Package 'cubar'

August 1, 2024

Title Codon Usage Bias Analysis

Version 1.0.0

Description A suite of functions for rapid and flexible analysis of codon usage bias. It provides in-depth analysis at the codon level, including relative synonymous codon usage (RSCU), tRNA weight calculations, machine learning predictions for optimal or preferred codons, and visualization of codon-anticodon pairing. Additionally, it can calculate various genespecific codon indices such as codon adaptation index (CAI), effective number of codons (ENC), fraction of optimal codons (Fop), tRNA adaptation index (tAI), mean codon stabilization coefficients (CSCg), and GC contents (GC/GC3s/GC4d). It also supports both standard and non-standard genetic code tables found in NCBI, as well as custom genetic code tables.

```
License MIT + file LICENSE
```

```
URL https://github.com/mt1022/cubar, https://mt1022.github.io/cubar/
```

BugReports https://github.com/mt1022/cubar/issues

Encoding UTF-8 LazyData true

LazyDataCompression bzip2

Imports Biostrings (>= 2.60.0), IRanges (>= 2.34.0), data.table (>= 1.14.0), ggplot2 (>= 3.3.5), rlang (>= 0.4.11)

Depends R (>= 4.1.0)

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr **RoxygenNote** 7.3.1

Config/testthat/edition 3

NeedsCompilation no

Author Hong Zhang [aut, cre] (https://orcid.org/0000-0002-4064-9432),
Bu Zi [aut]

Maintainer Hong Zhang <mt1022.dev@gmail.com>

Repository CRAN

Date/Publication 2024-08-01 04:20:02 UTC

2 aa2codon

Contents

	aa2codon	2
	check_cds	3
	codon_diff	4
	codon_optimize	5
	count_codons	5
	create_codon_table	6
	est_csc	7
	est_optimal_codons	8
	est_rscu	9
	est_trna_weight	10
	get_cai	11
	get_codon_table	12
	get_cscg	12
	get_dp	13
	get_enc	14
	get_fop	15
	get_gc	16
	get_gc3s	16
	get_gc4d	17
	get_tai	18
	human_mt	18
	plot_ca_pairing	19
	rev_comp	20
	seq_to_codons	20
	show_codon_tables	21
	slide	21
	slide_apply	22
	slide_codon	23
	slide_plot	23
	yeast_cds	24
	yeast_exp	24
	yeast_half_life	25
	yeast_trna	26
	yeast_trna_gcn	27
Index		28

aa2codon

amino acids to codons

Description

A data.frame of mapping from amino acids to codons

Usage

aa2codon

check_cds 3

Format

```
a data.frame with two columns: amino_acid, and codon.

amino_acid amino acid corresponding to the codon

codon codon identity
```

Source

It is actually the standard genetic code.

Examples

aa2codon

check_cds

Quality control of CDS

Description

check_cds performs quality control of CDS sequences by filtering some peculiar sequences and optionally remove start or stop codons.

Usage

```
check_cds(
    seqs,
    codon_table = get_codon_table(),
    min_len = 6,
    check_len = TRUE,
    check_start = TRUE,
    check_stop = TRUE,
    check_istop = TRUE,
    rm_start = TRUE,
    rm_stop = TRUE,
    start_codons = c("ATG")
)
```

Arguments

```
seqs input CDS sequences

codon_table codon table matching the genetic code of seqs

min_len minimum CDS length in nt

check_len check whether CDS length is divisible by 3

check_start check whether CDSs have start codons

check_stop check whether CDSs have stop codons
```

4 codon_diff

check_istop check internal stop codons

rm_start whether to remove start codons

rm_stop whether to remove stop codons

start_codons vector of start codons

Value

DNAStringSet of filtered (and trimmed) CDS sequences

Examples

```
# CDS sequence QC for a sample of yeast genes
s <- head(yeast_cds, 10)
print(s)
check_cds(s)</pre>
```

codon_diff

Differential codon usage analysis

Description

codon_diff takes two set of coding sequences and perform differential codon usage analysis.

