เคมี มัธยมศึกษาปีที่ 6 : Alkane

Alkane; Cycloalkane

- สารประกอบไฮโดรคาร์บอนอิ่มตัว (saturated hydrocabon compound)
- สูตรทั่วไป CnH2n+2 โดย n เป็นเลขจำนวนเต็ม 1, 2, 3
- โครงสร้างแบบโซ่เตรง (Straight chain) โซ่กิ่ง (branch chain))

สูตรโมเลกุลของ Alkane C_nH_{2n+2}

จำนวน C	สูตรโมเลกุล	จำนวน C	สูตรโมเลกุล
C = 1		C = 9	
C = 2		C = 10	
C = 3		C = 14	
C = 4		C = 17	
C = 5		C = 20	
C = 6		C = 30	

การหาสถานะของสาร (ทบทวนความรู้เดิม)

สาร	จุดหลอมเหลว	จุดเดือด	
น้ำ	0	100	
Α	- 130	-70	
В	-70	10	
С	-10	78	
D	97.8	888	
Е	839	1450	

จุดเหลอมเหลวและจุดเดือดของแอลเคนโซ่ตรงบางชนิด

จำนวนอะตอม ของคาร์บอน	แอลเคน		จุดหลอมเหลว	จุดเดือด
	ชื่อ	สูตรโมเลกุล	(°C)	(°C)
1	มีเทน (methane)	CH ₄	-182.5	-161.5
2	อีเทน (ethane)	C ₂ H ₆	-182.8	-88.6
3	โพรเพน (propane)	C ₃ H ₈	-187.7	-42.1
4	บิวเทน (butane)	C ₄ H ₁₀	-138.3	-0.5
5	เพนเทน (pentane)	C ₅ H ₁₂	-129.7	36.1

ที่มา : หนังสือเรียนเคมี สสวท เล่ม 5 หน้า 22

จุดเหลอมเหลวและจุดเดือดของแอลเคนโซ่ตรงบางชนิด

จำนวนอะตอม ของคาร์บอน	แอลเคน		จุดหลอมเหลว	จุดเดือด
	ชื่อ	สูตรโมเลกุล	(°C)	(°C)
5	เพนเทน (pentane)	C ₅ H ₁₂	-129.7	36.1
6	เฮกเซน (hexane)	C ₆ H ₁₄	-95.3	68.7
7	เฮปเทน (heptane)	C ₇ H ₁₆	-90.6	98.4
8	ออกเทน (octane)	C ₈ H ₁₈	-56.8	125.7
10	เดกเคน (decane)	C ₁₀ H ₂₂	-29.6	174.1
12	โดเดกเคน (dodecane)	C ₁₂ H ₂₆	-9.6	216.3
14	เตตระเดกเคน (tetradecane)	C ₁₄ H ₃₀	5.8	253.6
16	เฮกซะเดกเคน (hexadecane)	C ₁₆ H ₃₄	18.1	286.9
18	ออกตะเดกเคน (octadecane)	C ₁₈ H ₃₈	28.2	316.3
20	ไอโคเซน (eicosane)	C ₂₀ H ₄₂	36.6	343.0

กราฟแสดง เปรียบเทียบจุดเดือด จุดหลอมเหลวของแอลเคนโซ่ตรงเมื่อจำนวนคาร์บอนเพิ่มขึ้น

สถานะ

 $C_1 - C_4$ อะตอม มีสถานะเป็น แก๊ส

C₅ - C₁₆ อะตอม มีสถานะเป็น ของเหลว C₁₈ ขึ้นไป มีสถานะเป็นของแข็ง

การละลาย

แอลเคนเป็นสารประกอบที่ไม่มีข้ว จึงไม่ละลายน้ำ แต่ละลายในตัวทำละลายที่ไม่มีขั้ว เช่น ether , benzene

การเรียกชื่อสารประกอบแอลเคน

1. normal: n-alkane

เป็นการเรียกจากตัวเลขภาษากรีก ในการเรียกชื่อ n- iso- neo- (โครงสร้างอะตอมมีกิ่งมาก ก็จะเกิด ปัญหาในการเรียกชื่อ)

2. ระบบ IUPAC

นักเคมีได้ประชุมกันที่เจนีวาในปี ค.ศ. 1892 ได้ช่วยกันร่างกฎการเรียกชื่อขึ้นมา เรียกว่า ระบบ IUPAC (International Union of Pure and Applied Chemistry) โดยใช้ ภาษากรีกระบุจำนวนอะตอมของคาร์บอน และลงท้ายด้วย –ane

การเรียกชื่อสารประกอบอินทรีย์ตามระบบ IUPAC

หลักเกณฑ์ทั่วไป คือ ให้แบ่งการเรียกชื่อสารอินทรีย์ ออกเป็น 3 ส่วน คือ

- 1. คำนำหน้า (prefix) บอกตำแหน่ง
- 2. ชื่อโครงสร้างหลัก (basic unit หรือ parent name) จำนวน C
- 3. คำลงท้าย (suffix) บอกชนิดของสาร

prefix ตำแหน่ง basic unit (parent name) จำนวน C suffix ชนิดของสาร

การเรียกชื่อตามระบบ IUPAC

โครงสร้างหลัก เลือกโซ่อะตอมที่ยาวที่สุด และกำหนดชื่อตามจำนวน C ดังนี้

จำนวน C	ชื่อโครงสร้งหลัก	จำนวน C	ชื่อโครงสร้งหลัก
1	Meth-	6	Hex-
2	Eth-	7	Hept-
3	Prop-	8	Oct-
4	But-	9	Non-
5	Pent-	10	Dec-

