

Chi non studia non passa gli esami

Chi non passa gli esami studia

Dunque tutti studiano!!!

9 Lezione Corso di Logica 2020/2021

29 ottobre 2020

Maria Emilia Maietti

Prova Parziale

SABATO 14 novembre 2020

ore 12
solo in presenza
in P300 via Luzzati 10
iscrizione obbligatoria via uniweb

SIMULAZIONE prova parziale

venerdi' 30 ottobre 2020

ore 11.30-12.30

CORREZIONE SIMULAZIONE

giovedi' 5 novembre 10.30-12.30

venerdi' 6 novembre 10.30-12.30

Perchè la procedura decisione 9.8 dispensa (lezione 8) funziona ??

1. le regole di \mathbf{LC}_p DIMINUISCONO in COMPLESSITÀ strettamente

dal BASSO verso ALTO ↑

2. le regole di \mathbf{LC}_p rappresentano **EQUIVALENZE tautologiche**

nel gergo sono regole INVERTIBILI=SICURE

studiamo regole sicure

Per capire bene **PERCHÈ funziona** la procedura di decisione in sez.9.8 dispensa (o lezione 8) e per (eventualmente!) modificarla in meglio

o produrne altre....

introduciamo il concetto di regola valida

e poi quello di regola sicura

validità di un SEQUENTE su una riga della sua tabella

 $\Gamma \vdash \Delta$ è *vero* su una data riga

(contenente le variabili proposizioni del sequente)

sse

 $\Gamma^{\&} \; o \; \Delta^ee$ vale 1 su quella riga

idea generale di regola valida

una regola del calcolo dei sequenti è **valida**se TRASFORMA sequenti premessa veri **su una riga** chiamata **r**in un sequente conclusione vero sulla **STESSA riga r**dall'ALTO verso il BASSO.

Def. regola valida ad una premessa

Una regola del calcolo dei sequenti ad una premessa del tipo

$$\frac{\Gamma_1 \vdash \Delta_1}{\Gamma_2 \vdash \Delta_2}$$

si dice valida

se il sequente premessa $\Gamma_1 \vdash \Delta_1$ è vero su una riga r

(contenente tutte le variabili proposizionali che compaiono in qualche sequente nella regola)

il sequente conclusione $\Gamma_2 \vdash \Delta_2$ è vero sulla stessa riga r

Def. regola valida a due premesse

Una regola a due premesse del tipo

$$\frac{\Gamma_1 \vdash \Delta_1}{\Gamma_3 \vdash \Delta_3} \frac{\Gamma_2 \vdash \Delta_2}{\Gamma_3 \vdash \Delta_3}$$

si dice valida

se i sequenti premessa

 $\Gamma_1 \; \vdash \; \Delta_1 \; \; ext{e} \; \; \; \Gamma_2 \; \vdash \; \Delta_2 \; \; ext{sono} \; ext{ENTRAMBI veri su una riga} \; r$

(contenente tutte le variabili proposizionali che compaiono in qualche sequente nella regola)

il sequente conclusione $\Gamma_3 \vdash \Delta_3$ è vero sulla stessa riga r.

ogni regola valida è un IMPLICAZIONE!!

regole dei sequenti valide

=

IMPLICAZIONI (di implicazioni)!!

ogni regola è un' IMPLICAZIONE!!

Una regola del calcolo dei sequenti ad una premessa del tipo

$$\frac{\Gamma_1 \vdash \Delta_1}{\Gamma_2 \vdash \Delta_2} \qquad \text{è valida}$$

sse

$$(\;\Gamma_1^\&\;\; o\;\;\Delta_1^ee)\;\;\; o\;\;\;(\;\Gamma_2^\&\;\; o\;\;\Delta_2^ee)$$
 è una tautologia.

