PLASTIC ANALYSIS AND DESIGN

FINAL TERM PROJECT 2017

指導老師:張國鎮

Group 3

R05521216 黃聖雯 R05521224 蔡詠安 R05521203 張世昇

Outline

- 1 Introduction
- 2. Analytical Model
- 3. Seismic Evaluation
- 4. ATC-40
- 5. FEMA273
- 6. Mechanism Method (Upper Bound Method)
- 7. Retrofit
- 8. Summary and Remarks
- 9. Reference

Job Assignment

人員	工作項目
黃聖雯	XTRACT分析、TEASPA分析、ATC40檢核
蔡詠安	XTRACT分析、TEASPA分析、FEMA273檢核
張世昇	ETABS建模、TEASPA分析、結構物補強、Upper bound method

1. Introduction

- ▶ 1.1 Purposes
- ▶ 1.2 Basic Information
- ▶ 1.3 Seismic Records

1.1 Purposes

- ▶ 因921倒塌許多校舍之後,發現過去耐震設計規範的不足,並開始以現今 規範進行校舍的耐震評估與補強
- ▶ 針對1022嘉義地震時倒塌的嘉義民雄農工實習工廠,探討結構物設計上的缺陷、破壞坍塌情形及原因。
- ▶ 利用ETABS及TEASPA等工具進行分析,並配合ATC-4o及FEMA273兩種耐震評估方法,來瞭解破壞情形、缺陷。

1.2 Basic Information

» Building Name :嘉義民雄農工實習工廠

» Soil Type : Type 2

» Building Function : Schoolhouse

» Structure System : RC MRF

» Structure Size : 2 floors without basement

» Plan Dimensions : Long Dir. 48.4 m Short Dir. 12.5 m

» Materials : Concrete $f_c'=$ 280 kgf/cm²

Rebar $f_y = 2800 \text{ kgf/cm}^2$

» Loadings : Dead load 850 kg/m² < Including all members

Live load 250 kg/m²

1.3 Seismic Records

921TCU068 100%

2. Analytical Model

▶ 2.1 ETABS

Define Material Properties

▶ Define Frame Section : column ` beam

Rectangular Section

Define : Slab \ Wall

Wall/Slab Section

Define : Mass source

Define Mass Source

Construct the model

- Construct the model
- Secondary beams & Brace(brick wall)

Set secondary beams and Braces as pin-connected

Assign

Frame End Length Offsets

Rigid zone factor

Stiffness reduction in this step (Assign→Frame/Line→Frame property modifiers)

Assign load

Assign

剛性樓板設定

Model analysis

	+X	-x
週期	0.3982sec	0.3978sec
X向有效質量參與係數	96.647%	96.6449%
RFL振態係數	0.0344	0.0344
2FL振態係數	0.0236	0.0236

3. Seismic Evaluation

- ▶ 3.1 TEASPA & Pushover analysis setting
- 3.2 Analysis results

- Build the input file
- \$ BUILDING PROPERTIES
- \$ SITE SPECTRUM PARAMETER
- \$ COLUMN PROPERTIES
- \$ BEAM PROPERTIES
- \$ COLUMN DATA
- \$ BEAM DATA
- \$ AXIAL LOAD
- \$ COLUMN SECTION PROPERTIES

$$S_{D1} = N_v F_v S_1^D = 1.44 \times 1.1 \times 0.45 = 0.7128$$

▶ Run ColPH

we can get the new model (.e2k) with the plastic hinges

Set pushover analysis in ETABS Lateral force distribution

$$F_X = \frac{w_x h_x}{\sum w_x h_x} V$$

X向: -X向:

Story2 = 1 Story2 = -1

Story1 = 0.519 Story1 = -0.519

Define static nonlinear analysis

Static Nonlinear Case Data

Analysis results:(+X direction)

Analysis results:(-X direction)

Strong Beam - Weak Column \rightarrow Soft Story

Pushover curve :(+X direction)

	Max.Displacement(cm)	Max.Base(kgf)
+X	8.0401	351295

Check with TEASPA (filename*_colecho) (in kgf):

\$Name	story	Flexure(kgf)
C 1	STORY1	6709.95
C37	STORY1	6163.79
	Σ	352484.9

Pushover curve :(-X direction)

	Max.Displacement(cm)	Max.Base(kgf)
-X	8.0058	353106

Check with TEASPA (filename*_colecho) (in kgf):

\$Name	story	Flexure(kgf)
C 1	STORY1	6707.53
	<	
C37	STORY1	8786.68
	Σ	354522.7

Run PGA

(+X direction)

(-X direction)

3.2 Analysis results:(+X direction)

Max.Displacement(cm)	Max.Base Force(kgf)	Ap(g)	Drift ratio
8.0401	351295	0.261271	RFL: 0.1516% 2FL: 1.9287%

	位移準則	軸力破壞準則	評估標準
一般校舍用途結構	RFL: 0.1516%<2% 2FL: 1.9287%<2%	無	A_P =0.261271g A_T =0.4 S_{DS} =0.4*1.096g=0.438g A_P < A_T

