Algorithmique des graphes

David Pichardie

27 Avril 2018

Bilan du CM9

- Comparaison de Dijkstra et Prim
- Implémentation des files de priorité
- Algorithme de Bellman-Ford

Problèmes d'ordonnancement

Nature des problèmes

On considère un projet décomposé en *n* tâches A₁,A₂,...,A_n telles que

- chaque tâche est indivisible
- chaque tâche A_i a une date de début à déterminer : t_i
- chaque tâche A_i a une durée connue : d_i
- les dates t₁,t₂,...,t_n sont soumises à des contraintes temporelles

On considère un projet décomposé en 6 tâches

tâche	A ₁	A_2	A_3	A ₄	A ₅	A ₆
durée en unités de temps (ut)	10	12	6	20	12	7

Ces tâches sont soumises à des contraintes temporelles

- A₁ peut commencer dès le début du projet
- A₂ commence au plus tôt 7 ut après le début de A₁
- A₃ enchaîne sans délais avec A₂
- A₄ commence au plus tôt 3 ut après l'achèvement de A₅, et la seconde moitié de A₄ commence au plus tôt 13 ut après l'achèvement de A₃
- A₅ commence au plus tôt lorsque les 3/4 de A₂ sont achevés, au plus tard 6 ut après l'achèvement de A₂, et au plus tôt 3 ut après l'achèvement de A₆
- A₆ commence au plus tôt 20 ut après le début des travaux

Problèmes à résoudre

Pour ce type de projet, on souhaite pouvoir répondre aux questions suivantes

- Est-il possible de finir le projet en, par exemple ici, 50 ut ?
- Quelle est la durée minimale du projet ?
- Quelles tâches peuvent prendre du retard sans compromettre la durée du projet ?

Modélisation

On traduits les contraintes par des égalités/inégalités sur les variables t_{1,...,t₆}

- A₁ peut commencer dès le début du projet
- A₂ commence au plus tôt 7 ut après le début de A₁
- A₃ enchaîne sans délais avec A₂
- A₄ commence au plus tôt 3 ut après l'achèvement de A₅, et la seconde moitié de A₄ commence au plus tôt 13 ut après l'achèvement de A₃
- A₅ commence au plus tôt lorsque les 3/4 de A₂ sont achevés, au plus tard 6 ut après l'achèvement de A₂, et au plus tôt 3 ut après l'achèvement de A₆.
- A₆ commence au plus tôt 20 ut après le début des travaux

$$t_1 \geq 0$$

$$t_2 \ge t_1 + 7$$

$$t_3 = t_2 + 12$$

$$t_4 \ge t_5 + 12 + 3$$

$$t_4 + 10 \ge t_3 + 13 + 6$$

$$t_5 \geq t_2 + \frac{3}{4} \cdot 12$$

$$t_5 \le t_2 + 12 + 6$$

$$t_5 \ge t_6 + 7 + 3$$

$$t_6 \ge 20$$

Conventions (cas général)

- on ajoute une date t₀=0 de démarrage du projet (associée à une tâche fictive A₀)
- on ajoute une date t_{n+1} de fin de projet (associée à une tâche fictive A_{n+1})

```
t_{n+1} \ge t_i + d_i, pour i=1,...,n (contraintes implicites)
```

autre contraintes implicites :

$$t_i > 0$$
, pour $i=1,...,n$

• on peut ainsi exprimer toutes les contraintes comme une conjonction d'inégalités de la forme t_j - $t_i \ge$ constante

A ₁	$t_1-t_0\geq 0$
A_2	$t_2-t_1\geq 7$
A ₃	$t_3 - t_2 \ge 12$, $t_2 - t_3 \ge -12$
A_4	$t_4 - t_5 \ge 15$, $t_4 - t_3 \ge 9$
A ₅	$t_5-t_2 \geq 9$, $t_2-t_5 \geq -18$, $t_5-t_6 \geq 10$
A ₆	$t_6-t_0\geq 20$

+ les contraintes implicites

Représentation par un graphe potentiel-tâche

On synthétise cet ensemble de contraintes sur un graphe orienté pondéré appelée *potentiel-tâche*

- sommets: les actions A₀,A₁,A₂,...,A_n,A_{n+1}
- arcs : un arc $A_i \xrightarrow{a_{ij}} A_j$ pour chaque contrainte $t_j t_i \ge a_{ij}$

A_1	$t_1-t_0\geq 0$							
A ₂	$t_2-t_1\geq 7$	tâche	A ₁	A ₂	A ₃	A ₄	A ₅	A_6
A ₃	$t_3 - t_2 \ge 12$, $t_2 - t_3 \ge -12$							
A ₄	$t_4 - t_5 \ge 15$, $t_4 - t_3 \ge 9$	durée	10	12	6	20	12	7
A ₅	$t_5 - t_2 \ge 9$, $t_2 - t_5 \ge -18$, $t_5 - t_6 \ge 10$							•
A_6	$t_6-t_0\geq 20$	10	_					
	A ₀ O O O O O O O O O O O O A ₅ A ₆	-12 -18	12	A ₃ . 9 A ₄		20	A ₇	

Contraintes redondantes

Une contrainte est *redondante* si elle est conséquence d'autres contraintes du système.

