CS534 - Machine Learning IA1 Competition

Vy Bui - 934370552

Instructor: Dr. Xiaoli Fern

BASELINE

The implementation from the Implementation Assignment 1, with some small modifications, was used as the starting point. The train data from **PA1_train1.csv** was split into **training_data** and **val_data**, which comprise 80% and 20% of the data respectively. The **test_data** is read from **PA1_test1.csv**. All of the data was then normalized using μ_{train} and σ_{train} computed from **training_data**. Similar as the group IA1, date was split and ages since renovated was added to the feature list.

Experimented learning rates can be found in Table 1.

Learning Rate	MSE
1	Diverge
0.5	Diverge
0.15	4.367230
0.1	4.3682759056458
0.075	4.509987609852156
0.05	4.533113029839304
0.025	4.557692194914489
0.01	4.489928626263307
0.001	4.575720392043068
0.0001	10.808924189860564

Table 1: different learning rates and corresponding MSE

0.15 seems to yields the best model, named $model_1$, whose MSE=4.367230. $model_1$ is re-trained with all of the input data. Its features' importance can be found in Table 2.

Feature	Weight
bias	5.370881
bedrooms	-0.293320
bathrooms	0.349722
sqft_living	0.765111
$\operatorname{sqft_lot}$	0.057593
floors	0.018585
waterfront	1.447041
view	0.575169
condition	0.180739
grade	1.121869
$\operatorname{sqft_above}$	0.743586
sqft_basement	0.176143
yr_built	-0.914694
zipcode	-0.276595
lat	0.839431
long	-0.312246
sqft_living15	0.139174
sqft_lot15	-0.093799
month	0.045941
day	-0.054593
year	0.183123
age_since_renovated	-0.161380

Table 2: $model_1$'s weights

FEATURE EXPLORATION

Firstly, to gain some insights into the data, pandas was used to compute the correlations between input features and the target features (price), which are showned in Table 3.

Input Features	Correlation with price
id	-0.014748
bedrooms	0.304994
bathrooms	0.524480
sqft_living	0.693156
sqft_lot	0.090327
floors	0.265757
waterfront	0.222654
view	0.392961
condition	0.051306
grade	0.671957
sqft_above	0.605777
$sqft_basement$	0.295117
yr_built	0.057532
yr_renovated	0.095046
zipcode	-0.048750
lat	0.307248
long	0.025544
sqft_living15	0.589190
sqft_lot15	0.085476
price	1.000000

Table 3: correlations between price and input features

The top three features with highest correlation with "price" are "sqft_living", "grade", and "sqft_above", from highest to lowest. The correlation between "long" and "price" is quite small, which is reasonable because all of samples are houses located in Seattle, whose longitudes are very close to each other. This might indicate that "long" is not quite useful to predict the house price. However, training without using "long" results in worse models.

Figure 1: Histogram of price

The house prices mainly fall in the range from [0.82,14.4], with more than 97%, as showned by Figure 1. Suspecting that the outliers might negatively affect the model, I dropped the input data with prices > 14.4 to train $model_2$. It performs worse than $model_1$, having MSE = 5.28.

The correlations between price and preprocessed input features are shown in Table 4.

Preprocessed Input Features	Correlation with price
bedrooms	0.304994
bathrooms	0.524480
$\operatorname{sqft_living}$	0.693156
sqft_lot	0.090327
floors	0.265757
waterfront	0.222654
view	0.392961
condition	0.051306
grade	0.671957
$\operatorname{sqft_above}$	0.605777
$\operatorname{sqft_basement}$	0.295117
yr_built	0.057532
zipcode	-0.048750
lat	0.307248
long	0.025544
$sqft_living15$	0.589190
$sqft_lot15$	0.085476
price	1.000000
month	-0.008468
day	-0.024775
year	0.001692
age_since_renovated	-0.099004

Table 4: correlations between price and preprocessed input features

CONCLUSION

First, $model_1$ appears to be the best model with the MSE of 4.37. Second, using random data split into train and validation set can result in models with significantly different performance.