1

Distributions Problems: The Twelvefold Way
Let B be a set of n balls to be distributed into a set K
of R boxes.

("balls" and "boxes" could be replaced by other things...)

Question: How many ways are there to distribute the "n" balls into the k boxes?

To answer the question, we split it into different cases:

- i) The balls are distinguishable?
- ii) The boxes are distinguishable?
- a) Do we forbid empty boxes?
- b) Do boxes contain at most one ball?

By the M.P., there are 2-2-2-2=16 ways to answer the Question.

Case *, *, Yes, Yes: "Place escactly 1 ball in each box,

=> n=k.

i) Yes, ii) Yes: This is the same as counting permutations. (Label the balls from 1 to n, and the boxes as well).

> n! = k! ways.

i) or ii) is No: >It is like placing red balls in ordered
boxes ar = clasing andered balls in a selling lar
or s principal of the edit is a selling box.
i) or ii) is No: >It is like placing red balls in ordered boxes or > placing ordered balls in a selling box. > 1 way > placing red balls in a selling box.
no These four cases are easy/boring.
ns These four cases are easy/boring. There are 12 remaining cases.
The Twelvefold Way: (by Rota, "term" from Spencer). The distribution problem is modeled by functions:
The distribution problem is modeled by functions:
B. Elements in B are labeled?
(i) -1 - K 11 - 1
a) f surjective? b) f injective?
B =n $ K =k$
The Case "** Yes Yes" > I is bijective
Integer partition:
Let no1. A partition λ of n is a writing
n=n,+n2++nk with nin1, Vie[k].
Integer partition: Let no.1. A partition λ of n is a writing $n = n_1 + n_2 + \dots + n_k$, with $n_i > 1$, $\forall i \in [k]$. Since the order does not matter, we assume $n_i > n_j$, $\forall i \in [k]$.
Let Prik be the number of partitions of n into k summer
What is Prik? Well we can show a recurrence formula.
tormula.

Proposition Pn, & satisfies

 $P_{n,k} = P_{n-k,k} + P_{n-l,k-1}$ assuming that $P_{0,0} = 1$, $P_{n,k} = 0$, if $n \neq 0$ or $k \neq 0$. (but not both) Pf Let La= { h-n | h= 1}

L1= { \ h-n | \ , 72, \ \ ie[k] { By definition we have Pnik = L1 LL L2.

of each partition to obtain a partions of (n-k) still into "k" parts. That is L_ = Pn-k,k

> From La, we can remove the last "1" from each partition to get partition of (n-1) into 'k-1" parts.

That is La Ph-1, k-1.

A) Case "No No **":

a) Yes b) No: "Put n red balls into exactly k boxes (that are undistinguishable)"

This is exactly $P_{n,k} = N_{amber of surjective maps from [n] \rightarrow [k].$

a) No b) Yes: "Put n red balls into k boxes, such that a box contains at most 1 ball."

If n>k: = 0.

Else: 1 (because balls and boxes are not labeled.)

Case a) No b) No: "Put n red balls into k boxes"

This can be split into k disjoint classes:

Using 1 or 2 or or k boxes.

By the A.P. -> Ph.:

| Put n red balls into k boxes.

BCase "Yes No XX"

a) Yes b) No: "Put n labeled balls into exactly R boxes, that are undistinguishable".

Set partition:

Let S be a set of cardinality n and kx1.

A partition of S of Size k is a collection of k disjoint subsets, of S such that S = U u; and u; n u; = \$\int \text{tity}\$

Let Sn,k be the number of set partitions of an n-element set into k "blocks".

L> Stirling numbers of the second kind.

What is $S_{n,k}$? $S_{o,k} = 1$, $S_{n,k} = 0$ if n < k

<u>Proposition</u>: For all n,k, we have

 $S_{n,k} = k \cdot S_{n-1,k} + S_{n-1,k-1}$

- 1) This is exactly Snik, (LHS)
- 2) The RHS counts the same by counting two disjoint sets:

Q1:= { partitions of [n] into k boxes where "1" is not alone in its block.}

Q = { partitions of [n] into k boxes where 1 is alone in its blacks

- · We have $|Q_2| = |S_{n-1}, k-1|$, because the other n-I elements are distributed similarly into k-1 boxes.
- · To obtain the elements in Q1, we distribute the n-1 other elements into exactly k boxes followed by picking where "1" will go.

By the M.P. there are

R. Sn-1, Ways to do this

a) No b) Yes: Put n labeled balls into kyboxes such that each box receives at most 1 ball.

If n>k: =0 Else: 1 There is only one way, i.e. each ball goes into one box. (be cause boxes are unlabeled).

Case	a) No b) N	<u>lo</u> : "Put n	labeled b	salls into k	e unlabeled	boxes
	This can	be split	into A dis	join classes!		
	Using 1 Rutha	or 2 or A.P.	3 or	or R b	50XES.	
	13y ME	11.11.	<u> </u>	D _{n,i}		.
. 1	1	1 ~ 1	1		.1.	

Aparté: Examples of Partitions and Set-partitions

Let n=5. · Give all partitions of 5.

5 = 4+1 = 3+1+1 = 3+2 = 2+2+1 = 2+1+1+1= 1+1+1+1+1

Give a formula for $P_n = \sum_{k=1}^{n} P_{n,k}$

Ramangian around 1918 gave an amazing formula with impressive precision. The Man Who Knew Infinity (2015).

