Regelungstechnik

für BEI4, BMEI4 und IBT

Prof. Dr. B. Wagner

Kap. 4 Modellbildung von Regelstrecken

Schritte einer Regelungsentwicklung:

- 1. Definition der Regelungsaufgabe
 - Zuordnung Stellgrößen / Regelungsgrößen
 - Spezifikation der Anforderungen
- 2. Systemanalyse
 - Modellbildung
 - Modellansatz und Parametrierung
- 3. Reglerentwurf
 - Auswahl des Regelungskonzepts / des Reglertyps
 - Reglerparametrierung
 - Simulationsstudie
- 4. Reglerimplementierung und -inbetriebnahme
 - Programmierung
 - Unit-Test
 - Integration in Zielplattform (SPS oder Microcontroller ...)
 - Inbetriebnahme / Parametrierung / Test & Optimierung an der Anlage

Modellbildung

Aufgabe: Erstelle ein mathematisches Modell eines Vorgangs

⇒ Das Modell soll relevantes Verhalten des Vorgangs abbilden

⇒ Das Modell soll möglichst einfach und verständlich sein

⇒ Das Modell soll übertragbar und skalierbar sein

Möglichkeit 1: theoretische Modellbildung

basierend auf Gleichungen der Physik

(Knoten- / Maschengleichungen, Bewegungsgesetze...)

Vorteile: übertragbar, vor Aufbau der Anlage verfügbar

Beispiel: Gleichstrommotor

Möglichkeit 2: experimentelle Modellbildung

basierend auf Messungen

Häufig Sprungantworten der ungeregelten Strecke

Vorteile: in vielen Fällen geringerer Aufwand

Beispiele: Wendetangente, Strejc-Verfahren

=> häufig wird eine Kombination von theoretischer und experimenteller Modellierung angewandt <=

Basierend auf physikalischen Grundgleichungen ("first principles")

Vom Charakter her Zustands-Modelle

Zustandsgrößen: Speichergleichungen, z. B. ...

magnetische Energie in einer Induktivität (Strom)

elektrische Feldenergie in einer Kapazität (Spannung)

potentielle und kinetische Energie in der Mechanik (Position und Geschw.)

Druck in fluidischen Systemen (Pneumatik, Hydraulik)

Bilanzgleichungen, z. B. ...

Kirchhoff-sche Gesetze (Knoten-/Maschengleichung) in der Elektrotechnik Kräfte-/Momentengleichgewichte in der Mechanik

Statische Gleichungen, z. B. ...

Ohm-sches Gesetz, Diodenkennlinien etc. in der Elektrotechnik Kräftegleichungen in der Mechanik

Nutze Modellannahmen / Vereinfachungen

Siehe auch "Modellbildung und Simulation" im 5. Semester – systematische Modellerstellung

Früher Standardmotor

Heute eher im Bereich kleiner Leistungen anzutreffen (z. B. Fensterheber)

Lässt sich sehr gut über physikalische Gleichungen modellieren

Parameterwerte: aus Datenblättern entnehmen / aus Messungen ermitteln

Modellstruktur:

Gleichstrommotor-Modellierung Elektrisches Teilsystem "Ankerkreis"

```
u(t) = R_a * i_a(t) + L_a * (di_a/dt) + u_i(t)

Laplace:
U(s) = R_a * I_a (s) + L_a * s * I_a(s) + U_i(s)

auflösen nach:
I_a(s) = (U(s) - U_i(s)) / (R_a + L_a *s) = (1/R_a) / (1+s*(L_a/R_a)) * (U(s) - U_i(s))

--> PT1

--> Ankerzeitkonstante
L_a/R_a = T_a (ca. 1 msec)
```


Einfaches Ersatzschaltbild des Gleichstrom-Nebenschluss-Motors

u(t)	Eingangsspannung (entspricht der Stellgröße $y(t)$)
n(t)	Drehzahl (entspricht der Regelgröße v(t))
$m_L(t)$	Lastmoment (entspricht der Störgröße z(t)
$i_a(t)$	Ankerstrom
R_a	ohmscher Ankerwiderstand
La	Ankerinduktivität
Φ	Erregerfluss
$u_i(t)$	Induzierte Spannung (Gegen-EMK)

