Homework Assignment #7

Note: You must provide sufficient detail in your derivations or proofs to earn full credit. No late homework will be graded.

- 1. Let X_1, \dots, X_n be a random sample from the Bernoulli distribution with success probability p.
- (a) Show that the variance of the maximum likelihood estimator of p attains the Cramér-Rao lower bound.
- (b) For n > 4, show that the product $X_1X_2X_3X_4$ is an unbuased estimator of p^4 , and use this fact to find the best unbiased estimator of p^4 .
- 2. Let X_1, \dots, X_n be a random sample from $N(\mu, \sigma^2)$, where both μ and $\sigma > 0$ are unknown. Let $\theta = \sigma^p$ for some p > 0.
 - (a) Find the Fisher information about θ .
- (b) Find the Cramér-Rao lower bound for the variance of any unbiased estimator for θ .
- 3. Let X_1, \dots, X_n be a random sample from the uniform distribution on $[0, \theta]$.
- (a) Calculate the variance of the maximum likelihood estimator of θ . Does the variance decrease at the rate of 1/n?
 - (c) Does the Cramér-Rao information bound hold in this case? Why?
- 4. Let $(X_1, Y_i), \dots, (X_n, Y_n)$ be a random sample that follows the regression model

$$Y_i = \beta X_i + e_i, \quad i = 1, \dots, n,$$

where X_i follow a continuous distribution, e_i are independent of X_i and are normally distributed with mean zero and unknown variance σ^2 .

- (a) Can you use the Rao-Blackwell Theorem to find the best unbiased estimator of β ? Why? What if σ were known? (Hint: If you cannot find the complete sufficient statistic, then you cannot use the Rao-Blackwell approach to find the BUE.)
- (b) Can you use the Cramér-Rao information bound to find the best unbiased estimator of β ? If so, how? If not, why?