Вопрос 1 🦂

А верно

Часть 1. Тест.

В неверно

Нормальность остатков является одной из предпосылок теоремы Гаусса-Маркова

Вопрос 2 🐥	После применения МН	K к модели $y_i = \beta$	$\hat{arepsilon}x_i+arepsilon_i$ сумма остатков $\sum \hat{arepsilon}_i$
А равна ну	лю	В не равна нули	0
Вопрос 3 ૈ	В результате применен	ия МНК к модели	$x_i y_i = eta_1 + eta_2 x_i + arepsilon_i$ сумма $\sum x_i \hat{arepsilon}_i$
А обязател	ьно равна нулю	В может быть н	е равна нулю
Вопрос 4 ૈ	В случае мультиколли	неарности оценки	дисперсий коэффициентов модели становятся
А смещённ	ными	В несмещённы	ми
Вопрос 5 ♣ случайную вы	С помощью МНК оцен борку, и $\mathrm{Cov}(arepsilon_i,x_i)=1$	ивается модель y_i . В этом случае pli	$x=eta_1+eta_2x_i+arepsilon_i$. Наблюдения представляют собой \hat{eta}_2^{ols}
А не равен	eta_2	$lacksquare$ равен eta_2	
Вопрос 6 ♣ оценки коэфф	•	неарности примен	нение гребневой регрессии (ridge-regression) делает
А смещённ	ными	В несмещённы	ми
	Для сравнения качеств данных, используют	а моделей $y_i=eta_1$	$+$ $\beta_2 x_i + \varepsilon_i$ и $\ln(y_i) = \gamma_1 + \gamma_2 x_i + \varepsilon_i$, оцененных на
А скоррект	сированный коэффицис	ент R^2_{adj}	$oxed{B}$ коэффициент детерминации R^2 $oxed{C}$ Hem верного ответа.
-	После применения МН $\vdash u_i$ для диагностики	К к исходной моде	ели дополнительно можно оценить модель $\ln(\hat{arepsilon}_i^2) =$
А автокорр	реляции		С мультиколлинеарности
В гетероск	едастичности		
Вопрос 9 🦺	При диагностике авток	орреляции перво	го порядка тест Бройша-Годфри
А примени	IM		В неприменим
Вопрос 10 🚓 сделать оценк	В случае гетероскедаст и коэффициентов регре	_	ение стандартных ошибок в форме Уайта позволяет
А состояте.	льными	С несмещённых	ми
В эффекти	вными	D Нет верного о	твета.
			1/6

Часть 2. Задачи.

1. На основании опроса была оценена следующая модель:

$$ln(wage_i) = \beta_1 + \beta_2 exper_i + \beta_3 exper_i^2 + \beta_4 married_i + \beta_5 educ_i + \beta_6 black_i + \varepsilon_i$$

где:

- $wage_i$ величина заработной платы в долларах
- $exper_i$ опыт работы в годах
- $educ_i$ количество лет обучения
- $married_i$ наличие супруга/супруги (1 есть, 0 нет)
- $black_i$ принадлежность к негроидной расе (1 да, 0 нет)

Показатель	Значение
R^2	B6
Скорректированный \mathbb{R}^2	B 7
Стандартная ошибка регрессии	B8
Количество наблюдений	340

Результаты дисперсионного анализа:

	df	SS	MS	F	Р-значение
Регрессия Остаток		17.637 B4		B5	0.000
Итого	B 3	65.151			

Коэффициент	Оценка	$se(\hat{\beta})$	t-статистика	Р-Значение	Нижние 95%	Верхние 95%
Константа	4.565	0.207	22.021	0.000	4.157	4.972
exper	B9	B10	3.670	0.000	0.036	0.119
$exper^2$	-0.002	0.001	-1.977	0.049	-0.004	0.000
married	0.267	0.047	5.679	0.000	0.175	0.360
educ	0.085	0.011	7.930	0.000	0.064	0.106
black	-0.090	0.078	-1.162	0.246	-0.243	0.063

Найдите пропущенные числа В1-В10.

Ответ округляйте до 3-х знаков после запятой. Кратко поясняйте, например, формулой, как были получены результаты.

2. По опросам женщин возраста 18–45 лет была оценена следующая модель для различных вариантов выборок (оценки моделей представлены в таблице, все коэффициенты значимы на 10%-ом уровне значимости):

$$child_i = \beta_1 + \beta_2 marst_i + \beta_3 age_i + \varepsilon_i$$

где:

- $child_i$ количество детей младше 18 лет
- $marst_i$ наличие мужа у женщины (1 есть, 0 нет)
- age_i возраст женщины

