שיעור 14 חיתוך וסכום תת מרחב

14.1 הגדרה של חיתוך וסכום של תתי מרחבים

משפט 14.1 חיתוך של תת מרחב

 $V_1 \cap V_2$ אז איז $V_1 \cap V_2$ היא תת מרחב של על תתי מרחב של איז על שדה $V_1 \cap V_2$ היא תת מרחב של עלים.

הוכחה:

 $ar{.0} \in V_1 \cap V_2 \Leftarrow ar{0} \in V_2$ וגם $ar{0} \in V_1 \Leftarrow V_1$ (1 תת מרחבים V_2 , וגם ע

$$v_1,v_2\in V_1\cap V_2$$
 נניח (2 $v_1,v_2\in V_2$ וגם $v_1,v_2\in V_1$ אז $v_1,v_2\in V_1$ תת מרחב $v_1+v_2\in V_1\Leftarrow v_1+v_2\in V_2$ תת מרחב $v_1+v_2\in V_2\Leftrightarrow v_1+v_2\in V_1\cap V_2$ גייא

נניח
$$k\in\mathbb F$$
 ו ${
m v}\in V_1\cap V_2$ סקלר. ${
m v}\in V_2$ ו ${
m v}\in V_1$ אז ${
m v}\in V_1$ ו ${
m v}\in V_1$ תת מרחב לכן ${
m v}\in V_1$ תת מרחב לכן ${
m v}\in V_2$ תת מרחב לכן ${
m v}\in V_1$

דוגמה 14.1

V עבור $V_1 \cup V_2$ תתי מרחבים של מרחב ווקטורי V מעל שדה $V_1 \cup V_2$ האם עבור עבור $V_1 \cup V_2$

פתרון:

$$V_1=\left\{egin{pmatrix}x\\0\end{pmatrix}\Big|x\in\mathbb{R}
ight\}\;,\qquad V_2=\left\{egin{pmatrix}0\\x\end{pmatrix}\Big|x\in\mathbb{R}
ight\}\;, &v_1+v_2\notin V_1\cup V_2\;.$$
 איז $v_2=egin{pmatrix}0\\1\end{pmatrix}\in V_2\;$, אבל $v_1+v_2\notin V_1\cup V_2\;.$ אבל $v_2=egin{pmatrix}0\\1\end{pmatrix}\in V_2\;$, אבל $v_1+v_2\notin V_1\cup V_2\;.$

משפט 14.2 תת מרחב הקטן ביותר

נניח שV מרחב וקטורי מעל שדה \mathbb{F}_1 , \mathbb{F}_1 , תתי מרחבים של

$$W = \{ \mathbf{v}_1 + \mathbf{v}_2 | \mathbf{v}_1 \in V_1, \mathbf{v}_2 \in V_2 \}$$

 V_2 ו ו V_1 ו ביותר שמכיל ביותר הקטן ביותר מרחב הקטן ביותר שמכיל את א לכל תת מרחב $W \subseteq W'$ שמכיל את א לכל תת מרחב הקטן ביותר שמכיל את א לעדים הקטון ביותר שמכיל את א לכל העדים הקטון ביותר שמכיל את א לעדים הקטון ביותר שמכיל את א לכל העדים הקטון ביותר שמכיל את א לעדים הקטון ביותר שמכיל את א לכל העדים הקטון ביותר שמכיל את העדים העד

הוכחה:

\underline{N} נוכיח שW תת מרחב של (1

אט.
$$ar{0} \in V_2$$
 וגם $ar{0} \in V_1$ (א

$$\bar{0} = \bar{0} + \bar{0} \in W$$
.

$$w_2 = {
m v}_1 + {
m v}_2 \in W$$
 , $w_1 = u_1 + u_2 \in W$ ב) נניח

$$.u_2, {
m v}_2 \in V_2$$
 וגם $u_1, {
m v}_1 \in V_1$ אז $u_1, {
m v}_1 \in V_1$

.תני מרחבים V_2 , V_1

$$.u_2+{
m v}_2\in V_2$$
 גם , $u_1+{
m v}_1\in V_1$ לכן

מכאן

$$w_1 + w_2 = (u_1 + u_2) + (v_1 + v_2) = (u_1 + v_1) + (u_2 + v_2) \in W$$
.

