(12)

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt : 92400038.3

(22) Date de dépôt : 08.01.92

(51) Int. CI.⁵: **C07D 233/86**, C07D 233/84, C07D 233/72, C07D 405/06,

A61K 31/415, C07D 233/88,

C07D 405/04

(30) Priorité: 09.01.91 FR 9100185

(43) Date de publication de la demande : 15.07.92 Bulletin 92/29

(84) Etats contractants désignés : AT BE CH DE DK ES FR GB GR IT LI LU NL PT

(71) Demandeur: ROUSSEL-UCLAF 35, Boulevard des Invalides F-75007 Paris (FR)

(72) Inventeur : Gaillard-Kelly, Martine 54, rue Notre Dame de Lorette F-75009 Paris (FR) Inventeur : Goubet, François 54, rue des Volontaires F-75015 Paris (FR) Inventeur: Philibert, Daniel

16, rue Chevalier

F-94210 La Varenne Saint Hilaire (FR) Inventeur: Teutsch, Jean-Georges

Résidence Lavoisier Bât.3, 3, rue Lavoisier

F-93500 Pantin (FR)

(74) Mandataire : Bourgouin, André et al Département des Brevets ROUSSEL UCLAF 111, route de Noisy B.P. no 9 F-93230 Romainville (FR)

- (54) Nouvelles phénylimidazolidines, leur procédé de préparation, leur application comme médicaments et les compositionspharmaceutiques les renfermant.
- L'invention a pour objet les produits de formule (I):

dans laquelle:

R₁ représente cyano, nitro ou halogène, R₂ représente trifluorométhyle ou halogène ; le groupement -A-B- est choisi parmi les radicaux

dans lesquels X représente oxygène ou soufre et R₃ est choisi parmi :

— un hydrogène

alkyle, alkényle, alkynyle, aryle ou aryl-alkyle éventuellement substitué;

Y représente oxygène ou soufre ou NH,

à l'exception des produits dans lesquels :

le groupement -A-B- représente le radical

dans lequel X représente oxygène, R_3 représente hydrogène, Y représente oxygène ou NH, R_2 représente halogène ou trifluorométhyle et R_1 représente nitro ou halogène; la préparation, leur application comme médicaments et notamment anti-androgènes.

La présente invention concerne de nouvelles phénylimidazolidines, leur procédé de préparation, leur application comme médicaments et les compositions pharmaceutiques les renfermant.

Dans la demande japonaise J 48087030 sont décrites des 3-phényl 2-thiohydantoïnes qui sont présentées comme inhibant la germination de certaines plantes.

Dans le brevet français 2.329.276 sont décrites des imidazolidines qui sont présentées comme possédant une activité antiandrogène. Les produits de ce brevet sont cependant différents des produits de la présente demande de brevet.

La présente invention a donc pour objet les produits de formule générale (I) :

$$R_{1} \xrightarrow{R_{2}} N \xrightarrow{A_{B}} CH_{3}$$
 (1)

dans laquelle :

5

10

15

25

35

40

45

50

55

R₁ représente un radical cyano ou nitro ou un atome d'halogène, R₂ représente un radical trifluorométhyle ou un atome d'halogène, le groupement -A-B- est choisi parmi les radicaux

30 dans lesquels X représente un atome d'oxygène ou de soufre et R3 est choisi parmi les radicaux suivants :

-un atome d'hydrogène,

—les radicaux alkyle, alkényle, alkynyle, aryle ou arylalkyle ayant au plus 12 atomes de carbone, ces radicaux étant éventuellement substitués par un ou plusieurs substituants choisis parmi les radicaux hydroxy, halogène, mercapto, cyano, acyle ou acyloxy ayant au plus 7 atomes de carbone, S-aryle éventuellement substitué, dans lequel l'atome de soufre est éventuellement oxydé sous forme de sulfoxyde ou de sulfone, carboxy libre, estérifié, amidifié ou salifié, amino, mono ou dialkylamino ou un radical hétérocyclique comprenant 3 à 6 chaînons et renfermant un ou plusieurs hétéroatomes choisis parmi les atomes de soufre, d'oxygène ou d'azote, les radicaux alkyle, alkényle ou alkynyle étant de plus éventuellement interrompus par un ou plusieurs atomes d'oxygène, d'azote ou de soufre éventuellement oxydé sous forme de sulfoxyde ou de sulfone,

les radicaux aryle et aralkyle étant de plus éventuellement substitués par un radical alkyle, alkényle ou alkynyle, alkoxy, alkényloxy, alkynyloxy ou trifluorométhyle,

Y représente un atome d'oxygène ou de soufre ou un radical =NH,

à l'exception des produits dans lesquels le groupement A-B représente le radical :

dans lequel X représente un atome d'oxygène et R_3 représente un atome d'hydrogène et Y représente un atome d'oxygène ou un radical NH et R_2 représente un atome d'halogène ou un radical trifluorométhyle et R_1 représente un radical nitro ou un atome d'halogène.

Pour la définition de R₃ et dans ce qui suit, les définitions utilisées peuvent avoir les valeurs suivantes. Par alkyle ayant au plus 12 atomes de carbone on entend par exemple les valeurs méthyle, éthyle, propyle, isopropyle, butyle, isobutyle, sec-butyle, tert-butyle, pentyle, isopentyle, sec-pentyle, tert-pentyle, néo-pentyle,

hexyle, isohexyle, sec-hexyle, tert-hexyle, heptyle, octyle, décyle, undécyle, dodécyle, linéaires ou ramifiés.

On préfère les radicaux alkyle ayant au plus 4 atomes de carbone et notamment les radicaux méthyle, éthyle, propyle, isopropyle.

Par alkényle ayant au plus 12 atomes de carbone on entend par exemple les valeurs suivantes :

- vinyle, allyle, 1-propényle, butényle, pentényle, hexenyle.

On préfère les valeurs alkényle ayant au plus 4 atomes de carbone et notamment les valeurs vinyle ou allyle.

Par alkynyle ayant au plus 12 atomes de carbone on entend par exemple les valeurs suivantes : - éthynyle, propargyle, butynyle, pentynyle ou hexynyle.

On préfère les valeurs alkynyle ayant au plus 4 atomes de carbone et notamment les valeurs éthynyle et propargyle.

Par aryle on entend les radicaux aryles carbocyclique tels que le phényle ou le naphtyle ou les aryles hétérocycliques à 5 ou 6 chaînons comportant un ou plusieurs hétéroatomes choisis de préférence parmi l'oxygène, le soufre et l'azote. Parmi les aryles hétérocycliques à 5 chaînons on peut citer les radicaux furyle, thiényle, pyrrolyle, thiazolyle, oxazolyle, imidazolyle, thiadiazolyle, pyrazolyle, isoxazolyle.

Parmi les aryles hétérocycliques à 6 chaînons on peut citer les radicaux pyridyle, pyrimidinyle, pyridazinyle, pyrazinyle.

Parmi les radicaux aryles condensés on peut citer les radicaux indolyle, benzofurannyle, benzothiényle, quinoléïnyle.

On préfère le radical phényle.

Par arylalkyle on entend les radicaux résultant de la combinaison des radicaux alkyle cités précédemment et les radicaux aryle également cités ci-dessus.

On préfère les radicaux benzyle ou phényléthyle.

Par halogène, on entend bien entendu, les atomes de fluor, de chlore, de brome ou d'iode.

On préfère les atomes de fluor, de chlore ou de brome.

Comme exemples particuliers de radicaux alkyle substitués par un ou plusieurs halogènes, on peut citer les monofluoro, chloro, bromo ou iodométhyle, les difluoro, dichloro ou dibromométhyle, le trifluorométhyle.

Comme exemples particuliers de radicaux aryles ou aralkyles substitués, on peut citer ceux dans lesquels le radical phényle est substitué en position para, par un atome de fluor ou par un radical méthoxy ou trifluorométhyle.

Par radical acyle, on entend de préférence un radical ayant au plus 7 atomes de carbone tel que le radical acétyle, propionyle, butyryle ou benzoyle, mais peut également représenter un radical valéryle, hexanoyle, acryloyle, crotonoyle ou carbamoyle : on peut également citer le radical formyle.

Par radical acyloxy, on entend les radicaux dans lesquels les radicaux acyle ont la signification indiquée ci-dessus et par exemple les radicaux acétoxy ou propionyloxy.

Par carboxy estérifié on entend par exemple les radicaux tels que les radicaux alkyloxycarbonyle par exemple méthoxycarbonyle, éthoxycarbonyle, propoxycarbonyle, butyl ou tert-butyloxycarbonyle.

On peut également citer des radicaux formés avec les restes esters facilement clivables tels que les radicaux méthoxyméthyle, éthoxyméthyle; les radicaux acyloxyalkyle tels que pivaloyloxyméthyle, pivaloyloxyéthyle, acétoxyméthyle ou acétoxyéthyle; les radicaux alkyloxycarbonyloxy alkyle tels que les radicaux méthoxycarbonyloxy méthyle ou éthyle, les radicaux isopropyloxycarbonyloxy méthyle ou éthyle.

Une liste de tels radicaux esters peut-être trouvée par exemple dans le brevet européen EP 0 034 536. Par carboxy amidifiè on entend les radicaux du type

-con R_{4}

dans lesquels les radicaux R_4 et R_5 identiques ou différents représentent un atome d'hydrogène ou un radical alkyle ayant de 1 à 4 atomes de carbone tels que les radicaux méthyle, éthyle, propyle, isopropyle, butyle, isobutyle, sec-butyle ou tert-butyle.

Parmi les radicaux

55

50

45

10

20

25

on préfère les radicaux amino, mono ou diméthylamino. Le radical

 $N < R_4$

peut également représenter un hétérocycle qui peut ou non comporter un hétéroatome supplémentaire. On peut citer les radicaux pyrrolyle, imidazolyle, pyridyle, pyrazinyle, pyrimidyle, indolyle, pipéridino, morpholino, pipérazinyle. On préfère les radicaux pipéridino, ou morpholino.

Par carboxy salifié on entend les sels formés par exemple avec un équivalent de sodium, de potassium, de lithium, de calcium, de magnésium ou d'ammonium. On peut également citer les sels formés avec les bases organiques telles que la méthylamine, la propylamine, la triméthylamine, la diéthylamine, la triéthylamine.

On préfère le sel de sodium.

Par radical alkylamino on entend les radicaux méthylamino, éthylamino, propylamino ou butyl, linéaire ou ramifié, amino. On préfère les radicaux alkyle ayant au plus 4 atomes de carbone, les radicaux alkyle peuvent être choisis parmi les radicaux alkyle cités ci-dessus.

Par radical dialkylamino on entend par exemple les radicaux diméthylamino, diéthylamino, méthyléthylamino. Comme précédemment on préfère les radicaux alkyle ayant au plus 4 atomes de carbone choisis dans la liste indiquée ci-dessus.

Par radical hétérocyclique renfermant un ou plusieurs hétéroatomes, on entend par exemple les radicaux monocycliques, hétérocycliques saturés tels que les radicaux oxirannyle, oxolannyle, dioxolannyle, imidazoli-dinyle, pyrazolidinyle, pipéridyle, pipérazinyle ou morpholinyle.

Par radicaux alkyle, alkényle, ou alkynyle éventuellement interrompus par un hétéroatome choisis parmi les atomes de soufre, d'oxygène ou d'azote, on entend les radicaux comprenant un ou plusieurs de ces atomes, identiques ou différents dans leur structure. Ces hétéroatomes ne pouvant évidemment pas être situés à l'extrémité du radical. On peut citer par exemple les radicaux alkoxyalkyle tels que méthoxyméthyle ou méthoxyéthyle ou encore les radicaux alkoxyalkyle tels que méthoxyéthoxyméthyle.

Lorsque les produits de formule (I) comportent un radical amino salifiable par un acide il est bien entendu que ces sels d'acides font également partie de l'invention. On peut citer les sels fournis avec les acides chlorhydrique en méthanesulfonique par exemple.

L'invention a notamment pour objet les produits de formule (I) telle que définie ci-dessus dans laquelle Y représente un atome d'oxygène à l'exception des produits dans lesquels : le groupement -A-B- représente le radical :

X N-R₃

dans lequel X représente un atome d'oxygène et R₃ représente un atome d'hydrogène et R₂ représente un atome d'halogène ou un radical trifluorométhyle et R₁ représente un radical nitro ou un atome d'halogène.

Parmi ces produits, l'invention a particulièrement pour objet ceux dans lequel le groupement -A-B- représente le radical :

55

50

5

10

15

20

30

40

dans lequel X représente un atome de soufre et R₃ a la signification indiquée précédemment.

Parmi ces produits, l'invention a particulièrement pour objet ceux dans lesquels R représente un atome d'hydrogène ou un radical alkyle ayant au plus 4 atomes de carbone éventuellement substitué par un radical hydroxy.

Parmi ces produits, l'invention a tout particulièrement pour objet ceux dans lesquels R₁ représente un radical cyano ou un atome d'halogène et notamment un atome de chlore.

L'invention a aussi particulièrement pour objet les produits de formule (I) telle que définie ci-dessus dans laquelle le groupement -A-B- représente un groupement :

ou un groupement :

5

20

25

35

40

50

55

dans lequel R₃ représente un radical alkyle ou alkényle ayant au plus 4 atomes de carbone ou un radical aralkyle éventuellement substitué.

La présente invention a encore pour objet les produits de formule (I) telle que définie ci-dessus et répondant à la formule (I') :

$$R_1 \xrightarrow{N-R_3} (I')$$

dans laquelle R₁, R₂ et R₃ ont la signification indiquée ci-dessus à l'exception des produits dans lesquels R₁ représente un radical nitro, R₂ représente un radical trifluorométhyle et R₃ représente un atome d'hydrogène.

Parmi ces produits, la présente invention a aussi pour objet les produits de formule (I) telle que définie cidessus dans laquelle R_1 représente un radical nitro et R_3 représente un radical alkyle ou alkényle ayant au plus 4 atomes de carbone éventuellement substitué par un radical carboxy libre estérifié ou salifié.

Parmi les produits préférés de l'invention, on peut citer plus précisément les produits de formule (I) telle que définie ci-dessus dont les noms suivent :

- -le 4-(5-oxo-2-thioxo-3,4,4-triméthyl-1-imidazolidinyl)-2-(trifluorométhyl)-benzonitrile,
- -le 4-(4,4-diméthyl-5-oxo-2-thioxo 1-imidazolidinyl)-2-(trifluorométhyl)-benzonitrile,
- -le 4-[4,4-diméthyl 3-(2-hydroxyéthyl) 5-oxo 2-thioxo 1-imidazolidinyl] 2-(trifluorométhyl) benzonitrile,
- -le 3-(3,4-dichlorophényl) 2-thioxo 1,5,5-triméthyl 4-imidazolidinone,
- -le 1-(4-nitro-3-(trifluorométhyl) phényl)-3,4,4-triméthyl-2,5-imidazolidinedione,
- -le 4-[[4,5-dihydro 4,4-diméthyl 5-oxo 2-(phénylméthyl) thio] 1H-imidazol-1-yl] 2-(trifluorométhyl) benzonitrile.

