Modelos de Previsão para os Resultados da Temporada Regular de 2018/19 da NBA

Gustavo Pompeu da Silva

5 de Julho de 2019

Introdução

Introdução

Team	W L Team	W
1 😭 Bucks	60 22 1 W Warriors	57 2
2 💮 Raptors	58 24 2 🛞 Nuggets	54 2
3 🙃 76ers	51 31 3 M Trail Blazers	53 2
4 🚺 Celtics	49 33 4 - Rockets	53 2
5 Pacers	48 34 5 g/ Jazz	50 3
6 Nets	42 40 6 🕾 Thunder	49 3
7 Magic	42 40 7 🦨 Spurs	48 3
8 Pistons	41 41 8 (ii) Clippers	48 3
9 ₩ Hornets	39 43 9 (Kings	39 4
10 🥟 Heat	39 43 10 🧆 Lakers	37 4
11 🚳 Wizards	32 50 11 (Timberwolves	36 4
12 🔰 Hawks	29 53 12 (i) Grizzlies	33 4
13 🙀 Bulls	22 60 13 Pelicans	33 4
14 Cavaliers	19 63 14 () Mavericks	33 4
15 Knicks	17 65 15 🌞 Suns	19 6

Modelos

As técnicas estatísticas utilizadas para a obtenção das previsões dos jogos são:

- Regressão Linear;
- Regressão Logística;
- Regressão de Probit;
- Máquina de Vetores de Suporte (SVM);
- Análise de Discriminante Linear;
- Árvores de Regressão;
- Árvores de Classificação;
- Random Forest.

Regressão Linear

É um método estatístico que compõe uma equação para se descrever o valor esperado de uma variável Y (resposta), dado os valores de outras variáveis X (explicativas). É linear pois considera que a relação da variável resposta com as variáveis explicativas é uma função linear dependente de alguns parâmetros. A equação que determina a relação entre as variáveis é:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

Regressão Logística

Se difere da linear essencialmente pelo fato da variável resposta ser binária, ou seja, Y tem distribuição Bernoulli $(1, \pi)$, com probabilidade de sucesso $P(Y_i = 1) = \pi_i$ e de fracasso $P(Y_i = 0) = 1 - \pi_i$.

Matematicamente, a regressão logística estima uma função de regressão linear múltipla definida por:

$$logit(\pi) = log(\frac{\pi}{1 - \pi}) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$
$$\pi = \frac{e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p}}$$

Regressão de Probit

É outro tipo de regressão binária, parecida com a regressão logística, a diferença é a função de ligação utilizada. O *link* probit é dado por:

$$probit(\pi) = \Phi^{-1}(\pi) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

$$\pi = \Phi(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p)$$

Em que Φ é a Função de Distribuição Acumulada (f.d.a.) da distribuição Normal Padrão.

Máquina de Vetores de Suporte (SVM)

Figura: Classificação (caso de separação linear)

Análise de Discriminante Linear

Técnica multivariada que tem como finalidade separar observações em grupos e alocar novas observações em algum dos grupos pré-definidos. Para uma nova observação x_0 , tem-se:

$$\hat{y_0} = (\bar{x}_1 - \bar{x}_2)' S_{\rho}^{-1} x_0$$

$$\hat{m} = \frac{1}{2} (\bar{x}_1 - \bar{x}_2)' S_{\rho}^{-1} (\bar{x}_1 + \bar{x}_2)$$

A regra de alocação será que a observação pertencerá à população π_1 se $\hat{y_0} - \hat{m} \ge 0$, e pertencerá à população π_2 caso contrário.

Árvores de Regressão e Classificação

Figura: Exemplo de Árvore de Decisão para jogar tênis ou não

Random Forest

- Combinação de preditores de árvores;
- Pode ser tanto pra classificação quanto pra regressão;
- Foi utilizado apenas pra classificação.

Modelos

modelos:

Não houve preocupação em verificar os pressupostos dos

- Seleção de variáveis para regressão linear, logística e de probit;
- Método forward;
- Função step, que mede o AIC.

Web scraping

- Pacote rvest;
- Extensão SelectorGadget do Google Chrome;
- Basketball-Reference.com;
- Desde a temporada 2000/01.

Tabela: Exemplos dos dados extraídos

Data	Visitante	Pontos do Visitante	Mandante	Pontos do Mandante	Prorrogação	Público
01/12/2018	Toronto	106	Cleveland	95	-	19432
01/12/2018	Golden State	102	Detroit	111	-	20332
01/12/2018	Chicago	105	Houston	121	-	18055
01/12/2018	Boston	118	Minnesota	109	-	17663
01/12/2018	Milwaukee	134	New York	136	OT	19812
01/12/2018	Indiana	110	Sacramento	111	-	17583

Bases de Dados

Variáveis resposta, que são indicadoras do resultado do jogo:

Win e result.