 $ku_1\in V_1$ גיים, לכן תתי מרחבים, לכן ו $u_1\in V_1$ אז וויא $k\in \mathbb{F}$ ו $w=u_1+u_2\in W$ גיים גיים גניח $ku_1\in V_1$ מכאן מכאן מכאן

$$kw = k(u_1 + u_2) = ku_1 + ku_2 \in W$$

נוכיח כי W התת מרחב הקטן ביותר (2

ברור כי V_2 ו מכיל את V_1 ני

$$u=u+ar{0}\in W$$
 , $u\in V_1$ לכל

$$.u=ar{0}+u\in W$$
 , $u\in V_2$ וגם לכל

 V_2 ו ו את שמכיל את נוכיח ביותר מרחב הקטן הוא תת מרחב נוכיח ש

 V_2 ו V_1 איזשהו תת מרחב שמכיל את W' ו

 $W \subseteq W'$ נוכיח כי

 $u_2 \in V_2$, $u_1 \in V_1$ כאשר , $w = u_1 + u_2$ אז $w \in W$ נקח וקטור

$$.u_1 \in W' \Leftarrow V_1 \in W'$$

$$.u_2 \in W' \Leftarrow V_2 \in W'$$

 $w=u_1+u_2\in W'$ תת מרחב, לכן W'

מש"ל.

למה <u>14.1</u>

 V_1+V_2 ומסומן ב V_1 ו למרחב למרחב (המשפט הקודם) נקרא ומסומן ב 14.2 למרחב W

משפט 14.3 סכום של תת מרחב שווה לפרישה של האיחוד

$$V_1 + V_2 = \text{span}(V_1 \cup V_2)$$
.

$:V_1+V_2\subseteq \mathrm{span}\,(V_1\cup V_2)$ נוכיח כי נוכיח :

$$V_1, V_2 \subseteq \operatorname{span}(V_1 \cup V_2)$$

לכן, לפי משפט 14.2

$$V_1 + V_2 \subseteq \operatorname{span}(V_1 \cup V_2)$$
.

$$\operatorname{span}\left(V_1\cup V_2
ight)\subseteq V_1+V_2$$
 נוכיח כי

 $(\alpha_1,\ldots,\alpha_k\in\mathbb{F})$ נגיח $(V_1,\ldots,v_n\in V_2)$ ו $(u_1,\ldots,u_k\in V_1)$ אז קיימים $(v_1,\ldots,v_n\in V_2)$ וטקלרים $(u_1,\ldots,u_k\in V_1)$ טקימים $(u_1,\ldots,u_k\in V_1)$ טקימים טקימים $(u_1,\ldots,u_k\in V_1)$ טקימים טק

$$w = \alpha_1 u_1 + \dots + \alpha_k u_k + \beta_1 v_1 + \dots + \beta_n v_n.$$

$$.eta_1\mathbf{v}_1+\cdots+eta_n\mathbf{v}_n\in V_2$$
 וגם $lpha_1u_1+\cdots+lpha_ku_k\in V_1$ אז $w\in V_1+V_2$ לכן

 \Leftarrow span $(V_1 \cup V_2) \subseteq V_1 + V_2$ וגם $V_1 + V_2 \subseteq \operatorname{span}(V_1 \cup V_2)$ הוכחנו כי

$$V_1 + V_2 = \operatorname{span}\left(V_1 \cup V_2\right) .$$

דוגמה 14.2

$$V_2=$$
ו , $V_1=\left\{egin{pmatrix}x\\0\\0\end{pmatrix}igg|x\in\mathbb{R}
ight\}$: \mathbb{R}^3 נקח את המרחב ווקטורי . $V=\mathbb{R}^3$ נקח את המרחב ווקטורי

, קווים ישרים ב \mathbb{R}^3 אז הסכום שלהם הינו , $\left\{egin{pmatrix} 0 \\ y \\ 0 \end{pmatrix} \middle| y \in \mathbb{R} \right\}$

$$V_1 + V_2 = \left\{ \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} \middle| x, y \in \mathbb{R} \right\} ,$$

