SỞ GIÁO DỤC VÀ ĐÀO TẠO QUẢNG TRỊ

ĐỀ THI CHÍNH THỨC

(Đề thi gồm có 02 trang)

KỲ THI CHỌN HỌC SINH GIỚI HÓA LỚP 9 Khóa ngày 19 tháng 3 năm 2019 Môn thi: HÓA HỌC

Thời gian làm bài: 150 phút, không kể thời gian giao đề

Câu 1. (4,0 điểm)

- 1. Viết 6 phương trình hóa học có bản chất khác nhau tạo thành khí oxi.
- 2. Viết các phương trình phản ứng theo sơ đồ chuyển hóa sau:

$$FeCl_3 \rightarrow Fe_2(SO_4)_3 \rightarrow Fe(NO_3)_3 \rightarrow Fe(NO_3)_2 \rightarrow Fe(OH)_2 \rightarrow FeO \rightarrow Al_2O_3$$

- **3.** Cho x mol Na tác dụng hoàn toàn với 200 ml dung dịch H_2SO_4 1M. Kết thúc phản ứng, thu được dung dịch hòa tan vừa hết 0,05 mol Al_2O_3 . Viết các phương trình phản ứng và tính x.
- **4.** Cho m gam hỗn hợp gồm Cu và Fe_3O_4 tác dụng với dung dịch HCl dư, phản ứng hoàn toàn, còn lại 8,32 gam chất rắn không tan và dung dịch X. Cô cạn dung dịch X, thu được 61,92 gam chất rắn khan. Viết các phương trình phản ứng và tính giá trị của m.

Câu 2. (5,0 điểm)

- **1.** Cho Al vào dung dịch HNO₃, thu được dung dịch A₁, khí N₂O. Cho dung dịch NaOH dư vào A₁, thu được dung dịch B₁ và khí C₁. Cho dung dịch H₂SO₄ đến dư vào B₁. Viết các phương trình phản ứng xảy ra.
- **2.** Dung dịch A chứa hỗn hợp HCl 1,4M và H₂SO₄ 0,5M. Cho V lít dung dịch chứa hỗn hợp NaOH 2M và Ba(OH)₂ 4M vào 500 ml dung dịch A, thu được kết tủa B và dung dịch C. Cho thanh nhôm vào dung dịch C, phản ứng kết thúc, thu được 0,15 mol H₂. Tính giá trị của V.
- **3.** Nung 9,28 gam hỗn hợp gồm $FeCO_3$ và Fe_xO_y với khí O_2 dư trong bình kín. Kết thúc phản ứng, thu được 0,05 mol Fe_2O_3 duy nhất và 0,04 mol CO_2 . Viết các phương trình phản ứng và xác định Fe_xO_y .
- **4.** Cho a mol SO₃ tan hết trong 100 gam dung dịch H₂SO₄ 91% thì tạo thành oleum có hàm lượng SO₃ là 71%. Viết các phương trình phản ứng và tính giá trị của a.

Câu 3. (5,0 điểm)

1. Xác định các chất A_1 , A_2 ... A_8 và viết các phương trình phản ứng theo sơ đồ chuyển hóa sau:

$$A_1 \xrightarrow{+NaOH} A_2 \xrightarrow{+HC1} A_3 \xrightarrow{+O_2,t^0} A_4 \xrightarrow{+H_2O+NH_3(d\ddot{o})} A_5 \xrightarrow{+H_2O+Br_2} A_6 \xrightarrow{+BaCl_2} A_7 \xrightarrow{+AgNO_3} A_8$$

Biết A_1 chứa 3 nguyên tố trong đó có lưu huỳnh và phân tử khối bằng 51. A_8 là chất không tan.

- **2.** Trong một bình kín chứa hỗn hợp gồm CO, SO₂, SO₃, CO₂ ở thể hơi. Trình bày phương pháp hóa học để nhận biết từng chất và viết các phương trình phản ứng xảy ra.
- **3.** Hòa tan hoàn toàn m gam hỗn hợp R gồm Fe và MgCO₃ bằng dung dịch HCl, thu được hỗn hợp khí A gồm H₂ và CO₂. Nếu cũng m gam hỗn hợp trên tác dụng hết với dung dịch H₂SO₄ đặc, nóng, dư; thu được hỗn hợp khí B gồm SO₂ và CO₂. Biết tỉ khối của B đối với A là 3,6875. Viết các phương trình phản ứng và tính % khối lượng mỗi chất trong hỗn hợp R.
- **4.** Cho *m* gam hỗn hợp X gồm Fe và Fe₃O₄ tác dụng với dung dịch H₂SO₄ đặc nóng. Kết thúc phản ứng, thu được 0,1 mol SO₂ (sản phẩm khử duy nhất) và còn 0,14*m* gam kim loại không tan. Hòa tan hết lượng kim loại này trong dung dịch HCl (dư 10% so với lượng cần phản ứng), thu được dung dịch Y. Biết dung dịch Y tác dụng vừa hết với dung dịch chứa tối đa 0,064 mol KMnO₄

đun nóng, đã axit hóa bằng H_2SO_4 dư. Viết các phương trình phản ứng và tính số mol Fe_3O_4 trong m gam hỗn hợp X.

Câu 4. (6,0 điểm)

- **1.** Cho các chất: KCl, C₂H₄, CH₃COOH, C₂H₅OH, CH₃COOK. Hãy sắp xếp các chất này thành một dãy chuyển hóa và viết các phương trình phản ứng xảy ra.
- **2.** Đốt cháy hoàn toàn 0,06 mol hỗn hợp gồm metan, etilen, axetilen trong O₂, dẫn toàn bộ sản phẩm cháy vào dung dịch Ca(OH)₂ dư, thu được 11 gam kết tủa và khối lượng dung dịch trong bình giảm 4,54 gam. Viết các phương trình phản ứng và tính số mol mỗi khí trong hỗn hợp đầu.
- **3.** Cho hai hợp chất hữu cơ X, Y (chứa C, H, O và chỉ chứa một loại nhóm chức đã học) phản ứng được với nhau và đều có khối lượng mol bằng 46 gam. Xác định công thức cấu tạo của các chất X, Y. Biết chất X, Y đều phản ứng với Na, dung dịch của Y làm quỳ tím hoá đỏ. Viết các phương trình phản ứng xảy ra.
- **4.** Đốt cháy vừa hết 0,4 mol hỗn hợp N gồm 1 ancol no X_1 và 1 axit đơn chức Y_1 , đều mạch hở cần 1,35 mol O_2 , thu được 1,2 mol CO_2 và 1,1 mol nước. Nếu đốt cháy một lượng xác định N cho dù số mol X_1 , Y_1 thay đổi thì luôn thu được một lượng CO_2 xác định. Viết các phương trình phản ứng và xác định các chất X_1 , Y_1 .
- **5.** Đun nóng 0,1 mol este đơn chức Z, mạch hở với 30 ml dung dịch MOH 20% (D=1,2gam/ml, M là kim loại kiềm). Sau khi kết thúc phản ứng, cô cạn dung dịch, thu được chất rắn A và 3,2 gam ancol B. Đốt cháy hoàn toàn A, thu được 9,54 gam muối cacbonat, 8,26 gam hỗn hợp gồm CO₂ và hơi nước. Biết rằng, khi nung nóng A với NaOH đặc có CaO, thu được hiđrocacbon T. Đốt cháy T, thu được số mol H₂O lớn hơn số mol CO₂. Viết các phương trình phản ứng, xác định kim loại M và công thức cấu tạo của chất Z.

Cho: H=1; C=12; N=14; O=16; Na=23; Mg=24; S=32; Cl=35,5; K=39; Ca=40; Fe=56; Cu=64.

Thí sinh được phép sử dụng bảng tuần hoàn các nguyên tố hóa học và bảng tính tan HƯỚNG DẪN CHẨM ĐỀ THI CHÍNH THỰC CHỌN HSG VĂN HÓA LỚP 9

Khóa ngày 19 tháng 3 năm 2019

Môn thi: HÓA HỌC

Câu	Ý	Nội dung	Điểm
Câu 1			
	1	$2KClO_{3} \xrightarrow{\text{MnO}_{2},t^{\circ}} 2KCl+3O_{2},2H_{2}O \xrightarrow{\text{ñieä phaâ}} H_{2}+O_{2},2KNO_{3} \xrightarrow{t^{\circ}} 2KNO_{2}+O_{2}$ $2O_{3} \xrightarrow{t^{\circ}} 3O_{2},2H_{2}O_{2} \xrightarrow{\text{MnO}_{2}} 2H_{2}O +O_{2},2Al_{2}O_{3} \xrightarrow{\text{ñieä phaâ noùg chaŷ, criolit}} 4Al+3O_{2}$	1,0
	2	$2FeCl_3 + 3Ag_2 SO_4 \rightarrow Fe_2(SO_4)_3 + 6AgCl$ $Fe_2(SO_4)_3 + Ba(NO_3)_2 \rightarrow BaSO_4 + Fe(NO_3)_3$ $2Fe(NO_3)_3 + Fe \rightarrow 3Fe(NO_3)_2$ $Fe(NO_3)_2 + 2NaOH \rightarrow 2NaNO_3 + Fe(OH)_2$ $Fe(OH)_2 \xrightarrow{t^o} H_2O + FeO$ $3FeO + 2Al \xrightarrow{t^o} 3Fe + Al_2O_3$	1,0
	3	$2Na + H_2SO_4 \rightarrow Na_2SO_4 + H_2 (1)$ Có thể: $2Na + 2H_2O \rightarrow 2NaOH + H_2 (2)$ Nếu axit dư: $3H_2SO_4 + Al_2O_3 \rightarrow Al_2(SO_4)_3 + 3H_2O (3)$ Nếu Na dư: $2NaOH + Al_2O_3 \rightarrow 2NaAlO_2 + H_2O (4)$ TH1: Axit dư, không có $(2,4) \Rightarrow nNa=2(0,2-0,15)=0,1$ mol	1,0

Câu	Ý	Nội dung	Điểm
		TH2: Na dư, không có (3) \Rightarrow nNa=2.0,2+0,1=0,5 mol	
		Do Cu dư ⇒ Dung dịch chỉ có HCl, FeCl ₂ và CuCl ₂	
		$Fe_3O_4 + 8HCl \rightarrow FeCl_2 + 2FeCl_3 + 4H_2O$	
	4	$Cu + 2FeCl_3 \rightarrow CuCl_2 + 2FeCl_2$	1,0
		Gọi số mol $Fe_3O_4(1) = a \text{ mol}$	
		$\Rightarrow 127.3a + 135.a = 61.92 \Rightarrow a = 0.12 \text{ mol}$ $m = 8.32 + 232. \ 0.12 + 64. \ 0.12 = 43.84 \text{ gam}$	
Câu 2		111 - 0.32 + 232.0.12 + 04.0.12 - 43.84 gain	
Cau 2		$8A1 + 30 \text{ HNO}_3 \rightarrow 8A1(\text{NO}_3)_3 + 3N_2\text{O} + 15\text{H}_2\text{O}$ (1)	
		$8A1 + 30 \text{ HNO}_3 \rightarrow 8A1(\text{NO}_3)_3 + 4\text{NH}_4\text{NO}_3 + 15\text{H}_2\text{O} $ (2)	
		\Rightarrow dung dịch A ₁ : Al(NO ₃) ₃ , NH ₄ NO ₃ , HNO ₃ dư	
		$NaOH + HNO_3 \rightarrow NaNO_3 + H_2O $ (3)	
		$NaOH + NH4NO3 \rightarrow NaNO3 + NH3 + H2O $ (4)	
	1	\Rightarrow Khí C ₁ : NH ₃	2,0
		$4\text{NaOH} + \text{Al(NO}_3)_3 \rightarrow \text{NaAlO}_2 + 3\text{NaNO}_3 + 2\text{H}_2\text{O} $ (5)	
		⇒ Dung dịch B₁: NaNO₃, NaAlO₂, NaOH dư	
		$2NaOH + H2SO4 \rightarrow Na2SO4 + 2H2O $ (6)	
		$2NaAlO2 + H2SO4 + 2H2O \rightarrow Na2SO4 + 2Al(OH)3 $ (7)	
		$2NaAlO_2 + 4H_2SO_4 \rightarrow Na_2SO_4 + Al_2(SO_4)_3 + 4H_2O $ (8)	
		Quy H_2SO_4 0,5M thành 2HX 0,5M \Rightarrow HX 1M	
		Từ HX 1M và HCl 1,4M \Rightarrow HX 2,4M \Rightarrow nHX =2,4.0,5=1,2 mol	
		$Ba(OH)_2$ 4M quy về 2MOH 4M \Rightarrow MOH 8M	
		Từ $MOH 8M và NaOH 2M \Rightarrow MOH 10M \Rightarrow nMOH = 10V mol$	
		$M OH + H X \rightarrow M X + H_2O$	
	2	Bđ 10V 1,2	1,0
		Trường hợp 1: H X dư	
		$Al + 3H X \rightarrow Al X_3 + 3/2H_2$	
		$\Rightarrow 1.2 - 10V = 0.3 \Rightarrow V = 0.09 \text{ lít}$	
		Trường hợp 2: H X hết	
		$M OH + H_2O + Al \rightarrow M AlO_2 + 3/2H_2$	
		\Rightarrow 10V - 1,2 = 0,1 \Rightarrow V = 0,13 lít	
		$4FeCO_3 + O_2 \xrightarrow{t^o} 2Fe_2O_3 + 4CO_2 \tag{1}$	
		$2\operatorname{Fe_{x}O_{y}} + (\frac{3x - 2y}{2})\operatorname{O}_{2} \xrightarrow{t^{\circ}} x\operatorname{Fe}_{2}\operatorname{O}_{3} $ (2)	
		2	4.0
	3	Theo (1): $n(FeCO_3) = nCO_2 = 0.04 \text{ mol}, nFe_2O_3 = 1/2nFeCO_3 = 0.02 \text{ mol}$	1,0
		\Rightarrow nFe ₂ O ₃ (2) = 0,05 -0,02= 0,03 mol	
		$\Rightarrow 0.04 \times 116 + \frac{0.06}{x} (56x + 16y) = 9.28 \Rightarrow \frac{x}{y} = \frac{3}{4} \Rightarrow \text{Fe}_3\text{O}_4$	
		$SO_3 + H_2O \rightarrow H_2SO_4 \tag{1}$	
		$H_2SO_4 + nSO_3 \rightarrow H_2SO_4.nSO_3$ $mH_2SO_4 - 0.1 \text{ gam mH}_2O_3 - 100 \text{ old } -0.5 \text{ mol}_2O_3 - 0.1 \text{ gam}_2O_3 - 0.5 \text{ mol}_2O_3 - 0.1 \text{ gam}_2O_3 - 0.1 $	
		$mH_2SO_4 = 91 \text{ gam}, mH_2O = 100 - 91 = 9 \text{ gam} \Rightarrow nH_2O = 9/18 = 0.5 \text{ mol}$	
	4	Gọi x là số mol SO ₃ cần dùng Theo (1) nSO ₃ =nH ₂ O = 0,5 mol	1,0
		$\Rightarrow \text{số mol SO}_3 \text{ còn lại để tạo oleum là } (a - 0.5)$	
		$\frac{(a-0,5)80}{(100+a.80)} = \frac{71}{100} \implies a = \frac{555}{116} \text{mol} = 4,78 \text{ mol}$	
Câ 2		(100 4.00) 100 110	
Câu 3			

Câu	Ý	Nội dung	Điểm
	1	Từ $S = 32 \Rightarrow M(còn lại) = 51 - 32 = 19 (NH5) \Rightarrow A1 là NH4HS; A2: Na2S; A3: H2S; A4: SO2: A5: (NH4)2SO3; A6: (NH4)2SO4; A7: NH4Cl; A8: AgCl NH4HS + 2NaOH \rightarrow Na2S + 2NH3 + 2H2ONa2S + 2HCl \rightarrow 2NaCl + H2S3H_2S + 2O_2 \xrightarrow{t^o} 3SO_2 + 3H_2OSO_2 + 2NH_3 + H_2O \rightarrow (NH_4)_2SO_3(NH4)2SO3 + Br2 + H2O \rightarrow (NH4)2SO4 + 2HBr(NH4)2SO4 + BaCl2 \rightarrow 2NH4Cl + BaSO4NH4Cl + AgNO3 \rightarrow NH4NO3 + AgCl$	1,5
	2	Trích mẫu thử, rồi dẫn lần lượt qua các bình mắc nối tiếp, bình (1) chứa dung dịch BaCl ₂ dư, bình (2) chứa dung dịch Br ₂ dư, bình (3) chứa dung dịch Ca(OH) ₂ dư, bình (4) chứa CuO nung nóng Nếu dung dịch BaCl ₂ có kết tủa trắng \Rightarrow có SO ₃ $SO_3 + H_2O + BaCl_2 \rightarrow BaSO_4 + 2HCl$ Nếu dung dịch Br ₂ nhạt màu \Rightarrow có SO ₂ $SO_2 + Br_2 + H_2O \rightarrow H_2SO_4 + 2HBr$ Nếu dung dịch Ca(OH) ₂ vẩn đục \Rightarrow có CO ₂ $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$ Nếu CuO đen thành đỏ \Rightarrow có CO $CuO(đen) + CO \xrightarrow{t^o} Cu (đỏ) + CO_2$	1,5
	3	Gọi nFe = x mol, nMgCO ₃ = 1 mol trong m gam hỗn hợp Fe + 2HCl \rightarrow FeCl ₂ + H ₂ (1) MgCO ₃ + 2HCl \rightarrow MgCl ₂ + H ₂ O + CO ₂ (2) 2Fe + 6H ₂ SO ₄ \rightarrow Fe ₂ (SO ₄) ₃ + 6H ₂ O + 3SO ₂ (3) MgCO ₃ + H ₂ SO ₄ \rightarrow MgSO ₄ + H ₂ O + CO ₂ (4) Theo (1 \rightarrow 4) và bài ra ta có phương trình $\frac{1,5x.64+44}{1,5x+1}:\frac{2x+44}{x+1}=3,6875 \Rightarrow X_1=2 \text{ (chọn)}, X_2=-0,696 \text{ (loại)} \Rightarrow x=2$ Vậy: %(m)Fe= $\frac{2.56.100}{2.56+84}$ %=57,14% vaø%(m)MgCO ₃ =42,86%	1,0
	4	Do Fe dur \Rightarrow H ₂ SO ₄ hết \Rightarrow Dung dịch chỉ chứa muối FeSO ₄ 2Fe + 6H ₂ SO ₄ d _{,nóng} \rightarrow Fe ₂ (SO ₄) ₃ + 3SO ₂ + 6H ₂ O (1) 2Fe ₃ O ₄ + 10H ₂ SO _{4d,nóng} \rightarrow 3Fe ₂ (SO ₄) ₃ + SO ₂ + 10H ₂ O (2) Fe + Fe ₂ (SO ₄) ₃ \rightarrow 3FeSO ₄ (3) Fe + 2HCl \rightarrow FeCl ₂ + H ₂ (4) 10HCl + 2 KMnO ₄ + 3H ₂ SO ₄ \rightarrow K ₂ SO ₄ + 2MnSO ₄ + 5Cl ₂ + 8 H ₂ O (5) 10FeCl ₂ +6KMnO ₄ +24H ₂ SO ₄ \rightarrow 3K ₂ SO ₄ +6MnSO ₄ +5Fe ₂ (SO ₄) ₃ +10Cl ₂ +24H ₂ O (6) Gọi số mol Fe dư là a mol \Rightarrow nHCl (4)=2a mol \Rightarrow nHCl(dư)=0,2a mol Theo (5,6): nKMnO ₄ =0,64a=0,064 \Rightarrow a=0,1 mol \Rightarrow mFe(dư)=5,6 gam \Rightarrow 0,14m=5,6 \Rightarrow m=40 gam Gọi số mol Fe, Fe ₃ O ₄ phản ứng ở (1), (2) là x, y	1,0
Câu 4			
	1	$C_2H_4 \rightarrow C_2H_5OH \rightarrow CH_3COOH \rightarrow CH_3COOK \rightarrow KCl$ $C_2H_4 + H_2O \xrightarrow{H_2SO_4, t^0} C_2H_5OH$	1,0

Câu	Ý	Nội dung	Điểm
		$C_2H_5OH + O_2 \xrightarrow{\text{Men gia\'an}} CH_3COOH + H_2O$	
		$CH_3COOH + KOH \rightarrow CH_3COOK + H_2O$	
		$CH_3COOK + HCl \rightarrow CH_3COOH + KCl$	
	2	$ \begin{array}{l} \text{Gọi x, y, z lần lượt là số mol của metan, etilen và axetilen} \\ \text{CH}_4 + 2\text{O}_2 \rightarrow & \text{CO}_2 + 2\text{H}_2\text{O} (1) \\ \text{C}_2\text{H}_4 + 2\text{O}_2 \rightarrow & 2\text{CO}_2 + 2\text{H}_2\text{O} (2) \\ \text{C}_2\text{H}_2 + 2\text{O}_2 \rightarrow & 2\text{CO}_2 + \text{H}_2\text{O} (3) \\ \text{CO}_2 + \text{Ca}(\text{OH})_2 \rightarrow \text{CaCO}_3 + \text{H}_2\text{O} (4) \\ \Rightarrow & \text{nCO}_2 = & \text{nCaCO}_3 = & 0,11 \text{ mol} \Rightarrow \text{mH}_2\text{O} = & 11 - 0,11.44 - 4,54 = 1,62 \text{ gam hay 0,09 mol} \\ \text{Ta couheä} \begin{cases} x + y + z = 0,06 \\ x + 2y + z = 0,01 \end{cases} & \begin{cases} x = 0,01 \text{ mol} \\ y = 0,02 \text{ mol} \\ z = 0,03 \text{ mol} \end{cases} $	1,0
	3	Gọi công thức: X, Y là $C_xH_yO_z$; x, y, z nguyên dương; y chẵn, y \leq 2x+2 Ta có: $12x + y + 16z = 46 \Rightarrow z = \frac{46 - (12x + y)}{16} \Rightarrow z \leq \frac{46 - 14}{16} = 2$ Nếu $z = 1 \Rightarrow 12x + y = 30$ (C_2H_6), Nếu $z = 2 \Rightarrow 12x + y = 14$ (CH_2) Vậy công thức phân tử của X, Y có thể là C_2H_6O , CH_2O_2 . Vì Y phản ứng với Na, làm đỏ quỳ tím, Y có nhóm - $COOH \Rightarrow Y$: $CH_2O_2 \Rightarrow CTCT$ của Y: H - $COOH \Rightarrow CHCOOH \Rightarrow Y$: $C_2H_6O \Rightarrow CTCT$ của X: CH_3 - CH_2 - CH_3 - CH_2 - CH_3 - C	1,5
	4	Dốt cháy một lượng xác định N cho dù số mol X_1 , Y_1 có thay đổi như thế nào thì cũng thu được một lượng CO_2 xác định $\Rightarrow X_1$ và Y_1 có cùng số nguyên tử C Gọi công thức chung là $C_xH_{\overline{y}}O_{\overline{z}}$ $C_xH_{\overline{y}}O_{\overline{z}}+(x+\frac{\overline{y}}{4}-\frac{\overline{z}}{2}) \to xCO_2+\frac{\overline{y}}{2}H_2O$ (1) $\Rightarrow \frac{1}{0,4} = \frac{x+\frac{\overline{y}}{4}-\frac{\overline{z}}{2}}{1,35} = \frac{x}{1,2} = \frac{\frac{\overline{y}}{2}}{1,1} \Rightarrow x = 3, \overline{y} = 5,5, \overline{z} = 2$ $\Rightarrow Do \ \overline{Z} = 2 \Rightarrow Ancol \ 2 \ chức, \ x=3 \Rightarrow X_1: \ C_3H_8O_2 \ hay \ C_3H_6(OH)_2$ $\Rightarrow \text{số nguyên tử H trong axit} = 2 \ hoặc \ 4 \Rightarrow C_3H_2O_2 \ hoặc \ C_3H_4O_2$ $Vậy \ X_1: \ CH_2OH - CHOH - CH_3 \ hoặc \ CH_2OH - CH_2 - CH_2OH$ $Y_1: \ CH_2 = CH - COOH \ hoặc \ CH \equiv C - COOH$	1,0
	5	Gọi este là RCOOR' RCOOR' + MOH $\xrightarrow{t^0}$ RCOOM + R'OH (1) 2RCOOM + 2NaOH $\xrightarrow{\text{CaO}, t^0}$ 2R-H + M ₂ CO ₃ + Na ₂ CO ₃ Do đốt cháy R-H: nH ₂ O > nCO ₂ \Rightarrow X: C _n H _{2n+1} COOR' 2C _n H _{2n+1} COOM + (3n+1)O ₂ \rightarrow (2n+1)CO ₂ + (2n+1)H ₂ O + M ₂ CO ₃ (2) 2MOH + CO ₂ \rightarrow M ₂ CO ₃ + H ₂ O (3) Ta có: mMOH=30.1,2.20/100= 7,2 gam Bảo toàn M: 2MOH \rightarrow M ₂ CO ₃ \Rightarrow $\frac{7,2}{2(M+17)} = \frac{9,54}{2M+60} \Rightarrow$ M = 23 là Na Mặt khác, có R' + 17 = $\frac{3,2}{0,1}$ = 32 \rightarrow R' = 15 \Rightarrow R' là CH ₃ \Rightarrow B là CH ₃ OH Ta có: nNaOH (bđ)=0,18 mol \Rightarrow nNaOH(3)=0,18-0,1=0,08 mol Theo (3): nCO ₂ =nH ₂ O = 0,04 mol	1,5

Câu	Ý	Nội dung	Điểm
		Ta có: $[0,1.\frac{(2n+1)}{2} - 0,04].44 + [0,1.\frac{(2n+1)}{2} + 0,04].18 = 8,26 \Rightarrow n = 1$ Vậy CTCT của Z là CH ₃ COOCH ₃	

- Thí sinh có thể làm cách khác, nếu đúng vẫn đạt điểm tối đa.
 Nếu thiếu điều kiện hoặc thiếu cân bằng hoặc thiếu cả hai thì trừ một nửa số điểm của PTHH đó. Làm tròn đến 0,25 điểm.

----- HÉT -----

SỞ GIÁO DỤC VÀ ĐÀO TẠO AN GIANG

KỲ THI CHỌN HỌC SINH GIỎI THCS CẤP TỈNH

KHÓA NGÀY : 24/3/2018 MÔN THI : HÓA HỌC

HƯỚNG DẪN CHẨM

Bài	ý Bài giải	Điểm
Bài I	Hoàn thành các phương trình phản ứng sau và cho biết các chất (Y_1) , (Y_2) , (Y_3) , (Y_4) , (Y_5) , (Y_7) , (Y_8) , (Y_9) . Biết (Y_8) là một muối trung hòa:	(₆),
	$(Y_1) + (Y_2) \xrightarrow{t^o} (Y_3) + H_2O$	
	$(Y_3) + (Y_4) + H_2O \longrightarrow HCl + H_2SO_4$	4.00
	$(Y_4) + (Y_5) \longrightarrow Fe_2(SO_4)_3 + FeCl_3$	4,00
	$(Y_6) + (Y_7) + H_2SO_4 \xrightarrow{t^o} (Y_4) + Na_2SO_4 + K_2SO_4 + MnSO_4 + H_2O$	
	$(Y_8) + (Y_9) \longrightarrow Na_2SO_4 + (NH_4)_2SO_4 + CO_2 + H_2O$	
	$2H_2S(Y_1) + 3O_2(Y_2) \xrightarrow{t^o} 2SO_2(Y_3) + 2H_2O$	
	$SO_2 (Y_3) + Cl_2 (Y_4) + 2H_2O \longrightarrow 2HCl + H_2SO_4$	3.00
	3Cl ₂ (Y ₄) + 6FeSO ₄ (Y ₅) → 2Fe ₂ (SO ₄) ₃ + 2FeCl ₃ Mỗi phản ứng kết hợp với chất đúng được 1,0 điể	
	$10\text{NaCl}(Y_6) + 2\text{KMnO}_4(Y_7) + 8\text{H}_2\text{SO}_4 \xrightarrow{t^o}$	
	5Cl ₂ (Y ₄) + 5Na ₂ SO ₄ + K ₂ SO ₄ + 2MnSO ₄ + 8H ₂ O	
	$(NH_4)_2CO_3(Y_8) + 2NaHSO_4(Y_9) \longrightarrow$	
	$Na_2SO_4 + (NH_4)_2SO_4 + CO_2 + H_2O$	
	Mỗi phản ứng 0,5 điệ	ểm
	Thiếu cân bằng phản ứng trừ ½ số điểm/PƯ Điểm cho số chất xác định đúng (trường hợp viết sai phương trình): 3 chất	: 0,5 điểm/

Bài II	1. Có 3 dung dịch loãng riêng biệt là: NaOH, HCl, H ₂ SO ₄ có cùng nồng độ mol. Chỉ dùng thêm lột thuốc thử là Phenolphtalein có thể phân biệt được các dung dịch trên hay không? Tại sao? 2. Có 3 dung dịch hỗn hợp, mỗi dung dịch chỉ chứa hai chất trong số các chất sau: KNO ₃ , K ₂ CO ₃ , K ₃ PO ₄ , MgCl ₂ , BaCl ₂ , AgNO ₃ . Hãy cho biết thành phần các chất trong mỗi dung dịch? 3. Nung hỗn hợp gồm bột nhôm và lưu huỳnh trong bình kín (không có không khí) một thời gian ược chất rắn (A). Lấy chất rắn (A) cho vào dung dịch HCl dư, sau phản ứng thu được dung dịch (B), nất rắn (E) và hỗn hợp khí (F); còn nếu cho (A) vào dung dịch NaOH dư thu được dung dịch (H) hỗn ợp khí (F) và chất rắn (E). Dẫn (F) qua dung dịch Cu(NO ₃) ₂ dư, sau phản ứng thu được kết tủa (T), hần khí không hấp thụ vào dung dịch được dẫn qua ống chứa hỗn hợp MgO và CuO nung nóng thu ược hỗn hợp chất rắn (Q). Cho (Q) vào dung dịch H ₂ SO ₄ loãng, dư thấy (Q) tan một phần, tạo thành lung dịch có màu xanh nhạt. Hãy cho biết thành phần các chất có trong (A), (B), (E), (F), (H), (Q), (T) và viết các phương trình cóa học xảy ra?	6,00
	Nhận biết được cả 3 dung dịch:	1.50

 ,	
- NaOH làm hồng P.P;	
- 1 thể tích HCl làm mất màu hồng của hh NaOH + P.P (tỉ lệ PU 1:1);	
- 0,5 thể tích H ₂ SO ₄ làm mất màu hồng của hh NaOH + P.P (tỉ lệ PÚ 1:2)	
- 02 phản ứng trung hòa.	
- dung dịch 1: K ₂ CO ₃ , K ₃ PO ₄	
- dung dịch 2: MgCl ₂ , BaCl ₂	1.50
- dung dịch 3: KNO ₃ , AgNO ₃ .	
(A): Al, S du, Al ₂ S ₃ ; (B): AlCl ₃ và HCl du.	
(E): S; (F): H ₂ , H ₂ S;	0.50
(H): NaAlO ₂ và NaOH dư; (T): CuS; (Q): CuO, MgO, Cu;	
10 phản ứng	2.50
Thiếu cân bằng: trừ 0,25 điểm/	02 PU

		Thiếu cân bằng: trừ 0,25 điểm/ (02 PU
Bài III		1. Nung 9,28 gam một loại quặng chứa 02 hợp chất của sắt (trong số các hợp chất phổ biến sau:	
		2, FeCO ₃ , Fe ₂ O ₃ , Fe ₃ O ₄) trong không khí đến khối lượng không đổi. Sau khi phản ứng xảy ra hoàn	
	toàn	, chỉ thu được 8 gam một oxit sắt duy nhất và khí CO ₂ . Hấp thụ hết lượng khí CO ₂ vào 300 ml dung	
	dịch	Ba(OH) ₂ 0,1M, kết thúc phản ứng thu được 3,94 gam kết tủa.	
		 a) Tìm công thức hóa học của các hợp chất của sắt có trong quặng? b) Hòa tan hoàn toàn 9,28 gam quặng nói trên bằng dung dịch HCl dư, rồi cho dung dịch hấp thụ 	5,00
	thên	n 448 ml khí Cl ₂ (đktc). Hỏi dung dịch thu được hòa tan tối đa bao nhiều gam Cu?	,
		2. Dung dịch (C) là dung dịch HCl, dung dịch (D) là dung dịch NaOH. Cho 60 ml dung dịch (C)	
		cốc chứa 100 gam dung dịch (D), tạo ra dung dịch chỉ chứa một chất tan. Cô cạn dung dịch, thu được	
		75 gam chất rắn (I). Nung (I) đến khối lượng không đổi thì chỉ còn lại 8,775 gam chất rắn. Tính nồng C_M của dung dịch (C), nồng độ C% của (D) và tìm công thức của (I)?	
	uọ c	Hỗn hợp gồm FeCO ₃ và oxit sắt	
		$2Fe_xO_y + \frac{3x-2y}{2}O_2 \longrightarrow xFe_2O_3$	
		$2FeCO_3 + \frac{1}{2}O_2 \longrightarrow Fe_2O_3 + 2CO_2$	
		$CO_2 + Ba(OH)_2 \longrightarrow BaCO_3 + H_2O$	
		$CO_2 + BaCO_3 + H_2O \longrightarrow Ba(HCO_3)_2$	
		$n_{Fe_2O_3} = \frac{8}{160} = 0,05mol;$ $n_{Ba(OH)_2} = 0,1.0,3 = 0,03mol;$ $n_{BaCO_3} = \frac{3,94}{197} = 0,02mol$	
		TH CO ₂ thiếu: $n_{CO_2} = n_{BaCO_3} = 0,02mol$	
		Suy ra trong oxit Fe _x O _y có:	3.00
		$n_{\text{Fe}} = 0.05.2 - 0.02 = 0.08 \ mol$	5.00
		$n_O = n_O = \frac{9,28 - 0,02.116 - 0,08.56}{16} = 0,155 mol$ (Loại)	
		10	
	1	TH CO ₂ du: $n_{CO_2} = 0,04mol$	
		Suy ra trong oxit Fe _x O _y có:	
		$n_{\text{Fe}} = 0.05.2 - 0.04 = 0.06 \ mol$	
		$n_{O} = n_{O} = \frac{9,28 - 0,04.116 - 0,06.56}{16} = 0,08 mol$	
		$\frac{n_{Fe}}{n} = \frac{3}{4}$, oxit cần tìm là Fe ₃ O ₄	
		$n_0 = 4$	
		$Fe_3O_4 + 8HCl \longrightarrow FeCl_2 + 2FeCl_3 + 4H_2O$	
		$FeCO_3 + 2HC1 \longrightarrow FeCl_2 + H_2O + CO_2$	
		$2FeCl_2 + Cl_2 \longrightarrow 2FeCl_3$	
		$2FeCl_3 + Cu \longrightarrow 2FeCl_2 + CuCl_2$	1.25
		$n_{FeCl_3} = 0.02.2 + \frac{0.448}{22.4}.2 = 0.08 mol \Rightarrow m_{Cu} = \frac{0.08}{2}.64 = 2.56 gam$	
		Học sinh làm bằng phương pháp bảo toàn electron đi đến kết quả đúng thì chấm tròn	

	điểm (không cần tính điểm phương trình phản ứng)	
	$HCl + NaOH \longrightarrow NaCl + H_2O$	
	$n_{NaCl} = \frac{8,775}{58,5} = 0,15mol \Rightarrow \begin{cases} n_{NaOH} = 0,15mol \\ n_{HCl} = 0,15mol \end{cases}$	
2	Từ đó: $C_{M_{HCl}} = \frac{0.15}{0.06} = 2.5M \; ; \; C_{\%_{NaOH}} = \frac{0.15.40}{100}.100 = 6\%$	0.75
	$n_{H_2O_{trong}(I)} = \frac{14,175 - 8,775}{18} = 0,3mol = 2.n_{NaCl} \Rightarrow (I): NaCl.2H_2O$	

Bài IV	dung toàn phảr	 Xác định công thức phân tử của (R)? Đun nóng hỗn hợp gồm (R) và H₂ có tỉ khối hơi với hidro là 6,2 với niken làm xúc tác đến khi nứng hoàn toàn thu được hỗn hợp (P). Chứng minh rằng (P) không làm mất màu dung dịch brom. Đốt cháy hoàn toàn (P) được 25,2 gam hơi nước. Tính thể tích mỗi khí trong hỗn hợp (P) (đktc)? 	3,00
	1	$C_{n}H_{2n} + \frac{3n}{2}O_{2} \xrightarrow{t^{o}} nCO_{2} + nH_{2}O$ $0,2 \qquad x \qquad x$ $CO_{2} + 2NaOH \longrightarrow Na_{2}CO_{3} + H_{2}O$ $x \qquad 2x \qquad x$ $n_{NaOH} = \frac{295,2.20}{100.40} = 1,476 \text{ mol}$ $C\%_{NaOH} = \frac{40.(1,476-2x)}{295,2+62x}.100 = 8,45 \Rightarrow x = 0,4$ $V_{3}y \text{ Anken d\~a cho là $C_{2}H_{4}$}$	2.00
		C ₂ H ₄ + H ₂ $\xrightarrow{Ni,t^o}$ C ₂ H ₆ Gọi x, y lần lượt là số mol của C ₂ H ₄ và H ₂ $\frac{28x+2y}{x+y} = 12, 4 \Rightarrow \frac{y}{x} = \frac{15,6}{10,4} = 1,5^{(1)} > 1 \Rightarrow \text{H}_2 \text{ dư nên hỗn hợp (P) không làm}$ mất màu dung dịch Brôm	0.25
	2	$C_{2}H_{6} + 3O_{2} \xrightarrow{t^{o}} 2CO_{2} + 3H_{2}O$ $x \qquad 3x$ $2H_{2} + O_{2} \xrightarrow{t^{o}} 2H_{2}O$ $y-x \qquad y-x$ $n_{H_{2}O} = 2x + y = \frac{25,2}{18} = 1,4^{(2)}$ Giải hệ gồm (1) và (2) được: x=0, 6; y=0, 4 $V_{C_{2}H_{6}} = 0,4.22,4 = 8,84L; V_{H_{2}} = (0,6-0,4).22,4 = 4,48L$	0.75

Bài V	Đốt cháy hoàn toàn hỗn hợp gồm x mol hidro cacbon (X) và y mol hidro cacbon (Y), được 3,52 gam CO_2 và 1,62 gam H_2O . Biết rằng phân tử (X) và (Y) có cùng số nguyên tử C (đều không quá 4) và $1 > \frac{x}{y} > \frac{1}{2}$. Xác định công thức phân tử của (X) và (Y)?	2,00
	$n_{CO_2} = \frac{3,52}{44} = 0,08mol; n_{H_2O} = \frac{1,62}{18} = 0,09mol$	0.50
		0.25

Với $n_{H_2O} - n_{CO_2} = 0,01$ suy ra có một hidro cacbon là ankan có công thức	
C _n H _{2n+2} ; đặt công thức của hidro cacbon còn lại là C _n H _{2n+2-2k} (loại trường hợp cả hai hidro cacbon cùng là ankan vì sẽ tính được số C=8, trái với gợi ý của đề)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.50
$ \begin{cases} na + nb &= 0,08 \\ na + nb + a + b - bk &= 0,09 \end{cases} $	0.25
Trường hợp: k=1 \Rightarrow $\begin{cases} a = x = 0.01 \\ 0.01 < b = y < 0.02 \\ x + y = \frac{0.08}{n} \end{cases} \Rightarrow \begin{cases} x = 0.01 \\ y = \frac{1}{60} \\ n = 3 \end{cases}$	
Úng với công thức (X): C ₃ H ₈ và (Y): C ₃ H ₆ .	0.50
Trường hợp: k=2 \Rightarrow $\begin{cases} b-a = y-x = 0,01\\ x < y < 2x\\ x + y = \frac{0,08}{n} \end{cases} \Rightarrow \begin{cases} x = 0,015\\ y = 0,025\\ n = 2 \end{cases}$	0.50
Úng với công thức (X): C ₂ H ₂ ; (Y):C ₂ H ₆	

Học sinh có thể giải theo cách khác với hướng dẫn chấm, nhưng kết quả hợp lý cũng được hưởng tròn điểm.

HƯỚNG DẪN CHẨM THỰC HÀNH

Bài TH	1	Không dùng thêm hóa chất nào, hãy nhận biết các dung dịch sau: NH ₄ Cl, CaCl ₂ , HOOC-COOH, Na ₂ CO ₃ (được đánh số ngẫu nhiên (1), (2), (3), (4)).				5,00	
				1			
		Dung dịch	(1)	(2)	(3)	(4)	
		Hóa chất	Na ₂ CO ₃	ноос-соон	NH ₄ Cl	CaCl ₂	1.00
		- CaCl ₂ tạo 2 kết tủa với HOOC-COOH, Na ₂ CO ₃					
	- NH ₄ Cl không gây hiện tượng với các dung dịch khác - Đảo thứ tự nhỏ dung dịch (1) vào (2) và ngược lại, nhận ra HOOC-				2.25		
	C	COOH, Na ₂ CO ₃					
	Các phản ứng: CaCl₂ + HOOC-COOH → Ca(OOC)₂ + 2HCl						
	$Na_2CO_3 + CaCl_2 \longrightarrow 2NaCl + CaCO_3 \downarrow$			0.75			
		Na ₂ CO ₃ + HOOC-COOH → NaOOC-COONa + CO ₂ ↑ (0,25 điểm/phản ứng)					
		Thí nghiệm bình	n thường, khô	ng làm hư hóa	chất, vỡ ống	nghiệm	1.00

Học sinh có thể thực hiện cách thí nghiệm khác đi đến kết quả thí	
nghiệm đúng, trình bày rõ, hợp lý thì được tròn điểm.	

SỞ GD&ĐT VĨNH PHÚC

KÌ THI CHỌN HỌC SINH GIỚI LỚP 9 NĂM HỌC 2017 - 2018 ĐỀ THI MÔN: HÓA HỌC

ĐỀ CHÍNH THỰC

Thời gian l<u>àm bài: 150 phút (không kể thời gia</u>n giao đề)
(Đề thi có 02 trang)

Cho: H=1; C=12; N=14; O=16; Na=23; Mg=24; Al=27; S=32; Cl=35,5; K=39; Ca=40; Mn=55; Fe=56; Cu=64; Zn=65; Ag=108; Ba=137.

Câu 1 (2,0 điểm)

Nguyên tử nguyên tố X có tổng các loại hạt là 82. Trong hạt nhân nguyên tử X, số hạt mang điện ít hơn số hạt không mang điện là 4 hạt. Biết nguyên tử khối của X có giá trị bằng tổng số hạt trong hạt nhân nguyên tử.

- a) Xác định nguyên tố X.
- **b**) Coi nguyên tử X có dạng hình cầu với thể tích xấp xỉ 8,74.10⁻²⁴ cm³. Trong tinh thể X có 74% thể tích bị chiếm bởi các nguyên tử, còn lại là khe trống. Cho số Avôgađro: N= 6,022.10²³. Tính khối lương riêng của tinh thể X.

Câu 2 (2,0 điểm)

- **a)** Gọi tên những hợp chất có công thức hóa học sau: CaO, Fe(OH)₃, HClO, H₂SO₃, H₃PO₄, Na₃PO₄, Ca(H₂PO₄)₂, SO₂, N₂O₄, AlCl₃.
- **b)** Hợp chất A có khối lượng mol phân tử bằng 134 g/mol. Thành phần phần trăm về khối lượng của các nguyên tố trong A là 34,33% natri, 17,91% cacbon, còn lại là oxi. Lập công thức phân tử của A.

Câu 3 (2,0 điểm)

Trong một phòng thí nghiệm có hai dung dịch axit clohiđric (dung dịch A và dung dịch B) có nồng độ khác nhau. Nồng độ phần trăm của B lớn gấp 2,5 lần nồng độ phần trăm của A. Khi trộn hai dung dịch trên theo tỉ lệ khối lượng là 3:7 thì được dung dịch C có nồng độ 24,6%. Biết trong phòng thí nghiệm, dung dịch axit clohiđric có nồng độ lớn nhất là 37%. Tính nồng độ phần trăm của dung dịch A, B.

Câu 4 (2,0 điểm)

Hoà tan hoàn toàn a mol Ba vào dung dịch chứa a mol HCl, thu được dung dịch X. Cho dung dịch X lần lượt tác dụng với các chất sau: Al₂O₃, NaOH, Na₂SO₄, AlCl₃, Na₂CO₃, Mg, NaHCO₃ và Al. Viết phương trình các phản ứng hoá học xảy ra (nếu có).

Câu 5 (2,0 điểm)

Bằng phương pháp hóa học, hãy loại bỏ tạp chất trong các khí sau:

- **a**) CO_2 có lẫn tạp chất là SO_2 .
- **b**) SO₂ có lẫn tạp chất là SO₃.
- c) CO có lẫn tạp chất là CO₂.
- d) CO₂ có lẫn tạp chất là HCl.

Câu 6 (2,0 điểm)

Một hỗn hợp X gồm CuO và MgO. Chỉ dùng thêm dung dịch HCl và bột Al, hãy nêu 2 cách để điều chế đồng nguyên chất từ hỗn hợp X (các dụng cụ và điều kiện cần thiết có đủ). Viết phương trình các phản ứng hoá học xảy ra.

Câu 7 (2,0 điểm)

Cho một kim loại A tác dụng với dung dịch của một muối B (dung môi là nước). Hãy tìm một kim loại A, một muối B phù hợp với mỗi thí nghiệm có hiện tượng như sau:

- a) Kim loại mới bám lên kim loại A.
- b) Dung dịch đổi màu từ vàng sang xanh lam.
- c) Có bọt khí và kết tủa keo trắng, sau đó kết tủa tan dần đến hết.
- d) Có bọt khí và kết tủa màu trắng lẫn kết tủa màu xanh lơ.

Viết phương trình các phản ứng hóa học xảy ra.

Câu 8 (2,0 điểm)

Hấp thụ hoàn toàn 1,568 lít CO₂ (đktc) vào 500ml dung dịch NaOH 0,16M, thu được dung dịch X. Thêm 250 ml dung dịch Y gồm BaCl₂ 0,16M và Ba(OH)₂ aM vào dung dịch X, thu được 3,94 gam kết tủa. Tính giá trị của a.

Câu 9 (2,0 điểm)

Đốt 11,2 gam Fe trong không khí, thu được m₁ gam chất rắn A. Hòa tan hoàn toàn A trong 800 ml HCl 0,55M, thu được dung dịch B (chỉ chứa muối) và 0,448 lít khí (đktc). Cho dung dịch AgNO₃ dư vào B, thu được m₂ gam kết tủa khan. Tính m₁ và m₂.

Câu 10 (2,0 điểm)

Trộn CuO với một oxit của kim loại M (M có hóa trị II không đổi) theo tỉ lệ mol tương ứng là 1:2 được hỗn hợp A. Dẫn một luồng khí CO dư đi qua 3,6 gam A nung nóng đến phản ứng hoàn toàn, thu được hỗn hợp B. Để hòa tan hết B cần 60 ml dung dịch HNO₃ 2,5M, thu được dung dịch (chỉ chứa chất tan là muối nitrat của kim loại) và V lít khí NO duy nhất (đktc). Xác định kim loại M và tính V.

	Hêt
Thí sinh đượ	rc sử dụng bảng tuần hoàn các nguyên tố hóa học và bảng tính tan,
	không được sử dụng các tài liệu khác.
	Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh:	Số báo danh:

KỲ THI CHỌN HỌC SINH GIỚI LỚP 9 NĂM HỌC 2017-2018 HƯỚNG DẪN CHẨM MÔN: HÓA HỌC

HDC gồm 04 trang

Câu	Hướng dẫn chấm	Điểm
	a. Theo giả thiết:	
		0,5
	$\begin{cases} 2Z + N = 82 \\ N - Z = 4 \end{cases} \Leftrightarrow \begin{cases} Z = 26 \\ N = 30 \end{cases}$	0,5
	Vậy NTK của $X = 26+30=56 => X$ là sắt (Fe)	0,5
1		0,5
	b. $V_{1 \text{ mol Fe}} = \frac{8,74.10^{-24}.\ 6,022.10^{23}}{74\%} = 7,1125\ \text{cm}^3$	0,5
	$=> D_{Fe} = \frac{56}{7,1125} = 7,87 \text{ g/cm}^3$	0,5
	a. CaO: canxi oxit Fe(OH) ₃ : Sắt (III) hiđroxit	0,25
	HClO: axit hipocloro	
	H ₂ SO ₃ : axit sunfuro	0,25
	H ₃ PO ₄ : axit photphoric	0.25
	Na ₃ PO ₄ : natri photphat	0,25
	Ca(H ₂ PO ₄) ₂ : canxi đihiđrophotphat	0,25
2	SO ₂ : lưu huỳnh đioxit	0,22
4	N ₂ O ₄ : đinito tetraoxit	0,25
	AlCl ₃ : nhôm clorua b. Gọi công thức của A là $Na_xC_yO_z$ $(x,y,z \in N^*)$	0,25
		0,23
	$x = \frac{34,33.134}{23.100} = 2$; $y = \frac{17,91.134}{12.100} = 2$	
		0,25
	$z = \frac{134 - 23.2 - 12.2}{16} = 4$	
	$\rightarrow \text{CTPT A là Na}_2\text{C}_2\text{O}_4$	0,25
	Gọi nồng độ C% dung dịch A, B lần lượt là a, b(a<24,6 <b<37)< td=""><td>0,23</td></b<37)<>	0,23
	Ta có b= $2.5.a = > 2.5a - b = 0$	0,25
	14 eo 6 2,6.4 7 2,64 0 0	0,23
	m_1 gam dung dịch A a $b-24,6$	
	24,6	0,25
	m_1 gam dung dịch A b $24.6 - a$	
	Theo sơ đồ đường chéo $\frac{m_1}{m_2} = \frac{b-24,6}{24,6-a}$	0,25
3	m_2 24,6-a	0,23
	Theo giả thiết: m_1 : $m_2 = 7$: 3 hoặc m_1 : $m_2 = 3$: 7	0,25
	TH1: $\frac{m_1}{m_2} = \frac{b-24.6}{24.6-a} = \frac{7}{3} = 3b + 7a = 246$	0.25
		0,25
	Ta có $\begin{cases} 2.5a - b = 0 \\ 7a + 3b = 246 \end{cases} \Leftrightarrow \begin{cases} a = 16.97 \\ b = 42.4 \end{cases} \Rightarrow \text{loại vì } b > 37$	0,25
	7a + 3b = 246 $b = 42,4$	0,23
	TH2: $\frac{m_1}{m_2} = \frac{b - 24.6}{24.6 - a} = \frac{3}{7}$	0,25
	111 ₂ 24,0 - a /	

	$Ta có \begin{cases} 2,5a-b=0 \\ 3a+7b=246 \end{cases} \Leftrightarrow \begin{cases} a=12 \\ b=30 \end{cases} \text{ thỏa mãn}$	0,25
	Pt: Ba + 2 HCl \rightarrow BaCl ₂ + H ₂ a/2 a (mol) Vậy Ba còn tham gia phản ứng Ba + 2H ₂ O \rightarrow Ba(OH) ₂ + H ₂ => Dung dịch X chứa BaCl ₂ và Ba(OH) ₂	0,5
	$Ba(OH)_2 + Al_2O_3 \rightarrow Ba(AlO_2)_2 + H_2O$	0,25
4	$Ba(OH)_2 + Na_2SO_4 \rightarrow BaSO_4 \downarrow + 2NaOH$ $BaCl_2 + Na_2SO_4 \rightarrow BaSO_4 \downarrow + 2NaCl$	0,25
•	$3Ba(OH)_2 + 2AlCl_3 \rightarrow 3BaCl_2 + 2Al(OH)_3 \downarrow$ $Ba(OH)_2 + 2Al(OH)_3 \rightarrow Ba(AlO_2)_2 + 4H_2O$	0,25
	$Ba(OH)_2 + Na_2CO_3 \rightarrow BaCO_3 \downarrow + 2NaOH$ $BaCl_2 + Na_2CO_3 \rightarrow BaCO_3 \downarrow + 2NaCl$	0,25
	$\begin{array}{c} Ba(OH)_2 + 2NaHCO_3 \rightarrow BaCO_3 \downarrow + Na_2CO_3 + 2H_2O \\ BaCl_2 + Na_2CO_3 \rightarrow BaCO_3 \downarrow + 2NaCl \\ Hoặc \\ Ba(OH)_2 + NaHCO_3 \rightarrow BaCO_3 \downarrow + NaOH + H_2O \end{array}$	0,25
	$Ba(OH)_{2} + 2AI + 2H_{2}O \rightarrow Ba(AIO_{2})_{2} + 3H_{2}\uparrow$	0,25
	a) Dẫn hỗn hợp qua dung dịch Br ₂ dư, SO ₂ bị hấp thụ => thu được CO ₂ Br ₂ + SO ₂ + 2H ₂ O> 2HBr + H ₂ SO ₄	0,5
	b) Dẫn hỗn hợp SO ₃ và SO ₂ qua dung dịch BaCl ₂ dư, SO ₃ bị hấp thụ hết => thu được SO ₂ SO ₃ + BaCl ₂ + 2H ₂ O → 2HCl + BaSO ₄ ↓	0,5
5	 c) Dẫn hỗn hợp CO₂ và CO qua dung dịch nước vôi trong dư, CO₂ bị hấp thụ hết => thu được CO Ca(OH)₂ + CO₂ → CaCO₃ + H₂O 	0,5
	d) Dẫn hỗn hợp CO ₂ và HCl qua dung dịch NaHCO ₃ dư, HCl bị hấp thụ hết => thu được CO ₂ NaHCO ₃ + HCl \rightarrow NaCl + CO ₂ + H ₂ O	0,5
	Cách 1: Cho Al tác dụng với HCl thu được H ₂ : 2Al + 6HCl → 2AlCl ₃ + 3H ₂	0,25
	Cho luồng khí H ₂ dư vừa thu được qua hỗn hợp CuO, MgO nung nóng, chất rắn sau phản ứng cho tác dụng với HCl dư (trong điều kiện không có oxi không khí), Cu không tan gạn lọc, rửa sạch, làm khô thu được Cu nguyên chất.	0,5
	$\begin{array}{ccc} CuO + H_2 & \xrightarrow{r^0} & Cu + H_2O \\ MgO + 2HCl & \longrightarrow & MgCl_2 + H_2O \end{array}$	0,25
6	Cách 2: Cho HCl đến dư vào hỗn hợp CuO, MgO, dung dịch thu được cho tác dụng với Al dư. MgO + 2HCl → MgCl₂ + H₂O CuO + 2HCl → CuCl₂ + H₂O 2Al dư + 3CuCl₂ → 2AlCl₃ + 3Cu 2Aldư + 6HCl → 2AlCl₃ + 3H₂	0,5
	Hỗn hợp rắn thu được gồm Al dư, Cu. Đem hoà tan chất rắn trong HCl dư, Cu không tan gạn lọc, rửa sạch, làm khô thu được Cu nguyên chất. 2Aldur + 6HCl	0,5
7	a. Fe + CuSO ₄ \rightarrow FeSO ₄ + Cu	0,5

	b. $Cu + 2Fe_2(SO_4)_3 \rightarrow CuSO_4 + 2FeSO_4$	0,5
	c. $2Na + 2H_2O \rightarrow 2NaOH + H_2 \uparrow$ $3NaOH + AlCl_3 \rightarrow Al(OH)_3 \downarrow + 3NaCl$ $Al(OH)_3 + NaOH \rightarrow NaAlO_2 + 2H_2O$	0,5
	d. Ba + 2H ₂ O \rightarrow H ₂ \uparrow + Ba(OH) ₂ Ba(OH) ₂ + CuSO ₄ \rightarrow BaSO ₄ \downarrow + Cu(OH) ₂ \downarrow	0,5
	$n_{CO_2} = \frac{1,568}{22,4} = 0,07 \text{ (mol)}; \ n_{NaOH} = 0,5 \times 0,16 = 0,08 \text{ (mol)}$	
	$n_{BaCl_2} = 0.25 \times 0.16 = 0.04 \text{ (mol)}; \ n_{Ba(OH)_2} = 0.25 \text{ (mol)}$	0,25
	$n_{BaCO_3} = \frac{3,94}{197} = 0,02 \text{ (mol)}$	
	$ \begin{array}{ccc} \text{CO}_2 + \text{NaOH} \rightarrow \text{NaHCO}_3 \\ 0.07 & 0.08 & 0.07 & (\text{mol}) \end{array} $	0.5
	$ \begin{array}{ccc} \text{NaHCO}_3 + \text{NaOH} \rightarrow & \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} \\ 0.07 & 0.01 & 0.01 & (\text{mol}) \end{array} $	0,5
8	$n_{BaCO_3} < n_{BaCl_2} \rightarrow trong dung dịch sau phản ứng không có Na2CO3, có dư BaCl2.$	
	$n_{\text{Na}_2\text{CO}_3} < n_{\text{BaCO}_3} < n_{\text{Na}+\text{CO}_3} + n_{\text{Na}_2\text{CO}_3} \rightarrow \text{dung dịch sau phản ứng có dư NaHCO}_3$, hết	0,5
	$Ba(OH)_2$.	,
	$BaCl_2 + Na_2CO_3 \rightarrow BaCO_3 \downarrow + 2NaCl$	
	$0.01 \rightarrow 0.01 \rightarrow 0.01$ (mol) $Ba(OH)_2 + NaHCO_3 \rightarrow BaCO_3 \downarrow + Na_2CO_3 + 2H_2O$	
	$0.25a \rightarrow 0.25a \rightarrow 0.25a \rightarrow 0.25a \qquad (mol)$	0,5
	$BaCl2 + Na2CO3 \rightarrow BaCO3 \downarrow + 2NaCl$ 0,25a \rightarrow 0,25a (mol)	
	$\rightarrow n_{BaCO_3} = 0.25a + 0.25a = 0.02 - 0.01 \rightarrow a = 0.02$	0,25
	Theo giả thiết:	,
	$n_{\text{Fe}} = \frac{11.2}{5.6} = 0.2 \text{ mol}; n_{\text{HCl}} = 0.8.0,55 = 0.44 \text{ mol}$	
	30	
	FeO LIG FeCl ₂	
	$Fe \xrightarrow{+O_2, t^0} A \begin{cases} Fe \\ FeO \\ Fe_3O_4 \\ Fe_2O_3 \end{cases} \xrightarrow{+HCl} B \begin{cases} FeCl_2 \\ FeCl_3 \end{cases} + H_2 \uparrow + H_2O$ $Pe_3o_4 + A \Rightarrow Percent for the formula of $	0,5
	Fe ₂ O ₃	·
	Bao toan nguyen to H, duọc	
	$n_{HCI} = 2n_{H_2} + 2n_{H_2O} \rightarrow n_{H_2O} = \frac{0,44 - 0,02.2}{2} = 0,2 \text{ (mol)}$	
9	Bảo toàn nguyên tố O, được $n_{O/A} = n_{H_2O} = 0.2$ (mol)	
	Bảo toàn khối lượng, được $m_1 = m_A = m_{Fe} + m_{O/A} = 11,2 + 0,2.16 = 14,4 (gam)$	0,5
	Gọi số mol FeCl ₂ và FeCl ₃ lần lượt là x , y mol (x , $y \ge 0$)	
	Bảo toàn nguyên tố Fe và Cl, ta có $\begin{cases} x + y = 0.2 \\ 2x + 3y = 0.44 \end{cases} \Leftrightarrow \begin{cases} x = 0.16 \\ y = 0.04 \end{cases}$	0,25
	Khi cho AgNO ₃ dư sẽ thu được AgCl và Ag	
	$3 \Lambda \alpha N \Omega_0 + \text{FeCl}_0 \longrightarrow \text{Fe}(N \Omega_0)_0 + \Lambda \alpha + 2 \Lambda \alpha Cl$	0,25
	$ \begin{array}{ccc} 3AgNO_3 + FeCl_2 & \longrightarrow & Fe(NO_3)_3 + Ag + 2AgCl \\ 0.16 & \longrightarrow & 0.16 & (mol) \end{array} $	0,25
	$\begin{array}{ccc} 3 \text{AgNO}_3 + 1 \text{CC}_{12} & 1 \text{C(NO}_{3/3} + \text{Ag} + 2 \text{AgCI} \\ 0,16 & \rightarrow & 0,16 & (\text{mol}) \\ \hline \text{Bảo toàn nguyên tố Cl, được } n_{\text{AgCI}} = n_{\text{HCl}} = 0,44 \text{ mol} \end{array}$	0,25
	, , , , , , , , , , , , , , , , , , , ,	

	Gọi oxit kim loại phải tìm là MO và số mol CuO và MO trong A lần lượt là a và 2a.					
	Vì CO chỉ khử được những oxit kim loại đứng sau nhôm trong dãy điện hóa nên có					
	2 khả năng xảy ra:					
	* Trường hợp 1: M đứng sau nhôm trong dãy điện hóa					
	$CuO + CO \xrightarrow{t^o} Cu + H_2O$					
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	$MO + CO + t^{\circ} \times M + H_{\circ}O$					
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
	$3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO \uparrow + 4H_2O$	0,25				
		0,20				
	$a \rightarrow \frac{8}{3} \text{ a (mol)} \qquad \rightarrow \frac{2}{3} \text{ a} \qquad \text{(mol)}$					
	J .					
	$3M + 8HNO_3 \rightarrow 3 M(NO_3)_2 + 2NO \uparrow + 4H_2O$					
	$2a \rightarrow \frac{8}{3} .2a \text{ (mol)} \rightarrow \frac{2}{3} .2a \text{ (mol)}$					
	3					
	$\rightarrow n_{HNO_3} = \frac{8}{3}a + \frac{16}{3}a = 0,15 \rightarrow a = 0,01875$					
		0,25				
10	\rightarrow M + 16 = $\frac{3,6-0,01875.80}{2.0.01875}$ = 56 \rightarrow M = 40	1				
	2.0, 01875					
	→M là canxi → loại vì Ca đứng trước Al	0,25				
	* Trường hợp 2: M đứng trước nhôm trong dãy điện hóa					
	$CuO + CO \xrightarrow{t^0} Cu + H_2O$					
	$a \rightarrow a \pmod{mol}$					
	$3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO \uparrow + 4H_2O$	0,25				
	8 2	0,23				
	$a \rightarrow \frac{3}{3} a \text{ (mol)} \rightarrow \frac{2}{3} a \text{ (mol)}$					
	$MO + 2HNO_3 \rightarrow M(NO_3)_2 + H_2O$					
	$2a \rightarrow 4a \qquad (mol)$ $\rightarrow n_{HNO_3} = \frac{8}{3}a + 4a = 0,15 \rightarrow a = 0,0225$					
	$\rightarrow 11_{HNO_3} = -a + 4a = 0, 15 \rightarrow a = 0, 0225$					
	\rightarrow M + 16 = $\frac{3,6-0,0225.64}{2.0,0225}$					
	$\Rightarrow M = 24 \rightarrow M \text{ là Mg thỏa mãn.}$					
	$\Rightarrow V = \frac{0,0225.2}{3}.22,4 = 0,336 \text{ lít.}$	0,25				

TRƯỜNG THCS TIÊN DU

KÌ THI CHỌN ĐỘI HSG LỚP 9 LẦN 5 NĂM HỌC 2017 - 2018 ĐỀ THI MÔN: HÓA HỌC

ĐỀ CHÍNH THỰC

Thời gian làm bài: 150 phút (không kể thời gian giao đề) (Đề thi có 01 trang)

<u>Câu 1:</u> (3 điểm)

- 1. Hợp chất A có công thức R₂X, trong đó R chiếm 74,19% về khối lượng. Trong hạt nhân của nguyên tử R có số hạt không mang điện nhiều hơn số hạt mang điện là 1 hạt. Trong hạt nhân nguyên tử X có số hạt mang điện bằng số hạt không mang điện. Tổng số proton trong phân tử R₂X là 30. Tìm công thức phân tử của R₂X.
- **2.** Chọn 7 chất rắn khác nhau mà khi cho mỗi chất đó tác dụng với dung dịch H_2SO_4 đặc, nóng, dư đều cho sản phẩm là $Fe_2(SO_4)_3$, SO_2 và H_2O . Viết các phương trình hóa học.

Câu 2: (5 điểm)

1. Hỗn hợp A gồm các dung dịch: NaCl, Ca(HCO₃)₂, CaCl₂, MgSO₄, Na₂SO₄. Làm thế nào để thu được muối ăn tinh khiết từ hỗn hợp trên?

- **2.** Một hỗn hợp rắn A gồm 0,2 mol Na₂CO₃; 0,1 mol BaCl₂ và 0,1 mol MgCl₂. Chỉ được dùng thêm nước hãy trình bày cách tách mỗi chất trên ra khỏi hỗn hợp. Yêu cầu mỗi chất sau khi tách ra không thay đổi khối lượng so với ban đầu (Các dụng cụ, thiết bị cần thiết kể cả nguồn nhiệt, nguồn điện cho đầy đủ).
- **3.** Hòa tan hoàn toàn 13,45g hỗn hợp 2 muối hidro cacbonat và cacbonat trung của 1 kim loại kiềm bằng 300ml dung dịch HCl 1M. Sau phản ứng phải trung hòa HCl dư bằng 75ml dung dịch Ca(OH)₂ 1M.

 a. Tìm công thức 2 muối.
 - b. Tính khối lượng mỗi muối có trong hỗn hợp ban đầu.

Câu 3: (4 điểm)

- 1. Cho x gam một muối halogenua của một kim loại kiềm tác dụng với 200ml dd H₂SO₄ đặc, nóng vừa đủ. Sau khi phản ứng xảy ra hoàn toàn, thu được hỗn hợp sản phẩm A trong đó có một khí B (mùi trứng thối). Cho khí B tác dụng với dd Pb(NO₃)₂ (dư) thu được 47,8 gam kết tủa màu đen. Phần sản phẩm còn lại, làm khô thu được 342,4 gam chất rắn T. Nung T đến khối lượng không đổi thu được 139,2 gam muối duy nhất.
 - a. Tính nồng độ mol/lit của dd H₂SO₄ ban đầu.
 - b. Xác định công thức phân tử của muối halogenua và tính x.
- **2.** Cho M là kim loại tạo ra hai muối MCl_x , MCl_y và tạo ra 2 oxit $MO_{0,5x}$, M_2O_y có thành phần về khối lượng của Clo trong 2 muối có tỉ lệ 1 : 1,173 và của oxi trong 2 oxit có tỉ lệ 1 : 1,352.
 - a. Xác định tên kim loại M và công thức hóa học các muối, các oxit của kim loại M.
 - b. Viết các phương trình phản ứng khi cho M tác dụng lần lượt với MCl_y; H₂SO₄ đặc, nóng.

Câu 4: (3 điểm)

- 1. Đốt cháy hoàn toàn 2,24 l (đktc) một hiđrocacbon A thể khí. Sau đó dẫn toàn bộ sản phẩm cháy qua bình đựng dung dịch Ca(OH)₂ có chứa 0,2 mol Ca(OH)₂ thì có 10g kết tủa tạo nên, đồng thời thấy khối lượng bình tăng thêm 18,6g. Xác định công thức phân tử và viết công thức cấu tạo của A.
- **2.** Thuỷ phân hoàn toàn 19 gam hợp chất hữu cơ A (mạch hở, phản ứng được với Na) thu được m₁ gam chất B và m₂ gam chất D chứa hai loại nhóm chức.
 - Đốt cháy m₁ gam chất B cần 9,6 gam khí O₂ thu được 4,48 lit khí CO₂ và 5,4 gam nước.
- Đốt cháy m₂ gam chất D cần 19,2 gam khí O₂ thu được 13,44 lit khí CO₂ và 10,8 gam nước. Tìm công thức phân tử và viết công thức cấu tạo của A, B, D.

<u>Câu 5</u>: (5 điểm)

- 1. Nung 9,28 gam hỗn hợp A gồm FeCO₃ và một oxit sắt trong không khí đến khối lượng không đổi. Sau khi phản ứng xảy ra hoàn toàn, thu được 8 gam một oxit sắt duy nhất và khí CO₂. Hấp thụ hết lượng khí CO₂ vào 300 ml dung dịch Ba(OH)₂ 0,1M, kết thúc phản ứng thu được 3,94 gam kết tủa. Mặt khác, cho 9,28 gam hỗn hợp A tác dụng với dung dịch HCl dư, sau khi phản ứng kết thúc thu được dung dịch B. Dẫn 448ml khí Cl₂ (đkte) vào B thu được dung dịch D. Hỏi D hoà tan tối đa bao nhiêu gam Cu?
 - 2. Viết phương trình phản ứng trong đó 0.75 mol H_2SO_4 tham gia phản ứng sinh ra

a/ 8,4 lít SO₂ (đktc).

b/ 16,8 lít SO₂ (đktc).

c/ 25,2 lít SO₂ (đktc).

d/ 33,6 lít SO₂ (đktc).

