Math 8212 Homework

Ryan Coopergard, David DeMark, Andy Hardt, Eric Stucky 2 May 2018

We've got 10 problems boiz!

Problems

- 1: done
- 2: done
- 3:
- 4: done
- 5: done
- 6:
- 7: done
- 8: done
- 9:
- 10: done
- 11:
- 12: Ryan
- 13: done
- 14:
- 15:
- 16:
- 17: Andy
- 18: Eric
- 19:
- 20:
- 21: done
- 22: done
- 23:
- 24:
- 25: Ryan
- 26:
- 27:
- 28:
- 29:
- 30:
- 31:
- 32:

33:

34: 35:

1. (Eisenbud Exercise 9.2)

Let k be a field.

(a) Let $f(x,y) \in k[x,y]$ be any polynomial, and consider the "variable" $x' = x - y^n$. Show that k[x,y] = k[x',y], and that if n is sufficiently large, then as a polynomial in x' and y, f is a scalar times a monic polynomial in y. Deduce that k[x,y]/f is integral over its subring k[x']. Use this to prove that dim k[x,y] = 2.

Proof. We show that k[x,y] = k[x',y]. It is clear that $k[x',y] \subseteq k[x,y]$. Now $x' + y^n = x$ is in k[x',y], as is y, so $k[x,y] \subseteq k[x',y]$ and we have equality. Let $f \in k[x,y]$ be any polynomial, and let r and s be the highest degree of x and y in f, respectively. Set n = s + 1. We claim that in x' and y, f(x,y) is a scalar times a monic polynomial in y. It suffices to show that if $\alpha x^r y^d$ is a term in f with d maximal, then αy^{nr+d} is a monomial in f(x',y) and nr + d is the largest power of y appearing in f. Indeed αy^{nr+d} is a monomial in f(x',y). Note that from any monomial $\beta x^a y^b$ in f(x,y), we have the summand $\beta (x' + y^n)^a y^b$ in f(x',y). The highest y-degree in this summand is na + b. If a < r, then because $b \le s$ and n = s + 1, we have $na + b \le nr < nr + d$. If a = r, and this polynomial is not $\alpha x^r y^d$, then b < d and na + b < nr + d. This proves our claim.

Now $k[x,y]/(f(x,y)) \cong k[x',y]/(f(x',y))$. Moreover, k[x',y]/(f(x',y)) is generated by $1,y,y^2,\ldots,y^{nr+d-1}$ as a k[x']-module. Hence k[x',y]/(f(x',y)) is integral over k[x'], and in particular they both have dimension 1.

Let $0 \subset p_1 \subset \cdots \subset p_n$ is a maximal chain of distinct prime ideals in k[x,y]. Then $p_1 = (f)$ for some $f \in k[x,y]$. This chain gets mapped to the maximal chain of primes $0 \subset p_2 + (f) \subset \cdots p_n + (f)$ in k[x,y]/(f). Because dim k[x,y]/(f) = 1 and the original chain has distinct primes, it follows that n = 2 and $p_2 + (f)$ is maximal. This implies that the original chain is of length 2, so dim k[x,y] = 2.

(b) Show that the same things are true for x' = x - ay for all but finitely many $a \in k$. (If k is finite, this could be all $a \in k$.)

Proof. We need only show that for all but finitely many $a \in k$, the polynomial f(x', y) is a scalar times a monic polynomial in y. Suppose f has degree d. After substituting x = x' + ay, the highest terms of y will be a sum of terms of the form $a^n \alpha y^d$ for some scalar α and some n, i.e.

$$f(x',y) = (\alpha_0 a^d + \alpha_1 a^{d-1} + \cdots + \alpha_{d-1} a + \alpha_d) y^d + \text{l.o.t.s.}$$

for some $\alpha_i \in k$ with $\alpha_i \neq 0$ for at least one i. This is a monic in y if and only if $(\alpha_0 a^d + \alpha_1 a^{d-1} + \cdots + \alpha_{d-1} a + \alpha_d) \neq 0$. Allowing a to vary, there are at most d solutions to $(\alpha_0 a^d + \alpha_1 a^{d-1} + \cdots + \alpha_{d-1} a + \alpha_d) = 0$, so f(x', y) is monic in y for all but finitely many choices of $a \in k$. The rest follows as in part (a).