· Give all set-partitions of [5].

\[\lambda_1, \lambda_3, \text{4,5} \\ \lambda_1, \lambda_1, \text{5\int} \\ \lambda_1, \text{2\int} \

C) Case "Yes Yes * * ":	exactly (7)
a) Yes b) No: "Put n labeled balls	<u> </u>
This can be done in two steps	
1) <u>Case "Yes No Yes No":</u> "Put n labeled	led balls into exactly boxes.
~> Snik Ways.	
a) Label the boxes: There are k!	ways to label
boxes. By the M.P. there are k! Snik	Wave
	<u> </u>
No b) Yes: Put n labeled balls such that boxes have	into a labeled boxes at most 1 ball.
In 'n' steps: 1) Choose the box for ball 1": k followed by 2) Choose the box for ball "2": k	ways -1 ways
n) k	n+1 ways.
By the M.P. there are $\frac{k!}{(R-n)!}$ ways.	
a) No b) No: "Put n labeled balls in Number of functions from [n]-	to R labeled boxes.
By the M.P. [kn] ways.	

 $\Rightarrow \sqrt{\frac{k}{n}}$

Let B and K be finite sets and f: B -> K be a 9
function. How many functions f are there?

The Twelvefold Way (+4 cases)

- indiana (in the seas)								
1B =n, K =k	f arbitrary	f injective	f surjective	A bijective				
B labeled	k ⁿ	$\frac{(k-\nu)!}{(k-\nu)!}$	k! 5n,k	n! = k!				
 K labeled	"Functions"	(N=0):	"ordered set- partitions"	"Aermutations"				
B unlabeded	$\begin{pmatrix} 0+k-1 \\ k-1 \end{pmatrix}$	$\binom{k}{n}$	$\begin{pmatrix} n-1 \\ k-1 \end{pmatrix}$					
K labeled		"n-subsets of k"	"Compositions of 1 into exactly k parts"	<u> </u>				
B labeled	$\sum_{n,i}^{R} S_{n,i}$	0 or 1	$S_{n,k} = \begin{cases} h \\ k \end{cases}$	The state of the s				
K unlabeled	Set partitions of [n]: Bell MW		"Set-partitions into k blocks"	1				
B unlabeled	Pn.i.	0 or 1	P _{n,k}					
K unlabeled	"Integer partitions of n"	5	Integer partitions	1				

Examples:

1) Find the number of non-negative (20) solutions to $X^1 + X^7 + X^3 + X^4 = 90$

Solution: - Consider the variables x, to x4 as the "boxes" (labeled).

- "20" represents 20 balls to be placed, they are unlabeled.

By the T.W. there are $\begin{pmatrix} 20+4-1\\4-1 \end{pmatrix} = \begin{pmatrix} 23\\3 \end{pmatrix} = 1771$ solutions

2) Same question, but if x,7,3, x,7,5, x,36, x,74.

Solution: 1) First we make sure that the restrictions are satisfied. 1) Place 3 balls in x,
2) -11-5-11- x

3) + 6 -11- X3 4) + 4 -11- X4.

Thus we distributed 18 of the 20 balls.

a) The remaining is equivalent to placing 2 unlabeled balls in 4 labeled urns":

 $\begin{pmatrix} 244-1 \\ 4-1 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \end{pmatrix} = 10.$

3) Compositions:

A composition is an ordered partition of n.

If the partition has k parts: ~ "Place n unlabeled balls into exactly k labeled boxes"

By the T.W. there are $\binom{n-1}{k-1}$ compositions into k parts.

Therefore, there are

Therefore, there are
$$\frac{n}{k-1} \binom{n-1}{k-1} = \sum_{k=0}^{n-1} \binom{n-1}{k} = \lambda^{n-1}$$
Compositions of n .

4) What is the number of compositions, finto parts equal to 1 or 2?

Solution: Let F(n) be that number.

$$F(1)=1$$

 $F(2)=2$ $\Rightarrow 2=1+1$
 $F(3)=3$ $\Rightarrow 3=2+1=1+1=1$

For n, either i) its starts with a 1 ii) it starts with a 2.

i) There are F(n-1) such.

Fibo nacci numbers

5) Bell numbers

Let n70 B(n) is the number of set-partitions

of [n] (Bell number).

-> This is the number of equivalence relations on In].

 $B(n+1) = \sum_{i=0}^{n} \binom{n}{i} B(i)$

PFI Let "i" be the number of elements in In+1] not in the part containing "1".

~> i∈ [0,1...,n].

Let R be the set-partitions of [n+1] s.t. " elements in [n+1] are not in the same part than as "1".

 $|R_{\lambda}| = \binom{n}{\lambda} \cdot \mathcal{B}(\frac{\lambda}{k})$

Pick the i element followed by partitioning them.

By the A.P. the result follows.

```
Permutations (bis)
  Let f: [n] >[n] be a permutation of [n]
 Lemma: Vie[n], 3 k71, s.f. fk(i)=i.
 Write (i, f(i), f2(i), ..., fk1(i)) (with k smallest")
 This is a k-cycle.

Continue the process w/ j# and until elements in [n]
        As a function, f is a direct-sum of cycles (as sets and not group elements).
There are ni permutations.
      Lo A permutation has 1 or 2 or ... or n cycles.
 Let Dn.k := # permutations of [n] using k cycles.
        "Stirling numbers of the first kind."
  By the A.P.
                         n! = \sum_{n,k} A_{n,k}
 The type of a permutation is a partition of n recording the (1 \lambda 3)(456)(7)(89) \Rightarrow 3321 +9 the permutation.
```