

AP2202

General Description

The AP2202 is a 150mA ULDO regulator which provides very low noise, ultra low dropout voltage (typically 165mV at 150mA), very low standby current ($1\mu\text{A}$ maximum) and excellent power supply ripple rejection (PSRR 75dB at 100Hz) in battery powered applications, such as handsets and PDAs and in noise sensitive applications, such as RF electronics.

The AP2202 also features logic compatible enable/shutdown control inputs, a low power shutdown mode for extended battery life, over current protection, over temperature protection, as well as reversed-battery protection.

The AP2202 has adjustable, 2.5V, 2.6V, 2.8V, 3.0V and 3.3V versions.

The AP2202 is available in space saving SOT-23-5 and SOT-89 packages.

Features

- Up to 150mA Output Current
- Low Standby Current
- Low Dropout Voltage: V_{DROP}=165mV at 150mA
- High Output Accuracy: ± 1%
- Good Ripple Rejection Ability: 75dB at 100Hz and $I_{\mbox{OUT}}\!\!=\!\!100\mu\mbox{A}$
- Tight Load and Line Regulation
- Low Temperature Coefficient
- Over Current Protection
- Thermal Protection
- Reverse-battery Protection
- Logic-controlled Enable

Applications

- Cellular Phones
- Cordless Phones
- Digital Still Cameras
- Wireless Communicators
- PDAs / Palmtops
- PC Mother Board
- Consumer Electronics

Figure 1. Package Types of AP2202

AP2202

Pin Configuration

Figure 2. Pin Configuration of AP2202 (Top View)

Pin Description

Pin N	ımber		Function			
SOT-23-5	SOT-89	Pin Name	T unction			
1	3	V _{IN}	Input voltage			
2	2	GND	Ground (TAB for SOT-89)			
3		EN	Enable input: CMOS or TTL compatible input. Logic high=enable, logic low=shutdown			
4		BYP/ADJ	Bypass capacitor for low noise operation/Adjust output			
5	1	V _{OUT}	Regulated output voltage			

Functional Block Diagram

Fixed Regulator

Figure 3. Functional Block Diagram of AP2202

Adjustable Regulator

AP2202

Ordering Information

Package	Temperature	Part Number		Markii	Packing Type	
Tackage	Range	Lead Free	Green	Lead Free	Green	Tacking Type
		AP2202K-ADJTRE1	AP2202K-ADJTRG1	E2C	G2C	Tape & Reel
		AP2202K-2.5TRE1	AP2202K-2.5TRG1	E2D	G2D	Tape & Reel
SOT-23-5	-40 to 125°C	AP2202K-2.6TRE1	AP2202K-2.6TRG1	E2E	G2E	Tape & Reel
301-23-3	-40 to 125°C	AP2202K-2.8TRE1	AP2202K-2.8TRG1	E2G	G2G	Tape & Reel
		AP2202K-3.0TRE1	AP2202K-3.0TRG1	E2I	G2I	Tape & Reel
		AP2202K-3.3TRE1	AP2202K-3.3TRG1	E2L	G2L	Tape & Reel
SOT-89	-40 to 125°C	AP2202R-3.3TRE1	AP2202R-3.3TRG1	E22B	G22B	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green packages.

AP2202

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Val	Value	
Supply Input Voltage	V _{IN}	1	15	
Enable Input Voltage	V _{EN}	1	5	V
Power Dissipation	P_{D}	Internally Limited (Internally Limited (Thermal Protection)	
Lead Temperature (Soldering, 10sec)	T_{LEAD}	26	260	
Junction Temperature	T_{J}	15	50	°С
Storage Temperature	T _{STG}	-65 to	150	°С
ESD (Machine Model)		20	200	
	0	SOT-23-5	200	0.5.75
Thermal Resistance (No Heatsink)	$ heta_{ m JA}$	SOT-89	165	°C/W

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Input Voltage	V _{IN}	2.5	13.2	V
Enable Input Voltage	V _{EN}	0	13.2	V
Operating Junction Temperature	T _J	-40	125	°C