Eisenbud 9.3. Suppose that a ring S is integral over the image of a ring homomorphism $\phi: R \to S$. Show that the Krull dimension of M as an S-module is the same as the Krull dimension of M as an R-module.

We first show that $\dim_R(M) \ge \dim_S(M)$. Suppose that $Q_1 \subset Q_2 \subset \cdots \subset Q_n \subset S/\operatorname{Ann}(M)$ is a maximum-size chain of distinct prime ideals in $S/\operatorname{Ann}(M)$, and consider the chain $P_i = \varphi^{-1}(Q_i)$ in $R/\operatorname{Ann}(M)$. By Corollary 4.18 (Incomparability), the fact that the Q_i are distinct but comparable primes implies that they have distinct intersections with $\phi(R)$, and therefore, the P_i are distinct.

The proof that $\dim_R(M) \leq \dim_S(M)$ is similar in spirit. Suppose that $P_1 \subset P_2 \subset \cdots \subset P_n \subset R/\operatorname{Ann}(M)$ is a maximum-size chain of distinct prime ideals in $R/\operatorname{Ann}(M)$, and consider the chain Q_i guaranteed by Going Up (Proposition 4.15). Then these Q_i must be distinct because they have distinct intersections with $\phi(R)$.

4.)

| Proposition (Eisenbud Ex. 9.2). There exists an infinite-dimensional Noetherian ring.

Proof. We let...

- k be any field,
- $R = k[x_1, x_2, \ldots],$
- $d: \mathbb{N}_0 \to \mathbb{N}_0$ a strictly increasing function with first difference function $\delta: \mathbb{N} \to \mathbb{N}$ defined by $\Delta(m) = d(m) d(m-1)$ such that d(0) = 0 and Δ is strictly increasing as well,
- $P_m = \langle x_{d(m-1)+1}, x_{d(m-1)+2}, \dots, x_{d(m)} \rangle$ for $m \ge 1$,
- U be the multiplicative system $(\bigcup_{m=1}^{\infty} P_m)^c$,
- and S be the ring $U^{-1}R$.

We shall now show that dim $S = \infty$, but S is Noetherian. We break this argument down into a series of claims.

Proposition 4.A (Eisenbud, Ex. 3.14). The maximal ideals of S are precisely the ideals P_m .

Proof of Proposition 4.A. We let I be a proper ideal of S (noting that necessarily, $I \subset \bigcup_{m=1}^{\infty} P_m$) and $0 \neq f \in I$ an arbitrary element. We let $\mathcal{A}_f := \{P_{i_1}, \dots, P_{i_n}\} := \{P_i : P_{i_1}, \dots, P_{i_n}\}$

 P_i contains a monomial of f}. We let $g \neq f$ be another arbitrary element of I and suppose for the sake of contradiction that g has some monomial term g' such that $g' \notin \bigcup_{j=1}^n P_{i_j}$. Then, f+g has a nonzero coefficient for g'. As each P_m is a monomial ideal and hence contains all monomials of each of its elements, we now have that for any $P_{i_k} \in \mathcal{A}_f$, $f+g \notin P_{i_k}$. However, by an identical argument, for any $P_j \ni g'$, $f+g \notin P_j$, since f necessarily has monomial terms not in P_j . Returning to the monomial ideal argument, we have now shown that $f+g \notin \bigcup_{m=1}^{\infty} P_m$, thus inducing a contradiction. Thus, for any ideal $I \subset S$, we have that $I \subset \bigcup_{k=1}^N P_{j_N}$ for some finite $\{j_1, \ldots, J_N\}$. Prime avoidance then implies $I \subset P_M$ for some $M \in \mathbb{N}$. As it is the case that $P_m \not\subseteq P_{m'}$ for $m \neq m'$, this completes our proof.

Next, as suggested by the text, we prove Eisenbud's lemma 9.4.

