

IRRATIONALS REVISITED

- Quantities such as $\sqrt{2}=2^{1/2}$ or $\sqrt[3]{20}=20^{1/3}$ can be seen as *solutions* to particular *identities*.
- That is values of x for which some function, p(x), satisfies p(x)=0.
- For example,

$$2^{1/2} : p(x) = x^2 - 2$$
$$20^{1/3} : p(x) = x^3 - 20$$

POLYNOMIALS & THEIR ROOTS

In general, a *polynomial* of *degree* k in x is defined through k+1 *coefficients*,

$$p(x) = \sum_{n=0}^{k} c_n x^n$$

• The coefficient, c_t , multiplies x^t when p(x) is evaluated at some $x \coloneqq \alpha$. This is written as $p(\alpha)$.

MORE ABOUT COEFFICIENTS

- The number types used to choose coefficients can be from any of the sets we have seen so far.
- Coefficients can also be limited to finite subsets of these, e.g. Z_m the integers $\{0,1,2,...,m-1\}$ with modulo m arithmetic.
- If H is such a set, $H_k[X]$ or H[X], is used for the set of (degree k) polynomials with coefficients in H.

ROOTS OF POLYNOMIALS

- A root of p(x) is a value, r, of x for which p(r) = 0
- A *polynomial* of *degree* k in x has k roots, $(r_1, r_2, ..., r_k)$
- These are not, necessarily, distinct.
- It is also *possible* that some are not Real numbers.
- We consider this possibility later in the module.

SOME EXAMPLES

•
$$x^2 - 1$$
 (degree 2, roots $< -1,1 >$)

•
$$x^2 - 2x + 1$$
 (degree 2, roots < 1,1 >)

•
$$x^6 - x^4 + x^3 + x^2 - 10$$
 (degree 6)

•
$$x^6 - x^4 + x^3 + x^2 - 10$$
 (degree 6)
• $x^4 + x^3 + x^2 + x + 1$ (degree 4)

• $x^2 + 9$ (degree 2, roots ??)

SOME OPERATIONS

$$p(x)$$
 and $q(x)$ have degrees m and n $p(x) + q(x)$: add matching coefficients $\alpha p(x)$: (scalar multiplication) multiply each c_k by α $p(x) \times q(x)$: has degree $m + n$ (book pp. 30-32) $p(x)/q(x)$ (book pp. 33-37)

FINDING ROOTS

- In many applications the problem of finding values, α , for which $p(\alpha) = 0$ arises: Differential calculus and optimization, using spectral methods for Image Compression and web-page analysis.
- For degree 2, 3, and 4 can do "directly" (pp. 43-45).
- In general this can be quite taxing. (pp. 37-43)
- Methods use techniques from Calculus (pp 152-161)

ANOTHER RATIONAL(E): REFINING R

Consider Q[X] polynomials with rational coefficients.

The values $\sqrt{2}$ and $\sqrt[3]{20}$ are not in Q but are the roots of polynomial(s) in Q[X].

Since any rational can be described in *finite length* we could, in principle, describe $\sqrt{2}$ by the coefficients of a "minimal" polynomial in Q[X] with $\sqrt{2}$ as a root.

This description would be *finite*.

Q: CAN WE DO THIS FOR ALL $\alpha \in R$?

- Given any $\alpha \in R$, find p(x) in Q[X], with α a root.
- If this was possible we could give a finite description for every $\alpha \in R$ by giving the coefficients of p(x).
- It's *not* possible: there are Real numbers not definable as the root of a polynomial in Q[X].
- Example π : this argument was only found in 1882.

SUMMARY

- Polynomial structures occur repeatedly in many distinct later parts of the module.
- Among these are

Calculus and Optimization methods

Complex Numbers

Analysis of matrix properties

Root finding is an important part of these.