$oxed{\Gamma^\&_{f 1}} \; o \; oldsymbol{\Delta}^ee_{f 1}$	$oldsymbol{\Gamma^\&_2}$	$\boldsymbol{\Delta_2^\vee}$	$egin{pmatrix} \left(oldsymbol{\Gamma_1^\&} & ightarrow oldsymbol{\Delta_1^ee} \ ight) & ightarrow oldsymbol{\Delta_1^ee} \ \end{pmatrix} & oldsymbol{\Delta_2^ee} \ \end{pmatrix}$
0	-	-	1
-	0	-	1
1	1	1??	1???
1	1	0??	0???

Una regola di inferenza di sequenti ad una premessa del tipo

$$rac{\Gamma_1dash\Delta_1}{\Gamma_2dash\Delta_2}$$
 è valida

se e solo se

vale la seguente condizione scorciatoia1:

su OGNI riga \boldsymbol{r}

$$\Gamma_1^\& \; o \; \Delta_1^ee = 1 \qquad \mathsf{e} \qquad \Gamma_2^\& = 1 \qquad \Rightarrow \qquad \Delta_2^ee = 1$$

Una regola di inferenza di sequenti ad una premessa del tipo

$$\frac{\Gamma_1 \vdash \Delta_1}{\Gamma_2 \vdash \Delta_2}$$

NON è valida

se e solo se

vale la seguente condizione scorciatoia1bis:

ESISTE una riga r tale che

$$\Gamma_1^{\&} \ o \ \Delta_1^{\lor} = 1 \qquad {
m e} \qquad \Gamma_2^{\&} = 1 \qquad {
m e} \qquad \Delta_2^{\lor} = 0$$

e
$$\Delta_2^ee = 0$$

anche solo per particolari liste di proposizioni messe al posto di

$$\Gamma_1, \Gamma_2$$
 e Δ_1, Δ_2

ogni regola è un' IMPLICAZIONE!!

Una regola del calcolo dei sequenti a due premesse del tipo

$$\frac{\Gamma_1 \vdash \Delta_1}{\Gamma_3 \vdash \Delta_3} \qquad \qquad \text{\'e valida}$$

sse

$$\left(\, \Gamma_1^\& \, \to \, \Delta_1^ee \, \,
ight) \& \quad \left(\, \Gamma_2^\& \, \to \, \Delta_2^ee \, \,
ight) \quad o \quad \left(\, \Gamma_3^\& \, \to \, \Delta_3^ee \, \, \,
ight) \, \,$$
è una tautologia.

$\Gamma_1^\& o extstyle \Delta_1^ee$	$\Gamma_{f 2}^\& ightarrow \Delta_{f 2}^ee$	$\Gamma_{f 3}^{\&}$	$\boldsymbol{\Delta_3^\vee}$	$(\Gamma_{1}^\& \ ightarrow \ \Delta_{1}^\lor) \& \ (\Gamma_{2}^\& \ ightarrow \ \Delta_{2}^\lor) \ ightarrow \ (\Gamma_{3}^\& \ ightarrow \ \Delta_{3}^\lor)$
0	-	-	-	1
-	0	-	-	1
-	-	0	-	1
1	1	1	1??	1???
1	1	1	0??	0???

Una regola di inferenza di sequenti a due premesse del tipo

$$\frac{\Gamma_1 \vdash \Delta_1}{\Gamma_3 \vdash \Delta_3} \frac{\Gamma_2 \vdash \Delta_2}{\Gamma_3 \vdash \Delta_3}$$

è valida

se e solo se

vale la seguente condizione scorciatoia2:

su $\overline{\mathsf{OGNI}}$ riga r

$$\Gamma_1^{\&} \rightarrow \Delta_1^{\lor} = 1$$

$$\Gamma_1^\& \ \to \ \Delta_1^\vee = 1 \qquad \text{e} \qquad \Gamma_2^\& \ \to \ \Delta_2^\vee = 1 \qquad \text{e} \qquad \Gamma_3^\& = 1 \qquad \Rightarrow \qquad \Delta_3^\vee = 1$$

$$\Gamma_3^{\&}=1$$

$$\Delta_3^{\vee} = 1$$

Una regola di inferenza di sequenti a due premesse del tipo

$$\frac{\Gamma_1 \vdash \Delta_1}{\Gamma_3 \vdash \Delta_3} \qquad \Gamma_2 \vdash \Delta_2$$

