Explan CPU entempored

ASIC

ASIC

CPU entempored

Go-Processor

Go-Processor

- 1 12 x
- AND ---- For AND operation on two variables, say X and Y, the operation results in 1 if and only if both the variables are 1 and the result is denoted by  $F = X \cdot Y$ , where F is the result of the operation. If there are more than two variables, then the operation results in 1 iff all the variables are 1, else it will be 0. OR ---- For OR operation on two variables, say X and Y, the operation results in 0 iff all the variables are 0, else it will be 1.
- NOT ---- For operation on one variable only, say X. This operation results in 0 if the variable is 1 and results in 1 if the variable is 0 and the result is denoted by  $F = \overline{X}$  or F = X', where F is the result of the operation. This is also called complementing and F is called the logical complement of X.
- We can combine gates into fancier combinational circuits such as the multiplexer. This device allows us to steer any one of a number of inputs to a single output.

06/01/2022

#### Logic Function (through examples)



Two states of a switch



Symbol for a switch



# Boolean Expression



Combination of AND and OR

# **Boolean Expression**



- AND ---- For AND operation on two variables, say X and Y, the operation results in 1 if and only if both the variables are 1 and the result is denoted by  $F = X \cdot Y$ , where F is the result of the operation. If there are more than two variables, then the operation results in 1 iff all the variables are 1, else it will be 0.
- OR ---- For OR operation on two variables, say X and Y, the operation results in 0 if and only if both the variables are 0 and the result is denoted by F = X + Y, where F is the result of the operation. If there are more than two variables, then the operation results in 0 iff all the variables are 0, else it will be 1.
- NOT ---- For operation on one variable only, say X. This operation results in 0 if the variable is 1 and results in 1 if the variable is 0 and the result is denoted by  $F = \overline{X}$  or F = X', where F is the result of the operation. This is also called complementing and F is called the logical complement of X.
- We can combine gates into fancier combinational circuits such as the multiplexer. This device allows us to steer any one of a number of inputs to a single output.

Basic Logic Gates

| 1 St.          | ineen |
|----------------|-------|
| Institute of & | Twey  |
| Sleutharmon    |       |

|     | Symbol Normally web        | Warmender<br>Recommender                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Logical Function     | Truth Table                                                                                |
|-----|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------|
| NOT | $x_1$ $Z$ $NOT$ $Mayority$ | $x_1 \longrightarrow z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $Z = \overline{x_1}$ | $\begin{array}{c cc} x_1 & Z & & & \\ \hline 0 & 1 & & \\ \hline 1 & 0 & & \\ \end{array}$ |
| AND | $x_1$ $x_2$ AND            | Amperson of appropriate the service of the service and | $Z = x_1 \cdot x_2$  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                      |
| OR  | $x_1 \longrightarrow z$ OR | $x_1$ $x_2$ $z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $Z = x_1 + x_2$      | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                     |

### Truth Table: Positive Logic Function vs. Negative Logic Function

|                       | 77                    |       |  |
|-----------------------|-----------------------|-------|--|
| <b>X</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | Z     |  |
| 0                     | 0                     | 0-1   |  |
| 0                     | 1                     | 0 ->\ |  |
| 1                     | 0                     | 0 ->1 |  |
| 1                     | 1                     | 1 →0  |  |



### AND followed by NOT

| X <sub>1</sub> | <b>X</b> <sub>2</sub> | Z |
|----------------|-----------------------|---|
| 0              | 0                     | 1 |
| 0              | 1                     | 1 |
| 1              | 0                     | 1 |
| 1              | 1                     | 0 |



#### OR followed by NOT

| X <sub>1</sub> | <b>X</b> <sub>2</sub> | Z |
|----------------|-----------------------|---|
| 0              | 0                     | 0 |
| 0              | 1                     | 1 |
| 1              | 0                     | 1 |
| 1              | 1                     | 1 |



| <b>X</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | Z |
|-----------------------|-----------------------|---|
| 0                     | 0                     | 1 |
| 0                     | 1                     | 0 |
| 1                     | 0                     | 0 |
| 1                     | 1                     | 0 |



