Notas de Clase Sobre Regresión Lineal Regresión Lineal Simple (RLS): Parte IV

Nelfi González Alvarez

Profesora Asociada Escuela de Estadística e-mail: ngonzale@unal.edu.co

Isabel Cristina Ramírez Guevara

Profesora Asociada Escuela de Estadística e-mail: iscramirezgu@unal.edu.co

Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín

Escuela de Estadística 2021

Contenido I

- 1 Definición de linealidad de un modelo de regresión
- Modelos intrínsicamente lineales
- Transformaciones Box-Cox sobre Y

Contenido

- 1 Definición de linealidad de un modelo de regresión
- Modelos intrínsicamente lineales
- Transformaciones Box-Cox sobre Y

- El término "modelo de regresión lineal" no implica una relación de tendencia lineal entre *Y* y *X*, esta relación puede tener una curvatura;
- La linealidad del modelo es con relación a los parámetros de la función de regresión: ningún parámetro de la regresión aparece como el exponente o es dividido o multiplicado por otro parámetro.

Definición 1.1

- El término "modelo de regresión lineal" no implica una relación de tendencia lineal entre *Y* y *X*, esta relación puede tener una curvatura;
- La linealidad del modelo es con relación a los parámetros de la función de regresión: ningún parámetro de la regresión aparece como el exponente o es dividido o multiplicado por otro parámetro.

Definición 1.1 Un modelo de regresión para un variable respuesta Y vs. un conjunto de predictores X₁,...,X_k, con función de regresión f(X₁,...,X_k,β):

- El término "modelo de regresión lineal" no implica una relación de tendencia lineal entre *Y* y *X*, esta relación puede tener una curvatura;
- La linealidad del modelo es con relación a los parámetros de la función de regresión: ningún parámetro de la regresión aparece como el exponente o es dividido o multiplicado por otro parámetro.

Definición 1.1 Un modelo de regresión para un variable respuesta Y vs. un conjunto de predictores X_1, \dots, X_k , con función de regresión $f(X_1, \dots, X_k, \beta)$: $Y = f(X_1, \dots, X_k, \beta) + E, E \stackrel{\text{ild}}{=} N\left(0, \sigma^2\right),$ where $G(X_1, \dots, X_k, \beta)$ is the following parameter $G(X_1, \dots, X_k, \beta)$.

- El término "modelo de regresión lineal" no implica una relación de tendencia lineal entre *Y* y *X*, esta relación puede tener una curvatura;
- La linealidad del modelo es con relación a los parámetros de la función de regresión: ningún parámetro de la regresión aparece como el exponente o es dividido o multiplicado por otro parámetro.

Definición 1.1

Un modelo de regresión para un variable respuesta Y vs. un conjunto de predictores $X_1, ..., X_k$, con función de regresión $f(X_1, ..., X_k, \beta)$:

$$Y = f(X_1, \dots, X_k, \boldsymbol{\beta}) + E, \ E \stackrel{iid}{\sim} N(0, \sigma^2),$$

es lineal en el vector de parámetros $\beta = (\beta_0, \beta_1, \dots, \beta_k)^T$, si al evaluar el modelo en un con junto de n observaciones, el sistema resultante de n ecuaciones con (k+1) incógnitas, pued escribirse en forma matricial como

$$v = X\beta + E$$

donde $y \in \mathbb{R}^n$ es el vector respuesta, $X \in \mathbb{R}^{n \times (k+1)}$ es la matriz de diseño y $E \in \mathbb{R}^n$ es el vector de errores.

- El término "modelo de regresión lineal" no implica una relación de tendencia lineal entre *Y* y *X*, esta relación puede tener una curvatura;
- La linealidad del modelo es con relación a los parámetros de la función de regresión: ningún parámetro de la regresión aparece como el exponente o es dividido o multiplicado por otro parámetro.

Definición 1.1

Un modelo de regresión para un variable respuesta Y vs. un conjunto de predictores $X_1,...,X_k$, con función de regresión $f(X_1,...,X_k,\beta)$:

$$Y = f(X_1, ..., X_k, \boldsymbol{\beta}) + E, \ E \stackrel{iid}{\sim} N(0, \sigma^2),$$

es lineal en el vector de parámetros $\beta = (\beta_0, \beta_1, ..., \beta_k)^T$, si al evaluar el modelo en un con junto de n observaciones, el sistema resultante de n ecuaciones con (k+1) incógnitas, pued escribirse en forma matricial como

$$y = X\beta + E$$

donde $y \in \mathbb{R}^n$ es el vector respuesta, $X \in \mathbb{R}^{n \times (k+1)}$ es la matriz de diseño y $E \in \mathbb{R}^n$ es el vector de errores.

- El término "modelo de regresión lineal" no implica una relación de tendencia lineal entre *Y* y *X*, esta relación puede tener una curvatura;
- La linealidad del modelo es con relación a los parámetros de la función de regresión: ningún parámetro de la regresión aparece como el exponente o es dividido o multiplicado por otro parámetro.

Definición 1.1

Un modelo de regresión para un variable respuesta Y vs. un conjunto de predictores $X_1, ..., X_k$, con función de regresión $f(X_1, ..., X_k, \beta)$:

$$Y = f(X_1, ..., X_k, \boldsymbol{\beta}) + E, \ E \stackrel{iid}{\sim} N(0, \sigma^2),$$

es lineal en el vector de parámetros $\boldsymbol{\beta} = (\beta_0, \beta_1, ..., \beta_k)^T$, si al evaluar el modelo en un conjunto de n observaciones, el sistema resultante de n ecuaciones con (k+1) incógnitas, puede escribirse en forma matricial como

$$y = X\beta + E$$
,

donde $y \in \mathbb{R}^n$ es el vector respuesta, $X \in \mathbb{R}^{n \times (k+1)}$ es la matriz de diseño y $E \in \mathbb{R}^n$ es el vector de errores.

