Lec 39 任意项级数的精细审敛法

39.1 Dirchlet 精细判别法

定理 39.1

在级数 $\sum_{n=1}^{\infty} a_n b_n$ 中, 若 $\{a_n\}\{b_n\}$ 满足如下条件:

- 1. a_n 部分和 $A_n = a_1 + a_2 + \dots + a_n$ 有界: $\exists M > 0$, 使 $|A_n| \leq M, \forall n \in \mathbb{N}^*$.
- 2. $b_n \downarrow 0 (n \to \infty)$, 即 $\{b_n\}$ 单调递减趋于零.

则级数
$$\sum_{n=1}^{\infty} a_n b_n$$
 收敛.

 \bigcirc

证明

1. 证明:
$$\left| \sum_{i=1}^{n} a_i b_i \right| \leq M \left(|b_1| + 2 |b_n| \right)$$
 记 $A_0 = 0$,则

$$\left| \sum_{i=1}^{n} a_{i}b_{i} \right| = \left| \sum_{i=1}^{n} (A_{i} - A_{i-1})b_{i} \right|$$

$$= \left| \sum_{i=1}^{n} A_{i}b_{i} - \sum_{i=1}^{n} A_{i-1}b_{i} \right|$$

$$= \left| A_{n}b_{n} + \sum_{i=1}^{n-1} A_{i}b_{i} - \sum_{i=1}^{n-1} A_{i}b_{i+1} \right|$$

$$= \left| A_{n}b_{n} + \sum_{i=1}^{n-1} A_{i}b_{i+1} \right|$$

$$\leq |A_{n}| |b_{n}| + \sum_{i=1}^{n-1} |A_{i}| (b_{i} - b_{i+1})$$

$$\leq M|b_{n}| + M|b_{1} - b_{2} + b_{2} - b_{3} + \dots + b_{n-1} - b_{n}|$$

$$\leq M(|b_{1}|| + 2|b_{n}|)$$

2. 同理,有

$$\left| \sum_{i=n}^{n+p} a_i b_i \right| \leqslant M \left(|b_{n+1}| + 2 |b_{n+p}| \right) \tag{*}$$

3. 由于 $b_n \downarrow 0$, 对 $\forall \varepsilon > 0$, $\exists n_0 \in \boldsymbol{n}^*$, 当 $n \geqslant n_0$ 时, $|b_n| < \frac{\varepsilon}{3M}$. 从而 $|b_{n+1}| < \frac{\varepsilon}{3M}$, $|b_{n+p}| < \frac{\varepsilon}{3M}$

$$\frac{\varepsilon}{3M}$$
, $\forall p \in \mathbb{N}^*$. 带入 (*) 式中:

$$\left| \sum_{i=n}^{n+p} a_i b_i \right| \leqslant M \left(|b_{n+1}| + 2 |b_{n+p}| \right) \leqslant M \left(\frac{\varepsilon}{3M} + \frac{2\varepsilon}{3M} \right) = \varepsilon. \forall p \in \mathbb{N}^*$$

4. 依级数收敛的 Cauthy 准则, 则级数 $\sum_{n=0}^{\infty} a_n b_n$ 收敛

- 1. 当 $b_n \uparrow 0$ 时, $-b_n \downarrow 0$ 而 $\sum_{n=0}^{\infty} a_n b_n = -\sum_{n=0}^{\infty} a_n (-b_n)$, 因此当 $A_n = a_1 + a_2 + \dots + a_n$ 有界且 $b_n \uparrow 0$ 时, 仍有 $\sum_{n=0}^{\infty} a_n b_n$ 收敛.
- 2. 在 $\sum_{n=1}^{\infty} a_n b_n$ 中, 若 $a = (-1)^{n-1}$, 且 $b_n \downarrow 0$, 则 $A_n = 1 1 + 1 1 + 1 + \cdots + (-1)^{n-1} = 0$ $\begin{cases} 0 & n=2m \\ 1 & n=2m+1 \end{cases}$ 即 $|A_n| \leqslant M = 1. \forall n \in \mathbb{N}^*$. 依 Dirichlet 判别法, $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ 收敛. 这

39.2 Abel 精细判别法

在级数 $\sum_{n=1}^{\infty} a_n b_n$ 中, 若 $\{a_n\}\{b_n\}$ 满足如下条件:

1. $\sum_{n=1}^{\infty}a_n$ 收敛 2. $\{b_n\}$ 单调有界.则级数 $\sum_{n=1}^{\infty}a_nb_n$ 收敛.

证明 令 $A_n = a_1 + a_2 + \dots + a_n$, 则 $\lim_{n \to \infty} A_n = \sum_{i=1}^{\infty} a_i = A(常数)$. 依 "有极限必有界"的原 理, $\exists M>0$, 使 $|A_n|\leqslant M$, $\forall n\in\mathbb{N}^*$ 从 $\{b_n\}$ 单调有界知, $\lim_{n\to\infty}b_n$ 存在, 设 $\lim_{n\to\infty}b_n=B$ (常数), 且不 妨设 $b_n \downarrow B(n \to \infty)$. 则 $(b_n - B) \downarrow 0(n \to \infty)$. 依 Dirichlet 判别法: $\sum a_n(b_n - B)$ 收敛. 另外 $\sum_{n=0}^{\infty} Ba_n$ 也收敛. 故 $\sum_{n=0}^{\infty} [a_n(b_n - B) + Ba_n] = \sum_{n=0}^{\infty} a_n b_n$ 也收敛.

39.3 例题

例 39.1 设 $x \neq 2k\pi, k \in \mathbb{Z}$. 证明: $\sum_{n=1}^{\infty} \frac{\cos nx}{n^{\lambda}}$, $\sum_{n=1}^{\infty} \frac{\sin nx}{n^{\lambda}}$ 当 $\lambda > 1$ 时绝对收敛; 当 $0 < \lambda \leqslant 1$ 时条件收敛; 当 $\lambda \leqslant 0, x \neq k\pi$ 时发散.

解

- 1. 当 $\lambda > 1$ 时. 有 $\left| \frac{\cos nx}{n^{\lambda}} \right| \leqslant \frac{1}{n^{\lambda}}, \left| \frac{\sin nx}{n^{\lambda}} \right| \leqslant \frac{1}{n^{\lambda}}$. 且 $\sum_{n=1}^{\infty} \frac{1}{n^{\lambda}}$ 收敛. 依比较判别法, $\sum_{n=1}^{\infty} \frac{\cos nx}{n^{\lambda}}$, $\sum_{n=1}^{\infty} \frac{\sin nx}{n^{\lambda}}$ 都绝对收敛;
- 2. 当 $0 < \lambda \le 1$ 时. 令 $A_n = \cos x + \cos 2x + \dots + \cos nx (x \neq 2k\pi), b_n = \frac{1}{n^{\lambda}}, 则 b_n \downarrow 0 (n \to \infty),$ 且

$$|A_n| = \left| \frac{2\sin\frac{x}{2}(\cos x + \cos 2x + \dots + \cos nx)}{2\sin\frac{x}{2}} \right|$$

$$= \left| \frac{\sin\frac{3x}{2} - \sin\frac{x}{2} + \sin\frac{5x}{2} - \sin\frac{3x}{2} + \dots + \sin(n + \frac{1}{2})x - \sin(n - \frac{1}{2})x}{2\sin\frac{x}{2}} \right|$$

$$= \left| \frac{\sin(n + \frac{1}{2})x - \sin\frac{x}{2}}{2\sin\frac{x}{2}} \right|$$

$$\leqslant \left| \frac{2}{2\sin\frac{x}{2}} \right| = \left| \frac{1}{\sin\frac{x}{2}} \right| \triangleq M. \forall n \in \mathbb{N}^*.$$

依 Dirichlet 判别法, 当 $0 < \lambda \leqslant 1$ 时, $\sum_{n=1}^{\infty} \frac{\cos nx}{n^{\lambda}}$ 收敛 $(x \neq 2k\pi)$.

又有
$$\left|\frac{\cos nx}{n^{\lambda}}\right| \geqslant \frac{\cos^2 nx}{n^{\lambda}} = \frac{1+\cos 2nx}{2n^{\lambda}} \geqslant 0$$
, 而 $0 < \lambda \leqslant 1$ 时, $\sum_{n=1}^{\inf} \frac{1}{n^{\lambda}}$ 发散, $\sum_{n=1}^{\infty} \frac{\cos 2nx}{n^{\lambda}}$ 收敛 (与上文类似,Dirichlet 判别法). 从而 $\frac{1+\cos 2nx}{2n^{\lambda}}$ 在 $0 < \lambda \leqslant 1$ 时发散. 依比较判别法, $\sum_{n=1}^{\infty} \left|\frac{\cos nx}{n^{\lambda}}\right|$ 在 $0 < \lambda \leqslant 1$ 时发散. 从而当 $0 < \lambda \leqslant 1$ 时 $\sum_{n=1}^{\infty} \frac{\cos nx}{n^{\lambda}}$ 条件收敛. 同理, $\sum_{n=1}^{\infty} \frac{\sin nx}{n^{\lambda}}$ 当 $0 < \lambda \leqslant 1$ 时条件收敛;

