## Selection of Ball Bearings:

If both radial and axial (thrust) loads exist then an equivalent radial load should be determined:

$$F_{eq} = P = VXF_r + YF_a$$



 $F_{eq}$  = equivalent radial load.

 $F_r$  = applied radial load.

 $F_a$  = applied thrust load.

X = radial load coefficient.

Y = axial load coefficient.

V = a rotation factor (V = 1 for rotating inner ring and 1.2 for rotating outer ring)



$$F_{eq} \equiv P = F_r$$
 when  $\frac{F_a}{VF_r} \le e$ 

$$F_{eq} \equiv P = VXF_r + YF_a$$
 when  $\frac{F_a}{VF_r} > e$ 

 $e \rightarrow is$  given in the bearing tables according to the value

of 
$$\frac{F_a}{C_a}$$
,

Where

C<sub>o</sub> is the static basic load rating.

# Table for X, Y for deep groove ball bearings:

| F <sub>a</sub> /C <sub>o</sub> | е         | Х    | Y   |  |
|--------------------------------|-----------|------|-----|--|
| 0.025                          | 0.22      | 0.56 | 2   |  |
| 0.04                           | 0.24      | 0.56 | 1.8 |  |
| 0.07                           | 0.27      | 0.56 | 1.6 |  |
| 0.13                           | 0.31      | 0.56 | 1.4 |  |
| 0.25                           | 0.25 0.37 |      | 1.2 |  |
| 0.5 0.44                       |           | 0.56 | 1   |  |

| Principal<br>dimensions |                      | Basic load ratings<br>dynamic static |                                      | Limiting speeds<br>Lubrication   |                                      | Mass                                 | Designations<br>Bearings with |                              |                            |
|-------------------------|----------------------|--------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|--------------------------------------|-------------------------------|------------------------------|----------------------------|
| đ                       | D                    | В                                    | C                                    | C <sub>0</sub>                   | grease oil                           | Gill                                 |                               | cylindrical<br>bore          | tapered<br>bore            |
| mm N                    |                      |                                      | r/min                                |                                  | kg                                   | -                                    |                               |                              |                            |
| 20                      | 47<br>47<br>52<br>52 | 14<br>18<br>15<br>21                 | 9 950<br>12 500<br>12 400<br>18 200  | 3 200<br>3 900<br>4 000<br>5 300 | 15 000<br>14 000<br>12 000<br>11 000 | 18 000<br>17 000<br>15 000<br>14 000 | 0,12<br>0,14<br>0,16<br>0,21  | 1204<br>2204<br>1304<br>2304 | -                          |
| 25                      | 52<br>52<br>62<br>62 | 15<br>18<br>17<br>-24                | 12 100<br>12 400<br>17 800<br>24 200 | 4 060<br>4 250<br>6 000<br>7 500 | 13 000<br>11 000<br>9 500<br>9 500   | 16 000<br>14 000<br>12 000<br>12 000 | 0,14<br>0,16<br>0,26<br>0.34  | 1205<br>2205<br>1305<br>2305 | 1205 K<br>2205 K<br>1305 K |

#### **Example:**

Select a deep groove ball bearing for the given loading conditions:

$$F_r = 3000 \text{ N}$$
 radial load

$$F_a = 1000 \text{ N}$$
 axial (thrust) load

$$n = 2000 \text{ rpm}$$
 (for inner ring – Shaft)

$$L_h = 4 \text{ kh}$$

The diameter of the shaft at the bearing is 25 mm.

#### **Solution:**

1-From the bearing catalog select bearing 2205:

$$d = 25 \text{ mm}$$
,  $D = 52 \text{ mm}$ ,  $B = 18 \text{ mm}$ ,  $C = 12400 \text{ N}$ ,  $C_0 = 4250 \text{ N}$ 

2- Calculate the ratio  $(F_a / C_o)$ 

$$F_a / C_o = 1000 / 4250 = 0.235$$

From tables 
$$e = 0.37$$

3- calculate the ratio  $(F_a / VF_r)$ 

$$F_a / VF_r = 1000 / 3000 = 0.33333 < e$$

4- since 
$$F_a / VF_r < e$$
, then  $X = 1$ ,  $Y = 0$ 

5-  $F_{eq} = XVF_r + YF_a = 1 \times 1 \times 3000 + 0 = 3000 \text{ N}$ 6- The required dynamic loading capacity:

$$C_R = k_A F_{eq} \left[ \left( \frac{L_D}{L_R} \right) \left( \frac{n_D}{n_R} \right) \right]^{1/a}$$
$$= 1 \times 3000 \left[ \frac{4000}{500} \frac{2000}{\left( \frac{100}{3} \right)} \right]^{\frac{1}{3}} = 23489.2 \text{ N}$$

Which is greater than the dynamic loading capacity of the selected Bearing (C = 12400 N)

7- select another bearing; bearing 2305 d = 25 mm, d = 62 mm, B = 24 mm, C = 24200 N,  $C_o$  = 7500 N  $F_a / C_o$  = 1000 / 7500 = 0.133 then e = 0.31 Since  $F_a / VF_r$  = 0.333 > e, then X = 0.56, Y = 1.4  $F_{eq} = XVF_r + YF_a = 0.56$  x 3000 + 1.4 x 1000 = 2680 N The required dynamic loading capacity

C = 20983.7 N < 24200 N of the selected bearing.

## Selection of Taper Roller Bearings

The nomenclature for a taper roller bearings is shown in the figure

Below.





- The inner ring is called the cone, and the outer ring is called the cup.
- It can be seen that, a tapered roller bearing is separable in that the cup can be removed from the cone and roller assembly.
- This type of bearing can carry both radial and axial loads or any combinations of the two.
- However, even when an external axial load is not present, the radial load will induce a thrust (axial) reaction within the bearing because of the taper.

## The equivalent dynamic bearing load is given by:

$$F = F_r$$
 when  $F_a / F_r \le e$   
 $F = 0.4 F_r + YF_a$  when  $F_a / F_r > e$ 

- The mounting of bearings can be as follows: a- O-configuration (back-to-back).



b- X-configuration (face-to-face).



#### Axial loading of taper roller bearings

#### Arrangement

Load case

#### Axial loads

Back-to-back

Face-to-face



1a) 
$$\frac{F_{rA}}{Y_A} \ge \frac{F_{rB}}{Y_B} \qquad \qquad F_{aA} = \frac{0.5 \; F_{rA}}{Y_A} \qquad F_{aB} = F_{aA} \; \pm \; K_a$$
 
$$K_a \ge 0$$

1b) 
$$\frac{F_{rA}}{Y_A} < \frac{F_{rB}}{Y_B}$$

$$K_B \ge 0.5 \left( \frac{F_{rB}}{Y_B} - \frac{F_{rA}}{Y_A} \right)$$

1b) 
$$\frac{F_{rA}}{Y_A} < \frac{F_{rB}}{Y_B}$$
  $F_{aA} = \frac{0.5 F_{rA}}{Y_A}$   $F_{aB} = F_{aA} + K_a$   
 $K_a \ge 0.5 \left(\frac{F_{rB}}{Y_A} - \frac{F_{rA}}{Y_A}\right)$ 

1c) 
$$\begin{split} \frac{F_{rA}}{Y_A} &< \frac{F_{rB}}{Y_B} \\ K_a &< 0.5 \ \left( \frac{F_{rB}}{Y_B} - \frac{F_{rA}}{Y_A} \right) \end{split}$$

te) 
$$\frac{F_{rA}}{Y_A} < \frac{F_{rB}}{Y_B}$$
  $F_{aA} = F_{aB} - K_a$   $F_{aB} = \frac{0.5 \; F_{rB}}{Y_B}$ 





