Parameter-Estimation and Hypothesis-Testing

By
Dr. Anjula Mehto
Assistant Professor
Thapar Institute of Engineering and Technology,
Patiala, Punjab
Email-anjula.mehto@thapar.edu

Parameter Estimation

- There are many different distributions for random variables and all of those distributions had parameters.
- What if we don't know the values of the parameters and we can't estimate them from our own expert knowledge?
- What if instead of knowing the random variables, we have a lot of examples of data generated with the same underlying distribution?

Parameter Estimation

 Parameter Estimation is a branch of statistics that involves using sample data to estimate the parameters of a distribution.

Parameters of Different Distributions

• The parameters are the numbers that yield the actual distribution.

Distribution	Parameters
Bernoulli(p)	$\theta = p$
Poisson(λ)	θ = λ
Uniform (a,b)	θ =[a,b]
Normal (μ , σ^2)	$\theta = [\mu, \sigma^2]$

Parameter Estimations Techniques

- Method of Moments (MoM)
- Maximum Likelihood Estimation (MLE)
- Minimum Mean Square Error (MMSE)
 Estimation

- Estimating the Moments about population mean (μ) .
- Involves equating the sample moments of a statistical distribution to the corresponding population moments.
- The sample moments are computed from the observed data, while the population moments are expressed in terms of the parameters of the distribution.

• The basic idea of MoM is to estimate the parameters of the distribution by solving a set of equations that equate the sample moments to the population moments.

- Suppose that we take a random sample from a rectangular distribution, i.e., a uniform distribution over [a, b]. The 2 parameters are 'a' and 'b' here.
- We have to estimate these 2 parameters given a sample of size 'n'.

- Let (*X*_1,*X*_2,...,*X*_*n*) be a random sample of size 'n' taken from the variable 'X'.
- $E(X) = (a + b)/2 = (x_1, +x_2 + \cdots + x_n)/n = m$ (say);
- This gives us a + b = 2m.....(i)
- $Var(X)=E(X^2)-(E(X))^2$
- $E(X^2) = Var(X) + (E(X))^2$
- $\bullet = (b-a)^2/12 + ((a+b)/2)^2$
- $= (a^2 + b^2 + ab)/3$
- $= (x_1^2 + x_2^2 + ... + x_n^2)/n = p (say)$

- This gives us $(a^2 + b^2 + ab) = 3p....(ii)$
- Solving (i) and (ii) for a and b gives the estimates using method of moments.
- a = m sqrt(3.p 3.m.m)
- b = 2.m a = m + sqrt(3.p 3.m.m)

- Let $(X_1, X_2, ..., X_n)$ be a random sample of size 'n' taken from a Normal Population with parameters: mean θ_1 and variance θ_2 .
- We have to estimate these 2 parameters given a sample of size n.

- For the normal distribution, the population mean and variance are given by:
- $\mu = \theta_1$
- \circ $\sigma^{\wedge} 2 = \theta_2$
- The sample mean and variance can be calculated from the sample:
- $\bar{x} = (x_1 + x_2 + ... + x_n) / n$
- $s^2 = ((x_1 \bar{x})^2 + (x_2 \bar{x})^2 + ... + (x_n \bar{x})^2)$ / (n - 1)

- Setting the sample mean equal to the population mean, we get:
- $\bar{\mathbf{x}} = \theta_1$
- Solving for θ_1 , we get:
- $\theta_1 = \bar{x}$
- Setting the sample variance equal to the population variance, we get:
- \circ s^{\(2 = \theta 2 \)}

- Solving for θ_2 , we get:
- $\theta_2 = s^2$
- Therefore, the method of moments estimators for θ_1 and θ_2 are:
- $\theta_1 = \bar{x} = (x_1 + x_2 + ... + x_n)/n$ (sample mean)
- $\theta_2 = S^2 = ((x_1 \bar{x})^2 + (x_2 \bar{x})^2 + ... + (x_n \bar{x})^2) / (n 1)$ (sample variance)

- The maximum likelihood estimation (MLE) estimates the population parameters by finding the values that maximize the likelihood function.
- For a discrete distribution, maximize the PMF of the data.
- For a continuous distribution, maximize the PDF of the data.

