö
(R+M)/2		91.0			Premium	Volume	180,390	819,609
RVF		15.0				Vol*Octane	0	3,427,436
	_5.0						_	., , . 3 0
R\/D1.25	29 52	29 52				Vol*RVP ^{1.25}	5.325.125	n
RVP ^{1.25} Benzene		29.52 0.88				Vol*RVP ^{1.25} Vol*Benzene	5,325,125 158,662	0 39,769

Updated: July 5, 2017

Copyright © 2017 John Jechura (jjechura@mines.edu)

Gasoline Blending Example – Combined (Optimized)

Properties for Blending Calculations

1.09

Benzene

0.69

Kaw Maleriais	Properties for B.	ieriuriy Calculat	10115					
	RON	MON	(R+M)/2	RVP	RVP ^{1.25}	Aromatics	Olefins	Benzene
Butane	93.0	92.0	92.5	54		0.0	0.0	0.00
Straight Run Naphtha	78.0	76.0	77	11.2	20.5	2.2	0.9	0.73
Isomerate	83.0	81.1	82.05	13.5	25.9	1.6	0.1	0.00
Reformate (High Octane)	100.0	88.2	94.1	3.2	4.3	94.2	0.6	1.85
Reformate (Low Benzene)	93.7	84.0	88.85	2.8		61.1	1.0	0.12
FCC Naphtha		77.1	84.6	1.4		35.2	32.6	1.06
Alkylate		95.9	96.6	4.6		0.5	0.2	0.00
, inquie	37.13	50.5	50.0		0.7	0.5	0.2	0.00
	Cost & Availabil		ı	Usage				
	Cost	Minimum	Maximum				Minimum	Maximum
	(\$/gal)	Required	Available	Regular	Premium	Total	Slack	Slack
Butane		0	30,000	17,925	12,075	30,000	30,000	0
Straight Run Naphtha	2.05	0	35,000	35,000	0 _	35,000	35,000	0
Isomerate	2.20	0	0	0	0	0	0	0
Reformate (High Octane)	2.80	0	60,000	43,599	16,401	60,000	60,000	0
Reformate (Low Benzene)	2.75	0	0	0	0 _	0	0	0
FCC Naphtha	2.60	0	70,000	24,226	45,774	70,000	70,000	0
Alkylate	2.75	0	40,000	0	40,000	40,000	40,000	0
Products	Lower & Up	pper Limits on F	Properties		Price & Producti			
						Price	Minimum	Maximum
	2.7	Lower	Upper			(\$/gal)	Required	Allowed
Regular		87	110		Regular	2.75	1	1,000,000
	RVP	0.0	15.0		Premium	2.85	1	1,000,000
	RVP ^{1.25}	0.0	29.5					
	Benzene	0.0	1.1					
Premium		91	110		Cost & Revenue			
	RVP	0.0	15.0		Revenue (\$)	\$332,063	\$325,613	\$657,675
	RVP ^{1.25}	0.0	29.5		Cost(\$)	\$272,051	\$285,199	\$557,250
	Benzene	0.0	1.1		Profit (\$)	\$60,011	\$40,414	\$100,425
Product Calculations					Linear-Form F	Product Come	rainte	
Volumes & Properties					Linear-Fulli F	Todact Const	Lower Slack	Upper Slack
volumes & Froperties	Regular	Premium	Total		Regular	Volume	120,749	879,250
Produced					Regulai	Vol*Octane	120,749	
	-,	114,250	235,000				_	2,777,250
RON		95.15				Vol*RVP ^{1.25}	3,564,521	0
MON		86.85			ъ.	Vol*Benzene	131,888	937
(R+M)/2		91.0			Premium	Volume	114,249	885,750
RVP		10.6				Vol*Octane	0	2,170,750
RVP ^{1.25}	29.52	19.05				Vol*RVP ^{1.25}	2,176,967	1,195,675

Updated: July 5, 2017

Copyright © 2017 John Jechura (jjechura@mines.edu)

