PPKE ITK

A számítógépes grafika alapjai

Geometriai modellezés

Előadó: Benedek Csaba

Tananyag: Szirmay-Kalos László, Benedek Csaba

Visszatekintő: a számítógépes grafika feladatai

Modellezés

• 2D geometria: pontok, görbék, síkbeli területek

• 3D geometria: mint 2D + térbeli felületek, 3D-s testek

- Magasabb dimenziójú adatok vizualizációja (mérnöki gyakorlat): alsóbb dimenziós altérbe vetítéssel
- *Törtdimenzió*: fraktálok

Pontok definiálása (2D)

Koordináták megadása alkalmas koordináta rendszerben:

Descartes koord. rsz. eltolás

Polár koord. rsz. elforgatás

Baricentrikus Homogén vetítés (lásd később)

Görbék definiálása (2D)

 $y(t) = y_0 + R \sin 2\pi t$

• Koordinátáik (helyvektoraik) kielégítenek egy egyenletet :

implicit:

$$f(x, y) = 0$$
,
 $f(r) = 0$

 2D egyenes:
 $n \cdot (r - r_0) = 0$

 Kör:
 $(x - x_0)^2 + (y - y_0)^2 - R^2 = 0$,
 $|r - r_0|^2 - R^2 = 0$

 paraméteres:
 $x = x(t)$, $y = y(t)$,
 $r = r(t)$

 2D egyenes:
 $t \in [-\infty, \infty]$
 $r = r_0 + v t$
 $x(t) = x_0 + v_x t$,
 $r = r_0 + v t$
 $y(t) = y_0 + v_y t$,
 $y(t) = y_0 + v_y t$,

 Kör:
 $t \in [0,1]$
 $x(t) = x_0 + R \cos 2\pi t$
 $r = r_0 + R(\cos 2\pi t, \sin 2\pi t)$

3D szakasz

• $p_1 = (x_1, y_1, z_1)$ -től $p_2 = (x_2, y_2, z_2)$ -ig tartó szakasz egyenlete:

$$x(t) = x_{1} \cdot t + x_{2} \cdot (1 - t),$$

$$y(t) = y_{1} \cdot t + y_{2} \cdot (1 - t), \quad t \in [0,1]$$

$$z(t) = z_{1} \cdot t + z_{2} \cdot (1 - t),$$

$$p_{1} \bullet p_{2}$$

1-t súly

Szabadformájú görbék

- Klasszikus görbeszegmensek egyszerű analitikus egyenlet pl szakasz, körvonal
- Általános eset nem írható le klasszikus görbeszegmensekkel
- Szakaszok sorozatával közelítés nem differenciálható a kapcsolódási pontokban
 - pl mechanikai alkalmazások esetén ill. animációknál megengedhetetlen – pl út-görbe esetén, a sebesség, gyorsulás nem változhat ugrásszerűen
 - most csak a modellezésről beszélünk (!) a végső rasztertizáció más kérdés...

Szabadformájú görbék

- Polinom: $x(t) = \sum_{i=0}^{n} a_i \cdot t^i$, $y(t) = \sum_{i=0}^{n} b_i \cdot t^i$
 - vagy vektoros formában:

$$\vec{r}(t) = \sum_{i=1}^{n} [a_i, b_i] \cdot t^i, t \in [0,1]$$

- polinomegyütthatóknak nincs szemléletes tartalma, közvetlen származtatásuk nehézkes
- Definíció kontrolpontokkal:
 - a görbe haladjon a mintapontokkal kijelölt út mentén!

Szabadformájú görbék

- Kontrollpontos definíció fajtái:
 - Interpoláció
 - megköveteljük, hogy a görbe átmenjen a vezérlőpontokon

- Approximáció
 - csak azt írjuk elő, a görbe "nagyjából" kövesse a kijelölt irányvonalat – cserébe más jó tulajdonságokat várunk

Lagrange interpoláció

• Kontrolpontok:

$$\vec{\mathbf{r}}_1, \vec{\mathbf{r}}_2, \dots, \vec{\mathbf{r}}_n$$

Csomópont (knot) vektor
 (t₁, t₂,...,t_n)