 \mathbb{R}^3 ב z=0 ומהווה את המישור

14.2 משפט המימדים של סכום וחיתוך

משפט 14.4 משפט המימדים

V מרחב וקטורי מעל שדה V_2 , V_1 , $\mathbb F$ מרחבים של מרחב עניח אז

$$\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2)$$

$$\dim(V_1\cap V_2)=m$$
 , $\dim(V_2)=n$, $\dim(V_1)=k$ נסמן: $m\leq k$ לכן לכן $V_1\cap V_2\subseteq V_1$. $m\leq n$ לכן $V_1\cap V_2\subseteq V_2$. $V_1\cap V_2\subseteq V_2$. $V_1\cap V_2\subseteq V_2$. $V_1\cap V_2$ של v_1,\ldots,v_m נשלים אותו לבסיס של v_1 ונקבל . $v_1,\ldots,v_m,v_1,\ldots,v_m$. $v_1,\ldots,v_m,v_1,\ldots,v_m$. v_2 נשלים אותו גם לבסיס של $v_1,\ldots,v_m,v_1,\ldots,v_m$. v_2 . $v_1,\ldots,v_m,v_1,\ldots,v_m$. v_2 . $v_1,\ldots,v_m,v_1,\ldots,v_m$

$$:V_1+V_2={
m span}\,(u_1,\ldots,u_m,a_1,\ldots,a_{k-m},b_1,\ldots,b_{n-m}.)$$
 נוכיח כי

$$w = v_1 + v_2 \in V_1 + V_2$$
 נניח

$$\mathbf{v}_{1} = \alpha_{1}u_{1} + \ldots + \alpha_{m}u_{m} + \beta_{1}a_{1} + \ldots + \beta_{k-m}a_{k-m} \in V_{1} ,$$

$$\mathbf{v}_{2} = \alpha'_{1}u_{1} + \ldots + \alpha'_{m}u_{m} + \gamma_{1}b_{1} + \ldots + \gamma_{n-m}b_{n-m} \in V_{2} .$$

 $\mathbf{v}_1 + \mathbf{v}_2 = (\alpha_1 + \alpha'_1) u_1 + \ldots + (\alpha_m + \alpha'_m) u_m + \beta_1 a_1 + \ldots + \beta_{k-m} a_{k-m}$

 $+ \gamma_1 b_1 + \ldots + \gamma_{n-m} b_{n-m}$

ז"א

121

$$\mathbf{v}_1 + \mathbf{v}_2 \in \operatorname{span}\left(u_1, \dots, u_m, a_1, \dots, a_{k-m}, b_1, \dots, b_{n-m}\right)$$

$$\operatorname{span}\left(u_1,\ldots,u_m,a_1,\ldots,a_{k-m},b_1,\ldots,b_{n-m}
ight)\in V_1+V_2$$
 נוכיח את ההכלה ההפוכה, כלומר

נניח

$$w\in \mathrm{span}\,(u_1,\ldots,u_m,a_1,\ldots,a_{k-m},b_1,\ldots,b_{n-m})$$
אז קיימים סקלרים $\alpha_1,\ldots,\beta_k,\ldots,\beta_{k-m},\gamma_1,\ldots,\gamma_{n-m}$ כך ש

$$w = \alpha_1 u_1 + \dots + \alpha_m u_m + \beta_1 a_1 + \dots + \beta_{k-m} a_{k-m} + \gamma_1 b_1 + \dots + \gamma_{n-m} b_{n-m}$$

נסמן

$$\mathbf{v}_1 = \alpha_1 u_1 + \dots + \alpha_m u_m + \beta_1 a_1 + \dots + \beta_{k-m} a_{k-m}$$

 $\mathbf{v}_2 = \gamma_1 b_1 + \dots + \gamma_{n-m} b_{n-m}$

אז

$$v_1 \in V_1, \quad v_2 \in V_2, \quad w = v_1 + v_2$$

 $w \in V_1 + V_2$ כלומר

נשאר להוכיח שוקטורים $\{u_1,\dots,u_m,a_1,\dots,a_{k-m},b_1,\dots,b_{n-m}\}$ בת"ל:

נניח:

$$\alpha_1 u_1 + \dots + \alpha_m u_m + \beta_1 a_1 + \dots + \beta_{k-m} a_{k-m} + \gamma_1 b_1 + \dots + \gamma_{n-m} b_{n-m} = \bar{0}$$
 (*1)

X

$$\alpha_1 u_1 + \dots + \alpha_m u_m + \beta_1 a_1 + \dots + \beta_{k-m} a_{k-m} = -\gamma_1 b_1 - \dots - \gamma_{n-m} b_{n-m} := v.$$
 (*2)

