(担当:佐藤 弘康)

問題 1.1. \vec{b}

問題 1.2.

問題 **1.3.** 始点の P が原点にくるようにベクトル \overrightarrow{PQ} を平行移動する。このときの終点の座標が \overrightarrow{PQ} の成分である。したがって,(7,4).

(別解) P(-5,5), Q(2,9) より, $\overrightarrow{OP}=(-5,5)$, $\overrightarrow{OQ}=(2,9)$ である.したがって, $\overrightarrow{PQ}=\overrightarrow{PO}+\overrightarrow{OQ}=-\overrightarrow{OP}+\overrightarrow{OQ}=-(-5,5)+(2,9)=(7,4)$

問題 1.4.

(1)
$$\vec{u} = (-1, -3), |\vec{u}| = \sqrt{10}$$

(2)
$$\vec{u} = (7,1), |\vec{u}| = \sqrt{50}$$

(3)
$$\vec{u} = (3,4), |\vec{u}| = 5$$

問題 **1.5.** ベクトル \vec{a} と実数 c に対し, $|c\vec{a}| = |c| \cdot |\vec{a}|$ が成り立つ.例えば,平面ベクトル $\vec{a} = (a_1, a_2)$ に対しては,以下のように確かめられる;

$$|c \vec{a}| = |(ca_1, ca_2)| = \sqrt{c^2 a_1^2 + c^2 a_2^2} = |c| \sqrt{a_1^2 + a_2^2} = |c| \cdot |\vec{a}|.$$

ここで,|c| は実数の絶対値を表し, $|\vec{a}|$ はベクトルの長さを表すことに注意せよ.したがって, $|c\vec{a}|=1$ となるためには $c=\pm \frac{1}{|\vec{a}|}$ とすればよい.

(1)
$$c = \pm \frac{1}{\sqrt{2}}$$
 (2) $c = \pm \frac{2}{\sqrt{17}}$ (3) $c = \pm \frac{1}{2\sqrt{3}}$

問題 1.6. (1)
$$|\vec{u}|=2, \ |\vec{v}|=4, \ \vec{u}\cdot\vec{v}=4, \ \cos\theta=\frac{1}{2}$$
 (つまり, $\theta=\frac{\pi}{3}$).

(担当:佐藤 弘康)

- (2) $\vec{u} = (1,3)$, $\vec{v} = (9,-3)$. したがって, $|\vec{u}| = \sqrt{10}$, $|\vec{v}| = 3\sqrt{10}$, $\vec{u} \cdot \vec{v} = 0$, $\cos \theta = 0$ (つまり, $\theta = \frac{\pi}{2}$).
- (3) $|\vec{u}| = \sqrt{21}$, $|\vec{v}| = \sqrt{29}$, $\vec{u} \cdot \vec{v} = -6$, $\cos \theta = -\frac{6}{\sqrt{609}}$ ($\cos \theta < 0$ であるから, θ が鈍角であることがわかる).
- (4) $|\vec{u}| = \sqrt{17}$, $|\vec{v}| = \sqrt{69}$, $\vec{u} \cdot \vec{v} = 0$, $\cos \theta = 0$ ($\circlearrowleft \sharp \, \flat$), $\theta = \frac{\pi}{2}$).
- (5) $\vec{u} = (3, 1, -1)$, $\vec{v} = (-5, 1, -5)$. したがって, $|\vec{u}| = \sqrt{11}$, $|\vec{v}| = \sqrt{51}$, $\vec{u} \cdot \vec{v} = -9$, $\cos \theta = -\frac{9}{\sqrt{561}}$.

問題 1.7. $\vec{a} \cdot \vec{b} = 0$ を満たす c を求める. $\vec{a} \cdot \vec{b} = 3 - 2c - c = 3 - 3c$ より, c = 1.

問題 1.8. $\vec{a} = \overrightarrow{OA}, \vec{b} = \overrightarrow{OB}$ とする. このとき, 三角形 OAB の面積 S は

$$S = \frac{1}{2}|\vec{a}||\vec{b}|\sin\theta$$

と書ける(ただし、 $\theta=\angle AOB, 0 \le \theta \le \pi$)。 $\sin \theta \ge 0$ であるから、 $\sin \theta = \sqrt{1-\cos^2 \theta}$ と書きなおすと

$$\begin{split} S = & \frac{1}{2} |\vec{a}| |\vec{b}| \sqrt{1 - \cos^2 \theta} \\ = & \frac{1}{2} \sqrt{|\vec{a}|^2 |\vec{b}|^2 - |\vec{a}|^2 |\vec{b}|^2 \cos^2 \theta} \end{split}$$

となる.内積の定義 $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ を代入することにより, $S = \frac{1}{2} \sqrt{|\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2}$ を得る.