MA 2103: Mathematical Methods II

Satvik Saha, 19MS154 October 26, 2020

Fourier Series and Transforms (M.L. Boas, Chapter 7)

Section 9. Problem 2. Write the following as the sum of an even function and an odd function.

- (a) $\ln |1 x|$.
- (b) $(1+x)(\sin x + \cos x)$.

Solution. Given a function f, note that we can write it in the form

$$f(x) = \underbrace{\frac{1}{2}(f(x) + f(-x))}_{g(x)} + \underbrace{\frac{1}{2}(f(x) - f(-x))}_{h(x)}.$$

Note that g is even and h is odd, because

$$g(-x) = \frac{1}{2}(f(-x) + f(x)) = g(x), \qquad h(-x) = \frac{1}{2}(f(-x) - f(x)) = -h(x).$$

Thus, f = g + h is the desired decomposition.

(a) We write f = g + h, where

$$g(x) = \frac{1}{2} \ln|1 - x| + \frac{1}{2} \ln|1 + x|, \qquad h(x) = \frac{1}{2} \ln|1 - x| - \frac{1}{2} \ln|1 + x|.$$

(b) Again, f = g + h, where

$$g(x) = \frac{1}{2}(1+x)(\sin x + \cos x) + \frac{1}{2}(1-x)(-\sin x + \cos x) = \cos x + x\sin x,$$

$$h(x) = \frac{1}{2}(1+x)(\sin x + \cos x) - \frac{1}{2}(1-x)(-\sin x + \cos x) = \sin x + x\cos x.$$

Problem 9. Sketch several periods of the following function (given over one period), decide whether its even or odd, and expand it as a Fourier series.

$$f(x) = x^2, \qquad -\frac{1}{2} < x < \frac{1}{2}.$$

Solution.

We note that the given function is even. Thus, we write

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos 2n\pi x.$$

We calculate

$$a_0 = 2 \int_0^{\frac{1}{2}} x^2 dx = 2 \cdot \frac{1}{3} \cdot \left(\frac{1}{2}\right)^3 = \frac{1}{12}.$$

For $n \geq 1$,

$$a_n = 4 \int_0^1 x^2 \cos 2n\pi x \, dx = \frac{2}{n\pi} x^2 \sin 2n\pi x \Big|_0^{\frac{1}{2}} - \frac{2}{n\pi} \int_0^{\frac{1}{2}} 2x \sin 2n\pi x \, dx$$
$$= \frac{1}{n^2 \pi^2} x \cos 2n\pi x \Big|_0^{\frac{1}{2}} - \frac{1}{n^2 \pi^2} \int_0^{\frac{1}{2}} \cos 2n\pi x \, dx$$
$$= \frac{1}{n^2 \pi^2} \cos n\pi.$$

Thus,

$$f(x) = \frac{1}{12} + \sum_{n=1}^{\infty} \frac{1}{n^2 \pi^2} \cos n\pi \cos 2n\pi x.$$

Problem 14. Give algebraic proofs for even and odd functions that

- (a) even times even = even; odd times odd = even; even times odd = odd.
- (b) The derivative of an even function is odd; the derivative of an odd function is even.

Solution. Consider arbitrary even and odd functions f_i and g_i respectively. Thus,

$$f_i(x) = f_i(-x), \qquad g_i(x) = -g_i(-x).$$

(a) Firstly, we show that f_1f_2 is even.

$$(f_1 f_2)(x) = f_1(x) f_2(x) = f_1(-x) f_2(-x) = (f_1 f_2)(-x).$$

Next, we show that g_1g_2 is even.

$$(g_1g_2)(x) = g_1(x)g_2(x) = (-g_1(-x))(-g_2(-x)) = (g_1g_2)(-x).$$

Finally, we show that fg is odd.

$$(fg)(x) = f(x)g(x) = f(-x)(-g(-x)) = -(fg)(-x).$$

These establish the desired properties.

