

INSTITUTO DE INGENIERÍA MATEMÁTICA Y COMPUTACIONAL

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

IMT3410: Métodos para ecuaciones diferenciales

Clase 29

Manuel A. Sánchez 2024.12.11

Método de Godunov

Método de Godunov

- Métodos Upwind no pueden ser usados para sistemas
- Para dos sistemas lineales mostramos una generalización del método Upwind diagonalizando el sistema.
- Para sistemos no lineales la matriz de vectores propios no es constante y esto no funciona directamente.
- Acá proponemos una generalización.

Ecuaciones de Euler de dinámica de gases

Consideramos como ejemplo de sistema no lineal las ecuaciones de Euler

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho v \\ E \end{bmatrix} + \frac{\partial}{\partial x} \begin{bmatrix} \rho v \\ \rho v^2 + p \\ v(E+p) \end{bmatrix} = 0$$

 ρ es densidad, ν es velocidad, E es la energía total y ρ es lo presión de un gas.

$$E=rac{1}{2}
ho v^2+
ho e,\ e$$
 es energía interna

Ecuación de estado e = e(p, g)

Gas ideal: $\longrightarrow e = e(T)$, T temperatura y $p = R\rho T$ **Gas politrópico**:

$$E = \frac{1}{2}\rho v^2 + \frac{p}{\gamma - 1}$$

Método de Courant-Isaacson-Rees. ~ 1952

Proponen resolver ciertas ecuaciones a lo lago de las características moviéndose hacia atrás de (x_j, t_{n+1}) . Para evaluar las variables características en t_n el método usa interpolación basado en los 2 puntos de grilla más cercanos. (u_{j-1}^n, u_j^n) , (u_j^n, u_{j+1}^n) dependiendo si la característica es positiva o negativa. Cómo no sabemos el camino exacto de la característica, o aproximamos por una recta con pendiente $\lambda_p(u_i^n)$.

- → Para advección coincide con Upwind.
- \rightarrow Para un problema no lineal escalar en el cual u es constante a lo largo de la característica se reduce a determinar u_j^{n+1} por una aproximación a u en el punto $x_j f'(u_i^n) \Delta t$, la que se obtiene por interpolación lineal.

$$f'(u_{j}^{n}) > 0; \ u_{j}^{n+1} = \frac{1}{h} \left(\left(h - f'(u_{j}^{n}) \Delta t \right) u_{j}^{n} + f'(u_{j}^{n}) \Delta t u_{j-1}^{n} \right)$$
$$= u_{j}^{n} - \frac{\Delta t}{h} f'(u_{j}^{n}) \left(u_{j}^{n} - u_{j-1}^{n} \right)$$

En lugar de seguir la carocterísticas hacia atrás en el tiempo Godunov sugirió resolver problemas de Riemann

aproximación en la grilla
$$u_{j}^{n}=rac{1}{n}\int_{x_{j-1}/2}^{x_{j+1}/2} \tilde{u}\left(x,t_{n}
ight)dx$$

función de aproximación constante a trozos $\tilde{u}(x, t_n)$

El método usa $\tilde{u}(x,t_n)$ como dato inicial y resuelve en $t_n \leq t \leq t_{u+1}$. Es una sucesión de problemos de Riemann, luego

$$u_{j}^{n+1} = \frac{1}{n} \int_{x_{j-1/2}}^{x+1/2} \tilde{u}^{n}(x, t_{n+1}) dx$$

Observemos que $I_{j} = [x_{j-1}, x_{j+1/2}]$

$$\begin{split} &\int_{I_{j}} \tilde{u}\left(x,t_{n+1}\right) = \int_{I_{j}} \tilde{u}^{n}\left(x,t_{n}\right) + \int_{t_{n}}^{t_{n+1}} \left(f\left(\tilde{u}\left(x_{j+k},t\right)\right) - f\left(\tilde{u}\left(x_{j+1/2},t\right)\right)\right) \\ &\rightarrow \quad u_{j}^{n+1} = u_{j}^{n} - \frac{\Delta t}{h} \left(F\left(u_{j}^{n},u_{j+1}^{n}\right) - F\left(u_{j-1}^{n},u_{j}^{n}\right)\right) \end{split}$$

donde el flujo numérico es

$$F\left(u_{j}^{n},u_{j+1}^{n}\right)=rac{1}{\Delta t}\int_{tn}^{tn+1}f\left(\tilde{u}\left(x_{j+1/2},t
ight)
ight)dt$$