L'invention a aussi pour objet un procédé de préparation des produits de formule générale (I) telle que définie ci-dessus caractérisé en ce que :

soit l'on fait agir en présence d'une base tertiaire un produit de formule (II) :

5

10

15

20

25

30

35

40

45

50

55

$$R_{1} \longrightarrow N = C = X$$
(II)

dans laquelle R_1 , R_2 et X ont la signification indiquée ci-dessus, avec un produit de formule (III):

dans laquelle R'_3 a les valeurs indiquées ci-dessus pour R_3 dans lequel les éventuelles fonctions réactives sont éventuellement protégées et étant entendu que si R_1 représente un radical nitro ou un atome d'halogène, si R_2 représente un atome d'halogène ou un radical CF_3 et X représente un atome d'oxygène, R'_3 ne peut pas représenter un atome d'hydrogène, pour obtenir un produit de formule (IV) :

dans laquelle R_1 , R_2 , X et R'_3 ont la signification précédente, produits de formule (IV) que, si nécessaire ou si désiré l'on soumet à l'une quelconque ou plusieurs des réactions suivantes, dans un ordre quelconque :

- a) réaction d'élimination des éventuels groupements protecteurs que peut porter R'3;
- b) réaction d'hydrolyse du groupement >C=NH en fonction cétone et le cas échéant transformation du groupement >C=S en groupement >C=O;
- c) réaction de transformation du ou des groupements >C=O en groupement >C=S ;
- d) action sur les produits de formule (IV) dans laquelle R'₃ représente un atome d'hydrogène, et après hydrolyse au groupement >C=NH en fonction cétone d'un réactif de formule Hal-R"₃ dans laquelle R"₃ a les valeurs de R'₃ à l'exception de la valeur hydrogène et Hal représente un atome d'halogène pour obtenir des produits de formule (I) dans laquelle le groupement -A-B- représente le groupement

dans lesquels R"₃ a la signification indiquée précédemment puis, si désiré, action sur ces produits, d'un agent d'élimination des éventuels groupements protecteurs que peut porter R"₃ ou le cas échéant, action d'un agent d'estérification, d'amidification ou de salification,

soit l'on fait agir un réactif de formule Hal-R"3 dans laquelle Hal et R"3 ont les valeurs indiquées précédemment

sur un produit de formule (IV') :

pour obtenir un produit de formule (IV") :

30

35

40

45

produit de formule (IV") que, si nécessaire ou si désiré l'on soumet à l'une quelconque ou plusieurs des réactions suivantes dans un ordre quelconque :

a) réaction d'élimination des éventuels groupements protecteurs que peut porter R''_3 puis le cas échéant action d'un agent d'estérification, d'amidification ou de salification;

b) réaction de transformation du ou des groupements >C=O en groupements >C=S.

L'action des produits de formule (II) avec les produits de formule (III) est effectuée de préférence dans un solvant organique tel que le tétrahydrofuranne ou le dichloroéthane mais on peut également utiliser l'éther éthylique ou l'éther isopropylique.

On opère en présence d'une base tertiaire telle que la triéthylamine ou encore la pyridine ou la méthyléthylpyridine.

Les éventuelles fonctions réactives que peut comporter R_3 et qui sont éventuellement protégées dans le produit de formule (III) ou (IV") sont les fonctions hydroxy ou amino. On utilise pour protéger ces fonctions des groupements protecteurs usuels. On peut citer par exemples les groupements protecteurs suivants du radical amino : tert-butyle, tert-amyle, trichloroacétyle, chloroacétyle, benzhydryle, trityle, formyle, benzyloxycarbonyle.

Comme groupement protecteur du radical hydroxy on peut citer les radicaux tels que formyle, chloroacétyle, tétrahydropyrannyle, triméthylsilyle, tert-butyl diméthylsilyle.

Il est bien entendu que la liste ci-dessus n'est pas limitative et que d'autres groupements protecteurs, par exemple connus dans la chimie des peptides peuvent être utilisés. Une liste de tels groupements protecteurs se trouve par exemple dans le brevet français BF 2.499.995 dont le contenu est incorporé ici par référence.

Les réactions éventuelles d'élimination des groupements protecteurs sont effectuées comme indiqué dans ledit brevet BF 2.499.995. Le mode préféré d'élimination est l'hydrolyse acide à l'aide des acides choisis parmi les acides chlorhydrique, benzène sulfonique ou para toluène sulfonique, formique ou trifluoroacétique. On préfère l'acide chlorhydrique.

La réaction éventuelle d'hydrolyse du groupement >C=NH en groupement cétone est également effectuée de préférence à l'aide d'un acide tel que l'acide chlorhydrique aqueux par exemple au reflux.

Lorsque l'hydrolyse du groupement >C=NH en groupement cétone est effectuée sur une molécule comportant également un groupement >C=S, celui-ci peut être transformé en groupement >C=O. Le radical OH libre que peut comporter éventuellement R₃ peut être alors transformé en radical SH.

La réaction de transformation du ou des groupements >C=O en groupement >C=S est effectuée à l'aide du réactif dit de Lawesson de formule :

5

10

30

35

40

45

50

55

qui est un produit commercialisé par exemple par la firme FLUKA et dont l'utilisation est décrite par exemple dans la publication : Bull. Soc. Chim. Belg. vol 87, N° 3, (1987) p. 229.

Lorsque l'on veut transformer deux fonctions >C=O en deux fonctions >C=S on opère en présence d'un excès de réactif de Lawesson. Il en est de même lorsque l'on part d'une molécule comportant une fonction >C=S et une fonction >C=O et que l'on veut transformer ladite fonction >C=O en fonction >C=S.

Par contre lorsque l'on part d'une molécule comportant deux fonctions >C=O et que l'on veut obtenir un produit ne comportant qu'une seule fonction >C=S. On opère en présence d'un déficit de réactif de Lawesson. On obtient alors en général un mélange de trois produits : chacun des deux produits comportant une fonction >C=O et une fonction >C=S et le produit comportant deux fonctions >C=S. Ces produits peuvent être ensuite séparés par les méthodes usuelles telles que la chromatographie.

L'action sur les produits de formules (IV) ou (IV') du réactif de formule Hal-R"₃ est effectuée en présence d'une base forte telle que l'hydrure de sodium ou de potassium. On peut opérer par réaction de transfert de phase en présence de sels d'ammonium quaternaires tels que le tert-butyl ammonium.

- Les groupements protecteurs que peut porter le substituant R''_3 pouvant être par exemple un de ceux précédemment cités pour R_3 . Les réactions d'élimination des groupements protecteurs s'effectuent dans les conditions indiquées ci-dessus.

Un exemple d'élimination du groupement terbutyldiméthylsilyle au moyen de l'acide chlorhydrique est donné ci-après dans les exemples.

- L'estérification éventuelle des produits de formule (I) dans laquelle R"₃ comporte un radical OH libre est effectuée dans des conditions classiques. On peut utiliser par exemple un acide ou un dérivé fonctionnel, par exemple un anhydride tel que l'anhydride acétique en présence d'une base telle que la pyridine.

L'estérification ou la salification éventuelle des produits de formule (I) dans laquelle R"3 représente un groupement COOH est effectuée dans les conditions classiques connues de l'homme du métier.

- L'amidification éventuelle des produits de formule (I) dans laquelle R"₃ comporte un radical COOH est effectuée dans des conditions classiques. On peut utiliser une amine primaire ou secondaire sur un dérivé fonctionnel de l'acide par exemple un anhydride symétrique ou mixte.

La présente invention a également pour objet un procédé de préparation des produits de formule (I") :

$$R_{1}^{"} \xrightarrow{A^{"}} B^{"}$$

$$(I")$$

dans laquelle R"₁, R"₂2, -A"-B"- ont les significations indiquées ci-dessus pour R₁, R₂ et -A-B- <u>étant entendu que</u> lorsque -A"-B"- représente un groupement -CO-N(R"'₃)- dans lequel R"'₃ représente un atome d'hydrogène ou un radical alkyle linéaire ou ramifié ayant au plus 7 atomes de carbone et Y représente un atome d'oxygène, R"₁ représente un radical cyano, ce procédé étant caractérisé en ce que l'on fait réagir un produit de formule (V):

dans laquelle R''_1 et R''_2 ont les significations précédentes et Hal représente un atome d'halogène avec un produit de formule (VI) :

10

20

30

40

50

5

dans laquelle -A"-B"- et Y ont la signification indiquée ci-dessus, la réaction s'effectuant en présence d'un catalyseur et éventuellement d'un solvant.

En ce qui concerne les produits de formule (V), le terme Hal désigne de préférence l'atome de chlore, mais peut aussi représenter un atome de brome ou d'iode.

Le rôle du catalyseur est vraisemblablement de piéger l'halogénure d'hydrogène qui se dégage et ainsi de faciliter la réaction de condensation du produit de formule (V) avec le produit de formule (VI) pour donner le produit recherché.

L'invention a plus précisément pour objet un procédé tel que défini ci-dessus dans lequel le catalyseur est un métal sous forme native ou oxydée ou une base.

Le catalyseur utilisé peut être un métal sous forme native, sous forme d'oxyde métallique ou encore sous forme de sels métalliques. Le catalyseur peut également être une base. Quand le catalyseur utilisé est un métal, ce métal peut être du cuivre ou du nickel.

Les sels métalliques peuvent être un chlorure ou un acétate.

Quand le catalyseur est une base, cette base peut être par exemple la soude ou la potasse et on peut, si désiré, ajouter au milieu réactionnel du diméthylsulfoxyde.

L'invention a plus précisément pour objet un procédé tel que défini ci-dessus dans lequel le catalyseur est choisi parmi l'oxyde cuivreux, l'oxyde cuivrique, le cuivre sous forme native et une base telle que la soude ou la potasse.

Le cuivre sous forme native utilisé comme catalyseur est préférentiellement sous forme de poudre.

L'invention a particulièrement pour objet un procédé tel que défini ci-dessus dans lequel le catalyseur est l'oxyde cuivreux.

Le solvant utilisé est préférentiellement choisi parmi des éthers à haut point d'ébullition tels que, par exemple, l'oxyde de phényle, le diglyme, le triglyme et le diméthylsulfoxyde mais peut être également, par exemple, une huile à haut point d'ébullition telle que la paraffine ou la vaseline.

L'invention a plus particulièrement pour objet un procédé tel que défini ci-dessus caractérisé en ce que l'on opère en présence d'un solvant de type éther tel que l'oxyde de phényle, le diglyme, le triglyme ou le diméthylsulfoxyde.

L'invention a tout particulièrement pour objet un procédé tel que défini ci-dessus dans lequel le solvant utilisé est l'oxyde de phényle ou le triglyme.

Le procédé de préparation du produit recherché défini ci-dessus peut être réalisé sous pression ou à la pression atmosphérique, à une température préférentiellement élevée.

L'invention a ainsi pour objet un procédé tel que défini ci-dessus caractérisé en ce que la réaction est réalisée à une température supérieure à 100°C et de préférence supérieure à 150°C.

L'invention a plus précisément pour objet un procédé tel que défini ci-dessus caractérisé en ce que la réaction est réalisée pendant plus de 2 heures.

L'invention a très précisément pour objet un procédé tel que défini ci-dessus caractérisé en ce que la réaction est réalisée en présence d'oxyde cuivreux, dans le triglyme, à une température supérieure ou égale à 200°C et pendant plus de 3 heures.

Les produits objets de la présente invention sont doués de propriétés pharmacologiques intéressantes ; on a constaté notamment qu'ils inhibaient les effets des androgènes sur les récepteurs périphériques.

Des tests donnés dans la partie expérimentale illustrent cette activité anti-androgène.

Du fait de cette activité anti-androgène, les produits de l'invention peuvent être utilisés en thérapeutique chez les adultes sans avoir à redouter certains effets d'une castration chimique.

Ces propriétés rendent les produits de formule générale (I) de la présente invention utilisables comme médicaments pour le traitement des adénomes et des néoplasies de la prostate ainsi que pour lutter contre l'hypertrophie bénigne de la prostate.

Ces propriétés rendent les produits de formule générale (I) également utilisables dans le traitement des tumeurs bénignes ou malignes dont les cellules contiennent notamment des récepteurs androgènes. On peut

en particulier citer principalement les cancers du sein, du cerveau, de la peau et des ovaires mais également les cancers de la vessie, du système lymphatique, du rein, du foie.

Les produits de formule générale (I) de l'invention trouvent également leur utilisation dans le traitement de l'hirsutisme, de l'acné, de la seborrhée, de l'alopécie androgénique, de l'hyperpilosité.

Ils peuvent également être utilisés dans le domaine vétérinaire.

L'invention a donc pour objet l'application, à titre de médicaments, des produits de formule générale (I) pharmaceutiquement acceptables.

L'invention a particulièrement pour objet l'application à titre de médicaments, des produits dont les noms suivent :

- -le 4-(5-oxo-2-thioxo-3,4,4-triméthyl-1-imidazolidinyl)-2-(trifluorométhyl)-benzonitrile,
- -le 4-(4,4-diméthyl-5-oxo-2-thioxo-1-imidazolidinyl)-2-(trifluorométhyl)-benzonitrile,
- -le 4-[4,4-diméthyl 3-(2-hydroxyéthyl) 5-oxo 2-thioxo 1-imidazolidinyl] 2-(trifluorométhyl) benzonitrile,
- -le 3-(3,4-dichlorophényl) 2-thioxo 1,5,5-triméthyl 4-imidazolidinone,
- -le 1-(4-nitro-3-(trifluorométhyl) phényl)-3,4,4-triméthyl-2,5-imidazolidinedione,
- -le 4-[[4,5-dihydro 4,4-diméthyl 5-oxo 2-(phénylméthyl) thio] 1H-imidazol-A-yl] 2-(trifluorométhyl) benzonitrile

Les produits peuvent être administrés par voie parentérale, buccale, perlinguale, rectale ou topique.

L'invention a aussi pour objet les compositions pharmaceutiques, caractérisées en ce qu'elles renferment, à titre de principe actif, un au moins des médicaments de formule générale (I).

Ces compositions peuvent être présentées sous forme de solutions ou de suspensions injectables, de comprimés, de comprimés enrobés, de capsules, de sirops, de suppositoires, de crèmes, de pommades et de lotions. Ces formes pharmaceutiques sont préparées selon les méthodes usuelles. Le principe actif peut être incorporé à des excipients habituellement employés dans ces compositions, tels que les véhicules aqueux ou non, le talc, la gomme arabique, le lactose, l'amidon, le stéarate de magnésium, le beurre de cacao, les corps gras d'origine animale ou végétale, les dérivés paraffiniques, les glycols, les divers agents mouillants, dispersants ou émulsifiants, les conservateurs.

La dose usuelle, variable selon le sujet traité et l'affection en cause, peut être, par exemple, de 10 mg à 500 mg par jour chez l'homme, par voie orale.

Les produits de formule (II) utilisés au départ de l'invention peuvent être obtenus par action du phosgène lorsque X représente un atome d'oxygène ou du thiophosgène lorsque X représente un atome de soufre sur l'amine correspondante de formule (A) :

$$\begin{array}{c|c}
R_1 & & \\
\hline
R_2 & & \\
\end{array}$$
(A)

40

45

35

5

10

15

20

Un exemple d'une telle préparation est donné ci-après dans la partie expérimentale. Un produit de ce type est décrit également dans le brevet français BF 2.329.276.

Les amines de formule (A) sont décrites dans le brevet européen EP 0.002.892 ou le brevet français BF 2.142.804.

Les produits de formule (III) sont connus ou peuvent être préparés à partir de la cyanhydrine correspondante selon le procédé décrit dans la publication : J. Am. Chem. Soc. (1953), 75, 4841.

