

Datenbanken

Kapitel 1

Einführung in die Datenmodellierung

Denken in Systemen und Modellen

Ein **System** besteht aus einer Anzahl von miteinander in Beziehung stehenden Elementen, die bestimmte Eigenschaften aufweisen, in einem abgegrenzten Bereich.

System und Systementwicklung

Systeme

- können offen oder abgeschlossen sein
- haben Grenzen
- lassen sich unterteilen (in Subsysteme oder Systemkomponenten)

Ein IT-System umfasst:

- Daten (Informationen)
- Funktionen (Aktivitäten, Prozesse),
 in denen diese Daten bearbeitet oder verarbeitet werden
- Abläufe, anhand derer diese Daten verarbeitet werden

Um ein System aussagekräftig zu beschreiben, müssen also modelliert werden:

- die Daten des Systems
- die Funktionen des Systems
- die Abläufe im System

Eine Kunst – aber auch eine Wissenschaft

Die Kunst: Struktur in ein unstrukturiertes

Problem zu bringen

Die Wissenschaft: Die Struktur in eine

verwertbare

Form umzusetzen

Erste Phase: Kommunikation

Den Anwenderwünschen zuhören!!

Kommunikation

Anforderungen mit eigenen Worten formulieren –

Habe ich sie richtig verstanden?

Zweite Phase: Repräsentation

Darstellung erfolgt am besten grafisch.

und dann: Verifikation

Hat der Anwender unsere Darstellung verstanden?

Ist der Anwender mit unserer Darstellung einverstanden?

Was leistet die Datenmodellierung?

Die Datenmodellierung

- beschreibt die Daten (Entities) und deren Beziehungen (Relationships) innerhalb eines Systems. Es war eines der ersten konzeptionellen Modelle.
- kann Ist-Modelle und Soll-Modelle beschreiben.
- kann ein Modell für ein komplettes Unternehmen (Unternehmensdatenmodell), einen Bereich (Bereichsdatenmodell) oder ein Projekt erstellen.
- ist eine graphische Darstellungstechnik, eine "graphische Sprache" (ein Bild sagt mehr als 1000 Worte!).
- basiert auf wenigen graphischen Elementen. Diese Sprache ist rasch zu erlernen.
 Die Dokumente sind leicht lesbar und verständlich und das ohne weitere Hilfsmittel.

Ziele der Datenmodellierung

Ziele der Datenmodellierung

Ziel:

- eine stabile Grundlage für Informationssysteme schaffen
- Grundlage schaffen für Hard- und Software Unabhängigkeit
- Daten unabhängig von der Anwendung speichern

Wesentliche Problemfelder:

- mangelnde Transparenz des Istzustandes
- mangelhafte Planung und Koordination
- Kommunikationsprobleme / Schnittstellenprobleme
- unkontrollierte Datenredundanzen

Lösungsansatz:

- Implementierungsunabhängige Datenanalyse
- Orientierung an fachlichen Zusammenhängen
- Aufbau der Daten für alle Systeme unabhängig von den jeweiligen Anwendungen
- Verwendung eines gemeinsamen Kommunikationsmediums von Anwendungs- und IT-Fachleuten
- Vermeidung von Redundanzen

Ausgangssituation

	A DIVISION. SECTION.		
FD 01	KUNDEN-SATZ. 05 NAME. 10 VORNAME 10 NACHNAM 10 TITEL 05 ADRESSE. 10 STRASSE 10 HAUSNR 10 PLZ	PIC X(25). PIC X(10). PIC X(20). PIC X(5). PIC S9(6) COMP.	
	10 ORT	PIC X(20).	
		DIVISION. ECTION.	
	O 01 K	KUNDEN LABEL RECC KU-REC. 15 KU-NAM. 10 KU-VOR 10 KU-NAM 10 KU-GEB 10 KU-GES 15 KU-ADR. 10 KU-STR 10 KU-PLZ 10 KU-POSTF	PIC X(25). PIC X(30). PIC X(30). PIC X(30). PIC X(30). PIC X(30). PIC X(6). PIC X(25). PIC Y(25). PIC 9(8).

Kapitel 2

Das Drei-Sichten-Modell

Abbilder der Realität

Ein Modell zeigt - abstrahiert – den für einen bestimmten Zweck wichtigen Teil der Welt.

- Ein gutes Beispiel für Modelle sind Landkarten:
 - Wir könnten theoretisch ein Satellitenbild verwenden.
 - Eine Alternative ist eine Straßenkarte.
 - Die dritte Möglichkeit wäre eine Straßenskizze.

Das Drei-Sichten-Modell

Abbildung des konzeptionellen Modells durch das ER-Modell

Abbildung des internen Modells durch das relationale Modell

TABELLE KUNDE:

KU NUMMER
KU_NAME
KU_ANSCHRIFT

TABELLE AUFTRAG

AUFTR NUMMER
KU_NUMMER
PROD_NUMMER
AUFTR_DATUM
AUFTR_MENGE

TABELLE PRODUKT

PROD_NAME
PROD_PREIS

Abbildung des externen Modells

KUNDENLISTE WEIHNACHTS-DIREKT-MAIL:

Alle Kunden, die über 50.000 AUFTR_MENGE im letzten Monat hatten, sortiert nach KU_NUMMER:

KU_NUMMER
KU_NAME
PROD_NAME (mit dem größten Auftragsumfang)
davon: AUFTR_MENGE
GESAMT PREIS

Entwicklung des Systems im Zeitablauf

Kapitel 3

Grundlagen ERM: Entitätstypen

Elemente des Entity-Relationship-Modells

- Entität und Entitätstyp
- Beziehung und Beziehungstyp
- Attribut und Attributtyp

Entitätstyp - Entität

M-NR: 696

M-NAME: Frost

M-VORNAME: Eberhard

M-GD: 14.12.1962

M-RANG: T

M-GEHALT: 4320.-

Mitarbeiter

P-NR: i-2030

P-NAME: M3-Entw.

P-PRIO: M

P-BUDGET: 256.000.-

P-RESTZEIT: 350 h

Projekte

Mitarbeiter

Projekt

Entitätstyp - Entität

Beispiel:

Der Mitarbeiter Herr Frost ist ein konkretes, individuell identifizierbares Objekt,

über das unser Unternehmen Informationen abspeichern muss.

