رماضی عمومی (۱)

تهیه و تدوین:

دكتر بهروز خسروى- دكتر داريوش كياني- دكتر سارا سعيدي مدني- دكتر امير ساكي

دانشکده ی ریاضی و علوم کامپیوتر دانشگاه صنعتی امیرکبیر

حد توابع

مقدمهای کوتاه بر دنبالهما

تابعی که به هر عدد طبیعی یک عدد حقیقی را نسبت میدهد یک فراله نامیده می شود.

اگر مقداری که این تابع به عدد طبیعی n نسبت داده است را با a_n نمایش دهیم، آنگاه دنبالهی مورد بحث، با نماد $\{a_n\}_{n=1}^{+\infty}$ یا $\{a_n\}_{n=1}^{+\infty}$ نمایش داده می شود و گاهی به صورت $a_1, a_2, a_3, a_4, a_5, a_7, \dots$

دنبالهی
$$\{n\}_{n=1}^{+\infty}$$
 عبارت است از:

مثال

دنبالهی
$$\sum_{n=1}^{+\infty} \{n^\intercal + \Delta\}_{n=1}^{+\infty}$$
 عبارت است از:

مثال

دنبالهی
$$\left\{\frac{1}{n}\right\}_{n=1}^{+\infty}$$
 عبارت است از:

$$1, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \dots$$

دنبالهی
$$\sum_{n=1}^{+\infty} \left\{ \frac{(-1)^n}{\Upsilon^n} \right\}_{n=1}^{+\infty}$$
 عبارت است از:

$$\frac{-1}{7}$$
, $\frac{1}{7}$, $\frac{-1}{7}$, $\frac{1}{18}$, $\frac{-1}{77}$, $\frac{1}{87}$, ...

مثاا

دنبالهی
$$\binom{n!}{n!} = \binom{n!}{n!}$$
 عبارت است از:

$$\frac{r}{l}$$
, $\frac{r}{r!} = r$, $\frac{\lambda}{\varepsilon} = \frac{r}{r}$, ...

مبحث حد دنبالهها را در فصلهای بعدی، بهطور دقیق خواهیم دید. در اینجا، به مفهوم شهودی آن اکتفا میکنیم.

فرض کنید $\{a_n\}_{n=1}^{+\infty}$ یک دنباله است. اگر مقدار n بیشتر و بیشتر شود و به بینهایت میل کنند. در این میل کنند، آنگاه مقادیر a_n ممکن است به عدد حقیقی مشخصی مانند a میل کنند. در این صورت میگوییم دنبالهی $\{a_n\}_{n=1}^{+\infty}$ به a است و مینویسیم:

$$\lim_{n \to +\infty} a_n = a.$$

همچنین، ممکن است با میلکردن n به بینهایت، مقادیر a_n به $+\infty$ یا $+\infty$ میل کنند همچنین، ممکن است با میل کنند. در این صورت، میگوییم دنباله ی $\{a_n\}_{n=1}^{+\infty}$ واگرا

 $-\infty$ است. توجه کنید که در حالت اول، گاهی میگوییم $\{a_n\}_{n=1}^{+\infty}$ واگرا به ∞ یا

ست و مینویسیم:

$$\lim_{n \to +\infty} a_n = +\infty \ \ \ \ \ -\infty$$

همگرایی یا واگرایی دنبالههای زیر را بررسی کنید:

(الف)
$$\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$$

$$(\mathbf{\psi}) \quad \left\{ \frac{1}{n^{\mathsf{Y}}} \right\}_{n=1}^{\infty}$$

$$(z) \quad \left\{\frac{(-1)^n}{n}\right\}_{n=1}^{\infty}$$

(a)
$$\{(-1)^n\}_{n=1}^{\infty}$$

(a)
$$\{n\}_{n=1}^{\infty}$$

16

پاسخ

- * دنبالههای قسمتهای (الف)، (ب) و (ج) هر سه به صفر همگرا هستند.
- * دنبالهی قسمت (د) واگراست، زیرا با میلکردن n به بینهایت، $(-1)^n$ میتواند هر دو مقدار $(-1)^n$ دو مقدار $(-1)^n$ داشته باشد.
 - * دنبالهی قسمت (ه)، واگرا به ∞ + است.

