

SCF Methods

— Diagonalisation & Orbital Transformation

Lianheng Tong
King's College London, UK

24 August 2016

Self Consistent Field Calculation

 Central to the QuickStep (DFT) calculation is the Self-Consistent-Field cycle

$$H[\rho]\psi_n = E_n\psi_n$$
$$\rho(\mathbf{r}) = \sum_n f_n\psi_n(\mathbf{r})\psi_n^*(\mathbf{r})$$

- Key to speed and stability of the calculation:
 - Energy minimisation
 - Charge mixing

Topics In This Talk

- Common Methods In CP2K
 - Eigensolvers
 - Optimisers
- Orbital Transformation (OT)
 - Preconditions
- Charge Mixing for Diagonalisation Methods
 - Methods used in CP2K
 - Important parameters for convergence
- Examples

Eigensolvers In CP2K

• General Eigen problem:

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{B}\mathbf{x}$$

• Find a way to rewrite back to the standard Eigen problem

$$\mathbf{A}'\mathbf{x}' = \lambda \mathbf{x}'$$
 upper triangular

- Cholesky decomposition based methods: $\mathbf{B} = \mathbf{U}^\mathsf{T} \dot{\mathbf{U}}$ must be positive definite: $(\mathbf{U}^{-1})^\mathsf{T} \mathbf{A} \mathbf{U}^{-1} \mathbf{U} \mathbf{x} = \lambda \mathbf{U} \mathbf{x}$
 - **REDUCE:** $\mathbf{A}|\mathbf{U}\Rightarrow\mathbf{A}'|\mathbb{1}$ followed by solving $\mathbf{U}\mathbf{x}=\mathbf{x}'$
 - **RESTORE**: Same as Reduce, but with the single reduce step for A' replaced with two restore steps:
 - lacksquare Solve $\mathbf{x}\mathbf{U}=\mathbf{A}$ \Rightarrow $\mathbf{x}=\mathbf{A}\mathbf{U}^{-1}$
 - **INVERSE**: Same as Reduce, but calculate \mathbf{A}' using the direct inverse of \mathbf{U} (involves one inversion of a triangular matrix plus two matrix multiplications)
 - **INVERSE_DBCSR**: Same as inverse, but utilising sparse matrix algebra engine whenever possible (e.g. when doing matrix multiplication)

Eigensolvers In CP2K

- Without Cholesky decomposition:
 - Useful if your basis set contains linearly dependent functions, i.e. B is non-positive definite
 - Slower, but more robust
- Find the inverse square root of $B: B^{-\frac{1}{2}}$

$$\mathbf{B} = \mathbf{B}^{\frac{1}{2}} \mathbf{B}^{\frac{1}{2}}$$

$$\mathbf{B}^{-\frac{1}{2}} \mathbf{A} \mathbf{B}^{-\frac{1}{2}} \mathbf{B}^{\frac{1}{2}} \mathbf{x} = \mathbf{B}^{\frac{1}{2}} \mathbf{x}$$

$$\mathbf{x}' = \mathbf{B}^{\frac{1}{2}} \mathbf{x} \implies \mathbf{x} = \mathbf{B}^{-\frac{1}{2}} \mathbf{x}'$$

- $\mathbf{B}^{-\frac{1}{2}}$ is calculated by diagonalise \mathbf{B} , invert the eigenvalues and then transform back.
- If B is non-positive definite: this normally corresponds to the basis set containing redundant linearly dependent vectors. This means the zero eigenvalues of B should not contribute to the linear problem.
 - This is equivalent to set inverse of the eigenvalues to zero

- Concerns with finding the local minimum of a function of many variables
- Steepest Decent:

$$f(\mathbf{x}_n) = f(\mathbf{x}_{n-1}) + \alpha \nabla f(\mathbf{x}_{n-1})$$

 How much we travel along the gradient is determined by a line search to find the minimum of the function along the path

Conjugate Gradient:

If we start from a point x_0 close to the minimum, we may Taylor expand around the point to the second order, and assume the minimum is within the radius of convergence:

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \mathbf{b}^\mathsf{T}(\mathbf{x} - \mathbf{x}_0) + (\mathbf{x} - \mathbf{x}_0)^\mathsf{T} \mathbf{H}(\mathbf{x} - \mathbf{x}_0) + \mathcal{O}((\mathbf{x} - \mathbf{x}_0)^3)$$
$$(\mathbf{H})_{ij} = \frac{1}{2} \left. \frac{\partial^2 f}{\partial x_i \partial x_j} \right|_{\mathbf{x}_0} \qquad \mathbf{b} = \mathbf{\nabla} f \big|_{\mathbf{x}_0}$$

We notice that ${\bf x}$ is the unique solution to ${\bf \nabla} f({\bf x})=0$ if it is the solution of the equation

$$\nabla f(\mathbf{x}) = \mathbf{b} + \mathbf{H}\mathbf{x} = 0 \quad \Rightarrow \mathbf{H}\mathbf{x} = -\mathbf{b}$$

- The Conjugate gradient method then tries to solve the above equation iteratively. Notice that \mathbf{H} is always symmetric and when near a minimum, positive definite
- We can express X in a basis set

$$\mathbf{x} = \sum_{i} \alpha_i \mathbf{P}_i$$

Hence

$$\sum_{j} \mathbf{P}_{i}^{\mathsf{T}} \mathbf{H} \mathbf{P}_{j} \alpha_{j} = -\mathbf{P}_{i}^{\mathsf{T}} \mathbf{b}$$

Conjugate Gradient:

 $\mathbf{x}_1 = \alpha_1 \mathbf{P}_1$

Now since H is symmetric and positive definite, it can be diagonalised, and we can choose P_i to be a set of conjugate vectors of H, then we can see that

$$\alpha_i = \frac{-\mathbf{P}_i^\mathsf{T} \mathbf{b}}{\mathbf{P}_i^\mathsf{T} \mathbf{H} \mathbf{P}_i}$$
 $\mathbf{P}_i^\mathsf{T} \mathbf{H} \mathbf{P}_j = 0 \quad (i \neq j)$

