CSCB36 Summary Of Vassos Hadzilacos'

Course notes for CSC B36/236/240

INTRODUCTION TO THE THEORY OF COMPUTATION

Instructor: Dr.Nick Cheng

Email: nick@utsc.utoronto.ca

Office: IC348 Office Hours: TBA

1 PRELIMINARIES

Sets: A collection of objects (**Elements**).

If an object a is an element of set A, we say that a is a **member of** A; denoted $a \in A$

The collection that contains no elements is called the **empty** or **null** set' denoted \varnothing

Cardinality/Size: Number of elements in a set. The cardinality of set A is denoted |A|, and is a non-negative integer. If A has a infinite number of elements, $|A| = \infty$, and if $A = \emptyset$, then |A| = 0.

Extensional Description: Describing a set by listing its elements explicitly, e.g. $A = \{1, 4, 5, 6\}$ Intentional Description: Describing a set by stating a property that characterizes its elements, e.g. $A = \{x | x \text{ is a positive integer less than } 5\}$

Let A and B be sets.

If every element of A is also an element of B,

then A is a subset of B $(A \subseteq B)$, and B is a superset of A $(B \supseteq A)$.

If $A \subseteq B$ and $B \subseteq A$, then A is **equal** to B (A = B).

If $A \subseteq B$ and $A \ne B$, then A is a **proper subset** of B; $(A \subset B \text{ and } B)$ is a **proper superset** of $A (B \supset A)$. **Note** the empty set is a subset of every set, and a proper subset of every set other than itself.

The union of A and B $(A \cup B)$, is the set of elements that belong to A or B (or both).

The **intersection** of A and B $(A \cap B)$, is the set of elements that belong to both A and B.

If no elements belongs to both A and B, their intersection is empty, and they are **disjoint** sets.

The **difference** of A and B, (A - B), is the set of elements that belong to A but do not belong to B.

Note that: $A - B = \emptyset \iff A \subseteq B$

The **union** and **intersection** can also be defined for an arbitrary (even infinite) number of sets. let I be a set of indices, such that for each $i \in I$ there is a set A_i

$$\cup_{i \in I} A_i = \{x : \text{for some } i \in I, x \in A_i\} \\ \cap_{i \in I} A_i = \{x : \text{for each } i \in I, x \in A_i\}$$

The **powerset** is the set of subsets, e.g. $A = \{a, b, c\}, \mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$ **Partition** of a set A, is pairwise disjoint subsets of A whose union is A. A partition of set A is a set $\mathcal{X} \subseteq \mathcal{P}(A)$, such that:

- (i) for each $X \in \mathcal{X}, X \neq \emptyset$
- (ii) for each $X, Y \in \mathcal{X}, X \neq Y$
- (iii) $\cup_{X \in \mathcal{X}} X = A$

Ordered Pair: A mathematical construction that bundles two objects a, b together, in a particular order, denoted (a, b). By this definition, $(a, b) = (c, d) \iff a = c \land b = d$ and $(a, b) \neq (b, a)$ unless a = b. We define an ordered pair (a, b) as the set $\{\{a\}, \{a, b\}\}$. We can also define ordered triples as ordered pairs, (a, b, c) can be defined as (a, (b, c)). This definition holds for ordered quadruples, quintuples, and ordered n-tuples for any integer n > 1.

Cartesian Product of A and B is denoted $A \times B$ and is the set of ordered pairs (a,b) where $a \in A, b \in B$. $|A \times B| = |A| \cdot |B|$, note that if A, B are distinct nonempty sets, $A \times B \neq B \times A$. The Cartesian product of n > 1 sets A_1, A_2, \ldots, A_n denoted $A_1 \times A_2 \times \cdots \times A_n$, is the set of ordered n-tuples (a_1, a_2, \ldots, a_n) , where $a_i \in A_i, i \in [1, n]$

Relation R between sets A and B is a subset of the Cartesian product $A \times B$ $(R \subseteq A \times B)$.

Arity: number of sets involved in the relation.

Two relations are **equal** if they contain exactly the same sets of ordered pairs. The two relations must refer to the exact same set of ordered pairs.

A binary relation (arity 2) between elements of the same set, can be represented graphically as a directed graph.

E.g. $R = \{(a,b)|a,b \in \{1,2,3,4\} \text{ and } a \leq b\}$

R is a **reflexive** relation, if for each $a \in A$, $(a, a) \in R$, e.g. the relation $a \leq b$ between integers is reflexive, while a < b is not.