44/9

Rhosravi-Kia

قضيہ فشردگی

فرض کنید (a_n) ، (a_n) و (a_n) سه دنباله هستند و N یک عدد طبیعی است به طوری که $\lim_{n\to+\infty}a_n=\lim_{n\to+\infty}c_n=\ell$ و به علاوه $a_n\leq b_n\leq c_n$ در $\lim_{n\to+\infty}b_n=\ell$ این صورت داریم $\lim_{n\to+\infty}b_n=\ell$

تذكر

بین هر دو عدد حقیقی، نامتناهی عدد گویا و نامتناهی عدد غیر گویا (گنگ یا اصم) وجود دارد (اصطلاحاً میگوییم که اعداد گویا و اعداد اصم در اعداد حقیقی چگال هستند).

تذكر

بهازای هر عدد حقیقی دلخواه α ، دنبالهای از اعداد گویا وجود دارد که به α همگرا است. به طور مثال، دنبالهی زیر را در نظر بگیرید:

$$a_n = \frac{[n\alpha]}{n} \in \mathbb{Q}, \qquad n = 1, \Upsilon, \Upsilon, \dots$$

 $(\alpha-rac{1}{n}<rac{[nlpha]}{n}\leq lpha$ و لذا $lpha-1<[nlpha]\leq n$ بهازای هر $n\in\mathbb{N}$ میدانیم میدانیم میدانیم است. پس طبق قضیهی فشردگی داریم:

$$\lim_{n\to\infty} a_n = \alpha.$$

تذكر

همچنین بهازای هر عدد حقیقی دلخواه α ، دنبالهای از اعداد اصم وجود دارد به طوری که به α همگرا است. به طور مثال، دنبالهی زیر را در نظر بگیرید:

$$b_n=rac{[nlpha]}{n}+rac{\sqrt{7}}{n}
otin\mathbb{Q}, \qquad n=1,7,7,\dots$$
 میدانیم $\lim_{n o\infty}rac{\sqrt{7}}{n}=\circ$ و $\lim_{n o\infty}rac{[nlpha]}{n}=lpha$ پس داریم: $\lim_{n o+\infty}b_n=lpha.$

حد تابع

(a فرض می کنیم تابع f(x) در یک همسایگی دوطرفه ی نقطه ی a (به جز شاید خود a تعریف شده است. همچنین، فرض می کنیم بتوانیم با انتخاب a به اندازه ی کافی نزدیک به نقطه ی a مقدار a به هر اندازه ی دل خواه نزدیک به مقدار a به بدست آوریم. در این صورت، اصطلاحاً می گوییم تابع a دارای a دارای مر برابر با a است و می نویسیم:

$$\lim_{x \to a} f(x) = \ell.$$

برای مثال، شکل زیر را ببینید:

اگر انتخاب x صرفاً بهازای x نقاط بزرگتر از a مجاز باشد و شرط اخیر برقرار شود، میگوییم صراحت تابع f(x) در x=a برابر با ℓ است و مینویسیم:

$$\lim_{x \to a^+} f(x) = \ell.$$

به طور مشابه، اگر صرفاً انتخاب x از مقادیر کوچکتر از a مجاز باشد، میگوییم حرب تابع x=a برابر با ℓ است و مینویسیم:

$$\lim_{x \to a^{-}} f(x) = \ell.$$

تذكر

دقت کنید که ممکن است ℓ با ℓ برابر نباشد یا اصلاً ℓ در ℓ تعریف نشده باشد (یا به طور معادل ℓ در دامنهٔ تابع ℓ نباشد). به طور مثال، به شکل زیر توجه کنید:

تعریف حد

میگوییم تابع y=f(x) در x=a دارای حد برابر با ℓ است هرگاه:

$$\forall \varepsilon > \circ \exists \delta > \circ, \ \forall x; (\circ < |x - a| < \delta \Rightarrow |f(x) - \ell| < \varepsilon).$$

Khosravi-Kian;

يار آور ك

بهوضوح، منظور از نقاط x که در شرط s که در شرط s که در شرط s که در بازهی s در بازهی s نقاط s است که در بازهی s در بازهی s است که در بازهی s است که در بازهی s است که s در بازهی s است که s در بازهی s این است که s در بازهی s این است که s در بازهی s این است که s در بازهی s در بازهی در شرط s در بازهی در شرط s در بازه و باز

تعریف مد چپ

میگوییم تابع
$$f(x)$$
 در $x=a$ دارای حد چپ برابر با ℓ است و مینویسیم:

$$\lim_{x \to a^{-}} f(x) = \ell$$

هرگاه:

$$\forall \varepsilon > \circ, \exists \delta > \circ : \forall x, (a - \delta < x < a \Rightarrow |f(x) - \ell| < \varepsilon).$$

تعريف حدرات

میگوییم تابع f(x) در x=a دارای حد راست برابر با ℓ است و مینویسیم:

$$\lim_{x \to a^+} f(x) = \ell$$

هرگاه:

$$\forall \varepsilon > \circ, \exists \delta > \circ : \forall x, (a < x < a + \delta \Rightarrow |f(x) - \ell| < \varepsilon).$$

قضد

حد یک تابع، در صورت وجود یکتا است.

