Feuille d'exercices 25 : Représentation matricielle

1 Matrice d'une application linéaire

Exercice 1. Déterminer les matrices dans les bases canoniques respectives des applications linéaires suivantes :

Exercice 2. Soit $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{K}^3 et $\mathcal{C} = (f_1, f_2)$ la base canonique de \mathbb{K}^2 . Considérons $f \in \mathcal{L}(E, F)$ définie par :

$$f: \quad \mathbb{K}^3 \quad \to \quad \mathbb{K}^2$$
$$(x, y, z) \quad \mapsto \quad (x + y - z, x - y + 2z)$$

- 1. Déterminer la matrice de f dans les bases \mathcal{B} et \mathcal{C} .
- 2. On pose : $f'_1 = (1, 2)$ et $f'_2 = (-1, 1)$.
 - (a) Justifier que (f'_1, f'_2) est une base de \mathbb{K}^2 . On note $\mathcal{C}' = (f'_1, f'_2)$.
 - (b) Déterminer la matrice de f dans les bases \mathcal{B} et \mathcal{C}' .

Exercice 3. Déterminer les matrices dans les bases canoniques respectives des applications linéaires suivantes :

$$u: \mathbb{R}_n[X] \to \mathbb{R}$$

$$P \mapsto \int_0^1 P(t)dt , \qquad v: \mathbb{C}_3[X] \to \mathbb{C}_3[X]$$

$$P \mapsto P(X+1) - P(X) ,$$

Exercice 4. Soit E un espace vectoriel de dimension $n \in \mathbb{N}^*$ et soit $f \in \mathcal{L}(E)$ tel que $f^{n-1} \neq 0$ et $f^n = 0$. Soit $x \in E$ tel que $f^{n-1}(x) \neq 0$. Montrer que la famille $(x, f(x), \dots, f^{n-1}(x))$ est une base de E. Ecrire la matrice de f dans cette base.

Exercice 5. Soit $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$. Soit :

$$\varphi: \mathcal{M}_2(\mathbb{K}) \to \mathcal{M}_2(\mathbb{K})$$

$$M \mapsto AM.$$

Montrer que φ est un endomorphisme et donner la matrice de φ dans la base canonique de $\mathcal{M}_2(\mathbb{K})$.

Exercice 6. Soit $E = \mathbb{K}^n$ et soit $\mathcal{B} = (e_j)_{j \in [\![1,n]\!]}$ une base de E. Soit f l'endomorphisme de E dont la matrice dans la base \mathcal{B} est :

$$M = \begin{pmatrix} \alpha & \beta & \dots & \beta \\ \beta & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \beta & \dots & \beta & \alpha \end{pmatrix},$$

avec $\alpha, \beta \in \mathbb{K}$.

Soit $\mathcal{B}'=(e'_j)_{j\in \llbracket 1,n\rrbracket}$ définie par : pour tout $j\in \llbracket 1,n\rrbracket,\,e'_j=\sum_{i=1}^j e_k.$

Montrer que \mathcal{B}' est une base de E et former la matrice de f dans \mathcal{B}' .

Exercice 7. Soit E un espace vectoriel ayant pour base $\mathcal{B} = (e_1, e_2, e_3, e_4)$. Reconnaitre l'application linéaire f telle que :

Exercice 8. Soit $f \in \mathcal{L}(\mathbb{R}^2)$ défini par f(x,y) = (3x + 6y, -x - 2y). Écrire la matrice M de f dans la base canonique de \mathbb{R}^2 , et en déduire que f est un projecteur.

Exercice 9. Soit f l'endomorphisme de $\mathbb{C}_4[X]$ défini par : $f:P\mapsto P(1-X)$ et soit A sa matrice dans la base canonique. Déterminer A^{-1} .

