

DISTRIBUTION RELIGION

THE IMAGE PROCESSOR MAY BE COPIED BY INDIVIDUALS AND NOT-FOR-PROFIT INSTITUTIONS WITHOUT CHARGE. FOR-PROFIT INSTITUTIONS WILL HAVE TO NEGOTIATE FOR PERMISSION TO COPY. I THINK CULTURE HAS TO LEARN TO USE HIGH-TEK MACHINES FOR PERSONAL AESTHETIC, RELIGIOUS, INTUITIVE, COMPREHENSIVE, EXPLORATORY GROWTH. THE DEVELOPMENT OF MACHINES LIKE THE IMAGE PROCESSOR IS PART OF THIS EVOLUTION. I AM PAID BY THE STATE, AT LEAST IN PART, TO DO AND DISEMINATE THIS INFORMATION; SO I DO.

As I am sure you (who are you) understand a work like developing and expanding the Image Processor requires much money and time. The 'U' does not have much money for evolutionary work and getting of grants are almost as much work as holding down a job. Therefore, I have the feeling that if considerable monies were to be made with a copy of the Image Processor, I would like some of it.

Put in your own method of returning energy to me here: _____

Of course enforcing such a request is too difficult to be bothered with. But let it be known that I consider it to be morally binding.

Much Love,

Daniel J. Sandin
Department of Art
University of Illinois at Chicago Circle
Box 4348
Chicago, Illinois 60680
Office phone: 312-996-8689
Lab phone: 312-996-2312
Messages: 312-996-3337 (Department of Art)

*System
Notes*

NOTES ON THE AESTHETICS OF 'copying-an-Image Processor':

Being a 'copier of many things, in this case the first copier of an Image Processor, I trust the following notes to find meaning to future copiers of Image Processors:

First, it's okay to copy! Believe in the process of copying as much as you can; with all your heart is a good place to start - get into it as straight and honestly as possible. Copying is as good (I think better from this vector-view) as any other way of getting 'there.'

The more you 'buy' the 'copying' of Sandin's encoded intelligence in the I-P, the more you will learn about the man-and-machines. Don't try to make improvements; you'll make it only worse if you modify what already is best, even if it doesn't appear to be the 'best' to your mind's eye. It bothers me very much to see 'folk' laying onto Dan, suggestions of improvement (supposedly) without a thorough giving-in-to understanding of the I-P design. Please realize, that if you 'had-it' to do it you would not be building (copying) an I-P to begin with; you would have done it yourself along time ago...so get to work copying-as-usual.

Dan's evolutionary design of the I-P comes from a very high and thorough CONSCIOUS systems--design-intelligence-level. If you deviate in the process of 'copying' and then Dan makes an improvement on his I-P, you will most likely find it quite frustrating in updating your instrument due to your I-P being incompatible in detail to the original. If you get yourself in a jam, then you have to go to Dan and "\$PEND" his time getting you out of it.

So...after all this: the Art of 'copying' is a good form to try on for a year or so while you get into building your Image Processor...enjoy.

PEACE/ASCESIS (love):

Phil Morton

BRIEF SYSTEMS LEVEL DESCRIPTION:

The IP physically is an array of a minimum of approximately 24 modules (aluminum boxes), representing approximately 40 electrical modules.

The documentation that follows is simply a description of how to build the aluminum boxes; the system is considerably more powerful than the sum of the boxes.

On paper a description of how the IP works is more difficult than I am prepared to do. It is best communicated on video-tape; send me a video tape of you best stuff and I will send you a video tape on the IP, and/or send blank tape and \$5/hr. (2 hours should do it.)

But in brief, the Image Processor accepts signals = + .5 volts 75 ohm including video signals. These signals (images) are distributed into (usually) a number of processing modules and then (usually) mixed out into a standard color encoder (output module). Since most of the processing modules are voltage controllable and control voltages and images are interchangeable, fantastic combinatorial power is possible.

The 'classic' Image Processor contains 8 adder-multipliers, 3 function generators, 3 comparators, 3 amplitude classifiers, 4 oscillators, 3 differentiators, 9 references, 1 sync strip and camera input, 3 inputs, 1 sync generator, 1 color encoder and power supplies. These refer to electrical modules and not aluminum boxes. This constitutes a very powerful processing instrument and because of systems power level (inter-connect-ability), I recommend building approximately this much.

MC 1445 Gain Controlled Amplifier (multiplier):

Detailed information on this integrated circuit is available from Motorola Linear Integrated Circuits Manual, available from Motorola or some Motorola distributors.

This I.C. is a four input gain controlled amplifier and is used throughout the IP. Pin (4) is the inverting input to channel A. Pin (3) is the non-inverting input to channel A. Pin (5) is the non-inverting input to channel B; pin (6) is the inverting input to channel B. Non-inverting output is available at pin (7); and the inverting output is available at pin (1).

Which input channel is connected to the output is controlled by the gate voltage at pin (2). If this voltage is high (greater than 1 volt) channel B is on; if the gate voltage is low (0 volts) channel A is connected to the output. The gate voltage produces continuous control over the gains of the channels such that .5 volts causes both channel A and B to be connected to the output with 1/2 gain each. Full gain is approximately 10.

Power supply voltage (+5 volts) is connected to pin (9) and (-5 volts) is connected to pin (8). No other pins are used.

CA 3030 operational amplifier:

The CA 3030 op amp is used throughout the IP. Detailed descriptions of the device are available in the RCA Linear Integrated Circuits Manual. The book can be gotten from RCA or some distributors of RCA integrated circuits.

What follows is a brief description of the I.C.

The Op Amp has a very large gain (4000). Except in the comparator circuit, this gain is reduced by feedback of a percentage of the output signal pin (12) to the inverting input signal pin (3). A signal to be amplified is applied to pin (3) and will be inverted in the output, or it is applied to pin (4) and is not inverted. Pin (2) is grounded always. Pins (1,14,9,10,11) have to do with compensation for the amplifier which controls the tendency of the amplifier to oscillate (put out a signal of its own). The positive supply voltage (+12v.) is applied to pin (13); negative supply voltage (-12v.) is applied to pin (6). Pin (8) is sometimes connected to the output pin (12) to increase the power available from the I.C.

In simple inverting amplifier circuits, the voltage gain of the amplifier is the ratio of the feedback resistor between pin (12) and pin (3) to the input resistor connected from the input signal to pin (3).

RF/R in

3030A right
side

INTEGRATED CIRCUITS

Dual Inline Packages (DIP)

TOP VIEW:

Knotch or dot indicates installation direction.

IDENTIFICATION NO. (example):

MC 1445 L

Prefix indicates manufacturer.

Type.

Suffix indicates case or temperature range or detail specifications.

TRANSISTORS

TOP VIEW:

Physical cases will vary with the manufacturer.

Check and match carefully the emitter, base, collector (EBC) leads with the NPN & PNP character of each transistor type.

Leads typically have to be bent for proper and convenient insertion into PC Board.

IDENTIFICATION NO.:

(only two transistors used in entire system)

2N 4123 (NPN)

2N 4125 (PNP)

SYMBOL:

CAPACITORS

Ceramic Mica

Polyester

Installation direction makes no difference.

Electrolytic

OR

Installation must have correct (+) and (-) orientation.

