

UNIVERSIDADE FEDERAL DO AMAZONAS FACULDADE DE TECNOLOGIA - FT ENGENHARIA DA COMPUTAÇÃO

Aluna: Laiana de Pinho Cavalcante

Trabalho 2: Raciocínio Probabilístico

Git: https://github.com/laianapinho/Racioc-nio-Probabilistico

Questão 1:

a) Desenhe a rede causalidade entre as variáveis Str, Flw, R, V, B, K e Li

- b) Insira todos os CPTs faltantes no gráfico (tabela de probabilidades condicionais).
- c) Insira livremente valores plausíveis para as probabilidades.

Fazendo as questões b e c juntas:

P(Str) - Condição de Rua

Str	P(Str)
dry	0.7
wet	0.2
snow_covered	0.1

P(Flw) - Volante do dínamo desgastado

Flw	P(Flw)
t	0.4
f	0.6

P(B) - Lâmpada ok

В	P(B)
t	0.8
f	0.2

P(K) - Cabo ok

В	P(B)
t	0.85
f	0.15

P(R) - Probabilidade do dínamo deslizar

Str	Flw	P(Str)
dry	t	0.4
dry	f	0.2
wet	t	0.8
wet	f	0.5
snow_covered	t	0.8
snow_covered	f	0.7

P(V) - Probabilidade do dínamo mostrar tensão

_	
R	P(V)
t	0.96
Ť	0.3

Resultado:

d) Mostre que a rede não contém uma aresta (Str, Li).

Para mostrar que não há uma aresta direta entre as variáveis Str e Li, é preciso demonstrar que a conexão direta entre elas não é necessária, com base nas independências condicionais existentes. Têm-se:

$$P(V \mid R, Str) = P(V \mid R)$$

$$P(Li \mid V, R) = P(Li \mid V)$$

Usando estas relações, estabelece-se a cadeia de independências:

$$P(Li \mid Str, V, B, K) = P(Li \mid V, B, K)$$

e) Calcule P (V | Str = snow_covered).

$$P(V|Str = snow_covered) = \sum_{R,FLw} P(V|R) \cdot P(R|Str) = snow_covered, Flw) \cdot P(Flw)$$

Caso 1: Flw =
$$t$$
, $R = t$

$$P(V=t|R=t) \times P(R=t|Str=snow_covered, Flw=t) \times P(Flw=t) = 0.96 \times 0.8 \times 0.4 = 0.3072$$

Caso 2:
$$Flw = t$$
, $R = f$

 $P(V=t|R=f) \times P(R=f|Str=snow_covered, Flw = t) \times P(Flw=t) = 0.3 \times (1 - 0.8) \times 0.4 = 0.3 \times 0.2 \times 0.4 = 0.024$

Caso 3: Flw = f, R = t

 $P(V=t|R=t) \times P(R=t|Str=snow_covered, Flw=f) \times P(Flw=f) = 0.96 \times 0.7 \times 0.6 = 0.4032$

Caso 4: Flw = f, R = f

 $P(V=t|R=f) \times P(R=f|Str=snow_covered, Flw = f) \times P(Flw=f) = 0.3 \times (1-0.7) \times 0.6 = 0.3 \times 0.3 \times 0.6 = 0.054$

Somando todos os resultados:

$$P(V=t|Str=snow\ covered) = 0.3072 + 0.024 + 0.4032 + 0.054 = 0.7884$$

Cálculo de P(V=t|Str=snow covered):

 $P(V=f|Str=snow_covered) = 1 - 0.7884 = 0.2116$

V	P(V Str = snow_covered)
t	0.7884
f	0.2116

Questão 2:

% Problema do Farol de Bicicleta

% Definindo as variáveis e seus valores de probabilidades

% P(Str) - Condição da rua

0.7::str(dry); 0.2::str(wet); 0.1::str(snow covered).

% P(Flw) - Volante do dínamo desgastado

0.4::flw(true); 0.6::flw(false).

% P(B) - Lâmpada ok

0.8::b(true); 0.2::b(false).

% P(K) - Cabo ok

0.85::k(true); 0.15::k(false).

% P(R|Str,Flw) - Probabilidade do dínamo deslizar

```
0.4::r(true) :- str(dry), flw(true).
0.2::r(true):-str(dry), flw(false).
0.8::r(true) :- str(wet), flw(true).
0.5::r(true):- str(wet), flw(false).
0.8::r(true):- str(snow covered), flw(true).
0.7::r(true):- str(snow covered), flw(false).
r(false) :- not r(true).
% P(V|R) - Probabilidade do dínamo mostrar tensão
0.96::v(true) :- r(true).
0.3::v(true) :- r(false).
v(false) :- not v(true).
% P(Li|V,B,K) - Probabilidade da luz estar ligada
0.99::li(true) :- v(true), b(true), k(true).
0.01::li(true):-v(true), b(true), k(false).
0.01::li(true) :- v(true), b(false), k(true).
0.001::li(true):-v(true), b(false), k(false).
0.3::li(true):-v(false), b(true), k(true).
0.005::li(true) :- v(false), b(true), k(false).
0.005::li(true):-v(false), b(false), k(true).
0.0::li(true):-v(false), b(false), k(false).
li(false) :- not li(true).
% Consulta 1(e): P(Li=true|Str=snow covered)
evidence(str(snow covered)).
query(v(true)).
query(v(false)).
```