Резюме

Изложенные в этой главе теоремы позволяют найти:

- 1) интервалы монотонности функции,
- 2) точки локального экстремума функции,
- 3) интервалы выпуклости и вогнутости функции,
- 4) точки перегиба функции,
- 5) асимптоты функции,
- 6) наибольшее и наименьшее из значений функции в области ее определения.

Последний параграф посвящен описанию метода численного решения уравнения f(x) = 0.

Контрольные вопросы к главе 3

- 1. Сформулируйте критерий монотонности функции на промежутке. В чем состоит достаточный признак строгой монотонности? Найдите интервалы строгой монотонности функции $f(x) = \sqrt[3]{x^2(1-x)}$.
- 2. Какие точки называют критическими точками функции? Найдите критические точки функции $f(x) = \sqrt[3]{x^2(1-x)}$, укажите, какие из них являются точками максимума или минимума.
- 3. Сформулируйте критерий выпуклости функции на промежутке. В чем состоит признак строгой выпуклости функции, дважды дифференцируемой на промежутке? Найдите интервалы строгой выпуклости функции $f(x) = \sqrt[3]{x^2(1-x)}$, укажите точки перегиба.
- 4. Что называют вертикальной асимптотой функции? Наклонной асимптотой функции? Выясните, существуют ли асимптоты функции $f(x) = \sqrt[3]{x^2(1-x)}$.

Ответы на контрольные вопросы к главе 3

1. $(-\infty; 0)$ — интервал убывания; $\left(0; \frac{2}{3}\right)$ — интервал возрастания; $\left(\frac{2}{3}; +\infty\right)$ — интервал убывания.

- 2. $x_1=0$ точка минимума, f(0)=0; $x_2=\frac{2}{3}$ точка максимума, $f\left(\frac{2}{3}\right)=\frac{\sqrt[3]{4}}{3}\approx 0.53$; $x_3=1$ критическая точка, не являющаяся точкой экстремума.
- 3. $(-\infty;0)$ и (0;1) интервалы строгой выпуклости вверх; $(1;+\infty)$ интервал строгой выпуклости вниз; $x_3=1$ точка перегиба; f(1)=0.
- 4. Вертикальных асимптот функция не имеет. Прямая $y = -x + \frac{1}{3}$ является наклонной асимптотой при $x \to +\infty$ и при $x \to -\infty$. На приведенном ниже рисунке схематически изображен график функции $f(x) = \sqrt[3]{x^2(1-x)}$.