因為 $A_P < A_T$ (性能目標地表加速度值 < 設計地震地表加速度值),所以需進行結構補強

3.2 Analysis results:(-X direction)

Max.Displacement(cm)	Max.Base Force(kgf)	Ap(g)	Drift ratio
8.0058	353106	0.261408	RFL: 0.1444% 2FL: 1.9232%

	位移準則	軸力破壞準則	評估標準
一般校舍用途結構	RFL: 0.1444%<2% 2FL: 1.9232%<2%	無	A_P =0.261408g A_T =0.4 S_{DS} =0.4*1.096g=0.438g A_P < A_T

因為 $A_P < A_T$ (性能目標地表加速度值 < 設計地震地表加速度值),所以需進行結構補強

4. ATC40

- ▶ 4.1 ATC-40 flow chart and preparation
- ▶ 4.2 Procedure A
- ▶ 4.3 Procedure B
- ▶ 4.4 Procedure C
- ▶ 4.5 Check and Summary

	四湖鄉	0.7	0.4	0.9	0.5	
	口湖鄉	0.7	0.4	0.9	0.5	
	水林鄉	0.7	0.4	0.9	0.5	
	太保市	0.7	0.4	0.9	0.5	梅山斷層
	朴子市	0.7	0.4	0.9	0.5	
	布袋鎮	0.7	0.4	0.9	0.5	
	大林鎮	0.8	0.45	1.0	0.55	梅山、大尖山與觸口斷層
嘉義縣	民雄鄉	0.8	0.45	1.0	0.55	梅山斷層
	溪口鄉	0.8	0.45	1.0	0.55	梅山斯層
	新港鄉	0.7	0.4	0.9	0.5	梅山斯層
	六腳鄉	0.7	0.4	0.9	0.5	
	東石郷	0.7	0.4	0.9	0.5	

表 2-4-4 近梅山斷層調整因子 N_A 與 N_V

(a) 設計地震之調整因子

N_A	r≦2 km	$2 \text{km} < r \leq 5 \text{ km}$	$5 \text{km} < r \leq 8 \text{ km}$	r>8 km
IV_A	1.37	1.28	1.15	1.00
N_V	r≦2 km	$2 \text{km} < r \leq 5 \text{ km}$	$5 \text{km} < r \leq 8 \text{ km}$	r>8 km
111	1.44	1.36	1.20	1.00

表 2-2(a) 短週期結構之工址放大係數 F_a (線性內插求值)

地盤分類	震區短週期水平譜加速度係數 $S_S(S_S^D$ 或 S_S^M)					
	$S_S \leq 0.5$	$S_{S}=0.6$	$S_S = 0.7$	$S_S = 0.8$	S _S ≥0.9	
第一類地盤	1.0	1.0	1.0	1.0	1.0	
第二類地盤	1.1	1.1	1.0	1.0	1.0	
第三類地盤	1.2	1.2	1.1	1.0	1.0	

表 2-2(b) 長週期結構之工址放大係數 F_v (線性內插求值)

地盤分類	震區一秒週期水平譜加速度係數 $S_I(S_1^D$ 或 $S_1^M)$					
	$S_1 \le 0.30$	$S_1 = 0.35$	$S_1 = 0.40$	$S_1 = 0.45$	S₁≥0.50	
第一類地盤	1.0	1.0	1.0	1.0	1.0	
第二類地盤	1.5	1.4	1.3	1.2	1.1	
第三類地盤	1.8	1.7	1.6	1.5	1.4	

$$S_s^D = 0.8$$
 $S_1^D = 0.45$
 $N_A = 1.37$ $N_V = 1.44$
 $S_s^D N_A = 1.096$ $S_1^D N_V = 0.648$
 $F_a = 1.0$ $F_v = 1.1$
 $S_{DS} = F_a S_s^D N_A = 1.096$
 $S_{D1} = F_v S_1^D N_V = 0.7128$

The structure is Type C

Shaking Duration	Essentially New Building	Average Existing Building	Poor Existing Building
Short	Type A	Type B	Type C
Long	Type B	Type C	Type C

β ₀ (%)	κ
≤ 16.25	1.0
> 16.25	$1.13 - \frac{0.51(a_y d_{pi} - d_y a_{pi})}{a_{pi} d_{pi}}$
≤ 25	0.67
> 25	$0.845 - \frac{0.446(a_y d_{pi} - d_y a_{pi})}{a_{pi} d_{pi}}$
Any Value	0.33
	≤ 16.25 > 16.25 ≤ 25 > 25

設計地震反應譜轉換成ADRS格式

中小度地震設計反應譜轉換成ADRS格式

TCUo68反應譜轉換成ADRS格式

4.1 ATC-40 flow chart and preparation

Get the (d_y, a_y) from the bilinear curve

Procedure A:

- 1.建立彈性反應譜及容量曲線並轉成ADRS格式
- 2.選擇一試誤點 (d_{pi}, a_{pi})
- 3.容量譜雙線性面積相等,並得 (d_y, a_y)
- 4.求出折減因子 $SR_A \setminus SR_V$,繪出折減後需求譜
- 5.折減需求譜與容量曲線交點須與試誤點誤 差5%以內,則為功能績效點,否則須再 次試誤

