Cálculo Avanzado - 2° Cuatrimestre 2020 Recuperatorio del 2° Parcial (21/12/2020)

- 1. Sea X un espacio métrico compacto y sea $f: X \to X$ una función continua tal que $d(f(x), f(y)) < d(x, y) \ \forall x \neq y \in X$. Probar que existe un único $x \in X$ tal que f(x) = x. Sugerencia: Observar que f(x) = x si y sólo si d(f(x), x) = 0.
- 2. Sea (X, d) un espacio métrico conexo y $A, B \subset X$ no vacíos. Probar que existe $x \in X$ tal que d(x, A) = d(x, B).
- 3. Definimos en $\mathbb{R}[x]$ la norma $\|P\|_{\bullet} = \max_{i \in \mathbb{N}_0} |a_i|$, donde $(a_i)_{i \in \mathbb{N}_0}$ es la sucesión de coeficientes de P. Dado $b \in \mathbb{R}$ consideramos la función $ev_b(P) = P(b)$. Probar que ev_b es continua si y sólo si |b| < 1. Calcular su norma para b = 0.

Aclaración: No es necesario probar que ev_b es lineal.

- 4. Para x > 0 definimos $f(x) = \sum_{n=1}^{\infty} 2^n \operatorname{sen}(\frac{1}{3^n x})$.
 - a) Probar que las sumas parciales convergen uniformemente en cualquier intervalo de la forma $[m, +\infty)$ con m > 0 pero la convergencia no es uniforme en el intervalo $(0, +\infty)$.
 - b) Probar que $f:(0,+\infty)\to\mathbb{R}$ es continua y derivable.

Puede usar como ciertos los resultados de las guías prácticas o los vistos en la teórica.