R is a **symmetric** relation if for each $a, b \in R, (b, a) \in R$,

E.g. $R_1 = \{(a,b)|a \text{ and } b \text{ are persons with at least one parent in common}\}$ is symmetric. In the directed graph that represents a symmetric relation, whenever there is an arrow from a to b, there is an arrow from b to a. We can represent this with an **undirected graph**.

directed graph on the left, undirected graph on the right

R is a **transitive** relation if for each $a, b, c \in A$, $(a, b) \in R \land (b, c) \in R \longrightarrow (a, c) \in R$,

E.g. $R = \{(a, b)|a \text{ and } b \text{ are persons and a is an ancestor of b}\}$

We see that if a is an ancestor of b, and b is an ancestor of c, then a is an ancestor of c.

R is an equivalence relation if it is reflexive, symmetric and transitive,

E.g. $R = \{(a,b)|a \text{ and } b \text{ are persons with the same parents}\}$

a and a are the same person, thus have the same parents $((a, a) \in R)$, R is **reflexive**.

a and b share the same parents, b and a share the same parents $((a,b) \in R, (b,a) \in R)$, R is symmetric.

a and b share the same parents, b and c share the same parents, a and c must share the same parents. R is transitive.

thus we say R is an equivalence relation.

Let R be an equivalence relation and $a \in A$. The **equivalence class** of a under R is defined as the set $R_a = \{b | (a, b) \in R\}$, i.e., the set of all elements that are related to a by R.

If R is reflexive, then we know $\forall a \in A, R_a \neq \emptyset$

If R is transitive, then we know $\forall a, b \in R, R_a \neq R_b \longrightarrow R_a \cap R_b = \emptyset$

R is **partial order** if it is anti-symmetric and transitive.

R is total order if it is partial order and satisfies for each $a, b \in A$, either $(a, b) \in R$ or $(b, a) \in R$.

Let A and B be sets. A function f from A to B is a special kind of relation where each element $a \in A$ is associated with one element in B.

The relation $f \subseteq A \times B$ is a function if for each $a \in A$ there is exactly one $b \in B$ such that $(a, b) \in f$.

We write $f: A \to B$ to denote that f is a function from A to B, where A is the **domain** of the function, and B is the **range**.

The function $f: A \to B$ is:

onto/surjective if for every $b \in B$ there is at least one $a \in A$ such that f(a) = b

one-to-one/injective if for every element $b \in B$, there is at most one element $a \in A$ such that f(a) = b bijective if it is **one-to-one** and **onto**, if $f: A \to B$ is a bijection, then |A| = |B|.

The **restriction** of a function $f: A \to B$ is to a subset A' of its domain, denoted f|A', is a function $f': A' \to B$ such that for every $a \in A$, f'(a) = f(a).

An **initial segment** I of \mathbb{N} is a subset of \mathbb{N} with the following property: for any element $k \in I$, if k > 0 then $k - 1 \in I$. Thus, an initial segment of \mathbb{N} is either the empty set, or the set $\{0, 1, 2, \dots, k\}$ for some nonnegative integer k, or the entire set \mathbb{N}

let A be a set. A sequence over A is a function $\sigma: I \to A$, where I is an initial segment of N.

Intuitively $\sigma(0)$ is the first element in the sequence, $\sigma(1)$ is the second and so on. if $I = \emptyset$, then σ is the **empty** or **null** sequence, denoted ϵ . if $I = \mathbb{N}$ then σ is an infinite sequence; otherwise it is a finite sequence. The **length** of σ is |I| -i.e., the cardinality of I.

let $\sigma: I \to A$ and $\sigma': I' \to A$ be sequences over the same set A, and suppose that σ is finite.

Informally, the **concatenation** of σ and σ' , denoted $\sigma \circ \sigma'$ and sometimes as $(\sigma \sigma')$, is the sequence over A that is obtained by juxtaposing the elements of σ' after the elements of σ .

More precisely, if $I' = \mathbb{N}$ (i.e., σ is infinite), then if we let $j = \mathbb{N}$; otherwise let J be the initial segment $\{0, 1, \ldots, |I| + |I'| - 1\}$. Then $\sigma \circ \sigma'; J \to A$, where for any $i \in I, \sigma \circ \sigma'(i) = \sigma(i)$, and for any $i \in I, \sigma \circ \sigma(|I| + i) = \sigma'(i)$.

