Modelling time-varying features of speech: tools and methods

Michele Gubian

Institute of Phonetics and Speech Processing LMU Munich, Germany

Graz, October 2020

Alignment of rising pitch accents in Spanish

- European Spanish
- Diphthong: /ja/
 e.g. Emiliana
- Hiatus /i.a/
 e.g. piano
- Rising pitch accent should align to syllabic structure

- Read speech
- 9 participants
- 20 Diphthongs +
 - 20 Hiatuses each

- Read speech
- 9 participants
- 20 Diphthongs +20 Hiatuses each

Georgians of the diphthong hiatus of the diphthong hia

- Read speech
- 9 participants
- 20 Diphthongs +20 Hiatuses each

NUMBERS

General Seminary of the following seminary o

- Read speech
- 9 participants
- 20 Diphthongs +20 Hiatuses each

ext (st)	d/D	Cat.
5.3	0.9	D
4.6	0.7	Н
•••		•••

NUMBERS

- Read speech
- 9 participants
- 20 Diphthongs +20 Hiatuses each

ext (st)	d/D	Cat.
5.3	0.9	D
4.6	0.7	Η
•••	•••	•••

NUMBERS

- Read speech
- 9 participants
- 20 Diphthongs +20 Hiatuses each

DCT

k0	k1	k2	•••

NUMBERS

DCT limitations

- DCT does not (easily) encode time-localised information, e.g. a small hump
- Typically only k0, k1 and k2 are used, which have a geometric interpretation (mean, slope, curvature)
- Extracting several k's brings up the need of PCA
- In general, not effective to encode long signals

- Read speech
- 9 participants
- 20 Diphthongs +20 Hiatuses each

NUMBERS

GAMM

GAMMs

PRO

- LMER directly on curves
- Good R packages (e.g. mgcv)
- Good tutorials (e.g. Wieling, Soskuthy)

CON

- No easy way to analyse multidimensional signals
- Computationally heavy
- LMER directly on curves :D

- Read speech
- 9 participants
- 20 Diphthongs +20 Hiatuses each

s1	s2	s3	
			•••

NUMBERS

FPCA

PRO

- Computationally light
- Interpretable
- Easy to analyse multidimensional signals
- Allows you to use LMER

CON

- Suboptimal with respect to GAMMs
- Can fail with many categories
- Can fail when noise is linearly related to variation of interest

Road map

CURVES

NUMBERS

Interpolate using a function basis

Dimensionality reduction tool

LMER

Data driven

- Few parameters
- Interpretable

Road map

CURVES

NUMBERS

Interpolate using a function basis

Dimensionality reduction tool

LMER

Data driven

- Few parameters
- Interpretable

Interpolation with B-splines

Interpolation with B-splines

Interpolation with B-splines

Different durations

Linear time normalisation

Linear time normalisation

- We must use the same time interval
- This implies linear time normalisation
- Durations have to be reintroduced at the end of the analysis

Road map

CURVES

NUMBERS

Interpolate to the same time interval

Dimensionality reduction tool

LMER

Data driven

- Few parameters
- Interpretable

Introducing Functional PCA

Vectors

- Data objects and components are vectors
- From scores (numbers) we can reconstruct data objects (vectors)

- PCA computes new origin and unit vectors which best suit the data
- From PC scores we can reconstruct data objects

Dimensionality reduction

- We can use only part of the PCs
- This reduces the data dimensionality
- But introduces reconstruction errors too

Functions (curves)

- Origin, components and data objects are functions
- Origin is a flat line
- Components are
 11 B-spline curves

Functions (curves)

- Each of the 11 components is multiplied by a score
- These are summed together to obtain a data object

Functional PCA

 FPCA computes new origin and component functions which best suit the data

Functional PCA

- The sum of origin (mean) curve + PCs times their scores gives an approx reconstruction of the original curve
- Dimensions from 11 (B-splines) down to 2 (PCs)

Functional PCs

Curve reconstruction

PC1 scores

PC2 scores

Curve parametrisation

Curve parametrisation

Multidimensional signals

Formants

2D CURVES

FPCA

NUMBERS

LMER

Formants

2D CURVES

NUMBERS

LMER

Trick

2D CURVES

NUMBERS

LMER

PC1 scores

PC2 scores

2D curve parametrisation

PC1 score

PC2 score

Long signals

Many segments

- Narrow focus in Neapolitan Italian
- Focus on
 Subject, Verb or Prop. Phrase
 Danilo vola da Roma
 (Danilo flies from Rome)
- 8 CV syllables
 first C was excluded (too short)
 VCVCV CV CV CV CV

... 15 segments!

Linear time normalisation

Landmark registration

Using landmark registration

Using landmark registration

Inside landmark registration

Relative log rate

Using log rates

PC1 scores

PC1 scores

PC2 scores

multi-segment curve parametrisation

PC1 score

multi-segment curve parametrisation

PC2 score

Extra slides

Take longest duration

Take shortest duration

Principal Component Analysis

PCA limitations

- PCA does not use any explicit information related to the curve shapes or the B-splines shapes
- e.g. the sequence of coefficients c1, c2,.. reflects time adjacency of polynomial components, i.e. overlapping 'hills'

Functional PCA

$$\max \left\{ var_n \left(\int_0^T \frac{PC1(t)}{f_n(t)} f_n(t) dt \right) \right\}$$

subject to
$$\int_0^T PC1^2(t) = 1$$

7.....

- FPCA definition uses the input curves f_n(t)
- FPCA is independent of the B-splines used to smooth f_n(t)