- El término "modelo de regresión lineal" no implica una relación de tendencia lineal entre *Y* y *X*, esta relación puede tener una curvatura;
- La linealidad del modelo es con relación a los parámetros de la función de regresión: ningún parámetro de la regresión aparece como el exponente o es dividido o multiplicado por otro parámetro.

Definición 1.1

Un modelo de regresión para un variable respuesta Y vs. un conjunto de predictores $X_1, ..., X_k$, con función de regresión $f(X_1, ..., X_k, \beta)$:

$$Y = f(X_1, ..., X_k, \boldsymbol{\beta}) + E, \ E \stackrel{iid}{\sim} N(0, \sigma^2),$$

es lineal en el vector de parámetros $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_k)^T$, si al evaluar el modelo en un conjunto de n observaciones, el sistema resultante de n ecuaciones con (k+1) incógnitas, puede escribirse en forma matricial como

$$y = X\beta + E$$

donde $y \in \mathbb{R}^n$ es el vector respuesta, $X \in \mathbb{R}^{n \wedge (N+1)}$ es la matriz de diseño $y E \in \mathbb{R}^n$ es el vector de errores.

- El término "modelo de regresión lineal" no implica una relación de tendencia lineal entre Y y X, esta relación puede tener una curvatura;
- La linealidad del modelo es con relación a los parámetros de la función de regresión: ningún parámetro de la regresión aparece como el exponente o es dividido o multiplicado por otro parámetro.

Definición 1.1

Un modelo de regresión para un variable respuesta Y vs. un conjunto de predictores X_1, \ldots, X_k , con función de regresión $f(X_1, \ldots, X_k, \beta)$:

$$Y = f(X_1, ..., X_k, \boldsymbol{\beta}) + E, \ E \stackrel{iid}{\sim} N(0, \sigma^2),$$

es lineal en el vector de parámetros $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_k)^T$, si al evaluar el modelo en un conjunto de n observaciones, el sistema resultante de n ecuaciones con (k+1) incógnitas, puede escribirse en forma matricial como

$$y = X\beta + E$$

donde $y \in \mathbb{R}^n$ es el vector respuesta, $X \in \mathbb{R}^{n \times (k+1)}$ es la matriz de diseño $y \in \mathbb{R}^n$ es el

vector de errores.

- El término "modelo de regresión lineal" no implica una relación de tendencia lineal entre *Y* y *X*, esta relación puede tener una curvatura;
- La linealidad del modelo es con relación a los parámetros de la función de regresión: ningún parámetro de la regresión aparece como el exponente o es dividido o multiplicado por otro parámetro.

Definición 1.1

Un modelo de regresión para un variable respuesta Y vs. un conjunto de predictores X_1, \ldots, X_k , con función de regresión $f(X_1, \ldots, X_k, \beta)$:

$$Y = f(X_1, ..., X_k, \boldsymbol{\beta}) + E, \ E \stackrel{iid}{\sim} N(0, \sigma^2),$$

es lineal en el vector de parámetros $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_k)^T$, si al evaluar el modelo en un conjunto de n observaciones, el sistema resultante de n ecuaciones con (k+1) incógnitas, puede escribirse en forma matricial como

$$y = X\beta + E$$

donde $y \in \mathbb{R}^n$ es el vector respuesta, $X \in \mathbb{R}^{n \times (k+1)}$ es la matriz de diseño $y \in \mathbb{R}^n$ es el

vector ae errores.

- El término "modelo de regresión lineal" no implica una relación de tendencia lineal entre *Y* y *X*, esta relación puede tener una curvatura;
- La linealidad del modelo es con relación a los parámetros de la función de regresión: ningún parámetro de la regresión aparece como el exponente o es dividido o multiplicado por otro parámetro.

Definición 1.1

Un modelo de regresión para un variable respuesta Y vs. un conjunto de predictores $X_1, ..., X_k$, con función de regresión $f(X_1, ..., X_k, \beta)$:

$$Y = f(X_1, ..., X_k, \boldsymbol{\beta}) + E, \ E \stackrel{iid}{\sim} N(0, \sigma^2),$$

es lineal en el vector de parámetros $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_k)^T$, si al evaluar el modelo en un conjunto de n observaciones, el sistema resultante de n ecuaciones con (k+1) incógnitas, puede escribirse en forma matricial como

$$y = X\beta + E,$$

donde $y \in \mathbb{R}^n$ es el vector respuesta, $X \in \mathbb{R}^{n \times (k+1)}$ es la matriz de diseño $y \in \mathbb{R}^n$ es el vector de errores.

$$y_{1} = \beta_{0} + \beta_{1} \cdot x_{1} + E_{1}$$

$$y_{2} = \beta_{0} + \beta_{1} \cdot x_{2} + E_{2}$$

$$y_{3} = \beta_{0} + \beta_{1} \cdot x_{3} + E_{3}$$

$$v_{4} = \beta_{0} + \beta_{1} \cdot x_{4} + E_{4}$$
(1)

$$y_{1} = \beta_{0} + \beta_{1} \cdot x_{1} + E_{1}$$

$$y_{2} = \beta_{0} + \beta_{1} \cdot x_{2} + E_{2}$$

$$y_{3} = \beta_{0} + \beta_{1} \cdot x_{3} + E_{3}$$

$$y_{4} = \beta_{0} + \beta_{1} \cdot x_{4} + E_{4}$$
(1)

matricialmente, tiene la representación y = Xeta + E, dond ϵ

$$y_{1} = \beta_{0} + \beta_{1} \cdot x_{1} + E_{1}$$

$$y_{2} = \beta_{0} + \beta_{1} \cdot x_{2} + E_{2}$$

$$y_{3} = \beta_{0} + \beta_{1} \cdot x_{3} + E_{3}$$

$$y_{4} = \beta_{0} + \beta_{1} \cdot x_{4} + E_{4}$$
(1)

