

Sucrose Inversion in H2O - D2O

W. H. Hamill and V. K. La Mer

Citation: The Journal of Chemical Physics 4, 294 (1936); doi: 10.1063/1.1749841

View online: http://dx.doi.org/10.1063/1.1749841

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/4/4?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Near ultraviolet photodissociation spectroscopy of Mn+(H2O) and Mn+(D2O)

J. Chem. Phys. **141**, 204305 (2014); 10.1063/1.4901982

Predictability of the inverse energy cascade in 2D turbulence

Phys. Fluids 13, 1060 (2001); 10.1063/1.1350877

Radioluminescence of H2O and D2O ice

J. Chem. Phys. 63, 2690 (1975); 10.1063/1.431634

Analysis of D2O/H2O by the Interferometer

Rev. Sci. Instrum. 27, 872 (1956); 10.1063/1.1715401

The Mutarotation of Glucose in H2O-D2O Mixtures

J. Chem. Phys. 4, 144 (1936); 10.1063/1.1749803

Sucrose Inversion in H₂O-D₂O

Kinetic studies in H₂O-D₂O on the mutarotation of glucose,1 the decomposition of nitramide2 and the hydrogen ion catalyzed inversion of sucrose,3,4 for which the ratios $k_{\rm D_2O}/k_{\rm H_2O}$ are about 1:3.8, 1:6, 2.1:1, respectively, show that the velocity constant $k_{H,O-D,O}$ does not vary linearly with the fraction of heavy water, $F_{D_2O} = \Delta s/0.1079$. The negative departure from linearity, which all exhibit, increases in the above order. Since $k_{\rm H_2O-D_2O}$ probably depends only indirectly upon the medium it is important to consider other substances which may be present in isotopic modifications and kinetically significant.

Since the inversion of sucrose in H₂O is catalyzed specifically by H⁺ it seems likely that a simple relationship will exist between $k_{\text{H}_0\text{O}-\text{D}_0\text{O}}$ and the fraction of heavy hydrogen ion $F_{D^+}=(D^+)/(D^+)+(H^+)$. In Table I the first two columns give the data^{3, 4} reported for this reaction and values of F_{D^+} in the third column are obtained from the equilibrium constant $K_1 = 15.7^5$ for the exchange reaction

$$H_2O + 2D^+ = D_2O + 2H^+.$$
 (1)

It will be seen from the graph that a plot of $k_{\rm H_2O-D_2O}/k_{\rm H_2O}$ vs. F_{D} + gives a nearly straight line (crosses), for an extrapolated value of 2.1 for $k_{\rm D_2O}/k_{\rm H_2O}$.

This is a specific application of a more general method which has already been applied to explain kinetic measure-

TABLE I.

$\frac{\Delta s}{0.1079}$	$\frac{k_{\rm H_2O-D_2O}}{k_{\rm H_2O}}$	$F_{\mathbf{D}^+}$	(H ₂ O)	(HDO)	$\frac{\rm (HDO)}{\rm (H_2O)}$	F_x	R_x	K_x
0.000	1.00	0.000						
0.444	1.15	0.169	17.84	25.92	1.45	0.14	6.2	8.9
0.671	1.33	0.332	6.57	23.32	3.54	0.30	2.3	8.3
0.90	1.67	0.677	0.65	9.78	15.0	0.61	0.64	9.6
0.981	2.01	0.921	0.025	2.10	84	0.92	0.087	7.3
1.000	(2.10)	1.000						

ments on the mutarotation of glucose. It may be applied to sucrose inversion without the necessity of identifying any substance, on the simple assumption that $k_{\rm H_2O-D_2O}/k_{\rm H_2O}$ varies linearly with the fraction $F_X = DX/HX + DX$ of some reactant or intermediate involved in the process of inversion. For each measured $k_{\rm H_2O-D_2O}/k_{\rm H_2O}$ there is an experimental F_{D_2O} and a corresponding F_X , which is obtained on the basis of the assumed linear dependence

$$F_{\rm X} = [(k_{\rm H_2O-D_2O})/k_{\rm H_2O} - 1]/1.1.$$
 (2)

For any $F_{\mathrm{D_2O}}$ the corresponding $R_w = (\mathrm{HDO})/(\mathrm{H_2O})$ is simply calculated, and $R_X = (HX)/(DX) = 1 - F_X/F_X$. Since $R_x R_w = K_x = K_3$ for the reaction

$$DX + H_2O = HX + HDO.$$
 (3)

Constancy of K_x values over the range $H_2O - D_2O$ is a satisfactory test for the assumption made, as the last column of the table shows. Although it has been possible to identify K_x in the present instance with K_4 for the equilibrium (4)

$$D^+ + H_2O = H^+ + HDO$$
, $K_4 = 7.2^6$ (4)

and in the previous example with the isotopic equilibrium constant for tetramethyl glucose, it can obviously be applied independently of any assumptions concerning the identity of HX and without foreknowledge of K_x . The method is not restricted to kinetic measurements.

W. H. HAMILL

Fordham University,

V. K. LA MER

Columbia University, March 14, 1936.

- ¹ Hamill and La Mer, J. Chem. Phys. **4**, 144 (1936). ² La Mer and Greenspan, unpublished measurements. ³ Moelwyn-Hughes and Bonhoeffer, Naturwissenschaften **22**, 174
- (1934).

