

# A formalization of the $\lambda$ -Y calculus

Samuel Balco

GTC

University of Oxford

Supervised by Faris Abou-Saleh, Luke Ong and Steven Ramsay

Submitted in partial completion of the

MSc in Computer Science

Trinity 2016

## Acknowledgements

First and foremost, I would like to thank my supervisors Steven Ramsay, Faris Abou-Saleh and Luke Ong for guidance on this project. I want to especially thank Steven, whose office I would, on occasion, barge into with a non-working proof, which he would always be willing to discuss and help me correct.

I also want to thank Alexander Kurz, my past-future supervisor, and Sam Jones, my close friend, for persuading me to apply to Oxford. I would not have been here, learned all that I had and met the cool people I did, without their encouragement. Lastly, I want to thank my housemate Fiona MacLean for the great evening kitchen chats, which made Oxford all the more enjoyable, Zbynek Leobl, who was a great squash partner (even though we were both really bad at it) and Alberto Sadde, for great chats at the department and over beer, in the pub.

## **Abstract**

Higher order model checking (HOMC), has been intensively studied in recent years (C.-H. L. Ong (2006), Kobayashi (2013), Ramsay, Neatherway, and Ong (2014), Tsukada and Ong (2014)). A common approach to studying HOMC is through higher order recursion schemes (HORS).

Recently, it was shown that  $\lambda$ -Y calculus can be used as an alternative to HORS, when studying higher order model checking (Clairambault and Murawski (2013)). Whilst the theory of HORS and  $\lambda$ -Y has been formalized "on paper", there has been little done in mechanizing this theory in a fully formal setting of a theorem prover.

This project provides a starting point for such a formalization, by mechanizing the  $\lambda$ -Y calculus along with the proof of confluence for simple types and mechanizing intersection types for the  $\lambda$ -Y calculus together with proofs of subject invariance for intersection typing. The mechanization of intersection types, and proofs of subject invariance especially, form an important basis of HOMC theory, since these results are key to sound and complete higher order model checking. The project is split into two parts, with the mechanization of simply typed  $\lambda$ -Y calculus and proofs of confluence serving as a benchmark for comparing and choosing the best implementation tools and strategy. Specifically, the best mechanization approach from the first part of the project, which looks at formalizing simply typed  $\lambda$ -Y calculus along with the proof of confluence, was extended with the formalization of intersection types for the  $\lambda$ -Y calculus, along with the proofs of subject invariance, in the second part.

# Contents

| 1 | Intro | oduction                                     |
|---|-------|----------------------------------------------|
|   | 1.1   | Motivation                                   |
|   | 1.2   | Aims                                         |
|   | 1.3   | Main Achievements                            |
|   | 1.4   | Dissertation Structure                       |
| 2 | Bacl  | kground 4                                    |
|   | 2.1   | Binders                                      |
|   |       | 2.1.1 Concrete approaches                    |
|   |       | 2.1.2 Higher-Order approaches                |
|   | 2.2   | λ-Y calculus                                 |
|   |       | 2.2.1 Definition of λ-Y terms                |
|   |       | 2.2.2 Simple types                           |
|   |       | 2.2.3 Church-Rosser Theorem                  |
|   |       | 2.2.4 Typed version of Church Rosser         |
|   | 2.3   | Intersection types                           |
|   |       | 2.3.1 Type refinement                        |
|   |       | 2.3.2 Subject invariance                     |
| 3 | Met   | hodology 19                                  |
|   | 3.1   | Evaluation criteria                          |
|   |       | 3.1.1 Technology transparency                |
|   |       | 3.1.2 Mechanization/implementation overheads |
| 4 | Non   | ninal vs. Locally nameless                   |
|   | 4.1   | Overview                                     |
|   | 4.2   | Definitions                                  |
|   |       | 4.2.1 Nominal sets representation            |
|   |       | 4.2.2 Locally nameless representation        |
|   | 4.3   | Proofs                                       |
|   |       | 4.3.1 Lemma 2.1                              |
|   |       | 4.3.2 Lemma 2.2                              |
| 5 | Isab  | elle vs. Agda                                |
|   | 5.1   | Overview                                     |
|   | 5.2   | Automation                                   |
|   | 53    | Proofs-as-programs in Agda 42                |

|    | 5.4    | Pattern matching                                | 45 |
|----|--------|-------------------------------------------------|----|
|    | 5.5    | Verdict                                         | 49 |
| 6  | Inte   | ersection types                                 | 50 |
|    | 6.1    | Intersection types in Agda                      | 50 |
|    | 6.2    | Notation                                        | 51 |
|    | 6.3    | Type refinement                                 | 51 |
|    | 6.4    | Well typed $\subseteq$                          | 52 |
|    | 6.5    | Intersection-type assignment                    | 55 |
|    | 6.6    | Proof of subject expansion                      | 57 |
|    |        | 6.6.1 $\tau_i \equiv \omega$                    | 58 |
|    |        | 6.6.2 $\tau_i \equiv [\tau_1, \ldots, \tau_n]$  |    |
|    | 6.7    | Proofs of termination for the LN representation |    |
| 7  | Con    | clusion                                         | 65 |
|    | 7.1    | Limitations of the current approach             | 65 |
|    | 7.2    | Future work                                     | 65 |
| Re | eferer | nces                                            | 67 |
| Αp | penc   | dix                                             | 69 |
| •  |        | ninal implementation in Isabelle                | 69 |
|    |        | ally Nameless implementation in Isabelle        |    |

## 1. Introduction

## 1.1 Motivation

Formal verification of software has been essential in many safety critical systems in the industry and is a field of active research in computer science. One of the main approaches to verification is model checking, wherein a system specification is checked against certain correctness properties, by generating a model of the system, encoding the desired correctness property as a logical formula and then exhaustively checking whether the given formula is satisfiable in the model of the system. Big advances in model checking of 1<sup>st</sup> order (imperative) programs have been made, with techniques like abstraction refinement and SAT/SMT-solver use, allowing scalability.

Aspects of functional programming, such as anonymous/ $\lambda$  functions have gained prominence in mainstream languages, such as C++ or JavaScript and functional languages like Scala, F# or Haskell have garnered wider interest. With growing interest in using functional programming, interest in verifying higher-order functional programs has also grown. Current approaches to formal verification of such programs usually involve the use of (automatic) theorem provers, which usually require a lot of user interaction and as a result have not managed to scale as well as model checking in the 1<sup>st</sup> order setting.

Using type systems is another way to ensure program safety, but using expressive-enough types often requires explicit type annotations, since type checking/inference usually becomes undecidable, as is the case for dependent-type systems. Simpler type systems, where type inference is decidable, can instead prove too coarse, i.e. the required properties are difficult if not impossible to capture in such type systems.

In recent years, advances in higher order model checking (HOMC), the previously described theory of model checking transferred to the domain of higher-order programs, have been made (C.-H. L. Ong (2006), Kobayashi (2013), Ramsay, Neatherway, and Ong (2014), Tsukada and Ong (2014)). HOMC is a fully automatic method of program verification, where programs are modeled as higher order recursion schemes (HORS) or equivalently, terms of the  $\lambda$ -Y calculus and properties about these programs are specified as automata/intersection types. However, whilst a lot of theory has been developed for HOMC, there has been little done in implementing/mechanizing these results in a fully formal setting of a theorem prover.

#### 1.2 Aims

The aim of this project is to make a start of mechanizing the proofs underpinning HOMC approaches using type-checking of higher-order recursion schemes, by formally proving certain key properties about the  $\lambda$ -Y calculus with an intersection-type system (Clairambault and Murawski (2013), Tsukada and Ong (2014)), which can be used to study HOMC as an alternative to higher order recursion schemes.

The project is roughly split into two main parts, with the first part exploring and evaluating different formalizations of the simply-typed  $\lambda$ -Y calculus together with the proof of the Church Rosser Theorem.

This part of the project focuses on the mechanization aspect of the simply typed  $\lambda$ -Y calculus, using a theorem prover in a fashion similar to the POPLMARK challenge, namely exploring different theorem provers and the possible encodings of binders. The reason why we chose to do such a comparison was to evaluate and chose the best mechanization approach for the  $\lambda$ -Y calculus, as there is little information available concerning the merits and disadvantages of different implementation approaches of  $\lambda$ -Y or indeed just the (simply typed)  $\lambda$ -calculus. The comparison of different mechanizations focuses on the engineering choices and formalization overheads which result from translating the informal definitions into a fully-formal setting of a theorem prover.

The reason why we chose to formalize the Church Rosser theorem was to to test the implementation of a non-trivial, but simple enough proof in a fully formal setting.

The second part focuses on implementing the intersection-type system for the  $\lambda$ -Y calculus and formalizing the proof of subject invariance for this type system. The formalization and engineering choices made in the implementation of the intersection-type system reflect the survey and analysis of the different mechanization choices, explored in the first part of the project.

All the code described in this project can be found a the git repository at: https://github.com/goodlyrottenapple/lamYcalc.

## 1.3 Main Achievements

We achieved the following goals in this project:

- 1) Formalized the simply typed  $\lambda$ -Y calculus and proofs of confluence in Isabelle, using both nominal sets and locally nameless encoding of binders.
- 2) Formalized the simply typed  $\lambda$ -Y calculus and proofs of confluence in Agda, using a locally nameless encoding of binders
- 3) Compared the implementations of nominal and locally nameless versions of the  $\lambda$ -Y calculus, along with the proof of confluence in the Isabelle and Agda theorem provers, focusing on the transparency and implementation overheads of the different formalizations.
- 4) Formalized the intersection-type system for the  $\lambda$ -Y calculus
- 5) Created a fully formal proof of subject invariance for intersection-types in Agda

## 1.4 Dissertation Structure

The dissertation has 7 chapters. The first part of this document (chapters 1-3) describes the domain and the goals of this project, the second part (chapters 4 and 5) is a comparison of several mechanizations of the simply typed  $\lambda$ -Y calculus, the third part (chapter 6) discusses the intersection typing and associated proofs.

Chapter 1 is an overview of the aims and achievements of this project.

Chapter 2 gives an introduction to the  $\lambda$ -Y calculus, together with an overview of the proof of confluence (Church Rosser). The chapter also introduces intersection types and discusses an important aspect of a  $\lambda$ -calculus mechanization, namely the treatment of binders in a fully formal setting of a theorem prover.

Chapter 3 introduces the methodology used for comparing the different mechanizations discussed in later chapters.

Chapter 4 compares two mechanizations of the  $\lambda$ -Y calculus (nominal and locally nameless), which are focused around the treatment of binders. The comparison looks at the overall length and structure of the two formalizations, as well as using specific instances of the same definitions/lemmas across the two mechanizations, to illustrate the advantages and disadvantages of both approaches.

Chapter 5 details the differences between using Isabelle and Agda for formalizing the  $\lambda$ -Y calculus. Chapter 6 discusses the implementation details of intersection types for the  $\lambda$ -Y calculus and the various engineering choices that were made in order to simplify the ensuing proof of subject invariance.

Chapter 7 summarizes the outcomes of the project and details possible further work.

## 2. Background

This chapter introduces some of the main concepts, discussed in greater length throughout the thesis. The first section discusses binders in a  $\lambda$ -calculus, since the treatment of binders is the most involved/problematic part of a fully formal mechanization of a  $\lambda$ -calculus.

The following section introduces the simply-typed  $\lambda$ -Y calculus along with a broad overview of the proof of confluence and important associated lemmas, which are discussed further in the following chapters.

Lastly, we introduce the theory underpinning HOMC, namely intersection types for the  $\lambda$ -Y calculus and present the proofs of subject invariance for intersection types.

## 2.1 Binders

When describing the (untyped)  $\lambda$ -calculus on paper, the terms of the  $\lambda$ -calculus are usually inductively defined in the following way:

$$t ::= x \mid tt \mid \lambda x.t \text{ where } x \in Var$$

This definition of terms yields an induction/recursion principle, which can be used to define functions over the  $\lambda$ -terms by structural recursion and prove properties about the  $\lambda$ -terms using structural induction (recursion and induction being two sides of the same coin).

However, whilst the definition above describes valid terms of the  $\lambda$ -calculus, there are implicit assumptions one makes about the terms, namely, the x in the  $\lambda x.t$  case appears bound in t. This means that while x and y might be distinct terms of the  $\lambda$ -calculus (i.e.  $x \neq y$ ),  $\lambda x.x$  and  $\lambda y.y$  represent the same term, as x and y are bound by the  $\lambda$ . Without the notion of  $\alpha$ -equivalence of terms, one cannot prove any properties of terms involving bound variables, such as saying that  $\lambda x.x \equiv \lambda y.y$ .

In an informal setting, reasoning with  $\alpha$ -equivalence of terms is often very implicit, however in a formal setting of theorem provers, having an inductive definition of "raw"  $\lambda$ -terms, which are not  $\alpha$ -equivalent, yet reasoning about  $\alpha$ -equivalent  $\lambda$ -terms poses certain challenges.

One of the main problems is the fact that the inductive/recursive definition does not easily lift to  $\alpha$ -equivalent terms and using induction as a proof technique for such a definition is no longer valid. Take a trivial example of a function on raw terms, which checks whether a variable appears bound in a given  $\lambda$ -term. Clearly, such function is well formed for "raw" terms, but does not work (or even make sense) for  $\alpha$ -equivalent terms.

Conversely, there are informal definitions over  $\alpha$ -equivalent terms, which are not straight-forward

to define over raw terms. Take the usual definition of substitution, defined over  $\alpha$ -equivalent terms, which actually relies on the following fact in the  $\lambda$ -case:

$$(\lambda y'.s')[t/x] \equiv \lambda y'.(s'[t/x])$$
 assuming  $y' \not\equiv x$  and  $y' \not\in FV(t)$ 

In this, the  $\lambda$  case, it is assumed, that a given  $\lambda$ -term  $\lambda y.s$  can always be swapped out for an alpha equivalent term  $\lambda y'.s'$ , such that y' satisfies the side condition. The assumption that a bound variable can be swapped out for a "fresh" one to avoid name clashes is often referred to as the Barendregt Variable Convention.

The direct approach of defining "raw" terms and an additional notion of  $\alpha$ -equivalence introduces a lot of overhead when defining functions, as one either has to use the recursive principles for "raw" terms and then show that the function lifts to the  $\alpha$ -equivalent terms or define functions on *alpha*-equivalence classes and prove that it is well-founded, without being able to rely on the structurally inductive principles that one gets "for free" with the "raw" terms.

Because of this, the usual informal representation of the  $\lambda$ -calculus is rarely used in a fully formal setting.

To mitigate the overheads of a fully formal definition of the  $\lambda$ -calculus, we want to have an encoding of  $\lambda$ -terms, which includes the notion of  $\alpha$ -equivalence, whilst being inductively defined, giving us the inductive/recursive principles for *alpha*-equivalent terms directly. This can be achieved in several different ways. In general, there are two main approaches taken in a rigorous formalization of the terms of the lambda calculus, namely the concrete approaches and the higher-order approaches, both described in some detail below.

#### 2.1.1 Concrete approaches

The concrete or first-order approaches usually encode variables using names (like strings or natural numbers). Encoding of terms and capture-avoiding substitution must be encoded explicitly. A survey by B. Aydemir et al. (2008) details three main groups of concrete approaches, found in formalizations of the  $\lambda$ -calculus in the literature:

#### 2.1.1.1 Named

This approach generally defines terms in much the same way as the informal inductive definition given above. Using a functional language, such as Haskell or ML, such a definition might look like this:

```
datatype trm =
  Var name
    App trm trm
    Lam name trm
```

As was mentioned before, defining "raw" terms and the notion of  $\alpha$ -equivalence of "raw" terms separately carries a lot of overhead in a theorem prover and is therefore not favored.

To obtain an inductive definition of  $\lambda$ -terms with a built in notion of  $\alpha$ -equivalence, one can instead use nominal sets. The theory of nominal sets captures the notion of bound variables and

freshness, as it is based around the notion of having properties invariant in name permutation (Gabbay and Pitts (2002)).

The nominal package in Isabelle (Urban and Tasson (2005)) provides tools to automatically define terms with binders, which generate inductive definitions of  $\alpha$ -equivalent terms. Using nominal sets in Isabelle results in a definition of terms, which looks very similar to the informal presentation of the lambda calculus:

```
nominal_datatype trm =
  Var name
| App trm trm
| Lam x::name 1::trm binds x in 1
```

Most importantly, this definition allows one to define functions over  $\alpha$ -equivalent terms using structural induction. The nominal package also provides freshness lemmas and a strengthened induction principle with name freshness for terms involving binders.

#### 2.1.1.2 Nameless/de Bruijn

Using a named representation of the  $\lambda$ -calculus in a fully formal setting can be inconvenient when dealing with bound variables. For example, substitution, as described in the introduction, with its side-condition of freshness of y in x and t is not structurally recursive on "raw" terms, but rather requires well-founded recursion over  $\alpha$ -equivalence classes of terms. To avoid this problem in the definition of substitution, the terms of the lambda calculus can be encoded using de Bruijn indices, instead of named variables:

```
datatype trm =
   I nat
   | App trm trm
   | Lam trm
```

The indices are natural numbers, which encode an occurrence of a variable in a  $\lambda$ -term. For bound variables, the index indicates which  $\lambda$  it refers to, by encoding the number of  $\lambda$ -binders that are in the scope between the index and the  $\lambda$ -binder the variable corresponds to.

**Example 2.1.** The term  $\lambda x.\lambda y.yx$  will be represented as  $\lambda$   $\lambda$  0.1. Here, 0 stands for y, as there are no binders in scope between itself and the  $\lambda$  it corresponds to, and 1 corresponds to x, as there is one  $\lambda$ -binder in scope. To encode free variables, one simply choses an index greater than the number of  $\lambda$ 's currently in scope, for example,  $\lambda$  4.

To see that this representation of  $\lambda$ -terms is isomorphic to the usual named definition, we can define two functions f and g, which translate the named representation to de Bruijn notation and vice versa. More precisely, since we are dealing with  $\alpha$ -equivalence classes, it is an isomorphism between the equivalence classes of named  $\lambda$ -terms and de Bruijn terms.

We assume that  $\lambda$ -terms are built over the countable set of variables  $x_1, x_2, x_3, \ldots$  Then, the mapping from named terms to de Bruijn term is given by f, which we define in terms of an auxiliary function e:

$$e_k^m(x_n) = \begin{cases} k - m(x_n) - 1 & x_n \in \text{dom } m \\ k + n & \text{otherwise} \end{cases}$$

$$e_k^m(uv) = e_k^m(u) e_k^m(v)$$

$$e_k^m(\lambda x_n.u) = \lambda e_{k+1}^{m \oplus (x_n,k)}(u)$$

Then 
$$f(t) = e_0^{\emptyset}(t)$$
.

The function e takes two additional parameters, k and m. k keeps track of the scope from the root of the term and m is a map from bound variables to the levels they were bound at. In the variable case, if  $x_n$  appears in m, it is a bound variable, and its index can be calculated by taking the difference between the current index and the index  $m(x_k)$  (at which the variable was bound). If  $x_n$  is not in m, then the variable is encoded by adding the current level k to n.

In the abstraction case,  $x_n$  is added to m with the current level k, possibly overshadowing a previous binding of the same variable at a different level (like in  $\lambda x_1$ . $(\lambda x_1.x_1)$ ) and k is incremented, going into the body of the abstraction.

For the opposite direction, we replace indices with the corresponding indexed variables, taking care to chose named variables in such a way as to not capture any free variables.

**Example 2.2.** A term like  $\lambda(\lambda 2)$  intuitively represents a named  $\lambda$ -term which contains two bound variables and a free variable  $x_0$ . If we started giving the bound variables names in a naive way, for example starting from  $x_0$ , we would end up with a term  $\lambda x_0 \cdot (\lambda x_1 \cdot x_0)$ , which is obviously not the term we had in mind, as  $x_0$  is no longer a free variable.

As one quickly notices, terms like  $\lambda x.x$  and  $\lambda y.y$  have a single unique representation as a de Bruijn term  $\lambda$  0. Indeed, since there are no named variables in a de Bruijn term, there is only one way to represent any  $\lambda$ -term, and the notion of  $\alpha$ -equivalence is no longer relevant. We thus get around our problem of having an inductive principle and  $\alpha$ -equivalent terms, by having a representation of  $\lambda$ -terms where every  $\alpha$ -equivalence class of  $\lambda$ -terms has a single representative term in the de Bruijn notation.

As pointed out by Berghofer and Urban (2006), the definition of substitution no longer needs the variable convention and can therefore be defined using primitive structural recursion. However, the main disadvantage of using de Bruijn indices is the relative unreadability of both the terms and the formulation of properties about these terms. For instance, take the substitution lemma, which in the named setting would be stated as:

If 
$$x \neq y$$
 and  $x \notin FV(L)$ , then  $M[N/x][L/y] \equiv M[L/y][N[L/y]/x]$ .

In de Bruijn notation, the statement of this lemma becomes:

For all indices 
$$i, j$$
 with  $i \le j$ ,  $M[N/i][L/j] = M[L/j + 1][N[L/j - i]/i]$ 

Clearly, the first version of this lemma is much more intuitive.

#### 2.1.1.3 Locally Nameless

The locally nameless approach to binders is a mix of the two previous approaches. Whilst a named representation uses variables for both free and bound variables and the nameless encoding uses de Bruijn indices in both cases as well, a locally nameless encoding distinguishes between the two types of variables.

Free variables are represented by names, much like in the named version, and bound variables are encoded using de Bruijn indices. By using de Bruijn indices for bound variables, we again obtain an inductive definition of terms which are  $\alpha$ -equivalent.

While closed terms, like  $\lambda x.x$  and  $\lambda y.y$  are represented as de Bruijn terms, the term  $\lambda x.xz$  and  $\lambda y.yz$  are encoded as  $\lambda$  0z. The following definition captures the syntax of the locally nameless terms:

```
datatype ptrm =
  Fvar name
  BVar nat
  App trm trm
  Lam trm
```

Note however, that this definition doesn't quite fit the notion of  $\lambda$ -terms, since a ptrm like (BVar 0) does not represent a valid  $\lambda$ -term, since bound variables can only appear in the context of a  $\lambda$ , such as in (Lam (BVar 0)).

The locally nameless approach is championed by B. Aydemir et al. (2008), who claim several benefits:

"First, our [locally nameless] presentation is transparent: the proofs closely follow their informal equivalents. Second the overheads of the approach are low: we do not need manual proofs of freshness side-conditions nor reasoning about alphaequivalence ... At the same time, there is no need for external tools, and the style works in any general purpose theorem prover (although we found Coq to be well-suited to the task)."

Another advantage of using a locally nameless definition of  $\lambda$ -terms is a better readability of such terms, compared to equivalent de Bruijn terms. We decided to put these claims to test in Chapter 4 of this thesis and therefore chose the locally nameless approach for one of our mechanizations.

## 2.1.2 Higher-Order approaches

Unlike concrete approaches to formalizing the  $\lambda$ -calculus, where the notion of binding and substitution is defined explicitly in the host language, higher-order formalizations use the function space of the implementation language, which handles binding. HOAS, or higher-order abstract syntax (Pfenning and Elliott 1988, Harper, Honsell, and Plotkin (1993)), is a framework for defining logics based on the simply typed  $\lambda$ -calculus.

Using HOAS for encoding the  $\lambda$ -calculus comes down to encoding binders using the meta-language binders. This way, the definitions of capture avoiding substitution or notion of  $\alpha$ -equivalence are offloaded onto the meta-language. As an example, take the following definition of terms of the  $\lambda$ -calculus in Haskell:

```
data Term where
  Var :: Int -> Term
  App :: Term -> Term -> Term
  Lam :: (Term -> Term) -> Term
```

This definition avoids the need for explicitly defining substitution, because it encodes a  $\lambda$ -term as a Haskell function (Term -> Term), relying on Haskell's internal substitution and notion of  $\alpha$ -equivalence. As with the de Bruijn and locally nameless representations, this encoding gives us inductively defined terms with a built in notion of  $\alpha$ -equivalence.

However, using HOAS only works if the notion of  $\alpha$ -equivalence and substitution of the metalanguage coincide with these notions in the object-language.

#### 2.2 $\lambda$ -Y calculus

Originally, the field of higher order model checking mainly involved studying higher order recursion schemes (HORS), which are used to model higher-order programs, which are then checked exhaustively for desired properties, encoded as automata or intersection types. More recently, exploring the  $\lambda$ -Y calculus (an extension of the simply typed  $\lambda$ -calculus) as an alternative to using HORS to model programs, has gained traction (Clairambault and Murawski (2013)). We therefore present the  $\lambda$ -Y calculus, along with the proofs of the Church Rosser theorem and the formalization of intersection types for the  $\lambda$ -Y calculus, as the basis for formalizing the theory of HOMC.

#### 2.2.1 Definition of $\lambda$ -Y terms

The first part of this project focuses on formalizing the simply typed  $\lambda$ -Y calculus and the proof of confluence for this calculus (proof of the Church Rosser Theorem is sometimes also referred to as proof of confluence). The usual/informal definition of the  $\lambda$ -Y terms and the simple types are given below:

**Definition 2.1.** [ $\lambda$ -Y types and terms]

The set of simple types  $\sigma$  is built up inductively form the **o** constant and the arrow type  $\rightarrow$ . Let Var be a countably infinite set of atoms in the definition of the set of  $\lambda$ -Y terms M:

$$\sigma ::= \mathbf{o} \mid \sigma \to \sigma$$

$$M ::= x \mid MM \mid \lambda x.M \mid Y_{\sigma} \text{ where } x \in Var$$

The  $\lambda$ -Y calculus differs from the simply typed  $\lambda$ -calculus only in the addition of the Y constant family, indexed at every simple type  $\sigma$ , where the (simple) type of a Y<sub>A</sub> constant (indexed with the type A) is  $(A \to A) \to A$ . The usual definition of  $\beta$ Y-reduction is then augmented with the (Y) rule (this is the typed version of the rule):

$$(Y) \frac{\Gamma \vdash M : \sigma \to \sigma}{\Gamma \vdash Y_{\sigma}M \Rightarrow_{Y} M(Y_{\sigma}M) : \sigma}$$

In essence, the Y rule allows (some) well-typed recursive definitions over simply typed  $\lambda$ -terms.

**Example 2.3.** Take for example the term  $\lambda x.x$ , commonly referred to as the *identity*. The *identity* term can be given a type  $\sigma \to \sigma$  for any simple type  $\sigma$ . We can therefore perform the following (well-typed) reduction in the  $\lambda$ -Y calculus:

$$Y_{\sigma}(\lambda x.x) \Rightarrow_{Y} (\lambda x.x)(Y_{\sigma}(\lambda x.x))$$

The typed version of the rule illustrates the restricted version of recursion clearly, since a recursive "Y-reduction" will only occur if the term M in  $Y_{\sigma}M$  has the matching type  $\sigma \to \sigma$  (to  $Y_{\sigma}$ 's type  $(\sigma \to \sigma) \to \sigma$ ), as in the example above.