- The conjugate gradient method then involves iteratively finding each P_i using a Gram-Schmidt like process
- In other words: we take exactly $n = \dim \mathbf{H}$ steps, starting from an initial guess x_0

$$\begin{aligned} \mathbf{d}_i &= -\mathbf{b} - \mathbf{H} \mathbf{x}_i \\ \mathbf{P}_1 &= \mathbf{d}_0 \\ \mathbf{P}_1 &= \mathbf{d}_0 \\ \mathbf{P}_2 &= \mathbf{d}_1 - \frac{\mathbf{P}_0^\mathsf{T} \mathbf{H} \mathbf{d}_1}{\mathbf{P}_0^\mathsf{T} \mathbf{H} \mathbf{P}_0} \mathbf{P}_0 \\ \mathbf{x}_1 &= \alpha_1 \mathbf{P}_1 \\ \mathbf{x}_2 &= \alpha_1 \mathbf{P}_1 + \alpha_2 \mathbf{P}_2 \\ \mathbf{x}_3 &= \alpha_1 \mathbf{P}_1 + \alpha_2 \mathbf{P}_2 + \alpha_3 \mathbf{P}_3 \end{aligned} \qquad \qquad \mathbf{P}_3 &= \mathbf{d}_2 - \frac{\mathbf{P}_0^\mathsf{T} \mathbf{H} \mathbf{d}_2}{\mathbf{P}_0^\mathsf{T} \mathbf{H} \mathbf{P}_0} \mathbf{P}_0 - \frac{\mathbf{P}_1^\mathsf{T} \mathbf{H} \mathbf{d}_2}{\mathbf{P}_1^\mathsf{T} \mathbf{H} \mathbf{P}_1} \mathbf{P}_1 \\ &\vdots \end{aligned}$$

$$\vdots$$

$$\mathbf{x}_n = \alpha_1 \mathbf{P}_1 + \alpha_2 \mathbf{P}_2 + \alpha_3 \mathbf{P}_3 + \dots + \alpha_n \mathbf{P}_n$$

$$\mathbf{P}_n = \mathbf{d}_{n-1} - \frac{\mathbf{P}_0^\mathsf{T} \mathbf{H} \mathbf{d}_{n-1}}{\mathbf{P}_0^\mathsf{T} \mathbf{H} \mathbf{P}_0} \mathbf{P}_0 - \frac{\mathbf{P}_1^\mathsf{T} \mathbf{H} \mathbf{d}_{n-1}}{\mathbf{P}_1^\mathsf{T} \mathbf{H} \mathbf{P}_1} \mathbf{P}_1 - \dots - \frac{\mathbf{P}_{n-1}^\mathsf{T} \mathbf{H} \mathbf{d}_{n-1}}{\mathbf{P}_{n-1}^\mathsf{T} \mathbf{H} \mathbf{P}_{n-1}} \mathbf{P}_{n-1}$$

- Discrete Inversion in Iterative Space (DIIS), a.k.a. Pulay Method:
 - The new step is based on considerations over a list of previous steps:

$$\mathbf{x}_{n+1} = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i, \quad \sum_{i=1}^{n} \alpha_i = 1$$

- Minimise by seeking the solution to $\nabla f(\mathbf{x}) = 0$
- Assume when close enough to minimum, the gradient becomes a linear function:

$$\nabla f(\mathbf{x}_{n+1}) = \sum_{i=1}^{n} \alpha_i \nabla f(\mathbf{x}_i)$$
 $\mathbf{d}_i \equiv \nabla f(\mathbf{x}_i)$

The new gradient (residual) is then a function of α_i , solve: $\frac{\partial \|\mathbf{d}_{n+1}\|}{\partial \alpha_i} = 0$ with constraints $\sum_i^n \alpha_i = 1$, we obtain:

$$\alpha_i = \frac{\sum_{i}^{n} A_{ji}^{-1}}{\sum_{ij}^{n} A_{ji}^{-1}}, \quad A_{ij} = \mathbf{d}_i^\mathsf{T} \mathbf{d}_j$$

- Can be over 50% faster than CG, but not as stable because bad history contribute to the next step.
- Too many history included may not be beneficial.

Broyden's Method:

Again, seeks the solution to $\nabla f(\mathbf{x}) = 0$, but using the secant method

The next step can be determined by the inverse of Jacobian:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \mathbf{J}_n^{-1} \mathbf{d}_n$$
 $\mathbf{d}_n \equiv \nabla f(\mathbf{x}_n)$
 $\mathbf{J}_n = \frac{\partial (\mathbf{d}_n)_i}{\partial x_i}$

But inverse of Jacobian too expensive, so instead approximate \mathbf{J}_n^{-1} to be able to reproduce the changes in step (x) and residual (d) close to a set of previous results. In other words, minimise the weighted norm:

$$\sum_{i=1}^{n} w_i \| (\mathbf{x}_i - \mathbf{x}_{i-1}) - \mathbf{J}_n^{-1} (\mathbf{d}_i - \mathbf{d}_{i-1}) \|^2$$

And at the same time the changes in J_n^{-1} should be the minimal possible from the initial step. So we find J_n^{-1} by minimise:

$$N = \sum_{i=1}^{n} w_i \| (\mathbf{x}_i - \mathbf{x}_{i-1}) - \mathbf{J}_n^{-1} (\mathbf{d}_i - \mathbf{d}_{i-1}) \|^2 + w_0 \| \mathbf{J}_n^{-1} - \mathbf{J}_0^{-1} \|$$

- Seeks to find the minimum of the energy functional with respect to the MO coefficients, with the constraint that MO are normalised.
- Optimisation problem on a Mdimensional spherical surface.
- Perform a variable transformation, from MO coefficients C to a set of auxiliary variables X such that the optimisation of E is now on a M-I dimensional linear space w.r.t. X

$$\mathbf{C}(\mathbf{X}) = \mathbf{C}_0 \cos(\mathbf{U}) + \mathbf{X} \mathbf{U}^{-1} \sin(\mathbf{U})$$
$$\mathbf{U} = (\mathbf{X}^\mathsf{T} \mathbf{S} \mathbf{X})^{\frac{1}{2}}$$

