泡泡猿 ACM 模板

Rand0w & REXWIND & Dallby 2021 年 10 月 5 日

目录

1	头文	C件	1	
	1.1	头文件 (Rand0w)	1	
	1.2	头文件 (REXWind)	3	
	1.3	头文件 (Dallby)	3	
_	387. 3A			
2	数论		3	
		欧拉筛	3	
	2.2	Exgcd	4	
	2.3	Excrt 扩展中国剩余定理	4	
	2.4	线性求逆元	4	
	2.5	多项式	5	
		2.5.1 FFT 快速傅里叶变换	5	
		2.5.2 NTT 快速数论变换	5	
		2.5.3 MTT 任意模数 FFT	6	
	2.6	组合数	7	
	2.7	矩阵快速幂	8	
	2.8	高斯消元	8	
	2.9	三点求圆心	9	
	2.10)欧拉降幂	9	
	2.11	拉格朗日插值	9	
	***	数据结构 1		
0			11 11	
	3.1	并查集系列		
		3.1.1 普通并查集	11	
		3.1.2 按秩合并并查集	11	
		3.1.3 可持久化并查集	12	
		3.1.4 ETT 维护动态图连通性	13	
	3.2	平衡树系列	13	
		3.2.1 fhq_treap	13	
4	字符	字符串		
		··· FFT 解决字符串匹配问题	15	
		后缀数组 SA+LCP		
		TO VIDANCE CONTROL OF THE CONTROL OF		
5	杂项			
		集合 set	16	
	5.2	快读快写 (短)	17	
	5.3	GCD(压行)	17	
	E 1	사마	17	

1 头文件

1.1 头文件 (Rand0w)

```
#include <bits/stdc++.h>
   //#include <bits/extc++.h>
   //using namespace __gnu_pbds;
   //using namespace gnu cxx;
   using namespace std;
   #pragma optimize(2)
   //#pragma GCC optimize("Ofast,no-stack-protector")
   //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,tune=native")
   #define rbset(T) tree<T,null_type,less<T>,rb_tree_tag,tree_order_statistics_node_update>
   const int inf = 0x7FFFFFFF;
   typedef long long 11;
   typedef double db;
   typedef long double ld;
   template<class T>inline void MAX(T &x,T y){if(y>x)x=y;}
   template<class T>inline void MIN(T &x,T y){if(y<x)x=y;}</pre>
   namespace FastIO
16
17
   char buf[1 << 21], buf2[1 << 21], a[20], *p1 = buf, *p2 = buf, hh = '\n';</pre>
   int p, p3 = -1;
   void read() {}
   void print() {}
21
   inline int getc()
23
   return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF: *p1++;
25
   inline void flush()
26
27
   fwrite(buf2, 1, p3 + 1, stdout), p3 = -1;
28
29
   template <typename T, typename... T2>
   inline void read(T &x, T2 &... oth)
31
   {
32
   int f = 0;x = 0;char ch = getc();
   while (!isdigit(ch)){if (ch == '-')f = 1;ch = getc();}
   while (isdigit(ch))\{x = x * 10 + ch - 48; ch = getc();\}
   x = f ? -x : x; read(oth...);
36
37
   template <typename T, typename... T2>
   inline void print(T x, T2... oth)
40
   if (p3 > 1 << 20)flush();</pre>
41
   if (x < 0)buf2[++p3] = 45, x = -x;
   do{a[++p] = x \% 10 + 48;}while (x /= 10);
   do\{buf2[++p3] = a[p];\}while (--p);
   buf2[++p3] = hh;
   print(oth...);
46
   } // namespace FastIO
   #define read FastIO::read
50 | #define print FastIO::print
```

```
#define flush FastIO::flush
    #define spt fixed<<setprecision</pre>
    #define endll '\n'
    #define mul(a,b,mod) (__int128)(a)*(b)%(mod)
    #define pii(a,b) pair<a,b>
    #define pow powmod
    #define X first
    #define Y second
    #define lowbit(x) (x&-x)
    #define MP make_pair
    #define pb push_back
    #define pt putchar
    #define yx_queue priority_queue
    #define lson(pos) (pos<<1)</pre>
    #define rson(pos) (pos<<1|1)</pre>
    #define y1 code_by_Rand0w
66
    #define yn A_muban_for_ACM
    #define j1 it is just an eastegg
68
    #define lr hope_you_will_be_happy_to_see_this
    #define int long long
    #define rep(i, a, n) for (register int i = a; i <= n; ++i)
    #define per(i, a, n) for (register int i = n; i >= a; --i)
    const 11 1linf = 4223372036854775851;
    const 11 mod = (0 ? 1000000007 : 998244353);
    ll pow(ll a,ll b,ll md=mod) {ll res=1;a%=md; assert(b>=0); for(;b;b>>=1){if(b&1)res=mul(res,a,md);a=mul(a,a,
        md);}return res;}
    const 11 mod2 = 999998639;
    const int m1 = 998244353;
    const int m2 = 1000001011;
    const int pr=233;
    const double eps = 1e-7;
80
    const int maxm= 1;
81
    const int maxn = 510000;
    void work()
83
    {
84
85
86
    signed main()
87
    {
88
      #ifndef ONLINE JUDGE
89
      //freopen("in.txt","r",stdin);
90
       //freopen("out.txt","w",stdout);
91
    #endif
92
       //std::ios::sync_with_stdio(false);
93
       //cin.tie(NULL);
94
       int t = 1;
       //cin>>t;
96
       for(int i=1;i<=t;i++){</pre>
97
           //cout<<"Case #"<<i<<":"<<endll;
98
           work();
       }
100
       return 0;
101
102
```

