UNI FREIBURG

Kapitel 3 – Kombinatorische Logik

- 1. Kombinatorische Schaltkreise
- 2. Normalformen, zweistufige Synthese
- 3. Berechnung eines Minimalpolynoms
- 4. Arithmetische Schaltungen
- 5. Anwendung: ALU von ReTI

Albert-Ludwigs-Universität Freiburg

Dr. Tobias Schubert, Dr. Ralf Wimmer

Professur für Rechnerarchitektur WS 2016/17

Billigste Überdeckung der markierten Ecken

Wir suchen ein sogenanntes Minimalpolynom, das heißt ein Polynom mit minimalen Kosten.

Definition

Ein Minimalpolynom p einer booleschen Funktion f ist ein Polynom von f mit minimalen Kosten, das heißt mit der Eigenschaft $cost(p) \leq cost(p')$ für jedes andere Polynom p' von f.

Quine's Primimplikantensatz

Satz

Jedes Minimalpolynom p einer booleschen Funktion f besteht ausschließlich aus Primimplikanten von f.

Beweis:

- Nehme an, dass p einen nicht primen Implikanten m von f enthält.
- m wird durch einen Primimplikanten m' von f überdeckt, ist also in m' enthalten.
- Es gilt demnach cost(m') < cost(m).
- Ersetzt man in p den Implikanten m durch den Primimplikanten m', so erhält man ein Polynom p', das ein Polynom von f ist mit cost(p') < cost(p).
- Widerspruch dazu, dass p ein Minimalpolynom ist.

Berechnung von Implikanten

Lemma 1

Ist m ein Implikant von f, so auch $m \cdot x$ und $m \cdot x'$ für jede Variable x, die in m weder als positives, noch als negatives Literal vorkommt.

Beweis:

- $m \cdot x$ und $m \cdot x'$ sind Teilwürfel des Würfels m.
- Sind also alle Ecken von m markiert, so auch alle Ecken von $m \cdot x$ und $m \cdot x'$.

Lemma 2

Sind $m \cdot x$ und $m \cdot x'$ Implikanten von f, so auch m.

Beweis:

$$f \ge m \cdot x + m \cdot x' = m \cdot (x + x') = m$$

Charakterisierung von Implikanten

Satz

Ein Monom m ist genau dann ein Implikant von f, wenn entweder

- m ein Minterm von f ist, oder
- $m \cdot x$ und $m \cdot x'$ Implikanten von f sind für eine Variable x, die nicht in m vorkommt.
- Äquivalente Schreibweise:

```
m \in Implikant(f)

\Leftrightarrow (m \in Minterm(f)) \lor (m \cdot x, m \cdot x' \in Implikant(f))
```

Beweis folgt unmittelbar aus Lemma 1 und Lemma 2.

Berechnung eines Minimalpolynoms

- Verfahren von Quine-McCluskey zur Berechnung aller Primimplikanten.
 - Idee: Berechne sogar alle Implikanten. Dann ist klar, welche Primimplikanten sind.

- Verfahren zur Lösung des "Überdeckungsproblems".
 - Treffe unter den Primimplikanten eine geeignete Auswahl, so dass die Disjunktion der ausgewählten Primimplikanten ein Polynom für *f* ist und minimale Kosten hat.

Verfahren von Quine: Der Algorithmus

Prime implicants function **Quine** $(f : \mathbb{B}^n \to \mathbb{B})$

```
begin
```

```
L_0 := Minterm(f);
   i := 0:
   //L_i enthält alle Implikanten von f der Länge n-i.
   Prim(f) := \emptyset
    while (L_i \neq \emptyset) and (i < n)
    loop L_{i+1} := \{ m \mid m \cdot x \text{ und } m \cdot x' \text{ sind in } L_i \text{ für ein } x \};
      Prim(f) := Prim(f) \cup
       \{m' \mid m' \in L_i \text{ und } m' \text{ wird von keinem } g \in L_{i+1} \text{ überdeckt}\};
      i := i + 1
    end loop;
    return Prim(f) \cup L_i;
end;
```

Verbesserung durch McCluskey

- Vergleiche nur Monome untereinander
 - die die gleichen Variablen enthalten und
 - bei denen sich die Anzahl der positiven Literale nur um 1 unterscheidet.
- Dies wird erreicht durch:
 - Partitionierung von L_i in Klassen L_i^M , mit $M \subseteq \{x_1, \dots, x_n\}$ und |M| = n i.
 - L_i^M enthält die Implikanten aus L_i, deren Literale alle aus M sind.
 - Anordnung der Monome in L_i^M gemäß der Anzahl der positiven Literale.

