Morphologie mathématique

- Chapitre 2 – Filtrage morphologique

Télécom Saint Etienne – Image 2

Christophe Ducottet d'après les diapositives de Cécile Barat

Sommaire

- 1. Introduction au filtrage morphologique
- 2. Filtres standards : ouverture et fermeture
- 3. Top-Hat
- 4. Construction de nouveaux filtres
- 5. Analyse granulométrique
- 6. Exemple applicatif de synthèse

Filtrer?

En traitement linéaire du signal

Filtrage = opération linéaire, invariante par translation ⇒ convolution

Exemple d'application =
Élimination des composantes
ayant certaines caractéristiques
fréquentielles tout en préservant
les autres

En morphologie mathématique

Filtrage = non linéaire

2 applications =

⇒ Bruit

⇒ Objets insignifiants

Élimination de certaines structures géométriques tout en préservant les autres

Propriétés

2 propriétés nécessaires et suffisantes

Ψ filtre morphologique \Leftrightarrow Ψ idempotente et croissante

Idempotence:

- stabilité des filtres morphologiques

Remarque:

idempotence atteinte en une seule passe, soit comme limite d'itérations Une séquence d'opérations peut être idempotente.

Croissance:

relation d'ordre conservée

Filtres élémentaires

Ouverture:

filtre morphologique anti-extensif

Fermeture:

filtre morphologique extensif

En sélectionnant judicieusement les tailles et formes des éléments structurants,

 \Rightarrow construction de filtres supprimant des structures selon leurs tailles, formes, orientations.

Construction de nouveaux filtres

⇒ Combinaison de filtres élémentaires : ouverture et fermeture

ATTENTION:

toutes les combinaisons ne sont pas possibles

Filtrage inverse

En traitement linéaire du signal

En morphologie mathématique

Inversion de la fonction de transfert

Erosion et dilatation sont duales, mais pas inverses

Sommaire

- 1. Introduction au filtrage morphologique
- 2. Filtres standards : ouverture et fermeture
- 3. Top-Hat
- 4. Construction de nouveaux filtres
- 5. Analyse granulométrique
- 6. Exemple applicatif de synthèse

Principe:

après érosion, pas de transformation inverse ouverture ⇒ retrouver autant que possible l'information initiale

Définition:

érosion suivie d'une dilatation

Notation: $\gamma_{B}(X)$ (ouverture de X par B)

X : ensemble objet étudié

B: élément structurant servant à analyser X.

Principe:

- Question posée : inclusion de B dans X ? (pour toutes les positions de B)

Définition mathématique :

$$\gamma_{B}(X) = X \circ B = \delta_{\bar{B}}(\varepsilon_{B}(X)) = \bigcup_{X} \{B_{X} | B_{X} \subseteq X\}$$

Exercice:

Exemple binaire:

Effets constatés:

- -Élimine les objets de taille inférieure à l'élément structurant
- -Les gros objets sont partiellement préservés :
 - -Les contours sont lissés : les excroissances trop fines pour contenir l'ES sont supprimées
 - -Les objets présentant un étranglement sont séparés en plusieurs composantes

Exemple fonctionnel:

Exercice

20	20	20	17	20	47	82	92
15	15	15	20	37	75	92	130
15	15	20	37	90	101	115	165
17	20	35	105	157	127	145	145
40	55	112	205	200	170	152	147
112	147	215	230	185	157	137	147
205	237	250	237	187	150	142	145
237	247	250	240	220	205	182	177

 $min\{15,20,15,20,20\}=15$

min{15,15,15,20,20}=15

 $min{15,15,20,35,37}=15$

min{20,20,35,112,105}=20

 $min\{20,20,37,105,90\} = 20$

 $\max\{15,15,15,20,20\} = 20$

résultat

Tracer l'ouverture de la fonction image par un élément structurant de 5 pixels, origine au centre.

Principe:

après dilatation, pas de transformation inverse fermeture ⇒ retrouver autant que possible l'information initiale

Définition:

dilatation suivie d'une érosion

• Notation : $\varphi_B(X)$ (fermeture de X par B)

X : ensemble objet étudié

B: élément structurant servant à analyser X.

