

House Price Prediction

Capstone Presentation

Introduction / Business Understanding

Goals:

- Predict sale price of houses

Understand coefficients in model

Data Understanding

Data from Kaggle

Original dataset describes the houses, including factors like the age and quality of the house, the total size of both the lot and the house itself, the number of bedrooms and bathrooms, and additional features like any porch, garage, basement, etc.

Data Cleaning

A few categorical variables were reduced down to the most popular category vs not.

Future analysis will include expanding the feature set to include more of the categorical variables.

The **resulting dataset** is a mixture of continuous, ordinal, and binary variables with **no missing observations.**

All variables are numeric

Many new variables created

- HasPool: There are only 6 pools in the dataset. I dropped PoolQC and transformed PoolArea into HasPool
- HasFireplace: reduced Fireplaces, which is a count of fireplaces in the home, to a binary yes/no if the home has a fireplace at all.
- HasFence: reduced Fence, a list of fence condition descriptors, to a binary yes/no if the home came with a fence.
- HasGarage: if GarageArea equals zero, then the property has no garage. It also explains why some observations have missing variables for garage attributes. Upon investigation, those observations have zero garage area.
- GarageAreaPerCar: GarageArea divided by GarageCars. With this created I could then drop GarageArea. It's assumed that the more cars, the larger the garage, so I did not want both variables in there violating regression assumptions. Having the ratio will control for multi-car garages that actually have very little space.
- BsmtPerFinished: The percent of the basement that is finished
- HasCentralAir: When CentralAir equals "Yes"
- GasAirHeat: Is set to 1 when the house uses a Gas forced warm air furnace for heating
- SBboxElectric: Is set to 1 when Standard Circuit Breakers & Romex is how the electrical is wired
- HasDeck: If the squarefootage of deck area is greater than 0
- HasRemod: If a renovation happened at all in house history
- HouseAge: They age of the house at time of sale
- TimeSinceRemodel: The years since the remodel
- RemodFiveYrs: If the remodel happened within the 5 years prior to the sale
- GaragebuiltWHouse: Was the garage built at the same time as the house or later
- AverageRoomSize: Divided total living above ground space by total above ground room count
- HasFinishedBsmt: If any part of the basement is finished

Target: Sale Price of Houses

The median price of a home sold in this data set is \$157,950.00

The *mean* price of a home sold in this data set is \$173,294.63

While the bulk of Sale Price distribution appears fairly normal, the target variable shows that there are some outliers in the data. These higher priced homes skew the distribution. I kept these outliers in, however may consider doing a transformation at some point to normalize the target variable. Alternatively, I could train my model without those outliers, with the understanding that then my model would only be accurate at homes that would be sold at prices less than a certain amount.

Variables Compared with Target

Display of Independent Variables Highly Correlated with Sales Price

Data Preparation and Cleaning

Used 42 numeric columns for analysis to capture the quantitative aspects of homes being sold, after excluding categorical features.

Many of the initial correlations seem counter-intuitive. Why would having a fence be negatively correlated with sales price?

Why isn't total square footage showing a larger correlation?