Les produits de formule (III) dans lesquels R'₃ est différent d'un atome d'hydrogène peuvent être obtenus par action d'un produit de formule R''₃ Hal sur le 2-cyano 2-amino propane dans les conditions énoncées cidessus pour l'action de R''₃ Hal sur les produits de formule (IV). Un exemple de préparation de ce type est décrit dans la référence :

- Jilek et Coll. Collect. Cyech. Chem. Comm. 54(8) 2248 (1989).

Les produits de formule (IV') sont décrits dans le brevet français BF 2.329.276.

Les produits de départ de formules (V) et (VI), sur lesquels s'exerce un procédé, objet de l'invention, pour l'obtention des produits de formule (I), sont connus et disponibles dans le commerce ou peuvent être préparés selon des méthodes connues de l'homme de métier.

La préparation de produits de formule (VI) est décrite notamment dans les publications suivantes :

- -Zhur. Préklad. Khim. 28, 969-75 (1955) (CA 50, 4881a, 1956)
- -Tétrahédron 43, 1753 (1987)

- -J. Org. 52, 2407 (1987)
- -Zh. Org. Khim. 21, 2006 (1985)
- -J. Fluor. Chem. 17, 345 (1981) ou dans les brevets :
- -allemand DRP 637.318 (1935)
- -européen EP 0.130.875
- -Japonais JP 81.121.524.

Les produits de formule (VI) qui sont des dérivés de l'hydantoïne sont largement utilisés et cités dans la littérature comme par exemple dans les articles suivants :

- -J. Pharm. Pharmacol., 67, Vol. 19(4), p. 209-16 (1967)
- -J. Chem. Soc., 74, (2), p. 219-21 (1972)
- -Khim. Farm. Zh., 67, Vol. 1 (5) p. 51-2
- -Brevet allemand 2.217.914
- -Brevet européen 0.091.596
- -J. Chem. Soc. Perkin. Trans. 1, 74 (2) p. 48, p. 219-21.

L'invention a également pour objet, à titre de produits industriels nouveaux et notamment à titre de produits industriels nouveaux utilisables comme intermédiaires pour la préparation des produits de formule générale (I).

Les produits de formule (IVi) :

20

10

$$R_{1} \longrightarrow N^{A_{1}}$$

$$R_{2} \longrightarrow N^{A_{1}}$$

$$(IVi)$$

25

dans laquelle R₁, R₂ et Y ont les significations indiquées ci-dessus et le groupement :

30

est choisi parmi les radicaux :

40

$$\sum_{N-R_3i}^{S-R_3i}$$
 et

dans lesquels X représente un atome d'oxygène ou de soufre et R₃ est choisi parmi les valeurs de R₃ comportant une fonction réactive protégée.

Parmi les fonctions réactives protégées on peut citer les fonctions hydroxyle et amino. Ces fonctions peuvent être protégées comme indiqué ci-dessus pour le substituant R₃.

Les exemples suivants illustrent l'invention sans toutefois la limiter.

50

$\underline{\textbf{Exemple 1}}: \textbf{1-(4-nitro-3-(trifluorométhyl)} \ \underline{\textbf{phényl)-3,4,4-triméthyl-2,5-imidazolidinedione.}$

A une suspension de 492 mg d'hydrure de sodium à 50 % dans l'huile et 3 cm³ de diméthyl formamide, on ajoute, à une température comprise entre 23 et 26°C, une solution de 3,17 g de 1-(3'-trifluorométhyl 4-nitrophényl) 4,4-diméthyl imidazoline 2,5-dione (obtenu selon BF 2.329.276) et 32 cm³ de diméthyl formamide, on agite 15 minutes et ajoute une solution de 0,7 cm³ d'iodure de méthyle dans 2 cm³ de diméthyl formamide. On agite 25 minutes entre 24 et 28°C puis verse sur 200 g d'un mélange 1-1 d'eau et de glace. On extrait avec de l'éther, lave à l'eau saturée de chlorure de sodium, sèche, filtre et évapore à sec sous pression réduite, on

obtient 3,6 g du produit recherché F=116°C.

Un échantillon analytique a été obtenu par recristallisation dans l'alcool isopropylique on recueille ainsi 2,73 q du produit attendu F = 116°C.

```
Analyse pour : C_{13}H_{12}F_3N_3O_4 = 331,25

calculés : C% 47,14  H% 3,65  F% 17,20  N% 12,68

trouvés : 47,0  3,5  17,1  12,5
```

Spectre IR (CHCl₃) C=O (1780, 1727 cm⁻¹) aromatiques (1615, 1596, 1497 cm⁻¹) NO₂ (1545, 1357 cm⁻¹)

10

35

45

55

Exemple 2 : 5,5-diméthyl-1-éthyl-3-(4-nitro-3-(trifluorométhyl) phényl)-2,4-imidazolidinedione.

On opère comme à l'exemple 1 à partir de 1 g de 1-(3'-trifluorométhyl 4'-nitrophényl) 4,4-diméthyl imidazoline-2,5-dione obtenu selon BF 2.329.276 en utilisant 0,33 cm³ d'iodure d'éthyle et 166 mg d'hydrure de sodium à 50 % dans l'huile. On obtient 1,19 g du produit recherché F = 110-111°C. Le produit ci-dessus est recristallisé dans l'isopropanol. On obtient 934 mg du produit attendu F = 110-111°C.

```
Analyse pour C_{14}H_{14}F_3N_3O_4 = 345,28
calculés: C% 48,70 H% 4,09 F% 16,51 N% 12,17
trouvés: 48,6 4,0 16,8 12,1

Spectre IR (CHCl<sub>3</sub>)
C=O (1777 cm<sup>-1</sup>, 1724 (F))
NO_2 (1545, 1356 cm<sup>-1</sup>)
aromatique (1614, 1596, 1497 cm<sup>-1</sup>)
```

Exemple 3: 5,5-diméthyl-3-(4-nitro-3-(trifluorométhyl) phényl)-1-propyl-2,4-imidazolidine-dione.

On opère comme à l'exemple 1 à partir de 1 g de 1-(3'-trifluorométhyl 4-nitrophényl) 4,4-diméthyl imidazoline 2,5-dione (obtenu selon BF 2.329.276) en utilisant 155 mg d'hydrure de sodium à 50 % dans l'huile et 0,35 cm³ de 1-iodo propane. Après chromatographie sur silice éluant acétone-chlorure de méthylène 1-99 on obtient 1,087 g de produit brut (F=102°C). Après recristallisation dans l'isopropanol, on recueille 945 mg de produit recherché (F = 102°C).

```
Analyse pour C_{15}H_{16}F_3N_3O_4 = 359,31 calculés: C% 50,14 H% 4,49 F% 15,86 N% 11,69 trouvés: 50,1 4,4 15,9 11,5 Spectre IR (CHCl<sub>3</sub>) C=O (1778, 1724 cm<sup>-1</sup>) NO_2 (1544, 1358 cm<sup>-1</sup>) aromatique (1615, 1596, 1497 cm<sup>-1</sup>)
```

Exemple 4 : 5,5-diméthyl-1-(1-méthyl éthyl)-3-(4-nitro-3-(trifluorométhyl) phényl)-2,4-imidazolidine-dione.

On opère comme à l'exemple 1 à partir de 1 g de 1-(3'-trifluorométhyl 4-nitrophényl) 4,4-diméthyl imidazoline 2,5-dione (obtenu selon BF 2.329.276) en utilisant 166 mg d'hydrure de sodium à 50 % dans l'huile et 0,4 cm³ de 2-iodo propane pendant 18 heures à 50°C. Après chromatographie sur silice (éluant chlorure de

méthylène-acétone 99-1) on obtient 685 mg du produit attendu F = 130°C. On recristallise le produit obtenu ci-dessus dans l'isopropanol et on recueille 661 mg de produit recherché F = 130°C.

5 Analyse pour $C_{15}H_{16}F_3N_3O_4 = 359,31$

calculés: C% 50,14 H% 4,49 F% 15,86 N% 11,69 trouvés: 50,1 4,4 16,2 11,6

10 Spectre IR (CHCl₃)

C=O (1779, 1771, 1723 cm⁻¹)

NO₂ (1544, 1361 cm⁻¹)

aromatiques (1615, 1596, 1497 cm⁻¹)

Exemple 5 : 5,5-diméthyl-3-(4-nitro-3-trifluorométhyl) phényl)-1-(2-propényl)-2,4-imidazolidinedione.

On opère comme à l'exemple 1 à partir de 1 g de 1-(3'-trifluorométhyl 4-nitrophényl) 4,4-diméthyl imidazoline 2,5-dione (obtenu selon BF 2.329.276) en utilisant 166 mg d'hydrure de sodium à 50 % dans l'huile et 0,35 cm³ de bromure d'allyle. Après chromatographie sur silice, éluant chlorure de méthylène-acétone 99-1, on obtient 1,19 g de produit que l'on recristallise dans l'isopropanol, on recueille 1,01 g de produit recherché F = 105°C.

Analyse pour $C_{15}H_{14}F_3N_3O_4 = 357,29$

calculés : C% 50,42 H% 3,95 F% 15,95 N% 11,76 trouvés : 50,4 3,8 15,8 11,7

Spectre IR (CHCl₃)

C=O (1779, 1724 cm⁻¹)

NO₂ (1545, 1358 cm⁻¹)

aromatique (1615, 1596, 1497 cm-1)

CH=CH₂ (1643, 930 cm⁻¹)

Exemple 6 : 5,5-diméthyl-3-(4-nitro-3-(trifluorométhyl) phényl)-1-méthyl phényl-2,4-imidazolidine-dione.

On opère comme à l'exemple 1 à partir de 2 g de 1-(3'-trifluorométhyl 4-nitrophényl) 4,4-diméthyl imidazoline 2,5-dione (obtenu selon BF 2.329.276) en utilisant 332 mg d'hydrure de sodium à 50 % dans l'huile et 0,71 cm³ de bromure de benzyle. Après chromatographie sur silice, éluant chlorure de méthylène-acétone 99-1 on obtient 2,375 g de produit que l'on recristallise dans l'isopropanol, on recueille 2,165 g du produit recherché F = 99°C.

Analyse pour $C_{19}H_{16}N_3F_3O_4 = 407,3$

calculés : C% 56,02 H% 3,96 N% 10,31 F% 14,00 trouvés : 56,1 3,8 10,2 13,9

50 Spectre IR

C=O (1799 cm-1 (m), 1723 cm-1 (F))

aromatique (1608 cm⁻¹) + (1594 cm⁻¹ (m)) NO₂ (1545 cm⁻¹ (F)) (1497 cm⁻¹)

Exemple 7: 4-(4,4-diméthyl-5-imino-2-oxo-1-imidazolidinyl)-2-(trifluorométhyl)-benzonitrile.

A une solution de 2,63 g de 2-amino-2-cyano propane et 36 cm³ de 1,2-dichloroéthane avec 0,9 cm³ de triéthylamine, on ajoute à 5°C, une solution de 6,6 g de 4-isocyanate de 2-(trifluorométhyl) benzonitrile préparé comme indiqué dans la préparation ci-après dans 10 cm³ de dichloréthane. On agite 16 heures à température ambiante. On évapore à secet chromatographie le résidu (7,7 g) sur silice, éluant chlorure de méthylène-acétone 85-15, on obtient 3,54 g du produit attendu F = 228°C.

Un échantillon analytique a été préparé par recristallisation de 300 mg du produit ci-dessus dans l'isopropanol, on recueille 267 mg de produit recherché F = 228°C.

10

15

```
Analyse pour C_{13}H_{11}F_3N_4O = 296,25 calculés : C% 52,71  H% 3,74  F% 19,24  N% 18,91 trouvés : 52,7  3,6  19,1  18,6
```

Spectre IR (nujol)
NH/OH (3340, 3290 cm⁻¹)
C≡N 2240 cm⁻¹
C=O 1760 cm⁻¹
C=N 1655 cm⁻¹
aromatiques (1606, 1570, 1502 cm⁻¹)

Préparation : 4-isocyanate de 2-(trifluorométhyl) benzonitrile.

25

A 33,6 cm³ d'une solution toluénique de phosgène à 1,93 M/l portée à 0-5°C on ajoute en 20 minutes 10 g de 4-cyano 3-(trifluorométhyl) aniline (décrite dans le brevet européen EP 0.002.892) en solution dans 30 cm³ d'acétate d'éthyle. On agite 30 minutes à une température comprise entre 0 et 5°C puis laisse remonter à 25°C. On chauffe jusqu'à distillation en compensant le volume distillé par du toluène jusqu'à ce que la température de distillation atteigne 110°C. On met alors le réfrigérant en position reflux jusqu'à cessation du dégagement d'acide chlorhydrique (soit 4 heures 30). On ramène à température ambiante essore le léger insoluble blanc sous azote sur sulfate de sodium puis rince par trois fois 10 cm³ de toluène et évapore à sec sous pression réduite. On termine par un chauffage à 60°C pendant 1 heure puis revient sous atmosphère d'argon et obtient 11,6 g de produit attendu utilisé tel quel dans le stade suivant :

Infra-rouge

- -N=C=O 2268 cm-1
- -CN 2233 cm⁻¹

Exemple 8: 4-(4,4-diméthyl-2,5-dioxo-1-imidazolidinyl)-2-(trifluorométhyl)-benzonitrile.

40

45

50

On chauffe 35 minutes au reflux une suspension de 2,76 g du produit obtenu à l'exemple 7 et 60 cm³ d'acide chlorhydrique au demi. On verse sur 100 g d'eau et glace et extrait avec de l'acétate d'éthyle. On lave à l'eau, sèche et évapore à sec. On obtient 2,70 g du produit recherché F = 210°C.

Un échantillon analytique a été obtenu par recristallisation de 440 mg du produit ci-dessus, dans l'isopropanol on recueille 383 mg de produit attendu F = 210-211°C.

```
Analyse pour C_{13}H_{10}F_3N_3O_2 = 297,24 calculés: C% 52,53 H% 3,39 F% 19,17 N% 14,14 trouvés: 52,4 3,2 19,4 13,9
```

Spectre IR (CHCl₃)
C≡N 2245 cm⁻¹
C=O (1788, 1722 cm⁻¹)
aromatique (1610, 1572, 1502 cm⁻¹)
NH (max) 3340 cm⁻¹

Exemple 9 : Acide 3-(4-cyano-3-(trifluorométhyl) phényl)-5,5-diméthyl-2,4-dioxo-1-imidazolidine acétique.

A une suspension de 210 mg d'hydrure de sodium (à 50 % dans l'huile) et 3 cm³ de diméthyl formamide on ajoute une solution de 600 mg du produit obtenu à l'exemple 8 dans 6 cm³ de diméthyl formamide on agite 15 minutes puis ajoute 290 mg d'acide bromoacétique et agite 16 heures à température ambiante. On ajoute à nouveau 105 mg d'hydrure de sodium puis 15 minutes après 145 mg d'acide bromoacétique. On agite 30 minutes puis verse dans une solution composée de 50 cm³ d'eau et 5 cm³ d'acide chlorhydrique 2N. On extrait à l'éther, lave avec une solution saturée de chlorure de sodium, sèche, filtre et évapore à sec; on obtient 1,22 g de produit brut que l'on chromatographie sur silice éluant chlorure de méthylèneméthanol-acide acétique (90-10-0,5). On obtient 367 mg du produit recherché.

