(164)

ISSN 0021-3470

ИЗВЕСТИЯ ВЫСШИХУЧЕБНЫХ ЗАВЕДЕНИЙ

РАДИОЗЛЕКТРОНИКА

5-6

И З Д А Н И Е НАЦИОНАЛЬНОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА У К Р А И Н Ы «КИЕВСКИЙ ПОЛИТЕХНИЧЕСКИЙ И Н С Т И Т У Т »

1997

347

- ТРИФОНОВ А. П., ПАРФЕНОВ В. И.

ОЦЕНКА ДИСПЕРСИИ СЛУЧАЙНОГО СИГНАЛА С НЕИЗВЕСТНОЙ ДЛИТЕЛЬНОСТЬЮ

Найдены структура и характеристики максимально правдоподобного измерителя дисперсии и длительности случайного сигнала при воздействии помехи с неизвестной мощностью.

В [1] получены структура и характеристики измерителя дисперсии, адаптирующегося к помехе с неизвестной мощностью. При этом предполагалось, аналогично [2, 3], что длительность анализируемого гауссовского случайного сигнала априори известна, так что время обработки сигнала можно выбрать равным его длительности. Однако при практической реализации алгоритмов обработки случайных сигналов в радиоэлектронных системах длительность сигнала часто априори неизвестна. Поэтому рассмотрим возможность измерения дисперсии случайного сигнала с априори неизвестной длительностью. Аналогично [1] полагаем, что в течение интервала наблюдения [0; T] обработке доступна реализация наблюдаемых данных вида

$$x(t) = s(t,\tau_0) + \nu(t) + n(t),$$
 (1)

где

$$s(t,\tau_0) = \begin{cases} \xi(t), \ 0 \le t \le \tau_0, \\ 0, \quad t > \tau_0 \end{cases} \tag{2}$$

— случайный сигнал длительностью $t_0 \in [0;T]$; $\nu(t)$ — широкополосная гауссовская стационарная помеха с постоянной в полосе частот $[-\omega_m/2;\omega_m/2]$ величиной односторонней спектральной плотности γ_0 и корреляционной функцией $K_{\nu}(t_1-t_2);\;\omega_m$ — полоса пропускания преселектора радиоэлектронной системы [1], на выходе которой необходимо измерить дисперсию D_0 гауссовского стационарного случайного процесса $\xi(t);\;n(t)$ — гауссовский белый шум с односторонней спектральной плотностью N_0 , который описывает собственные шумы элементов радиоэлектронной системы, включенных после преселектора. Как и в [1], полагаем, что случайный процесс обладает математическим ожиданием Q_0 и спектральной плотностью вида

$$G(\omega) = 2\pi D_0 I(\omega / \Omega) / \Omega, \tag{3}$$

где I(x)=1 при |x|<1/2 и I(x)=0 при |x|>1/2 , а Ω — полоса частот анализируемого случайного процесса, причем $\Omega<\omega_m$.

Рассмотрим, как влияет априорное незнание длительности τ_0 случайного сигнала на точность оценки дисперсии

$$\widehat{D} = \frac{1}{T(k-1)} \left[k \int_0^T \widetilde{y_2^2}(t) dt - \int_0^T \widetilde{y_1^2}(t) dt \right] - \left[\frac{c}{T} \int_0^T \widetilde{y_1}(t) dt \right]^2, \tag{4}$$

полученной в [1]. В (4) $\widetilde{y_1}(t)$ и $\widetilde{y_2}(t)$ — отклики фильтров с передаточными функциями $H_i(\omega)$ (i=1,2) на сигнал $\widetilde{x}(t)=x(t)-a_0(1-c)$, где x(t) определяется из (1), а c=0, если математическое ожидание a_0 процесса $\xi(t)$ априори известно и c=1, если оно априори неизвестно. Передаточные функции $H_i(\omega)$ удовлетворяют соотношениям: $|H_1(\omega)|^2 = \mathrm{I}(\omega/\omega_m)$, $|H_2(\omega)|^2 = \mathrm{I}(\omega/\omega_m)$, а $k=\omega_m/\Omega$.