Beispiel Quine-McCluskey

Vergleiche im Folgenden nur Monome aus benachbarten Blöcken!

Beispiel Quine-McCluskey: Bestimmung von L_1 (1/4)

$$L_1^{\{x_1,x_2,x_3\}}$$
:

Beispiel Quine-McCluskey: Bestimmung von L_1 (2/4)

$$L_{1}^{\{x_{1},x_{2},x_{3}\}}:$$
000-
$$L_{1}^{\{x_{1},x_{3},x_{4}\}}:$$
0-00

Beispiel Quine-McCluskey: Bestimmung von L_1 (3/4)

$$L_{1}^{\{X_{1},X_{2},X_{3}\}}:$$

$$000-$$

$$L_{1}^{\{X_{1},X_{3},X_{4}\}}:$$

$$\frac{0-00}{0-11}$$

Beispiel Quine-McCluskey: Bestimmung von L_1 (4/4)

$$L_{1}^{\{x_{1},x_{2},x_{3}\}}:$$

$$000-$$

$$L_{1}^{\{x_{1},x_{3},x_{4}\}}:$$

$$\frac{0-00}{0-11}$$

Nicht kürzbar, da nicht Ecken der gleichen Kante. (Consensus existiert nicht!)

Beispiel Quine-McCluskey: Alle bestimmten Mengen L_1

$$L_{1}^{\{x_{1},x_{2},x_{4}\}}: L_{1}^{\{x_{1},x_{2},x_{3}\}}:$$

$$\begin{array}{ccc}
0 & 0 & -1 & & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 0 & -1 \\
\hline
0 & 1 & 0 & 0 & 0 & -1 \\
1 & 1 & 0 & 0 & 0 & -1 \\
1 & 1 & 0 & 0 & -1 & -1 & -1
\end{array}$$

$$L_{1}^{\{X_{2},X_{3},X_{4}\}}: L_{1}^{\{X_{1},X_{3},X_{4}\}}:$$

$$\begin{array}{ccc} -000 \\ \hline -001 \\ -100 \\ \hline -101 \\ \hline \end{array} \begin{array}{ccc} 0-00 \\ \hline 0-01 \\ \hline 1-00 \\ \hline 0-11 \\ \hline 1-01 \\ \hline 1-10 \\ \end{array}$$

Alle Minterme von f sind Eckpunkte von Kanten, die Implikanten sind: $Prim(f) = \emptyset$

Beispiel Quine-McCluskey: Bestimmung von L_2 (1/2)

Alle Implikanten aus $L_1\{x_1, x_2, x_4\}$ sind Kanten von Flächen, die Implikanten sind: $Prim(f) = \emptyset$

Beispiel Quine-McCluskey: Bestimmung von L_2 (2/2)

$$L_{1}^{\{X_{2},X_{3},X_{4}\}}: L_{1}^{\{X_{1},X_{3},X_{4}\}}:$$

$$\begin{array}{ccc} -000 & & & 0 \\ \hline -001 & & & 0 \\ \hline -100 & & & 1 \\ \hline -100 & & & 1 \\ \hline -101 & & & 1 \\ \hline & & & 1 \\ \end{array}$$

Alle Implikanten aus L_1M sind Kanten von Flächen, die Implikanten sind: $Prim(f) = \emptyset$