Face-to-face



$$\begin{aligned} 2a) & & \frac{F_{rA}}{Y_A} \leq \frac{F_{rB}}{Y_B} \\ & & K_a \geq 0 \end{aligned}$$

a) 
$$\frac{F_{rA}}{Y_A} \le \frac{F_{rB}}{Y_B}$$
  $F_{aA} = F_{aB} + K_a$   $F_{aB} = \frac{0.5 F_{rB}}{Y_B}$   
 $K_c \ge 0$ 

2b) 
$$\begin{split} \frac{F_{rA}}{Y_A} > & \frac{F_{rB}}{Y_B} \\ K_a \ge 0.5 & \left(\frac{F_{rA}}{Y_A} - \frac{F_{rB}}{Y_B}\right) \end{split}$$

2c) 
$$\begin{split} \frac{F_{rA}}{Y_A} > & \frac{F_{rB}}{Y_B} \\ K_a < 0.5 & \left(\frac{F_{rA}}{Y_A} - \frac{F_{rB}}{Y_B}\right) \end{split} \qquad F_{aA} - K_a \end{split}$$

## Designation of Bearing (bearing codes):

- Rolling element bearings re categorized by a code made up of two sections:

#### A- section 1:

The code for the bearing series which is further divided into:

- a type code,
- a diameter series and in many cases a width series.

#### B- section 2:

The code for the bore diameter.



### - Type code:

The first digit, letter of the bearing code define the bearing type.

- •1 Self aligning ball
- •2 Type 1 but wider
- •3 Double row angular contact
- •4 Double row ball
- •6 Single row ball (deep groove)
- •7 Single row angular contact
- •16 Type 6 but narrower
- •22 Self aligning roller
- •23 Type 22 but wider
- •51 Thrust ball
- •M Radial ball with filling slots
- •N Cylindrical roller
- •HJ Separate thrust collar)
- •QJ Single row duplex ball

- Diameter and width series (dimension series):
- The second pair of digits define the dimension series.

series

Bore

- The first number is from the width series (0, 1, 2, 3, 4, 5 and 6)
- The second number is from the diameter series (outside diameter). (8, 9, 0, 1, 2, 3 and 4).

Width series  $\longrightarrow$  0 1 2 3

Diameter series  $\bigcirc$  2  $\bigcirc$  2  $\bigcirc$  3

Dimension  $\bigcirc$  2  $\bigcirc$  2  $\bigcirc$  3  $\bigcirc$  2  $\bigcirc$  3  $\bigcirc$  2  $\bigcirc$  3  $\bigcirc$  3  $\bigcirc$  4  $\bigcirc$  5  $\bigcirc$  6  $\bigcirc$  6  $\bigcirc$  6  $\bigcirc$  7  $\bigcirc$  8  $\bigcirc$  9  $\bigcirc$  9

OD

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

### The most common sizes being defined as follows:

- 0 Extra light
- 1 Extra light thrust
- 2 Light
- 3 Medium
- 4 Heavy

#### Note:

For 02, 03, 04 the zero is ignored

Example: 0 2 (0 is width series, 2 is diameter series).



- Bore code: (inner diameter)

### - Bores from 10-17 mm:

| Bore diameter | code |  |  |
|---------------|------|--|--|
| 10            | 00   |  |  |
| 12            | 01   |  |  |
| 15            | 02   |  |  |
| 17            | 03   |  |  |
| 20            | 04   |  |  |

### - Bores from 20-480 mm:

Code no.= Bore diameter / five

Example: NU 2355 Type: Roller Bearing Width Series 2 Diameter Series 3 Bore Diameter 55

# - Designation of Bearing:

Rolling element type

| Designation<br>Number | <b>62</b> 00 | 6201 | 6202 | 6203 | 6204 | 6205 |
|-----------------------|--------------|------|------|------|------|------|
| Bore diameter         | 10           | 12   | 15   | 17   | 20   | 25   |