Indication: On pourra remarquer que $f \circ f = Id$

Exercice 10. Soit $f \in \mathcal{L}(\mathbb{R}^3)$ dont la matrice dans la base canonique est :

$$A = \left(\begin{array}{rrr} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array}\right).$$

- 1. Déterminer $\operatorname{Ker} f$ et $\operatorname{Im} f$.
- 2. Démontrer que ces deux espaces sont supplémentaires dans \mathbb{R}^3 .
- 3. En déduire une base de \mathbb{R}^3 réunion d'une base de Ker f et d'une base de Im f et écrire la matrice de f dans cette
- 4. Ecrire f comme la composée de deux endomorphismes connus.

Exercice 11. On munit \mathbb{R}^3 d'une base $\mathcal{B} = (e_1, e_2, e_3)$ et on considère l'endomorphisme f de \mathbb{R}^3 dont la matrice en

base
$$B$$
 est $A = \begin{pmatrix} 3 & -3 & 6 \\ 1 & -1 & 2 \\ -1 & 1 & -2 \end{pmatrix}$.
1. Déterminer f^2 . En déduire que $\operatorname{Im}(f) \subset \operatorname{Ker}(f)$.

- 2. Donner $\operatorname{rg} f$ et $\dim (\operatorname{Ker} f)$ puis déterminer une base du noyau et de l'image de f.
- 3. Déterminer une base de \mathbb{R}^3 dans laquelle la matrice de f est $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Exercice 12. Soit $A \in \mathcal{M}_n(\mathbb{K})$ vérifiant $A^k = I_n$ (où $k \in \mathbb{N}^*$). On pose $B = I_n + A + \cdots + A^{k-1}$ et on note u et vles endomorphismes de $E = \mathbb{K}^n$ canoniquement associés à A et B.

- 1. Montrer que $\operatorname{Ker} v = \operatorname{Im}(u id_E)$, $\operatorname{Im} v = \operatorname{Ker} (u id_E)$ et que les espaces $\operatorname{Ker} v$ et $\operatorname{Im} v$ sont supplémentaires dans E.
- 2. Donner la matrice de v dans une base adaptée. Montrer qu'alors la somme des coefficients diagonaux de cette matrice est krg(B).

Exercice 13. Soit $u: \mathbb{R}_2[X] \to \mathbb{R}^3$ l'application linéaire définie pas u(P) = (P(0), P(1), P(2)). Notons $\mathcal{B} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$ et $\mathcal{C} = (e_1, e_2, e_3)$ celle de \mathbb{R}^3 .

- 1. Prouver que u est un isomorphisme
- 2. Déterminer u^{-1}

Exercice 14.

Soit $n \in \mathbb{N}^*$, on considère la matrice $A = (a_{i,j}) \in \mathcal{M}_{n+1}(\mathbb{R})$ définie par :

$$\forall i, j \in [[1, n+1]], \ a_{i,j} = \begin{cases} \binom{j-1}{i-1} & \text{si } i \leq j \\ 0 & \text{si } i > j, \end{cases}$$

1. Montrer que l'application :

$$f: \quad \mathbb{R}_n[X] \quad \to \quad \mathbb{R}_n[X] \\ P(X) \quad \mapsto \quad P(X+1)$$

est un endomorphisme et donner sa matrice dans la base canonique de $\mathbb{R}_n[X]$.

2. En déduire que A est inversible et calculer A^{-1} .

2 Changement de base

Exercice 15. Dans \mathbb{R}^3 , déterminer la matrice de passage de la base \mathcal{B}_1 à la base \mathcal{B}_2 , où :

$$\mathcal{B}_1 = ((1,2,1),(2,3,3),(3,7,1)),$$

$$\mathcal{B}_2 = ((3,1,4), (5,3,2), (1,-1,7)).$$

Exercise 16. Notons $\mathcal{B} = ((1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1))$ la base canonique de \mathbb{K}^4 .

- 1. Montrer que la famille $\mathcal{B}' = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1))$ est une base de \mathbb{R}^4 .
- 2. Posons x = (2, -1, 3, 4). Déterminer les coordonnées de x dans la base \mathcal{B}' .

