Manuel de Mathématiques de niveau collège

Alexandre Gaubil

Dernière mise à jour le 15 juillet 2021

Première partie

Logique

La Logique est la branche de la mathématique qui étudie la mathématique en tant que language qui peut permet d'écrire des formules ou propositions qui peuvent être vraies ou fausses.

Concepts de base

La mathématique est un ensemble de concepts. Pour pouvoir comprendre la mathématique, il est important d'être familier avec certains concepts auparavant. Ces concepts nous permettrons de mieux comprendre les idées sous-jacentes de la mathématique—autrement dit, nous pourrons mieux comprendre pourquoi nous faisons certaines choses d'une certaine manière et non pas d'une autre.

1.1 Logique

La logique est l'étude de relations entre proposition. Une proposition est une idée qui peut être vraie, fausse, ou indéterminée (dont on ne sait pas si elle est vraie ou fausse). Par exemple, "un triangle a trois sommets" est une proposition qui est vraie, "un chat a cinq pattes" est une proposition qui est fausse et "il fait soleil" est une proposition indéterminée—nous ne savons pas à priori s'il fait soleil ou non. Nous pouvons établir des relations entre propositions. Par exemple, nous pouvons établir une relation d'implication (une chose entraîne ou implique une autre) entre les trois propositions suivantes : "Minouchette est un chat" et "les chats ont quatre pattes" implique "Minouchette a quatre pattes". En effet, si Minouchette est un chat et les chats ont quatre pattes, nous pouvons en déduire que Minouchette doit avoir quatre pattes.

Les connecteurs logiques (le terme formel pour relations) les plus communes sont les suivantes :

- "et" (\wedge): "Minouchette est un chat" et "les chats ont quatre pattes";
- "ou" (V): "il fait jour" **ou** "il fait nuit";
- "negation" (\neg) : la négation de "Minouchette est un chat" est "Minouchette **n**'est pas un chat";
- "implication" (⇒): "Minouchette est un chat" et "les chats ont quatre pattes" **implique** "Minouchette a quatre pattes";
- "equivalence" (\iff): "il faut jour" **est équivalent à** "il ne fait pas nuit".

Exercice 1. Indique les connecteurs logiques dans les propositions suivantes :

- A. J'ai un chat et un chien.
- B. Je mangerai soit de la soupe, soit une salade.
- C. Si une figure a trois sommets, alors c'est un triangle.

1.2 Axiomes

Nous avons vu dans la section précédente que la logique est l'étude des relations entre propositions. En mathématique, nous prenons certaines propositions comme étant vraie (par exemple, nous considérons comme vrai le fait que 1 est un nombre entier). Nous appelons ces propositions que nous prenons comme vraie des *axiomes*. Il est important de noter que nous ne pouvons pas démontrer ces axiomes. Nous ne pouvons pas montrer que 1 est un nombre entier. Plutôt, nous le déclarons comme étant vrai. Pour certaines de ces vérités moins importantes, nous ne les appelons pas axiomes mais définitions. Ensuite, nous utilisons ces axiomes et definitions pour démontrer à l'aide d'une succession de relations entre propositions de nouvelles vérités que nous appelons théorèmes, lemmes, propositions, etc.

Exemple 1: Un autre axiome qui est utilisé en mathématique sont "tout nombre entier a un successeur (un nombre qui vient après lui)". Par exemple, nous notons le successeur de 1 S(1) ou 2. De même, nous notons le successeur de 2 S(2), S(S(1)) ou 3.

1.3 Language mathématique

En mathématique, il y a plusieurs manières d'écrire une proposition. Un des but des cours de mathématique au collège et au lycée est d'apprendre une de ces manières qui fut conçut spécifiquement pour écrire des propositions mathématiques. Nous l'appelons le language mathématique. Considérons un exemple afin de mieux comprendre pourquoi nous utilisons ce language par opposition au français et quelles en sont les caractéristiques.

Considérons la proposition suivante, écrite en français : "le nombre tel que, multiplié par trois et en ajoutant deux à ce résultat, est 8". Bien que cette phrase soit compréhensible, elle prend beaucoup de place, est longue à lire, peut être la source d'incertitude, etc. Ceci est normal : le français (et tout autre language) ne fut pas créé pour écrire des propositions mathématiques et ne possède pas la rigueur nécessaire pour le faire correctement. Maintenant, réécrivons la proposition en language mathématique : "x : 3x + 2 = 8". Nous savons immédiatement de quoi nous parlons : un nombre x. Puis, nous savons que nous ajoutons une condition (le ":" nous l'indique) qui spécifie de quel x nous parlons. Cette condition prend la forme d'une équation : 3x + 2 = 8. Non seulement cette écriture est plus compacte, elle est aussi plus claire et nous permet de trouver la valeur de x très rapidement en résolvant l'équation (x = 2).

Exemple 2: Ces avantages ne sont pas nécessairement clair au niveau de mathématique que vous possédez. Considérons donc une proposition complexe—il est normal que vous ne la compreniez pas—mais qui indique encore plus clairement les avantage du language mathématique.

Définition d'une contraction en français: Soit un espace métrique avec une fonction de distance définie sur cet espace. Si pour une fonction allant de cet espace à lui-même il existe un nombre réel strictement compris entre zéro et un tel que la distance entre l'image d'un point par cette fonction et d'un deuxième point par cette fonction est inférieure à la distance entre ce point et ce deuxième point multiplié par ce nombre pour tous deux points appartenant à cet espace métrique, nous appelons cette fonction une contraction de cet espace métrique sur lui-même.

Définition d'une contraction en language mathématique : Soit (X, d) un espace métrique. $(\varphi \colon X \to X) \land (\exists c \colon 0 < c < 1) \colon d(\varphi(x), \varphi(y)) \le c \cdot d(x, y) \Rightarrow \varphi$ est une contraction de X sur X.

Il devient alors clair que le language mathématique est plus concis et plus clair.

Voici un tableau présentant divers éléments utilisés pour écrire des propositions en language mathématique.

Symbole	Nom	Signification
3	il existe	Il existe au moins un
∃!	il existe un unique	Il existe exactement un seul
∀,	pour tout	Peut importe la valeur prise par, nous avons
:	tel que	est définie de manière que soit vrai

1.4 Qualificatifs

Dans l'exemple 1.2, nous avons vu que "tout nombre entier a un successeur". Il y a deux qualificatifs clés dans cet axiome : "tout" et "a". Le premier indique que la proposition s'applique à un ensemble de nombres au complet. Le deuxième indique l'existence de quelque chose. Ces deux qualificatifs

Deuxième partie

Arithmétique

L'Arithmétique est la branche de la mathématique qui étudie les nombres et les opérations de base telles que l'addition ou la multiplication.

