### Algorithmen und Datenstrukturen

# Vorlesung #11 – Heuristische und Approximative Algorithmen



#### Benjamin Blankertz

Lehrstuhl für Neurotechnologie, TU Berlin



benjamin.blankertz@tu-berlin.de

20 · Jun · 2023

## Themen der heutigen Vorlesung

- Heuristische Algorithmen
  - Best-First Algorithmus für kürzeste Pfade von s nach t
  - ► A\* Algorithmus für kürzeste Pfade von s nach t
  - A\* in generellem Kontext
  - ► Heuristische Lösung für das *Travelling Salesman Problem* (TSP)
- Lehrevaluation
- Approximative Algorithmen
  - Metrisches TSP: gut, aber nicht beliebig gut approximierbar
  - Allgemeines TSP: nicht approximierbar
  - 0/1-Rucksackproblem: beliebig gut approximierbar
  - Approximationsschema

### Heuristische Algorithmen

- ▶ Heuristiken sind problem-spezifische Informationen, die es erlauben eine Lösungssuche für eine bestimmte Problemklasse zielgerichteter durchzuführen, als z.B. durch eine uninformierte Durchsuchung des Lösungsraums.
- ► Heuristische Algorithmen finden eine (möglichst) optimale Lösung in einem (meist exponentiell) großen Lösungsraum unter Verwendung einer Heuristik.
- Oft gibt es keine Garantien für eine schnellere Laufzeit im Vergleich zu herkömmlichen Ansätzen.
- Manchmal gibt es auch keine Garantie, dass eine optimale Lösung oder eine Lösung mit vorgegebener maximaler Abweichung vom Optimum gefunden wird.
- ▶ Dennoch sind einige heuristische Algorithmen in der Praxis sehr nützlich.
- ▶ Dies wird anhand von systematischen experimentellen Algorithmenanalysen belegt.

### Heuristische Algorithmen

- ▶ Heuristischen Verfahren folgen meist einem der folgenden Ansätze:
- 1 Eine Lösung sukzessiv einer Heuristik folgend von null aufbauen
- 2 Eine schnell hergestellte, suboptimale Lösung schrittweise mit einer Heuristik verbessern
- ► In der zweiten Variante kommen oft (nicht optimale) Greedy Algorithmen für die Erstellung einer Ausgangslösung zum Einsatz.

## Das Problem des Handlungsreisenden

- ► Als zweite Herausforderung betrachten wir das **Problem des Handlungsreisenden** (*Travelling Salesman Problem*, TSP):
- ➤ Zu einem vollständigen, gewichteten Graphen soll ein Zyklus mit minimalem Gewicht bestimmt werden, der jeden Knoten genau einmal besucht (TSP-Tour).
- ▶ Ein Graph G = (V, E) heißt **vollständig**, wenn er alle (nicht-reflexiven) Kanten enthält, also  $E = \{v \rightarrow w \mid v, w \in V \text{ mit } v \neq w\}$  gilt.
- ▶ Das TSP ist NP-vollständig und daher eine interessante Herausforderung für die Algorithmenentwicklung.
- ► Hier betrachten wir zwei heuristische Algorithmen, die schnell Lösungen bestimmen, aber diese Lösungen können weit von Optimum entfernt sein.

### Heuristische Algorithmen für das TSP

- Nearest Insertion: Fange mit einer Tour an, die nur die beiden am dichtesten zusammen liegenden Knoten verbindet.
- ► Wähle dann iterativ immer denjenigen Knoten aus, der den kleinsten Abstand zu einem der Knoten der Tour hat.
- ► Füge diesen Knoten so in die Tour ein, dass die Zunahme der Tourlänge möglichst klein ist. Der Knoten wird bei der Kante eingefügt, zu der er den geringsten Abstand hat.
- Farthest Insertion: Fange mit einer Tour an, die nur die beiden am weitesten auseinander liegenden Knoten verbindet.
- ▶ Wähle dann iterativ immer denjenigen Knoten aus, dessen minimaler Abstand zu einem der Knoten der Tour maximal ist.
- Füge diesen Knoten wie bei *Nearest Insertion* in die Tour ein.
- Beide Varianten können mit einer Laufzeit in  $O(n^2)$  implementiert werden.
- In der Praxis findet Farthest Insertion meist bessere Lösungen als Nearest Insertion.

