

Этикетка

Микросхема 1564ТЛЗТЭП

КСНЛ.431256.004 ЭТ Микросхема интегральная 1564ТЛЗТЭП Функциональное назначение:

Четыре триггера Шмитта с логикой «2И-НЕ» на входах

Схема расположения выводов Номера выводов показаны условно Масса не более 1 г.

Условное графическое обозначение

Таблица назначения выводов

№	Обозначение	Назначение	№	Обозначение	Назначение
вывода	вывода	вывода	вывода	вывода	вывода
		Первый вход			Выход третьего
1	A1	первого канала	8	Y3	канала
		Второй вход			Первый вход
2	B1	первого канала	9	A3	третьего канала
		Выход первого			Второй вход
3	Y2	канала	10	В3	третьего канала
		Первый вход			Выход четвертого
4	A2	второго канала	11	Y4	канала
		Второй вход			Первый вход
5	B2	второго канала	12	A4	четвертого канала
		Выход второго			Второй вход
6	Y2	канала	13	B4	четвертого канала
7	0V	Общий	14	V_{CC}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ 1.1 Основные электрические параметры (при t = 25 ± 10 °C)

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
	обозначение	не менее	не более
1	2	3	4
1.Пороговое напряжение (при спаде сигнала), В, при:			
$U_{\rm CC}$ =2,0 B	$\mathrm{U}_{\mathrm{ITL}}$	0,3	0,9
U_{CC} =4,5 B		1,3	2,2
U_{CC} =6,0 B		1,8	2,8
2. Пороговое напряжение (при нарастании сигнала), В, при:			
U_{CC} =2,0 B	U_{ITH}	1,0	1,5
U_{CC} =4,5 B		2,3	3,2
U _{CC} =6,0 B		3,1	4,2
3. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{TLmax}, U_{THmax}, I_{O}=20 \text{ MKA}$	$U_{OL\;max}$	-	0,10
$U_{CC}=4,5 \text{ B}, U_{TLmax}, U_{THmax}, I_{O}=20 \text{ MKA}$		-	0,10
$U_{CC}=6.0 \text{ B}, U_{TLmax}, U_{THmax}^*I_0=20 \text{ MKA}$			0,10
при:			
$U_{CC}=4,5 \text{ B}, U_{TLmax}, U_{THmax}, I_{O}=4,0 \text{ MA}$		-	0,26
$U_{CC}=6.0 \text{ B}, U_{TLmax}, U_{THmax}^*I_O = 5.2 \text{ MA}$		-	0,26
4. Минимальное выходное напряжение высокого уровня, В, при:			
$U_{\text{CC}}=2.0 \text{ B}, U_{\text{TLmax}}, U_{\text{TLmin}}, U_{\text{THmax}} U_{\text{THmin}} *I_{\text{O}} = 20 \text{ MKA}$	$U_{ m OHmin}$	1,9	-
U_{CC} =4,5 B, U_{TLmax} , U_{TLmin} , U_{THmax} U_{THmin} * I_{O} = 20 MKA		4,4	-
U_{CC} =6,0 B, U_{TLmax} , U_{TLmin} , U_{THmax} U_{THmin} * I_{O} = 20 MKA		5,9	-
при:			
U_{CC} =4,5 B, U_{TLmax} , U_{TLmin} , U_{THmax} U_{THmin} * I_O = 4,0 MA		4,0	-
U_{CC} =6,0 B, U_{TLmax} , U_{TLmin} , U_{THmax} U_{THmin} * I_{O} = 5,2 MA		5,5	-

5. Входной ток низкого уровня, мкА, при:				
$U_{CC} = 6.0 \text{ B}$	$ m I_{IL}$	-	/-0,1/	
6. Входной ток высокого уровня, мкА, при:				
$U_{CC} = 6.0 \text{ B}$	$ m I_{IH}$	-	0,1	
7. Ток потребления, мкА, при:				
$U_{CC} = 6.0 \text{ B}$	I_{CC}	-	8,0	
8. Динамический ток потребления, мА, при:				
$U_{CC} = 6.0 \text{ B, } f = 10.0 \text{ M} \Gamma \text{ц}$	I_{OCC}	-	20,0	
9. Время задержки распространения при	$t_{PHL,}$			
включении и выключении, нс, при:	t_{PLH}			
$U_{CC} = 2,0 B, C_L = 50 п\Phi$		-	125	
$U_{CC} = 4,5 B, C_L = 50 п\Phi$		-	25	
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ п}\Phi$		-	21	
10. Входная емкость, пФ	C _I	-	10	
*- Значение задаваемого входного порогового напряжения соответствует значениям параметров п.п. 1, 2 при заданном напряжении				
питания и температуре среды				

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г.

серебро г.

в том числе:

золото г/мм

на 14 выводах длиной мм.

Цветных металлов не содержится

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) °C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 135000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-30ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ТЛЗТЭП соответствуют техническим условиям АЕЯР.431200.424-30ТУ и признаны годными для эксплуатации.

Приняты по от (извещение, акт и др.) (дата)	
Место для штампа ОТК	Место для штампа ПЗ
Место для штампа « Перепроверка произведена	» (дата)
Приняты по	
Место для штампа ОТК	Место для штампа ПЗ

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ.