ОБРАЗЕЦ ВЫПОЛНЕНИЯ НУЛЕВОГО ВАРИАНТА

Задание 1.

Найти изображения следующих функций.

а) пользуясь теоремами линейности и подобия:

$$f(t) = \sin 2t \cos 4t \; ;$$

$$f(t) = \sin 2t \cos 4t = \frac{1}{2} (\sin 6t - \sin 2t),$$

$$\frac{1}{2}(\sin 6t - \sin 2t) \to \frac{1}{2}(\frac{6}{p^2 + 36} - \frac{2}{p^2 + 4}).$$

б) пользуясь теоремой об интегрировании изображения:

$$f(t) = \frac{e^{3t} - 1}{t}.$$

По таблице изображений найдем изображение функции

$$e^{3t} - 1 \to \frac{1}{p-3} - \frac{1}{p}$$
.

По теореме об интегрировании изображения:

$$\frac{e^{3t} - 1}{t} \to \int_{p}^{\infty} \left(\frac{1}{p - 3} - \frac{1}{p}\right) dp = \lim_{b \to \infty} (\ln(p - 3) - \ln p) \Big|_{p}^{b} =$$

$$= \lim_{b \to \infty} \ln \frac{p - 3}{p} \Big|_{p}^{b} = \ln 1 - \ln \frac{p - 3}{p} = \ln \frac{p}{p - 3}.$$

в) пользуясь теоремой об интегрировании оригинала:

$$f(t) = \int_{0}^{t} \tau \sin 3\tau d\tau$$

Так как $t \sin 3t \rightarrow \frac{6p}{(p^2+9)^2}$. То по теореме об интегрировании

оригинала:
$$\int_{0}^{t} \tau \sin 3\tau d\tau \rightarrow \frac{6p}{(p^2+9)^2}$$
: $p = \frac{6p}{p(p^2+9)^2} = \frac{6}{(p^2+9)^2}$.

Для данных изображений найти оригиналы:

a)
$$F(p) = \frac{3-4p}{p^5} + \frac{2p}{p^2+9} - \frac{3}{p-3}$$
;

6)
$$F(p) = \frac{2p}{(p-7)^4} + \frac{3e^{-5p}}{p^6} - \frac{3e^{-4p}(p+2)}{(p+2)^2 - 3}$$
;

B)
$$F(p) = \frac{1-3p}{p^2 + p + 4}$$
;

r)
$$F(p) = \frac{2p+5}{(p-4)(p^2-4p+8)}$$
.

Решение

a)
$$F(p) = \frac{3-4p}{p^5} + \frac{2p}{p^2+9} - \frac{3}{p-3};$$

 $\frac{3-4p}{p^5} + \frac{2p}{p^2+9} - \frac{3}{p-3} = \frac{3}{p^5} - \frac{4}{p^4} + \frac{2p}{p^2+3^2} - \frac{3}{p-3} = \frac{3}{4!} \frac{4!}{p^5} - \frac{4}{3!} \frac{3!}{p^4} + \frac{2p}{p^2+3^2} - \frac{3}{p-3};$

По таблице Лапласа находим:

$$\frac{3}{4!} \frac{4!}{p^5} - \frac{4}{3!} \frac{3!}{p^4} + \frac{2p}{p^2 + 3^2} - \frac{3}{p - 3} \to \frac{1}{8} t^4 - \frac{2}{3} t^3 + 2\cos 3t - 3e^{3t}.$$

6)
$$F(p) = \frac{2p}{(p-7)^4} + \frac{3e^{-5p}}{p^6} - \frac{3e^{-4p}(p+2)}{(p+2)^2 - 3};$$

Найдем оригинал для первого слагаемого, используем теорему смещения:

$$\frac{2p}{(p-7)^4} = \frac{2(p-7)+14}{(p-7)^4} = \frac{2}{(p-7)^3} + \frac{14}{(p-7)^4} = \frac{2!}{(p-7)^3} + \frac{14}{3!} \frac{3!}{(p-7)^4};$$

$$\frac{2!}{(p-7)^3} + \frac{14}{3!} \frac{3!}{(p-7)^4} \to e^{7t}t^2 + \frac{7}{3}e^{7t}t^3.$$

Оригинал для второго слагаемого находим, используя теорему запаздывания (в изображении имеется множитель e^{at}).

$$\frac{3}{p^6} = \frac{3}{5!} \frac{5!}{p^6}; \quad \frac{3}{5!} \frac{5!}{p^6} \to \frac{1}{40} t^5. \quad \text{Получаем:}$$

$$\frac{3}{5!} e^{-5p} \frac{5!}{p^6} \to \frac{1}{40} (t-5)^5 \chi(t-5).$$

Чтобы найти оригинал третьего слагаемого $\frac{3e^{-4p}(p+2)}{(p+2)^2-3}$, надо

использовать две теоремы: теорему смещения и теорему запаздывания оригинала.

Найдем оригинал для функции
$$\frac{p+2}{(p+2)^2-3}$$
; $\frac{p+2}{(p+2)^2-3} = \frac{p+2}{(p+2)^2-(\sqrt{3})^2}$; $\frac{p+2}{(p+2)^2-(\sqrt{3})^2} \rightarrow e^{-2t} ch\sqrt{3}t$. Тогда, $\frac{3e^{-4p}(p+2)}{(p+2)^2-3} \rightarrow 3e^{-2(t-4)}ch\sqrt{3}(t-4)\chi(t-4)$.

Итак,
$$\frac{2p}{(p-7)^4} + \frac{3e^{-5p}}{p^6} - \frac{3e^{-4p}(p+2)}{(p+2)^2 - 3} \rightarrow e^{7t}t^2 + \frac{7}{3}e^{7t}t^3 + \frac{1}{40}(t-5)^5 \chi(t-5) + 3e^{-2(t-4)}ch\sqrt{3}(t-4)\chi(t-4).$$

B)
$$F(p) = \frac{1-3p}{p^2 + p + 4}$$
;

$$\frac{1-3p}{p^2+p+4} = \frac{1-3p}{p^2+2\cdot\frac{1}{2}p+\frac{1}{4}-\frac{1}{4}+4} = \frac{1-3p}{\left(p+\frac{1}{2}\right)^2+\frac{15}{4}} =$$

$$= \frac{1-3\left(p+\frac{1}{2}-\frac{1}{2}\right)}{\left(p+\frac{1}{2}\right)^2+\left(\frac{\sqrt{15}}{2}\right)^2} = \frac{1-3\left(p+\frac{1}{2}\right)+\frac{3}{2}}{\left(p+\frac{1}{2}\right)^2+\left(\frac{\sqrt{15}}{2}\right)^2} =$$

$$= \frac{5}{2}\frac{2}{\sqrt{15}}\frac{\frac{\sqrt{15}}{2}}{\left(p+\frac{1}{2}\right)^2+\left(\frac{\sqrt{15}}{2}\right)^2} - 3\cdot\frac{p+\frac{1}{2}}{\left(p+\frac{1}{2}\right)^2+\left(\frac{\sqrt{15}}{2}\right)^2}.$$
Изображению
$$\frac{\sqrt{15}}{3}\frac{\frac{\sqrt{15}}{2}}{\left(p+\frac{1}{2}\right)^2+\left(\frac{\sqrt{15}}{2}\right)^2} - 3\cdot\frac{p+\frac{1}{2}}{\left(p+\frac{1}{2}\right)^2+\left(\frac{\sqrt{15}}{2}\right)^2}.$$
соответствует оригинал
$$\frac{\sqrt{15}}{3}e^{-\frac{t}{2}}\sin\frac{\sqrt{15}t}{2} - 3e^{-\frac{t}{2}}\cos\frac{\sqrt{15}t}{2}.$$