Lemma 4.B (Eisenbud, Lemma 9.4). Let Q be a ring with the properties (i) for any maximal $\mathfrak{m} \subset Q$, $Q_{\mathfrak{m}}$ is Noetherian and (ii) each element $s \in Q$ is contained in finitely many maximal ideals. Then, Q is Noetherian.

Proof of Lemma 4.B. We suppose for the sake of contradiction that there exists an infinite chain of ideals $0 = I_0 \subsetneq I_1 \subsetneq I_2 \subsetneq \ldots$ in Q. We then define the function $N : \operatorname{Max-Spec}(Q) \to \mathbb{N}_0$ by $\mathfrak{m} \mapsto \min\{n : I_n \not\subseteq \mathfrak{m}\}$. As each $Q_{\mathfrak{m}}$ is Noetherian, we must have that $N(\mathfrak{m})$ exists and is finite. We also define the choice function $C : \mathbb{N}_0 \to \operatorname{Max-Spec}(Q)$ which assigns to each $n \in \mathbb{N}_0$ some $\mathfrak{m} \in \operatorname{Max-Spec}(Q)$ such that $I_n \subset \mathfrak{m}$. As each ideal of a ring must be contained in a maximal ideal by Zorn's lemma, there exists some well-defined such C. We observe that $C(N(\mathfrak{m})) \neq \mathfrak{m}$ for any $\mathfrak{m} \in \operatorname{Max-Spec}(Q)$ as $I_{N(\mathfrak{m})} \not\subseteq \mathfrak{m}$ by construction. We also observe that $n \leq N(C(n))$, as $I_m \subset C(n)$ for any $m \leq n$ but $I_{N(C(n))} \not\subseteq C(n)$ similarly by construction. We now iteratively define a sequence of distinct maximal ideals $\{\mathfrak{m}_1,\mathfrak{m}_2,\ldots\}$ by letting $\mathfrak{m}_1 := C(1)$ and for i > 1, $\mathfrak{m}_i := C(N(\mathfrak{m}_{i-1}))$. As $N \circ C$ has been shown to be a strictly increasing function, we have by well-ordering that for any n, there exists a J such that $I_n \subset \mathfrak{m}_j$ for all j > J. However, then $I_n \subset \bigcap_{j=J}^\infty \mathfrak{m}_j$, contradicting our assumptions on Q.

Corollary 4.C. S is Noetherian.

Proof of Corollary 4.C. We wish to show that S satisfies properties (i) and (ii) of Lemma 4.B. We let $X = \{x_1, \ldots\}$ and $X_m = \{x_{d(m-1)+1}, \ldots, x_{d(m)}\}$. In order to show that S_{P_m} is Noetherian, we present the following alternative characterization of S_{P_m} : we let $R' = k[X \setminus X_m] = k[x_1, \ldots, x_{d(m-1)}, x_{d(m)+1}, \ldots]$, so that $R = R'[X_m]$. We let $S' = K(R') = k(X \setminus X_m)$. We note that S' is a field and hence Noetherian. Then, by the Hilbert Basis theorem, $Q = S'[X_m] = S'[x_{d(m-1)+1}, \ldots, x_{d(m)}]$ is Noetherian as well. As Noetherianness is preserved by localization, Q_{P_m} is also Noetherian, and as localizations commute and the generators of Q and S can be identified with one another, $Q_{P_m} = S_{P_m}$, so indeed S_{P_m} is Noetherian for any maximal ideal $P_m \subset S$. Now, we show that any $s \in S$ is contained in finitely many maximal ideals. We note that there exists some $u \in S^{\times}$ such that $us \in R \cap S$, so without loss of generality, we assume $s \in R \cap S$. We let $\{m_1, \ldots, m_k\}$ be distinct integers and note that $\bigcap_{j=1}^k P_{m_j} = P_{m_1} P_{m_2} \ldots P_{m_k}$, which is generated by its homogenous elements of degree (in

R) k. Hence, letting $d = \deg_R s$, we have that $s \notin \bigcap_{j=1}^{d+1} P_{m_j}$ for any set of pairwise distinct $\{m_1, \ldots, m_{d+1}\}$. As $\deg_R s$ is well-defined for any $s \in R \cap S$, this shows that s is contained in finitely many maximal ideals, thus showing S to satisfy the hypotheses of Lemma 4.B; our corollary follows immediately from its conclusion.