Exercice 17. Donner la matrice M dans la base canonique de \mathbb{R}^3 de la projection sur le plan d'équation x+y-z=0parallèlement à la droite Vect(1,1,1).

Comment vérifier le résultat obtenu?

Exercice 18.

On considère la base $\mathcal{B} = (1, X, X^2, X^3)$ de $\mathbb{R}_3[X]$.

- 1. Montrer que la famille $\mathcal{B}' = (1, X, X(X-1), X(X-1)(X-2))$ est une base de $\mathbb{R}_3[X]$.
- 2. Déterminer la matrice de passage de \mathcal{B} à \mathcal{B}' .
- 3. Déterminer la matrice de passage de \mathcal{B}' à \mathcal{B} .
- 4. Soit u l'endomorphisme de dérivation, c'est-à-dire $u: \mathbb{R}_3[X] \to \mathbb{R}_3[X], P \mapsto P'$. Déterminer la matrice de u dans la base \mathcal{B} puis la matrice de u dans la base \mathcal{B}' .

Exercise 19. On pose $v_1 = (1,0,0)$, $v_2 = (1,1,0)$, $v_3 = (1,2,3)$, $F = \text{Vect}(v_1,v_2)$, $G = \text{Vect}(v_3)$.

- 1. Montrer que $\mathcal{B} = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 . On pose alors $F = \text{Vect}(v_1, v_2), G = \text{Vect}(v_3), \text{ de sorte que } \mathbb{R}^3 = F \oplus G.$
- 2. Soit s la symétrie par rapport à F dans la direction de G. Déterminer $\mathcal{M}_{\mathcal{B}}(s)$.
- 3. Déterminer la matrice de s dans la base canonique de \mathbb{R}^3 .
- 4. En déduire l'expression de s.

Exercise 20. On note \mathcal{B}_c la base canonique de \mathbb{R}_3 et $\mathcal{B} = ((1,3,1),(1,0,-2),(0,1,-1))$. On considère l'endomorphisme de \mathbb{R}^3 défini par :

- 1. Vérifier que \mathcal{B} est une base de \mathbb{R}^3 .
- 2. Déterminer $\mathcal{M}_{\mathcal{B}_c}(u)$. On note $A = \mathcal{M}_{\mathcal{B}_c}(u)$.
- 3. Déterminer $\mathcal{M}_{\mathcal{B}}(u)$. On note $B = \mathcal{M}_{\mathcal{B}}(u)$.
- 4. Calculer A^n pour $n \in \mathbb{N}$.

Exercice 21. Soit
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -1 & 2 \end{pmatrix} \in \mathcal{M}_{2,3}(\mathbb{K}).$$

Déterminer l'application linéaire canoniquement associée à A.

Exercice 22.

On considère f l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice :

$$A = \left(\begin{array}{rrr} 12 & 6 & 0 \\ -20 & -10 & 0 \\ -6 & -3 & -1 \end{array} \right).$$

On note \mathcal{B} la base canonique de \mathbb{R}^3 .

- 1. (a) Soit $(x, y, z) \in \mathbb{R}^3$, déterminer f(x, y, z).
 - (b) Déterminer une base de Ker f et une base de Im f.
 - (c) La matrice A est-elle inversible?
- 2. On pose $e_1 = (1, -2, 0)$, $e_2 = (-3, 5, 1)$, $e_3 = (0, 0, 1)$ et $\mathcal{C} = (e_1, e_2, e_3)$.
 - (a) Montrer que \mathcal{C} est une base de \mathbb{R}^3 .
 - (b) Déterminer la matrice de passage P de \mathcal{B} à \mathcal{C} et la matrice de passage Q de \mathcal{C} à \mathcal{B} .
 - (c) Déterminer $D = Mat_{\mathcal{C}}(f)$.
 - (d) Montrer que :

$$\forall n \in \mathbb{N}^*, A^n = PD^nP^{-1}.$$

- (e) Déterminer A^n , pour $n \in \mathbb{N}^*$.
- (f) En déduire f^n , pour $n \in \mathbb{N}^*$.

