DAT470 Assignment 1

Albin Jansfelt, Amanda Allgurén, Lukas Martinsson

March 2022

Problem 1

How many cores does the machine have?

command used: cat /proc/cpuinfo — grep cores nproc -all

There are 12 cores on the machine, and 48 processors.

What type of CPUs and what is their clock frequency?

command used: cat /proc/cpuinfo

model

: Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz model name

stepping

microcode : 0x2006b06cpu MHz : 1000.006

The CPUs are of the model Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHzand have a clock frequency of about 1000 mHz.

1.3 How much disk is their in total and in use in the file systems /data and /datainbackup?

command used: df

Filesystem	1K-blocks	Used	Available	Use	Mounted on
/dev/mapper/vg_data-lv_datainbackup	25767708672	4244436848	21523271824	17%	/datainbackup
/dev/mapper/vg_data-lv_data	77551114240	4583432784	72967681456	6%	/data

Disk space used and available for the two folders can be read from the table above.

1.4 How much memory does your login shell use?

command used: ps -U < user > -no-headers -o rss — awk 'sum+=\$1 END print int(sum/1024) "MB"}'

Plugging in each of our CID in $\langle user \rangle$, we get 0 MB, 0 MB, and 237 MB.

2 Problem 2

2.1 Q1 - Proportion of serial computations

The function $compute_pi$ is run sequentially, but when arriving at $s = p.map(sample_pi, [n]*args.workers)$, the function $sample_pi$ is mapped for all elements and are run in parallel.

To measure the proportion of serial time the Python module Time was used. We defined two variables $\mathit{total_time}$ and $\mathit{parallel_time}$ which measures the total time and the time it takes for the parallel part respectively. The proportion of serial time was then calculated as $\mathit{serial_prop} = \frac{\mathit{total_time} - \mathit{parallel_time}}{\mathit{total_time}}$.

Thus, the proportion of serial time was 0.906. Connected to Amdahl's law we get the portportion of parallel time f = 1 - 0.906 = 0.094.

2.2 Q2 - Speedup graph

See Figure 1 for the theoretical and estimated speedup when increasing the number of cores.

2.3 Q3 - Random Seeding Suggestion

The initial seed number is specified as an argument in the terminal. The default is seed = 1. To have each worker use a different seed, we create a list specifying the seed for every worker. The first worker will have seed = seed + 0, the second will have seed = seed + 1 and so on. This will then be sent to the $sample_pi$ function which will generate pseudo-random x and y values.

Figure 1: Theoretical and estimated speedup when increasing the number of cores ${\bf r}$