Beispiel Quine-McCluskey: Bestimmung von L_3 (1/2)

$$L_{2}^{\{x_{1},x_{2}\}}: \qquad L_{2}^{\{x_{1},x_{3}\}}: \\ L_{2}^{\{x_{1},x_{4}\}}: \\ U_{2}^{\{x_{1},x_{4}\}}: \\ U_{2}^{\{x_{1},x_{4}\}}: \\ U_{2}^{\{x_{2},x_{3}\}}: \\ U_{2}^{\{x_{2},x_{3}\}}: \\ U_{2}^{\{x_{2},x_{4}\}}: \\ U_{2}^{\{x_{2},x_{4}$$

Die markierten Implikanten-Flächen sind nicht Rand eines 3-dim. Implikanten. Sie sind also prim! $\Rightarrow Prim(f) = \{x'_1x_4, x_1x'_4\}$

Beispiel Quine-McCluskey: Bestimmung von L_3 (2/2)

$$L_{2}^{\{X_{1},X_{2}\}}: \qquad L_{2}^{\{X_{1},X_{3}\}}: \\ & \underbrace{0 \cdot 0 \cdot 1}_{1 \cdot 0 \cdot 1} \\ 0 \cdot -1 \qquad L_{2}^{\{X_{1},X_{4}\}}: \\ 1 \cdot -0 \qquad \underbrace{-0 \cdot 0 \cdot 1}_{-1 \cdot 0 \cdot 1} \\ L_{2}^{\{X_{2},X_{4}\}}: \qquad L_{2}^{\{X_{3},X_{4}\}}: \\ -\cdot 0 \cdot 0$$

Die markierten Implikanten-Flächen sind Rand eines 3-dimensionalen Implikanten. Sie sind also nicht prim! $\Rightarrow Prim(f) = \{x_1, x_4, x_1, x_4'\}$

Beispiel Quine-McCluskey: Ende

$$L_3^{\{x_1\}}$$
: $L_3^{\{x_2\}}$:

$$L_3^{\{x_3\}}$$
: $L_3^{\{x_4\}}$:

$$Prim(f) = \{x_1'x_4, x_1x_4'\}$$

$$\Rightarrow Prim(f) = \{x_1'x_4, x_1x_4', x_3'\}$$

$$p_{complete}(f) = x_1'x_4 + x_1x_4' + x_3'$$

Korrektheit von Quine-McCluskey (1/2)

Prime implicants function **Quine** $(f : \mathbb{B}^n \to \mathbb{B})$

begin

```
L_0 := Minterm(f);
   i := 0:
   //L_i enthält alle Implikanten von f der Länge n-i.
   Prim(f) := \emptyset
    while (L_i \neq \emptyset) and (i < n)
    loop L_{i+1} := \{ m \mid m \cdot x \text{ und } m \cdot x' \text{ sind in } L_i \text{ für ein } x \};
      Prim(f) := Prim(f) \cup
       \{m' \mid m' \in L_i \text{ und } m' \text{ wird von keinem } g \in L_{i+1} \text{ überdeckt}\};
      i := i + 1
    end loop;
    return Prim(f) \cup L_i;
end;
```

Korrektheit von Quine-McCluskey (2/2)

Satz

Für alle i = 0, 1, ..., n gilt:

- L_i enthält nur Monome mit n-i Literalen.
- L_i enthält genau die Implikanten von f mit n-i Literalen.
- Nach Iteration i enthält Prim(f) genau die Primimplikanten von f mit mindestens n-i Literalen.

Beweis:

Induktion über i:

- Abbruchbedingung $(L_i = \emptyset)$ oder (i = n):
- $L_i = \emptyset$ bedeutet, dass keine Implikanten bei der "Partnersuche" entstanden sind, d.h. L_{i-1} ist vollständig in Prim(f) aufgegangen.
- i = n bedeutet, dass L_n berechnet wurde, es gilt dann $L_n = \emptyset$ oder $L_n = \{1\}$, letzteres bedeutet f ist die Eins-Funktion und $Prim(f) = \{1\}$.

Kosten des Verfahrens

Lemma

Es gibt 3ⁿ verschiedene Monome in *n* Variablen.

