1

Assignment 2

Vishal Ashok

Abstract—This document explains how to trace a curve given its equation.

Download Python code from

https://github.com/vishalashok98/AI5106/tree/main/ Assignment 1

Download the latex-tikz codes from

https://github.com/vishalashok98/AI5106/tree/main/ Assignment_1

1 Problem

Trace the curve

$$35x^2 + 30y^2 + 32x - 108y - 12xy + 59 = 0 (1.0.1)$$

2 EXPLANATION

The general equation of second degree is given by

$$ax^{2} + 2bxy + cy^{2} + 2dx + 2ey + f = 0 (2.0.1)$$

and can be expressed as

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{2.0.2}$$

where

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \tag{2.0.3}$$

$$\mathbf{u}^T = \begin{pmatrix} d & e \end{pmatrix} \tag{2.0.4}$$

3 Solution

Comparing (1.0.1) with (2.0.1), we get

$$\mathbf{V} = \begin{pmatrix} 35 & -6 \\ -6 & 30 \end{pmatrix} \tag{3.0.1}$$

$$\mathbf{u}^T = \begin{pmatrix} 16 & -54 \end{pmatrix} \tag{3.0.2}$$

If |V| > 0, then (2.0.2) is an ellipse.

$$|V| = \begin{vmatrix} 35 & -6 \\ -6 & 30 \end{vmatrix} = 1014 > 0 \tag{3.0.3}$$

(2.0.2) can be expressed as

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f \qquad |V| \neq 0 \qquad (3.0.4)$$

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = -\eta \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{y} \qquad |V| = 0 \qquad (3.0.5)$$

with center as

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} \qquad |V| \neq 0 \tag{3.0.6}$$

Calculating the center for given curve we get,

$$\mathbf{c} = -\frac{1}{|35 * 30 - 6 * 6|} \begin{pmatrix} 30 & 6 \\ 6 & 35 \end{pmatrix} \begin{pmatrix} 16 \\ -54 \end{pmatrix}$$
 (3.0.7)

$$=\frac{1}{1014} \begin{pmatrix} 156\\ -1794 \end{pmatrix} \tag{3.0.8}$$

$$= \begin{pmatrix} \frac{2}{13} \\ \frac{-23}{13} \end{pmatrix} \tag{3.0.9}$$

For

$$|\mathbf{V}| > 0$$
, or, $\lambda_1 > 0$, $\lambda_2 > 0$ (3.0.10)

(3.0.4) becomes

$$\lambda_1 y_1^2 + \lambda_2 y_1^2 = \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f \tag{3.0.11}$$

which is the equation of an ellipse with major and minor axes parameters

$$\sqrt{\frac{\lambda_1}{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}}, \sqrt{\frac{\lambda_2}{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}}$$
 (3.0.12)

The characteristic equation of V is obtained by evaluating the determinant

$$\left| \lambda \mathbf{I} - \mathbf{V} \right| = \begin{vmatrix} \lambda - 35 & 6 \\ 6 & \lambda - 30 \end{vmatrix} = 0 \tag{3.0.13}$$

$$\implies \lambda^2 - 65\lambda + 1014 = 0 \tag{3.0.14}$$

The eigenvalues are the roots of (3.0.14) given by

$$\lambda_1 = 39, \lambda_2 = 26$$
 (3.0.15)

Calculating the major and minor axes lengths

using (3.0.12), we get

$$\mathbf{u}^{T}\mathbf{V}^{-1}\mathbf{u} =$$

$$= (16 - 54) \frac{1}{1014} \begin{pmatrix} 30 & 6 \\ 6 & 35 \end{pmatrix} \begin{pmatrix} 16 \\ -54 \end{pmatrix}$$

$$= \frac{1}{1014} \begin{pmatrix} 16 & -54 \end{pmatrix} \begin{pmatrix} 156 \\ -1794 \end{pmatrix}$$

$$= 98$$

$$\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f = 98 - 59 = 39 \tag{3.0.16}$$

$$\sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_1}} = \sqrt{\frac{39}{39}} = 1$$
 (3.0.17)

$$\sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_2}} = \sqrt{\frac{39}{26}} = \frac{\sqrt{6}}{2}$$
 (3.0.18)

Assignment/Assignment7.png

Fig. 0: Ellipse with center $\left(\frac{2}{13} - \frac{-23}{13}\right)$ and having the axes lengths as 1 and $\frac{\sqrt{6}}{2}$