- 1) When an administrator at a local hospital prepares a series of charts and graphs pertaining to the patients that have stayed at the hospital during the past month, she is using which general category and statistical analysis?
- 1) _____

A) Descriptive statistics

B) Quantitative statistics

C) Inferential statistics

- D) None of the others.
- 2) Which of the following is an example of graphs used to describe data?

2) _____

A) Both A and B are correct.

B) Bar charts

C) Histograms

- D) None of the others.
- 3) The Excel pie chart below describes the types of jobs for the 50 employees at Zimmerman's Florist.

Pie Chart

What percent of employees are designers?

- A) 20%
- B) 32%
- C) 16%
- D) 28%
- 4) A car salesman has noted that the probability that the dealership sells a car on a Saturday morning is 0.30. Then the probability of the dealership not selling a car on Saturday morning is
- 4) _____

- A) 0.70
- B) 0.15
- C) 0.21
- D) 0.18
- 5) If two events are independent, then by definition they must also be mutually exclusive.

6) A used car lot has 15 cars. Five of these cars were manufactured in the U.S. and the remainder were made in other countries. If three cars are purchased, what is the probability that all three will

5) _____

- A) False
- B) True
- C)

- D)
- 6) _____

A) 0.022

be U. S. made cars?

- B) 0.034
- C) 0.048
- D) 0.280

7) The following	g probability o	distribution was	subjectively assessed for the	number of sales a	7)
			sales calls in one day.		
Sales	Drobability				
3ales 0	Probability 0.10				
1	0.10				
2	0.20				
3	0.30				
4	0.20				
5	0.05				
		hat the number	of sales is 2 or 3.		
A) 0.50	1 3	B) 0.15	C) 0.65	D) 0.80	
			e three primary locations the		8)
	or escrow depa	artment. Based	on past experience, the follow	wing probability distribution	
applies:					
1					
<u>Loca</u>		<u>obability</u>			
Telle		0.60			
	Officer	0.30 0.10			
Escro	OVV	0.10			
Seventy nerce	ent of custome	ers are males D	etermine the probability that	t three consecutive customers	
all go to a tell		rs arc maics. D	ctermine the probability tha	t till de consecutive customer.	
A) 0.22		B) 0.15	C) 0.40	D) 0.70	
7 () 0.22		<i>D</i>) 0.10	0, 0.10	<i>D</i>) 0.70	
9) The following	g probability o	distribution was	subjectively assessed for the	e number of sales a	9)
			sales calls in one day.		
Sales	Probability				
0	0.10				
1	0.15				
2	0.20				
3	0.30				
4	0.20				
5	0.05				
	•		re three possible sales levels	•	
•			ne chance of a medium sale i	s 0.60. If a salesperson	
	iles, the proba	_	st one is large is 0.36.	- >	
A) 0.36		B) 0.11	C) 0.25	D) 0.60	

10) The Ski Patrol at Criner Mountain Ski Resort has determined the following probability distribution					
	for the number of skie	rs that are injured each	weekend:		
	Injured Skiers	Probability			
	0	0.05			
	1	0.15			
	2	0.40			
	3	0.30			
	4	0.10			
	Based on this informa	tion, what is the expect	ed number of injuries per w	eekend?	
	A) 2.25	B) 1.00	C) 2.50	D) 3.50	
11)	The random variable,	number of customers e	ntering a store between 9 Al	VI and noon, is an example	11)
	of a discrete random v	ariable.			
	A) True	B) False	C)	D)	
12)	Bill Price is a sales rep	in northern California	representing a line of athleti	c socks. Each day, he	12)
	makes 10 sales calls. T	he chance of making s	ale on each call is thought to	be 0.30. What is the	
	probability that he wil	I make exactly two sale	es?.		
	A) 0.2335	B) 0.5002	C) 0.300	D) 0.009	
13)	The Nationwide Mote	I Company has determ	ined that 70 percent of all ca	Ils for motel reservations	13)
			ustomer service manager for		
			ion of calls requesting non-		
		•	ine the probability that more	•	
	sample will request no		1 3		
	A) 0.09	B) 0.50	C) 0.35	D) 0.12	
	,	,	,	,	
1/1)	The number of custom	ners that arrive at a fast	-food business during a one	-hour period is known to	14)
			8.60. What is the probability	•	
		will arrive in one hour		that between 2 and 3	
	A) 0.0263	B)	C)	D)	
	A) 0.0203	ы	C)	D)	
15\	The Decelein of the Con		- 16 - - - - - - - - - - - -	A t t - f - - - -	15)
			self on high quality carpets.		15)
			e yards for inspection. The	. 3	
	•		ne expected number of defect	s that the inspector will	
	find during the inspec		C) 0.77	D) F 20	
	A) 6.9	B) 2.3	C) 0.77	D) 5.29	

Accidents	Probability
0	0.25
1	0.20
2	0.30
3	0.15
4	0.10

Based on this probability distribution, the standard deviation in the number of accidents per day is:

A) None of the others.

