

DESIGN AND ECONOMICS OF A BIOETHANOL PLANT

CHE 432 Group 22

Nick Seta

Mason Sitar

Nick Wawee

Logan Soule

Nygel Sejismundo

Bioethanol Plant Design Overview

Introduction & Design Overview

Fermentation

Ethanol Recovery

Fusel Recovery

Process Economics

Process Hazard Analysis

Conclusions

Introduction

- A bioethanol plant was designed to produce 75*10⁶ gal/yr of 90 vol% ethanol
 - Simultaneous saccharifcation and fermentation followed by ethanol recovery was used
 - A flow sheet, mass & energy balances, and equipment specifications were developed
- A fusel oil recovery system was designed and economic feasibility was evaluated
 - Process economics were evaluated with and without the recovery system

Process Simulation

- Continuous portions of process modeled
 - Ethanol recovery, fusel oil recovery, waste processing
- Thermodynamic model: UNIQ-RK

Fermentation: Overview

• Assumptions^[1]:

- Conversion of 0.9
- 5 gallon fusel oil/1000 gallon ethanol
- Maximum survivable alcohol concentration 0.16 vol/vol
- Negligible mass contribution from yeast and enzyme

$$Fermentation \ Time = \frac{Concentration}{Productivity} = \frac{153 \ g \ L^{-1}}{3 \ g \ L^{-1}hr^{-1}} \sim 50 \ hrs \qquad Total \ Time = 50 \ hr + 5 \ hr \ (processing) + 5 \ hr \ (cleaning) = 60 \ hrs$$

$$Time\ Unitl\ Empty = \frac{Tank\ Size}{Volume\ Flow} = \frac{1000\ m^3}{200\ m^3hr^{-1}} = 5\ hrs \qquad Number\ of\ Banks = \frac{Total\ Time}{Time\ Until\ Empty} = \frac{60\ hrs}{5\ hrs} = 12\ banks$$

Fermentation: Equipment Design

12 banks

- 5 fermenters
- Carbon Steel
- 200 m³ each
- Staggered 5 hours

2 Harvest Tanks

- 1000 m³ each
- Carbon Steel

Fermenter Volume:	200 m^3	Harvest Tank Volume:	$1000 \; m^3$
No. of Vessels	60	No. of Vessels	2
Material of Construction:	Carbon Steel	Material of Construction:	Carbon Steel
Purchase Cost:	\$ 3,223,506	Purchase Cost:	\$ 229,506

Fermentation: Operating Schedule

Time	Bank 1	Bank 2	Bank 3	Bank 4	Bank 5	Bank 6	Bank 7	Bank 8	Bank 9	Bank 10	Bank 11	Bank 12
0 hrs	Flowing	Ferment	Cleaning									
5 hrs	Cleaning	Flowing	Ferment									
10	Ferment	Cleaning	Flowing	Ferment								
hrs 15	Ferment	Ferment	Cleaning	Flowing	Ferment							
hrs 20	Ferment	Ferment	Ferment	Cleaning	Flowing	Ferment						
hrs 25	Ferment	Ferment	Ferment	Ferment	Cleaning	Flowing	Ferment	Ferment	Ferment	Ferment	Ferment	Ferment
hrs 30	Ferment	Ferment	Ferment	Ferment	Ferment	Cleaning	Flowing	Ferment	Ferment	Ferment	Ferment	Ferment
hrs 35	Ferment	Ferment	Ferment	Ferment	Ferment	Ferment	Cleaning	Flowing	Ferment	Ferment	Ferment	Ferment
hrs 40	Ferment	Cleaning	Flowing	Ferment	Ferment	Ferment						
hrs 45	Ferment	Cleaning	Flowing	Ferment	Ferment							
hrs 50	Ferment	Cleaning	Flowing	Ferment								
hrs 55 hrs	Ferment	Cleaning	Flowing									
60 hrs	Flowing	Ferment	Cleaning									

Ethanol Recovery: Stripping Column

- Column Specifications
 - Bottoms flowrate based on 70 wt-%. liquid to 30 wt-% solids
- No condenser is used to save energy
 - No reflux possible
- Amount of Stages:
 - 3 plus a reboiler

Ethanol Recovery: Stripping Column

Operating Pressure (psig):	10
Reflux Ratio	0
Total Number of Stages	3 plus a reboiler
Tray Spacing (m)	0.9
Diameter(m)	3.1
Percent Flooding	80%
Tray Type	Nutter-BDP
Total Height(m)	7
Space above top tray(m)	3
Space bellow bottom tray(m)	1.2
Material of Construction	Stainless Steel
Installed Purchase Cost w/ Auxiliaries	\$ 580,000.00

Liquid Mass Flow (kg/hr)