matricialmente, tiene la representación $y = X\beta + E$, donde

$$y_{1} = \beta_{0} + \beta_{1} \cdot x_{1} + E_{1}$$

$$y_{2} = \beta_{0} + \beta_{1} \cdot x_{2} + E_{2}$$

$$y_{3} = \beta_{0} + \beta_{1} \cdot x_{3} + E_{3}$$

$$y_{4} = \beta_{0} + \beta_{1} \cdot x_{4} + E_{4}$$
(1)

matricialmente, tiene la representación $y = X\beta + E$, donde

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}_{4 \times 1} \qquad \mathbf{X} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{bmatrix}_{4 \times 2} \qquad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}_{2 \times 1} \qquad \mathbf{E} = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix}_{4 \times 1}$$

$$y_{1} = \beta_{0} + \beta_{1} \cdot x_{1} + E_{1}$$

$$y_{2} = \beta_{0} + \beta_{1} \cdot x_{2} + E_{2}$$

$$y_{3} = \beta_{0} + \beta_{1} \cdot x_{3} + E_{3}$$

$$y_{4} = \beta_{0} + \beta_{1} \cdot x_{4} + E_{4}$$
(1)

matricialmente, tiene la representación $y = X\beta + E$, donde

$$\boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}_{4 \times 1} \qquad \boldsymbol{X} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{bmatrix}_{4 \times 2} \qquad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}_{2 \times 1} \qquad \boldsymbol{E} = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix}_{4 \times 1}$$

$$y_{1} = \beta_{0} + \beta_{1} \cdot x_{1} + E_{1}$$

$$y_{2} = \beta_{0} + \beta_{1} \cdot x_{2} + E_{2}$$

$$y_{3} = \beta_{0} + \beta_{1} \cdot x_{3} + E_{3}$$

$$y_{4} = \beta_{0} + \beta_{1} \cdot x_{4} + E_{4}$$
(1)

matricialmente, tiene la representación $y = X\beta + E$, donde

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}_{4 \times 1} \qquad \mathbf{X} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{bmatrix}_{4 \times 2} \qquad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}_{2 \times 1} \qquad \mathbf{E} = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix}_{4 \times 1}$$

$$y_{1} = \beta_{0} + \beta_{1} \cdot x_{1} + E_{1}$$

$$y_{2} = \beta_{0} + \beta_{1} \cdot x_{2} + E_{2}$$

$$y_{3} = \beta_{0} + \beta_{1} \cdot x_{3} + E_{3}$$

$$y_{4} = \beta_{0} + \beta_{1} \cdot x_{4} + E_{4}$$
(1)

matricialmente, tiene la representación $y = X\beta + E$, donde

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}_{4 \times 1} \quad \mathbf{X} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{bmatrix}_{4 \times 2} \quad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}_{2 \times 1} \quad \mathbf{E} = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix}_{4 \times 1}$$

por tanto, el modelo es lineal en el vector de parámetros β.

$$y_{1} = \beta_{0} + \beta_{1} \cdot x_{1} + E_{1}$$

$$y_{2} = \beta_{0} + \beta_{1} \cdot x_{2} + E_{2}$$

$$y_{3} = \beta_{0} + \beta_{1} \cdot x_{3} + E_{3}$$

$$y_{4} = \beta_{0} + \beta_{1} \cdot x_{4} + E_{4}$$
(1)

matricialmente, tiene la representación $y = X\beta + E$, donde

$$\boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}_{4 \times 1} \qquad \boldsymbol{X} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{bmatrix}_{4 \times 2} \qquad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}_{2 \times 1} \qquad \boldsymbol{E} = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix}_{4 \times 4}$$

$$y_{1} = \beta_{0} + \beta_{1} \cdot x_{1} + E_{1}$$

$$y_{2} = \beta_{0} + \beta_{1} \cdot x_{2} + E_{2}$$

$$y_{3} = \beta_{0} + \beta_{1} \cdot x_{3} + E_{3}$$

$$y_{4} = \beta_{0} + \beta_{1} \cdot x_{4} + E_{4}$$
(1)

matricialmente, tiene la representación $y = X\beta + E$, donde

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}_{4 \times 1} \quad \mathbf{X} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{bmatrix}_{4 \times 2} \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}_{2 \times 1} \quad \mathbf{E} = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix}_{4 \times 1}$$

$$y_{1} = \beta_{0} + \beta_{1} \cdot x_{1} + E_{1}$$

$$y_{2} = \beta_{0} + \beta_{1} \cdot x_{2} + E_{2}$$

$$y_{3} = \beta_{0} + \beta_{1} \cdot x_{3} + E_{3}$$

$$y_{4} = \beta_{0} + \beta_{1} \cdot x_{4} + E_{4}$$
(1)

matricialmente, tiene la representación $y = X\beta + E$, donde

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}_{4 \times 1} \quad \mathbf{X} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{bmatrix}_{4 \times 2} \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}_{2 \times 1} \quad \mathbf{E} = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix}_{4 \times 1}$$

Definición de linealidad de un modelo de regresión Modelos intrínsicamente lineales

Ejemplo 2: Suponga de nuevo una muestra de n=4 observaciones (x_i, y_i) , i=1,...,4 pero ahora el modelo es $Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + E_i$, $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$. Al evaluar esta ec. en las observaciones, se obtiene el siguiente sistema de cuatro ecuaciones con tres incognitas $(\beta_0, \beta_1, \gamma_2)$ son las incognitas)

