Ejemplo 2do parcial 06/07/2023

1. Sea $(E, \|\cdot\|)$ un espacio normado y completo, y sea $T: E \to E$ un operador lineal acotado tal que existe r > 0 tal que

$$||Tx|| \ge r||x||$$
 para todo $x \in E$.

Probar que T es inyectivo y que su imagen T(E) es cerrada.

1. Invectividad de T:

Para demostrar que T es inyectivo, supongamos que Tx = Ty para algunos $x, y \in E$. Queremos demostrar que x = y.

Dado que T es lineal, tenemos:

$$Tx = Ty \implies T(x - y) = 0.$$

Dado que $||Tx|| \ge r||x||$ para todo $x \in E$, aplicamos esta desigualdad al vector x - y:

$$||T(x-y)|| \ge r||x-y||.$$

Como T(x-y)=0, se sigue que:

$$0 = ||T(x - y)|| > r||x - y||.$$

Dado que r > 0, esta desigualdad implica que:

$$||x - y|| = 0 \implies x - y = 0 \implies x = y.$$

Por lo tanto, T es inyectivo.

2. Cerradura de la imagen de T:

Para demostrar que la imagen T(E) es cerrada, primero mostramos que T tiene un inverso acotado en su imagen.

Dado que T es inyectivo, consideremos el operador $T^{-1}: T(E) \to E$ definido por $T^{-1}(Tx) = x$ para todo $x \in E$.

Queremos demostrar que T^{-1} es acotado. Dado $y \in T(E)$, existe $x \in E$ tal que y = Tx. Entonces:

$$||x|| = ||T^{-1}(Tx)|| = ||T^{-1}y||.$$

Utilizando la desigualdad $||Tx|| \ge r||x||$, tenemos:

$$||y|| = ||Tx|| \ge r||x|| = r||T^{-1}y||.$$

Reorganizando, obtenemos:

$$||T^{-1}y|| \le \frac{1}{r}||y||.$$

Esto muestra que T^{-1} es acotado, es decir, existe una constante $M=\frac{1}{r}$ tal que:

$$||T^{-1}y|| \le M||y||$$
 para todo $y \in T(E)$.

Dado que T^{-1} es acotado y definido en todo T(E), esto implica que T(E) es cerrado. La razón es que el operador T^{-1} es una aplicación continua (por ser lineal y acotado) y, por lo tanto, la inversa de un operador continuo en un espacio normado completo (Banach) que es inyectiva y acotada, implica que la imagen es cerrada.

Para ver esto más explícitamente, consideremos una sucesión $\{y_n\} \subseteq T(E)$ tal que $y_n \to y$ en E. Queremos demostrar que $y \in T(E)$.

Dado que $y_n \in T(E)$, existen $x_n \in E$ tales que $y_n = Tx_n$. Debido a que $\{y_n\}$ es una sucesión de Cauchy (ya que converge en E), y dado que T^{-1} es continuo, la sucesión $\{x_n\} = \{T^{-1}y_n\}$ también es de Cauchy en E porque:

$$||x_n - x_m|| = ||T^{-1}(y_n - y_m)|| \le ||T^{-1}|| \cdot ||y_n - y_m||.$$

Dado que E es completo, $\{x_n\}$ converge a algún $x \in E$. Sea $x = \lim_{n \to \infty} x_n$. Entonces, por la continuidad de T,

$$y = \lim_{n \to \infty} y_n = \lim_{n \to \infty} Tx_n = T(\lim_{n \to \infty} x_n) = Tx.$$

Por lo tanto, $y \in T(E)$, lo que demuestra que T(E) es cerrado.

- 2. Determinar si la sucesión de funciones $f_n(x) : \mathbb{R} \to \mathbb{R}$ dada por $f_n(x) = x + \frac{x}{n}\sin(nx)$ converge uniformemente en [-2,2] y en \mathbb{R} .
 - 1. Convergencia Puntual

Primero, identifiquemos el límite puntual de la sucesión $f_n(x)$ para cada $x \in \mathbb{R}$.

$$f_n(x) = x + \frac{x}{n}\sin(nx).$$

Para cualquier $x \in \mathbb{R}$, notamos que $\frac{x}{n}\sin(nx) \to 0$ a medida que $n \to \infty$. Esto se debe a que $\frac{x}{n} \to 0$ y $\sin(nx)$ está acotada por -1 y 1. Por lo tanto,

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \left(x + \frac{x}{n} \sin(nx) \right) = x.$$

Entonces, el límite puntual es la función f(x) = x.