قضيه

$$\lim_{x \to a^+} f(x) = \ell = \lim_{x \to a^-} f(x) \Longleftrightarrow \lim_{x \to a} f(x) = \ell.$$

قضہ

اگر
$$\lim_{x \to a} f(x) = \ell'$$
 و $\lim_{x \to a} f(x) = \ell$ آنگاه داریم:
$$\lim_{x \to a} (f(x) \pm g(x)) = \ell \pm \ell' \quad \text{(1)}$$

$$\lim_{x \to a} f(x)g(x) = \ell \ell' \quad \text{(Y)}$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\ell}{\ell'}$$
اگر $\ell' \neq \circ$ آنگاه (۳)

گزاره

x فرض کنید g(x) و g(x) دو تابع هستند، و بازهای حول a موجود است که بهازای هر g(x) در این بازه داریم $f(x) \leq g(x)$. اگر $f(x) \leq g(x)$ و g(x) . آنگاه داریم $\ell \leq m$

گزاره

- و $\ell>0$ ، آنگاه بازهای حول a موجود f(x) اگر f(x) تابعی باشد که $\ell>0$ این بازه f(x)>0 است که بهازای هر x در این بازه (صرف نظر از خود a) داریم x در این بازه (صرف نظر از خود a) داریم a
- و $\ell<0$ آنگاه بازهای حول a موجود f(x) اگر f(x) تابعی باشد که $\ell=0$ آنگاه بازهای حول f(x) موجود است که بهازای هر x در این بازه (صرف نظر از خود a) داریم x

قضیہ (فتردکی)

فرض کنید g(x) ، f(x) و g(x) توابعی هستند که در یک همسایگی نقطه a (به جز شاید خود a تعریف شدهاند، و به علاوه برای هر x در این همسایگی داریم:

$$h(x) \le f(x) \le g(x)$$
.

اگر
$$x=a$$
 دارای حد است و $\lim_{x \to a} h(x) = \ell = \lim_{x \to a} g(x)$ اگر راگر میر $\lim_{x \to a} h(x) = \ell = \lim_{x \to a} f(x)$ دارای حد است و اگر راگر میراند و است و این میراند و است و این میراند و است و این میراند و این میر

 $\lim_{x \to \infty} x \left[\frac{1}{x} \right]$ مطلوب است محاسبهی

پاسخ

میدانیم که بهازای هر عدد حقیقی t داریم $t-1<[t]\leq t$ پس بهازای هر $t-1<[t]\leq t$ میدانیم داریم: $\frac{1}{x}-1<[\frac{1}{x}]\leq \frac{1}{x}$ حال، دو حالت را در نظر میگیریم:

$$x > \circ \Rightarrow x\left(\frac{1}{x} - 1\right) < x\left[\frac{1}{x}\right] \le x\frac{1}{x} \Rightarrow 1 - x < x\left[\frac{1}{x}\right] \le 1.$$

 $\lim_{x \to 0} x \left[\frac{1}{x} \right] = 1$ اکنون طبق قضیه فشردگی داریم

حالت دوم:

$$x < \circ \Rightarrow 1 - x > x \left\lceil \frac{1}{x} \right\rceil \ge 1.$$

 $\cdot \lim_{x o \circ} x \left[rac{1}{x}
ight] = 1$ پس طبق قضیه فشردگی داریم $x \left[rac{1}{x}
ight] = 1$ پس طبق قضیه فشردگی داریم

توجه

فرض کنید f(x) یک تابع باشد. داریم:

$$\lim_{x \to a} f(x) = \circ \iff \lim_{x \to a} |f(x)| = \circ.$$

تذكر

اگر $f(x)=\ell$ که t=0 آنگاه به راحتی با استفاده از تعریف حد، نتیجه می شود که $\lim_{x\to a} |f(x)|=\ell$ ، $\lim_{x\to a} |f(x)|=\ell$ اما برای عکس این مطلب، دقت کنید که اگر $\lim_{x\to a} |f(x)|=\ell$ آنگاه در مورد حد تابع t(x) نمی توان نتیجه ای گرفت.

