ほげ論文

題目

おいしいシチューに合わせる 白ご飯の品種の検討

> 担当教員 ほげ太郎教授

提出者(学籍番号) ほげ次郎(0000000T)

令和 yy 年 m 月 dd 日

ほげ大学 ほげ部 ほげほげ学科

内容梗概

おいしいシチューを作ることは簡単ではないが、鍛錬を積めば自ずと可能になるだろう. 私はカレーの方が好きである.

目次

第1章	序論															1
1.1	参考文	献の引用	1							 	 		 		•	 1
第2章	章タイ	′トル														2
2.1	節タイ	トル								 	 		 			 2
	2.1.1	項タイト	ル.							 	 		 			 2
		2.1.1.1	目タイ	トル						 	 		 			 2
2.2	式や画	i像やソー	・スコー	ドを則	占る。					 	 		 			 2
	2.2.1	式や画像	象の挿入							 	 		 			 2
	2.2.2	ソースコ	コードの	挿入						 	 		 			 3
		2.2.2.1	ソース	、コー	ドを	直接	貼る			 	 		 			 3
		2.2.2.2	別ファ	イル	からり	貼る				 	 		 			 3
第3章	結論															5
参考文献	‡															6
謝辞																7

第1章 序論

1.1 参考文献の引用

ホワイトシチューとクラムチャウダーは、似て非なるものなのかもしれない[1].

第2章 章タイトル -サブタイトルも設定可能--

2.1 節タイトル

―サブタイトルも設定可能―

階層たち.

2.1.1 項タイトル

―サブタイトルも設定可能―

ここは項の本文.

2.1.1.1 目タイトル ―サブタイトルも設定可能―

ここは目の本文.

2.2 式や画像やソースコードを貼る

2.2.1 式や画像の挿入

以下に、依存しない一次元のシュレディンガー方程式を示す.

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi \tag{2.1}$$

井戸の内側ではポテンシャルがゼロであることから式 (2.1) に対して

$$V(x) = 0 \ (0 < x < L)$$

$$\psi(0) = \psi(L) = 0$$

が課される.

図 2.1 シチューではないものの例.

2.2.2 ソースコードの挿入

図 2.1 はシチューではない.

2.2.2.1 ソースコードを直接貼る

ここは本文です.

```
#include <stdio.h>

int main(void)

{
printf("Hello, world!\n"); // こんにちは世界
return 0;

}
```

ソースコード 2.1 大きな人参.

2.2.2.2 別ファイルから貼る

この tex ファイルと同じディレクトリにソースファイルを入れておく.

```
#!/usr/bin/env python

def main():
    print('Hello, World!')
```

```
5
6  if __name__ == '__main__':
7  main()
```

ソースコード 2.2 溶けたじゃがいも.

第3章 結論

結論を書く.

結論を書く.

結論を書く.

結論を書く.

斜体は自分で設定しよう.

参考文献

[1]A. S. Sehra. "Finite element analysis of the Schrodinger equation". In: (2007). arXiv: 0704.3240 [hep-lat].

[2]小柴正則. 光・波動のための有限要素法の基礎. 森北出版, 1990.

謝辞

心より御礼申し上げます.