Gleichstrommotor-Modellierung Mechanisches Teilsystem

```
Drehmoment: m_d(t) = i_a(t) * phi * k_m (manchmal: k_T = phi * k_m)

Laplace: M_d(s) = I_a(s) * phi * k_m

Drehmomentbilanz: beschleunigendes Moment: m_b(t) = m_d(t) - m_L(t)
--> M_b(s) = M_d(s) - M_L(s)
```

Drehzahl n(t) =
$$1/2piJ * S(m_b(t) dt)$$
 (S = Integral) --> N(s) = $1/2piJ * 1/s * M_b(s)$

induzierte Spannung: u_i(t) = phi * k_q * n(t)

Einfaches Ersatzschaltbild des Gleichstrom-Nebenschluss-Motors

u(t)	Eingangsspannung (entspricht der Stellgröße y(t)
n(t)	Drehzahl (entspricht der Regelgröße $v(t)$)
$m_L(t)$	Lastmoment (entspricht der Störgröße z(t)

 $i_a(t)$ Ankerstrom

R_a ohmscher Ankerwiderstand

*L*_a Ankerinduktivität

Φ Erregerfluss

 $u_i(t)$ Induzierte Spannung (Gegen-EMK)

Blockschaltbild des Gleichstrommotors = Zusammenschaltung elektrisches & mechanisches Teilsystem Chim Technische Hochschule Nürnberg

Blockschaltbild des Gleichstrommotors

Minus-Zeichen bremst Drehmoment

Blockschaltbild des Gleichstrommotors Analyse der Teil-Übertragungsfunktionen – Einsetzen der Teilergebnisse, Zusammenfassen und Näherun

$$G_{SY}(s) = \frac{\frac{1}{R_a(1+sT_a)}k_m\Phi\frac{1}{2\pi Js}}{1+\frac{1}{R_a(1+sT_a)}k_m\Phi\frac{1}{2\pi Js}k_q\Phi} = \frac{k_m\Phi}{s^2T_aR_a2\pi J + sR_a2\pi J + k_mk_q\Phi^2} = \frac{\frac{1}{k_q\Phi}}{s^2T_a\frac{R_a2\pi J}{k_mk_q\Phi^2} + s\frac{R_a2\pi J}{k_mk_q\Phi^2} + s\frac{R_a2\pi J}{k_mk_q\Phi^2} + 1}$$

$$G_{SZ}(s) = \frac{\frac{1}{2\pi Js}}{1+\frac{1}{R_a(1+sT_a)}k_m\Phi\frac{1}{2\pi Js}k_q\Phi} = \dots = \frac{\frac{R_a}{k_qk_m\Phi^2}(1+sT_a)}{s^2T_a\frac{R_a2\pi J}{k_mk_q\Phi^2} + s\frac{R_a2\pi J}{k_mk_q\Phi^2} + 1} = \dots = \frac{\frac{1}{k_q\Phi}}{s^2T_a\frac{R_a2\pi J}{k_mk_q\Phi^2} + s\frac{R_a2\pi J}{k_mk_q\Phi^2} + 1} = \dots = \frac{\frac{1}{k_q\Phi}}{s^2T_a\frac{R_a2\pi J}{k_mk_q\Phi^2} + s\frac{R_a2\pi J}{k_mk_q\Phi^2} + 1} = \dots = \frac{\frac{1}{k_q\Phi}}{s^2T_a\frac{R_a2\pi J}{k_mk_q\Phi^2} + s\frac{R_a2\pi J}{k_mk_q\Phi^2} + 1} = \dots = \frac{\frac{1}{k_q\Phi}}{s^2T_a\frac{R_a2\pi J}{k_mk_q\Phi^2} + s\frac{R_a2\pi J}{k_mk_q\Phi^2} + 1} = \dots = \frac{\frac{1}{k_q\Phi}}{s^2T_a\frac{R_a2\pi J}{k_mk_q\Phi^2} + s\frac{R_a2\pi J}{k_mk_q\Phi^2} + 1} = \dots = \frac{\frac{1}{k_q\Phi}}{s^2T_a\frac{R_a2\pi J}{k_mk_q\Phi^2} + s\frac{R_a2\pi J}{k_mk_q\Phi^2} + 1} = \dots = \frac{\frac{1}{k_q\Phi}}{s^2T_a\frac{R_a2\pi J}{k_mk_q\Phi^2} + s\frac{R_a2\pi J}{k_mk_q\Phi^2} + 1} = \dots = \frac{\frac{1}{k_q\Phi}}{s^2T_a\frac{R_a2\pi J}{k_mk_q\Phi^2} + s\frac{R_a2\pi J}{k_mk_q\Phi^2} + 1} = \dots = \frac{\frac{1}{k_q\Phi}}{s^2T_a\frac{R_a2\pi J}{k_mk_q\Phi^2} + s\frac{R_a2\pi J}{k_mk_q\Phi^2} + 1} = \dots = \frac{\frac{1}{k_q\Phi}}{s^2T_a\frac{R_a2\pi J}{k_mk_q\Phi^2} + s\frac{R_a2\pi J}{k_mk_q\Phi^2} + 1} = \dots = \frac{\frac{1}{k_q\Phi}}{s^2T_a\frac{R_a2\pi J}{k_mk_q\Phi^2} + s\frac{R_a2\pi J}{k_q\Phi^2} + s\frac{R_a2\pi J}{k_q\Phi^2} + s\frac{R_a2\pi J}{k_q\Phi^2} + s\frac{R_a2\pi J}{k_q\Phi^2} + s\frac{R_q2\pi J}{k_q\Phi^2} + s\frac{R_q2\pi J}{k_q\Phi^2} + s\frac{R_q2\pi J$$