Rhoe

در واقع حد f(x) در x=a ممکن است حتی وجود نداشته باشد. برای مثال، تابع زیر را در نظر بگیرید:

$$f(x) = \begin{cases} 1 & x \ge \circ \\ -1 & x < \circ \end{cases}.$$

در این مثال، $f(x) = \lim_{x \to \infty} |f(x)|$ ، در حالیکه حد f(x) در وجود ندارد.

44/18

قضىه

 $\{f(a_n)\}$ و $\lim_{x \to a} f(x) = 0$ دنباله و همگرا به $\{a_n\}$ دنباله و دنباله و دنباله و اگر است.

كاربرد

اگر $a_n=a$ و $\lim_{n\to +\infty}b_n=a$ به طوری که حدهای $\{f(b_n)\}$ و $\lim_{n\to +\infty}a_n=a$ با هم برابر نباشند، آنگاه تابع f(x) در x=a حد ندارد.

فرض كنيد

$$f(x) = \begin{cases} \mathbf{r}x + \mathbf{1}, & x \in \mathbb{Q} \\ (x + \mathbf{1})^{\mathbf{r}}, & x \notin \mathbb{Q} \end{cases}.$$

 $\lim_{x \to 1} f(x)$ مطلوب است

پاسخ

فرض میکنیم $\{a_n\}_{n=1}^{+\infty}$ و $\{b_n\}_{n=1}^{+\infty}$ بهترتیب دنبالههایی گویا و اصم هستند که هر دو همگرا به ۲ هستند. در این صورت، داریم:

$$\lim_{n\to +\infty} f(a_n) = \lim_{n\to +\infty} \mathrm{Y} a_n + \mathrm{I} = \mathrm{Y} \times \mathrm{Y} + \mathrm{I} = \mathrm{Y}$$

$$\lim_{n\to+\infty} f(b_n) = \lim_{n\to+\infty} (b_n+1)^{\mathsf{Y}} = (\mathsf{Y}+1)^{\mathsf{Y}} = \mathsf{A}.$$

لذا چون ۹eq extstyle extstyle

$$\lim_{x \to \circ} f(x)$$
 مطلوب است $f(x) = \sin \frac{1}{x}$ فرض کنید

پاسخ

دنبالههای $a_n=rac{1}{7n\pi+rac{\pi}{7}}$ و $a_n=rac{1}{7n\pi+rac{\pi}{7}}$ را در نظر میگیریم. حد هر دوی این دنبالهها، برابر صفر است. بهازای هر $n\in\mathbb{N}$ ، داریم:

$$f(a_n) = \sin\frac{\pi}{Y} = 1$$

و

$$f(b_n) = \sin \circ = \circ$$

پس
$$f(x)$$
 در $x = 0$ حد ندارد.

تعريف

تابع g(x) را بر بازهی I کران وار میگوییم، هرگاه عدد حقیقی M وجود داشته باشد به طوری که

$$\forall x \in I, \quad |g(x)| \le M.$$

قضيا

اگر $a = \lim_{x \to a} f(x) = g(x)$ وریک همسایگی نقطه ی a (به جز شاید خود a) تابعی کراندار باشد، آنگاه

$$\lim_{x \to a} f(x)g(x) = \circ.$$

حاصل حد زیر را (در صورت وجود) بهدست آورید:

$$\lim_{x \to \circ} (x \sin \frac{1}{x}).$$

پاسخ

تابع $\frac{1}{x} = \sin \frac{1}{x}$ را بهازای $x \neq 0$ در نظر میگیریم. میدانیم که g تابعی کراندار است، و به وضوح داریم x = x + c. پس طبق قضیهی قبل، حاصل حد داده شده برابر با صفر است.

حد در بورنعایت

فرض کنید تابع f(x) بهازای هر b تعریف شده است که در آن b عددی حقیقی است. به علاوه، فرض کنید با انتخاب نقاط x به اندازه کافی بزرگ بتوانیم مقادیر f(x) را به اندازه فرض کنید با انتخاب به مقدار b به به به اندازه در این صورت، اصطلاحاً می گوییم حد f(x) وقتی x به x به میل می کند برابر با b است و می نویسیم f(x) وقتی x به صورت مشابه، اگر f(x) به ازای هر x تعریف شده باشد که در آن x عددی حقیقی است و با انتخاب نقاط x به اندازه ی کافی کوچک بتوان حکم مشابه ی را به دست آورد، آنگاه می نویسیم x به انتخاب نقاط x به اندازه ی کافی کوچک بتوان حکم مشابه ی را به دست آورد، آنگاه می نویسیم x

به عبارت دقیقتر،
$$f(x)=\ell$$
 هرگاه:

$$\forall \varepsilon > \circ \exists N > \circ : \forall x > N, |f(x) - \ell| < \varepsilon.$$

