Physically-Plausible Parameters

Peter Gawthrop. peter.gawthrop@unimelb.edu.au
June 7, 2021

Contents

1	Introduction					
	1.1	Setup modules				
	1.2	Quadratic programming QP	3			
2	Con	version factor	4			
3	Extract Model					
	3.1	Extract stoichiometry	4			
	3.2	Extract reaction potentials Φ and deduce plausible species potentials ϕ	6			
	3.3	Extracted reactions and reaction potentials	8			
4	Ded	luce Pathway Flows	8			
5	Reaction constants (modified mass-action) and Michaelis-Menten					
	5.1	Normalise data	12			
	5.2	Show computed reaction flows				
	5.3	Show computed chemostat flows	14			
	5.4	Show pathway flows	15			
6	Spe	cies constants	15			
7	Sim	ulation	16			
	7.1	Set up parameters	16			
	7.2	Set up chemostats and flowstats	16			
	7.3	Time unit	17			
	7.4	Simulation	17			
8	Michaelis-Menten formulation					
	8.1	Show results	25			
	8.2	Bond graph model of Enzyme Catalysed Reaction (RE)	25			
	8.3	Replace Re components by RE	27			
	8.4	Set up parameters	28			
	8.5	Simulate	29			
	8.6	Plot ratios	31			

1 Introduction

This note illustrates an approach to fitting the parameters of a bond graph model to experimental data. Insofar as the parameters are associated with a bond graph, they are *physically-plausible* Gawthrop et al. (2020).

The approach uses a bond-graph derived from a stoichiometric model of *e.coli* Orth et al. (2010) (using a method described elsewhere Gawthrop (2020)) combined with experimental values of *reaction potential, reaction flux* and *species concentration* from the literature Park et al. (2016).

1.1 Setup modules

```
[1]: ## Paths
NeedPath=True
if NeedPath:
    import sys
    sys.path += ['/usr/lib/python3/dist-packages']
```

```
[2]: ## Maths library
     import numpy as np
     import scipy
     ## BG tools
     import BondGraphTools as bgt
     ## SVG bond graph
     import svgBondGraph as sbg
     ## BG stoichiometric utilities
     import stoich as st
     ## Modular bond graphs
     import modularBondGraph as mbg
     ## Stoichiometric conversion
     import CobraExtract as Extract
     import stoichBondGraph as stbg
     ## Potentials
     import phiData
     ## Faraday constant
     import scipy.constants as con
     F = con.physical_constants['Faraday constant'][0]
     ## Display
     import IPython.display as disp
     ## Plotting
     import matplotlib.pyplot as plt
     import copy
     ## Allow output from within functions
     from IPython.core.interactiveshell import InteractiveShell
     InteractiveShell.ast_node_interactivity = "all"
```

```
import importlib as imp
quiet = True
showMu=True
```

1.2 Quadratic programming QP.

minimise
$$\frac{1}{2}x^TPx + q^Tx$$
 (1)

subject to
$$Gx \le h$$
 (2)

and
$$Ax = b$$
 (3)

In the case considered here, there is no equality constraint and

$$x = \hat{\phi} \tag{4}$$

$$P = NN^T + \mu I_{n_X \times n_X} \tag{5}$$

$$q = (N\Phi)^T \tag{6}$$

$$G = N^T (7)$$

$$h = -\Phi_{min} \tag{8}$$

 $\mu > 0$ is required to give a convex QP: in essence it turns a non-unique solution for ϕ into a minimum norm solution.

```
[3]: ## Quadratic programming stuff.
     import quadprog
     \textit{\#\# Function from https://scaron.info/blog/quadratic-programming-in-python.html}
     def quadprog_solve_qp(P, q, G=None, h=None, A=None, b=None):
         qp_G = .5 * (P + P.T) # make sure P is symmetric
         qp_a = -q
         if A is not None:
             qp_C = -np.vstack([A, G]).T
             qp_b = -np.hstack([b, h])
             meq = A.shape[0]
         else: # no equality constraint
             if G is None:
                 qp_C = None
                 qp_b = None
             else:
                 qp_C = -G.T
                 qp_b = -h
             meq = 0
         return quadprog.solve_qp(qp_G, qp_a, qp_C, qp_b, meq)[0]
     ## Function to compute phi from Phi subject to Phi>positive number
     ## NN Reduced N corresponding to known Phi
     def quadsolve_phi(N0,N1,Phi0,Phi_min=0.0,mu=1e-10):
```

```
(n_X,n_V) = N1.shape
P = 1.0*N0@(N0.T) + mu*np.eye(n_X)
q = (N0@Phi0).T
G = 1.0*N1.T
h = -Phi_min*np.ones((n_V))
phi = quadprog_solve_qp(P, q, G=G, h=h)
return phi
```

2 Conversion factor

```
[4]: Factor = st.F()/1e6
print(f'To convert from kJ/mol to mV, divide by {1/Factor:4.3}')
```

To convert from kJ/mol to mV, divide by 10.4

3 Extract Model

This example uses the Glycolysis and Pentose Phosphate pathways.

[5]: sm = Extract.extract(cobraname='textbook', Remove=['_C','__'],

Notes:

- Reactions RPI, PGK and PGM are reversed to correspond to positive flows.
- The resultant stoichiometric matrix N relates reaction flows (f) to species flows (\dot{x}):

$$\dot{x} = Nf \tag{9}$$

3.1 Extract stoichiometry

```
negReaction=['RPI', 'PGK', 'PGM'], quiet=quiet)

Extracting stoichiometric matrix from: textbook
Cobra Model name: e_coli_core BondGraphTools name: e_coli_core_abg
Extract.Integer only handles one non-integer per reaction
Multiplying reaction BIOMASS_ECOLIORE ( 12 ) by 0.6684491978609626 to avoid non-integer species 3PG ( 2 )
Multiplying reaction CYTBD ( 15 ) by 2.0 to avoid non-integer species 02 ( 55 )
Multiplying reaction PGK ( 54 ) by -1
Multiplying reaction PGM ( 56 ) by -1
Multiplying reaction RPI ( 65 ) by -1
```

```
[6]: name = 'GlyPPP_abg'
reaction = []

## Glycolysis
reaction += ['PGI','PFK','FBA','TPI']

## Pentose Phosphate
reaction += ['G6PDH2R','PGL','GND','RPI','TKT2','TALA','TKT1','RPE']
```

```
ss = Extract.choose(sm,reaction=reaction)

## Create BG
ss['name'] = name
stbg.model(ss)
import GlyPPP_abg
imp.reload(GlyPPP_abg)
s = st.stoich(GlyPPP_abg.model(),quiet=quiet)
```

```
[7]: ## Set up chemostats
    chemostats = ['ADP','ATP','H','H2O','NADP','NADPH','CO2']
    chemostats += ['G6P','G3P','R5P']
    #chemostats += ['G6P','R5P']
    chemostats.sort()
    print(chemostats)
    sc = st.statify(s,chemostats=chemostats)

sp = st.path(s,sc,pathname='PPP')
    print(st.sprintp(sc))
    disp.Latex(st.sprintrl(sp,chemformula=True))
```

