FINAL

SITE CHARACTERIZATION REPORT **VOLUME II** (Appendices A - F)

147TH FIGHTER INTERCEPTOR GROUP **TEXAS AIR NATIONAL GUARD ELLINGTON FIELD** HOUSTON, TEXAS

MAY 1995

HAZWRAP SUPPORT CONTRACTOR OFFICE

Oak Ridge, Tennessee 37831 Operated by MARTIN MARIETTA ENERGY SYSTEM, INC. For the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-840R21400

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments reparding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA. 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
May 1995

A. TITLE AND SUBTITLE
Installation Restoration Program Site Characterization Report Vol. II
147th Fighter Interceptor Group

3. REPORT TYPE AND DATES COVERED
Final Site Characterization Report

5. FUNDING NUMBERS
92-30-168

6. AUTHOR(S)

N/A

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Halliburton NUS Corporation Post Office Box 4574 Houston, TX 77210-4574

Ellington Field, Houston, Texas

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

: :

Hazardous Waste Remedial Actions Program Martin Marietta Energy Systems, Inc. Oak Ridge, TN 37831 8. PERFORMING ORGANIZATION REPORT NUMBER

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

RG-07-315-0432

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Site Characterization Report, Volume II

A Site Characterization was performed at one site at the 147th Fighter Interceptor Group. The site was the Base Petroleum, Oils, and Lubricants Storage Area. All contamination identified at the site was below the Texas Natural Resource Conservation Commission action limits.

The report recommended that the risk assessment performed as part of the Site Investigation be up-dated with the additional information from this report. If the risk assessment show that no significant risks to human health exist then performed no further action for the site is recommended.

Volume II of this report consist of the following Appendices: Field GC Data (A), Soil Boring Logs/Well Construction Diagrams (B), Soil Sample Log Sheets/Groundwater Sample Log Sheets (C), Monitoring Well Development Forms (D), Chain of Custody Forms (E), and Aquifer Test Data (F)

SUBJECT TERMS

Installation Restoration Program, Air National Guard,
Site Characterization, Houston, Texas

15. NUMBER OF PAGES Approx 400

16. PRICE CODE

17. SECURITY CLASSIFICATION UnOfassification

18. SECURITY CLASSIFICATION OF THIS PAGELassified

19. SECURITY CLASSIFICATION OF LARSE ASTRIED

20. LIMITATION OF ABSTRACT None

NSN 7540-01-280-5500

Considered Core 300 (0. 3

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

- **Block 1.** Agency Use Only (Leave blank).
- Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.
- State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 30 Jun 88).
- Block 4. <u>Title and Subtitle</u>. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.
- Block S. <u>Funding Numbers</u>. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

C - Contract

PR - Project TA - Task

G - Grant
PE - Program
Element

WU - Work Unit Accession No.

- Block 6. <u>Author(s)</u>. Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).
- **Block 7.** <u>Performing Organization Name(s) and Address(es)</u>. Self-explanatory.
- Block 8. Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.
- Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.
- Block 10. Sponsoring Agency Report Number (If kasses)

Block #1. Supplement Enter information not include a statement whether the new upport supersedes or supplements the older report.

Block 12a. <u>Distribution/Availability Statement</u>. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents."

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank. NTIS - Leave blank.

Block 13. <u>Abstract</u>. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.

Block 14. <u>Subject Terms</u>. Keywords or phrases identifying major subjects in the report.

Block 15. <u>Number of Pages</u>. Enter the total number of pages.

Block 16. <u>Price Code</u>. Enter appropriate price code (NTIS only).

Blocks 17. - 19. Security Classifications. Selfexplanatory. Enter U.S. Security Classification in saccordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and abottoms of the page.

Shek220. Limitation of Abstract. This block must be completed to assign a limitation to the sabstract. Enter either UL (unlimited) or SAR (mass report). An entry in this block is necessary to the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

FINAL

INSTALLATION RESTORATION PROGRAM SITE CHARACTERIZATION REPORT

VOLUME II APPENDICES A - F

147TH FIGHTER INTERCEPTOR GROUP TEXAS AIR NATIONAL GUARD ELLINGTON FIELD HOUSTON, TEXAS

PREPARED BY
HALLIBURTON NUS CORPORATION
PROJECT NUMBER 1K94

MAY 1995

DTIC QUALITY INSPECTED 3

Appendix A

Field GC Data

BTEX FIELD GC ANALYTICAL METHOD

Using a Photovac 10S Plus portable GC set up as shown in figure 1-1. A headspace sampling device was constructed using a 145 cc septum bottle with two 1/8 inch teflon tubing mounted though the septum to form a leak free connection. One of the tubing was connected to the (SAMPLE IN) port of the GC and the other was connected to the (PUMP OUT) port. 50 grams of soil or 40 ml of liquid sample is place in the septum bottle and the cap with the teflon lines attached is sealed on the bottle. The bottle is place in a sonic bath with the water maintained at 28 Deg. C. The run cycle is started on the GC and the sample pump pumps the air in though the 1ml sample loop and returns it to the bottle for 2 minutes. At the end of the 2 minutes the sample is injected into the GC column. The GC was calibrated daily with 1.0 PPM Benzene, 1.0 PPM Toluene, 1.0 PPM Ethylbenzene and 1.0 PPM O-Xylene (BETX) gas standard in nitrogen balance. A soil actual calibration standard was prepared by injecting a known amount of a BETX liquid standard on to 50 grams of clean soil then sealing it in a 145 cc septum bottle. A liquid actual calibration standard was prepared by injecting a known amount of a BETX liquid standard in to 40 mL of water then sealing it in a 40 mL septum bottle. Using the a ratio is made between headspace calibration standard concentration and the actual soil or liquid concentration. Using this ratio the actual concentration is calculated from the headspace concentration the GC prints out.

FIGURE 1-1

OPERATOR MAL DATE

8/5/93

PAGE___of__

CALIBRATION

		HEAD SPACE TO
GAS STANDARD	GC RESPONCE	ACTUAL CONC.FACTOR
1.00 PPM BENZENE,	1.00 PPM	NA
1.00 PPM TOLUENE,	1.00 PPM	NA
1.00 PPM ETHYLBENZENE,	1.00 PPM	NA
1.00 PPM O-XYLENE	1.00 PPM	NA
LIQUID STANDARD		
0.25 ug/ml BENZENE,	2.86 PPM	0.0874
0.25 ug/ml TOLUENE,	3.25 PPM	0.0769
0.25 ug/ml ETHYLBENZENE,	2.55 PPM	0.0980
0.50 ug/ml M&P-XYLENE	7.00 PPM	0.0714
0.25 ug/ml O-XYLENE	3.71 PPM	0.0674
SOIL STANDARD		
0.01 ug/g BENZENE,	0.597 PPM	0.0168
0.01 ug/g TOLUENE,	7.190 PPM	0.0014
0.01 ug/g ETHYLBENZENE,	0.429 PPM	0.0233
0.02 ug/g M&P-XYLENE	1.110 PPM	0.0180
0.01 ug/g O-XYLENE	1.060 PPM	0.0094

GAS STANDARD IS A SCOTTY IV MIX # 6677 FROM SCOTT SPECIALTY GASES. SOIL AND LIQUID STANDARDS WERE MADE FROM BTX-100 (100 ug/mL in METHANOL) LOT NO. G-0433 FROM ULTRA SCIENTIFIC.

ELLINGTON T-ANG

PAGE___of___

MAL 8/5/93

		SAIVIFLE ANAL I SIG	HEAD SPACE	ACTUAL
	DECORPTION	COMBOUND		1 B
	DESCRIPTION	COMPOUND	PPM	CONC.
BORING #	16	BENZENE	0.082	1.4 ug/kġ
DEPTH	4 TO 6 ft	TOLUENE	16	22.3 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	4.44	103.5 ug/kg
		M&P-XYLENE	1.45	26.1 ug/kg
		O-XYLENE	1.84	17.4 ug/kg
BORING #	16	BENZENE	27.74	464.7 ug/kg
DEPTH	8 TO 10 ft	TOLUENE	332.9	463.0 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	77.97	1817.5 ug/kg
		M&P-XYLENE	25.14	453.0 ug/kg
		O-XYLENE	114.8	1083.0 ug/kg
BORING #	16	BENZENE	0.052	0.9 ug/kg
DEPTH	20 TO 22 FT	TOLUENE	3.49	4.9 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.624	14.5 ug/kg
	•	M&P-XYLENE	0.253	4.6 ug/kg
		O-XYLENE	1.528	14.4 ug/kg
BORING #	16	BENZENE	0.447	39.1 ug/L
DEPTH		TOLUENE	5.153	396.4 ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.422	41.4 ug/L
		M&P-XYLENE	0.454	32.4 ug/L
		O-XYLENE	1.056	71.2 ug/L
BORING #	16	BENZENE	2.3	38.5 ug/kg
DEPTH	12 TO 14 FT	TOLUENE	25.92	36.1 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	1.99	46.4 ug/kg
		M&P-XYLENE	2.367	42.6 ug/kg
		O-XYLENE	1.873	17.7 ug/kg
BORING #	16	BENZENE	0.012	< 0.8 ug/kg
DEPTH	18 TO 20 FT	TOLUENE	1.269	1.8 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.092	2.1 ug/kg
		M&P-XYLENE	0.101	1.8 ug/kg
		O-XYLENE	0.31	2.9 ug/kg
				

ELLINGTON T-ANG

PAGE___of___

MAL 8/5/93

		OAWI EL AWALTOIO	HEAD SPACE	ACTUAL
SAMPLE	DESCRIPTION	COMPOUND	PPM	CONC.
BORING #	20	BENZENE	0.142	2.4 ug/kg
DEPTH	2 TO 4 FT	TOLUENE	3.538	4.9 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.197	5.0 (1) ug/kg
		M&P-XYLENE	0.018	< 0.9 ug/kg
		O-XYLENE	0.011	< 0.5 ug/kg
BORING #	20	BENZENE	0.965	16.2 ug/kg
DEPTH	4 TO 6 FT	TOLUENE	13.5	18.8 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	5.5	128.2 ug/kg
		M&P-XYLENE	2.919	52.6 ug/kg
		O-XYLENE	3.388	32.0 ug/kg
BORING #	20	BENZENE	3.731	62.5 ug/kg
DEPTH	8 TO 10 FT	TOLUENE	112.6	156.6 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	193.5	4510.5 ug/kg
		M&P-XYLENE	52.14	939.5 ug/kg
		O-XYLENE	58.01	547.3 ug/kg
BORING #	20	BENZENE	0.03	< 0.8 ug/kg
DEPTH	10 TO 12 FT	TOLUENE	0.27	0.4 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.126	2.9 ug/kg
		M&P-XYLENE	0.176	3.2 ug/kg
		O-XYLENE	0.481	4.5 ug/kg
BORING #	20	BENZENE	0.561	9.4 ug/kg
DEPTH	16 TO 18 FT	TOLUENE	5.096	7.1 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.938	21.9 ug/kg
		M&P-XYLENE	0.415	7.5 ug/kg
		O-XYLENE	0.522	4.9 ug/kg
BORING #	20	BENZENE	0.454	39.7 ug/L
DEPTH	MATER CAMPLE	TOLUENE	2.327	179.0 ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.489	47.9 ug/L
		M&P-XYLENE	0.219	15.6 ug/L
DODING #		O-XYLENE	0.293	19.7 ug/L
BORING #	20 6.TO 8.ET	BENZENE	0.069	1.2 ug/kg
DEPTH	6 TO 8 FT SOIL SAMPLE	TOLUENE	9.299	12.9 ug/kg
TYPE	SUIL SAIVIPLE	ETHYLBENZENE	8.934	208.3 ug/kg
		M&P-XYLENE	3.818	68.8 ug/kg
		O-XYLENE	4.824	45.5 ug/kg

⁽¹⁾ If the retention time of the analyte was out of the 15% tolerance range the analyses is labeled "S" as suspect

ELLINGTON T-ANG

PAGE___of___

MAL 8/5/93

			HEAD SPACE	ACT	JAL
SAMPLE DESCRIPTION		COMPOUND	PPM	CON	IC.
BORING #	21	BENZENE	0.033	< 0.8	ug/kg
DEPTH	2 TO 4 FT	TOLUENE	3.667	5.1	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.194	4.5	ug/kg
		M&P-XYLENE	0.532	9.6	ug/kg
		O-XYLENE	0.385	3.6	ug/kg
BORING #	21	BENZENE	0.126	2.1	ug/kg
DEPTH	4 TO 6 FT	TOLUENE	14.03	19.5	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.138	3.2	ug/kg
		M&P-XYLENE	0.317	5.7	ug/kg
		O-XYLENE	0.461	4.3	ug/kg
BORING #	21	BENZENE	0.064	1.1	ug/kg
DEPTH	10 TO 12 FT	TOLUENE	1.285	1.8	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.071	1.7	ug/kg
		M&P-XYLENE	0.217	3.9	ug/kg
		O-XYLENE	0.151	1.4	ug/kg

CLIENT
OPERATOR
DATE

PAGE___of___

MAL 8/6/93

			HEAD SPACE		ACTU	∤ L
SAMPLE	DESCRIPTION	COMPOUND	PPM		CONC).
BORING #	21	BENZENE	2.036		67.0	ug/L
DEPTH	<u> </u>	TOLUENE	9.445		28.1	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.013	<	1.0	ug/L
		M&P-XYLENE	0.101		0.3	ug/L
		O-XYLENE	0.155		0.8	ug/L

CLIENT

PAGE___of___

OPERATOR DATE

MAL 8/6/93

CALIBRATION

					HEAD SPACE TO
	(SAS STANDARD	GC RESI	ONCE	ACTUAL CONC.FACTOR
1.00	PPM	BENZENE,	1.00	PPM	NA
	PPM	TOLUENE,	1.00	PPM	NA
1	PPM	ETHYLBENZENE,	1.00	PPM	NA
1	PPM	O-XYLENE	1.00	PPM	NA NA
		QUID STANDARD	}		
0.0025	ug/ml	BENZENE,	0.076	PPM	0.0329
	_	TOLUENE,	0.840	PPM	0.0030
		ETHYLBENZENE,	0.120	PPM	0.0208
		M&P-XYLENE	1.475	PPM	0.0034
		O-XYLENE	0.509	PPM	0.0049
		SOIL STANDARD			
0.002	ug/g	BENZENE,	0.096	PPM	0.0208
0.002		TOLUENE,	2.567	PPM	0.0008 —
		ETHYLBENZENE,	0.124	PPM	0.0161
		M&P-XYLENE	1.219	PPM	0.0033
0.002		O-XYLENE	0.590	PPM	0.0034

GAS STANDARD IS A SCOTTY IV MIX # 6677 FROM SCOTT SPECIALTY GASES. SOIL AND LIQUID STANDARDS WERE MADE FROM BTX-100 (100 ug/mL in METHANOL) LOT NO. G-0433 FROM ULTRA SCIENTIFIC.

CLIENT
OPERATOR
DATE

PAGE___of___

MAL 8/6/93

			HEAD SPACE ACTUAL		\L	
SAMPLE DESCRIPTION		COMPOUND	PPM		CONC	•
BORING #	15	BENZENE	0.007	٧	1.0	ug/kg
DEPTH	4 TO 6 ft	TOLUENE	0.162		0.1	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.01	<	8.0	ug/kg
		M&P-XYLENE	0.142		0.5	ug/kg
		O-XYLENE	0.042	<	0.2	ug/kg
BORING #	15	BENZENE	0.007	٧	1.0	ug/kg
DEPTH	0 TO 2 FT	TOLUENE	0.133		0.1	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.015	<	8.0	ug/kg
		M&P-XYLENE	0.196		0.6	ug/kg
		O-XYLENE	0.044	<	0.2	ug/kg
BORING #	15	BENZENE	0.009	<	1.0	ug/kg
DEPTH	12 TO 14 FT	TOLUENE	0.773		0.6	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.016	<	8.0	ug/kg
		M&P-XYLENE	0.294		1.0	ug/kg
		O-XYLENE	0.000	<	0.2	ug/kg
BORING #	15	BENZENE	0.017	<	1.6	ug/L
DEPTH		TOLUENE	17.690		52.6	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.036	<	1.0	ug/L
		M&P-XYLENE	0.000	<	0.2	ug/L
		O-XYLENE	0.120		0.6	ug/L

CLIENT	
OPERATOR	
DATE	

MAL 8/6/93 PAGE

			HEAD SPACE	ACTUAL		
SAMPLE DESCRIPTION		COMPOUND	PPM	CONC		•
BORING #	17	BENZENE	0.010	<	1.0	ug/kg
DEPTH	4 TO 6 FT	TOLUENE	0.185		0.1	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.055		0.9 (1)	ug/kg
		M&P-XYLENE	0.000	<	0.2	ug/kg
		O-XYLENE	0.018	<	0.2	ug/kg
BORING #	17	BENZENE	0.062		1.3	ug/kg
DEPTH	8 TO 10 FT	TOLUENE	10.020		7.8	ug/kg
TYPÈ	SOIL SAMPLE	ETHYLBENZENE	0.151		2.4	ug/kg
		M&P-XYLENE	1.198		3.9	ug/kg
		O-XYLENE	0.699		2.4	ug/kg
BORING #	17	BENZENE	0.046	<	1.6	ug/L
DEPTH		TOLUENE	3.307		9.8	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.020	<	1.0	ug/L
		M&P-XYLENE	0.134		0.5	ug/L
		O-XYLENE	0.091		0.4	ug/L
BORING #	17	BENZENE	0.019	<	1.0	ug/kg
DEPTH	18 TO 20 FT	TOLUENE	0.892		0.7	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.061 1.1 (1) ug		ug/kg	
		M&P-XYLENE	0.057 0.2		ug/kg	
		O-XYLENE	0.030	<	0.2	ug/kg

⁽¹⁾ If the retention time of the analyte was out of the 15% tolerance range the analyses is labeled "S" as suspect

CLIENT
OPERATOR
DATE

PAGE___of__

MAL 8/6/93

			HEAD SPACE	ACTUAL
SAMPLE DESCRIPTION		COMPOUND	PPM	CONC.
BORING #	18	BENZENE	0.036	< 1.0 ug/kg
DEPTH	6 TO 8 FT	TOLUENE	0.091	0.1 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.013	< 0.8 ug/kg
		M&P-XYLENE	0.000	< 0.2 ug/kg
		O-XYLENE	0.028	< 0.2 ug/kg
BORING #	18	BENZENE	0.020	< 1.0 ug/kg
DEPTH	0 TO 2 FT	TOLUENE	0.108	0.1 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.063	1.0 (1) ug/kg
		M&P-XYLENE	0.000	< 0.2 ug/kg
		O-XYLENE	0.030	< 0.2 ug/kg
BORING #	18	BENZENE	4.331	90.2 (1 ug/kg
DEPTH	8 TO 10 FT	TOLUENE	19.130	14.9 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	27.850	449.2 ug/kg
		M&P-XYLENE	326.300	1070.7 ug/kg
		O-XYLENE	46.010	156.0 ug/kg
BORING #	18	BENZENE	0.404	8.4 ug/kg
DEPTH	10 TO 12 FT	TOLUENE	130.600	101.8 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	2.069	33.4 ug/kg
		M&P-XYLENE	33.130	108.7 ug/kg
		O-XYLENE	14.200	48.1 ug/kg
BORING #	18	BENZENE	0.199	6.5 ug/L
DEPTH		TOLUENE	9.011	26.8 ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.351	7.3 ug/L
		M&P-XYLENE	4.647	15.8 ug/L
		O-XYLENE	0.667	3.3 ug/L

⁽¹⁾ If the retention time of the analyte was out of the 15% tolerance range the analyses is labeled "S" as suspect

CLIENT
OPERATOR

MAL

DATE

8/11/93

PAGE___of___

CALIBRATION

					HEAD SPACE TO
		BAS STANDARD	GC RESI	PONCE	ACTUAL CONC.FACTOR
1.00	PPM	BENZENE,	1.00	PPM	NA
1.00	PPM	TOLUENE,	1.00	PPM	NA
1.00	PPM	ETHYLBENZENE,	1.00	PPM	NA
1.00	PPM	O-XYLENE	1.00	PPM	NA
	LI	QUID STANDARD			
0.0025	ug/ml	BENZENE,	0.058	PPM	0.0431
0.0025	ug/ml	TOLUENE,	0.145	PPM	0.0172
0.0025	ug/ml	ETHYLBENZENE,	0.050	PPM	0.0500
0.0050	ug/ml	M&P-XYLENE	0.695	PPM	0.0072
		O-XYLENE	0.073	PPM	0.0342
		SOIL STANDARD			
0.002	ug/g	BENZENE,	0.073	PPM	0.0274
0.002	ug/g	TOLUENE,	0.212	PPM	0.0094
0.002	ug/g	ETHYLBENZENE,	0.028	PPM	0.0714
0.004	ug/g	M&P-XYLENE	0.317	PPM	0.0126
0.002	ug/g	O-XYLENE	0.072	PPM	0.0278

GAS STANDARD IS A SCOTTY IV MIX # 6677 FROM SCOTT SPECIALTY GASES.
SOIL AND LIQUID STANDARDS WERE MADE FROM BTX-100 (100 ug/mL in METHANOL)
LOT NO. G-0433 FROM ULTRA SCIENTIFIC.

CLIENT
OPERATOR
DATE

PAGE___of___

MAL 8/11/93 DATE

			HEAD SPACE	ACTUAL		₹L	
SAMPLE DESCRIPTION		COMPOUND	PPM		CONC.		
BORING #	22	BENZENE	0.014	<	1.4	ug/kg	
DEPTH	6 TO 8 FT	TOLUENE	0.090		8.0	ug/kg	
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	3.6	ug/kg	
		M&P-XYLENE	0.000	<	0.6	ug/kg	
		O-XYLENE	0.000	<	1.4	ug/kg	
BORING #	22	BENZENE	0.047	<	1.4	ug/kg	
DEPTH	15 TO 16 ft	TOLUENE	0.030	<	0.5	ug/kg	
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	3.6	ug/kg	
		M&P-XYLENE	0.000	<	0.6	ug/kg	
]		O-XYLENE	0.000	<	1.4	ug/kg	
BORING #	22	BENZENE	0.039	<	2.2	ug/L	
DEPTH		TOLUENE	0.524	1	9.0	ug/L	
TYPE	WATER SAMPLE	ETHYLBENZENE	0.000	<	2.5	ug/L	
		M&P-XYLENE	0.000	<	0.4	ug/L	
		O-XYLENE	0.000	<	1.7	ug/L	

CLIENT	
OPERATOR	
DATE .	

PAGE___of___

MAL 8/11/93

HEAD SPACE ACTUAL						
SAMPLE DESCRIPTION		COMPOUND	PPM	CONC.) .
BORING #	23	BENZENE	0.007	'	1.4	ug/kg
DEPTH	2 TO 4 FT	TOLUENE	0.046	<	0.5	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	3.6	ug/kg
		M&P-XYLENE	0.000	<	0.6	ug/kg
		O-XYLENE	0.000	<	1.4	ug/kg
BORING #	23	BENZENE	0.018	<	1.4	ug/kg
DEPTH	6 TO 8 FT	TOLUENE	0.136		1.3	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.400		28.6	ug/kg
		M&P-XYLENE	4.844		61.1	ug/kg
		O-XYLENE	0.423		11.8	ug/kg
BORING #	23	BENZENE	0.024	<	1.4	ug/kg
DEPTH	8 TO 10 FT	TOLUENE	0.007	<	0.5	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.141		10.1	ug/kg
		M&P-XYLENE	2.296		29.0	ug/kg
		O-XYLENE	0.000	<	1.4	ug/kg
BORING #	23	BENZENE	0.011	<	1.4	ug/kg
DEPTH	4 TO 6 FT	TOLUENE	0.066		0.6	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.036	<	3.6	ug/kg
		M&P-XYLENE	0.000	<	0.6	ug/kg
		O-XYLENE	0.029	<	1.4	ug/kg
BORING #	23	BENZENE	0.008	<	2.2	ug/L
DEPTH		TOLUENE	0.076		1.3	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.031 < 2.5		ug/L	
		M&P-XYLENE	0.000	<	0.4	ug/L
		O-XYLENE	0.000	<	1.7	ug/L

ELLINGTON T-ANG

PAGE___of__

MAL 8/11/93

		OANI EL ANALTOIO	HEAD SPACE		ACTU/	AL I
SAMPLE DESCRIPTION		COMPOUND	PPM).	
BORING #	19	BENZENE	0.006	< 1.4 ug/k		ug/kg
DEPTH	2 TO 4 FT	TOLUENE	0.193		1.8	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.167	1		ug/kg
		M&P-XYLENE	0.000	<	0.6	ug/kg
		O-XYLENE	0.141		3.9	ug/kg
BORING #	19	BENZENE	0.000	<	1.4	ug/kg
DEPTH	4 TO 6 FT	TOLUENE	0.115		1.1	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.042	<	3.6	ug/kg
		M&P-XYLENE	0.000	<	0.6	ug/kg
		O-XYLENE	0.000	<	1.4	ug/kg
BORING #	19	BENZENE	0.000	<	1.4	ug/kg
DEPTH	8 TO 10 FT	TOLUENE	0.043	<	0.5	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.020	<	3.6	ug/kg
		M&P-XYLENE	0.000	<	0.6	ug/kg
		O-XYLENE	0.000	<	1.4	ug/kg
BORING #	19	BENZENE	0.007	<	1.4	ug/kg
DEPTH	10 TO 12 FT	TOLUENE	0.077		0.7	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.028	<	3.6	ug/kg
		M&P-XYLENE	0.000	<	0.6	ug/kg
		O-XYLENE	0.000	<	1.4	ug/kg
BORING #	19	BENZENE	0.005	<	1.4	ug/kg
DEPTH	14 TO 16 FT	TOLUENE	0.022	<	0.5	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.014	<	3.6	ug/kg
		M&P-XYLENE	0.000	<	0.6	ug/kg
		O-XYLENE	0.000	<	1.4	ug/kg
BORING #	19	BENZENE	0.000	<	1.4	ug/kg
DEPTH	6 TO 8 FT	TOLUENE	0.033	<	0.5	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.033	<	3.6	ug/kg
		M&P-XYLENE	0.000	<	0.6	ug/kg
		O-XYLENE	0.000	<	1.4	ug/kg
BORING #	19	BENZENE	0.025	<	2.2	ug/L
DEPTH		TOLUENE	1		ug/L	
TYPE	WATER SAMPLE	ETHYLBENZENE			ug/L	
		M&P-XYLENE	0.000	<	0.4	ug/L
		O-XYLENE	0.000	<	1.7	ug/L

⁽¹⁾ If the retention time of the analyte was out of the 15% tolerance range the analyses is labeled "S" as suspect

CLIEN	١T
-------	----

OPERATOR

MAL

DATE

8/12/93

PAGE___of__

CALIBRATION

					HEAD SPACE TO
	(GAS STANDARD	GC RES	ONCE	ACTUAL CONC.FACTOR
1.00	PPM	BENZENE,	1.00	PPM	NA
1.00	PPM	TOLUENE,	1.00	PPM	NA
1.00	PPM	ETHYLBENZENE,	1.00	PPM	NA
1.00	PPM	O-XYLENE	1.00	PPM	NA
	LI	QUID STANDARD			
0.0025	ug/ml	BENZENE,	0.082	PPM	0.0305
0.0025	ug/ml	TOLUENE,	0.193	PPM	0.0130
0.0025	ug/ml	ETHYLBENZENE,	0.070	PPM	0.0357
0.0050	ug/ml	M&P-XYLENE	0.187	PPM	0.0267
0.0025	ug/ml	O-XYLENE	0.129	PPM	0.0194
	-	SOIL STANDARD			
0.002	ug/g	BENZENE,	0.144	PPM	0.0139
0.002	ug/g	TOLUENE,	0.143	PPM	0.0140 -
0.002	ug/g	ETHYLBENZENE,	0.054	PPM	0.0370
0.004	ug/g	M&P-XYLENE	0.160	PPM	0.0250
0.002	ug/g	O-XYLENE	0.079	PPM	0.0253

GAS STANDARD IS A SCOTTY IV MIX # 6677 FROM SCOTT SPECIALTY GASES. SOIL AND LIQUID STANDARDS WERE MADE FROM BTX-100 (100 ug/mL in METHANOL) LOT NO. G-0433 FROM ULTRA SCIENTIFIC.

CLIENT	
OPERATOR	
DATE	

PAGE___of___

MAL 8/12/93

			HEAD SPACE		ACTUA	Ĺ
SAMPLE	DESCRIPTION	COMPOUND	PPM		CONC	
BORING #	11	BENZENE	0.309		4.3	ug/kg
DEPTH	18 TO 20 FT	TOLUENE	3.207		44.9	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg
		M&P-XYLENE	0.000	<	1.3	ug/kg
		O-XYLENE	0.115		2.9	ug/kg
BORING #	11	BENZENE	0.039	٧	0.7	ug/kg
DEPTH	16 TO 18 ft	TOLUENE	3.687		51.6	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg
		M&P-XYLENE	0.000	<	1.3	ug/kg
]		O-XYLENE	0.000	<	1.3	ug/kg
BORING #	11	BENZENE	0.836		11.6	ug/kg
DEPTH ·	14 TO 16 FT	TOLUENE	5.188		72.6	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.160		5.9	ug/kg
1		M&P-XYLENE	0.461		11.5	ug/kg
		O-XYLENE	0.371		9.4	ug/kg
BORING #	11	BENZENE	0.000	<	0.7	ug/kg
DEPTH	10 TO 12 FT	TOLUENE	0.330		4.6	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg
		M&P-XYLENE	0.000	<	1.3	ug/kg
		O-XYLENE	0.000	<	1.3	ug/kg
BORING #	11	BENZENE	0.029	<	1.5	ug/L
DEPTH		TOLUENE	2.148		27.8	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.000	<	1.8	ug/L
		M&P-XYLENE	0.000	<	1.3	ug/L
		O-XYLENE	0.000	<	1.0	ug/L

CLIENT	
--------	--

PAGE__of__

OPERATOR DATE

MAL 8/13/93

CALIBRATION

				_	·
					HEAD SPACE TO
	(GAS STANDARD	GC RESI	ONCE	ACTUAL CONC.FACTOR
1.00	PPM	BENZENE,	1.00	PPM	NA
1.00	PPM	TOLUENE,	1.00	PPM	NA .
1.00	PPM	ETHYLBENZENE,	1.00	PPM	NA
1.00	PPM	O-XYLENE	1.00	PPM	NA
	LI	QUID STANDARD			
0.0025	ug/ml	BENZENE,	0.083	PPM	0.0301
0.0025	ug/ml	TOLUENE,	0.201	PPM	0.0124
0.0025	ug/ml	ETHYLBENZENE,	0.203	PPM	0.0123
0.0050	ug/mi	M&P-XYLENE	0.300	PPM	0.0167
0.0025	ug/ml	O-XYLENE	0.130	PPM	0.0192
		SOIL STANDARD			
0.002	ug/g	BENZENE,	0.141	PPM	0.0142
0.002	ug/g	TOLUENE,	0.244	PPM	0.0082
0.002	ug/g	ETHYLBENZENE,	0.203	PPM	0.0099
0.004	ug/g	M&P-XYLENE	0.190	PPM	0.0211
0.002	ug/g	O-XYLENE	0.114	PPM	0.0175

GAS STANDARD IS A SCOTTY IV MIX # 6677 FROM SCOTT SPECIALTY GASES. SOIL AND LIQUID STANDARDS WERE MADE FROM BTX-100 (100 ug/mL in METHANOL) LOT NO. G-0433 FROM ULTRA SCIENTIFIC.

ELLINGTON T-ANG

MAL 8/13/93 PAGE___of___

		OAWI LE AIVAETOIO	HEAD SPACE		ACTUAL	
SAMPLE	DESCRIPTION	COMPOUND	РРМ		CONC.	
BORING #	24	BENZENE	0.000	<	0.7	ug/kg
DEPTH	1 TO 3 FT	TOLUENE	0.050		0.4	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	0.5	ug/kg
		M&P-XYLENE	0.000	<	1.1	ug/kg
		O-XYLENE	0.000	<	0.9	ug/kg
BORING #	24	BENZENE	0.000	<	0.7	ug/kg
DEPTH	3 TO 5 ft	TOLUENE	0.000	<	0.4	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	0.5	ug/kg
		M&P-XYLENE	0.000	<	1.1	ug/kg
		O-XYLENE	0.000	<	0.9	ug/kg
BORING #	24	BENZENE	0.062		0.9	ug/kg
DEPTH	5 TO 7 FT	TOLUENE	0.147		1.2	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	1.062		10.5 (1)	ug/kg
		M&P-XYLENE	0.638		13.4	ug/kg
		O-XYLENE	0.191		3.4	ug/kg_
BORING #	24	BENZENE	0.117		1.7	ug/kg
DEPTH	7 TO 9 FT	TOLUENE	1.181		9.7	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.963		9.5	ug/kg
		M&P-XYLENE	1.683		35.4	ug/kg
		O-XYLENE	0.427		7.5	ug/kg
BORING #	24	BENZENE	0.079		1.1	ug/kg
DEPTH	9 TO 11 FT	TOLUENE	0.384		3.1	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	5.254		51.8	ug/kg
		M&P-XYLENE	4.153		87.4	ug/kg
		O-XYLENE	1.068	_	18.7	ug/kg
BORING #	24	BENZENE	0.452		6.4	ug/kg
DEPTH	11 TO 13 FT	TOLUENE	2.729		22.4	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	40.260		396.7	ug/kg
		M&P-XYLENE	32.850		691.6	ug/kg
		O-XYLENE	14.350	<u> </u>	251.8	ug/kg
BORING #	24	BENZENE	0.059		1.8	ug/L
DEPTH		TOLUENE	0.254		3.2	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.311		3.8	ug/L
		M&P-XYLENE	0.000	<	8.0	ug/L
		O-XYLENE	0.000	<	1.0	ug/L

⁽¹⁾ If the retention time of the analyte was out of the 15% tolerance range the analyses is labeled "S" as suspect

ELLINGTON T-ANG

PAGE___of__

MAL 8/13/93

HEAD SPACE ACT						-
SAMPLE	DESCRIPTION	COMPOUND	PPM		CONC.	1
BORING #	25	BENZENE	0.061		0.9	ug/kg
DEPTH	1 TO 3 FT	TOLUENE	0.105		0.9	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	1.049		10.3	ug/kg
		M&P-XYLENE	0.764		16.1	ug/kg
		O-XYLENE	0.345		6.1	ug/kg
BORING #	25	BENZENE	0.000	<	0.7	ug/kg
DEPTH	3 TO 5 FT	TOLUENE	0.113		0.9	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	0.5	ug/kg
		M&P-XYLENE	0.000	<	1.1	ug/kg
		O-XYLENE	0.000	<	0.9	ug/kg
BORING #	25	BENZENE	1.136		16.1	ug/kg
DEPTH	5 TO 7 FT	TOLUENE	5.516		45.2	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	40.430		398.3	ug/kg
		M&P-XYLENE	35.620		749.9	ug/kg
		O-XYLENE	13.900		243.9	ug/kg
BORING #	25	BENZENE	1.368		19.4	ug/kg
DEPTH	7 TO 9 FT	TOLUENE	8.761		71.8	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	32.380		319.0	ug/kg
		M&P-XYLENE	28.070		590.9	ug/kg
		O-XYLENE	9.866		173.1	ug/kg
BORING #	25	BENZENE	0.196		2.8	ug/kg
DEPTH	9 TO 11 FT	TOLUENE	2.862		23.5	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	9.246		91.1	ug/kg
		M&P-XYLENE	8.222		173.1	ug/kg
		O-XYLENE	2.250		39.5	ug/kg
BORING #	25	BENZENE	0.033	<	0.7	ug/kg
DEPTH	15 TO 17 FT	TOLUENE	0.263		2.2	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.290		2.9	ug/kg
		M&P-XYLENE	0.852		17.9	ug/kg
		O-XYLENE	0.206	_	3.6	ug/kg
BORING #	25	BENZENE	0.134		4.0	ug/L
DEPTH		TOLUENE	5.769	İ	71.8	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.247		3.0	ug/L
		M&P-XYLENE	0.000	<	0.8	ug/L
		O-XYLENE	0.000	<	1.0	ug/L

ELLINGTON T-ANG

PAGE___of__

MAL 8/13/93

			HEAD SPACE	ACTUAL
SAMPLE	DESCRIPTION	COMPOUND	PPM	CONC.
BORING #	26	BENZENE	1.377	19.5 ug/kg
DEPTH	2 TO 4 FT	TOLUENE	4.535	37.2 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.222	2.2 ug/kg
		M&P-XYLENE	0.000	< 1.1 ug/kg
		O-XYLENE	0.000	< 0.9 ug/kg
BORING #	26	BENZENE	23.100	327.7 ug/kg
DEPTH	4 TO 6 FT	TOLUENE	201.800	1654.1 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	42.660	420.3 ug/kg
		M&P-XYLENE	48.780	1026.9 ug/kg
		O-XYLENE	43.430	761.9 ug/kg
BORING #	26	BENZENE	40.070	568.4 ug/kg
DEPTH -	6 TO 8 FT	TOLUENE	2902.000	23786.9 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	108.200	1066.0 ug/kg
		M&P-XYLENE	147.400	3103.2 ug/kg
		O-XYLENE	126.300	2215.8 ug/kg
BORING #	26	BENZENE	7.138	101.2 ug/kg
DEPTH	8 TO 10 FT	TOLUENE	39.580	324.4 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	8.017	79.0 ug/kg
		M&P-XYLENE	21.210	446.5 ug/kg
		O-XYLENE	8.507	149.2 ug/kg
BORING #	26	BENZENE	2.636	37.4 ug/kg
DEPTH	10 TO 12 FT	TOLUENE	27.100	222.1 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	3.000	29.6 ug/kg
		M&P-XYLENE	5.708	120.2 ug/kg
		O-XYLENE	9.356	164.1 ug/kg
BORING #	26	BENZENE	3.756	53.3 ug/kg
DEPTH	12 TO 14 FT	TOLUENE	5.177	42.4 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	4.906	48.3 ug/kg
		M&P-XYLENE	5.954	125.3 ug/kg
	·	O-XYLENE	2.232	39.2 ug/kg
BORING #	26	BENZENE	5.389	76.4 ug/kg
DEPTH	14 TO 16 FT	TOLUENE	19.570	160.4 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	6.256	61.6 ug/kg
		M&P-XYLENE	12.110	254.9 ug/kg
		O-XYLENE	3.732	65.5 ug/kg

CLIENT	
OPERATOR	
DATE	

PAGE___of___

MAL 8/13/93

			HEAD SPACE	ACTUAL
SAMPLE DESCRIPTION		COMPOUND	PPM	CONC.
BORING # 26		BENZENE	3.179	45.1 ug/kg
DEPTH	16 TO 18 FT	TOLUENE	16.690	136.8 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	4.789	47.2 ug/kg
		M&P-XYLENE	10.280	216.4 ug/kg
		O-XYLENE	3.324	58.3 ug/kg
BORING #	26	BENZENE	2.589	36.7 ug/kg
DEPTH	18 TO 20 FT	TOLUENE	43.040	352.8 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	1.352	13.3 ug/kg
		M&P-XYLENE	57.930	1219.6 ug/kg
		O-XYLENE	3.164	55.5 ug/kg
BORING #	26	BENZENE	1.407	42.4 ug/L
DEPTH		TOLUENE	76.670	953.6 ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.100	1.2 ug/L
		M&P-XYLENE	45.360	756.0 ug/L
		O-XYLENE	2.859	55.0 ug/L

CLIENT	
--------	--

OPERATOR DATE

8/17/93

MAL

PAGE of

CALIBRATION

				HEAD SPACE TO	
	(GAS STANDARD	GC RES	PONCE	ACTUAL CONC.FACTOR
1.00	PPM	BENZENE,	1.00	PPM	NA
1.00	PPM	TOLUENE,	1.00	PPM	NA I
1.00	PPM	ETHYLBENZENE,	1.00	PPM	NA
1.00	PPM	O-XYLENE	1.00	PPM	NA
	LI	QUID STANDARD			
0.0050	ug/ml	BENZENE,	0.251	PPM	0.0199
0.0050	ug/ml	TOLUENE,	0.394	PPM	0.0127
0.0050	ug/ml	ETHYLBENZENE,	0.198	PPM	0.0253
0.0100	ug/ml	M&P-XYLENE	0.365	PPM	0.0274
0.0050	ug/ml	O-XYLENE	0.245	PPM	0.0204
		SOIL STANDARD			
0.004	ug/g	BENZENE,	0.244	PPM	0.0164
0.004	ug/g	TOLUENE,	0.256	PPM	0.0156
0.004	ug/g	ETHYLBENZENE,	0.230	PPM	0.0174
0.008	ug/g	M&P-XYLENE	0.500	PPM	0.0160
0.004	ug/g	O-XYLENE	0.231	PPM	0.0173

GAS STANDARD IS A SCOTTY IV MIX # 6677 FROM SCOTT SPECIALTY GASES. SOIL AND LIQUID STANDARDS WERE MADE FROM BTX-100 (100 ug/mL in METHANOL) LOT NO. G-0433 FROM ULTRA SCIENTIFIC.

ELLINGTON T-ANG

PAGE___of___

MAL 8/17/93

			HEAD SPACE		ACTUAL	-
SAMPLE	DESCRIPTION	COMPOUND	PPM		CONC.	
BORING #	27	BENZENE	0.013	<	1	ug/kg
DEPTH	6 TO 8 FT	TOLUENE	0.184		3	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.049	<	1	ug/kg
· ·		M&P-XYLENE	0.000	<	1	ug/kg
		O-XYLENE	0.071		1	ug/kg
BORING #	27	BENZENE	0.040	<	1	ug/kg
DEPTH	8 TO 10 ft	TOLUENE	3.709		58	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.352		6	ug/kg
		M&P-XYLENE	0.564		9	ug/kg
		O-XYLENE	0.380		7	ug/kg
BORING #	27	BENZENE	4.721		77	ug/kg
DEPTH	10 TO 12 FT	TOLUENE	180.000		2813	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	36.890		642	ug/kg
		M&P-XYLENE	164.800		2637	ug/kg
		O-XYLENE	32.840		569	ug/kg
BORING #	27	BENZENE	27.090		444	ug/kg
DEPTH	12 TO 14 FT	TOLUENE	124.000		1938	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	37.850		658	ug/kg
		M&P-XYLENE	62.540	İ	1001	ug/kg
		O-XYLENE	15.590		270	ug/kg
BORING #	27	BENZENE	30.210		495	ug/kg
DEPTH	14 TO 16 FT	TOLUENE	67.320		1052	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	24.780		431	ug/kg
		M&P-XYLENE	58.900		942	ug/kg
		O-XYLENE	9.450		164	ug/kg
BORING #	27	BENZENE	2.859		47	ug/kg
DEPTH	16 TO 18 FT	TOLUENE	95.190		1487	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	18.280		318	ug/kg
		M&P-XYLENE	37.380	İ	598	ug/kg
DODUIC #		O-XYLENE	18.310	_	317	ug/kg
BORING #	27	BENZENE	1.002		16	ug/kg
DEPTH	18 TO 20 FT	TOLUENE	29.500		461	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	10.470		182	ug/kg
		M&P-XYLENE	19.630	1	314	ug/kg
		O-XYLENE	4.998		87	ug/kg

CLIENT
OPERATOR
DATE

PAGE___of___

MAL 8/17/93

			HEAD SPACE	1	CTUA	L
SAMPLE	DESCRIPTION	COMPOUND	PPM		CONC.	
BORING #	27	BENZENE	0.120		2	ug/kg
DEPTH	20 TO 22 FT	TOLUENE	2.198		34	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.912		16	ug/kg
		M&P-XYLENE	2.741		44	ug/kg
		O-XYLENE	0.582		10	ug/kg_
BORING #	27	BENZENE	0.061		1	ug/kg
DEPTH	22 TO 24 FT	TOLUENE	1.051		16	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.319		6	ug/kg
		M&P-XYLENE	1.214		19	ug/kg
-		O-XYLENE	0.000	<	1	ug/kg
BORING #	27	BENZENE	5.711		114	ug/L
DEPTH		TOLUENE	5.753		73	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	8.632		218	ug/L
		M&P-XYLENE	22.910		628	ug/L
		O-XYLENE	0.041	<	1	ug/L

ELLINGTON T-ANG

MAL 8/17/93

P	Α	G	Ε	C	þ	F

			HEAD SPACE		ACTUA	
SAMPLE	DESCRIPTION	COMPOUND	РРМ		CONC.	
BORING #	28	BENZENE	0.042	<	1	ug/kg
DEPTH	1 TO 3 FT	TOLUENE	0.292		5	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.175		3	ug/kg
		M&P-XYLENE	0.691		11	ug/kg
		O-XYLENE	0.000	<	1	ug/kg
BORING #	28	BENZENE	0.128		2	ug/kg
DEPTH	3 TO 5 FT	TOLUENE	2.069		32	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.339		6	ug/kg
		M&P-XYLENE	1.081		17	ug/kg
		O-XYLENE	0.292		5	ug/kg
BORING #	28	BENZENE	0.107		2	ug/kg
DEPTH	5 TO 7 FT	TOLUENE	1.803		28	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.224		4	ug/kg
		M&P-XYLENE	0.511		8	ug/kg
		O-XYLENE	0.082		1	ug/kg
BORING #	28	BENZENE	0.151		2	ug/kg
DEPTH	7 TO 9 FT	TOLUENE	2.650		41	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	5.861		102	ug/kg
		M&P-XYLENE	0.000	<	1	ug/kg
		O-XYLENE	0.284		S (1)	ug/kg
BORING #	28	BENZENE	0.077		1	ug/kg
DEPTH	9 TO 11 FT	TOLUENE	1.363		21	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.130		2	ug/kg
		M&P-XYLENE	0.345		6	ug/kg
2021110 #		O-XYLENE	0.000	<	1	ug/kg
BORING #	28	BENZENE	0.033	<	1	ug/kg
DEPTH	11 TO 13 FT	TOLUENE	0.652		10	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.064		1	ug/kg
		M&P-XYLENE	0.249		4	ug/kg
DODING "	00	O-XYLENE	0.000	<		ug/kg
BORING #	28	BENZENE	0.027	<	1	ug/kg
DEPTH	13 TO 15 FT	TOLUENE	0.639		10	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.060		1	ug/kg
		M&P-XYLENE	0.232		4	ug/kg
L		O-XYLENE	0.000	<	1	ug/kg

⁽¹⁾ If the retention time of the analyte was out of the 15% tolerance range the analyses is labeled "S" as suspect

CLIENT
OPERATOR

PAGE___of__

OPERATOR DATE

MAL 8/17/93

			HEAD SPACE	F	CTUA	L
SAMPLE	DESCRIPTION	COMPOUND	PPM		CONC	•
BORING #	28	BENZENE	0.086		2	ug/L
DEPTH		TOLUENE	0.494		6	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.325		8	ug/L
		M&P-XYLENE	1.108		30	ug/L
		O-XYLENE	0.000	<	11	ug/L

CLIENT
OPERATOR
DATE

PAGE___of__

MAL 8/17/93

		SAMPLE ANALYSIS				
			HEAD SPACE	A	CTUA	L
SAMPLE	DESCRIPTION	COMPOUND	PPM	(CONC.	,
BORING #	29	BENZENE	3.359		55	ug/kg
DEPTH	1 TO 3 FT	TOLUENE	4.500		70	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	10.670		186	ug/kg
		M&P-XYLENE	12.950		207	ug/kg
		O-XYLENE	5.485		95	ug/kg_
BORING #	29	BENZENE	0.525		9	ug/kg
DEPTH	3 TO 5 FT	TOLUENE	0.699		11	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	6.122		106	ug/kg
		M&P-XYLENE	3.817		61	ug/kg
1		O-XYLENE	1.975		34	ug/kg
BORING #	29	BENZENE	0.803		13	ug/kg
DEPTH	5 TO 7 FT	TOLUENE	1.608		25	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	1.478		26	ug/kg
		M&P-XYLENE	1.509		24	ug/kg
		O-XYLENE	0.663		11	ug/kg
BORING #	29	BENZENE	0.025	<	1	ug/kg
DEPTH	11 TO 13 FT	TOLUENE	0.186		3	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.112		2	ug/kg
		M&P-XYLENE	0.148	1	2	ug/kg
		O-XYLENE	0.000	<	1	ug/kg
BORING #	29	BENZENE	0.055		1	ug/L
DEPTH		TOLUENE	1.925		24	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.029	<	1	ug/L
		M&P-XYLENE	0.140		4	ug/L
		O-XYLENE	0.000	<_	11	ug/L

CLIENT	
--------	--

OPERATOR

MAL

DATE

8/18/93

CALIBRATION

PAGE	of

					HEAD SPACE TO
	(GAS STANDARD	GC RESI	PONCE	ACTUAL CONC.FACTOR
1.00	PPM	BENZENE,	1.00	PPM	NA
1.00	PPM	TOLUENE,	1.00	PPM	NA
1.00	PPM	ETHYLBENZENE,	1.00	PPM	NA
1.00	PPM	O-XYLENE	1.00	PPM	NA
	LI	QUID STANDARD			
0.0050	ug/ml	BENZENE,	0.345	PPM	0.0145
0.0050	ug/ml	TOLUENE,	0.988	PPM	0.0051
0.0050	ug/ml	ETHYLBENZENE,	0.164	PPM	0.0305
0.0100	ug/ml	M&P-XYLENE	0.381	PPM	0.0262
0.0050	ug/ml	O-XYLENE	0.450	PPM	0.0111
-		SOIL STANDARD			
0.004	ug/g	BENZENE,	0.346	PPM	0.0116
0.004	uġ/g	TOLUENE,	0.389	PPM	0.0103
0.004	ug/g	ETHYLBENZENE,	0.169	PPM	0.0237
0.008	ug/g	M&P-XYLENE	0.500	PPM	0.0160
0.004	ug/g	O-XYLENE	0.329	PPM	0.0122

GAS STANDARD IS A SCOTTY IV MIX # 6677 FROM SCOTT SPECIALTY GASES. SOIL AND LIQUID STANDARDS WERE MADE FROM BTX-100 (100 ug/mL in METHANOL) LOT NO. G-0433 FROM ULTRA SCIENTIFIC.

