A 1.11.4 Sei G eine Untergruppe der Gruppe Sm aller Bijektionen einer Menge M auf sich. Für jedes $p \in M$ heißt $G(p) := \{ e \in G \mid \varphi(p) = p \}$ der Stabilisator von p in G.

- (a) Zeige, dass G(p) eine Untergruppe von G ist.
- (6) Beweise: Falls es zu Elementen p,q e M eine Bijektion 8 E G gibt mit 8(p) = q, so gilt G(q) = 8 ° G(p) ° 8.
- (c) Bestimme in der Gruppe S_3 den Stabilisator $S_3(1)$ und mit Hilfe von (6) auch $S_3(2)$.
- (d) Zeige, dass der Stabilisator 53(1) Kein Normalteiler von 53 ist.

6(p) C G

Beweis: $G(p) \neq \emptyset$, we'l $G \neq \emptyset$. Seien $\alpha, \beta \in G(p)$, so gitt auch $\alpha \circ \beta \in G(p)$, we'l α, β jeweils Bijektionen Sind $(\alpha', \beta') = \alpha'$ existieven) and $\varphi(p) = \rho \Rightarrow \varphi'(\varphi(p)) = \varphi(p)$.

48 E C : 8(b) = d => C(d) = 8 . C(b) . 8.

Beweis: Sei $8 \in G$ beliebig. $[8 \circ E \circ 8^{-1}](q) = [8 \circ E \circ 8^{-1}](8) = [8 \circ E](8^{-1}(8)) = [8 \circ E](8^{-1}(8)) = [8 \circ E](8^{-1}(8)) = [8 \circ E](8) = [8 \circ E](8$

 $S_{3}(1) = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \right\}; S_{3}(2) = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \right\}; \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\};$

53(1) ist kein Normalteiler von 53

Beweis: Es müsste dazu $\forall f \in S_3$: $\{\circ S_3(1) = S_3(1) \circ f$.

Also $\{\circ S_3(1) \circ f^{-1} = S_3(1), \text{ was abox laut (c) nicht } der Fall, ist.$

Anhang zu (c) 'Sei g(1) = 2. Weil $G(q) = g \circ G(p) \circ g^{-1}$ wähle $g = \{(1,2), (2,1), (3,3)\}$. Somit lässt sich $G_3(2)$ bestimmen.

Anhang zu (a): q ist bijektiv und q' ist bijektiv, also auch injektiv! Außerdem q ° q' = q' o q = idm

PS: n-gou Analogie 53

A 1.11.5 Sei U die Menge der Komplexen Zahlen mit dem absoluten Betraa 1.

Beweis (a): U, IR+, IR × sind Kommutativ.

$$(\mathbb{R}^+,\cdot) \cong (\mathbb{Z}^*/U,\cdot)$$

Beweis: Sei $f: \mathbb{R}^+ \to \mathbb{C}^\times/U: \times \to U \cdot \times$. Down ist f bijektiv, weil alle Elemente von \mathbb{C}^*/U (d.h. alle Ringe um das Zentrum O + Oi) \mathbb{R}^+ genau ein mal schneiden.

f ist ein Homomorphismus, weil $f(x \cdot y) = U(x \cdot y) = Ux \cdot Uy = f(x) \cdot f(y) \square$

$$(U,\cdot) \cong (\mathbb{Z}^*/\mathbb{R}^*)$$

Beweis: Sei $f: U \rightarrow C^*/R^+: x \mapsto R^+: x$. Dann ist f bijektiv, weil alle Elemente von C^*/R^+ (dh. alle rotierten Strahlen R^+_{ψ} von R^+_{ψ} um $\psi \in (0, 2\pi])$ U genav einmal schneiden.

f ist ein Homomorphismos, weil

$$f(x \cdot y) = \mathbb{R}^+(x \cdot y) = \mathbb{R}^+ x \cdot \mathbb{R}^+ y = f(x) \cdot f(y)$$

U+ := {a+6i & U: a>0} = e*/R*

Beweis: Sei f: U+ → C*/R*: x → 1R*. x. Dann ist f bijektiv, weil alle Elemente von C*/1R* (d.h. alle rotierten

"Geraden" \mathbb{R}^{\times} von \mathbb{R}^{\times} om $\varphi \in (-\pi/2, \pi/2])$ U* genau einmal schneiden.

f ist ein Homomorphismus, weil $f(x \cdot y) = IR^{\times}(x \cdot y) = IR^{\times}x \cdot IR^{\times}y = f(x) \cdot f(y)$

Wenn X E R, dann U+ix = C×11Rx.

Anhang: Veranschauliche die zu den einzelnen Faktorgruppen gehörenden Kanonischen Abbildungen jeweils in der Gaußschen Zahlenebene.

Anleitung zu (d): Verwende die Abbildung z > (\frac{z}{121})^2.

A 1.11.11 Sei G eine Gruppe. Beweise, dass jede der folgenden Abbildungen ein Gruppenhomomorphismus ist, und bestimme dessen Kern.