Usage

```
codon_diff(seqs1, seqs2, codon_table = get_codon_table())
```

Arguments

seqs1 DNAStringSet, or an object that can be coerced to a DNAStringSet seqs2 DNAStringSet, or an object that can be coerced to a DNAStringSet

codon_table a table of genetic code derived from 'get_codon_table' or 'create_codon_table'.

Value

a data.table of the differential codon usage analysis. Global tests examine whether a codon is used differently relative to all the other codons. Family tests examine whether a codon is used differently relative to other codons that encode the same amino acid. Subfamily tests examine whether a codon is used differently relative to other synonymous codons that share the same first two nucleotides. Odds ratio > 1 suggests a codon is used at higher frequency in seqs1 than in seqs2.

```
yeast_exp_sorted <- yeast_exp[order(yeast_exp$fpkm),]
seqs1 <- yeast_cds[names(yeast_cds) %in% head(yeast_exp_sorted$gene_id, 1000)]
seqs2 <- yeast_cds[names(yeast_cds) %in% tail(yeast_exp_sorted$gene_id, 1000)]
cudiff <- codon_diff(seqs1, seqs2)</pre>
```

codon_optimize 5

codon_optimize

Optimize codons

Description

codon_optimize takes a coding sequence (without stop codon) and replace each codon to the corresponding synonymous optimal codon.

Usage

```
codon_optimize(
  seq,
  optimal_codons,
  codon_table = get_codon_table(),
  level = "subfam"
)
```

Arguments

seq DNAString, or an object that can be coerced to a DNAString.

optimal_codons table optimze codons as generated by est_optimal_codons.

codon_table a table of genetic code derived from 'get_codon_table' or 'create_codon_table'.

level "subfam" (default) or "amino_acid". Optimize codon usage at which level.

Value

a DNAString of the optimized coding sequence.

Examples

```
cf_all <- count_codons(yeast_cds)
optimal_codons <- est_optimal_codons(cf_all)
seq <- 'ATGCTACGA'
codon_optimize(seq, optimal_codons)</pre>
```

count_codons

Count occurrences of different codons

Description

count_codons tabulates the occurrences of all the 64 codons in input CDSs

Usage

```
count_codons(seqs, ...)
```

6 create_codon_table

Arguments

```
seqs CDS sequences, DNAStringSet.
... additional arguments passed to 'Biostrings::trinucleotideFrequency'.
```

Value

```
matrix of codon (column) frequencies of each CDS (row).
```

Examples

```
# count codon occurrences
cf_all <- count_codons(yeast_cds)
dim(cf_all)
cf_all[1:5, 1:5]
count_codons(yeast_cds[1])</pre>
```

create_codon_table

create custom codon table from a data frame

Description

create_codon_table creates codon table from data frame of aa to codon mapping.

Usage

```
create_codon_table(aa2codon)
```

Arguments

aa2codon

a data frame with two columns: amino_acid (Ala, Arg, etc.) and codon.

Value

```
a 'data.table' with four columns: aa_code, amino_acid, codon, and subfam.
```

```
head(aa2codon)
create_codon_table(aa2codon = aa2codon)
```

est_csc 7

est_csc

Estimate Codon Stabilization Coefficient

Description

get_csc calculate codon occurrence to mRNA stability correlation coefficients (Default to Pearson's).

Usage

```
est_csc(
  seqs,
  half_life,
  codon_table = get_codon_table(),
  cor_method = "pearson"
)
```

Arguments

seqs CDS sequences of all protein-coding genes. One for each gene.

half_life data.frame of mRNA half life (gene_id & half_life are column names).

codon_table a table of genetic code derived from 'get_codon_table' or 'create_codon_table'.

cor_method method name passed to 'cor.test' used for calculating correlation coefficients.

Value

data.table of optimal codons.