Informally, the **reversal** of σ , denoted σ^R , is the sequence of the elements of σ in revresed order, more precisely, $\sigma^R: I \to A$ is the sequence so that, for each $i \in I$, $\sigma^R(i) = \sigma(|I| - 1 - i)$.

Since, strictly speaking, a sequence is a function of a special kind, sequences $\sigma: I \to A$ and $\sigma': I \to A$ is equal if and only if, for every $k \in I$, $\sigma(k) = \sigma'(k)$.

From the definitions of concatenation and equality of sequences, it is easy to verify the following facts:

- 1. For any sequences $\sigma, \epsilon \circ \sigma = \sigma$; if σ is finite, $\sigma \circ \epsilon = \sigma$.
- 2. For any sequences σ, τ over the same set, if is finite and $\circ \sigma = \sigma$, then $= \epsilon$; if σ is finite and $\sigma \circ = \sigma$, then $= \epsilon$.

A sequence σ is a **subsequence** of sequence if the elements of σ appear in and do so in the same order. for example $\langle b, c, f \rangle$ is a subsequence of $\langle a, b, c, d, e, f, g \rangle$. Note that we do not require elements of σ to be consecutive elements of , we only require that hey appear in the same order as they do in .

If, in fact, the elements of σ are consecutive elements of , we say that σ is a **contiguous subsequence** of τ . Formally the definition of the subsequence relationship between sequences is as follows. let A be a set, I and J be initial segments of $\mathbb N$ such that $|I| \leq |J|$, and $\sigma: I \to A, J \to A$ be sequences over A. The sequence σ is a subsequence of if there is an increasing function $f: I \to J$ so that, for all $i \in I, \sigma(i) = (f(i))$. If σ is a subsequence of and is not equal to , we say that σ is a **proper subsequence** of .

An **alphabet** is a nonempty set Σ ; the elements of an alphabet are called its **symbols**. A **string** (over alphabet Σ) is simply a finite sequence over Σ .

The empty sequence is a string and is denoted, as usual, ϵ . The set of all strings over alphabet Σ is denoted Σ^* . Note that $\epsilon \in \Sigma^*$, for any alphabet Σ .

Operations on strings and languages (From Lecture)

ill

 $\Sigma = \{0, 1\}$, A string over Σ is a finite sequence like $x = \langle 1, 0, 1, 1 \rangle$

Reversal: $x^R = (1011)^R = 1101$

Concatenation: $x^k = x \cdot x \dots x$ where x is concatenated k times.

Equality: x = y means |x| = |y| and the *i*th element of x is equal to the *i*th element of y.

Substring: $y = a_1 a_2 \dots a_i \dots a_j \dots a_n$ and $x = a_i \dots a_j$ then x is a substring. by this definition, every string is a substring of itself.

Proper Substring: an x substring of y where |x| < |y|

A language over Σ is a nonempty subset of Σ^*

Recall that the set of all strings over alphabet Σ is denoted Σ^* .

A complementation: $\Sigma = \Sigma^* - L$, for a language L.

Union & Intersection: $L \cup L'$, $L \cap L'$

Concatenation: $L \cdot L' = LL = \{xy | x \in L, y \in L'\}, \varnothing \cdot L' = \varnothing$

Suppose |L|, |L'| are finite, $|L \cdot L'| \leq |L| \cdot |L'|$. In general

(Kleene) Star: $L^* = \{x | x = \epsilon \lor x = y_1 \cdot y_2 \dots y_k, k \ge 0, y_1, \dots, y_k \in L\}$

For example $L = \{a, b\}, L* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, abb, \dots\}$

Exponentiation: $L^k = L \cdot L \cdot L \cdot \dots \cdot L$ L concatenated 10 times.

$$L^{k} = \begin{cases} \{\epsilon\}, & k = 0 \\ \{L^{k-1} \cdot L, & k > 0 \end{cases}, L^{*} = \bigcup_{k \in \mathbb{N}} L^{k}$$

Reversal: (L^R) or $Rev(L) = \{x^R | x \in L\}$

Since strings are simply (finite) sequences over a specified set, various notions defined for sequences apply to string as well. In particular, this is the case for the notion of length which must now be a natural number, and cannot be inf. We use the term **substring** as synonymous to contiguous subsequence.

