Raport

Parametry:

- 1) train test split
 - a) test_size=0.3
 - b) random_state=50
 - c) shuffle = True
- 2) DecisionTreeClassifier
 - a) criterion='gini'
- 3) RandomForestClassifier
 - a) n_estimators = 10
 - b) criterion = 'log loss'

	Głębokość drzewa	
Niezbalosowane dane	5	
Under-sumpling	4	
Over-sumpling	4	
SMOTE	2	

Wyniki pomiarów:

	Dokładność	ROC	F1
DT z niezbalosowanymi	83%	66%	48%
danymi			
RF z niezbalosowanymi	82%	64%	44%
danymi			
DT z under-sumplingiem	79%	70%	52%
RF z under-sumplingiem	78%	71%	53%
DT z over-sumplingiem	78%	71%	53%
RF z over-sumplingiem	79%	71%	54%
DT z SMOTE	82%	68%	51%
RF z SMOTE	80%	69%	51%

Wnioski:

- 1. Przy stosowaniu metod balansujących dane wzrasta wartość ROC i F1 kosztem dokładności.
- 2. Przy stosowaniu metod balansujących dane dla optymalnego wyniku należy zmniejszyś maksymalną głębokość drzewa, szczególnie dla SMOTE.
- 3. Drzewo Decyzyjne wydaje się nieznacznie skuteczniejsze od Random forest.
- 4. Biorąc pod uwagę wszystkie 3 współczynnki można stwierdzić że najskuteczniejsza jest metoda SMOTE.