設計地震

Can't find the performance point

中小度地震

TCUo68

Procedure:

- 1.建立彈性反應譜及容量曲線並轉成ADRS 格式
- 2.以初始勁度交需求譜點為d*,而得a* 並雙線性化容量譜得dy及ay

3.
$$\exists x \exists x \exists a_{pi} = \frac{(a^* - a_y)(d_{pi} - d_y)}{d^* - d_y} + a_y \qquad \beta_{eff} = \frac{63.7\kappa(a_y d_{pi} - d_y a_{pi})}{a_{pi}^* d_{pi}} + 5$$

可得 d_{pi} 與 β_{eff} 關係式

4. d_{pi} 變化則可求得線段(代表不同 β_{eff} 功能績效點),與雙線化容量譜交點即為所求功能績效點

設計地震

Can't find the performance point

中小度地震

(1.218313 cm, 259.050000 gal)

TCUo68

Can't find the performance point

Procedure:

- 1.建立彈性反應譜及容量曲線並轉成ADRS 格式
- 2.選擇一試誤點 (d_{pi}, a_{pi}) ,一般選擇容量譜 與需求譜交點,並雙線性

與需求譜交點,並雙線性
$$\frac{\frac{a_{pi}}{a_y}-1}{3}$$
 3.決定 d_{pi}/d_y ,求出 $\alpha=\frac{\frac{a_{pi}}{a_y}-1}{\frac{d_{pi}}{d_y}-1}$,之後查表求 出 β_{eff} ,繪出折減需求譜

出 β_{eff} ,繪出折減需求譜

4.繪製Line1(初始勁度與需求譜連線),

Line2 ((d_{pi}, a_{pi})與原點連線),

- 5.繪製Line3 (Line1與容量譜交點及Line2與折減 需求譜交點連線)
- 6.Line3與容量譜交點即為功能績效點(與試誤點誤 差5%以內)

設計地震

中小度地震

(1.230129 cm, 261.333333 gal)

48

TCUo68

	設計地震力	中小地震	TCU068
Procedure A	N/A	Sd = 1.158998 (cm) Sa = 258.565696 (gal)	N/A
Procedure B	N/A	Sd = 1.218313 (cm) Sa = 259.050000 (gal)	N/A
Procedure C	N/A	Sd = 1.230129 (cm) Sa = 261.333333 (gal)	N/A

設計地震	Sd (cm)	Damage Level
Procedure A	N/A	Collapse
Procedure B	N/A	Collapse
Procedure C	N/A	Collapse

TCU068	Sd (cm)	Damage Level
Procedure A	N/A	Collapse
Procedure B	N/A	Collapse
Procedure C	N/A	Collapse

中小型地震	Sd (cm)	Δ_{roof}	Drift ratio	Damage Level
Procedure A	1.158998	2.240317	0.290950305	Operational
Procedure B	1.218313	2.354972	0.305840524	Operational
Procedure C	1.230129	2.377812	0.308806766	Operational

Check by the ATC-40 performance level

設計地震	Sd (cm)	Δ_{roof}	Max. total drift	Max. inelastic drift	Performance Level
Procedure A	N/A	N/A	N/A	N/A	Collapse
Procedure B	N/A	N/A	N/A	N/A	Collapse
Procedure C	N/A	N/A	N/A	N/A	Collapse

ATC Performance Level						
Interstory drift	Immediate	Damage	Life	Structural		
limit	occupancy	control	Safety	Stability		
Max. total drift	0.01	0.01-0.02	0.02	0.33V/P		
Max. inelastic drift	0.005	0.005-0.015	No limit	No limit		

Check by the ATC-40 performance level

中小型地	震	Sd (cm)	Δ_{roof}	Max. total drift	Max. inelastic drift				
Procedure A	Story 2	1 159009	2.240317	0.001441	0.000688	Immediate Occupancy			
Flocedule A	Story 1	1.158998	150990 2.240317	0.004268	0.001238	Immediate Occupancy			
Procedure B	Story 2	1.218313 2.354972	4 0 4 0 0 4 0	4 040040	4.040040 0.05	0.054070	0.001454	0.000997	Immediate Occupancy
Procedure B	Story 1		2.354972	0.004542	0.001512	Immediate Occupancy			
Procedure C	Story 2 1.230129 2.377812 Story 1	2	4 000400		0.001457	0.001059	Immediate Occupancy		
53		0.004597	0.001566	Immediate Occupancy					

ATC Performance Level						
Interstory drift	Life	Structural				
limit	occupancy	control	Safety	Stability		
Max. total drift	0.01	0.01-0.02	0.02	0.33V/P		
Max. inelastic drift	0.005	0.005-0.015	No limit	No limit		

Check by the ATC-40 performance level

TCU068	Sd (cm)	Δ_{roof}	Max. total drift	Max. inelastic drift	Performance Level
Procedure A	N/A	N/A	N/A	N/A	Collapse
Procedure B	N/A	N/A	N/A	N/A	Collapse
Procedure C	N/A	N/A	N/A	N/A	Collapse