Let A be a finite set, A **permutation** of A is a sequence in which every element of A appears once and only once. For example if $A = \{a, b, c, d\}$ then $\langle b, a, c, d \rangle$, $\langle a, c, d, b \rangle$...

Sometimes we speak of permutations of a sequence rather than a set. In this case, the definition is as follows: Let $\alpha: I \to A$ and $: I \to A$ be finite sequences over A. The sequence is a permutation of α is there is a bijective function $f: I \to I$ so that for every $i \in I$, $(i) = \alpha(f(i))$

2 INDUCTION

Fundamental properties of the natural numbers

The natural numbers are nonnegative integers $0, 1, \ldots$ denoted \mathbb{N} ;

Principle of well-ordering: Any nonempty subset A of \mathbb{N} contains a minimum element; i.e., $\forall A \subseteq N, \ni$: $A \neq \emptyset, \exists a \in A, \ni$: $\forall a' \in A, a \leq a'$

This applies to all nonempty subsets of $\mathbb N$ and to infinite subsets of $\mathbb N$. This principle does not apply to other sets

Simple induction

Let A be any set that satisfies the following properties:

 $0 \in A$

 $\forall i \in \mathbb{N}, i \in A \Rightarrow i+1 \in A$

Then A is a superset of \mathbb{N} .

Complete induction

Let A be any set that satisfies the following property:

 $\forall i \in \mathbb{N}$, if evrey natural number less than $i \in A$ then $i \in A$.

Then A is a supserset of \mathbb{N} .

This principle is similar to the principle of simple induction, although there are some differences.

The requirement that $0 \in A$ is implicit as for any $i \in \mathbb{N}, 0 \leq \mathbb{N} \Rightarrow 0 \in A$. The second difference is we require i to be an element of A if all elements preceding i are in A. In contrast, we require $i \in A$ if $i - 1 \in A$.

Equivalence of the three principles

Theorem 1.1 The principle of well-ordering, induction, and complete induction are equivalent.

Proof. We prove this by establishing a "cycle" of implications. Specifically, we prove that (a) well-ordering implies induction, (b) induction implies complete induction, and (c) complete induction implies well ordering. (a) well-ordering implies induction: Assume that the principle of well-ordering holds. We will prove that principle of induction is also true.

let A be a set that satisfies the following:

- 1. $0 \in A$
- 2. $\forall i \in \mathbb{N}, i \in A \Rightarrow i+1 \in A$

We suppose that $A \not\supseteq \mathbb{N}$. Then there must exist a nonempty set $A' = \mathbb{N} - A$. By the principle of well ordering, A' has a minimum element a', by (1), $a' \neq 0$ because $0 \in A, a' \notin A$. Thus a' > 0 and a' - 1 is a natural number. But since a' is the minimum element of A', $a - 1 \notin A'$, and therefore $a' - 1 \in A$. By (2), as $a' - 1 \in A, a' \in A$ and we arrive at a contradiction, thus $A \supseteq \mathbb{N}$

(b) induction implies complete induction.

Again we try to prove that $A \supseteq \mathbb{N}$. To this end, define the set B,

 $B = \{i \in \mathbb{N} | \text{ every natural number smaller than or equal to i is in } A\}.$

In other words, B is the initial segment of \mathbb{N} up to but not including the smallest number that is not in A. We see that $B \subseteq A$. Thus to prove that $A \supseteq \mathbb{N}$ it suffices to prove that $B \supseteq \mathbb{N}$

- 1. We have $0 \in B$ because (1) implies $0 \in A$.
- 2. For any $i \in \mathbb{N}$, $i \in B \Rightarrow i+1 \in B$.

These two above satisfy the conditions to use principle of induction (which we assume holds), we have $B \supseteq \mathbb{N}$, as wanted.

(c) Complete induction implies well-ordering: Assume that the principle of complete induction holds. Let A be any subset of $\mathbb N$ that has no minimum element. To prove that the principle of well-ordering holds, it suffices to show that A is empty.

For any $i \in \mathbb{N}$, if every natural number less than i is not in A, i is not in A either, otherwise, i would be the minimum element of A, and we are assuming that A has no minimum element. Let $A' = \mathbb{N} - A$. Thus any natural number i is in A if and only if i is not in A'.