['ADP', 'ATP', 'CO2', 'G3P', 'G6P', 'H', 'H2O', 'NADP', 'NADPH', 'R5P']
3 pathways
0: + PGI + PFK + FBA + TPI
1: + G6PDH2R + PGL + GND + RPI
2: - 2 PGI + 2 G6PDH2R + 2 PGL + 2 GND + TKT2 + TALA + TKT1 + 2 RPE

[7]:

$$ATP + G_6P \xrightarrow{PPP_1} ADP + 2G_3P + H \tag{10}$$

$$G_6P + H_2O + 2 \text{ NADP} \xrightarrow{PPP_2} CO_2 + 2 H + 2 \text{ NADPH} + R_5P$$
 (11)

$$2H_2O + 4NADP + R_5P \xrightarrow{PPP_3} 2CO_2 + G_3P + 4H + 4NADPH$$
 (12)

```
[8]: print(st.sprintl(sc,'K',transpose=True))
disp.Latex(st.sprintl(sc,'K',transpose=True))
```

[8]:

3.2 Extract reaction potentials Φ and deduce plausible species potentials ϕ .

Because of the energetic constaints implied by the bond graph, the reaction potentials Φ are related to the species potentials ϕ by

$$\Phi = -N^T \phi \tag{14}$$

Typically, there are more species than reactions and so N has more rows than columns. Given the reaction potentials Φ , the species potentials can be estimated using the *pseudo inverse* N^{\dagger} of $-N^{T}$:

$$\hat{\phi} = N^{\dagger} \Phi \tag{15}$$

Notes:

• In general $\hat{\phi} \neq \phi$ but is physically plausible insofar as $-N^T \hat{\phi} = \Phi$.

```
[9]: def getPhi(s,Phi_hyd=0.5,phi_6PGL=None,quadprog=False):
         """Extract phi for given system using
         Reaction potentials from ParRubXu16"""
         ## Reaction potentials from ParRubXu16
         PHI = phiData.Phi_ParRubXu16_Measured()
           Phenotype = 'Mammalian'
          Phenotype = 'Yeast'
         Phenotype = 'Ecoli'
         Phi_reac = PHI[Phenotype]
         Phi = np.zeros((len(s['reaction']),1))
         N = copy.copy(s['N'])
         N_0 = None
         N_1 = None
         Phi_0 = []
         for j,reac in enumerate(s['reaction']):
             if (reac in Phi_reac.keys()) and not np.isnan(Phi_reac[reac]):
                 Phi_0.append(Phi_reac[reac])
                 if N_O is None:
                     N_0 = N[:,j]
                     N_0 = np.vstack((N_0,N[:,j]))
             else:
                 if N_1 is None:
                     N_1 = N[:,j]
                 else:
                     N_1 = np.vstack((N_1,N[:,j]))
         Phi_0 = np.array(Phi_0)
         #print(N_1)
```

```
N_O = N_O.T
          N_1 = N_1.T
          n_X, n_V = N_0.shape
          print(f'Extracting {n_X} values of phi from {n_V} values of Phi')
          if quadprog:
              phi = quadsolve_phi(N_0,N_1,Phi_0,Phi_min=1e-3,mu=1e-10)
              ## Compute Phi using pseudo inverse
              pinvNT = scipy.linalg.pinv(N_0.T)
              phi = -pinvNT@Phi_0
          if phi_6PGL is not None:
              ## Reset 6PGL
              i_6PGL = s['species'].index('6PGL')
              phi[i_6PGL] = phi_6PGL
              print (f'Resetting phi_6GPL to {int(1e3*phi[i_6PGL])} mV' )
          ## Sanity check
          Phi_new = -N_0.T_{ophi}
          err = np.linalg.norm(Phi_new-Phi_0)
          print(f'Phi error = {int(err*1000)}mV\n')
          Phi = -N.T_{ophi}
          return Phi,phi,Phi_0,Phi_reac
[10]: Phi_,phi_est_,Phi_0_,Phi_reac_ = getPhi(s,quadprog=False)
      print('Minimum Phi = ', int(round(np.min(1e3*Phi_))), 'mV')
     Extracting 19 values of phi from 10 values of Phi
     Phi error = OmV
     Minimum Phi = -3 mV
[11]: Phi,phi_est,Phi_0,Phi_reac = getPhi(s,quadprog=True)
      print('Minimum Phi = ', int(round(np.min(1e3*Phi))), 'mV')
      print('\nChange in phi')
      for i,spec in enumerate(s['species']):
          change = int(1e3*(phi_est[i]-phi_est_[i]))
          if not change==0:
              print(f'{i} {spec}\t {change}')
      print('\nChange in Phi')
      for i,reac in enumerate(s['reaction']):
          change = int(round(1e3*(Phi[i]-Phi_[i])))
```

Compute Phi

Extracting 19 values of phi from 10 values of Phi Phi error = 0mV

Minimum Phi = O mV

Change in phi 1 6PGL 1 12 H2O 1

Change in Phi 5 PGL 4 1 -3

3.3 Extracted reactions and reaction potentials

```
[12]: disp.Latex(st.sprintrl(s,chemformula=True,Phi=Phi,units=['mV','kJ']

→,showMu=showMu))
```

[12]:

$$G_{6}P \stackrel{PGI}{\longleftarrow} F_{6}P \qquad (16 \text{ mV}) [-1.59 \text{ kJ mol}^{-1}]$$

$$ATP + F_{6}P \stackrel{PFK}{\longleftarrow} ADP + FDP + H \qquad (68 \text{ mV}) [-6.64 \text{ kJ mol}^{-1}]$$

$$FDP \stackrel{FBA}{\longleftarrow} DHAP + G_{3}P \qquad (20 \text{ mV}) [-1.93 \text{ kJ mol}^{-1}]$$

$$DHAP \stackrel{TPI}{\longleftarrow} G_{3}P \qquad (7 \text{ mV}) [-0.77 \text{ kJ mol}^{-1}]$$

$$G_{6}P + NADP \stackrel{G_{6}PDH_{2}R}{\longleftarrow} {}_{6}PGL + H + NADPH \qquad (82 \text{ mV}) [-7.99 \text{ kJ mol}^{-1}]$$

$${}_{6}PGL + H_{2}O \stackrel{GND}{\longleftarrow} {}_{6}PGC + H \qquad (1 \text{ mV}) [-0.10 \text{ kJ mol}^{-1}]$$