Подставляя в (4) реализацию наблюдаемых данных (1) и выполняя усреднение при фиксированных значениях D_0 и τ_0 , получаем для смещения (систематической ошибки) и рассеяния (среднего квадрата ошибки) оценки (4) сигнала с неизвестной длительностью выражения

$$b(\widehat{D} \mid D_{0}, \tau_{0}) = \langle \widehat{D} - D_{0} \rangle = \frac{D_{0}}{\mu} \left\{ (\mu - q_{N}z_{0}^{2}/2) \left[\min(1,\kappa) - 1 \right] - \frac{c}{2} \left[(\kappa - 2q_{N}z_{0}^{2}) \right] \min(1,\kappa) + z_{0}^{2}q_{N} \min^{2}(1,\kappa) + \kappa \left(q + q_{N} \right) + z_{0}^{2}q_{N} \right] \right\}, \quad (5)$$

$$V(\widehat{D}/D_{0}, \tau_{0}) = \langle (\widehat{D} - D_{0})^{2} \rangle = b^{2} (\widehat{D}/D_{0}, \tau_{0}) + \frac{D_{0}^{2}}{\mu^{2}} \left\{ \frac{\mu \kappa k}{k-1} (q + q_{N})^{2} + z_{0}^{2}q_{N}\kappa (1 - c)(q + q_{N}) - c\kappa^{2} (q + q_{N})^{2}/2 + cz_{0}^{2}q_{N}\kappa \min^{3}(1,\kappa) + c\sin^{2}(1,\kappa) \left[\kappa^{2}/2 - \kappa z_{0}^{2}q_{N}(q + q_{N} + 2) \right] + \min(1,\kappa) \left[\kappa \mu (1 + 2q + 2q_{N}) + \kappa z_{0}^{2}q_{N}c + \kappa z_{0}^{2}q_{N}(q + q_{N})(2c - 1) - \kappa^{2}c (1 + q + q_{N}) \right], \quad (6)$$

где $\kappa = \tau_0 / T$, $\mu = \Omega \tau_0 / 4\pi$, $z_0^2 = 2a_0^2 \tau_0 / N_0$, $q = \gamma_0 \Omega / 4\pi D_0$ — отношение средней мощности широкополосной помехи в полосе частот анализируемого процесса к средней мощности самого процесса; $q_N = N_0 \Omega / 4\pi D_0$ — отношение средней мощности белого шума в полосе частот анализируемого процесса к средней мощности самого процесса. При выполнении усреднения в (5), (6) предполагалось, что истинное значение длительности τ_0 случайного сигнала и время наблюдения T существенно превышают время корреляции процесса $\xi(t)$, так что

$$\Omega \tau_0 / 4\pi >> 1$$
, $\Omega T / 4\pi >> 1$.

Полагая в (5), (6) $\kappa=1$, приходим к известным выражениям [1] для смещения и рассеяния оценки дисперсии (4). В частности, при c=1 (математическое ожидание процесса $\xi(t)$ априори неизвестно) имеем

$$b_0(\hat{D} \mid D_0) = -D_0(1 + q + q_N)/2\mu, \tag{8}$$

$$V_0(\hat{D} \mid D_0) = D_0^2 \left[(1 + q + q_N)^2 + (q + q_N)^2 / (k-1) \right] / \mu. \tag{9}$$

Проигрыш в точности оценки дисперсии случайного сигнала из-за незнания его длительности можно охарактеризовать отношением $\chi_1(\kappa) = V(\hat{D} \mid D_0, \tau_0) / V_0(\hat{D} \mid D_0)$. На рис. 1 приведены зависимости χ_1 от κ при c=1. Кривая I соответствует значению q=0,1; кривая 2-q=0,5; кривая 3-q=1. Для всех кривых

 $\mu = 100, z_0^2 = 1, q_N = 0.5, k = 9.$ Как улуга следует из рис. 1, проигрыш в точности оценки (4) дисперсии случайного сигнала из-за незнания сго длительности может быть значительным и возрастает с уменьшением q, если $\kappa < 1$. Когда $\kappa > 1$, утот проигрыш не зависит от величины q.

Повысить точность измерения дисперсии в этих условиях можно, реализуя совместную оценку максимального правдоподобия (ОМП) дисперсии и длительности случайвого сигнала. С этой целью введем

• рассмотрение три вспомогательные гипотезы H_i , i=0,1,2. Гипотези H_2 предполагает, что реализация наблюдаемых данных имеет вид (1). Гипотеза H_1 предполагает, что случайный сигнал отсутствует, так что наблюдается реализация x(t) = v(t) + n(t). Наконец, гипотеза H_0 предполагает, что наблюдается только белый шум и x(t) = n(t).