CLIENT
OPERATOR
DATE

PAGE___of__

MAL 8/18/93

			HEAD SPACE	ACTUAL	
SAMPLE DESCRIPTION		COMPOUND	PPM	CONC.	
BORING #	11	BENZENE	3.173	46.0 (1)	ug/L
DEPTH		TOLUENE	15.250	77.2	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.085	2.6 (1)	ug/L
		M&P-XYLENE	0.000	< 1.3	ug/L
		O-XYLENE	0.000	< 0.6	ug/L

⁽¹⁾ If the retention time of the analyte was out of the 15% tolerance range the analyses is labeled "S" as suspect

CLIENT	
OPERATOR	
DATE	

PAGE___of___

MAL 8/18/93

			HEAD SPACE	1	ACTUAL	-
SAMPLE	DESCRIPTION	COMPOUND	PPM		CONC.	
BORING #	30	BENZENE	0.014	<	0.6	ug/kg
DEPTH	8 TO 10 ft	TOLUENE	0.148		1.5	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.104		2.5	ug/kg
		M&P-XYLENE	0.048	<	8.0	ug/kg
		O-XYLENE	0.000	<	0.6	ug/kg
BORING #	30	BENZENE	0.007	<	0.6	ug/kg
DEPTH	10 TO 12 FT	TOLUENE	0.118		1.2	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.2	ug/kg
		M&P-XYLENE	0.036	<	0.8	ug/kg
		O-XYLENE	0.000	<	0.6	ug/kg
BORING #	30	BENZENE	0.011	<	0.6	ug/kg
DEPTH	16 TO 18 FT	TOLUENE	0.086		0.9	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.2	ug/kg
		M&P-XYLENE	0.032	<	8.0	ug/kg
		O-XYLENE	0.000	<	0.6	ug/kg
BORING #	30	BENZENE	0.014	<	0.7	ug/L
DEPTH		TOLUENE	0.162		8.0	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.000	<	1.5	ug/L
		M&P-XYLENE	0.000	<	1.3	ug/L
		O-XYLENE	0.000	<	0.6	ug/L

CLIENT OPERATOR DATE

ELLINGTON T-ANG

MAL 8/18/93

PAGE	of	:

SAMPLE DESCRIPTION				HEAD SPACE		ACTUAL	
BORING # 31	SAMPLE DESCRIPTION		COMPOUND				•
DEPTH	ļ						ua/ka
TYPE SOIL SAMPLE ETHYLBENZENE M&P.XYLENE O.000 (0.000) (0.000	l .	- -		1	_	-	
M&P-XYLENE	I .			1			1
O-XYLENE O.000 < 0.6 ug/kg		OOIL OAMITLL			_		
BORING # 31 BENZENE 0.007 < 0.6					1		1
DEPTH	BOBING #	21					
TYPE SOIL SAMPLE ETHYLBENZENE M&P-XYLENE 0.000							t
M&P-XYLENE			· ·		_		
O-XYLENE 0.000 < 0.6		SUIL SAWIFLE	1				
BORING # 31 BENZENE 0.143 1.7 (1) ug/kg			1	1	l		1
DEPTH	BODING #	01			<		
TYPE SOIL SAMPLE ETHYLBENZENE	1			1			
M&P-XYLENE 12.570 201.1 ug/kg	1			ł			
O-XYLENE 14.310 174.0 ug/kg	ITYPE	SOIL SAMPLE	•				
BORING # 31			1				1
DEPTH 12 TO 14 FT TOLUENE 2.907 29.9 ug/kg TYPE SOIL SAMPLE ETHYLBENZENE 7.311 173.0 ug/kg M&P-XYLENE 1.585 25.4 ug/kg O-XYLENE 3.263 39.7 ug/kg BORING # 31 BENZENE 0.007 < 0.6 ug/kg				······································			
TYPE SOIL SAMPLE ETHYLBENZENE M&P-XYLENE (D-XYLENE) 7.311 (D-XYLENE) 173.0 (D-XYLENE) ug/kg (D-XYLENE) 1.585 (D-XYLENE) 25.4 (D-XYLENE) ug/kg (D-XYLENE) 39.7 (D-XYLENE) ug/kg (D-XYLENE) 0.007 (D-XYLENE) 0.007 (D-XYLENE) 0.007 (D-XYLENE) 0.005 (D-XYLENE) 0.005 (D-XYLENE) 0.005 (D-XYLENE) 0.007 (D-XYLENE) 0.007 (D-XYLENE) 0.007 (D-XYLENE) 0.007 (D-XYLENE) 0.007 (D-XYLENE) 0.007 (D-XYLENE) 0.007 (D-XYLENE) 0.008 (D-XYLENE) 0.008 (D-XYLENE) 0.009 (D-XYLENE) 0.000 (D-XYLENE) 0.004 (D-XYLENE) 0.004 (D-XYLENE) 0.006 (D-XYLENE) 0.007 (D-XYLENE) 0.007 (D-XYLENE) 0.008 (D-XYLENE) 0.008 (D-XYLENE) 0.009 (D-XYLENE) </td <td></td> <td>_</td> <td>1</td> <td></td> <td><</td> <td></td> <td></td>		_	1		<		
M&P-XYLENE 1.585 25.4 ug/kg 39.7 ug/kg 39.7 ug/kg 39.7 ug/kg 39.7 ug/kg 39.7 ug/kg 39.7 ug/kg 39.7 ug/kg 39.7 ug/kg 39.7 ug/kg 39.7 ug/kg 39.7 ug/kg 39.7 ug/kg 39.7 ug/kg 39.7 ug/kg 30.007 0.6 ug/kg 30.005 0.5 ug/kg 30.005 30.0							ug/kg
O-XYLENE 3.263 39.7 ug/kg	TYPE	SOIL SAMPLE					ug/kg
BORING # 31 DEPTH 16 TO 18 FT TOLUENE 0.035 < 0.5 ug/kg TYPE SOIL SAMPLE ETHYLBENZENE 0.441 10.4 ug/kg M&P-XYLENE 0.303 4.8 ug/kg O-XYLENE 0.161 2.0 ug/kg BORING # 31 DEPTH TOLUENE 0.030 < 0.3 ug/L TYPE WATER SAMPLE ETHYLBENZENE 0.157 4.8 ug/L BEFORE PURGE M&P-XYLENE 0.044 < 1.3 ug/L O-XYLENE 0.000 < 0.6 ug/L BORING # 31 DEPTH TOLUENE 0.000 < 0.6 ug/L BORING # 31 DEPTH TOLUENE 0.004 < 0.3 ug/L TYPE WATER SAMPLE ETHYLBENZENE 0.004 < 0.3 ug/L BORING # 31 DEPTH TOLUENE 0.004 < 0.3 ug/L TYPE WATER SAMPLE ETHYLBENZENE 0.018 < 0.7 ug/L TOLUENE 0.044 < 0.3 ug/L TYPE WATER SAMPLE ETHYLBENZENE 0.151 4.6 ug/L AFTER PURGE M&P-XYLENE 0.041 < 1.3 ug/L			ł				ug/kg
DEPTH 16 TO 18 FT TOLUENE 0.035 < 0.5 ug/kg TYPE SOIL SAMPLE ETHYLBENZENE 0.441 10.4 ug/kg M&P-XYLENE 0.303 4.8 ug/kg O-XYLENE 0.161 2.0 ug/kg BORING # 31 BENZENE 0.028 < 0.7							ug/kg
TYPE SOIL SAMPLE ETHYLBENZENE 0.441 10.4 ug/kg M&P-XYLENE 0.303 4.8 ug/kg O-XYLENE 0.161 2.0 ug/kg BORING # 31 BENZENE 0.028 < 0.7 ug/L TOLUENE 0.030 < 0.3 ug/L TYPE WATER SAMPLE ETHYLBENZENE 0.157 4.8 ug/L BEFORE PURGE M&P-XYLENE 0.044 < 1.3 ug/L O-XYLENE 0.000 < 0.6 ug/L BORING # 31 BENZENE 0.018 < 0.7 ug/L O-XYLENE 0.004 < 0.3 ug/L TOLUENE 0.044 < 0.3 ug/L TOLUENE 0.044 < 0.3 ug/L TOLUENE 0.044 < 0.3 ug/L TOLUENE 0.044 < 0.3 ug/L TYPE WATER SAMPLE ETHYLBENZENE 0.151 4.6 ug/L AFTER PURGE M&P-XYLENE 0.041 < 1.3 ug/L	1	- :			<		ug/kg
M&P-XYLENE 0.303 4.8 ug/kg O-XYLENE 0.161 2.0 ug/kg BORING # 31 BENZENE 0.028 < 0.7 ug/L	1		i	1	<		ug/kg
O-XYLENE 0.161 2.0 ug/kg	TYPE	SOIL SAMPLE	1			10.4	ug/kg
BORING # 31 BENZENE 0.028 < 0.7)			4.8	ug/kg
DEPTH TOLUENE 0.030 < 0.3							ug/kg
TYPE WATER SAMPLE ETHYLBENZENE 0.157 4.8 ug/L BEFORE PURGE M&P-XYLENE 0.044 < 1.3 ug/L O-XYLENE 0.000 < 0.6 ug/L BORING # 31 BENZENE 0.018 < 0.7 ug/L DEPTH TOLUENE 0.044 < 0.3 ug/L TYPE WATER SAMPLE ETHYLBENZENE 0.151 4.6 ug/L AFTER PURGE M&P-XYLENE 0.041 < 1.3 ug/L	1	31		0.028	<	0.7	ug/L
BEFORE PURGE M&P-XYLENE 0.044 < 1.3 ug/L O-XYLENE 0.000 < 0.6 ug/L BORING # 31 BENZENE 0.018 < 0.7 ug/L OEPTH TOLUENE 0.044 < 0.3 ug/L OEPTH AFTER PURGE M&P-XYLENE 0.041 < 1.3 ug/L OEPTH OEEPTH OEETH OEEPTH OEETH OEEPTH OEEPTH OEETH				0.030	<	0.3	ug/L
O-XYLENE 0.000 < 0.6 ug/L BORING # 31 BENZENE 0.018 < 0.7 ug/L DEPTH TOLUENE 0.044 < 0.3 ug/L TYPE WATER SAMPLE ETHYLBENZENE 0.151 4.6 ug/L AFTER PURGE M&P-XYLENE 0.041 < 1.3 ug/L	TYPE			0.157		4.8	ug/L
BORING # 31 BENZENE 0.018 < 0.7 ug/L		BEFORE PURGE	M&P-XYLENE	0.044	<	1.3	ug/L
DEPTH TOLUENE 0.044 < 0.3 ug/L TYPE WATER SAMPLE ETHYLBENZENE 0.151 4.6 ug/L AFTER PURGE M&P-XYLENE 0.041 < 1.3 ug/L				0.000	<	0.6	ug/L
DEPTH TOLUENE 0.044 < 0.3 ug/L TYPE WATER SAMPLE ETHYLBENZENE 0.151 4.6 ug/L AFTER PURGE M&P-XYLENE 0.041 < 1.3 ug/L	BORING #	31	BENZENE	0.018	<	0.7	ug/L
TYPE WATER SAMPLE ETHYLBENZENE 0.151 4.6 ug/L AFTER PURGE M&P-XYLENE 0.041 < 1.3 ug/L	DEPTH		TOLUENE	0.044	<	0.3	1
AFTER PURGE M&P-XYLENE 0.041 < 1.3 ug/L	TYPE	WATER SAMPLE	ETHYLBENZENE	0.151		4.6	- 1
1 a a m 1		AFTER PURGE	1	0.041	<	1.3	4
			O-XYLENE	0.000	<	0.6	ug/L

⁽¹⁾ If the retention time of the analyte was out of the 15% tolerance range the analyses is labeled "S" as suspect

CLIENT
ODEDATO

DATE

ELLINGTON T-ANG

OPERATOR

MAL 8/19/93

CALIBRATION

PAGE of

					HEAD SPACE TO
	(GAS STANDARD	GC RESI	ONCE	ACTUAL CONC.FACTOR
1.00	PPM	BENZENE,	1.00	PPM	NA
1.00	PPM	TOLUENE,	1.00	PPM	NA
1.00	PPM	ETHYLBENZENE,	1.00	PPM	NA
1.00	PPM	O-XYLENE	1.00	PPM	NA
	LI	QUID STANDARD			
0.0050	ug/ml	BENZENE,	0.254	PPM	0.0197
0.0050	ug/ml	TOLUENE,	0.368	PPM	0.0136
0.0050	ug/ml	ETHYLBENZENE,	0.078	PPM	0.0641
		M&P-XYLENE	0.355	PPM	0.0282
	_	O-XYLENE	0.255	PPM	0.0196
		SOIL STANDARD			
0.004	ug/g	BENZENE,	0.246	PPM	0.0163
0.004	ug/g	TOLUENE,	0.253	PPM	0.0158
0.004	ug/g	ETHYLBENZENE,	0.108	PPM	0.0370
0.008	ug/g	M&P-XYLENE	0.570	PPM	0.0140
0.004		O-XYLENE	0.268	PPM	0.0149

GAS STANDARD IS A SCOTTY IV MIX # 6677 FROM SCOTT SPECIALTY GASES. SOIL AND LIQUID STANDARDS WERE MADE FROM BTX-100 (100 ug/mL in METHANOL) LOT NO. G-0433 FROM ULTRA SCIENTIFIC.

CLIENT
OPERATOR
DATE

ELLINGTON T-ANG

PAGE___of__

MAL 8/19/93

			HEAD SPACE		ACTUA	_
SAMPLE DESCRIPTION		COMPOUND	PPM	CONC.		
BORING #	32	BENZENE	0.012	<	0.8	ug/kg
DEPTH	10 TO 12 FT	TOLUENE	0.049	<	8.0	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg
		M&P-XYLENE	0.000	<	0.7	ug/kg
		O-XYLENE	0.000	<	0.7	ug/kg
BORING #	32	BENZENE	0.018	<	0.8	ug/kg
DEPTH	16 TO 18 ft	TOLUENE	0.045	<	8.0	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg
		M&P-XYLENE	0.000	<	0.7	ug/kg
		O-XYLENE	0.000	<	0.7	ug/kg
BORING #	32	BENZENE	0.013	<	1.0	ug/L
DEPTH		TOLUENE	0.085		1.2	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.000	<	3.2	ug/L
	BEFORE PURGE	M&P-XYLENE	0.000	<	1.4	ug/L
		O-XYLENE	0.000	<	1.0	ug/L
BORING #	32	BENZENE	0.008	<	1.0	ug/L
DEPTH		TOLUENE	0.041	<	0.7	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.000	<	3.2	ug/L
	AFTER PURGE	M&P-XYLENE	0.000	<	1.4	ug/L
		O-XYLENE	0.000	<	1.0	ug/L

CLIENT OPERATOR DATE

ELLINGTON T-ANG

MAL 8/19/93 PAGE___of___

			HEAD SPACE		ACTUAL	_
SAMPLE DESCRIPTION		COMPOUND	PPM	CONC.		
BORING #	33	BENZENE	0.000	<	0.8	ug/kg
DEPTH	0 TO 2 FT	TOLUENE	0.033	<	0.8	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg
		M&P-XYLENE	0.000	<	0.7	ug/kg
		O-XYLENE	0.000	<	0.7	ug/kg
BORING #	33	BENZENE	0.007	<	0.8	ug/kg
DEPTH	2 TO 4 FT	TOLUENE	0.015	<	0.8	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg
		M&P-XYLENE	0.000	<	0.7	ug/kg
		O-XYLENE	0.000	<	0.7	ug/kg
BORING #	33	BENZENE	0.000	<	0.8	ug/kg
DEPTH	4 TO 6 FT	TOLUENE	0.036	<	0.8	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg
		M&P-XYLENE	0.000	<	0.7	ug/kg
		O-XYLENE	0.000	<	0.7	ug/kg
BORING #	33	BENZENE	0.019	٧	0.8	ug/kg
DEPTH	6 TO 8 FT	TOLUENE	0.083		1.3	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg
		M&P-XYLENE	0.000	<	0.7	ug/kg
		O-XYLENE	0.000	<	0.7	ug/kg
BORING #	33	BENZENE	0.012	<	8.0	ug/kg
DEPTH	8 TO 10 FT	TOLUENE	0.186		2.9	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg
	•	M&P-XYLENE	0.000	<	0.7	ug/kg
		O-XYLENE	0.000	<	0.7	ug/kg
BORING #	33	BENZENE	0.057		0.9 (1)	ug/kg
DEPTH	10 TO 12 FT	TOLUENE	0.124		2.0	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg
		M&P-XYLENE	0.000	<	0.7	ug/kg
505010 #		O-XYLENE	0.000	<	0.7	ug/kg
BORING #	33	BENZENE	26.100		424.4	ug/kg
DEPTH	12 TO 14 FT	TOLUENE	283.500		4482.2	
TYPE	SOIL SAMPLE	ETHYLBENZENE	9.446		349.9	ug/kg
		M&P-XYLENE	32.410		454.9	ug/kg
	on time of the analyte was	O-XYLENE	41.900		625.4	ug/kg

⁽¹⁾ If the retention time of the analyte was out of the 15% tolerance range the analyses is labeled "S" as suspect

CLIENT
OPERATOR
DATE

ELLINGTON T-ANG

PAGE___of___

MAL 8/19/93

			HEAD SPACE	ACTUAL	
SAMPLE DESCRIPTION		COMPOUND	PPM	CONC.	
BORING #	33	BENZENE	3.775	61.4	ug/kg
DEPTH	14 TO 16 FT	TOLUENE	24.650	389.7	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.705	26.1	ug/kg
—		M&P-XYLENE	0.483	6.8	ug/kg
		O-XYLENE	3.176	47.4	ug/kg
BORING #	33	BENZENE	0.041	< 0.8	ug/kg
DEPTH	16 TO 18 FT	TOLUENE	7.308	115.5	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.116	4.3	ug/kg
		M&P-XYLENE	0.224	3.1	ug/kg
		O-XYLENE	0.616	9.2	ug/kg
BORING #	33	BENZENE	0.192	3.8	ug/L
DEPTH		TOLUENE	25.270	343.3	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.888	56.9	ug/L
	BEFORE PURGE	M&P-XYLENE	2.946	83.0	ug/L
		O-XYLENE	0.868	17.0	ug/L
BORING #	33	BENZENE	0.241	4.7	ug/L
DEPTH		TOLUENE	27.040	367.4	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.197	12.6	ug/L
	AFTER PURGE	M&P-XYLENE	0.664	18.7	ug/L
		O-XYLENE	0.532	10.4	ug/L

CLIENT
OPERATOR

DATE

ELLINGTON T-ANG

R MAL

8/20/93

PAGE___of___

CALIBRATION

					HEAD SPACE TO
		BAS STANDARD	GC RESI	PONCE	ACTUAL CONC.FACTOR
1.00	PPM	BENZENE,	1.00	PPM	NA
1.00	PPM	TOLUENE,	1.00	PPM	NA
1.00	PPM	ETHYLBENZENE,	1.00	PPM	NA
1.00	PPM	O-XYLENE	1.00	PPM	NA NA
	LI	QUID STANDARD			
0.0050	ug/ml	BENZENE,	0.377	PPM	0.0133
0.0050	ug/ml	TOLUENE,	1.139	PPM	0.0044
		ETHYLBENZENE,	0.107	PPM	0.0467
		M&P-XYLENE	0.473	PPM	0.0211
0.0050	ug/ml	O-XYLENE	0.331	PPM	0.0151
-		SOIL STANDARD			
0.004	ug/g	BENZENE,	0.377		0.0106
0.004	ug/g	TOLUENE,	0.866	PPM	0.0046
0.004	ug/g	ETHYLBENZENE,	0.181	PPM	0.0221
l l	_		0.900	PPM	0.0089
0.004	ug/g	O-XYLENE	0.458	PPM	0.0087

GAS STANDARD IS A SCOTTY IV MIX # 6677 FROM SCOTT SPECIALTY GASES. SOIL AND LIQUID STANDARDS WERE MADE FROM BTX-100 (100 ug/mL in METHANOL) LOT NO. G-0433 FROM ULTRA SCIENTIFIC.

CLIENT
OPERATOR
DATE

ELLINGTON T-ANG

PAGE___of___

MAL 8/20/93

		OAM EL AIVALTOIO	HEAD SPACE		ACTUA	L
SAMPLE	DESCRIPTION	COMPOUND	PPM		CONC	
BORING #	34	BENZENE	0.029	<	0.5	ug/kg
DEPTH	8 TO 10 FT	TOLUENE	0.187		0.9	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.1	ug/kg
–		M&P-XYLENE	0.066		0.6	ug/kg
		O-XYLENE	0.000	<	0.4	ug/kg
BORING #	34	BENZENE	0.082		0.9	ug/kg
DEPTH	14 TO 16 ft	TOLUENE	0.300		1.4	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.1	ug/kg
·		M&P-XYLENE	0.000	<	0.4	ug/kg
		O-XYLENE	0.000	<	0.4	ug/kg_
BORING #	34	BENZENE	0.014	<	0.5	ug/kg
DEPTH	16 TO 18 ft	TOLUENE	0.145		0.7	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.1	ug/kg
		M&P-XYLENE	0.000	<	0.4	ug/kg
		O-XYLENE	0.000	<	0.4	ug/kg
BORING #	34	BENZENE	0.019	<	0.7	ug/L
DEPTH		TOLUENE	0.343		1.5	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.000	<	2.3	ug/L
	BEFORE PURGE	M&P-XYLENE	0.000	<	1.1	ug/L
		O-XYLENE	0.000	<	0.8	ug/L
BORING #	34	BENZENE	0.018	<	0.7	ug/L
DEPTH		TOLUENE	0.257		1.1	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.000	<	2.3	ug/L
	AFTER PURGE	M&P-XYLENE	0.000	<	1.1	ug/L
		O-XYLENE	0.000	<	0.8	ug/L

ennaci.							
0	4		8	12	16	20	Time Printed: Aug 5,93 08:57
17	•				1000		Sample Time: Aug 5,93 08:48
				. (^	TOOO	WV)	Method
-				leese .			}
28 <				•			Slope Up 1.000 mV/Sec
ڏر ا	•						Slope Down 3.000 mV/Sec
							Min Area 1.000 mVSec
7		•		•	•		Min Height 0.000 mV
576							Analysis Delay 50.0 sec
1 1/2			•	•		•	Window Percent 25.0 %
مشيل ا		-					
>		. 22					Det Flow 10 ml/min
1 /43							B/F Flow 10 ml/min
85	4						Aux Flow O ml/min
	•	•	•	•		•	Oven Temp 45 C
							Amb Temp 33 C
		•		•	•	,	Max Gain 1000
							1
114							Analysis Time 400.0 sec
~	>						Peak Report
سمر ا	6						Pk Compound Name Area/Conc R.T.
		•		•	•		1 Unknown 0.947 mVS 52.9
142							2 Benzene 53.04 ppb 59.7
T.	•	•	•	•		. •	3 Unknown 4.413 mVS 66.8
D_							\$
1 1/7				•			•
1 1							5 Unknown 2.039 mVS 102.1
171							6 Toluene 113.6 ppb 118.5
1 1	•	•	•	•	, -	•	7 Unknown 4.655 mVS 149.0
							8 Unknown 9.560 mVS 191.2
1		•		•	•		9 Unknown 7.884 mVS 196.2
200	8						10 Ethylbenzene 149.2 ppb 205.0
1 K		•		•			
9							11 m&p-xylene 8.059 ppb 241.3
10	ı						12 Unknown 2.825 mVS 260.5
							13 O-xylene 19.88 ppb 306.6
228							
	•	•	•	•		•	
111		•		•	•		
257							
}							
12	!						
					·		
285							
7	•	•	•	•		•	
1 1		•					
314	13						Notes
							soil bottle headspace vol.=145cc
							50g of soil temp 28 c
		•		•	•		blank zero check
342							benzene
1374				•		•	**************************************
							ethlyb
							tol.
							OXX."
371							m-xy"
	•	•	•	•		•	p-xy"
							F
		•		•	•		
440							
1 .							

1-11 Let T	>212	11 -3	1.00	or OC	P COT C.	tion Analysis Report
9	1.	2	3 .(x	4 100	5 mV)	Time Printed: Aug 5 ,93 04: 08 Sample Time: Aug 5 ,93 08: 50 Method
42						Slope Up 2.000 mV/Sec Slope Down 6.000 mV/Sec
85			1.			Min Area 10.00 mVSec Min Height 0.000 mV Analysis Delay 50.0 sec Window Percent 25.0 %
128	·					Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C
171						Amb Temp 37 C Max Gain 1000 Analysis Time 600.0 sec Peak Report
4 5 214 6						Fk Compound NameArea/ConcR.T.1 Benzene2.860 ppm61.62 Toluene3.252 ppm119.73 Unknown69.91 mVS150.6
250	∑8 .					4 Unknown 1.438 mVS 176.6 5 Unknown 6.441 mVS 191.6 6 Unknown 5.198 mVS 208.2 7 Ethylbenzene 2.546 ppm 239.8 8 m&p-xylene 7.000 ppm 257.6
300						9 0-xylene 3.706 ppm 303.4
342			•			Tol 13
385						USY This xy lens 14
428					-	
471						Notes soil bottle headspace vol.=145cc 100g of soil will be analyzed
514	·					cal check 40cc of .25 ug/ml of Benzene ethlyb tol.
557						bx\range " wx\range " ox\range "
600			•			

1 13 1 5.5 .2.	<u> </u>					
9	4	8	12	16	20	Time Printed: Aug 5,93 08:36
			,(x	10	mV)	Sample Time: Aug 5,93 08:26
\ <u>\</u>	<u> </u>					Method
28	-2	<u> </u>				Slope Up 1.000 mV/Sec
سـ ا		` المتسي				Slope Down 3.000 mV/Sec
. <	>					Min Area 1.000 mVSec
						Min Height 0.000 mV
57						Analysis Delay 50.0 sec
						Window Percent 25.0 %
. ~		<u> </u>				Det Flow 10 ml/min
	E		<u>~</u>	•		B/F Flow 10 ml/min
85				4 .		Aux Flow O ml/min
4						Oven Temp 45 C Amb Temp 33 C
ا الخب						1
-						
114	<u></u>	<u>6</u>	·		•	Analysis Time 400.0 sec
		_				Peak Report Fk Compound Name Area/Conc R.T.
ہ ا ا	~~~~~	•	•	ζ.		
1	<i>,</i>					
147	. B					
	~~>	-				3 Unknown 457.8 mVS 67.2 4 Unknown 696.2 mVS 76.2
سر ا		7.	•	٠		5 Unknown 4.558 mVS 95.0
, /						6 Unknown 265.9 mVS 102.5
17			•			7 Toluene 7.185 ppm 118.1
10	•					8 Unknown 4.495 mVS 131.8
1 1	•	•	•	•		9 Unknown 439.2 mVS 149.2
200	1.1					10 Unknown 1.740 mVS 176.0
1-71	.ii.	•				11 Unknown 67.00 mVS 189.8
1						12 Unknown 67.16 mVS 221.8
		•	•	•		13 Ethylbenzene 428.9 ppb 239.4
228	12					14 m&p-xylene 1.110 ppm 256.8
V		•			-	15 O-xylene 1.062 ppm 303.2
1						
1 1/1	3	•	•	•		1 21 244 101
253						60=1 ppb Binzol 1 vg/g
1 1 1.	4	•			•	100 = 100h Tol
1 1/				_		
1 1		•	•	•		50=1ppb Eth.
285						70 = 1 xy/2015
	•	•			•	70 -1091000
1 1						
[]]						
314	15					Notes
	•					soil bottle headspace vol.=145cc
		•				50g of soil temp 28 c
						soil sample spiked .5ml lppm of
342						benzene
						ethlyb
		•				tol.
						O-X y n
371						m-xy"
						bxx.
			•		•	
400		•		•		
L						

mmat.)	,						Trul Euler Amar (Ambr) c
9	1.	2		3 (x	4 100	5 mV)	Time Printed: Aug 5,93 09:08 Sample Time: Aug 5,93 08:59
		•		. `			Method
282							Slope Up 1.000 mV/Sec
\\\\\\\	> ·	•	•	•		•	Slope Down 3.000 mV/Sec
1							Min Area 1.000 mVSec
->		•		•			
							Min Height 0.000 mV
57	⇒						Analysis Delay 50.0 sec
1	1.						Window Percent 25.0 %
							Det Flow 10 ml/min
}~=					•		B/F Flow 10 ml/min
سر 89				4			Aux Flow O ml/min
	•	•	•	•	•	•	Oven Temp 45 C
1 55							Amb Temp 33 C
1 44		•		•	•		Max Gain 1000
سران ا	~~~	,					}
114	~~~ <u>`</u>	<u> </u>	<u>. </u>			•	
				>			Feak Report
1 1				.7			Pk Compound Name Area/Conc R.T.
6	_						1 Unknown 295.4 mVS 53.4
142	8						2 Benzene 82.40 ppb 60.6
1 7	چـــ				·	•	3 Unknown 799.0 mVS 67.4
	>	10		_			4 Unknown 1.529 VSec 76.6
11/		•		-	•		5 Unknown 95.61 mVS 94.6
1171							6 Unknown 806.7 mVS 103.0
1"11		•	•	•			7 Toluene 16.04 PPM1 118.2
							8 Unknown 9.341 mVS 133.7
1 1		•		•	•		
[2]							1
500	11	•				•	1 The state of the
							11 Unknown 275.0 mVS 191.2
							12 Ethylbenzene 4.440 ppm 223.8
							13 m&p-xylene 1.451 ppm 244.5
228)							14 Unknown 282.8 mVS 265.6
/1:	2						15 O-xylene 1.835 ppm 304.5
1 8							16 Unknown 276.7 mVS 317.0
1 113		•		•	·		
250							
1 1	•	•	•	•		•	
1 114							
17"		•		•	•		
Zdo				•			
							PPM1 = Alarm 1 PPM2 = Alarm2
314	1.5					•	Notes
	•	•	,	•	•	•	soil bottle headspace vol.=145cc
16							50g of soil temp 28 c
1 1		•		•	•		sample # 4 to 6 ft SB 16
342							
	•	•	•	•		•	
		•		•	•		
371							
							,
400		_			, .	-	
<u> </u>	·		-	-			

741763.7.35	15 715	1.00.	00.5 1 0.110.	CICH MISCIPSIS Report
Q	2 4	ద	8 10	Time Printed: Aug 5,93 10:02
		.(×	10 mV)	Sample Time: Aug 5,93 09:52
L				Method
28 -				Slope Up 1.000 mV/Sec
				Slope Down 3.000 mV/Sec
.5	•		•	Min Area 1.000 mVSec
				Min Height 0.000 mV
57				Analysis Delay 50.0 sec
5 1				Window Percent 25.0 %
		•	•	Det Flow 10 ml/min
				B/F Flow 10 ml/min
85,		4 .		Aux Flow O ml/min
				Oven Temp 45 C
1 25	•	•		Amb Temp 34 C
				Max Gain 1000
111	<u> 6 </u>			Analysis Time 400.0 sec
				Feak Report
		 . 7	•	Pk Compound Name Area/Conc R.T.
				1 Unknown 36.86 mVS 53.1
142 8				2 Benzene 52.58 ppb 59.9
No.				3 Unknown 120.6 mVS 67.3
	10 قسب		•	4 Unknown 254.8 mVS 76.4
				5 Unknown 36.20 mVS 94.1
174				6 Unknown 140.4 mVS 102.8
				7 Toluene 3.491 ppm 117.7
				8 Unknown 1.184 mVS 132.4
				9 Unknown 2.207 mVS 138.9
200 1	.:1.			10 Unknown 281.0 mVS 149.6
I H			-	11 Unknown 65.00 mVS 191.0
	•		•	12 Unknown 60.51 mVS 210.8
1 1/12				13 Ethylbenzene 623.9 ppb 223.2
228) 1	.3			14 m&p-xylene 252.7 ppb 243.7
				15 Unknown 81.49 mVS 264.2
				16 O-xylene 1.528 ppm 317.0
1,4				
2\$7 .				
)15		•		
/				
285				
1 1				
1 \			•	
314				Notes
				soil bottle headspace vol.=145cc
16	•	•		50g of soil temp 28 c
				sample # 20 to 22 sb 16
342				
371				
		• •	-	
			-	
	•	-		
440			, .	
1	•			

	Ana	alys	5 i. S	#15	1.09	3+ GC	Func	tion Analysis Report
[0		4	8	12	16	20	Time Printed: Aug 5,93 10:24
1	4		***	(1)	.(x		mV)	Sample Time: Aug 5,93 10:14
				•	. \ ^	T. Z	mv)	Method
Ì	28	7						Slope Up 1.000 mV/Sec
-	Z (.)	.حجر			•		•	Slope Down 3.000 mV/Sec
-								Min Area 1.000 mVSec
				•	•	•		Min Height 0.000 mV
		_						Analysis Delay 50.0 sec
ı	57		∵		•		•	Window Percent 25.0 %
	K	·	.L					Det Flow 10 ml/min
Ì	Ĺ			 _	•			
-]				<u></u>			
	85	·		. .	. •5		•	Aux Flow O ml/min
	K							Oven Temp 45 C
- 1	-	\geq^a		•	•			Amb Temp 34 C
-	- 1		>				•	Max Gain 1000
- 1	1 1	€	5_	<u>.</u> .				Analysis Time 400.0 sec
					> .			Peak Report
	1				6	•		Pk Compound Name Area/Conc R.T.
								1 Benzene 446.5 ppb 53.5
-	14	3 .						2 Unknown 300.4 mVS 67.4
1	Ţ	Come						3 Unknown 560.4 mVS 76.6
١	1	والمستمير	7					4 Unknown 75.18 mVS 94.4
								5 Unknown 188.3 mVS 103.0
	17	1			•			6 Toluene 5.153 ppm 118.2
	i							7 Unknown 277.5 mVS 150.0
	ı							8 Unknown 54.58 mVS 188.8
Į	ľ	Y						9 Unknown 48.76 mVS 211.8
	201	b §	3		_			10 Ethylbenzene 422.3 ppb 223.6
	Ч				·		•	11 m&p-xylene 453.5 ppb 241.6
	- []							12 Unknown 73.74 mVS 264.0
1	ŀ	5		-	-			13 O-xylene 1.056 ppm 316.5
	24	} :	10					
	١,	<i>!</i>			•		•	
1	Ţ							
	- 1.	À.I.		•	•	•		
	29	7						
				•	•		•	
	ľ	12						
	- 1	T		•	•	•		
	28	5						
					•		•	
	ļ							
				•	٠	•		
	33	a						Notes
	7.4	13	•		•		•	soil bottle headspace vol.=145cc
		j''						43.3ml H2O temp 28 c
				•		•		sample sb 16 water sample
	34	9						accepting and an article article version from a constitution of
	ا".	<i></i>			•		•	
				•	•	•		
	37	-1						
	34	.L						
				•	•			
	1,,	. ^						
	40	Ų			•			
	}							

	ysls	77 J. /	3. 0		1 55115	non Analysis Report
9	1.	. 2	.3 .(x	4 100	5 mV)	Time Frinted: Aug 5,93 10:45 Sample Time: Aug 5,93 10:36
						Method
282_			•		•	Slope Up 1.000 mV/Sec
						Slope Down 3.000 mV/Sec
. —		_>				Min Area 1.000 mVSec
سسم						Min Height 0.000 mV
57						Analysis Delay 50.0 sec
	_	1.				Window Percent 25.0 %
.				_ .		Det Flow 10 ml/min
				2		B/F Flow 10 ml/min
ر (85					3	Aux Flow O ml/min
1.16	_					Oven Temp 45 C
- ↓	 4		•			Amb Temp 34 C
						Max Gain 1000
1114	<u>-</u>	<u> </u>				Analysis Time 400.0 sec
1 }						Peak Report
	مور		<u> </u>		6	Pk Compound Name Area/Conc R.T.
						1 Benzene 2.300 ppm 53.6
142	<i>/</i>		•			2 Unknown 2.076 VSec 68.0
	******	~~~				3 Unknown 2.877 VSec 77.0
		7				4 Unknown 505.0 mVS 94.6
	-					5 Unknown 1.214 VSec 103.3
117						6 Toluene 25.92 PPM2 118.8
1 Ns						7 Unknown 1.613 VSec 150.4
1 - 1		• .				8 Unknown 238.8 mVS 169.2
						9 Unknown 308.4 mVS 191.6
200	9				•	10 Unknown 157.0 mVS 212.8
1 H						11 Unknown 271.5 mVS 224.2
1 11						12 Ethylbenzene 1.990 ppm 241.0
1 40						13 m&p-xylene 2.367 ppm 261.0
228						14 Unknown 171.8 mVS 282.6
1 1 1	:1 .					15 O-xylene 1.873 ppm 302.1
			-			16 Unknown 297.2 mVS 315.4
/1	2					
251						
1 ()						
1/1	3					
[cd]			•		•	
1 14						
		•	•			Debted Alican d Debted Alicano
15						PPM1 = Alarm 1 PPM2 = Alarm2
34						Notes
1 16						soil bottle headspace vol.=145cc
1 #		•	•			temp 28 c
						50g soil
342						sample # sb 16 12 to 14 ft 845
			•			
371			•			
		•	•			
1400						
400			•		•	
						I

Anad	ysis.	#19	105+	GC	Func	tion Analysis Report
9	il.	2	3 .(x	4 10	5 mV)	Time Printed: Aug 5,93 11:07 Sample Time: Aug 5,93 10:58 Method
28				-		Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec
<	<u>-</u>					Min Area 1.000 mVSec
	garante.	•	•	•		Min Height 0.000 mV
157						Analysis Delay 50.0 sec
1	1		• •	•	•	Window Percent 25.0 %
K.	<u> </u>					Det Flow 10 ml/min
-			_	•		B/F Flow 10 ml/min
سر 85			4			Aux Flow O ml/min
	•		• •	•	•	Oven Temp 45 C
	i			_		Amb Temp 34 C
	>					Max Gain 1000
1.1	6					Analysis Time 400.0 sec
		<u> </u>	> .	•	•	Peak Report
			.7			Pk Compound Name Area/Conc R.T.
	-					1 Unknown 37.36 mVS 53.6
142						2 Benzene 12.37 ppb 59.8
1 5	••••					3 Unknown 68.59 mVS 67.7
	جهمه	•				4 Unknown 157.9 mVS 76.8
						5 Unknown 11.88 mVS 94.5
1.71						6 Unknown 41.84 mVS 103.2
						7 Toluene 1.269 ppm 118.5
			•			8 Unknown 66.27 mVS 150.0
						9 Unknown 11.69 mVS 191.6
200	9			•		10 Unknown 14.41 mVS 211.8
1 1						11 Ethylbenzene 91.70 ppb 224.0
		•	•	•		12 m&p-xylene 101.2 ppb 242.1
The C	,					13 Unknown 20.45 mVS 264.5
228						14 O-xylene 310.4 ppb 316.0
(1.1	•					<u>.</u>
1 12	,	•		•		
257	•					·
121					•	
las						
	,	•	•	•		
285						
	•			•	•	
		•	•	•		
3:14						Notes
112	ļ			•	•	soil bottle headspace vol.=145cc
						temp 28 c
1		,	•			50g soil
342		_				sample #16 18 to 20 ft 902
	•			•	•	
				-		
371	•					
	*	•		-		
440				٠		
1						1

ener.	,		JI. 50 540 -	2,0 340	1 5011 50	TION PARCIANTS CEMBER C
9	2	4	6 .(x	8 10	10 mV)	Time Printed: Aug 5,93 11:27 Sample Time: Aug 5,93 11:18
		•	. ` '''	••• ••		Method
28 <						Slope Up 1.000 mV/Sec
-سر ا		•	•	•	•	Slope Down 3.000 mV/Sec
4	~					Min Area 1.000 mVSec
1		•	•	•		Min Height 0.000 mV
57						Analysis Delay 50.0 sec
	جتہ ا	•		•	•	Window Percent 25.0 %
						Det Flow 10 ml/min
+	-===	<u>·</u>		•		B/F Flow 10 ml/min
85						Aux Flow O ml/min
	•	•	. **/ .	•	•	Oven Temp 45 C
}-			4			Amb Temp 34 C
-			i.	•		Max Gain 1000
114	ی حمر					Analysis Time 400.0 sec
1	<u>~~``</u>	<u> </u>			•	Peak Report
				<u>~</u> ≃		Pk Compound Name Area/Conc R.T.
11/		•	•	Ģ		1 Benzene 142.3 ppb 53.5
1,42	<u></u>					2 Unknown 280.1 mVS 67.7
1 1 1	8	•		•	•	3 Unknown 317.7 mVS 76.4
1 1 7	Ω Ω					4 Unknown 251.1 mVS 94.6
111	•	•	•	•		5 Unknown 104.5 mVS 103.2
17/						6 Toluene 3.538 ppm 118.9
La	•	•		•	•	7 Unknown 0.055 mVS 133.6
1 1						8 Unknown 60.44 mVS 140.2
1		•	•	•		9 Unknown 103.6 mVS 149.8
200	1.1.					10 Unknown 1.735 mVS 170.4
124	.tt.		•	•		11 Unknown 9.346 mVS 191.8
1 1						12 Ethylbenzene 196.5 ppb 210.8
1 /12			•	•		13 m&p-xylene 18.31 ppb 243.7
						13 map-xylene 18.31 ppb 243.7 14 Unknown 7.311 mVS 267.7
228				•	•	1
						15 O-xylene
13		•	•	•		
257						
149/					•	
		•	•	•		
14						
285	•				•	
15						
		•	•	•		
						L.L., d
314						Notes
						soil bottle headspace vol.=145cc
						temp 28 c
						50g soil
342						sample # 20 2 to 4 ft
		•	•	•		
371				-		
490						
<u> </u>		•	•			

· · · ·	100 11 7		, ,,,		4. 77		1 (4114)	tion Analysis Report
		1.	•	2	3 .(x	4 100	5 mV)	Time Printed: Aug 5,93 11:48 Sample Time: Aug 5,93 11:39
28	3							Method Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec
	.~_ <u>_</u> _							Min Area 1.000 mVSec
	manana		•		•	•		Min Height 0.000 mV
57	十	>						Analysis Delay 50.0 sec
	5	:1.						Window Percent 25.0 %
l	2			=				Det Flow 10 ml/min
				<u></u>	-			B/F Flow 10 ml/min
85			•	•	.4		•	Aux Flow 0 ml/min
	/			:	:			Oven Temp 45 C
					٠.			Amb Temp 34 C
111	4		<u>'</u>					Max Gain 1000
1	_		<u> </u>	<u>.</u>			•	Analysis Time 400.0 sec
-	1			>	77			Feak Report Fk Compound Name Area/Conc R.T.
1	سمإ		•			•		Pk Compound Name Area/Conc R.T. 1 Benzene 964.8 ppb 53.6
14	2	~~						2 Unknown 45.98 mVS 62.2
	نمسا	8سر	•	•	•		•	3 Unknown 1.028 VSec 68.0
1.		2						4 Unknown 1.644 VSec 76.8
	1		·		•	•		5 Unknown 1.294 VSec 94.9
17	1	l.O						6 Unknown 985.9 mVS 103.6
	41		•	•	•	•	•	7 Toluene 13.50 PPM1 119.0
	U						•	8 Unknown 1.207 VSec 140.5
1.	/ \							9 Unknown 1.061 VSec 150.4
20	q :	12						10 Unknown 29.80 mVS 159.8
								11 Unknown 330.0 mVS 170.0
)				٠			12 Unknown 188.3 mVS 193.4
		.3						13 Unknown 963.1 mVS 212.0
22		.4			•		•	14 Ethylbenzene 5.502 ppm 224.4
		. 4						15 m&p-xylene
	\Box		•		•	•		16 Unknown 657.5 mVS 267.7
25) ı	. 5						17 O-xylene 3.388 ppm 296.8
12.4	<u>'</u> {		•	•				18 Unknown 223.6 mVS 322.4
	16		•		•	•		
28	1							
	-{		•	•	•	•	•	
	1							
	117		•		•	•		PPM1 = Alarm 1 PPM2 = Alarm2
31	<i>ţ</i> 1							Notes Notes
	ļ .		•	•	•		•	soil bottle headspace vol.=145cc
	ra							temp 28 c
	1		•		•	•		50g soil
34	2 .					_		sample # 20 4 to 6 ft
	. •			-	-		•	
4								
37	1 .							
	^							
49	٠.						•	

	слую.				10 . 10	1 (((1)))	tion Analysis Report
0	' ح	 	8	12 .(×	16 10	20 mV)	Time Printed: Aug 5,93 13:11 Sample Time: Aug 5,93 13:02
28	,	,					Method Slope Up 1.000 mV/Sec
1 /							Slope Down 3.000 mV/Sec
			•				Min Area 1.000 mVSec
}							Min Height 0.000 mV
57							Analysis Delay 50.0 sec
]]	1.						Window Percent 25.0 %
10							Det Flow 10 ml/min
	2						B/F Flow 10 ml/min
85							Aux Flow O ml/min
[3			•	·	•	•	Oven Temp 45 C
1 kg							Amb Temp 34 C
				•	•		Max Gain 1000
1113	- 5						Analysis Time 400.0 sec
11	•	•	•	•		٠	Peak Report
							Pk Compound Name Area/Conc R.T.
1 1		•		•	•		1 Benzene 30.17 ppb 57.4
142	6						m marine marine market market below the market mark
1-1	•	•	•	•		•	
							The second secon
		•		•	•		1
171							
1-1-	•		•	٠			6 Unknown 92.32 mVS 132.8 7 Unknown 19.68 mVS 179.8
ļ,							
		•		•	•		8 Unknown 25.73 mVS 201.0
240							9 Unknown 27.13 mVS 214.2
200							10 Ethylbenzene 126.4 ppb 228.4
							11 m&p-xylene 176.0 ppb 258.1
							12 O-xylene 480.7 ppb 306.4
1							13 Unknown 4.269 mVS 361.6
228							
1	O						
257			•				
]]1.	:1.				-	•	
				•			
					-		
285						_	
		-	÷			•	
		·		•	•		
314	12		_	_			Notes
	•	•	•	•		•	soil bottle headspace vol.=145cc
							temp 28 c
1		•		•	•		50g soil
342							sample # 20 10 to 12 ft
	•	•	•	•	•	•	and the second s
		•		•	•		
371	13						
		•	•	•		•	
		•		•	•		
400							
1.4	•		•	•		•	
							1

Analysis #29 109	8+ GC Funct	tion Analysis Report
9 4 8 12 (x	16 20 10 mV)	Time Printed: Aug 5,93 13:33 Sample Time: Aug 5,93 13:24
	TÁ MA)	Method
28 7		Slope Up 1.000 mV/Sec
		Slope Down 3.000 mV/Sec
\ \times		Min Area 1.000 mVSec
	•	Min Height 0.000 mV
57		Analysis Delay 50.0 sec
i		Window Percent 25.0 %
		Det Flow 10 ml/min
- E		B/F Flow 10 ml/min
89,	3	Aux Flow O ml/min
.		Oven Temp 45 C
· · · · · ·		Amb Temp 34 C
ي حسمان ا		Max Gain 1000
114 5		Analysis Time 400.0 sec Peak Report
6		Pk Compound Name Area/Conc R.T.
	•	1 Benzene 560.9 ppb 53.4
142		2 Unknown 30.66 mVS 67.4
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 Unknown 620.6 mVS 76.5
<i>D</i> s		4 Unknown 16.69 mVS 94.1
	•	5 Unknown 106.6 mVS 102.5
171		6 Toluene 5.096 ppm 117.7
9		7 Unknown 5.004 mVS 138.9
		8 Unknown 62.49 mVS 149.4
l A		9 Unknown 0.926 mVS 168.2
20 0 io		10 Unknown 10.46 mVS 190.8
		11 Unknown 9.660 mVS 211.2
· []		12 Ethylbenzene 937.7 ppb 223.4
		13 m&p-xylene 415.1 ppb 243.4
228) 12		14 Unknown
 		16 Unknown 47.43 mVS 319.2
1 123	•	17 11 13 11 43 32 7 172
257		
1 \		
]]]14		
	-	
285		
	•	
11.5		
314		Notes
		soil bottle headspace vol.=145cc
1.6	-	temp 28 c 50g soil
342		30g soil sample # 20 16 to 18 ft
	•	acceptance in any debt to detail the
	•	
371		
440		

mireca A a	5 J. 55 48 CO J.	d. Wasan a sawa		CTOU PHISTARY (AMDOLC
Q	2 4	6 8	10	Time Printed: Aug 5,93 13:54
		(x 10	mV)	Sample Time: Aug 5,93 13:45
L				Method
کے 28				Slope Up 1.000 mV/Sec
	<u> </u>		-	Slope Down 3.000 mV/Sec
5				Min Area 1.000 mVSec
	•			Min Height 0.000 mV
157				Analysis Delay 50.0 sec
· ·			•	Window Percent 25.0 %
K				Det Flow 10 ml/min
Kga_	•			B/F Flow 10 ml/min
85				Aux Flow O ml/min
			•	Oven Temp 45 C
Na				Amb Temp 34 C
	•			Max Gain 1000
ا میمان ا	:			3
114			•	Analysis Time 400.0 sec Peak Report
		<u>ح</u> ر		Pk Compound Name Area/Conc R.T.
1		ف		
147				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•			
1				1
171				
1				7 Unknown 5.129 mVS 138.9
1 1				8 Unknown 35.08 mVS 149.4
				9 Unknown 0.792 mVS 168.6
2qb	LO			10 Unknown 61.95 mVS 190.4
				11 Unknown 6.318 mVS 211.6
1	•			12 Ethylbenzene 489.2 ppb 222.6
1 1 1 1				13 m&p-xylene 219.0 ppb 243.7
228) :	12			14 Unknown 70.45 mVS 264.5
				15 O-xylene 293.2 ppb 294.4
1 11				16 Unknown 27.73 mVS 316.5
1 13				
257	_			
			•	
	•			
	-			
28/5		_		
		• •	•	
1.5	_			
	•	·		
314				Notes
Tus .		• •	• •	soil bottle headspace vol.=145cc
				temp 28 c
	-	•	•	43.1 ml
342				sample # 20 water sample
	•	•	•	
371				
171.				
	•	•	•	
lada				
400				
l				

	4	-	8	12	1.6	20	Time Printed: Aug 5,93 14:15
14	1-4		O	`(X		mV)	Sample Time: Aug 5,93 14:06
		•		. (^	9. A	mv)	Method
28	7						Slope Up 1.000 mV/Sec
	>	•	•	•		•	Slope Down 3.000 mV/Sec
ا د	~~~~						Min Area 1.000 mVSec
_ ا		•		•	•		Min Height 0.000 mV
157		_					Analysis Delay 50.0 sec
K		i	•	•		•	Window Percent 25.0 %
							Det Flow 10 ml/min
1 1	-				<u> </u>		B/F Flow 10 ml/min
85						- 4	Aux Flow O ml/min
l k		•	•	•		•	Oven Temp 45 C
				<u> </u>	5		Amb Temp 35 C
1 7		===		-	•		Max Gain 1000
1114	L	~~~~		6			Analysis Time 400.0 sec
	•				<u> </u>	•	Peak Report
						7	Pk Compound Name Area/Conc R.T.
17	<			•	•		1 Unknown 163.7 mVS 53.5
142	2	Management	~~				2 Benzene 69.14 ppb 61.8
	<u> </u>		8	•		•	3 Unknown 551.0 mVS 67.7
		وحجر	>		_		4 Unknown 1.035 VSec 76.5
1 1	ſ	<i>-</i>		-	•		5 Unknown 672.1 mVS 94.6
174							6 Unknown 769.6 mVS 103.3
	/10	•	•	•	•	•	7 Toluene 9.299 ppm 118.4
<u> </u>	1						8 Unknown 872.1 mVS 140.0
							9 Unknown 883.2 mVS 150.4
200) [_			10 Unknown 238.4 mVS 169.4
1 (-						11 Unknown 1.276 VSec 213.0
		· Mark	`				12 Ethylbenzene 8.934 ppm 224.6
1 +			41.1				13 m&p-xylene 3.818 ppm 244.5
228	} .			> .			14 Unknown 1.138 VSec 266.9
				12			15 O-xylene 4.824 ppm 295.4
	$-\langle$						16 Unknown 347.8 mVS 320.2
		13					
252							
	Manage	•••					
	-	2.4 مسمد	1				
285						-	
)						
	. /15						h land and
37	≒	•					Notes
							soil bottle headspace vol.=145cc
	/16	•		•			temp 28 c
	Į –						soil sample 50 g
34	F .			•			sample # 20 6 to 8 ft
.		•		•			
	1						
37	L.			•			
		•		•		•	
40	^						
1	· .	•	•	•	•		

Analysis #36	10S∻ GC Funct	tion Analysis Report
0 2 4	6 8 10 (x 10 mV)	Time Printed: Aug 5,93 14:52 Sample Time: Aug 5,93 14:43 Method
28		Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec
3		Min Area 1.000 mVSec
		1
57		Analysis Delay 50.0 sec Window Percent 25.0 %
1		Det Flow 10 ml/min
· · · · · · · · · · · · · · · · · · ·		B/F Flow 10 ml/min
85	4	Aux Flow O ml/min
	• • • •	Oven Temp 45 C
55		Amb Temp 35 C
		Max Gain 1000
114 6		Analysis Time 400.0 sec
		Feak Report
1 .		Pk Compound Name Area/Conc R.T.
1.42		1 Unknown 94.06 mVS 53.4 2 Benzene 33.35 ppb 61.1
		3 Unknown 324.6 mVS 67.4
1 \sigma_c^c		4 Unknown 470.0 mVS 76.4
	•	5 Unknown 102.5 mVS 94.2
17/		6 Unknown 172.8 mVS 102.8
		7 Toluene 3.667 ppm 118.1
		8 Unknown 114.4 mVS 139.0
1 1	•	9 Unknown 158.0 mVS 149.6
200 11		10 Unknown 2.211 mVS 168.8
	- • • •	11 Unknown 21.72 mVS 191.0
		12 Unknown 78.42 mVS 211.2
1 1 2		13 Unknown 94.36 mVS 223.2
228) 13		14 Ethylbenzene 194.4 ppb 244.0 15 m&p-xylene 532.2 ppb 265.3
1 1/		,
		16 O-xylene
25		TAY CHINAICANI CANAC CANAC
1 1315		
11/		
285		
	· ·	
1.6		
314		Notes
, ,		soil bottle headspace vol.=145cc
· · · · · · · · · · · · · · · · · · ·		temp 28 c soil sample 50 g
342		soil sample 50 g sample # 21 2 to 4 ft
		waship destrict Andre And Salver T. 1 C.
	•	
371		
4do		
1		

0 1 2 3 4 5 Time Printed: Aug (x 10 mV) Sample Time: Aug Metho Slope Up Slope Down Min Area Min Height Analysis Delay Window Percent	5,93 d 1.000 3.000 1.000 0.000 50.0 25.0		25 Sec
Slope Up Slope Down Min Area Min Height Analysis Delay	1.000 3.000 1.000 0.000 50.0 25.0	mV∕S mVSe	ec
Slope Down Min Area Min Height Analysis Delay	3.000 1.000 0.000 50.0 25.0	mV∕S mVSe	ec
Slope Down Min Area Min Height Analysis Delay	1.000 0.000 50.0 25.0	mVS∈	1
Min Area Min Height Analysis Delay	0.000 50.0 25.0		
Min Height Analysis Delay	0.000 50.0 25.0		ec
57 Analysis Delay	50.0 25.0		1
	25.0	sec	į
		%	1
Det Flow	10	ml/a	.i.
B/F Flow	10 10	ml/m	1
The state of the s	0	m1/a	,
85 4 Aux Flow			1.1.11
Oven Temp	45	C	1
. Amb Temp	35	С	
Max Gain	1000		
11 6 Analysis Time	400.0	sec	
Feak Re	•		
Pk Compound Name	Area/C		R.T.
1 Unknown	68.73		53.4
142	64.26		59.9
3 Unknown	86.80	mVS	67.4
	219.5	mVS	76.6
5 Unknown	5.234	mVS	94.2
17th 6 Unknown	47.42	mVS	103.0
7 Toluene	1.285		118.2
8 Unknown	63.82		150.6
9 Unknown	9.210		192.4
200 9 10 Unknown	30.33		211.8
11 Unknown	35.11		224.8
	70.96		244.8
	217.1		266.4
3 1 X			298.6
228) 14 O-xylene	150.6		
/11 15 Unknown	12.68	mv¤	319.7
1_12			
[25]			
1)13			
[24]5			
上			
31/4 Note			
soil bottle headsp	ace vo	01.=14	45cc
1.5 temp 28 c			,
soil sample 50 g			
342 sample #21 10 to	12 ft		
371			
400			

Anal) mr m	19.7	1001	UUL	r carc.	tion Analysis Report
9	2		6 .(x	8 10	10 mV)	Time Printed: Aug 6,93 09:38 Sample Time: Aug 6,93 09:24 Method
28 .						Slope Up 1.000 mV/Sec
					·	Slope Down 3.000 mV/Sec
	_					Min Area 1.000 mVSec
17		•	•	•		Min Height 0.000 mV
57						Analysis Delay 50.0 sec
- t				•	•	Window Percent 25.0 %
15	2					Det Flow 10 ml/min
🖫		•	•	•		B/F Flow 10 ml/min
85	4					Aux Flow O ml/min
	•		•	•	•	Oven Temp 45 C
, 5						Amb Temp 34 C
						Max Gain 1000
1.14	6					Analysis Time 400.0 sec
1 1		•	•	•		Peak Report
	7		•			Pk Compound Name Area/Conc R.T.
						1 Unknown 2.464 mVS 53.5
1142						2 Benzene 75.69 ppb 60.1
1	~					3 Unknown 7.614 mVS 67.4
	8ر-					4 Unknown 13.27 mVS 76.5
						5 Unknown 3.823 mVS 94.1
171						6 Unknown 10.74 mVS 103.3
9						7 Toluene 840.1 ppb 118.9
1		•	•			8 Unknown 119.4 mVS 150.0 9 Unknown 13.02 mVS 176.8
200	10					9 Unknown 13.02 mVS 176.8 10 Unknown 28.41 mVS 191.2
1290	'nO.	•		•	•	11 Unknown 38.01 mVS 210.0
						12 Unknown 21.58 mVS 223.4
		•	•	•		13 Ethylbenzene 120.3 ppb 241.0
228	12					14 m&p-xylene 1.475 ppm 259.2
	:1	•		•	•	15 O-xylene 509.3 ppb 305.3
1 1						
1 13		•	•	•		
257						
1 14	•	•		•	•	
			•	•		
285				_		
		•	. •	•	•	
			•	•		
}						
314	15					Notes
						soil bottle headspace vol.=145cc
		•				temp 28 c
						soil sample 50 g
342						calibration .0025 ug/ml of each
						liquid sample
		•	•			h.m. 770
						ben. 30ppb = 1ug/1
371					•	tol. 336ppb = 1ug/1
						etb 48ppb = 1ug/l m-x 260
		•	•	•		m-x 260 p-x 260ppb = 1ug/l
400						о-х 260 0-х 260
140	•			•	•	W /
1						

Analy	515	ল	105	54 tot.	runc:	tion Calibrant Report
0	4	8	12 .(x	16 10	20 mV)	Time Printed: Aug 6,93 07:56 Sample Time: Aug 6,93 07:47
28						Method Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec
		•	٠	•		Min Area 1.000 mVSec Min Height 0.000 mV
57						Analysis Delay 50.0 sec
			.		•	Window Percent 25.0 %
ľ		•	Ļ	•		Det Flow 10 ml/min B/F Flow 10 ml/min
85						Aux Flow O ml/min
			•	•	•	Oven Temp 45 C
		•	•	•	,	Amb Temp 31 C Max Gain 1000
114						Analysis Time 400.0 sec
<u> </u>	>>		•	• •	•	Peak Report
	2	-	•	•		Fk Compound Name Area/Conc R.T. 1 Benzene 1.000 ppm 60.0
142						1 Benzene 1.000 ppm 60.0 2 Toluene 1.000 ppm 118.5
	•	•	•	•	•	3 m&p-xylene 18.30 ppb 199.6
		•				4 Ethylbenzene 999.9 ppb 239.0
171						5 O-xylene 1.000 ppm 302.4
	•		•		•	
		•				
200						
3	•	•	•		•	
		•	٠	•		
228						
	•	•	٠		•	
		•	•			
257						
1	•	•	•	•	•	
		•	•			
285						
			•		•	
		-				
314	5					Notes
- 1		•	•		•	soil bottle headspace vol.=145cc
						temp 28 c
342						soil sample 50 g calibration
	•	•	•	•	•	Survey at the Lot See South Sort I
				•		
371						
	•	•	•	•	•	
			•	•		
400						
145	•		•		•	

Anal;	ysis	#10	1.09	S+ GC	Funct	tion Analysis Report
9	4		12 _(×	16 1000	20 uV)	Time Printed: Aug 6,93 09:48 Sample Time: Aug 6,93 09:39 Method
28 2						Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec
57		 =- 1				Min Height 0.000 mV Analysis Delay 50.0 sec Window Percent 25.0 % Det Flow 10 ml/min
85						B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 35 C
114						Max Gain 1000 Analysis Time 400.0 sec Peak Report
142						Pk Compound Name Area/Conc R.T. 1 Benzene 59.97 ppb 60.3 2 Unknown 0.921 mVS 94.2
171						
200						
228	•					
257			•			
285						
31/4						Notes soil bottle headspace vol.=145cc
342						temp 28 c soil sample 50 g calibration zero check
371						
400						

	<u>ysis</u>	11.47	1.054	******	1 (((1)))	tion Analysis Report
q	2	4	6	8	10	Time Printed: Aug 6,93 08:52
			.(x	10	mV)	Sample Time: Aug 6,93 08:37
						Method
28	5					Slope Up 1.000 mV/Sec
	-					Slope Down 3.000 mV/Sec
٠, ١		•				Min Area 1.000 mVSec
						Min Height 0.000 mV
57						Analysis Delay 50.0 sec
	>					Window Percent 25.0 %
	2	ě	•			Det Flow 10 ml/min
						B/F Flow 10 ml/min
85	4					Aux Flow O ml/min
 						Oven Temp 45 C
1 K2			•			Amb Temp 34 C
>	,					Max Gain 1000
1.14	_ <u>_</u>				•	Analysis Time 400.0 sec
						Feak Report
			. (•		Pk Compound Name Area/Conc R.T.
1.11						1 Unknown 7.116 mVS 53.4 2 Benzene 96.18 ppb 60.2
144	•			•	•	· ·
¯		>∘				3 Unknown 17.01 mVS 67.3 4 Unknown 32.40 mVS 76.5
		. = ⇔	•	•		5 Unknown 10.06 mVS 94.2
1.71						6 Unknown 29.83 mVS 103.2
1 1	•	•		•	•	7 Toluene 2.567 ppm 119.2
1 1						8 Unknown 322.6 mVS 150.0
17		•	•	•		9 Unknown 30.64 mVS 176.4
200	10					10 Unknown 55.65 mVS 191.2
ITH			• •	•	•	11 Unknown 43.78 mVS 209.8
						12 Unknown 34.01 mVS 223.8
1.1		•	•	•		13 Ethylbenzene 123.8 ppb 243.4
228						14 m&p-xylene 1.219 ppm 262.4
1/2	•		•	•	•	15 O-xylene 589.7 ppb 305.3
1 13				•		
257					_	
		•	•	•	-	
14						
285						
1 1		•	•			