Systemtypen?!

Weitere Vereinfachung \Leftrightarrow bei Gleichstrommotoren gilt meist $T_a \ll T_M$

$$G_{SY}(s) = \frac{K_Y}{s^2 T_a T_M + s T_M + 1} \approx \frac{K_Y}{s^2 T_a T_M + s (T_M + T_a) + 1} = \frac{K_Y}{(s T_a + 1)(s T_M + 1)}$$

$$G_{SZ}(s) \approx \frac{-K_Z(1+sT_a)}{s^2T_aT_M + s(T_M + T_a) + 1} \approx \frac{-\frac{K_Z}{K_K}(1+sT_a)}{(sT_a+1)(sT_M+1)} \approx \frac{-K_Z}{(sT_M+1)}$$

T M = mechan. Zeitkonstante (~ 100 msec)

Teil 4b: Experimentelle Modellierung – einige für praktische Anwendungen geeignete Methoden

Zusammenfassen von Zeitkonstanten (Wiederholung)

- ⇒ Nur kleine Zeitkonstanten zusammenfassen Zweck: Komplexitätsreduktion für Reglerentwurf Kapitel 7
- ⇒ Alle Zeitkonstanten zusammenfassen Zweck: grobe Abschätzung der Einschwingdauer der Sprungantwort
- ⇒ Ein paar Übungsaufgaben

Vorüberlegungen zu experimenteller Modellbildung

- ⇒ Anregungssignale (Sprung, Impuls, Sinus, Rauschen)
- ⇒ Näherung im Frequenzbereich "gemessenes Bode-Diagramm"

Zeitbereichsmethoden mit Anregung der Regelstrecke mit Sprung

- ⇒ PT2-Schwingfall (Wiederholung)
- ⇒ PT2-Schwingfall mit zusätzlicher Totzeit (also PT2Tt)

Zusammenfassen von Zeitkonstanten (bei nicht oder nur schwach schwingfähigen PTn-Systemen)

1. Variante: Fasse "kleine" Zeitkonstanten zusammen (~ Faktor ca. 5)

$$G(s) = (3,7 * e^-s) / ((1+s9)(1+s2)(1+s1))$$
 --> PT3Tt

Summe der kleinen Zeitkonstanten: T_sigma = 1 + 2 + 1 = 4 (inkl. Totzeit = 1)

--> $G(s) \sim 3,7 / ((1+s9)(1+s4))$

2. Variante: Fasse alle Zeitkonstanten zusammen $G_S(s) = \frac{V_S}{(1+sT_1)(1+sT_2)(1+sT_3)...(1+sT_n)} = \frac{V_S}{1+s\underbrace{(T_1+T_2+T_3+\cdots+T_n)}_{\text{Summen -}} + \underbrace{s^2(T_1T_2+\cdots)+\cdots}_{\text{wird vernachlässigt}}} \approx \frac{V_S}{1+sT_\Sigma}$ => Abschätzung der Einschwingdauer:

$$G(s) = \frac{0,0755}{1s^2 + 0,575s + 0.0441}$$

Schätzen Sie die Einschwingdauer ab!