Er gehört zu einer Klasse, der Klasse der Mitarbeiter.

Entitätstyp: Mitarbeiter

Entitäten: Mitarbeiter Frost Eberhard, M-Nr.696

Mitarbeiter Bonello Leonardo, M-Nr.737

Mitarbeiter Meier Hugo, M-Nr.314

Mitarbeiter Meier Karl, M-Nr.425

Entitäten können selbst Klassen sein

Wie findet man Entitätstypen

1. Frage an die Fachabteilung

An die Fachabteilung!

Bitte geben Sie bis Freitag, den 13., Ihre Entitäten in der Abteilung Organisation und IT ab.

Vielen Dank und

mit freundlichen Grüßen

2. Re-Design und Wartungsprojekte

- Formulare (Erfassung, Antrag, Änderung, ...)
- Listen (interne Listen, externe Listen)
- Masken (Eingabe, Ausgabe, Änderung, Anzeige)
- Datenbeschreibungen (Makros, Tabellen, ...)
- fachliche Beschreibungen

Wie findet man Entitätstypen

- 3. Neuentwicklung von Systemen
 - Analyse der Fachanforderung
 - Analyse von Besprechungsprotokollen
 - Durchführen von Interviews
 - Workshop mit der Fachabteilung

Identifizieren von Objekten

 Jedes Hauptwort auf einem Formular und im Interview ist ein Kandidat für einen Entitätstyp.

Beispiel:	"Mitarbeiter arbeiten praktisch immer in Projekten, wobei diese		
	verschiedene Prioritäten haben können."		
	Entitätstypen:	Mitarbeiter, Projekt	
	Attributtypen:	Priorität (von Projekt)	

In Anlehnung an Shlaer/Mellor gibt es zur Identifizierung von Objekten folgende Kategorien:

Kategorie	Beschreibung	Beispiele
Reale Dinge	Körperliche Dinge, über die das Unternehmen Informationen speichert.	Flugzeug Buch Gebäude Fahrzeug Maschine
Rollen	Personen sind Objekte, die in unterschiedlichen Rollen im Unternehmen auftreten.	Dozent Kunde Mitarbeiter Vertreter Eigentümer Patient
Ereignisse	Geschäftsprozesse, die sich beim Unternehmen ereignen.	Zeitpunkt Vertragsabschluß Unfall Anruf Kündigung Eingang Gutschrift
Interaktionen	Interaktionsobjekte beziehen sich auf zwei Objekte (der Kauf z.B. auf den Käufer und das gekaufte Produkt)	Heirat Kauf Projektmitarbeit
Instanzen	Instanzen repräsentieren einen Standard oder eine Verallgemeinerung von Objekten.	Vertragstypen Nutzfahrzeuge Säugetiere

Namensgebung bei Entitätstypen

- Der Name eines Entitätstyps ist, entsprechend seinem Charakter ein Hauptwort oder ein zusammengesetztes Hauptwort in der Einzahl, aber kein Tätigkeitswort
- Beispiele:
 - Kunde
 - potentieller Kunde
 - Käufer
 - Kaufvertrag
 - aber nicht: Vertrag abschließen (das ist ein Prozess).

Namensgebung bei Entitätstypen

Es ist darauf zu achten, dass die Namen

- verständlich und eindeutig sind
- den Namenskonventionen der Fachabteilung entsprechen
- keine Punkte, Schrägstriche oder Sonderzeichen enthalten
- möglichst kurz sind, denn sie müssen in die Kästchen passen.

Definition des Entitätstyps bei Analyse und Entwurf

Beispiel:

Kunde: Person, die Produkte bei uns gekauft hat

Interessent: Person, die unseren Katalog angefordert hat

(und nicht Kunde ist)

Klare Grenzen: Jede natürliche oder juristische Person, die von uns Produkte

gekauft hat, ist Kunde.

Umgekehrt gilt dann, dass jede Person, die noch keine

Produkte von uns gekauft hat, auch kein Kunde ist.

Jede natürliche oder juristische Person, die unseren Katalog

angefordert hat, ist Interessent.

Umgekehrt gilt dann, dass jede Person, die noch keinen Katalog von uns angefordert hat, auch kein Interessent ist.

Unklare Grenzen: Jede Person, die an unseren Produkten interessiert ist,

ist ein Interessent.

Jede Person, die an unseren Produkten nicht interessiert ist,

ist nicht Interessent.

Kapitel 4

Grundlagen ERM: Beziehungstypen

Beziehungstypen

Beziehungstyp – konkrete Beziehung

Beispiel:

Mitarbeiter	Projekt
694	742
695	
696	743
697	744

Beziehungskardinalität

Minimalkardinalität

Beziehungskardinalität

Beziehungs- kardinalität	Symbol	Interpretation
Minimal- kardinalität	0	Der Minimalwert O (Null) bedeutet, dass die konkrete Beziehung zwischen zwei Entitäten nicht existieren muss, also optional ist.
	I	Der Minimalwert I (Eins) bedeutet, dass die konkrete Beziehung zwischen zwei Entitäten existieren muss.
Maximal- kardinalität	I	Der Maximalwert I (Eins) bedeutet, dass die konkrete Beziehung zwischen zwei Entitäten höchstens einmal existieren darf.
	\	Der Maximalwert < (Viele) bedeutet, dass die konkrete Beziehung zwischen zwei Entitäten mehrmals existieren darf.

Die 1:1-Beziehung

Die 1:1-Beziehung

 Jeder Mitarbeiter hat minimal und maximal ein Postfach - genau ein Postfach.

Jedes Postfach wird benutzt von minimal null und maximal einem

Mitarbeiter.