Les Nombres Relatifs

2.1 Introduction aux nombres relatifs

Nous avons vu que nous pouvons créer des nombres de plus en plus grands. Pour le montrer, faisons une démonstration rapide. Supposons qu'il existe un nombre qui soit le plus grand nombre possible. Prenons ensuite ce nombre plus 1. Nous savons que ce nouveau nombre est plus grand que le nombre qui était supposé être le plus grand possible, ce qui ne fait pas de sens. On peux toujours créer des nombres de plus en plus grand. Cependant, nous ne pouvons pas faire l'inverse. Nous ne connaissons (pour l'instant du moins) aucun nombre plus petit que o.

Les mathématiciens aimant faire les choses symétrique, ils se sont alors mis à créer des nombres plus petits que o. Comment? Tout comme nous avons fait au-dessus pour trouver un nombre plus grand, nous allons prendre le plus petit nombre que nous connaissons, soit o, et allons lui soustraire 1 (au lieu d'ajouter 1—en effet, nous souhaitons faire un nombre plus petit, et non plus grand). Nous appelons ce nombre -1. Si nous souhaitons faire un nombre plus petit encore, nous pouvons soustraire 1 de nouveau, ce qui nous donne -2.

On introduit alors le concept de **nombre négatif**, soit des nombres plus petit que o. Pour avoir un nom commun à tous ces nombres, nous créons le concept de **nombre relatif**, soit un nombre qui peut-être positif ou négatif. Les nombres négatifs ont un signe - devant (par exemple, -2). Les **nombres positifs**, soit ceux que nous connaissons déjà, ont soit un signe + devant, soit aucun signe (par exemple, 3 ou +9).

Exemple 3: Différentes écritures équivalentes (qui veulent dire la même chose) :

$$3-2$$
 $= 3 + (-2)$
 $= +3-2$
 $= +3 + (-2)$

Nous introduisons aussi le concept d'opposé.

Définition 1. L'opposé d'un nombre est le nombre qui, ajouté à celui-ci, donne o.

Exemple 4:
$$-3$$
 est l'opposé de 3 car $3 + (-3) = 3 - 3 = 0$. 2 est l'opposé de -2 car $-2 + 2 = 2 + (-2) = 2 - 2 = 0$.

o est positif et négatif. Il est donc son propre opposé.

Exercice 2. Quel est l'opposé de 12 ? De -5 ? De 0 ? De 8.5 ? De -181.9 ?

2.2 Règles de calcul

Règle des signes

Que se passe-t-il quand deux signes se suivent? Les règles ci-dessous sont appliquées.

Signes	Résultat
+ et +	+
- et -	+
+ et -	_
- et +	_

Exemple 5:
$$++3=3, --3=3, +-3=-3 \text{ et } -+3=-3.$$

Astuce 1. Une bonne règle pour se souvenir de la règle des signe : l'ami de mon ami est mon ami, l'ennemi de mon ennemi est mon ennemi est mon ennemi et l'ennemi de mon ami est mon ennemi et l'ennemi de mon ami est mon ennemi.

Exercice 3. Simplifie les signes suivants : +-9, --10, -+0.

Reformulation de la soustraction

Propriété 1. Soustraire un nombre est équivalent à ajouter son opposé.

Exemple 6:
$$19 - 8 = 19 + (-8) = 11$$
.

Exercice 4. Calcule les résultats des opérations suivantes : 9-3, 9+(-5), 5-9, 0-1, -83-12.

Ordre

Propriété 2. Prenons deux nombres. S'ils sont de signe positif, ils respectent la règle de l'ordre que nous connaissons. Si les deux nombres sont de signe opposés, le plus petit est le négatif. S'ils sont tous les deux négatifs, ils sont rangés dans l'ordre inverse de leur opposés.

Exemple γ : 2 < 5, -2 < 1, 6 > -4, -2 > -3 et -6 < -1.

Exercice 5. Range dans l'ordre croissant les nombres suivants : 5, 9, -1, -10, 7.8, 0, -29.3, -29, -28, -29.6.

Produit

Propriété 3. Pour calculer le produit de deux nombres relatifs, on commence par calculer le résultat en ignorant les signes. Puis, on applique la règle des signes aux signes et on applique ce signe au résultat du produit.

Exemple 8: Pour calculer 5×-3 , on fait $5 \times 3 = 15$. Puis, d'après la règle des signes, on a +-=-. Donc le résultat est -15.

Exercice 6. Effectue les calculs suivants : -8×2 , -7×-7 , 0×-1 .

Calcul Littéral

3.1 Introduction

En mathématiques, nous n'aimons pas travailler avec des nombres spécifiques. Nous préférerons largement pouvoir trouver des formules qui peuvent marcher pour n'importe quel nombre. Par exemple, la formule de l'aire d'un carré : $\mathcal{A} = l \times l$, avec l étant la longueur d'un côté, est beaucoup plus pratique que de devoir retenir l'aire de tous les carrés possibles. Pour cela, il nous faut définir quelque chose de nouveau : le **calcul littéral**.

Lorsque que nous faisons du calcul littéral, nous n'utilisons pas que des nombres. Nous utilisons également des **inconnues**, soit quelque chose qui peut prendre n'importe quelle valeur. Par exemple, dans la formule de l'aire d'un carré, l et \mathcal{A} sont des inconnues. On représente une inconnue par une lettre.

Attention! La manière d'écrire une lettre est importante. l, L, et \mathcal{L} sont toutes des inconnues représentant des nombres différents.

Définition 2. Une inconnue est une lettre qui représente un nombre de valeur inconnue.

Exemple g: Dans la formule pour l'aire d'un carré $(A = l \times l)$, l, qui représente la longueur d'un côté, est une inconnue.

Définition 3. Un calcul avec des inconnues est appelé une expression littérale.

Exemple 10: La formule pour l'aire d'un carré est une expression littérale.

Exercice γ . Je cherche une formule pour la longueur suivante :

Exprime le résultat en fonction de a et b.

3.2 Bases du calcul littéral

Simplification d'écriture

Les mathématiciens sont paresseux : ils n'aiment pas écrire plus que nécessaire. Ainsi, ils ont trouver des moyens de simplifier l'écriture. Les écritures suivantes sont équivalentes :

Écriture Longue	Écriture courte
$2 \times a$	2a
$a \times b$	ab
$2 \times (a-4)$	2(a-4)
3×3	3^2 (se lit "3 au carré")
$3 \times 3 \times 3$	3^3 (se lit "3 au cube")

Attention! On ne peut pas écrire 2×3 sous la forme 23, pour des raisons évidentes...

Exercice 8. Simplifie les écritures suivantes autant que possible $5 \times x \times 3$.

Appliquer une formule

Pour appliquer une formule, on remplace les inconnues par leur valeur.

