

Dust Sensor 灰尘传感器 用户手册

1. 特性和原理

本模块是以夏普 GP2Y1010AU0F 为核心的灰尘传感器。传感器内部的红外二极管,可以输出一个跟灰尘浓度成线性关系的电压值。通过该电压值即可计算出空气中的灰尘和烟尘含量。

测量对象: 直径大于 0.8μm 灰尘颗粒

有效量程: 500μg/m³ **输出类型:** 电压模拟量 **工作电压:** 2.5V~5.5V

产品尺寸: 63.2mm×41.3mm

固定孔尺寸: 2.0mm 通气孔尺寸: 9.0mm

1.1. 传感器输出特性

传感器输出电压与灰尘浓度关系在 0 到 0.5mg/m3 范围内成线性关系,如下图所示:

图 1: 传感器输出特性曲线

1.2. 传感器控制原理

- 1) 通过设置模块 ILED 引脚为高电平,从而打开传感器内部红外二极管。
- 2) 等待 0.28ms,外部控制器采样模块 A_{OUT} 引脚的电压值。这是因为传感器内部红外二极管在开启之后 0.28ms,输出波形才达到稳定。如下图所示:

图 2: ILED 与红外二极管输出波形关系

- 3) 采样持续 0.04ms 之后,再设置 ILED 引脚为低电平,从而关闭内部红外二极管。
- 4) 根据电压与浓度关系即可计算出当前空气中的灰尘浓度,具体实现细节请参考 Demo 程序。

注:输出的电压经过了分压处理(<u>查看原理图</u>),要将测得的电源放大 **11** 倍才是实际传感器输出的电压。

1.3. 主要用途

检测空气中灰尘浓度,用于空气净化器、空气质量监测仪、PM2.5 检测仪等。

2. 操作和现象

2.1. 传感器接口说明

引脚号	标识	描述	
1	VCC	电源正(2.5V-5.5V)	
2	GND	电源地	
3	AOUT	电压模拟量输出	
4	ILED	传感器内部 LED 驱动	

表 1: 传感器接口说明

2.2. 连接开发板使用

下面章节以四款不同类型的开发板为例,描述具体操作步骤及实验现象。

2.2.1. Open103R(主控芯片 STM32F103R)

- 1) 编译下载 Demo 程序。
- 2) 通过串口模块,把开发板 USART2 接口连接至电脑,串口调试助手设置如下:

波特率	115200	
数据位	8	

停止位	1
校验位	None
流控制	None

3) 传感器模块连接如下:

模块	开发板	
VCC	3.3V 或 5V	
GND	GND	
AOUT	GPIOA.6	
ILED	GPIOA.7	

表 2: 传感器和 Open103R 引脚对应关系

4) 开发板上电,可看到串口助手不断显示当前灰尘浓度值,当有大量灰尘颗粒进入 通气孔时,数据发生明显变化,实验现象见附录。

2.2.2. Open407Z-C(主控芯片 STM32F407Z)

- 1) 编译下载 Demo 程序。
- 2) 通过串口模块,把开发板 USART2 接口连接至电脑,串口调试助手设置如下:

波特率	115200	
数据位	8	
停止位	1	
校验位	None	
流控制	None	

3) 传感器模块连接如下:

模块	开发板	
VCC	3.3V 或 5V	
GND	GND	
AOUT	GPIOA.6	
ILED	GPIOA.7	

表 3: 传感器和 Open407Z-C 引脚对应关系

4) 开发板上电,可看到串口助手不断显示当前灰尘浓度值,当有大量灰尘颗粒进入 通气孔时,数据发生明显变化,实验现象见附录。

2.2.3. NUCLEO-F103RB(主控芯片 STM32F103R)

本开发板 Demo 程序分为 Mbed 及 ST Library 两个版本。操作步骤及实验现象相同。

- 1) 编译下载 Demo 程序。
- 2) 将开发板通过 USB 接口连接至电脑,串口调试助手设置如下:

波特率	115200
数据位	8

停止位	1
校验位	None
流控制	None

3) 传感器模块连接如下:

模块	开发板	
VCC	3.3V 或 5V	
GND	GND	
AOUT	A0	
ILED	D7	

表 4: 传感器和 XNUCLEO-F103RB 引脚对应关系

4) 开发板上电,可看到串口助手不断显示当前灰尘浓度值,当有大量灰尘颗粒进入 通气孔时,数据发生明显变化,实验现象见附录。

2.2.4. Arduino UNO

- 1) 编译下载 Demo 程序。
- 2) 将开发板通过 USB 接口连接至电脑, 串口调试助手设置如下:

波特率	9600
数据位	8
停止位	1
校验位	None
流控制	None

3) 传感器模块连接如下:

模块	开发板	
VCC	3.3V 或 5V	
GND	GND	
AOUT	A0	
ILED	D7	

表 5: 传感器和 UNO PLUS 引脚对应关系

4) 开发板上电,可看到串口助手不断显示当前灰尘浓度值,当有大量灰尘颗粒进入 通气孔时,数据发生明显变化,实验现象见附录。

3. 附录:

3.1. 实验现象

串口打印灰尘浓度数据:

空气污染指数分级标准如下表所示:

PM2.5	空气质量	空气质量	空气质量指
浓度均值(µg/m3)	AQI	级别	数类别
0-35	0-50	一级	优
35-75	51-100	二级	良
75-115	101-150	三级	轻度污染
115-150	151-200	四级	中度污染
150-250	201-300	五级	重度污染
250-500	≥300	六级	严重污染

表 6: 空气污染指数分级标准