Обозначим $F_2[\tau,a,D,\gamma]$ — логарифм функционала отношения правоподобия для гипотезы H_2 при альтернативе H_0 и $F_1[\gamma]$ — логарифм функционала отношения правдоподобия для гипотезы H_1 при той же вътернативе. Тогда ОМП дисперсии D_m и длительности τ_m при априори въвестном математическом ожидании a_0 можно записать в виде

3

(7)

$$D_{m} = \underset{D}{\operatorname{arg sup}} \left\{ \underset{\gamma, \tau}{\sup} F_{2} \left[\tau, a_{0}, D, \gamma \right] - \underset{\gamma}{\sup} F_{1} \left[\gamma \right] \right\},$$

$$\tau_{m} = \underset{\tau}{\operatorname{arg sup}} \left\{ \underset{D, \gamma}{\sup} F_{2} \left[\tau, a_{0}, D, \gamma \right] - \underset{\gamma}{\sup} F_{1} \left[\gamma \right] \right\}. \tag{10}$$

Если математическое ожидание априори неизвестно, то ОМП дисперсии и длительности определяются выражениями

$$D_{m} = \underset{D}{\operatorname{arg sup}} \left\{ \underset{a,\gamma,\tau}{\sup} F_{2} \left[\tau, a, D, \gamma \right] - \underset{\gamma}{\sup} F_{1} \left[\gamma \right] \right\},$$

$$\tau_{m} = \underset{\tau}{\operatorname{arg sup}} \left\{ \underset{a,D,\gamma}{\sup} F_{2} \left[\tau, a, D, \gamma \right] - \underset{\gamma}{\sup} F_{1} \left[\gamma \right] \right\}. \tag{11}$$

Введение вспомогательных гипотез H_i (i=0,1,2) позволяет избежать существенных математических трудностей при получении функционалов отношения правдоподобия. Действительно, используя [4], имеем

$$F_{2}[\tau, a, D, \gamma] = \frac{1}{N_{0}} \int_{0}^{T} x(t_{1})x(t_{2})\Theta_{2}(t_{1}, t_{2}) dt_{1}dt_{2} +$$

$$+ \int_{0}^{T} v(t) \left[x(t) - a_{s}(t)/2\right] dt - \frac{1}{2} \int_{0}^{1} d\chi \int_{0}^{T} dt \Theta_{2}(t, t, \chi),$$
(12)

$$F_1 | \gamma | = \frac{1}{N_0} \int_0^T x(t_1) x(t_2) \Theta_1(t_1, t_2) dt_1 dt_2 - \frac{1}{2} \int_0^1 d\chi \int_0^T dt \Theta_1(t, t, \chi),$$

где функции $\widetilde{\Theta}_i(t_1,t_2,\chi)$ (i=1,2) определяются из решения интегральных уравнений

$$\frac{N_0}{2} \widetilde{\Theta}_i(t_1, t_2, \chi) + \chi \int_0^T K_i(t_1, t) \widetilde{\Theta}_i(t, t_2, \chi) dt = K_i(t_1, t_2),$$

$$K_1(t_1, t_2) = K_{\nu}(t_1 - t_2),$$

$$K_2(t_1, t_2) = K_{\nu}(t_1 - t_2) + K_{\xi}(t_1 - t_2) I \left[(t_1 - \tau/2)/\tau \right] I \left[(t_2 - \tau/2)/\tau \right],$$

$$K_{\xi}(t_1 - t_2) = \int_{-\infty}^{\infty} G(\omega) \exp \left[j \omega(t_1 - t_2) \right] d\omega / 2\pi,$$

$$\Theta_i(t_1, t_2) = \widetilde{\Theta}_i(t_1, t_2, \chi = 1), \quad a_s(t) = a I \left[(t - \tau/2)/\tau \right],$$

$$\nu(t) = 2 \left\{ a_s(t) - \int_0^T a_s(t_1) \Theta_2(t_1, t_2) dt_1 \right\} / N_0. \tag{13}$$

