Single Qubit states and their visualization Practical Quantum Computing using Qiskit and IBMQ

Jothishwaran C.A.

Department of Electronics and Communication Engineering Indian Institute of Technology Roorkee

September 13, 2020

Outline

Complex Vectors and Qubits

Qubit states in \mathbb{C}^2 Basis vectors and State representation Projections and Photons

Visualising the Qubit state

Polar Coordinates
The global phase
States in Polar Coordinates
Visualising the Qubit state

The vector space \mathbb{C}^2

▶ A vector in the space \mathbb{C}^2 is represented as follows:

$$|\psi
angle \,=\, egin{pmatrix} \mathsf{a} \ \mathsf{b} \end{pmatrix} \,;\,\, \mathsf{a},\mathsf{b} \in \mathbb{C}$$

▶ If $|\phi\rangle = \begin{pmatrix} c \\ d \end{pmatrix}$, the inner products $\langle \phi | \psi \rangle$ and $\langle \psi | \phi \rangle$ are defined as:

$$\langle \phi | \psi \rangle = \begin{pmatrix} \bar{c} & \bar{d} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = a\bar{c} + b\bar{d}$$

and

$$\langle \psi | \phi \rangle = \left\{ egin{pmatrix} (ar{c} & ar{d}) igg(ar{a} igg) \\ b \end{pmatrix}
ight\}^\dagger = ar{a}c + ar{b}d = \overline{\langle \phi | \psi \rangle}$$

Normalization and the Qubit state

lacktriangle Consider the quantity $\langle \psi | \psi \rangle$ which has a value

$$\langle \psi | \psi \rangle = |a|^2 + |b|^2$$

- ▶ Therefore a vector $|\psi\rangle$ is a qubit state if $\langle\psi|\psi\rangle=1$.
- \blacktriangleright A general vector $|\phi\rangle$ can be converted to a qubit state $|\tilde{\phi}\rangle$ as follows:

$$|\tilde{\phi}\rangle = \frac{1}{\langle \phi | \phi \rangle^{\frac{1}{2}}} | \phi \rangle$$

- The above process is referred to as normalization and the quantity $\langle \phi | \phi \rangle^{\frac{1}{2}}$ is called the norm of the vector $| \phi \rangle$.
- ightharpoonup Qubit states can now be formally defined as vectors in \mathbb{C}^2 with a unit norm.

Basis States

▶ Defining the vectors $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, the vector $|\psi\rangle$ is now expressed as:

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

It is possible to represent any vector in \mathbb{C}^2 is the above manner.

- ▶ The set $\{|0\rangle, |1\rangle\}$ is called the standard or the computational basis and is said to span \mathbb{C}^2 .
- ▶ The inner products have the values; $\langle 0|0\rangle=\langle 1|1\rangle=1$ and $\langle 0|1\rangle=\langle 1|0\rangle=0$.
- ▶ A basis satisfying the above property is known as an orthonormal basis. It is worth noting that orthonormal basis vectors are valid qubit states.

Coordinates and Projections

► Considering the vector $|\psi\rangle$ and the computational basis $\{|0\rangle\,, |1\rangle\}$, the following is true

$$\langle 0|\psi\rangle \,=\, \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \,=\, \mathbf{a} \,;\,\, \langle 1|\psi\rangle \,=\, \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \,=\, \mathbf{b}$$

- ▶ The coordinates of the vector $|\psi\rangle$ can be defined in terms of the inner product with the basis vectors.
- ▶ The inner product of $|\psi\rangle$ with a basis vector is known as the projection of $|\psi\rangle$ along that basis vector.
- \blacktriangleright The vector $|\psi\rangle$ can now be represented in terms of the projections as follows:

$$|\psi\rangle = \langle 0|\psi\rangle |0\rangle + \langle 1|\psi\rangle |1\rangle$$

"Non-standard" Basis

- The idea of coordinates and projections is true for any orthonormal basis.
- Consider the basis orthonormal basis $\{|+\rangle\,, |-\rangle\}$, where $|+\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $|-\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.
- ▶ In this basis, the vector $|\psi\rangle$ is represented as:

$$|\psi\rangle = \langle +|\psi\rangle |+\rangle + \langle -|\psi\rangle |-\rangle$$

evaluating the inner products give the result

$$|\psi
angle \,=\, rac{a+b}{\sqrt{2}}\,|+
angle + rac{a-b}{\sqrt{2}}\,|-
angle$$

Projections and Photons

► The state of an obliquely polarized photon $|\chi\rangle = \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix}$, this state can be represented in the standard basis as:

$$|\chi\rangle = \cos\theta |0\rangle + \sin\theta |1\rangle$$

where the basis vectors $|0\rangle$, $|1\rangle$ represent the vertical and horizontal polarization states.

