LEGO-GraphRAG: Modularizing Graph-based Retrieval-Augmented Generation for Design Space Exploration [Preliminary Version]

Yukun Cao* Data Darkness Lab, MIRACLE Center, Data Darkness Lab, MIRACLE Center, Data Darkness Lab, MIRACLE Center, USTC Suzhou, China

ykcho@mail.ustc.edu.cn

Zengyi Gao* **USTC** Suzhou, China

gzy02@mail.ustc.edu.cn

Zhiyang Li USTC Suzhou, China lizhiyang215@gmail.com

Xike Xie[†] Data Darkness Lab, MIRACLE Center, **USTC** Suzhou, China xkxie@ustc.edu.cn

S Kevin Zhou MIRACLE Center, USTC Suzhou, China s.kevin.zhou@gmail.com

ABSTRACT

GraphRAG addresses significant challenges in Retrieval-Augmented Generation (RAG) by leveraging graphs with embedded knowledge to enhance the reasoning capabilities of Large Language Models (LLMs). Despite its promising potential, the GraphRAG community currently lacks a unified framework for fine-grained decomposition of the graph-based knowledge retrieval process. Furthermore, there is no systematic categorization or evaluation of existing solutions within the retrieval process. In this paper, we present **LEGO-GraphRAG**, a modular framework that decomposes the retrieval process of GraphRAG into three interconnected modules: subgraph-extraction, path-filtering, and path-refinement. We systematically summarize and classify the algorithms and neural network (NN) models relevant to each module, providing a clearer understanding of the design space for GraphRAG instances. Additionally, we identify key design factors, such as Graph Coupling and Computational Cost, that influence the effectiveness of GraphRAG implementations. Through extensive empirical studies, we construct high-quality GraphRAG instances using a representative selection of solutions and analyze their impact on retrieval and reasoning performance. Our findings offer critical insights into optimizing GraphRAG instance design, ultimately contributing to the advancement of more accurate and contextually relevant LLM applications.

KEYWORDS

Graph Retrieval-Augmented Generation, Large Language Model

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org. Preprint. .

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM. ACM ISBN 978-1-4503-XXXX-X/18/06...\$15.00 https://doi.org/XXXXXXXXXXXXXXX

ACM Reference Format:

Yukun Cao, Zengyi Gao, Zhiyang Li, Xike Xie, and S Kevin Zhou. 2018. LEGO-GraphRAG: Modularizing Graph-based Retrieval-Augmented Generation for Design Space Exploration [Preliminary Version]. In Proceedings of Make sure to enter the correct conference title from your rights confirmation email (Preprint). ACM, New York, NY, USA, 19 pages. https: //doi.org/XXXXXXXXXXXXXXXX

INTRODUCTION

In recent years, the development of large language models (LLMs) has garnered significant attention and driven advancements across multiple fields. Through extensive pre-training on vast textual datasets and their massive network parameters, LLMs have demonstrated impressive capabilities in semantic understanding and contextual reasoning. However, LLMs exhibit certain limitations when addressing domain-specific queries or handling complex contexts that require external knowledge. For instance, LLMs are prone to generating "hallucinations", wherein the information produced appears credible but is factually incorrect and misaligned with realworld knowledge. To address these limitations, retrieval-augmented generation (RAG) has emerged as an effective solution. This approach enhances the reasoning performance of LLMs by incorporating external knowledge during the reasoning process, thereby improving both the factual accuracy and contextual relevance of generated answers. Early RAG frameworks primarily relied on document retrieval, where relevant documents are retrieved from knowledge repositories based on the query context and integrated into the input provided to LLMs, enriching their understanding of real-world information. However, document-based retrieval methods often introduce noise and excessive context [13]. As a result, the latest trend in the RAG community focuses on developing graphbased RAG frameworks: i.e., GraphRAG.

The GraphRAG process replaces documents with graphs ¹ in the retrieval process of RAG, enabling the extraction of specific "reasoning paths" from the graph based on the query context to

^{*}Equal contribution.

 $^{^{\}dagger}\textsc{Corresponding}$ Author.

¹In this paper, the term "graph" typically refers to complex graphs containing semantic information, with knowledge graphs being a representative example. Throughout the remainder of this paper, we use "graph" specifically to denote knowledge graphs.

provide to LLMs for reasoning. Since graphs offer a structured representation of knowledge, the retrieved reasoning paths ensure that the information provided to LLMs is both relevant and precise. Additionally, the extensive range of search and ranking algorithms available for graphs helps filter out noisy information, addressing the redundancy issues often encountered in document-based retrieval methods. Existing works and ongoing development frameworks (e.g., Microsoft's "GraphRAG" system), have demonstrated the superiority and potential of GraphRAG compared to previous RAG methods.

However, several key challenges must be addressed to enable further reliable and in-depth exploration of GraphRAG. First, there is currently no unified framework to systematically categorize and evaluate the available solutions in GraphRAG (i.e., algorithms and neural network (NN) models). This results in the inability to effectively summarize and classify existing work on GraphRAG, while also impeding the clear identification of the practical efficacy of specific solutions within the GraphRAG process. Second, current studies often treats GraphRAG as a monolithic process without performing a modular decomposition, which obscures the varying contributions of potential modules to overall performance. A more granular, modular GraphRAG framework would facilitate the analysis of trade-offs between module performance and solution choices, providing guidance for designing GraphRAG instances that meet specific scenario requirements.

Thus, in this paper, we propose a unified and modular research framework for GraphRAG, named *LEGO-GraphRAG*, which establishes three key standards to address the aforementioned challenges:

1) Modularization of GraphRAG: LEGO-GraphRAG divides the process of retrieving "reasoning paths" into three interconnected and flexible modules: *subgraph-extraction*, *path-filtering*, and *path-refinement*;

2) Solutions for GraphRAG: LEGO-GraphRAG systematically summarizes and classifies the algorithms or neural network (NN) models available for each module, facilitating a clear understanding of the potential design space for GraphRAG instances;

3) Design Factors of GraphRAG: LEGO-GraphRAG identifies two major factors that influence the design of GraphRAG instances, namely *Graph coupling* and *Computational Cost*, and analyzes how these factors impact the available solutions for each module.

Furthermore, leveraging the LEGO-GraphRAG framework, we build some high-quality GraphRAG instances by combining the most representative algorithms or NN models from various types of solutions while ensuring comprehensive coverage of different solution types for each module. Through extensive empirical studies on these instances, we conducted a thorough analysis of the impact of various types of solutions on overall retrieval performance and reasoning performance based on LLMs. Moreover, by synthesizing the experimental findings, we identified several critical insights into the development of GraphRAG instances from multiple analytical perspectives.

The structure of the remainder of this paper is organized as follows: In Section 2, we formally define and introduce the general process of GraphRAG along with relevant work in the field. Section 3 provides a detailed discussion of the proposed LEGO-GraphRAG framework. Following this, Section 4 describes the GraphRAG instances constructed based on the LEGO-GraphRAG framework. Section 5 presents the experimental results across all instances and

offers an analysis of these findings. Finally, Section 6 concludes the paper, summarizing the key contributions and insights.

2 GRAPHRAG PRELIMINARIES

2.1 Problem Formalization

The GraphRAG aims to integrate structured knowledge to enhance the reasoning capabilities of LLMs, enabling more accurate and contextually appropriate content generation. In GraphRAG, knowledge is typically represented in the form of Text-Attributed Graphs (TAGs), where both nodes and edges are rich in textual information, with knowledge graphs serving as a typical example. For clarity and without loss of generality, the graphs referred to in this paper will follow the structure outlined in Definition 2.1.

Definition 2.1 (**Graph in GraphRAG**). In GraphRAG, a graph is defined as a directed labeled graph G = (V, E), where V represents the set of nodes (entities), and E denotes the set of directed edges that signify relationships between those entities. Each node $v \in V$ and each edge $e \in E$ carries semantic information. Specifically, nodes represent entities with associated semantic attributes (e.g., names or descriptions), while edges represent relationships with additional semantic context (e.g., the type of relation).

Formally, the graph is a set of triples:

$$G = \{ (s, r, t) \mid s, t \in V, r \in E \}, \tag{1}$$

where each triple (s, r, t) indicates that the source entity s is connected to the target entity t by the relation r, encapsulating structured, domain-specific knowledge.

Here is a specific example of a graph:

Example 2.2 (Graph in GraphRAG). Consider a toy graph G=(V,E) that represents notable database researchers who have won the ACM Turing Award and their key contributions to the databases field. Here, $V=\{Michael\ Stonebraker,\ Edgar\ F.\ Codd,\ Jim\ Gray,\ PostgreSQL,\ Relational\ Model,\ Transaction\ Processing,\ ACM\ Turing\ Award represent the entities, and <math>E$ denotes the relationships between them. The graph G can be represented by the following set of triples.

$$\begin{split} G &= \{ (\text{PostgreSQL}, \text{was created}, \text{Michael Stonebraker}), \\ &\quad (\text{Michael Stonebraker}, \text{awarded}, \text{ACM Turing Award}), \\ &\quad (\text{Relational Model}, \text{was developed}, \text{Edgar F. Codd}), \\ &\quad (\text{Edgar F. Codd}, \text{awarded}, \text{ACM Turing Award}), \\ &\quad (\text{Transaction Processing}, \text{was pioneered}, \text{Jim Gray}), \\ &\quad (\text{Jim Gray}, \text{awarded}, \text{ACM Turing Award}) \} \end{split}$$

With auxiliary graphs, GraphRAG operates in two main phases: retrieval and generation phases. In the retrieval phase (as defined in Definition 2.3), relevant entities and reasoning paths aligned with the query context are extracted from the graph. In the generation phase (as defined in Definition 2.5), the retrieved reasoning paths are utilized to enhance the content generation capabilities of LLMs.

Definition 2.3 (**Retrieval Phase**). The phase starts by processing the input query q to extract relevant entities and relationships that

correspond to nodes and edges in the graph G:

$$Extract(q,G) \to \epsilon_q = \{v_i^{(q)}, e_i^{(q)}\}$$
 (2)

where ϵ_q is the set of entities and relations extracted by the query². Using the extracted entities and relations ϵ_q , a variety of methods (e.g., search algorithms, neural network-based retrieval or ranking models) are applied to retrieve reasoning paths $\mathcal P$ that connect ϵ_q to potential target answers, potentially across multiple hops. The retrieval process can be formally expressed as:

$$Retrieve(\epsilon_q, G) \to \mathcal{P} = \{P_i\}$$
 (3)

A reasoning path $P_i \in \mathcal{P}$ of length k can thus be represented as a sequence of triples: $P_i = (v_s, e_1, v_1^m, e_2, \dots, e_{k-1}, v_{k-1}^m, e_k, v_t)$, where v_s represents the source entity extracted from the query, e_j denotes the relations within the graph, v_j^m is an intermediate entity, and v_t signifies the target entity.

