Компоненти и диаграми на внедряване - Резюме

Имплементация на софтуер: Етап в процеса на софтуерно инженерство, при който се разработва изпълнима софтуерна система.

Проектиране и имплементация: взаимосвързани дейности, вкл. идентифициране на софт. компоненти и техн. връзки, базирани на изискванията на клиента, и реализиране на дизайна като програма.

Процес на обектно-ориентирано проектиране. Етапи на процеса:

- -Определяне на контекста и начина на използване на системата;
- -Проектиране на архитектурата на системата;
- -Идентифициране на основните обекти в системата;
- -Разработване на дизайнерски модели;
- -Определяне на интерфейсите на обектите.

Модел на контекста на системата: Структурен модел, който показва другите системи в околната среда на разработваната система.

Модел на взаимодействията: Динамичен модел, който показва как с-мата взаимодейства с околната среда по време на използването си.

Архитектурен дизайн: Включва идентифициране на основните компоненти на системата и техните взаимодействия, и организиране на компонентите с помощта на архитектурен модел като слоест или клиент-сървър модел.

Идентификация на обектни класове. Подходи за идентификация:

- 1/Граматичен- базиран на естествено езиково описание на системата
- 2/Идентификация, основана на осезаеми неща в приложната област
- 3/Поведенчески- базиран на участието на обектите в опр. поведение

4/Анализ, базиран на сценарии.

Дизайнерски модели:

1/Статични - описват статичната структура на системата чрез класове на обекти и техните връзки

2/Динамични - описват как обектите взаимодействат помежду си във времето

Модел на имплементация: Колекция от компоненти и имплементационни подсистеми, които ги съдържат

Имплементационната подсистема е колекция от компоненти и други имплементационни подсистеми, които се използват за структуриране на модела на имплементация чрез разделяне на помалки части.

Пакети от компоненти представляват групи от логически свързани компоненти или основни части на системата.

Компоненти: Представляват части от софтуерен код или файл, съдържащ информация. Могат да имат стереотипи като <<component>>, <<subsystem>> и др.

Диаграми на компоненти: Показват колекция от декларативни (статични) моделни елементи като компоненти и имплементационни подсистеми и техните връзки.

Кръг с интерфейс, прикрепен към иконата на компонента, означава, че компонентът поддържа конкретния **интерфейс**. Няма изрична връзка със стрелка между компонента и неговите интерфейси.

Спецификация на компонента съдържа:

- -Общи— стереотипи(Main Program, Package Body, Package Specification, Subprogram Body, Subprogram Specification, Task Body, Task Specification) и език.
- -Детайли декларации (като #Include).
- -Realizes класове, изграждащи компонента.
- -Прикрепени файлове или URL адреси.

Зависимости: Зависимост от компонент А към компонент В показва, че А има компилационна или изпълнителна зависимост към В.

Зависимост за компилация съществува от един компонент към компонентите, които са нужни за компилиране на компонента (например import в Java).

Съединителни връзки (Assembly connectors) в UML 2.*

-Съединителната връзка свързва необходимия интерфейс на един компонент с предоставения интерфейс на друг компонент -Съединителната връзка позволява на един компонент да предоставя услугите (boll), които друг компонент изисква (контакта).

Портове: Моделират свързани интерфейси и показват предоставяне услуги или поведение към околната среда, както и услуги или поведение, които компонентът изисква. Входове и изходи

Съединители за сглобяване: Свързват изисквания интерфейс на един компонент с предоставения интерфейс на друг компонент.

Диаграми на внедряване/**Deployment**/: Показват конфигурацията на елементите за обработка в реално време и софт. процеси, които се изпълняват в тях. Представят топологията на системата и разпределението на изпълнимите подсистеми към процесорите.

Диаграмата за внедряване показва процесори, устройства и връзки. Всеки модел съдържа единствена диаграма за внедряване, която показва връзките между процесорите и устройствата и разпределението на процесите върху процесорите.

Възли/Nodes/: Хардуерен или софтуерен ресурс, който може да хоства софтуер или свързани файлове. **Възлите** могат да бъдат хардуерни (сървъри, раб. станции) или софт. (операционни системи).

Artifact в възел- показва, че артефактът е внедрен в този възел

Процесор: Идентифицира процесите и специфицира типа на планиране на процесите (прекъсваемо, непрекъсваемо и т.н.).

Устройство: Хардуерен компонент с ограничена изчислителна мощност(модем, терминал)

Връзка: хардуерно свързване между две единици (процесор или устройство).