Задачи этой тренировки можно сдавать только на учебном языке Pr. При проверке количество процессов равно 100. Подробнее здесь: https://github.com/GassaFM/interpr#pr.

Задача А. Сумма

Ограничение по времени: 1 000 000 тактов Ограничение по памяти: 1024 мебибайта

Задана последовательность из n целых чисел. Найдите сумму всех чисел в ней.

Формат входных данных

В первой строке записано целое число n — длина последовательности ($1 \le n \le 10^6$). В следующей строке записаны n целых чисел a_1, a_2, \ldots, a_n — сама последовательность ($-10^{12} \le a_i \le 10^{12}$).

Формат выходных данных

Выведите одно целое число: сумму всех чисел в последовательности.

Пример

тест	ответ
5	30
6 10 1 7 6	

Задача В. Уникальное число

Ограничение по времени: 1 000 000 тактов Ограничение по памяти: 1024 мебибайта

Задана последовательность из n целых чисел. Любое число либо не встречается в ней вовсе, либо встречается ровно два раза — за исключением одного числа x, которое встречается ровно один раз. Найдите это уникальное число x.

Формат входных данных

В первой строке записано целое число n—длина последовательности ($1\leqslant n\leqslant 10^6$). В следующей строке записаны n целых чисел a_1,a_2,\ldots,a_n —сама последовательность ($1\leqslant a_i\leqslant 10^9$). Гарантируется, что любое число либо не встречается в последовательности вовсе, либо встречается ровно два раза—за исключением одного числа, которое встречается ровно один раз.

Формат выходных данных

Выведите одно целое число x.

тест	ответ
5	7
6 10 10 7 6	

Математические основы алгоритмов, первый курс, 2024–2025 Параллельные вычисления, четверг, 13 марта 2025 года, МКН СПбГУ

Задача С. Дисбаланс

Ограничение по времени: 1 000 000 тактов Ограничение по памяти: 1024 мебибайта

Задан список из n неотрицательных целых чисел: a_1, a_2, \dots, a_n . Сумма всех чисел равна n.

Построим список частичных сумм: $b_i = \sum_{j=1}^i a_j$. Список сумм считается хорошим, если для всех индексов верно $b_i \leqslant i$. Если же в какой-то позиции i оказалось, что $b_i > i$, эта позиция получает штраф $b_i - i$. Штраф для списка — это сумма штрафов для всех позиций.

По заданному списку $\{a_i\}$ найдите штраф для списка частичных сумм $\{b_i\}$.

Формат входных данных

В первой строке записано целое число n — длина списка $(1\leqslant n\leqslant 10^6)$. В следующей строке записаны n целых чисел a_1,a_2,\ldots,a_n — сам список $(0\leqslant a_i\leqslant n;\;\sum a_i=n)$.

Формат выходных данных

Выведите одно целое число: штраф для списка частичных сумм $\{b_i\}$.

Пример

тест	ответ
7	5
1 0 3 2 0 1 0	

Задача D. Отрезок

Ограничение по времени: 1 000 000 тактов Ограничение по памяти: 1024 мебибайта

Дана последовательность из n целых чисел. Найдите отрезок этой последовательности, сумма чисел на котором максимальна. Найденный отрезок может быть пустым.

Формат входных данных

В первой строке записано целое число n — длина последовательности ($1 \le n \le 10^6$). В следующей строке записаны n целых чисел a_1, a_2, \ldots, a_n — сама последовательность ($-10^{12} \le a_i \le 10^{12}$).

Формат выходных данных

Выведите одно целое число: максимальную сумму на отрезке последовательности.

тест	ответ
5	12
6 -5 1 10 -6	

Задача Е. Горный хребет

Ограничение по времени: 1000000 тактов Ограничение по памяти: 1024 мебибайта

Демиург Кеша создаёт двумерные горы в своём клетчатом мире. Сегодня он решил построить длинный прямой горный хребет шириной n клеток. Кеша хочет, чтобы в i-м столбике слева высота горы была не меньше h_i метров.

x метрам, то в соседних столбиках высота должна быть не меньше x-1метров. При этом у первой клетки хребта нет соседа слева, а у последней справа. Высота столбика не может быть отрицательной.

Чтобы построить столбик высотой x метров, нужно x единиц грунта. Какое минимальное количество единиц грунта потребуется Иннокентию, чтобы построить желаемый горный хребет?

Формат входных данных

В первой строке записано целое число n- ширина горного хребта в клетках ($1 \le n \le 400\,000$). В следующей строке записаны n целых чисел h_1, h_2, \dots, h_n — желаемая высота в каждом столбике $(0 \le h_i \le 10^{12})$.

Формат выходных данных

Выведите одно целое число: минимальное количество единиц грунта, которое потребуется демиургу Кеше, чтобы построить желаемый горный хребет.

Пример

тест	ответ
7	22
2 5 4 0 3 0 1	

Задача F. Выпуклая оболочка сверху

1000000 тактов Ограничение по времени: Ограничение по памяти: 1024 мебибайта

Задана последовательность y_1, y_2, \dots, y_n из n целых чисел. Каждое её число выбрано случайно, равновероятно из целых чисел от 1 до 10^9 и независимо

Рассмотрим множество точек (i, y_i) на плоскости. Точка принадлежит По законам Кешиного мира, если высота горы в какой-то клетке равна верхней выпуклой оболочке этого множества, если существует прямая, которая проходит через эту точку и при этом строго выше всех остальных точек множества.

