- Arjun
- Digvijay

Practice Set 10.1 8th Std Maths Answers Chapter 10 Division of Polynomials

Question 1.

Divide and write the quotient and the remainder.

i.
$$21m^2 \div 7m$$

ii.
$$40a^3 \div (-10a)$$

iii.
$$(-48p4) \div (-9p2)$$

$$v. (5x_3 - 3x_2) \div x^2$$

vi.
$$(8p_3 - 4p_2) \div 2p_2$$

vii.
$$(2y3 + 4y2 + 3) \div 2y2$$

viii.
$$(21x4 - 14x2 + 7x) \div 7x3$$

ix.
$$(6x5 - 4x4 + 8x3 + 2x2) \div 2x2$$

x.
$$(25m4 - 15m3 + 10m + 8) \div 5m3$$

Solution:

i.
$$21m^2 \div 7m$$

$$\begin{array}{c}
3m \\
7m \overline{\smash)21m^2} \\
21m^2 \\
0
\end{array}$$
Explanation:
$$7m \times \overline{\boxed{3m}} = 21m^2$$

Explanation:
$$7m \times \boxed{3m} = 21m$$

∴ Quotient = 3m

Remainder = 0

ii.
$$40a^3 \div (-10a)$$

Explanation:

$$-10a \times \left[-4a^{2} \right] = 40a^{3}$$

 \therefore Quotient = -4a² Remainder = 0

$$\begin{array}{r}
 \frac{16}{3}p^{2} \\
 -9p^{2} \overline{\smash{\big)} -48p^{4}} \\
 \underline{} \\
 \underline{} \\
 48p^{4} \\
 \underline{} \\
 \end{array}$$

Explanation:

$$-9p^{2})-48p^{4}$$

$$-48p^{4}$$

$$+ 0$$

$$-9p^{2} \times \frac{48p^{4}}{9p^{2}} = -48p^{4}$$

$$\therefore -9p^{2} \times \left[\frac{16}{3}p^{2}\right] = -48p^{4}$$

 \therefore Quotient = 163 p²

Remainder = 0

- Arjun
- Digvijay

iv. 40m5 ÷ 30m3

$$\begin{array}{r}
 \frac{16}{3}p^{2} \\
 -9p^{2} -48p^{4} \\
 \frac{-48p^{4}}{1}
\end{array}$$

Explanation:

$$-9p^{2})-48p^{4}$$

$$-48p^{4}$$

$$\frac{-48p^{4}}{0}$$

$$\therefore -9p^{2} \times \frac{48p^{4}}{9p^{2}} = -48p^{4}$$

$$\therefore -9p^{2} \times \left[\frac{16}{3}p^{2}\right] = -48p^{4}$$

 \therefore Quotient = 43 m² Remainder = 0

v.
$$(5x3 - 3x2) \div x^{2}$$

$$\begin{array}{c}
5x - 3 \\
x^{2} \overline{\smash)5x^{3} - 3x^{2}} \\
\underline{-5x^{3}} \\
0 - 3x^{2} \\
\underline{-3x^{2}} \\
0
\end{array}$$
Explanation:

i. $x^{2} \times \overline{[5x]} = 5x^{3}$

ii. $x^{2} \times \overline{[-3]} = -3x^{2}$

i.
$$x^2 \times \lceil 5x \rceil = 5x^3$$

ii.
$$x^2 \times \boxed{-3} = -3x^2$$

 \therefore Quotient = 5x - 3Remainder = 0

vi.
$$(8p3 - 4p2) \div 2p2$$

$$\begin{array}{r} 4p - 2 \\ 2p^2 \overline{\smash)8p^3 - 4p^2} \\ 8p^3 \\ \underline{-} \\ 0 - 4p^2 \\ \underline{-} \\ 4p^2 \\ \underline{-} \\ 0 \end{array}$$
Explanation:
$$\begin{array}{r} i. \quad 2p^2 \times \boxed{4p} = 8p^3 \\ ii. \quad 2p^2 \times \boxed{-2} = -4p^2 \\ \underline{-} \\ 4p^2 \\ \underline{-} \\ 0 \end{array}$$

i.
$$2p^2 \times \boxed{4p} = 8p^3$$

ii.
$$2p^2 \times \boxed{-2} = -4p^2$$

 \therefore Quotient = 4p – 2 Remainder = 0

- Arjun
- Digvijay

vii.
$$(2y^3 + 4y^2 + 3) \div 2y^2$$

$$y + 2$$

$$2y^2) 2y^3 + 4y^2 + 3$$

$$- \frac{2y^3}{0 + 4y^2 + 3}$$

$$- \frac{4y^2}{0 + 3}$$

Explanation:

i.
$$2y^2 \times |y| = 2y^3$$

ii.
$$2y^2 \times \boxed{2} = 4y^3$$

 \therefore Quotient = y + 2

Remainder = 3

viii. $(21x4 - 14x2 + 7x) \div 7x3$

$$\begin{array}{c|c}
3x & & \\
7x^{3}) 21x^{4} - 14x^{2} + 7x & & Explanation: \\
21x^{4} & & & \\
\hline
0 - 14x^{2} + 7x & & 3x = 21x^{4}
\end{array}$$

$$7x^3 \times \boxed{3x} = 21x^4$$

 \therefore Quotient = 3x Remainder = $-14x^2 + 7x$

ix. $(6x5 - 4x4 + 8x3 + 2x2) \div 2x2$

$$\frac{3x^3 - 2x^2 + 4x + 1}{2x^2 \Big) 6x^5 - 4x^4 + 8x^3 + 2x^2}$$
 Explanation:

$$0 - 4x^4 + 8x^3 + 2x^2$$

$$-4x^4$$

$$0 + 8x^3 + 2x^2$$

$$-8x^{3}$$

$$0 + 2x^2$$

$$-\frac{2x^2}{}$$

 $\therefore \text{ Quotient} = 3x^3 - 2x^2 + 4x + 1$ Remainder = 0

i.
$$2x^2 \times \boxed{3x^3} = 6x^5$$

ii.
$$2x^2 \times \boxed{-2x^2} = -4x^4$$

iii. $2x^2 \times \boxed{4x} = 8x^3$

iii.
$$2x^2 \times \boxed{4x} = 8x^3$$

iv.
$$2x^2 \times [1] = 2x^2$$

- Arjun
- Digvijay

$$x. (25m4 - 15m3 + 10m + 8) \div 5m3$$

Explanation:

i.
$$5\text{m}^3 \times \boxed{5\text{m}} = 25\text{m}^4$$

ii.
$$5m^3 \times \boxed{-3} = -15m^3$$

∴ Quotient =
$$5m - 3$$

Remainder = 10m + 8

Maharashtra Board Class 8 Maths Chapter 10 Division of Polynomials Practice Set 10.1 Intext Questions and Activities

Question 1.

Fill in the blanks in the following examples. (Textbook pg. no. 61)

2.
$$7b - 4b =$$
__

3.
$$3p \times p^2 =$$
__

4.
$$5m^2 \times 3m^2 =$$

5.
$$(2x + 5y) \times 3x =$$
__

6.
$$(3x^2 + 4y) \times (2x + 3y) =$$

Solution:

1.
$$2a + 3a = 5a$$

2.
$$7b - 4b = 3b$$

3.
$$3p \times p^2 = 3p^3$$

4.
$$5m^2 \times 3m^2 = 15m_4$$

5.
$$(2x + 5y) \times 3x = 6 + 15yx$$

6.
$$(3x^2 + 4y) \times (2x + 3y) = 6x^3 + 9x^2y + 8xy + 12y^2$$

- Arjun
- Digvijay

Practice Set 10.2 8th Std Maths Answers Chapter 10 Division of Polynomials

Division of Polynomials Class 8 Practice Set 10.2 Question 1. Divide and write the quotient and the remainder.

i.
$$(y_2 + 10y + 24) \div (y + 4)$$

ii.
$$(p2 + 7p - 5) \div (p + 3)$$

iii.
$$(3x + 2x^2 + 4x^3) \div (x - 4)$$

iv.
$$(2m_3 + m_2 + m + 9) \div (2m - 1)$$

v.
$$(3x - 3x^2 - 12 + x^4 + x^3) \div (2 + x^2)$$

vi.
$$(a4 - a3 + a2 - a + 1) \div (a3 - 2)$$

vii.
$$(4x4 - 5x3 - 7x + 1) \div (4x - 1)$$

Solution:

i.
$$(y_2 + 10y + 24) \div (y + 4)$$

$$y + 6$$

$$y + 4 y^{2} + 10y + 24$$

$$y + 6$$

$$y + 4 y^{2} + 10y + 24$$

$$y + 4y$$

i.
$$(y+4) \times y = y^2 + 4y$$

ii.
$$(y+4) \times [6] = 6y + 24$$

$$\therefore$$
 Quotient = y + 6
Remainder = 0

 \therefore Quotient = p + 4

Remainder = -17

iii.
$$(3x + 2x2 + 4x3) \div (x - 4)$$

Write the dividend in descending order of their indices.