2)

$$y_{1} = \beta_{0} + \beta_{1} \cdot x_{1} + \beta_{2} \cdot x_{1}^{2} + E_{1}$$

$$y_{2} = \beta_{0} + \beta_{1} \cdot x_{2} + \beta_{2} \cdot x_{2}^{2} + E_{2}$$

$$y_{3} = \beta_{0} + \beta_{1} \cdot x_{3} + \beta_{2} \cdot x_{3}^{2} + E_{3}$$

$$y_{4} = \beta_{0} + \beta_{1} \cdot x_{4} + \beta_{2} \cdot x_{4}^{2} + E_{4}$$
(2)

matricialmente, tiene la representación $v = X\beta + E$, donde

$$y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}_{4 \times 1} \qquad X = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \end{bmatrix}_{4 \times 2} \qquad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}_{3 \times 1} \qquad \mathbf{E} = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix}_{4 \times 1}$$

$$y_{1} = \beta_{0} + \beta_{1} \cdot x_{1} + \beta_{2} \cdot x_{1}^{2} + E_{1}$$

$$y_{2} = \beta_{0} + \beta_{1} \cdot x_{2} + \beta_{2} \cdot x_{2}^{2} + E_{2}$$

$$y_{3} = \beta_{0} + \beta_{1} \cdot x_{3} + \beta_{2} \cdot x_{3}^{2} + E_{3}$$

$$y_{4} = \beta_{0} + \beta_{1} \cdot x_{4} + \beta_{2} \cdot x_{4}^{2} + E_{4}$$
(2)

matricialmente, tiene la representación $y = X\beta + E$, donde

$$y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}_{4 \times 1} \qquad X = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \end{bmatrix}_{4 \times 2} \qquad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}_{3 \times 1} \qquad E = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix}_{4 \times 1}$$

$$y_{1} = \beta_{0} + \beta_{1} \cdot x_{1} + \beta_{2} \cdot x_{1}^{2} + E_{1}$$

$$y_{2} = \beta_{0} + \beta_{1} \cdot x_{2} + \beta_{2} \cdot x_{2}^{2} + E_{2}$$

$$y_{3} = \beta_{0} + \beta_{1} \cdot x_{3} + \beta_{2} \cdot x_{3}^{2} + E_{3}$$

$$y_{4} = \beta_{0} + \beta_{1} \cdot x_{4} + \beta_{2} \cdot x_{4}^{2} + E_{4}$$
(2)

matricialmente, tiene la representación $y = X\beta + E$, donde

$$y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}_{4 \times 1} \qquad X = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \end{bmatrix}_{4 \times 2} \qquad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}_{3 \times 1} \qquad E = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix}_{4 \times 1}$$

$$y_{1} = \beta_{0} + \beta_{1} \cdot x_{1} + \beta_{2} \cdot x_{1}^{2} + E_{1}$$

$$y_{2} = \beta_{0} + \beta_{1} \cdot x_{2} + \beta_{2} \cdot x_{2}^{2} + E_{2}$$

$$y_{3} = \beta_{0} + \beta_{1} \cdot x_{3} + \beta_{2} \cdot x_{3}^{2} + E_{3}$$

$$y_{4} = \beta_{0} + \beta_{1} \cdot x_{4} + \beta_{2} \cdot x_{4}^{2} + E_{4}$$
(2)

matricialmente, tiene la representación $v = X\beta + E$, donde

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}_{4 \times 1} \qquad \mathbf{X} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \end{bmatrix}_{4 \times 2} \qquad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}_{3 \times 1} \qquad \boldsymbol{E} = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix}_{4 \times 1}$$

$$y_{1} = \beta_{0} + \beta_{1} \cdot x_{1} + \beta_{2} \cdot x_{1}^{2} + E_{1}$$

$$y_{2} = \beta_{0} + \beta_{1} \cdot x_{2} + \beta_{2} \cdot x_{2}^{2} + E_{2}$$

$$y_{3} = \beta_{0} + \beta_{1} \cdot x_{3} + \beta_{2} \cdot x_{3}^{2} + E_{3}$$

$$y_{4} = \beta_{0} + \beta_{1} \cdot x_{4} + \beta_{2} \cdot x_{4}^{2} + E_{4}$$
(2)

matricialmente, tiene la representación $y = X\beta + E$, donde

$$y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}_{4 \times 1} \qquad X = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \end{bmatrix}_{4 \times 3} \qquad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}_{3 \times 1} \qquad E = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix}_{4 \times 1}$$

$$y_{1} = \beta_{0} + \beta_{1} \cdot x_{1} + \beta_{2} \cdot x_{1}^{2} + E_{1}$$

$$y_{2} = \beta_{0} + \beta_{1} \cdot x_{2} + \beta_{2} \cdot x_{2}^{2} + E_{2}$$

$$y_{3} = \beta_{0} + \beta_{1} \cdot x_{3} + \beta_{2} \cdot x_{3}^{2} + E_{3}$$

$$y_{4} = \beta_{0} + \beta_{1} \cdot x_{4} + \beta_{2} \cdot x_{4}^{2} + E_{4}$$
(2)

matricialmente, tiene la representación $y = X\beta + E$, donde

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}_{4 \times 1} \quad \mathbf{X} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \end{bmatrix}_{4 \times 3} \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}_{3 \times 1} \quad \boldsymbol{E} = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix}_{4 \times 1}$$

$$y_{1} = \beta_{0} + \beta_{1} \cdot x_{1} + \beta_{2} \cdot x_{1}^{2} + E_{1}$$

$$y_{2} = \beta_{0} + \beta_{1} \cdot x_{2} + \beta_{2} \cdot x_{2}^{2} + E_{2}$$

$$y_{3} = \beta_{0} + \beta_{1} \cdot x_{3} + \beta_{2} \cdot x_{3}^{2} + E_{3}$$

$$y_{4} = \beta_{0} + \beta_{1} \cdot x_{4} + \beta_{2} \cdot x_{4}^{2} + E_{4}$$
(2)

matricialmente, tiene la representación $y = X\beta + E$, donde

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}_{4 \times 1} \quad \mathbf{X} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_1^2 \end{bmatrix}_{4 \times 2} \quad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}_{3 \times 1} \quad \mathbf{E} = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix}_{4 \times 1}$$

$$y_{1} = \beta_{0} + \beta_{1} \cdot x_{1} + \beta_{2} \cdot x_{1}^{2} + E_{1}$$

$$y_{2} = \beta_{0} + \beta_{1} \cdot x_{2} + \beta_{2} \cdot x_{2}^{2} + E_{2}$$