2. Convergencia Uniforme en [-2, 2]

Para verificar la convergencia uniforme en [-2, 2], consideremos la diferencia $|f_n(x) - f(x)|$:

$$|f_n(x) - f(x)| = \left| x + \frac{x}{n} \sin(nx) - x \right| = \left| \frac{x}{n} \sin(nx) \right|.$$

Dado que $|\sin(nx)| \le 1$ para todo $x \in \mathbb{R}$ y $n \in \mathbb{N}$, tenemos:

$$\left|\frac{x}{n}\sin(nx)\right| \le \frac{|x|}{n}.$$

Para $x \in [-2, 2]$, esto nos da:

$$\left| \frac{x}{n} \sin(nx) \right| \le \frac{2}{n}.$$

Para cualquier $\epsilon > 0$, podemos escoger $N \in \mathbb{N}$ tal que $\frac{2}{N} < \epsilon$. Entonces, para todo $n \geq N$ y para todo $x \in [-2, 2]$,

$$\left| \frac{x}{n} \sin(nx) \right| \le \frac{2}{n} < \epsilon.$$

Esto implica que

$$|f_n(x) - f(x)| < \epsilon$$

para todo $x \in [-2, 2]$ cuando $n \ge N$.

Por lo tanto, la sucesión $f_n(x)$ converge uniformemente a f(x) = x en [-2, 2].

3. Convergencia Uniforme en \mathbb{R}

Para determinar la convergencia uniforme en \mathbb{R} , consideremos la misma diferencia $|f_n(x)-f(x)|$:

$$|f_n(x) - f(x)| = \left| \frac{x}{n} \sin(nx) \right|.$$

Para cualquier $x \in \mathbb{R}$, tenemos:

$$\left| \frac{x}{n} \sin(nx) \right| \le \frac{|x|}{n}.$$

Para que la convergencia sea uniforme en \mathbb{R} , necesitamos que para cualquier $\epsilon > 0$, exista un $N \in \mathbb{N}$ tal que para todo $n \geq N$ y para todo $x \in \mathbb{R}$,

$$\left| \frac{x}{n} \sin(nx) \right| < \epsilon.$$

Esto implicaría que

$$\frac{|x|}{n} < \epsilon$$

para todo $x \in \mathbb{R}$. Sin embargo, esto no puede ser cierto para todos los $x \in \mathbb{R}$ a menos que x esté acotado. En particular, para x suficientemente grande, $\frac{|x|}{n}$ puede ser arbitrariamente grande, y no podemos encontrar un N que funcione para todos los $x \in \mathbb{R}$.

Por lo tanto, la sucesión $f_n(x)$ no converge uniformemente a f(x) = x en \mathbb{R} .

Conclusión

- La sucesión de funciones $f_n(x) = x + \frac{x}{n}\sin(nx)$ converge uniformemente a f(x) = x en [-2,2]. - La sucesión de funciones $f_n(x) = x + \frac{x}{n}\sin(nx)$ no converge uniformemente a f(x) = x en \mathbb{R} .

3. Sea $\mathbb R$ dotado con μ la medida de Lebesgue. Dado $x \in \mathbb R$ definimos

$$I_x = \{ y \in \mathbb{R} : -x \le y \le x \}.$$

Sea ahora $L \subseteq \mathbb{R}$ tal que $0 < \mu(L) < \infty$. Demostrar lo siguiente:

- a) La función $h: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ definida por $h(x) = \mu(L \cap I_x)$ es continua.
- b) Para todo $n \in \mathbb{N}$ existe una partición de n subconjuntos de L, todos de la misma medida.

Vamos a demostrar las dos afirmaciones sobre el conjunto $L \subseteq \mathbb{R}$ y la función h definida por $h(x) = \mu(L \cap I_x)$.

Parte 1: La función h es continua

Dada la función $h: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ definida por $h(x) = \mu(L \cap I_x)$, queremos demostrar que h es continua.

