

 $S_{\rm N}1$ and E1 have identical rate determining steps, so they generally occur simultaneously and have the same properties.

	S _N 2 and E2	S _N 1/E1				
mechanism	one step—this single step is the rate-determining step (RDS)	two steps—RDS is formation of carbocation				
big	S _N 2: steric hindrance blocking Nu (Nu is in RDS)	stabilizing carbocation				
obstacle	E2: blocking B isn't a big obstacle (B doesn't join substrate)	(Nu/B isn't in RDS, so blocking it isn't an obstacle)				
stereo-	S _N 2: inversion (backside attack, since LG blocks frontside)	S _N 1: racemization (planar carbocation intermediate)				
chemistry	E2: cis vs. trans determined by anti-periplanar transition-state	E1: both cis and trans isomers will be produced				
regio-	E2: possible products from deprotonation of any β-carbon	E1: possible products from deprotonation of any β -C				
chemistry	major product w/ bulky base: less substituted (steric hindrance)	major product: more substituted alkene				
	major product with non-bulky base: more substituted	(e ⁻ -donating alkyl substituents stabilize alkenes)				
rate	Rate = k [substrate] [Nu or B], so [Nu/B] $\uparrow \rightarrow$ rate \uparrow	Rate = k [substrate], so [Nu ⁻ /B ⁻] $\uparrow \rightarrow$ rate unchanged				
expression	(substrate and Nu ⁻ /B ⁻ are in RDS)	(only the substrate is in RDS)				
Nu quality	requires good Nu/strong B (Nu/B is in RDS)	can work with a poor Nu/weak B				
	bulky Nu/B favors E2 vs. S _N 2 (blocking B isn't a big obstacle)	(Nu/B isn't in RDS)				
LG quality	requires good leaving group (because leaving group is in RDS)	requires good leaving group (because LG is in RDS)				
preferred	polar aprotic (no O-H or N-H bonds)	polar protic (at least one O-H or N-H bond)				
solvent?	(for S _N 2, hydrogen-bonds to solvent would block Nu)	(hydrogen-bonds to solvent stabilize carbocation)				
	(for E2, protic solvent would protonate the base)					
substrate	S_N2 : methyl>1°>2°; 3° gives no S_N2 (substitutents block Nu)	$3^{\circ} > 2^{\circ}$; methyl and 1° give no $S_N 1/E1$				
	E2: 1°, 2°, or 3° (blocking B is not a big obstacle)	(alkyl substituents stabilize the carbocation)				

comparing the same element

	charge	resonance	
nucleophilicity	negative charge → better Nu	resonance → worse Nu	
(char		(charge is stabilized)	
basicity negative charge → stronger base re		resonance → weaker base	
		(charge is stabilized)	
leaving-group ability	positive charge → better LG	resonance → better LG	
	(more willing to accept electrons)	(charge will be stabilized)	

comparing different elements

	same row	same column		
big difference	electronegativity	size		
nucleophilicity	less electronegative → better Nu	bigger → better Nu (usually)		
	(willing to donate electrons) (big Nu's are less hindered by solvent, more polar			
basicity less electronegative → stronger base		bigger → weaker base		
	(willing to donate electrons) (large base can spread out and stabilize electron densit			
leaving-group ability	more electronegative → better LG	bigger → better leaving group		
	(willing to accept electrons)	(big LG's can spread out and stabilize electron density)		

nucleophiles, leaving groups, bases

				nı	ıcleo	philes	· · · · · · · · · · · · · · · · · · ·					leaving groups			
N	O	F	N^{-}	O-	F-		good Nu $(S_N 2 \text{ or } S_N 1)$	N	Θ	F		0	N^+	O_{+}	good LG
P	S	Cl	P ⁻	S^{-}	C1		poor Nu (S _N 1 only)	P	S	Cl	40	_ α	P^+	S^{+}	not a LG
	Se	Br		Se	Br		not a Nu			Br	sulfonate	R-S-OR			
		Ŧ			ľ					I		Ö			
							The α can	rbon is attached to							
	cyanide NC (charge on the C) azide N ₃						the oxyge:	n, not to the sulfur.							
	bases			Nu	cleop	hiles	and bases sho	wn with charges be	fore att	acking	g.				
N	O	F		N	O		strong base (E2)	Lea	ving	grou	ps shown with	charges before leav	ving.		
P	S	Cl		P	S^{-}	Cl	weak base (E1)	The	tabl	es for	r individual ato	oms assume no reso	nance.	Resor	nance
		Br				Br	not a base	makes atoms into worse nucleophiles and bases and into better leaving							
		I			₽ groups.										

what happens in S_N2 , S_N1 , E2, and E1 mechanisms

	what happens	big obstacle
$S_N 2$	One step: Nucleophile joins α carbon and leaving group leaves α carbon	steric hindrance
S_N1	Step one: Leaving group leaves α carbon	stabilizing the
	Step two: Nucleophile joins α carbon	carbocation
E2	One step: Base takes β hydrogen, π bond forms between α and β carbons, leaving group leaves α carbon.	none
E1	Step one: Leaving group leaves α carbon	stabilizing the
	Step two: Base takes β hydrogen, π bond forms between α and β carbons	carbocation

how to determine S_N2 vs. E2 vs. S_N1 vs. E1 for haloalkane and alkylsulfonate substrates

	poor Nu / weak base	good Nu / weak base	good Nu / strong base		
	O with no formal charge	Cl^{-} , Br^{-} , I^{-} , NC^{-} , N_3^{-} , S^{-} , Se^{-} , or	N^{-}, O^{-}		
		CH ₃ COO ⁻			
		or N, S, or Se with no formal charge			
methyl α-carbon	no reaction	S_N2^{-I}	E2 with <i>tert</i> -butyl-oxide (bulky base) ²		
1° α-carbon			Otherwise, S _N 2		
2° α-carbon	95% S _N 1	S_N2^{-I}	E2		
	5% E1 (usually not shown)				
3° α-carbon	95% S _N 1	95% S _N 1	E2		
	5% E1 (usually not shown)	5% E1 (usually not shown)			

For cases with "95% S_N1, 5% E1", E1 products are generally not shown unless the problem specifies "all possible products".

The table displays the major reaction(s) for each case—in some cases there may be significant levels of other competing reactions.

This table may not give the correct answer in all real-world situations, but it will generally be accurate for the questions that are typical of exams.

¹No reaction if beta-carbon is 4°. 2 S_N2 for methyl α-carbon.