• Keressük azt az $\vec{r}(t) = \sum_{i} [a_i, b_i] \cdot t^i$ -t, amelyre

$$\vec{r}(t_1) = \vec{r}_1, \vec{r}(t_2) = \vec{r}_2, ..., \vec{r}(t_n) = \vec{r}_n$$

azaz: $\vec{r}(t_j) = [x(t_j), y(t_j)] = \sum_{i=0}^{n-1} [a_i, b_i] \cdot t_j^i = \vec{r}_j$

$$j=1,2,\ldots,n$$

Lagrange interpoláció

Megoldás:

$$\vec{r}(t) = \sum_{i=1}^n L_i(t) \cdot \vec{r}_i \qquad \text{ahol} \qquad L_i(t) = \frac{\displaystyle\prod_{j \neq i} (t - t_j)}{\displaystyle\prod_{j \neq i} (t_i - t_j)}$$

• Pl n=3

$$r(t) = \frac{(t - t_2)(t - t_3)}{(t_1 - t_2)(t_1 - t_3)} \cdot \vec{r}_1 + \frac{(t - t_1)(t - t_3)}{(t_2 - t_1)(t_2 - t_3)} \cdot \vec{r}_2 + \frac{(t - t_1)(t - t_2)}{(t_3 - t_1)(t_3 - t_2)} \cdot \vec{r}_3$$

Lagrange interpoláció bázisfüggvényei

Görbeszerkesztés Lagrange interpolációval

Gond 1: egy-egy új/módosított vezérlőpont az egész görbe alakját változtatja

Gond 2: nem várt görbületek

Lagrange görbe implementációja

Együttható számítás:

```
double L( int i, double tt ) {
  double Li = 1.0;
  for(int j = 0; j < ptnum; j++) {
      if (i != j) Li *= (tt - knotVector[j]) /
      (knotVector[i] -knotVector[j]);
  }
  return Li;
}</pre>
```

Egyenletes knot vektor inicializálás:

```
for (int i=0;i<ptnum;i++) {
    knotVector[i]=(double)i/(double(ptnum-1));
}</pre>
```

Lagrange görbe implementációja

(Csak pszeudo kód!!!)

```
MyPoint CalcLagrangePoint(float t) {
    MyPoint actPT(0,0);

    for(int i = 0; i < ptnum; i++)
        actPT+=ctrlPoint[i]*L(i,t);
}

return actPT;
}</pre>
```

Approximáció vs interpoláció

- Cél: ne legyen felesleges hullámosság
- Könnyítés: nem írjuk elő hogy a görbe átmenjen az összes vezérlőponton, csupán
 - a görbe minden pontja legyen a vezérlőpontok konvex burkán belül
 - az első és az utolsó vezérlőpontra pontosan illeszkedjen

Bezier approximáció

- Keresett görbe: $\vec{r}(t) = \sum_{i=0}^{m} B_i(t) \cdot \vec{r}_i$
- $B_i(t)$ ne okozzon indokolatlan hullámokat
 - Konvex burok tulajdonság elégséges feltétele:

$$B_{i}(t) \ge 0$$
, $\forall t \in [0,1]$, $i = 0,1,...,m$

$$\sum_{i=0}^{m} B_i(t) = 1, \forall t \in [0,1]$$

Bézier approximáció

Súlyfüggvények a Bernstein polinomok

$$\vec{r}(t) = \sum_{i=0}^{m} B_i^{(m)}(t) \cdot \vec{r}_i \qquad B_i^{(m)}(t) = \binom{m}{i} t^i \cdot (1-t)^{m-i}$$

Nemnegatívitás triviális

$$B_i^{(m)}(t) \ge 0, \quad \forall m, i, t$$

Súlyfüggvények összege mindig 1 – binomiális tétel:

$$1 = (t + (1 - t))^{m} = \sum_{i=0}^{m} {m \choose i} t^{i} \cdot (1 - t)^{m-i} = \sum_{i=0}^{m} B_{i}^{(m)}(t), \quad \forall t \in [0, 1]$$

