Super computing systems

31. August 2010

A Real-Time Low-Power Stereo Engine Using Semi-Global Matching

Felix Eberli

Motivation: 3D Scene Reconstruction

Overview

- •Why FPGA?
- **SGM Algorithm**
 - Why Semi-Global Matching (SGM)?
 - How does SGM work?
 - Hardware Implementation
 - Results
 - Summary and Conclusions
- SCS Spartan6 FPGA BOX
- **•EB Assist ADTF Messtechnik**

Why SGM?

- SGM is found 3 times in the top 12 (2009/09/15)
- Most other topperforming algorithms use segmentation which complicates a hardware solution
- Performance tested offline successfully on street scenes with adapted similarity criterion

Stereo with Semi-Global Matching (SGM)

Local algorithms

- Estimate correspondence independently at each pixel, typically using correlation between local windows.
- short-sighted, can fail in poorly textured areas.

Global algorithms

Try to minimize an overall energy term, which usually consists of two parts:

$$E(f) = E_{similarity}(f) + E_{smoothness}(f)$$

In general computationally complex, not suitable for real time application.

Semi-Global Matching

- Proposed by Heiko Hirschmüller (CVPR 2005)
- Minimizes energy similar to global algorithms using smoothness constraint.
- Approximates a global minimum by propagating the lowest costs from several 1D paths across the image.

Propagating the Lowest Cost Along a 1D Path

- The global energy to be minimized includes:
 - The dissimilarity costs C(p,d) data term
 - A small penalty P1 to every slight disparity changes between neighboring pixels
 - A large penalty P2 to every disparity jump smoothness term
- For one direction in a 1D line, the optimal solution is obtained by propagating the lowest costs similar to dynamic programming (without backtracking).

Hardware Implementation II

Experimental System

- SCS Spartan6 FPGA Box used for experimental system
- Target system uses a Xilinx Spartan6 FPGA and is directly connected to the cameras

Example Project: 4 LVDS Cam HIL Interface Box

FPGA Board Overview

Main Features

FPGA	1 x Spartan 6 LX 150T
SDRAM	2 x DDR2 128MB (1GBit) (optional 2GBit)
PCle	4 Iane PCle over Gennum G4124 (optional)
GigE	2 x GigE (Linux driver available / Windows driver optional)
SATA	4 x SATA connector (optional)
User IO	2 x LPC FMC connector (72 I/O and 1 serdes each) 1 special connector (about 40 slow I/O, 2 serdes and supply)
Supply	12V (7-20V) ~10W (depending on AddOn card and algorithm)
Board dimension	24cm x 10 cm
Box dimension	31cm x 20cm x 7cm

FPGA card can be ordered from SCS in two versions:

- OEM card
- with housing and power supply (algorithms and interface cards on request)

Super computing systems

HIL System

EB Assist ADTF Integration

SCS

- >15 years of contract develoment of electronics, software and algorithms
- >60 engineers in the fields of
 - Automotive
 - Embedded Systems
 - Vision & Sensors
 - High Performance Computing
 - Enterprise Software

Super computing systems

Contact

felix.eberli@scs.ch +41 43 456 16 19