Computerized Control Final Exam (31%)

Kjartan Halvorsen

May 5 2017

Time 2017-05-05 16:00 - 19:00

Problem 1 (70p)

Figure 1 shows a simple, one-dimensional magnetic suspension system. The current i in the windings generates a magnetic field which suspends the mass m. Ignoring friction, there are two forces acting on the mass: gravity and the magnetic force. The magnetic force is proportional to the square of the current i and inverse proportional to the square of the gap distance x. This gives the equation of motion

$$m\ddot{x} = -C\left(\frac{i}{x}\right)^2 + mg. \tag{1}$$

The system is non-linear, so in order to use linear control design, the system must be

Figure 1: A magnetic suspension system. The force of gravity acts to pull the mass m downwards. The force due to the magnetic field generated by the current i keeps the mass from falling down.

linearized about an operating point. Introduce the variations y and u about the operating point

$$x = x_0 + y$$
$$i = i_0 - \tilde{i}.$$

The input signal to the system (2) is the change \tilde{i} in the current in the windings, and the output signal is the change y in the gap distance. The negative sign in the variation $i = i_0 - \tilde{i}$ is introduces so that a positive input signal leads to a positive change in the gap distance. With operating point

$$\frac{i_0}{x_0} = \sqrt{\frac{mg}{C}},$$

the linearized model becomes

$$\ddot{y} = \frac{2g}{x_0}y + \frac{2\sqrt{Cg}}{\sqrt{m}x_0}u\tag{2}$$

with transfer function

$$G(s) = \frac{\frac{2\sqrt{Cg}}{\sqrt{m}x_0}}{s^2 - \frac{2g}{x_0}}.$$
(3)

The system is unstable, with poles in $\pm \sqrt{\frac{2g}{x_0}}$. Normalizing the time (using the unit of time $T = \sqrt{\frac{x_0}{2g}}$) and setting $u(t) = \frac{2\sqrt{Cg}}{\sqrt{m}x_0}\tilde{i}(t)$ gives the plant model

$$Y(s) = G(s)U(s) = \frac{1}{s^2 - 1}U(s). \tag{4}$$

(a)

Show that discretizing the model (4) using zero-order-hold with h=0.1 gives the discrete-time pulse transfer function

$$H(z) = 5.0 \cdot 10^{-3} \frac{z+1}{z^2 - 2.01z + 1}.$$
 (5)

and plot the zeros and poles of the system in the z-plane.

(b)

The magnetic suspension system is to be stabilized using the control law

$$U(z) = K \frac{z - 0.9}{z} E(z) = K \frac{z - 0.9}{z} (Y(z) - Y_{ref}(z)).$$
 (6)

Write the control law as a difference equation. Explain also which values must be stored in the computer between sampling instants in order to calculate the control signal.

the computer between sampling instants in order to calculate the control signal.						
Solution:						
u(k+1) =						

(c)

With the control law (6), we obtain the below root locus for the closed-loop poles. Explain briefly (3-5 sentences) the closed-loop behaviour of the system for different values of the feedback gain K.

(d)

Figure 2 shows four different step-responses, obtained with different values for the gain parameter K. Match the step-response to the gain. Motivate!

cameter K . Match the step-response to the gain. Motivate!							
Answer and motivation:							
$K = 6 \mid K = 54 \mid K = 180 \mid K = 200$							
esponse							

Figure 2: Step responses, problem 1 (d).

Problem 2 (30p)

The normalized magnetic suspension system can be represented on state-space form as

$$x(k+1) = \begin{bmatrix} 2.01 & -1 \\ 1 & 0 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(k)$$

$$y(k) = 5 \cdot 10^{-3} \begin{bmatrix} 1 & 1 \end{bmatrix} x(k)$$

$$(7)$$

(a)

Show that the system is reachable.

olution:	

(b)

Determine the state feedback gain

$$u(k) = u_c(k) - l_1 x_1(k) - l_2 x_2(k)$$

which gives a closed-loop system with poles in the origin. What is a controller with this choice of closed-loop poles called?

Controller design:						

If necessary, you can continue your solutions on this sheet. Mark clearly which problem the solution corresponds to.

Solutions

Problem 1

(a)

The step-response of the system is

$$Y(s) = \frac{1}{(s+1)(s-1)s} = \frac{\frac{1}{2}}{s+1} + \frac{\frac{1}{2}}{s-1} - \frac{1}{s}$$
$$y(t) = \frac{1}{2}e^{-t} + \frac{1}{2}e^{t} - u_{H}(t)$$
$$y(kh) = \frac{1}{2}\left(e^{-h}\right)^{k} + \frac{1}{2}\left(e^{h}\right)^{k} - u_{H}(k)$$

Taking the z-transform gives

$$Y(z) = \frac{\frac{1}{2}z}{z - e^{-h}} + \frac{\frac{1}{2}z}{z - e^{h}} - \frac{z}{z - 1}.$$