AP2202

Electrical Characteristics AP2202-ADJ Electrical Characteristics

 $V_{IN}=V_{OUT}+1V$, $I_{OUT}=100\mu A$, $C_{IN}=1.0\mu F$, $C_{OUT}=2.2\mu F$, $V_{EN}\geq 2.0V$, $T_{J}=25^{o}C$, **Bold** typeface applies over $-40^{o}C\leq T_{J}\leq 125^{o}C$ (note 2), unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage Accuracy	$\Delta V_{OUT}/V_{OUT}$	Variation from specified	-1		1	%
- mp m resunger security	001 001	V _{OUT}	-2		2	, ,
Output Voltage Temperature Coefficient (Note 3)	$\Delta V_{OUT}/\Delta T$			120		μV/ ^o C
Line Regulation	V_{RLINE}	$V_{IN}=V_{OUT}+1V$ to 13.2V		0.004	0.012	%/V
5		001			0.05	
Load Regulation	V_{RLOAD}	I _{OUT} =0.1mA to 150mA		0.02	0.2	
(Note 4)	REOND				0.5	%
		$I_{OUT}=100\mu A$		15	50	
					70	
		I _{OUT} =50mA		110	150	
Dropout Voltage (Note 5)	V_{DROP}	001			230	mV
Diopout volume (1.000 c)	DKOI	I _{OUT} =100mA		140	250	, in v
		001			300	
		I _{OUT} =150mA		165	275	
		-001			350	
Standby Current	I_{STD}	V _{EN} ≤0.4V (shutdown)		0.01	1	μA
Standoy Current	-31D	V _{EN} ≤0.18V (shutdown)			5	μ. 1
		V _{EN} ≥2.0V, I _{OUT} =0μA		95	130	
		EN=2.0 V, 2001 Op. 1			150	
		V _{EN} ≥2.0V, I _{OUT} =100μA		98	140	
		EN=2.0 V, 2001			160	
Ground Pin Current	$I_{ m GND}$	V _{EN} ≥2.0V, I _{OUT} =50mA		350	600	μA
(Note 6)	*GND	VEN=2.0 V, IOUT 30III I			800	μΩ
		V _{EN} ≥2.0V, I _{OUT} =100mA		600	1000	
		VEN=2.0 V, IOUT 100HH			1500	1
		V _{EN} ≥2.0V, I _{OUT} =150mA		1300	1900	
		VEN=2.0 V, IOUT 130HII			2500	
Ripple Rejection	PSRR	frequency=100Hz, I _{OUT} =100μA		75		dB
Current Limit	I _{LIMIT}	V _{OUT} =0V		320	550	mA
Output Noise	e _{no}	I _{OUT} =50mA, C _{OUT} =2.2μF, 100pF from BYP to GND		260		nV/\sqrt{Hz}
Enable Input Logic-Low Voltage	V_{IL}	Regulator shutdown			0.4 0.18	V

AP2202

Electrical Characteristics (Continued) AP2202-ADJ Electrical Characteristics

 $V_{IN}=V_{OUT}+1V$, $I_{OUT}=100\mu A$, $C_{IN}=1.0\mu F$, $C_{OUT}=2.2\mu F$, $V_{EN}\geq 2.0V$, $T_{J}=25^{o}C$, **Bold** typeface applies over $-40^{o}C\leq T_{J}\leq 125^{o}C$ (note 2), unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Enable Input Logic-High Voltage	V_{IH}	Regulator enabled	2.0			V
Enable Input Logic-Low	I_{IL}	V _{IL} ≤0.4V		0.01	1	μA
Current	IL	V _{IL} ≤0.18V			2	μ. 1
Enable Input Logic-High	I _{IH}	V _{IH} ≥2.0V		5	20	μA
Current	111	V _{IH} ≥2.0V			25	Pr. 2
Thermal Resistance	$\theta_{ m JC}$	SOT-23-5		63.4		°C/W
	- JC	SOT-89		50		C/ VV

Note 2: Specifications in bold type are limited to $-40^{\circ}\text{C} \le T_{J} \le 125^{\circ}\text{C}$. Limits over temperature are guaranteed by design, but not tested in production.

Note 3: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 4: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 150mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

Note 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 1% ($T_J=25^{\circ}$ C) or 2% (-40° C \leq T₁ \leq 125 $^{\circ}$ C) below its nominal value measured at 1V differential.