учитывая (7) и решая интегральные уравнения (13) аналогично [4] с вомощью преобразования Фурье, получаем следующие выражения для функционалов (12):

$$\begin{split} \mathbf{F_{2}}[\mathbf{r},a,D,\gamma] &= \frac{q}{N_{0}(q+q_{N})} \int_{0}^{T} y_{1}^{2}(t) \, \mathrm{d}t + \frac{q_{N}}{N_{0}(q+q_{N})(1+q+q_{N})} \int_{0}^{\tau} y_{2}^{2}(t) \, \mathrm{d}t + \\ &+ \frac{2aq_{N}}{N_{0}(1+q+q_{N})} \int_{0}^{\tau} x(t) \mathrm{d}t - \frac{a^{2}q_{N}\tau}{N_{0}(1+q+q_{N})} - \frac{\tau\Omega}{4\pi} \ln\left(\frac{1+q+q_{N}}{q_{N}}\right) - \\ &- \left(\frac{\omega_{m}T}{4\pi} - \frac{\Omega\tau}{4\pi}\right) \ln\left(\frac{q+q_{N}}{q_{N}}\right), \end{split}$$

$$F_{1}[y] &= \frac{q}{N_{0}(q+q_{N})} \int_{0}^{T} y_{1}^{2}(t) \, \mathrm{d}t - \frac{\omega_{m}T}{4\pi} \ln\left(\frac{q+q_{N}}{q_{N}}\right), \end{split}$$

где $y_i(t)$ — отклики фильтров с передаточными функциями $H_i(\omega)$ (t=1,2) на реализацию наблюдаемых данных x(t) (1). Подставляя найженные выражения в (10), (11), имеем

$$D_{m} = \frac{1}{\tau_{m}} \begin{cases} \int_{0}^{\tau_{m}} [y_{2}^{2}(t) dt + 2a_{0}(c - 1)x(t) - a_{0}^{2}(c - 1)]dt - \\ -\frac{c}{\tau_{m}} \left[\int_{0}^{\tau_{m}} x(t) dt \right]^{2} \\ -\frac{1}{kT - \tau_{m}} \left\{ \int_{0}^{T} y_{1}^{2}(t) dt - \int_{0}^{\tau_{m}} y_{2}^{2}(t) dt \right\}, \\ \tau_{m} = \arg\sup_{t \to \infty} M(\tau), \\ M(\tau) = -(kT - \tau) \ln \left\{ \frac{\alpha^{2}}{kT - \tau} \left[\int_{0}^{T} y_{1}^{2}(t) dt - \int_{0}^{\tau} y_{2}^{2}(t) dt \right] \right\} - \\ -\tau \ln \left\{ \frac{\alpha^{2}}{\tau} \left(\int_{0}^{\tau} y_{2}^{2}(t) dt - \frac{c}{\tau} \left[\int_{0}^{\tau} x(t) dt \right]^{2} + (c - 1) \int_{0}^{\tau} \left[2a_{0}x(t) - a_{0}^{2} \right] dt \right) \right\}.$$

Здесь α — произвольная постоянная величина, имеющая размерность, обратную размерности реализации наблюдаемых данных, и выбираемая из условия обеспечения требуемого динамического диапазона аходных сигналов. Согласно (14) синтезированные оценки инвариантны отношению к величинам спектральных плотностей широкополосной вомехи и белого шума. Аналогично (4) c=0, если математическое ожидание a_0 процесса $\xi(t)$ априори известно и c=1, если оно априори неизвестно.

Один из способов построения измерителя дисперсии случайного сигнала с неизвестной длительностью показан на рис. 2, где обозначено: I — фильтр с передаточной функцией $H_1(\omega)$; 2 — фильтр с передаточной функцией $H_2(\omega)$; 3 — интегратор, выполняющий интегрирование на интервале $[0;\tau]$; 4 — квадратор; 5 — интегратор, выполняющий интегрирование за время [0;T]; 6 — делитель; 7 — генератор линейно-изменяющегося напряжения, пропорционального τ ; 8 — логарифмический усилитель; 9 — управляемый ключ, открываемый на короткий промежуток времени в момент подачи управляющего сигнала от решающего устройства; 10 — решающее устройство, определяющее положение абсолютного минимума, являющееся оценкой τ_m согласно (14). Очевидно, что при подаче на ключ 9 сигнала с решающего устройства 10 (в момент τ_m), величина сигнала на выходе ключа будет соответствовать ОМП D_m .