ATC Performance Level						
Interstory drift Immediate Damage Life Stru						
limit	occupancy	control	Safety	Stability		
Max. total drift	0.01	0.01-0.02	0.02	0.33V/P		
Max. inelastic drift	0.005	0.005-0.015	No limit	No limit		

Check the base shear < the capacity shear Transform Sa to base shear by using $S_a = \frac{v_{/M}}{\alpha_1}$

設計地震	Sa	Base Shear(kgf)	PGA(capacity) (gal)	V(capacity) (kN)
Procedure A	N/A	N/A		
Procedure B	N/A	N/A	256.662	3442.961
Procedure C	N/A	N/A		

Check the base shear < the capacity shear

Transform the Sa to base shear by using $S_a = \frac{v_{/M}}{\alpha_1}$

中小型地震	Sa	Base Shear(kgf)	PGA(capacity) (gal)	V(capacity) (kN)
Procedure A	258.565696	2910.425811		
Procedure B	259.050000	2915.877162	256.662	3442.961
Procedure C	261.333333	2941.57845		

Check the base shear < the capacity shear

Transform the Sa to base shear by using $S_a = \frac{v_{/M}}{\alpha_1}$

TCU068	Sa	Base Shear(kgf)	PGA(capacity) (gal)	V(capacity) (kN)	
Procedure A	N/A	N/A			
Procedure B	N/A	N/A	256.662	3442.961	
Procedure C	N/A	N/A			

Summary:

- 1) We get similar results from three procedures.
- 2) Performance level

	Δ_{roof}	Performance Level
設計地震	N/A	Collapse
中小地震	2.377812	Immediate Occupancy
TCU068	N/A	Collapse

5. FEMA273

- 5.1 Linear Static Procedure(LSP)
- 5.2 Linear Dynamic Procedure(LDP)
- 5.3 Nonlinear Static Procedure(NSP)
- 5.4 Check and Summary

Pseudo lateral load

$$V = C_1 C_2 C_3 S_a W$$

$$F_x = C_{vx} V$$

Period Determination

- Method 1: Dynamic Analysis from ETABS
- Method 2:Approximated formula (h in feet)

$$T = C_t h_n^{3/4}$$

€ 0.03 for moment-resisting frame of reinforced concrete

	Approximated formula	ETABS Analysis
T	0.3446	0.3982

ightharpoonup Coefficients Determination $C_1
ightharpoonup C_2$

$$C_1 = 1.5 \text{ for } T < 0.10 \text{ second}$$

$$C_I = 1.0$$
 for $T \ge T_0$ second

Table 3-1 Values for Modification Factor C_2						
	T=0.1 second		$T \ge T_0$ second			
Performance Level	Framing Type 1 ¹	Framing Type 2 ²	Framing Type 1 ¹	Framing Type 2 ²		
Immediate Occupancy	1.0	1.0	1.0	1.0		
Life Safety	1.3	1.0	1.1	1.0		
Collapse Prevention	1.5	1.0	1.2	1.0		

Structures in which more than 30% of the story shear at any level is resisted by components or elements whose strength and stiffness may deteriorate during the design earthquake. Such elements and components include: ordinary moment-resisting frames, concentrically-braced frames, frames with partially-restrained connections, tension-only braced frames, unreinforced masonry walls, shear-critical walls and piers, or any combination of the above.

^{2.} All frames not assigned to Framing Type 1.

ightharpoonup Coefficients Determination C_3

$$\theta_i = \frac{P_i \delta_i}{V_i h_i}$$

$$C_3 = 1.0 \ for \theta < 0.1$$

$$C_3 = 1 + \frac{5(\theta - 0.1)}{T} \text{ for } \theta \ge 0.1$$

 P_i = vertical load on ith story

 δ_i = lateral drift on ith story

h_i = height od ith story

 V_i = shear force on ith story

Pseudo lateral load Determination

$$V = C_1 C_2 C_3 S_a W$$

	設計地震力	中小地震	TCU068	
C_1	1.29934 1.29934		1.29934	
C_2	1.219736	1.219736	1.219736	
C ₃	1	1	1	
$S_a(g)$	1.096	0.266	1.337	
W(kgf)	1125604	1125604	1125604	
V(kgf)	1955172	474521.6	2385095	

Lateral force distribution

$$C_{vx} = \frac{w_{x}h_{x}^{k}}{\sum_{i=1}^{n} w_{i}h_{i}^{k}}$$

 W_X :Dead weight of the ith story h_X : Height from base to ith story k: 1.0 for T<0.5(sec)

$$F_x = C_{vx} V$$

	設計地震力	中小地震	TCU068
V(kgf)	1955172	474521.6	2385095
C_{v1}	0.34188	0.34188	0.34188
C_{v2}	0.65812	0.65812	0.65812
$F_1(kgf)$	668434.7	162229.6	815417.2
$F_2(kgf)$	1286737	312292	1569678