1.2 头文件 (REXWind)

```
#include<iostream>
   #include<cstring>
   #include<cstdio>
   #include<algorithm>
   #include<vector>
   #include<map>
   #include<queue>
   #include<cmath>
   using namespace std;
   template<class T>inline void read(T &x){
      x=0; char o, f=1;
12
      while(o=getchar(),o<48)if(o==45)f=-f;</pre>
13
      do x=(x<<3)+(x<<1)+(o^48); while(o=getchar(),o>47); x*=f;}
   int cansel_sync=(ios::sync_with_stdio(0),cin.tie(0),0);
   #define 11 long long
   #define ull unsigned long long
   #define rep(i,a,b) for(int i=(a);i<=(b);i++)</pre>
   #define repb(i,a,b) for(int i=(a);i>=b;i--)
   #define mkp make_pair
   #define ft first
   #define sd second
   #define log(x) (31-__builtin_clz(x))
   #define INF 0x3f3f3f3f
   typedef pair<int,int> pii;
   typedef pair<11,11> pll;
   11 gcd(11 a,11 b){ while(b^=a^=b^=a%=b); return a; }
   //#define INF 0x7fffffff
   void solve(){
32
   }
   int main(){
      int z;
      cin>>z;
      while(z--) solve();
```

1.3 头文件 (Dallby)

```
#include<bits/stdc++.h>
cout<<"hello<<endl;</pre>
```

2 数论

2.1 欧拉筛

O(n) 筛素数

```
int primes[maxn+5],tail;
```

2.2 Exgcd

```
求出 ax + by = gcd(a, b) 的一组可行解 O(logn)
```

```
void Exgcd(ll a,ll b,ll &d,ll &x,ll &y){
   if(!b){d=a;x=1;y=0;}
   else{Exgcd(b,a%b,d,y,x);y-=x*(a/b);}
}
```

2.3 Excrt 扩展中国剩余定理

```
x \% b_1 \equiv a_1
                         x \% b_2 \equiv a_2
        求解同余方程组
                        x \% b_n \equiv a_n
   int excrt(int a[],int b[],int n){
       int lc=1;
       for(int i=1;i<=n;i++)</pre>
           lc=lcm(lc,a[i]);
       for(int i=1;i<n;i++){</pre>
           int p,q,g;
           g=exgcd(a[i],a[i+1],p,q);
           int k=(b[i+1]-b[i])/g;
           q=-q;p*=k;q*=k;
           b[i+1]=a[i]*p%lc+b[i];
10
           b[i+1]%=lc;
11
           a[i+1]=lcm(a[i],a[i+1]);
12
13
       return (b[n]%lc+lc)%lc;
14
15
```

2.4 线性求逆元

```
void init(int p){
inv[1] = 1;
for(int i=2;i<=n;i++){</pre>
```

```
inv[i] = (ll)(p-p/i)*inv[p%i]%p;
}
```