$$G(s) = 0.0755 / ((s+0.09)(s+0.48)) = 0.0755 / ((11s+1)(2s+1))$$

--> T_Sigma ~= 13 --> Einschwingdauer ~= 52

Alternativ: Normierung auf $a_0 = 1 --> T_Sigma = 0,575 / 0,0441 = 13$

Beispiel 2:
$$G(s) = \frac{5}{(1+s)(1+3s)(1+25s)(1+5s)^2(1+35s)}$$

Vereinfachen Sie die Übertragungsfunktion durch Zusammenfassen der kleinen Zeitkonstanten!

$$T_sigma = 1 + 3 + 5 + 5 = 14$$
 --> $G(s) = 5 / ((1+s14)(1+s25)(1+s35))$

Schätzen Sie die Einschwingdauer des Systems mittels der Summenzeitkonstante ab (d. h. PT₁-Näherung)!

T_Sigma =
$$14 + 25 + 25 = 74$$
 --> G(s) = $5 / (1+s74)$

Einschwingdauer = 74 * 4 = 296

Simulieren Sie alle drei Modelle (Original, vereinfacht, PT₁)!

Beispiel 1 (aus dem Praktikum) Simulierte Sprungantwort

Beispiel 2 (PT6)

$$G(s) = \frac{5}{(1+s)(1+3s)(1+25s)(1+5s)^2(1+35s)}$$

Welche Testsignale eigenen sich für eine Identifikation?

Sprung	Vorteil:	+ sehr einfach zu erzeugen+ bei vielen Strecken zulässig	Nachteil:	nur geringe Anregung bei hohen Freq.nicht im laufenden Betrieb
Impuls	Vorteil:	+ Anregung bei allen Frequenzen	Nachteil:	benötigte Stellamplitude zu hochhohe mechanische Belastungnicht im laufenden Betrieb
Sinus	Vorteil:	+ einfach zu erzeugen+ bei vielen Strecken zulässign	Nachteil:	 - Anregung bei nur einer Frequenz pro Mess. viele Messpunkte nötig => lange Dauer! nicht im laufenden Betrieb
Rauschen	Vorteil:	+ Anregung bei kleiner Amplitude+ Identifikation im laufenden Betrieb+ sehr breitbandige Anregung	Nachteil:	- Auswertung mathematisch anspruchsvoll (Korrelationsverfahren)

Als Rauschsignal häufig "PRBS Pseudo-Random Binary Signal"

- ⇒ Gute Ausnutzung der gegebenen Amplitude
- ⇒ Einfach zu erzeugen
- ⇒ Definierte stochastische Eigenschaften

Frequenzgangmessung meist mit ...

... Sinus-Anregung (extrem lange Messdauer, da bei jedem Messpunkt eingeschwungenen Zustand abwarten!)

... oder mit (Pseudo-)Rauschsignal

Approximation der Frequenzgangpunkte durch Asymptoten

$$G_{\mathbb{S}}(s) \approx \frac{V_{\mathbb{S}}}{(1+sT_1)(1+sT_2)}$$

Approximation aus Sprungantwort bei PT2-schwingfähig (Wiederholung)

Aus Kapitel 2 bekannte Formeln:

$$D = \frac{-\ln(\ddot{u})}{\sqrt{\pi^2 + (\ln(\ddot{u}))^2}}$$

$$\omega_0 = \frac{\arccos(-D)}{T_{an}\sqrt{1-D^2}}$$

$$\omega_0 = \frac{\pi}{T_{max}\sqrt{1-D^2}}$$

$$\omega_0 = \frac{2\pi}{T_e \sqrt{1 - D^2}} \quad .$$

Achtung: nur gültig für "reines" PT2-System

Erweiterung des PT2-schwingfähig-Verfahrens um eine zusätzliche Verzögerung / Totzeit