References

Presnyak V, Alhusaini N, Chen YH, Martin S, Morris N, Kline N, Olson S, Weinberg D, Baker KE, Graveley BR, et al. 2015. Codon optimality is a major determinant of mRNA stability. Cell 160:1111-1124.

```
# estimate yeast mRNA CSC
est_csc(yeast_cds, yeast_half_life)
```

8 est_optimal_codons

est_optimal_codons

Estimate optimal codons

Description

est_toptimal_codons determine optimal codon of each codon family with binomial regression. Usage of optimal codons should correlate negatively with enc.

Usage

```
est_optimal_codons(
  cf,
  codon_table = get_codon_table(),
  level = "subfam",
  gene_score = NULL,
  fdr = 0.001
)
```

Arguments

cf matrix of codon frequencies as calculated by 'count_codons()'.

codon_table a table of genetic code derived from 'get_codon_table' or 'create_codon_table'.

level "subfam" (default) or "amino_acid". For which level to determine optimal codons.

gene_score a numeric vector of scores for genes. The order of values should match with

gene orders in the codon frequency matrix. The length of the vector should be equal to the number of rows in the matrix. The scores could be gene expression levels (RPKM or TPM) that are optionally log-transformed (for example, with 'log1p'). The opposite of ENC will be used by default if 'gene_score' is not

provided.

fdr false discovery rate used to determine optimal codons.

Value

data.table of optimal codons.

```
# perform binomial regression for optimal codon estimation
cf_all <- count_codons(yeast_cds)
codons_opt <- est_optimal_codons(cf_all)
codons_opt <- codons_opt[optimal == TRUE]
codons_opt</pre>
```

est_rscu 9

Description

est_rscu returns the RSCU value of codons

Usage

```
est_rscu(cf, weight = 1, pseudo_cnt = 1, codon_table = get_codon_table())
```

Arguments

cf	matrix of codon frequencies as calculated by 'count_codons()'.
weight	a vector of the same length as 'seqs' that gives different weights to CDSs when count codons. for example, it could be gene expression levels.
pseudo_cnt	pseudo count to avoid dividing by zero. This may occur when only a few sequences are available for RSCU calculation.
codon_table	a table of genetic code derived from 'get_codon_table' or 'create_codon_table'.

Value

a data.table of codon info. RSCU values are reported in the last column.

References

Sharp PM, Tuohy TM, Mosurski KR. 1986. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res 14:5125-5143.

```
# compute RSCU of all yeast genes
cf_all <- count_codons(yeast_cds)
est_rscu(cf_all)

# compute RSCU of highly expressed (top 500) yeast genes
heg <- head(yeast_exp[order(-yeast_exp$fpkm), ], n = 500)
cf_heg <- count_codons(yeast_cds[heg$gene_id])
est_rscu(cf_heg)</pre>
```

10 est_trna_weight

	4	weight
A C T	Trna	WAIGHT

Estimate tRNA weight w

Description

 ${\tt est_trna_weight}$ compute the tRNA weight per codon for TAI calculation. This weight reflects relative tRNA availability for each codon.

Usage

```
est_trna_weight(
  trna_level,
  codon_table = get_codon_table(),
  s = list(WC = 0, IU = 0, IC = 0.4659, IA = 0.9075, GU = 0.7861, UG = 0.6295)
)
```

Arguments

trna_level	named vector of tRNA level (or gene copy numbers), one value for each anticodon. vector names are anticodons.
codon_table	a table of genetic code derived from 'get_codon_table' or 'create_codon_table'.
S	list of non-Waston-Crick pairing panelty.

Value

data.table of tRNA expression information.

References

dos Reis M, Savva R, Wernisch L. 2004. Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res 32:5036-5044.

```
# estimate codon tRNA weight for yeasts
est_trna_weight(yeast_trna_gcn)
```

get_cai 11

get_cai

Calculate CAI

Description

```
get_cai calculates Codon Adaptation Index (CAI) of each input CDS
```

Usage

```
get_cai(cf, rscu)
```

Arguments

cf matrix of codon frequencies as calculated by 'count_codons()'.

rscu rscu table containing CAI weight for each codon. This table could be generated

with 'est_rscu' or prepared manually.

