AME 556 – Robot Dynamics and Control – HW1

1. Show that the length of a free vector is not changed by rotation:

$$\|\boldsymbol{v}\| = \|R\boldsymbol{v}\|$$

2. Show that the distance between points is not changed by rotations:

$$\|p_1 - p_2\| = \|Rp_1 - Rp_2\|$$

3. Consider a rotation R with respect to the Euler angles of

$$[Roll, Pitch, Yaw] = \left[\frac{\pi}{3}, -\frac{\pi}{4}, \frac{\pi}{2}\right]$$

around X-Y-Z axis.

- a. Determine the rotation matrix corresponding to this rotation using built-in MATLAB function, report your code and the answer from MATLAB.
- b. Consider a vector $\mathbf{p} = \overrightarrow{OP} = [1; 2; 3]$ in a 3D coordinate frame Oxyz. Apply the above rotation to the vector \mathbf{p} , we get a new vector $\mathbf{p_1}$. What is the coordinate of the vector $\mathbf{p_1}$. Draw the vectors \mathbf{p} and $\mathbf{p_1}$ in the same plot using MATLAB. Hint:
 - use the function *plot3* in MATLAB
 - use the MATLAB command "axis equal" to scale the 3 axes evenly.
- 4. Consider a triangle ABC with the A=[0;0;0]; B=[2;0;0]; C= [0;1;0] in the world frame $O_0X_0Y_0Z_0$
 - a. Draw the triangle in MATLAB in a 3D-view. Hint:
 - use the function $\underline{patch}(X, Y, Z, C)$ in MATLAB
 - use the MATLAB command "axis equal" to scale the 3 axes evenly.
 - b. Apply a rotation of $\frac{\pi}{6}$ about the X_0 axis. Draw the new triangle in another plot.
 - c. Apply a rotation of $-\frac{\pi}{4}$ about the Y_0 axis to the current triangle. Draw the new triangle in another plot.
 - d. Apply a rotation of $\frac{2\pi}{3}$ about the Z_0 axis to the current triangle. Draw the new triangle in another plot.

e. Apply a rotation *R* to the current triangle so that the resulting triangle will be at the same location as the original triangle ABC. Find R and draw the new triangle in another plot.

Please report your code, justification for the code and plots for each part.

- 5. Consider the following sequence of rotation
 - (1) Rotate by ϕ about the world x-axis
 - (2) Rotate by θ about the world z-axis
 - (3) Rotate by ψ about the current x-axis
 - (4) Rotate by α about the world z-axis

Write the matrix product that will give the resulting rotation matrix (do not perform matrix multiplication).

6. Consider the following 3-DOF robot arm:

$$a_1 = 0.1 m$$
; $a_2 = 0.2 m$; $a_3 = 0.2 m$;

- a. Use homogeneous transformation to derive forward kinematics of the robot.
- b. Use MATLAB to draw the robot configuration with the following cases:
 - $(1)\theta = [0; 0; 0]$ (corresponding to the configuration in the figure above)

$$(2)\theta = [0; \pi/4; \pi/4]$$

$$(3)\theta = [\pi/6; \pi/4; -\pi/2]$$

$$(4)\theta = [\pi; \pi/2; \pi/2]$$

Hint:

- For each case, plot O_0O_1 , O_1O_2 , O_2O_3 in 3D on the same plot. You may want to use different color for each link to better represent the robot.
- c. Now assume that the robot arm is attached to a moving body instead of a fixed base. Apply the following transformations to the entire arm. Draw the arm in each case with $\theta = [0; \pi/4; \pi/4]$.
 - (1) Move forward along the x-axis of the body frame by a distance of 0.5 m and then rotate by $[Roll, Pitch, Yaw] = [\pi/2, 0, \pi/4]$.
 - (2) Rotate by $[Roll, Pitch, Yaw] = [\pi/2, 0, \pi/4]$ and then move forward along the x-axis of the body frame by a distance of 0.5 m.
 - (3) Rotate by $[Roll, Pitch, Yaw] = [\pi/2, 0, \pi/4]$ and then move forward along the x-axis of the world frame by a distance of 0.5 m.

Please report your code, justification for the code and plots for each part.