Ethanol Recovery: Rectifying Column

19
3.0
1.2
3
3.9, 3.9, 3.5
26
3.0
10
70%
316 SS
\$ 520,000

- Hydraulic plots generated for each tray verified functional operation
 - i.e. No weeping or entrainment
- Side stream taken above Tray 24 where isoamyl was most concentrated
 - Heterogenous azeotrope of isoamyl alcohol and water at 95.1 °C [1]
- Organic stream from decanter recycled as feed stream underneath intermediate take-off

Ethanol Recovery: Rectifying Column

1.2 ···· WATER ····o···· ETHANOL Liquid Mass Fraction
0 0 0
7 9 9 ···▲··· ISOAMYL 0.2 26 21 Stage Number

Example hydraulic plot

Liquid composition profile

Ethanol Recovery: DDGS Product

- Two single-effect evaporators in series, slight differences between each
- Optimized in ASPEN to determine minimum heat duty for desired DDGS moisture content
- DDGS waste is sold to respective market

Fusel Recovery: Decanter

- 88% fusel oil recovered in tops of decanter
 - Bottoms recycled to rectifying column
- Costed as a horizontal vessel

Fusel Recovery: Packed Column

- Fusel product is bottoms of packed column:
 - 97% recovery
 - 93 mole-% Fusel oil
 - 98 mass-% Fusel oil
- Costed with column and packing price
- Tops is recycled as decanter diluent

Height:	6.1 m
Diameter:	0.5 m
No. of Stages:	10
Feed Stage:	6
Packing Type:	1/2" Raschig Rings
HETP:	0.75 ft
Material of Construction:	316 SS
Purchase Cost:	\$ 63,705

Product Storage

- Two 500 m³ storage tanks for ethanol product
 - Allows a **14-hour** buffer before one tank is full
 - Shipping may not always be reliable (second tank)
 - Allow multiple truck filling stations
- Two 10 m³ storage tanks for fusel oil product
 - Allows a **58-hour** buffer time before tank is full
 - Second tank for shipping issues/cleaning

	Ethanol	Fusel oil	
Volume:	500	10	
Design Pressure:	1 atm	1 atm	
Material of Construction:	316 SS	316 SS	
Purchase Cost (2 tanks):	\$ 339,373	\$ 108,306	

Total Capital investment

- Factorial method of cost estimation to relate equipment cost to total capital investment for the plant^[#]
- Solids/Liquid Processing Plant:
 - Total "Lang Factor" of 4.27
- **\$28,000,000** capital investment for ethanol production and fusel recovery

Ethanol Plant		Fusel Recovery Plant Addon			
Equipment Purchase Cost: \$	6,309,358	Equipment Purchase Cost: \$	205,618		
Installation Cost: \$	2,586,837	Installation Cost: \$	84,303		
Piping Cost: \$	2,302,916	Piping Cost: \$	75,051		
Electrical Costs: \$	788,670	Electrical Costs: \$	25,702		
Instrument Costs: \$	820,217	Instrument Costs: \$	26,730		
Building and Service Cost: \$	1,924,354	Building and Service Cost: \$	62,713		
Excavation and site prep cost: \$	946,404	Excavation and site prep cost: \$	30,843		
Auxiliaries cost: \$	3,249,319	Auxiliaries cost: \$	105,893		
Total Physical Plant Investment: \$	18,928,074	Total Physical Plant Investment: \$	616,854		
Field Expense: \$	2,460,650	Field Expense: \$	80,191		
Engineering Cost: \$	2,460,650	Engineering Cost: \$	80,191		
Direct Plant costs: \$	4,921,299	Direct Plant costs: \$	160,382		
Contractor's fees: \$	820,217	Contractor's fees: \$	26,730		
Contingency cost: \$	2,460,650	Contingency cost: \$	80,191		
One-time labor fees: \$	3,280,866	One-time labor fees: \$	106,921		
Total Capital Cost: \$	27,130,239	Total Capital Cost: \$	884,157		

Ethanol Plant Economics

	Ethanol Production Plant	With Fusel Recovery Plant Add-on
Revenue (USD/year):	160,000,000	170,000,000
Manufacturing Cost (USD/year):	(190,000,000)	(190,000,000)
Net Profit (USD/Gal Ethanol):	(0.34)	(0.31)
NPW (10 years):	(250,000,000)	(240,000,000)

- Primary expense is corn: \$ 3.56/Bushel
- Fusel oil has a higher return than ethanol
 - \$10.68/gallon Fusel Oil
 - \$1.64/gallon Ethanol
- Fusel recovery add-on pays for investment in: 3 months
- Recovering DDGS is expensive but valuable revenue: \$ 135/ton[#]

Hazards Analysis

- Milling introduces risk for dust explosions
 - $T_{\text{byproducts}} < 240 \, ^{\circ}\text{C}^{[\#]}$
 - Proper cooling and ventilation
- Alcohols are highly flammable & carcinogenic at high levels
 - Process streams will be kept out of flammability limits
 - Proper PPE when handling alcohols
- Fermentation involves the processing of biological material
 - Implement pressure relief system in fermentation tanks
 - Ventilation in fermentation area to avoid CO₂ over exposure
 - CO₂ evolved could potentially be ran through a gas scrubber

Recommendations and Conclusions

- For an existing plant:
 - Fusel recovery is a good investment
- Construction of a new plant does not make sense
 - Net loss of 31 cents per gallon of ethanol produced
- Carbon dioxide scrubber

- Alternative starting materials: Waste streams from other plants
- Alternative microorganism: *Zymomonas mobilis* high productivity
- Alternative bioreactor: CSTR 6 g L⁻¹h⁻¹

Questions?