3. Trình bày các thí nghiệm để xác định thành phần định tính và định lượng của nước.

Câu	Đáp án	Điểm
	Đặt số proton, notron là P, N	
	Ta có: $\frac{2M_R x 100}{2M_R + M_X} = 74{,}19 \tag{1}$	0,25 đ
Câu 1 2 đ	$N_R - P_R = 1 \Rightarrow N_R = P_R + 1$ (2) $P_X = N_X$ (3)	0,25 đ
	$2P_R + P_X = 30 \Rightarrow P_X = 30 - 2P_R $ (4)	
	Mà $M = P + N$ (5) Thế (2),(3),(4), (5) vào (1) ta có:	0,25 đ
	$\frac{P_R + N_R}{P_R + N_R + P_X} = 0,7419$	0,25 đ
	$\Leftrightarrow \frac{2P_R + 1}{2P_R + 1 + 30 - 2P_R} = 0,7419$	
	$\Leftrightarrow \frac{2P_R + 1 + 30 - 2P_R}{31} = 0.7419$	0,25 đ
	\Leftrightarrow P _R = 11 (Na)	0,25 đ
	Thế P_R vào (4) => P_X = 30 – 22 = 8 (Oxi)	0,25 đ
	Vậy CTHH: Na ₂ O	0,25 đ
	Các chất rắn có thể chọn: Fe;FeO;Fe ₃ O ₄ ;Fe(OH) ₂ ;FeS;FeS ₂ ;FeSO ₄ Các pthh:	
	$2Fe + 6H2SO4(đặc) \xrightarrow{l^0} Fe2(SO4)3 + 3SO2 + 6H2O$	
	$2\text{FeO} + 4\text{H}_2\text{SO}_4(\tilde{\text{d}}\tilde{\text{ac}}) \xrightarrow{t^0} \text{Fe}_2(\text{SO}_4)_3 + \text{SO}_2 + 4\text{H}_2\text{O}$	
	$2\text{Fe}_3\text{O}_4 + 10\text{H}_2\text{SO}_4(\text{d} \text{ac}) \xrightarrow{t^0} 3 \text{ Fe}_2(\text{SO}_4)_3 + \text{SO}_2 + 10\text{H}_2\text{O}$	
	$2\text{Fe}(\text{OH})_2 + 4\text{H}_2\text{SO}_4(\tilde{\text{d}}\tilde{\text{ac}}) \xrightarrow{t^0} \text{Fe}_2(\text{SO}_4)_3 + \text{SO}_2 + 6\text{H}_2\text{O}$	
	$2\text{FeS} + 10\text{H}_2\text{SO}_4(\tilde{\text{d}}, 2\text{c}) \xrightarrow{t^0} \text{Fe}_2(\text{SO}_4)_3 + 9\text{SO}_2 + 10\text{H}_2\text{O}$	
	$2\text{FeS}_2 + 14\text{H}_2\text{SO}_4(\tilde{\text{d}}_{ac}) \xrightarrow{t^0} \text{Fe}_2(\text{SO}_4)_3 + 15\text{SO}_2 + 14\text{H}_2\text{O}$	
	$2\text{FeSO}_4 + 2\text{H}_2\text{SO}_4(\tilde{\text{d}}_{\text{A}}\tilde{\text{c}}) \xrightarrow{t^0} \text{Fe}_2(\text{SO}_4)_3 + \text{SO}_2 + 2\text{H}_2\text{O}$	
Câu 2	- Cho dung dịch BaCl ₂ dư vào dung dịch A, lọc bỏ kết tủa, dung dịch còn lại:	
	NaCl, MgCl ₂ , BaCl ₂ du, CaCl ₂ , Ca(HCO ₃) ₂ .	0,25 đ
	$BaCl_2 + MgSO_4 \rightarrow BaSO_4 + MgCl_2$ $Na_2SO_4 + BaCl_2 \rightarrow BaSO_4 + 2NaCl$	0,25 đ 0,25 đ
2.1	Cho dung dịch Na ₂ CO ₃ dư vào dung dịch còn lại, lọc bỏ kết tủa, dung dịch	0,23 u
3 đ	còn lại: NaCl, NaHCO ₃ , Na ₂ CO ₃ dư	0,25 đ
	$MgCl_2 + Na_2CO_3 \rightarrow MgCO_3 + 2NaCl$	0,25 đ
	BaCl2 + Na2CO3 → BaCO3 + 2NaCl $CaCl2 + Na2CO3 → CaCO3 + 2NaCl$	0,25 đ 0,25 đ
	$Ca(HCO_3)_2 + Na_2CO_3 \rightarrow CaCO_3 + 2NaHCO_3$	0,25 đ
	- Cho dung dịch HCl dư vào dung dịch còn lại.	0,25 đ
	- cô cạn dung dịch thu được NaCl tinh khiết.	0,25 đ
	$NaHCO_3 + HCl \rightarrow NaCl + CO_2 + H_2O$ $Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2 + H_2O$	0,25 đ 0,25 đ
	Cho hỗn hợp hòa tan vào nước được dung dịch B (chứa 0,4 mol NaCl)	0,23 u
2.2	Lọc lấy rắn C gồm 0,1 mol BaCO ₃ và 0,1 mol MgCO ₃	
3 đ	$Na_2CO_3 + BaCl_2 \rightarrow BaCO_3 + 2NaCl$	
	$Na_2CO_3 + MgCl_2 \rightarrow MgCO_3 + 2NaCl$	
	Điện phân dung dịch B có màng ngăn đến khi hết khí Cl ₂ thì dừng lại thu được dung dịch D (chứa 0,4 mol NaOH) và thu lấy hỗn hợp khí Cl ₂ và H ₂ vào bình kín	
	tạo điều kiện để phản ứng xảy ra hoàn toàn được khí HCl. Cho nước vào thu được	
	dung dịch E có 0,4 mol HCl.	
	$2NaCl + 2H_2O \xrightarrow{dpddcomangngan} 2NaOH + H_2 + Cl_2$	

$H_2 + Cl_2 \rightarrow 2HCl$	
Chia dd E thành 2 phần bằng nhau E ₁ và E ₂ . Nhiệt phân hoàn toàn rắn C trong	
bình kín rồi thu lấy khí ta được 0,2 mol CO ₂ . Chất rắn F còn lại trong bình gồm 0,1	
mol BaO và 0,1mol MgO	
$BaCO_3 \xrightarrow{t^0} BaO + CO_2$	
$MgCO_3 \xrightarrow{t^0} MgO + CO_2$	
Cho CO ₂ sục vào dd D để phản ứng xảy ra hoàn toàn rồi đun cạn dd sau phản ứng	
ta thu được 0,2 mol Na ₂ CO ₃	
$2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$	
Hòa tan rắn F vào nước dư, lọc lấy phần không tan là 0,1 mol MgO và dd sau khi	
lọc bỏ MgO chứa 0,1 mol Ba(OH) ₂	
Cho MgO tan hoàn toàn vào E1 rồi đun cạn dd sau phản ứng ta thu được 0,1 mol	
MgCl ₂	
MgO + 2HCl → MgCl ₂ + H ₂ O Cho dd Ba(OH) ₂ tác dụng với E ₂ rồi đun cạn dd sau phản ứng được 0,1 mol BaCl ₂	
BaO + $H_2O \rightarrow Ba(OH)_2$	
$Ba(OH)_2 + 2HC1 \rightarrow BaCl_2 + 2H_2O$	
a. $n_{HCl} = 0.3 \text{ x } 1 = 0.3 \text{ mol}$	
$n_{Ca(OH)_2} = 0.075 \text{ x } 1 = 0.075 \text{ mol}$	
$AHCO_3 + HCl \rightarrow ACl + CO_2 + H_2O$	0,25 đ
x x (mol)	
$A_2CO_3 + 2HCl \rightarrow 2ACl + CO_2 + H_2O$	0.05.1
$y \qquad 2y \qquad (mol)$	0,25 đ
<i>y</i> = <i>y</i>	
$Ca(OH)_2 + 2HC1 \rightarrow CaCl_2 + 2H_2O$	0,25 đ
0.075 0.15 (mol)	0,23 d
Ta có: $x + 2y = 0.15$	0,25 đ
Với $0 < y < 0.075$	•
Mặt khác: $Ax + 61x + 2Ay + 60y = 13,45$ $\Leftrightarrow A (0,15-2y) + 61 (0,15-2y) + 2Ay + 60y = 13,45$	0,25 đ
$\Leftrightarrow 0.15A - 2Ay + 9.15 - 122y + 2Ay + 60y = 13.45$	
$\Leftrightarrow 0.15A - 4.3 = 62y$	
, , , , , , , , , , , , , , , , , , ,	0,25 đ
$\Leftrightarrow y = \frac{0.15A - 4.3}{62}$	0,23 u
0.15A - 4.3	
Với y > 0 => $\frac{0.15A - 4.3}{62}$ > 0	
$\Rightarrow A > 28.7 (1)$	0,25 đ
Với y < 0,075 $\Rightarrow \frac{0,15A-4,3}{62} < 0,075$	
$\frac{62}{62}$	
\Rightarrow A<59,7 (2)	0,25 đ
$T\dot{v}(1) \ v\dot{a}(2): \ 28,7 < A < 59,7$	0,25 đ
Vậy A là Kali => CTHH: KHCO ₃ , K_2CO_3	0,23 u
b. Ta có hệ phương trình	
$\int 100x + 138y = 13,45$	
$\int x + 2y = 0.15$	
$\int x = 0.1$	
$\Leftrightarrow \begin{cases} x + 2y = 0.13 \\ x = 0.1 \end{cases}$ $y = 0.025$	0,25 đ
	0.25 ±
$m_{KHCO_3} = 0.1 \times 100 = 10 \text{ (g)}$	0,25 đ 0,25 đ
 $m_{K_2 CO_3} = 0.025 \times 138 = 3.45 (g)$	0,23 u

~ A					
Câu 3	a. $n_{Pb(NO3)2} = 0.2 \text{ mo}$,	
3.1	- Vì khí B có mùi trứng thối khi tác dụng với dd Pb(NO ₃) ₂ tạo kết tủa đen => B là				
2 đ	H_2S	_			0,25 đ
	 Gọi CTTQ của mư 	ối halogenua kim lo	oại kiềm là RX		
	- PTHH 8RX +	$5H_2SO_4$ đặc $\rightarrow 4R$	$_{2}SO_{4} + H_{2}S\uparrow +$	$4X_2 + 4H_2O$ (1)	0,25 đ
	1,6	1,0	0,8 0,2	0,8	
	(có thể HS viết 2 ph	ương trình liên tiếp	cũng được)		0,25 đ
	- Khi B tác dụng vớ		Ç ,		
		$NO_3)_2 \rightarrow PbS\downarrow$	+ 2HNO ₃	(2)	0,25 đ
	0.2	0.2		, ,	
	· · · · · · · · · · · · · · · · · · ·	1,0			0,25 đ
	- Theo (1) ta có: Þ	$C_{M_{H_2SO_4}} = \frac{1}{0.2} = 5,0$	0M		
		0,2		R ₂ SO ₄ và X ₂ , nung T đến	0,25 đ
				\mathcal{C}_2 SO4 va \mathcal{A}_2 , nung 1 den	
	khối lượng không đ	$m_{R_2SO_4} = 139,$	2 g		0,25 đ
		$P m_{X_2} = 3$	342,4-139,2=20	(3,2(g))	
		2			
	- Theo (1) $n_{X_2} = 0$,	$S(\text{mol}) \not = \frac{203,2}{0.8} = 7$	254 $PM_X = 127$.	Vậy X là iôt(I)	
		0,0			
	- Ta có: $M_{R_2SO_4} = 2$	$R + 96 = \frac{139,2}{} = 1$	74 P R = 39 P R	là kali (K)	0,25 đ
	K ₂ SU ₄ –	0,8		` '	
	- Vậy CTPT muối h	alogenua là KI			
	c. Tîm x:	_			
	- Theo (1) $n_{px} =$	$1,6 \text{(mol)} \ b \ x = (39)$	0+127).1,6= 265,	6(g)	
	· / KA		, , , , , ,		
		35,5 <i>x</i>			
			1		
	a. Theo giả thuy	Set ta có: $\frac{M + 35,5x}{35,5y}$	$=\frac{1}{1.172}$		0,25 đ
					0,20 0
3.2		M + 35,5y			
	⇔ 1,173 x 1	M + 6,1415 xy = y	$\mathbf{M} (1)$		0,25 đ
3 đ					,
		8x			
	Mặt khác ta có:	$\frac{M+8x}{16y} = \frac{1}{1,352}$			
	wigt knac ta co.	16y - 1,352			0,25 đ
		$\overline{2M+16y}$			ŕ
	⇔ 1.352x N	1 + 2,816 xy = yM	[(2)		
	$T\mathring{\mathbf{u}}(1) \overset{\text{1,352}}{\mathbf{v}} =$	•	\ /		0,25 đ
	(-) (-)	20,0 J			
	v	1	2	3	0,25 đ
	M	18,6 (loại)	37,2 (loại)	56 (nhận)	
		20,0 (10,11)	., <u>=</u> (10#1)	o o (migni)	0,25 đ
	Vậy M là	sắt (Fe)			
		1) ta được $x = 2$			0,25 đ
		hóa học 2 muối là F	eCl2 và FeCl3		0,25 đ
		hóa học 2 oxit là Fe			0,25 đ
		$Cl_3 \rightarrow 3 FeCl_2$	-2-3	2 Fe + 6 H ₂ SO _{4 đ}	0,25 đ
	0	$+3 SO_2 + 6 H_2O$			0,25 đ
	→ re2(3O4)3	т 3 SO ₂ + 0 П ₂ O			
					0,25 đ

=> Công thức thực nghiêm $(C_2H_6O)_n => 6n \le 2.2n + 2 => n \le 1 => n = 1$ => B có công thức phân tử: C₂H₆O Do B là sản phẩm của phản ứng thuỷ phân nên B có CTCT: CH₃CH₂OH Gọi công thức tổng quát của D là $C_aH_bO_c$ (a, b, c \in N*) $n_{O_3} = 0.6(mol)$; $n_{CO_3} = 0.6(mol)$; $n_{H_{2O}} = 0.6(mol)$ Áp dụng định luật bảo toàn khối lượng: $m_2 + m_{O_2} = m_{CO_2} + m_{H_2O} \implies m_2 = 18(gam)$ $=> m_{O(D)} = 18 - (0, 6.12 + 0, 6.2) = 9, 6(gam) => n_{O(D)} = 0, 6(mol)$ $=> a:b:c = n_C: n_H: n_O = 0.6: 1.2: 0.6 = 1:2:1$ => Công thức thực nghiêm (CH₂O)_k Gọi công thức tổng quát của A là $C_mH_nO_p$ (m, n, p $\in N^*$) Áp dụng định luật bảo toàn khối lượng: $m_A + m_{HO_2} = m_B + m_D = m_H + m_2 - m_A = 4,6 + 18 - 19 = 3,6 (gam)$ $=> m_{H_2O} = 0,2(mol)$ Áp dụng định luật bảo toàn nguyên tố: $m_{C(A)} = m_{C(B)} + m_{C(D)} = 0.2.12 + 0.6.12 = 9.6(g) = > n_C = 0.8 \text{ (mol)}$ $m_{\rm H(A)} = m_{\rm H(B)} + m_{\rm H(D)} \ - \ m_{_{H(H,\mathcal{O})}} \ = 0.6 + 1.2 - 2.0.2 = 1.4 (\rm g) \ = > n_{\rm H} = 1.4$ (mol) $m_{O(A)} = 19 - m_{C(A)} + m_{H(A)} = 19 - 0.8.12 - 1.4 = 8(g) => n_O = 0.5 \text{ (mol)}$ \Rightarrow m:n:p = n_C: n_H: n_O = 0,8: 1,4: 0,5 = 8: 14: 5 ⇒ Do A có Công thức phân tử trùng với công thức đơn giản nhất CTPT A: C₈H₁₄O₅ \Rightarrow $n_A = 0.1 \text{ (mol)}; n_B = 0.1 \text{ (mol)}$ $\Rightarrow n_{H_{2}O} = 0,2(mol) => n_A: n_{H_{2}O}: n_B = 0,1:0,2:0,1=1:2:1$

 \Rightarrow A có 2 nhóm chức este, khi thuỷ phân cho 1 phân tử C_2H_5OH D có 2 loại nhóm chức và có công thức thực nghiệm $(CH_2O)_k$ và D là sản phẩm của phản ứng thuỷ phân => k= 3 => D có công thức phân tử $C_3H_6O_3$ Hs viết được CTCT của các chất.

Câu 5	Gọi công thức tổng quát của oxit sắt là F_xO_y ($x, y \in N^*$)	
4 đ	PTHH: $4\text{FeCO}_3 + \text{O}_2 \xrightarrow{t^o} 2\text{Fe}_2\text{O}_3 + 4\text{CO}_2$ (1)	(0,25đ)
	$2F_{x}O_{y} + (\frac{3x-2y}{2})O_{2} \xrightarrow{t^{o}} xFe_{2}O_{3} $ (2)	(0,25đ)
	$n_{Fe_2O_3} = \frac{8}{160} = 0.05(mol); n_{Ba(OH)_2} = 0.3 \times 0.1 = 0.03(mol); n_{BaCO_3} = \frac{3.94}{197} = 0.02(mol)$	(0,25đ)
	Cho CO ₂ vào dung dịch Ba(OH) ₂	
	PTHH: $CO_2 + Ba(OH)_2 \longrightarrow BaCO_3$ (3) Có thể: $2CO_2 + Ba(OH)_2 \longrightarrow Ba(HCO_3)_2$ (4) Trường họp 1: Xảy ra các phản ứng 1, 2, 3	(0,25đ)
	Theo PT(1), (3): $n_{FeCO_3} = n_{CO_2} = n_{BaCO_3} = 0,02(mol)$ Theo (1): $n_{Fe_2O_3} = \frac{1}{2}n_{FeCO_3} = 0,01(mol)$	(0,25đ)
	\mathcal{L}	, ,
	$\Rightarrow n_{Fe_2O_3(pu2)} = 0,05 - 0,01 = 0,04(mol)$ Theo PT(2): $n_{Fe_xO_y} = \frac{2}{r} \times n_{Fe_2O_3} = \frac{2}{r} \times 0,04 = \frac{0,08}{r} (mol)$	(0,25đ)
	Theo bài ra: $m_{\text{hon hop}} = m_{FeCO_3} + m_{Fe_xO_y} = 9,28(gam)$	
	$\Leftrightarrow 0.02 \times 116 + \frac{0.08}{x} (56x + 16y) = 9.28$	(0,25đ)
	$\Rightarrow \frac{x}{y} = \frac{16}{31}(loai)$	(0,25đ)
	Trường họp 2: Xảy ra các phản ứng 1, 2, 3, 4 Theo PT (3): $n_{CO_2} = n_{BaCO_3} = 0,02(mol)$	
	$n_{CO_{2(4)}} = 2(0,03-0,02) = 0,02(mol)$	(02,5đ)
	$\Rightarrow \sum n_{CO_2} = 0.04(mol)$	(0.25d) $(0.25d)$
	Theo PT(1), (3): $n_{FeCO_3} = n_{CO_2} = 0.04 (mol)$	
	Theo (1): $n_{Fe_2O_3} = \frac{1}{2} n_{FeCO_3} = 0,02 (mol)$	
	$\Rightarrow n_{Fe_2O_{3(2)}} = 0,05-0,02=0,03(mol)$	
	Theo PT(2): $n_{Fe_xO_y} = \frac{2}{x} \times n_{Fe_2O_3} = \frac{2}{x} \times 0,03 = \frac{0,06}{x} (mol)$	
	Theo bài ra: $m_{h\tilde{o}n hop} = m_{FeCO_3} + m_{Fe_xO_y} = 9,28(gam)$	
	$\Leftrightarrow 0.04 \times 116 + \frac{0.06}{x} (56x + 16y) = 9.28$	
	$\Rightarrow \frac{x}{y} = \frac{3}{4} \Rightarrow x = 3; y = 4$	
	Vậy công thức oxit sắt là Fe ₃ O ₄ (sắt từ oxit) Cho 9,28 gam hỗn hợp A vào dung dịch HCl dư.	
	$FeCO_3 + 2HC1 \longrightarrow FeCl_2 + CO_2 + H_2O $ $0,04 $ $0,04 $ (5)	
	$Fe_3O_4 + 8HC1 \longrightarrow FeCl_2 + 2FeCl_3 + 4H_2O \qquad (6)$ $0,02 \qquad 0,04$	
	Dung dịch B gồm: FeCl ₂ 0,06 mol; FeCl ₃ 0,04 mol; HCl dư Cho khí Cl ₂ = 0,02 (mol) vào dung dịch B	
	$ \begin{array}{ccc} \text{Cho Kii } \text{Cl}_2 = 0,02 \text{ (hor) vao dulig dich B} \\ 2\text{FeCl}_2 + \text{Cl}_2 & \longrightarrow 2\text{FeCl}_3 \\ 0,04 & 0,02 & 0,04 \text{ (mol)} \end{array} \tag{7} $	

Dung dịch D có chứa:
$$n_{FeCl_3} = 0.08(mol)$$
; $n_{FeCl_2} = 0.02(mol)$

$$2FeCl_3 + Cu \longrightarrow CuCl_2 + 2FeCl_2$$
 (8)

$$=> m_{Cu} = 0.04.64 = 2.56$$
 gam

a)
$$\frac{n_{SO_2}}{n_{H_2SO_4}} = \frac{0.375}{0.75} = \frac{1}{2} \Rightarrow \text{Cu} + 2\text{H}_2\text{SO}_4 \text{ dặc} \xrightarrow{t^0} \text{CuSO}_4 + \text{SO}_2 \uparrow + 2\text{H}_2\text{O}$$

b)
$$\frac{n_{SO_2}}{n_{H_2SO_4}} = \frac{0.75}{0.75} = 1 \Rightarrow \text{Na}_2\text{SO}_3 + \text{H}_2\text{SO}_4 \longrightarrow \text{Na}_2\text{SO}_4 + \text{SO}_2\uparrow + \text{H}_2\text{O}$$

c)
$$\frac{n_{SO_2}}{n_{H_3SO_4}} = \frac{1{,}125}{0{,}75} = \frac{3}{2} \Rightarrow S + 2H_2SO_4 \stackrel{t^0}{\text{dặc}} \xrightarrow{t^0} 3SO_2 \uparrow + 2H_2O$$

d)
$$\frac{n_{SO_2}}{n_{H_2SO_4}} = \frac{1.5}{0.75} = 2 \Rightarrow 2\text{NaHSO}_3 + \text{H}_2\text{SO}_4 \longrightarrow \text{Na}_2\text{SO}_4 + 2\text{SO}_2 \uparrow + \text{H}_2\text{O}_4$$

<u>Chú ý:</u> Học sinh chọn chất khác và viết phương trình hóa học đúng, cho điểm tối đa tương ứng.

Sự phân hủy nước.

Lắp thiết bị phân hủy nước như hình (1). Khi cho dòng điện một chiều đi qua nước (đã có pha thêm một ít dung dịch axit sunfuric để làm tăng độ dẫn điện của nước), trên bề mặt hai điện cực (Pt) xuất hiện bọt khí. Các khí này tích tụ trong hai đầu ống nghiệm thu A và B. Đốt khí trong A, nó cháy kèm theo tiếng nổ nhỏ, đó là H₂. Khí trong B làm cho tàn đóm đỏ bùng cháy, đó là khí oxi.

Sự tổng hợp nước:

Cho nước vào đầy ống thủy tinh hình trụ. Cho vào ống lần lượt 2 thể tích khí hiđro và 2 thể tích khí oxi. Mực nước trong ống ở vạch số 4 (hình (2)). Đốt bằng tia lửa điện hỗn hợp hi đro và oxi sẽ nổ. Mức nước trong ống dâng lên. Khi nhiệt độ trong ống bằng nhiệt độ bên ngoài thì mực nước dừng lại ở vạch chia số 1 (Hình (3)), khí còn lại làm tàn đóm bùng cháy đó là oxi.

Xác định thành phần định lượng của H2O

Từ các dữ kiện thí nghiệm trên ta có phương trình hóa học tạo thành H_2O

$$2H_2 + O_2 \rightarrow 2H_2O$$

Do tỉ lệ về thể tích bằng tỉ lệ về số mol nên ta có

 n_{H_2} : $n_{O_2}=2:1 \rightarrow m_{H_2}$: $m_{O_2}=4:32=1:8$. Vậy phần trăm khối lượng mỗi nguyên tố trong nước là

$$%H = \frac{1*100\%}{1+8} = 11,1\% \rightarrow %O = 100\%-%H = 88,9\%$$

UBND HUYỆN NGỌC LẶC PHÒNG GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ THI CHÍNH THỨC

KỲ THI KHẢO SÁT ĐỘI DỰ TUYỀN HỌC SINH GIỎI LỚP 9 NĂM HỌC : 2018-2019 Môn: Hóa học 9

Thời gian làm bài: 150 phút (không kể thời gian giao đề) Đề thi gồm có: 02 trang 10 câu

Câu 1(2 điểm) Viết các phương trình hóa học thực hiện chuỗi biến hóa sau: $Cu^{(1)}$ CuSO₄ $\xrightarrow{(2)}$ CuCl₂ $\xrightarrow{(3)}$ Cu(NO₃)₂ $\xrightarrow{(4)}$ Fe(NO₃)₂ $\xrightarrow{(5)}$ Fe(OH)₂ $\xrightarrow{(6)}$ Fe₂O₃ \downarrow \uparrow Al(OH)₃ $\xleftarrow{(10)}$ NaAlO₂ $\xleftarrow{(9)}$ Al $\xleftarrow{(8)}$ Al₂O₃

Câu 2(2 điểm):

- 1. Hòa tan hoàn toàn một lượng kim loại M trong dung dịch H_2SO_4 loãng có nồng độ 20% (lấy dư 20% so với lượng cần cho phản ứng). Dung dịch thu được có nồng độ của muối tạo thành là 23,68%. Xác định kim loại M?
- 2. Hỗn hợp A gồm C₃H₄; C₃H₆; C₃H₈ có tỉ khối đối với hidro là 21. Đốt cháy hoàn toàn 1,12 lít hỗn hợp A(ở đktc) rồi dẫn toàn bộ sản phẩm cháy vào bình đựng dung dịch nước vôi trong dư. Tính độ tăng khối lượng của bình.

Câu 3(2 điểm)

Nêu phương pháp hóa học tách riêng từng kim loại riêng biệt ra khỏi hỗn hợp rắn gồm: Na₂CO₃, BaCO₃, MgCO₃.

Câu 4(2 điểm):

- 1. Nêu phương pháp hóa học nhận biết 5 chất lỏng đựng trong 5 lọ riêng biệt sau: rượu etylic; benzen; glucozo; axit axetic; etyl axetat.
- 2. Nêu hiện tượng xảy ra khi cho Na vào từng dung dịch: FeCl₃; NH₄NO₃; AlCl₃; AgNO₃.

Câu 5(2 điểm)

Cho 80 gam bột Cu vào 200 gam dung dịch AgNO₃, sau một thời gian phản ứng đem lọc thu được dung dịch A và 95,2 gam chất rắn B. Cho tiếp 80 gam bột Pb vào dung dịch A, phản ứng xong đem lọc thì thu được dung dịch D chỉ chứa một muối duy nhất và 67,05 gam chất rắn E. Cho 40 gam bột kim loại R(có hóa trị II) vào 1/10 dung dịch D, sau phản ứng hoàn toàn đem lọc thì tách được 44,575 gam chất rắn F. Tính nồng độ mol của dung dịch AgNO₃ và xác định kim loại R.

Câu 6(2 điểm)

Hỗn hợp X gồm axetilen, propilen và metan. Đốt cháy hoàn toàn 11 gam X thu được 12,6 gam H_2O . Còn 11,2 dm 3 X (ở đktc) thì phản ứng tối đa được với dung dịch chứa 100 gam brom. Tính thành phần % về thể tích của mỗi khí trong hỗn hợp X.

Câu7(2 điểm)

Có 15 gam hỗn hợp Al và Mg được chia thành 2 phần bằng nhau. Phần 1 cho vào 600 ml dung dịch HCl có nồng độ x mol/l thu được khí A và dung dịch B, cô cạn dung dịch B thu được 27,9 gam muối khan(thí nghiệm 1). Phần 2 cho vào 800 ml dung dịch HCl có nồng độ x mol/l và làm tương tự thu được 32,35 gam muối khan(thí nghiệm 2). Tính thành phần % về khối lượng mỗi kim loại trong hỗn hợp ban đầu và trị số x.

Câu 8(2 điểm)

- 1. Từ nguyên liệu là vỏ bào, mùn cưa chứa 50% xenlulozơ về khối lượng, người ta điều chế rượu etylic với hiệu suất 75%. Tính khối lượng nguyên liệu cần thiết để điều chế 1000 lít rượu etylic 90°. Khối lượng riêng của rượu etylic nguyên chất là 0,8 g/ml.
- 2. Cho luồng khí CO qua ống sứ chứa m gam hỗn hợp X gồm MnO và CuO nung nóng. Sau một thời gian trong ống sứ còn lại p gam chất rắn. Khí thoát ra được hấp thụ hoàn toàn bằng dung dịch Ca(OH)₂ được q gam kết tủa và dung dịch Z. Dung dịch Z tác dụng vừa đủ với V lít dung dịch NaOH nồng độ c mol/l. Lập biểu thức tính V theo m, p, q, c.

Câu 9(2 điểm)

Cho hỗn hợp Z gồm 2 chất hữu cơ A và B tác dụng vừa đủ với dung dịch chứa 4 gam NaOH tạo ra hỗn hợp 2 muối R_1 COONa ; R_2 COONa và 1 rượu ROH(Trong đó R_1 ; R_2 và R chỉ chứa C và H; $R_2 = R_1 + 14$). Tách lấy toàn bộ rượu rồi cho tác dụng hết với Na thu được 1,12 lít H_2 (ở đktc). Mặt khác cho 5,14 gam Z tác dụng với một lượng vừa đủ NaOH thu được 4,24 gam muối, còn để đốt cháy hết 15,42 gam Z cần dùng 21,168 lít O_2 (ở đktc) tạo ra 11,34 gam H_2 O. Xác định công thức hóa học của A và B

Câu10(2điểm)

- 1. Tại sao khi đốt than trong phòng kín, đóng kín cửa có thể gây tử vong? Viết phương trình hoá học xảy ra.
- 2. Hãy nêu 8 hợp chất chứa K hoặc Na có nhiều ứng dụng trong thực tế. Những ứng dụng đó là gì?

Biết: H = 1; Ca=40;O=16;Na=23;C=12; Cu=64; S=32; Ag=108 Pb= 207; Cl= 35,5; Mg= 24; Al= 27; Br = 80

UBND HUYỆN NGỌC LẶC PHÒNG GIÁO DỤC VÀ ĐÀO TẠO HƯỚNG DẪN CHẨM ĐỀ KHẢO SÁT ĐỘI DỰ TUYỂN HỌC SINH GIỎI LỚP 9 NĂM HỌC: 2018-2019

Môn: Hóa học 9

Thời gian làm bài: 150 phút (không kể thời gian giao đề) Hướng dẫn gồm có: 08 trang 10 câu

_	Hướng dẫn gồm có: 08 trang 10 câu					
Câu	Đáp án	Điểm				
	1. Cu + $2H_2SO_{4(d)} \xrightarrow{t^0} CuSO_4 + SO_2 \uparrow + 2H_2O$	0,2đ				
	2. $CuSO_4 + BaCl_2 \rightarrow CuCl_2 + BaSO_4 \downarrow$	0,2đ				
	3. $CuCl_2 + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2AgCl \downarrow$	0,2đ 0,2đ				
Câu 1	4. $Cu(NO_3)_2 + Fe \rightarrow Cu + Fe(NO_3)_2$					
(2điểm)	5. $Fe(NO_3)_2 + 2NaOH \rightarrow Fe(OH)_2 \downarrow + 2NaNO_3$	0,2đ				
	6. $4\text{Fe}(\text{OH})_2 + \text{O}_2 \xrightarrow{r^0} 2\text{Fe}_2\text{O}_3 + 4\text{H}_2\text{O}$	0,2đ				
	7. $\operatorname{Fe_2O_3} + 2\operatorname{Al} \xrightarrow{t^0} 2\operatorname{Fe} + \operatorname{Al_2O_3}$	0,2đ				
	8. $2Al_2O_3 \xrightarrow{dpnc-Criolit} 4Al + 3O_2 \uparrow$	0,2đ				
	9. $2Al + 2NaOH + 2H_2O \rightarrow 2NaAlO_2 + 3H_2 \uparrow$	0,2đ				
	$10. \text{ NaAlO}_2 + \text{CO}_2 + 2\text{H}_2\text{O} \rightarrow \text{Al(OH)}_3 \downarrow + \text{NaHCO}_3$	0,2đ				
	1. Gọi hóa trị của kim loại M trong phản ứng là n (1≤ n ≤3)	0.1051				
	PTHH: $2M + nH_2SO_4 \longrightarrow M_2(SO_4)_n + nH_2 \uparrow$	0,125đ				
	Gọi số mol của M là x					
	Theo PTHH: $n_{H_2} = n_{H_2SO_4 pu} = \frac{nx}{2} $ (mol)					
	Vì dùng dư 20% so với lượng phản ứng					
Câu 2	$\Rightarrow n_{H_2SO_4 ban dau} = \frac{nx \times 120}{2 \times 100} = 0,6nx (mol)$	0,125đ				
(2điểm)	Khối lượng dung dịch H ₂ SO ₄ đã dùng là:					
		0,125đ				
	$\frac{98\times0,6nx}{20}\times100 = 294nx(gam)$	0,1200				
	Theo định luật bào toản khối lượng:					
	$m_{ ext{dung dịch sau phản ứng}} = m_{ ext{kim loại}} + m_{ ext{dung dịch axit}} - m_{ ext{hidro}} = M.x + m_{ ext{dung dịch axit}}$					
	$294\text{nx} - \frac{nx}{2} \times 2 = \text{M.x} + 293\text{nx} \text{ (gam)}$	0,125đ				
	2					
	Theo PTHH: $n_{\text{mu\'oi}} = \frac{1}{2} n_{\text{M}} = \frac{1}{2} x \text{ (mol)}$					
	$m_{\text{mu\acute{o}i}} = \frac{1}{2} x.(2M + 96.n) = M.x + 48.n.x (g)$	0,125đ				
	Theo bài ra ta có: $\frac{M.x + 48nx}{Mx + 293nx}.100\% = 23,68\%$					
	$\Rightarrow M = 28n.$					
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,25đ				
	M 28 56 84					
	(loại) (Fe) (loại)					
	Vậy kim loại hóa trị II khối lượng mol = 56 là sắt (Fe)	0,125đ				
	2.					
	Ta có: $\overline{M_A} = 21.2 = 42 (g/mol)$	0.1054				
	_	0,125đ				
	$n_A = \frac{1,12}{22.4} = 0,05 \text{(mol)}$					
	Gọi công thức trung bình của hỗn hợp A là: C ₃ H _y					
		0,25đ				

PTHH: $C_3H_y + (3+\frac{y}{4})O_2 \xrightarrow{loc} 3CO_2 + \frac{y}{2}H_2O$ Theo PTHH: $n_{CO_2} = 3n_{C_3H_3} = 3.0,05 = 0,15 (\text{mol})$ $n_{H_2} o = \frac{y}{2} \cdot n_{C_3H_3} = \frac{y}{2} \cdot 0,05 = 0,025 \text{y}(\text{mol})$ $V_1^2 M_A^2 = 42 \Rightarrow 12.3 + y = 42 \Rightarrow y = 6$ $D_0^2 t \text{ ting khối lượng của bình nước või trong bằng tổng khối lượng CO_3 và H_2O \Rightarrow \Delta m = (44 \cdot 0,15) + (18 \cdot 0,025.6) = 9,3(g) 1. Hòa tan hôn họp chất rắn gồm BaCO_3 và MgCO_3. Cho dung dịch Na_2CO_3 tác dụng với dung dịch HCl vừa dù, sau dó có cạ and dung dịch rởi diễn phần nóng chây thu được Na PTHH: Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2 \uparrow + H_2O 2NaCl \xrightarrow{Aprec} 2Na + Cl_2 \uparrow - Hòa tan hồn hợp rấn gồm BaCO_3 và MgCO_3 trong dung dịch HCl vừa đù thu được dung dịch chứa MgCl_3 và BaCl_2 PTHH: BaCO_3 + 2HCl \rightarrow BaCl_2 + CO_2 \uparrow + H_2O MgCO_3 + 2HCl \rightarrow BaCl_2 + CO_2 \uparrow + H_2O Thêm dung dịch Ba(OH)_2 \rightarrow BaCl_2 + CO_2 \uparrow + H_2O MgCO_3 + 2HCl \rightarrow BaCl_2 + CO_2 \uparrow + H_2O MgCO_3 + 2HCl \rightarrow BaCl_2 + CO_2 \uparrow + H_2O Thêm dung dịch Ba(OH)_2 \rightarrow BaCl_2 + DaC_3 \rightarrow DaC$			
Theo PTHH: $n_{CO_2} = 3n_{C_3H}$, $= 3.0,05 = 0,15(mol)$ $n_{H_2O} = \frac{y}{2} \cdot n_{C_3H}$, $= \frac{y}{2} \cdot 0,05 = 0,025y(mol)$ $Vi \overline{M_x} = 42 \Rightarrow 12.3 + y = 42 \Rightarrow y = 6$ Dộ tăng khối lượng của binh nước vôi trong bằng tổng khối lượng CO_2 và H_2O $\Rightarrow \Delta m = (44.0,15) + (18.0,025.6) = 9.3(g)$ 1. Hòa tan hoàn toàn hồn hợp vào nước, lọc thu được dung dịch Na_2CO_3 và hỗn hợp chất rắn gồm $BaCO_3$ và $MgCO_3$. Cho dung dịch Na_2CO_3 tác dụng với dụng dịch HCI vừa đủ, sau đó có cạn dung dịch $V_1 = V_1 = V_2 = V_2 = V_3 = V$		PTHH: $C_3H_y + (3+\frac{y}{4})O_2 \xrightarrow{to} 3CO_2 + \frac{y}{2}H_2O$	0,125đ
$\begin{array}{c} n_{H_2O} = \frac{y}{2} \cdot n_{C_3H_1} = \frac{y}{2} \cdot 0.05 = 0.025 y (\text{mol}) \\ \hline Vi \overline{M_A} = 42 \Rightarrow 12.3 + y = 42 \Rightarrow y = 6 \\ \hline Dộ tăng khối lương của binh nước vôi trong bằng tổng khối lượng CO2 và H2O \Rightarrow Am = (44.0,15) + (18.0,025.6) = 9.3(g) \\ \hline 1. Hòa tan hoàn toàn hỗn hợp vào nước, lọc thu được dung dịch Na2CO3 và hỗn hợp chất rắn gồm BaCO3 và MgCO3. Cho dung dịch Na2CO3 tác dụng với dụng dịch HCl vừa đủ, sau đó cô cạn dung dịch rồi điện phân nóng chảy thu được Na PTHH: Na2CO3 + 2HCl \rightarrow 2NaCl + CO2↑ + H2O 2NaCl \xrightarrow{fipnc} 2Na + Cl_2 \uparrow \\ - Hòa tan hỗn hợp rắn gồm BaCO3 và MgCO3 trong dung dịch HCl vừa đủ thu được dung dịch chứa MgCl2 và BaCl2 PTHH: BaCO3 + 2HCl \rightarrow BaCl2 + CO2↑ + H2O - Thêm dung dịch Ba(OH)2 dư vào dung dịch sau phân tứng, lọc thu được kết tủa Mg(OH)2 - Thêm dung dịch Ba(OH)2 + BaCl2 + Mg(OH)2 \downarrow \\ - Lọc kết tủa hỏa tan vào dung dịch HCl, cô cạn dung dịch thư được muối khan MgCl2 rồi điện phân nóng chảy thu được kim loại Mg. - Cho dung dịch còn lại sau khi lọc kết từa Mg(OH)2 tác dụng với HCl vừa đủ. Cộ cạn ta được muối khan BaCl2 rồi điện phân nóng chảy thu được Ba. - THH: Ba(OH)2 + 2HCl \rightarrow BaCl2 + 2H2O \\ BaCl2 \xrightarrow{fipnc} Ba + Cl2 \end{aligned} - Cho dung dịch còn lại sau khi lọc kết từa Mg(OH)2 tác dụng với HCl vừa đủ. Cộ can ta được muối khan BaCl2 rồi điện phân nóng chảy thư được Ba. - THH: Ba(OH)2 + 2HCl \rightarrow BaCl2 + 2H2O \\ BaCl2 \xrightarrow{fipnc} Ba + Cl2 \end{aligned} - Cho dung dịch còn lại sau khi lọc kết từa Mg(OH)2 tác dụng với HCl vừa đủ. Cộ can ta được muối khan BaCl2 rồi điện phân nóng chấy thư được Ba. - THH: Ba(OH)2 + 2HCl \rightarrow BaCl2 + 2H2O \\ BaCl2 \xrightarrow{fipnc} Ba + Cl2 \end{aligned} - Cho dung dịch AgNO3 (trong dung dịch NH3) vào các mẫu thứ chu qiữ màu dỏ là axit axetic, các mẫu thứ còn lại không có hiện tương. Cho dung dịch AgNO3 (trong dung dịch NaOH có sẵn dung dịch phaolphtalein (có màu hồng) mẫu thứ nào làm mất màu hồng 0,25đ$		Theo PTHH: $n_{CO_2} = 3n_{C_3H_y} = 3.0,05 = 0,15 \text{(mol)}$	
$\begin{array}{c} \nabla_1 \ \overline{M_A} = 42 \Rightarrow 12.3 + y = 42 \Rightarrow y = 6 \\ Dộ tăng khối lượng của bình nước vôi trong bằng tổng khối lượng CO_2 và H_2O \Rightarrow \Delta m = (44.0,15) + (18.0,025.6) = 9.3(g) \\ \hline 1. Hòa tan hoàn toàn hồn hợp vào nước, lọc thu được dung dịch Na_2CO_3 và hỗn hợp chất rắn gồm BaCO_3 và MgCO_3. Cho dung dịch Na_2CO_3 tác dụng với đưng dịch HCI vừa đủ, sau đó có cạn dung dịch rồi điện phân nóng chảy thu được Na PTHH: Na_2CO_3 + 2HCI \rightarrow 2NaCI + CO_2 \uparrow + H_2O 2NaCI - \frac{\hbar\rho no}{2} \rightarrow 2Na + CI_2 \uparrow . Hòa tan hỗn hợp rắn gồm BaCO_3 và MgCO_3 trong dung dịch HCI vùa đủ thu được dung dịch chứa MgCI_2 và BaCI_2 PTHH: BaCO_3 + 2HCI \rightarrow BaCI_2 + CO_2 \uparrow + H_2O MgCO_3 + 2HCI \rightarrow MgCI_2 + CO_2 \uparrow + H_2O MgCO_3 + 2HCI \rightarrow MgCI_2 + CO_2 \uparrow + H_2O -16m dung dịch BaCO_3 và BaCI_2 + CO_2 \uparrow + H_2O -16m dung dịch BaCO_3 và BaCI_2 + CO_2 \uparrow + H_2O -16m dung dịch BaCO_3 và BaCI_2 + CO_2 \uparrow + H_2O -16m dung dịch BaCO_3 và BaCI_2 + CO_2 \uparrow + H_2O -16m dung dịch BaCO_3 + 2HCI \rightarrow MgCI_2 + CO_2 \uparrow + H_2O -16m dung dịch BaCO_3 + 2HCI \rightarrow MgCI_2 + 2H_2O -16m dung dịch Aa Aa Aa Aa Aa Aa Aa Aa$		$n_{H_2O} = \frac{y}{2} \cdot n_{C_3H_y} = \frac{y}{2} \cdot 0.05 = 0.025y \text{(mol)}$	0,1230
Dộ tăng khối lượng của bình nước vôi trong bằng tổng khối lượng CO ₂ và H ₂ O ⇒ Am = (44, 0,15) + (18, 0,025.6) = 9,3(g) 1. Hòa tan hoàn toàn hồn hợp vào nước, lọc thu được dung dịch Na ₂ CO ₃ và hỗn hợp chất rắn gồm BaCO ₃ và MgCO ₃ . Cho dung dịch Na ₂ CO ₃ tác dụng với dung dịch HCl vừa đủ, sau đó cô cạn dung dịch rồi điện phân nóng chây thu được Na PTHH: Na ₂ CO ₃ + 2HCl → 2NaCl + CO ₂ ↑ + H ₂ O 2NaCl — // popc → 2Na + Cl ₂ ↑ - Hòa tan hỗn hợp rấn gồm BaCO ₃ và MgCO ₃ trong dung dịch HCl vừa dù thu được dung dịch chứa MgCl ₂ và BaCl ₂ PTHH: BaCO ₃ + 2HCl → BaCl ₂ + CO ₂ ↑ + H ₂ O - Thêm dung dịch Ba(OH) ₂ dư vào dung dịch sau phản ứng, lọc thu được kết từa Mg(OH) ₂ PTHH: MgCl ₂ + Ba(OH) ₂ → BaCl ₂ + Mg(OH) ₂ ↓ - Lọc kết từa hòa tan vào dung dịch HCl, cổ cạn dung dịch thu được muối khan MgCl ₂ rồi điện phân nóng chây thu được kim loại Mg. PTHH: Mg(OH) ₂ + 2HCl → MgCl ₂ + 2H ₂ O MgCl ₂ — // popc → Mg + Cl ₂ ↑ - Cho dung dịch còn lại sau khi lọc kết từa Mg(OH) ₂ tác dụng với HCl vừa đủ. Cổ cạn ta được muối khan BaCl ₂ rồi điện phân nóng chây thu được Ba. PTHH: Ba(OH) ₂ + 2HCl → BaCl ₂ + 2H ₂ O BaCl ₂ — // popc → Ba + Cl ₂ Câu 4 (2điểm) Câu 4 (2điểm) Câu 4 (2điển) Cho quỳ tím vào từng mẫu thử, mẫu thử nào làm quỳ tím chuyển màu đỏ là axit axetic, các mẫu thử. Cho dung dịch AgNO ₃ (trong dung dịch NH ₃) vào các mẫu thử còn lại rồi đun nhẹ mẫu thử nào xuất hiện chất rấn màu sáng bạc là dung dịch glucozo PTHH: C ₆ H ₁₂ O ₆ + Ag ₂ O — (MH ₂ O ₇ + 2Ag ↓ Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng			0,125đ
a m = (44.0,15) + (18.0,025.6) = 9,3(g) 1. Hòa tan hoàn toàn hồn hợp vào nước, lọc thu được dung dịch Na ₂ CO ₃ và hỗn hợp chất rắn gồm BaCO ₃ và MgCO ₃ . Cho dung dịch Na ₂ CO ₃ tác dụng với dung dịch HCl vừa đủ, sau đó cô cạn dung dịch rồi điện phân nóng chảy thu được Na PTHH: Na ₂ CO ₃ + 2HCl → 2NaCl + CO ₂ ↑ + H ₂ O 2NaCl — phan bốn hợp rấn gồm BaCO ₃ và MgCO ₃ trong dung dịch HCl vừa đủ thu được dung dịch chứa MgCl ₂ và BaCl ₂ PTHH: BaCO ₃ + 2HCl → BaCl ₂ + CO ₂ ↑ + H ₂ O 3NgCO ₃ + 2HCl → BaCl ₂ + CO ₂ ↑ + H ₂ O 4NgCO ₃ + 2HCl → BaCl ₂ + CO ₂ ↑ + H ₂ O 5NgCO ₃ + 2HCl → MgCl ₂ + CO ₂ ↑ + H ₂ O 5NgCO ₃ + 2HCl → MgCl ₂ + CO ₂ ↑ + H ₂ O 5NgCO ₃ + 2HCl → MgCl ₂ + CO ₂ ↑ + H ₂ O 5NgCO ₃ + 2HCl → MgCl ₂ + CO ₂ ↑ + H ₂ O 5NgCO ₃ + 2HCl → MgCl ₂ + CO ₂ ↑ + H ₂ O 6NgCO ₃ + 2HCl → MgCl ₂ + CO ₂ ↑ + H ₂ O 6NgCO ₃ + 2HCl → MgCl ₂ + CO ₂ ↑ + H ₂ O 6NgCO ₃ + 2HCl → MgCl ₂ + CO ₂ ↑ + H ₂ O 6NgCO ₃ + 2HCl → MgCl ₂ + CO ₂ ↑ + H ₂ O 6NgCO ₃ + 2HCl → MgCl ₂ + 2H ₂ O 6NgCO ₃ + 2HCl → MgCl ₂ + 2H ₂ O 6NgCO ₃ + 2HCl → MgCl ₂ + 2H ₂ O 6NgCO ₃ + 2HCl → MgCl ₂ + 2H ₂ O 6NgCO ₃ + 2HCl → MgCl ₂ + 2H ₂ O 6NgCO ₃ + 2HCl → BaC		Độ tăng khối lượng của bình nước vôi trong bằng tổng khối	0,25đ
1. Hòa tan hoàn toàn hỗn hợp vào nước, lọc thu được dung dịch Na ₂ CO ₃ và hỗn hợp chất rấn gồm BaCO ₃ và MgCO ₃ . Cho dung dịch Na ₂ CO ₃ tác dụng với dung dịch HCl vừa đủ, sau dó cổ cạn dung dịch rồi diện phân nóng chấy thu được Na PTHH: Na ₂ CO ₃ + 2HCl → 2NaCl + CO ₂ ↑ + H ₂ O 2NaCl — ngnc → 2Na + Cl ₂ ↑ - Hòa tan hỗn hợp rấn gồm BaCO ₃ và MgCO ₃ trong dung dịch HCl vừa đủ thu được dung dịch chứa MgCl ₂ và BaCl ₂ PTHH: BaCO ₃ + 2HCl → BaCl ₂ + CO ₂ ↑ + H ₂ O MgCO ₃ + 2HCl → MgCl ₂ + CO ₂ ↑ + H ₂ O - Thêm dung dịch Ba(OH) ₂ dư vào dung dịch sau phản ứng, lọc thu được kết từa Mg(OH) ₂ ↓ - Lọc kết từa hòa tan vào dung dịch HCl, cổ cạn dung dịch thu được muối khan MgCl ₂ rỗi điện phân nóng chảy thu được kim loại Mg. PTHH: Mg(OH) ₂ + 2HCl → MgCl ₂ + 2H ₂ O MgCl ₂ — ngnc → Mg + Cl ₂ ↑ - Cho dung dịch còn lại sau khi lọc kết từa Mg(OH) ₂ tác dụng với HCl vừa đủ. Cộ cạn ta được muối khan BaCl ₂ rồi điện phân nóng chảy thu được Ba. PTHH: Ba(OH) ₂ + 2HCl → BaCl ₂ + 2H ₂ O BaCl ₂ — ngnc → Ba + Cl ₂ 1. Trích mỗi chất ra một ít làm các mẫu thử. Cho quỳ tím vào từng mẫu thứ, mẫu thử nào làm quỳ tím chuyển màu đỏ là axit axetic, các mẫu thử. Cho dung dịch AgNO ₃ (trong dung dịch NH ₃) vào các mẫu thử còn lại rồi dun nhẹ mẫu thử nào xuất hiện chất rấn màu sáng bạc là dung dịch glucozo PTHH: C ₀ H ₁₂ O ₆ + Ag ₂ O — NH3 LO C ₀ H ₁₂ O ₇ + 2Ag ↓ Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalcin(có màu hồng) mẫu thử nào làm mất màu hồng 0,25đ			
Câu 3 (2diễm) Câu 4 (2diễm) Câu 3 (2diễm) Câu 3 (2diễm) Câu 3 (2diễm) Câu 4 (2diễm) Câu 4 (2diễm) Câu 4 (2diễm) Câu 4 (2diễm) Câu 3 (2diễn) Câu 4 (2diễm) Câu 3 (2diễn) Câu 4 (2diễm) Câu 3 (2diêm) Câu 4 (2diễm) Câu 3 mầu thứ còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thứ nào làm mất màu hồng 0,25đ			
sau đó cổ cạn dung dịch rồi điện phân nóng chảy thu được Na PTHH: $Na_2CO_3 + 2HCI \rightarrow 2NaCI + CO_2 \uparrow + H_2O$ $2NaCI \frac{\hbar\rho\rho rc}{2} \rightarrow 2Na + Cl_2 \uparrow$ - Hòa tan hỗn hợp rắn gồm BaCO ₃ và MgCO ₃ trong dung dịch HCl vừa đủ thu được dung dịch chứa MgCl ₂ và BaCl ₂ PTHH: BaCO ₃ + $2HCI \rightarrow BaCl_2 + CO_2 \uparrow + H_2O$ $MgCO_3 + 2HCI \rightarrow MgCl_2 + CO_2 \uparrow + H_2O$ - Thêm dung dịch Ba(OH) ₂ dư vào dung dịch sau phản từng, lọc thu được kết tửa Mg(OH) ₂ PTHH: MgCl ₂ + Ba(OH) ₂ \rightarrow BaCl ₂ + Mg(OH) ₂ \downarrow - Lọc kết tửa hòa tan vào dung dịch HCl, cổ cạn dung dịch thu được muối khan MgCl ₂ rỗi điện phân nóng chảy thu được kim loại Mg. PTHH: Mg(OH) ₂ + $2HCI \rightarrow$ MgCl ₂ + $2H_2O$ $MgCl_2 \frac{\hbar\rho\rho rc}{N}$ Mg + $Cl_2 \uparrow$ - Cho dung dịch còn lại sau khi lọc kết tửa Mg(OH) ₂ tác dụng với HCl vừa đủ. Cộ cạn ta được muối khan BaCl ₂ rồi diện phân nóng chảy thu được Ba. PTHH: Ba(OH) ₂ + $2HCI \rightarrow$ BaCl ₂ + $2H_2O$ BaCl ₂ $\frac{\hbar\rho\rho rc}{N}$ Ba + Cl_2 1. Trích mỗi chất ra một ít làm các mẫu thử. Cho quỳ tím vào từng mẫu thử, mẫu thử nào làm quỳ tím chuyển màu đỏ là axit axetic, các mẫu thử còn lại không có hiện tượng. Cho dung dịch AgNO ₃ (trong dung dịch NH ₃) vào các mẫu thử còn lại rồi đun nhẹ mẫu thử nào xuất hiện chất rắn màu sáng bạc là dung dịch glucozo PTHH: $C_6H_{12}O_6 + Ag_2O$ $M_{12}O_7 + 2Ag\downarrow$ Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng			0.051
Câu 3 (2diễm) PTHH: Na ₂ CO ₃ + 2HCl → 2NaCl + CO ₂ ↑ + H ₂ O 2NaCl		, , ,	0,25đ
- Hòa tan hỗn họp rắn gồm BaCO₃ và MgCO₃ trong dung dịch HCl vừa đủ thu được dung dịch chứa MgCl₂ và BaCl₂ - PTHH: BaCO₃ + 2HCl → BaCl₂ + CO₂↑ + H₂O - MgCO₃ + 2HCl → MgCl₂ + CO₂↑ + H₂O - Thêm dung dịch Ba(OH)₂ dư vào dung dịch sau phản ứng, lọc thu được két từa Mg(OH)₂ - Lọc kết tửa hòa tan vào dung dịch HCl, cô cạn dung dịch thu được muối khan MgCl₂ rồi điện phân nóng chảy thu được kim loại Mg PTHH: Mg(OH)₂ + 2HCl → MgCl₂ + 2H₂O - Cho dung dịch còn lại sau khi lọc kết tửa Mg(OH)₂ tác dụng với HCl vừa đủ. Cô cạn ta được muối khan BaCl₂ rồi điện phân nóng chảy thu được Ba PTHH: Ba(OH)₂ + 2HCl → BaCl₂ + 2H₂O - BaCl₂ - / jpnc → Ba + Cl₂ Câu 4 - (2diễm) - Cho dung dịch AgNO₃ (trong dung dịch NH₃) vào các mẫu thử còn lại rồi đun nhẹ mẫu thử nào xuất hiện chất rấn màu sáng bạc là dung dịch glucozo - PTHH: C₀H₁₂O₆ + Ag₂O - NH3.00 → C₀H₁₂Oȝ + 2Ag↓ - Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng - O,25đ			
- Hòa tan hôn họp rắn gồm BaCO₃ và MgCO₃ trong dung dịch HCl vừa đủ thu được dung dịch chứa MgCl₂ và BaCl₂ PTHH: BaCO₃ + 2HCl → BaCl₂ + CO₂↑ + H₂O MgCO₃ + 2HCl → MgCl₂ + CO₂↑ + H₂O - Thêm dung dịch Ba(OH)₂ dư vào dung dịch sau phản ứng, lọc thu được kết tủa Mg(OH)₂ - Thệm dung dịch BaCl₂ + Mg(OH)₂↓ - Lọc kết tửa hòa tan vào dung dịch HCl, cô cạn dung dịch thu được muối khan MgCl₂ rồi điện phân nóng chảy thu được kim loại Mg. PTHH: Mg(OH)₂ + 2HCl → MgCl₂ + 2H₂O MgCl₂ / fppc / Mg + Cl₂ ↑ - Cho dung dịch còn lại sau khi lọc kết tửa Mg(OH)₂ tác dụng với HCl vừa đủ. Cộ cạn ta được muối khan BaCl₂ rồi điện phân nóng chảy thu được Ba. PTHH: Ba(OH)₂ + 2HCl → BaCl₂ + 2H₂O BaCl₂ / fppc → Ba + Cl₂ 1. Trích mỗi chất ra một ít làm các mẫu thử. Cho quỳ tím vào từng mẫu thử, mẫu thử nào làm quỳ tím chuyển màu đỏ là axit axetic, các mẫu thử còn lại không có hiện tượng. Câu 4 (2diểm) 1. Trích mỗi chất ra một (trong dung dịch NH₃) vào các mẫu thử còn lại rồi đun nhẹ mẫu thử nào xuất hiện chất rá màu sáng bạc là dung dịch glucozo PTHH: C ₆ H₁₂O₆ + Ag₂O / MH.3.0→ C₆H₁₂Oȝ + 2Ag↓ Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng	9	$2\text{NaCl} \xrightarrow{\tilde{n}pnc} 2\text{Na} + \text{Cl}_2 \uparrow$	0,25đ
PTHH: BaCO ₃ + 2HCl → BaCl ₂ + CO ₂ ↑ + H ₂ O MgCO ₃ + 2HCl → MgCl ₂ + CO ₂ ↑ + H ₂ O - Thêm dung dịch Ba(OH) ₂ dư vào dung dịch sau phản ứng, lọc thu được kết tủa Mg(OH) ₂ PTHH: MgCl ₂ + Ba(OH) ₂ → BaCl ₂ + Mg(OH) ₂ ↓ - Lọc kết tửa hòa tan vào dung dịch HCl, cố cạn dung dịch thu được muối khan MgCl ₂ rỗi điện phân nóng chảy thu được kim loại Mg. PTHH: Mg(OH) ₂ + 2HCl → MgCl ₂ + 2H ₂ O MgCl ₂ — ^{ñpnc} → Mg + Cl ₂ ↑ - Cho dung dịch còn lại sau khi lọc kết tửa Mg(OH) ₂ tác dụng với HCl vừa đủ. Cộ cạn ta được muối khan BaCl ₂ rồi điện phân nóng chảy thu được Ba. PTHH: Ba(OH) ₂ + 2HCl → BaCl ₂ + 2H ₂ O BaCl ₂ — ^{npnc} → Ba + Cl ₂ 1. Trích mỗi chất ra một ít làm các mẫu thử. Cho quỳ tím vào từng mẫu thử, mẫu thử nào làm quỳ tím chuyển màu đỏ là axit axetic, các mẫu thử còn lại không có hiện tượng. Cho dung dịch AgNO ₃ (trong dung dịch NH ₃) vào các mẫu thử còn lại rồi đun nhẹ mẫu thử nào xuất hiện chất rắn màu sáng bạc là dung dịch glucozo PTHH: C ₆ H ₁₂ O ₆ + Ag ₂ O — MH 3.00 + C ₆ H ₁₂ O ₇ + 2Ag ↓ Cho 3 màu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng	(Zuicili)		
 MgCO₃ + 2HCl → MgCl₂ + CO₂↑ + H₂O - Thêm dung dịch Ba(OH)₂ dư vào dung dịch sau phản ứng, lọc thu được kết tủa Mg(OH)₂ PTHH: MgCl₂ + Ba(OH)₂ → BaCl₂ + Mg(OH)₂↓ - Lọc kết tủa hòa tan vào dung dịch HCl, cô cạn dung dịch thu được muối khan MgCl₂ rỗi điện phân nóng chảy thu được kim loại Mg. PTHH: Mg(OH)₂ + 2HCl → MgCl₂ + 2H₂O MgCl₂ — ^{ñpnc} → Mg + Cl₂↑ - Cho dung dịch còn lại sau khi lọc kết tủa Mg(OH)₂ tác dụng với HCl vừa đủ. Cộ cạn ta được muối khan BaCl₂ rồi điện phân nóng chảy thu được Ba. PTHH: Ba(OH)₂ + 2HCl → BaCl₂ + 2H₂O BaCl₂ — ^{npnc} → Ba + Cl₂ 1. Trích mỗi chất ra một ít làm các mẫu thử. Cho quỳ tím vào từng mẫu thử, mẫu thử nào làm quỳ tím chuyển màu đỏ là axit axetic, các mẫu thử còn lại không có hiện tượng. Cho dung dịch AgNO₃ (trong dung dịch NH₃) vào các mẫu thử còn lại rồi đun nhẹ mẫu thử nào xuất hiện chất rắn màu sáng bạc là dung dịch glucozo PTHH: C₆H₁₂O₆ + Ag₂O — MH 3.00 + C₆H₁₂O₇ + 2Ag ↓ Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng 0,25đ 			0,25đ
- Thêm dung dịch Ba(OH) ₂ dư vào dung dịch sau phản ứng, lọc thu được kết tủa Mg(OH) ₂ PTHH: MgCl ₂ + Ba(OH) ₂ → BaCl ₂ + Mg(OH) ₂ ↓ - Lọc kết tủa hòa tan vào dung dịch HCl, cô cạn dung dịch thu được muối khan MgCl ₂ rồi điện phân nóng chảy thu được kim loại Mg. PTHH: Mg(OH) ₂ + 2HCl → MgCl ₂ + 2H ₂ O MgCl ₂ — ħpnc → Mg + Cl ₂ ↑ - Cho dung dịch còn lại sau khi lọc kết tủa Mg(OH) ₂ tác dụng với HCl vừa đủ. Cộ cạn ta được muối khan BaCl ₂ rồi điện phân nóng chảy thu được Ba. PTHH: Ba(OH) ₂ + 2HCl → BaCl ₂ + 2H ₂ O BaCl ₂ — ħpnc → Ba + Cl ₂ 1. Trích mỗi chất ra một ít làm các mẫu thử. Cho quỳ tím vào từng mẫu thử, mẫu thử nào làm quỳ tím chuyển màu đỏ là axit axetic, các mẫu thử còn lại không có hiện tượng. Cho dung dịch AgNO ₃ (trong dung dịch NH ₃) vào các mẫu thử còn lại rồi đun nhẹ mẫu thử nào xuất hiện chất rắn màu sáng bạc là dung dịch glucozo PTHH: C ₆ H ₁₂ O ₆ + Ag ₂ O — NH 3.00 → C ₆ H ₁₂ O ₇ + 2Ag ↓ Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng 0,25đ			0,25đ
PTHH: MgCl ₂ + Ba(OH) ₂ → BaCl ₂ + Mg(OH) ₂ ↓ - Lọc kết tủa hòa tan vào dung dịch HCl, cô cạn dung dịch thu được muối khan MgCl ₂ rồi điện phân nóng chảy thu được kim loại Mg. PTHH: Mg(OH) ₂ + 2HCl → MgCl ₂ + 2H ₂ O MgCl ₂ — Mg + Cl ₂ ↑ - Cho dung dịch còn lại sau khi lọc kết tủa Mg(OH) ₂ tác dụng với HCl vừa đủ. Cộ cạn ta được muối khan BaCl ₂ rồi điện phân nóng chảy thu được Ba. PTHH: Ba(OH) ₂ + 2HCl → BaCl ₂ + 2H ₂ O BaCl ₂ — Mprc → Ba + Cl ₂ 1. Trích mỗi chất ra một ít làm các mẫu thử. Cho quỳ tím vào từng mẫu thử, mẫu thử nào làm quỳ tím chuyển màu đỏ là axit axetic, các mẫu thử còn lại không có hiện tượng. Cho dung dịch AgNO ₃ (trong dung dịch NH ₃) vào các mẫu thử còn lại rồi đun nhẹ mẫu thử nào xuất hiện chất rắn màu sáng bạc là dung dịch glucozo PTHH: C ₆ H ₁₂ O ₆ + Ag ₂ O — MJ 3.10 → C ₆ H ₁₂ O ₇ + 2Ag↓ Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng		_ ,	,
- Lọc kết tủa hòa tan vào dung dịch HCl, cô cạn dung dịch thu được muối khan MgCl₂ rồi điện phân nóng chảy thu được kim loại Mg. PTHH: Mg(OH)₂ + 2HCl → MgCl₂ + 2H₂O MgCl₂ — ħpnc → Mg + Cl₂ ↑ - Cho dung dịch còn lại sau khi lọc kết tủa Mg(OH)₂ tác dụng với HCl vừa đủ. Cộ cạn ta được muối khan BaCl₂ rồi điện phân nóng chảy thu được Ba. PTHH: Ba(OH)₂ + 2HCl → BaCl₂ + 2H₂O BaCl₂ — ħpnc → Ba + Cl₂ 1. Trích mỗi chất ra một ít làm các mẫu thử. Cho quỳ tím vào từng mẫu thử, mẫu thử nào làm quỳ tím chuyển màu đỏ là axit axetic, các mẫu thử còn lại không có hiện tượng. Cho dung dịch AgNO₃ (trong dung dịch NH₃) vào các mẫu thử còn lại rồi đun nhẹ mẫu thử nào xuất hiện chất rắn màu sáng bạc là dung dịch glucozo PTHH: C₀H₁₂O₀ + Ag₂O — MI 3.10 → C₀H₁₂Oっ + 2Ag↓ Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng 0,25đ			0.25đ
dược kim loại Mg. PTHH: Mg(OH) ₂ + 2HCl → MgCl ₂ + 2H ₂ O MgCl ₂ — fipnc → Mg + Cl ₂ ↑ - Cho dung dịch còn lại sau khi lọc kết tủa Mg(OH) ₂ tác dụng với HCl vừa đủ. Cộ cạn ta được muối khan BaCl ₂ rồi điện phân nóng chảy thu được Ba. PTHH: Ba(OH) ₂ + 2HCl → BaCl ₂ + 2H ₂ O BaCl ₂ — fipnc → Ba + Cl ₂ 1. Trích mỗi chất ra một ít làm các mẫu thử. Cho quỳ tím vào từng mẫu thử, mẫu thử nào làm quỳ tím chuyển màu đỏ là axit axetic, các mẫu thử còn lại không có hiện tượng. Cho dung dịch AgNO ₃ (trong dung dịch NH ₃) vào các mẫu thử còn lại rồi đun nhẹ mẫu thử nào xuất hiện chất rắn màu sáng bạc là dung dịch glucozo PTHH: C ₆ H ₁₂ O ₆ + Ag ₂ O — MH 3.10 → C ₆ H ₁₂ O ₇ + 2Ag ↓ Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng		 Lọc kết tủa hòa tan vào dung dịch HCl, cô cạn dung 	
PTHH: Mg(OH) ₂ + 2HCl → MgCl ₂ + 2H ₂ O MgCl ₂ — ^{ñpnc} → Mg + Cl ₂ ↑ - Cho dung dịch còn lại sau khi lọc kết tủa Mg(OH) ₂ tác dụng với HCl vừa đủ. Cộ cạn ta được muối khan BaCl ₂ rồi điện phân nóng chảy thu được Ba. PTHH: Ba(OH) ₂ + 2HCl → BaCl ₂ + 2H ₂ O BaCl ₂ — ^{ñpnc} → Ba + Cl ₂ 1. Trích mỗi chất ra một ít làm các mẫu thử. Cho quỳ tím vào từng mẫu thử, mẫu thử nào làm quỳ tím chuyển màu đỏ là axit axetic, các mẫu thử còn lại không có hiện tượng. Cho dung dịch AgNO ₃ (trong dung dịch NH ₃) vào các mẫu thử còn lại rồi đun nhẹ mẫu thử nào xuất hiện chất rắn màu sáng bạc là dung dịch glucozo PTHH: C ₆ H ₁₂ O ₆ + Ag ₂ O — NH 3,10 → C ₆ H ₁₂ O ₇ + 2Ag ↓ Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng			0,25đ
- Cho dung dịch còn lại sau khi lọc kết tủa Mg(OH) ₂ tác dụng với HCl vừa đủ. Cộ cạn ta được muối khan BaCl ₂ rồi điện phân nóng chảy thu được Ba. PTHH: Ba(OH) ₂ + 2HCl → BaCl ₂ + 2H ₂ O BaCl ₂ — phonc Ba + Cl ₂ 1. Trích mỗi chất ra một ít làm các mẫu thử. Cho quỳ tím vào từng mẫu thử, mẫu thử nào làm quỳ tím chuyển màu đỏ là axit axetic, các mẫu thử còn lại không có hiện tượng. Cho dung dịch AgNO ₃ (trong dung dịch NH ₃) vào các mẫu thử còn lại rồi đun nhẹ mẫu thử nào xuất hiện chất rắn màu sáng bạc là dung dịch glucozo PTHH: C ₆ H ₁₂ O ₆ + Ag ₂ O — C ₆ H ₁₂ O ₇ + 2Ag↓ Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng 0,25đ			0,25đ
dụng với HCl vừa đủ. Cộ cạn ta được muối khan BaCl ₂ rồi điện phân nóng chảy thu được Ba. PTHH: Ba(OH) ₂ + 2HCl → BaCl ₂ + 2H ₂ O BaCl ₂ — Ba + Cl ₂ 1. Trích mỗi chất ra một ít làm các mẫu thử. Cho quỳ tím vào từng mẫu thử, mẫu thử nào làm quỳ tím chuyển màu đỏ là axit axetic, các mẫu thử còn lại không có hiện tượng. Cho dung dịch AgNO ₃ (trong dung dịch NH ₃) vào các mẫu thử còn lại rồi đun nhẹ mẫu thử nào xuất hiện chất rắn màu sáng bạc là dung dịch glucozo PTHH: C ₆ H ₁₂ O ₆ + Ag ₂ O — NH 3,to → C ₆ H ₁₂ O ₇ + 2Ag↓ Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng 0,25đ		$MgCl_2 \xrightarrow{\tilde{n}pnc} Mg + Cl_2 \uparrow$	
diện phân nóng chảy thu được Ba. PTHH: Ba(OH) ₂ + 2HCl → BaCl ₂ + 2H ₂ O BaCl ₂ — MBa + Cl ₂ 1. Trích mỗi chất ra một ít làm các mẫu thử. Cho quỳ tím vào từng mẫu thử, mẫu thử nào làm quỳ tím chuyển màu đỏ là axit axetic, các mẫu thử còn lại không có hiện tượng. Cho dung dịch AgNO ₃ (trong dung dịch NH ₃) vào các mẫu thử còn lại rồi đun nhẹ mẫu thử nào xuất hiện chất rắn màu sáng bạc là dung dịch glucozo PTHH: C ₆ H ₁₂ O ₆ + Ag ₂ O — MH 3.to → C ₆ H ₁₂ O ₇ + 2Ag ↓ Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng 0,25đ		_ , ,	
PTHH: Ba(OH) ₂ + 2HCl → BaCl ₂ + 2H ₂ O BaCl ₂			0.25 #
Câu 4 (2điểm) 1. Trích mỗi chất ra một ít làm các mẫu thử. Cho quỳ tím vào từng mẫu thử, mẫu thử nào làm quỳ tím chuyển màu đỏ là axit axetic, các mẫu thử còn lại không có hiện tượng. Cho dung dịch AgNO₃ (trong dung dịch NH₃) vào các mẫu thử còn lại rồi đun nhẹ mẫu thử nào xuất hiện chất rắn màu sáng bạc là dung dịch glucozo PTHH: C ₆ H ₁₂ O ₆ + Ag ₂ O → NH 3,to → C ₆ H ₁₂ O ₇ + 2Ag ↓ Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng 0,25đ			0,230
(2điểm) Cho quỳ tím vào từng mẫu thử, mẫu thử nào làm quỳ tím chuyển màu đỏ là axit axetic, các mẫu thử còn lại không có hiện tượng. Cho dung dịch AgNO ₃ (trong dung dịch NH ₃) vào các mẫu thử còn lại rồi đun nhẹ mẫu thử nào xuất hiện chất rắn màu sáng bạc là dung dịch glucozo PTHH: C ₆ H ₁₂ O ₆ + Ag ₂ O → NH3,to → C ₆ H ₁₂ O ₇ + 2Ag↓ Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng		$BaCl_2 \xrightarrow{\tilde{n}pnc} Ba + Cl_2$	
chuyển màu đỏ là axit axetic, các mẫu thử còn lại không có hiện tượng. Cho dung dịch AgNO ₃ (trong dung dịch NH ₃) vào các mẫu thử còn lại rồi đun nhẹ mẫu thử nào xuất hiện chất rắn màu sáng bạc là dung dịch glucozo PTHH: C ₆ H ₁₂ O ₆ + Ag ₂ O → C ₆ H ₁₂ O ₇ + 2Ag↓ Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng 0,25đ		~ ~	
hiện tượng. Cho dung dịch AgNO ₃ (trong dung dịch NH ₃) vào các mẫu thử còn lại rồi đun nhẹ mẫu thử nào xuất hiện chất rắn màu sáng bạc là dung dịch glucozo PTHH: C ₆ H ₁₂ O ₆ + Ag ₂ O → NH 3,10 → C ₆ H ₁₂ O ₇ + 2Ag↓ Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng 0,25đ	(2điêm)		0,25đ
Cho dung dịch $AgNO_3$ (trong dung dịch NH_3) vào các mẫu thử còn lại rồi đun nhẹ mẫu thử nào xuất hiện chất rắn màu sáng bạc là dung dịch glucozo PTHH: $C_6H_{12}O_6 + Ag_2O \xrightarrow{NH3,to} C_6H_{12}O_7 + 2Ag\downarrow$ Cho 3 màu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng $0,25$ đ			
bạc là dung dịch glucozo PTHH: $C_6H_{12}O_6 + Ag_2O \xrightarrow{NH3,to} C_6H_{12}O_7 + 2Ag\downarrow$ Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng $0,25$ đ		Cho dung dịch AgNO ₃ (trong dung dịch NH ₃) vào các mẫu thử	
PTHH: $C_6H_{12}O_6 + Ag_2O \xrightarrow{NH3,to} C_6H_{12}O_7 + 2Ag\downarrow$ Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng $0,25$ đ		_	0,25đ
Cho 3 mầu thử còn lại vào dung dịch NaOH có sẵn dung dịch phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng 0,25đ			
phenolphtalein(có màu hồng) mẫu thử nào làm mất màu hồng 0.25 đ			
là etyl axetat			0,25đ
		là etyl axetat	

	PTHH: $CH_3COOC_2H_5 + NaOH \rightarrow CH_3COONa + C_2H_5OH$	
	Cho kim loại Na vào hai mẫu thử còn lại mẫu nào xuất hiện	
	chất khí không màu là C ₂ H ₅ OH, mẫu không có hiện tượng là	0,25đ
	C_6H_6	
	PTHH: $2C_2H_5OH + 2Na \rightarrow 2C_2H_5ONa + H_2 \uparrow$	
	2	
	Cho Na vào các dung dịch đều có khí không màu thoát ra.	0,25đ
	PTHH: $2\text{Na} + 2\text{H}_2\text{O} \rightarrow 2\text{NaOH} + \text{H}_2 \uparrow$	0,200
	** Kèm theo:	
	+ Với dung dịch FeCl ₃ : Có chất kết tủa màu đỏ nâu tạo thành	0,125đ
	PTHH: $3\text{NaOH} + \text{FeCl}_3 \rightarrow \text{Fe(OH)}_3 \downarrow + 3\text{NaOH}$	
	+ Với dd NH ₄ NO ₃ : Có khí mùi khai bay ra	0,125đ
	PTHH: NaOH + NH ₄ NO ₃ \rightarrow NH ₃ \uparrow + H ₂ O + NaNO ₃	
	+ Với dd AlCl ₃ : Có chất keo trắng tạo thành, sau đó tan ra một phần	
	PTHH: $3\text{NaOH} + \text{AlCl}_3 \rightarrow \text{Al(OH)}_3 \downarrow + 3\text{NaCl}$	0,25đ
	NaOH + Al(OH) ₃ \rightarrow NaAlO ₂ + 2H ₂ O	
	+ Với dung dịch AgNO ₃ : Xuất hiện kết tủa trắng, sau đó bị hóa	
	đen	0,25đ
	PTHH: NaOH + AgNO ₃ \rightarrow AgOH + NaNO ₃	0,200
	$2AgOH \rightarrow Ag_2O + H_2O$	
	a. Gọi x là số mol Cu đã phản ứng	
	PTHH: $Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag \downarrow (1)$	0,125đ
	x mol 2x mol x mol 2x mol	0.254
Câu 5	Theo bài ra ta có: $x = \frac{95,2-80}{216-64} = 0,1 \text{(mol)}$	0,25đ
(2điểm)	PTHH: Pb $+ \text{Cu}(\text{NO}_3)_2 \rightarrow \text{Pb}(\text{NO}_3)_2 + \text{Cu} \downarrow (2)$	0,125đ
	0.1 mol $0.1 mol$ $0.1 mol$ $0.1 mol$	0,1234
	Theo PTHH(2) độ giảm khối lượng của kim loại là:	
	(207-64).0,1 = 14,3(g) > 80-67,05 = 12,95(g)	0,25đ
	⇒ Trong dung dịch A vẫn còn AgNO ₃ dư phản ứng với Pb	
	Gọi y là số mol Pb đã phản ứng với AgNO ₃ dư	
	PTHH: Pb $+ 2AgNO_3 \rightarrow Pb(NO_3)_2 + 2Ag \downarrow (3)$	0,125đ
	y mol 2y mol 2y mol 2y mol Theo PTHH(3) độ tăng khối lượng của kim loại là:	
	$(216-207).y = 14.3 - 12.95 = 1.35 \Rightarrow y = 0.15 \text{(mol)}$	0,25đ
	Từ PTHH (1) và (2) ta có số mol AgNO ₃ có trong dung dịch	0,230
	là:	
	$n_{\text{AgNO}_3} = 2.0,1 + 2.0,15 = 0,5 \text{(mol)}$	0,25đ
		0,125đ
	$\Rightarrow C_{M(dd AgNO_3)} = \frac{0.5}{0.2} = 2.5M$	
	b. Theo PTHH (2) và (3) ta có:	0.4554
	$n_{\text{Pb(NO}_3)_2} = 0.1 + 0.15 = 0.25 \text{(mol)}$	0,125đ
	PTHH:	
	$R + Pb(NO_3)_2 \rightarrow R(NO_3)_2 + Pb \downarrow (4)$	0,125đ
1	mol 0,025 0,025 0,025 0,025	, , ,

	Theo PTHH (4) độ tăng khối lượng của kim loại là:	0,125đ				
	$(207 - R).0,025 = 44,575 - 40 = 4,575 \Rightarrow R = 24$ Vậy kim loại R là Mg	0,125đ				
	Gọi a, b, c lần lượt là số mol của C ₂ H ₂ , C ₃ H ₆ và CH ₄ trong					
	11g hỗn hợp X.					
	\Rightarrow 26a + 42b + 16c = 11 (*)	0,125đ				
	PTHH: $2C_2H_2 + 5O_2 \xrightarrow{to} 4CO_2 + 2H_2O$ (1) a 2a a					
GA 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
Câu 6 (2điểm)	b 3b 3b	0,5đ				
	$ \begin{array}{cccc} CH_4 & + & 2O_2 & \xrightarrow{to} & CO_2 & + & 2H_2O & (3) \\ c & & & c & & 2c \end{array} $					
	Theo PTHH(1),(2),(3) và bài ra ta có:					
	$\Rightarrow a + 3b + 2c = n_{H_2O} = \frac{12.6}{18} = 0.7 $ (**)	0,125đ				
	Giả sử số mol của C ₂ H ₂ , C ₃ H ₆ và CH ₄ có trong 11,2 lít hỗn hợp X lần lượt là ka, kb, kc.	, , , , , , , , , , , , , , , , , , , ,				
	Ta có: $n_{Br_2} = \frac{100}{160} = 0.625 \text{(mol)}$	0,125đ				
	100					
	PTHH: $C_2H_2 + 2Br_2 \rightarrow C_2H_2Br_4$ (4) ka 2ka	0,25đ				
	$C_3H_6 + Br_2 \rightarrow C_3H_6Br_2$ (5)	0,234				
	kb kb					
	\Rightarrow Theo PTHH (4), (5) và theo bài ra ta có:					
	$\begin{cases} k.(a+b+c) = \frac{11.2}{22.4} = 0.5 & (1') \\ k.(2a+b) = 0.625 & (2') \end{cases}$					
	k.(2a+b) = 0.625 (2')	0,25đ				
	Lấy (2'): (1') ta được: $\frac{2a+b}{a+b+c}$ =1,25					
	$\Rightarrow 0.75a - 0.25b - 1.25c = 0 (***)$	0.25 1				
	$\text{Tùr}(*), (**), (***) \implies a = 0,2 \text{ và } b = c = 0,1$	0,25đ				
	Thế vào $(1') \Rightarrow k = 1,25$ \Rightarrow Số mol mỗi khí trong 0,5 mol hỗn hợp X là:					
	$n_{C_2,H_2} = ka = 1,25. \ 0,2 = 0,25 \ (mol)$	0,125đ				
	$n_{C_3H_6} = n_{CH_4} = 1,25. \ 0,1 = 0,125 \ (mol)$					
	$\Rightarrow \% V_{C_2H_2} = \frac{0.25}{0.5}.100\% = 50\%$					
	$%V_{C_3H_6} = %V_{CH_4} = \frac{0,125}{0,5}.100\% = 25\%$	0,25đ				
	- Khi cho phần 1 vào dd HCl mà HCl dư hoặc vùa đủ thì khi tăng lượng axit vào phần 2 khối lượng muối tạo ra phải không đổi(điều này trái giả thiết) \Rightarrow ở TN1 kim loại dư và axit thiếu.	0,25đ				
	- Nếu toàn bộ lượng axit ở TN 2 phản ứng hết thì khối lượng muối là : $m_{\text{muối}} = \frac{27.9}{600}$. $800 = 37.2(g) > 32.35(g)$ \Rightarrow ở TN 2 HCl dư và kim loại hết.					
Câu 7						
	→0 111 2 11C1 uu va Kiili loại iict.					

