

춤추는 아바타: 당신도 싸이처럼 춤을 출수 있다.

2021 한국 방송미디어공학회 캡스톤 디자인 경진대회

안희준 (지도 교수)

구동준

주영돈

브이 반만

이정우

발표 순서

- ●프로젝트 개요
 - 프로젝트 배경
 - 프로젝트 목표
- ●프로젝트 내용
 - 전체 시스템 구조
 - -세부모듈설명
- ●결론
 - 결과 및 효과
 - 개선점

프로젝트개요

프로젝트 개요: 프로젝트 배경

최근 4차 산업 혁명의 영향과 더불어

COVID19 시대가 된 지금 비대면

METAVERSE 활동은 일상의 한 요소로 자리잡았다. 그렇기에 우리는 비대면 생활을 대면 생활처럼 영위할 수 있도록 다른 사람 혹은 다른 사람의 아바타와 상호작용하는 것이 가능한 개인의 고유한

AVATAR를 생성하는 기술을 연구하였다.

프로젝트 개요: 프로젝트 목표

사람의 겉모습을 키넥트 카메라로 촬영하여 얻어진 3차원 포인트 클라우드 데이터에 인체 모델을 적용하고 의상 메쉬를 생성하여 사람과 닮고 움직임이 용이한 아 바타를 만든다.

프로젝트내용

프로젝트 내용: 전체 시스템 구조

프로젝트 내용

세부 모듈 설명

신체 스캔 & 조인트 정보 추출

Azure Kinect library

포인트 클라우드 & UV맵 생성

UV맵 생성 상세

이미지 픽셀의 UV 값을 대응하는 PCD 포인트로 맵핑

포인트 클라우드 정합 & 메쉬 생성

SMPL 모델 파라미터 추정

1st optimization

2nd optimization

SMPL 모델 파라미터 추정: 1. 조인트 정합

모델과 스캔 데이터의 조인트 정합

- 기존 연구의 2D joint 대신 Kinect의 3D joint를 사용
- 카메라 파라미터를 추정하지 않는 대신 모델의 스케일을 추정해줘야 함.

SMPL 모델 파라미터 추정: 2. SHAPE 정합

• 3D 조인트 정보만 사용하여 SMPL 모델 파라미터를 추정할 경우 PCD와 실루엣 이 잘 들어맞지 않음.

○ ICP를 자체적으로 변형한 알고리즘을 사용하여 모델 파라미터 fine tuning

ICP: Algorithm

iterate until convergence:

- 1. sample points p_i
- 2. find closest points q_i
- 3. reject bad pairs $(\mathbf{p}_i, \mathbf{q}_i)$
- 4. find optimal transformation R t
- 5. update scan alignment

Shape 정합 알고리즘 상세

PCD registration 결과가 정확하지 않아 때문에 정면에서 찍은 PCD만 사용하여 최적화 진행. dogleg optimizer 사용

loss 함수: $\sum ||a(\mathbf{p})_i - b_i||^2 (a(\mathbf{p})_i \in A(\mathbf{p}), b_i \in B), A(\mathbf{p})$ 는 SMPL 모델의 vertex set, $B \succeq \text{pcd의 point set}, a(\mathbf{p})_i$ 와 $b_i \succeq \text{closest pair.}$

 $a(\mathbf{p})_i$ 와 b_i 의 노말 벡터의 내적 값이 일정 값보다 낮을 경우 그 pair는 reject 하고 loss 함수 계산에서 제외하도록 하였음.

모델과 옷의 노말 벡터를 사용하여 모델이 옷 밖으로 벗어난 경우를 감지하고 이 경우 더 큰 페널티를 가함.

Shape 정합 알고리즘 상세

의상 및 신체 텍스쳐 구성

Using scipy cKDTree, open3d

신체와 의상의 통합

신체 모델이 애니메이션 되므로 대응되는 신체 Vertex 기준 로컬 좌표계를 사용, 의상 Mesh가 신체 모델에 의존되도록 통합

open3d

신체와 의상의 통합

의상의 각 verte에 대해 대응되는 신체 Vertex의 로컬 좌표계로 변환 후 저장의상 Mesh가 신체 모델에 의존하도록 하기 위함

애니메이션

BVH 파일을 사용하여 Rigged 신체 모델의 Joint 각도를 매 프레임마다 변경하여 동작

의상은 신체 모델을 vertex 기준으로 변환해놓은 의상 메쉬의 로컬 좌표를 매 프레임마다 다시 글로벌 좌표로 변환시킴으로써 신체를 따라 옷이 자연스럽게 움직일 수 있는 효과를 냄.

결론

결론: 결과 및 효과

결론: 결과 및 효과

키넥트 카메라로 촬영된 이미지를 사용해 어느 정도 자연스럽게 움직일 수 있는 아바타 생성 기술을 연구하였다.

옷과 신체가 분리되어 있기 때문에 옷에 물리 엔진 등을 적용하거나 아바타끼리 옷을 서로 바꿔 입혀보는 등 추후 더 다양한 응용이 가능 하다.

https://youtu.be/5a_H0_dNM0s

결론: 개선점

SMPL 모델이 손가락 등 일부 신체 파트를 제대로 모델링하지 못해 해당 부위에 대한 모델 정합이 부정확함.

segmentation 네트워크의 출력이 한두 픽셀 이상의 오차를 보여 정교한 의상 모델을 생성하는데 어려움이 있음.

촬영 중 신체의 흔들림 또는 이동으로 인해 포인트 클라우드 정합이 불안정함.

신체 버텍스 기준 로컬 좌표계로 옷 버텍스 저장 후 애니메이션 시 아티팩트 발생

참고 문헌

- A method for registration of 3-D shapes, 1992
- Least-Squares Fitting of Two 3-D Point Sets, 1992
- SMPL: A Skinned Multi-Person Linear Model, 2015
- Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image, 2016
- Instance-level Human Parsing via Part Grouping Network, 2018
 https://github.com/Engineering-Course/CIHP_PGN
- TEASER: Fast and Certifiable Point Cloud Registration, 2020