Implementacja podstawowego algorytmu simplex Lab3c

Wojciech Klusek 305943 grupa C

14 listopada 2023

Spis treści

1	Zadanie Opis algorytmu													
2														
3	Rozwiązanie	3												
4	Przykłady	4												
	4.1 Rozwiązanie optymalne	4												
	4.2 Brak rozwiązania	5												
	4.3 Rozwiązania alternatywne													
5	Testy	7												
	5.1 Porównanie z linprog	7												
	5.2 Porównanie alternatywnych rozwiązań													
6	Wnioski	7												
7	Oświadczenie o samodzielności	8												

1 Zadanie

Zadaniem było stworzenie własnej implementacji podstawowej wersji algorytmu simplex do rozwiązania problemu optymalizacyjnego w ZPL. Dodatkowo, celem było porównanie efektywności tej implementacji z działaniem wbudowanej funkcji linprog z pakietu Optimization Toolbox.

$$\max_{x \in \Omega} c^t x$$

$$[AI]x = b, \quad b \geqslant 0$$

$$[x_1, ..., x_{\frac{n}{2}}] \leqslant 0, [x_{\frac{n}{2}+1}, ..., x_n] \geqslant 0$$

$$c, x \in \mathbb{R}^n, b \in \mathbb{R}^m, A \in \mathbb{R}^{mxm}, n = 10, m = 5$$

Do testów wygenerowane zostały losowe wektory o wartościach całkowitoliczbowych, dla c oraz A z zakresu [-5,5], natomiast dla b z [1,5].

2 Opis algorytmu

- 1. **Inicjalizacja:** Wprowadź problem optymalizacyjny do postaci kanonicznej. Dla powyższego zadania aby sprowadzić problem do postaci kanonicznej należało podstawić $y_i = -x_i$ dla $x \in [x_1, ..., x_{\frac{n}{2}}]$.
- 2. **Określenie punktu startowego:** Wybierz punkt początkowy i oblicz wartość funkcji celu.
 - Dla powyższego zadania jako bazę można wybrać zmienne $[x_{\frac{n}{2}+1},...,x_n]$ jako że ich współczynniki tworzą macierz jednostkową.
- 3. **Test optymalności:** Sprawdź warunki zakończenia algorytmu (wszystkie współczynniki funkcji celu są ujemne lub brak dopuszczalnych kierunków poprawy).
- 4. **Wybór kierunku:** Wybierz indeks zmiennej, która wejdzie do bazy (w przypadku wielu kandydatów zastosuj regułę wyboru, np. największy dodatni współczynnik w funkcji celu).
- 5. **Określenie kroku:** Wybierz zmienną, która opuści bazę (minimalny dodatni iloraz wyrazów wolnych do współczynników w kolumnie wybranej zmiennej).
- 6. Aktualizacja bazy: Dokonaj operacji elementarnej, aby zaktualizować baze.
- 7. Powrót do kroku 3.

3 Rozwiązanie

Rozwiązanie składa się z 5 plików:

- 1. simplex.m Implementacja podstawowego algorytmu simplex dla powyższego zadania. Przyjmuje jako wejście zmienne:
 - A macierz współczynników ograniczeń,
 - b wektor prawych stron ograniczeń,
 - c wektor współczynników funkcji celu,
 - debug flaga określająca, czy wyświetlać kolejne tabele w czasie iteracji,
 - use_second_solution_if_exists flaga określająca, czy zwrócić drugie rozwiązanie optymalne, jeżeli istnieje rozwiązanie alternatywne.

Funkcja zwraca wektor x będący rozwiązaniem, zmienną is_unique, określającą, czy rozwiązanie jest unikalne, oraz iter będącą liczbą wykonanych iteracji.

- 2. simplex_test.m Porównanie algorytmu simplex wraz z algorytmem linprog.
- 3. multiple_solutions_test.m Porównanie wyników zwracanych przez alternatywne rozwiązania.
- 4. generator.m Generuje macierze oraz wektory: A, b, c zgodnie z zadaniem.
- 5. get_value_with_precision.m Wyznacza wartość funkcji i zaokrągla ją do określonej liczby miejsc po przecinku. Przyjmuje x rozwiązanie, c zadanie, oraz precision liczbę miejsc po przecinku.

4 Przykłady

4.1 Rozwiązanie optymalne

$$A = \begin{bmatrix} -1 & -4 & -1 & 2 & 3 & 1 & 0 & 0 & 0 & 0 \\ 2 & -3 & 2 & -1 & 5 & 0 & 1 & 0 & 0 & 0 \\ -5 & -2 & -3 & 1 & -2 & 0 & 0 & 1 & 0 & 0 \\ -2 & -1 & 4 & -4 & 2 & 0 & 0 & 0 & 1 & 0 \\ -4 & 0 & -5 & -3 & 4 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 2 \\ 4 \\ 5 \\ 1 \\ 4 \end{bmatrix}$$

$$c = \begin{bmatrix} 4 & -5 & -5 & -4 & 4 & -4 & -1 & 5 & 0 & 2 \end{bmatrix}$$

Dla powyższego wejścia otrzymujemy tabelę początkową przedstawioną poniżej:

	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_10	b
											-
x _6	1	4	1	-2	-3	1	0	0	0	0	2
x_7	-2	3	-2	1	-5	0	1	0	0	0	4
x_8	5	2	3	-1	2	0	0	1	0	0	5
x_9	2	1	-4	4	-2	0	0	0	1	0	1
x_10	4	0	5	3	-4	0	0	0	0	1	4
cj - zj	-35	14	-18	-4	-23	0	0	0	0	0	0

Rysunek 1: Tabela początkowa.