 $.V_1$ אייך ל השמאל באגף הוקטור באגף

 $\cdot V_2$ הוקטור באגף הימין שייך ל

לכן, לפי סקלרים סקלרים לכן δ_1,\dots,δ_m בסיס של $V_1\cap V_2$ נתון). לכן בסיס של בסיס u_1,\dots,u_m .v $\in V_1\cap V_2$ (*2) לכן, לפי

$$\mathbf{v} = \delta_1 u_1 + \ldots + \delta_m u_m \ .$$

לכן

$$\delta_1 u_1 + \ldots + \delta_m u_m + \gamma_1 b_1 + \ldots + \gamma_{n-m} b_{n-m} = \delta_1 u_1 + \ldots + \delta_m u_m - (-\gamma_1 b_1 - \ldots - \gamma_{n-m} b_{n-m})$$

$$= \mathbf{v} - \mathbf{v}$$

$$= \bar{0}.$$

7"%

$$\delta_1 u_1 + \ldots + \delta_m u_m + \gamma_1 b_1 + \ldots + \gamma_{n-m} b_{n-m} = \bar{0}$$
 (*3)

רק אם (*3) מתקיים מתקיים בת"ל. לכן (נתון בסיס של $u_1, \ldots u_m, b_1, \ldots, b_{n-m}$

$$\delta_1 = \ldots = \delta_m = \gamma_1 = \ldots = \gamma_{n-m} = 0$$
 (*4)

מכאן מקבלים מ (1*) כי

$$\alpha_1 u_1 + \dots + \alpha_m u_m + \beta_1 a_1 + \dots + \beta_{k-m} a_{k-m} = \bar{0}$$
 (*5)

. בח"ל. לכן הם לכן (נתון) א בסיס $u_1, \ldots u_m, a_1, \ldots, a_{k-m}$

לכן (5*) מתקיים רק אם

$$\alpha_1 = \ldots = \alpha_m = \beta_1 = \ldots = \beta_{k-m} = 0.$$
 (*6)

לכן, בגלל שהמקדמים ב (*1) כולם שווים ל 0, כפי שהוכחנו ב (*4) ו (*6), אז הוקטורים לכן, בגלל שהמקדמים ב $u_1,\dots u_m,a_1,\dots,a_{k-m},b_1,\dots b_{n-m}$ מכאו

$$\dim(V_1 + V_2) = m + (k - m) + (n - m) = k + n - m = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2)$$

מש"ל.

מסקנה 14.1

 $\dim(V_1\cap V_2)>0$ אז $V_1,V_2\subseteq\mathbb{R}^3$ נניח לניח $V_1,V_2\subseteq\mathbb{R}^3$ תתי

,?? משפט . $\dim(V_1+V_2) \leq 3$ לכן \mathbb{R}^3 לפי משפט V_1,V_2 . הוכחה:

$$4 = \dim(V_1) + \dim(V_2) = \dim(V_1 + V_2) + \dim(V_1 \cap V_2) \leq 3 + \dim(V_1 \cap V_2)$$

14.3 כיצד למצוא בסיס ומימד של סכום וחיתוך תת מרחב

נניח כי U, תתי מרחבים של \mathbb{R}^n ונניח ש

$$\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$$

בסיס של U ו

$$\{\mathbf{v}_1,\ldots,\mathbf{v}_l\}$$

:V ו U אם מסדר מהבסיסים מהרכב מסדר n imes (k+l) מסדר ערשום מטריצה אל בסיס של ערישו בסיס של V+W נרשום מטריצה עריצה ערישו

$$Q = \begin{pmatrix} | & | & & | & | & | & | \\ u_1 & u_2 & \dots & u_k & v_1 & v_2 & \dots & v_l \\ | & | & & | & | & | & | \end{pmatrix}$$

: Q שווה למרחב העמודות של U+V שווה למרחב העמודות אז

$$col(Q) = col(U + V)$$

U+V שווה גם לבסיס של $\operatorname{col}(Q)$ ובסיס של

$$B(Q) = B(U + V) .$$

Q במרחב האפס אל גיתן נניח כי הוקטור א ניתן אע"י המרחב האפס אל אוווע ניח כי הוקטור ע"י המרחב האפס אל בסיס אל גיתן ניתן למצוא ע"י המרחב האפס של גיח בי הרכיבים אל גיח כי הרכיבים של א הם ג נניח כי הרכיבים אל גיח בי הרכיבים אל א

$$\mathbf{x} = \begin{pmatrix} a_1 \\ \vdots \\ a_k \\ b_1 \\ \vdots \\ b_l \end{pmatrix} .$$