Exemple 11: Pour appliquer la formule de l'aire d'un carré $(A = l^2)$ pour un carré de côté de longueur 5, on remplace l par 5. On a alors $A = l^2 = 5^2 = 5 \times 5 = 25$.

3.3 Distributivité et factorisation

Distributivité simple

La multiplication est **distributive** par rapport à l'addition. Qu'est-ce que cela signifie? Pour trois nombres a, b et c, on a :

$$a(b+c) = ab + ac (3.1)$$

ou

$$a(b-c) = ab - ac (3.2)$$

Exemple 12: $2(4+5) = 2 \times 9 = 18$ et $2 \times 4 + 2 \times 5 = 8 + 10 = 18$. Donc $2(4+5) = 2 \times 4 + 2 \times 5$.

Définition 4. Factoriser est l'inverse de la distribution : on trouve un **facteur** (nombre(s) par lequel tous les termes d'une somme sont multipliés) commun à plusieurs termes (par exemple, a dans $ab + ac + ad + \cdots + az$) et on le retire de tous les termes, pour obtenir $a(b + c + d + \cdots + z)$. Exemple 13: Factoriser 2x + 4y + 8 donne 2(x + 2y + 4), car $2x + 4y + 8 = 2 \times x + 2 \times 2y + 2 \times 4$.

Distributivité double

En appliquant la formule de distributivité simple deux fois, nous avons, pour tout nombres a, b, c et d:

$$(a+b)(c+d) = ac + ad + bc + bd$$

3.4 Équations

Définition 5. Une équation est une égalité à trous où les trous sont des inconnues.

Exemple 14: On peut représenter $3 - \dots = 2$ par 3 - x = 2.

Définition 6. Une équation est composé de deux **membres**, un de chaque côté du signe =.

Exemple 15: 3 - x = 2 a deux membres : 3 - x et 2.

Tester une égalité

Pour vérifier si une égalité est vraie pour certaines valeurs, calcule chaque membre de l'équation séparément pour la valeur donnée. Puis, on compare les deux résultats. Si les deux résultats sont égaux, on dit que cette valeur est une **solution** du système ou de l'équation.

Exemple 16: Pour vérifier si x=2 est une solution du système 2-x=x-x, on calcule chaque membre séparément. Pour le premier, on obtient 2-2=0 et pour le second, 2-2=0. Donc oui, x=2 est une solution du système.

Exercice q. Vérifie si x=0 et x=1 sont des solutions du système 1.5x-4=-4.

Opérations sur une équations

On peut faire certaines opérations sur une équation. Pour que cela soit valide, on doit faire la même opération sur les deux membres. Les opérations qui sont valides sont :

- ajouter quelque chose à chaque membre,
- soustraire quelque chose à chaque membre,
- multiplier chaque membre par quelque chose,
- diviser chaque membre par quelque chose.

Lorsque nous effectuons une de ces opérations, nous ne changeons pas l'équation : nous disons que ces équations sont **équivalentes**.

Exemple 17: Les équations suivantes sont équivalentes :

$$x=1$$
 $x-2=-1$ (soustraire 2 à chaque membre)
 $x+2=3$ (ajouter 2 à chaque membre)
 $2x=2$ (multiplier chaque membre par 2)
 $\frac{x}{2}=\frac{1}{2}$ (diviser chaque membre par 2)

Exercice 10. Les équations suivantes sont-elles équivalentes?

A.
$$x - 1 = 0$$

B. $x = 1$
C. $x^2 - 1 = 0$
D. $2x - 2 = 0$
E. $x^2 - x = 0$

Résoudre une équation

Résoudre une équation revient à trouver les valeurs des inconnues pour que l'égalité soit vraie. Pour ce faire, nous devons utiliser les opérations vu dans la section précédente pour isoler l'inconnue dans un membre (n'avoir que l'inconnue dans un membre). La valeur de l'inconnue est alors dans l'autre membre.

Exemple 18: Pour résoudre l'équation x-3=5, on fait :

$$x-3=5$$

 $\iff x-3+3=5+3$ (soustraire 3 à chaque membre)
 $\iff x=8$

Donc la solution du système est x=8. Exemple 19: Pour résoudre l'équation $\frac{x}{2}=8$, on fait :

$$\frac{x}{2} = 8$$
 $\iff \frac{x}{2} \times 2 = 8 \times 2 \quad \text{(multiplier chaque membre par 2)}$ $\iff x = 16$

Donc la solution du système est x = 16.

Astuce 2. Pour vérifier la solution d'une équation, on peut tester l'égalité pour la valeur de la solution. Si l'égalité tiens, notre solution est bonne. Sinon, notre solution n'est pas bonne.

Exercice 11. Résout les équations suivantes : 2 + x = 7, 9x = 8, 2x - 1 = 6, 3 = x. Vérifie tes solutions après les avoir trouvées.

Équations produit-nul

Quel type de produit donne o? Lorsque nous avons un produit de plusieurs nombres dont le résultat est nul, un de ces nombres doit être nul. Par exemple, 3a = 0 implique que a = 0. On a alors la propriété suivante :

Propriété 4. Si on a ab = 0, les solutions sont a = 0 ou b = 0.

Équation du second degré

Opérations de base

4.1 Introduction

Définition 7. Une opération est un processus nous permettant d'obtenir un résultat à partir d'un ou plusieurs opérandes.

En arithmétique (la mathématique qui étudie les nombres), nous avons quatre opérations de base : l'addition, la soustraction, la multiplication et la division.

Note sur la notation : le symbole \forall signifie "pour tout". Le symbole \exists signifie "il existe".

4.2 Addition et soustraction

Propriété de l'addition

Les propriétés de l'addition sont :

- **commutative** : $\forall a, b, a + b = b + a$;
- associative : $\forall a, b, c, (a + b) + c = a + (b + c) = a + b + c;$
- existence d'un **opposé** : $\forall a, \exists -a \text{ tel que } a + (-a) = 0.$

L'addition possède aussi un **élément neutre** (un élément qui ne change pas l'autre nombre) : $\forall a$, a + 0 = a.

Propriété de la soustraction

La soustraction est:

- anticommutative : $\forall a, b, a b = -(b a)$;
- pas **associative** : en général, $a (b c) \neq (a b) c$;
- involutive : $\forall a, a a = 0$.

La soustraction possède un élément neutre seulement à droite : $\forall a, a-0=0, \text{ mais } 0-a\neq a.$

Lien entre addition et soustraction

On peut considérer la soustraction comme un cas particulier de l'addition. En effet, $\forall a, b$, on a a - b = a + (-b).