$${}_{6}PGC + NADP \stackrel{GND}{\longleftarrow} CO_{2} + NADPH + RU_{5}PD \qquad (114 \text{ mV}) [-11.05 \text{ kJ mol}^{-1}]$$

$$RU_{5}PD \stackrel{RPI}{\longleftarrow} R_{5}P \qquad (0 \text{ mV}) [-0.00 \text{ kJ mol}^{-1}]$$

$$E_{4}P + XU_{5}PD \stackrel{TKT_{2}}{\longleftarrow} F_{6}P + G_{3}P \qquad (16 \text{ mV}) [-1.58 \text{ kJ mol}^{-1}]$$

$$G_{3}P + S_{7}P \stackrel{TALA}{\longleftarrow} E_{4}P + F_{6}P \qquad (54 \text{ mV}) [-5.25 \text{ kJ mol}^{-1}]$$

$$R_5P + XU_5PD \xrightarrow{TKT_1} G_3P + S_7P \qquad (4 \text{ mV}) [-0.39 \text{ kJ mol}^{-1}]$$

$$RU_5PD \xrightarrow{RPE} XU_5PD \qquad (0 \text{ mV}) [-0.08 \text{ kJ mol}^{-1}]$$

4 Deduce Pathway Flows

From basic stoichiometric analysis, steady-state flows can be written as:

$$f = K_p f_p \tag{16}$$

where
$$K_p N^{cd} = 0$$
 (17)

Note that the *pathway matrix* K_p is dependent on the choice of chemostats.

Given a set of experimental flows f, an estimate \hat{f}_p of f_p can be obtained from the *least-squares* formula:

$$(K_p^T K_p) \hat{f}_p = K_p^T f \tag{18}$$

Notes:

- v_p is a n_p vector containg the pathways flows
- $(K_p^T K_p)$ is a square $n_p \times n_p$ matrix where n_p is the number of pathways
- If some flows are not measured, the corresponding rows of K_p are deleted
- the reaction flows (including the missing ones) can be estimated from $\hat{f} = K_p \hat{f}_p$.
- the estimated chemostat flows are given by the non-zero elements of

$$\hat{\dot{x}} = N\hat{f} \tag{19}$$

```
[13]: def PathwayFlux(K, reaction, Reaction, flux):
          #KK = st.singleRemove(K)
          KK = K
          Kp = None
          Flux = {}
          reac_known = []
          #flux = phiData.ParRubXu16_flux()
          for i,reac in enumerate(reaction):
              if reac in flux.keys():
                  reac_known.append(reac)
                  fi = flux[reac]
                  \#Ki = np.abs(KK[i,:])
                  Ki = KK[i,:]
                  #print(reac,Ki)
                  if Kp is None:
                       Kp = Ki
                       f = fi
                  else:
                       Kp = np.vstack((Kp,Ki))
                       f = np.vstack((f,fi))
          #print(Kp)
          if Kp is not None:
              #print(f)
              f_p = np.linalg.solve(Kp.T@Kp,Kp.T@f)
              for i, Reac in enumerate (Reaction):
                  Flux[Reac] = f_p[i][0]
              #print(f_p)
              f_est = Kp@f_p
              #print(Kp@f_p-f)
          error = np.linalg.norm(f_est-f)/len(f)
          print(f'Flux error = {error:.2e}')
          return Flux,f_p,f_est,f,reac_known
```

5 Reaction constants (modified mass-action) and Michaelis-Menten

The modified mass-action formula is Gawthrop et al. (2020):

$$f = \kappa \left(\exp \frac{\Phi^f}{\alpha V_N} - \exp \frac{\Phi^r}{\alpha V_N} \right) \tag{20}$$

Thus an estimate for κ can be computed as:

$$\hat{\kappa} = \frac{\hat{f}}{f_0} \tag{21}$$

where
$$f_0 = \left(\exp\frac{\Phi^f}{\alpha V_N} - \exp\frac{\Phi^r}{\alpha V_N}\right)$$
 (22)

```
[14]: def reactionConstant(s,phi_est,f_est,alpha=1,K_E=100,K_C=1,rho=0.9):
          V_N = st.V_N()
          ## Extract stoichiometry
          N = s['N']
          Nf = s['Nf']
          Nr = s['Nr']
          reaction = s['reaction']
          ## Compute Phis from estimated phi
          Phi_ = -N.T@phi_est
          Phi_f = Nf.T@phi_est
          Phi_r = Nr.T@phi_est
           ## Compute normalised flow rates
          f_plus = np.exp(Phi_f/(alpha*V_N))
          f_minus = np.exp(Phi_r/(alpha*V_N))
          f0 = f_plus - f_minus
          parameter = {}
          MMparameter = {}
          for i,react in enumerate(reaction):
               MMpar = {}
               kap = f_est[i][0]/f0[i]
               parameter[f'kappa_{react}'] = kap
               \#print(f'\{react\}: \tPhi = \{int(Phi_[i]*1000)\}mV, \tf_est = \tulebox{$\sqcup$}
       \rightarrow {f_est[i][0]:.2e}, \tkappa = {kap:.2}')
               ## MM version
               X_{data} = np.array([1,f_{est}[i][0],-f_{est}[i][0]/f0[i]])
              Y_data = f_est[i][0]*f_plus[i]/f0[i]
                print(X_data)
      #
                 print(Y_data)
```

```
XTX = np.outer(X_data, X_data)
                                 XTy = X_data*Y_data
                                        print('XTX:', XTX)
                                         print('XTy:', XTy)
                                  ## Pseuso inverse eapproach
                                           theta = np.linalq.pinv(XTX)@XTy
                                          print(theta)
                                 ## QP approach
                                           f_{max_est} = 10
                                 rho_est = rho
                                k_v_{est} = K_C/K_E
                                 G = -np.eye(3)
                                h = -0*np.ones(3)
                                 A_{eq} = np.array([[0,1,0],[0,0,1]])
                                 b_eq = np.array([rho_est,k_v_est])
                                         A_{eq} = np.array([[1,0,0],[0,1,0]])
                                         b_eq = np.array([f_max_est, rho_est])
                                 theta = quadprog_solve_qp(XTX+1e-10*np.eye(3),-XTy,G,h,A_eq,b_eq)
                                 f_{max} = theta[0]
                                 rho = theta[1]
                                k_v = theta[2]
                                kappa = f_max/k_v
                                 MMpar['f_max'] = theta[0]
                                MMpar['rho'] = theta[1]
                                MMpar['k_v'] = theta[2]
                                         print(f'\{react\}: kappa=\{kappa:6.2f\} f_max=\{f_max:.2\} rho=\{rho:0.2f\}_{\sqcup} rho=\{rho:0.2f\}_
\hookrightarrow k_v = \{k_v : 6.2f\}'
                                 MMparameter[react] = MMpar
             return parameter, MMparameter
```

```
[15]: ## Convert to BG parameters
def MMtoBG(MMpar,K_E=100):
    kappa = np.zeros(2)
    K_CE = np.zeros(2)
    rho = MMpar['rho']
    K_C = K_E*MMpar['k_v']

# print(MMpar)
    kappa_bar = MMpar['f_max']/K_C
    kappa[0] = kappa_bar/rho
    kappa[1] = kappa_bar/(1-rho)
```

```
K_CE[0] = K_C
K_CE[1] = K_E
# print(kappa_1, kappa_2, K_E)
return kappa, K_CE
```

