VNA-232 Converter Manual

Version 1.2 Revised September 11th, 2011 Created by the J1939 to RS232 Experts

Warranty

Simma Software's products and software, when properly installed and used, are warranted for a period of one year from the date of order. If Simma Software receives notice of such defects during the warranty period, Simma Software will replace the adapter at no charge. Simma Software does not assume liability for its products or software, and does not warrant that the operation of the products or software shall be error free.

If during the investigation of a warranty claim, the customer and Simma Software both agree the suspected defect is not a defect, time spent by Simma Software will be paid for at \$120/hr and all expenses will be reimbursed.

THE WARRANTY SET FORTH ABOVE IS EXCLUSIVE AND NO OTHER WARRANTY, WHETHER WRITTEN OR ORAL, IS EXPRESSED OR IMPLIED. SIMMA SOFTWARE SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR SUCH PURPOSE.

THE REMEDIES PROVIDED HEREIN ARE CUSTOMER'S SOLE AND EXCLUSIVE REMEDIES. UNLESS REQUIRED BY APPLICABLE LAW, IN NO EFFECT SHALL SIMMA SOFTWARE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING LOSS OF PROFITS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY.

TABLE OF CONTENTS

1.0	INTRODUCTION	4
2.0	RS-232 FRAMING	5
3.0	RS-232 MESSAGES	7
4.0	PHYSICAL CONNECTIONS	19
5.0	SPECIFICATIONS	22

Chapter 1 Introduction

Chapter 1 Introduction

VNA-232 is a high performance Vehicle Network Adapter. The adapter interfaces with a computer using a standard RS-232 port at speeds up to 1 Mbps. The vehicle network adapter supports connections to two SAE J1939 networks and one J1708 network simultaneously.

Connection to the host computer is made via the female DB9 connector on the device. A standard "straight-through" serial cable may be used to make this connection. Connection to the vehicle network is made using the female DB15 connector found on the device. Power must be supplied to the VNA through this connection. All connections to the device are more thoroughly detailed in the Chapter 4.

Chapter 2 RS-232 Framing

Chapter 2 RS-232 Framing

This chapter describes the message framing protocol used to define the start and body of messages sent between host device and the VNA-232.

Data is sent to and from the VNA-232 using the industry standard method of byte stuffing. Byte stuffing is the process of reserving certain values for special purposes. This allows for error recovery if RS-232 communications are disrupted. The VNA-232 protocol defines two special tokens, START and ESC. START has a value 192 decimal and ESC has a value of 219 decimal.

All messages start with a START token, and because of this, a START token can never appear in any part of the message. If the value of 192 is contained in the message length, data field, or checksum, an ESC token is inserted into the data stream followed by a 220, this indicates a value of 192. If an ESC token appears in the message length, data field, or checksum, an ESC token is inserted into the stream followed by a 221, this indicates a value of 219. All messages must be byte stuffed, following the START token, by the transmitter and unstuffed by the receiver.

To send a packet, a VNA-232 host starts by sending a START character followed by the size of the data to follow, along with the data and the checksum of the packet. The message length is a 2-byte field (MSB) equal to the size of the data field and checksum before byte stuffing has been executed. The checksum is a 2's complement checksum over the length and data fields and is calculated before byte stuffing has been added.

START	Length (MSB)	Length (LSB)	Data Field	Checksum
-------	--------------	--------------	------------	----------

Figure 2-1 Framing Structure

Chapter 2 RS-232 Framing

Byte Stuffing Example 1:

To transmit 10 zeros (in chronological order)

Description	Byte #	Value
Start	0	192
MSB Length	1	0
LSB Length	2	11
Data 0	3	0
Data 1	4	0
Data 2	5	0
Data 3	6	0
Data 4	7	0
Data 5	8	0
Data 6	9	0
Data 7	10	0
Data 8	11	0
Data 9	12	0
Checksum (includes length and data)	13	245

Byte Stuffing Example 2:

To transmit 0x00 (0), 0xC0 (192), 0xDB (219), 0xDC (220), 0xDD (221) (Data bytes 1 and 2 require byte stuffing)

Description	Byte #	Value
Start	0	192
MSB Length	1	0
LSB Length	2	6
Data 0	3	0
Data 1	4	219
Data 2	5	220
Data 3	6	219
Data 4	7	221
Data 5	8	220
Data 6	9	221
Checksum (includes length and data bytes before stuffing)	10	166

Chapter 3 RS-232 Messages

This chapter describes the commands that can be sent to and from the VNA-232 via RS-232. Note, all message definitions are in their unstuffed representations.

Messages	Functional Descriptions
VMSG_ACK	Acknowledge a message
VMSG_FA_J1939	Add a J1939 message filter
VMSG_FD_J1939	Delete a J1939 message filter
VMSG_FA_J1587	Add a J1587 message filter
VMSG_FD_J1587	Delete a J1587 message filter
VMSG_TX_J1939	Transmit a single J1939 message
VMSG_RX_J1939	Receipt of a single J1939 message
VMSG_PX_J1939	Periodically transmit a J1939 message
VMSG_TX_J1587	Transmit a single J1587 message
VMSG_RX_J1587	Receipt of a single J1587 message
VMSG_PX_J1587	Periodically transmit a J1587 message
VMSG_CPU_RESET	Requests CPU reset in 100ms

Table 4-1: Messages and Functions

Every message starts with a message identifier. This is an eight bit value that tells the receiver what type of message follows. This is followed by one or more additional data fields depending on the message. The message identifiers, data fields, responses, etc. can be found for each message on the following pages.

