3ag1

Hera Ke phukoupano ect. 4ucro Dokamete, 4e ppu nzk (n) & (1) (1)

 $\frac{\theta(n^k) = \{g \mid \exists C_1 > 0 C_2 > 0 \exists n_0 \forall n \geq n_0 \}}{C_1 \cdot n^k \leq g \leq C_2 \cdot n^k}$

•
$$K=0$$
 $C_1.1 \le 1 \le C_2.1$

$$- K \ge 1 \qquad \left(\begin{array}{c} n \\ k \end{array} \right) = \frac{n!}{[n-\kappa]!} = \frac{1}{[n-\kappa]!}$$

$$= \frac{n(n-1) \cdot (n-2) \cdot (n-3) \dots (n-k) \cdot (n-k-1) \dots 1}{(n-k) \cdot (n-k-2) \dots (n-k+1)}$$

$$= \frac{n \cdot (n-1) \dots (n-2) \dots (n-k+1)}{k!}$$

$$= \frac{n \cdot (n-1) \cdot (n-2) \dots (n-k+1)}{(k-1) \cdot (k-2) \dots (n-k+1)}$$

$$= \frac{n \cdot (n-1) \cdot (n-2) \dots (n-k+1)}{k \cdot (k-1) \cdot (k-2) \dots (n-k+1)} \stackrel{?}{\leq} (2n)$$

$$= \frac{n \cdot (n-1) \cdot (n-2) \dots (n-k+1)}{k \cdot (k-1) \cdot (k-2) \dots (n-k+1)} \stackrel{?}{\leq} (2n)$$

$$= \frac{n \cdot (n-1) \cdot (n-2) \dots (n-k+1)}{k \cdot (k-1) \cdot (k-2) \dots (n-k+1)} \stackrel{?}{\leq} (2n)$$

$$= \frac{n \cdot (n-1) \cdot (n-2) \dots (n-k+1)}{k \cdot (k-1) \cdot (k-2) \dots (n-k+1)} \stackrel{?}{\leq} (2n)$$

$$= \frac{n \cdot (n-1) \cdot (n-2) \dots (n-k+1)}{k \cdot (k-1) \cdot (k-2) \dots (n-k+1)} \stackrel{?}{\leq} (2n)$$

$$= \frac{n \cdot (n-1) \cdot (n-2) \dots (n-k+1)}{k \cdot (k-1) \cdot (k-2) \dots (n-k+1)} \stackrel{?}{\leq} (2n)$$

$$= \frac{n \cdot (n-1) \cdot (n-2) \dots (n-k+1)}{k \cdot (k-1) \cdot (k-2) \dots (n-k+1)} \stackrel{?}{\leq} (2n)$$

$$= \frac{n \cdot (n-1) \cdot (n-2) \dots (n-2) \dots (n-k+1)}{k \cdot (k-1) \cdot (k-2) \dots (n-k+1)} \stackrel{?}{\leq} (2n)$$

$$= \frac{n \cdot (n-1) \cdot (n-2) \dots (n-2) \dots (n-k+1)}{k \cdot (k-1) \cdot (k-2) \dots (n-k+1)} \stackrel{?}{\leq} (2n)$$

$$= \frac{n \cdot (n-1) \cdot (n-2) \dots (n-2) \dots (n-k+1)}{k \cdot (k-1) \cdot (k-2) \dots (n-k+1)} \stackrel{?}{\leq} (2n)$$

$$= \frac{n \cdot (n-1) \cdot (n-2) \dots (n-2) \dots (n-k+1)}{k \cdot (k-1) \cdot (k-2) \dots (n-k+1)} \stackrel{?}{\leq} (2n)$$

$$= \frac{n \cdot (n-1) \cdot (n-2) \dots (n-2) \dots (n-k+1)}{k \cdot (k-1) \cdot (k-2) \dots (n-k+1)} \stackrel{?}{\leq} (2n)$$

Ще поканем, 4e: mk (K-1) ... (n-к+1)

$$\frac{11}{K} \cdot \frac{11}{K} \cdot \frac{1}{K} \cdot \frac{(n-1)}{(k-1)} \cdot \frac{(n-2)}{(k-2)}$$

$$\begin{array}{c|c} K \leq n & = \end{array} \begin{array}{c} m & \leq m \\ \hline n & \leq m \\ \hline \end{array} \begin{array}{c} m & \leq 1 - m \\ \hline n & \leq 1 - m \end{array}$$

$$=$$
 $\frac{K-m}{\kappa} \leq \frac{N-m}{\kappa}$

$$= \frac{N}{K} \leq \frac{N-m}{K-m}$$

$$\frac{n}{k} \cdot \frac{n}{k} \cdot \frac{n}{k} \cdot \frac{n}{k} \leq \frac{n}{k} \cdot \frac{(n-1)}{(k-1)} \cdot \frac{(n-2)}{(k-2)} \cdot \frac{n-k}{1}$$

$$\frac{n}{k} \cdot \frac{n}{k} \cdot \frac{n}{k} \leq \frac{n-1}{k} \cdot \frac{n-2}{k} \cdot \frac{n-2}{k-2} \cdot \frac{n-2}{k}$$

Chomnoctton 401 7 generate Allsubsets.

выстори с углянина г.