## 2.2.2 Simple types

The simple types introduced above and presented throughout this work (except for Chapter 6) are often referred to as simple types a la Curry, where a simply typed  $\lambda$ -term is a triple  $(\Gamma, M, \sigma)$  written as  $\Gamma \vdash M : \sigma$ , where  $\Gamma$  is the typing context, a finite set of variable and type tuples, M is a term of the untyped  $\lambda$ -calculus and  $\sigma$  is a simple type. A well typed term is valid, if one can construct a typing tree from the given type and typing context, using the following deduction system:

**Definition 2.2.** [Simple-type assignment]

$$(var) \xrightarrow{X : A \in \Gamma} (app) \xrightarrow{\Gamma \vdash u : A \to B} \xrightarrow{\Gamma \vdash v : A}$$

$$(abs) \frac{x : A, \Gamma \vdash m : B}{\Gamma \vdash \lambda . m : A \to B} \qquad (Y) \frac{}{\Gamma \vdash Y_A : (A \to A) \to A}$$

**Example 2.4.** Take the following simply typed term  $\{y:\tau\} \vdash \lambda x.xy: (\tau \rightarrow \varphi) \rightarrow \varphi$ . To show that this is a well-typed  $\lambda$ -term, we construct the following typing tree:

$$(app) \frac{ (var)}{(app)} \frac{ \{x: \tau \to \varphi, \ y: \tau\} \vdash x: \tau \to \varphi \quad (var)}{\{x: \tau \to \varphi, \ y: \tau\} \vdash x: \tau} \frac{ \{x: \tau \to \varphi, \ y: \tau\} \vdash y: \tau}{\{y: \tau\} \vdash \lambda x. xy: (\tau \to \varphi) \to \varphi}$$

In the simple typing a la Curry, simple types and  $\lambda$ -terms are completely separate, brought together only through the typing relation  $\vdash$ . The definition of  $\lambda$ -Y terms, however, is dependent on the simple types in the case of the Y constants, which are indexed by simple types. When talking about the  $\lambda$ -Y calculus, we tend to conflate the "untyped"  $\lambda$ -Y terms, which are just the terms defined in Definition 2.1, with the "typed"  $\lambda$ -Y terms, which are simply-typed terms a la Curry of the form  $\Gamma \vdash M : \sigma$ , where M is an "untyped"  $\lambda$ -Y term. Thus, results about the  $\lambda$ -Y calculus in this work are in fact results about the "typed"  $\lambda$ -Y calculus.

#### 2.2.3 Church-Rosser Theorem

The Church-Rosser Theorem states that the  $\beta Y$ -reduction of the  $\lambda$ -calculus is confluent, that is, the reflexive-transitive closure of the  $\beta Y$ -reduction has the *diamond property*, i.e.  $dp(\Rightarrow_{Y}^{*})$ , where:

Definition 2.3. [dp(R)]

A binary relation R has the diamond property, dp(R), iff

$$\forall a, b, c. \ aRb \land aRc \implies \exists d. \ bRd \land cRd$$

The proof of confluence of  $\Rightarrow_Y$ , the  $\beta Y$ -reduction defined as the standard  $\beta Y$ -reduction with the addition of the aforementioned (Y) rule, follows a variation of the Tait-Martin-Löf Proof originally described in Takahashi (1995) (specifically using the notes by R. Pollack (1995)). To show why following this proof over the traditional proof is beneficial, we first give a high level overview of

how the usual proof proceeds.

#### 2.2.3.1 Overview

In the traditional proof of the Church Rosser theorem, we define a new reduction relation, called the *parallel βY*-reduction ( $\gg$ ), which, unlike the "plain"  $\beta Y$ -reduction satisfies the *diamond property* (note that we are talking about the "single step"  $\beta Y$ -reduction and not the reflexive transitive closure). Once we prove the *diamond property* for  $\gg$ , the proof of  $dp(\gg^*)$  follows easily. The reason why we prove  $dp(\gg)$  in the first place is because the reflexive-transitive closure of  $\gg$  coincides with the reflexive transitive closure of  $\Rightarrow_Y$  and it is much easier to prove  $dp(\gg)$  than trying to prove  $dp(\gg_Y^*)$  directly. The usual proof of the *diamond property* for  $\gg$  involves a double induction on the shape of the two parallel  $\beta Y$ -reductions from M to P and Q, where we try to show that the following diamond always exists, that is, given any reductions  $M\gg P$  and  $M\gg Q$ , there is some M' s.t.  $P\gg M'$  and  $Q\gg M'$ :



Figure 2.1: The diamond property of  $\gg$ , visualized

The Takahashi (1995) proof simplifies this proof by eliminating the need to do simultaneous induction on the  $M\gg P$  and  $M\gg Q$  reductions. This is done by introducing another reduction, referred to as the *maximal parallel BY*-reduction ( $\gg$ ). The idea of using  $\gg$  is to show that for every term M there is a reduct term  $M_{max}$  s.t.  $M\gg M_{max}$  and that any M', s.t.  $M\gg M'$ , also reduces to  $M_{max}$ . We can then separate the "diamond" diagram above into two instances of the following triangle, where M' from the previous diagram is  $M_{max}$ :



Figure 2.2: The proof of  $dp(\gg)$  is split into two instances of this triangle

Proving this triangle instead of the original diamond simplifies the overall proof, as there is no longer a need for the complicated double induction form the original proof.

#### 2.2.3.2 (Parallel) $\beta$ Y-reduction

Having described the high-level overview of the classical proof and the reason for following the Takahashi (1995) proof, we now present some of the major lemmas in more detail, as they form the core comparison of the  $\lambda$ -Y calculus mechanizations, presented in Chapter 4.

For later comparison to the parallel reductions, defined below, we first give the definition of the normal  $\beta Y$ -reduction:

**Definition 2.4.** [ $\beta$ Y-reduction]

$$(red_L) \frac{M \Rightarrow_Y M'}{MN \Rightarrow_Y M'N} \qquad (red_R) \frac{N \Rightarrow_Y N'}{MN \Rightarrow_Y M'N}$$

$$(abs) \frac{M \Rightarrow_{Y} M'}{\lambda x.M \Rightarrow_{Y} \lambda x.M'} \qquad (\beta) \frac{1}{(\lambda x.M)N \Rightarrow_{Y} M[N/x]} \qquad (Y) \frac{1}{Y_{\sigma}M \Rightarrow_{Y} M(Y_{\sigma}M)}$$

Next, is the definition of parallel  $\beta$ Y-reduction  $\gg$  formulated for the terms of the  $\lambda$ -Y calculus, which allows simultaneous reduction of multiple parts of a term:

Definition 2.5. 
$$[\gg]$$

$$(\textit{refl}) \xrightarrow{\text{$\chi$} \gg \text{$\chi$}} \quad (\textit{refl}_{\text{Y}}) \xrightarrow{\text{$Y_{\sigma}$} \gg \text{$Y_{\sigma}$}} \quad (\textit{app}) \xrightarrow{\text{$M$} \gg M'} \overset{\text{$N$} \gg N'}{\text{$MN$} \gg M'N'}$$

(abs) 
$$\frac{M \gg M'}{\lambda x.M \gg \lambda x.M'}$$
 ( $\beta$ )  $\frac{M \gg M'}{(\lambda x.M)N \gg M'[N'/x]}$  ( $\gamma$ )  $\frac{M \gg M'}{Y_{\sigma}M \gg M'(Y_{\sigma}M')}$ 

The first difference between the normal  $\beta Y$ -reduction and parallel  $\beta Y$ -reduction is the  $(refl)/(refl_Y)$  rule, where  $x \gg x$ , for example, is a valid reduction, but we have  $x \not\Rightarrow_Y x$  for the normal  $\beta Y$ -reduction  $(x \Rightarrow_Y^* x \text{ is valid, since } \Rightarrow_Y^* \text{ is the reflexive transitive closure of } \Rightarrow_Y)$ . The addition of these two rules then allows us to derive the general reflexivity rule  $(refl^*): \forall M. M \gg M$  (see Lemma 4.1).

**Example 2.5.** Another example where the two reductions differ is the simultaneous reduction of multiple sub-terms. *Parallel*  $\beta Y$ -reduction, unlike  $\Rightarrow_Y$ , allows the reduction of the term  $((\lambda xy.x)z)(\lambda x.x)y$  to  $(\lambda y.z)y$ , by simultaneously reducing the two sub-terms  $(\lambda xy.x)z$  and  $(\lambda x.x)y$  to  $\lambda y.z$  and y respectively:

$$\frac{(refl^*)}{(\beta)} \frac{1}{\lambda xy.x \gg \lambda xy.x} \frac{(refl)}{(z \gg z)} \frac{(refl^*)}{(\beta)} \frac{1}{\lambda x.x \gg \lambda x.x} \frac{(refl)}{(y \gg y)} \frac{1}{(\lambda x.x)y \gg y} \frac{(\lambda x.x)y \gg y}{((\lambda x.x)z)(\lambda x.x)y \gg (\lambda y.z)y}$$

If we try to construct a similar tree for  $\beta$ Y-reduction, we quickly discover that the only two

rules we can use are  $(red_L)$  or  $(red_R)$ . We can thus only perform the right-side or the left side reduction of the two sub-terms, but not both.

Now that we have described the intuition behind the parallel BY-reduction, following Takahashi (1995), we proceed to define the maximum parallel  $\beta Y$ -reduction  $\gg$ , which contracts all redexes in a given term with a single step:

$$(refl)$$
  $\frac{1}{X \gg X}$   $(refl_Y)$   $\frac{1}{Y_\sigma \gg Y_\sigma}$   $(app)$   $\frac{M \gg M' \qquad N \gg N'}{MN \gg M'N'}$   $(M \text{ is not a } \lambda \text{ or } Y)$ 

This relation only differs from  $\gg$  in the (app) rule, which can only be applied if M is not a  $\lambda$  or Y term.

**Example 2.6.** To demonstrate the difference between  $\gg$  and  $\gg$ , we take a look at the term  $(\lambda xy.x)((\lambda x.x)z)$ . Whilst  $(\lambda xy.x)((\lambda x.x)z) \gg (\lambda xy.x)z$  or  $(\lambda xy.x)((\lambda x.x)z) \gg \lambda y.z$  (amongst others) are valid reductions, the reduction  $(\lambda xy.x)((\lambda x.x)z) \gg (\lambda xy.x)z$  is not.

To see why this is the case, we observe that the last rule applied in the derivation tree must have been the (app) rule, since we see that a reduction on the sub-term  $(\lambda x.x)z \gg z$  occurs:

$$(app) \frac{\vdots}{\frac{\lambda xy.x \gg \lambda xy.x}{(\lambda x.x)z \gg z}} \frac{\vdots}{(\lambda x.x)z \gg z} (\lambda xy.x \text{ is not a } \lambda \text{ or } Y)$$

However, this clearly could not happen, because  $\lambda xy.x$  is in fact a  $\lambda$ -term.

To prove  $dp(\gg)$ , we first show that there always exists a term  $M_{max}$  for every term M, where  $M \gg M_{max}$  is the maximal parallel reduction which contracts all redexes in M:

Lemma 2.1.  $\forall M. \exists M_{max}. M \ggg M_{max}$ 

Proof. By induction on M.

Finally, we show that any parallel reduction  $M \gg M'$  can be "closed" by reducing to the term  $M_{max}$ where all redexes have been contracted (as seen in Figure 2.2):

Lemma 2.2. 
$$\forall M, M', M_{max}. M \gg M_{max} \land M \gg M' \implies M' \gg M_{max}$$

Proof. Omitted. Can be found on p. 8 of the R. Pollack (1995) notes.

Lemma 2.3.  $dp(\gg)$ 

*Proof.* We can now prove  $dp(\gg)$  by simply applying Lemma 2.2 twice, namely for any term M there is an  $M_{max}$  s.t.  $M \gg M_{max}$  (by Lemma 2.1) and for any M', M'' where  $M \gg M'$  and  $M \gg M''$ , it follows by two applications of Lemma 2.2 that  $M' \gg M_{max}$  and  $M'' \gg M_{max}$ .

## 2.2.4 Typed version of Church Rosser

The proof of the Church Rosser theorem, as presented above, uses the untyped definition of  $\beta Y$ -reduction. Whilst it is possible to define a typed version of  $\beta Y$ -reduction, it turned out to be much easier to first prove the Church Rosser theorem for the so called "untyped"  $\lambda$ -Y calculus and then additionally restrict this result to only well-typed  $\lambda$ -Y terms.

Thus, the definition of the Church Rosser Theorem, formulated for the  $\lambda$ -Y calculus, is the following one:

```
Theorem 2.1. [Typed Church Rosser Theorem] \Gamma \vdash M : \sigma \land M \Rightarrow_{\gamma}^{*} M' \land M \Rightarrow_{\gamma}^{*} M'' \implies \exists M'''. \ M' \Rightarrow_{\gamma}^{*} M''' \land M'' \Rightarrow_{\gamma}^{*} M''' \land \Gamma \vdash M''' : \sigma
```

In order to prove this typed version of the Church Rosser Theorem, we need to prove an additional result of subject reduction for  $\lambda$ -Y calculus, which states that if a simply typed term M (with a type  $\tau$ )  $\beta$ Y-reduces to M', M' can also be typed with  $\tau$ :

Theorem 2.2. [Subject reduction for  $\Rightarrow_{\gamma}^*$ ]  $\Gamma \vdash M : \sigma \land M \Rightarrow_{\gamma}^* M' \implies \Gamma \vdash M' : \sigma$ 

## 2.3 Intersection types

For the formalization of intersection types, we initially chose a *strict* intersection-type system, presented in the Bakel (2003) notes. Intersection types, classically presented by Barendregt, Dekkers, and Statman (2013) as  $\lambda_{\Omega}^{BCD}$ , extend simple types by adding a conjunction to the definition of types:

**Definition 2.7.** 
$$[\lambda_{\cap}^{BCD} \text{ types}]$$

In the definition below,  $\varphi$  is a constant (analogous to the constant o, introduced for the simple types in Definition 2.1). To avoid confusion between simple and intersection types, the usual arrow-type notation  $\rightarrow$ , used in the definition of both type-systems is substituted for the  $\rightsquigarrow$  arrow.

$$\mathcal{T} ::= \varphi \mid \mathcal{T} \rightsquigarrow \mathcal{T} \mid \mathcal{T} \cap \mathcal{T}$$

Following Bakel (2003), we restrict ourselves to a version of intersection types often called *strict* intersection types. *Strict* intersection types are a restriction on  $\lambda_{\cap}^{BCD}$  types, where an intersection of types can only appear on the left side of an "arrow" type:

**Definition 2.8.** [Strict intersection types]

As in the definition above,  $\varphi$  is a constant.

$$\begin{split} \mathcal{T}_s &::= \phi \mid \mathcal{T} \leadsto \mathcal{T}_s \\ \mathcal{T} &::= (\mathcal{T}_s \cap \ldots \cap \mathcal{T}_s) \end{split}$$

The following conventions for intersection types are adopted throughout this section;  $\omega$  stands for the empty intersection and we write  $\bigcap_{\underline{n}} \tau_i$  for the type  $\tau_1 \cap \ldots \cap \tau_n$ . We also define a subtype relation  $\subseteq$  for intersection types, which intuitively captures the idea of one intersection of types being a subset of another, where we think of  $\tau_1 \cap \ldots \cap \tau_i$  as a finite set  $\{\tau_1, \ldots, \tau_i\}$ , wherein  $\subseteq$  for intersection types roughly corresponds to subset inclusion e.g.  $\tau \subseteq \tau \cap \psi$  because  $\{\tau\} \subseteq \{\tau, \psi\}$ .

Remark. The reason for defining the subset relation in this way, rather than taking the usual view of  $\tau \cap \varphi \leq \tau$ , was due the implementation of intersection types in Agda. Since intersection types  $\mathcal{T}$  ended up being defined as lists of strict types  $\mathcal{T}_s$  (the definition of lists in Agda included the notion of list inclusion  $\in$  and by extension the  $\subseteq$  relation), the above convention seemed more natural.

The formal definition of this relation is given below:

#### Definition 2.9. [⊂]

This relation is the least pre-order on intersection types s.t.:

$$\forall i \in \underline{n}. \ \tau_i \subseteq \bigcap_{\underline{n}} \tau_i$$

$$\forall i \in \underline{n}. \ \tau_i \subseteq \psi \implies \bigcap_{\underline{n}} \tau_i \subseteq \psi$$

$$\rho \subseteq \psi \land \tau \subseteq \mu \implies \psi \leadsto \tau \subseteq \rho \leadsto \mu$$

(This relation is equivalent the  $\leq$  relation, defined in Bakel (2003) notes, i.e.  $\tau \leq \psi = \psi \subseteq \tau$ .)

In this presentation,  $\lambda$ -Y terms are typed with the strict types  $\mathcal{T}_s$  only. Much like the simple types,

presented in the previous sections, an intersection-typing judgment is a triple  $\Gamma, M, \tau$ , written as  $\Gamma \models M : \tau$ , where  $\Gamma$  is the intersection-type context, similar in construction to the simple typing context, M is a  $\lambda$ -Y term and  $\tau$  is a strict intersection type  $\mathcal{T}_s$ .

The definition of the intersection-typing system, like the  $\subseteq$  relation, has also been adapted from the typing system found in the Bakel (2003) notes, by adding the typing rule for the Y constants:

**Definition 2.10.** [Intersection-type assignment]

$$(var) \frac{x : \bigcap_{\underline{n}} \tau_{i} \in \Gamma \qquad \tau \subseteq \bigcap_{\underline{n}} \tau_{i}}{\Gamma \Vdash x : \tau} \qquad (app) \frac{\Gamma \vdash M : \bigcap_{\underline{n}} \tau_{i} \leadsto \tau \qquad \forall i \in \underline{n}. \ \Gamma \vdash N : \tau_{i}}{\Gamma \vdash MN : \tau}$$

$$(abs) \frac{x : \bigcap_{\underline{n}} \tau_{i}, \Gamma \vdash M : \tau}{\Gamma \vdash \lambda x.M : \bigcap_{\underline{n}} \tau_{i} \leadsto \tau}$$

$$(Y) \frac{(abs) \frac{x : \bigcap_{\underline{n}} \tau_{i}, \Gamma \vdash M : \tau}{\Gamma \vdash \lambda x.M : \bigcap_{\underline{n}} \tau_{i} \leadsto \tau} \qquad (j \in \underline{n})$$

The definition above also assumes that the context  $\Gamma$  is well-formed:

**Definition 2.11.** [Well-formed intersection-type context]

Assuming that  $\Gamma$  is a finite list, consisting of pairs of atoms Var and intersection types  $\mathcal{T}$ ,  $\Gamma$  is a well-formed context iff:

$$(nil) \frac{}{\text{Wf-ICtxt} []} \qquad (cons) \frac{x \not\in \text{dom } \Gamma \qquad \text{Wf-ICtxt } \Gamma}{\text{Wf-ICtxt} (x : \bigcap \tau_i, \Gamma)}$$

## 2.3.1 Type refinement

It is important for the theory underpinning HOMC to be decidable. In order to guarantee this, we introduce a type refinement relation  $\tau::A$  for intersection types, where  $\tau$  is an intersection type, refining a simple type A. Intuitively, the notion of refinement restricts the intersection types to those which correspond in "shape" to the simple type they refine. By restricting intersection types to only those that refine a given simple type, we can guarantee that the search space for an intersection type, which can type a given  $\lambda$ -Y term M with the simple type A is finite (and typing such a term is thus decidable), since the set  $\{\tau \mid \tau::A\}$  is finite. Therefore, enumerating and checking whether  $\Gamma \Vdash M: \tau$  for any of the types  $\tau$  in this set will take finite time.

We define the type refinement relation, presented by Kobayashi (2009) (amongst others):

**Definition 2.12.** [Intersection-type refinement]

$$\frac{}{\varphi :: o} \qquad \frac{\bigcap_{\underline{n}} \tau_i :: A \qquad \tau :: B}{\bigcap_{\underline{n}} \tau_i \leadsto \tau :: A \to B} \qquad \frac{\forall i \in \underline{n}. \ \tau_i :: A}{\bigcap_{\underline{n}} \tau_i :: A}$$

## 2.3.2 Subject invariance

An interesting property of intersection-type systems is the fact that they admit both subject expansion and subject reduction, namely  $\Vdash$  is closed under  $\beta Y$ -equality. This means that given a term M with intersection type  $\tau$  and N s.t.  $M =_{\beta} N$ , N can be typed at  $\tau$ :

**Theorem 2.3.** [Subject invariance for I⊢]

- i) Subject reduction:  $\Gamma \Vdash m : \tau \implies m \Rightarrow_{\Upsilon} m' \implies \Gamma \Vdash m' : \tau$
- ii) Subject expansion:  $\Gamma \Vdash m' : \tau \implies m \Rightarrow_{\Upsilon} m' \implies \Gamma \Vdash m : \tau$

*Remark.* The definitions presented in this section are the initial definitions, used as a basis for the mechanization discussed in Chapter 6. Due to different obstacles in the formalization of the subject invariance proofs, these definitions were amended several times. The reasons for these changes are also documented in Chapter 6.

## 3. Methodology

The idea of formalizing a functional language in multiple theorem provers and objectively assessing the merits and pitfalls of the different formalizations is definitely not a new idea. The most well known attempt to do so on a larger scale is the POPLMARK challenge, proposed in the "Mechanized Metatheory for the Masses: The POPLMARK Challenge" paper by B. E. Aydemir et al. (2005). This paper prompted several formalizations of the benchmark typed  $\lambda$ -calculus, proposed by the authors of the challenge, in multiple theorem provers, such as Coq, Isabelle, Matita or Twelf. However, to the best of our knowledge, there has been no published follow-up work, drawing conclusions about the aptitude of different mechanizations, which would be useful in deciding on the best mechanization approach to take in formalizing the  $\lambda$ -Y calculus.

This project definitely does not aim to answer the same question as the original challenge, namely:

"How close are we to a world where every paper on programming languages is accompanied by an electronic appendix with machine- checked proofs?" (B. E. Aydemir et al. (2005))

Instead, it draws inspiration from the criteria for the "benchmark mechanization", specified by the challenge, to find the best mechanization approach as well as the right set of tools for our purpose of effectively mechanizing the theory underpinning HOMC.

Our comparison proceeded in two stages of elimination, where the first stage was a comparison of the two chosen mechanizations of binders for the  $\lambda$ -Y calculus (Chapter 4), namely nominal set and locally nameless representations of binders. The main reason for the fairly narrow selection of only two binder mechanizations was the limited time available for this project. In order to at least partially achieve the goal of mechanizing the intersection type theory for the  $\lambda$ -Y calculus, we decided to cut down the number of comparisons to the two (seemingly) most popular binder mechanizations (chosen by word of mouth and literature review of the field).

After comparing and choosing the optimal mechanization of binders, Chapter 5 then goes on to compare this mechanization in two different theorem provers, Isabelle and Agda (again, only two choices due to limited time).

The "winning" theorem prover from this round was finally used to formalize intersection-types and the proofs of subject invariance.

## 3.1 Evaluation criteria

The POPLMARK challenge stated three main criteria for evaluating the submitted mechanizations of the benchmark calculus:

- · Mechanization/implementation overheads
- Technology transparency
- · Cost of entry

This project focuses mainly on the two criteria of mechanization overheads and technology transparency, since the focus of our comparison is to choose the best mechanization and theorem prover to use for implementing intersection types for the  $\lambda$ -Y calculus, rather than asses the viability of theorem provers in general, which was the original goal of the POPLMARK challenge. These criteria are described in greater detail below:

#### 3.1.1 Technology transparency

Technology transparency, within the context of this work, is mostly concerned with the presentation of the theory inside a proof assistant, such as Isabelle or Agda. When we talk about transparency, we are concerned with how close the informal presentation is to the implementation, i.e. how difficult is it for someone with no knowledge/experience with the prover, to read and understand the definitions.

Whilst there is no direct measure of transparency, per se, it is almost always immediately obvious which presentation is more transparent, when one is presented with comparative examples. This work makes a case for transparency, or the lack thereof, by providing side-by-side snippets from different mechanizations of the same theory.

**Example 3.1.** To demonstrate this, we examine the two different (though not completely distinct) styles of writing proofs in Isabelle, namely using apply-style proofs or the Isar proof language. First, to demonstrate the Isar proof language and showcase the technology transparency it affords, we examine the proof that a square of an odd number is itself odd and then present the mechanized version of this proof in Isar.

**Lemma 3.1.** [The square of an odd number is also odd]

*Proof.* By definition, if *n* is an odd integer, it can be expressed as

$$n = 2k + 1$$

for some integer k. Thus

$$n^{2} = (2k + 1)^{2}$$

$$= (2k + 1)(2k + 1)$$

$$= 4k^{2} + 2k + 2k + 1$$

$$= 4k^{2} + 4k + 1$$

$$= 2(2k^{2} + 2k) + 1.$$

Since  $2k^2 + 2k$  is an integer,  $n^2$  is also odd.

Now, the same (albeit slightly simplified) proof is presented using the Isar language:

Clearly, this mechanized proof reads much like the rigorous paper proof that precedes it. When the same proof is presented using the apply-style proof in Isabelle, it is immediately apparent that it is much less transparent, as we obfuscate the natural flow of the informal proof, hiding most of the reasoning in automation (the last line by simp+):

```
lemma sq_odd: "\landn :: nat. (\existsk. n = 2 * k + 1) \Rightarrow \existsk. n * n = 2 * k + 1" apply (erule_tac P="\landk. n = 2 * k + 1" in exE) apply (rule_tac x="(2 * x * x) + (2 * x)" in exI) apply (rule_tac s="(2 * x + 1) * (2 * x + 1)" in subst) by simp+
```

While this example might be slightly exaggerated, it clearly demonstrates the relative lack of human readability, comapred to the Isar proof.

*Note.* The whole apply-style script can in fact just be substituted by the single line command: by (auto, presburger))

The example given above demonstrates, that transparency is a comparative measure, as it depends directly on some point of reference. As is also apparent from the example, transparency can often come at a cost of brevity. The reason why apply-style proofs exist and are used, even though Isar proofs are generally regarded as the better alternative, is the fact that they can be significantly faster to write, as they are a lot less verbose. Of course, relying more on automation, these proofs naturally tend to be harder to follow. However, much like in an informal setting, where we rarely write proofs in a completely rigorous detail, especially those which are "uninteresting" from point of the whole theory, so the different styles of proofs are used for different proofs. The short, "boring" ones are often written using apply-style scripts, whereas longer more interesting lemmas use the Isar language, to make the reasoning intuitive, i.e. transparent.

This trade-off brings us to the second criterion, namely the mechanization overheads.

<sup>&</sup>lt;sup>1</sup>The informal proof was copied from https://en.wikipedia.org/wiki/Direct\_proof

## 3.1.2 Mechanization/implementation overheads

When talking about mechanization overheads, we usually mean the additional theory needed to translate the informal definitions we reason about on paper into the fully formal setting of a theorem prover.

