Question 7

Sunday, November 12, 2023

8:35 PM

- 7. Let $A \in M_n(\mathbb{R})$ that is invertible with eigen-pair (λ, v) .
 - (a) Is v an eigenvector of A^5 ? What's its corresponding eigenvalue? Generalize.

$$A\vec{V} = \lambda \vec{V}$$
 $A^2V \Rightarrow AAV = A\lambda V = \lambda AV = \lambda (\lambda V) = \lambda^2 \vec{v}$

Do This iteratively on A^{Λ} for $\Lambda = 5$

The corresponding eigenvalue for A^{Σ} is λ^{Σ}

Generally $A^{\Lambda}\vec{V} = \lambda^{\Lambda}\vec{V}$

(b) Is v an eigenvector of A^{-1} ? What's its corresponding eigenvalue?

$$\vec{A} \cdot \vec{A} \cdot \vec{V} = \vec{A} \cdot \vec{V}$$
 $\vec{A} \cdot \vec{V} = \vec{A} \cdot \vec{V} \cdot \vec{V}$
 $\vec{A} \cdot \vec{V} = \vec{A} \cdot \vec{V} \cdot \vec{V}$

(c) Is v an eigenvector of $A^2 + 3A + 6I_n$? What's its corresponding eigenvalue?

$$(A^{2} + 3A + 6In) \overrightarrow{V}$$

$$A^{2}\overrightarrow{V} + 3A\overrightarrow{V} + 6InV$$

21+321+6 eigenvenue 3 (2+32+6)