SYMBOL:

SYMBOL:

DIODES

ZENER DIODES

COMPONENTS

The STANDARD DRIVER is a complimentary current amplifier with voltage gain less than 1. It is used so many times in the I-P that it is abbreviated:

DIAGRAM:

ABREVIATION:

NOTE: All power supply lines into board are bypassed to ground with electrolytic capacitors (indicated in materials only).

COMPONENTS

Band or dot indicates the

normal application (+) supply

voltage is supplied to cathode
and (-) supply voltage is supplied
to anode.

IDENTIFICATION NO. (except):

IN 5338 B

Indicates tolerance.

(NPN) 2N4123

(PNP) 2N4125

COMPONENT SIDE VIEW:

DIODES

COMPONENT:

Band or dot indicates the cathode (-).

SYMBOL:

Direction of current flow is from (-) to (+).

IDENTIFICATION NO.:

(only two signal diodes used in

1N 914B entire system)

1N 270

ZENER DIODES

COMPONENT:

Band or dot indicates the cathode (-).

SYMBOL:

In normal application (+) supply voltage is supplied to cathode and (-) supply voltage is supplied to anode.

IDENTIFICATION NO. (example):

1N 5338 B

Indicates tolerance.
Type.

WIRE
- USE STRANDED
16 GAU. OR HEAVIER
- COLOR CODE
AS BELOW

POWER BUSS

PRODUCT

TO POWER
SUPPLY
MALE
JONES
PLUG

COLOR CODE FOR POWER BUSSING

BLACK (+)	(+)	(+)	(+14v)
ORANGE (-)	(-)	(-)	(+12v)
WHITE (-)	(-)	(-)	(+6v)
RED (+12v)	(-)	(-)	(+5v)
BLUE (-12v)	(-)	(-)	(-5v)
GREEN (+6v)	(-)	(-)	(-)
GRAY (-)	(-)	(-)	(-)
YELLOW (+5v)	(-)	(-)	(-)
VIOLET (-5v)	(-)	(-)	(-)
BROWN (-)	(-)	(-)	(-)

NOTE: All power supply lines into PC board are by-passed to ground (-) with a $100\mu F$ 25wVdc electrolytic capacitor (indicated in pictorials only).

NOTE: CONTACTS #1 & #15 ARE NOT USED; #2—#14 ARE USED.

10 Blue

9 Red

6 Black

5 Red

2 Black

POTS and JACKS MOUNTING

SIDE VIEW:

BACK VIEW:

SYMBOL:

CW = clockwise

TYPICAL 'extra' PC BOARD MOUNTING

NOTE: Use additional washers for proper spacing when necessary; make sure that middle board is dead-on with center line of module.

Use #6 x 3/4" long self-threading screws for mounting supports to chassis box (no washers).

PRINTED CIRCUIT BOARD MOUNTING

BACK:

LEFT SIDE:

Crucial screw; circuits all run to ground ($\not\!\!\!\rightarrow$) at this point.

Adjust middle board so as to be dead-on with center line of module; use washers for additional spacing if necessary.

On top and bottom boards it is necessary to hacksaw off 3/8" on power buss end for clearance of back panel.

RIGHT SIDE:

Star washer all 4-40 screws which hold boards to supports.

Use #6 x 3/8" panhead self threading screws for mounting supports to chassis box (no washers).

ADDER MULTIPLIER:

The adder multiplier is used to add (superimpose), fade and gain control (multiply) signals.

JI1, JI2, JI3 and the inverted signal of JI7 are added together to form input channel A.

JI4, JI5, JI6 and the inverted signal of JI8 are added together to form input channel B.

The knobs above the connectors control the gain (contrast) of each individual input.

The amount of channel A and B mixed into the output, J01 through J04, is dependent on the position of R9 and the voltage inputted to JI9.

The effect of the knob position and the voltage are additive; the knob to the left and/or a maximum negative voltage on JI9 will cause channel B to be outputted only, similarly, the knob to the right and/or a maximum positive voltage will cause channel A to be outputted only.

The knob at approximately the center with no voltage applied to JI9 will cause half-of channel A and half-of channel B to be added together and outputted.

TEST STUFF:

The adder multiplier should have a net gain of slightly greater than 1. That is, a (+) or (-) .5 volt signal into the module should result in an undistorted output of approximately the same magnitude into a 75 ohm load.

With no input the output should be approximately 0 volts (+ or - .05 volts).

Adjust 20k trimmer pot so with R9 in center position and no input to JI9 channel A and channel B have equal gain.

R1

R2

R3

J11

J12

J13

R4

R5

R6

J14

J15

J16

FRONT
FACE

R7

R8

J17

J18

R10

J01

ADDER
MULTIPLIER

J19

J03

J04

J55
1-76

MINI ADDER MULTIPLIER:

The mini adder multiplier is used to add (superimpose), fade and gain control (multiply) signals.

Knob center - no output

Knob right of center - non inverted output

Knob left of center - inverted output

J11 is the input to channel A.

J12 is the input to channel B.

The knobs above the connectors control the gain (contrast) of each individual input.

When the knob is turned right of center (12:00 O, Clock) signal increases its' non-inverted gain.

When the knob is turned left of center (12:00 O,Clock) signal increases its inverted gain.

The amount of channel A and B mixed into the output, J01 through J08, is dependent on the position of R3 and the voltage inputted to J13. The effect of the knob position and the voltage are additive; the knob to the left and/or a maximum negative voltage on J13 will cause channel B to be outputted only, similarly, the knob to the right and/or a maximum positive voltage will cause channel A to be outputted only. The knob at approximately the center with no voltage applied to J13 will cause half-of channel A and half-of channel B to be added together and outputted.

TEST STUFF:

The adder multiplier should have a net gain of slightly greater than 1. That is, a (+) or (-) .5 volt signal into the module should result in undistorted output of approximately the same magnitude into a 75 ohm load.

With no input the output should be approximately 0 volts (+ or - .05 volts).

Adjust 20k trimmer pot so with R9 in center position and no input to J13 channel A and channel B have equal gain.

'MINI' ADDER/MULTIPLIER:

The 'MINI' ADDER/MULTIPLIER is a packed electrical module containing essentially three of the standard ADDER/MULTIPLIERS (as per documentation). The modification involves the elimination of extra inputs, two each for A and B inputs, and the elimination of the separate inverting inputs as was available on the A/M. The 'MINI' ADDER/MULTIPLIER uses 'bi-polar' inputs, one each for A and B inputs to the 1445L's, enabling that signal input to be 'normal' with increasing gain as R1 or R2 is turned clockwise from center, or 'inverting' with increasing gain as R1 or R2 is turned counter-clockwise from center. Extra standard drivers are used to add four additional outputs per sub-module.

The 'MINI' ADDER/MULTIPLIER can be used to add (superimpose), fade and gain-control (multiply) signals.

Knob center R1, R2--no output (zero volts, middle gray)

Knob right of center R1, R2--non inverting output

Knob left of center R1, R2--inverted output

Knobs above inputs control the gain over that input.

Turning R1, R2 right of center increases the signal input non-inverting gain.

Turning R1, R2 left of center increases the signal input inverted gain.

J11 is the signal input to channel A.

J12 is the signal input to channel B.