B) 2.65.

C) 2.

D) 0.12.

17)	The time it takes to assemble a children's bicycle by a parent has been shown to be normally
	distributed with a mean equal to 295 minutes with a standard deviation equal to 45 minutes. Given
	this information, what is the probability that it will take a randomly selected parent between 300
	and 340 minutes?. Let $P(Z < 0) = 0.5000$, $P(Z < 0.11) = 0.5438$, $P(Z < 1) = 0.8413$

17)

- A) 0.2975
- B) 0.0438
- C) 0.3413
- D) 1.000

18)	Let X be a normal	distribution with	n the mean of	4 and the	variance of 9.	Find the value of x	such
	that $P(x < X < 7) =$	= 0.5. Let P(Z < 0)	= 0.5, P(Z < 1)	1) = 0.8413	P(Z < -0.4) =	= 0.3413.	

18)

A) 2.8

B) 0

C) 7

D) 4

- A) False
- B) True
- C)

D)

20) If the time it takes for a customer to be served at a fast-food chain business is thought to be uniformly distributed between 3 and 8 minutes, what is the probability that the time it takes for a randomly selected customer will be less than 5 minutes?

- A) 0.40
- B) 0.80
- C) 0.30
- D) 0.20

21) Let X be a random variable has the density function

 $f(x) = 1/x^2$, 0.5 < x < 1.

21) ____

Calculate E[X²]

A) 0.5

B) 1.0

- C) In(2)
- D) 0.75

22) The manager of a computer help desk operation has collected enough data to conclude that the distribution of time per call is normally distributed with a mean equal to 8.21 minutes and a standard deviation of 2.14 minutes. The manager has decided to have a signal system attached to the phone so that after a certain period of time, a sound will occur on her employees' phone if she exceeds the time limit. The manager wants to set the time limit at a level such that it will sound on only 8 percent of all calls. Let P(Z < 1.41) = 0.92, P(Z < -1.41) = 0.08, the time limit should be:

22)

A) about 11.23 minutes.

B) about 14.58 minutes.

C) 10.35 minutes.

D) approximately 5.19 minutes.

23) The transportation manager for the State of New Jersey has determined that the time between							23)								
arrivals at a toll booth on the state's turnpike is exponentially distributed with $\lambda = 4$ cars per minute. Based on this information, what is the probability that the time between any two cars arriving will exceed 11 seconds?								_							
	A) A C) A	ppr	oxin	natel			orius?				B) Approxima D) None of the	-			
24)	You are	e giv	en t	he fo	ollo	wing	data:	:						24)	
	23		34		11		40	25		47					
	Assum A) 30	_	that	the o	data	a refl	ect a s B) 2!	-	from	a large	er population, wh C) 22	nat is the sa	nmple mean? D) 32		
25)	You are	e giv	en t	he fo	ollo	wing	g data:	:						25)	
	23		34		11		40	25		47					
	Assum these sa	_					re a sa	ample s	selecte	d from	n a larger populat	ion, the m	edian value for		
	A) 2	9.5					B) 2	5.5			C) 34		D) 40		
26)	Suppos			-						_	your community	y showed t	he following	26)	
			Bed	droo	ms		Fred	quency							
				1				1							
				2				18							
				3 4				40 57							
				5				11							
	Based o	on th	nis ir	nforn	nati	on, d	detern	nine the	e mod	le for tl	ne data.				
	A) 3						B) 1	40			C) 4		D) 57		
27)								a will ty	ypical	ly have	e a value that is 2	5 percent l	nigher than the	27)	
	mediar A) F		tne	Same	e se	lord	лата. В) Т	rue			C)		D)		
28)			_				-				nber of used cars ting the population		downtown sold in each of the 8	28)	
	weeks	that	the	deal	ersh	nip h	as bee	en oper	۱.						
	3	5	2	7	7	7	9	0							
	What is	s the	pop	oulat	tion	stan	dard	deviati	on ap	proxin	nately?				
	A) 2	.87 c	ars				B) 3	cars			C) 2.50 cars		D) 7 cars		