Apply lateral force

Data output

Acceptance Criteria

$$m \kappa Q_{CE} \ge Q_{UD}$$

m: Capacity modifier

k : Knowledge factor = 1.0

Q_{CE}: Capacity

Q_{UD}: Demand

Q_{UD} (Demand)

► Q_{CE} (Capacity)

number	My(kN-m)	
1C1	106.9	
1C2	80.67	
1C3	40.8	
2C1	83.04	
2C2	55.15	
2C3	40.32	

number	per Mu(kN-m)上拉下壓 My(kN-m)上壓T	
1B1	647.3	322.1
1B2 2B2	153.3	70.51
1B3 2B3	179.3	107.4
2B1	480.5	309.7
2B4	55.17	55.17
1B4	77.13	77.13
СВ	227.9	101.6

▶ Beam data

	1B1	1B2,2B2	1B3,2B3	2B1	2B4	1B4	СВ
ρ	0.015797	0.010778	0.007193	0.008782	0.00573	0.008595	0.014143
ρ'	0.006452	0.004584	0.003666	0.005533	0.00573	0.008595	0.005161
ρbal	0.04335	0.04335	0.04335	0.04335	0.04335	0.04335	0.04335
V	11741.14	14228.13	14283.16	7840.8	8329.93	12868.87	14233.12
bw	11.811	9.8425	9.8425	14.9606	9.8425	9.8425	11.811
d	31.496	19.685	25.5905	31.496	15.748	15.748	19.685
f'c	3982.607	3982.607	3982.607	3982.607	3982.6066	3982.607	3982.607
ρ-ρ'/pbal	0.215571	0.142875	0.081342	0.074949	2.644E-07	3.97E-07	0.207182
V/bdf'c^2	0.500132	1.163652	0.898579	0.263677	0.8515827	1.315606	0.97005
m	6	6	6	6	3	3	3

Result

		設計地震	中小地震	TCU068
Beam (NG)	Story1	20	0	32
	Story2	12	0	28
	Total	32	0	60
Column (NG)	Story1	37	18	37
	Story2	37	0	37
	Total	74	18	74

5. FEMA273

- ▶ 5.1 Linear Static Procedure(LSP)
- 5.2 Linear Dynamic Procedure(LDP)
- ► 5.3 Nonlinear Static Procedure(NSP)
- ► 5.4 Check and Summary

5.2 Linear Dynamic Procedure(LDP)

Modification Factor Determination

C_1	1.29934
C_2	1.219736
C_3	1
$C_1 \times C_2 \times C_3$	1.584852

5.2 Linear Dynamic Procedure(LDP)

Apply Response Spectrum

Elastic Design Spectrum 1.2 Period Elastic Service Spectrum 0.25 0.2 g 0.15 0.1 0.05 **TCU068** 1.5 0.5

5.2 Linear Dynamic Procedure(LDP)

Result

		設計地震	中小地震	TCU068
1	Story1	24	0	0
Beam (NG)	Story2	2	0	0
(140)	Total	26	0	0
	Story1	37	16	37
Column (NG)	Story2	28	0	37
(140)	Total	65	16	74

5. FEMA273

- ▶ 5.1 Linear Static Procedure(LSP)
- ► 5.2 Linear Dynamic Procedure(LDP)
- 5.3 Nonlinear Static Procedure(NSP)
- ► 5.4 Check and Summary

Period Determination

	code	ETABS
T_{i}	0.3446	0.3982
K _i	233055.4	233055.4
K _e	209727.1	209727.1
T _e	0.36326	0.41976

Coefficients Determination

Table 3-2 Values for Modification Factor C_0

Number of Stories	Modification Factor ¹	
1	1.0	_
2	1.2	
3	1.3	
5	1.4	
10+	1.5	

Linear interpolation should be used to calculate intermediate values.

$$C_1 = 1.0 \ for \ T_e \ge T_0$$

$$C_1 = \frac{1 + \frac{(R-1)T_0}{T_e}}{R} \quad for \, T_e < T_0$$

$$C_3 = 1.0 \ for \ \alpha \ge 0$$

$$C_3 = 1.0 + \frac{|\alpha|(R-1)^{3/2}}{T_e}$$
 for $\alpha < 0$

Table 3-1 Values for Modification Factor
$$C_2$$

	T = 0.1 secon	d	$T \ge T_0$ second	
Performance Level	Framing Type 1 ¹	Framing Type 2 ²	Framing Type 1 ¹	Framing Type 2 ²
Immediate Occupancy	1.0	1.0	1.0	1.0
Life Safety	1.3	1.0	1.1	1.0
Collapse Prevention	1.5	1.0	1.2	1.0

Values for C_I need not exceed those values given in Section 3.3.1.3. In no case may C_I be taken as less than 1.0.