$$y_{3} = \beta_{0} + \beta_{1} \cdot x_{3} + \beta_{2} \cdot x_{3}^{2} + E_{3}$$

$$y_{4} = \beta_{0} + \beta_{1} \cdot x_{4} + \beta_{2} \cdot x_{4}^{2} + E_{4}$$
(2)

matricialmente, tiene la representación $y = X\beta + E$, donde

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}_{4 \times 1} \qquad \mathbf{X} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \end{bmatrix}_{4 \times 2} \qquad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}_{3 \times 1} \qquad \boldsymbol{E} = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix}_{4 \times 1}$$

$$y_{1} = \beta_{0} + \beta_{1} \cdot x_{1} + \beta_{2} \cdot x_{1}^{2} + E_{1}$$

$$y_{2} = \beta_{0} + \beta_{1} \cdot x_{2} + \beta_{2} \cdot x_{2}^{2} + E_{2}$$

$$y_{3} = \beta_{0} + \beta_{1} \cdot x_{3} + \beta_{2} \cdot x_{3}^{2} + E_{3}$$

$$y_{4} = \beta_{0} + \beta_{1} \cdot x_{4} + \beta_{2} \cdot x_{4}^{2} + E_{4}$$
(2)

matricialmente, tiene la representación $y = X\beta + E$, donde

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}_{4 \times 1} \qquad \mathbf{X} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \end{bmatrix}_{4 \times 2} \qquad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}_{3 \times 1} \qquad \boldsymbol{E} = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix}_{4 \times 1}$$

$$y_{1} = \beta_{0} + \beta_{1} \cdot x_{1} + \beta_{2} \cdot x_{1}^{2} + E_{1}$$

$$y_{2} = \beta_{0} + \beta_{1} \cdot x_{2} + \beta_{2} \cdot x_{2}^{2} + E_{2}$$

$$y_{3} = \beta_{0} + \beta_{1} \cdot x_{3} + \beta_{2} \cdot x_{3}^{2} + E_{3}$$

$$y_{4} = \beta_{0} + \beta_{1} \cdot x_{4} + \beta_{2} \cdot x_{4}^{2} + E_{4}$$
(2)

matricialmente, tiene la representación $y = X\beta + E$, donde

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}_{4 \times 1} \quad \mathbf{X} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \end{bmatrix}_{4 \times 2} \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}_{3 \times 1} \quad \boldsymbol{E} = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix}_{4 \times 1}$$

Modelo exponencial multiplicativo Modelo de potencia multiplicativo Modelo logarítmico Modelo recíproco Algunas consideraciones

Contenido

- Definición de linealidad de un modelo de regresión
- Modelos intrínsicamente lineales
 - Modelo exponencial multiplicativo
 - Modelo de potencia multiplicativo
 - Modelo logarítmico
 - Modelo recíproco
 - Algunas consideraciones
- 3 Transformaciones Box-Cox sobre Y

Modelos intrínsicamente lineales

Definición 2.1

Denominamos modelos intrínsecamente lineales a aquellos que relacionan Y con X por medio de una transformación en Y y/o en X, originando el modelo,

$$Y^* = \beta_0 + \beta_1 X^* + E^*, \tag{3}$$

Modelos intrínsicamente lineales

Definición 2.1

Denominamos modelos intrínsecamente lineales a aquellos que relacionan Y con X por medio de una transformación en Y y/o en X, originando el modelo,

$$Y^* = \beta_0 + \beta_1 X^* + E^*, \tag{3}$$

- las variables transformadas son: $Y^* = h(Y)$ y $X^* = g(X)$,
- las funciones $h(\cdot)$ y $g(\cdot)$, deben ser tales que conduzcan a la ecuación (3).
- los supuestos $\stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ se atribuyen al término de error en el modelo con variales transformadas y por tanto, la evaluación de supuestos se realiza con residuos del ajuste de este modelo.

Modelos intrínsicamente lineales

Definición 2.1

Denominamos modelos intrínsecamente lineales a aquellos que relacionan Y con X por medio de una transformación en Y y/o en X, originando el modelo,

$$Y^* = \beta_0 + \beta_1 X^* + E^*, \tag{3}$$

- las variables transformadas son: $Y^* = h(Y)$ y $X^* = g(X)$,
- las funciones $h(\cdot)$ y $g(\cdot)$, deben ser tales que conduzcan a la ecuación (3).
- los supuestos $\stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2)$ se atribuyen al término de error en el modelo con variales transformadas y por tanto, la evaluación de supuestos se realiza con residuos del ajuste de este modelo.

Modelos intrínsicamente lineales

Definición 2.1

Denominamos modelos intrínsecamente lineales a aquellos que relacionan Y con X por medio de una transformación en Y y/o en X, originando el modelo,

$$Y^* = \beta_0 + \beta_1 X^* + E^*, \tag{3}$$

- las variables transformadas son: $Y^* = h(Y)$ y $X^* = g(X)$,
- las funciones $h(\cdot)$ y $g(\cdot)$, deben ser tales que conduzcan a la ecuación (3).
- los supuestos $\stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ se atribuyen al término de error en el modelo con variales transformadas y por tanto, la evaluación de supuestos se realiza con residuos del ajuste de este modelo.

Modelos intrínsicamente lineales

Definición 2.1

Denominamos modelos intrínsecamente lineales a aquellos que relacionan Y con X por medio de una transformación en Y y/o en X, originando el modelo,

$$Y^* = \beta_0 + \beta_1 X^* + E^*, \tag{3}$$

- las variables transformadas son: $Y^* = h(Y)$ y $X^* = g(X)$,
- las funciones $h(\cdot)$ y $g(\cdot)$, deben ser tales que conduzcan a la ecuación (3).
- los supuestos $\stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ se atribuyen al término de error en el modelo con variales transformadas y por tanto, la evaluación de supuestos se realiza con residuos del ajuste de este modelo.