AP2202

Electrical Characteristics (Continued) AP2202-2.5 Electrical Characteristics

 $V_{IN}\!\!=\!\!3.5\text{V},\,I_{OUT}\!\!=\!\!100\mu\text{A},\,C_{IN}\!\!=\!\!1.0\mu\text{F},\,C_{OUT}\!\!=\!\!2.2\mu\text{F},\,V_{EN}\!\!\geq\!\!2.0\text{V},\,T_{J}\!\!=\!\!25^{o}\text{C},\,\textbf{Bold}\,\,\text{typeface applies over -40}{}^{o}\text{C}\!\!\leq\!\!T_{J}\!\!\leq\!\!125^{o}\text{C}\,\,(\text{note 2}),\,\,\text{unless otherwise specified}.$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage Accuracy	$\Delta V_{ m OUT}/V_{ m OUT}$	Variation from specified	-1		1	%
	001 001	V _{OUT}	-2		2	
Output Voltage Temperature Coefficient	$\Delta V_{OUT}/\Delta T$			120		μV/ ^o C
(Note 3)	$(\Delta V_{OUT}/V_{OUT})/\Delta T$			48		ppm/°C
Line Regulation	$V_{ m RLINE}$	V _{IN} =3.5V to 13.2V		1	3	mV
	KEHAL				13	·
Load Regulation	V_{RLOAD}	I _{OUT} =0.1mA to 150mA		1	5	mV
(Note 4)					13	
		I _{OUT} =100μA		15	50	
					70	
		I _{OUT} =50mA		110	150	
Dropout Voltage (Note 5)	V_{DROP}	001			230	mV
	Bitor	I _{OUT} =100mA		140	250	
					300	
	I _{OUT} =150mA		165	275		
		001			350	
Standby Current	I_{STD}	V _{EN} ≤0.4V (shutdown)		0.01	1	μΑ
,	515	V _{EN} ≤0.18V (shutdown)			5	•
		V _{EN} ≥2.0V, I _{OUT} =0μA		95	130	
		EN 3 GOT .			150	
		V _{EN} ≥2.0V, I _{OUT} =100μA		98	140	
		EN 3 GOT 1			160	
Ground Pin Current	$I_{ m GND}$	V _{EN} ≥2.0V, I _{OUT} =50mA		350	600	μA
(Note 6)	GND	EN 7 OOT			800	
		V _{EN} ≥2.0V, I _{OUT} =100mA		600	1000	
		EN 7 OOT			1500	
		V _{EN} ≥2.0V, I _{OUT} =150mA		1300	1900	
		EN=10 1, 1001			2500	
Ripple Rejection	PSRR	frequency=100Hz, I _{OUT} =100μA		75		dB
Current Limit	I _{LIMIT}	V _{OUT} =0V		320	550	mA
Output Noise	e _{no}	I _{OUT} =50mA, C _{OUT} =2.2μF, 100pF from BYP to GND		260		nV/\sqrt{Hz}
Enable Input Logic-Low Voltage	V _{IL}	Regulator shutdown			0.4 0.18	V
<i>G</i> -					0.10	

AP2202

Electrical Characteristics (Continued) AP2202-2.5 Electrical Characteristics

 $V_{IN}\!\!=\!\!3.5\text{V},\,I_{OUT}\!\!=\!\!100\mu\text{A},\,C_{IN}\!\!=\!\!1.0\mu\text{F},\,C_{OUT}\!\!=\!\!2.2\mu\text{F},\,V_{EN}\!\!\geq\!\!2.0\text{V},\,T_{J}\!\!=\!\!25^{o}\text{C},\,\textbf{Bold}\,\,\text{typeface applies over -40}{}^{o}\text{C}\!\!\leq\!\!T_{J}\!\!\leq\!\!125^{o}\text{C}\,\,(\text{note 2}),\,\,\text{unless otherwise specified}.$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Enable Input Logic-High Voltage	V_{IH}	Regulator enabled	2.0			V
Enable Input Logic-Low	I_{IL}	V _{IL} ≤0.4V		0.01	1	μA
Current	IL	V _{IL} ≤0.18V			2	μ21
Enable Input Logic-High	I _{IH}	V _{IH} ≥2.0V		5	20	μA
Current	-IH	V _{IH} ≥2.0V			25	μ21
Thermal Resistance	$\theta_{ m JC}$	SOT-23-5		63.4		°C/W
Thermal Resistance	~ JC	SOT-89		50		C/ W

Note 2: Specifications in bold type are limited to $-40^{\circ}\text{C} \le T_J \le 125^{\circ}\text{C}$. Limits over temperature are guaranteed by design, but not tested in production.

Note 3: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 4: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 150mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

Note 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 1% (T_J =25°C) or 2% ($-40^{\circ}\text{C} \le T_1 \le 125^{\circ}\text{C}$) below its nominal value measured at 1V differential.