Mitarbeiter	Postfach
Michael	2701
Fritz	2702
Andreas	2703
	2704
Claudia	2705
Rolf	2706

Die 1:N-Beziehung

Die 1:N-Beziehung

Mitarbeiter	Abteilung
MichaelFritz	EDV
AndreasClaudia Rolf	Buchhaltung
Manfred —	Vertrieb
	Export

Die N:M-Beziehung

Die N:M-Beziehung

Kapitel 5

Grundlagen ERM: Attributtypen

Attributtyp – Attribut

Beispiel: Entitätstyp Mitarbeiter

Attributtyp:

Entität 1:

Entität 2:

Entität 3:

Entität 4:

Name	# Mitarbeiternr.	Gehalt
Frost	696	8.760
Bonello	737	4.800
Meier	314	11.520
Meier	784	6.590

Attributtyp – Attribut

Attributtypen sind

- die (abstrakten) Eigenschaften der Entitätstypen
- die kleinste Informationseinheit und unteilbar

Attribute sind konkrete Ausprägungen der Attributtypen

```
M-Nr.: 725
M-Name: Scherzinger, Fred
M-Geb.: 30.03.1959
M-Dgr.:
         M-Nr.: 696
M-Kst.:
         M-Name: Frost, Eberhard
M-Tel.:
         M-Geb.: 14.12.1962
M-Gehalt: M-Dgr.:
                    M-Nr.: 716
          M-Kst.:
                    M-Name: Yamaki, Yoko
          M-Tel.:
                    M-Geb.: 30.03.1958
         M-Gehalt: M-Dgr.: Financ.Mgr.
                    M-Kst.: 2925
                    M-Tel.: 023/6543210
                    M-Gehalt: 6.120,67
```

Namensgebung bei Attributtypen

Der Name eines Attributtyps sollte seine Eigenschaft mit einem Hauptwort in Einzahl beschreiben

Beispiele:

- Personal_Nr
- Kunde_Nummer
- Mitarbeiter_Name

Definition der Attributtypen

Die Bedeutung des Attributtyps muss präzise und verständlich definiert sein Beispiele:

- Kunde_Vorname = Rufname (Vorname) und evtl. weitere Vornamen, evtl. abgekürzt
- Kunde_Name = Nachname, ohne Titel und Akademische Grade

Entitätsschlüssel

- Kandidaten für den Entitätsschlüssel müssen.
 - eindeutig sein
 - für jede Entität jederzeit bekannt sein und
 - stabil sein

Mitarbeiter

ld

Mitarbeiter_PK
is Concatenation of:
 Mitarbeiter_Name
 Mitarbeiter_Geb.
Mitarbeiter_Name
Mitarbeiter_Geb.
Mitarbeiter_Dgr.

Zuordnung von Attributtypen: Funktionale Abhängigkeit

Attribut = Funktion (Entitätstyp, Attributtyp, Schlüsselwert)

- Beispiel:
 - Gehört die Autokennzeichen-Nummer zur Person, der das Auto gehört? Oder sollte man einen neuen Entitätstypen Auto schaffen, der zu Person eine Beziehung hat?

Ableitbare Werte, Redundanzen

Produkt	
	Prod_Nr Prod_Name Prod_Preis Prod_Preis_incl_MwSt

Produkt (Implementierungsmodell)

Id Prod_Nr
Prod_Name
Prod_Preis
Prod_Jahresumsatz

Kardinalitäten der Attributtypen

Minimal: Wie viel verschiedene Ausprägungen dieses Attributtyps muss eine Entität mindestens haben?

 Maximal: Wie viel verschiedene Ausprägungen dieses Attributtyps kann eine Entität höchstens haben? Kann es nur ein oder mehrere Attribute

pro Entität geben?

Eindeutig: Kann ein Attribut (konkreter Wert) nur einmal im Entitätstyp auftauchen, dann eignet es sich als Schlüsselkandidat zur

Identifikation?

Kardinalitäten der Attributtypen

Kunde		
Attributtypen	Format	
Id	editlimit N(6,2) esch_Umsatz N(6,2)	

Attributtyp	Globaler Datentyp
Kunde_Nummer	ID_NR
Kunde_Name	NAME_LANG
Kunde_Kreditlimit	BETRAG
Kunde_Telefon	TEL_NR
Lieferant_Name	NAME_LANG
Mitarbeiter_Gehalt	BETRAG
Mitarbeiter_Telefon	TEL_NR
Produkt_Preis	BETRAG
Auftrag_Datum	DATUM

Dadurch erhalten wir:

Ku	Kunde		
	Attributtypen	Datentyp	
ld	<1 1> Kunde_Nummer <1 1> Kunde_Name <0 1> Kunde_Kreditlimit <0 1> Kunde_Gesch_Umsatz <0 1> Kunde_Telefon	ID_NR NAME_LANG BETRAG BETRAG TEL_NR	

Der Datentyp wird dann an einer Stelle zentral definiert:

Datentyp	SQL-Format	COBOL-Format
ID_NR	LONGINT	S9(9) COMP
NAME_LANG	CHAR(50)	X(50)
BETRAG	DECIMAL 8.2	9(6)V99
TEL_NR	CHAR(16)	X(16)

Wertebereiche / Domänen

Wir kennen drei verschiedene Arten von Wertebereichen:

1. Einen endlichen Wertebereich, durch Aufzählung definierbar, möglichst klein.

Beispiel: Wochentage (Montag, Dienstag, Mittwoch, Donnerstag, Freitag, Samstag, Sonntag)

Beispiel: Postleitzahlen (..., 72070, 72071, 72072,...)

2. Einen durch Unter- und Obergrenze als Bereich definierten.

Beispiel: Gewicht eines Päckchens (stufenlos von 10 g bis 4000 g)

3. Einen praktisch unendlichen oder doch zumindest sehr großen Wertebereich, eventuell durch bestimmte Algorithmen definiert.

Beispiel: Name (alle möglichen Namen)

Beispiel: Datum (alle möglichen Tagesdaten)

Wie definiert man einen Entitätstyp präzise?

Was ist ein PRODUKT? Ist es

- Ein besonderer Gegenstand, den ein KUNDE mit nach Hause nehmen kann? oder
- Irgend ein Gegenstand, den wir verkaufen? und
- Kann mehr als ein Kunde ein bestimmtes PRODUKT kaufen?
- Meinen wir nicht PRODUKT-TYP? und
- Ist alles, was wir an KUNDEN verkaufen, ein PRODUKT –
- also auch ein aſ

Kapitel 6

Fortgeschrittenes Modellieren – spezielle Entitätstypen

Einführung

Um komplexe Zusammenhänge mit ERM korrekt darstellen zu können, bedarf es bestimmter Konstruktionen:

- 1. Beziehungsattribute durch assoziative Entitätstypen
- 2. Subtyp / Supertyp
- 3. Hierarchien und rekursive Beziehungen
- 4. Status / Historie
- 5. in das Datenmodell integrierte Wertebereiche.

