The Dollar Variance Risk Premium: A Tale of Two Investors

Young Ho Eom¹ Wo

Woon Wook Jang² Sungjune Pyun¹ Keon Hee Oh¹

¹ Yonsei School of Business

²Yonsei University

FMA North America October 2025

The risk premium on dollar uncertainty

How does the risk premium on dollar uncertainty affect the risk premium on dollar investments?

- ▶ The standard view: The US investor may require a higher risk premium for non-US currency investments
 - Since USD is a safe haven, dollar appreciation is unfavorable.
 - US investors may require a higher risk premium for foreign investments.
- ▶ An alternative: The non-US investor also may require a risk premium for investing in USD assets
 - Despite investing in a safe currency, international investments are riskier than local investments
 - Londono and Zhou (2017) find that the dollar variance risk premium predicts strong dollar

A tale of two investors

We show that signed variance matters: investors care about currency appreciation risk

- - Local currency appreciation risk is important (Up states)
 - Upside DVP (DVP^U) matters
 - Should predict future dollar appreciation
- US investors
 - Dollar appreciation risk (Down states)
 - Downside DVP (DVP^D) matters
 - Should predict foreign currency appreciation
- ▷ Skewness Risk Premium (SRP): Their difference should be a strong predictor of dollar returns.

Local currency appreciation risk

Why should investors dislike local currency appreciation?

- - \rightarrow US prefers dollar depreciation and other countries prefers dollar appreciation (=local currency deprecation)
- ▶ Net Export: Local currency depreciation stimulates economic growth if firms are net exporters (Rodrik 2008)
- ▷ Investors: Local currency appreciation leads to lower returns on foreign investment(e.g., Jansen, Shin, and von Peter 2024)
- ⇒ Investors dislike local currency appreciation

A preview of the main findings

- ▶ The dollar variance risk premium (DVP) predicts USD appreciation (Londono and Zhou 2017).
 - Foreign investors take dollar investments as "risky" even though a dollar position can hedge global risk.
- A tale of two investors
 - We find that a high risk premium on appreciative-component of the variance leads to currency depreciation (for both USD and non-US currencies)
- ➤ The sign is switched for safe (Japan and Switzerland) currencies: the upside of safe and the downside variance risk premium of other currencies contain information on global/US risk.

Model setup

▶ When the market is complete, currency returns is represented by:

$$\Delta q_{t+1}^i = m_{t+1}^i - m_{t+1}$$

- ullet Higher q^i means appreciation for currency i
- m_{t+1}^i is the domestic SDF, m_{t+1} is the US SDF

$$\label{eq:definition} \rhd \ m^i_{t+1} - E_t[m^i_{t+1}] = \delta^i \sqrt{\frac{z^i_t}{2}} (v^i_{t+1} - 1) + \lambda^i \sqrt{\frac{z_t}{2}} (v_{t+1} - 1),$$

- v_{t+1}^i and v_{t+1} are i.i.d with Chi-square 1 (shocks to z)
- US SDF is denoted without superscript *i*
- We assume $\delta^i > \delta$ and $\lambda^i < \lambda$

Model setup

$$\Delta q_{t+1}^i - \textit{E}_t[\Delta q_{t+1}^i] = \underbrace{(\delta^i - \delta)}_{\text{Positive}} \sqrt{\frac{z_t^i}{2}} (v_{t+1}^i - 1) + \underbrace{(\lambda^i - \lambda)}_{\text{Negative}} \sqrt{\frac{z_t}{2}} (v_{t+1} - 1),$$

- \triangleright A higher q^i denotes higher currency value for i relative to USD
- \triangleright Because shocks to v^i and v_t are positively skewed:
 - A positive US/global variance shock appreciates USD and is likely to be more important for US investors
 - A positive foreign variance shock depreciates USD and is important for non-US investors

Data sources

- Data on currency options from Bloomberg
- ▷ Intraday data from histdata.com
- Daily currency returns from Bloomberg
- ▷ nine major developed-market currencies against the US dollar:
 - AUD, CAD, CHF, EUR, GBP, JPY, and NZD (Jan 2008 Dec 2022)
 - NOK and SEK (Oct 2008 Dec 2022)

Estimation

 \triangleright The currency variance risk premium ($CVRP_i$) of the currency pair between country i and USD

$$CVRP_{i,t} = E_t^Q[QV_{i,t}] - E^P[QV_{i,t}],$$
 (1)