Таким образом,

$$\frac{1-3p}{p^2+p+4} \to \frac{\sqrt{15}}{3}e^{-\frac{t}{2}}\sin\frac{\sqrt{15}t}{2} - 3e^{-\frac{t}{2}}\cos\frac{\sqrt{15}t}{2}.$$

r)
$$F(p) = \frac{2p+5}{(p-4)(p^2-4p+8)}$$
;

Изображение - правильная рациональная дробь. Квадратный трехчлен в знаменателе дроби не имеет действительных корней. Представим дробь в виде суммы простейших дробей:

$$\frac{2p+5}{(p-4)(p^2-4p+8)} = \frac{A}{p-4} + \frac{Bp+C}{p^2-4p+8}.$$

Приведем правую часть к общему знаменателю, приравняем числители.

$$2p+5 = A(p^2-4p+8) + (Bp+C)(p-4);$$

$$p=4 \mid 13=8A;$$

$$p^2 \mid A+B=0;$$

$$p \mid -4A-4B+C=2.$$
Отсюда, $A = \frac{13}{8}; B = -\frac{13}{8}; C = 2+4(A+B);$

$$C = 2+4\left(\frac{13}{18} - \frac{13}{18}\right) = 2.$$

$$\frac{2p+5}{(p-4)(p^2-4p+8)} = \frac{13}{8} \frac{1}{p-4} + \frac{-\frac{13}{8}p+2}{p^2-4p+8} =$$

$$= \frac{13}{8} \frac{1}{p-4} + \frac{-\frac{13}{8}p+2}{(p-2)^2+4} = \frac{13}{8} \frac{1}{p-4} + \frac{-\frac{13}{8}(p-2+2)+2}{(p-2)^2+2^2} =$$

$$= \frac{13}{8} \frac{1}{p-4} - \frac{13}{8} \frac{p-2}{(p-2)^2+2^2} - \frac{5}{8} \frac{2}{(p-2)^2+2^2}.$$

Для последнего изображения находим оригинал:

$$f(t) = \frac{13}{8}e^{4t} - \frac{13}{8}e^{2t}\cos 2t - \frac{5}{8}e^{2t}\sin 2t.$$

Итак, получили ответ:

$$\frac{2p+5}{(p-4)(p^2-4p+8)} \to \frac{13}{8}e^{4t} - \frac{13}{8}e^{2t}\cos 2t - \frac{5}{8}e^{2t}\sin 2t.$$

Задание 3.

а) Найти свертку функций и соответствующее ей изображение: f(t) = 1 - t, $g(t) = e^{2t}$.

По таблице изображений функций:

$$1-t \to \frac{1}{p} - \frac{1}{p^2} = \frac{p-1}{p^2}, \ e^{2t} \to \frac{1}{p-2}.$$

По теореме о свертке получаем ее изображение:

$$(1-t)*e^{2t} \to \frac{p-1}{p^2} \frac{1}{p-2} = \frac{p-1}{p^2(p-2)}.$$

Найдем свертку по определению:

$$(1-t) * e^{2t} = \int_{0}^{t} e^{2\tau} (1-t+\tau) d\tau = \begin{bmatrix} U = 1-t+\tau & dU = d\tau \\ dV = e^{2\tau} d\tau & V = \frac{1}{2} e^{2\tau} \end{bmatrix} =$$

$$= \frac{1}{2} e^{2\tau} (1-t+\tau) \Big|_{0}^{t} - \int_{0}^{t} \frac{1}{2} e^{2\tau} d\tau = \frac{1}{2} e^{2t} - \frac{1}{2} (1-t) - \frac{1}{4} e^{2t} + \frac{1}{4} =$$

$$= \frac{1}{4} e^{2t} + \frac{1}{2} t - \frac{1}{4}.$$

По таблице изображений находим изображение свертки:

$$(1-t)*e^{2t} = \frac{1}{4}e^{2t} + \frac{1}{2}t - \frac{1}{4} \to \frac{1}{4}\frac{1}{p-2} + \frac{1}{2}\frac{1}{p^2} - \frac{1}{4}\frac{1}{p} = \frac{p-1}{p^2(p-2)}.$$

б) Пользуясь теоремой о свертке, найти оригинал изображения: $F(p) = \frac{5p}{(p^2 + 9)^2}$.

Представим F(p) в виде произведения $F(p) = \frac{5}{3} \frac{3}{p^2 + 9} \frac{p}{p^2 + 9}$.

Функции, $\frac{5}{3} \frac{3}{p^2 + 9}$ и $\frac{p}{p^2 + 9}$ являются изображениями функций

 $\frac{5}{3}\sin 3t$ и $\cos 3t$ соответственно. По теореме о свертке:

$$\frac{5p}{(p^2+9)^2} \to \frac{5}{3}\sin 3t * \cos 3t.$$

Найдем свертку функций $\frac{5}{3}\sin 3t$ и $\cos 3t$:

$$\frac{5}{3}\sin 3t * \cos 3t = \frac{5}{3}\int_{0}^{t}\sin 3\tau\cos 3(t-\tau)d\tau = \frac{5}{6}\int_{0}^{t}(\sin 3t + \sin(6\tau - 3t))d\tau =$$

$$= \frac{5}{6}(\tau\sin 3t - \frac{1}{6}\cos(6\tau - 3t))\Big|_{0}^{t} = \frac{5}{6}(t\sin 3t - \frac{1}{6}\cos 3t + \frac{1}{6}\cos 3t) = \frac{5}{6}t\sin 3t.$$

Таким образом: $\frac{5p}{(p^2+9)^2} \rightarrow \frac{5}{6}t \sin 3t.$

Задание 4.

Операционным методом найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям:

$$x'' - 4x' - 32x = 2e^{-t} + 3,$$
 $x(0) = -1, x'(0) = 0.$

От оригиналов переходим к изображениям:

$$x(t) \to X(p); f(t) \to F(p);$$

$$x'(t) \rightarrow pX(p) - x(0) = pX(p) + 1;$$

$$x''(t) \rightarrow p^2 X(p) - px(0) - x'(0) = p^2 X(p) + p;$$

$$2e^{-t} \rightarrow \frac{2}{p+1}; 3 \rightarrow \frac{3}{p}.$$

Операторное уравнение:

$$p^2X(p)+p-4pX(p)-4-32X(p)=\frac{2}{p+1}+\frac{3}{p}$$

Выразим X(p):

$$X(p)(p^{2}-4p-32)+p-4=\frac{2p+3(p+1)}{p(p+1)};$$

$$X(p) = \frac{-p^3 + 3p^2 + 9p + 3}{p(p+1)(p+4)(p-8)}.$$

Рассмотрим два способа нахождения оригинала x(t).

