Give the shortest paths from E to all other vertices using Dijkstra's algorithm. Your results must be shown in the table below.

А	В	С	D	F	G	Н	I
INFIN.	INFIN.	65E	33-E	18-E	23-E	INFIN.	INFIN.
INFIN.	54-F	60-F	33-E	18-E	23-E	42-F	INFIN.
INFIN.	54-F	60-F	33-E	18-E	23-E	42-F	44-G
45-D	54-F	37-D	33-E	18-E	23-E	42-F	44-G
45-D	54-F	37-D	33-E	18-E	23-E	42-F	44-G
45-D	54-F	37-D	33-E	18-E	23-E	42-F	44-G
45-D	54-F	37-D	33-E	18-E	23-E	42-F	44-G
45-D	54-F	37-D	33-E	18-E	23-E	42-F	44-G

The last line in your table gives the least cost to go from E to all other vertices. In the table below

show the actual path in the following format: E, Vertex_1, Vertex_2, etc.

E to A	E, Vertex_D, Vertex_A
E to B	E, Vertex_B
E to C	E, Vertex_D, Vertex_C
E to D	E, Vertex_D
E to F	E, Vertex_F
E to G	E, Vertex_G
E to H	E, Vertex_F, Vertex_H
E to I	E, Vertex_G, Vertex_I