(b) Define $h: \mathbb{R} \to \mathbb{R}$, $x \mapsto -x$. Thus, the definitions of even and odd functions imply that

$$f \circ h = f, \qquad g \circ h = -g.$$

Differentiating and applying the chain rule,

$$(f'\circ h)(h')=f', \qquad (g'\circ h)(h')=-g'.$$

However, h' = -1, so

$$f' \circ h = -f', \qquad g' \circ h = g'.$$

This is precisely the definition of f' and g' being odd and even respectively.

$$f'(-x) = -f'(x), \qquad g'(-x) = g(x).$$

Problem 15. Given f(x) = x for 0 < x < 1, sketch the even function f_c of period 2 and the odd function f_s of period 2, each of which equals f(x) on 0 < x < 1. Expand f_c in a cosine series and f_s in a sine series.

Solution.

We calculate the Fourier coefficients together.

$$\begin{split} a_0 &= \int_0^1 x \, dx = \frac{1}{2}, \\ a_n &= 2 \int_0^1 x \cos n\pi x \, dx = \frac{2}{n\pi} x \sin n\pi x \bigg|_0^1 - \frac{2}{n\pi} \int_0^1 \sin n\pi x \, dx = \frac{2}{n^2\pi^2} (1 - \cos n\pi), \\ b_n &= 2 \int_0^1 x \sin n\pi x \, dx = -\frac{2}{n\pi} x \cos n\pi x \bigg|_0^1 + \frac{2}{n\pi} \int_0^1 \cos n\pi x \, dx = -\frac{2}{n\pi} \cos n\pi. \end{split}$$

Thus,

$$f_c = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} (1 - \cos n\pi) \cos n\pi x, \qquad f_s = -\sum_{n=1}^{\infty} \frac{2}{n\pi} \cos n\pi \sin n\pi x.$$

Problem 19. Given $f(x) = |\cos x|$ for $0 < x < \pi$, sketch several periods of the even function f_c and the odd function f_s of periods 2π and the function f_p of period π , each of which equals f(x) on $0 < x < \pi$. Expand each of them in an appropriate Fourier series.

Solution.

Note that $f_c = f_p$. We calculate

$$a_0 = \frac{1}{\pi} \int_0^{\pi} |\cos x| \, dx = \frac{2}{\pi} \int_0^{\pi/2} \cos x \, dx = \frac{2}{\pi}.$$

When $n \neq 1$, we have

$$a_n = \frac{2}{\pi} \int_0^{\pi} |\cos x| \cos nx \, dx = \frac{2}{\pi} \int_0^{\pi/2} \cos x \cos nx + \cos x \cos(n\pi - nx) \, dx$$

$$= \frac{2}{\pi} \int_0^{\pi/2} \cos x \cos nx + \cos x \cos nx \cos nx + \cos x \sin nx \sin n\pi \, dx$$

$$= \frac{2}{\pi} (1 + \cos n\pi) \cdot \frac{1}{2} \int_0^{\pi/2} \cos(n+1)x + \cos(n-1)x \, dx$$

$$= \frac{1}{\pi} (1 + \cos n\pi) \left[\frac{1}{n+1} \sin(n+1)x + \frac{1}{n-1} \sin(n-1)x \right]_0^{\pi/2}.$$

Note that this vanishes when n is odd. Otherwise, note that $\sin(2n+1)\pi/2 = (-1)^n$, so

$$a_{2n} = \frac{2}{\pi} \left[\frac{1}{2n+1} (-1)^n - \frac{1}{2n-1} (-1)^n \right] = -\frac{4}{\pi} \cdot \frac{(-1)^n}{4n^2 - 1}.$$