 With constraint (fixes the direction of the plane):

$$\mathbf{X}^\mathsf{T} \mathbf{S} \mathbf{C}_0 = 0$$

- Seeks to find the minimum of the energy functional with respect to the MO coefficients, with the constraint that MO are normalised.
- Optimisation problem on a Mdimensional spherical surface.
- Perform a variable transformation, from MO coefficients C to a set of auxiliary variables X such that the optimisation of E is now on a M-I dimensional linear space w.r.t. X

$$\begin{aligned} \mathbf{C}(\mathbf{X}) &= \mathbf{C}_0 \cos(\mathbf{U}) + \mathbf{X} \mathbf{U}^{-1} \sin(\mathbf{U}) \\ \mathbf{U} &= (\mathbf{X}^\mathsf{T} \mathbf{S} \mathbf{X})^{\frac{1}{2}} \end{aligned}$$

• With constraint (fixes the direction of the plane):

$$\mathbf{X}^\mathsf{T}\mathbf{S}\mathbf{C}_0 = 0$$

$$\langle \mathbf{X}, \mathbf{C}_0 \rangle \equiv \mathbf{X}^T \mathbf{S} \mathbf{C}_0 = 0$$

$$\mathbf{C} = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix} = \mathbf{C}_0 \cos(\theta) + \hat{\mathbf{X}} \sin(\theta)$$

$$\theta = \frac{\|\mathbf{X}\|}{\|\mathbf{C}\|} = \|\mathbf{X}\| \qquad \hat{\mathbf{X}} = \frac{\mathbf{X}}{\|\mathbf{X}\|}$$

$$\|\mathbf{X}\| = \langle \mathbf{X}, \mathbf{X} \rangle^{\frac{1}{2}} = (\mathbf{X}^T \mathbf{S} \mathbf{X})^{\frac{1}{2}}$$

Computation of SIN and COS terms

- Can be calculated by diagonalisation: transforming to eigenspace, operate on eigenvalues, and then transform back. BUT too expensive.
- Use Taylor expansion: 2 or 3 order expansion already give machine precision.
- Calculate \mathbf{U}^{-1} as part of the Taylor expansion

$$\cos(\mathbf{U}) = \sum_{i=0}^{K} \frac{(-1)}{(2i)!} (\mathbf{X}^\mathsf{T} \mathbf{S} \mathbf{X})^i$$

$$\mathbf{U}^{-1}\sin(\mathbf{U}) = \sum_{i=0}^{K} \frac{(-1)^i}{(2i+1)!} (\mathbf{X}^\mathsf{T} \mathbf{S} \mathbf{X})^i$$

Preconditioners

The function to be minimised:

$$E(\mathbf{c}(\mathbf{x})) = \operatorname{tr}(\mathbf{c}^{\mathsf{T}}(\mathbf{x}))\mathbf{H}_{KS}\mathbf{c}(\mathbf{x}) + \mathbf{x}^{\mathsf{T}}\mathbf{S}\mathbf{c}_{0}\boldsymbol{\Lambda}$$

- While minimisation of E with respect to the OT variable is guaranteed to converge, it may do so very slowly.
- Preconditioners can greatly speed up the convergence of an iterative optimisation process
- Assuming c_0 are eigenstates of the initial KS hamiltonian, and we Taylor expand close by:

$$E(\mathbf{x}_0 + \mathbf{h}) = E_{\mathbf{x}_0} + \nabla_{\mathbf{h}} E(\mathbf{x}_0)^{\mathsf{T}} \mathbf{h} + \frac{1}{2} \mathbf{h}^{\mathsf{T}} \mathbf{E}''(\mathbf{x}_0) \mathbf{h} + O(h^3)$$

Then the Hessian of E close to minimum is:

$$\left. \frac{\partial^2 E}{\partial x_{i\mu} \partial x_{j\nu}} \right|_{\mathbf{x}_0} = 2H_{ij} \delta_{\mu\nu} - 2S_{ij} \delta_{\mu\nu} \epsilon_{\mu}^0$$

At minimum, we expect

$$\frac{\mathrm{d}E(\mathbf{x}_0 + \mathbf{h})}{\mathrm{d}\mathbf{h}} = \nabla_{\mathbf{h}}E(\mathbf{x}_0) + \mathbf{E}''(\mathbf{x}_0)\mathbf{h} + O(h^2) = 0$$

Therefore, $\mathbf{h} = -\mathbf{E}''(\mathbf{x}_0)^{-1} \boldsymbol{\nabla}_{\mathbf{h}} E(\mathbf{x}_0)$, i.e.:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \mathbf{P}_n \mathbf{\nabla} E_n$$

The ideal precondioner to the gradient is therefore:

$$\mathbf{P}_n = (\mathbf{H}_{KS} - \mathbf{S}\epsilon_n)^{-1} \qquad \epsilon_n = \mathbf{c}_n^\mathsf{T} \mathbf{H}_{KS} \mathbf{c}_n$$

- Practical Approximations to Preconditioner :
 - Ideal preconditioner requires:
 - Evaluation at every step
 - A different preconditioner matrix for every gradient vector
 - Matrix inversion
 - FULL ALL:
 - Instead of calculating ϵ_n , replace it with a single scalar ϵ_0 that is similar to other energy levels. It is chosen to be the highest eigenvalue of the initial step/guess
 - Instead of evaluating at every step, do once at the beginning, and reuse the same preconditioner
 - Invert by diagonalisation, keep positive definite by truncating small eigenvalues

- FULL KINETIC

- Same as FULL_ALL, except only use kinetic energy part of KS matrix.
- This gives sparse matrices, and can be taken advantage of using DBCSR based methods

- FULL SINGLE

- Same as FULL_ALL, however, only use the block diagonal parts of ${f H}_{KS}-{f S}\epsilon_0$
- In other words, only on-site terms are considered by the preconditioner
- Much faster, as each block can be calculated separately

- FULL SINGLE INVERSE

- Same as FULL_SINGLE, but with the inversion process replaced by Cholesky process. Only works if $\mathbf{H}_{KS} \mathbf{S}\epsilon_0$ is already positive definite.
- Therefore less robust, but more efficient than FULL_SINGLE

- FULL S INVERSE

- Ignore the KS matrix contribution all together, and utilise Cholesky decomposition of the full overlap matrix
- Generally avoid

- NONE

Not recommended...