Therefore, for any $i \in \mathbb{N}$, if every natural number less than i is in A', then i is also in A'. By the principle of complete induction, $A' \supseteq \mathbb{N}$. Therefore A is empty, as wanted. \square

Mathematical induction

Mathematical induction is a proof technique which can often be used to prove that a certain statement is true for all natural numbers.

For example:

- 1. $P_1(n)$: The sum of all natural numbers up to and including n is equal to n(n+1)/2
- 2. $P_2(n)$: If a set A has n elements, then the power set of A has 2^n elements.

In general, a predicate of a natural number n may be true for all values of n, for some values of n, or for no values of n.

Examples of Induction:

Example 1.
$$S(n): \sum_{t=0}^{n} t = \frac{n(n+1)}{2}$$

BASIS: n=0. In this case, S(0) states that $0=0\cdot 1/2$, which is obviously true. Thus S(0)

INDUCTION STEP: Let i be an arbitrary natural number and assume that S(i) holds,

i.e.,
$$\sum_{t=0}^{i} t = \frac{i(i+1)}{2}$$
. This is our inductive hypothesis.

WTS:
$$S(i+1)$$
. i.e., $\sum_{i=0}^{i+1} t = \frac{(i+1)(i+2)}{2}$

$$\sum_{i=0}^{i+1} t = \sum_{i=0}^{i} t + (i+1) \text{ [Definition of Addition]}$$

$$= \frac{i(i+1)}{2} + (i+1) \text{ [IH]}$$

$$= \frac{2(i+1) + i(i+1)}{2} \text{ [Algebra]}$$

$$= \frac{2i+2+i^2+i}{2} \text{ [Algebra]}$$

$$= \frac{i^2+3i+2}{2} = \frac{(i+1)(i+2)}{2} \text{ [Algebra]}$$
Therefore $S(i+1)$ as wanted. \square

Example 2. P(k): any set of k elements has 2^k subsets.

BASIS: k = 0, then our set is $\{\}$ (the empty set), and as the empty set is a subset of itself, it is the only subset. We see that it indeed has $2^0 = 1$ subset(s). Thus, P(0)

INDUCTION STEP: Let i be an arbitrary natural number, assume that P(i) holds, that is a set of i elements has exactly 2^i subsets. [IH]

WTS: P(i+1). that is a set of i+1 elements has exactly 2^{i+1} subsets.

Consider an arbitrary set with i+1 elements, say $A = \{a_1, a_2, \dots, a_{i+1}\}$. Consider two types of subsets of A: those that contain a_{i+1} and those that do not. let \mathcal{Y} be the set of subsets of A that contain a_{i+1} and \mathcal{N} be the set of subsets of A that do not.

First we see that \mathcal{N}, \mathcal{Y} have the same number of elements. Next we see that they both have exactly i elements.

By the inductive hypothesis, \mathcal{N}, \mathcal{Y} have exactly 2^i elements each.

Finally, we note that these sets of subsets are distinct, that is to say $\mathcal{N} \cap \mathcal{Y}\{\}$ as every subset in \mathcal{N} will not contain a_{i+1} and every subset in \mathcal{Y} will.

Since they are distinct, $|\mathcal{Y} \cup \mathcal{N}| = |\mathcal{Y}| + |\mathcal{N}| = 2^i + 2^i = 2 \cdot 2^i = 2^{i+1}$ as wanted. \square

Example 3. For any $m, n \in \mathbb{N}$, there are exactly n^m functions from any set of m elements to any set of n elements.

We prove this by using induction,

P(m): for any $n \in \mathbb{N}$, there are exactly n^m functions from any set of m elements to any set of n elements

Q(n): for any $m \in \mathbb{N}$, there are exactly n^m functions from any set of m elements to any set of n elements Proving either of these would give the desired proposition, but the first predicate is far easier.

BASIS: m=0, P(0) states that for any integer $n \in \mathbb{N}$, there are exactly n^0 functions from any set of m elements to any set of n elements. But since were consider functions that map zero elements to n elements, there is only one function whose domain is empty, the empty function.

INDUCTION STEP: Let i be an arbitrary natural number, suppose that for P(i), i.e, there are n^i functions that map from any set of i elements to any set of n elements. [IH]

WTS: P(i+1); i.e., there are n^{i+1} functions that map a set of i+1 elements to a set of n elements. let A be an arbitrary set with i+1 elements, say $A = \{a_1, a_2, \ldots, a_{i+1}\}$, and B be an arbitrary set of n elements, say $B = \{b_1, b_2, \ldots, b_n\}$. Let's fix a particular element of a_{i+1} , and group the functions from $A \to B$ according to the element of B which a_{i+1} gets mapped.