Proposition 4.D. $\dim S = \infty$.

Proof of Proposition 4.D. We note that as there is an inclusion-preserving bijection between prime ideals of the ring R and prime ideals of $S = U^{-1}R$ not meeting U, the ideals $\langle x_{d(m-1)+1}, \ldots, x_{d(m)-r} \rangle \subset P_m$ are prime in S for any integer $0 \le r < d(m) - d(m-1)$. Hence, for any m, we have a chain of prime ideals of length $\Delta(m)$ given by $0 \subsetneq \langle x_{d(m-1)+1} \rangle \subsetneq \langle x_{d(m-1)+1}, x_{d(m-1)+2} \rangle \subsetneq \ldots \subsetneq P_m$. This shows that dim $S \ge \sup\{\Delta(m) : m \in \mathbb{N}\}$. As $\Delta(m)$ is a strictly increasing function on the integers by assumption, we have that $\sup\{\Delta(m) : m \in \mathbb{N}\} = \infty$. This completes our proof both of the proposition and of the main theorem.

Problem 5. Krull dimension satisfies the first half of axiom D1, and also the axiom D2. In other words,

$$\dim R = \sup_{P \subset R \text{prime}} \dim R_P$$

and if I is a nilpotent ideal, then $\dim R = \dim R/I$.

Proof: If P is a prime ideal of R, let $P_0 \subset \ldots \subset P_n$ be a chain of primes in R_P . If ϕ is the natural map from $R \to R_P$, then Proposition 2.2 of Eisenbud tells us that $P_i = \phi^{-1}(P_i)R_P$. The ideal $\phi^{-1}(P_i) \subset R$ is prime because if the complement of $\phi^{-1}(P_i)$ weren't multiplicatively closed, then the map ϕ would tell us that the complement of P_i was also not multiplicatively closed. In addition, if $P_i \subseteq P_j$, then $\phi^{-1}(P_i)R_P \subseteq \phi^{-1}(P_j)R_P$, so $\phi^{-1}(P_i) \subseteq \phi^{-1}(P_j)$. Therefore, any chain of primes in R_P lifts to an equal length chain in R.

On the other hand, let P_1, P_2, \ldots be a sequence of primes in R such that $\dim P_i \to \dim R$. This is possible because for a finite chain with minimal prime Q, $\dim Q$ is the length of that chain, and for an infinite chain, by taking smaller and smaller primes in the chain, we get such a sequence. If $P_i \subset Q_{i1} \subset Q_{i2} \ldots$ is a chain in R starting with P_i (i.e. a chain corresponding to one in R/P_i), then it will be a chain of the same length in R_{P_i} . Thus we have that $\dim R_{P_i} \ge \dim P_i$, so $\sup_{P \subset R_{\text{prime}}} \dim R_P \ge \dim R$.

Now, if I is nilpotent, we have dim $R \ge \dim R/I$, the fourth isomorphism theorem gives us a correspondence between prime ideals of R/I and prime ideals of R containing I. Now I is contained in the nilradical of R, so it is contained in every prime of R, so chains of primes of R are in one-to-one correspondence with chains of primes of R/I, so dim $R = \dim R/i$. \square

6.)

In this problem, we let R be a Noetherian ring and $\mathfrak{p} \triangleleft R$ a prime ideal of codimension c.

Proposition (Eisenbud 10.2). Let $Q \triangleleft R[x]$ such that $Q \cap R = \mathfrak{p}$]. Then, either (a) $Q = \mathfrak{p}R[x]$ in which case codim Q = c or (b) $Q \supsetneq \mathfrak{p}R[x]$ in which case codim Q = c + 1. We break our response into two parts along those lines.

a.)

