גלעד ברנע ת.ז. 203627310

ממ"ן 13

1

Find the power of each of the following sets

N

The set of all real numbers $A\subseteq(0,1)$ that when expanded as an infinite fraction, each digit appears adjacent to an equal digit.

First, $A\subseteq (0,1) \implies |A| \le |(0,1)|$.

On the other hand, function $f:(0,1)\rightarrow A$, e.g: $f(0.a_1a_2...) = 0.a_1a_1a_2a_2...$ is one-to-one, therefore:

 $|(0,1)| \le |A|$

Considering Cantor-Bernstein: $|(0,1)| \le |A| \implies |(0,1)| = |A| = \aleph$

ב

$$((\mathbb{N}) \times (\emptyset, 1))$$
 n $(\mathbb{R} \times \mathbb{Q})$

The intersection means that:

 $\langle x,y\rangle \in ((\mathbb{N})\times (0,1)) \ \cap \ (\mathbb{R}\times \mathbb{Q}) \iff \langle x,y\rangle \in ((\mathbb{N})\times (0,1)) \ \wedge \ \langle x,y\rangle \in (\mathbb{R}\times \mathbb{Q})$

Expanding the pairs:

 $\mathsf{y} \in (\,0\,,1\,) \quad \mathsf{\Lambda} \quad \mathsf{x} \in \mathbb{N} \quad \mathsf{\Lambda} \quad \mathsf{y} \in \mathbb{Q} \quad \mathsf{\Lambda} \quad \mathsf{x} \in \mathbb{R} \implies \mathsf{x} \in \mathbb{N} \cap \mathbb{R} \ = \ \mathbb{N} \quad \mathsf{\Lambda} \quad \mathsf{y} \in (\,0\,,1\,) \cap \mathbb{Q}$

Therefore:

 $\mathbb{N} \times ((0,1) \cap \mathbb{Q}) = (\mathbb{N} \times (0,1)) \cap (\mathbb{R} \times \mathbb{Q})$

Since $(0,1) \cap \mathbb{Q} \subseteq \mathbb{Q} \implies |(0,1) \cap \mathbb{Q}| \leq |\mathbb{Q}| = \aleph_0$

On the other hand,

 $\{^{1}/_{1}, ^{1}/_{2}, ^{1}/_{3}, \ldots\} \subseteq (0,1) \cap \mathbb{Q} \implies \aleph_{0} = |\{^{1}/_{1}, ^{1}/_{2}, ^{1}/_{3}, \ldots\}| \le |(0,1) \cap \mathbb{Q}|$

From Cantor-Bernstein: $|(0,1) \cap \mathbb{Q}| = \aleph_0$

Since:

- A×A is countable if A is countable
- $|A| = \aleph_0$ if A is countable and infinite
- A×A is equivalent to A if A is countable and infinite

 \Longrightarrow

 $|\mathbb{N} \times ((0,1) \cap \mathbb{Q})| = \aleph_0$

Finally:

 $|(\mathbb{N}\times(0,1)\cap(\mathbb{R}\times\mathbb{Q}))|=\aleph_{\theta}$

1

 $\mathcal{P}((0,1)\setminus I)$ where I is the set of all real, irrational numbers (I think it's marked \mathbb{I} ?)

 $(0,1)\setminus I$ is the set of all rational numbers contained in the interval (0,1).

So $(0,1)\backslash I = (0,1)\cap \mathbb{Q} \implies |(0,1)\backslash I| = \aleph_0 \implies |(0,1)\backslash I| = \aleph_0$.

Since:

- given $|A| = \aleph_0$, then $\mathcal{P}(A)$ is not countable and $\mathcal{P}(A) \sim \{0,1\}^A$
- if n is a positive natural number, then $\{0,1,\ldots,n\}^{\mathbb{N}}\sim\mathbb{R},$ so $|\{0,1,\ldots,n\}^{\mathbb{N}}|$ = \aleph

 \Longrightarrow

 $\mathcal{P}((0,1)\backslash I) \sim \{0,1\}^{(0,1)\backslash I} \Longrightarrow |\mathcal{P}((0,1)\backslash I)| = 8$

4

$$\mathcal{P}((0,10^{-10})\setminus \mathbb{Q})$$

The power of $(0,10^{-10})$:

Since every non-degenerate interval is equivalent to \mathbb{R} , \Longrightarrow $(0,10^{-10}) \sim \mathbb{R} \Longrightarrow |(0,10^{-10})| = \%$.

