Расчет керамического рекуператора

Руководство пользователя 2019

Оглавление

1.Область применения и ее основные функции	3
2.Условия выполнения программы	4
3.Содержание главного меню	
4.Сообщения об ошибках	
5.Основы методики и алгоритмы расчета керамического рекуператора	6

1.Область применения и ее основные функции

В современных пламенных печах, предназначенных для осуществления различных высокотемпературных процессов, необходимая технологическая температура достигается за счет химической энергии топлива, выделяемой в результате его горения.

Основными функциями программы являются:

- 1. В программе предусмотрена возможность загрузки различных вариантов исходных данных.
- 2. Интерфейс программы предусматривает возможность отображения и корректировки исходных данных каждого варианта расчета. Просмотр и корректировка обеспечены в удобной для пользователя форме, организованы с использованием традиционных элементов управления . Каждая пользовательская форма, на которой существует возможность корректировки исходных данных, имеет защиту от некорректно вводимых данных.
- 3. Процедура расчета оптимизации включает в себя фоновое обращение к динамически подключаемой библиотеке (dll). Эта dll должна обеспечивает доступ к встроенной математической библиотеке, вызывает необходимую подпрограмму с фактическими параметрами и возвращает результат расчета в интерфейсную часть ПО. Фактические параметры подготовлены в клиентской части на основе данных, которые введены пользователем в диалоговом окне формы в течение текущего сеанса работы с программой.
- 4. Результаты расчета отображаются на формах (вкладках) в численном виде.

2. Условия выполнения программы

Программа работает под управлением операционной системы Windows XP, Windows 7, Windows 10.

<u>Главным системным требованием программы является наличие установленного модуля .Net Framework v. 4.6.1.</u>

Для работы программы необходимо произвести ее установку (инсталляцию) на компьютер.

3. Содержание главного меню

Пользовательский интерфейс включает в себя следующие пункты:

• Рекуператор

При нажатии на «Рекуператор» ссылается на веб-страницу, где показывается информация о Рекуператоре.

• Исходные данные

При нажатии на «Исходные данные» программа переходить на вкладку «Исходные данные», который состоит из таблицы с исходными данными и кнопкой.

• Кнопка «Вычислить результат»

При нажатии на кнопку «Вычислить результат» программа произведет вычисления, результат которых будет во вкладке «Результат расчета».

• Кнопка «Очистить таблицу»

При нажатии на кнопку «Очистить таблицу» программа очищает значения в таблице «Исходные данные».

• Кнопка «Построит график»

При нажатии на кнопку «Построит график» откроется вкладка «График», на котором будет построена График зависимости Количество продуктов горения перед рекуператором от Расхода топлива на печь.

• Справочник

При нажатии на кнопку «справочник» откроется э документ, содержащий справочную информацию и описание работы с программой.

4.Сообщения об ошибках

При корректировке данных пользователю могут появляться следующие сообщения об ошибках

1. Если место чисел написать буквы.

Ошибка: Введите числовое значения.

Описание: данное сообщение появляется при попытке пользователя ввести в редактируемое поле не числовое значение.

Действия по устранению: Пользователю следует произвести ввод корректных числовых данных.

5.Основы методики и алгоритмы расчета керамического рекуператора

Исходными формулами для расчета рекуператора являются следующие выражения.

Уравнение теплопередачи, решенное относительно искомой поверхности нагрева,

$$F = \frac{Q_{\rm B}}{K * \Delta t} \tag{1}$$

где F – требуемая поверхность нагрева рекуператора, м²;

 $Q_{\rm B}$ –количества теплоты, передаваемое воздуху в рекуператоре, %;

К –коэффициент теплопередачи в рекуператоре, Вт/ м²-град;

 Δt – средняя логарифмическая разность температур дыма и воздуха в рекуператоре, град.