The amount of channel A and B mixed into the output J01-J03 is dependent on the position of R₃ (BIAS knob) and the voltage inputted to J13 (multiplier input). The effect of the knob position and the voltage at J13 are additive; the knob to the left and/or a maximum negative voltage at J13 will cause channel B to be outputted only. Similarly, the knob (R₄, Bias) to the right and/or a maximum positive voltage at J13 will cause channel A to be outputted only. The knob (R₄, Bias) at approximately the center with no voltage applied to J13 will cause half of the signal at A to be added with half of the signal at B and outputted.

TEST STUFF:

The 'MINI' ADDER/MULTIPLIER should have a net gain of slightly greater than 1. That is, a (+) or (-) .5volt signal into the module should result in an undistorted output of approximately the amplitude into 75 ohm load. With no signal input, the output should be zero volts, + or - .05 volts. Adjust the 20K trimmer so that with R₄ in the center, and precise amplitude signals into A and B (J11, J12), and no input to J13, channel A and B have equal gain at the output. If you use the 217 board modification, be sure to drill precise holes, cut foil in the correct location, and insulate dc jumper wires.

OK?

11.79 MF

MINI
ADDER/
MULTIPLIER

FUNCTION GENERATOR

The function generator generates an output which is an arbitrary function (with up to two points of inflection) of the input at J11. This results in an effect that is similiar to but more complex and controllable than photographic solarization.

The function is controlled by R1, R2, and R3.

R1 controls the slope of the function for large negative inputs.

R2 controls the slope of the function for inputs near 0 voltages.

R3 controls the slope of the function for inputs of large positive voltage.

Clockwise is positive slope; counterclockwise is negative slope.

There are three electrical modules in one chassis box, so replicate work three times. Remember to buss (connect) +12 and -12 and ground wires from middle board to top and bottom board. Soldering directly to the foil is convenient.

TEST STUFF:

The 20K trimming resister on the VS5 board is adjusted such that no input results in 0 output voltage + or - .05 volts.

FUNCTION GENERATOR 9-75

COMPARATOR

The comparator produces an output which is +.5 volts (white) if the input voltage at JI1 is greater (more positive) than the voltage at JI2.

The comparator produces an output which is -.5 volts (black) if the input voltage at JI1 is less (more negative) than the voltage at JI2.

With 0 volts or no input, the output will be either +.5 or -.5 volts into a 75 ohm load, depending on history.

The variable resistor (pot) R1, determines the positive feedback which controls the tendency of the module to stay in the state it is in. Typically it is turned fully clockwise.

There are three electrical modules in one chassis box, so replicate work three times. Remember to buss (connect) + 12 volts, - 12 volts and ground from the center card to upper and lower cards.

TEST STUFF:

A sine-wave input should produce a clean square-wave output.

The output voltage should be between + or - .5 volts to + or - .75 volts.

J11

•

R1

•

J12

•

J01

•

J02

•

OK 9-77

FRONT
FACE

COMPARATOR

9/15

COMPARATOR 9-15

COMPARATOR 9-75

AMPLITUDE CLASSIFIER

The amplitude classifier takes an input signal at JI 11 and separates it into 8 contiguous regions varying from black to white. The value put out by each region is controlled by R 1 through R 8 and by signals inputed to JI 1 through JI 8. The output signals are available for each region separately, JO 1 through JO 8. The sum of these signals is available at JO 21 through JO 24. The effect of JI 1, JI 2, R 2, etc., is additive in each region. R 11 controls the gain of the signal inputed at JI 11, and R 14 generates a bias (constant gray level proportional to knob position) which is added to the input signal. In general, R 11 and R 14 are used to match the incoming signal to the lightest, or 'top' and 'darkest' or 'bottom' of the 8 regions.

TEST INFORMATION

These tests are best performed with a 1 volt, peak to peak triangle wave inputed to JI 11, and a calibrated dual trace oscilloscope connected to the input and output of the amplitude classifier. R 13 is adjusted so that a +.4 volt signal activates channel 8 (bottom). R 12 is adjusted so that a +.4 volt signal activates channel 1 (top). R 11 should be full clockwise and R 14 should be in the exact center of rotation. R 12 and R 13 interact greatly, so, repeat adjustments until both conditions can be met simultaneously. R 16 should be adjusted so that with R 1 through R 8 in their centers the individual output are near 0 volts when not activated. R 15 should be adjusted so the summed output appearing at JO 21 through JO 24 is 0 volts for the non-activated channels.

BASIC CIRCUIT DESCRIPTION AND TEST INFORMATION--AMPLITUDE CLASSIFIER

A signal at JI 11 is sent to all comparators. The resistor string of 100 ohm resistors combined with voltage sources at R 13 and R 12 bias so that IC 1 switches on at a higher (+) voltage than IC 2, IC 2 switches on at a higher voltage than IC 3, etc.. For example; with 0 volts at JI 11, IC 5, 6, 7 might be on and IC 1, 2, 3, 4 would be off. The transistors connected to the outputs of the comparators decode the comparator string output such that only the highest comparator on is outputed. In this example, channel 5 would be on, all others off. This signal is sent to the multiplier associated with channel 5, turning it on. All other multipliers would be off.

	J1	R1	J01	
• R13	J12	R2	J02	
R11	J13	R3	J03	
J11	J14	R4	J04	
R14	J15	R5	J05	AMPLITUDE CLASSIFIER
	J16	R6	J06	FACE 1-75
	J17	R7	J07	
• R12	J18	R8	J08	
	J021	J022		
	J023	J024		

ALL IC'S ARE CA3030

5.1K 5.1K
5.1K

V_{S5}
SUMMING BOARD

AMP. CLASS.

MULTIPLIER BOARD

TOP OR BOTT.

AMP. CLASS,
1-76

217

OSCILLATOR

This module contains two oscillators that generates a sine wave output available at J03, J04 and a triangle wave output at J01 and J02. If the sawtooth switch is down instead of up, the triangle wave becomes a sawtooth and the sine wave becomes an "s" wave. The rotary switch sets the gross frequency range form 1/100 Hz. to $\frac{1}{2}$ MHz. R2 is the continuous frequency adjustment. If the voltage control switch is up, a signal inputed to JI2 will control the frequency of the oscillator in combination with R2. With the switch down the voltage control is disabled but the oscillator is more stable. A sync. level (4 volt) signal into JI1 will trigger the oscillator to stabilize patterns.

CIRCUIT DESCRIPTION

The 8038 is a complete voltage controlled oscillator whose frequency is controlled by resistance R2 and the voltage at pin 8. The 715 is a 10x amplifier and- in combination with the zener diode produces a controll voltage at pin 8.

The trimmer associated with the input of the 715 should be adjusted so that the control voltage is centered within its range with 0 volts in. To do this, input a triangle wave to the voltage control input and adjust the trimmer until the voltage that makes the maximum frequency is as positive as the voltage that quenches the oscillator is negative.

The two transistors and zeners are used to trigger the oscillator. When a fast-falling signal is presented at the sync. input this turns the first transistor off which turns the second transistor on. This clamps the oscillator to the bottom of its output wave form.

OSC
#1

OSC
#2

MARCH, 1977

OSCILLATOR

1.) SINE-WAVE PURITY CONTROL:

Remove 82K resistor; and, add 100K trim-pots as shown in diagram. These 100K trim-pots correct sine-wave purity. You should be able to trim to a 'perfect' sine-wave.

PROCEDURE-

- Before supplying power to the module, center all trim-pots.
- Set the oscillator at a middle frequency range, and display sine-wave on scope.
- Tweak the trim-pots for highest amplitude possible (± 1 volt) without creating any flats or peaks in the waveform; i.e. 'perfect' sine-wave.