2.5 多项式

2.5.1 FFT 快速傅里叶变换

```
const int SIZE=(1<<21)+5;</pre>
   const double PI=acos(-1);
   struct CP{
      double x,y;
      CP(double x=0, double y=0):x(x),y(y){}
      CP operator +(const CP &A)const{return CP(x+A.x,y+A.y);}
      CP operator -(const CP &A)const{return CP(x-A.x,y-A.y);}
      CP operator *(const CP &A)const{return CP(x*A.x-y*A.y,x*A.y+y*A.x);}
   };
   int limit,rev[SIZE];
   void DFT(CP *F,int op){
12
      for(int i=0;i<limit;i++)if(i<rev[i])swap(F[i],F[rev[i]]);</pre>
      for(int mid=1;mid<limit;mid<<=1){</pre>
          CP wn(cos(PI/mid),op*sin(PI/mid));
          for(int len=mid<<1,k=0;k<limit;k+=len){</pre>
             CP w(1,0);
             for(int i=k;i<k+mid;i++){</pre>
                 CP tmp=w*F[i+mid];
                 F[i+mid]=F[i]-tmp;
                 F[i]=F[i]+tmp;
                 w=w*wn;
             }
          }
      if(op==-1)for(int i=0;i<limit;i++)F[i].x/=limit;</pre>
   void FFT(int n,int m,CP *F,CP *G){
      for(limit=1;limit<=n+m;limit<<=1);</pre>
      for(int i=0;i<limit;i++)rev[i]=(rev[i>>1]>>1)|((i&1)?limit>>1:0);
      DFT(F,1),DFT(G,1);
      for(int i=0;i<limit;i++)F[i]=F[i]*G[i];</pre>
      DFT(F,-1);
```

2.5.2 NTT 快速数论变换

```
const int SIZE=(1<<21)+5;
int limit,rev[SIZE];

void DFT(ll *f, int op) {
    const ll G = 3;
    for(int i=0; i<limit; ++i) if(i<rev[i]) swap(f[i],f[rev[i]]);
    for(int len=2; len<=limit; len<<=1) {
        ll w1=pow(pow(G,(mod-1)/len),~op?1:mod-2);
        for(int l=0, hf=len>>1; l<limit; l+=len) {
            ll w=1;
        }
}</pre>
```

```
for(int i=1; i<1+hf; ++i) {</pre>
                  11 tp=w*f[i+hf]%mod;
11
                  f[i+hf]=(f[i]-tp+mod)%mod;
12
                  f[i]=(f[i]+tp)%mod;
                  w=w*w1%mod;
              }
15
          }
16
17
       if(op==-1) for(int i=0, inv=pow(limit,mod-2); i<limit; ++i) f[i]=f[i]*inv%mod;</pre>
18
19
   void NTT(int n,int m,int *F,int *G){
       for(limit=1;limit<=n+m;limit<<=1);</pre>
21
       for(int i=0;i<limit;i++)rev[i]=(rev[i>>1]>>1)|((i&1)?limit>>1:0);
22
       DFT(F,1),DFT(G,1);
       for(int i=0;i<limit;i++)F[i]=F[i]*G[i];</pre>
       DFT(F,-1);
25
   }
```

