Trigonometria no triângulo retângulo

Seja ΔABC um triângulo retângulo e seja θ um ângulo interno deste triângulo diferente de 90°.

FIGURA 1. Trigonometria no triângulo retângulo

(Tigonometria no triângulo retângulo) Definimos:

$$\sin \theta = \frac{\text{cateto oposto}}{\text{hipotenusa}} = \frac{a}{c}$$

$$\cos\theta = \frac{\text{cateto adjacente}}{\text{hipotenusa}} = \frac{b}{c}$$

$$tg \theta = \frac{\text{cateto oposto}}{\text{cateto adjacente}} = \frac{a}{b} = \frac{\sin \theta}{\cos \theta}$$

$$\cot\theta = \frac{\text{cateto adjacente}}{\text{cateto oposto}} = \frac{b}{a} = \frac{\cos\theta}{\sin\theta}$$

$$\sec \theta = \frac{\text{hipotenusa}}{\text{cateto adjacente}} = \frac{c}{b} = \frac{1}{\cos \theta}$$

$$\csc \theta = \frac{\text{hipotenusa}}{\text{cateto oposto}} = \frac{c}{a} = \frac{1}{\sec \theta}$$

(Teorema de Pitágoras)

$$a^2 + b^2 = c^2$$

Isto é, a soma dos quadrados dos catetos é igual ao quadrado da hipotenusa.

Decorre do teorema de Pitágoras a seguinte relação fundamental:

(Relação trigonométrica fundamental)

$$sen^2 \theta + cos^2 \theta = 1$$

De fato:

$$\operatorname{sen}^2\theta + \operatorname{cos}^2\theta = \frac{a^2}{c^2} + \frac{b^2}{c^2} = \frac{a^2 + b^2}{c^2} = \frac{a^2 + b^2}{c^2} = \frac{c^2}{c^2} = 1$$

Medida de ângulos em radianos

Por definição, a medida de um ângulo θ em radianos é o quociente entre o comprimento do arco \widehat{AB} , determinado pelo

- ângulo θ , e o tamanho do raio, isto é, $\theta=\dfrac{\widehat{AB}}{R}.$ A medida de um ângulo em radianos é admensional; é apenas um número real. Mas é usual usar rad para indicar que se trata de radianos. Assim, $\theta = 15$ é o mesmo que $\theta = 15$ rad
- \bullet Como o comprimento da circunferência de raio R é $2\pi R$ e o ângulo de 180° determina um arco cujo comprimento é metade do comprimento da circunferênica, isto é, πR , vemos que a medida, em radianos, do ângulo de 180° é π rad.

Figura 2. Medida de ângulo em radianos

- A transformação da medida de um ângulo em graus para radianos ou vice-versa segue uma regra de três direta, lembrando que $180^{\circ} = \pi \, \text{rad}.$
- Se $\theta = 1$, então o arco \widehat{AB} , determinado por θ , é igual ao raio R da circunferência. Portanto, o ângulo de 1 rad é o ângulo de determina na circunferência um arco cujo comprimento é igual ao comprimento do

$$\theta = 1 \Rightarrow 1 = \frac{\widehat{AB}}{R} \Rightarrow \widehat{AB} = R$$

 \bullet Se R=1, então o comprimento do arcoarcoAB, determinado pelo ângulo θ , é igual à medida do ângulo θ em radianos.

$$R = 1 \Rightarrow \theta = \widehat{AB}$$

 \bullet Podemos ter $\theta>2\pi,$ e portanto, o arco correspondente pode "dar uma ou mais voltas" na circunferência.

O CICLO TRIGONOMÉTRICO

Considere num plano cartesiano uma circunferência de raio 1. Seja A_0 o ponto (1,0), que será chamado de origem dos ângulos.

Dado um número real positivo x considere o arco, marcado no sentido anti-horário, de início em A_0 e de tamanho x. O ponto final deste arco será denotado também por x.

Portanto associamos ao número real x um ponto x = (u, v) no ciclo trigonométrico. A coordenada u é chamada de cosseno de x e a coordenada v é chamada de seno de x e escrevemos $u = \cos x$, $v = \sin x$. Se xé número real negativo, procedemos de modo análogo, marcando o arco correspondente no sentido horário.