Spectre IR : C≡N 2238 cm⁻¹ C=O hydantoïne et acide (1784, 1725, 1710 cm⁻¹) aromatique (1616, 1580, 1508 cm⁻¹) Ultra-violet

EtOH Hcl 0,1 N max 258 nm Epsilon = 13300 infl 277 nm Epsilon = 5000 infl 285 nm Epsilon = 2600 EtOH NaOH 0,1 N max 287 nm Epsilon = 19100 max 342 nm Epsilon = 1900

$\underline{\text{Exemple 10}}: \underline{3\text{-}(4\text{-}\text{cyano-3-}(\text{trifluorom\'ethyl})} \text{ ph\'enyl})\text{-}5\text{,}5\text{-}\text{dim\'ethyl-2,}4\text{-}\text{dioxo-1-imidazolidine ac\'etate}}\\ \underline{d'\acute{\text{ethyle.}}}$

A une suspension de 100 mg d'hydrure de sodium à 50 % dans l'huile et 3 cm³ de diméthylformamide, on ajoute 600 mg du produit obtenu à l'exemple 8 en solution dans 6 cm³ de diméthyl formamide. On agite 15 minutes puis ajoute lentement sans dépasser 30°C 0,25 cm³ de bromoacétate d'éthyle. On agite 30 minutes, verse sur 50 g d'un mélange eau + glace (1-1), ajoute 0,5 g de phosphate monopotassique et extrait à l'éther. On lave la phase organique à l'eau, sèche et évapore à sec on recueille 1,1 g de produit brut que l'on chromatographie sur silice (éluant chlorure de méthylène-acétone (97-3)). On obtient 709 mg du produit attendu F = 152°C.

On a obtenu un échantillon analytique en recristallisant dans l'isopropanol le produit ci-dessus et recueilli ainsi 667 mg du produit recherché F = 152°C.

```
Analyse pour C_{17}H_{16}F_3N_3O_4 = 383,33
calculés : C% 53,21 H% 4,21 F% 14,83 N% 10,96
trouvés : 53,3 4,0 14,9 10,8
```

Spectre IR (CHCl₃)
 C≡N 2225 cm⁻¹
 imidazolidine (1786, 1729 cm⁻¹)
 CO₂Et 1751 cm⁻¹
 aromatiques (1616, 1572, 1505 cm⁻¹)

25

 $\underline{\textbf{Exemple 11}}: \underline{\textbf{4(5-imino-2-thioxo-3,4,4-trim\'ethyl-1-imidazolidinyl)-2-(trifluorom\'ethyl)-benzonitrile.}$

a) Préparation de l'isothiocyanate

A une solution de 22 cm³ d'eau distillée et 1 cm³ de thiophosgène on ajoute lentement 2,23 g de 1-trifluorométhyl-4-amino benzonitrile (préparé selon EP 0002892) on agite pendant 1 heure, extrait avec du chloroforme, lave à l'eau salée, sèche et évapore à sec sous pression réduite on obtient 3 g de produit utilisé tel quel pour l'obtention de l'imine.

b) Obtention de l'imine

On agite pendant 40 minutes au reflux 3 g du produit obtenu ci-dessus avec 1,33 cm³ de 2-méthylamino 2-cyanopropane, 23 cm³ de tétrahydrofuranne et 0,23 cm³ de triéthylamine. On évapore à sec et chromatographie le résidu (3,07 g) sur silice (éluant : cyclohexane-acétate d'éthyle (1-1) puis chlorure de méthylène-acétone (95-5)), on obtient 2,83 g de produit attendu que l'on recristallise dans l'isopropanol pour obtenir 2,63 g de produit recherché F = 173-174°C.

```
Analyse pour C_{14}H_{13}F_3N_4S = 326,35
```

calculés: C% 51,53 H% 4,01 F% 17,17 N% 17,46 S% 9,82 trouvés: 51,7 3,9 17,2 17,2 9,9

15 Spectre IR

20

40

C=NH (3308, 1679 cm⁻¹) C=S + aromatiques (1608, 1575, 1505, 1488 cm⁻¹) C=N 2230 cm⁻¹

CF₃ = 1185 cm⁻¹

Exemple 12: 4-(5-oxo-2-thioxo-3,4,4-triméthyl-1-imidazolidinyl)-2-(trifluorométhyl)-benzonitrile.

On agite 1 heure au reflux 2,21 g du produit obtenu à l'exemple 11 et 44 cm³ d'acide chlorhydrique au demi. On verse le milieu réactionnel sur un mélange eau + glace (1-1) 200 g, extrait avec du chlorure de méthylène, lave avec de l'eau saturée de chlorure de sodium, sèche et évapore à sec, on chromatographie le résidu sur silice, éluant cyclohexaneacétate d'éthyle 1-1 on obtient 2,1 g de produit (F=171°C) que l'on recristallise dans l'isopropanol pour obtenir 1,99 g de produit recherché F = 171°C.

Analyse pour $C_{14}H_{12}F_3N_3OS = 327,33$

calculés : C% 51,37 H% 3,69 F% 12,84 N% 17,41 S% 9,79 trouvés : 51,4 3,5 12,7 17,6 10,79

Spectre IR (CHCl₃)

C=O (1761, 1756 cm⁻¹)

aromatiques (1610, 1578, 1505 cm⁻¹)

C≡N 2230 cm⁻¹

CF₃ 1178 cm⁻¹

Exemple 13 : 4-(2,5-dithioxo-3,4,4-triméthyl-1-imidazolidinyl)-2-(trifluorométhyl)-benzonitrile.

On agite 24 heures au reflux 839 mg de produit obtenu à l'exemple 12 avec 518 mg de réactif de Lawesson et 4,7 cm³ de toluène. On évapore à sec sous pression réduite on recueille 1,36 g de produit que l'on chromatographie sur silice éluant chlorure de méthylène-acétate d'éthyle (99-1) puis cyclohexane-acétate d'éthyle (85-15). On obtient 783 mg de produit que l'on recristallise dans l'isopropanol on recueille 690 mg de produit recherché F = 211-212°C.

Analyse pour $C_{14}H_{12}F_3N_3S_2 = 343,40$

calculés: C% 48,97 H% 3,52 F% 16,60 N% 12,24 S% 18,67 trouvés: 49,0 3,4 16,6 12,2 18,6

55 Spectre IR (CHCl₃)

C≡N 2230 cm⁻¹

aromatique + syst. conjugué (1612, 1582, 1508 cm⁻¹)

CF₃ 1178 cm⁻¹

Exemple 14: 4-(4,4-diméthyl-5-imino-2-thioxo-1-imidazolidinyl)-2-(trifluorométhyl)-benzonitrile.

A un mélange de 2,54 g de produit obtenu comme en a) de l'exemple 11 avec 20 cm³ de tétrahydrofuranne et 0,2 cm³ de triéthylamine on ajoute 1 g de 2-amino-2-cyano propane et 1 cm³ de tétrahydrofuranne on agite à température ambiante. On évapore à sec et chromatographie le résidu (3,5 g) sur silice éluant acétate d'éthyle-cyclohexane (7-3) puis cyclohexaneacétate d'éthyle (1-1) et obtient 940 mg de produit recherché dont on recristallise 300 mg dans l'isopropanol pour recueillir 263 mg de produit F = 296°C.

Analyse pour C₁₃H₁₁F₃N₄S = 312,32 calculés : C% 50,00 H% 3,55 F% 18,25 N% 17,94 S% 10,27

trouvés : 49,9 3,4 18,3 17,6 10,4

5 Spectre IR (Nujol)

OH/NH 3260 cm-1

C≡N 2230 cm-1

C=S 1764 cm⁻¹

20

25

45

50

55

aromatique + C=C (1612, 1575, 1530, 1501 cm⁻¹)

Une nouvelle préparation du produit a été effectuée en remplaçant le tétrahydrofuranne par le 1,2-dichloroéthane.

Le produit attendu, insoluble, précipite. On obtient ainsi le produit recherché avec un rendement de 60 %.

Exemple 15: 4-(4,4-diméthyl-5-oxo-2-thioxo-1-imidazolidinyl)-2-(trifluorométhyl)-benzonitrile.

On agite pendant 1 heure au reflux 635 mg du produit obtenu à l'exemple 14 et 14 cm³ d'acide chlorhydrique dilué au demi. On refroidit, ajoute 100 cm³ d'eau et extrait avec de l'acétate d'éthyle, lave à l'eau salée, sèche et évapore à sec on obtient 600 mg de produit que l'on chromatographie sur silice éluant chlorure de méthylène-acétone (95-5) on obtient 590 mg du produit attendu (F = 190-191°C) que l'on recristallise dans l'isopropanol pour obtenir 490 mg du produit recherché F = 190-191°C.

Analyse pour $C_{13}H_{10}F_3N_3OS = 313,30$

calculés: C% 49,84 H% 3,22 F% 18,19 N% 13,41 S% 10,23 trouvés: 49,6 3,1 18,4 13,2 10,0

Spectre IR (CHCl₃)

=C-NH 3430 cm-1

C≡N 2230 cm⁻¹

C=O 1766 cm-1

Syst. conjugué + aromatiques (1612, 1578, 1505 cm⁻¹)

Exemple 16: 5,5-diméthyl-3-(4-nitro-3-(trifluorométhyl) phényl)-1-pentyl-2,4-imidazolidinedione.

On opère comme à l'exemple 1 à partir de 1 g de 1-(3'-trifluorométhyl 4-nitrophényl) 4,4-diméthyl imidazoline-2,5-dione (obtenu selon BF 2.329.276) en utilisant 170 mg d'hydrure de sodium et 0,47 cm³ de 1-bromopentane, après chromatographie sur silice, éluant chlorure de méthylène-cyclohexane (8-2) on obtient 1,23 g de produit recherché que l'on cristallise dans l'isopropanol pour recueillir 995 mg de produit F = 84°C.

Analyse pour $C_{17}H_{20}O_4F_3N_3 = 387,35$

calculés : C% 52,71 H% 5,20 F% 14,71 N% 10,85 trouvés : 52,8 5,1 14,8 10,7

Spectre IR (CHCl₃) C=O (1778, 1723 cm⁻¹)

NO₂ (1544, 1360 cm⁻¹)

5

20

30

35

40

45

50

55

Exemple 17 : 5,5-diméthyl-3-(4-nitro-3-(trifluorométhyl) phényl)-1-nonyl-2,4-imidazolidinedione.

On opère comme à l'exemple 1 à partir de 1 g de 1-(3'-trifluorométhyl 4-nitrophényl) 4,4-diméthyl imidazoline 2,5-dione (obtenu selon BF 2.329.276) en utilisant 170 mg d'hydrure de sodium à 50 % dans l'huile et 0,7 cm³ de 1-bromononane. Après chromatographie sur silice on obtient 1,08 g du produit recherché F = 63°C.

```
Analyse pour C_{21}H_{28}O_4F_3N_3 = 443,46
calculés: C% 56,87 H% 6,36 F% 12,85 N% 9,48
trouvés: 57,0 6,5 12,8 9,5
```

Spectre IR (CHCl₃)
 C=O (1788, 1723 cm⁻¹)
 NO₂ (1544, 1359 cm⁻¹)

Exemple 18: 4-(3,4,4-triméthyl-2,5-dioxo 1-imidazolidinyl) 2-(trifluorométhyl) benzonitrile.

En opérant comme à l'exemple 1 au départ de 300 mg de produit décrit à l'exemple 8 on obtient 275 mg de produit attendu (F=158°C).

Spectre IR (CHCl₃): C=O (1780, 1727 cm⁻¹) aromatiques: (1615, 1574, 1505 cm⁻¹)

5 C≡N: 2238 cm⁻¹

Exemple 19: 4-(5-thioxo-2-oxo-3,4,4-triméthyl-1-imidazolidinyl) 2-(trifluorométhyl)-benzonitrile (produit A) 4-(5-oxo-2-thioxo-3,4,4-triméthyl 1-imidazolidinyl) 2-(trifluorométhyl)-benzonitrile (produit B) 4-(2,5-dithioxo-3,4,4-triméthyl-1-imidazolidinyl) 2-(trifluorométhyl)-benzonitrile (produit C).

On porte au reflux pendant 9 heures une suspension de 230 mg de produit obtenu à l'exemple 18 dans 1,4 cm³ de toluène et 78 mg de réactif de Lawesson, ramène à température ambiante puis évapore à sec. On purifie les 330 mg de produit obtenus par chromatographie sur silice (éluant chlorure de méthylène-acétone 99:1).

On obtient par ordre d'élution :

- -46 mg de produit C (Rf=0,63 F=210-211°C) identique au produit décrit à l'exemple 13 ;
- -26 mg de produit B (Rf=0,49 F=170-171°C) identique au produit décrit à l'exemple 12 ;
- -42 mg de produit A (Rf=0,34 F=194°C).

Analyse physique du produit A.

```
Spectre IR (CHCl<sub>3</sub>): C=0: 1760 cm<sup>-1</sup>
-C=N: 2235 cm<sup>-1</sup>
aromatiques: (1615, 1580, 1508 cm<sup>-1</sup>)
Spectre ultra-violet (éthanol)
max 228 nm epsilon = 19400
256 nm epsilon = 12100
298 nm epsilon = 8600
390 nm epsilon = 70
```

Exemple 20 : 4-(4,5-dihydro 4,4-diméthyl 2-(méthylthio) 5-oxo 1H-imidazol-1-yl) 2-(trifluorométhyl)-benzonitrile.

On ajoute une solution de 626 mg de produit de l'exemple 15 dans 6 cm³ de diméthylformamide à une suspension constituée de 108 mg d'hydrure de sodium à 50 % dans l'huile et 1,8 cm³ de diméthylformamide. On

rince avec 0,3 cm3 de diméthylformamide et agite pendant 10 minutes après cessation du dégagement d'hydrogène. On ajoute alors, goutte à goutte, 0,19 cm3 d'iodure de méthyle dans 1 cm3 de diméthylformamide.

Après 45 minutes de réaction on verse sur 50 g d'un mélange glace-eau contenant 0,5 g de phosphate monopotassique et extrait 4 fois à l'éther. On lave la phase organique à l'eau salée, sèche sur sulfate de magnésium et évapore à sec. On purifie les 668 mg de produit obtenu par chromatographie sur silice (éluant CH₂Cl₂-AcOEt 95:5).

On obtient 640 mg de produit que l'on chromatographie à nouveau sur silice (éluant cyclohexane-AcOEt 7:3) et obtient après reprise à l'éther 507 mg de produit recherché F = 62°C. Spectre Infra-Rouge

C=O: 1747 cm-1

C=N et aromatique (1614, 1581, 1569, 1503 cm⁻¹) Spectre Ultra-Violet (EtOH) max 209 nm Epsilon = 26000 infl 236 nm Epsilon = 11500 infl 264 nm Epsilon = 8700

Exemple 21 : 4-[4,5-dihydro 4,4-diméthyl 5-oxo 2-[(phénylméthyl) thiol 1H-imidazol-1-yl] 2-(trifluorométhyl) benzonitrile.