Observe que el valor constante de \tilde{u}^n a lo largo de la línea depende solo del dato u_j^n y u_{j+1}^n para este problema de Riemann. Si denotamos este valor por

$$u^*\left(u_j^n,u_{j+1}^n\right)$$

entonces podemos escribir el flujo

$$F\left(u_{j}^{n},u_{j+1}^{n}\right)=f\left(u^{*}\left(u_{j}^{n},u_{j+1}^{n}\right)\right)$$

v el método de Godunov queda

$$u_{j}^{n+1} = u_{j}^{n} - \frac{\Delta t}{h} \left(f\left(u^{*}\left(u_{j}^{n}, u_{j+1}^{n}\right)\right) - f\left(u^{*}\left(u_{j-1}^{n}, u_{j}^{n}\right)\right) \right)$$

El flujo es **consistente**, en efecto, si $u_i^n = u_{i+1}^n = \bar{u}$ entonces

$$u^*\left(u_i^n,u_{i+1}^n\right)=\bar{u}.$$

CFL: Para un tiempo largo, no hay garantías de que la solución se mantenga constante en $x_{j+1/2}$ por el efecto de los ondas que llegan de los problemas de Riemann de los vecinos. Entonces requerimos

$$\left| \frac{\Delta t}{h} \lambda_{p}(u_{j}^{n}) \right| \leq 1, \, \forall p, u_{j}^{n}$$

Ejemplo: Consideremos la ecuaciónde Burgers invscida

$$\frac{\partial}{\partial t}u + \frac{\partial}{\partial x}\left(\frac{u^2}{2}\right) = 0$$

Método de Godunov queda:

$$u_j^{n+1} = u_j^n - \frac{\Delta t}{2n} \left(u^* \left(u_j^n, u_{j+1}^n \right)^2 - u^* \left(u_{j-1}^n, u_j^n \right)^2 \right)$$

donde $u^*(u_i^n, u_{i+1})$: solución del problema de Riemann en $x_{i+1/2}$.

Método de Godunov para sistemas Lineales

Consideramos el sistema lineal

$$\frac{\partial}{\partial t}u + A\frac{\partial}{\partial x}u = 0$$

La solución del problema de Riemann asociado al sistema está dada por

$$u^*\left(u_j^n, u_{j+1}^n\right) = u_j^n + \sum_{\lambda_\rho < 0} \alpha_\rho r_\rho = u_{j+1}^n - \sum_{\lambda_\rho > 0} \alpha_\rho r_\rho$$

donde r_p es el p-ésimo vector propio de A y α_p es el coeficiente de r_p en la expansión de $(u_{i+1}^n-u_{i^n})$ es decir

$$R\alpha = u_{j+1}^n - u_j^n$$

Método de Godunov para sistemas Lineales

Así, podemos reescribir el método de Godunov con el flujo

$$F(u_{j}^{n}, u_{j+1}^{n}) = Au^{*}(u_{j}^{n}, u_{j+1}^{n})$$

$$= Au_{j}^{n} + A^{-}(u_{j+1}^{n} - u_{j}^{n})$$

$$= Au_{j+1}^{n} - A^{+}(u_{j+1}^{n} - u_{j}^{n})$$

y obtenemos

$$u_{j}^{n+1} = u_{j}^{n} - \frac{\Delta t}{h} \left(A^{-} \left(u_{j+1}^{n} - u_{j+1}^{n} \right) + A^{+} \left(u_{j}^{+} - u_{j-1}^{n} \right) \right)$$

$$= u_{j}^{n} - \frac{\Delta t}{2h} A \left(u_{j+1}^{n} - u_{j-1}^{n} \right) + \frac{\Delta t}{2h} |A| \left(u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n} \right)$$

con

$$|A| = A^+ - A^- = R|\Lambda|R^{-1}; \quad |\Lambda| = \operatorname{diag}(|\lambda|, \dots, |\lambda_m|)$$

Leyes de conservación escalares

Debemos resolver el problema de Riemann y analizamos el caso donde f es convexo.

