Exp 2: Implementation and analysis of RSA cryptosystem and Digital signature scheme using RSA/El Gamal.

Implementation and Analysis of RSA Cryptosystem and Digital Signature Scheme Overview:

1. RSA Cryptosystem:

- The RSA algorithm is a widely-used asymmetric encryption technique. It relies on the mathematical properties of large prime numbers and their difficulty to factorize. It involves two keys: a public key (used for encryption) and a private key (used for decryption).
- The security of RSA is based on the difficulty of factoring large composite numbers.

2. Digital Signature Scheme:

- A digital signature is a cryptographic technique used to verify the authenticity and integrity of digital messages or documents.
- In RSA, the digital signature is created by encrypting the hash of the message with the private key and can be verified using the public key.
- ElGamal is another popular public-key cryptosystem, and it can also be used for digital signatures.

In this answer, we'll walk through both the RSA cryptosystem and the Digital Signature Scheme using RSA and ElGamal.

1. RSA Cryptosystem:

Key Generation:

- Choose two large prime numbers, p and q.
- Compute n=p×qn = p \times qn=p×q. The number nnn is used as the modulus for both the public and private keys.
- Compute the totient function $\phi(n)=(p-1)(q-1) \cdot (p-1)(q-1) \cdot (p-1)(q-1) \cdot (q-1) \cdot ($
- Choose an encryption exponent eee such that 1<e<φ(n)1 < e
 \phi(n)1<e<φ(n) and gcd@(e,φ(n))=1\gcd(e, \phi(n)) = 1gcd(e,φ(n))=1.
- Compute the decryption exponent ddd such that d×e≡1 (mod φ(n))d \times e \equiv 1 \,(\text{mod}\, \phi(n))d×e≡1(modφ(n)).
- The public key is (e,n)(e, n)(e,n), and the private key is (d,n)(d, n)(d,n).

Encryption:

• The sender encrypts the plaintext message MMM using the public key

(e,n)(e, n)(e,n) by computing: $C=Me \pmod{n}C = M^e \setminus (\text{mod } n)C=Me \pmod{n}$ where MMM is the message, eee is the public exponent, and nnn is the modulus.

Decryption:

The receiver decrypts the ciphertext CCC using the private key (d,n)(d, n)(d,n) by computing: M=Cd (mod n)M = C^d \,(\text{mod}\)\,
 n)M=Cd(modn) where CCC is the ciphertext, ddd is the private exponent, and nnn is the modulus.

2. Digital Signature Scheme using RSA:

 A digital signature is a mathematical scheme that allows a sender to sign a message so that the receiver can verify both the authenticity and integrity of the message.

Steps to Create a Digital Signature using RSA:

- 1. Hash the Message: First, compute a hash of the message MMM using a cryptographic hash function (e.g., SHA-256).
- 2. Sign the Hash: The sender signs the hash H(M)H(M)H(M) by encrypting it with their private key:

Signature=H(M)d (mod n)\text{Signature} = H(M)^d \,(\text{mod} \, n)Signature=H(M)d(modn)

3. Send the Signature: The sender sends both the message and the digital signature to the receiver.

Verification of Digital Signature using RSA:

- 1. The receiver computes the hash H(M)H(M)H(M) of the received message MMM.
- 2. The receiver decrypts the signature using the public key of the sender to obtain:

Decrypted signature=Signaturee (mod n)\text{Decrypted signature} =
\text{Signature}^e \,(\text{mod} \, n)Decrypted signature=Signaturee(modn)

- 3. The receiver checks if the decrypted signature matches the hash of the message:
 - If the decrypted signature equals H(M)H(M)H(M), the signature is valid.
 - If they do not match, the signature is invalid, and the message has been tampered with.

3. ElGamal Digital Signature Scheme:

ElGamal is another public-key cryptosystem based on the Diffie-Hellman key exchange. It can also be used for digital signatures. The main steps in the ElGamal Digital Signature Scheme are:

Key Generation for ElGamal:

- 1. Choose a large prime ppp and a primitive root ggg modulo ppp.
- 2. Choose a private key xxx where 1<x<p-11 < x < p-11<x<p-1.

Compute the corresponding public key y=gx (mod p)y = g^x \,(\text{mod}\, p)y=gx(modp).

Signing Process:

- 1. Compute a cryptographic hash of the message H(M)H(M)H(M).
- 2. Choose a random value kkk such that 1 < k < p-11 < k < p-11 < k < p-1 and $gcd (k, p-1) = 1 \ gcd(k, p-1) = 1$.
- 3. Compute the signature pair (r,s)(r, s)(r,s): r=gk (mod p)r = g^k
 \,(\text{mod} \, p)r=gk(modp) s=k-1×(H(M)-x×r) (mod p-1)s = k^{-1}
 \times (H(M) x \times r) \,(\text{mod} \, p-1)s=k-1×(H(M)-x×r)(modp-1)

Verification Process:

- 1. Compute the hash H(M)H(M)H(M) of the received message.
- 2. Compute the values v1v_1v1 and v2v_2v2 using the public key and signature: v1=yr×rs (mod p)v_1 = y^r \times r^s \,(\text{mod} \, p)v1 = yr×rs(modp) v2=gH(M) (mod p)v_2 = g^{H(M)} \,(\text{mod} \, p)v2 = gH(M)(modp)
- 3. If $v1=v2v_1=v_2v1=v2$, the signature is valid.

Code:

```
import random
```

from sympy import isprime

```
# Function to find GCD
```

def gcd(a, b):

while b:

$$a, b = b, a \% b$$

return a

Function to find modular inverse

def mod inverse(a, m):

$$m0, x0, x1 = m, 0, 1$$

while $a > 1$:

winte a > 1.

$$q = a // m$$

$$m, a = a \% m, m$$

$$x0, x1 = x1 - q * x0, x0$$

if x1 < 0:

$$x1 += m0$$

```
# RSA Key Generation
def rsa_keygen(bitsize=512):
  p = q = 0
  while not isprime(p):
     p = random.getrandbits(bitsize)
     if isprime(p): break
  while not isprime(q) or p == q:
     q = random.getrandbits(bitsize)
     if isprime(q): break
  n = p * q
  phi_n = (p - 1) * (q - 1)
  e = 65537 # common choice for public exponent
  d = mod_inverse(e, phi_n)
  return (e, n), (d, n)
# RSA Encryption
def rsa_encrypt(message, pub_key):
  e, n = pub_key
  return [pow(ord(char), e, n) for char in message]
# RSA Decryption
def rsa_decrypt(ciphertext, priv_key):
  d, n = priv_key
  return ".join([chr(pow(char, d, n)) for char in ciphertext])
# Digital Signature (RSA)
def rsa_sign(message, priv_key):
  d, n = priv_key
  message_hash = hash(message)
  signature = pow(message_hash, d, n)
```

return signature

```
# RSA Signature Verification
def rsa_verify(message, signature, pub_key):
  e, n = pub_key
  message_hash = hash(message)
  decrypted_signature = pow(signature, e, n)
  return decrypted_signature == message_hash
Output:
public_key, private_key = rsa_keygen()
message = "Hello, RSA!"
ciphertext = rsa_encrypt(message, public_key)
print(f"Encrypted message: {ciphertext}")
decrypted_message = rsa_decrypt(ciphertext, private_key)
print(f"Decrypted message: {decrypted_message}")
# Digital Signature
signature = rsa_sign(message, private_key)
print(f"Signature: {signature}")
# Verify Signature
is_valid = rsa_verify(message, signature, public_key)
print(f"Signature valid: {is_valid}")
```