Algumas variáveis explicativas:

- Wins T, Wins A, Wins H;
- Mean Pts S_T, Mean_Pts_S_A, Mean_Pts_S_H;
- mean_attend;
- $Mean_Last_X_T$, com X = 3, 5, 7, 10;
- OT Last:
- Days LG.

Para os dois times, resultando num total de 151 variáveis na base.

Valores faltantes

• Identificar padrões dos valores faltantes (NA).

Tabela: Exemplo de padrão de NA's

Variável	Valor	Vetor de 0's e 1's
Wins_T_Vis	1	0
Loss_T_Vis	1	0
Mean_Last3_total_Vis	NA	1
Wins_T_Home	2	0
Loss_T_Home	2	0
Win_Last5_total_Home	NA	1

• 61 padrões para 2018/19, implicando em 61 modelos.

Casas de Aposta

- "linha" de aposta;
- Exemplo: Golden State Warriors favorito contra o Portland Trail Blazers por 6.5 pontos, logo, a "linha" é -6.5 para os Warriors e +6.5 para o Trail Blazers:
- web scraping do site da ESPN;
- Em 4 jogos a "linha" não estava disponível;
- Em 16 jogos era even (0);
- Porcentagem de acerto 0.6727 em 1210 jogos.

Tabela: Porcentagem de Acerto das previsões dos jogos da temporada 2018/19 para cada método utilizando dados de 2000/01 a 2017/18 na modelagem

Método	Porcentagem de Acerto
Regressão de Probit	0.6723577
Regressão Logística	0.6707317
Análise de Discriminante Linear	0.6682927
Regressão de Probit c/ Forward	0.6682927
Regressão Logística c/ Forward	0.6674797
SVM com $cost = 8$, $gamma = 10^{-4}$	0.6666667
Regressão Linear c/ Forward	0.6658537
Regressão Linear	0.6634146
SVM padrão	0.6577236
Random Forest	0.6373984
Regressão em Árvore	0.6373984
Classificação em Árvore	0.6089431

- Evolução do esporte;
- Temporadas antigas possuem números diferentes das recentes.

Tabela: Porcentagem de acerto das previsões dos jogos da temporada 2018/19 para cada método utilizando temporadas diferentes na modelagem

Temporada	Regressão	Regressão	Regressão	LDA	Regressão	Classificação
de Início	Linear	Logística	de Probit	LDA	em Árvore	em Árvore
2004/2005	0.667	0.672	0.672	0.672	0.642	0.642
2005/2006	0.668	0.672	0.674	0.676	0.628	0.642
2006/2007	0.675	0.681	0.677	0.679	0.624	0.645
2007/2008	0.670	0.677	0.680	0.679	0.624	0.648

Tabela: Porcentagem de Acerto das previsões dos jogos da temporada 2018/19 para cada método utilizando dados de 2006/07 a 2017/18 na modelagem

Método	Porcentagem de Acerto
Regressão Logística	0.6813008
Análise de Discriminante Linear	0.6788618
Regressão de Probit	0.6772358
Regressão Linear	0.6747967
SVM com $cost = 8$, $gamma = 10^{-4}$	0.6731707
Regressão Linear c/ Forward	0.6707317
Regressão Logística c/ Forward	0.6682927
Regressão de Probit c/ Forward	0.6642276
SVM padrão	0.6569106
Classificação em Árvore	0.6447154
Random Forest	0.6373984
Regressão em Árvore	0.6243902

Tabela: Tempo de execução do código computacional para cada método

Método	Tempo (em segundos)
Regressão Linear	9.733
Classificação em Árvore	19.692
Regressão em Árvore	21.069
Regressão Logística	30.542
Regressão de Probit	33.780
Análise de Discriminante Linear	35.057
Regressão Linear c/ Forward	985.550
Regressão de Probit c/ Forward	5359.306
Regressão Logística c/ Forward	6095.090
SVM	9420.622
Random Forest	31367.020

• Comparação das vitórias reais com as vitórias previstas para as Conferências Leste e Oeste