344	1.5					Notes
1 11						soil bottle headspace vol.=145cc
		-				temp 28 c
						soil sample 50 g
342						calibration
						●Q1 ug of each on 50 g clean
			•	•		soil <pre></pre>
						, , , , , , , , , , , , , , , , , , , ,
371					•	tol. 120QOppb = lug/kg etb 625ppb = lug/kg
		•	•	•		m-x 3000 p-x 3000ppb = 1ug/kg
400						0-x 30 0 0
1,4	•		•	•	•	The second secon
						1

ema	dlysis	33 T. T.	1.00	r oc	r carc.	tion Analysis Report
Q	:l.	2	3	4	5	Time Printed: Aug 6,93 09:59
		•	(x	100	mV)	Sample Time: Aug 6,93 09:49
	٦					Method
28]						Slope Up 1.000 mV/Sec
(Slope Down 3.000 mV/Sec
. "	2 >					Min Area 1.000 mVSec
1	_					Min Height 0.000 mV
57	~— <u>-</u>	> .			•	Analysis Delay 50.0 sec
		i.				Window Percent 25.0 %
						Det Flow 10 ml/min
-						B/F Flow 10 ml/min
85				;	2 .	Aux Flow O ml/min
1 /	•					Oven Temp 45 C
			•			Amb Temp 35 C
	>					Max Gain 1000
1.16	Ł3_					Analysis Time 400.0 sec
						Peak Report
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ے ۔۔۔۔۔ ب	[‡] .			Pk Compound Name Area/Conc R.T.
11/	, 					1 Benzene 2.036 ppm 54.0
142						2 Unknown 2.315 VSec 77.3
	\					3 Unknown 164.1 mVS 102.8
) 5					4 Toluene 9.445 ppm 118.0 5 Unknown 358.6 mVS 150.6
1.1.						
171	i					
	,					
16	5	,	•	•		· ·
						9 Ethylbenzene 13.51 ppb 244.5 10 m&p-xylene 101.8 ppb 264.5
200	7				•	11 0-xylene 155.5 ppb 303.7
						TI O.XXIGHG TOOLO DOD OADEN
	3	•	•	•		
228						
12.41°				•	•	
1 19	Ģ.	•	•	•		
257						
1-1	•	•	•	•	•	
1 1	LO					
	- "	•	•	•		
285	5					
1 7	•	• •	•		•	
			_			
		-	•	•		
314	4 11			-		Notes
	•		•	•	•	soil bottle headspace vol.=145cc
						toon 28 c
				·		soil sample so g 43,1 mL
342	2					ealibration.
	;	•	-	,	-	sample # sb 21 water
		•	•			
37	1					
490	Ο.					
1						

1 9		4		8	12	16	20	Time Printed: Aug 6,93 10:21
					.(x	1000	uV)	Sample Time: Aug 6,93 10:12
	Щ.							Method
28								Slope Up 1.000 mV/Sec
			تسمنمم		•		•	Slope Down 3.000 mV/Sec
	\$	and the second						Min Area 1.000 mVSec
	تممي		•		•	•		Min Height 0.000 mV
57)							Analysis Delay 50.0 sec
1	ا ميم		•	•	•		•	Window Percent 25.0 %
1	' بيم	, ,						Det Flow 10 ml/min
1 1	/	-	٠		•			B/F Flow 10 ml/min
85		_						Aux Flow O ml/min
104		. **	•	٠	•		•	Oven Temp 45 C
	122							, ·
1 1	5				•			
)	,							
1.1	4	6		•				Analysis Time 400.0 sec
		\supset	_					Peak Report
1 1.	man	- 7	7.			-		Pk Compound Name Area/Conc R.T.
1	•							1 Unknown 3.207 mVS 54.0
14	2							2 Benzene 6.826 ppb 60.6
1 1	•							3 Unknown 1.316 mVS 67.8
	B							4 Unknown 16.67 mVS 77.0
1 1	7							5 Unknown 0.462 mVS 95.0
117	1.							6 Unknown 2.342 mVS 103.3
		•	•	•	•		• •	7 Toluene 162.1 ppb 118.2
								8 Unknown 13.44 mVS 150.2
1 1			•		•	•		9 Unknown 5.078 mVS 193.2
20	b	9						10 Unknown 16.03 mVS 210.6
		÷	•	•	•	•	•	11 Ethylbenzene 10.00 ppb 242.6
	1							12 m&p-xylene 142.3 ppb 264.5
	lo.		•		•	•		13 O-xylene 42.35 ppb 310.4
22	5							Tankov ppo wave
1-4	Þ			•			•	
	., .,							
	1.1							
25	/			•	•			
	12		•		•			
28	5							
1								
	1							
31	4		_				-	Notes
	1.3	•	•	•	•		•	soil bottle headspace vol.=145cc
								temp 28 c
1	!		•		•	•		soil sample 50 g
34	2							
"		•	•	٠	•		•	sample # 15 4 to 6 ft
			•		•	•		
37	-1							
131	.L		•		•		•	
			•		•			
	^							
40	U		•				•	
L								

HIT et .l.							Cion Phraighn Report
9	4		8	12	16	20	Time Printed: Aug 6,93 10:41
				, (x	1000	uV)	Sample Time: Aug 6,93 10:33
						_	Method
28		. 1				_	Slope Up 1.000 mV/Sec
							Slope Down 3.000 mV/Sec
	ستمم						Min Area 1.000 mVSec
مر ا		•		•	•		Min Height 0.000 mV
57							Analysis Delay 50.0 sec
L.	•	•	•	•		•	Window Percent 25.0 %
1 6							Det Flow 10 ml/min
1 2 3		•		•	•		B/F Flow 10 ml/min
85	4					•	Aux Flow O ml/min
107	 5		•	•		•	Oven Temp 45 C
	C)						Amb Temp 35 C
6		•		•	-		Max Gain 1000
1 (75						1
114	9					•	1
)						Peak Report
	У						Pk Compound Name Area/Conc R.T.
							1 Unknown 0.506 mVS 53.6
142							2 Unknown 0.705 mVS 54.4
							3 Benzene 7.022 ppb 60.2
1 1	0						4 Unknown 1.078 mVS 68.0
							5 Unknown
171							6 Unknown 2.245 mVS 86.6
	٠	•	•	•		•	7 Unknown 3.614 mVS 92.9
							8 Unknown 5.169 mVS 103.8
		•		•	•		9 Toluene 133.6 ppb 118.8
200						•	10 Unknown 15.76 mVS 151.2
111	•	•	•			٠	11 Unknown 6.153 mVS 195.4
1 krr							12 Unknown 16.29 mVS 211.0
		•		•	•		1
12							m m m m m m m m m m m m m m m m m m m
228						•	14 m&p-xylene 196.2 ppb 263.4
							15 O-xylene 43.63 ppb 307.2
257	13					•	
14				•			
285			=	_		ē	
	•	•	•	•	•	•	
		•		•	•		
314	1.5						Notes
		•	•	•		•	soil bottle headspace vol.=145cc
							temp 28 c
		•		•	•		soil sample 50 g
342							a area areastripe as we were y
1	•	٠	•	•		•	sample # 15 O to 2 ft
							activity per dictal 13 dictars for Subject Ann. 1 %
		٠		•	•		
371							
490	•						
1							

f=1:	mat J	.ys1.s	391/	١.١.	264	unto	h um c	tion Analysis Report
		1.	2	3	<	4 10	5 mV)	Time Printed: Aug 6,93 11:02 Sample Time: Aug 6,93 10:53
28	- <u>-</u> - 8	arai Sanara	_ .					Method Slope Up 1.000 mV/Sec
ļ	2	<u>-</u> _						Slope Down 3.000 mV/Sec Min Area 1.000 mVSec
•	سم.	حم	•	•		•		Min Height 0.000 mV
57	7	۵.						Analysis Delay 50.0 sec
	15	ï.		·	•	·	•	Window Percent 25.0 %
	b^2							Det Flow 10 ml/min
8:	جبرا	`		- "				B/F Flow 10 ml/min
0,		-		4		•		Aux Flow 0 ml/min
ı	5							Oven Temp 45 C Amb Temp 35 C
1			•	•		•		Max Gain 1000
1. :	14	6						Analysis Time 400.0 sec
				•	•	•	•	Peak Report
1	1		7					Pk Compound Name Area/Conc R.T.
1<	16							1 Unknown 18.56 mVS 54.4
1.	i i	•		•	•	•		2 Benzene 9.942 ppb 60.2 3 Unknown 5.037 mVS 67.6
1								
	1		•	•		٠		4 Unknown
17	11.							6 Unknown 3.689 mVS 103.3
	Į.	•	•	•	•	٠	•	7 Toluene 773.0 ppb 118.9
	1							8 Unknown 24.23 mVS 150.6
	.h.							9 Unknown 5.945 mVS 193.0
20	lb -	9						10 Unknown 16.02 mVS 211.8
	ħ							11 Ethylbenzene 15.79 ppb 244.5
	ho		•	•				12 m&p-xylene 294.3 ppb 268.8
22								13 Unknown 0.754 mVS 308.8 14 Unknown 7.743 mVS 318.9
		•	•	•	•	•	•	14 Unknown 7.743 mVS 318.9
1.]							
	1.1			•		•		
25	7							
.	12							
28	1							
د د	1	•	•	•		•	•	
			•	•		•		
31	ją.	1.3						Notes
			•	•	-	•	•	soil bottle headspace vol.=145cc
	14							temp 28 c
								soil sample 50 g
34	r:	•						
	1							sample # 15 12 to 14 ft
1	ĺ		•	•		•		
37	1.							
		•		•	•	•	•	
				_		_		
				-		•		
40	Ю							

			77 A. 7				2. 2. 2. 1 1 1 1 3 2 4 7 2 2 4 4 2 1 5 5 6 5 5 7 4 4 4 5 1 5 5 6 5 6 5 6 5 6 5 6 6 6 6 6 6 6 6
9		2	ZĮ.	6 ()	8	10 mV)	Time Printed: Aug 6,93 11:25 Sample Time: Aug 6,93 11:13
	_		•	,(x	TOÓ	mv)	Method
28	3						Slope Up 1.000 mV/Sec
1	ــــــــ	<u>.</u>		•	•	·	Slope Down 3.000 mV/Sec
	~=	حر 3					Min Area 1.000 mVSec'
	and the same	=					Min Height 0.000 mV
57			-				Analysis Delay 50.0 sec
(مسم		1.	·		-	Window Percent 25.0 %
	<u> </u>	>					Det Flow 10 ml/min
1		-3					B/F Flow 10 ml/min
85				4			Aux Flow O ml/min
1 1							Oven Temp 45 C
	[•	Amb Temp 35 C
1 1	~>						Max Gain 1000
11		_5					Analysis Time 400.0 sec
							Peak Report
			<u>.</u> 6				Pk Compound Name Area/Conc R.T.
						,	1 Unknown 1.505 VSec 54.0
14	2						2 Benzene 17.26 ppb 61.6
	\						3 Unknown 568.7 mVS 67.8
	17		•				4 Unknown 3.514 VSec 77.4
							5 Unknown 666.8 mVS 103.7
17	1.						6 Toluene 17.69 PPM1 118.4 7 Unknown 314.0 mVS 150.6
	_						1
	8		•	•	•		1
,,,	_	0					1
20	0	9		•		•	10 Unknown 6.633 mVS 211.4 11 Unknown 12.58 mVS 222.6
							12 Ethylbenzene 35.84 ppb 246.1
	10		-	•	•		12 Ethylbenzene
22		1.1					14 O-xylene 120.7 ppb 304.5
14.4	i CO	'r 'r		•		•	TTAL DEPT COLLE
			•	•	•		
25	7	12					
1	,			•		•	
			•	•	•		
28	15						
	1.3	•		•		•	
			•	•	•		PPM1 = Alarm 1 PPM2 = Alarm2
31	4	14					Notes
		•	•	•	•	•	soil bottle headspace vol.=145cc
							temp 28 c
					_		
34	2						
			-	•	•	· · · · · · · · · · · · · · · · · · ·	sample # 15 water 43.0 ml
37	1.			•			
40) O						

9	4	8	12 _(×	16 1000	20 uV)	Time Printed: Aug 6,93 11:46 Sample Time: Aug 6,93 11:37 Method
57 85 5 1:14	3 4 6				· · · · · · · · · · · · · · · · · · ·	Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 50.0 sec Window Percent 25.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 35 C Max Gain 1000 Analysis Time 400.0 sec
	<u></u>		•		•	Peak Report Pk Compound Mame Area/Conc R.T. 1 Unknown 6.319 mVS 53.7
142	3					2 Benzene 9.698 ppb 60.7 3 Unknown 5.245 mVS 68.0 4 Unknown 21.28 mVS 77.4 5 Unknown 0.365 mVS 94.9 6 Unknown 3.478 mVS 104.0 7 Toluene 184.5 ppb 118.9 8 Unknown 10.20 mVS 152.6
200 9 10 228					·	9 Unknown 3.263 mVS 195.8 10 Ethylbenzene 54.75 ppb 210.0 11 Unknown 0.123 mVS 247.4 12 O-xylene 18.27 ppb 308.5
257	<u>,</u> 1		· .			
285						
314	12					Notes soil bottle headspace vol.=145cc temp 28 c
342					· •	50 g soil sample # 17 4 to 6 ft
371						
400	•					

Analysis	#23	LVor C	La Fulliu	tion Analysis Report
9 1	2	3 4	5 Q mV)	Time Printed: Aug 6,93 13:12 Sample Time: Aug 6,93 11:57
	•	. (×	ά mΔ)	Method
287				Slope Up 1.000 mV/Sec
1 > '			. ,	Slope Down 3.000 mV/Sec
\ \				Min Area 1.000 mVSec
1	•	•	•	Min Height 0.000 mV
57				Analysis Delay 50.0 sec
1	•	•		Window Percent 25.0 %
1 12				Det Flow 10 ml/min
	3			B/F Flow 10 ml/min
85				Aux Flow O ml/min
	•			Oven Temp 45 C
ΙÀ				Amb Temp 34 C
2				Max Gain 1000
1.14 6				Analysis Time 400.0 sec
				Peak Report
1 1	وسسب			Pk Compound Name Area/Conc R.T.
				1 Unknown 436.1 mVS 53.8
144 8				2 Benzene 61.89 ppb 61.8
17				3 Unknown 981.6 mVS 68.1
1 79	•	•		4 Unknown 1.266 VSec 77.2
				5 Unknown 31.73 mVS 95.8
171 .				6 Unknown 497.1 mVS 103.7
				7 Toluene 10.02 FFM1 119.2
	•			8 Unknown 5.053 mVS 133.4
				9 Unknown 525.1 mVS 150.8
200 10				10 Unknown 100.6 mVS 192.2
				11 Unknown 102.7 mVS 224.0
		•		12 Ethylbenzene 150.6 ppb 245.3
				13 m&p-xylene 1.198 ppm 265.8
228				14 O-xylene 699.4 ppb 316.5
1. 1.				
	٠	•	•	
257 12				
4				
13	•	•	•	
285				
Zaa a				
	•	•	•	PPM1 = Alarm 1 PPM2 = Alarm2
314				Notes
14	•			soil bottle headspace vol.=145cc
1				temp 28 c
	•	•	•	50 g soil
342				
· ·			•	sample # 17 8 to 10 ft
	•	•	•	
371				
"" " .				
	•	•	•	
400				
	•	• •	• •	

17111-00	lysis	77 8 7	.1. 3.7 4	.,	1 5.51 1 5	tion Analysis Report
9	4	8	12 _(x	16 10	20 mV)	Time Printed: Aug 6,93 13:51 Sample Time: Aug 6,93 13:40
1 L		•	• .	•		Method
28	_ _					Slope Up 1.000 mV/Sec
/			•		•	Slope Down 3.000 mV/Sec
1 2						Min Area 1.000 mVSec
1 7	₽	•	•	•		1
1[1
57						Analysis Delay 50.0 sec
1 7	1.					Window Percent 25.0 %
1 72						Det Flow 10 ml/min
1 1		~				B/F Flow 10 ml/min
85			3 4			Aux Flow O ml/min
	•		•		•	Oven Temp 45 C
- 5						Amb Temp 34 C
	_	•	•	•		Max Gain 1000
تمولن ا	> ,					
1116	<u>. 6</u>				•	· · · · · · · · · · · · · · · · · · ·
						Peak Report
.		. 7				Pk Compound Name Area/Conc R.T.
1 1						1 Unknown 140.1 mVS 53.9
1.42						2 Benzene 46.15 ppb 60.4
1 1	•	•	•		•	3 Unknown 183.5 mVS 68.0
1 1)	8					4 Unknown 525.9 mVS 77.2
1 1		•	•	•		5 Unknown 0.638 mVS 95.0
171						6 Unknown 83.91 mVS 103.6
1-1-			•		•	7 Toluene 3.307 ppm 118.6
						, ,
		•	•	•		8 Unknown 75.99 mVS 150.8
						9 Unknown 14.84 mVS 193.4
200	9					10 Unknown 9.367 mVS 209.0
1	•		·			11 Unknown 8.412 mVS 224.4
1 11	0					12 Ethylbenzene 20.82 ppb 246.1
		•	•	•		13 m&p-xylene 134.0 ppb 266.1
228						14 O-xylene 90.70 ppb 306.9
1			•		•	
1.	.l.					
		•	•	·		
	4.4%					
257	12					
1 1.	3					
285						
	•		•		•	
		•	-	•		
314	14					Notes
134	.l. "Ŷ		•		•	soil bottle headspace vol.=145cc
1 1						
			•			temp 28 c
						41.5 ml
342						
						sample # 17 water sample
1371						
	•	•	•		•	
ĺĺ						
		•	•	•		
Jado	1					
440			•		•	
1						1

,			†† Z. 7				CTOH Butter A STR Lember C
9		1.	2	3	4		Time Printed: Aug 6,93 14:14 Sample Time: Aug 6,93 14:06
				.(x	τĠ	mV)	Method
28		سممسي					Slope Up 1.000 mV/Sec
	~	فتتمم			•	•	Slope Down 3.000 mV/Sec
	~						Min Area 1.000 mVSec
	_		•	•	•		Min Height 0.000 mV
57							Analysis Delay 50.0 sec
100			,		•	•	Window Percent 25.0 %
	2.		.L				Det Flow 10 ml/min
1	تشي		•	•	•		B/F Flow 10 ml/min
)
85	سسمو				4 .		Aux Flow O ml/min
	ſ						Oven Temp 45 C
1			•				Amb Temp 34 C
	>						Max Gain 1000
1.1	4	5					Analysis Time 400.0 sec
	_	····	-	•	•	-	Peak Report
			ی مسسس	1			Pk Compound Name Area/Conc R.T.
			•	•	•		1 Unknown 63.05 mVS 53.7
114	la						2 Benzene 18.75 ppb 60.7
"		•	•		•	•	3 Unknown 28.48 mVS 67.8
[) ~						4 Unknown 164.6 mVS 76.9
			•	•	•		5 Unknown 17.72 mVS 103.3
1, 1	.,						1
117	.1.	•					, , , , , , , , , , , , , , , , , , , ,
							1
							8 Unknown 5.447 mVS 194.0
	ı						9 Ethylbenzene 60.63 ppb 210.0
20	0	8					10 m&p-xylene
				•			11 O-xylene
	1		_				
	9		•	•	•		
22	8						
		•	•		•	•	
			•	•	•		
25	,						
149	/					•	
	4 11						
	10		•				
28	5						
			•				
31	4			_			Notes
1 1	1. 1.	•		•	•	•	soil bottle headspace vol.=145cc
	-						temp 28 c
			•	•	•		41.5 ml
34	2						
177	۸ <u>-</u>	•	•		•	-	sample # 17 18 to 20 feet
							acinpact trace of the confidence
1			•	•	•		
37	3.						
				•			
40	O					_	
<u> </u>		-	·				

9	4		8	12 ,(x	16 1000	20 uV)	Time Printed: Aug 6,93 15:06 Sample Time: Aug 6,93 14:56 Method
28			5	<u></u>		3	Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec
	processor.						Min Area 1.000 mVSec
٠.	ノ	•		•			Min Height 0.000 mV
57							Analysis Delay 50.0 sec
ــــــم ```		٠	•	•		•	Window Percent 25.0 %
15	1.			_			Det Flow 10 ml/min
$\sqrt{2}$	2			•	•		B/F Flow 10 ml/min
85	3						Aux Flow 0 ml/min
4	·		-				Oven Temp 45 C
							Amb Temp 36 C
.]							Max Gain 1000
114	5			•			Analysis Time 400.0 sec
	>,						Peak Report Pk Compound Name Area/Conc R.T.
January 1	0	•		-			Pk Compound Name Area/Conc R.T. 1 Benzene 35.75 ppb 60.2
142							2 Unknown 4.216 mVS 66.9
174	•	•	•	•		•	3 Unknown 7.312 mVS 76.8
D>							4 Unknown 1.134 mVS 82.8
		•		•	•		5 Unknown 1.686 mVS 102.8
171							6 Toluene 91.46 ppb 119.3
	•	•	•	•		•	7 Unknown 6.158 mVS 150.0
				_			8 Unknown 4.374 mVS 193.0
		•		•	•		9 Unknown 2.816 mVS 209.4
200	8					•	10 Unknown 6.498 mVS 212.0
	-	•	-	-		. •	11 Ethylbenzene 13.38 ppb 240.2
197							12 O-xylene 28.03 ppb 303.2
110)						
228							
1. 3	i	•		•			
257	L .						
-4/		•	•	•		•	
İ		•		•	-		
285							
	•	•	•	•	•	•	
1							
314	12						Notes
•							soil bottle headspace vol.=145cc
							temp 28 c
							41 1 ml 5011 SAMPH 509
342				•			1
							sample # 18 6 to 8 feet
		•		•		•	
371							
T	•	•	•	•	•		
		•		٠	•	•	
400	_			_			
1	•	•	•		•	• •	

Analysis	#36	105+	GC	Function	Analysis	Report
----------	-----	------	----	----------	----------	--------

•

		/\$1.5					tion Analysis Report
q		1.	2	3 .(×	4 10	5 mV)	Time Printed: Aug 6,93 15:31 Sample Time: Aug 6,93 15:19
	Ц		•	•	•		Method
28	}			-			Slope Up 1.000 mV/Sec
	_	<i>5</i>		•	•	•	Slope Down 3.000 mV/Sec
	~						Min Area 1.000 mVSec
'	·		•		•		Min Height 0.000 mV
57	.[Analysis Delay 50.0 sec
107	È.					•	,
	3						i
)E		•				Det Flow 10 ml/min
	3						B/F Flow 10 ml/min
85		4					Aux Flow O ml/min
	5						Oven Temp 45 C
	6						Amb Temp 36 C
			•				Max Gain 1000
1.1	4	7					Analysis Time 400.0 sec
"		;	•		•	•	Peak Report
	28						Pk Compound Name Area/Conc R.T.
	yΘ		•	•	•		1 Unknown 0.143 mVS 52.9
,	<i>-</i> -						
14	A					•	1
	L						3 Benzene 19.99 ppb 60.3
)9						4 Unknown 2.744 mVS 67.6
1							5 Unknown 7.144 mVS 76.6
17	1						6 Unknown 0.770 mVS 95.0
							7 Unknown 2.217 mVS 103.0
							8 Toluene 108.4 ppb 118.1
							9 Unknown 9.782 mVS 150.8
20	0	10					10 Unknown 4.742 mVS 194.0
	l	•		• •	•	•	11 Ethylbenzene 63.16 ppb 212.6
	i.						12 Unknown 0.160 mVS 264.2
	11		•	•	•		13 Unknown 1.264 mVS 264.2
22	1						14 O-xylene 30.05 ppb 311.4
14-4	1	•		•	•	•	The second section and the second section is
]						
1			•	•	٠		
	l						
25	17						
	12			•			
ĺ	13						
28	5			_		_	
		•			•		
	ļ		•	•	•		
3:1	a						Notes
۱. ت. ا	14	•				•	soil bottle headspace vol.=145cc
	.L. "*						temp 28 c
			•		٠		· ·
							soil sample 50g
34	z:.						
							sample # 18 0 to 2
	İ						
37	1:1.					_	
ļ		•			•	•	
			•	•	•		
140	0						
1"	1	•		•		•	

Time Printed: Aug 6,93 16:13 Sample Time: Aug 6,93 16:104 Method Slope Down 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mV/Sec Min Height 0.000 mV/Sec Min Height 0.000 mV Analysis Delay 50.0 sec Mindow Percent 25.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 36 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Feak Report Feak Report Thurnown 1.792 VSec 53.6 2 Benzene 403.5 ppb 62.2 3 Unknown 2.462 VSec 67.8 4 Unknown 13.11 VSec 76.9 5 Unknown 13.11 VSec 76.9 6 Unknown 13.11 VSec 76.9 6 Unknown 13.15 VSec 94.5 7 Unknown 13.15 VSec 94.5 7 Unknown 93.57 VSec 150.0 10 Unknown 4.357 VSec 150.0 11 Unknown 933.1 mVS 138.8 8 Tolluene 130.6 FPMI 118.5 9 Unknown 933.1 mVS 131.8 10 Unknown 1.078 VSec 212.0 11 Unknown 1.078 VSec 212.0 12 Unknown 1.078 VSec 212.0 13 Unknown 1.616 VSec 223.4 14 Ethylbenzene 2.067 ppm 243.7 15 mSp-xylene 33.15 PPMI 265.3 16 0-xylene 14.20 PPMI 314.9 PPMI = Alarm 1 FPM2 = Alarm2 Notes soil bottle headspace vol.=143cc temp 28 c soil sample 50g sample # 18 10 to 12 ft		A 40 T 40		1.00			TON LATOR A NEW LOOP OF
Sample Time: Aug 6,93 16:04 Method Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mV/Sec Min Area 1.000 mV/Sec Min Height 0.000 mV Analysis Delay 50.0 sec Window Percent 25.0 % Det Flow 10 ml/min May Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 36 C Amb Temp 36 C Amb Temp 36 C Amb Temp 36 C Amb Temp 36 C Amb Temp 36 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Peak R	Q	22	4	6			, , , , , , , , , , , , , , , , , , , ,
Slope Up			_	(x	100	mV)	Sample Time: Aug 6,93 16:04
Slope Down 3.000 mV/Sec Min Area 1.000 mV/Sec Min Area 1.000 mV Min Height 0.000 mV Analysis Delay 50.0 sec Window Percent 25.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min Dven Temp 45 C Amb Temp 36 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. 1 Unknown 1.792 VSec 53.6 2 Benzene 403.5 ppb 62.2 2 Benzene 403.5 ppb 62.2 2 Unknown 1.792 VSec 67.8 2 Benzene 403.5 ppb 62.2 2 Unknown 1.3.11 VSec 70.2 2 Unknown 1.3.11 VSec 70.2 2 Unknown 1.953 VSec 94.5 2 Unknown 1.953 VSec 94.5 2 Unknown 1.953 VSec 94.5 2 Unknown 81.93 mVS 138.5 2 Unknown 1.078 VSec 130.0 2 Unknown 1.078 VSec 130.0 2 Unknown 1.078 VSec 130.0 2 Unknown 1.078 VSec 212.0 2 Unknown 2 U			•	•	•		Method
Siope Down	282_		_				
Min Area			<u> </u>	•		•	
Min Height	1 -		<u></u>				
Analysis Delay 50.0 sec Window Percent 25.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 36 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. Unknown 1.792 VSec 53.6 Benzene 403.5 ppb 62.2 3 Unknown 2.466 VSec 67.8 Unknown 13.1182 76.9 Unknown 1.953 VSec 45.8 Unknown 1.953 VSec 103.2 Unknown 1.953 VSec 70.2 Unknown 1.953 VSec 70.2 Unknown 1.306 PFM2 118.5 FUNKnown 1.306 PFM2 118.5 Unknown 81.93 mVS 138.8 Unknown 833.1 mVS 191.2 Unknown 1.616 VSec 223.4 Unknown 1.616 VSec 223.4 Unknown 1.616 VSec 223.4 Unknown 1.616 VSec 223.4 Ethylbenzene 2.069 ppm 243.7 Unknown 1.616 VSec 223.4 Ethylbenzene 33.13 PFM2 265.3 Unknown 1.616 VSec 223.4 Unknown 1.616 VSec 223.	1		سمر	•	•		·
Mindow Percent 25.0 % Det Flow 10 ml/min R/F Flow 10 ml/min R/F Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 36 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. Unknown 1.792 VSec 53.6 Benzene 403.5 ppb 62.2 3 Unknown 2.462 VSec 67.8 2 Benzene 403.5 ppb 62.2 3 Unknown 2.466 VSec 70.2 3 Unknown 2.466 VSec 70.2 3 Unknown 1.953 VSec 74.5 5 Unknown 1.953 VSec 74.5 7 Unknown 4.604 VSec 103.2 8 Toluene 130.6 PPM2 118.5 9 Unknown 81.93 mVS 138.8 7 Unknown 81.93 mVS 138.8 7 Unknown 1.078 VSec 212.0 11 Unknown 333.1 mVS 191.2 12 Unknown 1.078 VSec 212.0 13 Unknown 1.616 VSec 223.4 14 Ethylbenzene 2.069 ppm 243.7 15 m&p-xylene 33.13 PPM2 265.3 16 O-xylene 14.20 PPM1 314.9 16 O-xylene 14.20 PPM1 314.9 342 342 342 342 343 344 343 344 344 345 344 344 345 344 345	1575						•
Det Flow 10 ml/min R/F Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Ger Temp 45 C Amb Temp 36 C Max Gain 1000 Analysis Time 400.0 sec Peak Report 1 Unknown 1.792 VSec 53.6 2 Benzene 403.5 ppb 62.2 3 Unknown 2.462 VSec 67.8 Benzene 403.5 ppb 62.2 3 Unknown 2.462 VSec 67.8 Unknown 13.11 VSec 76.9 4 Unknown 1.953 VSec 94.5 7 Unknown 4.604 VSec 103.2 8 Toluene 130.6 FFM2 118.5 9 Unknown 81.93 mVS 138.8 Toluene 130.6 FFM2 118.5 9 Unknown 833.1 mVS 191.2 Unknown 1.078 VSec 150.0 11 Unknown 1.078 VSec 212.0 13 Unknown 1.078 VSec 223.4 14 Ethylbenzene 2.069 ppm 243.7 15 m&p-xylene 33.13 FFM2 265.3 16 O-xylene 14.20 FPM1 314.9	-		1	•		•	
B/F Flow							
Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 36 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name 1.792 VSec 53.6 2 Benzene 403.5 ppb 62.2 3 Unknown 2.462 VSec 67.8 4 Unknown 13.11 VSec 76.9 6 Unknown 1.953 VSec 94.5 7 Unknown 4.604 VSec 70.2 8 Toluene 130.6 FPM2 118.5 9 Unknown 4.357 VSec 150.0 11 Unknown 81.93 mVS 138.8 10 Unknown 4.357 VSec 150.0 11 Unknown 1.078 VSec 212.0 12 Unknown 1.078 VSec 212.0 13 Unknown 1.616 VSec 223.4 14 Ethylbenzene 2.069 ppm 243.7 15 m&p-xylene 33.13 PPM2 265.3 16 O-xylene 14.20 PPM1 314.9 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft	1 .	-		÷			
11	185			ļ.——			
Amb Temp 36 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Peak Peak Report Peak Report Peak Report Peak Report Peak Report Peak Report Peak Report Peak Report Peak Report Peak Report	1	-	• •	•		. 5	
## Analysis Time ## 400.0 sec Feak Report	~	·	6				Amb Temp 36 C
Feak Report	1 .			<u> </u>			· ·
Peak Report	1114				7		Analysis Time 400.0 sec
1 Unknown 1.792 VSec 53.6 2 Benzene 403.5 ppb 62.2 3 Unknown 2.462 VSec 67.8 4 Unknown 2.466 VSec 70.2 5 Unknown 13.11 VSec 76.9 6 Unknown 1.953 VSec 94.5 7 Unknown 4.604 VSec 103.2 8 Toluene 130.6 FPM2 118.5 9 Unknown 81.93 mVS 138.8 10 Unknown 833.1 mVS 191.2 11 Unknown 833.1 mVS 191.2 12 Unknown 1.078 VSec 212.0 13 Unknown 1.616 VSec 223.4 14 Ethylbenzene 2.069 ppm 243.7 15 m&p-xylene 33.13 FPM2 265.3 16 O-xylene 14.20 FPM1 314.9 PPM1 = Alarm 1 FPM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft						一	Feak Report
1 Unknown 1.792 VSec 53.6 2 Benzene 403.5 ppb 62.2 3 Unknown 2.462 VSec 67.8 4 Unknown 2.466 VSec 70.2 5 Unknown 13.11 VSec 76.9 6 Unknown 1.953 VSec 94.5 7 Unknown 4.604 VSec 103.2 8 Toluene 130.6 FPM2 118.5 9 Unknown 81.93 mVS 138.8 9 Unknown 833.1 mVS 191.2 10 Unknown 833.1 mVS 191.2 11 Unknown 1.078 VSec 212.0 13 Unknown 1.616 VSec 223.4 14 Ethylbenzene 2.069 ppm 243.7 15 m&p-xylene 33.13 FPM2 265.3 16 O-xylene 14.20 FPM1 314.9 Soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft						3 8	1
3 Unknown 2.462 VSec 67.8 4 Unknown 2.466 VSec 70.2 5 Unknown 13.11 VSec 76.9 6 Unknown 1.953 VSec 94.5 7 Unknown 4.604 VSec 103.2 8 Toluene 130.6 FFM2 118.5 9 Unknown 81.93 mVS 138.8 10 Unknown 4.357 VSec 150.0 11 Unknown 1.078 VSec 150.0 11 Unknown 1.078 VSec 212.0 12 Unknown 1.078 VSec 223.4 14 Ethylbenzene 2.069 ppm 243.7 15 m&p-xylene 33.13 FPM2 265.3 16 O-xylene 14.20 PPM1 314.9 Soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft	'	~~			•		1 Unknown 1.792 VSec 53.6
3 Unknown 2.462 VSec 67.8 4 Unknown 2.466 VSec 70.9 5 Unknown 13.11 VSec 76.9 6 Unknown 1.953 VSec 94.5 7 Unknown 4.604 VSec 103.2 8 Toluene 130.6 PPM2 118.5 9 Unknown 81.93 mVS 138.8 10 Unknown 4.357 VSec 150.0 11 Unknown 1.078 VSec 212.0 12 Unknown 1.616 VSec 223.4 12 Unknown 1.616 VSec 223.4 14 Ethylbenzene 2.069 ppm 243.7 15 m&p-xylene 33.13 PPM2 265.3 16 O-xylene 14.20 PPM1 314.9 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft	142	8				_	
5 Unknown 13.11 VSec 76.9 6 Unknown 1.953 VSec 94.5 7 Unknown 4.604 VSec 103.2 8 Toluene 130.6 FFM2 118.5 9 Unknown 81.93 mVS 138.8 10 Unknown 4.357 VSec 150.0 11 Unknown 833.1 mVS 191.2 12 Unknown 1.078 VSec 212.0 13 Unknown 1.616 VSec 223.4 14 Ethylbenzene 2.069 ppm 243.7 15 m&p-xylene 33.13 FFM2 265.3 16 O-xylene 14.20 FFM1 314.9 PFM1 = Alarm 1 FFM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft		—< ℚ	· ·	•		•	
171			10حسب				
7 Unknown 4.604 VSec 103.2 8 Toluene 130.6 PPM2 118.5 9 Unknown 81.93 mVS 138.8 10 Unknown 4.357 VSec 150.0 11 Unknown 4.357 VSec 150.0 11 Unknown 1.078 VSec 212.0 13 Unknown 1.616 VSec 223.4 14 Ethylbenzene 2.069 ppm 243.7 15 m&p-xylene 33.13 PPM2 265.3 16 O-xylene 14.20 PPM1 314.9 14 Ethylbenzene 14.20 PPM1 314.9 Soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft							(-
8 Toluene 130.6 FPM2 118.5 9 Unknown 81.93 mVS 138.8 10 Unknown 4.357 VSec 150.0 11 Unknown 833.1 mVS 191.2 12 Unknown 1.078 VSec 212.0 13 Unknown 1.616 VSec 223.4 14 Ethylbenzene 2.069 ppm 243.7 15 m&p-xylene 33.13 FPM2 265.3 16 O-xylene 14.20 FPM1 314.9 PPM1 = Alarm 1 FPM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft	174						
9 Unknown 81.93 mVS 138.8 10 Unknown 4.357 VSec 150.0 11 Unknown 833.1 mVS 191.2 12 12 Unknown 1.078 VSec 212.0 13 Unknown 1.616 VSec 223.4 14 Ethylbenzene 2.069 ppm 243.7 15 m&p-xylene 33.13 PPM2 265.3 16 O-xylene 14.20 PPM1 314.9 16 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft	1 1/				·		1
10 Unknown 4.357 VSec 150.0 11 Unknown 833.1 mVS 191.2 12 Unknown 1.078 VSec 212.0 13 Unknown 1.616 VSec 223.4 14 Ethylbenzene 2.069 ppm 243.7 15 m&p-xylene 33.13 PPM2 265.3 16 O-xylene 14.20 PPM1 314.9 Soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft	J .\(
11 Unknown 833.1 mVS 191.2 12 Unknown 1.078 VSec 212.0 13 Unknown 1.616 VSec 223.4 14 Ethylbenzene 2.069 ppm 243.7 15 m&p-xylene 33.13 PPM2 265.3 16 O-xylene 14.20 PPM1 314.9 FPM1 = Alarm 1		1					
12 Unknown 1.078 VSec 212.0 13 Unknown 1.616 VSec 223.4 14 Ethylbenzene 2.069 ppm 243.7 15 m&p-xylene 33.13 PPM2 265.3 16 O-xylene 14.20 PPM1 314.9 PPM1 = Alarm 1	120b/	11		ě			
13 Unknown 1.616 VSec 223.4 14 Ethylbenzene 2.069 ppm 243.7 15 m&p-xylene 33.13 FPM2 265.3 16 O-xylene 14.20 FPM1 314.9 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft	\prod		•				
14 Ethylbenzene 2.069 ppm 243.7 15 m&p-xylene 33.13 PPM2 265.3 16 O-xylene 14.20 PPM1 314.9 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft			•				
15 m&p-xylene 33.13 PPM2 265.3 16 O-xylene 14.20 PPM1 314.9 25 26 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft		V					1
25 14 25 15 265 265 265 265 265 265 265 265 265 26	228) 13		ē			
257 265 265 265 27 27 285 285 285 285 285 285 285 285 285 285	1 //	•					
PPM1 = Alarm 1	Н. [16 O-xylene
PPM1 = Alarm 1	(: 1	4					
PPM1 = Alarm 1 PFM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft	2517			,			
PPM1 = Alarm 1 PFM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft	1 1						
PFM1 = Alarm 1 PFM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft	1 1 }	5	•				
PFM1 = Alarm 1 PFM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft							
Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft	[28]b						
Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft							
Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft					•		Const Alama 1 DOMO AlamaO
soil bottle headspace vol.=145cc temp 28 c soil sample 50g sample # 18 10 to 12 ft	-7.3						
temp 28 c soil sample 50g sample # 18 10 to 12 ft	1 1 1.	<i>,</i> ·				•	
soil sample 50g sample # 18 10 to 12 ft	f ^L	6					· ·
342 sample # 18 10 to 12 ft	1 11		•	-			
sample # 18 10 to 12 ft	1						porr pembre and
	134/E	-		•		•	cample 2 18 10 to 12 ft
371							machipals of all as the ast to
371			•	•			
132 1 L							
	1311	•		•			
1			•	•	•		
400	1400						
'M'	174		•	•		•	

							
9		1.	2	3	4	5	Time Printed: Aug 6,93 16:34
				.(×	100	mV)	Sample Time: Aug 6,93 16:25
100		کـــہ					Method Slope Up 1.000 mV/Sec
28	_			•		•	Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec
	>						Min Area 1.000 mVSec
1 7	7			•			
57	_						Min Height 0.000 mV Analysis Delay 50.0 sec
124		~		•		•	Window Percent 25.0 %
1 4	<u> </u>	.1.					Det Flow 10 ml/min
	يخ		•	•	•		B/F Flow 10 ml/min
85	.,			<u> </u>			Aux Flow 0 ml/min
104				. "?		•	Oven Temp 45 C
	\ iii						Amb Temp 36 C
	ζ''		•	•	•		Max Gain 1000
اا	رم	Z				•	Analysis Time 400.0 sec
1.14	*	<u> </u>	-i	•		•	Peak Report
			<i></i> حسب				Pk Compound Name Area/Conc R.T.
	_			•	•		1 Unknown 381.0 mVS 53.8
14	(,						2 Benzene 198.6 ppb 59.8
1"7	70	•		-		•	3 Unknown 96.75 mVS 67.3
	P a						4 Unknown 1.699 VSec 76.8
1	V		•	•	•		5 Unknown 123.7 mVS 94.2
1.7	-i	10					6 Unknown 203.5 mVS 102.9
1.1	.1.	'n.O		•		•	7 Toluene 9.011 ppm 117.2
							7 Toldene 7.011 ppm 117.2 8 Unknown 154.3 mVS 139.7
			•	•	•		9 Unknown 104.3 mvs 139.7
20	^	1.1					10 Unknown 128.7 mVS 147.8 10 Unknown 81.51 mVS 160.4
120	V.	.LL		•		•	i i
							i .
	1			•	•		12 Unknown 190.0 mVS 212.6 13 Unknown 210.1 mVS 222.4
1	12	4 59)
223	ø /	13		•			14 Ethylbenzene 351.0 ppb 244.5
							15 m&p-xylene 4.647 ppm 265.6
Î	4 27		•	•	•		16 O-xylene 667.1 ppb 298.1
1 11	14						17 Unknown 99.07 mVS 321.3
25	/		• •				
1 1	-a 107						
	L D		•		•		
	122						
Z.d	្ន					•	
	4 7			•			
3.1	16						Notes
10.11	·• †	•		•		•	
	4						soil bottle headspace vol.=145cc
	17		•	•	•		temp 28 c
34	ro.						H2O sample 41.9 ml
34	<i>i</i>	٠.		•		•	sample # 18 water sample
1 1							beauting 11 to Metral peating
			•	•	•		
1	.,						
37	,l.					•	
			•	•			
40	Δ						
1.4	V	•		•		•	
							1

FAIT								
9		4		8	12 _(x	16 1000	20 uV)	Time Printed: Aug 11,93 08:25 Sample Time: Aug 11,93 08:09 Method
'								1
28	~~ ا							Slope Up 1.000 mV/Sec
	<i>}</i>							Slope Down 3.000 mV/Sec
1.	ج.				•	į.		Min Area 1.000 mVSec
ļ	<i>?</i>							Min Height 0.000 mV
57	4							Analysis Delay 50.0 sec
	├		•	•	•		•	Window Percent 25.0 %
	سسم		1					Det Flow 10 ml/min
	ľ		.l <u>.</u>		•			B/F Flow 10 ml/min
0.6								Aux Flow O ml/min
85	ľ		•	•	•			
1								
	Ì							1
								Max Gain 1000
1.1	4						•	Analysis Time 400.0 sec
				•		•		Peak Report
					-			Pk Compound Name Area/Conc R.T.
			•		-	•		1 Benzene 46.05 ppb 59.8
14	2							
		•	٠	•	•		•	
	-							
			•		•	•		
17	.,							
1.7	٦.	•		•	•		•	
						•		
20	O							
								·
					•	•		
22	8							
		•	•	•	•		•	
	1		•		٠	•		
25	,							
A., 4	1			•	•		•	
1								
					•			
28	! 5			•			•	
					•			
31	4		_	_				Notes
		•	•	•	•		•	soil bottle headspace vol.=145cc
								temp 28 c
			•		•	•		H2O sample 41.9 ml
34	10							Calibration zero check
1,,,	[<u>~</u>	•		•	•		•	Sample #
	1							Section of the sectio
Ì					•			
	1.							
37	7:L							
					•			
	!							
40) o -							
	1	•	•	•	•	•	•	

Analysis	; #4 ———	108+ GC	runci	tion Calibrant Report
2	. 4	6 8 .(x 10	10 mV)	Time Printed: Aug 11,93 07:52 Sample Time: Aug 11,93 07:45 Method
28/			-	Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec
- 1				Min Area 1.000 mVSec
1	•			Min Height 0.000 mV
57 .				Analysis Delay 50.0 sec
			_	Window Percent 25.0 %
			1.	Det Flow 10 ml/min
				B/F Flow 10 ml/min
85			•	Aux Flow 0 ml/min
4				Oven Temp 45 C Amb Temp 24 C
į	•			Amb Temp 24 C Max Gain 1000
114				Analysis Time 400.0 sec
·	· ·		•	Peak Report
				Pk Compound Name Area/Conc R.T.
Y	•			1 Benzene 1.000 ppm 60.2
142				2 Toluene 1.000 ppm 118.8
		•	-	3 Ethylbenzene 1.000 ppm 237.8
				4 O-xylene 1.000 ppm 300.0
171 .				
	•	•		
200				
	•		•	
		;		
248				
Connect				
J	•			
257				
			•	1 ppm of Each of the Abore
				Above Above
	•			, ,
285			•	bus standart nitrogen Balance
	*	•	-	G-40 JAJAN
				NITEOGIE BAIANCE
21/4				
31/4			•	Notes soil bottle headspace vol.=145cc
				temp 28 c
	•			H2O sample 41.9 ml
342				calibration
			•	sample # 18 water sample
371			•	
	•			
400				
.4.			•	

	тарты		1007			tion Analysis Report
9	2	. 4	6 .(x	8 10	10 mV)	Time Printed: Aug 11,93 09:24 Sample Time: Aug 11,93 09:12
28						Method Slope Up 1.000 mV/Sec
į				_	-	Slope Down 3.000 mV/Sec
1.1	_					Min Area 1.000 mVSec
17		•	•	•		Min Height 0.000 mV
57						Analysis Delay 50.0 sec
-	•			•	•	Window Percent 25.0 %
إسم ا	!					Det Flow 10 ml/min
"	.	•	•	•		B/F Flow 10 ml/min
85	(3)					1
104	2			•	•	Aux Flow O ml/min
						Oven Temp 45 C
1 1		•				Amb Temp 31 C
						Max Gain 1000
1114						Analysis Time 400.0 sec
1 1						Peak Report
1 /3	3					Pk Compound Name Area/Conc R.T.
				•		1 Benzene 58.88 ppb 60.1
142						2 Unknown 2.278 mVS 76.0
	•		•	•	•	3 Toluene 145.2 ppb 118.4
4						4 Unknown 11.31 mVS 149.0
		•	•	•		5 Unknown 0.867 mVS 189.4
171						6 Unknown 5.373 mVS 209.8
1*1"	•		•	•	•	í í
						1,
		•		•		8 m&p-xylene 695.1 ppb 256.5
	ı					9 O-xylene 73.87 ppb 302.4
200	5					
6						
228					_	
		*	,	•	•	
		•				
1 7		-	•	•		
237						
8	•	•		•	•	
		•	•	•		
285						
1-4-	•			•	•	
1 1						
		•		•		
	<i>7</i> 15					
314	9					Notes
						soil bottle headspace vol.=145cc
						temp 28 c
						50 g soil spiked
342						Calibration
	•			•	•	Sample # .iml of lug/ml of below
						√0.1ug/40ml H2O=> 25ug/1 (ppb)
1		•	•	•		benzene 235 = 1ug/l (ppb)
371						toluene $580 = 100 \times 1000$
177"	•		•		•	·
						e chyroen 200
		•	•	•		tot.xylene 1000 = ^
lada						
440						

4	*1			1120
A Pr	1	УS	7 (::	#99
1 1	****	7	.1	13.7

ene			33.7.		J. O 8		7 331133	tion Analysis Report
9		1.		2	3	4	5 mV)	Time Frinted: Aug 11,93 09:06 Sample Time: Aug 11,93 08:51
			•		.(x	ιQ	111()	Method
28					-			Slope Up 1.000 mV/Sec
1		٠ ـــ	5	•	•		•	Slope Down 3.000 mV/Sec
	1							Min Area 1.000 mVSec
	7		•		•			1
1	<i>[</i>							Min Height 0.000 mV
57								Analysis Delay 50.0 sec
		=						Window Percent 25.0 %
1		1.						Det Flow 10 ml/min
1 1								B/F Flow 10 ml/min
85		2						Aux Flow 0 ml/min
1 1		•	•	•	•		•	Oven Temp 45 C
3	:							Amb Temp 30 C
	,		•		•	•		Max Gain 1000
1114		/ 1						i e e e e e e e e e e e e e e e e e e e
1-14		4						1
	>							Feak Report
1/		5						Pk Compound Name Area/Conc R.T.
								1 Benzene 73.33 ppb 60.0
142	3	_		_			_	2 Unknown 3.695 mVS 76.0
			-	-	•		-	3 Unknown 1.791 mVS 93.6
) 6							4 Unknown 1.393 mVS 102.9
			•		•	•		5 Toluene 211.7 ppb 118.5
171	_							6 Unknown 25.07 mVS 149.2
1"1"	•	•	•	•	•		•	7 Unknown 0.538 mVS 174.4
	,							8 Unknown 2.354 mVS 189.6
'			•					
		~)
200)	8						10 Ethylbenzene 28.97 ppb 239.2
								11 m&p-xylene 316.7 ppb 256.2
								12 O-xylene 72.22 ppb 301.6
9								
228	}	_	_			_		
		-	•	٠	•	•	•	
1 1	0.		•		•	•		
297								
1		•	•	•	•		٠	
			•		•			
1,								
285	1							
					,	•		
1 1	.2							
3:14	1	_					_	Notes
		-	-	•	•		•	soil bottle headspace vol.=145cc
								temp 28 c
			•		•	•		50 g soil spiked
342	,							Calibration
	•	•	•	•	•		•	Sample # .1ml of lug/ml of below
			•			•		$\chi_{0,1}$ ug/50g soil = 0.2ug/kg (ppb)
								benzene 345 = lug/kg (ppb)
371								toluene 1000 = ^
								ethylben. $140 = ^{\circ}$
								tot.xylene 650 = ^
400)							
		·	·	<u> </u>	•			

Analy	/sis	#13	108+	GC	Funct	tion Analysis Report
q	:l.	2	3	4	5	Time Printed: Aug 11,93 09:58
			(x		mV)	Sample Time: Aug 11,93 09:49
[<u> </u>	•	•		Method
28	. <<					Slope Up 5.000 mV/Sec
/						Slope Down 5.000 mV/Sec
1.5						Min Area 1.000 mVSec
1						Min Height 0.000 mV
57			, ,			Analysis Delay 50.0 sec
1 2						Window Percent 25.0 %
1 .)1		•	•	•		Det Flow 10 ml/min B/F Flow 10 ml/min
						Aux Flow 0 ml/min
85					•	Oven Temp 45 C
1 \						Amb Temp 32 C
{		•	•	•		Max Gain 1000
114					•	Analysis Time 400.0 sec
	•	•		•	•	Peak Report
13						Pk Compound Name Area/Conc R.T.
1 1			•	•		1 Benzene 14.38 ppb 60.4
142						2 Unknown 0.373 mVS 65.6
1 8	•	-	•			3 Toluene 89.93 ppb 117.7
12:		•	•			4 Unknown 9.561 mVS 148.2
171	•				٠	
1 1		•	•	•		
200						
	•			•	•	
		_	_			
		•	•	·		
228						
1 1						
		•	•			
257	•				•	
1 1		•	•	•		
285						
11	•			•	•	
314						Notes
						soil bottle headspace vol.=145cc
		•				temp 28 c 50 g soil spiked
342						ov 9 sona sparemu
	•			•	•	Sample # 22 6 to 8 ft
1 1		•	•	•		
371						
	•	-	•	·	-	
			•	-		
400				•	•	
						1

	. /	對15 ———	3,000	Ou	r ant.	tion Analysis Report
	1.	2	.(×	4 10	5 mV)	Time Printed: Aug 11,93 10:19 Sample Time: Aug 11,93 10:10 Method
28	-				٠	Slope Up 5.000 mV/Sec Slope Down 5.000 mV/Sec
5						Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 50.0 sec
57	- 1			٠	٠	Analysis Delay 50.0 sec Window Percent 25.0 % Det Flow 10 ml/min
85						B/F Flow 10 ml/min Aux Flow 0 ml/min
						Oven Temp 45 C Amb Temp 32 C Max Gain 1000
114						Analysis Time 400.0 sec
1 1	•	•			•	Peak Report
2						Pk Compound Name Area/Conc R.T. 1 Benzene 47.99 ppb 59.9 2 Toluene 30.28 ppb 118.2
142	٠					2 Toluene 30.28 ppb 118.2
171				•		
				•		·
200				•		
228				•	٠	
257						
285				٠		
314						Notes
	•				٠	soil bottle headspace vol.=145cc temp 28 c
342						50 g soil spiked
						Sample # 22 15 to 16 ft
371						
400					•	

1	1711 1835 33.	ysas	77 .1. 7	3. 07 0.			cion Augrasis Meborr
Sample Time: Aug 11,93 10:31 Method	0	. 4	9	.: v	a	t:;	Time Printed: Aug 11.93 10:46
Method Slope Up	1 4	.1.	<i></i>				
Slope Up 5.000 mV/Sec Slope Down 5.000 mV/Sec Slope Down 5.000 mV/Sec Min Area 1.000 mV/Sec Min Height 0.000 mV Analysis Delay 50.0 sec Window Percent 25.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Doven Temp 45 C Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. Unknown 25.40 mVs 54.7 2 Benzene 37.60 ppb 61.6 3 Unknown 161.4 mVs 76.9 4 Unknown 1.506 mVs 76.9 4 Unknown 1.506 mVs 103.4 6 Toluene 523.6 ppb 118.9 200 228 314 Soil bottle headspace vol.=145cc temp 28 c 43 ml water sample 342 Sample # 22 water sample 342 342 342 344 Sample # 22 water sample 344				. (×	τĠ	mv)	
Slope Down	\		~				1
##In Area	28	مسمسم	<i>-</i>			_	1
Min Height					•		Slope Down 5.000 mV/Sec
Min Height		<	-				Min Area 1.000 mVSec
Analysis Delay 50.0 sec Window Percent 25.0 % Det Flow 10 ml/min E/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 32 C Hax Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 25.40 mVS 54.7 2 Renzene 39.60 ppb 61.6 3 Unknown 161.4 mVS 76.9 4 Unknown 1.506 mVS 103.4 6 Toluene 523.6 ppb 118.9 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample	1		•	•	•		1
Window Percent 25.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. Unknown 25.40 mV 54.7 2 Renzene 39.60 ppb 61.6 3 Unknown 161.4 mV 76.9 4 Unknown 0.148 mV 94.6 5 Unknown 1.506 mV 103.4 6 Toluene 523.6 ppb 118.9 200 228 Soil bottle headspace vol.=145cc temp 28 c 43 ml water sample 3311							1
Det Flow 10 ml/min B/F Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Flow 25.40 mVs 54.7 Det Report Normal 161.4 mVs 76.9 Unknown 161.4 mVs 76.9 Unknown 1.506 mVs 103.4 Toluene 523.6 ppb 118.9 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample	$ _{2} \setminus \bigcup$	>.				•	, , , , , , , , , , , , , , , , , , , ,
B/F Flow	1 15	1.					1
Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Feak Report Pk Compound Name Area/Conc R.T. 1 Unknown 25.40 mVS 54.7 2 Benzene 39.60 ppb 61.6 3 Unknown 161.4 mVS 76.9 4 Unknown 0.148 mVS 94.6 5 Unknown 1.506 mVS 103.4 6 Toluene 523.6 ppb 118.9 200 228 257 285 314 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample		2					1
Oven Temp	} —						B/F Flow 10 ml/min
Oven Temp	last _				- 3		Aux Flow O ml/min
Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. 1 Unknown 25.40 mVS 54.7 2 Benzene 39.60 ppb 61.6 3 Unknown 161.4 mVS 76.9 4 Unknown 0.168 mVS 94.6 5 Unknown 1.506 mVS 103.4 6 Toluene 523.6 ppb 118.9 200 228 257 285 314 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample 342 Sample # 22 water sample	1	•	•	•		•	1
Max Gain 1000 Analysis Time 400.0 sec Feak Report							
Analysis Time 400.0 sec Feak Report Feak Report Feak Report Pk Compound Name Area/Conc R.T. Unknown 25.40 mVS 54.7 2 Benzene 39.60 ppb 61.6 3 Unknown 161.4 mVS 76.9 4 Unknown 0.163 mVS 94.6 5 Unknown 1.506 mVS 103.4 6 Toluene 523.6 ppb 118.9 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample	P +			•	•		1
Feak Report Pk Compound Name Area/Conc R.T. 1 Unknown 25.40 mVS 54.7 2 Benzene 39.60 ppb 61.6 3 Unknown 161.4 mVS 76.9 4 Unknown 0.148 mVS 94.6 5 Unknown 1.506 mVS 103.4 6 Toluene 523.6 ppb 118.9 Rotes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample							1
Pk. Compound Name Area/Conc R.T. 1 Unknown 25.40 mVS 54.7 2 Benzene 39.60 ppb 61.6 3 Unknown 161.4 mVS 76.9 4 Unknown 0.168 mVS 94.6 5 Unknown 1.506 mVS 103.4 6 Toluene 523.6 ppb 118.9 200 228 257 285 314 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample 342 Sample # 22 water sample	1114	5					
1 Unknown 25.40 mVS 54.7 2 Benzene 39.60 ppb 61.6 3 Unknown 161.4 mVS 76.9 4 Unknown 0.168 mVS 94.6 5 Unknown 1.506 mVS 103.4 6 Toluene 523.6 ppb 118.9 200 228 257 285 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample 342 Sample # 22 water sample			•••	-	·		
1 Unknown 25.40 mVS 54.7 2 Benzene 37.60 ppb 61.6 3 Unknown 161.4 mVS 76.9 4 Unknown 0.168 mVS 94.6 5 Unknown 1.506 mVS 103.4 6 Toluene 523.6 ppb 118.9 200 228 257 285 314 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample 342 Sample # 22 water sample	1 \		م ر				
2 Benzene 39.60 ppb 61.6 3 Unknown 161.4 mVS 76.9 4 Unknown 1.506 mVS 94.6 5 Unknown 1.506 mVS 103.4 6 Toluene 523.6 ppb 118.9 200 228 257 285 314 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample 342 Sample # 22 water sample	1 1		• "	•	•		
3 Unknown	1, 1						
4 Unknown	T 4 12.						1 1
5 Unknown 1.506 mVS 103.4 6 Toluene 523.6 ppb 118.9 200 228 257 285 314 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample	\						
228 257 265 314 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample	1 /						1
228 257 285 314 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample							1
200 228 257 285 314 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample	1171						6 Toluene 523.6 ppb 118.9
228 285 314 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample		•		•		•	
228 285 314 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample							
228 285 314 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample			•	٠	•		
228 285 314 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample							
257 285 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample	1200			•			
257 285 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample							
257 285 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample	1 1		_	_			
257 285 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample	1 1		•	•	-		
257 285 Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample	220						
Notes Soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample	140	•		•		•	
Notes Soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample							
Notes Soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample							
Notes Soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample							
Notes Soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample	257			_	_	_	
Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample 371		•	•	•		•	
Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample 371							
Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample 371			•	•	•		
Notes soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample 371							
soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample	1290						
soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample							
soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample			•				
soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample							
soil bottle headspace vol.=145cc temp 28 c 43 ml water sample Sample # 22 water sample	314						Notes
temp 28 c 43 ml water sample Sample # 22 water sample		•		•		•	
342 Sample # 22 water sample 371							
Sample # 22 water sample							
Sample # 22 water sample							45 ml water sample
37 1	342						
37 1		•		•	•	•	Sample # 22 water sample
			•	•	•		
400	1211						
400							
400							
440							
	400						
	1 1	•		•			

