Project of Discrete Event Systems - A.A. 2021/22

Group #07

Prepare a document where you describe how you accomplished the project (theoretical tools used, simulation techniques applied, etc.) and the results you obtained. Please use figures and/or tables to explain the results. Provide also the Matlab code you produced.

Consider the production system shown in the figure, composed of a one-place buffer B followed by the series interconnection of two machines M_1 and M_2 .

A fraction q = 2/5 of the arriving parts needs to be processed in M_2 only, while the other parts need to be processed in both machines. Parts arriving when B is full, are rejected. If M_1 terminates a job, and M_2 is working, M_1 keeps the part (and therefore it remains unavailable for another job) until M_2 terminates the ongoing job. Parts arriving from M_1 have prority to M_2 over those waiting in B.

1. Model the logic of the system using a stochastic state automaton.

Assume that raw parts arrive at the system as generated by a Poisson process, and processing times in M_1 and M_2 have exponential distributions. In the following, let t_{δ} denote the minimum time such that all the state probabilities settle around their limit values $\pm \delta$, with $\delta = 0.001$. We say that the system is practically at steady state for $t \geq t_{\delta}$.

- 2. For a fixed $\varepsilon > 0$, determine the parameters of the event lifetime distributions so that all the limit state probabilities (computed analytically) belong to the interval $[(1-\varepsilon)\frac{1}{n},(1+\varepsilon)\frac{1}{n}]$, where n is the number of states, and $t_{\delta} \in [10,15]$ min. By trial and error, make ε as small as you can, and describe the difficulties encountered in making it smaller.
- 3. Estimate the limit state probabilities using simulations over a time horizon such that the steady state is reached. Show the trend of the variance of the estimates versus the number of samples using tables and/or figures, discussing them in the light of what you know from the theory.
- 4. Estimate the probability that at least five arriving parts are rejected over the interval $[t_{\delta}, 2.5t_{\delta}]$.
- 5. Estimate λ_{eff} and μ_{eff} at steady state using simulations, verifying the condition $\lambda_{eff} = \mu_{eff}$ with an error not exceeding 0.001.
- 6. Estimate $E[S_{\Sigma}]$, $E[X_{\Sigma}]$ and λ_{Σ} at steady state using simulations for the subsystem Σ formed by B and M_1 , verifying the Little's law with an error not exceeding 0.01.

To compute the estimates in points 5) and 6), rely on definitions of the quantities of interest, rather than on expressions based on specific assumptions, such as the use of exponential distributions. However, it is advisable to use those expressions to compare your estimates, and check the correct implementation of the estimation procedures.

Finally, consider the file dati_gruppo_07.mat, containing measurements of the lifetimes of the events.

- 7. Verify whether the system admits steady state, generating the lifetimes of the events according to the empirical distributions estimated with measured data.
- 8. In case of a positive answer to the previous question, repeat points 5) and 6).