2.5.3 MTT 任意模数 FFT

FFT 版常数巨大, 慎用。

```
struct MTT{
       static const int N=1<<20;</pre>
2
       struct cp{
          long double a,b;
          cp(){a=0,b=0;}
          cp(const long double &a,const long double &b):a(a),b(b){}
          cp operator+(const cp &t)const{return cp(a+t.a,b+t.b);}
          cp operator-(const cp &t)const{return cp(a-t.a,b-t.b);}
          cp operator*(const cp &t)const{return cp(a*t.a-b*t.b,a*t.b+b*t.a);}
          cp conj()const{return cp(a,-b);}
10
       };
11
       cp wn(int n,int f){
12
          static const long double pi=acos(-1.0);
13
          return cp(cos(pi/n),f*sin(pi/n));
14
       }
15
       int g[N];
16
       void dft(cp a[],int n,int f){
17
          for(int i=0;i<n;i++)if(i>g[i])swap(a[i],a[g[i]]);
18
          for(int i=1;i<n;i<<=1){</pre>
19
              cp w=wn(i,f);
20
              for(int j=0;j<n;j+=i<<1){</pre>
                  cp e(1,0);
22
                 for(int k=0;k<i;e=e*w,k++){</pre>
                     cp x=a[j+k],y=a[j+k+i]*e;
                     a[j+k]=x+y,a[j+k+i]=x-y;
                  }
              }
          if(f==-1){
              cp Inv(1.0/n,0);
              for(int i=0;i<n;i++)a[i]=a[i]*Inv;</pre>
          }
32
33
```

```
cp a[N],b[N],Aa[N],Ab[N],Ba[N],Bb[N];
       vector<ll> conv_mod(const vector<ll> &u,const vector<ll> &v,ll mod){ // 任意模数fft
35
          const int n=(int)u.size()-1,m=(int)v.size()-1,M=sqrt(mod)+1;
36
          const int k=32-__builtin_clz(n+m+1),s=1<<k;</pre>
37
          g[0]=0; for(int i=1;i<s;i++)g[i]=(g[i/2]/2)|((i&1)<<(k-1));
          for(int i=0;i<s;i++){</pre>
              a[i]=i<=n?cp(u[i]%mod%M,u[i]%mod/M):cp();</pre>
40
              b[i]=i<=m?cp(v[i]%mod%M,v[i]%mod/M):cp();</pre>
          dft(a,s,1); dft(b,s,1);
43
          for(int i=0;i<s;i++){</pre>
              int j=(s-i)%s;
              cp t1=(a[i]+a[j].conj())*cp(0.5,0);
              cp t2=(a[i]-a[j].conj())*cp(0,-0.5);
              cp t3=(b[i]+b[j].conj())*cp(0.5,0);
              cp t4=(b[i]-b[j].conj())*cp(0,-0.5);
49
              Aa[i]=t1*t3,Ab[i]=t1*t4,Ba[i]=t2*t3,Bb[i]=t2*t4;
51
          for(int i=0;i<s;i++){</pre>
              a[i]=Aa[i]+Ab[i]*cp(0,1);
53
              b[i]=Ba[i]+Bb[i]*cp(0,1);
          dft(a,s,-1); dft(b,s,-1);
56
          vector<ll> ans;
57
          for(int i=0;i<n+m+1;i++){</pre>
              11 t1=llround(a[i].a)%mod;
              11 t2=11round(a[i].b)%mod;
              11 t3=llround(b[i].a)%mod;
61
              11 t4=llround(b[i].b)%mod;
              ans.push_back((t1+(t2+t3)*M%mod+t4*M*M)%mod);
          }
64
          return ans;
65
   }mtt;
```

2.6 组合数

预处理阶乘,并通过逆元实现相除

```
11 jc[MAXN];
   11 qpow(11 d,11 c){//快速幂
      11 \text{ res} = 1;
       while(c){
          if(c&1) res=res*d%med;
          d=d*d%med;c>>=1;
      }return res;
   inline 11 niyuan(11 x){return qpow(x,med-2);}
   void initjc(){//初始化阶乘
10
      jc[0] = 1;
11
       rep(i,1,MAXN-1) jc[i] = jc[i-1]*i%med;
12
13
   }
   inline int C(int n,int m){//n是下面的
14
       if(n<m) return 0;</pre>
15
       return jc[n]*niyuan(jc[n-m])%med*niyuan(jc[m])%med;
16
```

2.7 矩阵快速幂

```
struct Matrix{
      11 a[MAXN][MAXN];
2
      Matrix(ll x=0){
          for(int i=0;i<n;i++){</pre>
              for(int j=0;j<n;j++){</pre>
                  a[i][j]=x*(i==j);
              }
          }
       Matrix operator *(const Matrix &b)const{//通过重载运算符实现矩阵乘法
10
          Matrix res(0);
11
          for(int i=0;i<n;i++){</pre>
12
              for(int j=0;j<n;j++){</pre>
13
                  for(int k=0;k<n;k++){</pre>
14
                     11 &ma = res.a[i][j];
                     ma = (ma+a[i][k]*b.a[k][j])%mod;
16
              }
          }
19
          return res;
20
      }
21
   };
22
   Matrix qpow(Matrix d,ll m){//底数和幂次数
23
      Matrix res(1);//构造E单位矩阵
       while(m){
25
          if(m&1)
              res=res*d;
          d=d*d;
          m>>=1;
30
       return res;
31
```