Multiplication et division 4.3

Propriété de la multiplication

Les propriétés de la multiplication :

- associativité: $\forall a, b, c, a \times (b \times c) = (a \times b) \times c$;
- commutativité : $\forall a, b, a \times b = b \times a$;
- existence d'un **élément neutre** : $\forall a, a \times 1 = a$;
- existence d'un **inverse** : $\forall a \neq 0, \exists \frac{1}{a}$ tel que $a \times \frac{1}{a} = 1$; existence d'un **élément absorbant** : $\forall a, a \times 0 = 0$.

Propriété de la division

Les propriétés de la division :

- non-associativité : $\forall a, b, c, a \div (b \div c) \neq (a \div b) \div c$;
- non-commutativité : $\forall a, b, a \div b \neq b \div a$;
- existence d'un **élément neutre** à droite : $\forall a, a \div 1 = a$;
- existence d'un **élément absorbant** à gauche : $\forall a, 0 \div a = 0$.

Lien entre multiplication et division

On peut considérer la division comme un cas particulier de la multiplication. En effet, $a \div b = a \times \frac{1}{b}$.

Symétrie entre addition et multiplication

Il y a une certaine forme de symétrie entre l'addition et la multiplication.

Propriété	Addition	Multiplication
Associativité	a + (b+c) = (a+b) + c	$a \times (b \times c) = (a \times b) \times c$
Commutativité	a + b = b + a	$a \times b = b \times a$
Élément neutre	a + 0 = a	$a \times 1 = a$
Opposé / inverse	a + (-a) = 0	$a imes rac{1}{a} = 1$
Écriture	Somme de $n \ a$:	Produit de $n a$:
	$a + a + \dots + a = a^n$	$a \times a \times \dots \times a = a^n$
Opération inverse	Soustraction:	Division : $a \times \frac{1}{b} = a \div b$
	a + (-b) = a - b	

Propriété	Soustraction	Division
Non-associativité	$a - (b - c) \neq (a - b) - c$	$a \div (b \div c) \neq (a \div b) \div c$
Anti-	a - b = -(b - a)	$a \div b = 1 \div (b \div a) \text{ (si } a \neq 0)$
commutativité		
Élément neutre	a - 0 = a (à droite	$a \div 1 = a$ (à droite
	seulement : $0 - a \neq a$)	seulement : $1 \div a \neq a$)
Involutive	a - a = 0	$a \div a = 1$
Opération inverse	Addition: $a - b = a + (-b)$	Multiplication : $a \div b = a \times \frac{1}{b}$

4.5 Exposants et racines

Exposants

Définition 8. L'exponentiation est une opération, définie de la façon suivante : $a \times a \times \cdots \times a = a^n$.

Propriété 5. Les exposants ont les propriétés suivantes :

```
\begin{array}{l} -a^{b+c}=a^b\times a^c\,;\\ -(ab)^c=a^c\times b^c\,;\\ -(a^b)^c=a^{bc}.\\ Exemple \ \textit{20:} \ \text{On a:}\ 2^3=2\times 2\times 2=8,\ 2^{4+3}=2^4\times 2^3=16\times 8=128=2^7. \end{array}
```

Racines

Définition 9. La **racine** est l'opération inverse des exposants. On la définie comme suit : $\sqrt[n]{a^n} = a$. $\sqrt[n]{a}$ n'est définit que pour $a \ge 0$.

Propriété 6. Nous avons la propriété suivantes : $\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$.

Notations

5.1 Système de notation numéraire

Il existe de nombreuses façons d'écrire un nombre. Dans cette section, nous verrons plusieurs systèmes de notation particulièrement utilisés.

Système décimal

Le système décimal est le système de notation utilisé le plus couramment. Dans ce système, nous écrivons les nombres en utilisant les chiffres 0, 1, 2, 3, 4, 5, 6, 7, 8 et 9.

Système romain

Le système de numération romaine fut développé par les romains et provient de pratiques développées avant l'apparition de l'écriture—il y a donc très longtemps. Aujourd'hui, ils sont principalement utilisés pour désigner les siècles (ex. : XXI^e siècle) et le numéro d'ordre des noms de souverains (ex. : Louis XIV). Les règles d'utilisation de ce système d'écriture sont les suivantes :

- 1 s'écrit I, 2 s'écrit II et 3 s'écrit III;
- 5 s'écrit V, 10 s'écrit X, 50 s'écrit L, 100 s'écrit C, 500 s'écrit D et 1000 s'écrit M;
- tout symbole qui suit un symbole de valeur supérieure ou égale s'ajoute à celui-ci (ex. : 6 s'écrit VI);
- tout symbole qui précède un symbole de valeur supérieure se soustrait à ce dernier (ex. : 4 s'écrit IV).

Quelques exemples pour mieux comprendre : XVI = X + V + I = 10 + 5 + 1 = 16, XL = L - X = 50 - 10 = 40, XIV = X + (V - I) = 10 + (5 - 1) = 14.

Notation scientifique

 alors très rapidement encombrante, surtout lors de calculs impliquant plusieurs de ces valeurs. Les mathématiciens ont donc eu l'idée d'utiliser les exposants (que nous avons vu dans le chapitre précédant) afin d'alléger la notation de ces très grands ou très petits nombres. Étant donné l'utilité de cette notation pour les matières scientifiques, ils nommèrent ce système de notation la **notation scientifique**.

Voici quelques exemples de notations scientifique et de la notation décimale correspondante.

Écriture décimale	Écriture scientifique
10 000 000 000 000 000 000 000 000 000	
000 000 000 000 000 000 000 000 000 000 000	10^{100}
000 000 000 000 000 000 000 000	
0.000 000 000 000 000 000 167	$1.67 \cdot 10^{-22}$
3 400	$3.4 \cdot 10^3$
0.007 8	$7.8 \cdot 10^{-3}$

5.2 Préfixes

Lorsque nous utilisons des nombres, nous souhaitons souvent quantifier une propriété du monde, tel qu'une distance, du temps ou de la masse. Pour ce faire, nous utilisons des unités telles que le mètre, la seconde ou le kilogramme. Cependant, tout comme dans le cas de la notation scientifique, il nous est utile de pouvoir écrire des grands et petits nombres plus facilement. Pour ce faire, nous pouvons modifier l'unité. Par exemple, lorsque nous mesurons une distance sur une feuille, nous utilisons des centimètres plutôt que des mètres. Voici un tableau de toutes les préfixes que nous pouvons apposer à une unité.

Préfixe	Symbole	Forme exponentielle
exa	E	10^{18}
peta	Р	10^{15}
tera	Т	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deca	da	10^{1}
_	_	$10^0 = 1$
deci	d	10^{-1}
centi	С	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
femto	f	10^{-15}
atto	a	10^{-18}

Troisième partie

Analyse

L'Analyse est la branche de la mathématique qui étudie la notion de limite (des objets qui deviennent de plus en plus petits ou grands) ainsi que des fonctions.