Kezdet-vég feltétel teljesül, mivel:

$$B_0^{(m)}(0) = 1$$
 $B_m^{(m)}(1) = 1$

Bezier approximáció bázisfüggvényei

$$B_{i}^{(m)}(t) = {m \choose i} t^{i} \cdot (1-t)^{m-i}$$

Bernstein polinomok

$$\vec{r}(t) = \sum_{i=0}^{m} B_i^{(m)}(t) \cdot \vec{r}_i$$

BezierCurve implementáció

```
MyPoint ctrlpoints[MAXPTNUM];
  int ptnum;
 float B(int i, float t) {
      GLfloat Bi = 1.0;
      for (int j = 1; j \le i; j++) Bi *= t * (ptnum-j)/j;
      for( ; j < ptnum; j++) Bi *= (1-t);
      return Bi;
MyPoint CalcBezierPoint (float t) { //Pszeudo Point
       MyPoint actPT(0,0);
     for (int i = 0; i < ptnum; i++) {
            actPT+=ctrlpoints [i]*L(i,t);
      return actPT;
```

Bezier görbe OpenGL implementációja

- void glMap1{fd} (Glenum target, TYPE u1, TYPE u2, GLInt stride, GLInt order, const TYPE * points)
 - Egydimenziós leképezés,
 - target: mit reprezentálnak a kontrollpontok: modelltérbeli pontot (GL MAP1 VERTEX 3) vagy színt (GL MAP1 COLOR 4) stb
 - u1, u2: paramétertartomány (nálunk [0,1])
 - stride: nálunk a pontok dimenziója (itt 3)
 - order: görbe rendje (kpontok száma+1)
 - points: kontrollpontokat tartalmazó tömb
 - Előtte engedélyezni kell az opciót: glEnable (GL MAP1 VERTEX 3);

Bezier görbe OpenGL implementációja

- Kontroll pontok definiálása
 - GLfloat ctrlpoints[MAXPTNUM][3];
 - ctrlpoints[i][j] az i-edik kontrolpont j-edik koordinátája
 - 3D pontokkal dolgozik, a pont koordinátái rendre: [x,y,z], 2D-ben z=0-t használjunk

Bezier görbe OpenGL implementációja

- void glEvalCoord1{fd}(TYPE u);
 - az u paraméterértéknél kiértékeli a görbét, azaz meghatározza az aktuális pontot és esetünkben a glvertex*() parancsot is automatikusan végrehajtja rá (tehát azonnal meg is jeleníti)

Bonyolult görbék

- Sok vezérlőpont
- Ha egy polinomot illesztünk: nagyon magas fokszám kell (hullámosság, nem teljesül a lokális vezérelhetőség)
- Összetett görbék:
 - Több alacsony fokszámú + folytonos illesztés

Folytonossági kategóriák

• Cⁿ folytonos: a két görbe szegmens n-edik deriváltig megegyezik az illeszkedési pontban: $r_1^{(n)}(t_{\text{veg}}) = r_2^{(n)}(t_{\text{kezd}})$

 pl rugó animáció: a pozíciókoordináták Cⁿ folytonossága biztosítja az erő sima változását (F=ma=mx")

Spline

- Spline: C² folytonos összetett görbe
 - Harmadfokú spline
 - B-spline

Harmadfokú spline

- $p(t) = a_3 t^3 + a_2 t^2 + a_1 t^4 + a_0$ • Új szemléletes reprezentáció: $p(0) = a_0$ $p(1) = a_3 + a_2 + a_1 + a_0$ $p'(0) = a_1$ $p'(1) = 3a_3 + 2a_2 + a_1$ $p_i'(1)$ $p_i'(1)$ $p_i'(1)$ $p_{i+1}'(0)$ $p_{i+1}(0)$
- $(p(0),p(1),p'(0),p'(1)), \leftrightarrow (a_3,a_2,a_1,a_0)$
- $p_i(0)=r_i$, $p_i(1)=r_{i+1}=p_{i+1}(0)$
- C¹ folytonosság: 2 paraméter közös
- C² folytonosság: $p_i''(1) = p_{i+1}''(0)$

Harmadfokú spline

- PI: Két egymást követő szegmens $p_1(t)$, $p_2(t)$ paramétereinek számítása,
 - Adott: r₁, r₂, r₃ vezérlőpontok
 - Ismeretlen: $p_1(0), p_1(1), p_1'(0), p_1'(1), p_2(0), p_2(1), p_2'(0), p_2'(1)$ paraméterek
- 6 egyenlet, 8 ismeretlen

```
• p_1(0)=r_1,
```