2.8 高斯消元

 $O(n^3)$ 复杂度,需要用 double 存储。

```
double date[110][110];
bool guass(int n){
    for(int i=1;i<=n;i++){
        int mix=-1;
        for(int j=i;j<=n;j++)
        if(date[j][i]!=0){
            mix=j;break;
        }
}</pre>
```

```
if(mix==-1)
               return false;
           if(mix!=i)
11
              for(int j=1;j<=n+1;j++)</pre>
                  swap(date[mix][j],date[i][j]);
           double t=date[i][i];
           for(int j=i;j<=n+1;j++){</pre>
15
               date[i][j]=date[i][j]/t;
           for(int j=1;j<=n;j++){</pre>
18
              if(date[j][i]==0||j==i)
                  continue;
               double g=date[j][i]/date[i][i];
               for(int k=1;k<=n+1;k++)</pre>
                  date[j][k]-=date[i][k]*g;
           }
24
       return true;
26
   }
```

2.9 三点求圆心

```
struct point{
      double x;
      double y;
   };
   point cal(point a,point b,point c){
      double x1 = a.x;double y1 = a.y;
      double x2 = b.x;double y2 = b.y;
      double x3 = c.x; double y3 = c.y;
      double a1 = 2*(x2-x1); double a2 = 2*(x3-x2);
      double b1 = 2*(y2-y1); double b2 = 2*(y3-y2);
11
      double c1 = x2*x2 + y2*y2 - x1*x1 - y1*y1;
      double c2 = x3*x3 + y3*y3 - x2*x2 - y2*y2;
13
      double rx = (c1*b2-c2*b1)/(a1*b2-a2*b1);
      double ry = (c2*a1-c1*a2)/(a1*b2-a2*b1);
      return point{rx,ry};
16
```

2.10 欧拉降幂

$$a^b \equiv \begin{cases} a^{b\%\phi(p)}, & \gcd(a,p) = 1 \\ a^b, & \gcd(a,p) \neq 1, b < \phi(p) \ (\mod p) \\ a^{b\%\phi(p) + \phi(p)}, & \gcd(a,p) \neq 1, b \geq \phi(p) \end{cases}$$

