

5 Related Applications

10

15

20

25

30

35

This application claims priority to prior filed U.S. Provisional Patent Application Serial No. 60/141031, filed June 25, 1999, U.S. Provisional Patent Application Serial No. 60/143752, filed July 14, 1999, and U.S. Provisional Patent Application Serial No. 60/151671, filed August 8, 1999. This application also claims priority to prior filed German Patent Application No. 19931412.8, filed July 8, 1999, and German Patent Application No. 19932928.1, filed July 14, 1999. The entire contents of all of the aforementioned applications are expressly incorporated herein by this reference.

Background of the Invention

Certain products and by-products of naturally-occurring metabolic processes in cells have utility in a wide array of industries, including the food, feed, cosmetics, and pharmaceutical industries. These molecules, collectively termed 'fine chemicals', include organic acids, both proteinogenic and non-proteinogenic amino acids, nucleotides and nucleosides, lipids and fatty acids, diols, carbohydrates, aromatic compounds, vitamins and cofactors, and enzymes. Their production is most conveniently performed through the large-scale culture of bacteria developed to produce and secrete large quantities of one or more desired molecules. One particularly useful organism for this purpose is *Corynebacterium glutamicum*, a gram positive, nonpathogenic bacterium. Through strain selection, a number of mutant strains have been developed which produce an array of desirable compounds. However, selection of strains improved for the production of a particular molecule is a time-consuming and difficult process.

Summary of the Invention

The invention provides novel bacterial nucleic acid molecules which have a variety of uses. These uses include the identification of microorganisms which can be used to produce fine chemicals, the modulation of fine chemical production in C. glutamicum or related bacteria, the typing or identification of C. glutamicum or related bacteria, as reference points for mapping the C. glutamicum genome, and as markers for transformation. These novel nucleic acid molecules encode proteins, referred to herein as stability, gene expression, or protein secretion/folding (SES) proteins.

15

20

25

35

C. glutamicum is a gram positive, aerobic bacterium which is commonly used in industry for the large-scale production of a variety of fine chemicals, and also for the degradation of hydrocarbons (such as in petroleum spills) and for the oxidation of terpenoids. The SES nucleic acid molecules of the invention, therefore, can be used to identify microorganisms which can be used to produce fine chemicals, e.g., by fermentation processes. Modulation of the expression of the SES nucleic acids of the invention, or modification of the sequence of the SES nucleic acid molecules of the invention, can be used to modulate the production of one or more fine chemicals from a microorganism (e.g., to improve the yield or production of one or more fine chemicals from a Corynebacterium or Brevibacterium species).

The SES nucleic acids of the invention may also be used to identify an organism as being *Corynebacterium glutamicum* or a close relative thereof, or to identify the presence of *C. glutamicum* or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of *C. glutamicum* genes; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of a *C. glutamicum* gene which is unique to this organism, one can ascertain whether this organism is present. Although *Corynebacterium glutamicum* itself is nonpathogenic, it is related to species pathogenic in humans, such as *Corynebacterium diphtheriae* (the causative agent of diphtheria); the detection of such organisms is of significant clinical relevance.

The SES nucleic acid molecules of the invention may also serve as reference points for mapping of the *C. glutamicum* genome, or of genomes of related organisms. Similarly, these molecules, or variants or portions thereof, may serve as markers for genetically engineered Corynebacterium or Brevibacterium species.

e.g.e.g. The SES proteins encoded by the novel nucleic acid molecules of the invention are capable of, for example, performing a function involved in the repair or recombination of DNA, transposition of genetic material, expression of genes (i.e., involved in transcription or translation), protein folding, or protein secretion in Corynebacterium glutamicum. Given the availability of cloning vectors for use in Corynebacterium glutamicum, such as those disclosed in Sinskey et al., U.S. Patent No. 4,649,119, and techniques for genetic manipulation of C. glutamicum and the related Brevibacterium species (e.g., lactofermentum) (Yoshihama et al., J. Bacteriol. 162: 591-597 (1985); Katsumata et al., J. Bacteriol. 159: 306-311 (1984); and Santamaria et al., J. Gen. Microbiol. 130: 2237-2246 (1984)), the nucleic acid molecules of the invention may be utilized in the genetic engineering of this organism to make it a better or more efficient producer of one or more fine chemicals. This improved production or

15

20

25

30

35

efficiency of production of a fine chemical may be due to a direct effect of manipulation of a gene of the invention, or it may be due to an indirect effect of such manipulation.

There are a number of mechanisms by which the alteration of an SES protein of the invention may directly affect the yield, production, and/or efficiency of production of a fine chemical from a C. glutamicum strain incorporating such an altered protein. For example, modulation of proteins involved directly in transcription or translation (e.g., polymerases or ribosomes) such that they are increased in number or in activity should increase global cellular transcription or translation (or rates of these processes). This increased cellular gene expression should include those proteins involved in fine chemical biosynthesis, so an increase in yield, production, or efficiency of production of one or more desired compounds may occur. Modifications to the transcriptional/ translational protein machinery of C. glutamicum such that the regulation of these proteins is altered may also permit increased expression of genes involved in the production of fine chemicals. Modulation of the activity or number of proteins involved in polypeptide folding may permit an increase in the overall production of correctly folded molecules in the cell, thereby increasing the possibility that desired proteins (e.g., fine chemical biosynthetic proteins) are able to function properly. Further, by mutating proteins involved in secretion from C. glutamicum such that they are increased in number or activity, it may be possible to increase the secretion of a fine chemical (e.g., an enzyme) from cells in fermentor culture, where it may be readily recovered.

Genetic modification of the SES molecules of the invention may also result in indirect modulation of production of one or more fine chemicals. For example, by increasing the number or activity of a DNA repair or recombination protein of the invention, one may increase the ability of the cell to detect and repair DNA damage. This should effectively increase the ability of the cell to maintain a mutated gene within its genome, thereby increasing the likelihood that a transgene engineered into C. glutamicum (e.g., encoding a protein which will increase biosynthesis of a fine chemical) will not be lost during culture of the microorganism. Conversely, by decreasing the number or activity of one or more DNA repair or recombination proteins, it may be possible to increase the genetic instability of the organism. Such manipulations should improve the ability of the organism to be modified by mutagenesis without the introduced mutation being corrected. The same holds true for proteins involved in transposition or rearrangement of genetic elements in C. glutamicum (e.g., transposons). By mutagenizing these proteins such that they are either increased or decreased in number or activity, it is possible to simultaneously increase or decrease the genetic stability of the microorganism. This has a profound impact on the ability of any

other mutation to be introduced into C. glutamicum, and on the ability of introduced

10

15

20

25

30

35

mutations to be retained. Transposons also offer a convenient mechanism by which mutagenesis of *C. glutamicum* may be performed; duplication of desired genes (*e.g.*, fine chemical biosynthetic genes) is readily accomplished by transposon mutagenesis, as is disruption of undesired genes (*e.g.*, genes encoding proteins involved in degradation of desired fine chemicals).

By modulating one or more proteins (e.g. sigma factors) involved in the regulation of transcription or translation in response to particular environmental conditions, it may be possible to prevent the cell from slowing or stopping protein synthesis under unfavorable environmental conditions, such as those found in largescale fermentor culture. This should lead to increased gene expression, which in turn may permit increased biosynthesis of desired fine chemicals under such conditions. Mutagenesis of proteins involved in protein secretion systems may result in modulated secretion rates. Many such secreted proteins have functions critical for cell viability (e.g., cell surface proteases or receptors). An alteration of a secretory pathway such that these proteins are more readily transported to their extracellular location may improve the overall viability of the cell, and thus result in greater numbers of C. glutamicum cells capable of producing fine chemicals during large-scale culture. Further, the secretion apparatus (e.g., the sec system) is also known to be involved in the insertion of integral membrane proteins (e.g., pores, channels, or transporters) into the membrane. Thus, the modulation of activity of proteins involved in protein secretion from C. glutamicum may affect the ability of the cell to excrete waste products or to import necessary metabolites. If the activity of these secretory proteins is increased, then the ability of the cell to produce fine chemicals may be similarly increased. If the activity of these secretory proteins is decreased, then there may be insufficient nutrients available to support overproduction of desired compounds, or waste products may interfere with such biosynthesis.

The invention provides novel nucleic acid molecules which encode proteins, referred to herein as SES proteins, which are capable of, for example, participating in the repair or recombination of DNA, transposition of genetic material, expression of genes (*i.e.*, the processes of transcription or translation), protein folding, or protein secretion in *Corynebacterium glutamicum*. Nucleic acid molecules encoding an SES protein are referred to herein as SES nucleic acid molecules. In a preferred embodiment, an SES protein participates in improving or decreasing genetic stability in *C. glutamicum*, in the expression of genes (*i.e.*, in transcription or translation) or protein folding in this organism, or in protein secretion from *C. glutamicum*. Examples of such proteins include those encoded by the genes set forth in Table 1.

15

20

25

30

35

Accordingly, one aspect of the invention pertains to isolated nucleic acid molecules (e.g., cDNAs, DNAs, or RNAs) comprising a nucleotide sequence encoding an SES protein or biologically active portions thereof, as well as nucleic acid fragments suitable as primers or hybridization probes for the detection or amplification of SESencoding nucleic acid (e.g., DNA or mRNA). In particularly preferred embodiments, the isolated nucleic acid molecule comprises one of the nucleotide sequences set forth in Appendix A or the coding region or a complement thereof of one of these nucleotide sequences. In other particularly preferred embodiments, the isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes to or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80% or 90%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence set forth in Appendix A, or a portion thereof. In other preferred embodiments, the isolated nucleic acid molecule encodes one of the amino acid sequences set forth in Appendix B. The preferred SES proteins of the present invention also preferably possess at least one of the SES activities described herein.

In another embodiment, the isolated nucleic acid molecule encodes a protein or portion thereof wherein the protein or portion thereof includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of Appendix B, e.g., sufficiently homologous to an amino acid sequence of Appendix B such that the protein or portion thereof maintains an SES activity. Preferably, the protein or portion thereof encoded by the nucleic acid molecule maintains the ability to participate in the repair or recombination of DNA, in the transposition of genetic material, in gene expression (i.e., the processes of transcription or translation), in protein folding, or in protein secretion in Corynebacterium glutamicum. In one embodiment, the protein encoded by the nucleic acid molecule is at least about 50%, preferably at least about 60%, and more preferably at least about 70%, 80%, or 90% and most preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous to an amino acid sequence of Appendix B (e.g., an entire amino acid sequence selected from those sequences set forth in Appendix B). In another preferred embodiment, the protein is a full length C. glutamicum protein which is substantially homologous to an entire amino acid sequence of Appendix B (encoded by an open reading frame shown in Appendix A).

In another preferred embodiment, the isolated nucleic acid molecule is derived from *C. glutamicum* and encodes a protein (*e.g.*, an SES fusion protein) which includes a biologically active domain which is at least about 50% or more homologous to one of the amino acid sequences of Appendix B and is able to participate in the repair or recombination of DNA, in the transposition of genetic material, in gene expression (*i.e.*,

10

15

20

25

30

35

the processes of transcription or translation), in protein folding, or in protein secretion in *Corynebacterium glutamicum*, or has one or more of the activities set forth in Table 1, and which also includes heterologous nucleic acid sequences encoding a heterologous polypeptide or regulatory regions.

In another embodiment, the isolated nucleic acid molecule is at least 15 nucleotides in length and hybridizes under stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of Appendix A. Preferably, the isolated nucleic acid molecule corresponds to a naturally-occurring nucleic acid molecule. More preferably, the isolated nucleic acid encodes a naturally-occurring *C. glutamicum* SES protein, or a biologically active portion thereof.

Another aspect of the invention pertains to vectors, *e.g.*, recombinant expression vectors, containing the nucleic acid molecules of the invention, and host cells into which such vectors have been introduced. In one embodiment, such a host cell is used to produce an SES protein by culturing the host cell in a suitable medium. The SES protein can be then isolated from the medium or the host cell.

Yet another aspect of the invention pertains to a genetically altered microorganism in which an SES gene has been introduced or altered. In one embodiment, the genome of the microorganism has been altered by introduction of a nucleic acid molecule of the invention encoding wild-type or mutated SES sequence as a transgene. In another embodiment, an endogenous SES gene within the genome of the microorganism has been altered, e.g., functionally disrupted, by homologous recombination with an altered SES gene. In another embodiment, an endogenous or introduced SES gene in a microorganism has been altered by one or more point mutations, deletions, or inversions, but still encodes a functional SES protein. In still another embodiment, one or more of the regulatory regions (e.g., a promoter, repressor, or inducer) of an SES gene in a microorganism has been altered (e.g., by deletion, truncation, inversion, or point mutation) such that the expression of the SES gene is modulated. In a preferred embodiment, the microorganism belongs to the genus Corynebacterium or Brevibacterium, with Corynebacterium glutamicum being particularly preferred. In a preferred embodiment, the microorganism is also utilized for the production of a desired compound, such as an amino acid, with lysine being particularly preferred.

In another aspect, the invention provides a method of identifying the presence or activity of *Cornyebacterium diphtheriae* in a subject. This method includes detection of one or more of the nucleic acid or amino acid sequences of the invention (e.g., the sequences set forth in Appendix A or Appendix B) in a subject, thereby detecting the presence or activity of *Corynebacterium diphtheriae* in the subject.

15

20

25

30

35

Still another aspect of the invention pertains to an isolated SES protein or a portion, *e.g.*, a biologically active portion, thereof. In a preferred embodiment, the isolated SES protein or portion thereof can participate in the repair or recombination of DNA, in the transposition of genetic material, in gene expression (*i.e.*, the processes of transcription or translation), in protein folding, or in protein secretion in *Corynebacterium glutamicum*. In another preferred embodiment, the isolated SES protein or portion thereof is sufficiently homologous to an amino acid sequence of Appendix B such that the protein or portion thereof maintains the ability to participate in the repair or recombination of DNA, in the transposition of genetic material, in gene expression (*i.e.*, the processes of transcription or translation), in protein folding, or in protein secretion in *Corynebacterium glutamicum*.

The invention also provides an isolated preparation of an SES protein. In preferred embodiments, the SES protein comprises an amino acid sequence of Appendix B. In another preferred embodiment, the invention pertains to an isolated full length protein which is substantially homologous to an entire amino acid sequence of Appendix B (encoded by an open reading frame set forth in Appendix A). In yet another embodiment, the protein is at least about 50%, preferably at least about 60%, and more preferably at least about 70%, 80%, or 90%, and most preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous to an entire amino acid sequence of Appendix B. In other embodiments, the isolated SES protein comprises an amino acid sequence which is at least about 50% or more homologous to one of the amino acid sequences of Appendix B and is able to participate in the repair or recombination of DNA, in the transposition of genetic material, in gene expression (*i.e.*, the processes of transcription or translation), in protein folding, or in protein secretion in *Corynebacterium glutamicum*, or has one or more of the activities set forth in Table 1.

Alternatively, the isolated SES protein can comprise an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, *e.g.*, hybridizes under stringent conditions, or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 96%, 97%, 98,%, or 99% or more homologous, to a nucleotide sequence of Appendix B. It is also preferred that the preferred forms of SES proteins also have one or more of the SES bioactivities described herein.

The SES polypeptide, or a biologically active portion thereof, can be operatively linked to a non-SES polypeptide to form a fusion protein. In preferred embodiments, this fusion protein has an activity which differs from that of the SES protein alone. In other preferred embodiments, this fusion protein participates in the repair or recombination of DNA, in the transposition of genetic material, in gene expression (*i.e.*,

15

20

25

30

35

the processes of transcription or translation), in protein folding, or in protein secretion in *Corynebacterium glutamicum*. In particularly preferred embodiments, integration of this fusion protein into a host cell modulates production of a desired compound from the cell.

In another aspect, the invention provides methods for screening molecules which modulate the activity of an SES protein, either by interacting with the protein itself or a substrate or binding partner of the SES protein, or by modulating the transcription or translation of an SES nucleic acid molecule of the invention.

Another aspect of the invention pertains to a method for producing a fine chemical. This method involves the culturing of a cell containing a vector directing the expression of an SES nucleic acid molecule of the invention, such that a fine chemical is produced. In a preferred embodiment, this method further includes the step of obtaining a cell containing such a vector, in which a cell is transfected with a vector directing the expression of an SES nucleic acid. In another preferred embodiment, this method further includes the step of recovering the fine chemical from the culture. In a particularly preferred embodiment, the cell is from the genus *Corynebacterium* or *Brevibacterium*, or is selected from those strains set forth in Table 3.

Another aspect of the invention pertains to methods for modulating production of a molecule from a microorganism. Such methods include contacting the cell with an agent which modulates SES protein activity or SES nucleic acid expression such that a cell associated activity is altered relative to this same activity in the absence of the agent. In a preferred embodiment, the cell is modulated for one or more *C. glutamicum* processes involved in genetic stability, gene expression, protein folding, or protein secretion such that the yield, production, or efficiency of production of a desired fine chemical by this microorganism is improved. The agent which modulates SES protein activity can be an agent which stimulates SES protein activity or SES nucleic acid expression. Examples of agents which stimulate SES protein activity or SES nucleic acid expression include small molecules, active SES proteins, and nucleic acids encoding SES proteins that have been introduced into the cell. Examples of agents which inhibit SES activity or expression include small molecules and antisense SES nucleic acid molecules.

Another aspect of the invention pertains to methods for modulating yields of a desired compound from a cell, involving the introduction of a wild-type or mutant SES gene into a cell, either maintained on a separate plasmid or integrated into the genome of the host cell. If integrated into the genome, such integration can be random, or it can take place by homologous recombination such that the native gene is replaced by the introduced copy, causing the production of the desired compound from the cell to be

10

15

20

25

30

35

modulated. In a preferred embodiment, said yields are increased. In another preferred embodiment, said chemical is a fine chemical. In a particularly preferred embodiment, said fine chemical is an amino acid. In especially preferred embodiments, said amino acid is L-lysine.

Detailed Description of the Invention

The present invention provides SES nucleic acid and protein molecules which are involved in the repair or recombination of DNA, in the transposition of genetic material, in gene expression (*i.e.*, the processes of transcription or translation), in protein folding, or in protein secretion in *Corynebacterium glutamicum*. The molecules of the invention may be utilized in the modulation of production of fine chemicals from microorganisms, such as *C. glutamicum*, either directly (*e.g.*, where overexpression or optimization of activity of a protein involved in secretion of a fine chemical (*e.g.*, an enzyme) has a direct impact on the yield, production, and/or efficiency of production of a fine chemical from the modified *C. glutamicum*), or an indirect impact which nonetheless results in an increase of yield, production, and/or efficiency of production of the desired compound (*e.g.*, where modulation of the activity or number of copies of a *C. glutamicum* DNA repair protein results in alterations in the ability of the microorganism to maintain the introduced mutation, which in turn may impact the production of one or more fine chemicals from such a strain). Aspects of the invention are further explicated below.

I. Fine Chemicals

The term 'fine chemical' is art-recognized and includes molecules produced by an organism which have applications in various industries, such as, but not limited to, the pharmaceutical, agriculture, and cosmetics industries. Such compounds include organic acids, such as tartaric acid, itaconic acid, and diaminopimelic acid, both proteinogenic and non-proteinogenic amino acids, purine and pyrimidine bases, nucleosides, and nucleotides (as described *e.g.* in Kuninaka, A. (1996) Nucleotides and related compounds, p. 561-612, in Biotechnology vol. 6, Rehm et al., eds. VCH: Weinheim, and references contained therein), lipids, both saturated and unsaturated fatty acids (*e.g.*, arachidonic acid), diols (*e.g.*, propane diol, and butane diol), carbohydrates (*e.g.*, hyaluronic acid and trehalose), aromatic compounds (*e.g.*, aromatic amines, vanillin, and indigo), vitamins and cofactors (as described in Ullmann's Encyclopedia of Industrial Chemistry, vol. A27, "Vitamins", p. 443-613 (1996) VCH: Weinheim and references therein; and Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological

15

20

25

30

35

- 10 -

Associations in Malaysia, and the Society for Free Radical Research – Asia, held Sept. 1-3, 1994 at Penang, Malaysia, AOCS Press, (1995)), enzymes, polyketides (Cane *et al.*(1998) *Science* 282: 63-68), and all other chemicals described in Gutcho (1983) Chemicals by Fermentation, Noyes Data Corporation, ISBN: 0818805086 and references therein. The metabolism and uses of certain of these fine chemicals are further explicated below.

A. Amino Acid Metabolism and Uses

Amino acids comprise the basic structural units of all proteins, and as such are essential for normal cellular functioning in all organisms. The term "amino acid" is artrecognized. The proteinogenic amino acids, of which there are 20 species, serve as structural units for proteins, in which they are linked by peptide bonds, while the nonproteinogenic amino acids (hundreds of which are known) are not normally found in proteins (see Ulmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97 VCH: Weinheim (1985)). Amino acids may be in the D- or L- optical configuration, though Lamino acids are generally the only type found in naturally-occurring proteins. Biosynthetic and degradative pathways of each of the 20 proteinogenic amino acids have been well characterized in both prokaryotic and eukaryotic cells (see, for example, Stryer, L. Biochemistry, 3rd edition, pages 578-590 (1988)). The 'essential' amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine), so named because they are generally a nutritional requirement due to the complexity of their biosyntheses, are readily converted by simple biosynthetic pathways to the remaining 11 'nonessential' amino acids (alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, proline, serine, and tyrosine). Higher animals do retain the ability to synthesize some of these amino acids, but the essential amino acids must be supplied from the diet in order for normal protein synthesis to occur.

Aside from their function in protein biosynthesis, these amino acids are interesting chemicals in their own right, and many have been found to have various applications in the food, feed, chemical, cosmetics, agriculture, and pharmaceutical industries. Lysine is an important amino acid in the nutrition not only of humans, but also of monogastric animals such as poultry and swine. Glutamate is most commonly used as a flavor additive (mono-sodium glutamate, MSG) and is widely used throughout the food industry, as are aspartate, phenylalanine, glycine, and cysteine. Glycine, L-methionine and tryptophan are all utilized in the pharmaceutical industry. Glutamine, valine, leucine, isoleucine, histidine, arginine, proline, serine and alanine are of use in both the pharmaceutical and cosmetics industries. Threonine, tryptophan, and D/ L-methionine are common feed additives. (Leuchtenberger, W. (1996) Amino aids –

15

20

25

30

35

technical production and use, p. 466-502 in Rehm *et al.*(eds.) Biotechnology vol. 6, chapter 14a, VCH: Weinheim). Additionally, these amino acids have been found to be useful as precursors for the synthesis of synthetic amino acids and proteins, such as N-acetylcysteine, S-carboxymethyl-L-cysteine, (S)-5-hydroxytryptophan, and others described in Ulmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97, VCH: Weinheim, 1985.

The biosynthesis of these natural amino acids in organisms capable of producing them, such as bacteria, has been well characterized (for review of bacterial amino acid biosynthesis and regulation thereof, see Umbarger, H.E.(1978) Ann. Rev. *Biochem.* 47: 533-606). Glutamate is synthesized by the reductive amination of α ketoglutarate, an intermediate in the citric acid cycle. Glutamine, proline, and arginine are each subsequently produced from glutamate. The biosynthesis of serine is a threestep process beginning with 3-phosphoglycerate (an intermediate in glycolysis), and resulting in this amino acid after oxidation, transamination, and hydrolysis steps. Both cysteine and glycine are produced from serine; the former by the condensation of homocysteine with serine, and the latter by the transferal of the side-chain β -carbon atom to tetrahydrofolate, in a reaction catalyzed by serine transhydroxymethylase. Phenylalanine, and tyrosine are synthesized from the glycolytic and pentose phosphate pathway precursors erythrose 4-phosphate and phosphoenolpyruvate in a 9-step biosynthetic pathway that differ only at the final two steps after synthesis of prephenate. Tryptophan is also produced from these two initial molecules, but its synthesis is an 11step pathway. Tyrosine may also be synthesized from phenylalanine, in a reaction catalyzed by phenylalanine hydroxylase. Alanine, valine, and leucine are all biosynthetic products of pyruvate, the final product of glycolysis. Aspartate is formed from oxaloacetate, an intermediate of the citric acid cycle. Asparagine, methionine, threonine, and lysine are each produced by the conversion of aspartate. Isoleucine is formed from threonine. A complex 9-step pathway results in the production of histidine from 5-phosphoribosyl-1-pyrophosphate, an activated sugar.

Amino acids in excess of the protein synthesis needs of the cell cannot be stored, and are instead degraded to provide intermediates for the major metabolic pathways of the cell (for review see Stryer, L. Biochemistry 3rd ed. Ch. 21 "Amino Acid Degradation and the Urea Cycle" p. 495-516 (1988)). Although the cell is able to convert unwanted amino acids into useful metabolic intermediates, amino acid production is costly in terms of energy, precursor molecules, and the enzymes necessary to synthesize them. Thus it is not surprising that amino acid biosynthesis is regulated by feedback inhibition, in which the presence of a particular amino acid serves to slow or entirely stop its own production (for overview of feedback mechanisms in amino acid biosynthetic pathways.

15

20

35

see Stryer, L. Biochemistry, 3rd ed. Ch. 24: "Biosynthesis of Amino Acids and Heme" p. 575-600 (1988)). Thus, the output of any particular amino acid is limited by the amount of that amino acid present in the cell.

5 B. Vitamin, Cofactor, and Nutraceutical Metabolism and Uses

Vitamins, cofactors, and nutraceuticals comprise another group of molecules which the higher animals have lost the ability to synthesize and so must ingest, although they are readily synthesized by other organisms such as bacteria. These molecules are either bioactive substances themselves, or are precursors of biologically active substances which may serve as electron carriers or intermediates in a variety of metabolic pathways. Aside from their nutritive value, these compounds also have significant industrial value as coloring agents, antioxidants, and catalysts or other processing aids. (For an overview of the structure, activity, and industrial applications of these compounds, see, for example, Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613, VCH: Weinheim, 1996.) The term "vitamin" is artrecognized, and includes nutrients which are required by an organism for normal functioning, but which that organism cannot synthesize by itself. The group of vitamins may encompass cofactors and nutraceutical compounds. The language "cofactor" includes nonproteinaceous compounds required for a normal enzymatic activity to occur. Such compounds may be organic or inorganic; the cofactor molecules of the invention are preferably organic. The term "nutraceutical" includes dietary supplements having health benefits in plants and animals, particularly humans. Examples of such molecules are vitamins, antioxidants, and also certain lipids (e.g., polyunsaturated fatty acids).

The biosynthesis of these molecules in organisms capable of producing them, such as bacteria, has been largely characterized (Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613, VCH: Weinheim, 1996; Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley & Sons; Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia, and the Society for Free Radical Research – Asia, held Sept. 1-3, 1994 at Penang, Malaysia, AOCS Press: Champaign, IL X, 374 S).

Thiamin (vitamin B₁) is produced by the chemical coupling of pyrimidine and thiazole moieties. Riboflavin (vitamin B₂) is synthesized from guanosine-5'-triphosphate (GTP) and ribose-5'-phosphate. Riboflavin, in turn, is utilized for the synthesis of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). The family of compounds collectively termed 'vitamin B₆' (e.g., pyridoxine, pyridoxamine, pyridoxa-

15

20

25

30

35

5'-phosphate, and the commercially used pyridoxin hydrochloride) are all derivatives of the common structural unit, 5-hydroxy-6-methylpyridine. Pantothenate (pantothenic acid, (R)-(+)-N-(2,4-dihydroxy-3,3-dimethyl-1-oxobutyl)-β-alanine) can be produced either by chemical synthesis or by fermentation. The final steps in pantothenate biosynthesis consist of the ATP-driven condensation of β-alanine and pantoic acid. The enzymes responsible for the biosynthesis steps for the conversion to pantoic acid, to β-alanine and for the condensation to panthotenic acid are known. The metabolically active form of pantothenate is Coenzyme A, for which the biosynthesis proceeds in 5 enzymatic steps. Pantothenate, pyridoxal-5'-phosphate, cysteine and ATP are the precursors of Coenzyme A. These enzymes not only catalyze the formation of panthothante, but also the production of (R)-pantoic acid, (R)-pantolacton, (R)-panthenol (provitamin B₅), pantetheine (and its derivatives) and coenzyme A.

Biotin biosynthesis from the precursor molecule pimeloyl-CoA in microorganisms has been studied in detail and several of the genes involved have been identified. Many of the corresponding proteins have been found to also be involved in Fe-cluster synthesis and are members of the nifS class of proteins. Lipoic acid is derived from octanoic acid, and serves as a coenzyme in energy metabolism, where it becomes part of the pyruvate dehydrogenase complex and the α -ketoglutarate dehydrogenase complex. The folates are a group of substances which are all derivatives of folic acid, which is turn is derived from L-glutamic acid, p-amino-benzoic acid and 6-methylpterin. The biosynthesis of folic acid and its derivatives, starting from the metabolism intermediates guanosine-5'-triphosphate (GTP), L-glutamic acid and p-amino-benzoic acid has been studied in detail in certain microorganisms.

Corrinoids (such as the cobalamines and particularly vitamin B_{12}) and porphyrines belong to a group of chemicals characterized by a tetrapyrole ring system. The biosynthesis of vitamin B_{12} is sufficiently complex that it has not yet been completely characterized, but many of the enzymes and substrates involved are now known. Nicotinic acid (nicotinate), and nicotinamide are pyridine derivatives which are also termed 'niacin'. Niacin is the precursor of the important coenzymes NAD (nicotinamide adenine dinucleotide) and NADP (nicotinamide adenine dinucleotide phosphate) and their reduced forms.

The large-scale production of these compounds has largely relied on cell-free chemical syntheses, though some of these chemicals have also been produced by large-scale culture of microorganisms, such as riboflavin, Vitamin B₆, pantothenate, and biotin. Only Vitamin B₁₂ is produced solely by fermentation, due to the complexity of its synthesis. *In vitro* methodologies require significant inputs of materials and time, often at great cost.

10

15

20

25

30

35

C. Purine, Pyrimidine, Nucleoside and Nucleotide Metabolism and Uses

Purine and pyrimidine metabolism genes and their corresponding proteins are important targets for the therapy of tumor diseases and viral infections. The language "purine" or "pyrimidine" includes the nitrogenous bases which are constituents of nucleic acids, co-enzymes, and nucleotides. The term "nucleotide" includes the basic structural units of nucleic acid molecules, which are comprised of a nitrogenous base, a pentose sugar (in the case of RNA, the sugar is ribose; in the case of DNA, the sugar is D-deoxyribose), and phosphoric acid. The language "nucleoside" includes molecules which serve as precursors to nucleotides, but which are lacking the phosphoric acid moiety that nucleotides possess. By inhibiting the biosynthesis of these molecules, or their mobilization to form nucleic acid molecules, it is possible to inhibit RNA and DNA synthesis; by inhibiting this activity in a fashion targeted to cancerous cells, the ability of tumor cells to divide and replicate may be inhibited. Additionally, there are nucleotides which do not form nucleic acid molecules, but rather serve as energy stores (*i.e.*, AMP) or as coenzymes (*i.e.*, FAD and NAD).

Several publications have described the use of these chemicals for these medical indications, by influencing purine and/or pyrimidine metabolism (e.g. Christopherson, R.I. and Lyons, S.D. (1990) "Potent inhibitors of de novo pyrimidine and purine biosynthesis as chemotherapeutic agents." Med. Res. Reviews 10: 505-548). Studies of enzymes involved in purine and pyrimidine metabolism have been focused on the development of new drugs which can be used, for example, as immunosuppressants or anti-proliferants (Smith, J.L., (1995) "Enzymes in nucleotide synthesis." Curr. Opin. Struct. Biol. 5: 752-757; (1995) Biochem Soc. Transact. 23: 877-902). However, purine and pyrimidine bases, nucleosides and nucleotides have other utilities: as intermediates in the biosynthesis of several fine chemicals (e.g., thiamine, S-adenosyl-methionine, folates, or riboflavin), as energy carriers for the cell (e.g., ATP or GTP), and for chemicals themselves, commonly used as flavor enhancers (e.g., IMP or GMP) or for several medicinal applications (see, for example, Kuninaka, A. (1996) Nucleotides and Related Compounds in Biotechnology vol. 6, Rehm et al., eds. VCH: Weinheim, p. 561-612). Also, enzymes involved in purine, pyrimidine, nucleoside, or nucleotide metabolism are increasingly serving as targets against which chemicals for crop protection, including fungicides, herbicides and insecticides, are developed.

The metabolism of these compounds in bacteria has been characterized (for reviews see, for example, Zalkin, H. and Dixon, J.E. (1992) "de novo purine nucleotide biosynthesis", in: Progress in Nucleic Acid Research and Molecular Biology, vol. 42, Academic Press:, p. 259-287; and Michal, G. (1999) "Nucleotides and Nucleosides", Chapter 8 in: Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology,

Wiley: New York). Purine metabolism has been the subject of intensive research, and is essential to the normal functioning of the cell. Impaired purine metabolism in higher animals can cause severe disease, such as gout. Purine nucleotides are synthesized from ribose-5-phosphate, in a series of steps through the intermediate compound inosine-5'-phosphate (IMP), resulting in the production of guanosine-5'-monophosphate (GMP) or adenosine-5'-monophosphate (AMP), from which the triphosphate forms utilized as nucleotides are readily formed. These compounds are also utilized as energy stores, so their degradation provides energy for many different biochemical processes in the cell. Pyrimidine biosynthesis proceeds by the formation of uridine-5'-monophosphate (UMP) from ribose-5-phosphate. UMP, in turn, is converted to cytidine-5'-triphosphate (CTP). The deoxy- forms of all of these nucleotides are produced in a one step reduction reaction from the diphosphate ribose form of the nucleotide to the diphosphate deoxyribose form of the nucleotide. Upon phosphorylation, these molecules are able to participate in DNA synthesis.

15

20

25

30

35

10

D. Trehalose Metabolism and Uses

Trehalose consists of two glucose molecules, bound in α, α-1,1 linkage. It is commonly used in the food industry as a sweetener, an additive for dried or frozen foods, and in beverages. However, it also has applications in the pharmaceutical, cosmetics and biotechnology industries (see, for example, Nishimoto et al., (1998) U.S. Patent No. 5,759,610; Singer, M.A. and Lindquist, S. (1998) *Trends Biotech*. 16: 460-467; Paiva, C.L.A. and Panek, A.D. (1996) *Biotech. Ann. Rev.* 2: 293-314; and Shiosaka, M. (1997) J. Japan 172: 97-102). Trehalose is produced by enzymes from many microorganisms and is naturally released into the surrounding medium, from which it can be collected using methods known in the art.

II. Genetic Stability; Protein Synthesis and Protein Secretion in C. glutamicum

The production of a desired compound from a cell such as *C. glutamicum* is the culmination of a large number of separate yet interrelated processes, each of which is critical to the overall production and release of the compound from the cell. In engineering a cell to overproduce one or more fine chemicals, consideration must be given to each of these processes to ensure that the biochemical machinery of the cell will be compatible with such genetic manipulation. Cellular mechanisms of particular importance include the stability of the altered gene(s) upon introduction into the cell, the ability of the mutated gene to be properly transcribed and translated (including issues of codon usage), and the ability of the mutant protein product to be appropriately folded and/or secreted.

15

20

25

30

35

- 16 -

A. Bacterial Repair and Recombination Systems

Cells are constantly exposed to nucleic acid-damaging agents, such as UV irradiation, oxygen radicals, and alkylation. Further, even the action of DNA polymerases is not error-free. Cells must maintain a balance between genetic stability (which ensures that genes necessary for vital cellular functions are not damaged during normal growth and metabolism) and genetic variability (which permits cells to adapt to a changing environment). Therefore, there exist separate, but interrelated pathways of DNA repair and DNA recombination in most cells. The former serves to stringently correct errors in DNA molecules by either directly reversing the damage or excising the damaged region and replacing it with the correct sequence. The latter recombination system also repairs nucleic acid molecules, but only those lesions that result in damage to both strands of DNA such that neither strand is able to serve as a template to correct the other. Recombination repair and the SOS response may readily lead to inversions, deletions, or other genetic rearrangements within or around the region of the damage, which in turn promotes a certain degree of genomic instability which may contribute to the ability of the cell to adapt to changing environments or stresses.

High-fidelity repair mechanisms include direct reversal of DNA damage and excision of damage and resynthesis using the information encoded on the opposite DNA strand. Direct reversal of damage requires an enzyme having an activity opposite of that which originally damaged the DNA. For example, inappropriate methylation of DNA may be corrected by the action of DNA repair methyltransferases, and nucleotide dimers created by UV irradiation may be fixed by the activity of deoxyribodipyrimidine photolyase, which, in the presence of light, cleaves the dimer back to its constituent nucleotides (see Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, Wiley: New York, and references therein).

Precise repair of more extensive damage requires specialized repair mechanisms. These include the mismatch repair and excision repair systems. Damage to a single base may be corrected by a series of cleavage reactions, where first the sugar-base bond is cut, followed by cleavage of the DNA backbone at the site of damage and removal of the damaged base itself. Finally, DNA polymerase and DNA ligase act to fill in and seal the gap using the second DNA strand as a template. More significant DNA damage which results in altered conformation of the double helix is corrected by the ABC system, in which helicase II, DNA polymerase I, UvrA, UvrB, and UvrC proteins combine to nick the double helix at the site of damage, to unwind the damaged region in an ATP-dependent fashion, to excise the damaged region, and to fill in the missing region using the other strand as a template. Lastly, DNA ligase seals the nick. Specific repair systems also exist for G·T mismatches (involving the Vsr protein) and for small

20

25

30

35

- 17 -

deletion/insertion errors resulting in mispairing of the two strands (involving the methylation-directed pathway).

There also exist low-fidelity repair systems which are generally used to correct very extensive DNA damage in bacteria. Double-strand repair and recombination occurs in the presence of a lesion which affects both strands of DNA. In this situation, it is impossible to repair the damage utilizing the other strand as the template. Thus, this repair system involves a double-crossover event between the area of the lesion and another copy of the region on a homologous DNA molecule. This is possible because bacteria divide so rapidly that a second copy of genomic DNA is usually available before actual cell division occurs. This crossover event may readily lead to inversions, duplications, deletions, insertions and other genetic rearrangements, and thus increases the overall genetic instability of the organism.

The SOS response is activated when sufficient damage is present in the DNA that DNA polymerase III stalls and cannot continue replication. Under these circumstances, single-stranded DNA is present. The RecA protein is activated by binding to single-stranded DNA, and this activated form results in the activation of the LexA repressor, thereby lifting the transcriptional block of more than 20 genes, including UvrA, UvrB, UvrC, helicase II, DNA pol III, UmuC, and UmuD. The combined activities of these enzymes results in sufficient filling of the gap region that DNA pol III is able to resume replication. However, these gaps have been filled in with bases which should not be present; thus, this type of repair results in error-prone repair, contributing to overall genetic instability in the cell.

B. Transposons

The aforementioned systems, whether high or low fidelity, exist to repair DNA damage. In certain circumstances, this repair may accidentally incorporate additional genetic rearrangements. Many bacterial cells also have mechanisms specifically designed to cause such genetic rearrangements. Particularly well-known examples of such mechanisms are the transposons.

Transposons are genetic elements which are able to move from one site to another either within a chromosome or between a piece of extrachromosomal DNA (e.g., a plasmid) and a chromosome. Transposition may occur in multiple ways; for example, the transposable element may be cut out from the donor site and integrated into the target site (nonreplicative transposition), or the transposable element may alternately be duplicated from the donor site to the target site, yielding two copies of the element (replicative transposition). There is generally no sequence relationship between the donor and target sites.