Principe:

- Question posée : est-ce que B tient dans le complémentaire de l'ensemble X ? (pour toutes les positions de B)

B ⊄ X^c : n'appartient pas à la fermeture

B ⊂ X^c : l'ensemble de B appartient au complémentaire de la fermeture

Définition mathématique :

$$\varphi_{B}(X) = X \bullet B = \varepsilon_{\breve{B}} \mathcal{S}_{B}(X) = \left[\bigcup_{x} \left\{ B_{x} \middle| B_{x} \subseteq X^{c} \right\} \right]^{c}$$

Exercice:

Exemple binaire:

Effets constatés:

- réduit les pics, supprime les petits objets et ouvre les isthmes
- Comble toutes les zones de taille inférieure à celle du SE
 - -> bouche les petits trous
 - -> ferme les détroits

Les trous de grande taille sont partiellement préservés

- -> les contours sont lissés
- -> les particules proches sont connectées

Exemple fonctionnel:

Exercice

20	20	20	17	20	47	82	92
15	15	15	20	37	75	92	130
15	15	20	37	90	101	115	165
17	20	35	105	157	127	145	145
40	55	112	205	200	170	152	147
112	147	215	230	185	157	137	147
205	237	250	237	187	150	142	145
237	247	250	240	220	205	182	177

Tracer l'ouverture de la fonction image par un élément structurant de 5 pixels, origine au centre.

Au fait,

Définition mathématique :

$$\varphi_{B}(X) = X \bullet B = \varepsilon_{\breve{B}} \mathcal{S}_{B}(X) = \left[\bigcup_{x} \left\{ B_{x} \middle| B_{x} \subseteq X^{c} \right\} \right]^{c}$$

pourquoi?

Prenons un exemple ...

- 1) Dilatation de X par B?->Xd
- 2) Erosion de Xd par B
- 3) Erosion de Xd par B réfléchi

Propriétés

- croissance

$$X \subset Y \Rightarrow \begin{cases} \gamma_{B} (X) \subset \gamma_{B} (Y) \\ \varphi_{B} (X) \subset \varphi_{B} (Y) \end{cases}$$

- extensivité / anti-extensivité :

si B contient son origine:

l'ouverture est anti-extensive $\gamma_B(X) \subset X$ la fermeture est extensive $\chi \subset \varphi_B(X)$

- idempotente:

$$\gamma_{B} (\gamma_{B} (X)) = \gamma_{B} (X)$$

$$\varphi_{B} (\varphi_{B} (X)) = \varphi_{B} (X)$$

Ouverture et fermeture sont bien des filtres morphologiques.

Propriétés

Dualité :

si le même élément structurant est utilisé, ouverture et fermeture sont duales :

$$\varphi_{B}(X) = (\gamma_{B}(X^{c}))^{c}$$

$$\gamma_{B}(X) = (\varphi_{B}(X^{c}))^{c}$$

Sommaire

- 1. Introduction au filtrage morphologique
- 2. Filtres standards : ouverture et fermeture
- 3. Top-Hat
- 4. Construction de nouveaux filtres
- 5. Analyse granulométrique
- 6. Exemple applicatif de synthèse

Objectifs du Top-hat

- 1) Éliminer les variations lentes d'un signal
- 2) Amplifier le contraste

Images cibles:

images à niveaux de gris

Définition

Top – Hat : résidu de l'ouverture (ES plan en général)

$$TH_g = id - \gamma_g$$

Top – Hat conjugué : résidu de la fermeture

$$TH_g^* = \varphi_g - id$$

Exemple 1D

Exemple 2D

Exemple 2D

ouverture

Exemple 2D

C/CE AC % M+MC MR M-8 9 5 6 0

Top-hat Seuillage

Effets et propriétés

Effets:

extraction de toutes les structures qui ne contiennent pas l'élément structurant

Propriétés:

- idempotent TH(TH(f)) = TH(f)
- si f>0, anti-extensif TH(f) < f

Remarque: Top-Hat avec ES non-plan = rolling ball

Applications

1) Correction de dérive d'éclairement

2) Amplification de contraste

Applications

2) Amplification de contraste

Application de KTH avec un élément structurant de taille 5

Sommaire

- 1. Introduction au filtrage morphologique
- 2. Filtres standards: ouverture et fermeture
- 3. Top-Hat
- 4. Construction de nouveaux filtres
- 5. Analyse granulométrique
- 6. Exemple applicatif de synthèse

Construction de nouveaux filtres

Sup d'ouvertures / inf de fermetures

Théorème:

Tout sup d'ouvertures est une ouverture.

