20 Фільтри і збіжність

§20.1 Границі і граничні точки фільтрів

Означення 20.1. Нехай на множині X задані фільтри \mathfrak{F}_1 і \mathfrak{F}_2 . Говорять, що \mathfrak{F}_1 мажорує \mathfrak{F}_2 , якщо $\mathfrak{F}_2 \subset \mathfrak{F}_1$, тобто кожний елемент фільтра \mathfrak{F}_2 є водночас і елементом фільтра \mathfrak{F}_1 .

Приклад 20.1

Нехай $\{x_n\}_{n\in\mathbb{N}}$ — послідовність в X, а $\{x_{n_k}\}_{k\in\mathbb{N}}$ — її підпослідовність. Тоді фільтр $\mathfrak{F}_{\{x_{n_k}\}}$ асоційований з підпослідовністю, мажорує фільтр $\mathfrak{F}_{\{x_n\}}$, асоційований з самою послідовністю.

Дійсно, нехай $A\in\mathfrak{F}_{\{x_n\}}$. Тоді існує таке $N\in\mathbb{N}$, що $\{x_n\}_{n=N}^\infty\subset A$. Але тоді й $\{x_{n_k}\}_{k=N}^\infty\subset A$, тобто $A\in\mathfrak{F}_{\{x_{n_k}\}}$.

Означення 20.2. Нехай X — топологічний простір, \mathfrak{F} — фільтр на X. Точка $x \in X$ називається **границею фільтра** \mathfrak{F} (цей факт позначається як $x = \lim \mathfrak{F}$), якщо \mathfrak{F} мажорує фільтр околів точки x. Іншими словами, $x = \lim \mathfrak{F}$, якщо кожний окіл точки x належить фільтру \mathfrak{F} .

Означення 20.3. Точка $x \in X$ називається **граничною точкою фільтра** \mathfrak{F} , якщо кожний окіл точки x перетинається з усіма елементами фільтра \mathfrak{F} . Множина усіх граничних точок фільтра називається LIM \mathfrak{F} .

Приклад 20.2

Нехай $\{x_n\}_{n\in\mathbb{N}}$ — послідовність в топологічному просторі X. Тоді $x=\lim\mathfrak{F}_{\{x_n\}}=\lim_{n\to\infty}x_n$, а $x\in\mathrm{LIM}\,\mathfrak{F}_{\{x_n\}}$ збігається з множиною граничних точок послідовності $\{x_n\}_{n\in\mathbb{N}}$.

Теорема 20.1

Нехай \mathfrak{F} — фільтр на топологічному просторі X,\mathfrak{D} — база фільтра \mathfrak{F} . Тоді

- 1. $x = \lim \mathfrak{F} \iff \forall U \in \Omega_x \; \exists A \in \mathfrak{D} : A \subset U;$
- 2. $x = \lim \mathfrak{F} \implies x \in \text{LIM }\mathfrak{F}$. Якщо до того ж X хаусдорфів простір, то у фільтра \mathfrak{F} немає інших граничних точок. Зокрема, якщо у фільтра в хаусдорфовому просторі є границя, то ця границя є єдиною;
- 3. множина LIM \mathfrak{F} збігається з перетином замикань усіх елементів фільтра \mathfrak{F} .

Доведення.

- 1. $x = \lim \mathfrak{F} \iff \forall U \in \Omega_x \ U \in \mathfrak{F} \iff \forall U \in \mathfrak{F} \ \exists A \in \mathfrak{D} : A \subset U.$
- 2. $x = \lim \mathfrak{F}, U \in \Omega_x \implies U \in \mathfrak{F} \implies \forall A \in \mathfrak{F} \ A \cap U \neq \emptyset \implies x \in \text{LIM } \mathfrak{F};$ $x \in \text{LIM } \mathfrak{F} \implies \forall U \in \mathfrak{F}, V \in \Omega_y \ U \cap V \neq \emptyset \implies x = y \text{ (простір хаусдорфів)}.$
- 3. $x = \text{LIM } \mathfrak{F} \iff \forall A \in \mathfrak{F}, U \in \Omega_x \ A \cap U \neq \emptyset \iff \forall A \in \mathfrak{F} \ x \in \overline{A}.$

Теорема 20.2

Нехай \mathfrak{F}_1 , \mathfrak{F}_2 — фільтри на топологічному просторі X і $\mathfrak{F}_1 \subset \mathfrak{F}_2$. Тоді:

- 1. $x = \lim \mathfrak{F}_1 \implies x = \lim \mathfrak{F}_2;$
- 2. $x \in LIM \mathfrak{F}_2 \implies x \in LIM \mathfrak{F}_1$;
- 3. $x = \lim \mathfrak{F}_2 \implies x \in LIM \mathfrak{F}_1$.

Доведення.

- 1. \mathfrak{F}_1 мажорує фільтр \mathfrak{M}_x околів точки $x, \mathfrak{F}_1 \subset \mathfrak{F}_2 \implies \mathfrak{M}_x \subset \mathfrak{F}_2$.
- 2. Оскільки при збільшенні сім'ї множин її перетин зменшується, то

$$LIM \mathfrak{F}_2 = \bigcap_{A \in \mathfrak{F}_2} \overline{A} \subset \bigcap_{A \in \mathfrak{F}_1} \overline{A} = LIM \mathfrak{F}_1.$$

3. $x = \lim \mathfrak{F}_2 \implies x \in LIM \mathfrak{F}_2 \implies x \in LIM \mathfrak{F}_1$.

§20.2 Границя функції по фільтру

Означення 20.4. Нехай X — множина, Y — топологічний простір, \mathfrak{F} — фільтр на X. Точка $y \in Y$ називається **границею функції** $f: X \to Y$ по фільтру \mathfrak{F} (цей факт позначається як $y = \lim_{\mathfrak{F}} f$, якщо $y = \lim f[\mathfrak{F}]$. Іншими словами, $y = \lim f[\mathfrak{F}]$, якщо для довільного околу U точки y існує такий елемент $A \in \mathfrak{F}$, що $f(A) \subset U$.

Означення 20.5. Точка $y \in Y$ називається граничною точкою функції $f: X \to Y$ по фільтру \mathfrak{F} , якщо $y \in \text{LIM } f[\mathfrak{F}]$, тобто якщо довільний окіл точки y перетинається з образами усіх елементів фільтра \mathfrak{F} .

Приклад 20.3

Нехай X — топологічний простір, $f:\mathbb{N}\to X$ і \mathfrak{F} — фільтр Фреше на \mathbb{N} . Тоді $\lim_{\mathfrak{F}}f=\lim_{n\to\infty}f(n)$.

Теорема 20.3

Нехай X і Y — топологічні простори, \mathfrak{F} — фільтр на $X, x = \lim \mathfrak{F}$ і $f: X \to Y$ — неперервна функція. Тоді $f(x) = \lim_{\mathfrak{F}} f$.

Доведення. Нехай U — довільний окіл точки f(x). Тоді існує окіл V точки X, для якого $f(V) \subset U$. Умова $x = \lim \mathfrak{F}$ означає, що $V \in \mathfrak{F}$. Інакше кажучи, для довільного околу U точки f(x) ми знайшли шуканий елемент $V \in \mathfrak{F}$: $f(V) \subset U$.

§20.3 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 484-488).