

SEQUENCE LISTING

<110> Merck & Co., Inc.
Bryan, Janine T.
Brownlow, Michelle K.
Schultz, Loren D.
Jansen, Kathrin U.

<120> OPTIMIZED EXPRESSION OF HPV 45 L1 IN YEAST

<130> 21500-PCT

<150> 60/506,812
<151> 2003-09-29

<160> 8

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1533
<212> DNA
<213> Arti

<220>
<223> HPV45 L1R

<210> 2
<211> 510
<212> PRT
<213> Human Papillomavirus Type 45

<400> 2
Met Ala Leu Trp Arg Pro Ser Asp Ser Thr Val Tyr Leu Pro Pro Pro
1 5 10 15

Ser Val Ala Arg Val Val Asn Thr Asp Asp Tyr Val Ser Arg Thr Ser
 20 25 30
 Ile Phe Tyr His Ala Gly Ser Ser Arg Leu Leu Thr Val Gly Asn Pro
 35 40 45
 Tyr Phe Arg Val Val Pro Ser Gly Ala Gly Asn Lys Gln Ala Val Pro
 50 55 60
 Lys Val Ser Ala Tyr Gln Tyr Arg Val Phe Arg Val Ala Leu Pro Asp
 65 70 75 80
 Pro Asn Lys Phe Gly Leu Pro Asp Ser Thr Ile Tyr Asn Pro Glu Thr
 85 90 95
 Gln Arg Leu Val Trp Ala Cys Val Gly Met Glu Ile Gly Arg Gly Gln
 100 105 110
 Pro Leu Gly Ile Gly Leu Ser Gly His Pro Phe Tyr Asn Lys Leu Asp
 115 120 125
 Asp Thr Glu Ser Ala His Ala Ala Thr Ala Val Ile Thr Gln Asp Val
 130 135 140
 Arg Asp Asn Val Ser Val Asp Tyr Lys Gln Thr Gln Leu Cys Ile Leu
 145 150 155 160
 Gly Cys Val Pro Ala Ile Gly Glu His Trp Ala Lys Gly Thr Leu Cys
 165 170 175
 Lys Pro Ala Gln Leu Gln Pro Gly Asp Cys Pro Pro Leu Glu Leu Lys
 180 185 190
 Asn Thr Ile Ile Glu Asp Gly Asp Met Val Asp Thr Gly Tyr Gly Ala
 195 200 205
 Met Asp Phe Ser Thr Leu Gln Asp Thr Lys Cys Glu Val Pro Leu Asp
 210 215 220
 Ile Cys Gln Ser Ile Cys Lys Tyr Pro Asp Tyr Leu Gln Met Ser Ala
 225 230 235 240
 Asp Pro Tyr Gly Asp Ser Met Phe Phe Cys Leu Arg Arg Glu Gln Leu
 245 250 255
 Phe Ala Arg His Phe Trp Asn Arg Ala Gly Val Met Gly Asp Thr Val
 260 265 270
 Pro Thr Asp Leu Tyr Ile Lys Gly Thr Ser Ala Asn Met Arg Glu Thr
 275 280 285
 Pro Gly Ser Cys Val Tyr Ser Pro Ser Pro Ser Gly Ser Ile Thr Thr
 290 295 300
 Ser Asp Ser Gln Leu Phe Asn Lys Pro Tyr Trp Leu His Lys Ala Gln
 305 310 315 320
 Gly His Asn Asn Gly Ile Cys Trp His Asn Gln Leu Phe Val Thr Val
 325 330 335
 Val Asp Thr Thr Arg Ser Thr Asn Leu Thr Leu Cys Ala Ser Thr Gln
 340 345 350
 Asn Pro Val Pro Asn Thr Tyr Asp Pro Thr Lys Phe Lys His Tyr Ser
 355 360 365
 Arg His Val Glu Glu Tyr Asp Leu Gln Phe Ile Phe Gln Leu Cys Thr
 370 375 380
 Ile Thr Leu Thr Ala Glu Val Met Ser Tyr Ile His Ser Met Asn Ser
 385 390 395 400
 Ser Ile Leu Glu Asn Trp Asn Phe Gly Val Pro Pro Pro Pro Thr Thr
 405 410 415
 Ser Leu Val Asp Thr Tyr Arg Phe Val Gln Ser Val Ala Val Thr Cys
 420 425 430
 Gln Lys Asp Thr Thr Pro Pro Glu Lys Gln Asp Pro Tyr Asp Lys Leu
 435 440 445
 Lys Phe Trp Thr Val Asp Leu Lys Glu Lys Phe Ser Ser Asp Leu Asp
 450 455 460
 Gln Tyr Pro Leu Gly Arg Lys Phe Leu Val Gln Ala Gly Leu Arg Arg
 465 470 475 480
 Arg Pro Thr Ile Gly Pro Arg Lys Arg Pro Ala Ala Ser Thr Ser Thr
 485 490 495
 Ala Ser Arg Pro Ala Lys Arg Val Arg Ile Arg Ser Lys Lys
 500 505 510

