Universidad Nacional del Altiplano - Puno

Facultad de Ingeniería Estadística y Ciencias de la Computación

Curso: Estadística Computacional

Docente: Fred Torres Cruz

Autores:

Cesia Belén Flores Gómez Roberth Carlos Gonzales Mauricio David León Callohuanca Condori Edgar Cusi Huamán trabajo encargado grupal Analizador Inteligente de Datos

1. Introducción

El presente documento describe el desarrollo de una aplicación web para análisis estadístico de datos llamada **Analizador Inteligente de Datos**. Esta herramienta permite cargar conjuntos de datos en diversos formatos, visualizarlos, generar estadísticas descriptivas, realizar análisis avanzados con inteligencia artificial y exportar informes completos.

2. Objetivos

- Desarrollar una interfaz web intuitiva para el análisis exploratorio de datos
- Implementar funcionalidades estadísticas básicas y avanzadas
- Integrar inteligencia artificial para asistencia en el análisis
- Generar informes automatizados en formato PDF

3. Marco Teórico

3.1. Tecnologías Utilizadas

• Frontend: HTML5, CSS3, JavaScript (Chart.js, Plotly.js)

■ Backend: Python con Flask

■ Base de datos: No se requiere (aplicación sin persistencia)

■ IA: OpenAI GPT-4 para análisis asistido

3.2. Conceptos Estadísticos Implementados

- Estadística descriptiva (medidas de tendencia central y dispersión)
- Análisis de correlación
- Pruebas de normalidad (Shapiro-Wilk, Kolmogorov-Smirnov)
- Meta-análisis (efectos combinados)
- Visualización de datos

4. Desarrollo

4.1. Arquitectura del Sistema

El sistema sigue una arquitectura cliente-servidor tradicional:

```
/app
  app.py  # Backend Flask
  templates/
    index.html  # Interfaz web
  static/
    styles.css  # Estilos CSS
    scripts.js  # Lógica del cliente
  forest_plot.png  # Imagen generada (temporal)
  informe_sistema.tex  # Informe LaTeX generado
```

Figura 1: Diagrama de arquitectura del sistema

4.2. Funcionalidades Principales

4.2.1. Carga de Datos

La aplicación permite cargar archivos en formatos:

- CSV (con detección automática de delimitador)
- Excel (XLSX, XLS)
- JSON

4.2.2. Análisis Exploratorio

4.2.3. Visualización de Datos

La aplicación genera diversos tipos de gráficos:

- Gráficos de barras
- Gráficos de líneas
- Diagramas de dispersión
- Histogramas
- Mapas de calor

4.2.4. Asistente de IA

Integración con OpenAI GPT-4 para responder preguntas sobre los datos:

4.2.5. Meta-Análisis

Implementación de meta-análisis para combinar resultados de múltiples estudios:

```
@app.route('/meta_analysis', methods=['POST'])
def meta_analysis():
    try:
        data = request.get_json()
        studies = data.get('studies', [])
        # C lculo de efectos (Cohen's d)
        effects = []
        variances = []
```

5. Resultados

La aplicación desarrollada ofrece:

- Interfaz intuitiva y responsive
- Capacidad de procesar grandes conjuntos de datos
- Generación automática de informes estadísticos
- Asistencia por IA para interpretación de resultados

Figura 2: Captura de pantalla de la interfaz de usuario

6. Conclusiones

- Se ha desarrollado con éxito una herramienta completa para análisis estadístico
- La integración con IA mejora significativamente la capacidad de análisis
- La aplicación es escalable y puede extenderse con nuevas funcionalidades
- El sistema cumple con los objetivos planteados inicialmente

 $\label{link} Link\ del\ video: \verb|https://drive.google.com/file/d/1LcZQiJlE3PogUgYiSGJC0b3LrYBEpAuL/view?usp=sharing | link del video: \verb|https://drive.google.com/file/d/1LcZQiJlE3PogUgYiSGJC0b3LrYBEpAuL/view.usp=sharing | link del video: \verb|https://drive.google.com/file/d/1LcZQiJlE3PogUgYiSGJC0b3LrYBEpAuL/view.usp=sharing | link del video: \verb|https://driveo.google.com/file/d/1LcZQiJlE3PogUgYiSGJC0b3LrYBEpAuL/view.usp=sharing | link del video: | link del video:$