AP2202

Electrical Characteristics (Continued) AP2202-2.6 Electrical Characteristics

 $V_{IN}\!\!=\!\!3.6V\!,\,I_{OUT}\!\!=\!\!100\mu A,\,C_{IN}\!\!=\!\!1.0\mu F\!,\,C_{OUT}\!\!=\!\!2.2\mu F\!,\,V_{EN}\!\!\geq\!\!2.0V\!,\,T_{J}\!\!=\!\!25^{o}C,\,\textbf{Bold}\,\,\text{typeface applies over -}40^{o}C\!\!\leq\!\!T_{J}\!\!\leq\!\!125^{o}C\,\,(\text{note 2}),\,$ unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage Accuracy	$\Delta V_{ m OUT}/V_{ m OUT}$	Variation from specified	-1		1	%
- and an account of	001 001	V _{OUT}	-2		2	, ,
Output Voltage Temperature Coefficient	$\Delta V_{ m OUT}/\Delta T$			120		μV/°C
(Note 3)	$(\Delta V_{OUT}/V_{OUT})/\Delta T$			46		ppm/°C
Line Regulation	V _{RLINE}	V _{IN} =3.6V to 13.2V		1	3	mV
T 1D 14		J 01 4 150 A		-	13	
Load Regulation (Note 4)	V_{RLOAD}	I _{OUT} =0.1mA to 150mA		1	6 14	mV
		I -100 A		15	50	
		I _{OUT} =100μA			70	
		I _{OUT} =50mA		110	150	
Dropout Voltage (Note 5)	$ m V_{DROP}$	1001-20m4			230	mV
Diopout voltage (Note 3)	' DROP	I _{OUT} =100mA		140	250	mV
		1001 1001111			300	
		I _{OUT} =150mA		165	275	
		-001			350	
Standby Current	I_{STD}	V _{EN} ≤0.4V (shutdown)		0.01	1	μΑ
	SID	V _{EN} ≤0.18V (shutdown)			5	P
		V _{EN} ≥2.0V, I _{OUT} =0μA		95	130	
		EN 7 OOT 1			150	
		V _{EN} ≥2.0V, I _{OUT} =100μA		98	140	
		EN 7 OOT			160	
Ground Pin Current	$I_{ m GND}$	V _{EN} ≥2.0V, I _{OUT} =50mA		350	600	μA
(Note 6)	GND	EX COT			800	
		V _{EN} ≥2.0V, I _{OUT} =100mA		600	1000	
					1500	
		V _{EN} ≥2.0V, I _{OUT} =150mA		1300	1900	
					2500	
Ripple Rejection	PSRR	frequency=100Hz, I _{OUT} =100μA		75		dB
Current Limit	I _{LIMIT}	V _{OUT} =0V		320	550	mA
Output Noise	e _{no}	I _{OUT} =50mA, C _{OUT} =2.2µF, 100pF from BYP to GND		260		nV/\sqrt{Hz}
Enable Input Logic-Low	$V_{ m IL}$	Regulator shutdown			0.4	V
Voltage	ш	Ĭ			0.18	

AP2202

Electrical Characteristics (Continued) AP2202-2.6 Electrical Characteristics

 V_{IN} =3.6V, I_{OUT} =100 μ A, C_{IN} =1.0 μ F, C_{OUT} =2.2 μ F, V_{EN} ≥2.0V, T_{J} =25 o C, **Bold** typeface applies over -40 o C≤ T_{J} ≤125 o C (note 2), unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Enable Input Logic-High Voltage	V_{IH}	Regulator enabled	2.0			V
Enable Input Logic-Low	I_{IL}	V _{IL} ≤0.4V		0.01	1	μΑ
Current	IL.	V _{IL} ≤0.18V			2	μ. 1
Enable Input Logic-High	I_{IH}	V _{IH} ≥2.0V		5	20	μA
Current	111	V _{IH} ≥2.0V			25	Pr. 2
Thermal Resistance	$\theta_{ m JC}$	SOT-23-5		63.4		°C/W
	- JC	SOT-89		50		C/ VV

Note 2: Specifications in bold type are limited to $-40^{\circ}\text{C} \le T_J \le 125^{\circ}\text{C}$. Limits over temperature are guaranteed by design, but not tested in production.

Note 3: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 4: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 150mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

Note 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 1% ($T_J=25^{\circ}C$) or 2% ($-40^{\circ}C \le T_J \le 125^{\circ}C$) below its nominal value measured at 1V differential.

