CSC148 Worksheet 14 Solution

Hyungmo Gu

April 24, 2020

Question 1

a.

Operation	Running time
Insert at the front of the list	$\mathcal{O}(n)$
Insert at the end of the list	$\mathcal{O}(1)$
Look up the element at index i , where $0 \le i < n$	$\mathcal{O}(n)$

Correct Solution:

Operation	Running time
Insert at the front of the list	$\mathcal{O}(n)$
Insert at the end of the list	$\mathcal{O}(1)$
Look up the element at index i , where $0 \le i < n$	$\mathcal{O}(1)$

b. The inserting of an element at position i requires n-i elements to be shifted to right.

Using this fact, we can write the Big-Oh expression for inserting an item at index i is $\mathcal{O}(n-i)$.

Question 2

a.

Operation	Running time
Insert at the front of the linked list	$\mathcal{O}(1)$
Insert at the end of the linked list	$\mathcal{O}(n)$
Look up the element at index i, where $0 \le i < n$	$\mathcal{O}(n)$

<u>Correct Solution:</u>

Operation	Running time
Insert at the front of the linked list	$\mathcal{O}(1)$
Insert at the end of the linked list	$\mathcal{O}(n)$
Look up the element at index i, where $0 \le i < n$	$\mathcal{O}(i)$

Question 3

Question 4

Question 5