(2điểm)	PTHH: $2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2$ (1) $Mg + 2HCl \rightarrow MgCl_2 + H_2$ (2) Ở TN 2: Độ chênh lệch khối lượng giữa muối và kim loại bằng khối lượng của clo trong HCl(Phản ứng) $\Rightarrow m_{Cl} = 32,35 - 7,5 = 24,85(g)$	0,25đ
	$\Rightarrow n_{Cl} = n_{HCl} = \frac{24,85}{35,5} = 0,7 \text{(mol)}$ Số mol HCl ở TN1 là: $n_{HCl(TN1)} = \frac{27,9}{32,35}$. $0,7 = 0,6 \text{(mol)}$	0,25đ
	$\Rightarrow C_{M(dd HCl)} = x = \frac{0.6}{0.6} = 1M$	0,25đ
	Goi x, y lần lượt là số mol Al và Mg có trong mỗi phần. Theo bài ra và PTHH (1), (2) ta có hệ phương trình: $ \begin{cases} 27x + 24y = 7.5 \\ 3x + 2y = 0.7 \end{cases} \Rightarrow \begin{cases} x = 0.1 \\ y = 0.2 \end{cases} $	0,25đ
	$\begin{vmatrix} 3x + 2y = 0.7 & y = 0.2 \\ \Rightarrow \% & A1 = \frac{0.1.27}{7.5}.100\% = 36\% \end{vmatrix}$	0,25đ
	% Mg = 100% - 36% = 64%	0,25đ
	1. PTHH:	
Câu 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,25đ 0,25đ
(2điểm)	Theo PTHH(1), (2) khối lượng xenlulozo phản ứng là: $m_{(C_6H_{10}O_5)_n} = \frac{162 \times 720}{92} \text{ (kg)}$	0,25đ
	Khối lượng vỏ bào, mùn cưa cần dùng là: $\frac{162 \times 720}{92} \times \frac{100}{75} \times \frac{100}{50} = 3380,87 \text{ (kg)}$	0,25đ
	2. PTHH: CuO + CO $\xrightarrow{t0}$ Cu + CO ₂ (1) MnO + CO $\xrightarrow{t0}$ Mn + CO ₂ (2) Ta có khối lượng chất rắn giảm đi chính bằng lượng oxi có trong oxit (tham gia phản ứng). The PTHH (1) (2) to có cố graph sựi thoạc swit hi lihểu hằng số	0,125đ
	Theo PTHH (1),(2) ta có số mol oxi thong oxit bị khử bằng số mol $CO_2 = \frac{m-p}{16}$ (mol) (*)	0,125đ
	Vì dung dịch Z tác dụng với dd NaOH nên có chứa $Ca(HCO_3)_2$ PTHH: $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 \downarrow + H_2O$ (3) $2CO_2 + Ca(OH)_2 \rightarrow Ca(HCO_3)_2$ (4) $Ca(HCO_3)_2 + 2NaOH \rightarrow CaCO_3 \downarrow + Na_2CO_3 + 2H_2O$ (5) $Ta có: n_{CaCO_3} = \frac{q}{100}$; $n_{NaOH} = c.V(mol)$	0,25đ

		1					
	Theo PTHH (3): $n_{CO_2} = n_{CaCO_3} = \frac{q}{100}$ (mol)	0,125đ					
	Theo PTHH(4) và (5): $n_{CO_2} = n_{NaOH} = c.V(mol)$	0,125đ					
	\Rightarrow n _{CO₂} tạo thành ở (1) là: $\frac{q}{100}$ + c.V(mol) (**)	0,125đ					
	Từ (*) và (**) ta có: $\frac{m-p}{16} = \frac{q}{100} + \text{c.V}$						
	$\Rightarrow V = \frac{m - p - 0.16q}{16c}$	0,125đ					
	Hỗn hợp Z có thể là 1 axit R ₁ COOH và 1 este R ₂ COOR hoặc	0,125đ					
Câu 9 (2điểm)	gồm 2 este có công thức trung bình là \overline{R} COOR PTHH: R ₁ COOH + NaOH \rightarrow R ₁ COONa + H ₂ O (1) R ₂ COOR + NaOH \rightarrow R ₂ COONa + ROH (2) Hoặc: \overline{R} COOR + NaOH \rightarrow \overline{R} COONa + ROH (3) - Nếu hỗn hợp Z là 1 axit và 1 este thì theo PTHH (1); (2) :	0,25đ					
(Zuiciii)	$n_{ru\phi u} < n_{NaOH}$ - Nếu hỗn hợp Z là 2 este thì theo PTHH (3) :	0.25đ					
	$n_{\text{rurou}} = n_{\text{NaOH}}$ PTHH: 2ROH + 2Na \rightarrow 2RONa + H ₂ (4)						
	Theo PTHH (4): $n_{ROH} = 2n_{H_2} = 2$. $\frac{1,12}{22,4} = 0,1 \text{(mol)}$	0,25đ					
	$n_{\text{NaOH}} = \frac{4}{40} = 0.1 \text{(mol)} \implies n_{\text{ROH}} = n_{\text{NaOH}} \Rightarrow Z \text{ gồm 2 este}$						
	Áp dụng ĐLBTKL cho phản ứng cháy ta có:						
	$m_{\text{CO}_2} = m_{\text{Z}} + m_{\text{O}_2} - m_{\text{H}_2 \text{O}} = 15,42 + 32. \frac{21,168}{22,4} - 11,34 = 34,32(g)$						
	\Rightarrow m _C = $\frac{12.34,32}{44}$ = 9,36(g)						
	$m_{\rm H} = \frac{2.11,34}{18} = 1,26(g)$	0,25đ					
	$m_0 = 15,42 - 9,36 - 1,26 = 4,8(g)$						
	Ta có: $n_Z = n_{O \text{ (trong } Z)} = \frac{4.8}{32} = 0.15 \text{ (mol)}$						
	\Rightarrow n _Z trong 5,14 gam là: $\frac{0,15}{3}$ = 0,05(mol)						
	Theo PTHH (3): $n_Z = n_{NaOH} = n \overline{R} COONa = n_{ROH} = 0.05 (mol)$	0.074					
	\Rightarrow M \overline{R} COONa = $\frac{4,24}{0,05}$ = 84,8(g/mol) \Rightarrow \overline{R} = 17,8	0,25đ					
	Ta có : $R_1 < 17.8 < R_2$ (Trong đó R_1 ; R_2 chỉ chứa C và H; $R_2 = R_1 + 14$). $\Rightarrow R_1 : CH_3$; $R_2 : C_2H_5$						
	⇒ Vậy 2 muối là CH ₃ COONa và C ₂ H ₅ COONa	0,25đ					
	Àp dụng ĐLBTKL cho phản ứng (3) ta có: $m_{ROH} = 5.14 + 0.05.40 - 4.24 = 2.9(g)$						
	\Rightarrow $M_{ROH} = \frac{2.9}{0.05} = 58(g/mol) \Rightarrow R \text{ là } C_3H_5$	0,25đ					
	$\Rightarrow \text{Các este là: } \text{CH}_3\text{COOC}_3\text{H}_5 \text{ và } \text{C}_2\text{H}_5\text{COOC}_3\text{H}_5$	0,125đ					
İ.		i					

	1. CO được sinh ra trong lò khí than, đặc biệt là khi ủ bếp than (do bếp không đủ oxi cho than cháy, do đóng kín cửa). Khi nồng độ CO sinh ra quá mức cho phép, khí CO kết hợp với hemoglobin trong máu ngăn không cho máu nhận oxi và cung cấp oxi cho các tế bào. Do đó có thể gây tử vong cho con	0,5đ
Câu10 (2điểm)	người. PTHH: $C + O_2 \xrightarrow{t^0} CO_2 \uparrow$ Khi thiếu khí oxi CO_2 sẽ tiếp tục phản ứng với than cháy sinh ra khí CO . PTHH: $CO_2 + C \xrightarrow{t^0} 2CO \uparrow$	0,5đ
	 NaCl: Muối ăn và dùng điều chế Cl₂; NaOH; HCl KCl: Dùng làm phân bón hóa học(phân kali) Na₂CO₃: soda(dùng sản xuất xà phòng; nước giải khát) NaHCO₃: Thuốc tiêu muối (dùng trong y học) NaOH: Dùng trong công nghiệp tổng hợp chất hữu cơ KNO₃: Diêm tiêu dùng sản xuất pháo và thuốc nổ, phân bón KClO₃: dùng sản xuất pháo và thuốc nổ NaClO₃: Nước Gia-ven dùng để sát trùng và tẩy trắng 	0,125đ 0,125đ 0,125đ 0,125đ 0,125đ 0,125đ 0,125đ 0,125đ

Chú ý: - PTHH không cân bằng trừ 1/2 số điểm của PT đó.

PHÒNG GIÁO DỤC VÀ ĐÀO TẠO NGỌC LẶC

ĐỀ CHÍNH THỨC

Số báo danh

Câu 1: (2,0 điểm)

KHẢO SÁT ĐÁNH GIÁ NĂNG LỰC ĐỘI TUYỀN HỌC SINH GIỎI LỚP 9 NĂM HỌC 2018 - 2019

Môn: Hóa học

Thời gian: **150** phút (không kể thời gian giao đề) Ngày 17 tháng 01 năm 2019 (Đề có 02 trang, gồm 10 câu)

⁻ HS làm cách khác đúng vẫn tính điểm tối đa.

- 1. Cho biết A, B, C, D, E là các hợp chất của Natri. Cho A lần lượt tác dụng với các dung dịch B, C thu được các khí tương ứng X, Y. Cho D, E lần lượt tác dụng với nước thu được các khí tương ứng Z, T. Biết X, Y, Z, T là các khí thông thường, chúng tác dụng với nhau từng đôi một. Tỉ khối của X so với Z bằng 2 và tỉ khối của Y so với T cũng bằng 2. Viết tất cả các phương trình phản ứng xảy ra.
- 2. Cho hỗn hợp gồm 3 chất rắn: Al₂O₃, SiO₂, Fe₃O₄ vào dung dịch chứa một chất tan A, thì thu được một chất rắn B duy nhất. Hãy cho biết A, B có thể là những chất gì? Cho ví dụ và viết các PTHH minh hoạ.

Câu 2: (2,0 điểm)

- 1. Không dùng thêm hóa chất nào khác, bằng phương pháp hóa học hãy phân biệt các dung dịch đưng trong các lo riêng biệt bi mất nhãn sau: HCl, NaOH, Ba(OH)₂, K₂CO₃, MgSO₄.
- 2. Từ photphat tự nhiên, quặng pirit sắt, nước và chất xúc tác (thiết bị cần thiết khác xem như có đủ). Viết PTHH điều chế supephotphat đơn, supephotphat kép, sắt (III) sunfat.

Câu 3: (2,0 điểm)

Từ nguyên liệu là than đá, đá vôi và các hợp chất vô cơ (thiết bị cần thiết khác xem như có đủ). Viết PTHH điều chế các chất: PVC, Poli Propilen, CH₂=CH-COOH và HOCH₂-CHOH-CH₂OH.

Câu 4: (2,0 điểm)

1. Viết các PTHH theo sơ đồ chuyển hoá sau:

Saccarozo $\xrightarrow{(1)}$ glucozo $\xrightarrow{(2)}$ ancol etylic $\xrightarrow{(3)}$ axit axetic $\xrightarrow{(4)}$ natri axetat $\xrightarrow{(5)}$ metan $\xrightarrow{(6)}$ axetilen $\xrightarrow{(7)}$ benzen $\xrightarrow{(8)}$ brom benzen.

2. Có 3 hỗn hợp khí, mỗi hỗn hợp đều có: SO₂, CO₂, CH₄, C₂H₂.

Tiến hành thí nghiệm như sau:

- Cho hỗn hợp thứ nhất tác dụng với dung dịch Ca(OH)2 dư.
- Cho hỗn hợp thứ hai tác dụng với dung dịch nước Brom dư.
- Đốt cháy hoàn toàn hỗn hợp thứ ba trong oxi dư.

Nêu hiện tượng hoá học xảy ra trong mỗi thí nghiệm. Viết các phương trình hoá học.

<u>Câu 5:</u> (2,0 điểm)

- 1. Độ tan của NaCl ở 90° C là 50g và ở 0° C là 35g. Cho 20g NaCl khan vào 300g dung dịch NaCl bão hòa ở 90° C, đun nóng và khuấy đều dung dịch cho NaCl tan hết. Sau đó, đưa dung dịch về 0° C thấy tách ra \mathbf{m} gam muối.
 - a. Tính C% của dung dịch NaCl bão hòa ở 0^{0} C và ở 90^{0} C.
 - b. Tính **m**.
- 2. Tính khối lượng CuSO₄.5H₂O và khối lượng nước cần lấy để pha chế được 200g dung dịch CuSO₄ 20%.

Câu 6: (2,0 điểm)

Cho sơ đồ phản ứng sau đây:

Biết A_1 gồm các nguyên tố C, H, O, N với tỉ lệ khối lượng tương ứng 3:1:4:7 và trong phân tử A_1 có 2 nguyên tử nito.

- 1. Hãy xác định CTHH của A₁, A₂, A₃ và viết các PTHH theo sơ đồ chuyển hoá trên.
- 2. Chọn chất thích hợp để:
- a. Làm khô khí A₃.
- b. Làm khô khí A₄.

Câu 7: (2,0 điểm)

- 1. Cho hỗn hợp X gồm: Ba, Na, CuO và Fe_2O_3 . Trình bày phương pháp tách thu lấy từng kim loại từ hỗn hợp X và viết các phương trình phản ứng xảy ra.
- 2. Thủy ngân là một kim loại nặng rất độc. Người bị nhiễm thủy ngân bị run chân tay, run mí mắt, mất ngủ, giảm trí nhớ, rối loạn thần kinh, ... thậm trí có thể bị tử vong khi bị nhiễm thủy ngân với nồng độ lớn (từ 100 microgam/m³ trở lên). Thủy ngân độc hơn khi ở thể hơi vì dễ dàng hấp thụ vào cơ thể qua nhiều con đường như: đường hô hấp, đường tiêu hóa, qua da, ... Vậy ta cần xử lý như thế nào khi cần thu hồi thủy ngân rơi vãi? Liên hệ với tình huống xử lý an toàn khi vô tình làm vỡ nhiệt kế thủy ngân trong phòng thí nghiệm?

Câu 8: (2,0 điểm)

Trộn CuO với RO (R là kim loại có một hóa trị) theo tỉ lệ số mol tương ứng 1 : 2 thu được hỗn hợp A. Dẫn dòng khí CO dư đi qua ống sứ đựng 9,6 gam hỗn hợp A nung nóng thu được chất rắn B. Hòa tan hết chất rắn B cần dùng vừa đủ 86,9565ml dung dịch HNO₃ 25,2% (D = 1,15 g/ml) thu được V lít khí NO (đktc).

- 1. Xác định kim loại R.
- 2. Tính V.

Câu 9: (2,0 điểm)

Một hỗn hợp A gồm một axit đơn chức, một rượu đơn chức và este đơn chức tạo ra từ hai chất trên. Đốt cháy hoàn toàn 3,06 gam hỗn hợp A cần dùng 4,368 lít khí oxi (đo ở đktc). Khi cho 3,06 gam hỗn hợp A phản ứng hoàn toàn với dung dịch NaOH cần dùng 200ml dung dịch NaOH 0,1 M thu được 1,88 gam muối và \mathbf{m} gam hợp chất hữu cơ B. Đun nóng \mathbf{m} gam B với axit sunfuric đặc ở 180° C thu được \mathbf{m}_1 gam \mathbf{B}_1 . Tỉ khối hơi của \mathbf{B}_1 so với B bằng 0,7 (giả thiết hiệu suất đạt 100%).

- 1. Xác định công thức cấu tạo B₁ và các chất trong A.
- 2. Tính **m**, **m**₁.

<u>Câu 10:</u> (2,0 điểm)

- 1. Trình bày cách khai thác muối ăn đã được học và nêu các ứng dụng của muối NaCl.
- 2. Trong phòng thí nghiệm, khi điều chế CO₂ từ CaCO₃ và dung dịch HCl, khí CO₂ thu được bị lẫn một ít khí hiđroclorua và hơi nước. Hãy trình bày phương pháp hóa học để thu được khí CO₂ tinh khiết. Viết các phương trình hóa học xảy ra.

 Hêt

Cho biết: H = 1; C = 12; N = 14; O = 16; Na = 23; Mg = 24; Al = 27; Si = 28; P = 31; S = 32; Cl = 35,5; K = 39; Ca = 40; Cr = 52; Fe = 56; Ni = 58; Cu = 64; Zn = 65; Ag = 108; Ba = 137.

Thí sinh được sử dụng bảng HTTH và máy tính cầm tay thông thường.

PHÒNG GIÁO DỤC VÀ ĐÀO TẠO NGỌC LẶC

HƯỚNG DẪN CHẨM

KHẢO SÁT ĐÁNH GIÁ NĂNG LỰC ĐỘI TUYỂN HỌC SINH GIỎI LỚP 9 NĂM HỌC 2018 - 2019

Môn: Hóa học

Ngày 17 tháng 01 năm 2019 (Hướng dẫn chấm có 06 trang, gồm 10 câu)

Câu	Hướng dẫn chấm						Điểm
1 (2,0d)	1. X: SO ₂ , Y: H ₂ S, Z: O ₂ , T: NH ₃ Các chất A, B, C, D, E có công thức lần lượt lầ: NaHSO ₄ , Na ₂ SO ₃ hoặc NaHSO ₃ , Na ₂ S, Na ₂ O ₂ , Na ₃ N PTHH: 2. TH1: - Chất tan A là dung dịch kiềm: NaOH; KOH; Ba(OH) ₂ thì B là Fe ₃ O ₄ . Ví dụ: 2NaOH + Al ₂ O ₃ → 2 NaAlO ₂ + H ₂ O 2NaOH + SiO ₂ → Na ₂ SiO ₃ + H ₂ O TH2: - Chất tan A là dung dịch axit: HCl; H ₂ SO ₄ thì B là SiO ₂ . Ví dụ: 6 HCl +Al ₂ O ₃ → 2AlCl ₃ + 3H ₂ O 8HCl + Fe ₃ O ₄ → FeCl ₂ + 2FeCl ₃ + 4 H ₂ O					0,5 PTHH viết đúng 0,5 điểm 0,5	
2 (2,0đ)	Cho lần lượt Ta có bảng tl HCl NaOH Ba(OH) ₂ K ₂ CO ₃ MgSO ₄ Mẫu thử nào Các PTHH: 2HCl + K ₂ C 2NaOH + M Ba(OH) ₂ + M Ba(OH) ₂ + M Các PTH: 2HCl + M Các PTHH: CONACH + M CO	các mẫu thá nghiệm: HC1	số thứ tự và tiến nử tác dụng với nh NaOH NaOH NaOH (Mg(OH) ₂ nả ứng với 1 ↓ => nả ứng với 2 ↓ => nả ứng với 2 ↓ và nả ứng với 3 ↓ => 2KCl + H ₂ O + O Na ₂ SO ₄ + Mg(O BaCO ₃ + 2KOH Mg(OH) ₂ + Ba MgCO ₃ + K ₂ SO + O ₂ Fe ₂ O ₃ + 8SO ₂	Ba(OH) ₂ × × Ba(CO ₃) ↓ BaSO ₄ Mg(OH) ₂ > HCl > NaOH > Ba(OH) ₂ 1 ↑ => K ₂ CO > MgSO ₄ CO ₂ ↑ OH) ₂ H SO ₄	K ₂ CO ₃ ↑ CO ₂ × ↓ (BaCO ₃) ×	MgSO ₄ × ↓Mg(OH) ₂ ↓BaSO ₄ ↓MgCO ₃	Nhận biết đúng 1,0 điểm
	$2SO_2 + O_2 - SO_3 + H_2O -$	$\xrightarrow{t^0, V_2O_5} Z$ $\to H_2SO_4$		2CaSO4			PTHH cho 0,125 điểm

	$3H_2SO_4 + Ca_3(PO_4)_2 \rightarrow 3CaSO_4 + 2H_3PO_4$				
	$Ca_3(PO_4)_2 + 4H_3PO_4 \rightarrow 3Ca(H_2PO_4)_2$				
	$Fe_2O_3 + 3H_2SO_4 \rightarrow Fe_2(SO_4)_3 + 3H_2O$				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	$\begin{array}{cccc} C_2H_2 + HCl & \xrightarrow{\hspace{1em} 1:1} & C_2H_3Cl \\ CH_2 = CHCl & \rightarrow & (-CH_2 - CHCl -)_n \\ \hline \textbf{Diều chế PoliPropilen} \\ 2C_2H_2 & \xrightarrow{CuCl,NH4Cl,85c} & C_4H_4 \\ C_4H_4 & + 3H_2 & \xrightarrow{\hspace{1em} Ni,to} & C_4H_{10} \\ \end{array}$	0,25			
3 (2,0đ)	$C_{4}H_{10} \xrightarrow{t,p} C_{4}H_{10}$ $C_{4}H_{10} \xrightarrow{t,p} CH_{4} + C_{3}H_{6}$ $nCH_{2} = CH - CH_{3} \xrightarrow{to,xt,p} (-CH_{2} - CH -)_{n}$ CH_{3} $Diều chế CH_{2} = CH - COOH$	0,5			
	CH ₂ =CH-CH ₃ + Cl ₂ $\xrightarrow{500^{\circ c}}$ CH ₂ =CH-CH ₂ Cl + HCl CH ₂ =CH-CH ₂ Cl + NaOH \rightarrow CH ₂ =CH-CH ₂ OH + NaCl CH ₂ =CH-CH ₂ OH + O ₂ \rightarrow CH ₂ =CH-COOH + H ₂ O Điều chế CH₂OH-CHOH – CH₂OH	0,5			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,5			
	1. $C_{12}H_{22}O_{11} + H_2O \xrightarrow{axit} 2C_6H_{12}O_6$: Á4			
	$C_6H_{12}O_6 \xrightarrow{\text{lên men}} 2C_2H_5OH + 2CO_2$ $C_1H_1OH = 0 \text{ men giâm} C_1H_1OOH = 0 \text{ Men giâm}$	viết đúng mỗi			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PTHH cho			
	$CH_3COONa + NaOH \xrightarrow{CaO} CH_4 + Na_2CO_3$	0,125 điểm			
	$2CH_4 \xrightarrow{1500^{\circ}C} C_2H_2 + 3H_2$	urem			
	$3C_2H_2 \xrightarrow{600^{\circ}C} C_6H_6$				
4	$C_6H_6 + Br_2 \xrightarrow{Bôt Fe, 1:1} C_6H_5Br + HBr$				
4 (2,0đ)	2. Hỗn hợp thứ nhất: - Có kết tủa trắng xuất hiện và tăng dần Phương trình phản hoá học:				
	SO_2+ $Ca(OH)_2$ \rightarrow $CaSO_3+$ H_2O CO_2+ $Ca(OH)_2$ \rightarrow $CaCO_3+$ H_2O Hỗn hợp thứ hai:	0,5			
	 - Màu vàng cam của dung dịch Br₂ nhạt dần. - Phương trình phản hoá học: SO₂+ Br₂ → H₂SO₄ + 2HBr 	0,25			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,25			
5 (2,0đ)	1. $\mathring{\text{O}} \ 0^{\circ}\text{C}$, $S_{\text{NaCl}} = 35\text{g} \rightarrow \text{C}\%_{\text{NaCl}} = \frac{35}{100 + 35} \cdot 100\% \approx 25,9\%$	0,25			

	* a a 0 5 a 5 a 5 a 5 a 6 a 6 a 6 a 6 a 6 a 6 a	0,25
	$\vec{O} 90^{0}\text{C}, S_{\text{NaCl}} = 50 \text{g } \vec{O} 0^{0}\text{C} \rightarrow \text{C}\%_{\text{NaCl}} = \frac{50}{100 + 50} \cdot 100\% \approx 33,3\%$	- , -
	Trong 300 g dd NaCl bão hòa ở 90°C có:	0.05
	$m_{\text{NaCl}} = 300 \cdot \frac{50}{100 + 50} = 100 \text{ (g)} \rightarrow m_{\text{H}_2\text{O}} = 300 - 100 = 200 \text{ (g)}$	0,25
	Khi hòa tan thêm NaCl và hạ nhiệt độ của dd thì khối lượng nước không thay đổi.	0,25
	$ \mathring{O} \ 0^{\circ} \text{C}, 200 \text{ g nước hòa tan được: } 35 \cdot \frac{200}{100} = 70 \text{ (g)} $	0,25
	\rightarrow m _{NaCl} tách ra = (100 + 20) – 70 = 50 (g)	0.25
	2. Trong 200 g dd CuSO ₄ 20% có: $m_{CuSO_4} = 200 \cdot \frac{20}{100} = 40 \text{ (g)}$	0,25
	$\rightarrow m_{\text{CuSO}_4.5\text{H}_2\text{O}} = 40 \cdot \frac{250}{160} = 62,5 \text{ (g)} \rightarrow m_{\text{H}_2\text{O}} = 200 - 62,5 = 137,5 \text{ (g)}$	0,5
	1. Dựa vào dữ kiện của đề tìm ra A ₁ là (NH ₂) ₂ CO (ure)	0,5
	Các chất còn lại lần lượt là: A ₂ : (NH ₄) ₂ CO ₃ ; A ₃ : CO ₂ ; A ₄ : NH ₃ .	0,25
	Các phương trình hóa học:	0.25
6 (2,0đ)	$(NH_2)_2CO + 2H_2O \rightarrow (NH_4)_2CO_3$ $(NH_4)_2CO_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4 + H_2O + CO_2.$	0,25 0,25
(2,0u)	$(NH_4)_2CO_3 + 11_2SO_4 \rightarrow (NH_4)_2SO_4 + 11_2O + CO_2$ $(NH_4)_2CO_3 + 2NaOH \rightarrow 2NH_3 + Na_2CO_3 + 2H_2O$	0,25
	2. a. Chất thích hợp để làm khô khí CO ₂ có thể là: P ₂ O ₅ ; H ₂ SO ₄ đặc.	0,25
	b. Chất thích hợp để làm khô khí NH ₃ có thể là: CaO.	0,25
	1. Cho hỗn hợp X vào nước dư, lọc thu lấy hỗn hợp A gồm CuO, Fe ₂ O ₃ và ddB	0,125
	Dẫn H ₂ dư, nung nóng qua hỗn hợp A ta thu lấy Cu và Fe	
	$H_2 + CuO \xrightarrow{t^0} Cu + H_2O$	
	$3H_2 + Fe_2O_3 \xrightarrow{t^0} 2Fe + 3H_2O.$	0,125
	Hoà hỗn hợp vào dung dịch HCl dư, lọc thu lấy Cu và ddC	0,123
	$Fe + 2HCl \rightarrow FeCl_2 + H_2$	0,125
	Nhỏ dung dịch NaOH dư vào dung dịch C, lọc kết tủa nung trong không khí đến khối lượng không đổi, dẫn H ₂ dư qua nung nóng. Sau phản ứng hoàn toàn thu được	0,125
	Fe $FeCl_2 + 2NaOH \rightarrow 2NaCl + Fe(OH)_2$	
	$2Fe(OH)_2 + 1/2O_2 \xrightarrow{t^0} Fe_2O_3 + 2H_2O$	0,25
		0,23
	$Fe_2O_3 + 3H_2 \xrightarrow{t^0} 2Fe + 3H_2O$ Cho Na ₂ CO ₃ du vào ddB:	
	Ba + $2H_2O \rightarrow Ba(OH)_2 + H_2$	
7	$Na + H2O \rightarrow NaOH + 1/2H2$	0,25
(2,0d)	$Na_2CO_3 + Ba(OH)_2 \rightarrow BaCO_3 + 2NaOH$	
	Lọc thu lấy kết tủa và ddD, cho kết tủa vào dd HCl dư; cô cạn lấy BaCl ₂ ; đpnc thu	
	lấy Ba	
	$BaCO_3 + 2HCl \rightarrow BaCl_2 + H_2O + CO_2$	0,25
	$BaCl_2 \xrightarrow{dpnc} Ba + Cl_2$ Che dans diel HCl drawe del De en abouté violent les No. Cl. draw that lêu No.	
	Cho dung dịch HCl dư vào ddD, cô cạn thu lấy NaCl, đpnc thu lấy Na NaOH + HCl → NaCl + H ₂ O	0,25
	$Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$	
	$2\text{NaCl} \xrightarrow{dpnc} 2\text{Na} + \text{Cl}_2$	
	2 Khi thu hồi thủy ngân rơi vãi người ta thường sử dụng bột lưu huỳnh rắc lên	
	những chỗ có thủy ngân, vì S có thể tác dụng với thủy ngân tạo thành HgS dạng rắn	0,25
	và không bay hơi. Quá trình thu gom thủy ngân cũng đơn giản hơn.	
	$ Hg + S \rightarrow HgS $ $ Which has a very which his property and the property with the property of $	
	- Khi vô tình làm vỡ nhiệt kế thủy ngân trong phòng thí nghiệm, cần rắc ngay bột	

	lưu huỳnh bao phủ tất cả các mảnh vỡ. Sau đó dùng chổi quét sạch, gói vào giấy và	
	cho vào thùng rác.	0,25
	Gọi n $CuO = a(mol) => nRO = 2a(mol)$	
	$m_{dd} HNO_3 = 86,9565 . 1,15 = 100 (g)$	
	$mHNO_3 = (100 . 25,2):100 = 25,2 (g)$	0.5
	$nHNO_3 = 25,2:98 = 0,4 \text{ (mol)}$ Trường hợp 1: RO, CuO đều phản ứng:	0,5
	RO + CO $\xrightarrow{t^0}$ R + CO ₂ \uparrow	
	$2a(mol) \rightarrow 2a(mol) \rightarrow 2a(mol)$	
	$CuO + CO \xrightarrow{t^0} Cu + CO_2 \uparrow$	
	$a(mol) \rightarrow a(mol) \rightarrow a(mol)$	
	$3R + 8 \text{ HNO}_3 \xrightarrow{t^0} 3R(\text{NO}_3)_2 + 4H_2\text{O} + 2\text{NO} \uparrow$	
	$2a(\text{mol}) \rightarrow \frac{16a}{3}(\text{mol}) \rightarrow \frac{4a}{3}(\text{mol})$	
	$3Cu + 8 HNO_3 \xrightarrow{t^0} 3Cu(NO_3)_2 + 4H_2O + 2NO \uparrow$	0,5
	$a(\text{mol}) \rightarrow \frac{8a}{3}(\text{mol}) \rightarrow \frac{2a}{3}(\text{mol})$	
	3	
o	$nHNO_3 = \frac{16a}{3} + \frac{8a}{3} = 0.4 => a = nCuO = 0.05 \text{ (mol)}$	0,25
8 (2,0đ)	$=>nRO = 2.0,05 = 0,1(mol) => mRO = 9,6 - 0,05 \cdot 80 = 5,6 (g)$	5,25
(2,00)	$=>M_{RO}=5.6:0.1=56(g/mol)=>M_{R}=56=16=40(g/mol)=>R=40$	
	=> CaO (loại) vì CaO không tác dụng CO	
	Trường hợp 2: RO không phản ứng, CuO phản ứng:	
	$CuO + CO \xrightarrow{t^0} Cu + CO_2 \uparrow$	
	$a(mol) \rightarrow a(mol) \rightarrow a(mol)$	0,25
	$RO + 2 HNO_3 \xrightarrow{t^0} R(NO_3)_2 + H_2O$,
	$2a(\text{mol}) \rightarrow 4a(\text{mol})$	
	$3Cu + 8 HNO_3 \xrightarrow{t^0} 3Cu(NO_3)_2 + 4H_2O + 2NO \uparrow$	
	$a(\text{mol}) \rightarrow \frac{8a}{3} (\text{mol}) \rightarrow \frac{2a}{3} (\text{mol})$	
		0,25
	$nHNO_3 = 4a + \frac{8a}{3} = 0.4 => a = nCuO = 0.06 \text{ (mol)} => nRO = 2.0.06 = 0.12 \text{ (mol)}$	
	$m_{RO} = 9.6 - 0.06 \cdot 80 = 4.8 \text{ (g)}$	
	$=>M_{RO} = 4.8 : 0.12 = 40 (g/mol) =>M_{R} = 40 - 16 = 24 (g/mol) =>R = 24 => MgO$	0.25
	(đúng) vì MgO không tác dụng CO	0,25
	$V = V_{NO} = \frac{2.0,06}{3}.22, 4 = 0,896(l)$	
9 (2,0đ)	1. Giả sử CTTQ của rượu là C _a H _b OH	
(2,00)	Giả sử CTTQ của axit là C _x H _y COOH Giả sử CTTQ của este là C _x H _y COOC _a H _b	0,25
	PTTHH:	
	$C_xH_yCOOH + NaOH \rightarrow C_xH_yCOONa + H_2O$ (1)	
	$C_xH_yCOOC_aH_b + NaOH \rightarrow C_xH_yCOONa + C_aH_bOH$ (2)	0.25
	$C_aH_bOH = 180^{\circ}C C_aH_{b-1} + H_2O$ (3)	0,25
	Ta có $\frac{12a+b-1}{12a+b+17} = 0,7$	
	12a+b=43 => 12a<43 => a <3,58	
	a 1 2 3 b 31 29 7	
	Loại Loại C ₃ H ₇ OH	
	=> rượu B phù hợp là C ₃ H ₇ OH (2 đồng phân)	0,25

		T
	Ta có $\sum n_{\text{NaOH}} = 0.02 \text{ mol}$	
	Theo (1), (2) $\sum n_{C_x H_y COONa} = \sum n_{NaOH} = 0.02 \text{ mol}$	
	$m_{C_x H_y COONa} = 1.88 : 0.02 = 94(g)$	
	12x + y = 94 - 67 = 27 => 12x < 27 => x < 2,25	
	$+ \text{N\'eu } x = 1 => y = 15 \text{ (vô l\'y)}$	0,5
	+ Nếu x = 2 => y = 3 => axit C_2H_3COOH ; este $C_2H_3COOC_3H_7$	0,5
	2. Phương trình hóa học:	
	$2C_3H_8O + 9O_2 \xrightarrow{t^o} 6CO_2 + 8H_2O$	
	$C_3H_4O_2 + 3O_2 \xrightarrow{t^o} 3CO_2 + 2H_2O$	0,25
	$2C_6H_{10}O + 15O_2 \xrightarrow{t^o} 12CO_2 + 10H_2O$	
	Gọi số mol C ₃ H ₈ O trong 3,06g hh A là x	
	Gọi số mol C ₃ H ₄ O ₂ trong 3,06g hh A là y	
	Gọi số mol $C_6H_{10}O$ trong 3,06g hh A là z 60x + 72y + 114z = 3,06	
	$\frac{9}{2}x + 3y + \frac{15}{2}z = 0{,}195$	0,25
	y + z = 0.02	0,20
	=>x = 0.02 mol; y = 0.01 mol; z = 0.01 mol	0,25
	$m = 0.02 \cdot 60 + 0.01 \cdot 60 = 1.8 (g)$	
10	$m_1 = 0.02 .42 = 0.84 (g)$ 1.	
(2,0đ)	- Khai thác muối ăn từ nước mặn, cho nước mặn bay hơi từ từ.	0.25
	- Ở nhưng nơi có mỏ muối đào hầm hoặc giếng sâu qua lớp đất đá đến mổ muối.	
	Muối mỏ sau khai thác được nghiền nhỏ và tinh chế tạo muối sạch.	0,25
	- Úng dụng: ăn, sx clo,	0,5
	2. Phương trình hoá học xảy ra:	0,5
	$CaCO_3 + 2 HCl \rightarrow CaCl_2 + CO_2 \uparrow + H_2O$	
	Để thu được CO ₂ tinh khiết (do bị lẫn một ít khí hiđroclorua và hơi nước) ta cho	
	hỗn hợp khí và hơi qua dung dịch NaHCO ₃ dư, khí hiđroclorua bị giữ lại.	0.5
	Tiếp tục cho hỗn hợp còn lại đi qua bình đựng H ₂ SO ₄ đặc hoặc P ₂ O ₅ , hơi nước bị	0,5
	hấp thụ, ta thu được khí CO ₂ tinh khiết.	
	Phương trình hoá học phản ra:	
	$NaHCO_3 + HC1 \rightarrow NaC1 + CO_2 \uparrow + H_2O$	
	H ₂ SO ₄ đặc hoặc P ₂ O ₅ hấp thụ hơi nước.	0,5

Chú ý: Học sinh làm cách khác, nếu đúng vẫn cho điểm tối đa.

PHÒNG GD & ĐT THANH OAI TRƯ**ỜNG THCS CỰ KHÊ**

ĐỀ THI HỌC SINH GIỚI CẤP HUYỆN LỚP 9 MÔN HÓA HỌC

NĂM HỌC: 2015 - 2016

Thời gian làm bài: 150 phút (không kể thời gian giao đề)

(Đề thi gồm 02 trang)

Câu I : (3 điểm).

1.(1,5đ). Tổng số hạt Proton, electron, notron của nguyên tử nguyên tố X bằng 54. Trong đó số hạt mang điện gấp số hạt không mang điện là 1,7 lần. Hãy xác định số hạt proton, notron, electron trong nguyên tử nguyên tố X?

2.(1,5đ). Có ba bình mất nhãn đựng hỗn hợp các hóa chất:

Bình 1: Dung dịch KHCO₃. K₂CO₃

Bình 2: Dung dịch KHCO₃. K₂SO₄

Bình 3: Dung dịch K₂CO₃. K₂SO₄.

Chỉ được phép dùng thêm 2 thuốc thử hãy nêu cách nhận biết ba bình trên. Viết phương trình hóa học của phản ứng xảy ra (nếu có).

Câu II: (5 điểm).

1.(2đ). Viết phương trình hóa học thực hiện chuyển đổi hóa học sau, xác đinh các chất A ,B, C, D, E cho thích hợp.

2.(3đ). Nhiệt phân toàn bộ 20 gam muối cacbonat kim loại hóa trị II thu được khí B và chất rắn A. Cho toàn bộ khí B vào 150 ml dung dịch Ba(OH)₂ 1M thu được 19,7gam kết tủa. Hãy xác định khối lượng chất rắn A và công thức muối cacbonat?

Câu III : (5 điểm)

- 1.(2đ). Một loại khoáng chất có trong thiên nhiên chứa 20,93 % Nhôm, 21,27% Silic, còn lại là Hiđro và Oxi về khối lượng. Hãy xác định công thức của khoáng chất này. Biết phân tử của khoáng chất có kết tinh nước (H_2O).
- 2.(3đ). Đốt cháy hoàn toàn 4,04 gam hỗn hợp kim loại gồm Nhôm, Kẽm, Đồng trong oxi dư thu được 5,96 gam hỗn hợp 3 oxit. Hòa tan hết hỗn hợp 3 oxit trên cần dùng V lít dung dịch HCl 1M. Tính V?

Câu IV: (3 điểm)

- 1.(1đ). Giải thích ngắn gọn các vấn đề được nêu sau đây:
 - a) Nguyên nhân gây ra mưa axit là gì?
 - b) Tại sao khu dân cư đông đúc không nên lập các nhà máy sản xuất đất đèn? (Thành phần chính của đất đèn là Canxicacbua CaC₂)
- 2.(2đ). Cho m gam hỗn hợp X gồm Nhôm, Magie vào dung dịch HCl dư thoát ra a gam khí. Cũng cho m gam hỗn hợp X trên tác dụng với dung dịch NaOH dư thoát ra b gam khí. Biết $\frac{a}{h}$ = 2. Hãy xác định % khối lượng của Nhôm trong hỗn hợp X.

Câu V: (4 điểm).

Cho 6,85 gam kim loại hóa trị II vào dung dịch muối sunfat của kim loại hóa trị II khác (lấy dư) thu được khí A và 14,55 gam kết tủa B. Lọc lấy kết tủa B đem nung tới khối lượng không đổi, thu được chất rắn C. Đem chất rắn C hòa tan trong dung dịch HCl dư thì chất rắn chỉ tan 1 phần, phần còn lại không tan có khối lượng là

11,65 gam. Hãy xác định nguyên tử khối của 2 kim loại và gọi tên.

(Cho biết: Ca = 40; Al = 27; Si = 28; H = 1; O = 16; Cu = 64; Mg = 24.)

-----HÉT-----

PHÒNG GD & ĐT THANH OAI TRƯ**ỜNG THCS CỰ KHÊ**

HƯỚNG DẪN CHẨM THI HỌC SINH GIỚI LỚP 9 MÔN HÓA HỌC

NĂM HỌC: 2015 - 2016

Câu	Nội dung trả lời	Điểm
Câu I		3đ
1	Gọi x là số hạt proton \rightarrow x cũng là số hạt electron, Gọi y là số hạt notron \rightarrow 2x + y = 54 (1) Số hạt mang điện là hạt p và e gấp 1,7 lần số hạt không mang điện là n Ta có: 2x = 1,7y (2) Giải hệ pt (1),(2) ta có x =17; y = 20 Vậy trong X có 17 hạt p, 17 hạt e và 20 hạt n	1,5đ
2	Chọn thuốc thử là dung dịch muối Ba ri (Ví dụ dd BaCl₂) và Dung dịch axit mạnh (ví dụ dd HCl) Cho dd BaCl₂ lần lượt vào 3 bình. - Bình 1 có kết tủa trắng là do: BaCl₂ + K₂CO₃ → BaCO₃↓ + 2KCl (1) - Bình 2 có kết tủa trắng là do: BaCl₂ + K₂SO₄ → BaSO₄↓ + 2KCl (2) - Bình 3 có kết tủa trắng là do có 2 kết tủa ở 2 phương trình (1), (2). Lọc lấy kết tủa. Cho lần lượt kết tủa ở từng bình vào dd HCl dư. Ở bình nào kết tủa tan có thoát khí là chất ở bình 1 BaCO₃ +2 HCl → 2BaCl₂ + H₂O + CO₂↑ (3) Kết tủa không tan là các chất ở bình 2 Kết tủa chỉ tan một phần và có thoát khí là các chất ở bình 3 do chỉ có phương trình (3)	1,5đ

Câu II		5đ
1	Học sinh chọn chất hợp lý vẫn cho điểm tối đa. A: SO_2 B: SO_3 C: Na_2SO_3 D: H_2SO_3 E: Na_2SO_4 1. $4 \text{ FeS}_2 + 11 O_2 \xrightarrow{to} 2 \text{ Fe}_2O_3 + 8 \text{ SO}_2$ 2. $SO_2 + O_2 \xrightarrow{to} SO_3$ 3. $SO_2 + 2 \text{ NaOH} \rightarrow Na_2SO_3 + H_2O$ 4. $SO_3 + H_2O \rightarrow H_2SO_4$ 5. $2 H_2SO_4$ đ + Cu \xrightarrow{to} CuSO ₄ + H_2O + SO_2 . 6. $SO_2 + H_2O \rightarrow H_2SO_3$. 7. $H_2SO_3 + 2 \text{ NaOH} \rightarrow Na_2SO_3 + H_2O$ 8. $Na_2SO_3 + 2 \text{ HCI} \rightarrow 2 \text{ NaCI} + H_2O + SO_2$ 9. $H_2SO_4 + 2 \text{ NaOH} \rightarrow Na_2SO_4 + H_2O$ 10. $Na_2SO_4 + 2 \text{ BaCI}_2 \rightarrow \text{BaSO}_4 + 2 \text{ HCI}$	2đ 10 pt mỗi pt đúng cho 0,2đ
2	Gọi công thức muối cacsbonat là MCO $_3$ có x mol Ta có PTHH: MCO $_3$ $\stackrel{10}{\longrightarrow}$ MO +CO $_2$ (1) n Ba(OH) $_2$ + C _M x V = 1 x 0,15 = 0,15 mol n Ba(OH) $_2$ > n BaCO $_3$ nên ta chia bài toán làm 2 trường hợp: Trường hợp 1: Ba(OH) $_2$ lấy dư: PTHH: Ba(OH) $_2$ + CO $_2$ \rightarrow BaCO $_3$ \downarrow + H $_2$ O (2) 0,1 mol 0,1 mol 0,1 mol Theo pt (1),(2): n BaCO $_3$ = n CO $_2$ = MCO $_3$ = 0,1 mol => M $_{MCO3}$ = $\frac{20}{0,1}$ = 200 g M + 60 = 200 \rightarrow M = 140 \rightarrow (Trường hợp này loại) Trường hợp 2: Ba(OH) $_2$ tác dụng với CO $_2$ vừa tạo ra muối trung hòa, vừa tạo ra muối axit. PTHH: Ba(OH) $_2$ + CO $_2$ \rightarrow BaCO $_3$ \downarrow + H $_2$ O 0,1 mol 0,1 mol 0,1 mol Số mol Ba(OH) $_2$ tác dụng với CO $_2$ tạo muối axit: 0,15 – 0,1 = 0,05 mol PTHH: Ba(OH) $_2$ + 2 CO $_2$ \rightarrow Ba(HCO $_3$) $_2$ (3) 0,05 mol 0,1 mol Tổng số mol CO $_2$ tham gia phản ứng: 0,1 + 0,1 = 0,2 mol => M $_{MCO3}$ = $\frac{20}{0,2}$ = 100 g M + 60 = 100 \rightarrow M = 40 \rightarrow M là Canxi.	3đ

	$m MCO_3 = m A + m CO_2$	
	\rightarrow mA = mMCO ₃ - mCO ₂ = 20 - (0,2 x 44) = 11,2 gam	
Câu III		5đ
1	Gọi công thức khoáng chất là: $Al_xSi_yO_zH_t$ Gọi % $mO = a$; % $mH = b$ Ta có: $a + b = 100 - (20,93 + 21,7) = 53,37\%$ (1) Theo quy tắc hóa trị ta có: $3x + 4y + t = 2z$ $\rightarrow 3. \frac{20,93}{27} + 4. \frac{21,7}{28} + \frac{b}{1} = \frac{a}{16}$ $\rightarrow \frac{a}{8} - b = \frac{20,93}{9} + \frac{21,7}{7} = 5,426$ (2) Giải hệ (1), (2) ta có: $a = 55,82\%$; $b = 1,55\%$ Ta có: $x:y:z:t = \frac{20,93}{27} : \frac{21,7}{7} : \frac{55,82}{16} : \frac{1,55}{1} = 2:2:9:4$ Vậy công thức khoáng chất: $Al_2Si_2O_9H_4$ hay $Al_2O_3.2SiO_2.2H_2O$ (Cao lanh)	2đ
2	PTHH của phản ứng: $4Al + 3O_2 \xrightarrow{to} 2Al_2O_3$ (1) $2Cu + O_2 \xrightarrow{to} 2CuO$ (2) $2Zn + O_2 \xrightarrow{to} 2ZnO$ (3) $Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2O$ (4) $CuO + 2HCl \rightarrow 2CuCl_2 + H_2O$ (5) $ZnO + 2HCl \rightarrow 2ZnCl_2 + H_2O$ (6) Áp dụng Định luật bảo toàn khối lượng: $mO_2 = 5,96 - 4,04 = 1,92g$ $nO_2 = \frac{1,92}{32} = 0,06 \text{ mol } \rightarrow nO = 0,06 \text{ x } 2 = 0,12 \text{ mol}$ Theo pt (4), (5), (6) thì nHCl = 2 x nO = 2 x 0,12 = 0,24 mol $\Rightarrow V_{HCl} = \frac{n}{CM} = \frac{0,24}{2} = 0,12 \text{ lit hay } 120 \text{ ml}$	3đ
Câu IV		3đ
1	a, Khói động cơ, khói của các nhà máy công nghiệp có chứa các khí CO_2 , SO_2 , NO_2 , H_2S Các khí này tan vào nước mưa tạo ra các trận mưa axit. Ví dụ: $CO_2 + H_2O$ <=> H_2CO_3 ; $SO_2 + H_2O$ <=> H_2SO_3 b, Sản xuất đất đèn từ CaO và C. PTHH: $CaO + 3C \xrightarrow{2000^0 C} CaC_2 + CO$ Khí CO gây tác hại cho con người.	1đ
	Số mol H ₂ =? Vì $\frac{a}{b}$ = 2. Giả sử $a = 2 \rightarrow nH_2 = \frac{a}{2} = \frac{2}{2} = 1 \text{mol}$	2đ

	T	1
	$b = 1 \rightarrow nH_2 = \frac{b}{2} = \frac{1}{2} = 0,5 \text{mol}$	
2	Gọi số mol Al là x, số mol Mg là y.	
	PTHH: $X + HCl$: $2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$Mg + 2HCl \rightarrow MgCl_2 + H_2$	
	y y	
	Ta có: $1,5x + y = 1 \text{mol}$ (1)	
	X + dd NaOH du: chỉ có Al phản ứng.	
	$A1 + 2H_2O + 2NaOH \rightarrow 2NaAlO_2 + 3H_2$	
	x 1,5x	
	Ta có: $1.5x = 0.5 \text{mol}$ (2)	
	Shift contracts the contract of the contract	
	$\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\$	
	Giải hệ pt tạ có $\int x = \frac{1}{3}$	
	$y = \frac{1}{2}$	
	_	
	$\Rightarrow \% \text{ mAl} = \frac{27.\frac{1}{3}}{27.\frac{1}{3} + 24.\frac{1}{3}} \cdot 100\% = 42,85\%$	
	$27. \frac{1}{3} + 24.\frac{1}{2}$	
Câu V		4đ
	Các PTHH của phản ứng:	
	$M + 2H_2O \rightarrow M(OH)_2 + H_2 $ (1)	
	$M(OH)_2 + MSO_4 \rightarrow MSO_4 + M(OH)_2 $ (2)	
	$M(OH)_2 \xrightarrow{to} MO + H_2O $ (3)	
	$\dot{M}O + 2HCl \rightarrow \dot{M}Cl_2 + H_2O$ (4)	
	Khối lượng $MSO_4 = 11,65$ gam	
	$\Rightarrow \text{ nM} = \frac{11,65-6,85}{96} = 0,05 \text{ mol}$	
	70	
	Nguyên tử khối của $M = \frac{6,85}{0,05} = 137 \rightarrow M$ là Bari (Ba)	
	Khối lượng $\dot{M}(OH)_2 = 14,55 - 11,65 = 2,9$ gam.	
	$S\hat{o} \mod M(OH)_2 = s\hat{o} \mod M = 0.05 \mod$	
	$\Rightarrow 0.05(M'+34)=2.9$	
	$\Rightarrow M' = 24 \rightarrow \text{vậy } M' \text{ là Magie (Mg)}$	

THI GIAO LƯU ĐỘI TUYỂN HỌC SINH GIỎI CẤP TỈNH

ĐỀ THI CHÍNH THÚC Số báo danh Năm học: 2018-2019

Môn thi: Hóa học, Lớp 9 THCS Ngày thi: 22/02/2019

Thời gian thi: 150 phút (không kể thời gian giao đề thi) Đề thi này có 10 câu, gồm 02 trang.

Câu 1 (2 điểm): Hòa tan 8g CuO bằng dung dịch H₂SO₄ 24,5% vừa đủ, thu được dung dịch X.

- 1. Tính nồng đô % của dung dịch X.
- 2. Làm lạnh dung dịch X tới nhiệt độ thích hợp thấy có 5g kết tủa Y tách ra và thu được dung dịch Z chứa một chất tan với nồng độ 29,77%. Tìm công thức của Y.

Câu 2 (2 điểm):

- 1. A và B là hai nguyên tố kim loại, tổng số hạt cơ bản của cả hại nguyên tử A và B là 142, trong đó số hạt mang điện nhiều hơn số hạt không mang điện là 42, số hạt mang điện trong nguyên tử A nhiều hơn B là 12. Tìm A và B
- 2. Trình bày phương pháp nhận biết các chất lỏng đựng trong các lọ riêng biệt không nhãn sau: dung dịch đường saccarozơ, benzen, dầu thực vật, dung dịch rượu etylic, dung dịch hồ tinh bột. Câu 3 (2 điểm):
- 1. Trong những năm gần đây, nhà nước ta đã cấm hoạt động các lò gạch thủ công gần khu dân cư. Em hãy giải thích cho người dân hiểu những tác hại mà các lò gạch này gây ra đối với môi trường và sức khỏe người dân?
- 2. Tách các chất rắn sau Zn, ZnO, Fe, Fe₂O₃ ra khỏi hỗn hợp sao cho khối lượng mỗi chất không thay đổi.

Câu 4 (2 điểm):

- 1. Từ than đá, đá vôi, nước và các điều kiện cần thiết khác, hãy viết các phương trình phản ứng hóa học điều chế poli vinyl axetat (PVA), cao su buna.
 - 2. Hãy chon các chất thích hợp để hoàn thành sơ đồ phản ứng sau:

$$(A) \rightarrow (B) + (C) + (D)$$

(1)

$$(D) + (E) + (G) \rightarrow (H)$$

(2)

$$(D) + (E) + (I) \rightarrow (K)$$

(3)

$$(B) + (L) \rightarrow (M) + (N) + (F) + (E)$$

(4)

$$(A) + (L) \rightarrow (M) + (N) + (F) + (E)$$

(5)

Câu 5 (2 điểm):

- 1. Để m(g) bột sắt ngoài không khí, sau một thời gian thu được chất rắn X có khối lượng là (m + 1,6) g. Nếu cho toàn bộ X tác dụng với dung dịch H₂SO₄ đậm đặc, nóng, dư thì thu được 4,48 lít khí SO₂ (đktc) duy nhất thoát ra. Tính m.
- 2. . Tìm các chất kí hiệu bằng chữ cái trong sơ đồ sau và hoàn thành sơ đồ bằng phương trình hóa học:

Câu 6 (2 điểm): Nêu và giải thích hiện tượng trong các thí nghiệm sau, viết phương trình hóa học xảy ra (nếu có):

- 1. Hòa tan một mẩu đất đèn vào dung dịch phenolphtalein.
- 2. Nhỏ giấm ăn lên đá vôi.
- 3. Cho một mẫu natri vào cồn 90° .
- 4. Quét một lớp dung dịch iot lên bề mặt một lát chuối xanh.

Câu 7 (2 điểm):Cho hỗn hợp gồm 2,8(g) Fe và 0,81(g) Al tác dụng với 100 ml dung dịch hỗn hợp gồm Cu(NO₃)₂ và AgNO₃ cùng nồng độ mol cho đến khi phản ứng kết thúc thu được chất rắn Y chứa 3 kim loại có khối lượng 8,12g. Tính nồng độ C_M của từng muối trong dung dịch sau phản ứng.

Câu 8 (2 điểm): Một bình kín có dung tích 8,96 lít (đktc) chứa đầy hỗn hợp khí X gồm N₂, O₂, SO₂ (tỉ lệ mol tương ứng là 2:1:1). Đốt cháy hết một lượng lưu huỳnh trong hỗn hợp X rồi đưa bình về nhiệt độ ban đầu thì thu được hỗn hợp khí Y. Biết tỉ khối của hỗn hợp khí Y so với hỗn hợp khí X bằng 1,1684.

1. Hỏi áp suất trong bình có thay đổi không? Vì sao?Xác định thành phần phần trăm thể tích của mỗi khí trong hỗn hợp Y.

2. Khi lượng lưu huỳnh biến đổi thì tỉ khối hơi của hỗn hợp Y so với hỗn hợp X nằm trong khoảng nào?

Câu 9 (2 điểm):

- 1. Cho hỗn hợp gồm CH₄, C₂H₄ và C₂H₂. Lấy 8,6g X tác dụng hết với dung dịch brom dư thì khối lượng brom phản ứng là 48g. Mặt khác, nếu cho 13,44lít (ở đktc) hỗn hợp X tác dụng với lượng dư dung dịch AgNO₃ trong NH₃ dư thu được 36g kết tủa. Tính phần trăm thể tích của các khí có trong X.
- 2. Chất béo A có công thức $(C_nH_{2n+1}COO)_3C_3H_5$. Đun nóng 13,35g A với 20g dung dịch NaOH 10% tới khi phản ứng xà phòng hóa xảy ra hoàn toàn, thu được dung dịch B. Cô cạn dung dịch B còn lại 13,97g chất rắn khan. Xác định công thức phân tử và tên gọi của axit tạo thành chất béo A, biết NaOH đã lấy dư so với lượng cần thiết.

Câu 10 (2 điểm): Trong phòng thí nghiệm để điều chế một số khí tinh khiết người ta lắp dụng cụ như hình vẽ sau (bình (A); (B); (C); (D) chứa chất lỏng hoặc chất rắn):

- 1. Hãy cho biết bộ dụng cụ trên có thể điều chế và thu được khí nào trong các khí sau: H₂; O₂; SO₂; HCl; NH₃; Cl₂; C₂H₄?
- 2. Hãy chọn hóa chất thích hợp trong mỗi bình để điều chế được các khí đã chọn và viết phương trình phản ứng xảy ra?

Hê	t	
Họ và tên thi sinh		Số báo danh
Chữ ký của giám thị 1	Chữ ký của g	giám thị 2

ĐÁP ÁN VÀ HƯỚNG DẪN CHẨM

Câu	Đáp án	Điểm
	1. $CuO + H_2SO_4 \rightarrow CuSO_4 + H_2O$ (mol) 0,1 0,1 0,1	0,25
1		0,25
1 (2,0đ)		0,25 0,25
	2. Theo bảo toàn khối lượng, ta có: $m_Z = 48 - 5 = 43$ (g) =>	0,25
	Đặt công thức của Y là CuSO ₄ .nH ₂ O Theo định luật thành phần không đổi, ta có:	0,25
	CTHH của tinh thể Y là: CuSO ₄ .5H ₂ O	0,5
	1. Áp dụng công thức $Z_A + Z_B = (142 + 42)$: $4 = 46$ (*) Kết hợp đề bài $2Z_A - 2Z_B = 12$ (**) $\Rightarrow Z_A = 26$ A là sắt (Fe) $Z_B = 20$ B là canxi (Ca)	1,0
2 (2,0đ)	2. - Dùng dung dịch iot cho vào từng mẫu, nhận ra tinh bột và 2 nhóm vì có hiện tượng sau: + Tinh bột: dung dịch có màu xanh tím + Nhóm I: benzen và dầu thực vật: không tan trong dung dịch iot, chất lỏng phân thành 2 lớp. + Nhóm II: saccarozơ và rượu etylic tan trong dung dịch iot. - Cho dung dịch NaOH vào hai mẫu của nhóm I và đun nóng + Nhận biết được dầu thực vật: ban đầu phân lớp ở nhiệt độ thường, khi đun nóng một thời gian thì có lớp xà phòng (RCOONa) nổi lên trên.	0,5
	(RCOO) ₃ C ₃ H ₅ + 3NaOH 3RCOONa + C ₃ H ₅ (OH) ₃ Với R là gốc hiđrocacbon của axit béo như – C ₁₇ H ₃₃ -, - C ₁₇ H ₃₁ -, + Mẫu nào vẫn phân lớp không tan (có phần bay hơi cho mùi thơm đặc trưng) là benzen. - Phân biệt dung dịch đường saccarozơ và rượu etylic	0,25
	Lấy mỗi chất một ít đem đốt. Chất cháy được không để lại cặn là rượu etylic, chất không cháy và khi tiếp tục đun nóng đến cạn thì hóa than là saccarozơ.	0,25
	CH ₃ CH ₂ OH + 3O ₂ 2CO ₂ + 3H ₂ O 1. (1,0đ)	
3 (2,0đ)	- Trong quá trình hoạt động lò gạch thủ công sẽ thải ra môi trường nước, chất thải, khói bụi, nhiệt thoát ra từ quá trình đốt nhiên liệu, khí thải từ lò. Khói đó bao gồm các hạt vô cùng nhỏ cacbon (mồ hóng), hình thành do quá trình cháy không hết của nhiên liệu như dầu mỏ, than cốc từ các quá trình cháy. Trong khí thải còn có tro bụi, CO ₂ , SO _x , NO ₂ , CO, H ₂ S, NH ₃ Tác hại gây ra với môi trường:	0,25
	+ Không khí bị ô nhiễm. + Ô nhiễm đất, nước từ chất thải của quá trình sản xuất.	0,25

Câu	Đáp án	Điểm
	 Đối với hoa màu: ảnh hưởng làm giảm năng suất hoa màu. Đối với sức khỏe người dân: ô nhiễm môi trường không khí gây ảnh hưởng 	0,25
	xấu đến sức khỏe, gây ra các bệnh về đường hô hấp,	0,25
	2. Cho hỗn hợp tác dụng với Cl ₂ nung nóng thu được hỗn hợp ZnCl ₂ , ZnO, FeCl ₃ , Fe ₂ O ₃ . Cho hỗn hợp này vào nước, lọc tách chất rắn X không tan ZnO, Fe ₂ O ₃ và dung dịch Y chứa ZnCl ₂ , FeCl ₃ .	
	$Zn + Cl_2 ZnCl_2$	
	2Fe + 3Cl ₂ 2FeCl ₃ - Hòa tan hỗn hợp X trong dung dịch NaOH dư thu được Fe ₂ O ₃ không tan và dung dịch A (Na ₂ ZnO ₂ , NaOH dư). Lọc tách Fe ₂ O ₃ . Sục khí CO ₂ vào dung dịch A thu được kết tủa Zn(OH) ₂ , nung kết tủa trong không khí đến khối lượng không đổi được ZnO. ZnO + 2NaOH → Na ₂ ZnO ₂ + H ₂ O NaOH + CO ₂ → NaHCO ₃ Na ₂ ZnO ₂ + 2CO ₂ + 2H ₂ O → Zn(OH) ₂ + 2NaHCO ₃	0,25
	Zn(OH) ₂ ZnO + H ₂ O - Cho dung dịch NaOH dư vào dung dịch Y thu được kết tủa Fe(OH) ₃ và dung dịch B (Na ₂ ZnO ₂ , NaOH dư). Lọc kết tủa Fe(OH) nung trong không khí đến khối lượng không đổi được Fe ₂ O ₃ , cho khí H ₂ dưđi qua Fe ₂ O ₃ nung nóng thu được Fe. FeCl ₃ + 3NaOH → Fe(OH) ₃ + 3NaCl	0,25
	$ZnCl_2 + 4NaOH \rightarrow Na_2ZnO_2 + 2NaCl + 2H_2O$	
	$2Fe(OH)_3$ $Fe_2O_3 + 3H_2O$	
	$Fe_2O_3 + 3H_2$ $Fe + 3H_2O$ Sục khí CO_2 dư vào dung dịch B thu được kết tủa $Zn(OH)_2$, nung kết tủa trong không khí đến khối lượng không đổi được ZnO , nung nóng ZnO cùng C ở nhiệt độ cao thu được Zn . $NaOH + CO_2 \rightarrow NaHCO_3$ $Na_2ZnO_2 + 2CO_2 + 2H_2O \rightarrow Zn(OH)_2 + 2NaHCO_3$	0,25
	$Zn(OH)_2 ZnO + H_2O$	
	ZnO + C $Zn + CO$	0,25
	1. Mỗi PTHH đúng được 0,2đ. PTHH viết thiếu điều kiện trừ 1/2 số điểm hoặc không cho điểm PTHH đó (nếu thiếu điều kiện phản ứng xảy ra theo chiều hướng khác).	·,20
	$CaCO_3$ $CaO + CO_2$	
	$CaO + 3C$ $CaC_2 + CO$ $CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$	0,5
4	$C_2H_2 + H_2O$ CH_3CHO	
(2,0đ)	$CH_3CHO + O_2$ CH_3COOH	
	$CH_3CHO + H_2$ CH_3CH_2OH	
	$2C_2H_5OH$ $CH_2 = CH - CH - CH_2 + H_2 + 2H_2O$ $+$ $Diều chế PVA$	
	CH ₃ COOH + C ₂ H ₂ CH ₃ COOCH=CH ₂ (vinyl axetat)	
	n CH3COOCH = CH2	0,25

Câu	Đáp án	Điểm
	OCOCH ₃ + Điều chế cao su buna	
	n CH ₂ = CH – CH = CH ₂ $(CH_2 - CH = CH - CH_2)_n$	0,25
	2.	
	(B): K ₂ MnO ₄ (E): H ₂ O (I): NO ₂ (C): MnO ₂ (G): Fe(OH) ₂ (K): HNO ₃ (M): KCl hoặc MnCl ₂ (N): MnCl ₂ hoặc KCl	0,5
	(D): O ₂ (H): Fe(OH) ₂ (L): HCl đặc (F): Cl ₂ (A): KMnO ₄	
	PTHH: $2 \text{ KMnO}_4 \text{ K}_2 \text{MnO}_4 + \text{MnO}_2 + \text{O}_2$ $O_2 + 2H_2O + 4\text{Fe}(OH)_2 \rightarrow 4\text{Fe}(OH)_3$	0.5
	$O_2 + 2H_2O + 4NO_2 \rightarrow 4HNO_3$ $K_2MnO_4 + 8HCl \rightarrow 2KCl + MnCl_2 + 2Cl_2 + 4H_2O$	0,5
	$2KMnO_4 + 8HCl \rightarrow 2KCl + WllCl_2 + 2Cl_2 + 4H_2O$ $2KMnO_4 + 16HCl \rightarrow 2KCl + 2MnCl_2 + 5Cl_2 + 8H_2O$	
	1.	
	Đặt công thức của rắn X là Fe _x O _y 2x Fe + yO ₂ → 2Fe _x O _y	0.25
	$2Fe_{x}O_{y} + (6x-2y) H_{2}SO_{4} \rightarrow xFe_{2}(SO_{4})_{3} + (6x-2y) H_{2}O + (3x-2y) SO_{2}$	0,25
	Bảo toàn số mol Fe =>	0,25
	Bảo toàn số mol S, ta có:	0,23
	Theo bảo toàn khối lượng ta có:	
5 (2,0đ)	-> m = 11.2 gam	0,5
(2,00)	=> m = 11,2 gam 2. Các phương trình hóa học biểu diễn sơ đồ trên:	
	1. CH ₃ COONa + NaOH $\xrightarrow{\text{CaO}}$ CH ₄ + Na ₂ CO ₃	
	2. $2CH_4 \xrightarrow{1500^{\circ}C} C_2H_2 + 3H_2$	1.0
	3. $C_2H_2 + H_2 \xrightarrow{Pd} C_2H_4$	1,0
	4. $C_2H_4 + H_2O \xrightarrow{H_2SO_4} CH_3CH_2OH$	
	5. $C_2H_5OH + O_2 \xrightarrow{\text{men gi} \hat{E}m} CH_3COOH + H_2O$	
	6. $CH_3COOH + C_2H_5OH $ $CH_3COOC_2H_5 + H_2O$	
	7. $Na_2CO_3 + 2HC1 \longrightarrow 2NaC1 + CO_2 + H_2O$	
	1. Đất đèn tan mạnh trong nước, có khí thoát ra có mùi khó chịu (do lẫn các khí tạp) và dung dịch chuyển sang màu hồng.	
	$CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2\uparrow \text{ (không mùi)}$ $CaS + 2H_2O \rightarrow Ca(OH)_2 + H_2S\uparrow \text{ (mùi trứng thối)}$	0,5
6	(tạp chất)	0,5
(2,0đ)	$Ca_3P_2 + 6H_2O \rightarrow 3Ca(OH)_2 + 2PH_3 \text{ (mùi tổi)}$	
	Hỗn hợp nhiều khí thoát ra tạo mùi khó chịu.	
	2. Khi giấm tiếp xúc với đá vôi thấy mấu đá vôi sửi bọt 2CH ₃ COOH + CaCO ₃ → (CH ₃ COO) ₂ Ca+ H ₂ O + CO ₂ ↑	0,5

Câu	Đáp án	Điểm	
	3. Kim loại natri tan ra, dung dịch sửi bọt khí $2H_2O + 2Na \rightarrow 2NaOH + H_2\uparrow$ $2C_2H_5OH + 2Na \rightarrow 2C_2H_5ONa + H_2\uparrow$		
	 4. Bề mặt lát chuối chuyển dần sang màu xanh - Do chuối xanh có chứa tinh bột, khi quét dung dịch iot lên chuối xanh thì tinh bột trong lát chuối tiếp xúc với iot chuyển thành dung dịch màu xanh. 		
	PTHH có thê xảy ra: Al + $3AgNO_3$ $Al(NO_3)_3 + 3Ag$ (1) $2Al + 3Cu(NO_3)_2$ $2Al(NO_3)_3 + 3Cu$ (2) Fe + $2AgNO_3$ $Fe(NO_3)_2 + 2Ag$ (3) Fe + $Cu(NO_3)_2$ $Fe(NO_3)_2 + Cu(4)$ Y chứa 3 kim loại là Fe, Ag, Cu.	0,5	
7 (2,0đ)	Đặt số mol AgNO ₃ = Cu(NO ₃) ₂ = x. Giả sử Al phản ứng vừa đủ Vì số mol nhóm NO ₃ trong dung dịch trước và sau phản ứng không thay đổi nên ta có biểu thức.	0,5	
	$x + 2x = 3.n_{Al} \Rightarrow x=0.03 \Rightarrow m_y = 0.03(108+64)+2.8=7.96 < 8.12$	0,5	
	Vậy Fe phản ứng một phần.		
	$x + 2x = 3.n_{Al} + 2n_{Fe(pu)} = 0.09 + 2y$ (I) (y là số mol Fe phản ứng)	0,5	
	Khối lượng của Ag, Cu, Fe trong Y là: $108x + 64x + 2,8-56y = 8,12(II)$ $n_X = 8,96 : 22,4 = 0,4 \text{ (mol)}$		
	=>	0,25	
	S + O ₂ SO ₂ (1) (mol) x x x x 1. Vì nhiệt độ không đổi, bình kín nên tỷ lệ áp suấất tỷ lệ thuận với tỷ lệ số mol khí:		
8	Theo PTHH (1) thấy số mol khí không đổi nên áp suất khí trong bình không đổi. Ta có:	0,5	
(2,0đ)	Theo bảo toàn khối lượng => $38.0,4 + 32x = 0,4.44,4 => x = 0,08$ (mol) Trong hỗn hợp Y: $0,2$ mol N ₂ ; $0,02$ mol O ₂ ; $0,18$ mol SO ₂ . => Trong Y: 2.	0,5 0,25	
	Khi số mol S thay đổi thì $0 < x \le 0,1$		
	- Nếu $x \approx 0 \Rightarrow$ => $d_{Y/X} \approx 1$	0,5	
	- Nếu x = 0,1 => Vậy khi số mol S thay đổi thì: $1 < d_{Y/X} < 1,21$		
9 (2,0đ)	1. PTHH $C_2H_4 + Br_2 \rightarrow C_2H_4Br_2$		

Câu		Đá	ip án		Điểm	
	$C_2H_2 + 2Br_2 \rightarrow C_2H_2Br_4$ $C_2H_2 + 2AgNO_3 + 2NH_3 \rightarrow C_2Ag_2 + 2NH_4NO_3$ Trong 8,6 gam hỗn hợp X, gọi số mol CH ₄ , C ₂ H ₄ , C ₂ H ₂ lần lượt là a, b, c. Ta có phương trình: 16a + 28b + 26c = 8,6 (1)					
	Trong 13,44 lít (đktc) lkc (mol). Ta có:	(2)	mol CH4, C2H4, C	C ₂ H ₂ lần lượt là ka, kb,	0,5	
	=> a + b = 3c (3)				0,25	
	Từ (1), (2), (3)				0,5	
	2. Theo ĐLBTKL					
	 => =>				0,25	
	$(C_nH_{2n+1}COO)_3C_3H_{50}$ (mol) 0,015 => $M_A = 3.14n + 176 = 3$	0,045 = 13,35/0,015 =	0,045 0,	C ₃ H ₅ (OH) ₃ 015	0,25 0,25	
	 Khí điều chế được b Nặng hơn không khí Không tác dụng với k → có thể điều chế đượ (C₂H₄ cũng có thể chấp 	hông khí ở đk t c O2; SO2; HCl;	hường Cl ₂		0,5	
10 (2,0đ)	2. Ta có bảng sau (dấu Khí (E) A O2 H ₂ O ₂ SO ₂ H ₂ SO ₄ HCl H ₂ SO ₄ đặc C ₂ H ₄ H ₂ SO ₄ đặc Cl ₂ HCl đặc	B MnO ₂ Na ₂ SO ₃ NaCl	ể không cần thiết; C H ₂ SO ₄ đặc H ₂ SO ₄ đặc H ₂ SO ₄ đặc NaOH NaCl bão hòa	CaCl ₂ làm khô khí): D - hoặc CaCl ₂ - hoặc CaCl ₂ - hoặc CaCl ₂ - hoặc CaCl ₂ H ₂ SO ₄ đặc H ₂ SO ₄ đặc	1,0	
	PTHH $2H_2O_2 \qquad 2H_2O + O$ $H_2SO_4 + Na_2SO_3 \rightarrow N$ $H_2SO_4 _{d\bar{a}c} + 2NaCl_{r\acute{a}n} - C_2H_5OH$	$a_2SO_4 + SO_2 + 1$			0,5	

TRƯỜNG THCS LƯƠNG THẾ VINH ĐỀ THI CHỌN HỌC SINH GIỎI CẤP TRƯỜNG LỚP 9 TRUNG HỌC CƠ SỞ

Đề chính thức

Năm học 2018-2019 - Môn thi: HÓA HỌC Thời gian : 150 phút (không kể phát đề)

Trang 40

Câu 1 (3,5 điểm).