5.1 Normalise data

```
[16]: imp.reload(phiData)
    ## Extract experimetal data
    Concentration = phiData.ParRubXu16_conc() # M
    concentration = Concentration['Ecoli']

Flux = phiData.ParRubXu16_flux() # mM/min
    flux = Flux['Ecoli']

c_0 = concentration['G6P']
    f_0 = flux['PGI']/60
    t_0 = (1e3*c_0)/f_0

print(f'c_0 = {c_0*1000} mM, f_0 = {f_0} mM/sec, t_0 = {t_0} sec')
```

5.2 Show computed reaction flows

```
[17]: K = sc['K']
n_path = K.shape[1]
Reaction = []
for i in range(n_path):
    Reaction += [f'PPP{i+1}']
    print(Reaction)

for reac in flux.keys():
    flux[reac] *= 1/f_0

fluxp,f_p,f_est,f,reaction = PathwayFlux(sc['K'],s['reaction'],Reaction,flux)

## Assumed values:
K_E = 10
K_C = 1
rho = 0.2
```

```
## Reaction constants
f_est = sc['K']@f_p
parameter, MMparameter =
 →reactionConstant(s,phi_est,f_est,K_E=K_E,K_C=K_C,rho=rho)
K_C=K_C
#f_est = sc['K']@f_p
j=0
print('\n\n\% LaTeX table')
print('\\hline')
print('\\hline')
for i,reac in enumerate(s['reaction']):
    ## BG MM equivalent
    MMpar = MMparameter[reac]
    kappa_MM,K_CE = MMtoBG(MMpar,K_E=100.0)
    if reac in flux.keys():
       ff = f'\{f[j][0]:0.2f\}'
       j += 1
    else:
       ff = '--'
    if reac in Phi_reac.keys():
       PP = f'{1e3*Phi_reac[reac]:.2f}'
    else:
       PP = '--'
    kappa = 'kappa_'+reac'
    print(
       f'{reac} &\t {PP} &\t {1e3*Phi[i]:.2f} &\t {ff} & {f_est[i][0]:0.2f} \
       & {parameter[kappa]:.2f} & {kappa_MM[0]:.2f} & {kappa_MM[1]:.2f} \\\\
print('\\hline')
['PPP1']
['PPP1', 'PPP2']
['PPP1', 'PPP2', 'PPP3']
Flux error = 1.86e-01
%% LaTeX table
\hline
               $\Phi$~mV &
                             $\hat{\Phi}$~mV &
                                                   $f$ & $\hat{f}$ &
Reaction &
$\hat{\kappa}$ & $\hat{\kappa_1}$ & $\hat{\kappa_2}$\\
\hline
PGI &
        16.48 &
                      16.48 &
                                    60.00 & 59.52
                                                        & 154.39 & 66.44
& 16.61 \\
PFK &
       68.82 &
                      68.82 &
                                    62.62 & 63.12
                                                        & 54.85 & 30.59 &
7.65 \\
                                                        & 160.08 & 61.59
FBA &
      20.00 &
                      20.00 &
                                    63.43 & 63.12
```

```
& 15.40 \\
        7.98 & 7.98 & 62.82 & 63.12
                                          & 353.93 & 133.64 & 33.41 \\
G6PDH2R &
               -- &
                      82.84 &
                                     -- & 11.58
                                                      & 4.67 & 5.14 & 1.28
//
PGL &
        -- & 1.00 & -- & 11.58
                                        & 291.64 & 171.06 & 42.77 \\
GND &
        114.53 &
                      114.53 &
                                     11.70 & 11.58
                                                         & 1.27 & 4.78 &
1.19 \\
        0.04 & 0.04 & 7.87 & 7.98
                                         & 4206.98 & 2785.35 & 696.34 \\
RPI &
TKT2 & 16.38 &
                 16.38 &
                                     0.91 & 1.80
                                                  & 9.17 & 2.24 &
0.56 \\
TALA &
       54.41 &
                     54.41 &
                                     -- & 1.80
                                                & 1.66 & 0.94 & 0.23
//
TKT1 &
       4.04 & 4.04 & 2.92 & 1.80
                                       & 8.82 & 6.66 & 1.67 \\
RPE & 0.83 & 0.83 & 3.83 & 3.59
                                        & 96.07 & 63.27 & 15.82 \\
\hline
```

5.3 Show computed chemostat flows

```
[18]: dx_est = s['N']@f_est

print('\n\n% LaTeX table')
print('\hline')
print('Chemostat &\t flow \\\')
print('\hline')
for i,spec in enumerate(s['species']):
    if spec in chemostats:
        print(f'{spec} &\t {dx_est[i][0]:0.2f} \\\')
print('\hline')
```

```
%% LaTeX table
\hline
Chemostat & flow \\
\hline
ADP &
        63.12 \\
ATP &
        -63.12 \\
CO2 &
       11.58 \\
G3P &
       128.03 \\
G6P &
       -71.10 \\
H &
        86.27 \\
H20 &
       -11.58 \\
NADP &
        -23.16 \\
NADPH & 23.16 \\
R5P &
        6.19 \\
\hline
```

5.4 Show pathway flows

```
[19]: print('\n\n\% LaTeX table')
    print('\hline')
    print('Pathway &\t $\hat{f}_p$ \\\')
    print('\hline')
    for reac in fluxp.keys():
        print(f'{reac} &\t {fluxp[reac]:0.2f} \\\')
    print('\hline')

%% LaTeX table
\hline
```

```
\hline
Pathway & $\hat{f}_p$ \\
\hline
PPP1 & 63.12 \\
PPP2 & 7.98 \\
PPP3 & 1.80 \\
\hline
```