Рис. 2

Найдем характеристики совместных оценок параметров D и τ . Рассмотрим вначале характеристики ОМП τ_m (14). Функционал M (τ) (14) представим в виде суммы сигнальной $S(\tau,\tau_0)=< M$ (τ) > и шумовой $N(\tau)=M$ (τ) - < M (τ) > функций, так что M (τ) = $S(\tau,\tau_0)+N(\tau)$. Предположим, что оценки (14) обладают высокой апостериорной точностью. Для этого достаточно выполнения условия

$$z^2 = S^2(\tau_0, \tau_0) / \langle N^2(\tau_0) \rangle > 1$$
,

что имеет место, если $\mu >> 1$. Аппроксимируем $M(\tau)$ асимптотически гауссовским локально-марковским процессом [4] и определим коэффициенты сноса и диффузии этого процесса. Согласно методу

локально-марковской аппроксимации [5], характеристики оценок тогда можно найти из решения уравнения Фоккера—Планка—Колмогорова. Решая это уравнение с соответствующими коэффициентами, граничными и начальными условиями, аналогично [5] для смещения и рассеяния оценки τ_m , имеем

$$b_{m}(\tau_{m} \mid \tau_{0}) = \langle \tau_{m} - \tau_{0} \rangle = \frac{\tau_{0}}{\mu} \cdot \frac{-z_{2}^{2}R(R+2) + z_{1}^{2}(1+2R)}{2z_{1}^{2}z_{2}^{2}(1+R)^{2}},$$

$$V_{m}(\tau_{m} \mid \tau_{0}) = \langle (\tau_{m} - \tau_{0})^{2} \rangle =$$

$$= \frac{\tau_{0}^{2}}{\mu^{2}} \cdot \frac{z_{1}^{4}(5R^{2} + 6R + 2) + z_{2}^{4}R(2R^{2} + 6R + 5)}{2z_{1}^{4}z_{2}^{4}(1+R)^{3}},$$
(15)

где

$$\begin{split} z_1^2 &= [1 + q_N z_0^2 / 2\mu - (q + q_N)\beta]^2 / [1 + q_N z_0^2 (1 + q + q_N) / \mu], \\ z_2^2 &= [(1 + q + q_N)\beta - 1 + q_N z_0^2 / 2\mu]^2 / [1 + q_N z_0^2 (q + q_N) / \mu], \\ R &= (1 + q + q_N)(q + q_N)^{-1} [(1 + q + q_N)\beta - 1 + q_N z_0^2 / 2\mu] \times \\ &\times [1 + q_N z_0^2 (1 + q + q_N) / \mu] \Big\{ [1 + q_N z_0^2 / 2\mu - (q + q_N)\beta] \times \\ &\times [1 + q_N z_0^2 (q + q_N) / \mu] \Big\}^{-1}, \beta = \ln [(1 + q + q_N) / (q + q_N)]. \end{split}$$

Рассмотрим теперь характеристики ОМП D_m (14). Положим вначале, что величина параметра τ априори известна. Тогда в (14) следует подставить $\tau_m = \tau_0$. При $\tau_m = \tau_0$ и $\mu >> 1$ характеристики оценки D_m можно найти, непосредственно усредняя (14). В результате получаем

$$b_{m}(D_{m} \mid D_{0}) = -D_{0}c(1 + q + q_{N})/2\mu, \ V_{m}(D_{m} \mid D_{0}) = b_{m}^{2}(D_{m} \mid D_{0}) + \frac{D_{0}^{2}}{\mu^{2}} \left[\left[2z_{0}^{2}(c - 1) + \mu \right](1 + q + q_{N})^{2} + \frac{\mu\kappa (q + q_{N})^{2}}{\lambda - \kappa} \right].$$
 (16)

Положим теперь, что величина параметра τ_0 неизвестна. Из (16) следует, что при $\tau_m = \tau_0$ и $\mu \to \infty$ рассеяние оценки D_m (14) имеет порядок малости μ^{-1} . С другой стороны, согласно (15), рассеяние оценки τ_m имеет ворядок малости μ^{-2} . Поэтому, аналогично [6] можно показать, что при

 $\mu >> 1$ характеристики оценки τ_m (14) практически совпадают с характеристиками (16), найденными при известном τ_0 .

Положив в (16) $\kappa = 1$, получаем, что при априори известной длительности сигнала точность оценки дисперсии в измерителе [1] и измерителе, показанном на рис. 2, одинакова. Однако при априори неизвестной длительности сигнала точность оценки дисперсии (14) в измерителе, показанном на рис. 2, оказывается выше. В этом случае выигрыш в точности можно характеризовать огношением

$$\chi_2(\kappa) = V(\widehat{D} \mid D_0, \tau_0) / V_m(D_m \mid D_0).$$

Зависимости $\chi_2(\kappa)$, рассчитанные при тех же условиях, что и $\chi_1(\kappa)$, нанесены штриховыми линиями на рис. 1. Из анализа рис. 1 следует, что выигрыш в точности оценки, обеспечиваемый измерителем, показанном на рис. 2, практически такой же, как и проигрыш в точности оценки дисперсии при неточно известной длительности τ_0 . Следовательно, незнание длительности случайного сигнала приводит к необходимости использования измерителя, показанного на рис. 2 и обладающего более сложной структурой, чем измеритель, описанный в [1]. В то же время характеристики оценки дисперсии сигнала с неизвестной длительностью, обеспечиваемые измерителем, показанном на рис. 2, практически совпадают с характеристиками ОМП дисперсии сигнала, у которого априори известна длительность [1].

