PCA OF THREE VARIABLES IN XLISP-STAT

JAN DE LEEUW

Suppose $u_i = (x_i, y_i, z_i)$ are n points in \mathbb{R}^3 . We want to find direction cosines $w = (w_1, w_2, w_3)$ and an intercept $a = (a_1, a_2, a_3)$ such that the line $\mathcal{L} = \{y \mid y = a + \lambda w\}$ approximates the u_i as closely as possible.

The loss function we use is

$$\sigma(a, w) = \sum_{i=1}^{n} \min_{\lambda_i} (u_i - a - \lambda_i w)'(u_i - a - \lambda_i w).$$

This means that we project the u_i perpendicularly on the line, and measure the sum of squared distances of the u_i and the projections \hat{u}_i . Then choose a and w, with w'w = 1, such that $\sigma(a, w)$ is minimized.

It is clear that this problem is identical to the problem of minimizing

$$\sigma(a, w, \lambda) = \sum_{i=1}^{n} (u_i - a - \lambda_i w)'(u_i - a - \lambda_i w)$$

over all three sets of variables, with constraint w'w = 1. This show that we may also require, without loss of generality, that the λ_i sum to zero.

We first minimize of a for given w and λ . This gives $\hat{a} = u_{\bullet}$, with superscript \bullet indicating mean. Thus

$$\min_{a} \sigma(a, w, \lambda) = \sum_{i=1}^{n} (\tilde{u}_i - \lambda_i w)'(\tilde{u}_i - \lambda_i w),$$

with tildes over symbols indicating deviations from the mean. Now minimize of the λ_i , which must add up to zero. The solution is $\hat{\lambda}_i = w'\tilde{u}_i$, which indeed adds up to zero. We now find

$$\min_{\lambda} \min_{a} \ \sigma(a, w, \lambda) = \sum_{i=1}^{n} \{ \tilde{u}'_{i} \tilde{u}_{i} - \hat{\lambda}_{i}^{2} \}.$$

In the final step of our minimization problem, we maximize the sum of squares of the $\hat{\lambda}_i$ over w with w'w = 1. But

$$\sum_{i=1}^{n} \hat{\lambda}_{i}^{2} = w' \{ \sum_{i=1}^{n} \tilde{u}_{i} \tilde{u}'_{i} \} w = w' C w,$$

Date: February 1, 2021.

where $C = \tilde{U}'\tilde{U}$ is the 3×3 cross-product matrix of the \tilde{u}_i . It follows that \hat{w} is the normalized eigenvector corresponding with the dominant eigenvalue of C, or equivalently of the covariance matrix of the u_i . Suppose this dominant eigenvalue is ω . We then draw the line between $\hat{a} - \frac{1}{2}\sqrt{\omega}\hat{w}$ and $\hat{a} + \frac{1}{2}\sqrt{\omega}\hat{w}$, which has length ω .

This procedure can be repeated for the other two eigenvalues and eigenvectors, that capture the other dimensions of variation.

In Xlisp-Stat we simply add a PCA method to the spin-proto. Sending an instance of the spin-proto the PCA message will draw the three principal axis, with squared length equal to the eigenvalues. The code is given below

```
(defmeth spin-proto :pca ()
(let* ((n (send self :num-points))
       (x (send self :point-coordinate 0 (iseq n)))
       (y (send self :point-coordinate 1 (iseq n)))
       (z (send self :point-coordinate 2 (iseq n)))
       (c (* (1- n) (covariance-matrix x y z)))
       (m (list (mean x) (mean y) (mean z)))
       (g (eigen c))
       (e (second g))
       (f (sqrt (first g))))
(send self :dircos m (first e) (/ (elt f 0) 2))
(send self :dircos m (second e) (/ (elt f 1) 2))
(send self :dircos m (third e) (/ (elt f 2) 2))
(print e)
(print f)
))
(defmeth spin-proto :dircos (m w u)
(send self :abline (+ m (* u w)) (- m (* u w)))
)
(defmeth spin-proto :abline (a b)
    (send self :add-lines (make-pairs a b))
)
(defun make-pairs (x y)
  (let ((n (length x)))
     (mapcar #'(lambda (z) (list (elt x z) (elt y z))) (iseq n))
))
```