Announcements

□ Homework for tomorrow...

```
Ch. 29: CQ 10, Probs. 20, 22, & 54

CQ4a) E_1 = E_2 = -(10 \text{ V/m}) ihat b) E_1 = -(5 \text{ V/m}) ihat, E_2 = -(20 \text{ V/m}) ihat CQ5: accelerates right 29.6: W = 1.6 x 10<sup>-13</sup> J 29.12: E_x(\text{ocm} < x < 2\text{cm}) = +2,500 \text{ V/m} E_x(2\text{cm} < x < 3\text{cm}) = -10,000 \text{ V/m} 29.44: E = 40 \text{ V/m}, \theta = 27^\circ ccw from +x-axis
```

□ Office hours...

MW 10-11 am TR 9-10 am F 12-1 pm

□ Tutorial Learning Center (TLC) hours:

```
MTWR 8-6 pm
F 8-11 am, 2-5 pm
Su 1-5 pm
```

Chapter 29

Potential & Field

(Combinations of Capacitors)

Review...

□ Kirchoff's Loop Rule...

$$\Delta V_{loop} = \sum_{i} (\Delta V)_i = 0$$

- □ Conductors in Electrostatic Equilibrium...
- □ Capacitance...

$$C \equiv \frac{Q}{\Delta V_C}$$
 $C = \frac{\epsilon_0 A}{d}$ (parallel-plate capacitor)

Consider two capacitors in parallel...

□ Can we find an *equivalent capacitor*, C_{eq} , to the two capacitors, $C_1 \& C_2$?

$$\Delta V_{B} = \Delta V_{1} = \Delta V_{2}$$

$$Q = Q_{1} + Q_{2}$$

$$C = \underline{Q} \qquad Q = C\Delta V$$

$$Q_{1} = C_{1} \Delta V$$

$$Q_{2} = C_{2} \Delta V$$

$$Q_{e\xi} = C_{e\xi} \Delta V_{e\xi}$$

$$Ceq \triangle V = C_1 \triangle V + C_2 \triangle V$$

$$Ceq = C_1 + C_2$$

Consider two capacitors in parallel...

□ Can we find an *equivalent capacitor*, C_{eq} , to the two capacitors, $C_1 \& C_2$?

□ YES!

$$C_{eq} = C_1 + C_2$$

What about for several capacitors in parallel?

□ Can we find an *equivalent capacitor*, C_{eq} , to the capacitors, C_1 , C_2 , ... (all in parallel)?

What about for several capacitors in parallel?

□ Can we find an *equivalent capacitor*, C_{eq} , to the capacitors, C_1 , C_2 , ... (all in parallel)?

$$C_{eq} = C_1 + C_2 + \dots$$

Consider two capacitors in series...

□ Can we find an *equivalent capacitor*, C_{eq} , to the two capacitors, $C_1 \& C_2$?

1.)
$$\triangle \nabla_{Bat} = \triangle V_1 + \triangle V_2$$

2.) $Q = Q_1 = Q_2$
 $C = \frac{Q}{\triangle V}$: $\triangle V = \frac{Q}{C}$

Plugging into a)
$$\frac{Q}{Ce_{q}} = \frac{Q}{C_{1}} + \frac{Q}{C_{2}}$$

$$\frac{1}{Ce_{q}} = \frac{1}{C_{1}} + \frac{1}{C_{2}}$$

Consider two capacitors in series...

□ Can we find an *equivalent capacitor*, C_{eq} , to the two capacitors, $C_1 \& C_2$?

• YES!
$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$$

What about several capacitors in series?

□ Can we find an *equivalent capacitor*, C_{eq} , to the capacitors, C_1 , C_2 ,... (all in series)?

What about several capacitors in series?

□ Can we find an *equivalent capacitor*, C_{eq} , to the capacitors, C_1 , C_2 ,... (all in series)?

Quiz Question 1

The equivalent capacitance is

1. 9
$$\mu$$
F.

2.
$$6 \mu F$$
.

3.
$$3 \mu F$$
.

$$(4)$$
 2 μ F.

5.
$$1/2 \mu F$$
.

$$\frac{1}{3nf} + \frac{1}{6nf} = \frac{3}{6nf} = \left(\frac{1}{2nf}\right)^{1} = Ceq$$

i.e. 29.7:

A Capacitor Circuit

Find the charge on and the potential difference across each of the three capacitors in the figure below.

Given:
$$\mathcal{E}$$
 = 12 V, C_1 = 3 μ F, C_2 = 5 μ F , C_3 = 1 μ F

29.6: The Energy Stored in a Capacitor

How much energy is transferred from the battery to the capacitor?

The charge escalator does work $dq \Delta V$ to move charge dq from the negative plate to the positive plate.

Initially: q = 0, U = 0

Finally: q = Q, $U = U_C$

29.6:

The Energy Stored in a Capacitor

How much *energy* is transferred from the battery to the capacitor?

The charge escalator does work $dq \Delta V$ to move charge dq from the negative plate to the positive plate.

$$U_C = \frac{Q^2}{2C}$$

$$U_C = \frac{1}{2}C(\Delta V_C)^2$$

The Energy in the Electric Field

Q: If a capacitor is analogous to a stretched spring, *where* is the stored energy?

The Energy in the Electric Field

Q: If a capacitor is analogous to a stretched spring, *where* is the stored energy?

Capacitor plate with area A

 \square A: In the *E*-field!

$$u_E = \frac{1}{2}\epsilon_0 E^2$$
 energy stored

volume in which it is stored

When the capacitor is discharged, the energy is released as the *E*-field *collapses*.