AP2202

Electrical Characteristics (Continued) AP2202-2.8 Electrical Characteristics

 $V_{IN}\!\!=\!\!3.8V,\,I_{OUT}\!\!=\!\!100\mu\text{A},\,C_{IN}\!\!=\!\!1.0\mu\text{F},\,C_{OUT}\!\!=\!\!2.2\mu\text{F},\,V_{EN}\!\!\geq\!\!2.0V,\,T_{J}\!\!=\!\!25^{o}\text{C},\,\textbf{Bold}\,\,\text{typeface applies over -}40^{o}\text{C}\!\!\leq\!\!T_{J}\!\!\leq\!\!125^{o}\text{C}\,\,(\text{note 2}),\,$ unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage Accuracy	$\Delta V_{ m OUT}/V_{ m OUT}$	Variation from specified	-1		1	%
output voltage ricearacy	7001 7001	V _{OUT}	-2		2	, 0
Output Voltage Temperature Coefficient	$\Delta V_{ m OUT}/\Delta T$			120		μV/°C
(Note 3)	$(\Delta V_{OUT}/V_{OUT})/\Delta T$			42.8		ppm/°C
Line Regulation	$V_{ m RLINE}$	V _{IN} =3.8V to 13.2V		1	4	mV
-					14	
Load Regulation	$V_{ m RLOAD}$	I _{OUT} =0.1mA to 150mA		1	6	mV
(Note 4)					14	
		I _{OUT} =100μA		15	50	
					70	
		I _{OUT} =50mA		110	150	
Dropout Voltage (Note 5)	$ m V_{DROP}$	001			230	mV
Bropout volume (110000)	DROF	I _{OUT} =100mA		140	250	mv
	I _{OUT} =150mA	001			300	
		I _{OUT} =150mA		165	275	
		001			350	
Standby Current	I _{STD}	V _{EN} ≤0.4V (shutdown)		0.01	1	μA
Standay Carrent	-31D	V _{EN} ≤0.18V (shutdown)			5	μπ
		V _{EN} ≥2.0V, I _{OUT} =0μA		95	130	
		YEN=2.0 V, 1001 Opt 1			150	
		V _{EN} ≥2.0V, I _{OUT} =100μA		98	140	
		VEN=2.0 V, 1001 100μ/1			160	
Ground Pin Current	${ m I_{GND}}$	V _{EN} ≥2.0V, I _{OUT} =50mA		350	600	μA
(Note 6)	¹ GND	VEN=2.0 V, IOUT 30III V			800	μΑ
		V _{EN} ≥2.0V, I _{OUT} =100mA		600	1000	
		VEN=2.0 V, IOUT TOOMIN			1500	
		V _{EN} ≥2.0V, I _{OUT} =150mA		1300	1900	
		EN=2.0 V, TOUT=130HIA			2500	
Ripple Rejection	PSRR	frequency=100Hz, I _{OUT} =100μA		75		dB
Current Limit	I _{LIMIT}	V _{OUT} =0V		320	550	mA
Output Noise	e _{no}	I _{OUT} =50mA, C _{OUT} =2.2μF, 100pF from BYP to GND		260		nV/\sqrt{Hz}
Enable Input Logic-Low Voltage	V_{IL}	Regulator shutdown			0.4 0.18	V

AP2202

Electrical Characteristics (Continued) AP2202-2.8 Electrical Characteristics

 V_{IN} =3.8V, I_{OUT} =100 μ A, C_{IN} =1.0 μ F, C_{OUT} =2.2 μ F, V_{EN} ≥2.0V, T_J =25 o C, **Bold** typeface applies over -40 o C≤ T_J ≤125 o C (note 2), unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Enable Input Logic-High Voltage	V_{IH}	Regulator enabled	2.0			V
Enable Input Logic-Low	$I_{ m IL}$	V _{IL} ≤0.4V		0.01	1	μA
Current	IL	V _{IL} ≤0.18V			2	μ. τ
Enable Input Logic-High	I _{IH}	V _{IH} ≥2.0V		5	20	μA
Current	111	V _{IH} ≥2.0V			25	h
Thermal Resistance	$\theta_{ m JC}$	SOT-23-5		63.4		°C/W
	- JC	SOT-89		50		C/ W

Note 2: Specifications in bold type are limited to $-40^{\circ}\text{C} \le T_J \le 125^{\circ}\text{C}$. Limits over temperature are guaranteed by design, but not tested in production.

