COMPARISON

- 1 Statistical hypotheses
- 2 Significance tests
- 3 Type I and II Errors
- 4 Practice

Statistical hypotheses

From the Reason "free minds and free markets" Foundation:

"A number of theorists assume that drinking has harmful economic effects, but data show that drinking and earnings are positively correlated. We hypothesize that drinking leads to higher earnings by increasing social capital. If drinkers have larger social networks, their earnings should increase. Examining the General Social Survey, we find that self-reported drinkers earn 10-14 percent more than abstainers, which replicates results from other data sets."

(B. L. Peters, E. Stringham, "No Booze? You May Lose", 2006.)

H₁: "An increase in social drinking leads to an increase in earnings."

Statistical hypotheses

Substantive, directional hypotheses

 H_1 : \pm social drinking ($\rightarrow \pm$ social capital) $\rightarrow \pm$ earnings

 H_2 : \pm earnings ($\rightarrow \pm$ disposable income) $\rightarrow \pm$ social drinking

Rejecting the null hypothesis H_0

 H_0 : no relationship between social drinking and earnings H_a : any relationship between social drinking and earnings

Proof by contradiction

- **11** Get approximate upper bound of *p***-value** $p \sim Pr(H_0)$
- **2** Reject or retain H_0 at **level of confidence** $\alpha \sim 0.05$ (or 0.01)

Significance tests

Comparing differences

- Comparing means: H_0 : $\Delta = \bar{X} \bar{Y} = 0$
- Comparing proportions: H_0 : $\Delta = Pr(X) Pr(Y) = 0$ prtest

ttest

tab_chi

Comparing distributions

- χ^2 -test: observed vs. expected percentages
- Odds ratios: success vs. failure rates
 tabodds

t-test

t-test

Measuring association as the difference in means between two groups of i.i.d. observations:

- Population notation: $\delta = \mu_1 \mu_2$
- Sample notation: $D = \bar{X}_1 \bar{X}_2$

The *t*-test computes a 95% CI around the difference of their means and returns its *p*-value against the *t*-distribution.

- Null hypothesis H_0 : $\mu_1 \mu_2 = 0$
- Test statistic: $t = \frac{D}{SE_D}$

t-test

ttest y, by(x)

- y is continuous, x is a dummy
- use prtest if y is also a dummy (proportions test)
- use tab, gen() to create dummies from categorical variables

use data/qog2011, clear

Interpret the following tests:

- ttest gol_enep, by(gol_est2)
- prtest no_mes, by(gol_polreg)

Chi-squared test

Chi-squared test

The Chi-squared test is a nonparametric test of association that measures the deviation in orthogonality between groups:

- Null hypothesis H_0 : $\chi^2 = 0$
- Test statistic: $\chi^2 = \sum_{i=1}^n \frac{(O_i E_i)^2}{E_i}$ (deviation between observed frequencies O_i and expected frequencies E_i for each table cell i)

tab v1 v2, exp chi2 V

- lacksquare add V to measure the association with Cramér's V (0 < V < 1)
- use tabchi to inspect residuals, tabodds for odds ratios

Chi-squared test

use data/nhis2009, clear

- Variables: d raceb marstat
- Analyze the frequencies and residuals with tabchi

. tab marstat raceb if marstat < 8, chi2 V

	Race				
Legal marital status	White	Black	Hispanic	Asian	Total
Married	7,151	1,059	2,231	780	11,221
	,				
Widowed	1,215	352	223	84	1,874
Divorced	2,367	641	595	93	3,696
Separated	343	264	274	25	906
Total	11,076	2,316	3,323	982	17,697

Pearson chi2(9) = 733.4437 Pr = 0.000

Type I and II Errors

Type I Error: rejecting H_0 when it is actually true

"Last year executed man proven innocent by DNA evidence."

- \blacksquare H_0 : presumption of innocence...
- H_a : ... until proven guilty (H_0 wrongly rejected)

Type II Error: retaining H_0 when it is actually false

"Violent father beats children after being released from custody."

- \blacksquare H_0 : parents considered responsible
- \blacksquare H_a : ... until proven abusive (H_0 wrongly retained)

Type I and II Errors

Estimation is powerful

Significance is deceptive

Practice session

Class

* Get the do-file for this week.

srqm fetch week6.do

* Open to read and replicate.

doedit code/week6

Coursework

- Finish the do-file and read all comments at home.
- Catch up on all readings (see course website).
- Revise your code and paper after getting feedback.

Exercises

Ex 6.1. European Social Survey 2008

- Recode rlgblg and dscrgrp to dummies.
- 2 Compute a proportions test for dscrgrp by rlgblg.
- 3 Interpret the result of the test.

Ex 6.2. European Social Survey 2008

- Subset the data to Sweden.
- 2 Find a measure of support for male/female income equality.
- 3 Select a test to compare the variable over gender groups.