

Jonathan Alvarez, Colby Banbury, Alicia Golden, Edgar Guzman

- Background of existing optimizations for TinyML
- Contributions of MCUNet
- MicroNets
- Future work / directions in the field

- Background of existing optimizations for TinyML
- Contributions of MCUNet
- MicroNets
- Future work / directions in the field

TinyML Constraints

How can we tackle these constraints?

Why do software-level optimizations make sense?

Why do software-level optimizations make sense?

Model Compression

Model or Block Design

(a) Conventional Convolutional Neural Network

(b) Depthwise Separable Convolutional Neural Network

Model Compression

Model Compression - Quantization

Takes an existing model and compresses its parameters by changing from floating-point numbers to low-bit width numbers, thus avoiding costly floating-point multiplications.

Model Compression - Pruning

Pruning involves removing the least important parameters (e.g., those that are close to 0).

Model Compression - Knowledge Distillation

Knowledge distillation involves creating a smaller model that imitates the behavior of a larger, more powerful model. This is done by training the smaller model using the output predictions produced from the larger model.

Model Compression - Low-Rank Factorization

Low-rank factorization involves approximating the weight matrix by an approximating matrix subject to the constraint that the approximating matrix has reduced rank.

Model Compression

Model or Block Design

(a) Conventional Convolutional Neural Network

(b) Depthwise Separable Convolutional Neural Network

Model Design - MobileNet

(b) Depthwise Convolutional Filters

(c) 1 × 1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

small reduction in accuracy with 8 to 9 times less computations*

Depthwise Separable vs Full Convolution MobileNet

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
Conv MobileNet	71.7%	4866	29.3
MobileNet	70.6%	569	4.2

Model Design - Bonsai

https://ashish-kmr.github.io

Model Design - ProtoNN

ProtoNN jointly optimizes:

- A sparse low-dimensional projection of the input data
- A set of *prototypes* in the low dimensional space with their labels

reducing model size, lowering prediction time, and improving accuracy

Model Design - FastGRNN

Compared to GRU / LSTM

- ~20-80x smaller
- ~Within 1% accuracy
- ~25-132x faster prediction on Arduino MKR1K

RNN

Fast RNN

Added residual connection.

Fast GRNN

Converted residual connection to gate.

For both Fast RNN architectures, the authors also imposed constraints for size (low-rank, spase, quantized).

Model Design - Microsoft EdgeML

Model Design - Neural Architecture Search

TinyML Constraints

Neural Architecture Search (NAS)

SRAM and Flash

Flash

Per Layer Latency

Model Latency

Model Latency

Direct Latency Benchmarking

Model Energy

Model Energy

Model Energy

Memory Hierarchy

- Background of existing optimizations for TinyML
- Contributions of MCUNet
- MicroNets
- Future work / directions in the field

MCUNet: Tiny Deep Learning on IoT Devices

TinyNAS

- 1. Automated search space optimization
- 2. Resource-constrained model specification

TinyEngine

- 1. Reducing overhead with separated compilation and runtime
- 2. In-place depth-wise convolution

MCUNet: Tiny Deep Learning on IoT Devices

TinyNAS

- 1. Automated search space optimization
- 2. Resource-constrained model specification

TinyEngine

- 1. Reducing overhead with separated compilation and runtime
- 2. In-place depth-wise convolution

TinyNAS: Neural Architecture Search

How should one implement Neural Architecture Search?

TinyNAS: Neural Architecture Search

Neural Architecture Search = a method to find a neural network architecture automatically

3 main parts:

- Search space
- Optimization algorithm (ie Gradient descent, random search, etc)
- Performance evaluation (ie accuracy, or approximation of accuracy)

MCUNet: Tiny Deep Learning on IoT Devices

TinyNAS

- 1. Automated search space optimization
- 2. Resource-constrained model specification

TinyEngine

- 1. Reducing overhead with separated compilation and runtime
- 2. In-place depth-wise convolution

 3.3×10^{25} sub-configurations

 3.3×10^{25} sub-configurations

 3.3×10^{25} sub-configurations

 3.3×10^{25} sub-configurations

 3.3×10^{25} sub-configurations

Given all possible search spaces, how do we find the one that has the best model within it?

Simple Answer: Examine each individual search space to find the best model, and compare across all search spaces

Given all possible search spaces, how do we find the one that has the best model within it?

Simple Answer: Examine each individual search space to find the best model, and compare across all search spaces

More Efficient Answer: Sample **m** networks in each search space

But how do we compare models?

Key Assumption:

Accuracy and computation are positively correlated within the same model family

Key Assumption:

Accuracy and computation are positively correlated within the same model family

Use CDF of FLOPs as an approximation of the CDF of accuracy when comparing search spaces!

