Information bounds and attractor dynamics of a Hebbian associative memory

Clayton Seitz

May 21, 2021

Introduction

RNNs trained with Hebbian learning rules

Let W_{ij} be a matrix of recurrent weights that evolves when stimulated by

$$\xi(oldsymbol{\mu}, oldsymbol{\Sigma}) = rac{1}{(2\pi)^{n/2} |oldsymbol{\Sigma}|^{1/2}} \exp{-rac{1}{2}} (oldsymbol{r} - oldsymbol{\mu})^{ au} oldsymbol{\Sigma}^{-1} (oldsymbol{r} - oldsymbol{\mu})$$

1

¹[Peirera and Brunel, Neuron. 2018]

Inferring learning rules from firing rate distributions in ITC

Inferring ΔW_{ij} from ITC neurons after presentation of novel and familiar images 2

²[Lim et al., Nature Neuroscience. 2015]

Inferring the transfer function from ITC data

All you can really observe is the firing rate distribution. Assume the input currents are Gaussian

³[Peirera and Brunel, Neuron. 2018]

Presenting novel and familiar stimuli to the network

4

⁴[Peirera and Brunel, Neuron. 2018]

A Hebbian update for synaptic weights

Let the synaptic update be a separable function of the presynaptic (ξ_i) and postsynaptic (ξ_j) firing rates

$$\Delta W_{ij} = f(\phi(\xi_i))g(\phi(\xi_j)) \to W_{ij} = C_{ij} \sum f(\phi(\xi_i))g(\phi(\xi_j))$$

Evolution of the firing rate for neuron i is

$$\tau \dot{r}_i = -r_i + \phi (I + \sum_{j \neq i} W_{ij} r_j)$$

5

Do these networks optimize information transmission?

Are these networks functioning at a critical point? What about the balance between input and recurrence? (Cramer et al. 2020)

A coding theory perspective

How much information does the response R carry about the input pattern S i.e. I(R; S) on novel and familiar stimuli?

What is the fundamental coding capacity of these networks?

Introduction

