Chapter 5: outline

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

- 5.5 The SDN control plane
- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

Making routing scalable

our routing study thus far - idealized

- all routers identical
- network "flat"
- ... not true in practice

scale: with billions of destinations:

- can't store all destinations in routing tables!
- routing table exchange would swamp links!

administrative autonomy

- internet = network of networks
- each network admin may want to control routing in its own network

Internet approach to scalable routing

aggregate routers into regions known as "autonomous systems" (AS) (a.k.a. "domains")

intra-AS routing

- routing among hosts, routers in same AS ("network")
- all routers in AS must run same intra-domain protocol
- routers in different AS can run different intra-domain routing protocol
- gateway router: at "edge" of its own AS, has link(s) to router(s) in other AS'es

inter-AS routing

- routing among AS'es
- gateways perform interdomain routing (as well as intra-domain routing)

Interconnected ASes

- forwarding table configured by both intra- and inter-AS routing algorithm
 - intra-AS routing determine entries for destinations within AS
 - inter-AS & intra-AS determine entries for external destinations

Inter-AS tasks

- suppose router in AS1 receives datagram destined outside of AS1:
 - router should forward packet to gateway router, but which one?

AS1 must:

- learn which dests are reachable through AS2, which through AS3
- 2. propagate this reachability info to all routers in AS1

job of inter-AS routing!

Intra-AS Routing

- also known as interior gateway protocols (IGP)
- most common intra-AS routing protocols:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First (IS-IS protocol essentially same as OSPF)
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary for decades, until 2016)

RIP (Routing Information Protocol)

- included in BSD-UNIX distribution in 1982
- distance vector algorithm
 - single distance metric: # hops (max = 15 hops), each link has cost I
 - DVs exchanged with neighbors every 30 sec in response message (aka advertisement)
 - each advertisement: list of up to 25 destination subnets (in IP addressing sense)

from router A to destination *subnets*:

<u>subnet</u>	<u>hops</u>
u	1
V	2
W	2
X	3
У	3
Z	2

RIP: example

routing table in router D

destination subnet	next router	# hops to dest
W	Α	2
y	В	2
Z	В	7
X		1

RIP: example

routing table in router D

destination subnet	next router	# hops to dest
W	Α	2
y	В	2 _ 5
Z	BA	7
X		1
		••••

RIP: link failure, recovery

if no advertisement heard after 180 sec --> neighbor/link declared dead

- routes via neighbor invalidated
- new advertisements sent to neighbors
 - neighbors in turn send out new advertisements (if tables changed)
- link failure info quickly (?) propagates to entire net
- poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)

RIP table processing

- RIP routing tables managed by application-level process called route-d (daemon)
- advertisements sent in UDP packets, periodically repeated

OSPF (Open Shortest Path First)

- "open": publicly available
- uses link state algorithm
 - LS packet dissemination
 - topology map at each node
 - link costs set by administrator: used to affect routing
 - route computation using Dijkstra's algorithm
- OSPF advertisement carries one entry per neighbor
- advertisements flooded to entire AS
 - carried in OSPF messages directly over IP (rather than TCP or UDP
 - sent upon change, periodically (every 30min)
 - HELLO messages used to check link
- IS-IS routing protocol: nearly identical to OSPF

OSPF "advanced" features

- security: all OSPF messages authenticated (to prevent malicious intrusion)
- multiple same-cost paths allowed (only one path in RIP)
- for each link, multiple cost metrics for different TOS
 - e.g., satellite link cost set low for best effort ToS; high for real-time ToS
- integrated unicast and multi-cast support:
 - Multicast OSPF (MOSPF) uses same topology data base as OSPF
- hierarchical OSPF in large domains.

Hierarchical OSPF

Hierarchical OSPF

- two-level hierarchy: local area, backbone.
 - link-state advertisements only in area
 - each nodes has detailed area topology; only know direction (shortest path) to nets in other areas.
- area border routers: "summarize" distances to nets in own area, advertise to other Area Border routers.
- backbone routers: run OSPF routing limited to backbone.
- boundary routers: connect to other AS' es.