Example 2.4 (Retrieval). For the query "Who received the Turing Award for developing the Relational Model?", the retrieval phase begins by extracting the relevant entities and relationships from the graph. Here, the query refers to the entities "Relational Model", "ACM Turing Award", and the relationship "was developed". The reasoning path pertinent to the query is then retrieved from the graph:

Relational Model
$$\xrightarrow{\text{developed by}}$$
 Edgar F. Codd $\xrightarrow{\text{awarded}}$ ACM Turing Award

Definition 2.5 (**Generation Phase**). In this phase, the retrieved reasoning paths \mathcal{P} are merged with the original query q, forming an augmented prompt q':

$$AugPrompt(q, \mathcal{P}) \to q' \tag{4}$$

This augmented prompt is then input to the LLMs, enhancing their ability to generate more accurate content:

$$Generate(q', LLM) \rightarrow final \ answer$$
 (5)

Example 2.6 (**Generation**). In the phase, the retrieved reasoning path is combined with the original query to form a more informative prompt for the LLMs. For example, the augmented prompt might be:

Your task is to analyze the given reasoning paths and provide clear answers to the questions based on these paths.

Reasoning Paths: {Relational Model, was developed, Edgar F. Codd, awarded, ACM Turing Award}

Question: {Who received the Turing Award for developing the Relational Model?}

This augmented prompt is then passed to the LLMs to generate the final answer.

The retrieval phase constitutes the core of GraphRAG, as it provides essential reasoning information for the generation phase of

Table 1: Recent Advances in GraphRAG

Method	Subgraph-Extraction	Path-Filtering	Path-Refinement	
KB-BINDER (ACL23) [26]	Vanilla LLMs	Statistic-based: BM25	N/A	
StructGPT (EMNLP23) [20]	Structure-based: Ego Network Extraction	Vanilla LLMs	N/A	
ToG (ICLR24) [43]	N/A	Structure-based: Beam Search Vanilla LLMs/BM25/ Sentence-Transformers	N/A	
RoG (ICLR24) [31]	Structure-based: PPR Fine-tuned LLMs	Structure-based: DFS	N/A	
KELP (ACL24) [27]	N/A	Structure-based: BFS	Small-scale Specialized Models: Bert	
DoG (arXiv24) [33]	Vanilla LLMs	Vanilla LLMs	N/A	
GSR (arXiv24) [19]	Structure-based: PPR Small-scale Specialized Models: T5	Structure-based: Beam Search	N/A	
GCR (arXiv24) [32]	Structure-based: PPR Fine-tuned LLMs	Structure-based: Beam Search	N/A	

LLMs. In contrast, the generation phase solely leverages the retrieved information along with the inherent capabilities of LLMs. Therefore, this paper focuses on the retrieval phase, aiming to thoroughly investigate its modular process and the solution space.

2.2 Related Works of GraphRAG

Retrieval-Augmented Generation (RAG). Retrieval-Augmented Generation (RAG) addresses the limitations of LLM-generated content by incorporating knowledge from external databases, thereby improving factual accuracy and contextual relevance in the outputs. Early RAG frameworks relies on basic retrieval mechanisms, such as chunking documents and applying text embeddings with cosine similarity for top-k retrieval [25]. These naive approaches, however, often retrieved noisy or irrelevant information, leading to suboptimal reasoning and degraded performance [13].

To address these shortcomings, advanced RAG frameworks incorporate more refined retrieval mechanisms to improve document filtering and ranking. Focusing on improving factual accuracy and contextual relevance, these methods utilize pre-retrieval [13, 34, 53] and post-retrieval [8, 9, 52] mechanisms to enhance the quality of retrieved information.

Recent advancements have shifted toward modular RAG approaches [14], such as LlamaIndex [28] and LangChain [4], which decompose the RAG process into distinct modules (e.g. rewrite, retrieve, rerank, fusion, memory) for more flexible and efficient retrieval and generation. These frameworks not only improve reasoning capabilities and factual accuracy, but also underscore the potential of modular design for language understanding and generation tasks. For instance, by separately fine-tuning retrieval and generation stages, approaches such as those by Yu et al. [51] allow for better control over the RAG process. Despite these advancements, RAG still encounters challenges with noise and irrelevant information retrieval [10].

Current GraphRAG Implementations (or Instances). In GraphRAG, graphs replace document sets in RAG retrieval, allowing the extraction of precise "reasoning paths" based on the query context, which improves LLM reasoning by drawing on structured knowledge. Graphs provide organized representations of knowledge, ensuring that retrieved paths are both relevant and accurate. In addition, graph-based searching and ranking algorithms help

 $^{^2}$ Based on the semantic context of query q, extensive research [11, 12, 22, 24, 29, 36, 48] has been conducted to extract entities and relationships associated with graph G. In this paper, entity extraction is not our focus; we assume q and corresponding ϵ_q are given.

filter out noise, addressing the redundancy issues that are common document-based retrieval. In general, the study of GraphRAG is in its early stages, with only a few implementations or instances, as summarized in Table 1.

For the core retrieval phase in GraphRAG, current instances often incorporate techniques from the research line of knowledge base question answering (KBQA), utilizing both information retrieval (IR) [17, 38–42] and semantic parsing (SP) [3, 5, 21, 23, 50] methods to retrieve relevant subgraphs or reasoning paths for question answering. For example, GCR [32] utilizes Personalized PageRank (PPR) [16] and beam search to construct precise reasoning paths tailored to user's query, improving the retrieval and relevance of extracted reasoning paths. GSR [19] incorporates small-scale specialized models like T5 as alternatives of LLMs to enhance retrieval performance. StructGPT [20] applies ego network extraction for retrieving relevant subgraphs, whereas KELP [27] uses a fine-tuned BERT model [7] to refine reasoning paths for better generation quality.

Additionally, many instances incorporates LLMs or fine-tuned LLMs into the retrieval phase. For example, RoG [31] leverages fine-tuned LLMs to identify key entities and relationships, while ToG [43] and Tree-of-Traversal [35] leverage vanilla LLMs to retrieve relevant paths for reasoning.

3 LEGO-GRAPHRAG

In this section, we present the LEGO-GraphRAG framework, which decomposes the retrieval phase of the GraphRAG process into three distinct modules, with certain modules being optional depending on the workflow. For each module, we categorize and summarize the available methods (i.e., the design solutions of the framework) and examine them based on key factors that influence the performance of each module (i.e., the design factors of the framework). This systematic classification provides a comprehensive overview of existing works and helps build unexplored GraphRAG instances.

3.1 Framework Overview

The LEGO-GraphRAG framework retains the two primary phases of the GraphRAG process: *retrieval* and *generation*, following the problem definition in Section 2. The core retrieval phase is structured through three distinct modules: *subgraph-extraction*, *path-filtering*, and *path-refinement* modules.

The design of these three modules is driven by two key considerations: (1) Modularization of conventional RAG: A recent survey study [14] suggests that conventional RAG's retrieval phase naturally divides into three parts: pre-retrieval, retrieval, and post-retrieval. Following this structure, the process of retrieving "inference paths" in GraphRAG can be logically segmented into three functional and sequential modules: <code>subgraph-extraction</code>, <code>path-filtering</code>, and <code>path-refinement</code>. (2) Facilitating analysis of recent GraphRAG research: A review of technical advancements in existing GraphRAG instances show that most contributions can be systematically categorized as enhancements to one or more of these three modules, as summarized in Table 1. Formal definitions of the three modules are provided in the sequel.

Definition 3.1 (**Subgraph-Extraction (SE)**). The primary goal of this module is to enhance both the effectiveness and efficiency

of subsequent retrieval of reasoning paths. This is achieved by scaling down the search space from the entire graph to a set of small-scaled subgraphs, which are query-relevant. According to the definition in Section 2, given a graph G=(V,E) and an entities and relationships set ϵ_q derived from the query q, the objective of this module is to extract a query-specific subgraph g_q . Typically, this is done by employing some methods to extract smaller, connected subgraphs $g_{(q,v_i^{(q)})}$, each centered on an entity $v_i^{(q)}$ in ϵ_q^{-3} . These smaller subgraphs are then aggregated to form the overall query-related subgraph g_q . The subgraph extraction process can therefore be formalized as:

$$SE(G, \epsilon_q, q) \to \bigcup_{v_i^{(q)} \in \epsilon_q} g_{(q, v_i^{(q)})} \to g_q$$
 (6)

Definition 3.2 (**Path-Filtering (PF)**). The function of this module is to retrieve reasoning paths from the previously extracted query-relevant subgraph using specific methods. Given the subgraph g_q and the entity set ϵ_q derived from query q, the process of obtaining the reasoning path set $\mathcal P$ can be described by:

$$PF(g_q, \epsilon_q, q) \to \{P_i\} \to \mathcal{P}$$
 (7)

where each path P_i represents potential reasoning chains between entities in ϵ_q within the context of the subgraph g_q , follows the structure:

$$P_i = \{s \xrightarrow{r_1} m_1 \xrightarrow{r_2} m_2 \xrightarrow{r_3} \cdots \xrightarrow{r_k} e \mid s \in \epsilon_q; s, m_j, e \in g_q\}.$$
 (8)

Definition 3.3 (Path-Refinement (PR)). This module refines the reasoning paths from previous modules using certain methods to ensure that only the most relevant paths to the query are utilized in LLMs' reasoning processes. This effectively reduces interference from redundant information and enhances the efficiency of the LLMs' reasoning. Given the set of reasoning paths $\mathcal P$ and the query content q with entity set ϵ_q , this module outputs the refined set of reasoning paths $\hat{\mathcal P}$. The formalization is as follows:

$$PR(\mathcal{P}, q, \epsilon_q) \to \hat{\mathcal{P}}$$
 (9)

Among the three modules, the *path-filtering* module is essential for any instance of GraphRAG. In contrast, the *subgraph-extraction* module may be optional depending on the graph size, while the *path-refinement* module becomes optional based on the extent of filtering applied to the reasoning paths. Once processed through these modules, the refined reasoning paths serve to augment the reasoning capabilities of LLMs in the generation phase, as detailed in Section 2, Definition 2.5.