9	4	8	12 _(x	16 1000	20 uV)	Time Printed: Aug 11,93 11:18 Sample Time: Aug 11,93 11:08 Method
28						· F
A 47			•		•	
٠.)	•	•			Min Area 1.000 mVSec
57 \$						Min Height 0.000 mV
3/ /						Analysis Delay 50.0 sec
- 8						Window Percent 25.0 %
.) l						Det Flow 10 ml/min
\$						B/F Flow 10 ml/min
85						Aux Flow O ml/min
						Oven Temp 45 C
)		•				Amb Temp 32 C
1						Max Gain 1000
114						Analysis Time 400.0 sec
	•		•	•	•	Peak Report
1/2						Pk Compound Name Area/Conc R.T.
		•	•	•		1 Benzene 6.649 ppb 60.1
142						2 Toluene 45.54 ppb 117.8
[•		•		•	to rough the rive
)						_
ſ		•	•	•		
171						
-1-	•		•		•	
		•	•			
sdo						
Į.						1
- [
22 8	_					
			·	•	•	
			•	•		
257						
	•	•		•	•	
1		•	•	•		
285						
7	•	• •	•	•	•	
ł						
		•	•	•		
3:14						h.L. A
·	•				•	Notes
						soil bottle headspace vol.=145cc
-		•	•	•		temp 28 c
						59 5014 5 empla
342						
1						Sample # 23 -2 to 4 ft
						23 270447
}						
371.					_	
1	•	•	•	•	•	
			_			
1		•	•	•		
4 0 0						

)	4		8	12 (x	16 1000	20 uV)	Time Printed: Aug 11,93 11:45 Sample Time: Aug 11,93 11:35
Ì	L					·		Method
28	3							Slope Up 4.000 mV/Sec
Ì		٠			= ·	• •	•	Slope Down 4.000 mV/Sec
-		5						Min Area 1.000 mVSec
-	٠ _	-	•		•	•		Min Height 0.000 mV
57	, Ç	~						Analysis Delay 50.0 sec
	4	جر. آ-	٠		•		•	Window Percent 25.0 %
	-	→						Det Flow 10 ml/min
	٠/-ح		- 7,		•	•		!
85	سسمرا:	_رحر)					1
10.	1	. "+	•		•		•	Aux Flow 0 ml/min
	 -		e::					Oven Temp 45 C
	 		á			•		Amb Temp 32 C
١.,	_		١,					Max Gain 1000
11	4	<u>ج.</u>	Ģ				•	Analysis Time 400.0 sec
	L,	<i>y</i> -						Peak Report
		>			•	•		Fk Compound Name Area/Conc R.T.
		<u> </u>						1 Unknown 6.785 mVS 53.6
14	12		⊅.				•	2 Benzene 18.37 ppb 61.1
		5	9					3 Unknown 19.51 mVS 67.0
		~			•			4 Unknown 13.98 mVS 74.4
) 10						5 Unknown 25.13 mVS 94.5
17	1 5	_						6 Unknown 51.96 mVS 102.5
		•	•	•	•	•	•	7 Toluene 136.0 ppb 114.4
								8 Unknown 27.07 mVS 124.4
	Ŋ.		•		•	•	•	9 Unknown 111.2 mVS 138.8
20	b							10 Unknown 90.00 mVS 159.2
		•	•	•	•		•	11 Unknown 226.0 mVS 220.4
1 1								12 Ethylbenzene 400.0 ppb 242.4
		1	•		•	•		13 m&p-xylene 4.844 ppm 264.5
22	8) i						14 O-xylene 423.0 ppb 307.7
1		,.L .L	•	•	•			1 " O X Y LETTE
	(
		5	•		•	•		
100	£ 11. 1	.						
1/-	<u> </u>			•	•			
	}13							
	130	.)	•		•	•		
1								
28	5						•	
	?							
			•		•	•		
		4.21						
31	4	14						Notes
								soil bottle headspace vol.=145cc
								temp 28 c
								509 Soil Sample
34	2							509 5011 70MPV
								Sample # 23 6 to 8 ft
37	1.							
				-	-		•	
						_		
						•		
40	0		_					
				•	•	• •	•	

9	4		8	12 .(×	16 1000	20 uV)	Time Printed: Aug 11,93 13:07 Sample Time: Aug 11,93 11:56
28	· .	·		5		 -	Method Slope Up 4.000 mV/Sec Slope Down 4.000 mV/Sec
	کرے		-				Min Area 1.000 mVSec
-	>	•		•	•		Min Height 0.000 mV
57	<u> </u>						Analysis Delay 50.0 sec
1	1	•	•	•	•	•	Window Percent 25.0 %
							Det Flow 10 ml/min
	-		3	•	•		B/F Flow 10 ml/min
85	parameter .	4					Aux Flow O ml/min
(_	•	•	•			Oven Temp 45 C
[5.		•			Amb Temp 32 C
		>					Max Gain 1000
114	سمم 4	ં .લ	,				Analysis Time 400.0 sec
	D7						Feak Report
	_>						Pk Compound Name Area/Conc R.T.
	_<8						1 Unknown 9.222 mVS 53.4
147	Z	_ حرّ				•	2 Benzene 24.29 ppb 61.1 3 Unknown 23.53 mVS 67.6
	3	- 9	,				
1 +	_<	•		•			14 Unknown 14.99 mVS 75.3 5 Unknown 19.18 mVS 95.0
17	. حر .	0					6 Unknown 68.45 mVS 102.9
1.7	٠,٠.	٧.		•		•	7 Toluene 7.054 ppb 114.6
	1						8 Unknown 17.20 mVS 125.3
4	\	٠		•	•		9 Unknown 76.69 mVS 140.1
200	d						10 Unknown 42.56 mVS 160.2
17			•	•		•	11 Unknown 114.3 mVS 221.8
1						•	12 Ethylbenzene 140.8 ppb 244.0
1 1		•		•	•		13 m&p-xylene 2.296 ppm 265.6
228	B)	1.1					
	paramiran	•	•	•		•	
-	_{						
) 12						
23	7(•	
1	- \						
)13			•	•		
lad.	./						
28	*					•	
	1						
	1	٠		•	•		
31	4						Notes
		•	•	•		•	soil bottle headspace vol.=145cc
							temp 28 c
	1	•		•	•		643 ml water sample
34	2		_				509 Soil samply
	•	•	•	•	-	•	Sample # 23 8 to 10 ft
				•			
37	1		•				
		•				•	
	_						
49				•	•		

Anal	ysi.	. 8 490	27
------	------	---------	----

An a		4		8	12	1.6	20	Time Printed: Aug 11,93 13:43
					.(x	1000	uV)	Sample Time: Aug 11,93 13:34 Method
28								Slope Up 3.000 mV/Sec
	٠.		ند		•		•	Slope Down 3.000 mV/Sec
	5							Min Area 1.000 mVSec
'	1		•		•	•		Min Height 0.000 mV
57								Analysis Delay 50.0 sec
	-		•	•	•		•	Window Percent 25.0 %
1 1	•••							Det Flow 10 ml/min
1 3			•		•	•		B/F Flow 10 ml/min
85								Aux Flow O ml/min
171	•		•	•	•		•	Oven Temp 45 C
								Amb Temp 33 C
1 1			•		•	•		Max Gain 1000
1, 1	ı							Analysis Time 400.0 sec
111/2	ンベ			•	•		•	Peak Report
IV	<u> </u>							Pk Compound Name Area/Conc R.T.
					•	•		1 Benzene 10.80 ppb 57.1
1.1.	-							
14	.			•	•			,
1 /	ٽ							
			•		•			
								5 O-xylene 29.25 ppb 289.0
1171	L.			•			•	
200	•				•			
	7							
								1
228	3 .							
	Ĭ							
25	7 .							
	•							
					-			
28	5		_					
			•	•	•		•	
	5							
1			•		-	•		
31	4							Notes
	•		•	•	•		•	soil bottle headspace vol.=145cc
								temp 28 c
			•		•	•		43 ml water sample
34:	2							50 9 501 Samply
			٠	•	•		•	Sample # 23 4 to 6 ft
								,
			•		•		•	
37	1							
171			•		•	•		
			٠		•		•	
Jad.	Λ							
49	٧.		•	•	•	•		
								1

			8 457				tion Analysis Report Time Printed: Aug 11,93 14:03
		4	. 8	12 ,(x	16 100	20 (uV)	Sample Time: Aug 11,93 13:54
4-							Method
28							Slope Up 3.000 mV/Sec
							Slope Down 3.000 mV/Sec
.			•			•	Min Area 1.000 mVSec
ļ <u>.</u> ,	<i>}</i>						Min Height 0.000 mV
57	ζ,						Analysis Delay 50.0 sec Window Percent 25.0 %
1 1	۱.						Det Flow 10 ml/min
1			•	٠		•	B/F Flow 10 ml/min
85							Aux Flow O ml/min
131			•	•	•	•	Oven Temp 45 C
							Amb Temp 33 C
			•	•		•	Max Gain 1000
1.14	L						Analysis Time 400.0 sec
	> 2'		•	•	•	•	Peak Report
11	٨						Pk Compound Name Area/Conc R.T.
			•	•		•	1 Benzene 8.090 ppb 56.9
142	2						2 Toluene 75.70 ppb 112.5
	3			•	•		3 Unknown 1.787 mVS 141.2
	4						4 Unknown 6.267 mVS 142.8
			•	•		•	5 Ethylbenzene 30.63 ppb 198.4
1171				_			
	•			•	•	•	
200							*
5	·		•	-		•	
238	₹.						
	,						
257							
			٠	•		•	
285							
1-9-	•		•	·	•	•	
}			•	•		•	
314	}						Notes
	•		•	•	•		soil bottle headspace vol.=145cc
							temp 28 c
			•	•		•	42 ml water sample
342	<u> </u>						, i
	•			•	•	•	Sample ₦ 23 ∀ ater sample
				_			
			•	•		-	
371							
	•			•	-	•	
400) .						

Analysis	#32	108+	GC	Function	Analysis	Report
----------	-----	------	----	----------	----------	--------

	-1114	CTAR		77		.8. *	707	co c.	r care	tion Analysis Report
e i campar suma notarque a paque		······	1.		2	3 .()	<	4 10	5 mV)	Time Printed: Aug 11,93 14:47 Sample Time: Aug 11,93 14:39
12	28	=<			3					Method
		ستسمر	,9	•	•	٠	•	•	•	Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
		5								
	- 1			•		•		•		to be the second of the second
	37)									A
Ì	Ì.	•		•	•	•	•	•	•	Mnalysis Delay 50.0 sec Window Percent 25.0 %
-	1			_						Det Flow 10 ml/min
		2		•		•		•		B/F Flow 10 ml/min
8	}5									Aux Flow O ml/min
	h	•		•	•	•	•	•	•	Oven Temp 45 C
	(3					_				Amb Temp 34 C
	14					•		•		Max Gain 1000
:1	1/4	\ .								Analysis Time 400.0 sec
		Ö				-	•	•	•	Peak Report
-	Ĭ									Fk Compound Name Area/Conc R.T.
)									1 Benzene 6.156 ppb 57.3
1.	1/2	ුර						_		2 Unknown 10.05 mVS 72.4
										3 Unknown 4.104 mVS 89.8
		-								4 Unknown 4.739 mVS 98.1
١.	.[.									5 Toluene 193.2 ppb 112.9
1.	71								•	6 Unknown 0.356 mVS 133.0
										7 Unknown 14.34 mVS 142.1
	8					•				8 Unknown 1.476 mVS 183.6
10	do									9 Ethylbenzene 167.0 ppb 211.6
1	٣.									10 O-xylene 141.0 ppb 305.3
	19		•			•		•		
2	28									
1	T	•	•	•		•	•	٠	•	
			•			•		•		
2	97									
		•	•	•		•	•	•	•	
			•			•		•		
28	‡ 5									
		-	•	•		•	•	•	•	
						•				
								-		
[3:	4	10								Notes
							-	-	·	soil bottle headspace vol.=145cc
	į									temp 28 c
										50g soil
34	A	-								
										Sample # 19 2 to 4 ft
	Ì		•			•				
37	ļ.,									
[/	1	٠	٠	•			•			
ł			•			•		•		
40	0								1	
L."	l .	•				•	•	•		
									<u>.</u>	

F33 1 c						
9	1	2	3 .(x	4 10	5 mV)	Time Printed: Aug 11,93 15:10 Sample Time: Aug 11,93 15:01
		•		•	•	Method
28						• • • • • • • • • • • • • • • • • • •
N.O					•	
	سحر					Slope Down 3.000 mV/Sec
1 .	>		_	_		Min Area 1.000 mVSec
4		•		-		Min Height 0.000 mV
57)						Analysis Delay 50.0 sec
1 5	•		•		•	
1 (i
1 (Det Flow 10 ml/min
1 >						B/F Flow 10 ml/min
84						Aux Flow O ml/min
	•		•		•	Oven Temp 45 C
1 7.) '
		•				
[2						Max Gain 1000
1.1			_		_	Analysis Time 400.0 sec
	' 3	•	•			Peak Report
						Pk Compound Name Area/Conc R.T.
1 1		•	•	•		1 Unknown 3.550 mVS 89.6
1.1.						
1142						2 Unknown 1.559 mVS 98.2
1/4	1					3 Toluene 114.6 ppb 112.1
						4 Unknown 13.61 mVS 142.1
		-	•	•		5 Ethylbenzene 41.87 ppb 200.6
171						
1-1-	•		•		•	
}						
1 1						
200	l					
5		• •	•		•	
"	•					
		•	•			
228					_	
	•		•	•	•	
		•	•	٠		
257	ı					
149/						
			•	•		
285	ı					
1-1	•		•		•	
			•			
33/4						Notes
	•		•		•	soil bottle headspace vol.=145cc
						temp 28 c
		•	•	•		
						50g soil
342	١.					
				,		Sample # 19 4 to 6 ft
		•	•	•		
371						
		•	•			
400						
140	•		•		•	
<u> </u>						

Analy	'sis	#36	100	S+ GC	Funct	tion Analysis Report
9	4		12 _(×	16 1000	20 uV)	Time Frinted: Aug 11,93 15:30 Sample Time: Aug 11,93 15:21 Method
28	5			· .		Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec
57	.		•		•	Min Height 0.000 mV Analysis Delay 50.0 sec Window Percent 25.0 % Det Flow 10 ml/min
85						B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C
1.174						Amb Temp 34 C Max Gain 1000 Analysis Time 400.0 sec Feak Report
142						Pk Compound Name Area/Conc R.T. 1 Toluene 43.39 ppb 113.2 2 Unknown 4.636 mVS 142.4
171						3 Ethylbenzene 20.39 ppb 197.6
	•				٠	
3	•					
228		· ·				
257						
285						
314						Notes soil bottle headspace vol.=145cc
342						temp 28 c 50g soil Sample # 19 8 to 10 ft
371						
400						
1.4	•		•	•		

Analysi	S #38	105+ GC	Func:	tion Analysis Report
9 4	. 8	12 16 _(x 1000	20 uV)	Time Printed: Aug 11,93 15:51 Sample Time: Aug 11,93 15:41 Method
28			· .	Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
57 A1	·			Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 50.0 sec Window Percent 25.0 % Det Flow 10 ml/min B/F Flow 10 ml/min
8			٠	Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 34 C Max Gain 1000
1172			•	Analysis Time 400.0 sec Peak Report
1483				Pk Compound Name Area/Conc R.T. 1 Benzene 7.375 ppb 56.6 2 Toluene 77.22 ppb 112.1 3 Unknown 11.30 mVS 141.7 4 Ethylbenzene 28.45 ppb 201.0
171				
200				
228				
257				
285				
314			-	Notes soil bottle headspace vol.=145cc temp 28 c
342				Sample # 19 10 to 12 ft
371				
400			•	

enet.	ysis	354V)	1.00	or total	runc.	tion Analysis Report
	4	. 8	12 .(x	16 1000	20 uV)	Time Frinted: Aug 11,93 16:09 Sample Time: Aug 11,93 16:00 Method
28		سنستخسد		. ,		Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
1	5	•	-			Min Area 1.000 mVSec
1 /	-					Min Height 0.000 mV
57						Analysis Delay 50.0 sec Window Percent 25.0 %
						Window Percent 25.0 % Det Flow 10 ml/min
1 1		•	•	•		B/F Flow 10 ml/min
85						Aux Flow O ml/min
	•		•		•	Oven Temp 45 C
					•	Amb Temp 34 C
						Max Gain 1000
114						Analysis Time 400.0 sec
2						Feak Report
			•	•		Pk Compound Name Area/Conc R.T. 1 Benzene 4.686 ppb 56.9
1,100						1 Benzene 4.686 ppb 56.9 2 Toluene 22.02 ppb 112.4
142	•		•		•	3 Ethylbenzene 14.18 ppb 198.0
						to saily de besult or south on the first of
		•	•	•		
171			_			
	•		-			
200					•	
3						
1		•	•	•		
228						
	•	•	•		•	
		•	·			
257						
			•	-		
204 ==						
285			٠		•	
		•	•	•		
314				_		Notes
	•	•	•		•	soil bottle headspace vol.=145cc
		•				temp 28 c
						50g soil
342						Sample # 19 14 to 16 ft
						Sample # 19 14 to 16 ft
		•	-			
371						
" "	•		•		•	
			_	-		
		•	•	•		
400						

	Ana	alysis	#41	1.03	5+ GC	h un c	tion Analysis Report
	9	4	8	12 _(×	16 1000	20 uV)	Time Frinted: Aug 11,93 16:19 Sample Time: Aug 11,93 16:10 Method
	28				<u> </u>		Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
Territoria de la companya de la comp	57	A A					Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 50.0 sec Window Percent 25.0 % Det Flow 10 ml/min B/F Flow 10 ml/min
	85					٠	Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 34 C Max Gain 1000
	1.18	Š .		•			Analysis Time 400.0 sec
	14	2					Feak Report Fk Compound Name Area/Conc R.T. 1 Unknown 7.023 mVS 72.6 2 Toluene 33.05 ppb 112.1 3 Ethylbenzene 33.44 ppb 209.8
	171	L .					
	20k						
	228	š 3				·	
	25	, .					
	28	5 <u>.</u>				٠	
							C. L. a. L. a. a. a. a. a. a. a. a. a. a. a. a. a.
	31		· · ·				Notes soil bottle headspace vol.=145cc temp 28 c 50g soil
	34	<u>.</u>				٠	Sample # 19 6 to 8 ft
	37	l					
	40			•			

ff1 5	err X	20 J. 20	#43	3. 525	3.6 (31.5	1 (.(11()	cion Analysis Report
0		4	8	12	16	20	Time Printed: Aug 11,93 16:36
					1000	uV)	Sample Time: Aug 11,93 16:27
[<u> </u>						Method
28					_=		Slope Up 3.000 mV/Sec
Ì				•		,	Slope Down 3.000 mV/Sec
	200						Min Area 1.000 mVSec
1			•	•	-		Min Height 0.000 mV
57	·	-					Analysis Delay 50.0 sec
	المستحدثي	1.		•		•	Window Percent 25.0 %
	į						Det Flow 10 ml/min
1 7	$>_2$		•	•	•		B/F Flow 10 ml/min
85							Aux Flow O ml/min
		•		•		•	Oven Temp 45 C
	3						Amb Temp 35 C
			•	•	•		Max Gain 1000
11	4						Analysis Time 400.0 sec
) ,	•	•	•		•	Peak Report
							Pk Compound Name Area/Conc R.T.
			•	•	•		1 Benzene 25.37 ppb 52.8
14	2						2 Unknown 10.01 mVS 72.6
	5	•	•	•		•	3 Unknown 4.400 mVS 89.7
	-					•	4 Toluene 39.31 ppb 113.4
			•	•	•		5 Unknown 4.364 mVS 142.5
17	1.						6 Ethylbenzene 17.28 ppb 201.4
		•	•	•		•	
			•	•	•		
20	0						
, ,	6	•	•	•		•	
			•	•	•		
22	8						
""		•		•		•	
			•	•	•		
25	7						
"		•	•	•		•	
			•	•	•		
28	5						
		•	•	•		•	
			•	•	•		
31	4						Notes
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		•	• .	•		•	soil bottle headspace vol.=145cc
							temp 28 c
			•	•	•		42ml water sample
34	2						,
"		•	•	•	. ,	•	Sample # 19 water sample
1			•	•	•		
37	1						
100	"	•		•		•	
			•	•	•		
140	0						
1.,	7 "	•	•	·		•	

Anat	lysis	#7	105+	GC F	ันเกต	tion Analysis Report <i>4-12-93</i>
9	i.	2	3 .(x	4 10 m	5	Time Printed: Jan 1,90 01:05 Sample Time: Jan 1,90 00:52
		·	. \ ^	** 25 m	V)	Method
28		 				Slope Up 3.000 mV/Sec
	ستستستسم					Slope Down 3.000 mV/Sec
1 . 7	7		•	•		Min Area 10.00 mVSec
1 1						Min Height 0.000 mV
57/	<u> </u>	. —				Analysis Delay 45.0 sec
سسي ا		1.				Window Percent 25.0 %
		•				Det Flow 10 ml/min
12						B/F Flow 10 ml/min
85						Aux Flow O ml/min
						Oven Temp 45 C
		•	•			Amb Temp 30 C
						Max Gain 1000
11/2	> 3			•		Analysis Time 400.0 sec
						Peak Report
		•	•			Pk Compound Name Area/Conc R.T.
h_						1 Benzene 143.8 ppb 55.2
14/2	4					2 Unknown 0.617 mVS 70.0
						3 Toluene 142.9 ppb 108.9
				•		4 Unknown 8.863 mVS 136.5
						5 Unknown 5.721 mVS 191.4
171						6 Ethylbenzene 54.07 ppb 219.6
]						7 M&P-Xylene 160.0 ppb 235.6
		•	•			8 O-Xylene 79.58 ppb 277.6
	4					
200	5			•		
		•	•	•		
228	2					
1240	é			•	•	
),						
1 1		•	•	•		
257						
1-1	•	•		•	•	
		•	•	•		
285	8					
	;	•	•	٠	•	
			•	•		
314						Notes
	•		• •	•	•	spike sample cal.check
						sample #
		•	•	•		soil volume 50g
342						water sample volume 43.0ml
	•	•		•	•	temp. of sample 28 c
						.1ml of lug/ml BTEX on 50g soil
		•	•	•		0.2ug/kg (ppb)
371						benzene 700 = lug/kg
	•	•	•	•	•	toluene 700 = lug/kg
				_		ethylben. 270 = lug/kg
		•	•	•		$m_p p\&o-xylene$ 400 = lug/kg
400						

9		4	8	12 .(x	16 10	20 mV)	Time Printed: 3-0 1.90 01:49 Sample Time: Jan 1,90 01:39
28	2						Method Slope Up 3.000 mV/Sec
	_					•	Slope Down 3.000 mV/Sec
	7						Min Area 10.00 mVSec
1 1							Min Height 0.000 mV
57	>.						Analysis Delay 45.0 sec
	1.						Window Percent 25.0 % Det Flow 10 ml/min
11.	2				•		B/F Flow 10 ml/min
85	Ċ.						Aux Flow O ml/min
124		•		•	•	•	Oven Temp 45 C
							Amb Temp 32 C
			•	•			Max Gain 1000
111)	3					Analysis Time 400.0 sec
1 1							Peak Report
			•	•	•		Pk Compound Name Area/Conc R.T.
	··•	4					1 Benzene 82.21 ppb 55.4 2 Unknown 0.854 mVS 69.6
14	AL.	4					2 Unknown
							4 Unknown 17.38 mVS 137.6
			•	•	•		5 Unknown 4.844 mVS 192.2
17:	1.						6 Ethylbenzene 69.51 ppb 219.6
"		•		•	•	•	7 M&P-Xylene 186.7 ppb 236.0
				_			8 0-Xylene 128.6 ppb 278.1
200	0	5					
				•	•		
228	m	6					
4.4	C)			•		•	
1 1	7						
	•		•	•	•		
25	7						
			•	•			
			•				
	e:	,					
28	O .	8		•			
			•	•	•		
31	4						Notes
		•		•		•	spike sample cal.check
				•			sample #
							soil volume 50g
34	2			•			water sample volume 40.0ml
							temp. of sample 28 c .1ml of lug/ml BTEX on 40ml H20
			٠	•	•		.25ug/l (ppb)
37	1						.2009/1 (ppb) benzene 330 = 1ug/1
171	.1.	•		-		•	toluene 760 = 1ug/1
							ethylben. 280 = 1ug/l
			•	•	•		m,p‰o-xylene 400 = lug/l
40	0	•					
L.'							

	.ysls					tion Analysis Report
9	Z),	8	12	16	20	Time Printed: Aug 12,93 02:12
			, (x	1000	uV)	Sample Time: Jan 1,70 0 2:02 Method
						1
28	محمد .		•		•	Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
1	5					i '
. 1	area and a		•	•		1
57 L						Min Height 0.000 mV Analysis Delay 45.0 sec
13/		⇒ , ·				Window Percent 25.0 %
		T	•			Det Flow 10 ml/min
		•	•	•		B/F Flow 10 ml/min
85						Aux Flow O ml/min
0.4	•				٠	Oven Temp 45 C
						Amb Temp 33 C
		•	•	•		Max Gain 1000
114						Analysis Time 400.0 sec
	•	•	•		•	Peak Report
						Pk Compound Name Area/Conc R.T.
		•	•	•		1 Benzene 48.85 ppb 55.6
142						
	•		•		٠	
						_
171						
		-				
			•			
200						
		•				
						•
228					•	
		•	٠	•		
257						
			•	•	•	
		•	•	•		
285						
	•		•	•	•	
		•	•	•		
314						Notes
	•		•		•	zero check
			_			sample #
		-	•	•		soil volume 50g
342			_			water sample volume 40.0ml
]	•		•		•	temp. of sample 28 c
371					•	
		•		-		
440					-	
						<u> </u>

Amacl.)	/ SS 31. SS	\$\$ xi. 4)	3.00	e ou	r carc.	tion Calibrant Report
9	4	8	12	16	20	Time Printed: Aug 12,93 07:54
			.(x	10	mV)	Sample Time: Aug 12,93 05:27
28/						Slope Up 3.000 mV/Sec
	•	•		•	•	Slope Down 3.000 mV/Sec
] }						Min Area 10.00 mVSec
		•	•	•		1
						1
57-		 				Analysis Delay 45.0 sec
			1.			Window Percent 25.0 %
1 1						Det Flow 10 ml/min
						B/F Flow 10 ml/min
85						Aux Flow O ml/min
	•			•	•	Oven Temp 45 C
						Amb Temp 31 C
		•	•	•		Max Gain 1000
114						Analysis Time 400.0 sec
" " "	, حــــ				•	Peak Report
		2				1
				•		1
142						2 Toluene 1.000 ppm 109.7
						3 Ethylbenzene 1.000 ppm 221.0
						4 O-Xylene 1.000 ppm 280.0
-						
171						
	•			•	•	
1 1						
		•	•	•		
200					•	
12.4	•			•	•	
			•	•		

228	3					
257						
	•		•	•	•	
1 1		•	•	•		
289	4					
	••	•		•	•	
1 /						
		•	•	•		
1						Notes
314					•	
						zero check
		•	•			sample #
						soil volume 50g
1342					•	water sanple volume 40.0ml
		•		·		temp. of sample 28 c
			_			
		-	•	•		
371						
	•			· •	•	
		•	•	٠		
lada						
490			•		•	
{						

		115 11. 115	*******					1
10		44	8		1.2	1.6	20	Time Frinted: Aug 12,93 04:02
					_(x	10	mV)	Sample Time: Aug 12,93 03:51
			•					Method
28	7							Slope Up 3.000 mV/Sec
12.00		₹.			•		•	1
1	٤	_						
1.	*************************							Min Area 10.00 mVSec
		_						Min Height 0.000 mV
57	مسمسم	≠ :l.						Analysis Delay 45.0 sec
1	1	<u> </u>	•	•	•	•	•	Window Percent 25.0 %
			3					Det Flow 10 ml/min
					4	•		B/F Flow 10 ml/min
85					•			Aux Flow O ml/min
154	la::	•	•	•	•		•	Oven Temp 45 C
	الخشي	,						Amb Temp 32 C
	بحسس	9			•		•	1
	-							1
114	[4			7				Analysis Time 400.0 sec
	سمرا							Peak Report
	1							Fk Compound Name Area/Conc R.T.
	H(1 Benzene 308.6 ppb 49.4
1.4	3:	8						2 Unknown 0.758 mVS 56.1
	V	•	•	•	•		•	3 Unknown 186.2 mVS 62.2
[]							•	4 Unknown 489.4 mVS 70.6
			•		•	•		5 Unknown 1.821 mVS 86.5
.	, ,							6 Unknown 104.1 mVS 94.8
1.7	,L	•		•			•	7 Toluene 3.207 ppm 108.5
								1
	9				•			I
1	*							9 Unknown 3.528 mVS 174.8
20	 							10 O-Xylene 115.1 ppb 289.8
	1							
							•	
22								
	-	•	•	•	•	•	•	
	l							
	1		•		•	•		
25	ļ.,,							
14.0	1	•	•	•	•		•	
	ŧ							,
	Ì							
28	5							
	1							
1	10							
			-			·		
31	4							Notes
"	[•	•	•	•		•	soil sample
	1							sample # 11 18 to 20 ft
	1		•		•			soil volume 50g
	100							water sanple volume 40.0ml
34	A.C.						•	
								temp. of sample 28 c
	1							
	1							
37	1							
ĺ		-				•	•	
			•		•	•		
40	l o -							
1,,] ~	٠	•	•	•		•	

	**		
Ors "		** ** ***	#19
1711 1 43	t.A. 7 :	8 i 8	77 3. /
	,		

Mnal.	<i>,</i>					tion Analysis Report
9	4	8	12 _(x	16 10	20 mV)	Time Printed: Aug 12,93 03:38 Sample Time: Aug 12,93 03:27
		•	. ' . '			Method
28 7						Slope Up 3.000 mV/Sec
120			•		•	Slope Down 3.000 mV/Sec
2						Min Area 10.00 mVSec
سمر.	_	•	•	•		1
}_						
57		1			•	Analysis Delay 45.0 sec
72-		_				Window Percent 25.0 %
-	==					Det Flow 10 ml/min
سرا ا			4			B/F Flow 10 ml/min
85/						Aux Flow O ml/min
	•					Oven Temp 45 C
	> 5					Amb Temp 33 C
IK		•	•	•		Max Gain 1000
114			> 6			Analysis Time 400.0 sec
سر 📗			•••	• •	•	Peak Report
						Pk Compound Name Area/Conc R.T.
		•	•	•		1 Unknown 194.0 mVS 49.4
142	y					2 Benzene 39.33 ppb 56.4
1	7		•		•	3 Unknown 270.6 mVS 62.2
1.1.						5 Unknown 124.7 mVS 94.8
171			•		•	6 Toluene 3.687 ppm 108.6
						7 Unknown 50.38 mVS 137.2
		•				8 Unknown 5.639 mVS 289.6
2do						
	•		•		•	·
1 1		•	•	•		
228						
1-75	•		•	•	•	
		•	•			
0.5						
257			•		•	
				•		
285					•	
		-		-		
8				•		
				•		
314						Notes
	•		•		•	soil sample
						sample # 11 16 to 18 ft
		•	•	•		soil volume 50g
342						water sample volume 40.0ml
1372	•				•	
						temp. of sample 28 c
		•	•	•		
371			•			
				·		
400						
			•	· ·	•	

Ī	0		4	215			,		100 0001 (
			e. 4		12		.6 10	20 mV)	Sample Time: Aug 12,73 03:11	
	28	<u>.</u>		<u> </u>					Method Slope Up 3.000 mV/Sec	
								•	Slope Down 3.000 mV/Sec	
ĺ					·	•			Min Area 10.00 mVSec	
1	57[<u> </u>			.				Min Height 0.000 mV	
1	0/}	<u> </u>			ı.				Analysis Delay 45.0 sec	
	- }					=			Window Fercent 25.0 %	
-	·T		=			<u>2</u>			Det Flow 10 ml/min	
1,	35/						3		B/F Flow 10 ml/min	
1	3.7	Şη ·			,				Aux Flow O ml/min	
- 1	۲	حيب ا	::						Oven Temp 45 C	
	٠(,		٠ .		•				Amb Temp 33 C	
١,	. 1 A								Max Gain 1000	
].	1.] 7	٠				> ⊹			Analysis Time 400.0 sec	
		- The second						•	Feak Report	
1	-1/		•		•				Fk Compound Name Area/Conc B T	
1	4	7							1 Benzene 835.5 pph 49 2	
- "	7		٠					•	2 Unknown 649.0 mVS 62.4	
1									3 Unknown	
	1		•		•		٠.		4 Unknown 36.08 mVS 87.0	
1	71								0 Unknown 174,2 mVS 94.0	
- -		•	•	•	•		•	•	6 foluene 5.188 nnm 109 0	
	18								/ Unknown 69.56 mVS 137.6	.
			٠		•		٠	•	9 Unknown 5 105 ppb 175.0	RRE
2	ďo.								5.105 mVS 199.4	. •
	9	•	•	•	•	•		•	10 Unknown 64.11 mVS 208.0	_
	1.0)						-	11 Ethylbenzene 160.4 ppb 224.2	160
			•		•		•		1.2 nor -xyrene 460.7 ppb 247.4	. •
2:	38								13 O-Xylene 371.1 ppb 280.5	
	1.1		•	٠	•	•	•	•		
İ										
					•		•			
23	17	12		_						
				•	•	•	•	.		
							_	-		
ļ.,.								ļ		
28	5	13								
31								Ĺ		
	·· ·			-	•			. [Notes	
									soil sample	
									sample # 11 14 to 16 ft	
34	73								soil volume 50g	
	<i>A.</i>							.	water sample volume 40.0ml	
								1	temp. of sample 28 c	
			•		•					
37	1									
1-1		•	٠	•	• .					
			•		•	•				
40	0									
		•	·			•				,

			** J. U				cion macrysis report
	Ì	ZĮ.	8	12	16	20	Time Printed: Aug 12,93 02:47
			•	.(×	1000	uv)	Sample Time: Aug 12,93 02:37 Method
28)				<u></u> -		Slope Up 3.000 mV/Sec
ZC.	,	مممر .	=	-		•	Slope Down 3.000 mV/Sec
	ا	5					Min Area 10.00 mVSec
			•	•	•		Min Height 0.000 mV
57	. ز ر						Analysis Delay 45.0 sec
1.,	\triangleright_1	•	•	•	•	•	Window Percent 25.0 %
	₽∞"	•					Det Flow 10 ml/min
	1		`	_ _ _	ζ.		B/F Flow 10 ml/min
85				•	••		Aux Flow O ml/min
	}	•	•	•	•	•	Oven Temp 45 C
	•						Amb Temp 33 C
			•	•	•		Max Gain 1000
11	4			4			Analysis Time 400.0 sec
			, - - -	•		•	Peak Report
	1			_			Pk Compound Name Area/Conc R.T.
			-	•	•		1 Unknown 2.811 mVS 55.8
14) :	5					2 Unknown 1.055 mVS 62.1
		•		•		•	3 Unknown 53.32 mVS 70.6
					_		4 Toluene 329.8 ppb 109.0
	-			-	•		5 Unknown 8.255 mVS 137.8
1.7	1						·
		•		,			
20	0			•			1
.	_						
22	18					•	
				•	•		
25	l.,,						
12.5	1	•		•			
	1						
			•	•	•		
28	5						
1	["	•	•	•		•	
1			•	•			
31	4						Notes
"	•	•		•		•	soil sample
							sample # 11 10 to 12 ft
	1		•	•	•		soil volume 50g
34	2						water sample volume 40.0ml
	İ	•		•		•	temp. of sample 28 c
37	† 1.			•			
	1		-	•		-	
			•	•			
40)			•			
L							<u> </u>

		17 J) *				CTOH Lubert A same by Combany a
Q	2	4	6	8	10	Time Printed: Aug 12,93 02:25
	•		(x	10	mV)	Sample Time: Aug 12,93 02:15
_		•	•	·		Method
28	5					Slope Up 3.000 mV/Sec
1 5				•	•	Slope Down 3.000 mV/Sec
}						Min Area 10.00 mVSec
17		•	•	•		Min Height 0.000 mV
57	1.					Analysis Delay 45.0 sec
2	:"	•		٠	•	Window Percent 25.0 %
2.						Det Flow 10 ml/min
					- ∠1,	B/F Flow 10 ml/min
85/					•	Aux Flow O ml/min
	•	• •	•	•	•	Oven Temp 45 C
						Amb Temp 33 C
1 1		•	•	•		Max Gain 1000
						Analysis Time 400.0 sec
114			°.	•		Peak Report
1/	-					Pk Compound Name Area/Conc R.T.
		•	•	•	•	
I. A.	****					
147	7				•	
						3 Unknown 6.727 mVS 62.2
1 1						4 Unknown 414.6 mVS 70.8
						5 Unknown 3.721 mVS 94.9
1171	_					6 Toluene 2.148 ppm 108.8
1 1	•			•	•	7 Unknown 24.65 mVS 138.0
		_				8 Unknown 6.576 mVS 281.6
1 1		•	•	•		
200						
	•			•	•	
		•	•	•		
228						
140	•			•	•	
			•	•		
257	-				•	
1 1						
285						
8						
314						Notes
	•	•	• •		•	sample soil
						sample # 11 8to10 ft
		•	•	•		soil volume 50g
342						water sample volume 40.0ml
	•			•	•	temp. of sample 28 c
		•	•	•		
371				,		
400					•	
<u> </u>						

An a. I.	<i>y</i>		2. 0. 0.			tion Lalibrant Report
9	4	. 8	12 .(×	16 10	20 mV)	Time Printed: Aug 13,93 00:56 Sample Time: Aug 13,93 00:47 Method
28						Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
						Min Area 10.00 mVSec
						Min Height 0.000 mV
57-					•	Analysis Delay 45.0 sec
			1.			Window Percent 25.0 % Det Flow 10 ml/min
		•	•	•		B/F Flow 10 ml/min
85						Aux Flow O ml/min
		•	•	•	•	Oven Temp 45 C
						Amb Temp 28 C
						Max Gain 1000
11/4	<i>ا</i>					Analysis Time 400.0 sec
						Peak Report
		•		•		Fk Compound Name Area/Conc R.T. 1 Benzene 1.000 ppm 55.2
142						2 Toluene 1.000 ppm 108.5
17/	•		•		•	3 Ethylbenzene 999.9 ppb 217.8
						4 O-Xylene 1.000 ppm 275.7
		•	•	•		
171						
		•	•	-		
200						
1290	•	•	•		•	
		•	•	•		
228	3					
		•	٠	-		
257						
1-1/	•		•		•	
		_	_			
		•	•	•		
287	4					
		-	•			
3:14						Notes
	•		•		•	cal. check
				_		sample # 1 ppm BTEX gas standard
		-	-	·		soil volume 50g
342						water sample volume 40.0ml
						temp. of sample 28 c
		•	•	-		
371						
	•	•	•		•	
		•				
400			٠			

,		· 890				tion Analysis Report
9	1.	2	3 .(x	4 10	5 mV)	Time Printed: Aug 13,93 08:25 Sample Time: Aug 13,93 00:58
_						Method
28						Slope Up 3.000 mV/Sec
ì	/	•		•	•	Slope Down 3.000 mV/Sec
	5					Min Area 10.00 mVSec
1 7	•	•	•			Min Height 0.000 mV
57						Analysis Delay 45.0 sec
1 7	1.					Window Percent 25.0 %
11						Det Flow 10 ml/min
						B/F Flow 10 ml/min
85						Aux Flow 0 ml/min
"	•			•	•	Oven Temp 45 C
						Amb Temp 29 C
		•	•			Max Gain 1000
1	24					1
1.114	2					Analysis Time 400.0 sec
						Peak Report
						Pk Compound Name Area/Conc R.T.
						1 Benzene 48.06 ppb 55.3
1142						2 Unknown 6.280 mVS 109.4
	•	•		•	•	
		•	•	٠		
1, 4,						
171	٠					
200					•	
	•		•	•	•	
		•	•	•		
1,1						
228	•					
252						
	•			•	•	
		•	•	•		
285						
1200					•	
		•				
334	_					Notes
	•		•	•	•	zero check
						sample # clean soil
		•	•	•		soil volume 50g
342						
1245				•		water sanple volume 40.0ml
						temp. of sample 28 c
371						
	•	•		•	•	
		-	•	٠		
400						

Analysis #7	105+ (GC Function	Analysis	Report
-------------	--------	-------------	----------	--------

			2.00.00			cron markers webort
	1.	2	3 .(x	4 10	5 mV)	Time Printed: Aug 13,93 09:02 Sample Time: Aug 13,93 08:48
28						Method
12.00						Slope Up 3.000 mV/Sec
5	,					Slope Down 3.000 mV/Sec
1 ./	•		•			Min Area 10.00 mVSec
						Min Height 0.000 mV
57/-		· ·				Analysis Delay 45.0 sec
سنمل ا		1.				Window Percent 30.0 %
			•			Det Flow 10 ml/min
1/2						B/F Flow 10 ml/min
85						Aux Flow 0 ml/min
	·	•	•	•	•	Oven Temp 45 C
}						Amb Temp 32 C
		•	•	• •		Max Gain 1000
114	_>ঃ					
1	- :-	•		•	•	
						Feak Report
F		•	•	•		Pk Compound Name Area/Conc R.T.
143	4					1 Benzene 145.4 ppb 55.1
	-4	•				2 Unknown 1.424 mVS 70.0
						3 Toluene 212.4 ppb 108.9
	_	•	•	•		4 Unknown 21.41 mVS 136.8
171						5 Unknown 5.433 mVS 192.4
1-1-						6 Unknown 6.371 mVS 218.6
						7 M&P-Xylene 190.0 ppb 235.2
						8 O-Xylene 94.92 ppb 278.6
200	5					
		•				
1 1				•		
228	6			_		
1 1		-	•	•	•	
				_		
1 1				•		
257						
	•	•	•		.	
			_			ļ
			•	•		
285	8					
	•		•	•		
					İ	
		•	•	•	ł	
314					}	Notes
177	•	•	• •	•	.	zero check
					1	1
		•	•	•	I	sample#clean soil .iml of iug/ml
342						soil volume 50g
1572	•				.	water sample volume 40.0ml
						temp. of sample 28 c
		•				.1ug/50g=.002ug/g=2ug/kg
					ļ	72 ppb benzene = lug/kg
371						100 ppb toluene = lug/kg
						=0 ppb wthylbenza = lug/kg
		•				50 ppb m,p&o-xyle.= lug/kg
400					.	
<u> </u>						

Ana	1.	ysis	#8

1 11 15.5 3.	7 15 11 15		2.00			
9	1.	2	3	4	5	Time Printed: Aug 13,93 09:16
			,(x	10	mV)	Sample Time: Aug 13,93 09:04
						Method
28	ستحسد					Slope Up 3.000 mV/Sec
/	parame	•	•		*	Slope Down 3.000 mV/Sec
1 . >						Min Area 10.00 mVSec
17			-	•		Min Height 0.000 mV
157/-		•				Analysis Delay 45.0 sec
			•	•	•	Window Percent 30.0 %
						Det Flow 10 ml/min
1 2		•	•	•		B/F Flow 10 ml/min
85						Aux Flow O ml/min
77	•			•	•	Oven Temp 45 C
Z						Amb Temp 32 C
["		•	•	•		Max Gain 1000
						Analysis Time 400.0 sec
1.14	الأحبي			•	•	Feak Report
1 1						, i
		•	•			
1.	,					
1142	Ó				•	
1 1						3 Unknown 0.489 mVS 85.4
			•			4 Unknown 0.483 mVS 94.2
						5 Toluene 276.9 ppb 108.4
171						6 Unknown 34.74 mVS 136.8
}						7 Unknown 5.407 mVS 174.6
7			•			8 Ethylbenzene 203.9 ppb 192.2
						9 Unknown 2.429 mVS 219.2
200	.8					10 Unknown 6.620 mVS 232.0
		•	-	-		11 Unknown 8.534 mVS 235.8
						12 O-Xylene 133.8 ppb 278.4
1 1						
228	9		_		_	
	•	•		•	•	·
ho						
111		-	-	•		
257						
	•	•		•	•	
1		•	•	•		
285	12					
	;·· ·· ··	•		•	•	
		•	•	•		
314						Notes
34"	-			•	•	zero check
						sample#clean soil .1ml of lug/ml
		•	•	•		soil volume 50g
ملجا						water sample volume 40.0ml
342						temp. of sample 28 c
						.lug/50g=.002ug/g=2ug/kg
		•	•	•		
						72 ppb benzene = lug/kg
371	·					135 ppb toluene = lug/kg
						100 ppb ethylbenz. = lug/kg
			•			65 ppb m.p&o-xyle.= 1ug/kg
440						
<u>'</u>						

	.ys		#9

Δ.								
9		4		8	12 .(x	16 10	20 mV)	Time Printed: Aug 13,93 09:35 Sample Time: Aug 13,93 09:19
L								Method
28	~							Slope Up 3.000 mV/Sec
	~				 .		•	Slope Down 3.000 mV/Sec
1								Min Area 10.00 mVSec
-{					•	•		1
								1
57	<u>_</u>							Analysis Delay 45.0 sec
-	1							Window Percent 30.0 %
								Det Flow 10 ml/min
	2		•		•	•		B/F Flow 10 ml/min
85	-							Aux Flow 0 ml/min
177		•	•		•		•	Oven Temp 45 C
								1
								Max Gain 1000
1.1	4	3		_	_		_	Analysis Time 400.0 sec
		•	•	•	•	•	• ,	Feak Report
								Pk Compound Name Area/Conc R.T.
			•		•	•		1 Benzene 75.49 ppb 55.2
142	·5	и						2 Unknown 1.262 mVS 70.5
1-4	۵.	4						1
								4 Unknown 8.290 mVS 136.9
								5 Unknown 9.348 mVS 219.4
17	1.							6 Unknown 21.72 mVS 235.6
		•	•	•	•		•	7 O-Xylene 96.69 ppb 277.6
			•		•	-		
	~							
200	J							
228	3	5						
1		."	•	•	•		•	
	5							
'	ii)		٠		•	•		
	•••							
257	7							
			•		•	•		
28	5	7						
"		:	•	•	•		•	
			•			•		
34	4						•	Notes
								zero check
								sample#clean soil .1ml of lug/ml
			•		•	•		soil volume 50g
34:	2							water sample volume 40.0ml
["]	/			•	•		•	temp. of sample 28 c
								.iug/40ml=.0025ug/ml = 2.5ug/l
								30 ppb benzene = 1ug/1
37	1.				_	_		50 ppb toluene = 1ug/l
		•	•	•	•	•	•	30 ppb ethylbenz. = lug/l
								40 ppb m,p&o-xyle.= 1ug/1
			٠		•	•		
1,1	^							
40	Q				•		•	
Щ.								