Proposition. $\operatorname{codim}(\mathfrak{p}R[x]) = c$

Proof. We first show codim $\mathfrak{p}R[x] \geq c$. We let $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_c = \mathfrak{p}$ be a chain of primes in R terminating at \mathfrak{p} . Then, $\mathfrak{p}_0R[x] \subsetneq \mathfrak{p}_1R[x] \subsetneq \cdots \subsetneq \mathfrak{p}_cR[x] = \mathfrak{p}R[x]$ is a chain of primes in R[x] terminating at $\mathfrak{p}R[x]$ so codim $\mathfrak{p}R[x] \geq c$. We now show that codim $\mathfrak{p}R[x] \leq c$. By the converse to the principal ideal theorem (Eisenbud 10.5), there exists some $Z = \{z_1, \ldots, z_c\} \subset R$ such that \mathfrak{p} is minimal in the set of primes containing Z. Then, via the ring extension $R \subset R[x]$, we have that any prime of R[x] containing Z must contain $\mathfrak{p} \subset R$ as well via minimality of \mathfrak{p} over Z. As $\mathfrak{p}R[x]$ is the unique minimal prime ideal of R[x] containing \mathfrak{p} , we have that $\mathfrak{p}R[x]$ is minimal over $Z \subset R[x]$. Thus, by the principal ideal theorem (Eisenbud 10.2), we have that codim $\mathfrak{p}R[x] \leq c$, and hence codim $\mathfrak{p}R[x] = c$.

b.)

Proposition. If $\mathfrak{p}R[x] \neq Q \triangleleft R[x]$ with $Q \cap R = \mathfrak{p}$, then $\operatorname{codim} Q = c + 1$

Before proving the main proposition, we introduce a crucial lemma.

Lemma 6.A. There is a containment-preserving bijection between prime ideals of R[x] intersecting R in \mathfrak{p} and ideals of $k(\mathfrak{p})[x]$ where $k(\mathfrak{p})$ is the residue field $k(\mathfrak{p}) := R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$.

Proof of Lemma 6.A. By the fourth isomorphism theorem, there is a containment and primality-preserving bijection between ideals of R[x] containing $\mathfrak{p}R[x]$ and ideals of $R[x]/(\mathfrak{p}R[x]) \cong (R/\mathfrak{p})[x]$. Then by Eisenbud's Proposition 2.2a, there is a containment-preserving bijection between prime ideals of $(R/\mathfrak{p})[x]$ not meeting $R/\mathfrak{p} \setminus \{0\} \subset (R/\mathfrak{p})[x]$ and prime ideals of $(R/\mathfrak{p})[x]$ [$(R/\mathfrak{p} \setminus \{0\})^{-1}$] $\cong (R/\mathfrak{p})_{\mathfrak{p}}[x]$. The composition of these two primality-preserving and containment-preserving bijections then gives the desired identification.

Proof of main proposition. We induct on dim \mathfrak{p} . To establish a basis, we let \mathfrak{p} be of codimension 0 and $Q \triangleleft R[x]$ with $Q \cap R = \mathfrak{p}$. We then let $Q_0 \subsetneq \cdots \subsetneq Q_m = Q$ with $m := \operatorname{codim} Q$ be

a chain of prime ideals. We let $\mathfrak{q}_i := Q_i \cap R \triangleleft R$ and note necessarily $\mathfrak{q}_i \subseteq \mathfrak{p}$ with \mathfrak{q}_i prime. Thus, $\mathfrak{q}_i = \mathfrak{p}$ by our assumption codim $\mathfrak{p} = 0$, so by Lemma 6.A $Q_0 \subsetneq \cdots \subsetneq Q_m$ corresponds to a chain of prime ideals $\tilde{Q}_0 \subsetneq \cdots \subsetneq \tilde{Q}_m \triangleleft k(\mathfrak{p})[x]$. As dim $k(\mathfrak{p})[x] = 1$ by theorem A in §8.2.1 of Eisenbud, we then have that $m \leq 1$ with equality if $Q \neq \mathfrak{p}R[x]$, thus establishing a basis for induction.

