Standard form LP

min z=p^TX

s.t. Ax 2b x 20

min
$$z = p^T x_N + o^T x_B$$

 $x_N \in \mathbb{R}^n$
 $x_B \in \mathbb{R}^m$
 $s.t. \quad x_B = A x_N - b$, $x_B, x_N \ge 0$

tableau representation:

original variables

	$C X_{n+1}$	=	
slack variables		•	
	x_{n+m}	=	
	Z	=	

λ_1		λ_n	1
A_{11}	• • •	A_{1n}	$-b_1$
:	٠.,	÷	÷
A_{m1}	• • •	A_{mn}^{-}	$-b_m$
p_1		p_n	0


```
An easy, but important, observation:
(1) The n+m linear inequality constraints are
                                (written in this way, we almost
do not distinguish the origin
variables with the slack variables)
                x \ge 0
                 X2 3 0
                XnZO
                Xhti > 0
                Xn+m≥0
   If x_1 = x_2 = \cdots = x_n = 0, then (i) the first n constraints are obviously
    satisfied, (ii) Z=0, and (iii) ×n+1=-b1
                                           Xn+2 = -62
                                          Xntm = -bm.
        ×my >0 is satisfied \⇒ - bp >0 \⇒ bp ≤0
   In fact, in this case Xi= == xn=0 is a vertex of the feasible region.
```

To conclude:

$$b \le 0$$
 (i.e. all entries of b are non-positive) \iff the origin $\begin{bmatrix} x \\ y \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ satisfies all m+n constraints (and is a vertex of the feasible region)

E.g. n=2, m=1 $A = \begin{bmatrix} -1 & -1 \end{bmatrix}$ $b = \begin{bmatrix} -1 \end{bmatrix} \leq 0$ $-x_1 - x_2 \geq -1 \iff x_1 + x_2 \leq 1$ $x_2 \qquad x_1 \geq 0$ $x_2 \geq 0$ belongs to
the feasible region

NOW, imagine that we perform a series of Jordan exchanges:

N={1,...,n} B={n+1,...,n+m} N'C [1, ..., m+n], |N'|=n B'= [1,..., m+n]\ N', to |B'|=m.

This means: • we now express XB' as a HXN'+h

· Z, originally defined as pixi+...+ pnxn, is now expressed as

 $Z = \sum_{i \in N'} c_i \times i + \infty$

Recall from

Week a what \longrightarrow If h>0, then $x_{v'}=0$, which implies $x_{B'}=h_{s'}$ a vertex is. Corresponds to a vertex of the feasible region.

· When XN=0, Z=W.

Terminologies

· If h > 0, we call the tableau

 $\times 3' = H h$ $Z = C^{T} \angle$

Note: Even if some enteres of h are negative,

 $X_{B'} = H X_{N'} + h$ still correctly represents the linear relationships between $X_{B'}$ and $X_{N'}$. It is just that $X_{N'} = 0$ does not correspond to a vertex.

(see example in class.)

The variables on top are referred to as "non-basic" (hence the 'N') those on the left are referred to as "basic" (hence the 'B').

Basic idea of the simplex method for solving LP:

At each iteration of the simplex method, we exchange one element between B and N, performing the corresponding Jordan exchange on the tableau representation, much as we did in Chapter 2 in solving systems of linear equations. We ensure that the tableau remains feasible at every iteration, and we try to choose the exchanged elements so that the objective function z decreases at every iteration. We continue in this fashion until either

- 1. a solution is found, or
- 2. we discover that the objective function is unbounded below on the feasible region, or
- 3. we determine that the feasible region is empty.

Geometrically, a cleverly chosen Jordan exchange corresponds to moving from one vertex to a neighboring vertex with a smaller objective value Z.

Geroge B. Dantzig (1914-2005)

A simple example

Example 3-1-1.