**Example 3.2.** To demonstrate what we mean by this, we will take the definition of intersection types and its implementation in Agda (further discussed in Section 6.1). Taking the Definition 2.8 as a starting point, namely defining intersection types as:

$$\begin{split} \mathcal{T}_s &::= \phi \mid \mathcal{T} \leadsto \mathcal{T}_s \\ \mathcal{T} &::= (\mathcal{T}_s \cap \ldots \cap \mathcal{T}_s) \end{split}$$

we translate the strict types  $\mathcal{T}_s$  to a definition in Agda in a straightforward way, since we only need to translate  $\mathcal{T}_s$  into a GADT (generalized algebraic datatype) definition:

```
data T_s where \psi \ : \ T_s \_^>\_ \ : \ (\tau \ : \ T) \ -> \ (\psi \ : \ T_s) \ -> \ T_s
```

*Remark.* The definition above is perhaps more obvious, when  $\mathcal{T}_s$  is presented inductively as:

The informal definition of  $\mathcal{T}$ , however, is slightly more complicated, since intuitively,  $\mathcal{T}_s \cap \ldots \cap \mathcal{T}_s$  represents a finite set of elements of  $\mathcal{T}_s$ . We can describe the set of intersection terms  $\mathcal{T}$  with the following inductive definition:

$$\frac{\{\tau_1,\ldots,\tau_n\}\subset\mathcal{T}_s}{\tau_1\cap\ldots\cap\tau_n\in\mathcal{T}}$$

In order to encode this definition in Agda, we will have to rely on some definition of a finite set (since the rule above assumes knowledge of finite sets and the subset relation  $\subset$  in its precondition).

Whilst the notion of a finite set is so trivial, we rarely bother axiomatizing it, Agda does not actually know about finite sets by default and its standard library only includes the definition of finite sets of natural numbers. We can instead use lists to "simulate" finite sets, as they are similar in many regards, i.e. the Agda implementation of lists includes the notion of subset inclusion for lists, so that one can write a proof of  $[1,2] \subseteq [2,2,1]$  easily. Thus, for  $\mathcal{T}$ , we get:

Whilst this definition is now largely equivalent to the informal inductive definition, we have lost quite a bit of transparency as a result. Consider the strict type  $\tau \cap \psi \leadsto \tau$ , is written as  $\cap$  ( $\tau :: \psi :: []$ )  $\sim$   $\tau$  in Agda. We can improve things somewhat by getting rid of the pointless constructor  $\cap$  and merging the two definitions of  $\mathcal T$  and  $\mathcal T_s$  into a single definition, namely:

*Remark.* This definition now corresponds to the merging of the two previously given inductive definitions of  $\mathcal T$  and  $\mathcal T_s$ :

$$\frac{\phantom{a}}{\varphi \in \mathcal{T}_{s}} \quad \frac{\{\tau_{1}, \ldots, \tau_{n}\} \subset \mathcal{T}_{s} \quad \psi \in \mathcal{T}_{s}}{\tau_{1} \cap \ldots \cap \tau_{n} \rightsquigarrow \psi \in \mathcal{T}_{s}}$$

Now,  $\tau \cap \psi \leadsto \tau$ , corresponds to the Agda term  $(\tau :: \psi :: []) \leadsto \tau$ , which is still not ideal. We can, however, define some simple sugar notation:

```
\_\cap\_ : T_s \longrightarrow T_s \longrightarrow List T_s 
 \tau \cap \psi = \tau :: \psi :: []
```

Thus, we finally get the Agda term  $\tau \cap \psi \sim \tau$  which now clearly corresponds to  $\tau \cap \psi \rightsquigarrow \tau$ .

As the above example clearly shows, the first/simplest measure of the amount of implementation overheads, is simply the length of the code/proof scrips, defining the terms and lemmas of a theory. Whilst the length of code might provide an indication of the possible level of implementation overheads, it is important to keep in mind, that brevity of code can often also depend on the level of transparency, as evidenced by both Example 3.1 and the one above, where the shorter code turned out to also be the less transparent one. Depending on the priorities, we therefore often sacrifice either transparency for brevity or vice versa (which can greatly impact this simple metric for overheads).

Therefore, instead of simply looking at the length of the produced document, we also compare the number of lemmas, disregarding the length of each one. Even though this measure also carries disadvantages (one could, for example, in-line the whole Church Rosser proof into one giant lemma) it is less sensitive in regard to transparency.

Another aspect which ties into both transparency and mechanization overheads is the level of automation. As was demonstrated by Example 3.1, wherein the lemma could in fact be proved automatically with almost no user input, having low implementation overheads (in proofs) is often tied to the level of automation the tool provides.

More concretely, a tool with good automation will include a standard library of common definitions and theorems, so that the user does not have to re-define and re-prove basic mathematical object and properties and instead can focus on the specific theory she/he wants to implement. This is indeed largely the reason why we used Isabelle along with the nominal sets library², maintained by Christian Urban, where the theory was conveniently hidden away and managed for us by Isabelle's automatic provers, so that our mechanization overheads were minimal. However, there were several caveats to this, which we discuss in the next chapter.

On the other hand, the choice of locally nameless encoding, as opposed to using pure de Bruijn indices, was motivated by the claim that locally nameless encoding largely mitigates the disadvantages of de Bruijn indices especially when it comes to technology transparency. The LN encoding is also a lot more bare-bones than the nominal set theory (if there was not library and one had to formalize the theory from scratch), carrying relatively manageable overheads.

<sup>&</sup>lt;sup>2</sup>http://www.inf.kcl.ac.uk/staff/urbanc/Nominal/

Where automation/mechanization overheads and transparency clashed, we sided with a more transparent mechanization, often choosing to keep some lemmas (especially in the nominal implementation) deliberately verbose. The reason for this was out aim, to make this formalization more accessible to the HOMC community, by trying to make these theory files useful/readable even to people with little prior knowledge of theorem provers.

## 4. Nominal vs. Locally nameless

This chapter looks at the two different mechanizations of the  $\lambda$ -Y calculus, introduced in the previous chapter, namely an implementation of the calculus using nominal sets and a locally nameless (LN) mechanization. Having presented the two approaches to formalizing binders in Section 2.1, this chapter explores the consequences of choosing either mechanization, especially in terms of technology transparency and overheads introduced as a result of the chosen mechanization.

Whilst we found that the nominal version of the definitions and proofs turned out to be more transparent than the locally nameless mechanization, there were some large overheads associated with the implementation of certain features of the  $\lambda$ -Y calculus using nominal sets. The LN mechanization, on the other hand, carried a small but consistent level of overhead throughout the formalization, proving that it was indeed a good compromise between implementation overheads and transparency.

### 4.1 Overview

We chose the length of the implemented theory files as a simple measure of implementation overheads. As expected, the locally nameless version of the calculus (1143 lines) was about 50% longer than the nominal encoding (723 lines). However, this measure is not always ideal (due to the reasons outlined in Section 3.1.2), and we therefore also present the comparison between the two versions in terms of the individual definitions and lemmas that correspond to each other in the two mechanizations:

| Informal                             | Nominal                             | Locally nameless                    |
|--------------------------------------|-------------------------------------|-------------------------------------|
| Definition of terms                  | nominal_datatype trm                | datatype ptrm                       |
|                                      |                                     | inductive trm                       |
| Definition of                        | nominal_function subst              | fun opn                             |
| substitution                         |                                     | <b>fun</b> cls                      |
|                                      |                                     | <b>fun</b> subst                    |
| Lemma 2.1                            | lemma pbeta_max_ex                  | lemma pbeta_max_ex                  |
| $(\forall M. \exists M'. M \ggg M')$ |                                     | <b>lemma</b> fv_opn_cls_id2         |
|                                      |                                     | <b>lemma</b> pbeta_max_cls          |
| Lemma 2.2                            | <b>lemma</b> pbeta_max_closes_pbeta | <b>lemma</b> pbeta_max_closes_pbeta |
| $(\forall M, M', M''. M \ggg$        | lemma pbeta_cases_2                 | lemma Lem2_5_1opn                   |
| $M'' \wedge M \gg M' \implies$       | lemma Lem2_5_1                      |                                     |
| $M' \gg M''$                         | <b>lemma</b> pbeta_lam_case_ex      |                                     |

| Informal                         | Nominal                     | Locally nameless            |  |
|----------------------------------|-----------------------------|-----------------------------|--|
| Theorem 2.2                      | lemma beta_Y_typ            | lemma beta_Y_typ            |  |
| (Subject reduction               | <b>lemma</b> subst_typ      | lemma opn_typ               |  |
| for $\Rightarrow_{\Upsilon}^*$ ) | lemma wt_terms_impl_wf_ctxt | lemma wt_terms_impl_wf_ctxt |  |
|                                  | lemma wt_terms_cases_2      |                             |  |

The table above lists the major lemmas discussed throughout this thesis, along with their names in the concrete implementations (the printouts of the Isabelle theory files can be found in the Appendix). The table also lists some of the additional lemmas, on which the main lemmas depend. For example, the lemma *pbeta\_max\_ex* corresponds to Lemma 2.1 and depends on *fv\_opn\_cls\_id2* and *pbeta\_max\_cls*. Overall, the mechanization using nominal sets includes 33 lemmas, whereas the locally nameless has 71 individual lemmas. Even though the LN mechanization includes more than twice as many lemmas as the nominal formalization, it's roughly only 50% longer, meaning that many of these lemmas are short simple proofs, which supports our assertion that using the locally nameless representation of binders carries larger overhead, but keeps the difficulty of proving these additional lemmas low.

The rest of this chapter provides an overview of some of the technical points of the  $\lambda$ -Y calculus mechanization, which highlight the differences between the two mechanizations. However, we conclude that on the whole, neither mechanization proved to be significantly better than the other.

This is especially true when it comes to individual proofs in both mechanizations. As the code printout in the Appendix clearly shows, both mechanizations have the same structure and largely the same syntax and formulation of lemmas.

Additionally, when taking a finer grained look at the length of code by sections, rather than as a whole, the lengths of the main lemmas in both mechanizations are much closer, as the overheads of the locally nameless encoding occur mainly in the definitions of terms and substitution/open/close operations:

|                                           | Nominal | Locally nameless |
|-------------------------------------------|---------|------------------|
| Definition of λ-Y terms                   | 15      | 11               |
| Definition of well formed terms           | -       | 15               |
| Definition of the open operation          | -       | 18               |
| Definition of substitution                | 56      | 124              |
| Definition of the close operation         | -       | 86               |
| etaY-reduction                            | 17      | 25               |
| Parallel $\beta$ Y-reduction              | 17      | 27               |
| Maximal parallel βY-reduction             | 49      | 60               |
| Lemma 2.1                                 | 24      | 107              |
| Lemma 2.2                                 | 156     | 145              |
| Proof of $dp(\gg)$                        | 18      | 18               |
| Reflexive-transitive closure of $\beta Y$ | 116     | 231              |
| Simple-typing relation ⊢                  | 238     | 258              |
| Church Rosser Theorem                     | 12      | 12               |

Whilst the LN mechanization proved to have significantly higher "obvious" mechanization overheads in terms of code length, the implementation using the nominal library proved to be more difficult to use at certain points, due to the more complex nominal sets theory that implicitly underpinned the mechanization.

## 4.2 Definitions

We give a brief overview of the basic definitions of well-typed terms and  $\beta Y$ -reduction, specific to both mechanizations. Unsurprisingly, the main differences in these definitions involve  $\lambda$ -binders.

#### 4.2.1 Nominal sets representation

This section will examine the implementation of  $\lambda$ -Y calculus in Isabelle, using the Nominal package. As was shown already in Section 2.1, nominal set representation of terms is largely identical with the informal definition, which is the main reason why this representation was chosen.

The declaration of the terms and types in Nominal Isabelle is handled using the reserved keywords atom\_decl and nominal\_datatype, which are special versions of the typedecl and datatype primitives, used in the usual Isabelle/HOL session:

```
atom_decl name

nominal_datatype type = 0 | Arr type type ("_ → _")

nominal_datatype trm =
   Var name
   | App trm trm
   | Lam x::name t::trm binds x in t ("Lam [_]. _" [100, 100] 100)
   | Y type
```

The special **binds** \_ **in** \_ syntax in the Lam constructor declares x to be bound in the body t, telling Nominal Isabelle that Lam terms should be identified up to  $\alpha$ -equivalence, where a term  $\lambda x.x$  and  $\lambda y.y$  are considered identical/equal. This is because both x and y are bound in the two respective terms, and can both be  $\alpha$ -converted to the same term, for example  $\lambda z.z$ . In fact, proving such a lemma in Nominal Isabelle is trivial:

```
lemma "Lam [x]. Var x = Lam [y]. Var y" by simp
```

The special **nominal\_datatype** declaration also generates definitions of free variables/freshness and other simplification rules.

*Note.* These auto-generated rules can be inspected in Isabelle, using the **print\_theorems** command.

Other definitions, such as  $\beta Y$ -reduction and the notion of substitution are also unchanged with regards to the usual definition (except for the addition of the Y case, which is trivial):

**Definition 4.1.** [Capture-avoiding substitution]

$$x[S/y] = \begin{cases} S & \text{if } x \equiv y \\ x & \text{otherwise} \end{cases}$$

$$(MN)[S/y] = (M[S/y])(N[S/y])$$

$$x \sharp y, S \implies (\lambda x.M)[S/y] = \lambda x.(M[S/y])$$

$$(Y_{\sigma})[S/y] = Y_{\sigma}$$

The side-condition  $x \sharp y$ , S in the definition above can be read as "x is fresh in N", namely, the atom x is not the same as y and does not appear in S, i.e. for a  $\lambda$ -term M, we have  $x \sharp M$  iff  $x \not\in FV(M)$ .

Whilst on paper, these definitions are unchanged from the informal presentation, there are a few caveats when it comes to actually implementing them in Nominal Isabelle. Since this definition of substitution includes the freshness condition (and is defined over nominal terms), it cannot be defined using normal structural recursion via the **primrec** or **fun** keywords, generally used for this purpose. Instead we have to define capture avoiding substitution using a **nominal\_function** declaration:

```
nominal_function
  subst :: "trm => name => trm => trm" ("_ [_ ::= _]" [90, 90, 90] 90)
where
  "(Var x)[y ::= s] = (if x = y then s else (Var x))"
| "(App t1 t2)[y ::= s] = App (t1[y ::= s]) (t2[y ::= s])"
| "atom x # (y, s) => (Lam [x]. t)[y ::= s] = Lam [x].(t[y ::= s])"
| "(Y t)[y ::= s] = Y t"
```

The usual **fun** declaration of a recursive function in Isabelle automatically checks the definition for pattern completeness and overlap (for the term being pattern matched on). The **fun** definition also automatically checks/proves termination of such recursive functions and generates simplification rules, which can be used for equational reasoning involving the function.

Unfortunately, this isn't the case for the **nominal\_function** declaration, where there are several goals (13 in the case of the subst definition) which the user has to manually prove about the function definition, including proving termination, and pattern disjointness and completeness. Whilst most of the goals were trivial, proving cases involving  $\lambda$ -terms required a substantial understanding of the internal workings of Isabelle and the Nominal package early on into the mechanization, and as a novice to using Nominal Isabelle, understanding and proving these properties proved challenging. Therefore, even though our formalization required only a handful of other recursive function definitions, in a different theory with significantly more function definitions, proving such goals from scratch would be a challenge to a Nominal Isabelle newcomer, as well as a tedious implementation overhead.

#### 4.2.2 Locally nameless representation

As we have seen, on paper at least, the definitions of terms and capture-avoiding substitution using nominal sets are very transparent, as they appear unchanged from the usual informal definitions. The situation is somewhat different for the locally nameless mechanization. Since the LN

approach combines the named and de Bruijn representations, there are two different constructors for free and bound variables:

#### 4.2.2.1 Pre-terms

**Definition 4.2.** [LN pre-terms]

$$M ::= x \mid n \mid MM \mid \lambda M \mid Y_{\sigma} \text{ where } x \in Var \text{ and } n \in \mathbb{N}$$

Similarly to the de Bruijn presentation of binders, the  $\lambda$ -term no longer includes a bound variable, so a named representation term  $\lambda x.x$  becomes  $\lambda 0$  in LN. As was mentioned in Section 2.1, the set of pre-terms, defined in Definition 4.2, is a superset of  $\lambda$ -Y terms and includes terms which are not well formed  $\lambda$ -Y terms.

**Example 4.1.** The pre-term  $\lambda 3$  is not a well-formed  $\lambda - Y$  term, since the bound variable index is out of scope. In other words, there is no corresponding (named)  $\lambda - Y$  term to  $\lambda 3$ .

Since we don't want to work with terms that do not correspond to  $\lambda$ -Y terms, we have to introduce the notion of a *well-formed* term, which restricts the set of pre-terms to only those that correspond to  $\lambda$ -Y terms (i.e. this inductive definition ensures that there are no "out of bounds" indices in a given pre-term):

**Definition 4.3.** [Well-formed terms]

$$(fvar) \frac{}{\mathsf{term}(x)} \qquad (Y) \frac{}{\mathsf{term}(Y_{\sigma})}$$

$$(lam) \frac{x \notin FV(M) \quad term(M^{x})}{term(\lambda M)} \quad (app) \frac{term(M) \quad term(M)}{term(MN)}$$

Already, we see that this formalization introduces some overheads with respect to the informal/nominal encoding of the  $\lambda$ -Y calculus.

The upside of this definition of  $\lambda$ -Y terms becomes apparent when we start thinking about  $\alpha$ -equivalence and capture-avoiding substitution. Since the LN terms use de Bruijn levels for bound variables, there is only one way to write the term  $\lambda x.x$  or  $\lambda y.y$  as a LN term, namely  $\lambda 0$ . As the  $\alpha$ -equivalence classes of named  $\lambda$ -Y terms also collapse into a singleton  $\alpha$ -equivalence class in a LN representation, the notion of  $\alpha$ -equivalence becomes trivial.

As a result of using LN representation of binders, the notion of substitution is split into two distinct operations. One operation is the substitution of bound variables, called *opening*. The other is substitution, defined only for free variables. Whereas substitution replaces a free variable (in a named  $\lambda$ -term) by a given term, the *open* operation does the same thing, except it substitutes the term for a bound variable/index:

## Definition 4.4. [Opening and substitution]

We will usually assume that S is a well-formed LN term when proving properties about substitution and opening. The abbreviation  $M^N \equiv \{0 \to N\}M$  is used throughout this chapter.

i) Opening:

$$\{k \to S\}x = x$$

$$\{k \to S\}n = \begin{cases} S & \text{if } k \equiv n \\ n & \text{otherwise} \end{cases}$$

$$\{k \to S\}(MN) = (\{k \to S\}M)(\{k \to S\}N)$$

$$\{k \to S\}(\lambda M) = \lambda(\{k+1 \to S\}M)$$

$$\{k \to S\}Y_{\sigma} = Y_{\sigma}$$

ii) Substitution:

$$x[S/y] = \begin{cases} S & \text{if } x \equiv y \\ x & \text{otherwise} \end{cases}$$

$$n[S/y] = n$$

$$(MN)[S/y] = (M[S/y])(N[S/y])$$

$$(\lambda M)[S/y] = \lambda.(M[S/y])$$

$$Y_{\sigma}[S/y] = Y_{\sigma}$$

Having defined the *open* operation, we turn back to the definition of well formed terms, specifically to the (lam) rule, which has the precondition  $term(M^x)$ . Intuitively, for the given term  $\lambda M$ , the term  $M^x$  is obtained by replacing all indices bound to the outermost  $\lambda$  by x. Then, if  $M^x$  is well formed, so is  $\lambda M$ .

**Example 4.2.** For example, taking the term  $\lambda\lambda 0(z \ 1)$ , which represents the named term  $\lambda x.\lambda y.y(zx)$ , we can construct the following proof-tree, showing that the term is well formed:

$$\frac{(\textit{fvar})}{(\textit{app})} \frac{\frac{(\textit{fvar})}{\mathsf{term}(z)} \frac{(\textit{fvar})}{\mathsf{term}(z)} \frac{\mathsf{term}(x)}{\mathsf{term}(z)}}{\frac{(\textit{lam})}{(\textit{lam})} \frac{\frac{\mathsf{term}((\mathsf{0}(z\,x))^y)}{\mathsf{term}((\lambda\mathsf{0}(z\,1))^x)}}{\mathsf{term}(\lambda\lambda\mathsf{0}(z\,1))} }$$

We assumed that  $x \not\equiv y \not\equiv z$  in the proof tree above and thus omitted the  $x \not\in FV \dots$  branches, as they are not important for this example.

If on the other hand, we try construct a similar tree for a term which is obviously not well formed, such as  $\lambda\lambda 2(z1)$ , we get a proof tree with a branch which cannot be closed (term(2)):

$$(app) \ \frac{\mathsf{term}(2)}{(app)} \frac{\frac{(\mathit{fvar})}{\mathsf{term}(z)} \frac{(\mathit{fvar})}{\mathsf{term}(x)}}{\frac{\mathsf{term}(z\,x)}{(\mathit{lam})}} \frac{(\mathit{lam})}{\frac{\mathsf{term}((2(z\,x))^y)}{\mathsf{term}(\lambda 2(z\,1))^x)}}$$

### 4.2.2.2 $\beta$ Y-reduction for LN terms

Finally, we examine the formulation of  $\beta Y$ -reduction in the LN presentation of the  $\lambda$ -Y calculus. Since we only want to perform  $\beta Y$ -reduction on valid  $\lambda$ -Y terms, the inductive definition of  $\beta Y$ -reduction in the LN mechanization now includes the precondition that the terms appearing in the reduction are well formed:

Definition 4.5. 
$$[\beta Y\text{-reduction (LN)}]$$

$$(red_L) \frac{M \Rightarrow_Y M' \quad \text{term}(N)}{MN \Rightarrow_Y M'N} \qquad (red_R) \frac{\text{term}(M) \quad N \Rightarrow_Y N'}{MN \Rightarrow_Y M'N}$$

$$(abs) \frac{x \notin FV(M) \cup FV(M') \quad M^x \Rightarrow_Y (M')^x}{\lambda M \Rightarrow_Y \lambda M'} \qquad (\beta) \frac{\text{term}(\lambda M) \quad \text{term}(N)}{(\lambda M)N \Rightarrow_Y M^N}$$

$$(Y) \frac{\text{term}(M)}{Y_S M \Rightarrow_Y M(Y_S M)}$$

As expected, the *open* operation is now used instead of substitution in the  $(\beta)$  rule.

The (abs) rule is also slightly different, using the open in its precondition instead of the usual substitution. Intuitively, the usual formulation of the (abs) rule states that in order to prove that  $\lambda x.M$  reduces to  $\lambda x.M'$ , we can simply "un-bind" x in both M and M' and show that M reduces to M' (reasoning bottom-up from the conclusion to the premises). Since in the usual formulation of the  $\lambda$ -calculus, there is no distinction between free and bound variables, this change (where x becomes free) is implicit. In the LN presentation, however, this operation is made explicit by opening both M and M' with some free variable x (not appearing in either M nor M'), which replaces the bound variables/indices (bound to the outermost  $\lambda$ ) with x.

While this definition is equivalent to the usual/informal definition, the induction principle this definition yields may not always be sufficient, especially in situations where we want to open up a term with a free variable which is not only fresh in M and M', but possibly in a wider context. We therefore followed the approach of B. Aydemir et al. (2008) and re-defined the (abs) rule (and other definitions involving the choice of fresh/free variables) using *cofinite quantification*:

(abs) 
$$\frac{\forall x \notin L. M^x \Rightarrow_{\gamma} M'^x}{\lambda M \Rightarrow_{\gamma} \lambda M'}$$

For an example, where using cofinite quantification was necessary, see ??).

### 4.3 Proofs

Having described the implementations of the two binder representations along with the definitions of capture-avoiding substitution using nominal sets and the corresponding substitution and *open* operations in the LN mechanization, we come the the main part of the comparison, namely the proof of the Church Rosser theorem. This section examines specific instances of some of the major lemmas, which form parts of this bigger result and highlight the important differences

between the two mechanizations. The general outline of the proof has been described in Section 2.2.3.

### 4.3.1 Lemma 2.1

The first major result in both implementations is Lemma 2.1, which states that for every  $\lambda$ -Y term M, there is a term M', s.t.  $M \gg M'$ .

*Remark.* This result is trivial for  $\gg$ , as we can easily prove the derived rule  $(refl^*)$ , but not for  $\gg$ :

```
Lemma 4.1. [\gg admits (refl^*)]
```

The following rule is admissible in the deduction system  $\gg$ :

$$(refl^*)$$
  $M \gg M$ 

Proof. By induction on M.

Since  $\gg$  restricts the use of the (app) rule to terms which do not contain a  $\lambda$  or Y as its left-most sub-term, Lemma 4.1 does not hold in  $\gg$  for terms like  $(\lambda x.x)y$ , namely,  $(\lambda x.x)y \gg (\lambda x.x)y$  is not a valid reduction (see Example 2.5). It is, however, not difficult to see that such terms can simply be  $\beta$ Y-reduced until all the redexes have been contracted, so that we have  $(\lambda x.x)y \gg y$  for the term above.

Seen as a weaker version of Lemma 4.1, the proof of Lemma 2.1, at least in theory, should then only differ in the case of an application, where we have do a case analysis on the left sub-term of any given *M*.

This is indeed the case when using the nominal mechanization, where the proof looks like this:

```
lemma pbeta_max_ex:
fixes M
shows "∃M'. M >>> M'"

apply (induct M rule:trm.induct)

apply auto
apply (case_tac "not_abst S")

apply (case_tac "not_Y S")

apply auto[1]

proof goal_cases
case (1 P Q P' Q')

then obtain o where 2: "P = Y o" using not_Y_ex by auto
have "App (Y o) Q >>> App Q' (App (Y o) Q')"

apply (rule_tac pbeta_max.Y)
by (rule 1(2))
thus ?case unfolding 2 by auto
next
```

```
17  case (2 P Q P' Q')
18  thus ?case
19  apply (nominal_induct P P' avoiding: Q Q' rule:pbeta_max.strong_induct)
20  by auto
21  qed
```

After applying induction and calling auto, which is Isabelle's automatic prover that does simple term rewriting and basic proof search, we can inspect the remaining goals at line 5, to see that the only goal that remains is the case of M being an application, namely we have to prove the following:

```
\forall S T U V. S \gg U \implies T \gg V \implies \exists M'. S T \gg M'
```

Lines 6 and 7 in the proof script then correspond to doing a case analysis on S (where M = ST). We end up with 3 goals, corresponding to S either being a  $\lambda$ -term, Y-term or neither (shown below in reverse order):

```
    not_abst S ⇒ not_Y S ⇒ ∃M'. App S T >>> M'
    not_abst S ⇒ ¬ not_Y S ⇒ ∃M'. App S T >>> M'
    not_abst S ⇒ ∃M'. App S T >>> M'
```

The first goal is discharged by calling auto again (line 8), since we can simply apply the (app) rule in this instance. The two remaining cases are discharged with the additional information that S is either a  $\lambda$ -term or a Y-term.

So far, we have looked at the version of the proof using nominal Isabelle and this is especially apparent in line 19, where we use the stronger nominal\_induct rule, with the extra parameter avoiding: Q Q', which ensures that any new bound variables will be sufficiently fresh with regards to Q and Q'.