For our inductive step, we let $\dim \mathfrak{p} = c$ and let $Q \triangleleft R[x]$ with $Q \cap R = \mathfrak{p}$ and $\dim Q =: m \geq c$. As before, we let $Q_0 \subsetneq \cdots \subsetneq Q_m = Q$ be a chain of prime ideals in R[x] and let $\mathfrak{q}_i := Q_i \cap R$. We consider two cases:

- (Case 1: $\mathfrak{q}_{m-1} = \mathfrak{p}$): By the lemma, we have that if $\mathfrak{p}R[x] \subseteq Q' \subsetneq Q$ with Q' prime in R[x], we have that $Q' = \mathfrak{p}R[x]$. Thus, we must have that $Q_{m-1} = \mathfrak{p}R[x] \neq Q$ and by maximality of $Q_0 \subsetneq \cdots \subsetneq Q_m$, we have that m-1=c and hence m=c+1 as desired.
- (Case 2: $\mathfrak{q}_{m-1} \subsetneq \mathfrak{p}$): By our inductive hypothesis, we now have that $\dim Q_{m-1} \leq (c-1)+1=c$. Thus, by maximality of $Q_0 \subsetneq \cdots \subsetneq Q_m$, we have that $c \leq m \leq c+1$ with equality only if $Q \neq \mathfrak{p}R[x]$, as desired.

This completes our induction and thus our proof.

7.)

(Eisenbud 10.3) Let k be a field. Show that the ring $k[x] \times k[x]$ contains a principal prime ideal of codimension 1, although it is not a domain. (By the argument of Corollary 10.14, there is no such example in a local ring.)

Proof. Consider the ideal $P = \langle (1, x) \rangle$. This is a prime ideal because $(k[x] \times k[x])/P \cong 0 \times k \cong k$, which is a domain.

Suppose $Q = \langle \{f_i, g_i\}_{i=1}^n \rangle$ is another prime ideal strictly contained in P. The f_i must generate a prime ideal of k[x] and the g_i must generate a prime ideal of k[x] contained in (x). Thus the g_i generate all of x or all the g_i are 0. This implies that there is one g_i and it is either 0 or x, and there is one f_i .

Thus there are five types of ideals strictly contained in $P: \langle (1,0) \rangle, \langle (x-a,0) \rangle$ for some $a \in k$, $\langle (0,0) \rangle, \langle (x,x) \rangle$, and $\langle (0,x) \rangle$. Of these, the only prime ideal is $\langle (1,0) \rangle$, so codim P=1. \square

8.)

Prompt. Find a variety X in \mathbb{A}^3 which consists of a hyperplane P and a line L perpendicular to the hyperplane such that for any hyperplane parallel to P, $P \cap X$ is of dimension 0.

Response. We note that the xy-plane in \mathbb{A}^3 is the variety of the ideal $\mathfrak{p}=\langle z\rangle \triangleleft R:=k[x,y,z]$, while the z axis is the variety of the ideal $\mathfrak{q}=\langle x,y\rangle$. Thus, we may use the inclusion-reversing nature of the bijection given by the Nullstellensatz to compute the union of the two as $X=V(\mathfrak{p}\cap\mathfrak{q})=V(\mathfrak{pq})=V(xz,yz)$. We denote by J the ideal \mathfrak{pq} . As we show in problem 10, dim J=2. We consider the hyperplane Y which is given by V(z-1). Then $Y\cap X$ is given by V(I) where $I:=\langle z-1\rangle+\langle xz,yz\rangle$. We note that x=-x(z-1)+xz and y=-y(z-1)+yz, and thus $I=\langle z-1,x,y\rangle$ which is well known to be maximal and hence of dimension 0. \square

10.)

Prompt. Consider the ring R = k[x, y, z]/(xz, yz). Show that the ring is 2-dimensional, find an explicit system of parameters, and prove that the ring does not have any regular sequence $f_1, f_2 \subseteq \mathfrak{m}$.

Response. In what follows, we identify without comment R with the vector space $k[x,y] \oplus zk[z]$ having the appropriate ring structure. Note that R is not local, but it is graded, so we can modify the definitions of systems of parameters and regular sequences for this setting.

We claim that $\langle z \rangle \subset \langle x, z \rangle \subset \mathfrak{m}$ is a chain of distinct prime ideals. Primeness follows because $R/\langle z \rangle \cong k[x,y]$ and $R/\langle x,z \rangle \cong k[y]$ are both domains; the second ideal is not maximal because k[y] is not a field, and the first two ideals are distinct because x annihilates $\langle z \rangle$ but not $\langle x,z \rangle$.