- Inner and Outer SCF/OT minimisation Loop:
 - Relevant only for OT:
 - KS matrix is updated at every OT minimisation step: minimisation and SCF happening at the same time
 - Inner Loop: Preconditioner is calculated at the begging of the loop, and remains constant throughout the inner loop
 - Outer Loop: Loops over the inner loop, this means the preconditioner is updated at every outer loop step
 - Tips for OT convergence:
 - If inner loop is converging slowly, try to reduce the number of allowed iterations in the inner loop, and increase the number of iterations allowed for the outer loop.
 - This effectively forces the preconditioner to be updated more frequently

Mixing Methods for Diagonalisation

- Diagonalisation:
 - Solves the generalised eigen problem:

$$\mathbf{H}_{KS}\mathbf{c} = \lambda \mathbf{S}\mathbf{c}$$

- Uses any one of the eigensolvers implemented in CP2K
- Density matrix can be constructed from the MOs.

$$P_{ij} = \sum_{n} f_n c_{in} c_{jn}$$

- Occupy the MOs from the lowest energy up, until total number of electrons has reached.
 - This gives Fermi energy
 - Allows the opportunity to introduce smearing into the occupancy
- From the density matrix, we can obtain electron charge, and this is then mixed back into the KS Hamiltonian, to complete the SCF loop

Mixing Methods for Diagonalisation

Smearing:

- Integer occupation numbers: discontinuity at Fermi energy.
- If Fermi energy is close to a number of MOs, a small variation of MO energies can lead to a jump in total energy, due to the electrons either occupy or leave a particular orbital completely
 - This brings havoc to SCF optimisers, because all numerical optimisers work on the basis that functions they try to minimise is continuous and (at least once or twice) differentiable.
- Not a problem if the Fermi energy is in a band gap. Is a problem for metals.
- Smearing: replace the step function of occupancy with a smooth function of the similar shape, with smoothness controlled by a parametric temperature
- The higher the smearing temperature, the less resolution (system size) required for the band structure, but also less accurate

Mixing Methods for Diagonalisation

Broyden / Pulay Mixing

- The same as Broyden / DIIS optimisation method
- Solving for $R[\rho^{\rm in}] = \rho^{\rm out} \rho^{\rm in} = 0$
- Broyden mixing is very similar to Pulay mixing, but slightly faster and somewhat more robust, as it does not involve matrix inversion

Kerker Preconditioning (automatically turns on Pulay):

- Solve SCF convergence issues caused by large changes in the Hartree energy due to the changes in charge density that are far apart at every iteration step.
- The large change in Hartree energy then causes a corresponding reaction correction in the next output density, leading to a phenomenon referred to as "charge sloshing".
- The problem can be solved by performing charge mixing in reciprocal space, and change the mixing parameter A to a preconditioner:

$$A \to A \frac{q^2}{q^2 + B^2}$$
 Long range change correspond to small q, and its contribution goes to 0

64 water box

```
If you have a restart file, use RESTART
&SCF
  SCF_GUESS ATOMIC
  EPS_SCF 1.0E-06
  MAX_SCF 200
  &OT ON
    MINIMIZER DIIS
    PRECONDITIONER FULL_SINGLE_INVERSE
  &END OT
  &OUTER_SCF
    MAX_SCF 10
  &END OUTER_SCF
  &PRINT
    &RESTART OFF
    &END RESTART
  &END PRINT
&END SCF
```

SCF WAVEFUNCTION OPTIMIZATION
OT
Minimizer : DIIS : direct inversion
in the iterative subspace
using 7 DIIS vectors
safer DIIS on
Preconditioner : FULL_SINGLE_INVERSE : inversion of H + eS - 2*(Sc)(c^T*H*c+const)(Sc)^T
Precond_solver : DEFAULT
stepsize : 0.08000000 energy_gap : 0.08000000
eps_taylor : 0.10000E-15 max_taylor : 4
OT
Step Update method Time Convergence Total energy Change
T (25)
Trace(PS): 512.0000000000 Electronic density on regular grids: -512.0000014959 -0.0000014959
Core density on regular grids: -312.0000014939 -0.0000014939 -0.0000000045
Total charge density on r-space grids: -0.0000014914
Total charge density g-space grids: -0.0000014914
1 OT DIIS 0.80E-01 1.9 0.02242151 -1059.3825079557 -1.06E+03
Trace(PS): 512.000000000
Electronic density on regular grids: -512.0000017437 -0.0000017437
Core density on regular grids: 512.0000000045 0.0000000045
Total charge density on r-space grids: -0.0000017392
Total charge density g-space grids: -0.0000017392
2 OT DIIS 0.80E-01 1.2 0.01583191 -1079.2016155971 -1.98E+01
Trace(PS): 512.0000000000
Electronic density on regular grids: -512.0000015128 -0.0000015128
Core density on regular grids: 512.0000000045 0.0000000045
Total charge density on r-space grids: -0.0000015083
Total charge density g-space grids: -0.0000015083

Trace(PS): Electronic density on regular growth consists on regular growth consists on regular growth charge density g-spectrum.	rids: -space grid	-512. 512. ds: -0.	.0000000000 .0000015457 .0000000045 .0000015412 .0000015412	-0.0000015457 0.0000000045
149 OT DIIS 0.80E-01	1.2	0.00000102	-1101.	0377081868 -3.67E-07
Trace(PS): Electronic density on regular graphs of the control of	rids: -space grid	-512. 512. ds: -0.	.0000000000 .0000015457 .0000000045 .0000015412	-0.0000015457 0.0000000045
150 OT DIIS 0.80E-01	1.2	0.00000101	-1101.	0377086068 -4.20E-07
Trace(PS): Electronic density on regular grotal charge density on retail charge density g-specific charge density g-specif	rids: -space grid	-512. 512. ds: -0.	.0000000000 .0000015457 .0000000045 .0000015412	-0.0000015457 0.0000000045
151 OT DIIS 0.80E-01	1.2	0.00000101	-1101.	0377089336 -3.27E-07
Trace(PS): Electronic density on regular graphs of the control of	rids: -space grid	-512. 512. ds: -0.	.0000000000 .0000015457 .0000000045 .0000015412	-0.0000015457 0.0000000045
152 OT DIIS 0.80E-01	1.2	0.00000100	-1101.	0377093306 -3.97E-07
Trace(PS): Electronic density on regular grotal charge density on retail charge density g-spa	rids: -space grid	-512. 512. ds: -0.	.0000000000 .0000015457 .0000000045 .0000015412	-0.0000015457 0.0000000045
153 OT DIIS 0.80E-01	1.2	0.00000100	-1101.	0377096545 -3.24E-07
*** SCF run converged in	153 steps	; ***		