Note 3: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 4: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 150mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

Note 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 1% $(T_J=25^{\circ}C)$ or 2% $(-40^{\circ}C \le T_J \le 125^{\circ}C)$ below its nominal value measured at 1V differential.

AP2202

Electrical Characteristics (Continued) AP2202-3.0 Electrical Characteristics

 V_{IN} =4V, I_{OUT} =100 μ A, C_{IN} =1.0 μ F, C_{OUT} =2.2 μ F, V_{EN} \ge 2.0V, T_J =25 o C, **Bold** typeface applies over -40 o C\le T_J \le 125 o C (note 2), unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage Accuracy	$\Delta V_{OUT}/V_{OUT}$	Variation from specified V _{OUT}	-1		1	%
			-2		2	, ,
Output Voltage Temperature Coefficient (Note 3)	$\Delta V_{ m OUT}/\Delta T$			120		μV/°C
	$(\Delta V_{OUT}/V_{OUT})/\Delta T$			40		ppm/°C
Line Regulation	V _{RLINE}	V _{IN} =4V to 13.2V		1	4	mV
	KEHVE	IIV			14	
Load Regulation	$V_{ m RLOAD}$	I _{OUT} =0.1mA to 150mA		1	7	mV
(Note 4)	KEOND				15	111 4
		I _{OUT} =100μA		15	50	
					70	
		I _{OUT} =50mA		110	150	
Dropout Voltage (Note 5)	$ m V_{DROP}$	001			230	mV
Bropout volume (110000)	DROP	I _{OUT} =100mA		140	250	111 V
		001			300	
		I _{OUT} =150mA		165	275	-
					350	
Standby Current	I _{STD}	V _{EN} ≤0.4V (shutdown)		0.01	1	μА
Standay Carrent	-31D	V _{EN} ≤0.18V (shutdown)			5	μπ
	${ m I}_{ m GND}$	V _{EN} ≥2.0V, I _{OUT} =0μA		95	130	μΑ
					150	
		V _{EN} ≥2.0V, I _{OUT} =100μA		98	140	
					160	
Ground Pin Current		V _{EN} ≥2.0V, I _{OUT} =50mA		350	600	
(Note 6)					800	
		V _{EN} ≥2.0V, I _{OUT} =100mA		600	1000	
					1500	
		V _{EN} ≥2.0V, I _{OUT} =150mA		1300	1900	
					2500	
Ripple Rejection	PSRR	frequency=100Hz, I _{OUT} =100μA		75		dB
Current Limit	I_{LIMIT}	V _{OUT} =0V		320	550	mA
Output Noise	e _{no}	I _{OUT} =50mA, C _{OUT} =2.2μF, 100pF from BYP to GND		260		nV/\sqrt{Hz}
Enable Input Logic-Low	V_{IL}	Regulator shutdown			0.4	V
Voltage					0.18	

AP2202

Electrical Characteristics (Continued) AP2202-3.0 Electrical Characteristics

 V_{IN} =4V, I_{OUT} =100 μ A, C_{IN} =1.0 μ F, C_{OUT} =2.2 μ F, V_{EN} ≥2.0V, T_J =25 o C, **Bold** typeface applies over -40 o C≤ T_J ≤125 o C (note 2), unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Enable Input Logic-High Voltage	V_{IH}	Regulator enabled	2.0			V
Enable Input Logic-Low	I_{IL}	V _{IL} ≤0.4V		0.01	1	μА
Current	IL	V _{IL} ≤0.18V			2	μ. 1
Enable Input Logic-High	I _{IH}	V _{IH} ≥2.0V		5	20	μA
Current	111	V _{IH} ≥2.0V			25	P4. 1
Thermal Resistance	$\theta_{ m JC}$	SOT-23-5		63.4		°C/W
		SOT-89		50		

Note 2: Specifications in bold type are limited to $-40^{\circ}\text{C} \le T_{J} \le 125^{\circ}\text{C}$. Limits over temperature are guaranteed by design, but not tested in production.

Note 3: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 4: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 150mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

Note 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 1% ($T_J=25^{\circ}$ C) or 2% (-40° C \leq $T_1\leq$ 125° C) below its nominal value measured at 1V differential.