<210> 3
<211> 1533
<212> DNA
<213> Human Papillomavirus Type 45

<400> 3
atggctttgt ggccgcctag tgacagtacg gtatatcttc caccacccccc tggggccaga 60
gttgcacaaca ctgatgatta tggctcgc acaaggcatat tttaccatgc aggcagttcc 120
cgattattaa ctgttaggcaa tccatatttt agggttgc ttaggtgc aggtataaaa 180
caggctgttc ctaaggtatc cgcatatcag ta taggggtt ttagagttagc tttgcccgt 240
cctaataaat ttggattacc tgattctact atatataatc ctgaaacaca acgtttgggt 300
tgggcattgt taggtatgga aattggtcgt gggcagccct taggtatgg cctaagtggc 360
catccatttt ataataaatt ggtatgataca gaaagtgc ttaggtgc acgtgttatt 420
acgcaggatg ttagggataa tggctcgtt gattataagc aaacacagct gtgtatTTTA 480
ggttgtgtac ctgctattgg tgagcactgg gccaaggcga cactttgtaa acctgcacaa 540
ttgcaacctg gtgactgtcc tccttggaa cttaaaaaaca ccattattga ggtatggat 600
atggtgata cagggttatgg ggcataatggat ttttagtacat tgcaaggatc aaagtgcgag 660
gttccattag acatttgcata accatctgt aaatatccag attatttgcata aatgtctgct 720
gatccctatg gggattctat gttttttgc ctacgccgtg aacaactgtt tgcaagacat 780
tttggataa gggcagggtt tatgggtgac acagtagtata cagacctata tattaaaggc 840
actagcgcta atatgcgtga aaccctggc agttgtgtt atcccccttc tcccagtggc 900
tctattacta cttctgattc tcaattattt aataaaggcat atgggttaca taaggcccag 960
ggccataaca atggatTTTtggataat cagttgttgc ttactgttagt ggacactacc 1020
cgcagacta atttAACATTtgcctt acacaaaatc ctgtgccaaa tacatatgat 1080
cctactaagt ttaagcacta tagtagacat gtggaggaat atgatttaca gttatTTTT 1140
cagttgtgca ctattacttt aactgcagag gttatgtcat atatccatag tatgaatagt 1200
agtatattgg aaaattggaa tttgggtgta cttccaccac ctactacaag ttttagtggat 1260
acatatcggtt ttgtgcaatc agttgtgtt acctgtcaaa aggataactac acctccagaa 1320
aaggaggatc catatgataa attaaaggTTTtggactgttg acctaaagga aaaattttcc 1380
tccgattttgg atcaatatcc cttgggtgaa aagtttttag ttcaggctgg gttacgtcg 1440
aggcctacca taggacctcg taagcgtcct gctgttcca cgtctactgc atcttaggcct 1500
gccaaacgtg tacgtatacgt tagtaaaaaaa taa 1533

<210> 4
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 4
ccaccaccac cttatataaggatttcc 24

<210> 5
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 5
caaacatACA tttatgtgct aaca 24

<210> 6
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 6	
ctcagatctc acaaaaacaaa atggctttgt ggccgcctag tgac	44
<210> 7	
<211> 35	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	
<400> 7	
gacagatctt atttttact acgtatacgt acacg	35
<210> 8	
<211> 1533	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> HPV45 L1R - Antisense	
<400> 8	
taccgaaaca cctctggtag actgagatga cagatgaacg gtgggtggtag acagcgatct 60	
cagcagttgt gactgctgat gcagagggtct tggaggtaga agatggtgcg accaagaagg 120	
tctaacaact gacagccatt gggtatgaag tctcagcagg gtaggccacg accattgttc 180	
gttcgacaag gtttccagag acgaatgggt atgtctcaga agtctcagcg aaacggtctg 240	
ggtttgttca agccaaacgg tctgagatga tagatgttgg gtctttgagt ttctaaccag 300	
accctgtacgc agccataacct ttagccatct ccagttggta acccatagcc aaacagacca 360	
gtgggttaaga tgggttcaa cttctgttgc ctttaggcgg tgcgacatg acgacagttag 420	
ttagttctgc agtctctgtt gcagagacag ctgtatgttc tttgggttaa cacatagaac 480	
ccaacacagg gtcgatagcc acttgtgacc cgatccccat ggaacacatt cggtcgagtt 540	
aacgttggtc cactgacagg tggtaacacctt aacttcttgc gatagtagct tctgccactg 600	
taccaactgt gaccaatgcc acgataacctg aagagggtgg acgtccgtg attcacactt 660	
caaggtaacc tggtagacagt tagatagaca ttcatgggtc tgatgaacgt ttacaggcga 720	
ctgggtatgc cactgagata caagaagaca aactcttctc ttgttaacaa gcgatctgtg 780	
aagaccttgc ctcgaccaca gtaccctactg tgacaagggt gactgaacat gttagtccc 840	
tggagacgt tggtagtctt ttgaggtcca aggacacaga tgagaggtag aggttagacca 900	
agatagtgtt gagggttgc agttaacaag ttgttgcggta tgaccaacgt gtcccgagtt 960	
ccagtgttgc tgccatagac aaccgttgc tttaacaagc agtggcagca actgtatgg 1020	
tctatgtat tgaactggaa cacacgaaga tgagttttgg gtcaggatgtt gtatgtctg 1080	
ggttggttca agttcgat gaggtctgtg cagctccctt tgctgaacgt taatgtgg 1140	
gttaacacat gatagtggaa ctggcgactt cagtagacca tgtaagttag atacttgagg 1200	
agatagaacc ttttgcacctt gaagccacaa ggtgggtggg gttgggtggag gaaccaactg 1260	
tgaatgtcta agcagggttag acagcgacag tgaacagttt tcctgtgggt aggtggctt 1320	
ttcggtctgg gtatgtctt caacttcaag acctgacaac tgaacttcct tttcaagaga 1380	
aggctgaacc tggttatggg taacccatct ttcaagaacc aagttcgacc aaactctgca 1440	
tctgggttgc agccagggtgc attctctgtt cgacgaagggt gaaggtgacg aagatctggt 1500	
cgattcgac agtcttagtc taggttcttc att	1533