9	<u>, , ,</u>	ą		8	12 _(x	1.6	20 mV)	Time Printed: Aug 13,93 09:51 Sample Time: Aug 13,93 09:37
L 28	2		•		. \ ^	at sign	111 V)	Method Slope Up 3.000 mV/Sec
Z.O					⇒ .		•	Slope Down 3.000 mV/Sec
]]								Min Area 10.00 mVSec
1			•		•	•		Min Height 0.000 mV
57								Analysis Delay 45.0 sec
	>,,			•	•		•	Window Percent 30.0 %
	.1.							Det Flow 10 ml/min
	2		•		-	•		B/F Flow 10 ml/min
3 i	c.							Aux Flow O ml/min
85		•		•			•	Oven Temp 45 C
								Amb Temp 33 C
					•	•		Max Gain 1000
	Nu							
1.1	7	3		•			•	Analysis Time 400.0 sec
. [· · · · · · · · · · · · · · · · · · ·
					•			
	~							
14	ki.	4					•	1
								1 ···
					•	•		1
								\ " \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
17	.1.				•			
								8 O-Xylene 177.7 ppb 279.7
	_							
24	0	5		,				
23	8	6			•			
ļ								
ľ	7				•			
I								
25	7							
1								
28	5	8		٠				
- }								
j	•				•			
								hlm b
31	4							Notes
								zero check
-					•			sample#clean soil .1ml of lug/ml
								soil volume 50g
34	2						•	water sample volume 40.0ml
								temp. of sample 28 c
								.1ug/40ml=.0025ug/ml = 2.5ug/l
								35 ppb benzene = lug/l
37	1							100ppb toluene = lug/l
								30 ppb ethylbenz. = lug/l
								60 ppb m,p&o-xyle.≔ lug/l
40	0							
L'								

1 13 1 55 5	. y ::: :::	11 4. 4.	3.575			CT COLL 1 11 1 12 Th S To St. To S St. T.
o	4	8	12 _(x	16 1000	20 uV)	Time Frinted: Aug 13,93 10:09 Sample Time: Aug 13,93 09:58
L		·	<u> </u>			Method
28						Slope Up 3.000 mV/Sec
2	٠ _				•	Slope Down 3.000 mV/Sec
1	~~					1
	2					Min Area 10.00 mVSec
	ζ					Min Height 0.000 mV
57 (2 1					Analysis Delay 45.0 sec
	72		•		•	Window Percent 35.0 %
/	T					Det Flow 10 ml/min
·)		•	•	•		B/F Flow 10 ml/min
$\int \int \int dt$						1
85						Aux Flow O ml/min
1)						Oven Temp 45 C
[Amb Temp 33 C
		•	•	•		Max Gain 1000
1.1						; · · · · ·
111) ;3				•	
						Peak Report
1 1			•			Fk Compound Name Area/Conc R.T.
						1 Unknown 2.604 mVS 49.0
114)2	4					2 Unknown 1.359 mVS 55.2
1 /	• •	•	•		•	3 Toluene 50.42 ppb 109.3
1 1						1
		•				4 Unknown 5.912 mVS 136.9
	•					
171		_			_	
	•	- •	•		•	
		•	•	•		
200			٠			
		•				
		•	•	•		
1240						
228			•			
		•				
1 1						
237						
1-1	•		-		•	
1 1						
285						
	•		•		•	
1 1.						
		•	-	•		
1 1						
3:14						Notes
	•	•	•	•	-	soil sample
						sample# 24 1 to 3 ft
		•	•	•		soil volume 50g
1						
342						water sample volume 40.0ml
						temp. of sample 28 c
		•	•	•		
371						
1217			•		•	
1 1		•				
400						
1 7	•		•		•	
1						

ा	4	. 8	1.2	16 1000	20	Time Printed: Aug 13,93 10:31 Sample Time: Aug 13,93 10:22
28				 .		Method Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 10.00 mVSec
57 /						Min Height 0.000 mV Analysis Delay 45.0 sec
	1.	.·				Det Flow 10 ml/min B/F Flow 10 ml/min
85					•	Aux Flow O ml/min Oven Temp 45 C Amb Temp 33 C
11	2				٠	Max Gain 1000 Analysis Time 400.0 sec Peak Report
142						Fk Compound NameArea/ConcR.T.1 Unknown8.873 mVS55.12 Unknown5.328 mVS109.7
			•			
171	٠				٠	
200						
228						
257			•			
	•				•	
285	٠					
314						Notes soil sample
342						sample # 24 3 to 5 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c
37:						cemb" or sembra vo c
3/4	•				•	
400						

Anal) ere	## T C2	TODA	tot.	r un c	tion Analysis Report
9	2	4		8 10	10 mV)	Time Printed: Aug 13,93 10:43 Sample Time: Aug 13,93 10:35
28 5	سمر حسر					Method Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
	~~~ >		•			Min Area 10.00 mVSec Min Height 0.000 mV
57			•	•	•	Analysis Delay 45.0 sec Window Percent 50.0 % Det Flow 10 ml/min
85		4 		•	•	B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C
	56	•		,		Amb Temp 33 C Max Gain 1000
1 114					•	Analysis Time 400.0 sec
1 12						Feak Report
1 1	, , ,	•	•	•		Fk Compound Name Area/Conc R.T. 1 Unknown 41.56 mVS 48.9
142/	Commen					2 Benzene 62.01 ppb 57.1
1" "	•	•	• •	•	•	3 Unknown 87.23 mVS 62.4
/	9		-			4 Unknown 105.7 mVS 69.3
						5 Unknown 292.8 mVS 87.0
171					•	6 Unknown 129.5 mVS 95.0
						7 Toluene 147.1 ppb 115.7
1 1		•	•	•		8 Unknown 200.3 mVS 129.0 9 Unknown 108.9 mVS 148.0
200	1.0					10 Ethylbenzene 1.062 ppm 194.2
		•	•	•	•	11 M&P-Xylene 638.4 ppb 224.4
11/						12 Unknown 48.69 mVS 243.4
						13 O-Xylene 190.8 ppb 298.1
228						
It i						
1 1/2		•	•	•		
250						
	•	•	•	•	•	
285						
1 113		•	•	•		
314						Notes
		-	•	•		soil sample
						sample # 24 5 to 7 ft
342						soil volume 50g water sanple volume 40.0ml
المهرد ا				•	•	temp. of sample 28 c
1		•	•	•		
371						
		•	•			
400						
1,4	•				<u> </u>	

	,	###CU				tion Analysis Report
	4	8	12 .(x	16 10	20 mV)	Time Printed: Aug 13,93 11:02 Sample Time: Aug 13,93 10:54 Method
28 2	: ≥=.					Slope Up 3.000 mV/Sec
≥	~					Slope Down 3.000 mV/Sec
ســر ا						Min Area 10.00 mVSec
1						Min Height 0.000 mV
57	1.					Analysis Delay 45.0 sec
1 1-2						Window Percent 50.0 %
		Ş				Det Flow 10 ml/min
		4				B/F Flow 10 ml/min
85						Aux Flow 0 ml/min
1			<b>-</b> 5	•	•	Oven Temp 45 C
	5/5		-			Amb Temp 33 C
11/		•	•	•		Max Gain 1000
1:14	,					i.
	?		•			Analysis Time 400.0 sec
H						Peak Report
1 1	-			•		Pk Compound Name Area/Conc R.T.
1	Garage					1 Unknown 95.69 mVS 49.2
1142/			•			2 Benzene 116.9 ppb 57.3
						3 Unknown 192.3 mVS 62.4
	10					4 Unknown 227.9 mVS 69.3
						5 Unknown 505.2 mVS 87.δ
1 7/1						6 Toluene 1.181 ppm 95.0
1 1	•		•	•	•	7 Unknown 4.515 mVS 104.5
						8 Unknown 82.00 mVS 115.7
		•	•	•		9 Unknown 450.7 mVS 129.0
200	4 4					
1447	11				•	10 Unknown 247.9 mVS 148.0
1 1 5	l. z.:					11 Ethylbenzene 962.7 ppb 194.8
		•				12 Unknown 267.5 mVS 201.2
1 K						13 M&P-Xylene 1.683 ppm 224.6
223						14 Unknown 91.97 mVS 244.5
<i>[f</i> 1.3				-		15 O-Xylene 427.0 ppb 272.2
				-		16 Unknown 108.5 mVS 297.3
1 14			-	•		
25/2						
	•		•	•	•	
1 1 1 1 1 1 1 1		•	•	•		
285						
Lap						
		•				
1.6						
3:14						Notes
I						soil sample
]				_		sample # 24 7 to 9 ft
				•		soil volume 50g
342						water sanple volume ****ml
	•		•		•	temp. of sample 28 c
						and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t
]		-	•	•		
371						
171	•		•		•	
1 1						
		•	•			
400	•				•	
<u>L</u> .						

. 11 1 3.	Cramin			1.3200			TION MINUTARE METAL
Q	1.	2		3	Q	5	Time Printed: Aug 13,93 11:20
				. ( x		mV)	Sample Time: Aug 13,93 11:12
1 4		·			···· •,	•	Method
28							Slope Up 3.000 mV/Sec
	2	•	•		•	•	Slope Down 3.000 mV/Sec
							Min Area 10.00 mVSec
1		•		•	•		Min Height 0.000 mV
57		۱.					Analysis Delay 45.0 sec
1"' E			•		•	•	Window Percent 50.0 %
				w			Det Flow 10 ml/min
1 1		n. Z1		, w	•		B/F Flow 10 ml/min
85	•	***					Aux Flow O ml/min
03		•	•		•		Oven Temp 45 C
1 +							,
	O.		=	ر حب	-		Amb Temp 33 C Max Gain 1000
	ممسحد			٥			
1.14	<u> </u>	<u>,</u> ,					Analysis Time 400.0 sec Peak Report
1 +		<i>-</i> /					Pk Compound Name Area/Conc R.T.
				<u> </u>			1.
مراير ا	, ,			— ਲ			
142		•	•			•	1
		<u></u>					i
	ستر .	. 9					
	production of the same						5 Unknown 40.76 mVS 88.1
174	· 📝		•		-		6 Unknown 313.0 mVS 95.0
							7 Toluene 384.1 ppb 115.6
	- Market	-					8 Unknown 365.3 mVS 128.6
		1	_				9 Unknown 210.2 mVS 148.0
200							10 Ethylbenzene 5.254 ppm 204.6
					$\supset$		11 M&P-Xylene 4.153 ppm 224.0
	_	سسسن			ابا:	O	12 Unknown 298.7 mVS 243.4
-							13 0-Xylene 1.068 ppm 271.2
22							14 Unknown 248.9 mVS 297.0
1		1.1					15 Unknown 49.79 mVS 338.3
	Manage	~					
		1 (رر	2				
257	2 American						
	<b>—</b> (						
	/13						
285	i/						
	(	•		•	•	-	
1	دارمر	4			•		
314	<u>ب</u> محمر إ			_			Notes
	1	•	•	•	•	•	soil sample
	1			_			sample # 24 9 to 11 ft
1 'L	1	•		•	•		soil volume 50g
34	2						water sample volume ****ml
1 1	74.5°	•	•		•	•	temp. of sample 28 c
1 1	<i>[</i>						
		•		•	•		
37	L						
		•	•			•	
		•		•	•		
40	D C						
1,0	• •	•	•		•	•	
ь							

F-11 1 & C1	lysis	44.47		J. C/3	or ut	> P CHIC.	tion Analysis Report
9	1.		2	3 (x	4	5 mV)	Time Printed: Aug 13,93 11:39 Sample Time: Aug 13,93 11:30
				. ( X	T ///	, m^,	Method
28							Slope Up 3.000 mV/Sec
1-4	•	•	•	•	-		Slope Down 3.000 mV/Sec
1 5							Min Area 10.00 mVSec
		•		•		•	Min Height 0.000 mV
157							Analysis Delay 45.0 sec
	<del>2</del>	•	•	•	•		Window Percent 50.0 %
		3					Det Flow 10 ml/min
	4 کمر	•		•		•	B/F Flow 10 ml/min
85							Aux Flow O ml/min
	<u></u>	•	•	•	•	•	Oven Temp 45 C
						•	Amb Temp 33 C
	سنسم						Max Gain 1000
1.14	~						Analysis Time 400.0 sec
						•	Peak Report
	-	,	•			•	Pk Compound Name Area/Conc R.T.
	سممر		<b>&gt;</b> 8				1 Unknown 398.5 mVS 49.4
142	_/.						2 Benzene 451.9 ppb 57.3
	``>						3 Unknown 603.1 mVS 62.2
	9					• ,	4 Unknown 292.1 mVS 69.0 5 Unknown 321.3 mVS 88.0
17							1
							7 Toluene 2.729 ppm 115.8 8 Unknown 2.748 VSec 128.2
1 1				٠		•	9 Unknown 1.337 VSec 147.8
200	,	Manage					10 Ethylbenzene 40.26 PPM2 204.6
1290	•	. ]	MANAGE				11 M&F-Xylene 32.85 PPM2 223.8
1 1				1.0			12 Unknown 2.315 VSec 243.4
1 1	******			ų.		•	13 Unknown 982.8 mVS 257.8
228	_						14 O-Xylene 14.35 PPM1 271.7
	.1 مسنم_	i	•	•	•		15 Unknown 1.660 VSec 296.8
		•1•					16 Unknown 450.8 mVS 338.3
1 1		lia -		•		•	
257							
	1.	İ	•	•	•	. ,	
	(						
] ]	) _L ,	4		-			
285							
	一( '	-	-	-		•	
	)						
	/15						PPM1 = Alarm 1 PPM2 = Alarm2
314							Notes
1 11							soil sample
						•	sample # 24 11 to 13 ft
							soil volume 50g
342	d .				•		water sample volume ****ml
1 1/3	16						temp. of sample 28 c
#				•		•	
3711	•	•		•	٠		
1		•		•		•	
400							
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		•	٠	•	٠		

Time Frinted: Aug 13.93 13:22 Sample Times Aug 13.93 13:13  Method Slope Up 3.000 mV/Sec Min Area 10.00 mV/Sec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 30.0 % Det Flow 10 ml/min Aux Flow 0 ml/min B/F Flow 10 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. 18 enzene 59.48 ppb 51.2 Unknown 6.432 mVS 55.8 3 Unknown 1.345 mVS 61.9 10 Unknown 4.565 mVS 98.5 3 Toluene 49.944 ppb 87.2 6 Unknown 3.440 mVS 95.4 7 Unknown 29.37 mVS 128.3 8 Toluene 359.48 ppb 109.6 9 Unknown 10.06 mVS 188.2 11 Ethylbenzene 310.7 ppb 204.2 12 Unknown 7.885 mVS 244.2 342  Notes  Water sample sample # 24 soil volume 59 4 Unknown 7.885 mVS 244.2 371 400	Anal	ysis	#29	105+	GC	Funct	tion Analysis Report
Sample Time: Aug 13,93 13:13   Method	0	-1	9	Ϋ́	a	ıı,	Time Printed: Aug 13.93 13:22
Method   Slope Up   3.000 mV/Sec   Slope Down   3.000 mV/Sec   Min Area   10.00 mV/Sec   Min Area   10.00 mV/Sec   Min Area   10.00 mV/Sec   Min Height   0.000 mV   Analysis Delay   45.0 sec   Window Percent   30.0 %   Det Flow   10 ml/min   B/F Flow   10 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min	1 1	.1.	A				i t
Slope Up			•	, ( X	πÓ	mv)	, ,
Slope Down							1
Min Area 10.00 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Fercent 30.0 %  3	Z8						, ,
Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 30.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec  Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 59.48 ppb 51.2 2 Unknown 6.432 mVS 55.8 3 Unknown 1.845 mVS 61.9 4 Unknown 6.183 mVS 70.0 5 Teluene 45.44 ppb 67.2 6 Unknown 3.440 mVS 95.4 7 Unknown 4.565 mVS 98.5 8 Toluene 253.8 ppb 109.6 9 Unknown 29.37 mVS 128.5 10 Unknown 29.37 mVS 128.5 11 Unknown 29.37 mVS 128.5 12 Unknown 4.262 mVS 223.6 13 Unknown 4.262 mVS 223.6 13 Unknown 7.885 mVS 244.2							;
Analysis Delay 45.0 sec Window Fercent 30.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Hax Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 59.48 ppb 51.2 2 Unknown 6.432 mVs 55.8 3 Unknown 1.845 mVs 61.9 4 Unknown 3.440 mVs 95.4 7 Unknown 4.565 mVs 98.3 8 Toluene 45.44 ppb 87.2 6 Unknown 3.440 mVs 98.3 8 Toluene 253.8 ppb 109.6 9 Unknown 10.76 mVs 128.5 10 Unknown 10.76 mVs 148.2 11 Ethylbenzene 310.7 ppb 204.2 12 Unknown 4.262 mVs 223.6 13 Unknown 7.885 mVs 244.2  228 12  Notes water sample sample # 24 soil volume 509 43.0 L water sample volume ****ml temp. of sample 28 c	الم . ا		•				
Window Percent   30.0 %	{						Min Height 0.000 mV
Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. 1 Benzene 59.48 ppb 51.2 Unknown 6.432 m/S 55.8 3 Unknown 1.845 m/S 61.9 Unknown 6.483 m/S 61.9 4 Unknown 6.483 m/S 61.9 4 Unknown 4.565 m/S 98.5 8 Toluene 45.44 ppb 87.2 4 Unknown 4.565 m/S 98.5 8 Toluene 253.8 ppb 109.6 0 9 Unknown 29.37 m/S 128.5 10 Unknown 10.76 m/S 148.2 11 Ethylbenzene 310.7 ppb 204.2 12 Unknown 4.262 m/S 223.6 13 Unknown 7.885 m/S 244.2 223 12 Unknown 7.885 m/S 244.2 344 soil volume 509 43.0 L water sample sample # 24 soil volume 509 43.0 L water sample 28 c	57	<b>]</b>					Analysis Delay 45.0 sec
Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. 1 Benzene 59.48 ppb 51.2 Unknown 6.432 m/S 55.8 3 Unknown 1.845 m/S 61.9 Unknown 6.483 m/S 61.9 4 Unknown 6.483 m/S 61.9 4 Unknown 4.565 m/S 98.5 8 Toluene 45.44 ppb 87.2 4 Unknown 4.565 m/S 98.5 8 Toluene 253.8 ppb 109.6 0 9 Unknown 29.37 m/S 128.5 10 Unknown 10.76 m/S 148.2 11 Ethylbenzene 310.7 ppb 204.2 12 Unknown 4.262 m/S 223.6 13 Unknown 7.885 m/S 244.2 223 12 Unknown 7.885 m/S 244.2 344 soil volume 509 43.0 L water sample sample # 24 soil volume 509 43.0 L water sample 28 c	P	2			•	•	Window Percent 30.0 %
B/F Flow	1 63						i 1
Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec    Peak Report   Pk Compound Name Area/Conc R.T. 1 Benzene 59.48 ppb 51.2 Unknown 6.432 mVS 55.8 3 Unknown 1.945 mVS 61.9 Unknown 6.183 mVS 70.0 5 Teluene 45.44 ppb 87.2 4 Unknown 4.365 mVS 98.5 8 Toluene 253.8 ppb 109.6 9 Unknown 29.37 mVS 128.5 10 Unknown 10.76 mVS 148.2 11 Ethylbenzene 310.7 ppb 204.2 11 Unknown 4.262 mVS 223.6 13 Unknown 7.885 mVS 244.2 13 Unknown 7.885 mVS 244.2 314 Unknown 7.885 mVS 244.2 325	Da		•	•	•		1
Oven Temp	lod "						i I
Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec  Feak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report Pak Report P	1° 1	•	•				1
Max Gain 1000 Analysis Time 400.0 sec    Peak Report	1 50						i ' '
Analysis Time 400.0 sec	17						1
Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 59.48 ppb 51.2 2 Unknown 6.432 mVS 55.8 3 Unknown 1.845 mVS 61.9 4 Unknown 6.183 mVS 70.0 5 Toluene 45.44 ppb 87.2- 171 6 Unknown 3.440 mVS 95.4 7 Unknown 4.565 mVS 98.5 8 Toluene 253.8 ppb 109.6 9 Unknown 29.37 mVS 128.5 10 Unknown 10.76 mVS 148.2 11 Ethylbenzene 310.7 ppb 204.2 11 Ethylbenzene 310.7 ppb 204.2 12 Unknown 4.262 mVS 223.6 13 Unknown 7.885 mVS 244.2  228 12  Notes water sample sample # 24 soil volume 509 430 mL water sanple volume ******m1 temp. of sample 28 c	l le						i }
Pk. Compound Name Area/Conc R.T.  1 Benzene 57.48 ppb 51.2  2 Unknown 6.432 mVs 55.8  3 Unknown 1.845 mVs 61.9  4 Unknown 6.183 mVs 70.0  5 Toluene 45.44 ppb 87.2-  6 Unknown 3.440 mVs 95.4  7 Unknown 4.565 mVs 98.5  8 Toluene 253.8 ppb 109.6  9 Unknown 10.76 mVs 128.5  10 Unknown 10.76 mVs 148.2  11 Ethylbenzene 310.7 ppb 204.2  12 Unknown 4.262 mVs 223.6  13 Unknown 7.885 mVs 244.2  228 12  Notes  water sample sample # 24 soil volume 509 43.0 mL water sample volume ************************************	114						Analysis Time 400.0 sec
1 Benzene 59.48 ppb 51.2 2 Unknown 6.432 mVs 55.8 3 Unknown 1.845 mVs 61.9 4 Unknown 6.183 mVs 70.0 5 Teluene 45.44 ppb 87.2- 171 4 Unknown 3.44 ppb 87.2- 4 Unknown 3.44 ppb 87.2- 4 Unknown 3.44 ppb 87.2- 5 Toluene 253.8 ppb 109.4- 7 Unknown 4.565 mVs 98.5 8 Toluene 253.8 ppb 109.4- 9 Unknown 10.76 mVs 128.5 10 Unknown 10.76 mVs 148.2 11 Ethylbenzene 310.7 ppb 204.2- 12 Unknown 4.262 mVs 223.6- 13 Unknown 7.885 mVs 244.2  228 12  Notes water sample sample # 24 soil volume 509 43.0 mL water sanple volume *****m1 temp. of sample 28 c	1	8	•	•	•	•	Peak Report
1 Benzene 59.48 ppb 51.2 2 Unknown 6.432 mVs 55.8 3 Unknown 1.845 mVs 61.9 4 Unknown 6.183 mVs 70.0 5 Teluene 45.44 ppb 87.2- 171 4 Unknown 3.44 ppb 87.2- 4 Unknown 3.44 ppb 87.2- 4 Unknown 3.44 ppb 87.2- 5 Toluene 253.8 ppb 109.4- 7 Unknown 4.565 mVs 98.5 8 Toluene 253.8 ppb 109.4- 9 Unknown 10.76 mVs 128.5 10 Unknown 10.76 mVs 148.2 11 Ethylbenzene 310.7 ppb 204.2- 12 Unknown 4.262 mVs 223.6- 13 Unknown 7.885 mVs 244.2  228 12  Notes water sample sample # 24 soil volume 509 43.0 mL water sanple volume *****m1 temp. of sample 28 c	1 1						· · · · · · · · · · · · · · · · · · ·
142	1 1)0		•	•	•		[ * · · · · · · · · · · · · · · · · · ·
10	1126						
10	1 T	•				•	1
5 Toluene 45.44 ppb 87.2- 6 Unknown 3.440 mVS 98.5 7 Unknown 4.565 mVS 98.5 8 Toluene 253.8 ppb 109.6 9 Unknown 29.37 mVS 128.5 10 Unknown 10.76 mVS 148.2 11 Ethylbenzene 310.7 ppb 204.2 12 Unknown 4.262 mVS 223.6 13 Unknown 7.885 mVS 244.2  228 12  Notes water sample sample # 24 soil volume 599 water sample volume ****ml temp. of sample 28 c	1 1						1
121	1 Pro		•	•			
7 Unknown 4.565 mVS 98.5 8 Toluene 253.8 ppb 109.6 9 Unknown 27.37 mVS 128.5 10 Unknown 10.76 mVS 148.2 11 Ethylbenzene 310.7 ppb 204.2 12 Unknown 4.262 mVS 223.6 13 Unknown 7.885 mVS 244.2  228 12  Notes  water sample sample # 24 soil volume 509 water sanple volume ****m1 temp. of sample 28 c							1
8 Toluene 253.8 ppb 109.6 9 Unknown 29.37 mVS 128.5 10 Unknown 10.76 mVS 148.2 11 Ethylbenzene 310.7 ppb 204.2 12 Unknown 4.262 mVS 223.6 13 Unknown 7.885 mVS 244.2  228 12  Notes water sample sample # 24 soil volume 500 43.0 mL water sanple volume ******m1 temp. of sample 28 c	171	•					1
9 Unknown 29.37 mVS 128.5 10 Unknown 10.76 mVS 148.2 11 Ethylbenzene 310.7 ppb 204.2 12 Unknown 4.262 mVS 223.6 13 Unknown 7.885 mVS 244.2  225 12  Notes  water sample sample # 24 soil volume 509 43.0 mL water sanple volume ****ml temp. of sample 28 c							1
10 Unknown 10.76 mVS 148.2 11 Ethylbenzene 310.7 ppb 204.2 12 Unknown 4.262 mVS 223.6 13 Unknown 7.885 mVS 244.2 23.6 13 Unknown 7.885 mVS 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2 244.2							
10 Unknown 10.76 mVS 148.2 11 Ethylbenzene 310.7 ppb 204.2 12 Unknown 4.262 mVS 223.6 13 Unknown 7.885 mVS 244.2  223 12  Notes  water sample sample # 24 soil volume 509 43.0 mL water sample volume *****ml temp. of sample 28 c					•		9 Unknown 29.37 mVS 128.5
11 Ethylbenzene 310.7 ppb 204.2 12 Unknown 4.262 mVS 223.6 13 Unknown 7.885 mVS 244.2  285  314 Notes  water sample sample # 24 soil volume 599 43.0 mL water sanple volume ****ml temp. of sample 28 c	2d0						i
11	[ ]]	•	• • •		•	•	§ *** *** *** *** *** *** *** *** *** *
13 Unknown 7.885 mVS 244.2  223 12  Notes  water sample sample # 24 soil volume 500 43.0 mL water sample volume ****ml temp. of sample 28 c	1 1/1	1					, , ,
228 12  285  285  314  Water sample water sample # 24  soil volume 500 43.0 mL water sanple volume ****ml temp. of sample 28 c	1 4"		•	•	•		\$ 1
285  285  314  Notes  water sample sample # 24 soil volume 500 43.0 mL water sanple volume ****ml temp. of sample 28 c	200	4 ~					A CHICALOWIT / HOUSE MASS ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTURAL ACTU
285  314  Notes  water sample sample # 24 soil volume 500	1223	بلد هذا					
285  314  Notes  water sample sample # 24 soil volume 500							
285  314  Notes  water sample sample # 24 soil volume 500	1.1		•				
Notes  Water sample sample # 24 soil volume 500 43.0 mL water sample volume ****ml temp. of sample 28 c							
Notes  water sample sample # 24 soil volume 500 43.0 mL water sample volume ****ml temp. of sample 28 c	257			•		٠	
Notes  water sample sample # 24 soil volume 500 43.0 mL water sample volume ****ml temp. of sample 28 c	<b> </b>	-	•	, ,	•	•	
Notes  water sample sample # 24 soil volume 500 43.0 mL water sample volume ****ml temp. of sample 28 c							
Notes  water sample sample # 24 soil volume 500 43.0 mL water sample volume ****ml temp. of sample 28 c	'		•	•	•		
Notes  water sample sample # 24 soil volume 500 43.0 mL water sample volume ****ml temp. of sample 28 c	285						
water sample sample # 24 soil volume <del>50g</del> #3.0 mL water sample volume ****ml temp. of sample 28 c		•	•		٠	•	
water sample sample # 24 soil volume <del>50g</del> #3.0 mL water sample volume ****ml temp. of sample 28 c	}						
water sample sample # 24 soil volume <del>50g</del> #3.0 mL water sample volume ****ml temp. of sample 28 c	-			•			
water sample sample # 24 soil volume <del>50g</del> #3.0 mL water sample volume ****ml temp. of sample 28 c	1						1.1 d
sample # 24 soil volume <del>50g</del> <b>43.0 mL</b> water sample volume ****ml temp. of sample 28 c	13.14					•	<b>{</b>
soil volume 509 43.0 mL water sample volume ****ml temp. of sample 28 c							
342 water sample volume ****ml temp. of sample 28 c	1 1						
342 water sample volume ****ml temp. of sample 28 c  371	1 1						soil volume <del>50g</del> 430 mL
temp. of sample 28 c	342						
371	1	•			•	•	
			•	•	•		
400	12/1						
400							
400							
440							
	440						
				· · · · · · · · · · · · · · · · · · ·			

1 2 3 4 5 (x 10 mV)  28	Analy	91.9	** zi. /	1057	tot	r un c	tion Analysis Report
Method   Slope Up   3.000 mV/Sec   Slope Down   3.000 mV/Sec   Slope Down   3.000 mV/Sec   Min Area   10.00 mVSec   Min Area   10.00 mVSec   Min Area   10.00 mVSec   Min Area   10.00 mVSec   Min Height   0.000 mV   Analysis Delay   45.0 sec   Window Percent   50.0 %   Det Flow   10 ml/min   B/F Flow   10 ml/min   Min   B/F Flow   10 ml/min   Aux Flow   0 ml/min   Oven Temp   45 C   Amb Temp   33 C   Max Gain   1000   Analysis Time   400.0 sec   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report	9	1.	2				
Slope Down					··· ··.		
Min Area 10.00 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 50.0 % Jet Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Hax Gain 1000 Analysis Time 400.0 sec Peak Report Peak Report 10 Unknown 31.93 mVS 42.2 Jenzene 60.90 ppb 56.2 Junknown 31.93 mVS 62.2 Junknown 31.93 mVS 62.2 Junknown 91.54 mVS 86.7 G Unknown 91.54 mVS 86.7 G Unknown 91.54 mVS 94.7 Toluene 105.3 ppb 106.9 Junknown 45.76 mVS 94.7 Toluene 105.3 ppb 106.9 Junknown 45.75 mVS 113.4 P Unknown 45.75 mVS 113.4 P Unknown 45.75 mVS 148.4 II Ethylbenzene 1.049 ppm 204.2 Junknown 95.47 mVS 242.9 Junknown 95.47 mVS 242.9 Junknown 95.47 mVS 242.9 Junknown 95.47 mVS 242.9 Junknown 95.47 mVS 242.9 Junknown 95.47 mVS 242.9 Junknown 95.47 mVS 242.9 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mVS 297.0 Junknown 95.47 mV	28						Slope Up 3.000 mV/Sec
Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 50.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Fk Compound Name Area/Conc R.T. Unknown 26.50 mVS 48.9 22 Eenzene 60.90 ppb 56.2 3 Unknown 31.93 mVS 62.2 4 Unknown 40.96 mVS 69.0 10 4 Unknown 40.96 mVS 69.0 11 7 Toluene 105.3 ppb 106.9 8 Unknown 14.03 mVS 115.4 9 Unknown 81.02 mVS 128.4 10 Unknown 45.35 mVS 128.4 11 Ethylbenzene 1.049 ppm 204.2 12 MBA-Xylene 764.3 ppb 224.2 13 Unknown 95.47 mVS 242.9 14 0-Xylene 345.2 ppb 271.7 15 Unknown 40.84 mVS 297.0 371 372 373 374 374 375 376 377	1			• •	•	•	Slope Down 3.000 mV/Sec
Analysis Delay 45.0 sec Window Percent 50.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Fk Compound Name Area/Conc R.T. Unknown 26.50 mVS 48.9 2 Benzene 60.90 ppb 56.2 3 Unknown 31.93 mVS 62.2 4 Unknown 40.76 mVS 69.0 5 Unknown 91.54 mVS 86.7 6 Unknown 91.54 mVS 86.7 7 Toluene 105.3 ppb 106.7 8 Unknown 14.03 mVS 1158.4 9 Unknown 81.02 mVS 128.4 10 Unknown 81.02 mVS 128.4 10 Unknown 95.47 mVS 242.2 11 Unknown 95.47 mVS 242.2 12 MBP-Xylene 764.3 ppb 221.7 15 Unknown 95.47 mVS 242.2 13 Unknown 95.47 mVS 242.2 14 0-Xylene 345.2 ppb 271.7 15 Unknown 40.84 mVS 297.0  Notes soil sample sample # 25 1 to3ft soil volume 50g water sanple volume ****ml temp. of sample 28 c	1. ラ			_			· ·
Window Percent   50.0 %	5		•	•	•		Min Height 0.000 mV
Det Flow	572	1.					Analysis Delay 45.0 sec
BFF Flow	1 122	•	•	•	•	•	Window Percent 50.0 %
Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Hax Gain 1000 Analysis Time 400.0 sec  Feak Report Pk Compound Name Area/Conc R.T. 1 Unknown 26.50 mVS 48.9 2 Benzene 60.90 ppb 56.2 3 Unknown 31.93 mVS 62.2 Unknown 40.96 mVS 69.0 5 Unknown 45.76 mVS 94.9 7 Toluene 105.3 ppb 106.9 8 Unknown 14.03 mVS 115.4 9 Unknown 14.03 mVS 115.4 9 Unknown 14.03 mVS 115.4 9 Unknown 91.02 mVS 118.4 9 Unknown 91.02 mVS 128.4 10 Unknown 95.47 mVS 242.9 12 M8P-Xylene 764.3 ppb 224.2 13 Unknown 95.47 mVS 242.2 14 0-Xylene 345.2 ppb 271.7 15 Unknown 40.84 mVS 297.0 342 water sample # 25 1to3ft soil volume 500 water sample volume ****ml temp. of sample 28 c				•			Det Flow 10 ml/min
Oven Temp	4						B/F Flow 10 ml/min
Amb Temp	85						Aux Flow O ml/min
Max Gain			<b>⊃</b> 5				i .
Analysis Time			•				
Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 26.50 mVS 48.9 2 Benzene 60.90 ppb 56.2 3 Unknown 31.93 mVS 62.2 4 Unknown 31.93 mVS 62.2 5 Unknown 91.54 mVS 86.9 5 Unknown 91.54 mVS 86.9 6 Unknown 45.76 mVS 94.9 7 Toluene 105.3 ppb 106.9 8 Unknown 14.03 mVS 115.4 9 Unknown 81.02 mVS 128.4 9 Unknown 81.02 mVS 128.4 11 Ethylbenzene 1.049 ppm 204.2 12 M8P-Xylene 764.3 ppb 224.2 13 Unknown 95.47 mVS 242.9 14 0-Xylene 345.2 ppb 271.7 15 Unknown 40.84 mVS 297.0  237 242  Notes soil sample sample # 25 Ito3ft soil volume 50g water sanple volume ****ml temp. of sample 28 c	(						i e
Pk Compound Name   Area/Conc   R.T.   Unknown   26.50 m/S   48.9   28enzene   60.90 ppb   56.2   3 Unknown   31.93 m/S   62.2   4 Unknown   40.96 m/S   69.0   5 Unknown   91.54 m/S   86.9   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00   60.00	114	7					
1 Unknown 26.50 mVS 48.9 2 Benzene 60.90 ppb 56.2 3 Unknown 31.93 mVS 62.2 4 Unknown 40.96 mVS 69.0 5 Unknown 91.54 mVS 86.9 7 Toluene 105.3 ppb 106.9 8 Unknown 14.03 mVS 115.4 9 Unknown 81.02 mVS 128.4 10 Unknown 45.35 mVS 148.4 11 Ethylbenzene 1.049 ppm 204.2 11 12 MSF-Xylene 764.3 ppb 224.2 13 Unknown 95.47 mVS 242.9 14 0-Xylene 345.2 ppb 271.7 15 Unknown 40.84 mVS 297.0  257  163 257  Notes soil sample sample # 25 1to3ft soil volume 50g water sanple volume ****ml temp. of sample 28 c	H ²						
2 Benzene 60.90 ppb 56.2 3 Unknown 31.93 mVs 62.2 4 Unknown 40.96 mVs 69.0 5 Unknown 91.54 mVs 86.7 6 Unknown 45.76 mVs 94.9 7 Toluene 105.3 ppb 106.9 8 Unknown 14.03 mVs 115.4 9 Unknown 81.02 mVs 128.4 10 Unknown 45.35 mVs 148.4 11 Ethylbenzene 1.049 ppm 204.2 12 M&P-Xylene 764.3 ppb 224.2 13 Unknown 95.47 mVs 242.9 14 0-Xylene 345.2 ppb 271.7 15 Unknown 40.84 mVs 297.0  13 257  Notes  soil sample sample # 25 1to3ft soil volume 50 water sample volume ****m1 temp. of sample 28 c			•	•			
3 Unknown 31.93 mVS 62.2 4 Unknown 40.96 mVS 69.0 5 Unknown 91.54 mVS 86.7 6 Unknown 91.54 mVS 94.9 7 Toluene 105.3 ppb 106.9 8 Unknown 14.03 mVS 115.4 9 Unknown 81.02 mVS 128.4 10 Unknown 45.35 mVS 148.4 11 Ethylbenzene 1.049 ppm 204.2 12 M&P-Xylene 764.3 ppb 224.2 13 Unknown 95.47 mVS 242.9 14 0-Xylene 345.2 ppb 271.7 15 Unknown 40.84 mVS 297.0  257  14 287  Notes  Soil sample sample # 25 1to3ft soil volume 50g water sample volume ****m1 temp. of sample 28 c	11/9						
10	142						2 Benzene 60.90 ppb 56.2
S Unknown   91.54 mVS   86.7   6 Unknown   45.76 mVS   94.9   7 Toluene   105.3 ppb   106.9   8 Unknown   14.03 mVS   115.4   9 Unknown   81.02 mVS   128.4   10 Unknown   45.35 mVS   148.4   11 Ethylbenzene   1.049 ppm   204.2   12   12   13 Unknown   95.47 mVS   242.9   13 Unknown   95.47 mVS   242.9   14							
171	1 1/10		•	•	•		· ·
7 Toluene 105.3 ppb 106.9 8 Unknown 14.03 mVS 115.4 9 Unknown 45.35 mVS 148.4 10 Unknown 45.35 mVS 148.4 11 Ethylbenzene 1.049 ppm 204.2 11 12 M&P-Xylene 764.3 ppb 224.2 13 Unknown 95.47 mVS 242.9 14 0-Xylene 345.2 ppb 271.7 15 Unknown 40.84 mVS 297.0  13 257  14 287  Notes soil sample sample # 25 1to3ft soil volume 50g water sanple volume ****ml temp. of sample 28 c							
8 Unknown 14.03 mVS 115.4 9 Unknown 81.02 mVS 128.4 10 Unknown 45.35 mVS 148.4 11 Ethylbenzene 1.049 ppm 204.2 12 M&P-Xylene 764.3 ppb 224.2 13 Unknown 95.47 mVS 242.9 14 0-Xylene 345.2 ppb 271.7 15 Unknown 40.84 mVS 297.0  13 257  14 288  314  Notes soil sample sample # 25 1to3ft soil volume 50g water sanple volume ****ml temp. of sample 28 c	1-1-	•				•	
9 Unknown 81.02 mVS 128.4 10 Unknown 45.35 mVS 148.4 11 Ethylbenzene 1.049 ppm 204.2 12 M&P-Xylene 764.3 ppb 224.2 13 Unknown 95.47 mVS 242.9 14 0-Xylene 345.2 ppb 271.7 15 Unknown 40.84 mVS 297.0  13 257  Notes  soil sample sample # 25 1to3ft soil volume 50g water sanple volume ****ml temp. of sample 28 c	1 1						, , , , , , , , , , , , , , , , , , , ,
10 Unknown 45.35 mVS 148.4 11 Ethylbenzene 1.049 ppm 204.2 12 M8F-Xylene 764.3 ppb 224.2 13 Unknown 95.47 mVS 242.2 14 0-Xylene 345.2 ppb 271.7 12 15 Unknown 40.84 mVS 297.0  13 237  14 287  314  Notes  soil sample sample # 25 1to3ft soil volume 50g water sanple volume ****ml temp. of sample 28 c	\		•	•	•		
11 Ethylbenzene 1.049 ppm 204.2 12 M&F-Xylene 764.3 ppb 224.2 13 Unknown 95.47 mVS 242.9 14 O-Xylene 345.2 ppb 271.7 15 Unknown 40.84 mVS 297.0  13 257  Notes  soil sample sample # 25 1to3ft soil volume 50g water sample volume ****ml temp. of sample 28 c	lobel						
11	1-10/	•			•	٠	
13 Unknown 95.47 mVS 242.9 14 0-xylene 345.2 ppb 271.7 15 Unknown 40.84 mVS 297.0  13 257  14 287  257  15 Unknown 40.84 mVS 297.0  Notes soil sample sample # 25 1to3ft soil volume 50g water sanple volume ****ml temp. of sample 28 c	11)	1 1					
14 0-xylene 345.2 ppb 271.7 15 Unknown 40.84 mVS 297.0  13 Notes  14 Sample sample sample # 25 1to3ft  15 soil volume 50g  16 water sample volume ****ml  17 temp. of sample 28 c	110	.st.	•	٠	٠		1
12	22						1
257 257 257 257 257 257 257 257 257 257					•	•	1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
Notes  Notes  Soil sample sample # 25  1to3ft soil volume 50g water sample volume ****ml temp. of sample 28 c							
Notes  Notes  Soil sample sample # 25  1to3ft soil volume 50g water sample volume ****ml temp. of sample 28 c	1 1 123		•	•	•		
Notes  Soil sample sample # 25  1to3ft soil volume 50g water sample volume ****ml temp. of sample 28 c							
314 Notes  Soil sample sample # 25 Ito3ft soil volume 50g water sample volume ****ml temp. of sample 28 c		•		•	•	٠	
314 Notes  Soil sample sample # 25 Ito3ft soil volume 50g water sample volume ****ml temp. of sample 28 c	H						
Notes  Soil sample  sample # 25   1to3ft  soil volume 50g  water sample volume ****ml  temp. of sample 28 c	1 114				-		
Soil sample sample # 25  1to3ft soil volume 50g water sample volume ****ml temp. of sample 28 c	28#	i					
Soil sample sample # 25  1to3ft soil volume 50g water sample volume ****ml temp. of sample 28 c	1 1						
Soil sample sample # 25  1to3ft soil volume 50g water sample volume ****ml temp. of sample 28 c	)				-		
soil sample sample # 25  1to3ft soil volume 50g water sample volume ****ml temp. of sample 28 c	1 17						
sample # 25 1to3ft soil volume 50g water sample volume ****ml temp. of sample 28 c	314						1
soil volume 50g water sample volume ****ml temp. of sample 28 c							
342 water sample volume ****ml temp. of sample 28 c					•		
temp. of sample 28 c							
371	342					•	
							cemb" or sembre vo c
			-	•	•		
	371						
400	171.		•		•	•	
400							
400			•	•	•		
j i j	400						
	1 7 "	•	•		•	•	

171114		: #33	J. W.	.,,,,,	1 ((11(	ion Analysis Report
9	1.	2	3 (x	4	5 mV)	Time Printed: Aug 13,93 14:01 Sample Time: Aug 13,93 13:52
		·	. \ ^	w.V.	10 V /	Method
28						Slope Up 3.000 mV/Sec
	e primarie					Slope Down 3.000 mV/Sec
1.	<b>&gt;</b>					Min Area 10.00 mVSec
1						Min Height 0.000 mV
576	<b>?</b> 1					Analysis Delay 45.0 sec
1 4	<b>\</b> 2			•	•	Window Percent 30.0 %
<del> </del>	<3					Det Flow 10 ml/min
-	4					B/F Flow 10 ml/min
85						Aux Flow O ml/min
		<b>&gt;</b> 5	•	•	•	Oven Temp 45 C
1						Amb Temp 33 C
1	5	•	•	•		Max Gain 1000
1:12	7					Analysis Time 400.0 sec
17/				•	•	Peak Report
1 4						Pk Compound Name Area/Conc R.T.
1 1	8	•	•	•		1 Unknown 5.922 mVS 49.7
14	 D				·	2 Unknown 5.249 mVS 56.5
1 1				•	•	3 Unknown 13.53 mVS 62.5
	<b>&gt;</b>					4 Unknown 27.74 mVS 70.1
"	-	•	•	•		5 Toluene 293.0 ppb 87.3
171	1					6 Unknown 0.784 mVS 95.3
1	•	•		٠	•	7 Toluene 112.8 ppb 108.6
						8 Unknown 26.15 mVS 129.8
		•	•	•		9 Unknown 7.902 mVS 148.6
204	)					10 Unknown 8.559 mVS 196.0
1 1	.0			•	•	11 Unknown 20.34 mVS 204.0
	. V l. 1.					12 Unknown 4.736 mVS 244.0
	is als	•	•	٠		a.z. Giraiowii — wazoo myo ziwao .
228	₹					· ·
12.2				•	•	
1	12	•	•	•		
257						
12.01						
		•	•			
1	:					
285						
1 1		•	•	•		
3.14	f .					Notes
						soil sample
		•	•			sample # 25 3 to 5 ft
						soil volume 50g
342						water sample volume ****ml
						temp. of sample 28 c
			•			
371	L.					
			•			
400						
<u> </u>						

1 11 1 11 11 7	/S1S %36		C.C.	1 (.(1) (	cion Huariers vahor c
Q	2 6	4 6	8	10	Time Printed: Aug 13,93 14:22
		.(x			Sample Time: Aug 13,93 14:14
	•	• • • •	•	•	Method
1284-					Slope Up 3.000 mV/Sec
1		•		•	Slope Down 3.000 mV/Sec
1	•				Min Area 10.00 mVSec
1	•	•	•		Min Height 0.000 mV
157	1.				Analysis Delay 45.0 sec
The same			•	•	Window Percent 30.0 %
	$\Rightarrow_2$				Det Flow 10 ml/min
1 1		•	•		B/F Flow 10 ml/min
85	\.				Aux Flow O ml/min
	<del></del>	<u> </u>		•	Oven Temp 45 C
	55	- ··Y			Amb Temp 34 C
	po war in the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same	•	•		Max Gain 1000
114	<u>)</u>				Analysis Time 400.0 sec
	γω ?			•	Peak Report
1 4					Pk Compound Name Area/Conc R.T.
1 1 7		•	•		1 Benzene 1.136 ppm 49.4
142	January (3)				2 Unknown 1.156 VSec 62.4
1-1-	<b>[</b>			•	3 Unknown 1.136 VSec 32.4
	<b>&gt;</b> 。				4 Unknown 2.723 VSec 87.4
++J	<b>г</b> у .	•	•		5 Unknown 1.229 VSec 95.0
1, 1					6 Toluene 5.516 ppm 106.9
1174				•	1
					§ *
1+>		•	•		
124					1
500	. \.\.\.				, , , , , , , , , , , , , , , ,
	)				,
,	.10	•	•		
					1
238)					•
	l. <b>1</b> .				15 Unknown 421.1 mVS 339.3
11)	/ · ·	•			
1.1.	<b>)</b> 12				
257/					
H					
\		•			
1 1	.3				
285/					
1 1 1			-		100 100 A 10 A 10 A 10 A 10 A 10 A 10 A
	.4				PPM1 = Alarm 1 PPM2 = Alarm2
314					Notes
					soil sample
		•			sample # 25 5 to 7 ft
1 H					soil volume 50g
342					water sanple volume ****ml
L5	•	-	·	-	temp. of sample 28 c
[					
371					
	•				
	-		•		
400				_	
<u> </u>	· ·			•	



	<u> </u>	111				crou sustrans vebor c
9	4	8	12	16	20	Time Printed: Aug 13,93 15:21
	_	•	.(x	τĊ	mV)	Sample Time: Aug 13,93 15:13 Method
28						Slope Up 3.000 mV/Sec
د	<u></u>		•		•	Slope Down 3.000 mV/Sec
	<del>-</del>	2				Min Area 10.00 mVSec
1 .		•	•	•		Min Height 0.000 mV
57[		<b>-</b> 1				Analysis Delay 45.0 sec
"		• • •	•		•	Window Percent 30.0 %
1 4			<b>-</b> 3			Det Flow 10 ml/min
		<b>&gt;</b> ₄	**;	•		B/F Flow 10 ml/min
85		•				Aux Flow O ml/min
		⇒ 5	•		•	Oven Temp 45 C
	_~~_	6				Amb Temp 35 C
1 7		•	•	•		Max Gain 1000
114		7				Analysis Time 400.0 sec
	<u>_</u>		•		•	Peak Report
	The same of	<b>————</b>		•		Pk Compound Name Area/Conc R.T.
17			<b>&gt;</b> 9	•		1 Unknown 226.2 mVS 49.3
142					_	2 Benzene 195.5 ppb 57.1
	- Conne	· ·	•	•	•	3 Unknown 439.2 mVS 62.2
	سسسم	10 سب		•		4 Unknown 400.1 mVS 69.8
	parameter .					5 Unknown 296.5 mVS 87.2
174					•	6 Unknown 401.3 mVS 94.9
	1	-		,	•	7 Toluene 2.862 ppm 106.6
						8 Unknown 18.93 mVS 114.8
	1					9 Unknown 1.198 VSec 128.9
2do		$\lambda_{\dots}$				10 Unknown 793.0 mVS 147.8
						11 Ethylbenzene 9.246 ppm 202.2
	**************************************	•	•	•		12 M&P-Xylene 8.222 ppm 223.0
	۲., .					13 Unknown 505.5 mVS 243.2
228	)12					14 O-Xylene 2.250 ppm 271.4
1						15 Unknown 498.8 mVS 297.0
	13	•	•	•		16 Unknown 10.34 mVS 338.3
257	ر بالمر					
111	( -				•	
	1					
	14	•	•	•		
285	T '					
H		•	•	•	٠	
	<b>1</b> 5	•	•	•		
314	,					Notes
	•	•	•	•	٠	soil sample
			_	-		sample # 25 9tolift
		-	•	•		soil volume 50g
342					_	water sample volume ****ml
<u> </u>	6	•	•	•	•	temp. of sample 28 c
				-		
371					_	
	÷	•	,	•	•	
		•				
440						
<u> </u>		<del></del>	· · · · · · · · · · · · · · · · · · ·			

9	4 .	8	1.2 _(×	16 1000	20 uV)	Time Frinted: Aug 13,93 15:40 Sample Time: Aug 13,93 15:31 Method
28	·	_====			<del></del>	Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 10.00 mVSec
57/5	<b>-</b>					Min Height 0.000 mV Analysis Delay 45.0 sec
		<b>=</b> 3 ₹4		•		Window Percent 30.0 %  Det Flow 10 ml/min  B/F Flow 10 ml/min
85	⇒ 5 °				•	Aux Flow O ml/min Oven Temp 45 C Amb Temp 35 C
1.14		₩ .				Max Gain 1000 Analysis Time 400.0 sec
					,	Peak Report
142	<b>&gt;</b> 6 ∫					Pk Compound NameArea/ConcR.T.1 Benzene33.43 ppb49.82 Unknown3.164 mVS55.6
	9.			•		3 Unknown       28.63 mVS       62.6         4 Unknown       27.42 mVS       70.9         5 Unknown       17.05 mVS       87.2
171		٠				6 Unknown 15.09 mVS 95.2 7 Toluene 262.7 ppb 109.0 8 Unknown 49.71 mVS 130.0
200	10					9     Unknown     35.64 mVS     148.8       10     Unknown     25.67 mVS     195.8       11     Ethylbenzene     290.0 ppb     205.2       12     M&P-Xylene     851.5 ppb     223.2
228	),12 .	·				12 M&P-Xylene     851.5 ppb     223.2       13 Unknown     57.89 mVS     243.2       14 O-Xylene     206.1 ppb     299.2
257	1.3					
		٠	•		٠	
294						
31/1.		-				Notes soil sample
342			•	٠		sample # 25 15to17ft soil volume 50g water sample volume ****ml
		٠			•	temp. of sample 28 c
371		•				
400					•	

		A pa w pa			J. 17		, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Cross sucrements are to bot c
		1.		2	3 (x	4 100	5 mV)	Time Printed: Aug 13,93 13:41 Sample Time: Aug 13,93 13:32
		<u>.                                    </u>	•			2.00	m v y	Method
28	ر {							Slope Up 3.000 mV/Sec
	ζ,	•	•	•	•	•	•	Slope Down 3.000 mV/Sec
								Min Area 10.00 mVSec
1	1		•		•	•		Min Height 0.000 mV
52		, <b>-</b>						Analysis Delay 45.0 sec
1"	15	٠ .١.	٠		•			Window Percent 30.0 %
	<b>Y</b>							Det Flow 10 ml/min
-						v		1
	ر {					ప		<b>1</b>
85			٠			. ,		Aux Flow O ml/min
	K							Oven Temp 45 C
	<b>/</b> 25				•			Amb Temp 33 C
	-							Max Gain 1000
11	4 _		%جہ					Analysis Time 400.0 sec
								Peak Report
] .	ľ							Pk Compound Name Area/Conc R.T.
] ,	17							1 Unknown 386.4 mVS 49.6
1.4	2	8						2 Benzene 134.3 ppb 56.6
								3 Unknown 1.639 VSec 70.6
	[							4 Unknown 6.862 mVS 86.8
								5 Unknown 100.3 mVS 94.8
1.7	1.	_						6 Toluene 5.769 ppm 108.1
					-			7 Unknown 2.047 mVS 127.4
	9							8 Unknown 15.35 mVS 137.6
	1							9 Unknown 5.218 mVS 176.2
20	0							10 Ethylbenzene 247.2 ppb 204.2
		•	•	• •	•	•	•	11 Unknown 2.451 mVS 225.0
	10							12 Unknown 8.200 mVS 243.4
			•		•	•		
22	8							
	11	•	•	•	•	•	•	
	12		•		•	•		
25	7							
		•	•	•	•	•	•	
	1		•		•	•	•	
28	5							
		•	٠	•	•	•	•	
	}		٠		•	,		
3:1	4							Notes
		•	. •	•	•	•	•	water sample
	Ì							sample # 25
			•		•		•	soil volume **g
34	2							water sample volume 42.2ml
	\	•	•	•	•	•	•	temp. of sample 28 c
								30 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To
			•		•	•	•	
37	1							
137	"		٠	•	•	•		
			•		•		•	
40	0							
1	1~	•	•	•	•	•		
L								<u> </u>

		X 8 1 8		•	05 5.		1 4,4114	tion Analysis Report
(	7	1.		2	3	4	5	Time Printed: Aug 13,93 15:57
					_(×	100	mV)	Sample Time: Aug 13,93 15:47
	L		•		•		•	Method
28	ુટ્ટ							Slope Up 3.000 mV/Sec
12	حم ر	•		•	•		•	Slope Down 3.000 mV/Sec
İ	4	1						Min Area 10.00 mVSec
İ	تسمم.		•		•			•
١	<u>}</u> -		١.					Min Height 0.000 mV
5:	مسمر[	<u> </u>	Ţ.					Analysis Delay 45.0 sec
	7 <del>2</del> —							Window Percent 30.0 %
l				_ 3				Det Flow 10 ml/min
Į			-34					B/F Flow 10 ml/min
8:	.¥							Aux Flow O ml/min
	₿5	•	•	. •	•	• •	•	Oven Temp 45 C
	36							Amb Temp 35 C
1	K		•		•	•		Max Gain 1000
1,	4	الد فعمم						Analysis Time 400.0 sec
1.	سمرا	-	•	•	•		•	Peak Report
1	1							i · · · · · · · · · · · · · · · · · · ·
			•		•		•	Pk Compound Name Area/Conc R.T.
	<b>1</b> 23	<b>~</b>						1 Benzene 1.377 ppm 49.4
1.4	<b>1</b> 2	9					•	2 Unknown 0.888 mVS 56.6
	9							3 Unknown 979.4 mVS 62.2
	10							4 Unknown 781.3 mVS 70.6
	1							5 Unknown 48.82 mVS 87.0
1.	1.	_						6 Unknown 188.3 mVS 94.9
		•	•	•	•	•	•	7 Toluene 4.535 ppm 109.0
	11							8 Unknown 1.748 mVS 128.4
			•		•	•		9 Unknown 38.08 mVS 137.0
120	10							10 Unknown 4.445 mVS 147.2
	]	•	•	•	•		•	11 Unknown 3.105 mVS 176.0
	12							12 Ethylbenzene 222.1 ppb 203.8
	1		•		•	•		13 Unknown 8.173 mVS 221.6
1,,	1	4 ****						)
4-4	8	13	•	•	-			14 Unknown 7.942 mVS 241.3
								15 Unknown 7.504 mVS 297.8
	<b>.</b>							
	14							
23	7						•	
			-		-	•		
28	5							
1	1	•	•	•	•	•	•	
	15		٠		•	•		
٠.,٠	4							Notes
13.	4	•	•		•		•	§
								soil sample
-			•		•			sample # 26 2to4ft
	1							soil volume 50g
134	12							water sample volume ****ml
	1							temp. of sample 28 c
	1							
	}					·		
33	<del>1</del> 1.							
1	1	•	•	•	•		•	
			•		•	•		
1/1/	0							
1.40	14	•	•	•			•	
<u> </u>								





MD&I)	<b>)</b> ::: 1::::	77. YY "Y	J. V/		7 11.1 11.1	True Litera America Control C
9	2	4	6	8	10 mV)	Time Printed: Aug 13,93 15:02 Sample Time: Aug 13,93 14:54
لر		•	.(x	TOÓ	mv)	Method
28 🛂						Slope Up 3.000 mV/Sec
سمم					·	Slope Down 3.000 mV/Sec
						Min Area 10.00 mVSec
سسے :		•	•	•		Min Height 0.000 mV
57				1		Analysis Delay 45.0 sec
``` ├~<		· ·	٠	·	•	Window Percent 30.0 %
·						Det Flow 10 ml/min
					<del></del>	B/F Flow 10 ml/min
85/						Aux Flow O ml/min
مالات		· .	•		•	Oven Temp 45 C
}						Amb Temp 35 C
·		الاحسير	•	••		Max Gain 1000
					,	1
11/4		·			٥.	
						Peak Report
.,	1		•	•		Pk Compound Name Area/Conc R.T.
-	-7					1 Benzene 7.138 ppm 49.5
142	احسا	8 .				2 Unknown 7.124 VSec 62.5
						3 Unknown 6.080 VSec 70.8
-1/						4 Unknown 1.716 VSec 87.0
- 17						5 Unknown 2.435 VSec 94.8
174						6 Toluene 39.58 FPM2 108.9
	•					7 Unknown 1.287 VSec 128.2
1/9						8 Unknown 2.919 VSec 137.6
- 71						9 Unknown 428.0 mVS 175.4
200	10					10 Unknown 596.4 mVS 194.0
П	•		•		•	11 Unknown 582.5 mVS 203.4
[/ <u>1</u>	1					12 Ethylbenzene 8.017 ppm 220.4
	•	•	•	•	•	13 M&P-Xylene 21.21 FFM2 238.2
ر 228	$\mathcal{I}_{12}$					14 O-Xylene 8.507 ppm 265.6
	•		•	. ,	•	15 Unknown 59.35 mVS 334.9
- 11						
1/1	.3	•	•	•		
23	•••					
	•		•		•	
<b>∦</b> - :L-	4					
11 "	•	•	•	•		
285						
	•		•		•	
[[		•	•	•		PPM1 = Alarm 1 PPM2 = Alarm2
314						Modess
	•		•		•	Sero that 501/ 30-110/8
l						sample # 26 % to 10
		•	•	•		soil volume 50g
342	15					water sample volume ****ml
		•	•		•	temp. of sample 28 c
		•	•	•		
371						
	٠		•		•	
<b>!  </b>						
		•	•			
400						

Anal)	7 m 1. m	#54	3.070	) V (3(.)	; C(1) (	tion Analysis Report
0	2	4	6	8	1.0	Time Printed: Aug 13,93 16:49
14	XI.	?			mV)	Sample Time: Aug 13,93 16:40
			.(x	TOÓ	mv)	1 " '
- L						Method
28 🚄		<b>.</b> .				Slope Up 3.000 mV/Sec
7						Slope Down 3.000 mV/Sec
	ʹ					Min Area 10.00 mVSec
سمم		•	•	•		Min Height 0.000 mV
57		1				Analysis Delay 45.0 sec
		·: .	•		•	Window Percent 30.0 %
1			<b>=</b>			; I
			3			· .
			- 4			B/F Flow 10 ml/min
83(	_					Aux Flow O ml/min
	5					Oven Temp 45 C
						Amb Temp 36 C
$\vdash$		•	. 6	•		Max Gain 1000
1:14			~			Analysis Time 400.0 sec
.s14 T			برسم		•	Peak Report
م ا ا	-					· ·
.	•••		•	•		į į
	ಶ					1 Benzene 2.636 ppm 49.4
142	۶۶					2 Unknown 1.267 mVS 56.6
						3 Unknown 2.253 VSec 62.4
						4 Unknown 2.803 VSec 70.8
		•	•	·		5 Unknown 511.7 mVS 87.0
171						6 Unknown 1.427 VSec 95.7
	•		•		•	7 Toluene 27.10 PPM2 108.8
J.O						8 Unknown 24.41 mVS 128.1
H'		•	•			9 Unknown 1.814 VSec 137.7
	4 4					i l
200	1.1		•			
						11 Unknown 391.1 mVS 195.0
/12	22		-			12 Ethylbenzene 3.000 ppm 204.8
4						13 M&P-Xylene 5.708 ppm 223.8
228						14 Unknown 346.2 mVS 243.7
113	•	•	•	•	•	15 O-Xylene 9.356 ppm 292.2
, i						16 Unknown 179.3 mVS 334.9
1 /14		•	•	•		
200						
1-1	•		•		•	
		•	•			
285						
			•			
						PPM1 = Alarm 1 PPM2 = Alarm2
314						Notes
+	•		•		•	soil sample
						sample # 26 10to12ft
		•	-			soil volume 50g
	4 /					· ·
342	16		•			water sanple volume ****ml
						temp. of sample 28 c
1 1						
371						
	•		•		•	
		•	•	•		
400						
1.340	•		•			
<u> </u>						