AP2202

Electrical Characteristics (Continued) AP2202-3.3 Electrical Characteristics

 $V_{IN}\!\!=\!\!4.3V,\,I_{OUT}\!\!=\!\!100\mu\text{A},\,C_{IN}\!\!=\!\!1.0\mu\text{F},\,C_{OUT}\!\!=\!\!2.2\mu\text{F},\,V_{EN}\!\!\geq\!\!2.0V,\,T_{J}\!\!=\!\!25^{o}\text{C},\,\textbf{Bold}\,\,\text{typeface applies over}\,-40^{o}\text{C}\!\!\leq\!\!T_{J}\!\!\leq\!\!125^{o}\text{C}\,\,(\text{note 2}),\,$ unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage Accuracy	$\Delta V_{OUT}/V_{OUT}$	Variation from specified $V_{\rm OUT}$	-1		1	%
			-2		2	
Output Voltage Temperature Coefficient (Note 3)	$\Delta V_{ m OUT}/\Delta T$			120		μV/°C
	$(\Delta V_{OUT}/V_{OUT})/\Delta T$			36.3		ppm/°C
Line Regulation	$V_{ m RLINE}$	V _{IN} =4.3V to 13.2V		1	5	mV
	KEHAE				15	·
Load Regulation	$V_{ m RLOAD}$	I _{OUT} =0.1mA to 150mA		1	8	mV
(Note 4)					17	
		I _{OUT} =100μA		15	50	
					70	
		I _{OUT} =50mA		110	150	
Dropout Voltage (Note 5)	${ m V}_{ m DROP}$	001			230	mV
	DROP	I _{OUT} =100mA		140	250	111 V
		001			300	
		I _{OUT} =150mA		165	275	1
					350	
Standby Current	I _{STD}	V _{EN} ≤0.4V (shutdown)		0.01	1	μΑ
Standay Carrent	310	V _{EN} ≤0.18V (shutdown)			5	μιτ
	${ m I}_{ m GND}$	V _{EN} ≥2.0V, I _{OUT} =0μA		95	130	μΑ
					150	
		V _{EN} ≥2.0V, I _{OUT} =100μA		98	140	
					160	
Ground Pin Current		V _{EN} ≥2.0V, I _{OUT} =50mA		350	600	
(Note 6)					800	
		V _{EN} ≥2.0V, I _{OUT} =100mA		600	1000	
					1500	
		V _{EN} ≥2.0V, I _{OUT} =150mA		1300	1900	
		EN=2.0 , TOUT TOURY			2500	
Ripple Rejection	PSRR	frequency=100Hz, I _{OUT} =100μA		75		dB
Current Limit	I_{LIMIT}	V _{OUT} =0V		320	550	mA
Output Noise	e _{no}	I _{OUT} =50mA, C _{OUT} =2.2μF, 100pF from BYP to GND		260		nV/\sqrt{Hz}
Enable Input Logic-Low	V _{IL}	Regulator shutdown			0.4	V
Voltage	· IL				0.18	

AP2202

Electrical Characteristics (Continued) AP2202-3.3 Electrical Characteristics

 V_{IN} =4.3V, I_{OUT} =100 μ A, C_{IN} =1.0 μ F, C_{OUT} =2.2 μ F, V_{EN} ≥2.0V, T_J =25 o C, **Bold** typeface applies over -40 o C≤ T_J ≤125 o C (note 2), unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Enable Input Logic-High Voltage	$V_{ m IH}$	Regulator enabled	2.0			V
Enable Input Logic-Low Current	I_{IL}	V _{IL} ≤0.4V		0.01	1	μΑ
		V _{IL} ≤0.18V			2	
Enable Input Logic-High	I_{IH}	V _{IH} ≥2.0V		5	20	μA
Current	111	V _{IH} ≥2.0V			25	h
Thermal Resistance	$\theta_{ m JC}$	SOT-23-5		63.4		°C/W
		SOT-89		50		

Note 2: Specifications in bold type are limited to $-40^{\circ}\text{C} \le T_{J} \le 125^{\circ}\text{C}$. Limits over temperature are guaranteed by design, but not tested in production.

Note 3: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 4: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 150mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

Note 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 1% ($T_J=25^{\circ}$ C) or 2% (-40° C \leq T₁ \leq 125 $^{\circ}$ C) below its nominal value measured at 1V differential.