Beispiel:

Für ein Abrechnungssystem, das den Einsatz von Personen in Projekten nach Stunden abrechnet, brauchen wir folgende Datenelemente:

- Person Name
- Person_Nummer
- Person_S_Faktor
- Projekt_Name
- Projekt_Nummer
- Projekt_Ort
- Projekt_Einsatzzeit.

Person	
_	Nummer
Person_	Name
Person_	S_Faktor
—— Person_	Einsatzzeit_Projekt_1
Person_	Einsatzzeit_Projekt_2
Person_	Einsatzzeit_Projekt_3

Entitätsschlüssel bei Assoziativen Entitätstypen

Einsatz	
Id	<1 1> Einsatz_PK is Concatenation of: Einsatz.ist in.Projekt Einsatz.wird gemacht von.Person
	<1 1> Einsatz_Zeit
	Einsatz.1(ist in)1.Projekt Projekt.1(hat)N.Einsatz Einsatz.1(wird gemacht von)1.Person Person.0(macht)N.Einsatz

Auflösen von N:M -Beziehungen und Kardinalitäten

Müssen N:M -Beziehungen grundsätzlich aufgelöst werden?

"Abhängige" Entitätstypen

Subtyp / Supertyp

Subtyp / Supertyp

Subtyp / Supertyp

Subtyp / Supertyp

Vererbte Attribute bei Subtypen

Leben_Kunde	
_	Eigene Attributtypen:
	<1 1> L_Geschlecht
	<1 1> L_Risiko
	Geerbte Attributtypen:
ld	<1 1> V_Nummer
	<1 1> V_Name
	<1 1> V_Adresse
	<1 1> V_Geb_Datum
	Eigene Beziehungen:
	=== keine eigenen Beziehungen definiert ===
	Geerbte Beziehungen:
	=== keine geerbten Beziehungen definiert ===

Weitere besondere Beziehungstypen

Mehrere Beziehungstypen

Mehrwertige Beziehungstypen

Darstellung eines N-stelligen Beziehungstyps (vorher)

Mehrwertige Beziehungstypen

Darstellung eines N-stelligen Beziehungstyps (nachher)

Entitätstypen aus mehrwertigen Attributtypen

Hierarchien / rekursive Relationen

Das ließe sich so darstellen:

Einige Rekursionsprobleme lassen sich durch Subtypen elegant lösen

Einige Rekursionsprobleme lassen sich durch Subtypen elegant lösen

Status

Mit Status bezeichnen wir eine Eigenschaft einer Entität, nämlich die Zugehörigkeit zu einer Gruppe oder Klasse.

Beispiele:

- Ein Kunde hat einen Bonitäts-Status (gut, mittel, schlecht).
- Ein Vertrag hat einen bestimmten Mahnstatus (neutral, gemahnt, 2. Mahnung, gekündigt).
- Eine Lieferung befindet sich in einem bestimmten Lieferstatus.
- Ein Kunde hat einen Rabattstatus.

Status

 Er kann ein Attributtyp des Entitätstyps sein, weil es sich um eine Eigenschaft der Entität handelt.

Status

Man kann diesen Status auch als Zugehörigkeit einer Entität zu einer Klasse, zum Beispiel des Kunden zu einer Rabattklasse oder die eines Vertrages zu einer Mahnstufe, betrachten. Er kann durch eine Beziehung des Entitätstyps zur Statusklasse und im konkreten Fall einer bestimmten Entität zur konkreten Status-Entität beschrieben werden.

Historie

Wir kennen drei verschiedene Arten von Wertebereichen

1. Einen endlichen Wertebereich, durch Aufzählung definierbar, möglichst klein.

Beispiel: Wochentage

(Montag, Dienstag, Mittwoch, Donnerstag, Freitag, Samstag,

Sonntag)

Beispiel: Postleitzahlen (..., 72070, 72071, 72072,...)

2. Einen durch Unter- und Obergrenze als Bereich definierten.

Beispiel: Gewicht eines Päckchens (stufenlos von 10 g bis 4000 g)

3. Einen praktisch unendlichen oder doch zumindest sehr großen Wertebereich, i. d. R. durch bestimmte Algorithmen definiert.

Beispiel: Name (alle möglichen Namen)

Beispiel: Datum (alle gültigen Tagesdaten)

Lösung Fall 1: wie Statusentität

Lösung Fall 2: Wertebereiche mit Grenzen (Domänenentität)

- Lösung Fall 3: Wertebereiche "ohne" Grenzen
 - Im dritten Fall gibt es i. a. keine Lösung im Datenmodell oder der Datenbank.

Kapitel 7

Zusammenhang zwischen ER- und relationalem Modell

Einführung

Eine wichtige Eigenschaft der ER-Modelle ist ihre leichte Überführbarkeit in relationales Design. Hierbei geht es vor allem um die Fragen:

- Was wird aus Entitätstypen?
- Was wird aus Attributtypen?
- Was wird aus Beziehungstypen?
- Wie wirken sich Beziehungskardinalitäten aus?

Das relationale Design

- Im Entity-Relationship-Modell gibt es
 - Entitätstypen
 - Beziehungstypen
 - Attributtypen

Das relationale Design

- Im relationalen Design werden
 - Entitätstypen zu Tabellen
 - Beziehungstypen zu Fremdschlüsseln in Tabellen
 - Attributtypen zu Spalten von Tabellen.

Mitarbeiter			

Projekt		

Was wird im relationalen Design aus Entitätstypen und Attributtypen?

	Attributtypen	Datentyp
<1 1>	P_Name	9(9) X(10) 9(6),99
	<1 1>	Attributtypen <1 1> P_Nummer <1 1> P_Name <0 1> P_Preis

Was wird im relationalen Design aus Entitätstypen und Attributtypen?

