TUTORIAL SHEET MS + IR SPECTROSCOPY

- 1. Determine the degree of unsaturation (HDI) for the hydrocarbons with the following molecular formulas:
 - a. $C_{12}H_{16}$
 - b. $C_{14}H_{10}O_4$
 - c. C₇H₇NH₂
 - d. C₇H₇NO
 - e. C₈H₉ClO
- 2. An unknown hydrocarbon has a molecular ion peak at m/z = 84, with a relative intensity of 31.3. The M + 1 peak has a relative intensity of 2.06, and the M + 2 peak has a relative intensity of 0.08. What is the molecular formula for this substance?
- 3. Given below is the mass spectrum of 2-methylhexane. What is the m/z value of the M+ peak and of the base peak? Give possible structures of the fragments giving rise to the large peaks at m/z = 85, 57, and 43.

4. Given below is the mass spectrum of compound with 46% of Carbon. Deduce the molecular formula/structure.

5. Which of the following compounds gives an IR spectrum with a peak at 3300 cm⁻¹ (s, br) and at 1640 cm⁻¹ (m)?

- 6. The O-H stretching vibration of phenol is observed at 3300 cm⁻¹. Assuming the bond strength of the following compounds to be identical to that of phenol, estimate the positions of the corresponding stretching vibrations. (a) thiophenol (d) deuterated phenol.
- 7. Given below is the IR and mass spectrum of compound. Take the value of molecular ion peak to be at m/z = 60. Get the structure.

8. A compound with pleasant smell has a following mass spectra and IR data. Deduce the structure of the compound.

Major IR Peaks (cm ⁻¹)
2880-2890
1737 (str)
1194, 1116 (str)

Major peaks in Mass spectrum (m\z)
29
41
56
57 base peak
73
85
101
116 molecular ion