Dividing with the z-transform of the unit step $\frac{z}{z-1}$ gives

$$\begin{split} H(z) &= \frac{Y(z)}{U(z)} = \frac{\frac{1}{2}(z-1)}{z-\mathrm{e}^{-h}} + \frac{\frac{1}{2}(z-1)}{z-\mathrm{e}^{h}} - 1 \\ &= \frac{\frac{1}{2}(z-1)(z-\mathrm{e}^{h}) + \frac{1}{2}(z-1)(z-\mathrm{e}^{-h}) - (z-\mathrm{e}^{-h})(z-\mathrm{e}^{h})}{(z-\mathrm{e}^{-h})(z-\mathrm{e}^{h})} \\ &= \frac{\frac{1}{2}z^{2} - \frac{1}{2}(1+\mathrm{e}^{h})z + \frac{1}{2}\mathrm{e}^{h} + \frac{1}{2}z^{2} - \frac{1}{2}(1+\mathrm{e}^{-h})z + \frac{1}{2}\mathrm{e}^{-h} - z^{2} + (\mathrm{e}^{-h} + \mathrm{e}^{h})z - 1}{(z-\mathrm{e}^{-h})(z-\mathrm{e}^{h})} \\ &= \frac{(-\frac{1}{2} - \frac{1}{2}\mathrm{e}^{h} - \frac{1}{2} - \frac{1}{2}\mathrm{e}^{-h} + \mathrm{e}^{-h} + \mathrm{e}^{h})z + (\frac{1}{2}\mathrm{e}^{h} + \frac{1}{2}\mathrm{e}^{-h} - 1)}{z^{2} - (\mathrm{e}^{-h} + \mathrm{e}^{h})z + 1} \\ &= \frac{(\frac{1}{2}(\mathrm{e}^{h} + \mathrm{e}^{-h}) - 1)(z+1)}{z^{2} - (\mathrm{e}^{-h} + \mathrm{e}^{h})z + 1}. \end{split}$$

Inserting h = 0.1 gives

$$H(z) = 5.0 \cdot 10^{-3} \frac{z+1}{z^2 - 2.01z + 1}.$$

(b)

Using the shift operator we have

$$u(kh) = K \frac{q - 0.9}{q} (y(kh) - y_{ref}(kh))$$

$$q u(kh) = K(q - 0.9)(y(kh) - y_{ref}(kh))$$

$$u(kh + h) = K (y(kh + h) - 0.9y(kh) - y_{ref}(kh + h) - 0.9y_{ref}(kh)).$$
(8)

In order to calculate the control signal at time kh + h we need to store the previous output signal y(kh) and the previous set-point $y_{ref}(kh)$.

(c)

For small gains K < 5 the system is unstable since one pole is outside the unit circle. When the gain increases from K = 5, the system is stable and at first dominated by the two poles close to the unit circle. When K increases further, these two poles break out into the imaginary plane, and the closed-loop system will have oscillations. The damping is quite good though, and the system response will be quite fast as the K increases. When K > 190 the poles break out of the unit circle and the system becomes unstable.

(d)

Base on the discussion in (c), we must have

Gain	K=6	K = 54	K = 180	K = 200
Response	Slow, stable re-	Fast, well damped	Fast and oscil-	Unstable re-
	sponse, no oscilla-	response, since	latory response,	sponse: B
	tions: A	poles are far from	since poles are	
		unit circle:. D	close to the unit	
			circle: C	

Problem 2

(a)

Reachability is tested by forming the matrix

$$W_r = \begin{bmatrix} \Gamma & \Phi \Gamma \end{bmatrix} = \begin{bmatrix} 1 & 2.01 \\ 0 & 1 \end{bmatrix}$$

and calculating the determinant

$$\det W_r = 1 \neq 0$$

so the system is reachable.

(b)

With the feedback

$$u(k) = u_c(k) - l_1 x_1(k) - l_2 x_2(k) = u_c(k) - Kx(k)$$

inserted into the state-space model we get the closed-loop state space model

$$x(k+1) = (\Phi - \Gamma L) x(k) + \Gamma u_c(k)$$

which have poles given by the characteristic equation of $\Phi - \Gamma L$

$$\det (zI - (\Phi - \Gamma L)) = 0.$$

We have

$$\Gamma L = \begin{bmatrix} l_1 & l_2 \\ 0 & 0 \end{bmatrix}$$

and

$$\Phi - \Gamma L = \begin{bmatrix} -2.01 - l_1 & 1 - l_2 \\ 1 & 0 \end{bmatrix}$$

which gives

$$\det (zI - (\Phi - \Gamma L)) = \det \begin{bmatrix} z + 2.01 + l_1 & -1 + l_2 \\ -1 & z \end{bmatrix}$$
$$= (z + 2.01 + l_1)z + (-1 + l_2)$$
$$= z^2 + (2.01 + l_1)z + (-1 + l_2).$$

We want this characteristic polynomial to equal z^2 which gives two poles in the origin. This gives the solution

$$l_1 = -2.01$$

$$l_2 = 1.$$