I. Представим изображение X(p) в виде суммы правильных рациональных дробей:

$$\frac{-p^3+3p^2+9p+3}{p(p+1)(p+4)(p-8)} = \frac{A}{p} + \frac{B}{p+1} + \frac{C}{p+4} + \frac{D}{p-8}.$$

Описанным выше способом найдем значения коэффициентов A, B, C, D. Укажем полученные значения:

$$A=-rac{3}{32}$$
, $B=-rac{2}{27}$, $C=-rac{79}{144}$, $D=-rac{245}{864}$. Тогда:

$$\frac{-p^3 + 3p^2 + 9p + 3}{p(p+1)(p+4)(p-8)} = -\frac{3}{32} \frac{1}{p} - \frac{2}{27} \frac{1}{p+1} - \frac{79}{144} \frac{1}{p+4} - \frac{245}{864} \frac{1}{p-8}.$$

Находим оригинал:

$$-\frac{3}{32}\frac{1}{p} - \frac{2}{27}\frac{1}{p+1} - \frac{79}{144}\frac{1}{p+4} - \frac{245}{864}\frac{1}{p-8} \rightarrow \rightarrow -\frac{3}{32} - \frac{2}{27}e^{-t} - \frac{79}{144}e^{-4t} - \frac{245}{864}e^{8t}.$$

Otbet: $x(t) = -\frac{79}{144}e^{-4t} - \frac{2}{27}e^{-t} - \frac{245}{864}e^{8t} - \frac{3}{32}$.

II. Воспользуемся теоремой разложения для нахождения оригинала.

Функция Y(p) имеет критические точки — простые полюсы $p_1 = -4$, $p_2 = -1$, $p_3 = 0$, $p_4 = 8$.

Находим вычеты функции $X(p)e^{pt}$ в полюсах:

$$\mathop{res}_{p=-4} X(p)e^{pt} = \lim_{p \to -4} \left[\frac{\left(-p^3 + 3p^2 + 9p + 3\right)e^{pt}}{p(p+1)(p+4)(p-8)} (p+4) \right] = -\frac{79}{144}e^{-4t};$$

$$\mathop{res}_{p=-1} X(p) e^{pt} = \lim_{p \to -1} \left[\frac{\left(-p^3 + 3p^2 + 9p + 3 \right) e^{pt}}{p(p+1)(p+4)(p-8)} (p+1) \right] = -\frac{2}{27} e^{-t};$$

$$res_{p=0} X(p)e^{pt} = \lim_{p \to 0} \left[\frac{\left(-p^3 + 3p^2 + 9p + 3\right)e^{pt}}{p(p+1)(p+4)(p-8)} p \right] = -\frac{3}{32};$$

$$res_{p=8} X(p)e^{pt} = \lim_{p \to 8} \left[\frac{\left(-p^3 + 3p^2 + 9p + 3\right)e^{pt}}{p(p+1)(p+4)(p-8)} (p-8) \right] = -\frac{245}{864}e^{8t}.$$
Other: $x(t) = -\frac{79}{144}e^{-4t} - \frac{2}{27}e^{-t} - \frac{245}{864}e^{8t} - \frac{3}{32}.$

Решить систему дифференциальных уравнений:

$$\begin{cases} x' = 5x - y, & x(0) = 0 \\ y' = 6x + y, & y(0) = 1 \\ x(t) \to X(p), & x'(t) \to pX(p) - x(0) = pX(p); \\ y(t) \to Y(p), & y(t) \to pY(p) - y(0) = pY(p) - 1. \end{cases}$$

Система принимает вид:

$$\begin{cases} pX(p) = 5X(p) - Y(p), \\ pY(p) - 1 = 6X(p) + Y(p). \end{cases}$$
$$\begin{cases} X(p)(p-5) + Y(p) = 0, \\ -6X(p) + Y(p)(p-1) = 1. \end{cases}$$

Эта система линейных алгебраических уравнений с двумя неизвестными X(p), Y(p). Решим систему методом Крамера:

$$\Delta = \begin{vmatrix} p-5 & 1 \\ -6 & p-1 \end{vmatrix} = p^2 - 6p + 11;$$

$$\Delta_1 = \begin{vmatrix} 0 & 1 \\ 1 & p-1 \end{vmatrix} = -1;$$

$$\Delta_2 = \begin{vmatrix} p-5 & 0 \\ -6 & 1 \end{vmatrix} = p - 5.$$

$$X(p) = \frac{\Delta_1}{\Delta} = \frac{-1}{p^2 - 6p + 11} = \frac{-1}{(p^2 - 6p + 9) + 2} =$$

$$= \frac{-1}{(p-3)^2 + 2} = -\frac{1}{\sqrt{2}} \frac{\sqrt{2}}{(p-3)^2 + 2};$$

$$x(t) = -\frac{1}{\sqrt{2}} e^{3t} \sin \sqrt{2}t.$$

$$Y(p) = \frac{\Delta_2}{\Delta} = \frac{p-5}{p^2 - 6p + 11} = \frac{p-5}{(p^2 - 6p + 9) + 2} =$$

$$= \frac{(p-3)-2}{(p-3)^2 + 2} = \frac{p-3}{(p-3)^2 + 2} - \sqrt{2} \frac{\sqrt{2}}{(p-3)^2 + 2};$$

$$y(t) = e^{3t} \cos \sqrt{2}t - \sqrt{2}e^{3t} \sin \sqrt{2}t.$$
Other:
$$x(t) = -\frac{1}{\sqrt{2}} e^{3t} \sin \sqrt{2}t; \ y(t) = e^{3t} \cos \sqrt{2}t - \sqrt{2}e^{3t} \sin \sqrt{2}t.$$

ВАРИАНТЫ КОНТРОЛЬНОГО ЗАДАНИЯ

- 1. Найти изображения следующих функций
- а) пользуясь теоремами линейности и подобия;
- б) пользуясь теоремой об интегрировании изображения;
- в) пользуясь теоремой об интегрировании оригинала.

1.a)
$$f(t) = t^2 - 3t + 4e^{5t} - \sin 2t \sin 4t$$
;

6)
$$f(t) = \frac{e^{2t} - 1}{t}$$
; B) $f(t) = \int_{0}^{t} \tau \cos 3\tau d\tau$.

2.a)
$$f(t) = 2 - 7t^5 + 2e^{2t} - \cos 2t \cos 4t$$
;

6)
$$f(t) = \frac{e^t - 1}{t}$$
; B) $f(t) = \int_0^t \tau \sin 5\tau d\tau$.

3.a)
$$f(t) = 2 + t - 6e^{3t} + \cos^2 2t$$
;

6)
$$f(t) = \frac{\sin t}{t}$$
; B) $f(t) = \int_{0}^{t} \tau \sin 4\tau d\tau$.

4.a)
$$f(t) = 5 - 3t + e^t - \cos^2 4t$$
;

6)
$$f(t) = \frac{1 - e^{6t}}{t}$$
; B) $f(t) = \int_{0}^{t} \tau e^{5\tau} d\tau$.

5.a)
$$f(t) = e^{3t} - 5t + 4 - \sin^2 2t$$
;

6)
$$f(t) = \frac{e^{4t} - 4}{t}$$
; B) $f(t) = \int_{0}^{t} \tau^{2} e^{2\tau} d\tau$.

6.a)
$$f(t) = \cos 2t - e^{6t} + 4t - 7$$
;

6)
$$f(t) = \frac{\cos t - 1}{t}$$
; B) $f(t) = \int_{0}^{t} \tau \sin 7\tau d\tau$.

7.a)
$$f(t) = (t+2)\cos 2t - 4 + e^{3t}$$
;

6)
$$f(t) = \frac{\sin 2t}{t}$$
; B) $f(t) = \int_{0}^{t} \tau e^{-2\tau} d\tau$.

8.a)
$$f(t) = 4 + e^{2t} - 7t^2 + \cos 5t \cos t$$
;

6)
$$f(t) = \frac{e^t - e^{-t}}{t}$$
; B) $f(t) = \int_0^t \tau \cos 4\tau d\tau$.