- $p_1(1)=r_2$
- $p_2(0)=r_2$
- $p_2(1)=r_3$
- $p'_1(1)=p'_2(0)$
- $p_1''(1) = p_2''(0)$: $p_1''(t) = 6a_{13}t + 2a_{12} = f(p_1(0), p_1(1), p_1'(0), p_1'(1)),$ $p_2''(t) = 6a_{23}t + 2a_{22} = f(p_2(0), p_2(1), p_2'(0), p_2'(1)),$
- p'₁(0) és p'₂(1) rögzítésével teljesen határozott lesz

B-spline

- Válasszunk olyan reprezentációt, amely C² folytonos, ha
 3-t közösen birtokolnak
- Reprezentáció: vezérlőpontok egy görbeszegmenst 4 egymást követő vezérlő pont definiál

$$\mathbf{r}^{i}(t) = \mathbf{B}_{0}(t)\mathbf{r}_{i} + \mathbf{B}_{1}(t)\mathbf{r}_{i+1} + \mathbf{B}_{2}(t)\mathbf{r}_{i+2} + \mathbf{B}_{3}(t)\mathbf{r}_{i+3}$$

$$\mathbf{r}^{i+1}(t) = \mathbf{B}_{0}(t)\mathbf{r}_{i+1} + \mathbf{B}_{1}(t)\mathbf{r}_{i+2} + \mathbf{B}_{2}(t)\mathbf{r}_{i+3} + \mathbf{B}_{3}(t)\mathbf{r}_{i+4}$$

B-spline bázisfüggvények

• Cirkuszi elefántok + Járulékos szempont: $\Sigma B_i(t) = 1$

$$B_0(t) = (1-t)^3/6$$
 $B_1(t) = (1+3(1-t)+3t(1-t)^2)$ $B_3(t) = t^3/6$ $B_2(t) = (1+3t+3(1-t)t^2)/6$

B-spline görbeszegmens

$$B_3(t) = t^3 / 6$$
 $B_2(t) = (1+3t+3(1-t)t^2) / 6$

A B-spline lokálisan vezérelhető

NUBS: Non-Uniform B-spline

- B-spline
 - minden szegmens 1 hosszú paramétertartomány
 - Akkor megy át a kontrol ponton, ha három egymás követő kontrolpont egymásra illeszkedik
- NUBS
 - az i. szegmens t_i -től t_{i+1} -ig.
 - Egy kontrolpont többször is számíthat:
 - A legalább 3-szoros pontokon a görbe átmegy

NUBS tulajdonságok

- Vezérlőpont "súlyozása" közeli paramétertartomány kicsire választása
 - csak durva súlyozásra alkalmas, nehéz szemléletesen állítani a megfelelő hossz-paramétert
 - Zérus hosszúságú intervallumok a görbe interpolálja a vezérlőpont
 - Elsőfokú (sátor) esetén elég 1 zérus hosszú intervallum
 - Másodfokú NUBS esetén 2, harmadfokúnál 3 egymást követő intervallumot kell zérusra állítani

Idáig: Nem racionális B-spline

Idáig a súlyfüggvények: $\Sigma B_i(t) = 1$

Súlypont:

$$\mathbf{r}(t) = \frac{\sum (\mathbf{B}_{i}(t) \mathbf{r}_{i})}{\sum \mathbf{B}_{i}(t)} = \sum \mathbf{B}_{i}(t) \mathbf{r}_{i}$$

Polinom!

NURBS: Non-uniform Rational B-spline

 $\mathbf{r}(t) = \frac{\sum (\mathbf{w_i} \mathbf{B_i}(t) \ \mathbf{r_i})}{\sum \mathbf{w_j} \mathbf{B_j}(t)} = \sum \frac{\mathbf{w_i} \mathbf{B_i}(t)}{\sum \mathbf{w_j} \mathbf{B_j}(t)}$

Polinom tört! racionális

 $B_i^*(t)$

NURBS súly

Nurbs görbe OpenGL implementációja

Adattagok:

```
GLUnurbsObj *theNurb; //NURBS objektum
ORDER //NURBS rendje - ellentétben
 Bézierrel, ez tőlünk függő szabad
 partaméter, nálunk legyen konst 3!
GLfloat ctrlpoints[MAXPTNUM][3];
 //kontrollpontok
GLfloat knots[MAXPTNUM+ORDER];
 //kiértékelés paraméterértékeit
 tartalmazó vektor
```

