Illumination Models & Shading

COLLEGE OF COMPUTING HANYANG ERICA CAMPUS Q YOUN HONG (홍규연)

Surface Shading

• 물체의 appearance를 결정: 물체의 표면의 색상, 질감, 재질 등을 표현

Glossy vs. Matte Objects

Lighting vs. Shading

- Lighting: material들과 light source(광원)들의 상호작용
 - 물리 법칙이 연관되어 있음
- Shading: pixel의 색을 결정
 - 컴퓨터 그래픽스의 한 요소
- Shading은 대개 lighting에 의해서 결정되지 만, lighting에 의해 다른 방식으로 가시화될 수도 있음
 - 예: Non Photorealistic Rendering(NPR)


```
ZBuffer(Scene)
...
PutColor(x,y,Col(P));
...
end
```


Shading Models

- 물체가 어떻게 보이는지, 물리적인 현상을 시뮬레이션
 - 정확한 illumination을 시뮬레이션하는 것은 복잡하고 고비용임
 - 물리 법칙에 기반한 근사(approximation)와 heuristics을 사용
 - Shading Model을 사용해도 좋은 가시화 결과를 보임

Local vs. Global Illumination Models

- Local model 각각의 물체는 빛과 직접 적이고 지역적인 상호작용을 보임
- Global model 다른 물체들 간에도 빛 에너지의 교환과 상호작용이 이루어짐

Light Sources (광원)

- Point source (A): 모든 빛이 한 점에서 출발함
 - 광선이 평면에 다른 입사각(incidence angle)으로 닿음
- Parallel source(B): 모든 광선이 평행함
 - 광선이 평면에 같은 입사각으로 닿음
 - 무한대(infinity)에 위치한 점 광원(point source)으로 모델링 가능
 - Directional light source
- Area source(C): 빛이 공간상에 있는 특정 영역에서 출발
 - 광원의 특정 영역(finite area)에서 빛을 발광
 - Distributed source

Shading Component

Specular reflection

- On Metallic (smooth) surface
- 빛이 정의된 특정 각도로 반사됨

Diffuse reflection

- On Plastic (rough) surface
- 빛이 모든 방향으로 반사됨

Ambient light

• 빛이 여러 번 반사되어 모든 방향에서 같은 양으로 들어오는 것처럼 인식

Ambient Light

- 환경 상에서 방향성이 없는 빛으로 가정
- 모든 장소에서 같은 빛으로 물체를 비추는 것처럼 보여짐
 - 마치 실루엣 (Silhouette)처럼 보여지게 됨

- Illumination equation: $I = I_a k_a$
 - I_a ambient light intensity
 - k_a ambient light가 surface에서 반사되는 비율
 - RGB별로 따로 정의되어 물체의 색을 결정

$$(I = (I_{ar} \cdot k_{ar}, I_{ag} \cdot k_{ag}, I_{ab} \cdot k_{ab}))$$

Diffuse Light

• matte plastic 과 같은 dull surface는 모든 방향에서 오는 빛을 같은 방식으로 반사

• Diffuse reflection 또는 Lambertian reflection

• 광원이 (normalized된) L 방향에서 들어오고, surface의 법선 벡터가 N일 때, surface의 빛의 세기는 < N, L >에

비례함

Diffuse Reflection

Illumination equation becomes...

$$I = I_a k_a + I_p k_d \langle N, L \rangle = I_a k_a + I_p k_d \cos \theta$$

- I_p point light source의 세기(intensity)
- k_d surface \bigcirc diffuse reflection coefficient

Specular

• 빛나는 물체(예: metallic)는 빛을 surface의 법선 벡터 N에 의해

서 결정되는 특정 방향 R로 빛을 반사함

- 완벽한 거울은 L 방향으로 들어온 빛을 R 방향으로 100% 반사함
- 대부분의 물체는 완벽한 거울이 아님 빛을 R 방향의 부근으로 반사
- Phong Model 빛의 경감(attenuation)을 $\cos^n \alpha$ 의 형태로 모델

$$r = -l + 2\langle l, n \rangle n$$

Illumination equation becomes...

$$I = I_a k_a + I_p(k_d \langle N, L \rangle + k_s \langle R, V \rangle^n)$$

- k_s Specular reflection coefficient
- n Specular exponent

• Exponent n이 attention의 경감 정도 (decay factor)를 결정

• 물리적 기반은 없지만 괜찮을 결 과를 보임

Illumination Equation

• 전체 Illumination Equation

$$I = I_a k_a + I_p(k_d \langle N, L \rangle + k_s \langle R, V \rangle^n)$$

Illumination Equation

• 여러 개의 light source(광원)이 존재할 때:

$$I = I_a k_a + \sum_p I_p(k_d \langle N, L \rangle + k_s \langle R, V \rangle^n)$$

- 모든 광원들의 I_p 들이 더해짐
- Overflow에 대한 처리 필요

Illumination Equation

- Q) 왼쪽과 같은 atmospheric attenuation은 어떻게 구현?
- 다음의 illumination equation을 이용:

$$I = I_a k_a + \sum_p \frac{I_p}{d_p} (k_d \langle N, L_p \rangle + k_s \langle R_p, V \rangle^n)$$

• d_p – surface와 light source 간의 거리 또는 surface와 viewer 사이의 거리 (heuristic atmosphere attenuation)

Flat Shading

- piecewise linear polygonal model에 적용
- polygon에 적용할 수 있는 단순한 surface lighting
- illumination 값은 각각의 polygon의 법선 벡터에 의해 결정 됨
- ⇒각각의 polygon은 같은 intensity로 칠해짐
- 부드럽게 보이지 않음

Gouraud Shading

- 만일 polygon이 부드러운 곡면의 근사라면:
 - 물체의 각 vertex에 법선 벡터를 부여할 수 있음
 - 각 vertex의 법선 벡터를 원래 곡면에서 가져올 수 있음
 - 만일 원래 곡면이 존재하지 않으면 법선 벡터를 추정

vertex normal을 이용해서 illumination intensity를 각 vertex에서 계산

Gouraud Shading

Polygon의 내부에 있는 pixel의 lighting intensity를 구하기 위해서 vertices들에서 계산한 lighting intensity(RGB)를 선형 보간함

→ Barycentric coordinates

Phong Shading

- illumination intensity들 대신에 법선 벡터들을 선형 보간함
- polygon의 내부에 있는 pixel들에 대해서 pixel에 해당하는 (보 간된) normal을 이용해서 illumination equation을 계산함

More Examples

Shading

- Phone shading은 Gouraud Shading에 비해서 비쌈
- specular highlight effect를 잘 구현할 수 있음
- Gouraud와 Phong Shading은 모두 image plane에서 이루어짐
- Gouraud와 Phong Shading은 view dependent
- Transformation dependent Animation중에 작은 artifact 있을 수 있음