Since bound variables are distinct in the LN representation, the equivalent proof simply uses the usual induction rule (line 19):

```
lemma pbeta_max_ex:
   fixes M assumes "trm M"
   shows "∃M'. M >>> M'"
using assms apply (induct M rule:trm.induct)
apply auto
apply (case_tac "not_abst t1")
apply (case_tac "not_Y t1")
apply auto[1]
proof goal_cases
case (1 P Q P' Q')
  then obtain \sigma where 2: "P = Y \sigma" using not_Y_ex by auto
   have "App (Y \sigma) Q >>> App Q' (App <math>(Y \sigma) Q')"
   apply (rule_tac pbeta_max.Y)
  by (rule 1(4))
   thus ?case unfolding 2 by auto
 case (2 P Q P' Q')
```

```
from 2(3,4,5,1,2) show ?case
   apply (induct P P' rule:pbeta_max.induct)
  by auto
next
case (3 L M)
  then obtain x where 4: "x \notin L \cup FV M" by (meson FV_finite finite_UnI x_Ex)
  with 3 obtain M' where 5: "M'FVar x >>> M'" by auto
  have 6: "\wedgey. y \notin FV M' \cup FV M \cup {x} \Rightarrow M^FVar y >>> (\setminusx^M')^FVar y"
  unfolding opn'_def cls'_def
  apply (subst(3) fv_opn_cls_id2[where x=x])
  using 4 apply simp
  apply (rule_tac pbeta_max_cls)
  using 5 opn'_def by (auto simp add: FV_simp)
  show ?case
   apply rule
  apply (rule_tac L="FV M' U FV M U {x}" in pbeta_max.abs)
  using 6 by (auto simp add: FV_finite)
qed
```

As one can immediately see, this proof proceeds exactly in the same fashion, as the nominal one, up to line 20. However, unlike in the nominal version of the proof, in the LN proof, the auto call at line 8 could not automatically prove the case where M is a  $\lambda$ -term.

This is perhaps not too surprising, since the LN encoding is a lot more "bare bones", and thus there is little that would aid Isabelle's automation. The nominal package, on the other hand, was designed to make reasoning with binders as painless as possible, which definitely shows in this example.

When we compare the two goals for the  $\lambda$ -case in both versions of the proof (going back to line 4 in both proofs), we clearly see the differences in the treatment of binders:

Nominal: 
$$\forall x \ M. \ \exists M'. \ M \ggg M' \implies \exists M'. \lambda x. M \ggg M'$$
  
Locally nameless:  $\forall L \ M. \ \text{fin} \ L \implies \text{term}(\lambda.M) \implies (\forall x \not\in L. \ \exists M''. \ M^x \ggg M'')$   
 $\implies \exists M'. \ \lambda. M \ggg M'$ 

Unlike in the nominal proof, where we get  $\lambda x.M \gg \lambda x.M'$  from  $M \gg M'$  by (abs) immediately, the proof of  $\exists M'. \lambda.M \gg M'$  in the LN mechanization is not as trivial.

The difficulty in the LN version arises from the precondition of the (abs) rule:

$$(abs) \frac{\exists M'. \forall x \notin L. M^x \ggg (M')^x}{\exists M'. \lambda M \ggg \lambda M'^{\top}}$$

This version of the rule with the existential quantification shows the subtle difference between the

<sup>&</sup>lt;sup>1</sup> While the original goal is  $\exists M'$ .  $\lambda.M \ggg M'$ , since there is only one possible "shape" for the right-hands side term, namely M' must be a  $\lambda$ -term, we can easily rewrite this goal as  $\exists M'$ .  $\lambda.M \ggg \lambda.M'$ .

inductive hypothesis  $\forall x \notin L$ .  $\exists M'$ .  $M^x \ggg (M')^{x^2}$  we have, and the premise  $\exists M'$ .  $\forall x \notin L$ .  $M^x \ggg (M')^x$  that we want to show. In order to prove the latter, we assume that there is some M' for a specific  $x \notin L$  s.t.  $M^x \ggg (M')^x$ .

At this point, we cannot proceed without re-examining the definition of *opening*, especially in that this operation lacks an inverse. Whereas in a named representation, where bound variables are bound via context only, LN terms have specific constructors for free and bound variables together with an operation for turning bound variables into free variables, namely the *open* function. In this proof, however, we need the inverse operation, wherein we turn a free variable into a bound one. We call this the *close* operation:

## **Definition 4.6.** [Close operation]

This definition was adapted from the B. Aydemir et al. (2008) paper. We adopt the following convention, writing  ${}^{\setminus x}M \equiv \{0 \leftarrow x\}M$ .

$$\{k \leftarrow x\}y = \begin{cases} k & \text{if } x \equiv y \\ y & \text{otherwise} \end{cases}$$

$$\{k \leftarrow S\}n = n$$

$$\{k \leftarrow S\}(MN) = (\{k \leftarrow S\}M)(\{k \leftarrow S\}N)$$

$$\{k \leftarrow S\}(\lambda M) = \lambda(\{k+1 \leftarrow S\}M)$$

$$\{k \leftarrow S\}Y_{\sigma} = Y_{\sigma}$$

**Example 4.3.** To demonstrate the close operation, take the term  $\lambda xy$ . Applying the close operation with the free variable x, we get  $\chi(\lambda xy) = \lambda 0y$ . Whilst the original term might have been well formed, the closed term, as is the case here, may not be.

Having defined the *close* operation, we can "close" the term M', with respect to the x we fixed earlier and show that for some L', we have  $\forall y \notin L'$ .  $M^y \ggg (^{\setminus x}M')^y$  (lines 26), by proving certain properties about the interplay between the *open*, *close* and substitution operations.

As a result, the LN proof of this case (lines 22 - 36) is significantly longer and more involved than the nominal counterpart, which was easily proved by the auto prover.

### 4.3.2 Lemma 2.2

While it may seem that the nominal mechanization was universally more concise and easier to work in than the locally nameless implementation, there were a few instances where using the nominal library turned out to be more difficult to understand and use. One such instance, namely defining a **nominal\_function**, was already discussed. Another example can be found in the implementation of Lemma 2.2, which is stated as:

$$\forall M, M', M_{max}. M \gg M_{max} \land M \gg M' \implies M' \gg M_{max}$$

The proof of this lemma proceeds by induction on the relation  $\gg$ . Here we will focus on the  $(\beta)$  case, i.e. when we have  $M \gg M_{max}$  by the application of  $(\beta)$ , first giving an informal proof and then focusing on the implementation specifics in both mechanizations:

<sup>&</sup>lt;sup>2</sup>It can easily be shown that any pre-term M can be written using another pre-term N s.t.  $M \equiv N^{x}$  for some x.

### 4.3.2.1 $(\beta)$ case

We have  $M \equiv (\lambda x.P)Q$  and  $M_{max} \equiv P_{max}[Q_{max}/x]$ , and therefore  $(\lambda x.P)Q \ggg P_{max}[Q_{max}/x]$  and  $(\lambda x.P)Q \ggg M'$ .

By performing case analysis on the reduction  $(\lambda x.P)Q \gg M'$ , we know that  $M' \equiv (\lambda x.P')Q'$  or  $M' \equiv P'[Q'/x]$  for some P', Q', since only the following two reduction trees can be valid:

For the first case, where  $M' \equiv (\lambda x.P')Q'$ , by *IH*, we have  $P' \gg P_{max}$  and  $Q' \gg Q_{max}$ . Thus, we can prove that  $M' \gg P_{max}[Q_{max}/x]$ :

$$\frac{(IH)}{(\beta)} \frac{P' \gg P_{max}}{(\lambda x. P') Q' \gg P_{max} [Q_{max}/x]}$$

In the case where  $M' \equiv P'[Q'/x]$ , we also have  $P' \gg P_{max}$  and  $Q' \gg Q_{max}$  by *IH*. The result  $M' \gg P_{max}[Q_{max}/x]$  follows from the following auxiliary lemma:

## Lemma 4.2. [Parallel substitution]

The following rule is admissible in  $\gg$ :

$$(||_{subst}) \frac{M \gg M' \qquad N \gg N'}{M[N/x] \gg M'[N'/x]}$$

### 4.3.2.2 Nominal implementation

The code below shows the proof of the  $(\beta)$  case, described above:

```
case (beta x Q Qmax P Pmax)
from beta(1,7) show ?case
apply (rule_tac pbeta_cases_2)
apply (simp, simp)
proof -
case (goal2 Q' P')
with beta have "P' » Pmax" "Q' » Qmax" by simp+
thus ?case unfolding goal2 apply (rule_tac Lem2_5_1) by simp+
next
case (goal1 P' Q')
with beta have ih: "P' » Pmax" "Q' » Qmax" by simp+
show ?case unfolding goal1
apply (rule_tac pbeta.beta) using goal1 beta ih
by simp_all
```

```
15 qed
```

There were a few quirks when implementing this proof in the nominal setting, specifically in line 3, where the case analysis on the shape of M' needed to be performed. Applying the automatically generated pbeta.cases rule yielded the following goal for the case where  $M' \equiv P'[Q'/x]$ :

```
2. \triangle Q' R P'.

[[atom x]]lst. P = [[atom xa]]lst. R \Rightarrow M' = P' [xa ::= Q'] \Rightarrow atom xa # Q \Rightarrow atom xa # Q' \Rightarrow R \gg P' \Rightarrow Q \gg Q' \Rightarrow M' \gg Pmax [x ::= Qmax]
```

Obviously, this is not the desired shape of the goal, because we obtained a weaker premise, where we have some R, such that  $\lambda x.P \equiv_{\alpha} \lambda xa.R$  (this is essentially what <code>[[atom x]]lst.P = [[atom xa]]lst.R states</code>) and therefore we get a P' where  $M' \equiv P'[Q'/xa]$ . What we actually want is a term P' s.t.  $M' \equiv P'[Q'/x]$ , i.e. x = xa. In order to "force" x and xa to actually be the same atom, we had to prove the following "cases" lemma:

In the lemma above,  $(\land t' \ s'. \ a2 = s' \ [x ::= t'] \to atom \ x \ \sharp \ t \to atom \ x \ \sharp \ t' \to s$   $\Rightarrow s' \to t \Rightarrow t' \to P) \to P$  corresponds to the case with the premises we want to have, instead of the ones we get from the pbeta.cases lemma generated as part of the definition of  $\gg$ .

The proof of this lemma required proving another lemma shown below, which required descending into nominal set theory that was previously mostly hidden away from the mechanization (the proof-scripts indicated by . . . were omitted for brevity):

```
lemma "(Lam [x]. s) » s' ⇒ ∃t. s' = Lam [x]. t ∧ s » t"
proof (cases "(Lam [x]. s)" s' rule:pbeta.cases, simp)
  case (goal1 _ _ x')
    then have 1: "s » ((x' ↔ x) • M')" ...
    from goal1 have 2: "(x' ↔ x) • s' = Lam [x]. ((x' ↔ x) • M')" ...
    from goal1 have "atom x # (Lam [x']. M')" using fresh_in_pbeta ...
    with 2 have "s' = Lam [x]. ((x' ↔ x) • M')" ...
    with 1 show ?case by auto
qed
```

Clearly, the custom "cases" lemma was necessary from a purely technical view, as it would be deemed too trivial to bother proving in an informal setting. The need for such a lemma also demonstrates that whilst the nominal package package tries to hide away the details of the theory, every once in a while, the user has to descent into nominal set theory, to prove certain properties about binders, not handled by the automation.

For us, the nominal package thus proved to be a double edged sword, as it initially provided a fairly low cost of entry (there was practically no need to understand any nominal set theory to get started), but proved to be much more challenging to understand in certain places, such as when proving pbeta\_cases\_2 or the auxiliary lemma above.

Whilst the finial pbeta\_cases\_2 proof turned out to be fairly short thanks to automation of the nominal set theory, it took some time to work out the proof outline in such a ways as to leverage Isabelle's automation to a high degree.

The LN mechanization, whilst having bigger overheads in terms of extra definitions and lemmas that had to be proven "by hand", was in fact a lot more transparent as a result, as the degree of difficulty after the initial cost of entry did not rise significantly with more complicated lemmas.

### 4.3.2.3 LN implementation

The troublesome case analysis in the nominal version of the proof was much more straight forward in the LN proof. In fact, there was no need to prove a separate lemma similar to pbeta\_cases\_2, since the auto-generated pbeta.cases was sufficient. The only overhead in this version of the lemma came from the use of Lemma 4.2, in that the lemma was first proved in it's classical formulation using substitution, but due to the way substitution of bound terms is handled in the LN mechanization (using the *open* function), a "helper" lemma was proved to convert this result to one using *open*:

### **Lemma 4.3.** [Parallel open]

The following rule is admissible in the LN version of  $\gg$ :

$$(||_{open}) \frac{\forall x \notin L. M^{x} \gg M'^{x} \qquad N \gg N'}{M^{N} \gg M'^{N'}}$$

The reason why Lemma 4.3 wasn't proved directly is partially due to the order of implementation of the two mechanizations of the  $\lambda$ -Y calculus. Since the nominal version, along with all the proofs was carried out first, the LN version of the calculus ended up being more of a port of the nominal theory into a locally nameless setting.

The LN mechanization, being a port of the nominal theory, has both advantages and disadvantages. On the one hand, it ensures a greater consistency between the two theories and easier direct comparison of lemmas, but on the other hand, it meant that certain lemmas could have been made shorter and more "tailored" to the LN mechanization.

# 5. Isabelle vs. Agda

After having looked at two approaches to mechanizing binders in Isabelle in the last chapter and concluding that there were only minor differences between the nominal and LN approaches, we proceeded to the next round of our comparison, by implementing the locally nameless version of the  $\lambda$ -Y calculus along with proofs of confluence in Agda.

Whilst using nominal sets in Isabelle turned out to be slightly more transparent and shorter, the big disadvantage, especially for Agda, was the fact that the nominal set theory would have been much more tedious to use, if we had to, implement it from scratch. Nominal Isabelle is a fairly mature library, formalizing the theory of nominal sets and providing ample sugar for the user to hide away the theory. Agda, on the other hand, is a lot more bare-bones when it comes to automation, and there is, to our knowledge, no implementation of nominal sets anywhere close in quality to Nominal Isabelle.

Instead, we chose to implement the locally nameless version, which proved to have consistent, but fairly minimal overheads, requiring relatively little extra underlying theory. This is supported by the fact that the LN version of the calculus and proofs in Isabelle was roughly 1140 lines of code, whereas the Agda version was only slightly longer at 1350 lines, which, when adjusted to the same spacing/formatting comes down to roughly 1230 lines. This rough metric also demonstrates that whilst Isabelle's automation can be a lot more powerful than Agda's, in our case (partially by design), there were only a few instances where Isabelle clearly had the upper hand. Over all, it turned out, once again, that there were only small, often cosmetic, differences between the two implementations.

## 5.1 Overview

One of the most apparent differences between Agda and Isabelle is the treatment of functions and proofs. Whilst in Isabelle, there is always a clear syntactic distinction between programs and proofs, Agda's richer dependent-type system allows constructing proofs as programs.

This distinction is especially visible in inductive proofs, which have a completely distinct syntax in Isabelle. As proofs are not objects which can be directly manipulated in Isabelle, to modify the proof goal, user commands such as apply rule or by auto are used:

```
lemma subst_fresh: "x ∉ FV t ⇒ t[x ::= u] = t"
apply (induct t)
by auto
```

In the proof above, the command apply (induct t) takes a proof object with the goal  $x \notin$ 

FV t  $\Rightarrow$  t[x := u] = t, and applies the induction principle for t, generating 5 new proof obligations:

These can then discharged by the call to auto, which is a command that invokes the automatic solver, that tries to prove all the goals in the given context.

In contrast to this, in an Agda proof, the proof objects are available to the user directly. Instead of using commands modifying the proof state, one begins with a definition of the lemma:

```
subst-fresh : \forall x t u -> (x\notinFVt : x \notin (FV t)) -> (t [ x ::= u ]) \equiv t subst-fresh x t u x\notinFVt = ?
```

The ? acts as a 'hole' which the user fills in, by incrementally constructing the proof. Using the Emacs/Atom editor's "agda-mode", once can apply a case split to t (corresponding to the apply (induct t) call in Isabelle), generating the following definition:

```
subst-fresh : \forall x t u -> (x\notinFVt : x \notin (FV t)) -> (t [ x ::= u ]) \equiv t subst-fresh x (bv i) u x\notinFVt = {! 0!} subst-fresh x (fv x<sub>1</sub>) u x\notinFVt = {! 1!} subst-fresh x (lam t) u x\notinFVt = {! 2!} subst-fresh x (app t t<sub>1</sub>) u x\notinFVt = {! 3!} subst-fresh x (Y t<sub>1</sub>) u x\notinFVt = {! 4!}
```

When the above definition is compiled, Agda generates 5 goals needed to 'fill' each hole:

```
?0 : (bv i [ x ::= u ]) = bv i
?1 : (fv x<sub>1</sub> [ x ::= u ]) = fv x<sub>1</sub>
?2 : (lam t [ x ::= u ]) = lam t
?3 : (app t t<sub>1</sub> [ x ::= u ]) = app t t<sub>1</sub>
?4 : (Y t<sub>1</sub> [ x ::= u ]) = Y t<sub>1</sub>
```

As one can see, there is a clear correspondence between the 5 generated goals in Isabelle and the cases of the Agda proof above.

Due to this correspondence, reasoning in both systems is often largely similar. Whereas in Isabelle, one modifies the proof indirectly by issuing commands to modify proof goals, in Agda, one generates proofs directly by writing a program-as-proof, which satisfies the type constraints given in the definition.

### 5.2 Automation

As seen in the first example, Isabelle relies on automation in its proofs. It includes several automatic provers of varying complexity, including simp, auto, blast, metis and others. These are usually tactics/programs which automatically apply rewrite-rules, until the goal is discharged. If the tactic fails to discharge a goal within a set number of steps, it stops and lets the user direct the proof. The use of tactics in Isabelle is commonly used to prove trivial goals, which usually follow from simple rewriting of definitions or case analysis of certain variables.

Example 5.1. For example, the proof goal

```
Axa. x ∉ FV (FVar xa) ⇒ FVar xa [x ::= u] = FVar xa
will be proved by first unfolding the definition of substitution for FVar

(FVar xa) [x ::= u] = (if xa = x then u else FVar xa)
and then deriving x ≠ xa from the assumption x ∉ FV (FVar xa).
Applying these steps explicitly, we get:

lemma subst_fresh: "x ∉ FV t ⇒ t[x ::= u] = t"
apply (induct t)
apply (subst subst.simps(1))
apply (drule subst[OF FV.simps(1)])
apply (drule subst[OF Set.insert_iff])
apply (drule subst[OF Set.empty_iff])
apply (drule subst[OF HOL.simp_thms(31)])
:
```

where the goal now has the following shape:

```
1. \wedge xa. x \neq xa \Rightarrow (if xa = x then u else FVar xa) = FVar xa
```

From this point, the simplifier rewrites xa = x to False and (if False then u else FVar xa) to FVar xa in the goal.

The use of tactics and automated tools is heavily ingrained in Isabelle and it is extremely natural to use simp at this point in the proof, partly because one gets so used to discharging such trivial goals automatically and partly because it becomes nearly impossible to do the last two steps explicitly without having a detailed knowledge of the available commands and tactics in Isabelle.

Doing these steps explicitly quickly becomes cumbersome, as one needs to constantly look up the names of basic lemmas, such as  $Set.empty\_iff$ , which is a simple rewrite rule (?c  $\in \{\}$ ) = False.

Unlike Isabelle, Agda does not include nearly as much automation. The only proof search tool included with Agda is Agsy, which is similar, albeit often weaker than the simp tactic. It may therefore seem that Agda will be much more cumbersome to reason in than Isabelle. This, however, turns out not to be the case (at least in this formalization), in part due to Agda's type system and

the powerful pattern matching as well as direct access to the proof goals. Automation did not play as major a part in this project as it might have, especially in this round of the comparison, since the LN mechanization had to be implemented from scratch and thus, the proofs written in Isabelle were only later modified to leverage some automation. However, since most proofs required induction, which theorem provers are generally not very good at performing without user guidance, the only place where automation was really apparent was in the case of a few lemmas involving equational reasoning, like the "open-swap" lemma:

Lemma 5.1. 
$$k \neq n \implies x \neq y \implies \{k \rightarrow x\}\{n \rightarrow y\}M = \{n \rightarrow y\}\{k \rightarrow x\}M$$

Whilst in Isabelle, this was a trivial case of applying induction on the term M and letting auto prove all the remaining cases. In Agda, this was a lot more painful, as the cases had to be constructed and proved more or less manually, yielding this rather long(er) proof:

```
^-^-swap : \forall k n x y m -> \neg (k \equiv n) -> \neg (x \equiv y) ->
  [ k \gg fv x ] ([ n \gg fv y ] m) \equiv [ n \gg fv y ] ([ k \gg fv x ] m)
^-^-swap k n x y (bv i) k≠n x≠y with n ≟ i
^-^-swap k n x y (bv .n) k\neq n x\neq y | yes refl with k \stackrel{?}{=} n
^-^-swap n .n x y (bv .n) k\neq n x\neq y | yes refl | yes refl = 1-elim (k\neq n refl)
^-^-swap k n x y (bv .n) k\neqn x\neqy | yes refl | no _ with n \stackrel{?}{=} n
^-^-swap k n x y (bv .n) k≠n x≠y | yes refl | no _ | yes refl = refl
^-^-swap k n x y (bv .n) k\neq n x\neq y | yes refl | no _ | no n\neq n =
  ⊥-elim (n≠n refl)
^-^-swap k n x y (bv i) k≠n x≠y | no n≠i with k = n
^-^-swap n .n x y (bv i) k\neq n x\neq | no n\neq i | yes refl = 1-elim (k\neq n refl)
^-^-swap k n x y (bv i) k\neq n x\neqy | no n\neq i | no _ with k\stackrel{?}{=} i
^-^-swap k n x y (bv .k) k\neqn x\neqy | no n\neqi | no _ | yes refl = refl
^-^-swap k n x y (bv i) k*n x*y | no n*i | no _ | no k*i with n = i
^-^-swap k i x y (bv .i) k\neq n x\neq | no n\neq i | no _ | no k\neq i | yes refl =
 1-elim (n≠i refl)
^-^-swap k n x y (bv i) k≠n x≠y | no n≠i | no _ | no k≠i | no _ = refl
^-^-swap k n x y (fv z) k\neq n x\neq y = refl
^-^-swap k n x y (lam m) k≠n x≠y =
 \texttt{cong lam (^-^-swap (suc k) (suc n) x y m ($\lambda$ sk} \equiv \texttt{sn} \rightarrow \texttt{k} \neq \texttt{n} (\equiv -\texttt{suc sk} \equiv \texttt{sn})) x \neq \texttt{y})}
^--swap k n x y (app t1 t2) k\neqn x\neqy rewrite
  ^-^-swap k n x y t1 k\neqn x\neqy | ^-^-swap k n x y t2 k\neqn x\neqy = refl
^-^-swap k n x y (Y _) k≠n x≠y = refl
```

# 5.3 Proofs-as-programs in Agda

As was already mentioned, Agda treats proofs as programs, and therefore provides direct access to proof objects. In Isabelle, the proof goal is usually of the form:

```
lemma x: "assm-1 ⇒ ... ⇒ assm-n ⇒ concl"
```

Using the 'apply-style' reasoning in Isabelle can become burdensome, if one needs to modify or

reason with the assumptions, as was seen in Example 5.1. In this example, the drule tactic, which is used to apply rules to the premises rather than the conclusion, was applied repeatedly. Other times, we might have to use structural rules for exchange or weakening, which are necessary purely for organizational purposes of the proof.

In Agda, such rules are not necessary, since the example above is a function definition:

```
x assm-1 ... assm-n = ?
```

Here, assm-1 to assm-n are simply arguments to the function x, which expects something of type concl in the place of ?. This presentation allows one to use the given assumptions arbitrarily, perhaps passing them to another function/proof or discarding them if not needed.

This way of reasoning is also supported in Isabelle to some extent, via the use of the Isar proof language, where (the snippet of) the proof of subst\_fresh can be expressed in the following way:

```
lemma subst_fresh':
    assumes "x \notin FV t"
    shows "t[x ::= u] = t"
using assms proof (induct t)
case (FVar y)
    from FVar.prems have "x \notin {y}" unfolding FV.simps(1) .
    then have "x \notin y" unfolding Set.insert_iff Set.empty_iff HOL.simp_thms(31) .
    then show ?case unfolding subst.simps(1) by simp
next
:
    qed
```

This representation is more natural (and readable) to humans, as the assumptions have been separated and can be referenced and used in a clearer manner. For example, in the line

```
from FVar.prems have "x ∉ {y}"
```

the premise FVar.prems is added to the context of the goal  $x \notin \{y\}$ :

```
proof (prove)
using this:
   x ∉ FV (FVar y)

goal (1 subgoal):
1. x ∉ {y}
```

The individual reasoning steps described in the previous section have also been separated out into 'mini-lemmas' (the command have creates an new proof goal which has to be proved and then becomes available as an assumption in the current context) along the lines of the intuitive reasoning discussed initially. While this proof is more human readable, it is also more verbose and potentially harder to automate, as generating valid Isar style proofs is more difficult, due to 'Isar-style' proofs being obviously more complex than 'apply-style' proofs.

Whilst using the Isar proof language gives us a finer control and better structuring of proofs, one still references proofs only indirectly. Looking at the same proof in Agda, we have the following

definition for the case of free variables:

```
subst-fresh' x (fv y) u x\notinFVt = {! 0!}

?0 : fv y [ x ::= u ] = fv y
```

The proof of this case is slightly different from the Isabelle proof. In order to understand why, we need to look at the definition of substitution for free variables in Agda:

```
fv y [ x ::= u ] with x = y
... | yes _ = u
... | no _ = fv y
```

This definition corresponds to the Isabelle definition, however, instead of using an if-then-else conditional, the Agda definition uses the with abstraction to pattern match on  $x \stackrel{?}{=} y$ . The  $\stackrel{?}{=} y$  function takes the arguments x and y, which are natural numbers, and decides syntactic equality, returning a yes p or p, where p is the proof object showing their in/equality.

Since the definition of substitution does not require the proof object of the equality of x and y, it is discarded in both cases. If x and y are equal, u is returned (case . . . | yes \_ = u), otherwise fv y is returned.

In order for Agda to be able to unfold the definition of fv y [ x ::= u ], it needs the case analysis on  $x \stackrel{?}{=} y$ :

```
subst-fresh' x (fv y) u x∉FVt with x <sup>2</sup> y
... | yes p = {! 0!}
... | no ¬p = {! 1!}
```

```
?0 : (fv y [ x ::= u ] | yes p) \equiv fv y
?1 : (fv y [ x ::= u ] | no \neg p) \equiv fv y
```

In the second case, when x and y are different, Agda can automatically fill in the hole with refl. Notice that unlike in Isabelle, where the definition of substitution had to be manually unfolded (the command unfolding subst.simps(1)), Agda performs type reduction automatically and can rewrite the term (fv y [ x ::= u ] | no .¬p) to fv y when type-checking the expression.

For the case where x and y are equal, one can immediately derive a contradiction from the fact that x cannot be equal to y, since x is not a free variable in fv y. The type of false propositions is  $\bot$  in Agda. Given  $\bot$ , one can derive any proposition. To derive  $\bot$ , we first inspect the type of  $x \notin FVt$ , which is  $x \notin y$ :: []. Further examining the definition of  $\notin$ , we find that  $x \notin xs = \neg x \in xs$ , which further unfolds to  $x \notin xs = x \in xs \to \bot$ . Thus to obtain  $\bot$ , we simply have to show that  $x \in xs$ , or in this specific instance  $x \in y$ :: []. The definition of  $\in$  is itself just sugar for  $x \in xs = Any$  (xs = Any (xs = Any ) xs = Any (xs = Any )

```
False : ⊥
False = x∉FVt (here p)
```

The finished case looks like this (note that  $\perp$ -elim takes  $\perp$  and produces something of arbitrary type):

```
subst-fresh' x (fv y) u x∉FVt with x <sup>2</sup> y
... | yes p = 1-elim False
   where
   False : 1
   False = x∉FVt (here p)
... | no ¬p = refl
```

We can even transform the Isabelle proof to closer match the Agda proof:

```
case (FVar y)
  show ?case
proof (cases "x = y")
case True
  with FVar have False by simp
  thus ?thesis ..
next
case False then show ?thesis unfolding subst.simps(1) by simp
qed
```

Thus, we can see that using Isar style proofs and Agda reasoning ends up being rather similar in practice.

