IPESUP 2022/2023

Kholle 20 filière MP* Planche 1

- 1. Règle de la chaîne.
- 2. Soit $n \in \mathbb{N}^*$ et $E = \mathbb{R}_n[X]$.
 - (a) La dérivation dans *E* est-elle différentiable? Si oui, exprimer sa différentielle.
 - (b) L'application $E \times E \mapsto \mathbb{R}_{n^2}[X], (P,Q) \mapsto P \circ Q$ est-elle différentiable? Si oui, exprimer sa différentielle.
- 3. Soit * une loi de groupe sur $\mathbb R$ de neutre e. On note $f:\mathbb R^2\to\mathbb R, (x,y)\mapsto x*y$ que l'on suppose de classe C^1 .
 - (a) Montrer que

$$\forall (x, y) \in \mathbb{R}^2, \partial_2 f(x * y, e) = \partial_2 f(x, y) \partial_2 f(y, e)$$

(b) Soit $\varphi: \mathbb{R} \to \mathbb{R}$. Montrer que φ est de classe C^1 et vérifie $\forall (x,y) \in \mathbb{R}^2$, $\varphi(x*y) = \varphi(x) + \varphi(y)$ si et seulement si

$$\exists a \in \mathbb{R}^*, \forall x \in \mathbb{R}, \varphi(x) = a \int_e^x \frac{dt}{\partial_2 f(t, e)}$$

IPESUP 2022/2023

Kholle 20 filière MP* Planche 2

- 1. Caractérisation des fonctions constantes sur un ouvert connexe par arcs. Démonstration dans le cas convexe.
- 2. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ différentiable. Les applications suivantes sont-elles différentiables? Le cas échéant, exprimer leurs différentielles et dérivées partielles
 - (a) $u : \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto f(x + y, -xy).$
 - (b) $g: \mathbb{R} \to \mathbb{R}, x \mapsto f(e^x, -e^{-x}).$
- 3. Soit $n \in \mathbb{N}^*$, $E = \mathbb{R}^n$ muni de sa structure euclidienne habituelle, $f : E \setminus \{0\}$, $x \mapsto x/\|x\|^2$.
 - (a) L'application f est-elle différentiable? Si oui, exprimer sa différentielle.
 - (b) Soit $x \in E \setminus \{0\}$. Interpréter géométriquement Df(x) via la symétrie orthogonale par rapport à l'hyperplan orthogonal à x. En déduire que f conserve les angles.

IPESUP 2022/2023

Kholle 20 filière MP* Planche 3

- 1. Plan tangent à une surface de \mathbb{R}^3 définie par une équation.
- 2. Soit $n \in \mathbb{N}^*$ et $f: GL_n(\mathbb{R}) \to GL_n(\mathbb{R})$, $A \mapsto A^{-1}$. Montrer que f est différentiable et exprimer sa différentielle.
- 3. Soit $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ différentiable et $k \in \mathbb{R}$. Montrer que

$$\left[\forall t > 0, \forall x \in \mathbb{R}^n \setminus \{0\}, f(tx) = t^k f(x)\right] \iff \left[\forall x \in \mathbb{R}^n \setminus \{0\}, \sum_{i=1}^n x_i \partial_i f(x) = k f(x)\right]$$
