

GEOMETRÍA

Capítulo 15

Rectas, planos y ángulo diedro

MOTIVATING | STRATEGY

En geometría del espacio estudiamos a los puntos, rectas y planos que forman a los poliedros y sólidos geométricos, por ejemplo:

RECTAS, PLANOS Y ÁNGULO DIEDRO

2. Una recta y un punto exterior a ella

Determinación de un plano

Existen 4 teoremas para determinar un plano.

1. Tres puntos no colineales

3. Dos rectas secantes

4. Dos rectas paralelas

Posiciones relativas entre rectas y planos

1. Recta contenida en un plano

2. Recta paralela a un plano

3. Recta secante a un plano

4. Ángulo entre una recta un plano

AH: proyección de AB sobre P.

α: medida del ángulo que forma L con P.

Recta perpendicular a un plano

Teorema de las tres perpendiculares

Si:
$$\overrightarrow{L_1} \perp P$$
, $\overrightarrow{L_2} \perp \overrightarrow{L} y \overrightarrow{L_3} \perp \overrightarrow{L} \rightarrow X = 90^0$

ÁNGULO DIEDRO

Es la figura formada por la unión de dos semiplanos y una recta común.

En la figura

- . P y Q son las caras del diedro.
- . AB es la arista del diedro.

Notación

- . Ángulo diedro: P \overrightarrow{AB} Q
- . Diedro AB

Además

- . md \overline{AB} : medida del diedro \overline{AB}
- . md $A\overline{B} = \alpha$

1. Se tiene un \overline{AB} exterior a un plano P. Si $AB = \sqrt{61}$ y la diferencia entre las distancias de A y B hacia el plano P es 5, calcule la longitud de la proyección de dicho segmento sobre el plano P.

2. En la figura, si AB = 41 y BH = 9, halle la longitud de la proyección de \overline{AB} sobre el plano P.

- Nos piden x.
 - ABH: Pitágoras

$$41^2 = 9^2 + x^2$$

$$1681 = 81 + x^2$$

$$1600 = x^2$$

$$x = 40^{\circ}$$

3. En la figura, halle \overline{AD} si $\overline{AB} \perp P$.

- Nos piden x.
- Se traza \overline{AC} .

• ABC:Pitágoras • ACDPitágoras

$$y^2 = 12^2 + 9^2$$

$$y^2 = 144 + 81$$

$$y^2 = 225$$

$$y = 15$$

$$x^2 = 15^2 + 20^2$$

$$x^2 = 225 + 400$$

$$x^2 = 625$$

4. Halle la medida de un ángulo diedro si se sabe que un punto interior de dicho diedro, dista de las caras $5\sqrt{3}$ u y 8 u, y dista de la arista 10 u.

5. Se tiene una región rectangular ABCD donde AB = 7 y BC = 5. Luego, por el extremo A se traza la perpendicular \overline{AP} a dicha región, tal que AP = $2\sqrt{6}$. Halle la m<PCD.

6. En la figura, AB = BC = $\sqrt{34}$, AC = 6 y PB = $\sqrt{24}$. Calcule el área de la región triangular PAC.

ABH :Pitágoras

$$(\sqrt{34})^2 = 3^2 + (BH)^2$$

25 = (BH)²
BH = 5

▶ BPH : Pitágoras

$$(PH)^2 = 5^2 + (\sqrt{24})^2$$

$$(PH)^2 = 49$$

Reemplazando

Teorema de las tres perpendiculares

 L_3

$$S_{(PAC)} = \frac{6.7}{2}$$

$$S_{(PAC)} = 21 u^2$$

7. En la figura, \overline{AC} es diámetro del círculo, AB = 4, PC = 5 y BC = 12. Calcule el área de la región ABP.

BCP Pitágoras

$$(BP)^2 = 5^2 + 12^2$$

$$(BP)^2 = 169$$

$$BP = 13$$

Reemplazando

$$S_{APC} = \frac{4.13}{2}$$

8. Una circunferencia de centro O está inscrita en un triángulo ABC, recto en B, siendo T punto de tangencia en \overline{AC} y \overline{QO} es perpendicular al plano que contiene al triángulo ABC. Si AT = 2 m, TC = 3 m y QO = 1 m, halle la medida del diedro formado por las regiones triangulares ABC y QAC.