A 53 mg d'hydrure de sodium en suspension dans 0,5 cm3 de diméthylformamide, on ajoute en 5 minutes 313 mg de 4-(4,4-diméthyl-5-oxo-2-thioxo-1-imidazolidinyl)-2-(trifluorométhyl)-benzonitrile préparé comme à l'exemple 15 en solution dans 3 cm³ de diméthylformamide. On agite 10 minutes, ajoute 0,1 cm³ de bromure de benzyle et maintient 30 minutes sous agitation. On verse le milieu réactionnel dans l'eau glacée additionnée de 500 mg de phosphate de potassium, extrait à l'éther, lave la phase organique à l'eau salée, sèche et évapore le solvant. On obtient 450 mg de produit brut que l'on chromatographie sur silice (éluant : chlorure de méthylèneacétate d'éthyle 97,5-2,5). On recueille 316 mg de produit attendu. Rf = 0,38.

```
Analyse
```

```
calculés : C% 59,54
                      H% 4,0
                                 F% 14,12
                                              N% 10,41
                          4,0
                                      14,1
trouvés :
              59,6
                                                  10,2
Spectre IR (CHCl<sub>3</sub>)
                   : 1746 cm<sup>-1</sup>
C=0
```

: 2236 cm⁻¹ $C \equiv N$

Système conjugué

: 1614, 1580, 1570, 1503, 1499 cm⁻¹ + aromatiques

Exemple 22 : 4-[4,4-diméthyl 3-(2-hydroxyéthyl) 5-imino 2-thioxo 1-imidazolidinyl] 2-(trifluorométhyl) benzonitrile.

On porte 30 minutes au reflux une solution comprenant 2,11 g de l'isothiocyanate préparé au stade a) de l'exemple 11 avec 1,18 g de mélange de 2-[(2-hydroxyéthyl) amino] 2-méthylpropane nitrile et de 2,2-diméthyloxazolidine (8-2) dans 20 cm³ de tétrahydrofuranne en présence de 0,5 cm³ de triéthylamine. On évapore le solvant, chromatographie le résidu sur silice (éluant : chlorure de méthylène-acétone 95-5) et obtient 1,26 g de produit attendu brut et 686 mg de N-[4-cyano 2-(trifluorométhyl) phényl] 2,2-diméthyl 3-oxazolidinecarbothioamide. On dissout les 686 mg de ce produit dans 10 cm3 d'acétate d'éthyle, ajoute 30 cm3 de cyclohexane, concentre à 4 cm³, essore et sèche pour obtenir 518 mg de produit attendu supplémentaire. On dissout le produit brut dans 20 cm3 d'isopropanol, concentre à 5 cm3 essore et sèche. On obtient 1,04 g de produit attendu. F = 181°C.

55

30

35

Analyse

15

calculés: C% 50,55 H% 4,24 F% 16,00 N% 15,72 S% 9,00 trouvés: 50,4 4,1 15,9 15,6 9,0

Spectre IR (CHCl₃)

OH : 3630 cm⁻¹ >=NH : 3314, 1677 cm⁻¹ C≡N : 2230 cm⁻¹

aromatiques : 1611, 1576, 1504 cm⁻¹

Préparation du 2-[(2-hydroxyéthyl) amino] 2-méthylpropanenitrile utilisé au départ de l'exemple 22.

On ajoute goutte à goutte à une température comprise entre 20°C et 30°C, 8 cm³ d'éthanoline à 12,3 cm³ de cyanhydrine de l'acétone. On agite pendant 18 heures, distille sous pression réduite et recueille 2,3 g de mélange comprenant le produit attendu et du 2,2-diméthyloxazolidine, utilisé tel quel pour le stade suivant.

Exemple 23 : 4-[4,4-diméthyl 3-(2-hydroxyéthyl) 5-oxo 2-thioxo 1-imidazolidinyl] 2-(trifluorométhyl) benzonitrile (Produit A) et 4-[4,4-diméthyl 2,5-dioxo 3-(2-mercaptoéthyl) 1-imidazolidinyl] 2-(trifluorométhyl) benzonitrile (Produit B).

On chauffe pendant 10 minutes au reflux 680 mg de produit obtenu à l'exemple 22 dans 7 cm³ d'eau en présence de 7 cm³ d'acide chlorhydrique, refroidit à température ambiante, extrait à l'acétate d'éthyle, lave la phase organique à l'eau salée, sèche et évapore le solvant. Après chromatographie du résidu sur silice (éluant : cyclohexane-acétate d'éthyle 1-1), on obtient 119 mg de produit B soit le dérivé 2,5-dioxo 3-(2-mercaptoéthyl) rf = 0,35 et 569 mg de produit A soit le dérivé 5-oxo 2-thioxo 3-(2-hydroxyéthyl) rf = 0,14; F ≈ 130°C.

30 Analyse pour $C_{15}H_{14}F_3N_3O_2S = 357,36$

calculés: C% 50,42 H% 3,95 F% 15,95 N% 11,76 S% 8,97

Produit A:

trouvés : 50,7 4,0 15,7 11,5 9,1

Produit B:

trouvés : 50,6 3,8 15,9 11,6 9,1

40 Spectre IR (CHCl₃)

Produit A:

OH : 3626 cm⁻¹ C≡N : 2236 cm⁻¹ C=O : 1763 cm⁻¹

aromatiques : 1615, 1578, 1504 cm⁻¹

Produit B : Absence d'OH

C=N : 2228 cm⁻¹
C=O : 1780, 1726 cm⁻¹
aromatiques : 1615, 1578, 1505 cm⁻¹

En opérant comme indiqué dans les exemples 1 à 23 :

A) en utilisant le 4-(4,4-diméthyl 2,5-dioxo 1-imidazolidinyl) 2-(trifluorométhyl) benzonitrile préparé comme à l'exemple 8 et les réactifs appropriés, on a obtenu les composés des exemples suivants :

Exemple 24: 4-(4,4-diméthyl 2,5-dioxo 3-éthyl 1-imidazolidinyl) 2-(trifluorométhyl) benzonitrile.

F= 100-101°C.

5 Analyse pour $C_{15}H_{14}F_3N_3O_2 = 325,29$

calculés : C% 55,39 H% 4,34 F% 17,52 N% 12,92

trouvés : 55,7 4,3 17,6 12,8

Spectre IR (CHCl₃)

C≡N : 2238 cm⁻¹

C=O : 1777, 1724 cmp⁻¹ aromatiques : 1617, 1575, 1505 cm⁻¹

Exemple 25 : 4-(4,4-diméthyl 2,5-dioxo 3-(2-propényl) 1-imidazolidinyl) 2-(trifluorométhyl) benzonitrile.

20 Analyse pour $C_{16}H_{14}F_3N_3O_2 = 337,35$

calculés : C% 56,97 H% 4,18 F% 16,90 N% 12,46 trouvés : 57,0 4,1 16,2 12,3

Spectre IR (CHCl₃)

C≡N : 2238 cm⁻¹ C=O : 1728, 1725 cm⁻¹

HC=CH₂ : 1645 cm⁻¹

³⁰ aromatiques : 1616, 1575, 1505 cm⁻¹

Exemple 26 : 4-(4,4-diméthyl 2,5-dioxo 3-(phénylméthyl) 1-imidazolidinyl) 2-(trifluorométhyl) benzonitrile.

 35 F = 98-99°C.

Analyse pour $C_{20}H_{16}F_3N_3O_2 = 387,36$

calculés: C% 62,01 H% 4,16 F% 14,71 N% 10,85 trouvés: 62,0 4,1 14,7 10,8

Spectre IR (CHCl₃)

=C-NH : 3430 cm⁻¹ C≡N : 2238 cm⁻¹ C=O : 1779, 1724 cm⁻¹

aromatiques : 1615, 1605, 1575, 1504, 1497 cm⁻¹

Exemple 27 : 4-[4,4-diméthyl 2,5-dioxo 3-[(4-fluorophényl) méthyl] 1-imidazolidinyl] 2-(trifluorométhyl) benzonitrile.

F = 101-102°C.

Analyse pour $C_{20}H_{15}F_4N_3O_2 = 405,35$

calculés: C% 59,26 H% 3,73 F% 18,75 N% 10,37 trouvés: 59,1 3,5 18,9 10,3

Spectre IR (CHCl₃)

C≡N : 2238 cm⁻¹
C=O : 1780, 1724 cm⁻¹
aromatiques : 1615, 1612, 1505 cm⁻¹

Exemple 28 : 4-[4,4-diméthyl 2,5-dioxo 3-[(4-méthoxyphényl) méthyl] 1-imidazolidinyl] 2-(trifluorométhyl) benzonitrile.

⁷⁵ F = 95-96°C.

5

Analyse pour $C_{21}H_{18}F_3N_3O_3 = 417,39$

20 calculés: C% 60,43 H% 4,35 F% 13,65 N% 10,07 trouvés: 59,1 3,5 18,9 10,3

Spectre IR (CHCl₃)

₂₅ C≡N : 2238 cm⁻¹

C=O : 1778, 1723 cm⁻¹

aromatiques : 1615, 1584, 1514, 1505 cm⁻¹

Exemple 29 : 4-[4,4-diméthyl 2,5-dioxo 3-[[4-[trifluorométhyl) phényl] méthyl] 1-imidazolidinyl] 2-(tri-fluorométhyl) benzonitrile.

F ≈ 89-90°C.

35 Analyse pour $C_{21}H_{15}F_{6}N_{3}O_{2} = 313,30$

calculés: C% 55,39 H% 3,32 F% 25,03 N% 9,23 trouvés: 55,2 3,2 25,3 9,2

40 Spectre IR (CHCl₃)

C≡N : 2238 cm⁻¹
C=O : 1615, 1505 cm⁻¹
aromatiques : 1615, 1505 cm⁻¹

Exemple 30 : 4-[4,4-diméthyl 2,5-dioxo 3-(2-époxyméthyl) 1-imidazolidinyl] 2-(trifluorométhyl) benzonitrile.

F =112-113°C.

50

55

Analyse pour $C_{16}H_{14}F_3N_3O_3 = 353,30$

calculés: C% 54,39 H% 3,99 F% 16,13 N% 11,89 trouvés: 54,7 4,0 16,1 11,8

Spectre IR (CHCl₃)

C≡N : 2235 cm⁻¹

C=O : 1781, 1725 cm⁻¹ aromatiques : 1615, 1576,1505 cm⁻¹

Exemple 31 : 4-(4,4-diméthyl 2,5-dioxo 3-propyl-1H-imidazolidinyl) 2-(trifluorométhyl) benzonitrile.

F = 113-114°C.

10

30

Analyse pour $C_{16}H_{16}F_3N_3O_2 = 339,32$

calculés: C% 56,64 H% 4,75 F% 16,80 N% 12,38 trouvés: 56,7 4,7 16,7 12,2

Spectre IR (CHCl₃)

15 C≡N :2236 cm⁻¹

C=O : 1778, 1725 cm⁻¹ aromatiques : 1616, 1505 cm⁻¹

Exemple 32 : 4-(4,4-diméthyl 2,5-dioxo 3-(1-méthyléthyl) 1-imidazolidinyl] 2-(trifluorométhyl) benzonitrile.

F = 138-139°C.

25 Analyse pour $C_{16}H_{16}F_3N_3O_2 = 339,32$

calculés : C% 56,64 H% 4,75 F% 16,80 N% 12,38 trouvés : 56,5 4,7 17,1 12,3

Spectre IR (CHCl₃)

Spectre IR (CHCl₃)

C≡N : 2236 cm⁻¹

C=O : 1778, 1724 cm⁻¹ aromatiques : 1616, 1575, 1505 cm⁻¹

B) En utilisant le 4-(4,4-diméthyl 5-oxo 2-thioxo 1-imidazolidinyl 2-(trifluorométhyl) benzonitrile préparé comme à l'exemple 15 et les réactifs appropriés, on a obtenu les composés suivants :

Exemple 33 : 4-[4,5-dihydro 4,4-diméthyl 2-(nonylthio) 5-oxo 1H-imidazol-1-yl] 2-(trifluorométhyl) benzonitrile.

rf = 0,35 (éluant : chlorure de méthylène-acétate d'éthyle 97,5-2,5).

Exemple 34 : 4-[4,5-dihydro 4,4-diméthyl 2-[(3-hydroxypropyl) thio] 5-oxo 1H-imidazol-l-yl] 2-(trifluoro-méthyl) benzonitrile.

rf = 0,17 (éluant : chlorure de méthylène-acétate d'éthyle 8-2).

Exemple 35 : [[1-[4-cyano 3-(trifluorométhyl) phényl] 4,5-dihydro 4,4-diméthyl 5-oxo 1H-imidazol-2-yl] thiol acétate d'éthyle.

rf = 0,20 (éluant : cyclohexane-acétate d'éthyle 65-35).

C) En utilisant le thiocyanate préparé à l'exemple 11 et les réactifs appropriés, on a obtenu les composés suivants :

Exemple 36 : 4-(4,4-diméthyl 3-éthyl 5-imino 2-thioxo 1-imidazolidinyl) 2-(trifluorométhyl) benzonitrile.

rf = 0,16 (éluant : chlorure de méthylène-acétone 95-5).

5 Exemple 37 : 4-(4,4-diméthyl 5-imino 3-pentyl 2-thioxo 1-imidazolidinyl) 2-(trifluorométhyl) benzonitrile.

rf = 0,35 (éluant : acétate d'éthyle-cyclohexane 8-2).

D) En utilisant respectivement le 4-(4,4-diméthyl 3-éthyl 5-imino 2-thioxo 1-imidazolidinyl) 2-(trifluorométhyl) benzonitrile préparé comme à l'exemple 36 et le 4-(4,4-diméthyl 5-imino 3-pentyl 2-thioxo 1-imidazolidinyl) 2-(trifluorométhyl) benzonitrile préparé comme à l'exemple 37 et l'acide chlorhydrique au demi, on a obtenu les composés suivants :

Exemple 38 : 4-(4,4-diméthyl 3-éthyl 5-oxo 2-thioxo 1-imidazolidinyl) 2-(trifluorométhyl) benzonitrile.

rf = 0,38 (éluant : acétate d'éthyle-cyclohexane 1-1).

Exemple 39: 4-(4,4-diméthyl 5-oxo 3-pentyl 2-thioxo 1-imidazolidinyl) 2-(trifluorométhyl) benzonitrile.

F = 78°C. rf = 0,66 (éluant : acétate d'éthyle-cyclohexane 8-2).

E) En utilisant le 4-(4,5-dihydro 4,4-diméthyl 2-(méthylthio) 5-oxo 1H-imidazol-1-yl) 2-(trifluorométhyl)-benzonitrile préparé comme à l'exemple 20 et le 4-[4,5-dihydro 4,4-diméthyl 5-oxo 2-[(phénylméthyl) thio] 1H-imidazol-1-yl] 2-(trifluorométhyl) benzonitrile préparé comme à l'exemple 21 et le réactif de Lawesson, on a obtenu les composés suivants :

Exemple 40 : 4-[4,5-dihydro 4,4-diméthyl 2-(méthylthio) 5-thioxo 1H-imidazol-1-yl] 2-(trifluorométhyl) benzonitrile.

rf = 0,36 (éluant : chlorure de méthylène-acétate d'éthyle 97,5-2,5).

Exemple 41 : 4-[4,5-dihydro 4,4-diméthyl 2-[(phénylméthyl) thiol 5-thioxo 1H-imidazol-1-yl] 2-(trifluoro-méthyl) benzonitrile.

rf = 0,62 (éluant : chlorure de méthylène-acétate d'éthyle 98-2).

Exemple 42 : 3-[4-cyano 3-(trifluorométhyl) phényl] 5,5-diméthyl 2,4-dioxo N-méthyl N-(1-méthyléthyl) 1-imidazolidine acétamide.

