WINTER-2012

UNIT 1

Q.1 a) Obtain PDNF

(7)

- i. $(P \land Q) \lor (P \land R) \lor (Q \land R)$
- ii. $(P \vee Q) \leftrightarrow (P \wedge Q)$
- **b)** What is well formed formula? What are the rules for well formed formula? Explain with suitable example. (6)
- **Q.2 a)** Show the following equivalence

- i. $(((Q \land A) \rightarrow C) \land (A \rightarrow (P \lor C))) \Leftrightarrow ((A \land (P \rightarrow Q)) \rightarrow C)$
- ii. $(A \rightarrow (P \lor C)) \Leftrightarrow (A \land P) \rightarrow C$
- **b)** Show the following implication without truth table.
 - **i.** $(P \rightarrow Q) \Rightarrow (P \rightarrow (P \land Q))$

ii.
$$((P \rightarrow Q) \rightarrow Q) \Rightarrow (P \lor Q)$$
 (6)
UNIT 2

- **Q.3 a)** Show that $R \wedge (P \vee Q)$ is valid conclusion for premises $P \vee Q$, $Q \rightarrow R$, $P \rightarrow M$ and M using rules of inference inference. (6)
- **b) i.** Show that $\neg (P \land Q)$ follows from $\neg P \land \neg Q$ using indirect proof method.
- **ii.** Show the following premises are inconsistent

$$E \to S, S \to H, A \to H, E \to A.$$
 (7)

- **Q.4 a)** Show $S \vee R$ is tautologically implied by $(P \vee Q) \wedge (P \vee Q)$ \rightarrow R) \land (Q \rightarrow S). **(7)**
- **b)** Show that the conclusion C follows from premises H_1 , H₂... in the following cases using truth table

i.
$$H_1: (P \vee Q), H_2: P \to R, H_3: Q \to R, C: R$$

UNIT 3

Q.5 a) Define the terms with example

i. Equal Set,

- ii. Power Set,
- iii. Relative Complement, iv. Absolute Complement.

(6)

b) Draw the Venn diagram

(7)

- **i.** $A \cap B = A \cap C$ but $B \neq C$
- **ii.** $A \cup B = A \cup C$ but $B \neq C$
- **iii.** $A \cap B = A \cap C$ but B is not subset of C.

Q.6 a) Show that:

(6)

- **i.** $A \rightarrow B \Leftrightarrow A \cap \sim B$
- ii. $A \subseteq B \Leftrightarrow \sim B \subseteq \sim A$
- **b)** Let $S = \{s, a, \{3\}, 4\}$ $R = \{\{a\}, 3, 4, 1\}$

Determine whether the following is true or not:

- i. $\{a\} \in S$ ii. $\{a\} \subseteq R$ iii. $\{a, 4, \{3\}\} \subseteq R$ iv. $\{\{a\}, 1, 3, 4,\} \subset R$ v. $\phi \in R$ vi. $\{a\} \in R$ vii. $\{a\} \in R$ (7)

vii.
$$R = S$$

(7)

Q.7 a) Define the algebraic system

- **i.** $\langle z_4 * 4, +4 \rangle$ **ii.** $\langle z_6^* + 6 \rangle$, where, $z_6^* = z_6 \{[0]\}$. **(6)**
- **b)** Explain the following terms:
 - i. Semigroup. ii. Monoid. iii. Group.
- **iv.** Direct product of group. **v.** Algebraic structure.

(6)

Q.8 a) Let $\langle G, * \rangle$ is group where $G = \{\alpha, \beta, \gamma, \delta\}$ and * is given by composition table as (6)

*	α	β	γ	δ
α	α	β	γ	δ
β	β	α	δ	γ
γ	γ	δ	β	α
δ	δ	γ	α	β

Find out identify element and inverse of each element of group.

b) Show that with every element in a group is its own inverse then group must be abelian group. (7)

UNIT 5

Q.9 a) What do you mean by lattice as partially ordered set?

let $x = \{2, 3, 6, 12, 24, 36\}$ and

relation \leq is given as $x \leq y$ if x divides y. Draw the diagram for $\langle x, \leq \rangle$ and determine whether it is lattice or not and why? (7)

- **b)** Simplify the following Boolean identities: (7)
 - **i.** $(a * b)' \oplus (a \oplus b)'$
 - **ii.** $(a' * b' * c) \oplus (a * b' * c) \oplus (a * b' * c')$
 - iii. $(a \oplus b') * (b \oplus c') * (c \oplus a')$
- **Q.10 a)** Prove the following Boolean identities: (7)
 - **i.** $a \oplus (a' * b) = a \oplus b$
 - **ii.** $a * (a' \oplus b) = a * b$
 - **iii.** $(a * b) \oplus (a * b') = a$
 - **iv.** $(a * b * c) \oplus (a * b) = a * b$
- **b)** Obtain the sum of product canonical form of following using variables x_1, x_2, x_3 (7)

i.
$$(x_1 + x_2)' + (x_1' * x_3)$$

ii.
$$x_1 + x_2$$

UNIT 6

Q.11 a) Traverse the following with three techniques, Inorder, preorder and post order. (7)

(7)

- **b)** Define the terms with Example:
 - i. Strongly Connected Graph.
 - ii. Weakly Connected Graph.
 - iii. Simply Graph.
 - iv. Degree of Graph.
- **Q.12 a)** Show that in a complete binary tree the total number of edges is given by $2(n_t 1)$ where n_t is total number of terminal nodes. (7)
- **b)** What do you mean by Isomorphic Graph? Determine whether the given graphs are isomorphic or not and why. (7)