Jako zmienne bazowe rozwiązania początkowego przyjmujemy zmienne $[x_{\frac{n}{2}+1},...,x_n]$, jako że tworzą one macierz jednostkową. Zgodnie z zadaniem podstawiamy $y_i=-x_i$ dla $x\in[x_1,...,x_{\frac{n}{2}}]$ aby doprowadzić zadanie do postaci kanonicznej.

	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_10	b
		_					_				
x_2	0.44444	1	-0.22222	0	-0.88889	0.22222	0	0	0.11111	0	0.55556
x_7	-3.7222	0	-0.38889	0	-2.0556	-0.61111	1	0	-0.55556	0	2.2222
x_8	4.5	0	2.5	0	3.5	-0.5	0	1	0	0	4
x_4	0.38889	0	-0.94444	1	-0.27778	-0.055556	0	0	0.22222	0	0.11111
x_10	2.8333	0	7.8333	0	-3.1667	0.16667	0	0	-0.66667	1	3.6667
cj - zj	-39.667	0	-18.667	0	-11.667	-3.3333	0	0	-0.66667	0	0

Rysunek 2: Tabela końcowa.

Jak można zauważyć, po zaledwie pięciu iteracjach wszystkie wartości w wierszu $c_j - z_j$ są ujemne lub zerowe. To oznacza, że osiągnęliśmy optymalne rozwiązanie, co kończy obliczenia z powyższą tabelą końcową. Wszystkie zmienne spoza bazy mają ujemne wartości, co świadczy o unikalności znalezionego rozwiązania. Ostateczny wynik to:

$$x = [0, -0.5556, 0, -0.1111, 0, 0, 2.2222, 4.0000, 0, 3.6667]$$

Warto zauważyć, że niektóre zmienne mają odwrotne znaki w porównaniu z tabelą, ponieważ na końcu dokonujemy odwrócenia podstawienia - $x_i = -y_i$ dla $x \in [x_1, ..., x_{\frac{n}{2}}]$, przywracając tym samym zadanie do pierwotnej formy.

4.2 Brak rozwiązania

$$A = \begin{bmatrix} 4 & 4 & -4 & -3 & -2 & 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 5 & 4 & 0 & 0 & 1 & 0 & 0 & 0 \\ 3 & 5 & -1 & 1 & 4 & 0 & 0 & 1 & 0 & 0 \\ -2 & 2 & 1 & -5 & -2 & 0 & 0 & 0 & 1 & 0 \\ -3 & 1 & -1 & 1 & 4 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 4 \\ 4 \\ 5 \\ 4 \\ 1 \end{bmatrix}$$

$$c = \begin{bmatrix} 1 & -5 & 5 & 2 & 5 & -4 & -4 & 5 & 2 & -5 \end{bmatrix}$$

Dla powyższego wejścia otrzymujemy tabelę początkową przedstawioną poniżej:

	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_10	b
											-
x _6	-4	-4	4	3	2	1	0	0	0	0	4
x_7	-1	1	-5	-4	0	0	1	0	0	0	4
x_8	-3	-5	1	-1	-4	0	0	1	0	0	5
x_9	2	-2	-1	5	2	0	0	0	1	0	4
x_10	3	-1	1	-1	-4	0	0	0	0	1	1
cj - zj	5	17	-7	-16	-1	0	0	0	0	0	0

Rysunek 3: Tabela początkowa dla braku rozwiązania.

Podobnie jak we wcześniejszym przykładzie, używamy zmiennych początkowych jako bazowych $[x_{\frac{n}{2}+1},...,x_n]$ i sprowadzamy zadanie do postaci kanonicznej przy użyciu odpowiedniego podstawienia. Po dwóch iteracjach kończymy obliczenia, otrzymując poniższą tabelę końcową:

	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_10	b
					—	_	_	—	—		_
x_ 6	-8	0	-16	-13	2	1	4	0	0	0	20
x_2	-1	1	-5	-4	0	0	1	0	0	0	4
x_8	-8	0	-24	-21	-4	0	5	1	0	0	25
x 9	0	0	-11	-3	2	0	2	0	1	0	12
x 10	2	0	-4	-5	-4	0	1	0	0	1	5
	22	0	78	52	-1	0	-17	0	0	0	0

Rysunek 4: Tabela końcowa dla braku rozwiązania.