6 Species constants

$$K = \frac{\exp \phi}{x^{\circ}} = \frac{\exp \phi}{Vc^{\circ}} \tag{23}$$

```
[45]: #imp.reload(phiData)
     print('\n\n\% LaTeX table')
     print('\\hline')
     print('\\hline')
     #concentration['H'] = 1e-7
     ## Data in mM
     scale = 1e3
     K_spec = np.ones(s['n_X'])
     conc = np.ones(s['n_X'])
     c_G6P = concentration['G6P']
     #print('c_G6P',c_G6P)
     for i,spec in enumerate(s['species']):
         if spec in concentration.keys():
             conc[i] = concentration[spec]/c_G6P
             K_spec[i] = np.exp(phi_est[i]/st.V_N())/conc[i]
            print(f'{spec} & {int(round(1e3*phi_est[i]))} & \t{conc[i]:.4f} &_\(\subseteq\)
      \rightarrow{K_spec[i]:.4f} \\\')
         else:
             K_spec[i] = np.exp(phi_est[i]/st.V_N())
              print(f'{spec} &{phi_est[i]:.2} & -- & --\\\')
```

```
print('\\hline')

#print(conc)
print(s['species'])
```

```
%% LaTeX table
\hline
Species &
                \hat{K}^mV & \frac{c}{c_0} & \hat{K}
\hline
6PGC & 29 &
               0.4784 & 6.2335 \\
ADP & -27 &
               0.0704 & 5.1546 \\
ATP & 27 &
               1.2221 & 2.2539 \\
CO2 & -30 &
               0.0095 & 33.7942 \\
               0.3883 & 1.7790 \\
DHAP & -10 &
E4P & -27 &
               0.0062 & 57.9353 \\
F6P & -21 &
               0.3198 & 1.4140 \\
FDP & -8 &
               1.9289 & 0.3880 \\
               0.0344 & 14.9020 \\
G3P & -18 &
G6P & -5 &
               1.0000 & 0.8377 \\
NADP & 30 &
               0.0003 & 11747.0633 \\
NADPH & -30 &
               0.0154 & 21.0027 \\
R5P & 5 &
               0.0999 & 12.2419 \\
               0.0142 & 86.1551 \\
RU5PD & 5 &
S7P & 24 &
               0.1119 & 21.7513 \\
XU5PD & 5 &
               0.0230 & 51.6829 \\
\hline
['6PGC', '6PGL', 'ADP', 'ATP', 'CO2', 'DHAP', 'E4P', 'F6P', 'FDP', 'G3P', 'G6P',
'H', 'H2O', 'NADP', 'NADPH', 'R5P', 'RU5PD', 'S7P', 'XU5PD']
```

7 Simulation

7.1 Set up parameters

• Reaction constants already set

```
[21]: for i,spec in enumerate(s['species']):
    #K_spec = np.exp(phi_est[i]/st.V_N())
    parameter['K_'+spec] = K_spec[i]
[ ]:
```

7.2 Set up chemostats and flowstats

```
[22]: def setPath(s,path='R5P'):
    print('\n Path =', path)
```

```
if path == 'R5P':
       chemostats = ['ADP', 'ATP', 'CO2', 'G6P', 'H', 'H2O', 'NADP', __
→'NADPH', 'R5P']
       flowstats =['G6PDH2R']
       dX_G6P = 5
   elif path == 'NADPH':
       chemostats = ['ADP', 'ATP', 'CO2', 'G6P', 'H', 'H2O', 'NADP', 'NADPH']
       flowstats = []
       dX_G6P = 1
   elif path == 'both':
       chemostats = ['ADP', 'ATP', 'CO2', 'G6P', 'H', 'H2O', 'NADP', _
→'NADPH', 'R5P']
       flowstats = ['PGI', 'TKT2']
       dX_G6P = 1
   elif path == 'all':
       chemostats = ['ADP', 'ATP', 'CO2', 'G6P', 'H', 'H2O', 'NADP', _
→'NADPH', 'R5P','G3P']
       flowstats = []
       dX_G6P = 10
  sc = st.statify(s,chemostats=chemostats)
   sf = st.statify(s,flowstats=flowstats)
   return sc,sf,dX_G6P
```

7.3 Time unit

```
[43]: \#\#t_0 = ((1000*c_G6P)/flux_PGI)*100
print(f"Time unit: \{t_0:4.2f\} sec")
```

Time unit: 7.95 sec

7.4 Simulation

```
[24]: approximateFlowstats = True

Spec = ['G6P','R5P','NADPH','ADP','C02','H','H20']
paths = ['all','both','R5P','NADPH']
#paths = ['R5P']
RATIO = {}
for path in paths:
    Ratio = {}
    normalisedRatio = {}

    ## Set up pathway]
    spec = sc['species']
    sc,sf,dX_G6P_0 = setPath(s,path=path)

## Set up parameters
par = copy.copy(parameter)
```

```
if approximateFlowstats:
      small = 1e-3
      par = copy.copy(parameter)
      for fs in sf['flowstats']:
           par['kappa_'+fs] = small
       sf = None
   ## Simulate
  t = np.linspace(0,3*t_0,1000)
    ## Find steady-state with no flowstats
    dat_ss = st.sim(s,sc=sc,sf=sf,t=t,parameter=parameter,X0=conc)
    X_ss = dat_ss['X'][-1,:]
  dat = st.sim(s,sc=sc,sf=sf,t=t,parameter=par,X0=conc)
   #st.plot(s,dat,species=[])
  st.plot(s,dat,reaction=[],species=Spec,dX=True)
  ## Extract some external flows
  DX = dat['dX']
  dX = \{\}
  for Sp in Spec:
       dX[Sp] = DX[:,spec.index(Sp)]
       Ratio[Sp] = -dX[Sp]/dX['G6P']
      normalisedRatio[Sp] = -dX_G6P_0*dX[Sp]/dX['G6P']
  RATIO[path] = normalisedRatio
   ## Print steady-state values
  for Sp in Spec:
       ratio = Ratio[Sp][-1]
       print(f'\{Sp\}: \t\{dX[Sp][0]:3.1f\} \t\{dX[Sp][-1]:3.
\rightarrow1f}\t{(dX_G6P_0*ratio):3.1f}\t{100*ratio:3.1f}\%')
```

Path = all

G6P:	-71.1	-71.1	-10.0	-100.0%
R5P:	6.2	6.2	0.9	8.7%
NADPH:	23.2	23.2	3.3	32.6%
ADP:	63.1	63.1	8.9	88.8%
CO2:	11.6	11.6	1.6	16.3%
H:	86.3	86.3	12.1	121.3%
H20:	-11.6	-11.6	-1.6	-16.3%

Path = both

G6P:	-11.6	-11.6	-1.0	-100.0%
R5P:	6.2	11.5	1.0	99.4%
NADPH:	23.2	23.2	2.0	200.0%
ADP:	63.1	0.0	0.0	0.4%
CO2:	11.6	11.6	1.0	100.0%
H:	86.3	23.2	2.0	200.4%
H2O:	-11.6	-11.6	-1.0	-100.0%