Ensembles

6.1 Introduction

Un ensemble est un objet mathématique qui contient d'autres objets mathématiques distincts. Le plus souvent, quand nous parlons d'ensembles, nous parlons d'ensembles de nombres. Nous allons nous concentrer sur ce type d'ensemble.

Définition 10. Un **ensemble** est une collection d'objets distincts.

Définition 11. Un **ensemble de nombre** (souvent appelé ensemble par abus de language) est une collection de nombres distincts. Nous les notons à l'aide d'accolades entre lesquelles nous listons tous les objets que l'ensemble contiens.

Exemple 21: $\{1, 2, 6\}$ est un ensemble contenant les nombres 1, 2 et 6.

Exercice 12. Écrit l'ensemble contenant les nombres -8, 0, 10 et -4.

Propriété 7. Voici quelques propriétés de base pour les ensembles.

- 1. Nous notons qu'un objet a est dans l'ensemble A comme suit : $a \in A$. Nous notons qu'un objet a n'est pas dans l'ensemble A comme suit : $a \notin A$.
- 2. Nous pouvons noter un ensemble de manière explicite (lister tous les éléments contenus dans l'ensemble) ou de manière formelle (en donnant une règle que tous les éléments dans l'ensemble doivent respecter). Pour noter un ensemble de manière formelle, on fait comme suit : {x | < règle que x doit suivre >}.
- 3. L'ordre des objets dans un ensemble n'importe pas. En language mathématique, cela donne : $\{a,\ldots,e,f,\ldots,z\}=\{a,\ldots,f,e,\ldots,z\}.$

Définition 12. L'ensemble ne contenant rien est appelé **l'ensemble vide**. Il est noté \emptyset , ou plus rarement $\{\}$. En notation mathématique, il définit comme suit : $\forall a, a \notin \emptyset$.

6.2 Opérations de base

Les opérations avec lesquelles nous sommes familier ne fonctionnent pas sur les ensembles. Nous ne pouvons pas additionner ou multiplier deux ensembles. Cependant, nous avons de nouvelles opérations qui fonctionnent sur les ensembles (et seulement sur les ensembles).

Définition 13. Une union (notée \cup) est une opération binaire (sur deux ensembles) qui créé un nouvel ensemble contenant tous les éléments de ces deux ensembles. En notation mathématique : $A \cup B = \{x \mid (x \in A) \lor (x \in B)\}.$

```
Exemple 22: \{1, 2, 5\} \cup \{-9, 0, 5\} = \{-9, 0, 1, 2, 5\}.
```

Définition 14. Une intersection (notée \cap) est une opération binaire qui créé un nouvel ensemble contenant uniquement les objets présent dans les deux ensembles. En notation mathématique : $A \cap B = \{x \mid (x \in A) \land (x \in B)\}.$

```
Exemple 23: \{1,2,5\} \cap \{-9,0,5\} = \{5\} \text{ et } \{1,2,5\} \cap \{-9,0\} = \emptyset.
```

Exercice 13. Donne l'union et l'intersection des paires d'ensembles suivants : $\{9,5,0\}$ et $\{9,10,7\}$, $\{\pi,8,15.3\}$ et $\{\varphi,3.14,-1\}$.

Définition 15. Soit A et B deux ensembles. Le **complémentaire** de A par rapport à B est l'ensemble des élements présent dans A mais absent de B. On le note $A \setminus B$.

```
Exemple 24: \{1, 2, 3, 4\} \setminus \{1, 3, 5\} = \{2, 4\}.
```

Exercice 14. Donne le complément de $\{4,5,2,-10\}$ par rapport à $\{9,2\}$. Quel est le résultat de $\{8,9.9\} \setminus \{7,8\}$?

6.3 Relations entre ensembles

Les nombres ont des relations entre eux. Par exemple, nous pouvons écrire 3 < 9 ou $0.5 = \frac{1}{2}$. Il existe des relations similaires pour les ensembles.

Définition 16. Deux ensembles sont **équivalents** si, et seulement si, ils contiennent les mêmes objets. En language mathématique, cela donne : $A = B \iff (a \in A \implies a \in B) \land (b \in B \implies b \in B)$.

Exemple 25: Les ensembles $\{4,5,6\}$ et $\{6,4,5\}$ sont équivalents étant donné qu'ils continent les mêmes nombres. Les ensembles $\{1,2\}$ et $\{1,2,3\}$ ne sont pas équivalents car le second ensemble contient 3 mais pas le premier ensemble.

Définition 17. Un ensemble A est un **sous-ensemble** de l'ensemble B, noté $A \subseteq B$ si, et seulement si, tous les éléments de A sont présent dans B. Un ensemble A est un **sous-ensemble strict** de l'ensemble B, noté $A \subset B$ si, et seulement si, tous les éléments de A sont présent dans B et qu'il existe au moins un élément de B absent de A. On dit aussi que A est **inclus** dans B ou que A est **strictement inclus** dans B.

Un ensemble B est un **sur-ensemble** de l'ensemble A, noté $B \supseteq A$ si, et seulement si, tous les éléments de A sont présent dans B. Un ensemble B est un **sur-ensemble strict** de l'ensemble A, noté $B \supset A$ si, et seulement si, tous les éléments de A sont présent dans B et qu'il existe au moins un élément de B absent de A.

```
Exemple 26: \{1,2,3\} \subset \{1,2,3,5\}, \{8,9\} \supset \{8\}.
```

6.4 Ensembles les plus utilisés

Certains ensembles sont particulièrement utiles aux mathématiciens. Nous avons déjà vu l'un de ces ensembles : l'ensemble vide. Dans cette section, nous allons étudier d'autres ensembles particulièrement utilisés.

Définition 18. L'ensemble des **entiers naturels**, noté \mathbb{N} , est l'ensemble de tous les nombres entiers positifs.

Eclairsissement 1: Les premiers termes de \mathbb{N} sont 0, 1, 2, 3, etc.

Définition 19. L'ensemble des **entier relatifs**, noté \mathbb{Z} , est l'ensemble de tous les entiers.

Eclairsissement 2: Nous pouvons lister les termes de \mathbb{Z} comme suit : 0, 1, -1, 2, -2, etc.

Définition 20. L'ensemble des **rationnels**, noté \mathbb{Q} , est l'ensemble des nombres qui peuvent être écrit sous forme de fraction.

Exemple 27: $1 \in \mathbb{Q}, \ \pi \notin \mathbb{Q}, \ -\frac{1}{2} \in \mathbb{Q}.$

Définition 21. L'ensemble des **réels**, noté \mathbb{R} , est difficile à définir à notre niveau. Nous dirons simplement que avec nos connaissances, tous les nombres que nous utilisons sont des nombres réels. Les nombres qui sont dans les réels mais ne peuvent pas s'écrire sous forme de fraction (et donc ne sont pas dans \mathbb{Q}) sont només **irrationnels**.

