The Romer Model

Prof. Lutz Hendricks

Econ520

February 9, 2016

Issues

We study models where intentional innovation drives productivity growth.

Romer model:

- ► The standard model of R&D goes back to **Romer** (1990).
- Innovations are produced like any other good using R&D labor as input.

Policy effects

- Policies, such as R&D subsidies, can change the rate at which innovations are produced.
- Surprisingly, it turns out that policies have no effect on long-run growth.

Learning Objectives

In this section you will learn:

- 1. how to analyze the Romer model
- 2. why R&D policies do not change the long-run growth rate of the economy

The Romer model

Solow block

- Production of goods works exactly like in the Solow Model
- Aggregate production function:

$$Y_t = K_t^{\alpha} \left(A_t L_{Y_t} \right)^{1-\alpha} \tag{1}$$

► Capital accumulation as in the Solow model

$$\dot{K}_t = s_K Y_t - \delta K_t \tag{2}$$

Labor input grows at a constant rate

$$g(L) = n \tag{3}$$

Solow Block What has changed?

Final goods production function has:

- \triangleright constant returns to rival inputs: K and L_Y .
- ▶ has increasing returns to all inputs (including A)

Labor is divided into production (L_Y) and R&D (L_A) .

R&D Block

- Ideas are produced just like other goods.
- ▶ The input is labor (L_{At})
 - not much changes if capital is an input, too.
- ▶ The output is a number of new ideas.
 - \triangleright A_t is the number of ideas that have been invented up to t.
 - A_t is the number of ideas discovered today (or the rate at which they are discovered).

R&D Block

► The ideas production function:

$$\dot{A}_t = \bar{B}L_{At}^{\lambda} \tag{4}$$

- $\triangleright \lambda$ determines returns to scale.
- ▶ B̄ is a productivity parameter.

Ideas are inputs to innovation

How easy it is to produce a new idea depends on how much has already been discovered.

$$\bar{B} = B A^{\phi} \tag{5}$$

- ▶ If ideas help produce new ideas: $\phi > 0$: $A \uparrow \Longrightarrow \bar{B} \uparrow$.
- ▶ If there is "fishing out:" $\phi < 0$.
- ▶ Assume $\phi \le 1$. (If $\phi > 1$ odd things happen...).
- ▶ The ideas production function is then

$$\dot{A} = B L_A^{\lambda} A^{\phi} \tag{6}$$

$$g(A) = B L_A^{\lambda} A^{\phi - 1} \tag{7}$$

Ideas production function

Even though ideas foster innovation $(\phi > 0)$, more ideas imply slower g(A).

Ideas production function

Note how similar this is to the law of motion for capital in the Solow model

Model			Productivity	"Capital"	Labor	Depreciation
Solow	\dot{K}_t	=	A	K_t^{α}	L_t^{1-lpha}	$-\delta K_t$
Romer	\dot{A}_t	=	В	A_t^{ϕ}	L_{At}^{λ}	-0

It follows directly that there cannot be long-run growth in A/L when $\phi + \lambda \leq 1$.

But we still can get long-run growth in Y/L.

The Romer model

Behavior

- So far we have described technologies.
- ► To describe behavior, we make a **Solow assumption**:
 - A constant saving rate

$$S/Y = I/Y = s_K$$

► A constant labor allocation:

$$L_A = s_A L \tag{8}$$

$$L_Y = (1 - s_A) L \tag{9}$$

Model summary

The Solow block:

$$Y = K^{\alpha} \left(A L_Y \right)^{1-\alpha} \tag{10}$$

$$\dot{K} = s_K \ Y - \delta \ K \tag{11}$$

$$L_t = L_0 e^{nt} (12)$$

Production of ideas:

$$\dot{A} = B L_A^{\lambda} A^{\phi} \tag{13}$$

Constant behavior:

$$L_Y = s_Y L; \quad L_A = s_A L \tag{14}$$

The growth rate of ideas:

$$g(A) = B (s_A L)^{\lambda} A^{\phi - 1}$$
 (15)

Model summary

- ► This looks complicated, but isn't.
- We have tricked the model such that Y and K don't matter for how A evolves.

$$\dot{A} = B L_A^{\lambda} A^{\phi} \tag{16}$$

- ▶ This would change, if we let \dot{A} depend on K
 - but that would not affect the results
 - only the algebra would be more complicated (see Romer 2011)

Does the Model Make Sense?