# Noch einmal kürzeste Wege

- ► In vielen Anwendungen stellt sich die Frage nach kürzesten Wegen von einem Startpunkt zu einem Zielpunkt (z.B. Navigation, Robotik, Computerspiele).
- ► Zur Modellierung können Graphen verwendet werden.
- Dabei geht es auch um Wege über freien Flächen ohne vorgegebene Wege.
- In diesen Fällen werden oft Gitternetze als Graphen verwendet.
- Gleichlange Wegstrecken können unterschiedliche Kosten haben, je nach Begebenheit der Landschaft.
- Da die Graphen sehr groß sein können, ist Effizienz wichtig.
- ► Aufgabe: Finde möglichst effizient den 'kürzesten Weg' (Weg mit geringsten Kosten) zu gebenem Start- und Zielknoten in einem gewichteten (ggf. gerichteten) Graphen.

## Der kürzeste Weg von s nach t

#### Ziel

Finde den kürzesten Weg von einem Startknoten s zu einem Zielknoten t in einem gewichteten Graphen.

- Mit dem Dijkstra SSSP-Algorithmus:
- Stoppe Suche, sobald der Zielknoten aus der Warteschlange kommt.
- Diese Suche hat keine Ausrichtung auf den Zielknoten: nicht effizient.
- Mit einer Heuristik h(v), die den Abstand jedes Knotens zum Ziel schätzt, können wir vielversprechende Knoten zuerst explorieren.

Für Landkarten ist z.B. die Luftliniendistanz eine solche Schätzung.

# Dijkstra durch Heuristik verbessern



## Der kürzeste Weg von s nach t einer Heuristik folgend

- ▶ Der (Greedy) Best-First Algorithmus funktioniert ähnlich wie Breitensuche.
- ► Grundlage: Heuristik zur Schätzung des Abstands zum Ziel für jeden Knoten
- ▶ Ausgehend von *s* werden kreuzende Kanten benutzt.
- ► Wähle Endknoten mit kleinstem Abstand zum Ziel (gemäß Heuristik)
- Greedy Auswahl!

#### Definition Kosten eines Pfads

Für einen Pfad p bezeichnen wir mit c(p) die Kosten des Pfades (bzw. die Pfadlänge), also die Summe der Gewichte seiner Kanten.

# Pseudocode für den Best-First Algorithmus

```
1 Q: PQ mit Priorisierung der Knoten durch Heuristik h
2 M: boolean Array der Größe V
з parent: int Array der Größe V
add(Q, s, h(s))
6 M \leftarrow \{s\}
7 while Q \neq \emptyset
                      // v wird besucht
    v \leftarrow poll(Q)
  if v = t return true // Pfad von s nach t gefunden
    for each w with v \rightarrow w \in E and w \notin M
   add w to M
                        // w wurde entdeckt
   parent[w] = v
       add(Q, w, h(w))
    end
                               // v fertig bearbeitet
15 end
16 return false
                              // kein Pfad gefunden
```

### BEST-FIRST in Aktion



| 10 | 8  | 6  | 4  | 2  | 0  |
|----|----|----|----|----|----|
| 11 | 9  | 7  | 5  | 3  | 2  |
| 12 | 10 | 8  | 6  | 5  | 4  |
| 13 | 11 | 9  | 8  | 7  | 6  |
| 14 | 12 | 11 | 10 | 9  | 8  |
| 15 | 14 | 13 | 12 | 11 | 10 |



BEST-FIRST scheitert bei schwierigeren Beispielen (d.h. der Algorithmus findet nicht die *optimale* Lösung), da er sich zu stark auf die Heuristik verlässt.

## Der A\* Algorithmus

- ► Der **A\*** Algorithmus ("A-Stern", *A-star*) kombiniert
  - o Vorwärtskosten: von einem Knoten zum Ziel, geschätzt duch die Heuristik h(v) mit den
  - Rückwärtskosten: vom Start zum einem Knoten.
- ▶ Rückwärtskosten sind *dist[v]* analog zu Dijkstra.
- Ablauf:
- ► Ausgehend von *s* werden kreuzende Kanten benutzt.
- lacktriangle Wähle Endknoten v mit kleinster geschätzter Länge des Weges von s nach t über v

$$f(v) = dist[v] + h(v)$$

## Vergleich der Kantenauswahl zwischen Dijkstra, Best-First und A\*



Bemerkung: Dijkstra findet den kürzesten Weg von s nach t später.