Eclairsissement 3: Les nombres π , e, φ sont des irrationnels (ils sont des nombres réels mais ne sont pas des nombres rationnels). Les nombres 1, 0, 4.567 et $\frac{3}{4}$ sont des nombres réels et rationnels.

Exercice 15. Quelles relations pouvons-nous établir entre les ensembles \mathbb{N} , \mathbb{Z} , \mathbb{Q} et \mathbb{R} ? Autrement dit, pouvez-vous écrire lesquels sont équivalents et lesquels sont des sous-ensembles d'un autre ensemble?

Fonction

7.1 Introduction

En mathématique, nous travaillons avec des objets. Nous avons déjà vu plusieurs de ces objets, tel que les nombres, les figures géométriques, les opérations, les ensembles, etc. Un object particulièrement utile en mathématique s'appelle une fonction. Une fonction est une relation entre deux ensembles, qui "relie" des éléments du premier ensemble (le "domaine") au second ensemble ("l'image").

L'ensemble des flèches dans l'image au-dessus représentent une fonction allant de l'ensemble $\{0, 1, 2, 3\}$ à l'ensemble $\{5, 6, 7, 8\}$.

7.2 Écriture d'une fonction

Nous ne pouvons pas utiliser des dessins pour définir toutes les fonctions que nous utilisons, pour des raisons assez évidentes (manque de place, difficile à généraliser, etc.). Les mathématiciens ont donc du inventer une manière de pouvoir écrire une fonction en language mathématique. Afin de l'illustrer, nous allons travailler avec un example. Considérons l'expression suivante :

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = x + 1$$

La première lettre, f, est le nom de la fonction. On le retrouve un peu plus loin aussi. Toute fonction doit avoir un nom : souvent, on appelle les fonctions f ou g, mais nous pouvons en nommer bonjour ou $nom\ de\ fonction$.

Après le nom de la fonction, nous mettons un ":", pour séparer le nom de la suite. Nous avons ensuite $\mathbb{R} \to \mathbb{R}$, qui est de la forme domaine \to image. Dans ce cas (comme dans la majorité des fonctions que nous étudierons), le domaine et l'image sont les réels, \mathbb{R} .

Ensuite, nous avons de nouveau le nom de la fonction, f, suivit d'entre parenthèse une variable, x. On met un égal et de l'autre coté, une expression (dans ce cas, x + 1) qui incorpore la variable pour donner l'image en fonction de l'inconnue.

Dans ce cas, par exemple, l'image de 2 par cette fonction f est 2+1=3. L'image de 0 est 0+1=1. Pour écrire "l'image de 2 par la fonction f" en language mathématique, on écrit f(2). Nous pouvons donc réécrire "l'image de 2 par cette fonction f est 2+1=3" en language mathématique, ce qui nous donne f(2)=2+1=3 ou plus simplement, f(2)=3.

Bien qu'il est important d'inclure le domaine et l'image d'une fonction, étant donné que nous travaillons avec des fonctions qui ont pour domaine et image \mathbb{R} , souvent, nous n'incluons pas la partie $f: \mathbb{R} \to \mathbb{R}$, ce qui nous donne simplement f(x) = x + 1 comme définition pour la fonction au-dessus.

Exercice 16. Écrit la définition d'une fonction qui retourne comme image son entrée plus 4. Exercice 17. Soit f(x) = 2x + 3. Quelle est la valeur de f(5), f(0) et f(1)? Pour quelle valeur de x avons-nous f(x) = 10? (Indice pour cette dernière question : il faut résoudre une équation.)

7.3 Vocabulaire pour les fonctions

Les fonctions sont un nouveau type d'objet, avec cela viennent de nouveaux concepts et un vocabulaire associé.

Définition 22. Une **fonction** est une relation entre deux ensembles qui relie chaque élément du premier ensemble à tout au plus un élément du second ensemble.

Définition 23. Le **domaine** d'une fonction est l'ensemble des valeurs auxquelles nous pouvons appliquer la fonction.

Définition 24. L'image d'une fonction est l'ensemble des valeurs que l'application de la fonction à des valeurs du domaine peut prendre. Si le domaine de la fonction est X, on note l'image de la fonction f(X).

Définition 25. Une fonction est bien-définie si tous les éléments du domaine ont une image.

Quatrième partie

Géométrie

La Géométrie est la branche de la mathématique qui étudie les espaces (dans notre cas, les espaces de deux ou trois dimensions, que nous nommons respectivement le plan et l'espace).

Propriétés des triangles

8.1 Droites et segments remarquables

Médiatrices

Définition 26. La **médiatrice** d'un segment est la droite qui passe par le milieu du segment et qui lui est perpendiculaire.

Propriété 8. Si un point est sur la médiatrice d'un segment alors il est **équidistant** des extrémités de ce segment. Réciproquement, si un point est équidistant des extrémités d'un segment, alors ce point est sur la médiatrice de ce segment.

Exemple 28: Dans l'image au-dessus, les deux segments bleus sont de même longueur.

Propriété 9. Les médiatrices des côtés d'un triangle non aplati sont concourantes en un point qui est le centre du cercle circonscrit à ce triangle. Si un triangle est rectangle, alors son hypoténuse est un diamètre de son cercle circonscrit.

Propriété 10. Si l'un des côtés d'un triangle est un diamètre de son cercle circonscrit, alors ce triangle est rectangle (le diamètre du cercle circonscrit est alors son hypoténuse).

Bissectrices

Définition 27. La bissectrice d'un angle est la droite qui partage cet angle en deux angles égaux.

Propriété 11. Si un point est sur la bissectrice d'un angle, alors il est à égale distance des côtés de l'angle et inversement.

Propriété 12. Les trois bissectrices d'un triangle sont concourantes. Leur point de concours, étant équidistant des trois côtés du triangle, est le centre d'un cercle tangent aux trois côtés du triangle. Ce cercle est appelé cercle inscrit au triangle.

8.2 Théorème de Pythagore et réciproque

Théorème de Pythagore

Propriété 13. [Théorème de Pythagore] Dans un triangle rectangle, le carré de la longueur de l'hypoténuse (le côté opposé à l'angle droit) est égal à la somme des carrés des longueurs des deux autres côtés.

 $D\'{e}monstration.$ La démonstration du théorème de Pythagore est particulièrement connue. Elle commence traditionnellement avec la figure suivante.