# 5.4 Pattern matching

Another reason why automation in the form of explicit proof search tactics needn't play such a significant role in Agda, is the more sophisticated type system of Agda (compared to Isabelle). Since Agda uses a dependent type system, there are often instances where the type system imposes certain constraints on the arguments/assumptions in a definition/proof and partially acts as a proof search tactic, by guiding the user through simple reasoning steps. Since Agda proofs are programs, unlike Isabelle 'apply-style' proofs, which are really proof scripts, one cannot intuitively view and step through the intermediate reasoning steps done by the user to prove a lemma. The way one proves a lemma in Agda is to start with a lemma with a 'hole', which is the proof goal, and iteratively refine the goal until this proof object is constructed. The way Agda's pattern matching makes constructing proofs easier can be demonstrated with the following example.

**Example 5.2.** The following lemma states that the parallel- $\beta$  maximal reduction preserves local closure:

```
t \gg t' \implies \mathsf{term}(t) \wedge \mathsf{term}(t')
```

For simplicity, we will prove a slightly simpler version, namely:  $t \gg t' \implies \text{term}(t)$ . For

comparison, this is a short, highly automated proof in Isabelle:

```
lemma pbeta_max_trm_r : "t >>> t' ⇒ trm t"
apply (induct t t' rule:pbeta_max.induct)
apply (subst trm.simps, simp)+
by (auto simp add: lam trm.Y trm.app)
```

In Agda, we start with the following definition:

```
>>>-Term-l : y {t t'} -> t >>> t' -> Term t >>>-Term-l t>>>t' = {! 0!}
```

```
?0 : Term .t
```

Construction of this proof follows the Isabelle script, in that the proof proceeds by induction on  $t \gg t'$ , which corresponds to the command <code>apply</code> (induct t t'rule:pbeta\_max.induct). As seen earlier, induction in Agda simply corresponds to a case split. The agda-mode in Emacs/Atom can perform a case split automatically, if supplied with the variable which should be used for the case analysis, in this case t>>>t'.

Remark. Note that Agda is very liberal with variable names, allowing almost any ASCII or Unicode characters, and it is customary to give descriptive names to the variables, usually denoting their type. In this instance, t>>>t' is a variable of type t>>>t'. Due to Agda's relative freedom in variable names, whitespace is important, as t>>>t' is very different from t>>>t' (the first is parsed a two variables t>>>t, whereas the second is parsed as the variable t, the relation symbol t>>>t.

```
>>>-Term-l : Y {t t'} -> t >>> t' -> Term t
>>>-Term-l refl = {! 0!}
>>>-Term-l reflY = {! 1!}
>>>-Term-l (app x t>>>t' t>>>t') = {! 2!}
>>>-Term-l (abs L x) = {! 3!}
>>>-Term-l (beta L cf t>>>t') = {! 4!}
>>>-Term-l (Y t>>>t') = {! 5!}
```

```
?0 : Term (fv .x)
?1 : Term (Y .\sigma)
?2 : Term (app .m .n)
?3 : Term (lam .m)
?4 : Term (app (lam .m) .n)
?5 : Term (app (Y .\sigma) .m)
```

The newly expanded proof now contains 5 'holes', corresponding to the 5 constructors for the >>> reduction. The first two goals are trivial, since any free variable or Y is a closed term. Here, one can use the agda-mode again, applying 'Refine', which is like a simple proof

search, in that it will try to advance the proof by supplying an object of the correct type for the specified 'hole'. Applying 'Refine' to {! 0!} and {! 1!} yields:

```
>>>-Term-l : Y {t t'} -> t >>> t' -> Term t
>>>-Term-l refl = var
>>>-Term-l reflY = Y
>>>-Term-l (app x t>>>t' t>>>t'') = {! 0!}
>>>-Term-l (abs L x) = {! 1!}
>>>-Term-l (beta L cf t>>>t') = {! 2!}
>>>-Term-l (Y t>>>t') = {! 3!}
```

```
?0 : Term (app .m .n)
?1 : Term (lam .m)
?2 : Term (app (lam .m) .n)
?3 : Term (app (Y .o) .m)
```

Since the constructor for var is var :  $\forall x \rightarrow \text{Term (fv } x)$ , it is easy to see that the hole can be closed by supplying var as the proof of Term (fv .x).

A more interesting case is the app case, where using 'Refine' yields:

```
>>>-Term-l : V {t t'} -> t >>> t' -> Term t
>>>-Term-l refl = var
>>>-Term-l reflY = Y
>>>-Term-l (app x t>>>t' t>>>t') = app {! 0!} {! 1!}
>>>-Term-l (abs L x) = {! 2!}
>>>-Term-l (beta L cf t>>>t') = {! 3!}
>>>-Term-l (Y t>>>t') = {! 4!}
```

```
?0 : Term .m
?1 : Term .n
?2 : Term (lam .m)
?3 : Term (app (lam .m) .n)
?4 : Term (app (Y .o) .m)
```

Here, the refine tactic supplied the constructor app, as it's type app :  $\forall$  e<sub>1</sub> e<sub>2</sub> -> Term e<sub>1</sub> -> Term e<sub>2</sub> -> Term (app e<sub>1</sub> e<sub>2</sub>) fit the 'hole' (Term (app .m .n)), generating two new 'holes', with the goal Term .m and Term .n. However, trying 'Refine' again on either of the 'holes' yields no result. This is where one applies the induction hypothesis, by adding >>>-Term-1 t>>>t' to {! 0!} and applying 'Refine' again, which closes the 'hole' {! 0!}. Perhaps confusingly, >>>-Term-1 t>>>t' produces a proof of Term .m. To see why this is, one has to inspect the type of t>>>t' in this context. Helpfully, the agda-mode provides just this function, which infers the type of t>>>t' to be .m >>> .m'. Similarly, t>>>t' has the type .n >>> .n'. Renaming t>>>t' and t>>>t' to m>>>m' and n>>>n' respectively, now makes the recursive call obvious:

```
>>>-Term-1: y {t t'} -> t >>> t' -> Term t
>>>-Term-1 refl = var
>>>-Term-1 reflY = Y
>>>-Term-1 (app x m>>>m' n>>>n') = app (>>>-Term-1 m>>>m') {! 0!}
>>>-Term-1 (abs L x) = {! 1!}
>>>-Term-1 (beta L cf t>>>t') = {! 2!}
>>>-Term-1 (Y t>>>t') = {! 3!}
```

```
?0 : Term .n

?1 : Term (lam .m)

?2 : Term (app (lam .m) .n)

?3 : Term (app (Y .o) .m)
```

The goal Term .n follows in exactly the same fashion. Applying 'Refine' to the next 'hole' yields:

```
>>>-Term-l : Y {t t'} -> t >>> t' -> Term t
>>>-Term-l refl = var
>>>-Term-l reflY = Y
>>>-Term-l (app x m>>>m' n>>>n') =
   app (>>>-Term-l m>>>m') (>>>-Term-l n>>>n')
>>>-Term-l (abs L x) = lam {! 0!} {! 1!}
>>>-Term-l (beta L cf t>>>t') = {! 2!}
>>>-Term-l (Y t>>>t') = {! 3!}
```

```
?0 : FVars

?1 : \{x = x_1 : \mathbb{N}\} \rightarrow x_1 \notin ?0 \ \mathbb{L} \ x \rightarrow \text{Term } (.m ^' x_1)

?2 : Term (app (lam .m) .n)

?3 : Term (app (Y .\sigma) .m)
```

At this stage, the interesting goal is ?1, due to the fact that it is dependent on ?0. Indeed, replacing ?0 with L (which is the only thing of the type FVars available in this context) changes goal ?1 to  $\{x = x_1 : \mathbb{N}\} \to x_1 \notin \mathbb{L} \to \mathbb{T}$ erm (.m ^'  $x_1$ ):

```
>>>-Term-l : V {t t'} -> t >>> t' -> Term t
>>>-Term-l refl = var
>>>-Term-l reflY = Y
>>>-Term-l (app x m>>>m' n>>>n') =
   app (>>>-Term-l m>>>m') (>>>-Term-l n>>>n')
>>>-Term-l (abs L x) = lam L {! 0!}
>>>-Term-l (beta L cf t>>>t') = {! 1!}
>>>-Term-l (Y t>>>t') = {! 2!}
```

```
?0 : \{x = x_1 : \mathbb{N}\} \rightarrow x_1 \notin \mathbb{L} \rightarrow \text{Term } (.\text{m } ' x_1)
?1 : Term (\text{app } (\text{lam } .\text{m}) .\text{n})
?2 : Term (\text{app } (\text{Y } .\sigma) .\text{m})
```

Since the goal/type of  $\{! \ 0!\}$  is  $\{x = x_1 : \mathbb{N}\} \to x_1 \not\in \mathbb{L} \to \text{Term } (.m ^' x_1)$ , applying 'Refine' will generate a lambda expression  $(\lambda \not\in \mathbb{L} \to \{! \ 0!\})$ , as this is obviously the only 'constructor' for a function type. Again, confusingly, we supply the recursive call >>>-Term-1  $(x \not\in \mathbb{L})$  to  $\{! \ 0!\}$ . By examining the type of x, we get that x has the type  $\{x = x_1 : \mathbb{N}\} \to x_1 \not\in \mathbb{L} \to (.m ^' x_1) >>> (.m' ^' x_1)$ . Then  $(x \not\in \mathbb{L})$  is clearly of the type  $(.m ^' x_1) >>> (.m' ^' x_1)$ . Thus >>>-Term-1  $(x \not\in \mathbb{L})$  has the desired type Term  $(.m ^' x_1)$  (note that .x and x are not the same in this context).

Doing these steps explicitly was not in fact necessary, as the automatic proof search 'Agsy' is capable of automatically constructing proof objects for all of the cases above. Using 'Agsy' in both of the last two cases, the completed proof is given below:

```
>>>-Term-l : V {t t'} -> t >>> t' -> Term t
>>>-Term-l refl = var
>>>-Term-l reflY = Y
>>>-Term-l (app x m>>>m' n>>>n') =
    app (>>>-Term-l m>>>m') (>>>-Term-l n>>>n')
>>>-Term-l (abs L x) = lam L (\lambda x\notin L (\lambda x\notin L))
>>>-Term-l (beta L cf t>>>t') = app
    (lam L (\lambda {x} x\notin L \lambda x\notin L))
(>>>-Term-l t>>>t')
>>>-Term-l (Y t>>>t') = app Y (>>>-Term-l t>>>t')
```

### 5.5 Verdict

Much like in the case of comparing nominal and locally nameless versions of the  $\lambda$ -Y calculus, the differences between Agda and Isabelle turned out to me fairly minor. Whilst Isabelle provides better automation, evidenced by a shorter formalization, the powerful type system of Agda achieves similar results, as was demonstrated throughout this chapter. Even though the mechanization in Isabelle turned out to be shorter, we chose to continue using Agda for the next phase of the mechanization of intersection types and proofs of subject invariance.

This decision was mainly based on the proofs-as-programs nature of Agda. Since proofs are programs in Agda, it was felt that the mechanization of further theory of HOMC would be much more easily extended with not only proofs, but also programs, such as the decision procedure for the normalizability of  $\lambda$ -Y terms, which is an important result in HOMC. Such a decision procedure would not only be executable, but would be tied directly to the proof of its correctness (such a mechanization is of course also achievable in Isabelle).

# 6. Intersection types

Having compared different mechanizations and implementation languages for the simply typed  $\lambda$ -Y calculus in the previous two chapters, we arrived at the "winning" combination of a locally nameless mechanization using Agda. Carrying on in this setting, we present the formalization of intersection types for the  $\lambda$ -Y calculus along with the proof of subject invariance for intersection types.

These proofs turned out to be significantly more difficult than their simply typed counterparts (e.g. in case of sub-tying and subject reduction lemmas). Indeed the whole formalization of simple types, along with the proof of the Church Rosser theorem, is roughly only 1350 lines of code in Agda, in comparison to about 1890 lines, for the intersection typing together with proofs of subject invariance.

Even though the proof is not novel, there is, to our knowledge, no known fully formal version of it for the  $\lambda$ -Y calculus. The chapter mainly focuses on the engineering choices that were made in order to simplify the proofs as much as possible, as well as the necessary implementation overheads and compromises that were made.

The chapter is presented in sections, each explaining implementation details for a specific lemma or definition (some of which were introduced in Section 2.3). Some of the definitions presented early on in this chapter undergo several revisions, as we discuss the necessities for these changes in a (mostly) chronological manner, in which they arose during the implementation stage of this project.

# 6.1 Intersection types in Agda

The first implementation detail we had to consider was the implementation of the definition of intersection types themselves. Unlike simple types, the definition of intersection-types is split into two mutually recursive definitions of strict ( $\text{IType}/\mathcal{T}_s$ ) and intersection ( $\text{IType}_\ell/\mathcal{T}$ ) types:

```
_{9} \cap : List IType 	ext{->} IType_{\ell}
```

The reason why the intersection  $\mathtt{IType}_\ell$  is defined as a list of strict types  $\mathtt{IType}$  in line 9, is due to the (usually) implicit requirement that the types in  $\mathcal T$  be finite. The decision to use lists as an implementation of finite sets was taken, because the Agda standard library includes a definition of lists with definitions of list membership  $\in$  and other associated lemmas, which proved to be useful for definitions of the  $\subseteq$  relation on types.

From the above definition, it is obvious that the split definitions of IType and  $IType_{\ell}$  are somewhat redundant, in that  $IType_{\ell}$  only has one constructor  $\cap$  and therefore, any instance of  $IType_{\ell}$  in the definition of IType can simply be replaced by List IType:

## 6.2 Notation

Since we have defined the arrow type  $\rightsquigarrow$  as having list of IType-s on the left of the arrow, we will adopt the following convention throughout the chapter.

Unless stated otherwise, types with a subscript,  $\tau_i, \tau_j, \ldots, \psi_i, \psi_j, \ldots$  denote lists of types, previously written as  $\bigcap_n \tau_i$  or  $\bigcap_n \psi_i$ , whereas  $\tau, \tau', \psi, \ldots$  represent strict intersection types.

# 6.3 Type refinement

One of the first things we needed to integrate into the notion of intersection-type assignment and the  $\subseteq$  relation on intersection types was the notion of simple-type refinement. As mentioned in Section 2.3.1, intuitively, this notion should capture the relationship between the "shape" of the intersection and simple types.

To illustrate why we might want to incorporate type refinement into these definitions, we look at the initial formulation of the (intersection) typing rule (Y), using the original notation:

$$(Y) \frac{}{ \Gamma \Vdash Y_{\sigma} : \left( \bigcap_{\underline{n}} \tau_{i} \leadsto \tau_{1} \cap \ldots \cap \bigcap_{\underline{n}} \tau_{i} \leadsto \tau_{i} \right) \leadsto \tau_{j}} \left( j \in \underline{n} \right)$$

The lack of connection between simple and intersection types in the typing relation is especially apparent here, as  $\bigcap_{\underline{n}} \tau_i$  seems to be chosen arbitrarily. Once we reformulate the above definition to include type refinement, the choice of  $\bigcap_{\underline{n}} \tau_i$  makes more sense, since we know that  $\tau_1, \ldots, \tau_i$  will somehow be related to the simple type  $\sigma$ :

$$(Y) \frac{\bigcap_{\underline{n}} \tau_i :: \sigma}{\Gamma \Vdash Y_{\sigma} : (\bigcap_{\underline{n}} \tau_i \leadsto \tau_1 \cap \ldots \cap \bigcap_{\underline{n}} \tau_i \leadsto \tau_i) \leadsto \tau_j} (j \in \underline{n})$$

The refinement relation, defined in Section 2.3.1 has been adapted for the Agda definition of intersection types and is presented below:

### Definition 6.1. [Intersection-type refinement in Agda]

Since intersection types are defined in terms of strict ( $\mathcal{T}_s$ ) and non-strict ( $\mathcal{T}$ ) intersection types, the definition of refinement (::) is split into two versions, one for strict and another for non-strict types. In the definition below, A, B range over simple types  $\sigma$ :

(base) 
$$\overline{\varphi :: o}$$
 (arr)  $\overline{\tau_i ::_{\ell} A}$   $\tau ::_{\ell} B$   $\tau_i \leadsto \tau ::_{\ell} A \to B$ 

$$(nil) \frac{}{\omega ::_{\ell} A} \quad (cons) \frac{\tau :: A}{\tau, \tau_{i} ::_{\ell} A}$$

Having a notion of type refinement, we then modified the subset relation on intersection types, s.t.  $\subseteq$  is defined only for pairs of intersection types, which refine the same simple type:

### Definition 6.2. $[\subseteq^A]$

In the definition below,  $\tau$ ,  $\tau'$  range over  $\mathcal{T}_s$ ,  $\tau_i$ , . . . ,  $\tau_n$  range over  $\mathcal{T}$  and A, B range over  $\sigma$ :

$$(\textit{base}) \ \overline{\varphi \subseteq^{\circ} \varphi} \qquad (\textit{arr}) \ \overline{\tau_i \subseteq^{\mathbb{A}}_{\ell} \tau_j} \quad \tau \subseteq^{\mathbb{B}} \tau' \\ \overline{\tau_j \leadsto \tau \subseteq^{\mathbb{A} \to \mathbb{B}} \tau_i \leadsto \tau'}$$

$$(nil) \frac{\tau_i ::_{\ell} A}{\omega \subseteq_{\ell}^{A} \tau_i} \quad (cons) \frac{\exists \tau' \in \tau_j. \ \tau \subseteq^{A} \tau' \qquad \tau_i \subseteq_{\ell}^{A} \tau_j}{\tau, \tau_i \subseteq_{\ell}^{A} \tau_i}$$

# 6.4 Well typed ⊆

The presentation of the  $\subseteq$  relation in Definition 2.9 differs quite significantly from the one presented above. The main difference is obviously the addition of type refinement, but the definition now also includes the (base) rule, which allows one to derive the previously implicitly stated reflexivity and transitivity rules.

Another departure from the original definition is the formulation of the following two clauses, stated in Definition 2.9, as the (nil) and (cons) rules:

$$\forall i \in \underline{n}. \ \tau_i \subseteq \bigcap_{\underline{n}} \tau_i$$

$$\forall i \in \underline{n}. \ \tau_i \subseteq \psi \implies \bigcap_{\underline{n}} \tau_i \subseteq \psi$$

*Remark.* The formulation above uses the original notation. In order to avoid confusion, we present the two clauses using the list notation, introduced in Section 6.2:

$$\forall \ \tau \in \tau_i. \ \tau \subseteq \tau_i$$
 
$$\forall \ \tau \in \tau_i. \ \tau \subseteq \psi \implies \tau_i \subseteq \psi$$

To give a motivation as to why we chose a different formulation of these properties, we first examine the original definition and show why it's not rigorous enough for a well typed Agda definition. As we've shown in Section 6.1, the definition of intersection types is implicitly split into strict ITypes and intersections, encoded as List IType-s. All the preceding definitions follow this split with the strict and non strict versions of the type refinement (:: and :: $_{\ell}$  respectively) and sub-typing relations ( $\subseteq$  and  $\subseteq_{\ell}$  respectively).

If we tried to turn the first property above into a rule naively, such as:

$$(prop' 1) \frac{\tau \in \tau_i}{\tau \subset \tau_i}$$

where  $\tau$  is a strict type IType and  $\tau_i$  is an intersection List IType, we would immediately get a type error, because the type signature of  $\subseteq$  (which does not include type refinement) is:

In order to get a well typed version of this rule, we would have to write something like:

$$(prop' 1) \frac{\tau \in \tau_i}{[\tau] \subseteq_{\ell} \tau_i}$$

Similarly for the second property, the well typed version might be formulated as:

$$(prop' 2) \frac{\forall \tau \in \tau_i. [\tau] \subseteq_{\ell} \psi}{\tau_i \subseteq_{\ell} \psi}$$

However, in the rule above, we assumed/forced  $\psi$  to be an intersection (i.e. a list of Itype-s), yet the property does not enforce this, and thus the two rules above do not actually capture the two properties from Definition 2.9.

**Example 6.1.** To demonstrate this, take the two intersection types  $((\psi \cap \tau) \to \psi) \cap ((\psi \cap \tau \cap \rho) \to \psi)$  and  $(\psi \cap \tau) \to \psi$ . According to the original definition, we will have:

$$(refl) \xrightarrow{(prop\ 2)} \frac{(prop\ 1)}{(prop\ 2)} \frac{\overline{\psi \subseteq \psi \cap \tau \cap \rho} \quad (prop\ 1)}{\overline{\psi \subseteq \psi \cap \tau \cap \rho}} \frac{(prop\ 1)}{\overline{\tau \subseteq \psi \cap \tau \cap \rho}} \frac{(refl)}{\overline{\psi \subseteq \psi}}$$

$$(prop\ 2)} \frac{(\psi \cap \tau \cap \rho) \rightarrow \psi \subseteq (\psi \cap \tau) \rightarrow \psi}{((\psi \cap \tau) \rightarrow \psi) \cap ((\psi \cap \tau \cap \rho) \rightarrow \psi) \subseteq (\psi \cap \tau) \rightarrow \psi}$$

When we try to prove the above using the well typed rules, we first need to coerce  $(\psi \cap \tau) \to \psi$  into an intersection. Then, we try to construct the derivation tree:

$$\frac{(\textit{refl})}{(\textit{prop'}\ 2)} \frac{\overline{[[\psi,\tau] \to \psi] \subseteq_{\ell} [[\psi,\tau] \to \psi]} \qquad [[\psi,\tau,\rho] \to \psi] \subseteq_{\ell} [[\psi,\tau] \to \psi] }{[[\psi,\tau] \to \psi, [\psi,\tau,\rho] \to \psi] \subseteq_{\ell} [[\psi,\tau] \to \psi] }$$

The open branch  $[[\psi, \tau, \rho] \to \psi] \subseteq_{\ell} [[\psi, \tau] \to \psi]$  in the example clearly demonstrates that the current formulation of the two properties clearly doesn't quite capture the intended meaning.

Since we know by reflexivity that  $\tau \subseteq \tau$ , we can reformulate (prop' 1) as:

$$(prop" 1) \frac{\exists \tau' \in \tau_i. \ \tau \subseteq \tau'}{[\tau] \subseteq_{\ell} \tau_i}$$

Using this rule, we can now complete the previously open branch in the example above:

$$(prop''\ 1)\frac{(refl)\frac{}{\psi\subseteq\psi}}{[\psi]\subseteq_{\ell}[\psi,\tau,\rho]} (prop''\ 1)\frac{(refl)\frac{}{\tau\subseteq\tau}}{[\tau]\subseteq_{\ell}[\psi,\tau,\rho]} (refl)\frac{}{[\psi]\subseteq_{\ell}[\psi,\tau,\rho]} (refl)\frac{}{\psi\subseteq\psi}$$

$$(prop'\ 2)\frac{(qrr)\frac{[\psi,\tau]\subseteq_{\ell}[\psi,\tau,\rho]}{[\psi,\tau,\rho]\to\psi\subseteq[\psi,\tau]\to\psi}}{[(\psi,\tau,\rho]\to\psi]\subseteq_{\ell}[[\psi,\tau]\to\psi]}$$

Also, since the only rules that can proceed (prop' 2) in the derivation tree are (refl) or (prop'' 1), and it's easy to see that in case of (refl) preceding, we can always apply (prop" 1) before (refl), we can in fact merge (prop" 1) and (prop' 2) into the single rule (we break our naming convention again, since  $\psi$  is a list of strict types):

$$(prop' 12) \frac{\forall \tau' \in \tau_i. \exists \tau'' \in \psi. \ \tau' \subseteq \tau''}{\tau_i \subseteq_{\ell} \psi}$$

The final version of this rule, as it appears in Definition 6.2, is simply an iterated version, split into the (nil) and (cons) cases, to mirror the constructors of lists, since these rules "operate" with List IType-s. This iterated style of rules was adopted throughout the whole chapter for all definitions involving List IType-s (wherever possible), since it is more natural to work with in

Example 6.2. To illustrate the use of iterated versions of rules working with List IType-s, take the following lemma about type refinement:

**Lemma 6.1.** The following rule is admissible in the typing refinement relation  $::_{\ell}$ :

$$(++) \frac{\tau_i ::_{\ell} A \qquad \tau_j ::_{\ell} A}{\tau_i ++ \tau_j ::_{\ell} A}$$

*Proof.* By induction on  $\tau_i ::_{\ell} A$ :

- (nil): Therefore  $\tau_i \equiv []$  and  $[] + + \tau_j \equiv \tau_j$ . Thus  $\tau_j ::_{\ell} A$  holds by assumption. (cons): We have  $\tau_i \equiv \tau, \tau_s$ . Thus we know that  $\tau :: A$  and  $\tau_s ::_{\ell} A$ . Then, by IH, we have  $\tau_s + \!\!\!+ \tau_j ::_{\ell} A$  and thus:

$$(assm) \frac{\tau :: A}{(cons)} \frac{(IH) \frac{\tau_s + \tau_j ::_{\ell} A}{\tau_s + \tau_i ::_{\ell} A}$$

For comparison, the same proof in Agda reads much the same as the "paper" one, given

54

# 6.5 Intersection-type assignment

After we modified the initial definition of sub-typing and added the notion of type refinement, we will now take a look at the definition of intersection-type assignment and the modifications that were needed to be made for the mechanization.

While before, intersection typing consisted of the triple  $\Gamma \Vdash M : \tau$ , where  $\Gamma$  was the intersection type context, M was an untyped  $\lambda$ -Y term and  $\tau$  was an intersection type, this information is not actually sufficient when we introduce type refinement. As we've shown with the (Y) rule, the refinement relation :: provides a connection between intersection and simple types. We therefore want M in the triple to be a simply typed  $\lambda$ -Y term.

Even though we could use the definition of simple types from the previous chapters, this notation would be rather cumbersome.

**Example 6.3.** Consider the simply typed term  $\{\} \vdash \lambda x.x : A \rightarrow A \text{ being substituted for the untyped } \lambda x.x \text{ in } \{\} \vdash \lambda x.x : (\tau \cap \varphi) \leadsto \varphi \text{ (where } \tau :: A \text{ and } \varphi :: A):$ 

$$\{\} \Vdash (\{\} \vdash \lambda x.x : A \rightarrow A) : (\tau \cap \varphi) \leadsto \varphi$$

Already, this simple example demonstrates the clutter of using *Curry*-style simple types in conjunction with the intersection typing.