15

20

25

30

35

There are a variety of results possible from such a transposition event. The integration of a transposable element into a gene disrupts the gene, usually abrogating its function entirely. An integration event that occurs in the DNA surrounding a gene may not perturb the coding sequence itself, but can have a profound effect on the regulation of the gene and thus, on its expression. Recombination events between two copies of a transposable element found in different portions of the genome may result in deletions, duplications, inversions, transpositions, or amplifications of segments of the genome. It is also possible for different replicons to fuse.

The simplest transposon-like genetic elements are termed insertion (IS) elements. IS elements contain a nucleotide region of varying length (though usually less than 1500 bases) lacking any coding regions, surrounded by inverted repeats at either end. Thus, since the IS element does not encode any proteins whose activity may be detected, the presence of an IS element is generally only observed due to a loss of function of one or more genes in which the IS element is inserted.

Transposons are mobile genetic elements which, unlike IS elements, contain nucleic acid sequences bounded by repeats which may encode one or more proteins. It is not unusual for these repeat regions to consist of IS elements. The proteins encoded by the transposon are typically transposases (proteins which catalyze the movement of the transposon from one site to another) and antibiotic resistance genes. The mechanisms and regulation of transposable elements are well known in the art and are have been described at least in, for example, Lengeler *et al.*(1999) Biology of Prokaryotes, Thieme Verlag: Stuttgart, p. 375-361; Neidhardt *et al.*(1996) *Escherichia coli* and *Salmonella*, ASM Press: Washington, D.C.; Sonenshein, A.L. et al., eds. (1993), *Bacillus subtilis*, ASM Press: Washington, D.C.; Voet, D. and Voet, J.G. (1992) Biochemie, VCH: Weinheim, p. 985-990; Brock, T.D., and Madigan, M.T. (1991) Biology of Microorganisms, 6th ed., Prentice Hall: New York, p. 267-269; and Kleckner, N. (1990) "Regulation of transposition in bacteria", *Annu. Rev. Biochem.* 61: 297-327.

C. Transcription

Gene expression in bacteria is regulated mainly at the level of transcription. The transcriptional apparatus consists of a number of proteins that can be divided into two groups: RNA polymerase (the processive DNA-transcribing enzyme) and sigma factors (which regulate gene transcription by directing RNA polymerase to specific promoter-DNA sequences which these factors recognize). The combination of RNA polymerase and sigma factors creates the RNA polymerase holoenzyme, an activated complex. Gram positive bacteria such as Corynebacteria contain only one type of RNA-polymerase, but a variety of different sigma factors specific for different promoters,

15

20

30

growth phases, environmental conditions, substrates, oxygen levels, transport processes, and the like, which permits adaptability of the organism to different environmental and metabolic conditions.

Promoters are specific DNA sequences that serve as docking sites for the RNA polymerase holoenzyme. Many promoter elements possess conserved sequence elements that may be recognized through homology searches; alternately, promoter regions for a particular gene may be identified using standard techniques such as primer extension. Many promoter regions from gram-positive bacteria are known (see, *e.g.*, Sonenshein, A.L., Hoch, J.A., and Losick, R., eds. (1993) *Bacillus subtilis*, ASM Press: Washington, D.C.).

Promoter transcriptional control is influenced by several mechanisms of repression or activation. Specific regulatory proteins which bind promoters have the ability to block (repressors) or to assist (activators) the binding of the RNA holoenzyme, and thus to regulate transcription. The binding of these repressor and activator molecules in turn is regulated by their interactions with other molecules, such as proteins or other metabolic compounds. Transcription may alternately be regulated by factors influencing processes such as elongation or termination (see, *e.g.*, Sonenshein, A.L., Hoch, J.A., and Losick, R., eds. (1993) *Bacillus subtilis*, ASM Press: Washington, D.C.). The ability to regulate transcription of genes in response to a variety of environmental or metabolic cues affords cells the ability to tightly control when a gene may be expressed and or how much of a gene product may be present in the cell at one time. This in turn prevents unnecessary expenditure of energy or unnecessary utilization of possibly scarce intermediate compounds or cofactors.

25 D. Translation and tRNA-Aminoacyl Synthetases

Translation is the process by which a polypeptide is synthesized from amino acids according to the information contained within an mRNA molecule. The main components of this process are ribosomes and specific initiation or elongation factors, such as IF1-3, EF-G, and EFTu (see, *e.g.*, Sonenshein, A.L., Hoch, J..A., Losick, R., eds. (1993) *Bacillus subtilis*, ASM Press: Washington, D.C.).

Each codon of the mRNA molecule encodes a particular amino acid. The conversion from mRNA to amino acid is effected by transfer RNA (tRNA) molecules. These molecules consist of a single strand of RNA (between 60 and 100 bases), which exists in an L-shaped three dimensional structure having protruding areas, or 'arms'.

One such arm forms base pairs with a particular codon sequence on the mRNA molecule. A second arm interacts specifically with a particular amino acid (the one encoded by the codon). Other arms of the tRNA include the variable arm, the TψC arm

15

20

25

30

35

(which bears thimidylate and pseudouridylate modifications), and the D arm (which bears a dihydrouridine modification). The function of these latter structures remains unknown, but their conservation between tRNA molecules suggests a role in protein synthesis.

In order for the nucleic acid-based tRNA molecule to associate with the correct amino acid, a family of enzymes, termed the aminoacyl-tRNA synthetases, must act. There exist many different of these enzymes, each of which is specific for a particular tRNA and a particular amino acid. These enzymes link the 3' hydroxyl of the terminal tRNA adenosine ribose moiety to the amino acid in a two step reaction. First, the enzyme is activated by reaction with ATP and the amino acid to result in an aminoacyltRNA synthetase-aminoacyl adenylate complex. Second, the aminoacyl group is transferred from the enzyme to the target tRNA where it remains in the high-energy state. Binding of the tRNA molecule to its cognate codon on the mRNA molecule then brings the high-energy amino acid attached to the tRNA into contact with the ribosome. Within the ribosome, the amino-acid charged tRNA (aminoacyl-tRNA) occupies one binding site (the A site) adjacent to a second site (the P site) containing a tRNA molecule whose amino acid arm is attached to the nascent polypeptide chain (peptidyltRNA). The activated amino acid on the aminoacyl-tRNA is sufficiently reactive that a peptide bond spontaneously forms between this amino acid and the next amino acid on the nascent polypeptide chain. Hydrolysis of GTP provides the energy for the transfer of the now-polypeptide chain-loaded tRNA from the A site to the P site of the ribosome, and the process repeats until a stop codon is reached.

There are a number of different steps at which translation may be regulated. These include the binding of the ribosome to mRNA, the presence of mRNA secondary structure, codon usage, or the abundance of particular tRNAs. Also, special regulation mechanisms such as attenuation may act at the level of translation. For an in-depth review of many of these mechanisms, see, *e.g.*, Vellanoweth, R.L. (1993) "Translation and its Regulation" in: *Bacillus subtilis* and other Gram Positive Bacteria, Sonenshein, A.L. et al., eds., ASM Press: Washington D.C., p. 699-711, and references cited therein.

E. Protein Folding and Secretion

Synthesis of proteins by the ribosome results in polypeptide chains, which must take on a three-dimensional form before the protein can function normally. This three-dimensional structure is achieved by a process of folding. Polypeptide chains are flexible, and (in principle) move readily and freely in solution until they attain a conformation which results in a stable three-dimensional structure. However, it is sometimes difficult for proteins to fold correctly, either due to environmental conditions

10

15

20

25

30

35

(e.g., high temperature, where the extra kinetic energy present in the system makes it more difficult for the polypeptide to settle in the energy well of a stable structure) or due to the nature of the protein itself (e.g., the hydrophobic regions in nearby polypeptides have a tendency to aggregate and thereby sequester themselves from aqueous solution).

Proteinaceous factors have been identified that are able to catalyze, chaperone, or otherwise assist in the folding of proteins being synthesized either co- or posttranslationally. Members of these protein folding molecules are the prolyl-peptidyl isomerases (e.g., trigger factor, cyclophilin, and FKBP homologs), and proteins of the heat shock protein group (e.g., DnaK, DnaJ, GroEL, small heat shock proteins, HtpG and members of the Clp family (e.g., ClpA, ClpB, ClpW, ClpP, and ClpX)). Many of these proteins are essential for the viability of cells: in addition to their functions in protein folding, translocation, and processing, they frequently serve as key targets for the overall regulation of protein synthesis (see, e.g., Bukau, B., (1993) Molecular Microbiology 9(4): 671-680; Bukau, B., and Horwich, A.L. (1998) Cell 92(3):351-366; Hesterkamp, T., Bukau, C. (1996) FEBS Lett. 389(1):32-34; Yaron, A., Naider, F. (1993) Critical Reviews in Biochemistry and Molecular Biology 28(1):31-81; Scheibel, R., Buchner, J. (1998) Biochemical Pharmacology 56(6):675-682; Ellis, R.J., Hartl, F.U. (1996) FASEB Journal 10(1): 20-26; Wawrzynow, A. et al. (1996) Molecular Microbiology 21(5): 895-899; Ewalt, K.L., et al. (1997) Cell 90(3): 491-500).

Chaperones identified thus far function in one of two ways: they either bind and stabilize polypeptides, or they provide an environment in which folding may occur without interference. The former group, including, e.g., DnaK, DnaJ, and the heat shock proteins, bind directly to the nascent or misfolded polypeptide, frequently with concomitant ATP hydrolysis. The association of the chaperone prevents the polypeptide from aggregating with other polypeptides, and can force such aggregates to dissipate if they have already formed. After interaction with a second chaperone, GrpE (which permits an ADP-ATP exchange to occur), the polypeptide is released in a molten globule state and is permitted to fold. If misfolding occurs, the chaperones again associate with the misfolded protein, forcing it to return to an unfolded state. This cycle may be repeated until the protein is correctly folded. Unlike the first type of chaperones, which simply bind to the polypeptide, the second group (e.g. GroEL/ES) not only bind to the polypeptide, but also completely surround it such that it is protected from the surrounding environment. The GroEL/ES complex is composed of 2 stacked 14member rings having a hydrophobic interior surface, and a 7-membered ring 'cap'. The polypeptide is drawn into the channel in the center of this complex in an ATP-dependent reaction where it is able to fold without interference from other polypeptides. Incorrectly folded proteins are not released from the complex.

15

20

25

30

35

An important step in protein folding is the creation of disulfide bonds. These bonds, either within a subunit or between subunits of a protein, are critical for protein stability. Disulfide bonds form readily in aqueous solution, and incorrect disulfide bond formation is difficult to reverse without the aid of a reducing environment. To assist in this process of correct disulfide bond formation, thiol-containing molecules, such as glutathione or thioredoxin, and their respective oxidation/reduction systems are found in the cytosol of most cells (Loferer, H., Hennecke, H. (1994) *Trends in Biochemical Sciences* 19(4): 169-171).

There are times, however, when folding of nascent polypeptide chains is not desirable, such as when these polypeptides are to be secreted. The folding process generally results in the hydrophobic regions of the protein being in the center of the protein, away from aqueous solution, and the hydrophilic regions being presented at the outer surfaces of the protein. This conformational arrangement, while creating greater stability for the protein, makes it difficult for the protein to be translocated across membranes, since the hydrophobic core of the membrane is inherently incompatible with the hydrophilic exterior of the protein. Thus, proteins synthesized by the cell which must be secreted to the exterior of the cell (e.g., cell surface enzymes and membrane receptors) or which must be inserted into the membrane itself (e.g., transporter proteins and channel proteins) are generally secreted or inserted prior to folding. The same chaperones which prevent aggregation of nascent polypeptide chains also prevent folding of polypeptides until they are disengaged. Thus, these proteins may 'escort' nascent polypeptide chains to an appropriate cellular location where they either are removed, thereby permitting folding, or they transfer the polypeptide to a transport system which will either secrete the polypeptide or aid its insertion into a membrane.

A specialized protein machinery has evolved that specifically detects, binds, transports, and processes proteins bearing specific prosequences (these sequences are later removed from the protein by cleavage). This machinery consists of a number of proteins which are collectively termed the sec (type II secretion) system (for review, see Gilbert, M. et al. (1995) Critical Reviews in Biotechnology 15(1): 13-39 and references therein; Freudl, R. (1992) Journal of Biotechnology 23(3): 231-240 and references therein; Neidhardt, F.C. et al. (1996) E. coli and Salmonella ASM Press: Washington, D.C., p. 967-978; Binet, R. et al. (1997) Gene 192(1): 7-11; and Rapoport, T.A. (1986) Critical Reviews in Biochemistry 20(1): 73-137, and references therein). The sec system is composed of chaperones (e.g., SecA and SecB), integral membrane proteins, also called translocases (e.g., SecY, SecE, and SecG), and signal peptidases (e.g., LepB). The nascent polypeptide having a prosequence directing secretion is bound by SecB, which delivers it to SecA at the inner surface of the cell membrane. Sec A binds to the

20

25

30

35

prosequence and, upon ATP hydrolysis, inserts into the membrane and forces a portion of the polypeptide through the membrane as well. The remainder of the polypeptide is guided through the membrane by a complex of translocases, such as SecY, SecE, and SecG. Finally, the signal peptidase cleaves off the prosequence and the polypeptide is free on the extracellular side of the membrane, where it spontaneously folds.

Sec-independent secretion mechanisms are also known. For example, the signal recognition particle-dependent pathway involves the binding of a signal recognition particle (SRP) protein to the nascent polypeptide as it is being synthesized, forcing the ribosome to stall. A receptor for SRP at the inner surface of the membrane then binds the ribosome-polypeptide-SRP complex. Hydrolysis of GTP provides the energy necessary to transfer the complex to the sec translocase complex, where the nascent polypeptide is guided across the membrane as it is synthesized by the ribosome. Other secretion mechanisms specific to only a few proteins are also known to exist.

15 III. Elements and Methods of the Invention

The present invention is based, at least in part, on the discovery of novel molecules, referred to herein as SES nucleic acid and protein molecules, which participate in C. glutamicum DNA repair or recombination, in the transposition or other rearrangement of C. glutamicum DNA, in C. glutamicum gene expression (e.g., the processes of transcription or translation), or in protein folding or protein secretion from this microorganism. In one embodiment, the SES molecules participate in the repair or recombination of DNA, in the transposition of genetic material, in gene expression (i.e., the processes of transcription or translation), in protein folding, or in protein secretion in Corynebacterium glutamicum. In a preferred embodiment, the activity of the SES molecules of the present invention with regard to DNA repair or recombination, transposition of DNA, gene expression, protein folding or protein secretion has an impact on the production of a desired fine chemical by this organism. In a particularly preferred embodiment, the SES molecules of the invention are modulated in activity, such that the C. glutamicum cellular processes in which the SES molecules participate (e.g., DNA repair or recombination, transposition of DNA, gene expression, protein folding, or protein secretion) are also altered in activity, resulting either directly or indirectly in a modulation of the yield, production, and/or efficiency of production of a desired fine chemical by C. glutamicum.

The language, "SES protein" or "SES polypeptide" includes proteins which participate in a number of cellular processes related to *C. glutamicum* genetic stability, gene expression, protein folding, or protein secretion. For example, an SES protein may be involved in *C. glutamicum* DNA repair or recombination mechanisms, in

15

20

25

30

35

rearrangements of C. glutamicum genetic material (such as those mediated by transposons), in transcription or translation of genes in this microorganism, in the mediation of C. glutamicum protein folding (such as the activity of chaperones) or in secretion of proteins from C. glutamicum cells (e.g., the sec system). Examples of SES proteins include those encoded by the SES genes set forth in Table 1 and Appendix A. The terms "SES gene" or "SES nucleic acid sequence" include nucleic acid sequences encoding an SES protein, which consist of a coding region and also corresponding untranslated 5' and 3' sequence regions. Examples of SES genes include those set forth in Table 1. The terms "production" or "productivity" are art-recognized and include the concentration of the fermentation product (for example, the desired fine chemical) formed within a given time and a given fermentation volume (e.g., kg product per hour per liter). The term "efficiency of production" includes the time required for a particular level of production to be achieved (for example, how long it takes for the cell to attain a particular rate of output of a fine chemical). The term "yield" or "product/carbon yield" is art-recognized and includes the efficiency of the conversion of the carbon source into the product (i.e., fine chemical). This is generally written as, for example, kg product per kg carbon source. By increasing the yield or production of the compound, the quantity of recovered molecules, or of useful recovered molecules of that compound in a given amount of culture over a given amount of time is increased. The terms "biosynthesis" or a "biosynthetic pathway" are art-recognized and include the synthesis of a compound, preferably an organic compound, by a cell from intermediate compounds in what may be a multistep and highly regulated process. The terms "degradation" or a "degradation pathway" are art-recognized and include the breakdown of a compound, preferably an organic compound, by a cell to degradation products (generally speaking, smaller or less complex molecules) in what may be a multistep and highly regulated process. The language "metabolism" is art-recognized and includes the totality of the biochemical reactions that take place in an organism. The metabolism of a particular compound, then, (e.g., the metabolism of an amino acid such as glycine) comprises the overall biosynthetic, modification, and degradation pathways in the cell related to this compound. The term "DNA repair" is art-recognized and includes cellular mechanisms whereby errors in DNA (due either to damage, such as, but not limited to, ultraviolet radiation, methylases, low-fidelity replication, or mutagens) are excised and corrected. The term "recombination" or "DNA recombination" is art-recognized and includes cellular mechanisms whereby extensive DNA damage affecting both strands of a DNA molecule is corrected by homologous recombination with another, undamaged copy of the DNA molecule within the same cell. Such repairs are generally low-fidelity, and may result in genetic rearrangements.

15

20

25

30

35

The term "transposon" is art-recognized and includes a DNA element which is able to insert randomly throughout the genome of an organism, and which may result in the disruption of genes or their regulatory regions, or in duplications, inversions, deletions, and other genetic rearrangements. The term "protein folding" is art-recognized and includes the movement of a polypeptide chain through multiple three-dimensional configurations until the stable, active, three-dimensional configuration is attained. The formation of disulfide bonds and the sequestration of hydrophobic regions from the surrounding aqueous solution provide some of the driving forces for this folding process, and correct folding may be enhanced by the activity of chaperones. The terms "secretion" or "protein secretion" is art-recognized and includes the movement of proteins from the interior of the cell to the exterior of the cell, in a mechanism whereby a system of secretion proteins permits their transit across the cellular membrane to the exterior of the cell.

In another embodiment, the SES molecules of the invention are capable of modulating the production of a desired molecule, such as a fine chemical, in a microorganism such as C. glutamicum. There are a number of mechanisms by which the alteration of an SES protein of the invention may directly affect the yield, production, and/or efficiency of production of a fine chemical from a C. glutamicum strain incorporating such an altered protein. For example, modulation of proteins involved directly in transcription or translation (e.g., polymerases or ribosomes) such that they are increased in number or in activity should increase global cellular transcription or translation (or rates of these processes). This increased cellular gene expression should include those proteins involved in fine chemical biosynthesis, so an increase in yield, production, or efficiency of production of one or more desired compounds may occur. Modifications to the transcriptional/translational protein machinery of C. glutamicum such that the regulation of these proteins is altered may also permit increased expression of genes involved in the production of fine chemicals. Modulation of the activity or number of proteins involved in polypeptide folding may permit an increase in the overall production of correctly folded molecules in the cell, thereby increasing the possibility that desired proteins (e.g., fine chemical biosynthetic proteins) are able to function properly. Further, by mutating proteins involved in secretion from C. glutamicum such that they are increased in number or activity, it may be possible to increase the secretion of a fine chemical (e.g., an enzyme) from cells in fermentor culture, where it may be readily recovered.

Genetic modification of the SES molecules of the invention may also result in indirect modulation of production of one or more fine chemicals. For example, by increasing the number or activity of a DNA repair or recombination protein of the

15

20

25

30

35

invention, one may increase the ability of the cell to detect and repair DNA damage. This should effectively increase the ability of the cell to maintain a mutated gene within its genome, thereby increasing the likelihood that a transgene engineered into into C. glutamicum (e.g., encoding a protein which will increase biosynthesis of a fine chemical) will not be lost during culture of the microorganism. Conversely, by decreasing the number or activity of one or more DNA repair or recombination proteins, it may be possible to increase the genetic instability of the organism. Such manipulations should improve the ability of the organism to be modified by mutagenesis without the introduced mutation being corrected. The same holds true for proteins involved in transposition or rearrangement of genetic elements in C. glutamicum (e.g., transposons). By mutagenizing these proteins such that they are either increased or decreased in number or activity, it is possible to simultaneously increase or decrease the genetic stability of the microorganism. This has a profound impact on the ability of any other mutation to be introduced into C. glutamicum, and on the ability of introduced mutations to be retained. Transposons also offer a convenient mechanism by which mutagenesis of C. glutamicum may be performed; duplication of desired genes (e.g., fine chemical biosynthetic genes) is readily accomplished by transposon mutagenesis, as is disruption of undesired genes (e.g., genes encoding proteins involved in degradation of desired fine chemicals).

By modulating one or more proteins (e.g. sigma factors) involved in the regulation of transcription or translation in response to particular environmental conditions, it may be possible to prevent the cell from slowing or stopping protein synthesis under unfavorable environmental conditions, such as those found in largescale fermentor culture. This should lead to increased gene expression, which in turn may permit increased biosynthesis of desired fine chemicals under such conditions. Many such secreted proteins have functions critical for cell viability (e.g., cell surface proteases or receptors). An alteration of a secretory pathway such that these proteins are more readily transported to their extracellular location may improve the overall viability of the cell, and thus result in greater numbers of C. glutamicum cells capable of producing fine chemicals during large-scale culture. Further, since certain bacterial protein secretion pathways (e.g., the sec system) are known to participate in the insertion of integral membrane proteins (such as receptors, channels, pores, or transporters) into the membrane, the modulation of activity of proteins involved in protein secretion from C. glutamicum may affect the ability of the cell to excrete waste products or to import necessary metabolites. If the activity of these secretory proteins is increased, then the ability of the cell to produce fine chemicals may be similarly increased (due to an increase in the presence of transporters/channels in the membrane which may import

10

15

20

25

30

35

nutrients or excrete waste products). If the activity of these proteins is decreased, then there may be insufficient nutrients available to support overproduction of desired compounds, or waste products may interfere with fine chemical biosynthesis.

The isolated nucleic acid sequences of the invention are contained within the genome of a *Corynebacterium glutamicum* strain available through the American Type Culture Collection, given designation ATCC 13032. The nucleotide sequence of the isolated *C. glutamicum* SES DNAs and the predicted amino acid sequences of the *C. glutamicum* SES proteins are shown in Appendices A and B, respectively. Computational analyses were performed which classified and/or identified these nucleotide sequences as sequences which encode proteins involved in the repair or recombination of DNA, in the transposition of genetic material, in gene expression (*i.e.*, the processes of transcription or translation), in protein folding, or in protein secretion in *Corynebacterium glutamicum*.

The present invention also pertains to proteins which have an amino acid sequence which is substantially homologous to an amino acid sequence of Appendix B. As used herein, a protein which has an amino acid sequence which is substantially homologous to a selected amino acid sequence is least about 50% homologous to the selected amino acid sequence, *e.g.*, the entire selected amino acid sequence. A protein which has an amino acid sequence which is substantially homologous to a selected amino acid sequence can also be least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%, 80-90%, or 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to the selected amino acid sequence.

The SES protein or a biologically active portion or fragment thereof of the invention can participate in the repair or recombination of DNA, in the transposition of genetic material, in gene expression (*i.e.*, the processes of transcription or translation), in protein folding, or in protein secretion in *Corynebacterium glutamicum*, or have one or more of the activities set forth in Table 1.

Various aspects of the invention are described in further detail in the following subsections:

A. Isolated Nucleic Acid Molecules

One aspect of the invention pertains to isolated nucleic acid molecules that encode SES polypeptides or biologically active portions thereof, as well as nucleic acid fragments sufficient for use as hybridization probes or primers for the identification or amplification of SES-encoding nucleic acid (e.g., SES DNA). As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic

15

DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. This term also encompasses untranslated sequence located at both the 3' and 5' ends of the coding region of the gene: at least about 100 nucleotides of sequence upstream from the 5' end of the coding region and at least about 20 nucleotides of sequence downstream from the 3'end of the coding region of the gene. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA. An "isolated" nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated SES nucleic acid molecule can contain less than about 5 kb, 4kb, 3kb, 2kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived (e.g, a C. glutamicum cell). Moreover, an "isolated" nucleic acid molecule, such as a DNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized.

A nucleic acid molecule of the present invention, e.g., a nucleic acid molecule having a nucleotide sequence of Appendix A, or a portion thereof, can be isolated using 20 standard molecular biology techniques and the sequence information provided herein. For example, a C. glutamicum SES DNA can be isolated from a C. glutamicum library using all or portion of one of the sequences of Appendix A as a hybridization probe and standard hybridization techniques (e.g., as described in Sambrook, J., Fritsh, E. F., and 25 Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989). Moreover, a nucleic acid molecule encompassing all or a portion of one of the sequences of Appendix A can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this sequence (e.g., a nucleic acid molecule encompassing 30 all or a portion of one of the sequences of Appendix A can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this same sequence of Appendix A). For example, mRNA can be isolated from normal endothelial cells (e.g., by the guanidinium-thiocyanate extraction procedure of Chirgwin et al.(1979) Biochemistry 18: 5294-5299) and DNA can be prepared using reverse transcriptase (e.g., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, MD; or 35 AMV reverse transcriptase, available from Seikagaku America, Inc., St. Petersburg, FL). Synthetic oligonucleotide primers for polymerase chain reaction amplification can be

15

20

25

30

35

designed based upon one of the nucleotide sequences shown in Appendix A. A nucleic acid of the invention can be amplified using cDNA or, alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to an SES nucleotide sequence can be prepared by standard synthetic techniques, *e.g.*, using an automated DNA synthesizer.

In a preferred embodiment, an isolated nucleic acid molecule of the invention comprises one of the nucleotide sequences shown in Appendix A. The sequences of Appendix A correspond to the *Corynebacterium glutamicum* SES DNAs of the invention. This DNA comprises sequences encoding SES proteins (*i.e.*, the "coding region", indicated in each sequence in Appendix A), as well as 5' untranslated sequences and 3' untranslated sequences, also indicated in Appendix A. Alternatively, the nucleic acid molecule can comprise only the coding region of any of the sequences in Appendix A.

For the purposes of this application, it will be understood that each of the sequences set forth in Appendix A has an identifying RXA, RXN, or RXS number having the designation "RXA", "RXN", or "RXS" followed by 5 digits (i.e., RXA01278, RXN01559, or RXS00061). Each of these sequences comprises up to three parts: a 5' upstream region, a coding region, and a downstream region. Each of these three regions is identified by the same RXA, RXN, or RXS designation to eliminate confusion. The recitation "one of the sequences in Appendix A", then, refers to any of the sequences in Appendix A, which may be distinguished by their differing RXA, RXN, or RXS designations. The coding region of each of these sequences is translated into a corresponding amino acid sequence, which is set forth in Appendix B. The sequences of Appendix B are identified by the same RXA, RXN, or RXS designations as Appendix A, such that they can be readily correlated. For example, the amino acid sequences in Appendix B designated RXA01278, RXN01559, and RXS00061 are translations of the coding regions of the nucleotide sequence of nucleic acid molecules RXA01278, RXN01559, and RXS00061 respectively, in Appendix A. Each of the RXA, RXN, and RXS nucleotide and amino acid sequences of the invention has also been assigned a SEQ ID NO, as indicated in Table 1. For example, as set forth in Table 1, the nucleotide sequence of RXN01559 is SEQ ID NO:5, and the amino acid sequence of RXN01559 is SEQ ID NO:6.

Several of the genes of the invention are "F-designated genes". An F-designated gene includes those genes set forth in Table 1 which have an 'F' in front of the RXA, RXN or RXS designation. For example, SEQ ID NO:7, designated, as indicated on

15

20

25

30

35

- 30 -

Table 1, as "F RXA00935", is an F-designated gene, as are SEQ ID NOs: 9, 29, and 37 (designated on Table 1 as "F RXA01559", "F RXA00484", and "F RXA01670", respectively).

In one embodiment, the nucleic acid molecules of the present invention are not intended to include those compiled in Table 2. In the case of the dapD gene, a sequence for this gene was published in Wehrmann, A., et al.(1998) J. Bacteriol. 180(12): 3159-3165. However, the sequence obtained by the inventors of the present application is significantly longer than the published version. It is believed that the published version relied on an incorrect start codon, and thus represents only a fragment of the actual coding region.

In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of one of the nucleotide sequences shown in Appendix A, or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in Appendix A is one which is sufficiently complementary to one of the nucleotide sequences shown in Appendix A such that it can hybridize to one of the nucleotide sequences shown in Appendix A, thereby forming a stable duplex.

In still another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in Appendix A, or a portion thereof. Ranges and identity values intermediate to the above-recited ranges, (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. In an additional preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to one of the nucleotide sequences shown in Appendix A, or a portion thereof.

Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences in Appendix A, for example a fragment which can be used as a probe or primer or a fragment encoding a biologically active portion of an SES protein. The nucleotide sequences determined from the cloning of the SES genes from *C. glutamicum* allows for the generation of probes and primers

15

20

25

30

35

designed for use in identifying and/or cloning SES homologues in other cell types and organisms, as well as SES homologues from other Corynebacteria or related species. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, more preferably about 40, 50 or 75 consecutive nucleotides of a sense strand of one of the sequences set forth in Appendix A, an anti-sense sequence of one of the sequences set forth in Appendix A, or naturally occurring mutants thereof. Primers based on a nucleotide sequence of Appendix A can be used in PCR reactions to clone SES homologues. Probes based on the SES nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In preferred embodiments, the probe further comprises a label group attached thereto, e.g. the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme cofactor. Such probes can be used as a part of a diagnostic test kit for identifying cells which misexpress an SES protein, such as by measuring a level of an SES-encoding nucleic acid in a sample of cells, e.g., detecting SES mRNA levels or determining whether a genomic SES gene has been mutated or deleted.

In one embodiment, the nucleic acid molecule of the invention encodes a protein or portion thereof which includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of Appendix B such that the protein or portion thereof maintains the ability to participate in the repair or recombination of DNA, in the transposition of genetic material, in gene expression (i.e., the processes of transcription or translation), in protein folding, or in protein secretion in Corynebacterium glutamicum. As used herein, the language "sufficiently homologous" refers to proteins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of Appendix B) amino acid residues to an amino acid sequence of Appendix B such that the protein or portion thereof is able to participate in the repair or recombination of DNA, in the transposition of genetic material, in gene expression (i.e., the processes of transcription or translation), in protein folding, or in protein secretion in Corynebacterium glutamicum. Proteins involved in C. glutamicum genetic stability, gene expression, protein folding or protein secretion, as described herein, may play a role in the production and secretion of one or more fine chemicals. Examples of such activities are also described herein. Thus, "the function of an SES protein" contributes either directly or indirectly to the yield, production, and/or efficiency of production of one or more fine chemicals. Examples of SES protein activities are set forth in Table 1.

15

20

25

30

35

In another embodiment, the protein is at least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%, 80-90%, 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of Appendix B.

Portions of proteins encoded by the SES nucleic acid molecules of the invention are preferably biologically active portions of one of the SES proteins. As used herein, the term "biologically active portion of an SES protein" is intended to include a portion, e.g., a domain/motif, of an SES protein that participate in the repair or recombination of DNA, in the transposition of genetic material, in gene expression (i.e., the processes of transcription or translation), in protein folding, or in protein secretion in Corynebacterium glutamicum, or has an activity as set forth in Table 1. To determine whether an SES protein or a biologically active portion thereof can participate in the repair or recombination of DNA, in the transposition of genetic material, in gene expression (i.e., the processes of transcription or translation), in protein folding, or in protein secretion in Corynebacterium glutamicum, an assay of enzymatic activity may be performed. Such assay methods are well known to those of ordinary skill in the art, as detailed in Example 8 of the Exemplification.

Additional nucleic acid fragments encoding biologically active portions of an SES protein can be prepared by isolating a portion of one of the sequences in Appendix B, expressing the encoded portion of the SES protein or peptide (e.g., by recombinant expression *in vitro*) and assessing the activity of the encoded portion of the SES protein or peptide.

The invention further encompasses nucleic acid molecules that differ from one of the nucleotide sequences shown in Appendix A (and portions thereof) due to degeneracy of the genetic code and thus encode the same SES protein as that encoded by the nucleotide sequences shown in Appendix A. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in Appendix B. In a still further embodiment, the nucleic acid molecule of the invention encodes a full length *C. glutamicum* protein which is substantially homologous to an amino acid sequence of Appendix B (encoded by an open reading frame shown in Appendix A).

It will be understood by one of ordinary skill in the art that in one embodiment the sequences of the invention are not meant to include the sequences of the prior art, such as those Genbank sequences set forth in Tables 2 or 4 which were available prior to the present invention. In one embodiment, the invention includes nucleotide and amino acid sequences having a percent identity to a nucleotide or amino acid sequence of the invention which is greater than that of a sequence of the prior art (e.g., a Genbank

15

20

25

30

35

sequence (or the protein encoded by such a sequence) set forth in Tables 2 or 4). For example, the invention includes a nucleotide sequence which is greater than and/or at least 71% identical to the nucleotide sequence designated RXA01278 (SEQ ID NO:1), a nucleotide sequence which is greater than and/or at least 38% identical to the nucleotide sequence designated RXA01020 (SEQ ID NO:25), and a nucleotide sequence which is greater than and/or at least 54% identical to the nucleotide sequence designated RXA02078 (SEQ ID NO:39). One of ordinary skill in the art would be able to calculate the lower threshold of percent identity for any given sequence of the invention by examining the GAP-calculated percent identity scores set forth in Table 4 for each of the three top hits for the given sequence, and by subtracting the highest GAP-calculated percent identity from 100 percent. One of ordinary skill in the art will also appreciate that nucleic acid and amino acid sequences having percent identities greater than the lower threshold so calculated (e.g., at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more identical) are also encompassed by the invention.

In addition to the *C. glutamicum* SES nucleotide sequences shown in Appendix A, it will be appreciated by those of ordinary skill in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of SES proteins may exist within a population (*e.g.*, the *C. glutamicum* population). Such genetic polymorphism in the SES gene may exist among individuals within a population due to natural variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding an SES protein, preferably a *C. glutamicum* SES protein. Such natural variations can typically result in 1-5% variance in the nucleotide sequence of the SES gene. Any and all such nucleotide variations and resulting amino acid polymorphisms in SES that are the result of natural variation and that do not alter the functional activity of SES proteins are intended to be within the scope of the invention.

Nucleic acid molecules corresponding to natural variants and non-*C. glutamicum* homologues of the *C. glutamicum* SES DNA of the invention can be isolated based on their homology to the *C. glutamicum* SES nucleic acid disclosed herein using the *C. glutamicum* DNA, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions. Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 15 nucleotides in length and hybridizes under stringent conditions to the nucleic acid

15

20

25

30

35

molecule comprising a nucleotide sequence of Appendix A. In other embodiments, the nucleic acid is at least 30, 50, 100, 250 or more nucleotides in length. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other. Preferably, the conditions are such that sequences at least about 65%, more preferably at least about 70%, and even more preferably at least about 75% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those of ordinary skill in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65°C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence of Appendix A corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). In one embodiment, the nucleic acid encodes a natural C. glutamicum SES protein.

In addition to naturally-occurring variants of the SES sequence that may exist in the population, one of ordinary skill in the art will further appreciate that changes can be introduced by mutation into a nucleotide sequence of Appendix A, thereby leading to changes in the amino acid sequence of the encoded SES protein, without altering the functional ability of the SES protein. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of Appendix A. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of one of the SES proteins (Appendix B) without altering the activity of said SES protein, whereas an "essential" amino acid residue is required for SES protein activity. Other amino acid residues, however, (e.g., those that are not conserved or only semi-conserved in the domain having SES activity) may not be essential for activity and thus are likely to be amenable to alteration without altering SES activity.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding SES proteins that contain changes in amino acid residues that are not essential for SES activity. Such SES proteins differ in amino acid sequence from a sequence contained in Appendix B yet retain at least one of the SES activities described herein. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about

15

20

25

30

35

50% homologous to an amino acid sequence of Appendix B and is capable of participating in the repair or recombination of DNA, in the transposition of genetic material, in gene expression (*i.e.*, the processes of transcription or translation), in protein folding, or in protein secretion in *Corynebacterium glutamicum*, or has one or more activities set forth in Table 1. Preferably, the protein encoded by the nucleic acid molecule is at least about 50-60% homologous to one of the sequences in Appendix B, more preferably at least about 60-70% homologous to one of the sequences in Appendix B, even more preferably at least about 70-80%, 80-90%, 90-95% homologous to one of the sequences in Appendix B, and most preferably at least about 96%, 97%, 98%, or 99% homologous to one of the sequences in Appendix B.

To determine the percent homology of two amino acid sequences (e.g., one of the sequences of Appendix B and a mutant form thereof) or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one protein or nucleic acid for optimal alignment with the other protein or nucleic acid). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in one sequence (e.g., one of the sequences of Appendix B) is occupied by the same amino acid residue or nucleotide as the corresponding position in the other sequence (e.g., a mutant form of the sequence selected from Appendix B), then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity"). The percent homology between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % homology = # of identical positions/total # of positions x 100).

An isolated nucleic acid molecule encoding an SES protein homologous to a protein sequence of Appendix B can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of Appendix A such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into one of the sequences of Appendix A by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine,

15

20

25

30

35

proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in an SES protein is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of an SES coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for an SES activity described herein to identify mutants that retain SES activity. Following mutagenesis of one of the sequences of Appendix A, the encoded protein can be expressed recombinantly and the activity of the protein can be determined using, for example, assays described herein (see Example 8 of the Exemplification).

In addition to the nucleic acid molecules encoding SES proteins described above, another aspect of the invention pertains to isolated nucleic acid molecules which are antisense thereto. An "antisense" nucleic acid comprises a nucleotide sequence which is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded DNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire SES coding strand, or to only a portion thereof. In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding an SES protein. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues (e.g., the entire coding region of SEQ ID NO. 1 (RXA01278) comprises nucleotides 1 to 2127). In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding SES. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).

Given the coding strand sequences encoding SES disclosed herein (*e.g.*, the sequences set forth in Appendix A), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of SES mRNA, but more preferably is an oligonucleotide which is antisense to only a portion of the coding or noncoding region of SES mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of SES mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in

20

25

30

35

the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-Dmannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

The antisense nucleic acid molecules of the invention are typically administered to a cell or generated *in situ* such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an SES protein to thereby inhibit expression of the protein, *e.g.*, by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense molecule can be modified such that it specifically binds to a receptor or an antigen expressed on a selected cell surface, *e.g.*, by linking the antisense nucleic acid molecule to a peptide or an antibody which binds to a cell surface receptor or antigen. The antisense nucleic acid molecule can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong prokaryotic, viral, or eukaryotic promoter are preferred.

15

20

25

35

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α -anomeric nucleic acid molecule. An α -anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β -units, the strands run parallel to each other (Gaultier *et al.*(1987) *Nucleic Acids*. *Res.* 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue *et al.*(1987) *Nucleic Acids Res.* 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue *et al.*(1987) *FEBS Lett.* 215:327-330).

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (*e.g.*, hammerhead ribozymes (described in Haselhoff and Gerlach (1988) *Nature* 334:585-591)) can be used to catalytically cleave SES mRNA transcripts to thereby inhibit translation of SES mRNA. A ribozyme having specificity for an SES-encoding nucleic acid can be designed based upon the nucleotide sequence of an SES DNA disclosed herein (*i.e.*, SEQ ID NO. 1 (RXA01278 in Appendix A)). For example, a derivative of a *Tetrahymena* L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an SES-encoding mRNA. See, *e.g.*, Cech *et al.* U.S. Patent No. 4,987,071 and Cech *et al.* U.S. Patent No. 5,116,742. Alternatively, SES mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, *e.g.*, Bartel, D. and Szostak, J.W. (1993) *Science* 261:1411-1418.