Tout inf de fermetures est une fermeture.

Exemple d'application :

Extraction de structures directionnelles d'une image avec des ouvertures / fermetures par des segments

Sup d'ouvertures / inf de fermetures

Exemple d'application :

Ouverture / fermeture algébriques

Ouverture / fermeture algébriques généralisent les opérateurs d'ouverture / fermeture morphologiques.

Définition:

Une ouverture algébrique est un filtre morphologique anti-extensif. Une fermeture algébrique est un filtre morphologique extensif.

Propriétés:

Un sup d'ouvertures morphologiques est une ouverture algébrique. Un inf de fermetures morphologiques est une fermeture algébrique.

Autre exemple : ouverture / fermeture par aire

Ouverture / Fermeture par aire

En binaire, parfois petits objets \cong bruit, éléments non pertinents

⇒ Opération de filtrage : suppression des composantes connexes dont la surface (nombre de pixels) est plus petite qu'une valeur de seuil donnée.

 \Rightarrow Opération de filtrage par aire : γ_{λ}

Remarques:

Pas de restriction sur la forme de l'élément structurant

Construction de nouveaux filtres

Idée des FAS:

Ouverture ⇒ structures claires Fermeture ⇒ structures sombres association

Définition des filtres alternés :

Composition d'ouvertures et de fermetures de taille i (taille du support de g plan)

$$\Psi_{i}^{1} = \varphi_{i} \gamma_{i} \qquad \Psi_{i}^{2} = \gamma_{i} \varphi_{i}$$

Ou encore:

$$\Psi_{i}^{3} = \varphi_{i} \gamma_{i} \varphi_{i} \qquad \Psi_{i}^{4} = \gamma_{i} \varphi_{i} \gamma_{i}$$

Définition des filtres alternés séquentiels :

Un filtre alterné séquentiel de taille i est défini comme une suite de filtres alternés de taille croissante, en commençant la séquence par une taille égale à 1 et en terminant par i.

taille 1

Exemple:

$$\Psi_{i}^{1*} = \Psi_{i}^{1} \dots \Psi_{2}^{1} \Psi_{1}^{1} = \varphi_{i} \gamma_{i} \dots \varphi_{2} \gamma_{2} \varphi_{1} \gamma_{1}$$

Propriétés:

Ni extensif, ni anti-extensif

L'original et le signal transformé ne sont pas comparables

Propriété d'absorption

$$i \leq j \Rightarrow FAS_jFAS_i = FAS_j \text{ et } FAS_iFAS_j \leq FAS_j$$

Application principale des FAS:

Réduction de bruit

- permettent d'éliminer les pics et les creux de petite surface
- La taille du dernier élément éliminé est déterminée en fonction de la taille minimale des objets de l'image que l'on veut conserver après filtrage.
- Souvent utilisés en pré-traitement, notamment avant les opérateurs gradients.

 \Rightarrow Un simple $\phi\gamma$ ne permet pas toujours d'éliminer un bruit, quelle que soit la taille des éléments structurants (J.Serra)

Original

Les filtres alternés séquentiels conduisent à une bonne réduction du bruit grâce à une élimination progressive des pics et des creux de faible surface.

Application directe du filtre alterné $\gamma_4 \phi_4$

Signal d'entrée : créneau entre niveaux 5 et 10, bruité par du BBG de moyenne 5 et d'écart-type 2

Application de $\varphi_2 \gamma_2 = \Psi^1_2$

Signal d'entrée : créneau entre niveaux 5 et 10, bruité par du BBG de moyenne 5 et d'écart-type 2

Application de $\varphi_2 \gamma_2 = \Psi^1_2$

 γ_2

Signal d'entrée : créneau entre niveaux 5 et 10, bruité par du BBG de moyenne 5 et d'écart-type 2