• A equação da circunferência acima é $u^2 + v^2 = 1$. Portanto, para o ponto x=(u,v) no ciclo trigométrico vale $u^2+v^2=1$, isto \acute{e} , $\cos^2 x + \sin^2 x = 1, \forall x \in \mathbb{R}$

FUNÇÕES TRIGONOMÉTRICAS

Ficam definidas, assim, as funções seno e cosseno:

(seno)
$$\operatorname{sen}: \mathbb{R} \to [-1, 1], \ x \mapsto \operatorname{sen} x;$$

(cosseno)
$$\cos : \mathbb{R} \to [-1, 1], x \mapsto \cos x$$

 \bullet Uma propriedade importante das funções seno e cosseno é o fato de que são periódicas de período $2\pi,$ isto é,

$$\left| \operatorname{sen}(x+2\pi) = \operatorname{sen} x, \forall x \in \mathbb{R} \text{ e } \cos(x+2\pi) = \cos x, \forall x \in \mathbb{R} \right|.$$

De modo mais geral: se k é um número inteiro, então

$$sen(x+2k\pi) = sen x, \forall x \in \mathbb{R} e cos(x+2k\pi) = cos x, \forall x \in \mathbb{R}$$

Assim, para construir os gráficos de seno e cosseno, bastar conhecer seus valores num intervalo de comprimento 2π . A tabela abaixo apresenta alguns valores de seno e cosseno para alguns ângulos notáveis.

\boldsymbol{x}	$\cos x$	$\operatorname{sen} x$
0	1	0
$\pi/6$	$\sqrt{3}/2$	1/2
$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$
$\pi/3$	1/2	$\sqrt{3}/2$
$\pi/2$	0	1
π	-1	0
$3\pi/2$	0	-1
2π	1	0

FIGURA 3. Os gráficos de seno(vermelho) e cosseno

A partir das funções seno e cosseno, podemos definir outras funções trigonométricas:

- tangente: $\operatorname{tg} x = \frac{\operatorname{sen} x}{\operatorname{cos} x}$
- cotangente: $\cot x = \frac{\cos x}{\sin x}$
- secante: $\sec x = \frac{1}{\cos x}$
- cossecante: $\csc x = \frac{1}{\sec x}$
- Também são usadas as notações tan, cot, sec e csc, para indicar a tangente, cotangente, secante e cossecante, respectivamente.
- O domínio da função tangente é $\{x\in\mathbb{R}\mid\cos x\neq 0\}$. Portanto o domínio da tangente não é todo \mathbb{R} . Valem observações análogas para as outras funções: cotangente, secante e cossecante.
- As funções tangente e cotangene tem peródo π , enquanto as funções secante e cossecante são periódicas de período 2π . Isto é, $\operatorname{tg}(x+\pi)=\operatorname{tg} x$

e $\cot(x+\pi)=\cot x$; $\sec(x+2\pi)=\sec x$ e $\csc(x+2\pi)=\csc x$, para todo x no domínio da respectiva função.

ALGUMAS IDENTIDADES TRIGONOMÉTRICAS

- (1) $\cos^2 x + \sin^2 x = 1$, $\forall x \in \mathbb{R}$
- (2) $1 + tg^2 x = sec^2 x$, onde tg x e sec x existirem
- (3) $1 + \cot^2 x = \csc^2 x$, onde $\cot x \in \csc x$ existirem
- (4) $\operatorname{sen}(x \pm y) = \operatorname{sen} x \cos y \pm \operatorname{sen} y \cos x, \quad \forall x, y \in \mathbb{R}$

Caso particular: sen(2x) = 2 sen x cos x

(5) $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y, \quad \forall x, y \in \mathbb{R}$

Caso particular: $\cos(2x) = \cos^2 x - \sin^2 x$

(6)
$$\operatorname{sen} x + \operatorname{sen} y = 2 \operatorname{sen} \left(\frac{x+y}{2} \right) \cos \left(\frac{x-y}{2} \right)$$

 $\operatorname{sen} x - \operatorname{sen} y = 2 \operatorname{sen} \left(\frac{x-y}{2} \right) \cos \left(\frac{x+y}{2} \right)$

(7)
$$\cos x + \cos y = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$

 $\cos x - \cos y = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$

Exemplo 1. Sendo x um arco do segundo quadrante com sen x=4/7, determine; $\cos x$, $\tan x$, $\cot x$, $\sec x$, $\csc x$, $\sec x$, $\cos 2x$, $\cos 2x$ e o quadrante do ângulo 2x.

