In The Name of God. The Merciful, The Compassionate.

Multivariate Gaussian

 $p(\mathbf{x}) \sim \mathcal{N}(\mu, \Sigma)$:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \mu)^t \Sigma^{-1} (\mathbf{x} - \mu)\right], \tag{1}$$

where $\mathbf{x} \in \mathbb{R}^d$.

Now suppose y is a linear transformation of x:

$$\mathbf{y} = \mathbf{A}^t \mathbf{x} \tag{2}$$

where $\mathbf{A} \in \mathbb{R}^{d \times k}$ and $\mathbf{y} \in \mathbb{R}^k$. Then, $p(\mathbf{y}) \sim \mathcal{N}(\mathbf{A}^t \mu, \mathbf{A}^t \mathbf{\Sigma} \mathbf{A})$

Now suppose k = 1 and **A** is a unit vector **a**. $y = \mathbf{a}^t \mathbf{y}$ represents the projection of **x** onto a line in the direction of **a**.

Example

If $\mathbf{x} = \{x_1, x_2\}$, then the projection onto x_1 is represented by $\mathbf{a}^t = [1, 0]$. If $y = \mathbf{a}^t \mathbf{x}$, then $y \sim \mathcal{N}(\mu' = \mathbf{a}^t \mathbf{x}, \sigma' = \mathbf{a}^t \mathbf{\Sigma} \mathbf{a})$ and

$$\mu' = [1, 0] [\mu_1, \mu_2]^t = \mu_1$$

$$\sigma' = [1, 0] \begin{bmatrix} \sigma_{1,1} & \sigma_{1,2} \\ \sigma_{2,1} & \sigma_{2,2} \end{bmatrix} [1, 0]^t = \sigma_{1,1}$$