AMS 206B: Intermediate Bayesian Inference HOMEWORK #5 (Hypothesis Testing and Model Comparison)

- 1. Let $X \sim Exp(\theta)$ and assume one wishes to test $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$, with $\theta_1 < \theta_0$.
 - (a) Obtain the *p*-value associated with X=3 when $\theta_0=1$.
 - (b) Assuming that $\theta_1 = 1/2$, calculate the Bayes factor for X = 3 and $\theta_0 = 1$.
 - (c) Assuming that $Pr(H_0) = Pr(H_1)$, calculate the posterior probability of H_0 .
- 2. Assume $\theta \sim N(\mu, \tau^2)$ and observe $X \sim N(\theta, \sigma^2)$, with σ^2 known. Suppose one wishes to verify if a quantity θ is smaller than a pre-specified value θ_0 .
 - (a) Obtain the prior probability of $H_0: \theta < \theta_0$.
 - (b) Obtain the posterior probability of H_0 .
 - (c) Prove that the probability of H_0 increases after observing X=x if and only if $x < \theta_0(1-1/\sqrt{2})$ in the case $\sigma^2 = \tau^2$ and $\mu = 0$.
- 3. Let $X_i \sim^{i.i.d.} N(\theta, \sigma^2)$. Assume one wishes to test $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. Let $Pr(H_0) = Pr(H_1) = 1/2$, and

$$n_0 \sigma_0^2 \phi \sim \chi_{n_0}^2$$

under H_0 and H_1 with $\phi = \sigma^{-2}$. Similarly, let

$$(\theta|\phi, H_1) \sim N(\mu, (c\phi)^{-1})$$

for some c > 0. Compute $BF(H_0; H_1)$.

- 4. Theory predicts that θ , the melting point of a particular substance under a pressure of 10^6 atmospheres, is 4.01. The procedure for measuring this melting point is fairly inaccurate, due to high pressure. Indeed, it is known that an observation $X \sim N(\theta, 1)$. Five independent experiments give observations of 4.9, 5.6, 5.1, 4.6, and 3.6. The prior probability that $\theta = 4.01$ is 0.5. The remaining values of θ are given the density (0.5) $g_1(\theta)$ where $g_1(\theta)$ is a N(4.01, 1). Formulate and conduct a Bayesian test of the proposed theory.
- 5. A large shipment of parts is received, out of which 5 are tested for defects. The number of defective parts X, is assumed to have a $Bin(5,\theta)$ distributions. It is also known from past shipments that $\theta \sim Beta(1,9)$. Assume that x=0 is observed and consider $H_0: \theta \leq 0.1$ versus $H_1: \theta > 0.1$. Find the posterior probabilities of the two hypotheses, the posterior odds ratio, and the Bayes factor.