9.a)
$$f(t) = \sin 6t \cos 4t + 1 - e^{4t}$$
;

6)
$$f(t) = \frac{2(1-\cos t)}{t}$$
; B) $f(t) = \int_{0}^{t} \tau^{2} e^{4\tau} d\tau$.

10.a)
$$f(t) = 3 - 6t + \cos 2t(e^{6t} + 2)$$
;

6)
$$f(t) = \frac{e^{3t} - 1}{t}$$
; B) $f(t) = \int_{0}^{t} e^{\tau} \sin 5\tau d\tau$.

11.a) $f(t) = t^2 - 6t + 4 - \cos 2t \sin t$;

6)
$$f(t) = \frac{e^{4t} - 1}{t}$$
; B) $f(t) = \int_{0}^{t} \tau \sin 2\tau d\tau$.

12.a) $f(t) = t^2(1 + e^{2t}) + \sin 3t$;

6)
$$f(t) = \frac{\cos 3t - 1}{t}$$
; B) $f(t) = \int_{0}^{t} \tau \cos 5\tau d\tau$.

13.a) $f(t) = 5 - 3t^3 + e^{4t} - \cos^2 3t$;

6)
$$f(t) = \frac{\sin 6t}{t}$$
; B) $f(t) = \int_{0}^{t} sh3\tau d\tau$.

14.a) $f(t) = \cos^2 2t - 3t + e^{4t} - 9$;

6)
$$f(t) = \frac{e^{4t} - 1}{t}$$
; B) $f(t) = \int_{0}^{t} \sin 5\tau d\tau$.

15.a) $f(t) = 4 + 6t^2 - e^{5t} + \cos 7t \cos 4t$;

6)
$$f(t) = \frac{e^{2t} - e^{-2t}}{t}$$
; B) $f(t) = \int_{0}^{t} e^{6\tau} \tau^{3} d\tau$.

16.a) $f(t) = t - 5 + e^{5t} - \cos^2 2t$;

6)
$$f(t) = \frac{\sin 3t}{t}$$
; B) $f(t) = \int_{0}^{t} \tau^{2} e^{6\tau} d\tau$.

17.a) $f(t) = 6 - 3t + (tg 4t - 2)\cos 4t$;

6)
$$f(t) = \frac{3(e^t - 1)}{t}$$
; B) $f(t) = \int_{0}^{t} ch5\tau d\tau$.

18.a) $f(t) = (ctg 2t - 1)\sin 2t - 7t + e^{-2t}$;

$$6) f(t) = \frac{3\sin 4t}{t}; \qquad B) f(t) = \int_{0}^{t} ch6\tau d\tau.$$

19.a)
$$f(t) = 2 - 4t^2 + e^{3t} - \cos 3t \cos 5t$$
;

6)
$$f(t) = \frac{\cos 2t - 1}{t}$$
; B) $f(t) = \int_{0}^{t} \tau^{2} e^{4\tau} d\tau$.

20.a)
$$f(t) = 4t^4 - 3t + 1 - \sin 2t \sin 4t$$
;

6)
$$f(t) = \frac{e^{2t} - e^{-2t}}{t}$$
; B) $f(t) = \int_{0}^{t} \tau \cos 7\tau d\tau$.

21.a)
$$f(t) = (t-2)\cos 4t + 2 - e^{-3t}$$
;

6)
$$f(t) = \frac{\sin 5t}{t}$$
; B) $f(t) = \int_{0}^{t} ch2\tau d\tau$.

22.a)
$$f(t) = \cos 2t(t - e^t) + 4$$
;

6)
$$f(t) = \frac{e^{2t} - 1}{t}$$
; B) $f(t) = \int_{0}^{t} \tau e^{3\tau} d\tau$.

23.a)
$$f(t) = 2 - 6te^{2t} - \cos t \cos 8t$$
;

6)
$$f(t) = \frac{4(e^t - 1)}{t}$$
; B) $f(t) = \int_0^t sh5\tau d\tau$.

24.a)
$$f(t) = t^2 e^{3t} - \cos 2t(1+t)$$
;

6)
$$f(t) = \frac{1 - \cos t}{t}$$
; B) $f(t) = \int_{0}^{t} \tau^{3} e^{2\tau} d\tau$.

25.a)
$$f(t) = t(e^{-2t} + \cos 3t) - 6t^4$$
;

6)
$$f(t) = \frac{e^t - e^{2t}}{t}$$
; B) $f(t) = \int_0^t \tau \sin 3\tau d\tau$.

26.a)
$$f(t) = \cos 2t(t - \cos 4t) + t^2 e^{-3t}$$
;

6)
$$f(t) = \frac{1 - e^{3t}}{t}$$
; B) $f(t) = \int_{0}^{t} \tau^{3} e^{\tau} d\tau$.

27.a)
$$f(t) = (2 + e^t) \cos 4t - 3t^3 e^{-4t}$$
;

6)
$$f(t) = \frac{e^{-t} - e^{t}}{t}$$
; B) $f(t) = \int_{0}^{t} sh4\tau d\tau$.

28.a)
$$f(t) = 3t - 5 + \cos^2 9t$$
;

6)
$$f(t) = \frac{\sin 4t}{t}$$
; B) $f(t) = \int_{0}^{t} \tau \cos \tau d\tau$.

29.a)
$$f(t) = \cos 2t(t - e^{4t}) + 6e^{-6t}$$
;

6)
$$f(t) = \frac{\cos t - 1}{t}$$
; B) $f(t) = \int_{0}^{t} \tau e^{5\tau} d\tau$.

30.a)
$$f(t) = \sin^2 2t - te^{-2t} + 3$$
;

6)
$$f(t) = \frac{\sin t}{t}$$
; B) $f(t) = \int_{0}^{t} \tau^{2} e^{3\tau} d\tau$.

Для данных изображений найти оригиналы:

Вариант 1

a)
$$F(p) = \frac{18p+3}{p^4} - \frac{p+4}{p^2+4} - \frac{8}{3p-9}$$
; B) $F(p) = \frac{2p+1}{p^2-6p+1}$;

6)
$$F(p) = \frac{7p+1}{(p-5)^2} + \frac{2e^{-4p}}{p^3} - \frac{2e^{-p}}{(p+5)^2+4}$$
; $\Gamma(p) = \frac{p-5}{(p-2)^2(p+1)}$.

Вариант 2

a)
$$F(p) = \frac{5+p^3}{p^5} + \frac{2p}{p^2+16} - \frac{3}{p-1};$$
 B) $F(p) = \frac{3p-2}{p^2+8p-3};$

6)
$$F(p) = \frac{3}{2(p+1)^4} + \frac{4e^{-2p}}{p^2 - 6} + \frac{4e^{-3p}}{(p-3)^3}$$
; $\Gamma(p) = \frac{3p^2 - 2p + 1}{(p+1)(p^2 - 8p)}$.

a)
$$F(p) = \frac{2}{p^4} - \frac{3}{p^2 - 15} + \frac{2p + 3}{p^2 + 16}$$
; B) $F(p) = \frac{1 - 2p}{p^2 + 4p + 1}$;

6)
$$F(p) = \frac{21p}{(p-2)^8} + \frac{3e^{-p}}{p+5} - \frac{2e^{-5p}}{(p+1)^6};$$
 $\Gamma(p) = \frac{p-4}{(p+2)(p+3)^2}.$

a)
$$F(p) = \frac{11}{p^9} + \frac{p-4}{p^2+8} + \frac{2}{3p}$$
;

B)
$$F(p) = \frac{p+3}{p^2 - 5p + 6}$$
;

6)
$$F(p) = \frac{21p}{(p-2)^8} + \frac{3e^{-p}}{p+5} - \frac{2e^{-5p}}{(p+1)^6};$$
 $\Gamma(p) = \frac{3p^2 + 2}{(p-7)(p^2 - 4)}.$

r)
$$F(p) = \frac{3p^2 + 2}{(p-7)(p^2 - 4)}$$

Вариант 5

a)
$$F(p) = \frac{9-p^2}{p^4} + \frac{3}{p^2+2} - \frac{4p}{p^2+p}$$
; B) $F(p) = \frac{p}{p^2+3p-1}$;

B)
$$F(p) = \frac{p}{p^2 + 3p - 1}$$

6)
$$F(p) = \frac{12}{5(p-1)^7} + \frac{6e^{-8p}}{p^2 - 9} - \frac{e^{-2p}}{(p+5)^2}$$
; $\Gamma(p) = \frac{p-1}{(p+3)(p^2 - 2p)}$.