- ▶ The production functions are arbitrary.
 - But what matters are certain qualitative features, not the exact functional form.
 - We wil get back to this.
- There is only one input. Only one good.
 - All of this can be relaxed without changing anything too important.
- ▶ Where are the households, consumption, population growth ...
 - We can add those it does not make any difference.
- The labor allocation is fixed.
 - ► This is important.
 - ► The literature does not make this assumption. It can talk about patents, policy, ...
- Ideas are produced like goods.

Balanced growth path

Definition

A BGP is a path along which all variables grow at constant rates.

Why might this be interesting?

Balanced growth path

At what rates do the endogenous objects grow on the BGP?

Result 1: g(k) = g(y)

Proof:

Balanced growth path

Result 2: g(y) = g(A)

Proof:

Result

All long-run growth is due to R&D.

Growth rate of ideas

$$g(A) = \frac{\lambda \ n}{1 - \phi} \tag{17}$$

Proof:

Ideas production:

$$g(A) = B \frac{L_A^{\lambda}}{A^{1-\phi}} \tag{18}$$

BGP: g(A) is constant $\implies L_A^{\lambda} A^{\phi-1}$ is constant

Take growth rates of that

$$g(g(A)) = \lambda g(L_A) - (1 - \phi)g(A) = 0$$
 (19)

With constant time allocation, s_A : $g(L_A) = n$.

Solve for g(A). Done.

Summary: Balanced growth

Balanced growth in the Romer model is characterized by:

$$g(y) = g(k) = g(A)$$
 (20)

$$g(A) = \frac{\lambda \ n}{1 - \phi} \tag{21}$$

All growth is due to innovation.

Why is this true?

Why is all growth due to innovation?

Solow model:

Romer model:

Balanced growth: Intuition

$$g(A) = \frac{\lambda \ n}{1 - \phi} \tag{22}$$

Growth is simply a multiple of population growth Behavior does not matter: s_K and s_A do not appear in (22).

Intuition

- ► Consider the case $\phi = 0$.
- Ideas production is then

$$\dot{A} = B L_A^{\lambda} \tag{23}$$

- ▶ If the population is **constant**, L_A is constant.
- In each period, the economy produces a constant number of ideas.
- ► The growth rate of ideas, $g(A) = B L_A/A$, falls to zero over time.
- ► A fixed number of people cannot produce a growing stream of ideas.

Population growth is necessary for sustained innovation (at a constant rate).

How growth is sustained

$$g(A) = BA^{\phi - 1}L_A^{\lambda}$$

Special Case: Phi = 1

With $\phi = 1$, idea production becomes

$$g(A) = B L_A^{\lambda} \tag{24}$$

This is the case studied by Romer (1990).

The model has exploding growth, unless the population is constant.

This is clearly contradicted by post-war data: L_A rose dramatically, while g(y) was at best constant.

Reality check

- 1. The model says: constant population no growth.
 - ▶ But we are still producing new ideas all the time.
 - How can we reconcile this?
- 2. What if the population shrinks over time?
 - Is the long-run growth rate negative?

Policy Implications

Policies have level effects

- What are the effects of government policies?
- ▶ We may expect policies to affect saving (s_K) , R&D (s_A) , or population growth (n).
- ▶ Consider the case of ϕ < 1, where growth is

$$g(A) = \frac{\lambda \ n}{1 - \phi} \tag{25}$$

- ▶ Main result: Policies that affect only saving or investment in $R\&D(s_A)$ do not affect long-run growth.
- Note: For policies that do not affect R&D the model behaves exactly like the Solow model.