Exemple 1:
$$t_6 \ge 20 \Longrightarrow t_6 \ge 0$$

Exemple 2:
$$\begin{cases} t_5 - t_6 \ge 10 \\ t_6 \ge 20 \end{cases} \implies t_5 \ge 0$$

Exemple 3:
$$\begin{cases} t_7 - t_4 \ge 20 \\ t_4 - t_3 \ge 9 \end{cases} \implies t_7 - t_3 \ge 6$$

Il est inutile de représenter ces contraintes sur le graphe potentiel-tâche

Ordonnancement au plut tôt

Un ordonnancement (t_0 , t_1 , ..., t_n , t_{n+1}) est dit *compatible* s'il satisfait les contraintes du problème.

Un *ordonnancement au plus tôt* est un ordonnancement pour lequel, parmi tous les ordonnancement, t_{n+1} est minimal.

Théorèmes

Il existe un ordonnancement **au plus tôt** si et seulement si il existe un plus grand chemin de A₀ à A_{n+1}.

Cet ordonnancement est donné par :

$$t_i = \Delta(0, i)$$

 $\Delta(j,i)$: distance maximale du sommet A_j au sommet A_i .

Pour tout autre ordonnancement (t₀, t₁, ..., t_n, t_{n+1}), on a :

$$\Delta(0,i) \leq t_i$$

un plus grand chemin minimise aussi les temps intermédiaires

Calcul de plus grands chemins

Algorithme	Hypothèse pour pouvoir calculer des plus grands chemins	Modification à apporter par rapport au calcul de plus courts chemins
Ordinal	pas de cycle	remplacer MIN par MAX
Dijkstra	pas de poids positifs	remplacer MIN par MAX
Bellman-Ford	pas de cycles de poids positifs	remplacer MIN par MAX

Propriété

Dans un graphe potentiel-tâche, les cycles sont de poids négatifs ou nuls si et seulement si il existe au moins un ordonnancement compatible

Preuve ⇒: si les cycles sont de poids négatifs ou nuls, l'algorithme de Bellman-Ford va permettre de calculer les plus grandes distance et fournir un ordonnancement.

Preuve \Leftarrow : soit $A_{i_1}, \ldots, A_{i_p}, A_{i_1}$ un cycle de poids

$$a_{i_1 i_2} + \dots + a_{i_p i_1} : t_{i_2} - t_{i_1} \ge a_{i_1 i_2}$$

$$\vdots \\ t_{i_1} - t_{i_p} \ge a_{i_p i_1}$$
 $\Rightarrow 0 \ge a_{i_1 i_2} + \dots + a_{i_p i_1}$

Utilisation de Bellman-Ford

	A_0	A ₁	A_2	A_3	A_4	A_5	A_6	A_7
k=0	0	-00	-00	-00	-00	-00	-00	-00
k=1	0	0	7	19	45	30	20	65
k=2	0	0	12	24	45	30	20	65

(stable)

durée minimal du projet

Chemin critique

On appelle *chemin critique* d'un graphe potentiel-tâche un chemin tel que si une tâche de ce chemin est retardée, alors la durée totale du projet est retardée aussi.

Théorème : pour l'ordonnancement au plus tôt, les chemins critiques sont les plus grands chemins entre A₀ et A_{n+1}.

Ordonnancement au plus tard

$$\Delta^{-1}(0, n+1)$$

Pour une date de fin projet F donnée, un *ordonnancement* au plus tard est un ordonnancement pour lequel, parmi tous les ordonnancement, $t_{n+1} = F$ et t_0 est maximal.

Algorithme: on inverse le graphe et on calcule les plus grandes distances $\Delta^{-1}(n+1,i)$ à partir de A_{n+1} . Le résultats attendu est alors :

$$t_i = F - \Delta^{-1}(n+1,i)$$

Ordonnancement au plus tard

	A ₇	A ₆	A ₅	A_4	A ₃	A_2	A ₁	A_0
	0							
k=1	0	45	35	20	29	41	48	65
k=2	0	45	35	20	32	44	51	65

(stable)

Ordonnancement au plus tard

	A ₇	A ₆	A ₅	A_4	A ₃	A_2	A ₁	A_0
$\Delta^{-1}(7,i)$	0	45	35	20	32	44	51	65
$t_i = 65 - \Delta^{-1}(7, i)$	65	20	30	45	33	21	14	0

Marges

On fixe une date de fin projet F (par exemple $\Delta(0, n+1)$)

On note λ_i les dates de début de l'ordonnancement **au plus tôt**

On note λ_i' les dates de début de l'ordonnancement **au plus tard**

Marge totale de la tâche A_i : $m_i = \lambda_i' - \lambda_i$

Marge d'un chemin : $m(u) = \max_{i \in u} m_i$ (u un chemin)

Marge libre pour une tâche A_i d'un ordonnancement (t_i) donné :

$$\mu_i = \min_{\substack{a_{ij} \\ i \longrightarrow j}} (t_j - t_i - a_{ij})$$

Marge totale

C'est le retard maximum que peut prend la tâche Ai sans compromettre la durée totale prévue F

Attention : les marges totales ne sont pas indépendantes (ce retard pourrait modifier l'ordonnancement des tâches ultérieures)

Marge par chemin

La somme des retards d'un chemin doit rester inférieure à la marge du chemin

Marge libre

C'est le retard maximum que peut prendre l'achèvement de Ai sans compromettre la date de début prévue pour les autres tâches.

 $marge\ libre\ \leq\ marge\ totale$

Représentation graphique