3.2 Design Solutions of LEGO-GraphRAG

To comprehensively explore the design solutions with the proposed framework, it is essential to systematically classify and summarize existing methods relevant to each module, which typically involve algorithms or neural network (NN) models. The workflows of the *Subgraph-Extraction, Path-Filtering*, and *Path-Refinement* modules exhibit similarities, as each can be viewed as a form of "retrieval" process aimed at identifying a smaller subset of relevant information from a larger collection in response to a specific query. Consequently, solutions applicable to three modules demonstrate

 $^{^3}$ Subgraphs can also be constructed based on the relationships $e_i^{(q)}$ within ϵ_q

Туре		Subgraph-Extraction	Path-Filtering	Path-Refinement					
Non-NN	Structure-based	Personalized PageRank (PPR); Random Walk with Restart (RWR);	Complete Path-Filtering (CPF, e.g., BFS, DFS); Shortest Path-Filtering (SPF, e.g., Dijkstra);						
Models	Structure-based	PageRank, Ego Network Extraction	-						
	Statistic-based	Best Matching 25 (BM25);							
	Statistic-baseu	N-gram model; Latent Semantic Analysis (LSA); Latent Dirichlet Allocation (LDA);							
	Small-scale	Sentence-Tr	ansformers (ST); Rerank model (Reranker);						
	General Models	Dense Passage Retrieval (DPR)							
NN	Vanilla LLMs	Llama, Qwen, GPT							
models	Small-scale	Fine total Contract Transform on with modify VC							
	Specialized Models	rine-tunet	Fine-tuned Sentence-Transformers with specific KGs						
	Fine-tuned LLMs	Fine-tuned Llama, Qwen , GPT with specific KGs							

Table 2: The Design Solutions of LEGO-GraphRAG

Table 3: The Analytical Factors of LEGO-GraphRAG

		Compu	Computational Cost							
	Type	Execution	Pre-	Fine-	Graph Coupling					
		Execution	training	tuning	Coupling					
Non-NN	Structure-based	Short-Moderate			Non-Coupled					
Models	Structure-baseu	(-Graph size)	N/A	N/A	Non-Coupled					
Models	Statistic-based	Short			Non-Coupled					
	Statistic-based	(-Corpus size)			Non-Coupled					
	Small-scale									
	General	Moderate	Moderate	N/A	Non-Coupled					
	Models									
	Vanilla LLMs	Long	Long	N/A	Non-Coupled					
NN	Small-scale									
models	Specialized	Moderate	Moderate	Moderate	Coupled					
	Models									
	Fine-tuned	Long	Long	Long	Coupled					
	LLMs	Long	Long	Long	Coupled					

substantial overlap, with certain solutions effectively serving multiple modules.

In this section, we outline the general retrieval processes underlying each category of solutions, while briefly noting differences in their application across the three modules. Subsequent sections will delve into the most representative methods within each solution category, detailing their workflows within the context of the three modules. As illustrated in Table X, the methods can be broadly classified into two primary categories: *Non-NN-based* and *NN-based*. Furthermore, we present a detailed sub-classification for each category, accompanied by representative methods ⁴.

Non-NN Model-Based Solutions. This type of solutions relies on non-NN model based retrieval or ranking algorithms and are categorized into structure-based and statistic-based methods:

• Structure-Based Methods. These methods leverage the graph's topology to filter entities and relations relevant to the query. For example, in the Subgraph-Extraction module, algorithms such as Personalized PageRank (PPR) or Random Walk with Restarts (RWR) incrementally search for the most relevant entities and relations from those in the query, extracting query-relevant subgraphs. In the Path-Filtering module, algorithms like complete path-filtering or shortest path-filtering's algorithm explore the subgraphs further to identify relevant entities and relations, thereby pinpointing reasoning paths. The computational cost of these methods

grows with the size of graphs. Notably, other types of methods often build upon structure-based methods, supporting filtering and pruning during the search process.

• Statistical-Based Methods. These methods directly assess the relevance of entities and relationships within graphs to a given query by measuring textual similarity. Typically, these methods are integrated with structure-based methods to enhance the search process by scoring candidate entities and relations based on textual similarity, thereby enabling effective filtering and pruning. Statistical-based methods are applicable across all three modules, generally incurring low computational costs determined primarily by the size of the specific module textual corpus. For instance, algorithms such as BM25 compute the matching score between the query and candidate entities or relations, aiding in subgraph extraction during the Subgraph-Extraction module and further refining reasoning paths in the Path-Filtering or Path-Refinement modules.

NN Model-based Solutions. Recent work of GraphRAG Community has increasingly focused on neural network (NN) model-based solutions, which have proven effective in identifying the relevance between queries and entities or relationships in graphs through feature representation ⁵. Like statistical-based methods, these methods are applicable to all three modules, with the primary distinction being the retrieval objectives at each module, which influence the specific model design and selection. Based on the model type, these solutions can be categorized into the following groups: small-scale general models, vanilla LLMs, small-scale specialized models, and fine-tuned LLMs.

• Small-Scale General Models. These models typically refer to pre-trained general semantic models (e.g., Sentence-Transformers and Rerank model). By encoding both the query and the candidate entities or relationships in the graph into dense vectors, they enable efficient vector-based semantic similarity matching and scoring, facilitating the retrieval of query-relevant subgraphs or reasoning paths. These models are not coupled with the specific semantics or structure

⁴Methods in bold signifying those selected for focused evaluation in this paper

⁵In retrieval processes, NN models generally serve to score or rank the relevance of entities and relationships to a given query. However, in a few GraphRAG instances [33, 35, 43], LLMs are utilized to directly generate reasoning paths through multi-turn interactions as agents. Due to limited flexibility and alignment requirements with other models, this paper primarily considers LLMs as relevance evaluators.

of any graph, and their relatively small parameter size ensures moderate computational cost in both the execution and pre-training.

- Vanilla LLMs. This category refers to large pre-trained language models that have not undergone fine-tuning on specific graphs, such as Llama, Qwen, and GPT. With their extensive parameters and pre-training on large-scale corpora, these models capture rich semantic information and demonstrate a certain level of graph structure understanding. Compared to small-scale general models, vanilla LLMs offer more precise matching of relevant entities or relationships within the graph based on the query across all modules. Additionally, they can directly generate or refine reasoning paths. However, due to their large parameter size, these models incur higher computational costs during both the pre-training and execution.
- Small-Scale Specialized Models. These models primarily include general small-scale models fine-tuned on specific domain graphs to enhance their ability to retrieve subgraphs and reasoning paths within these graphs. By leveraging both the structural and semantic information of the graph, these models perform well in retrieval tasks across all modules. However, they may introduce additional fine-tuning overhead and potentially lose generalization capability on other graphs.
- Fine-Tuned LLMs. This category refers to vanilla LLMs that have been further fine-tuned on specific domain graphs, effectively incorporating relevant graph structure and semantic information into the model. Compared to vanilla LLMs, these fine-tuned models exhibit superior retrieval performance on the targeted graphs. However, the fine-tuning process incurs increased computational costs, and their performance may deteriorate when applied to graphs outside of the fine-tuning domain.

The existing GraphRAG instances are summarized and categorized in Table 1 based on the modularity and design solutions of LEGO-GraphRAG, facilitating a clearer analysis of the workflow of these instances. This allows for a more structured comparison, aiding in the identification of core methodologies and innovations across different GraphRAG instances.

3.3 Design Factors of LEGO-GraphRAG

For the design solutions of the LEGO-GraphRAG, we can distill two critical design factors to provide a succinct analysis of the various methods encompassed within it: *Graph coupling* \mathcal{G} and *Computational Cost C*.

Graph coupling: This factor refers to the extent to which a method integrates with specific graph structures and sematics during the retrieval process. As illustrated in Table 3, methods such as small-scale specialized models and fine-tuned LLMs exhibit a high degree of graph coupling, meaning they are pre-training or fine-tuned with specific graphs. In contrast, non-NN models and small-scale general neural models are generally non-coupled, as they do not rely on the specific graphs or leverage it only in a generic manner.

Table 4: Instances of LEGO-GraphRAG

No.	Subgraph-Extraction	Path-Filtering	Path-Refinement		
		Basic instance			
0	Personalized PageRank	Shortest Path-Filtering	Random		
	Sul	bgraph-Extraction Group	1		
1	RWR	Shortest Path-Filtering	Random		
2	Personalized PageRank&BM25	Shortest Path-Filtering	Random		
3	Personalized PageRank &Sentence-Transformers	Shortest Path-Filtering	Random		
4	Personalized PageRank &Rerank model	Shortest Path-Filtering	Random		
5	Personalized PageRank&Fine-tuned Sentence-Transformers (GSR) [19]	Shortest Path-Filtering	Random		
6	Personalized PageRank &Vanilla LLMs	Shortest Path-Filtering	Random		
7	Personalized PageRank &Fine-tuned LLMs (RoG) [31]	Shortest Path-Filtering	Random		
		Random			
8	Personalized PageRank				
9	Personalized PageRank	BM25&Iterative Path-Filtering (ToG) [43]	Random		
10	Personalized PageRank	Personalized PageRank Sentence-Transformers & Alterative Path-Filtering (ToG) [43]			
11	Personalized PageRank	Rerank model &Iterative Path-Filtering	Random		
12	Personalized PageRank	Fine-tuned Sentence-Transformers &Iterative Path-Filtering	Random		
13	Personalized PageRank	Vanilla LLMs &Iterative Path-Filtering (ToG) [43]	Random		
14	Personalized PageRank	Fine-tuned LLMs &Iterative Path-Filtering	Random		
	F	ath-Refinement Group			
15	Personalized PageRank	Shortest Path-Filtering	BM25		
16	Personalized PageRank	Shortest Path-Filtering	Sentence-Transformers		
17	Personalized PageRank	Shortest Path-Filtering	Rerank model		
18	Personalized PageRank	Shortest Path-Filtering	Fine-tuned Sentence- Transformers (KELP) [27]		
19	Personalized PageRank	Shortest Path-Filtering	Vanilla LLMs		
20	Personalized PageRank	Shortest Path-Filtering	Fine-tuned LLMs		

Computational Cost: This factor represents the computational resources required for execution, pre-training, and fine-tuning of methods. As shown in Table 3, non-NN models, particularly structure-based methods, generally have low execution costs, as they are often lightweight and do not require extensive training. On the other hand, NN-based models entail significantly higher computational costs. Specifically, the execution and pre-training costs for small-scale general and specialized models are relatively moderate. However, Vanilla large LLMs and fine-tuned LLMs incur substantially higher computational overhead, especially during the training and fine-tuning.

The Table 3 presents a detailed preliminary analysis of various methods based on the two factors discussed above. Specifically, graph coupling can be intuitively divided into two categories according to the deployment process of the methods: "Non-Coupled" and "Coupled". As for computational cost, it is classified into three categories—"Short", "Moderate", and "Long"—based on the general relative computational overhead of the different methods. In the experimental section, we will present representative examples of these methods, along with detailed information on their respective computational costs.

4 INSTANCES OF LEGO-GRAPHRAG

To investigate the impact of various solution types within the three modules established by LEGO-GraphRAG on the overall performance of GraphRAG, in this paper, we construct 21 distinct GraphRAG instances by selecting representative methods from each category within the modules. Through empirical experiments conducted on these instances, our objective is to distill key findings beneficial for the future research of GraphRAG. To ensure the

fairness and rigor of this empirical study, the construction of these instances adhered to the following principles:

- (1) Comprehensive Coverage and Comparability of Solutions: When constructing instances, we ensure that every solution type for each module is selected at least once. To enable comparability across solution types within a module, we fix the solutions for two modules sequentially while allowing the third to switch among types.
- (2) Balanced Design Trade-offs: Following the Section 3.3 guidelines, we select only fundamental structure-based methods (e.g., Personalized Pagerank, Shortest Path-Filtering) when fixing solutions for two modules. This ensures that solutions with high computational costs or graph coupling (e.g., specialized NN models or LLMs) appear in at most one module per instance, achieving balance across retrieval effectiveness, computational cost, and graph coupling.