The power of $(0,10^{-10})\setminus\mathbb{Q}$:

We know that for any two sets A and B: given $B\subseteq A$ and $|B|=\aleph_0$, the two sets satisfy $|A\setminus B|=|A|$ if $A\setminus B$ is infinite or A is non-countable (either is sufficient).

Let $A=(0,10^{-10})$; $B=(0,10^{-10})\cap \mathbb{Q}$. It follows that $B\subseteq A$ and $|B|=\aleph_0$, therefore $|A\setminus B|=|A|$.

Since $|A|=\aleph$ and $A\setminus B=(0,10^{-10})\setminus \mathbb{Q} \implies |(0,10^{-10})\setminus \mathbb{Q}|=\aleph$.

Because $|\mathcal{P}(A)| = 2^{|A|} \implies |\mathcal{P}((0, 10^{-10}) \setminus \mathbb{Q})| = 2^{|(0, 10^{-10}) \setminus \mathbb{Q}|} = 2^{\aleph}$

2

Let:

$$\mathsf{M} \ = \ \{ \mathsf{A} \in \mathcal{P}(\mathbb{N}) \ | \ | \mathsf{A} | = \aleph_{\theta} \ \mathsf{A} \ | \overline{\mathsf{A}} | = \aleph_{\theta} \}$$

$$\mathsf{K} \ = \ \{\mathsf{A} \in \mathcal{P}(\mathbb{N}) \ | \ |\overline{\mathsf{A}}| = \aleph_{0}\}$$

Prove or disprove the following:

N

$$|K| = \aleph_0$$

The statement is false.

Let X be the set of all odd, natural numbers. It follows that for every set Y that satisfies $Y \subseteq X$, the following holds: $\overline{X} \subseteq \overline{Y}$.

 $\overline{Y}\subseteq \mathbb{N}$ and is infinite $\Longrightarrow |\overline{Y}|=\aleph_0 \Longrightarrow$ every subset of X belongs to K.

Therefore $\mathcal{P}(X) \subseteq K \Rightarrow |\mathcal{P}(X)| \leq |K|$.

Since $|X| = \aleph_0 \implies |\mathcal{P}(X)| = 2^{|X|} = 2^{\aleph_0}$, therefore $2^{\aleph_0} \le |K| \implies |K| \ne \aleph_0$

ב

$$|M| = \aleph_0$$

The statement is false.

Let:

X be the set of all odd, natural numbers

 $Y = \{4n+2 \mid n \in \mathbb{N}\}\$

Z is a set that satisfies $Y \le Z \le X$ (and so is infinite and contained in $\mathbb N$)

It follows that $|\overline{Z}| = \aleph_0$ and that $|Z| = \aleph_0 \implies Z \in M \implies \{Z \in \mathcal{P}(\mathbb{N}) \mid Y \subseteq Z \subseteq X\} \subseteq M$.

For convenience, let $Q = \{Z \in \mathcal{P}(\mathbb{N}) \mid Y \subseteq Z \subseteq X\}$.

Let's define function f from Q to $\mathcal{P}(X \setminus Y)$, defined by $f(B)=B \setminus F$. f is onto and one-to-one \implies Q $\sim \mathcal{P}(X \setminus Y)$.

Since $X Y = \{4n \mid n \in \mathbb{N}\} \implies |X Y| = \aleph_0$, therefore $|\mathcal{P}(X Y)| = 2^{\aleph_0} = \aleph \implies |Q| = \aleph$.

Q is contained in M therefore $|M| \ge \aleph$ therefore $|M| \ne \aleph_0$

1

$$|\mathcal{P}(\mathbb{N}) \setminus K| = \aleph_0$$

The statement is true.

K is the set of all sets partial to $\mathbb N$ whose complement is infinite, therefore $\mathcal P(\mathbb N)\setminus K$ is the set of all set partial to $\mathbb N$ whose complement is **finite**.

Let $X(\mathbb{N})$ be the set of all finite sets that are partial to \mathbb{N} . In other words, the union of all finite sets of natural numbers.

A finite set S of natural numbers is countable, because S is contained in a set of natural numbers ranging from \varnothing to n, where n if the greatest element in S.

Therefore $X(\mathbb{N})$ consist of a countable number of countable sets \Longrightarrow $X(\mathbb{N})$ itself is countable.

