Predictive Uncertainty Estimation via Prior Networks

Ksenofontov Gregory

MIPT

December 18, 2022

Previous approaches

Bayesian class:

- performance depends on the form of approximation and the nature of the prior distribution of parameters
- implicitly model distributional uncertainty through model uncertainty

Non-Bayesian class:

- minimizing its KL-divergence to both a in-domain posterior and a out-of-domain posterior
- conflate distributional uncertainty with data uncertainty

Bayesian class

Consider a distribution $p(\mathbf{x},y)$ over input features x, labels y and classification model $P(y=\omega_c|\mathbf{x}^*,\theta)$, trained on $D=\{\mathbf{x}_j,y_j\}_{j=1}^N\sim p(\mathbf{x},y)$. So, in Bayesian framework the uncertainty is:

$$P(\omega_c|\mathbf{x}^*,D) = \int P(\omega_c|\mathbf{x}^*,\theta)p(\theta|D)d\theta$$

where $P(\omega_c|\mathbf{x}^*,D)$ - data uncertainty, $p(\theta|D)$ - model uncertainty

$$P(\omega_c|\mathbf{x}^*,D) pprox rac{1}{M} \sum_{i=1}^M P(\omega_c|\mathbf{x}^*, heta^{(i)}), heta^{(i)} \sim q(heta)$$

(a) Ensemble

(b) Distribution

Prior Networks

$$P(\omega_c|\mathbf{x}^*,D) = \int \int p(\omega_c|\mu)p(\mu|\mathbf{x}^*,\theta)p(\theta|D)d\mu d\theta$$

where $p(\omega_c|\mu)$ - data uncertainty, $p(\mu|\mathbf{x}^*,\theta)$ - distributional uncertainty

(b) High data uncertainty

(c) Out-of-distribution

Dirichlet Prior Networks

Considering marginalization of θ in last equation:

$$\int p(\omega_c|\mu) \int \left[p(\mu|\mathbf{x}^*,\theta)p(\theta|D)d\theta\right] d\mu = \int p(\omega_c|\mu)p(\mu|\mathbf{x}^*,D)$$

However, marginalization is generally intractable, so:

$$p(\theta|D) = \delta(\theta - \hat{\theta}) \rightarrow p(\mu|\mathbf{x}^*, D) \approx p(\mu|\mathbf{x}^*, \hat{\theta})$$

Dirichlet Prior Networks

$$p(\mu|\mathbf{x}^*, \hat{\theta}) = Dir(\mu|\alpha), \alpha = \mathbf{f}(\mathbf{x}^*; \hat{\theta})$$

So, posterior over class labels will be given by the mean of the Dirichlet:

$$P(\omega_c|\mathbf{x}^*, \hat{\theta}) = \int p(\omega_c|\mu)p(\mu|\mathbf{x}^*, \hat{\theta}) = \frac{\alpha_c}{\alpha_0}$$

where $\alpha_c > 0, \alpha_0 = \sum_{c=1}^K \alpha_c$.

If an exponential output function is used ($\alpha_c = e^{z_c}$), the the probability of label is the output of softmax:

$$P(\omega_c|\mathbf{x}^*, \hat{\theta}) = \frac{e^{z_c(\mathbf{x}^*)}}{\sum_{k=1}^K e^{z_k(\mathbf{x}^*)}}$$

Now let's consider loss function:

$$L(\theta) = \mathbb{E}_{\rho_{in}(\mathbf{x})}[KL[Dir(\mu|\hat{\alpha})||\rho(\mu|\mathbf{x},\theta)]] + \mathbb{E}_{\rho_{out}(\mathbf{x})}[KL[Dir(\mu|\tilde{\alpha})||\rho(\mu|\mathbf{x},\theta)]]$$

where $\hat{\alpha}$ - in-distribution targets, $\tilde{\alpha}$ - out-of-distribution targets,

Uncertainty Measures

Max probability:

$$P = max_c P(\omega_c | \mathbf{x}^*, D)$$

② Entropy:

$$H[P(y|\mathbf{x}^*,D)] = -\sum_{c=1}^K P(\omega_c|\mathbf{x}^*,D) \ln(P(\omega_c|\mathbf{x}^*,D))$$

3 Mutual Information between y and θ (MI):

$$I[P(y,\theta|\mathbf{x}^*,D)] = H[E_{p(\theta|D)}P(y|\mathbf{x}^*,\theta)] - E_{p(\theta|D)}H[P(y|\mathbf{x}^*,\theta)]$$

• Mutual Information between y and μ (MI):

$$I[P(y, \mu | \mathbf{x}^*, D)] = H[E_{p(\mu | \mathbf{x}^*, D)}P(y|\mu)] - E_{p(\mu | \mathbf{x}^*, D)}H[P(y|\mu)]$$

Oifferential entropy:

$$H[p(\mu|\mathbf{x}^*,D)] = -\int_{\mathcal{S}^{K-1}} p(\mu|\mathbf{x}^*,D) \ln p(\mu|\mathbf{x}^*,D) d\mu$$

Synthetic experiments

MNIST and CIFAR-10 experiments

Table 1: MNIST and CIFAR-10 misclassification detection

Data	Model	AUROC Max.P Ent. M.I. D.Ent.				AUPR				C/ E
		Max.P	Ent.	M.I.	D.Ent.	Max.P	Ent.	M.I.	D.Ent.	% Err.
MNIST		98.0				26.6		-	-	0.4
	MCDP	97.2 99.0	97.2	96.9	-	33.0	29.0	27.8	-	0.4
	DPN	99.0	98.9	98.6	92.9	43.6	39.7	30.7	25.5	0.6
CIFAR10		92.4			-	48.7	47.1		-	8.0
	MCDP	92.5 92.2	92.0	90.4	-	48.4	45.5	37.6	-	8.0
	DPN	92.2	92.1	92.1	90.9	52.7	51.0	51.0	45.5	8.5

Table 2: MNIST and CIFAR-10 out-of-domain detection

Data		Madal	AUROC				AUPR				
ID	OOD	Model	Max.P	Ent.	M.I.	D.Ent.	Max.P	Ent.	M.I.	D.Ent.	
MNIST	OMNI	DNN	98.7	98.8	-	-	98.3	98.5	-	-	
		MCDP	99.2	99.2	99.3	-	99.0	99.1	99.3	-	
		DPN	100.0	100.0	99.5	100.0	100.0	100.0	97.5	100.0	
CIFAR10	SVHN	DNN	90.1	90.8	-	-	84.6	85.1	-	-	
		MCDP	89.6	90.6	83.7	-	84.1	84.8	73.1	-	
		PN	98.1	98.2	98.2	98.5	97.7	97.8	97.8	98.2	
CIFAR10	LSUN	DNN	89.8	91.4	10.50	-	87.0	90.0	-	-	
		MCDP	89.1	90.9	89.3	-	86.5	89.6	86.4	-	
		DPN	94.4	94.4	94.4	94.6	93.3	93.4	93.4	93.3	
CIFAR10	TIM	DNN	87.5	88.7	-	-	84.7	87.2	-	2	
		MCDP	87.6	89.2	86.9	-	85.1	87.9	83.2	-	
		DPN	94.3	94.3	94.3	94.6	94.0	94.0	94.0	94.2	