- ► The probability that this photon is transmitted by a polarized aligned along the $|0\rangle$ is given by $|\cos \theta|^2$.
- ▶ The transmission probability can now be correctly reinterpreted as $|\langle 0|\chi\rangle|^2$ and this result maybe used to calculate the transmission probabilities for circularly polarized light as well.
- ► The above result can be generalised to transmission probabilities for a polarizer oriented along any direction using the same method as described before.

Polar Coordinates

A complex number, $z = x + \mathbf{i} y$ can be represented in the polar form as, $z = re^{\mathbf{i}\phi}$ where

$$r = \sqrt{x^2 + y^2}$$
; $\phi = \arctan\left(\frac{y}{x}\right)$

Figure 1: Figure showing the representations of a complex number. Source: $Wikipedia^2$

²Complex_number_illustration.svg: The original uploader was Wolfkeeper at English Wikipedia. derivative work: Kan8eDie (talk) https://commons.wikimedia.org/wiki/File:

The global phase

- ightharpoonup The unit complex number $e^{i\phi}$ is also referred to as a phase factor.
- Multiplying a photon state $|\psi\rangle$ with a phase factor gives a state $e^{\mathrm{i}\phi}\,|\psi\rangle$. The phase factor is now referred to as a global phase factor.
- ▶ The projection of this new vector with respect to a basis state (say $|0\rangle$) is given by $e^{\mathbf{i}\phi} \langle 0|\psi\rangle$.
- Mhile this is different from $\langle 0|\psi\rangle$, it should be noted that this new state will have the same transmission probabilities as that of $|\psi\rangle$.
- It is therefore not possible to distinguish $e^{\mathbf{i}\phi} |\psi\rangle$ from $|\psi\rangle$ by performing polarization measurements.
- ► Therefore, states that differ from each other by only a global phase are considered to be equivalent.

Qubit state in polar coordinates

- Consider the state $|\psi\rangle$ in the standard basis with the coordinates represented in polar coordinates. $a=\mathsf{r}_0e^{\mathsf{i}\phi_0}$ and $b=\mathsf{r}_1e^{\mathsf{i}\phi_1}$
- ▶ The state may now be expressed as follows:

$$\begin{aligned} |\psi\rangle &= r_0 e^{\mathbf{i}\phi_0} |0\rangle + r_1 e^{\mathbf{i}\phi_1} |1\rangle \\ &= e^{\mathbf{i}\phi_0} \left(r_0 |0\rangle + r_1 e^{\mathbf{i}(\phi_1 - \phi_0)} |1\rangle \right) \\ &\equiv r_0 |0\rangle + r_1 e^{\mathbf{i}(\phi_1 - \phi_0)} |1\rangle \end{aligned}$$

setting $\phi_1 - \phi_0 = \phi$,

$$|\psi
angle \,=\, \mathsf{r}_0\,|0
angle + \mathsf{r}_1 e^{\mathbf{i}\phi}\,|1
angle$$

additionally,

$$\langle \psi | \psi \rangle = 1 \Rightarrow \mathbf{r}_0^2 + \mathbf{r}_1^2 = 1$$

Parameter Selection

- Since, $0 \le r_0, r_1 \le 1$ and $r_0^2 + r_1^2 = 1$ it is possible to represent $r_0 = \cos(\theta/2)$ and $r_1 = \sin(\theta/2)$ where, $\theta \in [0, \pi]$
- ▶ Since, $e^{\mathbf{i}\phi} = \cos\phi + \mathbf{i}\sin\phi \Rightarrow \phi \in [0, 2\pi)$. This angle is known as the relative phase.
- ▶ These parameters are identical to the angle variable in spherical polar coordinates. Therefore, each qubit state defined using these parameters corresponds to a point on a unit sphere.
- ▶ The qubit state in terms of this parameter is represented as

$$|\psi\rangle = \cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle$$

► The sphere on which the point corresponding to the state is present is known as the *Bloch Sphere*.