The slack variables are defined as:

$$\begin{array}{rcl}
x_3 & = & x_1 + 2x_2 + 1, \\
x_4 & = & 2x_1 + x_2, \\
x_5 & = & x_1 - x_2 + 1, \\
x_6 & = & x_1 - 4x_2 + 13, \\
x_7 & = & -4x_1 + x_2 + 23.
\end{array}$$

We now seek a clever pivot — a Jordan exchange of a basic variable with a non-basic one — that

- 1) yields a decrease in the objective 2, and
- 2) keeps the tableau feasible.
- (i) is quite easy; choose any non-basic variable in a column with a negative value in the last row.

2) is slightly trickier, but we just need to ask the following question:

Since we want to minimize Z, we would like to increase Xz (the "entering variable") as much as possible.

Q: How much can we increase x2 without violating the constraints?

A: If x_2 increases from 0 to $x_2 > 0$ (and $x_3 > 0$) then

i.e. The largest value we can increase x_2 to is $x_2 = 1$.

And this corresponds to $X_5 = 0$ the "blocking variable"

Given a feasible tableau

- a step of the simplex method is a Jordan exchange between a basic and non-basic variable according to the following pivot selection rules:
 - 1. *Pricing* (selection of pivot column s): The pivot column is a column s with a negative element in the bottom row. These elements are called *reduced costs*.
 - 2. Ratio Test (selection of pivot row r): The pivot row is a row r such that

$$-h_r/H_{rs} = \min_{i} \{-h_i/H_{is} \mid H_{is} < 0\}.$$

Back to the example, here is the next step:

By moving from

decreases from -6

+0 -15.

Note that there are no more negative entries in the last row.

 $Z = X_6 + 2X_5 - 15$.

Since every pount in the feasible region satisfies

X5 ≥0 , ×6 ≥ 0

The min value of is -15, and is attained when

$$\gamma \zeta = \chi_{\zeta} = 0$$
 (\Leftrightarrow) $\chi_{1} = 3$, $\chi_{2} = 4$).

We say that the last tableau

The simplex method solves the LP after 2 simplex steps.

Algorithm 3.1 (Simplex Method).

- 1. Construct an initial tableau. If the problem is in standard form (3.1), this process amounts to simply adding slack variables.
- 2. If the tableau is not feasible, apply a Phase I procedure to generate a feasible tableau, if one exists (see Section 3.4). For now we shall assume the origin $x_N = 0$ is feasible.
- 3. Use the pricing rule to determine the pivot column s. If none exists, stop; (a): tableau is optimal.
- 4. Use the ratio test to determine the pivot row r. If none exists, stop; (b): tableau is unbounded.
- 5. Exchange $x_{B(r)}$ and $x_{N(s)}$ using a Jordan exchange on H_{rs} .
- 6. Go to Step 3.

Interestingly, and perhaps confusing for you, the inner workings of Phase I depend on the Phase II procedure!

Stop (a) indicates optimality, as

$$Z = C^T \times_N + \infty$$

any point in the feasible region must satisfy XN >0

so ZZL, and minZ=d, with XN=0 as a minimizer.

the corresponding values of x,..., xn (original variables) can be easily read off from the tableau.

Stop (b) means min $z = -\infty$, and we can read obtofrom the tableau a "ray"

 $X(\lambda)$ so that $\lim Z(X(\lambda)) = -\infty$.

ル ル+タリ

See Example 3-3-1.

Non-uniqueness of minimizer

Linear programs may have more than one solution.

E.g. min x1 s.t. 0 \(\times_1 \) \(

If $x', ..., x^{K}$ are Solutions of a LP, any other point in the <u>convex hull</u> of these solutions, defined by $\{ x \in \mathbb{R}^{n} \mid x = \sum_{i=1}^{K} \alpha_{i} x^{i}, \sum_{i=1}^{K} \alpha_{i} = 1, \alpha_{i} \geq 0, i = 1, ..., K \}_{g}$ Proposition:

is also a solution.

check that every point in the convex hull is feasible. Proof:

By assumption, x',-,xk are feasible, i.e. x',...,xk >0

so $\leq dix^{i} \geq 0$, and $A(\leq dix^{i}) = \leq diAx^{i} \geq \leq dib = (\leq di)b$

2) Check that every point in the convex hull attains the same optimal objective value.

