PROVA 1 - MAT 241

Hugo Marinho

2021

- TRANSCREVA AS EQUAÇÕES DA QUESTÃO PARA A FOLHA DE RESOLUÇÃO
- IDENTIFIQUE COM CLAREZA QUAL QUESTÃO VOCÊ ESTÁ RESOLVENDO
- ENVIE A PROVA EM UM ÚNICO ARQUIVO E EM PDF
- JUSTIFIQUE BEM SUAS RESPOSTAS
- AO TRANSFORMAR SUA PROVA EM PDF CERTIFIQUE-SE DE QUE ESTÁ LEGÍVEL
- 1. 40 pontos Em cada item faça o que se pede:
 - a) 10 pontos Determine a área do triângulo formado por estes pontos A=(2,3,1), B=(4,3,2) e C=(1,1,1)
 - b) 10 pontos Seja \vec{u} um vetor ortogonal a \vec{v} e \vec{w} . Sabendo-se que \vec{v} e \vec{w} formam um ângulo de 60° e que $\|\vec{u}\| = 2$, $\|\vec{v}\| = 4$ e $\|\vec{w}\| = 3$. Calcule $\langle \vec{u}, \vec{v} \times \vec{w} \rangle$
 - c) 10 pontos Sejam $\vec{u} = (k, 2, 1)$ e $\vec{v} = (1, 1, -2)$. Sabendo-se que o ângulo entre \vec{u} e \vec{i} é agudo, determine o valor de k de modo que a área do triângulo formado por \vec{u} e \vec{v} seja $\sqrt{57}$.
 - d) 10 pontos Determine a posição relativa entre as retas:

$$r: \frac{x-1}{2} = \frac{y+2}{3} = z-2$$
 $s: \begin{cases} x = -2+t \\ y = -1-2t \\ z = 2+3t \end{cases}$

2. 20 pontos - Determine um plano α , de tal forma que, α forma um ângulo de 30° com o plano x = 4, forma 60° com o plano xy e contenha o ponto A = (2, 3, 2). Considere também que a norma do vetor normal de α seja igual a 8.

3. 20 pontos - Considere a seguinte esfera:

$$S: x^2 + y^2 + z^2 - 4x - 2y + 2z = -2$$

Determine um plano tangente a essa esfera e que seja perpendicular à reta $r: \frac{x-1}{2} = \frac{y+2}{2} = z-4$

- 4. 20 pontos Considere os planos $\alpha: x+y+z=4$ e $\beta: 2x+y-2z=0.$
 - a) Determine a reta r dada pela interseção dos planos.
 - b) Escreva a equação da esfera que tem centro no ponto da reta r quando t=1 e é tangente à reta s:x-2=y=z-2

DICA SHOW: Se queremos calcular a distância de um ponto P_0 do espaço até uma reta r, utilizamos a seguinte fórmula

$$d(P,r) = \frac{\|\vec{P_0P_r} \times \vec{v_r}\|}{\|\vec{v_r}\|}$$

Aonde P_r é um ponto qualquer da reta r e $\vec{v_r}$ é o vetor diretor da reta r.

Para encontrar o plano da sua vida você precisa de um vetor normal e um ponto