Typical Performance Characteristics

Figure 4. Output Voltage vs. Junction Temperature

Figure 5. Dropout Voltage vs. Junction Temperature

Figure 6. Ground Pin Current vs. Output Current

Figure 7. Ground Pin Current vs. Junction Temperature

Figure 8. Enable Current vs. Junction Temperature

Figure 9. Enable Voltage vs. Junction Temperature

Figure 10. Noise vs. Bypass Capacitor

Figure 11. Output Noise vs. Frequency

Figure 13. Line Transient (Conditions: V_{IN}=3.8V to 4.8V, V_{EN}=2V, I_{OUT}=100 μ A C_{BYP}=100pF, C_{OUT}=10 μ F)

 $\begin{array}{c} \text{Figure 14. V}_{\text{EN}}(\text{on) vs. V}_{\text{OUT}} \\ \text{(Conditions: V}_{\text{EN}}\text{=0V to 2V, V}_{\text{IN}}\text{=3.8V, I}_{\text{OUT}}\text{=30mA,} \\ C_{\text{BYP}}\text{=open, C}_{\text{IN}}\text{=1.0\mu F, C}_{\text{OUT}}\text{=2.2\mu F)} \end{array}$

Figure 15. PSRR vs. Frequency

Figure 16. Power Dissipation vs. Ambient Temperature

Figure 17. Power Dissipation vs. Ambient Temperature

Figure 19. ESR vs. Output Current

AP2202

Figure 20. ESR vs. Output Current

Typical Application

V_{OUT}=1.25* (1+R2/R1)

Figure 21. Typical Application of AP2202 (Note 7)

Note 7: Dropout voltage is 165 mV when $T_A = 25^{\circ}\text{C}$. In order to obtain a normal output voltage, $V_{OUT} + 0.165 \text{V}$ is the minimum input voltage which will result a low PSRR, imposing a bad influence on system. Therefore, the recommended input voltage is $V_{OUT} + 0.5 \text{V}$ to 13.2V. For AP2202-2.8 version, its input voltage can be set from 3.3V($V_{OUT} + 0.5 \text{V}$) to 13.2V. For that of Adj version, any value from $V_{OUT} + 0.5 \text{V}$ to 13.2V is available. R1 and R2 must be correctly selected when setting the output voltage. For example, if 3.0V output voltage is required, R1 and R2 can be set to $10 \text{k}\Omega$ and $14 \text{k}\Omega$ respectively. For Adj version, we recommend 2.3V as minimum output voltage.

AP2202

Application Information

Input Capacitor

A $1\mu F$ minimum capacitor is recommended to be placed between V_{IN} and GND.

Output Capacitor

It is required to prevent oscillation. $1.0\mu F$ minimum is recommended when C_{BYP} is unused. $2.2\mu F$ minimum is recommended when C_{BYP} is 100pF. The output capacitor may be increased to improve transient response.

Noise Bypass Capacitor

Bypass capacitor is connected to the internal voltage reference. A 100pF capacitor connected from BYP to GND make this reference quiet, resulting in a significant reduction in output noise, but the ESR stable area will be narrowed.

The start-up speed of the AP2202 is inversely proportional to the value of reference bypass capacitor. In some cases, if output noise is not a major concern and rapid turn-on is necessary, omit $C_{\rm BYP}$ and leave BYP open.

Power Dissipation

Thermal shutdown may take place if exceeding the maximum power dissipation in application. Under all possible operating conditions, the junction temperature must be within the range specified under absolute maximum ratings to avoid thermal shutdown.

To determine if the power dissipated in the regulator reaches the maximum power dissipation (see figure 16,17), using:

$$T_{J} = P_{D} * \theta_{JA} + T_{A}$$

$$P_{D} = (V_{IN} - V_{OUT}) * I_{OUT} + V_{IN} * I_{GND}$$

Where: $T_J \le T_{J(max)}$, $T_{J(max)}$ is absolute maximum ratings for the junction temperature; $V_{IN}*I_{GND}$ can be ignored due to its small value.

 $T_{J(max)}$ is 150°C, θ_{JA} is 200°C/W for SOT-23-5 package and 165°C/W for SOT-89 package, no heatsink is required since the package alone will dissipate enough heat to satisfy these requirements unless the calculated value for power dissipation exceeds the limit.

Example: For 2.8V version packaged in SOT-23-5, I_{OUT}=150mA, T_A=50°C, V_{IN(Max)} is: (150°C-50°C)/(0.15A*200°C/W)+2.8V=6.133V

Therefore, for good performance, please make sure that input voltage is less than 6.133V without heat-sink when $T_A=50^{\circ}C$.

Mechanical Dimensions

SOT-23-5 Unit: mm(inch)

AP2202

Mechanical Dimensions (Continued)

SOT-89

Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788