## L1-MIASH/Biologie - ALGÈBRE ÉLÉMENTAIRE



## FEUILLE DE TRAVAUX DIRIGÉS N° 3



Division euclidienne - PGCD - racines

**Enseignant**: H. El-Otmany

**A.U.**: 2014-2015

Exercice n°1 Pour chacun des polynômes suivants, dresser la liste complète des polynômes le divisant dans l'anneau de polynômes précisé :

(1) 
$$X + 1 \operatorname{dans} \mathbb{R}[X]$$

(2) 
$$X^2 - 1$$
 dans  $\mathbb{R}[X]$ 

(1) 
$$X+1$$
 dans  $\mathbb{R}[X]$  (2)  $X^2-1$  dans  $\mathbb{R}[X]$  (3)  $X^2+1$  dans  $\mathbb{C}[X]$ 

(4) 
$$X^2 + 1 \text{ dans } \mathbb{R}[X]$$

(5) 
$$2X + 4$$
 dans  $\mathbb{Q}[X]$ 

(4) 
$$X^2+1$$
 dans  $\mathbb{R}[X]$  (5)  $2X+4$  dans  $\mathbb{Q}[X]$  (6)  $2X+4$  dans  $\mathbb{Z}[X]$ 

Exercice  $n^{\circ}2$  Effectuer la division euclidienne de la fonction polynôme A par la fonction polynôme B dans les cas suivants :

1. 
$$A(X) = X^3 + X^2 + X + 1$$
 et  $B(X) = X^2 + 1$ ,

2. 
$$A(X) = X^4 - X$$
 et  $B(X) = 2X + 1$ ,

3. 
$$A(X) = X^4 + 1$$
 et  $B(X) = X^2 + \sqrt{2}X + 1$ ,

4. 
$$A(X) = X^3 + 2X + 1$$
 et  $B(X) = X + i$ ,

5. 
$$A(X) = X^3 + 2X + 1$$
 et  $B(X) = 7X^2 - 1$ ,

6. 
$$A(X) = 4X^5 - 2X^3 + X - 1$$
 et  $B(X) = -2X^2 - 1$ ,

7. 
$$A(X) = 2X^2 + 3X - 5$$
 et  $B(X) = \sqrt{3}X + 5$ ,

8. 
$$A(X) = -3X^6 + X^4 - 5X^2 + 1$$
 et  $B(X) = 3X^2 + X + 1$ ,

## Exercice n°3

- 1. Effectuer la division euclidienne de  $A(X) = 2X^2 + X + 5$  par  $X \frac{3}{2}$
- 2. En déduire la division euclidienne de A(X) par  $\frac{3}{2}-X$ , par 2X-3, par 3-2X et par 4X-6
- 3. En déduire aussi la division de  $B(X)=6X^2+3X+15$  par  $X-\frac{3}{2}$ , par  $\frac{3}{2}-X$ , par 2X-3, par 3 - 2X et par 4X - 6.

Exercice n°4 Calculer le quotient et le reste de chacune des divisions suivantes de A par B

1. 
$$A(X) = X^3 + 2X^2 + 3$$
 et  $B(X) = X^2 - X - 1$ ,

2. 
$$A(X) = X^3 - 4X + 5$$
 et  $B(X) = X^2 - 3X + 2$ ,

3. 
$$A(X) = X^4 - X$$
 et  $B(X) = 2X + 1$ ,

4. 
$$A(X) = X^3 + X^2 + X + 1$$
 et  $B(X) = iX^2 + 1$ ,

5. 
$$A(X) = X^3 + X^2 + X + 1$$
 et  $B(X) = 3iX^2 + 1$ ,

6. 
$$A(X) = X^3 + X^2 + X + 1$$
 et  $B(X) = \frac{1}{4}X^2 - 4i + 2$ ,

7. 
$$A(X) = 7X^6 - X^4 - 5X^2 + 3i$$
 et  $B(X) = X^2 + iX + 3$ ,

## **Exercice n°5** Soit $n \ge 1$ un entier.

- 1. Déterminer le reste de la division euclidienne de  $X^{5n}$  par  $X^5 1$ .
- 2. En déduire le reste de la division euclidienne de  $X^{99} + 2X^{42} 3X^{35} 2X^{27} + 3$  par  $X^5 1$ .

**Exercice n°6** A l'aide de l'algorithme d'Euclide déterminer le PGCD dans  $\mathbb{R}[X]$  des polynômes  $A = X^4 + 2X^3 - X - 2$  et  $B = X^5 - 5X^3 - 9X^2 - 8X - 3$  et en déduire des polynômes U et V tels que

$$AU + BV = PGCD(A, B).$$

**Exercice n°7** Déterminer le PGCD de  $P = X^5 + X^4 + X^3 + X^2 + X + 1$  et  $Q = X^4 - 1$  dans  $\mathbb{Q}[X]$  et dans  $\mathbb{C}[X]$ .

**Exercice n°8** Montrer que le polynôme  $X^{163} + 24X^{57} - 6$  a au moins une racine sur  $\mathbb{R}$ . A-t-il des racines dans  $\mathbb{Q}$ ? Même exercice avec le polynôme  $X^7 + 3X^2 + 2$ .

**Exercice n°9** Soient  $\alpha$ ,  $\beta$  et  $\gamma$  les racines complexes du polynôme  $P = X^3 + 3X^2 + X + 1$ .

- 1. Écrire les relations reliant les racines et les coefficients de P.
- 2. Quelle est la valeur de  $\alpha^2\beta + \alpha\beta^2 + 3\alpha\beta$ ?

**Exercice n°10** Trouver les racines de polynôme  $P = X^4 - 5X^3 + 9X^2 - 15X + 18$  sachant que le produit de deux d'entre elles vaut 6.

Exercice n°11 Soient  $\alpha$ ,  $\beta$  et  $\gamma$  les racines de l'équation  $P=X^3-5X^2+6X-1$ . Déterminer la valeur exacte de

$$A = \frac{1}{1 - \alpha} + \frac{1}{1 - \beta} + \frac{1}{1 - \gamma}.$$

**Exercice**  $n^{\circ}12$  On désire résoudre le système (S):

$$\begin{cases} \alpha + \beta + \gamma &= 0\\ \alpha \beta + \beta \gamma + \gamma \alpha &= 3\\ \alpha^3 + \beta^3 + \gamma^3 &= -12 \end{cases}, \quad (\alpha, \beta, \gamma) \in \mathbb{C}^3.$$

- 1. On pose  $P(X) = (X \alpha)(X \beta)(X \gamma)$ , développer P.
- 2. Déterminer alors les racines de P et en déduire les solutions de (S).