Azzolini Riccardo 2020-11-26

Linguaggio dei palindromi

1 Teorema

Il linguaggio dei palindromi su $\{0,1\}$ è definito come

$$L_{pal} = \{ w \in \{0, 1\}^* \mid w = w^R \}$$

In precedenza, si è dimostrato che tale linguaggio non è regolare, e si è invece mostrata una CFG che intuitivamente lo genera,

$$G_{pal} = \langle \{P\}, \{0, 1\}, \Gamma, P \rangle$$

con le produzioni

$$P \rightarrow \epsilon \mid 0 \mid 1 \mid 0P0 \mid 1P1$$

Adesso, si vuole dimostrare formalmente che G_{pal} genera effettivamente L_{pal} , e dunque che quest'ultimo è un linguaggio context-free.

Teorema: $L(G_{pal}) = L_{pal}$.

2 Dimostrazione

Per verificare che $L(G_{pal}) = L_{pal}$, si dimostrerà che, per ogni stringa $w \in \{0,1\}^*$, $w \in L_{pal} \iff w \in L(G_{pal})$, trattando separatamente i due versi del \iff .

$2.1 \text{ Verso} \Longrightarrow$

Per iniziare, si dimostra che $w \in L_{pal} \implies w \in L(G_{pal})$, ovvero $L_{pal} \subseteq L(G_{pal})$, per induzione sulla lunghezza di w.

• Caso base: |w|=0 oppure |w|=1, cioè $w=\epsilon, w=0$ o w=1. Dalle regole di produzione

$$P \to \epsilon$$
 $P \to 0$ $P \to 1$

e dalla proprietà (D1) di $\stackrel{*}{\Rightarrow}$ si deduce che:

$$P \stackrel{*}{\Rightarrow} \epsilon \qquad P \stackrel{*}{\Rightarrow} 0 \qquad P \stackrel{*}{\Rightarrow} 1$$

Siccome P è il simbolo iniziale della grammatica, per definizione $\epsilon, 0, 1 \in L(G_{pal})$.

• Passo induttivo: $|w| \geq 2$. Per l'ipotesi $w \in L_{pal}$, deve essere $w = w^R$, dunque w = axa, con $a \in \{0,1\}$ e $x \in L_{pal}$. Dato che |x| < |w|, vale su x l'ipotesi induttiva $x \in L(G_{pal})$, che per definizione implica $P \stackrel{*}{\Rightarrow} x$. Considerando poi le regole di produzione

$$P \rightarrow 0P0$$
 $P \rightarrow 1P1$

dalla proprietà (D1) di $\stackrel{*}{\Rightarrow}$ si ha che

$$P \stackrel{*}{\Rightarrow} 0P0 \qquad P \stackrel{*}{\Rightarrow} 1P1$$

ovvero $P \stackrel{*}{\Rightarrow} aPa$. Infine, grazie alla proprietà (D2) di $\stackrel{*}{\Rightarrow}$, si deduce da $P \stackrel{*}{\Rightarrow} aPa$ e $P \stackrel{*}{\Rightarrow} x$ che $P \stackrel{*}{\Rightarrow} axa$, cioè $axa = w \in L(G_{pal})$.

$2.2 \text{ Verso} \Longleftrightarrow$

Adesso rimane da dimostrare che $w \in L(G_{pal}) \implies w \in L_{pal}$, ovvero $L(G_{pal}) \subseteq L_{pal}$, per induzione sulla lunghezza della derivazione $P \stackrel{*}{\Rightarrow} w$, la quale esiste per l'ipotesi $w \in L(G_{pal})$.

• Caso base: la lunghezza della derivazione è 1. Ciò significa che $P \stackrel{*}{\Rightarrow} w$ è una derivazione in un passo, nella quale deve essere stata applicata una regola di produzione che a destra ha soltanto simboli terminali. Gli unici casi possibili sono allora

$$P \Rightarrow \epsilon$$
 $P \Rightarrow 0$ $P \Rightarrow 1$

e ciascuna delle stringhe così ottenute è un palindromo su $\{0,1\}$: $w \in L_{pal}$.

• Passo induttivo: la lunghezza della derivazione è h+1, con $h\geq 1$. Se la derivazione ha più di un passo, il primo passo deve essere stato fatto applicando una regola di produzione che introduce sulla destra un simbolo non-terminale (altrimenti non sarebbero possibili passi successivi al primo, e si ricadrebbe nel caso base). Le uniche regole di produzione con un simbolo non-terminale a destra sono $P\to 0P0$ e $P\to 1P1$, quindi la derivazione deve essere del tipo

$$P \Rightarrow \underset{x_1}{aPa} \Rightarrow ax_2a \Rightarrow \cdots \Rightarrow ax_{h+1}a = w$$

con $a \in \{0, 1\}$.

Considerando solo i passi successivi al primo, si ottiene la derivazione $aPa \stackrel{*}{\Rightarrow} ax_{h+1}a = w$, che ha lunghezza h. Dalla proprietà (D3) di $\stackrel{*}{\Rightarrow}$ segue che $P \stackrel{*}{\Rightarrow} x_{h+1}$ con una derivazione di lunghezza h (dalla dimostrazione della proprietà (D3) si può osservare che la derivazione $P \stackrel{*}{\Rightarrow} x_{h+1}$ ha la stessa lunghezza della derivazione $aPa \stackrel{*}{\Rightarrow} ax_{h+1}a$), dunque si deduce per ipotesi induttiva che $x_{h+1} \in L_{pal}$. Allora, aggiungendo lo stesso simbolo $a \in \{0,1\}$ all'inizio e alla fine di x_{h+1} si ottiene ancora un palindromo, $ax_{h+1}a = w \in L_{pal}$.