Aus dem Entitätstyp Produkt wird die Tabelle Produkt mit folgendem SQL-Befehl:

```
CREATE TABLE PRODUKT

( P_NUMMER INTEGER NOT NULL,
   P_NAME CHAR(10) NOT NULL,
   P_PREIS DECIMAL (8,2)
).

CREATE UNIQUE INDEX PRODUKT_IDX
   ON PRODUKT (P_NUMMER).
```

Was wird im relationalen Design aus Entitätstypen und Attributtypen?

Als Tabelle sieht PRODUKT wie folgt aus (hier mit Inhalt gefüllt):

P_Nummer	P_Name	P_Preis
00000001	Deckel	000003.64
000000023	Pinsel	000007.23
000020045	Schraube	000000.39

- Entitätstypen werden zu Tabellen.
- Attributtypen werden zu Spalten der Tabelle.
- Entitätsschlüssel werden zu Indizes.

Was wird im relationalen Design aus den Kardinalitäten der Attributtypen?

Produkt			
		Attributtypen	Datentyp
ld	<1 1>	P_Nummer	9(9)
		P_Name	X(10)
	<0 1>	P_Preis	9(6),99

```
CREATE TABLE PRODUKT

( P_NUMMER INTEGER NOT NULL,
   P_NAME CHAR(10) NOT NULL,
   P_PREIS DECIMAL (8,2)
).
```

Was wird im relationalen Design aus den Kardinalitäten der Attributtypen?

Fazit:

- Optionalität bei den Attribut-Kardinalitäten wird in NULL,
- Nicht-Optionalität bei den Attribut-Kardinalitäten wird in NOT NULL umgesetzt.

Was wird im relationalen Design aus den Beziehungstypen?

Was wird im relationalen Design aus den Beziehungstypen?

M_Nummer	M_Name	M_Verr_Satz	P_Nummer
0012	Müller	123,45	4711
0013	Nagel	234,56	4710
0014	Puvogel	345,67	4711
0015	Rassel	456,78	4710
0016	Pflümli	012,34	4710

P_Nummer	P_Name	P_Ende
4710	Dat_Ana	2008.12.31
4711	Proz_Ana	2008.05.31

Fazit: Beziehungstypen werden im relationalen Design als Fremdschlüssel in Tabellen umgesetzt

Wie wirkt sich eine 1:1 -Beziehung am Beispiel aus?

M_Nummer	M_Name	M_Verr_Satz	P_Nummer
0012	Müller	123,45	4710
0013	Nagel	234,56	4711

P_Nummer	P_Name	P_Ende
4710	Dat-Ana	2008.12.31
4711	Proz-Ana	2008.05.31

Wie wirkt sich eine 1:1 -Beziehung am Beispiel aus?

oder

P_Nummer	P_Name	P_Ende	M_Nummer
4710	Dat-Ana	2008.12.31	0012
4711	Proz-Ana	2008.05.31	0013

M_Nummer	M_Name	M_Verr_Satz
0012	Müller	123,45
0013	Nagel	234,56

Fazit:

- Bei 1:1 -Beziehungen (ohne Optionalität) ist es unerheblich, auf welcher Seite der Fremdschlüssel und auf welcher Seite der Primärschlüssel steht. Daher gibt es zwei gleichwertige Möglichkeiten.
- Letztlich bedeutet eine solche 1:1 -Beziehung, dass sich beide Tabellen ohne Informationsverlust zu einer Tabelle zusammenfassen lassen.

Was wird im relationalen Design aus 1:N -Beziehungen?

M_Nummer	M_Name	M_Verr_Satz	P_Nummer
0012	Müller	123,45	4711
0013	Nagel	234,56	4710
0014	Puvogel	345,67	4711
0015	Rassel	456,78	4710
0016	Pflümli	012,34	4710

P_Nummer	P_Name	P_Ende
4710	Dat-Ana	2008.12.31
4711	Proz-Ana	2008.05.31

Fazit: Beziehungen werden bei 1:N als Fremdschlüssel in der Tabelle der "vielen" umgesetzt.

Was wird im relationalen Design aus N:M -Beziehungen?

M_Nummer	M_Name	M_Verr_Satz
0012	Müller	123,45
0013	Nagel	234,56
0014	Puvogel	345,67
0015	Rassel	456,78
0016	Pflümli	012,34

P_Nummer	P_Name	P_Ende
4710	Dat-Ana	2008.12.31
4711	Proz-Ana	2008.05.31

M_Nummer	P_Nummer
0012	4710
0013	4710
0013	4711
0014	4710
0015	4710
0015	4711
0016	4711

Fazit: Beziehungen werden im relationalen Design bei N:M grundsätzlich als Schlüsseltabelle umgesetzt

Was wird im relationalen Design aus N:M -Beziehungen mit assoziativen Entitätstypen?

M_Nummer	M_Name	M_Verr_Satz
0012	Müller	123,45
0013	Nagel	234,56
0014	Puvogel	345,67
0015	Rassel	456,78
0016	Pflümli	012,34

P_Nummer	P_Name	P_Ende
4710	Dat-Ana	2008.12.31
4711	Proz-Ana	2008.05.31

M_Nummer	P_Nummer	P_Eintritts_Datum
0012	4710	2007.01.10
0013	4710	2008.01.01
0013	4711	2007.05.15
0014	4710	2007.02.01
0015	4710	2007.10.01
0015	4711	2007.03.01
0016	4711	2006.12.01

Fazit: Auch assoziative Entitätstypen werden im relationalen Design grundsätzlich als Schlüsseltabelle umgesetzt. Hinzu kommt lediglich eine Anzahl weiterer Spalten.

Was wird aus den Minimal-Kardinalitäten der Beziehungstypen?

... ergibt im relationalen Design:

M_Nummer	M_Name	M_Verr_Satz	P_Nummer
0012	Müller	123,45	4711
0013	Nagel	234,56	4710
0014	Puvogel	345,67	4711
0015	Rassel	456,78	4710
0016	Pflümli	012,34	4710

P_Nummer	P_Name	P_Ende
4710	Dat-Ana	2008.12.31
4711	Proz-Ana	2008.05.31
4713	Progr	2008.07.31

Was wird aus den Minimal-Kardinalitäten der Beziehungstypen?