We also claim that $\{x+z,y+z\}$ is a system of parameters, i.e. that $\langle x,y,z\rangle^n\subseteq\langle x+z,y+z\rangle$ for all large n. Our proof proceeds by showing that the inclusion holds already at n=2, using brute force. An arbitrary element of \mathfrak{m}^2 can be written in the form

$$\sum_{i>2} A_i x^i + B_i y^i + C_i z^i + \sum_{i,j>1} D_{ij} x^i y^j,$$

where A_i, B_i, C_i , and D_{ij} are all in R. (Note this representation is not unique, and we are not claiming that these four families may be chosen independently.) Then define $E_k = \sum_{i=1}^{k-1} D_{i(k-i)}$ and consider the following element of R:

$$\sum_{i\geq 2} A_i(x+z)^i + B_i(y+z)^i + \sum_{i,j\geq 1} D_{ij}(x+z)^i (y+z)^j + \sum_{k\geq 2} (C_k - A_k - B_k - E_k) z(x+z)^{k-1}.$$

This agrees with the element of \mathfrak{m}^2 described above. The coefficients of $x^i y^j$ all come from the first two summation symbols, and in this case they clearly agree. Moreover, the z^i coefficients agree because all the z^i that appear in the first two summations are cancelled out in the third, and then a coefficient of C_k is added. Finally, observe that every term has at least one factor of x + z or y + z, and therefore, an arbitrary element of \mathfrak{m}^2 is contained in $\langle x + z, y + z \rangle$.

Hence we have shown that the dimension of R is 2. However, we wish to show that R has no regular sequence (f_1, f_2) contained in the maximal ideal. Unwinding the definitions, this

means that we need to show that for all nonzero $f_1, f_2 \in \mathfrak{m}$, then either f_1 is a zerodivisor, f_1 divides f_2 , or there exist nonzero $\alpha, \beta \in R$ such that $\beta f_1 = \alpha f_2$, but f_1 does not divide α (in R).

The proof requires a bit of casework: We note first that $f_i \in \mathfrak{m}$ means $f_i = p_i(x, y) + q_i(z)$ where p_i and q_i have no constant term. The "typical" case is that p_1, p_2, q_1 , and q_2 are all nonzero. In this case, let $\beta = q_2(z)$ and $\alpha = q_1(z)$. We see (by direct computation, if you want) that f_1 does not divide α , but that $\beta f_1 = q_2(z)q_1(z) = f_2\alpha$.

This choice of α and β also works if $p_2 = 0$ but all others are nonzero. Similarly, if $q_2 = 0$ but all others are nonzero, we can choose $\beta = p_2(x, y)$ and $\alpha = p_1(x, y)$, since then $\beta f_1 = p_2 p_1 = f_2 \alpha$. If either $p_1 = 0$ or $q_1 = 0$ (regardless of p_2 or q_2) then either zf or xf are zero, i.e. f is a zerodivisor.

12.)

Prompt. (Eisenbud 10.4) Let a, b be a regular sequence in a domain R, and let S = R[x] be the polynomial ring in one variable over R. Show that ax - b is a prime of S.

Proof. We will show that the map $\phi: S \to R[1/a]$ given by $\phi(x) = b/a$ has kernel (ax - b). This would imply that (ax - b) is a prime ideal because then S/(ax - b) would be isomorphic to a domain.

Suppose $p(x) \in \ker \phi$. We will show $p(x) \in (ax - b)$ by induction on $\deg p(x)$, starting with $\deg p(x) = 0$. In this case, p(x) = 0, so $p(x) \in (ax - b)$.

Now suppose $p(x) = \sum_{i=1}^{n} r_i x^i \in \ker \phi$. This implies

$$\sum_{i=1}^{n} r_i (b/a)^i = 0$$

in R[1/a].

13.)