Вариант 6

a)
$$F(p) = \frac{2+3p}{p^3} - \frac{4-p}{p^2-25} + \frac{2}{p-4}$$
; B) $F(p) = \frac{2-p}{p^2-4p-3}$;

B)
$$F(p) = \frac{2-p}{p^2 - 4p - 3}$$

6)
$$F(p) = \frac{4p}{(p+3)^3} - \frac{2e^{-p}p}{p^2+5} + \frac{2}{7} \frac{e^{-4p}}{(p+1)^2 - 11}; \ \Gamma) \ F(p) = \frac{3p-5}{p^2(p-5)}.$$

a)
$$F(p) = \frac{1}{5p} + \frac{2p+7}{p^2+3} - \frac{12p}{p^3-p}$$
; B) $F(p) = \frac{3p}{p^2+8p+2}$;

B)
$$F(p) = \frac{3p}{p^2 + 8p + 2}$$

6)
$$F(p) = \frac{18}{(p+2)^2} + \frac{5e^{-4p}}{p^4} + \frac{2e^{-p}}{(p-3)^2 + 4}; \Gamma) F(p) = \frac{2p+1}{(p-3)(p^2 + 5)}$$

a)
$$F(p) = \frac{2-p}{p^3} + \frac{3p}{p^2 - 6} + \frac{2}{p+4}$$
; B) $F(p) = \frac{2p-3}{p^2 + p+1}$;

6)
$$F(p) = \frac{6p-3}{7(p-1)^5} + \frac{6e^{-2p}}{p^2-9} - \frac{3e^{-3p}p}{(p+4)^2}$$
; $\Gamma(p) = \frac{4p+5}{(p-1)(p^2-9)}$.

Вариант 9

a)
$$F(p) = \frac{6}{p^7} + \frac{1-2p}{p^2+14} - \frac{8}{p-5}$$
; B) $F(p) = \frac{4p}{p^2-6p+3}$;

6)
$$F(p) = \frac{p}{(p-3)^3} + \frac{2e^{-5p}}{p^2 + 16} - \frac{2e^{-2p}}{(p+1)^2 + 7}$$
; $\Gamma(p) = \frac{3p^2 + 1}{p^3 + p^2 - 20p}$

Вариант 10

a)
$$F(p) = \frac{1+8p^3}{p^4} - \frac{3}{p^2-3} + \frac{5}{8p}$$
; B) $F(p) = \frac{3p-4}{p^2-4p+3}$;

6)
$$F(p) = \frac{5}{8(p+1)^6} + \frac{4e^{-p}}{p^3} + \frac{e^{-3p}}{(p+1)^4}$$
; $\Gamma(p) = \frac{p^2 + 3p - 1}{p^3 - 16p}$.

Вариант 11

a)
$$F(p) = \frac{12}{p^7} - \frac{8p+4}{p^2-4} + \frac{3}{p+2}$$
; B) $F(p) = \frac{2p}{p^2 + 2p - 9}$;

6)
$$F(p) = \frac{4}{3(p-3)^4} - \frac{2e^{-3p}}{7p^6} + \frac{e^{-3p}(p-4)}{(p-4)^2 - 8}; \Gamma) F(p) = \frac{4p+5}{(p-3)(p-2)^2}$$

a)
$$F(p) = \frac{4-3p}{p^2} + \frac{8}{p^2+15} - \frac{3p+6}{p^2+4p+4}$$
; B) $F(p) = \frac{p-3}{p^2+p-2}$;

6)
$$F(p) = \frac{2p}{(p-5)^3} + \frac{5e^{-2p}p}{p^2 - 7} + \frac{e^{-5p}}{(p+1)^2 + 4}$$
; $\Gamma(p) = \frac{p^2 + p + 1}{(p+3)(p^2 + 8)}$.

a)
$$F(p) = \frac{2p^2 - 7}{p^4} + \frac{2}{p^2 - 7} + \frac{3p}{p^2 - 3p}$$
; B) $F(p) = \frac{p - 2}{p^2 + 6p + 1}$;

6)
$$F(p) = \frac{p+4}{16(p+1)^2} - \frac{3e^{-p}}{p^2+6} + \frac{e^{-2p}}{(p+4)^4}$$
; r) $F(p) = \frac{p^2+3p-1}{p^3-p^2}$.

Вариант 14

a)
$$F(p) = \frac{5}{p^6} + \frac{1 - 8p}{p^2 + 12} - \frac{2}{3p + 9}$$
; B) $F(p) = \frac{3 - 2p}{p^2 + 8p + 7}$;

6)
$$F(p) = \frac{8}{(p-2)^5} + \frac{2e^{-2p}}{p^2 - 25} + \frac{4e^{-3p}p}{3(p-1)^2}$$
; $\Gamma(p) = \frac{4p+1}{(p-3)(p^2+1)}$.

Вариант 15

a)
$$F(p) = \frac{18}{p^6} - \frac{2p+17}{p^2-8} + \frac{9}{p}$$
; B) $F(p) = \frac{p+1}{p^2-7p+3}$;

6)
$$F(p) = \frac{4p}{3(p+7)^6} - \frac{3e^{-3p}}{p^2+11} + \frac{2e^{-6p}}{7(p+3)^4}$$
; $\Gamma(p) = \frac{2p+1}{p^2(p-1)}$.

a)
$$F(p) = \frac{2+3p}{p^5} - \frac{p}{p^2+11} - \frac{4p+4}{p^2+2p+1}$$
; B) $F(p) = \frac{4p+3}{p^2+6p-1}$;

6)
$$F(p) = \frac{2p-1}{(p+2)^4} + \frac{2e^{-p}p}{p^2-3} + \frac{e^{-p}(p+1)}{(p+1)^2+8}; \Gamma) F(p) = \frac{2p^2+3p-1}{(p-5)(p^2-1)}.$$

a)
$$F(p) = \frac{12}{p^7} - \frac{3-2p}{p^2-3} + \frac{16p}{p^2+4p}$$
; B) $F(p) = \frac{3p-1}{p^2-p+5}$;

6)
$$F(p) = \frac{5p}{(p-7)^3} + \frac{5e^{-3p}}{p^5} + \frac{4e^{-4p}}{(p-2)^2 - 3}; \Gamma) F(p) = \frac{p-3}{(p+4)(p^2+7)}.$$

Вариант 18

a)
$$F(p) = \frac{1}{8p} + \frac{4p+5}{p^2+9} - \frac{18}{p-18}$$
; B) $F(p) = \frac{2-p}{p^2-4p+7}$;

6)
$$F(p) = \frac{4}{(p+4)^4} + \frac{8e^{-p}}{p^2 + 5} - \frac{3e^{-p}p}{(p+8)^3}$$
; $\Gamma(p) = \frac{3p+1}{(p-4)(p-3)^2}$.