Value

a named vector of CAI values

References

Sharp PM, Li WH. 1987. The codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281-1295.

```
# estimate CAI of yeast genes based on RSCU of highly expressed genes
heg <- head(yeast_exp[order(-yeast_exp$fpkm), ], n = 500)
cf_all <- count_codons(yeast_cds)
cf_heg <- cf_all[heg$gene_id, ]
rscu_heg <- est_rscu(cf_heg)
cai <- get_cai(cf_all, rscu_heg)
head(cai)
hist(cai)</pre>
```

12 get_cscg

get_codon_table

get codon table by NCBI gene code ID

Description

get_codon_table creates a codon table based on the given id of genetic code in NCBI.

Usage

```
get_codon_table(gcid = "1")
```

Arguments

gcid

a string of genetic code id. run 'show_codon_tables()' to see available codon tables.

Value

a 'data.table' with four columns: aa_code, amino_acid, codon, and subfam.

Examples

```
# Standard genetic code
get_codon_table()

# Vertebrate Mitochondrial genetic code
get_codon_table(gcid = '2')
```

get_cscg

Mean Codon Stabilization Coefficients

Description

get_cscg calculates Mean Codon Stabilization Coefficients of each CDS.

Usage

```
get_cscg(cf, csc)
```

Arguments

cf matrix of codon frequencies as calculated by 'count_codons()'.
csc table of Codon Stabilization Coefficients as calculated by 'est_csc()'.

Value

a named vector of cscg values.

get_dp 13

References

Presnyak V, Alhusaini N, Chen YH, Martin S, Morris N, Kline N, Olson S, Weinberg D, Baker KE, Graveley BR, et al. 2015. Codon optimality is a major determinant of mRNA stability. Cell 160:1111-1124.

Examples

```
# estimate CSCg of yeast genes
yeast_csc <- est_csc(yeast_cds, yeast_half_life)
cf_all <- count_codons(yeast_cds)
cscg <- get_cscg(cf_all, csc = yeast_csc)
head(cscg)
hist(cscg)</pre>
```

get_dp

Deviaiton from Proportionality

Description

get_dp calculates Deviation from Proportionality of each CDS.

Usage

```
get_dp(cf, host_weights, codon_table = get_codon_table())
```

Arguments

cf matrix of codon frequencies as calculated by 'count_codons()'.

host_weights a named vector of tRNA weights for each codon that reflects the relative avail-

ability of tRNAs in the host organism.

codon_table a table of genetic code derived from 'get_codon_table' or 'create_codon_table'.

Value

a named vector of dp values.

References

Chen F, Wu P, Deng S, Zhang H, Hou Y, Hu Z, Zhang J, Chen X, Yang JR. 2020. Dissimilation of synonymous codon usage bias in virus-host coevolution due to translational selection. Nat Ecol Evol 4:589-600.

14 get_enc

Examples

```
# estimate DP of yeast genes
cf_all <- count_codons(yeast_cds)
trna_weight <- est_trna_weight(yeast_trna_gcn)
trna_weight <- setNames(trna_weight$w, trna_weight$codon)
dp <- get_dp(cf_all, host_weights = trna_weight)
head(dp)
hist(dp)</pre>
```

get_enc

Calculate ENC

Description

```
get_enc computes ENC of each CDS
```

Usage

```
get_enc(cf, codon_table = get_codon_table())
```

Arguments

cf matrix of codon frequencies as calculated by 'count_codons()'.

codon_table codon_table a table of genetic code derived from 'get_codon_table' or 'cre-

ate_codon_table'.

Value

vector of ENC values, sequence names are used as vector names

References

- Wright F. 1990. The 'effective number of codons' used in a gene. Gene 87:23-29. - Sun X, Yang Q, Xia X. 2013. An improved implementation of effective number of codons (NC). Mol Biol Evol 30:191-196.

```
# estimate ENC of yeast genes
cf_all <- count_codons(yeast_cds)
enc <- get_enc(cf_all)
head(enc)
hist(enc)</pre>
```

get_fop 15

|--|

Description

get_fop calculates the fraction of optimal codons (Fop) of each CDS.

