

D.Y. PATIL INTERNATIONAL UNIVERSITY B.TECH CSE FY SEM-2

A.Y. 2022-2023

NAME: SURYAKANT UPADHYAY

PRN: 20220802043

SUBJECT: DIGITAL LOGIC AND DESIGN

BATCH: A1

EXPERIMENT-4 (A)

Aim:

Implementation of 4x1 multiplexer.

Requirements:

- AND gate
- OR gate
- NOT gate
- MyDaQ

Theory:

Multiplexer is a device that has multiple inputs and a single line output. The select lines determine which input is connected to the output, and also to increase the amount of data that can be sent over a network within certain time. It is also called a data selector.

Multiplexers are classified into four types:

- 1. 2-1 Multiplexer (1 select line)
- 2. 4-1 Multiplexer (2 select lines)
- 3. 8-1 Multiplexer (3 select lines)
- 4. 16-1 multiplexer (4 select lines)

4x1 Multiplexer:

4x1 Multiplexer has four data inputs D0, D1, D2 & D3, two selection lines S0 & S1 and one output Y. The block diagram of 4x1 Multiplexer is shown in the following figure. One of these 4 inputs will be connected to the output based on the combination of inputs present at these two selection lines.

Block Diagram of 4x1 Multiplexer:

Digital Logic Design SCSEA, DYPIU

Do-

Futh Table:							
	Selentie	on lines	output				
	30	S	, y				
	0	0	Do				
	. 0.	1	D ₁				
	1	0	D ₂				
	1	1	D3				

Mothematical Expression for 4x1 M	ultiplexer:
Y=5,5000+6,500,+8,5002+	5,50D3

Observation Table:

Input Variables- Ea, S1, S0

Output Variables- Y_a.

where, E_a , E_b represents the enable bits for the respective multiplexers and S_1 , S_0 are the select lines. Y_a , Y_b represents the output bits for the respective multiplexers.

	Output		
E _a	S_1	S_0	Ya
D0	0	0	D0
D1	1	0	D1
D2	0	1	D2
D3	1	1	D3

Output:

Result: The implementation of 4x1 multiplexer is done.

EXPERIMENT-4 (B)

Aim:

Implementation of 1x4 demultiplexer.

Requirements:

- NAND Gate
- NOT Gate

Theory:

Describe the demultiplexers in brief and enlist the different demultiplexers. And also explain the 1x4 demultiplexer along with its block diagram.

De-multiplexer De-multiplexer is also a device with one input and multiple output lines. It is used to send a signal to one of the many devices. The main difference between a multiplexer and a de-multiplexer is that a multiplexer takes two or more signals and encodes them on a wire, whereas a de-multiplexer does reverse to what the multiplexer does.

De-Multiplexer are classified into four types:

- 1) 1-2 demultiplexer (1 select line)
- 2) 1-4 demultiplexer (2 select lines)
- 3) 1-8 demultiplexer (3 select lines)
- 4) 1-16 demultiplexer (4 select lines)

1x4 De-multiplexer:

1x4 De-Multiplexer has one input Data(D), two selection lines, S0 & S1 and four outputs Y0, Y1, Y2 & Y3. The block diagram of 1x4 De-Multiplexer is shown in the following figure.

Circuit Diagram:

Mention the mathematical equations used for the realization part along with its truth table and

logic								diagram.
Circui	it Diagra	our 1x4	Dem	ultiple	ver:			
	0-							
T			7					
6.			1.					
50)		3
	7	7	1					
			-					
)	/2
			-					
-			1					
)		· ·	
				1	_			
-	10		-)	104	X	
			_		1		•	
Trute	· Jable	· Transla	YLL .	1 7 7 4 5 1	10	0.070.00	0	rest li
		n Input		0	itputs			
	So	T Si		Y2.	Y2	Yı	Yo .	
	0	0		0	. 0	0	0	
	0	1		0	0	D	0	
	1	d	2 40	0	D	. 0	0	locar?
	1	4		D	0	, 0	0.	10
			- 7	Ne de				
Math	enstea	1 Ехрие	via	0.5		111		
· V	2 = 5,5	oo D	A ork	1.	1 34	अंत्रेष्ट्र		. Year
Y	2 = 5,	SÓD	· V	8-4				100
1	16 = -6	3:5 D		F 296		4		
	10 2 5							
		1000	1					

Digital Logic Design

Observation Table:

Input Variables- G, B, A

Output Variables- Y₀, Y₁, Y₂, Y₃

where G, B, A represents the input bits for 1x4 demultiplexer,

 Y_0 , Y_1 , Y_2 , Y_3 represents the output bits for 1x4 demultiplexer

Input			Output			
G	В	A	Y_0	Y_1	Y_2	Y ₃
D	0	0	D	0	0	0
D	1	0	0	D	0	0
D	0	1	0	0	D	0
D	1	1	0	0	0	D

Output: Attach the screenshots of the simulation of 1x4 demultiplexer which is performed on MyDAQ.

Result:

The implementation of 1x4 demultiplexer is done.