4. Sensores de color, luz y visión

Julio Vega

julio.vega@urjc.es

Sensores y actuadores

(CC) Julio Vega

Este trabajo se entrega bajo licencia CC BY-NC-SA.
Usted es libre de (a) compartir: copiar y redistribuir el material en
cualquier medio o formato; y (b) adaptar: remezclar, transformar
y crear a partir del material. El licenciador no puede revocar estas
libertades mientras cumpla con los términos de la licencia.

Contenidos

- Introducción
- 2 IRLED, sensores fotodiodo y fototransistor
- 3 Fotorresistencia o LDR (Light Dependent Resistor)
- 4 Sensor de color
- 5 Sensor de visión
- 6 Anexo

- Veremos todos los sensores que miden variables físicas mediante luz.
- Luz muy eficiente para medir dist., T^a , comp. química, color, etc.
- Luz compuesta por fotón, o llamado "cuanto de luz" por A. Einstein.
 - Fotón: partícula elemental de luz o "cuanto de energía EM".
- Energía presente en luz tiene dualidad onda-partícula.
 - A pesar de que su masa es nula, tiene comporta/ corpuscular (CC).
 - CC: elemento se considera partícula elemental que compone un objeto.
 - ullet E.g. efecto fotoeléctrico: incide fotón en material y este emite e^- .
- Luz se usa general/ para referirse al espectro electromagnético.
 - Espectro EM: representación de cuánta energía contiene una onda EM.
 - ullet Energía fotón/ondaEM depende de su long. onda: -long. = +energía.
- Para medición de variables físicas, luz se considera un haz (no onda).

- Diodo: SC (unión PN) en el que la corriente fluye en un solo sentido.
 - SC tipo *P*: tienen impurezas aceptoras; generan ↑↑ *portadores huecos*⁺.
 - SC tipo N: tienen impurezas donoras; generan ↑↑ portadores e⁻.
 La conducción se produce en polarización directa (P.a. V+ v. N.a. V-
 - La conducción se produce en polarización directa (P a V^+ y N a V^-).
- Transistor: SC controlado por I y del que se obtiene $I_{amplificada}$.
 - Unipolar: transistor de efecto campo (FET, Field Effect Transistor).
 - El canal de un FET es dopado para producir un SC tipo N o uno tipo P.
 - Tres terminales: puerta (Gate), drenador (Drain) y fuente (Source).
 - Si V^+ entre D-S y conectando G a $S \implies \exists$ corriente (de drenador).
 - Si V^- en G (tensión de estrangulamiento) $\implies \#$ corriente en canal.
 - Variantes: JFET (\cup PN), CMOS (\cup MOSFET_{n/p}), IGBT, TFT.
- Uso. Diodo: convertir CA en CC o rectific. Trans.: amplif. y regulador.
- El silicio y el germanio son los materiales semiconductores +comunes.

Figura: Imágenes extraídas de Wikimedia Commons

- BJT (Bipolar Junction Transistor): 2 uniones PN muy cercanas.
 - Permite, además de controlar I entre sus terminales, $\uparrow I y \downarrow V$.
- I producida por mvto. de portadores de dos polaridades: h^+ y e^- .
- Tres terminales: emisor (directa, $\downarrow R$), base y colector (inversa, $\uparrow R$).
 - E $\uparrow\uparrow$ dopado (=comporta como metal), emite portadores de carga.
 - $I_C = \beta I_E \iff$ base es alimentada por fuente de corriente continua.
 - β : Beta del transistor = factor amplificación o ganancia entre I_C e I_B .
- Tipos: PNP (E=P,B=N,C=P) y NPN (E=N,B=P,C=N).
 - NPN: el +usado, pues movilidad de $e^- > h^+$ en los SC $\Longrightarrow I \uparrow$.
- Usos: en electrónica analog., aunque tb en dig. (TTL, BiCMOS).

- Consumo en modo estático muy bajo (veremos en Sección CMOS).
- Gran capacidad de integración dado su ↓ tamaño (e.g. CMOS).
 - Tamaño $(\frac{1}{2}\mu)$ \ll al transistor bipolar.
 - Ad+, circuito hecho con MOSFETs no necesita $Rs \implies \downarrow$ tamaño aún.
- Controlados por $V \implies \uparrow \uparrow Impedancia_{entrada}$.
 - Dada su $\uparrow \uparrow R_{entrada}$ y $\downarrow \downarrow R_{salida} \implies$ muy usado en amplif. (e.g. audio).
- $\uparrow \uparrow v_{conmutacion}[\eta s] \implies$ muy usados en apps. \uparrow frec. y \downarrow potencia.