Raw Materials

46,813

78,862

Vol*Benzene

Gasoline Blending Example – Lower RVP & Benzene

Raw Materials	Properties for Ble	nding Calculat	tions					
	RON	MON	(R+M)/2	RVP	RVP ^{1.25}	Aromatics	Olefins	Benzene
Butane	93.0	92.0	92.5	54	146.4	0.0	0.0	0.00
Straight Run Naphtha	78.0	76.0	77	11.2	20.5	2.2	0.9	0.73
Isomerate	83.0	81.1	82.05	13.5	25.9	1.6	0.1	0.00
Reformate (High Octane)	100.0	88.2	94.1	3.2	4.3	94.2	0.6	1.85
Reformate (Low Benzene)	93.7	84.0	88.85	2.8	3.6	61.1	1.0	0.12
FCC Naphtha	92.1	77.1	84.6	1.4	1.5	35.2	32.6	1.06
Alkylate	97.3	95.9	96.6	4.6	6.7	0.5	0.2	0.00

	Cost & Availabil	lity		Usage				
	Cost	Minimum	Maximum				Minimum	Maximum
	(\$/gal)	Required	Available	Regular	Premium	Total	Slack	Slack
Butane	0.85	0	30,000	8,187	o"	8,188	8,188	21,812
Straight Run Naphtha	2.05	0	35,000	28,305	o *	28,305	28,305	6,695
Isomerate	2.20	0	0	0	0 "	0	0	0
Reformate (High Octane)	2.80	0	60,000	0	o"	0	0	60,000
Reformate (Low Benzene)	2.75	0	0	0	o "	0	0	0
FCC Naphtha	2.60	0	70,000	60,824	0"	60,824	60,824	9,176
Alkylate	2.75	0	40,000	40,000	0 "	40,000	40,000	0

15.6

Products	_	Lower & Up	per Limits on Pr	operties
			Lower	Upper
	Regular	Octane	87	110
		RVP	0.0	9.0
		RVP ^{1.25}	0.0	15.6
		Benzene	0.0	0.62
	Premium	Octane	91	110
		RVP	0.0	9.0

0.0

	Price (\$/gal)	Minimum Required	Maximum Allowed
Regular	2.75	1	1,000,000
Premium	2.85	1	1,000,000
Cost & Revenue			
Cost & Revenue Revenue (\$)	\$377,618	\$3	\$377,621
		\$3 \$3	\$377,621 \$333,127
Revenue (\$)	\$377,618		

Price & Production Requirements

Product Calculations			
Volumes & Properties			
	Regular	Premium	Total
Produced	137,316	1	137,317
RON	90.76	95.03	
MON	83.24	86.97	
(R+M)/2	87.0	91.0	
RVP	9.0	9.0	
RVP ^{1.25}	15.59	15.59	
Benzene	0.62	0.62	

RVP^{1.25}

Benzene

Linear-Form I	Product Cons	traints	
		Lower Slack	Upper Slack
Regular	Volume	137,315	862,684
	Vol*Octane	0	3,158,261
	Vol*RVP ^{1.25}	2,140,540	0
	Vol*Benzene	85,136	0
Premium	Volume	0	999,999
	Vol*Octane	0	19
	Vol*RVP ^{1.25}	16	0
	Vol*Benzene	1	0

Updated: July 5, 2017 Copyright © 2017 John Jechura (jjechura@mines.edu)

Gasoline Blending Example –Low Benzene Reformate

Raw Materials	Properties for Ble	nding Calculat	tions					
	RON	MON	(R+M)/2	RVP	RVP ^{1.25}	Aromatics	Olefins	Benzene
Butane	93.0	92.0	92.5	54	146.4	0.0	0.0	0.00
Straight Run Naphtha	78.0	76.0	77	11.2	20.5	2.2	0.9	0.73
Isomerate	83.0	81.1	82.05	13.5	25.9	1.6	0.1	0.00
Reformate (High Octane)	100.0	88.2	94.1	3.2	4.3	94.2	0.6	1.85
Reformate (Low Benzene)	93.7	84.0	88.85	2.8	3.6	61.1	1.0	0.12
FCC Naphtha	92.1	77.1	84.6	1.4	1.5	35.2	32.6	1.06
Alkylate	97.3	95.9	96.6	4.6	6.7	0.5	0.2	0.00

