

Dataset Exploratory Analysis

- UNData countries dataset
- 229 countries (regions and development level)
- 52 key statistical indicators:
 - GDP per capita (current US\$)
 - Unemployment (% of labour force)
 - Food production index (2004-2006=100)
 - International trade: Imports (million US\$)
 - Population age distribution (60+ years, %)
 - Health: Total expenditure (% of GDP)
- Columns and rows with > 50% of NAs removed: 214 countries and 51 indicators
- Missing values imputation with MissForest
- Data standardization, zero variance check

UNSUPERVISED LEARNING:

PCA, K-Means, Hierarchical Clustering

Correlation plot

 3 groups of correlated indicators

Correlation plot

- 3 groups of correlated indicators
- Group 2 as an example:
 - 110 Economy: Services and other activity (% of GVA)
 - I28 Life expectancy at birth (males, years)
 - I30 Population age distribution (60+ years, %)
 - 135 Health: Physicians (per 1000 pop.)

Principal Component Analysis

12 components to perform a dimensionality reduction (80% of variance)

P	C	Eigenvalue	Variance percentage						
D	Dim.1	16.7087	32.7622 32.7622						
D	Dim.2	4.8317	9.474	42.2362					
D	Dim.3	3.6102	7.0788	49.315					
D	Dim.4	2.5058	4.9133	54.2283					
D	Dim.5	2.4781	4.8591	59.0874					
D	Dim.6	2.1483	4.2124	63.2998					
D	Dim.7	1.6692	3.2728	66.5726					
D	0im.8	1.5158	2.9721	69.5448					
D	0im.9	1.4004	2.7459	72.2907					
D	Dim.10	1.2441	2.4395	74.7302					
D	Dim.11	1.0936	2.1444	76.8746					
	Dim.12	1.0816	2.1208	78.9954					
	0im.13	0.9431	1.8492	80.8446					
	Dim.14	0.9016	1.7679	82.6125					
	Dim.15	0.8327	1.6327	84.2452					
	0im.16	0.7536	1.4777	85.7229					
	Dim.17	0.6152	1.2063	86.9291					
	0im.18	0.6036	1.1834	88.1126					
	0im.19	0.5271	1.0335	89.1461					
	0im.20	0.5171	1.014	90.16					
	0im.21	0.4926	0.966	91.126					
	0im.22	0.4661	0.9139	92.04					
	0im.22	0.4661	0.9139	92.8475					
			0.8075	93.5934					
	Dim.24 Dim.25	0.3804							
			0.6893	94.2827					
		0.3369	0.6606	94.9433					
	0im.27	0.2983	0.5849	95.5281					
	0im.28	0.2903	0.5692	96.0973					
	0im.29	0.2529	0.4959	96.5932					
	0im.30	0.2306	0.4522	97.0454					
	0im.31		0.4138	97.4592					
	Dim.32	0.1991	0.3904	97.8496					
	0im.33	0.1749	0.343	98.1926					
	0im.34		0.2923	98.4848					
	Dim.35	0.1416	0.2776	98.7624					
	Dim.36	0.1157	0.2269	98.9894					
	Dim.37	0.1022	0.2005	99.1898					
		0.0931	0.1826	99.3725					
	Dim.39	0.0771	0.1512	99.5237					
	Dim.40	0.0493	0.0967	99.6204					
	Dim.41	0.0473	0.0927	99.7131					
	Dim.42	0.0397	0.0779	99.791					
	Dim.43	0.0363	0.0713	99.8622					
	Dim.44	0.0236	0.0463	99.9085					
	Dim.45	0.0157	0.0307	99.9392					
D	Dim.46	0.0137	0.0269	99.9661					
D	Dim.47	0.0101	0.0198	99.9859					
D	Dim.48	0.0038	0.0075	99.9933					
D	Dim.49	0.0029	0.0058	99.9991					
D	0im.50	0.0004	0.0009	99.9999					
D	Dim.51	0	0.0001	100					

PCA

- Original variables plotted against PC1 and PC2
- Color contributions of the variables to the PCs (loadings)
- Distance between variables and the origin the quality of the representation by PCs

PCA

PC1 explained:

positively correlated with:

- I8 Economy: Agriculture (% of GVA);
- I11 Employment: Agriculture (% of employed);
- 126 Fertility rate, total (live births per woman);
- 129 Population age distribution (0-14 years, %);
- 133 Infant mortality rate (per 1000 live births).

negatively correlated with:

- 149 Pop.using improved drinking water (urban,%);
- I30 Population age distribution (60+ years,%);
- 127 Life expectancy at birth (females, years);
- 113 Employment: Services (% of employed).

PC2 explained:

- 11 Surface area (km2);
- I2 Population in thousands (2017);
- I5 GDP: Gross domestic product (million current US\$);
- 119 International trade: Exports (million US\$);
- I20 International trade: Imports million US\$);
- 147 CO2 emission estimates (million tons/tons per capita).

PC3 explained:

- I4 Sex ratio (m per 100 f, 2017);
- 19 Economy: Industry (% of GVA);
- 116 Labour force participation (male %);
- I31 International migrant stock (% of total pop.)