2.) HIGH-FREQUENCY SYMETRY CONTROL:

R10 and R11 maybe replaced by a series combination of 2.2K resistor and a 5K trim-pot. This series combination (RT10 and RT11) correct high-frequency symmetry and low-frequency quenching of waveform; see diagram.

If both trim-pots are too large, the high-frequency end of each range will be lower than optimum.

If both trim-pots are too small, the low-frequency end in some ranges may quench, particularly in SAWTOOTH mode.

The difference between the trim-pots determines the high-frequency symmetry.

PROCEDURE-

- All trim-pots should have been centered in above procedure, before supplying power; if, you didn't you might have blown the 8038...!
- Turn 10-turn pot to extreme left (lowest freq.); check to make sure that no range quenches in sawtooth mode. If quenching happens in any range, tweak trim-pot to get rid of it...
- Turn 10-turn pot to extreme right (highest-freq.); check to make sure that in a higher frequency range you still have good symmetry in triangle mode. If you don't have good triangle symmetry, tweak trim-pot to get it...

GO BACK AND CHECK FOR SAWTOOTH QUENCHING...

- To maximize high-frequency in ranges, decrease both trim-pots equally and go-to-step B). If oscillator quenches at low-frequencies, back up some; i.e. increase resistance, go-to step C). Stop.

NOTE:

These trim-pots will have to be outboarded on a perf-board and attached to card support frame of the module. Leave enough lead length on the trim-pots so it can be gotten out of the wafer for servicing the cards...!

Some 8038 Integrated circuits appear to behave better than others; you may want to try various 8038's, choosing the best behaved ones...!

DIFFERENTIATOR

The differentiator produces an output which is proportional to the rate of change of the input signal. Fast rates of change correspond to edges in a picture and are preferentially amplified by the module.

JI6 amplifies only the sharpest edges...

JI5 amplifies the sharpest edges and slightly softer edges...

JI4, JI3 and JI2 amplify progressively softer and softer edges until by JI1 almost all of the whole picture is amplified.

There are three electrical modules in one chassis box. One diagram is supplied, so replicate work three times. Remember to buss (connect) +12, -12 and ground from the center board to the upper and lower boards; soldering directly to the foil or connecting corresponding bypass capacitors is convenient.

TEST STUFF:

The module should amplify high frequency (greater than 20 kHz) sine waves with greater gain than lower frequency sine waves. The sine waves should be undistorted.

Square waves should be differentiated; that is, there should be a positive spike associated with the rising edge of the square wave, and a negative spike associated with the falling edge of the square wave.

No input should result in 0 volts output + or - .05 volts.

JI1

JI2

JI3

JI4

JI5

JI6

JO1

JO2

OK

9.75

FRONT
FACE

DIFFERENTIATOR

DIFFERENTIATOR

9

REFERENCE MODULE:

The Reference module produces a constant voltage proportional to front panel knob position. It uses 2½ #217 printed circuit boards; save other 3/4 of board for making 3-D Joystick later...

Joystick and slide pot inputs could be created in analogous manner. The value of input resistor, R1 through R9, is not critical; for instance if 5K ohm pots in joysticks are available, use them.

Capacitors C₁, C₂, are used to filter out noise. 100uF is the minimum and does not affect the feel much. Dan chose 250uF and Phil chose 1000uF; 1000uF is very 'slushy'.

[TO R1-THRU-R9]

R1

J01

+5v.

-5v.

CAPACITORS C₁, C₂, MAY BE ANY VALUE
BETWEEN 100μF — 1000μF.

REFERENCE

1217

SAME

SAME

SAME

FRONT FACE (10K POT)
WIRING

REFERENCE

SYNC STRIPPER and CAMERA INPUT

This module performs several related utility functions.

A video signal is inputted to J11; this signal is clamped and sync suppressed and is available at J01, J02, J03 and J04. This part is identical to one-third of the INPUT module except the composite sync is generated internally (consult INPUT module documentation for explanation).

In addition, the video signal inputted at J11 is separated from the sync information by the sync strip card. The vertical sync is filtered and amplified by the vertical filter-amp and distributed to output jacks.

Similarly, the horizontal sync information is filtered and amplified and distributed to output jacks.

Burst flag and blanking information is regenerated from the horizontal and vertical sync and distributed to output jacks.

Vertical sync (-4v.) is available at J013, J014 and at pin#2 of the EIAJ (6-pin) camera connectors.

Horizontal sync (-4v.) is available at J09, J010 and at pin#5 of the EIAJ (6-pin) camera connectors.

Blanking is available at J011 and J012. Burst is available at J05 and J06

The video signal (from the camera) with composite sync is made available at the BNC connector above the corresponding EIAJ (6-pin) camera connectors.

When this module is used, the sync for the IP is stripped from the video signal inputted to J11. If a camera is used for this purpose it should of course not be sunk to the IP; but must be internally sunk or sunk from a non-IP source.

TEST STUFF:

R2 and R3 should be adjusted the same as R1 and R2 in the INPUT module. The trimmer on the vertical filter amp should be adjusted so the vertical signal out is the same length as the vertical sync present in the original signal.

The trimmer on the horizontal filter amp should be adjusted so the horizontal signal out is the same as the horizontal sync in the original signal. (NOTE: these adjustments are hard to make, but are not very critical in timing).

R4, front panel associated with the sync stripper, should be adjusted to minimize any jitter in output picture.

The blanking and burst amp is a set of three identical circuits except for the timing capacitors. Referring to the schematic diagram, the first half of the 9602 sets a delay time to the pulse and the second half times the pulse.

In the case of the burst flag R1T sets the delay from the beginning of the horizontal sync pulse to the beginning of the burst flag, and R2T determines the length of the burst flag.

In blanking, R3T sets the delay from the beginning of the horizontal sync pulse to the beginning of the blanking pulse for the next horizontal line. This period is slightly less than on horizontal line. R4T sets the length of the blanking pulse.

Vertical blanking is similiar with R5T setting the delay from the beginning of the vertical sync pulse to the beginning of the vertical blanking interval. R6T sets the length of the blanking interval.

To adjust all of these, feed into the module a high quality video signal (from a clearly received broadcast station or from the color encoder in the IP driven by a high quality sync generator). Adjust the output pulses from the sync strip to be identical with the pulses from the standard source.

HINT: start with all pots turned nearly full clockwise (minimum resistance). If the resistance is too high the device stays on all the time and if the resistance is too small, pulse may be too short to be seen on an inexpensive oscilloscope. A dual-trace triggered oscilloscope is preferred but a single trace scope can be used.

