More About the Naming Game

A Short Interlude: Adding in Binary (review)

Fact: The CPU can manipulate bits in only three ways:

- It can remember and recall bits
- It can add bits.
- It can compare bits

What are the rules of binary addition?

Now back to "The Naming Game"...

• Fact: Since the computer doesn't understand our regular numbers, we must "name" these for the computer in binary, i.e., we even have to play the Naming Game for regular numbers!

ltem	Computer Name
	(using one bit)
	1

Item	Computer Name (using five bits)
5	0 0 1 0 1
2	0 0 0 1 0

 Def: A decimal number is the technical name given to our regular numbers.

 Def: A binary number is the technical name given to numbers built from a collection of bits. Binary Number Examples

0 0 1 0 1

1 1

Made from only 1 or 0

Decimal Number Examples

1 0 3 2

9084

Made from any digit 0 through 9

 Fact: Now that we know about two different kinds of numbers binary and decimal—things will might become very confusing!

Task - Reflection

- Prompt: is 11 a binary or decimal number? How do you know?
- My response:

 fact: When we speak, it's easy to tell what kinds of numbers we are talking about; when we write them, it can be very confusing.

11

If this is a binary number we say "one one"

If this is a decimal number, we say "eleven"

fact: When we write we numbers, we will use *subscripts* to help us figure out what kind of number we are looking at.

11

If this is a binary number we write 11_2

If this is a decimal number, we write 11₁₀