(a) 4: G → Aut(G): a → (4. 'x → axa') (innever Automorphismus zu a').

(e) $\Psi: G \rightarrow S_G: a \mapsto (p_{a^{-1}} \times \mapsto \times a^{-1})$ (Redit strains lation mit a^{-1}).

Bemerkung: Der Kern des Homomorphismus aus (a) heißt das Zantrum der Gruppe G. Es besteht aus allen Elementen $x \in G$ mit der Eigenschaft xy = yx für alle $y \in G$.

Beweis (a): $\Psi(a \cdot b) = \Psi_{(a6)^{-1}} = \Psi_{a-1} \circ \Psi_{b-1} = \Psi(a) \circ \Psi(b)$.

Die zweite Gleichheit gilt, weil $\Psi_{a-1}(\Psi_{b-1}(x)) = \Psi_{a-1}(b \times b^{-1}) = \Phi(ab) \times (ab)^{-1} = \Psi_{(a6)^{-1}}(x)$.

Sollte G Kommutativ sein, so ist ker Y = G, weil axa" = aa' x = x und dadurch Va E G: Ya" = ida. A priori trifft diese Eigenschaft abex nur auf e e G zu, weil Ye" :x > exe" = x, also Ye" = ida; Ker Y = {e}.

Beweis (c): $\Psi(a \cdot b) = \rho_{(ab)^{-1}} = \rho_{a^{-1}} \circ \rho_{b^{-1}} = \Psi(a) \circ \Psi(b)$. $-'' - \rho_{b^{-1}}(\rho_{a^{-1}}(x)) = \rho_{a^{-1}}(xb^{-1}) = xb^{-1}a^{-1} = x(ab)^{-1} = \rho_{(ab)^{-1}}(x)$ $\ker \Psi = \{e\}, \text{ weil nur } \rho_{e^{-1}}(x) = xe^{-1} = x = id_a(x).$

A 2.2.1 Wir erklären in $\mathbb{R}^{2^{*}}$ die Addition wie üblich, aber die Multiplikation * : $\mathbb{R} \times \mathbb{R}^{2^{*}} \to \mathbb{R}^{2^{*}}$ ("Skalar mal Spalte") durch

Ist damit $\mathbb{R}^{2\times 1}$ ein Vektorraum über \mathbb{R} ? Uberprüfe in jedem Fall alle. Vektorraumaxiome, auch wenn schon klav ist, dass kein Vektorraum vorliegt.

Es liegt bei (a) kein Vektorraum vor.

Beweis: Seien $a = (a_1, a_2)$ and $b = (b_1, b_2)$.

1. $x * ((a_1, a_2) + (b_1, b_2)) = x * (a_1, a_2) + x * (b_1, b_2) = (xa_1, a_2) + (xb_1, b_2) = (xa_1 + xb_1, a_2 + b_2) = (Auhang)$

7. $(x + y) * (a_1, a_2) = x * (a_1, a_2) + y * (a_1, a_2) = (xa_1, a_2) + (ya_1, a_2) = (xa_1, 0) + (ya_1, a_2) = (xa_1 + ya_1, 0 + a_2) = (xa_1 + ya_1, a_2) = ((x + y)a_1, a_2) = (x + y) * (a_1, a_2), abor nicht immer a_2 = 0!$

3. $(xy) * (a_1, a_2) = ((xy)a_1, a_2) = (x(ya_1), a_2) = x * (ya_1, a_2).$

4. 1 * (a, az) = (1a, az) = (a, az).

Anhang: $1. = (x(a_1 + b_1), a_2 + b_1) = x * (a_1 + b_1, a_2 + b_2) = x * ((a_1, a_2) + (b_1, b_2).$ Lies von hinten nach vorne!

PS: Ups, Goldstern - BSP vergessen:

(c) $x * (a, b)^T = (xa, 0)^T (für alle reellen Zahlen x, a, b. Mit xa ist das übliche Produkt zweier reellen Zahlen x und a gemeint.$

Es liegt bei (c) Kein Vektorraum vor.

Beweis Seien -11-

1.
$$\times * ((a_1, a_2) + (b_1, b_2)) = \times * (a_1 + b_1, a_2 + b_2) = (\times (a_1 + b_1), 0) = (\times a_1 + \times b_1, 0 + 0) = (\times a_1 0) + (\times b_1, 0) = \times * (a_1, a_2) + \times * (b_1, b_2).$$

2.
$$(x + y)(a_1, a_2) = ((x + y)a_1, 0) = (xa_1 + ya_1, 0 + 0)$$

= $(xa_1, 0) + (ya_1, 0) = x * (a_1, a_2) + y * (a_1, a_2).$

3.
$$(xy) * (a_1, a_2) = ((xy)a_1, 0) = (x(ya_1), 0) = x * (ya_1, 0).$$

4.
$$|*(a_1, a_2)| = (|a_1, 0)| = (a_1, 0) \Longrightarrow (a_1, a_2) = (a_1, 0) \Longrightarrow a_1 = a_1 \land a_2 = 0!$$

A 2.2.2 (a) Es seien (G, +) eine Kommutative Gruppe mit dem neutralen Element e und \mathbb{Z}_z der Restklassen körper modulo 2. Wir erklären eine Multiplikation * $\mathbb{Z}_z \times G \to G : \overline{O} \times a := e$, $\overline{I} \times a := a$. Welche notwendige und hinreichende Eigenschaft muss die Gruppe G haben, damit G ein Vektorraum über \mathbb{Z}_z ist ?