การเรียกชื่อตามระบบ IUPAC ; หมู่แอลคิล (Alkyl)

- หมู่แอลคิล (Alkyl) เป็นแอลเคนที่ขาดไฮโดรเจนไปหนึ่งอะตอม นิยมเขียน แทนหมู่เหล่านี้ด้วย R
- การเรียกชื่อ จำนวนคาร์บอน แล้วเติม -yl

จำนวน C	สูตร	อ่าน
1		meth-
2		eth-
3		prop-
4		but-

การเรียกชื่อตามระบบ IUPAC ; หมู่แอลคิล (Alkyl)

โซ่หลัก

การเรียกชื่อสารประกอบอินทรีย์; Alkane

1. หาโซ่หลักที่มีจำนวนคาร์บอนมากที่สุด เป็นโซ่หลักมีซึ่งไม่จำเป็นต้องเป็นเส้นตรง แนวเดียวกันตลอด

ที่มา : หนังสือเรียนเคมี สสวท เล่ม 5 หน้า 25

2. แต่ถ้าโซ่หลักมีจำนวนคาร์บอนเท่ากัน ให้เลือกหมู่อัลคิลมากที่สุดเป็นโซ่หลัก

3. กำหนดตัวเลขแสดงตำแหน่งของคาร์บอนในโซ่หลัก โดยเริ่มจากปลายด้านใดก็ได้ ที่ทำให้หมู่อัลคิลมีตัวเลขที่น้อยที่สุด

$$H_3C$$
 CH_3 CH_3

4. การเรียกชื่อหมู่แอลคิล นำหน้าชื่อแอลเคน ให้ระบุตัวเลขแสดงตำแหน่งของคาร์บอนที่หมู่ แอลคิลต่ออยู่ ถ้าหมู่แอลคิดต่ออยู่กับโซ่หลักเหมือนกัน ให้ใช้คำนำหน้าแสดงจำนวนเป็นภาษากรีก เช่น di tri tetra แล้วเขียนไว้ระหว่างชื่อของหมู่แอลคิดที่แสดงตำแหน่ง โดยระหว่างตัวเลขให้เขียน คั่นด้วยเครื่องหมายจุลภาค (,) และตัวเลขกับตัวอักษร ให้เชียนคั่นด้วยเครื่องหมายยัติภังค์ (-)

5. ถ้าหมู่แอลคิลที่ต่ออยู่กับโซ่หลักแตกต่างกัน ให้เรียกชื่อเรียงลำดับหมู่แอลคิล ตามลำดับอักษรภาษาอังกฤษ และระบุตัวเลขแสดงตำแหน่งไว้หน้าชื่อหมู่แอลคิล

$$\operatorname{CH_3} - \operatorname{CH_2} - \operatorname{CH_2} - \operatorname{CH_2} - \operatorname{CH_3}$$

$$\mathbf{CH_3} - \mathbf{CH_3} - \mathbf{CH_2} - \mathbf{CH_3}$$

$$\begin{array}{c}
\operatorname{CH}_{3} \\
\operatorname{CH}_{3} - \operatorname{C} - \operatorname{CH}_{3} \\
\operatorname{CH}_{3} \\
\operatorname{CH}_{3}
\end{array}$$

ปฏิกิริยาของ Alkane

3.Elimination reaction
ปฏิกิริยาการกำจัดฮาโลเจน (dehydrohalogenation)
ได้ไฮโดรคาร์บอนไม่อื่มตัว

หมายถึง ปฏิกิริยาที่ H ในแอลเคนถูกแทนที่ด้วยอะตอมหรือกลุ่มอะตอมอื่น ๆ ถ้าถูกแทนที่ด้วยธาตุแฮโลเจน เช่น Cl₂ , Br₂ เรียกว่า Halogination ปฏิกิริยานี้ จะเกิดได้ต้องมีแสงสว่างเป็นตัวเร่งปฏิกิริยาได้ผลิตภัณฑ์ 2 ชนิดคือ แอลคิลเฮไลด์ (alklylhalide) และแก๊สไฮโดรเจนเฮไลด์ (hydrogenhalide) ซึ่งมีสมบัติเป็นกรด

ปฏิกิริยาของ Alkane; Elimination reaction

Dehydrohalogenation ปฏิกิริยาการกำจัดไฮโดรเจนเฮไลด์ โดยสารประกอบ แอลคิลเฮไลด์จะสูญเสีย H และฮาโลเจน เมื่อต้มกับเบส ให้ผลิตภัณฑ์เป็นแอลคีน

$$CH_3CHCH_3 + OH^- \longrightarrow CH_3CH=CH_2 + H_2O + Br^-$$

$$CH_3 - C - CH_3 + OH^ \longrightarrow$$
 $CH_3C = CH_2 + H_2O + CI^-$

ประโยชน์ ของ Alkane

มีเทน ; เชื้อเพลิงในโรงงานไฟฟ้า และวัตถุดิบในการผลิต เคมีภัณฑ์ เช่น เมทานอล

LPG; แก๊สผสมระหว่างโพรเพน และบิวเทน ใช้เป็นแก๊สหุงต้ม ตามบ้านเรือน

พาราฟิน ; แอลเคนน้ำหนักโมเลกุลสูง ใช้เคลือบผลไม้เพื่อรักษาความชุ่มชื้น