Alternatively, SES gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of an SES nucleotide sequence (e.g., an SES promoter and/or enhancers) to form triple helical structures that prevent transcription of an SES gene in target cells. See generally, Helene, C. (1991) *Anticancer Drug Des.* 6(6):569-84; Helene, C. et al.(1992) *Ann. N.Y. Acad. Sci.* 660:27-36; and Maher, L.J. (1992) *Bioassays* 14(12):807-15.

30 B. Recombinant Expression Vectors and Host Cells

Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding an SES protein (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of

15

20

25

30

35

autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adenoassociated viruses), which serve equivalent functions.

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which are operatively linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells. Preferred regulatory sequences are, for example, promoters such as cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lacI^q-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, arny, SPO2, λ-P_Ror λ P_L, which are used preferably in bacteria. Additional regulatory sequences are, for example, promoters from yeasts and fungi, such as ADC1, MFα, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH, promoters from plants such as CaMV/35S, SSU, OCS, lib4, usp, STLS1, B33, nos or ubiquitin- or phaseolin-promoters. It is also possible to use artificial promoters. It will be appreciated by one of ordinary skill in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or

15

20

25

30

35

peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., SES proteins, mutant forms of SES proteins, fusion proteins, etc.).

The recombinant expression vectors of the invention can be designed for expression of SES proteins in prokaryotic or eukaryotic cells. For example, SES genes can be expressed in bacterial cells such as C. glutamicum, insect cells (using baculovirus expression vectors), yeast and other fungal cells (see Romanos, M.A. et al.(1992) "Foreign gene expression in yeast: a review", Yeast 8: 423-488; van den Hondel, C.A.M.J.J. et al. (1991) "Heterologous gene expression in filamentous fungi" in: More Gene Manipulations in Fungi, J.W. Bennet & L.L. Lasure, eds., p. 396-428: Academic Press: San Diego; and van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J.F. et al., eds., p. 1-28, Cambridge University Press: Cambridge), algae and multicellular plant cells (see Schmidt, R. and Willmitzer, L. (1988) High efficiency Agrobacterium tumefaciens - mediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep.: 583-586), or mammalian cells. Suitable host cells are discussed further in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.

Expression of proteins in prokaryotes is most often carried out with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein but also to the C-terminus or fused within suitable regions in the proteins. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase.

Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith, D.B. and Johnson, K.S. (1988) *Gene* 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. In one embodiment, the coding sequence of the SES protein is cloned into a pGEX expression vector to create a vector encoding a fusion protein comprising, from

10

15

20

25

30

35

the N-terminus to the C-terminus, GST-thrombin cleavage site-X protein. The fusion protein can be purified by affinity chromatography using glutathione-agarose resin. Recombinant SES protein unfused to GST can be recovered by cleavage of the fusion protein with thrombin.

Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al., (1988) Gene 69:301-315) pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III113-B1, λgt11, pBdCl, and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89; and Pouwels et al., eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018). Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident λ prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter. For transformation of other varieties of bacteria, appropriate vectors may be selected. For example, the plasmids pIJ101, pIJ364, pIJ702 and pIJ361 are known to be useful in transforming Streptomyces, while plasmids pUB110, pC194, or pBD214 are suited for transformation of Bacillus species. Several plasmids of use in the transfer of genetic information into Corynebacterium include pHM1519, pBL1, pSA77, or pAJ667 (Pouwels et al., eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018). One strategy to maximize recombinant protein expression is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in the bacterium chosen for expression, such as C. glutamicum (Wada et al. (1992) Nucleic Acids Res. 20: 2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

In another embodiment, the SES protein expression vector is a yeast expression vector. Examples of vectors for expression in yeast *S cerevisiae* include pYepSec1 (Baldari, et al., (1987) *Embo J.* 6:229-234, 2 μ, pAG-1, Yep6, Yep13, pEMBLYe23, pMFa (Kurjan and Herskowitz, (1982) *Cell* 30:933-943), pJRY88 (Schultz et al., (1987) *Gene* 54:113-123), and pYES2 (Invitrogen Corporation, San Diego, CA). Vectors and methods for the construction of vectors appropriate for use in other fungi, such as the

10

15

20

35

filamentous fungi, include those detailed in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy, et al., eds., p. 1-28, Cambridge University Press: Cambridge, and Pouwels *et al.*, eds. (1985) Cloning Vectors. Elsevier: New York (IBSN 0 444 904018).

Alternatively, the SES proteins of the invention can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al.(1983) Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).

In another embodiment, the SES proteins of the invention may be expressed in unicellular plant cells (such as algae) or in plant cells from higher plants (e.g., the spermatophytes, such as crop plants). Examples of plant expression vectors include those detailed in: Becker, D., Kemper, E., Schell, J. and Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", *Plant Mol. Biol.* 20: 1195-1197; and Bevan, M.W. (1984) "Binary *Agrobacterium* vectors for plant transformation", *Nucl. Acid. Res.* 12: 8711-8721, and include pLGV23, pGHlac+, pBIN19, pAK2004, and pDH51 (Pouwels et al., eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018).

In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, B. (1987) *Nature* 329:840) and pMT2PC (Kaufman *et al.*(1987) *EMBO J.* 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements.

25 For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook, J., Fritsh, E. F., and Maniatis, T. *Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 30 1989.

In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al.(1987) Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988) Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto

15

20

25

30

35

and Baltimore (1989) *EMBO J.* 8:729-733) and immunoglobulins (Banerji *et al.* (1983) *Cell* 33:729-740; Queen and Baltimore (1983) *Cell* 33:741-748), neuron-specific promoters (*e.g.*, the neurofilament promoter; Byrne and Ruddle (1989) *PNAS* 86:5473-5477), pancreas-specific promoters (Edlund *et al.* (1985) *Science* 230:912-916), and mammary gland-specific promoters (*e.g.*, milk whey promoter; U.S. Patent No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss (1990) *Science* 249:374-379) and the α -fetoprotein promoter (Campes and Tilghman (1989) *Genes Dev.* 3:537-546).

The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to SES mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub, H. et al., Antisense RNA as a molecular tool for genetic analysis, *Reviews - Trends in Genetics*, Vol. 1(1) (1986).

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

A host cell can be any prokaryotic or eukaryotic cell. For example, an SES protein can be expressed in bacterial cells such as *C. glutamicum*, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to one of ordinary skill in the art. Microorganisms related

15

20

25

30

35

to Corynebacterium glutamicum which may be conveniently used as host cells for the nucleic acid and protein molecules of the invention are set forth in Table 3.

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection", "conjugation" and "transduction" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., linear DNA or RNA (e.g., a linearized vector or a gene construct alone without a vector) or nucleic acid in the form of a vector (e.g., a plasmid, phage, phasmid, phagemid, transposon or other DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, natural competence, chemical-mediated transfer, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989), and other laboratory manuals.

For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding an SES protein or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by, for example, drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).

To create a homologous recombinant microorganism, a vector is prepared which contains at least a portion of an SES gene into which a deletion, addition or substitution has been introduced to thereby alter, *e.g.*, functionally disrupt, the SES gene. Preferably, this SES gene is a *Corynebacterium glutamicum* SES gene, but it can be a homologue from a related bacterium or even from a mammalian, yeast, or insect source. In a preferred embodiment, the vector is designed such that, upon homologous recombination, the endogenous SES gene is functionally disrupted (*i.e.*, no longer encodes a functional protein; also referred to as a "knock out" vector). Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous SES gene is mutated or otherwise altered but still encodes functional protein (*e.g.*, the upstream regulatory region can be altered to thereby alter the expression of the endogenous SES protein). In the homologous recombination vector, the altered portion

20

25

30

35

of the SES gene is flanked at its 5' and 3' ends by additional nucleic acid of the SES gene to allow for homologous recombination to occur between the exogenous SES gene carried by the vector and an endogenous SES gene in a microorganism. The additional flanking SES nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5' and 3' ends) are included in the vector (see *e.g.*, Thomas, K.R., and Capecchi, M.R. (1987) Cell 51: 503 for a description of homologous recombination vectors). The vector is introduced into a microorganism (*e.g.*, by electroporation) and cells in which the introduced SES gene has homologously recombined with the endogenous SES gene are selected, using art-known techniques.

In another embodiment, recombinant microorganisms can be produced which contain selected systems which allow for regulated expression of the introduced gene. For example, inclusion of an SES gene on a vector placing it under control of the lac operon permits expression of the SES gene only in the presence of IPTG. Such regulatory systems are well known in the art.

In another embodiment, an endogenous SES gene in a host cell is disrupted (e.g., by homologous recombination or other genetic means known in the art) such that expression of its protein product does not occur. In another embodiment, an endogenous or introduced SES gene in a host cell has been altered by one or more point mutations, deletions, or inversions, but still encodes a functional SES protein. In still another embodiment, one or more of the regulatory regions (e.g., a promoter, repressor, or inducer) of an SES gene in a microorganism has been altered (e.g., by deletion, truncation, inversion, or point mutation) such that the expression of the SES gene is modulated. One of ordinary skill in the art will appreciate that host cells containing more than one of the described SES gene and protein modifications may be readily produced using the methods of the invention, and are meant to be included in the present invention.

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (*i.e.*, express) an SES protein. Accordingly, the invention further provides methods for producing SES proteins using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding an SES protein has been introduced, or into which genome has been introduced a gene encoding a wild-type or altered SES protein) in a suitable medium until SES protein is produced. In another embodiment, the method further comprises isolating SES proteins from the medium or the host cell.

15

20

25

30

35

- 46 -

C. Isolated SES Proteins

Another aspect of the invention pertains to isolated SES proteins, and biologically active portions thereof. An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of SES protein in which the protein is separated from cellular components of the cells in which it is naturally or recombinantly produced. In one embodiment, the language "substantially free of cellular material" includes preparations of SES protein having less than about 30% (by dry weight) of non-SES protein (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-SES protein, still more preferably less than about 10% of non-SES protein, and most preferably less than about 5% non-SES protein. When the SES protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation. The language "substantially free of chemical precursors or other chemicals" includes preparations of SES protein in which the protein is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of SES protein having less than about 30% (by dry weight) of chemical precursors or non-SES chemicals, more preferably less than about 20% chemical precursors or non-SES chemicals, still more preferably less than about 10% chemical precursors or non-SES chemicals, and most preferably less than about 5% chemical precursors or non-SES chemicals. In preferred embodiments, isolated proteins or biologically active portions thereof lack contaminating proteins from the same organism from which the SES protein is derived. Typically, such proteins are produced by recombinant expression of, for example, a C. glutamicum SES protein in a microorganism such as C. glutamicum.

An isolated SES protein or a portion thereof of the invention can participate in the repair or recombination of DNA, in the transposition of genetic material, in gene expression (*i.e.*, the processes of transcription or translation), in protein folding, or in protein secretion in *Corynebacterium glutamicum*, or has one or more of the activities set forth in Table 1. In preferred embodiments, the protein or portion thereof comprises an amino acid sequence which is sufficiently homologous to an amino acid sequence of Appendix B such that the protein or portion thereof maintains the ability to participate in the repair or recombination of DNA, in the transposition of genetic material, in gene

35

expression (i.e., the processes of transcription or translation), in protein folding, or in protein secretion in Corynebacterium glutamicum. The portion of the protein is preferably a biologically active portion as described herein. In another preferred embodiment, an SES protein of the invention has an amino acid sequence shown in Appendix B. In yet another preferred embodiment, the SES protein has an amino acid 5 sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence of Appendix A. In still another preferred embodiment, the SES protein has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to one of the nucleic acid sequences of Appendix A, or a portion thereof. Ranges and identity values intermediate to the above-recited values, 15 (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. The preferred SES proteins of the present invention also preferably possess at least one of the SES activities described herein. For example, a preferred SES protein of the present 20 invention includes an amino acid sequence encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence of Appendix A, and which can participate in the repair or recombination of DNA, in the transposition of genetic material, in gene expression (i.e., the processes of transcription or translation), in protein folding, or in protein secretion in Corynebacterium 25 glutamicum, or which has one or more of the activities set forth in Table 1.

In other embodiments, the SES protein is substantially homologous to an amino acid sequence of Appendix B and retains the functional activity of the protein of one of the sequences of Appendix B yet differs in amino acid sequence due to natural variation or mutagenesis, as described in detail in subsection I above. Accordingly, in another embodiment, the SES protein is a protein which comprises an amino acid sequence which is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of Appendix B and which has at least one

15

20

25

30

35

of the SES activities described herein. Ranges and identity values intermediate to the above-recited values, (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. In another embodiment, the invention pertains to a full length *C. glutamicum* protein which is substantially homologous to an entire amino acid sequence of Appendix B.

Biologically active portions of an SES protein include peptides comprising amino acid sequences derived from the amino acid sequence of an SES protein, *e.g.*, the an amino acid sequence shown in Appendix B or the amino acid sequence of a protein homologous to an SES protein, which include fewer amino acids than a full length SES protein or the full length protein which is homologous to an SES protein, and exhibit at least one activity of an SES protein. Typically, biologically active portions (peptides, *e.g.*, peptides which are, for example, 5, 10, 15, 20, 30, 35, 36, 37, 38, 39, 40, 50, 100 or more amino acids in length) comprise a domain or motif with at least one activity of an SES protein. Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the activities described herein. Preferably, the biologically active portions of an SES protein include one or more selected domains/motifs or portions thereof having biological activity.

SES proteins are preferably produced by recombinant DNA techniques. For example, a nucleic acid molecule encoding the protein is cloned into an expression vector (as described above), the expression vector is introduced into a host cell (as described above) and the SES protein is expressed in the host cell. The SES protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Alternative to recombinant expression, an SES protein, polypeptide, or peptide can be synthesized chemically using standard peptide synthesis techniques. Moreover, native SES protein can be isolated from cells (*e.g.*, endothelial cells), for example using an anti-SES antibody, which can be produced by standard techniques utilizing an SES protein or fragment thereof of this invention.

The invention also provides SES chimeric or fusion proteins. As used herein, an SES "chimeric protein" or "fusion protein" comprises an SES polypeptide operatively linked to a non-SES polypeptide. An "SES polypeptide" refers to a polypeptide having an amino acid sequence corresponding to an SES protein, whereas a "non-SES polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the SES protein, *e.g.*, a protein which is different from the SES protein and which is derived from the same or a different

20

25

30

35

organism. Within the fusion protein, the term "operatively linked" is intended to indicate that the SES polypeptide and the non-SES polypeptide are fused in-frame to each other. The non-SES polypeptide can be fused to the N-terminus or C-terminus of the SES polypeptide. For example, in one embodiment the fusion protein is a GST-SES fusion protein in which the SES sequences are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of recombinant SES proteins. In another embodiment, the fusion protein is an SES protein containing a heterologous signal sequence at its N-terminus. In certain host cells (*e.g.*, mammalian host cells), expression and/or secretion of an SES protein can be increased through use of a heterologous signal sequence.

Preferably, an SES chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Current Protocols in Molecular Biology, eds. Ausubel et al. John Wiley & Sons: 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). An SESencoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the SES protein.

Homologues of the SES protein can be generated by mutagenesis, e.g., discrete point mutation or truncation of the SES protein. As used herein, the term "homologue" refers to a variant form of the SES protein which acts as an agonist or antagonist of the activity of the SES protein. An agonist of the SES protein can retain substantially the same, or a subset, of the biological activities of the SES protein. An antagonist of the SES protein can inhibit one or more of the activities of the naturally occurring form of the SES protein, by, for example, competitively binding to a downstream or upstream member of a biochemical cascade which includes the SES protein, by binding to a target molecule with which the SES protein interacts, such that no function interaction is possible, or by binding directly to the SES protein and inhibiting its normal activity.

Ike et al.(1983) Nucleic Acid Res. 11:477.

10

15

20

25

30

35

In an alternative embodiment, homologues of the SES protein can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the SES protein for SES protein agonist or antagonist activity. In one embodiment, a variegated library of SES variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of SES variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential SES sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of SES sequences therein. There are a variety of methods which can be used to produce libraries of potential SES homologues from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential SES sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang, S.A. (1983) Tetrahedron 39:3;

In addition, libraries of fragments of the SES protein coding can be used to generate a variegated population of SES fragments for screening and subsequent selection of homologues of an SES protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of an SES coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the SES protein.

Itakura et al.(1984) Annu. Rev. Biochem. 53:323; Itakura et al.(1984) Science 198:1056;

Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of SES homologues. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a

desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify SES homologues (Arkin and Yourvan (1992) *PNAS* 89:7811-7815; Delgrave *et al.*(1993) *Protein Engineering* 6(3):327-331).

In another embodiment, cell based assays can be exploited to analyze a variegated SES library, using methods well known in the art.

D. Uses and Methods of the Invention

The nucleic acid molecules, proteins, protein homologues, fusion proteins, primers, vectors, and host cells described herein can be used in one or more of the following methods: identification of *C. glutamicum* and related organisms; mapping of genomes of organisms related to *C. glutamicum*; identification and localization of *C. glutamicum* sequences of interest; evolutionary studies; determination of SES protein regions required for function; modulation of an SES protein activity; and modulation of cellular production of a desired compound, such as a fine chemical.

The SES nucleic acid molecules of the invention have a variety of uses. First, they may be used to identify an organism as being *Corynebacterium glutamicum* or a close relative thereof. Also, they may be used to identify the presence of *C. glutamicum* or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of *C. glutamicum* genes; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of a *C. glutamicum* gene which is unique to this organism, one can ascertain whether this organism is present.

Although Corynebacterium glutamicum itself is nonpathogenic, it is related to pathogenic species, such as Corynebacterium diphtheriae. Corynebacterium diphtheriae is the causative agent of diphtheria, a rapidly developing, acute, febrile infection which involves both local and systemic pathology. In this disease, a local lesion develops in the upper respiratory tract and involves necrotic injury to epithelial cells; the bacilli secrete toxin which is disseminated through this lesion to distal susceptible tissues of the body. Degenerative changes brought about by the inhibition of protein synthesis in these tissues, which include heart, muscle, peripheral nerves, adrenals, kidneys, liver and spleen, result in the systemic pathology of the disease. Diphtheria continues to have high incidence in many parts of the world, including Africa, Asia, Eastern Europe and the independent states of the former Soviet Union. An ongoing epidemic of diphtheria in the latter two regions has resulted in at least 5,000 deaths since 1990.

25

30

35

5

10

15

20

15

20

25

30

35

In one embodiment, the invention provides a method of identifying the presence or activity of *Cornyebacterium diphtheriae* in a subject. This method includes detection of one or more of the nucleic acid or amino acid sequences of the invention (e.g., the sequences set forth in Appendix A or Appendix B) in a subject, thereby detecting the presence or activity of *Corynebacterium diphtheriae* in the subject. C. glutamicum and C. diphtheriae are related bacteria, and many of the nucleic acid and protein molecules in C. glutamicum are homologous to C. diphtheriae nucleic acid and protein molecules, and can therefore be used to detect C. diphtheriae in a subject.

The nucleic acid and protein molecules of the invention may also serve as markers for specific regions of the genome. This has utility not only in the mapping of the genome, but also for functional studies of *C. glutamicum* proteins. For example, to identify the region of the genome to which a particular *C. glutamicum* DNA-binding protein binds, the *C. glutamicum* genome could be digested, and the fragments incubated with the DNA-binding protein. Those which bind the protein may be additionally probed with the nucleic acid molecules of the invention, preferably with readily detectable labels; binding of such a nucleic acid molecule to the genome fragment enables the localization of the fragment to the genome map of *C. glutamicum*, and, when performed multiple times with different enzymes, facilitates a rapid determination of the nucleic acid sequence to which the protein binds. Further, the nucleic acid molecules of the invention may be sufficiently homologous to the sequences of related species such that these nucleic acid molecules may serve as markers for the construction of a genomic map in related bacteria, such as *Brevibacterium lactofermentum*.

The SES nucleic acid molecules of the invention are also useful for evolutionary and protein structural studies. The metabolic and transport processes in which the molecules of the invention participate are utilized by a wide variety of prokaryotic and eukaryotic cells; by comparing the sequences of the nucleic acid molecules of the present invention to those encoding similar enzymes from other organisms, the evolutionary relatedness of the organisms can be assessed. Similarly, such a comparison permits an assessment of which regions of the sequence are conserved and which are not, which may aid in determining those regions of the protein which are essential for the functioning of the enzyme. This type of determination is of value for protein engineering studies and may give an indication of what the protein can tolerate in terms of mutagenesis without losing function.

Manipulation of the SES nucleic acid molecules of the invention may result in the production of SES proteins having functional differences from the wild-type SES proteins. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity.

15

20

25

30

35

The invention provides methods for screening molecules which modulate the activity of an SES protein, either by interacting with the protein itself or a substrate or binding partner of the SES protein, or by modulating the transcription or translation of an SES nucleic acid molecule of the invention. In such methods, a microorganism expressing one or more SES proteins of the invention is contacted with one or more test compounds, and the effect of each test compound on the activity or level of expression of the SES protein is assessed.

The modulation of activity of proteins involved in C. glutamicum DNA repair, recombination, or transposition should impact the genetic stability of the cell. For example, by decreasing the number or activity of proteins involved in DNA repair mechanisms, one may decrease the ability of the cell to correct genetic errors, which should permit the simplified introduction of desired mutations into the genome (such as those encoding proteins involved in fine chemical production). Increasing the activity or number of transposons should result in a similarly increased mutation rate in the genome, and can permit facile duplication of desired genes (e.g., those encoding fine chemical biosynthetic proteins) or disruption of undesired genes (e.g., those encoding fine chemical degradation proteins). Conversely, by decreasing the number or activity of transposons or by increasing the number or activity of DNA repair proteins, it may be possible to increase the genetic stability of C. glutamicum, which in turn should result in better retention of introduced mutations in this microorganism through multiple generations in culture. Ideally, during mutagenesis and strain construction, one or more DNA repair systems would be decreased in activity and one or more transposons may be increased in activity, but once the desired mutation had been achieved in a strain, these the reverse would occur. Such manipulation is possible by placement of one or more DNA repair genes or transposons under control of an inducible repressor.

Modulation of proteins involved in transcription and translation in *C*. *glutamicum* can have both direct and indirect effects on the production of a fine chemical from these microorganisms. For example, by manipulating a protein which directly translates a gene (*e.g.*, a polymerase) or which directly regulates transcription (*e.g.*, a repressor or activator protein), it is possible to directly affect the expression of the target gene. In the case of genes encoding a protein involved in the biosynthesis or degradation of a fine chemical, this type of genetic manipulation should have a direct effect on the production of this fine chemical. Mutagenesis of a repressor protein such that it can no longer repress its target gene, or mutagenesis of an activator protein such that it is optimized in activity should lead to an increase in transcription of the target gene. If the target gene is, for example, a fine chemical biosynthetic gene, then an increase in production of that chemical may result, due to the overall greater number of

20

25

30

35

transcripts present for the gene, which should result in greater numbers of the protein as well. Increasing the number or activity of a repressor protein for a target sequence or decreasing the number or activity of an activator protein for a target sequence when this sequence is, for example, a fine chemical degradative protein, then a similar increase in production of the fine chemical should result. Indirect effects on fine chemical production may also arise due to manipulation of proteins involved in transcription and translation. For example, by modulating the activity or number of transcription factors (e.g., the sigma factors) or translational repressors/activators which globally regulate transcription in C. glutamicum in response to environmental or metabolic factors, it should be possible to uncouple cellular transcription from environmental or metabolic regulation. In turn, this may permit continued transcription under conditions which would normally slow or altogether stop gene expression, such as those unfavorable conditions (e.g., high temperature, low oxygen, high waste product levels) which exist in large-scale fermentor cultures. By increasing the rate of gene (e.g., fine chemical biosynthetic gene) expression in such situations, the overall rate of fine product production may also be increased, at least due to the relatively greater number of fine chemical biosynthetic proteins in the cell. Principles and examples for modification of transcription and transcriptional regulation are described in, e.g., Lewin, B. (1990) Genes IV, Part 3: "Controlling procaryotic genes

Modulation of the activity or number of proteins involved in polypeptide folding (e.g., chaperones) may permit an increase in the overall production of correctly folded molecules in the cell. This has two effects: first, an overall increase in the number of proteins in the cell, due to the fact that fewer proteins are misfolded and degraded, and second, an increase in the number of any given protein that is correctly folded and thus active (see, e.g., Thomas, J.G., Baneyx, F. (1997) Protein Expression and Purification 11(3): 289-296; Luo, Z.H., and Hua, Z.C. (1998) Biochemistry and Molecular Biology International 46(3): 471-477; Dale, G.E., et al.(1994) Protein Engineering 7(7): 925-931; Amrein, K.E. et al.(1995) Proc. Natl. Acad. Sci. U.S.A. 92(4): 1048-1052; and Caspers, P. et al.(1994) Cell. Mol. Biol. 40(5): 635-644). While such mutations result in an increase in the number of active proteins of all kinds, when coupled with additional mutations increasing the activity or number of, e.g., a fine chemical biosynthetic protein, an additive effect in the amount of correctly folded, active desired protein may be obtained.

by transcription" Oxford Univ. Press: Oxford, p. 213-301.

Manipulation of proteins involved in secretion of polypeptides from C. glutamicum such that they are improved in activity or number may directly improve the secretion of a proteinaceous fine chemical (e.g., an enzyme) from this microorganism. It

15

20

25

30

35

is significantly easier to harvest and purify fine chemicals when they are secreted into the medium of large-scale cultures than when they are retained in the cell, so the yield and production of a fine chemical should be increased through such secretion system engineering. Genetic manipulation of these secretion proteins may also result in indirect improvements in the production of one or more fine chemicals. First, increased or decreased activity of one or more C. glutamicum secretion systems (as brought about by mutagenesis of one or more SES proteins involved in such pathways) may result in increased or decreased global secretion rates from the cell. Many such secreted proteins have functions critical for cell viability (e.g., cell surface proteases or receptors). An alteration of a secretory pathway such that these proteins are more readily transported to their extracellular location may improve the overall viability of the cell, and thus result in greater numbers of C. glutamicum cells capable of producing fine chemicals during large-scale culture. Second, certain bacterial secretion systems, (e.g., the sec system) are known to play a significant role in the process by which integral membrane proteins (e.g. channels, pores, or transporters) insert into cellular membranes. If the activity of one or more secretory pathway proteins is increased, then the ability of the cell to produce fine chemicals may be similarly increased, due to the presence of increased intracellular nutrient levels or decreased intracellular waste levels. If the activity of one or more such secretory pathway protein is decreased, then there may be insufficient nutrients available to support overproduction of desired compounds, or waste products may interfere with the biosynthesis of desired fine chemicals.

The aforementioned mutagenesis strategies for SES proteins to result in increased yields of a fine chemical from *C. glutamicum* are not meant to be limiting; variations on these strategies will be readily apparent to one of ordinary skill in the art. Using such strategies, and incorporating the mechanisms disclosed herein, the nucleic acid and protein molecules of the invention may be utilized to generate *C. glutamicum* or related strains of bacteria expressing mutated SES nucleic acid and protein molecules such that the yield, production, and/or efficiency of production of a desired compound is improved. This desired compound may be any product produced by *C. glutamicum*, which includes the final products of biosynthesis pathways and intermediates of naturally-occurring metabolic pathways, as well as molecules which do not naturally occur in the metabolism of *C. glutamicum*, but which are produced by a *C. glutamicum* strain of the invention.

This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patent applications, patents, published patent applications, Tables, Appendices, and the sequence listing cited throughout this application are hereby incorporated by reference.

Exemplification

5

10

15

20

25

30

35

Example 1: Preparation of total genomic DNA of *Corynebacterium glutamicum* ATCC 13032

A culture of Corynebacterium glutamicum (ATCC 13032) was grown overnight at 30°C with vigorous shaking in BHI medium (Difco). The cells were harvested by centrifugation, the supernatant was discarded and the cells were resuspended in 5 ml buffer-I (5% of the original volume of the culture — all indicated volumes have been calculated for 100 ml of culture volume). Composition of buffer-I: 140.34 g/l sucrose, 2.46 g/l MgSO₄ x 7H₂O, 10 ml/l KH₂PO₄ solution (100 g/l, adjusted to pH 6.7 with KOH), 50 ml/l M12 concentrate (10 g/l (NH₄)₂SO₄, 1 g/l NaCl, 2 g/l MgSO₄ x 7H₂O, 0.2 g/l CaCl₂, 0.5 g/l yeast extract (Difco), 10 ml/l trace-elements-mix (200 mg/l FeSO₄ x H_2O , 10 mg/l ZnSO₄ x $7~H_2O$, $3~mg/l~MnCl_2~x$ $4~H_{2}O,~30~mg/l~H_{3}BO_{3}~20~mg/l~CoCl_{2}~x~6~H_{2}O,~1~mg/l~NiCl_{2}~x~6~H_{2}O,~3~mg/l~Na_{2}MoO_{4}~x~2~M_{2}O,~1~mg/l~NiCl_{2}~x~6~H_{2}O,~1~mg/l~NiCl_{2}~x~0~H_{2}O,~1~mg/l~NiCl_{2}~x~0~H_{2}O,~1~mg/l~NiCl_{2}~x~0~H_{2}O,~1~mg/l~NiCl_{2}~x~0~H_{2}O,~1~mg/l~NiCl_{2}~x~0~H_{2}O,~1~mg/l~NiCl_{2}~x~0~H_{2}O,~1~mg/l~NiCl_{2}~x~0~$ H₂O, 500 mg/l complexing agent (EDTA or critic acid), 100 ml/l vitamins-mix (0.2 mg/l biotin, 0.2 mg/l folic acid, 20 mg/l p-amino benzoic acid, 20 mg/l riboflavin, 40 mg/l capanthothenate, 140 mg/l nicotinic acid, 40 mg/l pyridoxole hydrochloride, 200 mg/l myoinositol). Lysozyme was added to the suspension to a final concentration of 2.5 mg/ml. After an approximately 4 h incubation at 37°C, the cell wall was degraded and the resulting protoplasts are harvested by centrifugation. The pellet was washed once with 5 ml buffer-I and once with 5 ml TE-buffer (10 mM Tris-HCl, l mM EDTA, pH 8). The pellet was resuspended in 4 ml TE-buffer and 0.5 ml SDS solution (10%) and 0.5 ml NaCl solution (5 M) are added. After adding of proteinase K to a final concentration of 200 $\mu g/ml$, the suspension is incubated for ca.18 h at 37°C. The DNA was purified by extraction with phenol, phenol-chloroform-isoamylalcohol and chloroform-isoamylalcohol using standard procedures. Then, the DNA was precipitated by adding 1/50 volume of 3 M sodium acetate and 2 volumes of ethanol, followed by a 30 min incubation at -20°C and a 30 min centrifugation at 12,000 rpm in a high speed centrifuge using a SS34 rotor (Sorvall). The DNA was dissolved in 1 ml TE-buffer containing 20 µg/ml RNaseA and dialysed at 4°C against 1000 ml TE-buffer for at least 3 hours. During this time, the buffer was exchanged 3 times. To aliquots of 0.4 ml of the dialysed DNA solution, 0.4 ml of 2 M LiCl and 0.8 ml of ethanol are added. After a 30 min incubation at -20°C, the DNA was collected by centrifugation (13,000 rpm, Biofuge Fresco, Heraeus, Hanau, Germany). The DNA pellet was dissolved in TE-buffer. DNA prepared by this procedure could be used for all purposes, including southern blotting or construction of genomic libraries.

15

20

25

30

35

Example 2: Construction of genomic libraries in *Escherichia coli* of *Corynebacterium glutamicum* ATCC13032.

Using DNA prepared as described in Example 1, cosmid and plasmid libraries were constructed according to known and well established methods (*see e.g.*, Sambrook, J. *et al.*(1989) "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press, or Ausubel, F.M. *et al.*(1994) "Current Protocols in Molecular Biology", John Wiley & Sons.)

Any plasmid or cosmid could be used. Of particular use were the plasmids pBR322 (Sutcliffe, J.G. (1979) *Proc. Natl. Acad. Sci. USA*, 75:3737-3741); pACYC177 (Change & Cohen (1978) *J. Bacteriol* 134:1141-1156), plasmids of the pBS series (pBSSK+, pBSSK- and others; Stratagene, LaJolla, USA), or cosmids as SuperCos1 (Stratagene, LaJolla, USA) or Lorist6 (Gibson, T.J., Rosenthal A. and Waterson, R.H. (1987) *Gene* 53:283-286. Gene libraries specifically for use in *C. glutamicum* may be constructed using plasmid pSL109 (Lee, H.-S. and A. J. Sinskey (1994) *J. Microbiol. Biotechnol.* 4: 256-263).

Example 3: DNA Sequencing and Computational Functional Analysis

Genomic libraries as described in Example 2 were used for DNA sequencing according to standard methods, in particular by the chain termination method using ABI377 sequencing machines (see e.g., Fleischman, R.D. et al.(1995) "Whole-genome Random Sequencing and Assembly of Haemophilus Influenzae Rd., Science, 269:496-512). Sequencing primers with the following nucleotide sequences were used: 5'-GGAAACAGTATGACCATG-3', or 5'-GTAAAACGACGGCCAGT-3'.

Example 4: In vivo Mutagenesis

In vivo mutagenesis of Corynebacterium glutamicum can be performed by passage of plasmid (or other vector) DNA through E. coli or other microorganisms (e.g. Bacillus spp. or yeasts such as Saccharomyces cerevisiae) which are impaired in their capabilities to maintain the integrity of their genetic information. Typical mutator strains have mutations in the genes for the DNA repair system (e.g., mutHLS, mutD, mutT, etc.; for reference, see Rupp, W.D. (1996) DNA repair mechanisms, in: Escherichia coli and Salmonella, p. 2277-2294, ASM: Washington.) Such strains are well known to one of ordinary skill in the art. The use of such strains is illustrated, for example, in Greener, A. and Callahan, M. (1994) Strategies 7: 32-34.

Example 5: DNA Transfer Between *Escherichia coli* and *Corynebacterium glutamicum*

Several *Corynebacterium* and *Brevibacterium* species contain endogenous plasmids (as *e.g.*, pHM1519 or pBL1) which replicate autonomously (for review see, *e.g.*,

25

30

35

Martin, J.F. et al.(1987) Biotechnology, 5:137-146). Shuttle vectors for Escherichia coli and Corynebacterium glutamicum can be readily constructed by using standard vectors for E. coli (Sambrook, J. et al.(1989), "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press or Ausubel, F.M. et al.(1994) "Current Protocols in

Molecular Biology", John Wiley & Sons) to which a origin or replication for and a suitable marker from *Corynebacterium glutamicum* is added. Such origins of replication are preferably taken from endogenous plasmids isolated from *Corynebacterium* and *Brevibacterium* species. Of particular use as transformation markers for these species are genes for kanamycin resistance (such as those derived from the Tn5 or Tn903

transposons) or chloramphenicol (Winnacker, E.L. (1987) "From Genes to Clones — Introduction to Gene Technology, VCH, Weinheim). There are numerous examples in the literature of the construction of a wide variety of shuttle vectors which replicate in both *E. coli and C. glutamicum*, and which can be used for several purposes, including gene over-expression (for reference, see *e.g.*, Yoshihama, M. *et al.* (1985) *J. Bacteriol.* 162:591-597,

15 Martin J.F. et al.(1987) Biotechnology, 5:137-146 and Eikmanns, B.J. et al.(1991) Gene, 102:93-98).

Using standard methods, it is possible to clone a gene of interest into one of the shuttle vectors described above and to introduce such a hybrid vectors into strains of *Corynebacterium glutamicum*. Transformation of *C. glutamicum* can be achieved by protoplast transformation (Kastsumata, R. et al.(1984) *J. Bacteriol*. 159306-311), electroporation (Liebl, E. et al.(1989) *FEMS Microbiol*. Letters, 53:399-303) and in cases where special vectors are used, also by conjugation (as described e.g. in Schäfer, A et al.(1990) *J. Bacteriol*. 172:1663-1666). It is also possible to transfer the shuttle vectors for *C. glutamicum* to *E. coli* by preparing plasmid DNA from *C. glutamicum* (using standard methods well-known in the art) and transforming it into *E. coli*. This transformation step can be performed using standard methods, but it is advantageous to use an Mcr-deficient *E. coli* strain, such as NM522 (Gough & Murray (1983) *J. Mol. Biol*. 166:1-19).

Genes may be overexpressed in *C. glutamicum* strains using plasmids which comprise pCG1 (U.S. Patent No. 4,617,267) or fragments thereof, and optionally the gene for kanamycin resistance from TN903 (Grindley, N.D. and Joyce, C.M. (1980) *Proc. Natl. Acad. Sci. USA* 77(12): 7176-7180). In addition, genes may be overexpressed in *C. glutamicum* strains using plasmid pSL109 (Lee, H.-S. and A. J. Sinskey (1994) *J. Microbiol. Biotechnol.* 4: 256-263).

Aside from the use of replicative plasmids, gene overexpression can also be achieved by integration into the genome. Genomic integration in *C. glutamicum* or other Corynebacterium or Brevibacterium species may be accomplished by well-known

10

15

20

25

30

35

methods, such as homologous recombination with genomic region(s), restriction endonuclease mediated integration (REMI) (see, *e.g.*, DE Patent 19823834), or through the use of transposons. It is also possible to modulate the activity of a gene of interest by modifying the regulatory regions (*e.g.*, a promoter, a repressor, and/or an enhancer) by sequence modification, insertion, or deletion using site-directed methods (such as homologous recombination) or methods based on random events (such as transposon mutagenesis or REMI). Nucleic acid sequences which function as transcriptional terminators may also be inserted 3' to the coding region of one or more genes of the invention; such terminators are well-known in the art and are described, for example, in Winnacker, E.L. (1987) From Genes to Clones – Introduction to Gene Technology. VCH: Weinheim.

Example 6: Assessment of the Expression of the Mutant Protein

Observations of the activity of a mutated protein in a transformed host cell rely on the fact that the mutant protein is expressed in a similar fashion and in a similar quantity to that of the wild-type protein. A useful method to ascertain the level of transcription of the mutant gene (an indicator of the amount of mRNA available for translation to the gene product) is to perform a Northern blot (for reference see, for example, Ausubel *et al.*(1988) Current Protocols in Molecular Biology, Wiley: New York), in which a primer designed to bind to the gene of interest is labeled with a detectable tag (usually radioactive or chemiluminescent), such that when the total RNA of a culture of the organism is extracted, run on gel, transferred to a stable matrix and incubated with this probe, the binding and quantity of binding of the probe indicates the presence and also the quantity of mRNA for this gene. This information is evidence of the degree of transcription of the mutant gene. Total cellular RNA can be prepared from *Corynebacterium glutamicum* by several methods, all well-known in the art, such as that described in Bormann, E.R. *et al.*(1992) *Mol. Microbiol.* 6: 317-326.

To assess the presence or relative quantity of protein translated from this mRNA, standard techniques, such as a Western blot, may be employed (see, for example, Ausubel et al.(1988) Current Protocols in Molecular Biology, Wiley: New York). In this process, total cellular proteins are extracted, separated by gel electrophoresis, transferred to a matrix such as nitrocellulose, and incubated with a probe, such as an antibody, which specifically binds to the desired protein. This probe is generally tagged with a chemiluminescent or colorimetric label which may be readily detected. The presence and quantity of label observed indicates the presence and quantity of the desired mutant protein present in the cell.