2.11 拉格朗日插值

```
namespace polysum {
    #define rep(i,a,n) for (int i=a;i<n;i++)
    #define per(i,a,n) for (int i=n-1;i>=a;i--)
```

```
const int D = 1010000; ///可能需要用到的最高次
   LL a[D], f[D], g[D], p[D], p1[D], p2[D], b[D], h[D][2], C[D];
   LL powmod(LL a, LL b) {
      LL res = 1;
      a %= mod;
      assert(b >= 0);
10
      for (; b; b >>= 1) {
11
         if (b & 1)
             res = res * a % mod;
13
         a = a * a % mod;
15
16
      return res;
   }
19
   ///函数用途:给出数列的(d+1)项,其中d为最高次方项
   ///求出数列的第n项,数组下标从0开始
   LL calcn(int d, LL *a, LL n) { /// a[0].. a[d] a[n]
      if (n <= d)
         return a[n];
      p1[0] = p2[0] = 1;
27
      rep(i, 0, d + 1) {
         LL t = (n - i + mod) \% mod;
         p1[i + 1] = p1[i] * t % mod;
30
31
      rep(i, 0, d + 1) {
32
         LL t = (n - d + i + mod) \% mod;
         p2[i + 1] = p2[i] * t % mod;
35
      LL ans = 0;
      rep(i, 0, d + 1) {
         LL t = g[i] * g[d - i] % mod * p1[i] % mod * p2[d - i] % mod * a[i] % mod;
39
         if ((d - i) & 1)
             ans = (ans - t + mod) \% mod;
42
             ans = (ans + t) \% mod;
43
44
      return ans;
45
46
   void init(int M) {///用到的最高次
47
      f[0] = f[1] = g[0] = g[1] = 1;
48
      rep(i, 2, M + 5) f[i] = f[i - 1] * i % mod;
49
      g[M + 4] = powmod(f[M + 4], mod - 2);
50
      per(i, 1, M + 4) g[i] = g[i + 1] * (i + 1) % mod; ///费马小定理筛逆元
51
   }
52
   ///函数用途:给出数列的 (m+1) 项,其中m为最高次方
54
   ///求出数列的前(n-1)项的和(从第0项开始)
   LL polysum(LL m, LL *a, LL n) { /// a[0].. a[m] \sum_{i=0}^{n-1} a[i]
56
      for (int i = 0; i <= m; i++)
         b[i] = a[i];
```

```
///前n项和, 其最高次幂加1
      b[m + 1] = calcn(m, b, m + 1);
      rep(i, 1, m + 2) b[i] = (b[i - 1] + b[i]) \% mod;
      return calcn(m + 1, b, n - 1);
   LL qpolysum(LL R, LL n, LL *a, LL m) { /// a[0].. a[m] \sum_{i=0}^{n-1} a[i]*R^i
65
      if (R == 1)
          return polysum(n, a, m);
      a[m + 1] = calcn(m, a, m + 1);
      LL r = powmod(R, mod - 2), p3 = 0, p4 = 0, c, ans;
      h[0][0] = 0;
      h[0][1] = 1;
      rep(i, 1, m + 2) {
         h[i][0] = (h[i - 1][0] + a[i - 1]) * r % mod;
         h[i][1] = h[i - 1][1] * r % mod;
76
      rep(i, 0, m + 2) {
          LL t = g[i] * g[m + 1 - i] % mod;
         if (i & 1)
             p3 = ((p3 - h[i][0] * t) % mod + mod) % mod, p4 = ((p4 - h[i][1] * t) % mod + mod) % mod;
          else
             p3 = (p3 + h[i][0] * t) \% mod, p4 = (p4 + h[i][1] * t) \% mod;
      c = powmod(p4, mod - 2) * (mod - p3) % mod;
      rep(i, 0, m + 2) h[i][0] = (h[i][0] + h[i][1] * c) % mod;
      rep(i, 0, m + 2) C[i] = h[i][0];
      ans = (calcn(m, C, n) * powmod(R, n) - c) % mod;
      if (ans < 0)
90
          ans += mod;
      return ans;
   }
94
   }
```

3 数据结构

3.1 并查集系列

3.1.1 普通并查集

带路径压缩,O(1) 复杂度

```
int fa[maxn];
int find(int x){if(fa[x]^x)return fa[x]=find(fa[x]);return x;}

void merge(int a,int b){fa[find(a)]=find(b);}
```

3.1.2 按秩合并并查集

```
int fa[maxn];
```

```
int dep[maxn];
int find(int x){int now=x; while(fa[now]^now)now=fa[now];return now;}

void merge(int a,int b){
   int l=find(a),r=find(b);
   if(l==r) return;
   if(dep[l]>dep[r])swap(l,r);
   fa[l]=r;
   dep[r]+=dep[l]==dep[r];
}
```

3.1.3 可持久化并查集

```
struct chair_man_tree{
       struct node{
2
           int lson,rson;
       }tree[maxn<<5];</pre>
       int tail=0;
       int tail2=0;
       int fa[maxn<<2];</pre>
       int depth[maxn<<2];</pre>
       inline int getnew(int pos){
          tree[++tail]=tree[pos];
10
          return tail;
11
       }
12
       int build(int l,int r){
13
14
           if(l==r){
15
              fa[++tail2]=1;
16
              depth[tail2]=1;
17
              return tail2;
18
           }
19
           int now=tail++;
20
           int mid=(l+r)>>1;
21
          tree[now].lson=build(1,mid);
22
          tree[now].rson=build(mid+1,r);
23
          return now;
24
25
       int query(int pos,int l,int r,int qr){
26
           if(1==r)
27
              return pos;
           int mid=(l+r)>>1;
29
           if(qr<=mid)</pre>
30
              return query(tree[pos].lson,l,mid,qr);
31
           else return query(tree[pos].rson,mid+1,r,qr);
32
       }
33
       int update(int pos,int l,int r,int qr,int val){
34
           if(l==r){
35
              depth[++tail2]=depth[pos];
36
              fa[tail2]=val;
37
              return tail2;
39
           int now=getnew(pos);
40
           int mid=(l+r)>>1;
41
           if(mid>=qr)
42
```

```
tree[now].lson=update(tree[now].lson,l,mid,qr,val);
          else tree[now].rson=update(tree[now].rson,mid+1,r,qr,val);
          return now;
45
      int add(int pos,int l,int r,int qr){
          if(l==r){
             depth[++tail2]=depth[pos]+1;
49
             fa[tail2]=fa[pos];
             return tail2;
          }
          int now=getnew(pos);
          int mid=(l+r)>>1;
          if(mid>=qr)
             tree[now].lson=add(tree[now].lson,l,mid,qr);
          else tree[now].rson=add(tree[now].rson,mid+1,r,qr);
          return now;
58
      int getfa(int root,int qr){
60
          int t=fa[query(root,1,n,qr)];
          if(qr==t)
62
          return qr;
          else return getfa(root,t);
65
      }
   }t;
```

