

GEOMETRÍA Capítulo 9

RELACIONES METRICAS EN EL TRIÁNGULO RECTÁNGULO Y EN LA CIRCUNFERENCIA

MOTIVATING | STRATEGY

En la actualidad, existen más de 300 demostraciones del teorema de Pitágoras, lo que confirma que es uno de los teoremas que más han llamado la atención a través de la historia.

PROYECCIÓN ORTOGONAL

I. De un punto sobre una recta

NOTA:

II. De un segmento sobre una recta

 $\overline{A_1B_1}$: Proyección de \overline{AB} sobre $\overline{L_2}$

 C_1D_1 : Proyección de \overline{CD} sobre L_2

EF₁: Proyección de EF sobre L₂

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

AB y BC : catetos

• AC: hipotenusa

$$(AC)^2 = (AB)^2 + (BC)^2$$

AH: proyección AB.sobre AC

HC: proyección **BC** sobre **AC**

△ABC ~ △AHB ~ △BHC

Teoremas adicionales

 $x = 2\sqrt{R.r}$

A, B y C son puntos de

RELACIONES MÉTRICAS EN LA CIRCUNFERENCIA

T. de Cuerdas

a.b=m.n

T. de las Secantes

$$x.y = a.b$$

T. de la Tangente

$$x^2 = n \cdot m$$

01

1. Halle el valor de x, si O es centro.

Resolución:

- Piden: x
- Se prolonga \overline{AB} hasta C

Aplicando el teorema de cuerdas

$$(AB)(BC) = (PB)(BQ)$$

$$(x)(x) = (4)(16)$$

$$x^2 = 64$$

$$x = 8$$

2. En la figura, las circunferencias son concéntricas; M y T son puntos de tangencia. Halle el valor de x.

Resolución:

- Piden: x
 - Se prolonga \overline{AT} hasta C

T: punto de tangencia

Aplicando el teorema de la tangente

$$x^2 = n \cdot m$$

$$8^2 = 8x \cdot 2x$$

$$64 = 16x^2$$

3. Hallar el valor de x.

Resolución:

- Piden: x
- M punto medio \overline{QP} y \overline{TM} // \overline{RPTM}

$$RP = 2(TM)$$

Aplicando el teorema de las secantes

$$x \cdot y = a \cdot b$$

$$2x(x) = 18(4)$$

$$x^2 = 36$$

$$x = 6$$

4. En un triángulo rectángulo ABC, recto en B, se traza la ceviana interior \overline{BD} , tal que AD = 6, DC = 21 y AB = BD. Hallar AB.

5. Halle la medida de uno de los ángulos agudos de un triángulo rectángulo si la hipotenusa tiene una longitud igual a $\sqrt{12-a}$ y los otros lados sus longitudes son 2 y \sqrt{a} .

Resolución:

Piden: AB = x

Teorema de Pitágoras

$$(\sqrt{12-a})^2 = (\sqrt{a})^2 + 2^2$$

 $12-a=a+4$
 $8=2a$

$$4 = a$$

$$x = 45^{\circ}$$

6. En la figura, el pentágono mostrado es el contorno de un jardín cuyo perímetro es igual a 24m. Calcule el valor de x.

7. En la figura se muestra un patio cuyo contorno tiene forma de cuadrilátero. Halle el valor de x.