	7 3.5 ,	7 41. 41.	#56		2 1 1,24,2	1 5.511 5	tion Analysis Report
	)	1.	2	3	4	5	Time Printed: Aug 13,93 17:06
				.(x	100	m∨)	Sample Time: Aug 13,93 16:57 Method
28	, ≥						Slope Up 3.000 mV/Sec
1						•	Slope Down 3.000 mV/Sec
	<u>حــ</u>						Min Area 10.00 mVSec
	سسر.		•	•	•		Min Height 0.000 mV
J	<u>}</u>	<b></b> ,					3
57	7-5-		·				1
			3=		2		Window Percent 30.0 %
		Ξ_,	్త	•			Det Flow 10 ml/min
	سسم	,	4				B/F Flow 10 ml/min
85							Aux Flow O ml/min
	<b>[</b> ]55						Oven Temp 45 C
1 .	<b>」&gt;</b>	5					Amb Temp 36 C
	K	_					Max Gain 1000
111	]4		7				Analysis Time 400.0 sec
1	1	-		•		٠.	Peak Report
	Η						Pk Compound Name Area/Conc R.T.
1	14		•	•	•		1 Unknown 275.9 mVS 49.2
1.4	TX.	9					1
1	17	.7		•		٠	1
1	li H						<b>,</b>
1 .	T C			•	•	,	4 Unknown 603.3 mVS 70.5
1							5 Unknown 126.3 mVS 86.8
17	11						6 Unknown 237.4 mVS 94.8
	A						7 Toluene 5.177 ppm 108.6
	10		•				8 Unknown 137.2 mVS 128.4
1	A				,		9 Unknown 255.6 mVS 137.4
120	<b>s</b> b	1.1					10 Unknown 41.85 mVS 175.4
	H	•	- •	•		•	11 Unknown 82.65 mVS 194.8
	12						12 Unknown 79.32 mVS 204.2
1	1	_	•	•	•		13 Ethylbenzene 4.906 ppm 220.6
22	183	$>_{13}$					14 M&P-Xylene 5.954 ppm 238.0
1 2	مسترآ			•		•	15 O-Xylene 2.232 ppm 293.8
	14						16 Unknown 36.92 mVS 336.3
1	17"		•	•	•		THE CHIPSTOWN CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACT
1	<u> </u>						
25		•				•	
	1		•				
	ĺ						
28	<b>1</b> 5						
	{		-			•	
	15		-				
31	14						Notes
	ľ	•		•	•	•	soil sample
							sample # 26 12to14ft
	1		•	•	•		soil volume 50g
334	9	1.6					water sample volume ****ml
"	<b> </b> ^-	,s. 0.0		•	•	•	temp. of sample 28 c
							CALLED AND CO. L. CO. ST. CO. SALAN CO. SALAN CO.
			•	•	•		
	1						
37	[1						
1							
	1						
40	jo –			•			
	'						

						ļ ,
1 9	22	4	6	8	1.0	Time Printed: Aug 13,93 17:18
			( x	100	mV)	Sample Time: Aug 13,93 17:09
1		•	•	•		Method
₂₈ }_						Slope Up 3.000 mV/Sec
2		•	•		•	Slope Down 3.000 mV/Sec
4						i '
سر. ا	-					Min Area 10.00 mVSec
1 5-						Min Height 0.000 mV
57	ن ہے		<b>.</b> .			Analysis Delay 45.0 sec
{			2			Window Percent 30.0 %
{	_====	3				Det Flow 10 ml/min
1 7			•	•		B/F Flow 10 ml/min
185/	-					Aux Flow O ml/min
, T		•	•	•	•	Oven Temp 45 C
1 15	· 					Amb Temp 36 C
مي}		•		•		1
						1
1.14	٠	? حسب				Analysis Time 400.0 sec
11,	parameter .					Peak Report
+17						Pk Compound Name Area/Conc R.T.
1 4						1 Unknown 784.4 mVS 49.4
142	8 (					2 Benzene 5.389 ppm 55.9
	•		•		•	3 Unknown 1.778 VSec 62.4
						4 Unknown 2.511 VSec 70.8
do		•	•	•		5 Unknown 256.6 mVS 87.0
171						6 Unknown 917.4 mVS 94.9
1.1.	•					l Time and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta
1 7						
1 11	)	•				8 Unknown 806.3 mVS 138.0
						9 Unknown 12.92 mVS 154.8
20 <b>f</b> 0	11					10 Unknown 128.8 mVS 175.6
]	•	• .	-	•	-	11 Unknown 104.9 mVS 195.2
lh2	2					12 Unknown 136.2 mVS 205.4
115	_	•	•	•		13 Ethylbenzene 6.256 ppm 220.8
228	<b>)</b> 13					14 M&P-Xylene 12.11 PFM1 238.0
1-17	- 1		•		•	15 O-Xylene 3.732 ppm 290.9
1 11.	4					16 Unknown 48.25 mVS 335.2
1 11	Ť	•	•			TO CHENTOWN HOMES MAD DOGES
[] <u>[</u>						
237						
1						
285						
	•		•		•	
1 129	j.					
	-	•	•	•		PPM1 = Alarm 1 PPM2 = Alarm2
314						Notes
·	•					soil sample
[						
1 1				•		sample # 26 14to16ft
						soil volume 50g
342	16					water sanple volume ****ml
						temp. of sample 28 c
		•	-	•		
371						
	•		•		•	
		•	•	•		
lada.						
400						
		<del></del>				<u> </u>

HII ct.	.ysis	MOO	3. 575.		1 0.01155	TOU bustabars kebol c
9	1.	2	3	4	5	Time Printed: Aug 13,93 17:30 Sample Time: Aug 13,93 17:21
		•	,(x	TOÓ	mV)	Method
128 2						Slope Up 3.000 mV/Sec
			•		•	Slope Down 3.000 mV/Sec
		<b>&gt;</b>				Min Area 10.00 mVSec
-سر		•	•	٠		Min Height 0.000 mV
157		<del></del> ,				Analysis Delay 45.0 sec
13/		<u> </u>		; ·	•	Window Percent 30.0 %
				<i></i>		Det Flow 10 ml/min
1 1		<del></del>	_ <u></u> _	<b>.</b> .		B/F Flow 10 ml/min
سراا				1.4		
85	L ·		•			
<del> </del>	<u> </u>					
	حتسب	Ć.				1
						[ · · · · · · · · · · · · · · · · · · ·
114				Ζ.	•	Analysis Time 400.0 sec
1 1						Peak Report
	1					Pk Compound Name Area/Conc R.T.
1 +	(					1 Unknown 606.8 mVS 49.4
142	>8					2 Benzene 3.179 ppm 55.7
1 /	<del>.</del> .					3 Unknown 1.434 VSec 62.4
		•				4 Unknown 1.945 VSec 70.8
1						5 Unknown 225.3 mVS 87.0
1.71						6 Unknown 754.3 mVS 94.9
1 N						7 Toluene 16.69 PPM1 109.0
1 140	O					8 Unknown 701.2 mVS 138.0
1						9 Unknown 9.296 mVS 154.8
12db	1.1.				٠	10 Unknown 115.7 mVS 175.8
l II	•		•	•	•	11 Unknown 94.61 mVS 195.0
QL:	2		_			12 Unknown 116.3 mVS 205.6
115	Manage .	•	•	•		13 Ethylbenzene 4.789 ppm 220.8
228	-213					14 M&P-Xylene 10.28 PPM1 235.0
16	,		•	•	•	15 Unknown 1.836 mVS 258.4
	1.4					16 O-Xylene 3.324 ppm 291.2
1 1/	-	•	•	•		17 Unknown 45.12 mVS 331.2
250						
74	5		•		•	
			_			
		•	•	•		
285						
][	•		•		•	
	6					
		•	•	•		PPM1 = Alarm 1 PPM2 = Alarm2
314						Notes
1	•		•		•	soil sample
						sample # 26 16to18ft
		•	•	•		soil volume 50g
342	17					water sample volume ****ml
	: /		•		•	temp. of sample 28 c
						, ,
		•	•	•		
371						
177	•		•		•	
		•	•		•	
400						
140	•		•	•		

Q	2	- #162 		6	8	10	Time Printed: Aug 13,93 17:41
1			•	.(x		) w/)	Sample Time: Aug 13,93 17:32 Method
28							Slope Up 3.000 mV/Sec
ALCS			•	•			Slope Down 3.000 mV/Sec
		<b>&gt;</b> •					Min Area 10.00 mVSec
مسمر				•		•	
							,
57		<u>-</u> .i.					Analysis Delay 45.0 sec
							Window Percent 30.0 %
		<del></del>			<u> </u>	<u>.                                    </u>	Det Flow 10 ml/min
_						- 4	B/F Flow 10 ml/min
85							Aux Flow 0 ml/min
	Şi Si						Oven Temp 45 C
		<del>`</del> ≓≎					Amb Temp 36 C
		<b></b> _	_				Max Gain 1000
114						7	Analysis Time 400.0 sec
	٠ سري					•	Feak Report
}	A Partie						Pk Compound Name Area/Conc R.T.
1/	1	•		•		•	1 Unknown 1.276 VSec 49.5
142	~						2 Benzene 2.589 ppm 55.6
سر ا	8	•	•	•	•		3 Unknown 3.090 VSec 62.5
Н							4 Unknown 4.850 VSec 71.0
1)9		•		•		•	5 Unknown 501.9 mVS 87.0
11/1							6 Unknown 1.896 VSec 95.0
- X	•	•	•	•	•		7 Toluene 43.04 PPM2 109.2
10							8 Unknown 1.467 VSec 138.1
- #*		•		. •		•	9 Unknown 330.5 mVS 155.2
2db							10 Unknown 355.7 mVS 176.0
240	-	•	•	•			11 Unknown 98.52 mVS 195.4
11.7							i
H.						•	, , , , , , , , , , , , , , , , , , ,
	<b>م</b> ممم						
248	ناه .ایممیمی	٠.			-		
1							15 Unknown 270.2 mVS 259.4
1.	)						16 O-Xylene 3.164 ppm 276.8
	14						17 Unknown 571.2 mVS 289.3
25/					•		18 Unknown
15							
H							
] }							
28\$	16						
П							
117						•	
11							PPM1 = Alarm 1 PPM2 = Alarm2
31 <b>/</b> 4							Notes
ij		-	-		•	•	soil sample
							sample # 26 18to20ft
							soil volume 50g
342	18						water sanple volume ****ml
ļ	•	•	•	•	•		temp. of sample 28 c
1						_	
1		•		•		•	
371							
	•	•	•	•	•		
		•		•		•	
400							
.4~		•	•	•			

: :1 2 €.5	TARIR	31(.2)	.1. 37 5		1 (	tion Analysis Report
1 0	2	4	6	8	10	Time Printed: Aug 13,93 17:54
			( x	100	mV)	Sample Time: Aug 13,93 17:45
	<b>-</b>	•	•	·		Method
28	₹			_		Slope Up 3.000 mV/Sec
	سسنمد	<u> </u>		• •	•	Slope Down 3.000 mV/Sec
						Min Area 10.00 mVSec
			•	•		Min Height 0.000 mV
57			<del></del>	1		Analysis Delay 45.0 sec
1" F					•	Window Percent 30.0 %
1 [						Det Flow 10 ml/min
1 . }		•				B/F Flow 10 ml/min
85	30000000000000000000000000000000000000				'	Aux Flow 0 ml/min
	رسبسکا!!		•	•	•	Oven Temp 45 C
		, <u>/</u>				Amb Temp 36 C
.			•	•		Max Gain 1000
1, , )					٠	
1114	•	·				Analysis Time 400.0 sec Peak Report
						Pk Compound Name Area/Conc R.T.
•	1	•	•	•		} '
1	$\langle \zeta_{\alpha} \rangle$					
142	January States		•		•	• •
1 1/	-					
1	_	•	•	•		4 Unknown 9.399 VSec 70.9 5 Unknown 969.4 mVS 87.2
171					•	6 Unknown 2.438 VSec 95.0
						7 Toluene 76.67 PPM2 109.3
	O	•	•			8 Unknown 486.2 mVS 137.8
						9 Unknown 31.14 mVS 155.0
200	11					10 Ethylbenzene - 1.671 ppm 176.0
						11 Unknown 9.004 mVS 194.2
果	22					12 Ethylbenzene 100.2 ppb 206.2
	man and a second					13 M&P-Xylene 45.36 FPM2 221.4
228	/13					14 Unknown 1.670 VSec 237.8
1						15 O-Xylene 2.859 ppm 277.8
	)14					16 Unknown 11.97 mVS 335.4
	part .					
250						
4						
1						
285	1.5		•			
			•			
						PPM1 = Alarm 1 PPM2 = Alarm2
314						Notes
	•	•	-	•	•	water sample
			•			sample # 26
			-	·		soil ∨olume **g
342	16		_			water sample volume 42.5ml
	•		•		•	temp. of sample 28 c
		•	•	•		
371						
	•	•	•		•	
		•	•	•		
400						
140	•		•		-	
						<u> </u>

An a	dy	s i. s	#2	2	109	8+ G(	) Fund	tion Calibrant Report
9		4		8	12 .(x	16 10	20 (mV)	Time Printed: Aug 17,93 07:20 Sample Time: Aug 17,93 07:13 Method
28/	>							Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec
57			-		1			Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 %
85			•					Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min
	•			•		•		Oven Temp 45 C Amb Temp 23 C Max Gain 1000
1.14	}	<u>.</u> ~2	•			•		Analysis Time 400.0 sec  Peak Report  Pk Compound Name Area/Conc R.T  1 Benzene 1.000 ppm 55.:
142	2							1 Benzene     1.000 ppm     55.1       2 Toluene     1.000 ppm     107.4       3 Ethylbenzene     1.000 ppm     213.4       4 O-Xylene     1.000 ppm     270.1
1.71	l.					-		
290	)						· 	
226	>3						٠.	
		•		٠		•		
257	, }_			٠				
28	, 2	•	•		٠	•		
314	4			•	•			Notes calibration

110 30 0	
calibration	
sample O.1ml of lug/ml BTE	:X
soil volume 50g	
water sample vol. ****ml	
temp. of sample 28 c	
<u> 2ug/50g = 4ug/kg </u>	
^ <del>85 benzene = lug/k</del> g	ŀ
180 toluene = 1ug/kg	ļ
- 40 ethylbenzene ≔ lug/kç	)
100 m _s p&o-xylene = lug/kg	j

Analy	'sis	#3	105+	GC	Func	tion Analysis Report
9	2	. 4	(х	8 10	10 mV)	Time Printed: Aug 17,93 07:39 Sample Time: Aug 17,93 07:23
28			•			Method Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
57						Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 %
85				٠		Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min
13	•				٠	Oven Temp 45 C Amb Temp 25 C Max Gain 1000
114	4			٠	•	Analysis Time 400.0 sec  Feak Report  Pk Compound Name Area/Conc R.T.
142	5			•		1     Benzene     244.1 ppb     55.0       2     Unknown     -5.76 mVS     69.3       3     Unknown     0.269 mVS     85.6       4     Toluene     256.0 ppb     107.8
171						5 Unknown 10.35 mVS 136.1 6 Unknown 5.472 mVS 188.2 7 Ethylbenzene 230.0 ppb 217.2
200	6	· · ·				8 M&P-Xylene 500.0 ppb 232.6 9 O-Xylene 231.4 ppb 273.8
228	7	•	·			
257				•		
285	9					
314				•		Notes
	•					calibration sample O. <b>2</b> ml of lug/ml BTEX soil volume 50g
342	•				٠	water sanple vol. ****ml temp. of sample 28 c .2ug/50g = 4ug/kg 60 benzene = 1ug/kg
371						60 toluene = lug/kg 60 ethylbenzene = lug/kg 60 m,p&o-xylene = lug/kg
400					•	

9	2		4	.6 .(x	8 10	10 mV)	Time Printed: Aug 17,93 07:51 Sample Time: Aug 17,93 07:40
ىــ 28					٠	•	Method Slope Up 3.000 mV/Sec
	-	-					Slope Down 3.000 mV/Sec
. /							Min Area 1.000 mVSec
							Min Height 0.000 mV
57 <b>/</b> -			•				Analysis Delay 45.0 sec
<b>5</b>	·	.1.					Window Percent 35.0 %
·b:	Z			•			Det Flow 10 ml/min
	I						B/F Flow 10 ml/min
85						,	Aux Flow O ml/min
fire fire							Oven Temp 45 C
- (0		•		-			Amb Temp 27 C
	٠ جسم						Max Gain 1000
1 43	(C)			•		٠,	Analysis Time 400.0 sec
1							Peak Report
l		•		•	•		Pk Compound Name Area/Conc R.T. 1 Benzene 251.2 ppb 54.4
142	7						1 Benzene 251.2 ppb 54.4 2 Unknown 7.053 mVS 60.7
-7	- /					•	3 Unknown 7.408 mVS 69.0
- 1							4 Unknown 1.521 mVS 84.8
		•		•	•		5 Unknown 2.796 mVS 92.2
1 7 1							6 Toluene 394.5 ppb 106.9
17.	•	•	•			•	, ,
							1
8		•		•			3
200							1
240	-		•	•			10 M&P-Xylene 364.5 ppb 231.0
[							11 O-Xylene 244.8 ppb 272.2
A _D		•		•			
228							
- A	•	•	•	•			
1/1 <	ኅ						
1.	w.	•		•	•		
2\$7							
T	•	-	•	•		•	
ļ							
13. 3	L	•		•	•		
285	-						
}	•	•	•	•	•	•	
		•		•	•		
314							Notes
1	٠	•	•	-		•	calibration
							sample O. 2ml of lug/ml BTEX
		•		•	•		soil volume <del>Soc</del>
342							water sanple vol. #@:0m1
	•	•	•	•		•	temp. of sample 28 c
							.2ug/ <b>40gi = 5</b> ug/kg
		•		•	•		60 benzene = lug/kg
371							100 toluene = lug/kg
	•	•	•	•		•	50 ethylbenzene = lug/kg
							60 m,p&o-xylene = lug/kg
		•		•	•		and the process of granting and the professional control of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the procession of the pr
400							
. 1	•	٠	•	•		•	

1711	100 .h.	<b>7</b> 818	77.03	11. VACO 11	6362	1 COTT	tion Analysis Report
		ïl.	2	3 .(x	4 10	5 mV)	Time Printed: Aug 17,93 08:11 Sample Time: Aug 17,93 08:02
1	<u> </u>						Method
28	<b>?</b>						Slope Up 3.000 mV/Sec
14	•	فتستسنه	<b>7</b>		•	٠	Slope Down 3.000 mV/Sec
-	5	-					· · · · · · · · · · · · · · · · · · ·
1	- [						Min Area 1.000 mVSec
ļ	{						Min Height 0.000 mV
57	8					•	Analysis Delay 45.0 sec
Ì	<b>K</b> 1	-	•	•	•	•	Window Percent 35.0 %
	6						Det Flow 10 ml/min
	<u>پر</u>		•	•	•		B/F Flow 10 ml/min
m							Aux Flow 0 ml/min
85	5					•	• 1
1	<b>,</b>						, ·
	t						Amb Temp 29 C
1	Market .						Max Gain 1000
111	42	4					Analysis Time 400.0 sec
	V	•	•		•	•	Peak Report
	1						Fk Compound Name Area/Conc R.T.
			•	•			1 Benzene 12.50 ppb 54.4
1	Λ.	,					
14	Z.	5					2 Unknown 3.822 mVS 60.7
							3 Unknown 12.35 mVS 69.2
							4 Toluene 183.7 ppb 107.0
	-				-		5 Unknown 10.72 mVS 134.8
1.7	1						6 Ethylbenzene 49.29 ppb 187.8
["	"	•			•	•	7 0-Xylene 71.34 ppb 273.6
							2 man 1 miles and man man man man man man man man man man
	,		•	•	•		
	6						
20	<b>)</b> O						
					_		
			-	•	•		
22	a						
1	[	•	•		•		
			•	•	-		
	l						
25	7						
		-	•				
	7		•	•	•		
28	5						
12.6	١				•	•	
	1		•	•			
3:	4					_	Notes
	}	•	•	•	•	•	soil sample
İ							sample # 27 6 to 8 ft
			•	•	•		soil volume 50g
34	-						water sample vol. ****ml
$\left\{ S^{4}\right\}$	1						
							temp. of sample 28 c
	Ì						
37	1.1						
"		•	•		•	•	
			•	•	•		
١,,,	L .						
40	ĮO –						

	A 22 Tr 22					Cataly throady active resignation
9	22	4	6	8	10	Time Printed: Aug 17,93 08:23
			.(x	10	mV)	Sample Time: Aug 17,93 08:13
						Method
28						Slope Up 3.000 mV/Sec
1		•	•		•	Slope Down 3.000 mV/Sec
1						Min Area 1.000 mVSec
-	-	•	•	•		Min Height 0.000 mV
57		-1				Analysis Delay 45.0 sec
	<u>.                                    </u>	· <del>·</del> · ·	•		•	Window Percent 35.0 %
			<b>=</b> ,			Det Flow 10 ml/min
.					A	
سسمر ( ا		_			6-4	<b></b>
85%						, , , , , , , , , , , , , , , , , , , ,
1 K	~					Oven Temp 45 C
سيا. ا	6 حمہ					Amb Temp 29 C
~						Max Gain 1000
114						Analysis Time 400.0 sec
/		•	=	•	-	Feak Report
						Pk Compound Name Area/Conc R.T.
176		•	•	•		1 Unknown 77.13 mVS 48.5
14	8					2 Benzene 40.39 ppb 55.2
	•"		•		٠	3 Unknown 199.1 mVS 61.2
#						4 Unknown 391.5 mVS 69.4
1		•	•	•		5 Unknown 15.07 mVS 85.6
171						6 Unknown 102.4 mVS 93.0
	•				•	7 Toluene 3.709 ppm 106.6
1 - 1		•		•		
1_1						1
200						10 Unknown 66.65 mVS 199.0
1/1	0					11 Ethylbenzene 352.1 ppb 216.6
l U						12 M&F-Xylene 564.3 ppb 232.6
] ]].1						13 O-Xylene 379.8 ppb 272.0
228			_			
	,	, ,				
1 12				_		
		·	•			
257						
	•		•		•	
1 1/1 1/13			•	٠		
285						
	•		•		•	
		•	•	•		
						Notes
314			•			<b>{</b>
}						soil sample
						sample # 27 8 to 10ft
						soil volume 50g
342						water sample vol. ****ml
						temp. of sample 28 c
		•				
371						
	•	. ,	•	• •	•	
		•	•	•		
400						
1.42	•		•		•	
<b></b>						





7 11 15.	crasia		1.00			True Lauser America (zm. 1701) c
9	2	4	6 (x	8	10 mV)	Time Printed: Aug 17,93 09:15 Sample Time: Aug 17,93 09:06
	<u>.</u>	•		TAÁ	111V)	Method
28	≥					Slope Up 3.000 mV/Sec
			<del>-</del> .		•	Slope Down 3.000 mV/Sec
ļ						Min Area 1.000 mVSec
		-	•	•		Min Height 0.000 mV
57						Analysis Delay 45.0 sec
137	<u> </u>					·
					<i>i</i>	
					<u></u>	Det Flow 10 ml/min
					4	B/F Flow 10 ml/min
85	-2		-			Aux Flow O ml/min
						Oven Temp 45 C
		<u> </u>				Amb Temp 31 C
'		·				Max Gain 1000
1114	ļ				7	Analysis Time 400.0 sec
" <i>"</i> ]	٠.	· 		<del></del>	. ′	Peak Report
						Pk Compound Name Area/Conc R.T.
.	كمسمم	•	•	•		1 Unknown 1.355 VSec 48.6
1	, /~>					
14	January 3		•			
	ζ					3 Unknown 4.061 VSec 61.6
.	ファー	•				4 Unknown 7.335 VSec 69.8
	, -					5 Unknown 471.2 mVS 85.6
17	: .					6 Unknown 2.141 VSec 93.3
	10					7 Toluene 67.32 PPM2 107.2
			_	-		8 Unknown 649.9 mVS 135.0
		-	-	•		9 Unknown 335.6 mVS 152.2
200	1.1					10 Unknown 646.9 mVS 172.2
	12		•		•	11 Unknown 2.838 mVS 190.8
1 +	(					12 Unknown 59.83 mVS 201.6
1	manage of .	3	•	•		13 Ethylbenzene 24.78 PPM2 216.4
0	٠ ١٠٠ مسسس	)				1
22		<u>.</u> .			•	, ,
	_	<b>&gt;</b>				15 Unknown 489.9 mVS 252.5
.	~~~~~~	14				16 O-Xylene 9.450 ppm 268.8
L	(					17 Unknown 138.8 mVS 330.9
257	1 .					
1 4	(15)	-		•	•	
	}					
1 1	116	•	•	•		
28	, }					
	•	•	•	•	•	
		•	•	•		PPM1 = Alarm 1 PPM2 = Alarm2
1						
3.1	<del>}</del> ,		•		•	Notes
						soil sample
						sample # 27 14 to 16 ft
						soil volume 50g
342	17				_	water sanple vol. ****ml
	•		•		•	temp. of sample 28 c
		•	•	•		
371						
174			•		•	
		•	•	•		
440						
1						

	<u> </u>	99 Jl		or oc		
9	22	4	6	8	1.0	Time Printed: Aug 17,93 09:32
			.(x	100	mV)	Sample Time: Aug 17,93 09:23
	<b>,</b>					Method Slope Up 3.000 mV/Sec
28 =						Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
1						Min Area 1.000 mVSec
٠, ا			•	٠		Min Height 0.000 mV
157 (		<del>_</del> ,				Analysis Delay 45.0 sec
- F		<del>-</del>	•		•	Window Percent 35.0 %
						Det Flow 10 ml/min
'					4	B/F Flow 10 ml/min
85	$\subset$			, .		Aux Flow O ml/min
-			•			Oven Temp 45 C
.			<b>~</b> 6 .			Amb Temp 32 C
					— <del>_</del>	Max Gain 1000
114					7 بــــــ	Analysis Time 400.0 sec Peak Report
		ستسمحم				Pk Compound Name Area/Conc R.T.
.	تصحصم	ر 8	•	•		1 Unknown 1.302 VSec 48.8
142		9				2 Benzene 2.859 ppm 54.8
	ستسبستم	•			•	3 Unknown 3.988 VSec 61.6
$\parallel \parallel$	`>					4 Unknown 8.496 VSec 70.0
1	10	•	•	•		5 Unknown 585.6 mVS 85.7
17						6 Unknown 2.775 VSec 93.4
	ll. 1.			•	•	7 Toluene 95.19 PPM2 107.2
1.1		•				8 Unknown 207.3 mVS 124.0
	<b>,</b>					9 Unknown 749.4 mVS 135.3
200	المن الم					10 Unknown
	<b>)</b> 12 -					11 Unknown 153.5 mVS 172.8 12 Unknown 1.505 VSec 201.8
.	13		•			13 Ethylbenzene 18.28 FFM1 216.6
228	<b>/</b> 1.45					14 M&P-Xylene 37.38 PPM2 233.0
	- maine	•		•	٠	15 Unknown 1.211 VSec 253.8
	المستر	4				16 O-Xylene 18.31 FPM1 268.5
1	· · · · · · · · · · · · · · · · · · ·	•		•		17 Unknown 327.2 mVS 332.2
25/7	<b>)</b> .					
-	<b>/</b> 1.5		•	_		
	<b>)</b>					
	/16					
285	-					
		•	•	-		PPM1 = Alarm 1 PPM2 = Alarm2
314						Notes
	•	•			•	soil sample
						sample # 27 16 to 18 ft
1 1		•	•	•		soil volume 50g
342	17				. <u>-</u>	water sample vol. ****ml
	•		-			temp. of sample 28 c
			•			
371						
		•	•		•	
400						
1.40	٠	•		· ·	· ·	

	· A == 1 ==		3.00			and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t
0	2	4	6	8	1.0	Time Printed: Aug 17,93 09:49
1	•	•	_ ( x		mV)	Sample Time: Aug 17,93 09:40
		•	. \ ^	** ** **	* /	Method
28 2						Slope Up 3.000 mV/Sec
120		<b></b> .	•		•	Slope Down 3.000 mV/Sec
<	,					1
		•	•			Min Area 1.000 mVSec
~	- 					Min Height 0.000 mV
57 <del> -</del>	ا:حـــــ	_	_		_	Analysis Delay 45.0 sec
	<u>ــــــــــــــــــــــــــــــــــــ</u>		•	•	-	Window Percent 35.0 %
-						Det Flow 10 ml/min
-				•		B/F Flow 10 ml/min
85			5			Aux Flow O ml/min
100					•	Oven Temp 45 C
						1
.	فإمسم		-			1
1 1						Max Gain 1000
1114		ع <del>د</del> بـــــ	3 .			Analysis Time 400.0 sec
	and the same	•		·	•	Peak Report
	8					Pk Compound Name Area/Conc R.T.
1 1	9	•	•	•		1 Unknown 746.9 mVS 48.6
142	10					2 Benzene 1.002 ppm 54.8
1.77	.a. (7				•	3 Unknown 1.969 VSec 61.5
1 K						
1 1)						
. r	L IL					1 I
171						6 Unknown 240.6 mVS 85.7
l fili	2					7 Unknown 1.016 VSec 93.3
1				_		8 Toluene 29.50 PPM2 107.2
1 1						9 Unknown 80.43 mVS 124.0
ladb						10 Unknown 237.2 mVS 135.2
1 7.	3	•	•		•	11 Unknown 241.4 mVS 152.4
\ \{						12 Unknown 75.99 mVS 173.0
1 1	11.4	•	•	•		13 Unknown 353.3 mVS 201.6
مالدا	71.4					and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and t
224			•			
	)					
11/	15					16 Unknown 318.8 mVS 253.8
1 1						17 O-Xylene 4.998 ppm 268.2
1257				_		18 Unknown 101.0 mVS 331.4
	5		•		•	
1						
	7	•	•	•		
201	•					
285	•		•		•	
		•				President of Administration of President on Administration
						PPM1 = Alarm 1 PPM2 = Alarm2
3:14	ءَ					Notes
	•	. •	-	•	•	soil sample
[						sample # 27 18 to 20 ft
1 1		•	•	•		soil volume 50g
342	1.8					water sample vol. ****ml
12.4	ir co		•		•	temp. of sample 28 c
						compa or sompace ao c
		•				
371	_					
	•	•	•	•	-	
		•	•	•	•	
400						
1240	•		•	•		
L						

enna.	lysis	47 J. 7	1.00	or ou	i" CCLLC	tion Analysis Report
9	1.	22	3 .(x	4 10	5 mV)	Time Frinted: Aug 17,93 10:06 Sample Time: Aug 17,93 09:57
			•			Method
28	_					Slope Up 3.000 mV/Sec
<b> </b> ~~			•		•	Slope Down 3.000 mV/Sec
Ì						Min Area 1.000 mVSec
ہر · ا	promote		-	•		******
<u>-</u>	<u> </u>	_				,
[57 <del>]</del>		<u>1</u> .				Analysis Delay 45.0 sec
1	<del>-</del>					Window Percent 35.0 %
1 . —			<u> </u>			Det Flow 10 ml/min
					4	B/F Flow 10 ml/min
85/						Aux Flow O ml/min
, D	te;	•	•		•	Oven Temp 45 C
	ے حصت					Amb Temp 32 C
1	<i>6 حسب</i>		•			,
					<b></b> .	
1.14					7.	Analysis Time 400.0 sec
	سسم					Peak Report
	5					Pk Compound Name Area/Conc R.T.
1			-	•		1 Unknown 37.91 mVS 48.6
1.47	> 8 <					2 Benzene 120.1 ppb 54.6
1			•		•	3 Unknown 83.71 mVS 61.3
						4 Unknown 201.9 mVS 69.6
1/	<b>,</b> Ç	•	•			5 Unknown 4.722 mVS 85.3
	7					
171			•			
<b>₽</b> L €	0					7 Toluene 2.198 ppm 106.6
1						8 Unknown 17.28 mVS 134.8
						9 Unknown 15.68 mVS 152.8
2db						10 Unknown 2.397 mVS 171.6
	1.	• •	•		•	11 Unknown 5.954 mVS 200.2
H						12 Ethylbenzene 912.4 ppb 216.2
, 1	12	٠	•	•		13 M&P-Xylene 2.741 ppm 232.6
228						14 Unknown 35.91 mVS 254.1
K. 4163						1
	_	<u> </u>				1
	Andrew Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contra	13	•			16 Unknown 14.40 mVS 333.3
	7					
257						
	14	•	•	•	•	
H	15					
-1J		•	•	•		
28\$						
-44	•				•	
3:14						Notes
		·				soil sample
ļ						sample # 27 20 to 22 ft
ħ		•	•	•		soil volume 50g
342	1.6					water sample vol. ****ml
	a. C)		•		•	temp. of sample 28 c
						comba or sombro vo c
			•			
371						
	•	•	•		•	
		•	•	•		
400						
1.40			•		•	

Analysis	#21	108+	GC	Funct	ion Analysis Report
0 1	2	3	4	5	Time Printed: Aug 17,93 10:21
				mV)	Sample Time: Aug 17,93 10:13
	•	.(x	πÀ	mv)	Method
					i i
28					, , ,
					1
. , ,		•			* * *
\ \frac{1}{2}					Min Height 0.000 mV
57					Analysis Delay 45.0 sec
					Window Percent 35.0 %
	<del>-</del>				Det Flow 10 ml/min
	4				B/F Flow 10 ml/min
85(					Aux Flow O ml/min
į į					Oven Temp 45 C
1.1.36					Amb Temp 32 C
h					Max Gain 1000
114					Analysis Time 400.0 sec
	•	•			Peak Report
					Pk Compound Name Area/Conc R.T.
K					1 Unknown 18.17 mVS 48.6
1462 8					2 Benzene 60.53 ppb 54.7
	-	•	•	-	3 Unknown 32.29 mVS 61.3
<b>₽</b>	-	•			4 Unknown 103.2 mVS 69.4
-					5 Unknown 2.504 mVS 85.6
171				_	6 Unknown 17.60 mVS 92.9
10			•	•	7 Toluene 1.051 ppm 106.6
					8 Unknown 10.55 mVS 135.3
					9 Unknown 5.568 mVS 151.8
200			_	_	10 Ethylbenzene 16-76 ppt 173.0
1. 1.				•	11 Unknown 0.274 mVS 201.6
					12 Ethylbenzene 318.8 ppb 216.8
					13 M&P-Xylene 1.214 ppm 232.8
221 12					
1.3					
257					
	-				
285					
	•				
31/4					Notes
					soil sample
	•				sample # 27 22 to 24 ft
					soil volume 50g
342					water sample vol. ****ml
					temp. of sample 28 c
	•				
371					
400					
i .					

em a.i.	ysis	77.	ക്ക	3.000	or tata	r corc.	tion Analysis Report
	22		4	6	8	10	Time Printed: Aug 17,93 10:38
19	zi.		·••			mV)	Sample Time: Aug 17,93 10:29
				.(x	roó	1110 )	Method
I have							1
28 3	·						Slope Up 3.000 mV/Sec
							Slope Down 3.000 mV/Sec
سر ا							Min Area 1.000 mVSec
12		-					Min Height 0.000 mV
157/-2	<u> </u>						Analysis Delay 45.0 sec
1 -				₹ż	•	•	Window Percent 35.0 %
<u> </u>	يجر						Det Flow 10 ml/min
1 1	$ ightrightarrows_A$	•		•	•		B/F Flow 10 ml/min
0.6							Aux Flow O ml/min
85							
1 16							1
A							1
1							Max Gain 1000
1.14	77 -					•	Analysis Time 400.0 sec
					·		Peak Report
				_			Pk Compound Name Area/Conc R.T.
1 1		•		•	•		1 Unknown 376.1 mVS 48.6
142	8						2 Benzene 5.711 ppm 55.1
		•	•	•		•	3 Unknown 641.8 mVS 61.4
							4 Unknown 775.7 mVS 69.6
9		٠		•			5 Unknown 73.96 mVS 85.7
1 1							6 Unknown 116.8 mVS 93.3
171							
110	,						
				•			8 Unknown 17.77 mVS 135.4
							9 Unknown 9.064 mVS 152.6
200	1.1						10 Ethylbenzene 161.8 ppb 173.4
12	<u>.</u>	•	•	·		-	11 Unknown 0.435 mVS 190.6
							12 Unknown 0.083 mVS 193.0
		•		•	•		13 Ethylbenzene 8.632 ppm 217.0
224	13						14 M&P-Xylene 22.91 PPM2 233.0
	• • • • • • • • • • • • • • • • • • • •	•	٠	•		•	15 O-Xylene 40.97 ppb 270.4
	$\mathcal{S}_{14}$						
	.1. ***	•		•	•		
257	-						
	_						
1.5	j						
285							
	•						
				_	_		
		•		•	•		PPM1 = Alarm 1 PPM2 = Alarm2
314							Notes
" " '	•	٠	•	•		•	water sample
							sample # 27
		٠		•	•		soil volume **g
							water sanple vol. 42.4ml
342				•		•	
							temp. of sample 28 c
371							
					_		
		•		-	•		
400							
1.4.	•	٠	•	•	•		

Time Printed: Aug 17,93 11:06 Sample Time: Aug 17,93 10:57  Method Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mV/Sec Min Area 1.000 mV/Sec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min Oven Temp 45 C Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec  Peak Report Pk Compound Name Area/Conc R. 1 Unknown 7.409 mV5 48 2 Renzene 41.50 ppb 55 3 Unknown 20.29 mV5 61 4 Unknown 7.439 mV5 86 6 Unknown 7.439 mV5 86 6 Unknown 6.282 mV9 63 7 Tolluene 292.2 ppb 107 8 Unknown 8.163 mV5 135 9 Unknown 2.632 mV5 133 10 Ethylbenzene 175.3 ppb 217 11 M&P-Xylene 690.6 ppb 234
Sample Time: Aug 17,93 10:57   Wethord
Method   Slope Up   3.000 mV/Sec   Slope Down   3.000 mV/Sec   Min Area   1.000 mV/Sec   Min Area   1.000 mV/Sec   Min Area   1.000 mV/Sec   Min Height   0.000 mV   Analysis Delay   45.0 sec   Window Percent   35.0 %   Det Flow   10 ml/min   B/F Flow   10 ml/min   B/F Flow   10 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/mi
Slope Up
Slope Down   3.000 mV/Sec   Min Area   1.000 mV/Sec   Min Area   1.000 mV/Sec   Min Area   1.000 mV/Sec   Min Height   0.000 mV   Analysis Delay   45.0 sec   Window Fercent   35.0 %   Det Flow   10 ml/min   B/F Flow   10 ml/min   B/F Flow   10 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   0 ml/min   Aux Flow   0 ml/min   0 ml/min   Aux Flow   0 ml/min   0 ml/min   Aux Flow   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min
Min Area
Min Area   1.000 mV
## Height 0.000 mV  Analysis Delay 45.0 sec  ## Window Percent 35.0 %  Det Flow 10 ml/min  B/F Flow 10 ml/min  Aux Flow 0 ml/min  Oven Temp 45 C  Amb Temp 32 C  Hax Gain 1000  Analysis Time 400.0 sec  Peak Report  Pk Compound Name Area/Conc R.  1 Unknown 7.409 mVS 48  2 Benzene 41.50 ppb 55  3 Unknown 20.29 mVS 61  4 Unknown 25.96 mVS 69  5 Unknown 7.437 mVS 66  4 Unknown 6.282 mVS 93  7 Toluene 292.2 ppb 107  8 Unknown 8.163 mVS 135  9 Unknown 8.163 mVS 135  9 Unknown 2.632 mVS 135  9 Unknown 2.632 mVS 135  10 Ethylbenzene 175.3 ppb 217  11 M&P-Xylene 690.6 ppb 234
Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 0 ml/min Gven Temp 45.0 C Amb Temp 32. C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R. 1 Unknown 7.409 mVs 48 14 8 2 Benzene 41.50 ppb 55 3 Unknown 20.29 mVs 61 4 Unknown 25.96 mVs 69 5 Unknown 7.439 mVs 86 6 Unknown 6.282 mVs 93 7 Tolluene 292.2 ppb 107 8 Unknown 8.163 mVs 135 9 Unknown 2.632 mVs 135 9 Unknown 2.632 mVs 153 10 Ethylbenzene 175.3 ppb 217 11 M&P-Xylene 690.6 ppb 234
Window Percent   35.0   %
Det Flow
## B/F Flow
## B/F Flow
Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Feak Report    14
Oven Temp
Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec    Peak Report
Max Gain
Analysis Time 400.0 sec    Feak Report
Analysis Time 400.0 sec    Feak Report
Peak Report
Pk Compound Name   Area/Conc   R.     1 Unknown   7.409 mVS   48     2 Benzene   41.50 ppb   53     3 Unknown   20.29 mVS   61     4 Unknown   25.96 mVS   69     5 Unknown   7.439 mVS   86     6 Unknown   6.282 mVS   93     7 Toluene   292.2 ppb   107     8 Unknown   8.163 mVS   135     9 Unknown   2.632 mVS   153     9 Unknown   2.632 mVS   153     10 Ethylbenzene   175.3 ppb   217     11 M&P-Xylene   690.6 ppb   234     225 10
1 Unknown 7.409 mVS 48 2 Benzene 41.50 ppb 55 3 Unknown 20.29 mVS 61 4 Unknown 25.96 mVS 86 4 Unknown 7.439 mVS 86 171 6 Unknown 7.439 mVS 86 171 6 Unknown 6.282 mVS 93 7 Toluene 292.2 ppb 107 8 Unknown 8.163 mVS 135 9 Unknown 2.632 mVS 153 10 Ethylbenzene 175.3 ppb 217 11 M&P-Xylene 690.6 ppb 234  228 10  Notes soil sample sample # 28 1 to 3 ft
2 Benzene 41.50 ppb 55 3 Unknown 20.29 mVS 61 4 Unknown 75.96 mVS 69 5 Unknown 7.439 mVS 86 6 Unknown 6.282 mVS 93 7 Toluene 292.2 ppb 107 8 Unknown 8.163 mVS 135 9 Unknown 2.632 mVS 153 10 Ethylbenzene 175.3 ppb 217 11 M&F-Xylene 690.6 ppb 234  228 10  Notes  soil sample sample # 28 1 to 3 ft
3 Unknown 20.29 mVS 61 4 Unknown 25.96 mVS 69 5 Unknown 7.439 mVS 86 6 Unknown 6.282 mVS 93 7 Toluene 292.2 ppb 107 8 Unknown 8.163 mVS 135 9 Unknown 2.632 mVS 153 10 Ethylbenzene 175.3 ppb 217 11 M&P-Xylene 690.6 ppb 234  228 10 11 255  Notes soil sample sample # 28 1 to 3 ft
3 Unknown 20.29 mVS 61 4 Unknown 25.96 mVS 69 5 Unknown 7.439 mVS 86 6 Unknown 6.282 mVS 93 7 Toluene 292.2 ppb 107 8 Unknown 8.163 mVS 135 9 Unknown 2.632 mVS 153 10 Ethylbenzene 175.3 ppb 217 11 M&P-Xylene 690.6 ppb 234  228 10 11 255  Notes soil sample sample # 28 1 to 3 ft
4 Unknown 25.96 mVS 69 5 Unknown 7.439 mVS 86 6 Unknown 6.282 mVS 93 7 Toluene 292.2 ppb 107 8 Unknown 8.163 mVS 135 9 Unknown 2.632 mVS 153 10 Ethylbenzene 175.3 ppb 217 11 M&P-Xylene 690.6 ppb 234  228 10 11 25
5 Unknown 7.439 mVS 86 6 Unknown 6.282 mVS 93 7 Toluene 292.2 ppb 107 8 Unknown 8.163 mVS 135 9 Unknown 2.632 mVS 153 10 Ethylbenzene 175.3 ppb 217 11 M&P-Xylene 690.6 ppb 234  228 10  Notes soil sample sample # 28 1 to 3 ft
171 6 Unknown 6.282 mVS 93 7 Toluene 292.2 ppb 107 8 Unknown 8.163 mVS 135 9 Unknown 2.632 mVS 153 10 Ethylbenzene 175.3 ppb 217 11 M&P-Xylene 690.6 ppb 234  228 10  286  314  Notes soil sample sample # 28 1 to 3 ft
7 Toluene 292.2 ppb 107 8 Unknown 8.163 mVS 135 9 Unknown 2.632 mVS 153 10 Ethylbenzene 175.3 ppb 217 11 M&P-Xylene 690.6 ppb 234  228 10  Notes soil sample sample # 28 1 to 3 ft
7 Toluene 292.2 ppb 107 8 Unknown 8.163 mVS 135 9 Unknown 2.632 mVS 153 10 Ethylbenzene 175.3 ppb 217 11 M&P-Xylene 690.6 ppb 234  228 10  Notes soil sample sample # 28 1 to 3 ft
8 Unknown 8.163 mVS 135 9 Unknown 2.632 mVS 153 10 Ethylbenzene 175.3 ppb 217 11 M&P-Xylene 690.6 ppb 234  228 10  285  Notes  soil sample sample # 28 1 to 3 ft
9 Unknown 2.632 mVS 153 10 Ethylbenzene 175.3 ppb 217 11 M&P-Xylene 690.6 ppb 234  228 10 25 Notes  soil sample sample # 28 1 to 3 ft
200 10 Ethylbenzene 175.3 ppb 217 11 M&P-Xylene 690.6 ppb 234 228 10 285 Notes  Soil sample sample # 28 1 to 3 ft
228 10 25 10 285 285 314 Notes soil sample sample # 28 1 to 3 ft
228 10 25
228 10 25
285  Notes  soil sample sample # 28 1 to 3 ft
255 285 Notes soil sample sample # 28 1 to 3 ft
255 285 Notes soil sample sample # 28 1 to 3 ft
285  Notes  soil sample  sample # 28 1 to 3 ft
285  Notes  soil sample  sample # 28 1 to 3 ft
285  285  Notes  soil sample  sample # 28 1 to 3 ft
314 Notes soil sample sample # 28 1 to 3 ft
314 Notes soil sample sample # 28 1 to 3 ft
314 Notes soil sample sample # 28 1 to 3 ft
314 Notes soil sample sample # 28 1 to 3 ft
314 Notes soil sample sample # 28 1 to 3 ft
314 Notes soil sample sample # 28 1 to 3 ft
314 Notes soil sample sample # 28 1 to 3 ft
soil sample sample # 28 1 to 3 ft
soil sample sample # 28 1 to 3 ft
soil sample sample # 28 1 to 3 ft
soil sample sample # 28 1 to 3 ft
soil sample sample # 28 1 to 3 ft
sample # 28 1 to 3 ft
342 water sample vol. ****ml
temp. of sample 28 c
To built per it for it are not to the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first
37 1
1400

ene.	ysis.	33 XI Y	1054	Lil.	r un c	tion Analysis Report
0	2		.6 .(x	8 10	10 mV)	Time Printed: Aug 17,93 12:17 Sample Time: Aug 17,93 12:09
	<del></del>					Method
28						Slope Up 3.000 mV/Sec
_ <	<u></u>					Slope Down 3.000 mV/Sec
سمر ا		<del>=</del>	•			Min Area 1.000 mVSec
1 5-						Min Height 0.000 mV
57/-		3 <b>-</b> ∴L				Analysis Delay 45.0 sec
-	<u></u>			•	•	Window Percent 35.0 %
						Det Flow 10 ml/min
سر) ا		·		•		B/F Flow 10 ml/min
85			•			Aux Flow O ml/min
		•	•	•	•	Oven Temp 45 C
	آپر <del>د</del> ے					Amb Temp 32 C
-   - <		•	•	• •		Max Gain 1000
1.46			<b>.</b> ,			i i
1114		<u> </u>	· .	•		(
1 K						Peak Report
1 1	>_	•	•			Pk Compound Name Area/Conc R.T.
	8					1 Unknown 108.3 mVS 48.4
146	9					2 Benzene 127.8 ppb 56.2
)						3 Unknown 175.9 mVS 61.0
1 1/1	.0		•			4 Unknown 312.7 mVS 69.0
						5 Unknown 86.72 mVS 85.3
1.71					•	6 Unknown 92.86 mVS 92.9
A. 1.						7 Toluene 2.069 ppm 106.6
1.1			•			8 Unknown 93.41 mVS 126.5
1 1						9 Unknown 50.82 mVS 134.1
200						10 Unknown 58.33 mVS 145.4
) ).	.2					11 Unknown 7.586 mVS 173.6
						12 Unknown 106.7 mVS 201.8
1 1					•	13 Ethylbenzene 339.1 ppb 219.6
228	13					14 M&P-Xylene
	•		• •	•	•	15 O-Xylene 292.4 ppb 268.8
<u> </u>   <u>}</u> 1	4					
1 1/		•	•	•		
25/7						
	•			-	•	
I this	i	•	•	•		
285						
	•	•	•	•	•	
		•	•	•		
3:14						Notes
\ \frac{1}{2} \dots	•	•		•	•	soil sample
						sample # 28 3 to 5 ft
1 1		•	•	•		soil volume 50g
342						water sanple vol. ****ml
13.72	•			•	•	temp. of sample 28 c
						cemba or sembre vo c
		•	•			·
371					•	
			•			
440						
		<del></del>				

	err A so T		<del></del>				
Q	22		4	6	8	1.0	Time Printed: Aug 17,93 12:33
				( x	1.0	(Vm (	Sample Time: Aug 17,93 12:24
		•		•		•	Method
28							Slope Up 3.000 mV/Sec
\		٠	•	٠	•		Slope Down 3.000 mV/Sec
		3					Min Area 1.000 mVSec
	سمسمسم	-		•			Min Height 0.000 mV
l	<u> </u>	<b>.</b> .					(
57	<b>-</b>	1.	•		•		Analysis Delay 45.0 sec
			<u> </u>				Window Percent 35.0 %
		<u> </u>	<u></u> _	<b>_</b>			Det Flow 10 ml/min
				- 4			B/F Flow 10 ml/min
85							Aux Flow O ml/min
		5	•	•	•		Oven Temp 45 C
	<b>&gt;</b> ₹						Amb Temp 32 C
'	_<	_		•		•	Max Gain 1000
11	4						Analysis Time 400.0 sec
" "	·		. ′	•	•		Peak Report
	_(						Pk Compound Name Area/Conc R.T.
-	<b>&gt;</b>	•		•		•	1 Unknown 86.57 mVS 48.7
, ,	ವ್ರ [ಿ] ್ದ						2 Benzene 106.6 ppb 56.8
14	₹ "		•	•	•		
1 /	2						1
.	<b>J</b> 10 -			•		•	
1.7				•	•		6 Unknown 77.30 mVS 93.3
	L.L						7 Toluene 1.803 ppm 106.9
[. ]	<b>\</b>						8 Unknown 84.00 mVS 126.9
	1						9 Unknown 41.36 mVS 134.9
20	d			_	_		10 Unknown 51.92 mVS 145.4
	h2	•	•	•	•		11 Unknown 6.616 mVS 173.4
	/						12 Unknown 85.82 mVS 201.0
1	{	•		•		•	13 Ethylbenzene 223.5 ppb 219.2
22	B 13						14 M&P-Xylene 510.7 ppb 234.2
1	τ	•	•	•	•		15 O-Xylene 81.76 ppb 270.6
]	)14						the second section and the second section to the second section and second section are second sections.
-	1	•		٠			
	I.,						
25	<i>.</i>			•	•		
	<b>;</b>						
.							
1 1	ti 5						
28	5 .						
		-	•				
		_					
1	İ	•		•		-	
31	4						Notes
" "	• •	•	•	•	•	•	soil sample
							sample # 28 5 to 7 ft
		•		•		•	soil volume 50g
ار پر.	<b>(</b> 2)						water sample vol. ****ml
34	<i>i.</i>		•				
							temp. of sample 28 c
						•	
37	1.						
	•	•	•	-	-	•	
						_	
		•		•		•	
40	0						
1,4		•	•	•	•	•	
							<u> </u>

f-1f1 -	alysis	27 J	.)	1000	Oto	r carre	lion Analysis Keport
a	2		4	.6 .(x	8 10	10 mV)	Time Printed: Aug 17,93 12:51 Sample Time: Aug 17,93 12:42
	~						Method
28							Slope Up 3.000 mV/Sec
		•	•		•	•	Slope Down 3.000 mV/Sec
İ		<b>-</b>					Min Area 1.000 mVSec
	ستستسم	•		•	•		Min Height 0.000 mV
ļ,,	<u></u>	=.					Analysis Delay 45.0 sec
57	-	· .l.					1
$\perp$	<del>}</del>		<del></del>				
1 7		<del></del>					Det Flow 10 ml/min
1 1				4			B/F Flow 10 ml/min
85							Aux Flow O ml/min
1 L		5	-	•	•	-	Oven Temp 45 C
							Amb Temp 33 C
1 +	< <u>_</u> _	·		•	•		Max Gain 1000
11		_		<b>&gt;</b> ""			Analysis Time 400.0 sec
1-4			· -		•	• .	Peak Report
1 +	<b>-</b> (						Pk Compound Name Area/Conc R.T.
	<b>`</b> `	•		•	•		1
-							1 Unknown 114.7 mVS 48.8
14	<b>2/</b> 9 -						2 Benzene 150.6 ppb 56.7
	)						3 Unknown 194.5 mVS 61.4
	10						4 Unknown 356.8 mVS 69.4
	1						5 Unknown 126.9 mVS 85.8
117	41.						6 Unknown 128.5 mVS 93.4
	}	•	•		•	•	7 Toluene 2.650 ppm 107.0
1 +	11						8 Unknown 161.8 mVS 127.2
	7	•		•	•		9 Unknown 100.5 mVS 134.4
20	$l_{\alpha}$						10 Unknown 207.9 mVS 145.8
124	12				•	•	i e
	122						
	(			•	•		12 Ethylbenzene 5.861 ppm 201.0
1 1							13 O-Xylene 283.7 ppb 361.0
22	. 8					•	14 Unknown 212.9 mVS 369.0
25	7						
1 1	•	•	-		•	•	
		•		•	•		
28	ca.						
1-4			•		•	•	
		•		•			
	4						blb
34	4 .		-			•	Notes
							soil sample
							sample # 28 7 to 9 ft
							soil volume 50g
34	2			_		_	water sanple vol. ****ml
1	•	•	•	•	•	•	temp, of sample 28 c
		•		•	•		
37	d 13						
124	ត្រូវ ពី រៈ១	•				•	
	<b>1.</b> ***						
	¥	•		•	•		
440	Ο.						
1 1							1