Вариант 19

a)
$$F(p) = \frac{2p^3 - 1}{p^4} + \frac{8p - 1}{p^2 + 2} - \frac{3}{p + 1}$$
; B) $F(p) = \frac{3p + 4}{p^2 + 3p - 1}$;

6)
$$F(p) = \frac{3p+2}{(p-6)^2} + \frac{4e^{-p}}{p^6} - \frac{3e^{-5p}}{(p+4)^2 - 8}$$
; r) $F(p) = \frac{4-3p^2}{(p+3)(p^2-9)}$.

Вариант 20

a)
$$F(p) = \frac{4}{p^7} - \frac{5 - 6p}{p^2 + 6} + \frac{2p + 8}{p^2 + 8p + 16}$$
; B) $F(p) = \frac{2p + 5}{p^2 + 12p - 3}$;

6)
$$F(p) = \frac{8p}{(p+7)^3} + \frac{7e^{-p}3}{p^2-6} + \frac{2e^{-3p}}{(p-3)^3}$$
; $\Gamma(p) = \frac{1-3p}{p(p-3)}$.

a)
$$F(p) = \frac{4+5p^3}{p^7} - \frac{p+1}{p^2+1} - \frac{2}{p+8}$$
; B) $F(p) = \frac{4-p}{p^2+5p}$;

6)
$$F(p) = \frac{12}{5(p-8)^4} - \frac{24e^{-3p}}{p^7} + \frac{4e^{-p}}{(p+4)^2 + 4}$$
; r) $F(p) = \frac{2p+1}{p(p+4)^2}$.

a)
$$F(p) = \frac{4-3p}{p^2} + \frac{8}{p^2 + 12} - \frac{18p^2}{p^3 + 2p^2}$$
; B) $F(p) = \frac{1-3p}{p^2 - 4p + 1}$;

6)
$$F(p) = \frac{3}{(p-1)^2} + \frac{6e^{-8p}}{p^4} - \frac{2e^{-3p}(p+4)}{(p+4)^2 - 6}$$
; r) $F(p) = \frac{p^2 - p + 5}{(p-5)(p-3)^2}$

Вариант 23

a)
$$F(p) = \frac{3}{p^3} + \frac{2p+1}{p^2-3} - \frac{4}{p+5}$$
; B) $F(p) = \frac{2p+7}{p^2+9p+2}$;

6)
$$F(p) = \frac{4p}{(p+4)^5} + \frac{2e^{-p}}{p^2+3} + \frac{5e^{-4p}}{(p-1)^2+16}$$
; r) $F(p) = \frac{4p-5}{(p+1)(p^2+3)}$.

Вариант 24

a)
$$F(p) = \frac{2+3p}{p^8} + \frac{1-3p}{p^2-6} + \frac{2}{p+4}$$
; B) $F(p) = \frac{4-p}{p^2+8p+3}$;

6)
$$F(p) = \frac{5p}{(p-1)^3} - \frac{8e^{-4p}}{p^2 - 5} + \frac{4e^{-4p}p}{(p+2)^4}$$
; $F(p) = \frac{1 - 5p^2}{(p-3)(p^2 - 16)}$.

a)
$$F(p) = \frac{14+3p^3}{p^7} - \frac{2+3p}{p^2+9} - \frac{4}{p-1};$$
 B) $F(p) = \frac{p+4}{p^2+2p+9};$

6)
$$F(p) = \frac{3p-2}{2(p-4)^4} + \frac{e^{-p}}{p^5} + \frac{5e^{-2p}}{(p-3)^2 - 3}$$
; $\Gamma(p) = \frac{4p+3}{(p+2)(p^2 + 5)}$.

a)
$$F(p) = \frac{5}{7p} + \frac{p+8}{p^2-7} + \frac{2}{p+6}$$
; B) $F(p) = \frac{6p+1}{p^2-7p+3}$;

B)
$$F(p) = \frac{6p+1}{n^2 - 7n + 3}$$

6)
$$F(p) = \frac{1}{3(p+1)^3} + \frac{4e^{-2p}p}{p^2+8} + \frac{2e^{-p}p}{(p+5)^2}$$
; $\Gamma(p) = \frac{1-3p^2}{(p-3)(p^2+5)}$.

a)
$$F(p) = \frac{21}{p^7} - \frac{1 - 3p}{p^2 + 3} + \frac{4p}{p^2 + 4p}$$
; B) $F(p) = \frac{2p - 3}{p^2 - 8p + 12}$;

B)
$$F(p) = \frac{2p-3}{n^2-8n+12}$$

6)
$$F(p) = \frac{2p}{(p-6)^2} - \frac{2e^{-p}}{p^3} + \frac{3e^{-4p}p}{(p+8)^2}$$
; $\Gamma(p) = \frac{4p-1}{(p-1)(p^2-4p-5)}$.

Вариант 28

a)
$$F(p) = \frac{12 - 7p^5}{p^6} + \frac{2p + 1}{p^2 + 8} - \frac{3}{p - 2}$$
; B) $F(p) = \frac{4p - 3}{p^2 + 5p + 4}$;

6)
$$F(p) = \frac{p+1}{(p-4)^4} + \frac{4e^{-7p}}{p^2+5} - \frac{2e^{-p}}{(p-6)^3}$$
; r) $F(p) = \frac{p^2+1}{(p+5)(p^2+6)}$.

a)
$$F(p) = \frac{8}{p^8} + \frac{3-4p}{p^2-19} + \frac{2}{p+1}$$
; B) $F(p) = \frac{1-3p}{p^2+3p+2}$;

B)
$$F(p) = \frac{1-3p}{p^2+3p+2}$$
;

6)
$$F(p) = \frac{2}{(p+1)^5} + \frac{3e^{-p}p}{p^2 - 12} + \frac{4e^{-p}}{(p+4)^2 + 8}; \Gamma) F(p) = \frac{3p+1}{(p-1)(p-3)}.$$

a)
$$F(p) = \frac{6p-5}{p^6} + \frac{p+2}{p^2+4} + \frac{3}{p-7}$$
; B) $F(p) = \frac{2p-7}{p^2+12p+3}$;

B)
$$F(p) = \frac{2p-7}{p^2+12p+3}$$

6)
$$F(p) = \frac{3p-1}{(p-3)^3} - \frac{5e^{-4p}}{p^6} + \frac{2e^{-3p}p}{(p+1)^3}$$
; $\Gamma(p) = \frac{3p^2 - 5}{(p+6)(p^2 + 10)}$.

- а) найти свертку оригиналов и изображение свертки;
- б) пользуясь теоремой о свертке, найти оригинал изображения.

1. a)
$$f(t) = t$$
, $g(t) = e^{3t}$;

2. a)
$$f(t) = t$$
, $g(t) = \cos t$;

6)
$$F(p) = \frac{p^2}{(p^2 + 4)^2}$$
.

6)
$$F(p) = \frac{p}{(p^2 + 4)^2}$$
.

3. a)
$$f(t) = t$$
, $g(t) = e^t$;

12. a)
$$f(t) = 1 - 5t$$
, $g(t) = e^{5t}$;

6)
$$F(p) = \frac{p^2}{(p^2 + 1)^2}$$
.

