

# Universidad Autónoma de Yucatán Facultad de Matemáticas Algoritmia

### ADA 02: Lógica proposicional

**Descripción:** Realice los siguientes ejercicios sobre proposiciones.

- 1. ¿Cuáles de las siguientes sentencias son proposiciones?
  - a. Boston es la capital de Massachusetts.
  - b. Miami es la capital de Florida.
  - c. 2+3=5
  - d. 5+7=10.
  - e. x+2=11.
  - f. Responde esta pregunta.

#### PROPOSICIONES - NO PROPOSICIONES.

- 2. Suponga que un un Smartphone A tiene 256MB RAM y 32GB de ROM, y la resolución de su cámara es de 8MP; El Smartphone B tiene 288 MB en RAM y 64 GB de ROM, y la resolución de su cámara es de 4 MP; y el Smartphone C tiene 128 MB en RAM y 32 GB en ROM, y la resolución de su cámara es de 5 MP. Determine el valor de verdad de cada una de las siguientes proposiciones.
  - a. El Smartphone B es el que tiene mayor RAM de estos tres smartphones. **VERDADERO**
  - El Smartphone C tiene mayor ROM o una mayor resolución en la cámara que el Smartphone B. FALSO
  - c. El Smartphone B tiene mayor RAM, más ROM, y una mayor resolución en la cámara que el Smartphone A. FALSO

 d. Si el Smartphone B tiene mayor RAM y más ROM que el Smartphone C, entonces también tiene una mayor resolución en la cámara. FALSO

### 3. Sean p y q las siguientes proposiciones

p : Yo compré un boleto de lotería esta semana.

q : Yo gané un millón de pesos en el casino.

Expresa cada una de estas preposiciones (en el lenguaje español) como se indica a continuación.

- a. ¬p "Yo no compré un boleto de lotería esta semana."
- b. pvq "Yo compré un boleto de lotería esta semana o gané un millón de pesos en el casino."
- c. p→q "Yo compré un boleto de lotería esta semana entonces gané un millón de pesos en el casino."
- d. p∧q "Yo compré un boleto de lotería esta semana y gané un millón de pesos en el casino."
- e. p↔q "Yo compré un boleto de lotería esta semana sí y solo si gané un millón de pesos en el casino."
- f. ¬p→¬q "Yo no compré un boleto de lotería esta semana entonces no gané un millón de pesos en el casino."
- g. ¬p∧¬q "Yo no compré un boleto de lotería esta semana y no gané un millón de pesos en el casino."
- h. ¬p∨(p∧q) "Yo no compré un boleto de lotería esta semana; o compré un boleto de lotería esta semana y gané un millón de pesos en el casino."

## 4. Sean p y q las siguientes proposiciones

p : Está bajo cero.

q : Está nevando.

Escribe estas proposiciones usando p y q y los conectores lógicos (y, o, no, si..entonces)

- a. Está bajo cero y está nevando. pAq.
- b. Está bajo cero pero no está nevando. p∧¬q.
- c. No está bajo cero y no está nevando. ¬p∧¬q.

- d. Está nevando o bajo cero (o ambos). pvq v (pAq).
- e. Si está bajo cero entonces está nevando. p→q.
- f. Que esté bajo cero es condición necesaria para que esté nevando.
  q→p u otra forma sería ¬p→¬q.
- 5. Determine si cada una de estas sentencias condicionales son verdaderas o falsas:
  - a. Si 1+1=3, entonces los unicornios existen. VERDADERAS
  - b. Si 1+1=3, entonces los perros vuelan. VERDADERAS
  - c. Si 1+1=2, entonces los perros pueden volar. FALSAS
  - d. Si 2+2=4, entonces 1+2=3. VERDADERAS
- 6. Construye una tabla de verdad para cada una de estas proposiciones compuestas.
  - а. р∧¬р

| Entradas |   | n | <b>– 5</b> | Resultado |
|----------|---|---|------------|-----------|
| р        | р | Р | ¬ p        | Resultado |
| V        | V | V | F          | F         |
| F        | F | F | V          | F         |

| Entradas |   | n | <b>– 5</b> | Resultado |
|----------|---|---|------------|-----------|
| р        | р | Р | ¬ p        | Resultado |
| V        | V | V | F          | V         |
| F        | F | F | V          | V         |

| Entradas |   | D\/- a | α. | Resultado |
|----------|---|--------|----|-----------|
| р        | q | p∨¬q   | Ч  | Resultado |
| V        | V | V      | V  | V         |
| V        | F | V      | F  | F         |
| F        | V | F      | V  | V         |
| F        | F | V      | F  | F         |

d.  $(p \lor q) \rightarrow (p \land q)$ 

| Entradas |   | D\/G | n A a | Resultado  |
|----------|---|------|-------|------------|
| р        | q | p∨q  | p∧q   | ivesuitado |
| V        | V | V    | V     | V          |
| V        | F | V    | F     | F          |
| F        | V | V    | F     | F          |
| F        | F | F    | F     | V          |

e.  $(p\rightarrow q)\leftrightarrow (\neg q\rightarrow \neg p)$ 

| Entradas |   | n va | 70 .70 | Resultado |
|----------|---|------|--------|-----------|
| р        | q | p→q  | ¬q→¬p  | Nesultado |
| V        | V | V    | V      | V         |
| V        | F | F    | F      | V         |
| F        | V | V    | V      | V         |
| F        | F | V    | V      | V         |

f.  $(p \rightarrow q) \rightarrow (q \rightarrow p)$ 

| Entradas |   | n va | a vp | Resultado |
|----------|---|------|------|-----------|
| р        | q | p→q  | d→b  | Resultado |
| V        | V | V    | V    | V         |
| V        | F | F    | V    | V         |
| F        | V | V    | F    | F         |
| F        | F | V    | V    | V         |

- 7. Realiza las operaciones OR, AND y XOR de cada uno de los siguientes pares de cadenas de bits.
  - a. 101 1110, 010 0001

OR: 111 1111

AND: 000 0000

XOR: 111 1111

b. 1111 0000, 1010 1010

OR: 1111 1010

AND: 1010 0000

XOR: 0101 1010

c. 00 0111 0001, 10 0100 1000

OR: 10 0111 1001

AND: 00 0100 0000

XOR: 10 0011 1001

d. 11 1111 1111, 00 0000 0000

OR: 11 1111 1111

AND: 00 0000 0000

XOR: 11 1111 1111