Multi-dimensional data

- · Sources
 - Multimedia
 - Geographic data
 - Time series
 - Spatio-temporal data
 - Biological data
 - Text
 - Graph, tree
 - Stream

Multi-dimensional data

- · Oueries
- exact match
 - k-nearest (kNN)
- Combined range and kNN
- Sub-object queries
 - Whole-whole
 - · Part-whole
 - · Part-part
 - · Spatial predicates (contains, intersects, ..)
 - · Spatial join
- Multiple feature queries
- Join queries

The indexing problem

• Given a collection of objects (points, lines, polygons, ...), organize them on disk, to answer spatial queries (range, nn, etc)

Index structures

- · 1-d index structures
- In-memory index structures
- · Disk-based index structures

Classification of index structures

- · PAM vs. SAM
 - Point Access Methods
 - · kd-tree, B+-tree, grid-file
 - Spatial Access Methods
 - R-tree, R*-tree
- · Space partitioning vs. data partitioning
 - Space partitioning
 - · Fanout independent of dimensionality
 - · "Dead space"
 - · No guarantee on space usage
 - · kd-tree, quad tree, grid-file
 - Data partitioning
 - Fanout decreases with dimensionality
 - · No "dead space"
 - · Guaranteed space usage
 - · R-tree, R*-tree

Disk-based index structures

- Grid files
- · k-d-B tree
- R-tree
- R*-tree
- R+-tree
- X-tree
- · Pyramid tree

Disk-based index structures

- Vamspilt R-tree
- SS tree
- SR-tree
- · Hybrid tree
- VA-file
- M-tree

Requirements of disk-based index structures

- · Page oriented access
 - Similar issues may arise in a multi-level cache hierarchy
- Time and space efficiency
 - Balanced structures
 - Good space utilization

Grid File

- · Hashing methods for multidimensional points (extension of Extensible hashing)
- Idea: Use a grid to partition the space - many-to-one mapping from cells to pages

Grid File

- Space Partitioning strategy
- Select dividers along each dimension. Partition space into cells
- Dividers cut all the way.
- Each cell corresponds to 1 disk page.
- · Many cells can point to the same page.
- Cell directory potentially exponential in the number of dimensions

Grid File Implementation

- Dynamic structure using a grid directory
 - Grid array: a 2 dimensional array with pointers to buckets (this array can be large, disk resident) G(0,..., nx-1; 0, ..., ny-1)
 - Linear scales: Two one-dimensional arrays that are used to access the grid array (main memory)
 - X(0, ..., nx-1), Y(0, ..., ny-1)

Example Buckets/Disk blocks Grid Directory Linear scale Linear scale X

Grid File Search

- Exact Match Search: Two I/Os assuming linear scales fit in memory.
 - first, use liner scales to determine the index into the cell directory
 - access the cell directory to retrieve the bucket address access the appropriate bucket
- Range Queries:
 - use linear scales to determine the index into the cell directory.
 - access the cell directory to retrieve the bucket addresses of buckets to visit.
 - access the buckets.

13

Grid File Insertions

- · Determine the bucket into which insertion must occur.
- · If there is space in bucket, insert.
- Else, split bucket (choice of dimension?)
 - Adjust cell directory
 - Adjust linear scales.
- Insertion of these new entries potentially requires a complete reorganization of the cell directory--expensive!!!
- · Deletions are similar

14

R+ tree

- Ensure no overlap between nodes by splicing the data objects
- Need to search multiple paths to find the complete object
- Usually performs worse than R*-trees

15

Hilbert R-tree

- Use Hilbert order on centers of MBRs to order all siblings at a given level.
- Defer splits by moving entries among nonfull s-1 sibling nodes or else splitting s nodes into s+1 nodes (called s to s+1 split).
 - Better space utilization

16

X-tree

- Performance impacted by the amount of overlap between index nodes
 - Need to follow different paths
 - Alternative definitions of overlap
 - multi-overlap (count how many MBRs overlap in a certain region)
 - · weighted overlap (count points)
 - Overlap approaches 100% for 6 dimensions
- · Strategy: when an overflow occurs
 - Split into two nodes if overlap is small
 - Otherwise create a super-node with twice the capacity
 - Tradeoffs made locally over different regions of data space
 - · Resembles an R*-tree when overlap is small
 - · Resembles sequential access when overlap is large
- · Experimental comparison with linear scan?

Pyramid Tree

- Designed for Range queries
- Map each d-dimensional point to 1-d value
- Build B+-tree on 1-d values
- A range query is transformed into 2d 1-d ranges
- Shown to be more efficient than X-tree, Hilbert R-tree, and sequential scan

VAMSplit R-tree

- Static structure for points
- Ensure no overlap at leaf level
- Split based on *variance* (V) and *approximate median* (AM)
 - Approximate median to maximize space usage
- Recursive partitioning from root node
- Good space utilization
- · Extend to k-d-B trees
 - store splitting axis and value instead of MBR in index entries

20

SS-tree and SR-tree

- Use Spheres for index nodes (SS-tree)
 - Higher fanout since storage cost is reduced
- Use rectangles and spheres for index nodes
 - Index node defined by the intersection of two volumes
 - More accurate representation of data
 - Higher storage cost

2

K-D-B trees

- External memory kd-trees
 - K-D (K dimensions), B (bucket)
- · Balanced structure.
- · Nodes at each level partition the space.
- Internal (region) nodes grouped into buckets (pages).
 - Splits do not need to alternate
 - Sub-partitions at an internal node are like kd-trees.
- Splits defined using a separating hyper-plane
 - Point page split is simple: divide and insert an entry in parent region page
 - Region page split is harder (if we want to ensure good space utilization)
 - · Downward propagation to redistribute data points
 - · Upward propagation to parent