 Gross, Suess and Steiner, ibid. 22, 662 (1934).

 La Mer and Korman, preliminary measurements by E.M.F., unpublished.

 From (1) and (HDO)²/(D₂O)(H₂O) = 3.27.

A New Comparison of the Viscosity of D2O with that of H₂O

In an attempt to find a basis for comparison of the viscosity of D₂O with that of H₂O that might aid in explaining the observed difference. it was noticed that at 15. 20, 25, 30 and 35°C, respectively, the viscosity of D₂O is almost the same as that of H₂O at a temperature 8.5° lower; or if $\eta_{\text{H}_2\text{O}} = f(T)$, then $\eta_{\text{D}_2\text{O}} = f(T-B)$ where f is the same function in both cases, and B is approximately 8.5° . This would explain the observed decrease in the ratio $\eta_{\rm D,O}/\eta_{\rm H,O}$ with increasing temperature.2 Several other physical properties of the two waters show somewhat analogous variations, e.g., the melting point of D2O is 3.8°C,3 and the temperature of maximum density for D₂O is 11.6°C,⁴ 7.6° higher than that of H₂O.

The data are summarized in Table I. Column 1 gives the temperature, column 2 the viscosity of H₂O in millipoises,⁵ column 3 the ratio η_{D_2O}/η_{H_2O} , and column 4 the viscosity

Table I. The viscosity of D2O compared with that of H2O.

т (°С)	VIS- COSITY ¹ OF H ₂ O (milli- poises)	$\frac{\eta_2^2}{\eta_1}$	VIS- COSITY OF D ₂ O (mp)	71 COM- PARE WITH PRE- VIOUS COL- UMN	$\left(\frac{1}{\eta_1}\right)_{\text{exp.}}^{0.5}$	$\left(\frac{1}{m}\right)_{\text{calc.}}^{0.53}$	$\left(\frac{1}{\eta_2}\right)_{\rm exp.}^{0.5}$	$\left(\frac{1}{\eta_2}\right)_{\text{calc.}}^{0.5 \text{ 4}}$
-4	20.5				7.0	7.0		
Ō	17.93_8				7.47	7.52		
$^{-4}_{0}_{5}$	15.18s	1.309	19.88		8.11	8.13	7.09	7.09
-3.5				20.1				
10	13.09_{7}	1.286	16.85		8.74	8.74	7.71	7.70
1.5				17.025				
15	11.447	1.267	14.50		9.35	9.35	8.30	8.31
6.5	40.00			14.50_{4}			0.01	0.00
20	10.08_{7}	1.249	12.60	10.50	9.96	9.96	8.91	8.92
11.5 25	8.94	1.232	11.03	12.56e	10.57	10.57	9.52	9.53
16.5	0.949	1.232	11.00	11.014	10.57	10.57	9.02	8.55
30	8.004	1.215	9.73	11.014	11.18	11.18	10.14	10.14
21.5		1,210	5.10	9.724	11.10	11.10	10111	10.11
35	7.20_{8}	1.198	8.64	01	11.78	11.79	10.76	10.75
26.5			,,,,,	8.648				

of D2O. In columns 4 and 5 the viscosity of D2O at several temperatures is compared with that of H₂O at a temperature 8.5° lower. The agreement of the viscosity of D2O at temperatures between 15° and 35° with the corresponding H₂O viscosity is very satisfactory. At the two lowest temperatures, 5° and 10°, respectively, D2O has the same viscosity as H₂O at a temperature 8.2° lower.

To facilitate comparisons, $(1/\eta)^{0.5}$, which varies almost linearly with temperature, was plotted as a function of temperature. The values of $(1/\eta)^{0.5}$ for H₂O and D₂O, calculated from the experimental data are shown in columns 6 and 8, respectively. The values calculated from the equations $(1/\eta_1)_{\text{cale.}}^{0.5} = 0.122T + 7.52$, and $(1/\eta_2)_{\text{cale.}}^{0.5}$ =0.122(T-8.5)+7.52=0.122T+6.48 are given in columns 7 and 9. These equations are purely empirical and do not hold at temperatures much above 35°C, but do show the relations $\eta_1 = f(T)$ and $\eta_2 = f(T-8.5)$ for the range 5° to 35°C.

WELDON N. BAKER

Allegheny College, Meadville, Pennsylvania, March 9, 1936.

¹ Most recent determination, $\eta_{D_2O}/\eta_{H_2O} = 1.22996$ at 25°C, Jones

International Critical Tables.
 Lewis and MacDonald, J. Am. Chem. Soc. 55, 4730 (1933).

 $^{^{3}(1/\}eta_{1})_{\text{calc.}}^{0.5} = 0.122T + 7.52.$

 $^{4(1/\}eta_2)_{\text{calc.}}^{0.5} = 0.122T + 6.48.$

and Fornwalt, J. Chem Phys. **4**, 30 (1936).

² Lewis and MacDonald, J. Am. Chem. Soc. **55**, 4730 (1933).

³ La Mer and Baker, J. Am. Chem. Soc. **56**, 2641 (1934).

⁴ Lewis and MacDonald, J. Am. Chem. Soc. **55**, 3057 (1933).

⁵ International Critical Tables.