Project: Creditworthiness

Step 1: Business and Data Understanding

Provide an explanation of the key decisions that need to be made. (250 word limit)

Key Decisions:

Answer these questions

What decisions needs to be made?

Ans: The decision needs to be made is based on the given data, whether the new customers are Creditworthy to give a loan.

What data is needed to inform those decisions?

Ans: The following data is needed.

- 1. Account-Balance
- 2. Duration-of-Credit-Month
- 3. Payment-Status-of-Previous-Credit
- 4. Purpose
- 5. Credit-Amount
- 6. Value-Savings-Stocks
- 7. Length-of-current-employment
- 8. Instalment-per-cent
- 9. Most-valuable-available-asset
- 10. Age-years
- 11. Type-of-apartment
- 12. No-of-Credits-at-this-Bank
- What kind of model (Continuous, Binary, Non-Binary, Time-Series) do we need to use to help make these decisions?

Ans: The decision we need to make is whether a new customer is Creditworthy to get a loan or Not-Creditworthy. So the kind of model needed is a **Binary Classification Model**.

Step 2: Building the Training Set

Build your training set given the data provided to you. The data has been cleaned up for you already so you shouldn't need to convert any data fields to the appropriate data types.

Answer this question:

• In your cleanup process, which fields did you remove or impute? Please justify why you removed or imputed these fields. Visualizations are encouraged.

Ans:

Step 1: For building the Training set and also to find the details (missing / low variance) about the data, I started visualization of data using Field Summary tool.

And here is the result of the Field Summary tool.

Then I decided to remove the following fields for the following reasons.

1. Concurrent Credit - Low Variability (Only other banks/dept.)

2. Guarantors - Low variability

3. Duration-in-Current-Address - Too many Missing data (69% missing)

4. Foreign-Worker - Low Variability

5. No-of-dependents - Low Variability

6. Telephone - Incorrect/Irrelevant data

7. Occupation - Low variability (Only 1'S)

Step 2: Next I decided to impute Age-years field. I thought of imputing the missing values with the Median of the non-zero values.

Step 3: Train your Classification Models

First, create your Estimation and Validation samples where 70% of your dataset should go to Estimation and 30% of your entire dataset should be reserved for Validation. Set the Random Seed to 1.

Create all of the following models: Logistic Regression, Decision Tree, Forest Model, and Boosted Model

Answer these questions for each model you created:

• Which predictor variables are significant or the most important? Please show the p-values or variable importance charts for all of your predictor variables.

Ans:

3.1 P - Values table for the Logistic Regression

	R	eport for Logistic Regr	ession Model LR_Pre	edictRisk		
Basic Summary						
7.000 (1995) H.		 Account.Balance + Payment ent.per.cent + Most.valuable. 				
Deviance Residu	ials:					
	Min 10		Median		3Q	Max
	-2.289	-0.713	-0.448		0.722	2.454
Coefficients:						
			Estimate	Std. Error	z value	Pr(> z)
(Intercept)			-2.9621914	6.837e-01	-4.3326	1e-05 ***
Account.BalanceSome Balance			-1.6053228	3.067e-01	-5.2344	1.65e-07 ***
Payment.Status.of.Previous.CreditPaid Up			0.2360857	2.977e-01	0.7930	0.42775
Payment.Status.of.Previous.CreditSome Problems			1.2154514	5.151e-01	2.3595	0.0183 *
PurposeNew car			-1.6993164	6.142e-01	-2.7668	0.00566 ***
PurposeOther			-0.3257637	8.179e-01	-0.3983	0.69042
PurposeUsed car			-0.7645820	4.004e-01	-1.9096	0.05618.
Credit.Amount			0.0001704	5.733e-05	2.9716	0.00296 **
Length.of.current.	employment4-7 yrs		0.3127022	4.587e-01	0.6817	0.49545
Length.of.current.	employment< 1yr		0.8125785	3.874e-01	2.0973	0.03596 *
Instalment.per.cer	nt		0.3016731	1.350e-01	2.2340	0.02549 *
	ilable.asset		0.2650267	1.425e-01	1.8599	0.06289.

The Significant Predictor variables for Logistic Regression are:

- ✓ Account-Balance
- ✓ Payment-status-of-Previous-Credit
- ✓ Purpose
- ✓ Credit-Amount
- ✓ Length-of-current-employment
- ✓ Instalment-per-cent

3.2 Decision-Tree Summary

The Significant Predictor variables for Decision-Tree are:

- ✓ Account-Balance
- √ Value-Savings-Stocks
- ✓ Duration-of-credit-month

3.3 Forest Model

Variable Importance Plot

The significant Variables for Forest Model are:

- ✓ Credit-Amount
- √ Age-years

3.4 Boosted Model

The Significant Variables for Boosted Model are:

- ✓ Account-Balance
- ✓ Credit-Amount
- Validate your model against the Validation set. What was the overall percent accuracy? Show the confusion matrix. Are there any bias seen in the model's predictions?