Path = R5P

G6P:	-59.5	-2.4	-5.0	-100.0%
R5P:	6.2	2.9	6.0	120.0%
NADPH:	11.6	0.0	0.0	0.2%
ADP:	63.1	0.5	1.0	20.0%
CO2:	11.6	0.0	0.0	0.1%
H:	74.7	0.5	1.0	20.2%
H20:	-11.6	-0.0	-0.0	-0.1%

Path = NADPH


```
G6P:
                         -1.0
                                 -100.0%
        -71.1
                 -1.9
R5P:
        6.2
                 0.0
                         0.0
                                 0.0%
        23.2
                                 1200.0%
NADPH:
                 23.1
                         12.0
ADP:
        63.1
                 -1.9
                         -1.0
                                 -100.0%
CO2:
        11.6
                11.6
                         6.0
                                 600.0%
                 21.2
                                 1100.0%
Η:
        86.3
                         11.0
        -11.6
                 -11.6
                         -6.0
                                 -600.0%
H20:
```

```
[25]: ## Plot ratios
      name = ['i','ii','iii']
      for sp in ['R5P','NADPH']:
          BigFont = 24
          plt.rcParams.update({'font.size': BigFont})
          for i,path in enumerate(['both','R5P','NADPH']):
              Ratio = RATIO[path]
              label = f'Path {name[i]}'
              plt.plot(t/t_0,Ratio[sp],label=label,linewidth=5)
          if sp=='R5P':
              ylim = 8
          else:
              ylim=15
          plt.ylim((0,ylim))
          ylabel = r' \frac{r'}{rho_{i+sp+'}}
          plt.ylabel(ylabel)
          plt.xlabel('$t/t_0$')
          plt.legend()
          plt.grid()
          plt.savefig(f'Figs/{sp}.pdf',bbox_inches='tight')
```

plt.show()

[25]: [<matplotlib.lines.Line2D at 0x7fc620edcfd0>]

[25]: [<matplotlib.lines.Line2D at 0x7fc620f28250>]

[25]: [<matplotlib.lines.Line2D at 0x7fc620ee74f0>]

[25]: (0.0, 8.0)

[25]: Text(0, 0.5, '\$\\rho_{R5P}\$')

[25]: Text(0.5, 0, '\$t/t_0\$')

[25]: <matplotlib.legend.Legend at 0x7fc6418b8a90>

[25]: [<matplotlib.lines.Line2D at 0x7fc620c53d90>]

[25]: [<matplotlib.lines.Line2D at 0x7fc620eadfa0>]

[25]: [<matplotlib.lines.Line2D at 0x7fc620c6b3d0>]

[25]: (0.0, 15.0)

[25]: Text(0, 0.5, '\$\\rho_{NADPH}\$')

```
[25]: Text(0.5, 0, '$t/t_0$')
```

[25]: <matplotlib.legend.Legend at 0x7fc620bd5400>


```
[26]: X = np.array([1,2,3])
      print(X)
      print(X.T)
      print(np.outer(X,X))
      print(np.linalg.pinv(np.outer(X,X)))
      print(np.linalg.pinv(np.outer(X,X))@X.T)
      print(X@X.T)
     [1 2 3]
     [1 2 3]
     [[1 2 3]
      [2 4 6]
      [3 6 9]]
     [[0.00510204 0.01020408 0.01530612]
      [0.01020408 0.02040816 0.03061224]
      [0.01530612 0.03061224 0.04591837]]
     [0.07142857 0.14285714 0.21428571]
     14
```

8 Michaelis-Menten formulation

8.1 Show results

```
[27]: for reac in reaction:
          MMpar = MMparameter[reac]
          f_max = MMpar['f_max']
          rho = MMpar['rho']
          k_v = MMpar['k_v']
          print(f'Reaction {reac}:')
          print(f'f_max = \{f_max: 6.2f\}; rho = \{rho: 1.2f\}; k_v = \{k_v: 4.2f\}')
          kappa,K_CE = MMtoBG(MMpar,K_E=K_E)
          print(f'kappa_1 = {kappa[0]:3.1f}; kappa_2 = {kappa[1]:3.1f}; K_C =__
       \rightarrow \{K_CE[0]:3.1f\}; K_E = \{K_CE[1]:3.1f\}'\}
     Reaction PGI:
     f_{max} = 132.87; rho = 0.20; k_v = 0.10
     kappa_1 = 664.4; kappa_2 = 166.1; K_C = 1.0; K_E = 10.0
     Reaction PFK:
     f_{max} = 61.18; rho = 0.20; k_v = 0.10
     kappa_1 = 305.9; kappa_2 = 76.5; K_C = 1.0; K_E = 10.0
     Reaction FBA:
     f_{max} = 123.18; rho = 0.20; k_v = 0.10
     kappa_1 = 615.9; kappa_2 = 154.0; K_C = 1.0; K_E = 10.0
     Reaction TPI:
     f_{max} = 267.28; rho = 0.20; k_v = 0.10
     kappa_1 = 1336.4; kappa_2 = 334.1; K_C = 1.0; K_E = 10.0
     Reaction GND:
     f_{max} = 9.55; rho = 0.20; k_v = 0.10
     kappa_1 = 47.8; kappa_2 = 11.9; K_C = 1.0; K_E = 10.0
     Reaction RPI:
     f_{max} = 5570.71; rho = 0.20; k_v = 0.10
     kappa_1 = 27853.5; kappa_2 = 6963.4; K_C = 1.0; K_E = 10.0
     Reaction TKT2:
     f_{max} = 4.48; rho = 0.20; k_v = 0.10
     kappa_1 = 22.4; kappa_2 = 5.6; K_C = 1.0; K_E = 10.0
     Reaction TKT1:
     f_{max} = 13.32; rho = 0.20; k_v = 0.10
     kappa_1 = 66.6; kappa_2 = 16.7; K_C = 1.0; K_E = 10.0
     Reaction RPE:
     f_{max} = 126.53; rho = 0.20; k_{v} = 0.10
     kappa_1 = 632.7; kappa_2 = 158.2; K_C = 1.0; K_E = 10.0
```

8.2 Bond graph model of Enzyme Catalysed Reaction (RE)

```
[28]: sbg.model('RE_abg.svg')
import RE_abg as RE
disp.SVG('RE_abg.svg')
```

[28]:

[29]:

$$A + E \stackrel{r_1}{\Longleftrightarrow} C \tag{24}$$

$$C \stackrel{r_2}{\Longleftrightarrow} B + E$$
 (25)