- 1 si $f'(u_l), f'(u_r) \ge 0$, entonces $u^* = u_e$.
- 2 si $f'(u_l), f'(u_r) \leq 0$, entonces $u^* = u_r$.
- 3 si $f'(u_l) \ge 0 \geqslant f'(u_r)$, entonces $\begin{cases} u^* = u_l & \text{si} & \frac{|f|}{|u|} > 0 \\ u^* = u_l & \text{si} & \frac{|f|}{|u|} < 0 \end{cases}$
- 4 si $f'(u_l) < 0 < f'(u_r)$, entonces $u^* = u_s$ (rarefacción)

Leyes de conservación escalares

Componentes de un solver para extender

- Obtener algoritmos para aproximar la solución de problemas de Riemann (approximate Riemann solvers).
- Métodos de Volúmenes finitos (FVM)
- ☐ Slope Limiters.
- Métodos de orden mas alto.

Seguimos el libro Numerical solution of partial differential equations by the finite element method de Claes Johnson.

Consideremos la ecuación de convección-difusión

$$\frac{\partial u}{\partial t} + \nabla \cdot (u\beta) + \sigma u - \varepsilon \Delta u = 0 \quad \text{en } \Omega \times T$$

donde $\Omega \subset \mathbb{R}^d$, $\beta \in \mathbb{R}^d$ es la velocidad, $\sigma \in \mathbb{R}$ es el coeficiente de absorción, $\varepsilon \geq 0$ es el coeficiente de difusión, e I = (0, T).

Si $\varepsilon=0$ el problema es puramente hiperbólico. Escribimos el problema estacionario asociado

$$\nabla \cdot (u\beta) + \sigma u = \beta \cdot \nabla u + \gamma u \tag{1}$$

Llamamos streamlines¹ a las curvas x(s) solución de

$$\frac{\mathrm{d}x_i}{\mathrm{d}s}(s) = \beta_i(x) \qquad i = 1, ..., d$$
$$x(0) = x_0$$

Así

$$\frac{\mathrm{d}}{\mathrm{d}s}u(x(s)) + \gamma u(x(s)) = 0$$

La EDP estacionaria se reduce a la EDO a lo largo de las características. Frontera inflow: $\Gamma_- = \{x \in \Gamma : n(x) \cdot \beta(x) < 0\}$

¹Esto es equivalente las curvas características.

Ejemplo: Calcular la solución del problema

$$u=u(x,y)\in\Omega=(0,1)^2$$
 tal que
$$\frac{\partial u}{\partial x}=0\qquad \text{en }\Omega$$

$$u(0,y)=1\qquad \text{para }0< y<\frac{1}{2}$$

$$u(0,y)=0\qquad \text{para }\frac{1}{2}< y<1$$

Método de Galerkin Standard

Consideramos problemas del tipo (escalares) I = (0, T)

$$\begin{cases} \frac{\partial u}{\partial t} + \nabla \cdot (\beta u) + \sigma u - \varepsilon \Delta u = f \text{ en } \Omega \times I \\ u(x, 0) = u_0(x) \quad x \in \Omega \end{cases}$$

Asociado a este PVI está el problema estacionario

$$\nabla \cdot (\beta u) + \sigma u - \varepsilon \Delta u = f$$

con condiciones de frontera y con Ω un dominio acotado de \mathbb{R}^d . Además $\sigma, \varepsilon \geqslant 0$ y $\beta \in \mathbb{R}^{\nu}$ funciones suaves de (x, t). Asumimos que

Método de Galerkin Standard

Asumimos $\|\beta\|=1$ y $\gamma=1$. La formulación variacional del problema estacionario. Hallar $u\in H^1_0(\Omega)$ tal que:

$$arepsilon \int_{\Omega}
abla u \cdot
abla v + \int_{\Omega} (eta \cdot
abla u + u) \ v = \int_{\Omega} f \ v \qquad orall v \in H^1_0(\Omega)$$