R1	R2		J02	
J11	R3	J01		OK 9-75
			J04	
		J03		
R4	BUST FLAG	J05	J06	
	COMP. SYNC	J07	J08	
R5T	- R5T			
	HORZ. DRIVE	J09	J010	
R5T	- R5T			FRONT FACE
	COMP. BLANK.	J011	J012	
R5T	R5T			
	VERT. DRIVE	J013	J014	
J019	J020	J021	J022	
J015	J016	J017	J018	SYNC STRIPPER CAMERA INPUT

J015 J016 J017 J018

SYNC STRIPPER & CAMERA INPUT

SYNC SUPPRESSOR AND SCALING AMP

SYNC STRIPPER & CAMERA INPUT

FRONT FACE
 BURST FLAG
 COMP SYNC
 HORIZ DRIVE
 COMP BLANK
 VERT DRIVE
 GEN LOCK AND
 CAMERA INPUT

J11

THE UNIVERSITY OF MICHIGAN

MICHIGAN SOCIETY OF FELLOWS

Rackham Building

Ann Arbor, Michigan 48109

(313) 763-1259

Richard Mandenberg

NOTE MOD

IN USE

NOT NECESSARY

GEN LOCK AND CAMERA INPUT

This module locks its output pulses to an external black and white, or color video signal inputted at J11. In addition, the signal at J11 is clamped, sync suppressed, and available at J01 - J04. This latter process is identical to one third of the INPUT module, except that the clamp signal is generated internally (consult IP documentation for explanation).

J05 - J014 are various synchronization and drive pulses at -4 volts into 75 ohms.

J019 - J022 are video signal outputs from cameras connected to the EIA-J 6 pin connectors.

The front panel LED indicates when the gen-lock is locked to an external source. Light ON means that lock is present, light OFF means the module is not locked. Outputted sync is only stable for recording when the light is ON.

CIRCUIT DESCRIPTION

Video at J11 goes to the Sync Lock board which contains a TBA920 integrated circuit. The TBA920 is a combination sync strip and horizontal phase locked loop oscillator. Stripped sync is converted to proper TTL digital voltage levels by one half of the 319 comparator. Sync is also filtered to pick off vertical. This resultant vertical trigger pulse is buffered by the other half of the 319, and used to initiate the vertical timing process on the digital board. The horizontal oscillator locks in both phase and frequency to an external video source. R1 controls the free running frequency (no video input) of the horizontal oscillator. R2 controls the phase of the oscillator when locked (video present). The leading edge of the horizontal oscillator pulse is usually set to coincide with the beginning of horizontal blanking.

The digital board has basically three sections. The horizontal timers (74123's) are driven by the horizontal oscillator pulses. They are set up so that all pulses during the horizontal blanking interval may be retimed and rephased. The vertical section is controlled by counters (74163's) and associated NAND gates and flip-flops. DIP switches A1, B1, C1, control the position of vertical blanking and drive. Switches A2, B2, C2, control the length of vertical blanking. Using A2 - C2, VB may be set anywhere from 17 to 24 horizontal lines long. Other

NAND gates on the board are used for sync recombination, and to detect when the device is locked properly to an external source.

SET UP

A dual trace oscilloscope is desirable, but not absolutely necessary. One vertical channel is connected to a high quality composite video signal (like the IP). The oscilloscope must be triggered from this source, either externally, or by channel selection. Set the scope to display several lines of video.

Follow the steps in the order given. Each step must be set up correctly before continuing to the next.

1. Using the other vertical scope channel, attach an oscilloscope probe to line B of the sync lock board. With NO VIDEO input adjust R1 so that the horizontal oscillator rate is approximately the same as that of the video.
2. With a video input at J11, adjust R2 so that the phase of the horizontal oscillator pulse lines up with the beginning of horizontal blanking. This adjustment is a master horizontal phase control in that all pulses during the horizontal blaking interval are timed in relation to the leading edge of the horizontal oscillator pulse. When you change R2, all horizontal sync components will change phase accordingly.
3. Replace the scope probe with a 75 ohm line attached to composite blanking. Adjust RT5 for the proper length of horizontal blanking.
4. Looking at the output of horizontal drive, adjust RT6 for the proper length of HD.
5. Using the composite sync output, adjust RT3 for horizontal sync phase, and RT4 for sync length.
6. RT1 controls the phase position of burst flag, while RT2 controls its length. Burst flag is timed in relation to the leading edge of horizontal sync. Phase changes in sync will cause concurrent phase changes in burst flag.
7. Trigger the scope to display several fields of video. Using the vertical drive output, set DIP switches A1,B1, and C1, to position VD at the beginning of the vertical blanking interval. The three switches have eight different possible position combinations. If VD is at best offset by one half line of video (advanced or delayed) from the beginning of vertical blanking, you are looking at the odd (B) field. In this case, set VD so that it is

advanced by one half line.

8. Attach the 75 ohm line to the composite blanking output. Vertical blanking should have the same phase as vertical drive. Adjust switches A2, B2, and C2, for the correct length of VB. 22 lines should be the maximum setting.

CONSTRUCTION

On the digital board, some wires are soldered from point to point, others are wire wrapped. Follow both the wire wrap list, and the pictorial. Remember to cut the foil, and jump ground to the outside bus, where noted.

All circuit boards, except the VS5 are mounted of 1" standoff mounting posts. VS5 is mounted at the top of the module, RMGL board in the middle, and the DS6 at the bottom. Mount the digital board behind the DS6, and RMGL boards. Input/output wires on the digital board should be kept to one edge, so that the board may be swung back for replacement of IC's, troubleshooting, etc.

Line E from the digital board runs to point JI2 on the VS5 board. Reverse the polarity of the 10uf cap. which is in series with the 470uh choke and the 1N914 diode.

On the Pulse Amp board (DS6), mount the 7808 voltage regulator to the heat sink, and then to the board itself with a 4x40 screw.

Remember to bus ground and the appropriate power to the circuit boards. +5 volts must also be run to the front panel for the LED, and the trimmers.

VS-5
DS-6 Puls Amp
DS-6 Puls Amp
Digital

THE UNIVERSITY OF MICHIGAN
MICHIGAN SOCIETY OF FELLOWS
Rackham Building
Ann Arbor, Michigan 48109
(313) 763-1259
Richard Mandenberg

ADDENDUM TO THE GEN LOCK

In its initial design, the Gen Lock misplaces the leading edge of vertical blanking by one half line during the odd field. This circuit addition will fix that problem, and reestablish proper interlace to composite blanking. Vertical sync information is unchanged by this addition, as sync was already correctly interlaced in the previous design.

This addendum is useful to people who anticipate that much of their work will be time base corrected, or that they will be working often in a broadcast environment. The earlier design will work fine with all non-broadcast equipment, and its use does not preclude the ability to time base correct your videotapes.

NOTE: The addition of this circuit makes the construction of the Gen Lock more complex and difficult. If you don't understand how to put it in, use the original design. The module will work fine, and you can add the additional circuit later.

CONSTRUCTION

Build the circuit on perf board, wire wrapping the connections. Mount it above the digital board. Remember to bus ground and +5 volts to the board, and bypass +5 to ground with a .1uf cap. every few IC's. Mount the 74123 and the 50k trimmer near the rear of board, with the trimmer adjust facing back. Drill a hole in the back panel in the appropriate place for the 1/2 H adjustment. On the main digital board remove the 74163 which is in line with the 74123's, and remove the 74163 below it also. Do not wire wrap wires associated with these two IC's.

SET UP

Attach an oscilloscope probe to pin 8 of the 7410. Display it, and a high quality video signal (also inputted to the Gen Lock) on both channels of the scope. Trigger the scope to show the beginning of the vertical blanking interval, including equalization pulses and sync. Adjusting the 50k trimmer will change the phase of the 1/2 line pulse. Using every other equalization pulse as a guide, adjust these pulses so that their leading edge is coincident, or slightly ahead of the leading edge of the equalization pulses.