Usage

```
get_fop(cf, op = NULL, codon_table = get_codon_table(), ...)
```

Arguments

cf	matrix of codon frequencies as calculated by 'count_codons()'.
ор	a character vector of optimal codons. Can be determined automatically by running 'est_optimal_codons'.
codon_table	a table of genetic code derived from 'get_codon_table' or 'create_codon_table'.
• • •	other arguments passed to 'est_optimal_codons'.

Value

a named vector of fop values.

References

Ikemura T. 1981. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J Mol Biol 151:389-409.

```
# estimate Fop of yeast genes
cf_all <- count_codons(yeast_cds)
fop <- get_fop(cf_all)
head(fop)
hist(fop)</pre>
```

16 get_gc3s

get_gc

GC contents

Description

Calculate GC content of the whole sequences.

Usage

```
get_gc(cf)
```

Arguments

cf

matrix of codon frequencies as calculated by 'count_codons()'.

Value

a named vector of GC contents.

Examples

```
# estimate GC content of yeast genes
cf_all <- count_codons(yeast_cds)
gc <- get_gc(cf_all)
head(gc)
hist(gc)</pre>
```

get_gc3s

GC contents at synonymous 3rd codon positions

Description

Calculate GC content at synonymous 3rd codon positions.

Usage

```
get_gc3s(cf, codon_table = get_codon_table())
```

Arguments

```
cf matrix of codon frequencies as calculated by 'count_codons()'.
codon_table a table of genetic code derived from 'get_codon_table' or 'create_codon_table'.
```

Value

a named vector of GC3s values.

get_gc4d 17

References

Peden JF. 2000. Analysis of codon usage.

Examples

```
# estimate GC3s of yeast genes
cf_all <- count_codons(yeast_cds)
gc3s <- get_gc3s(cf_all)
head(gc3s)
hist(gc3s)</pre>
```

get_gc4d

GC contents at 4-fold degenerate sites

Description

Calculate GC content at synonymous position of codons (using four-fold degenerate sites only).

Usage

```
get_gc4d(cf, codon_table = get_codon_table())
```

Arguments

```
cf matrix of codon frequencies as calculated by 'count_codons()'.

codon_table a table of genetic code derived from 'get_codon_table' or 'create_codon_table'.
```

Value

a named vector of GC4d values.

```
# estimate GC4d of yeast genes
cf_all <- count_codons(yeast_cds)
gc4d <- get_gc4d(cf_all)
head(gc4d)
hist(gc4d)</pre>
```

18 human_mt

get_tai

Calculate TAI

Description

```
get_tai calculates tRNA Adaptation Index (TAI) of each CDS
```

Usage

```
get_tai(cf, trna_w)
```

Arguments

cf matrix of codon frequencies as calculated by 'count_codons()'.

trna_w tRNA weight for each codon, can be generated with 'est_trna_weight()'.

Value

a named vector of TAI values

References

dos Reis M, Savva R, Wernisch L. 2004. Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res 32:5036-5044.

Examples

```
# calculate TAI of yeast genes based on genomic tRNA copy numbers
w <- est_trna_weight(yeast_trna_gcn)
cf_all <- count_codons(yeast_cds)
tai <- get_tai(cf_all, w)
head(tai)
hist(tai)</pre>
```

human_mt

human mitochondrial CDS sequences

Description

CDSs of 13 protein-coding genes in the human mitochondrial genome extracted from ENSEMBL Biomart

Usage

human_mt

plot_ca_pairing 19

Format

```
a DNAStringSet of 13 sequences
```

Source

https://www.ensembl.org/index.html

Examples

```
head(human_mt)
```

plot_ca_pairing

Plot codon-anticodon pairing relationship

Description

```
plot_ca_pairing show possible codon-anticodons pairings
```

Usage

```
plot_ca_pairing(codon_table = get_codon_table(), plot = TRUE)
```

Arguments

```
codon_table a table of genetic code derived from 'get_codon_table' or 'create_codon_table'.

plot whether to plot the pairing relationship
```

Value

a data.table of codon info and RSCU values

```
ctab <- get_codon_table(gcid = '2')
pairing <- plot_ca_pairing(ctab)
head(pairing)</pre>
```

20 seq_to_codons

rev_comp

Reverse complement

Description

rev_comp creates reverse complemented version of the input sequence

Usage

```
rev_comp(seqs)
```

Arguments

seqs

input sequences, DNAStringSet or named vector of sequences

Value

reverse complemented input sequences as a DNAStringSet.