... ergibt im relationalen Design:

M_Nummer	M_Name	M_Verr_Satz	P_Nummer
0012	Müller	123,45	4711
0013	Nagel	234,56	4710
0014	Puvogel	345,67	4711
0015	Rassel	456,78	4710
0016	Pflümli	012,34	NULL

P_Nummer	P_Name	P_Ende
4710	Dat-Ana	2008.12.31
4711	Proz-Ana	2008.05.31

Was wird aus den Minimal-Kardinalitäten der Beziehungstypen?

Fazit:

- Je nachdem, auf welcher Seite die Null steht (bei den "vielen" oder den "wenigen") hat die Optionalität unterschiedliche Auswirkungen.
- Im ersten Fall steht die Null bei den "Vielen". Es gibt Projekte, (z. B. das Projekt 4713), die nicht als Fremdschlüssel vorkommen.
- Im zweiten Fall steht die Null bei den "Wenigen". Es gibt Mitarbeiter, (z. B. der Mitarbeiter 0016), die keinen Fremdschlüssel haben. Dies wird durch das Symbol "NULL" dargestellt.

Kapitel 8

Integritätsregeln

Einführung

Der ER-Ansatz erlaubt durch Kombination seiner Elemente die Modellierung auch sehr komplexer Zusammenhänge zwischen mehreren Entitätstypen Es ergeben sich jedoch noch Probleme:

- Die Zusammenhänge des konzeptionellen Modells sind statisch.
- ER-Modelle beschreiben nur die Beziehung zwischen Entitäts-Typen und nicht direkt die Beziehung zwischen Attributtypen verschiedener Entitätstypen.

Integritätsregeln

- Bedeutung der Integritätsregeln
 - Betrachten wir die Integritätsregeln (englisch: Integrity Constraints) an einem einfachen Beispiel:
 - Es sollen in einem System Rechnungen, die an Kunden geschrieben werden, erfasst und gespeichert werden. Dabei erscheinen folgende Regeln sinnvoll:
 - 1. Eine Rechnung darf nur geschrieben werden, wenn der Kunde dazu bereits erfasst worden ist keine Rechnung ohne Kunden!
 - 2. Eine Rechnung darf immer nur an genau einen Kunden gehen.
 - 3. Ein Kunde darf mehrere Rechnungen bekommen, kann aber auch keine Rechnung bekommen.
 - 4. Der Kunde darf nicht gelöscht werden, solange noch Rechnungen ausstehen.
 - 5. Bei Änderung der Kundendaten (etwa der Bonitätsangabe oder des Kreditlimits) muss ein Hinweis an den Sachbearbeiter erfolgen, dass noch eine Rechnung vorhanden ist.

Ein mögliches ER-Modell sähe zum Beispiel

so aus:

- Jeder Kunde bekommt keine bis mehrere Rechnungen.
 - Jede Rechnung wird geschrieben an genau einen Kunden.
 - Damit wären Regel 1, Regel 2 und Regel 3 abgedeckt.
- Prinzipiell ist auch die Regel 4 mit der Minimal-Kardinalität der Beziehung "wird geschrieben an" ausgedrückt, jedoch gibt es verschiedene Möglichkeiten diese Forderungen in der Datenbank umzusetzen: Wenn automatisch beim Löschen des Entitätstyps Kunde auch alle abhängigen Entitätstypen, also zum Beispiel Rechnung, gelöscht werden, ist das ER-Modell auch korrekt.
- Regel 5 (Wechselwirkung von Attributtypen in zwei verschiedenen Entitätstypen)
 lässt sich mit ERM nicht ausdrücken.

Weitere Beispiele für (vernünftige) Forderungen an eine Datenbasis könnten sein:

- Alle Seminarnummern der Integrata müssen mit "INT" beginnen.
- Ein Seminarteilnehmer muss entweder ein Mann oder eine Frau sein.
- Eine Person kann nur dann den Status "geschieden" erhalten, wenn sie vorher verheiratet war.
- Eine Person ist nur dann in die Wählerliste aufzunehmen, wenn sie über 18 Jahre alt ist.

Solche Möglichkeiten sind in der ER-Modellierung nicht vorgesehen.

Ziel der Integritätsregeln

- Der Inhalt der Datenbank muss zu jeder Zeit ein korrektes Abbild der Wirklichkeit bleiben.
- Insbesondere muss bei INSERT, UPDATE, DELETE verhindert werden, dass Inkonsistenzen in Datenbeständen entstehen können.
- Wo immer möglich, sollten diese Regeln direkt an den Daten, die sie betreffen, gespeichert werden.

Rechnung

Kunde

R_Nr	R_Datum	K_Nr
00012	12.07.1996	4711
00013	15.07.1996	4712
00014	16.07.1996	4711
00015	17.07.1996	4711
00016	17.07.1996	4712

K_Nr	K_Name	K_etc.
4711	Willie	etc
4712	Andrea	etc
4713	Siemens	etc

- Konflikte kann es jetzt z. B. bei folgenden Vorgängen geben:
 - 1. Einfügen einer neuen Rechnung 00017 ohne K_Nr.
 - Der Kunde Willie soll gelöscht werden.
 Was soll mit den Rechnungen 00012, 00014 und 00015 geschehen?
 - 3. Update der K_Nr von Andrea.

- Zu 1.: Es ist möglich,
 - Rechnung 00017 einzufügen und unter K_Nr einen NULL-Wert
 (das heißt nicht definierter Wert) zu setzen, wenn das Feld Rechnung_K_Nr
 diese Möglichkeit vorsieht (keine NOT NULL Klausel im CREATE TABLE Statement).
 - Die Eingabe vom System solange ablehnen zu lassen, bis eine korrekte K_Nr eingegeben ist.
- Zu 2.: Es ist möglich,
 - Willie zu löschen und die "abhängigen" Rechnungen sofort mit zu löschen.
 - Willie nicht zu löschen und eine Meldung abzugeben ("Rechnungen stehen offen").
 - Willie zu löschen und die Fremdschlüssel (K_Nr) der Rechnungen auf NULL-Wert zu setzen.

