1 LIPM

- Continue on path of using simple abstractions
- What simple models of locomotion have you already seen?
 - Rimless wheel
 - Compass gait model
 - SLIP model
- Want something even simpler: linear inverted pendulum model (LIPM)
- Several ways to interpret:
 - approximation of a simple model: linearization of inverted pendulum
 - **simple model** in its own right
 - projection of the full dynamics, subject to certain constraints.
- Derivation as simple model in its own right.
 - 2D, but will generalize easily to 3D
 - Drawing
 - Similar triangles
 - Newton
 - State space model
 - Phase portrait (compare to pendulum 'eye')
 - Eigenvalues: $\pm \sqrt{\frac{g}{z}}$; one stable, one unstable (saddle point)
 - Taking a step: horizontal translation
- Derivation as projection of full dynamics
 - why? identify exactly which parts of full model correspond to parts of simple model.
 - step back:
 - * two point masses
 - * equations of motion
 - k sıım
 - * internal forces cancel
 - * generalize
 - external forces acting on a humanoid robot: gravity and contact forces
 - same LIPM drawing, but:

- * assume that angular momentum remains constant
- * point mass is CoM
- * rod becomes any linkage
- * base is CoP (or ZMP; but note that there are differences in definition)
- \ast can actually also drop the constraint of no angular momentum (CMP), but there's no notion of 'average angular position', like the CoM
- Where can the CoP be? No forces exerted at a distance. Base of support
- What do we have now?
 - linear model that captures the most important features of walking: how CoM moves in response to CoP
 - sequence of footsteps and timing: set of time-varying linear constraints on CoP
- What can we do:
 - plan a CoM / CoP trajectory that minimizes some quadratic cost subject to linear constraints: Quadratic Program
 - solve that program **online** at a high rate: **linear** MPC
 - constantly updated stream of CoP's / center of mass accelerations

2 Whole-body control

How do we control the full robot using this plan for the simple model?

- Depends on your robot:
 - position controlled: use inverse kinematics
 - force controlled: more interesting
- Take a step back in complexity: fully actuated robot arm
 - what would you do?
 - Equations of motion (manipulator equations):

$$M\left(q\right)\ddot{q}+c\left(q,\dot{q}\right)=\tau$$

- Given: desired motions of the joints, expressed as $\ddot{q}_{\rm des}$, compute τ .
- Feedback linearization / inverse dynamics / computed torque method.
- Source of \ddot{q}_{des} : for example, just PD control.

- Can generalize a bit, formulate a QP:

$$\begin{aligned} & \text{minimize}_{\ddot{q},\tau} \ \|\tau\|^2 \\ & \text{subject to} M\left(q\right) \ddot{q} + c\left(q,\dot{q}\right) = \tau \\ & D \ddot{q} = e \end{aligned}$$

- Point acceleration task:

$$p = f(q)$$

$$\dot{p} = \frac{\partial f(q)}{\partial q} \dot{q} = J\dot{q}$$

$$\ddot{p} = J\ddot{q} + \dot{J}\dot{q} = \ddot{p}_{\text{des}}$$

$$J \ddot{q} = \underbrace{\ddot{p}_{\text{des}} - \dot{J}\dot{q}}_{e}$$

- CoM task (!)
- Orientation task
- Now: back to the underactuated case.
 - Equations of motion:

$$M(q)\ddot{q} + c(q,\dot{q}) = Bu + J_c^T(q)\lambda$$

- Forces:

$$\lambda = \left(\begin{array}{c} \lambda_1 \\ \vdots \\ \lambda_2 \end{array} \right), \quad \lambda_i \in \text{friction cone}$$

- Updated optimization problem:

minimize
$$_{\ddot{q},u,\lambda} \|\tau\|^2$$

subject to $M(q) \ddot{q} + c(q,\dot{q}) = Bu + J_c^T(q) \lambda$
 $D\ddot{q} = e$
 $\lambda \in \text{friction cones}$
 $u_{\min} \leq u \leq u_{\max}$

- Approximate using QP
 - * $\lambda_1 = \sum_i \rho_i \beta_i, \, \rho_i \ge 0$
 - * run at 500 1000 Hz