Beweis:

Für jedes Monom m und jede der n Variablen x liegt genau eine der drei folgenden Situationen vor:

- \blacksquare *m* enthält weder das positive noch das negative Literal von *x*.
- m enthält das positive Literal x.
- \blacksquare m enthält das negative Literal x'.

Jedes Monom ist durch diese Beschreibung auch eindeutig bestimmt.

Komplexität des Verfahrens von Quine-McCluskey

Satz

Die Laufzeit des Verfahrens liegt in $O(n^2 \cdot 3^n)$ beziehungsweise in $O(\log^2(N) \cdot N^{\log(3)})$, wobei $N = 2^n$ die Größe der Funktionstabelle ist.

Beweisidee:

Jedes der 3^n Monome wird im Verlauf des Verfahrens mit höchstens n anderen Monomen verglichen.

■ Gegeben sei ein Monom mx. Die Erzeugung von mx' und die Suche nach mx' in L_i ist bei Verwendung geeigneter Datenstrukturen in O(n) durchführbar.

 $O(n^2 \cdot 3^n) = O(\log^2(N) \cdot N^{\log(3)})$ durch Nachrechnen:

$$3^n = (2^{\log(3)})^n = (2^n)^{\log(3)} = N^{\log(3)}$$

Das Matrix-Überdeckungsproblem

- Wir haben nun durch das Verfahren von Quine-McCluskey alle Primimplikanten von *f* bestimmt.
- Die Disjunktion aller Primimplikanten ist ein Polynom, das f implementiert. Es ist aber im Allgemeinen kein Minimalpolynom von f.
- Für das Minimalpolynom benötigen wir eine kostenminimale Teilmenge M von Prim(f), so dass die Monome von M f überdecken.
- Diese Art von Problemen wird Matrix-Überdeckungsproblem genannt.

SMILE - Das Matrix-Überdeckungsproblem: Einfaches Beispiel

Für eine Expedition wird ein Fahrer, ein Messtechniker und ein Kameramann benötigt. Es stehen fünf Kandidaten mit unterschiedlichen Fähigkeiten und Gehaltsvorstellungen zur Auswahl. Welches ist das kostengünstigste Team?

Kandidat	Fahrer?	Messtechniker?	Kameramann?	Gehalt
Alice	Ja	Nein	Ja	4000
Dilbert	Ja	Ja	Nein	2000
Dogbert	Ja	Ja	Ja	5000
Ted	Nein	Nein	Ja	1000
Wally	Nein	Ja	Ja	1500

Primimplikantentafel

- Definiere eine boolesche Matrix PIT(f), die Primimplikantentafel von f:
 - Die Zeilen entsprechen eindeutig den Primimplikanten von *f*.
 - Die Spalten entsprechen eindeutig den Mintermen von f.
 - Sei $min(\alpha)$ ein beliebiger Minterm von f. Dann gilt für Primimplikant $m: PIT(f)[m, min(\alpha)] = 1 \Leftrightarrow m(\alpha) = 1$.
- Der Eintrag an der Stelle $[m, min(\alpha)]$ ist also genau dann 1, wenn $min(\alpha)$ eine Ecke des Würfels m beschreibt.

Gesucht:

Eine kostenminimale Teilmenge M von Prim(f), so dass jede Spalte von PIT(f) überdeckt ist,

```
d.h. \forall \alpha \in ON(f) \quad \exists m \in M \text{ mit } PIT(f)[m, min(\alpha)] = 1.
```

Primimplikantentafel: Beispiel (1/2)

$$Prim(f) = \{x'_1x_4, x_1x'_4, x'_3\}$$

Primimplikantentafel *PIT*(*f*):

							8	9	10	12	13	14
x ₁ 'x ₄ x ₁ x ₄ ' x ₃ '		1	1		1	1						
x_1x_4'							1		1	1		1
x_3'	1	1		1	1		1	1		1	1	

Primimplikantentafel: Beispiel (2/2)

Gesucht:

Eine kostenminimale Teilmenge M von Prim(f), so dass jede Spalte von PIT(f) überdeckt ist, d.h. $\forall \alpha \in ON(f) \quad \exists m \in M \text{ mit } PIT(f)[m,min(\alpha)] = 1$.

$$Prim(f) = \{x'_1x_4, x_1x'_4, x'_3\}$$

Primimplikantentafel PIT(f):

								` '				
	0	1	3	4	5	7	8	9	10	12	13	14
$x_1'x_4$		1	1		1	1						
$x_1'x_4$ x_1x_4' x_3'							1					1
X_2^{\prime}	1	1		1	1		1	1		1	1	

Erste Reduktionsregel - Wesentlicher Implikant

Definition

Ein Primimplikant m von f heißt wesentlich, wenn es einen Minterm $min(\alpha)$ von f gibt, der nur von diesem Primimplikanten überdeckt wird, also:

- \blacksquare $PIT(f)[m, min(\alpha)] = 1$
- \blacksquare $PIT(f)[m', min(\alpha)] = 0$

für jeden anderen Primimplikanten m' von f.

Lemma

Jedes Minimalpolynom von f enthält alle wesentlichen Primimplikanten von f.

1. Reduktionsregel: Entferne aus der Primimplikantentafel PIT(f) alle wesentlichen Primimplikanten und alle Minterme, die von diesen überdeckt werden.

Erste Reduktionsregel: Beispiel (1/2)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	1				1												
2		1				1											
3			1				1										
4				1				1									
5					1				1								1
6						1				1							1
7							1				1						
8								1				1					
9									1				1				
10										1				1			1
11											1				1		
12												1				1	
13													1	1	1	1	

Erste Reduktionsregel: Beispiel (2/2)

Nach Anwendung der 1. Reduktionsregel

	9	10	11	12	13	14	15	16	17
5	1								1
6 7		1							1
7			1						
8				1					
9	1				1				
10		1				1			1
11			1				1		
12				1				1	
13					1	1	1	1	

Die Matrix enthält keine wesentlichen Zeilen mehr!

Zweite Reduktionsregel - Spaltendominanz

Definition

Sei A eine boolesche Matrix. Spalte j von A dominiert Spalte i von A, wenn für jede Zeile k gilt: $A[k,j] \le A[k,j]$.

- Nutzen für unser Problem: Dominiert ein Minterm w' von f einen anderen Minterm w von f, so braucht man w' nicht weiter zu betrachten, da w' auf jeden Fall überdeckt werden muss und hierdurch auch Minterm w' überdeckt wird.
- Jeder in PIT(f) vorhandene Primimplikant p, der w überdeckt, überdeckt auch w'.
- **2. Reduktionsregel:** Entferne aus der Primimplikantentafel PIT(f) alle Minterme, die einen anderen Minterm in PIT(f) dominieren.

Zweite Reduktionsregel: Beispiel

	9	10	11	12	13	14	15	16	17	
5	1								1	ſ
5 6 7		1							1	l
7			1							l
8				1						l
9	1				1					l
10		1				1			1	l
11			1				1			l
12				1				1		l
13					1	1	1	1		

Spalte 17 dominiert Spalte 10 ⇒ Spalte 17 kann gelöscht werden!

Dritte Reduktionsregel - Zeilendominanz

Definition

Sei A eine boolesche Matrix. Zeile i von A dominiert Zeile j von A, wenn für jede Spalte k gilt: $A[i,k] \ge A[j,k]$.

- Nutzen für unser Problem: Dominiert ein Primimplikant m einen Primimplikanten m', so braucht man m' nicht weiter zu betrachten, wenn $cost(m') \ge cost(m)$ gilt.
- Der Primimplikant m überdeckt jeden noch nicht überdeckten Minterm von f, der von m' überdeckt wird, obwohl er nicht teurer ist.
- **3. Reduktionsregel:** Entferne aus der Primimplikantentafel PIT(f) alle Primimplikanten, die durch einen anderen, nicht teureren Primimplikanten dominiert werden.