Reason: Correlation is not a robust measure of relationship

Correlation of Each Independent Variable with the Target Variable

Modeling

• Baseline: predicts the mean house price from the training data for each house

Multiple linear regression model to improve upon baseline

Ridge regression model to manage the multicollinearity between my features

Multicollinearity

Exploring Correlation Between Features

Evaluation

Baseline Model

Ridge Regression

OLS Model

My preferred model is a Ridge Regress

> - R2 Sco $\mathsf{N} \wedge \mathsf{M} \subset \mathsf{N}$

> > Training R2

0.00%

89.40%

89.39%

_	V F	→ □.	100	

ore: .89	
801	

Testing R2

-0.96%

86.56%

86.62%

sion model	
e: .89	

Training MAE

\$51,797.20

\$17,481.87

\$17,462.86

del		

Testing MAE

\$52,952.53

\$18,076.08

\$18.011.05

 0.0154 ± 0.0032 0.0096 ± 0.0074 0.0059 ± 0.0045 0.0029 ± 0.0033

 0.0134 ± 0.0023 0.0124 ± 0.0043 0.0059 ± 0.0042 0.0041 ± 0.0029

Weight

 2.0422 ± 0.2634

 0.6316 ± 0.0540

 0.3785 ± 0.0292

 0.3780 ± 0.0564

 0.1554 ± 0.0200

 0.1182 ± 0.0157

 0.1049 ± 0.0189

 0.0702 ± 0.0030

 0.0563 ± 0.0129 0.0380 ± 0.0079

 0.0299 ± 0.0042

 0.0021 ± 0.0011

 0.0018 ± 0.0015

 0.0010 ± 0.0010

 0.0007 ± 0.0005

 0.0007 ± 0.0013

 0.0006 ± 0.0016

 0.0005 ± 0.0006

 0.0005 ± 0.0005

 0.0004 ± 0.0004

 0.0002 ± 0.0005

 -0.0001 ± 0.0002

 -0.0002 ± 0.0004

 -0.0003 ± 0.0006

 -0.0003 ± 0.0005

 -0.0005 ± 0.0010

 -0.0006 ± 0.0013

 0.0020 ± 0.0018

Feature

GrLivArea

TotRmsAbvGrd

TotalBsmtSF

BsmtUnfSF

OverallQual

HouseAge

2ndFlrSF **BsmtPerFinished**

AverageRoomSize

LotArea HasBasement GarageCars 1stFlrSF **FullBath** KitchenAbvGr **MSSubClass**

BedroomAbvGr

OverallCond

MasVnrArea HalfBath BsmtFullBath GarageArea GaragebuiltWHouse SBboxElectric

HasPool LotFrontage HasFence HasPorch HasFirePlace RemodFiveYrs

HasRemod BsmtHalfBath HasFinishedBsmt

HasGarage

TimeSinceRemodel

GarageAreaPerCar

HasAlley YrSold

MoSold

GasAirHeat

HasDeck

HasCentralAir

 0.0002 ± 0.0006

 0.0000 ± 0.0002 0.0000 ± 0.0002 0.0000 ± 0.0000

 -0.0000 ± 0.0050

 -0.0001 ± 0.0006

Next Steps

In the future I would like to first use more of the categorical features, and perhaps encode some of the discrete features I used in my final model. I would also like to then only use the most important features, perhaps by regularizing using both LASSO and Ridge through an ElasticNet model. I could also only use the top 5-10 features based on Permutation Importance.

Coefficients

-115.735481	MoSold	-47.360701	MSSubClass
411.339213	YrSold	36.130818	LotFrontage
0.000000	HasAlley	0.550012	LotArea
20217.132597	HasPool	13385.754531	OverallQual
-2566.104747	HasFence	7425.838372	OverallCond
1480.721584	HasFirePlace	25.746881	MasVnrArea
2642.702510	HasPorch	-42.110121	BsmtUnfSF
-21519.240631	HasBasement	73.371413	TotalBsmtSF
-12740.468310	HasGarage	14.246192	1stFlrSF
-8.554247	GarageAreaPerCar	32.987960	2ndFlrSF
-641.192879	AverageRoomSize	139.474943	GrLivArea
-402.500025	HasFinishedBsmt	4003.013587	BsmtFullBath
-31551.363176	BsmtPerFinished	-652.279737	BsmtHalfBath
1411.089038	HasCentralAir	-5937.087482	FullBath
5229.303467	GasAirHeat	-2836.097245	HalfBath
-1761.628554	SBboxElectric	-10062.078577	BedroomAbvGr
4001.467561	HasDeck	-13777.434459	KitchenAbvGr
-2165.235041	HasRemod	-21791.479670	TotRmsAbvGrd
-511.525974	HouseAge	6497.169230	GarageCars
-17.323424	TimeSinceRemodel	6.988019	GarageArea
3362.526696	RemodFiveYrs		
-5818.363776	GaragebuiltWHouse		

Contact

https://www.linkedin.com/learn-co-curriculum

https://github.com/learn-co-curriculum