· Primal problem v.s. Dual problem

 $\max g(\lambda, \nu)$

s.t.
$$f_{\lambda}(x) \leq 0$$

λzo

$$h\lambda(x)=0$$

min max $L(x,\lambda,\nu) = \max_{\lambda,\nu} \min_{x\in D} L(x,\lambda,\nu)$ minimax theorem

· Minimax property:

PV	١			
ex:	l	-1.	3	→ 3
W	2	2	-1	72
	3	1	-2	73
	↓	-	-2 -2	

=> maximize then minimize seems to induce large value

Proof: for arbiti	any Ũ, ĝ	
$\min_{w \in W} f(w, \tilde{z}) \leq$	$f(\widetilde{\omega}, \widetilde{z})$	$\leq \max_{z \in Z} f(\widetilde{w}, z)$
=> wew f(u, z)	<u><</u>	max f(w,z)
⇒ max min f(w,z))	≤ M	in (max f(wit))

- · Lagrange dual problem:
 - · Properties

* This is a concave problem

* The opt solution d* > p*-d*= gap >0

· Slater's Condition

Given that the primal problem is convex. If $f_{\lambda}(x) < 0$ $\forall \lambda = 1,...,m$, $\exists x \in relat D$ the strong duality holds, i.e. gap =0.

Define set
 g = {fi(x), ..., fn(x), h(x), ..., hp(x), fo(x) | x∈D}
 p*= inf { x | (u, v, x) ∈ g, u ≤ 0, v = 0 }

$$L = (\lambda, \nu, 1)^{\mathsf{T}}$$

$$L = (\lambda, \nu, 1)^{T} \qquad (u, v, t) = \sum_{k=1}^{n} \lambda_{i} u_{k} + \sum_{k=1}^{n} \nu_{i} v_{k} + t$$

· Dual Problem

$$g(\lambda, \nu) = \inf \{ (\lambda, \nu, 1)^T (u, v, x) | (u, v, x) \in g \}$$

- supporting hyperplane Since $\widetilde{U} \neq 0$, we can have $(\lambda, V, 1) = (\frac{\lambda}{\Omega}, \frac{\widetilde{V}}{\alpha}, 1)$

· Example: Conjugate Function

min
$$f_0(X)$$

s.t. $\begin{cases} Ax = b \\ Cx = d \end{cases}$

· Dual Function

(a) Function
$$g(\lambda, \nu) = \inf_{x \in D} \left[f_0(x) + \lambda^T (Ax - b) + \nu^T (Cx - d) \right]$$

$$= \inf_{x \in D} \left[f_0(x) + (A^T \lambda + C^T \nu) X - b^T \lambda - d^T \nu \right]$$

$$= -f_0 \tilde{f}_y - b^T \lambda - d^T \nu, \text{ where } y = -[A^T \lambda + C^T \nu]$$

· Example: Entropy Maximization

min
$$f_0(x) = \sum_{k=1}^{\infty} x_i \log x_i$$

S.t. $\begin{cases} Ax \leq b \\ 1^T x = 1 \end{cases}$

· Dual Function

$$g(\lambda, \nu) = -f_0^*(y) - b^{T}\lambda - d^{T}\nu$$
, where $y = -[A^{T}\lambda + \nu \cdot 1]$
= $-b^{T}\lambda - \nu - \sum_{k=1}^{n} e^{-a_k^{T}\lambda - \nu - 1}$