Reference Slides

Fusel Recovery: Heat Exchanger

Decanter feed cooled from 80°C to 5°C

• Aspen EDR Console used to identify optimum design

Coolant: 50% ethylene glycol and water at -20°C

• Required flow rate: 10.6 gpm

Costed based on heat exchange area for fixed head exchangers

	•
Length:	6.0 m
Shell OD:	0.36 m
Tube OD:	0.75 in
No. of Tubes:	149
No. of Baffles	60
No. of Shell/Tube Passes	1/1
Heat Exchange Area	50.1 m^2
Material of Construction	316 SS
Purchase Cost:	\$17,116

Hazards Analysis - Materials

- Fermentation involves the processing of biological and organic material
 - Process is operated at P= P_{atm} and T <100 °C
 - Biological material impose risk of biological hazards

Hazards Analysis - Milling

- Milling process introduces a dust which can lead to an explosion
- Combustible dust pentagon warrants the following for an explosion to occur:
 - Ignition = electrical & overheating
 - Fuel = corn milling byproducts
 - Confinement = any closed off area
 - Dispersion = any scattering of byproducts
 - Oxidizing Substance= air
- $T_{byproducts} < 240 \, ^{\circ}C[1]$

Fusel Recovery: Decanter

- 88% fusel oil recovered in tops of decanter
 - Bottoms recycled to rectifying column
- Mole fraction of fusel oil increased $(0.02 \rightarrow 0.38)$

Length: | 8.0 m

Costed as a horizontal vessel

									0	
	.	•	.				TT.		Diameter:	0.5 m
	Feed		\boldsymbol{B}	ottom	IS		Tops		Volume:	1 57 m3
Water	71.9	kmol/hr	Water	70.6	kmol/hr	Water	1.3	kmol/hr	volume:	1.57 111
Water	, 1.,	minor/ in	Water	7 010	milol/ III	Water	1.0	Killolj III	Dooldon oo timo	12 :
Ethanol	6.9	kmol/hr	Ethanol	5.8	kmol/hr	Ethanol	1.1	kmol/hr	Residence time:	43 min
Fusel Oil	1.7	kmol/hr	Fusel Oil	0.2	kmol/hr	Fusel Oil	1.5	kmol/hr	Material of Construction	316 SS
	1.7		<u> </u>	0.2		<u> </u>	1.0			
Total	80.5	kmol/hr	Total	76.6	kmol/hr	Total	3.9	kmol/hr	Purchase Cost:	\$16,491
										•

Major Equipment Cost and Pricing

Fusel Recovery Plant Addon

Major Equipment	Purchase Cost
Fusel Take-off stream heat exchanger	\$ 17,116
Fusel Oil Decanter	\$ 16,491
Packed Distillation Column	\$ 63,705
Fusel Oil Product Storage Tank	\$ 108,306
Total Major Equipment Cost:	\$ 205,618

Ethanol Production Plant

Major Equipment	Purchase Cost
Fermenters	\$ 3,223,506
Harvest Tanks	\$ 229,506
Stripping Column	\$ 581,071
Double-effect Evaporator	\$ 1,568,902
Rectifying Column	\$ 367,000
Ethanol Product Storage Tanks	\$ 339,373
Total Major Equipment Cost:	\$ 6,309,358

Packed Column Hydraulic Plot

Fusel Oil Uses

- Fusel Oil is used in:
 - Production of industrial solvents, flavoring agents, and plasticizers[1]
 - Burned to produce energy or added to diesel fuel[1]

Why UNIQUAC-RK thermodynamics?

- UNIQUAC is best for strongly non-ideal liquid solutions and liquidliquid equilibria.
 - The amounts of glucose dissolved in the water cause non-ideal tendencies.
- Redlich-Kwong equation of state method takes account non-ideal scenarios of vapor phase.
 - This occurs mostly in the first column, due to the large amounts of water and the small amount of fusel alcohol
 - Fusel alcohol's boiling point > water's boiling point
 - Theoretically, a lot more water would vaporize than fusel oil.

What is a Nutter-BDP Valve?

- Rectangular shaped valve set. Oriented Parallel to the liquid flow, allowing lateral vapor release.
 - Major project advantage-
 - Allows large amount of solid permeation between plates.

Nutter-BDP Trays