Moreover, $X(\mathbb{N})$ is infinite $\Longrightarrow |X(\mathbb{N})| = \aleph_0$. (0)

Let's define function f from $\mathcal{P}(\mathbb{N})\setminus K$ to $X(\mathbb{N})$, defined by $f(A)=\overline{A}$. f is onto and one-to-one $\Longrightarrow |\mathcal{P}(\mathbb{N})\setminus K|=|X(\mathbb{N})|$. (1)

Combining (0) and (1), we get $|\mathcal{P}(\mathbb{N})\setminus K|=\aleph_0$

T

$$|\mathcal{P}(\mathbb{N}) \setminus M| = \aleph_{\Theta}$$

The statement is true.

Based on the definition of M: $\mathcal{P}(\mathbb{N})\setminus M$ is the set of all sets partial to \mathbb{N} which are finite or that their complement is finite.

Let $X = \{A \in \mathcal{P}(\mathbb{N}) \mid |A| = \aleph_0\} \implies$ $\mathcal{P}(\mathbb{N}) \setminus X$ is the set of all finite sets partial to $\mathbb{N} \implies$ $\mathcal{P}(\mathbb{N}) \setminus M = (\mathcal{P}(\mathbb{N}) \setminus K) \cup (\mathcal{P}(\mathbb{N}) \setminus X)$.

Because $\mathcal{P}(\mathbb{N})\setminus X$ is the same as $X(\mathbb{N})$ from gimel, $|\mathcal{P}(\mathbb{N})\setminus X|=\aleph_0$. Considering the conclusion of gimel $(|\mathcal{P}(\mathbb{N})\setminus K|=\aleph_0)$, and given that the union of sets with cardinality of \aleph_0 has itself a cardinality of $\aleph_0 \implies |\mathcal{P}(\mathbb{N})\setminus M|=\aleph_0$.

3

Let:

 $A = \{A_i \mid i \in \mathbb{N}\}$ where $A_i \subseteq \mathbb{N}$, $A_i \neq A_j$, $A_i \cap A_j = \emptyset$, for all $i, j \in \mathbb{N}$, $i \neq j$

B is a set of non-empty, open intervals in $\ensuremath{\mathbb{R}}$ such that no two intervals overlap

C is an uncountable, infinite set of open intervals in \mathbb{R} .

Prove:

N

 $|B| \leq |A|$

First let's prove that $|A| = \aleph_0$.

Function $f: \mathbb{N} \to \mathbb{A}$ defined by $f(i) = \mathbb{A}_i$ for all $i \in \mathbb{N}$ is onto. Also, because $i, j \in \mathbb{N}$ and $i \neq j$, the following holds: $\mathbb{A}_i \neq \mathbb{A}_j \implies f(i) \neq f(j)$ $\implies \mathbb{A} \sim \mathbb{N} \implies \mathbb{A} = \mathbb{K}_0$.

Let $B=\{B_{\alpha} \mid \alpha \in I\}$ where I is a matching set of indices. Let f be a function from $I \rightarrow B$ defined by $f(\alpha)=B_{\alpha}$ for all $\alpha \in I$. f is one-to-one and onto $\Longrightarrow |B|=|I|$.

Because every non-empty open interval contains all rational numbers, and because for all $\alpha \in I$, set B_{α} is a non-empty open interval \Longrightarrow for all $\alpha \in I$ there exists a number $q_{\alpha} \in \mathbb{Q}$ such that $q_{\alpha} \in B_{\alpha}$.

Let g be a function from $I \rightarrow \mathbb{Q}$ defined by $f(\alpha) = q_{\alpha}$ for all $\alpha \in I$. To prove (by negation) that g is one-to-one, let's assume that $f(\alpha) = f(\beta)$ for α , be I where $\alpha \neq \beta \implies q_{\alpha} = q_{\beta}$. $q_{\alpha} \in B_{\alpha}$ and $q_{\beta} \in B_{\beta} \implies q_{\alpha} \in (B_{\alpha} \cap B_{\beta})$ which negates the definition of B (no two intervals in B overlap).

Having concluded that g is one-to-one $\Longrightarrow |I| \le |\mathbb{Q}| = \aleph_0 \Longrightarrow |B| \le \aleph_0 \Longrightarrow |B| \le |A|$.

ב

Prove that two intervals I, J \in C exist such that |InJ| = |R|

We have concluded in alef that if two intervals are don't overlap, then their set is countable.

Combining the definition of C together with the aforementioned conclusion, it follows that there exist I,JEC such that InJ $\neq \emptyset$.

Let I=(a,b); J=(c,d). Assuming $a \le c$, since $I \cap J \ne \emptyset \implies c < b \implies I \cap J=(c,b)$.

We know that every non-degenerate is equivalent to \mathbb{R} , therefore $|\text{InJ}|=|(b,c)|=|\mathbb{R}|$.