

MICROS 32 BITS STM - SENSOR HC SR-04

ROBINSON JIMENEZ MORENO

LUISA FERNANDA GARCIA VARGAS

INGENIERÍA MECATRÓNICA UMNG

Miden la distancia mediante el uso de ondas ultrasónicas. El cabezal emite una onda ultrasónica y recibe la onda reflejada que retorna desde el objeto. Los sensores ultrasónicos permiten medir la distancia al objeto contando el tiempo entre la emisión y la recepción.

La distancia se puede calcular con la siguiente fórmula:

Distancia
$$L = 1/2 \times T \times C$$

donde L es la distancia, T es el tiempo entre la emisión y la recepción, y C es la velocidad del sonido. (El valor se multiplica por 1/2 ya que T es el tiempo de recorrido de ida y vuelta).

La velocidad del sonido en el aire a 20 grados centígrados, al 50% de humedad y a nivel del mar es de 1235 km/h o 343 m/s.

El sensor HC-SR04 tiene una sensibilidad muy buena del orden de los 3mm, es un sensor de distancias por ultrasonidos capaz de detectar objetos y calcular la distancia a la que se encuentra en un rango de 2 a 450 cm. Se requiere un microcontrolador para leer los datos que entrega.

INGENIERÍA MECATRÓNICA UMNG

Pines de conexión:

- VCC
- Trig (Disparo del ultrasonido)
- Echo (Recepción del ultrasonido)
- GND

Distancia = {(Tiempo entre Trig y el Echo) * (V.Sonido 340 m/s)}/2

Funcionamiento:

- 1. Enviar un Pulso "1" de al menos de 10uS por el Pin Trigger (Disparador).
- 2.El sensor enviará 8 Pulsos de 40KHz (Ultrasonido) y coloca su salida Echo a alto (seteo), se debe detectar este evento e iniciar un conteo de tiempo.
- 3.La salida Echo se mantendrá en alto hasta recibir el eco reflejado por el obstáculo a lo cual el sensor pondrá su pin Echo a bajo, es decir, terminar de contar el tiempo.
- 4.Se recomienda dar un tiempo de aproximadamente 50ms de espera después de terminar la cuenta.
- 5.La distancia es proporcional a la duración del pulso y puede ser calculada con las siguiente formula
- 6.Distancia en cm (centímetros) = Tiempo medido en us x 0.017

MICRO

- CONFIGURACIÓN PINES ENTRADA SALIDA DIGITAL
- CONFIGURACIÓN TIMER CAPTURA DE TIEMPO
- ENVIAR PULSO DE 10 MICRO SEGUNDOS
- DETECTAR SEÑAL ECHO (FLANCO SUBIDA)
- INICIAR TIMER
- DETECTAR SEÑAL ECHO (FLANCO BAJADA)
- LEER TIMER
- CALCULAR DISTANCIA

MEMORIA DE ALMACENAMIENTO

Memoria ROM de almacenamiento masivo en paralelo referencia AT28c64

Pin Name	Function		
A0 - A12	Addresses		
CE	Chip Enable		
ŌE	Output Enable		
WE	Write Enable		
1/00 - 1/07	Data Inputs/Outputs		
RDY/BUSY	Ready/Busy Output		
NC	No Connect		
DC	Don't Connect		

MEMORIA DE ALMACENAMIENTO

Operating Modes

Mode	CE	OE	WE	I/O	
Read	VIL	VIL	VIH	Dout	
Write (2)	VIL	VIH	VIL	DIN	
Standby/Write Inhibit	VIH	x ⁽¹⁾	X	High Z	
Write Inhibit	X	X	VIH		
Write Inhibit	Х	VIL	Х		
Output Disable	Х	Vih	Х	High Z	
Chip Erase	VIL	VH ⁽³⁾	VIL	High Z	

AC Read Characteristics

		AT28C64-12		AT28C64-15		AT28C64-20		AT28C64-25		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Units
tacc	Address to Output Delay		120		150		200		250	ns
tce (1)	CE to Output Delay		120		150		200		250	ns
toE (2)	OE to Output Delay	10	60	10	70	10	80	10	100	ns
t _{DF} (3, 4)	CE or OE High to Output Float	0	45	0	50	0	55	0	60	ns
tон	Output Hold from OE, CE or Address, whichever occurred first	0		0		0		0		ns

AC Write Characteristics

Symbol	Parameter	Min	Max	Units
t _{AS} , t _{OES}	Address, OE Setup Time	0		ns
t _{AH}	Address Hold Time	50		ns
t _{CS}	Chip Select Setup Time	0		ns
t _{CH}	Chip Select Hold Time	0		ns
t _{WP}	Write Pulse Width (WE or CE)	100		ns
t _{DS}	Data Setup Time	50		ns
t _{DH} , t _{OEH}	Data, OE Hold Time	0		ns

AC Write Waveforms

WE Controlled

EJERCICIO:

- 1. Programar la STM para medir la distancia que hay entre un sensor HCSR04 y un objeto, mostrar la distancia en la LCD o transmitirla serial al PC
- 2. Programar un microcontrolador para almacenar los 10 últimos datos de temperatura captados por 1 sensor de temperatura en una memoria AT28c64.

