MAT 452: Introduction to Algebra II Pranvere 2012, Provim Final, Pergjigje

Stefan Kohl

1. Gjeni $\mathrm{Syl}_2(S_4)$ dhe $\mathrm{Syl}_3(S_4)$. Gjithashtu, gjeni prerjen e nengrupeve 2-Sylow si dhe prerjen e nengrupeve 3-Sylow te grupit S_4 . (4 pike)

Pergjigja: $\mathrm{Syl}_2(S_4) = \{\langle (1,2,3,4), (1,3)\rangle, \langle (1,2,4,3), (1,4)\rangle, \langle (1,3,2,4), (1,2)\rangle \},$ $\mathrm{Syl}_3(S_4) = \{\langle (1,2,3)\rangle, \langle (1,2,4)\rangle, \langle (1,3,4)\rangle, \langle (2,3,4)\rangle \}.$ Prerja e nengrupeve 2-Sylow eshte V_4 dhe prerja e nengrupeve 3-Sylow eshte 1.

2. Gjeni nje nengrup $G < S_7$ me rend 21 dhe nje nengrup $H < S_8$ me rend 30. (4 pike)

Pergjigja: Ne kemi per shembull $G = \langle (1,2,3,4,5,6,7), (2,3,5)(4,7,6) \rangle$, dhe $H = \langle (1,2,3), (1,2), (4,5,6,7,8) \rangle$.

3. Gjeni nje njesi, nje idempotent, nje element nilpotent edhe nje element me rend 3 e unazes $\mathbb{Z}^{2\times 2}$. (4 pike)

Pergjigja: Elemente te tille jane

$$\left(\begin{array}{cc}1&0\\0&1\end{array}\right),\;\left(\begin{array}{cc}1&0\\0&1\end{array}\right),\;\left(\begin{array}{cc}0&0\\0&0\end{array}\right),\;\left(\begin{array}{cc}0&1\\-1&-1\end{array}\right).$$

4. Le te jete $a:=7+60\mathbb{Z}\in\mathbb{Z}/60\mathbb{Z}$. Gjeni anasjelltin a^{-1} dhe rendin |a| e elementit a. (4 pike)

Pergjigja: Ne kemi $a^{-1} = 43 + 60\mathbb{Z}$ dhe |a| = 4.

- 5. Gjeni te gjithe idealet e unazes $R := \mathbb{Z}/24\mathbb{Z}$. Cilet jane maksimal? (4 pike) Pergjigja: Te gjithe idealet e unazes $R := \mathbb{Z}/24\mathbb{Z}$ jane 0, $(12 + 24\mathbb{Z})R$, $(8 + 24\mathbb{Z})R$, $(6 + 24\mathbb{Z})R$, $(4 + 24\mathbb{Z})R$, $(3 + 24\mathbb{Z})R$, $(2 + 24\mathbb{Z})R$ dhe R. Idealet maksimal jane $(2 + 24\mathbb{Z})R$ dhe $(3 + 24\mathbb{Z})R$.
- 6. Le te jete $I:=\langle x^2y^2, x^6y, xy^6, x^8, y^8 \rangle \lhd \mathbb{Z}[x,y]$ dhe $S:=\{xy, x^2y, x^3y^2, xy^5, x^7y, x^6, y^7, x^{10}\}$. Gjeni $S\cap I$. (4 pike)

Pergjigja: Ne kemi $S \cap I = \{x^3y^2, x^7y, x^{10}\}.$

7. Le te jete $K := \mathbb{Q}[\sqrt{2}, \sqrt{3}]$. Gjeni graden [K : Q], dhe gjeni te gjithe automorfismet e fushes K dhe strukturen e grupit $\mathrm{Aut}(K)$. (4 pike)

Pergjigja: Ne kemi [K:Q]=4, dhe ne kemi 4 automorfisme α_1,\ldots,α_4 . Automorfismet jane caktuar nga imazhet e $\sqrt{2}$ dhe $\sqrt{3}$. Ne kemi

- 1. $\alpha_1(\sqrt{2}) = \sqrt{2}, \ \alpha_1(\sqrt{3}) = \sqrt{3},$
- 2. $\alpha_2(\sqrt{2}) = \sqrt{2}, \ \alpha_2(\sqrt{3}) = -\sqrt{3},$
- 3. $\alpha_3(\sqrt{2}) = -\sqrt{2}$, $\alpha_3(\sqrt{3}) = \sqrt{3}$, dhe
- 4. $\alpha_4(\sqrt{2}) = -\sqrt{2}, \ \alpha_4(\sqrt{3}) = -\sqrt{3}.$

Ne kemi $Aut(K) \cong C_2 \times C_2$.

- 8. Vertetoni apo gjeni kundershembuj:
 - 1. Per cdo grup G i fundem dhe cdo numer prim p, prerja e nengrupeve p-Sylow e grupit G eshte nje nengrup normal e grupit G.
 - 2. Nje grup me rend 80 nuk eshte i thjeshte.
 - 3. Nese R eshte nje unaze dhe $I, J \triangleleft R$ jane ideale, edhe $I \cup J$ eshte nje ideal.
 - 4. Nese $p,q\in\mathbb{Z}$ jane elemente prim, gjithmon edhe te pakten nje nga elemente pq-1 dhe pq+1 eshte nje element prim.
 - 5. Nese R eshte nje unaze dhe $a \in R$ eshte nje njesi, elementet a dhe a^{-1} kane te njejten rend.
 - 6. Cdo ideal $I \triangleleft \mathbb{Z}[x,y]$ ka 1 apo 2 gjeneratore, i.e. ne kemi gjithmon $I = \langle a \rangle$ per nje element $a \in \mathbb{Z}[x,y]$ apo $I = \langle a,b \rangle$ per elemente $a,b \in \mathbb{Z}[x,y]$.

(12 pike)

Pergjigja: Ne kemi

- 1. Pohimi eshte i vertet sepse sipas theoremat Sylow, $\mathrm{Syl}_p(G)$ eshte nje klase konjugimi e nengrupeve te grupit G.
- 2. Pohimi eshte i vertet sepse per nje grup G te thjeshte me rend 80 ne kemi $|\mathrm{Syl}_2(G)|=5,$ por $|G|\nmid 5!.$
- 3. Kundershembull: $I = 2\mathbb{Z}, J = 3\mathbb{Z}$.
- 4. Kundershembull: p = 3, q = 5.
- 5. Pohimi eshte i vertet sepse $a^n = 1 \Leftrightarrow (a^{-1})^n = a^{-n} = (a^n)^{-1} = 1$.
- 6. Kundershembull: $I = \langle x^2, xy, y^2 \rangle \lhd \mathbb{Z}[x, y]$.