29) One of the advantages that a stem & leaf diagram has	s over a histogram is:	29)
A) the detail of the data is preserved.		
B) it can be used with nominal data.		
C) it shows the general distribution of a quantitati	ve variable.	
D) There are no advantages.		
30) Which of the following statements is not consistent w	vith the Central Limit Theorem?	30)
A) The Central Limit Theorem applies without reg		
B) The Central Limit Theorem indicates that the sa	·	
normal.		
C) The Central Limit Theorem applies to non-norr		
D) The Central Limit Theorem indicates that the m	nean of the sampling distribution will be equal	
to the population mean.		
31) The monthly electrical utility bills of all customers for	r the Far Fast Power and Light Company are	31)
known to be distributed as a normal distribution with		31)
deviation of \$36. If a statistical sample of $n = 100$ cus	·	
probability that the mean bill for those sampled will		
0.63 and $P(Z < -0.44) = 0.33$.		
A) About 1.00	B) Approximately 0.63	
C) 0.33	D) None of the others.	
22) The Olean Agricultural Company has determined the	at the weight of how helps is normally	22)
32) The Olsen Agricultural Company has determined the distributed with a mean equal to 80 pounds and a sta		32)
this, what is the mean of the sampling distribution fo	_	
A) 80	B) Between 72 and 88	
C) 10	D) None of the others.	
33) In an application to estimate the mean number of mil	les that downtown employees commute to	33)
work roundtrip each day, the following information	is given:	
n = 20 —		
x = 4.33		
s = 3.50 The point estimate for the true population mean is:		
A) 4.33.	B) 1.638.	
C) 4.33 ± 1.638.	D) None of the above.	
34) In an application to estimate the mean number of mil	les that downtown employees commute to	34)
work roundtrip each day, the following information	is given:	
n = 20 —		
$\overline{x} = 4.33$		
s = 3.50 Based on this information and let $t_{0.025,19} = 2.09$, the	Lunner limit for a 95 percent confidence	
interval estimate for the true population mean is:	apper mineral a 73 percent confidence	
A) about 5.97 miles.	B) nearly 12.0 miles.	
C) about 7.83 miles.	D) None of the above.	

35) A major tire manufacturer wishes to estimate the mean tread life in miles for one of their tires. They wish to develop a confidence interval estimate that would have a maximum sampling error of 500 miles with 90 percent confidence. A pilot sample of $n = 50$ tires showed a sample standard deviation equal to 4,000 miles. Based on this information and let $z_{0.05} = 1.645$, the required						
	sample size is: A) 174.	B) 124.	C) 246.	D) 196.		
36)	A random sample of n = 500 proportion of people in the concluded that between 0.39 and let $z_{0.025} = 1.96$, we can A) True	population who had a 57 and 0.443 of the pop	ttended at least some co oulation had attended. C	llege. The estimate Given this information	36)	
37)	A random sample of 340 pe in South Chicago Heights. proportion of people in Chi A) About 0.194 B) 340 C) Can't be determined w D) None of the above.	ople in Chicago showe Based on this sample cago that listen to WJk	ed that 66 listened to WJ information, what is the CT - 1450?	KT - 1450, a radio station	37)	
38)	Given $\bar{x} = 15.3$, $s = 4.7$, and $t = 15.9$, $\chi^2_{0.995,17} = 5.70$. A) (10.51, 65.88)	n = 18, form a 99% con B) (13.61, 43.30)	fidence interval for σ^2 . LC) (2.24, 14.02)	Let $\chi^2_{0.005,17} = 35.72$ and D) (11.13, 69.79)	38)	
39)	Your statistics instructor cla class go through life feeling people don't believe her. Yo past Elementary Statistics st Assume that significance lever true? A) The value of the test st instructor's claim B) The value of the test st instructor's claim C) The value of the test st instructor's claim D) The value of the test st instructor's claim	more enriched. For some decide to check this students and find that 3 well of 0.05 ($z_{0.025} = 1.9$) tatistic is -1.123. There is tatistic is 1.123. There is tatistic is 1.123. There is	ome reason that she can't out on your own. You rate feel more enriched as 26 , $z_{0.05} = 1.65$). Which is sufficient evidence to sufficient evidence evidence evidence evidence evidence evidence evidence evidence evidence evid	t quite figure out, most andomly survey 64 of her a result of her class. of the following states is support your statistic to support your statistic support your statistic	39)	
40)	According to an article in N birth ratio is 100: 114 (46.7% girls born in Vietnam. You t conduct a study. In this stu chosen recent births. There your conclusion. Use $\alpha = 2\%$ A) The percent of girls both C) The percent of girls both D) None of the others	b girls). Suppose you can hink that the percent of dy, you count the number are 60 girls and 90 both $(z_{0.01}=2.33)$ and $z_{0.01}$ are in Vietnam is less that is equal to the control of the country	don't believe the reported of girls born in Vietnam in the property of girls and boys boys born of the 150. Based $_{02}=2.05$). han 46.7%	d figures of the percent of is less than 46.7%. You rn in 150 randomly	40)	