Таким образом, полученные результаты позволяют сделать обоснованный выбор между оценками (4) и (14) в зависимости от имеющейся априорной информации об анализируемом процессе, а также в зависимости от требований, предъявляемых к точности оценок и к степени простоты аппаратурной реализации измерителя.

Приведенные результаты получены при поддержке Российского фонда фундаментальных исследований.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Трифонов А. П., Алексеенко С. П. Квазиправдоподобная оценка дисперсии стационарного гауссовского случайного процесса // Радиоэлектроника.— 1994.— № 11.— С. —18. (Изв. высш. учеб. заведений). 2. Мирский Г. Я. Аппаратурное определение характеристик случайных процессов.—

М.: Энергия, 1972. — 456 с.

3. Куликов Е. И. Методы измерения случайных процессов. — М.: Радио и связь, 1986. — 272 c.

4. Трифонов А. П., Нечаев Е. П., Парфенов В. И. Обнаружение стохастических сигналов с неизвестными параметрами. — Воронеж, ВГУ, 1991. — 246 с. 5. Трифонов А. П., Шинаков Ю. С. Совместное различение сигналов и оценка их параметров на фоне помех. — М.: Радио и связь, 1986. — 264 с. 6. Обнаружение изменений свойств сигналов и динамических систем // М. Бассвиль, А. Вилеки А. Бацевился и пр. 1080 — 278 с.

Вилски, А. Банвенист и др.; под ред. М. Бассвиль, А. Банвениста. — М.: Мир, 1989. — 278 с.

Воронежский госуниверситет.

Поступила в редакцию 02.02.96.

ЕЖЕМЕСЯЧНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ЖУРНАЛ ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ РАЛИОЭЛЕКТРОНИКА

Журнал освещает актуальные теоретические проблемы радиоэлектроники; результаты научно-исследовательских работ, передовой отечественный опыт, определяющий направление и развитие научных исследований в области радиотехники и радиоэлектроники; публикует материалы научных конференций и совещаний; информацию о научной работе вузов; хроникальные и библиографические материалы.

ЖУРНАЛ ПУБЛИКУЕТ СТАТЬИ ПО РАЗДЕЛАМ:

Антенно-фидерные устройства и техника СВЧ.

Вакуумные и газоразрядные приборы.

Твердотельная электроника и интегральная схемотехника.

Оптические системы локации, связи и обработки информации.

Применение ЭВМ для исследования и проектирования радиозлектронных устройств и систем. Квантовая электронная техника.

Конструирование радиоэлектронной аппаратуры.

Радиолокация и радионавигация.

Радиотехнические устройства и системы.

Теоретические основы радиотехники.

Мелицинская электроника.

Публикация статьи в журнале учитывается при выделении грантов из фонда Сороса

Журнал издается для профессорско-преподавательского состава, аспирантов и студентов старших курсов высших учебных заведений, научных и инженерно-технических работников НИИ, вузов, промышленных предприятий, организаций электронной промышленности и электросвязи.

Перевод журнала на английский язык издается фирмой Allerton Press Inc. (США) под названием «Radioelectronics and Communications Systems».

ЖУРНАЛ РАСПРОСТРАНЯЕТСЯ ПО ПОДПИСКЕ

Отдельные номера журналов текущего года можно приобрести в редакции, перечислив радиотехническому факультету КПИ на расчетный счет 609709 в Украинском кредитнем банке г. Киева, МФО 321701, код ОКПО 02070921, стоимость журналов и пересылки. Для заказа отдельных журналов текущего года через редакцию необходимо прислать заявку в редакцию с указанием номера и количества журналов для включения в тираж текущего года.

Адрес редакции: 252056, г. Киев-56, проспект Победы, 37, НТУУ «Киевский политехнический институт», редакция журиала «Известия высших учебных заведений. Радиоэлектроника». Тел. (044) 441-12-63.

ISSN 0021—3470. Изв. высш. учеб. заведений. Радиоэлектроника. 1997. № 5—6. 1—160.