	Student information	Date	Number of session
Algorith	UO: UO293079	14/2/22	1
mics	Surname: GAVALAS		
	Name: DIMITRIOS		

Activity 1. Power of the CPUs

Task 1

- 1) Write down the processor model and the system memory.
 - -Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz 2.80 GHz
 - -16.0 GB (15.9 GB usable)
- 3)Find and take note of the average index of integer and float operations per unit of time

-94.8

73.8%	Memory 80.7 1-Core 104 2-Core 205	4-Core 361 8-Core 542	64-Core 540
Very good	76% 130 Pts	58% 451 Pts	36% 540 Pts

Escuela de Ingeniería Informática

	Student information	Date	Number of session
Algorith	UO: UO293079	14/2/22	1
mics	Surname: GAVALAS		
	Name: DIMITRIOS		

- 4) Write down the time it took to execute.
 - 251 msec
- 5) Calculate the approximate index of integer and float operations performed by the program.

Task 2

1)

#	CPU	milliseconds	SC Mix(avg)	Operations(apro x)
1.	i7-4500U	285	71,3	20.320,5
2.	2. i3-3220	267	83,3	22.241,1
3.	3. i5-4590	219	98,1	21.483,9
4.	4. i7-4790	207	107	22.149
5.	5.Intel Pentium Gold G5400	215	104	22.360
6.	6. i7-700HQ	251	94,8	23.794,8
7.	i5-6500	355	98.3	34.896,5

	Student information	Date	Number of session
Algorith	UO: UO293079	14/2/22	1
mics	Surname: GAVALAS		
	Name: DIMITRIOS		

Looking at the results in milliseconds, do you think you could mix values from different CPUs in the same analytical study of the execution times of an algorithm?

We cannot mix different CPUs in an analytical study. Computing power varies so it wont make sense.

****Due to my laptop constantly crashing when running and reinstalling windows 10 i decided to install Ubuntu. So I will be using the university's computers to continue my exercises.

Activity 2. Influence of the operating system

Complete this task with the program Benchmarking1 from the previous activity.

• Sequential execution:

Power Option	Power Saver	Balanced	High Performance
MSeconds	320++	250-320	250-300
	slower	fast	faster

Parallel execution:

Power	Power Saver	Balanced	High Performance
Option MSeconds		320++	420+
cmd		Crashed	Crashed

	Student information	Date	Number of session
Algorith	UO: UO293079	14/2/22	1
mics	Surname: GAVALAS		
	Name: DIMITRIOS		

1. Which energy plan do you think is the most appropriate for making measurements?

Balanced or High Performance. Power saver mode reduces CPU performance all the time to save power. computer doesn't operate any faster or slower depending on how many watts the power supply delivers; either it has enough to run, or not.

2. If you had to perform a very long experiment, could you use the computer to, for example, watch a YouTube video in the meantime?

Looking at the results of my experiment we can see that parallel execution we should not do parallel work when wanting to perform a very long experiment.

3. Do you think it is convenient to make several measurements simultaneously on the same computer?

Yes it is. The same happens with task management.