The Vector Product

John Hohman

Table of Contents

3	What is a Vector Product	5	The Determinant
4	Properties of the Vector Product	9	Next week/Project

What is a Vector Product?

Definition: The cross product of two vectors **A** and **B** is given by:

$$\mathbf{A} \times \mathbf{B} = |\mathbf{A}||\mathbf{B}|\sin\theta\,\mathbf{n}$$

where θ is the angle between **A** and **B**, and **n** is a unit vector perpendicular to both **A** and **B**, following the right-hand rule.

Properties of the Vector Product

Properties:

- 1. $\mathbf{A} \times \mathbf{B}$ is orthogonal to both \mathbf{A} and \mathbf{B} .
- 2. The magnitude of $\mathbf{A} \times \mathbf{B}$ is given by:

$$|\mathbf{A} \times \mathbf{B}| = |\mathbf{A}||\mathbf{B}|\sin\theta$$

- 3. The vectors \mathbf{A}, \mathbf{B} , and $\mathbf{A} \times \mathbf{B}$ form a right-handed system.
- 4. If **A** or **B** is the zero vector, then $\mathbf{A} \times \mathbf{B} = \mathbf{0}$.
- 5. If **A** and **B** are parallel (i.e., $\theta = 0^{\circ}$ or 180°), then $\mathbf{A} \times \mathbf{B} = \mathbf{0}$.
- 6. The cross product is anti-commutative:

$$\mathbf{A} \times \mathbf{B} = -(\mathbf{B} \times \mathbf{A})$$

The Determinant

Determinant Formula:

The cross product can be computed using the determinant:

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{vmatrix} = (A_2 B_3 - A_3 B_2) \mathbf{i} - (A_1 B_3 - A_3 B_1) \mathbf{j} + (A_1 B_2 - A_2 B_1) \mathbf{k}$$

where i, j, k are unit vectors along the x, y, and z-axes, respectively.

Vector Product in a Orthonormal Basis

Theorem: For three-dimensional vectors \mathbf{A} and \mathbf{B} , and for a positively oriented and orthonormal basis $\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$, the vector product is given by:

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{vmatrix}$$

Given that:

$$\mathbf{A} = A_1 \mathbf{i} + A_2 \mathbf{j} + A_3 \mathbf{k}, \quad \mathbf{B} = B_1 \mathbf{i} + B_2 \mathbf{j} + B_3 \mathbf{k}$$

the vector product can be computed using the properties from Theorem 4.1:

$$\mathbf{A} \times \mathbf{B} = (A_2B_3 - A_3B_2)\mathbf{i} - (A_1B_3 - A_3B_1)\mathbf{j} + (A_1B_2 - A_2B_1)\mathbf{k}$$

Let's do some practice, once more, again!

https://images.pexels.com/photos/796603/pexels-photo-796603.jpeg?cs=srgb&dl=hand-desk-notebook-796603.jpg &fm=jpg

Next Week -

The Gaussian Elimination

Reinforcement Learning

Goal: Use normalization to have an object move consistently on screen along diagonals

Goal: Use OpenMP to parallelize a Dot Product