(3) Alignment with Existing GraphRAG Instances: Wherever feasible, we align our instance construction with established GraphRAG instances in terms of solution choices across the three modules, as shown in Table 1. This alignment supports a unified evaluation framework, enabling clear comparisons of core technical contributions among GraphRAG instances.

Table 4 details the methods used across the three modules in our GraphRAG instances. Next, we present the representative methods used to construct each module in the instance, followed by a discussion on the grouping of these instances.

4.1 Representative Methods

Subgraph-Extraction Module. We select 8 methods for this module, covering all solution types: Personalized PageRank (PPR), Random Walk with Restart (RWR), Best Matching 25 (BM25)&PPR, Sentence-Transformers (ST)&PPR, Rerank model (Reranker)&PPR, Fine-tuned ST&PPR, Vanilla LLMs&PPR, and Fine-tuned LLMs&PPR. Notably, as a foundational structure-based method, PPR underpins the implementation of other methods that focus on evaluating the relevance between entities, relationships and queries within structured search process.

PPR: In the subgraph-extraction module, the PPR algorithm operates on a graph G = (V, E) by initiating with query-relevant nodes (entities) $v_i^{(q)} \in \epsilon_q$. This algorithm leverages structural features based on node degrees to identify nodes most closely related to these initial query nodes. Specifically, each node $v \in V$ is assigned an iteratively updated score \mathbf{p}_v , calculated as follows: $\mathbf{p}_v^{(t+1)} = \lambda \mathcal{E}_v + (1-\lambda) \sum_{u \in \mathcal{N}(v)} \frac{\mathbf{p}_u^{(t)}}{\deg(u)}$, where λ denotes the teleportation probability, which influences the likelihood of returning to nodes within ϵ_q , and \mathcal{E}_v represents the preference vector highlighting nodes relevant to the query entities. Here, $\mathcal{N}(v)$ refers to the neighborhood of node v, and deg(u) denotes the degree of node u. This iterative process proceeds until convergence, resulting in a stable set of PPR scores. Some nodes (denoted as set V') with the higher scores are subsequently chosen as the top-ranked nodes associated with the query. Using this selection, we construct a subgraph $g_q = (v_i, r, v_j) \mid v_i, v_j \in V', (v_i, r, v_j) \in G$, which serves as a foundational structure for identifying reasoning paths aligned with the contextual objectives of the query.

RWR: Like PPR, RWR ranks node $v \in V$ by iteratively updating the relevance score of the query-relevant nodes (entities) $v_i^{(q)} \in \epsilon_q$. The key difference is that PPR assigns distinct initial probabilities to enable personalized ranking, whereas RWR restarts at a fixed starting node after each random walk, emphasizing node centrality.

BM25, ST, Reranker, Fine-tuned ST, Vanilla LLMs, Fine-tuned LLMs with PPR: Since structure-based methods like the PPR algorithm only consider structural information when extracting subgraphs, there is potential to integrate methods that can evaluate semantic similarity to further refine the extracted subgraphs. Formally, for a subgraph g_q extracted by the PPR algorithm based on query qand the associated set of entities and relations $\epsilon_q = \{v_i^{(q)}, e_i^{(q)}\}$, a scoring function $S(v, e; \epsilon_q)$ is introduced to measure the semantic similarity between nodes and edges in g_q and the entities and relations within ϵ_q . By applying threshold scores τ_v and τ_e , only nodes and edges in g_q that demonstrate a high semantic relevance to the query are retained, resulting in a refined subgraph $g_q': g_q' = \{(v, e) \in g_q \mid S(v, \epsilon_q) \ge \tau_v \text{ and } S(e, \epsilon_q) \ge \tau_e\}.$ The choice of scoring functions for evaluating semantic similarity is diverse, encompassing a range from statistical semantic methods to NN models of varying scales, with some models incorporating fine-tuning while others remain in their vanilla (pre-trained) forms.

In this paper, we examine 6 distinct types of scoring functions. Among them, BM25 represents a straightforward statistical method that evaluates nodes and edges by calculating term frequency and inverse document frequency (TF-IDF) within the query context. For methods based on NN models, the ST model leverages a pretrained Transformer-based encoder to calculate semantic similarity scores by embedding nodes, edges, and query-relevant entities, relationships into a shared vector space: $S_{\rm ST}(v;\epsilon_q)=\cos({\rm embed}(v),{\rm embed}(\epsilon_q))$. Unlike the embedding-based calculation in the ST model, the Reranker model directly outputs relevance scores for nodes and edges relative to the query without requiring cosine similarity computations, attributed to its refined pre-training on ranking tasks.

Furthermore, the fine-tuned ST model adjusts embeddings within domain-specific graphs to better align with targeted query objectives. This model undergoes fine-tuning with a specialized loss function, $L = \sum_{(v_i, \epsilon_q) \in \mathcal{D}} \max(0, \gamma - S(v_i, \epsilon_q) + S(v_j, \epsilon_q))$, where γ represents a margin hyperparameter, and \mathcal{D} contains training sample pairs. The goal is to increase scores for relevant pairs while reducing scores for irrelevant ones, thus enhancing scoring precision for domain-specific queries by minimizing the semantic distance between known relevant pairs. In addition, LLMs, whether in their vanilla or fine-tuned versions, can directly output relevance scores or rankings for nodes and edges within the query context. Fine-tuning of LLMs can adopt various approaches, including the aforementioned loss function or rely on specialized fine-tuning frameworks tailored for domain-specific tasks. The original LLM typically assesses relevance through direct inference, while the finetuned versions undergo targeted optimization to enhance ranking performance in structured search tasks.

Path-Filtering Module. The module incorporates 8 methods, with foundational structure-based methods such as shortest path-filtering and complete path-filtering. Similar to subgraph-extraction module, semantic relevance assessment methods including BM25, ST, Reranker, Fine-tuned ST, Vanilla LLMs, and Fine-tuned LLMs

also can be employed to enhance this module's ranking and filtering of reasoning paths. Given that these methods generally rely on graph-based iterative exploration algorithms with scoring functions, we adopted Beam Search (BS), a straightforward yet effective algorithm extensively applied in existing GraphRAG instances.

Shortest Path-Filtering: The shortest path-filtering algorithm, relying solely on graph structural information, is utilized to identify all shortest paths within the connected subgraph $g_{(q,v_i^{(q)})}\subseteq g_q$

starting from each query-relevant initial node $v_i^{(q)} \in \epsilon_q$. This approach generates an reasoning path set \mathcal{P} , ensuring that within the subgraph, the paths connecting the query node to other entities are structurally optimal, thus facilitating the efficient retrieval of relevant paths. However, because the shortest path-filtering algorithm focuses exclusively on the structural shortest path length without accounting for the semantic relations embedded within the paths, some of these shortest paths may include connections that are not fully aligned with the query semantics, potentially introducing noise.

Complete Path-Filtering: The complete path-filtering algorithm operates similarly to shortest path-filtering's algorithm in its reliance on graph structures to search for potential reasoning paths. For each query-relevant starting node $v_i^{(q)} \in \epsilon_q$, complete path-filtering explores the subgraph level-by-level to generate a distinct set of non-repetitive paths that connect $v_i^{(q)}$ with all reachable nodes. Unlike shortest path-filtering's approach, the reasoning paths derived via complete path-filtering incorporate "detour reasoning chains." While these chains do not necessarily follow the shortest path, they may provide LLMs with additional contextually relevant information. Nonetheless, the inclusion of these detour paths can also introduce additional noise.

 $BM25, ST, Reranker, Fine-tuned ST, Vanilla LLMs, Fine-tuned LLMs & Iterative Path-Filtering: In the Retrieval module, the Beam Search algorithm is employed to iteratively explore a limited number of high-scoring candidate paths (referred to as beams) to identify the most relevant inference path from each starting node <math display="inline">v_i^{(q)}$. At each expansion step, the algorithm assesses the potential extension nodes and edges of each path within the beam and scores them based on a predefined scoring function. Through a greedy strategy, the algorithm selects the extension direction with the highest score, thus preserving the paths with the highest potential relevance. This process continues until a set of inference paths most pertinent to the query context is identified. The scoring function can incorporate methods such as BM25, ST, Reranker, Fine-tuned ST, Vanilla LLM, or Fine-tuned LLM, as discussed in above part.

Path-Refinement Module. In this module, if necessary, the set of query-relevant reasoning paths can be further refined. The refinement typically involves assessing the relevance of each reasoning path to the query context using a scoring function, followed by filtering paths with scores exceeding a specified threshold. The selection of the scoring function is consistent with the preceding two modules, with options including BM25, ST, Reranker, Finetuned ST, Vanilla LLMs, and Fine-tuned LLMs. Additionally, we provide a fundamental method for this module, which entails randomly selecting a fixed number of reasoning paths (denoted by the "Random" in Table 4).

4.2 Grouping of GraphRAG Instances

As shown in Table 4, from the perspective of empirical research, the constructed GraphRAG instances can be categorized into 4 groups:

Basic Group. In Table 4, Instance 0 is designated as the basic instance and serves as a common reference for all other instances. This is because Instance 0 adopts the simplest yet relatively effective methods across the three modules, which also function as fundamental components in the other instances.

Subgraph-Extraction Group. Instances 1-7 in Table 4 can be regarded as iterations over various types of methods within the subgraph-extraction module, with the method of path-filtering and path-refinement modules held constant. Therefore, we group these instances to facilitate the study of how different methods within the subgraph-extraction module impact performance of GraphRAG.

Path-Filtering Group (Instances 8-14) and **Path-Refinement Group** (Instances 15-10) are grouped following a same rationale as described above.

5 EXPERIMENT

5.1 Experimental Settings

Datasets. This study employs four well-established KBQA datasets: WebQSP [49], CWQ [44], GrailQA [15], and WebQuestions [2], all of which are extensively utilized within the KBQA and GraphRAG research communities [17, 21, 23, 30, 31, 37–43, 47, 50]. The statistics of the datasets used in this paper are shown in Table 5. Detailed information of datasets can be found in the **Appendix** A.1.