[30]:

$$G_6P \stackrel{PGI}{\longleftrightarrow} F_6P$$
 (26)

$$ATP + F_6P \stackrel{PFK}{\longleftarrow} ADP + FDP + H$$
 (27)

$$FDP \stackrel{FBA}{\longleftarrow} DHAP + G_3P \tag{28}$$

$$DHAP \stackrel{TPI}{\longleftarrow} G_3P \tag{29}$$

$$G_6P + NADP \xrightarrow{G_6PDH_2R} {}_6PGL + H + NADPH$$
 (30)

$$_{6}PGL + H_{2}O \xrightarrow{PGL} _{6}PGC + H$$
 (31)

$$_{6}PGC + NADP \xrightarrow{GND} CO_{2} + NADPH + RU_{5}PD$$
 (32)

$$RU_5PD \stackrel{RPI}{\longleftarrow} R_5P$$
 (33)

$$E_4P + XU_5PD \xrightarrow{TKT_2} F_6P + G_3P$$
 (34)

$$G_3P + S_7P \xrightarrow{TALA} E_4P + F_6P \tag{35}$$

$$R_5P + XU_5PD \xrightarrow{TKT_1} G_3P + S_7P$$
 (36)

$$RU_5PD \stackrel{RPE}{\longleftarrow} XU_5PD$$
 (37)

8.3 Replace Re components by RE

[31]: imp.reload(mbg)
mbg.ReRE(PPP,quiet=quiet)

[31]: <module 'modularBondGraph' from '/home/peterg/WORK/Research/SystemsBiology/lib/python/modularBondGraph.py'>

[32]: sPPPRE = st.stoich(PPP,quiet=quiet)

[]:

[33]: disp.Latex(st.sprintrl(sPPPRE,chemformula=True))

[33]:

$$G_6P + PGIase \xrightarrow{PGI_1} PGIcmp$$
 (38)

$$PGIcmp \stackrel{PGI_2}{\longleftarrow} F_6P + PGIase$$
 (39)

$$ATP + F_6P + PFKase \xrightarrow{PFK_1} PFKcmp$$
 (40)

$$PFKcmp \stackrel{PFK_2}{\longleftarrow} ADP + FDP + H + PFKase$$
 (41)

$$FDP + FBAase \xrightarrow{FBA_1} FBAcmp$$
 (42)

$$FBAcmp \xrightarrow{FBA_2} DHAP + G_3P + FBAase$$
 (43)

$$DHAP + TPIase \xrightarrow{TPI_1} TPIcmp$$
 (44)

TPIcmp
$$\stackrel{\text{TPI}_2}{\longleftarrow}$$
 G₃P + TPIase (45)

$$G_6P + NADP + G_6PDH_2Rase \xrightarrow{G_6PDH_2R_1} G_6PDH_2Rcmp$$
 (46)

$$G_6PDH_2Rcmp \xrightarrow{G_6PDH_2R_2} {}_6PGL + H + NADPH + G_6PDH_2Rase$$
 (47)

$$_{6}PGL + H_{2}O + PGLase \xrightarrow{PGL_{1}} PGLcmp$$
 (48)

$$PGLcmp \stackrel{PGL_2}{\longleftarrow} {}_{6}PGC + H + PGLase$$
 (49)

$$_{6}$$
PGC + NADP + GNDase $\stackrel{\text{GND}_{1}}{\Longleftrightarrow}$ GNDcmp (50)

GNDcmp
$$\stackrel{\text{GND}_2}{\longleftarrow}$$
 CO₂ + NADPH + RU₅PD + GNDase (51)

$$RU_5PD + RPIase \xrightarrow{RPI_1} RPIcmp$$
 (52)

$$RPIcmp \stackrel{RPI_2}{\longleftarrow} R_5P + RPIase$$
 (53)

$$E_4P + XU_5PD + TKT_2ase \xrightarrow{TKT_{21}} TKT_2cmp$$
 (54)

$$TKT_{2}cmp \stackrel{TKT_{22}}{\longleftarrow} F_{6}P + G_{3}P + TKT_{2}ase$$
 (55)

$$G_3P + S_7P + TALAase \xrightarrow{TALA_1} TALAcmp$$
 (56)

$$TALAcmp \xrightarrow{TALA_2} E_4P + F_6P + TALAase$$
 (57)

$$R_5P + XU_5PD + TKT_1ase \xrightarrow{TKT_{11}} TKT_1cmp$$
 (58)

$$TKT_1 cmp \xrightarrow{TKT_{12}} G_3P + S_7P + TKT_1 ase$$
 (59)

$$RU_5PD + RPEase \xrightarrow{RPE_1} RPEcmp$$
 (60)

$$RPEcmp \stackrel{RPE_2}{\longleftarrow} XU_5PD + RPEase$$
 (61)

[34]: print(chemostats)

['ADP', 'ATP', 'CO2', 'G3P', 'G6P', 'H', 'H2O', 'NADP', 'NADPH', 'R5P']

8.4 Set up parameters

```
[36]: parameter = {}
for i,spec in enumerate(s['species']):
    parameter['K_'+spec] = K_spec[i]

for reac in reaction:
    MMpar = MMparameter[reac]
    kappa,K_CE = MMtoBG(MMpar,K_E=100.0)
    for i in ['1','2']:
        Kappa = f'kappa_{reac}{i}'
        parameter[Kappa] = kappa[int(i)-1]
    for i,spec in enumerate(['cmp','ase']):
        K = f'K_{reac}{spec}'
        parameter[K] = K_CE[i]

# print(parameter)
```

```
[37]: ## Initial conds
n_X = sPPPRE['n_X']
X0 = 0.5*np.ones(n_X)
for i,spec in enumerate(sPPPRE['species']):
    if spec in s['species']:
        X0[i] = conc[s['species'].index(spec)]
```