15

20

25

30

35

- 60 -

Example 7: Growth of Genetically Modified *Corynebacterium glutamicum* — Media and Culture Conditions

Genetically modified Corynebacteria are cultured in synthetic or natural growth media. A number of different growth media for Corynebacteria are both well-known and readily available (Lieb et al.(1989) Appl. Microbiol. Biotechnol., 32:205-210; von der Osten et al.(1998) Biotechnology Letters, 11:11-16; Patent DE 4,120,867; Liebl (1992) "The Genus Corynebacterium, in: The Procaryotes, Volume II, Balows, A. et al., eds. Springer-Verlag). These media consist of one or more carbon sources, nitrogen sources, inorganic salts, vitamins and trace elements. Preferred carbon sources are sugars, such as mono-, di-, or polysaccharides. For example, glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose serve as very good carbon sources. It is also possible to supply sugar to the media via complex compounds such as molasses or other by-products from sugar refinement. It can also be advantageous to supply mixtures of different carbon sources. Other possible carbon sources are alcohols and organic acids, such as methanol, ethanol, acetic acid or lactic acid. Nitrogen sources are usually organic or inorganic nitrogen compounds, or materials which contain these compounds. Exemplary nitrogen sources include ammonia gas or ammonia salts, such as NH₄Cl or (NH₄)₂SO₄, NH₄OH, nitrates, urea, amino acids or complex nitrogen sources like corn steep liquor, soy bean flour, soy bean protein, yeast extract, meat extract and others.

Inorganic salt compounds which may be included in the media include the chloride-, phosphorous- or sulfate- salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper and iron. Chelating compounds can be added to the medium to keep the metal ions in solution. Particularly useful chelating compounds include dihydroxyphenols, like catechol or protocatechuate, or organic acids, such as citric acid. It is typical for the media to also contain other growth factors, such as vitamins or growth promoters, examples of which include biotin, riboflavin, thiamin, folic acid, nicotinic acid, pantothenate and pyridoxin. Growth factors and salts frequently originate from complex media components such as yeast extract, molasses, corn steep liquor and others. The exact composition of the media compounds depends strongly on the immediate experiment and is individually decided for each specific case. Information about media optimization is available in the textbook "Applied Microbiol. Physiology, A Practical Approach (eds. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) pp. 53-73, ISBN 0 19 963577 3). It is also possible to select growth media from commercial suppliers, like standard 1 (Merck) or BHI (grain heart infusion, DIFCO) or others.

All medium components are sterilized, either by heat (20 minutes at 1.5 bar and 121°C) or by sterile filtration. The components can either be sterilized together or, if

15

20

25

30

35

- 61 -

necessary, separately. All media components can be present at the beginning of growth, or they can optionally be added continuously or batchwise.

Culture conditions are defined separately for each experiment. The temperature should be in a range between 15°C and 45°C. The temperature can be kept constant or can be altered during the experiment. The pH of the medium should be in the range of 5 to 8.5, preferably around 7.0, and can be maintained by the addition of buffers to the media. An exemplary buffer for this purpose is a potassium phosphate buffer. Synthetic buffers such as MOPS, HEPES, ACES and others can alternatively or simultaneously be used. It is also possible to maintain a constant culture pH through the addition of NaOH or NH₄OH during growth. If complex medium components such as yeast extract are utilized, the necessity for additional buffers may be reduced, due to the fact that many complex compounds have high buffer capacities. If a fermentor is utilized for culturing the microorganisms, the pH can also be controlled using gaseous ammonia.

The incubation time is usually in a range from several hours to several days. This time is selected in order to permit the maximal amount of product to accumulate in the broth. The disclosed growth experiments can be carried out in a variety of vessels, such as microtiter plates, glass tubes, glass flasks or glass or metal fermentors of different sizes. For screening a large number of clones, the microorganisms should be cultured in microtiter plates, glass tubes or shake flasks, either with or without baffles. Preferably 100 ml shake flasks are used, filled with 10% (by volume) of the required growth medium. The flasks should be shaken on a rotary shaker (amplitude 25 mm) using a speed-range of 100 - 300 rpm. Evaporation losses can be diminished by the maintenance of a humid atmosphere; alternatively, a mathematical correction for evaporation losses should be performed.

If genetically modified clones are tested, an unmodified control clone or a control clone containing the basic plasmid without any insert should also be tested. The medium is inoculated to an OD₆₀₀ of O.5 – 1.5 using cells grown on agar plates, such as CM plates (10 g/l glucose, 2,5 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract, 5 g/l meat extract, 22 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract, 5 g/l meat extract, 22 g/l agar, pH 6.8 with 2M NaOH) that had been incubated at 30°C. Inoculation of the media is accomplished by either introduction of a saline suspension of *C. glutamicum* cells from CM plates or addition of a liquid preculture of this bacterium.

Example 8 - In vitro Analysis of the Function of Mutant Proteins

The determination of activities and kinetic parameters of enzymes is well established in the art. Experiments to determine the activity of any given altered enzyme must be tailored to the specific activity of the wild-type enzyme, which is well

20

25

30

35

within the ability of one of ordinary skill in the art. Overviews about enzymes in general, as well as specific details concerning structure, kinetics, principles, methods, applications and examples for the determination of many enzyme activities may be found, for example, in the following references: Dixon, M., and Webb, E.C., (1979)

5 Enzymes. Longmans: London; Fersht, (1985) Enzyme Structure and Mechanism. Freeman: New York; Walsh, (1979) Enzymatic Reaction Mechanisms. Freeman: San Francisco; Price, N.C., Stevens, L. (1982) Fundamentals of Enzymology. Oxford Univ. Press: Oxford; Boyer, P.D., ed. (1983) The Enzymes, 3rd ed. Academic Press: New York; Bisswanger, H., (1994) Enzymkinetik, 2nd ed. VCH: Weinheim (ISBN 3527300325); Bergmeyer, H.U., Bergmeyer, J., Graßl, M., eds. (1983-1986) Methods of Enzymatic Analysis, 3rd ed., vol. I-XII, Verlag Chemie: Weinheim; and Ullmann's Encyclopedia of Industrial Chemistry (1987) vol. A9, "Enzymes". VCH: Weinheim, p. 352-363.

The activity of proteins which bind to DNA can be measured by several well-established methods, such as DNA band-shift assays (also called gel retardation assays). The effect of such proteins on the expression of other molecules can be measured using reporter gene assays (such as that described in Kolmar, H. *et al.*(1995) *EMBO J.* 14: 3895-3904 and references cited therein). Reporter gene test systems are well known and established for applications in both pro- and eukaryotic cells, using enzymes such as beta-galactosidase, green fluorescent protein, and several others.

The determination of activity of membrane-transport proteins can be performed according to techniques such as those described in Gennis, R.B. (1989) "Pores, Channels and Transporters", in Biomembranes, Molecular Structure and Function, Springer: Heidelberg, p. 85-137; 199-234; and 270-322.

Example 9: Analysis of Impact of Mutant Protein on the Production of the Desired Product

The effect of the genetic modification in *C. glutamicum* on production of a desired compound (such as an amino acid) can be assessed by growing the modified microorganism under suitable conditions (such as those described above) and analyzing the medium and/or the cellular component for increased production of the desired product (*i.e.*, an amino acid). Such analysis techniques are well known to one of ordinary skill in the art, and include spectroscopy, thin layer chromatography, staining methods of various kinds, enzymatic and microbiological methods, and analytical chromatography such as high performance liquid chromatography (see, for example, Ullman, Encyclopedia of Industrial Chemistry, vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A. et al., (1987) "Applications of HPLC in Biochemistry" in:

10

15

20

25

30

35

Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17; Rehm *et al.* (1993) Biotechnology, vol. 3, Chapter III: "Product recovery and purification", page 469-714, VCH: Weinheim; Belter, P.A. *et al.* (1988) Bioseparations: downstream processing for biotechnology, John Wiley and Sons; Kennedy, J.F. and Cabral, J.M.S. (1992) Recovery processes for biological materials, John Wiley and Sons; Shaeiwitz, J.A. and Henry, J.D. (1988) Biochemical separations, in: Ulmann's Encyclopedia of Industrial Chemistry, vol. B3, Chapter 11, page 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications.)

In addition to the measurement of the final product of fermentation, it is also possible to analyze other components of the metabolic pathways utilized for the production of the desired compound, such as intermediates and side-products, to determine the overall efficiency of production of the compound. Analysis methods include measurements of nutrient levels in the medium (*e.g.*, sugars, hydrocarbons, nitrogen sources, phosphate, and other ions), measurements of biomass composition and growth, analysis of the production of common metabolites of biosynthetic pathways, and measurement of gasses produced during fermentation. Standard methods for these measurements are outlined in Applied Microbial Physiology, A Practical Approach, P.M. Rhodes and P.F. Stanbury, eds., IRL Press, p. 103-129; 131-163; and 165-192 (ISBN: 0199635773) and references cited therein.

Example 10: Purification of the Desired Product from C. glutamicum Culture

Recovery of the desired product from the *C. glutamicum* cells or supernatant of the above-described culture can be performed by various methods well known in the art. If the desired product is not secreted from the cells, the cells can be harvested from the culture by low-speed centrifugation, the cells can be lysed by standard techniques, such as mechanical force or sonication. The cellular debris is removed by centrifugation, and the supernatant fraction containing the soluble proteins is retained for further purification of the desired compound. If the product is secreted from the *C. glutamicum* cells, then the cells are removed from the culture by low-speed centrifugation, and the supernate fraction is retained for further purification.

The supernatant fraction from either purification method is subjected to chromatography with a suitable resin, in which the desired molecule is either retained on a chromatography resin while many of the impurities in the sample are not, or where the impurities are retained by the resin while the sample is not. Such chromatography steps may be repeated as necessary, using the same or different chromatography resins. One of ordinary skill in the art would be well-versed in the selection of appropriate

10

15

25

chromatography resins and in their most efficacious application for a particular molecule to be purified. The purified product may be concentrated by filtration or ultrafiltration, and stored at a temperature at which the stability of the product is maximized.

There are a wide array of purification methods known to the art and the preceding method of purification is not meant to be limiting. Such purification techniques are described, for example, in Bailey, J.E. & Ollis, D.F. Biochemical Engineering Fundamentals, McGraw-Hill: New York (1986).

The identity and purity of the isolated compounds may be assessed by techniques standard in the art. These include high-performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin layer chromatography, NIRS, enzymatic assay, or microbiologically. Such analysis methods are reviewed in: Patek et al. (1994) Appl. Environ. Microbiol. 60: 133-140; Malakhova et al. (1996) Biotekhnologiya 11: 27-32; and Schmidt et al. (1998) Bioprocess Engineer. 19: 67-70. Ulmann's Encyclopedia of Industrial Chemistry, (1996) vol. A27, VCH: Weinheim, p. 89-90, p. 521-540, p. 540-547, p. 559-566, 575-581 and p. 581-587; Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al.(1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17.

Example 11: Analysis of the Gene Sequences of the Invention 20

The comparison of sequences and determination of percent homology between two sequences are art-known techniques, and can be accomplished using a mathematical algorithm, such as the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-68, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-77. Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to SES nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to SES protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Res. 25(17):3389-3402. When utilizing BLAST and Gapped BLAST programs, one of ordinary skill in the art will know how to optimize the parameters of the program (e.g., XBLAST and NBLAST) for the specific sequence 35 being analyzed.

10

15

20

25

30

35

Another example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Meyers and Miller ((1988) *Comput. Appl. Biosci.* 4: 11-17). Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Additional algorithms for sequence analysis are known in the art, and include ADVANCE and ADAM. described in Torelli and Robotti (1994) *Comput. Appl. Biosci.* 10:3-5; and FASTA, described in Pearson and Lipman (1988) *P.N.A.S.* 85:2444-8.

The percent homology between two amino acid sequences can also be accomplished using the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blosum 62 matrix or a PAM250 matrix, and a gap weight of 12, 10, 8, 6, or 4 and a length weight of 2, 3, or 4. The percent homology between two nucleic acid sequences can be accomplished using the GAP program in the GCG software package, using standard parameters, such as a gap weight of 50 and a length weight of 3.

A comparative analysis of the gene sequences of the invention with those present in Genbank has been performed using techniques known in the art (see, e.g., Bexevanis and Ouellette, eds. (1998) Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. John Wiley and Sons: New York). The gene sequences of the invention were compared to genes present in Genbank in a three-step process. In a first step, a BLASTN analysis (e.g., a local alignment analysis) was performed for each of the sequences of the invention against the nucleotide sequences present in Genbank, and the top 500 hits were retained for further analysis. A subsequent FASTA search (e.g., a combined local and global alignment analysis, in which limited regions of the sequences are aligned) was performed on these 500 hits. Each gene sequence of the invention was subsequently globally aligned to each of the top three FASTA hits, using the GAP program in the GCG software package (using standard parameters). In order to obtain correct results, the length of the sequences extracted from Genbank were adjusted to the length of the query sequences by methods well-known in the art. The results of this analysis are set forth in Table 4. The resulting data is identical to that which would have been obtained had a GAP (global) analysis alone been performed on each of the genes of the invention in comparison with each of the references in Genbank, but required significantly reduced computational time as compared to such a database-wide GAP (global) analysis. Sequences of the invention for which no alignments above the cutoff values were obtained are indicated on Table 4 by the absence of alignment information. It will further be understood by one of ordinary skill in the art that the GAP alignment

20

25

30

35

- 66 -

homology percentages set forth in Table 4 under the heading "% homology (GAP)" are listed in the European numerical format, wherein a ',' represents a decimal point. For example, a value of "40,345" in this column represents "40.345%".

5 Example 12: Construction and Operation of DNA Microarrays

The sequences of the invention may additionally be used in the construction and application of DNA microarrays (the design, methodology, and uses of DNA arrays are well known in the art, and are described, for example, in Schena, M. et al.(1995) Science 270: 467-470; Wodicka, L. et al.(1997) Nature Biotechnology 15: 1359-1367;

10 DeSaizieu, A. et al.(1998) Nature Biotechnology 16: 45-48; and DeRisi, J.L. et al.(1997) Science 278: 680-686).

DNA microarrays are solid or flexible supports consisting of nitrocellulose, nylon, glass, silicone, or other materials. Nucleic acid molecules may be attached to the surface in an ordered manner. After appropriate labeling, other nucleic acids or nucleic acid mixtures can be hybridized to the immobilized nucleic acid molecules, and the label may be used to monitor and measure the individual signal intensities of the hybridized molecules at defined regions. This methodology allows the simultaneous quantification of the relative or absolute amount of all or selected nucleic acids in the applied nucleic acid sample or mixture. DNA microarrays, therefore, permit an analysis of the expression of multiple (as many as 6800 or more) nucleic acids in parallel (see, *e.g.*, Schena, M. (1996) *BioEssays* 18(5): 427-431).

The sequences of the invention may be used to design oligonucleotide primers which are able to amplify defined regions of one or more *C. glutamicum* genes by a nucleic acid amplification reaction such as the polymerase chain reaction. The choice and design of the 5' or 3' oligonucleotide primers or of appropriate linkers allows the covalent attachment of the resulting PCR products to the surface of a support medium described above (and also described, for example, Schena, M. *et al.*(1995) *Science* 270: 467-470).

Nucleic acid microarrays may also be constructed by *in situ* oligonucleotide synthesis as described by Wodicka, L. *et al.*(1997) *Nature Biotechnology* 15: 1359-1367. By photolithographic methods, precisely defined regions of the matrix are exposed to light. Protective groups which are photolabile are thereby activated and undergo nucleotide addition, whereas regions that are masked from light do not undergo any modification. Subsequent cycles of protection and light activation permit the synthesis of different oligonucleotides at defined positions. Small, defined regions of the genes of the invention may be synthesized on microarrays by solid phase oligonucleotide synthesis.

20

25

30

35

The nucleic acid molecules of the invention present in a sample or mixture of nucleotides may be hybridized to the microarrays. These nucleic acid molecules can be labeled according to standard methods. In brief, nucleic acid molecules (e.g., mRNA molecules or DNA molecules) are labeled by the incorporation of isotopically or fluorescently labeled nucleotides, e.g., during reverse transcription or DNA synthesis. Hybridization of labeled nucleic acids to microarrays is described (e.g., in Schena, M. et al.(1995) supra; Wodicka, L. et al.(1997), supra; and DeSaizieu A. et al.(1998), supra). The detection and quantification of the hybridized molecule are tailored to the specific incorporated label. Radioactive labels can be detected, for example, as described in Schena, M. et al.(1995) supra) and fluorescent labels may be detected, for example, by the method of Shalon et al.(1996) Genome Research 6: 639-645).

The application of the sequences of the invention to DNA microarray technology, as described above, permits comparative analyses of different strains of *C. glutamicum* or other Corynebacteria. For example, studies of inter-strain variations based on individual transcript profiles and the identification of genes that are important for specific and/or desired strain properties such as pathogenicity, productivity and stress tolerance are facilitated by nucleic acid array methodologies. Also, comparisons of the profile of expression of genes of the invention during the course of a fermentation reaction are possible using nucleic acid array technology.

Example 13: Analysis of the Dynamics of Cellular Protein Populations (Proteomics)

The genes, compositions, and methods of the invention may be applied to study the interactions and dynamics of populations of proteins, termed 'proteomics'. Protein populations of interest include, but are not limited to, the total protein population of *C. glutamicum* (*e.g.*, in comparison with the protein populations of other organisms), those proteins which are active under specific environmental or metabolic conditions (*e.g.*, during fermentation, at high or low temperature, or at high or low pH), or those proteins which are active during specific phases of growth and development.

Protein populations can be analyzed by various well-known techniques, such as gel electrophoresis. Cellular proteins may be obtained, for example, by lysis or extraction, and may be separated from one another using a variety of electrophoretic techniques. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) separates proteins largely on the basis of their molecular weight. Isoelectric focusing polyacrylamide gel electrophoresis (IEF-PAGE) separates proteins by their isoelectric point (which reflects not only the amino acid sequence but also posttranslational modifications of the protein). Another, more preferred method of protein analysis is the

15

20

25

30

35

consecutive combination of both IEF-PAGE and SDS-PAGE, known as 2-D-gel electrophoresis (described, for example, in Hermann *et al.*(1998) *Electrophoresis* 19: 3217-3221; Fountoulakis *et al.*(1998) *Electrophoresis* 19: 1193-1202; Langen *et al.*(1997) *Electrophoresis* 18: 1184-1192; Antelmann *et al.*(1997) *Electrophoresis* 18: 1451-1463). Other separation techniques may also be utilized for protein separation, such as capillary gel electrophoresis; such techniques are well known in the art.

Proteins separated by these methodologies can be visualized by standard techniques, such as by staining or labeling. Suitable stains are known in the art, and include Coomassie Brilliant Blue, silver stain, or fluorescent dyes such as Sypro Ruby (Molecular Probes). The inclusion of radioactively labeled amino acids or other protein precursors (*e.g.*, ³⁵S-methionine, ³⁵S-cysteine, ¹⁴C-labelled amino acids, ¹⁵N-amino acids, ¹⁵NO₃ or ¹⁵NH₄⁺ or ¹³C-labelled amino acids) in the medium of *C. glutamicum* permits the labeling of proteins from these cells prior to their separation. Similarly, fluorescent labels may be employed. These labeled proteins can be extracted, isolated and separated according to the previously described techniques.

Proteins visualized by these techniques can be further analyzed by measuring the amount of dye or label used. The amount of a given protein can be determined quantitatively using, for example, optical methods and can be compared to the amount of other proteins in the same gel or in other gels. Comparisons of proteins on gels can be made, for example, by optical comparison, by spectroscopy, by image scanning and analysis of gels, or through the use of photographic films and screens. Such techniques are well-known in the art.

To determine the identity of any given protein, direct sequencing or other standard techniques may be employed. For example, N- and/or C-terminal amino acid sequencing (such as Edman degradation) may be used, as may mass spectrometry (in particular MALDI or ESI techniques (see, e.g., Langen et al.(1997) Electrophoresis 18: 1184-1192)). The protein sequences provided herein can be used for the identification of C. glutamicum proteins by these techniques.

The information obtained by these methods can be used to compare patterns of protein presence, activity, or modification between different samples from various biological conditions (e.g., different organisms, time points of fermentation, media conditions, or different biotopes, among others). Data obtained from such experiments alone, or in combination with other techniques, can be used for various applications, such as to compare the behavior of various organisms in a given (e.g., metabolic) situation, to increase the productivity of strains which produce fine chemicals or to increase the efficiency of the production of fine chemicals.

ogeorsa "osesoo

5

Those of ordinary skill in the art will recognize, or will be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

TABLE 1: GENES IN THE APPLICATION

Function	Protein Translation Elongation Factor G (EF-G) Protein translation Elongation Factor TS (EF-Ts) PROTEIN-EXPORT MEMBRANE PROTEIN SECD PROTEIN-EXPORT MEMBRANE PROTEIN SECD PROTEIN-EXPORT MEMBRANE PROTEIN SECD PROTEIN-EXPORT MEMBRANE PROTEIN SECF PREPROTEIN TRANSLOCASE SECA SUBUNIT SIGNAL RECOGNITION PARTICLE PROTEIN SIGNAL PEPTIDASE I (EC 3.4.21.89) GLUTAREDOXIN-LIKE PROTEIN NRDH GLUTAREDOXIN-LIKE PROTEIN NRDH GLUTATHIONE REDUCTASE (EC 1.6.4.2)
NT Stop	299 2680 5954 4 1741 527 7111 4074 3662 18176 5841
NT Start	2425 1856 7795 654 1983 1735 4823 2434 2877 17940 7055
Contig.	GR00369 GR00547 GR00254 GR00434 GR00434 GR00707 GR00764 GR00393 GR00139
Identification Code	RXA01278 RXA01913 RXN01559 F RXA00935 F RXA01559 RXA02429 RXA0248 RXA01355 RXA0107 RXA0113 RXA001613
Amino Acid	SEQ ID NO 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Nucleic Acid	SEQ ID NO 1 2 5 7 11 13 17 19 23

Genes and enzymes involved in DNA uptake, repair and recombination

Function	IIRACII - DNA GLYCOSYLASE (EC 3.2.2)	DEDXYRIBODIPYRIMIDINE PHOTOLYASE (EC 4.1.99.3)	DECAYAIRONIPYRIMIDINE PHOTOLYASE (EC 4.1.99.3)	A C SPECIEL ADENINE GLYCOSYLASE (EC 3.2)	AGENTIC ADELLINE CONTROL OF CONTR	FORMAMIDOPYRIMIDINE-DNA GLTCOST LASE (FC 5.7.7.2.3)	FORMAMIDOPYRIMIDINE-DNA GLYCOSYLASE (EC 3.2.2.23)	FORMAMIDOPYRIMIDINE-DNA GLYCOSYLASE (EC 3.2.2.23)	CONTACTOR OF THE CONTACTOR (EC. 3.2.2.3)	TOKWAMIDIAL TOTAL	DNA REPAIK PROTEIN RECH	DNA-DAMAGE-INDUCIBLE PROTEIN F	DNA REPAIR PROTEIN RADA HOMOLOG		ALKB PROTEIN (DNA repair – alkylated DNA)	DNA repair gene specific for alkylated DNA		RECT PROJECT	RECF PROTEIN	RECOMBINATION PROTEIN RECR	SHATTING APPROPRIE TO AND FEED ASE (FC 2.1.1.)	DIMET HT LADENOSINE TO TOTAL TO THE TOTAL OF	METHYLPHOSPHOTRIESTER-DNA ALKYLIKANSTERASE	MUTATOR MUTT PROTEIN (7,8-DIHYDRO-8-OXOGOANINE-I RIFNOSFITATASE)	(8-OXO-DGTPASE) (EC 3.6.1)	MITATOR MITT PROTEIN (7.8-DIHYDRO-8-OXOGUANINE-TRIPHOSPHAIASE)	O OYO-DETDASE) (FC 3.6.1)
NT Stop	1744	46286	40200	2020	9636	10521	18105	614	1 0	7706	6148	6220	12206	06771	18025	200	000	1251	544	1206	007	211/	849	8554		4606	500
NT Start	000	990 47266	47.000	20912	10514	11288	18911		2	8170	4370	7530	44740	9 / 1	18678	0717	218	2	^	643	245	1239	_	8162	2010	977	0814
Contig.	20000	GROOZE	0.000	GR00119	GR00715	GR00014	6200///	00000	GK00460	GR00628	GR00447	GR00423	0110	GR00/53	100127		GR00662	VV0221	GR00492	10000	GRUUSES	GR00537	GR00433	800000	9000045	0,000	GK00043
Identification Code		RXA01020	RXN00484	F RXA00484	RXA02476	DX A00102	DVN04670	0/91010	F RXA01670	RXA02078	BXA01596	DV A01403	2011	RXA02671	DVNI02201	LV1002231	F RXA02291	RXN01733	E DV A01733	`	RXA01252	RXA01878	DX A01556	000000	KXAU0053		RXA00280
Amino Acid	SEC ID NO	56	28	30	33	1 6	4 6	ક	38	40	2 5	7:	44	46		24	20	: 22	7 7	45	29		8 8	2 2	62		49
Nucleic Acid	SEQ ID NO	25	27	29	÷ ;	- G	3;	32	37	30		4	43	45	2 !	47	67	2 1	<u>.</u>	53	55	3 2	<u>`</u>	29	61		63

===
M
N
Ш
€
o
M
Ñ
T
-

Table 1, Page 2

Function	MUTATOR MUTT PROTEIN (7,8-DIHYDRO-8-OXOGUANINE-TRIPHOSPHATASE) (8-OXO-DGTPASE) (EC 3.6.1)	MUTATOR MUTT PROTEIN (7,8-DIHYDRO-8-OXOGUANINE-TRIPHOSPHATASE) (8-OXO-DGTPASE) (EC 3.6.1)	DNA-3-METHYLADENINE GLYCOSIDASE I (EC 3.2.2.20) DNA-3-METHYLADENINE GLYCOSIDASE I (EC 3.2.2.20)	DNA REPAIR HELICASE RAD25	Hypothetical DNA Repair Helicase	ATP-DEPENDENT DNA HELICASE RECO HOLLIDAY JUNCTION DNA HELICASE RUVB	HOLLIDAY JUNCTION DNA HELICASE RUVA	RESOLVASE	RESOLVASE	DNA repair exonuclease	CROSSOVED INCTION ENDOPENATIBONUCLEASE RUVC (EC 3.1.22.4)	EXCINIOLEASE ABC SUBUNIT C	EXCINUCLEASE ABC SUBUNIT C	EXCINUCLEASE ABC SUBUNIT A	EXCINUCLEASE ABC SUBUNIT A	Excinuclease ATPase subunit	EXCINUCLEASE ABC SUBUNIT B	COMA OPERON PROTEIN 2	COME OFERON PROTEIN 1 DNA binding and uptake (competence)	COME OPERON PROTEIN 3	COME OPERON PROTEIN 3, DNA binding and uptake (competence)	COME OPERON PROTEIN 3, DNA binding and uptake (competence)	PUTATIVE TYPE II RESTRICTION ENDONUCLEASE AND PUTATIVE TYPE I OK	TYPE III RESTRICTION ENDONUCLEASE GENES, COMPLETE CUS	TYPE III RESTRICTION-MODIFICATION STSTEM FOOT IS EXELUTE 1900 (12)	integration host factor	MODIFICATION METHYLASE (EC. 2.1.1.3)	DNA (CYTOSINE-5)-METHYLIKANSTEKASE (EC. 2.1.1.37)	MODIFICATION METHODS SCALE (C. C. C	COMPETENCE PROTEIN F	MULATOR MOLI PROTEIN (7,9-billiolog-cyclog winds 11,50-billiolog cyclog	PUTATIVE COMPETENCE-DAMAGE PROTEIN	PUTATIVE TYPE II RESTRICTION ENDONOCLEASE AND TOTALY IN THE TOTAL AND TYPE III RESTRICTION ENDONUCLEASE GENES, COMPLETE CDS	RECA PROTEIN	RIBONUCLEASE BN (EC 3.1)	UMUC PROTEIN	EBSC PROTEIN	
NT Stop	16699	4258	295 3179	87	10036	11050	1616	8560	9	9411	16238	18666	20455	7629	2642	2246	5359	2410	97.0 97.0 97.0	2487) } (925	2137		4165	4566	1318	10056	836	10253	24097	4762	2139	1257	695	876	820	
NT Start	16166	3641	693 3766	5 - -	12384	9362	2233	7949	455	8239	14399	2938	18632	10457	က	1515	3263	2871	368	091.	070	1770	242		3326	4249	722	10928	231	9789	23357	5253	1330	118	1777	_	1182	
Contig.	GR00057	GR00632	GR00662	GR00638	GR00763	GR00709	GR00233	W0187	GR00027	GR00028	GR00002	GR00253	GR00654	W0116	GR00705	GR00732	GR00762	GR00283	W0176	GR00693	0.000	GR00693	GR00571		GR00562	GR00654	VV0093	VV0020	VV0093	VV0124	W0054	7900//	0000	VV0073	VV0327	0600//	6000//	
Identification Code	RXA00333	RXA02110	RXA02290	RXA02130	RXA02742	RXA02445	EXA0092/	KXA00926 RXN00172	F RXA00172	RXA00184	RXA00019	EXA00929	KXA02231	EX.N02416	F RXA02416	RXA02563	RXA02731	RXA00998	RXN02386	F RXA02386	EXN02388	F KXA02385	F KAN02300 BXA01975		RXA01954	RXA02236	RXN01795	RXN02267	RXA02988	RXN00127	RXN02938	RXN03102	RXN03118	PXN02989	RXN03168	RXN02431	RXN02985	
Amino Acid	SEQ ID NO	89	02.5	7.4	76	28	80	82	88	88	06	92	94	90	100	102	104	106	108	110	112	114	116	2	120	122	124	126	128	130	132	134	136	200	140	142	44	
Nucleic Acid	SEQ ID NO	29	69	7, 7,	75	77	79	81 83	8 8	87	88	91	93	95	/ o	101	103	105	107	109	111	113	115	<u>`</u>	119	121	1 5	125	127	129	131	133	33.	704	30,7	141	143	

Function	EBSC PROTEIN	DNA POLIMENASE (PC 2.7.7.7) DNA LIGASE (EC 6.5.1.2)	VA LIGASE (EC 6.5.1.2)	ATP-DEPENDENT UNA HELICASE RECG (EC 3.3.1.7)	ENDONOCIEASE III (EC 4.2.33.10)	EXCIDENT RIBOUND CLEASE III (EC S. I. I I E)	AND NET AND THE FASE III (FIG. 4.2.99.18)	AV. SPECIFIC ADENINE GLYCOSYLASE (EC 3.2.2)	REGULATORY PROTEIN RECX	DNA alkylation repair enzyme	EXODEOXYRIBONUCLEASE III (EC 3.1.11.2)		Function		NTEGRASE	NTEGRASE	NTEGRASE/RECOMBINASE AERD	TRANSPOSONS INT/ZI AND IN4635 RESOLVAGE	UNA, IRANSPOSABLE ELEMENT 133 133 1	INA, IRANOPOMBLE ELLINENT 1001001	UNA, IRANGPOSABLE ELEMENT 1331531	PLACINID PAGO I FRANCED CONCE	NICEPTION FI FMENT IS1415 TRANSPOSASE (ISTA) AND HELPER PROTEIN	(ISTB) GENES, COMPLETE CDS	S3 RELATED INSERTION ELEMENT	TRANSPOSASE	TRANSPOSASE	TRANSPOSASE	TRANSPOSASE	TRANSPOSASE	I KANOPOOAGE TDANIODOOAGE	TOWN OF DEPOY OF THE PARTY OF T	TRANSPOSASE
NT Stop	_	1590 10854 D		-		5543 E				_	466 E	9	NT Stop		_	_	12039		o				3095	_	_	3289	. 226	11788	12467	988	1365	1697	12/40
NT Start	801	4256 12413	12894	1217	22014	4755	21112	12240	1352	2100	1248	Integras	NT Start		5816	112	11128	1668	14262	139	2243	56012	3865	405/	8857	2840	029	12003	12616	753	991	140/	135/0
Contig.	6000//	VV0044 VV0096	9600/\	VV0052	W0054	VV0140	66000	00000	VV0008	W0064	VV0331	ansposase, Integrase	Contig.		00000	GR10027	GR00447	GR00355	VV0123	W0155	GR00040	VV0015	GR00428	GK00/41	GR00002	GR00040	GR00256	GR00367	GR00367	GR00386	GR00386	GR00386	GR00418
Identification Code	RXN02986	RXS00061 RXS00212	RXS00213	RXS00724	RXS00823	RXS00898	RXS01066	RXS02145	RXS02476	RXS03098	RXS03175	Fransposon, IS elements, Transp	Identification Code		RXN03069	F RXA02890	RXA01601	RXA01228	RXN03130	RXN01969	F RXA00263	RXN01541	F RXA01541	KXA02590	RXA00016	RXA00265	RXA00938	RXA01264	RXA01265	RXA01327	RXA01328	RXA01329	RXA01443
Amino Acid	SEC 1D NO 146	148	152	154	156	158	160	162	164	168	170	on, IS ele	Amino Acid	SEQ ID NO	172	174	176	178	180	182	184	186	188	190	192	194	196	198	200	202	204	206	208
Nucleic Acid	SEC ID NO	147	151	153	155	157	159	161	163	165 167	169	Transpos	Nucleic Acid	SEO ID NO	174	173	175	177	179	181	183	185	187	189	, 19	193	195	197	661	201	203	205	207
									1																,	•		•					

oceaso" seesoso

TRANSPOSASE TRANSPOSASE TRANSPOSASE

7964 3289 927 11788 12467 896 1365 1697 12740 13662 461 841 1324 1484

8857 2840 670 12003 12616 753 991 1407 13570 13928 829 1260 1437 1618

GR00256 GR00367 GR00387 GR00386 GR00386 GR00418 GR00417 GR00457 GR00457

RXA00265 RXA00938 RXA01264 RXA01265 RXA01327 RXA01328 RXA01443 RXA01648 RXA01650 RXA01650 RXA01650

192 194 196 198 200 202 204 208 210 212 214 216 218 218

191 193 195 195 197 201 203 207 209 211 213 213

TRANSPOSASE TRANSPOSASE TRANSPOSASE

Table 1, Page 3

Function	TRANSPOSASE TRANSPOSASE	TRANSPOSASE	INTEGRASE	TRANSPOSASE	TRANSPOSON TN2501 RESOLVASE	DNA, TRANSPOSABLE ELEMENT 1551651																			
NT Stop	9180 12580	551	6166	548	2052	9	6331	8857	2393	27194	7841	4555	44175	15486	6609	1824	28985	8070	4	1267	1242	3117	382	69752	5240
NT Start	9590 13161	က	4961	928	1345	179	4724	9150	2491	27991	8287	5310	43798	14953	3942	299	29926	8897	645	884	1562	3416	588	69201	6547
Contig.	GR00467 VV0084	GR00505	GR00529	GR00562	GR00589	GR00829	GR00001	GR00002	GR00009	GR00032	GR00515	VV0024	VV0135	VV0084	VV0012	VV0013	00000	VV0039	VV0101	VV0193	VV0312	VV0048	VV0290	W0127	VV0102
Identification Code	F RXA01680 RXN01784	F RXA01784	RXA01862	RXA01953	RXA01998	RXA02837	RXA00005	RXA00017	RXA00057	RXA00227	RXA01819	RXN03052	RXN02915	RXN02919	RXN03033	RXN03035	RXN03049	RXN03070	RXN03121	RXN03161	RXN03165	RXN00083	RXN02004	RXN02287	RXN02963
Amino Acid	222	226	228	230	232	234	236	238	240	242	244	246	248	250	252	254	256	258	260	262	264	266	7 268 268	270	272
Nucleic Acid	221	225	227	526	23.	233	235	237	239	241	243	245	247	249	251	253	255	257	259	261	263	265	267	590	271

Aminoacyl-tRNA synthetases / tRNAs and tRNA metabolism

Function	ALANYL-TRNA SYNTHETASE (EC 6.1.1.7) ARGINYL-TRNA SYNTHETASE (EC 6.1.1.9) POSSIBLE ARGINYL-TRNA SYNTHETASE (EC 6.1.1.9) POSSIBLE ARGINYL-TRNA SYNTHETASE (EC 6.1.1.19) ASPARTYL-TRNA SYNTHETASE (EC 6.1.1.12) ASPARTYL-TRNA SYNTHETASE (EC 6.1.1.12) CYSTEINYL-TRNA SYNTHETASE (EC 6.1.1.16) CYSTEINYL-TRNA SYNTHETASE (EC 6.1.1.16) CYSTEINYL-TRNA SYNTHETASE (EC 6.1.1.16) GLUTAMYL-TRNA SYNTHETASE (EC 6.1.1.17)
NT Stop	5022 9469 4 824 6 6 1974 4027 7497 1510
NT Start	2359 7820 780 1423 1709 298 5406 8756 2
Contig	GR00777 VV0149 GR00275 GR00275 VV0137 GR00490 GR00646 GR00646
Identification Code	RXA02788 RXN00975 F RXA00976 F RXA00976 RXN01730 F RXA00314 RXA00314 RXA01224 RXA01124 RXA01124
Amino Acid	SEQ ID NO 274 276 278 282 282 284 286 290 290
Nucleic Acid	SEQ ID NO 273 275 277 279 281 283 285 285 289 291