Table 5: The Statistics of Datasets Used in This Paper

Dataset	Answer Format	Train	Test		
CWQ [44]	Entity	18,936	3,480		
WebQSP [49]	Entity/Number	2,848	1,621		
GrailQA [15]	Entity/Number	3,882	983		
WebQuestions[2]	Entity/Number	834	932		

Metrics. To evaluate the performance of instances of LEGO-GraphRAG, we use Precision, Recall, F1-score (F1), and Hit Ratio (HR) as evaluation metrics. Additionally, we record retrieval, generation and fine-tuning times for each module.⁶

For a given set of predictions P and corresponding ground-truth answers A over a set of queries Q, Precision and Recall are defined as: $\text{Precision} = \frac{1}{|\mathbb{Q}|} \sum_{q \in \mathbb{Q}} \frac{|\mathbf{P}_q \cap \mathbf{A}_q|}{|\mathbf{P}_q|}, \text{ Recall} = \frac{1}{|\mathbb{Q}|} \sum_{q \in \mathbb{Q}} \frac{|\mathbf{P}_q \cap \mathbf{A}_q|}{|\mathbf{A}_q|}, \\ \text{where } \mathbf{P}_q \text{ denotes the predicted answer set for query } q, \text{ and } \mathbf{A}_q \\ \text{represents the ground-truth answer set for } q. \text{ F1 is defined as the harmonic mean of Precision and Recall: } \mathbf{F1} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} \times \text{Recall}}.$

HR measures the proportion of queries for which at least one predicted answer matches the ground truth, formally defined as: $\text{HR} = \frac{1}{|Q|} \sum_{q \in Q} \mathbb{I}(|\mathbf{P}_q \cap \mathbf{A}_q| > 0), \text{ where } \mathbb{I}(\cdot) \text{ is the indicator function, taking a value of 1 if its argument is true (indicating a hit) and 0 otherwise. }$

Different metrics are applied at various stages of the model pipeline:

⁶Following the previous work [17, 20, 39], we use the same pre-processing steps for all datasets, including ego network extraction and entity linking.

In the subgraph-extraction and path-filtering modules, we employ F1 and Recall to evaluate the overlap between entities in the retrieved subgraph g_q or reasoning paths $\mathcal P$ and the answer entity set $\mathbf A_q$. F1 reflects the performance of the retrieval modules, while Recall assesses the proportion of correct entities retrieved, which is crucial for subsequent modules.

After the retrieval phase, we calculate HR and F1 to assess all reasoning paths $\hat{\mathcal{P}}$ generated. Specifically, HR measures the proportion of paths with at least one correct match, and F1 evaluates the overlap between retrieved paths and all ground-truth answers.

After the generation phase, we use exact match accuracy (HR@1) and F1 as evaluation metrics. HR@1 indicates whether the generated output exactly matches a ground-truth answer, and F1 assesses the overall coverage of all correct answers.

Implemented Details. For each Sentence-Transformers instance, we use the all-MiniLM-L6-v2 as the backbone model. For the Rerank model instance, we employ the bge-reranker-v2-m3 as the reranker model. To assess the performance of the generation phase, we conduct experiments using three LLMs: Llama-2-7b-chat-hf (llama2-7b) [45], Llama-3-8B-Instruct (llama3-8b) [46], and Qwen2-7B-Instruct (qwen2-7b) [1]. We use llama3-8b as the vanilla and fine-tuned LLM instances, and Sentence-Transformers as the scoring model for filtering.

For fine-tuning LLMs on the corresponding datasets, we load pre-trained parameters and perform Supervised Fine-tuning (SFT) for each module, using LoRA [18] to train llama3-8b for 2 epochs. The learning rate is set to 2e-4 with a warmup ratio of 0.1. All experiments are conducted using the LLaMA Factory framework [54] with default system prompts and model configurations. Model hyperparameters and prompt settings are detailed in Appendix A.2.

We employ the built-in implementation of PPR, complete path-filtering and shortest path-filtering algorithm from igraph [6].

Hyperparameters of instances. To ensure a fair comparison among different instances under the same filtering strength, we use specific parameter settings for each instance.

In the subgraph-extraction module, we set the maximum number of entities to retain as $max_ent = 2000$, the damping factor for Personalized PageRank (PPR) as $restart_prob = 0.8$, and the number of paths for Random Walk with Restart (RWR) as $path_num = 64$. For the scoring model, we set the maximum number of edges to retain as window = 24 for BM25, Sentence-Transformers and its fine-tuned version, Rerank model, vanilla and fine-tuned LLMs.

In the path-filtering module, no parameters are required for shortest path-filtering and complete path-filtering. For iterative path-filtering, we use a model to filter possible entity-relation-entity triples, which can be achieved using BM25, Sentence-Transformers and its fine-tuned version, Rerank model, vanilla and fine-tuned LLMs. We set the beam width as $beam_width = 128$ for iterative path-filtering.

In the path-refinement module, we set the maximum number of reasoning paths to retain as $top_k = 64$ for all methods.

These parameter settings ensure that instances 1–20 filter data of roughly equal size at each filtering stage, therefore enabling a fair comparison. Detailed parameter settings for each instance are provided in **Appendix** A.2.

5.2 Evaluating on Retrieval Phase

Different Solutions on Three Modules. By grouping and evaluating the intermediate results of 21 GraphRAG instances across three modules, Figures 1, 2, 3, and 4 illustrate the local performance of different solution types within each module across four datasets. Additionally, Table 6 presents a detailed execution time for each of the 21 GraphRAG instances within each module. The fine-tuning time for the LLM and Sentence Transformer is shown in Table 8. Based on the experimental results, we draw the following findings. For subgraph-extraction module:

- Regarding the two foundational structure-based methods, although PPR exhibits a lower F1 score compared to RWR, its higher recall value demonstrates PPR's superiority in capturing relevant nodes. This indicates that PPR is more adept at comprehensively identifying results pertinent to the query, despite its lower precision relative to RWR. Given that the subgraph-extraction module serves as the foundation for subsequent modules, the increased recall is crucial for ensuring that key information is not overlooked, thereby facilitating the retrieval of the correct reasoning paths. Consequently, it is more appropriate to select PPR as the fundamental search algorithm for the subgraph-extraction module. However, Note that the time overhead associated with PPR is significantly higher than that of RWR. For instance, on the CWO dataset, the execution time for PPR is 0.84 seconds, whereas RWR only requires 0.03 seconds.
- Statistic-based methods are not suitable for enhancing the PPR algorithm, despite their rapid execution times. While these methods do improve the F1 score compared to the PPR algorithm, they also lead to a decline in recall. This indicates that statistic-based method soversimplify semantic considerations and apply overly stringent filtering of relevant information, potentially resulting in the loss of critical reasoning information.
- Among the various methods that enhance the PPR algorithm through semantic scoring and ranking, methods based on (fine-tuning) LLMs have achieved the best results. These methods not only maintain the high recall of the PPR algorithm but also improve the F1-Score, indicating that they effectively balance both the comprehensiveness and accuracy of search results. However, it is important to note that the execution time for methods utilizing LLMs is the longest among all examined techniques. For instance, in four datasets, the execution times for the methods based on LLMs were recorded as 5.93 seconds, 5.48 seconds, 5.59 seconds, and 5.57 seconds, approximately four times longer than the execution times of methods based on small-scale (specialized) models.
- In summary, two effective design strategies can be adopted for the subgraph-extraction module. First, one may opt to implement only the most fundamental methods, such as PPR, which maintains a high recall rate while delegating more detailed retrieval steps to subsequent modules. Alternatively, this module could also leverage small-scale models, such as Reranker, to optimize the PPR algorithm. This approach can enhance the relevance of extracted subgraphs to queries without incurring significantly high execution times.

Table 6: SpendTime of Each GraphRAG Instance on Different Datasets

Instances		C	wQ			Gra	ilQA			wel	bqsp			WebQu	uestions	
Instances	SETime	PFTime	PRTime	AllTime	SETime	PFTime	PRTime	AllTime	SETime	PFTime	PRTime	AllTime	SETime	PFTime	PRTime	AllTime
(0) PPR->SPF->Random	0.84	0.01	< 0.01	0.85	0.64	0.01	< 0.01	0.65	0.7	0.01	< 0.01	0.71	0.74	0.02	< 0.01	0.76
(1) RWR->SPF->Random	0.03	< 0.01	< 0.01	0.03	0.03	< 0.01	< 0.01	0.03	0.02	< 0.01	< 0.01	0.03	0.06	< 0.01	< 0.01	0.06
(2) PPR&BM25->SPF->Random	0.85	< 0.01	< 0.01	0.85	0.65	< 0.01	< 0.01	0.65	0.71	< 0.01	< 0.01	0.71	0.76	< 0.01	< 0.01	0.76
(3) PPR&ST->SPF->Random	0.89	< 0.01	< 0.01	0.89	0.7	0.01	< 0.01	0.7	0.78	< 0.01	< 0.01	0.78	0.83	< 0.01	< 0.01	0.84
(4) PPR&Reranker ->SPF->Random	1.52	< 0.01	< 0.01	1.53	1.44	0.01	< 0.01	1.45	1.64	< 0.01	< 0.01	1.65	2.03	0.01	< 0.01	2.04
(5) PPR&ST_FT->SPF->Random	0.9	< 0.01	< 0.01	0.9	0.73	0.01	< 0.01	0.74	0.75	< 0.01	< 0.01	0.76	0.86	0.01	< 0.01	0.87
(6) PPR&LLM ->SPF->Random	5.93	< 0.01	< 0.01	5.93	5.48	< 0.01	< 0.01	5.48	5.59	< 0.01	< 0.01	5.59	5.57	< 0.01	< 0.01	5.57
(7) PPR&LLM_FT ->SPF->Random	5.45	< 0.01	< 0.01	5.45	5.31	< 0.01	< 0.01	5.31	5.28	< 0.01	< 0.01	5.28	5.39	< 0.01	< 0.01	5.39
(8) PPR->CPF->Random	0.84	0.01	< 0.01	0.85	0.64	0.02	< 0.01	0.66	0.7	0.02	< 0.01	0.72	0.74	0.05	< 0.01	0.79
(9) PPR->BM25&BS->Random	0.84	0.24	< 0.01	1.08	0.64	0.19	< 0.01	0.83	0.7	0.25	< 0.01	0.95	0.74	0.31	< 0.01	1.05
(10) PPR->ST&BS->Random	0.84	0.63	< 0.01	1.47	0.64	0.4	< 0.01	1.04	0.7	0.73	< 0.01	1.43	0.74	0.76	< 0.01	1.5
(11) PPR->Reranker&BS ->Random	0.84	7.62	< 0.01	8.46	0.64	6.19	< 0.01	6.83	0.7	6.05	< 0.01	6.75	0.74	9.4	< 0.01	10.14
(12) PPR->ST_FT&BS->Random	0.84	0.73	< 0.01	1.57	0.64	0.6	< 0.01	1.24	0.7	0.41	< 0.01	1.11	0.74	0.82	< 0.01	1.56
(13) PPR->LLM&BS->Random	0.84	7.44	< 0.01	8.28	0.64	5.72	< 0.01	6.36	0.7	6.18	< 0.01	6.88	0.74	5.58	< 0.01	6.32
(14) PPR->LLM_FT&BS->Random	0.84	4.81	< 0.01	5.65	0.64	4.28	< 0.01	4.92	0.7	4.43	< 0.01	5.13	0.74	4.29	< 0.01	5.03
(15) PPR->SPF->BM25	0.84	0.04	0.04	0.91	0.64	0.01	0.01	0.67	0.7	0.01	0.01	0.72	0.74	0.02	0.02	0.78
(16) PPR->SPF->ST	0.84	0.03	0.7	1.57	0.64	0.02	0.17	0.83	0.7	0.01	0.19	0.9	0.74	0.02	0.34	1.1
(17) PPR->SPF->Reranker	0.84	0.02	11.3	12.16	0.64	0.02	5.42	6.08	0.7	0.01	3.93	4.64	0.74	0.02	5.48	6.24
(18) PPR->SPF->ST_FT	0.84	0.02	0.17	1.03	0.64	0.02	0.42	1.08	0.7	0.01	0.13	0.85	0.74	0.03	0.26	1.03
(19) PPR->SPF->LLM	0.84	0.02	4.37	5.23	0.64	0.01	3.99	4.65	0.7	0.01	3.97	4.69	0.74	0.02	4.77	5.53
(20) PPR->SPF->LLM_FT	0.84	0.02	5.42	6.28	0.64	0.02	5.8	6.46	0.7	0.01	4.61	5.32	0.74	0.02	4.9	5.66