Message	Data	Data	 Data
ID	Byte 0	Byte 1	Byte n

Figure 4-1 Message Structure

ACK

Acknowledge

ACK

Description:

This message is sent to acknowledge the receipt of a message from the host system.

Syntax:

8b-vmsg, 8b-vmsg_ack

Definition:

Name	Size	Value	Description
vmsg	1 byte	0	Message Identifier
vmsg_ack	1 byte	variable	Message identifier of acknowledged
			message

Response:

None

Example:

Acknowledges the receipt of a TX_J1939 command 0/5

FA_J1939

Filter Add

FA_J1939

Description:

This message adds a PGN to the acceptance filter the desired port.

Syntax:

8b-vmsg, 8b-port, 24b-pgn

Definition:

Name	Size	Value	Description
vmsg	1 byte	1	Message Identifier
port	1 byte	0 or 1	J1939 Port Number
pgn	3 bytes	variable	Parameter Group Number (MSB first)

Response:

ACK

Example:

Add acceptance filter for the PGN 65236 to port 0.

1/0/0/254/212

FD_J1939

Filter Delete

FD_J1939

Description:

This message removes a PGN from the acceptance filter for the specified port.

Syntax:

8b-vmsg, 8b-port, 24b-pgn

Definition:

Name	Size	Value	Description
vmsg	1 byte	2	Message Identifier
port	1 byte	0 or 1	J1939 Port Number
pgn	3 bytes	variable	Parameter Group Number (MSB first)

Response:

ACK

Example:

Deletes the acceptance filter for the PGN 65236 on port 0.

2/0/0/254/212

FA_J1587

Filter Add

FA_J1587

Description:

This message adds a PID filter to the J1587 port.

Syntax:

8b-vmsg, 16b-pid

Definition:

Name	Size	Value	Description
vmsg	1 byte	3	Message Identifier
pid	2 byte	variable	PID (MSB first)

Response:

ACK

Example:

Adds acceptance filter for the PID 12345.

3/48/57

FD_J1587

Filter Delete

FD_J1587

Description:

This message deletes a PID filter from the J1587 port.

Syntax:

8b-vmsg, 16b-pid

Definition:

Name	Size	Value	Description
vmsg	1 byte	4	Message Identifier
pid	2 byte	variable	PID (MSB first)

Response:

ACK

Example:

Removes the acceptance filter for the PID 12345.

4/48/57

TX_J1939

Transmit

TX_J1939

Description:

This message schedules a J1939 message for transmission. The message will be sent as soon as the attached CAN network allows.

Syntax:

8b-vmsg, 8b-port, 24b-pgn, 8b-dst, 8b-src, 8b-pri, nB-data

Definition:

Name	Size	Value	Description
vmsg	1 byte	5	Message Identifier
port	1 byte	0 or 1	J1939 Port Number
pgn	3 byte	variable	Parameter Group Number (MSB first)
dst	1 byte	variable	Destination Address
src	1 byte	0 to 252	Source Address
pri	1 byte	0 to 7	Priority
data	variable	variable	Data

Response:

ACK

Example:

Schedules a J1939 packet on port 1 with pgn=12345, dst=255, src=252, pri=6, data=0 to 10

5/1/0/48/57/255/252/6/0/1/2/3/4/5/6/7/8/9/10

RX_J1939

Receive

RX_J1939

Description:

This message is sent to the host device when the VNA receives a J1939 message that passes acceptance filtering.

Syntax:

8b-vmsg, 8b-port, 24b-pgn, 8b-dst, 8b-src, 8b-pri, nB-data

Definition:

Name	Size	Value	Description
vmsg	1 byte	6	Message Identifier
port	1 byte	0 or 1	J1939 Port Number
pgn	3 byte	variable	Parameter Group Number (MSB first)
dst	1 byte	variable	Destination Address
src	1 byte	0 to 252	Source Address
pri	1 byte	0 to 7	Priority
data	variable	variable	Data

Response:

ACK

Example:

Receipt of a J1939 packet on port 1 with pgn=12345, dst=255, src=252, pri=6, data=0 to 10

6/1/0/48/57/255/252/6/0/1/2/3/4/5/6/7/8/9/10

PX_J1939

Periodic Transmit

PX_J1939

Description:

This message schedules a message for periodic transmission on the specified port. Message transmission time may be slightly delayed from the value specified depending on the usage of the network the device is attached to.