Modellansatz:
$$G_s(s) \approx \frac{V_s}{\frac{s^2}{\omega_0^2} + \frac{2D}{\omega_0}s + 1} \cdot e^{-sT_U}$$

Idee:

- Einfach ablesbare Werte: T_{an,mess} und T_{max,mess}
- Ermittle zunächst D aus ü (bekannte Formel)
- Totzeit T_u ermitteln aus Rechnung
- $T_{an} = T_{an,mess} T_u$ berechnen (um Totzeit bereinigt)
- Mit T_{an} und D den Wert von ω₀ ermitteln mit bekannter Formel

Herleitung der Formel für T_u im Skript!

$$T_{U} = \frac{T_{maxmess} \cdot \arccos(-D) - T_{anmess} \cdot \pi}{\arccos(-D) - \pi}$$

Beispiel:

Geg.: Sprungantwortmessung:

Bestimmen Sie das PT₂T_t-Modell!

Häufig z. B. bei Temperatur-Regelstrecken

PT1Tt: (V / (1+sTG)) * e^-sTU

PT2: V / ((1+sT1)(1+sT2))

PTn: V / (1+sT)^n bzw V / ((1+sT)^n (1+sTn))

Teil 4c: Identifikation aperiodischer PT_n-Strecken

Was sind aperiodische PT_n-Strecken?

Identifikation von PT₁-Strecken (Wiederholung aus Kapitel 2)

Näherungen basierend auf der Wendetangente

- ⇒ Wie findet man die Wendetangente?
- ⇒ Näherungsmodelle: PT₁T₁, PT₂, PTn mit gleichen Zeitkonstanten

Die Methode der Zeitprozentkennwerte / das Verfahren von Strejc

- ⇒ Was sind Zeitprozentkennwerte?
- ⇒ Näherungsmodelle: PT₁T₁, PT₂, PT₂ mit gleichen Zeitkonstanten
- ⇒ Herleitung der Gleichungen für das PT₁T₁-Modell
- ⇒ Ausblick: Weitere Zeitprozentkennlinien-Ansätze

Und auch noch: Parameter-Identifikation für IT_n-Strecken

Aperiodisch ⇔ ohne Sinus-Anteil ⇔ n rein reelle Pole ⇔ als Reihenschaltung von n PT₁-Strecken darstellbar

$$G_{S}(s) = \frac{V_{S}}{(1+sT_{1})(1+sT_{2})(1+sT_{3})...(1+sT_{n})}$$

Je höher die Ordnung n, um so langsamer ist die anfängliche Systemreaktion:

 PT_1 mit Summenzeitkonst. T_{Σ} =4:

$$PT_2$$
 mit T_{Σ} =4:

$$PT_{\Delta}$$
 mit T_{Σ} =4:

$$PT_8$$
 mit T_{Σ} =4:

$$G_1(s) = \frac{1}{1+4s}$$

$$G_2(s) = \frac{1}{(1+2s)^2}$$

$$G_4(s) = \frac{1}{(1+s)^4}$$

$$G_8(s) = \frac{1}{(1+0.5s)^8}$$

$$G(s) = \frac{V}{(1+sT)}$$

Siehe Kapitel 2 sowie Versuch 1 des RT-Praktikums

Beispiel: Lesen Sie die Übertragungsfunktionsparameter V und T eines PT₁-Modells ab

Beispiel einer aperiodischen PTn-Strecke

Gegebene Sprungantwort:

Gesucht: Übertragungsfunktion

Idee 1: Wendetangente

- ⇒ Tangente mit maximaler Steigung
- ⇒ Der Wendepunkt selbst ist unwichtig!
- ⇒ Lese zwei ZEITWERTE ab:
 - \Rightarrow T_U "Verzugszeit" 15
 - \Rightarrow T_G "Zeitkonstante" 89 15 = 74

- ⇒ Verwende Ersatzmodell mit der selben Wendetangente
- ⇒ Einfachstes Modell: PT₁T₁-Näherung

verwende Wendetangente als Starttangente des PT1-Anteils

Auswertung des Beispiels:

Trage Tangente ein

Lese zwei ZEITWERTE ab:

 \Rightarrow T_U "Verzugszeit" 15

 \Rightarrow T_G "Zeitkonstante" 89 - 15 = 74

 \Rightarrow PT₁T_t-Näherung: G(s) ~= (8 / 1+s74) * e^-s15

Vorteile:

extrem einfach in Anwendung geht in allen Fällen aperiodischer PT_n - Strecken

Nachteil:

grobe Näherung (zu langsam)

Beispiel : $T_U = 0.15$ msec; $T_G = 2.5$ msec.