Figure 1: Different Solutions on Three Modules (CWQ)

Figure 2: Different Solutions on Three Modules (WebQSP)

For path-filtering module:

 In the path-filtering module, the two fundamental structurebased methods, complete path-filtering and shortest pathfiltering algorithm, exhibit comparable performance. • In the various methods combined with beam search, small-scale (specialized) models have demonstrated notable performance, achieving a balanced F1 score and recall while maintaining moderate execution time. However, it is essential to acknowledge that the benefits of fine-tuning small-scale models at this module are limited, and in some cases, may even lead to a decline in performance. This phenomenon can

Figure 3: Different Solutions on Three Modules (GrailQA)

Figure 4: Different Solutions on Three Modules (WebQuestion)

Figure 5: F1-score of GraphRAG Instances on the Retrieval Phase of different datasets

be attributed to the complexity of the module's tasks, which necessitates careful consideration of the fine-tuning samples and strategies employed ⁷.

• The performance of (fine-tuned) LLMs when combined with beam search is suboptimal, primarily due to the capabilities of the selected LLMs (llama3-8b) and the implementation of the LLMs as a scoring function. In this paper, we adopt a way consistent with prior work [43], utilizing prompts to enable LLMs to directly output scores for specific paths during the beam search process. However, LLMs often fail to generate scores in the required format as specified by the prompts. We posit that utilizing larger, more powerful LLMs will mitigate this issue. Furthermore, LLMs can also be employed solely as embedding encoders to fulfill the scoring function effectively.

For path-refinement module:

⁷In this paper, we have considered various sample forms and the construction ratios of positive and negative samples during the fine-tuning process; however, achieving satisfactory results remains a considerable challenge.

Figure 6: Hit-ratio of GraphRAG Instances on the Retrieval Phase of different datasets

Figure 7: Performance of Different GraphRAG instances on the Generation Phase (CWQ)

Figure 8: Performance of Different GraphRAG instances on the Generation Phase (WebQSP)

Figure 9: Performance of Different GraphRAG instances on the Generation Phase (GrailQA)

• In the path-refinement module, a observation is that NN models consistently outperform non-NN models. Furthermore, within the NN models category, larger models demonstrate superior performance compared to smaller ones, and fine-tuned models yield better results than their non-fine-tuned counterparts.

GraphRAG Instances. The performance of 21 GraphRAG instances during the retrieval phase across all datasets is illustrated in Figures A and B, following the sequential processing through each of the three modules.

5.3 Evaluating on Generation

GraphRAG Instances. The performance of 21 GraphRAG instances across all datasets during the generation phase is illustrated in Figure 7, 8 9, and 10, with reasoning conducted using three LLMs, respectively.

Number of Reasoning Paths. Figure 11 shows the performance (measured by HR and F1 scores) of three models — Llama2-7b, Llama3-8b, and Qwen2-7b — as the number of reasoning paths increases. Across all models, there is a clear positive correlation between the number of reasoning paths and performance scores.

Figure 10: Performance of Different GraphRAG instances on the Generation Phase (WebQuestions)

Figure 11: Number of Reasoning Paths

Figure 12: Number of Prompting Shots

Number of Prompting Shots. In Figure 12, we observe the impact of varying the number of prompting shots on HR and F1 scores for the same models. Unlike the trend in Figure 11, performance in terms of HR and F1 is less consistent as the number of prompting shots increases. While the Llama2-7b model shows a slight decline in F1 with more shots, Qwen2-7b indicates some improvement, highlighting model-dependent sensitivity to prompting quantity.

6 CONCLUSION

In this paper, we present LEGO-GraphRAG, a structured framework for the modular analysis and design of GraphRAG instances. By breaking down the retrieval process of GraphRAG into distinct modules and identifying critical design factors, LEGO-GraphRAGprovides a clearer path for optimizing GraphRAG implementations. Our experiments demonstrate the practical advantages of this modular approach, highlighting how specific choices in algorithm and NN model selection can enhance both retrieval accuracy and reasoning effectiveness. These insights contribute to advancing both research and practical applications of GraphRAG, paving the way for more reliable, domain-specific applications of LLMs.

REFERENCES

- [1] 2024. Qwen2 Technical Report. (2024).
- [2] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic Parsing on Freebase from Question-Answer Pairs. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and Steven Bethard (Eds.). Association for Computational Linguistics, Seattle, Washington, USA, 1533–1544. https://aclanthology.org/D13-1160
- [3] Shulin Cao, Jiaxin Shi, Zijun Yao, Xin Lv, Jifan Yu, Lei Hou, Juanzi Li, Zhiyuan Liu, and Jinghui Xiao. 2022. Program Transfer for Answering Complex Questions over Knowledge Bases. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (Eds.). Association for Computational Linguistics, Dublin, Ireland, 8128–8140. https://doi.org/10.18653/v1/2022.acl-long.559
- [4] Harrison Chase. 2022. LangChain. https://github.com/langchain-ai/langchain
- [5] Yongrui Chen, Huiying Li, Guilin Qi, Tianxing Wu, and Tenggou Wang. 2022. Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graphs. arXiv:2111.00732 [cs.AI] https://arxiv.org/abs/2111.00732
- [6] Gábor Csárdi and Tamás Nepusz. 2006. The igraph software package for complex network research. https://api.semanticscholar.org/CorpusID:16923281
- [7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805 [cs.CL] https://arxiv.org/abs/1810.04805
- [8] Guanting Dong, Yutao Zhu, Chenghao Zhang, Zechen Wang, Zhicheng Dou, and Ji-Rong Wen. 2024. Understand What LLM Needs: Dual Preference Alignment for Retrieval-Augmented Generation. CoRR abs/2406.18676 (2024). https://doi. org/10.48550/ARXIV.2406.18676 arXiv:2406.18676
- [9] Jialin Dong, Bahare Fatemi, Bryan Perozzi, Lin F. Yang, and Anton Tsitsulin. 2024. Don't Forget to Connect! Improving RAG with Graph-based Reranking. arXiv:2405.18414 [cs.CL] https://arxiv.org/abs/2405.18414
- [10] Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt, and Jonathan Larson. 2024. From Local to Global: A Graph RAG Approach to Query-Focused Summarization. https://doi.org/10.48550/ arXiv.2404.16130 arXiv:2404.16130 [cs]
- [11] Zheng Fang, Yanan Cao, Qian Li, Dongjie Zhang, Zhenyu Zhang, and Yanbing Liu. 2019. Joint Entity Linking with Deep Reinforcement Learning. In *The World Wide Web Conference* (San Francisco, CA, USA) (WWW '19). Association for Computing Machinery, New York, NY, USA, 438–447. https://doi.org/10.1145/ 3308558.3313517
- [12] Octavian-Eugen Ganea and Thomas Hofmann. 2017. Deep Joint Entity Disambiguation with Local Neural Attention. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Martha Palmer, Rebecca Hwa, and Sebastian Riedel (Eds.). Association for Computational Linguistics, Copenhagen, Denmark, 2619–2629. https://doi.org/10.18653/v1/D17-1277
- [13] Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. 2022. Precise Zero-Shot Dense Retrieval without Relevance Labels. https://doi.org/10.48550/arXiv.2212. 10496 arXiv:2212.10496 [cs]
- [14] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang, and Haofen Wang. 2024. Retrieval-Augmented Generation for Large Language Models: A Survey. arXiv:2312.10997 [cs.CL] https://arxiv.org/abs/2312.10997
- [15] Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy Liang, Xifeng Yan, and Yu Su. 2021. Beyond I.I.D.: Three Levels of Generalization for Question Answering on Knowledge Bases. In Proceedings of the Web Conference 2021 (Ljubljana, Slovenia) (WWW '21). Association for Computing Machinery, New York, NY, USA, 3477–3488. https://doi.org/10.1145/3442381.3449992
- [16] Taher H. Haveliwala. 2002. Topic-sensitive PageRank. In Proceedings of the 11th International Conference on World Wide Web (Honolulu, Hawaii, USA) (WWW '02). Association for Computing Machinery, New York, NY, USA, 517–526. https://doi.org/10.1145/511446.511513
- [17] Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and Ji-Rong Wen. 2021. Improving Multi-hop Knowledge Base Question Answering by Learning Intermediate Supervision Signals. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (Virtual Event, Israel) (WSDM '21). Association for Computing Machinery, New York, NY, USA, 553–561. https: //doi.org/10.1145/3437963.3441753
- [18] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large Language Models. In *International Conference on Learning Representations*. https://openreview.net/forum?id=nZeVKeeFYf9
- [19] Wenyu Huang, Guancheng Zhou, Hongru Wang, Pavlos Vougiouklis, Mirella Lapata, and Jeff Z. Pan. 2024. Less is More: Making Smaller Language Models Competent Subgraph Retrievers for Multi-hop KGQA. arXiv:2410.06121 [cs.CL] https://arxiv.org/abs/2410.06121
- [20] Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin Zhao, and Ji-Rong Wen. 2023. StructGPT: A General Framework for Large Language Model to Reason