M
ΠÍ
Q
Ħ
₽
M
Œ
N
L
Ţ
=

(EC 6.1.1.20) EC 6.1.1.20) EC 6.1.1.20) EC 6.1.1.20) EC 6.1.1.20) EC 6.1.1.20) CE 6.1.1.30) 29) 29) 29) 29) 29) 29) 29) 29) 29) 29	
GLUTAMYL-TRNA SYNTHETASE (EC 6.1.17) GLUTAMYL-TRNA SYNTHETASE (EC 6.1.14) HISTIDYL-TRNA SYNTHETASE (EC 6.1.14) HISTIDYL-TRNA SYNTHETASE (EC 6.1.14) LEUCYL-TRNA SYNTHETASE (EC 6.1.15) PHENYZALANYL-TRNA SYNTHETASE (EC 6.1.15) PHENYZALANYL-TRNA SYNTHETASE (EC 6.1.115) PHENYZALANYL-TRNA SYNTHETASE (EC 6.1.115) PHENYZALANYL-TRNA SYNTHETASE (EC 6.1.115) PROLYL-TRNA SYNTHETASE (EC 6.1.115) TRYPTOPHANYL-TRNA SYNTHETASE (EC 6.1.117) TRROSYL-TRNA SYNTHETASE (EC 6.1.117) TRROSYL-TRNA SYNTHETASE (EC 6.1.12) TRYPTOPHANYL-TRNA SYNTHETASE (EC 6.1.12) VALYL-TRNA SYNTHETASE (EC 6.1.13) TRYPTOPHANYL-TRNA SYNTHASE (EC 6.1.13) TRNA GURGUINE TRNA-RIBOSYLTRANSFERASE (EC 2.1.23) TRNA (URACIL-5-)-METHYLTRANSFERASE (EC 3.1.12) TRNA (URACIL-5-)-METHYLTRANSFERASE (EC 3.1.12) TRNA (URACIL-5-)-METHYLTRANSFERASE (EC 3.1.12) TRNA (URACIL-5-)-METHYLTRANSFERASE (EC 3.1.12) TRNA (URACIL-5-)	dependent affildollaristerase sur
GLUTAMYL-TRNA SYNTHETASE (EC 6.1.17) GLUTAMYL-TRNA SYNTHETASE (EC 6.1.14) HISTIDYL-TRNA SYNTHETASE (EC 6.1.14) HEUCYL-TRNA SYNTHETASE (EC 6.1.14) LEUCYL-TRNA SYNTHETASE (EC 6.1.11) METHIONYL-TRNA SYNTHETASE (EC 6.1.11) PHENYLALANYL-TRNA SYNTHETASE BETA (PHENYLALANYL-TRNA SYNTHETASE (EC 6.1.1.15) PROLYL-TRNA SYNTHETASE (EC 6.1.1.15) PROLYL-TRNA SYNTHETASE (EC 6.1.1.15) PROLYL-TRNA SYNTHETASE (EC 6.1.1.15) PROLYL-TRNA SYNTHETASE (EC 6.1.1.19) TYROSYL-TRNA SYNTHETASE (EC 6.1.1.19) TYROSYL-TRNA SYNTHETASE (EC 6.1.1.19) VALYL-TRNA SYNTHETAS	L-glutamyl-tKNA(יטוח)-כ
	7010
232 2782 4873 4873 4873 543 543 1 10974 1007 1007 1007 1007 1007 1007 1000 19106 94 15485 13255 2 2326 2 2326 2 3392 6747 498 3392 6747 498 3392 6747 498 3492 473 17389 4156 7416 9592 9897	7645
GR00115 GR001115 GR00525 GR00527 GR00527 GR00272 GR00424 GR00424 GR00437 VV0139 GR00440 GR00440 GR00440 GR00455 GR00440 GR00455 GR00727 GR10007 VV0139 GR00112 VV0123 GR00423 GR00654 GR00354 GR00354	GR00408
F RXA00458 RXA00069 RXA00726 RXA003726 RXA003066 F RXA01061 F RXA01061 F RXA01061 F RXA011661 F RXA011661 F RXA011661 RXA01522 RXA011622 RXA011638 F RXA011638 F RXA011638 F RXA011638 F RXA011638 F RXA011699 F RXA01286 F RXA01309 F RXA01309 F RXA01309 F RXA01490 F RXA01490 F RXA01490 F RXA01421 RXN00454 F RXA01490 F RXA01421 RXN00454 F RXA01226 RXA01223 RXA01223 RXA01226 RXA01226 RXA00210 RXA01226 RXA00210 RXA01226 RXA00210 RXA02269	RXA01398
Amino Acid SEQ ID NO 294 296 298 300 302 304 306 308 308 309 300 300 300 300 300 300 300 300 300	382
Nucleic Acid SEQ ID NO 293 295 299 301 303 303 303 303 303 304 304 304 304 304	381

Function	TRNA DELTA(2)-ISOPENTENYLPYROPHOSPHATE TRANSFERASE (EC 2.5.1.8) GLUTAMYL-TRNA REDUCTASE (EC 1.2.1) GLUTAMINE CYCLOTRANSFERASE PRECURSOR (EC 2.3.2.5), Glutaminyl-tRNA cyclotransferase	John Programmer (EC 6.3.5) L-glutamyl-tRNA('Gln)-dependent amidotransferase subunit B (EC 6.3.5) PSEUDOURIDYLATE SYNTHASE I (EC 4.2.1.70) SFHB PROTEIN		Function	A PRECEDENCY BOLYMERASE BETA CHAIN (FC 2.7.7.6)	DNA-DIRECTED RNA POLYMERASE BETA' CHAIN (EC 2.7.7.6)	NA-DIRECTED RNA POLYMERASE BETA CHAIN (EC 2.7.7.6)	DNA-DIRECTED RNA POLYMERASE BEIA' CHAIN (EC 2.7.7.0)	SIGMA FACTOR	ANA POLYMERAGE DIGMA-II FACTOR	RNA POLYMERASE SIGMA FACTOR CY78.15 BITATIVE RNA POLYMERASE SIGMA FACTOR CY78.15	POLITIVE INTERIOR OF SIGMA FACTOR CY49.08	RNA POLYMERASE SIGMA FACTOR RPOD	NA POLYMERASE SIGMA FACTOR RPOD	EXTRACYTOPLASMIC FUNCTION ALTERNATIVE SIGMA FACTOR	FRANSCRIPTION ELONGATION FACTOR GREA	TRANSCRIPTION LERMINATION FACTOR AND	KANSCKIPTION EKMINATION PACTOR NITO	RANSCRIPTION TERMINATION FACTOR RHO	FRANSCRIPTION TERMINATION FACTOR RHO	PANCODETION TERMINATION FACTOR RHO	KANSCRIPTION LENWING TO THE POLICY OF THE PO	RANSCRIPTION-REPAIR COLIFIED ING FACTOR	RANGONIF HON-YELL AND COLIDE ING FACTOR	RANSCRIPTIONAL REGISTATORY PROTEIN	KANSCRIPTIONAL NEGOCIATIONAL PEGITI ATORY PROTEIN	I KANSCRIP LIGINAL REGOLATION TO A PROPERTY OF THE STATE	PAPA PROTEIN, Hallscriptional regulation	PANSONI TION REPAIR COUPLING FACTOR	Putative transcription factors	PACE PROTEIN	DINA-DIRECTED RNA POLYMERASE ALPHA CHAIN (EC 2.7.7.6)	TRANSCRIPTION ANTITERMINATION PROTEIN NUSG	Helix-turn-helix domain-containing transcription regulator	RNA POLYMERASE SIGMA FACTOR	
NT Stop Fu	2778 TI 16901 G 18648 G	10788 L 39706 P 7771 S		NT Stop Fi	c	ם כ		_		510 H	4 F						- 1	_ ,	7812 - 1	619	\$ F	2/58	/88	1881	480	2968				3475	16717				3	
		,			t	ა 4	459									۵.																			,	
NT Start	1876 15510 17875	10126 38825 6842		NT Start		2551	290	7109	9096	1127	696	0171	1724	2565	5348	13672	2128	0099	7429	825	/68/	0008	- 0	5973	- 3	2141	768	305	, ç	428	3913 4706E	27121	21807		>	
Contig.	GR00653 GR00720 GR00641	VV0096 VV0005 VV0090		Contig.		GR00390	GR00407	GR00369	GR00417	GR00712	GR00051	GR00123	GR0013/	GR00426	GR00626	GR00156	VV0037	GR00488	GR00488	VV0037	GR00488	GR00488	GR00199	VV0094	GR00200	W0248	GR00535	GR00703	W0278	VV0350	00145	6/00/0	VV0005	VV0023	200	
Identification Code	RXA02228 RXA02502 RXA02182	RXN00211 RXN00669 RXN02651		Identification Code		RXA01344	RXA01388	RXA01283	RXA01433	RXA02456	RXA00304	RXA00495	RXA00532	EXAU1530	RXA02065	RXA00588	RXN01724	F RXA01723	F RXA01724	RXN01725	F RXA01725	RXA01726	RXA00736	RXN00737	F RXA00737	RXN01872	F RXA01872	RXA02413	RXN01404	RXN02827	RXN02732	RXN01671	RXS006/1	KXSUZ/60	RXS02830 RXS03207	2000
Amino Acid	384 386 388 388	390 392 394	ption	Amino Acid	SEQ ID NO	396	398	402	404	406	408	410	412	414	014	420	422	424	426	428	430	432	434	436	438	440	442	444	446	448	450	452	454	456	458 460	5
Nucleic Acid	383 385 387	389 391 393	Transcription	Nucleic Acid	SEQ ID NO	395	397	401	403	405	407	409	411	413	415 717	410	421	423	425	427	429	431	433	435	437	439	441	443	445	447	449	451	453	455	457	40A

noszancezanson

_
5
픑
픙
Ę
<u>.</u> "

Function		Bacterial Protein Translation Initiation Factor 3 (1F-3)	Protein Translation Initiation Factor 2 (IF-2)	Protein Translation Initiation Factor 2 (IF-2)	Protein Translation Initiation Factor 2 (IF-2)	Bacterial Protein Translation Initiation Factor 1 (IF-1)	Bacterial Protein Translation Elongation Factor Iu (EF-IU)	Bacterial Protein Translation Elongation Factor 10 (EF-10)	Protein Translation Elongation Factor P (EF-P)	Hypothetical Translational Inhibitor Protein	Bacterial Peptide Chain Release Factor 1 (RF-1)	Bacterial Peptide Chain Release Factor 2 (RF-2)	Bacterial Peptide Chain Release Factor 2 (RF-2)	PEPTIDE CHAIN RELEASE FACTOR 3	POLYPEPTIDE DEFORMYLASE (EC 3.5.1.31)	POLYPEPTIDE DEFORMYLASE (EC 3.5.1.31)	TRANSLATION INITIATION INHIBITOR			
NT Stop		2995	32956	9	9181	1839	4	4	2474	14785	570	2383	2612	741	672	518	9	3522	11091	12727
NT Start		5101	29945	1280	10908	1624	920	510	1914	15141	Ψ-	2739	3487	-	_	141	383	2884	10585	13155
Contig.		GR00705	VV0139	GR00203	GR00423	GR00178	VV0212	GR00370	GR00022	GR00057	GR00803	GR00002	GR00002	VV0284	GR00554	W0111	GR00592	GR00244	GR00654	VV0127
Identification Code		RXA02418	RXN01496	F RXA00755	F RXA01496	RXA00677	RXN01284	F RXA01284	RXA00138	RXA00331	RXA02822	RXA00011	RXA00012	RXN01926	F RXA01926	RXN02002	F RXA02002	RXA00896	RXA02242	RXS02308
Amino Acid	SEQ ID NO	462	464	466	468	470	472	474	476	478	480	482	484	486	488	490	492	494	496	498
Nucleic Acid	SEQ ID NO	461	463	465	467	469	471	473	475	477	479	481	483	485	487	780	5 6	- 65	495	497

Protein translocation, secretion, and folding

Function		PEPTIDE METHIONINE SULFOXIDE REDUCTASE	PREPROTEIN TRANSLOCASE SECA SUBUNIT	PREPROTEIN TRANSLOCASE SECY SUBUNIT	PROTEIN-EXPORT MEMBRANE PROTEIN SECG HOMOLOG	Signal recognition particle GTPase	Signal recognition particle GTPase	PS1 PROTEIN PRECURSOR (PS1, one of the two major secreted proteins of	Corynebacterium glutamicum)	PS1 PROTEIN PRECURSOR	PS1 PROTEIN PRECURSOR (PS1, one of the two major secreted proteins of	Corynebacterium glutamicum)	PS1 PROTEIN PRECURSOR (PS1, one of the two major secreted proteins of	Corynebacterium glutamicum)			
NT Stop		443	13749	9	6239	703	10440	30510	6058	6058	21880		43666	5151		28242	
NT Start		850	11932	737	7653	1467	9121	30280	5363	5363	23301		42941	4639		27148	
Contig		GR00484	VV0124	_	_		GR00179		-	GR00007	GR00202		W0017	_		GR00367	
Identification Code		RXA01710	RXN02462	F RXA00124	F RXA02462	RXA00125	RXA00687	RXA02260	RXN00046	F RXA00046	RXA00753		RXN03038	F RXA01179		RXA01274	
Amino Acid	SEQ ID NO	500	502	504	506	508	510	512	514	516	518)	520	522	1	524	
Nucleic Acid	SEQ ID NO								513								

one so sessoso

Function	THIOREDOXIN	60 KD CHAPERONIN	DNAK PROTEIN	Molecular chaperones (HSP70/DnaK family)	PUTATIVE OXPPCYCLE PROTEIN OPCA	TRAP1	PS1 PROTEIN PRECURSOR	PS1 PROTEIN PRECURSOR	LIPOPROTEIN SIGNAL PEPTIDASE (EC 3.4.23.36)	NADPH: FERREODOXIN OXIDOREDUCTASE PRECURSOR (EC 1.18.1.2)	NADPH:FERREODOXIN OXIDOREDUCTASE PRECURSOR (EC 1.18.1.2)
NT Stop	6393	16002	20178	3432	14556	56	3029	51145	6839	4122	23976
NT Start	5527	14389	22031	4883	13600	1849	4882	49070	6261	2752	25340
Contig.	VV0047	00000	VV0057	VV0123	VV0074	VV0152	VV0031	8600//		W0154	
Identification Code	RXN02325	RXN00493	RXN02543	RXN01345	RXN02736	RXN02280	RXS00170	RXS02641	RXS02650	RXS00076	RXS01438
Amino Acid SEQ ID NO											616
Nucleic Acid SEQ ID NO	595	297	599	601	603	605	209	609	611	613	615

TABLE 2: GENES IDENTIFIED FROM GENBANK

4	Cons Nome	Cone Function	Reference
Genbank Accession No.	delle Maille		
A09073	ppg	Phosphoenol pyruvate carboxylase	Bachmann, B. et al. "DNA fragment coding for phosphoenolpyruvat corboxylase, recombinant DNA carrying said fragment, strains carrying the recombinant DNA and method for producing L-aminino acids using said strains," Patent: EP 0358940-A 3 03/21/90
A45579, A45581, 5583, 5585 A4587		Threonine dehydratase	Moeckel, B. et al. "Production of L-isoleucine by means of recombinant micro-organisms with deregulated threonine dehydratase," Patent: WO 9519442-A 5 07/20/95
AB003132	murC; ftsQ; ftsZ		Kobayashi, M. et al. "Cloning, sequencing, and characterization of the ftsZ gene from coryneform bacteria," <i>Biochem. Biophys. Res. Commun.</i> , 236(2):383-388 (1997)
AB015023	murC; ftsQ		Wachi, M. et al. "A murC gene from Coryneform bacteria," Appl. Microbiol. Biotechnol., 51(2):223-228 (1999)
AB018530	dtsR		Kimura, E. et al. "Molecular cloning of a novel gene, dtsR, which rescues the detergent sensitivity of a mutant derived from <i>Brevibacterium</i> lactofermentum," Biosci. Biotechnol. Biochem., 60(10):1565-1570 (1996)
AB018531	dtsR1; dtsR2		
AB020624	murI	D-glutamate racemase	
AB023377	tkt	transketolase	
AB024708	gltB; gltD	Glutamine 2-oxoglutarate aminotransferase large and small subunits	
AB025424	acn	aconitase	
027714	rep	Replication protein	
027715	rep; aad	Replication protein; aminoglycoside adenyltransferase	
AF005242	argC	N-acetylglutamate-5-semialdehyde dehydrogenase	
AF005635	glnA	Glutamine synthetase	
AF030405	hisF	cyclase	
AF030520	argG	Argininosuccinate synthetase	
AF031518	argF	Ornithine carbamolytransferase	
AF036932	aroD	3-dehydroquinate dehydratase	

GenBank TM CAccession No. AF038548 EAF038651	Gene Name	Gene Function	
<u>.</u>	_		
7			
	pyc	Pyruvate carboxylase	with the constant of the Corvnehacterium glutamicum rel gene in
	dciAE; apt; rel	Dipeptide-binding protein; adenine phosphoribosyltransferase; GTP pyrophosphokinase	Wenmelet, L. et al. The lot of the Co. June 2017 (p)ppGpp metabolism," Microbiology, 144:1853-1862 (1998)
7011107	DaraD	Arginine repressor	
	imnA	Inositol monophosphate phosphatase	
	aroH	Argininosuccinate lyase	
	argC; argJ; argB;	N-acetylglutamylphosphate reductase;	
	argD; argF; argR;	ornithine acetyltransferase; N-	
	argo; argn	transminase: ornithine	
		carbamoyltransferase; arginine repressor;	
		argininosuccinate synthase;	
		argininosuccinate lyase	
A E050109	inhA	Enoyl-acyl carrier protein reductase	
	hisG	ATP phosphoribosyltransferase	
	hisA	Phosphoribosylformimino-5-amino-1- phosphoribosyl-4-imidazolecarboxamide	
		isomerase	The state of met A a methionine biosynthetic gene
AF052652	metA	Homoserine O-acetyltransferase	Park, S. et al. Tsolation and analysis of moth, a morning construction of encoding homoserine acetyltransferase in Corynebacterium glutamicum," Mol. Cells., 8(3):286-294 (1998)
AE053071	aroB	Dehydroquinate synthetase	
060558	hisH	Glutamine amidotransferase	
086704	hisE	Phosphoribosyl-ATP- pyrophosphohydrolase	
AF114233	aroA	5-enolpyruvylshikimate 3-phosphate synthase	Ones Characteristics
AF116184	panD	L-aspartate-alpha-decarboxylase precursor	Dusch, N. et al. "Expression of the Corynebacterium glutamicum pain." Economic Laspartate-alpha-decarboxylase leads to pantothenate encoding L-aspartate-alpha-decarboxylase leads to pantothenate encoding L-aspartate-alpha-decarboxylase leads to pantothenate.
			overproduction in Escribility Cont. Appr. Engine

GenBank™	Gene Name	Gene Function	Reference
Accession No. AF124518	aroD; aroE	3-dehydroquinase; shikimate	
		dehydrogenase	
AF124600	aroC; aroK; aroB; pepQ	Chorismate synthase; Snkimate Kilase, 27 dehydroquinate synthase; putative cytoplasmic peptidase	
AF145897	inhA		
5145898	inhA		TI at all "Commehacterium olufamicum is equipped with four secondary
001436	ectP	Transport of ectoine, glycine betaine, proline	carriers for compatible solutes: Identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, Ectp." J. Bacteriol., 180(2):6005-6012 (1998)
AJ004934	фар	Tetrahydrodipicolinate succinylase (incomplete)	Wehrmann, A. et al. "Different modes of diaminiopinical symmetric role in cell wall integrity: A study with Corynebacterium glutamicum," J. Bacteriol., 180(12):3159-3165 (1998)
AJ007732	ppc; secG; amt; ocd; soxA	Phosphoenolpyruvate-carboxylase; ?; high affinity ammonium uptake protein; putative ornithine-cyclodecarboxylase; sarcosine	
		oxidase	Takoby M et al "Nitrogen regulation in Corynebacterium glutamicum;
AJ010319	ftsY, glnB, glnD; srp; amtP	Involved in cell division; Pll protein, uridylyltransferase (uridylyl-removing enzmye); signal recognition particle; low affinity ammonium uptake protein	Isolation of genes involved in biochemical characterization of corresponding proteins," FEMS Microbiol., 173(2):303-310 (1999)
87002114	cat	Chloramphenicol aceteyl transferase	"Dischamical and genetic characterization of the
24946	obu	L-malate: quinone oxidoreductase	Molenaar, D. et al. Biochemical and general caceptor) from Corynebacterium membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum," Eur. J. Biochem., 254(2):395-403 (1998)
A1238250	ndh	NADH dehydrogenase	T. T. T. T. Weischemical and bionhysical characterization of the cell
AJ238703	porA	Porin	wall porin of Corynebacterium glutamicum: The channel is formed by a low molecular mass polypeptide," <i>Biochemistry</i> , 37(43):15024-15032 (1998)
D17429		Transposable element IS31831	Vertes, A.A. et al. "Isolation and characterization of 1551551, a campped element from Corynebacterium glutamicum," Mol. Microbiol., 11(4):739-746 (1994)

Accession No. D84102 odl			
	odhA	2-oxoglutarate dehydrogenase	Usuda, Y. et al. "Molecular cloning of the Corynebacterium glutamicum (Brevibacterium lactofermentum AJ12036) odhA gene encoding a novel type of 2-oxoglutarate dehydrogenase," Microbiology, 142:3347-3354 (1996)
E01358 hd	hdh; hk	Homoserine dehydrogenase; homoserine kinase	Katsumata, R. et al. "Production of L-thereonine and L-Isoleucine, ratein: 31 1987232392-A 1 10/12/87
E01359		Upstream of the start codon of homoserine kinase gene	Katsumata, R. et al. "Production of L-thereonine and L-isoleucine, ratelii: 31 1987232392-A 2 10/12/87
1375		Tryptophan operon	Video thereby
	trpL; trpE	Leader peptide; anthranilate synthase	Matsui, K. et al. "Tryptophan operon, peptide and protein couch incress, utilization of tryptophan operon gene expression and production of tryptophan," Patent: JP 1987244382-A 1 10/24/87
E01377		Promoter and operator regions of tryptophan operon	Matsui, K. et al. "Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan;" Patent: JP 1987244382-A 1 10/24/87
E03937		Biotin-synthase	Hatakeyama, K. et al. "DNA fragment containing gene capable of coding biotin synthetase and its utilization," Patent: JP 1992278088-A 1 10/02/92
E04040		Diamino pelargonic acid aminotransferase	Kohama, K. et al. "Gene coding diaminopelargonic acid aminouansiciase and desthiobiotin synthetase and its utilization," Patent: JP 1992330284-A 1
E04041		Desthiobiotinsynthetase	Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and Kohama, K. et al. "Gene coding diaminopelargonic acid acid acid acid acid acid acid ac
			desthiobiotin synthetase and its utilization, 1 archivity 1/18/92
E04307		Flavum aspartase	Kurusu, Y. et al. "Gene DNA coding aspartase and utilization mercot, a more. JP 1993030977-A 1 02/09/93
4376		Isocitric acid lyase	Katsumata, R. et al. "Gene manifestation controlling DNA, Fatent: Jr 1993056782-A 3 03/09/93
E04377		Isocitric acid lyase N-terminal fragment	Katsumata, R. et al. "Gene manifestation controlling Livis, Tatent. 31 1993056782-A 3 03/09/93
E04484		Prephenate dehydratase	Sotouchi, N. et al. "Production of L-phenylalanine by fermentation, ratelic 31 1993076352-A 2 03/30/93
E05108		Aspartokinase	Fugono, N. et al. "Gene DNA coding Aspartokinase and its use, if atcilit. Ji 1993184366-A 1 07/27/93
E05112		Dihydro-dipichorinate synthetase	Hatakeyama, K. et al. "Gene DNA coding annydrouipicolline actus syndrouipicolline actual

GenBank TM Ge Accession No. E05776			
Accession 100. E05776 E05779	Ochic ivanic		enderworking Line 11
E05779		Diaminopimelic acid dehydrogenase	Kobayashi, M. et al. "Gene DNA coding Diaminopimelic acid deliyal ogenase and its use," Patent: JP 1993284970-A 1 11/02/93
		Threonine synthase	Kohama, K. et al. "Gene DNA coding threonine synthase and its use, ratelii. JP 1993284972-A 1 11/02/93
E06110		Prephenate dehydratase	Kikuchi, T. et al. "Production of L-phenylalanine by fermentation method, Patent: JP 1993344881-A 1 12/27/93
6111		Mutated Prephenate dehydratase	Kikuchi, T. et al. "Production of L-phenylalanine by fermentation method, Patent: JP 1993344881-A 1 12/27/93
E06146		Acetohydroxy acid synthetase	Inui, M. et al. "Gene capable of coding Acetohydroxy acid synthetase and its use," Patent: JP 1993344893-A 1 12/27/93
E06825		Aspartokinase	Sugimoto, M. et al. "Mutant aspartokillase gene, parent of 103/08/94
E06826		Mutated aspartokinase alpha subunit	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JF 1994002600-A 1 03/08/94 m 1004062866 A 1
E06827		Mutated aspartokinase alpha subunit	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994002600-A 1 03/08/94
E07701 se	secY		Honno, N. et al. "Gene DNA participating in integration of memoraneous protein to membrane," Patent: JP 1994169780-A 1 06/21/94
E08177		Aspartokinase	Sato, Y. et al. "Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization," Patent: JP 1994261766-A 1 09/20/94
E08178. E08179. 180,		Feedback inhibition-released Aspartokinase	Sato, Y. et al. "Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization," Patent: JP 1994261766-A 1 09/20/94
E08182		Acetohydroxy-acid isomeroreductase	Inui, M. et al. "Gene DNA coding acetohydroxy acid isomeroreductase,"
	secE		Patent: JP 199427/067-A 1 10/04/94 Asai, Y. et al. "Gene DNA coding for translocation machinery of protein," Patent: JP 1994277073-A 1 10/04/94
E08643		FT aminotransferase and desthiobiotin synthetase promoter region	Hatakeyama, K. et al. "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1995031476-A 1 02/03/95
E08646		Biotin synthetase	Hatakeyama, K. et al. "DNA tragment naving promotes rancommorphisms of the coryneform bacterium," Patent: JP 1995031476-A 1 02/03/95

oomao seaaca

	N. N.	Cone Function	Reference
GenBank	Gene Name	Gene I uncasa	maclania oceania
Accession No.		Aspartase	Kohama, K. et al "DNA fragment having promoter function in colyneidin bacterium," Patent: JP 1995031478-A 1 02/03/95
E08900		Dihydrodipicolinate reductase	Madori, M. et al. "DNA fragment containing gene coding Dinydrodipiconnace acid reductase and utilization thereof," Patent: JP 1995075578-A 1 03/20/95
E08901		Diaminopimelic acid decarboxylase	Madori, M. et al. "DNA fragment containing gene coding Diaminopiment acid decarboxylase and utilization thereof," Patent: JP 1995075579-A 1 03/20/95
2594		Serine hydroxymethyltransferase	Hatakeyama, K. et al. "Production of L-trypophan, Fatelit. 31 1997 02037111
E12760.		transposase	Moriya, M. et al. "Amplification of gene using artificial dallsposoli, 1 arcii: JP 1997070291-A 03/18/97
E12758			Maring M et al "Amplification of gene using artificial transposon," Patent:
E12764		Arginyl-tRNA synthetase; diaminopimelic acid decarboxylase	JP 1997070291-A 03/18/97
E12767		Dihydrodipicolinic acid synthetase	Moriya, M. et al. "Amplitication of gene using artificial using post.", presented by 1997070291-A 03/18/97
E12770		aspartokinase	Moriya, M. et al. "Amplification of gene using artificial transposon, Fatent. JP 1997070291-A 03/18/97
E12773		Dihydrodipicolinic acid reductase	Moriya, M. et al. "Amplification of gene using artificial transposon, Fateni. JP 1997070291-A 03/18/97
E13655		Glucose-6-phosphate dehydrogenase	Hatakeyama, K. et al. "Glucose-6-phosphate dehydrogenase and DINA capable of coding the same," Patent: JP 1997224661-A 1 09/02/97
101508	IlvA	Threonine dehydratase	Moeckel, B. et al. "Functional and structural analysis of the uncommedehydratase of Corynebacterium glutamicum," J. Bacteriol., 174:8065-8072 (1992)
T07603	EC 4.2.1.15	3-deoxy-D-arabinoheptulosonate-7-phosphate synthase	Chen, C. et al. "The cloning and nucleotide sequence of Corynebacterium glutamicum 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase gene," <i>FEMS Microbiol. Lett.</i> , 107:223-230 (1993)
L09232	IIvB; iIvN; iIvC	Acetohydroxy acid synthase large subunit; Acetohydroxy acid synthase small subunit; Acetohydroxy acid isomeroreductase	Keilhauer, C. et al. "Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon," J. Bacteriol., 175(17):5595-5603 (1993)

Accession No. PtsM Phosphoenolpyruvate phosphotransferase phosphotransferase 7123 aceB Malate synthase L27126 pyruvate kinase L28760 aceA Isocitrate lyase L35906 dtxr Diphtheria toxin rep M13774 Prephenate dehydrat M16175 5S rRNA Anthranilate synthas 6664 trpA Tryptophan synthas M25819 Phosphoenolpyruva M85106 23S rRNA gene ins	Gene Function Reference	nce
PtsM PP		II. The Italian and the II of the
aceB N P P P P P P P P P P P P P P P P P P	te sugar	Fouet, A et al. "Bacillus subtilis sucrose-specific cliry in C. 127 in C. 128 in C. 12
aceA 1 1 dtxr 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Lee, H-S. et al. "Molecular characterization of aceb, a gene encoung marace synthase in Corynebacterium glutamicum," J. Microbiol. Biotechnol., 4(4):256-263 (1994)
3 trpE 4 trpA 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Jetten, M. S. et al. "Structural and functional alialysis of pyluyars and consideration of the consideration of th
4 trpA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		DNA comonocanalycis and
SS rRNA trpE trpE	repressor	Oguiza, J.A. et al. "Molecular cloning, DNA Sequence analysis, and characterization of the Corynebacterium diphtheriae dtxR from Brevibacterium lactofermentum," J. Bacteriol., 177(2):465-467 (1995)
trpE trpA	Prephenate dehydratase Follet Cory	Follettie, M.T. et al. "Molecular cloning and nucleotide sequence of the Corynebacterium glutamicum phe A gene," J. Bacteriol., 167:695-702 (1986)
trpE trpA	Park,	Park, Y-H. et al. "Fnylogeneuc analysis of urc conjugation of the rRNA sequences," J. Bacteriol., 169:1801-1806 (1987)
trpA	Anthranilate synthase, 5' end Sano Brevi Brevi 52:19	Sano, K. et al. "Structure and function of the up operation regions." Gene, Brevibacterium lactofermentum, a glutamic-acid-producing bacterium," Gene, 52:191-200 (1987)
	Tryptophan synthase, 3'end Sano Brev Brev 52:19	Sano, K. et al. "Structure and function of the tip operations." Gene, Brevibacterium lactofermentum, a glutamic-acid-producing bacterium," Gene, 52:191-200 (1987)
	Phosphoenolpyruvate carboxylase O'Re Phos Phos gluta	O'Regan, M. et al. "Cloning and nucleotide sequence of the Phosphoenolpyruvate carboxylase-coding gene of Corynebacterium glutamicum ATCC13032," <i>Gene</i> , 77(2):237-251 (1989)
	23S rRNA gene insertion sequence Rolls char.	Roller, C. et al. "Gram-positive bacteria with a high DIA ST Common accharacterized by a common insertion within their 23S rRNA genes," J. Gen. Microbiol., 138:1167-1175 (1992)

aecD; brnQ; yhbw E trpD trpD cglIM; cglIR; clgIIR ppx proC	Gene Function	Reference
trp trp cglIM; cglIR; clgIIR recA ppx proC		Belle Catal "Gram-nositive hacteria with a high DNA G+C content are
trp trp cglIM; cglIR; clgIIR cglIM; cglIR; clgIIR bpx proC	23S rRNA gene insertion sequence	characterized by a common insertion within their 23S rRNA genes," J. Gen. Microbiol., 138:1167-1175 (1992)
trpD cglIM; cglIR; clgIIR recA ppx ppx S proC		Rossol, I. et al. "The Corynebacterium glutamicum aecD gene encodes a C-S lyase with alpha, beta-elimination activity that degrades aminoethylcysteine," <i>J. Bacteriol.</i> , 174(9):2968-2977 (1992); Tauch, A. et al. "Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the brnQ gene product," <i>Arch. Microbiol.</i> , 169(4):303-312 (1998)
trpD cglIM; cglIR; clgIIR recA ppx ppx	Leader gene (promoter)	Herry, D.M. et al. "Cloning of the trp gene cluster from a tryptophanhyperproducing strain of Corynebacterium glutamicum: identification of a mutation in the trp leader sequence," <i>Appl. Environ. Microbiol.</i> , 59(3):791-799 (1993)
cglIM; cglIR; clgIIR recA ppx proC	Anthranilate phosphoribosyltransferase	O'Gara, J.P. and Dunican, L.K. (1994) Complete macroscopy Corynebacterium glutamicum ATCC 21850 tpD gene." Thesis, Microbiology Department, University College Galway, Ireland.
ppx proC		Schafer, A. et al. Cloning and Characterian Schafer at al. Cloning and Characterian gutamicum ATCC stress-sensitive restriction system from Corynebacterium gutamicum ATCC 13032 and analysis of its role in intergeneric conjugation with Escherichia coli," J. Bacteriol., 176(23):7309-7319 (1994); Schafer, A. et al. "The Corynebacterium glutamicum cgIIM gene encoding a 5-cytosine in an McrBC-deficient Escherichia coli strain," Gene, 203(2):95-101 (1997)
ppx proC		A Their S of al "Mutations in the Corvnebacterium glutamicumproline
proC		biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412-4419 (1996)
	L-proline: NADP+ 5-oxidoreductase	Ankri, S. et al. "Mutations in the Corynepacterium grudamicumpromises biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412-4419 (1996)
U31230 obg; proB; unkdh ;;gamma glutal isomer specific dehydrogenases	dh ?;gamma glutamyl kinase;similar to D- isomer specific 2-hydroxyacid dehydrogenases	Ankri, S. et al. "Mutations in the Colyncoachain grammers," J. Bacteriol., biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412-4419 (1996)

ConRanktw	Gene Name	Gene Function	Reference
Accession No.			G. T. W. I. G. WT. L. D. B. uperfamily: Cloning,
U31281	bioB	Biotin synthase	Serebriskii, I.G., 1 wo new incomes of Methylobacillus flagellatum and sequencing and expression of bio B genes of Methylobacillus flagellatum and Corynebacterium glutamicum," <i>Gene</i> , 175:15-22 (1996)
U35023	thtR; accBC	Thiosulfate sulfurtransferase; acyl CoA carboxylase	Jager, W. et al. "A Corynebacterium glutamicum gene encoding a two-uounam protein similar to biotin carboxylases and biotin-carboxyl-carrier proteins," Arch. Microbiol., 166(2),76-82 (1996)
3535	cmr	Multidrug resistance protein	Jager, W. et al. "A Corynebacterium glutamicum gene contenting mutue resistance in the heterologous host Escherichia coli," J. Bacteriol., 179(7):2449-2451 (1997)
752571	clpB	Heat shock ATP-binding protein	
1153587	aphA-3	3'5"-aminoglycoside phosphotransferase	
U89648		Corynebacterium glutamicum unidentified sequence involved in histidine biosynthesis, partial sequence	of seminor acid semiences of
X04960	trpA; trpB; trpC; trpD; trpE; trpG; trpL	Tryptophan operon	Matsui, K. et al. "Complete nucleotide and ucurous annual action of the Brevibacterium lactofermentum tryptophan operon," Nucleic Acids Res., 14(24):10113-10114 (1986)
X07563	lys A	DAP decarboxylase (meso-diaminopimelate decarboxylase, EC 4.1.1.20)	Yeh, P. et al. "Nucleic sequence of the lysA gene of Colynectation," Mol. glutamicum and possible mechanisms for modulation of its expression," Mol. Gen. Genet., 212(1):112-119 (1988)
X14234	EC 4.1.1.31	Phosphoenolpyruvate carboxylase	Eikmanns, B.J. et al. "The Phosphoenolpyruvate carboxylase gene of Corynebacterium glutamicum: Molecular cloning, nucleotide sequence, and expression," <i>Mol. Gen. Genet.</i> , 218(2):330-339 (1989); Lepiniec, L. et al. "Sorghum Phosphoenolpyruvate carboxylase gene family: structure, function and molecular evolution," <i>Plant. Mol. Biol.</i> , 21 (3):487-502 (1993)
X17313	fda	Fructose-bisphosphate aldolase	Von der Osten, C.H. et al. "Molecular cloning, nucleotide sequence and incontraction analysis of the Corynebacterium glutamicum fda gene: structural comparison of C. glutamicum fructose-1, 6-biphosphate aldolase to class I and class II aldolases," Mol. Microbiol.,
X53993	dapA	L-2, 3-dihydrodipicolinate synthetase (EC 4.2.1.52)	Bonnassie, S. et al. "Nucleic sequence of the dap A gene 110111 Corynebacterium glutamicum," <i>Nucleic Acids Res.</i> , 18(21):6421 (1990)

ConRankIM	Gene Name	Gene Function	Reference
Accession No.			Ganciotto N et al. "DNA sequence homology between att B-related sites of
X54223		AttB-related site	Corynebacterium diphtheriae, Corynebacterium ulcerans, Corynebacterium glutamicum, and the attP site of lambdacorynephage," FEMS. Microbiol,
		oninonime late	Marcel T. et al. "Nucleotide sequence and organization of the upstream region
X54740	argS; lysA	Arginyl-tKNA synthetase, Dianimophinotae decarboxylase	of the Corynebacterium glutamicum lysA gene," Mol. Microbiol., 4(11):1819-1830 (1990)
		D leader nentide: anthranilate	Heery, D.M. et al. "Nucleotide sequence of the Corynebacterium glutamicum
5994	trpL; trpE	rutative feater popular, american	trpE gene," Nucleic Acids Res., 18(23):7138 (1990)
X56037	thrC	Threonine synthase	threonine synthase gene," Mol. Microbiol., 4(10):1693-1702 (1990)
X56075	attB-related site	Attachment site	Cianciotto, N. et al. "DNA sequence nomonogy occurrent in Corynebacterium diphtheriae, Corynebacterium ulcerans, Corynebacterium Corynebacterium diphtheriae, Corynebacterium diphtheriae, Corynepage," FEMS. Microbiol,
			glutamicum, and tile attrastic of income of the Aspartokinase
X57226	lysC-alpha; lysC-beta; asd	Aspartokinase-alpha subunit; Aspartokinase-beta subunit; aspartate beta	Kalinowski, J. et al. "Genetic and blochelilical analysis of the properties of the from Corynebacterium glutamicum," Mol. Microbiol., 5(5):1197-1204 (1991); from Corynebacterium glutamicum," Mol. Microbiol., 5(5):1197-1204 (1991); Kalinowski, J. et al. "Aspartokinase genes lysC alpha and lysC beta overlap
		Scillialdellyde deriy de germen	and are adjacent to the aspertate beta-semialdenyde denyungeniase generation and are adjacent to the aspertate beta-semialdenyde denyungeniase generation Corynebacterium glutamicum," Mol. Gen. Genet., 224(3):317-324 (1990)
X59403	gap;pgk; tpi	Glyceraldehyde-3-phosphate; phosphoglycerate kinase; triosephosphate isomerase	Eikmanns, B.J. "Identification, sequence analysis, and organization Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomeras," J. Bacteriol., 174(19):6076-6086
			(1992) "Molecular analysis of the Corynebacterium glutamicum
X59404	gdh	Glutamate dehydrogenase	Bormann, E.K. et al. Molecular analysis and Microbiol., 6(3):317-326 gdh gene encoding glutamate dehydrogenase," Mol. Microbiol., 6(3):317-326 (1992)
010022	lvel	L-lysine permease	Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A
A 00312	1561		glutamicum lysi gene involved in 195000 cp

ConRonkTM	Gene Name	Gene Function	Reference
Accession No.			Inlife G of al "Cloning and nucleotide sequence of the csp1 gene encoding
X66078	cop1	Ps1 protein	PSI, one of the two major secreted proteins of Corynebacterium glutamicum: The deduced N-terminal region of PS1 is similar to the Mycobacterium antigen 85 complex," Mol. Microbiol., 6(16):2349-2362 (1992)
X66112	glt	Citrate synthase	Eikmanns, B.J. et al. "Cloning sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase," <i>Microbiol.</i> , 140:1817-1828 (1994)
727	danB	Dihydrodipicolinate reductase	TY "Change from of the cspB gene encoding PS2, an ordered
X69103	csp2	Surface layer protein PS2	Peyret, J.L. et al. Characterization of my cyr. Surface-layer protein in Corynebacterium glutamicum," Mol. Microbiol., 0213, 07100 (1903)
		roo 1 . 1	Bonamy, C. et al. "Identification of IS1206, a Corynebacterium glutamicum
X69104		IS3 related insertion cicincin	IS3-related insertion sequence and phylogenetic analysis," Mol. Microbiol., 14(3):571-581 (1994)
X70959	leuA	Isopropylmalate synthase	Patek, M. et al. "Leucine synthesis in Corynebacterium guuanneum: Circy incativities, structure of leuA, and effect of leuA inactivation on lysine activities, structure Microbiol., 60(1):133-140 (1994)
			Synthesis, Appl. Entiron. The Sequence analysis, expression, and inactivation
X71489	icd	Isocitrate dehydrogenase (NADF+)	of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme," J. Bacteriol., 177(3):774-782 (1995)
	CPITA	Glitamate dehydrogenase (NADP+)	of strain of
X72855	GDHA	5-methyltryptophan resistance	Heery, D.M. et al. "A sequence from a tryptophan-nyper producing sum."."
X/3083, 0584	C and		Corynebacterium giutamicum encoung constant (1994) Biochem. Biophys. Res. Commun., 201(3):1252. (1994)
X75085	recA		Fitzpatrick, R. et al. "Construction and characterization of the construction and Brevibacterium lactofermentum," Appl. of Corynebacterium glutamicum and Brevibacterium lactofermentum, "Appl. Microbiol. Biotechnol., 42(4):575-580 (1994)
X75504	aceA; thiX	Partial Isocitrate lyase; ?	Reinscheid, D.J. et al. "Characterization of the isocitrate lyase gene nome Corynebacterium glutamicum and biochemical analysis of the enzyme," J. Bacteriol., 176(12):3474-3483 (1994)
X76875		ATPase beta-subunit	Ludwig, W. et al. "Phylogenetic relationships of bacteria based on Companies sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes," Antonie Van Leeuwenhoek, 64:285-305 (1993)
_			

