# **Dynamics of Complex Systems**

Part 1:

Tools for studying system dynamics Fitting parameters to analytic solutions

Part 2:

Multivariate Models

Simulation of continuous time



### Termite cathedrals: Coupled dynamical processes





## **Simple Coupling Dynamics: 2D-systems**



#### Multivariate Models... Multivariate State Space

### Predator-Prey model (Lotka-Volterra)

$$\frac{dR}{dt} = (a - b \times F) \times R,$$
$$\frac{dF}{dt} = (c \times R - d) \times F.$$

A 2-D state space 2 coupled flows ~

- R is the number of rabbits in a year
- F is the number of foxes in a year







## Multivariate Models... Multivariate State Space





Time Series

#### Multivariate Models... Multivariate State Space

Coupling 'causes' a reduction in the degrees of freedom a system has available to generate its behaviour...

The system will not occupy every point in state space, just a limited set of points, an attractor state

#### **Coupling dynamics = Interaction dynamics**



# **Lorenz System**

$$\frac{dx}{dt} = a(y - x),$$

$$\frac{dy}{dt} = x(b - z) - y,$$

$$\frac{dz}{dt} = xy - cz.$$

Interaction dominant dynamics Multiple processes (3) Multiple Scales (time)

> x depends on y and x y depends on x, y and z z depends on x, y and z

> > A 3-D state space 3 coupled flows ~

# Lorenz System - 3D State Space





#### **Anticipation**

#### Component-dominant

Use rules learned in the past, map those representations to the future. Requires memory, attention, perception, motor etc. modules.

#### Interaction-dominant

State of y provides information about the state of x at a future time from the coupled dynamics of the system itself.

Not by any explicit predictive mechanism.



Anticipating chaotic synchronization:

- Unidirectional coupling from the transmitter to receiver



Sender:

$$\frac{\partial x(t)}{\partial t} = -\alpha x(t) - \beta \sin x(t - \tau)$$

Receiver:

$$\frac{\partial y(t)}{\partial t} = -\alpha y(t) - \beta \sin x(t)$$





(2)



 $Yt/\Delta t$  does not contain within it a model, or representation, of  $Xt/\Delta t$ .

This anticipation arises from within the lawful evolution of the system itself.



Lexical decision





#### RT arm

Muscle contraction in:

- The shoulder
- Lower back
- Thigh





#### A note on simulating differential equations: ~flows ~

Differential equations are **continuous**...

To find out how they behave when there is no solution we need to 'discretise' them and approximate the solution with a difference equation: *Numerical integration* 

The easiest (but most error prone) method is Euler's method (18th century):

$$X_{n+1} = X_n + H * f(X_n)$$
 where  $H = \text{step length}$ 

Checking how well the approximation is, can easily be done if we know an analytic algebraic solution

Also see the notes in Chapter 2

# A note on simulating differential equations: ~flows ~ Euler's method

#### **Basic Idea:**

- 1. Calculate next time step
- 2. Don't enter that value into the iterative process as input!
- 3. Take some smaller proportion representing a smaller step in time
- 4. Effect is that large fluctuations are iteratively 'smoothed' and a continuous flow is approximated





#### Runge-Kutta 4th Order Method (harmonic mean of 4 points)

$$\mathbf{k}_1 = h \cdot f(\mathbf{y}_n)$$

$$\mathbf{k}_2 = h \cdot f\left(\mathbf{y}_n + \frac{\mathbf{k}_1}{2}\right)$$

$$\mathbf{k}_3 = h \cdot f\left(\mathbf{y}_n + \frac{\mathbf{k}_2}{2}\right)$$

$$\mathbf{k}_4 = h \cdot f(\mathbf{y}_n + \mathbf{k}_3)$$

$$\Rightarrow$$
  $\mathbf{y}_{n+1} = \mathbf{y}_n + \frac{\mathbf{k}_1}{6} + \frac{\mathbf{k}_2}{3} + \frac{\mathbf{k}_3}{3} + \frac{\mathbf{k}_4}{6}$ 

# Comparison of accuracy of methods is only possible for systems that have an analytic, exact solution