74123 PIN 16. +5

PIN 8. m

74163 PIN 16. +5

PIN 8. m

PIN 1. +5

ALL UNUSED PINS 7, 10. +5

7410 PIN 14. +5

PIN 7. m

ON DIGITAL BOARD
MODIFY TO:

+5 22, $\bar{21}$, 32, $\bar{21}$,

GND 31, $\bar{21}$,
34, $\bar{21}$, 33, $\bar{21}$

GEN-LOCK MODIFICATION 3/79

INPUT

The input module suppresses the sync and clamps the signal coming from the camera, thus preparing any standard video input for the IP.

The video signal is inputted at JI1 and composite sync (-4v.) is inputted at JI2.

There are three electrical modules in the chassis box, so replicate work three times. There is only one JI2 in the chassis box and its terminal should be connected to the same spot on all three cards. Remember to buss (connect) +12 and -12 and ground from center card to top and bottom card. Also buss +12 and -12 to front panel for R1(s) and R2(s); take from center card.

TEST STUFF:

R1 is adjusted until most of the sync is suppressed but blacks are not clipped. (An oscilloscope is necessary.) R2 is adjusted until the video signal is symmetrical, about 0 volts and has a magnitude of approximately 1 volt peak-to-peak into a 75 ohm load.

The output is available at JO1, JO2, JO3 and JO4.

NOTE: these adjustments may have to retuned, off and on, for different video sources.

SYNC GENERATOR

This module generates full NTSC color sync conforming to RS 170 EIA after trimming the master oscillator. The sync generator should stay well within the broadcast standard.

All outputs are -4v. into 75 ohm except the 14 MHZ. (J013) which is an open collector TTL. J013 is not used except for work with digital computers.

J11 horizontal reset and J12 vertical reset are not implemented in full.

The sync generator requires starting pulses which are provided by capacitors associated with J11 and J12. Time must be allotted after power-down before power-up (at least 30 seconds) to assure proper starting of sync generator.

Master oscillator trim:

Adjust the master oscillator frequency to 14.318180 MHZ. A convenient way to do this is to run a lead from horizontal drive and wrap it (still fully insulated) around the antennae of a TV receiver. Tune the receiver to a station on feed from a major network (in color). You will notice two vertical lines or one vertical bar drifting across the screen. Adjust the master oscillator with a long insulated screwdriver through the access hole in the front panel of module until vertical lines do not drift.

4-DS6

10K

Ten Turn Trimmers

COLOR ENCODER

This module generates a N.T.S.C. compatible color video signal. The front panel switch selects between an internal color bar generator, and the front panel Red, Green, and Blue inputs. Its inputs and outputs are;

JI1	3.58 MHz Color Carrier (1-2 volts p-p)	sub CARRIER
JI2	Burst Flag	
JI3	Composite Sync	
JI4	Horizontal Drive (not used)	
JI5	Composite Blanking	
JI6	Vertical Drive (not used)	
JI7	Red (+.5 to -.5 volts)	
JI8	Green "	"
JI9	Blue "	"
J01	N.T.S.C. video	
J02	"	"
J03	"	"

The Luminance Board combines Red, Green, and Blue to form the luminance component of the video signal. The inverted (-Y) form is used within the Color Encoder, and sent to the R-Y, B-Y, and Chroma Modulator Boards. Blanking and sync are also inserted on the Luminance Board.

The R-Y, and B-Y Boards accept red, and blue respectively, and form the color difference signals. Each signal is low pass filtered to help bandwidth limit the resultant chroma signal. Burst Flag is used to effect proper burst height and hue adjustment.

The Chroma Modulator Board generates chroma from the color difference signals, and combines it with the luminance component. The Bar Generator Board serves two functions. Controlled by the front panel switch, it generates the proper red, green, and blue signals for making color bars. Composite blanking is also converted from an EIA type pulse to a TTL level signal and sent to other boards within the module.

Mount the Bar Generator, and B-Y Boards in the top of the module. R-Y, and Chroma Modulator Boards go on the bottom, with the Luminance Board in the middle.

Carrier balance and white balance may drift during warm up. Make all internal adjustments after the IP has come up to temperature. In a broadcast environment, a proc. amp. may be necessary to prevent accidental over chroma modulation.

Richard Mandenberg 6/80

SET-UP

Set-up should be done only after the IP has warmed up for at least twenty to thirty minutes. You will need to know the proper gain and amplitude levels (either in I.R.E. units or voltages) for N.T.S.C. video. A vectorscope, if accessible, may be substituted in some of the steps.

1. Attach all inputs except for red, green, blue, and 3.58. Display one or two lines of output on the oscilloscope. Set all internal trimmers to center position.
2. Set the front panel switch in the bars position. Adjust RT10 and RT11 for the proper descending stairstep associated with the luminance component of color bars. Adjust RT1 (Y Gain), R4 (Pedestal), and R8 (Sync Height) for luminance amplitude, pedestal, and sync.
3. Attach the 3.58 input. Adjust RT2 and RT5 for minimum carrier leakage during blanking.
4. Turn R7, the front panel Chroma Gain to the full gain position. Switch SW to video. Adjust RT3 and RT6 for minimum carrier leakage during active video.
5. Switch back to bars. Adjust RT4 and RT7 for white balance.
6. Adjustment of the B-Y Gain (RT8) requires repeated tweaking of white balance and carrier leakage. RT8 is adjusted to give the proper chroma amplitude relationships between the different colors of color bars. Alternatively, it may be set by looking at the direct outputs of the R-Y, and B-Y Boards, and setting them for the correct gain relationship. Tweak RT8, and repeat steps 4, 5, and 6 until correct. Remember, RT3 and RT6 are adjusted with SW in the video mode.
7. With R7 still at full gain, adjust RT9 for 100% chroma.
8. Adjust R6 for burst height. Using a properly tuned monitor set R5 for the correct hue or phase of color bars.
9. In the video mode, with the encoder driven to white, the white balance may need slight adjustment.

PARTS

All parts are standard IP parts except;		
LM1889N	Chroma Modulator	National
DM74LS14N	Hex Schmitt Inverter	National
DM74LS74N	Dual Flip Flop	National
LM555CN	Timer	National

MOD Chroma Modulator P.C. Board from E.C.I.

When # of modules changes readjustment is necessary
only on RT2, RT3, RT5, & RT6 (Carrier Balance & Carrier Null)

J11

3.58

J12
BURST FLG

J17
RED

R1_{100~}

J13
COMP SYNC

J18
GRN

R2₁₀₀

J14
HORIZ DR.

J19
BWE

R3₁₀₀

FRONT
FACE

J15
COMP BLK

J16
VERT DR.