Examples

```
# reverse complement of codons
rev_comp(Biostrings::DNAStringSet(c('TAA', 'TAG')))
```

seq_to_codons

Convert CDS to codons

Description

seq_to_codons converts a coding sequence to a vector of codons

Usage

```
seq_to_codons(seq)
```

Arguments

seq

DNAString, or an object that can be coerced to a DNAString

Value

a character vector of codons

show_codon_tables 21

Examples

```
# convert a CDS sequence to a sequence of codons
seq_to_codons('ATGTGGTAG')
seq_to_codons(yeast_cds[[1]])
```

show_codon_tables

show available codon tables

Description

show_codon_tables print a table of available genetic code from NCBI through 'Biostrings::GENETIC_CODE_TABLE'.

Usage

```
show_codon_tables()
```

Value

No return value (NULL). Available codon tables will be printed out directly.

Examples

```
# print available NCBI codon table IDs and descriptions.
show_codon_tables()
```

slide

slide window interval generator

Description

slide generates a data.table with start, center, and end columns for a sliding window analysis.

Usage

```
slide(from, to, step = 1, before = 0, after = 0)
```

Arguments

from integer, the start of the sequence to integer, the end of the sequence

step integer, the step size

before integer, the number of values before the center of a window after integer, the number of values after the center of a window

22 slide_apply

Value

data.table with start, center, and end columns

Examples

```
slide(1, 10, step = 2, before = 1, after = 1)
```

slide_apply

apply a cub index to a sliding window

Description

slide_apply applies a function to a sliding window of codons.

Usage

```
slide_apply(seq, .f, step = 1, before = 0, after = 0, ...)
```

Arguments

seq	DNAString, the sequence
. f	function, the codon index calculation function to apply, for example, 'get_enc'.
step	integer, the step size in number of codons
before	integer, the number of codons before the center of a window
after	integer, the number of codons after the center of a window
	additional arguments to pass to the function '.f'

Value

data.table with start, center, end, and codon usage index columns

```
slide_apply(yeast_cds[[1]], get_enc, step = 1, before = 10, after = 10)
```

slide_codon 23

slide_codon	sliding window of codons

Description

slide_codon generates a data.table with start, center, and end columns for a sliding window analysis of codons.

Usage

```
slide_codon(seq, step = 1, before = 0, after = 0)
```

Arguments

seq	DNAString, the sequence
step	integer, the step size
before	integer, the number of codons before the center of a window
after	integer, the number of codons after the center of a window

Value

data.table with start, center, and end columns

Examples

```
x \leftarrow Biostrings::DNAString('ATCTACATAGCTACGTAGCTCGATGCTAGCATCGTACGATCGTAGC') slide_codon(x, step = 3, before = 1, after = 1)
```

|--|--|--|

Description

slide_plot visualizes codon usage in sliding window.

Usage

```
slide_plot(windt, index_name = "Index")
```

Arguments

windt data.table, the sliding window codon usage generated by 'slide_apply'.

index_name character, the name of the index to display.

24 yeast_exp

Value

```
ggplot2 plot.
```

Examples

```
sw <- slide_apply(yeast_cds[[1]], get_enc, step = 1, before = 10, after = 10)
slide_plot(sw)</pre>
```

yeast_cds

yeast CDS sequences

Description

CDSs of all protein-coding genes in Saccharomyces_cerevisiae

Usage

yeast_cds

Format

a DNAStringSet of 6600 sequences

Source

https://ftp.ensembl.org/pub/release-107/fasta/saccharomyces_cerevisiae/cds/Saccharomyces_cerevisiae.R64-1-1.cds.all.fa.gz

Examples

```
head(yeast_cds)
```

yeast_exp

yeast mRNA expression levels

Description

Yeast mRNA FPKM determined from rRNA-depleted (RiboZero) total RNA-Seq libraries. RUN1 $_0$ WT and RUN2 $_0$ WT (0 min after RNA Pol II repression) were averaged and used here.