# A\* konkretisieren – Zulässige Heuristik

- ▶ Offensichtlich sind nur bestimme Funktionen als Heuristik hilfreich.
- ▶ Im folgenden Beispiel führt eine ungünstige Heuristik die A\* Suche in die Irre:



- Wegen f(t) < f(w) wird w nicht besucht und die Suche endet mit dem Pfad s − v − t.
- ▶ Problem: zu hoher *h*-Wert von *w*.
- Wir nennen eine Heuristik h zulässig, wenn h(w) die Weglänge von w nach t nicht überschätzt:
- Für jeden Pfad p von w nach t muss also  $h(w) \le c(p)$  gelten.

# Überlegungen zur Effizienz von A\*

- ▶ A\* soll effizient sein. Daher soll jede Kante wie bei Dijkstra nur einmal betrachtet werden:
- Wird ein Knoten der PQ entnommen, darf er nicht wieder eingefügt werden.
- ► Genau dies kann aber selbst bei zulässigen Heuristiken erforderlich sein:



- v muss zweimal besucht werden.
- Problem: Der *h*-Wert von w ist viel höher als bei v, trotz g(v, w) = 1.
- Konsistente Heuristiken (siehe nächste Seite) garantieren effiziente Laufzeit.

### Konsistente Heuristik

Wir nennen eine Heuristik h konsistent (consistent) oder monoton, wenn h(t) = 0 gilt und h die Dreiecksungleichung erfüllt, also

$$h(v) \le weight(v \rightarrow w) + h(w)$$

für alle Knoten v und w mit  $v \rightarrow w \in E$  gilt.

#### Nicht konsistente Heuristik



#### Konsistente Heuristik



### Konsistente Heuristik

### Aus Konsistenz folgt Zulässigkeit

Wenn eine Heuristik h konsistent ist, dann ist sie auch zulässig.

#### Beweis.

- ▶ Wir bezeichnen die Länge bzw. die Kosten (cost) eines Pfades p mit c(p).
- ► Z.z.:  $h(v_0) \le c(p)$  für beliebige Pfade p von  $v_0$  nach t.
- ▶ Sei also ein Pfad  $p = v_0, \ldots, v_k$  mit  $v_k = t$  gegeben.

$$h(v_0) \leq weight(v_0 \rightarrow v_1) + h(v_1) \qquad \text{Def. von Konsistenz}$$
 
$$\leq weight(v_0 \rightarrow v_1) + weight(v_1 \rightarrow v_2) + h(v_2) \qquad \text{Def. von Konsistenz}$$
 
$$\leq \sum_{i=0}^{k-1} weight(v_i \rightarrow v_{i+1}) + h(v_k) \qquad \text{Def. von Konsistenz}$$
 
$$= c(p) \qquad \text{Def. von } c \text{ und } h(v_k) = h(t) = 0$$

#### Monotonie von konsistenten Heuristiken

### Geschätzte Pfadlängen sind bei konsistenter Heuristik monoton steigend

Bei Verwendung einer konsistenten Heuristik wird die geschätzte Gesamtpfadlänge zum Zielknoten durch Erweiterung eines Pfades nie kürzer.

- **Beweis.** Sei p ein Pfad von s zu einem Knoten v.
- Zu zeigen: Die geschätzte Pfadlänge nach t kann nicht kleiner werden, wenn der nächste Schritt im Pfad festgelegt wird.
- ▶ Wir betrachten p + w, also den Pfad p verlängert um die Kante  $v \rightarrow w$ .
- ▶ Die geschätzte Pfadlänge für p ist c(p) + h(v) und für den verlängerten Pfad c(p+w) + h(w).
- ▶ Aus der Konsistenz von *h* folgt:

$$c(p) + h(v) \le c(p) + weight(v \rightarrow w) + h(w)$$
 Konsistenz von  $h$   
=  $c(p + w) + h(w)$  Definition von  $c$ 

# Anforderungen an die Heuristik in A\*

- Wir setzen im Folgenden voraus, dass die Heuristik konsistent ist.
- ▶ In diesem Fall muss kein Knoten mehrfach besucht werden (analog zu dem Fall nicht-negativer Gewichte bei Dijkstra).
- ▶ Viele in der Praxis benutzten Heuristikfunktionen sind konsistent, wie z.B. die Luftlinien-Distanz für Wege auf Landkarten.
- ▶ Bei Verwendung einer konsistenten Heuristik funktioniert A\* wie Dijkstra, mit dem Unterschied, dass die Knoten in der Reihenfolge der f Schätzung exploriert werden.