- Q component from option prices, P component using HAR-RV
- ➤ The dollar variance risk premium (DVP) is the cross-currency average of CVRP
- We also measure DVP^U (related to foreign currency appreciation) and DVP^D (related to dollar appreciation) from the semi-variance and define the skewness risk premium as

$$SRP = DVP^{U} - DVP^{D}$$

▷ The equity variance risk premium (EVRP) is the variance premium of the S&P 500 Index

SRP = DVPU (USD depreciation) - DVPD (USD appreciation)

Empirical Results (DVP)

$$\Delta q_{i,t+1} = b_0 + b_F DVP_t + b_E EVRP_t + b_I \left(y_{US,t} - y_{i,t} \right) + FE_i + e_{i,t+1} \quad \text{(Londono \& Zhou, 2017)}$$

A. Using the dollar variance risk premium

		Dependent variable: currency returns										
	1-m	onth	3-month		6-month		12-month					
DVP	0.947	-3.129	-4.771***	-6.253***	-2.133	-3.405**	-1.494	-2.395**				
	(0.300)	(0.917)	(2.990)	(3.516)	(1.487)	(2.555)	(1.336)	(2.277)				
EVRP		1.005***		0.365***		0.312***		0.219***				
		(4.913)		(5.634)		(2.929)		(2.954)				
yus - yi	1.847**	2.302***	1.600*	1.765**	1.437*	1.577*	0.764	0.857				
	(2.173)	(2.782)	(1.933)	(2.153)	(1.733)	(1.891)	(1.362)	(1.538)				
Country FE	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ				
Adj R ²	-0.001	0.015	0.013	0.020	0.017	0.027	0.022	0.033				

▷ Our interpretation: Controlling for the global/US variance premium, the DVP represents the risk premium of the non-US investors (leads to dollar appreciation).

Empirical Results (DVP^U,DVP^D)

$$\Delta q_{i,t+1} = b_0 + b_U DVP_t^U + b_D DVP_t^D + b_I (y_{US,t} - y_{i,t}) + FE_i + e_{i,t+1}$$

B. Using the dollar semi-variance risk premium

		Dependent variable: currency returns									
	1-mc	1-month		3-month		6-month		12-month			
DVP^U	-34.566***	-31.455***	-42.100***	-41.303***	-45.385***	-44.821***	-30.262***	-29.864***			
	(3.108)	(2.811)	(4.921)	(4.871)	(6.917)	(6.892)	(7.147)	(7.118)			
DVPD	15.001**	8.673	8.230***	6.609**	13.938***	12.785***	9.475***	8.657***			
	(2.446)	(1.349)	(2.779)	(2.217)	(4.452)	(4.291)	(5.002)	(5.024)			
EVRP		0.889***		0.228***		0.161*		0.113*			
		(4.228)		(4.196)		(1.656)		(1.656)			
yus - yi	2.150***	2.484***	1.854**	1.940**	1.764**	1.823**	0.975*	1.014*			
	(2.734)	(3.150)	(2.354)	(2.466)	(2.258)	(2.313)	(1.855)	(1.931)			
Country FE	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ			
Adj R ²	0.006	0.019	0.034	0.036	0.081	0.083	0.089	0.092			

- ▷ If we decompose DVP into up (dollar depreciation) and downside components,
 - ullet A high DVP U should lead to future dollar appreciation.
 - A high DVP^D should lead to future dollar depreciation.

Empirical Results (SRP)

$$\Delta q_{i,t+1} = b_0 + b_S SRP_t + b_D DVP_t + b_I (y_{US,t} - y_{i,t}) + FE_i + e_{i,t+1}$$

C. Using the dollar skewness risk premium

		Dependent variable: currency returns										
	1-mo	nth	3-ma	3-month		6-month		12-month				
SRP	-20.758***	-16.699**	-19.292***	-18.046***	-23.807***	-22.884***	-16.315***	-15.658***				
	(3.098)	(2.453)	(4.620)	(4.400)	(6.081)	(5.956)	(7.128)	(7.064)				
DVP	-5.783*	-8.244**	-11.026***	-11.781***	-9.867***	-10.426***	-6.817***	-7.215***				
	(1.782)	(2.427)	(4.866)	(5.049)	(6.688)	(7.076)	(6.449)	(6.875)				
EVRP		0.931***		0.286***		0.211**		0.149**				
		(4.396)		(5.038)		(2.190)		(2.224)				
yus - yi	2.184***	2.539***	1.913**	2.022**	1.820**	1.899**	1.016*	1.069**				
	(2.794)	(3.266)	(2.424)	(2.567)	(2.318)	(2.399)	(1.921)	(2.027)				
Country FE	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ				
Adj R ²	0.005	0.019	0.033	0.037	0.077	0.081	0.088	0.093				