Ans: I used Model Comparison Tool to compare the overall accuracies of all the models and their confusion matrices. Here is the report of Model Comparison.

Model Comparison Report

Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy
DT_PredictRisk	0.7467	0.8304	0.7035	0.8857	0.4222
RF_PredictRisk	0.8000	0.8718	0.7394	0.9714	0.4000
Boost_PredictRisk	0.7933	0.8670	0.7505	0.9619	0,4000
LR_PredictRisk	0.7600	0.8364	0.7306	0.8762	0.4889
	Predicted_Creditworthy Predicted_Non-Creditworthy			Actual_Creditworthy 101 4	Actual_Non-Creditworth 2 1
Confusion matrix o		twortny		**	1
	Predicted_Creditworthy Predicted_Non-Creditworthy			Actual_Creditworthy 93 12	Actual_Non-Creditworth 2 1
Confusion matrix o	f LR_PredictRisk				
	Predicted_Credi Predicted_Non-Credi			Actual_Creditworthy 92 13	Actual_Non-Creditworthy 2: 2:
Confusion matrix o	f RF_PredictRisk				
				Actual_Creditworthy	Actual_Non-Creditworth
	Predicted_Credi			102	23

From the above report, the accuracies of the various models are:

❖ Stepwise Model - 0.7600
 ❖ Decision-Tree Model - 0.7464
 ❖ Forest-Model - 0.8000
 ❖ Boosted-Model - 0.7933

Yes. There are bias in the models.

➤ In the Forest Model, there are 102 records were predicted as Creditworthy, actually they are Creditworthy also, but I we have 27 records predicted as Creditworthy are actually Non-Creditworthy. Similarly 3 records which are actually Creditworthy were predicted as Non-Creditworthy, but 18 records were actually Non-Creditworthy predicted as Non-Creditworthy.

You should have four sets of questions answered. (500 word limit)

Step 4: Writeup

Decide on the best model and score your new customers. For reviewing consistency, if Score_Creditworthy is greater than Score_NonCreditworthy, the person should be labeled as "Creditworthy"

Write a brief report on how you came up with your classification model and write down how many of the new customers would qualify for a loan. (250 word limit)

Ans: The following are the steps I followed to find the best model and score the new customers dataset.

- 1. First, I cleaned up the dataset by removing the 7 columns which are having missing values, irrelevant data & low variability.
- 2. Then I imputed the missing values for the field Age-years with the median of the non-missing values.
- 3. Then, I have created samples with estimation 0f 70% whereas the remaining 30% were validation data.
- 4. Next I added and configured various classification models one by one. First, I go with Logistic Regression model with Stepwise technique.
- 5. Then I added and configured Decision-Tree model followed by Forest model.
- 6. Finally added and configured Boosted model.
- 7. Combined the output of all the 4 models via Union Tool, and compared the accuracies and Confusion matrices with the help of Model Comparison Tool.

Here is my Alteryx Workflow of the entire thing:

Answer these questions:

- Which model did you choose to use? Please justify your decision using **all** of the following techniques. Please only use these techniques to justify your decision:
 - Overall Accuracy against your Validation set

Ans: After comparing the accuracies of all the models for the validation dataset, I came to the conclusion that the **FOREST MODEL** is the best over other models, because the Forest model has an accuracy 0.8000 which is higher than that of others.

Hence, I decided to use Forest-Model to score the customers to score dataset.

o Accuracies within "Creditworthy" and "Non-Creditworthy" segments

Ans: For the Forest Model the accuracy of Creditworthy is 0.9714 which is greater than that of all the other models, also the accuracy of Non-Creditworthy is 0.4000 which is same as that of Boosted model but lower than Logistic and Decision Tree model. But the overall accuracy of Forest-Model is higher than all others, I decided to choose Forest-Model to score my new dataset.

o ROC graph

Ans: In the ROC graph, the RED line indicates the Forest model, which implies it is performing better than others.

Bias in the Confusion Matrices

Ans: There are 102 records which are predicted as Creditworthy are actually Creditworthy, also, 27 records which are predicted as Creditworthy are actually Non-Creditworthy. And 3 records, actually Creditworthy were predicted as Non-Creditworthy, and 18 records actually Non-Creditworthy were predicted as Non-Creditworthy.

Confusion matrix of Forest_PredictRisk							
	Actual_Creditworthy	Actual_Non-Creditworthy					
Predicted_Creditworthy	102	27					
Predicted_Non-Creditworthy	3	18					

Note: Remember that your boss only cares about prediction accuracy for Creditworthy and Non-Creditworthy segments.

• How many individuals are creditworthy?

Ans: For calculating the total number of Creditworthy, the customers-to-score dataset is given to the M side of score tool, using Forest model it is scored. The total number of Creditworthy is calculated as 407.

Before you Submit

Please check your answers against the requirements of the project dictated by the <u>rubric</u> here. Reviewers will use this rubric to grade your project.