NON è valida

se e solo se

vale la seguente condizione scorciatoia2bis:

$$\Gamma_1^\& \ o \ \Delta_1^ee = 1 \qquad ext{e} \qquad \Gamma_2^\& \ o \ \Delta_2^ee = 1 \qquad ext{e} \qquad oldsymbol{\Gamma_3^\& = 1} \qquad ext{e} \qquad oldsymbol{\Delta_3^ee = 0}$$

anche solo per particolari liste di proposizioni messe al posto di

$$\Gamma_1, \Gamma_2, \Gamma_3$$
 e $\Delta_1, \Delta_2, \Delta_3$

regola SICURA

una regola si dice SICURA

= se è valida + le sue INVERSE sono pure valide

ovvero nella regola

la VERITÀ SCENDE $\psi^{ogniPremessa}$ da OGNI premessa la VERITÀ SALE $\uparrow^{ogniPremessa}$ verso OGNI premessa

Inversa di una regola ad una premessa

la regola inversa

di una regola del tipo

$$\frac{\Gamma \vdash \Delta}{\Gamma' \vdash \Delta'} \ *$$

$$\grave{\mathbf{e}} \quad \frac{\Gamma' \vdash \Delta'}{\Gamma \vdash \Delta} \ * - inv$$

Inverse di una regola a due premesse

le regole inverse

di una regola del tipo

$$\frac{\Gamma_1 \vdash \Delta_1}{\Gamma' \vdash \Delta'} \quad *$$

sono DUE

$$rac{\Gamma'dash\Delta'}{\Gamma_1dash\Delta_1} *-inv$$
 1

$$\frac{\Gamma' \vdash \Delta'}{\Gamma_1 \vdash \Delta_1} * - inv1 \qquad \frac{\Gamma' \vdash \Delta'}{\Gamma_2 \vdash \Delta_2} * - inv2$$

regola SICURA ad una premessa è un' equivalenza !!

Una regola del calcolo dei sequenti ad una premessa del tipo

$$rac{\Gamma_1dash\Delta_1}{\Gamma_2dash\Delta_2}$$
 è sicura

sse

$$\left(\begin{array}{ccc} \Gamma_1^\& & \to & \Delta_1^\vee \end{array} \right) & \longleftrightarrow & \left(\begin{array}{ccc} \Gamma_2^\& & \to & \Delta_2^\vee \end{array} \right) \text{ è una tautologia}.$$

regola sicura a due premesse è un'equivalenza!!

Una regola del calcolo dei sequenti a due premesse del tipo

$$\frac{\Gamma_1 \vdash \Delta_1}{\Gamma_3 \vdash \Delta_3} \frac{\Gamma_2 \vdash \Delta_2}{\Gamma_3 \vdash \Delta_3}$$

è **sicura**

sse

$$\left(\begin{array}{ccc} \Gamma_1^\& & \to & \Delta_1^\vee \end{array} \right) \& \quad \left(\begin{array}{ccc} \Gamma_2^\& & \to & \Delta_2^\vee \end{array} \right) \quad \leftrightarrow \quad \left(\begin{array}{ccc} \Gamma_3^\& & \to & \Delta_3^\vee \end{array} \right) \ \text{è una tautologia}.$$

ogni regola è un' IMPLICAZIONE!!

le regole del calcolo dei sequenti \mathbf{LC}_p

sono TUTTE sicure

=

EQUIVALENZE di implicazioni!!

Esempio: questa regola è sicura?