On ajoute 0,1 cm³ de N-méthylmorpholine à 235 mg d'acide 3-[4-cyano 3-(trifluorométhyl) phényl] 5,5-diméthyl 2,4-dioxo 1-imidazolidine acétique préparé comme à l'exemple 9, en suspension dans 4 cm³ de chlorure de méthylène. On refroidit la solution obtenue à -10°C, ajoute goutte à goutte 0,1 cm³ de chloroformiate d'isobutyle et agite 25 minutes à -10°C. On ajoute 0,15 cm³ de N-méthyl N-isopropylamine, laisse revenir à température ambiante en 40 minutes environ, ajoute 5 cm³ d'une solution aqueuse saturée en bicarbonate de sodium, agite 30 minutes, extrait au chlorure de méthylène, lave la phase organique à l'eau, sèche et évapore le solvant sous pression réduite. Après chromatographie sur silice (éluant : chlorure de méthylène-acétone 96-4), on obtient 147 mg de produit attendu.

Spectre IR (CHCl₃)

C≡N : 2236 cm⁻¹ C=O hydantoïne : 1783, 1728 cm⁻¹

C=O amide : 1661 cm⁻¹

aromatiques : 1615, 1575, 1505 cm⁻¹

Exemple 43 : 4,-[4,4-diméthyl 2,5-dioxo 3-(2-hydroxyéthyl) 1-imidazolidinyl] 2-(trifluorométhyl) benzonitrile.

a) Condensation.

On opère comme à l'exemple 9 à partir de 900 mg de produit obtenu à l'exemple 8 et 1,91 g de 2-bromoéthanolterbutyl-diméthylsilyléther. On obtient 1 g de l'éther silyloxy dérivé. F = 86-87°C après chromatographie sur silice (éluant : cyclohexane-acétate d'éthyle 7-3).

b) Clivage:

20

On ajoute 1 cm3 d'acide chlorhydrique 2N à 380 mg de produit obtenu ci-dessus en solution dans 4 cm3 de méthanol et 1 cm³ de chlorure de méthylène. On agite 40 minutes à température ambiante, verse sur 15 cm³ d'eau, extrait au chlorure de méthylène, lave à l'eau, sèche et évapore le solvant. On purifie le résidu par chromatographie sur silice (éluant : chlorure de méthylène-acétate d'éthyle 7-3), rf = 0,9, cristallise dans l'éther et recueille 270 mg de produit attendu. F = 109-110°C après cristallisation dans l'isopropanol.

Analyse:

Calculés: C% 52,79 H% 4,23 F% 16,70 N% 12,31 Trouvés : 52,5 4,2 16,7 12,1

En opérant de manière identique, en utilisant au départ le 2-bromopropanoltertubyldiméthylsilyléther, on a préparé le produit suivant :

Exemple 44 : 4-[4,4-diméthyl 2,5-dioxo 3-(3-hydroxypropyl) 1-imidazolidinyl] 2-(trifluorométhyl) benzonitrile.

F = 131-132°C. Rf = 0,13 (éluant : CH_2Cl_2 -AcOEt 75-25).

Exemple 45 : 4-[3-[2-(acétyloxy) éthyl] 4,4-diméthyl 2,5-dioxo 1-imidazolidinyl] 2-(trifluorométhyl) benzonitrile.

On agite 30 minutes à température ambiante, 215 mg de produit obtenu à l'exemple 43, 15 mg de 4-diméthylaminopyridine, 1 cm³ de pyridine et 0,5 cm³ d'anhydride acétique. On verse le milieu réactionnel dans 20 cm³ d'une solution aqueuse saturée en bicarbonate de sodium, agite 20 minutes, extrait à l'acétate d'éthyle, lave à l'eau, évapore à sec. On élimine la pyridine et l'acide acétique résiduel par distillation, purifie le résidu par chromatographie sur silice (éluant : chlorure de méthylène-acétate d'éthyle 65-35), reprend le résidu (rf = 0,35) à l'isopropanol, concentre partiellement, glace, essore et obtient après séchage, 210 mg de produit attendu. F = 99-100°C.

Analyse:

calculés: C% 53,27 H% 4,21 F% 14,87 N% 10,96 4,3 trouvés : 53,5 15,2 10,9

En opérant comme dans les exemples précédents, on a préparé les exemples des produits suivants :

Exemple 46 : 4-[4,4-diméthyl 2,5-dioxo 3-(5-hydroxypentyl) 1-imidazolidinyl] 2-(trifluorométhyl) benzonitrile.

F = 101-102°C.

55

Exemple 47 : 4-[4,4-diméthyl 2,5-dioxo 3-(2-méthoxyéthyl) 1-imidazolidinyl] 2-(trifluorométhyl) benzonitrile.

F = 68-69°C.

5

Exemple 48 : 4-[4,4-diméthyl 2,5-dioxo 3-(cyanométhyl) 1-imidazolidinyl] 2-(trifluorométhyl) benzonitrile.

F = 186-187°C.

′.

Exemple 49 : 4-[4,4-diméthyl 2,5-dioxo 3-[(1,3-dioxalan-2-yl) méthyl] 1-imidazolidinyl] 2-(trifluorométhyl) benzonitrile.

F = 135-136°C.

15

Exemple 50 : 4-[4,4-diméthyl 2,5-dioxo 3-(2-chloroéthyl) 1-imidazolidinyl] 2-(trifluorométhyl) benzonitrile.

F = 120-121°C.

20

Exemple 51: 1-(3,4-dichlorophényl) 5-imino 3,4,4-triméthyl 2-imidazolidine thione.

On chauffe 16 heures au reflux 2,4 g d'isocyanate de 3,4-dichlorophényle et 1,3 cm³ de 2-méthylamino 2-cyanopropane dans 23 cm³ de tétrahydrofuranne en présence de 0,23 cm³ de triéthylamine. On élimine le solvant sous pression réduite et purifie le résidu par chromatographie sur silice (éluant : chlorure de méthylène-acétone 96-4 puis acétate d'éthylecyclohexane 1-1). Après cristallisation dans l'éther, on obtient 2,54 g de produit attendu. F = 133°C.

Exemple 52 : 3-(3,4-dichlorophényl) 2-thioxo 1,5,5-triméthyl 4-imidazolidinone.

30

50

On chauffe au reflux 45 minutes 1,88 g de produit obtenu à l'exemple 51 en suspension dans 14 cm³ d'acide chlorhydrique 6N puis ajoute de nouveau 14 cm³ d'acide chlorhydrique 6N et poursuit le chauffage pendant 2 heures. Après une nouvelle addition de 4 cm³ d'acide chlorhydrique 6N et chauffage au reflux pendant 1 heure et demie, on laisse revenir à température ambiante, ajoute 100 g de glace et extrait à l'acétate d'éthyle. On lave la phase organique à l'eau, sèche et évapore le solvant. Après chromatographie sur silice (éluant : cyclohexane-acétate d'éthyle 1-1), on obtient 1,84 g de produit attendu. F = 129°C après cristallisation dans l'isopropanol.

Analyse pour $C_{12}H_{12}Cl_2N_2OS = 303,21$

calculés: C% 47,54 H% 3,99 Cl% 23,38 N% 9,24 S% 10,57 trouvés: 47,5 3,8 23,2 9,3 10,5

5 Spectre IR (CHCl₃)

C=O : 1753 cm⁻¹

C=S et aromatiques : 1595, 1570, 1496 cm⁻¹

En opérant comme dans les exemples précédents en utilisant les produits et réactifs appropriés, on a préparé les composés suivants :

Exemple 53: 3-(3,4-dichlorophényl) 3,5-dihydro 5,5-diméthyl, 2-(méthylthio) 4H-imidazol-4-one.

F = 110°C.

Exemple 54 : 1-(3,,4-dichlorophényl) 3,4,4-triméthyl 2,5-imidazolidine dithione.

F ≈ 146°C.

Exemple 55: 1-[4-chloro 3-(trifluorométhyl) phényl] 4,4-diméthyl 2-thioxo 5-imidazolidinone.

F = 176°C.

10

15

20

25

30

35

5 Exemple 56 : 1-[4-chloro 3-(trifluorométhyl) phényl] 4,4-diméthyl 5-imino 2-imidazolidine thione.

F = 173-174°C.

Exemple 57 : 3-(3,4-dichlorophényl) 3,5-dihydro 5,5-diméthyl 2[(phénylméthyl) thio] 4H-imidazol-4-one

Spectre IR (CHCl₃)

C=O : 1736 cm⁻¹

C=N et aromatiques : 1578, 1496 cm⁻¹

En plus des produits décrits ci-dessus, les produits suivants constituent des produits pouvant être obtenus dans le cadre de la présente invention, à savoir les produits de formule :

NEC-NECT N R

dans laquelle $Y_{\textbf{A}}$ représente un atome d'oxygène ou de soufre et $R_{\textbf{3A}}$ a les valeurs suivantes :

. -(CH₂)_nCl

. - (CH₂)_n-NCH₂

. -(CH_2)_n-OH . (CH_2)_n-COO-alk

. $-(CH_2)_n-CO-N$ alk₂

. -(CH₂)_n-CO-alk

.
$$-(CH_2)_n$$
-CH CH_3

. -(CH₂)_n-C≡N

alk, alk₁ et alk₂ représentant un radical alkyle renfermant jusqu'à 4 atomes de carbone et n représente un nombre entier compris entre 1 et 4.

Exemple 58:

5

10

15

30

On a préparé un comprimé ayant la composition suivante :

Etude pharmacologique des produits de l'invention

1) Etude de l'affinité des produits de l'invention pour le récepteur androgène

Récepteur androgène.

magnésium).

Des rats mâles Sprague Dawley EOPS de 180-200 g, castrés de 24 heures, sont sacrifiés, les prostates prélevées, pesées et homogénéisées à 0°C à l'aide d'un potter verre-verre, dans une solution tamponnée (Tris 10mM, saccharose 0,25M, PMSF (phénylméthanesulfonylfluoride) 0,1mM, Molybdate de sodium 20mM, HCl pH 7,4; auxquels on ajoute extemporanément 2mM de DTT (DL dithiothreitol), à raison de 1 g de tissu pour 8 ml de tampon.

L'homogénat est ensuite ultracentrifugé à 0°C, 45 minutes à 105 000 g. Des aliquotes du surnageant obtenu (=cytosol), sont incubées 30 minutes et 24 heures à 0°C, avec une concentration constante (T) de Testostérone tritiée et en présence de concentrations croissantes (0 à 2500.10-9M), soit de testostérone froide, soit des produits à tester. La concentration de Testostérone tritiée liée (B) est ensuite mesurée dans chaque incubat par la méthode d'adsorption au charbon-dextran.

Calcul de l'affinité relative de liaison (ARL).

On trace les 2 courbes suivantes : le pourcentage de l'hormone tritiée liée B/T en fonction du logarithme de la concentration de l'hormone de référence froide et B/T en fonction du logarithme de la concentration du produit froid testé. On détermine la droite d'équation I₅₀=(B/Tmax + B/Tmin)/2.

B/T max= % de l'hormone tritiée liée pour une incubation de cette hormone tritiée à la concentration (T). B/T min= % de l'hormone tritiée liée pour une incubation de cette hormone tritiée à la concentration (T) en présence d'un grand excès d'hormone froide (2500.10⁻⁹M).

Les intersections de la droite I₅₀ et des courbes, permettent d'évaluer les concentrations de l'hormone de référence froide (CH) et du produit froid testé (CX) qui inhibent de 50 % la liaison de l'hormone tritiée sur le récepteur. L'affinité relative de liaison (ARL) du produit testé est déterminé par l'équation ARL=100 (CH)/(CX).

On obtient les résultats suivants exprimés en ARL.

Produit de référence (Testostérone): 100

			Incubation :	Incubation :
			30 minutes	24 heures
Produit	de l'exemple	1	27,5	3
Produit	de l'exemple	2	22	6
Produit	de l'exemple	4	21	5
Produit	de l'exemple	11	28	8
Produit	de l'exemple	12	128	92
Produit	de l'exemple	13	31	39
Produit	de l'exemple	14	27	7
Produit	de l'exemple	15	69	24
			<u> </u>	

2) Détermination de l'activité androgène ou anti-androgène des produits de l'invention à l'aide du dosage de l'ornithine de carboxylase.

- Protocole de traitement

Des souris mâles SWISS âgées de 6 semaines, et castrées de 24 heures, reçoivent par voie orale les produits à étudier (suspension en méthyl cellulose à 0,5 %), simultanément avec une injection sous-cutanée de Propionate de testostérone 3 mg/kg (solution en huile de sésame, contenant 5 % d'alcool benzylique) pour déterminer l'activité anti-androgène. L'activité agoniste est déterminèe en l'absence de propionate de testostérone.

Les produits à étudier ainsi que le Propionate de testostérone sont administrés sous un volume de 10 ml/kg. 16 heures après les traitements, les animaux sont sacrifiés, les reins prélevés, puis homogénéisés à 0°C , à l'aide d'un broyeur téflon-verre dans 10 volumes de tampon Tris-HCl 50 mM (pH 7,4) contenant 250 uM de phosphate de pyridoxal, 0,1 mM EDTA, et 5 mM de dithiothreitol. L'homogenat est ensuite centrifugé à 105000 g pendant 45 mn.

- Principe de dosage

A 37°C, l'ornithine décarboxylase rénale transforme un mélange isotopique d'ornithine froide et d'ornithine tritiée en putrescine froide et putrescine tritiée.

La putrescine est ensuite recueillie sur des papiers sélectifs, échangeurs d'ions. Après séchage, l'excès d'ornithine tritiée et froide non transformée est éliminé, par 3 lavages d'ammoniaque 0,1 M. Les papiers sont séchés, puis la radioactivité est comptée après addition de scintillant Aqualite.

Les résultats sont exprimés en fmoles (10⁻¹⁵ M) de putrescine tritiée formée/heure/mg de protéines. On obtient les résultats suivants :

50

45

20

30

Produit de l'exemple 11 : Antagonisme (PO) mg/kg: 83 % Produit de l'exemple 12 : Antagonisme (PO) 0,1 mg/kg : 12 % 0,3 mg/kg: 36 % 5 mg/kg : 68 % mg/kg: 94 % 3 mg/kg: 99 % 10 10 : Agonisme (PO) mg/kg: 10 Produit de l'exemple 14 : Antagonisme (PO) 3 mq/kq: 87 % Produit de l'exemple 15 : Antagonisme (PO) 0,3 mg/kg : mg/kg : 82 % 15

Conclusion:

20

25

30

35

40

45

50

55

Les tests indiqués ci-dessus montrent que les produits de l'invention testés possèdent une forte activité anti-androgène et sont dénués d'activité agoniste.

Revendications

1.- Les produits de formule générale (I) :

dans laquelle:

R₁ représente un radical cyano ou nitro ou un atome d'halogène, R₂ représente un radical trifluorométhyle ou un atome d'halogène, le groupement -A-B- est choisi parmi les radicaux

dans lesquels X représente un atome d'oxygène ou de soufre et R3 est choisi parmi les radicaux suivants :

- -un atome d'hydrogène,
- -les radicaux alkyle, alkényle, alkynyle, aryle ou arylalkyle ayant au plus 12 atomes de carbone, ces radicaux étant éventuellement substitués par un ou plusieurs substituants choisis parmi les radicaux hydroxy, halogène, mercapto, cyano, acyle ou acyloxy ayant au plus 7 atomes de carbone, S-aryle éventuellement substitué, dans lequel l'atome de soufre est éventuellement oxydé sous forme de sulfoxyde ou de sulfone, carboxy libre, estérifié, amidifié ou salifié, amino, mono ou dialkylamino ou un radical hétérocyclique comprenant 3 à 6 chaînons et renfermant un ou plusieurs hétéroatomes choisis parmi les atomes de soufre, d'oxygène ou d'azote,

les radicaux alkyle, alkényle ou alkynyle étant de plus éventuellement interrompus par un ou plusieurs atomes d'oxygène, d'azote ou de soufre éventuellement oxydé sous forme de sulfoxyde ou de sulfone, les radicaux aryle et aralkyle étant de plus éventuellement substitués par un radical alkyle, alkényle ou alkynyle, alkoxy, alkényloxy, alkynyloxy ou trifluorométhyle, Y représente un atome d'oxygène ou de soufre ou un radical =NH,

à l'exception des produits dans lesquels le groupement -A-B-représente le radical :

5

$$\frac{x}{1-R_3}$$

10

dans lequel X représente un atome d'oxygène et R₃ représente un atome d'hydrogène et Y représente un atome d'oxygène ou un radical NH et R₂ représente un atome d'halogène ou un radical trifluorométhyle et R₁ représente un radical nitro ou un atome d'halogène.