 $X_1 =$ the set of functions from $A \to B$ that map a_{i+1} to b_1 $X_2 =$ the set of functions from $A \to B$ that map a_{i+1} to b_2 $X_3 =$ the set of functions from $A \to B$ that map a_{i+1} to b_3 \vdots $X_n =$ the set of functions from $A \to B$ that map a_{i+1} to b_n

Every functions from $A \to B$ belongs to one and only one of these sets. Notice that for any $j \in [1, n]$, X_j contains as many functions there are from the set $A' = \{a_1, a_2, \ldots, a_i\} \to B$. This is because X_j contains the functions from $\{a_1, a_2, \ldots, a_i, a_{i+1}\}$ to B where, however, we have specified the elemt to which a_{i+1} is mapped; the remaining elements of A can get mapped to the elements of B in any possible way, by induction hypothesis, $|X_j| = n^i$, for each $jm \ni 1 \le j \le n$

$$|X_1| + |X_2| + \dots + |X_n| = n^i + n^i + \dots + n^i = n \cdot n^i = n^{i+1}, \square$$

Example 4. Let m, n be natural numbers such that $n \neq 0$. The division of m by n yields a quotient a remainder - i.e., unique natural numbers q, r such that m = nq + r where r < n.

Define predicate p(m): for any $n \in \mathbb{N}, n \neq 0, \exists q, r \in \mathbb{N}, \ni m = q \cdot n + r$ where r < n.

Basis: m = 0, if we let q = r = 0 then for any $n \in \mathbb{N}, 0 = 0 \cdot n + 0$, thus P(0)

INDUCTIVE STEP: Let $i \geq 0$ be an arbitrary natural number, and suppose P(i); $\forall n \in \mathbb{N}, \exists q, r \in \mathbb{N}, \ni : i = nq + r, r < n$

WTS: P(i+1) that is for any natural number $n \neq 0$, there are $q', r' \in \mathbb{N}, \ni : i+1 = q' \cdot n + r', r' < n$. Since r < n, we have two cases to consider, either r < n-1 or r = n-1

CASE 1. r < n-1. In this case we have i = nq + r by [IH], thus i+1 = nq + r + 1 let q' = q, r' = r+1, since r < n-1, r' = r+1 < n, we see that i+1 = q'n + r'

CASE 2. r = n - 1. In this case again we have i = nq + r by [IH], where i + 1 = nq + r + 1 however we have r = n - 1

Thus i + 1 = nq + n - 1 + 1 = nq + n, letting q' = q + 1, r' = 0, i + 1 = nq' + r'

We have shown that P(i+1) holds for either case of r now we must show uniqueness.

Suppose that there exists $m, n \in \mathbb{N}, n \neq 0$ let $q, q', r, r' \in \mathbb{N}, \exists : m = q \cdot n + r = q' \cdot n + r', r, r' < n$

 $(q-q')\cdot n=r'-r$, lets assume WLOG that $q\geq q'\Rightarrow q-q'>0\Rightarrow q-q'\geq 1$ which means that $(q-q')\cdot n\geq n$, but we see that $r-r'\geq n$ must hold which is impossible, since r'< n and $r\geq 0$. Thus q-q'=0=r-r' In other words, they are unique, as wanted.

Complete Induction

In carrying out the induction step of an inductive proof, we sometimes discover that to prove P(i+1) holds, it would be helpful to know that P(j) holds for more values of j that are smaller than i+1. For example, it might be that to prove P(i+1) holds, we need to use the fact that $P(\lfloor i/2 \rfloor)$ holds and P(i) holds.

Let P(n) be a predicate of natural numbers, $\forall i \in \mathbb{N}, \forall j < i, P(j) \Rightarrow P(i)$

A typical proof of complete induction is as follows:

- 1. We let $i \in \mathbb{N}$
- 2. We assume that P(j) for all natural numbers j < i [IH]
- 3. Using the inductive hypothesis, we prove P(i)

Sometimes complete induction takes a different form, where it has explicit base cases. For example odd and even integers.

Bases other than zero

As with simple induction, sometimes we need to prove that a predicate holds, for all natural numbers greater than or equal to some constant c. We can prove such a statement by using variants of complete induction. For all $i \in \mathbb{N}$, $i \geq c$, if P(j) holds for all $c \leq j < i$, then P(i) holds.