Target Displacement

$$\delta_t = C_0 C_1 C_2 C_3 S_a \frac{T_e^2}{4\pi^2} g$$

	設計地震力	中小地震力	TCU068
R	2.92648	0.710259	3.569985
C_0	1.2	1.2	1.2
C_1	1.520349	0.649919	1.569037
C_2	1.219736	1.219736	1.222
C_3	1	1	1
S_a	1.096	0.266	1.337
W	1125604	1125604	1125604
T_e	0.36326	0.36326	0.36326
δ_t	6.884433	0.7143	8.683797

Nonlinear static analysis

Static Nonlinear Case Data Static Nonlinear Case Name -Options: 10 C Load to Level Defined by Pattern Minimum Saved Steps 50 6.884432 Push to Disp. Magnitude Maximum Null Steps Use Conjugate Displ. for Control 200 Maximum Total Steps Monitor UX ▼ 1 10 STORY2 ▼ Maximum Iterations/Step Start from Previous Case PUSH1 Iteration Tolerance 1.000E-04 0.01 ▼ Save Positive Increments Only Event Tolerance - Member Unloading Method Geometric Nonlinearity Effects-Unload Entire Structure None Load Pattern Active Structure: Scale Factor Load Active Group Stage PUSH Add Add Modify Modify Insert Delete Delete Loads Apply to Added Elements Only ΟK Cancel

Data output

							Column Hi	nge States							
ew															
												Column Hinge	States		
												,			
Column	Load	Hinge	Loc	Р	V2	V3	T	M2	M3	U1Plastic	U2Plastic	U3Plastic	R1Plastic	R2Plastic	R3P
C5	PUSHX-15	STORY2C5V	235.000	0.00	9985.90	0.00	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.00000	0.00000	0.0
C5	PUSHX-16	STORY2C5V	235.000	0.00	9985.91	0.00	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.00000	0.00000	0.0
C5	PUSHX-17	STORY2C5V	235.000	0.00	9985.91	0.00	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.00000	0.00000	0.0
C5	PUSHX-0	STORY1C5F	100.000	0.00	0.00	0.00	0.000	0.000	15067.310	0.0000	0.0000	0.0000	0.00000	0.00000	0.0
C5	PUSHX-1	STORY1C5F	100.000	0.00	0.00	0.00	0.000	0.000	756963.776	0.0000	0.0000	0.0000	0.00000	0.00000	0.0
C5	PUSHX-2	STORY1C5F	100.000	0.00	0.00	0.00	0.000	0.000	1291317.864	0.0000	0.0000	0.0000	0.00000	0.00000	0.0
C5	PUSHX-3	STORY1C5F	100.000	0.00	0.00	0.00	0.000	0.000	1456641.333	0.0000	0.0000	0.0000	0.00000	0.00000	0.0
C5	PUSHX-4	STORY1C5F	100.000	0.00	0.00	0.00	0.000	0.000	1546078.064	0.0000	0.0000	0.0000	0.00000	0.00000	0.0
C5	PUSHX-5	STORY1C5F	100.000	0.00	0.00	0.00	0.000	0.000	1582978.898	0.0000	0.0000	0.0000	0.00000	0.00000	0.0
C5	PUSHX-6	STORY1C5F	100.000	0.00	0.00	0.00	0.000	0.000	1582979.023	0.0000	0.0000	0.0000	0.00000	0.00000	0.0
C5	PUSHX-7	STORY1C5F	100.000	0.00	0.00	0.00	0.000	0.000	1582979.237	0.0000	0.0000	0.0000	0.00000	0.00000	0.0
C5	PUSHX-8	STORY1C5F	100.000	0.00	0.00	0.00	0.000	0.000	1582979.262	0.0000	0.0000	0.0000	0.00000	0.00000	0.0
C5	PUSHX-9	STORY1C5F	100.000	0.00	0.00	0.00	0.000	0.000	1582979.271	0.0000	0.0000	0.0000	0.00000	0.00000	0.0
C5	PUSHX-10	STORY1C5F	100.000	0.00	0.00	0.00	0.000	0.000	1582979.458	0.0000	0.0000	0.0000	0.00000	0.00000	0.0
C5	PUSHX-11	STORY1C5F	100.000	0.00	0.00	0.00	0.000	0.000	1582979.776	0.0000	0.0000	0.0000	0.00000	0.00000	0.0
C5	PUSHX-12	STORY1C5F	100.000	0.00	0.00	0.00	0.000	0.000	1582979.803	0.0000	0.0000	0.0000	0.00000	0.00000	0.0
C5	PUSHX-13	STORY1C5F	100.000	0.00	0.00	0.00	0.000	0.000	1582980.123	0.0000	0.0000	0.0000	0.00000	0.00000	0.0
C5	PUSHX-14	STORY1C5F	100.000	0.00	0.00	0.00	0.000	0.000	1582980.442	0.0000	0.0000	0.0000	0.00000	0.00000	0.0
C5	PUSHX-15	STORY1C5F	100.000	0.00	0.00	0.00	0.000	0.000	1582980.761	0.0000	0.0000	0.0000	0.00000	0.00000	0.0.
C5	PUSHX-16	STORY1C5F	100.000	0.00	0.00	0.00	0.000	0.000	1582981.081	0.0000	0.0000	0.0000	0.00000	0.00000	0.0.
C5	PUSHX-17	STORY1C5F	100.000	0.00	0.00	0.00	0.000	0.000	1582981.119	0.0000	0.0000	0.0000	0.00000	0.00000	0.0.
C5	PUSHX-0	STORY1C5F	400.000	0.00	0.00	0.00	0.000	0.000	-10198.790	0.0000	0.0000	0.0000	0.00000	0.00000	0.0
C5	PUSHX-1	STORY1C5F	400.000	0.00	0.00	0.00	0.000	0.000	-899605.745	0.0000	0.0000	0.0000	0.00000	0.00000	0.0
C5	PUSHX-2	STORY1C5F	400.000	0.00	0.00	0.00	0.000	0.000	-1451633.241	0.0000	0.0000	0.0000	0.00000	0.00000	-0.0
C5	PUSHX-3	STORY1C5F	400.000	0.00	0.00	0.00	0.000	0.000	-1532894.344	0.0000	0.0000	0.0000	0.00000	0.00000	-0.0
C5	PUSHX-4	STORY1C5F	400.000	0.00	0.00	0.00	0.000	0.000	-1593113.147	0.0000	0.0000	0.0000	0.00000	0.00000	-0.0
C5	PUSHX-5	STORY1C5F	400.000	0.00	0.00	0.00	0.000	0.000	-1593113.231	0.0000	0.0000	0.0000	0.00000	0.00000	-0.0
C5	PUSHX-6	STORY1C5F	400.000	0.00	0.00	0.00	0.000	0.000	-1593113.357	0.0000	0.0000	0.0000	0.00000	0.00000	-0.0
C5	PUSHX-7	STORY1C5F	400.000	0.00	0.00	0.00	0.000	0.000	-1593113.571	0.0000	0.0000	0.0000	0.00000	0.00000	-0.0
C5	PUSHX-8	STORY1C5F	400.000	0.00	0.00	0.00	0.000	0.000	-1593113.596	0.0000	0.0000	0.0000	0.00000	0.00000	-0.0
C5	PUSHX-9	STORY1C5F	400.000	0.00	0.00	0.00	0.000	0.000	-1593113.605	0.0000	0.0000	0.0000	0.00000	0.00000	-0.0
C5	PHSHV.10	STORY105E	400.000	0.00	0.00	0.00	0.000	0.000	.1593113 792	0.0000	0.0000	0.0000	0.00000	0.00000	

