Jaareling Salesman Problem *

Puroblem: The problem asks to yind the shortest tour through a given set of n cities that wisits each city exactly once before returning to the city where it started.

Its the problem of yinding the Shortest Hamiltonian Circuit of the graph

Technique : Exhaustive Search (Brute Force)

lengtha+8+1+71=18Tows a>b>c>d>a

2+3+1+5 = 11 optimal a>6 >d >c >a

5+8+3+7=23 a>c>b>d>a

5+1+3+2=11 optimal a>c>d>b>a

7+3+8+5=23 a>d >b>c>a

7+1+8+2=18 a>d>c>b>a

	Observations:
	- Pairs of tours might Only digger by
	- Pairs of tours might Only differ by direction
	- Approach is practical only yor Smaller
	value of D
	Total paracitations regaled will be 184
_	We can get all the towns by generating
	We can get all the tours by generating all the pumutations of N-1 intermediate
	Cities.
	We could cut the number of Vertex
	pumutations by haly. (Eg: choose only
	punutations where Up precedes U2)
	This will reduce the number of premutati
	-ons to (n-1)!
	a .
•••••	A > 1

PAGE NO.:			
DATE:	1	1	al reference

Huyman Trees x

Motivation: Encode a text that comprises characters yrom some n-characters alphabet by assigning to each of the text's characters some sequence of bits called the codeword.

Example: Consider jue-character alphabet with yollowing occurrence probabilities:

we construct Huyman Coding Tree as.

PAGE	NO.			
DATE	:	1	1	

Notes:

- Constructs a tree that assigns shorter bit strings to high-yrequency characters & longer ones to low-yrequency characters.
- payix free ea payix codes- no codeword is a payix of a character codeword of another Character.
- Fixed length u/s variable length encoding
- For the example, the expected number of bits per character in this code is,
 - = 2 * 0.35 + 3 * 0.1 + 2 * 0.2 + 2 * 0.2 + 3 * 0.15
 - = 2.25
- Compression natio
 - = 3-2.25 * 100 = 25%.

 3

 La Fixed length would have used 3.

Huyman uses 25.1. less memory than its yixed length encoding.

-		
DATE:	1	
DAIL.	/	1

- Experiments Show that Huygman Codes have compression ratio typically galling between 20% & 80%.

Exercise

1. Construct a Hyman tree yor the following data & obtain its Huyman code:

Character A B C D E
Probability 0.5 0.35 0.5 0-1 0-4 0.2

Encode the text

DAD_BE using the Obtained Code

Decode the text whose encoding is

What is the achieved compression actio?