TRIGONOMETRY Chapter 8

Aplicaciones gráficas de los triángulos rectángulos notables

¿Dados TRES segmentos de recta podrá siemp: construirs de recta podrá siemp: construir de rec

10*cm*

MOTIVATING STRATEGY

En este caso deberá elegirse uno de los segmentos, por ejemplo el mayor.

Usando una regla y compás, trazar un triángulo.

Repite estos pasos con otros segmentos, como por ejemplo: 10 cm, 4 cm y 3 cm. Coméntame tus resultados en la próxima clase!

HELICO THEORY

APLICACIONES GRÁFICAS DE LOS TRIÁNGULOS RECTÁNGULOS NOTABLES

Veamos:

Resumiendo:

R.T	30°	60°	37°	53°	45°
sen	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	3 5	4 5	$\frac{1}{\sqrt{2}}$
cos	$ \begin{array}{c c} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \\ 1 \end{array} $	$\frac{\overline{2}}{\overline{2}}$	4 5 3 4	3 5	$\frac{1}{\sqrt{2}}$
tan	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$	$\frac{3}{4}$	$\frac{4}{3}$	1
cot	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$	$\frac{4}{3}$	$\frac{3}{4}$	1
sec	$\frac{2}{\sqrt{3}}$	2	4 -3 5 -4	4 3 3 4 5 3 5	$\sqrt{2}$
CSC	2	$\frac{2}{\sqrt{3}}$	5 -3	5 4	$\sqrt{2}$

Del gráfico, calcule el perímetro del triángulo rectángulo ACB.

Resolución:

En el ACB (Notable de 37° y Se observa^{53°)}

$$3k = 18m \implies k = 6m$$

Luego:
$$AB = 5k = 5(6m) \Rightarrow AB = 30m$$

$$AB = 30m$$

$$AC = 4k = 4(6m)$$
 $AC = 24m$

$$AC = 24m$$

$$2p = 30m + 24m + 18m$$

$$\therefore 2p = 72m$$

En el triángulo rectángulo ABC, se tiene que AC = 10cm. Calcule la longitud del

Resolución:

En el $\triangle ABC$ (Notable de 37° y 53°)

Se observa:

$$5k = 10cm \implies k = 2cm$$

Luego:

$$BC = 3k = 3(2cm) \implies BC = 6cm$$

En el \(\Delta BDC \) (Notable 30° Y 60°)

Se observa:

$$2k = 6cm \implies k = 3cm$$

Luego:

$$DB = x = k$$

$$\therefore$$
 DB = 3cm

Del gráfico, calcule $\cos \beta$

Resolución:

En el \(\Delta BDC \) (Notable de 30° y 60°)

Se observa:

$$2k = 4 \implies k = 2$$

Luego:

$$\mathbf{BD} = \mathbf{y} = \mathbf{k}\sqrt{3} \implies \boxed{\mathbf{BD} = 2\sqrt{3}}$$

$$\cos \beta = \frac{2\sqrt{3}}{8}$$

$$\therefore \cos\beta = \frac{\sqrt{3}}{4}$$

Resolución:

En el $\triangle BCD$ (Notable de 45°)

En el triángulo notable de 45° los catetos son iguales.

Se observa:

$$DC = BC \implies BC = 3$$

$$\tan \beta = \frac{3}{9}$$

$$\therefore \tan\beta = \frac{1}{3}$$

Resolución:

En el \(\Delta BCD \) (Notable de 30° y

$$BC = K$$

$$DC = k\sqrt{3}$$

$$\rightarrow$$
 AD = $k\sqrt{3}$

$$\cot \alpha = \frac{2k\sqrt{3}}{k}$$

$$\therefore \cot \alpha = 2\sqrt{3}$$

Del gráfico, calcule $\cot \theta$

Resolución:

En el \(\DCB \) (Notable de 37° y 53°)

$$DC = 4K$$

$$BC = 3K$$

$$BD = 5k$$

$$\rightarrow$$
 AD = 5k

$$\cot\theta = \frac{9k}{3k}$$

$$\therefore \cot \theta = 3$$

Dos barras metálicas se encuentran apoyadas, tal como se muestra en la

figura. Calcule sen θ .

En el \(\Delta BHA (Notable de 30° y \)
Se observa: \(\frac{60°}{} \)

$$2k = 30cm \implies k = 15cm$$

Luego:

$$\mathbf{BH} = \mathbf{k}\sqrt{3} \implies \mathbf{BH} = 15\sqrt{3}\mathbf{cm}$$

$$\therefore \mathbf{sen}\theta = \frac{\sqrt{3}}{3}$$

Resolución:

En el \(\Delta CHB \)(Notable de 30° y

Se observa: 60°)

$$2k = 8 \implies k = 4$$

Luego:

$$CH = K \implies CH = 4$$

$$\mathbf{BH} = \mathbf{k}\sqrt{3} \implies \mathbf{BH} = 4\sqrt{3}$$

$$\cot \beta = \frac{\sqrt[5]{\sqrt{3}}}{\sqrt[4]{2}}$$

$$\therefore \mathbf{cot}\beta = \frac{5\sqrt{3}}{2}$$