Instead of using the *a la Curry* simple typing, presented in the example above, we chose to define typed  $\lambda$ -Y terms *a la Church*. Since we are using the locally nameless representation of binders, we actually give the definition of *Church*-style simply typed pre-terms:

**Definition 6.3.** [Simply typed pre-terms a la Church]

For every simple type A, B, the set of simply typed pre-terms  $\Lambda_A$  is inductively defined in the following way:

ollowing way: 
$$(fv) \frac{1}{x \in \Lambda_A} (bv) \frac{1}{n \in \Lambda_A} (app) \frac{S \in \Lambda_{B \to A} \quad T \in \Lambda_B}{ST \in \Lambda_A} (lam) \frac{S \in \Lambda_B}{\lambda_A . S \in \Lambda_{A \to B}}$$

$$(Y) \frac{1}{Y_A \in \Lambda_{(A \to A) \to A}}$$

It's easy to see that the definition of *Church*-style simply typed  $\lambda$ -Y pre-terms differs form the untyped pre-terms only in the  $\lambda$  case, with the addition of the extra typing information, much like in the case of Y. We also adopt a typing convention, where we write  $M_{\{A\}}$  to mean  $M \in \Lambda_A$ .

The next hurdle we faced in defining the intersection typing relation was the formulation of the (Y) rule. The intuition behind this rule is to type a  $Y_A$  constant with a type  $\tau$  s.t.  $\tau$  ::  $(A \to A) \to A$ . If we used the  $\lambda_{\cap}^{BCD}$  types (introduced in Section 2.3), we could easily have  $\tau \equiv (\bigcap_{\underline{n}} \tau_i \leadsto \bigcap_{\underline{n}} \tau_i) \leadsto \bigcap_{\underline{n}} \tau_i$ , where  $\bigcap_{\underline{n}} \tau_i$  :: A. However, as we have restricted ourselves to strict-intersection types (see the following remark), the initial definition for the (Y) rule was the somewhat cumbersome:

$$(Y) \frac{\bigcap_{\underline{n}} \tau_i :: \sigma}{\Gamma \Vdash Y_{\sigma} : (\bigcap_{\underline{n}} \tau_i \leadsto \tau_1 \cap \ldots \cap \bigcap_{\underline{n}} \tau_i \leadsto \tau_i) \leadsto \tau_j} (j \in \underline{n})$$

The implementation of this rule clearly demonstrates the complexity, which made it difficult to reason with in proofs:

Even though Agda's main strength is its the powerful pattern matching, it was quickly realized that pattern matching on the type ( $\cap$  (Data.List.map ( $\lambda$   $\tau_k$  -> ( $\cap$   $\tau_i$   $\sim$ >  $\tau_k$ ))  $\tau_i$ )  $\sim$ >  $\tau$ ) is difficult due to the map function, which appears inside the definition.

Several modifications were made to the rule, until we arrived at it's current form. To create a compromise between the unrestricted intersection-types of  $\lambda_{\cap}^{BCD}$ , which made expressing the (Y) rule much simpler, and the strict typing, which provided a restricted version of type derivation over the  $\lambda_{\cap}^{BCD}$  system (see the remark below), we modified strict types to have intersections as both the left and right sub-terms of a strict type:

**Definition 6.4.** [Semi-strict intersection types]

$$\mathcal{T}_s ::= \varphi \mid (\mathcal{T}_s \cap \ldots \cap \mathcal{T}_s) \leadsto (\mathcal{T}_s \cap \ldots \cap \mathcal{T}_s)$$

*Remark.* Using strict intersection types and having two intersection typing relations  $\vdash$  and  $\vdash$  makes proving lemmas about the system much easier. The clearest example of this is the nice property of *inversion*, one gets "for free" with strict types. Take, for example, the term  $\Gamma \vdash uv : \tau$  (where for the purposes of this example, uv is a term of the simply-typed  $\lambda$ -calculus and not a  $\lambda$ -Y term). Since for the  $\vdash$  relation, uv can only be given a strict intersection type, we can easily prove the following inversion lemma:

**Lemma 6.2.** [Inversion Lemma for (app)]

In the following lemma,  $\tau_i$  is an intersection, i.e. a list of strict intersection terms:

$$\Gamma \Vdash uv : \tau \iff \exists \tau_i. \Gamma \Vdash u : \tau_i \leadsto \tau \land \Gamma \Vdash_{\ell} v : \tau_i$$

Such a lemma is in fact not even needed in Agda, since the shape of the term uv and the strict type  $\tau$  uniquely determine that the derivation tree must have had an application of the (app) rule at its base. In an Agda proof, such as:

```
sample-lemma \Gamma \Vdash uv : \tau = ?
```

One can perform a case analysis on the variable  $\Gamma \Vdash uv : \tau$  (the type of which is  $\Gamma \Vdash app u v : \tau$ ) and obtain:

```
\texttt{sample-lemma (app } \Gamma \Vdash u : \tau_i \sim > \tau \ \Gamma \Vdash v : \tau_i) \ = \ ?
```

In the  $\lambda_{\cap}^{BCD}$  system (or similar), such an inversion lemma would be a lot more complicated and might look something like:

$$\Gamma \Vdash uv : \tau \iff \exists k \geq 1. \ \exists \tau_1, \dots, \tau_k, \psi_1, \dots, \psi_k.$$

$$\tau \subseteq \psi_1 \cap \dots \cap \psi_k \wedge$$

$$\forall i \in \{1, \dots, k\}. \ \Gamma \vdash u : \tau_i \leadsto \psi_i \wedge \Gamma \vdash v : \tau_i$$

The semi-strict typing loses some of the advantages of the strict types, as we will later modify the typing relation, losing the "free" inversion properties that we currently have, i.e. for a given term uv, Lemma 6.2 won't be trivial any more. However, the complexity of the inversion lemmas for semi-strict typing is still lower than that of the unrestricted intersection-typing

The final version of the (Y) rule, along with the other modified rules of the typing relation are presented below:

### **Definition 6.5.** [Intersection-type assignment]

This definition assumes that the typing context  $\Gamma$ , which is a list of triples  $(x, \tau_i, A)$ , is well formed. For each triple, written as  $x:\tau_i::_{\ell}A$ , this means that the free variable x does not appear elsewhere in the domain of  $\Gamma$ . Each intersection type  $\tau_i$ , associated with a variable x, also refines a simple type A.

$$(var) \frac{\exists (x:\tau_{i}::_{\ell}A) \in \Gamma. \ [\tau] \subseteq_{\ell}^{A} \tau_{i}}{\Gamma \Vdash x_{\{A\}} : \tau}$$

$$(app) \frac{\Gamma \Vdash u_{\{A \to B\}} : \tau_{i} \leadsto \tau_{j} \qquad \Gamma \Vdash_{\ell} v_{\{A\}} : \tau_{i}}{\Gamma \Vdash uv : \tau} ([\tau] \subseteq_{\ell}^{B} \tau_{j})$$

$$(abs) \frac{\forall x \not\in L. \ (x:\tau_{i}::_{\ell}A), \Gamma \Vdash_{\ell} m^{x} : \tau_{j}}{\Gamma \Vdash_{\ell} \lambda_{A}.m : \tau_{i} \leadsto \tau_{j}} \qquad (\gamma) \frac{\exists \tau_{x}. \ [\tau_{x} \leadsto \tau_{x}] \subseteq_{\ell}^{A \to A} \tau_{i} \wedge \tau_{j} \subseteq_{\ell}^{A} \tau_{x}}{\Gamma \Vdash_{\ell} m : \tau_{i} \leadsto \tau_{j}}$$

$$(nil) \frac{}{\Gamma \Vdash_{\ell} m : \omega} \qquad (cons) \frac{\Gamma \Vdash_{\ell} m : \tau}{\Gamma \Vdash_{\ell} m : \tau_{i}} \frac{}{\Gamma \Vdash_{\ell} m : \tau_{i}}$$

The formulation of the (Y) rule above, was introduced mostly due to the derived sub-typing rule  $(\subseteq)$ , defined in the following section. This is a stronger version of the the following initial formulation of the (Y) for the semi-strict types (which was not general enough to admit  $(\subseteq)$  and other lemmas):

$$(Y) \frac{\tau_{x} ::_{\ell} A}{\Gamma \Vdash Y_{A} : [\tau_{x} \leadsto \tau_{x}] \leadsto \tau_{x}}$$

#### Proof of subject expansion 6.6

We described the subject invariance property of intersection types in Section 2.3.2. In this section, we will focus on the subject expansion lemma:

**Theorem 6.1.** [Subject expansion for  $\vdash / \vdash_{\ell}$ ]

i) 
$$\lceil \Vdash m : \tau \implies m \Rightarrow_{Y} m' \implies \lceil \Vdash m' : \tau \rceil$$

i) 
$$\Gamma \Vdash m : \tau \implies m \Rightarrow_{\gamma} m' \implies \Gamma \Vdash m' : \tau$$
  
ii)  $\Gamma \Vdash_{\ell} m : \tau_{i} \implies m \Rightarrow_{\gamma} m' \implies \Gamma \Vdash_{\ell} m' : \tau_{i}$ 

The proof of this theorem follows by induction on the  $\beta$ -reduction  $m \Rightarrow_{\gamma} m'$ . We will focus on the (Y) reduction rule and show that given a well typed term  $\Gamma \Vdash m(Y_{\sigma}m) : \tau$ , s.t.  $Y_{\sigma}m \Rightarrow_{\gamma} m(Y_{\sigma}m)$ , we can also type  $Y_{\sigma}m$  with the same intersection type  $\tau$ .

We will start with a very high-level overview of the proof. Having assumed  $\Gamma \Vdash m(Y_{\sigma}m) : \tau$ , we must necessarily have the following derivation tree for the intersection typing relation II:

$$(app) \frac{\vdots}{\Gamma \Vdash_{s} m : \tau_{i} \leadsto \tau_{j}} \frac{\vdots}{\Gamma \Vdash_{\ell} Y_{A}m : \tau_{i}}}{\Gamma \Vdash m(Y_{A}m) : \tau} ([\tau] \subseteq_{\ell}^{A} \tau_{j})$$

Figure 6.1: Analysis of the shape of the derivation tree for  $\Gamma \Vdash m(Y_A m) : \tau$ 

We have two cases, where  $\tau_i$  is an empty intersection  $\tau_i \equiv \omega$  or a non-empty list of strict intersection-type terms  $\tau_i \equiv [\tau_1, \dots, \tau_n]$ .

### **6.6.1** $\tau_i \equiv \omega$

From Figure 6.1, we have (1):  $\Gamma \Vdash_s m : \omega \leadsto \tau_i$ . Then, we can construct the following proof tree:

$$(Y) \frac{\left[\left[\tau\right] \leadsto \left[\tau\right]\right] \subseteq_{\ell}^{A \to A} \left[\omega \leadsto \left[\tau\right]\right] \land \left[\tau\right] \subseteq_{\ell}^{A} \left[\tau\right]}{\left(app\right) \frac{\Gamma \Vdash Y : \left[\omega \leadsto \left[\tau\right]\right] \leadsto \left[\tau\right]}{\Gamma \Vdash Y_{A}m : \tau}} \quad (cons) \frac{\Gamma \Vdash m : \omega \leadsto \left[\tau\right]}{\Gamma \Vdash_{\ell} m : \left[\omega \leadsto \left[\tau\right]\right]}$$

The only (non-trivial) open branch in the above tree is  $\Gamma \Vdash m : \omega \leadsto [\tau]$ . In order prove this, we need to use the sub-typing lemma for intersection types:

## **Lemma 6.3.** [Sub-typing for $\vdash / \vdash_{\ell}$ ]

In the definition below, the binary relation  $\subseteq_\Gamma$  is defined for any well-formed contexts  $\Gamma$  and  $\Gamma'$ , where for each triple  $(x : \tau_i ::_{\ell} A) \in \Gamma$ , there is a corresponding triple  $(x : \tau_j ::_{\ell} A) \in \Gamma'$  s.t.  $\tau_i \subseteq_{\ell}^A \tau_j$ :

$$(\subseteq) \frac{\Gamma \Vdash m_{\{A\}} : \tau}{\Gamma' \Vdash m_{\{A\}} : \tau'} \left(\Gamma \subseteq_{\Gamma} \Gamma', \tau' \subseteq^{A} \tau\right) \qquad (\subseteq_{\ell}) \frac{\Gamma \Vdash_{\ell} m_{\{A\}} : \tau_{i}}{\Gamma' \Vdash_{\ell} m_{\{A\}} : \tau_{j}} \left(\Gamma \subseteq_{\Gamma} \Gamma', \tau_{j} \subseteq_{\ell}^{A} \tau_{i}\right)$$
Proof. Ommited.

Thus, we have:

$$(1) \frac{}{\Gamma \Vdash m : \omega \leadsto \tau_{j}} (\Gamma \subseteq_{\Gamma} \Gamma, \omega \leadsto [\tau] \subseteq^{A \to A} \omega \leadsto \tau_{j})$$

58

**6.6.2** 
$$\tau_i \equiv [\tau_1, \ldots, \tau_n]$$

This case of the proof is a lot more involved and required several additional rules and lemmas. We will outline the main ideas of the proof in this section.

Remark. The first thing to note is that since  $\tau_i$  is a non-empty list of semi-strict intersection types, it will have the shape:

$$\frac{\vdots}{\Gamma \Vdash Y_{A}m : \tau_{n}} \quad (nil) \frac{\vdots}{\Gamma \Vdash_{\ell} Y_{A}m : \omega}}{\vdots}$$

$$(cons) \frac{\vdots}{\Gamma \Vdash_{\ell} Y_{A}m : \tau_{1}} \quad (cons) \frac{\Gamma \vdash_{\ell} Y_{A}m : \tau_{2}}{\Gamma \vdash_{\ell} Y_{A}m : [\tau_{2}, \dots, \tau_{n}]}}{\vdots}$$
We will simplify this notation slightly and just write:

We will simplify this notation slightly and just write:

$$\frac{\vdots}{\Gamma \Vdash Y_{A}m : \tau_{1}} \quad \frac{\vdots}{\Gamma \vdash Y_{A}m : \tau_{2}} \quad \dots \quad \frac{\vdots}{\Gamma \vdash Y_{A}m : \tau_{n}}$$

$$\Gamma \vdash_{\ell} Y_{A}m : \tau_{i}$$

In order to type  $Y_A m$  with  $\tau$ , we first have to show that for every branch  $\Gamma \Vdash Y_A m : \tau_k$  in the tree above, we can find a type  $\tau_k'$  s.t.  $\Gamma \Vdash m : \tau_k' \leadsto \tau_k'$  and  $[\tau_k] \subseteq_{\ell}^A \tau_k'$ :

Lemma 6.4. 
$$\Gamma \Vdash Y_A m : \tau \implies \exists \tau'. \ \Gamma \Vdash_{\ell} m : [\tau' \leadsto \tau'] \land [\tau] \subseteq_{\ell}^A \tau'$$

*Proof.* Unfolding the typing tree of  $\Gamma \Vdash Y_A m : \tau$ , we have:

$$\frac{[\tau_{x} \leadsto \tau_{x}] \subseteq^{A \to A} \tau_{i} \wedge \tau_{j} \subseteq^{A} \tau_{x}}{(app) \frac{\Gamma \Vdash_{s} Y_{A} : \tau_{i} \leadsto \tau_{j}}{\Gamma \Vdash_{l} Y_{A} m : \tau}} \Gamma \Vdash_{\ell} m : \tau_{i}}{([\tau] \subseteq^{A}_{\ell} \tau_{j})}$$

Then it follows by transitivity, that  $[\tau] \subseteq_{\ell}^{A} \tau_{x}$ , and  $\Gamma \Vdash_{\ell} m : [\tau_{x} \leadsto \tau_{x}]$  by sub-typing:

$$(\subseteq_{\ell}) \frac{\Gamma \Vdash_{\ell} m : \tau_{i}}{\Gamma \Vdash_{\ell} m : [\tau_{x} \leadsto \tau_{x}]} \left( \Gamma \subseteq_{\Gamma} \Gamma, [\tau_{x} \leadsto \tau_{x}] \subseteq_{\ell}^{A \to A} \tau_{i} \right) \quad (trans) \frac{[\tau] \subseteq_{\ell}^{A} \tau_{j}}{[\tau] \subseteq_{\ell}^{A} \tau_{x}}$$

Since for every type  $\tau_k \in \tau_i$  we now have  $\Gamma \Vdash_\ell m : [\tau_k' \leadsto \tau_k']$  as well as  $[\tau_k] \subseteq_\ell^A \tau_k'$ , we want to "mege" all these types given to m:

$$(\text{Lemma 6.4}) \frac{\Gamma \Vdash Y_{A}m : \tau_{1}}{\Gamma \Vdash_{\ell} m : [\tau'_{1} \leadsto \tau'_{1}]} \dots (\text{Lemma 6.4}) \frac{\Gamma \Vdash Y_{A}m : \tau_{n}}{\Gamma \Vdash_{\ell} m : [\tau'_{n} \leadsto \tau'_{n}]}$$

$$\Gamma \Vdash m : \tau'_{1} + \dots + \tau'_{n} \leadsto \tau'_{1} + \dots + \tau'_{n}$$

such that we have  $\tau'_i \equiv \tau'_1 + + \dots + \tau'_n$  where  $\tau_i \subseteq_{\ell}^A \tau'_i$ .

To illustrate how to prove the last step in the tree above (i.e. how to derive the (???) rule), we will look at a simpler example, where  $\tau_i \equiv [\tau_1, \tau_2]$ . Thus, we want to show:

$$(\text{Lemma 6.4}) \frac{\Gamma \Vdash Y_{A}m : \tau_{1}}{\Gamma \Vdash_{\ell} m : [\tau'_{1} \leadsto \tau'_{1}]} \quad (\text{Lemma 6.4}) \frac{\Gamma \Vdash Y_{A}m : \tau_{2}}{\Gamma \Vdash_{\ell} m : [\tau'_{2} \leadsto \tau'_{2}]}$$

$$\Gamma \Vdash m : \tau'_{1} + \tau'_{2} \leadsto \tau'_{1} + \tau'_{2}$$

Using the sub-typing lemma we can show:

$$(\subseteq_{\ell}) \frac{\Gamma \Vdash_{\ell} m : [\tau'_1 \leadsto \tau'_1]}{\Gamma \Vdash_{\ell} m : [\tau'_1 +\!\!\!+ \tau'_2 \leadsto \tau'_1]} ([\tau'_1 +\!\!\!+ \tau'_2 \leadsto \tau'_1] \subseteq_{\ell}^{A \to A} [\tau'_1 \leadsto \tau'_1])$$

since we have:

$$(\subseteq^*)^1 \frac{\overline{\tau_1' \subseteq^A \tau_1' + \tau_2'} \quad (refl) \frac{}{\overline{\tau_1' \subseteq^A \tau_1'}} \quad (nil) \frac{}{\omega \subseteq_{\ell}^{A \to A} [\tau_1' \leadsto \tau_1']}$$

$$(cons) \frac{\overline{\tau_1' + \tau_2' \leadsto \tau_1' \subseteq^{A \to A} \tau_1' \leadsto \tau_1'}}{[\tau_1' + \tau_2' \leadsto \tau_1'] \subseteq_{\ell}^{A \to A} [\tau_1' \leadsto \tau_1']}$$

Similarly, we can also prove  $\Gamma \Vdash_{\ell} m : [\tau_1' + \tau_2' \leadsto \tau_2']$ , but at this point there is no way we can merge these two types, to produce  $\Gamma \Vdash_{\ell} m : [\tau_1' + \tau_2' \leadsto \tau_1' + \tau_2']$ .

In order to proceed, we had to introduce a new rule to the typing relation  $\Vdash$ , to allow us to derive the type above:

$$(\leadsto \cap) \frac{ \Gamma \Vdash m_{\{A \to B\}} : \tau_i \leadsto \tau_j \qquad \Gamma \Vdash m_{\{A \to B\}} : \tau_i \leadsto \tau_k}{\Gamma \Vdash m_{\{A \to B\}} : \tau_i \leadsto \tau_{jk}} (\tau_{jk} \subseteq^B \tau_j +\!\!\!\!+ \tau_k)$$

Introducing this rule created a host of complications, the chief of which was the fact that we lost our "free" inversion lemmas, as it is now no longer obvious from the shape of the term, which rule was used last in the type-derivation tree.

**Example 6.4.** Consider a term  $\lambda_A.m$  s.t.  $\Gamma \Vdash \lambda_A.m$ :  $\tau$ . Since  $\tau$  must necessarily be of the shape  $\psi_i \leadsto \psi_i$ , either of these two derivation trees could be valid:

$$(abs) \frac{\vdots}{\forall x \notin L. (x : \psi_i ::_{\ell} A), \Gamma \Vdash_{\ell} (m^x)_{\{B\}} : \psi_j}{\Gamma \Vdash (\lambda_A.m)_{\{A \to B\}} : \psi_i \leadsto \psi_i}$$

$$(\leadsto \cap) \frac{\frac{\vdots}{\Gamma \Vdash_{s} (\lambda_{A}.m)_{\{A \to B\}} : \psi_{i} \leadsto \tau_{j}} \frac{\vdots}{\Gamma \Vdash_{s} (\lambda_{A}.m)_{\{A \to B\}} : \psi_{i} \leadsto \tau_{k}}}{\Gamma \Vdash_{s} (\lambda_{A}.m)_{\{A \to B\}} : \psi_{i} \leadsto \psi_{i}} (\psi_{j} \subseteq^{B} \tau_{j} + + \tau_{k})$$

However, it's easy to see that since these derivation trees must be finite, even if we apply  $(\leadsto \cap)$  multiple times, eventually, all of these branches will have to have an application of the (abs) rule.

As a result, we can prove an inversion lemma, which is practically identical to the original

<sup>&</sup>lt;sup>1</sup>This is a derived rule defined for the subset relation on lists, i.e. if the list  $\tau_k$  is a subset of  $\tau_n$ , then it is also a subtype of  $\tau_n$ . Th derivation of this rule trivially follows from the (refl), (nil) and (cons) rules.

"free" inversion lemma, but not as complicated to prove as an equivalent inversion lemma in

**Lemma 6.5.** [Inversion lemma for 
$$(abs)$$
]
$$\Gamma \Vdash (\lambda_A.m)_{\{A \to B\}} : \psi_i \leadsto \psi_j \implies \exists L. \ \forall x \not\in L. \ (x : \psi_i ::_{\ell} A), \Gamma \Vdash_{\ell} (m^x)_{\{B\}} : \psi_j$$

Besides having to derive inversion lemmas for the (abs) and (Y) rules, another derived rule, namely the sub-typing rule, breaks. In order to "fix" this rule, we had to add an axiom scheme, corresponding to the  $(\leadsto \cap)$  rule, to the definition of the intersection-type subset relation:

$$(\leadsto \cap_{\ell}) \frac{\left[\tau_{i} \leadsto (\tau_{j} + + \tau_{k})\right] + + \tau_{m} ::_{\ell} A \to B}{\left[\tau_{i} \leadsto (\tau_{j} + + \tau_{k})\right] + + \tau_{m} \subseteq_{\ell}^{A \to B} \left[\tau_{i} \leadsto \tau_{i}, \tau_{i} \leadsto \tau_{k}\right] + + \tau_{m}}$$

*Remark.* Initially, we tried to add  $(\leadsto \cap_{\ell})$  to the type subset relation and add the sub-typing rule to  $\Vdash$ , as this is the usual formulation in other non-strict systems such as  $\lambda_{\cap}^{BCD}$ , instead of explicitly having the  $(\leadsto \cap)$  rule (which is derivable in a system with  $(\leadsto \cap_{\ell})$  and  $(\subseteq)$  rules). However, having the sub-typing rule  $(\subseteq)$  in  $\Vdash$  made the inversion lemmas, as well as some other lemmas too difficult to prove.

Finding the right balance in the formalization of the  $(\leadsto\cap)/(\leadsto\cap_\ell)$  and the sub-typing rules proved to be perhaps the most challenging part of the formalization of intersection types.

We can now finish or proof for the case where  $\tau_i \equiv [\tau_1, \tau_2]$ :

$$(\text{Lemma 6.4}) \frac{\Gamma \Vdash Y_{A}m : \tau_{1}}{\Gamma \Vdash_{\ell} m : [\tau'_{1} \leadsto \tau'_{1}]} \qquad (\text{Lemma 6.4}) \frac{\Gamma \Vdash Y_{A}m : \tau_{2}}{\Gamma \Vdash_{\ell} m : [\tau'_{2} \leadsto \tau'_{2}]} \\ (\subseteq_{\ell})^{2} \frac{\Gamma \Vdash_{\ell} m : [\tau'_{1} + \tau'_{2} \leadsto \tau'_{1}]}{\Gamma \Vdash m : \tau'_{1} + \tau'_{2} \leadsto \tau'_{1}} \qquad (\subseteq_{\ell}) \frac{\Gamma \Vdash_{\ell} m : [\tau'_{2} \leadsto \tau'_{2}]}{\Gamma \Vdash_{\ell} m : [\tau'_{1} + \tau'_{2} \leadsto \tau'_{2}]} \\ (\cong_{\ell})^{2} \frac{\Gamma \Vdash_{\ell} m : [\tau'_{1} + \tau'_{2} \leadsto \tau'_{2}]}{\Gamma \Vdash_{\ell} m : \tau'_{1} + \tau'_{2} \leadsto \tau'_{2}}$$

Having demonstrated the case when  $\tau_i \equiv [\tau_1, \tau_2]$ , the proof when  $\tau_i$  is arbitrarily long proceeds in much the same way:

**Lemma 6.6.** Assuming 
$$\tau_i$$
 is a non-empty intersection, we have:  $\Gamma \Vdash_{\ell} Y_A m : \tau_i \implies \exists \tau_i'. \Gamma \Vdash m : \tau_i' \leadsto \tau_i' \land \tau_i \subseteq_{\ell}^A \tau_i'$ 

Using Lemma 6.6, we can finally show that  $\Gamma \Vdash Y_A m : \tau$ .