Tu NA NA Sprimelate desuccinylase splindehyde dehydrogenase; ? Ildehyde dehydrogenase; ? NI phosphate reductase NI phosphate seductase o acid permease; ?			Cone Function	Reference
tuf Elongation factor Tu recA aceB Malate synthase 16S rDNA 16S ribosomal RNA 16S rDNA 16S ribosomal RNA 16S rDNA 16S ribosomal RNA 16S rbosomal RNA 16S ribosomal	GenBank	Gene Ivaine		Programmor no process in the second on comparative
aceB Malate synthase B B B B C C Glutamate uptake system gluA; gluB; gluC; gluD B Succinyldiaminopimelate desuccinylase Gamma-glutamyl phosphate reductase proA T 16S ribosomal RNA B C Aspartate-semialdehyde dehydrogenase; ? Gamma-glutamyl phosphate reductase T 16S ribosomal RNA Aspartate-semialdehyde dehydrogenase; ? Gamma-glutamyl phosphate reductase Aromatic amino acid permease; ? Aromatic amino acid permease; ?	Accession No. X77034	tuf	Elongation factor Tu	Ludwig, W. et al. "Phylogenetic relationships of bacteria based on comparation sequence analysis of elongation factor Tu and ATP-synthase beta-subunit
recA aceB Malate synthase R 16S rDNA 16S ribosomal RNA R gluA; gluB; gluC; gluA; gluB; gluC; Glutamate uptake system gluA; gluB; gluC; Glutamate uptake system B gluA 16S ribosomal RNA				genes," Antonie Van Leeuwenhoek, 64:285-305 (1993)
aceB Malate synthase Pp	X77384	recA		Billman-Jacobe, n. Mucleonic Sequence, 2403-404 (1994) Corynebacterium glutamicum," DNA Seq., 4(6):403-404 (1994)
16S rDNA 16S ribosomal RNA 16S	X78491	aceB	Malate synthase	Reinscheid, D.J. et al. "Malate synthase from Coryncoacterium grummom, pta-ack operon encoding phosphotransacetylase: sequence analysis," <i>Microbiology</i> , 140:3099-3108 (1994)
gluA; gluB; gluC; gluD dapE Succinyldiaminopimelate desuccinylase 16S rDNA 16S ribosomal RNA asd; lysC Aspartate-semialdehyde dehydrogenase; ? proA 16S ribosomal RNA asd; lysC Aspartate-semialdehyde dehydrogenase; ? ard; lysC Aspartate-semialdehyde dehydrogenase; ? ard; lysC Aspartate-semialdehyde dehydrogenase; ? ard; lysC Aspartate-semialdehyde dehydrogenase; ? Aspartate-semialdehyde dehydrogenase; ? Aspartate-semialdehyde dehydrogenase; ? Aspartate-semialdehyde dehydrogenase; ?	X80629	16S rDNA	16S ribosomal RNA	Rainey, F.A. et al. "Phylogenetic analysis of the genera Rhodococcus and Norcardia and evidence for the evolutionary origin of the genus Norcardia from within the radiation of Rhodococcus species," <i>Microbiol.</i> , 141:523-528
gluA; gluB; gluC; Glutamate uptake system gluD dapE Succinyldiaminopimelate desuccinylase 16S rDNA 16S ribosomal RNA asd; lysC Aspartate-semialdehyde dehydrogenase; ? asd; lysC Gamma-glutamyl phosphate reductase proA 16S ribosomal RNA 16S rDNA 16S ribosomal RNA 16S robnA Aromatic amino acid permease; ?				(1995) Wat of the gluABCD cluster encoding the
dapE Succinyldiaminopimelate desuccinylase 16S rDNA 16S ribosomal RNA asd; lysC Aspartate-semialdehyde dehydrogenase; ? Aspartate-semialdehyde dehydrogenase; ? Gamma-glutamyl phosphate reductase 16S rDNA 16S ribosomal RNA 16S rbNA Aromatic amino acid permease; ?		gluA; gluB; gluC; gluD		glutamate uptake system of Corynebacterium glutamicum," J. Bacteriol., 177(5):1152-1158 (1995)
16S rDNA 16S ribosomal RNA asad; lysC Aspartate-semialdehyde dehydrogenase; ? Gamma-glutamyl phosphate reductase 16S rDNA 16S ribosomal RNA 16S raposomal RNA Aromatic amino acid permease; ?	X81379	dapE	Succinyldiaminopimelate desuccinylase	Wehrmann, A. et al. "Analysis of different DNA fragments of Corynebacterium glutamicum complementing dapE of Escherichia coli," Microbiology, 40:3349-56 (1994)
asd; lysC Aspartate-semialdehyde dehydrogenase; ? Gamma-glutamyl phosphate reductase 16S rDNA 16S ribosomal RNA aroP; dapE Aromatic amino acid permease; ?	X82061	16S rDNA	16S ribosomal RNA	Ruimy, R. et al. "Phylogeny of the genus Corynebacterium deduced 110111 analyses of small-subunit ribosomal DNA sequences," Int. J. Syst. Bacteriol.,
asd; lysC Aspartate-semialdehyde dehydrogenase; ? proA Gamma-glutamyl phosphate reductase 16S rDNA 16S ribosomal RNA aroP; dapE Aromatic amino acid permease; ?			c	45(4):740-746 (1995)
proA Gamma-glutamyl phosphate reductase 16S rDNA 16S ribosomal RNA aroP; dapE Aromatic amino acid permease; ?	X82928	asd; lysC	Aspartate-semialdehyde dehydrogenase; ?	dependent complementation by heterologous proA in proA mutants," J. Bacteriol., 177(24):7255-7260 (1995)
16S rDNA 16S ribosomal RNA aroP; dapE Aromatic amino acid permease; ?	2929	proA .	Gamma-glutamyl phosphate reductase	Serebrijski, I. et al. "Multicopy suppression by asu gene and complementation by heterologous proA in proA mutants," J. dependent complementation by heterologous proA in proA mutants," J. Bacteriol., 177(24):7255-7260 (1995)
aroP; dapE Aromatic amino acid permease; ?	X84257	16S rDNA	16S ribosomal RNA	Pascual, C. et al. "Phylogenetic analysis of the genus Colyncoacuan Cascalon on 16S rRNA gene sequences," <i>Int. J. Syst. Bacteriol.</i> , 45(4):724-728 (1995)
5993 (1995)	X85965	aroP; dapE	Aromatic amino acid permease; ?	Wehrmann, A. et al. "Functional analysis of sequences arguering Corynebacterium glutamicumproline reveals the presence of aroP, which encodes the aromatic amino acid transporter," J. Bacteriol., 177(20):5991-5993 (1995)

Accession No. X86157 argB argF 9084 pta; a	argB; argJ; argJ;	A	we will be active of the acetyl cycle of arginine
	B; argC; argD; F; argJ	1 * 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Coltanyon V et al "Trenes and clizylines of the world system of
	· ack A	7 # # #	State of the arginine pathway," Microbiology, 142:99-108 (1996)
	· ackA	acetyltransferase	Reinscheid, D.J. et al. "Cloning, sequence analysis, expression and inactivation
		rnospnate acetymansicrasy, accure	of the Corynebacterium glutamicum pta-ack operon encoding phochortansacetylase and acetate kinase," <i>Microbiology</i> , 145:503-513 (1999)
			I. Marrec. C. et al. "Genetic characterization of site-specific integration,
	В	Attachment site	functions of phi AAU2 infecting "Arthrobacter aureus C70," J. Bacteriol.,
			Datek M et al. "Promoters from Corynebacterium glutamicum: cloning,
X90356		Promoter fragment F1	molecular analysis and search for a consensus motif," Microbiology,
-			142:1297-1309 (1996)
X90357		Promoter fragment F2	molecular analysis and search for a consensus motif," Microbiology,
			142:1297-1309 (1996)
X90358		Promoter fragment F10	Patek, M. et al. "Fromoters from Cotyncoacter and grammorms analysis and search for a consensus motif," Microbiology,
			142:1297-1309 (1996)
X90359		Promoter fragment F13	Patek, M. et al. "Promoters from Corynebacterium glutamicuiii. Croining, molecular analysis and search for a consensus motif," Microbiology,
			142:1297-1309 (1996)
0360		Promoter fragment F22	Patek, M. et al. "Fromoters from Colynboacutium Endiament." Microbiology, molecular analysis and search for a consensus motif," Microbiology,
)			142:1297-1309 (1996)
X90361		Promoter fragment F34	Patek, M. et al. "Promoters from Corynebacterium gudaningum: commes molecular analysis and search for a consensus motif," Microbiology,
			142:1297-1309 (1996)
X90362		Promoter fragment F37	Patek, M. et al. "Promoters from Corynebacterium ginamicam: com: so molecular analysis and search for a consensus motif," Microbiology,
			142:1297-1309 (1996)

oogago" Gegeogo

F.	Cone Name	Gene Function	Reference
Genbank''''	Oche Manie		from Corvnehacterium glutamicum: cloning,
X90363		Promoter fragment F45	Patek, M. et al. Tromoters from Corynocaecaecaecaecaecaecaecaecaecaecaecaecaec
X90364		Promoter fragment F64	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1207-1309 (1996)
90365		Promoter fragment F75	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90366		Promoter fragment PF101	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90367		Promoter fragment PF104	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> ,
X90368		Promoter fragment PF109	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142-1207-1309 (1996)
X93513	amt	Ammonium transport system	Siewe, R.M. et al. "Functional and genetic characterization of the (methyl) ammonium uptake carrier of Corynebacterium glutamicum," J. Biol. Chem., 271(10):5398-5403 (1996)
X93514	betP	Glycine betaine transport system	Peter, H. et al. "Isolation, characterization, and expression of the Corynebacterium glutamicum betp gene, encoding the transport system for the compatible solute glycine betaine," J. Bacteriol., 178(17):5229-5234 (1996)
5649	orf4		Patek, M. et al. "Identification and transcriptional analysis of the Carpeaga dapA-ORF4 operon of Corynebacterium glutamicum, encoding two enzymes involved in L-lysine synthesis," <i>Biotechnol. Lett.</i> , 19:1113-1117 (1997)
X96471	lysE; lysG	Lysine exporter protein; Lysine export regulator protein	Vrljic, M. et al. "A new type of transporter with a new type of transporter with a new type of function: L-lysine export from Corynebacterium glutamicum," Mol. Microbiol., 22(5):815-826 (1996)

GenBank TM Gen Accession No. X96580 panE		•	Kerence
on No.	Gene Name	Gene Function	the state of the s
	+	2	Sahm, H. et al. "D-pantothenate synthesis in Colyncours." 8
	panB; panC; xylB	3-metriyi-z-oxoodaanoooo hydroxymethyltransferase; pantoate-beta- alaaine ligase: xylulokinase	use of panBC and genes encoding L-value symmetry (1999) overproduction," Appl. Environ. Microbiol., 65(5):1973-1979 (1999)
		Treertion sequence IS1207 and transposase	encoding
X96962		Tilgangtion factor P	Ramos, A. et al. "Cloning, sequencing and expression of the lactofermentum
X99289		Elongation factor 1	elongation factor P in the amino-acid produced Divisional 198:217-222 (1997) (Corynebacterium glutamicum ATCC 13869)," Gene, 198:217-222 (1997)
G + 4		Homoserine kinase	7
0140 min		Semanospinder G	Ishino, S. et al. "Nucleotide sequence of the meso-diaminopimelate D-
Y00151 ddh		Meso-diaminopimelate D-denydrogenaso (EC 1.4.1.16)	dehydrogenase gene from Corynebacterium glutamicum, Nucteu Actus Actus 15(9):3917 (1987)
		Homoserine dehydrogenase	Mateos, L.M. et al. "Nucleotide sequence of the morning Res.,
Y00476 unra	.		(thrA) gene of the Dievroacenters (1987)
		1.t. daggerine	Peoples, O.P. et al. "Nucleotide sequence and mine su comment, 1713-72
Y00546 hor	hom; thrB	Homoserine denydrogenase, nomoserine kinase	Corynebacterium glutamicum hom-thrB operon, Mol. Microrice, 2(2):00-1000
		-	(1766) Honnibia M P et al. "Identification, characterization, and chromosomal
Y08964 mu	murC; ftsQ/divD; ftsZ	UPD-N-acetylmuramate-alanine ligase; division initiation protein or cell division	organization of the ftsZ gene from Brevibacterium lactofermentum, Mol. Gen.
		protein; cell division protein	Peter, H. et al. "Isolation of the putP gene of Corynebacterium
Y09163 pu	putP	High affinity proline dansport system	glutamicumproline and characterization of a low-affilmly uptake system is compatible solutes," Arch. Microbiol., 168(2):143-151 (1997)
9548 py	pyc	Pyruvate carboxylase	Peters-Wendisch, P.G. et al. Fyluvate carboxy and property glutamicum: characterization, expression and inactivation of the pyc gene,
)			Microbiology, 144:915-927 (1998)
Y09578 le	leuB	3-isopropylmalate dehydrogenase	Patek, M. et al. Alialysis of more partially sold and a sold sold sold sold sold sold sold sold
Y 12472		Attachment site bacteriophage Phi-16	Moreau, S. et al. "Site-specific integration of conjunction of an integration vector," Microbiol., 145:539-548 (1999)

GenBank	Gene Name	Gene Function	Reference
Accession No.		rio do como de la como	Peter H et al. "Corynebacterium glutamicum is equipped with four secondary
Y12537	proP	Proline/ectoine uptake system protein	carriers for compatible solutes: Identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier. EctP." J. Bacteriol., 180(22):6005-6012 (1998)
V13221	glnA	Glutamine synthetase I	Jakoby, M. et al. "Isolation of Corynebacterium glutamicum glnA gene Jakoby, M. et al. "Isolation of Corynebacterium glutamicum glnA gene J." FEMS Microbiol. Lett., 154(1):81-88 (1997)
		T. 1.1. 1	
8059	pdl	Dinydrolipoannic denym genase Attachment site Corynephage 304L	Moreau, S. et al. "Analysis of the integration functions of φ304L: An integrase module among corynephages," Virology, 255(1):150-159 (1999)
Z21501	argS; 1ysA	Arginyl-tRNA synthetase; diaminopimelate decarboxylase (partial)	Oguiza, J.A. et al. "A gene encoding arginyl-tRNA synthetase is rocated in the upstream region of the lysA gene in Brevibacterium lactofermentum: Regulation of argS-lysA cluster expression by arginine," J.
			Bacteriol, 1/3(22):/330-/302 (1773)
Z21502	dapA; dapB	Dihydrodipicolinate synthase; dihydrodipicolinate reductase	Prisabarro, A. et al. A chaste of missing and a Brevibacterium lactofermentum encodes dihydrodipicolinate reductase, and a third polypeptide of unknown function," J. Bacteriol., 175(9):2743-2749
			(1993)
229563	thrC	Threonine synthase	Malumores, M. et al., Appl. Environ. Microbiol., 60(7)2209-2219 (1994) threonine synthase," Appl. Environ. Microbiol., 60(7)2209-2219 (1994)
776753	16S rDNA	Gene for 16S ribosomal RNA	S TA A CALL STATE
Z49822	sigA	SigA sigma factor	Ogulza, J.A. et al. Manupo Spirm and SigB, "J. Bacteriol., 178(2):550-lactofermentum: Characterization of SigA and SigB," J. Bacteriol., 178(2):550-
			553 (1996) in the IIDP-galactose 4-epimerase of
823	galE; dtxR	Catalytic activity UDP-galactose 4- epimerase; diphtheria toxin regulatory	Oguiza, J.A. et al "The gale gene encoung up of the dmdR Brevibacterium lactofermentum is coupled transcriptionally to the dmdR oene." Gene. 177:103-107 (1996)
POOGF	orfl. ciaB	protein ?: SigB sigma factor	Oguiza, J.A. et al "Multiple sigma factor genes in Brevibacterium Oguiza, J.A. et al "Multiple sigma factor genes in Bacteriol., 178(2):550-
749054			lactofermentum: Characterization of Signature 25.3 (1996)
		Transnosase	Correia, A. et al. "Cloning and characterization of an IS-like element present in
266534			the genome of Brevibacterium lactolerine much 1505.; Com., 1505.; Com.
			1/0(1):91-94 (1990)

A sequence for this gene was published in the indicated reference. However, the sequence obtained by the inventors of the present approximation in the actual coding region. Published version. It is believed that the published version relied on an incorrect start codon, and thus represents only a fragment of the actual coding region.

ooezao" 6eazoa6o

TABLE 3: Corynebacterium and Brevibacterium Strains Which May be Used in the Practice of the Invention

Conne	species	ATCC FERM NRKL CECT NOTIVID	FERM	NRRL	3 3	CIMD	cn)	CDS TACTO ST	
Bravibacterium	ammoniagenes	21054							
	ammoniagenes	19350			1				
	ammoniagenes	19351		-					
	ammoniagenes	19352							
	ammoniagenes	19353							
Brevibacterium	ammoniagenes	19354							
Brevibacterium	ammoniagenes	19355					1		
Brevibacterium	ammoniagenes	19356					1	1	
Brevibacterium	ammoniagenes	21055						1	
Brevibacterium	ammoniagenes	21077					-		
Brevibacterium	ammoniagenes	21553						1	-
Brevibacterium	ammoniagenes	21580							-
Brevibacterium	ammoniagenes	39101					1	-	-
Brevibacterium	butanicum	21196						-	
Brevibacterium	divaricatum	21792	P928				+	+	-
Brevibacterium	flavum	21474					1		
Brevibacterium	flavum	21129					1	+	-
Brevibacterium	flavum	21518					+		
Brevibacterium	flavum			B11474		1	+	+	-
Brevibacterium	flavum			B114/2			<u> </u>		-
Brevibacterium	flavum	21127					-	1	-
Brevibacterium	flavum	21128					1	-	+
Brevibacterium	flavum	21427	_				+	+	-
Brevibacterium	flavum	21475				-	+	+	\downarrow
Brevibacterium	flavum	21517	-\ -\				-	+	_
Brevibacterium	flavum	21528				1	\ \		-
	£10.1112	21529	_				-	-	

		_	D114//		1		 -
Brevibacterium	riavum	-	B11478				-
Brevibacterium 1	tlavum	101.0	-				
Brevibacterium	flavum	2117/	D11474			 	_
	flavum		D114/4	1			_
	healii	15527		+		1	-
	ketoglutamicum	21004		+	+	-	-
T	ketoglutamicum	21089		1	1	-	+
	ketosoreductum	21914	-	-	+	-	-
	lactofermentum		1	>	+-	+	-
	lactofermentum			4 6	-	-	<u> </u> -
	lactofermentum			+	-		<u> </u> -
Brevibacterium	lactofermentum	21798		+	-	-	-
Brevibacterium	lactofermentum	21799	1	+			-
Brevihacterium	lactofermentum	21800	1	†		-	
Brevibacterium	lactofermentum	21801		+	+	-	-
Brevibacterium	lactofermentum		B114/0		1		-
Brevibacterium	lactofermentum		B114/1				-
Brevibacterium	lactofermentum	21086	\ -\ 	1			-
Brevibacterium	lactofermentum	21420	\ - 	1		-	-
Brevibacterium	lactofermentum	21086	1	1			-
Brevihacterium	lactofermentum	31269					
Brevibacterium	linens	9174	-				-
Brevibacterium	linens	19391	\ -\ 				-
Brevibacterium	linens	8377	1	1	11160		-
Brevihacterium	paraffinolyticum				11100	71773	
Brevibacterium	spec.					71773	
Brevibacterium	spec.					3,:,1	-
Brevibacterium	spec.	14604		\ -			-
Brevibacterium	spec.	21860	+	+			-
Brevibacterium	spec.	21864		1			-
		21865	_				

Attorney Docket No.: BGI-127CP

Brevibacterium	spec.	21866		
Brevibacterium	spec.	19240		
E	acetoacidophilum	21476		
Τ	acetoacidophilum	13870		
T	acetoglutamicum		B11473	
Corymehacterium	acetoglutamicum		B11475	
Corynehacterium	acetoglutamicum	15806		T
Corvnehacterium	acetoglutamicum	21491		
Corynebacterium	acetoglutamicum	31270		
Corynebacterium	acetophilum		B36/1	2399
Corynebacterium	ammoniagenes	6872		
Corvnebacterium	ammoniagenes	15511		
Corvnebacterium	fujiokense	21496		
Corvnebacterium	glutamicum	14067		
Corvnebacterium	glutamicum	39137		
Corvnebacterium	glutamicum	21254		
Corvnehacterium	glutamicum	21255		
Corvnehacterium	glutamicum	31830		
Corvnebacterium	glutamicum	13032		
Corvnebacterium	glutamicum	14305		
Corvnehacterium	glutamicum	15455		
Corynebacterium	glutamicum	13058		
Corvnebacterium	glutamicum	13059		
Corynebacterium	glutamicum	13060		
Corvnehacterium	glutamicum	21492		
Corvnehacterium	glutamicum	21513		
Corvnehacterium	glutamicum	21526		
Corvnehacterium	Т	21543		
Corvnebacterium		13287		
Corvnebacterium	T	21851		
Corynebacterium		21253		
7.00	1			

				_
Corynebacterium	glutamicum	21514		
Corvnehacterium	glutamicum	21516		
Corynehacterium	plutamicum	21299		
Conjuctorium	olutamicum	21300		\ \
Conynebacterium	glutamicum	39684		
Corymehacterium	glutamicum	21488		
Corvnebacterium	glutamicum	21649		
Corynehacterium	glutamicum	21650		
Corvnehacterium	glutamicum	19223		T
Corvnebacterium	glutamicum	13869		
Corvnebacterium	glutamicum	21157		
Corvnebacterium	glutamicum	21158		
Corvnehacterium	glutamicum	21159		
Corvnebacterium	glutamicum	21355	-	
Corynebacterium	glutamicum	31808		
Corvnebacterium	glutamicum	21674		
Corvnebacterium	glutamicum	21562		
Corvnebacterium	glutamicum	21563		
Corvnebacterium	glutamicum	21564		
Corvnebacterium	glutamicum	21565		
Corvnehacterium	glutamicum	21566		
Corvnebacterium	glutamicum	21567		
Corynebacterium	glutamicum	21568		
Corvnebacterium	Г	21569		
Corvnehacterium	Γ	21570		
Corvnebacterium	Τ	21571		
Corvnehacterium		21572		
Corynebacterium	1	21573		-
Corynebacterium		21579		
Corynebacterium	glutamicum	19049		
Corynebacterium		19050		
	1			

				_	_		_	_
Corynebacterium	glutamicum	19051	+					
Corynebacterium	glutamicum	19052					-	
Π.	glutamicum	19053	1	1			-	
Γ	glutamicum	19054				1	-	
Corvnebacterium	elutamicum	19055		-		+	+	T
Corynehacterium	glutamicum	19056				-	$\frac{1}{1}$	
Corvnehacterium	glutamicum	19057				+	+	
Corvnehacterium	glutamicum	19058		_		-	1	
Corvnehacterium	glutamicum	19059						
Corvnebacterium	glutamicum	19060	-				+	
Corvnebacterium	glutamicum	19185				-	+	
Corvnebacterium	glutamicum	13286			-		-	
Corvnebacterium	glutamicum	21515				-	+	
Corynebacterium	glutamicum	21527			1			
Corynebacterium	glutamicum	21544					+	
Corvnehacterium	glutamicum	21492			1	1		
Corvnehacterium	glutamicum			B8183			\dagger	
Corynebacterium	glutamicum			B8182	-	1	-	
Corymehacterium	glutamicum			B12416	- - -		\dagger	
Corymehacterium	olutamicum			B12417		+	+	
Corynebacterium	glutamicum			B12418				
Corvnehacterium	glutamicum			B11476	 	†	1	
Corynebacterium	glutamicum	21608			 		-	
Corvnebacterium	lilium		P973		11504			
Corvnebacterium	nitrilophilus	21419			PKCI I	+	1	
Corvnehacterium	spec.		P4445		1	+		
Corvnehacterium	spec.		P4446	_			+	
Corvnebacterium	spec.	31088			-	1		
Corvnebacterium	spec.	31089			1			
Corvnebacterium	spec.	31090			-			
Corvnehacterium	spec.	31090						
1								

			_			
		0000		_		
		3000				
Corvie hacteriii SDEC.	Spec.	21010				77.75
COI MICOMONIA		1,000			_	C+107
		4666				
(orvnebacterium	SDCC.	12/21				
2017		0.0				
		/XX/C				
Corvnehacteriim	Spec.	10017				
COI yIICOMOCKI IMIII		1				
		21862				
Correbacterium	Super.	70017				
COI MICOGCICITATION Indiana						
		71063	 _	_	_	
Commobacterium Sher	chec	21001				

ATCC: American Type Culture Collection, Rockville, MD, USA

FERM: Fermentation Research Institute, Chiba, Japan

NRRL: ARS Culture Collection, Northern Regional Research Laboratory, Peoria, IL, USA

CECT: Coleccion Espanola de Cultivos Tipo, Valencia, Spain

NCIMB: National Collection of Industrial and Marine Bacteria Ltd., Aberdeen, UK

CBS: Centraalbureau voor Schimmelcultures, Baarn, NL

NCTC: National Collection of Type Cultures, London, UK

DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany

For reference see Sugawara, H. et al. (1993) World directory of collections of cultures of microorganisms: Bacteria, fungi and yeasts (4th edn), World federation for culture collections world data center on microorganisms, Saimata, Japen.

Date of	Deposit 28-Aug-97	4-Nov-96 28-Aug-97	7-Feb-99	8-AII0-97	7-Feb-99	19-Jun-98	8-Aug-97	9-Aug-95	24-Jun-98	29-Sep-99	9-Aug-95	24-Jun-98	29-Sep-99	23-Nov-99	07-OC1- 1999	8-Sep-99	!	23-Sep-97	3-Jun-99		15-Jul-99		13-MAR- 1999	13-Eah-00	23-Nov-99				9-Aug-95	29-Sep-99	24-Jun-96	17-Jun-96	15-lun-96	23-Nov-99		28-Jul-98	
% homology	(GAP) 37 555	100,000	69,729	35,639 27 555	57,333 63.089	38,985	37,448	82,891	83,201	83,201	78,947	77,895	77,895	37,596	34,506	41,578		42,014	38,182		34,872		36,914		35,375							38,029	64,940	27 882	200,16	35,666	
Source of Genbank Hit	<u> </u>		Corynepacterium grutamicum Streptomyces coelicolor	Mycobacterium tuberculosis	Mycobacterium leprae	Mycohacterium tuberculosis	Mycobacterium leprae	Corynebacterium glutamicum	Corynebacterium glutamicum	Unknown.	Corynebacterium glutamicum	Corynebacterium glutamicum	Unknown.	Homo sapiens	Homo sapiens	Zea mays		Oryza sativa	Stolineydon suffed	. Natitus ilot vegicas	- Mus musculus		Kluyveromyces lactis	•	Cydia pomonella granulovirus	Choire sapiens			Corynebacterium glutamicum	Unknown.	Corynebacterium glutamicum	Mycobacterium tuberculosis	Mycobacterium leprae	Mycobacterium leprae	Homo sapiens	Homo sapiens	
4: ALIGNMENT RESULTS	Name of Genbank Hit			Streptomyces coelicolor D. V. 1917. Streptomyces coelicolor 135/162.	Mycobacterium leprae cosmid B1779.	Streptomyces coelicolor DNA for PkaA, PkaB and PrfB, complete cds.	Mycobacterium tuberculosis H37Rv complete genome; segment 133/102.	Mycobacterium leprae cosmid B1779.	C.glutamicum IS3 related insertion element.	DNA encoding Brevibacterium transposase.	Sequence 9 from patent US 5804414.	C.glutamicum IS3 related insertion element.	DNA encoding Brevibacterrum transposase.	Sequence 9 from patent US 5804414.	Human DNA sequence from cosmid chroths, on chromosomo 22 commission of the commissio	mRNA. Malhot ah Zea mays cDNA. mRNA	614056A09.x1 614 - root cUNA library libili Walbur Lab Ecca lings of the property of the state o	sequence. C73675 Rice panicle (longer than 10cm) Oryza sativa cDNA clone E20126_2A,	mRNA sequence.	UI-R-ACO-yi-d-08-0-UI.s1 UI-R-AC0 Rattus norvegicus cDNA clone UI-R-ACU-yi-u- nattus ito vegicos	08-0-UI 3', mRNA sequence.	UI-M-AK1-aez-b-06-0-01:ST INITI DIMAN	AK1-aez-b-06-0-Ul 3', mKNA sequence.	Killyveroniyasa lasas haraba yaraba yaraba karaba	Cydia pomonella granulovirus genes for chitinase and cathepsin, complete cds.	Human DNA sequence from clone 117715 on chromosome 22q13.1. Contains part, hours sepreman human DNA sequence from clone 117715 on chromosome 22q13.1. Contains part, hours sepreman protein MSE55	of a putative novel gene, tile gene for securit consumer. In the LGALS2 gene for Lectin, Galactose-downstream of a putative CpG island and the LGALS2 gene for Lectin, Galactose.	binding, soluble, 2 (Galectin 2, S-Lac Lectin 2, HL14). Contains ESTs and GSSS,	complete sequence.	C.glutamicum IS3 related insertion element.	Sequence 9 from patent US 3004414.	DNA encoding brevibacterium dansposasso.	Mycobacterium langer cosmid B1229 DNA sequence.	Mycobacterium Jeprae Cosmid B998 DNA sequence.	Human DNA sequence from clone 45P21 on chromosome 6p21.3-22.2 Contains	butyrophilins (BTF3, BTF5, BTF2, BTF4), EST, STS, complete sequence.	Homo sapiens cinculations of commercial in
	Accession	Y13221 (295150			Z98271		E12760	AR038104	X69104	E12760	AR038104	Z69713 AC011577		AW000587	C73675	5	AI704169		AI846250	1	AF0/26/5	AB010886	AL022315				X69104	AR038104	E12760	Z95208	1,8812	L/8829 AL021917		AC005330
	Length /	3686			39150		_				1279	1290	1279	1279	30875		470	301	- 60	275	ì	390		3127	3387	96256				1290	1279				10000		40607
	Genbank Hit		MF45			GB_BA1:MLCB1//9	GB_BA1:MTCY164	GB_BA1:MI CB1779	GB_BA1:CGISABL	GR PAT:E12760	GR PAT-AR038104	GB_BA1:CGISABL	GB PAT-F12760	GB_PAT-AR038104	GB_PR3:HSN20A6	GB_H1G3:AC011977	GB EST37-AW000587		GB_ES117:C/36/3	CD ECT31.01704169	GD_E31.01.041.03	GB EST35:AI846250		GB_PL2:AF072675	000000000000000000000000000000000000000	GB_VI:ABU10866 GB_PR2:HS117715	I			GB BA1:CGISABL	GB_PAT:AR038104	GB_PAT:E12760			GB_BA1:MSGB998CS		GB_PR3:AC005330
	length	1731		480			666		1017			417			1983			,	819					3 516						222 73			rxa00069 1506		604	160 70	
	# Q	rxa00005		rxa00011			rxa00012		9100048	rxavouro 1		7,000,007	LXAOOO		rxa00019 1983				rxa00046 819					rxa00053						75000ev1	000		rxa000t		00	IXaoo 102	

25-Jun-99 17-MAY-	1999 2-Jun-98	29-Sep-99 07-OCT-	1997 (Rel. 52, Created)	28-Aug-96	3-Sep-96	1-Nov-97	17-Jun-98	06-UII-66	3	29-Jun-99	23-Nov-99	17-,Jun-98	3-Aug-99	20-OCT-	1998	23-Jull-99 17-Sep-97	26-Feb-99	3-Aug-98	29-Jul-99	-	68-JUC-82	23-Jun-99	2-Aug-99	2-Aug-99	17-Feb-94	12-Sep-98	17-Feb-94	
37,000 33,427	40,988	40,988	040,48	71,216	63,472	98,331	37,946	62,261	39,171	46,452	33,060	47 R23	39,234	37,127		37,632 65,785	63.795	45.545	37,101		37,101	35,122	33,001	33,001	37,294	39,041	34,947	
Homo sapiens Arabidopsis thaliana		Unknown.	Corynebacterium glutamicum	Mycobacterium smedmatis	Streptomyces lividans	Corynebacterium glutamicum	Mycobacterium tuberculosis	Mycobacterium leprae	Lycopersicon esculentum	, Lycopersicon esculentum	Homo sapiens		Mycobacterium tuberculosis	e. Homo sapiens		Mycobacterium tuberculosis	Mycobacterium leprae	Streptomyces coelicolol	Mycosphaerelia graffili licola		Caenorhabditis elegans	Mycobacterium tuberculosis	Drosophila melanogaster 53	Drosophila melanogaster 53	1 actobacillus plantarum	08f, Oryza sativa	Lactobacillus plantarum	
TABLE 4: ALIGNMENT RESULTS HS_5529_A2_C01_T7A RPCI-11 Human Male BAC Library Homo sapiens genomic clone Plate=1105 Col=2 Row=E, genomic survey sequence.	Arabidopsis thaliana chromosome I BAC F3F20 genomic sequence. sequence sequence. sequence and subunit, nitrile	Pseudoliforias punita no 1744 genes, complete cds. hydratase beta subunit, and P4K genes, complete cds.	Sequence 17 from patent OS 3011200. gDNA encoding secA protein.	- ;	Mycobacterium smegmatis SecA (SecA) gene, complete cds.	treptomyces lividans SecA (secA) gene, complete cas.	B lactofermentum gene encoding elongation factor P.	Mycobacterium tuberculosis H3/RV confibere genome, segment	Mycobacterium leptae costiliu basi, basi ostacii.c. Est 243016 fomato ovary, TAMU Lycopersicon esculentum cDNA clone	cLED3013, mRNa sequence. ecr7344362 inmRNa sequence.	ESTEATSOL CONTROL OF THE STATE	actual to a capture of the first to the firs	EST, STS, GSS, complete segacines. Mycobacterium tuberculosis H37Rv complete genome; segment 55/162.	Bacillus halodurans C-125 genomic DNA, 9A/3S' fragment, clone ALBACU01. Bacillus halodurans C-125 genomic DNA, 9A/3S' fragment, clone Seguence. Homo sapiens	Homo sapiens chromosome 5, BAC clone /g1z (LbivL111zs), compress	4. the complete genome; segment 132/162.	Mycobacterium tubercensis risk company of the control of the contr	Mycobacterium replace cosmic accom	Streptomyces coefficient commercial and the ST1A2 DNA. Mycosophaerella graminicola microsatellite ST1A2 DNA.	Caenorhabditis elegans chromosome I clone Y48G10, *** SEQUENCING IN	PROGRESS ***, in unordered pleces. Caenorhabditis elegans chromosome I clone Y48G10, *** SEQUENCING IN	PROGRESS ***, in unordered pieces.	Mycobacterium tuberculosis H37Rv complete genorite, segrinori, 102, 102, 102, 102, 102, 102, 102, 102	unordered pieces. Drosophila melanogaster chromosome 3 clone BACR22F22 (D824) RPCI-98	22.F.22 map 0+D-0+D strain 7; cr. cr. cr. rr. inordered bieces.	L. plantarum gene for I-lactate dehydrogenase. L. plantarum gene for I-lactate dehydrogenase.	genomic survey sequence.	L.plantarum gene for I-lactate denydrogenase.
AQ677431 H	83		AR041193 S E09053 g		1166081							AL008634		277137 AB013492			AL021287	Z99263	AL035569	A2007 031 AL021450	AI 021450	AL021430	AL021287 AC008092	AC008092		X70926	AU I 36636	X70926
502 A	g		1440 A 2538 E		2968			∞	4	572		152592		36030 18497	134506		70287	44882	38681	103		110000	70287 88749	88749		1651	731	1651
GB_GSS4:AQ677431 E		GB_BA2:PPU89363	GB_PAT:AR041193 EM_PAT:E09053		100001	GB_BA1:MSU66061	GB_BAZ:SLUZ119Z	GB_BA1:MTCY159	GB_BA1:MSGB937CS	GB_EST28:Al484755	GB_EST28:Al486041	GB PR3:HS396D17		GB_BA1:MTCY50	GB_DA1.AB013432	200000000000000000000000000000000000000	GB BA1:MTV012	GB_BA1:MLCB637	GB_BA1:SC8D9	GB_PL1:MGR7031	GB_TIGI.CE145016_	GB_HTG1:CEY48G10_4 110000	GB_BA1:MTV012 GB_HTG2:AC008092	GB HTG2:AC008092	1	GB_BA1:LPLLDHE	GB_GSS9:AQ158656	GB_BA1:LPLLDHE
	rxa00107 360		rxa00125 888					rxa00138 684		гха00172 735				rxa00184 1296			Va00209 1614	22222		rxa00210 420	•		rxa00217 1218			rxa00227 921		

Ħ
ΠIJ
Щ
5
J
M
ũ
ΠJ
ū
J
,==

40 037 31-Jul-99				35,217 22-Jan-98 36,118 21-Apr-99	50,783 04-DEC-	37,244 9-Jan-98		40,393 17-Jun-97 38,462 02-DEC- 1994	34,526 24-Jun-98		34,169 2-Jun-98	48,925 12-Nov-98		48,925 26-APR-199	34 836 5-Sep-98		40,196 5-Sep-98	43,959 5-Feb-99	39,765 5-Feb-99		36,471 3-Aug-99	36,471 3-Aug-99	36.090 3-Aug-99		38,992
			Danio rerio 34	Rotavirus sp. 35 Danio rerio 36	Unknown. 50	37 Specially m brasilense		Corynebacterium glutamicum 40 Unknown.	Stanhylococcus aureus 3		Homo sapiens 3	<u> </u>	=	=		Streptomyces coencord Pseudomonas fluorescens	Strantomyces coelicolor	Adiantum capillus-veneris	Adiantim capillus-veneris	ø.		Homo sapiens	Subjects omen		is Escherichia coli
		Homo sapiens 12q24.2 PAC RPCI4-809F18 (Roswell Park Cancer Institute Human PAC Library) complete sequence.	697b04.y1 Zebrafish WashU MPIMG EST Danio rerio cDNA 5' similar to	WP:F32D8.4 CE05783 LACTATE DEHT DROGENAGE., IIIVAN 304-2005. Rotavirus sp. mRNA for nonstructural protein 1, complete cds.	fb97bd4.y1 Zebratish Washo Wir into LOJ Common WPF32D8.4 CE05783 LACTATE DEHYDROGENASE; mRNA sequence.	Sequence 1 nom patern of 57 55 55.	A.brasilense ipdC, gltX & cysS genes. Sequence 3 from patent US 5753480.	Corynebacterium glutamicum thrC gene for threonine synthase (EC4.2.99.2). Sequence 4 from Patent WO 8809819.	·	Staphylococcus aureus RF3, murE, ypfP genes. Homo sapiens chromosome 7 clone UWGC:g1564a327 from 7p14-15, complete					E. COII [KINA-gualiiig-trailsgi) occjiraa (337.34					_					PROGRESS — , on uniquency proces. E. coli plasmid R751 traf (5'end), traG, traH, tral, traJ, traK and traL (5'end) genes Escherichia coli
	AC007368	AC007368	AI588595	D78362	AI588595	AR008345	X99587 AR008346	X56037		Y14370 AC004788	AC004788		AE000147		M63939	AL031371 AF024619		AL031371		AB012630	D31600	AC008853	AC008853	AC008853	YSAASB
	94024	94024	532	е.	532	1344	4933	3120	5	7791	39436		10577	921261	1823	30590	500	30590	2013	4098	20383	54169	54169	54169	6400
	GB_PR4:AC007368	GB_PR4:AC007368	28 EST29-A1588595	GB VI:D78362	GB_EST29:AI588595	GB_PAT:AR008345	GB_BA1:ABIPDC	GB_BA1:CGTHRC	GB_PAL:109078	GB_BA1:SAY14370	GB_PR3:AC004788		GB_BA2:AE000147	GB_PR4:DJ270M14	GB_BA1:ECOTGT	GB_BA1:SC4G2	GB_BAZ:AF024619	GB_BA1:SC4G2	GB_PL1:AB01262/	05 014.40042630	GB_PL1:YSCF6552A	GB_HTG3:AC008853	GB_HTG3:AC008853	GB HTG3:AC008853	
	rxa00265 573		ACS 00000	1xa00zoo 0z4		rxa00314 1503		rxa00331 480			rxa00333 657		rxa00454 1416			rxa00458 736			rxa00484 1203			rxa00495 687			