Уравнения теплового баланса, записанное с учетом утечки воздуха на дымовую сторону вследствие негерметичности рекуператора:

$$\eta * [V_{A}^{'} \cdot i_{A}^{'} - (V_{A}^{'} + V_{B.\Pi p}) \cdot i_{A}^{"}] = (V_{B}^{'} - V_{B.\Pi p}) \cdot (i_{B}^{"} - i_{B}^{'})$$
(2)

где η - коэффициент, учитывающий потери топливо через наружные поверхности рекуператора в окружающее пространство (обычно $\eta = 0.9$);

 $V_{\rm II}^{'}$ – количество дыма, поступающее в рекуператор, м³·с;

 $V_{\rm B}^{'}$ – количество воздуха, поступающее в рекуператор, м 3 ·с;

 $V_{\rm в.пp}$ — количество воздуха, просасываемое через неплотности на сторону дыма в рекуператоре, м³·с;

 $i_{\rm д}^{'},i_{\rm g}^{''}$ – теплосодержание дыма до и после рекуператора, Дж/ м³;

 $i_{\rm B}^{'}, i_{\rm B}^{''}$ — теплосодержание воздуха до и после рекуператора, Дж/ м³;

Из уравнения (2) получаем теплосодержание дыма, покидающего рекуператора;

$$i_{\mathcal{A}}^{"} = \frac{V_{\mathcal{A}}^{'} \cdot i_{\mathcal{A}}^{'} - (\frac{1}{\eta}) \cdot (V_{\mathcal{B}}^{'} + V_{\mathcal{B}.\Pi p}) \cdot (i_{\mathcal{B}}^{"} - i_{\mathcal{B}}^{'})}{V_{\mathcal{A}}^{'} + V_{\mathcal{B}.\Pi p}}$$
(3)

что дает возможность определить температуру дыма $t_{\rm A}^{"}$.

Для прямоточного движения дыма и воздуха в рекуператоре среднюю логарифмическую разность температур рассчитывают по формуле

$$\Delta t = \frac{(t'_{A} - t'_{B}) - (t'_{A} - t'_{B})}{ln \frac{t'_{A} - t'_{B}}{t''_{A} - t'_{B}}}$$
(4)

Для противоточного движения формула имеет вид сгорания:

при сжигании топлива в смеси с атмосферным воздухом

$$\Delta t = \frac{(t'_{\Lambda} - t'_{B}) - (t'_{\Lambda} - t'_{B})}{ln \frac{t'_{\Lambda} - t'_{B}}{t'_{\Lambda} - t'_{B}}}$$
(5)

Для более сложных схем движения (перекрестного – прямоточной или перекрестно – противоточной) в формуле (4) или (5) вводят поправочный коэффициент $\varepsilon \Delta t$, для нахождения которого вычисляют вспомогательные величины:

$$P = \frac{t'_{\rm B} - t'_{\rm B}}{t'_{\rm I} - t'_{\rm B}} \tag{6}$$

$$R = \frac{t_{\rm A}^{'} - t_{\rm A}^{"}}{t_{\rm B} - t_{\rm B}} \tag{7}$$

Зная R и P, по графикам (прило.1) находят поправочный коэффициент $\varepsilon \Delta t$, на которых умножают результат, полученной по формуле (4) и (5).

Коэффициент теплопередачи К определяют по формуле

$$K = \frac{1}{\frac{1}{\alpha_{II}} + \frac{S}{\lambda} + \frac{1}{\alpha_{B}}} \tag{8}$$

где $\alpha_{\text{д}}$ – коэффициент теплоотдачи от дыма к стенке рекуператора, Вт/м²-град

 $lpha_{\scriptscriptstyle B}$ — коэффициент теплоотдачи от стенки к воздуху, Вт/ м²-град:

S — толщина стенки рекуператора, м²;

 λ — коэффициент теплопроводности материала стенки рекуператора, Вт/ м²-град.

Коэффициент теплоотдачи на дымовой стороне равен

$$\alpha_{\Lambda} = \alpha_{\Lambda,K} + \alpha_{\Lambda,\Lambda} \tag{9}$$

где $\alpha_{\text{д.к}}$ — коэффициент теплоотдачи конвекцией, Вт/ м²-град; $\alpha_{\text{д.л}}$ — коэффициент теплоотдачи излучение, Вт/ м²-град; На воздушную стороне учитывают только теплоотдачу конвекцией.