- Zu 3.: Es ist möglich,
 - Andrea's K_Nr zu ändern und alle abhängigen Rechnung_K_Nr gleich mit zu ändern.
 - Andrea's K_Nr nicht zu ändern und eine Meldung abzugeben ("Rechnungen bestehen").
 - Andrea's K_Nr zu ändern und die Rechnung_K_Nr der ehemals abhängigen Rechnungen auf NULL-Wert zu setzen.

- Im relationalen Design (z. B. DB2 SQL-DDL) gibt es die Möglichkeit, diese Beziehungsintegritäten zu definieren. Dabei verwendet man:
- CASCADE
 - Mit CASCADE werden die abhängigen Fremdschlüssel-Tabellen mit der Primärschlüssel-Tabelle gelöscht.
- RESTRICTED
 - Mit RESTRICTED wird das Löschen abgelehnt, bis alle abhängigen Tabellen gelöscht sind.
- NULLIFIES
 - Mit NULLIFIES werden die Fremdschlüssel auf NULL-Werte gesetzt.


```
CREATE TABLE KUNDE
       K NR
                      INTEGER
                                     NOT NULL,
       K_NAME CHAR (24)
                                     NOT NULL,
       K_ETC
                      CHAR (50)
       PRIMARY-KEY (K_NR)
CREATE TABLE RECHNUNG
       R_NR
                      INTEGER
                                     NOT NULL,
       R_DATUM
                      DATE
                                     NOT NULL,
       K_NR
                      INTEGER
                                     NOT NULL,
       PRIMARY-KEY
                              (R_NR)
       FOREIGN-KEY
                              (K_NR)
       REFERENCES KUNDE
       ON DELETE CASCADE
```


	Insert/Update FS	Delete PS	Update PS
CASCADE		FS wird gelöscht, wenn PS gelöscht.	Relation FS wird ge- ändert, wenn PS ge- ändert wird.
RESTRICTED	FS kann nur ein- gefügt werden, wenn PS existiert.	PS darf nur ge- löscht werden, wenn kein FS mehr existiert.	PS darf nur geändert werden, wenn FS nicht existiert.
NULLIFIES	FS ohne PS wird als NULL-Wert eingefügt.	PS wird gelöscht, FS wird NULL- Wert.	PS wird geändert, FS wird NULL-Wert.

Kapitel 9

Qualitätssicherung und Datenmodellierung

Qualitätskontrollen bei der Software sind die Ausnahmen

Provokation oder bittere Realität?

Warum Projekte immer wieder scheitern?

Titel der Untersuchung: 'Chaos Report'

- 53 Prozent der Projekte dauern länger und kosten viel mehr als geplant
- 18 Prozent der IT-Projekte scheitern gänzlich
- Bessere Planung, Kommunikation und Qualitätssicherung könnten Abhilfe schaffen

"Warum haben wir eigentlich nie Zeit, eine Sache richtig zu machen, aber immer Zeit, sie noch mal zu machen?" (Gerald Weinberg)

Optimale Qualität

Qualität

Grad, in dem ein Satz inhärenter Merkmale Anforderungen erfüllt

Diese Definition ist sehr abstrakt und nicht sofort zu verstehen. Die folgende Grafik soll den Qualitätsbegriff verdeutlichen:

1. Optimale Qualität

Von optimaler Qualität sprechen wir dann, wenn das Ergebnis die Forderungen genau erfüllt. Ein besseres Ergebnis hat also eine "schlechtere

Qualität" als das optimale. Man spricht von Übererfüllung (VW bestellt und Porsche geliefert). Sie ist unerwünscht, weil das bessere Ergebnis in der Regel mehr kostet ohne dass dafür mehr verlangt werden kann.

Qualitätssicherung (Grundlagen 1)

Anforderungen

Anforderungsbaum in Anlehnung an Frühauf

Funktionale Anforderungen

Die Funktionen (und Abläufe), die zur Problemlösung notwendig sind

Beispiel Auto: Beschleunigen (0-100 in ... s), bremsen (100-0 in ... s), Anzahl Sitzplätze, Kofferraumgröße,

Funktionale Anforderungen können mit Use Cases beschrieben werden

Nichtfunktionale Anforderungen

(auch häufig als Qualitätsanforderungen bezeichnet) sind essentiell für erfolgreiche Projekte und Produkte.

- Qualitätsanforderungen,
- technische Anforderungen,
- organisatorische Anforderungen und
- Anforderungen an sonstige Lieferbestandteile.

Nichtfunktionale Anforderungen

Aussagen, wie (genau, schnell, sicher,...) die Funktionen auszuführen sind

Beispiel Auto:

Anwender: freundlicher Service, rückenfreundliche Sitze,

Instrumente übersichtlich und blendfrei, leicht zu reparieren,

Image des Herstellers, Preis, Lieferzeit,...

Werkstatt: leicht zu reparieren, wenig Schulung,

wenig neue Werkzeuge,...

Hersteller: Wiederverwendung von Baugruppen, zuverlässige Lieferanten,

Auslastung der Fabrik,...

Akzeptanzkriterien für Anforderungen

Anforderungen werden präzisiert durch Akzeptanzkriterien

Diese geben an, welche Bedingungen erfüllt sein müssen, damit das Produkt (System, Teilsysteme) abgenommen wird

Die Akzeptanzkriterien sollen nach Möglichkeit als messbare Größen formuliert sein

Messbar heißt: als Kategorie, als Zahlenwert, als Vergleichswert, als Rang, usw.

Beispiel: Konstruktive und analytische Maßnahmen für ein Datenmodell

1.10.2020 © Integrata Cegos AG

Schwerpunkte der QS bei der Datenmodellierung

- Vollständige Definitionen von Entitätstypen, Attributtypen und Beziehungstypen
- 2. Vollständigkeit der relevanten Attributtypen
- 3. Es dürfen keine Homonyme / Synonyme auftreten
- 4. Eindeutige Attributtypzuordnung
- 5. Überflüssige Beziehungstypen müssen entfernt werden
- 6. Isolierte Entitätstypen müssen überprüft werden
- 7. Konsistenzprüfung Datenmodell und Funktionsmodell
- 8. Das Datenmodell muss in der 3. Normalform vorliegen

Vollständige Definition

Def.Entitätstyp Kunde:

Person, die unsere Produkte kauft.

