1

Assignment 7

Sri Harsha CH

Abstract—This document explains the method of finding the area of the region.

Download all python codes from

https://github.com/harshachinta/EE5609–Matrix– Theory/tree/master/Assignments/ Assignment 7/code

and latex-tikz codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/ Assignment 7

1 Problem

Find the area of the region in the first quadrant enclosed by x-axis, line $(1 - \sqrt{3})\mathbf{x} = 0$ and the circle $\mathbf{x}^T\mathbf{x} = 4$.

2 Explanation

The equation of a circle can be expressed as,

$$\mathbf{x}^T \mathbf{x} - 2\mathbf{c}^T \mathbf{x} + f = 0 \tag{2.0.1}$$

where **c** is the center.

Comparing equation (2.0.1) with the circle equation given,

$$\mathbf{x}^T \mathbf{x} = 4 \tag{2.0.2}$$

$$\implies \mathbf{c} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad f = -4 \tag{2.0.3}$$

$$r = \sqrt{\mathbf{c}^T \mathbf{c} - f} = \sqrt{4} \tag{2.0.4}$$

$$\implies \boxed{r=2} \tag{2.0.5}$$

From equation (2.0.5), the point at which circle touches x-axis is $\binom{2}{0}$.

The direction vector of x-axis is $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$.

The direction vector of the given line $(1 - \sqrt{3})\mathbf{x} = 0$ is $\begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix}$.

The angle that the line makes with the x-axis is given by,

$$\cos \theta = \frac{\left(\sqrt{3} \quad 1\right)\begin{pmatrix} 2\\0 \end{pmatrix}}{\left\|\left(\sqrt{3} \quad 1\right)\right\|\left\|\left(2 \quad 0\right)\right\|} = \frac{\sqrt{3}}{2}$$

$$\implies \boxed{\theta = 30^{\circ}}$$
(2.0.6)

Using equation (2.0.5) and (2.0.7), the area of the sector is obtained as,

$$\implies \boxed{\frac{\theta}{360^{\circ}}\pi r^2 = \frac{30^{\circ}}{360^{\circ}}\pi (2)^2 = \frac{\pi}{3}}$$
 (2.0.8)

Fig. 1: Region enclosed by x-axis, line and circle

3 Solution

The area of the region is $\frac{\pi}{3}$.