3.1.4 ETT 维护动态图连通性

待补

3.2 平衡树系列

3.2.1 fhq_treap

无旋 treap, 可持久化, 常数大

```
mt19937 rnd(514114);
   struct fhq_treap{
      struct node{
          int 1, r;
          int val, key;
          int size;
      } fhq[maxn];
      int cnt, root;
      inline int newnode(int val){
          fhq[++cnt].val = val;
10
          fhq[cnt].key = rnd();
11
          fhq[cnt].size = 1;
12
          fhq[cnt].1 = fhq[cnt].r = 0;
13
          return cnt;
14
15
      inline void pushup(int now){
16
      fhq[now].size = fhq[fhq[now].l].size + fhq[fhq[now].r].size + 1;
17
18
      void split(int now, int val, int &x, int &y){
19
          if (!now){
```

```
x = y = 0;
             return;
          else if (fhq[now].val <= val){</pre>
          x = now;
          split(fhq[now].r, val, fhq[now].r, y);
          else{
          y = now;
          split(fhq[now].1, val, x, fhq[now].1);
      pushup(now);
32
       int merge(int x, int y){
34
          if (!x || !y)
             return x + y;
36
          if (fhq[x].key > fhq[y].key){
             fhq[x].r = merge(fhq[x].r, y);
             pushup(x);
             return x;
          }else{
             fhq[y].1 = merge(x, fhq[y].1);
             pushup(y);
             return y;
          }
45
46
       inline void insert(int val){
47
          int x, y;
48
          split(root, val, x, y);
49
          root = merge(merge(x, newnode(val)), y);
50
51
       inline void del(int val){
52
          int x, y, z;
          split(root, val - 1, x, y);
          split(y, val, y, z);
          y = merge(fhq[y].1, fhq[y].r);
56
          root = merge(merge(x, y), z);
58
      inline int getrk(int num){
59
          int x, y;
60
          split(root, num - 1, x, y);
          int ans = fhq[x].size + 1;
62
          root = merge(x, y);
          return ans;
64
65
       inline int getnum(int rank){
66
          int now=root;
          while(now)
68
             if(fhq[fhq[now].1].size+1==rank)
                break;
              else if(fhq[fhq[now].1].size>=rank)
72
                 now=fhq[now].1;
             else{
                 rank-=fhq[fhq[now].1].size+1;
75
```

```
now=fhq[now].r;
              }
           return fhq[now].val;
       inline int pre(int val){
81
           int x, y, ans;
82
           split(root, val - 1, x, y);
83
           int t = x;
           while (fhq[t].r)
              t = fhq[t].r;
           ans = fhq[t].val;
87
           root = merge(x, y);
           return ans;
89
        inline int aft(int val){
91
           int x, y, ans;
           split(root, val, x, y);
93
           int t = y;
           while (fhq[t].1)
95
              t = fhq[t].1;
           ans = fhq[t].val;
           root = merge(x, y);
           return ans;
99
       }
100
    } tree;
```

4 字符串

4.1 FFT 解决字符串匹配问题

可以用来解决含有通配符的字符串匹配问题定义匹配函数

$$(x,y) = (A_x - B_x)^2$$

如果两个字符相同,则满足 C(x,y)=0

定义模式串和文本串 x 位置对齐时候的完全匹配函数为

$$P(x) = \sum C(i, x+i)$$

模式串在位置 x 上匹配时,p(x) = 0

通过将模式串 reverse 后卷积,可以快速处理每个位置 x 上的完全匹配函数 P(x) 同理,如果包含通配符,则设通配符的值为 0,可以构造损失函数

$$C(x,y) = (A_x - B_x)^2 \cdot A_x \cdot B_x = A_x^3 B_x + A_x B_x^3 - 2A_x^2 B_x^2$$