אז $\mathrm{Nul}(Q)$ ב x כיוון שוקטור

$$Q \cdot \mathbf{x} = \begin{pmatrix} | & | & & | & | & | & | \\ \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_k & \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_l \\ | & | & & | & | & | & | & | \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ a_k \\ b_1 \\ \vdots \\ b_l \end{pmatrix} = a_1 \mathbf{u}_1 + \dots + a_k \mathbf{u}_k + b_1 \mathbf{v}_1 + \dots + b_l \mathbf{v}_l = \bar{\mathbf{0}} . \quad \textbf{(1*)}$$

עכשיו נעביר את לאגף $\mathbf{v}_1,\dots,\mathbf{v}_l$ אהיברים של האיברים את עכשיו נעביר את עכשיו

$$a_1 \mathbf{u}_1 + \ldots + a_k \mathbf{u}_k = -b_1 \mathbf{v}_1 - \ldots - b_l \mathbf{v}_l$$
 (*2)

V שימו לב הצירוף לינארי באגף השמאל הוא וקטור של שימו לב הצירוף לינארי באגף השמאל הוא וקטור של טימו לב הצירוף לינארי באגף השמאל הוא וקטור של יינארי באגף השמאל נקרא הוקטור היה או

$$\mathbf{y}:=a_1\mathbf{u}_1+\ldots+a_k\mathbf{u}_k=-b_1\mathbf{v}_1-\ldots-b_l\mathbf{v}_l$$
 (*3) כך קיבלנו וקטור \mathbf{y} השייך גם ל U וגם ל U השייך גם ל $\mathbf{y}\in U\cap V$.

דוגמה 14.3

נתונים וקטורים

$$u_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}$$
 , $u_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$, $u_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$, $u_4 = \begin{pmatrix} 1 \\ 3 \\ 0 \\ 1 \end{pmatrix}$.

נסמן

 $V_1 = \text{span}(u_1, u_2) , \qquad V_2 = \text{span}(u_3, u_4) .$

 $V_1\cap V_2$ ו V_2 , ו מצאו בסיס ומימד של

פתרון:

 $:V_1$ בסיס של

$$\begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 \\ 0 & -1 \\ 0 & 1 \\ 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

 $:V_1$ בסיס של

 $B(V_1) = \{\mathbf{u}_1, \mathbf{u}_2\}$

 $.\dim(V_1)=2$

 $:\!\!V_2$ בסיס של

$$\begin{pmatrix} 1 & 1 \\ 0 & 3 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 \\ 0 & 3 \\ 0 & -1 \\ 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 \\ 0 & 3 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

 $:V_2$ בסיס של

 $B(V_2) = \{\mathbf{u}_3, \mathbf{u}_4\}$

 $.\dim(V_2)=2$

$$Q = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 0 & 3 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\substack{R_2 \to R_2 - 2R_1 \\ R_4 \to R_4 - R_1}} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & -2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & -1 & 0 \end{pmatrix}$$

$$\begin{array}{c}
R_3 \to R_2 + R_3 \\
R_4 \to R_4 - R_2
\end{array}
\qquad
\begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & -1 & -2 & 1 \\
0 & 0 & -1 & 1 \\
0 & 0 & 1 & -1
\end{pmatrix}
\qquad
\xrightarrow{R_4 \to R_3 + R_4}
\begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & -1 & -2 & 1 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

הוא $V_1 + V_2$ הוא לכן בסיס של 3, 2 מובילות העמודות 1

$$B(V_1 + V_2) = \{u_1, u_2, u_3\}$$

 $\dim(V_1 + V_2) = 3$ 1

לפי משפט המימדים:

$$\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2)$$

אז ,
$$\dim(V_1+V_2)=3$$
 ו , $\dim(V_2)=2$, $\dim(V_1)=2$ סיוון ש

$$\dim(V_1 \cap V_2) = 1 .$$

. מסעיף הקודם המדורגת של $V_1 \cap V_2$ נמצא את למצוא בסיס של גסיס על נמצא את $V_1 \cap V_2$

$$Q \to \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & -2 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