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \lor -\text{re1}$$

Controlliamo se la regola è valida

se vale la condizione scorciatoia1

quindi verifichiamo:

Ipotesi

sia r una riga fissata della tabella di verità dei sequenti nella regola

(1)
$$\Gamma^{\&} \rightarrow A = 1 \text{ su } r$$

(2)
$$\Gamma^{\&} = 1 \operatorname{su} r$$

Tesi

$$A \lor B = 1 \text{ su } r.$$

Verifichiamo condizione scorciatoia1

Ipotesi

sia r una riga fissata della tabella di verità dei sequenti nella regola

- (1) $\Gamma^{\&} \rightarrow A = 1 \text{ su } r$
- (2) $\Gamma^{\&} = 1 \operatorname{su} r$

Tesi

$$A \lor B = 1 \text{ su } r.$$

dim.

Dall'ipotesi (2) applicata ad (1) sappiamo che su r vale A=1 quindi pure $A \vee B=1$ su r e quindi la tesi è ${\bf OK}$

 \Rightarrow la regola

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \lor -\text{ref}$$

è valida

Controlliamo se la regola è pure sicura...

per verificare che

 $\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \lor -\text{re}1$

è sicura

oltrechè valida

controlliamo che sia valida pure la sua inversa:

$$\frac{\Gamma \vdash A \lor B}{\Gamma \vdash A} \text{ inv} - \lor -\text{re} 1$$

Controlliamo se l'inversa è pure valida...

se vale la condizione scorciatoia1

quindi verifichiamo:

Ipotesi

sia r una riga fissata della tabella di verità dei sequenti coinvolti nella regola per cui valgono

(1)
$$\Gamma^{\&} \to A \lor B = 1 \text{ su } r$$

$$(\mathbf{2})\Gamma^\&=1\ \mathrm{su}\ r$$

Tesi

$$A = 1 \operatorname{su} r$$
.

condizione scorciatoia1 non funziona ...

Ipotesi

sia r una riga fissata della tabella di verità dei sequenti coinvolti nella regola per cui valgono

- (1) $\Gamma^{\&} \to A \lor B = 1 \text{ su } r$
- (2) $\Gamma^{\&} = 1 \operatorname{su} r$

Tesi

$$A=1$$
 su r .

dim.

Dall'ipotesi (2) applicata ad (1) sappiamo che su r vale $A \vee B = 1$ ma NON sappiamo se vale proprio A = 1!!! anzi al contrario una riga in cui A = 0 e B=1 e $\Gamma^{\&} = 1$ verifica la condizione **scorciatoia1bis**!!!!!

Controlliamo condizione scorciatoia1bis per l'inversa

verifichiamo che vale la condizione scorciatoia1bis per il caso particolare della regola inversa

con la variabile D al posto di Γ

$$\frac{D \vdash A \lor B}{D \vdash A}$$
 inv $- \lor -\text{re}1$

e si vede che

sulla riga r definita da $D=B=\mathbf{1}$ e $A=\mathbf{0}$ valgono

(1)
$$D \rightarrow A \lor B = 1$$
 perchè $A \lor B = 1$

$$(2)D = 1 \text{ su } r$$

$$(3)A = 0$$
 su r

ovvero la condizione scorciatoia1bis è verificata!

$$\Rightarrow \text{la regola} \qquad \frac{\Gamma \vdash A \lor B}{\Gamma \vdash A} \quad \text{inv} - \lor -\text{re1} \\ \frac{\Gamma \vdash A}{\Gamma \vdash A} \quad \forall -\text{re1} \\ \Rightarrow \text{la regola} \qquad \frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \quad \lor -\text{re1} \\ \Rightarrow \text{NON è sicura anche se valida}$$

IMPORTANTE conclusione!!!

data la riga r con definita da D=B=1 e A=0 valgono

$$\frac{\text{falso su riga r}}{\text{vero su r}} \frac{D \vdash A}{D \vdash A \lor B} \lor -\text{re} 1$$

la falsità NON scende dall'ALTO verso il BASSO

⇒ NON vale la procedura di decisione con regole NON sicure!!!