Shows that we can replace the DVP^U and DVP^D by the difference (SRP)

Empirical Results (Dollar Index)

▶ We show that identical pattern appears for dollar index: USD valuation is driven by global risk (downside component).

$$-\Delta DX_{t+1} = b_0 + b_S SRP_t + b_D DVP_t + b_E EVRP_t + b_I (y_{US,t} - y_{i,t}) + e_{t+1}$$

Also, with time-series regressions, we can avoid the possibility of cross-currency correlation driving the result.

▶ We also show that similar pattern appears when individual currency indices are used (panel regression)

$$\Delta CX_{i,t+1} = b_0 + b_S CSRP_{i,t} + b_V CVRP_{i,t} + b_E EVRP_t + b_I (v_{US,t} - v_{i,t}) + e_{i,t+1}$$

Empirical Results (Safe: JPY, CHF)

We observe the opposite pattern if only safe currencies are used:

$$\Delta q_{i,t+1} = b_0 + b_U DVP_{t,S_2f_2}^U + b_D DVP_{t,S_2f_2}^D + b_E EVRP_t + b_I (y_{US,t} - y_{i,t}) + e_{i,t+1},$$

D. Using the semi-variance risk premium of safe currencies

	Dependent variable: currency returns										
	1-m	onth	3-month		6-month		12-month				
DVP ^U Safe	-0.699	-6.265	8.394**	7.322*	15.173***	14.402***	15.015***	14.631***			
	(0.105)	(0.984)	(2.032)	(1.754)	(5.103)	(4.813)	(6.130)	(5.855)			
DVP ^D _{Safe}	7.219	8.906	2.863	3.188	4.630	4.865	-0.901	-0.783			
EVRP	(0.716)	(0.912) 0.969*** (4.962)	(0.410)	(0.463) 0.187*** (3.159)	(0.894)	(0.943) 0.133 (1.293)	(0.246)	(0.213) 0.065 (0.888)			
y _{us} - y _i	1.958** (2.508)	2.266***	2.212** (2.505)	2.272** (2.581)	2.307** (2.470)	2.349** (2.493)	1.373** (2.297)	1.393** (2.319)			
Country FE	Y	Y	Y	Y	Y	Y	Y	Y			
Adj R ²	-0.002	0.014	0.014	0.015	0.061	0.062	0.101	0.102			

> A high premium on safe currency appreciation risk leads to weak dollar returns.

Drivers of SRP (Downside spike: US or global shock)

$$SRP_t = \alpha + \beta_g \mathsf{Global} \; \mathsf{UNC}_t + \beta_1 SRP_{t-1} + \beta_u DVP_{t-1}^U + \beta_d DVP_{t-1}^D + \epsilon_t$$

Panel A. Explaining	g the SRP								
	Dependent variable: SRP								
Uncertainty	-45.194***	-32.611***							
	(3.58)	(3.90)							
CDS _{us}			-0.006**	-0.005***					
			(2.47)	(2.87)					
GFC					0.003**	0.003***			
					(2.06)	(2.63)			
Lag SRP	0.075		0.219		0.197***				
	(0.88)		(1.13)		(3.44)				
Lag DVP [∪]		0.534*		0.854**		0.915***			
		(1.76)		(2.28)		(2.75)			
Lag DVP ^D		-0.069		-0.049		-0.136**			
		(0.97)		(0.76)		(2.31)			
Adj R ²	0.190	0.221	0.131	0.192	0.079	0.196			

- ▷ SRP negatively related to global uncertainty from Bekaert, Engstrom, and Xu (2022) and US sovereign CDS spread
- ▷ Positively related to the global financial cycle factor (Miranda-Agrippino and Rey 2020).

