Nondeterministic Turing machines

Textbook: Chapter 3.2

Idea

- \blacktriangleright We turned DFA into NFA by modifying the form of δ
- What if we do this to a TM?

Recall: A TM's transition function is of the form:

$$\delta: (Q \times \Gamma) \to (Q \times \Gamma \times \{L, R\})$$

For state set Q, tape alphabet Γ . A nondeterministic version would look like:

$$\delta: (Q \times \Gamma) \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$$

Definition of NTMs

Def: Nondeterministic Turing machines (NTMs). An NTM is a 6-tuple

$$(Q, \Sigma, \Gamma, \delta, q_0, q_{\texttt{accept}})$$

where Q, Σ, Γ are all finite sets and:

- 1. Q is the state set
- 2. Σ is the input alphabet, $\mathbf{p} \notin \Sigma$
- 3. Γ is the tape alphabet, where $\Box \in \Gamma$ and $\Sigma \subseteq \Gamma$
- 4. δ is the nondeterministic transition function

$$\delta: (Q \times \Gamma) \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$$

- 5. $q_0 \in Q$ is the start state
- 6. $q_{\tt accept} \in Q$ is the accept state

An NTM accepts iff any branch of its nondeterminism does

Equivalence with (D)TM

Thm: TM and NTM are computationally equivalent.

Pf: By construction. If we let an NTM configuration be a node in a tree from which zero or more may follow:

We want to find any C_A in the tree following C_0 . How? Breadth-First search!

Notes

- Note: We cannot use depth-first search, since any given branch may never terminate (DFS doesn't work on infinite trees)
- Note: This algorithm will always find the shortest accepting computation history if one exists
- Note: Convince yourself that queues and sets are legal data structures to use within a TM (recall TMs and algorithms are equivalent)

Breadth-first search on NTM configuration trees

Let TM R take input $\langle M \rangle$, w, where w is the input to NTM M:

- 1. Create an empty queue of configurations
- 2. Push the entrance configuration q_0w to the queue
- 3. For as long as the queue is nonempty:
 - 3.1 Pop a configuration c from the queue
 - 3.2 If c contains a halting state, halt
 - 3.3 Push each configuration that follows from c to the queue

Note that R accepts iff M does on some branch, R rejects iff M does on some branch, and R loops iff M does on all branches. R is a legal TM emulating an arbitrary NTM, so TM and NTM are equivalent. End of proof.

Complexity

Thm: A TM can simulate i steps of an NTM in $O(2^i)$ time and space.

- ▶ If we let b be the max number of configurations output by δ , then there are at most b^i nodes after i steps
- ► Therefore, the TM will have to simulate a total of up to $\sum_{i=0}^{i} b^{i} = b^{i+1} 1$ nodes! **Very bad!**

Computational equivalence does not imply polynomiality!

Corollaries

Corollary: A system is Turing-recognizable iff some NTM recognizes it, Turing-decidable iff some NTM decides it, Turing-complete iff it simulates all NTM, and Turing-equivalent iff it is equivalent to an NTM.

➤ A language is decided by an NTM iff it halts on all branches of its determinism