Key Assumption:

Accuracy and computation are positively correlated within the same model family

Then search for optimal model within this search space

MCUNet: Tiny Deep Learning on IoT Devices

TinyNAS

- 1. Automated search space optimization
- 2. Resource-constrained model specialization

TinyEngine

- 1. Reducing overhead with separated compilation and runtime
- 2. In-place depth-wise convolution

TinyNAS - Resource Constrained Model Specialization

Model Configurations - Mobile Search Space

- **Kernel size** for depthwise convolution : 3, 5, 7
- **Expansion** ratios for inverted bottleneck : 3, 4, 6
- Stage depths: 2, 3, 4

Train largest network, use these weights to train all other subnetworks

MCUNet: Tiny Deep Learning on IoT Devices

TinyNAS

- 1. Automated search space optimization
- 2. Resource-constrained model specification

TinyEngine

- 1. Reducing overhead with separated compilation and runtime
- 2. In-place depth-wise convolution

MCUNet: Tiny Deep Learning on IoT Devices

TinyNAS

- 1. Automated search space optimization
- 2. Resource-constrained model specification

TinyEngine

- 1. Reducing overhead with separated compilation and runtime
- 2. In-place depth-wise convolution

TinyEngine - Separation of Compilation and Runtime

TFLM	TinyEngine		
Interpreter-based	Compiles code offline to reduce runtime		
Suited for all models	Compiles operations for one specific model		
Memory scheduling based on layer configuration only	Memory scheduling additionally takes into account statistics of the model		

TinyEngine - Separation of Compilation and Runtime

(b) TinyEngine: **Model-adaptive** code generation.

MCUNet: Tiny Deep Learning on IoT Devices

TinyNAS

- 1. Automated search space optimization
- 2. Resource-constrained model specification

TinyEngine

- 1. Reducing overhead with separated compilation and runtime
- 2. In-place depth-wise convolution

TinyEngine - In-Place Depthwise Convolution

No filtering across channels = Reduced peak memory

(a) Depth-wise convolution

Peak Memory: 2N

(b) In-place depth-wise convolution

Peak Memory: N+1

TinyEngine - In-Place Depthwise Convolution

No filtering across channels = Reduced peak memory

Other methods to reduce peak memory? ... Future work

MCUNet: Tiny Deep Learning on IoT Devices

(c) MCUNet: system-algorithm co-design

MCUNet: Tiny Deep Learning on IoT Devices

Algorithmic Optimizations

- Background of existing optimizations for TinyML
- Contributions of MCUNet
- MicroNets
- Future work / directions in the field

NAS for TinyML

_		SpArSe	MCUNet	uNAS	MicroNets
Optimize	Search Method	Bayesian	Evolutionary	Evolutionary	Gradient Based
	Latency	No	Yes	Yes	Yes
	SRAM	Yes	Restrict Search Space	Yes	Yes
	Flash	# of Parameters	Restrict Search Space	Yes	Yes

Fedorov, Igor, et al. "Sparse: Sparse architecture search for cnns on resource-constrained microcontrollers." NeurIPS (2019).

Lin, Ji, et al. "Mcunet: Tiny deep learning on iot devices." NeurIPS (2020). Liberis, Edgar, Łukasz Dudziak, and Nicholas D. Lane. "µNAS: Constrained Neural Architecture Search for Microcontrollers." *EuroMLSys*. 2021.

Existing Model

DNAS is **fast** to solution but needs **continuous functions** for all of the objectives

Algorithmic Optimizations

- Background of existing optimizations for TinyML
- Contributions of MCUNet
- MicroNets
- Future work / directions in the field

MCUNet Recap

MCUnet was designed to combine TinyNAS and the interface library TlnyEngine, enabling deep learning on tiny hardware resources.

They achieved a record ImageNet accuracy (70.7%) on off the shelf microcontroller, and accelerated the inference wake word application by 2.4 - 3.2x.

People have brought down the cost of deep learning inference from \$5,000 workstation GPU to \$500 mobile phones. MCUNet brought it down to \$5 or less

MCUNet: system-algorithm co-design

MCUNet v2

Patch by patch inference scheduling, which operates only on a small spatial region of the feature map and significantly cuts down the peak memory

Reduces peak memory usage of existing networks by 2 - 8x.

Automate the process with neural architecture search to jointly optimize the neural architecture and inference scheduling

ImageNet Classification

Visual Wake Words (VWW)

Object Detection

Object detection is more sensitive to input resolution

Demo MCUNetV2: Memory-Efficient Patch-based

Inference for Tiny Deep Learning

Ji Lin, Wei-Ming Chen, Han Cai, Chuang Gan, Song Han

mcunet.mit.edu

MCUNet v2 Recap

Patch based inference effectively reduces the peak memory usage of existing network by 4-8x.

On imagenet, they achieve a record accuracy of 71.8% on MCU

On visual wake words dataset, they achieved higher than 90% accuracy under only 32kB SRAM (4.0x smaller than MCUNetV1)

Object detection on tiny devices, achieving 16.9% higher mAP of Pascal VOC compared to the state of the art.

MCUNet v3

On device training enables the model to adapt to new data collected from the sensor by fine tuning a pre trained model

On device training faces two unique challenges

- 1.) The quantized graph of neural network are hard to optimize due to mixed bit precision and the lack of normalization
- 2.) The limited hardware resource (memory and computation) does not allow full backward computation

MCUNet v3

Quantization Aware Scaling - Automatically scale the gradient of tensors with different bit - precision, which effectively stabilizes the training and matches the accuracy of the floating point counterpart (No tuning is required)

To reduce the memory footprint of the full backward computation, Sparse Update is proposed to skip the gradient computation of less important layers and subtensors.

First solution to actually enable tiny on device training of convolutional neural network under 256KB

Thank You!

Questions?