8.5 Simulate

```
[38]: approximateFlowstats = True
      Spec = ['G6P','R5P','NADPH','ADP','C02','H','H20']
      paths = ['all','both','R5P','NADPH']
      #paths = ['R5P']
      RATIO = \{\}
      for path in paths:
          Ratio = {}
          normalisedRatio = {}
          ## Set up pathway]
          spec = sPPPRE['species']
          sc,sf,dX_G6P_0 = setPath(sPPPRE,path=path)
          ## Set up parameters
          par = copy.copy(parameter)
          if approximateFlowstats:
              small = 1e-3
              par = copy.copy(parameter)
              for fs in sf['flowstats']:
                  par['kappa_'+fs+'1'] = small
                  par['kappa_'+fs+'2'] = small
              sf = None
          ## Find the initial condion X_s after the initial transient due to E/C
          t_ss = np.linspace(0,t_0/100,100)
          dat_ss = st.sim(sPPPRE,sc=sc,t=t_ss,parameter=parameter,X0=X0)
          X_ss = dat_ss['X'][-1,:]
          ## Simulate from after transient
          dat = st.sim(sPPPRE,sc=sc,t=t,parameter=par,X0=X_ss)
            st.plot(s, dat, reaction=[], species=Spec, dX=True)
          ## Extract some external flows
          DX = dat['dX']
          dX = \{\}
          for Sp in Spec:
              dX[Sp] = DX[:,spec.index(Sp)]
              Ratio[Sp] = -dX[Sp]/dX['G6P']
              normalisedRatio[Sp] = -dX_G6P_0*dX[Sp]/dX['G6P']
```

```
RATIO[path] = normalisedRatio
     ## Print steady-state values
     for Sp in Spec:
         ratio = Ratio[Sp][-1]
         print(f'{Sp}:\t{dX[Sp][0]:3.1f} \t{dX[Sp][-1]:3.}
  \rightarrow1f}\t{(dX_G6P_0*ratio):3.1f}\t{100*ratio:3.1f}\%')
 Path = all
G6P:
        -63.8
                -62.5
                         -10.0
                                 -100.0%
R5P:
        0.8
                -0.7
                         -0.1
                                 -1.0%
NADPH: 2.3
                1.0
                         0.2
                                 1.6%
ADP:
                62.8
                         10.0
                                 100.4%
        62.8
CO2:
        1.8
                0.5
                         0.1
                                 0.8%
Η:
        63.7
                63.7
                         10.2
                                 102.0%
H20:
        -0.1
                -0.5
                         -0.1
                                 -0.8%
Path = both
Flowstat PGI is not a model reaction
Flowstat TKT2 is not a model reaction
G6P:
        -0.7
                -0.5
                         -1.0
                                 -100.0%
R5P:
        1.5
                0.5
                         0.9
                                 92.9%
NADPH: 2.3
                1.0
                         2.0
                                 197.1%
ADP:
        53.3
                0.0
                         0.0
                                 4.7%
CO2:
        1.8
                0.5
                         1.0
                                 98.2%
Η:
        54.2
                1.0
                         2.0
                                 201.8%
H20:
        -0.1
                -0.5
                         -1.0
                                 -98.3%
Path = R5P
Flowstat G6PDH2R is not a model reaction
G6P:
        -55.7
                -0.4
                         -5.0
                                 -100.0%
R5P:
        1.5
                0.4
                         6.0
                                 119.9%
NADPH: 1.8
                0.0
                         0.0
                                 0.3%
                         1.0
ADP:
        53.3
                0.1
                                 20.0%
CO2:
        1.8
                0.0
                         0.0
                                 0.2%
                0.1
                                 20.3%
H:
        53.8
                         1.0
H20:
        -0.1
                -0.0
                         -0.0
                                 -0.2%
 Path = NADPH
G6P:
        -56.9
                -0.1
                         -1.0
                                 -100.0%
R5P:
        0.1
                0.0
                         0.0
                                 0.0%
NADPH:
        3.7
                1.0
                         11.6
                                 1155.1%
ADP:
        53.2
                -0.1
                         -1.0
                                 -95.7%
CO2:
        3.3
                0.5
                         5.8
                                 575.7%
H:
        54.2
                0.9
                         10.6
                                 1059.4%
```

H20:

-0.1

-0.5

-5.8

-576.2%

8.6 Plot ratios

```
[39]: | ## Plot ratios
      name = ['i','ii','iii']
      for sp in ['R5P','NADPH']:
          BigFont = 24
          plt.rcParams.update({'font.size': BigFont})
          for i,path in enumerate(['both','R5P','NADPH']):
              Ratio = RATIO[path]
              label = f'Path {name[i]}'
              plt.plot(t/t_0,Ratio[sp],label=label,linewidth=5)
          ylabel = r' \frac{r'}{rho_{i+sp+'}}
          plt.ylabel(ylabel)
          plt.xlabel('$t/t_0$')
          plt.legend()
          plt.grid()
          if sp=='R5P':
              ylim = 8
          else:
              ylim=15
          plt.ylim((0,ylim))
          plt.savefig(f'Figs/{sp}_MM.pdf',bbox_inches='tight')
          plt.show()
[39]: [<matplotlib.lines.Line2D at 0x7fc62100d460>]
```

```
[39]: [<matplotlib.lines.Line2D at 0x7fc62100d460>]
[39]: [<matplotlib.lines.Line2D at 0x7fc6418d8fd0>]
[39]: [<matplotlib.lines.Line2D at 0x7fc6418d8490>]
[39]: Text(0, 0.5, '$\\rho_{R5P}$')
[39]: Text(0.5, 0, '$t/t_0$')
[39]: <matplotlib.legend.Legend at 0x7fc620ee7280>
[39]: (0.0, 8.0)
```


- [39]: [<matplotlib.lines.Line2D at 0x7fc641da0b80>]
- [39]: [<matplotlib.lines.Line2D at 0x7fc641da0f70>]
- [39]: [<matplotlib.lines.Line2D at 0x7fc641da0700>]
- [39]: Text(0, 0.5, '\$\\rho_{NADPH}\$')
- [39]: Text(0.5, 0, '\$t/t_0\$')
- [39]: <matplotlib.legend.Legend at 0x7fc620ee7490>
- [39]: (0.0, 15.0)


```
[40]: ## Compare concentrations
      conc_mam = Concentration['Mammalian']
      conc_eco = Concentration['Ecoli']
      for spec in conc_eco.keys():
          ratio = conc_eco[spec]/conc_mam[spec]
          print(f'{spec}: {ratio:2.2e}')
     6PGC: 2.28e+02
     ADP: 9.75e-01
     ATP: 2.06e+00
     CO2: 9.86e-03
     DHAP: 1.88e+00
     E4P: 4.76e+00
     F6P: 2.60e+01
     FDP: 1.00e+01
     G3P: 1.92e+00
     G6P: 1.17e+01
     NADP: 7.32e-02
     NADPH: 1.85e+00
     R5P: 2.77e+01
     RU5PD: 2.13e+01
     S7P: 4.87e+01
     XU5PD: 6.05e+00
```

[]:

[]:

References

- Peter J Gawthrop. Energy-based Feedback Control of Biomolecular Systems with Cyclic Flow Modulation. Available at arXiv:2007.14762, July 2020.
- Peter J. Gawthrop, Peter Cudmore, and Edmund J. Crampin. Physically-plausible modelling of biomolecular systems: A simplified, energy-based model of the mitochondrial electron transport chain. *Journal of Theoretical Biology*, 493:110223, 2020. ISSN 0022-5193. doi: 10. 1016/j.jtbi.2020.110223.
- J. Orth, R. Fleming, and B. Palsson. Reconstruction and use of microbial metabolic networks: the core escherichia coli metabolic model as an educational guide. *EcoSal Plus*, 2010. doi: 10.1128/ecosalplus.10.2.1.
- Junyoung O. Park, Sara A. Rubin, Yi-Fan Xu, Daniel Amador-Noguez, Jing Fan, Tomer Shlomi, and Joshua D. Rabinowitz. Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. *Nat Chem Biol*, 12(7):482–489, Jul 2016. ISSN 1552-4450. doi: 10.1038/nchembio.2077.