Para una triangulación \mathcal{T}_h de Ω consideramos el espacio de elementos finitos

$$V_h = \{ v \in H^1(\Omega) : v|_K \in \mathbb{P}^k(K), \, \forall K \in \mathcal{T}_h \}$$
$$V_h^0 = \{ v \in V_h : v = 0 \text{ sobre } \Gamma := \partial \Omega \}$$

Hallar $u_h \in V_h^0$ tal que:

$$\varepsilon \int_{\Omega} \nabla u_h \cdot \nabla v + \int_{\Omega} (\beta \cdot \nabla u_h + u_h) v = \int_{\Omega} f v \qquad \forall v \in V_h^0$$

Ejemplo:

¿Qué pasa si $\varepsilon << 1$??

$$\left\{egin{aligned} -arepsilon u'' + u' &= 0 & ext{en } (0,1) \ u(0) &= 1 \ u(1) &= 0 \end{aligned}
ight.$$

La solución exacta es

$$u(x) = \frac{1}{1 - e^{-1/\varepsilon}} \left(1 - e^{-\left(\frac{1-x}{\varepsilon}\right)} \right)$$

Analizamos el método de Galerkin Standard con k=1. Para una triangulación con nodos $x_i=ih,\,i=0,1,...,N,\,h=\frac{1}{N}$

$$-\frac{\varepsilon}{h^2} (u_{i+1} - 2u_i + u_{i-1}) + \frac{1}{2h} (u_{i+1} - u_{i-1}) = 0 \qquad i = 1, ..., N - 1$$

$$u_0 = 1$$

$$u_N = 0$$

Ejemplo

Si $h > \varepsilon$ (por ejemplo, h = 0.1 y $\varepsilon = 0.01$), la solución aproximada resulta muy oscilante.

Reduciendo h la solución aproximada mejora. Con $h = \varepsilon$ ya funciona bien, es decir, se eliminan las oscilaciones.

Sin embargo, la dependencia de h en términos de ε no es ideal, valores de ε pequenos forzarían a tomar h aún menor. Refinar mucho una malla de más de una dimensión hace infactible resolver el problema por la cantidad de nodos (aumenta mucho) y el consecuente costo computacional.

Caso $\varepsilon = 0$

Analicemos el método para el caso hiperbólico puro, $\varepsilon = 0$. En este caso tenemos

• SG con condición de frontera impuesta fuertemente (Eq. 2)

Hallar
$$u_h \in V_h \text{ con } u_h = g \text{ sobre } \Gamma_- \text{ tal que}$$

$$\int_{\Omega} (\beta \cdot \nabla u_h + u_h) \ v = \int_{\Omega} f \ v \qquad \forall v \in V_h, v = 0 \text{ sobre } \Gamma_-$$
(2)

• SG con condición de frontera impuesta débilmente (Eq. 3)

Hallar
$$u_h \in V_h \text{ con } u_h = g \text{ sobre } \Gamma_- \text{ tal que}$$

$$\int_{\Omega} (\beta \cdot \nabla u_h + u_h) \ v - \int_{\Gamma_-} u_h v \beta \cdot \mathbf{n} \ ds = \int_{\Omega} f \ v - \int_{\Gamma_-} g v \beta \cdot \mathbf{n} \ ds \qquad \forall v \in V_h$$
(3)

Manuel A. Sánchez 25/40

Caso $\varepsilon = 0$

Análisis:

$$b(w, v) = \int_{\Omega} (\beta \cdot \nabla w + w) \ v - \int_{\Gamma_{-}} wv\beta \cdot \mathbf{n} \, ds$$
$$l(v) = \int_{\Omega} f \ v - \int_{\Gamma_{-}} gv\beta \cdot \mathbf{n} \, ds$$

Así el problema se reescribe

Hallar
$$u_h \in V_h$$
 tal que $b(u_h, v) = l(v) \quad \forall v \in V_h$

Manuel A. Sánchez 26/40

Caso $\varepsilon = 0$

Tenemos las siguientes propiedades:

1 Ortogonalidad de Galerkin

$$b(u-u_h,v)=0 \quad \forall v \in V_h$$

2

$$b(v,v) = ||v||_{L^2}^2 + \frac{1}{2}|v|_{\Gamma}^2 = \int_{\Omega} v^2 + \frac{1}{2}\int_{\Gamma} v^2|\beta \cdot n| ds$$

Teorema

Teorema

Existe una constante C tal que $1 \le r \le k$

$$||u - u_h|| + |u - u_h|_{\Gamma} \le Ch^r ||u||_{H^{r+1}}$$

Demostración:

Interpolante $I_h: H \to V_h$

$$||I_h u - u||_{L^2} \le Ch^{r+1} ||u||_{H^{r+1}}, \quad ||I_h u - u||_{H^1} \le Ch^r ||u||_{H^{r+1}}, \quad |I_h u - u||_{\Gamma} \le Ch^{r+1/2} ||u||_{H^{r+1}}$$

Recordamos la desigualdad de Cauchy-Schwarz:

$$\int \beta \nabla \eta_h e_h \le \|\beta \nabla \eta_h\| \cdot \|e_h\| \le \|\beta \nabla \eta_h\|^2 + \frac{1}{4} \|e_h\|^2$$

demostración

Separamos el error:

$$u + u_h = (u - I_h u) + (I_h u - u_h) =: \eta_h + e_h$$

2 Ecuación del error. Testeamos con $v = e_h$

 $b(e_h,e_h) = b(\eta_h,e_h) - b(u - u_h,e_h)$ 0 por ortogonalidad de Galerkin $= \int_{\Omega} \beta \cdot \nabla \eta_h e_h + \int_{\Omega} \eta_h e_h - \int_{\Gamma^-} \eta_h e_h \beta \cdot n \, ds$

3 Usando que $b(e_h, e_h) = ||e_h||^2 + \frac{1}{2}|e_h|^2$, acotamos

$$||e_h||^2 + \frac{1}{2}|e_h|^2 \le ||\beta \cdot \nabla \eta_h||^2 + ||\eta_h||^2 + \frac{1}{2}||e_h||^2 + |\eta_h|^2 + \frac{1}{4}|e_h|^2$$

$$\to ||e_h|| + |e_h| \le Ch^r ||u||_{H^{r+1}}$$

Observación:

El teorema indica que si la solución es suave entonces el método de Galerkin Standard converge a razón de $\mathcal{O}(h^r)$ con $||u||_{H^{r+1}}$, es decir, es subóptimo. El hiperbólico es de orden (r+1).

Métodos con difusión artificial

Difusión artificial

Se agrega difusión, si $\varepsilon < h$, de la forma $h\Delta u$

Hallar
$$u_h \in V_h^0$$
 tal que
$$\max\{\varepsilon, h\} \int_{\Omega} \nabla u_h \cdot \nabla v + \int_{\Omega} (\beta \cdot \nabla u_h + u_h) v = \int_{\Omega} f v$$
(4)

Esta solución aproximada tiene demasiada difusión. Además, el método es solo de orden $\mathcal{O}(h)$.

Streamline difussion

Idea: Agregamos difusión solo en la dirección de los streamlines $-\delta u_{\beta\beta}$, con $\delta=h-\varepsilon$, $u_{\beta}=\beta\cdot\nabla u$ y $u_{\beta\beta}=\beta\cdot\nabla(\beta\cdot\nabla u)$.

Hallar $u_h \in V_h^0$ tal que (primer intento)

$$\varepsilon \int_{\Omega} \nabla u_h \cdot \nabla v + \delta \int_{\Omega} (\beta \cdot \nabla u_h)(\beta \cdot \nabla v) + \int_{\Omega} (\beta \cdot \nabla u_h + u_h) v = \int_{\Omega} f v$$
 (5)

para todo $v \in V_h^0$ y $\delta = h - \varepsilon$, ($\varepsilon < h$). Aún tiene el término de $\mathcal{O}(h)$.

