

Linear Voltag	ge Regulator	Switching Voltage Regulator		
Pros	Cons	Pros	Cons	
Simple circuit configuration	Relatively poor efficiency %	High efficiency	More external a	
Few external parts	Considerable heat generation	Low heat generation	Complicated design	
Low noise	Only step-down (buck) operation	Boost/buck/ negative voltage operation possible	Increased noise	

ركولاتور مع مع ميت

3.0 A, <u>Step-Down</u> Switching Regulator

- 3.3-V, 5-V, 12-V, and adjustable output versions
- Adjustable version output voltage range: 1.2-V to 37-V ±4% maximum over line and load conditions
- Available in TO-220 and TO-263 packages
- · 3-A output load current
- Input voltage range up to 40 V (57V for HV Version)
- Requires only four external components
- Excellent line and load regulation specifications
- 150-kHz fixed-frequency internal oscillator
- TTL shutdown capability
- Low power standby mode, I_Q, typically 80 μA
- High efficiency
- Uses readily available standard inductors
- Thermal shutdown and current-limit protection

: Chio; Como 3

Vant = 1.5 Vont = 1.5 x 4 = None = 600 510 Vang = 6.30

[Cone = 3201/6.30]

OUTPUT	THROUG	H-HOLE OUTPUT C	APACITOR	SURFACE-MOUNT OUTPUT CAPACITOR			
(V)	PANASONIC HFQ SERIES (μF/V)	NICHICON PL SERIES (μF/V)	FEEDFORWARD CAPACITOR	AVX TPS SERIES (µF/V)	SPRAGUE 595D SERIES (µF/V)	FEEDFORWARD CAPACITOR	
2	820/35	820/35	33 nF	330/6.3	470/4	33 nF	
4	560/35	470/35	10 nF	330/6.3	390/6.3	10 nF	
6	470/25	470/25	3.3 nF	220/10	330/10	3.3 nF	
9	330/25	330/25	1.5 nF	100/16	180/16	1.5 nF	
12	330/25	330/25	1 nF	100/16	180/16	1 nF	
15	220/35	220/35	680 pF	68/20	120/20	680 pF	
2 4	220/35	150/35	560 pF	33/25	33/25	220 pF	
28	100/50	100/50	390 pF	10/35	15/50	220 pF	

ID=1.37 =1.3x3 @CS [D=3.9A

UR = 1.25 UMX = 1.25 x 12 GIG WR > 15 CM Grows

1	
10	2 61 64
1 1)=5H50
b	1-27

	3-A DIODES				4-A TO 6-A DIODES				
VR	SURFA	CE-MOUNT	THROUGH-HOLE		SURFA	ACE-MOUNT	THROUGH-HOLE		
775	сноттку	ULTRA FAST RECOVERY	sсноттку	ULTRA FAST RECOVERY	SCHOTTKY	ULTRA FAST RECOVERY	SCHOTTKY	ULTRA FAST RECOVERY	
		All of	1N5820	All of		All of	SR502	All of	
20 V	SK32	these	SR302	these		these	1N5823	these	
		diodes are	MBR320	diodes are		diodes are rated to at least 50V.	SB520	diodes are	
	30WQ03	rated to	1N5821	rated to				rated to	
30 V	SK33	at least 50V.	MBR330	at least 50V.	50WQ03		SR503	at least 50V.	
		504.	31DQ03				1N5824		
			1N5822				SB530		
40 V	SK34		SR304		50WQ04		SR504		
	MBRS340		MBR340				1N5825		
	30WQ04	MURS320	31DQ04	MUR320		MURS620	SB540	MUR620	
50 V	SK35	30WF10	SR305			50WF10		HER601	
or	MBRS360		MBR350		50WQ05		SB550		
More	30WQ05		31DQ05				50SQ080		

$$ET = (V_{in}^{Max} - V_{out} - V_{sat}) * (\frac{V_{out} + V_D}{V_{in}^{Max} - V_{sat} + V_D}) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{out} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{sat} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{sat} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{sat} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{sat} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{sat} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{sat} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{sat} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{sat} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{sat} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{sat} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{sat} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{sat} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{sat} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{sat} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{sat} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{sat} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{sat} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{sat} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{sat} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

$$12 \times (V_{in}^{Max} - V_{sat} + V_D) * \frac{10^6 - 7^{10^6}}{150Khz} \rightarrow f_{sw}$$

h = 330H/3.51

MAXIMUM	LOAD	CURRENT	(A)

