CLAIMS

1	1. A commutation and velocity control system of a brushless DC motor that receives a
2	velocity command signal and provides command signals to drive the brushless DC motor, said
3	system comprising:
4	a summer that receives the velocity command signal and a velocity feedback signal and
5	provides a velocity error signal indicative of the difference;
6	a velocity loop compensator that receives said velocity error signal and provides a
₽=1 2=1	compensated velocity error signal;
7 8 9 00 00 00 00 00 00 00 00 00 00 00 00 0	a magnitude sensing circuit that senses the magnitude of said compensated velocity
	error signal and provides a velocity magnitude signal indicative thereof;
10	a polarity sensing circuit that senses the polarity of the said compensated velocity error
	signal and provides a velocity polarity signal indicative thereof;
# 12	an integrated circuit that includes
FT3	A) a velocity calculation circuit that receives a first sampled digitized signal
14	indicative of resolver position at a first time and a second sampled digitized signal
15	indicative of resolver position at a second time, and determines velocity based upon the
16	difference between said first and second sampled digitized signals and provides a sensed
17	digitized velocity signal indicative thereof;
18	B) a commutation logic circuit that receives said first sampled digitized signal, said
19	velocity magnitude signal and said velocity polarity signal, and provides said command
20	signal;
21	C) a counter that receives a signal indicative of said sensed digitized velocity signal

44	and provides a pulse width modulated output signal indicative increof, and
23	a filter that receives said pulse width modulated output signal and generates said
24	velocity feedback signal.
1	
1	2. The commutation and velocity control system of claim 1, wherein said integrated circuit
2	is configured as a field programmable gate array (FPGA).
1	
1	3. The commutation and velocity control system of claim 2, further comprising:
2	a bridge circuit that receives a sine signal component and a cosine signal component
3	from a resolver, and generates a first resolver signal and a second resolver signal separated by
4	$(2*\theta)$, where θ is indicative of a resolver electrical angle;
5	wherein said FPGA comprises
# #6	a counter that receives said a first resolver signal and a second resolver signal
‡ 1 1 1 1	and generates a count signal indicative of resolver position;
8	a first latch that receives said count signal and generates said first sampled
9	digitized signal;
10	a second latch that receives said count signal and generates said first sampled
11	digitized signal; and
12	a summer that computes the difference between said first and second sampled
13	digitized signal and provides said sensed digitized velocity signal.
1	
1	4. The commutation and velocity control system of claim 3, wherein said FPGA

- comprises an up/down counter that cycles back and forth between zero counts and a fixed count value and provides a cycling count signal.
- The commutation and velocity control system of claim 4, wherein said magnitude

1

2

All Fail 2

1=13

4

5

1

1

1

sensing circuit comprises:

- a digital-to-analog converter that receives said cycling count signal and provides an triangular waveform signal; and
 - a first comparator that receives said triangular waveform signal and said compensated velocity signal and provides said velocity magnitude signal as a pulse width modulated signal whose duty cycle is indicative of the magnitude of the velocity.
 - 6. The commutation and velocity control system of claim 5, wherein said polarity sensing circuit comprises:
 - a second comparator that receives said compensated velocity signal and provides said velocity polarity signal as a Boolean signal whose value is indicative of the polarity of said compensated velocity signal.
- 7. The commutation and velocity control system of claim 6, comprising a H-bridge driver circuit that includes a plurality of FETs responsive to said command signals to drive the brushless DC motor.
 - 8. A commutation and velocity control system of a brushless DC motor that receives a

2 velocity command signal and provides command signals to drive the brushless DC motor, said system comprising: 3 a summer that receives the velocity command signal and a velocity feedback signal and 4 provides a velocity error signal indicative of the difference; 5 6 means responsive to said velocity error signal for providing a compensated velocity error signal; 7 8 means for sensing the magnitude of said compensated velocity error signal and for provides a velocity magnitude signal indicative thereof; 1110 means for sensing the polarity of the said compensated velocity error signal and for 41 11 providing a velocity polarity signal indicative thereof; 12 an integrated circuit that includes ļ. A) means for receiving a first sampled digitized signal indicative of resolver **T13** -14 position at a first time and a second sampled digitized signal indicative of resolver 15 position at a second time, and for determining velocity based upon the difference 16 between said first and second sampled digitized signals, and for providing a sensed 17 digitized velocity signal indicative thereof; B) commutation logic means that receives said first sampled digitized signal, said 18 velocity magnitude signal and said velocity polarity signal, for providing said command 19 signal; 20 21 C) means responsive to a signal indicative of said sensed digitized velocity signal

a filter that receives said pulse width modulated output signal and generates said

and for providing a pulse width modulated output signal indicative thereof: and

22

23