10.004	1998 1998	1-Sep-99 20-Nov-98	20-Nov-98	01-DEC- 1998	3-Apr-98	14-Jan-99	24-Jun-99 23-DEC- 1996	200	15-DEC- 1998	27-Aug-99	28-OCT- 1996	17-Jun-98	3-Feb-99	79-S-00	17-Jun-98	22-Sep-97	03-OCT-	1997	6-Feb-99	28-Jun-99 30-1an-99	30-Jan-99	13-MAR-	1999	03-DEC- 1999	03-DEC-	1999 17-11m-98	01-MAR- 1994
	38,992	37,232 48,552	36,301	37,129	37,129	37,672	36,150 45,483		40,705	40,549	64,881	41.896	98,436	00 262	90,202 60 724	43,030	27 217	2, 20	34,127	36,527	36,401	41.371	1	37,223	38,438	26 403	37,978
		Rhodococcus erythropolis Zantedeschia aethiopica	Zantedeschia aethiopica	Unknown.	Unknown.	Homo sapiens	Mycobacterium tuberculosis Pseudomonas aeruginosa		2,Drosophila melanogaster	Mycobacterium leprae	Mycobacterium bovis	Mycobacterium tuberculosis	Corynebacterium glutamicum		Corynebacterium glutamicum	Caenorhabditis elegans	-	Mus musculus	Homo sapiens	Arabidopsis thaliana	Homo sapiens	Homo sapiens	TOTIO sapieris	Homo sapiens	Homo sapiens		Mycobacterium tuberculosis Mycobacterium leprae
TABLE 4: ALIGNMENT RESULTS	Enterobacter aerogenes plasmid R751, complete plasmid sequence.	Rhodococcus erythropolis DNA for catechol 1,2-dioxgenase, complete cds. Zantedeschia aethiopica glutathione peroxidase (gpx) mRNA, nuclear gene	encoding chloroplast protein, complete cds. Zantedeschia aethiopica glutathione peroxidase (gpx) mRNA, nuclear gene encoding chloroplast protein, complete cds.	Sequence 13 from patent US 5726299.		Sequence 13 from patent US 5693/81.	Homo sapiens clone NH033ZEU1, Complete 3equation. Mycobacterium tuberculosis H37Rv complete genome; segment 48/162. Desurdamanas aemicinosa dihydrodipicolinate reductase (dapb) gene, partial cds,	carbamoylphosphate synthetase small subunit (carA) and carbamoylphosphate synthetase large subunit (carB) genes, complete cds, and FtsJ homolog (ftsJ)	gene, partial cds. Drosophila melanogaster, chromosome 2R, region 50C5-50C8, P1 clone DS02972,Drosophila melanogaster	complete sequence.	Mycobacterium leprae cosmid b LZZZ. Mycobacterium bovis ribosomal proteins IF-1 (infA), L36 (rpmJ), S13 (rpsM) and	S11 (rpsk) genes, complete cds, and S4 (rpsD) gene, partial cds.	Mycobacterium tuberculosis H37Rv complete genome; segment 147/162.	Brevibacterium flavum gene for Secri protein (Somprote Secriptions Secriptions)	Brevibacterium sec'y gene.	Mycobacterium tuberculosis H37Rv complete genome; segment 35/162.	C61980 Yuji Konara unpublisheu CDNA Cachomistana Creamana Mayaba 51 mRNA sequence.	Mouse gene for H-2K(d) antigen.	HPPC928F24 complete sequence.	Homo saplens critoriosomie A, crone III a Caraca y contiguradore No. 0.	Home saniens chromosome 9, clone hRPK.494_N_15, complete sequence.	Homo sapiens chromosome 9, clone hRPK 494 N 15, complete sequence.	HS_5052_A2_F07_SP6E_RPCI-11 Human Male BAC Library Homo sapiens	genomic done Plate=528 Col=14 R0W=h., genomic suive) 30420	unordered pieces.	Homo sapiens clone KP11-115016, WORKING DIVAL I CLESCENCE, T. Inputered nieres.	Mycobacterium leprae cosmid B1177.
	U67194	D83237 AF053311	AF053311	192046		178757	AC005042 AL021897	667190	AC005643		AL049491 115140	2	Z95390	D14162	E07701	AL021958	C61980	X01815		AC003001	Z97333	AC006443	AQ403148	AC000021	1	AC009921	Z77724 U00011
	53339 L	1626 E		2203			ω _	587/	80389		34714	3	43401	1516	1323	28826	216	5141		101981	2005/6	210636	432	104690	10400	184689	35946 40429
	GB_BA2:EAU67194	GB_BA1:D83237	GB_PL2:AF053311	GB PAT:192046		GB PAT:178757	GB_PR4:AC005042 GB_BA1:MTV017	GB_BA1:PAU81259	GB 1N2-AC005643	GD_000000000000000000000000000000000000	GB_BA1:MLCB1222	GB_BAT:MBU13140	GB BA1:MTY13E12	GB_BA1:BRLSECY	, H 4 C C C C C C C C C C C C C C C C C C	GB_BA1:MTV041	GB_EST17:C61980	GB RO:MMANT12	:	GB_PR4:AC003001	GB_PL2:ATFCA0	GB_PR4:AC006443	GB_FR4.AC000443 GB_GSS12:AQ403148		GB_H1G6:AC009921	GB_HTG6:AC009921	GB_BA1:MTCY227 GB_BA1:U00011
	J		rxa00539 600) 1470 (s			rxa00588 645				rxa00677 339			rxa00687 1443			rxa00753 1704				rxa00824 681		702 96 705				rxa00927 1212

21-MAR- 1997 23-Nov-99	23-Nov-99	3-Aug-99 2-Sep-99	2-Sep-99	2-Sep-99	09-DEC- 1997	09-MAR- 1999	13-Sep-96	14-Apr-99	6-Feb-99	6-Feb-99 20-Aug-97	29.Aug-97	24-Jun-99	10-DEC-	24-Jun-99	29-Aug-97 28-Jul-99	29-Sep-99	28-Jul-99 12-MAR- 1007	20-Aug-98	12-MAR- 1997	17-Jun-90 16-Apr-97 17-Apr-96
35,750 37,997	38,701	38,199 37,131	37,131	37,775	35,644	36,864	38,652	39,410	37,228	63,102	60,938 60,938	59.375	36,077	67 536	65,990 99,887	99,887	99,887 34,674	34,674	38,881	38,126 52,036 37,971
Sscherichia coli 3 Homo sapiens 3	Homo sapiens				aliana	Arabidopsis thaliana	Mus musculus	Corynebacterium glutamicum	Flavobacterium sp.	Flavobacterium sp.	Mycobacterium leprae	Mycobacterium teprae	Mycobacterium tuberculosis	of solutions and the second se	Mycobacterium tubercurosis Mycobacterium leprae Corynebacterium glutamicum	Unknown.	Corynebacterium glutamicum Homo sapiens	Homo saniens	Homo sapiens	Mycobacterium tuberculosis Bacillus subtilis Escherichia coli
E.coli genomic DNA, Kohara clone #337(41.9-42.3 min.). Human DNA sequence from clone 1121J18 on chromosome 20. Contains ESTs, STS, GSSs, a ca repeat polymorphism and genomic marker D20S115', complete	sequence. Human DNA sequence from clone 1121J18 on chromosome 20. Contains ESTs, Human DNA sequence from clone 1121J18 on chromosome 20. Contains ESTs, STS, GSSs, a ca repeat polymorphism and genomic marker D20S115', complete	sequence. Homo sapiens chromosome 5 clone CIT978SKB_84H3, *** SEQUENCING IN PROGRESS ***, 24 unordered pieces.	Homo sapiens chromosome 4, *** SEQUENCING IN PROGRESS ', directed from sapiens pieces.	pieces. Homo sapiens chromosome 4, *** SEQUENCING IN PROGRESS ***, 7 unordered Homo sapiens	pieces. T23N5TF TAMU Arabidopsis thaliana genomic clone T23N5, genomic survey	sequence. Arabidopsis thaliana chromosome II BAC F5K7 genomic sequence, complete			פטעפוואטט קיילייי אואט טטייט	Flavobacterium sp. plasmid pOAD2 DIVA, whole sequence:	Flavobacterium lange cosmid 8628.	Mycobacterium leprae cosmid 81770.	Mycobacterium tuberculosis H37Rv complete genome; segment 3/262. Mycobacterium tuberculosis complete genome; segment 3/262.		Mycobacterium tuberculosis H37Rv complete genome; segment 3/262. Mycobacterium leprae cosmid B628. DNA encoding Brevibacterium diaminopimelic acid decarboxylase and arginyl-	tRNA synthase.	Sequence 15 from patent US 5804414. Brevibacterium argS and lysA genes.		 Homo sapiens clone UWGC:g5129s003 from 7q31, complete sequence. Human cosmid g1980a186, complete sequence. 	 Mycobacterium tuberculosis H37Rv complete genome; segment 108/162. B.subtilis valS gene. Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes.
D90829 AL031653	AL031653	AC008715	220000 AC004480	AC004480	R67258	AC006413	AA052151	AF121000		D26094	D26094	Y1496/	Z80775 Z80775	AD000013	Z80775 Y14967	2	AR038110 E16355	AC000372	AC005503 AC000372	AL021246 X77239 1 U14003
20277 [138145 /	101012	220000	000022		292	80008 80008	19751		45519	45519	40789	37821 20760	38721	20760 40789	6/00		41730	40998	63033 3168 338534
GB_BA1:D90829 GB_PR2:HS1121J18	GB_PR2:HS1121J18	GB_HTG3:AC008715	GB_HTG3:AC004480	GB_HTG3:AC004480	GB_HTG3:AC004480	GB_GSS3:B0/250	GB_PL2:ATAC006413	GB_ES18:AAU52151	GB_BAZ.AF 121000	GB BA1:FVBPOAD2A	GB_BA1:FVBPOAD2A	GB_BA1:MLCB628	GB_BA1:MLCB1770 GB_BA1:MTCY21D4	GB_BA1:MSGY219	GB_BA1:MTCY21D4 GB_BA1:MLCB628	GB_PAT:E14508	GB_PAT:AR038110 GB_PAT:E16355	GB_PR2:HSAC000372	GB_PR3:AC005503	GB_BA1:BSVALTRS GB_BA1:ECOUW93
G rxa00928 741 G	9	J	rxa00929 786 C	_		rxa00937 495			rxa00938 381			rxa00966 640		rxa00968 1054		rxa00975 1773		rxa00978 738		гха00985 2832

S)
\vdash
ns
S
되
~
7
7
≥
Z
65
\simeq
ت
\neg
7
≕
×
\rightarrow
8
4
È

				TABLE 4: ALIGNMENT RESOLUS		000	24. hm.98
гха00998 585	GB_PAT:E13660	1916 E	E13660 AF164115	dehydrogenase. 3AC 644F11, *** SEQUENCING IN	Corynebacterium glutamicum Homo sapiens	33,563	12-Jul-99
	GB_H1GZ.AF104115				Homo sapiens	33,563	12-Jul-99
	GB_H1GZ:AF164113			915 3'	Homo sapiens	36,855	12-MAY-
гха01020 870	GB_EST29:AI553731	416	AI553731		Homo sapiens	37,549	1999 30-Aug-99
	GB_EST35:AI871115	206	AI871115	sapiens culva cione invade. 243 i 103 392 PROTEIN ;contains element MER15			
	GE EST27.61430328	520	AI430328	o)	Mus musculus	37,765	09-MAR- 1999
rx301061 1061	GB BA1:MTCY21D4	8	280775	-	Mycobacterium tuberculosis Mycobacterium tuberculosis	62,606 41,171	24-Jun-99 10-DEC-
	GB_BA1:MSGY219	38721	AD000013	Mycobacterium tuberculosis sequence from clone 12.5.		64 000	1996 29-Aug-97
	GB_BA1:MLCB628	40789	Y14967 AF112535	المار (nrdl), and	Mycobacterium leprae Corynebacterium glutamicum	99,718	5-Aug-99
rxa01072 354		7 7 7	V09572	_	Corynebacterium	62,393	18-Apr-98
	GB_BA1:CANKUPGEN	1000	1000		ammoniagenes Massbacterium fuberculosis	37.714	17-Jun-98
	GB BA1-MTCY22D7	31859	Z83866	complete genome; segment 133/162.	Streptomyces coelicolor	60,616	15-Jan-99
rxa01124 1602	GB_BA1:SC1C2	42210	AL031124	Streptomyces coelicolor cosmid 1C2. Streptomyces coelicolor cosmid 1C2. National design transferrators and the complete genome; segment 132/162.	Mycobacterium tuberculosis	37,913	23-Jun-99
	GB_BA1:MTV012	70287	AL021287		Mycobacterium leprae	61,216	28-Apr-98
	GB_BA1:MLCB637	44882	299263	complete cds.	Homo sapiens	37,184	30-Apr-99
rxa01199 871	GB_PR3:AF046873 GB_EST30:AI649049	2153 691	AF046873 AI649049	ulus cDNA clone RNA for liver-type glucose	Mus musculus	31,226	66-144-05
	:	9	4	IMAGE. 1970/05/05 Stimmer to a general control of the protein (MAGE:1451215) Mus musculus control of transporter mouse liver mila Mus musculus control of the control of transporter and the control of t	Mus musculus	35,057	2-Sep-98
	GB_EST23:Al121163	468	AI121163	3' similar to gb:J03810 GLUCOSE TRANSPORTER TYPE 2, LIVER (HUMAN); qb:X15684 Mouse mRNA for liver-type glucose transporter protein (MOUSE);			
	00 DD4.AC007386	176742	AC007386		Homo sapiens	39,551	22-OCT- 1999
rxa01223 /35	GB PR4:AC007386	176742	176742 AC007386		Homo sapiens	38,678	22-OCT- 1999
663	GR PR2·HS21F7	150789	AL033375	Human DNA sequence from clone 21F7 on chromosome 6q16.1-21.Contains part Homo sapiens	Homo sapiens	37,309	23-Nov-99
rxa01220 003				of an exon of a putative new gene and STSs and GSSS, complete sequence:		0	TOC
	GB_PR3:AF023268	75270	AF023268	Homo sapiens clk2 kinase (CLK2), propin1, cote1, glucocerebrosidase (GBA), and Homo sapiens	Homo sapiens	38,923	1997
	CB BA2:AE016485	191346	191346 AF016485	pseudogene; and thrombospondin3 (THBS3) gene, partial cds. Halobacterium sp. NRC-1 plasmid pNRC100, complete plasmid sequence.	Halobacterium sp. NRC-1	39,938	29-MAR- 1999
	GB_BAZ.AF010463	2					

23-Nov-99 29-Jul-99 15-Jan-99 24-Jun-99 20-Aug-99	16-MAY - 1998 25-Jun-99	28-Jul-99 08-OCT- 1999 08-OCT-	11-Feb-93	11-Nov-96 11-Feb-93	17-Jun-98 17-DEC- 1993 27-OCT- 1994 17-Jun-98 03-DEC- 1996
34,718 31,212 37,082 39,171 35,401 53,826	38,253	52,523 35,377 35,377	70,031	70,704 64,042 65,865	64,633 46,615 100,000 74,622 37,419
tuberculosis soelicolor		Corynebacterium ammoniagenes Homo sapiens Homo sapiens	I Mycobacterium leprae	Mycobacterium tuberculosis Agrobacterium tumefaciens al Mycobacterium leprae nki	Mycobacterium tuberculosis Escherichia coli Corynebacterium glutamicum Mycobacterium tuberculosis Mycobacterium tuberculosis
TABLE 4: ALIGNMENT RESULTS Human DNA sequence from clone 1158E12 on chromosome Xp11.23-11.4 Human DNA sequence from clone 1158E12 on chromosome Xp11.23-11.4 Contains EST, STS, GSS, CpG island, complete sequence. Homo sapiens clone RP11-292L5, *** SEQUENCING IN PROGRESS ***, 152 Homo sapiens clone DJ0855D21, complete sequence. Homo sapiens PAC clone DJ0855D21, complete sequence. Mycobacterium tuberculosis H37Rv complete genome: segment 155/162. Mycobacterium tuberculosis H37Rv complete genome: segment 155/162. Streptomyces coelicolor cosmid 6613. Streptomyces coelicolor recombination protein RecR (recR) gene, complete cds;	RPCI11-66I23.TJ RPCI-11 Homo sapiens genomic clone RFCI-11-00120, 300000000000000000000000000000000000	Corynebacteriu ammoniagenes. Corynebacterium ammoniagenes. ammoniagenes ammoniagenes Homo sapiens chromosome 8 clone BAC R-11N9 map 8p12. 8, ***SEQUENCING Homo sapiens IN PROGRESS ***, in unordered pieces.	Homo sapiens chromosome 8 clone bAC K-11189 map of the control of the sapiens chromosome 8 clone bAC K-11189 map of the control of the sapiens of the sapien	Mycobacterium tuberculosis H37Rv complete genome; segment 33/162. Mycobacterium tuberculosis H37Rv complete genome; segment 33/162. Agrobacterium tumefact Agrobacterium tumefact Atumefaciens fusA & tufA genes. M.Ieprae genes rpIL, rpoB, rpoC, end, rpsL, rpsG, efg, tuf, rpsJ, rpIC for ribosomal Mycobacterium leprae protein L7, RNA polymerase beta subunit, RNA polymerase beta subunit, RNA polymerase beta subunit, ribosomal protein S12, elongation endonuclease, ribosomal protein S7, ribosomal protein S10, ribosomal protein L3 and mkl	
	AQ195163 AC000016 G53604	2323 E15823 167065 AF182108	AF182108 Z14314	AL021943 X99673 Z14314	295972 U00006 X77034 Z84395 AD000005
163871 AL031584 110000 AC008180 138251 AC00490E 121125 AL022121 35101 AL079348 1296 AF151381	617 AQ195163 194000 AC000016 617 G53604	2323	37617	15100 3412 37617	19770 176195 1191 36804 36526
GB_PR2:HS1158E12 GB_HTG6:AC008180_0 GB_PR4:AC004908 GB_BA1:MTV025 GB_BA1:SC66T3 GB_BA2:AF151381	GB_GSS10:AQ195163 GB_HTG2:AC000016 GB_STS:G53604	GB_PAT:E15823 GB_HTG3:AF182108	GB_HTG3:AF182108 GB_BA1:MLB1790G	GB_BA1:MTV040 GB_BA1:ATFUSATUF GB_BA1:MLB1790G	GB_BA1:MTCl376 GB_BA2:ECOUW89 GB_BA1:CGTUF GB_BA1:MTCY210 GB_BA1:MSGY42
rxa01228 339	rxa01264 339	rxa01265 гxa01274 1218	rxa01278 2250	ка01283 1316	rxa01284 667

noraen szeznet

06-MAY- 1996	16-Jul-96 08-OCT- 1997 (Rel. 52, Created)	16-Jul-96 06-MAY- 1996	07-OCT- 1997	16-Jul-96 24-Jun-98 6-Feb-97 07-MAR-	1996	17-Jun-98 13-Sep-94	31-OCT- 1999	31-OCT- 1999	5-Feb-92 11-Feb-93	17-Jun-98 26-Nov-97 03-DEC- 1999	03-DEC- 1999 03-DEC-	1999 23-Jun-99	23-Sep-94	7-Feb-99
60,674	62,172 60,674	73,038 68,813	69,014	73,966 73,020 73,020 73,086		71,385 71,429	37,156	37,156	44,023 71,429	73,176 63,853 36,863	36,863	36 547	35,139	35,604
synthetic construct	Corynebacterium glutamicum Corynebacterium glutamicum	Corynebacterium glutamicum synthetic construct	Unknown.	Corynebacterium glutamicum Corynebacterium glutamicum Unknown.	Mycobacterian Singanase	Mycobacterium tuberculosis Mycobacterium tuberculosis	Homo sapiens	Homo sapiens	Pseudomonas fluorescens Mycobacterium leprae	Mycobacterium tuberculosis Bacillus subtilis Homo sapiens			Streptococcus sobrinus	Streptococcus sobrinus
TABLE 4: ALIGNMENT RESULTS Artificial Corynebacterium glutamicum IS1207-derived transposon transposase somplete cds, and 3'5"-aminoglycoside phosphotransferase (aphA-3) gene,		B.lactofermentum IS13869 DNA and transposase gene. Artificial Corynebacterium glutamicum IS1207-derived transposon transposase genes, complete cds, and 3'5"-aminoglycoside phosphotransferase (aphA-3) gene,	complete cds. Sequence 1 from patent US 5633154.	B.lactofermentum IS13869 DNA and transposase gene. DNA encoding Brevibacterium transposase. Sequence 1 from patent US 5591577.	Mycobacterium smegmatis DNA polymerase (rpoB) gene, complete cds.	Mycobacterium tuberculosis H37Rv complete genome; segment 32/162. Mycobacterium tuberculosis RNA polymerase beta-suburit (rpoB) gene, complete	cds and RNA polymerase beta-subunit rpoC gene, partar cds. Homo sapiens chromosome 16 clone RPCI-11_509E10, *** SEQUENCING IN	PROGRESS ***, 231 unordered pieces. Homo sapiens chromosome 16 clone RPCI-11_509E10, *** SEQUENCING IN	PROGRESS ***, 231 unordered pieces. P. fluorescens lepA (partial) and lep gene for leader peptidase 1. M.leprae genes rplL, rpoB, rpoC, end, rpsL, rpsG, efg, tuf, rpsJ, rplC for ribosomal mileprate genes rplL, rpoB, rpoC, end, rpsL, rpsG, efg, tuf, rpsJ, rplC for ribosomal protein L7, RNA polymerase beta subunit, RNA polymerase beta' subunit, endonuclease, ribosomal protein S7, ribosomal protein S12, elongation factor Tu, ribosomal protein S10, ribosomal protein L3 and mkl	gene. Mycobacterium tuberculosis H37Rv complete genome; segment 32/162. Mycobacterium tuberculosis H37Rv complete genome; segment 1 to 213080. Bacillus subtilis complete genome (section 1 of 21); from 1 to 213080. Homo sapiens chromosome 6 clone RP4-676J13 map q14, *** SEQUENCING IN	PROGRESS ***, in unordered pieces. Homo sapiens chromosome 6 clone RP4-676J13 map q14, *** SEQUENCING IN POCEES *** in unordered pieces.	Homo sapiens chromosome 6 clone RP4-676J13 map q14, *** SEQUENCING IN PROCRESS *** in unordered pieces.	Mycobacterium tuberculosis H37Rv complete genome; segment 132/162. SpaA=endocarditis immunodominant antigen [Streptococcus sobrinus, MUCOB	263, Genomic, 5077 ntJ. S.sobrinus pag gene for surface protein antigen (PAg).
U53587	Z66534 E10419	Z66534 U53587	143826	Z66534 E12758	U24494	Z95972 L27989	AC009135	AC009135	X56466 Z14314	295972 299104 Al 034347		AL034347	AL021287 S70345	D90354
4546 L	1840 2 1469 E	1840 4546	1452	1840 1453	3752	19770	168607	168607	1391 37617	19770 213080 1170 4 5	117045	117045	70287 5077	5100
GB_SY:SCU53587	GB_BA1:BLIS13869 EM_PAT:E10419	GB_BA1:BLIS13869 GB_SY:SCU53587	GB PAT:143826	GB_BA1:BLIS13869 GB_PAT:E12758	GB_PA1:33166 GB_BA1:MSU24494	GB_BA1:MTCl376	GD_DATEMOOR	GB_H1G4.AC009133	GB_BA1:PFLEPALEP GB_BA1:MLB1790G	GB_BA1:MTCl376 GB_BA1:BSUB0001	GB_HTG2:HS676J13	GB_HTG2:HS676J13	GB_BA1:MTV012	GB_BA1:STRPAGA
rxa01327 267		rxa01328 498	,	rxa01329 414	rva01344 2647			rxa01355 909	אפ1387 469		rxa01388 255		rxa01398 659	

r 🖍 ,	
ادح	
L	
. או	
ΙĪ	
1	
7	
S	
F-7	
RES	
~	
4	
RE	
_	
5	
•	
Ξ	
4	
=	
$\overline{}$	
~	
=	
7	
_	
75	
$\overline{}$	
_	
~	
_	
- 2	
-	
Ξ	
_	
~	
_	
_	
È	

				IABLE 4: ALIGNATURE			2444.00
4404 444	GB RA2.AF001648	13965	AE001648	Chlamydia pneumoniae section 64 of 103 of the complete genome.	Chlamydophila pneumoniae	44,218	08-MAR- 1999
ttt ctionxi			AE001648	Chlamydia pneumoniae section 64 of 103 of the complete genome.	Chlamydophila pneumoniae	35,520	08-MAR- 1999
rxa01432 1074	GB_BA1:MSGY367	35336	AD000008	Mycobacterium tuberculosis sequence from clone y367.	Mycobacterium tuberculosis	37,869	03-DEC- 1996
	_ GB_BA1:MTV028 GB_BA2:AF023161	11381	AL021426 AF023161	Mycobacterium tuberculosis H37Rv complete genome; segment 162/162. Mycobacterium smegmatis thioredoxin reductase (trxB) and thioredoxin (trxA)	Mycobacterium tuberculosis Mycobacterium smegmatis	61,891 64,105	17-Jun-98 13-OCT- 1997
rxa01433 726	GB_BA2:AF105341	3010	AF105341	genes, complete cds. Listeria monocytogenes threonine dehydratase (thd1) gene, partial cds; alpha acetolactate decarboxylase gene, complete cds; and pyrimidine nucleoside	Listeria monocytogenes	36,254	04-MAR- 1999
	GB_BA2.AF105341	3010	AF105341	phosphorylase (pdp1) gene, partial cds. Listeria monocytogenes threonine dehydratase (thd1) gene, partial cds; alpha acetolactate decarboxylase gene, complete cds; and pyrimidine nucleoside phosphorylase (pdp1) gene, partial cds.	Listeria monocytogenes	35,303	04-MAR- 1999
	ISTOCIONAL DE LA COMPTENZA DE	1290	X69104	C.glutamicum IS3 related insertion element.	Corynebacterium glutamicum	72,823 72,293	9-Aug-95 6-Feb-97
rxa01443 954	GB_PAT:133168	1279	133168	Sequence 4 from patent US 5591577.	Corynebacterium glutamicum		24-Jun-98
	GB_PAT:E12760	1279	E12760	DNA encoding Brevibacterium transposase. Contramicum IS3 related insertion element.	Corynebacterium glutamicum	69,034	9-Aug-95 24-:\lim-98
rxa01444 390	GB_BA1:CGISABL GR_PAT:F12760	1279	E12760	DNA encoding Brevibacterium transposase.	Corynebactenum giutalilicum Unknown		6-Feb-97
	GB_PAT:133168	1279	133168	Sequence 4 from patent US 5591577. Caenorhabditis elegans chromosome III clone Y1A5, *** SEQUENCING IN	Caenorhabditis elegans	36,208	9-Nov-97
rxa01449 1141	GB_H1G1:CEY1A3	190043		PROGRESS ***, in mordered pieces.	Caenorhabditis elegans	36,208	9-Nov-97
	GB_HTG1:CEY1A5	196643	AL008872	Caenomadnis elegans chromosomo in concernation progress ***, in unordered pieces.	Disemodium falcinarum	33,333	28-Jul-99
	GR IN1-PFMAI 3P4	113899	AL008970	Plasmodium falciparum MAL3P4, complete sequence.	Mycobacterium tuberculosis	36,436	17-Jun-98
1014	GB_BA1;MTV002		_	Mycobacterium tuberculosis H37Rv complete genome; segment 122/102.	Streptomyces coelicolor	36,774	25-Feb-99
	GB_BA1:SC9F2	11908 22449	AL035559 X98690	Streptomyces coelicolor cosmid 9F2. S.pristinaespiralis snbC and snbDE genes.	Streptomyces pristinaespiralis	is 41,509	24-MAR- 1997
			172341 AC009583	Homo sapiens chromosome 4 clone 158_C_21 map 4, *** SEQUENCING IN	Homo sapiens	34,102	29-Sep-99
rxa01493 1434	GB_H1G3.AC0095555	172341	AC009583	PROGRESS ***, 17 unordered pieces. Homo sapiens chromosome 4 clone 158_C_21 map 4, *** SEQUENCING IN	Homo sapiens	34,102	29-Sep-99
	GB_H1G3.AC009503	172341			Homo sapiens	35,133	29-Sep-99
rxa01496 3135		43430			Mycobacterium tuberculosis Mycobacterium tuberculosis	39,391	17-Jun-98 03-DEC- 1996
	CD_DA1:MCP506	38426		Mycobacterium leprae cosmid B596.	Mycobacterium leprae	57,989 49,669	27-Aug-99 11-Sep-98
rxa01522 1701	GB_BA2:RHMGLTX	4119		Sinorhizobium meliloti glutamyl-tRNA synthetase (gltX) and lysyl-tRNA synthetase			
		38000	Z85982	(1950) genes, complete complete genome; segment 73/162. Mycobacterium tuberculosis H37Rv complete genome; segment 73/162.	Mycobacterium tuberculosis	38,152	oe-linc-/i

19-Jul-96	19-Jun-97	31-MAY- 1997	23-Jun-99	17-Jun-98	27-Aug-99	1994	17-Jun-98	27-Aug-99	01-MAK- 1994	17-Jun-98	15-Jun-96	9-Sep-98	18-Jun-98	20-Aug-98		18-Jun-98	16-Aug-99	17-Jun-98	2-Jun-98	17-Jun-98	24-Jun-97	29-Sep-94	17-Jun-98	18-Jul-97	3-Aug-99	•	17-Jun-98	03-DEC- 1996	17-Jun-98	9-Aug-95	29-Sep-99	24-Jun-98	9-Aug-95	29-Sep-89	24-Jun-98	66-Inc-27	66-INC-77	
42,333	37,412	42,536	34,868	38,567	53,364	38,498	37,945	51,117	37,513	070 03	58 547	37.479	39,373	36,989		39,220	38,388	53,052	49,393	54,801	39,577	39,476	52,216	52,216	36 145) - - -	36,776	60,525	36,288	76,483	75,574	75,574	67,978	67,857			33,766	
Mis misculus			Homo sapiens	losis		Mycobacterium leprae	Mycobacterium tuberculosis		Mycobacterium leprae		Mycobacterium tubel curosis	Mycobacterium reprac	Mycobacterium tuberculosis			Mycobacterium tuberculosis	Streptomyces coelicolor A3(2)	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Mycobacterium leprae	Mycobacterium leprae	Mycobacterium tuberculosis	te Mycobacterium tuberculosis		Homo sapiens	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Corynebacterium glutamicum	Unknown.	Corynebacterium glutamicum	Corynebacterium glutamicum	Unknown.	Corynebacterium glutamicum	Schizosaccharomyces pombe	Schizosaccharomyces pombe	
TABLE 4: ALIGNMENT RESULTS	mg38a12.r1 Soares mouse embryo NbME13.5 14.5 Mus musculus curva con e IMAGE:426046 5', mRNA sequence.	Human chromosome 11 146h12 cosmid, complete sequence. Mus musculus polycystic kidney disease 1 protein (Pkd1) mRNA, complete cds.	Homo sapiens chromosome 18 clone 563_1_8 map 18, *** SEQUENCING IN	PROGRESS ***, 6 unordered pieces.	Mycobacterium tuberculosis no riv complete general regions	Mycobacterium lepiae Cosmid D1200. Mycobacterium leprae cosmid B1177.		Mycobacterium tuberculosis H37Rv complete genome; segment 114/102.	Mycobacterium leprae cosmid B1259. Mycobacterium leprae cosmid B1177.		Mycobacterium tuberculosis H37Ry complete genome; segment 73/162.	Mycobacterium leprae cosmid B1133 DNA sequence.	Streptomyces coelicolor cosmid 135.	Mycobacterium tuberculosis H37Rv complete genome; segment 144/162.	CIT-HSP-2367E24.TR CIT-HSP Homo sapiens genomic clone 2307 E24; genomic	survey sequence.	Mycobacterium tuberculosis no rivers general; 23	Streptomyces coelicolor cosmid 151.	Mycobacterium tuberculosis H3/RV complete genome, segment in the	M.tuberculosis TlyA gene.	Mycobacterium tuberculosis H3/RV complete genome, 30gmcm	Mycobacterium leprae cosmid B1351.	Mycobacterium leprae cosmid L247.	Mycobacterium tuberculosis H37Rv complete genome, seginem 124, 192.	Mycobacterium tuber ourous gradament or our our our our our our our our our	, _	_	Mycobacterium tuberculosis H3/RV complete genome, 3cgmcm, 2cm, 2cm, 2cm, 2cm, 2cm, 2cm, 2cm,		Mycobacterium tuberculosis H37Rv complete genome, segment 10 // 102.	C.glutamicum IS3 related insertion element.			C.glutamicum IS3 related insertion element.		DNA encoding Brevibacienum dansposaso.	S. pombe chromosome I cosming of 7A2. S. pombe chromosome I cosmid c17A2.	
	AA002902	U73633 U70209	AC007903		277724	AL023591 U00011		277724	AL023591	110000	785087	1 78811	AI 031541	AL009198	AQ077749		AL009198	AL109848	Z98268	X98295	Z98268	295117	U00021	Z95207	AF002193	AC008675		Z94121 AD000008		Z94121	X69104	AR038104	E12760	X69104	AR038104	E12760	Z99292 Z99292	
	396	42845	-			38807	2	35946	38807	40479	00000	30000	40909	69350	538		69350	40745	37432	2544	37432	38936	39193	20270	1812	206439		38204	00000	38204	1290	1279	1279	1290	1279	1279	36642	1
	GB_EST8:AA002902	GB_PR2:HSU73633	GB_RO:MING: 0223		GB BA1:MTCY227	GB_BA1:MLCB1259	GB_BA1.000011	CB BA1-MTCY227	GB_BA1:MLCB1259	GB_BA1:U00011	771 100000	GB_BA1:MICYUBHII	GB_BA1:MSGB1135C3	GB_BAT:SCISS	GB_GSS8:AQ077749	t	GB BA1:MTV004	GB_BA1:SCI51	GR BA1:MTC1125	GR BA1:MTHYPROT	GR_BA1:MTCI125	CB_BA1:MI CB1351	GB_BA1-1100021	GB_BA1:MTCY24A1	GB_BA1:AF002193	GB HTG3:AC008675		GB_BA1:MTY15F10	GB_BA1:MSGY36/	OB BA4-MTV15E10	GB_BA1.MITTSTO	CP_DAT-AR038104	GB_PAT:E12760	GB BA1 CGISABL	GB_PAT:AR038104	GB_PAT:E12760	GB_PL2:SPAC17A2	68_PLZ.3FAU1.02
		rxa01556 872			rxa01558 1332			4066	2			rxa01582 1212		0010	rxa01583 2400			2001 4001	1X401330 1305		1035	rxan ion ion		rxa01613 1338				rxa01621 1563				rxa01646 492		5.000 EA3			rxa01650 237	

12-Aug-98 9-Aug-95 29-Sep-99 6-Feb-97 7-Jan-98 7-Feb-99 30-Nov-99	03-MAR-	1999 03-MAR-	1999 16-Apr-99	18-Jun-98	28-Nov-98	17-Aug-99	09-MAR- 1995	17-Jun-98	20-MAY- 1999	17-Jun-98	09-MAK- 1995 0 lon 06	9-Jan-95 17-Jun-98	09-MAR- 1995	1-Feb-96	17-Jun-90 27-Aug-99	22-Jul-98	26-Aug-97	12-Feb-97	29-OCI- 1999	18-Jun-98 22-Jun-99	
30,804 69,643 67,265 67,265 36,186 37,814 41,759	40 187	40,187	38,667	56,309	51,357	50,728	37,412	47,819	37,236	75,610	39,355	63,303 72 899	37,500	69,065	39,943 65 120	40.715	52,740	52,277	36,601	38,918 34 894	
Saccharomyces cerevisiae Corynebacterium glutamicum Unknown. Serratia marcescens Synechocystis sp. Homo sapiens		Homo sapiens		M.cohacterium tuberculosis		Drosophila melanogaster	Mycobacterium leprae	Management of the coulosis	Homo sapiens	Mycobacterium tuberculosis	Mycobacterium leprae	Pseudomonas fluorescens	Mycobacterium leprae	Streptomyces lividans	Mycobacterium tuberculosis	Mycobacterium lepiae	Mycobacterium smegmatis 3, Mycobacterium smegmatis	Mycobacterium smegmatis	Homo sapiens	Mycobacterium tuberculosis	Candida albicaris
S.cerevisiae chromosome IV reading frame ORF YDR012w. C.glutamicum IS3 related insertion element. Sequence 9 from patent US 5804414. Sequence 4 from patent US 5591577. Serratia marcescens DNA gyrase (gyrA) gene, complete cds. Serratia marcescens DNA gyrase (gyrA) gene, remplete cds. Synechocystis sp. PCC6803 complete genome, 4/27, 402290-524345. Synechocystis sp. PCC6803 complete genome, 4/27, 402290-524345. PROGRESS ***, in unordered pieces.		Homo sapiens chromosome 21 clone J12100; E0479 map 21q22.1,	Homo sapiens chromosome 21 clone J12100; E0479 map 21q22.1, ***SEQUENCING IN PROGRESS ***, in ordered pieces.	Homo sapiens clone NH0004812, To SECCENCIAC IN TO SECUE AND SECUE	ulturarez prozes. Mycobacterium tuberculosis H37Rv complete genome; segment 118/162.	LD20282. Sprinte LD D035 pm. Common mRNA sequence. melanogaster cDNA clone LD20282 pm. metanogaster cDNA clone LD20282 pm. tsetts lineary Drosophila melanogaster	bs04b04.y1 Drosophila melanogastel adult tosta more, cDNA clone bs04b04.5; mRNA sequence.	Mycobacterium leprae cosmiu L4711.	Mycobacterium tuberculosis H37Rv complete genome; segment 57/162.	Homo saplens unfuriosome 15 companies processing the processing th	Mycobacterium tuberculosis H37Rv complete genome; segment 57/102. Mycobacterium leprae cosmid L471.	sometimes of the name of the control	Pseudomonas inudescens in 3 grant Mycobacterium tuberculosis H37Nc complete genome; segment 57/162.	Mycobacterium reprae cosmic z.v.	S. lividans Rho gene.	Mycobacterium luber curiosis i priving compression i priving priving logical p	Mycobacterium leprae cooming Mycobacterium leprae App and antigen T5 genes, complete cds. Mycobacterium leprae ASPS and antigen T5 genes, complete cds. gyrB, and applead to the complete cds.	M.smegmaus origin or options of the second o	Symmetris gyrB and gyrA genes. Homo sapiens chromosome unknown clone NH0449L24, WORKING DRAFT Homo sapiens chromosome unknown clone NH0449L24, WORKING	SEQUENCE, in unordered pieces.	Mycobacterium tubercurass in other complete cds. Candida albicans folylpolyglutamate synthetase (fpgs) gene, complete cds.
Z74308 S X69104 C AR038104 S 133168 S U56906 S D90902 S		195012 AF129075	AF129075	AC007271	Z80225	AA540562	AI944677	U15186	Z73419	AC007608	Z73419 U15186		L27278 Z73419	U15186	X95444	Z77724	AL023591 S82268	X92503	X94224		AL021646 AF156928
2732 Z 1290 X 1279 A 1279 I 1279 I 122056 I 144277 A		195012	195012	184269	35187	695	580	36241	35516	170057	35516	306	1479 35516	36241	2986		38807 2209	10430	6000	r CCC / -	58280 2290
GB_PL1:SCYDR012W GB_BA1:CGISABL GB_PAT:AR038104 GB_PAT:33168 GB_BA2:SMU56906 GB_BA1:D90902 GB_HTG2:HSDJ816K9		GB_HTG2:AF129075	GB_HTG2:AF129075	GB_HTG2:AC007271	GB BA1:MTCY441	GB_EST16:AA540562	GB_EST37:A1944677	GB_BA1:MLU15186	GB BA1:MTCY373	GB_HTG2:AC007608	GB_BA1:MTCY373	GB_BA1:MLU15186	GB_BA1:PSERHO GB_BA1:MTCY373	GB_BA1:MLU15186	GR BA1:SLRHOGENE	GB_BA1:MTCY227	GB_BA1:MLCB1259 GB_BA2:S82268	GB_BA1:MSORIREP	GB_BA1:MSGYRBA	GB_HTG4:AC010890	GB_BA1:MTV014 GB_PL2:AF156928
гка01651 258 гка01670 930	гха01680	rxa01704 1100			531	LXao I I I I		rxa01724 1343			rxa01725 330		909 9077000			1804	DC LIDBY	rxa01733 1274			rxa01736 2891

