Module: Complex Integration

Evaluation of Integration

Types of function 'f(z)'	Types of contor	Solving Criterion,
f(z): 'polynomial' (straight forward)	C: 'straight line or 'parabola'	z=x+iy Pur $x=t$ or $y=t$
f(z): Not involving trignometric, exponential, logarithm	c: circle Z =r	put z=rei0
$f(z) : \frac{p(z)}{(z-z_1)(z-z_2)}$	c: circle ellipse, square	
i> Z ₁ , Z ₂ Both Not lies inside C	11	cauchy's theorem $\int_{C} f(z) dz = 0$
ii) z ₁ lies inside c z ₂ not lies inside c	,,,	cauchy integral formula OR) cauchy Residue theorem
iii) Z ₁ , Z ₂ Both lies inside C	*1	cauchy integral formula using partial fraction (OR) cauchy Residue theorem
f(z): involves trignometric, exponential, logarithmic terms	c; circle, ellipse, square	Cauchy Residue theorem (if Zo is singular point then find Residue using laurents series expansion Z=Z

Scanned by CamScanner

Taylors or Laurent series Expansion

standard form:
$$f(z) = \frac{p(z)}{q(z)}$$

Step 1. degree of p(z) < degree of q(z)

Step 2.
$$f(z) = \frac{\rho(z)}{(z-z_1)(z-z_2)}$$

step3. partial fraction
$$f(z) = \frac{A}{(z-z_1)} + \frac{B}{(z-z_2)}$$

step 4. i)
$$|Z| < z_1$$
 (Roc), $z_1 < z_2$

$$ii > z_1 < |z_1| < z_2$$
 (Roc), $z_1 < z_2$