Time	Vitórias Reais	Vitórias Previstas	Time	Vitórias Reais	Vitórias Previstas
Milwaukee Bucks	60	74	Golden State Warriors	57	65
Toronto Raptors	58	69	Denver Nuggets	54	65
Philadelphia 76ers	51	59	Portland Trail Blazers	53	63
Boston Celtics	49	55	Houston Rockets	53	60
Indiana Pacers	48	54	Utah Jazz	50	59
Brooklyn Nets	42	45	Oklahoma City Thunder	49	54
Orlando Magic	42	39	Los Angeles Clippers	48	51
Detroit Pistons	41	39	San Antonio Spurs	48	49
Charlotte Hornets	39	36	Sacramento Kings	39	37
Miami Heat	39	32	Los Angeles Lakers	37	32
Washington Wizards	32	28	Minnesota Timberwolves	36	32
Atlanta Hawks	29	14	Dallas Mavericks	33	30
Chicago Bulls	22	10	Memphis Grizzlies	33	29
Cleveland Cavaliers	19	9	New Orleans Pelicans	33	29
New York Knicks	17	5	Phoenix Suns	19	7

Tabela: Variáveis mais significativas no modelo

Variável	Estimativa do Parâmetro β	Erro Padrão	Z (Estatística de Teste)	p-valor
Mean_Pts_A_T_Vis	-0.34173	0.120916	-2.826	0.00471
Min_Last5home_Home	-0.18985	0.07072	-2.685	0.00726
Loss_T_Vis	-0.59691	0.227052	-2.629	0.00856
Days_LG_Vis	0.062418	0.024913	2.505	0.01223
Mean_Last3_home_opp_Home	-0.34262	0.142105	-2.411	0.01591

- Apenas para o modelo completo (875 observações)
- Parâmetros positivos indicam que a variável contribui para o aumento da probabilidade de vitória do time visitante

Figura: Evolução da porcentagem de acerto das previsões ao longo da temporada

Figura: Porcentagem de acerto das previsões dos últimos 61 jogos ao longo da temporada

800 1000 1200

Tabela: Resumo das diferenças absolutas das Previsões da Regressão Linear vs. linhas de aposta vs. resultados reais

Comparação	Mín.	1º Quartil	Mediana	Média	3º Quartil	Máx.	NA's
Regressão Linear							
vs.	0.006	3.844	8.123	10.276	14.602	50.532	-
Resultados Reais							
Linhas de aposta							
vs.	0.000	4.000	8.000	9.927	14.000	55.000	4
Resultados Reais							
Regressão Linear							
vs.	0.001	1.055	2.359	2.905	4.114	16.991	4
Linhas de aposta							

Conclusão

- Resultado melhor que das casas de aposta
- Regressão linear, logística, probit e LDA melhores tanto em acerto quanto em tempo
- Falta informações sobre jogadores, lesões, trocas, etc.

Referências I

Basketball-reference.

https://www.basketball-reference.com/, 2019.

Accessado em: 11/06/2019.

Espn.

http://www.espn.com/nba/scoreboard, 2019.

Accessado em: 16/05/2019.

Selectorgadget.

https://selectorgadget.com/, 2019.

Accessado em: 25/05/2019.

Sportslogos.

http://www.sportslogos.net/teams/list_by_league/6/National_ Basketball_Association/NBA/logos/, 2019.

Accessado em: 13/10/2018.

Agresti, A.

An Introduction to Categorical Data Analysis.

Wiley Series in Probability and Statistics. Wiley, 2007.

Introdução Modelos Material e Métodos Resultados Conclusão **Referências**

Referências II

Breiman, L.

Random forests.

Accessado em: 01/06/2019.

CARVALHO, J., PRATISSOLI, D., VIANNA, U., AND MATHIAS HOLTZ, A. ANÁLISE DE PROBIT APLICADA A BIOENSAIOS COM INSETOS. 06 2017.

Johnson, R. A., and Wichern, D. W.

Applied Multivariate Statistical Analysis.

Applied Multivariate Statistical Analysis. Pearson Prentice Hall, 2007.

Kassambara, A.

Machine Learning Essentials: Practical Guide in R. CreateSpace Independent Publishing Platform, 2018.

Kutner, M., Nachtsheim, C., and Neter, J.

Applied Linear Regression Models.

The McGraw-Hill/Irwin Series Operations and Decision Sciences. McGraw-Hill Higher Education, 2003.

MEYER, D.

Support vector machines, the interface to libsvm in package e1071.

Referências III

R Core Team.

R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2018,

Ripley, B. D.

Pattern Recognition and Neural Networks.

Cambridge University Press, 1996.

SUÁREZ, E., PÉREZ, C. M., RIVERA, R., AND MARTÍNEZ, M. N. Selection of Variables in a Multiple Linear Regression Model. John Wiley & Sons, Ltd, 2017, ch. 5, pp. 77–86.

Wickham, H.

rvest: Easily Harvest (Scrape) Web Pages, 2016.

R package version 0.3.2.

YAN, X., AND SU, X. G.

Linear Regression Analysis: Theory and Computing.

World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2009.

