Aufgabe 4

Gegeben sei die Relation

```
R(A, B, C, D, E, F)
```

mit den FDs

```
FA = {
    { A } \rightarrow { B, C, F },
    { B } \rightarrow { A, B, F },
    { C, D } \rightarrow { E, F },
}
```

(a) Geben Sie alle Kandidatenschlüssel an.

```
- { A, D }
- { B, D }
```

(b) Überführen Sie die Relation mittels Synthesealgorithmus in die 3. NF. Geben Sie alle Relationen in der 3. NF an und **unterstreichen Sie in jeder einen Kandidatenschlüssel.** — Falls Sie Zwischenschritte notieren, machen Sie das Endergebnis **klar kenntlich.**

(i) Kanonische Überdeckung

— Die kanonische Überdeckung - also die kleinst mögliche noch äquivalente Menge von funktionalen Abhängigkeiten kann in vier Schritten erreicht werden.

i. Linksreduktion

— Führe für jede funktionale Anhängigkeit $\alpha \to \beta \in F$ die Linksreduktion durch, überprüfe also für alle $A \in \alpha$, ob A überflüssig ist, d. h. ob $\beta \subseteq AttrHülle(F, \alpha - A)$.

```
{ C, D } → { E, F }

{E, F} ∉ AttrHülle(F, {C, D \ D}) = {C}

{E, F} ∉ AttrHülle(F, {C, D \ C}) = {D}

FA = {

{A} → {B, C, F},

{B} → {A, B, F},

{C, D} → {E, F},

}
```

ii. Rechtsreduktion

— Führe für jede (verbliebene) funktionale Abhängigkeit $\alpha \to \beta$ die Rechtsreduktion durch, überprüfe also für alle $B \in \beta$, ob $B \in AttrHülle(F - (\alpha \to \beta) \cup (\alpha \to (\beta - B)), \alpha)$ gilt. In diesem Fall ist B auf der rechten Seite überflüssig und kann eleminiert werden, d. h. $\alpha \to \beta$ wird durch $\alpha \to (\beta - B)$ ersetzt.

F
$$F \in AttrH\ddot{u}lle(F \setminus \{A\} \rightarrow \{B, C, F\} \cup \{A\} \rightarrow \{B, C\}, \{A\}) = \{A, B, C, F\}$$
 $FA = \{A, B, C, F\}$

iii. Löschen leerer Klauseln

— Entferne die funktionalen Abhängigkeiten der Form $\alpha \to \emptyset$, die im 2. Schritt möglicherweise entstanden sind.

Ø Nichts zu tun

iv. Vereinigung

— Fasse mittels der Vereinigungsregel funktionale Abhängigkeiten der Form $\alpha \to \beta_1, \ldots, \alpha \to \beta_n$, so dass $\alpha \to \beta_1 \cup \cdots \cup \beta_n$ verbleibt.

Ø Nichts zu tun

(ii) Relationsschemata formen

— Erzeuge für jede funktionale Abhängigkeit $\alpha \to \beta \in F_c$ ein Relationenschema $\mathcal{R}_{\alpha} := \alpha \cup \beta$.

$$\begin{array}{l} R_1(\underline{A},\underline{B},C) \\ R_2(\underline{A},\underline{B},F) \\ R_3(\underline{C},\underline{D},E,F) \end{array}$$

(iii) Schlüssel hinzufügen

— Falls eines der in Schritt 2. erzeugten Schemata R_{α} einen Schlüsselkandidaten von \mathcal{R} bezüglich F_c enthält, sind wir fertig, sonst wähle einen Schlüsselkandidaten $\mathcal{K} \subseteq \mathcal{R}$ aus und definiere folgendes zusätzliche Schema: $\mathcal{R}_{\mathcal{K}} := \mathcal{K}$ und $\mathcal{F}_{\mathcal{K}} := \emptyset$

$$\begin{array}{l} R_1(\underline{A},\underline{B},C) \\ R_2(\underline{A},\underline{B},F) \\ R_3(\underline{C},\underline{D},E,F) \end{array}$$

(iv) Entfernung überflüssiger Teilschemata

— Eliminiere diejenigen Schemata R_{α} , die in einem anderen Relationenschema $R_{\alpha'}$ enthalten sind, d. h. $R_{\alpha} \subseteq R_{\alpha'}$.

Ø Nichts zu tun