הוא $Q\mathbf{x}=0$ הוא הכללי של המשוואה ההומוגנית

כלומר

$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 1 \\ 1 \end{pmatrix} w$$

אחד: $\mathrm{Nul}Q$ הוא מורכב וקטור אחד

$$B\left(\operatorname{Nul}(Q)\right) = \left\{ \mathbf{x} = \begin{pmatrix} -1\\ -1\\ 1\\ 1 \end{pmatrix} \right\} .$$

לכן Q מקיים את משוואת ההומוגנית אל מקיים א מקיים א

$$Q \cdot \mathbf{x} = \bar{\mathbf{0}} \qquad \Rightarrow \qquad (\mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3 \ \mathbf{u}_4) \cdot \begin{pmatrix} -1 \\ -1 \\ 1 \\ 1 \end{pmatrix} = \bar{\mathbf{0}}$$

לכן נקבל

$$-1 \cdot u_1 - 1 \cdot u_2 + 1 \cdot u_3 + 1 \cdot u_4 = \bar{0}$$
 \Rightarrow $u_1 + u_2 = u_3 + u_4$.

נגדיר את שני האגפים להיות הוקטור y:

$$y := u_1 + u_2 = u_3 + u_4$$

נציב את הוקטורים ונמצא כי

$$\mathbf{y} = \begin{pmatrix} 2\\3\\1\\1 \end{pmatrix} .$$

לכן בסיס של $V\cap U$ הוא

$$B(V \cap U) = \{\mathbf{y}\} = \left\{ \begin{pmatrix} 2\\3\\1\\1 \end{pmatrix} \right\}$$

דוגמה 14.4

נניח כי תת מרחב עם בסיס תו $U \in \mathbb{R}^5$

$$u_{1} = \begin{pmatrix} 1 \\ 3 \\ -2 \\ 2 \\ 3 \end{pmatrix}, \quad u_{2} = \begin{pmatrix} 1 \\ 4 \\ -3 \\ 4 \\ 2 \end{pmatrix}, \quad u_{3} = \begin{pmatrix} 1 \\ 3 \\ 0 \\ 2 \\ 3 \end{pmatrix},$$

ונניח כי בסיס תת מרחב עם בסיס $W \in \mathbb{R}^5$

$$w_1 = \begin{pmatrix} 2\\3\\-1\\-2\\9 \end{pmatrix} , \quad w_2 = \begin{pmatrix} 1\\5\\-6\\6\\1 \end{pmatrix} , \quad w_3 = \begin{pmatrix} 2\\4\\4\\2\\8 \end{pmatrix} .$$

 $U\cap W$ מצאו המימד והבסיס של

פתרון:

$$Q = \begin{pmatrix} 1 & 1 & 1 & 2 & 1 & 2 \\ 3 & 4 & 3 & 3 & 5 & 4 \\ -2 & -3 & 0 & -1 & -6 & 4 \\ 2 & 4 & 2 & -2 & 6 & 2 \\ 3 & 2 & 3 & 9 & 1 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 5 & 0 & 0 \\ 0 & 1 & 0 & -3 & 2 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

 $\mathrm{Nul}(Q)$ מכאן נקבל בסיס של

$$B_{\text{Nul}(Q)} = \left\{ b_1 = \begin{pmatrix} -5\\3\\0\\1\\0\\0 \end{pmatrix}, b_2 = \begin{pmatrix} 0\\-2\\1\\0\\1\\0 \end{pmatrix} \right\}$$

$$Qb_1 = 0 \Rightarrow -5u_1 + 3u_2 + w_1 = 0$$
,
 $Qb_2 = 0 \Rightarrow -2u_1 + u_3 + w_2 = 0$.

 $:U\cap W$ מכאן נקבל בסיס של

$$B_{U\cap W} = \{x_1, x_2\}$$

כאשר

$$x_1 = 5u_1 - 3u_2 = \begin{pmatrix} 2\\3\\-1\\-2\\9 \end{pmatrix} = w_1, \qquad x_2 = 2u_1 - u_3 = \begin{pmatrix} 1\\5\\-6\\6\\1 \end{pmatrix} = w_2.$$