$$3x + 2x^2 + 4x^3 = 4x^3 + 2x^2 + 3x$$

- Arjun
- Digvijay

$$\begin{array}{r}
4x^2 + 18x + 75 \\
x - 4 \overline{\smash)4x^3 + 2x^2 + 3x} \\
\underline{4x^3 - 16x^2} \\
0 + 18x^2 + 3x \\
\underline{- + 10} \\
0 + 18x^2 - 72x \\
\underline{- + 10} \\
0 + 75x \\
\underline{- + 10} \\
0 + 300
\end{array}$$

Explanation:

i.
$$(x-4) \times \boxed{4x^2}$$

= $4x^3 - 16x^2$

ii.
$$(x-4) \times \boxed{18x}$$

= $18x^2 - 72x$

iii.
$$(x-4) \times \boxed{75}$$

= $75x - 300$

 $\therefore \text{ Quotient} = 4x^2 + 18x + 75$ Remainder = 300

iv. $(2m3 + m2 + m + 9) \div (2m - 1)$

Explanation:

i.
$$(2m-1) \times \boxed{m^2}$$

= $2m^3 - m^2$

ii.
$$(2m-1) \times \boxed{m}$$

= $2m^2 - m$

iii.
$$(2m-1) \times \boxed{1}$$

= $2m-1$

 \therefore Quotient = $m^2 + m + 1$ Remainder = 10

v.
$$(3x - 3x^2 - 12 + x^4 + x^3) \div (2 + x^2)$$

Write the dividend in descending order of their indices.

$$(x4 + x3 - 3x2 + 3x - 12) \div (x2 + 2)$$

- Arjun
- Digvijay

$$x^{2}+x-5$$

$$x^{2}+2)x^{4}+x^{3}-3x^{2}+3x-12$$

$$x^{4} +2x^{2}$$

$$0+x^{3}-5x^{2}+3x-12$$

$$x^{3} +2x$$

$$0-5x^{2}+x-12$$

$$x^{2}+x-12$$

$$x^{3}+x-12$$

$$x^{3}+x-12$$

$$x^{3}+x-12$$

$$x^{4}+x-12$$

$$x^{2}+x-12$$

$$x^{2}+x-12$$

$$x^{3}+x-12$$

$$x^{4}+x-12$$

$$x^{2}+x-12$$

$$x^{2}+x-12$$

$$x^{3}+x-12$$

$$x^{4}+x-12$$

$$x^{4}+$$

Explanation:

i.
$$(x^2 + 2) \times \boxed{x^2}$$

= $x^4 + 2x^2$
ii. $(x^2 + 2) \times \boxed{x}$

ii.
$$(x^2+2)\times \boxed{x}$$

iii.
$$(x^2 + 2) \times \boxed{-5}$$

= $-5x^2 - 10$

 \therefore Quotient = $x^2 + x - 5$ Remainder = x - 2

vi. $(a4 - a3 + a2 - a + 1) \div (a3 - 2)$

VI.
$$(a4 - a3 + a2 - a + 1) \div (a3 - 2)$$

$$\begin{array}{c}
a - 1 \\
a^3 - 2)a^4 - a^3 + a^2 - a + 1
\end{array}$$
Explanation:
$$\begin{array}{c}
i. \quad (a^3 - 2) \times \boxed{a} \\
= a^4 - 2a \\
& + \\
\hline
0 - a^3 + a^2 + a + 1
\end{array}$$

$$\begin{array}{c}
-a^3 + 2 \\
+ \\
\hline
0 + a^2 + a - 1
\end{array}$$
ii. $(a^3 - 2) \times \boxed{-1}$

$$= -a^3 + 2$$

i.
$$(a^3-2)\times \boxed{a}$$

ii.
$$(a^3 - 2) \times \boxed{-1}$$
$$= -a^3 + 2$$

 \therefore Quotient = a – 1 Remainder = $a^2 + a - 1$

vii. $(4x4 - 5x3 - 7x + 1) \div (4x - 1)$

Write the dividend in descending order of their indices.

$$(4x4 - 5x3 - 7x + 1) = (4x4 - 5x3 + 0x2 - 7x + 1)$$

$$(4x4 - 5x3 - 7x + 1) = (4x4 - 5x3 + 0x2 - 7x + 1)$$

$$a - 1$$

$$a^{3} - 2)a^{4} - a^{3} + a^{2} - a + 1$$

$$a^{4} - 2a$$

$$a^{4}$$

$$(a^3 - 2) \times \boxed{a}$$
$$= a^4 - 2a$$

ii.
$$(a^3-2) \times \boxed{-1}$$

= $-a^3+2$

:. Quotient = X3-X2-x4-2916

Remainder = -1316