Найдите все точки верхней выпуклой оболочки заданного множества.

Формат входных данных

В первой строке записано целое число n-длина последовательности $(1 \le n \le 200\,000)$. В следующей строке записаны n целых чисел y_1,y_2,\ldots,y_n сама последовательность ($1 \le y_i \le 10^9$). Гарантируется, что каждое число выбрано случайно, равновероятно из целых чисел от 1 до 10^9 и независимо от других.

Формат выходных данных

В первой строке выведите целое число k – количество точек, лежащих на верхней выпуклой оболочке множества точек (i, y_i) . В следующих k строках выведите сами эти точки — по одной на строке, в порядке возрастания абсциссы.

Пример

TECT	
6	
738019188 156680847 182508705	
645867035 421237740 324760886	
ответ	
3	
1 738019188	
4 645867035	
6 324760886	

Замечание

В настоящем примере числа y_i даны на одной строке. В тексте условия используются две строки лишь потому, что на одну числа не поместились.

Задача G. Количество путей

Ограничение по времени: 1 000 000 тактов Ограничение по памяти: 1024 мебибайта

Рассмотрим ленту из клеток. В каждой клетке написано число 1, 2 или 3. Робот прыгает по ленте, начиная из первой клетки и заканчивая в последней. Если робот стоит на клетке с числом x, то он может прыгнуть вперёд на любое положительное число клеток не больше x.

Сколько различных путей из первой клетки в последнюю существует для робота? Найдите остаток от деления количества путей на $1\,000\,000\,007$.

Формат входных данных

В первой строке записано целое число n — длина ленты ($1 \le n \le 150\,000$). В следующей строке записаны n целых чисел a_1,a_2,\ldots,a_n — числа в клетках ($1 \le a_i \le 3$).

Формат выходных данных

Выведите остаток от деления количества путей для робота на $1\,000\,000\,007$.

Пример

	rr	
	Tect	ответ
Ì	5	3
	1 2 3 2 1	

Пояснение к примеру

Пронумеруем клетки начиная с единицы.

У робота есть следующие пути:

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$
,

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 5$$
,

$$1 \rightarrow 2 \rightarrow 4 \rightarrow 5$$
.

Задача Н. Различные элементы

Ограничение по времени: 1 000 000 тактов Ограничение по памяти: 1024 мебибайта

Дан список из n чисел. Каждое число — целое от 1 до n включительно. Сколько различных элементов в этом списке?

Формат входных данных

В первой строке записано целое число n — длина списка $(1 \le n \le 100\,000)$. В следующей строке записаны n целых чисел a_1,a_2,\ldots,a_n — сам список $(1 \le a_i \le n)$.

Формат выходных данных

Выведите одно целое число: количество различных элементов в списке.

<u> </u>	
TECT	ответ
6	4
6 2 5 2 1 5	

Математические основы алгоритмов, первый курс, 2024–2025 Параллельные вычисления, четверг, 13 марта 2025 года, МКН СПбГУ

Задача І. Минимумы

Ограничение по времени: 1 000 000 тактов Ограничение по памяти: 1024 мебибайта

Задана последовательность из n целых чисел. Найдите минимальные $\lfloor \sqrt{n} \rfloor$ её элементов по порядку.

Формат входных данных

В первой строке записано целое число n — длина последовательности ($1\leqslant n\leqslant 300\,000$). В следующей строке записаны n целых чисел a_1,a_2,\ldots,a_n — сама последовательность ($-10^{12}\leqslant a_i\leqslant 10^{12}$).

Формат выходных данных

Выведите $\lfloor \sqrt{n} \rfloor$ целых чисел: минимальные элементы последовательности в порядке нестрогого возрастания.

Пример

TECT	ответ
5	1 6
6 10 1 7 6	

Задача Ј. Количество инверсий

Ограничение по времени: 1 000 000 тактов Ограничение по памяти: 1024 мебибайта

Задана последовательность a_1, a_2, \ldots, a_n , состоящая из n целых чисел. Инверсией называется пара индексов (i,j), для которой i < j, но $a_i > a_j$. Найдите количество инверсий в данной последовательности.

Формат входных данных

В первой строке записано целое число n — длина последовательности ($1 \le n \le 4000$). В следующей строке записаны n целых чисел a_1, a_2, \ldots, a_n — сама последовательность ($1 \le a_i \le 10^9$).

Формат выходных данных

Выведите одно целое число: количество инверсий в заданной последовательности.

тест	ответ
5	3
3 1 3 2 4	

Математические основы алгоритмов, первый курс, 2024–2025 Параллельные вычисления, четверг, 13 марта 2025 года, МКН СПбГУ

Задача К. Префиксные суммы

Ограничение по времени: 1 000 000 тактов Ограничение по памяти: 1024 мебибайта

Задан массив a_1, a_2, \ldots, a_n из целых чисел. Выведите по порядку n его префиксных сумм:

 a_1 $a_1 + a_2$... $a_1 + a_2 + \ldots + a_n$

Формат входных данных

В первой строке записано целое число n — размер массива ($1 \le n \le 10^5$).

В следующей строке записаны n целых чисел a_1, a_2, \ldots, a_n — числа в массиве $(1 \le a_i \le 10^{12})$.

Формат выходных данных

Выведите n целых чисел: префиксные суммы массива.

тест	ответ
5	3
3 6 1 8 14	9
	10
	18
	32