Kunde Entitätstypbeschreibung Entitätsschlüssel: Kunde_Nummer

Attributtypen:

 Id
 <1 1> Kunde_Nummer
 9(8)

 <1 1> Kunde_Name
 X(30)

 <0 1> Kunde_IBAN
 IBAN

 <0 1> Kunde_BIC
 BIC

<0 1> Kunde_Telefon Telnr

Vollständige Definition

Def. Attributtyp Kunde_Nummer:
Identifiziert den Kunden,
fortlaufend maschinell vergeben

Homonyme / Synonyme

- Homonyme sind unterschiedliche Dinge mit gleichem Namen. Sie entstehen, wenn Definitionen nicht präzise sind oder überhaupt nicht vorliegen.
- Beispiele:
- "Lieferung" kann sein:
 - Lieferung von und an Kunden
 - Lieferung unseres Lieferanten an uns
- "Kunde" kann sein:
 - ein Käufer
 - ein Interessent
 - Besteller einer Ware

Homonyme / Synonyme

- Synonyme sind gleiche Dinge mit unterschiedlichen Namen (Aliasnamen). Sie entstehen oft, wenn getrennte Teams an der Definition arbeiten, zum Beispiel an der Definition von Attributtypen für Entitätstypen. Als Aliasnamen können sie sinnvoll sein.
 - Beispiele:

statt	besser	
"Adresse"	Kunde_Anschrift	
	Kunde_Adresse	
	Kunde_Postanschrift	
	Kunde_Wohnung	
"Name"	Vorname	
	Geburtsname	
	Nachname	
	Akad. Titel	
"Geschäftspartner"	Kunde	
	Interessent	
	Lieferant	

Überflüssige Beziehungen

Datenmodell in 3. Normalform

 Das Datenmodell muss in dritter Normalform vorliegen. Dadurch k\u00f6nnen wir es problemlos in ein vern\u00fcnftiges relationales Design \u00fcbertragen (beziehungsweise durch ein CASE-Tool \u00fcbertragen lassen).

Datenmodell in 3. Normalform

Der Ausdruck 3. Normalform stammt aus der Welt des relationalen Datenmodells. Normalisierung ist die von E.F.Codd beschriebene schrittweise Vorgehensweise, mit der wir sicherstellen, dass nur solche Daten zu Tabellen zusammengefasst werden, die logisch zusammengehören. Die einzelnen Schritte gehen von der völlig unnormalisierten Form bis hin zur 3. Normalform.

Datenstrukturen in die 1. Normalform übertragen

Beispiel: Unnormalisierte Datenstruktur

01-01000-N0-Angebot

EL Kundennummer (PS)

EL Angebotsnummer (PS)

EL Angebotsdatum

IFL Hardware-Produkt (1-N)

EL Produktnummer

EL Menge

EL Angebot. Preis

EL Angebotsrabatt

02-01000-N0-Produktinformationen

EL Produktnummer (PS)

EL Preis

IFL Lieferantendaten

EL Lieferantennummer

EL Lieferantenbezeichnung

EL Lieferantenort

02-02000-N0-Produktbezeichnung

EL Schlagwortkurzbezeichnung (PS)

EL Produktnummer (PS)

EL Schlagwort

EL Produktbezeichnung

Datenstrukturen in die 1. Normalform übertragen

Beispiel: Datenstruktur in der 1.

Normalform

01-01100-N1-Angebot

EL Kundennummer (PS)

EL Angebotsnummer (PS)

EL Angebotsdatum

EL Angebotsrabatt

01-01200-N1- Hardware-Produkt

EL Kundennummer (PS)

EL Angebotsnummer (PS)

EL Produktnummer (PS)

EL Menge

EL Angebot.Preis

02-01000-N1-Produktinformationen

EL Produktnummer (PS)

EL Preis

IFL Lieferantendaten

EL Lieferantennummer

EL Lieferantenbezeichnung

EL Lieferantenort

02-02000-N1-Produktbezeichnung

EL Schlagwortkurzbezeichnung (PS)

EL Produktnummer (PS)

EL Schlagwort

EL Produktbezeichnung

Datenbanken Seite 141

Datenstrukturen in die 2. Normalform übertragen

Von der 1. Normalform

02-02000-N1-Produktbezeichnung

EL Schlagwortkurzbezeichnung (PS)

EL Produktnummer (PS)

EL Schlagwort

EL Produktbezeichnung

In die 2. Normalform

02-02100-N2-Produktbezeichnung

EL Schlagwortkurzbezeichnung (PS)

EL Produktnummer (PS)

02-02200-N2- Schlagwort

EL Schlagwortkurzbezeichnung (PS)

EL Schlagwort

02-02300-N2-Produkt

EL Produktnummer (PS)

EL Produktbezeichnung

Datenbanken Seite 143

Datenstrukturen in die 3. Normalform übertragen

01-01100-N3-Angebot				
G	(7. 0)	02-01200-N3-Lieferant		
EL Kundennummer	(PS)	EL Lieferantennummer	(PS)	
EL Angebotsnummer	(PS)	EL Lieferantenbezeichnung		
EL Angebotsdatum		EL Lieferantenort		
EL Angebotsrabatt		02-02100-N3-Produktbezeichnung		
01-01200-N3- Hardware-Produkt		EL Schlagwortkurzbezeichnung	(PS)	
EL Kundennummer	(PS)	EL Produktnummer	(PS)	
EL Angebotsnummer	(PS)	02-02200-N3- Schlagwort		
EL Produktnummer	(PS)	EL Schlagwortkurzbezeichnung	(PS)	
EL Menge		EL Schlagwort		
EL Angebot.Preis		02-02300-N3-Produkt		
•	_	EL Produktnummer	(PS)	
02-01100-N3-Produktinformatione	n	EL Produktbezeichnung		
EL Produktnummer	(PS)	EET Toddittb020101111ang		
EL Preis				
EL Lieferantennummer	(FS)			

Die semantisch-konstruktive / formalanalytische Methode