	Cost & Availabii	lity		Usage				
	Cost	Minimum	Maximum				Minimum	Maximum
	(\$/gal)	Required	Available	Regular	Premium	Total	Slack	Slack
Butane	0.85	0	30,000	13,552	1,355	14,907	14,907	15,093
Straight Run Naphtha	2.05	0	35,000	35,000	0 "	35,000	35,000	0
Isomerate	2.20	0	0	0	0 "	0	0	0
Reformate (High Octane)	2.80	0	0	0	0"	0	0	0
Reformate (Low Benzene)	2.75	0	65,400	53,656	11,744	65,400	65,400	0
FCC Naphtha	2.60	0	70,000	70,000	0 "	70,000	70,000	0
Alkylate	2.75	0	40,000	35,854	4,146	40,000	40,000	0

Products	_	Lower & Up	per Limits on Pr	roperties	Price
			Lower	Upper	
	Regular	Octane	87	110	
		RVP	0.0	9.0	
		RVP ^{1.25}	0.0	15.6	
		Benzene	0.0	0.62	
	Premium	Octane	91	110	Cost
		RVP	0.0	9.0	Rev
		RVP ^{1.25}	0.0	15.6	

	Price	Minimum	Maximum
	(\$/gal)	Required	Allowed
Regular	2.75	1	1,000,000
Premium	2.85	1	1,000,000
Cost & Revenue	e		
Cost & Revenue Revenue (\$)	e \$572,172	\$49,147	\$621,318
		\$49,147 \$44,848	\$621,318 \$556,271

Product Calculations Volumes & Properties						
,	Regular	Premium	Total			
Produced	208,062	17,244	225,307			
RON	91.10	94.51				
MON	82.90	87.49				
(R+M)/2	87.0	91.0				
RVP	9.0	9.0				
RVP ^{1.25}	15.59	15.59				
Renzene	0.51	0.08				

Benzene

Linear-Form Product Constraints					
		Lower Slack	Upper Slack		
Regular	Volume	208,061	791,938		
	Vol*Octane	0	4,785,436		
	Vol*RVP ^{1.25}	3,243,372	0		
	Vol*Benzene	106,189	22,810		
Premium	Volume	17,243	982,756		
	Vol*Octane	0	327,645		
	Vol*RVP ^{1.25}	268,815	0		
	Vol*Benzene	1,409	9,282		

Updated: July 5, 2017 Copyright © 2017 John Jechura (jjechura@mines.edu)

Adjusting operations to meet targets

Cutpoint Economics

Adjust upstream cutpoints to meet needs in the downstream blending

- Heavy LSR...value as blending component versus Reformer feed
- Heavy Naphtha...value as Reformer feed versus kerosene blend stock
- Heavy Kerosene...value as kerosene blend stock versus diesel blend stock
- Heavy Diesel...value as diesel blend stock versus FCC feed
- Heavy Gas Oil...value as FCC feed versus resid/asphalt production or coker feed

The refinery LP can determine the optimum cut point for each of these given any set of constraints

Cutpoints To Meet Operating Economies

TBP Cut Points (°F) for Various Crude Oil Fractions

Cut	IBP	EP	Processing Use
LSR	90	180	Min LSR cut
	90	190	Normal LSR cut
	80	220	Max LSR cut
Naphtha	180	380	Max reforming cut
	190	330	Max jet fuel
	220	330	Min reforming cut
Kerosene	330	520	Max kerosene cut
	330	480	Max Jet A cut
	380	520	Max gasoline
Diesel	420	650	Max diesel cut
	480	610	Max jet fuel cut
	520	610	Min diesel cut
Gas Oil	610	800	Cat cracker feed
VGO	800	1050	Cat cracker feed
Resid	1050+		Coker feed, asphalt

Optimize FCC Gasoline Distillation

Frame the analysis

- What is the value of the molecules in the stream above?
- What is the value of the molecules in the stream below?
- What upstream unit operations affect the stream value?
- What downstream unit operations affect the stream value?
- What unit specific operations affect the stream value?
- What *product blending* constraints affect the stream value?