- Este sistema es muy empleado en los encoders y sist. de presencia.
 - Emisor de luz y elem. fotosensible detectan cambio de estado.
- IRLED emite luz en espectro infrarrojo cuando se polariza en directa.
 - Cuando V+ se aplica a ánodo (-) y cátodo (+) a toma de tierra.

- Aplicaciones diversas: detectar/medir presencia/distancia objeto.
 - Objeto reflectante, ranuras transparentes/opacas en encoder óptico.
 - Y calibrando el sistema: distancia a objeto, intensidad de color.

- Configuraciones del IRLED + elemento fotosensible:
 - De retrorreflexión: emisor+receptor en un lado, reflectante en otro.
 - De barrera: emisor y receptor en lados opuestos (encoder, presencia).
 - De reflexión directa: emisor+receptor en un lado, reflexión en objeto.

- IRLED es fuente de luz, se necesita elemento fotosensible detección.
 - Elem. fotosensible puede ser: fotodiodo o fototransistor.
- Fototransistor: transductor entre luz y señal eléctrica.
 - Convierte energía contenida en fotón en par electrón-hueco (e^-, h^+) .
 - Hueco: no es partícula, sino la falta de electrón ⇒ carga +.

- Al conectar fuente de V en circuito base-emisor-colector...
 - ...se busca que la unión base-emisor se polarice en inversa...
 - ullet ...para que, al percibir luz en la base, se genere $I_{fotoinducida}$.

- Emisor común: generar cambio en señal eléctrica, de alto a bajo.
 - \bullet Conectar colector a fuente de V a través de resistencia de carga.
 - Emisor se conecta a tierra, y V_{out} se mide en colector.
 - Uso: como amplif., de la *I* generada en base, por presencia de luz.
- Colector común: cambia de bajo a alto en presencia de luz en base.
 - Emisor se conecta a tierra a través de resistencia de carga.
 - Colector conectado a fuente de V^+ ; V_{out} se mide en emisor.
- Con terminal base: cuando se desee ↑ o ↓ nivel luz permisible...
 - ...que provoque cambio de estado en el fototransistor.

- Dispositivo óptico semiconductor (SC) con propósito=fototransistor.
- En directa (P a V^+ y N a V^-) es como diodo común (unión PN).
 - ullet Corriente de oscuridad: I que circula por diodo gracias a fuente V.
 - Cuando diodo se expone a luz, incremento de I despreciable (≈ 0).
- En inversa, corriente de oscuridad≈ 0. Con luz, incremento ↑↑.
 - e^- generados por efecto fotoeléctrico fluyen hacia V^+ (Fig. dcha.).
 - O, dicho de otro modo, se genera un flujo de huecos I_h hacia V^- .

- Tipos:
 - PN: fue el 1° . \downarrow rendimiento \implies mejorado por nuevos con = ppio.
 - PIN: incluye material P, N e I (SC Intrínseco = puro, sin impurezas).
 - De avalancha: ↑ ganancia ⇒ se usa solo en sitios con ↓ irradiación.
 - Schottky: basado en diodo Schottky. Ideal para aplicac. en ↑ frec.
- Modos de operación de un fotodiodo:
 - Fotovoltaico: operar al fotodiodo como una fuente de corriente.
 - Fotoconductivo (conv. luz-voltaje): se aplica V en inversa en fotodiodo.

- Elemento resistivo cuya magnitud de su resistencia es \propto luz.
- Transductor entre luz incidente y resistencia eléctrica a la salida.
- Usos: sistemas de control ilumin. alumbrado, fotografía, pantallas.
 - También como sensor de presencia, forma e, incluso, color.
- Ppio. físico: al incidir luz, $\uparrow n^o$ pares $e^- h^+$ libres...
 - ...para conducción $\Longrightarrow \downarrow$ la resistividad del material.
 - Si conectamos esta resistencia a batería \implies varía $I_{circuito}$.
- Ef. fotoeléctrico: \downarrow iluminación $\implies R_{LDR} \uparrow$, y vcvsa.

Figura: Imagen extraída de Wikipedia

- El color que percibimos se debe a la long. de onda reflejada en objeto.
 - E.g. percibir azul: objeto absorbe todas long. onda excepto azul.
- Ojo humano puede absorber algunas long, de onda y otras las rechaza.
- Sensores basados en: filtros de color o en irradiación/reflexión luz.
 - Usos: ajuste color impresora, sist. control según color, videojuegos.

- Sensor de color basado en filtros de color:
 - Es lineal; proporciona V_{out} directa/ \propto irradiación.
 - Tres salidas/canales/fotodiodos, cada uno con filtro de color R,G,B.
 - E.g. con objeto azul, V_B es mayor que V_R y V_G .
 - Normal/ se añade pin de ganancia para calibrarlo según luz ambiente.
- Sensor de color basado en irradiación de fuente de color fija:
 - Incluye luz propia, que se hace incidir sobre objeto a detectar.
 - Además de un elemento fotosensible para medir I de luz reflejada...
 - ...lo que supone una gran dvtaja.; ha de ser calibrado para cada color.
 - Tipos: luces (R,G,B) compactadas en LED RGB, o tres ledes separados.
 - Ppio.: al incidir luz azul sobre objeto azul, este la refleja intensa/.