Modelo exponencial multiplicativo

Ecuación original

$$Y_i = \beta_0 \exp(\beta_1 X_i) \cdot E_i, \ \beta_0 > 0, \text{ con}$$

 $E_i \stackrel{\text{iid}}{\sim} \text{lognorm}(\mu = 0, \sigma)$

Ec. con variables transformadas

$$Y_{i}^{*} = \beta_{0}^{*} + \beta_{1} X_{i} + E_{i}^{*}, \operatorname{con} E_{i}^{*} \stackrel{\text{iid}}{\sim} N(0, \sigma^{2}),$$

$$\bullet Y_{i}^{*} = \log(Y_{i}), \quad E_{i}^{*} = \log(E_{i})$$

$$\bullet \beta_{0}^{*} = \log(\beta_{0})$$

Otra parametrización

Ecuación original

$$Y_i = \exp(\beta_0 + \beta_1 X_i + E_i)$$
, con
 $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$

$$Y_i^* = \beta_0 + \beta_1 X_i + E_i, \text{ con } E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2),$$

$$Y_i^* = \log(Y_i)$$

Modelo exponencial multiplicativo

Ecuación original

$$Y_i = \beta_0 \exp(\beta_1 X_i) \cdot E_i, \ \beta_0 > 0, \text{ con}$$

 $E_i \stackrel{\text{iid}}{\sim} \text{lognorm}(\mu = 0, \sigma)$

Ec. con variables transformadas

$$Y_{i}^{*} = \beta_{0}^{*} + \beta_{1}X_{i} + E_{i}^{*}, \operatorname{con} E_{i}^{*} \stackrel{\text{iid}}{\sim} N(0, \sigma^{2}),$$

$$\cdot Y_{i}^{*} = \log(Y_{i}), \quad E_{i}^{*} = \log(E_{i})$$

$$\cdot \beta_{0}^{*} = \log(\beta_{0})$$

Otra parametrización:

$$Y_i^* = \beta_0 + \beta_1 X_i + E_i, \text{ con } E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2),$$

• $Y_i^* = \log(Y_i)$

Modelo exponencial multiplicativo

Ecuación original

$$Y_i = \beta_0 \exp(\beta_1 X_i) \cdot E_i, \ \beta_0 > 0, \text{ con}$$

 $E_i \stackrel{\text{iid}}{\sim} \text{lognorm}(\mu = 0, \sigma)$

Ec. con variables transformadas

$$Y_{i}^{*} = \beta_{0}^{*} + \beta_{1} X_{i} + E_{i}^{*}, \text{ con } E_{i}^{*} \stackrel{\text{iid}}{\sim} N(0, \sigma^{2}),$$

• $Y_{i}^{*} = \log(Y_{i}), \quad E_{i}^{*} = \log(E_{i})$

•
$$\beta_0^* = \log(\beta_0)$$

Otra parametrización:

Ecuación original

$$Y_i = \exp(\beta_0 + \beta_1 X_i + E_i)$$
, con
 $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$

$$Y_i^* = \beta_0 + \beta_1 X_i + E_i, \text{ con } E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2),$$

• $Y_i^* = \log(Y_i)$

Modelo de potencia multiplicativo

Ecuación original

$$Y_i = \beta_0 X_i^{\beta_1} \cdot E_i, \, \beta_0 > 0, \, X_i > 0, \, \text{con}$$

 $E_i \stackrel{\text{iid}}{\sim} \text{lognorm} (\mu = 0, \sigma)$

Ec. con variables transformadas

$$Y_{i}^{*} = \beta_{0}^{*} + \beta_{1} X_{i}^{*} + E_{i}^{*}, \text{ con } E_{i}^{*} \stackrel{\text{iid}}{\sim} N(0, \sigma^{2}),$$

$$Y_{i}^{*} = \log(Y_{i}), \quad X_{i}^{*} = \log(X_{i})$$

$$E_{i}^{*} = \log(E_{i}), \quad \beta_{0}^{*} = \log(\beta_{0})$$

Otra parametrización:

Ecuación original $Y_i = \exp(\beta_0 + \beta_1 \log(X_i) + E_i), \text{ cor}$ $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$

$$Y_i^* = \beta_0 + \beta_1 X_i^* + E_i$$
, con $E_i \stackrel{\text{ind}}{\sim} N(0, \sigma^2)$
• $Y_i^* = \log(Y_i)$, $X_i^* = \log(X_i)$.

Modelo de potencia multiplicativo

Ecuación original

$$Y_i = \beta_0 X_i^{\beta_1} \cdot E_i, \, \beta_0 > 0, \, X_i > 0, \, \text{con}$$

 $E_i \stackrel{\text{iid}}{\sim} \text{lognorm} (\mu = 0, \sigma)$

Ec. con variables transformadas

$$Y_{i}^{*} = \beta_{0}^{*} + \beta_{1} X_{i}^{*} + E_{i}^{*}, \text{ con } E_{i}^{*} \stackrel{\text{iid}}{\sim} N(0, \sigma^{2}),$$

$$\bullet Y_{i}^{*} = \log(Y_{i}), \quad X_{i}^{*} = \log(X_{i})$$

$$\bullet E_{i}^{*} = \log(E_{i}), \quad \beta_{0}^{*} = \log(\beta_{0})$$

Otra parametrización:

Ecuación original $Y_i = \exp(\beta_0 + \beta_1 \log(X_i) + E_i), \text{ cor}$ $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$

Ec. con variables transformadas $Y_i^* = \beta_0 + \beta_1 X_i^* + E_i, \text{ con } E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ $Y_i^* = \log(Y_i) \quad X_i^* = \log(X_i)$

Modelo de potencia multiplicativo

Ecuación original

$$Y_i = \beta_0 X_i^{\beta_1} \cdot E_i, \, \beta_0 > 0, \, X_i > 0, \, \text{con}$$

 $E_i \stackrel{\text{iid}}{\sim} \text{lognorm} (\mu = 0, \sigma)$

Ec. con variables transformadas

$$Y_{i}^{*} = \beta_{0}^{*} + \beta_{1} X_{i}^{*} + E_{i}^{*}, \operatorname{con} E_{i}^{*} \stackrel{\text{iid}}{\sim} N(0, \sigma^{2}),$$

$$\bullet Y_{i}^{*} = \log(Y_{i}), \quad X_{i}^{*} = \log(X_{i})$$

$$\bullet E_{i}^{*} = \log(E_{i}), \quad \beta_{0}^{*} = \log(\beta_{0})$$

Otra parametrización:

Ecuación original

$$Y_i = \exp(\beta_0 + \beta_1 \log(X_i) + E_i), \text{ con}$$

 $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$

$$Y_i^* = \beta_0 + \beta_1 X_i^* + E_i$$
, con $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$,
• $Y_i^* = \log(Y_i)$, $X_i^* = \log(X_i)$.