First, from Figure 6.1, we have: (1) :  $\Gamma \Vdash m : \tau_i \leadsto \tau_i$ ,

$$(2): [\tau] \subseteq^A_{\ell} \tau_i$$
 and

$$(3): \Gamma \Vdash_{\ell} Y_{A}m: \tau_{i}.$$

Since  $\tau_i$  is not empty, from (3) and Lemma 6.6, we have some  $\tau_i'$  s.t. (4) :  $\Gamma \Vdash m : \tau_i' \leadsto \tau_i'$  and

We can therefore derive  $\Gamma \Vdash_{\ell} m : [\tau'_i \leadsto ([\tau] + \tau'_i)]$ :

<sup>&</sup>lt;sup>2</sup>The derived rule  $(\in_{\ell})$  is used to convert between the strict typing relation  $\Vdash$  and intersection typing  $\Vdash_{\ell}$  and is stated as:  $\Gamma \Vdash_{\ell} m : \tau_i \land \tau \in \tau_i \implies \Gamma \Vdash m : \tau$ 

$$(\subseteq) \frac{\Gamma \Vdash m : \tau_{i} \leadsto \tau_{j}}{\Gamma \Vdash m : \tau_{i}' \leadsto [\tau]} (\tau_{i}' \leadsto [\tau] \subseteq^{A \to A} \tau_{i} \leadsto \tau_{j}) \quad (4) \frac{}{\Gamma \Vdash m : \tau_{i}' \leadsto \tau_{i}'}$$

$$(\leadsto \cap) \frac{\Gamma \vdash m : \tau_{i}' \leadsto ([\tau] + \tau_{i}')}{(cons) \frac{}{\Gamma \vdash m : \tau_{i}' \leadsto ([\tau] + \tau_{i}')}} \quad (nil) \frac{}{\Gamma \vdash m : \omega}$$

*Note.* In the sub-typing rule, used in the tree above,  $\tau_i' \leadsto [\tau] \subseteq^{A \to A} \tau_i \leadsto \tau_j$  follows by:

$$(5) \frac{\tau_i \subseteq_{\ell}^{A} \tau_i'}{(\tau_i' \leadsto [\tau] \subseteq^{A \to A} \tau_i \leadsto \tau_j)}$$

Finally, putting all the pieces together, we get  $\Gamma \Vdash Y_A m : \tau$ :

$$(Y) = \frac{ \left[ \left( \left[ \tau \right] + \tau_{i}' \right) \rightsquigarrow \left( \left[ \tau \right] + \tau_{i}' \right) \right] \subseteq_{\ell}^{A \to A} \left[ \tau_{i}' \rightsquigarrow \left( \left[ \tau \right] + \tau_{i}' \right) \right] \land }{ \left[ \tau \right] \subseteq_{\ell}^{A} \left[ \tau \right] + \tau_{i}' } \\ = \frac{ \left[ \tau \right] \subseteq_{\ell}^{A} \left[ \tau \right] + \tau_{i}' }{ \left( app \right) \frac{ \Gamma \Vdash Y : \left[ \tau_{i}' \rightsquigarrow \left( \left[ \tau \right] + \tau_{i}' \right) \right] \rightsquigarrow \left[ \tau \right] }{ \Gamma \Vdash Y_{A}m : \tau} } \qquad \Gamma \Vdash_{\ell} m : \left[ \tau_{i}' \rightsquigarrow \left( \left[ \tau \right] + \tau_{i}' \right) \right] }$$

## 6.7 Proofs of termination for the LN representation

This final section of the chapter briefly describes an interesting implementation quirk/overhead, encountered when proving the substitution lemma, which was required for the proofs of both subject expansion and reduction:

### Lemma 6.7. [Substitution lemma]

Given that M and N are both well formed terms and  $x \notin \text{dom } \Gamma$ , we have:

$$\Gamma \Vdash M_{\{A\}}[N_{\{B\}}/x] : \tau \iff \exists \tau_i. \ (x : \tau_i ::_{\ell} B), \Gamma \Vdash M_{\{A\}} : \tau \land \Gamma \Vdash_{\ell} N_{\{B\}} : \tau_i$$

In the backwards direction (←), this proof is fairly straight forward and follows much like the proof of the same lemma for simple types.

The other direction ( $\Rightarrow$ ), used in the proof of subject expansion, turned out to be more complicated in Agda. This part of the proof proceeds by induction on the well formed term M, and whilst trying to prove the goal when M is a  $\lambda$ -term, Agda's termination checker would fail. To show why this was the case, we first examine the definition for the  $\lambda$ -case:

```
(lam L {.P} cf) trm-N x \notin \Gamma (abs L' cf') = ?
```

Informally, the (pieces of) definition above can be read as:

- · lam .A P: $M \equiv \lambda_A.P$
- · (lam L .P cf): P is a well formed  $\lambda$ -term, s.t. we have  $\forall x' \notin L$ .  $term(P^{x'})$  for some finite I.

(This is captured by the type of cf, which is  $x_1 \notin L \rightarrow \Lambda Term (\Lambda[0 >> fv x_1] P).$ )

- trm-N: N is a well-formed  $\lambda$ -Y term
- (abs L' cf'): the last rule in the derivation tree of  $\Gamma \Vdash \lambda_A.P_{\{B\}}[N_{\{C\}}/x] : \tau \leadsto \tau'$  was the (abs) rule and therefore we have cf', which encodes the premise, that there is some finite L' s.t.  $\forall x' \not\in L'$ .  $(x' : \tau ::_{\ell} A)$ ,  $\Gamma \Vdash_{\ell} (P[N/x])^{x'} : \tau$ .

The proof proceeds, by first showing that we can obtain a fresh x' s.t.  $\mathbf{term}(P^{x'})$ . By picking a sufficiently fresh x', we can also derive  $(x':\tau::_{\ell}A), \Gamma \Vdash_{\ell} (P^{x'})[N/x]:\tau$ , essentially swapping the substitution and opening from the assumption above.

However, when we then try to apply the induction hypothesis, which corresponds to a recursive call in Agda, we get an error, claiming that termination checking failed. In order to see why this happens, we will ignore the explicit arguments passed to  $subst-\mathbb{F}_{\ell}-2$  and instead focus on the implicit arguments:

```
ih = subst-\mathbb{I}_{\ell}-2 {A} {C} {(x', \tau, A) :: \Gamma} {\tau'} {x} {\Lambda[ 0 >> fv x'] P} {N} ...
```

Agda's termination checking relies on the fact that the data-types, being pattern matched on, get structurally smaller in recursive calls<sup>3</sup>. Thus, the parameter  $\Lambda$ [ 0 >> fv x' ] m in this definition is obviously problematic, as Agda doesn't know that  $P^{x'}$  is structurally smaller than M (i.e.  $\lambda_A$ .P), even though we know that is the case, as the open operation simply replaces a bound variable with a free one. However, whilst  $P^{x'}$  is not "bigger" than P, it is not, strictly speaking, structurally smaller than  $\lambda_A$ .P and therefore, structural induction/recursion principles cannot be used in this definition.

Whilst one can suppress termination checking for a specific definition/lemma in Agda, by adding the {-# TERMINATING #-} pragma in front of the definition, it is generally not a good idea to do this, even though we know that the definition is actually terminating. We initially contemplated using well-founded recursion to prove that the proof terminates, but having little experience in Agda, this looked quite complicated.

Instead, we devised a simple technique to allow Agda to prove termination for this (slightly modified) lemma, by first defining "skeleton" terms  $\mathfrak{T}$ , which capture the structure of  $\lambda$ -Y terms:

```
Definition 6.6. \mathfrak{T} := * \mid \circ \mathfrak{T} \mid \mathfrak{T} \& \mathfrak{T}
```

**Example 6.5.** As an illustration, take the LN  $\lambda$ -Y term  $\lambda$ .0( $Y_A x$ ). We can represented this term as a tree (left). Then, we simply replace any  $\lambda$  and  $Y_\sigma$  with  $\circ$ , application becomes & and any

<sup>&</sup>lt;sup>3</sup>The details on how the termination checking algorithm in Agda works are sparse, so we are not actually sure about the specifics of how the termination check fails.

free or bound variables are represented as \* in the skeleton tree (on the right):



Thus, the skeleton term of  $\lambda.0(Y_Ax)$  is  $\circ(* \& (* \& *))$ .

Next, we defined the congruence relation  $\sim_{\mathfrak{T}}$  between locally nameless  $\lambda$ -Y terms and skeleton terms:

## **Definition 6.7.** [ $\sim_{\mathfrak{T}}$ relation]

In the following definition, M, P, Q range over simply-typed locally nameless  $\lambda$ -Y terms and S, T range over skeleton terms  $\mathfrak{T}$ :

$$(bvar) - \frac{1}{n \sim_{\mathfrak{T}} *} \qquad (fvar) - \frac{1}{x \sim_{\mathfrak{T}} *} \qquad (Y) - \frac{1}{Y_A \sim_{\mathfrak{T}} *}$$

$$(un) \; \frac{\textit{M} \sim_{\mathfrak{T}} \textit{T}}{\textit{\lambda}_{\textit{A}}.\textit{M} \sim_{\mathfrak{T}} \textit{oT}} \quad (bin) \; \frac{\textit{P} \sim_{\mathfrak{T}} \textit{S}}{\textit{PQ} \sim_{\mathfrak{T}} \textit{S} \; \& \; \textit{T}}$$

Once we defined the  $\sim_{\mathfrak{T}}$  relation, we could augment our substitution lemma proof with a skeleton tree T, corresponding to the LN term M, performing (simultaneous) induction on the congruence relation  $M \sim_{\mathfrak{T}} T$ . For the  $\lambda$ -case, we have a skeleton tree of the form  $\circ T$  (for  $M \equiv \lambda_A.P$ ). The inductive hypothesis call is now:

ih = subst-
$$\mathbb{F}_{\ell}$$
-2 {A} {C} {(x',  $\tau$ , A) ::  $\Gamma$ } { $\tau$ '} {x} { $\Lambda$ [ 0 >> fv x'] m} {n} {t} (opn- $\tau$ -inv m $\tau$ t) ...

where T is the skeleton tree corresponding to P, and by Lemma 6.8 (opn- $\sim$ T-inv), also to  $P^{x'}$ :

Lemma 6.8. 
$$M \sim_{\mathfrak{T}} T \implies \{k \to x\} M \sim_{\mathfrak{T}} T$$

*Proof.* By induction on the relation  $M \sim_{\mathfrak{T}} T$ . The only interesting case is (bvar). We have two cases, when n = k or  $n \neq k$ . In both cases, we have  $n \sim_{\mathfrak{T}} *$ , thus in case  $n \neq k$ , the result follows by assumption, otherwise we have  $n\{k \to x\} \equiv x$  and thus  $x \sim_{\mathfrak{T}} *$  by (fvar).

After this modification, Agda (grudgingly) accepted the definition as terminating, even though this rather complicated inductive/recursive definition of the proof now takes a rather long time to compile (slowdown by up to a factor of 6 compared to other theories of similar length).

# 7. Conclusion

This project has achieved two main goals, the first of which was to assess viable approaches and available tools for formalizing a typed  $\lambda$ -calculus inside a theorem prover. The second aim of this project was to create the basis for a full formalization of the HOMC theory, by implementing the  $\lambda$ -Y calculus with intersection types.

Whilst these two aims were successful, there is space for improvement and further work in both stated aims.

## 7.1 Limitations of the current approach

A major limiting factor for doing a comparison more similar to the POPLMARK challenge, was obviously the time constraint of this project. Due to the limited number of comparisons and theorem provers tested, this comparison cannot hope to give a wide overview of the current technology and techniques, used for similar mechanizations.

Whilst the comparisons focus on transparency of definitions, there is less of a discussion about the transparency of proofs. Even though Chapter 5 describes the different approaches to mechanizing proofs in Isabelle and Agda, the question of which of these approaches is more transparent has not been explored to a great extent. This question is perhaps a slightly philosophical one, as it touches on what constitutes a proof, as well as what a proof should look like.

Another point of concern is the previously discussed "porting" of the proofs from the nominal to the locally nameless version of the calculus. Whilst we chose to port the theory over, keeping as much structure identical as possible, this might have inadvertently created overheads in the locally nameless mechanization, which were not necessary (like having two versions of lemmas, one defined for substitution and one for the *open* operation).

However, the main drawback, in our view, is the relatively fragile implementation of intersection types and the proofs of subject invariance. Whilst this was not discussed at length, the mechanization at this stage proved to be a lot more difficult to formalize than the previously implemented proof of confluence, since the definitions of the intersection types and typing rules changed several times, breaking most of the proofs each time.

#### 7.2 Future work

Having a solid basis for the theory of HOMC, underpinned by the  $\lambda$ -Y calculus, the wider scope of this mechanization would include the implementation of a decision procedure for the normal-

izability of  $\lambda$ -Y terms, which is an important result in the HOMC theory. As was mentioned in Chapter 5, the choice of Agda for the mechanization of intersection types and proofs of subject invariance was in fact motivated (in part) by the extension of the mechanization to this result.

# References

Aydemir, Brian E., Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve Zdancewic. 2005. "Mechanized Metatheory for the Masses: The Poplmark Challenge." In *Theorem Proving in Higher Order Logics: 18th International Conference, Tphols 2005, Oxford, Uk, August 22-25, 2005. Proceedings*, edited by Joe Hurd and Tom Melham, 50–65. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/11541868\_4<sup>1</sup>.

Aydemir, Brian, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie Weirich. 2008. "Engineering Formal Metatheory." In *Proceedings of the 35th Annual Acm Sigplan-Sigact Symposium on Principles of Programming Languages*, 3–15. POPL '08. New York, NY, USA: ACM. doi:10.1145/1328438.1328443<sup>2</sup>.

Bakel, Steffen van. 2003. "Semantics with Intersection Types." http://www.doc.ic.ac.uk/~svb/SemIntTypes/Notes.pdf.

Barendregt, Henk, Wil Dekkers, and Richard Statman. 2013. *Lambda Calculus with Types*. New York, NY, USA: Cambridge University Press.

Berghofer, Stefan, and Christian Urban. 2006. "A Head-to-Head Comparison of de Bruijn Indices and Names." In IN Proc. Int. Workshop on Logical Frameworks and Metalanguages: THEORY and Practice, 46–59.

Clairambault, Pierre, and Andrzej S. Murawski. 2013. "Böhm Trees as Higher-Order Recursive Schemes." In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2013, December 12-14, 2013, Guwahati, India, 91–102. doi:10.4230/LIPIcs.FSTTCS.2013.91<sup>3</sup>.

Gabbay, J. Murdoch, and M. Andrew Pitts. 2002. "A New Approach to Abstract Syntax with Variable Binding." *Formal Aspects of Computing* 13 (3): 341–63. doi:10.1007/s001650200016<sup>4</sup>.

Harper, Robert, Furio Honsell, and Gordon Plotkin. 1993. "A Framework for Defining Logics." *J. ACM* 40 (1). New York, NY, USA: ACM: 143–84. doi:10.1145/138027.138060<sup>5</sup>.

Kobayashi, Naoki. 2009. "Types and Higher-Order Recursion Schemes for Verification of Higher-Order Programs." In *Proceedings of the 36th Annual Acm Sigplan-Sigact Symposium on Principles of Programming Languages*, 416–28. POPL '09. New York, NY, USA: ACM. doi:10.1145/1480881.1480933<sup>6</sup>.

——. 2013. "Model Checking Higher-Order Programs." *J. ACM* 60 (3). New York, NY, USA: ACM: 20:1–20:62. doi:10.1145/2487241.2487246<sup>7</sup>.

Ong, C.-H. L. 2006. "On Model-Checking Trees Generated by Higher-Order Recursion Schemes." In *Proceedings of the 21st Annual Ieee Symposium on Logic in Computer Science*, 81–90. LICS '06. Washington, DC, USA: IEEE Computer

<sup>&</sup>lt;sup>1</sup>https://doi.org/10.1007/11541868\_4

<sup>&</sup>lt;sup>2</sup>https://doi.org/10.1145/1328438.1328443

<sup>&</sup>lt;sup>3</sup>https://doi.org/10.4230/LIPIcs.FSTTCS.2013.91

<sup>&</sup>lt;sup>4</sup>https://doi.org/10.1007/s001650200016

<sup>&</sup>lt;sup>5</sup>https://doi.org/10.1145/138027.138060

<sup>&</sup>lt;sup>6</sup>https://doi.org/10.1145/1480881.1480933

<sup>&</sup>lt;sup>7</sup>https://doi.org/10.1145/2487241.2487246

Society. doi:10.1109/LICS.2006.38<sup>8</sup>.

Pfenning, F., and C. Elliott. 1988. "Higher-Order Abstract Syntax." In *Proceedings of the Acm Sigplan 1988 Conference on Programming Language Design and Implementation*, 199–208. PLDI '88. New York, NY, USA: ACM. doi:10.1145/53990.54010<sup>9</sup>.

Pollack, Robert. 1995. "Polishing up the Tait-Martin-Löf Proof of the Church-Rosser Theorem."

Ramsay, Steven J., Robin P. Neatherway, and C.-H. Luke Ong. 2014. "A Type-Directed Abstraction Refinement Approach to Higher-Order Model Checking." *SIGPLAN Not.* 49 (1). New York, NY, USA: ACM: 61–72. doi:10.1145/2578855.2535873<sup>10</sup>.

Takahashi, M. 1995. "Parallel Reductions in  $\lambda$ -Calculus." *Information and Computation* 118 (1): 120–27. http://www.sciencedirect.com/science/article/pii/S0890540185710577.

Tsukada, Takeshi, and C.-H. Luke Ong. 2014. "Compositional Higher-Order Model Checking via \$\$-Regular Games over Böhm Trees." In *Proceedings of the Joint Meeting of the Twenty-Third Eacsl Annual Conference on Computer Science Logic (Csl) and the Twenty-Ninth Annual Acm/Ieee Symposium on Logic in Computer Science (Lics)*, 78:1–78:10. CSL-Lics '14. New York, NY, USA: ACM. doi:10.1145/2603088.2603133<sup>11</sup>.

Urban, Christian, and Christine Tasson. 2005. "Nominal Techniques in Isabelle/Hol." In *Automated Deduction – Cade-* 20: 20th International Conference on Automated Deduction, Tallinn, Estonia, July 22-27, 2005. Proceedings, edited by Robert Nieuwenhuis, 38–53. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/11532231\_4<sup>12</sup>.

<sup>&</sup>lt;sup>8</sup>https://doi.org/10.1109/LICS.2006.38

<sup>&</sup>lt;sup>9</sup>https://doi.org/10.1145/53990.54010

<sup>&</sup>lt;sup>10</sup>https://doi.org/10.1145/2578855.2535873

<sup>&</sup>lt;sup>11</sup>https://doi.org/10.1145/2603088.2603133

<sup>&</sup>lt;sup>12</sup>https://doi.org/10.1007/11532231\_4

# **Appendix**

## Nominal implementation in Isabelle

```
theory LamYNom
imports "Nominal2-Isabelle/Nominal/Nominal2" begin

Definition of λ-Y terms
atom_decl name
nominal_datatype type = 0 / Arr type type ("_ → _")

nominal_datatype trm =
    Var name
/ App trm trm
/ Lam x::name 1::trm binds x in 1 ("Lam [_]. _" [100, 100] 100)
/ Y type
Definition of substitution
```

```
nominal_function
```

```
subst :: "trm \Rightarrow name \Rightarrow trm" ("_ [_ ::= _]" [90, 90, 90] 90)
where
  "(Var\ x)[y:=s] = (if x=y then s else (Var\ x))"
| "(App t1 t2)[y ::= s] = App (t1[y ::= s]) (t2[y ::= s])"
| "atom x \ \sharp \ (y, s) \Longrightarrow (Lam [x]. t)[y ::= s] = Lam [x].(t[y ::= s])"
| "(Y t)[y ::= s] = Y t"
\langle proof \rangle
nominal_termination (eqvt)
\langle proof \rangle
lemma forget:
  shows "atom x \sharp t \Longrightarrow t[x ::= s] = t"
\langle proof \rangle
lemma fresh_type:
  fixes n :: name and t :: type
  shows "atom n \ \sharp \ t"
⟨proof⟩
```

```
lemma fresh_fact:
    fixes z::"name"
    assumes a: "atom z \sharp s"
        and b: "z = y \lor atom z \sharp t"
    shows "atom z \sharp t[y ::= s]"

\langle \text{proof} \rangle

lemma substitution_lemma:
    assumes a: "x \neq y" "atom x \sharp u"
    shows "t[x ::= s][y ::= u] = t[y ::= u][x ::= s[y ::= u]]"

\langle \text{proof} \rangle
```

#### $\beta$ Y-reduction

```
inductive
```

```
beta\_Y :: "trm \Rightarrow trm \Rightarrow bool" (" \_ \Rightarrow \_" [80,80] 80) where red\_L[intro] : "[ M \Rightarrow M' ]] \Longrightarrow App \ M \ N \Rightarrow App \ M' \ N" | red\_R[intro] : "[ N \Rightarrow N' ]] \Longrightarrow App \ M \ N \Rightarrow App \ M \ N'" | abs[intro] : "[ M \Rightarrow M' ]] \Longrightarrow Lam \ [x] . \ M \Rightarrow Lam \ [x] . \ M'" | beta[intro] : "[ atom \ x \ \sharp \ N ]] \Longrightarrow App \ (Lam \ [x] . \ M) \ N \Rightarrow M[x ::= N]" | Y[intro] : "App \ (Y \ O) \ M \Rightarrow App \ M \ (App \ (Y \ O) \ M)" equivariance beta\_Y nominal\_inductive \ beta\_Y avoids \ beta : "x" \ | abs : "x" | proof \rangle
```

#### Parallel $\beta Y$ -reduction

```
inductive
```

```
 \begin{array}{l} \textit{pbeta} :: "\textit{trm} \Rightarrow \textit{trm} \Rightarrow \textit{bool}" \; ("\_ \gg \_" \; [80,80] \; 80) \\ \textbf{where} \\ \textit{refl[intro]} : "(\textit{Var} \; x) \gg (\textit{Var} \; x)" \\ \textit{!} \; \textit{reflY[intro]} : "Y \; \sigma \gg Y \; \sigma" \\ \textit{!} \; \textit{app[intro]} : "[ \; M \gg M' \; ; \; N \gg N' \; ]] \Longrightarrow \textit{App} \; M \; N \gg \textit{App} \; M' \; N'" \\ \textit{!} \; \textit{abs[intro]} : "[ \; M \gg M' \; ]] \Longrightarrow \textit{Lam} \; [x] . \; M \gg \textit{Lam} \; [x] . \; M'" \\ \textit{!} \; \textit{beta[intro]} : "[ \; atom \; x \; \sharp \; N \; ; \; atom \; x \; \sharp \; N' \; ; \; M \gg M' \; ; \; N \gg N' \; ]] \Longrightarrow \textit{App} \; (\textit{Lam} \; [x] . \; M) \; N \gg M' [x \; ::= \; N']" \\ \textit{!} \; Y[intro] : "[ \; M \gg M' \; ]] \Longrightarrow \textit{App} \; (Y \; \sigma) \; M \gg \textit{App} \; M' \; (\textit{App} \; (Y \; \sigma) \; M')" \\ \textit{equivariance} \; \textit{pbeta} \\ \textit{avoids} \; \textit{beta} : \; "x" \; \textit{!} \; \textit{abs} : "x" \\ \textit{(proof)} \\ \end{aligned}
```

### Maximal parallel $\beta Y$ -reduction

```
nominal_function
  not\_abst :: "trm \Rightarrow bool"
where
  "not_abst (Var x) = True"
/ "not_abst (App t1 t2) = True"
| "not_abst (Lam [x]. t) = False"
/ "not_abst (Y t) = True"
\langle proof \rangle
nominal_termination (eqvt) (proof)
nominal_function
  not_Y :: "trm \Rightarrow bool"
where
  "not_Y (Var x) = True"
/ "not_Y (App t1 t2) = True"
/ "not_Y (Lam [x]. t) = True"
/ "not_Y (Y t) = False"
\langle proof \rangle
nominal_termination (eqvt) (proof)
inductive
  pbeta_max :: "trm \Rightarrow trm \Rightarrow bool" ("_ >>> _" [80,80] 80)
  refl[intro]: "(Var x) >>> (Var x)"
/ reflY[intro]: "Y σ >>> Y σ"
App M' N'"
| abs[intro]: "M >>> M' \implies Lam [x]. M >>> Lam [x]. M'"
/ beta[intro]: "[ atom x \sharp N ; atom x \sharp N' ; M >>> M' ; N >>> N' ] \Longrightarrow App (Lam
[x]. M) N >>> M'[x ::= N']"
equivariance pbeta_max
nominal_inductive pbeta_max
  avoids beta: "x" | abs: "x"
\langle proof \rangle
lemma not_Y = x: "\neg (not_Y M) \implies \exists \sigma. M = Y \sigma"
\langle proof \rangle
Lemma 2.1
lemma pbeta_max_ex:
  fixes M
  shows "\exists M'. M >>> M'"
⟨proof⟩
```

#### Lemma 2.2

```
lemma subst_rename:
  assumes a: "atom y # t"
  shows "t[x ::= s] = ((y \leftrightarrow x) \cdot t)[y ::= s]"
\langle proof \rangle
lemma fresh_in_pbeta: "s \gg s' \Longrightarrow atom (x::name) \sharp s \Longrightarrow atom x \sharp s'"
\langle proof \rangle
lemma pbeta_lam_case_ex: "(Lam [x]. s) \gg s' \Longrightarrow \exists t. s' = Lam [x]. t \land s \gg t"
\langle proof \rangle
lemma pbeta_cases_2:
  shows "atom x \sharp t \Longrightarrow App (Lam [x]. s) t \gg a2 \Longrightarrow
      (\bigwedge s' \ t'. \ a2 = App \ (Lam \ [x]. \ s') \ t' \Longrightarrow atom \ x \ \sharp \ t' \Longrightarrow s \gg s' \Longrightarrow t \gg t'
\implies P) \implies
      (\bigwedge t' \ s'. \ a2 = s' \ [x ::= t'] \implies \text{atom } x \ \sharp \ t \implies \text{atom } x \ \sharp \ t' \implies s \gg s' \implies
t \gg t' \Longrightarrow P) \Longrightarrow P''
\langle proof \rangle
lemma Lem2_5_1:
  assumes "s \gg s"
        and "t \gg t'"
        shows "(s[x := t]) \gg (s'[x := t'])"
⟨proof⟩
lemma pbeta_max_closes_pbeta:
  fixes a b d
  assumes "a >>> d"
  and "a \gg b"
  shows "b \gg d"
\langle proof \rangle
Proof of dp(\gg)
lemma Lem2_5_2:
  assumes "a ≫ b"
        and "a \gg c"
     shows "\exists d. b \gg d \land c \gg d"
\langle proof \rangle
Reflexive-transitive closure of \beta Y
inductive close :: "(trm \Rightarrow trm \Rightarrow bool) \Rightarrow trm \Rightarrow trm \Rightarrow bool" ("_* _ _" [80,80]
80) for R::"trm \Rightarrow trm \Rightarrow bool"
where
  base[intro]: "R a b \Longrightarrow R* a b"
```