We can calculate a_1 separately. Note that the first three lines of the previous process still hold. Thus,

$$a_1 = \frac{2}{\pi} (1 + \cos \pi) \int_0^{\pi/2} \cos^2 x \, dx = 0.$$

Again, when $n \neq 1$, we have

$$b_n = \frac{2}{\pi} \int_0^{\pi} |\cos x| \sin nx \, dx = \frac{2}{\pi} \int_0^{\pi/2} \cos x \sin nx + \cos x \sin(n\pi - nx) \, dx$$

$$= \frac{2}{\pi} \int_0^{\pi/2} \cos x \sin nx + \cos x \cos nx \sin n\pi - \cos x \sin nx \cos n\pi \, dx$$

$$= \frac{2}{\pi} (1 - \cos n\pi) \cdot \frac{1}{2} \int_0^{\pi/2} \sin(n+1)x + \sin(n-1)x \, dx$$

$$= -\frac{1}{\pi} (1 - \cos n\pi) \left[\frac{1}{n+1} \cos(n+1)x + \frac{1}{n-1} \cos(n-1)x \right]_0^{\pi/2}.$$

Note that this vanishes when n is even. Otherwise, we calculate

$$b_{4k+1} = -\frac{2}{\pi} \left[\frac{1}{4k+2} (\cos(2k+1)\pi - 1) + \frac{1}{4k} (\cos 2k\pi - 1) \right]$$

$$= \frac{2}{\pi} \cdot \frac{1}{2k+1},$$

$$b_{4k-1} = -\frac{2}{\pi} \left[\frac{1}{4k} (\cos 2k\pi - 1) + \frac{1}{4k-2} (\cos(2k-1)\pi - 1) \right]$$

$$= \frac{2}{\pi} \cdot \frac{1}{2k-1}.$$

From the first three lines of the previous process,

$$b_1 = \frac{1}{\pi} (1 - \cos \pi) \int_0^{\pi/2} \sin 2x \, dx = -\frac{2}{\pi} \cdot \frac{1}{2} \cos 2x \Big|_0^{\pi/2} = \frac{2}{\pi}.$$

Thus,

$$f_c(x) = f_p(x) = \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{4n^2 - 1} \cos 2nx,$$
$$f_s(x) = \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{1}{2n+1} \left[\sin (4n+1)x + \sin (4n+3)x \right].$$

Problem 25. Suppose that f(x) and f'(x) are both expanded as Fourier series on $(-\pi, \pi)$, with coefficients a_n, b_n and a'_n, b'_n . Show that $b'_n = -na_n$, and obtain a similar relation between a'_n and b_n using the integral definitions. Show that this is the same result obtained by differentiating the series term by term.

Solution. We start with the integrals

$$a_n = \frac{1}{\pi} \int_{-\pi}^{+\pi} f(x) \cos nx \, dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{+\pi} f(x) \sin nx \, dx.$$

We use integration by parts,

$$\int u \, dv = uv - \int v \, du, \text{ or } \int uv \, dx = u \int v \, dx - \int u' \int v \, dx \, dx.$$

Thus,

$$a_n = +\frac{1}{n\pi} f(x) \sin nx \Big|_{-\pi}^{+\pi} - \frac{1}{n\pi} \int_{-\pi}^{+\pi} f'(x) \sin nx \, dx.$$

$$b_n = -\frac{1}{n\pi} f(x) \cos nx \Big|_{-\pi}^{+\pi} + \frac{1}{n\pi} \int_{-\pi}^{+\pi} f'(x) \cos nx \, dx.$$

We recognize the second terms as $-b'_n/n$ and a'_n/n respectively. Note that the first term in the first sum vanishes because $\sin n\pi = 0$. In the second sum, we use the Dirichlet conditions and the 2π periodicity of f to extrapolate its values at the points $\pm \pi$.

$$f(-\pi) = f(+\pi) = \frac{1}{2} \left[\lim_{x \to -\pi^+} f(x) + \lim_{x \to +\pi^-} f(x) \right].$$

This follows since the periodicty of f guarantees $\lim_{x\to +\pi^+} f(x) = \lim_{x\to -\pi^+} f(x)$, and $\lim_{x\to +\pi^-} f(x) = \lim_{x\to -\pi^-}$. Consequentially, the first term in b_n also vanishes. Thus, multiplying by n, we obtain

$$na_n = -b'_n, \qquad nb_n = a'_n.$$

We can also see this from the Fourier series of f and f', assuming they both exist.