Application de $\varphi_2 \gamma_2 = \Psi^1_2$

 γ_2

Signal d'entrée : créneau entre niveaux 5 et 10, bruité par du BBG de moyenne 5 et d'écart-type 2

Application de $\varphi_2 \gamma_2 = \Psi^1_2$

 $\phi_2 \gamma_2$

Signal d'entrée : créneau entre niveaux 5 et 10, bruité par du BBG de moyenne 5 et d'écart-type 2

Application de $\varphi_2 \gamma_2 \varphi_1 \gamma_1 = \Psi^{1*}_2$

 γ_1

Signal d'entrée : créneau entre niveaux 5 et 10, bruité par du BBG de moyenne 5 et d'écart-type 2

Application de $\varphi_2 \gamma_2 \varphi_1 \gamma_1 = \Psi^{1*}_2$

 $\phi_1 \gamma_1$

Signal d'entrée : créneau entre niveaux 5 et 10, bruité par du BBG de moyenne 5 et d'écart-type 2

Application de $\varphi_2 \gamma_2 \varphi_1 \gamma_1 = \Psi^{1*}_2$

 $\gamma_2 \, \phi_1 \, \gamma_1$

Signal d'entrée : créneau entre niveaux 5 et 10, bruité par du BBG de moyenne 5 et d'écart-type 2

Application de $\varphi_2 \gamma_2 \varphi_1 \gamma_1 = \Psi^{1*}_2$

 $\phi_2 \gamma_2 \phi_1 \gamma_1$

Comparaison des résultats:

Signal d'entrée : créneau entre niveaux 5 et 10, bruité par du BBG de moyenne 5 et d'écart-type 2

Sommaire

- 1. Introduction au filtrage morphologique
- 2. Filtres standards : ouverture et fermeture
- 3. Top-Hat
- 4. Construction de nouveaux filtres
- 5. Analyse granulométrique
- 6. Exemple applicatif de synthèse

En traitement linéaire du signal

Filtres passe-haut

⇒ Seules les composantes de haute fréquence sont préservées, les autres sont éliminées

Analyse fréquentielle

 mesure de la contribution de chaque composante à la constitution globale du signal

En morphologie mathématique

Ouvertures / fermetures

⇒ Seules les composantes de grande taille sont préservées, les autres sont éliminées

Analyse granulométrique

= mesure de la contribution de chaque composante à la constitution globale du signal

Principe:

Étude de la taille des objets fondée sur le principe du tamisage : sélection progressive des objets de tailles données croissantes

Définition:

Formellement, une granulométrie peut être définie par une famille d'ouvertures :

$$(\gamma_{\lambda})_{\lambda \geq 0}$$
 et si $\lambda \geq \mu > 0 \Rightarrow \gamma_{\lambda} \leq \gamma_{\mu}$

La famille d'ouvertures par des boules de rayon r définit une granulométrie.

Ainsi, sélection des petites particules, puis des particules de plus en plus grosses.

on reporte la mesure en fonction de la taille du filtre :

Interprétation de la courbe (application binaire)

Fig. 4.21. Successive openings of a binary image of blood cells or granulometry (using square SEs of increasing size).

(Soille, p.112)

Interprétation de la courbe (application binaire)

Fig. 4.22. Granulometric curves corresponding to Fig. 4.21. These curves reflect the size distribution of the sample. The high peak observed in the pattern spectrum (b) indicates that most cells of Fig. 4.21a are at this size.

Mesure = aire

(Soille, p.112)

Interprétation de la courbe (application niveaux de gris)

Mesure = volume

Application : analyse de texture

Fig. 4.23. Grey scale granulometry by closing and opening of an image representing the roughness of a cylinder used for producing metal sheets.

Sommaire

- 1. Introduction au filtrage morphologique
- 2. Filtres standards : ouverture et fermeture
- 3. Top-Hat
- 4. Construction de nouveaux filtres
- 5. Analyse granulométrique
- 6. Exemple applicatif de synthèse

Exemple d'application industrielle

- Contexte : Mesure de la déformation de matériau
- Objectif : extraire les nœuds de la grille (à partir de l'extraction des structures linéaires de l'image)

Quelle chaîne de traitements morphologiques pour extraire les structures linéaires?