(c) Gib ein Beispiel einer kommutativen Gruppe an, die gemäß
(a) Keinen Vektorraum über Zz ergibt.

Hinweis zu (a): Beredme (T+T) * a auf zwei Arten.

Jedes Element moss sein eigenes Inverse sein.

Beweis:
$$a + a = [*a + [*a = (ī+ī)*a = 0]$$

G + Z3

Beweis: 1+1 = 0,

A 2.2.3 Sei K ein Unterkörper eines Körpers $(L, +, \cdot)$. Beweise, dass (L, +) gemeinsam mit der auf $K \times L$ eingeschränkten Multiplikation ein Vektorraum über K ist. Gib für $K = \mathbb{Z}_2$, $K = \mathbb{R}$, $K = \mathbb{R}$ und $K = \mathbb{C}$ je mindestens ein Beispiel für einen solchen Vektorraum L an, wobei zusätzlich K = L er füllt sein.

Bemerkung: Die Elemente von K spielen eine doppelte Rolle? Sie sind Skalare und zugleich Vektoren.

Beweis: Seien X, y E K und a, 6 e L. Weil K C L, gelten Distributivität, Assoziativität und 1 E K, sowie O E K n L.

1.
$$x(a+6) = (xa) + (x6)$$

$$2. (x+y) a = (xa) + (ya)$$

3.
$$(xy)a = x(ya)$$

 $\mathbb{Z}_2 \subseteq \mathrm{GF}(4)$ (siehe Beispiele 1.10.3(2)); $\mathbb{Q} \subseteq \mathbb{R}$; $\mathbb{R} \subseteq \mathbb{C}$; $\mathbb{C} \subseteq \mathbb{P}(\mathbb{C})$, wobei $\mathbb{P}(\mathbb{C})$ die Menge aller Polynome $\Sigma_{i=0}^N a_i x^i$, $N \in \mathbb{N}_0$, $a_i \in \mathbb{C}$ ist. Sie enthält \mathbb{C} deswegen, weil für $\mathbb{N} = 0$ dann $a_0 x^\circ = a_0 \in \mathbb{C}$ gilt. Sollte jedoch $\mathbb{N} > 0$, dann $\Sigma_{i=0}^N a_i x^i = \Sigma_{i=1}^N a_i x^i + u_0 \notin \mathbb{C}$. (Eigentlich gilt letzteres auch für $\mathbb{N} = 0$, weil $\Sigma_{i=0}^0 a_i x^i = \Sigma_{i=0}^0 a_i x^i + a_0 x^\circ = 0 + a_0 = a_0$.)

A 2.2.5 Gegeben sei der Körper (IR, +, ·) mit der üblichen Addition und Multiplikation. Feruer sei IR t die Menge aller positiven reellen Zahlen.

(a) Wir definieren auf \mathbb{R}^+ eine Addition \oplus : $\mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ durch a \oplus 6 := a · 6. Zeige, dass (\mathbb{R}^+ , \oplus) eine Kommutative Gruppe ist.

(6) Für alle $x \in \mathbb{R}$ und alle $a \in \mathbb{R}^+$ definieren wir $x * a := a^x$. Zeige, dass (\mathbb{R}^+, \oplus) mit dieser Multiplikation, Skalar mal Vektor zu einem Vektorraum über \mathbb{R} wird, wobei wir im Skalarkörper \mathbb{R} wie üblich rechnen.

Wir setzen als bekannt vorraus: Für jedes $a \in \mathbb{R}^+$ existiert die Exponentialfunktion zur Basis a, also die Funktion $\mathbb{R} \to \mathbb{R}^+$: $x \mapsto a^* := e^{\times \log a}$. Es getten die aus der Schule geläufigen Rechenregeln für Potenzen wie etwa $a^{**Y} = a^*a^Y$ für alle $x,y \in \mathbb{R}$.

Beweis (a): Weil (\mathbb{R}^{\times} ,) abelseh ist, können wir auch (\mathbb{R}^{+} , \oplus) \subset (\mathbb{R}^{\times} ,) zeigen.

Offensidetlich ist $R^{\dagger} \neq \emptyset$. $\forall a, b \in R^{\dagger}$: $a \oplus b^{\dagger} \in R^{\dagger}$, weil $a > 0 \land b > 0 \Rightarrow a^{\dagger} > 0 \land b^{\dagger} > 0 \land a \oplus b > 0$.

Beweis (6): 1. (a ⊕ 6) = a ⊕ 6 .

2. ax+y = ax + ay.

3. $a^{xy} = (a^x)^y$.

4. a' = a.