Nurbs görbe létrehozása

```
theNurb=gluNewNurbsRenderer();
gluNurbsProperty(theNurb,GLU SAMPLIN TOLERANCE, 25.0);
gluNurbsProperty(theNurb, GLU DISPLAY MODE, GLU FILL);
ptnum= <<aktuális kontroll pontok</pre>
 száma>>//knot vektor hasznos része
 mindig ptnum+ORDER elemű
//Knot inicializáció: töltsük fel a KNOT
 vektor első ptnum+ORDER elemét osszuk be
 a [0 1] intervallumot egyenletesen
```

Nurbs görbe OpenGL implementációja

```
theNurb=gluNewNurbsRenderer();
...
gluNurbsProperty(theNurb,GLU_SAMPLIN_T
   OLERANCE, 25.0);
gluNurbsProperty(theNurb,
   GLU_DISPLAY_MODE, GLU_FILL);
```

Területek

Határ + belső tartományok azonosítása Belső tartományok:

Felületek

- Felület 3D pontok halmaza:
 - koordinátáik kielégítenek egy egyenletet
 - implicit: f(x, y, z) = 0
 - gömb: $(x x_0)^2 + (y y_0)^2 + (z z_0)^2 r^2 = 0$
 - paraméteres: x = x(u,v), y = y(u,v), z = z(u,v),
 u,v∈ [0,1]
 - gömb: $x = x_0 + r \cos 2\pi u \sin \pi v$ $y = y_0 + r \sin 2\pi u \sin \pi v$ $z = z_0 + r \cos \pi v$ $u, v \in [0,1]$
- Klasszikus felületek
 - definíció = paraméterek megadása

Kvadratikus felületek

•
$$\underline{\mathbf{x}}^{\mathsf{T}} \mathbf{A} \underline{\mathbf{x}} = \mathbf{0}$$

$$\underline{x}^{T} = [x, y, z, 1]$$

- A koordináták legfeljebb másodfokon
- gömb, ellipszoid, sík, paraboloid, hiperboloid, hengerfelület,...

Ellipszoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0$$

$$\frac{\text{Végtelen kúp}}{\text{a}^2} + \frac{\text{y}^2}{\text{b}^2} - \text{z}^2 = 0$$

$$\frac{\text{Végtelen henger}}{\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0}$$

Szabadformájú felületek: r(u,v)

Definíció kontrolpontokkal

$$\Sigma_{ij} B_{ij}(u,v) = 1 \text{ minden } u,v-re$$

$$\mathbf{r}(u,v) = \sum \sum B_{ij}(u,v) \mathbf{r}_{i,j}$$

$$u,v \in [0,1]$$

- Egységnégyzet leképezése a felületre (2D csomópontmátrix)
- Kontrolpontok 2D tömbbe rendezettek

Szorzatfelületek

Definíció kontrolpontokkal

$$\mathbf{r}(u, \mathbf{v}) = \mathbf{r}_{\mathbf{v}}(u) = \Sigma_{i} B_{i}(u) \mathbf{r}_{i}(\mathbf{v})$$
$$\mathbf{r}_{i}(\mathbf{v}) = \Sigma_{j} B_{j}(\mathbf{v}) \mathbf{r}_{i,j}$$

Vezérlőpontok, súlyok módosítása

Vezérlőpontcsoportok módosítása

Szobrászkodás szabadformájú felületekkel

Szobrászkodás szabadformájú felületekkel

Felosztásos (subdivision) módszerek

- Durva poligonmodell simítása
 - NURBS illesztés, majd finomabb poligon közelítés
 - közvetlen finomítás (subdivision)

Felosztásos (subdivision) módszerek

Subdivision felületek (Catmull-Clark)

$$\bullet = 1/4 \Sigma \bullet$$

$$\bullet = 1/4 \Sigma \bullet + 1/4 \Sigma \bullet$$

$$= 1/2$$
 + 1/16 Σ + 1/16 Σ + 1/16 Σ

Subdivision felületek (Catmull-Clark)

Durva poligon modell

Subdivision simítás: 1 szint

Subdivision simítás: 2. szint

Progresszív hálók

- "Túl finom" poligonháló nagy méret
- Közelítés kevesebb poligont tartalmazó hálóval
- Hoppe-féle progresszív háló: élzsugorítások sorozata
 - a poligonhálót legkevésbé módosító élt töröljük
 - élek prioritása a legkisebb törlendő
 - heurisztika pl: tartsuk meg azokat az éleket akik hosszúak, illetve a rájuk illeszkedő lapok normálisa által bezárt szög nagy (nem garantálja a topológia megtartását)