• Let us take a sample of size 'n' from an exponential population having the parameter 'λ'. So, 'X' is exponentially distributed with parameter 'λ'.

- Solution-
- A sample of size 'n' is taken: (*X*_1,*X*_2,...,*X*_n)
- Exponential density is:

$$f(x) = \lambda \cdot e^{\wedge}(-\lambda \cdot x), \quad \lambda > 0, x \ge 0$$

The density of X_i is :

$$\lambda.e(-\lambda.x_i), \quad i=1, 2,n.$$

- Joint density of $(X_1, X_{i=1}^n e^{\wedge}(-\lambda, x_i))$
- $L(x_1, x_2,, x_n) =$

- Take natural logarithm.
- $\ln(L(x_1, x_2, ..., x_n)) = \ln(\lambda^n + e^((-\lambda x_1) + (-\lambda x_2) + ... + (-\lambda x_n)))$
- = $n*ln(\lambda)+((-\lambda.x_1)+(-\lambda.x_2)+\cdots+(-\lambda.x_n))$
- = $n*ln(\lambda)-\lambda (x_1+x_2+..+x_n)$
- Differentiate this equation with respect to λ, and equate to zero, this will give us the estimator that is obtained using this method of maximum likelihood estimation.

Suppose

$$Z= n*ln(\lambda)-\lambda (x_1+x_2+...+x_n)$$

$$\frac{\partial z}{\partial \lambda} = 0$$

$$n/\lambda - \lambda (x_1 + x_2 + ... + x_n) = 0$$

Take $(x_1 + x_2 + ... + x_n) = \sum_{i=1}^{n} x_i$
 $\lambda = 1/sample(mean)$

Q.1 Assume x_1, x_2, x_3.....x_n be independent and identically distributed sample from a distribution with probability defined as:

$$P_{(x_i)}(x_i)(x_i;\theta) = (1-\theta)^{(x_i)}(x_i;\theta)$$

where θ is the parameter of the distribution. Find the estimator of the parameter using Maximum Likelihood Estimation.

Answer-

$$\theta_{MLE} = n / \sum (x_i)$$

 $\theta_{MLE} = 1/mean$

- To find the maximum likelihood estimator of the parameter θ , we need to maximize the likelihood function, which is given by:
- $L(x_1, x_2, ..., x_n) = \prod [P_(X_i) (x_i;\theta)]$
- where x_1, x_2, ..., x_n are the observed values of the random variables X_1, X_2, ..., X_n.
- Taking the natural logarithm of the likelihood function, we get:
- $\ln L(x_1, x_2, ..., x_n) = \sum [\ln P_(X_i)]$
- = $\ln (1-\theta)^{\hat{}} \sum (x_i-n).\theta^n$
- = $(\sum (x_i n)) \ln(1 \theta)$] + n. $\ln(\theta)$

- To find the maximum of this function, we take the derivative with respect to θ and set it equal to zero:
- $d/d\theta$ [ln L(x_1, x_2, ..., x_n)]
- = $d/d\theta \left(\sum (x_i n) \right) \ln(1 \theta) + n \ln(\theta)$
- = $(\sum (x_i n))/(1 \theta).(-1) + n/\theta] = 0$
- Simplifying this expression, we get:
- $(\sum (x_i n))/(1 \theta) = n/\theta$
- Solving for θ , we get the maximum likelihood estimator:
- $\theta_MLE = n / \sum (x_i)$

Assignment Question-1

• Let (X1,X2,...,Xn)be a random sample of size n taken from a Normal Population with parameters: mean \theta 1 and variance \theta 2. Find the Maximum Likelihood Estimates of these two parameters.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Assignment Question-2

• Let X_1 , X_2 . . . , X_n be a random sample from $B(m, \theta)$ distribution, where $\theta \in \Theta = (o, 1)$ is unknown and 'm' is a known positive integer. Compute value of θ using the M.L.E.