Solução:

$$\cos^2 x + \sin^2 x = 1 \Rightarrow \cos^2 x + \left(\frac{4}{7}\right)^2 = 1$$

$$\Rightarrow \cos^2 x = 1 - \frac{16}{49} \Rightarrow \cos^2 x = \frac{33}{49}$$

Portanto $\cos x=\pm\sqrt{\frac{33}{49}}=\pm\frac{\sqrt{33}}{7}.$ Como x é um arco do terceiro quadrante, temos $\cos x=-\frac{\sqrt{33}}{7}$

Assim.

•
$$\operatorname{tg} x = \frac{4/7}{-\sqrt{33}/7} = -\frac{4}{7} \cdot \frac{7}{\sqrt{33}} = -\frac{4}{\sqrt{33}}, \text{ ou, } \operatorname{tg} x = -\frac{4\sqrt{33}}{33}$$

•
$$\cot g x = \frac{-\sqrt{33}/7}{4/7} = -\frac{\sqrt{33}}{7} \cdot \frac{7}{4} = -\frac{\sqrt{33}}{4}$$

•
$$\sec x = \frac{1}{-\sqrt{33}/7} = -\frac{7}{\sqrt{33}}$$

•
$$\csc x = \frac{1}{4/7} = \frac{7}{4}$$

•
$$\sin 2x = 2 \sin x \cos x = 2 \cdot \frac{4}{7} \cdot \frac{-\sqrt{33}}{7} = -\frac{8\sqrt{33}}{49}$$

$$\cos 2x = \cos^2 x - \sin^2 x = \frac{33}{49} - \frac{16}{49} = \frac{17}{49}$$

• $\cos 2x > 0$ e $\sin 2x < 0 \Rightarrow x \in$ quarto quadrante

Exemplo 2. Mostre que:

(a)
$$\cos(-x) = \cos x$$

(b)
$$\operatorname{sen}(x + \pi/2) = \cos x$$

Solução:

(a)
$$\cos(-x) = \cos(0-x) = \cos 0 \cos x + \sin 0 \sin x$$

=1 · $\cos x - 0$ · $\sin x = \cos x$

(b)
$$sen(x + \pi/2) = sen x cos \pi/2 + (sen \pi/2) cos x$$

= $(sen x) \cdot 0 + 1 \cdot cos x = cos x$

Exemplo 3. Mostre que:

(a)
$$1 + tg^2 x = sec^2 x$$

(b)
$$\cos^2 x = \frac{1 + \cos 2x}{2}$$

Solução:

(a)
$$\cos^2 x + \sin^2 x = 1 \Rightarrow \frac{\cos^2 x}{\cos^2 x} + \frac{\sin^2 x}{\cos^2 x} = \frac{1}{\cos^2} \Rightarrow 1 + \operatorname{tg}^2 x = \sec^2 x$$

(b) Sabemos que:

$$\cos^2 x + \sin^2 x = 1 \quad (I)$$

$$\cos^2 x - \sin^2 x = \cos 2x \text{ (II)}$$

Somando as equações (I) e (II) temos: $2\cos^2 x = 1 + \cos 2x$.

Portanto,
$$\cos^2 x = \frac{1 + \cos 2x}{2}$$

Triângulos quaisquer

Para um triângulo qualquer valem a lei dos cossenos e a lei dos senos:

$$a^2 = b^2 + c^2 - 2ab\cos\hat{A}$$
 (Lei dos cossenos)

$$\frac{a}{\operatorname{sen}\hat{A}} = \frac{b}{\operatorname{sen}\hat{B}} = \frac{c}{\operatorname{sen}\hat{C}} \text{ (Lei do senos)}$$

 \bullet Note que também são válidas: $b^2=a^2+c^2-2ac\cos\hat{B}$ e $c^2=a^2+b^2=2ab\cos\hat{C}$

Exemplo 4. Mostre que a área de um triângulo qualquer é dada por $\frac{1}{2}ab \operatorname{sen} \theta$, sendo θ o ângulo entre os lados $a \in b$.