Definición y propiedades de I_x

Recordemos que:

$$I_x = \{ y \in \mathbb{R} : -x \le y \le x \}.$$

Esto es, I_x es el intervalo simétrico centrado en el origen con longitud 2x.

Propiedades de la medida de Lebesgue

La medida de Lebesgue μ es finitamente aditiva y continua desde abajo y desde arriba. Esto significa que si (A_n) es una sucesión creciente de conjuntos medibles con $A_n \uparrow A$, entonces $\mu(A_n) \to \mu(A)$. Del mismo modo, si (A_n) es una sucesión decreciente de conjuntos medibles con $A_n \downarrow A$, entonces $\mu(A_n) \to \mu(A)$.

Continuidad de h

Consideremos dos casos:

1. **Caso 1: $x \to x_0^{+**}$: Sea $x_0 \ge 0$. Queremos mostrar que $\lim_{x \to x_0^+} h(x) = h(x_0)$.

Para $x > x_0$, tenemos $I_{x_0} \subseteq I_x$. Por lo tanto:

$$L \cap I_{x_0} \subseteq L \cap I_x$$
.

Como $x \to x_0^+$, los intervalos I_x se aproximan a I_{x_0} desde la derecha, y por la continuidad de la medida desde abajo:

$$\lim_{x \to x_0^+} \mu(L \cap I_x) = \mu\left(\bigcap_{x > x_0} L \cap I_x\right) = \mu(L \cap I_{x_0}) = h(x_0).$$

2. **Caso 2: $x \to x_0^{-**}$: Sea $x_0 > 0$. Queremos mostrar que $\lim_{x \to x_0^-} h(x) = h(x_0)$.

Para $x < x_0$, tenemos $I_x \subseteq I_{x_0}$. Por lo tanto:

$$L \cap I_r \subset L \cap I_{r_0}$$
.

Como $x \to x_0^-$, los intervalos I_x se aproximan a I_{x_0} desde la izquierda, y por la continuidad de la medida desde arriba:

$$\lim_{x \to x_0^-} \mu(L \cap I_x) = \mu\left(\bigcup_{x < x_0} L \cap I_x\right) = \mu(L \cap I_{x_0}) = h(x_0).$$

En ambos casos, hemos demostrado que $h(x) \to h(x_0)$ cuando $x \to x_0$. Por lo tanto, h es continua en $\mathbb{R}_{>0}$.

Parte 2: Existe una partición de L en n subconjuntos de la misma medida

Queremos demostrar que para todo $n \in \mathbb{N}$, existe una partición de L en n subconjuntos de la misma medida.

Propiedad de la medida de Lebesgue

Dado que $0 < \mu(L) < \infty$, la medida $\mu(L)$ es finita y positiva. Podemos dividir L en n partes de igual medida.

Construcción de la partición

Para cada $k = 1, 2, \dots, n$, definimos

$$A_k = \left\{ y \in L : \frac{(k-1)\mu(L)}{n} \le y < \frac{k\mu(L)}{n} \right\}.$$

Observamos que los A_k son disjuntos y su unión es L:

$$L = \bigcup_{k=1}^{n} A_k.$$

Cada conjunto A_k tiene la misma medida:

$$\mu(A_k) = \frac{\mu(L)}{n}.$$

Conclusión

Hemos demostrado que:

- 1. La función $h(x) = \mu(L \cap I_x)$ es continua. 2. Para todo $n \in \mathbb{N}$, existe una partición de L en n subconjuntos de la misma medida.
- 4. Probar que si $f: \mathbb{R} \to [0, +\infty)$ es integrable, $\int_{\mathbb{R}} f(x) dx = c > 0$ y $\alpha \in \mathbb{R}$, entonces

$$\lim_{n \to +\infty} \int_{\mathbb{R}} n \log \left(1 + \left(\frac{|f(x)|}{n} \right)^{\alpha} \right) dx = \begin{cases} +\infty & \text{si } 0 < \alpha < 1, \\ c & \text{si } \alpha = 1, \\ 0 & \text{si } \alpha > 1. \end{cases}$$

Sugerencia: usar que $\log(1+x^{\alpha}) \leq \alpha x$ para $\alpha \geq 1$.

Naaa...