- Given some information that is related to an unknown quantity of interest (say random variable X), the problem is to obtain a good estimate for the unknown (variable X) in terms of the observed data (say random variable Y)
- In general, our estimate x' is a function of y:

$$x'=g(y)$$

• The error (\tilde{E}) in our estimate is given by

$$\tilde{E} = X - x' = X - g(y)$$

- In MMSE the objective is to minimize the expected value of residual square, where residual is the difference between the true value and the estimated value.
- The expected residual square is also known as MSE (Mean Square Error):

$$E[(X-x')^2|Y=y] = E[(X-g(y))^2|Y=y]$$

Procedure to Solve MMSE

- 1. Define the estimator
- 2. Construct the MSE (Mean Square Error)
- 3. Differentiate the MSE with respect to the parameter and set it to zero.
- 4. Put the MMSE estimator in step 3 in the MSE expression to find the minimum residual square.

- For simplicity, let us first consider the case that we would like to estimate X without observing anything.
- What would be our best estimate of X in that case?
- Let `a` be our estimate of X. (Step-1)
- Then, the MSE is given by: (Step-2)

$$h(a) = E[(X-a)^2]$$

= $E[X^2] + a^2 - 2.a.E[X]..(1)$

• This is a quadratic function of `a`, and we can find the minimizing value of `a` by differentiation and set it to zero (Step-3)

$$h'(a) = -2E[X] + 2a = 0$$

 Therefore, we conclude the minimizing value of `a` is:

$$a = E[X]$$

• Put the value of `a` in the Equation (1) (Step-4)

$$h(a) = E[X^2] + E[X]^2 - 2.E[X].E[X]$$

$$= E[X^2] + E[X]^2 - 2.E[X]^2$$

$$= E[X^2] - E[X]^2$$

$$= Var(X)$$

• **Interpretation:** The best constant estimator of X is the expected value of X. The minimum MSE using the optimal estimator is the variance of X.

Hypothesis Testing

- Hypothesis testing is a statistical method used to determine whether a hypothesis about a population parameter is supported by the available sample data.
- A statistical hypothesis is an assumption about a population parameter.
- This assumption about the parameter may or may not be true.

Hypothesis Testing

• An example of hypothesis testing is testing whether the mean weight of apples in a particular fruit garden is 100 grams.

Null Hypothesis

- Null Hypothesis-
- It is a statement that there is no significant difference or relationship between two populations or variables.
- The null hypothesis, denoted by H_0.
- Example- The null hypothesis is that the mean weight is 100 grams.

Alternative Hypothesis

- It is a statement that there is a significant difference or relationship between the two populations or variables.
- The alternative hypothesis, denoted by *H*_1 or *H*_a.
- There are three types of alternative hypotheses. These are: (i) H1: weight≠100, (ii) H1:weight>100and (iii) H1:weight<100.
- We have to consider one of these three hypotheses in a problem.

Alternative Hypothesis

• Example-The alternative hypothesis is that the mean weight is not equal to 100 grams.

- The two hypotheses are complementary to each other.
- We accept (or reject) the null hypothesis; this is equivalent to rejecting (or accepting) the alternative hypothesis.
- In this process, we make two types of decision errors, namely:
 - >Type I error and
 - ➤ Type II error

- Type I Error-
- When we reject a null hypothesis when it is true.
- The probability of committing a Type I error is called the significance level denoted by α .

- Type II Error-
- When we accept a null hypothesis when it is false.
- The probability of committing a Type II error is denoted by β.
- The probability of not committing a Type II error is called the Power of the test (1-β).

	Null hypothesis is TRUE	Null hypothesis is FALSE	
Reject null	Type I Error	Correct outcome!	
hypothesis	(False positive)	(True positive)	
Fail to reject	Correct outcome!	Type II Error	
null hypothesis	(True negative)	(False negative)	

- One-Tailed Test
- A test of hypothesis, in which the region of rejection is only on one side of the distribution used for test statistic, is called a one-tailed test.