Modelo logarítmico

Ecuación original

$$Y_i = \beta_0 + \beta_1 \log(X_i) + E_i, X_i > 0, \text{ con}$$

$$E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$$

$$Y = \beta_0 + \beta_1 X_i^* + E_i, \text{ con } E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2),$$

• $X_i^* = \log(X_i)$

Modelo recíproco

Ecuación original

$$Y_i = \beta_0 + \beta_1 (1/X_i) + E_i, X_i > 0$$
, con $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$

$$Y = \beta_0 + \beta_1 X_i^* + E_i, \operatorname{con} E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2),$$

• $X_i^* = 1/X_i$

• En modelos multiplicativos de la forma

$$Y_i = \beta_0 \cdot h(X_i, \beta_1) \cdot E_i$$
, con $\log(E_i) \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, (4)

con $h(X_i, \beta_1) = e^{\beta_1 X_i}$ en modelo exponencial, $h(X_i, \beta_1) = X_i^{\beta_1}$ en modelo de potencia,

$$\widehat{\beta}_0 \approx \exp\left(\widehat{\beta}_0^*\right) \tag{5}$$

con $\widehat{\beta}_0^*$ obtenido en el ajuste por MCO del modelo con variables transformadas.

En los modelos multiplicativos (cualquiera de las parametrizaciones presentadas)

$$\widehat{Y}_i = \widehat{\mu}_{Y|x_i} \approx \exp\left(\widehat{Y}_i^*\right) \times \exp\left(MSE^*/2\right)$$
 (6)

- Los modelos multiplicativos son modelos heterocedásticos: en la escala de Y la varianza cambia con X.
- Los modelos logarítmico y reciproco, son modelos homocedásticos: En la escala de Y la varianza no cambia con X.

· En modelos multiplicativos de la forma

$$Y_i = \beta_0 \cdot h(X_i, \beta_1) \cdot E_i$$
, con $\log(E_i) \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, (4)

con $h(X_i,\beta_1)=e^{\beta_1X_i}$ en modelo exponencial, $h(X_i,\beta_1)=X_i^{\beta_1}$ en modelo de potencia,

$$\widehat{\beta}_0 \approx \exp\left(\widehat{\beta}_0^*\right) \tag{5}$$

 $\operatorname{con}\widehat{\beta_0^*}$ obtenido en el ajuste por MCO del modelo con variables transformadas.

• En los modelos multiplicativos (cualquiera de las parametrizaciones presentadas),

$$\widehat{Y}_i = \widehat{\mu}_{Y|x_i} \approx \exp\left(\widehat{Y}_i^*\right) \times \exp\left(MSE^*/2\right)$$
(6)

- Los modelos multiplicativos son modelos heterocedásticos: en la escala de *Y* la varianza cambia con *X*.
- Los modelos logarítmico y recíproco, son modelos homocedásticos: En la escala de Y la varianza no cambia con X.

· En modelos multiplicativos de la forma

$$Y_i = \beta_0 \cdot h(X_i, \beta_1) \cdot E_i$$
, con $\log(E_i) \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, (4)

con $h(X_i,\beta_1)=e^{\beta_1X_i}$ en modelo exponencial, $h(X_i,\beta_1)=X_i^{\beta_1}$ en modelo de potencia,

$$\widehat{\beta}_0 \approx \exp\left(\widehat{\beta}_0^*\right) \tag{5}$$

con $\widehat{\beta}_0^*$ obtenido en el ajuste por MCO del modelo con variables transformadas.

• En los modelos multiplicativos (cualquiera de las parametrizaciones presentadas),

$$\widehat{Y}_i = \widehat{\mu}_{Y|x_i} \approx \exp\left(\widehat{Y}_i^*\right) \times \exp\left(MSE^*/2\right)$$
(6)

- Los modelos multiplicativos son modelos heterocedásticos: en la escala de *Y* la varianza cambia con *X*.
- Los modelos logarítmico y recíproco, son modelos homocedásticos: En la escala de Y la varianza no cambia con X.

• En modelos multiplicativos de la forma

$$Y_i = \beta_0 \cdot h(X_i, \beta_1) \cdot E_i$$
, con $\log(E_i) \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, (4)

con $h(X_i,\beta_1)=e^{\beta_1X_i}$ en modelo exponencial, $h(X_i,\beta_1)=X_i^{\beta_1}$ en modelo de potencia,

$$\widehat{\beta}_0 \approx \exp\left(\widehat{\beta}_0^*\right) \tag{5}$$

con $\widehat{\beta}_0^*$ obtenido en el ajuste por MCO del modelo con variables transformadas.

• En los modelos multiplicativos (cualquiera de las parametrizaciones presentadas),

$$\widehat{Y}_i = \widehat{\mu}_{Y|x_i} \approx \exp\left(\widehat{Y}_i^*\right) \times \exp\left(MSE^*/2\right)$$
(6)

- Los modelos multiplicativos son modelos heterocedásticos: en la escala de *Y* la varianza cambia con *X*.
- Los modelos logarítmico y recíproco, son modelos homocedásticos: En la escala de Y la varianza no cambia con X.