Выборка	\hat{eta}_1	\hat{eta}_2	\hat{eta}_3	ESS	RSS	N
1. Молодые женщины	-1.27	0.49	0.06	102.54	289.51	800
2. Женщины старше 25 лет		0.39	-0.13	105.71	544.29	800
3. Женщины с высшим образованием	-0.43	0.68	0.03	124.56	525.33	874
4. Женщины без высшего образования	0.19	0.69	0.007	213.47	1360.66	1673
5. Все женщины	0.04	0.67	0.01	328.67	1896.52	2548

- а) Для выборке всех женщин проинтерпретируйте коэффициент \hat{eta}_2
- б) Определите на 5%-ом уровне значимости, можно ли использовать одну модель для женщин с высшим образованием и женщин без него
- в) Исследователь предположил, что дисперсия ошибок модели возрастает с увеличением возраста. Проверьте, есть ли в модели гетероскедастичность на 10% уровне значимости на основании соответствующего теста

При проверке гипотез: выпишите H_0 , H_a , найдите значение тестовой статистики, укажите её распределение, найдите критическое значение, сделайте выводы

3. Председатель ЦБ РФ Эльвира Набиуллина поручила стажеру Васе оценить, как валютный курс, $exch_t$, реагирует на изменение цены на нефть марки Brent, $brent_t$. Вася построил следующую модель по 194 наблюдениям:

$$\Delta(\widehat{exch_t}) = 0.25 - 0.06\Delta(brent_t), R^2 = 0.05$$

Известно, что
$$\sum_{t=2}^{194} (\hat{\varepsilon}_t - \hat{\varepsilon}_{t-1})^2 = 926.06$$
, $\sum_{t=1}^{194} \hat{\varepsilon}_t^2 = 590.14$, $\sum_{t=2}^{194} |\hat{\varepsilon}_t - \hat{\varepsilon}_{t-1}| = 193.69$, $\sum_{t=1}^{194} |\hat{\varepsilon}_t| = 163.45$.

- а) На 1%-ом уровне значимости проверьте гипотезу об адекватности исходной регрессии
- б) Проведите тест Дарбина-Уотсона на 5% уровне значимости
- в) Оказалось, что Эльвире Сахипзадовне не понравилась Васина модель. Она попросила главного экономиста Петю её переделать. Вот что получилось у Пети:

$$\Delta(\widehat{exch_t}) = 0.20 - 0.03\Delta(brent_t) - 0.08\Delta(brent_{t-1}) + 0.23\Delta(exch_{t-1}), R^2 = 0.20$$

Кроме того, Петя оценил следующую регрессию:

$$\hat{\hat{\varepsilon}}_t = -0.05 + 0.0008\Delta(brent_t) + 0.001\Delta(brent_{t-1}) + 0.23\Delta(exch_{t-1}) - 0.24\hat{\varepsilon}_{t-1} - 0.06\hat{\varepsilon}_{t-2}, \ R^2 = 0.007$$

Помогите Пете провести подходящий тест на автокорреляцию на 5% уровне значимости

При проверке гипотез: выпишите H_0 , H_a , найдите значение тестовой статистики, укажите её распределение, найдите критическое значение, сделайте выводы

4. Гарри Поттер и Рон Уизли активно готовятся к чемпионату мира по квиддичу. В течение 30 дней они сначала посещают Хогсмид и выпивают некоторое количество сливочного пива в пинтах, $beer_t$, после чего идут на тренировку, в течение которой забивают определённое количество квоффлов в штуках, $quaffle_t$. Гермиона Грейнджер, понаблюдав за друзьями, оценила следующую регрессию:

$$\widehat{quaffle_t} = 80 - 3beer_t$$

Оценка ковариационной матрицы коэффициентов, $\widehat{\mathrm{Var}}(\hat{\beta}) = \begin{pmatrix} 8 & 0.25 \\ 0.25 & 1 \end{pmatrix}$

Оценка дисперсии ошибок равна $\hat{\sigma}^2 = 238$.

Сегодня Гарри и Рон выпили 4 пинты сливочного пива.

- а) Постройте точечный прогноз количества квоффлов, забитых Гарри Поттером и Роном Уизли
- б) Постройте 95%-ый доверительный интервал для $\mathrm{E}(quaffle_t|beer_t=4)$, ожидаемой величины забитых квоффлов
- в) Постройте 95%-ый предиктивный интервал для конкретной величины забитых квоффлов

Часть 3. Теоретические вопросы

- 5. Дана модель $y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$, в которой ошибки модели подчиняются авторегрессионной схеме первого порядка, $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$, где $u_t \sim WN(0,\sigma^2)$ и ρ известно. Здесь WN означает белый шум. Опишите процедуру получения эффективных оценок коэффициентов для такой модели.
- 6. Опишите тест Бройша-Пагана на гетероскедастичность: сформулируйте нулевую и альтернативную гипотезы, способ получения тестовой статистики, её распределение при верной нулевой гипотезе, вид критической области.
- 7. В модели $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ переменная x_i эндогенна. Для нее был найден инструмент z_i . Опишите процедуру получения состоятельных оценок коэффициентов регрессии.