Exercice 23. Soit $A = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$ et u l'endomorphisme de $E = \mathbb{R}^3$ canoniquement associé à A.

- 1. Montrer que Ker $(u id_E)$, Ker $(u 2id_E)$ et Ker $(u + 4id_E)$ sont de dimension 1 et en donner des bases.
- 2. On se donne e_1 , e_2 et e_3 des vecteurs non nuls de chacun des noyaux précédents. Montrer que (e_1, e_2, e_3) est une
- 3. Donner la matrice D de u dans cette base. Justifier qu'il existe $P \in GL_3(\mathbb{R})$ (que l'on explicitera) telle que $\forall n \in \mathbb{N}, A^n = PD^nP^{-1}.$

Exercice 24. Soit A la matrice :

$$A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array}\right).$$

Soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A.

Déterminer les $\lambda \in \mathbb{R}$ tels qu'il existe $x \in \mathbb{R}^3 \setminus \{0\}$ tel que $f(x) = \lambda x$.

En déduire qu'il existe une base de \mathbb{R}^3 dans laquelle la matrice de f est diagonale, puis exprimer, pour tout $n \in \mathbb{N}$, A^n .

3 Noyau, image et rang d'une matrice

Exercice 25. Soit $A = \begin{pmatrix} 1 & 2 & -1 \\ 3 & -1 & 0 \\ 4 & 1 & -1 \end{pmatrix}$.

Déterminer Ker A, Im A, $\operatorname{rg}(A)$.

Exercice 26. Déterminer en fonction de a le rang de $A = \begin{pmatrix} 1 & 1 & -1 & 1 \\ 1 & 2 & a & 2 \\ 2 & a & 2 & 3 \end{pmatrix}$

Exercice 27. Calculer le rang et l'inverse des matrices suivantes :

$$A = \begin{pmatrix} -2 & 1 & -1 \\ 1 & 1 & 2 \\ 3 & -2 & 1 \end{pmatrix} \qquad ; \qquad B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 1 & 3 & 2 \end{pmatrix}.$$

Exercice 28. (D'après CCP option PC)

Montrer que la matrice carrée d'ordre n, $A = (\sin(i+j))$ est de rang au plus 2.

Exercice 29.

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$ définie par : $a_{i,j} = 1$ si i = j et $a_{i,j} = a$ sinon, avec $a \in \mathbb{K}$. Déterminer le rang de A en fonction de a et n.

Exercice 30. Soit $E = \mathbb{R}_3[X]$ et soient u et v les endomorphismes suivants :

Soit $\lambda \in \mathbb{R}$ et soit M_{λ} la matrice dans la base canonique de l'endomorphisme $u + \lambda v$. Déterminer M_{λ} et le rang de $u + \lambda v$ en fonction de λ .

Exercice 31. Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, soit $r \leq \min(n,p)$.

On pose:

$$J_r = \left(\begin{array}{c|c} I_r & 0_{r,p-r} \\ \hline 0_{n-r,r} & 0_{n-r,p-r} \end{array}\right) \in \mathcal{M}_{n,p}(\mathbb{K}).$$

1. Montrer que:

$$\operatorname{rg}(A) = r \Leftrightarrow \exists P \in GL_p(\mathbb{K}), \ \exists Q \in GL_n(\mathbb{K}), \ A = QJ_rP.$$

2. En déduire une nouvelle preuve de $\operatorname{rg}(M) = \operatorname{rg}({}^{t}M)$.

Exercice 32. Soit $M \in \mathcal{M}_n(\mathbb{K})$.

1. Montrer que :

$$\operatorname{rg}(M) = 1 \iff \exists X, Y \in \mathcal{M}_{n,1}(\mathbb{K}) \setminus \{0\}, \ M = X^t Y$$

2. Supposons que rg (M) = 1. Montrer qu'il existe $\alpha \in \mathbb{K}$ tel que :

$$\forall k \in \mathbb{N}^*$$
. $M^k = \alpha^{k-1}M$

4