No son intrínsecamente lineales los modelos exponenciales y de potencia aditivos:

$$Y_i = \beta_0 \exp(\beta_1 X_i) + E_i, \ E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2), \tag{7}$$

$$Y_i = \beta_0 X_i^{\beta_1} + E_i, \ E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2), \tag{8}$$

Estos modelos se ajustan por *mínimos cuadrados no lineales* (tema que no es visto en este curso).

Contenido

- Definición de linealidad de un modelo de regresión
- Modelos intrínsicamente lineales
- Transformaciones Box-Cox sobre Y

- Procura corregir no normalidad junto con varianza no constante.
- Transformación: El modelo de regresión cambia a

$$Y_i^A = \beta_0 + \beta_1 x_i + E_i^*, \ E_i^* \stackrel{\text{i.d.}}{\sim} N(0, \sigma^2),$$
 (9)

- Los parámetros a estimar son β_0 , β_1 , λ , σ^2 .
- Métodos (Ver Sección 3.5 Capítulo 3 Notas de Clase):

- Procura corregir no normalidad junto con varianza no constante.
- Transformación: El modelo de regresión cambia a

$$Y_i^{\lambda} = \beta_0 + \beta_1 x_i + E_i^*, \ E_i^* \stackrel{\text{iid}}{\sim} N(0, \sigma^2), \tag{9}$$

- Los parámetros a estimar son $\beta_0, \beta_1, \lambda, \sigma^2$.
- Métodos (Ver Sección 3.5 Capítulo 3 Notas de Clase):

- Procura corregir no normalidad junto con varianza no constante.
- · Transformación: El modelo de regresión cambia a

$$Y_i^{\lambda} = \beta_0 + \beta_1 x_i + E_i^*, \ E_i^* \stackrel{\text{iid}}{\sim} N(0, \sigma^2), \tag{9}$$

- Los parámetros a estimar son β_0 , β_1 , λ , σ^2 .
- Métodos (Ver Sección 3.5 Capítulo 3 Notas de Clase):

- Procura corregir no normalidad junto con varianza no constante.
- · Transformación: El modelo de regresión cambia a

$$Y_i^{\lambda} = \beta_0 + \beta_1 x_i + E_i^*, \ E_i^* \stackrel{\text{iid}}{\sim} N(0, \sigma^2), \tag{9}$$

- Los parámetros a estimar son $\beta_0, \beta_1, \lambda, \sigma^2$.
- Métodos (Ver Sección 3.5 Capítulo 3 Notas de Clase):
 - Máxima verosimilitud: En librería car se dispone de la función boxCox()
 - Método iterativo: Basado en búsqueda de λ en un rango de valores potenciales, tal que minimice SSE* del MRLS

$$Y^{*\lambda} = \beta_0^* + \beta_1^* x_i + E_i^*, E_i^* \stackrel{iid}{\sim} N(0, \sigma^2)$$
 (10)

donde Y^{λ} es una versión estanderecada de Y^{λ} para hacer comparables los SSE estados estandos estandos

- Procura corregir no normalidad junto con varianza no constante.
- · Transformación: El modelo de regresión cambia a

$$Y_i^{\lambda} = \beta_0 + \beta_1 x_i + E_i^*, \ E_i^* \stackrel{\text{iid}}{\sim} N(0, \sigma^2), \tag{9}$$

- Los parámetros a estimar son $\beta_0, \beta_1, \lambda, \sigma^2$.
- Métodos (Ver Sección 3.5 Capítulo 3 Notas de Clase):
 - Máxima verosimilitud: En librería car se dispone de la función boxCox().
 Método iterativo: Basado en búsqueda de λ en un rango de valores potenciales

$$Y^{*\lambda} = \beta_0^* + \beta_1^* x_i + E_i^*, \ E_i^* \stackrel{iid}{\sim} N(0, \sigma^2)$$

donde $Y^{e\lambda}$ es una versión estandarizada de Y^{λ} para hacer comparables los SSE obtenidos con diferentes valores de λ .

- Procura corregir no normalidad junto con varianza no constante.
- · Transformación: El modelo de regresión cambia a

$$Y_i^{\lambda} = \beta_0 + \beta_1 x_i + E_i^*, \ E_i^* \stackrel{\text{iid}}{\sim} N(0, \sigma^2), \tag{9}$$

- Los parámetros a estimar son β_0 , β_1 , λ , σ^2 .
- Métodos (Ver Sección 3.5 Capítulo 3 Notas de Clase):
 - Máxima verosimilitud: En librería car se dispone de la función boxCox().
 - Método iterativo: Basado en búsqueda de λ en un rango de valores potenciales, tal que minimice SSE* del MRLS

$$Y^{*\lambda} = \beta_0^* + \beta_1^* x_i + E_i^*, \ E_i^* \stackrel{iid}{\sim} N(0, \sigma^2)$$
 (10)

donde $Y^{*\lambda}$ es una versión estandarizada de Y^{λ} para hacer comparables los SSE* obtenidos con diferentes valores de λ .

- Procura corregir no normalidad junto con varianza no constante.
- Transformación: El modelo de regresión cambia a

$$Y_i^{\lambda} = \beta_0 + \beta_1 x_i + E_i^*, \ E_i^* \stackrel{\text{iid}}{\sim} N(0, \sigma^2), \tag{9}$$

- Los parámetros a estimar son β_0 , β_1 , λ , σ^2 .
- Métodos (Ver Sección 3.5 Capítulo 3 Notas de Clase):
 - Máxima verosimilitud: En librería car se dispone de la función boxCox().
 - Método iterativo: Basado en búsqueda de λ en un rango de valores potenciales, tal que minimice SSE* del MRLS

$$Y^{*\lambda} = \beta_0^* + \beta_1^* x_i + E_i^*, \ E_i^* \stackrel{iid}{\sim} N(0, \sigma^2)$$
 (10)

donde $Y^{*\lambda}$ es una versión estandarizada de Y^{λ} para hacer comparables los SSE* obtenidos con diferentes valores de λ .

