HTTP 通信における IPv4と IPv6 のネットワーク環境比較

平野 紘大

Kodai HIRANO

1. はじめに

インターネットの世界的な普及により、IPv4 アドレスの国際的な在庫 (IANA Pool) が、2011 年 2 月 3 日に枯渇した。また、2011 年 4 月 15 日には、アジア太平洋地域の RIR(APNIC) の在庫も枯渇した。

現在は、未使用アドレスの再利用や、NAPT などによって対応している。アドレスの価格も上昇しており[1]、インターネットの発展を妨げている。

この問題を解決するためには、IPv4 の後継規格である IPv6 を推進することが必要である。現状の IPv4 でのネットワーク環境を、IPv6 で引き継ぐためには、IPv4 と同等以上の性能が求められる。

本研究では、エンドユーザーから見た IPv6 ネットワークの現状を把握するため、IPv4 との通信品質の比較という観点でのネットワーク計測を実施し、通信遅延と帯域幅をもとに、得られた結果を分析する.

2. 既存研究

2.1 RTT による比較

[2] で北口らは、同一クライアントからの、IPv4 と IPv6 による HTTP 通信を比較し、ネットワーク品質 を評価している.

TCP コネクションの確立時に送受信される, SYN+ACK パケットと ACK パケットの応答時間 (RTT) によって,サーバ・クライアント間のネット ワーク通信遅延を求めている.

2009 年 6 月から 2010 年 6 月までの,1 年間のデータを分析している。IPv4 アドレスを基に,ユーザを特定し,ユーザ毎の通信遅延の中央値を算出して,用いている。地域毎の,IPv6 トンネル接続とネイティ

ブ接続の比率の推移も示している。地域毎に、IPv4と IPv6の RTT の比率の推移を示している。日本にサーバーを設置したため、ARIN 地域 (北アメリカ)や RIPE 地域 (ヨーロッパ、中東、中央アジア)では、オーバーヘッドが大きく、IPv4と IPv6の遅延差が評価しにくいため、APNIC 地域 (アジア、太平洋地域)のユーザーに焦点を当てて、分析している。

IPv6 の通信遅延は、ネイティブ接続はトンネル接続に比べると、IPv4 に近い品質であるものの、IPv6 の遅延が大きいという調査結果となっている.

2.2 MSS と TTL によるネットワークの推定

[3] で北口らは、HTTP 通信の観測によって、IPv4と IPv6 のネットワーク環境の比較をしている.

TCP での MSS(Max Segment Size) 値と, IP における TTL(Time To Live) 値 (IPv6 の場合には Hop Limit 値) で,通信路とホップ数を推定し, IPv6 ネットワークの展開状況を,推測している.

MSS は、TCP 通信で送受信できる、最大のパケット 長である。この MSS は、TCP 通信の開始時に、ユーザー側が、サーバー側に対して宣言するもので、MSS 値を観測することで、通信路がどのようなものかを推 測することができる。MSS 値により、ヘッダの長さを 求めて、通信路の形態 (PPPoE など)を推測する。

TTL は、IP ヘッダに設定されている値で、パケットがルータを経由できる最大値を示す。ルータを経由するたびに、1 ずつ減算されるので、デフォルト値とサーバー到着時の値を用いて、ホップ数を割り出している

地域毎の通信路の特徴を分析している. IPv4と IPv6 のホップ数を比較することで、トポロジがどれくらい 違うのかを推測している.

2.3 先行研究との違い

[3] では、ネットワーク環境を推定するにとどまっているので、ネットワーク環境の推定手法を借りて、品質の比較まで行う. また、[2] では、通信遅延のみを品質として評価していたが、本研究では、帯域幅も計測し、評価する.

3. 計測手法

HTTP GET/POST による通信を用いる.

帯域幅を計測するために、10Gの NIC を用いて、サーバー側がボトルネックにならないようにする. IPv6 ネットワークの現状を知りたいので、特定の機器との通信ではなくあらゆるユーザークライアントとの通信を測定する.

ダウンロードの速度計測では、1MByte のデータを 15 秒間ダウンロードし続け、帯域値を計測し、平均値 を求める.

アップロードの速度計測では、HTTP のヘッダのみのデータを、HTTP POST により 15 秒間転送し続けて、帯域値を計測し、平均値を求める。

他に取得し、保存する情報として IP アドレス、時刻、RTT、Jitter、位置情報などがある.

3.1 残タスク

目標の計測環境を整えるための残タスクをまとめる.

3.1.1 デュアルスタック

サーバーを IPv4 と IPv6 の両方に対応させる.

また、IPv4の計測完了後、ユーザーのネットワークが IPv6 に対応していた場合、可能であれば、自動的に IPv6 での計測を始める。逆に IPv6 の計測から始めた場合も同様に、自動的に IPv4 での計測を始める

3.1.2 ユーザー同定

本研究の目的は,IPv4 と IPv6 の通信状況の比較である.したがって,同一のユーザーからの IPv4 と IPv6 の通信を比較,評価する必要がある.

北口らの研究 [2] では、url パラメータに、userId を持たせて、同じユーザーからの通信を識別している。 これは [3] でも利用されている.

また、大量のアクセスが同じユーザー (ヘビーユーザー) からあった場合、その影響を考慮する必要があるので、IPv4 アドレスを基にユーザーを特定する.

また、Route Views Project [4] が公開している BGP のフルルート情報を用いて、AS 情報を求める.

3.1.3 PPPoE や IPoE など通信路の形態の推定 [2] では、AS 番号が IPv4 と IPv6 で異なるとき

iNonius Speedtest

131.112.21.52 - Tokyo Institute of Technology, JP (270 km)

図 1 現状のサイト (http://210.231.212.23/)

図 2 システム構成

- IPv4 と IPv6 でそれぞれ別の AS 経由でネイティ ブ接続している
- IPv4 over IPv6(IPv6 はネイティブ)

のパターンは少ないと仮定し、IPv6 はトンネル接続として、AS 番号が同じならば、IPv6 はネイティブであるとしている.

[3] では、MSS 値により、ヘッダの長さを求めて、通信路を推定している。また、[1] での推定方法との比較をして、上記の仮定を否定している。

本研究でも、MSS と TTL を計測したいと考えている.

3.1.4 UI/UX

4. 計測結果の分析

ユーザーを通信路の形態とホップ数で分類し、その通信遅延、帯域幅の分布をとり、IPv4と IPv6 で比較して、その傾向を分析するつもりである.

文 献

- $[1] \quad IPv4.GLOBAL, https://auctions.ipv4.global/prior-sales$
- [2] 北口 善明, 伊波 源太, 永見 健一, "HTTP 通信からみた IPv4 と IPv6 通信遅延の比較評価",IEICE Technical Report, IA2010-37(2010-9)
- [3] 北口 善明, 伊波 源太, 永見 健一,"HTTP 通信を利用 した IPv4 と IPv6 のネットワーク環境比較",IPSJ SIG Technical Report, vol.2011-IOT-12 No.16
- [4] University of Oregon Route Views Project, http://www.routeviews.org/, January 2005.
- [5] iNonius Project, https://inonius.net/