Traditional and Representational Machine Learning

ML-based Binary Classifier

Corpus

Classification algorithm

Specific Algorithm Which Learns From Data

Corpus

Classification algorithm

Choice of Algorithm Determined by Experts

Corpus

Classification algorithm

Features Determined by Experts

Corpus

Classification algorithm

Traditional ML Models

Regression models: Linear, Lasso, Ridge, SVR

Classification models: Naive Bayes, SVMs, Decision trees, Random forests

Dimensionality Reduction: Manifold learning, Factor analysis

Clustering: K-means, DBSCAN, Spectral clustering

Traditional ML Models

Have a fundamental algorithmic structure to solve problems

The algorithm is fed data which trains the algorithms parameters

Called model parameters

Traditional ML Models

Build a tree structure to classify instances Fit a line or a curve on data to make predictions

Apply probabilities on input data to get output probabilities

"Traditional" ML-based systems rely on experts to decide what features to pay attention to – and how

Representation ML Models

Also used to solve classification, regression, clustering, and dimensionality reduction

Learn significant features from the underlying data

Deep learning models such as neural network

"Representation" ML-based systems figure out by themselves what features to pay attention to – and how

What Is a Neural Network?

Deep Learning

Algorithm that learn what features matter

Neural Networks

The most common class of deep learning algorithm

Neurons

Simple building blocks that actually "learn"

Neural Networks Layer N 7 Layer Layer

Corpus

Layers in a neural network

Neural Networks

Corpus

Each layer consists of individual interconnected neurons

Each Layer Extracts Information from Data

Traditional vs. Deep Learning Models

Traditional ML Model

Features used in models explicitly chosen by domain experts

Structured data such as numbers and probabilities

Classification, regression, clustering, and dimensionality reduction

Deep Learning ML Model

Features used in models explicitly chosen by model itself

Unstructured data such as images and movies

Classification, regression, clustering, and dimensionality reduction

Traditional vs. Deep Learning Models

Traditional ML Model

Wide range of problem-specific solution techniques

Each solution technique adopts characteristic approach

User has more insight into mechanics and internals of models

Scikit-learn

Deep Learning ML Model

Neural networks by far the most common solution technique

All solution techniques rely on neurons and interconnections between them

Black-box models that are hard to question or reverse-engineer
TensorFlow, Keras, PyTorch