### Pseudocode für den A\* Algorithmus

Unterschied zu Dijkstra: Bei A\* wird dist[v] + h(v) an Stelle von dist[v] als Priorität verwendet.

```
1 Q: IndexMinPQ
   for each node v
      dist[v] \leftarrow \infty
   end
   dist[s] \leftarrow 0
  add(Q, s, h(s))
                        // f(s) = 0 + h(s)
7 while Q \neq \emptyset
     v \leftarrow poll(O)
      if v = t
        return dist [t]
10
      end
11
      for each w with v \rightarrow w \in E
12
         relaxAStar(v \rightarrow w)
13
      end
   end
15
   return inf
                           // no path from s to t
```

```
procedure relaxAStar(v \rightarrow w)
                                                          17
if dist[w] > dist[v] + weight(v \rightarrow w)
                                                          18
  parent[w] = v
                                                          19
  dist[w] = dist[v] + weight(v \rightarrow w)
  if contains (O, w)
    decreaseKey(Q, w, dist[w] + h(w))
  else
                                                          23
    add(O, w, dist[w] + h(w))
                                                          24
  end
                                                          25
end
                                                          26
```

TUB AlgoDat 2023 24

### Korrektheit und Laufzeit von A\*

#### Korrektheit und Laufzeit von A\* mit konsistenter Heuristik

Der A\* Algorithmus findet bei Verwendung einer konsistenten Heuristik den kürzesten Weg zwischen einem gegeben Start- und Zielknoten in einer Laufzeit in  $O(E_0 \log V_0)$ . Dabei ist  $V_0$  die Anzahl der besuchten Knoten und  $E_0$  die Anzahl der relaxierten Kanten.

- Vor dem Beweis diskutieren wir die Laufzeit.
- Wir haben im Prinzip dieselbe Laufzeit wie bei Dijkstra. Hier heben wir die Abhängigkeit von den tatsächlich besuchten Knoten und den tatsächlich relaxierten Kanten hervor.
- ▶ Durch die Heuristik ist in vielen Anwendungsfällen  $V_0 \ll V$  und  $E_0 \ll E$ , also A\* deutlich schneller als Dijkstra. Aber dafür gibt es keine Garantie. Es gibt auch Fälle in den  $V_0 \approx V$  und  $E_0 \approx E$  gilt und A\* keinen (großen) Vorteil bringt.

### Laufzeit von A\*

### Beweis der Laufzeit (impliziert Terminierung)

- ► Mit konsistenten Heuristiken sind wir nach der Monotonie-Eigenschaft, siehe Seite 22, in Hinblick auf Laufzeit in derselben Situation wie bei Dijkstra:
- Die Monotonie der *dist*-Werte (Dijkstra) überträgt sich wegen f[v] = dist[v] + h(v) auf die f-Werte, da sich h(v) beim Programmablauf nicht ändert.
- $\blacktriangleright$  Die f-Werte, über die v in Zeile 8 ausgewählt wird, sind also monoton steigend.
- ▶ Die *while*-Schleife wird höchstens  $V_0$ -mal ausgeführt.
- Jede Kante wird daher nur einmal relaxiert.
- ▶ Damit erhalten wir die Laufzeit in  $O(E_0 \log V_0)$  wie bei Dijkstra.

### Korrektheit von A\* – Hilfssatz

Wir zeigen folgenden Hilfssatz:

- **Lemma:** Sei p ein Pfad  $s \sim v$  dessen Knoten fertig bearbeitet sind, mit der Ausnahme, dass v auch in der PQ sein darf (also noch auf die Bearbeitung wartet). In diesem Fall gilt:  $dist[v] \leq c(p)$ .
- Beweis durch Induktion nach der Anzahl der Kanten von p. Sei u der vorletzte Knoten in p und  $p_0$  der Subpfad  $s \sim u$  von p.
- ightharpoonup Da u fertig bearbeitet ist, gilt für den Nachbarknoten v die Relaxierungsbedingung

$$dist[v] \le dist[u] + weight(u \rightarrow v)$$

Nach IV gilt  $dist[u] \leq c(p_0)$ . Damit erhalten wir

$$dist[v] \le c(p_0) + weight(u \rightarrow v) = c(p)$$

Damit ist das Lemma bewiesen.

