Ejercicios de deadlock

1- Dadas las siguientes matrices complete la matriz de necesidad. Una vez hallada, determine si el estado al que se llega es seguro. Justifique utilizando el algoritmo del banquero.

	R1	R2	R3	R4		
P1	2	1	2	1		
P2	თ	0	0	1		
Р3	1	0	0	1		
P4	2	3	0	1		
Recursos						
asignados						

	R1	R2	R3	R4
P1				
P2				
Р3				
P4				
		•	,	•

Necesidad

2- Determine si el estado al que se llega es seguro, suponiendo que en el instante en que se calcularon las matrices del ejercicio 1 ingresa P5 cuyas peticiones máximas son R1 = 2, R2 = 5, R3=3, R4=5. Justifique utilizando el algoritmo del banquero.

3- Dadas las siguientes matrices complete la matriz de necesidad. Una vez hallada, determine si el estado al que se llega es seguro. Justifique utilizando el algoritmo del banquero.

	R1	R2	R3	R4		
P1	3	2	0	2		
P2	3	4	2	1		
Р3	9	5	2	5		
P4	3	4	1	3		
Peticiones						
máximas						

	<u>R1</u>	R2	R3	R4		
Ρ1	2	1	0	1		
P2	3	0	0	1		
Р3	1	0	1	1		
P4	2	3	0	1		
Recursos						
asignados						

	R1	R2	R3	R4
Ρ1				
P2				
Р3				
P4				

Necesidad

R1	R2	R3	R4	
9	5	2	5	
Docureos				

1 1 1 1 Recursos disponibles

R1 R2 R3 R4

| 9 | 5 | 2 | Recursos | totales

- 4- Determine si el estado al que se llega es seguro, suponiendo que en el instante en que se calcularon las matrices del ejercicio 3 se decide matar al proceso P4. Si el estado al que se llega es seguro: ¿Porqué elegiría a P4 como victima? Si el estado al que se llega es inseguro: ¿Cuál de los procesos sería la victima apropiada?
- 5- Dado el siguiente gráfico, escriba las matrices necesarias para correr el algortimo de detección y determine qué procesos se encuentran en deadlock.

6- Dadas las siguientes matrices, determine qué procesos se encuentran en deadlock, utilizando el algoritmo de detección.

	R1	R2	R3	R4		
P1	1	1	1	1		
P2	2	0	0	2		
Р3	1	1	0	0		
P4	0	0	0	2		
Peticiones						
actuales						

R1	R2	R3	R4			
2	2	1	2			
Recursos						
totales						

	R1	R2	R3	R4		
P1	1	1	0	0		
P2	0	0	0	0		
Р3	1	1	0	0		
P4	0	0	1	0		
Recursos						
asignados						

	R1	R2	R3	R4		
	0	0	0	2		
Recursos						
disponibles						