Dritte Reduktionsregel: Beispiel

Nehme an, dass die Zeilen 5 bis 12 gleiche Kosten haben.

Nach Anwendung der 3. Reduktionsregel

9	10	11	12	13	14	15	16
1				1			
_	1				1		
		1				1	
			1				1
				1	1	1	1
	9	9 10	9 10 11	9 10 11 12	9 10 11 12 13	9 10 11 12 13 14 1 1 1 1	9 10 11 12 13 14 15 1

- Offensichtlich kann nun wieder die erste Reduktionsregel angewendet werden, da die Zeilen 9, 10, 11, 12 wesentlich sind.
 - Die resultierende Matrix ist leer.
 - Das gefundene Minimalpolynom ist:

$$1 + 2 + 3 + 4 + 9 + 10 + 11 + 12$$

Zyklische Überdeckungsprobleme

Definition

Eine Primimplikantentafel heißt reduziert, wenn keine der drei Reduktionsregeln anwendbar ist.

- Ist eine reduzierte Tafel nicht-leer, spricht man von einem zyklischen Überdeckungsproblem.
- In der Praxis werden solche Probleme heuristisch gelöst. Es gibt auch exakte Methoden (Petrick, Branch-and-Bound).

Primimplikantentafel PIT(f):

	•							
	3	5	7	9	11	13		
{7,5}		1	1					
$\{5, 13\}$		1				1		
{13,9}				1		1		
{9,11}				1	1			
{11,3}	1				1			
${3,7}$	1		1					

Petrick's Methode

Verfahren:

- Übersetze die PIT in ein Produkt von Summen, d.h. in ein (OR, AND)-Polynom, das alle Möglichkeiten der Überdeckung enthält.
- Multipliziere das (OR, AND)-Polynom aus, so dass ein (AND-OR)-Polynom entsteht.
- Die gesuchte minimale Überdeckung ist gegeben durch das Monom, das einer PI-Auswahl mit minimalen Kosten entspricht.

	3	5	7	9	11	13
a:{7,5}		1	1			
b: {5,13}		1				1
c: {13,9}				1		1
d: {9,11}				1	1	
e:{11,3}	1				1	
$f: \{3,7\}$	1		1			

wird übersetzt in

$$(e+f) \cdot (a+b) \cdot (a+f) \cdot (c+d) \cdot (d+e) \cdot (b+c)$$

$$= (ea+eb+fa+fb) \cdot (ac+ad+fc+fd)$$

$$\cdot (db+dc+eb+ec)$$

$$\vdots$$

= ace + acde + abcde + abcd + \cdots + bdf

Bei gleichen Kosten für alle Pls sind *ace* und *bdf* minimal.

"Greedy-Heuristik" zur Lösung von Überdeckungsproblemen

- 1. Wende alle möglichen Reduktionsregeln an.
- 2. Ist die Matrix A leer, ist man fertig.
- Sonst wähle die Zeile i, die die meisten Spalten überdeckt. Lösche diese Zeile und alle von ihr überdeckten Spalten und gehe zu 1.
 - Dieser Algorithmus liefert nicht immer die optimale Lösung!
 - Hinweis: Bei der Ausgangs-Matrix aus unserem Beispiel überdeckt Zeile 13 die meisten Spalten. Diese ist nicht Teil der gefundenen Lösung!

Zusammenfassung Schaltkreise

- Schaltkreise stellen boolesche Funktionen dar.
- Optimale boolesche Polynome k\u00f6nnen sehr viel gr\u00f6\u00dfer sein, als entsprechende Schaltkreise.
 - exponentielle Unterschiede möglich
 - Rechtfertigung für Einsatz von Schaltkreisen statt PLAs
- Es gibt auch Algorithmen zur Berechnung optimaler (mehrstufiger) Schaltkreise.
 - anspruchsvoller als Optimierung von booleschen Polynomen
 - meist heuristisch (N\u00e4herungsverfahren)
 - nicht Gegenstand dieser Vorlesung
- Hier: Schaltkreise für spezielle Funktionen, insbesondere Arithmetik.