همچنین،
$$f(x)=\lim_{x o -\infty}f(x)$$
 هرگاه:

$$\forall \varepsilon > \circ \exists N > \circ : \forall x < -N, |f(x) - \ell| < \varepsilon.$$

مثال مطلوب است:

$$\lim_{x\to +\infty} \frac{\mathbf{r}x^{\mathbf{r}}+\mathbf{1}}{\mathbf{r}x^{\mathbf{r}}-\mathbf{r}x+\mathbf{1}}.$$

$$\lim_{x \to +\infty} \frac{\mathbf{r} x^{\mathsf{r}} + \mathsf{l}}{\mathbf{r} x^{\mathsf{r}} - \mathbf{r} x + \mathsf{l}} = \lim_{x \to +\infty} \frac{x^{\mathsf{r}} \left(\mathsf{r} + \frac{\mathsf{r}}{x^{\mathsf{r}}} \right)}{x^{\mathsf{r}} \left(\mathsf{r} - \frac{\mathsf{r}}{x} + \frac{\mathsf{r}}{x^{\mathsf{r}}} \right)} = \frac{\mathsf{r}}{\mathsf{r}}.$$

حد بینمایت

اگر تابع f(x) در یک همسایگی نقطه a به جز شاید خود a (یعنی همسایگی محذوف f(x) تعریف شده باشد و با انتخاب نقاط x به اندازه یکافی نزدیک به a بتوان مقادیر a را به اندازه ی دلخواه بزرگ به دست آورد، اصطلاحاً می گوییم حد a در a برابر با a برابر با a در a در a برابر با a در a

$$\lim_{x \to a} f(x) = +\infty$$

و به صورت مشابه، اگر به میزان دلخواه بتوان مقادیر f(x) را کوچک بهدست آورد، میگوییم حد f(x) در x=a برابر با ∞ است و مینویسیم:

$$\lim_{x \to a} f(x) = -\infty.$$

به عبارت دقیق
$$\displaystyle \lim_{x o a} f(x) = +\infty$$
 هرگاه

$$\forall M > \circ, \ \exists \delta > \circ : \ \forall x (\circ < |x - a| < \delta \Rightarrow f(x) > M).$$

هرگاه:
$$\lim_{x \to a} f(x) = -\infty$$
 هرگاه:

$$\forall M > \circ, \ \exists \delta > \circ : \ \forall x (\circ < |x - a| < \delta \Rightarrow f(x) < -M)$$

متال

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty$$

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

با توجه به شكل، واضح است كه:

$$\lim_{x \to 0^+} \frac{1}{x^{7}} = \lim_{x \to 0^-} \frac{1}{x^{7}} = +\infty$$

توجه کنید که حاصل یک حد در بینهایت، ممکن است بینهایت شود. پس چهار حالت دیگر میتوانیم داشته باشیم. برای نمونه، طبق تعریف، $f(x)=+\infty$ هرگاه:

تمرین

در ادامهی بحث بالا، سه حالت دیگر باقیمانده برای حد را در نظر بگیرید و با الگوگیری از بحثهای قبل، تعریف دقیق را برای آنها بنویسید.

 $\lim_{x \to \infty} \frac{\sin x}{x} = 1.$ Madani Saki

$$\lim_{x \to \circ} \frac{\sin x}{x} = 1.$$

 $\lim_{x \to \infty} \frac{\cos x}{x}$ نشان دهید

پاسخ

وقتی x به سمت صفر میل میکند $x\cos x$ به سمت ۱ میل میکند. لذا وقتی x به سمت صفر میل میکند، از جایی به بعد میتوان فرض کرد $x \leq \cos x \leq 1$. حال اگر x > 0 ، آنگاه میتوان نوشت:

$$\frac{1}{7x} \le \frac{\cos x}{x} \le \frac{1}{x}.$$

 $\lim_{x \to \circ} \frac{\cos x}{x} = +\infty$ داريم ، $\lim_{x \to \circ} \frac{1}{x} = +\infty$ داريم ، $\lim_{x \to \circ} \frac{1}{x} = +\infty$ داريم ، $\lim_{x \to \circ} \frac{1}{x} = +\infty$ به صورت مشابه، اگر $x < \infty$ آنگاه $\frac{1}{x} \le \frac{\cos x}{x} \le \frac{1}{x}$ حال، چون $x < \infty$ خان بنابراين، حد داده شده وجود ندارد. $\lim_{x \to \circ} \frac{\cos x}{x} = -\infty$