2

Bitmap index

- · Given a collection of n objects, for a sparse attribute A,
 - For every value v of A (quantize if continuous)
 - · Maintain a vector b of bits of size n
 - b(i) = 1 iff the value(A(i)) = v
- · Use the bitmap vectors to support queries
- Number of vectors = (number of indexed attributes) * (number of values for the attribute)
- · Support for logical operations by hardware
 - Attributes gender(M,F), permit type(A,S,C)
 - How many female student permit holders?
- Divide each dimension into r ranges and maintain r bit vectors
 - Range query by a number of logical operations

Hybrid Tree

- Combine Data partitioning and Domain partitioning
- Split along a single dimension as in k-d tree
 - smaller index entry
- Allow overlaps as in R-tree
 - avoids costly cascading splits
 - Store high value of lower entry and low value of higher entry

lsp > rsp implies overlap

24

Hybrid tree

Index Struc- nure	Number of di- mensions used to split	Number of (k-1)-d hyper- planes used to split	Number of kd- tree nodes used to represent the split	Famout	Degree of Overlap	Node Uti- lization Guarantee	Storage Redun- dancy
KDB-tree	1	1	1	High (Independent of k)	None	No	None
hB-tree	$d(1 \le d \le k)$	d	d	High (Independent of k)	None	Yes	Yes
R-tree	k	2k		Low for large k $(\propto \frac{1}{k})$	High	Yes	None
Hybrid tree	1	1 or 2	1	High (Independent of k)	Low	Yes	None

Table 1. Splitting strategies for various index structures. k is the total number of dimensions.

25

Hybrid Tree

- Choice of splitting dimension for data (leaf) nodes
 - Choose dimension with maximum spread
 - differs from results reported in VAMSplit paper
 - minimize likelihood of access to both regions
 - assume uniform distribution
 - no overlap

Prob of accessing both regions
Prob of accessing any region
(2r)(s2+2r)

$$= \frac{(21)(32+21)}{(s1+2r)(s2+2r)}$$
$$= \frac{2r}{(s1+2r)}$$

21

Hybrid Tree

- Choice of splitting position for data nodes
 - Mean as opposed to median (cubic regions)
 - · while ensuring proper utilization
- Choice of splitting dimension for index nodes
 - Take overlap into account
 - use a probability distribution on query radius

Prob of accessing both regions
Prob of accessing any region

 $= \frac{(2r+2p)(s2+2r)}{(-1+2p)(s2+2r)}$

 $=\frac{(s1+2r)(s2+2r)}{2r+2n}$

 $\frac{12p}{1+2r}$

Hybrid Tree

- · Choice of splitting position for index nodes
 - minimize overlap while maintaining space utilization
 - sort projections along split axis and cluster
 - sort entries into two lists based on left end point and right end point
 - · alternate and assign from the sorted list into two partitions
 - once space utilization is achieved, place in order to minimize spread
 - needs to be done before determining splitting dimension in order to compute overlap

Hybrid Tree

- Dead space elimination
 - Tile the space uniformly and encode the extent of the live space
 - Space overhead
 - 4 bits per dimension
 - 64 dimensions
 - 256 bits = 32 bytes = 8 words per entry

Hybrid Tree

- · Compared with hB-tree and SR-tree
- FOURIER dataset: 1.2 M 8-, 12-, and16-d vectors from Fourier transform of polygons
- COLOR dataset: 70K 16-, 32-, and 64-d color histograms from Corel Database
- Much better than sequential scan even at high dimensions

31

References

- (R-tree) A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In Proc. ACM SIGMOD Conf., pp. 47–57, Boston, MA, June 1984
- (R*-tree) N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An Efficient and Robust Access Method for Points and Rectangles. In Proc. ACM SIGMOD Conf., pp. 322–331, Atlantic City, NJ, May 1990.
- (X-tree) S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree: An Index Structure for High-Dimensional Data. In Proc. of the 22nd International Conference on Very Large Data Bases (VLDB), pp. 28–39, Bombay, September 1996.
- (Pyramid tree) S. Berchtold, C. Bohm and H.P. Kriegel, The Pyramid-Technique: Towards Breaking the Curse of Dimensionality, in Proc. of ACM-SIGMOD, 1998, pp. 142-153.
- (VA file) R. Weber, H.-J. Schek, and S. Blott. A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces. In Proc. of the 24th International Conference on Very Large Data Bases (VLDB), pp. 194–205, New York City, NY, August 1998.

32

References

- (K-D-B tree) J. T. Robinson. The kdb-tree: A search structure for large multi-dimensional dynamic indexes. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 10–18, 1981.
- (Hilbert R-tree) I. Kamel and C. Faloutsos. Hilbert R-tree: An Improved R-tree using Fractals. In Proceedings of the Twentieth International Conference on Very Large Databases, pp. 500–509, Santiago, Chile, 1994.
- (SS tree) D. A. White and R. Jain. Similarity Indexing with the SS-tree. In Proc. of IEEE 12th International Conference on Data Engineering, pp. 516– 523, 1996.
- (SR-tree) N. Katayama and S. Satoh. The SR-tree: An Index Structure for High-Dimensional Nearest Neighbor Queries. In Proc. ACM SIGMOD International Conference on Management of Data, pp. 369–380, May 1997.
- (VAMSplit R-tree) D. A. White and R. Jain. Similarity Indexing: Algorithms and Performance. In SPIE: Storage and Retrieval for Image and Video Databases IV. pages 62(75, 1996. Also available on the WWW at url http://vision.ucsd.edu/papers/sindexalg.
- (M-tree) P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity search in metric spaces. In *Proceedings of the 23rd VLDB International Conference*, Athens, Greece, September 1997.