

1

Announcements

- Final Assessment:
 - □ When: Friday 31st May 2024, 2pm-5pm (you must submit to Canvas by 5pm, 31st May 2024 AEST)
 - ☐ Online assessment; available on Canvas, OPEN BOOK
 - □ Cover only the contents between Weeks 6-11.
- Assignment 2
 - ☐ You need to form team on ESP (even for 1-student teams)
 - ☐ Due on Friday 24 May 2024 (11:59pm)
 - ☐ Submitted to ESP
- Your Unit. Your say. Survey
 - ☐ On Canvas
 - ☐ Please provide constructive feedback

_

Al/Definitions/Paradigms

- Define AI:
 - ☐ Different definitions
 - ☐ Can you briefly explain?
 - ☐ Can you compare between different AI paradigms?

2

Intelligent Agents

- IA = AI systems that act rationally
- What does rationality mean?
- Performance measure?
- PEAS
- Task environment analysis?
- Agent structures?
 - ☐ Basic ones?
 - ☐ Advanced ones?

Search-based problem solving agents

- Problem formulation?
- Search methods:
 - □ Uninformed/Blind
 - □ Informed/Heuristic
- Given a search problem, can you tell how different search methods will behave?
 - ☐ Make sure that you pay attention to Repeated State Check (RSC).

5

Adversarial search/Al game playing

- Game tree
- Minimax
- Alpha-Beta pruning
- Expecti-minimax

The following slides are relevant to the Final Exam (content for Weeks 6-11)

7

Knowledge-based agents

- Entailment (KB |= q)
- Models
- **■** Truth table
 - ☐ Can you use it to show entailment???
- Validity/Satisfiability/Unsatisfiability
- Forward chaining
- Backward chaining

Knowledge-based agents: FOL

- Quantifiers
- Models
- Expressing logical sentences using FOL:
 - ☐ Can you converts English sentences to FOL???

9

Al Planning

- Planning languages?
 - □ **STRIPS**, ADL, PDDL???
- Formulate a planning problem (initial state, goals, action descriptions)
- State-space search
 - □ Progression planning
 - □ Regression planning
- Plan-space search
 - □ Partial Order Planning (POP)
- Can you use an Al planning technique to manually find a plan for a planning problem?

Probability/Reasoning with Uncertainty

- The problem of reasoning with uncertainty
- Probability from first principles
 - □ Basic axioms
 - ☐ Definitions (e.g., **conditional probability**, Independence, conditional independence, etc.)
 - □ Conditioning
- Bayes rule
 - □ Can you use Bayes rule to perform inference with probability?
 - ☐ Can you answer questions from the tutorials/Practice Exam?

11

Probability - Key concepts

- Prior probability, e.g. $P(A_{90}) = 0.92$
- Conditional probability, e.g. P(A₉₀|accident on freeway) = 0.74
- P(a) + P(¬a) = 1
- P(a | b) + P(¬a | b) = 1
- Definition of Conditional Probability:

$$P(A \mid B) = P(A \land B)/P(B) = P(B \mid A)*P(A)/P(B)$$

■ Conditioning:

$$P(A) = P(A \land B) + P(A \land \neg B) = P(A|B) * P(B) + P(A | \neg B) * P(\neg B)$$

Probability - Key concepts

- Causal reasoning (using Bayes' rule):
 - ☐ Diagnostic reasoning from causal probability:
 - □ P(Cause | Effect) = (P(Effect | Cause) * P(Cause)) / P(Effect)
- **■** Examples:
 - □ Cause: Cavity / Effects: Xray, toothache
 - □ Cause: Disease / Effects: Symptoms (fevers, sore throat),

test positive

□ Cause: Faulty alternator / Effects: Car won't start or

frequently stalled

□ Cause: Bad credit applicant / Effects: Al system at the bank raises a

warning on the application

13

Machine Learning - Key concepts

- "Learning Problem: A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E." Tom Mitchell (1998)
- Types of learning:
 - ☐ Supervised (inductive) learning
 - □ Unsupervised learning
 - □ Semi-supervised learning
 - □ Reinforcement learning

Machine Learning - Key concepts

■ Supervised learning with Linear Regression:

- ☐ A statistical regression method used for predictive analysis
- \Box Computing the best-fit line: $y = h_{\beta}(x) = \beta_0 + \beta_1 x$
- \square Cost function (to measure the errors of the hypothesis h_{β}), e.g. MSE
- ☐ Gradient descent for optimization

■ Design a learning systems:

☐ A ML algorithm consisting of 3 major components: **Representation**, **Optimization**, and **Evaluation**