Figure 9-8. LM2596-ADJ

40V 🗀	1	L29 /	4	.	
20V —	THU	L29	L3	*	39
150	00 MH	1			
120	16	8 44	L31	И	L40
10V - L	21	1 H	1	32	L41
97	L22 +	X	3 44	\times	33
8V		1/3	//	1	X
	L23		122		L34
		L24	M	15	ин
7V L			L25	Y	
0.6	0.8	1.0	1.5	2	2.5 3

MAXIMUM LOAD CURRENT (A) Figure 9-5. LM2596-3.3

1.5

L24

40V 20V 15V

10V

81

7V

6V

5٧

0.6

0.8

Figure 9-6. LM2596-5.0

	INDUCTANCE (µH)	CURRENT (A)
L15	22	0.99
L21	68	0.99
L22	47	1.17
L23	33	1.40
L24	22	1.70
L25	15	2.10
L26	330	0.80
L27	220	1.00
L28	150	1.20
L29	100	1.47
L30	68	1.78
L31	47	2.20
L32	33	2.50

- m	INDUCTANO (µH)	CE CURRENT (A)
L33	22	3.10
L34	15	3.40
L35	220	1.70
L36	150	2.10
L37	100	2.50
L38	68	3.10
L39	47	3.50
L40	33	3.50
L41	22	3.50
L42	150	2.70
L43	100	3.40
L44	68	3.40

MAXIMUM LOAD CURRENT (A) Figure 9-7. LM2596-12

2

20

40

68 L38

150 L42

180/25

82/25

180/25

82/25

100/16

68/20

120/20

68/25

TPS54302 4.5-V to 28-V Input, 3-A Output, EMI Friendly Synchronous Step-Down Converter

- 4.5-V to 28-V Wide Input Voltage Range
- Integrated 85-mΩ and 40-mΩ MOSFETs for 3-A, Continuous Output Current
- Low 2-µA Shutdown, 45-µA Quiescent Current
- Internal 5-mS Soft-Start
- Fixed 400-kHz Switching Frequency
 Frequency Spread Spectrum to Reduce EMI
- Advanced Eco-mode™ Pulse Skip
- Peak Current Mode Control
- Internal Loop Compensation
- Overcurrent Protection for Both MOSFETs with Hiccup Mode Protection
- Over Voltage Protection
- Thermal Shutdown

$$\beta = \frac{V_{out} * (V_{in}^{Max} - V_{Out})}{V_{in}^{Max} * L * F_{sw}} \implies \beta = \frac{4(12-4)}{12x_{1-x_1} - 6x_{4-x_1} - 6x_{4-x_1}} \frac{\text{GeV}}{12x_{1-x_1} - 6x_{4-x_1} - 6x_{4-x_1}} \frac{\text{GeV}}{12x_{1-x_1} - 6x_{4-x_1} - 6x_{4-x_1}} \frac{\text{GeV}}{12x_{1-x_1} - 6x_{4-x_1} - 6x_{4-x_1}} \frac{2}{3}$$

$$I_L^{\text{Res}} = I_0 + \frac{12}{1.6} = \frac{3}{3} + \frac{1}{1.6} \times \frac{2}{3} = \frac{2}{3} \times \frac{1}{16} \times \frac{2}{3} \times \frac{2}{3} = \frac{2}{3} \times \frac{1}{16} \times \frac{2}{3} \times \frac{2}{3} = \frac{2}{3} \times \frac{1}{16} \times \frac{2}{3} \times \frac{2}{$$

$$\frac{2^{2}}{8 \text{ fin}} \times \frac{\frac{1}{2^{10} \text{ pple}}}{\frac{1}{2^{10} \text{ max}}} \times \frac{\frac{1}{2^{10} \text{ pple}}}{\frac{1}{2^{10} \text{ max}}} \times \frac{1}{2^{10} \text{ max}} \times \frac{1}{2^{10} \text{$$

$$\frac{c^{2}}{8 l s_{N}} \times \frac{I_{ryple}}{V_{unt}^{2}} = \frac{1}{8 l l_{ort}^{3}} \times \frac{a.9}{a.a4} \times \frac{a.9}{a.a4}$$

$$\frac{c^{2}}{8 l s_{N}} \times \frac{I_{ryple}}{V_{unt}^{2}} = \frac{1}{8 l l_{ort}^{3}} \times \frac{a.9}{a.a4} \times \frac{a.9}{a.a4}$$