Figure 2: Figure showing a point on the Bloch Sphere. Source: Wikipedia³

(https://commons.wikimedia.org/wiki/File:Bloch_sphere.svg), "Bloch sphere", (https://creativecommons.org/licenses/by-sa/3.0/legalcode)

³Smite-Meister

Figure 3: Figure showing the the point corresponding to $|0\rangle$

Figure 4: Figure showing the point corresponding to $|1\rangle$

Figure 5: Figure showing the point corresponding to $|+\rangle$

Quantum Computing Course

Sugata Gangopadhyay, Abhishek Chakraborty, C. A. Jothishwaran
Department of Computer Science and Engineering
Indian Institute of Technology Roorkee

Module 1

Lecture 5a: Single-qubit measurement

- · Learn the meaning of single-qubit measurement
- Given single-qubit state and a measurement basis describe the possible measurement outcomes and compute the probability for each of them.

Single qubit measurement

ullet A single-qubit measurement, M is associated to an orthonormal basis

$$\frac{\overline{\{|\Phi_{1}\rangle,|\Phi_{2}\rangle\}}}{\langle\Phi_{1}|\Phi_{1}\rangle=|\Phi_{2}|\Phi_{2}\rangle}$$

$$\langle\Phi_{1}|\Phi_{1}\rangle=|\Phi_{2}|\Phi_{2}\rangle$$

- Measuring $|\Psi\rangle = a|0\rangle + b|1\rangle$ by M outputs either $|\Phi_1\rangle$ or $|\Phi_2\rangle$.
- The probability of outcome $|\Phi_1\rangle$ is $|\langle\Phi_1|\Psi\rangle|^2$
- The probability of outcome $|\Phi_2\rangle$ is $|\langle \Phi_2 | \Psi \rangle|^2$

Example 1
$$\frac{\langle 0 | \left(\frac{1}{\sqrt{2}}(|\delta\rangle + i \cdot | i\rangle\right) - \frac{1}{\sqrt{2}}\langle 0 | o \rangle + \frac{7}{\sqrt{2}}\langle 0 | i \rangle}{\langle 1 | \left(\frac{1}{\sqrt{2}}(|\delta\rangle + i \cdot | i\rangle\right) - \frac{1}{\sqrt{2}}\langle 1 | o \rangle + \frac{1}{\sqrt{2}}\langle 1 | i \rangle - \frac{i}{\sqrt{2}}}$$
 • Consider the single-qubit state $|\Psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$ and the measurement has a (10) (11)

basis $\{|0\rangle, |1\rangle\}$.

• The measurement outcome is
$$|0\rangle$$
 with probability $|\langle 0|\Psi\rangle|^2 = \left|\frac{1}{\sqrt{2}}\right|^2 = \frac{1}{2}$

• The measurement outcome is |1⟩ with probability
$$|\langle 1|\Psi\rangle|^2 = \left|\mathbf{i}\frac{1}{\sqrt{2}}\right|^2 = \frac{1}{2}$$

Calculations

• $\langle 0|\Psi\rangle = \langle 0|\left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}\mathbf{i}|1\rangle\right) = \frac{1}{\sqrt{2}}\langle 0|0\rangle + \frac{1}{\sqrt{2}}\mathbf{i}\langle 0|1\rangle = \frac{1}{\sqrt{2}}$

• $\langle 0|\Psi\rangle = \langle 1|\left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}\mathbf{i}|1\rangle\right) = \frac{1}{\sqrt{2}}\langle 1|0\rangle + \frac{1}{\sqrt{2}}\mathbf{i}\langle 1|1\rangle = \frac{1}{\sqrt{2}}\mathbf{i}.$

Example 2 7 Hadamard basin
$$|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

 $|-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$

• Consider the single-qubit state $|\Psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$ and the measurement basis $\{|+\rangle, |-\rangle\}$. <4 U> =

• The measurement outcome is
$$|+\rangle$$
 with probability
$$|\langle +|\Psi\rangle|^2 = \left|\frac{1}{2}(1+\mathbf{i})\right|^2 = \frac{1}{2}. \quad \langle -|\Psi\rangle \equiv$$

 The measurement outcome is |−⟩ with probability $|\langle -|\Psi\rangle|^2 = \left|\frac{1}{2}(1-\mathbf{i})\right|^2 = \frac{1}{2}.$

Calculations

•
$$\langle +|\Psi\rangle = \left(\frac{1}{\sqrt{2}}(\langle 0|+\langle 1|)\right)\left(\frac{1}{\sqrt{2}}(|0\rangle+\mathbf{i}|1\rangle)\right) = \frac{1}{2}(1+\mathbf{i}).$$

$$\langle + | \Psi \rangle = \left(\frac{1}{2} \left(\langle 0 | + \langle 1 \rangle \right) \right)$$

• $|\langle +|\Psi \rangle|^2 = \left|\frac{1}{2}(1+i)\right|^2 = \frac{1}{2}$.