1. Viết các phương trình phản ứng để thực hiện chuỗi biến hóa sau:

2. Chỉ từ các chất: KMnO₄, BaCl₂, H₂SO₄ và Fe có thể điều chế được các khí gì? Viết phương trình hóa học của các phản ứng tạo thành các khí đó.

Câu 2 (3,5 điểm).

- 1. Viết các phương trình phản ứng có thể xảy ra khi cho Al và Cl₂ lần lượt tác dụng với H₂O, dung dịch NaOH, dung dịch H₂SO₄ loãng. Trong các phản ứng đó, phản ứng nào có ứng dụng thực tế?
- **2.** Cho 5,2 gam kim loại M tác dụng với axit H_2SO_4 loãng dư thu được 1,792 lít khí H_2 (ở đktc). Xác định kim loại M.

Câu 3 (4,5 điểm).

- 1. Không dùng thuốc thử nào khác hãy phân biệt các lọ dung dịch riêng biệt sau: MgCl₂, NaOH, NH₄Cl, H₂SO₄, KCl.
 - 2. Viết CTCT có thể có của hợp chất hữu cơ: C₃H₆; C₂H₆O.
- **Câu 4 (3,5 điểm).** Hòa tan 7,83 gam một hỗn hợp gồm 2 kim loại kiềm A, B (nguyên tử khối của A nhỏ hơn nguyên tử khối của B) thuộc 2 chu kì kế tiếp của bảng hệ thống tuần hoàn các nguyên tố hóa học, thu được 2,8 lít khí H_2 bay ra (điều kiện tiêu chuẩn).
 - 1) Xác định kim loại A, B.
- **2)** Cho 16,8 lit khí CO₂ (điều kiện tiêu chuẩn) tác dụng hoàn toàn vào 600ml dung dịch AOH 2M thu được dung dịch X. Tính tổng khối lượng muối trong dung dịch X.
- **Câu 5 (3,0 điểm).** Hỗn hợp A_1 gồm Al_2O_3 và Fe_2O_3 . Dẫn khí CO qua 21,1 gam A_1 và nung nóng thu được hỗn hợp A_2 gồm 5 chất rắn và hỗn hợp khí A_3 . Dẫn A_3 qua dung dịch $Ca(OH)_2$ dư thấy có 5 gam kết tủa. A_2 tác dụng vừa đủ với 1 lít dung dịch H_2SO_4 0,5M thu được dung dịch A_4 và có 2,24 lít khí thoát ra (đo ở đktc).

Tính % khối lượng mỗi chất trong hỗn hợp A_1 .

Câu 6 (2,0 điểm). Cho 23,8 gam hỗn hợp X (Cu, Fe, Al) tác dụng vừa đủ 14,56 lít khí Cl₂ (đkte). Mặt khác cứ 0,25 Mol hỗn hợp tác dụng với dung dịch HCl dư thu được 0,2 Mol khí (đkte). Tính phần trăm khối lượng mỗi kim loại trong hỗn hợp X.

Học sinh được sử dụng bảng hệ thống tuần hoàn các nguyên tố hóa học

- HÉT -

HƯỚNG DẪN CHẨM MÔN HÓA HỌC Thi chọn học sinh giỏi cấp huyện lớp 9 THCS

Năm học 2018-2018

Câu			Nội c	Nội dung			
1.1	2 Fe + 3 Cl ₂	2 → 2F	FeCl ₃				0,25 đ
2,5	FeCl ₃ + 3N	aOH	Fe (OH) 3+ 3N	laCl			0,25 đ
Diểm	2Fe (OH) ₃	→ Fe	$O_2 O_3 + 3H_2O$				0,25 đ
	Fe + 2HCl		$Cl_2 + H_2$				0,25 đ
			SeCl ₂				0,25 đ
	2FeCl ₃ + Fe	—					0,25 đ
	$FeCl_2 + Ag_2$	$SO_4 \longrightarrow 2$	AgCl + FeSO				0,25 đ
	FeSO ₄ + Ba	$(NO_3)_2$	\rightarrow Fe (NO ₃)	$_2$ + Ba SO ₄			0,25 đ
	Fe (NO ₃) ₂ +	2NaOH _	→ Fe (OH	$)_2 + 2NaNO_3$			0,25 đ
	Có thể điều	chế được các l	zhí: O. H. Si), HCl			0,25 đ 0,25 đ
1.2		$\stackrel{\text{the duoc cac } 1}{\rightarrow}$ K ₂ MnO ₄					0,25 d
2,0		$_{\text{ng}} + \text{Fe} \rightarrow \text{FeSo}$		ı			0,25 d
Điểm		tặc, nóng) + 2Fe –		$-6H_2O + 3SC$	\mathbf{p}_2		0,25 đ
		c, nóng) + BaCl ₂					0,23 d
2.1		ng trình phản	-				0,25 đ
1,5		$1 + 6H_2O -$					0,25 đ
Điểm		$_{2} + H_{2}O - $ $_{1} + 3H_{2}SO_{4}$					0,25 đ
		$H_1 + H_2SO_4 : H_2SO_4 : H_3SO_4 : H_3SO_5 $	*		1		0,25 đ
					$_2 + 3H_2$ (Điề	u chế H ₂)	0,25 đ
	Cl	2 + 2NaOH -	→ NaCl +	NaOCl + H	₂ O (Điều chế r	nước Javel)	0,25 đ
2.2							
2,0	Gọi hoá trị của kim loại M là n . Ta có $n_{\rm H_2} = \frac{1,792}{22,4} = 0,08$ mol						
Điểm				22,4			
	$2M + nH2SO4 \rightarrow M2(SO4)n + nH2\uparrow$ $\frac{2.0,08}{mol} mol 0,08mol$						
	$\frac{2.0,08}{n}$ mol 0,08mol						
	Theo bài ra ta có: $\frac{2.0,08}{n}$. M = 5,2 \Rightarrow M = 32,5n . Ta có bảng sau:						
	n 1 2 3				_		
	M	32,loại)	65(Z	n)	57,5 (loại)		
3.1		nguyên tố cần lỗi, lo một ít d		àm mẫu thử	mỗi lần nhỏ 1	dung dich	
2,5					hiệm các hiện		
Điểm		o bảng kết quả				. 8	
	Chất nhỏ					H ₂ SO ₄	
	vào mẫu	MgCl ₂	NaOH	NH ₄ Cl	KC1	112504	
	thử MgCl ₂			Không	Không hiện	Không	
	IVIGCI2		Mg(OH) ₂ ↓	hiện tượng	tượng	hiện tượng	
	NaOH	Ma/OII)		_	Không hiện	Không	
		Mg(OH) ₂ ↓		NH₃↑	tương	hiện tượng	
	NH ₄ Cl	Không hiện	NH₃↑		Không hiện	Không	
	VC1	tượng Vhông biên	,	Vh ân ~	tượng	hiện tượng	
	KC1	Không hiện	Không	Không		Không	

	tương hiện tượng hiện tượng hiện tượng								
	H_2SO_4	Không hiện	Không	Không	Không hiện				
_		tượng	hiện tượng	hiện tượng	tượng				
	Kết luận	1↓	1↓,1↑	1↑					
	* Kết quả:								
		ủa trắng, mẫu				_			
		rủa trắng và kh		•	thử đó là NaOI	I .			
		có mùi khai, m			Ma(OII), ah	a vàa mẫu			
		nẫu thử không tan kết tủa là l		ig, iay ket tua	a Mg(On) ₂ cli	o vao, mau			
		lại là KCl.	112504.						
		* Các phương trình phản ứng: MgCl ₂ + 2NaOH → Mg(OH) ₂ ↓ + 2NaCl							
	$NH_4Cl + NaOH \longrightarrow NaCl + NH_3\uparrow + H_2O$ $MacOH_3 + H_2O \longrightarrow MacOH_3 + 2H_2O$								
	$Mg(OH)_2 + H_2SO_4 \longrightarrow MgSO_4 + 2H_2O$								
	* Nhận biết được 1 chất kèm biện luận đầy đủ được 0,5 điểm								
3.2	Mỗi CTPT v 2,0 điểm	Mỗi CTPT viết đủ 2 CTCT, mỗi CTCT được 0,5 điểm							
4	4.1								
3,5									
điểm	Đặt \overline{M} là nguyên tử khối trung bình của A, B => $M_A < \overline{M} < M_B$								
	$2A + 2 H_2O \longrightarrow 2AOH + H_2\uparrow$								
	222 1 223								
	a mol $\frac{a}{2}$ mol \int								
	$2B + 2 H_2O \longrightarrow 2BOH + H_2\uparrow$								
	b mol b mol $\frac{b}{2}$ mol								
	$n_{H_2} = \frac{a+b}{2} = \frac{2.8}{22.4} \implies a+b = 0.25$								
	, and the second								
	$\overline{M} = \frac{7.83}{0.25} = 31.32 \implies M_A < 31.32 < M_B$						0,25 đ		
	Theo để bài A, B là kim loại kiểm thuộc 2 chu kì kể tiếp suy ra:						ŕ		
	A là Na ($M_{Na} = 23$) và B là K ($M_{K} = 39$).								
	4.2						0,25 đ		
		_ 16,8 _ 0.75	ol.				0,25 đ		
	n_{CO_2}	$=\frac{16,8}{22,4}=0,75m$	Oi				,20 u		
		$=C_{M}\times V=2\times$		-					
	Vì n	$n_{CO_2} \langle n_{NaOH} \langle 2n_{CO_2} \rangle$	do đó thu đư	ợc hỗn hợp 2	muối:		0,25 đ		
	CO_2		\longrightarrow Na ₂ C		(1)		0,25 đ		
	x m		X mo		(2)		0,23 u		
	$\begin{array}{c c} & CO_2 \\ & y m \end{array}$	+ NaOH— ol y mol	→ NaHC y mol		(2)				
		nol là số mol c	•				0,25 đ		
	=	nol là số mol c					0,25 đ		
	-	$= x + y = 0,75\pi$					0,25 đ		
	n_{NaC}	$p_{0H} = 2x + y = 1, 2$	2.mol				0,23 u		
	<u> </u>						ı .		

	$\Rightarrow \begin{cases} x = 0, 45 \\ y = 0, 3 \end{cases}$	0,25 đ
	$\Rightarrow m_{Na,CO_3} = 0,45 \times 106 = 47,7 gam$	
	$m_{NaHCO_3} = 0.3 \times 84 = 25,2gam$	0,25 đ
	Tổng khối lượng muối trong dung dịch A:	
	$m = m_{Na_2CO_3} + m_{NaHCO_3} = 72,9 gam$	
5	Gọi số mol của Al_2O_3 và Fe_2O_3 trong A_1 lần lượt là a và b . $(a \ge 0; b \ge 0)$. Số mol	0,25 đ
3,0	oxi nguyên tử trong A_1 là: $n_0 = 3a + 3b$	
điểm	Theo giả thiết ta tính được: $n_{H_2SO_4} = 1.0,5 = 0,5 (mol)$.	0.25 #
	Các phản ứng có thể xảy ra:	0,25 đ
	$3Fe_2O_3 + CO \xrightarrow{t^o} 2Fe_3O_4 + CO_2 \tag{1}$	0,5 đ
	$Fe_3O_4 + CO \xrightarrow{t^o} 3FeO + CO_2 \tag{2}$	0,25 đ
	$FeO + CO \xrightarrow{t^o} Fe + CO_2 \tag{3}$	
	$CO_2 + Ca(OH)_{2(du)} \rightarrow CaCO_3 \downarrow + H_2O $ $\tag{4}$	0,25 đ
	$n_{CO_2} = n_{CaCO_3} = \frac{5}{100} = 0,05(mol)$	
	A_2 gồm: Al_2O_3 ; Fe_2O_3 ; Fe_3O_4 ; FeO_3 ; Fe . Khí A_3 là CO_3 và CO_2 ; A_2 tác dụng với	0,25 đ
	dung dịch H_2SO_4 loãng thu được khí đó là khí H_2	
	$Oxit + H_2SO_4 \to H_2O + Mu\acute{o}i $ (5)	0,25 đ
	0,4 (mol)	0,23 u
	$Fe + H_2SO_4 \to FeSO_4 + H_2 \uparrow \tag{6}$	
	0,1 (mol)	
	$n_{H_2} = \frac{2,24}{22,4} = 0,1 (mol)$. Số mol nguyên tử oxi trong A_1 bằng tổng số mol nguyên tử	0,25 đ
	oxi trong A_2 và số mol nguyên tử oxi chuyển từ CO thành CO_2 (hay số mol CO_2). Mà số mol nguyên tử oxi trong A_2 bằng số mol H_2SO_4 đã phản ứng trong (5). Mà	0,25 đ
	$n_{H_2SO_4(5)} = n_{H_2SO_4(bandau)} - n_{H_2SO_4(6)} = n_{H_2SO_4(bandau)} - n_{H_2(6)}$	0,25 đ
	Do vậy ta có phương trình:	0,20 4
	$3a + 3b = 0.5 - n_{H_2(6)} + 0.05 \Leftrightarrow 3a + 3b = 0.5 - 0.1 + 0.05 = 0.45 $ (I)	
	Mặt khác: $m_{h\tilde{o}n hop} = 102a + 160b = 21,1$ (II) Giải (I) và (II) ta thu được nghiệm: $a = 0.05$; $b = 0.1$	0,25 đ
6	Các phương trình phản ứng.	
2,0	$Cu + Cl_2 \rightarrow CuCl_2 \qquad (1)$	0,25 đ
điểm	$2Fe + 3Cl_2 \rightarrow 2FeCl_3 \qquad (2)$	0051
	$2Al + 3Cl2 \rightarrow 2AlCl3 $ (3) Fe + 2HCl \rightarrow FeCl ₂ + H ₂ (4)	0,25 đ
	$2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2 \qquad (5)$	0,25 đ
	Gọi a, b, c lần lượt là số mol của Cu, Fe, Al Khối lượng hỗn hợp: 64a+56b+27c = 23,8 (I)	
	Theo (1), (2), (3) số mol clo: $a+3b/2+3c/2=0.65$ (II)	0,25 đ
	Vì số số mol X tỉ lệ với số mol khí hidro thu được :	0,25 đ
	0.2 (a+b+c) = 0.25 (b+3/2c) (III)	- ,=
	Kêt hợp (I), (II), (III) giải ta được: Giải hệ: a =0,2 (%Cu=53,78)	0,5 đ
	Orar 11ç. a -0,2 (/0Cu-33,70)	

b = 0.1(% Fe = 23.53)	0,25 đ
c = 0.2(22.69)	

PHÒNG GDĐT HOÀNG MAI

ĐỀ CHÍNH THỰC

(Đề thi gồm 01 trang)

KỲ THI HỌC SINH GIỚI THỊ XÃ LỚP 9 NĂM HỌC 2017 – 2018 Môn: Hóa học

(Thời gian 120 phút không kể thời gian giao đề)

Câu 1 (3,0 điểm)

- 1) Viết 4 phương trình hoá học khác nhau và chỉ rõ các phản ứng dùng để điều chế SO₂ trong phòng thí nghiệm và trong công nghiệp.
- 2) Trong phòng thí nghiệm ta thường điều chế CO₂ từ CaCO₃ và dung dịch HCl (dùng bình kíp), do đó CO₂ thu được còn bị lẫn một ít khí hiđrô clorua và hơi nước. Hãy trình bày phương pháp hoá học để thu được CO₂ tinh khiết. Viết các phương trình hoá học xảy ra.

Câu 2 (4,0 điểm)

- 1) Viết các phương trình hoá học (nếu có) khi cho kim loại Na tác dụng với:
 - a) Khí Clo. b) Dung dịch HCl. c) Dung dịch CuSO₄. d) Dung dịch AlCl₃.
- 2) Cho luồng khí H₂ dư đi qua hồn hợp Na₂O, Al₂O₃ và Fe₂O₃ nung nóng thu được chất rắn X. Hoà tan X vào nước dư thu được dung dịch Y và chất rắn E. Sục khí HCl từ từ tới dư vào dung dịch Y thu được dung dịch F. Hoà tan E vào dung dịch Ba(OH)₂ dư thấy bị tan một phần và còn lại chất rắn G. Xác định các chất trong X, Y, E, F, G và viết phương trình phản ứng xảy ra.

Câu 3 (4,0 điểm)

- 1) Có 4 gói phân bón hoá học bị mất nhãn: kali clorua, amoni sunphat, amoni nitrat và supe photphat kép. Trong điều kiện ở nông thôn có thể phân biệt được 4 gói đó không? Viết phương trình phản ứng xảy ra (nếu có).
- 2) Chọn chất thích hợp và hoàn thành phương trình hoá học theo sơ đồ sau:
 - $Bazo(A) + Bazo(B) \rightarrow Mu\acute{o}i(C) + nu\acute{o}c.$ (1)
 - $Mu\acute{o}i(C) + oxit(D) + H_2O \rightarrow Bazo(A) + mu\acute{o}i(E)$ (2)
 - $Mu\acute{o}i(E) + Ca(OH)_2 \rightarrow CaCO_3 + mu\acute{o}i(F) + H_2O.$ (3)
 - $Mu\acute{o}i(F) + mu\acute{o}i(G) + H_2O \rightarrow Bazo(A) + KCl + oxit(D).$ (4)

Câu 4 (6,0 điểm)

- 1) Hoà tan hết 11,1 gam hồn hợp A gồm Al và Fe trong 200 gam dung dịch H₂SO₄ 19,6% (loãng) thu được dung dịch B và 6,72 lít H₂ (đktc). Thêm từ từ 420 ml dung dịch Ba(OH)₂ 1M vào dung dịch B, sau phản ứng lọc lấy kết tủa đem nung trong không khí đến khối lượng không đổi thu được m gam chất rắn khan.
 - a) Nhúng mẫu giấy quỳ tím vào dung dịch B có hiện tương gì xảy ra? Giải thích.
 - b) Tính thành phần % theo khối lượng mỗi kim loại có trong hỗn hợp A.
 - c) Tính giá trị m.
- 2) Cho 39,6 gam hổn hợp A gồm Al, Al₂O₃, CuO tan trong 1,2 lít dung dịch NaOH 0,5M thu được dung dịch B và 24 gam một chất rắn C duy nhất. Mặt khác 0,3 mol hỗn hợp A tác dụng vừa đủ với 1,5 lít dung dịch H₂SO₄ 0,3M.
 - a) Tính thành phần % khối lượng từng chất trong hồn hợp A.
 - **b)** Thêm dung dịch HCl 2,0 M vào dung dịch B. Tính thể tích dung dịch HCl 2,0 M phải dùng để thu được kết tủa sau khi nung nóng cho ra 10,2 gam chất rắn khan. Biết các phản ứng xảy ra hoàn toàn.

Câu 5 (3,0 điểm)

- 1) Trình bày cách tiến hành thí nghiệm và các lưu ý khi làm thí nghiệm tác dụng của sắt với lưu huỳnh.
- 2) Nêu hiện tượng và viết phương trình hóa học khi:
 - a) Cho rất từ từ dung dịch HCl loãng tới dư vào dung dịch Na₂CO₃.
 - b) Sục từ từ cho đến dư CO₂ vào dung dịch Ba(OH)₂. Khi phản ứng kết thúc (dư CO₂), lấy dung dịch đem nung nóng.

Cho biết: Al = 27, Fe = 56, Ba = 137, Cu = 64, Na = 23, Cl = 35,5, O = 16, H = 1.

K .
LT ^+
 пет

	Hc	và tên thí sinh:	SBD:
--	----	------------------	------

(Học sinh không dùng tài liệu, cán bộ coi thi không giải thích gì thêm)

PHÒNG GD ĐT HOÀNG MAI

ĐỀ CHÍNH THỨC

KỲ THI CHỌN HỌC SINH GIỚI LỚP 9 NĂM HỌC 2017 – 2018

Hướng dẫn chấm môn: HÓA HỌC (Thời gian: 120' không kể thời gian giao nhận đề)

Câu	Ý lớn	Ý nhỏ	Nội dung	Điểm
I				3,0
	1			2
			$Na_2SO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + SO_2 + H_2O$. (1) (trong phòng thí nghiệm)	0,5
			$Cu + 2H_2SO_{4(d)} \xrightarrow{t^0} CuSO_4 + SO_2 + H_2O.$ (2) (trong phòng thí nghiệm)	0,5
			$S + O_2 \xrightarrow{t^0} SO_2$. (3) (trong công nghiệp)	0,5
			$4\text{FeS}_2 + 11\text{O}_2 \xrightarrow{t^0} 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2 \qquad (4) \text{ (trong công nghiệp)}$	0,5
	2			1
			PTHH. 2HCl _(dd) + CaCO _{3(r)} → CaCl _{2(dd)} + CO _{2(k)} + H ₂ O _(l) Để thu được CO ₂ tinh khiết (do có lẫn hiđrô clorua, hơi nước) ta cho hồn hợp khí và hơi qua bình đựng dung dịch NaHCO ₃ dư, hiđro clorua bị giữ lại. NaHCO _{3(dd)} + HCl → NaCl _(dd) + H ₂ O _(l) + CO _{2(k)}	0,5
			Tiếp tục cho hồn hợp còn lại đi qua bình đựng H_2SO_4 đặc hoặc P_2O_5 , hơi nước bị hấp thụ. Ta thu được CO_2 tinh khiết. H_2SO_4 đặc hấp thụ hơi nước.	0,5
II				4
	1			2
		a)	$2Na + Cl_2 \xrightarrow{t^0} 2NaCl$	0,25
		b)	Xåy ra theo thứ tự: $2Na + 2HCl \rightarrow 2NaCl + H_2$ (1) $2Na + 2H_2O \rightarrow 2NaOH + H_2$ (2)	0,5
		c)	Xåy ra theo thứ tự: $2Na + 2H_2O \rightarrow 2NaOH + H_2.$ (1) $2NaOH + CuSO_4 \rightarrow Cu(OH)_2 + Na_2SO_4$ (2)	0,5
		d)	Xảy ra theo thứ tự: $2Na + 2H_2O \rightarrow 2NaOH + H_2$ (1) $3NaOH + AlCl_3 \rightarrow Al(OH)_3 + NaCl$ (2) $N\acute{e}u$ sau (2) $NaOH$ còn dư thì tiếp tục xảy ra phản ứng $NaOH + Al(OH)_3 \rightarrow NaAlO_2 + 2H_2O$. (3)	0,75
	2		72 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2,0

	1			0.05
			Rắn X gồm: Al ₂ O ₃ , Na ₂ O, NaOH, Fe. Dung dịch Y có NaOH, NaAlO ₂ .	0,25
			Dùng dịch Y có NaOH, NaAlO ₂ . Rắn E: Fe, Al ₂ O ₃ .	
			Dung dịch F: NaCl, AlCl ₃ , HCl(dư)	
			Rắn G: Fe.	
			$3H_2 + Fe_2O_3 \xrightarrow{t^0} 2Fe + 3H_2O.$	0,25
			$H_2O_{(h)} + Na_2O \rightarrow 2KOH$	0,25
			$Na_2O + H_2O \rightarrow 2NaOH.$	0,25
			$Na_2O + H_2O \rightarrow 2NaOH.$	0,25
			$2\text{NaOH} + \text{Al}_2\text{O}_3 \longrightarrow 2\text{NaAlO}_2 + \text{H}_2\text{O}.$	0,25
			$HCl + NaOH \rightarrow NaCl + H_2O$	0,25
			$4HCl + NaAlO2 \rightarrow NaCl + AlCl3 + 2H2O$	0,25
			$Ba(OH)_2 + Al_2O_3 \longrightarrow Ba(AlO_2)_2 + H_2O.$	0,25
III				4,0
	1			2,0
			Trong điều kiện ở nông thôn có thể sử dụng nước vôi trong để nhận biết. Khi đó KCl	0,5
			không phản ứng với nước vôi trong.	0,3
			Amoni sunphat (NH ₄) ₂ SO ₄ tạo khí mùi khai và tạo kết tủa màu trắng.	0,5
			$Ca(OH)_2 + (NH_4)_2SO_4 \rightarrow CaSO_4 \downarrow + 2NH_3 \uparrow + 2H_2O.$	
			Amoni nitrat NH ₄ NO ₃ tạo có khí mùi khai.	0,5
			$Ca(OH)_2 + 2NH_4NO_3 Ca(NO_3)_2 + 2NH_3 \uparrow + 2H_2O.$	
			$Ca(011)_2 + 21111_4110_3$ $Ca(1103)_2 + 21111_3$ $+ 2111_20$.	
			Supephotphat kép Ca(H ₂ PO ₄) ₂ tạo kết tủa màu vàng.	0,5
			$2Ca(OH)_2 + Ca(H_2PO_4)_2 Ca_3(PO_4)_2 \downarrow + 4H_2O.$	0,2
			$2Ca(O11)_2 + Ca(\Pi_2 \Gamma O_4)_2 \qquad Ca_3(\Gamma O_4)_2 \qquad + 4\Pi_2 O.$	
	2			2
			$Al(OH)_3 + KOH \rightarrow KAlO_2 + 2H_2O $ (1)	0,5
			(A) (B) (C) $KAlO_2 + CO_2 + 2H_2O \longrightarrow Al(OH)_3 + KHCO_3.$ (2)	0.7
				0,5
			(D) (E)	
			$2KHCO_3 + Ca(OH)_2 CaCO_3 + K_2CO_3 + 2H_2O. $ (3)	0,5
			$3K_2CO_3 + 2AlCl_3 + 3H_2O \rightarrow 2Al(OH)_3 + 6KCl + 3CO_2.$ (4)	0,5
IV				6,0
	1			ŕ
	1			3,0
		a)		1,0
	1	1	I .	ı

	(70	
	$n_{\text{H}_2} = \frac{6,72}{22,4} = 0,3 \text{(mol)}; \ n_{\text{H}_2\text{SO}_4} = \frac{200.19,6}{100.98} = 0,4 \text{(mol)}$	0,25
	$n_{Ba(OH)_2} = 0.42.1 = 0.42 \text{(mol)}_{.}$	0,25
	PTHH: $2Al + 3H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3H_2$ (1)	0,25
	$x x \frac{3}{2}x (mol)$	0,25
	$Fe + H_2SO_4 \rightarrow FeSO_4 + H_2 \tag{2}$	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	⇒ H ₂ SO ₄ còn dư sau phản ứng hay trong dd B có dd H ₂ SO ₄ ⇒ Nhúng mẫu giấy quỳ tím vào dd B thì quỳ tím hóa đỏ.	
	Triung mau gray quy tim vao uu B tiii quy tiii noa uo.	
b)		0,5
	$\begin{cases} n_{Al} = x(mol) \\ n_{E_e} = y(mol) \end{cases}$. Từ câu a ta có: $n_{H_2SO_4}(du) = 0.4 - 0.3 = 0.1 \text{ (mol)}$	
	$n_{\text{Fe}} = y(\text{mol}) \cdot \text{for each a large of } n_{2504}(\text{day}) \cdot \text{o, for each of mol}$	0,5
	$\int \frac{3}{x} + y = 0.3$ $(x = 0.1)$	
	Từ (1), (2) kết hợp đề bài ta có hệ PT: $\begin{cases} \frac{3}{2}x + y = 0,3\\ 27x + 56y = 11,1 \end{cases} \Leftrightarrow \begin{cases} x = 0,1\\ y = 0,15 \end{cases}$	0,5
		0,0
	Thành phần % khối lượng mỗi kim loại: 0.1.27	
	$\% \mathrm{m_{Al}} = \frac{0.1.27}{11.1}.100\% = 24,32\%$	
	\Rightarrow % m _{Fe} = 100% - % m _{Al} = 100% -24,32% = 75,68%.	
c)		1,0
()		1,0
	$\left[\begin{array}{c} 0,1(\text{mol})\text{H}_2\text{SO}_4 \end{array}\right]$	
	Từ (1), (2) và câu b) ta có dd B gồm: $\begin{cases} 0.1(\text{mol})\text{Al}_2(\text{SO}_4)_3 \\ 0.15(-1)\text{F. GO} \end{cases}$	
	0.15(mol)FeSO_4	
	Cho dd Ba(OH) ₂ vào dd B:	
	Đầu tiên: $H_2SO_4 + Ba(OH)_2$ → $BaSO_4$ \downarrow + $3H_2O$ (3)	0,25
	$0,1 \rightarrow 0,1 \qquad 0,1 \qquad \text{(mol)}.$	
	Sau đó: $Al_2(SO_4)_3 + 3Ba(OH)_2 \rightarrow 3BaSO_4 \downarrow + 2Al(OH)_3 \downarrow (4)$ $0.05 \rightarrow 0.15$ 0.15 0.1 (mol)	
	$FeSO_4 + Ba(OH)_2 \rightarrow BaSO_4 \downarrow + Fe(OH)_2 \downarrow \qquad (5)$	
	$0.15 \rightarrow 0.15 \qquad 0.15 \qquad 0.15 \qquad 0.15 \qquad 0.15 \qquad 0.15$	0,25
	Nếu các phản ứng (3), (4), (5) xảy ra hoàn toàn thì:	
	$ T \mathring{\text{o}} \text{ng} \ \ ^{1}\text{ng}_{Ba(OH)_{2}} \ (c \mathring{a} \text{n}) = 0, 1 + 0, 15 + 0, 15 = 0, 4 \ (mol) < \ ^{1}\text{ng}_{Ba(OH)_{2}} \ (b \mathring{d}) = 0, 42 \ (mol) < (b \mathring{d}) = 0, 42 \ (mol) $	
	\Rightarrow $n_{Ba(OH)_2} (du) = 0.42 - 0.4 = 0.02 (mol)$	0,25
	Có xảy ra phản ứng: $Ba(OH)_2 + 2Al(OH)_3 \rightarrow Ba(AlO_2)_2 + 4H_2O$ (6)	
	Nhận xét: $\frac{n_{\text{Ba(OH)}_2}}{1} = 0.02 < \frac{n_{\text{Al(OH)}_3}}{2} = \frac{0.1}{2}$	0,25
	Nên sau phản ứng (6) Ba(OH) ₂ p/ư hết, Al(OH) ₃ dư	
	$n_{Al(OH)_3}$ (du) = 0,1 – 0,02.2 = 0,06(mol).	
	Chất rắn sau p/ư gồm: 0,06mol Al(OH) ₃ , 0,15 mol Fe(OH) ₂ , 0,15+ 0,15 + 0,1= 0,4 mol BaSO ₄ .	
	PTHH nung kết tủa trong không khí:	
	$2Al(OH)_3 \xrightarrow{t^0} Al_2O_3 + 3H_2O \qquad (7)$	
	$0.06 \rightarrow 0.03 \text{(mol)}$	

		t ⁰	
		$4Fe(OH)_2 + O_2 \xrightarrow{t^0} 2Fe_2O_3 + 4H_2O \qquad (8)$	
		$0.15 \rightarrow 0.075 \qquad (mol)$	
		$BaSO_4 \xrightarrow{t^0} BaSO_4$	
		$V_{\text{ay: }m} = m_{\text{Al}_2\text{O}_3} + m_{\text{Fe}_2\text{O}_3} + m_{\text{BaSO}_4} = 0,03.102 + 0,075.160 + 0,4.233$	
		m = 108,26(g)	
2			3,0
			3,0
	a)		1,5
		РТНН:	
		$2Al + 2NaOH + 2H2O \rightarrow 2NaAlO2 + 3H2 (1)$	
		$Al_2O_3 + 2NaOH \longrightarrow 2NaAlO_2 + H_2O $ (2)	
		$2Al + 3H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3H_2$ (3)	0,5
		$kx \rightarrow 1,5kx$ (mol)	
		$Al_2O_3 + 3H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3H_2O$ (4)	
		$ky \rightarrow 3ky \qquad (mol)$ $CuO + H_2SO_4 \rightarrow CuSO_4 + H_2O \qquad (5)$	0,25
		$ \begin{array}{c} \text{CuO} + \text{H}_2\text{SO}_4 \longrightarrow \text{CuSO}_4 + \text{H}_2\text{O} \\ \text{kz} \longrightarrow \text{kz} \end{array} \tag{5} $	0,20
		Đặt trong 39,6 gam hồn hợp A chứa: x mol Al, y mol Al ₂ O ₃ và z mol CuO.	
		Chất rắn C duy nhất không bị hòa tan trong dung dịch NaOH là CuO	
		Suy ra: $n_{CuO} = z = \frac{24}{80} = 0,3 \text{(mol)}$	0,25
		Suy ra: $n_{CuO} = z = \frac{1}{80} - 0.5$ (MOI)	
		Kết hợp đề bài ta có hệ PT: $\begin{cases} 27x + 102y + 80z = 39, 6 \\ z = 0.3 \end{cases}$ (I)	0,25
		Kết hợp đề bài ta có hệ PT: $z = 0.3$ (I)	
		Trong 0,15 mol A chứa: kx mol Al, ky mol Al ₂ O ₃ , kz mol CuO	
		$n_{\text{H}_2\text{SO}_4} = 1,5.0,3 = 0,45 \text{(mol)}$	0,25
		2" " 4	
		Từ (3), (4), (5) và đề bài ta có hệ PT: $\begin{cases} kx + ky + kz = 0, 3 \\ 1,5kx + 3ky + kz = 0, 45 \end{cases}$ Suy ra:	
		$\frac{kx + ky + kz}{1,5kx + 3ky + kz} = \frac{0,3}{0,45} = \frac{2}{3} \text{ hay } 3y - z = 0 \text{ (II)}$	
		$1,5kx + 3ky + kz$ $0,45$ $3^{-hay 3y - z = 0}$ (II)	
		$\int 27x + 102y = 80z = 39,6$ $\int x = 0,2$	
		7-0.3	
		$\text{Tù (I), (II) ta có hệ PT:} \begin{cases} 27x + 102y = 80z = 39, 6 \\ z = 0, 3 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x = 0, 2 \\ y = 0, 1 \\ z = 0, 3 \end{cases}$	
		Thành phần % khối lượng mỗi chất trong A:	
		$\%$ _{m_{Al}} = $\frac{0.2.27}{39.6}$.100% $\approx 13,64\%$; $\%$ _{m_{CuO}} = $\frac{24}{39.6}$.100% $\approx 60,60\%$	
		39,6 , vincuo 39,6	
		$\% \mathrm{m_{Al_2O_3}} = 100\% - 13,64\% - 60,64\% = 25,76\%$	
	b)		1,5
	.,		
		$n_{\text{NaOH}}(\text{bd}) = 1,2.0,5 = 0,6 \text{ (mol)}$	0,5
		$T\dot{u}(1), (2) \Rightarrow n_{NaOH}(p/u) = n_{Al} + 2.n_{Al_2O_3} = 0, 2 + 2.0, 1 = 0, 4 (mol)$	
		\Rightarrow $n_{\text{NaOH}}(\text{dur}) = 0.6 - 0.4 = 0.2 \text{ (mol)}$	
		$n_{NaAlO_2} = n_{Al} + 2.n_{Al_2O_3} = 0, 2 + 2.0, 1 = 0, 4 \text{(mol)}$	
		Dd B gồm: 0,2 mol NaOH dư, 0,4 mol NaAlO ₂ .	0,5
			0,5

			Theo đề bài: $n_{Al_2O_3} = \frac{10,2}{102} = 0,1 \text{(mol)}$	
			$\Rightarrow_{\text{NAI}}(\text{trong k\'et tủa}) = 0,1.2 = 0,2(\text{mol}) < n_{\text{AI}(\text{NaAlO}_2)} = 0,4(\text{mol}). \text{ Nên k\'et tủa chưa cực}$ đại, xảy ra hai trường hợp: TH1: Khi cho HCl vào ddB, HCl thiếu: PTHH: HCl + NaOH \rightarrow NaCl + H ₂ O 0,2 \leftarrow 0,2 (mol)	0,5
			NaAlO ₂ + HCl + H ₂ O \rightarrow Al(OH) ₃ \downarrow + 3H ₂ O (7) 0,2	
			$V_{\text{ddHCI}} = \frac{1,2}{2} = 0,6 \text{ (1)} = 600 \text{ml.}$	
V				3
	1			1,5
			Cách tiến hành thí nghiệm: Trộn bột lưu huỳnh và bột sắt theo tỉ lệ về thể tích khoảng 1:3 (hoặc tỉ lệ về khối lượng 7:4). Cho vào ống nghiệm một thìa nhỏ hồn hợp bột sắt và lưu huỳnh, kẹp ống nghiệm trên giá thí nghiệm. Dùng đèn cồn đun nóng nhẹ ống nghiệm đến khi có đốm sáng đỏ xuất hiện thì bỏ đèn cồn ra. Lưu ý: - Bột lưu huỳnh và bột sắt phải khô. - Phản ứng của sắt và lưu huỳnh tỏa ra nhiệt lượng lớn nên khi làm thí nghiệm cần: ống nghiệm khô, chịu nhiệt và làm với lượng nhỏ, cẩn thận.	1,0
	2			1,5
		a)	Ban đầu không có hiện tượng gì, sau đó có bọt khí không màu thoát ra:	0,5
		/	PTHH: $HCl + Na_2CO_3 \rightarrow NaHCO_3 + NaCl$. $HCl + NaHCO_3 \rightarrow NaCl + CO_2 \uparrow + H_2O$	
		b)	Khi cho từ từ CO ₂ vào dd Ba(OH) ₂ thấy dung dịch đục, xuất hiện kết tủa trắng tăng dần đến cực đại. Sau đó kết tủa lại tan dần, dung dịch trở nên trong suốt.	0,5
			PTHH: CO ₂ + Ca(OH) ₂ → BaCO ₃ ↓ + H ₂ O CO ₂ (du') + H ₂ O + BaCO ₃ → Ba(HCO) ₂ . Lấy dd thu được đun nóng, dd lại đục dần cho xuất hiện trở lại kết tủa trắng: PTHH: Ba(HCO ₃) ₂ → BaCO ₃ ↓ + CO ₂ ↑ + H ₂ O	0,5
			Р1HH: Ва(HCO ₃) ₂	

PHÒNG GD-ĐT THĂNG BÌNH TRƯ<u>ỜNG THCS</u> CHU VĂN AN

ĐỀ THI CHỌN HỌC SINH GIỚI MÔN THI: HÓA HỌC- LỚP 9 THCS ĐỀ SỐ 6

<u>Câu I:</u> (2,0 điểm)

Cho lần lượt từng chất: Fe, BaO, Al₂O₃, và KOH vào lần lượt các dung dịch: NaHSO₄, CuSO₄. Hãy viết PTHH của các phản ứng xảy ra.

<u>Câu II:</u> (3,0 điểm)

- 1) Có 1 hh gồm 5 kim loại: Al, Mg; Fe, Cu, Ag. Hãy dùng PPHH để tách riêng từng kim loại với khối lượng không đổi. Viết PTHH xảy ra trong quá trình tách.
 - 2) Viết PTPU trong mỗi trường hợp sau
 - a. Oxit + Axit \rightarrow 2 muối + oxit
 - b. Muối + kim loại \rightarrow 2 muối
 - c. Muối + baz $\sigma \rightarrow 2$ muối + 1 σ
 - d. Muối + kim loại →1 muối

Câu III: (3,0 điểm)

- 1) Trộn V₁ lit dd HCl 0,6M với V₂ lít dd NaOH 0,4M thu được 0,6 lit dd A. Tính V₁, V₂ biết 0,6 lít dd A có thể hoà tan hêt 1,02 gam Al₂O₃ (coi sự pha trộn không làm thay đổi thể tích)
- 2) Sục từ từ a mol khí CO₂ vào 800 ml dd X gồm KOH 0,5M và Ca(OH)₂ 0,2M. Tìm giá trị của a để thu được khối lượng kết tủa lớn nhất.

Câu IV: (10,0 điểm)

- 1) Hoà tan các chất gồm Na₂O, NaHCO₃, BaCl₂, NH₄Cl có cùng số mol vào nước dư được dd A và kết tủa B. Hỏi dd A và kết tủa B chứa những chất gì? Viết PTHH của các phản ứng để minh hoa
- 2) Hoà tan hết 3,2 gam oxit M₂O_n trong lượng vừa đủ dd H₂SO₄ 10%, thu được dd muối có nồng độ 12,903%. Sau phản ứng đem cô bót dd và làm lạnh thu được 7,868 gam tinh thể muối với hiệu suất 70%. Xác định công thức của tinh thể muối đó.
- 3) Cho x gam một muối halogenua của một kim loại kiềm tác dụng với 200ml dd H₂SO₄ đặc, nóng vừa đủ. Sau khi phản ứng xảy ra hoàn toàn, thu được hỗn hợp sản phẩm A trong đó có một khí B (mùi trứng thối). Cho khí B tác dụng với dd Pb(NO₃)₂ (dư) thu được 47,8 gam kết tủa màu đen. Phần sản phẩm còn lại, làm khô thu được 342,4 gam chất rắn T. Nung T đến khối lượng không đổi thu được 139,2 gam muối duy nhất.
- a) Tính nồng độ mol/lit của dd H₂SO₄ ban đầu.
- b) Xác định công thức phân tử của muối halogenua.
- c) Tính x.

Cán bộ coi thi không giải thích gì thêm.

<u>Câu I:</u> (2,0 điểm)

Cho lần lượt từng chất: Fe, BaO, Al₂O₃, và KOH vào lần lượt các dung dịch: NaHSO₄, CuSO₄. Hãy viết PTHH của các phản ứng xảy ra.

CÂU	NỘI DUNG					
2,0	* Với NaHSO ₄ :					
	$Fe + 2NaHSO_4 \rightarrow FeSO_4 + Na_2SO_4 + 2H_2$					
	$Ba(OH)_2 + 2NaHSO_4 \rightarrow BaSO_4 + Na_2SO_4 + 2H_2O$					
	$Ba(OH)_2 + NaHSO_4 \rightarrow BaSO_4 + NaOH + H_2O$					
	$BaO + H_2O \rightarrow Ba(OH)_2$					
	$Al_2O_3 + 6NaHSO_4 \rightarrow Al_2(SO_4)_3 + 3Na_2SO_4 + 3H_2O$					
	$2KOH + 2NaHSO_4 \rightarrow K_2SO_4 + Na_2SO_4 + 2H_2O$					
	* Với CuSO ₄ :					
	$Fe + CuSO_4 \rightarrow FeSO_4 + Cu$					
	$BaO + H_2O \rightarrow Ba(OH)_2$					
	$Ba(OH)_2 + CuSO_4 \rightarrow BaSO_4 + Cu(OH)_2$					
	$2\text{KOH} + \text{CuSO}_4 \rightarrow \text{Cu(OH)}_2 + \text{K}_2\text{SO}_4$					

<u>Câu II:</u> (3,0 điểm)

- 1) Cổ 1 hh gồm 5 kim loại: Al, Mg; Fe, Cu, Ag. Hãy dùng PPHH để tách riêng từng kim loại với khối lượng không đổi. Viết PTHH xảy ra trong quá trình tách.
 - 2) Viết PTPU trong mỗi trường họp sau
 - a. Oxit + Axit \rightarrow 2 muối + oxit
 - b. Muối + kim loại → 2 muối
 - c. Muối + baz $\sigma \rightarrow 2$ muối + 1 σ
 - d. Muối + kim loại →1 muối

CÂU	NỘI DUNG					
2. 1,0đ	a. $Fe_3O_4 + 8HCl \rightarrow FeCl_2 + 2FeCl_3 + 4H_2O$					
	$FeCl_3 + 2Cu \rightarrow FeCl_2 + 2CuCl_2$					
	c. $2NaHCO_3 + Ca(OH)_2 \rightarrow CaCO_3 + Na_2CO_3 + 2H_2O$					
	$d. 2FeCl3 + Fe \rightarrow 3FeCl2$					

Câu III: (3,0 điểm)

- 1) Trộn V₁ lit dd HCl 0,6M với V₂ lít dd NaOH 0,4M thu được 0,6 lit dd A. Tính V₁, V₂ biết 0,6 lít dd A có thể hoà tan hêt 1,02 gam Al₂O₃ (coi sự pha trộn không làm thay đổi thể tích)
- 2) Sục từ từ a mol khí CO₂ vào 800 ml dd X gồm KOH 0,5M và Ca(OH)₂ 0,2M. Tìm giá trị của a để thu được khối lượng kết tủa lớn nhất.

	ind duộc khối lượng kết tuả lớn linat.						
CÂU	NỘI DUNG						
1. (2,0đ)	$n_{HCl}=0.6V_1 \text{ (mol)}$						
	$n_{\text{NaOH}}=0,4V_2 \text{ (mol)}$						
	$n_{Al2O3} = 0.1 \text{ (mol)}$						
	- Theo đề bài ta có: $V_1+V_2=0,6$ lít						
	- PTHH: $HCl + NaOH \rightarrow NaCl + H_2O$ (1)						
	* Trường hợp 1: Trong dd A còn dư axit HCl						
	$6HCl + Al2O3 \rightarrow 2AlCl3 + 3H2O $ (2)						
	- Theo (1) và (2) ta có $V_1 + V_2 = 0.3$ lít (*)						
	* Trường hợp 2: Trong dd A còn dư axit NaOH						
	$2NaOH + Al2O3 \rightarrow 2NaAlO2 + H2O $ (3)						
	- Theo (1) và (3) ta có $n_{NaOH} = n_{HCl} + 2n_{Al2O3}$						
	$=>0,4V_2=0,6V_1+0,02$ (**)						
	- Từ (*) và (**) ta có: $V_1 = 0.22$ lit, $V_2 = 0.38$ lít						
2(1đ)	$n_{KOH} = 0.8.0, 5 = 0.4 \text{ mol}$						
	$n_{\text{Ca(OH)2}} = 0.8.0,2 = 0.16 \text{ mol}$						
	Sục từ từ a mol khí CO ₂ vào 800 ml dd X có các phương trình phản ứng						
	$CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$ (1)						
	Mol 0,16 0,16 0,16						
	$CO2 + 2KOH \rightarrow K_2CO_3 + H_2O \qquad (2)$						
	Mol 0,2 0,4 0,2						
	$CO_2 + K_2CO_3 + H_2O \rightarrow 2KHCO_3$ (3)						
	Mol 0,2 0,2						
	- Theo (1) ta có: Nếu $0 \le a \le 0,16$ thì số mol CaCO ₃ tăng từ 0 đến $0,16$ mol						
	- Theo (2) và (3) ta có: Nếu $0.16 \le a \le 0.56$ thì số mol CaCO ₃ = 0.16 mol						
	Vậy để thu được khối lượng kết tủa lớn nhất là $0.16.100 = 16$ gam thì $0.16 \le a \le 0.56$						

<u>Câu IV:</u> (10,0 điểm)

- 3) Hoà tan các chất gồm Na₂O, NaHCO₃, BaCl₂, NH₄Cl có cùng số mol vào nước dư được dd A và kết tủa B. Hỏi dd A và kết tủa B chứa những chất gì? Viết PTHH của các phản ứng để minh hoạ.
- 4) Hoà tan hết 3,2 gam oxit M₂O_n trong lượng vừa đủ dd H₂SO₄ 10%, thu được dd muối có nồng độ 12,903%. Sau phản ứng đem cô bớt dd và làm lạnh thu được 7,868 gam tinh thể muối với hiệu suất 70%. Xác định công thức của tinh thể muối đó.
- 5) Cho x gam một muối halogenua của một kim loại kiềm tác dụng với 200ml dd H₂SO₄ đặc, nóng vừa đủ. Sau khi phản ứng xảy ra hoàn toàn, thu được hỗn hợp sản phẩm A trong đó có một khí B (mùi trứng thối). Cho khí B tác dụng với dd Pb(NO₃)₂ (dư) thu được 47,8 gam kết tủa màu đen. Phần sản phẩm còn lại, làm khô thu được 342,4 gam chất rắn T. Nung T đến khối lượng không đổi thu được 139,2 gam muối duy nhất.
 - a) Tính nồng độ mol/lit của dd H₂SO₄ ban đầu.
 - b) Xác định công thức phân tử của muối halogenua.
 - c) Tính x.

	1						
1. (2,0đ)	Phươn	Phương trình hoá học					
		$Na_2O + H_2O \rightarrow 2NaOH$					
	Mol	a 2a					
		NaHCO ₃ + NaOH -> Na ₂ CO ₃ + H ₂ O					
	Mol	a a a					
	$NH_4C1 + NaOH \rightarrow NaC1 + NH_3\uparrow + H_2O$						
	Mol	a a a a					
		$BaCl_2 + Na_2CO_3 \rightarrow BaCO_3 \downarrow + 2NaCl$					

	Mol a a 2a								
	=> Dung dịch A chỉ có NaCl								
	Kết tủa B chỉ có BaCO ₃								
2(3đ)	- PTHH:								
	M_2O_n + $n H_2SO_4$ \rightarrow $M_2(SO_4)_n$ + nH_2O								
	Nếu có 1 mol M ₂ O _n thì số gam dd H ₂ SO ₄ 10% là 980n gam								
	Số gam dd muối là 2M+996n (gam)								
	$T_{3.66}$: $C_{66}^{96} = \frac{(2M + 96n).100}{12.903} = 12.903$ b. $M = \frac{56n}{12.903}$								
	Ta có: $C\% = \frac{(2M + 96n).100}{2M + 996n} = 12,903 \text{ P} M = \frac{56n}{3}$								
	V ậy $n = 3$, $M = 56 \Rightarrow$ oxits là Fe_2O_3								
	PTHH: $Fe_2O_3 + 3H_2SO_4 \rightarrow Fe_2(SO_4)_3 + 3H_2O$								
3(5đ)	a. $n_{Pb(NO3)2} = 0.2 \text{ mol}$								
	- Vì khí B có mùi trứng thối khi tác dụng với dd Pb(NO ₃) ₂ tạo kết tủa đen => B là H ₂ S								
	- Gọi CTTQ của muối halogenua kim loại kiềm là RX								
	- PTHH $8RX + 5H_2SO_4 \stackrel{\text{disc}}{=} \rightarrow 4R_2SO_4 + H_2S\uparrow + 4X_2 + 4H_2O$ (1)								
	1,6 1,0 0,8 0,2 0,8								
	(có thể HS viết 2 phương trình liên tiếp cũng được)								
	- Khi B tác dụng với dd Pb(NO ₃) ₂								
	$\begin{array}{ccc} H_2S + Pb(NO_3)_2 & \rightarrow & PbS\downarrow & + & 2HNO_3 \\ 0,2 & & & 0,2 \end{array} \tag{2}$								
	- Theo (1) ta có: P $C_{M_{H_2SO_4}} = \frac{1,0}{0,2} = 5,0M$								
	b. Sản phẩm gồm có: R ₂ SO ₄ , X ₂ , H ₂ S => chất rắn T có R ₂ SO ₄ và X ₂ , nung T đến khối lượng không đổi =>								
	$m_{R_2SO_4} = 139,2g$								
	$\mathbf{p} \ \mathbf{m}_{\mathbf{x}_2} = 342, 4 - 139, 2 = 203, 2(\mathbf{g})$								
	- Theo (1) $n_{X_2} = 0.8 \text{(mol)} \ \text{P} \ \frac{203.2}{0.8} = 254 \ \text{P} \ \text{M}_{X} = 127 \ \text{Vậy X là iốt(I)}$								
	- Ta có: $M_{R_2SO_4} = 2R + 96 = \frac{139,2}{0,8} = 174 \text{ p} R = 39 \text{ p} R \text{ là kali (K)}$								
	- Vậy CTPT muối halogenua là KI c. Tìm x:								
	- Theo (1) $n_{RX} = 1,6 \text{(mol)} \text{ P} x = (39+127).1,6 = 265,6 \text{(g)}$								

PHÒNG GD&ĐT BÙ ĐĂNG

ĐỀ THI CHỌN HSG LỚP 9 CẤP HUYỆN NĂM HOC 2013 - 2014

ĐỀ CHÍNH THỰC

Môn: Hóa học Thời gian làm bài: 150 phút

Câu I (2,5 đ):

1/. Viết các phương trình phản ứng, ghi rõ điều kiện (nếu có) hoàn thành dãy biến hóa sau.

$$CaCO_3 \xrightarrow{(1)} CaO \xrightarrow{(2)} Ca(OH)_2 \xrightarrow{(3)} CaCl_2 \xrightarrow{(4)} -Ca(NO_3)_2 \xrightarrow{(5)} -NaNO_3 \xrightarrow{(6)} O_2 \longrightarrow O_3 \xrightarrow{(1)} -CaCO_3 \xrightarrow{(1)} -CA$$

2/. Cho hỗn hợp gồm các chất rắn là Al_2O_3 , SiO_2 , Fe_2O_3 vào dung dịch có chứa một chất tan X (du), sau phản ứng thu được một chất rắn Y duy nhất. Cho biết X, Y có thể là chất gì, viết các phương trình phản ứng minh họa.

<u>Câu II (1,5 đ):</u>

Cho các kim loại sau: Ba, Mg, Al, Ag. Chỉ dùng một hóa chất, hãy trình bày phương pháp hóa học để phân biệt các kim loại trên. Viết phương trình hóa học minh họa.

Câu III (1,5 đ):

Có 5 hợp chất vô cơ A, B, C, D, E. Khi đốt A, B, C, D, E đều cho ngọn lửa màu vàng. A tác dụng với nước thu được O₂, B tác dụng với nước thu được NH₃. Khi cho C tác dụng với D cho ta chất X, C tác dụng với E thu được chất Y. X, Y là những chất khí, biết tỉ khối của X so với O₂ và Y so với NH₃ đều bằng 2. Hãy xác định A, B, C, D, E, X, Y và viết các phương trình phản ứng xảy ra.

Câu IV (2,0 d):

- 1/. Cho 500ml dung dịch A gồm 2 axit HCl 0,08M và H₂SO₄ 0,1M tác dụng vừa đủ với 200 ml dung dịch B gồm 2 bazơ KOH 0,3M và Ba(OH)₂ xM, sau phản ứng cô cạn cấn thận thu được hỗn hợp muối khan C. Tính x và khối lượng hỗn hợp muối khan C.
- 2/. Hỗn hợp X gồm Al, Fe, Cu. Lấy 3,31 gam X cho vào dung dịch HCl dư, thu được 0,784 lít H_2 (đktc). Mặt khác, nếu lấy 0,12 mol X tác dụng với khí clo dư, đun nóng thu được 17,27 gam hỗn hợp chất rắn Y. Tính thành phần % về khối lượng của các chất trong X (Biết các phản ứng xảy ra hoàn toàn).

Câu V (1,0 đ):

Hòa tan a gam hỗn hợp Na₂CO₃ và KHCO₃ vào nước thu được dung dịch A. Cho từ từ 100 ml dung dịch HCl 1,5M vào dung dịch A, thu được dung dịch B và 1,008 lít khí (đktc). Cho B tác dụng với Ba(OH)₂ dư thu được 29,55 gam kết tủa.

- 1/. Viết phương trình phản ứng xảy ra.
- 2/. Tính a.

<u>Câu VI (1,5 đ):</u>

Nung 8,08 gam một muối A, thu được các sản phẩm khí và 1,6 gam một hợp chất rắn không tan trong nước. Nếu cho sản phẩm khí đi qua 200 gam dung dịch Natri hidroxit 1,2% ở điều kiện xác định thì tác dụng vừa đủ, thu được một dung dịch gồm một muối có nồng độ 2,47%. Viết công thức hóa học của muối A, biết khi nung số oxi hóa của kim loại không thay đổi.

Cán bộ coi thi khôi	ng giải thích gì thêm
Họ và tên thí sinh:	SBD:

PHÒNG GD&ĐT BÙ ĐĂNG

CHÍNH THỰC

HƯỚNG DẪN CHẨM THI CHỌN HSG LỚP 9 NĂM HỌC: 2013 - 2014 MỘN - HOÁ HỌC

MÔN : HOÁ HỌC Ngày thi: 19 - 12 - 2013

Câu	Nội dung	Điểm	
-----	----------	------	--

Câu I	1.			
(2,5 d)	$CaCO_3 \xrightarrow{t} CaO + CO_2 \uparrow$			
(2,5 u)	$CaO + H_2O \longrightarrow CaOH_2$			
	$Ca(OH)_2 + 2HC1 \qquad \qquad \textbf{Ea(OH)}_2$ $Ca(OH)_2 + 2HC1 \qquad \qquad \textbf{Ea(OH)}_2$			
	$CaCl2 + 2AgNO3 \longrightarrow Ca(NO3)2 + 2AgCl \downarrow$			
	$Ca(NO_3)_2 + Na_2CO_3 $ \longrightarrow $NaNO_3 + CaCO_3 \downarrow$			
	$2NaNO_3 \xrightarrow{t} 2NaNO_2 + O_2\uparrow$			
	2.			
	* TH1: X là Axit mạnh HCl, Y là SiO ₂			
	PTHH: $Al_2O_3 + 6HCl$ \longrightarrow Al $Cl_3 + 3H_2O$			
	$Fe_2O_3 + 6HCl $ $\longrightarrow 2FeCl_3 + 3H_2O$			
	* TH2: X là Bazơ tan NaOH, Y là Fe ₂ O ₃			
	PTHH: $Al_2O_3 + 2 NaOH$ — $3NaAlO_2 + H_2O$			
	$SiO_2 + 2NaOH$ — $A_2SiO_3 + H_2O$			
	Thí sinh có thể dùng Axit mạnh hoặc Bazo tan khác đều được, nhưng để			
	đạt điểm tối đa phải lấy 1 TH là Axit và 1 TH là Bazơ.			
Câu II				
(1,5 d)	+ Lấy một lượng nhỏ mỗi kim loại cho vào các ống nghiệm riêng biệt, đánh số thứ tư.			
	+ Chọn thuốc thử là dung dịch H ₂ SO ₄ loãng (dư) nhỏ vào các mẫu thử.			
	+ Chọn thước thủ là dùng dịch H ₂ SO ₄ loàng (du) lino vào các màu thủ.			
	- Kim loại không tan là Ag			
	- Kim loại phản ứng tạo kết tủa trắng và có bọt khí thoát ra là Ba			
	$Ba + H_2SO_4 \rightarrow BaSO_4 \downarrow + H_2 \uparrow$			
	- Kim loại phản ứng tạo khí và không tạo kết tủa trắng là Mg, Al			
	$Mg + H_2SO_4 \rightarrow MgSO_4 + H_2\uparrow$ $2\Delta 1 + 3H_2SO_4 \rightarrow \Delta I_2(SO_4)_2 + 3H_2\uparrow$			
	$2Al + 3H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3H_2\uparrow$ Thu lấy 2 dung dịch muối tương ứng là : MgSO ₄ và Al ₂ (SO ₄) ₃			
	Thu lay 2 dung dich muot tuong dng la . MgSO4 va Al2(SO4)3			
	+ Cho Ba vào dung dịch H ₂ SO ₄ loãng đến khi kết tủa không tăng thêm, ta			
	tiếp tục cho thêm 1 lượng Ba để xảy ra phản ứng:			
	$Ba + 2H_2O \rightarrow Ba(OH)_2 + H_2$			
	Lọc bỏ kết tủa thụ được dung dịch Ba(OH) ₂ . Cho dung dịch Ba(OH) ₂ dư vào			
	các dung dịch muối MgSO ₄ và Al ₂ (SO ₄) ₃			
	+ Trường hợp xuất hiện kết tủa trắng tan một phần trong dung dịch Ba(OH) ₂			
	$+$ Truong họp xuất mện kết tua trang tạn một phần trong dung dịch $Ba(OH)_2$ dư là dung dịch $Al_2(SO_4)_3$, suy ra kim loại tương ứng là Al .			
	$3Ba(OH)_2 + Al_2(SO_4)_3 \rightarrow 3BaSO_4 \downarrow + 2Al(OH)_3 \downarrow$			
	$Ba(OH)_2 + 2Al(OH)_3 \rightarrow Ba(AlO_2)_2 + 4H_2O$			
	+ Trường hợp xuất hiện kết tủa trắng hoàn toàn không tan trong dung dịch			
	Ba(OH) ₂ dư là dung dịch MgSO ₄ , suy ra kim loại tương ứng là Mg.			
	$Ba(OH)_2 + MgSO_4 \rightarrow BaSO_4 \downarrow + Mg(OH)_2 \downarrow$			
Câu III				
(1,5 d)	+ Các hợp chất đều là hợp chất của Natri.			

- + Khi cho C tác dụng với D cho ta chất khí X và tỉ khối của X so với O₂ bằng 2: $M_X = 2.32 = 64$.
- + Khi cho C tác dụng với E thu được chất khí Y và tỉ khối của Y so với NH₃ bằng 2: $M_Y = 17.2=34$.

Nên C là muối axit của axit mạnh: C là NaHSO₄ và X là SO₂, Y là H₂S.

+ Ta có:

A	В	С	D	Е	X	Y
Na ₂ O ₂	Na ₃ N	NaHSO ₄	NaHSO ₃	NaHS	SO_2	H_2S

Các phương trình phản ứng

$$2Na_2O_2 + 2H_2O \longrightarrow 4NaOH + O_2 \uparrow$$

$$Na_3N + 3H_2O \longrightarrow 3NaOH + NH_3\uparrow$$

$$NaHSO_4 + NaHSO_3 \longrightarrow Na_2SO_4 + SO_2\uparrow + H_2O$$

(C)

$$NaHSO_4 + NaHS \longrightarrow Na_2SO_4 + H_2S\uparrow$$
(C) (E) (Y)

Hoặc:

A	В	С	D	Е	X	Y
Na ₂ O ₂	Na ₃ N	NaHSO ₄	Na ₂ SO ₃	Na ₂ S	SO_2	H_2S

$$2NaHSO_4 + Na_2SO_3 \longrightarrow 2Na_2SO_4 + SO_2\uparrow + H_2O)$$

(C)

$$2NaHSO_4 + Na_2S \longrightarrow 2Na_2SO_4 + H_2S\uparrow)$$

(C)

Thí sinh chỉ cần làm 1 trong 2 đáp án.

Câu IV

1.

PTHH:
$$HCl + KOH$$
 — $KCl + H_2O$
 $2HCl + Ba(OH)_2$ — $BaCl_2 + H_2O$
 $H_2SO_4 + 2KOH$ — $K_2SO_4 + 2H_2O$
 $H_2SO_4 + Ba(OH)_2$ — $BaSO_4 + 2H_2O$

Số mol của các chất là:

$$n_{HC1} = 0.5.0,08 = 0.04 \text{ mol};$$

$$n_{\text{H2SO4}} = 0.5.0, 1 = 0.05 \text{ mol}$$

$$n_{KOH} = 0.2. \ 0.3 = 0.06 \ mol;$$

$$n_{Ba(OH)2} = 0.2.x \text{ mol}$$

* Áp dụng ĐLBT điện tích ta có:

$$nH^+ = nOH^- => 0.04.1 + 0.05.2 = 0.06.1 + 0.2.x.2$$

=> 0.08 = 0.4.x => **x** = **0.2** M

* Áp dụng ĐLBT khối lượng ta có:

$$\mathbf{m}_{C} = (m_{K} + m_{Ba}) + (m_{CI} + m_{SO4}) =$$

= $(39.0,06 + 137.0,2.0,2) + (35,5.0,04 + 96.0,05)$

= 14,04 g2. Gọi số mol của Al, Fe, Cu trong 3,31 gam X lần lượt là x, y, z 27x + 56y + 64z = 3,31 (I) Phương trình hóa học: $2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2$ Mol: x 1.5x $Fe + 2HCl \rightarrow FeCl_2 + H_2$ Mol: y \Rightarrow n_{H₂} = 1,5x + y = $\frac{0,784}{22.4}$ = 0,035(mol) (II). Gọi số mol của Al, Fe, Cu trong 0,12 mol X lần lượt là kx, ky, kz. \Rightarrow kx + ky + kz = 0,12 (III). Khi cho X tác dụng với clo dư, phương trình hóa học là $2Al + 3Cl_2 \xrightarrow{t^{\circ}} 2AlCl_3$ Mol: kx $2\text{Fe} + 3\text{Cl}_2 \xrightarrow{t^{\circ}} 2\text{FeCl}_3$ Mol: ky $Cu + Cl_2 \xrightarrow{t^{\circ}} CuCl_2$ Mol: kz kz \Rightarrow m_v = 133,5kx +162,5ky +135kz = 17,27(IV). $T\dot{u}$ (III) $v\dot{a}$ (IV) \Rightarrow $\frac{x+y+z}{133,5x+162,5y+135z} = \frac{0,12}{17,27} \Rightarrow 1,25x-2,23y+1,07z = 0 \text{ (V)}.$ Kết hợp (I), (II), (V) ta có hệ phương trình, giải ra ta được: $\begin{cases} 27x + 56y + 64z = 3{,}31 & x = 0{,}01 \end{cases}$ $\left\{1,5x+y=0,035\right\} \Rightarrow \left\{y=0,02\right\}$ $\begin{vmatrix} 1,25x-2,23y+1,07z=0 \end{vmatrix}$ z=0,03Khối lương của các kim loại trong 3,31 gam X là: $m_{A1} = 0.01.27 = 0.27$ (gam) $m_{Fe} = 0.02.56 = 1.12$ (gam) $m_{Cu} = 1,92 \text{ (gam)}.$ Thành phần % về khối lượng của các chất trong X là $\% \,\mathrm{m_{Al}} = \frac{0.27}{3.31} \cdot 100\% = 8.16\%.$ $% m_{Fe} = \frac{1,12}{3.31} \cdot 100\% = 33,84\%.$ \Rightarrow % $m_{Cu} = 100\% - 8,16\% - 33,84\% = 58,00\%$

Câu V1.1,0 đ $Na_2CO_3 + HCl \longrightarrow NaHCO_3 + NaCl$ (1)0,1050,1050,105 $NaHCO_3 + HCl \longrightarrow NaCl + CO_2 \uparrow + H_2O$ (2)

 $KHCO_3 + HCl \longrightarrow KCl + CO_2 \uparrow + H_2O$ (3) 0,045 0,045 $NaHCO_3 + Ba(OH)_2 \longrightarrow BaCO_3 \downarrow + NaOH + H_2O(4)$ $KHCO_3 + Ba(OH)_2 \longrightarrow BaCO_3 \downarrow + KOH + H_2O$ 0,15 0.15 (du) Số mol của các chất là $n_{HCI} = 0,1.1,5 = 0,15 \text{ mol}; n_{CO_2} = \frac{1,008}{22.4} = 0,045 \text{ mol};$ $n_{BaCO_3} = \frac{29,55}{197} = 0,15 \text{ mol}$ Số mol HCl phản ứng ở (2), (3) là: 0,045 mol Số mol HCl phản ứng ở (1), là: 0.15 - 0.045 = 0.105 mol Số mol Na₂CO₃ trong hỗn hợp ban đầu là: 0,105 mol Áp dụng ĐLBT nguyên tổ, tổng số mol gốc CO₃²- là: 0.045 + 0.15 = 0.195 molSố mol KHCO₃ ban đầu là: $n_{\text{Na2CO3}} + n_{\text{KHCO3}} = n_{\text{g\'oc} \text{CO3}} => 0.105 + n_{\text{KHCO3}} = 0.195$ $=> n_{KHCO3} = 0.09 \text{ mol}$ Vậy khối lượng hỗn hợp ban đầu là: \Rightarrow a = 106.0,105 + 100.0,09 = 20,13 gam Thí sinh có thể làm theo cách đặt số mol cho KHCO3 ban đầu. mNaOH = 0.012.200 = 2.4g; nNaOH = 2.4:40 = 0.06 molCâu VI mkhi = 8,08 - 1,6 = 6,48g1,5 đ Khối lượng dd sau khi hấp thụ khí: $200 + 6{,}48 = 206{,}48g$ Khối lương muối tao thành là: 0, 247. 206,48 = 5,1gKhối lượng Na trong mu ối 1 à: 0.06.23 = 1.38g Khối lượng gốc axit (gốc X) là : 5,1-1,38=3,27g- Nếu CTTQ của muối là: NaX $nX = 0.06 \text{ mol} \implies M_X = 3.27:0.06 = 62 \implies X \text{ là} : -NO_3 \text{ (hoá tri I)}$ - Nếu CTTQ của muối là: Na₂X $nX = 0.06:2 = 0.03 \text{ mol} \implies M_X = 3.27:0.03 = 124 \implies \text{không có}$ - Nếu CTTQ của muối là: Na₂X nX = 0.06: = 0.02 mol $\Rightarrow M_X = 3.27$:0.02 = 186 \Rightarrow không có A là muối nitrat Vì sau khi nung A thu được chất rắn không tan trong nước nên A không phải là muối của kim loại kiểm và amoni. Công thức của A: M(NO₃)_n. Nhiệt phân: $\longrightarrow 2M_2O_n + 4nNO_2 + nO_2$ $4M(NO_3)_n$ $nO_2 = nNO_2 : 4 = 0.06 : 4 = 0.15 mol; mO_2 = 0.15.32 = 0.48 g$ \Rightarrow mNO₂ + mO₂ = 40.0,06 + 0,48 = 3,24 < 6,48. A là muối nitrat ngậm nước. $mH_2O = 6.48 - 3.24 = 3.24g$ CTTQ của A là: $M(NO_3)_n.xH_2O$ (n=1,2,3; x = 0,1,2...)

+ Theo Ptpu: $nM_2O_n = 0.06:2n = 0.03:n \text{ (mol)} \implies mM_2O_n = \frac{(2M + 16n).0.03}{2} = 1.6 \implies M = 1.6$					
18,67.n		1	2	n	1
	n	l	2	3	
	M	18.67	37,34	56	
	Kết luận	Không có	Không có	Fe	
	$\frac{0,06x}{3} = \frac{3,24}{18} = \frac{3}{18}$ HH của A là: F	$\Rightarrow x = 9$ $Fe(NO_3)_3.9H_2O$			_

Ghi chú:

- Thí sinh làm theo cách khác nếu đúng vẫn cho điểm tối đa theo các phần tương ứng.
- Nếu PTHH không cân bằng hoặc thiếu đk phản ứng thì trừ ½ số điểm của PTHH đó; nếu thiếu cả hai thì không được điểm ở PTHH đó

--- Hết ---

PHÒNG GD – ĐT BÙ ĐĂNG đề 36

ĐỀ THI CHỌN ĐỘI TUYỂN HSG LỚP 9 - VÒNG

bo DANG de 30

Môn thi: Hóa học

Thời gian: 150 phút

Câu 1: (3 điểm)

- 1. Từ các chất Na₂O, CaO, H₂O, CuSO₄, FeCl₃ . Viết các phương trình hóa học điều chế các hiđroxit tương ứng.
- **2.** Có 5 gói bột trắng là KNO₃, K₂CO₃, K₂SO₄, BaCO₃, BaSO₄. Chỉ được dùng thêm nước, khí cacbon đioxit và các dụng cụ cần thiết. Hãy nhận biết từng chất bột trắng nói trên.

Câu 2: (4 điểm)

- 1. Cho hỗn hợp gồm 3 chất rắn: Al₂O₃, SiO₂ và Fe₂O₃ vào dung dịch chứa một chất tan A thì thu được một chất kết tủa B duy nhất. Hãy cho biết A, B có thể là những chất gì? Cho ví dụ và viết phương trình hóa học minh họa.
- 2. Đơn chất của hai nguyên tố X, Y ở điều kiện thường là chất rắn. Số mol X trong 8,4 gam nhiều hơn số mol Y trong 6,4 gam là 0,15mol. Biết khối lượng mol của X nhỏ hơn khối lượng mol của Y là 8 gam.
 - a. Xác định nguyên tố X, Y
 - b. Các nguyên tố X, Y có thể tạo nên những loại hợp chất nào? Cho ví dụ minh họa.

Câu 3: (3 điểm)

Xác định các chất A, B, C, D, E và viết phương trình hóa học thực hiện dãy chuyển đổi hóa học sau:

hóa học sau:

FeS₂

$$\xrightarrow{(1)}$$
A
 $\xrightarrow{(2)}$
B
 $\xrightarrow{(4)}$
H₂SO₄
 $\xrightarrow{(5)}$
C
 $\xrightarrow{(5)}$
A
 $\xrightarrow{(6)}$
D
 $\xrightarrow{(7)}$
C
 $\xrightarrow{(8)}$
A
 $\xrightarrow{(8)}$
A

Câu 4: (4 điểm) A là dung dịch H₂SO₄, B là dung dịch NaOH.

