

Université Libre de Bruxelles

Summary

Fluid mechanics and transport processes MECA-H-300

Author: Enes Ulusoy

Professor : Alessandro Parente

Appel à contribution

Synthèse OpenSource

Ce document est grandement inspiré de l'excellent cours donné par NomDuProf à l'EPB (École Polytechnique de Bruxelles), faculté de l'ULB (Université Libre de Bruxelles). Il est écrit par les auteurs susnommés avec l'aide de tous les autres étudiants et votre aide est la bienvenue! En effet, il y a toujours moyen de l'améliorer surtout

que si le cours change, la synthèse doit être changée en conséquence. On peut retrouver le code source à l'adresse suivante

https://github.com/nenglebert/Syntheses

Pour contribuer à cette synthèse, il vous suffira de créer un compte sur *Github.com*. De légères modifications (petites coquilles, orthographe, ...) peuvent directement être faites sur le site! Vous avez vu une petite faute? Si oui, la corriger de cette façon ne prendra que quelques secondes, une bonne raison de le faire!

Pour de plus longues modifications, il est intéressant de disposer des fichiers : il vous faudra pour cela installer LATEX, mais aussi git. Si cela pose problème, nous sommes évidemment ouverts à des contributeurs envoyant leur changement par mail ou n'importe quel autre moyen.

Le lien donné ci-dessus contient aussi le README contient de plus amples informations, vous êtes invités à le lire si vous voulez faire avancer ce projet!

Licence Creative Commons

Le contenu de ce document est sous la licence Creative Commons : Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). Celle-ci vous autorise à l'exploiter pleinement, compte- tenu de trois choses :

- 1. Attribution; si vous utilisez/modifiez ce document vous devez signaler le(s) nom(s) de(s) auteur(s).
- 2. Non Commercial; interdiction de tirer un profit commercial de l'œuvre sans autorisation de l'auteur
- 3. Share alike; partage de l'œuvre, avec obligation de rediffuser selon la même licence ou une licence similaire

Si vous voulez en savoir plus sur cette licence :

http://creativecommons.org/licenses/by-nc-sa/4.0/

Merci!

Chapitre 1

Introduction

Before beginning the summary, I want to tell you that my English level isn't perfect. Please collaborate and correct the gramatically wrong sentences.

1.1 Reminder

The governing equations in transport processes are the following:

• Mass conservation :

$$\frac{\partial \rho}{\partial t} + \nabla(\rho v) = 0 \tag{1.1}$$

• Navier-Stokes:

$$\rho\left(\frac{Dv}{Dt} + v\nabla v\right) = -\nabla p + \mu \nabla^2 v \tag{1.2}$$

• Energy equation :

$$\frac{DT}{Dt} = \nabla(\alpha \nabla T) + \frac{\dot{Q}v}{\rho c} \tag{1.3}$$

• Species conservation

$$\frac{\partial \rho_A}{\partial t} + \nabla(\rho_A v_A) = r_A \tag{1.4}$$

Let's precise that there are many applications using these equations like in the aerospace and automotive industry, in safety and fire prevention or in buildings design.

1.2 Convection and diffusion

1.2.1 Definitions

Here is a picture illustrating the principles of **convection**, **conduction** and **radiation**. Imagine that you have a fire and you put your hands above. You will feel a flow of heat transmitted by convection. If someone comes with a stick, it will be conduction in the material transmitting the energy from particles to particles. Finally, if the hands are next to the fire, there is no flow but you feel the heat. The energy is transmitted by radiation.

1.2.2 Convection

Convection is a transfer always associated to bulk fluid motion. We consider a fluid with **uniform** velocity and a cylinder of section S and lenght Δt . In that time interval, the fluid in the cylinder will have crossed the section S. We are now able to express the convective

flux of momentum, energy and mass knowing that the flux of a physical quantity is given by

$$flux_A = \frac{A}{S\Delta t} \tag{1.5}$$