AArch64 Registers AArch32 Instructions AArch64
Instructions

Index by Encoding

External Registers

PMINTEN, Performance Monitors Interrupt Enable register

The PMINTEN characteristics are:

Purpose

Enables the generation of interrupt requests on overflows from the Cycle Count Register, PMU.PMCCNTR_EL0, and the event counters PMU.PMEVCNTR<n> EL0.

Configuration

External register PMINTEN bits [63:0] are architecturally mapped to AArch64 System register PMINTENSET_EL1[63:0] when FEAT_PMUv3_EXT64 is implemented, or FEAT_PMUv3p9 is implemented or FEAT_PMUv3 ICNTR is implemented.

External register PMINTEN bits [63:0] are architecturally mapped to AArch64 System register PMINTENCLR_EL1[63:0] when FEAT_PMUv3_EXT64 is implemented, or FEAT_PMUv3p9 is implemented or FEAT_PMUv3_ICNTR is implemented.

External register PMINTEN bits [31:0] are architecturally mapped to AArch32 System register <u>PMINTENCLR[31:0]</u>.

External register PMINTEN bits [31:0] are architecturally mapped to AArch32 System register PMINTENSET[31:0].

This register is present only when FEAT_PMUv3_EXT64 is implemented. Otherwise, direct accesses to PMINTEN are res0.

Attributes

PMINTEN is a 64-bit register.

This register is part of the **PMU** block.

Field descriptions

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36

RESO

C|P30|P29|P28|P27|P26|P25|P24|P23|P22|P21|P20|P19|P18|P17|P16|P15|P14|P13|P12|P11|P10|P9|P8|P7|P6|P5|P4|
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4

Bits [63:33]

Reserved, res0.

F0, bit [32] When FEAT_PMUv3_ICNTR is implemented:

Interrupt request on unsigned overflow of PMU.PMICNTR_EL0 enable.

F0	Meaning
000	Interrupt request on unsigned overflow of PMU.PMICNTR_EL0 disabled.
0b1	Interrupt request on unsigned overflow of PMU.PMICNTR_EL0 enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

C, bit [31]

PMU.PMCCNTR_EL0 unsigned overflow interrupt request enable bit. Possible values are:

С	Meaning
0b0	The cycle counter overflow
	interrupt request is disabled.
0b1	The cycle counter overflow
	interrupt request is enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

P < n >, bit [n], for n = 30 to 0

Event counter unsigned overflow interrupt request enable bit for PMU.PMEVCNTR<n> EL0.

If PMU.PMCFGR.N is less than 31, bits [30:PMU.PMCFGR.N] are RAZ/WI.

P <n></n>	Meaning
0b0	The PMU.PMEVCNTR <n>_EL0</n>
	event counter interrupt request is disabled.
0b1	The PMU.PMEVCNTR <n>_EL0 event counter interrupt request is enabled.</n>

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing PMINTEN

Accesses to this register use the following encodings:

Accessible at offset 0xC50 from PMU

- When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or !AllowExternalPMUAccess(), accesses to this register generate an error response.
- Otherwise, accesses to this register are **RW**.

AArch32	AArch64	AArch32	AArch64	Index by	<u>External</u>
<u>Registers</u>	<u>Registers</u>	<u>Instructions</u>	<u>Instructions</u>	Encoding	<u>Registers</u>

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.