Formule de Pythagore :

$$AB^2 = AC^2 + CB^2$$

Exemple 29: Pour le triangle suivant, nous avons d'après le théorème de Pythagore :

$$AB^{2} = AC^{2} + CB^{2}$$

$$\Rightarrow AB = \sqrt{AC^{2} + CB^{2}}$$

$$\Rightarrow AB = \sqrt{2.5^{2} + 1.5^{2}}$$

$$\Rightarrow AB = \sqrt{6.25 + 2.25}$$

$$\Rightarrow AB = \sqrt{8.5} \text{ cm}$$

$$\Rightarrow AB \approx 2.92 \text{ cm}$$

Donc $AB = \sqrt{8.5}$ cm ≈ 2.92 cm.

Exercice 18. Considérons le triangle ABC rectangle en B. Nous savons que AC=5 cm et que BA=3 cm. Quelle est la longueur de BC?

Réciproque du théorème de Pythagore

Avant tout, que signifie le mot réciproque? Dans la Propriété 8.2, nous avons vu que si un triangle est rectangle, alors nous pouvons en déduire quelque chose. La réciproque inverse ces deux parties de la proposition : si nous avons que cette deuxième partie, alors nous pouvons en déduire la première partie. Attention, la réciproque d'une proposition n'est pas toujours vraie. Dans le cas du théorème de Pythagore cependant, elle l'est. Nous avons alors le résultat suivant :

Propriété 14. Si dans un triangle, le carré du plus grand côté est égal à la somme des carrés des deux autres côtés, alors le triangle est rectangle (en le sommet opposé au plus grand côté).

Contraposée du théorème de Pythagore

Propriété 15. Si dans un triangle, le carré du plus grand côté est différent de la somme des carrés des deux autres côtés, alors le triangle n'est pas rectangle.

8.3 Théorème de Thalès

Le théorème de Thalès est un autre théorème fondamental pour les relations entre distances au sein d'un triangle.

Cinquième partie Probabilité et Statistique

La Probabilité est la branche de la mathématique qui étudie la probabilité (la "chance") qu'un évènement se produise. La Statistique est la branche de la mathématique qui étudie des évènements à travers des informations incomplètes.

Sixième partie

Algorithmique

L'Algorithmique est la branche de la mathématique qui étudie les règles et le fonctionnement des algorithmes, soit des processus systématiques de résolution de problèmes.

Septième partie

Exercices

Exercises

9.1 Mardi 22 Décembre

Nombres Relatifs

Exercice 19. Effectue les calculs suivants.

A = 19 - 4	E = 9 - 7 + (-3)
B = -17 + 8	$F = 8 \times (-4) + (-6)$
C = 2 - 9	$G = -1.5 \times (-6 - 8)$
D = -8 - 6	$H = 6 - 7 \times (-3)$

Distribution et factorisation

Exercice 20. Distribue les expressions suivantes.

$$A = y(2-x)$$
 $C = (a-b)(6-b)$
 $B = -b \times (5-y+x)$ $D = (1.5-zy)(y+3)$

Exercice 21. Factorise les expressions suivantes.

$$A = ac + ab$$
 $C = 7a + 21 - 56y$
 $B = 25 + 5x$ $D = 8f - 18g + 6b$

Équations

Exercice 22. Vérifie si x = 1.5 et y = -7 sont des solutions des équations suivantes.

A.
$$5x - y = \frac{1}{2}$$

B. $x = y - 2$
C. $4.2y = 27.9 + x$
D. $6y = -5x$

Exercice 23. Résout les équations suivantes.

A.
$$6x = 9$$

B.
$$x - 52.3 = 8$$

C.
$$2x - 7 = 9$$

D.
$$9x - 4 = x$$

Mercredi 23 Décembre 9.2

Exercice 24. Résout les équations suivantes :

A.
$$x + 3 = 7$$

B.
$$2x - 5 = 6$$

C.
$$-x - 3 = 4$$

D.
$$-6x + 3 = -9$$

E.
$$4(x-5) = -6$$

F.
$$\frac{3}{5} = \frac{x}{7}$$

G.
$$\frac{11}{4} = \frac{7}{7}$$

H.
$$\frac{4}{3}x + 6 = 10$$

I.
$$\frac{5}{2}x - \frac{3}{2} = \frac{11}{2}$$

$$\begin{aligned} & \text{F.} & \frac{3}{5} = \frac{x}{7} \\ & \text{G.} & \frac{11}{4} = \frac{7}{x} \\ & \text{H.} & \frac{4}{3}x + 6 = 10 \\ & \text{I.} & \frac{5}{2}x - \frac{3}{2} = \frac{11}{2} \\ & \text{J.} & \frac{1}{8}x - \frac{7}{5} = \frac{13}{20} \end{aligned}$$

Exercice 25. Résout les équations suivantes :

A.
$$3x + 4 = 2x - 1$$

B.
$$x + 7 = 3 - 5x$$

C.
$$\frac{2}{3}x + \frac{4}{3} = \frac{9}{5} - \frac{7}{3}x$$

D. $9x - \frac{5}{2} = 2x + \frac{5}{6}$

D.
$$9x - \frac{5}{2} = 2x + \frac{5}{6}$$

E.
$$\frac{3}{7} \left(\frac{7}{3}x + 2 \right) = \frac{2}{3} \left(4 - \frac{7}{5}x \right)$$

F. $\frac{7}{3} - 5x + \frac{16}{9} = 2 - x + \frac{5}{6}$
G. $\frac{-2x - 5}{5} = \frac{3x - 8}{4}$

F.
$$\frac{7}{3} - 5x + \frac{16}{9} = 2 - x + \frac{5}{6}$$

G.
$$\frac{32x-5}{5} = \frac{3x-7}{4}$$

Exercice 26. Résout les équations suivantes en appliquant la méthode du produit nul.

A.
$$(5x-2)(x+6) = 0$$

B.
$$(3x+4)(4x+5) = 0$$

C.
$$(3x-5)(-9x+1) = 0$$

D.
$$\left(x - \frac{1}{2}\right) \left(2x + \frac{1}{3}\right) = 0$$

E. $\left(\frac{3}{5}x - 1\right) \left(\frac{8}{3}x + 2\right) = 0$

$$E. \left(\frac{3}{5}x - 1\right)\left(\frac{8}{3}x + 2\right) = 0$$

Exercice 2γ .

A.
$$-97 + 66x = -84$$

B.
$$38 + -31x = 52$$

C.
$$58 + 70x = -55$$

D.
$$-33 + -9x = 27$$

E.
$$-91 + -88x = 52$$

F.
$$-14 + 60x = 91$$

G.
$$-78 + 25x = 14$$

H.
$$37 + 43x = -66$$

I.
$$40 + -55x = -8$$

J.
$$64 + 54x = 33$$

Exercice 28.