64 water box

```
&SCF
  SCF_GUESS ATOMIC
  EPS_SCF 1.0E-06
 MAX_SCF 200
 &OT ON
    MINIMIZER DIIS
    PRECONDITIONER FULL_ALL
 &END OT
 &OUTER_SCF
    MAX_SCF 10
 &END OUTER_SCF
 &PRINT
    &RESTART OFF
    &END RESTART
 &END PRINT
&END SCF
```

SCF WAVEFUNCTION OPTIMIZATION		
Minimizer : DIIS	OT : direct inversion in the iterative subspace using 7 DIIS vectors	
Preconditioner : FULL_ALL	safer DIIS on	
Preconditioner : FULL_ALL Precond_solver : DEFAULT	: diagonalization, state selective	
stepsize : 0.15000000	energy_gap : 0.0800	0000
eps_taylor : 0.10000E-15	<pre>max_taylor :</pre>	4
	OT	
Step Update method Time	Convergence Total energy Ch	ange
Trace(PS):	512.0000000000	40E0
Core density on regular grids:	: -512.0000014959 -0.000001 512.0000000045 0.000000	
Total charge density on r-space grid		0015
Total charge density g-space grids:	-0.0000014914	
1 OT DIIS 0.15E+00 4.2	0.02500388 -1059.3825079557 -1.06	E+03
Trace(PS):	512.000000000	
	: -512.0000020917 -0.0000020	0917
Core density on regular grids:	512.0000000045 0.000000	
Total charge density on r-space grid	ds: -0.0000020873	
Total charge density g-space grids:	-0.0000020873	
2 OT DIIS 0.15E+00 1.3	0.01405947 -1091.5303639854 -3.21	E+01
Trace(PS):	512.000000000	
Electronic density on regular grids:		1239
Core density on regular grids:	512.0000000045 0.000000	0045
Total charge density on r-space grid	ds: -0.0000011194	
Total charge density g-space grids:	-0.0000011194	

108 OT DIIS	0.15E+00	1.3	0.00000105	-1101.03	377126778 -3.05E-07
Trace(PS):			511	.9999999999	
Electronic dens	sity on regulo	ar grids:	-512	.0000015456	-0.0000015456
Core density or		•		.0000000045	0.0000000045
Total charge d	•		ds: -0	.0000015411	
Total charge d		•		.0000015411	
109 OT DIIS	0.15E+00	1.3	0.00000104	-1101.03	377130143 -3.37E-07
Trace(PS):			511	. 9999999999	
Electronic den	sity on regul	ar grids:	-512	.0000015456	-0.0000015456
Core density o	n regular grid	ds:	512	.0000000045	0.0000000045
Total charge d	ensity on r-sp	oace grid	ds: -0	.0000015411	
Total charge d	ensity g-space	e grids:	-0	.0000015411	
110 OT DIIS	0.15E+00	1.3	0.00000103	-1101.03	377133249 -3.11E-07
Trace(PS):			511	.9999999999	
Electronic dens	sity on regulo	ar grids:	-512	.0000015456	-0.0000015456
Core density o	n regular grid	ds:	512	.0000000045	0.0000000045
Total charge d	ensity on r-sp	oace grid	ds: -0	.0000015411	
Total charge d	ensity g-space	e grids:	-0	.0000015411	
111 OT DIIS	0.15E+00	1.3	0.00000102	-1101.03	377136686 -3.44E-07
Trace(PS):			511	. 9999999999	
Electronic dens	sity on regulo	ar grids:	-512	.0000015456	-0.0000015456
Core density o	n regular grid	ds:	512	.0000000045	0.0000000045
Total charge d	ensity on r-sp	oace grid	ds: -0	.0000015411	
Total charge d	ensity g-space	e grids:	-0	. 0000015411	
112 OT DIIS	0.15E+00	1.3	0.00000101	-1101.03	377140259 -3.57E-07
Trace(PS):			511	. 9999999999	
Electronic dens	sity on regulo	ar grids:	-512	.0000015456	-0.0000015456
Core density o	-	-		.0000000045	0.0000000045
Total charge d	ensity on r-sp	oace grid	ds: -0	.0000015411	
Total charge d	•	•		.0000015411	
113 OT DIIS	0.15E+00	1.3	0.00000100	-1101.03	377143737 -3.48E-07

*** SCF run converged in 113 steps ***

64 water box

```
&SCF
  SCF_GUESS ATOMIC
  EPS_SCF 1.0E-06
 MAX_SCF 20
 &OT ON
    MINIMIZER DIIS
    PRECONDITIONER FULL_ALL
 &END OT
 &OUTER_SCF
    MAX_SCF 100
 &END OUTER_SCF
 &PRINT
    &RESTART OFF
    &END RESTART
 &END PRINT
&END SCF
```

