Homework 9

Abstract Algebra II

Complete the following problems. Note that you should only use results that we've discussed so far this semester or last semester.

Problem 1. Suppose [K : F] = 2. Prove that K is an algebraic extension of F that is the splitting field over F for a collection of polynomials in F[x] (i.e., prove that K is a normal extension).

Problem 2. Determine the Galois group of $f(x) = (x^2 - 2)(x^2 - 3)(x^2 - 5)$ over \mathbb{Q} .

Problem 3. Determine the Galois group of the splitting field over \mathbb{Q} of $g(x) = x^4 - 14x^2 + 9$.

Problem 4. Let $K = \mathbb{Q}(\sqrt[8]{2}, i)$, $F_1 = \mathbb{Q}(i)$, and $F_2 = \mathbb{Q}(\sqrt{2})$.

- (a) Prove that $Gal(K/F_1) \cong \mathbb{Z}_8$.
- (b) Prove that $Gal(K/F_2) \cong D_8$.

Problem 5. Let $f(x) \in \mathbb{Q}[x]$. Suppose that $z \in \mathbb{C}$ is a root of f(x).

- (a) Prove that \overline{z} (complex conjugate of z) is also a root of f(x).
- (b) Suppose f(x) has degree 3. Prove that if the Galois group of the splitting field of f(x) is isomorphic to \mathbb{Z}_3 , then f(x) has only real roots.