PCA

- Original variables plotted against PC1 and PC2
- Color contributions of the variables to the PCs (loadings)
- Distance between variables and the origin the quality of the representation by PCs
- 110, 128, 130, 135 are positively correlated

K-Means Clustering

Optimal number of cluster k = 4. Euclidean distance applied

Elbow method

Silhoette method

K-Means Clustering

The result of K-means clustering of the countries. K = 4

Association between clusters and the countries socio-economic development classes

K-Means Clustering

Association between clusters and the countries region

Outliers Detection

Univariate method: Interquartile range

Outliers Detection

- Multivariate methods:
 - **Isolation Forest** (threshold = 0.60)
 - PCA inversion (12 PCs, MSE between original data and reconstructed, threshold = 0.30)

Country	Region	Development	Iforest	PCA	
Country	Region	Development	anomaly score	reconstruction loss	
Russian Federation	EasternEurope	economies in transition	0.6182	1.2975	
Colombia	SouthAmerica	developing	0.6050	1.0553	
China, Macao SAR	EasternAsia	developing	0.6171	0.7633	
Angola	MiddleAfrica	least developed	0.6005	0.5935	
Syrian Arab Republic	WesternAsia	developing	0.6112	0.5903	
Timor-Leste	South-easternAsia	least developed	0.6103	0.5197	
United Arab Emirates	WesternAsia	developing	0.6061	0.4524	
Bermuda	NorthernAmerica	developing	0.6063	0.4169	
Cuba	Caribbean	developing	0.6069	0.4000	
Qatar	WesternAsia	developing	0.6188	0.3921	
Equatorial Guinea	MiddleAfrica	developing	0.6119	0.3727	
Nigeria	WesternAfrica	developing	0.6041	0.3275	
Greece	SouthernEurope	developed	0.6267	0.3211	
Madagascar	EasternAfrica	least developed	0.6068	0.3072	

SUPERVISED LEARNING:

Random Forest, Logistic Regression, K-NN, Neural Network

Target variable - Development level:

developed

developing

economies in transition

least developed

Random Forest

Train/Test split (p = 0.65)

RF Model 1:

- 139 countries train set
- 74 test set
- 51 standardized indicators
- 500 trees
- 7 random predictors
- Bootstrap resampling

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 7

OOB estimate of error rate: 18.44%

Confusion matrix:

	developed	developing	economies in	transition le	east developed	class.error
developed	22	5		0	0	0.1851852
developing	4	62		1	4	0.1267606
economies in transition	1	6		4	1	0.6666667
least developed	0	4		0	27	0.1290323

Random Forest

Overall Statistics

Accuracy: 0.8219

95% CI : (0.7147, 0.9016)

No Information Rate: 0.5205 P-Value [Acc > NIR]: 7.658e-08

Kappa: 0.7306

Mcnemar's Test P-Value : NA

Statistics by Class:

	Class: develop	ed Class:	developing	Class:	economies	in	transition	<pre>Class:</pre>	least	developed
Sensitivity	0.85	71	0.7895				0.60000			0.9375
Specificity	0.93	22	0.9143				0.97059			0.9298
Pos Pred Value	0.75	00	0.9091				0.60000			0.7895
Neg Pred Value	0.96	19	0.8000				0.97059			0.9815
Prevalence	0.19	L8	0.5205				0.06849			0.2192
Detection Rate	0.16	14	0.4110				0.04110			0.2055
Detection Prevalence	0.21	92	0.4521				0.06849			0.2603
Balanced Accuracy	0.89	17	0.8519				0.78529			0.9337

Performance on the test set

Random Forest

RF Model 2 (16.82% OOB):

- 214 countries
- 51 indicators

RF Model 3 (23.36% OOB) – multicollinearity

- 214 countries
- 12 PCs

RF Model 3 (17.5% OOB) – outliers

- 200 countries
- 51 indicators

Importance of the indicators in Random Forest model with the original parameters

Random Forest and other models

- Multinomial Logistic Regression: default parameters
- **K-NN:** Euclidean Distance, k = 8
- Neural Network:
 - softmax activation function,
 - two hidden layers (10, 4)
 - Resilient backpropagation with weight backtracking

Model	Train set accuracy	Test set accuracy
Random Forest	0.82	0.82
Multinomial Logistic Regression	1.00	0.64
K- $NN (k = 8)$	0.78	0.81
Neural Network	0.96	0.66

Challenges: small dataset

Challenges:

- Few observations in a high-dimensional space
- Overfitting: a low bias and a high variance models
- Underfitting: a high bias and a low models
- Low prediction power
- Imbalanced dataset

Techniques to improve the modelling:

- Relevant features selection
- A simple model with a small number of parameters
- Outliers removal
- Augmenting the dataset with synthetic samples
- Adding information from other sources.

References

- 1. Kaggle: UN countries dataset 2017. https://www.kaggle.com/sudalairajkumar/undata-country-profiles. [Online; Accessed: 2021-11-15].
- 2. UNdata, international statistical database. http://data.un.org/Host.aspx?Content=About. [Online; Accessed: 2021-11-15].
- 3. UN ESCAP, UN ECA, UN ECE, UN ESCWA, UN ECLAC, et al. World economic situation and prospects 2017. 2017.
- Stefan Fritsch, Frauke Guenther, and Maintainer Frauke Guenther. Package 'neuralnet'. Training of Neural Networks, 2019.
- 5. Paulene Govender and Venkataraman Sivakumar. Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019). Atmospheric Pollution Research, 11(1):40–56, 2020.
- 6. Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 374(2065):20150202, 2016.
- 7. Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-based anomaly detection. ACM Transactions on Knowledge Discovery from Data (TKDD), 6(1):1–39, 2012.
- 8. Victor Francisco Rodriguez-Galiano, Bardan Ghimire, John Rogan, Mario Chica-Olmo, and Juan Pedro Rigol-Sanchez. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67:93–104, 2012.