18 OT DIIS	0.15E+00	1.3	0.00010381	-1101.0	0333773217 -3.82E-03	
Trace(PS):			512.	0000000000		
Electronic dens	sity on regul	ar grids:	: -512.	0000015462	-0.0000015462	
Core density or				0000000045	0.0000000045	
Total charge de	•		ds: -0.	0000015417		
Total charge de	-	. •		0000015417		
19 OT DIIS	0.15E+00	1.3	0.00009753	-1101.0	345262445 -1.15E-03	
Trace(PS):			512.	0000000000		
Electronic dens	sity on regul	ar grids:	: -512.	0000015467	-0.0000015467	
Core density or	n regular gri	ds:	512.	0000000045	0.0000000045	
Total charge de	ensity on r-s	pace grid	ds: -0.	0000015422		
Total charge de	ensity g-spac	e grids:	-0.	0000015422		
20 OT DIIS	0.15E+00	1.3	0.00006603	-1101.0	350962104 -5.70E-04	
*** SCF run NO	Γ converged *	**				
Electronic dens			: -512.	0000015467	-0.0000015467	
Core density or	•			0000000045	0.0000000045	
Total charge de	•		ds: -0.	0000015422		
Total charge de	ensity g-spac	e grids:	-0.	0000015422		
Overlap energy	of the core	charae di	istribution:		0.00000562599749	
Self energy of		-		_	2805.30499493854950	
Core Hamiltonia		i ge alsei	ibación.		825.30614501411810	
Hartree energy:	0,5				1145.24847973284727	
Exchange-corre		•			-266.28473164478658	
Exchange confe	Lacton chergy	•			200.2011.010111.0000	
Total energy:				-	1101.03509621037347	
outer SCF iter	= 1 RMS g	radient =	= 0.66E-04	energy =	-1101.0350962104	

Step	Update	method	Time	Convergence	Total	energy	Change
Core der Total ch	nic dens nsity on narge den	ity on regul regular gri nsity on r-s nsity g-spac	ds: pace gri	: -512 512 ds: -0	.0000000000 .0000015467 .0000000045 .0000015422		00015467 00000045
1 OT	DIIS	0.15E+00	5.9	0.00016580	-1101.035	5385583 -	4.42E-04
Core der Total ch	nic dens nsity on narge den	ity on regul regular gri nsity on r-s nsity g-spac	ds: pace gri	: -512 512 ds: -0	.0000000000 .0000015454 .00000000045 .0000015409 .0000015409		00015454 00000045
2 OT	DIIS	0.15E+00	1.2	0.00006738	-1101.037	4081725 -	1.87E-03
Core der Total ch	nic dens nsity on narge den	ity on regul regular gri nsity on r-s nsity g-spac	ds: pace gri	: -512 512 ds: -0	.0000000000 .0000015475 .00000000045 .0000015430		00015475 00000045
3 OT	DIIS	0.15E+00	1.2	0.00003004	-1101.037	7417272 -	3.34E-04
Core der Total ch	nic dens nsity on narge den	ity on regul regular gri nsity on r-s nsity g-spac	ds: pace gri	: -512 512 ds: -0	.0000000000 .0000015459 .0000000045 .0000015415		00015459 00000045
4 OT	DIIS	0.15E+00	1.2	0.00000106	-1101.037	7661454 -	2.44E-05
Core der Total ch	nic dens nsity on narge den	ity on regul regular gri nsity on r-s nsity g-spac	ds: pace gri	: -512 512 ds: -0	.0000000000 .0000015460 .0000000045 .0000015415		00015460 00000045
5 OT	DIIS	0.15E+00	1.2	0.00000062	-1101.037	7661763 -	3.09E-08

5 steps ***

*** SCF run converged in

```
&SCF
  SCF_GUESS ATOMIC
  EPS_SCF 1.0E-6
  MAX_SCF 500
  ADDED_MOS 200
  CHOLESKY INVERSE
  &SMEAR ON
    METHOD FERMI_DIRAC
    ELECTRONIC_TEMPERATURE [K] 300
  &END SMEAR
  &DIAGONALIZATION
    ALGORITHM STANDARD
  & END DIAGONALIZATION
  &MIXING
   METHOD DIRECT_P_MIXING
    ALPHA 0.5
  &END MIXING
  &OUTER_SCF
    EPS_SCF 1.0E-6
   MAX_SCF 1
  &END OUTER_SCF
&END SCF
```