- Para obtener información del entorno mediante captura de imágenes.
 - Imágenes pueden ser en color, escala de grises, monocromático, etc.
 - Imágenes compuestas por píxeles; cada uno obtenido por celda unitaria.
 - Celdas se basan en efecto fotoeléctrico: convertir luz en corriente.
- Celdas compuestas por sensores de estado sólido cuya tecnología es:
 - CCD: + extendido hasta aparecer CMOS.
 - SuperCCD: optimización del CCD para mejorar sensibilidad.
 - CMOS: + extendido actual/ por facilidad y < coste de fabricación.
 - Foveon X3: CMOS marca Foveon, no realiza interpolación de colores.
- Uso extendido: teléfonos, coches, cámaras, seguridad, robótica con IA.

- CMOS = Complementary Metal-Oxide-Semiconductor.
- Usado por mayoría de circuitos integrados ($\mu Proc$, memorias, etc.).
- Formado por la unión de transistores pMOSFET y nMOSFET.
 - MOSFFT = Metal-Oxide-Semiconductor Field-Effect-Transistor.
 - Configurados para que, en reposo, $E_{consumida} = I_{parasitas}$ (solo).
 - (p-n)MOS con p en modo enriquecimiento: si $p = 1 \implies n = 0$.
 - nMOS: D conectada a tierra $(V_{SS} = 0) \Longrightarrow \nexists I_S \Longrightarrow V_{DD}^{salida} = 0$.
 - pMOS, por contra, sí está en estado de conducción $\implies V_{DD}^{salida} = 1$.
- Corolario: C (de CMOS) se debe al modo de trabajo Complementario.
 - Cuando un transistor está encendido, el otro está apagado (y vcvsa.).

- Historia: < 60s, lógica se solía implementar con transist. bipolares.
 - NPN (E=N,B=P,C=N) +usado; movilidad $e^- > h^+$ en SC $\Longrightarrow I \uparrow$.
 - Entonces, $V_{CC} = V^+$ (C=Colector) y $V_{EE} = V^+$ (E=Emisor).
- En > 60s se empezó a usar el tr. unipolar (FET), y los voltajes son:
 - V_{DD} : alimentación positiva (**D**rain \cong agotar \cong va de $+ \to -$).
 - V_{SS} : alimentación negativa (**S**ource \cong fuente, nacimiento $\cong \to +$).
- Con CMOS no tiene sentido. Tiene canales N y P complement. (T.4).
 - Formado por unión de pMOSFET y nMOSFET jen igual n.º!
 - Por tanto, si $n.^{\circ}$ P = $n.^{\circ}$ N \Longrightarrow V_{DD} no es más + que V_{SS} .
 - Pero, por razones históricas, V_{DD} y V_{SS} se siguen usando así.
- Corolario: V_{CC} y V_{EE} para tr. bipolares; V_{DD} y V_{SS} para unipolares.
 - En la práctica, $V_{CC} \cong V_{DD}$ y $V_{FF} \cong V_{SS}$.

- Letter Symbols for Semiconductor Devices (IEEE Std. 255-1963)
- Símbolos en mayúscula: máximo (pico), media (CC) (e.g. I, V, P).
- Símbolos en minúscula: para valores instantáneos (e.g. i, v, p).
- Subíndice mayúsc.: valor de CC y valor inst. total (e.g. i_C , p_C).
- Subíndice minúsc.: valores de CA (e.g. i_c , I_c , v_{eb} , P_c).
- Se duplica subínd. alimentación tensión para evitar ambigüedad.
 - Ejemplos, los que hemos visto: V_{CC} , V_{DD} , V_{EE} , V_{SS} .
- Tres subínd. alimentación tensión: indica el terminal de referencia.
 - V_{CCB} : voltaje en Colector, con la Base como referencia.
 - V_{CC}: voltaje en Colector, con toma de tierra como referencia.
 - ullet ¿Y si, p. ej., dispositivo tiene dos Bases? No podríamos usar V_{BB} .
 - Se especificaría V de Base 1 a Base 2 así: V_{B1-B2} .
 - Más interesante, ¿cómo poner V de Base de Disp. 1 a Base de Disp. 2?
 - En este caso, la sintaxis no es quizás tan obvia: V_{1B-2B} .

4. Sensores de color, luz y visión

Julio Vega

julio.vega@urjc.es

Sensores y actuadores