Usage

```
yeast_exp
```

yeast_half_life 25

Format

a data.frame with 6717 rows and three columns:

```
gene_id gene ID
gene_name gene name
fpkm mRNA expression level in Fragments per kilobase per million reads
```

Source

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57385>

References

Presnyak V, Alhusaini N, Chen YH, Martin S, Morris N, Kline N, Olson S, Weinberg D, Baker KE, Graveley BR, et al. 2015. Codon optimality is a major determinant of mRNA stability. Cell 160:1111-1124.

Examples

```
head(yeast_exp)
```

yeast_half_life

Half life of yeast mRNAs

Description

Half life of yeast mRNAs in Saccharomyces_cerevisiae calculated from rRNA-deleted total RNAs by Presnyak et al.

Usage

```
yeast_half_life
```

Format

```
a data.frame with 3888 rows and three columns:
```

```
gene_id gene id
gene_name gene name
half_life mRNA half life in minutes
```

Source

```
<a href="https://doi.org/10.1016/j.cell.2015.02.029">https://doi.org/10.1016/j.cell.2015.02.029</a>
```

26 yeast_trna

References

Presnyak V, Alhusaini N, Chen YH, Martin S, Morris N, Kline N, Olson S, Weinberg D, Baker KE, Graveley BR, et al. 2015. Codon optimality is a major determinant of mRNA stability. Cell 160:1111-1124.

Examples

```
head(yeast_half_life)
```

yeast_trna

yeast tRNA sequences

Description

Yeast tRNA sequences obtained from gtRNAdb.

Usage

```
yeast_trna
```

Format

a RNAStringSet with a length of 275.

Source

http://gtrnadb.ucsc.edu/genomes/eukaryota/Scere3/sacCer3-mature-tRNAs.fa

References

Chan PP, Lowe TM. 2016. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res 44:D184-189.

```
yeast_trna
```

yeast_trna_gcn 27

yeast_trna_gcn

yeast tRNA gene copy numbers (GCN)

Description

Yeast tRNA gene copy numbers (GCN) by anticodon obtained from gtRNAdb.

Usage

```
yeast_trna_gcn
```

Format

a named vector with a length of 41. Value names are anticodons.

Source

http://gtrnadb.ucsc.edu/genomes/eukaryota/Scere3/sacCer3-mature-tRNAs.fa

References

Chan PP, Lowe TM. 2016. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res 44:D184-189.

```
yeast_trna_gcn
```

Index

* datasets aa2codon, 2 human_mt, 18 yeast_cds, 24 yeast_exp, 24 yeast_half_life, 25	<pre>slide, 21 slide_apply, 22 slide_codon, 23 slide_plot, 23 yeast_cds, 24</pre>
yeast_trna, 26 yeast_trna_gcn, 27	yeast_exp, 24 yeast_half_life, 25 yeast_trna, 26
aa2codon, 2	yeast_trna_gcn, 27
<pre>check_cds, 3 codon_diff, 4 codon_optimize, 5 count_codons, 5 create_codon_table, 6</pre>	
<pre>est_csc, 7 est_optimal_codons, 8 est_rscu, 9 est_trna_weight, 10</pre>	
<pre>get_cai, 11 get_codon_table, 12 get_cscg, 12 get_dp, 13 get_enc, 14 get_fop, 15 get_gc, 16 get_gc3s, 16 get_gc4d, 17 get_tai, 18</pre>	
$\verb human_mt , 18 $	
plot_ca_pairing, 19	
rev_comp, 20	
<pre>seq_to_codons, 20 show_codon_tables, 21</pre>	