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx.$$

Differentiating this once,

$$f'(x) = \sum_{n=1}^{\infty} -na_n \sin nx + nb_n \cos nx = a'_0 + \sum_{n=1}^{\infty} b'_n \sin nx + a'_n \cos nx.$$

The desired relations, $b'_n = -na_n$ and $a'_n = nb_n$ follow directly from comparing terms. Note that $a'_0 = 0$.

Problem 26. Find the Fourier series of the given function.

$$f(x) = \begin{cases} 3x^2 + 2x^3, & -1 < x < 0, \\ 3x^2 - 2x^3, & 0 < x < 1. \end{cases}$$

Differentiate both the series and the function repeatedly until you obtain a discontinuous function. Plot these, along with a few terms of the corresponding Fourier series. Note the number of terms needed for a good fit.

Solution. Note that the given function is even. Thus.

$$a_0 = \int_0^1 3x^2 - 2x^3 \, dx = 1 - \frac{1}{2} = \frac{1}{2},$$

$$a_n = 2 \int_0^1 (3x^2 - 2x^3) \cos n\pi x \, dx = \frac{2}{n\pi} (3x^2 - 2x^3) \sin n\pi x \Big|_0^1 - \frac{2}{n\pi} \int_0^1 6(x - x^2) \sin n\pi x \, dx$$

$$= \frac{12}{n^2 \pi^2} (x - x^2) \cos n\pi x \Big|_0^1 - \frac{12}{n^2 \pi^2} \int_0^1 (1 - 2x) \cos n\pi x \, dx$$

$$= -\frac{12}{n^3 \pi^3} (1 - 2x) \sin n\pi x \Big|_0^1 + \frac{12}{n^3 \pi^3} \int_0^1 (-2) \sin n\pi x \, dx$$

$$= -\frac{24}{n^4 \pi^4} \cos n\pi x \Big|_0^1$$

$$= -\frac{24}{n^4 \pi^4} (1 - \cos n\pi).$$

Thus,

$$f(x) = \frac{1}{2} - \sum_{\substack{n=1\\ n \text{ odd}}}^{\infty} \frac{48}{n^4 \pi^4} \cos n\pi x.$$

Figure 1: Plot of f(x). A single term of the Fourier series gives a very good fit.

We differentiate the original function to get

$$f'(x) = \begin{cases} 6(x+x^2), & -1 < x < 0, \\ 6(x-x^2), & 0 < x < 1. \end{cases}$$
$$f''(x) = \begin{cases} 6(1+2x), & -1 < x < 0, \\ 6(1-2x), & 0 < x < 1. \end{cases}$$
$$f'''(x) = \begin{cases} 12, & -1 < x < 0, \\ -12, & 0 < x < 1. \end{cases}$$

Note that f'''(x) is discontinuous. We can similarly differentiate the Fourier series

$$f'(x) = \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{48}{n^3 \pi^3} \sin n\pi x,$$
$$f''(x) = \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{48}{n^2 \pi^2} \cos n\pi x,$$
$$f'''(x) = -\sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{48}{n\pi} \sin n\pi x.$$

Figure 2: Plot of f'(x). Two terms of the Fourier series give a good fit.

Figure 3: Plot of f''(x). Five terms of the Fourier series give a good fit, although the sharp corners never fit properly.

Figure 4: Plot of f'''(x). Fifteen terms of the Fourier series give a good fit, although fringes always remain near the discontinuity, even upon allowing around 50 terms.