Acceptance Criteria

Table 6-6	able 6-6 Modeling Parameters and Numerical Acceptance Criteria for Nonlinear Procedures— Reinforced Concrete Beams									-		
Modeling Parameters ³							Acceptance Criteria ³					
							Plastic Ro	tation Ang	gle, radian	s		
							Co	mponent 1	Гуре			
					Residual		Primary		Seco	ndary		
				Rotation radians	Strength Ratio	Performance Level		Level				
Condition	ns		a	b	С	10	LS	СР	LS	СР		
i. Beams	controlled	by flexure ¹	•		•					•		
$\frac{\rho - \rho'}{\rho_{bal}}$	Trans. Reinf. ²	$\frac{V}{b_w d \sqrt{f'_c}}$										
≤ 0.0	С	≤3	0.025	0.05	0.2	0.005	0.02	0.025	0.02	0.05		
≤ 0.0	С	≥6	0.02	0.04	0.2	0.005	0.01	0.02	0.02	0.04		
≥ 0.5	С	≤3	0.02	0.03	0.2	0.005	0.01	0.02	0.02	0.03		
≥ 0.5	С	≥6	0.015	0.02	0.2	0.005	0.005	0.015	0.015	0.02		
≤ 0.0	NC	≤3	0.02	0.03	0.2	0.005	0.01	0.02	0.02	0.03		
≤ 0.0	NC	≥6	0.01	0.015	0.2	0.0	0.005	0.01	0.01	0.015		
≥ 0.5	NC	≤3	0.01	0.015	0.2	0.005	0.01	0.01	0.01	0.015		
≥ 0.5	NC	≥6	0.005	0.01	0.2	0.0	0.005	0.005	0.005	0.01		

Table 6-7	6-7 Modeling Parameters and Numerical Acceptance Criteria for Nonlinear Procedures – Reinforced Concrete Columns								_			
			Мо	deling Para	meters ⁴	Acceptance Criteria ⁴						
							Plastic Ro	tation An	tation Angle, radians			
							Col	mponent	Туре			
					Residual		Primary		Seco	ondary		
				Rotation radians	Strength Ratio		Performance Lev					
Condition	ıs		a	b	С	Ю	LS	CP	LS	СР		
i. Column	s controll	ed by flexure ¹		•	•	•			•	•		
$\frac{P}{A_{g}f_{c}'}$	Trans. Reinf. ²	$\frac{V}{b_w d \sqrt{f_c'}}$										
≤ 0.1	С	≤ 3	0.02	0.03	0.2	0.005	0.01	0.02	0.015	0.03		
≤ 0.1	С	≥6	0.015	0.025	0.2	0.005	0.01	0.015	0.01	0.025		
≥ 0.4	С	≤ 3	0.015	0.025	0.2	0.0	0.005	0.015	0.010	0.025		
≥ 0.4	С	≥ 6	0.01	0.015	0.2	0.0	0.005	0.01	0.01	0.015		
≤ 0.1	NC	≤3	0.01	0.015	0.2	0.005	0.005	0.01	0.005	0.015		
≤ 0.1	NC	≥ 6	0.005	0.005	-	0.005	0.005	0.005	0.005	0.005		
≥ 0.4	NC	≤3	0.005	0.005	-	0.0	0.0	0.005	0.0	0.005		
≥ 0.4	NC	≥6	0.0	0.0	_	0.0	0.0	0.0	0.0	0.0		