Syntax:

8b-vmsg, 8b-port, 24b-pgn, 8b-dst, 8b-src, 8b-pri, nB-data, 16b-rate

Definition:

Name	Size	Value	Description
vmsg	1 byte	7	Message Identifier
port	1 byte	0 or 1	J1939 Port Number
pgn	3 byte	variable	Parameter Group Number (MSB first)
dst	1 byte	variable	Destination Address
src	1 byte	0 to 252	Source Address
pri	1 byte	0 to 7	Priority
data	variable	variable	Data
rate	2 bytes	variable	Rate of re-transmission in mS

Response:

ACK

Example:

Schedules a J1939 packet on port 1 to transmit every second with pgn=12345, dst=255, src=252, pri=6, data=0 to 10

7/1/0/48/57/255/252/6/0/1/2/3/4/5/6/7/8/9/10/3/232

TX_J1587

Transmit

TX_J1587

Description:

This message schedules a J1587 message for transmission

Syntax:

8b-vmsg, 8b-mid, 16b-pid, 8b-pri, nB-data

Definition:

Name	Size	Value	Description
vmsg	1 byte	8	Message Identifier
mid	1 byte	variable	J1587 MID
pid	2 byte	variable	Parameter Identifier
pri	1 byte	1 to 8	Priority
data	variable	variable	Data

Response:

ACK

Example:

Schedules a J1587 packet to transmit with mid=123, pid=321, pri=4, data=0 to 10

8/123/321/4/0/1/2/3/4/5/6/7/8/9/10

RX_J1587

Receive

RX_J1587

Description:

This message is sent to the host device when the VNA receives a J1587 message that passes acceptance filtering.

Syntax:

8b-vmsg, 8b-mid, 16b-pid, nB-data

Definition:

Name	Size	Value	Description
vmsg	1 byte	9	Message Identifier
mid	1 byte	variable	J1587 MID
pid	2 byte	variable	Parameter Identifier
data	variable	variable	Data

Response:

ACK

Example:

Receipt of a J1587 packet with mid=123, pid=321, pri=4, data=0 to 10 9/123/321/4/0/1/2/3/4/5/6/7/8/9/10

RESET CPU RESET RESET

Description:

This message requests a CPU reset in 100 ms. Note, correct key must be supplied.

Syntax:

8b-vmsg, 24b-key

Definition:

Name	Size	Value	Description
vmsg	1 byte	17	Message Identifier
key	3 bytes	0x5A69A5	Unlock key

Response:

ACK

Example:

Requests a CPU reset. 17/90/105/165

STATS

Message Statistics

STATS

Description:

This message is sent to the host device every second. It contains the total number of valid J1708 messages, invalid J1708 bytes, and CAN frames.

Syntax:

8b-vmsg, 32b-stat0, 32b-stat1, 32b-stat2, 8b-verhw, 8b-versw

Definition:

Name	Size	Value	Description
vmsg	1 byte	23	Message Identifier
stat0	4 bytes	Variable	Total received J1708 valid messages
stat1	4 bytes	Variable	Total received J1708 invalid bytes
stat2	4 bytes	Variable	Total received CAN frames
verhw	1 byte	Variable	Version of hardware
versw	1 byte	Variable	Version of software

Response:

None

Chapter 4 Physical Connections

This chapter describes how to connect the VNA-232 to both your vehicle and computer. For further implementation details see later chapters.

Vehicle:

Figure 4-1 VNA-232 Vehicle Connection

The VNA is designed to connect to a heavy duty truck using a Deutsch 9 pin or 6 pin HD connector. Pinout is industry standard, so cable adapters are interchangeable.

Power must be provided to the VNA-232 through the DB15. The power supply internal to the device features an input range of 8 to 30V.

Figure 4-2 Standard Deutsch HD Connector (Plug)

Function	Deutsch 9 Pin	DB 15 Pin
Ground (-)	1/A	6
Battery (+)	2/B	8
CAN0 High (+)	3/C	13
CAN0 Low (-)	4/D	12
CAN Shield	5/E	7
J1708 (+)	6/F	15
J1708 (-)	7/G	14
CAN1 High (+)	8/H	5
CAN1 Low (-)	9/J	10

Table 4-1 Standard DB15 compared to Deutsch HD pinout

Computer:

The VNA is designed to communicate to a host computer/embedded device via a standard RS-232 connection. Connection on the VNA is implemented using a female DB9, which should allow for the use of a standard "straight-through" DB9 serial cable. Refer to figure 4-3 for DB9 pinout schematic.

Figure 4-3 DB9 Pinout

Chapter 5 Specifications

Chapter 5 Specifications

Physical

Serial Connection: DB-9 Female Vehicle Connection: DB-15 Female

Temperature Rating: -40 to +85C (+125C available)

Electrical

8-30 VDC Input, 0.5W max Load Dump and Input Power Reverse Bias Protection All communications lines feature 8kV or higher IEC ESD protection CAN transceiver meets or exceeds ISO 11898 standard J1587 transceiver fully compliant with TIA/EIA-485A

Functional

10 Individual J1939 periodic message transmissions 10 Individual J1708 periodic message transmissions 100 Individual J1939 acceptance message filters 100 Individual J1587/J1708 acceptance message filters CAN 125kbps to 1Mbps RS-232 9.6kps to 1Mbps