3. 当 $\lambda \geqslant 0$ 时, $a_n = \frac{\cos nx}{n^{\lambda}} \to 0 (n \to \infty)$ 不成立. 所以 $\sum_{n=1}^{\infty} \cos nx$ 当 $\lambda \leqslant 0$ 时发散; 当 $x \neq k\pi$ 时, $a_n = \frac{\sin nx}{n^{\lambda}} \to 0 (n \to \infty)$ 不成立 $(\lambda \geqslant 0)$. 所以 $\sum_{n=1}^{\infty} \sin nx$ 当 $\lambda \leqslant 0$, $x \neq k\pi$ 时发散.

注

$$\sin x + \sin 2x + \dots + \sin nx = \frac{\cos \frac{x}{2} - \cos(n + \frac{1}{2})x}{2\sin \frac{x}{2}}, x \neq 2k\pi$$

例 39.2

$$1. \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{\alpha}}$$

$$2. \sum_{n=3}^{\infty} \frac{1}{n \ln n \left(\ln(\ln n)\right)^{1+\alpha}}$$

3.
$$\sum_{n=1}^{\infty} (-1)^{n-1} (e^{\frac{1}{n^2}} - 1)$$

4.
$$\sum_{n=1}^{\infty} \left(\frac{\lambda n}{n+1}\right)^n (\lambda > 0, 常数)$$

5.
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

6.
$$\sum_{n=1}^{\infty} \frac{\sin n}{\sqrt{n}} (1 + \frac{1}{n})^n$$

7.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{1}{n} - \ln(1 + \frac{1}{n}) \right)$$

8.
$$\sum_{n=1}^{\infty} \sin(\pi \sqrt{n^2 + 1})$$

解

- 1. 设 $f(x) = \frac{1}{x(\ln x)^{\alpha}}, x \in [2, +\infty), \alpha > 0$, 则 f(x) 在 $[2, +\infty)$ 上连续, 非负, 单调递减, 且 $\int_{2}^{+\infty} f(x) \, \mathrm{d}x = \int_{2}^{+\infty} \frac{\mathrm{d}\ln x}{(\ln x)^{\alpha}} \stackrel{\ln x = u}{=} \int_{\ln 2}^{\infty} \frac{\mathrm{d}u}{u^{\alpha}} \, \text{$ \le } \, \alpha > 1 \text{ 时收敛, $ \le } \, 0 < \alpha \leqslant 1 \text{ 时发散. 从而级数 } \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{\alpha}} \, \text{$ \le } \, \alpha > 1 \text{ 时收敛, $ \le } \, 0 < \alpha \leqslant 1 \text{ 时发散.}$
- 3. 利用 Taylor 公式, $e^x = 1 + x + o(x) \Rightarrow e^x 1 \sim x(x \to 0) \Rightarrow e^{\frac{1}{n^2}} 1 \sim \frac{1}{n^2}$, 从而由 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 绝对收敛, 故 $\sum_{n=1}^{\infty} (-1)^{n-1} (e^{\frac{1}{n^2}} 1)$ 绝对收敛.
- 4. 因为 $\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{\lambda}{n+1} = \lambda > 0$. 所以当 $\lambda 0 < \lambda < 1$ 时 $\sum_{n=1}^{\infty} \left(\frac{\lambda n}{n+1}\right)^n$ 收敛; 当 $\lambda > 1$ 时 $\sum_{n=1}^{\infty} \left(\frac{\lambda n}{n+1}\right)^n$ 发散; 当 $\lambda = 1$ 时, $a_n = \left(\frac{n}{n+1}\right)^n = \left(\frac{n+1-1}{n+1}\right)^n = \left(\left(1+\frac{-1}{n+1}\right)^{\frac{n+1}{-1}}\right)^{\frac{-n}{n+1}} \to e^{-1} \neq 0 (n \to \infty)$, 所以当 $\lambda = 1$ 时, $\sum_{n=1}^{\infty} \left(\frac{\lambda n}{n+1}\right)^n$ 发散
- 5. $0 < \frac{1}{n!} < \frac{1}{(n-1)n} (n \ge 2)$ 且 $\frac{1}{(n-1)n} \sim \frac{1}{n^2} (n \to \infty), \sum_{n=1}^{\infty} \frac{1}{n^2}$ 收敛, 所以 $\sum_{n=1}^{\infty} \frac{1}{(n-1)n}$ 收敛, 可得 $\sum_{n=1}^{\infty} \frac{1}{n!}$ 收敛.
- 6. $|A_n| = |\sin 1 + \sin 2 + \dots + \sin n| = \left| \frac{\cos \frac{1}{2} \cos(n + \frac{1}{2})}{2 \sin \frac{1}{2}} \right| \leqslant \frac{1}{\sin \frac{1}{2}} \triangleq M, b_n = \frac{1}{\sqrt{n}} \downarrow 0$, 依 Dirichlet 判别法知, $\sum_{n=1}^{\infty} \frac{\sin n}{\sqrt{n}}$ 收敛. 又 $0 < \left(1 + \frac{1}{n}\right)^n < 3$ 单增有界, 再依 Abel 判别法知 $\sum_{n=1}^{\infty} \frac{\sin n}{\sqrt{n}} (1 + \frac{1}{n})^n$ 收敛.