Способы расчета $\alpha_{\text{д.к.}}$, $\alpha_{\text{д.л.}}$, $\alpha_{\text{в}}$ зависит от конструкции рекуператора и характера движения дыма и воздуха и будет показаны для каждого конкретного случая в примерах расчета.

Приложение 1

Определения поправочного коэффициента $oldsymbol{arepsilon}_{\Delta t}$

2		
Энтальпия	пролуктов сго	рания топлива
9		P*************************************

t,°C	i ^б общ.,кДж/м³			t,°C	$i_{ m o 6 m}^{ m f}$,кДж/м $^{ m 3}$		
	I	II	III		I	II	III
100	134	146	148	1300	2066	2090	2135
200	283	292	294	1400	2242	2267	2327
300	432	440	442	1500	2417	2445	2508
400	581	588	591	1600	2596	2626	2690
500	730	736	743	1700	2780	2806	2880
600	879	890	908	1800	2968	2990	3072
700	1028	1046	1066	1900	3158	3177	3266
800	1197	1220	1236	2000	3346	3365	3460
900	1369	1392	1411	2100	3536	3536	3660
1000	1542	1565	1591	2200	3727	3727	3858
1100	1714	1739	1770	2300	3916	2935	4048
1200	1890	1914	1952	2400	1407	4127	4260
				2500	4299	4329	4464

Примечания

1. І группа топлив: природных и коксовый газы, смесь последнего доменным при $Q_{\rm H}$ P>12000 кДж/м³;

II группа топлив: смесь коксового и доменного газов при $Q_{\rm H}$ P=8000…12000 кДж/м³, мазут, кокс, каменный уголь;

III группа топлив: смесь коксового и доменного газов при $Q_{\rm H}$ P<8000 кДж/м³, доменный газ, торф, бурый уголь.

2.В найденную по таблице температуру продуктов сгорания необходимо внести поправку, учитывающую влияние избыточного воздуха на температуру. Для этого процентное содержание воздуха V_L в продуктах сгорания следует умножить на поправку δt и полученное значение прибавить к найденной по таблице температуре. Величина δt берется в зависимости от интервала температуры:

Δt	°C	<1200	1300-	1600-	1800-	2100-	2300-
			1500	1700	2000	2200	2500
δt	°C	1	2	3	4	5	6

Приложение 3 Средняя теплоемкость газообразных видов топлива и воздуха

t,°C	С с _р , кДж/м³				t,°C		С _р , к	Дж/м ³	
	П	К	Д	В		П	К	Д	В
0	1,55	1,35	1,33	1,29	700	2,36	1,63	1,43	1,36
100	1,64	1,39	1,34	1,29	800	2,45	1,66	1,45	1,38
200	1,76	1,43	1,35	1,31	900	2,56	1,70	1,46	1,39
300	1,90	1,47	1,37	1,32	100	2,66	1,73	1,48	1,40
400	2,02	1,51	1,39	1,33	1100	-	1,76	1,49	1,41
500	2,14	1,55	1,41	1,34	1200	-	179	1,50	1,42
600	2,27	1,59	1,42	1,35	1300	_	1,81	1,51	1,43

Примечание: п-природный, к-коксовый, д-доменный, в-воздух.

Приложения 4

Коэффициент теплоотдачи излучением от дыма к стенкам канала

Приложения 5

Материалы	Плотность,	Коэффициент	Средняя	Придельная
	$K\Gamma/M^3$	Теплопроводности,	теплоемкость,	Температура
		Вт/м · град	кДж/кг-град	применения
инасовыобычное	1900-2000	0,82+6,8 B	0,87+1,9 B	1700
Шамотные	1800-2000	0,7+6,4 B	0,87+2,1 B	1350
Шамотные класса А	-	0,9+2,3 B	0,87+2,1 B	1400
Форстеритовые	2350-2500	4,23-16 B	-	1400
Насадочные				
Магнезитовые	2600-2800	6,3-27 B	-	1700
Хромомагнезитовые	2700-2850	2,8-8,7 B	-	1700
Магнезито-	-	4,1-16 B	1	1750
хромитовые				
Карбошамотные	1900-2000	0,93+8,5 B	0,87+2,1 B	1400

Примечания: $B=1\ 10^{-4}\ t$.