Solução:

área $(\Delta ABC)=\frac{a\cdot h}{2}$. Mas, sen $\theta=\frac{h}{b}$, veja figura abaixo. Logo, $h=b\operatorname{sen}\theta$.

Assim,
$$\operatorname{área}(\Delta ABC) = \frac{ab \operatorname{sen} \theta}{2}$$

Exemplo 5. Considee o triângulo ΔABC cujos lados têm as seguintes medidas: $a=6\ cm,\ b=4\ cm$ e $c=3\ cm$. Determine: (a) $\cos\hat{B}$, (b) sen \hat{B} e (c) a área do triângulo.

Solução:

(a) Pela lei dos cossenos temos:

$$4^2 = 6^2 + 3^2 - 2(6)(3)\cos\hat{B} \Rightarrow -29 = -36\cos\hat{B}$$

Portanto,
$$\cos \hat{B} = \frac{29}{36}$$

(b)
$$\sin^2 \hat{B} + \cos^2 \hat{B} = 1 \Rightarrow \sin^2 \hat{B} + \left(\frac{29}{36}\right)^2 = 1$$

 $\Rightarrow \sin^2 \hat{B} = 1 - \frac{841}{1296}$

$${\rm sen}^2\,\hat{B} = \frac{455}{1296} \Rightarrow {\rm sen}\,\hat{B} = \pm \sqrt{455}1296 = \pm \frac{\sqrt{455}}{36}$$

$$0 \le \hat{B} \le \pi/2 \Rightarrow \operatorname{sen} \hat{B} \ge 0$$
. Portanto, $\operatorname{sen} \hat{B} = \frac{\sqrt{455}}{36}$

(c) O âmgulo \hat{B} é formado pelos lados BA=ce BC=a. Assim,

área
$$(\Delta ABC) = \frac{ac \operatorname{sen} \hat{B}}{2} = \frac{1}{2} \cdot 6 \cdot 3 \cdot \frac{\sqrt{455}}{36} = \frac{\sqrt{455}}{4} cm^2$$

Exercícios de revisão

- 1 Sendo x um arco do terceiro quadrante com sen x=-3/5, determine; $\cos x$, $\operatorname{tg} x$, $\cot g x$, $\sec x$, $\csc x$, $\sec 2x$, $\csc 2x$ e o quadrante do ângulo 2x. Respostas: -4/5, 3/4, 4/3, -5/4, 24/25, 7/25. O ângulo $2x \in \operatorname{primeiro}$ quadrante.
- 2 Considere o triângulo ABC cujos lados são dados por $a=8\ cm,$ $b=6\ cm$ e $c=4\ cm.$ Determine:
 - (a) $\cos \hat{A}$ e sen \hat{A} . Respostas: $\cos \hat{A} = 1/4$, sen $\hat{A} = \frac{\sqrt{15}}{4}$
 - (b) A área do triângulo ABC. Resposta: $3\sqrt{15} cm^2$
- 3 Mostre que:
 - (a) $\operatorname{sen}(-x) = -\operatorname{sen} x$
 - (b) $\cos(x + \pi/2) = -\sin x$
 - (c) $1 + \cot^2 x = \csc^2 x$
 - (d) $\sin^2 x = \frac{1 \cos 2x}{2}$
- 4 Complete a tabela abaixo:

x	$\operatorname{sen} x$	$\cos x$
0° (0)		
$30^{\circ} \ (\pi/6)$		
$45^{\circ} (\pi/4)$		
$60^{\circ} \ (\pi/3)$		
$90^{\circ} \ (\pi/2)$		
$120^{\circ} \ (2\pi/3)$		
$135^{\circ} \ (3\pi/4)$		
$150^{\circ} \ (5\pi/6)$		
180° (π)		
$210^{\circ} \ (7\pi/6)$		
$225^{\circ} (5\pi/4)$		
$240^{\circ} \ (4\pi/3)$		
$270^{\circ} \ (3\pi/2)$		
$300^{\circ} (5\pi/6)$		
$315^{\circ} (7\pi/4)$		
$330^{\circ} (11\pi/6)$		
$360^{\circ} (2\pi)$		

5 Com a ajuda de um software gráfico esboce os gráficos da tangente, cotangente, secante e cossecante.