## IC220: HW 8

Due: 15 Apr 2019

| Full Name:                                                                | Alpha:                                                    |  |  |  |  |  |
|---------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|
| Circle Your Section: Aviv/1001 Aviv/2001 Aviv/4001 Choi/5001 Missler/5002 |                                                           |  |  |  |  |  |
| Total Points: 50                                                          |                                                           |  |  |  |  |  |
| Preliminary:                                                              | Carefully do the assigned reading for Chapter 4 (4.5-4.8) |  |  |  |  |  |

1. [5 points] Draw a pipeline stage diagram for the following sequence of instruction. You dont need fancy pictures — just text for each stage: ID, MM, etc. Label the cycle number for each column, starting with cycle #1.

```
lw $v0, 0($a0)
lw $v1, 0($v0)
add $a0, $a0, $v1
sub $t0, $t0, $a0
```

2. Assume the previous sequence of instructions is repeated 100 times (so the processor does a load, another load, an add, a sub, then back to load, another load, an add, ...). There are no branches, just these 4 instructions repeated 100 times. **Do NOT reorder the code to improve efficiency**. *HINT: this question takes a bit more thought and care then you may realize at first*.

| (a) <b>[5 point</b> | s] What is the total | l number of cycles | needed to execute | those 400 instructions? |
|---------------------|----------------------|--------------------|-------------------|-------------------------|
|---------------------|----------------------|--------------------|-------------------|-------------------------|

- (b) [2 points] What is the CPI?
- (c) [2 points] What is the CPI if we rant this sequence on a single cycle CPU?
- (d) [4 points] Using the two PI calculations, argue why the CPI alone may or may not provide a good estimate for the performance gained from the different CPU designs? For example, why would a single-cycle CPU not actually be faster than a pipeline CPU even if its CPI is lower?

| 3. Draw | v a pipeline stage | diagram for | the same | e sequence | of instruction | ons as  | before,  | $\mathbf{but}$ | $\mathbf{this}$ | $_{ m time}$ | there | is |
|---------|--------------------|-------------|----------|------------|----------------|---------|----------|----------------|-----------------|--------------|-------|----|
| no F    | FORWARDING         | available.  | Again, y | ou must sl | how the nun    | aber of | f cycles |                |                 |              |       |    |

```
lw $v0, 0($a0)
lw $v1, 0($v0)
add $a0, $a0, $v1
sub $t0, $t0, $a0
```

- 4. Again, assume the previous sequence of instructions is repeated 100 times with no forwarding! There are no branches and you cannot reorder.
  - (a) [5 points] What is the total number of cycles needed to execute those 400 instructions?

(b) [2 points] What is the CPI?

5. For the following code sequence below stalls.

```
add $a0, $s0, $s1
sub $a2, $s2, $a0
add $t1, $t2, $s3
add $a3, $a0, $a2
```

(a) [5 points] Show the pipeline (with any forwards!) That is, draw lines to show which stages forward to another stage.

(b) [5 points] Does this pipeline requiring any stalls, yes or no? Explain why either yes or no using your pipeline diagram above.



```
lw $a0, 0($t1)
lw $v0, 0($a0)
sub $t1, $s2, $t3
sw $v0, 4($s1)
```

(a) [5 points] Show the pipeline (with any forwards!) with the stalling. AND, explain why the stall must occur and forwarding doesn't help.

(b) [5 points] Rewrite the code to avoid stalls

(c) [5 points] Show the pipeline (with any forwards!) that avoids the stall.