- over Structured Data. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational Linguistics, Singapore, 9237–9251. https://doi.org/10.18653/v1/2023.emnlp-main.574
- [21] Jinhao Jiang, Kun Zhou, Xin Zhao, and Ji-Rong Wen. 2022. UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question Answering Over Knowledge Graph. In The Eleventh International Conference on Learning Representations.
- [22] Nikolaos Kolitsas, Octavian-Eugen Ganea, and Thomas Hofmann. 2018. End-to-End Neural Entity Linking. In Proceedings of the 22nd Conference on Computational Natural Language Learning, Anna Korhonen and Ivan Titov (Eds.). Association for Computational Linguistics, Brussels, Belgium, 519–529. https://doi.org/10. 18653/v1/K18-1050
- [23] Yunshi Lan and Jing Jiang. 2020. Query Graph Generation for Answering Multi-hop Complex Questions from Knowledge Bases. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (Eds.). Association for Computational Linguistics, Online, 969–974. https://doi.org/10.18653/v1/2020.acl-main.91
- [24] Phong Le and Ivan Titov. 2018. Improving Entity Linking by Modeling Latent Relations between Mentions. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Iryna Gurevych and Yusuke Miyao (Eds.). Association for Computational Linguistics, Melbourne, Australia, 1595–1604. https://doi.org/10.18653/v1/P18-1148
- [25] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2021. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. arXiv:2005.11401 [cs.CL] https://arxiv.org/abs/ 2005.11401
- [26] Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su, and Wenhu Chen. 2023. Few-shot In-context Learning on Knowledge Base Question Answering. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (Eds.). Association for Computational Linguistics, 6966–6980. https://doi.org/10.18653/v1/2023.acl-long.385
- [27] Haochen Liu, Song Wang, Yaochen Zhu, Yushun Dong, and Jundong Li. 2024. Knowledge Graph-Enhanced Large Language Models via Path Selection. In Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024. 6311–6321.
- [28] Jerry Liu. 2022. *LlamaIndex*. https://doi.org/10.5281/zenodo.1234
- [29] Xukai Liu, Ye Liu, Kai Zhang, Kehang Wang, Qi Liu, and Enhong Chen. 2024. OneNet: A Fine-Tuning Free Framework for Few-Shot Entity Linking via Large Language Model Prompting. arXiv:2410.07549 [cs.CL] https://arxiv.org/abs/ 2410.07549
- [30] Haoran Luo, Haihong E, Zichen Tang, Shiyao Peng, Yikai Guo, Wentai Zhang, Chenghao Ma, Guanting Dong, Meina Song, Wei Lin, Yifan Zhu, and Luu Anh Tuan. 2024. ChatkBQA: A Generate-then-Retrieve Framework for Knowledge Base Question Answering with Fine-tuned Large Language Models. https: //doi.org/10.48550/arXiv.2310.08975 arXiv:2310.08975 [cs]
- [31] LINHAO LUO, Yuan-Fang Li, Reza Haf, and Shirui Pan. 2024. Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning. In The Twelfth International Conference on Learning Representations. https://openreview. net/forum?id=ZGNWW7xZ6Q
- [32] Linhao Luo, Zicheng Zhao, Chen Gong, Gholamreza Haffari, and Shirui Pan. 2024. Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models. arXiv:2410.13080 [cs.CL] https://arxiv.org/abs/2410. 13080
- [33] Jie Ma, Zhitao Gao, Qi Chai, Wangchun Sun, Pinghui Wang, Hongbin Pei, Jing Tao, Lingyun Song, Jun Liu, Chen Zhang, and Lizhen Cui. 2024. Debate on Graph: a Flexible and Reliable Reasoning Framework for Large Language Models. arXiv:2409.03155 [cs.CL] https://arxiv.org/abs/2409.03155
- [34] Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. 2023. Query Rewriting for Retrieval-Augmented Large Language Models. https://doi.org/10. 48550/arXiv.2305.14283 arXiv:2305.14283 [cs]
- [35] Elan Markowitz, Anil Ramakrishna, Jwala Dhamala, Ninareh Mehrabi, Charith Peris, Rahul Gupta, Kai-Wei Chang, and Aram Galstyan. 2024. Tree-of-Traversals: A Zero-Shot Reasoning Algorithm for Augmenting Black-box Language Models with Knowledge Graphs. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for Computational Linguistics, Bangkok, Thailand, 12302–12319. https://doi.org/10.18653/v1/2024.acl-long.665
- [36] Pedro Henrique Martins, Zita Marinho, and André F. T. Martins. 2019. Joint Learning of Named Entity Recognition and Entity Linking. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, Fernando Alva-Manchego, Eunsol Choi, and Daniel Khashabi (Eds.). Association for Computational Linguistics, Florence, Italy, 190–196. https://doi.org/10.18653/v1/P19-2026
- [37] Costas Mavromatis and George Karypis. 2024. GNN-RAG: Graph Neural Retrieval for Large Language Model Reasoning. https://doi.org/10.48550/arXiv.2405.20139 arXiv:2405.20139 [cs]

- [38] Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Jason Weston. 2016. Key-Value Memory Networks for Directly Reading Documents. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. 1400–1409.
- [39] Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. 2020. Improving Multi-hop Question Answering over Knowledge Graphs Using Knowledge Base Embeddings. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (Eds.). Association for Computational Linguistics, Online, 4498–4507. https://doi.org/ 10.18653/v1/2020.acl-main.412
- [40] Jiaxin Shi, Shulin Cao, Lei Hou, Juanzi Li, and Hanwang Zhang. 2021. TransferNet: An Effective and Transparent Framework for Multi-hop Question Answering over Relation Graph. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 4149–4158.
- [41] Haitian Sun, Tania Bedrax-Weiss, and William Cohen. 2019. PullNet: Open Domain Question Answering with Iterative Retrieval on Knowledge Bases and Text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2380–2390.
- [42] Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, and William Cohen. 2018. Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 4231–4242.
- [43] Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel Ni, Heung-Yeung Shum, and Jian Guo. 2024. Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph. In The Twelfth International Conference on Learning Representations. https://openreview.net/forum?id=nnVOIPvbTv
- [44] Alon Talmor and Jonathan Berant. 2018. The Web as a Knowledge-Base for Answering Complex Questions. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), Marilyn Walker, Heng Ji, and Amanda Stent (Eds.). Association for Computational Linguistics, New Orleans, Louisiana, 641–651. https://doi.org/10.18653/v1/N18-1059
- [45] Llama team. 2023. Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv:2307.09288 [cs.CL]
- [46] Llama team. 2024. The Llama 3 Herd of Models. arXiv:2407.21783 [cs.AI] https://arxiv.org/abs/2407.21783
- [47] Keheng Wang, Feiyu Duan, Sirui Wang, Peiguang Li, Yunsen Xian, Chuantao Yin, Wenge Rong, and Zhang Xiong. 2023. Knowledge-Driven CoT: Exploring Faithful Reasoning in LLMs for Knowledge-intensive Question Answering. https://doi.org/10.48550/arXiv.2308.13259 arXiv.2308.13259 [cs]
- [48] Siheng Xiong, Ali Payani, Ramana Kompella, and Faramarz Fekri. 2024. Large Language Models Can Learn Temporal Reasoning. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for Computational Linguistics, Bangkok, Thailand, 10452–10470. https://doi.org/10. 18653/v1/2024.acl-long.563
- [49] Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-Wei Chang, and Jina Suh. 2016. The Value of Semantic Parse Labeling for Knowledge Base Question Answering. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Katrin Erk and Noah A. Smith (Eds.). Association for Computational Linguistics, Berlin, Germany, 201–206. https://doi.org/10.18653/v1/P16-2033
- [50] Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu, William Wang, Zhiguo Wang, and Bing Xiang. 2023. DecAF: Joint Decoding of Answers and Logical Forms for Question Answering over Knowledge Bases. https://doi.org/10.48550/arXiv.2210.00063 arXiv:2210.00063 [cs]
- [51] Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal, Chenguang Zhu, Michael Zeng, and Meng Jiang. 2023. Generate rather than Retrieve: Large Language Models are Strong Context Generators. arXiv:2209.10063 [cs.CL] https://arxiv.org/abs/2209.10063
- [52] Taolin Zhang, Dongyang Li, Qizhou Chen, Chengyu Wang, Longtao Huang, Hui Xue, Xiaofeng He, and Jun Huang. 2024. R4: Reinforced Retriever-Reorder-Responder for Retrieval-Augmented Large Language Models. arXiv:2405.02659 [cs.CL] https://arxiv.org/abs/2405.02659
- [53] Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2024. Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models. https://doi.org/10.48550/arXiv.2310.06117 arXiv:2310.06117 [cs]
- [54] Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma. 2024. LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations). Association for Computational Linguistics, Bangkok, Thailand. http://arxiv.org/abs/2403.13372

A APPENDIX

A.1 Datasets

We referenced the training and testing splits of these four datasets from TOG and performed a filtering process based on that. The final distribution of the dataset is shown in Table 5. The training portion is used to fine-tune the LLM and the Sentence Transformer, while the testing portion is used to evaluate the performance of different modules and the reasoning result of the LLM.

A.2 Experimental Settings

All experiments are running on Ubuntu 20.04.6 LTS (Intel(R) Xeon(R) Platinum 8358 CPU@2.60GHz Processor, 4 A100-80G, 400GB memory). The detailed experimental settings are as follows:

Hyperparameters The detailed hyperparameter settings for different phase modules are shown in Table 7. Here, max_ent represents the maximum number of entities, set to 2000; restart_prob represents the restart probability, set to 0.8; windows represents the window size, set to 24; top_k represents the number of top-k entities, set to 64; and beam_width represents the beam width, set to 128. In Inference phase, the temperature parameter is set to 0.01, and the maximum token length for generation is fixed at 256, and stop_tokens is ["<|eot_id|>"]. We use zero-shot reasoning prompt across all datasets except the prompt-base reasoning experiment, and the prompt templates are presented in Appendix A.2.

Prompts

Subgraph-Extraction Prompt Example:

You are an expert at identifying and selecting the most relevant reasoning paths from a given corpus to answer specific questions. Your role involves analyzing the provided question and related entities, and then determining the most useful relation paths that can help address the question effectively. Your selection should be guided by the relevance, specificity, and accuracy of each path in relation to the entities mentioned in the question.

Example

Input: Given the relations: people.person.nationality people.person.sibling_s people.profession.specialization_of people.ethnicity.included_in_group people.person.place_of_birth people.professional_field.professions_in_this_field people.person.profession people.person.parents people.person.children people.deceased_person.place_of_death location.location.people_born_here people.ethnicity.includes_groups people.person.spouse_s people.profession.part_of_professional_field people.profession.corresponding_type people.place_lived.person people.person.education

 $people.person.employment_history$

time.event.people_involved

people.sibling relationship.sibling

people.person.ethnicity

people.place_lived.location

people.person.gender

people.marriage.spouse

people.person.languages

people.profession.people with this profession

people.person.places_lived

people.profession.specializations

Generate some valid relation paths that can be helpful for answering the following question: what is the name of justin bieber brother

Output:

people.person.children; people.person.parents

 $people.person.nationality; people.person.place_of_birth$

people.person.gender; people.person.gender people.sibling_relationship.sibling; peo-

 $ple.sibling_relationship.sibling$

Ouerv

Now answer the following question, you only need to output useful paths, nothing else!