Progresszív hálók

- Egyszerűsítés előnye:
 - kisebb leíró adatmennyiség
 - gyorsabb képszintézis (pl játék)
 - több részletezettségi szintet alkalmazó geometriai modellek
- Progresszív tárolás:
 - tároljuk a durva hálót és az egyszerűsítés műveletek inverzét
 - alkalmazás: pl lassú hálózati átvitel először a durva modell érkezik, majd ez fokozatosan finomítható

Koch görbe

1.5 ábra

Forrás: Máté László, BME

Koch görbe hossza végtelen

Görbe "hossza": $h_{Koch} = \lim_{i \to \infty} h_i =$ $\lim_{i \to \infty} (4/3)^i = \infty$

Koch görbe "területe" O

Minden sorozatelem tartalmazza a teljes görbét

Görbe "területe":

$$T_{Koch} \le lim_{i \to \infty} T_i =$$

$$\lim_{i\to\infty} (2/3)^i = 0$$

Fraktálok

Hausdorff dimenzió

$$N = 2$$

$$N = 4$$

$$N = 8$$

$$r = \frac{1}{2}$$

$$r = \frac{1}{2}$$

$$r = \frac{1}{2}$$

$$N = 1/r^{D}$$

$$D = (\log N) / (\log 1/r)$$

Nem önhasonló objektumok dimenziója

Vonalzó (l)	db
1	1
r = 1/3	N = 4
r ²	N^2
r^{m}	N^{m}

Hossz(
$$l$$
) = l db = l N^m = l ($1/r$ D) ^m = l ($1/r$ m) D = $1/l$ D -1

$$N=1/r^{D}$$

$$D = -\log Hossz(l) / \log l + 1$$

Testek

Ellenpéldák

- Érvényes testek: reguláris halmaz
 - nem lehetnek alacsony dimenziós elfajulásai
 - minden határpont mellett van belső pont
- Garantáltan érvényes testet építő módszerek
 - 2.5 dimenziós eljárások
 - speciális felületi modellezés: B-rep
 - Konstruktív tömörtest geometria

2.5 dimenziós módszerek

Kihúzás: extrude

Forgatás: rotate

Felületmodellezők

Test = határfelületek gyűjteménye

Topológiai ellenőrzés (Euler tétel):

$$csúcs + lap = él + 2$$

B-rep: Euler operátorok

Gyakorlati Euler operátorok

• Edge split

$$csúcs + lap = él + 2$$

Poligon split

 Élzsugorítás v. csúcspont összevonás

-Edge Collapse

Gyakorlati Euler operátorok

Poligon kihúzás

(Face extrude):

e_p: a poligon éleinek a száma

- e_p+1 új lap,
- e_p új csúcs
- 1 eltűnő lap

$$e'=e+2e_p$$
 $l'=l+e_p+1-1$ $c'=c+e_p$ $l'+c'=l+c+2e_p=e+2+2e_p=e'+2$

Poligon modellezés: téglatest

Poligon modellezés: 1. extruding

Poligon modellezés: 2. extruding

Poligon modellezés: 4. és 5. extruding

Poligon modellezés: 6. extruding

Subdivision simítás

Konstruktív tömörtest geometria (Constuctive Solid Geometry (CSG)

- Összetett testeket primitív testekből halmazműveletek (egyesítés, metszet, különbség) alkalmazásával építi fel
- Regularizált műveletek

CSG fa

Virtuális világ tárolása

Belső világ tárolása

- Geometria: pontok koordinátái
- Topológia: élek-pontok; lapok-pontok;...
- hierarchia: objektum-lapok-élek-pontok
- transzformáció: lokális és világkoordináta rendszerek

Egyszerű hierarchikus modell

Geometria kiemelése


```
Szárnyasél adatstruktúra
 class BRepCore {
 public:
    void MEVVF(...);
    void MVE(float t, Edge& e);
    void MEF(Vertex& v1,Vertex&
    void Move(Vertex& v, Vector p)
 };
 class BRep : BRepCore {
    void FaceExtrude();
                                              Pont + (x,y)
    void FaceSplit();
    void EdgeCollapse();
    void VertexSplit();
                                         lap
```

Hierarchikus színtér gráfok