15

2.- Les produits de formule (I) telle que définie à la revendication 1, dans laquelle Y représente un atome d'oxygène, à l'exception des produits dans lesquels le groupement -A-B-représente le radical :

20

dans lequel X représente un atome d'oxygène et R₃ représenteun atome d'hydrogène, R₂ représente un atome d'halogène ou un radical trifluorométhyle et R₁ représente un radical nitro ou un atome d'halogène.

3.- Les produits de formule (I) telle que définie à la revendication 1 ou 2 dans laquelle le groupement -A-B-représente le groupement :

30

35

40

dans lequel X représente un atome de soufre et R₃ a la signification indiquée à la revendication 1.

4.- Les produits de formule (I) selon la revendication 3, dans laquelle R₃ représente un atome d'hydrogène ou un radical alkyle ayant au plus 4 atomes de carbone éventuellement substitué par un radical hydroxy.

5.- Les produits de formule (I) telle que définie à l'une quelconque des revendications 1 à 4, dans laquelle R_1 représente un radical cyano ou un atome d'halogène.

6.- Les produits de formule (I) selon la revendication 5, dans laquelle R₁ représente un atome de chlore.

7.- Les produits de formule (I) telle que définie à la revendication 1 ou 2, dans laquelle le groupement -A-B-représente un groupement :

45

50 ou un groupement :

$$\begin{cases} \checkmark \\ -N-R_3 \end{cases}$$

55

dans lequel R3 représente un radical alkyle ou alkényle ayant au plus 4 atomes de carbone ou un radical aralkyle

éventuellement substitué.

5

10

20

30

40

45

50

55

- 8.- Les produits de formule (I) telle que définie à l'une quelconque des revendications 1 à 5 dont les noms suivent :
 - -le 4-(5-oxo-2-thioxo-3,4,4-triméthyl-1-imidazolidinyl)-2-(trifluorométhyl)-benzonitrile,
 - -le 4-(4,4-diméthyl-5-oxo-2-thioxo 1-imidazolidinyl)-2-(trifluorométhyl)-benzonitrile,
 - -le 4-[4,4-diméthyl 3-(2-hydroxyéthyl) 5-oxo 2-thioxo 1-imidazolidinyl] 2-(trifluorométhyl) benzonitrile,
 - -le 3-(3,4-dichlorophényl) 2-thioxo 1,5,5-triméthyl 4-imidazolidinone.
- 9.- Les produits de formule (I) telle que définie à l'une quelconque des revendications 1, 2 et 7, dont les noms suivent :
 - -le 1-(4-nitro-3-(trifluorométhyl) phényl)-3,4,4-triméthyl-2,5-imidazolidinedione,
 - -le 4-[[4,5-dihydro 4,4-diméthyl 5-oxo 2-(phénylméthyl) thio] 1H-imidazol-1-yl] 2-(trifluorométhyl) benzonitrile
- 10.- Procédé de préparation des produits de formule générale (I) telle que définie à la revendication 1, caractérisé en ce que :
- soit l'on fait agir en présence d'une base tertiaire un produit de formule (II) :

$$R_1 \longrightarrow N = C = X$$
(II)

dans laquelle R₁, R₂ et X ont la signification indiquée ci-dessus, avec un produit de formule (III) :

dans laquelle R'₃ a les valeurs indiquées ci-dessus pour R₃ dans lequel les éventuelles fonctions réactives sont éventuellement protégées et étant entendu que si R₁ représente un radical nitro ou un atome d'halogène, si R₂ représente un atome d'halogène ou un radical CF₃ et X représente un atome d'oxygène, R'₃ ne peut pas représenter un atome d'hydrogène, pour obtenir un produit de formule (IV) :

$$\begin{array}{c|c}
R_1 & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$

dans laquelle R_1 , R_2 , X et R'_3 ont la signification précédente, produits de formule (IV) que, si nécessaire ou si désiré l'on soumet à l'une quelconque ou plusieurs des réactions suivantes, dans un ordre quelconque :

- a) réaction d'élimination des éventuels groupements protecteurs que peut porter R'3;
- b) réaction d'hydrolyse du groupement >C=NH en fonction cétone et le cas échéant transformation du groupement >C=S en groupement >C=O;
- c) réaction de transformation du ou des groupements >C=O en groupement >C=S ;
- d) action sur les produits de formule (IV) dans laquelle R'₃ représente un atome d'hydrogène, et après hydrolyse au groupement >C=NH en fonction cétone d'un réactif de formule Hal-R"₃ dans laquelle R"₃ a les valeurs de R'₃ à l'exception de la valeur hydrogène et Hal représente un atome d'halogène pour obtenir des produits de formule (I) dans laquelle le groupement -A-B- représente le groupement

dans lesquels R"₃ a la signification indiquée précédemment puis, si désiré, action sur ces produits, d'un agent d'élimination des éventuels groupements protecteurs que peut porter R"₃ ou le cas échéant, action d'un agent d'estérification, d'amidification ou de salification,

soit l'on fait agir un réactif de formule Hal-R"3 dans laquelle Hal et R"3 ont les valeurs indiquées précédemment sur un produit de formule (IV') :

pour obtenir un produit de formule (IV") :

5

10

35

40

45

produit de formule (IV") que, si nécessaire ou si désiré l'on soumet à l'une quelconque ou plusieurs des réactions suivantes dans un ordre quelconque :

- a) réaction d'élimination des éventuels groupements protecteurs que peut porter R"₃ puis le cas échéant action d'un agent d'estérification, d'amidification ou de salification;
- b) réaction de transformation du ou des groupements >C=O en groupements >C=S.
- 11.- A titre de médicaments, les produits de formule (I) tels que définis aux revendications 1 à 7, pharmaceutiquement acceptables.
 - 12.- A titre de médicaments, les produits de formule (I) tels que définis à la revendication 8 ou 9.
- 13.- Les compositions pharmaceutiques contenant, à titre de principe actif, l'un au moins des médicaments tels que définis à l'une quelconque des revendications 11 et 12.
 - 14.- A titre de produits industriels nouveaux, les produits de formule (IVi) :

dans laquelle R₁, R₂ et Y ont les significations indiquées à la revendication 1 et le groupement :

est choisi parmi les radicaux :

5

10

15

20

25

30

40

45

50

55

X S-R₃1 et

dans lesquels X représente un atome d'oxygène ou de soufre et R_{3i} est choisi parmi les valeurs de R₃ comportant une fonction réactive protégée.

Revendications pour l'Etat contractant suivant : ES

1.- Procédé pour préparer les produits de formule générale (I) :

dans laquelle:

 R_1 représente un radical cyano ou nitro ou un atome d'halogène,

R₂ représente un radical trifluorométhyle ou un atome d'halogène,

le groupement -A-B- est choisi parmi les radicaux

$$N-R_3$$
 et $S-R_3$

dans lesquels X représente un atome d'oxygène ou de soufre et $R_{\mathbf{3}}$ est choisi parmi les radicaux suivants :

- -un atome d'hydrogène,
- -les radicaux alkyle, alkényle, alkynyle, aryle ou arylalkyle ayant au plus 12 atomes de carbone, ces radicaux étant éventuellement substitués par un ou plusieurs substituants choisis parmi les radicaux hydroxy, halogène, mercapto, cyano, acyle ou acyloxy ayant au plus 7 atomes de carbone, S-aryle éventuellement substitué, dans lequel l'atome de soufre est éventuellement oxydé sous forme de sulfoxyde ou de sulfone, carboxy libre, estérifié, amidifié ou salifié, amino, mono ou dialkylamino ou un radical hétérocyclique comprenant 3 à 6 chaînons et renfermant un ou plusieurs hétéroatomes choisis parmi les atomes de soufre, d'oxygène ou d'azote,

les radicaux alkyle, alkényle ou alkynyle étant de plus éventuellement interrompus par un ou plusieurs atomes d'oxygène, d'azote ou de soufre éventuellement oxydé sous forme de sulfoxyde ou de sulfone,

les radicaux aryle et aralkyle étant de plus éventuellement substitués par un radical alkyle, alkényle ou alkynyle, alkoxy, alkényloxy, alkynyloxy ou trifluorométhyle, Y représente un atome d'oxygène ou de soufre ou un radical =NH,

à l'exception des produits dans lesquels le groupement -A-B-représente le radical :

$$X$$
 $N - R_3$

dans lequel X représente un atome d'oxygène et R₃ représente un atome d'hydrogène et Y représente un atome d'oxygène ou un radical NH et R₂ représente un atome d'halogène ou un radical trifluorométhyle et R₁ représente un radical nitro ou un atome d'halogène, caractérisé en ce que : soit l'on fait agir en présence d'une base tertiaire un produit de formule (II) :

$$R_1 \longrightarrow N = C = X$$
 (II)

dans laquelle R_1 , R_2 et X ont la signification indiquée ci-dessus, avec un produit de formule (III):

$$\begin{array}{ccc} & & \text{HN-R'}_3 \\ & & \text{H}_3\text{C-C-CH}_3 \\ & & \text{CN} \end{array} \tag{III)$$

dans laquelle R'₃ a les valeurs indiquées ci-dessus pour R₃ dans lequel les éventuelles fonctions réactives sont éventuellement protégées et étant entendu que si R₁ représente un radical nitro ou un atome d'halogène, si R₂ représente un atome d'halogène ou un radical CF₃ et X représente un atome d'oxygène, R'₃ ne peut pas représenter un atome d'hydrogène, pour obtenir un produit de formule (IV):

35
$$R_{1} \longrightarrow N \longrightarrow N-R'_{3}$$

$$CH_{3} \longrightarrow CH_{3}$$

$$(IV)$$

dans laquelle R₁, R₂, X et R'₃ ont la signification précédente, produits de formule (IV) que, si nécessaire ou si désiré l'on soumet à l'une quelconque ou plusieurs des réactions suivantes, dans un ordre quelconque :

- a) réaction d'élimination des éventuels groupements protecteurs que peut porter R'3;
- b) réaction d'hydrolyse du groupement >C=NH en fonction cétone et le cas échéant transformation du groupement >C=S en groupement >C=O;
- c) réaction de transformation du ou des groupements >C=O en groupement >C=S ;
- d) action sur les produits de formule (IV) dans laquelle R'₃ représente un atome d'hydrogène, et après hydrolyse au groupement >C=NH en fonction cétone d'un réactif de formule Hal-R"₃ dans laquelle R"₃ a les valeurs de R'₃ à l'exception de la valeur hydrogène et Hal représente un atome d'halogène pour obtenir des produits de formule (I) dans laquelle le groupement -A-B- représente le groupement

55

50

5

15

dans lesquels R"₃ a la signification indiquée précédemment puis, si désiré, action sur ces produits, d'un agent d'élimination des éventuels groupements protecteurs que peut porter R"₃ ou le cas échéant, action d'un agent d'estérification, d'amidification ou de salification,

soit l'on fait agir un réactif de formule Hal-R"3 dans laquelle Hal et R"3 ont les valeurs indiquées précédemment sur un produit de formule (IV') :

pour obtenir un produit de formule (IV") :

5

10

40

45

50

produit de formule (IV") que, si nécessaire ou si désiré l'on soumet à l'une quelconque ou plusieurs des réactions suivantes dans un ordre quelconque :

- a) réaction d'élimination des éventuels groupements protecteurs que peut porter R''_3 puis le cas échéant action d'un agent d'estérification, d'amidification ou de salification;
- b) réaction de transformation du ou des groupements >C=O en groupements >C=S.
- 2.- Procédé selon la revendication 1 pour préparer un produit de formule (I) telle que définie à la revendication 1, dans laquelle Y représente un atome d'oxygène, à l'exception des produits dans lesquels le groupement -A-B- représente le radical :

dans lequel X représente un atome d'oxygène et R_3 représente un atome d'hydrogène, R_2 représente un atome d halogène ou un radical trifluorométhyle et R_1 représente un radical nitro ou un atome d'halogène, caractérisé en ce que

soit l'on soumet un composé de formule (IV) telle que définie à la revendication 1 à l'exception des produits dans lesquels X représente un atome d'oxygène, R'3 représente un atome d'hydrogène, R2 représente un atome d'halogène ou un radical trifluorométhyle et R1 représente un radical nitro ou un atome d'halogène, à l'une quelconque ou plusieurs des réactions suivantes, dans un ordre quelconque:

a) réaction d'élimination des éventuels groupements protecteurs que peut porter R'3;

b) réaction d'hydrolyse du groupement >C=NH en fonction cétone puis si désiré action d'un réactif de formule Hal-R"₃ dans laquelle R"₃ a les valeurs de R'₃ à l'exception de la valeur hydrogène et Hal représente un atome d'halogène pour obtenir des produits de formule (I) dans laquelle le groupement -A-B-représente le groupement

dans lesquels R"₃ a la signification indiquée précédemment puis, si désiré, action sur ces produits, d'un agent d'élimination des éventuels groupements protecteurs que peut porter R"₃ ou le cas échéant, action d'un agent d'estérification, d'amidification ou de salification,

soit l'on fait agir un réactif de formule Hal-R"₃ dans laquelle Hal et R"₃ ont les valeurs indiquées précédemment sur un produit de formule (IV') telle que définie à la revendication 1 pour obtenir un un produit de formule (IV") que, si nécessaire ou si désiré l'on soumet à une réaction d'élimination des éventuels groupements protecteurs que peut porter R"₃ et le cas échéant action d'un agent d'estérification, d'amidification ou de salification.