### Korrektheit von A\*

#### Beweis der Korrektheit.

- Wenn A\* mit einem gefundenen Pfad terminiert, dann ist f(t) kleiner als die f-Werte aller Knoten in der PQ.
- ▶ In der PQ sind alle Knoten, die über kreuzende Kanten von dem Bereich der bearbeiteten Knoten erreicht werden können.
- Sei p ein anderer Pfad von s nach t. Dieser Pfad muss durch einen Knoten v laufen, der in der PQ ist. Sei  $p_0$  der Subpfad  $s \sim v$  und  $p_1$  der Subpfad  $v \sim t$ .

$$dist[t] = f[t]$$
 da  $h(t) = 0$   
 $\leq f[v]$  wegen Priorität der PQ  
 $= dist[v] + h(v)$  Definition von  $f$   
 $\leq dist[v] + c(p_1)$  da  $h$  zulässig ist  
 $\leq c(p_0) + c(p_1)$  nach dem Lemma  
 $= c(p)$ 

Also kann es keinen kürzeren Pfad von s nach t geben.

# A\* im Vergleich mit BEST-FIRST und Dijkstra



- ▶ Die Prioritäten *dist*[] von Dijkstra und *f*[] von A\* werden erst beim Durchlauf für die besuchten Knoten bestimmt und aktualisiert. Hier sind die Werte zur Illustration von Anfang an eingetragen.
- ▶ A\* findet die optimale Lösung und besucht dabei weniger Kanten als Dijkstra. Bei größeren und komplexeren Graphen ist die Einsparung oft sehr viel größer.

## A\* jenseits von direkten Graphenproblemen

- ▶ Die Darstellung von A\* war stark an die Suche in gegebenen Graphen (mit indizierten Knoten) orientiert.
- ▶ Bei anderen Aufgaben, wie solchen, die im Konext von Backtracking und Branch-and-Bound besprochen wurden, wird der Suchbaum (oder Suchgraph) erst bei der Suche erstellt und die Knoten entsprechen Teillösungen, die nicht auf einfache Indizes reduziert werden können.
- ▶ Auch in diesen Fällen kann A\* angewendet werden. Die Kosten sind hier die Anzahl der Lösungsschritte zur Lösung.
- ▶ Dafür wird eine Heuristik benötigt, die für jede Teillösung die Anzahl der Lösungsschritte zum Ziel schätzt.
- ▶ Damit A\* effizient ist, wird Konsistenz benötigt: Durch einen Lösungsschritt darf der Wert der Heuristik höchstens um 1 sinken.

▶ Mit Zulässigkeit **ohne Konsistenz** ist man im Prinzip bei *Branch-and-Bound*.

### A\* im Baum der Teillösungen: Pseudocode

Für eine Teillösung psol sei psol.f der f-Wert von A\*, also

- Anzahl der Schritte bis Erreichen der Teillösung psol plus
- ▶ Wert der Heuristik für Teillösung *psol*.

```
1 Q: PriorityQueue of partial solutions
2 esol: empty partial solution
   add(Q, esol, esol, f)
   while Q \neq \emptyset
     psol \leftarrow poll(Q)
      if psol is solution
       return psol
     end
8
     for each move possible in psol
        psolnext \leftarrow psol \ with \ performed \ move
10
       add(Q, psolnext, psolnext.f)
11
     end
   end
13
   return null
```

### Unterschied zu A\* im Graphen mit indizierten Knoten

- ▶ Warum wird hier kein *relax* verwendet?
- In *relax* wird geprüft, ob der Endknoten über die neue Kante schneller erreicht wird. In diesem Fall wird der Weg über die neue Kante gespeichert.
- Anders als im Graphen mit indizierten Knoten, kann hier nicht leicht festgestellt werden, ob die neue Teillösung einer schon gefundenen Teillösung entspricht.
- Dadurch können äquivalente Teillösungen in die Queue gelangen.
- ▶ Da jeweils die Teillösung mit den wenigsten Schritten der Queue zuerst entnommen wird, ist dies kein Problem für die Korrektheit des Verfahrens.
- ► Allerdings kann die Effizienz deutlich mindern.
- ► Abhilfe durch Verwendung von *Hash Sets* (nächste Vorlesung)

# Lehrevaluation: Bitte beteiligen Sie sich alle!

AlgoDat Vorlesung (ohne HA!)



## AlgoDat Übung

(Rechnerübung, Online-Tutorien)



TUB AlgoDat 2023 33