Contents

1	Tutorial 1		
	1.1 Introduction to BabyTown	1	
	1.2 Is Nice?	1	
	1.3 My First Three-way!	2	
2	Basic Gates		
3	Mux and Demux		
4	Binary	3	
	4.1 Neo is One Backwards!	3	
5	Number Fun	3	

1 Tutorial

1.1 Introduction to BabyTown

```
Min Size Accepts Returns
3 (Left 1) (Right 1)
```

Instruction Text Place an input on the left and an output on the right. Then connect them by using bus pieces to extend the range of the input signal.

Completion Text You did it! The easiest level in the game! Hopefully the game gets harder than this (Right?). Those pieces we were playing with a moment ago are called Gates, because they stop or allow the flow of a signal. This signal is represented by an electric blue current in ABED.

Upon Completion Unlock circuit 'NOT', Unlock level '1.2'

1.2 Is Nice?

Instruction Text Having completed 'Introduction to Babytown', you should now have a a new gate called a 'Not' gate. Now we are going to test out our new gate. Place an input on the left and an output on the right as before. This time, create a Not gate in the center instead of a Bus.

$$\begin{array}{ccc} & \text{Input} & \text{Output} \\ \textbf{Tests} & 0 & 1 \\ & 1 & 0 \end{array}$$

Completion Text Another success! A Not gate negates the signal coming from the input. So if the input of a Not gate is off, it will output on, and vice versa. In general, the input of a gate is on the left and the output is on the right. But as we will see, we are by no means restricted to one input/output.

1.3 My First Three-way!

Instruction Text Oh boy, two inputs? Create an Or gate and place inputs at 3, 0 and an output at 1. Remember to rotate the input so the signal is facing the Or gate.

	Input	Output
	00	0
Tests	01	1
	10	1
	11	1

Completion Text Now we're getting somewhere! An 'Or' gate will output a signal if one or more of its inputs is turned on, otherwise it outputs nothing. Imagine of a waiter asking Would you like milk OR sugar in your coffee? Gates can have as many inputs/outputs as they damn well please, with one condition: there must at least one. Obviously.

- 2 Basic Gates
- 3 Mux and Demux
- 4 Binary

4.1 Neo is One Backwards!

```
Min Size Accepts Returns
4 None (Right 4)
```

Instruction Text Now that you have a Display, we can start to learn about binary!

Tests Input Output
None 0001

Completion Text

5 Number Fun

Min Size Accepts Returns
4 None (Right 4)

Instruction Text

Tests

Completion Text