LECTURE 19: HAAR MEASURE

1. Haar Measure

Recall that to integrate a function on a manifold, one could start with a fixed volume form, which requires the manifold to be orientable. (Well, if the manifold is not orientable, one could also develop a theory of integration using a fixed density instead of a volume forms. We will not discuss that theory here.) Now suppose G is a Lie group. Since any Lie group is orientable (because the tangent bundle $TG \simeq G \times \mathfrak{g}$ is trivial), volume forms always exist on G. Of course we would like to choose a volume form that behaves well under the group operations.

Definition 1.1. A volume form ω on a Lie group G is called *left invariant* if $L_g^*\omega = \omega$ for all $g \in G$.

Theorem 1.2. Left invariant volume form exists on any Lie group G, and is unique up to a multiplicative constant.

Proof. Take any basis of T_e^*G to form an nonzero element $\omega_e \in \Lambda^n T_e^*G$. Then define an *n*-form ω on G by letting $\omega_g = L_{g^{-1}}^*\omega_e$. This is left-invariant since

$$(L_g^*\omega)_h = L_g^*\omega_{gh} = L_g^*L_{h^{-1}g^{-1}}^*\omega_e = (L_{h^{-1}g^{-1}} \circ L_g)^*\omega_e = L_{h^{-1}}^*\omega_e = \omega_h.$$

Moreover, suppose ω' is any left invariant volume form on G. Since dim $\Lambda^n T_e G = 1$, there exists some non-zero constant C so that $\omega'_e = C\omega_e$. It follows from left-invariance that for any g,

$$\omega_q' = L_{q^{-1}}^* \omega_e' = C L_{q^{-1}}^* \omega_e = C \omega_q.$$

So the left invariant volume form is unique up to a multiplicative constant. \Box

Now suppose ω is a left invariant volume form on G. Replacing ω by $-\omega$ if necessary, we may assume ω is positive with respect to the orientation of G. This gives us a measure on G via

$$f \in C_c(G) \mapsto I(f) = \int_G f(g)\omega(g).$$

In what follows we will not distinguish this measure and the corresponding positive volume form. This measure is *left invariant* in the sense that for any $h \in G$,

$$I(f) = \int_G f\omega = \int_G L_h^*(f\omega) = \int_G (L_h^* f)\omega = I(L_h^* f).$$

In particular, for any Borel set $E \subset G$, $m(E) = m(L_h E)$.

Definition 1.3. We will call such a left invariant measure a left Haar measure.

So as we just proved, left Haar measure always exists on any Lie group, and is unique up to a positive constant. In the case G is compact, a Haar measure ω is called normalized if

$$\operatorname{Vol}(G) = \int_G \omega = 1.$$

In this case we will denote $\omega = dg$. Note that the left invariance means

$$d(hg) = dg,$$

or equivalently,

$$\int_{G} f(hg)dg = \int_{G} f(g)dg$$

for any fixed $h \in G$. Since the volume of a compact Lie group is always finite, and any two volume forms differ by a multiplicative constant, we immediately get

Corollary 1.4. There exists a unique normalized left Haar measure on any compact Lie group.

2. Modular Function

Similarly one can define the *right invariant volume forms* and *right Haar measures* on a Lie group, and prove their existence and uniqueness (up to a constant). In general a left Haar measure need not be a right Haar measure.

Example. Consider

$$G = \left\{ \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} \mid x, y \in \mathbb{R}, y > 0 \right\},\,$$

then one can check that up to a multiplicative constant,

$$\omega_L = y^{-2} dx dy$$

is the left Haar measure on G, and

$$\omega_R = y^{-1} dx dy$$

is the right Haar measure on G.

One can check that ω_L and ω_R in previous example satisfies $\iota^*\omega_L = \omega_R$, where $\iota: G \to G$ is the inversion operation. In general,

Lemma 2.1. Let G be a Lie group and ω a left Haar measure on G. Then $\iota^*\omega$ is a right invariant Haar measure on G.