6)
$$F(p) = \frac{p}{(p^2 + 1)^2}$$
.

4. a)
$$f(t) = t + 1$$
, $g(t) = e^{t}$;

13. a)
$$f(t) = -5t$$
, $g(t) = e^{4t}$;

6)
$$F(p) = \frac{3}{(p^2 + 1)^2}$$
.

6)
$$F(p) = \frac{p}{(p^2 + 1)^2}$$
.

5. a)
$$f(t) = 3t$$
, $g(t) = e^{4t}$;

14. a)
$$f(t) = -t$$
, $g(t) = e^{3t}$;

6)
$$F(p) = \frac{6}{(p^2 + 9)^2}$$
.

6)
$$F(p) = \frac{3}{(p^2 + 4)^2}$$
.

6. a)
$$f(t) = t^2$$
, $g(t) = e^t$;

15. a)
$$f(t) = t$$
, $g(t) = e^{4t}$;

6)
$$F(p) = \frac{3}{(p^2+1)(p^2+4)}$$
.

6)
$$F(p) = \frac{p}{(p^2+1)(p^2+4)}$$
.

7. a)
$$f(t) = t^2$$
, $g(t) = e^{-t}$;

16. a)
$$f(t) = t - 2$$
, $g(t) = e^{4t}$;

6)
$$F(p) = \frac{p^2}{(p^2+1)(p^2+4)}$$
.

6)
$$F(p) = \frac{p}{(p^2+9)(p^2+4)}$$
.

8. a)
$$f(t) = t^2$$
, $g(t) = e^{2t}$;

17. a)
$$f(t) = e^{2t}$$
, $g(t) = e^{4t}$;

6)
$$F(p) = \frac{4}{(p^2+1)(p^2+4)}$$
.

6)
$$F(p) = \frac{p^2}{(p^2+9)(p^2+4)}$$

9. a)
$$f(t) = t^2$$
, $g(t) = e^{-3t}$;

6)
$$F(p) = \frac{2p}{(p^2+1)(p^2+4)}$$
.

10. a)
$$f(t) = e^{-t}$$
, $g(t) = e^{t}$;

6)
$$F(p) = \frac{3}{(p^2 + 1)(p^2 + 4)}$$
.

11. a)
$$f(t) = e^{-2t}$$
, $g(t) = e^{2t}$;

6)
$$F(p) = \frac{3}{(p^2+9)(p^2+4)}$$
.

21. a)
$$f(t) = e^{-3t}$$
, $g(t) = e^{3t}$;

6)
$$F(p) = \frac{6p}{(p^2+1)(p^2+4)}$$
.

22. a)
$$f(t) = e^{-t}$$
, $g(t) = 1$;

6)
$$F(p) = \frac{3p}{(p^2 + 1)^2}$$
.

23. a)
$$f(t) = e^{-t}$$
, $g(t) = t$;

6)
$$F(p) = \frac{2}{(p^2 + 9)^2}$$
.

24. a)
$$f(t) = e^{-6t}$$
, $g(t) = e^{t}$;

6)
$$F(p) = \frac{p}{(p^2 + 9)(p^2 + 4)}$$
.

25. a)
$$f(t) = t$$
, $g(t) = e^t$;

6)
$$F(p) = \frac{3}{(p^2 + 1)(p^2 + 25)}$$

18. a)
$$f(t) = e^{3t}$$
, $g(t) = e^{4t}$;

6)
$$F(p) = \frac{1}{(p^2 + 1)(p^2 + 4)}$$
.

19. a)
$$f(t) = t$$
, $g(t) = te^{4t}$;

6)
$$F(p) = \frac{p}{(p^2 + 1)(p^2 + 4)}$$
.

20. a)
$$f(t) = t$$
, $g(t) = te^{t}$;

6)
$$F(p) = \frac{p^2}{(p^2+9)(p^2+4)}$$
.

26. a)
$$f(t) = t$$
, $g(t) = e^{-4t}$;

6)
$$F(p) = \frac{6}{(p^2 + 1)(p^2 + 4)}$$
.

27. a)
$$f(t) = t$$
, $g(t) = 1$;

6)
$$F(p) = \frac{p^2}{(p^2 + 4)^2}$$
.

28. a)
$$f(t) = e^{-2t}$$
, $g(t) = e^{4t}$;

6)
$$F(p) = \frac{p}{(p^2 + 9)^2}$$
.

29. a)
$$f(t) = t$$
, $g(t) = t - 1$;

6)
$$F(p) = \frac{p}{(p^2 + 16)^2}$$
.

30. a)
$$f(t) = t$$
, $g(t) = te^{6t}$;

6)
$$F(p) = \frac{3}{(p^2+1)(p^2+25)}$$
. 6) $F(p) = \frac{p}{(p^2+16)(p^2+49)}$.

Операционным методом найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям:

1.
$$x'' - 2x' - 8x = e^{3t} - 2$$
, $x(0) = 1$, $x'(0) = -2$.

2.
$$7x'' - 14x' = 2cht$$
, $x(0) = 3$, $x'(0) = -1$.

3.
$$x'' + 6x' + 9x = 4$$
, $x(0) = 0$, $x'(0) = 0$.

4.
$$x'' - 6x' - 16x = e^{-t} - 2e^{3t}$$
, $x(0) = 1$, $x'(0) = 2$

5.
$$x'' - 8x' + 15x = 3sh3t$$
, $x(0) = 2$, $x'(0) = -1$.

6.
$$x'' - 10x' + 25x = 2e^{3t}$$
, $x(0) = 0$, $x'(0) = 0$.

7.
$$x'' + 3x' + 2x = 3 + e^{4t}$$
, $x(0) = 4$, $x'(0) = -3$.

8.
$$x'' - 9x' = 2sh4t$$
, $x(0) = -1$, $x'(0) = 3$.

9.
$$x'' + 5x' - 24x = 2 - e^{-t}$$
, $x(0) = 0$, $x'(0) = -2$.

10.
$$x'' + 8x' + 16x = 3sh3t$$
, $x(0) = 0$, $x'(0) = 0$.

11.
$$x'' - 25x = ch2t - 1$$
, $x(0) = 0$, $x'(0) = 2$.

12.
$$x'' - 18x' + 81x = 2$$
, $x(0) = 0$, $x'(0) = 0$.

13.
$$x'' - 7x' + 12x = e^{-2t} + 2$$
, $x(0) = -4$, $x'(0) = 0$.

14.
$$x'' - 14x' + 49x = 3e^{-5t}$$
, $x(0) = 0$, $x'(0) = 0$.

15.
$$x'' + 3x' = 10 - 6e^{2t}$$
, $x(0) = 1$, $x'(0) = 3$.

16.
$$x'' - 5x' - 6x = 1 + e^{-3t}$$
, $x(0) = -1$, $x'(0) = 1$.

17.
$$x'' - 6x' + 9x = sh4t$$
, $x(0) = 1$, $x'(0) = 0$.

18.
$$x'' - 9x = e^{-t}$$
. $x(0) = 2$. $x'(0) = -3$.

19.
$$x'' - 3x' - 28x = 2sht$$
, $x(0) = 1$, $x'(0) = 2$.

20.
$$x'' + 4x' + 4x = te^{-3t}$$
. $x(0) = 0$. $x'(0) = 0$.

21.
$$x'' - 16x = 2ch3t$$
, $x(0) = 1$, $x'(0) = -2$.

