Sensitivity analysis and uncertainty in CFD simulations of multiphase flow

Partners & researchers involved:

Ínría_	C. Henry, A. Dupré, M. Bossy	(Team Calisto)
eDF	P. Noyret, E. Fayolle, JP. Minier	

Objectives of the project

Development of an open simulation platform for the simulation of scientific workflows

Simulation platform

Aim: Regroup & integrate software in a single platform

Tool: Salome

Common Data Model (CDM)

Aim: Setup scientific workflows using a single framework

Tool: Eficas

Demonstration on one selected workflow including SA & UQ

Aim: Illustrate the CDM and platform on a two-phase flow simulation

Tools: Code_Saturne, OpenTurn

Presentation layout

- Case studied: workflow
- Methodology & tools
- Results

Scientific workflow for multiphase flow

- Case studied
 - Point-source particle dispersion in a turbulent pipe flow

- Interest
 - Analysis of the dispersion at the outlet
 - Calibration of a model

Scientific workflow for multiphase flow

- Definition of the workflow
 - Three steps involved

Workflow specification

Fluid Wrapper Particle phase /Mapper phase

- Fluid phase
 - Inputs:
 - Physical parameters:

• Density: $\rho = 1.17862 \text{ kg/m}^3$

• Temperature: T = 293.15 K

UQ input • Velocity: U = 1 to 4 m/s

- Model parameters:
 - Turbulence model: Rij-ɛ
- Numerical parameters:

• Geometry: 1 m length, 0.1 m radius

• Mesh: Hexahedric, 15x40 resolution

• Time discretisation: 100 iterations, $\Delta t = 0.1 \text{ s}$

- Software used: Code_Saturne
- Output:

• Flow fields: pressure, velocity, Rij, epsilon

Workflow specification

Fluid Wrapper Particle phase / Mapper

- Wrapper/Mapper
 - Inputs:
 - Model parameters:
 - Interpolation: P0
 - Numerical parameters:
 - Mesh 1: Hexahedric, 15x40 resolution
 - Mesh 2: Hexahedric, 20x60 resolution
 - Exchange frequency: At initialisation (frozen field)
 - Software used:
 MED Coupling
 - Output:
 - Interpolated fields: pressure, velocity, Rij, epsilon

Workflow specification

- Particle phase
 - Inputs
 - Physical parameters

LIO	in	nui
υų	ш	pu

- Particle radius: $R = 1 \mu m \text{ to } 1 \text{ mm}$
- Particle shape: Sphere

- **UQ input** Mass flow rate: 100 to 1000 part. injected / Δt
 - Model parameters
 - Transport model: Stochastic Lagrangian model
 - Numerical parameters
 - Geometry: 1 m length, 0.1 m radius
 - Mesh: Hexahedric, 20x60 resolution
 - Time discretisation: 500 iterations, $\Delta t = 0.01$ s
 - Software used: Code_Saturne
 - **Output:**

UQ outputConcentration at outlet

Scientific workflow for multiphase flow

Summary of the workflow

Case studied: Particle dispersion in a turbulent pipe flow

Analysis: Sensitivity analysis & calibration of a model

(OpenTurns)

Presentation layout

- Case studied: workflow
- Methodology & tools
- Results

VIMMP open simulation platform

Salome Platform

VIMMP open simulation platform

Salome Platform

Common Data Model: overview

Common Data Model: overview

Common Data Model: implementation

- Implementation of the CDM in Eficas
 - Example (CDM filled for the current workflow)

Common Data Model: overview

Data analysis tools

- Sensitivity analysis
 - Principle:

 Analyze the relative importance of each uncertainty source on the result
 - Ranking methods used:
 - First order Sobol indice
 - Variance-based indicator
 - Estimates the part of variance of Y due to each component X_i

- Total order Sobol indice
 - Absolute ranking

$$S_i = rac{\mathsf{Var}[\mathbb{E}[Y|X_i]]}{\mathsf{Var}[Y]}$$

Data analysis tools

- Principle:
 Build an analytic approximation of the response of a given model
- Methods used:
 - Polynomial chaos expansion
 - Spectral decomposition of random variables on the basis of orthogonal polynomials

Current methodology

Automatic launching with python script

Generation of mesh (gmsh)

Simulation of the 'fluid phase' (Code_Saturne)

Mesh interpolation (MED Coupling)

Simulation of the 'particle phase' (Code_Saturne)

Otwrappy for automated launching on parallel processors

Post-treatment analysis

- Sensitivity analysis
- Polynomial chaos metamodel
- Bayesian calibration of a fit model

Presentation layout

- Case studied: workflow
- Methodology & tools
- Results

- Ranking sensitivity through Sobol indices
 - Sample size: 13 200 workflow runs

- Ranking obtained:
 - 1) Particle diameter 2) Fluid velocity
- 3) Nb. Injected Particles

- Calibration of a model
 - Analysis of simulations with monodispersed radius

PDF of relative concentrations obtained in the various crowns

Calibration of a model

Analysis of simulations with monodispersed radius

Polynomial curve fitting

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$

\mathbf{a}_{0}	1.76 x 10 ²
a ₁	-4.46 x 10 ³
a_2	1.05 x 10 ⁴
a_3	4.75 x 10 ⁵
a_4	-3.14 x 10 ⁶

Polynomial curve fitting

- Calibration of a model
 - Analysis of simulations with monodispersed radius
 - Bayesian calibration on simulations with polydispersed radius

Conclusions

- Use of Salome tools for workflow implementation & analysis
- Data analysis
 - Results vary with the observable
 - → Requires a careful supervision (definition of inputs and outputs)!
 - Computationally-expensive workflow simulations
 - Calibration of a model

Perspectives

- Uncertainty quantification on particle diameter
- Resorting to several meta-modelling tools to optimize the overall computational efficiency

Thank you for your attention

Detail on the numerical model

Particle motion

- Lagrangian description Choice of a state vector: (position $X_{p,i}$, velocity $U_{p,i}$, fluid velocity $U_{s,i}$)
- Langevin equation for transport

$$dx_{p,i} = U_{p,i}dt$$

$$dU_{p,i} = \frac{U_{s,i} - U_{p,i}}{\tau_p}dt + K_{Bro}dW_i'$$

$$dU_{s,i} = A_i(t, U_{s,i})dt + B_i(t, U_{s,i})dW_i$$

with the relaxation time (drag force)

$$\tau_p = \frac{4\rho_p d_p}{3\rho_f C_D |U_R|} \xrightarrow{\rho_p \gg \rho_f} \frac{\rho_p d_p^2}{18\rho_f}$$

diffusion coefficient (Brownian motion)

$$K_{Br} = \sqrt{\frac{2k_BT}{m_p\tau_p}}$$

drift term (slow variations of U₂)

$$A_{i}(t, U_{s,i}) = -\frac{1}{\rho_{f}} \frac{\partial \langle P \rangle}{\partial x_{i}} + (\langle U_{p,j} \rangle - \langle U_{p,j} \rangle) \frac{\partial \langle U_{f,i} \rangle}{\partial x_{j}} - \frac{U_{s,i} - \langle U_{f,i} \rangle}{T_{L,i}^{*}}$$

diffusion term (rapid fluctuations of
$$U_s$$
) $B_i(t, U_{s,i}) = \sqrt{\langle \varepsilon \rangle (C_0 b_i \tilde{k}/k + 2/3(b_i \tilde{k}/k - 1))}$

Minier and Peirano, Physics Reports, 2001