- 1. Trộn 50 ml dung dịch A với 50 ml dung dịch B được dung dịch C. Cho quỳ tím vào dung dịch C thấy có màu đỏ. Thêm từ từ dung dịch NaOH 0,1M vào dung dịch C đến khi quỳ trở lại màu tím thì thấy hết 20 ml dung dịch NaOH.
- 2. Trộn 50ml dung dịch A với 100ml dung dịch B thu được dung dịch D. Cho quỳ tím vào dung dịch D thấy có màu xanh. Thêm từ từ dung dịch HCl 0,1M vào dung dịch D đến khi quỳ trở lại màu tím thấy hết 20 ml dung dịch HCl.

 Tính nồng độ mol của các dung dịch A và B.

Câu 5: (6 điểm) Hòa tan hỗn hợp kim loại Na và Ba (có số mol bằng nhau) vào nước thu được dung dịch A và 6,72 lít khí (đktc).

- 1. Cần dùng bao nhiều ml dung dịch HCl 0,1M để trung hòa 10% dung dịch A.
- 2. Cho 56 ml CO₂ (đktc) hấp thụ hết vào 10% dung dịch A. Tính khối lượng kết tủa thu được.
- 3. Thêm m gam NaOH vào 10% dung dịch A ta được dung dịch B. Cho dung dịch B tác dụng với 100 ml dung dịch Al₂(SO₄)₃ 0,2M thu được kết tủa C. Tính m để cho khối lượng kết tủa C là lớn nhất, bé nhất. Tính khối lượng kết tủa lớn nhất, bé nhất.

Cho biết: H=1; S=32; O=16; Mg=24; Na=23; Ba=137; Cl=35,5; Al=27 (Thí sinh được sử dụng máy tính theo quy định của Bộ Giáo dục & đào tạo)

PHÒNG GD & ĐT BÙ ĐĂNG

HƯỚNG DẪN CHẨM BÀI THI CHỌN ĐỘI TUYỂN HSG HÓA 9 VÒNG 2

CÂU	ĐÁP ÁN	ÐIÊM
	1. $Na_2O + H_2O \rightarrow 2NaOH$ $CaO + H_2O \rightarrow Ca(OH)_2$ $CuSO_4 + 2NaOH \rightarrow Cu(OH)_2 \downarrow + Na_2SO_4$ $CuSO_4 + Ca(OH)_2 \rightarrow Cu(OH)_2 \downarrow + CaSO_4$ $FeCl_3 + 3NaOH \rightarrow Fe(OH)_3 \downarrow + 3NaCl$ $2FeCl_3 + 3Ca(OH)_2 \rightarrow 2Fe(OH)_3 \downarrow + 3CaCl_2$	1,5 điểm
1	 2. Lấy mẫu thử Hòa tan lần lượt các mẫu thử vào nước: Hai mẫu không tan là BaCO₃ và BaSO₄, ba mẫu tan là KNO₃, K₂CO₃ và K₂SO₄. Sục khí CO₂ vào 2 ống nghiệm chứa 2 mẫu không tan: Mẫu tan là BaCO₃ mẫu không tan là BaSO₄: BaCO₃ + CO₂ + H₂O → Ba(HCO₃)₂ Lấy dung dịch Ba(HCO₃)₂ thu được cho vào 3 mẫu muối kali tan: Dung dịch không tạo kết tủa trắng là KNO₃: K₂CO₃ + Ba(HCO₃)₂ → BaCO₃ ↓ + 2KHCO₃ K₂SO₄ + Ba(HCO₃)₂ → BaSO₄ ↓ + 2KHCO₃ Sục khí CO₂ vào 2 ống nghiệm có kết tủa trên: kết tủa nào tan ra thì muối ban đầu là K₂CO₃. Muối kia là K₂SO₄. 	1,5 điểm
2	1. Ta thấy hỗn hợp gồm: Fe ₂ O ₃ là oxit bazo, SiO ₂ là oxit axit, Al ₂ O ₃ là oxit lưỡng tính, nên khi cho vào dung dịch chứa một chất tan A thu được một chất rắn duy nhất B sẽ xảy ra hai trường hợp sau:	2 điểm

	* Turrème hour 1. A là laième (VD. NaOII) Al O và SiO ton aèm ahát năn	
	* Trường hợp 1: A là kiểm (VD: NaOH), Al ₂ O ₃ và SiO ₂ tan còn chất rắn	
	không tan là Fe ₂ O ₃ (Chất B). PTHH:	
	$Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O$	
	$SiO_2 + 2NaOH \rightarrow Na_2SiO_3 + H_2O$	
	* Trường hợp 2: Chất A là axit (VD: dd HCl), Al ₂ O ₃ và Fe ₂ O ₃ tan còn	
	SiO ₂ không tan (Chất B). PTHH:	
	$Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2O$	
	$Fe_2O_3 + 6HCl \rightarrow 2FeCl_3 + 3H_2O$	
	2.	
	a) Đặt khối lượng mol của nguyên tố X là x	
	⇒ Khối lượng mol của nguyên tố Y là x + 8	
	Ta có: $\frac{8,4}{x} - \frac{6,4}{x+8} = 0,15$	
		1 điểm
	Giải PT trên ta được: $x = 24 \implies X$ là Magie (Mg)	1 dicili
	KL mol của nguyên tố $Y = 24 + 8 = 32 \implies Y$ là Lưu huỳnh (S)	
	b) Mg và S tạo được các loại hợp chất:	
	- Oxit bazo: MgO, Oxit axit: SO ₂ , SO ₃	
	- Bazo: Mg(OH) ₂	
	- Axit: H_2SO_3 , H_2SO_4	
	- Muối: MgS, MgSO ₃ , MgSO ₄	1 điểm
	* A: SO ₂	1 dicili
	B: SO ₃ D: H ₂ SO ₃	0.5 điểm
	* PTHH:	0,5 điểm
	$(1) 8FeS_2 + 11O_2 \xrightarrow{t} 4Fe_2O_3 + 8SO_2 \uparrow$	2 5 4: 3
	$(2) 2SO_2 + O_2 \xrightarrow{t^0 V_2 O_5} 2SO_3$	2,5 điểm
	(3) $SO_3 + 2NaOH \rightarrow Na_2SO_3 + H_2O$	
3	(4) $SO_3 + H_2O \rightarrow H_2SO_4$	
	(5) $H_2SO_4 + Na_2SO_3 \rightarrow Na_2SO_4 + H_2O + SO_2 \uparrow$	
	(6) $SO_2 + H_2O \rightarrow H_2SO_3$	
	(6) $3O_2 + H_2O \rightarrow H_2SO_3$ (7) $H_2SO_3 + 2NaOH \rightarrow Na_2SO_3 + 2H_2O$	
	(8) $Na_2SO_3 + 2HC1 \rightarrow 2NaC1 + SO_2\uparrow + H_2O$	
	$(9) \text{H}_2\text{SO}_4 + 2\text{NaOH} \rightarrow \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O}$ $(10) \text{Na}_2\text{SO}_4 + \text{RaCH}_4 \rightarrow \text{RaSO}_4 + 2\text{NaCH}_4$	
	(10) $Na_2SO_4 + BaCl_2 \rightarrow BaSO_4 \downarrow + 2NaCl$	
	Đặt nồng độ mol của dd H ₂ SO ₄ là x, của dd NaOH là y.	4 - 4 - 2
	1. Theo gt: Số mol $H_2SO_4 = 0.05x$	1,5 điểm
	$S\hat{o} \text{ mol NaOH} = 0.05y$	
	PTHH: $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$ (1)	
	$0.025y \qquad 0.05y$	
	Theo PTHH (1): Số mol H_2SO_4 du = $0.05x - 0.025y$	
	Số mol NaOH trung hòa axit d $u = 0,1.0,02 = 0,002$ mol	
	Số mol H_2SO_4 du = 0,002 : 2 = 0,001 mol	
4	$\Rightarrow 0.05x - 0.025 y = 0.001$	
	2. Theo gt: Số mol $H_2SO_4 = 0.05x$	1,5 điểm
	Số mol NaOH = 0,1y	1,5 uicili
	PTHH: $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$ (1)	
	0.05x $0.1x$	
	Theo PTHH(1): Số mol NaOH du = $0.1y - 0.1x$	
	PTHH: $HCl + NaOH \rightarrow NaCl + H_2O$ (2)	
	0,002 mol	
	Số mol HCl trong hòa NaOH d $u = 0,1$. $0,02 = 0,002$ mol	
<u> </u>	20 morried acing nour morrida 0,1 + 0,02 0,002 mor	İ

	$\Rightarrow 0.1y - 0.1x = 0.002$	
	Ta có hệ PT:	1 điểm
	$\int 0.05x - 0.025 y = 0.001$	
	$ \begin{array}{c} 0.05x - 0.025 \ y = 0.001 \\ 0.1y - 0.1x = 0.002 \end{array} $	
	Giải hệ PT ta được: $x = 0.06$; $y = 0.08$	
	Nồng độ dung dịch H ₂ SO ₄ là 0,06M	
	Nồng độ dung dịch NaOH là 0,08M	?
	1.	1,5 điểm
	PTHH: $2Na + 2H_2O \rightarrow 2NaOH + H_2\uparrow$ (1)	
	x x x/2	
	$Ba + 2H_2O \rightarrow Ba(OH)_2 + H_2 \uparrow \qquad (2)$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	· · · · · · · · · · · · · · · · · · ·	
	· ·	
	x/10 $x/10$	
	$Ba(OH)_2 + 2HCl \rightarrow BaCl_2 + 2H_2O (4)$	
	y/10 $y/5$	
	Đặt số mol Na và Ba trong hỗn hợp lần lượt là x và y	
	Theo PTHH (1): Số mol $H_2 = x/2$	
	Theo PTHH (2): Số mol $H_2 = y$	
	•	
	x y = 0	
	$\begin{cases} x & 6,72 \end{cases}$	
	Ta có hệ PT: $\begin{cases} x - y = 0 \\ \frac{x}{2} + y = \frac{6,72}{22,4} \end{cases}$	
	,	
	Giải hệ PT ta được: $x = y = 0.2$	
	Theo PTHH (1): $n \text{ NaOH} = n \text{Na} = 0.2 \text{ mol}$	
	Theo PTHH (2): $n Ba(OH)_2 = nBa = 0.2 mol$	
	Theo PTHH (3): $nHCl = nNaOH = x/10 = 0.02 \text{ mol}$	
	Theo PTHH (4): $nHCl = 2nBa(OH)_2 = 2.y/10 = y/5 = 0.04 \text{ mol}$	
	Tổng số mol $HC1 = 0.02 + 0.04 = 0.06$ mol	
	Thể tích dd HCl $0.1M = 0.06 : 0.1 = 0.6$ lít = 600 ml	1.7.4.4
	2.	1,5 điểm
	Theo gt: $nCO_2 = 0.056 : 22.4 = 0.0025 \text{ mol}$	
	$nNaOH + nBa(OH)_2 = 0.02 + 0.02 = 0.04 \text{ mol} > 2.nCO_2$	
	Cho nên kiểm dư và xảy ra các phản ứng hóa học sau:	
	$CO_2 + 2NaOH \rightarrow Na_2CO_3 + H_2O $ (5)	
	(0.0025-x) $(0.0025-x)$	
	$CO_2 + Ba(OH)_2 \rightarrow BaCO_3 \downarrow + H_2O $ (6)	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$Ba(OH)_2 + Na_2CO_3 \rightarrow BaCO_3 \downarrow + 2 NaOH \qquad (7)$	
5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Đặt số mol CO_2 (6) là $x \Rightarrow Số$ mol CO_2 (5) = 0,0025 - x	
	Theo (5): $nNa_2CO_3 = 0,0025 - x$	
	Theo (6): $nBaCO_3 = x$	
	$nBa(OH)_2 du = 0.02 - x > nNa_2CO_3$	
	Theo (7): $nBaCO_3 = 0,0025 - x$	
	\Rightarrow nBaCO ₃ (6) + nBaCO ₃ (7) = x + 0,0025 - x = 0,0025 mol	
	Vậy khối lượng $BaCO_3 = 0,0025$. $197 = 0,4925$ gam	
	3.	
	PTHH:	
		1 1 2
	$Al_2(SO_4)_3 + 6NaOH \rightarrow 2Al(OH)_3 \downarrow + 3Na_2SO_4$ (8)	1 điểm

$$(0,02 - \frac{0,02}{3}) \qquad 0,08 \, mol \qquad \frac{0,08}{3} \, mol$$

$$\mathbf{Al_2(SO_4)_3} + \mathbf{3Ba(OH)_2} \rightarrow \mathbf{2Al(OH)_3} \downarrow + \mathbf{3BaSO_4} \downarrow \quad \mathbf{(9)}$$

$$\frac{0,02}{3} \, mol \qquad 0,02 \, mol \qquad \frac{0,04}{3} \, mol \qquad 0,02 mol$$

Theo gt: $nAl_2(SO_4)_3 = 0,1 \cdot 0,2 = 0,02 \text{ mol}$

Nếu: nNaOH = 0,02 mol
$$\Rightarrow$$
 n Al₂(SO₄)₃ (8) = $\frac{0,02}{6} = \frac{0,01}{3}$ mol

$$nBa(OH)_2 = 0.02mol \Rightarrow n Al_2(SO_4)_3 (9) = \frac{0.02}{3} mol$$

$$n \text{ Al}_2(SO_4)_3 (8) + (9) = 0.01 \text{ mol} < 0.02 \text{ mol } (n\text{Al}_2(SO_4)_3 \text{ theo gt})$$

 $\Rightarrow \text{Al}_2(SO_4)_3 \text{ phản ứng hết}$

Vây:

- Khối lượng kết tủa C lớn nhất khi Al(OH)3 kết tủa hoàn toàn.
- Khối lượng kết tủa nhỏ nhất khi Al(OH)3 tan hoàn toàn.

* Khối lượng kết tủa C lớn nhất khi $Al(OH)_3$ kết tủa hoàn toàn: khi $Al_2(SO_4)_3$ phản ứng hết với dung dịch B và kiềm không dư:

Theo PTHH (9): $nAl_2(SO_4)_3 = \frac{0.02}{3}$ mol

$$\Rightarrow$$
 n Al₂(SO₄)₃ (8) = 0,02 - $\frac{0,02}{3} = \frac{0,04}{3}$ mol

Theo PTHH (8):
$$nNaOH = \frac{0.04}{3}.6 = 0.08 \text{ mol}$$

Vậy số mol NaOH thêm vào là: 0.08 - 0.02 = 0.06 mol Khối lượng NaOH thêm vào m = 0.06. 40 = 2.4 gam

Theo PTHH (8):
$$nAl(OH)_3 = \frac{0.08}{3} mol$$

Theo PTHH (9):
$$nAl(OH)_3 = \frac{0.04}{3} mol$$

$$\Rightarrow$$
 nAl(OH)₃ (9) = 0,04 mol

Khối lượng kết tủa C lớn nhất thu được (gồm $Al(OH)_3$ và $BaSO_4$) bằng: $0.04 \cdot 78 + 0.02 \cdot 233 = 7.78$ gam

* Khối lượng kết tủa nhỏ nhất khi Al(OH)3 tan hoàn toàn: NaOH dư hòa tan hết Al(OH)3

PTHH:
$$Al(OH)_3 + NaOH \rightarrow NaAlO_2 + 2H_2O$$
 (10)
0.04 mol 0.04 mol

Theo PTHH (10): nNaOH = 0.04 mol

Số mol NaOH trong dung dịch B = 0.08 + 0.04 = 0.12 mol

Số mol NaOH thêm vào = 0.12 - 0.02 = 0.1 mol

Khối lượng NaOH thêm vào m = 0,1. 40 = 4 gam

Khối lượng kết tủa C bé nhất thu được (chỉ có BaSO₄)

 $m BaSO_4 = 0.02 \cdot 233 = 4.66 \text{ gam}$

1 điểm

1 điểm

Trường THCS Nguyễn Khuyến ĐỀ THI HỌC SINH GIỚI MÔN HÓA HỌC ĐỀ ĐỀ XUẤT VÒNG HUYỆN NĂM HỌC 2015-2016

THÒI GIAN: 150 PHÚT

Câu 1: Viết phương trình hóa học biểu diễn sơ đồ chuyển hóa sau:

Câu 2:

- 1. Có các lọ đựng riêng rẽ các dung dịch không dán nhãn : NaCl, NaOH, H₂SO₄ , HCl, Ba(OH)₂, MgSO₄. Không dùng thêm thuốc thử khác, hãy trình bày cách phân biệt và viết phương trình hóa học minh họa.
- 2. Có hỗn hợp A gồm: MgO, Al₂O₃, SiO₂. Làm thế nào để thu được từng chất trong A?
- 3. Nêu hiện tượng và viết phương trình các phản ứng xảy ra khi cho:
 - Đinh sắt vào dung dịch CuSO₄
 - Dây Cu vào dung dịch AgNO₃
 - Sục khí clo vào ống nghiệm đựng H₂O, sau đó nhúng đũa thủy tinh vào ống nghiệm rồi chấm vào quỳ tím.

Câu 3: Hai thanh kim loại giống nhau (đều cùng nguyên tố R hóa trị II) và có cùng khối lượng. Cho thanh thứ nhất vào dung dịch Cu(NO₃)₂ và thanh thứ hai vào dung dịch Pb(NO₃)₂. Sau một thời gian khi số mol hai muối bằng nhau, lấy hai thanh kim loại ra khỏi dung dịch thấy khối lượng thanh thứ nhất giảm 0,2%, còn khối lượng thanh thứ hai tăng 28,4%. Xác dịnh R.

Câu 4: Cho 31,6 gam hỗn hợp B dang bột Mg và Fe tác dụng với 250ml dung dịch $CuCl_2$. Khuấy đều hỗn hợp, lọc, rữa kết tủa, được dung dịch B_1 và 3,84 gam chất rắn B_2 (có hai kim loại). Thêm vào B_1 một lượng dư dung dịch NaOH loãng rồi lọc, rửa kết tủa mới được tạo thành. Nung kết tủa đó trong không khí ở nhiệt độ cao, được 1,4 gam chất rắn B_3 gồm 2 oxit kim loại. Tất cả các phản ứng đều xảy ra hoàn toàn.

- 1. Viết các Phương trình phản ứng hóa học xảy ra.
- 2. Tính thành phần tram theo khối lượng của mỗi kim loại trong B và tính nồng độ mol của dung dịch CuCl₂.

Câu 5:

- 1. Dẫn hỗn hợp X gồm metan, etilen, axetilen qua bình chứa:
- dung dịch brom dư
- dung dịch axit clohidric dư
- Hãy viết các Phuong trình hóa học xảy ra.
- 2. Đốt cháy hoàn toàn 0,1 mol một hiđrocacbon A cần dung 0,6 mol khí oxi và sinh ra 0,4 mol khí cacbonđioxit.
- tìm công thức phân tử hiđrocacbon A.
- Hãy viết 2 công thức cấu tạo khác nhau của hiđrocacbon A.

MA TRẬN

Chủ đề	Nhận biết	Thông hiểu	Vận dụng	Tổng
	TL	TL	TL	
Phần: Vô cơ	- Nhận biết dung	- Viết PT theo	- Bài toán nồng	
	dịch mất nhãn	chuỗi biến hóa	độ dung dịch	
		- Tách 3 oxit trong	- Bài toán xác	
		hỗn hợp	định kim loại.	
		- Giải thích hiện	- Bài toán hỗn	
		tượng thí nghiệm	hợp 2 kim loại	
		hóa học.		
Số câu	1	1	2	4
Số điểm	3	7	7	17
Tỉ lệ	15%	35%	35%	85%
Phần: Hữu cơ		- Tìm CTPT và		
		viết CTHH		
Số câu		1		1
Số điểm		3		3
Tỉ lệ		15%		15%
Tổng số câu	1	2	2	5
Tổng số điểm	3	8	9	20
Tỉ lệ	15%	50%	35%	100%

Hướng dẫn chấm thi

Câu	Đáp án	Điểm
hỏi		
Câu 1		(2,5
		điểm)
	$Fe_3O_4 + 2C \longrightarrow 3Fe + CO_2$	
	$Fe_3O_4 + 4H_2 \longrightarrow 3Fe + 4H_2O$	0,25 đ
	$Fe_3O_4 + 4CO \rightarrow 3Fe + 4CO_2$	0,25 đ
	Fe + 2HCl \rightarrow FeCl ₂ + O ₂	0,25 đ
	$FeCl_2 + 2NaOH \longrightarrow Fe(OH)_2 + 2NaCl$	0,25 đ
	$4\text{Fe}(\text{OH})_2 + \text{O}_2 \longrightarrow 2\text{Fe}_2\text{O}_3 + 4\text{H}_2\text{O}$	0,25 đ
	$2Fe + 3Cl_2 \rightarrow 2FeCl_3$	0,25 đ
	$FeCl_3 + 3NaOH \longrightarrow Fe(OH)_3 + 3NaCl$	0,25 đ
	$2\text{Fe}(\text{OH})_3 \longrightarrow \text{Fe}_2\text{O}_3 + 3\text{H}_2\text{O}$	0,25 đ
	$4\text{Fe}(\text{OH})_2 + 2\text{H}_2\text{O} + \text{O}_2 \longrightarrow 4\text{Fe}(\text{OH})_3$	0,25 đ
		0,25 đ
Câu 2	<u>1.</u>	(3
	<u>Bước 1</u> : Lấy mẫu thử các chất ở từng lọ vào các ống nghiệm và đánh số	điểm)
	thứ tự tương ứng với các lọ.	
	Bước 2: Nhận biết các cặp chất: Ba(OH) ₂ và MgSO ₄ , H ₂ SO ₄ và NaOH,	
	là NaCl và HCl	
	Lần lượt cho các dung dịch vào với nhau và thấy:	
	- 2 dung dịch có 2 lần tạo kết tủa, đó là Ba(OH) ₂ và MgSO ₄ , do có	Nhận
	các p.u:	biết
	<u> </u>	1

$Ba(OH)_2 + H_2SO_4 \longrightarrow BaSO_4 + 2H_2O \tag{1}$	đúng
	mỗi
$Ba(OH)_2 + MgSO_4 \longrightarrow BaSO_4 + Mg(OH)_2 (2)$ $2N_2OH \longrightarrow MgSO_4 \longrightarrow Mg(OH)_2 (2)$	
$2NaOH + MgSO_4 \longrightarrow Na_2SO_4 + Mg(OH)_2 $ (3)	chất
- 2 dung dịch có 1 lần tạo kết tủa, đó là H ₂ SO ₄ và NaOH, do có	được
phản ứng (1) và(3).	0,5
 - 2 dung dịch không tạo kết tủa, đó là NaCl và HCl 	điểm
Bước 3 : Nhận biết HCl, NaOH, H ₂ SO ₄ , NaCl :	
Lấy 2 dung dịch không tạo kết tủa ở trên lần lượt cho vào kết tủa của 2	
dung dịch có 1 lần tạo kết tủa.	
Trường hợp dung dịch cho vào làm tan một kết tủa thì dung dịch cho vào	
là HCl, dung dịch có 1 lần tạo kết tủa là NaOH, vì:	
Dung dịch có 1 lần tạo kết tủa còn lại là H_2SO_4 (ở đây kết tủa không tan).	
Dung dịch cho vào không làm tan kết tủa nào là dung dịch NaCl.	
$\underline{Bw\acute{o}c}\ 4$: Nhận biết Ba(OH) ₂ , MgSO ₄ :	
Lấy dụng dịch NaOH vừa nhận được ở trên cho vào 2 dung dịch có 2 lần	
tạo kết tủa. Dung dịch nào không tạo kết tủa với NaOH là dung dịch	
Ba(OH) ₂ . Dung dịch nào tạo kết tủa với NaOH là dung dịch MgSO ₄ (có	
phản ứng theo	
<u>2.</u>	2,5 đ
Cho hỗn hợp MgO, Al ₂ O ₃ và SiO qua dung dịch HCl: MgO, Al ₂ O ₃ tan	
hết, tạo dung dịch A, lọc lấy chất rắn không tan là SiO ₂ .	0,75
<u> </u>	0,73
$MgO + 2HC1 \longrightarrow MgCl_2 + H_2O$	
$Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2O$	
Cho dung dịch A tác dụng với NaOH dư thu được kết tủa B và dung dịch	
C	0,75
$MgCl_2 + 2 NaOH \longrightarrow Mg(OH)_2 + 2 NaCl$	
$AlCl_3 + 3NaOH \longrightarrow Al(OH)_3 + 3NaCl$	
$Al(OH)_3 + NaOH \longrightarrow NaAlO_2 + 2H_2O$	0,25
Lọc lấy B nung đến khối lượng không đổi thu được MgO	
$Mg(OH)_2 \longrightarrow MgO + H_2O$	
Sục CO ₂ vào dung dịch C, lọc lấy kết tủa Al(OH) ₃	0,5
$NaOH_{dur} + CO_2 \longrightarrow NaHCO_3$	- ,-
NaAlO ₂ + CO ₂ + $\frac{2H_2O}{}$ Al(OH) ₃ +	0,25
NaHCO ₃	0,23
Nung kết tủa đến khối lượng không đối thu được Al ₂ O ₃	
$2Al(OH)_3 \longrightarrow Al_2O_3 + 3H_2O$	
3.	2
Cho đinh sắt vào dụng dịch CuSO ₄ : Đinh sắt tan dần có lớp đồng màu đỏ	điểm
bám ngoài thanh sắt và màu xanh của dung dịch bị nhạt dần.	0,5
Phản ứng: $Fe + CuSO_4 \longrightarrow FeSO_4 + Cu$	
Cho dây đồng vào dung dịch AgNO ₃ : Dây đồng tan dần, có lớp bạc màu	
trắng bám vào dây đồng và dung dịch từ không màu chuyển sang màu	0,5
xanh.	- ,-
Phản ứng: $Cu + AgNO_3 \longrightarrow Cu(NO_3)_2 + 2Ag$	0,5
r man ang. Cu + r r r r r r r r r r	0,5

Khi dẫn khí	Clo vào nước thì có phản ứng:	
$Cl_2 + H_2O$	—≯HCl + HClO	
		0.5
	đỏ rồi mất màu.	- ,-
	ỏ: do sự có mặt của axit clohidric	
	nàu: do sự có mặt của axit hipocloro	
Câu 3		2,5
Hóa trị của l	xim loại R bằng hóa trị Cu, Pb trong muối Nitrat →	điểm
chúng phản	ứng với số mol bằng nhau.	0,25
	$\mathrm{ai}: \mathrm{M_R} > \mathrm{M_{Cu}} \ \mathrm{va} \ \mathrm{M_{Pb}} > \mathrm{M_R}$	- , -
	hối lượng ban đầu của thanh kim loại là a gam	
	• ,	0.25
'	Sau phản ứng: khối lượng thanh kim loại giảm 0,002 a	0,25
	9	0,25
R + C	$Cu(NO_3)_2 \longrightarrow R(NO_3)_2 + Cu$	0,25
X	\mathbf{x} \mathbf{x}	0,25
Khối lươ	ng thanh kim loại giảm:	
	= 0.002 a <=> x (R - 64) = 0.002 a (1)	
		0,25
	· · · · ·	
X TZI Á: 1	X X X	0,25
	ng thanh kim loại tang lên: 207 x - x.R = 0,284 a	
<=> x (20	(7 - R) = 0.284 a (2)	
Từ (1) và	(2) ta được:	0,25
x(R-C)	$\frac{(u)}{u} = \frac{0,002a}{u}$	
${x(207-}$	\overline{R}) = $\overline{0,284a}$	0,25
	(vậy thanh kim loại là Zn)	-,
-> K- (0,25
		0,23
Câu 4		(1 5
Câu 4		(4,5
		điểm)
Gọi x, y là s	ố mol của Mg và Fe trong B; số mol Fe ban đầu : a (mol)	0,25
Mg +	$CuCl_2 \longrightarrow MgCl_2 + Cu$	0,25
X	x x (mol)	
Fe +	$CuCl_2 \longrightarrow FeCl_2 + Cu$	0,25
a	a a (mol)	- ,
	$g_1: \operatorname{MgCl}_2 \operatorname{va} \operatorname{FeCl}_2$	0,25
, , ,		
	: Cu và Fe du	0,25
	no B _{1 tác} dụng với NaOH:	0,25
MgCl	$_2$ + 2NaOH \longrightarrow Mg(OH) ₂ + NaCl	0,25
X	X	
FeCl ₂	+ 2 NaOH \longrightarrow Fe(OH) ₂ + NaCl	0,25
a	a	
	ung kết tủa	
- Mg(C	_	0,25
	,	0,23
X 2F (6	$X \longrightarrow X$	0.07
2Fe(C	$(OH)_2 + 1/2O_2 \longrightarrow Fe_2O_3 + 2H_2O$	0,25
,	I	
a	0.5 a dề bài ta có hệ phương trình : $24x + 56y = 3.16$	0,75

		•
	(1)	
	64(x + a) + 56(y - a) = 3.84	
	(2)	0,75
		,
	$40x + 160 \cdot 0.5a = 1.4$	0,25
	(3)	0,25
	Giải hệ (1), (2) và (3), ta được $x = 0.015$; $y = 0.05$; $a = 0.01$	0,25
	V_{ay} : % m M_{g} = (24. 0,015).100 : 3,16 = 11,39%	0,25
	$% m_{Fe} = 88,61\%$	
	\Rightarrow $n_{CuCl2} = x + a = 0.01 + 0.01 = 0.025 (mol)$	
	$V_{ay}^{2} C_{M(CuCl2)} = 0.025: 0.25 = 0.1 M$	
Câu F		3
Câu 5	1.	
	$C_2H_4 + Br_2 \longrightarrow C_2H_4Br_2$	điểm
	$\begin{array}{ccccc} C_2H_2 & + & Br_2 & \longrightarrow & C_2H_2Br_2 \\ C_2H_4 & + & HCl & \longrightarrow & C_2H_5Cl \end{array}$	0,25
	$C_2H_4 + HC1 \longrightarrow C_2H_5C1$	0,25
	$C_2H_2 + HC1 \longrightarrow C_2H_4Cl_2$	0,25
	2.	0,25
	$C_xH_y + (x+y/4)O_2 \longrightarrow xCO_2 + y/2 H_2O$	0,20
	$\begin{bmatrix} c_{x} r_{1y} & r_{y} & c_{y} \\ 0.1 & 0.6 & 0.4 \end{bmatrix}$	0.25
		0,25
	Ta có:	0,25
	$\frac{0.1}{1} = \frac{0.6}{x + \frac{y}{1}} = \frac{0.4}{x}$ và $\frac{0.1}{1} = 0.4/x$	
	$1 x + \frac{1}{4} x 1$	0,25
	=>x=4	
	Thay $x = 4 \text{ vào} \Rightarrow y = 8$	0,25
	Vậy công thức của A: C ₄ H ₈	0,25
	CTCT: CH ₂ = CH- CH ₂ -CH ₃	
	CH ₃ - CH=CH-CH ₃	0,25
	СП3- СП-СП3	0,5

THIẾT LẬP MA TRẬN

m^ cl 2 ±3	MÚC				
Tên Chủ đề	Nhận biết	Thông hiểu	Vận dụng	Vận dụng ở mức cao	Tổng điểm
Chủ đề 1: Nêu hiện tượng và viết phương trình theo chuỗi biến hóa		1,0 điểm	5,0 điểm		6 điểm
Chủ đề 2: Nhận biết và phân biệt các chất			1,5 điểm	1,5 điểm	3 điểm
Chủ đề 3: Xác định công thức hóa học của chất				4 điểm	4điểm
Chủ đề 4: Bài toán pha chế dung dịch			3 điểm		3 điểm
Chủ đề 5: Xác định CTPT hợp chất hữ cơ			4,0 điểm		4 điểm
Tổng		1điểm	13,5 điểm	5,5 điểm	20,0 điểm

TRƯỜNG THCS NGUYỄN KHUYẾN

ĐỀ THI CHỌN HỌC SINH GIỚI BẬC THCS CẤP HUYỆN Năm học :2015-2016 Môn : Hóa Học

ĐỀ ĐỀ XUẤT

Câu 1 (3 điểm): Cho sơ đồ biến hóa sau:

Biết A + HCl
$$\longrightarrow$$
 D + G + H₂O

Tìm công thức của các chất kí hiệu bằng các chữ cái (A, B,...). Viết các phương trình phản ứng theo sơ đồ trên.

Câu 2: (3 điểm)

- 2.2. Nêu hiện tượng và viết phương trình hóa học (nếu có) cho mỗi thí nghiệm sau:
 - a. Cho kim loại Natri vào dung dịch CuCl₂.
 - b. Sục từ từ đến dư khí CO₂ vào nước vôi trong.
 - c. Nhỏ từ từ đến dư dung dịch HCl đặc vào cốc đựng thuốc tím.
 - d. Cho lá kim loại đồng vào dung dịch sắt (III) sunfat.

Câu 3 (3điểm)

- a. Cho hỗn hợp gồm CO , SO_3 và CO_2 bằng phương pháp hóa học hãy nhận ra sự có mặt của mỗi khí trong hỗn hợp
- b. Chỉ dùng một dung dịch phân biệt 3 hỗn hợp riêng biệt(Al, Fe); (Al, Al₂O₃); (Fe, Al₂O₃)

Câu 4 (4điểm):

Cho luồng khí CO đi qua một ống sứ chứa m gam bột ôxit sắt (Fe_xO_y) nung nóng cho đến khi phản ứng xảy ra hoàn toàn . Dẫn toàn bộ khí sinh ra đi thật chậm vào 1 lít dung dịch $Ba(OH)_2$ 0,1M thu được 9,85 gam kết tủa . Mặt khác khi hòa tan toàn bộ lượng kim loại sắt tạo thành ở trên bằng V lít dung dịch HCl 2M (có dư) thì thu được một dung dịch sau khi cô cạn thu được 12,7 gam muối khan .

- 1. Xác định công thức của ôxit sắt.
- 2. Tính m

<u>Câu 5</u> (3điểm): Tính nồng độ mol (C_M) ban đầu của dung dịch H_2SO_4 (dung dịch A) và dung dịch NaOH (dung dịch B). Biết rằng:

- Nếu đồ 3 lít dung dịch ${\bf A}$ vào 2 lít dung dịch ${\bf B}$ thì thu được dung dịch có nồng độ của axit dư là 0,2M.
- Nếu đổ 2 lít dung dịch ${\bf A}$ vào 3 lít dung dịch ${\bf B}$ thì thu được dung dịch có nồng độ của NaOH dư là 0,1M.

<u>Câu 6</u> (4 điểm):

Đốt cháy hoàn toàn 2,24 lít ở đktc một hiđrocacbon A ở thể khí. Sau đó dẫn sản phẩm cháy qua bình đựng 4 lít dung dịch Ca(OH)₂ 0,05M thấy có 10 gam kết tủa. Khối lượng bình tăng là 18,6 gam.

a. Tìm công thức phân tử của A

ĐÁP ÁN VÀ HƯỚNG DẪN CHẨM

Câu 1 (3điểm): Chọn đúng mỗi chất được 0,125 điểm:

A: Fe₃O₄ B: HCl

X: H₂ D: FeCl₂ Y: Al E: Cl₂ Z: CO G: FeCl₃

Phương trình hóa học:

$$Fe_3O_4 + 8HCl \rightarrow FeCl_2 + 2FeCl_3 + 4H_2O$$
 (0,5 điểm)
 $Fe_3O_4 + 4H_2 \xrightarrow{t^0} 3Fe + 4H_2O$ (0,5 điểm)
 $3Fe_3O_4 + 8Al \xrightarrow{t^0} 4Al_2O_3 + 9Fe$ (0,5 điểm)
 $Fe_3O_4 + 4CO \xrightarrow{t^0} 3Fe + 4CO_2$ (0,5 điểm)
 $Fe + 2HCl \rightarrow FeCl_2 + H_2$ (0,5 điểm)
 $2FeCl_2 + Cl_2 \rightarrow 2FeCl_3$ (0,5 điểm)

Câu 2 (3 điểm):

a. Kim loại Natri tan dần, có khí không màu bay ra, xuất hiện chất kết tủa màu xanh.

$$2\text{Na} + 2\text{H}_2\text{O} \rightarrow 2\text{NaOH} + \text{H}_2\uparrow$$

 $2\text{NaOH} + \text{CuCl}_2 \rightarrow 2\text{NaCl} + \text{Cu(OH)}_2\downarrow$ (1điểm)

b.Ban đầu thấy nước vôi trong vẫn đục, sau đó lại trở nên trong suốt.

 $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 \downarrow$

$$CaCO_3 + CO_2 + H_2O \rightarrow Ca(HCO_3)_2$$
 (1điểm)

c.Thuốc tím mất màu, xuất hiện khí màu vàng lục.

$$2KMnO4 + 16HCl \rightarrow 2KCl + 2MnCl2 + 5Cl2\uparrow + 8H2O$$
 (0,5 điểm)

d.Dung dịch sắt (III) sunfat màu vàng nâu nhạt màu dần rồi chuyển dần thành dơ màu xanh nhạt. $Cu + Fe_2(SO_4)_3 \rightarrow 2FeSO_4 + CuSO_4$ (0,5 điểm)

<u>Câu 3 (3điểm)</u>

<u>Câu 3</u>a(1,5điểm)

-Cho hỗn hợp 3 khí trên qua dd BaCl₂ thấy có kết tủa trắng là SO₃:

PTHH:
$$SO_3 + H_2O + BaCl_2 \xrightarrow{r^o} BaSO_4 + 2HCl$$

- Thu hai khí còn lại không tác dụng đi qua nước vôi trong dư, nếu thấy nước vôi trong vẫn đục thì chứng tỏ có khí CO₂.

PTHH:
$$CO_2 + Ca(OH)_2 \xrightarrow{t^o} CaCO_3 + H_2O$$

- Thu khí còn lại dẫn qua bột CuO màu đen nung nóng thấy có kết tủa màu đỏ xuất hiện, hấp thụ sản phẩm khí bằng nước vôi trong dư thấy nước vôi trong vẫn đục chứng tỏ khí ban đầu là CO.

PTHH: $CuO + CO \xrightarrow{t^o} Cu + CO_2$ <u>Câu 3</u>b(1,5điểm)

```
Cho dd NaOH (du) vào 3 hỗn hợp trên:
- Hỗn hợp nào có khí bay ra và có một chất không tan là (Al,Fe)
Al + NaOH + H_2O \xrightarrow{t^o} NaAlO_2 + 3/2H_2 \uparrow
       Hỗn hợp nào có khí bay ra và hồn hợp tan hết là (Al, Al<sub>2</sub>O<sub>3</sub>)
       2A1 + 2NaOH + 2H_2O \rightarrow 2NaAlO_2 + 3H_2 \uparrow
       Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O
   - Hỗn hợp có tan nhưng không có khí bay ra là
   ( Fe, Al_2O_3):
      Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O
Câu 4:(4điêm)
   a. (3điểm) Xđ công thức oxit sắt Fe<sub>x</sub>O<sub>y</sub>
   giả sử có a mol Fe<sub>x</sub>O<sub>v</sub> tham gia phản ứng
       Số mol Ba(OH)<sub>2</sub> = 1.0,1 = 0,1 (mol)
       Số mol BaCO<sub>3</sub> = 9.85/197 = 0.05 (mol)
       Fe_xO_y + y CO \longrightarrow x Fe + y CO_2
         a
                               ax
                                          ay
                 + Ba(OH)<sub>2</sub> \longrightarrow BaCO<sub>3</sub> \downarrow + H<sub>2</sub>O .(2)
       CO_2
       0,05
                       0,05
                                           0.05
    2CO_2 + Ba(OH)_2 \rightarrow Ba(HCO_3)_2
                                                      (3)
    0,1
                            0.05
          Fe + 2 HCl \longrightarrow FeCl_2 + H_2
+ Nếu tạo muối trung hoà thì:
    ay = 0.05 \text{ và } ax = 12.7/127 = 0.1
                \rightarrow x/y\rightarrow = 2 (vô lí)
+ Nếu tao muối trung hoà và muối axit :
Từ (2), (3) ta có nCO_2 = 0.15 \text{ mol}
               ay = 0.15 \text{ và } ax = 0.1 \rightarrow x = 2 \text{ và } y = 3
Vcông thức của Oxit sắt là: Fe<sub>2</sub>O<sub>3</sub>
b.Tính m (1điểm)
               Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2 (5)
        0.05
   \rightarrow m = m Fe<sub>2</sub>O<sub>3</sub> = 0,05. 160 = 8 gam
Câu 5 (3điểm)
Gọi x, y lần lượt là nồng độ mol của dung dịch H<sub>2</sub>SO<sub>4</sub> và NaOH
      - Trường hợp 1: Số mol H<sub>2</sub>SO<sub>4</sub> trong 3 lít là 3x, số mol NaOH trong 2lít là 2y.
        H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O
                                                                     (0.5 \text{ diêm})
                               2y
      - Vì axit du => tính theo NaOH.
                                                                     0,25 điểm)
      - nH_2SO_4 du: 0.2 \times 5 = 1 \text{ (mol)} => ta có phương trình: (0.25 điểm)
               3x - y = 1 (*)
                                                                 0,25 điểm)
      - Thí nghiệm 2: Số mol H<sub>2</sub>SO<sub>4</sub> trong 2lít là 2x, số mol NaOH trong 3lít là 3y.
            H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O
                                                                               (0.5 \text{ diêm})
              2x
                              4x
      - Vì NaOH du => tính theo H_2SO_4.
                                                                                  (0,25 \text{ diễm})
      - nNaOH (du): 0.1 \times 5 = 0.5 (mol) => ta có phương trình:
               3y - 4x = 0.5 (**)
                                                                 (0,25 điểm)
```

- Từ (*) và (**) giải hệ phương trình ta được: x = 0.7; y = 1.1 (0.25 điểm) Vậy nồng độ ban đầu của dung dịch H₂SO₄ là 0,7M; của NaOH là 1,1 M (0,5 điểm)

```
Bài 6 : 4 điểm
```

```
nCa(OH)_2 = 0.2 \text{ mol}; nCaCO_3 = 0.1 \text{ mol}, nC_xH_y = 0.1 \text{ mol}
                                                                                     0,75 điểm
C_xH_v + (x + y/4) O_2 \longrightarrow x CO_2 + y/2 H_2O
                                                                                      0,5 điểm
1mol
                       x mol y/2(mol)
0,1
                  0.1x
                                0,05y (mol)
* TH1: Sản phẩm chỉ có 1 muối CaCO<sub>3</sub>
       CO_2 + Ca(OH)_2 \rightarrow CaCO_3 \downarrow + H_2O.
                                                                  (1điểm)
       0.1
                         0.1
                                        0.1
       n CO_2 = 0.1 \text{ (mol)} \rightarrow x = 1
Có m tăng = m CO_2 + m H_2O = 18,6 (g)
\rightarrow m H<sub>2</sub>O = 18,6 - 44.0,1 = 14,2 (g)
       n H_2O = 14,2/18 = 0,79 \text{ (mol)}
\rightarrow 0,05y = 0,79 \rightarrow y = 15,8 (loại)
* TH2: Sản phẩm gồm 2 muối
              + Ca(OH)_2 \rightarrow CaCO_3 \downarrow + H_2O.
       CO_2
                         0.1
       0.1
       2CO_2 + Ca(OH)_2 \longrightarrow Ca(HCO_3)_2
                           0.1
   Tổng số mol CO_2 = 0.1 + 0.2 = 0.3 mol
Theo bài : 0.1x = 0.3 . Suy ra x = 3
Có m tăng = m CO_2 + m H_2O = 18,6 (g)
\rightarrow m H<sub>2</sub>O = 18,6 - 44.0,3 = 5,4 (g)
       n H_2O = 5.4/18 = 0.3 \text{ (mol)}
\rightarrow 0,05y = 0,3
\rightarrow y = 6
Vậy CTPT của A là C<sub>3</sub>H<sub>6</sub>
b. Viết được CTCT:
                                                          (0.5 \text{ diễm})
```

SỞ GIÁO DỤC VÀ ĐÀO TẠO **BĂC GIANG**

ĐỀ THI CHÍNH THỨC Đề thi có 01 trang

KỲ THI CHỌN HỌC SINH GIỚI VĂN HOÁ CẤP TỈNH **NĂM HOC 2012-2013** MÔN THI: HÓA HỌC; LỚP: 9 PHỔ THÔNG

Ngày thi: 30/3/2013

Thời gian làm bài 150 phút, không kể thời gian giao đề

Câu 1. (2,0 điểm)

Viết các phương trình hóa học để hoàn thành sơ đồ sau:

 $Fe \xrightarrow{(1)} Fe_3O_4 \xrightarrow{(2)} CO_2 \xrightarrow{(3)} NaHCO_3 \xrightarrow{(4)} NaCl \xrightarrow{(5)} Cl_2 \xrightarrow{(6)} FeCl_3 \xrightarrow{(7)} Fe(NO_3)_3 \xrightarrow{(8)} NaNCl \xrightarrow{(1)} FeCl_3 \xrightarrow{(1)} FeCl_4 \xrightarrow{(1)} FeCl_5 \xrightarrow{(1)} Feccl_5 F$ **Câu 2.** (2,0 điểm)

- a. Không dùng chất chỉ thị màu, chỉ dùng một hóa chất hãy nhận biết các dung dịch loãng đựng trong các lọ mất nhãn riêng biệt sau: BaCl₂, NaCl, Na₂SO₄, HCl. Viết các phương trình hóa học.
 - b. Nêu hiện tượng và viết các phương trình hóa học trong hai trường họp sau:
 - Sục từ từ khí cacbonic vào dung dịch bari hiđroxit đến dư.
 - Cho từ từ dung dịch HCl đến dư vào dung dịch NaOH loãng có chứa một lương nhỏ phenolphtalein.

Câu 3. (2,0 điểm)

- a. Từ tinh bột và các chất vô cơ cần thiết khác, điều kiện có đủ, hãy viết các phương trình hóa học điều chế etanol, axit axetic, etyl axetat.
- b. Bằng phương pháp hóa học, hãy nhận biết các khí sau đựng trong các lọ riêng biệt: cacbonic, etilen, metan, hiđro. Viết các phương trình hóa học.

Câu 4. (2,0 điểm)

Nung a gam một hiđroxit của kim loại R trong không khí đến khối lượng không đổi, thấy khối lượng chất rắn giảm đi 9 lần, đồng thời thu được một oxit kim loại. Hòa tan hoàn toàn lượng oxit trên bằng 330ml dung dịch H₂SO₄ 1M, thu được dung dịch X. Cho X tác dụng với dung dịch Ba(OH)₂ dư, sau khi phản ứng hoàn toàn thu được m gam kết tủa. Tính a, m, biết lượng axit đã lấy dư 10% so với lượng cần thiết để phản ứng với oxit.

Câu 5. (2,0 điểm)

Hỗn hợp X gồm Al, Fe, Cu. Lấy 3,31 gam X cho vào dung dịch HCl dư, thu được 0,784 lít H₂ (đktc). Mặt khác, nếu lấy 0,12 mol X tác dụng với khí clo dư, đun nóng thu được 17,27 gam hỗn hợp chất rắn Y. Biết các phản ứng xảy ra hoàn toàn, tính thành phần % về khối lượng của các chất trong X. **Câu 6.** (2,0 điểm)

Dung dịch X và Y chứa HCl với nồng độ mol tương ứng là C_1 , C_2 (M), trong đó $C_1 > C_2$. Trộn 150 ml dung dịch X với 500ml dung dịch Y được dung dịch Z. Để trung hòa 1/10 dung dịch Z cần 10ml dung dịch hỗn hợp NaOH 1M và Ba(OH)₂ 0,25M. Mặt khác lấy V_1 lít dung dịch X chứa 0,05 mol HCl trộn với V_2 lít dung dịch Y chứa 0,15 mol axit được 1,1 lít dung dịch. Hãy xác định C_1 , C_2 , V_1 , V_2 . **Câu 7.** $(2.0 \ diễm)$

Đốt cháy hoàn toàn 12 gam một chất hữu cơ A (chứa C, H, O), toàn bộ sản phẩm cháy thu được đem hấp thụ hết vào dung dịch Ca(OH)₂ thu được 20 gam kết tủa và dung dịch B, đồng thời thấy khối lượng dung dịch kiềm tăng 4,8 gam. Đun nóng B đến khi phản ứng kết thúc thu được 10 gam kết tủa nữa.

- a. Xác định công thức phân tử của A, biết tỉ khối của A so với metan là 3,75.
- b. Biết dung dịch của A làm đổi màu quỳ tím sang đỏ. Viết các phương trình hóa học khi cho A tác dụng với CaCO₃, KOH, Na, BaO.

Câu 8. (2,0 điểm)

Dẫn 4,48 lít (đktc) hỗn hợp khí Z gồm metan, etilen, axetilen qua bình đựng dung dịch brom dư thấy khối lượng bình tăng 2,7 gam. Mặt khác, nếu đốt cháy hoàn toàn 1,12 lít (đktc) hỗn hợp Z, toàn bộ sản phẩm được dẫn qua bình đựng H₂SO₄ đặc thấy khối lượng bình axit tăng 1,575 gam. Xác định thành phần % thể tích mỗi khí trong Z.

Câu 9. (2,0 điểm)

Cho kim loại Na dư vào hỗn hợp T gồm etanol và glixerol, sau khi phản ứng xảy ra hoàn toàn thấy khối lượng khí thoát ra bằng 2,5% khối lượng hỗn hợp T. Xác định thành phần % khối lượng mỗi chất trong T.

Câu 10. (2,0 điểm)

Nêu phương pháp và vẽ hình mô tả quá trình điều chế khí clo trong phòng thí nghiệm? Viết phương trình hóa học minh họa và giải thích quá trình để thu được khí clo tinh khiết.

Cho nguyên tử khối của các nguyên tố: H = 1; C = 12; O = 16; Na = 23; Al = 27; S = 32; Cl = 35,5; Ca = 40; Fe = 56; Cu = 64; Br = 80; Ba = 137.

Giám thị 1 (Họ tên và ký)......Giám thị 2 (Họ tên và

ký).....

SỞ GIÁO DỤC VÀ ĐÀO TẠO BẮC GIANG HƯỚNG DẪN CHẨM BÀI THI CHỌN HỌC SINH GIỚI VĂN HOÁ CẤP TỈNH NGÀY THI: 30/3/2013 MÔN THI: HÓA HỌC LỚP 9

ĐỀ CHÍNH THỰC

Bản hướng dẫn chấm có 5 trang

Câu Dáp án Điểm

1	(t) 2F , 2O , 1° F O	Mỗi
(2đ)	$(1) 3Fe + 2O_2 \xrightarrow{t^0} Fe_3O_4$	phương
	$(2) \operatorname{Fe_3O_4} + 4\operatorname{CO} \xrightarrow{t^{\circ}} 3\operatorname{Fe} + 4\operatorname{CO_2}$	trrình 0,25đ
	$(3) CO2 + NaOH \rightarrow NaHCO3$	0,20 0
	(4) $NaHCO_3 + HCl \rightarrow NaCl + CO_2 \uparrow + H_2O$	
	$(5) 2NaCl+2H_2O \xrightarrow{\text{dpdd} \atop \text{c.m.ngăn}} 2NaOH + Cl_2 \uparrow + H_2 \uparrow$	
	$(6) 3Cl2 + 2Fe \xrightarrow{t^{\circ}} 2FeCl3$	
	$(7) \text{ FeCl}_3 + 3 \text{AgNO}_3 \rightarrow 3 \text{AgCl} \downarrow + \text{Fe(NO}_3)_3$	
	$(8) \text{ Fe(NO}_3)_3 + 3\text{NaOH} \rightarrow \text{Fe(OH)}_3 \downarrow + 3\text{NaNO}_3$	
2 (2d)	 a Trích mẫu thử: Lấy ở mỗi lọ một lượng nhỏ ra ống nghiệm để nhận biết. - Lấy dung dịch Na₂CO₃ cho vào mỗi ống trên: + Xuất hiện kết tủa trắng ⇒ Nhận biết được BaCl₂. BaCl₂ + Na₂CO₃ → BaCO₃↓ + 2NaCl. + Có khí bay lên ⇒ Nhận biết được HCl: 2HCl + Na₂CO₃ → 2NaCl + CO₂ + H₂O. + Hai ống nghiệm không có hiện tượng gì chứa NaCl và Na₂SO₄. - Dùng BaCl₂ vừa nhận biết được ở trên cho vào hai mẫu chứa NaCl và Na₂SO₄: + Xuất hiện kết tủa trắng ⇒ Nhận biết được Na₂SO₄. Na₂SO₄ + BaCl₂ → BaSO₄↓ + 2NaCl. + Còn lại là NaCl. 	1,0đ (Mỗi chất nhận biết được 0,25 điểm).
	 b. Khi sục khí cacbonic vào dung dịch Ba(OH)₂ đến dư, ban đầu xuất hiện kết tủa trắng, sau tan dần. CO₂ + Ba(OH)₂ → BaCO₃↓ + H₂O CO₂ + BaCO₃ + H₂O → Ba(HCO₃)₂. 	0,25 0,25
	 * Cho từ từ dung dịch HCl đến dư vào dung dịch NaOH loãng có chứa một lượng nhỏ phenolphtalein: dung dịch có màu hồng, sau nhạt dần đến mất hẳn. HCl + NaOH → NaCl + H₂O. 	0,25
3	a. Phương trình hóa học:	1,0đ
(2đ)	$(C_{6}H_{10}O_{5})_{n} + nH_{2}O \xrightarrow{\text{axit, t}^{o}} nC_{6}H_{12}O_{6}$ $C_{6}H_{12}O_{6} \xrightarrow{\text{men r-1 u}} 2C_{2}H_{5}OH + 2CO_{2}$ $C_{2}H_{5}OH + O_{2} \xrightarrow{\text{men giÊm}} CH_{3}COOH + H_{2}O$ $CH_{3}COOH + C_{2}H_{5}OH \xrightarrow{\text{H}_{2}SO_{4}d} CH_{3}COOC_{2}H_{5} + H_{2}O$	(Mỗi phương trình 0,25 điểm).
	b. + CO ₂ : Nhận biết bằng dung dịch nước vôi trong ⇒ vẩn đục. + Etilen làm mất màu vàng của dung dịch brom. Đốt cháy hai khí còn lại, đem sản phẩm qua dung dịch nước vôi trong thấy vẩn đục ⇒ Nhận biết được metan, còn lại là H ₂ . CH ₂ = CH ₂ + Br ₂ → BrCH ₂ − CH ₂ Br CH ₄ + 2O ₂ — t° → CO ₂ + 2H ₂ O CO ₂ + Ca(OH) ₂ → CaCO ₃ ↓ + H ₂ O 2H ₂ + O ₂ → 2H ₂ O	1,0đ (Nhận biết được mỗi chất 0,25đ)

4	Đặt công thức của hiđroxit là $R(OH)_n$, công thức oxit là R_2O_m ($1 \le n \le m \le 3$; $n, m \in N^*$)						
(2đ)	$2R(OH)_n + \frac{m-n}{2}O_2 \xrightarrow{t^o} R_2O_m + nH_2O \qquad (1)$					0,25	
						0,23	
	Khối lượng chất rắn giảm ở			Q			
	$\Rightarrow m_{\text{giåm di}} = \frac{a}{Q} \Rightarrow m_{R_2O_m}$	$=a-\frac{a}{q}=\frac{\delta a}{q}$	$\Rightarrow m_{R(OH)_n} =$	$\frac{1}{8}$ $m_{R_2O_m}$			
	$m_{\text{p,(QI)}} = 2(R+17)$	'n) 9		O .			0,25
	$\Rightarrow \frac{m_{R(OH)_n}}{m_{R,O}} = \frac{2(R+17)}{2R+16}$	$\frac{n}{m} = \frac{1}{8} \Rightarrow R$	=136n-72i	n			
	K ₂ O _m	1	1		2	3	0,25
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	3	$\frac{2}{2}$	3	3	0,23
	R 64	-8	-80	128	56	192	0.25
	Kết Loại	Loại	Loại	Loại	Thỏa mãn	Loại	0,25
	luạn			Loại	Tiloa illali	Loại	
	Kim loại R là sắt, công thứ	c hidroxit: Fe(O)H) ₂ .				
	$4 \text{Fe(OH)}_2 + \text{O}_2 \xrightarrow{\text{t}^{\circ}}$	$2\mathrm{Fe}_2\mathrm{O}_3 + 4\mathrm{H}$	H_2O (2)				
	Gọi x là số mol của H ₂ SO ₄	nhản ứng với co	$vit \rightarrow v + \frac{10}{10}$	x = 0.33.1	\Rightarrow x = 0.3(mag)	71)	
	Gọi x ia 30 moi của 112504	phan ang vor o	100	A 0,33.11	7 N 0,5(III	,1)	0,25
	$\Rightarrow n_{\text{H}_2\text{SO}_4 \text{ d-}} = \frac{10}{100} \cdot 0.3$	= 0.03 (mol)					,
	Phương trình hóa học:						
	$Fe_2O_3 + 3H_2SO_4$	$\rightarrow \text{Fe}_2(\text{SO}_4)_3$	$+3H_2O$ (3)				0,25
	Mol:0,1 0,3	0,1					0,20
	$\operatorname{Fe}_{2}(\operatorname{SO}_{4})_{3} + 3\operatorname{Ba}_{4}$	$(OH)_2 \rightarrow 2Fe$	$(OH)_3 \downarrow +3B$	$BaSO_4 \downarrow (4)$			
	Mol: 0,1 0,2 0,3						
	$H_2SO_4 + Ba(OH)_2 \rightarrow BaSO_4 + 2H_2O \qquad (5)$						
	Mol: 0,03	0,03					0,25
	Kết tủa thu được gồm: Fe(OH) ₃ 0,2 mol; BaSO ₄ 0,33 mol						
	$\Rightarrow m = m_{\text{Fe(OH)}_3} + m_{\text{BaSO}_4} = 0, 2.107 + 0, 33.233 = 98, 29 \text{ (gam)}.$					0,25	
	Theo sự bảo toàn nguyên tố Fe \Rightarrow $n_{\text{Fe(OH)}_2} = 2n_{\text{Fe}_2\text{O}_3} = 2.0, 1 = 0, 2 \text{(mol)}$						
	\Rightarrow a = 0,2.90=18 (g).						
5 (2đ)	Gọi số mol của Al, Fe, Cu		X lần lượt là x,	y, z			0,25
(20)	$\Rightarrow 27x + 56y + 64z = 3,31 \text{ (I)}$ Phương trình hóa học:					0,23	
	$2Al + 6HCl \rightarrow 2A$	$AlCl_3 + 3H_2$					
	Mol: x	1,5x					0,25
	$Fe + 2HCl \rightarrow Fe$	$Cl_2 + H_2$					
	Mol: y	У					6.25
	$\Rightarrow n_{H_2} = 1.5x + y = \frac{0.7}{22}$	$\frac{784}{1} = 0.035(r)$	mol) (II)				0,25
	$ \longrightarrow \mathbf{n}_{\mathbf{H}_2} = 1, 3\mathbf{x} + \mathbf{y} = 22$	2,4	1101) (11).				
	Gọi số mol của Al, Fe, Cu	trong 0.12 mol 3	X lần lượt là kx	, ky, kz.			
	\Rightarrow kx + ky + kz = 0,12 (III)).		. . .			0,25
	Khi cho X tác dụng với clo		nh hóa học là				
	$2Al + 3Cl_2 - \frac{t^{\circ}}{}$	3					0.25
	Mol: kx	kx					0,25
	$2\text{Fe} + 3\text{Cl}_2 - \frac{\mathfrak{t}^{\circ}}{}$						
	Mol: ky	ky					

	$Cu + Cl_2 \xrightarrow{t^o} CuCl_2$	
	Mol: kz kz	0,25
	\Rightarrow m _Y = 133,5kx + 162,5ky + 135kz = 17,27(IV).	
	$\text{T\'e} \text{ (III) v\'a (IV)} \Rightarrow \frac{x + y + z}{133,5x + 162,5y + 135z} = \frac{0,12}{17,27} \Rightarrow 1,25x - 2,23y + 1,07z = 0 \text{ (V)}.$	0,25
	$\int 27x + 56y + 64z = 3{,}31$ $\int x = 0{,}01$	
	Kết hợp (I), (II), (V) ta có hệ phương trình: $\begin{cases} 1,5x+y=0,035 \end{cases} \Rightarrow \begin{cases} y=0,02 \end{cases}$	
		0,25
	\Rightarrow Trong 3,31 gam X: $m_{Al} = 0,01.27 = 0,27$ (gam); $m_{Fe} = 0,02.56 = 1,12$ (gam); $m_{Cu} = 1,92$ (gam).	
	$\% \mathrm{m_{Al}} = \frac{0.27}{3.31} \cdot 100\% = 8,16\%.$	
	$\% \mathrm{m}_{\mathrm{Fe}} = \frac{1,12}{3,31} \cdot 100\% = 33,84\%.$	
	\Rightarrow % m _{Cu} = 100% - 8,16% - 33,84% = 58,00%	
6	$n_{\text{NaOH}} = 0.01.1 = 0.01 \text{ (mol)}; \ n_{\text{Ba(OH)}_2} = 0.01.0, 25 = 0.0025 \text{ (mol)}.$	0,25
(2đ)	Phương trình hóa học: HCl + NaOH → NaCl + H ₂ O (1)	0,25
	Mol: 0,01 0,01	,
	$2HCl+Ba(OH)_2 \rightarrow BaCl_2 + 2H_2O (2)$	
	Mol: 0,005 0,0025	
	$\Rightarrow 0.15C_1 + 0.5C_2 = 10.(0.01 + 0.005) = 0.15$	0,25
	$\Rightarrow C_2 = 0.3 - 0.3C_1 (*)$,
		0,25
		,
	$V_1 = \frac{0.05}{C_1}; V_2 = \frac{0.15}{C_2} \Rightarrow \frac{0.05}{C_1} + \frac{0.15}{C_2} = 1.1$	0,25
	Thay (*) vào (**) ta được:	0,20
	$\frac{0.05}{C_1} + \frac{0.15}{0.3 - 0.3C_1} = 1.1$	0,25
	$\Leftrightarrow 0.33C_1^2 - 0.195C_1 - 0.015 = 0$	0,25
	\Rightarrow $C_1 = 0.5M$ hoặc $C_1 = 1/11$ M.	
	* Với $C_1 = 0.5 \text{ M} \Rightarrow C_2 = 0.3 - 0.3.0.5 = 0.15 \text{ (M)} \text{ (thỏa mãn vì } C_1 > C_2)$	0,25
	$\Rightarrow V_1 = \frac{0.05}{0.5} = 0.1 \text{ (lít)}; \ V_2 = \frac{0.15}{0.15} = 1 \text{ (lít)}.$	
	0,13	
7	* Với $C_1 = 1/11 \text{ M} \Rightarrow C_2 = 0.3 - 0.3.1/11 = 3/11$ (loại vì khi đó $C_1 < C_2$). a. Đặt công thức phân tử của A là $C_xH_yO_z$ (điều kiện: x, y, z nguyên, dương, y $\leq 2x+2$)	
(2₫)	$C_x H_y O_z + (x + \frac{y}{4} - \frac{z}{2}) O_2 \xrightarrow{t^o} x CO_2 + \frac{y}{2} H_2 O \qquad (1)$	
	$CO_2 + Ca(OH)_2 \rightarrow CaCO_3 \downarrow + H_2O $ (2)	0,25
	$Mol: 0,2 \leftarrow \frac{20}{100}$	0,23
	$2CO_2 + Ca(OH)_2 \rightarrow Ca(HCO_3)_2 \tag{3}$	
	$Mol: 0,2 \leftarrow 0,1$	
		0,25

	$Ca(HCO_3)_2 \xrightarrow{t^0} CaCO_3 \downarrow +CO_2 + H_2O$ (4)	0,25
		,
	$Mol: 0,1 \leftarrow \frac{10}{100}$	
	$\Rightarrow n_{CO_2} = 0, 2 + 0, 2 = 0, 4 \text{(mol)}.$	0,25
	$m_{\rm dd\ tăng} = m_{\rm CO_2} + m_{\rm H_2O} - m_{\rm CaCO_3(2)}$	
	$\Rightarrow m_{\text{CO}_2} + m_{\text{H}_2\text{O}} = m_{\text{CaCO}_3(2)} + m_{\text{dd tăng}} = 20 + 4.8 = 24.8.$	0,25
	$\Rightarrow m_{H,0} = 24.8 - m_{CO_2} = 24.8 - 0.4.44 = 7.2 \text{(gam)}$	
	\Rightarrow $n_{H_2O} = \frac{7,2}{18} = 0,4 \text{(mol)} \Rightarrow n_H = 0,8 \text{(mol)}$	0,25
	10	
	$m_{O} = m_{A} - m_{C} - m_{H} = 12 - 0.4.12 - 0.8.1 = 6.4 \text{ (gam)} \Rightarrow n_{O} = \frac{6.4}{16} = 0.4 \text{ (mol)}$	
	\Rightarrow x : y : z = 0,4 : 0,8 : 0,4 = 1 : 2 : 1 \Rightarrow Công thức phân tử của A có dạng (CH ₂ O) _n . $M_A = 30n = 3,75.16 \Rightarrow n = 2 \Rightarrow$ Công thức phân tử của A là C ₂ H ₄ O ₂ .	
	 b. A có hai nguyên tử oxi, làm đổi màu quỳ tím sang đỏ ⇒ A là axit hữu cơ ⇒ Công thức cấu tạo của A là CH₃ – COOH. 	
	$2CH_3COOH + CaCO_3 \rightarrow (CH_3COO)_2Ca + H_2O + CO_2 \uparrow$	0,25
	$CH_3COOH + KOH \rightarrow CH_3COOK + H_2O$	0.25
	$2CH_3COOH + 2Na \rightarrow 2CH_3COONa + H_2 \uparrow$	0,25
	$2CH3COOH + BaO \rightarrow (CH3COO)2Ba + H2O$	
8 (2đ)	Gọi số mol của CH ₄ , C ₂ H ₄ , C ₂ H ₂ trong 4,48 lít Z lần lượt là x, y, z .	
(2u)	$\Rightarrow x + y + z = \frac{4,48}{22,4} = 0,2 \text{ (I)}.$	0,25
	Khi cho Z qua dung dịch brom dư, C_2H_4 và C_2H_2 bị giữ lại \Rightarrow 28y + 26z = 2,7 (II).	0,5
	$CH_4: \frac{X}{4} \text{ (mol)}$	
		0,25
	Trong 1,12 lít $Z \Rightarrow \left\{ C_2 H_4 : \frac{y}{4} \text{ (mol)} \right\}$	
	$C_2H_2: \frac{Z}{A} \text{ (mol)}$	
	Ðốt cháy 1,12 lít Z ⇒	0,5
	$n_{\text{H}_2\text{O}} = 2n_{\text{CH}_4} + 2n_{\text{C}_2\text{H}_4} + n_{\text{C}_2\text{H}_2} = \frac{2x}{4} + \frac{2y}{4} + \frac{z}{4} = \frac{1,575}{18} \Rightarrow 2x + 2y + z = 0,35 \text{ (III)}$	
		0,25
	$\begin{cases} x = 0, 1 \end{cases}$	
	Giải hệ (I), (II), (III) $\Rightarrow \begin{cases} y = 0.05 \\ 0.05 \end{cases}$	0,25
	z = 0.05	
	$\%V_{C_{2}H_{4}} = \%V_{C_{2}H_{2}} = \frac{0.05}{0.2} \cdot 100\% = 25\% \Rightarrow \%V_{CH_{4}} = 50\%.$	
9 (2đ)	Gọi x và y lần lượt là số mol của etanol, glixerol. $2C_2H_5OH + 2Na \rightarrow 2C_2H_5ONa + H_2$	0.5-
	Mol: x 0,5x	0,25
	$2C_3H_5(OH)_3 + 6Na \rightarrow 2C_3H_5(ONa)_3 + 3H_2$	0,25
	Mol: y 1,5y	0,23
	$m_{H_2} = 2(0,5x+1,5y) = x+3y$	0,5
	$m_T = 46x + 92y$	0,5
	$m_{H_2} = \frac{2.5}{100} \cdot m_T \Rightarrow x + 3y = \frac{2.5}{100} \cdot (46x + 92y) \Rightarrow x = \frac{14y}{3}$	0,3
		1

	$\% m_{C_2H_5OH} = \frac{46x}{46x + 92y} = \frac{46 \cdot \frac{14y}{3}}{46 \cdot \frac{14y}{3} + 92y} \cdot 100\% = 70\%.$ $\Rightarrow \% m_{C_3H_5(OH)_3} = 100\% - 70\% = 30\%.$	0,5
10 (2đ)	- Phương pháp điều chế clo trong phòng thí nghiệm: Đun nóng nhẹ dung dịch HCl đậm đặc với chất oxi hóa mạnh như MnO ₂ (hoặc KMnO ₄).	0,25
	$MnO_2 + 4HCl \xrightarrow{t^o} MnCl_2 + Cl_2 + 2H_2O$	0,25
	Dung dịch HCl	
		1
	Để thu được khí clo tinh khiết: - Bình H_2SO_4 đặc có tác dụng làm khô khí clo. - Clo nặng hơn không khí \Rightarrow Thu bằng cách đẩy không khí. - Bông tẩm xút: tránh để clo độc bay ra ngoài.	0,5

Lưu ý khi chấm bài:

- Đối với phương trình hóa học nào mà cân bằng hệ số sai hoặc thiếu cân bằng (không ảnh hưởng đến giải toán) hoặc thiếu điều kiện thì trừ đi nửa số điểm dành cho nó. Trong phương trình hóa học, nếu có từ một công thức trở lên viết sai thì phương trình đó không được tính điểm. Trong bài toán, nếu phương trình viết sai hoặc không cân bằng thì không cho điểm phần giải toán từ sau phương trình đó.

- Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì cho điểm tối đa.

SỞ GD&ĐT VĨNH PHÚC

KỲ THI CHỌN HSG LỚP 9 NĂM HỌC 2014-2015 ĐỀ THI MÔN: HOÁ HỌC

ĐỀ CHÍNH THỰC

(Thời gian làm bài: 150 phút, không kể thời gian giao đề)

Câu 1 (2,0 điểm):

- 1. X là hỗn hợp của hai kim loại gồm kim loại R và kim loại kiềm M. Lấy 9,3 gam X cho vào nước dư thu được 4,48 lít khí H₂ (đktc). Đem 1,95 gam kali luyện thêm vào 9,3 gam X ở trên, thu được hỗn hợp Y có phần trăm khối lượng kali là 52%. Lấy toàn bộ hỗn hợp Y cho tác dụng với dung dịch KOH dư thu được 8,4 lít khí H₂ (đktc). Biết các phản ứng xảy ra hoàn toàn. Xác định kim loại M và R.
- **2.** Cho 500 gam dung dịch CuSO₄ nồng độ 16% (dung dịch X). Làm bay hơi 100 gam H₂O khỏi dung dịch X thì thu được dung dịch bão hòa (dung dịch Y). Tiếp tục cho m gam CuSO₄ vào dung dịch Y thấy tách ra 10 gam CuSO₄.5H₂O kết tinh. Xác định giá trị của m.
- Câu 2 (1,5 điểm): Bằng phương pháp hóa học hãy nhận biết các dung dịch riêng biệt trong các trường hợp sau:

- 1. Dung dịch AlCl₃ và dung dịch NaOH (không dùng thêm hóa chất).
- 2. Dung dịch Na₂CO₃ và dung dịch HCl (không dùng thêm hóa chất).
- **3.** Dung dịch NaOH 0,1M và dung dịch Ba(OH)₂ 0,1M (chỉ dùng thêm dung dịch HCl và phenolphtalein).

Câu 3 (1,5 điểm):

- 1. Viết phương trình phản ứng và giải thích các hiện tượng hóa học sau:
- a) Trong tự nhiên có nhiều nguồn tạo ra H₂S nhưng lại không có sự tích tụ H₂S trong không khí.
- **b)** Trong phòng thí nghiệm, khi nhiệt kế thủy ngân bị vỡ người ta dùng bột lưu huỳnh rắc lên nhiệt kế bi vỡ.
- c) Trong phòng thí nghiệm bị ô nhiễm khí Cl₂, để khử độc người ta xịt vào không khí dung dịch NH₃.
- **2.** Cho hình vẽ mô tả thí nghiệm điều chế khí Cl₂ từ MnO₂ và dung dịch HCl.
- **a)** Hãy viết phương trình phản ứng điều chế khí Cl₂ (*ghi rõ điều kiên*).
- **b**) Giải thích tác dụng của bình (1) (đựng dung dịch NaCl bão hòa); bình (2) (đựng dung dịch H₂SO₄ đặc) và nút bông tẩm dung dịch NaOH ở bình (3).

Câu 4 (1,5 điểm): Hòa tan hết 24,16 gam hỗn hợp X gồm Cu và Fe₃O₄ trong dung dịch HCl loãng dư thấy còn lại 6,4 gam Cu không tan. Mặt khác hòa tan hết 24,16 gam hỗn hợp trên trong 240 gam dung dịch HNO₃ 31,5% (dùng dư) thu được dung dịch Y (không chứa NH₄NO₃). Cho 600 ml dung dịch NaOH 2M vào dung dịch Y. Lọc bỏ kết tủa, cô cạn dung dịch nước lọc sau đó nung tới khối lượng không đổi thu được 78,16 gam chất rắn khan. Biết các phản ứng xảy ra hoàn toàn.

- 1. Tính khối lương mỗi chất trong X.
- 2. Tính nồng độ % của Cu(NO₃)₂ có trong dung dịch Y.

Câu 5 (1,0 điểm): Xác định các chất hữu cơ A, D, Y, E, G, H, I và viết các phương trình phản ứng (ghi rõ điều kiện của phản ứng, nếu có) trong dãy biến hóa sau:

Câu 6 (2,5 điểm):

- **1.** Hiđrocacbon X là chất khí (ở nhiệt độ phòng, 25°C). Nhiệt phân hoàn toàn X (trong điều kiện không có oxi) thu được sản phẩm gồm cacbon và hiđro, trong đó thể tích khí hiđro thu được gấp đôi thể tích khí X (đo ở cùng điều kiện nhiệt độ và áp suất). Xác định công thức phân tử và viết công thức cấu tao mạch hở của X.
- 2. Cho 0,448 lít hỗn hợp khí X (đktc) gồm hai hiđrocacbon mạch hở (thuộc các dãy đồng đẳng ankan, anken, ankin) lội từ từ qua bình chứa 0,14 lít dung dịch Br₂ 0,5M. Sau khi phản ứng hoàn toàn, số mol Br₂ giảm đi một nửa và không thấy có khí thoát ra. Mặt khác nếu đốt cháy hoàn toàn 0,448 lít X (đktc), lấy toàn bộ sản phẩm cháy cho hấp thụ hết vào 400 (ml) dung dịch Ba(OH)₂ 0,1M thu được 5,91 gam kết tủa. Xác định công thức phân tử của hai hiđrocacbon.

