Finite Automata

Formalities

Deterministic Finite Accepter (DFA)

 $\mathbf{M} = \text{machine} \ M = (Q, \Sigma, \delta, q_0, F)$

Q : set of states

 $\Sigma \quad : \text{input alphabet set}$

 δ : transition function

 q_0 : initial state

F: set of final states

Recursive Definition

base case $\delta*(q,\lambda)=q$ recursive base $\delta*(q,w\sigma)=\delta(\delta*(q,w),\sigma)$

$$\delta * (q_0, ab) =$$

$$\delta(\delta * (q_0, a), b) =$$

$$\delta(\delta(\delta * (q_0, \lambda), a), b) =$$

$$\delta(\delta(q_0, a), b) =$$

$$\delta(q_1, b) =$$

$$q_2$$

$$q_1$$

$$q_2$$

$$q_3$$

$$q_4$$

$$q_4$$

Languages Accepted by DFAs

Take DFA M

Definition:

The language $\,L(M)\,$ contains all input strings accepted by $\,M\,$

L(M) = { strings that drive M to a final state}

Formally

For a DFA
$$M=(Q,\Sigma,\delta,q_0,F)$$

Language accepted by M:

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

49

Observation

Language rejected by M:

$$\overline{L(M)} = \{ w \in \Sigma^* : \delta^*(q_0, w) \notin F \}$$

52

Regular Languages

A language L is regular if there is a DFA M such that L = L(M)

All regular languages form a language family

Examples of regular languages:

$$\{abba\}$$
 $\{\lambda, ab, abba\}$ $\{a^nb: n \ge 0\}$

```
{ all strings with prefix ab }
```

{ all strings without substring 001 }

There exist automata that accept these Languages (see previous slides).

55

Another Example

The language $L = \{awa : w \in \{a,b\}^*\}$ is regular:

There exist languages which are <u>not</u> Regular:

Example: $L=\{a^nb^n:n\geq 0\}$

There is no DFA that accepts such a language

(we will prove this later in the class)