7. 利用 Taylor 公式,
$$\ln(1+x) = x - \frac{x^2}{2} + o(x^2) \Rightarrow x - \ln(1+x) \sim \frac{x^2}{2}(x \to 0) \Rightarrow \frac{1}{n} - \ln(1+\frac{1}{n}) \sim \frac{1}{2n^2}(n \to \infty)$$
, 且 $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n^2}$ 绝对收敛. 所以 $\sum_{n=1}^{\infty} (-1)^{n-1}(\frac{1}{n} - \ln(1+\frac{1}{n}))$ 绝对收敛.

8.
$$\sin\left(\pi\sqrt{n^2+1}\right) = \sin\pi\left(\sqrt{n^2+1} - n + n\right) = (-1)^n \sin\pi\left(\sqrt{n^2+1} - n\right)$$

 $= (-1)^n \sin\frac{\pi}{\sqrt{n^2+1} + n}$, 且 $\sin\frac{\pi}{\sqrt{n^+1} + n} \downarrow 0(n \to \infty)$, 依 Leibniz 判别法, 交错级数
 $\sum_{n=1}^{\infty} (-1)^n \sin\frac{\pi}{\sqrt{n^2+1} + n}$ 收敛, 但 $\left| (-1)^n \sin\frac{\pi}{\sqrt{n^2+1} + n} \right| \sim \frac{\pi}{\sqrt{n^2+1} + n} \sim \frac{\pi}{2n}(n \to \infty)$, 且 $\sum_{n=1}^{\infty} \frac{\pi}{2n}$ 发散. 所以 $\sum_{n=1}^{\infty} \left| \sin(\pi\sqrt{n^2+1}) \right|$ 发散, 从而 $\sum_{n=1}^{\infty} \sin(\pi\sqrt{n^2+1})$ 条件收敛.

例 39.3
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = \ln 2$$
 的证明:

证明

$$S_{2n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{2n-1} + \frac{1}{2n} - 2\left(\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \dots + \frac{1}{2n}\right)$$

$$= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{2n-1} + \frac{1}{2n} - \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right)$$

$$= \ln(2n) + \eta_0 + \alpha_1(n) - (\ln(n) + \eta_0 + \alpha_2(n)), \begin{cases} \eta_0 \simeq 0.5772, \\ \alpha_1(n) \to 0, \alpha_2(n) \to 0(n \to 0) \end{cases}$$

$$= \ln(\frac{2n}{n}) + \alpha_1(n) - \alpha_2(n) \to \ln 2 + 0 - 0 = \ln 2(n \to \infty)$$

$$\stackrel{\text{If }}{=} S_{2n+1} = S_{2n} + \frac{1}{2n+1} \to \ln 2 + 0 = \ln 2(n \to \infty).$$

$$\stackrel{\text{If }}{=} S_{2n+1} = S_{2n} + \frac{1}{2n+1} \to \ln 2 + 0 = \ln 2(n \to \infty).$$

$$\stackrel{\text{If }}{=} S_{2n+1} = S_{2n} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^n}{n} \to \ln 2(n \to \infty) \Leftrightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = \ln 2$$

▲ 作业 ex7.1:2(7)(10)(13),12(4)(6)(9)(10),15(1)(2)(4).