Drivers of SRP (Downside spike: US or global shock)

$$DVP_t^{U/D} = \alpha + \beta_g \mathsf{Global} \ \mathsf{UNC}_t + \beta_U DVP_t^U + \beta_D DVP_t^D + \beta_u DVP_{t-1}^U + \beta_d DVP_{t-1}^D + \epsilon_t$$

	Depende	ent variable: [)VP ^D	Depend	ent variable:	DVP ^U
Uncertainty	45.548***			-30.932***		
	(3.45)			(7.21)		
CDS _{us}		0.006***			-0.003*	
		(3.01)			(1.91)	
GFC			-0.003**			0.001**
			(2.14)			(2.09)
DVP ^U	-0.474	-0.830**	-0.832**			
	(1.56)	(2.02)	(2.15)			
DVP ^D				0.088	0.401***	0.171***
				(0.83)	(6.74)	(6.66)
Lag DVP [∪]				0.169***	0.175***	0.423***
-				(8.60)	(5.82)	(8.70)
Lag DVP ^D	1.371***	1.039***	1.001***			
-	(4.56)	(4.98)	(4.43)			
Adj R ²	0.258	0.242	0.255	0.181	0.527	0.299

- ▷ Upside DVP negatively related to global uncertainty and US sovereign CDS spread and positively related to the global financial cycle factor.
- Doposite sign for downside DVP.

Drivers of SRP (Upside spike: Non-US shock)

Does more country-specific risk lead to higher CSRP (cross-currency)

$$CSRP_{c,t} = \alpha_1 + \beta_c \Delta CDS_{c,t} + \beta_1 CSRP_{t-1} + \beta_2 CVRP_{t-1} + \epsilon_t$$

Panel A. Currency-level skewness risk premium

		Dependent variable: CSRP									
ΔCDS	0.082**	0.070**	0.074**	0.070**							
	(2.21)	(2.16)	(2.37)	(2.19)							
CDS	, ,				0.071**	0.067*	0.071**	0.067*			
					(2.04)	(1.96)	(2.14)	(1.97)			
Lag CDS					-0.079**	-0.074**	-0.077**	-0.074**			
					(1.99)	(1.98)	(2.22)	(2.03)			
Lag CSRP	0.425***	0.202***	0.309***	0.210***	0.275***	0.202***	0.309***	0.210***			
	(5.06)	(3.55)	(5.01)	(3.01)	(5.49)	(3.55)	(5.00)	(3.00)			
Lag CVRP			0.084*	0.013				0.013			
			(1.72)	(0.25)				(0.25)			
Country FE	N	Υ	N	Υ	N	Υ	N	Υ			
Time FE	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ			
Adj R ²	0.076	0.130	0.087	0.130	0.076	0.130	0.878	0.130			

Drivers of SRP (Upside spike: Non-US shock)

$$\mathit{CVRP}_{c,t}^{\mathit{U/D}} = \alpha_2 + \beta_c \Delta \mathit{CDS}_{c,t} + \beta_v \mathit{CVRP}_{c,t} + \beta_u \mathit{CVRP}_{t-1}^{\mathit{U}} + \beta_d \mathit{CVRP}_{t-1}^{\mathit{D}} + \epsilon_t$$

Panel B. Semi_variance risk premium

Dependent variable: CVRP ^U						Dependent variable: CVRPD				
ΔCDS	0.033**	0.030*			-0.033**	-0.030*				
	(2.12)	(1.77)			(2.12)	(1.77)				
CDS			0.031*	0.025			-0.031*	-0.025		
			(1.93)	(1.39)			(1.93)	(1.39)		
Lag CDS			-0.034**	-0.033*			0.034**	0.034*		
			(1.98)	(1.67)			(1.98)	(1.67)		
CVRP	0.350***	0.325***	0.351***	0.325***	0.650***	0.675***	0.650***	0.675***		
	(10.34)	(9.48)	(10.33)	(9.47)	(19.19)	(19.71)	(19.41)	(19.70)		
Lag CVRP ^U	0.280***	0.157***	0.279***	0.157***	-0.280***	-0.157***	-0.279***	-0.157***		
	(5.46)	(3.11)	(5.66)	(3.11)	(5.46)	(3.11)	(5.66)	(3.11)		
Lag CVRP ^D	-0.082**	-0.063*	-0.082**	-0.063*	0.082**	0.063*	0.082**	0.063*		
	(2.58)	(1.88)	(2.58)	(1.87)	(2.58)	(1.88)	(2.58)	(1.87)		
Country FE	N	Υ	N	Υ	N	Υ	N	Υ		
Time FE	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ		
Adj R ²	0.608	0.648	0.608	0.648	0.785	0.807	0.785	0.807		

Conclusion

- ▶ We provide an alternative explanation why a high DVP could lead to a dollar appreciation.
- ▶ The DVP contains information on the currency risk premium required by both US and non-US investors
- Decomposing the DVP into upside and downside components, the downside DVP contains information on the risk premium of the US investor, and the upside contains non-US investor's risk premium
- ▷ For safe currencies, the upside and downside variance risk premiums are switched.