Au I 28 bulk

Step	Update	method	Time	Convergence	Total energy	Change
1	P_Mix/Diag.	0.50E+00	2.1	0.41056021	-2133.4408435676	-2.13E+03
	P_Mix/Diag.		3.2	0.20432922	-2132.0776002852	1.36E+00
3	P_Mix/Diag.	0.50E+00	3.2	0.10741372	-2131.3677551799	7.10E-01
	P_Mix/Diag.		3.2	0.05420394	-2131.0080867703	3.60E-01
	DIIS/Diag.	0.39E-03	3.2	0.02722180	-2130.8276990683	1.80E-01
6	DIIS/Diag.	0.19E-03	3.1	0.00062404	-2130.6473761946	1.80E-01
7	DIIS/Diag.	0.84E-04	3.2	0.00050993	-2130.6473778175	-1.62E-06
8	DIIS/Diag.	0.63E-04	3.2	0.00021250	-2130.6473781683	-3.51E-07
9	DIIS/Diag.	0.11E-03	3.2	0.00019003	-2130.6473780859	8.24E-08
10	DIIS/Diag.	0.29E-03	3.1	0.00037131	-2130.6473764995	1.59E-06
11	DIIS/Diag.	0.34E-03	3.2	0.00045761	-2130.6473757354	7.64E-07
12	DIIS/Diag.	0.10E-02	3.2	0.00121294	-2130.6473574307	1.83E-05
13	DIIS/Diag.	0.47E-03	3.1	0.00355236	-2130.6473668667	-9.44E-06
14	DIIS/Diag.	0.74E-02	3.1	0.00485367	-2130.6464389964	9.28E-04
15	DIIS/Diag.	0.80E-02	3.1	0.01204111	-2130.6462412097	1.98E-04
16	DIIS/Diag.	0.10E-01	3.1	0.00709698	-2130.6441536117	2.09E-03
17	DIIS/Diag.	0.73E-02	3.1	0.06036011	-2130.6454804871	-1.33E-03
18	DIIS/Diag.	0.32E-01	3.1	0.07606048	-2130.6085108701	3.70E-02
19	P_Mix/Diag.	0.50E+00	3.1	1.20934863	-2130.4320575334	1.76E-01
20	P_Mix/Diag.	0.50E+00	3.1	164.38141403	-2083.0458429170	4.74E+01
21	P_Mix/Diag.	0.50E+00	3.1	484.77129296	642.3682176809	2.73E+03
22	P_Mix/Diag.	0.50E+00	3.1	242.49533726	680.0967740982	3.77E+01
23	P_Mix/Diag.	0.50E+00	3.1	108.28073503	713.7098573905	3.36E+01
24	P_Mix/Diag.	0.50E+00	3.1	133.38323194	-83.2160327233	-7.97E+02
25	P_Mix/Diag.	0.50E+00	3.1	243.65162842	257.9355830764	3.41E+02
26	P_Mix/Diag.	0.50E+00	3.1	360.75338107	804.4210109712	5.46E+02
	P_Mix/Diag.		3.2	423.28363111	790.1670568787	
	P_Mix/Diag.		3.1	527.98757101	1358.0740107382	5.68E+02
	P_Mix/Diag.		3.1	467.44558067	1279.1848521006	
	P_Mix/Diag.		3.1	511.11190255	1700.0469627750	4.21E+02
	P_Mix/Diag.		3.1	531.81962633	1488.0293045448	
32	P_Mix/Diag.	0.50E+00	3.1	469.22980247	1449.5252473273	-3.85E+01

```
274 P_Mix/Diag. 0.50E+00
                                 496.18271982
                                                   1433.1258409018 -2.52E+02
                           3.1
275 P_Mix/Diag. 0.50E+00
                                 465.21950527
                           3.1
                                                   1708.0865674753 2.75E+02
276 P_Mix/Diag. 0.50E+00
                           3.2
                                 526.35992000
                                                   1701.9896437225 -6.10E+00
277 P_Mix/Diag. 0.50E+00
                                 500.55201331
                                                   1429.0695309273 -2.73E+02
                           3.1
278 P_Mix/Diag. 0.50E+00
                           3.1
                                 452.47323777
                                                   1685.6997235986 2.57E+02
279 P_Mix/Diag. 0.50E+00
                                 525.66284299
                           3.1
                                                   1726.0727258188 4.04E+01
280 P_Mix/Diag. 0.50E+00
                           3.1
                                 504.85174061
                                                   1437.1005594299 -2.89E+02
281 P_Mix/Diag. 0.50E+00
                                452.73958110
                                                   1626.9128568615 1.90E+02
                           3.1
282 P_Mix/Diag. 0.50E+00
                           3.2
                                 524.88774970
                                                   1767.5496813722 1.41E+02
283 P_Mix/Diag. 0.50E+00
                                 509.84684807
                                                   1454.1863412940 -3.13E+02
                           3.1
284 P_Mix/Diag. 0.50E+00
                           3.1
                                 424.76338293
                                                   1583.5008811158 1.29E+02
285 P_Mix/Diag. 0.50E+00
                                 516.88135732
                                                   1784.1133181315 2.01E+02
                           3.1
286 P_Mix/Diag. 0.50E+00
                                                   1475.1702369153 -3.09E+02
                                 514.48307366
                           3.1
287 P_Mix/Diag. 0.50E+00
                           3.1
                                 429.02575267
                                                   1494.4059971253 1.92E+01
288 P_Mix/Diag. 0.50E+00
                                                   1762.0172683978 2.68E+02
                           3.2
                                 505.84474236
289 P_Mix/Diag. 0.50E+00
                                                   1519.1104495575 -2.43E+02
                           3.1
                                 521.09854796
290 P_Mix/Diag. 0.50E+00
                           3.2
                                 460.28042402
                                                   1463.1850194878 -5.59E+01
291 P_Mix/Diag. 0.50E+00
                           3.1
                                 494.65034012
                                                   1736.5367974686 2.73E+02
292 P_Mix/Diag. 0.50E+00
                           3.1
                                 523.62795354
                                                   1561.0634325581 -1.75E+02
293 P_Mix/Diag. 0.50E+00
                           3.1
                                470.92963686
                                                   1458.4095785993 -1.03E+02
294 P_Mix/Diag. 0.50E+00
                           3.1
                                 489.94822751
                                                   1740.7536880093 2.82E+02
295 P_Mix/Diag. 0.50E+00
                           3.1
                                 527.88371821
                                                   1586.4713619002 -1.54E+02
296 P_Mix/Diag. 0.50E+00
                                                   1461.2599044466 -1.25E+02
                           3.1
                                477.46948475
297 P_Mix/Diag. 0.50E+00
                           3.1
                                 481.52741519
                                                   1744.2498516733 2.83E+02
298 P_Mix/Diag. 0.50E+00
                                                   1631.2670959487 -1.13E+02
                           3.1
                                 528.64978975
299 P_Mix/Diag. 0.50E+00
                           3.1
                                 483.01432540
                                                   1447.7674793116 -1.83E+02
300 P_Mix/Diag. 0.50E+00
                           3.1 475.21476950
                                                   1734.9217161865 2.87E+02
301 P_Mix/Diag. 0.50E+00
                           3.1 527.70245328
                                                   1640.9047892819 -9.40E+01
302 P_Mix/Diag. 0.50E+00
                                 485.65879289
                                                   1448.0327123002 -1.93E+02
                           3.1
303 P_Mix/Diag. 0.50E+00
                           3.1 474.33206574
                                                   1735.1993514743 2.87E+02
304 P_Mix/Diag. 0.50E+00
                           3.1 528.41442815
                                                   1652.4630012861 -8.27E+01
305 P_Mix/Diag. 0.50E+00
                           3.1
                                 487.89310966
                                                   1441.5618979731 -2.11E+02
306 P_Mix/Diag. 0.50E+00
                           3.1 472.80773473
                                                   1735.6753322017 2.94E+02
307 P_Mix/Diag. 0.50E+00
                           3.1 528.03454596
                                                   1664.1188498883 -7.16E+01
308 P_Mix/Diag. 0.50E+00
                           3.1
                                489.55606395
                                                   1439.4935858980 -2.25E+02
309 P_Mix/Diag. 0.50E+00
                           3.2 471.87729366
                                                   1733.8307029231 2.94E+02
310 P_Mix/Diag. 0.50E+00
                           3.1
                                 527.88042982
                                                   1669.9038337698 -6.39E+01
```

```
&SCF
  SCF_GUESS ATOMIC
  EPS_SCF 1.0E-6
  MAX_SCF 500
  ADDED_MOS 200
  CHOLESKY INVERSE
  &SMEAR ON
    METHOD FERMI_DIRAC
    ELECTRONIC_TEMPERATURE [K] 300
  &END SMEAR
  &DIAGONALIZATION
    ALGORITHM STANDARD
  & END DIAGONALIZATION
  &MIXING
    METHOD PULAY_MIXING
    ALPHA 0.2
    NBUFFER 5
  &END MIXING
  &OUTER_SCF
    EPS_SCF 1.0E-6
    MAX_SCF 1
 &END OUTER_SCF
&END SCF
```