=> Auswertung anhand Grafik 4-13:

```
1. TU/TG = 0,06 --> eintragen
```

2. ablesen: 0,14

3. ablesen: 1,4

--> T2 = T1 * 0,14 = 0,25 msec.

--> G(s) = V / ((1+s0,0018)(1+s0,00025))

Bild 4-13: Zusammenhang verschiedener Kenngrößen beim PT₂-Glied

Eine bessere Möglichkeit: PT2-Näherung / semigrafisch

Beispiel $T_U = 3117 \text{ sec}$, $T_G = 14155 \text{ sec}$

=> Auswertung anhand Grafik 4-13:

1. TU/TG = 0,22

--> nicht approximierbar

--> es gibt kein PT2 mit TU/TG > 0,104!

Bild 4-13: Zusammenhang verschiedener Kenngrößen beim PT₂-Glied

Beispiel $T_U = 3117 \text{ sec}$, $T_G = 14155 \text{ sec}$

=> Auswertung anhand Grafik 4-14:

2. n = 3

3. TG/T = 3.7

$$--> T = TG/3,7 = 3825$$

$$--> G(s) = V / (1+s3825)^3$$

Bild 4-14: Zusammenhang verschiedener Kenngrößen beim PT_n-Glied

Beispiel von vorhin:

=> Auswertung anhand Grafik 4-14:

--> 1. Lösung aufrunden --> nicht so gut

$$--> G(s) = V / (1+s21)^3$$

--> 2. Lösung: Teil-Zeitkonstante u. n abrunden

--> siehe nächste Seite

Bild 4-14: Zusammenhang verschiedener Kenngrößen beim PT_n-Glied

Fortsetzung von Beispiel Verbesserung des Modells durch Teil-Zeitkonstante


```
--> Fortsetzung
```

```
trage n* ein (2,7)
--> Ablesewert: 0,58
--> aus Sprungantwort ablesen: Zeitwert T*, bei dem 0,58 * Endwert erreicht wird
--> v(T*) = 4,6 bei T* = 59 (siehe Sprungantwort auf S.24)
--> Modellparameter:
T = T*/n* = 59/2,7 = 22
Tn = T* - n*T = 59 - 2*22 = 15 (mit n = abgerundeter Ordnung)
--> G(s) = 8 / ((1+s22)^2 (1+s15))
```


Bild 4-15: Verhältnisse bei PT_n-Strecken mit gleicher Zeitkonstante und "Teilzeitkonstante"

Zusammenfassung Wendetangentenverfahren

- ⇒ Trage Wendetangente ein
- \Rightarrow Lese Zeitwerte ab T_U und T_G
- ⇒ PT₁T₁-Modell ist immer möglich, aber in vielen Fällen ungenau
- ⇒ Genauere Näherung mit PT₂-Modell für T_U / T_G < 0,104
- ⇒ Genauere Näherung mit PT_n-Modell mit gleichen Zeitkonstanten, ggf. plus Teil-Zeitkonstante für T_U / T_G> 0,104

Warum? Vermeide Fehler beim Finden der Wendetangente

Z. B. bei automatisierter Auswertung im Rechner

Idee:

⇒ zwei Stützpunkte vermessen

⇒ Modell mit zwei Parametern bedaten

$$G_s(s) \approx \frac{V_s}{1+sT} \cdot e^{-sT_U}$$

$$T = \frac{T_7 - T_3}{0,84} \qquad T_U = \frac{T_3 - 0.3 \cdot T_7}{0.7}$$

gerne als Klausuraufgabe verwendet

Nochmal das Beispiel von oben

Gegebene Sprungantwort:

Gesucht: Übertragungsfunktion

$$\Rightarrow$$
 v_{∞} ablesen = 8

⇒ Referenzpunkte eintragen

⇒ Einsetzen in Formeln

$$T = \frac{T_7 - T_3}{0.84} = 42.86$$
 $T_U = \frac{T_3 - 0.3 \cdot T_7}{0.7} = 19.57$

$$\Rightarrow G_s(s) \approx \frac{V_s}{1+sT} \cdot e^{-sT_U}$$

Wie kommt man auf $T = \frac{T_7 - T_3}{0.84}$ und $T_U = \frac{T_3 - 0.3 \cdot T_7}{0.7}$???