Jak można zauważyć powyżej, dla kolumny zawierającej największą wartość 78 w wierszu $c_j - z_j$, przy dzieleniu współczynników b przez wartości w kolumnie A_3 otrzymujemy wyłącznie ujemne wartości. To oznacza, że problem nie posiada optymalnego rozwiązania.

4.3 Rozwiązania alternatywne

Rozwiązanie optymalne jest unikalne, jeśli każdy element wiersza c_j-z_j jest ujemny. Istnieją jednak rozwiązania alternatywne, jeśli istnieje zmienna nie należąca do bazy, która w wierszu c_j-z_j przyjmuje wartość 0.

$$A = \begin{bmatrix} -5 & 5 & -2 & -4 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 5 & 0 & -2 & -1 & 0 & 1 & 0 & 0 & 0 \\ 4 & -2 & 2 & 4 & -4 & 0 & 0 & 1 & 0 & 0 \\ 1 & 5 & 5 & 4 & 4 & 0 & 0 & 0 & 1 & 0 \\ -2 & -1 & -2 & 3 & -2 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 4 \\ 2 \\ 4 \\ 4 \\ 3 \end{bmatrix}$$
$$c = \begin{bmatrix} 3 & 0 & 4 & -2 & 1 & 0 & 0 & 1 & -3 & 2 \end{bmatrix}$$

Dla powyższego wejścia otrzymujemy tabelę początkową przedstawioną poniżej:

	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_10	b
			_	_			_	_			-
x _6	5	-5	2	4	1	1	0	0	0	0	4
x_7	0	-5	0	2	1	0	1	0	0	0	2
x _8	-4	2	-2	-4	4	0	0	1	0	0	4
x_ 9	-1	-5	-5	-4	-4	0	0	0	1	0	4
x_10	2	1	2	-3	2	0	0	0	0	1	3
cj - zj	-6	-19	-21	0	-21	0	0	0	0	0	0

Rysunek 5: Tabela początkowa dla alternatywnych rozwiązań.

Jak można zauważyć powyżej, już w początkowej tabeli znajdujemy rozwiązanie optymalne, ponieważ każdy element wiersza $c_j - z_j$ jest ujemny lub zerowy. Jednak dla zmiennej x_4 , która nie znajduje się w bazie, mamy wartość 0 w wierszu $c_j - z_j$, co oznacza istnienie optymalnego alternatywnego rozwiązania. Wprowadźmy więc zmienną x_4 do bazy. Po jej wprowadzeniu otrzymujemy poniższą tabelę końcową, reprezentującą kolejne optymalne rozwiązanie:

	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_10	b
											_
x_4	1.25	-1.25	0.5	1	0.25	0.25	0	0	0	0	1
x_7	-2.5	-2.5	-1	0	0.5	-0.5	1	0	0	0	0
x_8	1	-3	0	0	5	1	0	1	0	0	8
x _9	4	-10	-3	0	-3	1	0	0	1	0	8
x_10	5.75	-2.75	3.5	0	2.75	0.75	0	0	0	1	6
cj - zj	-6	-19	-21	0	-21	0	0	0	0	0	0

Rysunek 6: Tabela końcowa dla alternatywnych rozwiązań.

Jak można zauważyć powyżej, również uwzględniając x_4 w bazie, otrzymujemy rozwiązanie optymalne. Ostatecznie uzyskujemy dwa rozwiązania optymalne:

$$x_1 = [0, 0, 0, 0, 0, 4, 2, 4, 4, 3]$$

$$x_2 = [0, 0, 0, -1, 0, 0, 0, 8, 8, 6]$$

Dla obu tych rozwiązań otrzymujemy wartość funkcji $c^T x = -2$

5 Testy

Do testów wykorzystane zostały następujące zmienne:

- Liczba różnych wejść 5000.
- Ziarno generatora liczb losowych 1.
- Liczba miejsc po przecinku do porównania wartości funkcji 10.

5.1 Porównanie z linprog

- Dokładność: 95.42% (określa jak często algorytm zwrócił tą samą wartość co funkcja linprog).
- Średnia liczba wykonanych iteracji: 3.1.
- Liczba braków rozwiązań: 2030.
- Liczba unikalnych rozwiązań: 2872.

5.2 Porównanie alternatywnych rozwiązań

- Dokładność: 88.68% (określa jak często alternatywne rozwiązania prowadziły do tych samych optymalnych wyników).
- Liczba alternatywnych rozwiązań: 53 (określa liczbę przypadków dla których znalezione zostały 2 różne alternatywne rozwiązania).

6 Wnioski

Podsumowując podstawowa implementacja algoytmu simplex działała dobrze osiągając skuteczność na poziomie 95.42% średnio przy zaledwie 3.1 iteracjach. Algorytm potrafił znaleźć z zadowalającą skutecznością optymalne rozwiązania alternatywne.

7 Oświadczenie o samodzielności

Oświadczam, że niniejsza praca stanowiąca podstawę do uznani osiągnięcia efektów uczenia się z przedmiotu Programowanie Matematyczne została wykonana przeze mnie samodzielnie.

Wojciech Klusek 305934