By assumption,
$$p^T x^i = Z_{opt} = \min_{x \in \mathbb{Z}} \text{ value of the LP.}$$
Then, $p^T \left(\sum_{i=1}^K d_i x^i \right) = \sum_{i=1}^K d_i p^T x^i = \sum_{i=1}^K d_i z^i = \sum_{i=1}^K d_i$

Convex hull of $x', ..., x^k =$ the smallest convex set containing $x', ..., x^k$ Detailed explaination omitted (with regret). Here are some examples:

$$K=2, n=2$$
 $X=3, n=2$
 $X=4, n=2$
 $X=4, n=2$

$$K=2, n=3$$

tetrahedron

min
$$- x_1 - x_2 - x_3$$

 x_1, x_2, x_3
s.t. $x_1 - x_2 + x_3 \ge -2$
 $-x_1 + x_2 + x_3 \ge -3$
 $x_1 + x_2 - x_3 \ge -1$
 $-x_1 - x_2 - x_3 \ge -4$

$$x_1, x_2, x_3 \ge 0$$

 $x_1, x_2, x_3 \ge 0$ It's elear that **42** > -4

Note that it is also possible to have a LP s.t.

- · the feasible region is unbounded
- . the min value is bounded
- but the solution set (i.e. the set of minimizers)
 is an unbounded set

E.g.

feasible region (an unbounded set)

every point on this unbounded line
is a minimizer, (yet the minimum

value is

funite)

Contour lines of Z parallel to one of the boundary edges of the feasible region.

ーベョラー

Exercise 3-3-7

34 := -33 + 1

20, x2>0, x3>1

min = 1

In class: simplex method in action

Note that the origin is not part of the feasible region.

(But clearly x1=0, x2=0, x4=0 is feasible.)

The Phase I Procedure (Sec 3.4)

Origin LP	Phase I LP
$ $ $ $ $ $ $ $ $ $	min $= z_0 = z_0$
s.t. Ax≥b (⇒ ×n+i:=Ai. x-bi≥0 x ≥0 (=1,, m	Sit. $x_{n+i} := \begin{cases} A_{i} \cdot x - b_{i} & \text{if } b_{i} \leq 0 \\ A_{i} \cdot x - b_{i} + x_{0} \end{cases}$
	$\bigcup Aio \times -bi + x_0$
$S = \{x \in \mathbb{R}^n : Ax \geqslant b, x \geqslant o\}$	if bi>0
	1
when b\$0, how do we identify a	χ ₀ ≥0 τ4 ≥0
vertex, or determine	
vertex, or determine that S is 'empty?	2n ≥0
	!
	2min ≥0

Note: the phase I LP concerns only the feasible region, it has nothing to do with the vector P.

(I) while the original LP may or may not be feasible, the Phase I LP is always feasible: Set $x_0 = \max(\max_{1 \le i \le m} b_i, 0)$ (>0 when you need Phase I) Phase I) and $x_1 = \cdots = x_n = 0$ then the remaining constraints (xn+i >0, i=1, "; m) are obviously satisfied. $(0, \overline{x})$ is feasible for x is feasible for (II) the original LP the Phase I LP (because 20≥0) O SALOX - bi Vi (O, X) is a solution for the Phase I LP Note: There are as many vertices for the original LP as there are Solutions for the phase I LP. So, the solution of the Phase I LP is typically far from unique.) (III) (contrapositive of (II))

If (xo, x) is a solution of the Phase I LP, but

~6^{*} >0 ,

then the original LP must be infeasible (i.e. $S = \phi$.) Example 3-4-1.