Result

		設計地震	中小地震	TCU068
J	Story1	0	0	0
Beam (NG)	Story2	0	0	0
(140)	Total	0	0	0
	Story1	37	0	37
Column (NG)	Story2	0	0	0
(140)	Total	37	0	37

Column Plastic Hinges

Design

Service

TCU068

5.4 Check and Summary

			設計地震			中小地震			TCU068		
		LSP	LDP	NSP	LSP	LDP	NSP	LSP	LDP	NSP	
	Story1	20	24	0	0	0	0	32	39	0	
Beam	Story2	12	2	0	0	0	0	28	0	0	
	total	32	26	0	0	0	0	60	39	0	
	Story1	37	37	37	18	16	0	37	37	37	
Column	Story2	37	28	0	0	0	0 <	37	37	0	
	total	74	65	37	18	16	0	74	74	37	

5.4 Check and Summary

▶ 1. 三筆地震:

TCU068 > 設計地震 > 中小地震

- ▶ 2. 強梁弱柱
- ▶ 3. 線性靜力(LSP)最為保守
- ▶ 4. 非線性分析較接近真實破壞情況

6.Upper bound method

- Assumption
- ▶ 1. 一樓 panel mechanism
- ▶ 2.忽略梁跟二樓柱的塑鉸貢獻
- ▶ 3. 二樓無層間變位
- ▶ 4.利用TEASPA定義之塑鉸Mp

6.Upper bound method

- $\theta_{S} \times Loc = \theta_{L} \times (Loc + 100)$
- ▶ Loc為扣除窗台之柱淨高
- ト假設P分布與樓高成正比

6.Upper bound method

Caculation

$$\sum P_i h_i \delta \theta_i = P(400 \times \theta_L) + 0.519 P(400 \theta_L) = 607.6 P\theta_L$$

$$\sum (M_{p,i} \delta \theta_{S,i}) + \sum (M_{p,i} \delta \theta_{L,i}) = 123369715.8\theta_L$$

$$V_{upperbound} = (1+0.519)P = 308424.3kgf$$

$$V_{\text{pushover}} = 351295 kgf$$

Vupperbound	V _{pushover}	error
308424.3kgf	351295kgf	13%

 $V_{\text{pushover}} = 351295 \text{kgf}$

$$A_p = 0.261271g, A_T = 0.438g$$

$$V^* = \frac{A_T}{A_p} V_{pushover} = \frac{0.438g}{0.261g} \times 351295 = 589530kgf$$

 $\Delta V = 238235$ kgf

80m column < 30m → 50m 80m

階段	Max.Displacement(cm)	Max.Base(kN)	Drift ratio	Ap(g)
補強前	8.0401	351295	RFL: 0.1516% 2FL: 1.9287%	0.261271
補強後	10.8977	685999	RFL: 1.6042% 2FL: 1.241%	0.420725

<0.438g(NG)

<2%(OK)

Column

階段	Max.Displacement(cm)	Max.Base(kN)	Drift ratio	Ap(g)
補強前	8.0401	351295	RFL: 0.1516% 2FL: 1.9287%	0.261271
補強後	10.2814	790039	RFL: 1.6182% 2FL: 1.074%	0.455733

>0.438g(OK)

8.Conclusion

- ▶ 1.ETABS側推結果可知破壞模式為1樓Panel Mechanism (強梁弱柱)
- ightharpoonup 2.根據Pushover結果 $A_P < A_T$,所以此建築物需要進行耐震補強
- ▶ 3.ATC-4o結果為在設計地震與TCUo68下是Collapse,中小度地震為Operational (Immediate Occupancy)
- ▶ 4.從FEMA273檢核,可以發現非線性分析較接近真實破壞情況
- ▶ 5.利用Upper Bound Method求得的結果與Pushover結果相差約13%
- lackbox 6.因為破壞模式為1樓Panel Mechanism(強梁弱柱),希望將其變成強柱弱梁,故需要增強柱之強度,將10根柱進行擴柱後,其 A_P 可以達到設計最大地表加速度 A_T

9. Reference

- ► (FEMA), 1997, FEMA273: NEHRP GUIDELINES FOR THE SEISMIC REHABILITATION OF BUILDINGS. , Washington , DC, U.S.A
- Applied Technology Council (ATC), 1996, ATC40:The Seismic Evaluation and Retrofit of Concrete Buildings, 2 volumes, Redwood City, CA
- 中華民國內政部營建署:建築物耐震設計規範及解說(中華民國九十五年元月)
- ▶ 國家地震中心校舍結構耐震評估與補強技術手冊(3rd)

Thank you for listening