(Cho biết:
$$H = 1$$
; $Li = 7$; $C = 12$; $N = 14$; $O = 16$; $Na = 23$; $Mg = 24$; $P = 31$; $S = 32$; $Cl = 35,5$; $K = 39$; $Ca = 40$; $Fe = 56$; $Cu = 64$; $Br = 80$; $Ba = 137$)

Họ và tên thí sinh: Số báo danh: Số báo danh: Thí sinh được dùng bảng tuần hoàn, giám thi coi thi không giải thích gì thêm.

SỞ GD&ĐT VĨNH PHÚC

KỲ THI CHỌN HỌC SINH GIỎI LỚP 9 NĂM HỌC 2014-2015 HƯỚNG DẪN CHÁM MÔN: HOÁ HỌC

(Hướng dẫn chấm có 04 trang)

Câu	NỘI DUNG ĐÁP ÁN	Điển
Câu 1	1. Xác định kim loại M, R	
2,0đ	$n_{H_2(1)} = \frac{4,48}{22,4} = 0.2 \text{ (mol)}; \ n_{H_2(2)} = \frac{8,4}{22,4} = 0.375 \text{ (mol)}.$	
	Khi thêm 1,95 gam K vào 9,3 gam X, nếu trong X không có K thì	0,25
	$\% m_K = \frac{1,95}{1,95+9,3}.100 \approx 17,33\% < 52\%$, suy ra trong X có kim loại K=> M chính là K	0,23
	 Vậy X (chứa K, R) + Nếu R tan trực tiếp trong nước, hoặc không tan trong dung dịch KOH, thì khi cho Y tác dụng với KOH so với X có thêm 0,025 mol H₂, do có phản ứng 	
	$K + H_2O \longrightarrow KOH + \frac{1}{2}H_2\uparrow$	
	0,05 0,025	0,25
	=> $\sum n_{H_2(2)} = 0, 2+0,025 = 0,225 \text{ (mol)} < n_{H_2(2) \text{ dè cho.}}$	
	=>R không tan trực tiếp trong nước nhưng tan trong dd KOH Đặt số mol của K và R lần lượt là x,y ta có:	
	$x = \frac{0.52.(9.3 + 1.95)}{39} = 0.15 \text{mol} => m_R = yR = 9.3 - 0.1.39 = 5.4 \text{ gam (I)}$	
	• Y tác dụng với dung dịch KOH có phản ứng (TN2):	
	$K + H_2O \longrightarrow KOH + \frac{1}{2}H_2\uparrow$	
	0,15 0,15 0,075	
	$R + (4-n)KOH + (n-2)H2O \longrightarrow K(4-n) RO2 + \frac{n}{2}H2\uparrow$	
	$y du \frac{ny}{2}$	0,25
	$=> n_{H_2(2)} = 0.075 + \frac{\text{n.y}}{2} = 0.375 => \text{ny} = 0.6 \text{ (II)}$	
	Từ (I,II) => R = $\frac{27n}{3}$ => n = 3; R = 27 (Al)	0,25
	2. $m_{CuSO_4/X} = m_{CuSO_4/Y} = 80 \text{ gam}$	
	$m_Y = 500 - 100 = 400 \text{ gam} \rightarrow C_{\text{(CuSO_4)/Y}} = \frac{80.100\%}{400} = 20 \text{ (\%)}$	0.25
	Sau khi CuSO ₄ .5H ₂ O tách ra khỏi Y, phần còn lại vẫn là dung dịch bão hòa nên khối	0,25
	lượng CuSO ₄ và H ₂ O tách ra khỏi Y cũng phải theo tỉ lệ như dung dịch bão hòa bằng $\frac{20}{80}$	0,25
	Trong 10 gam CuSO ₄ .5H ₂ O có 6,4 gam CuSO ₄ và 3,6 gam H ₂ O Khối lượng CuSO ₄ tách ra khỏi Y là 6,4 - m (gam)	0,25
	$\rightarrow \frac{6,4 - m}{3,6} = \frac{20}{80} \rightarrow m = 5,5 \text{ gam}$	0,25
Câu 2 1,5đ	 1. Trích mỗi dung dịch một ít làm mẫu thử đánh số mẫu 1, mẫu 2: Nhỏ từ từ đến dư mẫu 1 vào mẫu 2 + Nếu thấy ban đầu có kết tủa keo sau đó tan tạo dung dịch trong suốt thì mẫu 1 là NaOH, 	
	mẫu 2 là AlCl ₃ ; + Nếu ban đầu không có kết tủa sau đó mới có kết tủa thì, mẫu 1 là AlCl ₃ ; mẫu 2 là NaOH	
	Ptpu: AlCl ₃ + 3NaOH \longrightarrow Al(OH) ₃ \downarrow + 3NaCl	
	$Al(OH)_3 + NaOH \longrightarrow NaAlO_2 + 2H_2O$	0,25
	$AlCl_3 + 4NaOH \longrightarrow NaAlO_2 + 3NaCl + 2H_2O$	

	$AlCl_3 + 3NaAlO_2 + 6H_2O \longrightarrow 4Al(OH)_3 \downarrow + 3NaCl$	0,25
	2. Trích mẫu thử, đánh số 1, 2 Nhỏ từ từ 1 vào 2 nếu có khí bay ra luôn thì 1 là Na ₂ CO ₃ và 2 là HCl; ngược lại nếu không	
	có khí bay ra ngay thì 1 là HCl và 2 là Na ₂ CO ₃ , vì	
	- Khi nhỏ từ từ dung dịch HCl vào dung dịch Na ₂ CO ₃ thì có phản ứng	
	$Na_2CO_3 + HCl \rightarrow NaHCO_3 + NaCl$	0,25
	$NaHCO_3 + HCl \rightarrow NaCl + CO_2 \uparrow + H_2O.$	0,23
	- Khi nhỏ từ từ dung dịch Na ₂ CO ₃ vào dung dịch HCl có phản ứng	
	$Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2 \uparrow + H_2O$	0,25
	3. Trích mẫu thử; đong lấy hai thể tích NaOH và Ba(OH) ₂ (sao cho thể tích bằng nhau, đều bằng V); cho vào 2 ống nghiệm, nhỏ vài giọt phenolphtalein cho vào 2 ống nghiệm, đánh số 1, 2;	
	Sau đó lấy dung dịch HCl nhỏ từ từ vào từng ống nghiệm đến khi bắt đầu mất màu hồng	
	thì dừng lại: Đo thể tích dung dịch HCl đã dùng; với ống nghiệm 1 cần V ₁ (l) dd HCl; với 2	
	cần V ₂ (l) dd HCl	0,25
	+ Nếu $V_2 > V_1 = >$ Ông 1 đựng Ba(OH) ₂ ; ống 2 đựng NaOH	0,20
	+ Nếu V ₂ <v<sub>1 => Ông 2 đựng Ba(OH)₂; ống 1 đựng NaOH Giải thích: HCl + NaOH → NaCl + H₂O</v<sub>	
	Gial then. He1 + NaOH \rightarrow NaCl + H2O $0.1V \leftarrow 0.1V$	
	$2HCl + Ba(OH)_2 \rightarrow BaCl_2 + 2H_2O$	0,25
	$0.2V \leftarrow 0.1V$	0,23
Câu 3	1. a. Vì H ₂ S phản ứng với O ₂ trong không khí ở điều kiện thường:	0,25
1,5 đ	$2H_2S + O_2 \longrightarrow 2S + 2H_2O$	0.26
	b. Vì Hg dễ bay hơi, độc; S tác dụng với Hg ở điều kiện thường tạo ra HgS không bay hơi,	0,25
	dễ xử lý hơn.	
	$Hg + S \longrightarrow HgS$ $\mathbf{c.} \ 2NH_3 + 3Cl_2 \longrightarrow N_2 + 6HCl; \ NH_3 \ (k) + HCl(k) \longrightarrow NH_4Cl \ (tt)$	0,25
	2. Thí nghiệm điều chế clo.	
	-Ptpu điều chế: $MnO_2 + 4HCl$ (đặc) $\xrightarrow{t^0} MnCl_2 + Cl_2 \uparrow + 2H_2O$	
	- Bình NaCl hấp thụ khí HCl, nhưng không hòa tan Cl ₂ nên khí đi ra là Cl ₂ có lẫn hơi nước	0,25
	Bình H ₂ SO ₄ đặc hấp thụ nước, khí đi ra là Cl ₂ khô.	0,23
	$H_2SO_4 + nH_2O \rightarrow H_2SO_4.nH_2O$	0,25
	Bông tẩm dung dịch NaOH để giữ cho khí Cl ₂ không thoát ra khỏi bình (độc) nhờ phản	
	ting Class 2NoOH NoClass N	0,25
Câu 4	Cl ₂ + 2NaOH → NaCl + NaClO + H ₂ O 1. Đặt số mol Cu và Fe ₃ O ₄ phản ứng tương ứng là a, b	
1,5đ	=>64a+232b=24.16 (1)	
,	Ptpu:	
	$Fe_3O_4+ 8HCl \rightarrow 2 FeCl_3 + FeCl_2 + 4H_2O (1)$	
	$b \rightarrow 8b \ 2b \ b$	
	$Cu + 2FeCl_3 \rightarrow CuCl_2 + 2 FeCl_2 (2)$	0,25
	$a \rightarrow 2a \rightarrow a \rightarrow 2a$ => (2) Vừa đủ nên 2a= 2b (II)	
	=>(2) Vua du hen $2a=26$ (H) Tù I,II $=>a=b=0.06$	
	Vậy trong 24,16 gam X có: 0,16 mol Cu; 0,06 mol Fe ₃ O ₄	0,25
	\rightarrow m _{Cu} = 0,16.64 = 10,24 (gam); m _{Fe₃O₄} = 0,06.232 = 13,92 (gam).	
	2. Tác dụng với dung dịch HNO ₃ : $n_{HNO_3 \text{ (bd)}} = 1,2 \text{ mol}$	
	Sơ đồ:	

	$X + HNO3 \longrightarrow \left[\begin{array}{c} dd \ Y \\ Khi \end{array}\right] \xrightarrow{+1,2(mol) \ NaOH} \left[\begin{array}{c} \\ \\ dd \ \\ NaOH \\ NaNO3 \end{array}\right] \xrightarrow{Nung} \left[\begin{array}{c} NaOH \ x(mol) \\ NaNO2 \ y(mol) \end{array}\right]$	0,25
	Ta có: Nếu NaOH hết, chất rắn chỉ riêng: NaNO ₂ = 1,2 mol.69 = 82,8 gam> 78,16 \Rightarrow NaOH phải dư: theo sơ đồ trên ta có: $x+y=1,2; 40x+69y=78,16 =>x=0,16; y=1,04$	0,23
	$X + HNO_3 \longrightarrow Fe(NO_3)_3 + Cu(NO_3)_2 + Khi + H_2O (2)$ 24,16 k 0,18 0,16 k/2 $k = s \hat{o} mol HNO_3 phản ứng với X; n_{NaNO_2} = 0,16.2 + 0.18.3 + nHNO_3 du = 1,04$	0,23
	=> $n_{HNO_3} dr = 0.18 mol$ $\Rightarrow n_{HNO_3} pr (*) = 1.2 - 0.18 = 1.02 (mol) = k$ Theo bảo toàn khối lượng: $m_{khi} = 24.16 + 63.1.02 - (0.18.242 + 0.16.188 + 18.1.02/2) = 5.6 gam$ => C% (Cu(NO ₃) ₂) = $\frac{0.16.188}{240 + 24.16 - 5.6} = 11.634\%$	0,25
Câu 5 1,0 đ	$\begin{array}{ c c c c c c c }\hline \textbf{A} & \textbf{D} & \textbf{Y} & \textbf{E} & \textbf{G} & \textbf{H} & \textbf{I} \\ \hline \textbf{CH}_3\textbf{COONa} & \textbf{C}_4\textbf{H}_{10} & \textbf{C}_2\textbf{H}_2 & \textbf{C}_2\textbf{H}_4 & \textbf{C}_4\textbf{H}_4 & \textbf{C}_4\textbf{H}_6 & \textbf{CH}_2=\textbf{CHCl} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline \textbf{(Butan)} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} & \textbf{C}_4\textbf{M}_{10} \\ \hline (But$	
	(1) $CH_3COONa_{(r)} + NaOH_{(r)} \xrightarrow{CaO,t^{\circ}Cao} CH_4(k) + Na_2CO_3$ (2) CH_3 - CH_2 - CH_2 - $CH_3 \xrightarrow{Crackinh} 3CH_4 + CH_3$ - CH = CH_2 (3) $2CH_4 \xrightarrow{Lahhnhanh} C_2H_2 + 3H_2$	
	(4) $CH \equiv CH + H_2 \xrightarrow{Pd.PbCO_3,t^0} H_2C = CH_2$ (5) $nCH_2 = CH_2 \xrightarrow{xt,t^0,p} (-CH_2 - CH_2 -)_n$ (6) $2CH \equiv CH \xrightarrow{CuCl_2/NH_4Cl,t^0} CH_2 = CH - C \equiv CH$ (7) $H_2C = CH - CH \equiv CH + H_2 \xrightarrow{Pd.PbCO_3,t^0} H_2C = CH - CH = CH_2$ (8) $nH_2C = CH - CH = CH_2 \xrightarrow{xt,t^0,p} (-CH_2 - CH = CH - CH_2 -)_n$	0,1 *10 1,0d
	(9) HC = CH + HCl $\xrightarrow{xt,t^0}$ H ₂ C = CHCl (10) nH ₂ C = CHCl $\xrightarrow{xt,t^0,p}$ $\begin{pmatrix} -CH_2 - CH \\ CI \end{pmatrix}_n$	
Câu 6 2,5 đ	1. Gọi công thức phân tử của $X: C_xH_y$ ($x \le 4$) $C_xH_y \xrightarrow{t^0} xC + \frac{y}{2} H_2 \uparrow$	
	Theo bài ra ta có $\frac{y}{2} = 2 \rightarrow y = 4$.	0,25
	Vậy X có dạng C _x H ₄ →các công thức phân tử thỏa mãn điều kiện X là: CH ₄ , C ₂ H ₄ , C ₃ H ₄ , C ₄ H ₄ .	0,25
	- CTCT: CH ₄ ; CH ₂ =CH ₂ ; CH ₃ -C≡CH; CH ₂ =C=CH ₂ ; CH ₂ =CH-C≡CH.	0,25

Ghi chú: Thí sinh có cách giải khác,đúng vẫn cho điểm tối đa.

PHÒNG GD&ĐT BÙ ĐỐP TỔ BD HSG MÔN HÓA

Lần 15

----Hết----

ĐỂ KIỂM TRA ĐỊNH KÌ HỌC SINH GIỎI **NĂM HQC 2015 - 2016** MÔN: HÓA HOC - LỚP 9

Thời gian: 150 phút (*Không kể thời gian giao đề*)

<u>Câu 1</u>. (4,0 điểm)

1/ Chọn 10 chất rắn khác nhau mà khi cho 10 chất đó lần lượt tác dụng với dung dịch HCl có 10 chất khí khác nhau thoát ra. Viết các phương trình phản ứng minh hoạ.

2/ Viết phương trình hóa học (ở dạng công thức cấu tạo thu gọn) thực hiện các biến hóa theo sơ đồ sau:

<u>Câu 2</u>. (4,0 điểm)

 $\begin{array}{c} \text{CH}_3\text{-}\text{CH-COOH} \\ \text{OH} \end{array}$

1/ Biết axit lactic có công thức là:

Hãy viết các phương trình phản ứng xảy ra khi cho axit lactic lần lượt tác dụng với:

- **b.** CH₃COOH. **c.** Dung dịch Ba(OH)₂.
- **d.** Dung dịch NaHCO₃ vừa đủ, cô cạn lấy chất rắn, cho chất rắn tác dụng với vôi tôi xút nung nóng. 2/ Ba dung dịch A, B, C thỏa mãn: A tác dụng với B thì có kết tủa BaSO₄, B tác dụng với C thì có kết tủa xuất hiện, A tác dụng với C thì có khí CO₂ thoát ra. Tìm A, B, C và viết các phương trình phản ứng xảy ra.

<u>Câu 3</u>. (4,0 điểm)

1/ Chia 80 (g) hỗn hợp X gồm sắt và một oxit của sắt thành hai phần bằng nhau:

Hoà tan hết phần I vào 400 (g) dung dịch HCl 16,425% được dung dịch A và 6,72 lít khí H₂ (đktc). Thêm 60,6 (g) nước vào A được dung dịch B, nồng độ % của HCl dư trong B là 2,92%.

- a. Tính khối lượng mỗi chất trong hỗn hợp X và xác định công thức của oxit sắt.
- **b**. Cho phần II tác dụng vừa hết với H₂SO₄ đặc nóng rồi pha loãng dung dịch sau phản ứng bằng nước, ta thu được dung dịch E chỉ chứa Fe₂(SO₄)₃. Cho 10,8 (g) bột Mg vào 300 ml dung dịch E khuấy kĩ, sau khi phản ứng xảy ra hoàn toàn thu được 12,6 (g) chất rắn C và dung dịch D. Cho dung dịch D tác dụng với dung dịch Ba(OH)₂ dư, lọc kết tủa và nung đến khối lượng không đổi được m (g) chất rắn F (trong điều kiện thí nghiệm BaSO₄ không bị phân huỷ). Tính C_M của dung dịch E và giá trị m.

2/ Chia 26,32 gam hỗn hợp A gồm Fe, Mg, Al₂O₃ và oxit của kim loại X có hóa trị 2 thành 2 phần bằng nhau. Phần 1 tan hết trong dung dịch HCl dư, thu được 0,22 mol H₂. Phần 2 tác dụng hết với dung dịch HNO₃ loãng dư, thu được khí NO (sản phẩm khử duy nhất), trong đó thể tích NO do Fe sinh ra bằng 1,25 lần do Mg sinh ra. Nếu hòa tan hết lượng oxit có trong mỗi phần phải dùng vừa hết 50 ml dung dịch NaOH 2M. Biết lấy m gam Mg và m gam X cho tác dụng với dung dịch H₂SO₄ loãng dư thì thế tích khí H₂ do Mg sinh ra lớn hơn 2,5 lần do X sinh ra. Viết các phương trình phản ứng xảy ra, xác định X và tính số mol mỗi chất trong mỗi phần.

Câu 4. (4,0 điểm)

1/ Dung dịch X và Y chứa HCl với nồng độ mol tương ứng là C_1 , C_2 (M), trong đó $C_1 > C_2$. Trộn 150 ml dung dịch X với 500ml dung dịch Y được dung dịch Z. Để trung hòa 1/10 dung dịch Z cần 10ml dung dịch hỗn hợp NaOH 1M và Ba(OH)₂ 0,25M. Mặt khác lấy V_1 lít dung dịch X chứa 0,05 mol HCl trộn với V_2 lít dung dịch Y chứa 0,15 mol axit được 1,1 lít dung dịch. Hãy xác định C_1 , C_2 , V_1 , V_2 .

2/ Nung a gam một hiđroxit của kim loại R trong không khí đến khối lượng không đổi, thấy khối lượng chất rắn giảm đi 9 lần, đồng thời thu được một oxit kim loại. Hòa tan hoàn toàn lượng oxit trên bằng 330ml dung dịch H₂SO₄ 1M, thu được dung dịch X. Cho X tác dụng với dung dịch Ba(OH)₂ dư, sau khi phản ứng hoàn toàn thu được m gam kết tủa. Tính a, m, biết lượng axit đã lấy dư 10% so với lượng cần thiết để phản ứng với oxit.

Câu 5. (4,0 điểm)

1/ Cho kim loại Na dư vào hỗn hợp T gồm etanol và glixerol, sau khi phản ứng xảy ra hoàn toàn thấy khối lượng khí thoát ra bằng 2,5% khối lượng hỗn hợp T. Xác định thành phần % khối lượng mỗi chất trong T.

2/ Thực hiện phản ứng este hóa giữa axit C_xH_yCOOH và rượu $C_nH_{2n+1}OH$. Sau phản ứng tách lấy hỗn hợp X chỉ gồm este, axit và rượu. Đốt cháy hoàn toàn 13,2 gam hỗn hợp X, thu được 12,768 lít khí CO_2 (đktc) và 8,28 gam H_2O . Nếu cũng cho hỗn hợp X như trên thì tác dụng vừa đủ với 150 ml dung dịch NaOH 1M, thu được 3,84 gam rượu. Hóa hơi hoàn toàn lượng rượu này thì thu được thể tích hơi đúng bằng thể tích của 3,36 gam N_2 (đo ở cùng điều kiện nhiệt độ và áp suất).

Viết các phương trình phản ứng, xác định công thức este và tính hiệu suất phản ứng este hóa.

PHÒNG GD&ĐT BÙ ĐỐP **TỔ BD HSG MÔN HÓA**

Lần 15

ĐÁP ÁN ĐỀ KIỂM TRA ĐỊNH KÌ HỌC SINH GIỚI NĂM HỌC 2015 – 2016 MÔN: HÓA HỌC - LỚP 9

Thời gian: 150 phút (Không kể thời gian giao đề)

Câu 1: 1/

-Các chất rắn có thể chon lần lượt là:

Zn; FeS; Na₂SO₃; CaCO₃; MnO₂; CaC₂; Al₄C₃; Na₂O₂; Mg₃N₂; Zn₃P₂

-Các khí điều chế lần lượt là: $H_2 \uparrow$; $H_2 S \uparrow$; $SO_2 \uparrow$; $CO_2 \uparrow$; $Cl_2 \uparrow$; $C_2 H_2 \uparrow$; $CH_4 \uparrow$; $O_2 \uparrow$; $NH_3 \uparrow$; $PH_3 \uparrow$

-Các ptpu: $1/Zn + 2HC1 \rightarrow ZnCl_2 + H_2 \uparrow$

 $2/\text{FeS} + 2\text{HCl} \rightarrow \text{FeCl}_2 + \text{H}_2\text{S}^{\uparrow}$

 $3/Na_2SO_3 + 2HC1 \rightarrow 2NaC1 + SO_2 \uparrow + H_2O$

 $4/\text{CaCO}_3 + 2\text{HCl} \rightarrow \text{CaCl}_2 + \text{CO}_2 \uparrow + \text{H}_2\text{O}$

 $5/MnO_2 + 4HCl \,dac \xrightarrow{t^0} MnCl_2 + Cl_2 \uparrow + 2H_2O$

 $6/ \text{CaC}_2 + 2\text{HCl} \rightarrow \text{CaCl}_2 + \text{C}_2\text{H}_2 \uparrow$

$$\begin{array}{c} 7/\text{ Al}_{4}C_{3} + 12\text{HCI} & \rightarrow 4\text{AlCl}_{1} + 3\text{CH}_{2} \uparrow \\ 8/2\text{Na}_{2}O_{2} + 4\text{HCI} & \rightarrow 4\text{Na}_{C}I + O_{2} \uparrow + 2\text{HzO} \\ 9/\text{MgsN}_{2} + 6\text{HCI} & \rightarrow 3\text{MgCl}_{2} + 2\text{NH}_{3} \uparrow \\ 10/\text{Zn}_{3}P_{2} + 6\text{HCI} & \rightarrow 3\text{ZnCl}_{2} + 2\text{PH}_{3} \uparrow \\ 2/\text{Các ptpur}, \\ HC = \text{CH}_{2} + H_{2} & \frac{t^{0}, \text{Ni}}{t^{0}} \rightarrow \text{H}_{2}\text{C} = \text{CH}_{2} & \text{(I)} \\ H_{3}\text{C} = \text{CH}_{2} + H_{2} & \frac{t^{0}, \text{Ni}}{t^{0}} \rightarrow \text{H}_{3}\text{C} - \text{CH}_{3} & \text{(2)} \\ HC = \text{CH}_{1} + \text{HCI} & \frac{t^{0}}{t^{0}} \rightarrow \text{H}_{2}\text{C} = \text{CHCI} & \text{(3)} \\ \text{n(H}_{2}\text{C} = \text{CHCI}) & \frac{t^{0}, \text{NI}}{t^{0}} \rightarrow \text{I}_{2}\text{C} - \text{CHCH}_{3} & \text{(4)} \\ H_{2}\text{C} = \text{CHCI} + \text{HCI} & \frac{t^{0}, \text{NI}}{t^{0}} \rightarrow \text{I}_{2}\text{C} - \text{CH}_{2}\text{CI} & \text{(5)} \\ H_{2}\text{C} = \text{CHCI} + \text{HCI} & \frac{t^{0}, \text{NI}}{t^{0}} \rightarrow \text{CH}_{2}\text{C} - \text{CH}_{2}\text{CI} & \text{(6)} \\ H_{3}\text{C} = \text{CH}_{2} + \text{HCI} & \frac{t^{0}, \text{NI}}{t^{0}} \rightarrow \text{CH}_{3}\text{C} - \text{CH}_{2}\text{CI} & \text{(6)} \\ H_{2}\text{C} = \text{CH}_{2} + \text{HCI} & \frac{t^{0}, \text{NI}}{t^{0}} \rightarrow \text{CH}_{3}\text{C} - \text{CH}_{2}\text{CI} & \text{(6)} \\ H_{2}\text{C} = \text{CH}_{2} + \text{HCI} & \frac{t^{0}, \text{NI}}{t^{0}} \rightarrow \text{CH}_{3}\text{C} - \text{CH}_{2}\text{CI} & \text{(6)} \\ H_{2}\text{C} = \text{CH}_{2} + \text{HCI} & \frac{t^{0}, \text{NI}}{t^{0}} \rightarrow \text{CH}_{3}\text{C} - \text{CH}_{2}\text{CI} & \text{(6)} \\ H_{2}\text{C} = \text{CH}_{2} + \text{HCI} & \text{(7)} \\ H_{2}\text{C} = \text{CH}_{2}\text{C} + \text{CH}_{2}\text{C} \\ \text{(8)} \\ \text{Câu 2:} \\ I/a \text{C} + \text{CH}_{2}\text{C} + \text{C} + \text{C}_{2}\text{C} \\ \text{C} + \text{C}_{1}\text{C} + \text{C}_{1}\text{C} \\ \text{C} + \text{C}_{1}\text{C} + \text{C}_{1}\text{C} \\ \text{C}_{2}\text{C} \\ \text{C}_{1}\text{C} + \text{C}_{1}\text{C} \\ \text{C}_{1}\text{C} + \text{C}_{1}\text{C} \\ \text{C}_{1}\text{C} + \text{C}_{1}\text{C} \\ \text{C}_{1}\text{C} \\ \text{C}_{1}\text{C} + \text{C}_{1}\text{C} \\ \text{C}_{1}\text{C} \\ \text{C}_{1}\text{C} + \text{C}_{1}\text{C} \\ \text{C}_{1}\text{C} \\ \text{C}_{1}\text{C} \\ \text{C}_{1}\text{C} \\ \text{C}_{1}\text{C} \\ \text{C}_{1}\text{C} \\ \text{C}_{1}\text{C} \\ \text{C}_{1}$$

Từ (2):
$$n_{Fe_xO_y} = \frac{1}{2y}.0, 8 = \frac{0.4}{y}$$

→ ta có:
$$\frac{0.4}{y}$$
 (56x + 16y) = 23,2 → $\frac{x}{y}$ = $\frac{3}{4}$

Vậy công thức của Fe_xO_y là Fe₃O₄

Các pthh:

$$2Fe + 6H_2SO_{4d} \rightarrow Fe_2(SO_4)_3 + 3SO_2 + 6H_2O$$
 (1)

$$2Fe_3O_4 + 10H_2SO_{4d} \rightarrow 3Fe_2(SO_4)_3 + SO_2 + 10H_2O$$
 (2)

$$Fe_2(SO_4)_3 + 3Mg \rightarrow 2Fe + 3MgSO_4$$
 (3)

Có thể: $Fe + Fe_2(SO_4)_3 \rightarrow 3FeSO_4$ (4)

$$Ba(OH)_2 + MgSO_4 \rightarrow BaSO_4 + Mg(OH)_2$$
 (5)

Có thể:
$$Ba(OH)_2 + FeSO_4 \rightarrow BaSO_4 + Fe(OH)_2$$
 (6)

$$Mg(OH)_2 \rightarrow MgO + H_2O$$
 (7)

Có thể:
$$Fe(OH)_2$$
 $\xrightarrow{t^0}$ $FeO + H_2O$ (8)

hoặc:
$$4\text{Fe}(OH)_2 + O_2 \xrightarrow{t^0} 2\text{Fe}_2O_3 + 4\text{H}_2O$$
 (9)

$$n_{\rm Mg} = \frac{10.8}{24} = 0.45 \text{ (mol)}$$

Xét trường hợp 1: Mg chưa phản ứng hết, $Fe_2(SO_4)_3$ hết ở (3) \Leftrightarrow không có (4,6,8,9)

Đặt: $n_{Fe_2(SO_4)_3}$ trong 300ml ddE là x

Từ (3): n_{Mg} đã phản ứng = 3x

$$\rightarrow$$
 n_{Mg} còn lại = 0,45 – 3x

Từ (3):
$$n_{Fe} = 2x \rightarrow m_{Fe} = 2x.56$$

Ta có pt:
$$(0.45 - 3x).24 + 2x.56 = 12.6$$

$$\rightarrow$$
 x = 0,045 (mol)

$$\rightarrow$$
 C_M của Fe₂(SO₄)₃ trong ddE = $\frac{0.045}{0.3}$ = 0.15(M)

Khi đó trong ddD chỉ có: MgSO₄ và kết tủa gồm BaSO₄ và Mg(OH)₂

$$T\dot{v}$$
 (3): $n_{MgSO_4} = 3n_{Fe_2(SO_4)_3} = 3.0,045 = 0,135 \text{ (mol)}$

$$T\dot{u}$$
 (5): $n_{BaSO_4} = n_{MgSO_4} = 0.135$ (mol)

Từ (7):
$$n_{MgO} = n_{Mg(OH)_2} = 0.135$$
 (mol)

Giá trị của m trong trường hợp này = 0.135.233 + 0.135.40 = 36.855 (g)

Xét trường hợp 2: Mg hết, Fe₂(SO₄)₃ sau phản ứng (3) còn dư:

 \leftrightarrow (4,6,7) hoặc (4,6,8) xảy ra.

Từ (3):
$$n_{\text{Fe}_2(\text{SO}_4)_3} = \frac{1}{3}.n_{\text{Mg}} = \frac{1}{3}.0,45 = 0,15 \text{ (mol)}$$

Từ (3):
$$n_{Fe} = \frac{2}{3} n_{Mg} = \frac{2}{3}.0, 45 = 0, 3 \text{ (mol)} \leftrightarrow 16,8 \text{ (g)}$$

Theo bài ra khối lượng chất rắn chỉ có 12,6 (g) nhỏ hơn 16,8 (g) chứng tỏ (4) có xảy ra và khối lượng Fe bị hoà tan ở (4) = 16.8 - 12.6 = 4.2 (g) $\leftrightarrow 0.075$ (mol)

$$\rightarrow$$
 từ (4): $n_{Fe_2(SO_4)_3} = n_{Fe}$ bị hoà tan = 0,075 (mol)

$$ightarrow$$
 Tổng $n_{\mathrm{Fe}_2(\mathrm{SO}_4)_3}$ trong 300 ml ddE ở trường hợp này = 0,15 + 0,075 = 0,225 (mol)

Vậy
$$C_M$$
 của dung dịch $E = \frac{0,225}{0.3} = 0,75(M)$

Khi đó: Kết tủa thu được khi cho dung dịch D phản ứng với Ba(OH)2 gồm: BaSO4, Mg(OH)2, Fe(OH)2.

Với :
$$n_{\text{MgSO}_4}$$
 ở (3) = n_{Mg} = 0,45 (mol)

Từ (4):
$$n_{FeSO_4} = 3n_{Fe} = 3.0,075 = 0,225 \text{ (mol)}$$

$$T\dot{v}$$
 (5): $n_{BaSO_4} = n_{Mg(OH)_2} = n_{MgSO_4} = 0,45$ (mol)

 $\text{T\'e} \ (6): \ n_{\text{BaSO}_4} = n_{\text{Fe}(\text{OH})_2} = n_{\text{FeSO}_4} = 0,225 \ \ (\text{mol})$

→ Số mol trong kết tủa lần lượt là:

$$n_{BaSO_4} = 0.45 + 0.225 = 0.675 \text{ (mol)}$$

$$n_{Fe(OH)_2} = 0,225 \text{ (mol)}, \ n_{Mg(OH)_2} = 0,45 \text{ (mol)}$$

Khi nung kết tủa trên ta lại phải xét 2 trường hợp:

a) Nếu nung trong chân không:

Từ (7):
$$n_{MgO} = n_{Mg(OH)_2} = 0,45 \text{ (mol)}$$

$$T\dot{w}$$
 (8): $n_{FeO} = n_{Fe(OH)_2} = 0,225$ (mol)

Giá trị của m trong trường hợp này = 0.675.233 + 0.45.40 + 0.225.72 = 191.475 (g)

b) Nếu nung trong không khí:

Từ (9):
$$n_{\text{Fe}_2\text{O}_3} = \frac{1}{2}.n_{\text{Fe}(\text{OH})_2} = \frac{1}{2}.0,225 = 0,1125 \text{ (mol)}$$

Vậy giá trị của m trong trường hợp này là:

0,675.233 + 0,45.40 + 0,1125.160 = 193,275 (g)

2/ Gọi số mol Mg, Fe, Al₂O₃ và XO lần lượt là a, b, c, d trong mỗi phần

 $Mg + 2HCl \rightarrow MgCl_2 + H_2 (1)$

 $Fe + 2HCl \rightarrow FeCl_2 + H_2 (2)$

 $Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2O(3)$

 $XO + 2HCl \rightarrow XCl_2 + H_2O$ (4)

 $3Mg + 8HNO_3 \rightarrow 3Mg(NO_3)_2 + 2NO + 4H_2O(5)$

 $Fe + 4HNO_3 \rightarrow Fe(NO_3)_2 + NO + 2H_2O(6)$

 $Al_2O_3 + 6HNO_3 \rightarrow 2Al(NO_3)_2 + 3H_2O(7)$

 $XO + 2HNO_3 \rightarrow X(NO_3)_2 + H_2O(8)$

 $Mg + H_2SO_4 \rightarrow MgSO_4 + H_2 (9)$

 $X + H_2SO_4 \rightarrow XSO_4 + H_2$ (10)

 $Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O$ (11)

 $XO + 2NaOH \rightarrow Na_2XO_2 + H_2O$ (12)

Theo (1,2,5,6) và bài ra ta có:
$$\begin{cases} a+b=0,22 \\ b=1,25 \times \frac{2}{3}a \end{cases} \Rightarrow \begin{cases} a=0,12 \text{ mol} \\ b=0,1 \text{ mol} \end{cases}$$

Ta có: $m_{\text{oxit}} = 13,16 - (0,12.24 + 0,1.56) = 4,68 \text{ gam}$

Nếu chỉ có Al₂O₃ tan trong dung dịch NaOH thì:

$$n_{Al_2O_3} = \frac{1}{2}n_{NaOH} = \frac{0.1}{2} = 0.05 \text{mol} \implies m_{Al_2O_3} = 5.1 \text{ gam} > 4.68 \text{ gam}$$

⇒ XO tan trong dung dịch NaOH

Theo (11, 12) và bài ra ta có hệ:

$$\begin{cases} c + d = 0.05 \\ 102c + (X+16)d = 4.68 \end{cases} \Rightarrow \begin{cases} d < 0.05 \\ d = \frac{0.42}{86 - X} \Rightarrow X < 77.6 \end{cases}$$

Mặt khác theo (9, 10) và bài ra:
$$\frac{m}{24} > 2, 5. \frac{m}{X} \Rightarrow X > 60$$

Vậy X là Zn (kẽm) \Rightarrow c = 0,03 mol và d = 0,02 mol

Cân 4:

1/
$$n_{\text{NaOH}} = 0.01.1 = 0.01 \text{ (mol)}; \ n_{\text{Ba(OH)}_2} = 0.01.0, 25 = 0.0025 \text{ (mol)}.$$

Phương trình hóa học:

$$HCl + NaOH \rightarrow NaCl + H_2O$$
 (1)

Mol: 0,01 0,01

$$2HCl+Ba(OH)_2 \rightarrow BaCl_2 + 2H_2O$$
 (2)

Mol: 0,005 0,0025

$$\Rightarrow$$
 0,15C₁ + 0,5C₂ = 10.(0,01+0,005) = 0,15

$$\Rightarrow C_2 = 0.3 - 0.3C_1 (*)$$

Mặt khác, ta có: $V_1 + V_2 = 1,1$ (lít)

$$V_1 = \frac{0.05}{C_1}; V_2 = \frac{0.15}{C_2} \Rightarrow \frac{0.05}{C_1} + \frac{0.15}{C_2} = 1.1$$

Thay (*) vào (**) ta được:

$$\frac{0.05}{C_1} + \frac{0.15}{0.3 - 0.3C_1} = 1.1$$

$$\Leftrightarrow 0.33C_1^2 - 0.195C_1 - 0.015 = 0$$

$$\Rightarrow$$
 C₁ = 0.5M hoặc C₁ = 1/11 M.

* Với
$$C_1 = 0.5 \text{ M} \Rightarrow C_2 = 0.3 - 0.3.0.5 = 0.15 \text{ (M)}$$
 (thỏa mãn vì $C_1 > C_2$)

$$\Rightarrow$$
 V₁ = $\frac{0.05}{0.5}$ = 0.1 (lít); V₂ = $\frac{0.15}{0.15}$ = 1 (lít).

* Với $C_1 = 1/11 \text{ M} \Rightarrow C_2 = 0.3 - 0.3.1/11 = 3/11$ (loại vì khi đó $C_1 < C_2$).

2/ Đặt công thức của hiđroxit là R(OH)_n, công thức oxit là R₂O_m (1≤n≤m≤3; n, m ∈ N*)

$$2R(OH)_{n} + \frac{m-n}{2}O_{2} \xrightarrow{t^{o}} R_{2}O_{m} + nH_{2}O \qquad (1)$$

Khối lượng chất rắn giảm đi 9 lần

$$\Rightarrow m_{\text{giảm đi}} = \frac{a}{9} \Rightarrow \ m_{R_2O_m} = a - \frac{a}{9} = \frac{8a}{9} \ \Rightarrow \ m_{R_1OH)_n} = \frac{9}{8} m_{R_2O_m}$$

n	1	1	1	2	2	3
m	1	2	3	2	3	3
R	64	-8	-80	128	56	192
Kết luân	Loại	Loại	Loại	Loại	Thỏa mãn	Loại

$$\Rightarrow \frac{m_{R(OH)_n}}{m_{R-O}} = \frac{2(R+17n)}{2R+16m} = \frac{9}{8} \Rightarrow R = 136n - 72m$$

Kim loại R là sắt, công thức hiđroxit: Fe(OH)₂.

$$4\text{Fe}(\text{OH})_2 + \text{O}_2 \xrightarrow{t^{\circ}} 2\text{Fe}_2\text{O}_3 + 4\text{H}_2\text{O}$$
 (2)

Gọi x là số mol của H_2SO_4 phản ứng với oxit $\Rightarrow x + \frac{10}{100} \cdot x = 0,33.1 \Rightarrow x = 0,3 \text{(mol)}$

$$\Rightarrow n_{\text{H}_2\text{SO}_4 \text{ d-}} = \frac{10}{100} \cdot 0, 3 = 0,03 \text{(mol)}$$

Phương trình hóa học:

$$Fe_2O_3 + 3H_2SO_4 \rightarrow Fe_2(SO_4)_3 + 3H_2O$$
 (3)

Mol:0,1 0,3 0

$$\operatorname{Fe_2(SO_4)_3} + 3\operatorname{Ba(OH)_2} \to 2\operatorname{Fe(OH)_3} \downarrow + 3\operatorname{BaSO_4} \downarrow$$
 (4)

Mol: 0,1

0,3

$$H_2SO_4 + Ba(OH)_2 \rightarrow BaSO_4 + 2H_2O$$
 (5)

Mol: 0.03

Kết tủa thu được gồm: Fe(OH)₃ 0,2 mol; BaSO₄ 0,33 mol

$$\begin{array}{l} \Rightarrow m = m_{Fe(OH)_3} + m_{BisSO_4} = 0, 2.107 + 0, 33.233 = 98, 29 \; (gam). \\ \text{Theo sy báo toàn nguyên tố Fe} \Rightarrow n_{Fe(OH)_2} = 2n_{Fe_2O_3} = 2.0, 1 = 0, 2 (mol) \\ \Rightarrow a = 0, 2.90 = 18 \; (g). \\ \textbf{Câu 5:} \\ \textbf{1/ Gọi x và y lần lượt là số mọi của etanol, glixerol.} \\ 2C_2H_5OH + 2Na \rightarrow 2C_2H_2ONa + H_2 \\ \text{Mol: x} \qquad 0,5x \\ 2C_3H_5(OH)_3 + 6Na \rightarrow 2C_3H_5(ONa)_3 + 3H_2 \\ \text{Mol: y} \qquad 1,5y \\ m_{H_5} = 2(0,5x + 1,5y) = x + 3y \\ m_{T} = 46x + 92y \\ m_{H_5} = \frac{2.5}{100} \cdot m_{T} \Rightarrow x + 3y = \frac{2.5}{100} \cdot (46x + 92y) \Rightarrow x = \frac{14y}{3} \\ \text{\% m}_{C_3H_5(OH)_3} = \frac{46x}{46x + 92y} = \frac{46 \cdot \frac{14y}{3}}{46 \cdot \frac{14y}{3} + 92y} \cdot 100\% = 70\%. \\ \textbf{2/ C}_{x}H_{y}COOH + C_{n}H_{2n+1}OH \overset{\bullet}{\longleftarrow} C_{x}H_{y}COONa + H_{20} \quad (2) \\ \text{Cx}H_{y}COOC_{n}H_{2n+1} + NaOH \overset{\bullet}{\longleftarrow} C_{x}H_{y}COONa + C_{n}H_{2n+1}OH \quad (3) \\ \text{Cx}H_{y}COOC_{n}H_{2n+1} + NaOH \overset{\bullet}{\longleftarrow} C_{x}H_{y}COONa + C_{n}H_{2n+1}OH \quad (3) \\ \text{Cx}H_{y}COOC_{n}H_{2n+1} + NaOH \overset{\bullet}{\longleftarrow} C_{x}H_{y}COONa + C_{n}H_{2n+1}OH \quad (3) \\ \text{Cx}H_{y}COOC_{n}H_{2n+1} + NaOH \overset{\bullet}{\longleftarrow} C_{x}H_{y}COONa + C_{n}H_{2n+1}OH \quad (3) \\ \text{Cx}H_{y}COOC_{n}H_{2n+1} + NaOH \overset{\bullet}{\longleftarrow} C_{x}H_{y}COONa + C_{n}H_{2n+1}OH \quad (3) \\ \text{Cx}H_{y}COOC_{n}H_{2n+1} + NaOH \overset{\bullet}{\longleftarrow} C_{x}H_{y}COONa + C_{n}H_{2n+1}OH \quad (3) \\ \text{Cx}H_{y}COOC_{n}H_{2n+1} + NaOH \overset{\bullet}{\longleftarrow} C_{x}H_{y}COONa + C_{n}H_{2n+1}OH \quad (3) \\ \text{Cx}H_{y}COOC_{n}H_{2n+1} + NaOH \overset{\bullet}{\longleftarrow} C_{x}H_{y}COONa + C_{n}H_{2n+1}OH \quad (3) \\ \text{Cx}H_{y}COOC_{n}H_{2n+1} + (Ax+6n+y+1)O_2 & \longrightarrow (n+x+1)CO_2 + (y+1)/2H_2O \quad (5) \\ \text{Cn}H_{2n+1}OH + 3n/2O_2 & \longrightarrow nCO_2 + (n+1)H_2O & (6) \\ \text{Goi số mol este là a (mol)} & C6 \quad (0,12-a) \quad (mol) \quad C_{n}H_{2n+1}OH \quad du, \quad (0,15-a) \quad (mol) \quad C_{x}H_{y}COOH \\ \text{(RCOOH)} \quad dur \text{trong } 13,2 \quad \text{gam X} \\ \text{Ta có: } 3,84/0,12 = 32 = 14n + 18 \Rightarrow n = 1 \Rightarrow \text{rurou là CH_3OH} \\ & BTNT \text{ oxi: } 2(0,15-a) + 2a + (0,12-a) = \frac{13,2-0,57.12-0,46.2}{16} \Rightarrow a = 0,08 \\ \hline \end{array}$$

Vậy trong 13,2g X: 0,04(mol) CH₃OH, 0,07(mol) RCOOH, 0,08(mol) RCOOCH₃

Ta có: $0.04.32 + 0.07(R + 45) + 0.08(R + 59) = 13.2 \implies R = 27 là C₂H₃-$

Vậy CTPT của este là C₂H₃COOCH₃

Do:
$$\frac{\text{axit}(\text{ban } @Qu)}{1} = \frac{0,15}{1} > \frac{\text{r- } \hat{\imath} \text{ u}(\text{ban } @Qu)}{1} = \frac{0,12}{1} \Rightarrow \text{H\%theo r- } \hat{\imath} \text{ u}$$

$$\Rightarrow$$
 H% = $\frac{0.08}{0.12}$.100% =66,67%

MA TRẬN ĐỀ HỌC SINH GIỚI HÓA 9

Tên Chủ đề MÚC ĐỘ KIẾN THÚC VÀ THANG ĐIỂM Tổng điểm

	Nhận biết	Thông hiểu	Vận dụng	Vận dụng ở mức cao hơn	
Chủ đề 1: Nhận biết các chất				1,5 điểm	1,5 điểm
Chủ đề 2: Tinh chế, tách các chất ra khỏi hỗn hợp				1,5 điểm	1,5 điểm
Chủ đề 3: Hoàn thành các phản ứng, điều chế các chất				1 điểm	1 điểm
Chủ đề 4: Yếu tố thực hành, viết PTHH			1,0 điểm	4,0 điểm	4,0 điểm
Chủ đề 5: Tìm tên kim loại loại			1 điểm	2điểm	3điểm
Chủ đề 6: Kim loại mạnh đẩy kim loại yếu			2điểm	4 điểm	6 điểm
Chủ đề 6: Toán hữu cơ				2 điểm	3điểm
Tổng			4 điểm	16 điểm	20,0 điểm

ĐỀ THI HỌC SINH GIỚI HUYỆN NĂM HỌC 2015-2016

MÔN HÓA HỌC THỜI GIAN : 150 PHÚT

Câu 1 (4 điểm):

- 1. Mô tả hiện tượng và viết phương trình hoá học giải thích cho thí nghiệm sau:
- a. Cho một mẫu kim loại Natri vào ống nghiệm chứa dung dịch đồng (II)sunfat.
- b. Nhỏ từ từ dung dịch HCl vào dd Na₂CO₃
- 2. Phân biệt 5 hoá chất đựng trong 5 lọ riêng biệt bị mất nhãn (không dùng thêm hoá chất nào khác): HCl, NaOH, Ba(OH)₂, K₂CO₃, MgSO₄.
- 3. Nung hỗn hợp Fe và S. Sau phản ứng thu được chất rắn A. Hòa tan chất rắn A trong dung dịch HCl dư thu được khí B có tỉ khối so với H₂ là 9 và dung dịch X. Cho dung dịch

NaOH dư vào dung dịch X thu được kết tủa Y. Nung kết tủa Y trong không khí đến khối lượng không đổi thu được chất rắn Z. Xác định thành phần các chất A, B, X, Y, Y và viết các phương trình hóa học xảy ra.

Câu 2 (4 điểm):

- 1. (2 điểm): Cho hình vẽ mô tả thí nghiệm điều chế khí Cl₂ từ MnO₂ và dung dịch HCl.
- **a)** Hãy viết phương trình phản ứng điều chế khí Cl₂ (*ghi rõ điều kiện*).
- b) Giải thích tác dụng của bình (1) (đựng dung dịch NaCl bão hòa); bình (2) (đựng dung dịch H₂SO₄ đặc) và nút bông tẩm dung dịch NaOH ở bình (3).

2. (2 điểm): Bằng phương pháp hóa học hãy nhận ra sự có mặt của mỗi khí trong hỗn hợp khí gồm: CO, CO₂, SO₂, SO₃.

Câu 3: (4 điểm): Hòa tan 115,3 g hỗn hợp X gồm MgCO₃ và RCO₃ bằng 500ml dụng dịch H₂SO₄ thu được dung dịch A, rắn B và 4,48 lít khí CO₂ (đktc). Cô cạn dung dịch A thu được 12g muối khan. Mặt khác, nung B đến khối lượng không đổi thu 11,2 lít CO₂ (đktc) và rắn C. Tính nồng đô mol của dung dich H₂SO₄, khối lương rắn và Xác định R biết trong X số mol RCO₃ gấp 2,5 lần số mol MgCO₃.

Câu 4. (3,0 điểm)

Cho b gam hỗn hợp Mg, Fe ở dạng bột tác dụng với 300ml dung dịch $AgNO_3$ 0.8 M, khuấy kĩ để phản ứng xảy ra hoàn toàn thu được dung dịch A_1 và chất rắn A_2 có khối lượng là 29.28 gam gồm hai kim loại. Lọc hết chất rắn A_2 ra khỏi dung dịch A_1 .

- 1. Viết các PTHH của các phản ứng xảy ra?
- **2.** Hoà tan hoàn toàn chất rắn A₂ trong dung dịch H₂SO₄ đặc, đun nóng. Hãy tính thể tích khí SO₂ ở (đktc) được giải phóng ra. Thêm vào A₁ lượng dư dung dịch NaOH, lọc rửa toàn bộ kết tủa mới tạo thành, rồi nung trong không khí ở nhiệt độ cao đến khối lượng không đổi, thu được 6,4 gam chất rắn. Tính phần trăm theo khối lượng của mỗi kim loại trong hỗn hợp Mg, Fe ban đầu.

Câu 5: (3 điểm): Người ta điều chế 3 chất khí bằng những thí nghiệm sau:

- Khí thứ nhất do tác dụng của HCl với 21,45g kẽm.
- Khí thứ hai do nhiệt phân 47,4g KMnO₄
- Khí Thứ ba do tác dụng của a xít HCl dư với 2,61g MnO₂.

Trộn cả 3 khí vừa thu được ở trên trong một bình kín và cho nổ. Hỏi a xít gì được tạo nên và nồng độ % của nó trong dung dịch là bao nhiêu?

Câu 6: **(2 điểm)**: Đốt cháy một hỗn hợp gồm C₂H₂ và C₂H₄ có thể tích 6,72 lít (đktc) rồi cho toàn bộ sản phẩm thu được hấp thụ hết vào dung dịch Ca(OH)₂ dư. Sau khi phản ứng kết thúc, khối lượng bình đựng Ca(OH)₂ tăng thêm 33,6 gam đồng thời có m gam kết tủa. Xác định thành phần % thể tích của C₂H₂; C₂H₄ có trong hỗn hợp và tính m.

(Cho: C=12; H=1; O=16; Cu=64; Zn=65; Fe=56; Na=23; Ba=137; Ca=40; K=39; Mg=24; Cl=35,5; S=32; Al= 27; Ag = 108;)

	,	1
	1. Mô tả thí nghiệm và viết PTHH	0,25
	a Mẩu natri tan dần, dung dịch sủi bọt khí không màu. Xuất hiện kết tủa màu	0,25
	xanh lo	0,125
	$2Na + 2H_2O \rightarrow 2NaOH + H_2$	0,25
1	$CuSO_4 + NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$	0,25
	ь. Ban đầu chưa có hiện tượng gì sau một lúc tiếp tục nhỏ HCL vào thì mới thấy	0,125
	bọt khí thoát ra.	
	$HCl + Na_2CO_3 \rightarrow NaHCO_3 + NaCl$	
	$HCl + NaHCO_3 \rightarrow NaCl + H_2O + CO_2 \uparrow$	

	Ta có bảng	g thí nghiệm		D (OII)	W CO	M.CO	
		HC1	NaOH	Ba(OH) ₂	K ₂ CO ₃	MgSO ₄	
	HC1	×	×	×	↑ CO ₂	×	(
	NaOH	×	×	×	×	↓Mg(OH) ₂	
	Ba(OH) ₂	×	×	×	↓ (BaCO ₃)	↓BaSO ₄	(
	K ₂ CO ₃	↑ (CO ₂)	×	↓ (BaCO ₃)	X	↓MgCO ₃	0,125
	MgSO ₄	×	\	↓BaSO ₄ Mg(OH) ₂	↓ MgCO ₃	×	
			$(Mg(OH)_2)$	<i>S</i> ()-			
M	Lẫu thử nào c	ho kết quả ứ	r ng với 1 \uparrow =	> HCl	1	<u>. </u>	
			rng với 1 ↓=:				
		. *	rng với 2 ↓=				
		. *	•	$\uparrow 1 \uparrow => K_2CC$)3		
			rng với 3 ↓=:		- 5		
	iau mu nao c ác PTHH:	no kei qua t	ing voi 3 v –	- 1 V183U 4			
		Z.CO:	→ 2VC1 (4	4) + U .O.(1)			
			\rightarrow 2KCl (d		I), (n)		
		-		(dd) + Mg(OH)			
			·	(r) + KOH (dd			
		_	_	$(r) + BaSO_2$			
				$\frac{r}{r} + K_2 SO_4 (dd)$	1)		,
3)) - Nung hỗn	hợp Fe và S	S: $Fe + S -$	$f \mapsto \text{FeS}$			
-]	Hòa tan chất	rắn A trong	dung dịch H	Cl dư tạo ra kh	í B có tỉ khối	so với H ₂ là 9	
	•	_	• , ,	A gồm: FeS v			(
	_	$2HC1 \rightarrow FeC$		J			0,
		$HCl \rightarrow FeCl$	•				
			X gồm: FeCl ₂	và HCl dư.			(
	,	•	•				0,
- (Cho dich Na	OH dư vao .					ĺ
- (Cho dịch Na 2NaOF			2NaCl			
- (2NaOH	$I + FeCl_2 \rightarrow$	$Fe(OH)_2\downarrow + 2$	2NaCl			
- (2NaOH NaOH	$I + FeCl_2 \rightarrow + HCl \rightarrow N$	$Fe(OH)_2\downarrow + 2$ $aCl + H_2O$	2NaCl			(
	2NaOH NaOH ⇒	I + FeCl2 → + HCl → N Kết tủa Y: F	$Fe(OH)_2\downarrow + 2$ $faCl + H_2O$ $Fe(OH)_2$	2NaCl			(
	2NaOH NaOH ⇒ Nung Y ngo	I + FeCl ₂ → + HCl → N Kết tủa Y: F ài không khí	Fe(OH) ₂ \downarrow + 2 faCl + H ₂ O fe(OH) ₂				0,
	2NaOH NaOH ⇒ Nung Y ngo: 4Fe(OH	$I + FeCl_2 \rightarrow + HCl \rightarrow N$ $+ HCl \rightarrow N$ Kêt tủa Y: Fai không khí $+ H$) ₂ $+ O_2 \rightarrow D$	$Fe(OH)_2\downarrow + 2$ $faCl + H_2O$ $fe(OH)_2$ $faCl + H_2O$ $fe(OH)_2 + 2$ $faCl + H_2O$				0,
	2NaOH NaOH ⇒ Nung Y ngo: 4Fe(OH	I + FeCl ₂ → + HCl → N Kết tủa Y: F ài không khí	$Fe(OH)_2\downarrow + 2$ $faCl + H_2O$ $fe(OH)_2$ $faCl + H_2O$ $fe(OH)_2 + 2$ $faCl + H_2O$				0,
- 1	2NaOH NaOH ⇒ Nung Y ngo 4Fe(OH	I + FeCl ₂ \rightarrow + HCl \rightarrow N Kết tủa Y: F ài không khí H) ₂ + O ₂ $-\frac{t}{2}$ Chất rắn Z: I	$Fe(OH)_2\downarrow + 2$ $faCl + H_2O$ $fe(OH)_2$ $faCl + H_2O$ $fe(OH)_2 + 2$ $faCl + H_2O$				0,
- 1	2NaOH NaOH ⇒ Nung Y ngo 4Fe(OH ⇒ 0 Thí nghiệm o	I + FeCl ₂ → + HCl → N Kết tủa Y: F ài không khí H) ₂ + O ₂ $-\frac{t}{2}$ Chất rắn Z: I tiều chế clo.	$Fe(OH)_{2}\downarrow + 2$ $ACI + H_{2}O$ $Fe(OH)_{2}$ $ACI + H_{2}O$ $Fe_{2}O_{3} + 2$ $Fe_{2}O_{3}.$	4H ₂ O	+ 2H ₂ O		0,
- 1	2NaOH NaOH ⇒ Nung Y ngo 4Fe(OH ⇒ O Thí nghiệm o	I + FeCl ₂ → + HCl → N Kết tủa Y: F ài không khí H) ₂ + O ₂ $-\frac{t}{C}$ Chất rắn Z: I điều chế clo. $\frac{t}{C}$	Fe(OH) ₂ \ + 2 Fe(OH) ₂ Fe(OH) ₂ $ \stackrel{\circ}{\longrightarrow} 2Fe_2O_3 + Fe_2O_3. $ HCl (đặc) $-\frac{t^0}{}$	4H2O → MnCl ₂ + Cl ₂ 1			0, 0, 0, 0,25
- 1	2NaOH NaOH ⇒ Nung Y ngo 4Fe(OH ⇒ 0 Thí nghiệm o - PT điều chế - Bình NaCl	I + FeCl ₂ → + HCl → N Kết tủa Y: F ài không khí H) ₂ + O ₂ — $\frac{t}{C}$ Chất rắn Z: I $\frac{t}{C}$ tiều chế clo. $\frac{t}{C}$: MnO ₂ + 4F hấp thụ khí F	Fe(OH) ₂ \ + 2 aCl + H ₂ O Fe(OH) ₂ \Rightarrow 2Fe ₂ O ₃ + Fe ₂ O ₃ . ACl (đặc) $\frac{t^0}{}$ ACl do axit HC	4H2O → MnCl2 + Cl2 1 l đậm đặc dễ ba			(
- 1	2NaOH NaOH ⇒ Nung Y ngo 4Fe(OH ⇒ O Thí nghiệm o - PT điều cho - Bình NaCl - Bình H ₂ SO	I + FeCl ₂ \rightarrow + HCl \rightarrow N Kết tủa Y: F ài không khí H) ₂ + O ₂ $-\frac{t}{2}$ Chất rắn Z: I tiều chế clo. É: MnO ₂ + 4H hấp thụ khí H 4 đặc hấp thụ	Fe(OH) ₂ \ + 2 aCl + H ₂ O Fe(OH) ₂ \Rightarrow 2Fe ₂ O ₃ + Fe ₂ O ₃ . ICl (đặc) $\frac{e^{0}}{}$ ICl do axit HC nước làm khí	4H2O → MnCl2 + Cl2 1 l đậm đặc dễ ba	y hơi,	thoát ra khỏi	0, 0, 0, 0,25

		1
	$SO_2 + Br_2 + 2H_2O \rightarrow 2HBr + H_2SO_4$ - Cho hỗn hợp khí còn lại lội qua dung dịch $BaCl_2$ thấy xuất hiện kết tủa trắng. Chứng tỏ hỗn hợp khí có SO_3 :	0,25
	BaCl ₂ + SO ₃ + H ₂ O → BaSO ₄ ↓ + 2HCl - Cho hỗn hợp khí còn lại lội qua dung dịch Ca(OH) ₂ thấy xuất hiện kết tủa trắng. Chứng tỏ hỗn hợp khí có CO ₂ :	0,25
	$CO_2 + Ca(OH)_2 \rightarrow CaCO_3 \downarrow + H_2O$ - Cho khí còn lại qua CuO nung nóng thấy CuO màu đen chuyển dần sang màu đỏ. Chứng tỏ hỗn hợp khí có CO:	0,25
	$CuO + CO \xrightarrow{t^o} Cu + CO_2$	
	a) $MgCO3 + H2SO4 \longrightarrow MgSO4 + CO2 + H2O (1)$ $X \qquad X \qquad X \qquad X$	
	$RCO3 + H2SO4 \longrightarrow RSO4 + CO2 + H2O (2)$	
	y y y y	
	Nung B tạo CO2 : B còn , X dư. Vậy H2SO4 hết. Từ (1) và (2) : nH2SO4 =nCO2 = 0,2 mol.	
	$=> CM_{H2SO4} = 0.4(M)$.	
	Theo Định luật BTKL: $mx + mH2SO4 = mA + mB + mH2O + mCO2$	
	=> mB = 115,3 + 0,2.98 - 12 - 0,2(18+44) = 110,5 (g) Nung B thu 11,2 lít CO2 và rắn C	
	=> mC=mB-mCO2 = 110,5-0,5.44=88,5 (g)	
3	b. $T\dot{w}$ (1) $v\dot{a}$ (2): $x+y=0.2$ mol	
	nCO2 = 0.2 mol mSO4 = 0.2 . 96 = 19.2g > 12g => có một muối tan MgSO4 và RSO4 không tan	
	nMgCO3 = nMgSO4 = 0,1 mol nRCO3 = nRSO4 = 0,2-0,1 = 0,1 mol	
	Nung B, RSO4 không phân hủy, chỉ có X dư bị nhiệt phân	
	Đặt a = nMgCO3, RCO3 = 2,5a (trong X) MgCO3→ MgO + CO2 (3)	
	a- 0,1 a-0,1	
	$RCO3 \longrightarrow RO + CO2 (4)$	
	2.5a - 0.1 $2.5a - 0.1Từ (3) và (4) : nCO2 = 3.5a - 0.2 = 0.5 => a = 0.2$	
	mX = 84.0,2 + 2,5.0,2(R + 60) = 115,3 => R = 137 (Ba)	
		0.25
	Đặt số mol Mg và Fe trong m ₁ g hỗn hợp lần lượt là x và y. Vì Mg là kim loại hoạt động hơn Fe và Fe là kim loại hoạt động hơn Ag nên theo đề bài sau khi các	0,25
	phản ứng xảy ra hoàn toàn thu được kết tủa gồm 2 kim loại thì 2 kim loại đó phải)
	là Ag và Fe dư. Các PTHH của các phản ứng xảy ra :	0,25
	$Mg + 2AgNO_3 \rightarrow Mg(NO_3)_2 + 2Ag \downarrow \qquad (1)$	J
	$ \begin{array}{cccc} x & 2x & x & 2x \\ Fe + 2AgNO_3 \rightarrow Fe(NO_3)_2 + 2Ag\downarrow & (2) \end{array} $	0,25
	a 2a a 2a)
4	Vì Fe dư nên AgNO ₃ phản ứng hết, Mg phản ứng hết dung dịch chứa Mg(NO ₃) ₂ ,	0,25
	Fe(NO ₃) ₂ và kết tủa gồm Ag và Fe dư $Mg(NO_3)_2+2NaOH \rightarrow Mg(OH)_2 \downarrow + 2NaNO_3$ (3)]
	X X	
	$Fe(NO_3)_2 + 2NaOH \rightarrow Fe(OH)_2 \downarrow + 2NaNO_3 (4)$	0,25
	$ \begin{array}{ccc} a & a \\ Mg(OH)_2 & \xrightarrow{t^0} MgO + H_2O \end{array} \tag{5} $	
	$ \begin{array}{ccc} Mg(OH)_2 & \xrightarrow{\iota} & MgO + H_2O \\ x & & x \end{array} \tag{5} $	

```
4Fe(OH)_2 + O_2 \xrightarrow{\quad t^0 \quad} 2Fe_2O_3 + 4H_2O
                                                           (6)
    Hoà tan A<sub>2</sub> bằng H<sub>2</sub>SO<sub>4</sub> đặc:
    2Fe + 6H_2SO_4 \xrightarrow{t^0} Fe_2(SO_4)_3 + 3SO_2 + 6H_2O
    y-a
    2Ag + 2H_2SO_4 \xrightarrow{t^0} Ag_2SO_4 + SO_2\uparrow + 2H_2O
    (2x+2a)
                                                                                                             0,25
    Theo các PTHH trên và đề bài, ta có hệ phương trình:
                                                                                                             0,25
     (x + a = 0, 12)
                                                                                                             0,25
      216x + 56y + 160a = 29,28
     40x + 80a = 6, 4
    Giải hệ phương trình ta được : x = 0.08; a = 0.04; y = 0.1
    Đáp số: V_{\infty_2} = (0.15-0.02+0.08).22,4 = 4,709 \text{ (lit)}
                %Mg \approx 25,53 \%; %Fe \approx 74,47\%.
      Theo đề ta có: n_{Zn} = 0.33 \text{ mol}; n_{KMnO4} = 0.3 \text{ mol}; n_{MnO2} = 0.03 \text{ mol}
      Các PTPU:
      Zn + 2HCl \rightarrow ZnCl_2 + H_2 \uparrow (1)
      0.33
      2KMnO_4 \xrightarrow{l'} K_2MnO_4 + MnO_2 + O_2 \uparrow \qquad (2)
                                                    0.15
      MnO_2 + 4HCl \rightarrow MnCl_2 + Cl_2 \uparrow + 2H_2O (3)
      0.03
      Khi cho nổ: 2H_2 + O_2 \xrightarrow{l^o} 2H_2O
                                                          (4)
5
      Theo (2)
                       0,3
                                 0,15 0,3
                        H_2 + Cl_2 \rightarrow 2HCl
                                                     (5)
                                1
                       0.03 0.03 0.06
      Theo (3)
      Theo (4) và (5): n_{H_2} phản ứng = 0,03 + 0,3 = 0,33 = n_{H_2} ban đầu
      Do tất cả các khí ban đầu phản ứng hoàn toàn để tạo ra dung dịch HCl
       m_{HCl} = 0.06 \times 36.5 = 2.19 g
      m_{ddHCl} = m_{HCl} + m_{H_{cl}} = 2,19 + (0,3 \times 18) = 7,59 g
    C\%_{\text{ddHCl}} = \frac{2,19.100}{7.59} = 28,8\%
    Gọi số mol của C_2H_2 và C_2H_4 trong hỗn hợp là x; y thì x + y = 0,3 (mol) (1)
          Phương trình hóa học:
    2C_2H_2 + 5O_2 \xrightarrow{t^0} 4CO_2 + 2H_2O;
    C_2H_4 + 3O_2 \xrightarrow{t^0} 2CO_2 + 2H_2O
    n_{CO_2} = 2x + 2y \implies m_{CO_2} = 44(2x + 2y)
   n_{H,O} = x + 2y \implies m_{H,O} = 18(x + 2y)
    Khối lượng bình đựng Ca(OH)<sub>2</sub> tăng lên 33,6 (g) \Rightarrow 44(2x + 2y) + 18(x + 2y) =
    33.6 (g) \Rightarrow 106x + 124y = 33.6 (2)
    Từ (1) và (2) lập hệ phương trình, giải ra được x = 0.2; y = 0.1
    \Rightarrow % V_{C_2H_2} = 66,67 (%); % V_{C_2H_4} = 33,33 (%)
    n_{CO_2} = 2(x + y) = 0.6 \text{ (mol)} = n_{CaCO_3} \Rightarrow m_{CaCO_3} = 0.6.100 = 60 \text{ (gam)}
```

UBND HUYỆN KINH MÔN **PHÒNG GIÁO DỤC VÀ ĐÀO TẠO**

ĐỀ THI HỌC SINH GIỚI CẤP HUYỆN NĂM HỌC 2017 - 2018

Môn thi: Hoá học 9. Thời gian làm bài: 120 phút

<u>Câu 1:</u> (1.5 điểm)

Chỉ được dùng quì tím, hãy phân biệt các dung dịch đựng trong các lọ riêng biệt sau: H₂SO₄, MgCl₂, Ba(NO₃)₂, K₂SO₃, Na₂CO₃ và K₂S.

<u>Câu 2</u>: (1,5 điểm)

1. (1 điểm)

Chọn các chất A, B, C thích hợp và viết các phương trình phản ứng (ghi rõ điều kiện phản ứng nếu có) theo sơ đồ chuyển hoá sau:

2. (0,5 điểm)

Trộn dung dịch $AgNO_3$ với dung dịch H_3PO_4 không thấy tạo thành kết tủa . Khi thêm dung dịch NaOH vào có kết tủa vàng. Khi thêm dung dịch HCl vào kết tủa vàng thấy xuất hiện kết tủa trắng. Giải thích các hiện tượng xảy ra bằng các phương trình hoá học.

Câu 3: (2 điểm)

Cho 7,8 gam hỗn hợp gồm 2 kim loại là R hóa trị II và nhôm tác dụng với dung dịch H_2SO_4 loãng, dư. Khi phản ứng kết thúc thu được dung dịch 2 muối và 8,96 lít khí (ở đktc).

a/ Viết các phương trình hóa học đã xảy ra.

b/ Tính khối lượng muối thu được sau thí nghiệm và thể tích dung dịch H_2SO_4 2M tối thiểu cần dùng?

c/ Xác định kim loại R. Biết rằng trong hỗn hợp ban đầu tỉ lệ số mol R : Al là 1 : 2.

<u>Câu 4:</u> (2,5 điểm):

Hỗn hợp A gồm các kim loại Mg, Al, Fe.

Lấy 14,7 gam hỗn hợp A cho tác dụng với dung dịch NaOH dư, sinh ra 3,36 lít khí (đktc). Mặt khác cũng lấy 14,7 gam hỗn hợp A cho tác dụng với dung dịch HCl dư, sinh ra 10,08 lít khí (đktc) và dung dịch B. Cho dung dịch B tác dụng với dung dịch NaOH dư, kết tủa tạo thành được rửa sạch, nung nóng trong không khí đến khối lượng không đổi thu được *m* gam chất rắn. Tính *m* và tính % theo khối lượng của mỗi kim loại trong hỗn hợp A.

