# Computational Fluid Dynamics HW1

Almog Dobrescu

ID 214254252

December 22, 2024

CONTENTS LIST OF FIGURES

### Contents

| 1 | Inviscid Burgers Equation |                                      |   |
|---|---------------------------|--------------------------------------|---|
|   | 1.1                       | Boundary and Initial Conditions      | 2 |
|   | 1.2                       | First Order Roe Method $(u_1 = 0.0)$ | 2 |
|   | 1.3                       | Second Order Roe $(u_1 = 0.5)$       | 3 |
|   |                           | 1.3.1 With Limiters                  | 3 |
|   |                           | 1.3.2 Without Limiters               | 3 |
| 2 | Gen                       | neralized Burgers Equation           | 4 |

## List of Figures

#### 1 Inviscid Burgers Equation

The Inviscid Burgers equation, in conservation law form, is given by:

$$\frac{\partial u}{\partial t} + \frac{\partial F}{\partial x} = 0 \quad F = F_{(u)} = \frac{u^2}{2} \tag{1}$$

In non-conservation law form, is given by:

$$\frac{\partial u}{\partial t} + A \frac{\partial u}{\partial x} = 0 \quad A = \frac{\partial F}{\partial u} = u \tag{2}$$

The equation is obtained by neglecting the viscous term from the viscous Burger equation.

#### 1.1 Boundary and Initial Conditions

$$u_{(x=0,t)} = 1.0$$
  
 $u_{(x=1,t)} = u_1$   
 $u_{(x,t=0)} = 1 - (1 - u_1) \cdot x$  (3)

#### 1.2 First Order Roe Method $(u_1 = 0.0)$

Roe scheme is based on the solution of the linear problem:

$$\frac{\partial u}{\partial t} + \bar{A}\frac{\partial u}{\partial x} = 0 \tag{4}$$

Where  $\bar{A}$  is a constant matrix that is dependent on local conditions. The matrix is constructed in a way to guarantee unifrom validity across discontinuities:

1. For any  $u_i$ ,  $u_{i+1}$ :

$$F_{i+1} - F_i = \bar{A} \cdot (u_{i+1} - u_i)$$

2. When  $u = u_i = u_{i+1}$  then:

$$\bar{A}_{(u_i,u_{i+1})} = \bar{A}_{(u,u)} = \frac{\partial F}{\partial u} = u$$

In case of the Burgers equation, the matrix  $\bar{A}$  is a scalar, namely,  $\bar{A} = \bar{u}$ . The equation becomes:

$$\frac{\partial u}{\partial t} + \bar{u}\frac{\partial u}{\partial x} = 0 \tag{5}$$

The value of  $\bar{u}$  for the cell face between i and i+1 is determined from the first conditions:

$$\bar{u} = \bar{u}_{i+\frac{1}{2}} = \frac{F_{i+1} - F_i}{u_{i+1} - u_i} = \frac{\frac{1}{2}u_{i+1}^2 - \frac{1}{2}u_i^2}{u_{i+1} - u_i} = \begin{cases} \frac{u_i + u_{i+1}}{2} & u_i \neq u_{i+1} \\ u_i & u_i = u_{i+1} \end{cases}$$
(6)

The single wave that emanates from the cell interface travels either in the positive or negative direction, depending upon the sighn of  $\bar{u}_{i+\frac{1}{2}}$ . Define:

$$\begin{cases}
\bar{u}_{i+\frac{1}{2}}^{+} \triangleq \frac{1}{2} \left( \bar{u}_{i+\frac{1}{2}} + \left| \bar{u}_{i+\frac{1}{2}} \right| \right) \ge 0 \\
\bar{u}_{i+\frac{1}{2}} = \bar{u}_{i+\frac{1}{2}}^{+} + \bar{u}_{i+\frac{1}{2}}^{-} \\
\bar{u}_{i+\frac{1}{2}}^{-} \triangleq \frac{1}{2} \left( \bar{u}_{i+\frac{1}{2}} - \left| \bar{u}_{i+\frac{1}{2}} \right| \right) \le 0
\end{cases} (7)$$

Using the jump relation, the numerical flux at the cell interface can be evaluated by one of the following:

$$\begin{cases}
f_{i+\frac{1}{2}} - F_i = \bar{u}_{i+\frac{1}{2}}^- \cdot (u_{i+1} - u_i) \\
F_{i+1} - f_{i+\frac{1}{2}} = \bar{u}_{i+\frac{1}{2}}^+ \cdot (u_{i+1} - u_i)
\end{cases}$$
(8)

The numerical flux may then be written in the following symmetric from:

$$f_{i+\frac{1}{2}} = \frac{F_i + F_{i+1}}{2} + \frac{1}{2} \left( \bar{u}_{i+\frac{1}{2}}^+ - \bar{u}_{i+\frac{1}{2}}^- \right) (u_{i+1} - u_i) \tag{9}$$

- 1.3 Second Order Roe  $(u_1 = 0.5)$
- 1.3.1 With Limiters
- 1.3.2 Without Limiters

## 2 Generalized Burgers Equation