Proof. Using the relation $\iota \circ R_h = L_{h^{-1}} \circ \iota$, we get

$$R_h^*\iota^*\omega = (\iota \circ R_h)^*\omega = (L_{h^{-1}} \circ \iota)^*\omega = \iota^*L_{h^{-1}}^*\omega = \iota^*\omega.$$

Left invariant Haar measures also behaves nice under right multiplications.

Lemma 2.2. For any $g \in G$ and any left Haar measure ω , $R_g^*\omega$ is also left invariant.

Proof. This follows from the fact that any left multiplication commutes with any right multiplication:

$$L_h^*(R_g^*\omega) = (R_g \circ L_h)^*\omega = (L_h \circ R_g)^*\omega = R_g^*L_h^*\omega = R_g^*\omega.$$

It follows that there exists a positive constant, $\Delta(g)$, such that

$$\omega = \Delta(g) R_q^* \omega.$$

Note that the number $\Delta(g)$ is independent of the choices of a left Haar measure ω , since any two left Haar measure differ only by a constant.

Definition 2.3. The function $\Delta: G \to \mathbb{R}^+$ is called the *modular function* of G.

Proposition 2.4. The modular function $\Delta: G \to \mathbb{R}^+$ is a Lie group homomorphism.

Proof. Obviously Δ is continuous. Moreover, by definition

$$\omega = \Delta(g_1 g_2) R_{g_1 g_2}^* \omega = \Delta(g_1 g_2) (R_{g_2} R_{g_1})^* \omega = \Delta(g_1 g_2) R_{g_1}^* R_{g_2}^* \omega.$$

On the other hand, we have

$$R_{g_2}^* \omega = \Delta(g_1) R_{g_1}^* R_{g_2}^* \omega,$$

and thus

$$\omega = \Delta(g_2) R_{g_2}^* \omega = \Delta(g_2) \Delta(g_1) R_{g_1}^* R_{g_2}^* \omega.$$

It follows $\Delta(g_1g_2) = \Delta(g_1)\Delta(g_2)$.

Example. In the previous example, one can check that $\Delta\begin{pmatrix} b & a \\ 0 & 1 \end{pmatrix} = b$. Note that this implies $\Delta(g)\omega_L(g) = \omega_R(g) = (\iota^*\omega_L)(g)$. This is actually true for any Lie group:

Lemma 2.5. For any left invariant Haar measure ω on G, $\iota^*\omega = \Delta(g)\omega(g)$.

Proof. We first prove $\Delta(g)\omega(g)$ is right invariant:

$$R_h^*(\Delta(g)\omega(g)) = \Delta(gh)(R_h^*\omega)(g) = \Delta(g)\Delta(h)(R_h^*\omega)(g) = \Delta(g)\omega(g).$$

It follows that there exists a positive constant C so that

$$\Delta(g)\omega(g) = C(\iota^*\omega)(g).$$

It remains to show C=1. This follows from the fact

$$\omega(g) = \Delta(g^{-1})(C(\iota^*\omega)(g)) = C\iota^*(\Delta\omega)(g) = C^2(\iota^*\iota^*\omega)(g) = C^2\omega(g).$$

As a consequence, we see that for any $f \in C_c(G)$ and any left Haar measure,

$$\int_{G} f(g^{-1})\omega(g) = \int_{G} f(g)\Delta(g)\omega(g).$$

We are interested in those Lie groups whose left Haar measure are also right invariant.

Definition 2.6. G is called *unimodular* if $\Delta(g) \equiv 1$ for any $g \in G$.

Note that by definition, a Lie group is unimodular if and only if every left Haar measure is also a right Haar measure. So we can speak of "Haar measure" on unimodular Lie groups, without indicating left or right.

Example. Any commutative Lie group is unimodular.

Theorem 2.7. Any compact Lie group is unimodular.

Proof. If G is compact, the image $\Delta(G)$ of G is a compact subgroup of \mathbb{R}^+ . However, the only compact subgroup of \mathbb{R}^+ is $\{1\}$. The theorem follows.

In particular, we see

Corollary 2.8. The normalized Haar measure dg on a compact Lie group is left invariant, right invariant and invariant under inversion, i.e.

$$\int_G f(hg)dg = \int_G f(gh)dg = \int_G f(g^{-1})dg = \int_G f(g)dg.$$