<u>Câu 5:</u> (2,5 điểm)

X là dung dịch AlCl₃, Y là dung dịch NaOH 2M. Thêm 150 ml dung dịch Y vào cốc chứa 100 ml dung dịch X, khuấy đều thì trong cốc tạo ra 7,8 gam kết tủa. Lại thêm tiếp vào cốc 100 ml dung dịch Y, khuấy đều thì lượng kết tủa có trong cốc là 10,92 gam. Các phản ứng đều xảy ra hoàn toàn. Hãy xác định nồng độ mol của dung dịch X

(Thí sinh được sử dụng bất cứ tài liệu nào)

ĐÁP ÁN VÀ HƯỚNG DẪN CHẨM ĐỀ THI HSG CẤP HUYỆN

NĂM HỌC 2015 - 2016

CÂU	HƯỚNG DẪN CHẨM	ĐIỂM
	- Nhận biết được mẫu thử làm quì tím hóa đỏ là H ₂ SO ₄	0,25đ
	- Nhóm không làm đổi màu quì tím là : MgCl ₂ , Ba(NO ₃) ₂ (nhóm 1)	0,125đ
	- Nhóm làm quì tím đổi thành xanh là: K ₂ SO ₃ , Na ₂ CO ₃ , K ₂ S (nhóm 2)	0,125đ
	- Dùng axit H ₂ SO ₄ vừa nhận biết được ở trên nhỏ vào các mẫu thử ở nhóm	
	1 và nhóm 2. Ở nhóm 1, mẫu thử xuất hiện kết tủa trắng là Ba(NO ₃) ₂ , mẫu	0,25đ
1	thử không có hiện tượng gì là MgCl ₂ .	0,230
	$Ba(NO_3)_2 + H_2SO_4 \rightarrow BaSO_4 \downarrow + 2HNO_3$	
	- Ở nhóm 2, mẫu thử xuất hiện chất khí mùi trứng thối là K ₂ S	0,25đ
	$K_2S + H_2SO_4 \rightarrow K_2SO_4 + H_2S \uparrow$	0,234
	- Mẫu thử xuất hiện khí mùi hắc là K ₂ SO ₃	0,25đ
	$K_2SO_3 + H_2SO_4 \rightarrow K_2SO_4 + SO_2 \uparrow + H_2O$	0,200
	- Mẫu thử xuất hiện khí không mùi là Na ₂ CO ₃	0,25đ
	$Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + CO_2\uparrow + H_2O$	0,224
	1. Hoàn thành sơ đồ phản ứng	
	$(1) Cu(OH)2 + H2SO4 \rightarrow CuSO4 + 2H2O$	0,125đ
	$(2) CuO + H2SO4 \rightarrow CuSO4 + H2O$	0,125đ
	$(3) Cu + 2H2SO4 d, nóng \rightarrow CuSO4 + SO2 \uparrow + 2H2O$	0,125đ
	$(4) CuSO4 + BaCl2 \rightarrow BaSO4 \downarrow + CuCl2$	0,125đ
	$(5) CuCl2 + 2AgNO3 \rightarrow 2AgCl \downarrow + Cu(NO3)2$	0,125đ
	$(6) Cu(NO3)2 + 2NaOH \rightarrow Cu(OH)2 \downarrow + 2NaNO3$	0,125đ
	$(7) Cu(OH)_2 \xrightarrow{t^0} CuO + H_2O$	0,125đ
	$(8) CuO + H_2 \xrightarrow{t^0} Cu + H_2O$	0,125đ
2	2.	
	$H_3PO_4 + 3AgNO_3 \rightarrow Ag_3PO_4 + 3HNO_3$	
	Phản ứng trên không xảy ra vì do HNO ₃ mạnh hơn H ₃ PO ₄ chỉ xảy ra ngược	0,25đ
	lại : $Ag_3PO_4 + HNO_3 \rightarrow H_3PO_4 + AgNO_3$	
	Khi thêm NaOH vào thì trung hoà H ₃ PO ₄	
	$3NaOH + H3PO4 \rightarrow Na3PO4 + 3H2O$	0.40.7.1
	v à phản ứng giữa AgNO ₃ + Na ₃ PO ₄ xảy ra	0,125đ
	$3AgNO_3 + Na_3PO_4 \rightarrow Ag_3PO_4 + 3NaNO_3$	
	(vàng) Whi thôm HCl thì A a DO, hi hoà tan	
	Khi thêm HCl thì Ag_3PO_4 bị hoà tan $Ag_3PO_4 + 3HCl \rightarrow AgCl + H_3PO_4$	0,125đ
	(Trắng)	0,1234
	a/Các PTHH: $R + H_2SO_4 \rightarrow RSO_4 + H_2$ (1)	0,25
	$2A1 + 3H_2SO_4 \rightarrow AI_2(SO_4)_3 + 3H_2 \qquad (2)$	0,25
	$b/$ -Gọi x là số mol của kim loại R đã phản ứng \rightarrow số mol Al đã phản ứng	0,23
	là 2x.	
	-Số mol khí hidro sinh ra: $n_{H2} = 8.96 : 22.4 = 0.4 \text{ (mol)}$	
	-Khối lượng khí hidro sinh ra là: $0.4 \cdot 2 = 0.8$ (g)	0,25
	$R + H_2SO_4 \rightarrow RSO_4 + H_2 \qquad (1)$, -
	x x x x (Mol)	0,25
	$2A1 + 3H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3H_2$ (2)	
	2x 3x x 3x (Mol)	
	-Theo PTHH (1) và (2) ta có: $n_{H2SO4} = n_{H2} = 0.4$ (mol)	

CÂU	HƯỚNG DẪN CHẨM	ÐIỀM
3	-Khối lượng axit H ₂ SO ₄ đã phản ứng: 0,4 . 98 = 39,2 (g)	
	-Khối lượng hỗn hợp 2 muối thu được là: $7.8 + 39.2 - 0.8 = 46.2$	
	(g).	0,25
	-Thể tích dung dịch H_2SO_4 đã phản ứng là: $V_{(dd\ H2SO4)} = \frac{0.4}{2} = 0.2$ (lít)	0,25
	c/ -Tổng số mol khí hidro thu được là:	
	$x + 3x = 0.4 \rightarrow x = 0.1 \text{ (mol)} $ (*)	
	-Khối lượng hỗn hợp 2 muối : $(R+96)$. $x + 342$. $x = 46,2$	
	Rx + 96x + 342x = 46,2	0,125
	Rx + 438x = 46,2	0,125
	$x \cdot (R + 438) = 46.2 (**)$	0,125
	→ Thế (*) vào (**) ta được R = 24	0,125
	Vậy R là kim loại Magie (Mg)	
	Gọi x, y, z tương ứng la số mol của Mg, Al, Fe có trong 14,7 g hỗn hợp A: - Hoà tan trong NaOH dư:	0,25
	$Al + NaOH + H_2O \longrightarrow NaAlO_2 + 1,5H_2$	
	y 1,5y / mol	0,25
	$1,5y = 3,36/22,4 = 0,15 \Rightarrow y = 0,1$	
	- Hòa tan trong HCl dư:	0,25
	$Mg + 2HCl \longrightarrow MgCl_2 + H_2$	
	x x / mol	0,25
	$Al + 3HCl \longrightarrow AlCl_3 + 1,5H_2$	
	y 1,5y / mol	0,25
	$Fe + 2HCl \longrightarrow FeCl_2 + H_2$	0.25
4	z z / mol	0,25
	Theo để và trên, ta có:	
	24x + 27y + 56z = 14,7 (1) x + 1,5y + z = 10,08/22,4 = 0,45 (2)	0,25
		0,23
	Giải hệ $(1, 2, 3)$, ta được: $x = z = 0.15$; $y = 0.1$.	
	Vậy % về khối lượng:	0,25
	m (Mg) = 24.0,15 = 3,6 (g) chiếm 24,49%	- , -
	m (Al) = 27.0,10 = 2,7 (g) chiếm 18,37%	0,125
	m (Fe) = 56.0,15 = 8,4 (g) chiếm 57,14%.	
	- Cho ddB + NaOH du, nung kết tủa trong không khí thu được rắn gồm	0,25
	(MgO, Fe ₂ O ₃)	
	m = 18 gam.	0,125
		0,25
	- Số mol NaOH và Al(OH)3 lần 1 là:	
	$nAl(OH)_3 = 7.8/78 = 0.1 \text{ mol}$; $nNaOH = 0.15x 2 = 0.3 \text{ mol}$	0,25
	- Số mol NaOH và Al(OH) ₃ lần 2 là:	0,25
	$nAl(OH)_3 = 10.92/78 = 0.14 \text{ mol}$; $nNaOH = 0.1x 2 = 0.2 \text{ mol}$	0,25
5	* L ån 1: 3 NaOH + A ICl ₃ > A I(OH) ₃ + $\sqrt{}$ 3NaCl (1)	0,25
	0,3mol 0,1mol 0,1mol	
	Như vậy sau lần 1 thì số mol của AlCl ₃ vẫn còn dư. Gọi x là số mol của AlCl ₃ còn dư sau lần phản ứng 1 với NaOH	
	* Lần 2: Nếu sau khi cho thêm 100ml dung dịch NaOH vào nữa mà AlCl ₃	0,25
	phản ứng đủ hoặc dư thì số mol của Al(OH) ₃ là:	0,23
	0.1 + 0.2/3 = 0.167 mol > 0.14 mol => Vô li	
	$ V_{4}^{2}\rangle = 0.107 \text{ mol} > 0.14 \text{ mol} =>	0,25
	1 1 9, 1 1 2 13 1 2 2 1 1 1 1 1 1 2 2 1 2 2 1 1 1 1	10,23

CÂU	HƯỚNG DẪN CHẨM	ÐIỂM
	theo các phản ứng:	
	$3NaOH + AlCl_3> Al(OH)_3 + 3NaCl$ (2)	0,25
	3x mol x mol x mol	
	NaOH + Al(OH) ₃ \downarrow > NaAlO ₂ + 2H ₂ O (3)	
	(0,2-3x) $(0,2-3x)$ mol	0,25
	Theo phản ứng $(1)(2)(3)$ số mol Al(OH) ₃ còn lại là:	
	(0.1 + x) - (0.2 - 3x) = 0.14 => x = 0.06 (mol)	0,125
	Theo phản ứng (1)(2) thì số mol AlCl ₃ phản ứng là:	®
	0.1 + x = 0.1 + 0.06 = 0.16 mol	
	Vậy nồng độ mol của AlCl ₃ là: $0.16/0.1 = 1.6 \text{ M}$	0,125
		R

PHÒNG GIÁO DỤC VÀ ĐÀO TẠO PHÙ NINH

ĐỂ THI CHỌN HỌC SINH GIỚI LỚP 9 NĂM HỌC 2017-2018 **MÔN: HÓA HỌC**

(Thời gian làm bài 135 phút không kể thời gian giao đề) (Đề thi gồm 3 trang)

I. PHẦN TRẮC NGHIÊM KHÁCH QUAN: 10 điểm Em hãy chọn các phương án trả lời đúng và ghi vào bài làm trên Tờ giấy thi: Câu 1. Trong bột sắt có lẫn bột nhôm, để làm sạch bột sắt có thể đem ngâm trong: A. dung dich HCl. B. dung dich CuSO₄. C. dung dich NaOH. D. nước. Câu 2. Cho hỗn hợp bột 3 kim loại sắt, bạc, đồng vào dung dịch HCl, thấy có bọt khí thoát ra. Phản ứng xảy ra xong, khối lượng kim loại không bị giảm là: B. Bac, Đồng A. Sắt, Bac, Đồng C. Sắt, Đồng D. Bac, Sắt Câu 3. Để biến đổi sắt (II) oxit thành sắt (III) hiđroxit có thể dùng lần lượt hoá chất là: A. HCl; NaOH, không khí ẩm. B. NaOH; HCl; không khí khô. C. NaOH; nước; không khí ẩm. D. Nước; NaOH; không khí khô. Câu 4. Dãy các bazơ nào sau đây bị phân hủy ở nhiệt độ cao? A. Ca(OH)₂, NaOH, Zn(OH)₂, Fe(OH)₃ B. Cu(OH)₂, NaOH, Ca(OH)₂, Mg(OH)₂ C. Cu(OH)₂, Mg(OH)₂, Fe(OH)₃, Zn(OH)₂ D. Zn(OH)₂, Ca(OH)₂, KOH, NaOH Cou 5. Cho lượng dư bột nhôm vào dung dịch (X) chứa CuSO₄ và CuCl₂. Khi phản ứng kết thúc, sản phẩm thu được gồm những chất nào sau đây: A. Al₂(SO₄)₃ và AlCl₃ B. Cu,Al₂(SO₄)₃ và AlCl₃ D. Cu, Al_{du}, Al₂(SO₄)₃ và AlCl₃ C. Cu và Al Câu 6. Để thu được dung dịch HCl 25% cần lấy m₁ gam dung dịch HCl 45% pha với m₂ gam dung dịch HCl 15%. Tỉ lệ m₁: m₂ là.

A. 1:2

B. 1: 3

C. 2: 1

D. 3: 1

Câu 7. Có thể dùng NaOH(rắn) để làm khô các khí:

A. NH₃, SO₂, CO, Cl₂

B. N₂, NO₂, CO₂, CH₄, H₂

C. NH₃, O₂, N₂, CH₄, H₂

D. N₂, Cl₂, O₂, CO₂, NO₂

Câu 8. Hòa tan hoàn toàn 3,22 gam hỗn hợp gồm Fe, Mg, Zn bằng một lượng vừa đủ dung dịch H₂SO₄ loãng. Sau phản ứng thu được 1,344 lít hiđro (ở đktc) và dung dịch chứa m gam muối. Giá trị của m là:

A. 9,25g

B. 7,25g

C. 8,98g

D. 10,27g

A. ZnO

B. Fe₂O₃

D. FeO

II. PHÀN TỰ LUẬN: 10 điểm

Câu 1. (2,0 điểm)

Hoàn thành sơ đổ chuyển hóa, viết phương trình hóa học minh họa, ghi rõ điều kiện nếu có.

$$CaCO_{2} \xrightarrow{+B} C \xrightarrow{+D} E \xrightarrow{+F} CaCO_{2}$$

$$P \xrightarrow{+X} Q \xrightarrow{+Y} R \xrightarrow{+Z} CaCO_{2}$$

Câu 2. (2,0 điểm)

Hòa tan hoàn toàn một lượng oxit kim loại hóa trị II vào một lượng vừa đủ dung dịch H₂SO₄ a% tạo thành dung dịch muối sunphat có nồng độ b%.

- a. Xác định khối lượng mol của kim loại theo a và b.
- b. Cho a% = 10% và b% = 11,76%. Hãy xác định oxit kim loại.

Câu 3. (2,0 điểm)

Cho 200ml dung dịch hỗn hợp $AgNO_3$ 0,1M và $Cu(NO_3)_2$ 0,5M. Thêm 2,24 gam bột Fe kim loại vào dung dịch đó khuấy đều tới phản ứng hoàn toàn thu được chất rắn A và dung dịch B.

- a. Tính số gam chất rắn A?
- b. Tính nồng độ mol của các muối trong dung dịch B ?(Biết thể tích dung dịch không thay đổi).

Câu 4. (2,0 điểm)

Hỗn hợp A gồm các kim loại Mg, Al, Fe. Lấy 14,7 gam hỗn hợp A cho tác dụng với dung dịch NaOH dư, sinh ra 3,36 lít khí (đktc). Mặt khác cũng lấy 14,7 gam hỗn hợp A cho tác dụng với dung dịch HCl dư, sinh ra 10,08 lít khí (đktc) và dung dịch B. Cho dung dịch B tác dụng với dung dịch NaOH dư, kết tủa tạo thành được rửa sạch, nung nóng trong không khí đến khối lượng không đổi thu được m gam chất rắn.

Tính m và tính % theo khối lượng của mỗi kim loại trong hỗn hợp A.

Câu 5. (2,0 điểm)

Hòa tan hoàn toàn hỗn hợp X gồm Fe và Mg bằng một lượng vừa đủ dung dịch HCl 20% thu được dung dịch Y. Biết nồng độ của MgCl₂ trong dung dịch Y là 11,787%.

- 1. Tính nồng độ % của muối sắt trong dung dịch Y.
- 2. Nếu thêm vào dung dịch Y nói trên một lượng dung dịch NaOH 10% vừa đủ thì nồng độ % của chất tan có trong dung dịch sau phản ứng là bao nhiêu?

Hết
Cán bộ coi thi không cần giải thích gì thêm.
Ho và tên thí sinh:SBD:

HƯỚNG DẪN CHẨM THI HỌC SINH GIỎI LỚP 9 NĂM HỌC 2017-2018 MÔN: HÓA HỌC

I. PHẦN TRẮC NGHIỆM: 10 điểm

Mỗi câu đúng được 0,5 điểm, đối với câu có nhiều lựa chọn đúng, chỉ cho điểm khi học sinh

chọn đủ các phương án đúng.

Câu	1	2	3	4	5	6	7	8	9	10
Đáp án	C	В	A	C	D	A	C	C	A,C	A,B,D
Câu	11	12	13	14	15	16	17	18	19	20
Đáp án	A	C	C	В	В	D	D	A	В	С

II. PHẦN TỰ LUẬN: 10 điểm

Câu	Nội dung	Điểm
Câu 1	Sơ đồ biến hóa có thể là:	
(2,0đ)	\nearrow CaO \longrightarrow Ca(OH) ₂ \longrightarrow aCl ₂ \longrightarrow \bigcirc aCO ₃	
	CaCO ₃ ——	0,5
	$CaCO_{3} \longrightarrow CaO \longrightarrow Ca(OH)_{2} \longrightarrow CaCl_{2} \longrightarrow CaCO_{3}$ $CO_{2} \longrightarrow K_{2}CO_{3} \longrightarrow KHCO_{3} \longrightarrow CaCO_{3}$	
	Các phương trình phản ứng:	0,20
	$CaCO_3 \xrightarrow{t^0} CaO + CO_2 \uparrow$	0,20
	$CaO + CO_2 \rightarrow Ca(OH)_2$	0,20
	$Ca(OH)_2 + 2HCl \rightarrow CaCl_2 + 2H_2O$	0,20 0,20
	$CaCl_2 + Na_2CO_3 \rightarrow CaCO_3 \downarrow + 2NaCl$	0,20
	$CO_2 + 2KOH \rightarrow K_2CO_3 + H_2O$	0,25
	$K_2CO_3 + CO_2 + H_2O \rightarrow 2 KHCO_3$	0,23
	$2KHCO_3 + Ca(OH)_2 \rightarrow CaCO_3 + K_2CO_3 + 2H_2O$	
	Ghi chú: Có thể đổi vị trí giữa K ₂ CO ₃ và KHCO ₃ khi đó:	
	$CO_2 + KOH \rightarrow KHCO_3$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Câu 2		
(2,0đ)	$(M+16)g \rightarrow 98g \qquad (M+96)g$	0,5
	Tính khối lượng dd H ₂ SO ₄ cần dùng:	
	Muốn có a (g) H ₂ SO ₄ phải lấy 100g dd	
	9800	0.5
	$98g H_2SO_4 \rightarrow x (g) dd \rightarrow x = \frac{1}{a}.$	0,5
	The space of the state C_0 to say C_0 $(M+96).100$	
	Theo công thức tính C% ta có: C% = $\frac{(M+96).100}{(M+16)+9800/a} = b$	0,5
		0,5
	Rút ra: $M = \frac{16ab + 100.(98b - 96a)}{a(100 - b)}$	
	,	
	b) Đáp số : $M = 24 \rightarrow Mg$; Oxit là MgO.	0,5

	0.2.0.1.0.02 (1)	
	$n_{\text{AgNO3}} = 0,2.0,1=0,02 \text{ (mol)}$	
	$n_{\text{Cu(NO3)2}} = 0,2.0,5 = 0,1 \text{ (mol)}$	
	$n_{\text{Fe}} = \frac{2,24}{5,6} = 0.04 \text{ (mol)}$	
	50	
	a. Các phản ứng xảy ra:	0,5
	$Fe + 2AgNO_3 \rightarrow Fe(NO_3)_2 + 2Ag \downarrow$	0,0
	0,01 0,02 0,01 0,02 (mol)	
Câu 3	$Fe + Cu(NO_3)_2 \rightarrow Fe(NO_3)_2 + Cu \downarrow$	
(2,0đ)	(0,04-0,01) 0,03 0,03 (mol)	
(2,04)	- Chất rắn A gồm: Ag và Cu	
	$=> m_A = 0.02.108 + 0.03.64 = 4.08 (g)$	0,5
	b. Dung dịch B gồm:	
	Fe(NO ₃) ₂ : $(0.01 + 0.03) = 0.04$ (mol)	
		0,5
	$Cu(NO_3)_{2du}$: $(0,1-0,03)=0,07 \text{ (mol)}$	- ,-
	$C_{\text{M Fe(NO)}2} = \frac{0.04}{0.2} = 0.2 \text{ (M)}$	0,5
	$C_{\text{M Cu(NO3)2}} = \frac{0.07}{0.2} = 0.35 \text{ (M)}$	0,5
	Gọi x, y, z tương ứng là số mol của Mg, Al, Fe có trong 14,7g hỗn hợp A:	
	- Hoà tan trong NaOH du:	
	$Al + NaOH + H2O \longrightarrow NaAlO2 + 1,5H2$ (1)	
	y 1,5y	
	$1.5y = 3.36/22.4 = 0.15 \implies y = 0.1$	
	- Hòa tan trong HCl du:	0,5
	$Mg + 2HC1 \longrightarrow MgCl_2 + H_2 $ (2)	0,0
	X X ALCI + 1 SH (2)	
	$Al + 3HCl \longrightarrow AlCl_3 + 1,5H_2 $ (3)	
	y 1,5y	
	$Fe + 2HC1 \longrightarrow FeCl_2 + H_2 \tag{4}$	
	z	
	Theo đề và trên PT, ta có:	0,5
	$\int 24x + 27y + 56z = 14,7 $ (I)	
Câu 4	$\begin{cases} x + 1.5y + z = 10.08/22.4 = 0.45 \end{cases}$ (II)	
Cau 4	$y = 0.1 \tag{III}$	
	Giải hệ (I, II, III), ta được: $x = z = 0.15$; $y = 0.1$.	
	Vậy % về khối lượng:	
	$m (Mg) = 24. \ 0.15 = 3.6 \ (g) \ chiếm 24.49\%$	
	$m (Al) = 27. \ 0.10 = 2.7 \ (g) \ chiếm 18.37\%$	
	m (Fe) = 56.0,15 = 8,4 (g) chiếm 57,14%.	
	- Cho dung dịch B (gồm HCl dư, MgCl ₂ , AlCl ₃ , FeCl ₂) tác dụng NaOH	0.7
	dư có các PTHH:	0,5
	$HCl + NaOH \longrightarrow NaCl + H_2O$ (5)	
	$MgCl_2 + 2NaOH \longrightarrow Mg(OH)_2 \downarrow + 2NaCl$ (6)	
	$AlCl_3 + 3NaOH \longrightarrow Al(OH)_3 \downarrow + 3NaCl $ (7)	
	$Al(OH)_3 + NaOH \longrightarrow NaAlO_2 + 2H_2O$ (8)	
	· · ·	
	$FeCl2 + 2NaOH \longrightarrow Fe(OH)2 \downarrow + 2NaCl $ (9)	
		0,5
Câu 4	Nung kết tủa trong không khí thu được chất rắn gồm MgO,Fe ₂ O ₃	- 7-
(2,0đ)		
(2,0u)	$Mg(OH)_2 \xrightarrow{t^o} MgO + H_2O $ (10)	
	$4 \operatorname{Fe}(OH)_2 + O_2 \xrightarrow{t^o} 2\operatorname{Fe}_2O_3 + 4\operatorname{H}_2O \tag{11}$	
	Theo các PTHH 6,9,10,11 có:	0.5
		0,5

	$m = 0.15 \cdot 40 + 0.075 \cdot 160 = 18$ (gam).	
Câu 5	1) $Mg + 2HCl \rightarrow MgCl_2 + H_2 \uparrow$	
(2,0đ)	$x = 2x \qquad x \qquad x \pmod{0}$	
	Fe + 2HCl \rightarrow FeCl ₂ + H ₂ \uparrow	
	$ \begin{array}{ccc} y & 2y & y & y \text{ (mol)} \\ (2y + 2y) & 26.5 \end{array} $	
	(2x+2y). 36,5 $M_{ddHCL} = -100 = (365x + 365y) (gam)$	
	$M_{\text{ddHCL}} = \frac{100}{20} = (365x + 365y) \text{ (gam)}$	
	m $_{dd \ Y} = 24x + 56y + 365x + 365y - (2x + 2y) = (387x + 419y)$ (gam) Phương trình biểu diễn nồng độ % của MgCl ₂ trong dung dịch Y: 95 x 11.787	0,5
	$\frac{387x + 419y}{387x + 419y} = \frac{13707}{100} \text{giải ra } x \approx y$	
	$m_{FeCl2} = 127y = 127x$ (gam)	
	Vì nồng độ % tỷ lệ thuận với khối lượng chất tan trong dung dịch nên:	
	$C\%_{\text{FeCl2}} = \frac{27x}{95x}.11,787 = 15,76 \%$	
	2) Cho dung dịch Y tác dụng NaOH thì thu được dung dịch Z	
	$MgCl_2 + 2NaOH \rightarrow Mg(OH)_2 \downarrow + 2NaCl$	0,5
	x $2x$ x $2x$ (mol)	
	$FeCl_2 + 2NaOH \rightarrow Fe(OH)_2 \downarrow + 2NaCl$	
	y $2y$ y $2y$ (mol)	
	y 2y y 2y (mol) $M_{ddNaOH10\%} = \frac{(2x+2y).40}{10} \cdot 100 = (800x + 800y) (gam)$	
	$M_{KT} = (58x + 90y) (gam)$	
	$m_{ddZ} = 387x + 419y + 800x + 800y - (58x + 90y)1 = 129(x + y) \text{ (gam)}$	0,5
	$C\%_{\text{NaCl}} = \frac{58,5.(2x+2y)}{1129.(x+y)}.100\% = = 10,36\%$	
		0,5

Ghi chú:

- Học sinh làm các cách khắc, nếu đúng cho điểm tương đương.
- Các phương trình hoá học có chất viết sai không cho điểm, thiếu điều kiện phản ứng hoặc cân bằng sai thì trừ một nửa số điểm của phương trình đó.
- Trong các bài toán, nếu sử dụng phương trình hoá học không cân bằng hoặc viết sai để tính toán thì kết quả không được công nhận.

PHÒNG GIÁO DỤC VÀ ĐÀO TẠO TIỀN HẢI

ĐỀ KHẢO SÁT HỌC SINH GIỚI NĂM HỌC 2017–2018 MÔN: HÓA HỌC 9

(Thời gian làm bài 120 phút)

Câu 1: (3,0 điểm)

- 1. Hình vẽ bên mô tả thí nghiệm điều chế khí H₂ trong phòng thí nghiệm, hãy cho biết:
 - Hóa chất cần dùng ở (1) và (2) là gì?
 - Viết phương trình hóa học minh họa.

- Khí H₂ đã thu được bằng phương pháp gì? Phương pháp này dựa trên tính chất nào của H₂?
- 2. Viết phương trình hóa học thực hiện chuyển hóa sau:

NaOH
$$\rightarrow$$
 NaCl \rightarrow NaOH \rightarrow NaHCO₃ \rightarrow Na2CO₃ \rightarrow Na₂SO₄ \rightarrow Na₂O NaNO₃

Câu 2: (3,0 điểm)

- 1. Ở 100^oC độ tan của NaNO₃ là 180 gam và ở 20^oC là 88 gam. Hỏi có bao nhiều gam NaNO₃ kết tinh trở lại khi làm nguội 672 gam dung dịch NaNO₃ bão hòa từ 100^oC xuống 20^oC?
- 2. Từ dung dịch H_2SO_4 98% (khối lượng riêng 1,84 g/ml), dung dịch HCl 5M, nước cất và các dụng cụ cần thiết khác, hãy trình bày cách pha chế 300 ml dung dịch chứa hỗn hợp H_2SO_4 1M và HCl 1M.

Câu 3: (3,0 điểm)

- 1. Để khử hoàn toàn 4,64 gam một oxit sắt cần dùng V lít khí H₂ (đktc), biết sau phản ứng thu được 3,36 gam sắt. Tìm V và xác định công thức của oxit sắt.
 - 2. Viết phương trình hóa học xảy ra trong các trường hợp sau:
 - a. Cho Fe vào dung dich CuCl₂.
 - b. Cho Ba vào dung dịch Na₂SO₄.
 - 3. Trung hòa 200 ml dung dịch H₂SO₄ 1M bằng dung dịch KOH 5,6%.
 - a. Tìm khối lượng dung dịch KOH cần dùng.
 - b. Tìm thể tích dung dịch KOH trên biết khối lượng riêng dung dịch KOH là 1,045 g/ml.

Câu 4: (4,0 điểm)

- 1. Chỉ được dùng quỳ tím hãy phân biệt các dung dịch bị mất nhãn riêng biệt sau: HCl, Ba(OH)₂, Na₂SO₄, H₂SO₄, KOH. Viết phương trình hóa học xảy ra (nếu có).
- 2. Có 3 lọ dung dịch HNO₃, H₃PO₄, HCl bị mất nhãn. Chỉ dùng dung dịch AgNO₃ có thể phân biệt được 3 lọ dung dịch đó không? Giải thích?
- 3. Hòa tan hoàn toàn hỗn hợp Na₂CO₃ và Na₂SO₄ vào nước dư, được 400 ml dung dịch A. Chia A làm hai phần bằng nhau:
 - Phần 1: Cho tác dụng với dung dịch HCl dư, thu được 4,48 lít khí đktc.
 - Phần 2: Cho tác dụng với dung dịch BaCl₂ dư, thu được 86 gam kết tủa.

Tìm nồng độ mol các chất trong dung dịch A.

Câu 5: (4.0 điểm)

- 1. Từ quặng Pirit sắt (FeS₂), O_2 , H_2O , các chất xúc tác thích hợp. Hãy viết phương trình phản ứng điều chế muối $Fe_2(SO_4)_3$.
- 2. Hỗn hợp X gồm Na, Ba, Na₂O, BaO. Hòa tan 43,8 gam X vào nước dư, thu được 2,24 lít H_2 (ở đktc) và dung dịch Y, trong đó có 41,04 gam $Ba(OH)_2$. Hấp thụ hoàn toàn 13,44 lít CO_2 (ở đktc) vào dung dịch Y thu được m gam kết tủa. Tìm m.

Câu 6: (3,0 điểm)

- 1. Hòa tan hỗn hợp gồm 6,4 gam CuO và 8,0 gam Fe₂O₃ trong 200 ml dung dịch H₂SO₄ 1M đến khi phản ứng xảy ra hoàn toàn. Sau phản ứng thấy có m gam chất rắn không tan. Tính m.
- 2. Cho 8 gam hỗn hợp X chứa Mg và kim loại M vào dung dịch HCl dư, sau khi phản ứng kết thúc thu được 4,48 lít H_2 (đktc). Cũng 8 gam hỗn hợp trên tan hoàn toàn trong dung dịch H_2SO_4 đặc nóng dư , thu được dung dịch Y và 5,6 lít SO_2 duy nhất (đktc).

Viết phương trình hóa học xảy ra và xác định kim loại M.

PHÒNG GIÁO DỤC - ĐÀO TẠO KỲ KHẢO SÁT SINH GIỚI NĂM HỌC 2017-2018 TIỀN HẢI ĐÁP ÁN BIỂU ĐIỂM CHÁM MÔN: HÓA HOC 9

(Đáp án và biểu điểm chấm gồm 04 trang)

Câu	Ý	Nội dung	Điểm
Câu 1	1	- Hóa chất ở (1): dung dịch HCl, H ₂ SO _{4 loãng}	0,25
(3,0đ)	(1,25a)	- Hóa chất ở (2): kim loại như Al, Fe, Mg	0,25
		- pthh minh họa: Fe + 2HCl \rightarrow FeCl ₂ + H ₂ \uparrow	0,25

		- Khí H ₂ được thu bằng phương pháp đẩy nước	0,25
		Dựa trên tính chất khí H ₂ không tác dụng với nước, ít tan trong nước	0,25
	2		
		$(1) \text{ NaOH} + \text{HCl} \rightarrow \text{NaCl} + \text{H}_2\text{O}$ $(2) \text{ 2N Cl} + \text{2H O} \qquad \text{2N OH} + \text{H}_2\text{A} + \text{Cl}_2\text{A}$	0,25
	(1,75đ)	(2) $2\text{NaCl} + 2\text{H}_2\text{O} \xrightarrow{\text{có màng ngăn}} 2\text{NaOH} + \text{H}_2 \uparrow + \text{Cl}_2 \uparrow$	0,25
		(3) NaOH + $CO_2 \rightarrow NaHCO_3$	0,25
		(4) NaHCO ₃ + NaOH \rightarrow Na ₂ CO ₃ + H ₂ O	0,25
		(5) $Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + CO_2 + H_2O$	0,25
		(6) Na ₂ O + H ₂ O \rightarrow 2 NaOH	0,25
		$(7) \text{ NaOH} + \text{HNO}_3 \rightarrow \text{NaNO}_3 + \text{H}_2\text{O}$	0,25
Câu 2	1	$ \vec{O} 100^{0}C $:	
(3,0d)	(1,5a)	180 gam NaNO ₃ tan trong 100 gam H ₂ O tạo 280 gam dung dịch	0,25
		x gam NaNO ₃ tan trong y gam H ₂ O tạo 672 gam dung dịch	
		$x = \frac{180.672}{280} = 432(g)$	0,25
		$x = \frac{1838 \times 2}{280} = 432(g)$	
		200	0,25
		y = 672 - 432 = 240(g) $O' 20^{0}C$:	
			0,25
		100 gam H ₂ O hòa tan 88 gam NaNO ₃	
		240 gam H ₂ O hòa tan z gam NaNO ₃	
		$z = \frac{240.88}{100} = 211,2(g)$	0,25
		$\frac{z-\sqrt{100}}{100}$	
		Khối lượng NaNO ₃ kết tinh là: $432 - 211,2 = 220,8$ (g)	0,25
	2	Số mol H ₂ SO ₄ 0,3 mol	0,20
	(1,5đ)	Số mol HCl 0,3 mol	0,25
	(1,54)	\rightarrow mH ₂ SO ₄ = 0,3 . 98 = 29,4 (g)	0,23
			0,25
		$m_{\rm dd \ H_2SO_4} = \frac{29, 4.100}{98} = 30(g)$	0,23
		98	
		$V_{\text{virgo}} = \frac{30}{16.2(ml)}$	0,25
		$V_{\rm dd\ H_2SO_4} = \frac{30}{1,84} = 16,3(ml)$	
		$V_{\text{dd HCl 5M}} = \frac{0.3}{5} = 0.06(l) = 60(ml)$	0,25
		Trình bày cách pha chế:	
		- Lấy 200 ml nước cho vào cốc dung tích 500 ml	
		- Lấy 16,3 ml dung dịch H ₂ SO ₄ 98% cho từ từ vào cốc trên, khuấy đều, để	
		nguội.	
		- Lấy 60 ml dung dịch HCl 5M, cho từ từ vào, khuấy đều	
		- Thêm nước đến vạch 300 ml thì dừng lại khuấy đều, ta thu được 300 ml	0,5
		dung dịch hỗn hợp H ₂ SO ₄ 1M và HCl 1M.	
Câu 3	1	Gọi công thức của oxit sắt là Fe _x O _y	
(3,0đ)	(1,0đ)	Pthh: $Fe_xO_y + y H_2 \xrightarrow{t^0} x Fe + y H_2O$	0,25
		$m_{O(oxit)} = 4,64 - 3,36 = 1,28 \text{ (g)}$	
		$n_{O(oxit)} = 1,28: 16 = 0,08 \text{ (mol)}$	0,25
		Theo pthh: $n_{H_2} = n_{O(oxit)} = 0.08$ (mol)	
		\rightarrow V _{H₂ (dktc)} = 0.08. 22,4 = 1.792 (1)	0,25
		$n_{Fe} = 0.06 \text{ (mol)}$	
		\rightarrow x: y = n _{Fe} : n _O = 0.06: 0.08 = 3:4	
		Công thức của oxit sắt là: Fe ₃ O ₄	0,25
	2	a. Fe + CuCl ₂ \rightarrow FeCl ₂ + Cu	0,25
	(0,75a)	b. Ba + $2H_2O \rightarrow Ba(OH)_2 + H_2 \uparrow$	0,25
		$Ba(OH)_2 + Na_2SO_4 \rightarrow 2NaOH + BaSO_4 \downarrow$	0,25
	3	$H_2SO_4 + 2 KOH \rightarrow K_2SO_4 + 2 H_2O$	0,25
	(1,25đ)	$nH_2SO_4 = 0.2 \text{ (mol)} \rightarrow n_{KOH} = 0.4 \text{ (mol)}$	0,25
	(-,=04)	$m_{\text{KOH}} = 0.4 \cdot 56 = 22.4 \text{ (g)}$	0,25
L	<u> </u>	$III_{NO\Pi} = 0, \tau \cdot J0 = 22, \tau (\xi)$	0,43

		$m_{\text{dd KOH}} = \frac{22,4.100}{5,6} = 400(g)$	0,25
		$V_{dd \text{ KOH}} = 400: 1,045 = 382,78 \text{ (ml)}$	0,25
Câu 4	1	- Lấy một lượng nhỏ các chất cho vào ống nghiệm, đánh số thứ tự	0,23
(4,0d)	(1,5đ)	- Cho quỳ tím lần lượt vào các dung dịch trên:	
(1,0 11)	(-,)	+ dung dịch làm quỳ tím chuyển sang màu đỏ, đó là dung dịch HCl,	
		H ₂ SO ₄ (Nhóm 1)	
		+ dung dịch làm quỳ tím chuyển sang màu xanh, đó là dung dịch KOH,	
		Ba(OH) ₂ (Nhóm 2)	
		+ dung dịch không làm quỳ tím chuyển màu, đó là dụng dịch Na ₂ SO ₄	0,5
		- Dùng dung dịch Na ₂ SO ₄ vừa nhận biết ở trên, cho lần lượt vào các dung	
		dịch nhóm 2:	
		+ Dung dịch nào xuất hiện kết tửa trắng, đó là dung dịch Ba(OH) ₂	
		+ dung dịch nào không có hiện tượng gì đó là dung dịch KOH	0.25
		$Ba(OH)_2 + Na_2SO_4 \rightarrow BaSO_4 \downarrow + 2 NaOH$	0,25 0,25
		- Dùng dung dịch Ba(OH) ₂ vừa nhận biết ở trên cho vào các dung dịch	0,23
		nhóm 1:	
		+ dung dịch nào xuất hiện kết tủa trắng, đó là dung dịch H ₂ SO ₄	
		+ dung dịch không có hiện tượng gì đó là dung dịch HCl	0,25
		$Ba(OH)_2 + H_2SO_4 \rightarrow BaSO_4 \downarrow + 2H_2O;$	
		$Ba(OH)_2 + 2HC1 \rightarrow BaCl_2 + 2H_2O;$	0,25
	2	Không thể phân biệt được vì chỉ có dung dịch HCl phản ứng được với	
	(0,5a)	dung dịch AgNO ₃ tạo kết tủa. Dung dịch HNO ₃ và H ₃ PO ₄ đều không	
		phản ứng được với dung dịch AgNO ₃	0,25
	3	$AgNO_3 + HCl \rightarrow AgCl_{\downarrow} + HNO_3$	0,25
	(2,0đ)	Phần 1: $Na_2CO_3 + 2HCl \rightarrow 2 NaCl + CO_2 \uparrow + H_2O$ (1)	
	(2,0u)	0.2 0.2 (mol)	0,25
		Phần 2:	0,23
		$Na_2CO_3 + BaCl_2 \rightarrow BaCO_3 \downarrow + 2NaCl \qquad (2)$	
		0.2 0.2 (mol)	0,25
		$Na_2SO_4 + BaCl_2 \rightarrow BaSO_4 \downarrow + 2NaCl$ (3)	
		0,2 (mol)	0,25
		$nco_2 = 0.2 \text{ mol} \rightarrow nNa_2CO_3 (1) = nNa_2CO_3 (2) = 0.2 (mol)$	0,25
		mBaCO ₃ (2) = $0,2$. $197 = 39,4$ (g)	0,25
		$mBaSO_{4 (3)} = 86 - 39,4 = 46,6 (g)$	0,25
		$nBaSO_{4 (3)} = 0.2 (mol)$	0,25
C^ 5	1	$C_{M \text{ dd } Na_2CO_3} = C_{M \text{ dd } Na_2SO_4} = 0,4:0,4=1M$	0,25
Câu 5 (4,0đ)	1 (1,0đ)	$4 \operatorname{FeS}_2 + 11 \operatorname{O}_2 \xrightarrow{t^0} 2 \operatorname{Fe}_2 \operatorname{O}_3 + 8 \operatorname{SO}_2 \uparrow$	0,25
(4,0u)	(1,00)	$2SO_2 + O_2 \xrightarrow{t^0} 2SO_3$	0,25
		$SO_3 + H_2O \rightarrow H_2SO_4$	0,25
		$Fe_2O_3 + 3H_2SO_4 \rightarrow Fe_2(SO_4)_3 + 3H_2O$	0,25
	2	Gọi số mol của Na, Ba, Na ₂ O, BaO lần lượt là a, b, c, d (mol)	0,23
	(3,0đ)	$2\text{Na} + 2\text{H}_2\text{O} \rightarrow 2\text{NaOH} + \text{H}_2 \uparrow$	
		$\begin{bmatrix} a & a & a/2 & (mol) \end{bmatrix}$	
		$Ba + 2H_2O \rightarrow Ba(OH)_2 + H_2 \uparrow$	
		b b (mol)	
		$Na_2O + H_2O \rightarrow 2 NaOH$	
		$\begin{array}{ccc} c & 2c & \text{(mol)} \end{array}$	
		$BaO + H_2O \rightarrow Ba(OH)_2$	1.0
		d d (mol)	1,0
		$m_{hh} = 23 a + 137b + 62c + 153d = 43.8 (g)$ (1)	

		(0 - 1 - 0 1 (- 1)	
		$nH_2 = a/2 + b = 0.1 \text{ (mol)} \rightarrow a + 2b = 0.2 \tag{2}$	0.25
			0,25
		Từ (3) ta có: $153b + 153d = 36,72$ (4)	
		$L \hat{a} y (1)-(4) ta có 23a - 16b + 62c = 7,08 $ (5)	
		$T\dot{x}(2) \text{ ta có } 8a + 16b = 1,6 \tag{6}$	
		Lây (5)+(6) ta có $a+2c=0.28$	
		$V_{ay}^{2} \sum_{n_{NaOH}} = 0.28 \text{(mol)}, \sum_{n_{Ba(OH)2}} = 0.24 \text{ (mol)}$	
		$nCO_2 = 0.6 \text{ (mol)}$	0,5
		$CO_2 + Ba(OH)_2 \rightarrow BaCO_3 \downarrow + H_2O$	
		0,24 0,24 (mol)	
		$CO_2 + 2 NaOH \rightarrow Na_2CO_3 + H_2O$	
		0,14 0,28 0,14 (mol)	
		$CO_2 + Na_2CO_3 + H_2O \rightarrow NaHCO_3$	
		0,14 0,14 (mol)	
		$CO_2 + BaCO_3 + H_2O \rightarrow Ba(HCO_3)_2$	
		0,08 0,08 (mol)	1,0
		$n\downarrow = 0.24 - 0.08 = 0.16 \text{ (mol)}$, -
		$m\downarrow = 0.16 \cdot 197 = 31.52 \text{ (g)}$	0,25
Câu 6	1	$S\acute{o}$ mol CuO = 6,4 : 80 = 0,08 (mol)	·, _
(3,0đ)	(1,0đ)	Số mol Fe ₂ O ₃ : 8: 160 = 0,05 (mol)	
(5,04)	(1,00)	$S \hat{o} \text{ mol } H_2SO_4$: 0,2. 1 = 0,2 (mol)	0,25
		Sau phản ứng còn chất rắn không tan, chứng tỏ axit hết, oxit dư.	0,23
		$CuO + H_2SO_4 \rightarrow CuSO_4 + H_2O$	0,25
		$Fe_2O_3 + 3H_2SO_4 \rightarrow Fe_2(SO_4)_3 + 3H_2O$	0,25
		Trường hợp 1: CuO phản ứng trước, chất rắn là Fe ₂ O ₃	,
		Số mol Fe ₂ O ₃ du: 0,01 (mol)	
		$m = 0.01 \cdot 160 = 1.6 (g)$	
		Trường hợp 2: Fe ₂ O ₃ phản ứng trước, chất rắn là CuO	
		Số mol CuO dư: 0,03 (mol)	
		Vì hỗn hợp 2 Oxit phản ứng xảy ra đồng thời nên giá trị của m là:	0,25
		m = 0.03. 80 = 2.4 (g)	0,23
		vậy 1,6 < m < 2,4	
	2	$nH_2 = 0.2 \text{ (mol)}; nso_2 = 0.25 \text{ (mol)}$	
	(2,0a)	Trường hợp 1: M không phản ứng với dung dịch HCl nhưng phản ứng	
		với dung dịch H ₂ SO ₄ đặc nóng.	
		Gọi hóa trị của M khi tác dụng với dung với dung dịch H ₂ SO ₄ đặc nóng là	
		$m (m \in N^*)$	
		$Mg + 2HCl \rightarrow MgCl_2 + H_2$	
		0,2 (mol)	0,25
		$0,2 \qquad 0,2 \qquad \text{(mol)}$ $Mg + 2H_2SO_4d \xrightarrow{t^0} MgSO_4 + SO_2 + 2H_2O$	
		0.2 0.2 (mol)	0,25
		,0	
		$2M + 2m H_2SO_4 d$ $\xrightarrow{t^0}$ $M_2(SO_4)_m + mSO_2 + 2mH_2O$	0,25
		0.1/ m 0.05 (mol)	0,23
		$\sum m_{\text{kim loại}} = 0.2.24 + \frac{0.1}{m}.M_{\text{M}} = 8 \text{ (g)}$	
		$\sum m_{\text{kim loại}} = 0.2.24 + \frac{1}{m} \cdot M_{\text{M}} = 8 \text{ (g)}$	
		\rightarrow M _M = 32m (g/mol)	0,25
		Vì M là kim loại nên m $\in \{1; 2; 3\}$	0.25
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,25
		Kim loại M là Cu	
		Trường họp 2 : M phản ứng với dung dịch HCl và với dung dịch H ₂ SO ₄	
		đặc nóng.	
		Gọi hóa trị của M khi tác dụng với dung dịch HCl là $n (n \in N^*)$	
		Gọi số mol của Mg và M lần lượt là a, b mol (a,b >0)	

$M_{\sim} + 2\Pi C_{\perp} + M_{\sim} C_{\perp} + \Pi$				
$Mg + 2HC1 \rightarrow MgCl_2 + H_2$				
a a (mol)				
$2M + 2nHCl \rightarrow 2MCl_n + nH_2$	0,25			
b bn/2 (mol)				
$Mg + 2H_2SO_4d$ $\xrightarrow{t^0}$ $MgSO_4 + SO_2 + 2H_2O$				
a a (mol)				
$2M + 2m H_2SO_4 d$ $\xrightarrow{t^0}$ $M_2(SO_4)_m + mSO_2 + 2mH_2O$				
b bm/2 (mol)				
Ta có $m_{hh} = 24a + M_M b = 8 (g)$				
$\sum_{n} H_2 = a + bn/2 = 0.2 \text{ (mol)} \rightarrow 2a + bn = 0.4 \tag{1}$				
$\sum nSO_2 = a + bm/2 = 0.25 \text{ (mol)} \rightarrow 2a + bm = 0.5 \text{ (2)}$				
$\overline{\text{Tùr}}(1) \text{ và}(2) \text{ ta có m} > \text{n}$	0,25			
Vì M là kim loại nên $n,m \in \{1; 2; 3\}$				
$+ n=1, m=2 \text{ khi d\'o a} = 0,15; b = 0,1 \rightarrow M_M = 44 \text{ (g/mol)}$ (Loại)				
$+ n=1, m=3 \text{ khi d\'o a} = 0,175; b = 0,05 \rightarrow M_M = 76 \text{ (g/mol)} \text{ (Loại)}$				
$+ n=2, m=3 \text{ khi } \text{ d\'o } a=0,1; b=0,1 \rightarrow M_M = 56 \text{ (g/mol)}$ (Chọn)				
Kim loại M là Fe				
Vậy kim loại M là Cu hoặc Fe	0,25			

*) Mọi cách giải khác đúng vẫn cho điểm tối đa theo thang điểm.

*) Tổ giám khảo bám sát biểu điểm thảo luận đáp án và thống nhất.

UBND HUYỆN KINH MÔN **PHÒNG GIÁO DỤC VÀ ĐÀO TẠO** ĐỀ THI CHỌN HỌC SINH GIỚI HUYỆN Môn: Hóa Học - Lớp 9 Năm học 2017 - 2018

> (Thời gian làm bài 120 phút) Đề bài gồm có: 01 trang

*) Chấm và cho điểm từng phần, điểm của toàn bài là tổng các điểm thành phần không làm tròn.

Câu 1(2 điểm): Nhiệt phân hoàn toàn hỗn hợp BaCO₃, MgCO₃, Al₂O₃ được chất rắn A, khí D. Hòa tan chất rắn A trong nước dư, thu được dung dịch B và kết tủa C. Sục khí D (dư) vào dung dịch B thấy xuất hiện kết tủa. Hòa tan C trong dung dịch NaOH dư thấy tan một phần.

Xác định A, B, C, D. Viết các phương trình phản ứng xảy ra.

Câu 2(2 điểm):

1. Chỉ dùng dung dịch NaOH hãy nhận biết 6 lọ không nhãn đựng riêng biệt từng dung dịch sau: K₂CO₃, (NH₄)₂SO₄, MgSO₄, Al₂(SO₄)₃, FeSO₄, Fe₂(SO₄)₃.

Viết các phương trình phản ứng minh họa.

- 2. Hãy nêu và giải thích bằng phương trình phản ứng các hiện tượng xảy ra trong từng thí nghiệm sau:
 - a. Cho NaOH dư tác dụng với dung dịch FeCl₂. Sau đó lấy kết tủa thu được để lâu trong không khí.
 - b. Cho viên Na vào cốc đựng dung dịch AlCl₃.

Câu 3(2 điểm):

- 1. Bằng phương pháp hoá học hãy tách các chất NaCl, FeCl₃, AlCl₃ ra khỏi hỗn hợp rắn mà không làm thay đổi khối lượng của mỗi chất. Viết đầy đủ các phương trình phản ứng xảy ra.
- 2. Có hỗn hợp các chất sau: Al₂O₃ và Fe₂O₃. Hãy trình bày phương pháp hóa học để điều chế riêng từng kim loại: Al, Fe từ hỗn hợp trên.

Câu 4(2 điểm): Nung 25,28 gam hỗn hợp FeCO₃ và Fe_xO_y trong O₂ dư tới phản ứng hoàn toàn, thu được khí A và 22,4 gam Fe₂O₃ duy nhất. Cho khí A hấp thụ hoàn toàn vào 400ml dung dịch Ba(OH)₂ 0,15M thu được 7,88gam kết tủa.

- 1) Viết các phương trình phản ứng xẩy ra
- 2) Tìm công thức phân tử của Fe_xO_y.

Câu 5(2 điểm): Hỗn hợp A có khối lượng 6,1g gồm CuO, Al₂O₃ và FeO. Hòa tan hoàn toàn A cần 130ml dung dịch H₂SO₄ loãng 1M, thu được dung dịch B.

Cho dung dịch B tác dụng với dung dịch NaOH dư, lọc lấy kết tủa đen nung trong không khí đến khối lượng không đổi, được 3,2g chất rắn.

Tính khối lượng từng oxit trong A.

UBND HUYỆN KINH MÔN PHÒNG GIÁO DỤC VÀ ĐÀO TẠO

HƯỚNG DẪN CHẮM ĐỀ THI CHỌN HỌC SINH GIỎI HUYỆN Môn: Hóa Học - Lớp 9 Năm học 2017 - 2018 (Thời gian làm bài 120 phút) Bài gồm có: 04 trang

Câu	Đáp án	Điểm		
	+ Nhiệt phân hỗn hợp, ta có PTPU:			
	$BaCO_3 \xrightarrow{l^0} BaO + CO_2$	0,25 đ		
	$MgCO_3 \xrightarrow{t^0} MgO + CO_2$	0,25 đ		
	$Al_2O_3 \xrightarrow{t^0} không$			
1	· ·			
(2 điểm)	$\rightarrow \text{Chất rắn } A \begin{cases} BaO \\ MgO \end{cases} \text{ Khí D: CO}_2.$	0,25 đ		
	$igl(Al_2O_3igr)$			
	+ Hòa tan A vào H ₂ O du, ta có PTPU:	0.25 #		
	$BaO + H_2O \rightarrow Ba(OH)_2$	0,25 đ		
	$MgO + H_2O \rightarrow kh\hat{o}ng$	0,25 đ		
	$Al_2O_3 + Ba(OH)_2 \rightarrow Ba(AlO_2)_2 + H_2O$	0,23 u		
	$\rightarrow d^2B : Ba(AlO_2)_2 \qquad \text{K\'et tủa } C \begin{cases} MgO \\ Al_2O_3(du) \end{cases}$	0,25 đ		
	$Al_2O_3(du)$	0,23 4		
	+ Khi cho dung dịch B tác dụng với CO ₂ dư:	0,25 đ		
	$Ba(AlO2)2 + 2CO2 + 4H2O \rightarrow 2Al(OH)3 \downarrow + Ba(HCO3)2$			
	+ Hòa tan C vào dung dịch NaOH dư, ta có PTPU:	0,25 đ		
	MgO + NaOH → không			
	$Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O$			
	(Vì kết tủa C cho vào dung dịch NaOH dư có tan một phần chứng tỏ			
	C có Al ₂ O ₃ dư; phần không tan là MgO).			
	1. Nhận biết:			
2	+ Trích mẫu thử và đánh số thứ tự 1, 2, 3, 4, 5, 6.			
(2 điểm)	+ Nhỏ từ từ dd NaOH cho tới dư vào các mẫu thử trên.			
	- Nếu không hiện tượng là K ₂ CO ₃ .			
	- Nếu xuất hiện khí mùi khai là (NH ₄) ₂ SO ₄ .			
	$2NaOH + (NH4)2SO4 \rightarrow Na2SO4 + 2NH3 + 2H2O$ (mùi khai)			
	- Nếu xuất hiện kết tủa trắng không tan là dd MgSO ₄ .	0,25 đ		
	MgSO ₄ + 2NaOH \rightarrow Mg(OH) ₂ \downarrow + Na ₂ SO ₄	0,23 u		
	$ \text{rig}SO4 + 2\text{NaOH} \rightarrow \text{rig}(OH)2 + \text{ra}2SO4$			

	 Nếu xuất hiện kết tủa keo sau đó tan dần là dd Al₂(SO₄)₃. Al₂(SO₄)₃ + 6NaOH → 2Al(OH)₃ + 3Na₂SO₄ Al(OH)₃ + NaOH → NaAlO₂ + 2H₂O Nếu xuất hiện kết tủa xanh lơ sau đó hóa nâu trong không khí là 	0,25 đ
	FeSO ₄ . FeSO ₄ + 2NaOH \rightarrow Fe(OH) ₂ + Na ₂ SO ₄ (xanh lơ) 4Fe(OH) ₂ + O ₂ 2H ₂ O \rightarrow 4Fe(OH) ₃ (xanh lơ) (nâu đỏ) - Nếu xuất hiện kết tủa nâu đỏ là Fe ₂ (SO ₄) ₃ Fe ₂ (SO ₄) ₃ + 6NaOH \rightarrow 2Fe(OH) ₃ + 3Na ₂ SO ₄ (nâu đỏ)	0,25 đ
	 2. Nêu hiện tượng và giải thích: a. + Ban đầu có kết tủa màu xanh lơ: 2NaOH + FeCl₂ → Fe(OH)₂↓ + 2NaCl (xanh lơ) 	0,25 đ
	+ Để lâu trong không khí thì kết tủa màu xanh lơ dần chuyển sang màu nâu đỏ: $4\text{Fe}(OH)_2 + O_2 + 2\text{H}_2O \rightarrow 4\text{Fe}(OH)_3$	0,25 đ
	b. + Ban đầu viên Na tan dần đến hết, xuất hiện khí không màu thoát ra, có kết tủa keo: $2Na + 2H_2O \rightarrow 2NaOH + H_2 \uparrow$	0,25 đ
	3NaOH + AlCl ₃ → Al(OH) ₃ ↓ + 3NaCl + Sau đó kết tủa keo tan dần tạo thành dung dịch: Al(OH) ₃ + NaOH → NaAlO ₂ + 2H ₂ O	0,25 đ
	1. Tách hỗn hợp: + Cho toàn bộ hỗn hợp trên vào dd NH ₃ dư, có 2 kết tủa tạo thành: AlCl ₃ + 3NH ₃ + 3H ₂ O → Al(OH) ₃ ↓ + 3NH ₄ Cl FeCl ₃ + 3NH ₃ + 3H ₂ O → Fe(OH) ₃ ↓ + 3NH ₄ Cl	0,25 đ
3 (2 điểm)	Còn NaCl không phản ứng. + Tách riêng kết tủa và nước lọc A (chứa NaCl và NH ₄ Cl). + Cho kết tủa vào NaOH dư, khi đó Al(OH) ₃ tan hết do phản ứng: Al(OH) ₃ + NaOH → NaAlO ₂ + 2H ₂ O	0,125 đ 0,125 đ
	+ Lọc lấy chất rắn không tan là Fe(OH) ₃ cho tác dụng hết với dung dịch HCl rồi cô cạn, ta được FeCl ₃ tinh khiết: Fe(OH) ₃ + 3HCl → FeCl ₃ + 3H ₂ O + Sug khí CO ₂ dự vào dụng dịch No AlO ₂ còn loi:	0,125 đ
	+ Sục khí CO ₂ dư vào dung dịch NaAlO ₂ còn lại: NaAlO ₂ + CO ₂ + H ₂ O → Al(OH) ₃ ↓ + NaHCO ₃ + Lọc lấy Al(OH) ₃ cho tác dụng với dung dịch HCl rồi cô cạn, ta thu	0,125 đ 0,125 đ
	được AlCl ₃ tinh khiết: Al(OH) ₃ + 3HCl → AlCl ₃ + 3H ₂ O + Cô cạn dung dịch A, ta thu được NaCl tinh khiết do:	0,125 d
	NH ₄ Cl — ¹⁰ → NH ₃ ↑ + HCl↑ 2. Điều chế từng kim loại Al, Fe: + Hòa tan 2 oxit vào NaOH dư, khi đó Al ₂ O ₃ tan hết do phản ứng:	0,123 d 0,25 đ
	Al ₂ O ₃ + NaOH → NaAlO ₂ + H ₂ O + Lọc lấy chất rắn không tan là Fe ₂ O ₃ đem nung nóng đỏ rồi cho luồng khí H ₂ đi qua, ta được Fe tinh khiết:	0.25đ
	Fe ₂ O ₃ + 3H ₂ $\xrightarrow{t^0}$ 2Fe + 3H ₂ O + Sục khí CO ₂ dư vào dung dịch NaAlO ₂ còn lại:	

	$NaAlO_2 + CO_2 + H_2O \rightarrow Al(OH)_3 \downarrow + NaHCO_3$	0,25đ
	+ Lọc lấy Al(OH) ₃ đem nung ở nhiệt độ cao, ta được Al ₂ O ₃ : $2Al(OH)_3 \xrightarrow{t^0} Al_2O_3 + 3H_2O$	0,125đ
	+ Điện phân nóng chảy Al ₂ O ₃ có mặt của criolit, ta thu được Al tinh	
	khiết:	0,125đ
	$2Al_2O_3 \xrightarrow{dpnc} 4Al + 3O_2$	
	1. + Đặt: $\begin{cases} n_{FeCO_3} = a(mol) \\ n_{Fe_xO_y} = b(mol) \end{cases} \Rightarrow 116.a + b.(56x + 16y) = 25,28$	0,125 đ
4	⇒ 116.a + 56.bx + 16.by = 25,28 (*) + Các PTHH:	
(2 điểm)	$FeCO_3 \xrightarrow{t^0} FeO + CO_2 $ (1) amol amol	0,125 đ
	$4\text{FeO} + \text{O}_2 \xrightarrow{t^0} 2\text{Fe}_2\text{O}_3 \tag{2}$	0,125 đ
	amol $\frac{a}{2}$ mol	
	$4\operatorname{Fe}_{x}\operatorname{O}_{y} + (3x - 2y)\operatorname{O}_{2} \xrightarrow{t^{0}} 2x\operatorname{Fe}_{2}\operatorname{O}_{3} \tag{3}$	0,125 đ
	bmol $\frac{bx}{2}$ mol	
	$Ba(OH)_2 + CO_2 \rightarrow BaCO_3 \downarrow + H_2O $ $1 mol 1 mol 1 mol (4)$	0,125 đ
	Có thể có: $Ba(OH)_2 + 2CO_2 \rightarrow Ba(HCO_3)_2$ (5) 1 mol $2 mol$	0,125 đ
	2. + Ta có: $n_{Ba(OH)_2} = C_M . V_{d^2} = 0.15.0, 4 = 0.06 (mol)$	0,125 đ
	$n_{BaCO_3} = \frac{m}{M} = \frac{7.88}{197} = 0,04(mol)$	
	$n_{Fe_xO_y} = \frac{m}{M} = \frac{22,4}{160} = 0,14(mol)$	
	+ Theo PTHH (2) và (3): $\frac{a}{2} + \frac{bx}{2} = 0.14 (mol)$	0,125 đ
	$\Leftrightarrow a + bx = 0,28 \tag{2*}$	
	+ Vì: $n_{Ba(OH)_2} > n_{BaCO_3}$ nên có 2 trường hợp xảy ra:	
	a. TH1: Chỉ xảy ra phản ứng (4), tức là: Ba(OH) ₂ dư = $0.06 - 0.04 = 0.02$ (mol). Và CO ₂ hết. - Theo PTHH (1) và (4): $n_{CO_2} = n_{BaCO_3} = 0.04$ (mol)	0,125 đ
	Hay: $a = 0.04$ (3*) thay vào (2*) ta được:	0,125 đ
	bx = 0.24 (4*) thay vào (*) ta được: by = 0.59 (5*)	0,125 đ
	- Lấy (4*) chia cho (5*) ta được: $\frac{bx}{by} = \frac{0.24}{0.59}$	
	$\Leftrightarrow \frac{x}{y} = \frac{24}{59} \longrightarrow \mathbf{Loại.}$	0,125 đ
	b. TH2: Xảy ra cả 2 phản ứng (4) và (5): $Ba(OH)_2 + CO_2 \rightarrow BaCO_3 \downarrow + H_2O \qquad (4)$	0,125 đ
	$0.04 \text{mol} 0.04 \text{mol} 0.04 \text{mol} $ $Ba(OH)_2 + 2CO_2 \rightarrow Ba(HCO_3)_2 $ (5)	0,125 đ
	$0.02 \text{mol} 0.04 \text{mol}$ $\rightarrow n_{CO_3} = 0.04 + 0.04 = 0.08 (mol)$	
	n_{CO_2} $0,01+0,01=0,00$	

	$\Rightarrow a = 0.08$ (6*) thay vào (2*) ta được:	
	bx = 0.2 (7*) thay vào (*) ta được:	0,125 đ
	bx = 0.2 (7) thay vao (7) ta duọc. by = 0.3 (8*)	0,125 G
	Lấy (7*) chia cho (8*) ta được: $\frac{bx}{by} = \frac{0.2}{0.3} \iff \frac{x}{y} = \frac{2}{3} \implies \begin{cases} x = 2\\ y = 3 \end{cases}$	0,125 đ
	Vậy công thức của oxit sắt là: Fe ₂ O ₃	
	$ + \text{D}\check{a}t: \begin{cases} n_{CuO} = a(mol) \\ n_{Al_2O_3} = b(mol) \end{cases} \Rightarrow 80a + 102b + 160c = 6, 1(g) (*) $ $ n_{FeO} = c(mol) $	0,125 đ
	+ Ta có: $n_{H_2SO_4} = C_M.V_{d^2} = 1.0,13 = 0,13 (mol)$	0,125 đ
	+ Hòa tan A bằng dd H_2SO_4 loãng ta có PTPU: $CuO + H_2SO_4 \rightarrow CuSO_4 + H_2O$ (1)	0,125 đ
5 (2 điểm)	amol amol amol $Al_2O_3 + 3H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3H_2O$ (2) bmol 3bmol bmol	0,125 đ
ì	$FeO + H_2SO_4 \rightarrow FeSO_4 + H_2O \qquad (3)$	0,125 đ
	cmol c(mol) c(mol) + Theo PTPU (3), (4), (5) ta có:	
	a + 3b + c = 0.13 (mol) (**)	0,125 đ
	$\int CuSO_4 = a(mol)$	0.125 #
	+ Trong dd B: $\left\{Al_2(SO_4)_3 = b(mol)\right\}$	0,125 đ
	$FeSO_4 = c(mol)$	
	+ Khi cho dd B tác dụng với dd NaOH dư ta có PTPU:	0,125 đ
	$CuSO_4 + 2NaOH \rightarrow Cu(OH)_2 \downarrow + Na_2SO_4 \qquad (4)$	
	amol amol	0,125 đ
	$Al_2(SO_4)_3 + 8NaOH \rightarrow 2NaAlO_2 + 3Na_2SO_4 + 4H_2O (5)$	0,125 đ
	$FeSO_4 + 2NaOH \rightarrow Fe(OH)_2 \downarrow + Na_2SO_4 $ (6)	
	cmol cmol + Khi nung kết tủa, ta có PTPU:	0,125 đ
	$Cu(OH)_2 \xrightarrow{t^0} CuO + H_2O \tag{7}$	0,125 đ
	amol amol $4Fe(OH)_2 + O_2 \xrightarrow{t^0} 2Fe_2O_3 + 4H_2O \qquad (8)$	
	cmol $\frac{c}{2}$ mol	0,125 đ
	+ Theo PTPU (4), (5), (6), (7), (8):	0,123 u
	80.a + 160.c = 3,2(g) (***)	0,125 đ
	+ Giải hệ (*), (**), (***) ta được:	
	a = 0.02mol	
	$\begin{cases} b = 0.03mol \end{cases}$	0,25 đ
	c = 0.02mol	0,23 u
	+ V_{ay} : $m_{CuO} = n.M = 0,02.80 = 1,6(g)$	
	$m_{Al_2O_3} = n.M = 0.03.102 = 3.06(g)$	
	$m_{FeO} = n.M = 0,02.72 = 1,44(g)$	

PHÒNG GD & ĐT HUYỆN GIA LỘC ĐỀ TI

ĐỀ THI HỌC SINH GIỚI LỚP 9

MÔN: HÓA HỌC Thời gian làm bài 150 phút (Đề này gồm 05 câu 01 trang)

Câu 1(2 điểm):

- 1. Dẫn khí H₂ dư đi qua hỗn hợp A gồm Fe₂O₃, Al₂O₃, MgO nung nóng, sau phản ứng thu được hỗn hợp rắn B. Cho hỗn hợp B vào dung dịch NaOH dư, sau phản ứng hoàn toàn thu được dung dịch C và rắn D. Sục khí CO₂ dư vào dung dịch C thì được kết tủa E. Cho rắn D vào dung dịch H₂SO₄ đặc, nóng dư thì được khí F mùi hắc. Viết các phương trình hóa học xảy ra và xác định thành phần A, B, C, D, E, F.
- 2. Nêu hiện tượng và viết phương trình hóa học xảy ra:
 - a) Cho mấu Na vào dung dịch FeCl₃
 - b) Nhỏ dung dịch Ca(HCO₃)₂ vào dung dịch chứa Ba(OH)₂

Câu 2(2 điểm):

- 1. Chỉ dùng thêm quỳ tím, em hãy phân biệt các dung dịch bị mất nhãn sau: H₂SO₄, NaCl, HCl, MgCl₂, Ba(OH)₂.
- **2.** Hòa tan hoàn toàn 5 gam CuSO₄.5H₂O bằng 45 gam dung dịch CuSO₄ 10% thì được dung dịch CuSO₄ bão hòa ở nhiệt độ t⁰C. Tính độ tan của CuSO₄ ở t⁰C.

Câu 3(2 điểm):

- 1. Trong phòng thí nghiệm để điều chế khí SO₂ người ta sử dụng bộ dụng cụ như hình vẽ
- a. Em hãy cho biết dung dịch X, chất rắn Y thuộc loại chất gì và viết một phương trình hóa học minh họa?
- b. Bông tẩm dung dịch NaOH có vai trò gì và có thể thay bông tẩm dung dịch NaOH bằng nút cao su được không? Hãy giải thích.

2. Cho một lượng kim loại M tác dụng vừa đủ với dung dịch H_2SO_4 10%, sau phản ứng thu được dung dịch muối có nồng độ 11,98 %. Xác định tên và kí hiệu của kim loại trên.

Câu 4(2 điểm):

- 1. Em hãy trình bày phương pháp làm sạch khí CO₂ có lẫn CO, SO₂, SO₃.
- 2. Dung dịch A là NaOH. Dung dịch B là HCl. Cho 200 gam dung dịch A vào cốc chứa 160 ml dung dịch B, tạo ra dung dịch chỉ chứa một chất tan. Cô cạn dung dịch thu được 18,9 gam chất rắn C. Nung rắn C đến khối lượng không đổi thu được thì còn lại 11,7 gam chất rắn. Tìm nồng độ phần trăm của dung dịch A và công thức của Z.

Câu 5(2 điểm):

- **1.** Sục từ từ V lít CO_2 vào dung dịch có chứa 0,4 mol $Ca(OH)_2$. Hãy tính khối lượng kết tủa thu được biết $10,08 \le V \le 13,44$.
- **2.** Khử hỗn hợp A gồm CuO và FeO bằng khí CO sau một thời gian thu được 14,4 gam hỗn hợp rắn B (gồm 4 chất) và thoát ra 4,48 lít khí C (đktc) có tỷ khối so với oxi là 1,125. Hòa tan hoàn toàn B bằng 52 gam dung dịch H₂SO₄ 98% nóng, đến khi phản ứng kết thúc thu được V lít khí SO₂ (đktc) và dung dịch D chỉ chứa Fe₂(SO₄)₃ và CuSO₄.. Tính khối mỗi oxit trong hỗn hợp A.

PHÒNG GD & ĐT HUYỆN GIA LỘC

HƯỚNG DẪN CHẨM ĐỀ THI HỌC SINH GIỎI LỚP 9 MÔN: HÓA HỌC

Thời gian làm bài 150 phút (Đề này gồm 05 câu 01 trang)

Câu	Ý	Hướng dẫn chấm	Biểu điểm
1	1	- Dẫn khí H ₂ dư đi qua hỗn hợp A.	
		$4H_2 + Fe_3O_4 \xrightarrow{t^0} 3Fe + 4H_2O$	0,25
		Rắn B gồm: Fe, Al ₂ O ₃ , MgO	
		- Cho hỗn hợp B vào dung dịch NaOH dư	
		$Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O$	0,25
		Dung dịch C chứa NaAlO ₂ và NaOH dư; rắn D gồm Fe, MgO	
		- Sục khí CO ₂ dư vào dung dịch C	
		$CO_2 + NaAlO_2 + 2H_2O \rightarrow Al(OH)_3 + NaHCO_3$	
		$CO_2 + NaOH \rightarrow NaHCO_3$	0,25
		Kết tủa E là Al(OH) ₃	
		- Cho rắn D vào dung dịch H ₂ SO ₄ đặc, nóng dư	
		$2\text{Fe} + 6\text{H}_2\text{SO}_4 \xrightarrow{t^0} \text{Fe}_2(\text{SO}_4)_3 + 3\text{SO}_2 + 6\text{H}_2\text{O}$	
		$MgO + H_2SO_4 \xrightarrow{t^0} MgSO_4 + H_2O$	0,25
		Khí F là SO ₂ .	0,23
	2	a) Mẩu Na tan dần có khí không màu không mùi thoát ra và xuất hiện kết	0,25
		tủa màu nâu đỏ	0.05
		$2Na + 2H_2O \rightarrow 2NaOH + H_2$	0,25
		$3NaOH + FeCl3 \rightarrow 3NaCl + Fe(OH)3$	0.25
		b) Xuất hiện kết tủa trắng	0,25
	1	$Ca(HCO_3)_2 + Ba(OH)_2 \rightarrow BaCO_3 + CaCO_3 + 2H_2O$	0,25
2	1	Lấy mỗi dung dịch một ít làm các mẫu thử rồi đánh số thứ tự tương ứng	0.25
		- Cho lần lượt từng mẫu thử tác dụng với quỳ tím	0,25
		+ Mẫu thử làm quỳ tím chuyển xanh là Ba(OH) ₂	
		+ Mẫu thử làm quỳ tím chuyển đỏ là HCl; H ₂ SO ₄ (nhóm 1) + Mẫu thử không làm quỳ tím chuyển màu là MgCl ₂ ; NaCl (nhóm 2)	
		- Cho Ba(OH) ₂ lần lượt tác dụng với từng mẫu thử nhóm 1	0,25
		+ Mẫu thử xuất hiện kết tủa là H ₂ SO ₄	0,23
		Ba(OH) ₂ + H ₂ SO ₄ \rightarrow BaSO ₄ + 2HCl	
		+ Mẫu thử không xuất hiện kết tủa là HCl	
		Ba(OH) ₂ + 2HCl \rightarrow BaCl ₂ + 2H ₂ O	0,25
		- Cho Ba(OH) ₂ lần lượt tác dụng với từng mẫu thử nhóm 2	0,28
		+ Mẫu thử xuất hiện kết tủa là Mg(OH) ₂	
		$Ba(OH)_2 + MgCl_2 \rightarrow Mg(OH)_2 + 2H_2O$	0,25
		+ Mẫu thử không hiện tượng gì là NaCl	,
	2	$m_{CuSO_4(tt)} = \frac{5}{250}.160 = 3.2(gam); m_{H_2O(tt)} = 5 - 3.2 = 1.8(gam)$	0,25
		250	0,25
		$m_{CuSO_4(dd10\%)} = \frac{10.45}{100} = 4,5(gam); m_{H_2O(dd10\%)} = 45 - 4,5 = 40,5(gam)$	0,23
		$=> m_{Cu\acute{u}O_4(ddbh)} = 3,2 + 4,5 = 7,7(gam); m_{H_2O(ddbh)} = 1,8 + 40,5 = 42,3(gam)$	0,25
		$=> S_{(CuSO_4;t^{\circ}C)} = \frac{7,7}{42,3}.100 = 18,2(gam)$	0,25
3	1	a) - Dung dịch X là dung dịch axit mạnh: HCl, H ₂ SO ₄	0,25
		Rắn Y là các muối sunfit, muối hidrosunfit: NaHSO3, Na2SO3	
		$NaHSO_3 + HC1 \rightarrow NaC1 + H_2O + SO_2$	0,25
		b) - Bông tẩm dung dịch NaOH để ngăn SO ₂ độc thoát ra ngoài. Vì khí	
		SO ₂ sẽ bị NaOH giữ lại theo phản ứng:	0,25

	1	00 AV 0V 27 00 77 0	l			
		SO ₂ + 2NaOH → Na ₂ SO ₃ + H ₂ O - Không thể thay bông tẩm dung dịch NaOH bằng nút cao su vì như vậy sẽ không đẩy được không khí ra khỏi lọ.	0,25			
	2	Giả sử M có số mol là 2. $2M + xH_2SO_4 \rightarrow M_2(SO_4)_x + xH_2$ 2 x 1 1 (mol)				
		$m_{H_2SO_4} = 98x(g) \Rightarrow m_{ddH_2SO_4} = 980x(g)$ $\Rightarrow m_{ddmuoi} = 2M + 978x(g)$				
		$viC\%_{ddmuoi} = 11,98\% \Rightarrow \frac{2M + 96x}{2M + 978x} = \frac{11,98}{100} \Rightarrow M = 12x$ Vì x là hóa trị của kim loại M nên x có thể nhận các giá trị 1,2,3				
		Vậy ta có bảng giá trị x 1 2 3 M 12(loại) 24(Mg) 36(loại)	0,25			
4	1	Vậy M là magie (Mg) Sục hỗn hợp khí vào dung dịch BaCl ₂ dư	0,25			
	1	Such this hop kill vao dulig dich BaCl ₂ du $SO_3 + H_2O + BaCl_2 \rightarrow BaSO_4 + 2HCl$	0,23			
		Thu hỗn hợp khí thoát ra (CO, SO ₂ , CO ₂) rồi sục vào dung dịch Br ₂ dư	0,25			
		$SO_2 + 2H_2O + Br_2 \rightarrow 2HCl + H_2SO_4$ Say phản ứng thy khí thoát ra (CO ₂ , CO) sực vào dụng dịch Ca(OH) dực	0,25			
		Sau phản ứng thu khí thoát ra (CO ₂ , CO) sục vào dung dịch Ca(OH) ₂ dư, thu khí thoát ra đem làm khô ta được CO	0,23			
		$CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$	0,25			
	2	Vì dung dịch chỉ chứa một chất tan nên dung dịch chỉ chứa chất tan là NaCl. Cô cạn dung dịch thu được 18,9 gam chất rắn C. Nung rắn C đến				
		khối lượng không đối thu được thì còn lại 11,7 gam chất rắn chứng tỏ C là muối ngậm nước NaCl.nH ₂ O. 11,7 gam là khối lượng muối NaCl khan.=> $m_{H_2O(tt)} = 18,9-11,7 = 7,2(gam)$				
		$\frac{18n}{58.5} = \frac{7.2}{11.7} => n = 2$ Vây câng thức của C là NaCl 2H-O				
		Vậy công thức của C là NaCl.2H ₂ O. $n_{NaCl} = 11,7:58,5 = 0,2 \text{ (mol)}$ NaOH + HCl \rightarrow NaCl + H ₂ O				
		$=> C\%_{(NaOH)} = \frac{0.2 \cdot 0.2}{200} \cdot 100 = 4\%$ (mol)	0,25			
5		1. Ta có $0.45 \le n_{CO_2} \le 0.6$				
		Khi sục CO_2 vào dung dịch $Ca(OH)_2$ có thể sảy ra các phản ứng sau: $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$ (1)	0.25			
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,25			
		$2CO2 + Ca(OH)2 \rightarrow Ca(HCO3)2 (2)$ $2y $	0,25			
		- Để chỉ tạo muối trung hòa				
		: $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$ $0.4 \leftarrow 0.4 0.4 \text{mol}$ $=> n_{CO_2} \le 0.4 \text{mol}$				
			0,25			
		- Để chỉ tạo muối axit 2CO ₂ + Ca(OH) ₂ → Ca(HCO ₃) ₂				
		$0.8 \leftarrow 0.4$ (mol)				

 $=> n_{CO_2} \ge 0.8 mol$ Vậy với $0.45 \le n_{CO_2} \le 0.6$ thì phản ứng sẽ tạo 2 muối và kết tủa sẽ giảm dần khi lượng CO2 tăng dần Gọi $n_{CaCO_3} = xmol; n_{Ca(HCO_3)_2} = y$ 0,25 * Khi $n_{CO_2} = 0,45$ mol ta có hệ pt: x + y = 0,4 => x = 0,35; y = 0,05* Khi $n_{CO_2} = 0.6$ mol ta có hệ pt: $\begin{cases} x + y = 0.4 \\ x + 2y = 0.6 \end{cases} = x = y = 0.2$ $=>0, 2 \leq n_{CaCO_3} \leq 0, 35 => 20g \leq m_{CaCO_3} \leq 35g$ 0,25 2. * Khử hỗn hợp A ta có sơ đồ: $A + CO \xrightarrow{t^0} B + khí C(1)$ $\overline{M_C}$ = 32.1,125 = 36 => Khí C gồm CO và CO₂ $n_C = 4.48$: 22,4 = 0,2 (mol) => $m_C = 36.0.2 = 7.2$ (g) Theo bảo toàn mol C ta có: $n_{CO(bd)} = n_{khi} = 0.2 \text{ mol}$ Ap dụng đlbt khôi lượng ở (1) ta có: $m_A + m_{CO(bd)} = m_B + m_{khi} C$ Hay $m_A + 0.2.28 = 14.4 + 7.2 => m_A = 16 g$ Gọi số mol CuO và FeO trong A lần lượt là x, y (mol) => 80x + 72y = 16(2)* Hòa tan hoàn toàn hỗn họp B bằng H2SO4 đặc nóng ta có sơ đồ phản ứng: $B + H_2SO_4 \xrightarrow{\iota^0} mu\acute{o}i \int Fe_2(SO_4)_3 + SO_2 + H_2O$ (3) Theo bảo toàn mol Fe, Cu => $n_{Fe_2(SO_4)_3} = \frac{y}{2} mol; n_{CuSO_4} = xmol$ $m_{H_HSO_4} = \frac{52.98}{100} = 50,96(g) \Rightarrow n_{H_2SO_4} = \frac{50,96}{98} = 0,52mol$ Theo bảo toàn mol S ta có: $n_{S(trong SO2)} = n_{(s trong axit)} - n_{S(trong mu\acuteoi)}$ $=> n_{(S \text{ trong SO2})} = 0.52 - x - 1.5y \text{ (mol)}$ Theo bảo toàn mol H => $n_{H,O} = n_{H,SO_4} = 0.52 (mol)$ Áp dụng định luật bảo toàn cho sơ đồ 3 ta có: $m_B + m_{axit} = m_{mu\acute{o}i} + m_{SO_2} + m_{H_2O}$ =>14,4+50,96=160x+400.0,5y+(0,52-x-1,5y).64+0,52.18=> 96x + 104y = 22,72 (4)Kết hợp (2) và (4) giải ta được: x = 0.02; y = 0.2 $=>m_{FeO} = 0,2.72 = 14,4 \text{ (gam)}$ $m_{CuO} = 0.02.80 = 1.6$ (gam)

SỞ GIÁO DỤC VÀ ĐÀO TẠO 2018

KỲ THI HỌC SINH GIỚI LỚP 9 NĂM HỌC 2017-

MÔN: HÓA HỌC (đề gồm 03 trang) Thời gian: 180 phút (không kể thời gian giao đề)

Câu 1 (2 điểm):

- **1.** Hai nguyên tố R và R' đều ở thể rắn trong điều kiện thường, 12 gam R có số mol nhiều hơn số mol của 6,4 gam R' là 0,3 mol. Biết khối lượng mol của R nhỏ hơn khối lượng mol của R' là 8.
- a. Xác định hai nguyên tố R và R'.

b. Tính khối lương chất rắn thu được khi nung nóng hỗn hợp R và R' (trong môi trường không có không khí).