Zusammenstellung der Strejc-Näherung

1) Näherung durch PT₂-Strecke

$$G_s(s) \approx \frac{V_s}{(1+sT_1)(1+sT_2)}$$

 T_1 und T_2 sind folgendermaßen zu berechnen.

$$T_1 = \frac{T_7}{2,4} + \frac{T_3 + T_7}{1,2} \cdot \sqrt{0,45 - \frac{T_3}{T_7}}$$
 $T_2 = \frac{T_7}{2,4} - \frac{T_3 + T_7}{1,2} \cdot \sqrt{0,45 - \frac{T_3}{T_7}}$

$$T_2 = \frac{T_7}{2,4} - \frac{T_3 + T_7}{1,2} \cdot \sqrt{0,45 - \frac{T_3}{T_7}}$$

Formelsammlung!

Ist der Radikand negativ, müssen die weiteren Möglichkeiten verwendet werden.

2) Näherung durch PT₁T_t-Strecke

$$G_s(s) \approx \frac{V_s}{1 + sT} \cdot e^{-sT_U}$$

T und T_U sind folgendermaßen zu berechnen.

$$T=\frac{T_7-T_5}{0.84}$$

$$T = \frac{T_7 - T_3}{0.84} \qquad T_U = \frac{T_3 - 0.3 \cdot T_7}{0.7}$$

3) Näherung durch PT₂T_t-Strecke mit gleichen Zeitkonstanten

$$G_s(s) \approx \frac{V_s}{(1+sT)^2} \cdot e^{-sT_U}$$

T und T_U sind folgendermaßen zu berechnen.

$$T = \frac{T_7 - T_3}{1,32}$$

$$T = \frac{T_7 - T_3}{1.32} \qquad T_U = \frac{T_3 - 0.45 \cdot T_7}{0.55}$$

nur für Zähler > 0 gültig (T3/T7 > 0,45) --> sonst nicht kausal

2 Zeitprozentkennwert-Verfahren

Die Sprungantwort der Regelstrecke ist im Bild unten gegeben. Bestimmen wir daraus die Zeitpunkte t_{10} , t_{50} und t_{90} , bei denen die Regelgröße 10%, 50% und 90% ihres stationären Wertes $x(\infty)$ erreicht.

Die Regelstrecke wird als P- T_n -Glied mit n gleichen Zeitkonstanten approximiert. Die Ordnungszahl n der Regelstrecke wird aufgrund der Kennzahl μ bestimmt:

Mit Hilfe der drei weiteren Kennzahlen α_{10} , α_{50} und α_{90} für bereits bestimmten μ oder n wird die Zeitkonstante T der Regelstrecke ermittelt:

$$T = \frac{\alpha_{10}t_{10} + \alpha_{50}t_{50} + \alpha_{90}t_{90}}{3}$$

Die Übertragungsfunktion der Strecke ist: $G_{\rm S}(s) = \frac{K_{\rm PS}}{(1+sT)^{\rm n}}$

Danach wendet man sich an die Tabelle unten

μ	n	α10	α.50	α90
0,137	2	1,880	0,596	0,257
0,174	2,5	1,245	0,460	0,216
0,207	3	0,907	0,374	0,188
0,261	4	0,573	0,272	0,150
0,304	5	0,411	0,214	0,125
0,340	6	0,317	0,176	0,108
0,370	7	0,257	0,150	0,095
0,396	8	0,215	0,130	0,085
0,418	9	0,184	0,115	0,077
0,438	10	0,161	0,103	0,070

Identifikation von ITn-Strecken

Schwingfall

aperiodischer Fall

IT_t-Näherung:
$$G_S(s) \approx \frac{1}{sT_I} e^{-sT_U}$$

IT₁-Näherung:
$$G_{S}(s) \approx \frac{1}{sT_{I}(1+sT_{II})}$$