Input:

Given the relations:

{relations}

Generate some valid relation paths that can be helpful for answering the following question: {question}

Output:

""" # endregion

region Retrieval Module """

score_prompt = Please score the relations (separated by semicolon) that contribute to the question on a scale from 0 to 1 (the sum of the scores of all relations is 1).

Q: Name the president of the country whose main spoken language was Brahui in 1980?

Topic Entity: Brahui Language

 $Relations: language.human_language.main_country$

language.human_language.countries_spoken_in

base.rosetta.languoid.parent

kg.object_profile.prominent_type

Score: 0.4, 0.3, 0.2, 0.0

language.human_language.main_country is highly relevant as it directly relates to the country whose president is being asked for, and the main country where Brahui language is spoken in 1980.

language.human_language.countries_spoken_in is also relevant as it provides information on the countries where Brahui language is spoken, which could help narrow down the search for the president.

base.rosetta.languoid.parent is less relevant but still provides some context on the language family to which Brahui belongs, which could be useful in understanding the linguistic and cultural background of the country in question.

kg.object_profile.prominent_type is not relevant and contributes nothing to the question.

Q: {}

Topic Entity: {} **Relations:**

Path-Filtering Prompt Example:

You are an expert at retrieving the most relevant paths from a given input to answer specific questions. Your task is to retrieve {beam_width} paths(separated by semicolon) that contribute to the question.

Example

##Input:

Question:

Rift Valley Province is located in a nation that uses which form of currency?

Topic Entity:

Rift Valley Currency

Paths:

Rift Valley Province, location.administrative_division.country, Kenya

Rift Valley Province, location.location.geolocation, Un-

Name_Entity

Rift Valley Province, location.mailing_address.state_province_region, Un-Name Entity

Kenya, location.country.currency_used, Kenyan shilling

Output:

Kenya, location.country.currency_used, Kenyan shilling Rift Valley Province, location.administrative division.country, Kenya

Rift Valley Province, location.location.geolocation, Un-Name_Entity

Query

Now answer the following question, you only need to output useful paths, nothing else!

Input:

Question:

{question}

Topic Entity:

{entity_name}

Paths:

 $\{total_paths\}$

Output:

Question:

{question}

Topic Entity:

{entity_name}

Paths:

{total_paths}

Output:

Path-Refinement Prompt Example:

You are an expert filterer with a deep understanding of relevant information. Your task is to analyze the given question and entities, and identify the potentially useful reasoning paths from the provided corpus. For each question, you will select the most relevant paths that can help answer the question effectively. Your selection should be based on the entities mentioned in the question and their relationships with other entities in the corpus. Make sure to consider the relevance, specificity, and accuracy of each path in relation to the given question and entities.

Example

Input:

Given the question 'What state is home to the university that is represented in sports by George Washington Colonials men's basketball?' and entities [George Washington Colonials men's basketball], identify the potentially useful reasoning paths from the following list:

George Washington Colonials men's basketball -> sports.school_sports_team.school -> George Washington University

George Washington Colonials men's basketball -> sports.school_sports_team.school -> George Washington University -> education.educational_institution.faculty -> m.0kdpyxr

George Washington Colonials men's basketball -> sports.sports_team.sport -> Basketball

George Washington Colonials men's basketball -> sports.sports_team.arena_stadium -> Charles E. Smith Center -> location.location.containedby -> Washington, D.C. George Washington Colonials men's basketball -> sports.school_sports_team.school -> George Washington University -> education.educational_institution.faculty -> m.0k9wvjz

Output:

George Washington Colonials men's basketball -> sports.sports_team.arena_stadium -> Charles E. Smith Center -> location.location.containedby -> Washington, D.C. George Washington Colonials men's basketball -> sports.school_sports_team.school -> George Washington University

Ouerv

Now answer the following question, you only need to output useful paths, nothing else!

Input:

Given the question '{question}' and entities [{entities}], identify the potentially useful reasoning paths from the following list:

{corpus}

Output:

Zero-Shot Prompt Example:

You are an expert reasoner with a deep understanding of logical connections and relationships. Your task is to analyze the given reasoning paths and provide clear and accurate answers to the questions based on these paths. Based on the reasoning paths, please answer the given question.

One-Shot Prompt Example:

You are an expert reasoner with a deep understanding of logical connections and relationships. Your task is to analyze the given reasoning paths and provide clear and accurate answers to the questions based on these paths. Based on the reasoning paths, please answer the given question.

Examples

Input:

Based on the reasoning paths, please answer the given question and explain why.

Reasoning Paths:

Lou Seal -> sports.mascot.team -> San Francisco Giants -> sports.sports_championship_event.champion -> 2014 World Series

Ouestion:

Lou Seal is the mascot for the team that last won the World Series when?

Output:

Lou Seal is the mascot for the team that last won the World Series in 2014.

Explanation:

- 1. The reasoning path starts with "Lou Seal" and links it to "sports.mascot.team."
- 2. From there, it leads to "San Francisco Giants," indicating that Lou Seal is the mascot for the San Francisco Giants.
- 3. The path then continues to "sports.sports_championship_event.champion -> 2014 World Series," which tells us that the San Francisco Giants were the champions of the 2014 World Series.

Therefore, based on the provided reasoning paths, it can be concluded that the San Francisco Giants, represented by Lou Seal, last won the World Series in 2014.

Query

Now answer the following question, you only need to output answer, nothing else! Make sure your answer contains the entities of the above REASONING PATHS.

Input:

Few-Shot Prompt Example:

You are an expert reasoner with a deep understanding of logical connections and relationships. Your task is to analyze the given reasoning paths and provide clear and accurate answers to the questions based on these paths. Based on the reasoning paths, please answer the given question.

Examples

Input:

Based on the reasoning paths, please answer the given question and explain why.

Reasoning Paths:

Northern District -> location.administrative_division.first_level_division_of -> Israel -> government.form_of_government.countries -> Parliamentary system

Question:

What type of government is used in the country with Northern District?

Output:

Parliamentary system

Explanation:

- 1. "Northern District" is a location within some country.
- 2. The reasoning path mentions "Northern District -> location.administrative_division.first_level_division_of -> Israel," indicating that the Northern District is part of Israel.
- 3. It further states "Israel -> government.form_of_government.countries," suggesting that Israel's form of government is being discussed.
- 4. The last part of the reasoning path indicates that Israel has a "Parliamentary system."

Therefore, based on the provided reasoning paths, it can be concluded that the type of government used in the country with the Northern District (Israel) is a Parliamentary system.

Input:

Based on the reasoning paths, please answer the given question and explain why.

Reasoning Paths:

1946 World Series -> sports.sports_team.championships -> St. Louis Cardinals -> sports.sports_team.arena_stadium -> Busch Stadium

1946 World Series -> sports.sports_team.championships -> St. Louis Cardinals -> sports.sports_team.arena_stadium -> Roger Dean Stadium

Question:

Where is the home stadium of the team who won the 1946 World Series championship?

Output:

Busch Stadium

Explanation:

- 1. 1946 World Series -> sports.sports_team.championships
- -> St. Louis Cardinals -> sports.sports_team.arena_stadium
- -> Busch Stadium

The reasoning path leads us to the St. Louis Cardinals as the team that won the 1946 World Series, and Busch Stadium is the stadium associated with the St. Louis Cardinals. Therefore, Busch Stadium is the home stadium of the team that won the 1946 World Series championship.

Input:

Based on the reasoning paths, please answer the given question and explain why.

Reasoning Paths:

Lou Seal -> sports.mascot.team -> San Francisco Giants -> sports.sports_championship_event.champion -> 2014 World Series

Ouestion:

Lou Seal is the mascot for the team that last won the World Series when?

Output:

Lou Seal is the mascot for the team that last won the World Series in 2014.

Explanation:

- 1. The reasoning path starts with "Lou Seal" and links it to "sports.mascot.team."
- 2. From there, it leads to "San Francisco Giants," indicating that Lou Seal is the mascot for the San Francisco Giants.
- 3. The path then continues to "sports.sports_championship_event.champion -> 2014 World Series," which tells us that the San Francisco Giants were the champions of the 2014 World Series.

Therefore, based on the provided reasoning paths, it can be concluded that the San Francisco Giants, represented by Lou Seal, last won the World Series in 2014.

Query

Now answer the following question, you only need to output answer, nothing else! Make sure your answer contains the entities of the above REASONING PATHS.

Input:

Instance	Subgraph-Extraction Module	Path-Filtering Module	Path-Refinement Module			
	Ва	asic instance				
0	max_ent=2000,restart_prob=0.8	-	top_k=64			
	Subgrapl	1-Extraction Group				
1	path_num=64	top_k=64				
2	window=24	-	top_k=64			
3	window=24	-	top_k=64			
4	window=24	-	top_k=64			
5	window=24	-	top_k=64			
6	window=24	-	top_k=64			
7	window=24	-	top_k=64			
	Path-	Filtering Group				
8	max_ent=2000,restart_prob=0.8	-	top_k=64			
9	max_ent=2000,restart_prob=0.8	beam_width= 128	top_k=64			
10	max_ent=2000,restart_prob=0.8	beam_width= 128	top_k=64			
11	max_ent=2000,restart_prob=0.8	beam_width= 128	top_k=64			
12	max_ent=2000,restart_prob=0.8	beam_width= 128	top_k=64			
13	max_ent=2000,restart_prob=0.8	beam_width= 128	top_k=64			
14	max_ent=2000,restart_prob=0.8	beam_width= 128	top_k=64			
	Path-R	efinement Group				
15	max_ent=2000,restart_prob=0.8	=	top_k=64			
16	max_ent=2000,restart_prob=0.8	-	top_k=64			
17	max_ent=2000,restart_prob=0.8	-	top_k=64			
18	max_ent=2000,restart_prob=0.8	=	top_k=64			
19	max_ent=2000,restart_prob=0.8	-	top_k=64			
20	max_ent=2000,restart_prob=0.8	-	top_k=64			

Table 7: The hyperparameters used in the different modules.

Model	CWQ			GrailQA			WebQSP			WebQuestion			
Wiodei	SE	PF	PR	SE	PF	PR	SE	PF	PR	SE	PF	PR	
llama2-7b	8:01:15	10:23:41	7:58:32	1:17:25	1:16:36	1:15:16	1:01:39	1:09:19	1:00:49	0:15:30	0:18:17	0:17:42	
llama3-8b	8:29:16	10:36:42	8:20:21	1:14:01	1:25:44	1:19:32	1:03:08	1:18:59	1:02:28	0:17:38	0:18:55	0:18:27	
qwen2-7b	7:32:53	9:47:17	7:42:59	1:07:46	1:15:33	1:19:51	0:59:01	1:00:07	1:05:26	0:16:02	0:17:12	0:17:09	
Sentence-Transformers	0:02:23	0:01:38	0:04:29	0:01:11	0:00:33	0:01:22	0:00:18	0:00:13	0:00:28	0:00:11	0:00:07	0:00:15	

Table 8: Fine-tuning time for different LLM models and Sentence-Transformers model on different datasets