R4_{10K} SW SW SW B
R5 R G BARS/VIDEO
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39
R40
R41
R42
R43
R44
R45
R46
R47
R48
R49
R50
R51
R52
R53
R54
R55
R56
R57
R58
R59
R60
R61
R62
R63
R64
R65
R66
R67
R68
R69
R70
R71
R72
R73
R74
R75
R76
R77
R78
R79
R80
R81
R82
R83
R84
R85
R86
R87
R88
R89
R90
R91
R92
R93
R94
R95
R96
R97
R98
R99
R100
R101
R102
R103
R104
R105
R106
R107
R108
R109
R110
R111
R112
R113
R114
R115
R116
R117
R118
R119
R120
R121
R122
R123
R124
R125
R126
R127
R128
R129
R130
R131
R132
R133
R134
R135
R136
R137
R138
R139
R140
R141
R142
R143
R144
R145
R146
R147
R148
R149
R150
R151
R152
R153
R154
R155
R156
R157
R158
R159
R160
R161
R162
R163
R164
R165
R166
R167
R168
R169
R170
R171
R172
R173
R174
R175
R176
R177
R178
R179
R180
R181
R182
R183
R184
R185
R186
R187
R188
R189
R190
R191
R192
R193
R194
R195
R196
R197
R198
R199
R200
R201
R202
R203
R204
R205
R206
R207
R208
R209
R210
R211
R212
R213
R214
R215
R216
R217
R218
R219
R220
R221
R222
R223
R224
R225
R226
R227
R228
R229
R230
R231
R232
R233
R234
R235
R236
R237
R238
R239
R240
R241
R242
R243
R244
R245
R246
R247
R248
R249
R250
R251
R252
R253
R254
R255
R256
R257
R258
R259
R260
R261
R262
R263
R264
R265
R266
R267
R268
R269
R270
R271
R272
R273
R274
R275
R276
R277
R278
R279
R280
R281
R282
R283
R284
R285
R286
R287
R288
R289
R290
R291
R292
R293
R294
R295
R296
R297
R298
R299
R300
R301
R302
R303
R304
R305
R306
R307
R308
R309
R310
R311
R312
R313
R314
R315
R316
R317
R318
R319
R320
R321
R322
R323
R324
R325
R326
R327
R328
R329
R330
R331
R332
R333
R334
R335
R336
R337
R338
R339
R340
R341
R342
R343
R344
R345
R346
R347
R348
R349
R350
R351
R352
R353
R354
R355
R356
R357
R358
R359
R360
R361
R362
R363
R364
R365
R366
R367
R368
R369
R370
R371
R372
R373
R374
R375
R376
R377
R378
R379
R380
R381
R382
R383
R384
R385
R386
R387
R388
R389
R390
R391
R392
R393
R394
R395
R396
R397
R398
R399
R400
R401
R402
R403
R404
R405
R406
R407
R408
R409
R410
R411
R412
R413
R414
R415
R416
R417
R418
R419
R420
R421
R422
R423
R424
R425
R426
R427
R428
R429
R430
R431
R432
R433
R434
R435
R436
R437
R438
R439
R440
R441
R442
R443
R444
R445
R446
R447
R448
R449
R450
R451
R452
R453
R454
R455
R456
R457
R458
R459
R460
R461
R462
R463
R464
R465
R466
R467
R468
R469
R470
R471
R472
R473
R474
R475
R476
R477
R478
R479
R480
R481
R482
R483
R484
R485
R486
R487
R488
R489
R490
R491
R492
R493
R494
R495
R496
R497
R498
R499
R500
R501
R502
R503
R504
R505
R506
R507
R508
R509
R510
R511
R512
R513
R514
R515
R516
R517
R518
R519
R520
R521
R522
R523
R524
R525
R526
R527
R528
R529
R530
R531
R532
R533
R534
R535
R536
R537
R538
R539
R540
R541
R542
R543
R544
R545
R546
R547
R548
R549
R550
R551
R552
R553
R554
R555
R556
R557
R558
R559
R560
R561
R562
R563
R564
R565
R566
R567
R568
R569
R570
R571
R572
R573
R574
R575
R576
R577
R578
R579
R580
R581
R582
R583
R584
R585
R586
R587
R588
R589
R590
R591
R592
R593
R594
R595
R596
R597
R598
R599
R600
R601
R602
R603
R604
R605
R606
R607
R608
R609
R610
R611
R612
R613
R614
R615
R616
R617
R618
R619
R620
R621
R622
R623
R624
R625
R626
R627
R628
R629
R630
R631
R632
R633
R634
R635
R636
R637
R638
R639
R640
R641
R642
R643
R644
R645
R646
R647
R648
R649
R650
R651
R652
R653
R654
R655
R656
R657
R658
R659
R660
R661
R662
R663
R664
R665
R666
R667
R668
R669
R670
R671
R672
R673
R674
R675
R676
R677
R678
R679
R680
R681
R682
R683
R684
R685
R686
R687
R688
R689
R690
R691
R692
R693
R694
R695
R696
R697
R698
R699
R700
R701
R702
R703
R704
R705
R706
R707
R708
R709
R710
R711
R712
R713
R714
R715
R716
R717
R718
R719
R720
R721
R722
R723
R724
R725
R726
R727
R728
R729
R730
R731
R732
R733
R734
R735
R736
R737
R738
R739
R740
R741
R742
R743
R744
R745
R746
R747
R748
R749
R750
R751
R752
R753
R754
R755
R756
R757
R758
R759
R760
R761
R762
R763
R764
R765
R766
R767
R768
R769
R770
R771
R772
R773
R774
R775
R776
R777
R778
R779
R780
R781
R782
R783
R784
R785
R786
R787
R788
R789
R790
R791
R792
R793
R794
R795
R796
R797
R798
R799
R800
R801
R802
R803
R804
R805
R806
R807
R808
R809
R8010
R8011
R8012
R8013
R8014
R8015
R8016
R8017
R8018
R8019
R8020
R8021
R8022
R8023
R8024
R8025
R8026
R8027
R8028
R8029
R8030
R8031
R8032
R8033
R8034
R8035
R8036
R8037
R8038
R8039
R8040
R8041
R8042
R8043
R8044
R8045
R8046
R8047
R8048
R8049
R8050
R8051
R8052
R8053
R8054
R8055
R8056
R8057
R8058
R8059
R8060
R8061
R8062
R8063
R8064
R8065
R8066
R8067
R8068
R8069
R8070
R8071
R8072
R8073
R8074
R8075
R8076
R8077
R8078
R8079
R8080
R8081
R8082
R8083
R8084
R8085
R8086
R8087
R8088
R8089
R8090
R8091
R8092
R8093
R8094
R8095
R8096
R8097
R8098
R8099
R80100
R80101
R80102
R80103
R80104
R80105
R80106
R80107
R80108
R80109
R80110
R80111
R80112
R80113
R80114
R80115
R80116
R80117
R80118
R80119
R80120
R80121
R80122
R80123
R80124
R80125
R80126
R80127
R80128
R80129
R80130
R80131
R80132
R80133
R80134
R80135
R80136
R80137
R80138
R80139
R80140
R80141
R80142
R80143
R80144
R80145
R80146
R80147
R80148
R80149
R80150
R80151
R80152
R80153
R80154
R80155
R80156
R80157
R80158
R80159
R80160
R80161
R80162
R80163
R80164
R80165
R80166
R80167
R80168
R80169
R80170
R80171
R80172
R80173
R80174
R80175
R80176
R80177
R80178
R80179
R80180
R80181
R80182
R80183
R80184
R80185
R80186
R80187
R80188
R80189
R80190
R80191
R80192
R80193
R80194
R80195
R80196
R80197
R80198
R80199
R80200
R80201
R80202
R80203
R80204
R80205
R80206
R80207
R80208
R80209
R80210
R80211
R80212
R80213
R80214
R80215
R80216
R80217
R80218
R80219
R80220
R80221
R80222
R80223
R80224
R80225
R80226
R80227
R80228
R80229
R80230
R80231
R80232
R80233
R80234
R80235
R80236
R80237
R80238
R80239
R80240
R80241
R80242
R80243
R80244
R80245
R80246
R80247
R80248
R80249
R80250
R80251
R80252
R80253
R80254
R80255
R80256
R80257
R80258
R80259
R80260
R80261
R80262
R80263
R80264
R80265
R80266
R80267
R80268
R80269
R80270
R80271
R80272
R80273
R80274
R80275
R80276
R80277
R80278
R80279
R80280
R80281
R80282
R80283
R80284
R80285
R80286
R80287
R80288
R80289
R80290
R80291
R80292
R80293
R80294
R80295
R80296
R80297
R80298
R80299
R80300
R80301
R80302
R80303
R80304
R80305
R80306
R80307
R80308
R80309
R80310
R80311
R80312
R80313
R80314
R80315
R80316
R80317
R80318
R80319
R80320
R80321
R80322
R80323
R80324
R80325
R80326
R80327
R80328
R80329
R80330
R80331
R80332
R80333
R80334
R80335
R80336
R80337
R80338
R80339
R80340
R80341
R80342
R80343
R80344
R80345
R80346
R80347
R80348
R80349
R80350
R80351
R80352
R80353
R80354
R80355
R80356
R80357
R80358
R80359
R80360
R80361
R80362
R80363
R80364
R80365
R80366
R80367
R80368
R80369
R80370
R80371
R80372
R80373
R80374
R80375
R80376
R80377
R80378
R80379
R80380
R80381
R80382
R80383
R80384
R80385
R80386
R80387
R80388
R80389
R80390
R80391
R80392
R80393
R80394
R80395
R80396
R80397
R80398
R80399
R80400
R80401
R80402
R80403
R80404
R80405
R80406
R80407
R80408
R80409
R80410
R80411
R80412
R80413
R80414
R80415
R80416
R80417
R80418
R80419
R80420
R80421
R80422
R80423
R80424
R80425
R80426
R80427
R80428
R80429
R80430
R80431
R80432
R80433
R80434
R80435
R80436
R80437
R80438
R80439
R80440
R80441
R80442
R80443
R80444
R80445
R80446
R80447
R80448
R80449
R80450
R80451
R80452
R80453
R80454
R80455
R80456
R80457
R80458
R80459
R80460
R80461
R80462
R80463
R80464
R80465
R80466
R80467
R80468
R80469
R80470
R80471
R80472
R80473
R80474
R80475
R80476
R80477
R80478
R80479
R80480
R80481
R80482
R80483
R80484
R80485
R80486
R80487
R80488
R80489
R80490
R80491
R80492
R80493
R80494
R80495
R80496
R80497
R80498
R80499
R80500
R80501
R80502
R80503
R80504
R80505
R80506
R80507
R80508
R80509
R80510
R80511
R80512
R80513
R80514
R80515
R80516
R80517
R80518
R80519
R80520
R80521
R80522
R80523
R80524
R80525
R80526
R80527
R80528
R80529
R80530
R80531
R80532
R80533
R80534
R80535
R80536
R80537
R80538
R80539
R80540
R80541
R80542
R80543
R80544
R80545
R80546
R80547
R80548
R80549
R80550
R80551
R80552
R80553
R80554
R80555
R80556
R80557
R80558
R80559
R80560
R80561
R80562
R80563
R80564
R80565
R80566
R80567
R80568
R80569
R80570
R80571
R80572
R80573
R80574
R80575
R80576
R80577
R80578
R80579
R80580
R80581
R80582
R80583
R80584
R80585
R80586
R80587
R80588
R80589
R80590
R80591
R80592
R80593
R80594
R80595
R80596
R80597
R80598
R80599
R80600
R80601
R80602
R80603
R80604
R80605
R80606
R80607
R80608
R80609
R80610
R80611
R80612
R80613
R80614
R80615
R80616
R80617
R80618
R80619
R80620
R80621
R80622
R80623
R80624
R80625
R80626
R80627
R80628
R80629
R80630
R80631
R80632
R80633
R80634
R80635
R80636
R80637
R80638
R80639
R80640
R80641
R80642
R80643
R80644
R80645
R80646
R80647
R80648
R80649
R80650
R80651
R80652
R80653
R80654
R80655
R80656
R80657
R80658
R80659
R80660
R80661
R80662
R80663
R80664
R80665
R80666
R80667
R80668
R80669
R80670
R80671
R80672
R80673
R80674
R80675
R80676
R80677
R80678
R80679
R80680
R80681
R80682
R80683
R80684
R80685
R80686
R80687
R80688
R80689
R80690
R80691
R80692
R80693
R80694
R80695
R80696
R80697
R80698
R80699
R80700
R80701
R80702
R80703
R80704
R80705
R80706
R80707
R80708
R80709
R80710
R80711
R80712
R80713
R80714
R80715
R80716
R80717
R80718
R80719
R80720
R80721
R80722
R80723
R80724
R80725
R80726
R80727
R80728
R80729
R80730
R80731
R80732
R80733
R80734
R80735
R80736
R80737
R80738
R80739
R80740
R80741
R80742
R80743
R80744
R80745
R80746
R80747
R80748
R80749
R80750
R80751
R80752
R80753
R80754
R80755
R80756
R80757
R80758
R80759
R80760
R80761
R80