通过三次 FFT 即可求得每个位置上的 P(x)

4.2 后缀数组 SA+LCP

LCP(i,j) 后缀 i 和后缀 j 的最长公共前缀

```
int n,m;
string s;
int rk[MAXN],sa[MAXN],c[MAXN];
//sa[i]存排名i的原始编号 rk[i]存编号i的排名 第二关键字rk2
inline void get_SA(){
    rep(i,1,n) ++c[rk[i]=s[i]];//基数排序
```

```
rep(i,2,m) c[i] += c[i-1];
      //c做前缀和,可以知道每个关键字的排名最低在哪里
      repb(i,n,1) sa[c[rk[i]]--] = i;//记录每个排名的原编号
      for(int w=1;w<=n;w<<=1){//倍增
         int num = 0;
12
         rep(i,n-w+1,n) rk2[++num] = i;//没有第二关键字的排在前面
13
         rep(i,1,n) if(sa[i]>w) rk2[++num] = sa[i]-w;
         //编号sa[i]大于w的才能作为编号sa[i]-w的第二关键字
         rep(i,1,m) c[i] = 0;
16
         rep(i,1,n) ++c[rk[i]];
         rep(i,2,m) c[i]+=c[i-1];
         repb(i,n,1) sa[c[rk[rk2[i]]]--]=rk2[i],rk2[i]=0;
         //同一个桶中按照第二关键字排序
         swap(rk,rk2);
         //这时候的rk2时这次排序用到的上一轮的rk,要计算出新的rk给下一轮排序
         rk[sa[1]]=1, num=1;
         rep(i,2,n)
            rk[sa[i]] = (rk2[sa[i]]==rk2[sa[i-1]]&&rk2[sa[i]+w]==rk2[sa[i-1]+w])?num:++num;
         //下一次排名的第一关键字,相同的两个元素排名也相同
         if(num==n) break;//rk都唯一时,排序结束
         m=num;
      }
30
31
   int height[MAXN];
   inline void get_height(){
33
      int k = 0,j;
34
      rep(i,1,n) rk[sa[i]] = i;
35
      rep(i,1,n){
36
         if(rk[i]==1) continue;//第一名往前没有前缀
37
         if(k) k--;//h[i]>=h[i-1]-1 即height[rk[i]]>=height[rk[i-1]]-1
38
         j = sa[rk[i]-1];//找排在rk[i]前面的
         while(j+k<=n&&i+k<=n&&s[i+k]==s[j+k]) ++k;//逐字符比较
40
         //因为每次k只会-1,故++k最多只会加2n次
41
         height[rk[i]] = k;
42
      }
43
   inline void solve(){
45
      cin>>s;
46
      s = ' '+s;
      n = s.size()-1,m = 122;//m为字符个数'z'=122
48
      get SA();
49
      rep(i,1,n) cout<<sa[i]<<' ';
50
      cout<<endl;</pre>
51
   }
52
```

5 杂项

5.1 集合 set

还可以通过 lower_bound 和 upper_bound 返回迭代器来找前驱, 后继

```
vector<int> ANS;
set_union(s1.begin(),s1.end(),s2.begin(),s2.end(),inserter(ANS,ANS.begin()));//set_intersection()

//通过迭代器遍历集合
set<char>::iterator iter = temp1.begin();
while (iter!=temp1.end()){
cout<<*iter;
iter++;
}
}
```

5.2 快读快写 (短)

```
template<class T>inline void read(T &x){x=0;char o,f=1;while(o=getchar(),o<48)if(o==45)f=-f;do x=(x<<3)+(x <<1)+(o^48);while(o=getchar(),o>47);x*=f;}

template<class T>
void wt(T x){/快写
    if(x < 0) putchar('-'), x = -x;
    if(x >= 10) wt(x / 10);
    putchar('0' + x % 10);
}
```

5.3 GCD(压行)

5.4 计时

```
inline double run_time(){
   return 1.0*clock()/CLOCKS_PER_SEC;
}
```