$$\frac{c^{2}}{8 l s_{N}} \times \frac{I_{ryple}}{V_{unt}^{2}} = \frac{1}{8 l l_{ort}^{3}} \times \frac{a.9}{a.a4} \times \frac{a.9}{a.a4}$$

$$\frac{c^{2}}{8 l s_{N}} \times \frac{I_{ryple}}{I_{ort}^{2}} = \frac{1}{8 l l_{ort}^{2}} \times \frac{a.9}{a.a4}$$

$$\frac{c^{2}}{2 l l$$

TPS631000 1.5-A Output Current, High Power Density Buck-Boost Converter

DC/DC CONVERTER 2W

Single and Dual Output Models

► I/O-Isolation 1000 VDC

Pin	Single Output	Dual Output
1	+Vin	+Vin
2	خ -Vin	-Vin
4	-Vout 봊	-Vout
5	No Pin	Common
6	+Vout	+Vout

	Input Voltage		Output Current		Input Current		Load Regulation	Max. capacitive Load	Efficiency (typ.)
	(Range)		Max.	Min.	@Max. Load	@No Load			@Max. Load
YZ	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	% (max.)	μF	%
MAU301		7 3.3	500	10	452		11		73
MAU302		_ 5	400	8	526		11	390#	76
MAU303	5 1	12	165	3	495		7		80
MAU304		15	133	2.5	499	60	7		80
MAU305	$(4.5 \sim 5.5)$	±5	±200	±4	519		10		77
MAU306		±12	±83	±1.5	504		7		79
MAU307		±15	±66	±1	501		7		79
MAU311		3.3	500	10	185	30	8	470 390#	74
MAU312		5	400	8	212		8		78
MAU313	12	12	165	3	200		5		82
MAU314	(10.8 ~ 13.2)	15	133	2.5	200		5		83
MAU315	(10.6 ~ 13.2)	±5	±200	±4	210		8		79
MAU316		±12	±83	±1.5	201		5		82
MAU317		±15	±66	±1	200		5		82
MAU321		3.3	500	10	92		8		74
MAU322		5	400	8	108		8	470	77
MAU323	24	12	165	3	101		5	4/0	81
MAU324	(21.6 ~ 26.4)	15	133	2.5	101	15	5		82
MAU325	(21.0 ~ 20.4)	±5	±200	±4	105		8		79
MAU326		±12	±83	±1.5	102		5	390#	81
MAU327		±15	±66	±1	100		5		82

For each output

Parameter	Model	Min.	Тур.	Max.	Unit
	5V Input Models	4.5	5	5.5	V/DC
Input Voltage Range	12V Input Models	10.8	12	13.2	
	24V Input Models	21.6	24	5.5 13.2 26.4 9 18 30 0.3	
Input Voltage Range Input Surge Voltage (1 sec. max.) Reverse Polarity Input Current	5V Input Models	-0.7		9	VDC
	12V Input Models	-0.7		18	
	24V Input Models	-0.7		5.5 13.2 26.4 9 18 30 0.3	
Reverse Polarity Input Current				0.3	Α
Internal Filter Type	All Models		Pi f	Filter	
Internal Power Dissipation				650	mW

Output Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
Output Voltage Accuracy		222	±1.0	±3.0	%	
Output Voltage Balance	Dual Output, Balanced Loads		±0.1	±1.0	%	
Line Regulation	For Vin Change of 1%		±1.2	±1.5	%	
Load Regulation	lo=20% to 100%		See Model Se	el Selection Guide		
Ripple & Noise	max. 20MHz Bandwidth		100	150	mV _{P-P}	
Temperature Coefficient			±0.01	±0.02	%/°C	
Short Circuit Protection		0.5 Second Max.				

General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O Isolation Voltage (rated)	60 Seconds	1000			VDC
I/O Isolation Resistance	500 VDC	1000		***	ΜΩ
I/O Isolation Capacitance	100KHz, 1V		80	120	pF
Switching Frequency		50	80	100	KHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	2,000,000			Hours

Input Fuse					
5V Input Models	12V Input Models	24V Input Models			
1000mA Slow-Blow Type	500mA Slow-Blow Type	200mA Slow-Blow Type			

$$R_{m} = \frac{V_{ong}}{I_{vm}} = \frac{5}{8 \times 10^{3}} = \frac{6(C)}{R_{mn}} = \frac{625}{8 \times 10^{3}} = \frac{625}{8 \times 10^{3}} = \frac{6(C)}{R_{mn}} = \frac{625}{8 \times 10^{3}} = \frac$$