LUMINANCE BOARD

RT10 - FREQUENCY ADJUST
RT11 - DUTY CYCLE ADJUST

BAR GENERATOR

TO FRONT PANEL
SWITCH

NOTE: USE SHIELDED CABLE
FOR 3.58 AND OUTPUT

POWER SUPPLY

WATCH ALL OF THIS STUFF!!

SOMETIMES LIFE MAY DEPEND ON IT!!

The power supplies are purchased modules and should come with complete documentation; if not request from LAMDA.

In the IP, power supply regulation and high frequency transient response are critical. Substitution of other power supply modules is NOT recommended.

In each box all corresponding terminals of the 10 pin Jones connector are connected together.

The output of the power supplies are connected to the appropriate pin of one of the connectors.

In box one, the binding post terminals are connected to the appropriate 10 pin Jones.

A cable with two male Jones plugs and corresponding pins connected together is used to communicate power between the boxes.

One side of each box should be covered with perforated metal or screen to allow for ventilation. This side should never be blocked to prevent ventilation. DO NOT let transistors touch screen.

The 110 v. AC which powers the power supplies is the only potentially lethal voltage in the IP. BE CAREFUL AND WATCH YOUR FINGERS.

--Box one contains +12, -12 power supplies.

--Box two contains +5, -5, +14 power supplies.

NOTICE: ---+14 volt power supply needed for Color Encoder only!
(not needed for black and white operation.)

AC PLUG SYSTEM

WATCH ALL OF THIS STUFF!!!

SOMEONES LIFE MAY DEPEND ON IT!!!

— BLACK (HOT) \approx 120V. ABOVE GROUND

— WHITE \approx GROUND

— GREEN

CHASSIS GROUND
(EVENTUALLY CONNECTED
TO EARTH (PLANET) (WATER-
SYSTEM) ...

BLACK IS HOT LINE. THIS IS THE ONE WIRE THAT GOES THROUGH FUZE AND SWITCH.

WHITE IS RETURN.

GREEN IS CONNECTED TO METAL BOX. THIS SOMETIMES IS DONE IN THE FIXTURE ITSELF.

SILVER IS EQUIVALENT TO WHITE ON CONNECTORS.

COPPER IS EQUIVALENT TO BLACK ON CONNECTORS.