• $|\langle -|\Psi\rangle|^2 = \left|\frac{1}{2}(1-\mathbf{i})\right|^2 = \frac{1}{2}$.

• $\langle -|\Psi\rangle = \left(\frac{1}{\sqrt{2}}(\langle 0|-\langle 1|)\right)\left(\frac{1}{\sqrt{2}}(|0\rangle+\mathbf{i}|1\rangle)\right) = \frac{1}{2}(1-\mathbf{i}).$

Module 1

Lecture 5b: Single-qubit operations

- The Pauli Transformations
- The Hadamard Transformation

$$\mathbb{C}^2 = \mathbb{C} \times \mathbb{C}$$

• Let $|\psi\rangle$ and $|\Phi\rangle$ be two vector.

Let
$$|\psi\rangle$$
 and $|\Psi\rangle$ be two vector.

•
$$|y_1\rangle = a|0\rangle + b|1\rangle$$
 and $|\Phi\rangle = a$

•
$$|\psi\rangle=a|0\rangle+b|1\rangle$$
 and $|\Phi\rangle=c|0\rangle+d|1\rangle$.

The outer product of
$$|\psi\rangle$$
 and $|\Phi\rangle$ is
$$|\Psi\rangle\langle\Phi| = \begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix}^{\dagger} = \begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} \bar{c} \\ d \end{pmatrix}$$

$$= \begin{pmatrix} a\bar{c} & a\bar{d} \\ b\bar{c} & b\bar{d} \end{pmatrix}$$

Quantum state transformations

 Quantum computers have the capability of transforming one quantum state to another by applying unitary transformations on the former.

• A linear transformation T is said to be unitary if

$$T T^{\dagger} = I$$

where I is the identity operator.

Pauli Transformations
$$|0\rangle\langle 0| = {1 \choose 0}\langle 0$$

$$|1\rangle = |1\rangle \langle 0| + |0\rangle \langle 1| = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \langle 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \langle 0 & 1 \end{pmatrix}$$

$$|1\rangle \langle 1| + |1\rangle \langle 0| + |0\rangle \langle 1| = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \langle 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$|1\rangle \langle 1| + |1\rangle \langle 1| + |1\rangle \langle 1| = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

ons =
$$\frac{1}{2} \frac{10}{600} + \frac{100}{600} + \frac{100}{600} = \frac$$

$$Y: -|1\rangle\langle 0| + |0\rangle\langle 1| = -\binom{0}{1}(1 \quad 0) +$$

$$\begin{aligned} \bullet Y: & -|1\rangle\langle 0| + |0\rangle\langle 1| = -\binom{0}{1}(1 \quad 0) + \binom{1}{0}(0 \quad 1) \\ & = -\binom{0}{1} \quad 0 + \binom{0}{0} \quad 0 + \binom{0}{0} \quad 0 \\ & = -\binom{0}{1} \quad 0 + \binom{0}{0} \quad 0 + \binom{0}{0} \quad 0 \\ & = -\binom{0}{1} \quad 0 + \binom{0}{0} \quad 0 \\ & = -\binom{0}{1} \quad 0 + \binom{0}{0} \quad 0 \\ & = -\binom{0}{1} \quad 0 + \binom{0}{0} \quad 0 \\ & = -\binom{0}{1} \quad 0 + \binom{0}{0} \quad 0 \\ & = -\binom{0}{1} \quad 0 + \binom{0}{0} \quad 0 \\ & = -\binom{0}{1} \quad 0 + \binom{0}{0} \quad 0 \\ & = -\binom{0}{1} \quad 0 + \binom{0}{0} \quad 0 \\ & = -\binom{0}{1} \quad 0 + \binom{0}{0} \quad 0 \\ & = -\binom{0}{1} \quad 0 + \binom{0}{0} \quad 0 \\ & = -\binom{0}{1} \quad 0 + \binom{0}{0} \quad 0 \\ & = -\binom{0}{1} \quad$$

 $= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^{1}$

$$\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$$

$$= -\binom{1}{1} \binom{0}{1} + \binom{0}{0} = \binom{0}{1} \binom{0}{$$

Action of the Pauli Transformations

- I = identity transformation
- X = negation, it is similar to the classical not operation
- \bullet Z = changing the relative phase of a superposition in the standard basis.

• Y = ZX.

 $11 > \longmapsto \frac{12}{7} (10 > - 11 >)$