A.
$$(-82x + -14)(-29 + 47x) = 0$$

B.
$$(-77x + 72)(-28 + -12x) = 0$$

C.
$$(94x + 96)(-75 + 21x) = 0$$

D.
$$(-83x + 39)(36 + 90x) = 0$$

E.
$$(90x + -13)(-54 + -24x) = 0$$

F.
$$(36x + 62)(-75 + -66x) = 0$$

G.
$$(-48x + 34)(38 + 88x) = 0$$

H.
$$(-17x + -14)(-21 + -21x) = 0$$

I.
$$(-67x + -91)(-43 + -37x) = 0$$

J.
$$(-11x + -63)(60 + -77x) = 0$$

Nombres relatifs 9.3

Calculs automatisés: https://calculatice.ac-lille.fr/spip.php?rubrique2 Exercice 29. Effectue les calculs suivants :

$$A = 5 - 11$$
 $E = 7 - 12$ $B = -3 + 9$ $F = -4 + 2$ $C = -8 + 5$ $G = 6 + 5$ $H = -6 - 7$

Exercice 30. Effectue les calculs suivants :

$$A = -3.12 + 5.08 + 3.12$$
 $C = 8 - 9 + 8 - 7 + 7 - 8 + 9 - 6$ $D = 2.3 - 1.8 + 3.7 - 1.2$

Exercice 31. Effectue les calculs suivants :

$$\begin{array}{ll} A = (3-2) - (2-7) & D = (-2+4) - (3-7) + 3 - 5 + 1 \\ B = 3 - (6-2) + (-5+2) & E = 3 - (2+5) - (3-7) - 5 \\ C = 4+3-2-(3+4) & F = 1-4+(3+5) - (2+7) + 2 \end{array}$$

Exercice 32. Effectue les calculs suivants :

$$A = 5 \times (-3)$$

$$B = -9 \times 4$$

$$C = -6 \times (-5)$$

$$D = 1.5 \times (-8)$$

$$E = -6.3 \times (-7.8)$$

$$F = -3.9 \times 1.54$$

$$G = 6.1 \times (-5.6)$$

9.4 Équations

Simplification d'écriture

Exercice 33. Simplifie les expressions suivantes :

A = 7x + 5x	F = 4x(-5+1)
B = 3y + 12y	G = -6(x-5)
C = 12a - 5a	H = (a+b)(a+b)
D = x + 3x	$I = 2 \times 3 \times a \times (b \times c)$
$E = x + x^2 + x + x + x$	$J = u^2 + x^3 + x^2 + x \times x + 4x$

Distributivité et factorisation

Exercice 34. Distribue les calculs suivants, puis effectue les.

$$A = 8 \times (17 + 8) B = 5(20 - 7) C = -3(7 - 5)$$
$$D = (9 - 6) \times (-8) E = (7 + 4) \times 3 F = (11 + 9) \times (-2)$$

Exercice 35. Distribue les expressions suivantes.

$$A = x(y+z)$$

$$B = -x(-2+z)$$

$$B = -x(-2+y)$$

$$C = 4(x-y)$$

$$D = z(f + (-y))$$

$$E = hj(e-t)$$

$$F = (7 - d)h$$

$$G = (4+r)(-t)$$

$$H = (-b + 8)b$$

Tester une égalité

Exercice 36. Calcule chacune des expressions suivantes pour x=1 et y=4.

$$A = x^2 + x + y$$

$$B = x^2 + 2xy + y^2$$

$$C = x^2 y$$

$$C = x^2 y$$
$$D = x^2 + y^2$$

Calcule chacune des expressions suivantes pour x = 3 et y = 2.

$$A = xy + 4$$

$$B = x - y + 8$$

$$C = xy - x - y + 4$$
$$D = xyx$$

$$D = xyx$$

Exercice 37. Vérifie si x = 1 et y = 5 sont des solutions des équations suivantes.

A.
$$x + y = 6$$

B.
$$2x - 4 = y - 7$$

C.
$$7 = y - (-2)$$

D.
$$8 = 2x + y$$

Résoudre une équation

Exercice 38. Résout les équations suivantes.

A.
$$x + 3 = 12$$

B.
$$\frac{x}{8} = 16$$

A.
$$x + 3 = 12$$

B. $\frac{x}{8} = 16$
C. $-3x + 17 = 21 - x$

D.
$$15 + 7x = 2x$$

E.
$$2x + 8 = 6x$$

F.
$$3(5x+9) = 4(7+5x)$$

Samedi 2 Janvier 9.5

Exercice 39.

A.
$$-46 + 46x = -17$$

B.
$$48 + -46x = 58$$

C.
$$-26 + -37x = 55$$

D.
$$-1 + -30x = -93$$

Exercice 40.

A.
$$(59x + 57)(81 + -49x) = 0$$

B.
$$(9x + 6)(39 + -49x) = 0$$

Exercice 41. Calcule les résultats suivants :

$$A = \sqrt{9}$$

$$B = \sqrt[3]{8}$$

$$C = \sqrt{4^2}$$

$$C = \sqrt{4^2}$$

$$D = \sqrt{4} + \sqrt{2}$$

Exercice 42. Simplifie les expressions suivantes :

$$A = a^b \times a^b$$

$$B = a^b \times a^{-b}$$

$$C = \sqrt[4]{x^3 \times x} \times x$$

Exercice 43. Une mère a 30 ans, sa fille a 4 ans. Dans combien d'années l'âge de la mère sera-t-il le triple de celui de sa fille?

Exercice 44. Un père dispose de 1600 \in pour ses trois enfants. Il veut que l'aîné ait 200 \in de plus que le second et que le second ait 100 \in de plus que le dernier. Quelle somme doit il donner à chacun?

9.6 Dimanche 3 Janvier

Exercice 45. Calcule les résultats suivants.

$$A = \sqrt{25}$$

$$B = \sqrt{36}$$

$$C = \sqrt{-90}$$

$$D = \sqrt{81}$$

Exercice 46. Vrai ou faux?

9.7 Semaine du 11 Janvier 2021

Exercice 47. Résout les équations suivantes :

Exercice 48. Simplifie les écritures suivantes :

A =
$$a + 4(b - a) + 7b^2(a^3 - b)$$
 C = $\sqrt{25x^2} \times \sqrt{81y} + \sqrt{14}$
B = $(x^2 - 4 + 5x)(x - 1.5)$

Exercice 49. Un père a 27 ans et son fils en a 3. Dans combien d'années l'âge du fils sera-t-il égal au quart de celui de son père?

Exercice 50. Christophe est chargé d'organiser l'excursion de sa classe. Il calcule le prix du voyage à 11€ par personne. Un élève devant renoncer à participer à l'excursion, le prix s'élève finalement à 11,50€. Combine d'élèves compte la classe de Christophe? Tu peux assumer que le prix total du voyage ne dépend pas du nombre d'étudiants qui viennent.

Exercice 51. Le triple d'un nombre diminué de 12 est 108. Quel est ce nombre?