

QMC-HAMM P4: Moiré scale effective interaction in twisted bilayer graphene

Run Hou, Scott Jensen, Yueqing Chang, Lucas K. Wagner, Andriy H. Nevidomskyy

Diagonalization

Calculating the effective interaction

We provide functions for generating effective interactions for the user defined lattice positions, tight binding models and atomistic interactions

- We project the atomistic interactions onto active bands to obtain effective Moiré-scale interactions
- The nearly flat bands at a magic small twist angle lead to correlated electronic states. It is important to obtain accurate low energy effective models for studying the rich phase diagram of the system.

Microscopic interaction

· Long-range interaction

Workflow

$$V(q) = V_0 rac{tanh(dq)}{q}$$

Atomistic Hartree-Fock calculation

Output

Projected interaction U_{abcd} for 4 bands per spin in the low energy Moiré -scale model of TBLG

Methods

- Lattice relaxation
 - Atomic positions

Rigid lattice, MD relaxed lattice

Tight-binding models

E.g., MK [1], LETB [2]

- · Result in TB bands or HF bands and orbitals
- Downfolding interaction onto active bands
 - · Full data of effective interaction

Hartree-Fock bands

	(m,n) (k_1,k_2)	$(3,4) \ (K_M,\Gamma)$	(12,13) (K_M,Γ)	$(27,28) \ (K_M,\Gamma)$	(31,32) (K_M,Γ)
	$U_0(eV)$	4.00			
ı	<i>U</i> ₁₁₁₁ (meV)	9.43	0.66	0.23	0.16
l	<i>U</i> ₁₂₂₁ (meV)	8.49	0.70	0.30	0.16
Ŀ	<i>U</i> ₂₁₂₁ (meV)	8.58	0.66	0.28	0.16

Examples of effective interactions for several twist angles

The effective interactions can be further used to study the phase diagram of TBLG by highly accurate many-body methods such as DQMC

1] Moon, Pilkyung, and Mikito Koshino. "Energy spectrum and quantum Hall effect in twisted bilayer graphene." Physical Review B 85.19 (2012): 195458.

[2] See QMC-HAMM P2. "An accurate tight binding model for twisted bilayer graphene"

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Computational Materials Sciences program under Award Number