Example 1.

P(n): n has a prime factorization.

We use complete induction to prove that P(n) holds for all natural $n \ge 2$. let $i \in \mathbb{N}$, $i \ge 2$ and assume P(j) for any $2 \le j < i$. WTS P(i).

CASE 1: i is a prime, then it is a prime factorization of itself, thus P(i) for this case.

CASE 2: i is not a prime, then there exists $d \in \mathbb{N}$ such that d divides i where $i = d \cdot a, a \in \mathbb{N}$ for $d \neq 1, d \neq i$, If $d \neq i$ and $d \in \mathbb{N}$, $d \geq 2$, the same is said about a, we see that $2 \leq a, b \leq i$. We can use our inductive hypothesis, and P(a) as well as P(b) holds, this implies that our i is a product of prime factors, thus P(i). Therefore, $P(n), \forall n \geq 2$

Example 2.

P(n): Postage of exactly n cents can be made using only 4-cent and 7-cent stamps.

WTS, $P(n) \forall n \geq 18$ m Let $i \geq 18 \in \mathbb{N}$ be an arbitrary, assume that P(j) for any $18 \leq j < i$, WTS P(i) holds.

Case 1: $18 \le i \le 21$. We can make postage for:

- 1. 18 cents using 1 4-cent stamp and 2 7-cent stamps.
- 2. 19 cents using 3 4-cent stamps and 1 7-cent stamp.
- 3. 20 cents using 5 4-cent stamps and 0 7-cent stamps.
- 4. 21 cents using 0 4-cent stamps and 3 7-cent stamps.

CASE 2: $i \ge 22$ let j = i - 4 thus $18 \le j < i$ and by inductive hypothesis, P(j) holds, this means $j = 4 \cdot k + 7 \cdot l$. However if we let k' = k + 1 and l' = l, we see that $4 \cdot k' + 7 \cdot l' = 4 \cdot k + 7 \cdot l + 4 = j + 4 = i$ Thus P(i), Thus in both cases, P(i) as wanted.

Example 3. P(n): if a full binary tree has n nodes, then n must be odd.

Let i be an arbitrary integer $i \ge 1$, suppose that P(j) holds for all positive integers j < i. That is, for any positive integer j < i, if a full binary tree has j nodes, then j is an odd number. WTS P(i), let T be an arbitrary binary tree with i nodes, WTS i is odd.

Case 1. i = 1, P(i) for this case because T has only one node.

Case 2. i > 1

3 7.2 Regular Expressions

Let Σ be an alphabet, Want to define the set regexes over Σ

- set of strings over Γ , where $\Sigma \cup \{(,),+,*,\epsilon,\varnothing\}$

Definition: Let \mathcal{RE} let this be the smallest set. \mathcal{RE} stands for regular expression.

Basis: $\epsilon, \emptyset; a \in \mathcal{RE}, \forall a \in \mathbb{Z}$

INDUCTION STEP: if $R, S \in \mathcal{RE}$, then $(RS), (R+S), R* \in \mathcal{RE}$

Syntax \equiv Grammar, and Semanticsof regxes:

Given a regex R, wants to define the language of $R \mathcal{L}(R)$, i.e., if the set of strings that matches R

Define $\mathcal{L}(R)$ by structural induction.

Basis: $\mathcal{L}(\epsilon) = \{\epsilon\}, \ \mathcal{L}(\varnothing) = \varnothing, \mathcal{L}(a) = \{a\}, \forall a \in \Sigma$

If R = (ST), then $\mathcal{L}(ST) = \mathcal{L}(S) \cdot \mathcal{L}(T)$

If R = (S + T), then $\mathcal{L}(R) = \mathcal{S} \cup \mathcal{T}$

If $R = (s^*)$, then $\mathcal{L}(R) = \mathcal{L}(R)^*$

For example $1(1+0)^*$, $\{1\}$, $\{0\}$ by base cases of $\mathcal{L}(a) = \{a\}$

Thus $1 + 0 = \{0, 1\}$, ofc $(1 + 0)^* = \{0, 1\}$ *

Finally $\{1\}\{0,1\}^*\{0\}$ is the set of all binary sequences starting from, ending with 0 with anything in between that is a binary sequence.

now $111^* \neq (111)^*$