3.- Procédé selon la revendication 1 ou 2 pour préparer un produit de formule (I) telle que définie à la revendication 1 dans laquelle le groupement -A-B- représente le groupement

dans lequel X représente un atome de soufre et R₃ a la signification indiquée précédemment caractérisé en ce que

soit l'on utilise au départ un produit de formule (II) dans laquelle X représente un atome de soufre, spot l'on soumet un produit de formule (IV) ou (IV") à l'une quelconque ou plusieurs des réactions suivantes, dans un ordre quelconque :

- -réaction d'élimination des éventuels groupements protecteurs que peut porter R'3 u R"3;
- -réaction de transformation du ou des groupements >C=O en groupement >C=S.
- 4.- Procédé selon la revendication 3 pour préparer un produit de formule (I) telle que définie à la revendication 3 dans laquelle R₃ représente un atome d'hydrogène ou un radical alkyle ayant au plus 4 atomes de carbone éventuellement substitué par un radical hydroxy, caractérisé en ce que soit l'on utilise au départ un produit de formule (III) dans laquelle R'₃ a les valeurs de R₃ indiquées ci-dessus éventuellement protégées, soit l'on traite le produit de formule (IV') par un réactif de formule Hal-R''₃ dans lequel R''₃ a les valeurs de R₃ indiquées ci-dessus éventuellement protégées à l'exception de la valeur hydrogène puis le cas échéant soumet le produit obtenu à l'action d'un agent d'élimination des groupements protecteurs.
- 5.- Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'on utilise au départ un produit de formule (II) dans laquelle R₁ représente un radical cyano ou un atome d'halogène.
- 6.- Procédé selon la revendication 5, caractérisé en ce que l'on utilise au départ un produit de formule (II) dans laquelle R₁ représente un atome de chlore.
- 7.- Procédé selon la revendication 1 ou 2 pour préparer un produit de formule (I) telle que définie à la revendication 1 dans laquelle le groupement -A-B- représente un groupement

$$\begin{cases} -C-SR_3 \\ \parallel \\ -N \end{cases}$$

5

10

15

25

30

40

45

55

ou un groupement

dans lequel R_3 représente un radical alkyle ou alkényle ayant au plus 4 atomes de carbone ou un radical aralkyle éventuellement substitué, caractérisé en ce que l'on utilise au départ <u>soit</u> un produit de formule (III) dans laquelle R'_3 a les valeurs de R_3 indiquées ci-dessus, <u>soit</u> un réactif de formule Hal- R''_3 dans lequel R''_3 a les valeurs de R_3 indiquées ci-dessus.

Revendications pour l'Etat contractant suivant : GR

1.- Procédé pour préparer les produits de formule générale (I) :

dans laquelle:

5

15

20

35

40

45

R₁ représente un radical cyano ou nitro ou un atome d'halogène, R₂ représente un radical trifluorométhyle ou un atome d'halogène, le groupement -A-B- est choisi parmi les radicaux

$$\begin{array}{c} X \\ N-R_3 \end{array} \qquad \text{et} \qquad \begin{array}{c} S-R_3 \\ N \end{array}$$

dans lesquels X représente un atome d'oxygène ou de soufre et R₃ est choisi parmi les radicaux suivants :

- -un atome d'hydrogène,
- —les radicaux alkyle, alkényle, alkynyle, aryle ou arylalkyle ayant au plus 12 atomes de carbone, ces radicaux étant éventuellement substitués par un ou plusieurs substituants choisis parmi les radicaux hydroxy, halogène, mercapto, cyano, acyle ou acyloxy ayant au plus 7 atomes de carbone, S-aryle éventuellement substitué, dans lequel l'atome de soufre est éventuellement oxydé sous forme de sulfoxyde ou de sulfone, carboxy libre, estérifié, amidifié ou salifié, amino, mono ou dialkylamino ou un radical hétérocyclique comprenant 3 à 6 chaînons et renfermant un ou plusieurs hétéroatomes choisis parmi les atomes de soufre, d'oxygène ou d'azote, les radicaux alkyle, alkényle ou alkynyle étant de plus éventuellement interrompus par un ou plusieurs atomes d'oxygène, d'azote ou de soufre éventuellement oxydé sous forme de sulfoxyde ou de sulfone,

les radicaux aryle et aralkyle étant de plus éventuellement substitués par un radical alkyle, alkényle ou alkynyle, alkoxy, alkényloxy, alkynyloxy ou trifluorométhyle, Y représente un atome d'oxygène ou de soufre ou un radical =NH,

à l'exception des produits dans lesquels le groupement -A-B-représente le radical :

55

dans lequel X représente un atome d'oxygène et R_3 représente un atome d'hydrogène et Y représente un atome d'oxygène ou un radical NH et R_2 représente un atome d'halogène ou un radical trifluorométhyle et R_1 représente un radical nitro ou un atome d'halogène, caractérisé en ce que :

soit l'on fait agir en présence d'une base tertiaire un produit de formule (II) :

5

10

15

20

40

45

50

55

 $R_1 \longrightarrow N = C = X$ (II)

dans laquelle R₁, R₂ et X ont la signification indiquée ci-dessus, avec un produit de formule (III) :

dans laquelle R'_3 a les valeurs indiquées ci-dessus pour R_3 dans lequel les éventuelles fonctions réactives sont éventuellement protégées et étant entendu que si R_1 représente un radical nitro ou un atome d'halogène, si R_2 représente un atome d'halogène ou un radical CF_3 et X représente un atome d'oxygène, R'_3 ne peut pas représenter un atome d'hydrogène, pour obtenir un produit de formule (IV) :

dans laquelle R₁, R₂, X et R'₃ ont la signification précédente, produits de formule (IV) que, si nécessaire ou si désiré l'on soumet à l'une quelconque ou plusieurs des réactions suivantes, dans un ordre quelconque :

- a) réaction d'élimination des éventuels groupements protecteurs que peut porter R'3;
- b) réaction d'hydrolyse du groupement >C=NH en fonction cétone et le cas échéant transformation du groupement >C=S en groupement >C=O;
- c) réaction de transformation du ou des groupements >C=O en groupement >C=S;
- d) action sur les produits de formule (IV) dans laquelle R'₃ représente un atome d'hydrogène, et après hydrolyse au groupement >C=NH en fonction cétone d'un réactif de formule Hal-R"₃ dans laquelle R"₃ a les valeurs de R'₃ à l'exception de la valeur hydrogène et Hal représente un atome d'halogène pour obtenir des produits de formule (I) dans laquelle le groupement -A-B- représente le groupement

dans lesquels R"₃ a la signification indiquée précédemment puis, si désiré, action sur ces produits, d'un agent d'élimination des éventuels groupements protecteurs que peut porter R"₃ ou le cas échéant, action d'un agent d'estérification, d'amidification ou de salification,

soit l'on fait agir un réactif de formule Hal-R"3 dans l'aquelle Hal et R"3 ont les valeurs indiquées précédemment sur un produit de formule (IV') :

5 0₂N N-H

(IV')

pour obtenir un produit de formule (IV") :

20

25

30

15

$$O_2N$$
 $N-R"_3$
(IV")

produit de formule (IV") que, si nécessaire ou si désiré l'on soumet à l'une quelconque ou plusieurs des réactions suivantes dans un ordre quelconque :

- a) réaction d'élimination des éventuels groupements protecteurs que peut porter R"₃ puis le cas échéant action d'un agent d'estérification, d'amidification ou de salification ;
- b) réaction de transformation du ou des groupements >C=O en groupements >C=S.
- 2.- Procédé selon la revendication 1 pour préparer un produit de formule (I) telle que définie à la revendication 1, dans laquelle Y représente un atome d'oxygène, à l'exception des produits dans lesquels le groupement -A-B- représente le radical :

35

40

dans lequel X représente un atome d'oxygène et R₃ représente un atome d'hydrogène, R₂ représente un atome d'halogène ou un radical trifluorométhyle et R₁ représente un radical nitro ou un atome d'halogène, caractérisé en ce que

soit l'on soumet un composé de formule (IV) telle que définie à la revendication 1 à l'exception des produits dans lesquels X représente un atome d'oxygène, R'₃ représente un atome d'hydrogène, R₂ représente un atome d'halogène ou un radical trifluorométhyle et R₁ représente un radical nitro ou un atome d'halogène, à l'une quelconque ou plusieurs des réactions suivantes, dans un ordre quelconque:

- a) réaction d'élimination des éventuels groupements protecteurs que peut porter R'3;
- b) réaction d'hydrolyse du groupement >C=NH en fonction cétone puis si désiré action d'un réactif de formule Hal-R"₃ dans laquelle R"₃ a les valeurs de R'₃ à l'exception de la valeur hydrogène et Hal représente un atome d'halogène pour obtenir des produits de formule (I) dans laquelle le groupement -A-B-représente le groupement

55

dans lesquels R"₃ a la signification indiquée précédemment puis, si désiré, action sur ces produits, d'un agent d'élimination des éventuels groupements protecteurs que peut porter R"₃ ou le cas échéant, action d'un agent d'estérification, d'amidification ou de salification,

soit l'on fait agir un réactif de formule Hal-R"₃ dans laquelle Hal et R"₃ ont les valeurs indiquées précédemment sur un produit de formule (IV') telle que définie à la revendication 1 pour obtenir un un produit de formule (IV'') que, si nécessaire ou si désiré l'on soumet à une réaction d'élimination des éventuels groupements protecteurs que peut porter R"₃ et le cas échéant action d'un agent d'estérification, d'amidification ou de salification.

3.- Procédé selon la revendication 1 ou 2 pour préparer un produit de formule (I) telle que définie à la revendication 1 dans laquelle le groupement -A-B- represente le groupement

dans lequel X représente un atome de soufre et R₃ a la signification indiquée précédemment caractérisé en ce que <u>soit</u> l'on utilise au départ un produit de formule (II) dans laquelle X représente un atome de soufre, <u>spot</u> l'on soumet un produit de formule (IV) ou (IV") à l'une quelconque ou plusieurs des réactions suivantes, dans un ordre quelconque:

- -réaction d'élimination des éventuels groupements protecteurs que peut porter R'3 u R"3;
- -réaction de transformation du ou des groupements >C=O en groupement >C=S.
- **4.-** Procédé selon la revendication 3 pour préparer un produit de formule (I) telle que définie à la revendication 3 dans laquelle R₃ représente un atome d'hydrogène ou un radical alkyle ayant au plus 4 atomes de carbone éventuellement substitué par un radical hydroxy, caractérisé en ce que <u>soit</u> l'on utilise au départ un produit de formule (III) dans laquelle R'₃ a les valeurs de R₃ indiquées ci-dessus éventuellement protégées, soit l'on traite le produit de formule (IV') par un réactif de formule Hal-R"₃ dans lequel R"₃ a les valeurs de R₃ indiquées ci-dessus éventuellement protégées à l'exception de la valeur hydrogène puis le cas échéant soumet le produit obtenu à l'action d'un agent d'élimination des groupements protecteurs.
- 5.- Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'on utilise au départ un produit de formule (II) dans laquelle R₁ représente un radical cyano ou un atome d'halogène.
- 6.- Procédé selon la revendication 5, caractérisé en ce que l'on utilise au départ un produit de formule (II) dans laquelle R₁ représente un atome de chlore.
- 7.- Procédé selon la revendication 1 ou 2 pour préparer un produit de formule (I) telle que définie à la revendication 1 dans laquelle le groupement -A-B- représente un groupement

ou un groupement

5

10

15

20

25

30

40

45

50

dans lequel R_3 représente un radical alkyle ou alkényle ayant au plus 4 atomes de carbone ou un radical aralkyle éventuellement substitué, caractérisé en ce que l'on utilise au départ soit un produit de formule (III) dans laquelle R'_3 a les valeurs de R_3 indiquées ci-dessus, <u>soit</u> un réactif de formule Hal- R''_3 dans lequel R''_3 a les valeurs de R_3 indiquées ci-dessus.

- 8.- Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'on choisit les produits et réactifs de départ de manière telle que l'on prépare l'un quelconque des produits dont les noms suivent :
 - $-\text{le }4\text{-}(5\text{-}oxo\text{-}2\text{-}thioxo\text{-}3,4,4\text{-}trim\'ethyl\text{-}1\text{-}imidazolidinyl})\text{-}2\text{-}(trifluorom\'ethyl)\text{-}benzonitrile,$
 - -le 4-(4,4-diméthyl-5-oxo-2-thioxo 1-imidazolidinyl)-2-(trifluorométhyl)-benzonitrile,
 - -le 4-[4,4-diméthyl 3-(2-hydroxyéthyl) 5-oxo 2-thioxo 1-imidazolidinyl] 2-(trifluorométhyl) benzonitrile,
 - -le 3-(3,4-dichlorophényl) 2-thioxo 1,5,5-triméthyl 4-imidazolidinone.
- 9.- Procédé selon la revendication 1, 2 ou 7, caractérisé en ce que l'on choisit les produits et réactifs de départ de manière telle que l'on prépare l'un quelconque des produits dont les noms suivent :
 - -le 1-(4-nitro-3-(trifluorométhyl) phényl)-3,4,4-triméthyl-2,5-imidazolidinedione,
 - -le 4-[[4,5-dihydro 4,4-diméthyl 5-oxo 2-(phénylméthyl) thio] 1H-imidazol-1-yl] 2-(trifluorométhyl) benzonitrile.
- 10.- Procédé pour préparer des compositions pharmaceutiques, caractérisé en ce que l'on met à titre de principe actif l'un au moins des composés de formule (I) telle que définie à la revendication 1 sous une forme destinée à cet usage.
- 11.- Procédé pour préparer des compositions pharmaceutiques, caractérisé en ce que l'on met à titre de principe actif l'un au moins des composés de formule (I) telle que définie à l'une quelconque des revendications 2 à 7 sous une forme destinée à cet usage.
- 12.- Procédé pour préparer des compositions pharmaceutiques, caractérisé en ce que l'on met à titre de principe actif l'un au moins des composés de formule (I) telle que définie à la revendication 8 ou 9 sous une forme destinée à cet usage.

43

50

10

15

25

30

35

40

RAPPORT PARTIEL DE RECHERCHE EUROPEENNE

Numero de la demando

qui selon la règle 45 de la Convention sur le brevet européen est consideré, aux fins de la procédure ultérieure comme le rapport de la recherche européenne

EP 92 40 0038

DO	CUMENTS CONSII	DERES COMME PERTINEN	TS		
Catégorie	Citation du document av des parties	ec indication, en cas de besoin, pertinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. Cl.5)	
A	US-A-3 823 240 (RHONE-POULENC S.A.)		C 07 D 233/86	
A	EP-A-0 305 270 (ROUSSEL-UCLAF)		C 07 D 233/84 C 07 D 233/72	
A	EP-A-0 024 570 (BASF AG)		C 07 D 405/06 A 61 K 31/415	
A	EP-A-0 001 813 (CO.)	F. HOFFMANN-LA ROCHE &		C 07 D 233/88 C 07 D 405/04	
A	EP-A-0 185 961 (HOECHST AG)	3		
A	US-A-4 672 101 (THE DOW CHEMICAL CO.)		*	
D,A	FR-A-2 329 276 (ROUSSEL-UCLAF)			
		,		DOMAINES TECHNIQUES RECHERCHES (Int. Cl.5)	
-			-	C 07 D A 61 K	
			**	A OI K	
RECI	HERCHE INCOMPL	ЕТЕ			
dispositio de la teci Revendic Revendic Revendic Raison p	ons de la Convention sur le brevet hnique ne peut être effectuée au re ations ayant fait l'objet de recherc	hes incomplètes: $1-7$, $10-11$, $13-1$	sur l'état		
	Lieu de la recherche	Date d'achèvement de la recherche	DC 2	Examinates:	
X: pa Y: pa au A: ar O: di P: do	A HAYE	06-04-1992	DF E	BUYSER I.A.F.	
CATEGORIE DES DOCUMENTS CITES X: particulièrement pertinent à lui seul Y: particulièrement pertinent en combinaison avec un autre document de la même catégorie A: arrière-plan technologique O: divulgation non-écrite C: décument de la même famille, document correspondant A: membre de la même famille, document correspondant					

EP 92 40 0038 -C-

La rédaction des revendications n'est pas claire ni concise (Art. 83-84 OEB), et représente une telle masse énorme de produits, qu'une recherche complète n'est pas possible pour des raisons d'économie (voir Directives relatives à l'examen pratiqué à l'OEB, Partie B, Chapitre III,2). De cette facon la recherche a été fondé sur le concept inventif de la demande telle qu'exemplifié par les composés, qui sont bien caractérisés par des éléments physiques ou chimiques, c.a.d. les composés des exemples.