Prompt. (Eisenbud 10.6) Here is an example showing that codim $PS \leq \operatorname{codim} P$ may fail when R is not regular. Let R = k[x, y, s, t]/(xs - yt) and let $S = R/(x, y) \cong k[s, t]$. For $P = (s, t) \subseteq R$, prove that $\operatorname{codim} P = 1$ but $\operatorname{codim} PS = 2$.

Proof. We know that $\operatorname{codim} PS = 2$ immediately from Corollary 10.4; and we can show that $\operatorname{codim} P \neq 1$ simply by showing that P is not nilpotent (using, for instance, the graded version of Corollary 10.7). But it is clear that $s^n \in P^n$ is nonzero for any n.

It remains to show that $\operatorname{codim} P \leq 1$; for this we are done if P satisfies the conditions of the prime ideal theorem; i.e. if P is minimal among the primes containing some element of R. Consider all primes Q containing s. Necessarily $yt = xs \in Q$; since Q is prime, either y or t must be in Q. If $t \notin Q$, then $y \in Q$. But $y \notin P$ so these ideals are incomparable. On the other hand, if $t \in Q$ then all of P's generators are in Q, so $P \subseteq Q$.

17.)

Prompt. (Eisenbud 13.2) Let G be a finite group acting on a domain T, and let R be the ring of invariants $R = T^G$. Then every element $b \in T$ is integral over R, and in fact over the subring generated by the elementary symmetric functions in the conjugates σb .

Proof. The *i*-th elementary symmetric function is

$$e_i = \sum_{\{\sigma_1, \dots, \sigma_i\} \subset G} (\sigma_1 b) \dots (\sigma_i b),$$

and clearly this is G-invariant since action by an element of G simply permutes the terms. So indeed $e_i \in R$.

???????????

21.)

Prompt. Let $I = \langle xz - y^2, yw - z^2, yz - xw \rangle$, and let $f = x^2y^2w^2 - y^4z^2$. Determine whether or not f lies in I.

Response. We will use the division algorithm using the lex monomial order with the variable order x > y > z > w. The leading term of f is $x^2y^2w^2$, and the first term of the generator $yw - z^2$ divides this. $x^2y^2w^2 - y^4z^2 = yw(x^2yw)$, and subtracting $(yw - z^2)(x^2yw)$ from f gives us $f' = x^2yz^2w - y^4z^2$. yw still divides this leading term, so we subtract $(yw - z^2)(x^2z^2)$, and get $f_1 = x^2z^4 - y^4z^2 = f - (yw - z^2)(x^2yw + x^2z^2)$.

Now, the leading term of f_1 is divisible by the leading term of $xz - y^2$, so we subtract $(xz-y^2)(xz^3)$ from f_1 , and get $f'_1 = xy^2z^3 - y^4z^2$. Then $xz-y^2$ still divides the leading term, so we subtract $(xz-y^2)(y^2z^2)$ from f'_1 , giving us $f_2 = y^4z^2 - y^4z^2 = 0 = f_1 - (xz-y^2)(xz^3 + y^2z^2)$. Therefore, f is in the ideal, and we can write $f = (yw-z^2)(x^2yw + x^2z^2) + (xz-y^2)(xz^3 + y^2z^2)$.

22.)

Prompt. Let $R = \mathbb{Q}[x, y, z]$. Find polynomials, $f, g_1, g_2 \in R$ such that $(f\%g_1)\%g_2 \neq (f\%g_2)\%g_1$.

Response. We fix the lex monomial order with x>y>z. Let $f=x^2y^2-y$, $g_1=x^2y-1$, $g_2=xy^2-1$. Then, $f=yg_1$, so $(f\%g_1)=0=(f\%g_1)\%g_2$. We now perform polynomial long division on f/g_2 to determine the remainder r. We have that $LT(f)=xLT(g_2)$, so we let $r_1=f-xg_2=-y+x$. Now, no term of r_1 is divisible by the leading term of g_2 , so our process terminates and we have that $f=xg_2+(x-y)$, so $(f\%g_2)=x-y$. Now, the leading term x^2y of g_1 divides no terms of $(f\%g_2)$, so we have $(f\%g_2)\%g_1=(f\%g_2)=x-y\neq 0=(f\%g_1)\%g_2$. \square