Packet 3

Packet 3.2: Sections 15.10, 15.4, 15.8, 15.9

15.10 Change of Variables in Multiple Integrals

Remark 1. An alternate way to write the u-substitution rule from Cal I is: if x(u) defines x as a function of u, and x(u) transforms the interval J of u-values into the interval I of x-values, then

$$\int_{I} f(x) \, dx = \int_{I} f(x(u)) \left| \frac{dx}{du} \right| \, du$$

Problem 2. Use the above alternate *u*-sub rule to prove that

$$\int_{1}^{2} 2xe^{x^{2}} dx = \int_{1}^{4} e^{u} du = e^{4} - e^{4}$$

Solution. \Diamond

Contributors.

Definition 3. A 2D transformation

$$\vec{\mathbf{r}}(u,v) = \langle x(u,v), y(u,v) \rangle$$

transforms points in the uv plane to points in the xy plane.

Definition 4. The unit square is the square with coordinates (0,0), (1,0), (1,1) and (0,1).

Definition 5. The unit triangle is the triangle with coordinates (0,0), (1,0), and (1,1).

Problem 6. Show that a transformation from the unit square in the uv plane to the square with sides y = x, y = x + 4, y = -x, and y = -x + 4 in the xy plane could satisfy the equations y = x + 4u and y = -x + 4v, and then solve this system to get the transformation $\langle x(u,v), y(u,v) \rangle$.

Solution.

Contributors.

Problem 7. Find a transformation from the unit square in the uv plane to the parallelogram with vertices (1,0), (2,-1), (4,0), and (3,1) in the xy plane.

Solution.

Contributors.

Problem 8. Find a transformation from the unit triangle in the uv plane to the triangle with vertices (0, -1), (2, -2), and (-1, 0) in the xy plane. (Hint: complete the triangle in the xy plane to a parallelogram and then find a transformation from the unit square to that parallelogram.)

Solution. \Diamond

Contributors.

Problem 9. Find a transformation from the unit circle $u^2 + v^2 = 1$ in the uv plane to the ellipse $4x^2 + 9y^2 = 36$.

Solution.

Contributors.

Definition 10. The **Jacobian** of a transformation $\vec{\mathbf{r}}(u,v) = \langle x(u,v), y(u,v) \rangle$ is given by

$$\vec{\mathbf{r}}_J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

Theorem 11. If $\vec{\mathbf{r}}(u,v) = \langle x(u,v), y(u,v) \rangle$ transforms the region G in the uv plane to the region R in the xy plane, then

$$\iint_{R} f(x,y) dA = \iint_{G} f(x(u,v), y(u,v)) |\vec{\mathbf{r}}_{J}(u,v)| dA$$

Problem 12. Evaluate $\iint_R 2x - y \, dA$ using the transformation $\vec{\mathbf{r}}(u,v) = \langle u+v, 2u-v+3 \rangle$ from unit square in the uv plane into the parallelogram R with vertices (0,3), (1,5), (2,4), and (1,2) in the xy plane.

Solution.

Auburn University

Contributors.

Problem 13. Evaluate $\iint_R e^x \cos(\pi e^x) dA$ using the transformation $\vec{\mathbf{r}}(u,v) = \langle \ln(u+v+1), v \rangle$ from the unit triangle in the uv plane into the region R bounded by $y=0, y=e^x-2$, and $y=\frac{e^x-1}{2}$.

Solution.

Contributors.

Definition 14. A 3D transformation

$$\vec{\mathbf{r}}(u,v,w) = \langle x(u,v,w), y(u,v,w), z(u,v,w) \rangle$$

transforms points in uvw space to points in xyz space.

Definition 15. The **Jacobian** of a transformation $\vec{\mathbf{r}}(u,v,w) = \langle x(u,v,w), y(u,v,w), z(u,v,w) \rangle$ is given by

$$\vec{\mathbf{r}}_{J}(u,v,w) = \frac{\partial(x,y,z)}{\partial(u,v,w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

Theorem 16. If $\vec{\mathbf{r}}(u,v,w) = \langle x(u,v,w), y(u,v,w), z(u,v,w) \rangle$ transforms the solid H in uvw space to the solid D in the xyz space, then

$$\iiint_{D} f(x, y, z) \, dV = \iiint_{H} f(x(u, v, w), y(u, v, w), z(u, v, w)) |\vec{\mathbf{r}}_{J}(u, v, w)| \, dV$$

15.4 Double Integrals in Polar Coordinates

Theorem 17. The polar coordinate transformation

$$\vec{\mathbf{r}}(r,\theta) = \langle r\cos\theta, r\sin\theta\rangle$$

from polar G into Cartesian R yields

$$\iint\limits_{R} f(x,y) dA = \iint\limits_{C} f(r\cos\theta, r\sin\theta) |r| dA$$

Problem 18. Prove the previous theorem.