One-Tailed Test

- For example, if we hypothesize that population mean is 12, i.e., null hypothesis is $\mu = 12$.
- We consider that the alternative hypothesis is; mean is less than 12, and then we have to employ a one-tailed test.
- In this situation, alternative hypothesis shall be μ < 12.
- One can see that in some other situation, we may have to consider that $\mu > 12$.

One-Tailed Test

• If the sample being tested falls into the onesided critical area, the alternative hypothesis will be accepted instead of the null hypothesis.

- Two-Tailed Test
- A test of hypothesis, in which the region of rejection is on both sides of the distribution used for test statistic, is called a two-tailed test.

Two-Tailed Test

- For example, if we hypothesize that population mean is 12, i.e., null hypothesis is $\mu = 12$.
- We consider that the alternative hypothesis is; mean is less than 12 or mean is greater than 12, then we have to employ a two-tailed test.
- In such a situation, alternative hypothesis shall be μ ≠ 12.

Two-Tailed Test

• If the sample being tested falls into the twosided critical area, the alternative hypothesis will be accepted instead of the null hypothesis.

Steps in Hypothesis Testing

- 1. Set up a Hypothesis- State the null and alternative hypotheses.
- 2. Setup the level of significance- Significance level is the probability of occurrence of wrong decision.
- 3. Choose the appropriate test statistic-
 - Z-Score (sample size is greater than 30)
 - t- Test (sample size is less than 30)

Steps in Hypothesis Testing

4. Doing Computation-

• Z-Test-
$$Z = x-np/sqrt(npq)$$

x-observed success, n-sample size, Z-calculated critical value, p-probability of success, q-probability of failure

• t-Test-

$$t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$$

s- sample variance, μ - mean of the population, \bar{x} -sample mean

Steps in Hypothesis Testing

5. Making Decision-

Z_cal > Z_tab, hence (H_o) is rejected t_cal > t_tab, hence (H_o) is rejected

• A coin was tossed 484 times and Head turned up 265 times. Test the hypothesis that the coin is unbiased. The critical Z-values are given.

P	Significan ce Level	Confidence Level	Two-Tailed Test	One-Tailed Test
0.1	10%	90%	1.65	1.28
0.05	5%	95%	1.96	1.64
0.01	1%	99%	2.58	2.33
0.001	0.1 %	99.9%	3.29	3.10

Solution-

- Step-1 :
 - H_o Coin is unbiased
 - H_a Coin is biased
- Step-2: Setup a significance level- IF not given then consider 5%.
- Step-3: Setting a Test statistic- Z-Score (sample size is greater than 30)
- $\mathbf{Z} = \mathbf{x} \mathbf{np} / \mathbf{sqrt}(\mathbf{npq})$

Solution-

Step-4: Doing Calculation

$$Z = x-np/sqrt(npq)$$

Put the values:

$$Z_{cal} = 2.09$$

$$Z_{tab} = 1.96$$

Solution-

- Step-5: Make a decision
- Check -1: Z_cal > Z_tab, hence (H_o) is rejected.

or

• Check-2: The Z_cal (2.09) does not lie in the range of Z_tab (i.e. -1.96 to 1.96)

Hence the Null Hypothesis (H_o) is rejected.

• In 256 throws of a six faced dice, odd points appeared 122 times. Would you say that the dice is fair at 5% level of significance?

Solution-

$$Z_{cal} = -0.75 < Z_{tab}$$

Hence H_o is accepted.

• The manufacturer of a certain make of Thermometer claims that his thermometers have a mean life of 20 months. A random sample of 7 such thermometers gave the following values. Life of thermometers in months: 19, 21, 25, 16, 17, 14, 21. Can you regard the producer's claim to be valid at 1% level of significance? Given that t_tab= 3.707.

- Solution-
- μ = 20, n=7, calculate \bar{x} which is the mean of the sample using the data given in the question.
- Then put all the values in the below equation:

$$t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$$

- t_cal=0.716 and t_tab= 3.707
- H_o is accepted (t_cal< t_tab)