2. Bằng phương pháp hóa học và chỉ dùng một thuốc thử là dung dịch H₂SO₄ loãng, hãy nhận biết các ống nghiệm chứa các dung dịch riêng biệt sau: BaS, Na₂S₂O₃, Na₂SO₄, Na₂CO₃, Fe(NO₃)₂. Viết các phương trình hóa học xảy ra.

Câu 2 (2 điểm):

1. Cho các dãy chất sau:

Dãy 1: CH_4 , $CH_3 - CH_3$, $CH_3 - CH_2 - CH_3$, ...

 $D\tilde{a}y 2: CH_2=CH_2, CH_2=CH-CH_3, CH_2=CH-CH_2-CH_3, ...$

Dãy 3: $CH \equiv CH$, $CH \equiv C - CH_3$, $CH \equiv C - CH_2 - CH_3$, $CH \equiv C - ...$

a. Hãy nhân xét đặc điểm cấu tạo và viết công thức tổng quát của các chất trong mỗi dãy.

b. Viết phản ứng cháy của dãy 1, 2, 3; phản ứng cộng của dãy 2; phản ứng cộng và thế của dãy 3.

2. Cho sơ đồ phản ứng sau:

Biết A là tinh bột và F là bari sunfat.

$$C_1 \xrightarrow{+Y_1} D_1 \xrightarrow{+Z_1} E_1 \xrightarrow{+I_1} F$$

$$C_2 \xrightarrow{+Y_2} D_2 \xrightarrow{+Z_2} E_2 \xrightarrow{+I_2} F$$

Hãy chọn các chất X, B, C₁, C₂, Y₁, Y₂, D₁, D₂, Z₁, Z₂, E₁, E₂, I₁, I₂ trong số các chất sau: natri sunfat; cacbon đioxit; bari clorua; axit axetic; glucozo; ruou (ancol) etylic; nước; bari cacbonat; axit clohidric; bari axetat; bari hidroxit; bari; oxi; amoni sunfat để thỏa mãn sơ đồ phản ứng đã cho. Viết các phương trình phản ứng hóa học (ghi rõ điều kiên nếu có) theo sư biến hóa đó.

Câu 3 (2.5 điểm):

1. Hỗn hợp A gồm Fe_xO_y, FeCO₃, RCO₃ (R thuộc nhóm IIA). Hoà tan m gam A dùng vừa hết 245 ml dung dịch HCl 2 M. Mặt khác, đem hoà tan hết m gam A bằng dung dịch HNO₃ được dung dịch B và 2,8 lít khí C (đktc) gồm NO (sản phẩm khử duy nhất) và CO₂. Cho dung dịch B tác dụng hoàn toàn với dung dịch NaOH dư, thu được 21,69 gam kết tủa D. Chia D thành 2 phần bằng nhau. Nung phần 1 trong không khí đến khối lương không đổi thu được 8,1 gam chất rắn chỉ gồm 2 oxit. Hoà tan hết phần 2 bằng dung dịch H₂SO₄ loãng vừa đủ được dung dịch G. Cho 23,1 gam bột Cu vào một nửa dung dịch G, sau khi phản ứng hoàn toàn lọc tách được 21,5 gam chất rắn. Viết phương trình hóa học của các phương trình phản ứng xảy ra và xác định công thức Fe_xO_v, RCO₃.

2. Criolit được điều chế theo phản ứng sau: $Al_2O_{3(r\check{a}n)} + HF_{(dd)} + NaOH_{(dd)} \rightarrow Na_3AlF_{6(r\check{a}n)} +$ H₂O .Tính khối lượng quặng có chứa 80% Al₂O₃ (còn lại là tạp chất trơ) cần dùng để sản xuất 1 tấn criolit, biết hiệu suất phản ứng là 75%.

Câu 4 (1.5 điểm):

1. Axit xitric là một loại axit hữu cơ có trong nhiều loại quả (cam, chanh, ...) ;công thức cấu tao của axit xitric (như hình bên).

a. Viết công thức phân tử của axit xitric.

b. Trong "viên sủi" có những chất hóa học có tác dụng chữa bệnh, ngoài ra còn chứa một ít bột natri hidrocacbonat và bôt axit xitric. Nêu hiện tương và viết phương trình hóa học xảy ra khi cho "viên sủi" vào nước.

2. Cân bằng phương trình hóa học sau bằng phương pháp thăng bằng electron.

a) $FeS_2 + H_2SO_4 \stackrel{t^0}{\text{dặc}} \xrightarrow{t^0} Fe_2(SO_4)_3 + SO_2 + H_2O.$

b) $FeCO_3 + FeS_2 + HNO_3 \rightarrow Fe_2(SO_4)_3 + CO_2 + NO + H_2O$.

Câu 5 (2 điểm): Cho sơ đồ điều chế khí O₂ trong phòng thí nghiêm:

- 1. Từ hình vẽ trên, hãy cho biết:
 - a. Tên các dụng cụ thí nghiệm đã đánh số trong hình vẽ.
 - b. Chỉ ra hai chất có thể là X trong sơ đồ trên, viết phương trình phản ứng minh họa.
 - c. Giải thích tại sao trong thí nghiệm trên?
- Khí O₂ lại được thu bằng phương pháp đẩy nước.
- Khi kết thúc thí nghiệm phải tháo ống dẫn khí trước khi tắt đèn cồn.
- **2.** Trong thí nghiệm trên, nếu nung m gam $KMnO_4$ với hiệu suất phản ứng 60% rồi dẫn toàn bộ khí sinh ra vào một bình cầu úp ngược trong chậu H_2O như hình vẽ. Một số thông tin khác về thí nghiệm là: nhiệt độ khí trong bình là 27,3 0 C; áp suất không khí lúc làm thí nghiệm là 750 mmHg; thể tích chứa khí trong bình cầu là 400 cm³; chiều cao từ mặt nước trong chậu đến mặt nước trong bình cầu là 6,8cm; áp suất hơi nước trong bình cầu là 10 mmHg .Biết khối lượng riêng của Hg là 13,6gam/cm³, của nước là 1 gam/cm³ .Hãy tính m.
- Câu 6 (3 điểm): Cho hỗn hợp **X** gồm 3 hidrocacbon **A**, **B**, **C** mạch hở, thể khí (ở điều kiện thường). Trong phân tử mỗi chất có thể chứa không quá một liên kết đôi, trong đó có 2 chất với thành phần phần trăm thể tích bằng nhau. Trộn m gam hỗn hợp **X** với 2,688 lít O₂ thu được 3,136 lít hỗn hợp khí **Y** (các thể tích khí đều đo ở đktc). Đốt cháy hoàn toàn hỗn hợp **Y**, rồi thu toàn bộ sản phẩm cháy sục từ từ vào dung dịch Ca(OH)₂ 0,02 M, thu được 2,0 gam kết tủa và khối lượng dung dịch giảm đi 0,188 gam. Đun nóng dung dịch này lại thu thêm 0,2 gam kết tủa nữa (Cho biết các phản ứng hóa học đều xảy ra hoàn toàn).
- 1. Tính m và thể tích dung dịch Ca(OH)₂ đã dùng.
- 2. Tìm công thức phân tử, công thức cấu tạo của 3 hidrocacbon.
- 3. Tính thành phần % thể tích của 3 hidrocacbon trong hỗn hợp X.
- Câu 7 (1 điểm): Trộn ba oxit kim loại là FeO, CuO, MO (M chỉ có hóa trị II) theo tỉ lệ về số mol là
- 5: 3: 1 được hỗn hợp A. Dẫn một luồng khí H₂ dư qua 11,52g A đun nóng đến khi phản ứng xảy ra hoàn toàn thu được hỗn hợp chất rắn B. Để hòa tan hết B cần 450ml dung dịch HNO₃ 1,2M thu được V lít khi NO duy nhất (đktc) và dung dịch chỉ chứa muối nitrrat của kim loại. Xác định kim loại M và tính V.
- **Câu 8 (2 điểm):** Hỗn hợp rắn A gồm kim loại M và 1 oxit của nó có khối lượng là 177,24 gam. Chia A thành 3 phần bằng nhau:
- **Phần 1:** hòa tan trong dung dịch gồm HCl và H_2SO_4 dư thu được 4,48 lít H_2 .
- **Phần 2:** hòa tan trong dung dịch HNO_3 dư thu được 4,48 lít khí không màu hóa nâu trong không khí và dung dịch B.
- **Phần 3:** đem đun nóng với chất khí CO dư đến khi phản ứng hoàn toàn thì cho toàn bộ chất rắn hòa tan hết trong nước cường toan dư thì chỉ có 17,92 lít NO thoát ra. *Các khí thoát ra ở điều kiện tiêu chuẩn*.
- 1. Xác định công thức của kim loại và oxit.
- **2.** Nếu ở phần 2 cho thể tích dung dịch HNO_3 là 1 lít và lượng HNO_3 dư 10% so với lượng phản ứng vừa đủ với hỗn hợp kim loại và oxit.
 - Xác định nồng độ mol/l của HNO₃.

Dung dịch B có khả năng hòa tan tối đa bao nhiêu gam Fe.

Câu 9 (2 điểm): Hỗn hợp \mathbf{Z} chứa 3 axit cacboxylic: \mathbf{A} là $C_nH_{2n+1}COOH$, \mathbf{B} là $C_mH_{2m+1}COOH$ và \mathbf{D} là $C_aH_{2a-1}COOH$ (với n, m, a: nguyên dương và m = n + 1). Cho 74 gam \mathbf{Z} tác dụng vừa đủ với dung dịch NaOH rồi cô cạn dung dịch sau phản ứng, thu được 101,5 gam hỗn hợp muối khan. Mặt khác đốt cháy hoàn toàn 14,8 gam \mathbf{Z} thu được 11,2 lít CO_2 (đktc).

- 1. Xác định công thức cấu tạo của A, B và D.
- 2. Tính % khối lượng mỗi axit trong hỗn hợp Z.
- 3. Hãy nêu tính chất hoá học của axit **D** và viết phương trình hoá học minh hoạ.

Câu 10 (2 điểm):

- 1. Nêu hiện tượng, viết các phương trình hóa học xảy ra trong các thí nghiệm sau:
- a. Cho Na vào dung dịch CuSO₄.
- b. Cho từ từ đến dư dung dịch KOH vào dung dịch AlCl₃.
- c. Cho bột Cu vào dung dịch FeCl₃.
- **d.** Cho rất từ từ đến dư dung dịch HCl vào dung dịch K₂CO₃ và khuấy đều.
- **2.** Axit $CH_3 CH = CH COOH$ vừa có tính chất hóa học tương tự axit axetic vừa có tính chất hóa học tương tự etilen. Viết các phương trình hóa học xảy ra giữa axit trên với: K, KOH, C_2H_5OH (*có mặt* H_2SO_4 đặc, đun nóng) và dung dịch nước brom để minh họa nhận xét trên.

Hết

Thí sinh không được sử dụng tài liệu (kể cả bảng hệ thống tuần hoàn) Giám thị coi thi không giải thích gì thêm!

Họ và tên thí sinh:	Số	bác
danh		

SỞ GIÁO DỤC VÀ ĐÀO TẠO

HƯỚNG CHẨM THI KỲ THI HỌC SINH GIỚI LỚP 9 NĂM HỌC 2018-

2019

MÔN: HÓA HỌC

(Đáp án gồm: 10 trang)

I. LƯU Ý CHUNG:

- Hướng dẫn chấm chỉ trình bày một cách giải với những ý cơ bản phải có. Khi chấm bài học sinh làm theo cách khác nếu đúng và đủ ý thì vẫn cho điểm tối đa.
- Điểm toàn bài tính đến 0,25 và không làm tròn.

II. ĐÁP ÁN:

CÂU	NỘI DUNG TRÌNH BÀY	ÐIỀM
	a, Ta có: $\frac{12}{R} - \frac{6.4}{R'} = 0.3$	
	R' = R + 8	
	$\rightarrow 0.3R^2 - 3.2R - 96 = 0$	
1	→ Nghiệm hợp lí : R = 24	
	R' = 32 → R' là S (lưu huỳnh)	
	b, $S\acute{o}$ mol của $Mg = 12/24 = 0.5 \text{(mol)}$	
	Số mol của $S = 6.4/32 = 0.2 \text{(mol)}$	
	$Mg + S \xrightarrow{t^o} MgS$	

	Trước phản ứng: 0,5 0,2	(mol)				
	Phản ứng: 0,2 0,2	0,2 (mol)				
	Sau phản ứng: 0,3 0	0,2 (mol)				
	\rightarrow m _{chất rắn} = 0,3.24 + 0,2.56 = 18,	, ,				
	 2 Mẫu thử tạo khí mùi trứng thối và kết tủa trắng là BaS BaS + H₂SO₄ → H₂S + BaSO₄. - Mẫu thử vừa tạo khí mùi sốc vừa tạo kết tủa vàng với H₂SO₄ loãng là Na₂S₂O₃ Na₂S₂O₃ + H₂SO₄ → S + SO₂ + Na₂SO₄ + H₂O 					
			loãng là NacCO			
	- Mẫu thử tạo khí không màu không mùi với H ₂ SO ₄ loãng là Na ₂ CO ₃ Na ₂ CO ₃ + H ₂ SO ₄ → CO ₂ + Na ₂ SO ₄ + H ₂ O					
	- Mẫu thử tạo khí không màu hóa nâu trong không khí là Fe(NO ₃) ₂ .					
	$3Fe^{2+} + 4H^{+} + NO_{3}^{-} \rightarrow 3Fe^{3+} + NO_{3}^{-}$	$O + 2H_2O$.				
	$2NO + O_2 \rightarrow 2NO_2$					
	Còn lại là Na ₂ SO ₄ .					
	1. a) Đặc điểm cấu tạo và công thức	ng quát				
	Dãy 1: chỉ chứa liên kết đơn, mạch		1)			
	Dãy 2: có chứa 1 liên kết đôi, mạch					
	Dãy 3: có chứa 1 liên kết ba đầu mạ					
	b) Viết phản ứng cháy của dãy 1, 2, 3: $C_xH_y + (x + y/4) O_2 \rightarrow xCO_2 + y/2 H_2O$ Hoặc viết độc lập 3 phương trình phản ứng của 3 dãy					
	Phản ứng cộng của dãy 2: $C_nH_{2n} + Br_2 \rightarrow C_nH_{2n}Br_2$					
	Phản ứng cộng và thế của dãy 3: C _n H ₂		H _{2n 2} Br ₄			
	$C_2H_2+Ag_2O \xrightarrow{NH_3} C_2Ag_2+H_2O$, 20		_			
		$\Pi_{2n-2}+Ag_2O$	\rightarrow 2C _n F12 _n -3Ag +F12O			
	2. * Chọn đúng các chất:		-2			
	A: $(C_6H_{10}O_5)_n$	C_2 : C_2H_5Ol	H			
	$X: H_2O$	\mathbf{Y}_2 : \mathbf{O}_2				
	B: $C_6H_{12}O_6$	D ₂ : CH ₃ CC	OOH			
2	C_1 : CO_2	\mathbb{Z}_2 : Ba				
	Y_1 : Ba(OH) ₂	E ₂ : (CH ₃ CO				
	D_1 : BaCO ₃	I ₁ : Na ₂ SO ₄				
	Z_1 : HCl	I_2 : $(NH_4)_2S$	O_4			
	E ₁ : BaCl ₂					
	* Viết 08 phương trình hóa học:					
	$(C_6H_{10}O_5)_n + nH_2O \xrightarrow{H^+, t^0C} nC_6$	$_{12}O_{6}$				
	$C_6H_{12}O_6 \xrightarrow{menruou} 2CO_2 + 2C_2H_5$	Ή				
	$CO_2 + Ba(OH)_2 \rightarrow BaCO_3 + H_2O$					
	$BaCO_3 + 2HCl \rightarrow BaCl_2 + CO_2$	H ₂ O				
	$BaCl2 + Na2SO4 \rightarrow BaSO4 + Na2SO4$					
	$C_2H_5OH + O_2 \xrightarrow{men} CH_3COOH$					
	$2CH3COOH + Ba \rightarrow (CH3COO)2Ba + H2$ $(CH3COO)2Ba + (NH4)2SO4 \rightarrow BaSO4 + 2CH3COONH4$					
		704 ZCII3CC	JO11114			
	1 PTHH:					
	$F_{ex}O_{y} + 2yHCl \rightarrow xFeCl_{2y/x} + yH_{2}O$ $F_{ex}CO_{y} + 2HCl \rightarrow xFeCl_{2y/x} + yH_{2}O$					
	$FeCO_3 + 2HCl \rightarrow FeCl_2 + CO_2 + H_2O$					
	$RCO_3 + 2HCl \rightarrow RCl_2 + CO_2 + H_2O$					
3	$3Fe_xO_y + (12x - 2y)HNO_3 \rightarrow 3xFe(NO_3)_2 + (3x - 2y)NO + (6x - y)H_2O$					
	$3FeCO_3 + 10HNO_3 \rightarrow 3Fe(NO_3)$	•				
	$RCO_3 + 2HNO_3 \rightarrow R(NO_3)_2 + CO_2 + H_2O$					
	$Fe(NO_3)_3 + 3NaOH \rightarrow Fe(OH)_3$					
	$R(NO_3)_2 + 2NaOH \rightarrow R(OH)_2$	- 2NaNO ₃				

	$2\text{Fe}(\text{OH})_3 \xrightarrow{t^0} \text{Fe}_2\text{O}_3 + 3\text{H}_2\text{O}$			
	$R(OH)_2 \xrightarrow{t^0} RO + H_2O$			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	- Gọi a, b lần lượt là số mol của Fe(OH) ₃ và M(OH) ₂ , do nung kết tủa tạo hỗn hợp			
	oxit nên M(OH) ₂ không tan trong nước, gọi z, t lần lượt là số mol của Fe _x O _y và			
	FeCO ₃ trong m gam hỗn hợp A			
	- Theo các phương trình phản ứng, bài ra và áp dụng ĐLBT ta có các hệ:			
	107a + (R + 34)b = 21,69 $a = 0,2$ mol			
	$\begin{cases} 80a + (R+16)b = 16,2 \implies \begin{cases} b = 0,005 \text{ mol} \end{cases}$			
	$\begin{cases} 80a + (R+16)b = 16, 2 \\ \frac{a}{2} = \frac{4(23, 1-21, 5)}{64} \end{cases} \Rightarrow \begin{cases} b = 0,005 \text{ mol} \\ R = 24 \text{ (Mg)} \end{cases}$			
	$\left\lfloor \frac{2}{2} \right\rfloor = \frac{64}{64}$			
	$\begin{cases} 2zy + 2t + 0,005.2 = 0,49 \\ zx = 0.12 \end{cases}$			
	$\begin{cases} (3x-2y) = 4 + 4 + 0,005 = 0,125 \Rightarrow \begin{cases} 2y = 0,16 \Rightarrow \frac{x}{0} = \frac{3}{0} \end{cases}$			
	$\begin{cases} 2zy + 2t + 0,005.2 = 0,49 \\ (3x - 2y)\frac{z}{3} + 4\frac{t}{3} + 0,005 = 0,125 \Rightarrow \begin{cases} zx = 0,12 \\ zy = 0,16 \Rightarrow \frac{x}{y} = \frac{3}{4} \\ t = 0,08 \end{cases}$			
	Vậy công thức của oxit và muối cacbonat là: Fe_3O_4 và $MgCO_3$. 2. Al_2O_3 $(r\acute{a}n) + 12HF$ $(dd) + 6NaOH$ $(dd) \rightarrow 2Na_3AlF_6$ $(r\acute{a}n) + 9H_2O$.			
	$n_{Al_2O_3} = 242.86 \text{kg}$			
	$m_{\text{quặng}} = 303,57 \text{ kg} \rightarrow m_{\text{quặng thực tế}} = 404,76 \text{ kg}$			
	1. a) CTPT: C ₆ H ₈ O ₇			
	b) cho "viên sủi" và nước thì xảy ra phản ứng giữa axit xitric và NaHCO ₃ nên ta			
	có phương trình sau:			
	$C_3H_4(OH)(COOH)_3 + 3NaHCO_3 \rightarrow C_3H_4(OH)(COONa)_3 + 3CO_2 + 3H_2O$			
	2.			
	a) $2\text{FeS}_2 + 14\text{H}_2\text{SO}_4 \stackrel{\text{t}^\circ}{\text{d}} \longrightarrow \text{Fe}_2(\text{SO}_4)_3 + 15\text{SO}_2 + 14\text{H}_2\text{O}$			
4	$2x \mid FeS_2 \rightarrow Fe + 2S + 11e$			
	$11x \mid \stackrel{^{+6}}{S} + 2e \rightarrow \stackrel{^{+4}}{S}$			
	b) $3\text{FeCO}_3 + 9\text{FeS}_2 + 46\text{HNO}_3 \rightarrow 6\text{Fe}_2(\text{SO}_4)_3 + 3\text{CO}_2 + 46\text{NO} + 23\text{H}_2\text{O}$			
	$3x \mid Fe+3FeS_2 \to 4Fe+6S+46e$			
	$46x \stackrel{+5}{N} + 3e \rightarrow \stackrel{+2}{N}$			
	1. a) (1) Đèn cồn; (2) Ống nghiệm; (3) Giá đỡ.			
	(4) Nút cao su (5); Ông dẫn khí; (6) Chậu thủy tinh.			
	b) X có thể là: KClO ₃ , KMnO ₄ .			
5	Hai phản ứng:			
	$2KClO_3 \xrightarrow{t^0, MnO_2} 2KCl + 3O_2$			
	$2KMnO_4 \xrightarrow{t^{\circ}} K_2MnO_4 + MnO_2 + O_2$			
	Тт.			

c) Giải thích: + Khí O_2 rất ít tan trong nước, có M = 32 nặng hơn kh ng khí ($M_{KK}=29$) không nhiều, nên được thu qua nước. + Phải tháo ống dẫn khí trước vì nếu tắt đèn cồn trước, sự chênh lệch áp suất sẽ làm cho nước trào vào ống nghiệm, gây vỡ ống nghiệm. $P_{\text{khí O2}} = 750 - 10 - 6.8 \times 10 \times \frac{1}{13.6} = 735 \text{ (mmHg)} = 0.9671 \text{ (atm)}$ $2KMnO_4 \xrightarrow{t^0} K_2MnO_4 + MnO_2 + O_2$ $n_{O2} = \frac{P_{khiO2} * 0.4}{\frac{22.4}{273} * 273 * 1.1} = 0.0157 \text{ (mol)}$ $m_{\text{KMnO4}} = 2 \times n_{\text{O2}} \times \frac{100}{60} \times 158 = 8,269 \text{ (gam)}$ **1.** $n_{o_2} = \frac{2,688}{22.4} = 0.12$ (mol), $n_{\text{hon hop Y}} = \frac{3,136}{22.4} = 0.14$ (mol) $n_{\text{hon hop }X} = 0.14 - 0.12 = 0.02 \text{ (mol)}$ Đặt công thức trung bình của A, B, C là: $C_{\overline{z}}H_{\overline{z}}$ $C_{\overline{x}}H_{\overline{y}} + (\overline{x} + \frac{y}{4})O_2 \xrightarrow{t^0} \overline{x}CO_2 + \frac{y}{2}H_2O$ PUHH: (1) Hỗn hợp sản phẩm đốt cháy Y gồm CO₂, H₂O, O₂ (có thể dư), sục sản phẩm cháy vào dung dịch Ca(OH)₂, có PUHH $CO_2 \ + \ Ca(OH)_2 \ \rightarrow \ CaCO_3 \rlap{\downarrow} \ + \ H_2O$ (2) $2CO_2 + Ca(OH)_2 \rightarrow Ca(HCO_3)_2$ (3) $Ca(HCO_3)_2 \xrightarrow{t^0} CaCO_3 \downarrow + H_2O + CO_2 \uparrow$ $T\mathring{u}(2) \rightarrow n_{CO_2} = n_{CaCO_3(2)} = \frac{2,0}{100} = 0,02 \text{ (mol)}$ (4) từ (3), (4) $\rightarrow n_{CO_2} = 2 n_{CaCO_3 (3)} = 2.\frac{0.2}{100} = 0.004 \text{ (mol)}$ Vậy: Tổng số mol CO_2 ở sản phẩm cháy tạo ra: 0.02 + 0.004 = 0.024 (mol) 6 $m_{dd giam} = m_{CaCO_3(2)} - (m_{CO_2} + m_{H_2O}) = 0.188 (g)$ $\rightarrow m_{H_2O} = 2.0 - 0.024.44 - 0.188 = 0.756 (g)$ $n_{H_2O} = \frac{0.756}{18} = 0.042 \text{ (mol)}$ Theo định luật BTKL: $m_X = m_C + m_H = 0.024.12 + 0.042. 2 = 0.372$ (gam) $n_{\text{Ca(OH)}_2} = n_{\text{Ca(OH)}_2 (2)} + n_{\text{Ca(OH)}_2 (3)} = 0.02 + 0.002 = 0.022 \text{ (mol)}$ \rightarrow V = $\frac{0.022}{0.02}$ = 1,1 (lít) **2.** $n_{C_n H_{2n+2}} = n_{H_{2O}} - n_{CO_2} = 0,042 - 0,024 = 0,018 \text{ (mol)}$ Từ n_{CO_2} ; $n_X \rightarrow \bar{x} = \frac{0.024}{0.02} = 1.2 \rightarrow \text{trong X có một chất là CH}_4$ Vậy 3 hidrocacbon có thể có CTTQ thuộc các loại C_nH_{2n+2}, C_mH_{2m} (Vì 3

hidrocacbon có tôi đa một liên kết đôi)

 $n_{\rm X} = n_{H_2O} - n_{CO_2} = 0.018 < 0.02 \rightarrow loại$

Trường hợp 1: X có 3 hiđrocacbon đều có CTTQ C_nH_{2n+2}

Chia X thành 3 trường hợp:

Trường hợp 2: X gồm CH₄, một hiđrocacbon có CTTQ C_nH_{2n+2} và một

hidrocacbon có CTTQ C_mH_{2m} $(n, m \le 4; m \ge 2)$

Đặt $n_{CH_4} = x$ (mol), $n_{C_nH_{2n+2}} = y$ mol, $n_{C_mH_{2m}} = z$ mol

Ta có: x + y = 0.018 mol

$$z = 0.02 - 0.018 = 0.002 \text{ mol}$$

a) Nếu:
$$x = y = \frac{0.018}{2} = 0.009$$

 $n_C = 0.009 \cdot 1 + 0.009 \cdot n + 0.002 \cdot m = 0.024$

 \Rightarrow 9n + 2m = 15

m	2	3	4
n	11	1	7
	9		9

$$\rightarrow$$
 (loại)

b) Nếu:
$$y = z \rightarrow x = 0.018 - 0.002 = 0.016$$

$$\rightarrow$$
 n_C = 0,016 . 1 + 0,002n + 0,002m = 0,024 \Rightarrow n + m = 4

m	2	3	4	
n	2	1	0	

→ Chọn cặp nghiệm: C₂H₆, C₂H₄

Vậy công thức phân tử của hỗn hợp X: CH₄, C₂H₆, C₂H₄

CTCT:

$$CH_3 - CH_3$$
, $CH_2 = CH_2$, $H - \overset{H}{C} - H$

c) Nếu
$$x=z=0.02 \rightarrow y=0.016$$

$$n_C = 0.002 . 1 + 0.016n + 0.002m = 0.024 \rightarrow 8n + m = 11$$

m	2	3	4
n	9	1	7
	8		8

$$\rightarrow$$
 (loai)

Trường hợp 3: X gồm CH₄, một hiđrocacbon có CTTQ C_nH_{2n} và một hiđrocacbon có CTTQ C_mH_{2m} $(2 \le n, m \le 4)$

Đặt
$$n_{CH_4} = x$$
 (mol), $n_{C_nH_{2n}} = y$ mol, $n_{C_mH_{2m}} = z$ mol

$$n_{H_2O}$$
 - $n_{CO_2} = 0.018 \rightarrow y + z = 0.02 - 0.018 = 0.002 mol$

vì x phải khác y và $z \rightarrow y = z = 0,001$

 $n_C = 0.018 \cdot 1 + 0.001n + 0.001m = 0.024$

n + m = 6

m	2	3	4
n	4	3	2

 \rightarrow Chọn: C_2H_4 , C_4H_8

CTCT của C₄H₈:

$$CH_3 - CH = CH - CH_3$$
 $CH_2 = CH - CH_2 - CH_3$ $CH_2 = C - CH_3$

3.

a) Trường hợp: CH₄, C₂H₆, C₂H₄

```
%CH_4 = \frac{0.016}{0.02}.\ 100\% = 80\%, %C_2H_6 = %C_2H_4 = 10\%
      b) Trường họp: CH<sub>4</sub>, C<sub>2</sub>H<sub>4</sub>, C<sub>4</sub>H<sub>8</sub>
      %CH_4 = \frac{0.018}{0.02}.\ 100\% = 90\%, \quad %C_2H_4 = %C_4H_8 = 5\%
      - Gọi số mol của các oxit : FeO, CuO, MO trong 11,5g hỗn hợp A lần lượt là: 5a,
      3a, a( mol)
      -> 5a. 72 + 3a. 80 + a(M + 16) = 11,52 (g)
      Hay: 360a + 240a + Ma + 16a = 11,52
      -> 616a + Ma = 11,52(*)
      - Dẫn luồng khí H<sub>2</sub> dư qua hỗn hợp A nung nóng: chắc chắn FeO, CuO tham gia
      phản ứng, MO có thể có hoặc không phản ứng -> xét hai trường hợp:
      - Trường hợp 1: H<sub>2</sub> khử được FeO, CuO, MO
      + PTHH:
                  FeO + H_2 \rightarrow Fe + H_2O(1)
                  CuO + H_2 \rightarrow Cu + H_2O (2)
                  MO + H_2 \rightarrow M + H_2O(3)
      + Sau khi phản ứng hoàn toàn thu được chất B: Fe, Cu, M
      + PTHH hòa tan hết B vào dd HNO<sub>3</sub>:
                 Fe+ 4HNO_3 \rightarrow Fe(NO_3)_3 + NO + 2H_2O (4)
                 3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO + 2H_2O(5)
                 3M + 8HNO_3 \rightarrow 3M(NO_3)_2 + 2NO + 2H_2O(6)
      + n_{HNO3} = 0.45. 1.2 = 0.54 \text{mol}
      + Theo pt(4)(1): n_{HNO3} = 4n_{Fe} = 4n_{FeO} = 4.5a = 20a \text{ (mol)}
7
      Theo pt(5)(2): n_{HNO3} = 8/3. n_{Cu} = 8/3. n_{CuO} = 8/3.3a = 8a \text{ (mol)}
      Theo pt(6)(3): n_{HNO3} = 8/3. n_M = 8/3. n_{MO} = 8/3.a (mol)
       \rightarrow n HNO3 = 20a + 8a + 8/3a = 0.54
       \rightarrow a = 0,0176
      Thay a = 0.0176 vào phương trình (*) ta được:
      616.\ 0.0176 + M.\ 0.0176 = 11.52
       \rightarrow M = 38,55
      +Vây không có kim loại phù hợp
      - Trường hợp 2: H<sub>2</sub> khử được FeO, CuO, không khử được MO -> xảy ra phản ứng
       1,2,4,5 và thêm phản ứng:
                   MO + 2HNO_3 \rightarrow M(NO_3)_2 + H_2O(7)
      + Theo pt (7): n_{HNO3} = 2. n_{MO} = 2a (mol)
       \rightarrow n<sub>HNO3</sub> = 20a + 8a + 2a = 0,54
       \rightarrow a = 0.018
      Thay a = 0.018 vào phương trình (*) ta được:
      616.\ 0.018 + M.\ 0.018 = 11.52
       \rightarrow M = 24
      +Vậy M là Mg
      - Theo pt 4,5, 1,2:
      n_{NO} = n_{Fe} + 2/3. n_{Cu} = n_{FeO} + 2/3. n_{CuO} = 5a + 2/3. 3a = 7a = 7.0,018 = 0,126mol
       \rightarrowV NO (dktc) = 0,126. 22,4 = 2,82241
```

```
1. Gọi oxit của M là M_x O_y và số mol của M và M_x O_y trong mỗi phần là a và b
      mol. Khí hóa nâu trong không khí là NO.
      +P_1: M + nH^+ \rightarrow M^{n+} + n/2 H_2
          M_x O_y + 2y H^+ \rightarrow x M^{2y/x^+} + y H_2 O
       \rightarrow an/2 = 4,48/22,4 = 0,2 (1)
      +P_2: 3 M + 4m HNO_3 \rightarrow 3 M(NO_3)_m + m NO + 2m H_2O
        3 M_{x}O_{y} + (4mx-2y) HNO_{3} \rightarrow 3x M(NO_{3})_{m} + (mx-2y)NO + (2mx-y) H_{2}O
                                                                 (mx-2y)b/3
       \rightarrow ma/3 + (mx-2y)b/3 = 4,48/22,4 = 0,2 (2)
      +P<sub>3</sub>: M (a) và M_x O_y (b) \xrightarrow{co} M (a) và xM(xb mol)
       → chất rắn có (a+bx) mol M
      Hòa tan chất rắn trong nước cương toan:
      Ta có:
      Khử
                    M
                           - me \rightarrow
                 (a+bx)
                             m(a+bx)
                                                       (mol)
      Oxi hóa: NO_3^- + 4H^+ + 3e \rightarrow NO + 2H_2O
                                      2,4
                                               0,8
                                                      (mol)
       \rightarrow m(a+bx) = 2,4
                                  (3)
      T\dot{x}(2) \rightarrow m(a+bx)/3 - 2by/3 = 0,2 \rightarrow 2,4/3 - 2by/3 = 0,2 \rightarrow by = 0,9
      Mặt khác aM +b(Mx +16y) = 177,24/3 = 59,08
       \rightarrow aM +Mbx +16by = 59,08
8
       \rightarrow M(a+bx) = 44,68
      M(a+bx)/m(a+bx) = 44.68/2.4 = 1117/60 \rightarrow M = 1117m/60
       \rightarrow chỉ có m = 3 là họp lý \rightarrow M = 56 \rightarrow M là Fe \rightarrow n = 2 \rightarrow a = 0,2, bx = 0,6, by
      = 0.9
       \rightarrow x/y = 0,6/0,9 = 2/3 \rightarrow vậy oxit cần tìm là Fe_2O_3
      2. \mathring{O} phần 2: Fe (0,2 mol), Fe_2O_3 (0,03 mol)
      Ta có Fe + 4 HNO_3 \rightarrow Fe(NO_3)_3 + NO + 2 H_2O
                       0.8
            0,2
                                      0,2
                                                             (mol)
         Fe_2O_3 + 6 \ HNO_3 \rightarrow 2 \ Fe(NO_3)_3 + 3 \ H_2O_3
                       1.8
       \rightarrow số mol HNO_3 phản ứng là : 0.8 + 1.8 = 2.6 (mol)
       \rightarrow số mol HNO_3 dư là 0,26 (mol)
       Vậy số mol HNO_3 ban đầu là 2,6 +0,26 = 2,86 (mol)
      C_m HNO<sub>3</sub> = 2,86/1 = 2,86 (M)
      Dung dịch B gồm : HNO_3 0,26 (mol) và Fe(NO_3)_3 0,8 (mol)
      Fe + 4 HNO_3 \rightarrow Fe(NO_3)_3 + NO + 2 H_2O
      0,065 0,026
                             0,065
                                                        (mol)
      Nên số mol Fe(NO_3)_3 là 0,8 +0,065 = 0,865 (mol)
                          2 Fe(NO_3)_3 \rightarrow 3 Fe(NO_3)_7
      Fe
                  +
      0.4325
                            0,865
      Vậy tổng số mol Fe cso khả năng hòa tan tối đa là:
      0.065 + 0.4325 = 0.4975 \rightarrow \text{mFe} = 27.86 \text{ gam}.
```

1. Đặt công thức trung bình của 3 axit là: \overline{R} COOH

Cho Z tác dụng với dung dịch NaOH:

$$\overline{R} COOH + NaOH \longrightarrow \overline{R} COONa + H_2O$$
 (1)

theo (1): $n_{\overline{R}COOH} = n_{\overline{R}COONa}$

$$\Rightarrow \frac{74}{M_{\overline{R}} + 45} = \frac{101,5}{M_{\overline{R}} + 67}$$

$$\Rightarrow M_{\overline{R}} = 14,2 \Rightarrow M_{\overline{R}COOH} = 14,2+45=59,2$$

⇒ phải có một axit có khối lượng phân tử nhỏ hơn 59,2, axit đó chỉ có thể là:

HCOOH (axit A)
$$\Rightarrow$$
 n = 0 \Rightarrow m = n + 1= 1

khi đó axit B là: CH₃COOH

Gọi trong 14,8 gam hh Z gồm: x mol HCOOH, y mol CH₃COOH và z mol

CaH2a-1COOH

$$\Rightarrow \begin{cases} x + y + z = \frac{14.8}{14.2 + 45} = 0.25 \, mol \\ 46x + 60y + (14a + 44)z = 14.8 \, gam \end{cases}$$
 (*)

Đốt cháy hoàn toàn 14,8 gam hỗn hợp Z ta có sơ đồ phản ứng cháy:

$$HCOOH \xrightarrow{O_2} CO_2$$
 (2)

x mol

$$CH_3COOH \xrightarrow{O_2} 2CO_2$$
 (3)

ymol 2ymol

$$C_a H_{2a-1} COOH \xrightarrow{O_2} (a+1) CO_2$$
 (4)

 $z \, mol$ $(a+1)z \, mol$

theo (2), (3), (4):
$$n_{CO_2} = x + 2y + (a+1)z = \frac{11,2}{22,4} = 0.5 \, mol \ (**)$$

từ (*) và (**) có hpt:
$$\begin{cases} x+y+z=0,25\\ 46x+60y+(14a+44)z=14,8\\ x+2y+(a+1)z=0.5 \end{cases}$$

$$\Rightarrow \begin{cases} x+y+z=0,25\\ 2x+2y+44(x+y+z)+14(az+y)=14,8\\ x+y+z+y+az=0,5 \end{cases}$$

$$\Rightarrow \begin{cases} x+y+z=0,25 \\ x+y=0,15 \\ y+az=0,25 \end{cases} \Rightarrow \begin{cases} x+y=0,15 \\ z=0,1 \\ y+az=0,25 \end{cases}$$

$$\Rightarrow$$
 y+0,1a=0,25

$$\Rightarrow y=0,25-0,1a$$

ta lại có: 0 < y < 0.15

$$\Rightarrow 0 < 0,25 - 0,1a < 0,15 \Rightarrow 1 < a < 2,5 \Rightarrow a = 2$$

CTPT của D là: C₂H₃COOH

Vậy công thức cấu tạo các axit là:

9

A: HCOOH B: CH₃COOH D: CH₂=CH-COOH

2. Với a=2 \Rightarrow y = 0,25-0,1.2 = 0,05 mol \Rightarrow x = 0,15-0,05 = 0,1 mol Phần trăm khối lượng mỗi axit trong hỗn hợp Z là:

$$\% \, m_{HCOOH} = \frac{46.0, 1.100\%}{14,8} = 31,08\% \qquad \qquad \% \, m_{CH_3COOH} = \frac{60.0, 05.100\%}{14,8} = 20,27\%$$

$$\% \, m_{CH_3CO\mathrm{OH}} = \frac{72.0, 1.100\%}{14,8} = 48,65\%$$

- **3.** D: CH₂=CH-COOH có một liên kết đôi C=C và có một nhóm COOH nên D vừa có tính chất hóa học của axit hữu cơ và vừa có tính chất hóa học giống etilen.
- * Tính chất hóa học của axit:
 - Làm đổi màu chất chỉ thị: quỳ tím → đỏ
 - Tác dụng với oxit bazơ và bazơ:

2CH₂=CH-COOH + Na₂O
$$\longrightarrow$$
 2CH₂=CH-COONa + H₂O

$$CH_2=CH-COOH + NaOH \longrightarrow CH_2=CH-COONa + H_2O$$

- Tác dụng với kim loại hoạt động:

$$2CH_2=CH-COOH + Mg \longrightarrow (CH_2=CH-COO)_2Mg + H_2$$

- Tác dụng với muối của axit yếu hơn:

$$2CH_2=CH-COOH + CaCO_3 \longrightarrow (CH_2=CH-COO)_2Ca + CO_2 + H_2O$$

- Tác dụng với rượu (hay ancol):

$$CH_2 = CH - COOH + C_2H_5OH \xrightarrow{H_2SO_4d\breve{ac}, \iota^0} CH_2 = CH - COOC_2H_5 + H_2O$$

- * Tính chất hóa học giống etilen:
 - Phản ứng cộng: H₂, Br₂,...

$$CH_2=CH-COOH + H_2 \xrightarrow{Ni} CH_3-CH_2-COOH$$

- Phản ứng trùng hợp:

10

$$nCH_2 = CH\text{-}COOH \xrightarrow{xt, p, t^o} (-CH_2 - CH\text{-})_n$$

COOH

- 1. Các phương trình hóa học xảy ra:
- a. Hiện tượng: xuất hiện bọt khí và có kết tủa màu xanh

$$2Na + 2H_2O \rightarrow 2NaOH + H_2 \uparrow \qquad (1)$$

NaOH +
$$CuSO_4 \rightarrow Cu(OH)_2 \downarrow + Na_2SO_4$$
 (2)

b. *Hiện tượng*: xuất hiện kết tủa keo trắng, kết tủa lớn dần đến cực đại, sau tan dần đến hết tạo dung dịch trong suốt

$$AlCl_3 + 3KOH \rightarrow Al(OH)_3 \downarrow + 3KCl$$
 (3)

$$Al(OH)_3 + KOH \rightarrow KAlO_2 + 2H_2O$$
 (4)

c. Hiện tượng: Cu tan, dung dịch từ màu vàng nâu chuyển sang màu xanh

$$2\text{FeCl}_3 + \text{Cu} \rightarrow 2\text{FeCl}_2 + \text{CuCl}_2$$
 (5)

d. Hiện tượng: lúc đầu chưa xuất hiện khí, sau một lúc có khí xuất hiện

$$K_2CO_3 + HCl \rightarrow KHCO_3 + KCl$$
 (6)

$$KHCO_3 + HCl \rightarrow KCl + H_2O + CO_2 \uparrow (7)$$

2.Các phương trình hóa học minh họa:

$$2CH_{3} - CH = CH - COOH + 2K \rightarrow 2CH_{3} - CH = CH - COOK + H_{2} \qquad (1)$$

$$CH_{3} - CH = CH - COOH + KOH \rightarrow CH_{3} - CH = CH - COOK + H_{2}O \qquad (2)$$

$$CH_{3} - CH = CH - COOH + C_{2}H_{5}OH \xrightarrow{H_{2}SO_{4}d\bar{a}c_{1}^{0}} CH_{3} - CH = CH - COOC_{2}H_{5} + H_{2}O \qquad (3) \qquad CH_{3} - CH = CH - COOH + Br_{2} \rightarrow CH_{3} - CHBr - CHBr - COOH \qquad (4)$$

III. CHÚ Ý:

- * Đối với phương trình phản ứng hóa học nào mà cân bằng hệ số sai hoặc thiếu cân bằng (không ảnh hưởng đến giải toán) hoặc thiếu điều kiện thì trừ đi nửa số điểm giành cho nó. Trong một phương trình phản ứng hóa học, nếu có từ một công thức trở lên viết sai thì phương trình đó không được tính điểm.
- * Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì cho đủ điểm như hướng dẫn quy định (đối với từng phần).
- * Giải các bài toán bằng các phương pháp khác nhau nhưng nếu tính đúng, lập luận chặt chẽ và dẫn đến kết quả đúng vẫn được tính theo biểu điểm. Trong khi tính toán nếu nhầm lẫn một câu hỏi nào đó dẫn đến kết quả sai nhưng phương pháp giải đúng thì trừ đi nửa số điểm giành cho phần hoặc câu đó. Nếu tiếp tục dùng kết quả sai để giải các vấn đề tiếp theo thì không tính điểm cho các phần sau.
- * Việc chi tiết hóa thang điểm (nếu có) so với thang điểm trong hướng dẫn chấm phải đảm bảo không sai lệch với hướng dẫn chấm và được thống nhất thực hiện trong tổ chấm thi.

------HÉT-----

SỞ GIÁO DỤC VÀ ĐÀO TẠO QUẨNG TRỊ

ĐỀ THI CHÍNH THỨC

KỲ THI CHỌN HỌC SINH GIỚI VĂN HÓA LỚP 9 Khóa ngày 20 tháng 3 năm 2018 Môn thi: HÓA HỌC

Thời gian làm bài: 150 phút, không kể thời gian giao đề

Câu 1. (4,5 điểm)

- 1. Trình bày phương pháp hóa học để tách lấy từng kim loại ra khỏi hỗn hợp rắn gồm Na₂CO₃, BaCO₃, MgCO₃ và viết các phương trình phản ứng xảy ra.
 - 2. Xác định các chất vô cơ A_1 , B_1 , C_1 , D_1 , E_1 , F_1 và viết các phản ứng theo sơ đồ sau:

- **3.** Nung hỗn hợp R chứa a gam KClO₃ và b gam KMnO₄. Sau khi phản ứng kết thúc thì khối lượng chất rắn do KClO₃ tạo ra bằng khối lượng các chất rắn do KMnO₄ tạo ra. Viết các phương trình phản ứng và tính % theo khối lượng của mỗi muối trong hỗn hợp R.
- **4.** Dung dịch X chứa 0,15 mol H₂SO₄ và 0,1 mol Al₂(SO₄)₃. Cho V lít dung dịch NaOH 1M vào dung dịch X, thu được m gam kết tủa. Thêm tiếp 450 ml dung dịch NaOH 1M vào thì thu được 0,5m gam kết tủa. Cho các phản ứng xảy ra hoàn toàn. Viết các phương trình phản ứng và tính V. **Câu 2.** (4,5 điểm)
 - 1. Hoàn thành các phương trình phản ứng sau: a) Ba(H₂PO₄)₂ + NaOH. b) Mg(HCO₃)₂+ KOH.
- **2.** Cho BaO vào dung dịch H₂SO₄ loãng, sau khi phản ứng kết thúc, thu được kết tủa M và dung dịch N. Cho Al dư vào dung dịch N thu được khí P và dung dịch Q. Lấy dung dịch Q cho tác dụng với dung dịch K₂CO₃ thu được kết tủa T. Xác định M, N, P, Q, T và viết các phương trình phản ứng.
- **3.** Cho hơi nước qua cacbon nóng đỏ, thu được 11,2 lít hỗn hợp khí X (ở đktc) gồm CO, CO₂ và H₂. Tỉ khối của X so với H₂ là 7,8. Tính số mol mỗi khí trong X.
- **4.** Cho 12,9 gam hỗn hợp A gồm Mg và Al tác dụng với khí clo, nung nóng. Sau một thời gian, thu được 41,3 gam chất rắn B. Cho toàn bộ B tan hết trong dung dịch HCl, thu được dung dịch C và khí H₂. Dẫn lượng H₂ này qua ống đựng 20 gam CuO nung nóng. Sau một thời gian thu được chất rắn nặng 16,8 gam. Biết chỉ có 80% H₂ phản ứng. Viết các phương trình phản ứng và tính số mol mỗi chất trong A. **Câu 3.** (5,0 điểm)
 - 1. Hãy nêu hiện tượng và viết phương trình phản ứng xảy ra trong các thí nghiệm sau:
 - a) Cho lần lượt CO₂, Al(NO₃)₃, NH₄NO₃ vào 3 cốc chứa dung dịch NaAlO₂.
 - b) Hòa tan hết Fe_xO_y trong dung dịch H₂SO₄ đặc nóng, dư. Khí thu được sục vào dung dịch KMnO₄.

- **2.** Chỉ dùng chất chỉ thị phenolphtalein, hãy phân biệt các dung dịch riêng biệt chứa NaHSO₄, Na₂CO₃, AlCl₃, Fe(NO₃)₃, NaCl, Ca(NO₃)₂. Viết các phương trình phản ứng xảy ra.
- **3.** Cho 5,2 gam kim loại M tác dụng hết với dung dịch HNO₃ dư, thu được 1,008 lít hỗn hợp hai khí NO và N₂O (ở đktc, không còn sản phẩm khử khác). Sau phản ứng khối lượng dung dịch HNO₃ tăng thêm 3,78 gam. Viết các phương trình phản ứng và xác định kim loại M.
- **4.** Chia m gam hỗn hợp gồm Al và Cu thành 2 phần. Phần 1 tác dụng với dung dịch H₂SO₄ loãng dư, thu được 0,3 mol H₂. Phần 2 nặng hơn phần 1 là 23,6 gam, tác dụng với dung dịch H₂SO₄ đặc nóng, dư, thu được 1,2 mol SO₂. Biết các phản ứng xảy ra hoàn toàn. Viết các phương trình phản ứng và tính m. **Câu 4.** (6,0 điểm)
- 1. Cho các chất sau: rượu etylic, axit axetic, saccarozo, glucozo. Chất nào phản ứng với: nước, Ag₂O/NH₃, axit axetic, CaCO₃. Viết các phương trình phản ứng xảy ra.
 - 2. Xác định các chất và hoàn thành các phản ứng theo sơ đồ chuyển hóa sau:

$$C_2H_4 \longrightarrow A_1 \longrightarrow A_2$$

 $CH_4 \longrightarrow B_1 \longrightarrow B_2$ $CH_3COOH \longrightarrow A_1 \longleftarrow B_3 \longleftarrow CH_4$

- **3.** Hỗn hợp N gồm một ankan (X) và một anken (Y), tỉ khối của N so với H₂ bằng 11,25. Đốt cháy hết 0,2 mol N, thu được 0,3 mol CO₂. Viết các phương trình phản ứng và xác định X, Y.
- **4.** Hai hợp chất hữu cơ A (RCOOH) và B [R/(OH)₂], trong đó R, R/ là các gốc hiđrocacbon mạch hở. Chia 0,1 mol hỗn hợp gồm A và B thành hai phần bằng nhau. Đem phần 1 tác dụng hết với Na, thu được 0,04 mol khí. Đốt cháy hoàn toàn phần 2, thu được 0,14 mol CO₂ và 0,15 mol nước.
 - a) Viết các phương trình phản ứng, xác định công thức phân tử và công thức cấu tạo của A, B.
- **b)** Nếu đun nóng phần 1 với dung dịch H₂SO₄ đặc để thực hiện phản ứng este hóa thì thu được m gam một hợp chất hữu cơ, biết hiệu suất phản ứng là 75%. Viết các phương trình phản ứng và tính m.

Cho: H=1; C=12; N=14; O=16; Mg=24; Al=27; Cl=35,5; K=39; Mn=55; Cu=64; Zn=65.

----- HÉT -----

Thí sinh được phép sử dụng bảng HTTH và tính tan

SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI CHÍNH THỨC HDC Kỳ THI CHON HSG VĂN HÓA LỚP 9 Khóa ngày 20 tháng 3 năm 2018 Môn thi: HÓA HOC

Câu	Ý	Nội dung	Điểm
Câu 1		· · ·	
	1	- Hòa tan hỗn hợp vào nước dư, thu được dd Na ₂ CO ₃ . Cho dd Na ₂ CO ₃ tác dụng với dung dịch HCl dư, cô cạn dung dịch rồi điện phân nóng chảy, thu được Na. Na ₂ CO ₃ + 2HCl → 2NaCl + CO ₂ + H ₂ O 2NaCl — Ñieä phaâ noùg chaŷ → 2Na + Cl ₂ - Nung BaCO ₃ , MgCO ₃ đến khối lượng không đổi, lấy chất rắn thu được cho vào nước dư, lọc chất không tan là MgO, dung dịch thu được chứa Ba(OH) ₂ đem tác dụng với dung dịch HCl dư, cô cạn rồi điện phân nóng chảy, thu được Ba. BaCO ₃ — PaO → BaO + CO ₂ MgCO ₃ — MgO + CO ₂ BaO+H ₂ O → Ba(OH) ₂ Ba(OH) ₂ +2HCl→BaCl ₂ +2H ₂ O BaCl ₂ — Ñieä phaâ noùg chaŷ → Ba+Cl ₂ - Cho MgO tác dụng với dd HCl dư, cô cạn, điện phân nóng chảy thu được Mg. MgO + 2HCl → MgCl ₂ + H ₂ O MgCl ₂ — Ñieä phaâ noùg chaŷ → Mg + Cl ₂	1,5
	2	$H_2 + CuO \xrightarrow{\iota^0} Cu + H_2O$ $H_2O + Na_2O \rightarrow 2NaOH$ $NaOH + HCl \rightarrow NaCl + H_2O$	10
	2	$NaCl + AgNO_3 \rightarrow AgCl + NaNO_3$	1,0
		$2NaNO_3 \xrightarrow{t^0} 2NaNO_2 + O_2$	

Câu	Ý	Nội dung	Điểm
		$KClO_3 \xrightarrow{t^0} KCl + 3/2O_2(1)$	
		$a/122,5 \longrightarrow a/122,5$	
		$2KMnO_4 \xrightarrow{\iota^0} K_2MnO_4 + MnO_2 + O_2 (2)$	
		$b/158 \longrightarrow 0.5b/158 \rightarrow 0.5b/158$	1.0
	3	a.74,5 0,5b.197 0,5b.87 a a 4,479	1,0
		Ta có: $\frac{a.74,5}{122,5} = \frac{0,5b.197}{158} + \frac{0,5b.87}{158} \Rightarrow \frac{a}{b} = 1,478$	
		Vậy: %(m)KClO ₃ = $\frac{1,478.100}{1,478+1}$ % = 59,64% \Rightarrow %(m)KMnO ₄ = 40,36%	
		Thứ tự phản ứng: $2\text{NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O}$ (1)	
		Al ₂ (SO ₄) ₃ + 6NaOH \rightarrow 2Al(OH) ₃ + 3Na ₂ SO ₄ (2)	
		$A_{12}(SO_4)_3 + O(AOH) \rightarrow A_{12}(SO_4)_3 + O(AOH)_3 + O(AOH)_4 + O(AOH)_5 $	
		Do tạo 0,5m gam kết tủa < m gam	
		⇒ Khi thêm NaOH thì kết tủa đã tan một phần	
		\Rightarrow V + 0,45 = 0,15.2 + 0,1.8 - 0,5m/78 (I)	
	4	Trường hợp 1: Dùng V lít thì $Al_2(SO_4)_3$ dư, không có (3)	1,0
		$\Rightarrow V = 0.3 + 3m/78 \text{ (II)}$	
		Từ (I, II): $m = 7.8 \text{ gam} \Rightarrow V = 0.6 \text{ lít}$	
		Trường hợp 2: Dùng V lít, kết tủa tan một phần, có (3)	
		Điều kiện V> 6.0,1+0,15.2 =0,9 lít	
		\Rightarrow V = 0,15.2 + 0,1.8 - m/78 (III)	
		Từ (I, III): $m = 70.2 \text{ gam} \Rightarrow V = 0.2 \text{ lít } < 0.9 \Rightarrow \text{loại}$	
Câu 2			
		a) $Ba(H_2PO_4)_2 + NaOH \rightarrow BaHPO_4 + NaH_2PO_4 + H_2O$	
	1	$3Ba(H_2PO_4)_2 + 12NaOH \rightarrow Ba_3(PO_4)_2 + 4Na_3PO_4 + 12H_2O$	1,0
		b) $Mg(HCO_3)_2 + 2KOH \rightarrow Mg(OH)_2 + 2KHCO_3$	
		$Mg(HCO3)2 + 4KOH \rightarrow Mg(OH)2 + 2K2CO3 + 2H2O$	
		Phản ứng: $BaO + H_2SO_4 \rightarrow BaSO_4 + H_2O$	
		Kết tủa M là BaSO ₄ , dung dịch N có 2 trường hợp	
		Trường hợp 1: BaO dư	
		$BaO + H_2O \rightarrow Ba(OH)_2$	
		$2Al + Ba(OH)_2 + 2H_2O \rightarrow Ba(AlO_2)_2 + 3H_2$	
		Khí P: H ₂ và dung dịch Q là Ba(AlO ₂) ₂ , T là BaCO ₃	
	2	Cho dung dịch K ₂ CO ₃ thì có phản ứng	1,0
		$K_2CO_3 + Ba(AlO_2)_2 \rightarrow BaCO_3 \downarrow + 2KAlO_2$	
		Trường hợp 2: H ₂ SO ₄ dư	
		$2Al + 3H2SO4 \rightarrow Al2(SO4)3 + 3H2$	
		Khí P là H ₂ và dung dịch Q là Al ₂ (SO ₄) ₃	
		Cho K ₂ CO ₃ vào có phản ứng	
		$3K_2CO_3 + 3H_2O + Al_2(SO_4)_3 \rightarrow 2Al(OH)_3 \downarrow + 3K_2SO_4 + 3CO_2$	
		Kết tủa T là Al(OH) ₃	
		$C + H_2O \xrightarrow{t^0} CO + H_2 \qquad (1)$	
		$C + 2H_2O \xrightarrow{t^0} CO_2 + 2H_2 (2)$	
	3	Gọi số mol CO và CO ₂ là a và b mol	1,0
		$T\dot{w}(1), (2): nH_2 = a + 2b$	
		$M_A = 7.8 \times 2 = \frac{28a + 44b + 2(a + 2b)}{0.5}$	
		0,5	

Câu	Ý	Nội dung	Điểm			
		nA = a+b+a+2b = 2a+3b = 0,5				
		Giải được : $a = b = nCO = nCO_2 = 0,1 \Rightarrow a + 2b = nH_2 = 0,3 \text{ mol}$				
		Gọi x, y là số mol Mg, Al phản ứng với Cl ₂				
		$Mg + Cl_2 \xrightarrow{t^0} MgCl_2$				
		$2Al + 3Cl_2 \xrightarrow{t^0} 2AlCl_3$				
		Theo định luật bảo toàn khối lượng: $mCl_2 = 41,3 - 12,9 = 28,4$ gam				
		\Rightarrow nCl ₂ = $\frac{28,4}{71}$ = 0,4mol \Rightarrow x + 3y/2 = 0,4 \Rightarrow 2x + 3y = 0,8 (1)				
		Cho B vào dd HCl thấy có khí H ₂ thoát ra chứng tỏ kim loại còn dư				
		Gọi a, b là số mol Mg, Al có trong B				
	4	$Mg + 2 HCl \rightarrow MgCl_2 + H_2(3)$	1,5			
	•	$2Al + 6 HCl \rightarrow 2 AlCl_3 + 3 H_2 (4)$	1,3			
		\Rightarrow nH ₂ = a + 3b/2				
		$H_2 + CuO \xrightarrow{t^0} Cu + H_2O$				
		Ta có: $m_O = 20 - 16.8 = 3.2 \text{ gam} \Rightarrow n_{CuO} = n_O = \frac{3.2}{16} = 0.2 \text{ mol}$				
		Do H%=80% \Rightarrow nH ₂ (3,4)= $\frac{0,2.100}{80}$ = 0,25mol \Rightarrow a +3b/2=0,25 \Rightarrow 2a +3b=0,5(2)				
		Ta couheä $\begin{cases} 2(a+x) + 3(b+y) = 1,3 \\ 24(a+x) + 27(b+y) = 12,9 \end{cases} \Rightarrow \begin{cases} a+x = nMg = 0,2 \text{ mol} \\ b+y = nAI = 0,3 \text{ mol} \end{cases}$				
		24(a+x) + 27(b+y) = 12,9 $b+y = nAI = 0,3 mol$				
Câu 3						
		a) Tạo kết tủa keo trắng				
		$CO_2 + 2H_2O + NaAlO_2 \rightarrow Al(OH)_3 + NaHCO_3$				
		$Al(NO3)3 + 6H2O + 3NaAlO2 \rightarrow 4Al(OH)3 + 3NaNO3$				
	1	Tạo kết tủa keo trắng và khí mùi khai	1,5			
	•	$NH_4NO_3 + H_2O + NaAlO_2 \rightarrow Al(OH)_3 + NH_3 + NaNO_3$	1,0			
		b) Oxit tan, tạo dung dịch màu nâu, khí mùi hắc làm mất màu dung dịch KMnO ₄				
		$2Fe_xO_y+(6x-2y)H_2SO_4$ (đặc, nóng) $\to xFe_2(SO_4)_3+(3x-2y)SO_2+(6x-2y)H_2O$				
		$5SO_2 + 2KMnO_4 + 2H_2O \rightarrow 2H_2SO_4 + 2MnSO_4 + K_2SO_4$				
		- Cho phenolphtalein vào mỗi mẫu thử				
		+ Mẫu thử có màu hồng là dung dịch Na ₂ CO ₃				
		+ Không hiện tượng là các mẫu thử còn lại				
		- Dùng Na ₂ CO ₃ làm thuốc thử để cho vào các mẫu thử còn lại				
		+ Mẫu thử có sủi bọt khí không màu là NaHSO ₄				
		$Na_2CO_3 + 2NaHSO_4 \rightarrow 2Na_2SO_4 + CO_2 + H_2O$				
	2	+ Mẫu thử tạo kết tủa trắng keo và sủi bọt khí không màu là AlCl ₃	1,5			
		$2AlCl3 + 3Na2CO3 + 3H2O \rightarrow 2Al(OH)3 + 3CO2 + 6NaCl$				
		+ Mẫu thử tạo kết tủa đỏ nâu và sủi bọt khí không màu là Fe(NO ₃) ₃				
		$2\text{Fe}(\text{NO}_3)_3 + 3\text{Na}_2\text{CO}_3 + 3\text{H}_2\text{O} \rightarrow 2\text{Fe}(\text{OH})_3 + 3\text{CO}_2 + 6\text{NaNO}_3$				
		+ Mẫu thử tạo kết tủa trắng là Ca(NO ₃) ₂				
		$Ca(NO_3)_2 + Na_2CO_3 \rightarrow CaCO_3 + 2NaNO_3$				
		+ Mẫu thử không hiện tượng là NaCl				
	3	Các pu : $3M + 4nHNO_3 \rightarrow 3M(NO_3)_n + nNO + 2nH_2O$ (1)	1,0			
		$a \longrightarrow an/3$	'-			

Câu	Ý	Nội dung				Điểm		
		$8M + 10nHNO_3 \rightarrow 8M(NO_3)_n + nN_2O + 5nH_2O$ (2)						
		$b \longrightarrow bn/8$						
		Ta coùne ä $\begin{cases} \frac{an}{3} + \frac{bn}{8} = 0,045 \\ \frac{30an}{3} + \frac{44bn}{8} = 5,2 - 3,78 = 1,42 \end{cases} \Rightarrow \begin{cases} an = 0,12 \text{ mol } \\ bn = 0,04 \text{ mol } \end{cases}$						
		Ta couheä $\sqrt{\frac{3}{8}} + \sqrt{\frac{43}{8}} = 0,043$ $\Rightarrow \sqrt{\frac{3}{8}} = 0,12 \text{ mol}$						
		$\frac{30an}{30an} + \frac{44bn}{30an} = 5, 2 - 3, 78 = 1, 42$ bn=0,04 mol						
		\Rightarrow M = 5,2n/a+b =5						
		n 1 2 3						
		M	32,5 (Loại)	65: Zn	97,5 (Loại)			
		Vậy M là Zn						
		Phần 1: 2A1 + 3H ₂ S	$O_4 \rightarrow Al_2(SO_4)_3 + 3l_2(SO_4)_3 + 3l_2(SO_5)_5 + 3l_2(SO_5)_5 + 3l_2(SO_5)_5 + 3l_2(SO_5)_5 + 3l_2(SO_5)_5 + 3l_2(SO_5)_5 + 3l_2(SO_5)_5 + 3l_2(SO_5)_5 + 3l_2(SO_5)_5 + 3l_2(SO_5)_5 + 3l_2(SO_5)_5 + 3l_2(SO_5)_5 + 3l_2(SO_5)_5 + 3l_2(SO_5)_5 + 3l_2(SO_5)_5 $	H_2 (1)				
		0,2	← 0,3	3				
		Phần 2: 2A1 + 6H ₂ S	$O_4 (\tilde{d}ac) \xrightarrow{t^0} Al_2(S)$	$(O_4)_3 + 3SO_2 + 6H_2O_3$	O (2)			
		$Cu + 2H_2SO_4 -$	$CuSO_4 + SO_2$	$+ 2H_2O$ (3)				
	4	Trong phần 1: nAl=	0,2 mol, nCu=x mol			1.0		
	•	Nếu cho phần 1 tác	dụng H2SO4 đặc tl	n : $nSO_2 = 0.3 + x$ (r	nol)	1,0		
		5,4+64x	0,3+x	0.1 mal basë 0.24	6075 mal			
		Tỷ lệ: $\frac{5,4+64x}{5,4+64x+2}$	$\frac{1}{23,6} = \frac{1}{1,2} \Rightarrow x =$	O, I MOI NOAE U, 34	0075 11101			
		Trường hợp 1: m = 1	$m_1 + m_2 = (5,4 + 6,4)$).2 + 23,6 = 47,2 gam	1			
		Trường hợp 2: m = 1	$m_1 + m_2 = (5,4 + 64.$	0,346875).2 +23,6 =	78,8 gam			
Câu 4								
Cau 4		$C_2H_5OH + CH_3COOH \xrightarrow{H_2SO_4 \tilde{n}a\ddot{e},t^0} CH_3COOC_2H_5 + H_2O$						
			•					
	1		$O_3 \rightarrow (CH_3COO)_2Ca +$			1,0		
			$\xrightarrow{H^+,t^0}$ \rightarrow C ₆ H ₁₂ O ₆ (glu		etozo)			
		$C_6H_{12}O_6 + Ag_2O - $	$\xrightarrow{\text{NH}_3,\text{t}^\circ}$ $C_6\text{H}_{12}\text{O}_7 + 2$	Ag				
		A ₁ : CH ₃ CHO, A ₂ : C ₂ H ₅ OH, B ₁ : HCHO, B ₂ : CH ₃ OH, B ₃ : C ₂ H ₂ .						
		$2CH_2=CH_2+O_2-\frac{t}{C}$	$\xrightarrow{0}$,xt \rightarrow 2CH ₃ CHO					
		$CH_3CHO + H_2 - t^0$	$\xrightarrow{\text{Ni}}$ CH ₃ CH ₂ OH					
		$CH_3CH_2OH + O_2$ —	$\xrightarrow{\text{men gia\'en}} \text{CH}_3\text{COO}$	$H + H_2O$				
		$CH_4 + O_2 \xrightarrow{t^0,xt} I$	$HCHO + H_2O$					
	2	$HCHO + H_2 - t^0,Ni$	→ CH ₃ OH			2,0		
		$CH_3OH + CO \xrightarrow{t^0, X}$						
		2CH ₄ = 1500°C	$+C_2H_2 + 3H_2$					
		$C_2H_2 + H_2O = \frac{t^0,xt}{t^0}$						
		$2CH_3CHO + O_2 - t^{\circ}$	$rac{2}{\text{ CH}_3\text{COOH}}$ sy mol trong 0,2 mol	$\frac{N}{N}$ $nH_2O(1.2)=a$ mo	1			
		$C_nH_{2n+2} + (3n+1)/2$	•		1			
		$C_{\rm m}H_{\rm 2m} + 3{\rm m}/2{\rm O}_2 \rightarrow {\rm mCO}_2 + {\rm mH}_2{\rm O}$						
	3	.	n trung bình = $0.3/0$,			1,0		
		BTKL cho (1,2): 0,			a = 0.45 mol			
			3 = 0.15 mol và y = 0 $x = 0, 3 \implies m = 3 \implies 0$					
	4		số mol của A và B tr		р	2,0		

Câu	Ý			Nội dung			Điểm		
		2RCOOH + 2Na	$2RCOOH + 2Na \longrightarrow 2RCOONa + H_2 (1)$						
		` '	$R'(OH)_2 + 2Na \longrightarrow R'(ONa)_2 + H_2(2)$						
		Ta coù ne a $\begin{cases} 0.56 \\ a + \end{cases}$	$b = 0.04$ $\Rightarrow \begin{cases} 6 \\ 6 = 0.05 \end{cases}$	a=0,02 mol b= 0,03 mol					
		Khi đốt axit: no	$CO_2 \ge nH_2O \Rightarrow$	B là rượu no: C	CnH2n(OH)2 và	A là C _x H _y O ₂			
		$C_xH_yO_2 + (x + y)$	$/4 - 1) O_2 \longrightarrow x$	$xCO_2 + y/2H_2O$					
		$C_nH_{2n}(OH)_2 + (3$	$3n-1)/2O_2 \longrightarrow$	$nCO_2 + (n+1)$	H_2O				
		Ta có: $0.02x + 0$	$0.03 \text{ n} = 0.14 \Rightarrow 2.03 \text{ n}$	2x + 3n = 14	,	,			
		n 2 3 4 5							
		X	4	2,5	1	0			
	Chọn Loại Chọn Loại								
		Mặt khác: 0,01 y		• 1	•				
			O_2 , CH_2 = $CHCH_2$		=CHCOOH				
		B là C ₂ H ₆ O ₂ , HO-CH ₂ CH ₂ -OH							
		TH1: $C_3H_5COOH + C_2H_4(OH)_2 \xrightarrow{H_2SO_4 \& E, t^0} C_3H_5COOC_2H_4OH + H_2O$							
		\Rightarrow m=130.0,02.75/100 = 1,95 gam							
		TH2: $2C_3H_5COOH + C_2H_4(OH)_2 \xrightarrow{H_2SO_4 \text{ @AE, t}^0} (C_3H_5COO)_2 C_2H_4 + 2H_2O$							
		\Rightarrow m=198.0,01.7	75/100 = 1,485 g	am					

- Thí sinh có thể làm cách khác, nếu đúng vẫn đạt điểm tối đa.
 Nếu thiếu điều kiện hoặc thiếu cân bằng hoặc thiếu cả hai thì trừ một nửa số điểm của PTHH đó. Làm tròn đến 0,25 điểm.

----- HÉT -----