Solution.

March 17, 2015 Auburn University

Contributors.

Theorem 19. If the region R in the xy plane is described with polar coordinates, and is bounded by the inside/outside curves $0 \le g(\theta) \le r \le h(\theta)$ and lines $\alpha \le \theta \le \beta$, then

$$\iint\limits_{B} f(x,y) dA = \int_{\alpha}^{\beta} \int_{g(\theta)}^{h(\theta)} f(r\cos\theta, r\sin\theta) r dr d\theta$$

Problem 20. Evaluate $\iint_R e^{x^2+y^2} dA$ where R is the disk with boundary $x^2+y^2=9$.

Solution.

Contributors.

Problem 21. Prove that

$$\int_0^{\sqrt{3}} \int_1^{\sqrt{4-x^2}} 3y \, dy \, dx = \int_{\pi/6}^{\pi/2} \int_{\csc \theta}^2 3r^2 \sin \theta \, dr \, d\theta = 3\sqrt{3}$$

Solution.

Contributors.

15.8 Triple Integrals in Cylindrical Coordinates

Theorem 22. The cylindrical coordinate transformation

$$\vec{\mathbf{r}}(r,\theta,z) = \langle r\cos\theta, r\sin\theta, z \rangle$$

from cylindrical H into Cartesian D yields

$$\iiint\limits_{D} f(x, y, z) dV = \iiint\limits_{H} f(r \cos \theta, r \sin \theta, z) |r| dV$$

Remark 23. This is equivalent to using the fact that

$$\iiint_D f(x, y, z) dV = \iint_R \left[\int_{h_1(x, y)}^{h_2(x, y)} f(x, y, z) dz \right] dA$$

and then interpreting the shadow R in the xy plane with polar coordinates.

Problem 24. Evaluate $\iint_D \sqrt{x^2 + y^2} dV$ where D is the right circular cylinder bounded by $|z| \le 2$ and $x^2 + y^2 = 1$.

Auburn University

Solution.

 \Diamond

Contributors.

Problem 25. Express the volume of the of the solid bounded by the xy plane and $z = 1 - x^2 - y^2$ as a triple integral of the variables r, θ, z .

Solution.

 \Diamond

Contributors.

15.9 Triple Integrals in Spherical Coordinates

Theorem 26. The spherical coordinate transformation

$$\vec{\mathbf{r}}(\rho, \phi, \theta) = \langle \rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi \rangle$$

from spherical H into Cartesian D yields

$$\iiint\limits_{D} f(x, y, z) dV = \iiint\limits_{H} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} |\sin \phi| dV$$

Problem 27. Prove the previous theorem.

Solution.

 \Diamond

Contributors.

Theorem 28. If the solid D in the xyz plane is described with spherical coordinates, and is bounded by the inside/outside surfaces $h_1(\phi, \theta) \le \rho \le h_2(\phi, \theta)$, conical surfaces $0 \le g_1(\theta) \le \phi \le g_2(\theta)$, and planes $\alpha \le \theta \le \beta$, then

$$\iiint\limits_{D} f(x,y,z) dV = \int_{\alpha}^{\beta} \int_{g_{1}(\theta)}^{g_{2}(\theta)} \int_{h_{1}(\phi,\theta)}^{h_{2}(\phi,\theta)} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d\rho d\phi d\theta$$

Problem 29. Prove that the volume of a sphere of radius a has volume

$$\int_{-a}^{a} \int_{-\sqrt{a^2 - x^2}}^{\sqrt{a^2 - x^2}} \int_{-\sqrt{a^2 - x^2 - y^2}}^{\sqrt{a^2 - x^2 - y^2}} dz \, dy \, dx = \frac{4}{3} \pi a^3$$

Solution.

 \Diamond

Contributors.

Problem 30. Express the volume of the "ice cream cone" shaped solid

$$D = \{(x, y, z) : \sqrt{x^2 + y^2} \le z \le \sqrt{1 - x^2 - y^2} + 1\}$$

as a triple iterated integral of the variables $\rho,\phi,\theta.$

Solution. \Diamond

Contributors.