22.
$$x'' + x' - 2x = 2e^{-t} + e^{3t}$$
, $x(0) = -1$, $x'(0) = 0$.

23.
$$x'' + 18x' + 81x = 2e^t$$
, $x(0) = 0$, $x'(0) = 0$.

24.
$$x'' + 4x' = 2sh8t$$
, $x(0) = -1$, $x'(0) = -2$.

25.
$$x'' + 4x' - 21x = 2 - e^{3t}$$
, $x(0) = 0$, $x'(0) = 2$.

26.
$$x'' - 16x' + 64x = 2ch5t$$
, $x(0) = 0$, $x'(0) = 0$.

27.
$$x'' + 2x' = e^{3t} - 1$$
, $x(0) = 0$, $x'(0) = 1$.

28.
$$x'' + 2x' - 15x = 2ch3t$$
, $x(0) = 2$, $x'(0) = -1$.

29.
$$x'' + 6x' + 9x = 2e^{-4t}$$
, $x(0) = 0$, $x'(0) = 0$.

30.
$$x'' - 8x' = 3e^{-2t} + 1$$
, $x(0) = -1$, $x'(0) = 0$.

Решить систему дифференциальных уравнений:

1.
$$\begin{cases} x' = 2x + 3y, & x(0) = -1, \\ y' = 4x - 2y, & y(0) = 0. \end{cases}$$

2.
$$\begin{cases} x' = 3x + y, & x(0) = 2, \\ y' = -5x - 3y, & y(0) = 0. \end{cases}$$

3.
$$\begin{cases} x' = -2x + 5y, & x(0) = 0, \\ y' = 4x - y, & y(0) = 1. \end{cases}$$

12.
$$\begin{cases} x' = 2x + y, & x(0) = 0, \\ y' = 5x - y, & y(0) = 1. \end{cases}$$

4.
$$\begin{cases} x' = 2x + y, & x(0) = -1, \\ y' = 4x - y, & y(0) = 0. \end{cases}$$

13.
$$\begin{cases} x' = x + y, & x(0) = 2, \\ y' = 5x + 3y, & y(0) = 0. \end{cases}$$

5.
$$\begin{cases} x' = 2x + 3y, \ x(0) = -1, \\ y' = 4x - 2y, \ y(0) = 0. \end{cases}$$

14.
$$\begin{cases} x' = x + 3y, & x(0) = 0, \\ y' = -3x + y, & y(0) = 1. \end{cases}$$

6.
$$\begin{cases} x' = x - 3y, & x(0) = 1, \\ y' = 4x + y, & y(0) = 0. \end{cases}$$

15.
$$\begin{cases} x' = 3x + 4y, & x(0) = 2, \\ y' = -x + 3y, & y(0) = 0. \end{cases}$$

7.
$$\begin{cases} x' = 3x - y, & x(0) = 0, \\ y' = 5x + y, & y(0) = -1. \end{cases}$$

16.
$$\begin{cases} x' = x - 3y, & x(0) = 1, \\ y' = 5x + 3y, & y(0) = 0. \end{cases}$$

8.
$$\begin{cases} x' = 2x - 3y, & x(0) = 1, \\ y' = 4x - 2y, & y(0) = 1. \end{cases}$$

9.
$$\begin{cases} x' = 5x - y, & x(0) = 1, \\ y' = x - 6y, & y(0) = 0. \end{cases}$$

10.
$$\begin{cases} x' = 2x - 2y, & x(0) = 0, \\ y' = x + y, & y(0) = -1. \end{cases}$$

11.
$$\begin{cases} x' = 2x - y, & x(0) = 1, \\ y' = x - 8y, & y(0) = 0. \end{cases}$$

21.
$$\begin{cases} x' = x - 3y, \ x(0) = 1, \\ y' = x - 2y, \ y(0) = 0. \end{cases}$$

22.
$$\begin{cases} x' = 2x + 3y, & x(0) = 1, \\ y' = 7x + y, & y(0) = 0. \end{cases}$$

23.
$$\begin{cases} x' = 3x - 4y, \ x(0) = 1, \\ y' = -3x + y, y(0) = 0. \end{cases}$$

24.
$$\begin{cases} x' = x - 6y, & x(0) = 1, \\ y' = 2x - 2y, & y(0) = 0 \end{cases}$$

25.
$$\begin{cases} x' = 2x - 3y, & x(0) = 0, \\ y' = 4x + 2y, & y(0) = 1. \end{cases}$$
 30.
$$\begin{cases} x' = 6x - y, & x(0) = 1, \\ y' = x - 8y, & y(0) = 0. \end{cases}$$

17.
$$\begin{cases} x' = 3x + y, & x(0) = 0, \\ y' = 5x - 3y, & y(0) = -2. \end{cases}$$

18.
$$\begin{cases} x' = x + 3y, & x(0) = 2, \\ y' = x - 5y, & y(0) = 0. \end{cases}$$

19.
$$\begin{cases} x' = x + 3y, & x(0) = 0, \\ y' = x - 5y, & y(0) = 2. \end{cases}$$

20.
$$\begin{cases} x' = x - y, & x(0) = 2, \\ y' = x - 5y, & y(0) = 0. \end{cases}$$

26.
$$\begin{cases} x' = x - y, & x(0) = 1, \\ y' = x + 3y, & y(0) = 0. \end{cases}$$

27.
$$\begin{cases} x' = 3x - 4y, & x(0) = 1, \\ y' = -6x + y, & y(0) = 0. \end{cases}$$

28.
$$\begin{cases} x' = 3x - y, & x(0) = -2, \\ y' = x - 5y, & y(0) = 0. \end{cases}$$

24.
$$\begin{cases} x' = x - 6y, & x(0) = 1, \\ y' = 2x - 2y, & y(0) = 0. \end{cases}$$
 29.
$$\begin{cases} x' = -3x + y, & x(0) = 0, \\ y' = 5x + 3y, & y(0) = 0. \end{cases}$$

30.
$$\begin{cases} x' = 6x - y, & x(0) = 1, \\ y' = x - 8y, & y(0) = 0. \end{cases}$$

Таблица соответствия между основными оригиналами и изображениями

Функция оригинал $f(t)$	Изображение $F(p)$
1	1
	p
t	1
	$ \frac{p}{\frac{1}{p^2}} $ $ \frac{2}{p^3} $
t^2	2
	p^3
t^n	<u>n!</u>
	\overline{p}^{n+1}
e^{at}	1
	p-a
$t^{n-1}e^{at}$	$\frac{p-a}{(p-a)^n}$ $\frac{(n-1)!}{(p-a)^n} (n = 1, 2, 3)$
	$(p-a)^n$
$\cos t$	<u> </u>
	$\frac{p}{p^2 + 1}$ $\frac{1}{p^2 + 1}$
$\sin t$	1
	$p^2 + 1$
cos at	<i>p</i>
	$p^2 + a^2$
sin at	$\frac{p}{p^2 + a^2}$ $\frac{a}{p^2 + a^2}$
	$p^2 + a^2$
c hat	
	p^2-a^2
s hat	a
	$\frac{p}{p^2 - a^2}$ $\frac{a}{p^2 - a^2}$

$e^{-bt}\cos at$	$\frac{p+b}{(p+b)^2+a^2}$
$e^{-bt}\sin at$	$\frac{a}{(p+b)^2 + a^2}$
$t\cos at$	$\frac{p^2 - a^2}{(p^2 + a^2)^2}$
t sin at	$\frac{2pa}{(p^2+a^2)^2}$