Au I 28 bulk

SCF WA	AVEFUNCTION (OPTIMIZATI(ON			
Step	Update 1	method	Time	Convergence	Total energy Change	5
1	NoMix/Diag.	0.20E+00	2.1	0.41056021	-2133.4408435676 -2.13E+03	3
2	Pulay/Diag.	0.20E+00	3.0	0.09203127	-2201.3765392945 -6.79E+01	L
3	Pulay/Diag.	0.20E+00	3.0	0.16880309	-2158.2415807244 4.31E+01	L
4	Pulay/Diag.	0.20E+00	3.1	0.00518342	-2130.6192970241 2.76E+01	L
5	Pulay/Diag.	0.20E+00	3.0	0.00047075	-2130.6728564565 -5.36E-02	2
6	Pulay/Diag.	0.20E+00	3.0	0.00158949	-2130.6457378471 2.71E-02	2
7	Pulay/Diag.	0.20E+00	3.1	0.00183981	-2130.6474323880 -1.69E-03	3
8	Pulay/Diag.	0.20E+00	3.0	0.00070883	-2130.6475388056 -1.06E-04	1
9	Pulay/Diag.	0.20E+00	3.1	0.00008650	-2130.6474330363 1.06E-04	1
10	Pulay/Diag.	0.20E+00	3.1	0.00006343	-2130.6473426916 9.03E-05	5
11	Pulay/Diag.	0.20E+00	3.1	0.00001087	-2130.6473443079 -1.62E-06	ō
12	Pulay/Diag.	0.20E+00	3.0	0.00001251	-2130.6473829189 -3.86E-05	5
13	Pulay/Diag.	0.20E+00	3.0	0.00000690	-2130.6474093517 -2.64E-05	5
14	Pulay/Diag.	0.20E+00	3.1	0.00000588	-2130.6474056927 3.66E-06	ō
15	Pulay/Diag.	0.20E+00	3.0	0.00000429	-2130.6473907798 1.49E-05	5
16	Pulay/Diag.	0.20E+00	3.0	0.00000128	-2130.6473708497 1.99E-05	5
17	Pulay/Diag.	0.20E+00	3.0	0.00000069	-2130.6473700587 7.91E-07	7
***	SCF run conv	erged in	17 step	S ***		

```
&SCF
  SCF_GUESS ATOMIC
  EPS_SCF 1.0E-6
  MAX_SCF 500
  ADDED_MOS 200
  CHOLESKY INVERSE
  &SMEAR ON
    METHOD FERMI_DIRAC
    ELECTRONIC_TEMPERATURE [K] 300
  &END SMEAR
  &DIAGONALIZATION
    ALGORITHM STANDARD
  & END DIAGONALIZATION
  &MIXING
    METHOD BRYODEN_MIXING
    ALPHA 0.2
    NBUFFER 5
  &END MIXING
  &OUTER_SCF
    EPS_SCF 1.0E-6
    MAX_SCF 1
 &END OUTER_SCF
&END SCF
```

Au I 28 bulk

Step	Update	method	Time	Convergence	Total energy	Chang
1	NoMix/Diag.	. 0.20E+00	2.1	0.41056021	-2133.4408435676	-2.13E+0
2	Broy./Diag.	. 0.20E+00	3.0	0.09203127	-2201.3765392945	-6.79E+0
3	Broy./Diag.	. 0.20E+00	3.0	0.16796900	-2158.0252203875	4.34E+0
4	Broy./Diag.	. 0.20E+00	3.0	0.00119322	-2130.7623431374	2.73E+0
5	Broy./Diag.	. 0.20E+00	3.0	0.00354041	-2130.8401320934	-7.78E-0
6	Broy./Diag.	. 0.20E+00	3.0	0.00027721	-2130.6310148769	2.09E-0
7	Broy./Diag.	. 0.20E+00	3.0	0.00021364	-2130.6341596109	-3.14E-0
8	Broy./Diag.	. 0.20E+00	3.0	0.00096927	-2130.6425441433	-8.38E-0
9	Broy./Diag.	. 0.20E+00	3.0	0.00061032	-2130.6368211911	5.72E-0
	Broy./Diag.		3.0	0.00008199	-2130.6405099448	-3.69E-0
11	Broy./Diag.	. 0.20E+00	3.1	0.00004376	-2130.6475333293	-7.02E-0
	Broy./Diag.		3.1	0.00001638	-2130.6493205024	-1.79E-0
	Broy./Diag.		3.1	0.00001451	-2130.6486762850	6.44E-0
	Broy./Diag.		3.2	0.00001432	-2130.6482674682	4.09E-0
15	Broy./Diag.	. 0.20E+00	3.1	0.00001122	-2130.6476512837	6.16E-0
	Broy./Diag.		3.1	0.00000112	-2130.6472295415	4.22E-0
17	Broy./Diag.	. 0.20E+00	3.1	0.00000103	-2130.6472635676	-3.40E-0
18	Broy./Diag.	. 0.20E+00	3.1	0.00000112	-2130.6472999859	-3.64E-0
	Broy./Diag.		3.0	0.00000168	-2130.6473550000	
20	Broy./Diag.	. 0.20E+00	3.0	0.00000144	-2130.6473964425	-4.14E-0
21	Broy./Diag.	. 0.20E+00	3.1	0.00000009	-2130.6474004989	-4.06E-0