3 Unknown 104.8 mVS 61. 4 Unknown 187.8 mVS 69. 5 Unknown 41.45 mVS 85. 6 Unknown 49.43 mVS 92. 7 Toluene 1.363 ppm 106. 8 Unknown 44.62 mVS 126. 9 Unknown 29.49 mVS 134. 10 Ethylbenzene 310.7 ppb 145. 11 Unknown 0.668 mVS 171. 12 Unknown 2.679 mVS 173. 13 Unknown 42.88 mVS 199. 14 Ethylbenzene 130.3 ppb 217.					3.00.			tion maiysis keport
Slope Up	9	:1	· ·	2				Sample Time: Aug 17,93 12:59
Slope Down   3.000 mV/Sec   Min Area   1.000 mV/Sec   Min Area   1.000 mV/Sec   Min Area   1.000 mV/Sec   Min Height   0.000 mV   Analysis Delay   45.0 sec   Window Percent   35.0 %   Det Flow   10 ml/min   B/F Flow   10 ml/min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Min   Mi	128			<b></b>				
Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec Peak Report 1 Unknown 65.47 mVS 48. 2 Benzene 76.76 ppb 56. 3 Unknown 104.8 mVS 46. 3 Unknown 187.8 mVS 46. 3 Unknown 187.8 mVS 46. 3 Unknown 187.8 mVS 46. 4 Unknown 49.43 mVS 85. 4 Unknown 49.43 mVS 85. 4 Unknown 49.43 mVS 85. 4 Unknown 49.43 mVS 92. 7 Toluene 1.363 ppm 106. 8 Unknown 49.43 mVS 92. 9 Unknown 44.62 mVS 126. 9 Unknown 47.47 mVS 134. 10 Ethylbenzene 310.7 ppb 145. 11 Unknown 0.668 mVS 171. 12 Unknown 0.668 mVS 171. 12 Unknown 42.88 mVS 179. 13 Unknown 42.88 mVS 179. 14 Ethylbenzene 130.3 ppb 217. 15 M&P-Xylene 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 232. 345.4 ppb 2	12.0			-				
Min Height	1			<b>-</b>				
Min Height	-	,,,,,,,,,						Min Area 1.000 mVSec
Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec  Peak Report Fk Compound Name Area/Conc R.T Unknown 65.47 mVS 46. Unknown 104.8 mVS 61. Unknown 104.8 mVS 61. Unknown 49.43 mVS 62. Unknown 49.43 mVS 65. Unknown 49.43 mVS 65. Unknown 49.43 mVS 65. Unknown 49.43 mVS 85. Unknown 27.49 mVS 136. Unknown 27.49 mVS 126. Unknown 27.49 mVS 136. Unknown 27.49 mVS 136. Unknown 28.47 mVS 126. Unknown 27.49 mVS 137. Unknown 28.47 mVS 173. Unknown 28.47 mVS 173. Unknown 28.47 mVS 173. Unknown 28.47 mVS 173. Unknown 28.47 mVS 173. Unknown 42.88 mVS 199. Unknown 42.88 mVS 199. Unknown 42.89 mVS 173. Unknown 42.89 mVS 173. Unknown 42.89 mVS 173. Unknown 42.89 mVS 173. Unknown 42.89 mVS 173. Unknown 42.89 mVS 173. Unknown 43.45 mVS 126. Unknown 26.47 mVS 136. Unknown 27.49 mVS 136. Unknown 27.49 mVS 136. Unknown 28.49 mVS 173. Unknown 28.49 mVS 173. Unknown 42.89 mVS 173. Unknown 42.89 mVS 173. Unknown 42.89 mVS 173. Unknown 42.89 mVS 173. Unknown 42.89 mVS 173. Unknown 43.45 mVS 252.  285		<b>}</b>						1
Window Percent   35.0 %	57	<del></del>		1.				
Det Flow		<del></del>	<del>-</del>			•	•	•
85	1 1							
Aux Flow						<del></del>	ι	
11	185	_					,	
Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec  Feak Report Pk Compound Name Area/Conc R.T 1 Unknown 65.47 mVS 48. 2 Benzene 76.76 ppb 56. 3 Unknown 104.8 mVS 61. 4 Unknown 187.8 mVS 69. 5 Unknown 41.45 mVS 85. 4 Unknown 49.43 mVS 92. 7 Toluene 1.363 ppm 106. 8 Unknown 44.62 mVS 126. 9 Unknown 29.49 mVS 134. 10 Ethylbenzene 310.7 ppb 145. 11 Unknown 0.668 mVS 171. 12 Unknown 2.669 mVS 173. 13 Unknown 42.88 mVS 199. 14 Ethylbenzene 130.3 ppb 217. 15 M&F-Xylene 345.4 ppb 232.  Notes  sample # 28 9 to 11 ft soil volume 50g water sample vol. *****ml temp. of sample 28 c			m;	•			•	
Max Gain	1 7		 ./					•
Analysis Time 400.0 sec  Peak Report Peak Report Pk Compound Name Area/Conc R.T 1 Unknown 65.47 mVS 48. 2 Benzene 76.76 ppb 56. 3 Unknown 104.8 mVS 61. 4 Unknown 187.8 mVS 69. 5 Unknown 41.45 mVS 85. 6 Unknown 49.43 mVS 92. 7 Toluene 1.363 ppm 106. 8 Unknown 44.62 mVS 126. 9 Unknown 29.49 mVS 124. 10 Ethylbenzene 310.7 ppb 145. 11 Unknown 0.668 mVS 171. 12 Unknown 2.679 mVS 173. 13 Unknown 2.679 mVS 173. 13 Unknown 42.88 mVS 199. 14 Ethylbenzene 130.3 ppb 217. 15 M&P-Xylene 345.4 ppb 232.  Notes  Soil sample sample # 28 9 to 11 ft soil volume 50g water sanple vol. *****ml temp. of sample 28 c	1 .		Ċ.					
Peak Report   Pk Compound Name   Area/Conc   R.T	11							Max Gain 1000
Peak Report Pk Compound Name Area/Conc R.T Unknown 65.47 mVS 48. Benzene 76.76 ppb 56. Unknown 104.8 mVS 61. Unknown 104.8 mVS 69. Unknown 41.45 mVS 85. Unknown 41.45 mVS 85. Unknown 49.43 mVS 92. Toluene 1.363 ppm 106. Unknown 44.62 mVS 126. Unknown 29.49 mVS 134. Unknown 29.49 mVS 134. Unknown 29.49 mVS 171. Unknown 2.679 mVS 173. Unknown 2.679 mVS 173. Unknown 42.88 mVS 171. Unknown 2.679 mVS 173. Unknown 42.88 mVS 171. Unknown 42.88 mVS 172. Unknown 345.49 ppb 232.  Physical Section 1 of the sample # 28 9 to 11 ft soil volume 50g water sample vol. *****ml temp. of sample 28 c	114	سرر ا		<u> </u>		7	_	A 19 4
Fk Compound Name	L				•	•	•	
1 Unknown 65.47 mVS 48. 2 Benzene 76.76 ppb 56. 3 Unknown 1004.8 mVS 61. 4 Unknown 187.8 mVS 69. 5 Unknown 41.45 mVS 85. 6 Unknown 49.43 mVS 92. 7 Toluene 1.363 ppm 106. 8 Unknown 44.62 mVS 126. 9 Unknown 29.49 mVS 134. 10 Ethylbenzene 310.7 ppb 173. 11 Unknown 0.668 mVS 171. 12 Unknown 42.88 mVS 197. 15 M&P-Xylene 345.4 ppb 232.  285  314  Notes  soil sample sample # 28 9 to 11 ft soil volume 50g water sanple vol. *****ml temp. of sample 28 c	1.	4			_			110. 9
2 Benzene 76.76 ppb 56. 3 Unknown 104.8 mVs 61. 4 Unknown 187.8 mVs 69. 5 Unknown 41.45 mVs 85. 4 Unknown 49.43 mVs 92. 7 Toluene 1.363 ppm 106. 8 Unknown 44.62 mVs 126. 9 Unknown 29.49 mVs 134. 10 Ethytbenzene 310.7 ppb 145. 11 Unknown 2.679 mVs 173. 13 Unknown 42.88 mVs 199. 14 14 14 14 14 15 mVs 85. 15 m&P-Xylene 310.3 ppb 217. 15 m&P-Xylene 345.4 ppb 232.  Notes  soil sample sample # 28 9 to 11 ft soil volume 50g water sanple vol. *****ml temp. of sample 28 c	1 +	-(8			-	:		
10   10   104.8 mVS   61.	142	9						1010
10	1 5	<b>`</b>	•	•	•	•	-	1 Part ppb coat
17	1 (	60						LOTTO MYO GALL
6 Unknown 49.43 mVS 92. 7 Toluene 1.363 ppm 106. 8 Unknown 44.62 mVS 126. 9 Unknown 29.49 mVS 134. 10 Ethylbenzene 310.7 ppb 145. 11 Unknown 0.668 mVS 171. 12 Unknown 2.679 mVS 173. 13 Unknown 42.88 mVS 199. 14 Ethylbenzene 130.3 ppb 217. 15 M&F-Xylene 345.4 ppb 232.  257  285  314  Notes  soil sample sample # 28 9 to 11 ft soil volume 50g water sanple vol. *****ml temp. of sample 28 c	1 1	,	•		•	•		10 10 my 0 my 0 my 1 my 1 my 1 my 1 my 1
Toluene 1.363 ppm 106.  Unknown 44.62 mVs 126.  Unknown 29.49 mVs 134.  10 Ethylbenzene 310.7 ppb 145.  11 Unknown 2.679 mVs 173.  12 Unknown 42.88 mVs 199.  14 Ethylbenzene 130.3 ppb 217.  15 M&F-Xylene 345.4 ppb 232.  Notes  soil sample sample sample # 28 9 to 11 ft soil volume 50g water sanple vol. ****ml temp. of sample 28 c	ارار و ا							The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
7 Toluene 1.363 ppm 106. 8 Unknown 44.62 mVS 126. 9 Unknown 29.49 mVS 134. 10 Ethylbenzene 310.7 ppb 145. 11 Unknown 0.668 mVS 171. 12 Unknown 2.679 mVS 173. 13 Unknown 42.88 mVS 199. 14 14 Ethylbenzene 130.3 ppb 217. 15 M&F-Xylene 345.4 ppb 232.  285  314 Notes  soil sample sample # 28 9 to 11 ft soil volume 50g water sample vol. *****ml temp. of sample 28 c	1-18		-					6 Unknown 49.43 mVS 92.9
8 Unknown 44.62 mVS 126. 9 Unknown 29.49 mVS 134. 10 Ethylbenzene 310.7 ppb 145. 11 Unknown 0.668 mVS 171. 12 Unknown 2.679 mVS 173. 13 Unknown 42.88 mVS 199. 14 Ethylbenzene 130.3 ppb 217. 15 M&F-Xylene 345.4 ppb 232.  285  314  Notes  soil sample sample # 28 9 to 11 ft soil volume 50g water sanple vol. ******ml temp. of sample 28 c	1	.L.						7 Toluene 1.363 ppm 106.5
9 Unknown 29.49 mVS 134. 10 Ethylbenzene 310.7 ppb 145. 11 Unknown 0.668 mVS 171. 12 Unknown 2.679 mVS 173. 13 Unknown 42.88 mVS 199. 14 Ethylbenzene 130.3 ppb 217. 15 M&P-Xylene 345.4 ppb 232.  285  314 Notes  soil sample sample # 28 9 to 11 ft soil volume 50g water sanple vol. *****ml temp. of sample 28 c	1.1	2			•			
10 Ethylbenzene 310.7 ppb 145. 11 Unknown 0.668 mVS 171. 12 Unknown 2.679 mVS 173. 13 Unknown 42.88 mVS 199. 14 Ethylbenzene 130.3 ppb 217. 15 M&F-Xylene 345.4 ppb 232.  285  314 Notes  soil sample sample # 28 9 to 11 ft soil volume 50g water sanple vol. ****ml temp. of sample 28 c		L				-		
11 Unknown 0.668 mVS 171. 12 Unknown 2.679 mVS 173. 13 Unknown 42.88 mVS 199. 14 Ethylbenzene 130.3 ppb 217. 15 M&P-Xylene 345.4 ppb 232.  Notes soil sample sample # 28 9 to 11 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c	[20þ	1						(
12 Unknown 2.679 mVS 173. 13 Unknown 42.88 mVS 199. 14 Ethylbenzene 130.3 ppb 217. 15 M8F-Xylene 345.4 ppb 232.  285  314 Notes  Soil sample Sample # 28 9 to 11 ft Soil volume 50g water sample vol. ****ml temp. of sample 28 c	1 1.	<b>1</b> .3	٠	•.	•	•	•	
13 Unknown 42.88 mVS 199. 14		•						1 May 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1
14 Ethylbenzene 130.3 ppb 217. 15 M&P-Xylene 345.4 ppb 232.  285  314 Notes  soil sample sample # 28 9 to 11 ft soil volume 50g water sample vol. *****ml temp. of sample 28 c	1 .		•		•	•		
15 M&P-Xylene 345.4 ppb 232.  285  314  Notes  soil sample sample # 28 9 to 11 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c	220	1 🕰						
Notes  Soil sample  Sample # 28 9 to 11 ft  Soil volume 50g  Water sample vol. ****ml  temp. of sample 28 c	11		•	•		•		
Notes  Soil sample sample # 28 9 to 11 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c	)	l Ge						15 M&F-Xylene 345.4 ppb 232.8
Notes  Soil sample  sample # 28 9 to 11 ft  soil volume 50g  water sample vol. ****ml  temp. of sample 28 c	1 1/	d. w ^f	•		,	•		
Notes  Soil sample  sample # 28 9 to 11 ft  soil volume 50g  water sample vol. ****ml  temp. of sample 28 c	27.5							
Notes  soil sample  sample # 28 9 to 11 ft  soil volume 50g  water sample vol. ****ml  temp. of sample 28 c	12.01							<b>!</b>
Notes  soil sample sample # 28 9 to 11 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c	1 1						į	
Notes  soil sample  sample # 28 9 to 11 ft  soil volume 50g  water sample vol. ****ml  temp. of sample 28 c	-							· ·
Notes  soil sample  sample # 28 9 to 11 ft  soil volume 50g  water sample vol. ****ml  temp. of sample 28 c	1 1							
soil sample sample # 28 9 to 11 ft soil volume 50g water sample vol. ****m1 temp. of sample 28 c	28 <b> </b> 5		_					
soil sample sample # 28 9 to 11 ft soil volume 50g water sample vol. ****m1 temp. of sample 28 c		•	-		•	•	.	
soil sample sample # 28 9 to 11 ft soil volume 50g water sample vol. ****m1 temp. of sample 28 c	] ] .		_					
soil sample sample # 28 9 to 11 ft soil volume 50g water sample vol. ****m1 temp. of sample 28 c	]		•	•		•	İ	
soil sample sample # 28 9 to 11 ft soil volume 50g water sample vol. ****m1 temp. of sample 28 c	314						ŀ	h.l. m.d
sample # 28 9 to 11 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c  371		•	•		•	•	.	··· · · · ·
soil volume 50g water sample vol. ****ml temp. of sample 28 c							1	
water sample vol. ****ml temp. of sample 28 c	1 1		•	•		•	1	
temp. of sample 28 c							]	
temp. of sample 28 c	342						.	
371							ĺ	
							1	·
4do	371						-	
4do		•		•	•	•	.	
400								
4do	1		•	•		•	Ì	
	4d0						1	
<u> </u>	7"	•		•	•	•	. ]	
					<del></del>		1	

1-11 1 4							CLOT, Piricaly Data (Capacita
9	4	4	8	12	16	20	Time Printed: Aug 17,93 13:24
				(x	1000	uV)	Sample Time: Aug 17,93 13:14
							Me thod
28					<del></del>		Slope Up 3.000 mV/Sec
	•	==		•		•	Slope Down 3.000 mV/Sec
			<del></del>				Min Area 1.000 mVSec
		•	<u>.</u>	•	•		Min Height 0.000 mV
57			<b>&gt;</b> 4				Analysis Delay 45.0 sec
137		٠ 🛌 🔻		•		•	Window Percent 35.0 %
			<b>=</b>				Det Flow 10 ml/min
.						,,	
	·					eş	
85			. , .				Aux Flow O ml/min
	5						Oven Temp 45 C
	كالمسر						Amb Temp 34 C
					_		Max Gain 1000
111	4				ر ح		Analysis Time 400.0 sec
	سنسم			-	•	•	Peak Report
	1			_			Pk Compound Name Area/Conc R.T.
1 1	<b>∦</b> 8		•	•	•		1 Unknown 20.76 mVS 48.5
14	<i>y</i>						2 Benzene 33.00 ppb 55.2
"	7			•		•	3 Unknown 22.47 mVS 61.2
$\downarrow h$	<b>[</b>						4 Unknown 73.28 mVS 69.3
1	1		•	•	•		5 Unknown 8.608 mVS 85.6
17	·i						6 Unknown 11.74 mVS 92.9
1.7				•		•	7 Toluene 651.9 ppb 106.5
	1. O						_ <b>,</b>
·				•	•		l ""
	l						
20	<b>∠</b> .						10 Unknown 0.250 mVS 171.6
	711						11 Unknown 10.56 mVS 195.8
	[		•				12 Ethylbenzene 63.86 ppb 217.6
]	}						13 M&P-Xylene 248.7 ppb 234.0
22	<b>\$</b> :1.:	23					
	1		•	•		•	
	13						
1 1	1		•	•	•		
25	7						
	•			•		•	
{							
			•	•	•		
20	LEE						
28				•		•	
1	-						
34	4 .			•			Notes
							soil sample
							sample # 28 11to 13 ft
							soil volume 50g
34	2						water sample vol. ****ml
	•			•		•	temp. of sample 28 c
1 1							
			•	•	•		
37	1						
131	٠.			•			
						•	
	_						
40	Ο.						
<u> </u>							

q	4	8	12	1.6	20	Time Printed: Aug 17,93 13:40
			,(x	1000	uV)	Sample Time: Aug 17,93 13:31 Method
28						Slope Up 3.000 mV/Sec
	<u>۔</u> سے		•	•	•	Slope Down 3.000 mV/Sec
						Min Area 1.000 mVSec
'	<i></i>	•	•	·		Min Height 0.000 mV
57		1				Analysis Delay 45.0 sec
	<del>  5</del> 2		•	•	•	Window Fercent 35.0 %
1 .						Det Flow 10 ml/min
	,,,,,,,,,,,,,,,,				4	B/F Flow 10 ml/min
85						Aux Flow O ml/min
	<b>∂</b> 5		·		•	Oven Temp 45 C
	چر					Amb Temp 34 C
						Max Gain 1000
114					7.	Analysis Time 400.0 sec
						Peak Report
]. [	ز					Pk Compound Name Area/Conc R.T.
	Thomas .					1 Unknown 14.47 mVS 49.2
14	8				•	2 Benzene 26.50 ppb 54.6
						3 Unknown 9.076 mVS 61.4
.						4 Unknown 77.79 mVS 69.2
	-					5 Unknown 2.638 mVS 85.4
17					•	6 Unknown 6.032 mVS 92.6
	,					7 Toluene 638.6 ppb 106.2
.		•	•	•		8 Unknown 19.08 mVS 133.7 9 Unknown 0.691 mVS 172.2
1_1						
20	10					10 Unknown 4.298 mVS 193.2
1						11 Ethylbenzene 59.91 ppb 215.6
1 .	۱., .,	•	•	•		12 M&P-Xylene 231.5 ppb 231.6
1	11					•
22	<b>`</b>					
	/12					
1 .	.l. 2	•	•	•		
257	,					
1-1			٠		•	
		•	٠	•		
28	i					
	•		•		•	
1						
		•	•	•		
314	ļ					Notes
	•		•		•	soil sample
			_			sample # 28 13 to 15 ft
		•	•	•		soil volume 50g
342	2		_		_	water sample vol. ****ml
	•		•		•	temp. of sample 28 c
371	L .					
	•	•	•	·	•	
490						
<u></u>						

9	ą	8	12	16 1000	20	Time Printed: Aug 17,93 10:54 Sample Time: Aug 17,93 10:45 Method
57						Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C
114	₹6 		⇒ 7			Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T.
14	8				٠	1 Unknown 7.150 mVS 49.2 2 Benzene 86.20 ppb 54.8 3 Unknown 18.05 mVS 61.4 4 Unknown 55.34 mVS 69.6 5 Unknown 2.492 mVS 85.8
200						6 Unknown 8.041 mVS 93.6 7 Toluene 494.4 ppb 107.0 8 Unknown 4.510 mVS 135.4 9 Unknown 2.419 mVS 153.2
200	· _10					10 Ethylbenzene 325.4 ppb 217.6 11 M&F-Xylene 1.108 ppm 233.6
257		)	· .			
285						
314						Notes water sample sample # 28 soil volume **g
342	·			· ·	·	water sanple vol. 42.8ml temp. of sample 28 c
371					٠	
	•	· ·	•	• •	•	

		4444				cron energas veborc
9	2	4	6	8	10 mV)	Time Printed: Aug 17,93 14:10 Sample Time: Aug 17,93 14:01
		•	.(x	roó	mv)	Method
285						Slope Up 3.000 mV/Sec
1	•		•		•	Slope Down 3.000 mV/Sec
مر	لم					Min Area 1.000 mVSec
سم: ا	,	•	•	•		Min Height 0.000 mV
157	_ا . <					Analysis Delay 45.0 sec
	مسر:"		•		•	Window Percent 35.0 %
-	ا وحميه					Det Flow 10 ml/min
سرا ا	۔ ﷺ حب	•	•	•		B/F Flow 10 ml/min
854						Aux Flow 0 ml/min
		-	. 4		•	Oven Temp 45 C
	<b>5</b> 5		•			Amb Temp 35 C
1 4	[ "	•	•	•	•	Max Gain 1000
114	) 6					Analysis Time 400.0 sec
1117	l is				•	Peak Report
1 17	_					Fk Compound Name Area/Conc R.T.
11	$\mathcal{S}_{\mathcal{T}}$	•	•	:		1 Unknown 281.8 mVS 48.2
142	7 á					2 Benzene 3.359 ppm 61.1
1 - 74	<b>S</b>		•	•		3 Unknown 791.9 mVS 68.5
1 4	10					4 Unknown 1.416 VSec 84.2
1 1/		•	•	•		5 Unknown 565.9 mVS 93.0
1 /1						6 Toluene 4.500 ppm 106.2
1-16	•		•		•	7 Unknown 1.018 VSec 126.5
$\parallel \parallel \parallel$	i					8 Unknown 520.4 mVS 134.0
'		•	•	•		9 Unknown 510.6 mVS 144.8
200	11					10 Unknown 333.7 mVS 152.2
1-1	]12		•		•	11 Unknown 1.321 VSec 190.4
1/	/ ··· /··					12 Unknown 882.2 mVS 200.2
	\	•	•	•		13 Ethylbenzene 10.67 FPM1 217.4
229	13					14 M&P-Xylene 12.95 PFM1 240.0
IT		•	•		•	15 O-Xylene 5.485 ppm 267.4
						16 Unknown 570.1 mVS 290.9
	14	•	•	•		17 Unknown 231.6 mVS 332.5
257						
1 1	•		•		•	
/	15	. (	•	•		
285						
	•		•		•	
	6					
1 11		•	•	•		PPM1 = Alarm 1 PPM2 = Alarm2
314	•					Notes
	•		•		•	soil sample
1						sample # 29 1 to 3 ft
1		•	•	•		soil volume 🕬
342	1.7					water sample vol. <del>42:7</del> ml
	•		•		•	temp. of sample 28 c
			_			
		-	•	•		
371						
	•		•		•	
				_		
		•	•	•		
400	)					
	•		•		·	

		33.44			or bu		T
9	4		8	1.2	1.6	20	Time Printed: Aug 17,93 14:27
				.(x	10	mV)	Sample Time: Aug 17,93 14:18
حرب							Method
28							Slope Up 3.000 mV/Sec
		•	•	•		•	Slope Down 3.000 mV/Sec
~_	٧						Min Area 1.000 mVSec
سسم .		•		•	•		Min Height 0.000 mV
	; <del>-</del> -:						Analysis Delay 45.0 sec
2/2	— <u></u>						1
							Window Percent 35.0 %
		<u> Հ</u> 3					Det Flow 10 ml/min
سسمر		4					B/F Flow 10 ml/min
85							Aux Flow O ml/min
	•					•	Oven Temp 45 C
	5.						Amb Temp 35 C
[/	O	•		•	•		1
\ \							
114-	?						Analysis Time 400.0 sec
<b>⊢</b> €	3						Peak Report
	~~~~	~,		_			Pk Compound Name Area/Conc R.T.
	<_	9		•	•		1 Unknown 97.83 mVS 47.8
142	تسمير	10					2 Benzene 524.9 ppb 57.5
	ζ.,	'nΛ		•			1
<u> </u>	<i>2</i> 1. 1.						
الر [.	LZ						
11							5 Unknown 575.4 mVS 85.0
174							6 Unknown 234.8 mVS 92.4
- 11	•	•	•	•	•	•	7 Toluene 698.7 ppb 104.6
							8 Unknown 121.8 mVS 112.6
`	•	•		•	•		9 Unknown 446.8 mVS 125.7
200	-)						10 Unknown 370.0 mVS 133.2
2do -	13	٠.					
	/						11 Unknown 213.1 mVS 143.7
	•••						12 Unknown 160.9 mVS 151.4
- 1	\supset 1	4					13 Unknown 754.3 mVS 189.0
228/	-						14 Ethylbenzene 6.122 ppm 215.8
	•	•	•	•		•	15 M&F-Xylene 3.817 ppm 234.4
}.	L 5						16 O-Xylene 1.975 ppm 265.8
$\dashv I$	t. s.l	•		•			
							W
257							18 Unknown 116.7 mVS 331.2
14							
l h	5						
-1f		•		•	•		
284							
-4-/			•			•	
}_							
] /L	7						
-1f							
3:14							Notes
¥	•	•	•	•		•	soil sample
-							sample # 29 3 to 5 ft
11		٠		•	•		soil volume 50g
							· · · · · · · · · · · · · · · · · · ·
34E	18						water sample vol. ****ml
1							temp. of sample 2 c
ii I							
ı							
371							
	•	•	٠	•		•	
		٠		٠	•		
							1
4 1 0							\{

O 2 4 6 8 10 Time Frinted: Aug 17,9 (x 10 mV) Sample Time: Aug 17,9 Method Slope Up 3.000 Slope Down 3.000	
(x 10 mV) Sample Time: Aug 17,9 Method Slope Up 3.000	
Slope Up 3.000	
28 Slope Up 3.000	
	mV/Sec
1 Wilman Habita 5.100.	
Min Area 1.000	
Min Height 0.000	
57 Analysis Delay 45.0	
Window Percent 35.0) % ·
Det Flow 10) ml/min
3 B/F Flow 10	
85 Aux Flow	
5 Amb Temp 36	
Max Gain 1000	
Analysis Time 400.0) sec
Feak Report	
Pk Compound Name Area/	
1 Unknown 64.94	
142 8 2 Benzene 803.2	
3 Unknown 280.5	• •
4 Unknown 327.7	
	3 ppm 105.8
\$ 7 \$	2 mVS 125.4
	9 mVS 144.0
200 /10 10 Unknown 294.2	2 mVS 189.4
11 Ethylbenzene 1.478	3 ppm 216.0
12 M&P-Xylene 1.509	• •
13 0-Xylene 662.6	
	2 mVS 290.6
	3 mVS 332.0
1	V nixther want
$1 \downarrow 1^{2}$	
2時	
113	
285	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 1/ " · · · · · · · · · · · · · · · · · ·	
314 Notes	
soil sample	
sample # 29 5 to 7 ft	
soil volume 50g	
342 15 water sample vol. ****	n 3.
temp. of sample 2 % c	
371	
1	
440	

Slope Down 3.000 Min Area 1.000 Min Height 0.000 Analysis Delay 45.0 Window Percent 35.0 Det Flow 10 B/F Flow 10 Aux Flow 0 Oven Temp 45	15:00 14:51 mV/Sec mV/Sec
Method Slope Up	mV/Sec mV/Sec
Slope Up 3.000 Slope Down 3.000 Min Area 1.000 Min Height 0.000 Analysis Delay 45.0 Window Percent 35.0 Det Flow 10 Aux Flow 0 Oven Temp 45	mV/Sec
Slope Down 3.000 Min Area 1.000 Min Height 0.000 Analysis Delay 45.0 Window Percent 35.0 Det Flow 10 B/F Flow 10 Aux Flow 0 Oven Temp 45	mV/Sec
Min Area 1.000 Min Height 0.000 Analysis Delay 45.0 Window Percent 35.0 Det Flow 10 B/F Flow 10 Aux Flow 0 Oven Temp 45	
Min Height 0.000 Analysis Delay 45.0 Window Percent 35.0 Det Flow 10 B/F Flow 0 Aux Flow 0 Oven Temp 45	1 13°°
Analysis Delay 45.0 Window Percent 35.0 Det Flow 10 B/F Flow 10 Aux Flow 0 Oven Temp 45	mVSec
Window Percent 35.0 Det Flow 10	mV
Det Flow 10 B/F Flow 10 Aux Flow 0 Oven Temp 45	sec
85 Aux Flow 0 Oven Temp 45	n/ /u
Aux Flow 0 Oven Temp 45	ml/min
Oven Temp 45	ml/min
1 94.	ml/min
DA Amb Temp RA	C
1 4 m 1 mm 1 mm m	C
Max Gain 1000	
- The state of the	sec
Peak Report	
Pk Compound Name Area/Co	nc R.T.
1 Unknown 6.858 m	
142 9 2 Benzene 24.64 p	
3 Unknown 2.963 m	•
4 Unknown 25.22 m	
5 Unknown 5.515 m	
171 6 Unknown 2.859 m	
1""1"	pb 107.0
8 Unknown 4.649 m	*
1 A	VS 133.6
1 11	VS 191.4
11 Ethylbenzene 111.5 p	
12 M&P-Xylene 147.7 p	•
TY HOST WATER THAY IN	rputa Kasabal ni 119
lank 1	
226	
1 /12	
257	
285	
314 Notes	
soil sample	
sample # 29 11to 13ft	
soil volume 50g	
342 water sample vol. *****ml	
temp. of sample 28c	
371	
4do	

			?? * ? .!.				Citin Phiety Sis Nepon C
9	ŀ	4	8	1.22	1.6	20	Time Printed: Aug 17,93 13:55
				.(x	10	mV)	Sample Time: Aug 17,93 13:46
	ــــــــــــــــــــــــــــــــــــــ						Method
28	السمو (_	Slope Up 3.000 mV/Sec
	\geq			•		•	Slope Down 3.000 mV/Sec
	}						Min Area 1.000 mVSec
'	<u>_</u>		•	•	•		Min Height 0.000 mV
57	حسها	1.					Analysis Delay 45.0 sec
	1	•		•		•	Window Percent 35.0 %
	 						Det Flow 10 ml/min
	ا			4	•		B/F Flow 10 ml/min
85	V						Aux Flow O ml/min
	5	•	•	•	•	•	Oven Temp 45 C
	D6						Amb Temp 35 C
'	K	_	•	•	•		Max Gain 1000
1.1	4		٠,				Analysis Time 400.0 sec
"	سسنر		• •	•		•	Peak Report
							Pk Compound Name Area/Conc R.T.
	K		•	•	•	•	1 Unknown 68.20 mVS 48.6
14	()	8					2 Benzene 54.65 ppb 54.5
"	Υ			•		•	3 Unknown 7.022 mVS 60.8
							4 Unknown 564.9 mVS 69.3
	1		•	•	•		5 Unknown 1.200 mVS 84.8
17	1						6 Unknown 30.28 mVS 92.6
	9	•		•		•	7 Toluene 1.925 ppm 105.8
	ľ						8 Unknown 59.28 mVS 134.6
	ļ		•	•	•		9 Ethylbenzene 35-39 ppb 172.0
20	0	1.0					10 Unknown 0.324 mVS 191.2
۱ <u>۴</u> ۰۷	'	'r. 22		•		•	11 Ethylbenzene 29.05 ppb 216.0
							12 M&F-Xylene 139.8 ppb 233.6
	11		•	•	•		1 103 Ay 1 201 20 10 10 10 200 10 1
22							
4 A	ω .	•		•		·	
	12						
	T. X.L.		•	•	•		
25	,						
,	•			•			
	,						
	}		•	•	•		
28							
AL C	})	•		•			
	į						
	1		•	•	•		
	,						h Long de 200 200
31	i-+				• •		Notes
							water sample
	1		•	•			sample # 29
							soil volume **g
34	Z						water sample vol. 42.9ml
							temp. of sample 28 c
				•			
	1.						
37	7:L						
	1						
				-			
40	10	•					
L							

Analysis #4	10S+ GC Funct	ion Calibrant Report
0 4 8	12 16 20 (x 10 mV)	Time Printed: Aug 18,93 07:29 Sample Time: Aug 18,93 07:20 Method
287		Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec
5	- 1	Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min
85		B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C
114		Amb Temp 22 C Max Gain 1000 Analysis Time 400.0 sec
142		Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 999.9 ppb 52.3 2 Toluene 1.000 ppm 100.4 3 Ethylbenzene 999.9 ppb 203.2
171		3 Ethylbenzene 999.9 ppb 203.2 4 O-Xylene 1.000 ppm 260.8
3 .		
228		
25		
285		
314		Notes calibration sample # 1 ppm BTEX gas standard
342		soil volume 50g water sanple vol. ****ml temp. of sample 28c
371		
8691vsis:#6.	.108+ 66 Funct	ion Analysis Report
9 2 4	6 8 10 (x 10 mV)	Time Printed: Aug 18,93 07:50 Sample Time: Aug 18,93 07:33 Method
28		Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec

Analy	<u>ysls</u>	## (C)	LVST	C) C.	P COLL C.	n Hugrasta vahor
9	2	4	6 .(x	8 10	10 mV)	Time Printed: Aug 18,93 07:52 Sample Time: Aug 18,93 07:33
	_	•		•	•	Method
28						Slope Up 3.000 mV/Sec
*?	سسند			•	•	Slope Down 3.000 mV/Sec
						Min Area 1.000 mVSec
· /		•	•	•		Min Height 0.000 mV
, [Analysis Delay 45.0 sec
57 }_					•	Window Percent 35.0 %
1		.l.				Det Flow 10 ml/min
			•			B/F Flow 10 ml/min
Æ						2
85					•	113325
{3						
						Times Comp
Jan-	_					Max Gain 1000
11/2	>4					Analysis Time 400.0 sec
1	•	•	•	•		Peak Report
						Fk Compound Name Area/Conc R.T.
\						1 Benzene 354.6 ppb 54.6
142	5					2 Unknown 2.641 mVS 68.5
	٠	•	• •	•		3 Unknown 1.283 mVS 84.6
Ī		_				4 Toluene 389.7 ppb 107.2
- 1		•				5 Unknown 13.45 mVS 134.5
171						6 Ethylbenzene 169.0 ppb 215.0
)	•			•	•	7 M&F-Xylene 500.0 ppb 230.6
				•		8 O-Xylene 329.1 ppb 272.0
		•	•	•		
200						
7	•			•	•	
1		•	•	•		
odG.						
77				•	•	
Y		•	•	-		
257						
4/	-					
Ì						
1		•	•		•	
- III						
285						
1						
İ		•			•	
						Notes
314	•					calibration
						sample #.2ml of lug/ml BTEX
		•	•			soil volume 50g
,,,,						water sample vol. ****ml
342						water sample ope
						temp. of sample 28c
						.2ug/50g soil=4ug/kg
						90 benzene = lug/kg
371						100 toluene = lug/kg
						40 ethylben. = lug/kg
					•	70 t.xylene = lug/kg
400						

Analysis	5 97 J. V	1.00.00	1 ((1)) ()	tion whathers weboir
9 2		6 8 .(x 1000	10 uV)	Time Printed: Aug 18,93 08:43 Sample Time: Aug 18,93 08:36 Method
28 5				Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec
57		1.		Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min
85				B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 30 C
111				Max Gain 1000 Analysis Time 400.0 sec Peak Report
142				Fk Compound Name Area/Conc R.T. 1 Benzene 49.76 ppb 54.3
171				
200 .				
228				
257				
			٠	
265			•	
314				Notes zero check sample # soil volume **g
342				water sample vol. 40.0ml temp. of sample 28c
371				
400				

l q	ı	1.		22	3	4	ü	Time Printed: Aug 18,93 08:54
					.(x	100	mV)	Sample Time: Aug 18,93 08:45
1		_						Method
28	حر	مر ا						Slope Up 3.000 mV/Sec
		2						Slope Down 3.000 mV/Sec
	مسم							Min Area 1.000 mVSec
	}							Min Height 0.000 mV '
57	مسر			<u> </u>	1.			Analysis Delay 45.0 sec
		>						Window Percent 35.0 %
					-	 ,		Det Flow 10 ml/min
							_ 3	B/F Flow 10 ml/min
85	1							Aux Flow O ml/min
'	الحـــ							Oven Temp 45 C
		<u> </u>						Amb Temp 31 C
							,	Max Gain 1000
1.1	4				-	5 .		Analysis Time 400.0 sec
	1					·	•	Peak Report
	1							Pk Compound Name Area/Conc R.T.
1	\							1 Benzene 3.173 ppm 48.7
1.4	Z	6		•			. •	2 Unknown 332.3 mVS 61.1
	-					·	•	3 Unknown 2.633 VSec 69.6
								4 Unknown 514.0 mVS 93.0
								5 Toluene 15.25 PPM1 106.1
1.7	1							6 Unknown 179.4 mVS 134.5
	7			•		•	-	7 Ethylbenzene 85.28 ppb 171.4
1 1								
						·		
20	0			_				
		•	٠	•	•	-	•	
						-		
						·		
22	8			_			_	
		-	•	•	-		•	
						-		
						•		
25	7			_			_	
		•	•	-	•	•	•	
						_		
28	5			_				
		•	•	•	•		•	
						-		
			-		-	•		PPM1 = Alarm 1 PPM2 = Alarm2
31	4							Notes
		•	•	•	•		•	water sample
								sample # 11
			٠		•	•		soil volume **g
34	2							water sanple vol. 41.9ml
		•	•	•	•		•	temp. of sample 28c
1			•		•	•		
137	1.							
		•	•	•	٠		•	
			•		•	•		
40	0							
			•	•	•			

	KT A FRITE		J. \/\	or oc		tion Analysis Report
	4	. 8	12 _(x	16 1000	20 uV)	Time Printed: Aug 18,93 09:22 Sample Time: Aug 18,93 09:13 Method
28						i i
2(.)						Slope Up 3.000 mV/Sec
	5	_				Slope Down 3.000 mV/Sec
	process of the same					Min Area 1.000 mVSec
	<u>/</u> 5					Min Height 0.000 mV
57	/5.1					Analysis Delay 45.0 sec
1 1	5 2				•	Window Percent 35.0 %
F						Det Flow 10 ml/min
1	₄ حسب	•	•	•		B/F Flow 10 ml/min
85						1
7	•		•			1
1.5						Oven Temp 45 C
1 (Amb Temp 31 C
	and the same					Max Gain 1000
1.14	((ممسمم				_	Analysis Time 400.0 sec
Y		•		•	•	Feak Report
			_			Pk Compound Name Area/Conc R.T.
		-	•	•		1 Unknown 2.979 mVS 48.8
142	. 6					2 Benzene 13.99 ppb 54.3
	•	•	•		•	
		•	٠			in in a new life of the life o
171						5 Toluene 148.2 ppb 106.5
1.1.	•					6 Unknown 4.610 mVS 134.2
						7 Ethylbenzene 104.1 ppb 191.8
						8 Unknown 2.733 mVS 218.4
1 1		•				9 M&P-Xylene 47.95 ppb 233.0
200	7		_			
	-		•	•	•	
		•	•	•		
228	8					
I N		•	•		•	
1 1						
		•	•	•		
257		-				
			•			
285						
	•	•	•	• •	•	
		•	•	•		
314						hl m d ··· ··
	•				•	Notes
						soil sample
		•		•		sample # 30 8 to 10 ft
						soil volume 50g
342					•	water sanple vol. ****ml
						temp. of sample 28c
				•		
371						
	•		•		•	
		•	•	•		
400						
LAAA	•		•			
		·				

q	4	. 8	12 .(x	16 1000	20 uV)	Time Printed: Aug 18,93 09:40 Sample Time: Aug 18,93 09:31
28						Method Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
	محر					Min Area 1.000 mVSec
1		•	•	•		Min Height 0.000 mV
157 R	1.					Analysis Delay 45.0 sec
大	2		•		•	Window Percent 35.0 %
						Det Flow 10 ml/min
1	4	•	•	•		B/F Flow 10 ml/min
85						Aux Flow 0 ml/min
}	•		•	•	•	Oven Temp 45 C
)						Amb Temp 31 C
h	- _		•	•		Max Gain 1000
11/2-	يح_					Analysis Time 400.0 sec
	•	•	•		•	Peak Report
						Pk Compound Name Area/Conc R.T.
			•	•		1 Unknown 1.434 mVS 48.2
142	6		_			2 Benzene 7.223 ppb 54.4
	-		•		•	3 Unknown 1.630 mVS 61.3
			•	-		4 Unknown 7.329 mVS 69.2
1						5 Toluene 117.8 ppb 107.0
171						6 Unknown 5.089 mVS 134.4
	•		•	•	•	7 M&P-Xylene 36.26 ppb 233.0
\						
2 0 0	_		_			
	•		•	•	•	
)						
228						
h					-	
257	٠		•			
4						
285	-					
			•	•		
314						Notes
						soil sample
{		•	•	•		sample # 30 10 to 12 ft
-						soil volume 50g
342			•		-	water sample vol. ****ml
						temp. of sample 28c
		•	•	•		
371						
1211						
		•	•	•		
400						

9	ą		8	12 .(x	16 1000	20 uV)	Time Printed: Aug 18,93 09:57 Sample Time: Aug 18,93 09:48
ئـــــــ							Method
28		-0					Slope Up 3.000 mV/Sec
		للمميوس	•	•		•	Slope Down 3.000 mV/Sec
	5						Min Area 1.000 mVSec
· •	,			•	•		l e
(Min Height 0.000 mV
57 🔨							Analysis Delay 45.0 sec
	1		•	•		•	Window Percent 35.0 %
(Det Flow 10 ml/min
. >		٠		•	•		B/F Flow 10 ml/min
<i>[</i>							1
35[
- {							Oven Temp 45 C
)							Amb Temp 31 C
han.		•		-	•		Max Gain 1000
1:14>	23						Analysis Time 400.0 sec
معملتم اس	ķ.,			•		•	Peak Report
1							· ·
							Pk Compound Name Area/Conc R.T.
Į,							1 Benzene 10.87 ppb 54.5
14/2	3						2 Toluene 86.11 ppb 107.3
	•	•	•	•		•	3 Unknown 4.026 mVS 134.8
1							4 M&F-Xylene 32.08 ppb 232.0
1				•	•		1 the the country of the round
1							
171							
İ							
		•		•	•		
ado -						,	
690				•		•	
1							
1							
248							
A	•	•	•	•		•	
4							
,		•		•	•		
2\$7							
}		_			-		
ì		•		•	•		
285							
	•	•	•	•		•	
I							
}							
1							
314	_			_		-	Notes
	•	•	•	•		•	soil sample
1							sample # 30 16 to 18 ft
1		•		•	•		soil volume 50g
							water sanple vol. ****ml
342				•			
							temp. of sample 28c
				•			
1							
371							
- 1 -	•	•	٠	•		•	
				-			
				•			
ļ							
400							1

Ana.						tion Analysis Report
9	4	8	12 (x	1.6 1.000	20 	Time Printed: Aug 18,93 10:14 Sample Time: Aug 18,93 10:05
	_	•	. \ ^	*****	*** * *	Method
l						i
28		-5				· · · · · · · · · · · · · · · · · · ·
1	- Commence					Slope Down 3.000 mV/Sec
1 .	part .					Min Area 1.000 mVSec
	2					Min Height 0.000 mV
57	≥ ₁					Analysis Delay 45.0 sec
``	يُحِير		٠			Window Percent 35.0 %
1 2	XI.					
./~	~_>			•		Det Flow 10 ml/min
مسمأ	3					B/F Flow 10 ml/min
83						Aux Flow O ml/min
}	•		•		•	Oven Temp 45 C
1 3						Amb Temp 32 C
		•	•	•		1
1	Manage					Max Gain 1000
114	4 مسیست					Analysis Time 400.0 sec
1			1			Peak Report
						Pk Compound Name Area/Conc R.T.
		•	•	•		1 Unknown 2.959 mVS 48.3
142	5					2 Benzene 14.42 ppb 54.5
1.00	-		•		•	1
		•				4 Toluene 161.7 ppb 107.0
						5 Unknown 6.199 mVS 135.3
171						
	•		•	• •	•	
					•	
		•	•			
200						
			_			
1 1		•	•	•		
228						
~ A C	•		•		•	
}						
257						
	•		•		•	
1		•	•	•		
285						
		•	-	•		
314						Notes
			•		•	\$
						water sample
						sample # 30
						soil volume **g
342						water sample vol. 43.2ml
	•		•		•	temp. of sample 28c
						a marity par to the control of the marity parties on the South South
			•			
371						
		•		•	-	
		•	•	•		
lado						
440			•		•	
1						

Time Printed: Aug 18,93 10:33 Sample Time: Aug 18,93 10:24 Method Slope Up 3.000 mV/Sec Min Area 1.000 mVS com Min Area 1.000 mVS com Min Area 1.000 mVS com Min Area 1.000 mVS com Min Area 1.000 mVS com Min Area 1.000 mVS com Min Area 1.000 mVS com Min Area 1.000 mVS com Min Area 1.000 mVS com Min Area 1.000 mVS com Min Area 1.000 mVS com Min Area 1.000 mVS com Min Area 1.000 mVS com Min Area 1.000 mVS com Min Area 1.000 mVS com Min Are		/	* ** ali ali				cron where webon c
Sample Time: Aug 18,93 10:24 Method	a	Δ	Ø	1.2	1.6	20	Time Printed: Aug 18.93 10:33
Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mV/Sec Min Area 1.000 mV Sec Min Area 1.000 mV Sec Min Area 1.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min Oven Temp 45 C Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. Benzene 3.842 ppb 54.5 2 Unknown 1.402 mVs 60.8 3 Unknown 6.597 mVs 69.6 4 Toluene 85.15 ppb 107.4 5 Unknown 2.887 mVs 135.3 6 Unknown 7.016 mVs 175.2 7 Unknown 3.701 mVs 177.8 6 Unknown 3.701 mVs 177.8 8 Ethylbenzene 102.4 ppb 193.6 7 Unknown 3.701 mVs 177.8 8 Ethylbenzene 102.4 ppb 193.6 7 Unknown 5.000		•	***				· · · · · · · · · · · · · · · · · · ·
Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mV/Sec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min	1		•	. (×	TOOA	mv)	,
Slope Down							1
Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Fk Compound Name Area/Conc R.T. 1 Benzene 8.842 ppb 54.5 2 Unknown 1.402 mVs 60.8 3 Unknown 6.597 mVs 69.6 4 Toluene 35.15 ppb 107.4 5 Unknown 2.887 mVs 135.3 6 Unknown 7.016 mVs 177.8 6 Unknown 7.016 mVs 177.8 6 Ethylbenzene 102.4 ppb 193.6 7 200 8 Notes Sample # 31 6 to 8 ft soil volume 500 water sample vol. ****ml temp. of sample 28c 371	[28		. حجير				1
Min Height		procedure					;
Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 8.842 ppb 54.5 2 Unknown 1.402 mVs 60.8 3 Unknown 6.597 mVs 69.6 4 Toluene 95.15 ppb 10.4 5 Unknown 2.887 mVs 135.3 6 Unknown 7.016 mVs 175.2 7 Unknown 3.701 mVs 177.8 8 Ethylbenzene 102.4 ppb 193.6 228 257 265 314 Notes soil sample sample # 31 6 to 8 ft soil volume 50g water sanple vol. ****ml temp. of sample 28c	/	<i>,</i> >					Min Area 1.000 mVSec
Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 8.842 ppb 54.5 2 Unknown 1.402 mW5 60.8 3 Unknown 6.597 mW5 69.6 4 Toluene 85.15 ppb 107.4 5 Unknown 2.887 mW5 135.3 6 Unknown 7.016 mW5 177.8 6 Unknown 7.016 mW5 177.8 8 Ethylbenzene 102.4 ppb 193.6 7 200 8	1:I		•	•	•		Min Height 0.000 mV
Window Percent 35.0 %	1 mm >						1
Det Flow				•		•	1
B/F Flow	D	.i.					
Aux Flow 0 m1/min Oven Temp 45 C Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 8.842 pp 54.5 2 Unknown 1.402 mVS 60.8 3 Unknown 6.597 mVS 69.6 4 Toluene 85.15 pp 107.4 5 Unknown 2.887 mVS 135.3 4 Unknown 7.016 mVS 175.2 7 Unknown 3.701 mVS 175.2 7 Unknown 3.701 mVS 175.2 8 Ethylbenzene 102.4 ppb 193.6 7 200 8 Notes soil sample sample # 31 6 to 8 ft soil volume 50g water sanple vol. ****ml temp. of sample 28c Soil sample 28c	1.						1
Oven Temp	المسمل ا	3					B/F Flow 10 ml/min
Oven Temp	85						Aux Flow 0 ml/min
Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Feak Report	()	•		•		•	Oven Temp 45 C
Max Gain	\{		,				
Analysis Time			•	•			1
Peak Report	1						i i
Pk. Compound Name Area/Conc R.T. 1 Benzene 3.842 ppb 54.5 14.2 5 2 Unknown 1.402 mVS 60.8 3 Unknown 6.597 mVS 69.6 4 Toluene 85.15 ppb 107.4 5 Unknown 7.016 mVS 175.2 7 Unknown 3.701 mVS 177.8 8 Ethylbenzene 102.4 ppb 193.6 177.2 177.2 177.3 177.3 177.4 17	1113	' 4					
1 Benzene 8.842 ppb 54.5 2 Unknown 1.402 mVs 60.8 3 Unknown 6.597 mVs 69.6 4 Toluene 85.15 ppb 107.4 5 Unknown 2.887 mVs 135.3 6 Unknown 7.016 mVs 175.2 7 Unknown 3.701 mVs 177.6 8 Ethylbenzene 102.4 ppb 193.6 228 257 265 314 Notes soil sample sample # 31 6 to 8 ft soil volume 50g water sanple vol. *****ml temp. of sample 28c	1		•	•	•		
1 Benzene 8.842 ppb 54.5 2 Unknown 1.402 mVs 60.8 3 Unknown 6.597 mVs 69.6 4 Toluene 85.15 ppb 107.4 5 Unknown 2.887 mVs 135.3 6 Unknown 7.016 mVs 175.2 7 Unknown 3.701 mVs 177.6 8 Ethylbenzene 102.4 ppb 193.6 228 257 265 314 Notes soil sample sample # 31 6 to 8 ft soil volume 50g water sanple vol. *****ml temp. of sample 28c							Pk Compound Name Area/Conc R.T.
2 Unknown 1.402 mVS 60.8 3 Unknown 6.597 mVS 67.6 4 Toluene 85.15 ppb 107.4 5 Unknown 7.016 mVS 135.3 6 Unknown 7.016 mVS 175.2 7 Unknown 3.701 mVS 177.8 8 Ethylbenzene 102.4 ppb 193.6 228 228 257 265 27			•	•	•		
3 Unknown 6.597 mVS 69.6 4 Toluene 85.15 ppb 107.4 5 Unknown 7.016 mVS 175.2 7 Unknown 3.701 mVS 177.8 8 Ethylbenzene 102.4 ppb 193.6 228 257 265 314 Notes soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371	1 1/2	111,					1
4 Toluene 85.15 ppb 107.4 5 Unknown 2.887 mVS 135.3 4 Unknown 7.016 mVS 175.3 7 Unknown 3.701 mV5 177.8 8 Ethylbenzene 102.4 ppb 193.6 228 257 285 314 Notes soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371	1. "72"			•			
5 Unknown 2.887 mVS 135.3 6 Unknown 7.016 mVS 175.2 7 Unknown 3.701 mVS 177.8 8 Ethylbenzene 102.4 ppb 193.6 257 265 314 Soil sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371							1 ··· · · · · · · · · · · · · · · · · ·
171 6 Unknown 7.016 mVS 175.2 7 Unknown 3.701 mVS 177.8 8 Ethylbenzene 102.4 ppb 193.6 200 8 228 257 265 314 Notes soil sample sample # 31 6 to 8 ft soil volume 50g water sanple vol. ****ml temp. of sample 28c 371				-			, ,
7 Unknown 3.701 mVS 177.8 8 Ethylbenzene 102.4 ppb 193.6 200 8 228 228 257 257 255 25 25 25 25 25 25 25 25 25 25 25 25							
7 Unknown 3.701 mVS 177.8 8 Ethylbenzene 102.4 ppb 193.6 200 8 228 228 257 265 271 285 272 285 272 285 272 285 273 274 285 275 275 275 275 275 275 275 275 275 27	171						6 Unknown 7.016 mVS 175.2
8 Ethylbenzene 102.4 ppb 193.6 200 8 257 265 314 Notes soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c		•				,	· •
228 237 265 314 Soil sample sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371							i '
200 8 257 265 Soil sample sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c			•	•	•		to the city detection and the property devices the
257 255 314 Notes soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371		,,,					
257 265 314 Soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371	1200	9					
257 265 314 Soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371						-	
257 265 314 Soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371							
257 265 314 Soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371			•	•	•		
257 265 314 Soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371	200						
Notes Soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c	12.40	-				•	
Notes Soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c	1						
Notes Soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c	1						
Notes Soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c	1 1						
Notes Soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c	257						
314 Soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c		•	•	•	•	•	
314 Soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c							
314 Soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c			•	•	•		
314 Soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c	L.d.						
soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c	Zidjo					٠	
soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c							
soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c			•		-		
soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c			-	•	·		
soil sample sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c	13144						Notes
sample # 31 6 to 8 ft soil volume 50g water sample vol. ****ml temp. of sample 28c		•	•			•	
soil volume 50g water sample vol. ****ml temp. of sample 28c							
342 water sample vol. ****ml temp. of sample 28c 371			•				
temp. of sample 28c							
371	342						
371		•	•	•		•	
							· · ·
			•	•			
]						
400	3/1						
400							
400					-		
400			-	•	•		
	400						
	1.4	•	•			•	

		4		8	12 .(x	16 1000	20 uV)	Time Frinted: Aug 18,93 10:49 Sample Time: Aug 18,93 10:40 Method
28	3	٠	حتبر					Slope Up 3.000 mV/Sec
	,	سمحر						Slope Down 3.000 mV/Sec Min Area 1.000 mVSec
			•		•	•		Min Height 0.000 mV
57	, <u> </u>							Analysis Delay 45.0 sec
	\$	1.	•	•	·		•	Window Percent 35.0 %
	. ک							Det Flow 10 ml/min
l _{ove}								B/F Flow 10 ml/min
85				•			•	Aux Flow O ml/min Oven Temp 45 C
	}							Amb Temp 32 C
			•		•			Max Gain 1000
11:1	》	23						Analysis Time 400.0 sec
		•	•	•	•		•	Peak Report
								Fk Compound Name Area/Conc R.T.
	h	***						1 Benzene 7.345 ppb 54.8
14	7 2	ŢĬ		•			-	2 Toluene 62.51 ppb 107.6
								3 Ethylbenzene 17.84 ppb 136.5
			•		•	•		
117	1.							
		•	•	•	•		•	
					•			
20	0							
			•		•	•		
22	а							
1,	\	٠	•	•	•		•	
25	7							
					•			
28	5							
		•	٠	•	•			
31	4							Notes
								soil sample
			•			•		sample # 31 8 to 10ft soil volume 50g
34	2							water sample vol. ****ml
"		•	•	•	•		•	temp. of sample 28c
37	1.				•			
			•		•			
40	0							
		•	•	•	•			

0	1.		2	3	4	;;; ;;;	Time Printed: Aug 18,93 11:09
				.(x	1.00	mV)	Sample Time: Aug 18,93 11:00
		•		• •	•		Method
28							Slope Up 3.000 mV/Sec
177	•	•	•	٠		•	Slope Down 3.000 mV/Sec
1							Min Area 1.000 mVSec
11		•		•			Min Height 0.000 mV
b	.1						Analysis Delay 45.0 sec
57	А.					•	Window Percent 35.0 %
12.5							
1 [
		4					
854							
-		> 5					Oven Temp 45 C
1 1			٥				Amb Temp 32 C
	-						Max Gain 1000
1.1		_					Analysis Time 400.0 sec
(_		7	,	-	•		Peak Report
	_		~~~~	•			Pk Compound Name Area/Conc R.T.
į				8	•		1 Benzene 143.0 ppb 48.5
142							2 Unknown 49.26 mVS 57.3
	· } 9	•	•	•			3 Unknown 369.8 mVS 61.7
 							4 Unknown 626.7 mVS 68.6
	10	•		•	•		5 Unknown 728.4 mVS 86.4
1174	(""						6 Toluene 13.66 PFM1 94.0
"	1	•	•	•		•	7 Unknown 1.151 VSec 114.1
	No.	_					8 Unknown 2.789 VSec 126.8
1	_	1		•			9 Unknown 1.484 VSec 144.6
200	1	_	Manage .				10 Unknown 700.3 mVS 153.4
1290		•		make		•	11 Ethylbenzene 48.11 FPM2 202.4
		_		 .i. :i			12 M&F-Xylene 12.57 PPM1 221.0
		فسمسميس	,	11			13 Unknown 2.685 VSec 241.6
228	, >	73					14 O-Xylene 14.31 FPM1 267.7
12.40) 			•			15 Unknown
	· Anna						16 Unknown 443.7 mVS 333.0
	_	`	,	•			TO DIRHOWH LADIN HAD DODIN
	ممسر	1 3)				
252				•		•	
)	. •					
	/1.4	1					
285	<u>-</u> (.						
	\						
	<i>)</i> 15						manage And an enterprise And and
							PPM1 = Alarm 1 PPM2 = Alarm2
314	₹ .						soil somple Notes
1 4							
							sample #31 10 to 12 ft
[[]							soil volume 50g
344	16						water sanple vol. ****ml
	•	•	-	-		•	temp. of sample 28c
1		-					
371							
	•	•	•	•	•		
		•		•		-	
400)						
			•	•		•	

Analy	y 15 J. 15	• 77.	28	1.47	or uu	r uniu.	tion Analysis Report
9	4		8	12 .(x	16 10	20 mV)	Time Frinted: Aug 18,93 11:26 Sample Time: Aug 18,93 11:16
							Method
28							Slope Up 3.000 mV/Sec
	•	•	•	•		•	Slope Down 3.000 mV/Sec
							Min Area 1.000 mVSec
1 1		•		•	٠		Min Height 0.000 mV
							i "
57	<u>.</u> 1.						Analysis Delay 45.0 sec
1	3						Window Percent 35.0 %
-	<u> </u>						Det Flow 10 ml/min
مسمرا ا				3			B/F Flow 10 ml/min
85							Aux Flow O ml/min
		ä				•	Oven Temp 45 C
	<u></u>	_ <u></u>					Amb Temp 32 C
1 1	-	٠,,		•			Max Gain 1000
	_						
1.1144	~~~						Analysis Time 400.0 sec
1 1		~~~	`				Peak Report
			-King				Pk Compound Name Area/Conc R.T.
1 }				•	·		1 Benzene 22.73 ppb 48.4
142							2 Unknown 154.7 mVS 62.2
1 1 4	3.	•	•	•		•	3 Unknown 178.0 mVS 68.8
1 1	••						4 Unknown 236.8 mVS 86.2
1 1 2.	ÿ	•		•	•		
1 11	7						1
1174							6 Unknown 640.6 mVS 119.8
							7 Unknown 740.2 mVS 126.0
							8 Unknown 249.6 mVS 139.7
				•	•		9 Unknown 173.8 mVS 153.4
200	1						10 Ethylbenzene 7.311 ppm 202.2
1 " 1 "	. /	io	•	•		•	11 M&P-Xylene 1.585 ppm 220.6
1 1	لمممس	TV					12 Unknown 275.2 mVS 241.8
	-	•					1
							13 O-Xylene 3.263 ppm 255.7
228)	1. 1.						14 Unknown 399.1 mVS 269.0
1 H							15 Unknown 214.7 mVS 292.5
							16 Unknown 56.21 mVS 332.0
	1.2	-		•	·		
237	1						
):13	٠	•	•		•	
-	("						
)						
	1.4						
285							
1 1/1:							
3:14							Notes
1	•	•	•	•		•	soil sample
							sample #31 12 to 14 ft
		•		-	•		i '
 							soil volume 50g
34/2	16						water sanple vol. ****ml
							temp. of sample 28c
i		_					
1		•		-	-		
371							
1 11	•	•		•		•	
		•		•			
440			-				
1 '							

Anad.	A 115 Tr 115	11000				CTOIL MISCENSIS INSPOSE
0	4	8	12	16	20	Time Printed: Aug 18,93 11:44
	•	***		1.000		Sample Time: Aug 18,93 11:35
[•	. \ ^		*** * *	Method
/n/m						Slope Up 3.000 mV/Sec
28	٠ ـــــ	. فتتسمير	•			Slope Down 3.000 mV/Sec
	~~~					Min Area 1.000 mVSec
. ,	a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya della companya della companya de la companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya dell					1
1 (						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
157 Kg						Analysis Delay 45.0 sec
5	1.					Window Percent 35.0 %
1 52	•					Det Flow 10 ml/min
1 73	;					B/F Flow 10 ml/min
185						Aux Flow O ml/min
D	•	•	•		•	Oven Temp 45 C
1 75	i					Amb Temp 32 C
K.		•	•	•		Max Gain 1000
114	6					Analysis Time 400.0 sec
1" 17	· · ·		•		•	Peak Report
1 1						Pk Compound Name Area/Conc R.T.
112	<b>)</b> ,	•	•	•		1 Benzene 7.022 ppb 55.0
1, 15	/ 					2 Unknown 0.907 mVS 61.0
1192	8				•	3 Unknown 2.718 mVS 68.9
						4 Unknown 3.271 mVS 85.7
		•	•			
1.1.						
171	•					347
1 1						· · · · · · · · · · · · · · · · · · ·
			•			,
1 1	<b>,</b>					9 Ethylbenzene 441.0 ppb 202.0
290 '	<b>)</b>					10 M&F-Xylene 302.7 ppb 237.8
	<b>)</b> 9					11 O-Xylene 160.8 ppb 268.0
مم						12 Unknown 10.13 mVS 292.8
228						
1 K	•		•			
1 2	.0					
$\perp$		•	•	•		
257						
	•	•	•		•	
1 1/1	. 1.	•	•	•		
285						
	•	•	•		•	
1 12	p.					
1 1/2	-	•	•	•		
314						Notes
1		•	•		•	soil sample
						sample #31 16 to 18 ft
		•	•			soil volume 50g
342						water sanple vol. ****ml
1345	•					temp. of sample 28c
						Compan or monipara was
		•	•			
371				•		
			٠			
490			-			
i						