Olefins Abs/DeEth LCN HCN FCC Main LCO Frac **HCO**

Ref: http://www.refinerlink.com/blog/Truly Optimize FCC Gasoline Distillation

Optimize FCC Gasoline Distillation

	LCN	HCN
Value to the stream above ?	 May have sub-optimal amount of olefins: Alkylation unit downstream have capacity for the olefins? Type of alky unit? Sulfuric Alky can take more C5= olefins; HF Alky limited by strength concerns Time of year? Alky economics better during summer 	When distillate more valuable than gasoline minimize the LCN/HCN cut point to maximize distillate production from HCN
Value to the stream below?	When distillate more valuable than gasoline minimize the LCN/HCN cut point to maximize distillate production from HCN contributions	Diesel prices higher than gasoline, minimize HCN end point & still make diesel flash limit If LCO is routed to a Hydrocracker HCN end point can be adjusted to make jet flash limit. HCN endpoint can also be used to optimize heavy fuel oil blending when LCO is used as a cutter
Upstream unit affects?	Degree of hydrotreating possible to give low sulfur content in final product	Degree of hydrotreating possible to give low sulfur content in final product
Downstream unit affects?	Destination of LCN? Gasoline Hydrotreater & then to blend pool Selective Hydrogenation Unit & then to Reformer High olefin content will increase hydrogen requirements in downstream hydrotreaters	If routed to Gasoline Hydrotreater may reduce end point to better make gasoline sulfur specs If routed to Jet Hydrotreater then make-up hydrogen constraints may limit end point
Unit specific affects?	Subtle constraints such as olefin content and octane value will be influenced by a combination of riser and distillation targets. Cat-to-oil ratio affects product mix, thus distillation strategies.	Fractionator draw constraints may be handled by adjusting FCC reactor conditions & yields
Product blending constraints?	Usually routed to gasoline – need to olefins, sulfur, and aromatics	When routing to gasoline, use HCN endpoint to adjust gasoline sulfur, endpoint, and aromatics. When routing to jet, use HCN IBP to meet jet flash & endpoint to manage jet freeze & smoke point. When routing to diesel, use IBP to manage diesel flash

Ref: http://www.refinerlink.com/blog/Truly Optimize FCC Gasoline Distillation

Updated: July 5, 2017

Copyright © 2017 John Jechura (jjechura@mines.edu)

Gasoline Blending – Modify Upstream Operations

How much gasoline can be produced by blending Reformate+LSR with respect to the Reformer's severity?

Reformer Feedstock 11.8 Watson K Factor LSR 64.0 Road Octane Number Target 87 Road Octane Number

General Gasoline Blending Considerations

Reduce RVP giveaway

- Blend nC4, not iC4.
 - iC4 has higher vapor pressure than nC4
 - iC4 has more value as alkylation feedstock

Reduce Octane giveaway

- Setting constant reformer severity target hydrogen & octane balance highly dynamic constraints
- Blending low octane components to reduce octane giveaway maybe there's just too much high octane blendstock?

http://www.refinerlink.com/blog/Redefining Gasoline RVP Giveaway http://www.refinerlink.com/blog/Top 3 Refinery Octane Blending Mistakes/

General Gasoline Blending Considerations

Many blending problems require fixes to upstream operations

- RVP
 - Poor depropanizer operation allowing propane into the butane pool?
 - Proper splitting in Deisobutanizer & isostrippers?
- Octane
 - Correct cut points between heavy naphtha & kerosene?
 - Reduce reformer severity?
 - May not be possible if hydrogen needed.
 - Batch operating reformer severity?
 - Would provide balance between octane enhancement & volume to blending
 - Reducing reformer feed rates
 - Selling high octane components

http://www.refinerlink.com/blog/Redefining Gasoline RVP Giveaway http://www.refinerlink.com/blog/Top 3 Refinery Octane Blending Mistakes/

Summary

Summary

Equations for the blending of intermediate stocks to meet final product specifications

Equation forms have been developed to be used with optimization tools (such as linear programming)

Proper optimization of a facility will include adjusting upstream operations to meet downstream targets