 41) When a new drug is created, the pharmaceutical company must subject it to testing before receiving the necessary permission from the Food and Drug Administration (FDA) to market the drug. Suppose the null hypothesis is "the drug is unsafe." What is the Type II Error? A) To claim the drug is unsafe when, in fact, it is safe. B) To claim the drug is unsafe when, in fact, it is unsafe C) To claim the drug is safe when, in fact, it is safe D) To claim the drug is safe when, in fact, it is unsafe 							41)
r	new process	supposed	dly will produ	ce widgets wi	th the same mea	d a standard deviation of 0.2. A an and a smaller standard nas a sample standard deviation	42)
(of 0.126. At a A) 7.55	a significa	nce level of 10 B))%, what is the	e value of the tes C)	st statistic χ_0^2 ?	
1 3	oast twenty addition to a per week exc	years. In attending o ceeds 20.	order to comp classes. At or To test this at	pensate for thine university, a significance	is, many student it is believed that level of 0.05 ($t_{0.}$	than costs in general over the swork part- or full-time in at the average hours students work $_{025,19}=2.09$ and $t_{0.05,19}=1.73$), and values were observed:	43)
					1	J	
	26	15	10	40			
	10	20	30	36			
	40	0	5	10			
	20	32	16	12			
	40	36	10	0			
	A) is appr B) cannot C) is appr D) None c	coximately be detern coximately of the othe	equal to 2.09 ers.	knowing the	population stan	dard deviation. erent levels to produce different	44)
average fill amounts. The company sets the machine to provide a mean fill of 15 ounces. The standard deviation on the machine is known to be 0.20 ounces. Assuming that the hypothesis test is to be performed using a random sample of $n = 100$ cans, which of the following would be the correct formulation of the null and alternative?							
	A) <i>H</i> ₀ : μ	= 15 ounce	es		B) <i>H</i> ₀ : <i>x</i> ≤	15 ounces	
	H ₁ : µ	≠ 15 ounce	es		$H_1: \overline{X} >$	15 ounces	
	C) H ₀ : µ : H ₁ : µ	≠ 15 ounce = 15 ounce			D) None of	f the others.	
t	o their savir calculated to	ngs baland be +0.40.	ces. A sample If the bank i	of n = 20 cust s interested in	comers was select testing to see w	cking balances are linearly related sted and the correlation was whether there is a significant linear of 0.05, what is the value of the	45)

B) 1.96

C) 1.645

D) 2.438

test statistic?

A) 1.8516

- 46) The following regression model has been computed based on a sample of twenty observations: $\hat{y} =$ 46) 34.2 + 19.3x. The first observations in the sample for y and x were 300 and 18, respectively. Given this, the residual value for the first observation is approximately
 - A) 81.6
- B) 381.6

- D) 300
- 47) State University recently randomly sampled seven students and analyzed grade point average (GPA) and number of hours worked off-campus per week. The following data were observed:

47)	

GPA	HOURS
3.14	25
2.75	30
3.68	11
3.22	18
2.45	22
2.80	40
3.00	15
2.23	29
3.14	10
2.90	0

The simple linear regression equation based on these sample data is $\hat{y} = 3.25 - 0.016x$.

- A) True
- B) False
- C)

- 48) Consider the following chart. Which of the following statements is most correct?

- A) There is a positive linear relationship between the two variables.
- B) There is a perfect linear relationship between the two variables.
- C) There is a negative linear relationship between the two variables.
- D) There is no apparent relationship between the two variables.

49) Find the value of the linear correlation coefficient r.

Χ	62	53	64	52	52	54	58
У	158	176	151	164	164	174	162
Ä	انکا -0	775				B) (0

C) 0.754 D) -0.881

50) Over a period of one year, a greengrocer sells tomatoes at six different prices (x pence per kilogram). He calculates the average number of kilograms, y, sold per day at each of the six different prices. From these data the following are calculated

$$\sum x_i = 200, \sum y_i = 436, \sum x_i y_i = 12515, \sum x_i^2 = 7250, \sum y_i^2 = 39234, n = 6.$$
 Estimate the correlation coefficient.

A) -0.962

B) 0.96

C) 0.055

D) -0.055

49) ____

50)

Key: Correct answers are always A

If you have any questions, please feel free to contact either your teacher or DungNT (email dungnt@fpt.edu.vn)