Data Quality Metrics

Status of the National Data Repository (NDR) work for Regulators - 2014-2017

Philip Lesslar

Digital Energy Journal Conference 3rd October 2017 Kuala Lumpur

Summary of Num

Universite

Google Maps

Professor Olav Hanssens vei 10

STAVANGER NORWAY

2157

, 6-8 June, Stavanger, Norway

Sponsored by:

Organized by:

Petroleumstilsynet)

Government Office
Oljedirektoratet

Petrad

IRK Rogaland

- 165 participants
- Representing 30 countries
- 20 sponsors

Data Quality Metrics – The Journey

Inventorize & Understand

Define Way Forward

Implementation Planning

Trusted Data & Robust Analytics

Cognitive Computing

June 2017

STAVANGER NORWAY

2 7

NATIONAL DATA REPOSITORY

2020++

October 2012

October 2014

2014-2017

Development of the Data Quality Guidelines for implementation 2017-2019/20

- Define, design & carry out implementation in NOCs
- Data quality transparency drive
- Define architectural and quality requirements for big data analytics

2012-2014

- Documentation of key data quality issues
- Basic Data Quality
 Primers prepared

Breakout to list and categorize data quality problems
-Set up of Working Group

3 breakouts to cover

- i) business rules
- ii) tools and dashboards
- iii) data correction process

Ad hoc sessions

- i) business rules development,
- ii) Implementation planning

The DQ Working Group
Philip Lesslar
Helen Stephenson
Ugur Algan
Jill Lewis

Data Quality in the context of NDRs

NDR11 Data Quality Workgroup Team Members

	Name
1	Helen Stephenson
2	Andrew Ochan
3	Marco Cota
4	Fanny Herawati
5	Melissa Amstelveen
6	Sarah Spinoccia
7	Jess Kozman
8	Ugur Algan
9	Richard Wylde
10	Cyril Dzreke
11	Lim TeckHuat
12	Hairel Dean
13	Deano Maling
14	Choo Chuan Heng
15	Iman Al-Farsi
16	Jill Lewis
17	Henri Blondelle
18	Armando Gomez
19	Kapil Joneja
20	Giuseppe Vitobello
21	Gareth Wright
22	Chan Kok Wah
23	Ali Alyahyaee (Scribe)
24	Philip Lesslar (Facilitator)

NDR2014 Data Quality Workgroup Team Members

2	TOOLS &				
	DASHBOARDS				
1	Kapil Jonjega				
2	Jack Walten				
3	Johanda du Toit				
4	Gustavo Tinoco				
5	Ferdinand Aniwa				
6	David Atta-Peters				
7	Angus Craig				
8	Natalia Rakhmanina				
9	Glab Khanuntin				
10	Edem Mawuko				
11	Alexander Kosolapov				
12	Daniel Arthur				
13	Eric Toogood				
14	Tatiana Vassilieva				
15	Henri Blondelle				
16	Marianne Hansen				
17	Jill Lewis				
18	Mikhail Leypunsky				
19	Aygun Mamedova				
20	Rena Huseyn-zade				
21	Irada Huseynova				
22	Philip Lesslar				

1	BUSINESS RULES				
1	Helen Stephenson				
2	Richard Salway				
3	Abraham Oseng				
4	Malcolm Flowers				
5	Uffe Larsen				
6	Calisto Nhatugues				
7	Sylvester Nguessan				
8	Gianluca Monachese				
9	Jan Adolfssen				
10	Lee Allison				

3	DATA CORRECTION WORKFLOW
1	Mehman Yusufov
2	Vahid Jafarov
3	Aleksa Shchorlich
4	Ngwako Maguai
5	Joseph Justin Soosai
6	Samit Sencurta
7	Julian Pickering
8	Ugur Algan

What we did: 2014-2017

Part 1: Background and Case for Change

Context and justification to Management

Part 2: Business Rules
Fundamentals

Data quality dimensions, key concepts around business rules, 18 data types, 241 rules

Part 3: Implementation

Metrics, dashboards, implementing rules as queries, understanding results, getting the program going

Why implement data quality metrics?

- Without metrics, we cannot measure the quality of the data we have
- Consequently, we cannot show how much quality, fitfor-purpose data there is...

Quality, fit-

for-purpose

data

Streamlines the business and its workflows

Increases data asset value and investor confidence

Builds essential data condition for effective use of new technologies

Perspective

Business

Enabler for improving data efficiency by up to 90%

NDR

Data Management

Data Science & **Analytics**

Investment Trends

FORRESTER RESEARCH

Insights-Driven Businesses Will Steal \$1.2 Trillion Annually By 2020

Predictions 2017: Artificial Intelligence Will Drive The Insights Revolution

Revenue forecast of insights-driven businesses (\$ billions)

Across all businesses, there will be a greater than 300% increase in investment in artificial intelligence in 2017 compared with 2016.

Note: The data point for public companies in 2015 is actual revenue; all other data points shown are estimates or projected figures.

Source: Economic Intelligence Unit, Morningstar, and PitchBook Data

Data Classification – Digital Data (>100 types in Upstream)

Primary Data			Secondary Data	
Original Format Data	Reference Data/ Metadata	Master Data/ Corporate "Single Source of Truth"	Derived Data	Data Collections
Raw Seismic Raw Logs	Units of measure - Linear measures - Pressure	Static (hard) data - Well header - Deviation - Checkshot - Temperature - Pressure	Processed data - Seismic deconvolution - Seismic filtering - Seismic processing - Edited logs - Spliced logs	Composite data - Completion log - Mud log - Paleontological composites - TRAPIS
	Abbreviations - TD, DFE, KB etc	Interpreted (soft) data - Geological markers - Seismic horizons	Interpreted data - Geological markers - Seismic horizons	Data hoards - Projects en masse - Personal stores - Team folders
	Valid Lists			Data archive - <i>Projects en masse</i>
	Range indicators			
	Comments			
Requires: - Official data repository	Requires: - Standards - Implementation across all impacted tools and databases	Requires: - Clear processes, workflows and checkpoints - Proper & official repository - Management and security processes around repository and data access	Requires: - Standard workflows - Standard algorithms - Standard processes - Housekeeping procedures	Requires: - Standard display and formatting templates - Procedures
- Official data	Requires: - Standards - Implementation across all impacted	 Clear processes, workflows and checkpoints Proper & official repository Management and security processes around 	Standard workflowsStandard algorithmsStandard processes	- Standard display a formatting templat

Packaging Quality Data – The Building Blocks

Data Science / Analytics – Typical Deliverables

Bubble Plots

Yahoo Web Analytics

Query: PI Historian (SDMF) - Well Surveillance = 2449)

100
99 95
99 95
99 97
20-De-15 27-De-15 03-Jan-16 19-Jan-16 17-Jan-16

Trend Plot (IQM)

Heat Map

Google Analytics

Data Analytics Conceptual Architecture

Data Quality Error Persistence

Data Quality – Progressive Lopsidedness + Hidden Risks

Data Quality Metrics – Tackling Quality at the Source

Concluding Remarks

- Understand our DATA INVENTORY
- Implement METRICS to improve QUALITY

 Address data types as building blocks across all 100+ EP types

- We solve business problems and create new opportunities
- While measuring and knowing where we are at all times

 Measure and KNOW how much FIT-FOR-PURPOSE data there is

Towards data science and big data analytics, by putting science into data management

Thank You