SD con $\varepsilon = 0$

Derivémoslo desde SG con condición de frontera impuestos débilmente.

$$\int_{\Omega}(\beta\cdot\nabla u_h+u_H)(v+h\beta\cdot\nabla v)-(1+h)\int_{\Gamma_-}u_hv\beta\cdot nds=\int_{\Omega}f(c+h\beta\cdot\nabla v)-(1+h)\int_{\Gamma_-}gv\beta\cdot nds$$

Análisis:

$$B(w,v)=\int_{\Omega}(eta\cdot
abla w+w)(v+heta\cdot
abla v)-(1+h)\int_{\Gamma_{-}}wveta\cdot nds$$
 $L(v)=\int_{\Omega}f(c+heta\cdot
abla v)-(1+h)\int_{\Gamma_{-}}gveta\cdot nds$ Hallar $u_{h}\in V_{h},\,u=g$ sobre Γ_{-} , tal que $B(u_{h},v)=L(v)$

Estimaciíon del error

Teorema

$$||u - u_h||_{\beta} \le Ch^{r+1/2}||u||_{H^{r+1}}$$

Manuel A. Sánchez 35/40

SD con $h > \varepsilon > 0$

Encontramos la formulación débil de $-\varepsilon\Delta u + \beta \cdot \nabla u + u = f$ usando como función test $\mathbf{v} + \delta \boldsymbol{\beta} \cdot \nabla \mathbf{v}$:

$$-\varepsilon\delta\int_{\Omega}\Delta u\beta\cdot\nabla v+\varepsilon\int_{\Omega}\nabla u\cdot\nabla v+\int_{\Omega}(\beta\cdot\nabla u+u)(v+\delta\beta\cdot\nabla v)=\int_{\Omega}f(v+\delta\beta\cdot\nabla v)$$

Así el método SD queda

Hallar $u_h \in V_h^0$ tal que

$$-\varepsilon\delta\int_{\Omega}\Delta_{h}u_{h}\beta\cdot\nabla v+\varepsilon\int_{\Omega}\nabla u_{h}\cdot\nabla v+\int_{\Omega}(\beta\cdot\nabla u_{h}+u_{h})(v+\delta\beta\cdot\nabla v)=\int_{\Omega}f(v+\delta\beta\cdot\nabla v)$$

para todo $v \in V_h^0$

(6)

SD con $h > \varepsilon > 0$

Notar que

$$\int_{\Omega} \Delta_h u_h \beta \cdot \nabla v := \sum_{K \in \mathcal{T}_h} \int_K \Delta u_h \beta \cdot \nabla v$$

En el método tomamos

$$\delta = egin{cases} \mathit{Ch} & arepsilon < \mathit{h}, \mathit{C} \ \mathrm{suficientemente} \ \mathrm{peque\~no} \ 0 & arepsilon > \mathit{h} \end{cases}$$

Ejercicio:

Mostrar que $B_{\varepsilon}(v,v) \geq \frac{1}{2} \left(\varepsilon \|\nabla v\|^2 + \delta \|\beta \cdot \nabla v\|^2 + \|v\|^2 \right)$ donde B_{ε} es la forma bilineal asociada al método.

Observación: Si la triangulación $\{\mathcal{T}_h\}$ no es uniforme y si $\|\beta\|$ es variable, entonces el parámetro δ se define localmente:

$$\delta = \delta_{\mathcal{K}} = \begin{cases} \frac{Ch_{\mathcal{K}}}{|\beta|} & \text{si } \varepsilon < h_{\mathcal{K}}|\beta| \\ 0 & \varepsilon \ge h_{\mathcal{K}}|\beta| \end{cases}$$

Manuel A. Sánchez 38/40

Técnicas de captura de discontinuidades - shock capturing

shock capturing

La idea es agregar difusión donde está la discontinuidad. El β tiene la discontinuidad. Se usa como función test:

$$\mathbf{v} + \delta \mathbf{\beta} \cdot \nabla \mathbf{v} + \bar{\delta} \bar{\mathbf{\beta}} \cdot \nabla \mathbf{v}$$

donde

$$\bar{\beta} = \frac{\beta \cdot \nabla u_h}{|\nabla u_h|^2} \nabla u_h \quad ; \quad \bar{\delta}_K = \frac{Ch_K}{|\bar{\beta}|}$$

siendo $\bar{\beta}$ la proyección de β sobre ∇u_h .