Ħ
ſIJ
LĎ
=
, com.
o
1
m

23-MAR-	1999 8-Jul-99	05-OCT- 1999	05-OCT- 1999	14-Apr-99	6-Feb-99	6-Feb-99	28-001- 14-Jul-97		14-Jul-97	23-Jul-99	2-Aug-99	2-Aug-99	26-Feb-99	26-Feb-99	,	17-Jun-98	66-091-07	25-Feb-99	25-MAY-	1999 25-Jun-98		04-MAY- 1998	17-Jun-98	27-Aug-99
39,085	38 054	35,147	35,147	36,270	38,450	59,052	34,8 <i>77</i> 40,166		33,989	35,032	35,197	35,197	36,852	39,646		53,182	34,783	34,783	37,395	900	44,020	38,382	38,378	59,574
S. sonions	y closite of	Streptomyces coelicolor Homo sapiens	Homo sapiens	Corynebacterium glutamicum	Flavobacterium sp.		Mitochondrion Echinococcus Sulfolobus solfataricus		Sulfolobus solfataricus	Caparbahditis elegans	Caellolliabours Cogano Drosophila melanogaster 92	Drosophila melanogaster 92	Pseudomonas syringae	Deaudomonas svringae		Mycobacterium tuberculosis	Caenorhabditis elegans	Caenorhabditis elegans	Actinobacillus		3. Mus musculus	Homo sapiens	Mycobacterium tuberculosis	Mycobacterium leprae
	RPCI-11-16784.TJ RPCI-11 Homo sapiens genomic clone RPCI-11-16784,	genoning survey sequence. Streptomyces coelicolor cosmid GD3. Homo sapiens chromosome 14 clone R-976B16, *** SEQUENCING IN	PROGRESS ***, in ordered pieces. Homo sapiens chromosome 14 clone R-976B16, *** SEQUENCING IN	PROGRESS ***; in ordered pieces. Conynebacterium glutamicum strain 22243 R-plasmid pAG1, complete sequence.		Flavobacterium sp. plasmid pOAD2 DNA, whole sequence.	Flavobacterium sp. plasmid pOADZ DNA, whole sequence. Echinococcus multilocularis mitochondrial DNA, complete genome. Sulfolobus solfataricus leucyl-IRNA synthetase (leuS) gene, partial cds, histidine complete complete proprietations in the complete compl	and hisl) genes, complete cds and seryl-tRNA synthetase (serS) gene, partial cds.	Sulfolobus solfataricus leucyl-tRNA synthetase (leuS) gene, partial cds, histidine biosynthesis operon hisCGABdFDEHI, (hisC, hisG, hisBd, hisF, hisD, hisE, hisH and hisl) nenes, complete cds and seryl-tRNA synthetase (serS) gene, partial cds.		Caenorhabditis elegans cosmid F08G5, complete sequence. Drosophila melanogaster chromosome 3 clone BACR01C11 (D819) RPCI-98 ort C.11 map 84D-84D strain y; cn bw sp. *** SEQUENCING IN PROGRESS***, 9	unordered pieces. Drosophila melanogaster chromosome 3 clone BACR01C11 (D819) RPCI-98 Drosophila melanogaster chromosome 3 clone BACR01C11 (D819) RPCI-98	unordered pieces.	Pseudomonas syringae DNA, tite leit outstud of tito in the international strain; KW11.	Pseudomonas syringae DNA, the left outside of the hrpL homology region, strain:KW11.	114/162.	Mycobacterium tuberculosis H3/RV culthree general, cognition in PROGRESS ***, 32 Caenorhabditis elegans clone Y47D7, *** SEQUENCING IN PROGRESS ***, 32	unordered pieces.	Caenorhabditis elegans clone 14707, Caracarana unordered pieces.	Actinobacillus actinomycetemcomitans rough colony protein A (1047) gene;	complete cds. C76899 Mouse 3.5-dpc blastocyst cDNA Mus musculus cDNA clone J0022E02 3'	Similar to M.musculus DNA for LINE-1 or L1 element, mkNA sequence.	Homo saplens Duo ilirara, compress des	Mycobacterium tuberculosis H37Rv complete genome, segriterir 1147 102. Mycobacterium leprae cosmid B1259.
	AQ421204	AL096822 Al 121768				D26094	D26094 AB018440 U82227		U82227		Z70682 AC008029	123186 AC008029		AB023076	AB023076		Z77724 AC006779		AC006779	AF139249	0.76899		U94190	Z77724 AL023591
	483 A	33779 A		222193 7		45519	45519 13738 8313		8313		32784 123186	123186		4953	4953		35946	790611	119562	1383	603	3	6469	35946 38807
	GB_GSS12:AQ421204	GB_BA1:SCGD3	GB_HIGT:CNS01DSB	GB_HTG1:CNS01DSB	GB_BA2:AF121000	CB RA1-FVBPOAD2A	GB_BA1:FVBPOAD2A GB_IN1:AB018440 GB_BA1:SSU8227		GB_BA1:SSU82227		GB_IN1:CEF08G5 GB_HTG2:AC008029	GB_HTG2:AC008029		GB_BA1:AB023076	GB_BA1:AB023076		GB_BA1:MTCY227	GB_HTG2:AC006779	GB_HTG2:AC006779	GB BA2:AF139249		GB_ES117:C/0033	GB_PR3:U94190	GB_BA1:MTCY227 GB_BA1:MLCB1259
	J	rxa01737 1182 C	-		rxa01784 705 (rxa01798 373				rxa01818 1110			rxa01819 570		4	rxa01837 900	•		cx=01841 486				rxa01852 1410

Ø)
ات
NT RESULTS
3
1
\overline{z}
-
7
NMENT
=
\geq
Z
O
IGNMEN
LIGN
~
4: 7
(-)
TABLE
_
.▼

	GB BA1:U00011	40429	U00011	Mycobacterium leprae cosmid B1177.	Mycobacterium leprae	37,690	01-MAR- 1994
rxa01862 1329	GB_BA1:RLDCTA GB_BA1:RLDCTBD	5820 3360	Z11529 X06253	arboxylate	Rhizobium leguminosarum Rhizobium leguminosarum	39,401 39,401	23-Sep-92 12-Sep-93
rxa01863 1219	_ GB_BA1:RLDCTA GB_BA1:BSUB0005 GB_BA1:D83967	5820 208430 22197	Z11529 Z99108 D83967	transport. R.leguminosarum dctA gene encoding C4-dicarboxylate permease. Bacillus subtilis complete genome (section 5 of 21): from 802821 to 1011250. Bacillus subtilis genomic DNA, 74 degree region.	Rhizobium leguminosarum Bacillus subtilis Bacillus subtilis Staphylococcus aureus	39,269 35,673 57,261 99,595	23-Sep-92 26-Nov-97 20-Nov-97 26-Apr-93
928	GB_GSS15:AQ651661	300 422 175	M20393 AQ651661 AQ639444	brucei genomic clone c clone 927P1-17G6, genomic	Trypanosoma brucei Trypanosoma brucei	42,034 51,786	22-Jun-99 8-Jul-99
гха01878 1002	GB_HTG3:AC009919 GB_HTG1:CEY64F11	134724			Homo sapiens Caenorhabditis elegans Caenorhabditis elegans	37,222 37,564 37,564	8-Sep-99 14-OCT- 1998 14-OCT-
	GB_HTG1:CEY64F11 GB_HTG1:CEY64F11	177748	97766Z		Caenorhabditis elegans	37,576	1998 14-0CT- 1998
948	GB_BA1:MTCY274 GB_BA1:SC2E1 GB_BA2:AF130345	39991 38962 965	Z74024 AL023797 AF130345	PROGRESS ***, in unordered pieces. Mycobacterium tuberculosis H37Rv complete genome; segment 126/162. Streptomyces coelicolor cosmid 2E1. Streptomyces ramocissimus elongation factor Ts (tsf) gene, complete cds.	Mycobacterium tuberculosis Streptomyces coelicolor Streptomyces ramocissimus	39,631 58,226 58,009	19-Jun-98 4-Jun-98 15-OCT- 1999
rxa01938 1551	GB_BA1:MTCY24A1 GB_GSS1:CNS00WZY	20270 720	Z95207 AL094252	Mycobacterium tuberculosis H37Rv complete genome; segment 124/162. Arabidopsis thaliana genome survey sequence SP6 end of BAC T12O8 of TAMU library from strain Columbia of Arabidopsis thaliana, genomic survey sequence.	Mycobacterium tuberculosis Arabidopsis thaliana	38,976 54,028	17-Jun-98 28-Jun-99
	GB_PR2:AP000056	100000	AP000056	Homo sapiens genomic DNA, chromosome 21q22.1, segment 27/28, complete senience		36,967	20-Nov-99
504	GB_BA1:MSGTNP	2276	M76495	Mycobacterium smegmatis insertion element tnpR and tnpA genes, complete cds.	Mycobacterium smegmatis	38,133	06-1dV-07
	GB_BA2:E12PHEAB	6164	M57500	Plasmid pEST1226 putative transposase (tnpA), catechol 1,2-dioxygenase (pheB), phenol monooxygenase (pheA), and putative transposase (tnpA) genes, complete	Plasmid pEST1226	56,338	21-OCT- 1998
	GB_PR2:HS179N16	172048	Z95152	cds. Homo sapiens DNA sequence from PAC 179N16 on chromosome 6p21.1-21.33. Homo sapiens DNA sequence from PAC 179N16 on chromosome 6p21.1-21.33. Contains the SAPK4 (MAPK p38delta) gene, and the alternatively spliced SAPK2 gene coding for CSaids binding protein CSBP2 and a MAPK p38beta LIKE protein gene coding for S3s and two predicted CpG islands, complete sequence.	Homo sapiens	34,490	23-Nov-99
rxa01954 963	GB_BA1:SC4H8	15560	AL020958	Streptomyces coelicolor cosmid 4H8.	Streptomyces coelicolor	37,960	10-DEC- 1997
	GB_GSS3:B91274	183	B91274	CIT-HSP-2168G14.TF CIT-HSP Homo sapiens genomic clone 2168G14, genomic Homo sapiens survey sequence.	. Homo sapiens	36,066	25-Jun-98

TABLE 4: ALIGNMENT RESULTS

				TABLE 4: ALIGNMENT RESULTS			
	GB BA1.SC4H8	15560 /	AL020958	Streptomyces coelicolor cosmid 4H8.	Streptomyces coelicolor	39,457	10-DEC- 1997
rxa01975 2019	922		U13922	Corynebacterium glutamicum putative type II 5-cytosoine methyltransferase (cgIIM)Corynebacterium glutamicum and putative type II restriction endonuclease (cgIIR) and putative type III		09,950	3-Feb-98
	GB_BA1:SPSNBCDE	22449	Y11548 X98690		Streptomyces pristinaespiralis Streptomyces pristinaespiralis	36,657 36,657	25-Apr-97 24-MAR- 1997
rxa01998 831			AF121000	Corynebacterium glutamicum strain 22243 R-plasmid pAG1, complete sequence. (Corynebacterium glutamicum	40,520	14-Apr-99
	_ GB_BA2:AF121000	19751	AF121000	Corynebacterium glutamicum strain 22243 R-plasmid pAG1, complete sequence. (Corynebacterium glutamicum	54,699	14-Apr-99
rxa02002 478	2A	45519 2140 11650	D26094 D50496 U32846	Flavobacterium sp. plasmid pOAD2 DNA, whole sequence. Salmonella typhimurium gene for peptide release factor 3/RF3, complete cds. Haemophilus influenzae Rd section 161 of 163 of the complete genome.	Flavobacterium sp. Salmonella typhimurium Haemophilus influenzae Rd	38,562 53,289 47,265	6-Feb-99 10-Feb-99 29-MAY- 1998
	GB_BA2:AF072440	4316	AF072440	 spene, partial cds; glutamine synthetase (ntrB) genes, complete cds; and nitrogen 	Enterobacter gergoviae	37,284	30-0C1- 1998
rxa02015 619	GB_PL2:AF015560	2681	AF015560 AQ497173	regulatory protein (ntrC) gene, partial cds. Neurospora crassa RO11 (ro-11) gene, complete cds. HS 5193 B2 A10_T7A RPCI-11 Human Male BAC Library Homo sapiens	Neurospora crassa Homo sapiens	38,953 37,086	3-Sep-97 28-Apr-99
	GB PL1:SPAC27D7	35892	AL009227	genomic clone Plate=769 Col=20 Row=B, genomic survey sequence. S.pombe chromosome I cosmid c27D7.	Schizosaccharomyces pombe	39,016	25-MAR- 1999
rxa02025 774	GB_BA1:ECOUW93 GB_BA2:AE000493	338534 10819		Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes. Escherichia coli K-12 MG1655 section 383 of 400 of the complete genome.	Escherichia coli Escherichia coli Escherichia coli	39,108 39,108 50,329	17-Apr-96 12-Nov-98 26-Apr-93
rxa02065 771	GB_BA1:ECOPMSR GB_BA2:MSU87307	1270 1520	M89992 U87307	Escherichia con pepude metinomic Society of the strategies and the strategies of the strategies and the strategies and the strategies are strategies are strategies and the strategies are strategies are strategies and the strategies are strategies are strategies and the strategies are strategies and the strategies are strategies are strategies are strategies are strategies are strategies and the strategies are strategies are strategies and the strategies are str	:)Mycobacterium smegmatis	59,533 57,833	07-MAT- 1997 17-Jun-98
	GB_BA1:MTCl61 GB_BA2:MTU87242	13540 3690	298260 U87242	Mycobacterium tuberculosis H37Rv complete genome; segment 53/162. Mycobacterium tuberculosis sigma factor SigE (sigE) and HtrA (htrA) genes, mycobacterium tuberculosis sigma factor SigE (sigE) and HtrA (htrA) genes, complete celes.	Mycobacterium tuberculosis Mycobacterium tuberculosis	57,833	08-MAY- 1997 17- Lin-98
rxa02078 981	GB_BA1:MTCY338 GB_BA1:MLCB1243 GB_BA1:MSGB1723CS		Z74697 AL023635 L78825	Complete Cas. Mycobacterium tuberculosis H37Rv complete genome; segment 127/162. Mycobacterium leprae cosmid B1243. Mycobacterium leprae cosmid B1723 DNA sequence. Mycobacterium leprae cosmid B1723 DNA sequence.	Mycobacterium tuberculosis Mycobacterium leprae Mycobacterium leprae Homo sapiens	38,050 53,733 53,733 39,928	27-Aug-99 15-Jun-96 9-Jun-98
rxa02110 741	GB_EST20:AA894760 GB_EST38:AL119293	323	AA694700		Homo sapiens	34,579	27-Sep-99
	GB_PR3:HSJ1031J8	155213	3 AL118523	UNEQUALITY OF THE WAY CONTROL OF THE PRE-1031J8 on chromosome 20, complete sequence.	Homo sapiens	32,341 63.215	1999 17-Jun-98
гха02167 1383 гха02174 477	GB_BA1:MTCI125 GB_BA1:MLCB1351 GB_BA1:U00021 GB_BA1:CGGLTG	37432 38936 39193 3013	Z98268 Z95117 U00021 X66112	Mycobacterium tuberculosis H37Rv complete genome; segment 76/162. Mycobacterium leprae cosmid B1351. Mycobacterium leprae cosmid L247. C.glutamicum glt gene for citrate synthase and ORF.	Mycobacterium leprae Mycobacterium leprae Corynebacterium glutamicum		24-Jun-97 29-Sep-94 17-Feb-95

Ø)i
ESOL
ध्य
~
Z
\mathbb{E}
Σ
Z
9
\Box
K
÷
(-)
=======================================
<u> </u>
\

13lan-99	13-Jan-99	00	17-Jan-97	12-Nov-98 3-Jul-99	5	3-Jul-99	3-Aug-99	;	4-Aug-98 23-Jun-98	5-Nov-98	18-MAY- 1999	18-MAY-	1999	9-Sep-96	12-MAR- 1999	09-MAR-	23-Jun-98	6-Feb-97 03-OCT-	1997 (Rel. 52 Created)		15-UEC- 1995	25-Aug-93 7-Jan-99		24-0CI- 1998	19-Nov-99	
27 528		·	39,846 47,528	47,528		39,051	31,957		63,908 58 957	40,639	46,903	38,445		40,313	40,431	45,775	63,017	66,077	70,00	,	100,000	100,000	200	41,505	40,719	
	Homo sapiens Homo sapiens 40		Mycobacterium tuberculosis 3 Escherichia coli 4		Homo sapiens	Homo sapiens	Drosophila melanogaster			Mycobacterium tubercurosis Phodococcus equi		Danio rerio		Mus musculus	Mus musculus	Mus musculus	Mycobacterium tuberculosis	Unknown.	Corynebacterium ammoniagenes		Corynebacterium glutamicum		Corynebacterium giutamicum	Homo sapiens	Homo sapiens	
TABLE 4: ALIGNMENT RESULTS	Homo sapiens 8q21.3: RICK gene, complete sequence. Homo sapiens 8q21.3: RICK gene, complete sequence.		ne; segment 95/162.	ē	N S	PROGRESS ***, 25 unordered pieces.	PROGRESS ***, 25 unordered pieces.	Drosophila melanogaster chromosome 3 dune DACA Third (2007) 2007 14.H.24 map 92A-92A strain y; cn bw sp. *** SEQUENCING IN PROGRESS***, 91	unordered pieces.	Mycobacterium tuberculosis H37Rv complete genome; segment 62/162.	Rhodococcus equi strain 103 plasmid RE-VP1 fragment f.	TR:093510 093510 HOMOGENIN.; mRNA sequence.	fc24h04.y1 Zebrafish WashU MPIMG EST Danio reno cUNA 5 siriliar to TR:093510 093510 HOMOGENIN.;; mRNA sequence.	mi20f12 r1 Soares mouse embryo NbME13.5 14.5 Mus musculus cDNA clone	INJECT. TATABLE STATES TO THE SEQUENCE. INDEX.47 68-47 68-75, mRNA sequence. INDEX.47 68-78-78 mailse embryo NbME13.5 14.5 Mus musculus cDNA clone	Injentizy 1 30ato 1 100ato 1 1	mj20f12.x1 Soares mouse embryo remainer and migration in IMAGE:476687 3', mRNA sequence.	Mycobacterium tuberculosis H37Ry complete genome, segment ozi roz.	Sequence I from parent of soccess. Corynebacterium ammoniagenes DNA for rib operon, complete cds.		C. clutamicum phosphoenolpyruvate carboxylase gene, complete cds.	Collection and dene for phosphoenol pyruvate carboxylase.	Ciguralincum pry some of processing and gene, and gene, ocd gene and 5' corynebacterium glutamicum 3' ppc gene, secG gene, amt gene, ocd gene and 5'	SoxA gene. CITBI-E1 Homo sapiens genomic clone 2509J2, genomic	Survey sequence.	Homo sapiens clone RP11-546D14, *** SECUENCING IN 1100 CLOSE Unordered pieces.
	AF117829 H AF117829 H		797559	-	AE000158 AC007962		AC007.902	131230 AC008363		780108	AF077324	AI667039	AI667039	0.050680	00000000	A1509997	AI426148	Z80108	132742 AB003693		M25819		A09073 AJ007732	397000	AU202100	233854 AC006209
	320250 A 320250 A		, 66576	_	10143 /		172091	131230	,	1458 39150	5228	548	548	7	clc c	372	445	39150	5589 5589		4005	5	4885 4460		288	23385
	GB_PR4:AF117829 GB_PR4:AF117829				GB_BA2:AE000158	GB_H162.AC007302	GB_HTG2:AC007962	GB_HTG3:AC008363		GB_BA2:MSU75344	GB_BA1:M1CY21B4 GB_BA2:AF077324	GB_EST30:AI667039	GB_EST30:AI667039		GB_EST8:AA050680	GB_EST28:AI509997	GB_EST27:Al426148	GB BA1:MTCY21B4	GB_PAT:132742 EM_BA1:AB003693	ı		GB_BA1:CORPEPC	GB_PAT:A09073		GB_GSS11:AQ262166	GB_HTG5:AC006209
		rxa02182		rxa02204 1383		rxa02228 1026				rxa02236 441		rxa02242 630			rxa02243 1068			rva02252 1544			\	rxa02260 354			rxa02290 522	

M
N
Ш
5
<u>o</u>
M
Ī.

4-Apr-99 11-MAR- 1999	21-0CF- 1999 21-0CF- 1999	27-Apr-93 2-Sep-99 28-MAY- 1996 18-MAY-	1999 2-Aug-99	29-Nov-98 11-Aug-98	09-DEC- 1998 13-Feb-99	2-Jun-99 03-OCT- 1999 03-OCT- 1999 15-Jun-96	17-Jun-98 11-Jun-99 17-Jun-98 15-Jun-96	9-Sep-90 27-Aug-99 17-MAY- 1999 17- lin-98	29-Aug-97 15-Jun-99 23-Nov-99	
38,606	36,471 36,471	37,168 39,638 38,454 38,382	39,236	36,519 35,082	36,270 36,970	36,442 36,442 36,442 65,083	66,278 39,079 62,899 66,473		63,2/4 62,719 40,237 37,409	
Ecotropis obliqua nuclear polyhedrosis virus Arabidopsis thaliana	Homo sapiens Homo sapiens	Kluyveromyces lactis Botryotinia fuckeliana Homo sapiens Gallus gallus	Drosophila melanogaster 6	Drosophila melanogaster Rattus norvegicus	s. Homo sapiens Homo sapiens	Homo sapiens Homo sapiens Homo sapiens	Mycobacterium toperculosis Mycobacterium toperculosis Streptomyces coelicolor Mycobacterium tuberculosis Mycobacterium leprae	Streptomyces coelicolor Mycobacterium leprae Mycobacterium tuberculosis Arabidopsis thaliana	Mycobacterium tuberculosis Mycobacterium leprae Streptomyces coelicolor Homo sapiens	
TABLE 4: ALIGNMENT RESULTS Ecotropis obliqua nuclear polyhedrosis virus ecdysteroid UDP-glucosyltransferase gene, complete cds. Arabidopsis thaliana DNA chromosome 4, BAC clone F17M5 (ESSA project).	Homo sapiens chromosome 12p12-21.8-27.2 clone RPCI11-757G14, ***SEQUENCING IN PROGRESS ***, 142 unordered pieces.	Homo saptens canonicoents. ***SEQUENCING IN PROGRESS ***, 142 unordered pieces. K.lactis ER lumen protein retaining receptor (ERD2) gene, complete cds. Botrytis cinerea strain T4 cDNA library under conditions of nitrogen deprivation. H.sapiens mRNA for axonal transporter of synaptic vesicles.	Gallus gallus substance P receptor (ASPR) mRNA, complete cus. Drosophila melanogaster chromosome 3 clone BACR03E11 (D818) RPCI-98 Drosophila melanogaster chromosome 3, con bw sp. *** SEQUENCING IN PROGRESS***, 76	unordered pieces. CK00013.3prime CK Drosophila melanogaster embryo BlueScript Drosophila Relanogaster cDNA clone CK00013 3prime, mRNA sequence. melanogaster cDNA clone CK00013 sprime, mRNA sequence. Pattis novecicus mRNA for brain-specific synapse-associated protein, Bassoon.	Homo sapiens neuronal double zinc finger protein (ZNF231) mRNA, complete cds. Homo sapiens Homo sapiens	Homo sapiens KIAA0434 mRNA, partial cds. Homo sapiens chromosome 4 clone C0162P16 map 4p16, complete sequence. Homo sapiens clone 5_C_3, LOW-PASS SEQUENCE SAMPLING. Homo sapiens clone 5_C_3, LOW-PASS SEQUENCE SAMPLING.	Mycobacterium leprae cosmid B1133 DNA sequence. Mycobacterium tuberculosis H37Rv complete genome; segment 73/162. Streptomyces coelicolor cosmid C54. Mycobacterium tuberculosis H37Rv complete genome; segment 73/162.	Mycobacterium leprae cosmid B1133 DNA sequence. Streptomyces coelicolor cosmid 135. Mycobacterium leprae cosmid B1788. Mycobacterium leprae cosmid B1788. Mycobacterium tuberculosis H37Rv complete genome; segment 83/162. Arabidopsis thaliana chromosome I BAC F3F20 genomic sequence, complete	sequence. Mycobacterium tuberculosis H37Rv complete genome; segment 2/162. Mycobacterium leprae cosmid B1770. Mycobacterium leprae cosmid H69. Streptomyces coelicolor cosmid H69. Human DNA sequence from clone 864118 on chromosome 1p36.11-36.33. Contains ESTS, STSs, GSSs, genomic marker D1S2728 and a ca repeat	polymorphism, complete sequence.
AF107100 E		AC007621 M34844 AL112874 X90840	1875 AF131057 110418 AC008225	AA142237	7.16563 AF052224	AB007894 AC007102 AC011214 AC011214	L78811 Z85982 AL035591 785982			
2335 Ai	10	335275 A 1248 N 720 A 6972 X	1875 <i>f</i> 110418 /		12507 15964	5650 176258 183414 183414	42106 38000 30753	42106 40909 39228 30850 103223	39160 37821 35824 106018	
		GB_HTG4:AC007621 GB_PL1:YSKERD2A GB_PL2:CNS01AFM GB_PR1:HAAXTRSYV	GB_OV:AF131057 GB_HTG2:AC008225	GB_EST10:AA142237	GB_RO:RNY16563 GB_PR4:AF052224	GB_PR1:AB007894 GB_PR4:AC007102 GB_HTG3:AC011214 GB_HTG3:AC011214	GB_BA1:MSGB1133CS GB_BA1:MTCY06H11 GB_BA1:SCC54	GB_BATIMICTUGETTI GB_BATISCISS GB_BATISCISS GB_BATIMICB1788 GB_BATIMICY1411	GB_RLZ.ACOOT 153 GB_BA1:MTCY10H4 GB_BA1:MLCB1770 GB_BA1:SCH69 GB_PR3:HS864118	
	rxa02291 777 (гха02323 1047	та02386 582		rxa02388 1785	rxa02413 615		rxa02418 690 rxa02429 2346	rxa02436 684 rxa02445 1812	

23-Nov-99	15-Jul-99	17-Jun-98 1-Jan-98 07-OCT- 1997 (Rel. 52, Created)	17-Jun-98 3-Sep-98 13-Feb-99	30-Jun-99 30-Jun-99	01-OCT- 1999	10-DEC- 1996	01-OCT- 1999	17-Jun-98 24-Jun-97	17-Jun-98	27-749-33 04-DEC- 1998	29-Jun-98	28-Sep-99	28-Sep-99	07-OCT-	1-Jun-99	30-MAR-	1999
38,679	57,085	35,534 36,591 99,528	38,632 68,353 97,309	39,959 39,959	36,965	38,198	35,839	38,806	39,036	47,284 39,180	42,638	36,234	36,234	36,222	35,191	38,723	
Homo sapiens	Mycobacterium smegmatis	Mycobacterium tuberculosis Homo sapiens Corynebacterium glutamicum	Mycobacterium tuberculosis Mycobacterium bovis Brevibacterium saccharolyticum		Homo sapiens	Mycobacterium tuberculosis	Homo sapiens	Mycobacterium tuberculosis	Mycobacterium leprae Mycobacterium tuberculosis	Mycobacterium leprae Mus musculus	Citrus unshiu	Homo sapiens	Homo sapiens	Homo sapiens	Homo sapiens	48 Homo sapiens	-
TABLE 4: ALIGNMENT RESULTS Human DNA sequence from clone 864118 on chromosome 1p36.11-36.33. Contains ESTs, GSSs, genomic marker D1S2728 and a ca repeat	polymorphism, complete sequerice. Mycobacterium smegmatis catechol 1,2-dioxygenase (catA) gene, partial cds; Mycobacterium smegmatis catechol and signal factor SigH (sigH) genes, complete	muconolactone isoliterase (vacc) and ognores. cds; and unknown genes. Mycobacterium fuberculosis H37Rv complete genome; segment 138/162. SHGC-56623 Human Homo sapiens STS cDNA, sequence tagged site. gDNA encoding secA protein.	Mycobacterium tuberculosis H37Rv complete genome; segment 139/162. Mycobacterium bovis SecA (secA) gene, complete cds. Brevibacterium saccharolyticum gene for L-2.3-butanediol dehydrogenase,	complete cds. Homo sapiens chromosome 17 clone hRPC.908_O_12 map 17, ***SEQUENCING IN PROGRESS ***, 11 unordered pieces.	Homo sapiens chromosome 17 clone hRPC.908_O_12 map 17, O_2_2_10	Homo sapiens genoring Divis, caronicosmo Englished done: KB556G11. Muscohacterium tuberculosis sequence from clone y348.	Homo sapiens genomic DNA, chromosome 22q11.2, Cat Eye Syndrome region,	done:KB556G11.	Mycobacterium leprae cosmit L581. Mycobacterium leprae cosmit L581.	Mycobacterium tuberculosis H3/RV complete gonomy, 5-3	3). mRNA sequence.	C22241 Milyayawa waso Sasson. CDNA clone pcMRR1802-43, mRNA sequence. CDNA clone pcMRR1802-43, mRNA sequence.	Homo sapletis circumsonic in some services. PROGRESS *** 3 unordered pieces.	Homo sapiens circumosome in come control progress *** 3 unordered pieces *** 3 unordered pieces to the complete sequence.	Homo sapiens chromosome 17, clone 1041112, company	HS_5356_B1_H12_T7A RPCI-11 Human Mate BAC Library monitors agreed quencity colone Plate=932 Col=23 Row=P, genomic survey sequence.	tg50g05.x1 Soares_NFL_T_GBC_S1 Homo sapiens cUNA civile invocus in the sequence.
	F AF144091	Z95120 G36947 E09053	Z95121 U66080 ARM9078		152224 AC007933	AP000548	AD000020	2000	Z95387 Z96801	Z95387 Z97369	AU041363	C22241	AC010964	AC010964	AC000003	AQ570921	AI425057
106018 AL031293	2900	22070 7 418 (2538)	36330 4049	42	152224	128077	40056	17871	25949. 36225		542	332	41594	41594	122228	491	501
GB_PR3:HS864I18	GB BA2:AF144091	GB_BA1:MTCY7D11 GB_STS:G36947 EM_PAT:E09053	GB_BA1:MTY20B11 GB_BA2:MBU66080	GB_BAT:AB003070 GB_HTG2:AC007933	GB_HTG2:AC007933	GB_PR2:AP000548	GB_BA1:MSGY348	GB_PR2:AP000548	GB_BA1:MTCY1A10	GB_BA1:MLCB250	GB_EST25:AU041363	GB_EST9:C22241	GB_HTG3:AC010964	GB_HTG3:AC010964	GB_PR2:AC000003	GB_GSS14:AQ570921	GB_EST27:Al425057
	741	5.		rxa02476 1002		гха02502 1515			rxa02509 1994	rxa02523 942			rxa02557 711			rxa02563 855	

01-MAR- 1996 01-DEC- 1998 3-Apr-98 2-Aug-99	30-Jun-93 2-Apr-95 AC008180	23-Jun-99 26-Feb-99 17-Sep-97 15-Sep-99 04-OCT-	1999 15-Sep-99	26-Apr-93 29-Sep-97 29-Sep-97 17-Jun-98	07-OCT- 1997 10-DEC- 1996	17-Jun-98 04-DEC- 1998 04-DEC- 1998	17-Jun-96 15-Jun-96 12-Sep-93 3-Feb-99	14-MAY- 1999 17-Jun-98
36,725 34,837 34,837 34,837	99,140 99,045 35,990	39,135 65,537 63,995 34,750	38,760	44,279 43,836 43,836 35,699	67,383	65,390 65,160 63,792	70,069 69,559 63,361 37,337	
	cum	m tuberculosis s coelicolor m leprae esculentum	n esculentum		Mycobacterium tuberculosis Unknown. Mycobacterium tuberculosis	Mycobacterium tuberculosis Unknown. Unknown.	Mycobacterium tuberculosis Mycobacterium leprae Micrococcus luteus 21f, Oryza sativa	21f, Oryza sativa Corynebacterium glutamicum Mycobacterium tuberculosis
TABLE 4: ALIGNMENT RESULTS za26h12.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone IMAGE:293735 3', mRNA sequence. Sequence 8 from patent US 5726299.	Sequence of non-patient control of the proposition of the proof of the patient of	unordered pieces. Mycobacterium tuberculosis H37Rv complete genome; segment 132/162. Streptomyces coelicolor cosmid 8D9. Mycobacterium leprae cosmid 8637. EST272979 tomato callus, TAMU Lycopersicon esculentum cDNA clone	observed the similar of some most of the state of the sta	cLEC28117 similar to beta-Ketoacyt-ACP synnase; putatve, minary scylorization of the complete cds. C.glutamicum pheA gene encoding prephenate dehydratase, complete cds. DNA encoding prephenate dehydratase.	Mycobacterium tuberculosis H37Rv complete genome; segment 159/162. Sequence 3 from patent US 5656470.	Mycobacterium tuberculosis H37Rv complete genome; segment 69/162. Sequence 1 from patent US 5756327. Sequence 3 from patent US 5756327.	Mycobacterium tuberculosis H37Rv complete genome; segment 72/162. Mycobacterium leprae cosmid B1133 DNA sequence. Mycobacteriu Mycobacteriu Mycobacteriu Mycobacteriu Mycococcus Micrococcus Iuteus gene homologous to E.coli uvrB gene. Micrococcus Interestation Dycoli Rice BAC Library Oryza sativa genomic clone nbxb00660L21f, Oryza sativa	genonic survey sequence. nbxb0060L21f CUGI Rice BAC Library Oryza sativa genomic clone nbxb0060L21f, Oryza sativa genomic survey sequence. Corynebacterium glutamicum amtP, glnB, glnD genes and partial ftsY and srp Corynebacte genes. Mycobacterium tuberculosis H37Rv complete genome; segment 127/162. Mycobacterium tuberculosis
N =	178752 AC006936 1 X66078 A26027 AC008180	-	AQ843663 AW029724	M13774 E06110	283864 160487	AD000017 Z74020 AR009609 AR009610	295554 L78811 X12578 AQ364217	AQ364217 AJ010319 Z74697
	858 1 221373 <i>f</i> 2547) 2547 <i>i</i>		631 634	1088 948	948 37751 1260	41321 35377 3905 1487		467 5368 29372
	GB_PAT:178752 GB_HTG2:AC006936 GB_BA1:CGCOP1G GB_PAT:A26027 GR_HTG8:AC008180_2	GB_BA1:MTV012 GB_BA1:SC8D9 GB_BA1:MLCB637 GB_EST38:AW029724	GB_GSS6:AQ843663	GB_BA1:CORPHEA GB_PAT:E06110	GB_PAT:E04484 GB_BA1:MTCY1A6 GB_PAT:160487	GB_BA1:MSGY409 GB_BA1:MTCY48 GB_PAT:AR009609	GB_BA1:MTCY01B2 GB_BA1:MSGB1133CS GB_BA1:MLUVRB GB_GSS12:AQ364217	
rxa02590 1059	rxa02608 2094	rxa02625 886		rxa02686 1260	гха02692 1389	rxa02726 3057	rxa02731 2220	

onsad staded

15-Jun-96 17-Jun-98 15-Jun-96 27-Aug-99 30-Nov-95	30-Nov-95 3-Aug-99	25-Apr-96 17-Jun-98 30-Jan-96							
62,730 39,294 60,729 66,993 73,723	73,723								
Mycobacterium leprae Mycobacterium tuberculosis Mycobacterium leprae Mycobacterium leprae Paracoccus denitrificans	Paracoccus denitrificans	Zymomonas mobilis Corynebacterium glutamicum Mycobacterium tuberculosis Mycobacterium tuberculosis							
Mycobacterium leprae cosmid B32 DNA sequence. Mycobacterium tuberculosis H37Rv complete genome; segment 112/162. Mycobacterium leprae cosmid B937 DNA sequence. Mycobacterium leprae cosmid B1259. Mycobacterium leprae cosmid B1259.	Paracoccus venimination of 1727 and insertion sequence sequence. and insertion sequence insertion sequence.	Paracoccus dentuments in controlled to the controlled of the A. Zymomonas mobilis genomic DNA corpus and sigB gene. B. tactofermentum orf1 gene and sigB gene. Mycobacterium tuberculosis H37Rv complete genome; segment 120/162. Mycobacterium tuberculosis H37Rv sigma factor MysA (mysA) and sigma factor MysB (mysB) genes, complete cds.							
L78818 297051 L78820 AL023591 U08864 U08856 AJ009974 Z49824 Z96072 U10059									
36404 2803 38914 38807 2215 1393 4494 2906 38631 5900									
GB_BA1:MSGB32CS GB_BA1:MTCYW318 GB_BA1:MSGB937CS GB_BA1:MLCB1259	GB_BA2:PDU08864	GB_BA1:PDU08856 GB_BA1:ZMO009974 GB_BA1:BLSIGBGN GB_BA1:MTCY05A6 GB_BA1:MTCY0596							
rxa02788 2787	rxa02837 274	rxs03207 1123							