/ refl[intro]: "R\* a a"

```
Proof of dp(\Rightarrow^*_{\vee})
definition DP :: "(trm \Rightarrow trm \Rightarrow bool) \Rightarrow (trm \Rightarrow trm \Rightarrow bool) \Rightarrow bool" where
"DP R T = (\forall a \ b \ c. \ R \ a \ b \land T \ a \ c \longrightarrow (\exists \ d. \ T \ b \ d \land R \ c \ d))"
lemma DP_R_R_imp_DP_R_Rc_pbeta:
  assumes "DP pbeta pbeta"
     shows "DP pbeta (close pbeta)"
\langle proof \rangle
lemma DP_R_R_imp_DP_Rc_Rc_pbeta:
  assumes "DP pbeta pbeta"
     shows "DP (close pbeta) (close pbeta)"
⟨proof⟩
lemma pbeta_refl[intro]: "s \gg s"
\langle proof \rangle
lemma M1': "M \Rightarrow M' \Longrightarrow M \gg M'"
\langle proof \rangle
lemma M1: "beta_{Y}^{*} M M' \Longrightarrow pbeta^{*} M M'"
\langle proof \rangle
 lemma red\_r\_close: "beta\_Y* N N' \Longrightarrow beta\_Y* (App M N) (App M N')" 
\langle proof \rangle
lemma red_1_close: "beta_Y* M M' \Longrightarrow beta_Y* (App M N) (App M' N)"
\langle proof \rangle
lemma abs_close: "beta_Y* M M' \Longrightarrow beta_Y* (Lam [x]. M) (Lam [x]. M')"
⟨proof⟩
lemma M2: "pbeta* M M' ⇒ beta_Y* M M'"
\langle proof \rangle
Simple-typing relation \vdash
inductive wf_ctxt :: "(name × type) list ⇒ bool"
where
     nil: "wf_ctxt []"
   / cons: "\llbracket wf\_ctxt \ \Gamma \ ; \ atom \ x \ \sharp \ \Gamma \ \rrbracket \implies wf\_ctxt \ ((x,\sigma)\#\Gamma)"
equivariance wf_ctxt
inductive
   wt_terms :: "(name \times type) list \Rightarrow trm \Rightarrow type \Rightarrow bool" ("_ \vdash _ : _")
```

```
where
    var: "[ (x,\sigma) \in set \ \Gamma ; wf\_ctxt \ \Gamma ]] \Longrightarrow \Gamma \vdash Var \ x : \sigma"
/ app: "[\![ \Gamma \vdash M : \sigma \rightarrow \tau ; \Gamma \vdash N : \sigma ]\!] \Longrightarrow \Gamma \vdash \text{App M N } : \tau"
/ abs: "\llbracket atom x \sharp  \lceil ; ((x,\sigma)# \lceil) \vdash M :  \rceil \rrbracket \Longrightarrow  \Gamma \vdash Lam [x]. M :  \sigma \to \tau"
/ Y: "\llbracket wf_ctxt \lceil \rrbracket \Longrightarrow \lceil \vdash \lor \sigma : (\sigma \to \sigma) \to \sigma"
equivariance wt_terms
nominal_inductive wt_terms
avoids abs: "x"
\langle proof \rangle
Subject reduction theorem for \Rightarrow_{Y}
lemma wf\_ctxt\_cons: "wf\_ctxt ((x, \sigma)#\Gamma) \Longrightarrow wf\_ctxt \Gamma \land atom x \sharp \Gamma"
\langle proof \rangle
lemma wt_terms_impl_wf_ctxt: "\Gamma \vdash M : \sigma \Longrightarrow wf\_ctxt \Gamma"
\langle proof \rangle
lemma weakening:
   fixes \Gamma \Gamma ' M \sigma
   assumes "\Gamma \vdash M : \sigma" and "set \Gamma \subseteq set \Gamma"
   and "wf_ctxt \Gamma'"
   shows "\Gamma' \vdash M : \sigma"
\langle proof \rangle
 \text{lemma } \text{wf\_ctxt\_exchange: "wf\_ctxt } ((x, \sigma) \ \# \ (y, \pi) \ \# \ \Gamma) \implies \text{wf\_ctxt } ((y, \pi) \ \# \ (x, \sigma) ) 
# F)"
\langle proof \rangle
lemma exchange: "(x,\sigma) # (y,\pi) # \Gamma \vdash M : \delta \Longrightarrow (y,\pi) # (x,\sigma) # \Gamma \vdash M : \delta"
\langle proof \rangle
lemma wt_terms_cases_2:
   shows "\Gamma \vdash Lam [x]. M: a3 \Longrightarrow atom x \sharp \Gamma \Longrightarrow (\bigwedge \sigma \tau. a3 = \sigma \to \tau \Longrightarrow (\langle x, x \rangle)
\sigma)#\Gamma) \vdash M : \tau \Longrightarrow P) \Longrightarrow P''
\langle proof \rangle
lemma subst_{typ_aux}: "(x, \tau) \# \Gamma \vdash Var y : \sigma \Longrightarrow x = y \Longrightarrow \tau = \sigma"
\langle proof \rangle
lemma subst_typ:
   assumes "((x,T) \# \Gamma) \vdash M : \sigma" and "\Gamma \vdash N : \tau"
   shows "\Gamma \vdash M[x ::= N] : \sigma"
\langle proof \rangle
lemma beta_Y_typ:
   assumes "\Gamma \vdash M : \sigma"
```

```
and "M \Rightarrow M'" shows "\Gamma \vdash M' : \sigma" \langle \mathsf{proof} \rangle lemma beta_Y_c_typ: assumes "\Gamma \vdash M : \sigma" and "beta_Y* M M'" shows "\Gamma \vdash M' : \sigma" \langle \mathsf{proof} \rangle
```

#### **Church Rosser Theorem**

```
lemma church_rosser_typ: assumes "\Gamma \vdash a : \sigma" and "beta_Y* a b" and "beta_Y* a c" shows "\exists d. beta_Y* b d \land beta_Y* c d \land \Gamma \vdash d : \sigma" \land proof\land end
```

## Locally Nameless implementation in Isabelle

```
theory LamYNmless imports Main begin
```

#### Definition of $\lambda$ -Y pre-terms

```
typedecl atom
axiomatization where
  atom_inf: "infinite (UNIV :: atom set)"

datatype type = 0 | Arr type type ("_ → _")

datatype ptrm = FVar atom | BVar nat | App ptrm ptrm | Lam ptrm | Y type
```

#### Definition of the open operation

```
fun opn:: "nat \Rightarrow ptrm \Rightarrow ptrm" ("{_- \rightarrow_-} _") where "{k \rightarrow u} (FVar x) = FVar x" |
"{k \rightarrow u} (BVar i) = (if i = k then u else BVar i)" |
"{k \rightarrow u} (App t1 t2) = App ({k \rightarrow u} t1) ({k \rightarrow u} t2)" |
"{k \rightarrow u} (Lam t) = Lam ({(k+1) \rightarrow u} t)" |
"{k \rightarrow u} (Y \sigma) = Y \sigma"

definition opn':: "ptrm \Rightarrow ptrm \Rightarrow ptrm" ("_^_") where "opn' t u \equiv {0 \rightarrow u} t"

lemma bvar_0open_any:"BVar one M = M"

one proof

lemma bvar_0open_any:"BVar (Suc n)) one BVar (Suc n)"

one proof
```

#### Definition of well formed terms

```
inductive trm :: "ptrm \Rightarrow bool" where var: "trm (FVar x)" | app: "[[trm t1 ; trm t2]] \Longrightarrow trm (App t1 t2)" | lam: "[[finite L ; (\bigwedge x. x \notin L \Longrightarrow trm (t^(FVar x)))]] \Longrightarrow trm (Lam t)" | Y: "trm (Y 0)" thm trm.simps lemma bvar\_not\_trm: "trm (BVar n) \Longrightarrow False" \langle proof \rangle lemma x\_Ex: "\bigwedge L:: atom set. finite <math>L \Longrightarrow \exists x. x \notin L" \langle proof \rangle
```

#### Definition of substitution

```
fun FV :: "ptrm \Rightarrow atom set" where
 "FV (FVar x) = \{x\}" |
 "FV (BVar i) = {}" /
  "FV (App t1 t2) = (FV t1) \bigcup (FV t2)" |
  "FV (Lam t) = FV t" |
  "FV (Y \sigma) = \{\}"
lemma FV_finite: "finite (FV u)"
 \langle proof \rangle
 primrec subst :: "ptrm ⇒ atom ⇒ ptrm ⇒ ptrm" ("_ [_ ::= _]" [90, 90, 90] 90)
where
 "(FVar x)[z := u] = (if x = z then u else FVar x)" |
 "(BVar x) [z ::= u] = BVar x" |
  "(App t1 t2)[z ::= u] = App (t1[z ::= u]) (t2[z ::= u])" |
  "(Lam t)[z ::= u] = Lam (t[z ::= u])" |
  "(Y \sigma)[z ::= u] = (Y \sigma)"
lemma subst\_fresh: "x \notin FV t \Longrightarrow t[x ::= u] = t"
  \langle proof \rangle
 lemma subst_fresh2: "x \notin FV t \implies t = t[x ::= u]"
  \langle proof \rangle
\textbf{lemma opn\_trm\_core: "i \neq j \Longrightarrow \{j \rightarrow v\} \ e = \{i \rightarrow u\}(\{j \rightarrow v\} \ e) \Longrightarrow e = \{i \rightarrow v\} \ e 
 u} e"
  ⟨proof⟩
lemma opn_trm: "trm e \implies e = \{k \rightarrow t\}e"
  ⟨proof⟩
lemma opn_trm2: "trm e \Longrightarrow {k \rightarrow t}e = e"
  \langle proof \rangle
 lemma subst_open: "trm u \Longrightarrow (\{n \to w\}t)[x := u] = \{n \to w[x := u]\} (t [x := u])
 u])"
  \langle proof \rangle
lemma \ subst\_open2: "trm \ u \Longrightarrow \{n \to w \ [x ::= u]\} \ (t \ [x ::= u]) = (\{n \to w\}t)[x \to w]
  ::= u]"
 \langle proof \rangle
 lemma fvar\_subst\_simp: "x \neq y \Longrightarrow FVar y = FVar y[x ::= u]"
  \langle proof \rangle
 lemma fvar_subst_simp2: "u = FVar x[x ::= u]"
  \langle proof \rangle
```

```
lemma subst\_open\_var: "trm u \Rightarrow x \neq y \Rightarrow (t^FVar\ y)[x ::= u] = (t\ [x ::= u])^FVar\ y" \langle proof \rangle

lemma subst\_open\_var2: "trm u \Rightarrow x \neq y \Rightarrow (t\ [x ::= u])^FVar\ y = (t^FVar\ y)[x ::= u]" \langle proof \rangle

lemma subst\_intro: "trm u \Rightarrow x \notin FV\ t \Rightarrow (t^FVar\ x)[x ::= u] = t^u" \langle proof \rangle

lemma subst\_intro2: "trm u \Rightarrow x \notin FV\ t \Rightarrow t^u = (t^FVar\ x)[x ::= u]" \langle proof \rangle

lemma subst\_intro2: "trm u \Rightarrow x \notin FV\ t \Rightarrow t^u = (t^FVar\ x)[x ::= u]" \langle proof \rangle

lemma subst\_trm: "trm e \Rightarrow trm\ u \Rightarrow trm(e[x ::= u])" \langle proof \rangle
```

#### Definition of the close operation

```
fun cls :: "nat \Rightarrow atom \Rightarrow ptrm \Rightarrow ptrm" ("{_ <- _} _") where
"\{k \leftarrow x\} (FVar y) = (if x = y then BVar k else FVar y)" |
"\{k \leftarrow x\} (BVar i) = BVar i" \mid
"\{k \leftarrow x\} (App t1 t2) = App (\{k \leftarrow x\} t1)(\{k \leftarrow x\} t2)" |
"\{k < -x\} (Lam t) = Lam (\{(k+1) < -x\} t)" |
"\{k < -x\} (Y \sigma) = Y \sigma"
definition cls':: "atom \Rightarrow ptrm \Rightarrow ptrm" ("\_^_") where
"cls' x t \equiv {0 <- x} t"
\langle proof \rangle
lemma FV\_simp2: "x \notin FV M \cup FV N \Longrightarrow x \notin FV \{k \rightarrow N\}M"
\langle proof \rangle
lemma FV_simp3: "x \notin FV \{k \rightarrow N\}M \Longrightarrow x \notin FV M"
⟨proof⟩
lemma FV\_simp4: "x \notin FV M \Longrightarrow x \notin FV \{k \leftarrow y\} M"
\langle proof \rangle
lemma FV\_simp5: "x \notin FV M \cup FV N \Longrightarrow x \notin FV (M[y ::= N])"
\langle proof \rangle
lemma fv_opn_cls_id: "x \notin FV t \Longrightarrow \{k \leftarrow x\}\{k \rightarrow FVar x\}t = t"
\langle proof \rangle
```

```
lemma fv_opn_cls_id2: "x \notin FV t \implies t = \{k \leftarrow x\}\{k \rightarrow FVar x\}t"
  ⟨proof⟩
 lemma opn_cls_swap: "k \neq m \implies x \neq y \implies \{k \leftarrow x\}\{m \rightarrow FVar y\}M = \{m \rightarrow FVar y\}M = 
 y { k < - x } M''
  \langle proof \rangle
lemma opn_cls_swap2: "k \neq m \implies x \neq y \implies \{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}\{m \rightarrow FVar\ y\}\{k \leftarrow x\}M = \{k \leftarrow x\}M =
  \langle proof \rangle
 lemma opn_opn_swap: "k \neq m \implies x \neq y \implies \{k \rightarrow FVar \ x\}\{m \rightarrow FVar \ y\}M = \{m \rightarrow FVar \ y
 FVar y {k \rightarrow FVar x}M"
  ⟨proof⟩
 \textbf{lemma } \textit{cls\_opn\_eq\_subst: "trm } M \Longrightarrow (\{k \rightarrow \textit{FVar } y\} \ \{k < -x\} \ M) \ = \ (M[x ::= \textit{FVar} y] \ M) \ = \ M[x ::= \texttt{FVar} y] \ M
 v1)"
  \langle proof \rangle
 \textbf{lemma } \textit{cls\_opn\_eq\_subst2: "trm } M \Longrightarrow (\texttt{M[x ::= FVar y]}) = (\{k \rightarrow FVar y\} \ \{k <-x\})
 M) "
  \langle proof \rangle
\betaY-reduction
inductive beta_Y :: "ptrm \Rightarrow ptrm \Rightarrow bool" (infix "\Rightarrow" 300)
                  red_L[intro]: "[trm N; M \Rightarrow M'] \Longrightarrow App M N \Rightarrow App M' N"
  \mid \text{red\_R[intro]: "} \mid \text{trm M ; N} \Rightarrow \text{N'} \mid \implies \text{App M N} \Rightarrow \text{App M N'"}
  | abs[intro]: "\llbracket finite L ; (\bigwedgex. x \notin L \Longrightarrow M^(FVar x) \Longrightarrow M'^(FVar x)) \rrbracket \Longrightarrow Lam
{\it M} \Rightarrow {\it Lam M''}
  | beta[intro]: "\llbracket trm (Lam M); trm N\rrbracket \Longrightarrow App (Lam M) N \Longrightarrow M^N"
  | Y[intro]: "trm M \Longrightarrow App (Y \sigma) M \Longrightarrow App M (App (Y \sigma) M)"
 lemma \ trm\_beta\_Y\_simp1: "M \Rightarrow M' \Longrightarrow trm \ M \ \land \ trm \ M'"
  \langle proof \rangle
  Parallel \beta Y-reduction
inductive
                pbeta :: "ptrm \Rightarrow ptrm \Rightarrow bool" ("_ <math>\gg _" [80,80] 80)
where
                 refl[intro]: "(FVar x) \gg (FVar x)"
  / reflY[intro]: "Y \sigma \gg Y \sigma"
  | app[intro]: "[ M\gg M' ; N\gg N' ] \Longrightarrow App MN\gg App M'N''"
  | abs[intro]: "[ finite L ; (\bigwedgex. x \notin L \Longrightarrow M^(FVar x) \gg M'^(FVar x)) ] \Longrightarrow Lam
{\it M}\gg{\it Lam}~{\it M''}
  | beta[intro]: "\llbracket finite L ; (\bigwedgex. x \notin L \Longrightarrow M^(FVar x) \gg M'^(FVar x)) ; N \gg
```

```
N' \parallel \Longrightarrow \operatorname{App} \ (\operatorname{Lam} \ M) \ N \gg M' \wedge N''' \ | \ Y[\operatorname{intro}]: " \parallel M \gg M' \parallel \Longrightarrow \operatorname{App} \ (Y \ \sigma) \ M \gg \operatorname{App} \ M' \ (\operatorname{App} \ (Y \ \sigma) \ M') " \ |
\operatorname{lemma} \ trm\_pbeta\_simp1: "M \gg M' \Longrightarrow \operatorname{trm} \ M \wedge \ \operatorname{trm} \ M''' \ \langle \operatorname{proof} \rangle
```

#### Maximal parallel $\beta Y$ -reduction

```
fun not\_abst :: "ptrm \Rightarrow bool"
where
  "not_abst (FVar x) = True"
/ "not_abst (BVar x) = True"
/ "not_abst (App t1 t2) = True"
/ "not_abst (Lam t) = False"
/ "not_abst (Y t) = True"
fun not_Y :: "ptrm ⇒ bool"
where
  "not_Y (FVar x) = True"
/ "not_Y (BVar x) = True"
/ "not_Y (App t1 t2) = True"
/ "not_Y (Lam t) = True"
/ "not Y (Y t) = False"
inductive
  pbeta\_max :: "ptrm \Rightarrow ptrm \Rightarrow bool" ("\_ >>> \_" [80,80] 80)
where
  refl[intro]: "(FVar x) >>> (FVar x)"
/ reflY[intro]: "Y o >>> Y o"
| app[intro]: " [ not_abst M ; not_Y M ; M >>> M' ; N >>> N' ] \Longrightarrow App M N >>>
App M' N'"
| abs[intro]: "\llbracket finite L ; (\bigwedge x. x \notin L \Longrightarrow M^(FVar x) >>> M'^(FVar x)) <math>\rrbracket \Longrightarrow
Lam M >>> Lam M'"
| beta[intro]: "[ finite L ; (\bigwedge x. x \notin L \Longrightarrow M^(FVar x) >>> M'^(FVar x)) ; N >>>
N' \parallel \Longrightarrow App (Lam M) N >>> M'^N'''
| Y[intro]: "[ M >>> M' ] \implies App (Y \sigma) M >>> App M' (App (Y \sigma) M')"
lemma trm_pbeta_max_simp1: "M >>> M' \Longrightarrow trm M \land trm M'"
\langle proof \rangle
lemma pbeta_beta': "finite L \Longrightarrow (\bigwedgex. x \notin L \Longrightarrow M^(FVar x) \gg M'^(FVar x)) \Longrightarrow
N \gg N' \Longrightarrow App (Lam M) N \gg \{0 \rightarrow N'\} M'''
\langle proof \rangle
lemma not_Y = x: "\neg (not_Y M) \implies \exists \sigma. M = Y \sigma"
⟨proof⟩
lemma not_abst_simp: "not_abst M \Longrightarrow not_abst \{k \to FVar y\} \{k \leftarrow x\} M"
⟨proof⟩
```

```
\textbf{lemma} \ \textit{not}\_\texttt{Y}\_\textit{simp:} \ \textit{"not}\_\texttt{Y} \ \texttt{M} \Longrightarrow \ \textit{not}\_\texttt{Y} \ \{k \ \rightarrow \ \textit{FVar} \ \textit{y}\} \ \{k \ \leftarrow \ \textit{x}\} \ \texttt{M"}
\langle proof \rangle
Lemma 2.1
lemma pbeta\_max\_beta': "finite L \Longrightarrow (\bigwedge x. x \notin L \Longrightarrow M^(FVar x) >>> M'^(FVar x))
\implies N >>> N' \implies App (Lam M) N >>> {0 \rightarrow N'} M'" \langle proof \rangle
lemma Lem2_5_1_beta_max:
   assumes "s >>> s'"
        shows "(s[x ::= FVar y]) >>> (s'[x ::= FVar y])"
\langle proof \rangle
\textbf{lemma pbeta\_max\_cls: "t >>> d \Longrightarrow y \notin FV \ t \ \cup \ FV \ d \ \cup \ \{x\} \Longrightarrow \{k \ \rightarrow \ FVar \ y\}\{k \ <-
x}t >>> {k \rightarrow FVar y}{k \leftarrow x}d"
⟨proof⟩
lemma pbeta_max_ex:
  fixes \mathit{M} assumes "trm \mathit{M}"
   shows "\exists M'. M >>> M'"
⟨proof⟩
Lemma 2.2
lemma Lem2_5_1:
   assumes "s \gg s"
        and "t \gg t'"
        shows "(s[x := t]) \gg (s'[x := t'])"
⟨proof⟩
lemma Lem2_5_1opn:
   assumes "\bigwedge x. x \notin L \Longrightarrow s^F Var x \gg s'^F Var x" and "finite L"
        and "t \gg t'"
        shows "s^t \gg s'^t"
⟨proof⟩
lemma pbeta_max_closes_pbeta:
  fixes a b d
   assumes "a >>> d"
   and "a \gg b"
   shows "b \gg d"
\langle proof \rangle
Proof of dp(\gg)
lemma Lem2_5_2:
   assumes "a ≫ b"
        and "a \gg c"
```

```
shows "\exists a. b \gg a \land c \gg a" \langle proof \rangle
```

#### Reflexive-transitive closure of $\beta Y$

```
inductive close :: "(ptrm ⇒ ptrm ⇒ bool) ⇒ ptrm ⇒ ptrm ⇒ bool" ("_* _ _"
[80,80] 80) for R::"ptrm \Rightarrow ptrm \Rightarrow bool"
where
   base[intro]: "R a b \Longrightarrow R* a b"
/ refl[intro]: "R* a a"
| trans[intro]: "\llbracket R^* a b ; R^* b c \rrbracket \Longrightarrow R^* a c"
definition DP :: "(ptrm \Rightarrow ptrm \Rightarrow bool) \Rightarrow (ptrm \Rightarrow ptrm \Rightarrow bool) \Rightarrow bool" where
"DP R T = (\forall a b c. R a b \land T a c \longrightarrow (\exists d. T b d \land R c d))"
lemma DP_R_R_imp_DP_R_Rc_pbeta:
   assumes "DP pbeta pbeta"
      shows "DP pbeta (close pbeta)"
\langle proof \rangle
\textbf{lemma} \ \textit{DP}\_\textit{R}\_\textit{R}\_\textit{imp}\_\textit{DP}\_\textit{Rc}\_\textit{Rc}\_\textit{pbeta:}
   assumes "DP pbeta pbeta"
      shows "DP (close pbeta) (close pbeta)"
⟨proof⟩
lemma pbeta_refl[intro]: "trm s \Longrightarrow s \gg s"
⟨proof⟩
lemma M1': "M \Rightarrow M' \Longrightarrow M \gg M'"
\langle proof \rangle
lemma M1: "beta_Y* M M' ⇒ pbeta* M M'"
\langle proof \rangle
 lemma red\_r\_close: "beta\_Y* N N' \Longrightarrow trm M \Longrightarrow beta\_Y* (App M N) (App M N')" 
⟨proof⟩
\mathsf{lemma} \ \mathsf{red\_l\_close:} \ \mathsf{"beta\_Y*} \ \mathsf{M} \ \mathsf{M'} \implies \mathsf{trm} \ \mathsf{N} \implies \mathsf{beta\_Y*} \ (\mathsf{App} \ \mathsf{M} \ \mathsf{N}) \ (\mathsf{App} \ \mathsf{M'} \ \mathsf{N}) \ \mathsf{"}
\langle proof \rangle
lemma beta_Y_beta': "trm (Lam M) \Longrightarrow trm N \Longrightarrow App (Lam M) N \Longrightarrow {0 \to N} M"
\langle proof \rangle
lemma Lem2_5_1'_beta_Y:
   assumes "s \Rightarrow s"
         shows "(s[x := FVar y]) \Rightarrow (s'[x := FVar y])"
\langle proof \rangle
lemma beta_Y_lam_cls: "a \Rightarrow b \Longrightarrow Lam \{0 \leftarrow x\} \ a \Rightarrow Lam \{0 \leftarrow x\} \ b"
```

```
\langle proof \rangle
lemma abs_close: "\llbracket \land x. \ x \notin L \implies beta_Y^* \ (M^FVar \ x) \ (M'^FVar \ x) \ ; \ finite \ L \ \rrbracket
\implies beta_Y* (Lam M) (Lam M')"
\langle proof \rangle
lemma M2: "pbeta* M M' ⇒ beta_Y* M M'"
⟨proof⟩
Simple-typing relation ⊢
type\_synonym \ ctxt = "(atom \times type) \ list"
inductive wf\_ctxt :: "ctxt \Rightarrow bool" where
nil: "wf_ctxt []" |
cons: "\llbracket x \notin fst \cdot set C ; wf\_ctxt C \rrbracket \implies wf\_ctxt ((x, \sigma) \# C)"
inductive wt_trm :: "ctxt \Rightarrow ptrm \Rightarrow type \Rightarrow bool" ("_ \vdash _ : _") where
var: "\llbracket wf_ctxt \lceil ; (x,\sigma) \in set \lceil \rrbracket \Longrightarrow \lceil \vdash FVar x : \sigma" /
app: "\llbracket \Gamma \vdash t1 : \tau \rightarrow \sigma ; \Gamma \vdash t2 : \tau \rrbracket \Longrightarrow \Gamma \vdash App t1 t2 : \sigma" |
abs: "[ finite L ; (\bigwedge x. x \notin L \Longrightarrow ((x,0)\#\Gamma) \vdash (t^(FVar x)) : T) ]] \Longrightarrow \Gamma \vdash Lam t
: \sigma \rightarrow \tau''
Y: "\llbracket \text{ wf\_ctxt } \Gamma \rrbracket \implies \Gamma \vdash \text{ Y } \sigma : (\sigma \rightarrow \sigma) \rightarrow \sigma"
lemma wf_ctxt_cons: "wf_ctxt ((x, \sigma)#\Gamma) \Longrightarrow wf_ctxt \Gamma ∧ x \notin fst`set \Gamma"
\langle proof \rangle
lemma wt_terms_impl_wf_ctxt: "\Gamma \vdash M : \sigma \Longrightarrow wf\_ctxt \Gamma"
lemma opn_typ_aux: "(x, \tau) \# \Gamma \vdash FVar y : \sigma \Longrightarrow x = y \Longrightarrow \tau = \sigma"
⟨proof⟩
lemma weakening:
   fixes \Gamma \Gamma ' M \sigma
   assumes "\Gamma \vdash M : \sigma" and "set \Gamma \subseteq \mathit{set} \Gamma"
   and "wf_ctxt \Gamma'"
   shows "\Gamma' \vdash M : \sigma"
\langle proof \rangle
 \text{lemma } \text{wf\_ctxt\_exchange: "wf\_ctxt } ((x, \sigma) \ \# \ (y, \pi) \ \# \ \Gamma) \implies \text{wf\_ctxt } ((y, \pi) \ \# \ (x, \sigma) ) 
# F)"
\langle proof \rangle
lemma exchange: "(x,\sigma) # (y,\pi) # \Gamma \vdash M:\delta \Longrightarrow (y,\pi) # (x,\sigma) # \Gamma \vdash M:\delta"
\langle proof \rangle
lemma trm\_wt\_trm: "\Gamma \vdash M : \sigma \Longrightarrow trm M"
```

⟨proof⟩

```
lemma subst_typ:
   assumes "trm M" and "((x,T)#\Gamma) \vdash M : \sigma" and "\Gamma \vdash N : \tau"
   shows "\Gamma \vdash M[x ::= N] : \sigma"
\langle proof \rangle
lemma opn_typ:
  fixes L
   assumes "finite L" "\bigwedge x. x \notin L \Longrightarrow ((x,T)\#\Gamma) \vdash M^F Var x : \sigma" and "\Gamma \vdash N : T"
   shows "\Gamma \vdash M^N : \sigma"
\langle proof \rangle
lemma beta_Y_typ:
   assumes "\Gamma \vdash M : \sigma"
   and "M \Rightarrow M'"
   shows "\Gamma \vdash M' : \sigma"
\langle proof \rangle
lemma beta_Y_c_typ:
   assumes "\Gamma \vdash M : \sigma"
   and "beta_Y* M M'"
   shows "\Gamma \vdash M' : \sigma"
\langle proof \rangle
```

#### **Church Rosser Theorem**

```
lemma church_rosser_typ: assumes "\Gamma \vdash a : \sigma" and "beta_Y* a b" and "beta_Y* a c" shows "\exists d. beta_Y* b d \land beta_Y* c d \land \Gamma \vdash d : \sigma" \land proof\land end
```