CROMHOLT HU NEXT B HAG-DOW Ch. 011111-1 next 1000.0 (n) AMOPTHZUPON WHORUZ HO 975 PAZLAEMARME: -> while (___) 2n (oserter e zorob) ·false ·true KONKO NBTU BOB WA LIVE 151 古中五山山 FAISE $= \sum_{n=2}^{n+1} -1$

CPEGNO NO OJEKT:
$$2^{n+1}-1$$
 [OJUNO CTZNEW]

 2^n [Jeot odektw]

Next = θ [1] Amoptuzupaho!

=) Chomhoctta no yas θ [2")

30y 3 Chomhoct Ha

gen All subsets - recursive

 gas -rec(n-1)

 gas -rec(n-1)

 $T(n) = T(n-1) + 1[n-1] + 1$
 $T(n) = 2T(n-1) + 1$
 xop .

 θ [2")

KOPEKTHOLT WO UTEPATUBHU OUTLOPHTMU

- 1) финитност ~ ше приключи пи?
- 2) Koperthoct Ha 43 xoga

C UHBAPHANTA HO YUKENO

Pregukat

Pregukation TP90BCL;

- 1) A e Bepen nou nopboto
 Brujare B yukona
- 2) Bephoctta my ga ce zanazba creg borko uznanhehue.
- 3) От неговата вярност да Спедва верността на апиритама

Доказатепство с индукция:

Lug. . Mp. hogg pamka

Lung. . Mp. hogg pamka

Lung. . CT hogg pamka

Tephuha yug

hochegho To uznanhembe

Ha Banpo Chug peg

Задч "Доканнете, че ф-яти even Count Врещи броя на четните чиски в масива агг

-	
	Инварианта:
	За всяка проверка за край на цикъла е изпълнено: evenCount е броят четни числа в подмасива arr[0i-1].
	База:
	При първата проверка за край: i = 0, evenCount = 0;
	Вярно ли e, че evenCount e броят на четните числа в подмасива arr[01]?
	arr[01] - празен подмасив.
	Броят на четните числа в празния подмасив е 0. ОК!
	Поддръжка:
	Допускаме, че инвариантата е изпълнена за някоя проверка за край на цикъла, КОЯТО НЕ Е ПОСЛЕДНА!
	Допуснали сме, че evenCount е броят четни числа в подмасива arr[0i-1].
	На 9-ти ред правим проверка дали arr[i] е четно.
	1сл. Проверката връща истина. Тогава arr[i] е четно. Влизаме в тялото на if-а и инкрементираме evenCount. evenCount' - новата стойност на evenCount (evenCount' = evenCount + 1). От допускането: evenCount е броят четни числа в подмасива arr[0i-1] Но arr[i] е четно. Тогава броят на четните числа в arr[0i] е evenCount + 1. Тогава evenCount' е броят на четните числа в arr[0i]. След това i се инкрементира и evenCount' става броя на четните числа в arr[0i-1]. ОК! 2сл. Проверката връща лъжа.
	Тогава arr[i] е НЕЧЕТНО . Т.е. броят на четните числа в подмасива arr[0i-1] е точно колкото е и в в arr[0i]. От предположението в променливата evenCount пазим броя на четните числа в подмасива arr[0i-1]. Но тогава в evenCount е броят на четните числа и в подмасива arr[0i].
	Но след това і се инкрементира и evenCount e броят на четните числа в подмасива arr[0i-1]. OK !
	Терминация:
	Последната проверка за край на цикъла: i = len.
	От инвиариантата: evenCount e броят на четните числа в подмасива arr[0len-1].
	Но това е целият масив . На ред 12 връщаме evenCount. ОК!

1)
$$\lim_{x \to 0} (x,y) = \begin{cases} x & x \neq 0 \lor y \neq 0 \\ 1 & \text{else} \end{cases}$$

2) KOPPKTHOLT

1 сл х != 0 или у != 0

Инварианта: За всяка проверка за край на цикъла е изпълнено: x^y = z^t * p

База: При първото влизане в цикъла:

$$z = x$$

 $t = y$
 $p = 1$
 $z^*t * p = x^*y * 1 = x^*y. OK!$

Поддръжка: Допускаме, че инвариантата е изпълнена за някоя проверка за край на цикъла, **която не е последна**.

Тогава t > 0.

1 сл. t е четно. Проверката връща истина.

z' (новата стойност на z) z'= z * z

t' (новата стойност на t) t'= t / 2

Вярно ли e: $z' ^ t' * p = x ^ y ?$

 $z' \wedge t' \times p = (z \times z) \wedge (t/2) \times p = z \wedge (t/2) \times z \wedge (t/2) \times p = z \wedge t \times p$

= (от допускането) х^у. ОК!

2 сл. t е нечетно. Проверката връща лъжа.	
р' (новата стойност на р) р' = р * z	
t' (новата стойност на t) t' = t – 1	
Вярно ли e: z ^ t' * p' = x ^ y ?	
Z ^ t' * p' = z ^ (t - 1) * z * p = z ^ t * p = (от допускането) x^y ОК !	
Терминация:	
При последната проверка за край: t = 0.	•
=> x ^ y = z ^ t * p = z ^ 0 * p = p	
На ред 37 връщаме точно р. ОК !	
-	•
2cл. x = 0 и y = 0.	
Тогава t = 0. Тогава проверката на цикъла връща лъжа.	
На ред 37 връщаме р, която има стойност 1-ца. OK!	