R&D Subsidies

- \triangleright Consider a permanent increase in s_A .
- We must consider two equations:

$$g(A) = B \left(s_A L \right)^{\lambda} A^{\phi - 1} \tag{26}$$

$$\dot{K} = s_K \ Y - d \ K \tag{27}$$

- ▶ Note: Behavior of *A* is independent of *K* and *Y*.
- ▶ Simplify by assuming $\lambda = 1$ and $\phi = 0$ so that

$$g(A) = B s_A L / A \tag{28}$$

Balanced growth rate:

$$g(A) = n$$

R&D Subsidies

Steady state and stability

R&D Subsidies

▶ On a BGP, (28) determines A/L:

$$(A/L)^* = \frac{B \ s_A}{g(A)} = \frac{B \ s_A}{n}$$
 (29)

- As long as L/A is above BGP, g(A) > n is above BGP.
- ▶ Therefore, g(A) declines over time until it reaches n.

Transition path after an increase in s_A

Time path of the growth rate of ideas

5.2 Å/A OVER TIME

A period of faster innovation builds up more ideas.

Time path of A

FIGURE 5.3 THE LEVEL OF TECHNOLOGY OVER TIME

E*conomic Growth,* Copyright © 2004 W. W. Ni

Eventually growth levels off, but the higher level of *A* remains forever.

Policy implications

- ▶ Patent protection, R&D subsidies, and other policies affect s_A .
- ► These policies can raise the growth rate of output, although not in the long run.
- ▶ Policies do affect long-run levels of Y/L.

Gains From Openness

- Traditional trade theory implies that gains from trade are small.
- ▶ The Romer model has a new channel for gains from trade.
- ► The idea:
 - each firm invests in technology capital A
 - closed economy: A can be used in all domestic locations
 - ▶ open economy: A can be used in more locations
 - productivity rises due to increasing returns to scale

Evidence: Gains From Openness

Idea: do countries that open up grow faster?

Fig. 2. 1973 joiners' labor productivity as a percentage of EU-6 (1960-2005).

Source: McGrattan and Prescott (2009)

Evidence: Gains From Openness

Fig. 5. CE-8 labor productivity as a percentage of EU-6 (1989–2005).

Source: McGrattan and Prescott (2009)

Evidence: Gains From Openness

Lucas (2009): open economies converge to the frontier country.

Summary

- Innovations are produced just like regular goods, but they are non-rival.
- ► Therefore, we have scale effects: larger markets support more rapid innovation.
- ▶ The growth rate of Y/L is proportional to the population growth rate.
- ▶ A one-time increase in R&D effort (higher L_A) raises the rate of innovation permanently.
 - But this is not enough to sustain higher long-run growth.
- ▶ Policies only have level effects.

Final Example

What is the effect of a permanent increase in

- 1. research productivity
- 2. population?

Reading

▶ Jones (2013b), ch. 5.

Optional:

- ▶ Romer (2011), ch. 3.1-3.4
- ▶ Jones (2013a), ch. 6

Advanced Reading

- ▶ Jones (2005) talks in some detail about the economics of ideas.
- ► Lucas (2009) and McGrattan and Prescott (2009) on openness and growth

References I

- Jones, C. I. (2005): "Growth and ideas," *Handbook of economic growth*, 1, 1063–1111.
- ——— (2013a): Macroeconomics, W W Norton, 3rd ed.
- Jones, Charles; Vollrath, D. (2013b): *Introduction To Economic Growth*, W W Norton, 3rd ed.
- Lucas, R. E. (2009): "Trade and the Diffusion of the Industrial Revolution," *American Economic Journal: Macroeconomics*, 1–25.
- McGrattan, E. R. and E. C. Prescott (2009): "Openness, technology capital, and development," *Journal of Economic Theory*, 144, 2454–2476.
- Romer, D. (2011): Advanced macroeconomics, McGraw-Hill/Irwin.