Flashtalk: vortices and solitons in a Quantum Fluid of light

Simon Lepleux

Fluids of light

Nonlinear Schrödinger Equation

$$i\frac{\partial}{\partial z}E = \left(-\frac{1}{2k_0} \nabla_{\perp}^2 - \frac{\delta \epsilon(\mathbf{r})}{2n_0} k_0 - \frac{n_2}{n_0} k_0 |E|^2 \right) E$$

Gross-Pitaevskii Equation

External potential

Two control knobs for the interactions

 N_{at} atomic density (controlled by the temperature) Δ detuning (controlled by the laser frequency)

GPE can be reformulated by a transformation

- hydrodynamics equations

$$\psi = \sqrt{
ho}e^{i heta},
ho = |\psi|^2 = |E|^2$$

Experiment

We want to study the hydrodynamical behavior of the fluid of light.

We deduce the phase and density by interferometry.

Extracting phase and density

4

Vortices

We imprint a phase pattern in the SLM to generate vortices

Vortices with a charge greater than 1 are unstable and break

Solitons

Ex of "snaking" instability:

Jones Roberts Solitons

JRS : stable solutions to the NLSE (immune to instabilities)

It is generated by the fusion two vortices of opposite sign : (a dipole)

Velocities

Outlook

- how do they form?
- how do they interact?
- dipole vortex collision
- dipole dipole collision
- ...