An a.i	lysis	37.0 al	LUbr	tot.	r care.	tion Analysis Report
()	1.	2	3	eą.	5	Time Printed: Aug 18,93 11:56
			.(x	10	mV)	Sample Time: Aug 18,93 11:47 Method
men						Slope Up 3.000 mV/Sec
28	بجمم			•	,	Slope Down 3.000 mV/Sec
	ζ					W. 11. 31. 11. 11. 11. 11. 11. 11. 11. 11
. 1						1
1 (						1
57	<b>-</b> .					Analysis Delay 45.0 sec
1	1.					Window Percent 35.0 %
(						Det Flow 10 ml/min
1 7		•	•	•		B/F Flow 10 ml/min
85						Aux Flow O ml/min
D ₂			•	•	•	Oven Temp 45 C
						Amb Temp 32 C
		•	•	•		Max Gain 1000
1.						
1114	4					
						Feak Report
1 1						Fk Compound Name Area/Conc R.T.
1/5						1 Benzene 27.60 ppb 54.6
142						2 Unknown 5.397 mVS 85.6
	•			•	•	3 Unknown 4.234 mVS 92.9
{						4 Toluene 30.31 ppb 107.2
		•	•	•		5 Unknown 6.972 mVS 125.8
171						6 Ethylbenzene 156.9 ppb 202.4
1-1-				•	•	7 M&F-Xylene 43.78 ppb 240.0
						A LEWI ASSOCIATION LONG ASSOCIATION
1						
2 <b>q</b> b						
)						
16						
228						
	•	•		•	•	
1 12		•	•	•		
257						
1-1	•				•	
285					•	
314	}					Notes
	•			•	•	water sample
						sample #31 before purge
		•	•	•		soil volume <del>80</del> g
342	,					water sample vol. #2*8ml
12,45	• •			•		temp. of sample 28c
						Secretaria de la constitución de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia de secuencia d
		•	•			
371						
400	)					
1	•				. •	

<u>Ana</u> l	ysis.	#34	105+	GC	Func	tion Analysis Report
0	1.	2	3	4	5	Time Printed: Aug 18,93 12:08
			( x	1.0	mV)	Sample Time: Aug 18,93 11:59
		· >	• •	•		Method
28	3					Slope Up 3.000 mV/Sec
Ì.				•	•	Slope Down 3.000 mV/Sec
1./						Min Area 1.000 mVSec
1 (						Min Height 0.000 mV
57						Analysis Delay 45.0 sec
1 14						Window Percent 35.0 %
1 5						Det Flow 10 ml/min
3						B/F Flow 10 ml/min
185						Aux Flow O ml/min
1 64	}					Oven Temp 45 C
			•			Amb Temp 32 C
1. A.						Max Gain 1000
1.1	6					Analysis Time 400.0 sec
						Peak Report
),		•	•	•		Pk Compound Name Area/Conc R.T.
142						1 Benzene 18.58 ppb 55.0   2 Unknown 5.933 mVS 61.3
T. 4				•	•	2 Unknown
						4 Unknown 14.77 mVS 85.6
		•	•	•		5 Toluene 43.50 ppb 95.2
171						6 Unknown 12.49 mVS 106.8
1-1-	•		•	٠	•	7 Unknown 10.73 mVS 125.8
						8 Ethylbenzene 151.3 ppb 199.8
1		-	•	•		9 M&P-Xylene 41.49 ppb 239.4
2db						12.877 (2007)
B	•	•		•	•	
		•	•	•		
228						
	•	•		•	•	
9						
257						
			•			
İ						
285						
314					-	Notes
						water sample
			•	٠		sample #31 after purge
342						soil volume <b>20</b> g water sanple vol. <b>33</b> mml
1 72				•		temp. of sample 28c
						compare to a mentioned with
		•	•	•		
371						
	٠	•		•	•	
		•	•	•		
400						
				•	•	

Fitteta.	<i>y</i>		1.00*			Cath Phietram (Ambo) C
9	2	4	6 .(x	8 10	10 mV)	Time Printed: Aug 19,93 08:04 Sample Time: Aug 19,93 07:53
—		·	•			Method ·
28						Slope Up 3.000 mV/Sec
. ا						Slope Down 3.000 mV/Sec
1 1						Min Area 1.000 mVSec
'/		•		•		Min Height 0.000 mV
57						Analysis Delay 45.0 sec
		<b>-</b> ' -			•	Window Percent 35.0 %
<b>I</b>						Det Flow 10 ml/min
		•	•	•		B/F Flow 10 ml/min
C) 15						Aux Flow 0 ml/min
85						1
1						Oven Temp 45 C
				•		Amb Temp 26 C
L						Max Gain 1000
11	3					Analysis Time 400.0 sec
de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la	•	•	•	•	•	Peak Report
8			_			Pk Compound Name Area/Conc R.T.
-		•	•	•		1 Benzene 245.6 ppb 56.0
142	4					2 Unknown 2.167 mVS 70.9
- 1/-	. '	•		•	•	3 Toluene 253.2 ppb 109.3
						4 Unknown 6.557 mVS 136.4
İ			•	•		1
						ł
171					•	6 Ethylbenzene 107.9 ppb 215.6
İ						7 M&P-Xylene 570.0 ppb 231.6
)						8 O-Xylene 268.3 ppb 273.0
1						
200	5					
l	•	•	•	•	•	
lk -		•	•	•		
228						
	•			•	•	
1/2						
- 1		•	•	•		
-4-						
2\$7					•	
Į.						
h						
lk3						
28/5						
-						
į			-	•		,
314						Notes
7.	•			•	•	calibration
l						sample #0.2ml of lug/ml BTEX
ļ		•	•			soil volume 50g
342						water sample vol. ****ml
Str.				٠		
						temp. of sample 28c
1		•	•			0.2ug/50g soil=4ug/kg
						60 benzene = 1 ug/kg
371						65 toluene = 1 ug/kg
	•	•		•	•	30 ethylbenzene = 1 ug/kg
						70 total xylenes = 1 ug/kg
1		•	•	٠		
400						
1.4	•			•	•	
<u> </u>			<del> </del>			<u> </u>

	lysis	94 /				cion Analysis Meporc
0	2	4	6	8	10	Time Frinted: Aug 19,93 08:29
	••••		 (x		mV)	Sample Time: Aug 19,93 08:19
		•	. > ^		111. 7 ,	Method
28						Slope Up 3.000 mV/Sec
20	٠			٠.		Slope Down 3.000 mV/Sec
	استسم					i e e e e e e e e e e e e e e e e e e e
1 . 1	/	•	•			
{						Min Height 0.000 mV
57 <i> </i> -						Analysis Delay 45.0 sec
		1				Window Percent 35.0 %
1 .(2	2					Det Flow 10 ml/min
6						B/F Flow 10 ml/min
85						Aux Flow O ml/min
l la	•	•		•	•	Oven Temp 45 C
15						Amb Temp 29 C
{		•	•	•		Max Gain 1000
1, , , ,	<b>5</b> 2					Analysis Time 400.0 sec
1143	ې هم			-	•	Peak Report
Y						•
			•		•	
K						1 Benzene 254.4 ppb 55.0
142	7					2 Unknown 0.735 mVS 61.2
						3 Unknown 6.685 mVS 69.7
						4 Unknown 1.217 mVS 86.2
						5 Unknown 2.279 mVS 94.0
171					•	6 Toluene 368.4 ppb 108.2
	•			•	•	7 Unknown 18.71 mVS 136.0
						8 Unknown 14.57 mVS 190.6
1 1		•	•	•		9 Ethylbenzene 77.87 ppb 217.6
200	8					10 M&F-Xylene 354.5 ppb 233.4
1240		•		. •	•	11 O-Xylene 254.8 ppb 275.4
						TT O PDD SYGEN
1						
228	9					
1 1						
l la	0					
257						
	•			•	•	
		•	•	•		
285	1.1					
	.al.		•		•	
1						
		•	•	•		
						hl m d m m
314					•	Notes
						calibration
						sample #0.2ml of lug/ml BTEX
						soil volume **g
342			_		_	water sample vol. 40.0ml
	•			•	•	temp, of sample 28c
						0.2ug/40ml H20=5ug/1
1 1		•	•	•		50 benzene = 1 ug/l
371						75 toluene = 1 ug/l
177"	•			•	•	15 ethylbenzene = 1 ug/l
						40 total xylenes = 1 ug/l
		•	•			
490						
L						

Analy	/Si.S	#10	1.09	3+ GC	Func:	tion Analysis Report
	4	. 8	12 .(x	16 1000	20 uV)	Time Frinted: Aug 19,93 09:07 Sample Time: Aug 19,93 08:58 Method
28					•	Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
						Min Area 1.000 mVSec
57	,					Min Height 0.000 mV Analysis Delay 45.0 sec
-	<b>→</b> :	•	•		•	Window Percent 35.0 %
				•		Det Flow 10 ml/min B/F Flow 10 ml/min
85						Aux Flow 0 ml/min Oven Temp 45 C
						Amb Temp 31 C
	215	•	•	•		Max Gain 1000 Analysis Time 400.0 sec
1 1 3	22		•		•	Peak Report
		•				Pk Compound Name Area/Conc R.T. 1 Benzene 12.34 ppb 55.6
142						2 Toluene 49.10 ppb 109.2
			•	•		
171 -	•		•		٠	
200					ē	
		•	•	•		
228	•	•	•		•	
}						
257						
						·
		•	•	•		
285			•	•		
		•	•		•	
314						Notes
						soil sample sample # 32 8 to 10 ft
		•	•		•	soil volume 50g water sanple vol. ****ml
342				•		temp. of sample 28c
		•			•	
371						soil liquid
						B 65 50 T 70 80
		•	•		•	E 30 15
440			•	•		X 65 40

9	4	8	12	16 1000	20	Time Printed: Aug 19,93 09:24 Sample Time: Aug 19,93 09:15 Method
28	-			• 		Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec Min Height 0.000 mV
57	⇒`i					Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min
85					٠	Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 31 C Max Gain 1000
11)	2					Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T.
142			•		•.	1 Benzene 17.97 ppb 55.5 2 Toluene 45.15 ppb 109.0
171						
200						
228					·	
257			·			
285						
314						Notes soil sample sample # 32 16 to 18 ft
342						soil volume 50g water sanple vol. ****ml temp. of sample 28c
371						soil liquid B 65 50 T 70 80
400			•			E 30 15 X 65 40

	}	:1.	2		3	4	5	Time Printed: Aug 19,93 09:59
			•		.(x	10	mV)	Sample Time: Aug 19,93 09:50 Method
28	3	~~~~	1					Slope Up 3.000 mV/Sec
		<u>ح</u> ــــــــــــــــــــــــــــــــــــ	•	·	·	·		Slope Down 3.000 mV/Sec
	/							Min Area 1.000 mVSec
1	7		•		•	•		Min Height 0.000 mV
57	2 {							Analysis Delay 45.0 sec
	21	•	•	•	•	•	•	Window Percent 35.0 %
	7							Det Flow 10 ml/min
	23		•		•	•		B/F Flow 10 ml/min
85	1							Aux Flow 0 ml/min
	}	•	•	•	•		•	Oven Temp 45 C
	4							Amb Temp 31 C
1			•		•	•		Max Gain 1000
111	N.							Analysis Time 400.0 sec
" 1	Z	•	•	•	•		٠	Peak Report
	[ ]							Pk Compound Name Area/Conc R.T.
			•		•	•		1 Benzene 13.49 ppb 55.8
14	10							2 Unknown 1.025 mVS 62.3
"	5	•	•	•	•	•	•	3 Unknown 2.168 mVS 70.5
	``							4 Toluene 84.66 ppb 109.7
			•		-	•		5 Unknown 4.493 mVS 138.1
17	1							e withdrawit and many many many
- /	1.	•	•	•	•		٠	
			•		•	•		
20								
ادا	10	•						
1								
			•		•	•		
22	0							
4-4	C	•	•		•			
l	•		•		•	•		
25	Į,							
120	$\mathbf{I}'$							
me								
28	1-1		•				•	
	İ		•		•	•		
31	А							Notes
ا. د. ا		•	•		•			water sample
								water sample   sample # 32 before purge (0920)
			•					sample # 32 before purge (0720)   soil volume **g
	10							water sanple vol. 41.9ml
34	14-	•	•	•			•	temp. of sample 28c
								camba or sembra voc
}			•		•	•		
37	1.1.							soil liquid
								B 45 50
			•		•	•		T 70 80
,, ,								E 30 15
140	ło.	•						X 65 40
40	0			•	•		•	X 65 40

9	2	.4	6 .(x	8 10	1O mV)	Time Printed: Aug 19,93 10:17 Sample Time: Aug 19,93 10:08
28 2	> 					Method Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
1						Min Area 1.000 mVSec Min Height 0.000 mV
57 la					•	Analysis Delay 45.0 sec Window Percent 35.0 %
-						Det Flow 10 ml/min B/F Flow 10 ml/min
8\$				,		Aux Flow O ml/min Oven Temp 45 C
						Amb Temp 31 C Max Gain 1000
114		· ·				Analysis Time 400.0 sec Peak Report
				•		Pk Compound Name Area/Conc R.1 1 Benzene 7.909 ppb 55.
142	•			•		2 Toluene 41.09 ppb 110.
14.,		•	٠	٠		
171					٠	
			•			
200	•			•		
			•	•		
228	•			•	•	
297		•	٠	•		
	٠			•	•	
Ì		•	•	•		

		Note	<u>)                                    </u>	
95 d	•	ample ‡ 32 after Lume **g	purge	(0944)
wa	ater sa	anple vol.	4 <b>a</b> "Om 1	
t.e	emp. on	f sample 28	3 c	
te	emp. on	f sample 28	3c	
te	emp. on soil	f sample 28 liquid	3c	
te B	·		3 c	
	soil	Liquid	} c:	
B	soil 65	liquid 50	3c	

O O	4	. 8	12 _(×	16 1000	20 uV)	Time Printed: Aug 19,93 10:35 Sample Time: Aug 19,93 10:26
28	·		<del></del>			Method . Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
57 (						Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec
,	<b>&gt;</b> ·					Window Percent 35.0 % Det Flow 10 ml/min
85						B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C
1.13	1.		•	•		Amb Temp 31 C Max Gain 1000 Analysis Time 400.0 sec
	.1.		•		•	Peak Report
142		•	•			Pk Compound Name Area/Conc R.T. 1 Toluene 32.51 ppb 106.5
1.4%	•		•		٠	
171	-					
200					٠	
228				•		
	•				•	
257						
285						
314		•	•	•		Notes
	•				•	soil sample sample # 33 0 to 2 ft
342	! .				•	soil volume 50g water sanple vol. ****ml temp. of sample 28c
37:1						soil liquid
						B 45 50 T 70 80 E 30 15
400						X 65 40

E

X

400

30

65

q	4	. 8	12 16 .(x 1000	20	Time Printed: Aug 19,93 10:55 Sample Time: Aug 19,93 10:47 Method
28		,5	· .		Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec Min Height 0.000 mV
57 (	·				Analysis Delay 45.0 sec Window Fercent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min
114	٠				Oven Temp 45 C Amb Temp 31 C Max Gain 1000 Analysis Time 400.0 sec
-17	1.				Peak Report Pk Compound Name Area/Conc R.T. 1 Toluene 35.99 ppb 110.5
142					
171					
sco					
228					
257					
285					
3:14					Notes soil sample
342					sample # 33 4 to 6 ft soil volume 50g water sanple vol. ***ml temp. of sample 28c
371					soil liquid B 65 50
400	· .				T 70 80 E 30 15 X 65 40

		Notes	
soi	1 56	ample	
		# 33 6 to 8 ft	
		lume 50g	
		anple vol. ****ml	
		f sample 28c	
		·	
<b>C</b>	oil	liquid	
	65	50	
	70	80	
Ë		15	
X		40	
•			

q	4	8	12	1.6	20	Time Printed: Aug 19,93 11:16
[		•	.(x —	1000	uV)	Sample Time: Aug 19,93 11:07 Method
28						Slope Up 3.000 mV/Sec
	2					Slope Down 3.000 mV/Sec
1	ممتمم	•				Min Area 1.000 mVSec Min Height 0.000 mV
57 /	, כ					Min Height 0.000 mV Analysis Delay 45.0 sec
10/1	; <del>1</del> .				-	Window Percent 35.0 %
	, 2					Det Flow 10 ml/min
1 .		<b>≔</b> ₃	•	•		B/F Flow 10 ml/min
85/						Aux Flow O ml/min
	•	. ,	•		•	Oven Temp 45 C
						Amb Temp 32 C
14_						Max Gain 1000
114						Analysis Time 400.0 sec
1	-	5				Peak Report
						Pk Compound Name Area/Conc R.T. 1 Unknown 4.916 mVS 49.6
1,00						1 Unknown 4.916 mVS 49.6   2 Benzene 11.55 ppb 62.7
142	•		•			2 Benzene
						4 Unknown 1.241 mVS 95.4
		•	•	•		5 Toluene 186.3 ppb 110.0
171-						
	•	. ,	•		•	
200						
			•			
200						
228	•		•		•	
		•	•	•		
2\$7					_	
	•		•		•	
		•		•		
285						
		•	•	•		
314						Notes
	•		•		٠	soil sample
						sample # 33 8 to 10 ft
		•	•			soil volume 50g
342						water sanple vol. ****ml
}	•	•	•	•	•	temp. of sample 28c
]						
371						soil liquid
						B 65 50 T 70 80
		•	٠	•		E 30 15
400						X 65 40
	•	· ·				

a	4	8	12 .(x	16 1000	20 uV)	Time Printed: Aug 19,93 11:27 Sample Time: Aug 19,93 11:18
—						Method
28						Slope Up 3.000 mV/Sec
İ	Andrew Market	•'				Slope Down 3.000 mV/Sec
	ブ					Min Area 1.000 mVSec
	/	•	•	•		Min Height 0.000 mV
57 /	<b>\</b>					Analysis Delay 45.0 sec
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•		٠		•	Window Percent 35.0 %
I						i i
ار.	~	:				Det Flow 10 ml/min
-ما ا		L				B/F Flow 10 ml/min
85						Aux Flow O ml/min
1 1						Oven Temp 45 C
}						Amb Temp 32 C
1 [		•	•	•		Max Gain 1000
114	والممم					Analysis Time 400.0 sec
متراث ا	process.		•			(
1						Peak Report
1 1						Pk Compound Name Area/Conc R.T.
						1 Benzene 57.06 ppb 70.9
142	3					2 Toluene 124.0 ppb 108.5
	•	•	•	•	•	3 Unknown 2.313 mVS 137.2
1 1		•	•	•		
171						
1-1-	•					
1 1						
200						
	•	• •	•		• .	
]		•	•	•		
lada						
228	•					
257						
] ]	•	•	•		•	
		•	•	•		
lade.						
285	•				•	
1 1						
314						Notes
1 1	•		•		•	soil sample
						sample # 33 10 to 12 ft
		•	•	•		, , , , , , , , , , , , , , , , , , ,
						soil volume 50g
342						water sample vol. ****ml
						temp. of sample 28c
il			-	•		
371						soil liquid
	•		•		•	B 65 50
						1
			•			T 70 80
						E 30 15
1 21 24 25						X 65 40
490					•	1

4**d**0

soil liquid B 65 50 T 70 80 E 30 15 X 65 40

Ana	lysis	#27	105+ 60	Func	tion Analysis Report
0	2	4	6 8	10	Time Printed: Aug 19,93 11:53
	•••	·		mV)	Sample Time: Aug 19,93 11:44
] [		•		•	Method
1284					Slope Up 3.000 mV/Sec
2				•	Slope Down 3.000 mV/Sec
1 5-	>				Min Area 1.000 mVSec
مسم ا	•	•			Min Height 0.000 mV
157	<u></u>				Analysis Delay 45.0 sec
1 1				•	Window Percent 35.0 %
	، <del>حسس</del> ے	<u>)</u>			Det Flow 10 ml/min
1 1				3	B/F Flow 10 ml/min
183/	<b>-</b>				Aux Flow O ml/min
<b>D</b> #	•			•	Oven Temp 45 C
1 1	^{نس}				Amb Temp 33 C
1 -	الله الله المساعد المساعد المساعد المساعد المساعد المساعد المساعد المساعد المساعد المساعد المساعد المساعد المس المساعد المساعد المساعد المساعد المساعد المساعد المساعد المساعد المساعد المساعد المساعد المساعد المساعد المساع	-			Max Gain 1000
114		>			Analysis Time 400.0 sec
	***************************************	6		•	Peak Report
11	•				Pk Compound Name Area/Conc R.T.
1 1/			·		1 Unknown 524.8 mVS 49.8
142	<b>)</b>				2 Benzene 3.775 ppm 62.8
	7		· · · · · · · · · · · · · · · · · · ·	-	3 Unknown 2.397 VSec 72.5
					4 Unknown 111.9 mVS 87.4
					5 Unknown 877.7 mVS 95.6
171					6 Toluene 24.65 FFM2 109.7
1 1					7 Unknown 643.5 mVS 138.8
8		•			8 Unknown 181.9 mVS 176.8
					9 Ethylbenzene 705.0 ppb 207.6
200					10 M&P-Xylene 483.1 ppb 225.0
					11 Unknown 96.95 mVS 245.0
9					12 O-Xylene 3.176 ppm 291.4
					13 Unknown 6.655 mVS 337.0
228					
1.	0				
1	1				
257				•	
1 1					
285				-	
	en.				
1 1.	AL.	•			PPM1 = Alarm 1 PPM2 = Alarm2
314					Notes
13.164	•			•	soil sample
					sample # 33 14 to 16 ft
		•	•		soil volume 50g
342	1.33				water sample vol. ****ml
/				•	temp. of sample 28c
		•	•		
371					soil liquid
	•		•	•	В 65 50
					T 70 80
		•	•	•	E 30 15
400	ı				X 65 40
	•	•	• •	· •	

9	4	. 8	12 _(x	1.6 1.0	20 mV)	Time Frinted: Samole Time:	Aug 19,93 Aug 19,93 ethod	
283						Slope Up	3.000	mV/Sec
<i></i>	·		•			Slope Down	3.000	mV/Sec
.,	,		•			Min Area	1.000	mVSec
<u> </u>						Min Height	0.000	mV
57 <b>/</b>	·					Analysis Dela		Sec
78-						Window Fercen		97 74 
-						Det Flow	10	ml/min
سسم أ				<del>-</del> 4		B/F Flow	10	ml/min
35			•			Aux Flow	0 45	ml∕min C
PL						Oven Temp	33	C
سبر }			٠	•		Amb Temp	1000	L.
				_		Max Gain	400.0	sec
114				. ر… ج	•	Analysis Time	k Report	in til C
				/		k Compound Name	n Neport Area/C	onc R.T.
		•	•	•		Unknown	134.8	
45						Benzene		ppb 57.0
	•	• •	•		•	Unknown	335.5	, ,
∦ _						Unknown	750.2	
K		•	•	•		Unknown	16.81	
L7 L -					•	Unknown	201.3	mVS 95.8
	•	•	•		•	Toluene	7.308	ppm 110.0
9		_				Uniknown	112.2	
,		-	-	•		Uniknown	25.34	
sdo -			_			O Ethylbenzene	116.1	ppb 209.0
1	•		•		•	1 M&F-Xylene		ppb 224.2
10		-				2 Unknown		mVS 243.4
						3 O-Xylene	616.4	ppb 281.0
22 <b> </b> 8			•					
1.1								
			-					
112								
297								
ij								
		-	•					
ാവിട								
/ Transition								

		Notes	
SC	il s	ample	
S5 6	umple:	# 33 16 to 18 ft	
S C	al vo	lume 50g	
		anple vol. ****ml	
		f sample 28c	
		•	
	soil	liquid	
$\mathbf{B}$	65	50	
Υ.	70	80	
E.	30	15	
Х	65	40	

Analj	урур	57 t. ) . j.	a. 92 co	or total	i carro	tion Analysis Report
0	2	4	6	8	1.0	Time Printed: Aug 19,93 12:23
			.(x	1.00	m∨)	Sample Time: Aug 19,93 12:15
\		•	·	·		Method
28}						Slope Up 3.000 mV/Sec
5	•	•	•		•	Slope Down 3.000 mV/Sec
1 5						Min Area 1.000 mVSec
		•	•	•		Min Height 0.000 mV
157	> 1					Analysis Delay 45.0 sec
He.	•		•		•	Window Percent 35.0 %
	<u>&gt;</u> 3					Det Flow 10 ml/min
			= 4	•		B/F Flow 10 ml/min
85/						Aux Flow O ml/min
5	•		•		•	Oven Temp 45 C
1	~					Amb Temp 33 C
	A	•	•	٠		Max Gain 1000
114			7			Analysis Time 400.0 sec
""	سسسنس	بالمسميسي	•		•	Peak Report
						Pk Compound Name Area/Conc R.T.
/		•	•	•		1 Unknown 689.6 mVS 49.8
14E						2 Benzene 191.5 ppb 57.4
1 1/2	•	•	•		•	3 Unknown 594.2 mVS 62.6
						4 Unknown 3.033 VSec 71.3
		•	•			5 Unknown 7.497 mVS 87.2
171						6 Unknown 769.4 mVS 95.6
1"1"	•	•	•		•	7 Toluene 25.27 PPM2 109.2
9						8 Unknown 336.4 mVS 138.2
$\prod$		•	•	•		9 Unknown 77.39 mVS 176.0
200						10 Unknown 33.65 mVS 207.0
"  "	•	•	•	•	•	11 Ethylbenzene 887.6 ppb 221.6
10						12 M&F-Xylene 2.946 ppm 238.8
["		•	•	•		13 O-Xylene 867.8 ppb 279.7
22	1.1.					
		•	•	•	•	
1						
12		•	•	•		
257						
	•	•	•	•	•	
		•	•	•		
285	1.3					
			•		•	
		•	•	•		PFM1 = Alarm 1 PPM2 = Alarm2
314						Notes
	•		•		•	water sample
						sample # 33 before purge
		•	•	•		soil volume **g
342						water sample vol. 43.3ml
	•		•		•	temp. of sample 28c
		•	•			
371						soil liquid
	•		•		•	B 65 50
						T 70 80
		•	•	•		E 30 15
400						X 65 40
1.4		• •			•	
					<del></del>	

Analy	7 in A. in	??))	3.37.07	1.34.7 1 5.63.1	ction Hugibar value
9	2	4		8 10 00 mV)	Time Printed: Aug 19,93 12:39 Sample Time: Aug 19,93 12:30
		•	(x 1	OÓ MAD	Method
1					
28/					
>					Slope Down 3.000 mV/Sec
ſ					Min Area 1.000 mVSec
L					Min Height 0.000 mV
57	<u> </u>				Analysis Delay 45.0 sec
H2	•	•			Window Percent 35.0 %
5					Det Flow 10 ml/min
			4	•	B/F Flow 10 ml/min
85/			5		Aux Flow 0 ml/min
			. ~.		Oven Temp 45 C
	_				Amb Temp 33 C
سبي ا	>	•	•	•	Max Gain 1000
-			_ 40		
114			⊅લં .		
سر ا		-			Feak Report
/					Fk Compound Name Area/Conc R.T.
					1 Unknown 814.3 mVS 50.0
14E					2 Benzene 240.6 ppb 57.4
16	•	•			3 Unknown 310.3 mVS 62.7
1 1					4 Unknown 1.449 VSec 71.4
		•	•	•	5 Unknown 2.026 VSec 74.2
171					6 Unknown 1.713 mVS 86.9
1-1-	•				7 Unknown 807.0 mVS 95.7
1 1.					8 Toluene 27.04 PPM2 109.2
10		•	•	•	9 Unknown 297.2 mVS 138.5
					3277
290				. ,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
111					12 Ethylbenzene 197.4 ppb 222.0
					13 M&P-Xylene 663.7 ppb 225.2
228	12				14 Unknown 101.9 mVS 238.8
13				•	15 O-Xylene 531.7 ppb 279.2
14		•	•	•	
257					
A Y	•			•	
		•	•	•	
	. ,				
285	15				
				•	mana a recover a Alamana
					PPM1 = Alarm 1 PPM2 = Alarm2
334					Notes
	-	•	•		water sample
			•		sample # 33 after purge
					soil volume **g
342					water sanple vol. 43.0ml
	•			•	temp. of sample 28c
		•	•	•	
					soil liquid
371				•	B 65 50
					T 70 80
				,	
440					X 65 40

9	2	4	6	8	10	Time Printed: Aug 20.93 07:42
Ĺ	_>	•	)(×	1.Q	mV)	Sample Time: Aug 20,93 07:32 Method
28 /	,					Slope Up 3.000 mV/Sec
						Slope Down 3.000 mV/Sec
.[						Min Area 1.000 mVSec
1						Min Height 0.000 mV
57				<del></del>		Analysis Delay 45.0 sec
	-				1.	Window Percent 35.0 %
ĺ			•			Det Flow 10 ml/min
						B/F Flow 10 ml/min
85						Aux Flow O ml/min
						Oven Temp 45 C
			•	•		Amb Temp 23 C
						Max Gain 1000
1.16		. 2				Analysis Time 400.0 sec
						Peak Report Pk Compound Name Area/Conc R.T.
		•	•			!
142						1 Benzene 1.000 ppm 53.5 2 Toluene 1.000 ppm 104.6
145	•			•	• .	2   Toluene   1.000 ppm 104.6  3   Ethylbenzene   1.000 ppm 216.0
						4 O-Xylene 1.000 ppm 278.6
		•	•	•		14 OVATENE TRAVA DOM SAGNO
171						-
- 1 -	•			•	•	
		•	•	•		
200						
	•		• •	•	•	
	<b>`</b> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	•	•	•		
22/800						
$\parallel$	•	•	•	•	•	
i i			_			
		•	•	•		
2\$7						
	•	•		•	•	
k		è				
1						
285)	4					
314						Notes
1						calibration
			•	•		sample # 1ppm BTEX gas standard
7/0						soil volume 50g
342					•	water sample vol. ****ml
						temp. of sample 28c
			•	٠		
371						soil liquid
211	•				•	B sorr ridgin
-						T
		•	•	•		E
400						X X
いからぎしろ						^

Anal:	ysis	#2	1084	F GC	Func	tion Analysis Report
9	Z	4	6	8	10	Time Printed: Aug 20,93 08:00
			, ( x	1.0	mV)	Sample Time: Aug 20,93 07:44 Method
28						Slope Up 3.000 mV/Sec
2.0		<u>.</u>		<b>-</b> .	•	Slope Down 3.000 mV/Sec
5	-					Min Area 1.000 mVSec
		•	•	•		Min Height 0.000 mV
57 /		· · · · ·				Analysis Delay 45.0 sec
		2				Window Percent 35.0 %
		•	•			Det Flow 10 ml/min
O STATE						B/F Flow 10 ml/min Aux Flow 0 ml/min
85				•	•	Oven Temp 45 C
						Amb Temp 26 C
		•	•	•		Max Gain 1000
114	~~	7				Analysis Time 400.0 sec
1			•	•	•	Peak Report
			•			Pk Compound Name Area/Conc R.T.
						1 Unknown 2.007 mVS 49.3
142	8					2 Benzene 377.3 ppb 55.8
						3 Unknown 7.218 mVS 62.0 4 Unknown 22.11 mVS 70.8
1		•	•	•		4 Unknown   22.11 mVS   70.8   5 Unknown   0.693 mVS   86.2
171-						6 Unknown 5.419 mVS 94.9
1 1 1 1	•			•	•	7 Toluene 865.5 ppb 109.3
						8 Unknown 44.64 mVS 137.3
1 1		•	•	•		9 Unknown 21.44 mVS 192.0
2db	9					10 Ethylbenzene 180.8 ppb 220.6
	·	•	•			11 M&P-Xylene 900.0 ppb 236.8
						12 O-Xylene 457.8 ppb 280.2
228	10		•	•	•	
	1					
/	.1.	•	•	•		
257						
	•			•	•	
1 1						
285	12				•	
		•	•	•		
314						Notes
	•		•	•	•	calibration
						sample # .2ml of lug/ml BTEX
		•	•			soil volume 50g
342						water sanple vol. ****ml
		-				temp. of sample 28c
		•				0.2ug/50g soil=4ug/kg
						mmil Trimuria
371	•				•	soil liquid B 90 =lug/kg orl
						T 210 ==
		•	•	•		E 45 ==
400						× 115
1 7"	•		• •	•	•	

Anal	ysis	#4	108+	GC	Funct	tion Analysis Report
0	2	. 4	6 ۱(x	8 10	10 mV)	Time Printed: Aug 20,93 08:27 Sample Time: Aug 20,93 08:15 Method
						i i
28				<del>_</del> .		
	~~~~~					, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
. /	,					1
						Min Height 0.000 mV
57 L _	<u>_j</u>	······································				Analysis Delay 45.0 sec
\-		2				Window Percent 35.0 %
	·					Det Flow 10 ml/min
1	> 4					B/F Flow 10 ml/min
85	_					Aux Flow O ml/min
5			-			Oven Temp 45 C
b						Amb Temp 28 C
16		•	•			Max Gain 1000
114		3			•	Analysis Time 400.0 sec
	سمسمسنسم	7	•	•	•	Peak Report
		-				Pk Compound Name Area/Conc R.T.
1		•	•	•		1 Unknown 4.506 mVS 49.8
14						2 Benzene 377.0 ppb 56.0
	8.	•		•	•	3 Unknown 13.13 mVS 62.6
	•••					4 Unknown 41.26 mVS 71.3
1 1		•	•	•		5 Unknown 1.611 mVS 87.6
171						6 Unknown 11.38 mVS 95.6
1, 1,	•			•	•	7 Toluene 1.139 ppm 110.1
1)						8 Unknown 50.30 mVS 138.6
1 1		•		•		9 Unknown 8.634 mVS 193.6
Δ	<i></i>					10 Unknown 15.34 mVS 199.0
200	9				•	
1 1	o`					
}						
1						13 O-Xylene
223	1.1					
			•			
1.2	2					
257					•	
		•	•			
285						
pla	š					
314						Notes
	•	•	•	•	ŕ	calibration
1 1				-		sample # .2ml of lug/ml BTEX
]		-	•	•		smil valume 70a
342						water sample vol. *#9*ml
	•			•	•	temp. of sample 28c
						0.2ug/40ml H20=5ug/1
		•	•	•		, "
371						soil liquid
	•		• •	•	•	B 95 90 =1ug/kg orl
						T 230 220 =
		•	•	•		E 40 20 =
400						X 105 55 ==
1240						V.S. BESKAR SESSE

Anal	lysis	24代	108+ GC	Funct	tion Analysis Report
9	2		6 8 .(x 1000	10 uV)	Time Printed: Aug 20,93 08:46 Sample Time: Aug 20,93 08:41 Method
28	25				Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
57 <u>[</u>	parama .				Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec
			<u> </u>	•	Window Percent 35.0 % Det Flow 10 ml/min
85					B/F Flow 10 ml/min Aux Flow 0 ml/min
}					Oven Temp 45 C Amb Temp 29 C Max Gain 1000
114	•				Analysis Time 400.0 sec
					Fk Compound Name Area/Conc R.T. 1 Benzene 44.30 ppb 56.1
142	•			٠	
171					
d d				•	
200					
228					
257					
Z 5.1 /	-			•	
285					
• .					
314	•			•	Calibration Z// CA// Sample # .Zml of lug/ml ETEX
342					s oil volume 50g water sanple vol. ****ml
					temp. of sample 28c 0.2ug/40ml H20=5ug/l
371					soil liquid B 95 70 =1ug/kg orl
		•			T 230 240 = E 40 20 =

	dysas	., 11		105*			tion Analysis Report
9	:1.		2	3	4	5	Time Printed: Aug 20,93 08:57
				.(x	10	mV)	Sample Time: Aug 20,93 08:48 Method
28		. =	=	-			Slope Up 3.000 mV/Sec
							Slope Down 3.000 mV/Sec
							Min Area 1.000 mVSec
	<i>(</i>						Min Height 0.000 mV
57	<u> </u>				•		Analysis Delay 45.0 sec
ž	ا. س						Window Percent 35.0 %
٠,٨	2			•			Det Flow 10 ml/min
	Ti .						B/F Flow 10 ml/min
85			•				Aux Flow 0 ml/min
							Oven Temp 45 C
)				•			Amb Temp 30 C
	_						Max Gain 1000
114	〉 』.					•	Analysis Time 400.0 sec
	4						Feak Report
				•			Pk Compound Name Area/Conc R.T.
, 1	1						1 Benzene 29.03 ppb 56.2 2 Unknown 2.240 mVS 62.2
142		•	•		•	•	2 Unknown 2.240 mVS 62.2 3 Unknown 8.172 mVS 71.3
10	ı						4 Toluene 186.8 ppb 110.2
		•		•			4 Toluene
1 1 1						•	6 M&P-Xylene 66.21 ppb 238.8
-1-	٠	٠	•	•		•	o ros Ayaerre — Obraa ppo 20010
		•		•	•		
200	ı						
7	-	•	•	•	•	٠	
		•		•	•		
22/8	1						
	•	•	·	• •	•	٠	
6		-			٠		
2\$7							
			•	•	•		
}							
245							
				•			
							Notes
314	•			• •		•	f
							soil sample sample # 34 8 to 10 ft
				ē	•		sample # 34 8 to 10 ft soil volume 50g
342	ı						water sample vol. ****ml
7	•	•	•	•	•	•	temp. of sample 28c
							Constitution for a monotified to the Anna Sa
]		٠		•	•		
371							soil liquid
-7.	•		٠		٠	•	B 95 80 =1ug/kg orl
							T 230 230 =
		•		•	•		E 40 20 =
400	1						X 105 50 =
			•			•	{

Q	ysis 1	2		33		ą.	5	Time Printed: Aug 20,93 09:17
ď	.1.	<i>i.</i>	•	(x			mV)	Sample Time: Aug 20,93 09:08
								Method
28		<u> </u>						Slope Up 3.000 mV/Sec
ي .	· 			·	·	•		Slope Down 3.000 mV/Sec
	>							Min Area 1.000 mVSec
(Min Height 0.000 mV
573							٠	Analysis Delay 45.0 sec Window Percent 35.0 %
H.								Window Percent 35.0 % Det Flow 10 ml/min
- Fair	a ny	•		•		•		B/F Flow 10 ml/min
83	٠>							Aux Flow 0 ml/min
, J	•	•	•	•	•	•	•	Oven Temp 45 C
1/4								Amb Temp 30 C
		•		•		•		Max Gain 1000
114					_		_	Analysis Time 400.0 sec
	5	•	•	•	•	•	•	Peak Report
								Pk Compound Name Area/Conc R.T.
								1 Benzene 81.74 ppb 56.3
142							•	2 Unknown 13.38 mVS 63.5
6								3 Unknown 54.63 mVS 71.3 4 Unknown 12.90 mVS 95.0
		•		•		•		4 Unknown 12.90 mVS 95.0
171 -								6 Unknown 7.018 mVS 138.6
111	•	•	•	•	•	•	•	(2) (2) (1) (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
		•		•		•		
200								
	·	•	•	·	•	•	•	
			•					
248								
1		•		٠		•		
257								
1	•	•	•	٠	•	•	•	
						-		
		•		-		,		
285				•				
314								Notes
∴.IF+	•		•	٠		•		soil sample
								sample # 34 14 to 16 ft
		•		٠		٠		soil volume 50g
342								water sample vol. ****ml
	•		•	•	•	•	•	temp. of sample 28c

50

=lug/kg orl

soil 95

T 230 E 40 X 105

1 11 1 5.5	lysis	11 .1. 8			1 331130	tion Analysis Report
9	4	8	12 (x	16 1000	20 uV)	Time Printed: Aug 20,93 09:33 Sample Time: Aug 20,93 09:24
			• • •			Method
00						i l
28			<u> </u>		S• .	1 · · · · · · · · · · · · · · · · · · ·
						Slope Down 3.000 mV/Sec
		>				Min Area 1.000 mVSec
						Min Height 0.000 mV
57	>					Analysis Delay 45.0 sec
1 1	ادحر		•			Window Percent 35.0 %
1)						Det Flow 10 ml/min
1 - /~	~~~	•		•		
						3
85						Aux Flow 0 ml/min
}						Oven Temp 45 C
\						Amb Temp 30 C
7		•	•	•		Max Gain 1000
114	-					Analysis Time 400.0 sec
1" 1"	رب. تشممم		•		•	Peak Report
1/	3					i '
						Pk Compound Name Area/Conc R.T.
!						1 Benzene 13.59 ppb 56.2
14/2	_					2 Unknown 11.58 mVS 71.0
1 74	•		•		•	3 Toluene 145.4 ppb 110.2
						4 Unknown 3.921 mVS 139.0
		•	•	•		THE COLD THE WAY AND THE
1, 4,						
171	-		•		•	
200						
	•		•		•	
22 8						
1 1						
11		•	•	•		
257						
1-1	÷		•		•	
						·
		•				
285					_	
	•	•	•	•	•	
		•	•	•		
1.2.1						h l m , h
314						Notes
						soil sample
						sample # 34 16 to 18 ft
						soil ∨olume 50g
342						water sanple vol. ****ml
""	•		•		•	temp. of sample 28c
						сынра от жинрас кос
371			_			soil liquid
		-		•		B 95 80 ≔iug/kg orl
						T 230 230 = 1
		•	•	•		E 40 20 =
400						X 105 50 =
TYV	•		,		•	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

q	4	8	12	16 1000	20	Time Printed: Aug 20,93 09:56 Sample Time: Aug 20,93 09:47
28						Method Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec
57	S_2					Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 %
85/			≖š ·			B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C
1.14	4	> ,				Amb Temp 31 C Max Gain 1000 Analysis Time 400.0 sec Peak Report
142	_					Pk Compound Name Area/Conc R.T. 1 Unknown 11.53 mVS 50.2 2 Benzene 17.80 ppb 56.1
	٠				• ,	3 Unknown 42.77 mVS 71.6 4 Unknown 2.170 mVS 96.5 5 Toluene 256.7 ppb 110.4
171						
200	•		•			
228						
297						
285			•			
314						Notes
	•				•	water sample sample # 34 after purge soil volume **g
342					•	water sanple vol. 42.7ml temp. of sample 28c
331		·			•	soil liquid B 95 80 =1ug/kg orl T 230 230 =
400						E 40 20 = X 105 50 =

28	8 12 (× 1	16 20	Time Printed: Aug 20,93 09:45
28		.000 uV)	Sample Time: Aug 20,93 09:35
28	. ,		Method
		•	Slope Up 3.000 mV/Sec
			Slope Down 3.000 mV/Sec
حسي	_		Min Area 1.000 mVSec
			Min Height 0.000 mV
57			Analysis Delay 45.0 sec
2			Window Percent 35.0 %
, F			Det Flow 10 ml/min
		3	B/F Flow 10 ml/min
85			Aux Flow 0 ml/min
			Oven Temp 45 C
1.5			Amb Temp 31 C
4			Max Gain 1000
114	>		Analysis Time 400.0 sec
1	5		Peak Report
	•		Pk Compound Name Area/Conc R.T.
			1 Unknown 15.12 mVS 50.5
140 6 .			2 Benzene 18.81 ppb 56.4
1 1			3 Unknown 55.18 mVS 71.6 4 Unknown 3.349 mVS 96.4
	•	•	1
171			6 Unknown 0.642 mVS 137.4
	•	•	
lada			
200			
	•	•	
228			
120			
1			
· ·	•	•	
257			
1	•	•	
285			
	-		
314			Notes
		-	water sample
			sample # 34 before purge
			soil volume **g
342			water sanple vol. 43.0ml
			temp. of sample 28c
			munit Trionidal
371			soil liquid B 95 80 =1ug/kg orl
			· · · · ·
	•	•	T 230 230 = E 40 20 =
lado			X 105 50 =
4 q 0			V 100 00

Appendix B

Soil Boring Logs

Well Construction Diagrams

COORDINATES N 659,070 E 3,218,195

BORING

SB-15

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas PROJECT NUMBER 1K94

SURFACE ELEVATION 25.6

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/6/93

	101 B221//11/011								
N O		4		SAM	PLE INF	ORMA	ATION		
ELEVATION	SOIL DESCRIPTION	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv. / Inches	Penetr- ometer Blow	PID/ FID (ppm)	REMARKS
	GROUND SURFACE CLAY (CH) - black (2.5 YR 0), stiff, rootlets	111			∫6B-15 <i>A</i>	Rec.	Counts		
−25 -			_	SPT	1573	24/12		0/0	
_	CLAY (CH) - black (5 YR 2.5/1), stiff to hard, rootlets, calcareous nodules, slightly silty			SPT		24/24		0/0	
-20	CLAY (CH) -black (5 YR 2.5/1), with brown streaks, stiff, dry, rootlets, white to buff calcareous nodules		5 -	SPT		24/8		0/1	
-	CLAY (CL) - very dark gray (7.5 YR 3/0), medium stiff, plastic, slightly silty, brown inclusions		-	SPT		24/8		0/14	
-	CLAY (CL) -olive gray (5 YR 4/2), occasional yellow streaks, medium stiff, plastic, slightly silty		10	SPT		24/8		0/8	
-15 -	CLAY (CL) - yellowish red (5 YR 4/6), mottled with gray, occasional black staining, stiff, slightly silty, dry, occasional <1/8-inch calcareous nodules		10 -	SPT		24/18		0/3	₩ Water level 10.7 feet BLS after 20 minutes
-	calcareous nodules CLAY (CL) - yellowish red (5 YR 4/6), occasional gray streaks, medium stiff, plastic, slightly silty, damp		-	SPT	VSB-15E	24/15		0/10	
-10	CLAY (CL) - strong brown (7.5 YR 4/6), occasional gray and yellow streaks, medium stiff, plastic, slightly silty, damp		- 15 -	SPT		24/18		0/0	
-	SILTY CLAY (CL) - strong brown (7.5 YR 5/6), variegated with gray, green and brown, medium stiff, slightly silty to very silty with depth, occasional <1/8-inch calcareous			SPT		24/18		0/0	
-	nodules SILTY CLAY (CL) - A/A, very silty, damp at base		- 20 -	SPT		24/20		0/6	
-5 -	SILT (ML) - brown (7.5 YR 5/4), clayey, slightly sandy in parts, saturated			X SPT	\/\$B-15¢ \/	24/20	:	0/3	
	Total depth = 22 feet BLS								
									:
							·		

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

COORDINATES N 659,077 E 3,218,131

BORING SB-16

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

PROJECT NUMBER 1K94

SURFACE ELEVATION 25.5

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/4/93

52 ELEVATION FEET	SOIL DESCRIPTION GROUND SURFACE Concrete and road base	STRATA	Depth Feet	SAM Sample	PLE INF	ORM/	ATION Penetr-	I	
	DESCRIPTION GROUND SURFACE	STRAT,		Sample	Sample		Penetr-		
			1 1	Type	ID	/ Inches	o <u>meter</u> Blow Counts	PID/ FID (ppm)	REMARKS
-25 -				<u> </u>	+	Rec.	Counts		
	CLAY (CH) - very dark gray (2 YR 3/2), medium firm, plastic CLAY (CH) - gray brown (2.5 YR 5/2), yellow streaks, medium stiff, plastic CLAY (CL) - gray brown (2.5 YR 5/2), more yellow, moderately soft to medium stiff, plastic, silty, occasional gravel CLAY (CL) - dark brown (7.5 YR 4/4), variegated with black and brown, stiff CLAY (CL) - dark brown (7.5 YR 4/4), variegated with black and gray, stiff, dry, slightly silty CLAY (CL) - A/A, medium stiff CLAY (CL) - dark brown (7.5 YR 4/4), stiff CLAY (CL) - brown (7.5 YR 5/4), occasional gray, medium stiff, plastic SILT (ML) - dark brown (7.5 YR 5/4), with gray mottling, clayey to very sandy, saturated Total depth = 22 feet BLS		- 15 - 20	SPT SPT SPT SPT SPT SPT SPT	/\ \/\$B-160	24/18 24/18 24/18 24/24 24/24 24/24		36/20 36/16 284/170 4/50 4/50 4/15 0/7	♥ Water level 9.95 feet BLS after 20 minutes

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

COORDINATES N 658,988 E 3,218,203

BORING

SB-17

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

PROJECT NUMBER 1K94

SURFACE ELEVATION 25.4

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/6/93

Z		7		SAM	PLE INF	ORM	NOITA		
ELEVATION FEET	SOIL DESCRIPTION GROUND SURFACE	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv. / Inches Rec.	Penetr- ometer Blow Counts	PID/ FID (ppm)	REMARKS
-	CLAY (CH) - black, stiff, rootlets, gravelly		-	SPT		24/3		0/0	
-	CLAY (CH) - black (5 YR 2.5/1), stiff, occasional rootlets, plastic, occasional iron		<u> </u>	SPT	√SB-174 \ \ 	24/18		0/0	
- <u>.</u> 20 -	staining CLAY (CH) - dark gray (10 YR 4/1), medium stiff, some yellow iron staining		- 5 -	SPT		24/12		0/0	
-	CLAY (CH) - olive gray (5 YR 2.5/1), variegated with yellow, gray and brown, some iron staining, stiff CLAY (CH) - very dark gray (5 YR 3/1), some		- 10 -	SPT	SB-17E	24/8		0/12	₩ater level 9.35 feet BLS
-15 -	iron staining, medium stiff, plastic, occasional <1/8-inch calcareous nodules CLAY (CH) - olive gray (5 YR 5/2), variegated with brown and yellow, some iron		- 10 -	SPT		24/8		0/10	after 70 minutes
-	\staining, medium stiff CLAY (CL) - brown (7.5 YR 5/4), gray mottling, medium stiff, plastic, damp, silty in parts		 	SPT		24/18		0/4	
-10	CLAY (CL) - strong brown (7.5 YR 4/6), gray streaks, medium stiff, soft and damp in gray areas, slightly silty CLAY (CL) - strong brown (7.5 YR 4/6),		- 15 - 	SPT		24/24		0/4	
	abundant gray mottling towards base, medium stiff to stiff, plastic, slightly silty, dry SILTY CLAY (CL) - A/A, silty to very silty in			SPT		24/22		0/0	
-5 -	parts, damp at base SILTY CLAY (CL) - strong brown (7.5 YR 5/6), very silty, dry to damp at base		- 20 - 	SPT		24/22		0/0	
-	SILT (ML) - brown (7.5 YR 5/4), clayey, wet SAND (SM) - brown (7.5 YR 5/4), fine grained, silty to clayey, saturated Total depth = 24 feet BLS		 	SPT	√SB-170 Λ	24/24		0/2	
				:	i				
		<u> </u> 							
ļ			<u> </u>	<u> </u>		L	L	<u> </u>	

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

COORDINATES N 658,919 E 3,218,254

BORING

SB-18

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

PROJECT NUMBER 1K94

SURFACE ELEVATION 23.6

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/6/93

SUNFA	ACE ELEVATION 23.6 DATUM IVISL		1000	320 81	L. Basino	<u>, </u>			DATE DRILLED 6/6/33
NO		Ø		SAMI	PLE INF	ORMA	NOITA		
ELEVATION	SOIL DESCRIPTION	STRATA	Depth	Sample	Sample	Inches Adv.	Penetr- ometer	PID/	REMARKS
ELE		ST	Feet	Туре	ΩI	Inches Rec.	Blow	FID (ppm)	
 -	GROUND SURFACE CLAY (CH) - very dark gray (2.5 YR 3/0), stiff, rootlets, dry			SPT	/5B-184			0/0	
_			_	$\left\langle \cdot \right\rangle$	Ĥ	/,			
-20				SPT		24/6		0/0	
-	CLAY (CH) - dark gray (2.5 YR 4/0), rust colored iron staining, medium stiff		- 5 -	SPT		24/12		0/0	
-	CLAY (CL) - dark gray (7.5 YR 4/0), yellowish brown streaks, medium stiff, plastic, slightly silty, occasional <1/8-inch calcareous nodules			SPT		24/12		0/14	
−15 -	CLAY (CL) - yellowish brown (10 YR 5/4), mottled with gray, medium stiff to occasionally soft, plastic, slightly silty, slight		- 10 -	SPT	\/SB-18E	24/15		52/200	고 Water level 9.80 feet BLS
-	petroleum odor CLAY (CL) - yellowish brown (10 YR 5/6) to strong brown (7.5 YR 5/6) with depth, gray mottling, soft to medium stiff, very slight			SPT	M SB-186	24/18		52/150	after 10 minutes
-10	petroleum odor CLAY (CL) - brown (7.5 YR 5/3), gray mottling, medium stiff to stiff, gray is soft,			SPT		24/24		0/3	
	slightly silty, dry SILTY CLAY (CL) - brown, (7.5 YR 5/4), occasional gray and black streaks, iron		- 15 - -	SPT		24/18 /		0/0	
F	SAND (SM) - dark brown (7.5 YR 4/4), moist to wet			SPT		24/24		0/1	
-5 -	SILT (ML) - brown and gray, slightly clayey to slightly sandy, moist SILT (ML) - strong brown (7.5 YR 4/4),		- 20 -	SPT	∏SB-180	24/24		0/0	
	\clayey to very clayey at top, saturated Total depth = 20 feet BLS								

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

COORDINATES N 658,929 E 3,218,171

BORING SB-19

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

PROJECT NUMBER 1K94

SURFACE ELEVATION 25.7

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/11/93

301117	CC ELEVATION 23.7 DATON MICE				L. Dasiii	<u> </u>			
NO	·	4		SAM	PLE INF	ORMA	NOITA		
ELEVATION FEET	SOIL DESCRIPTION	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv. / Inches Rec.	Penetr- ometer Blow Counts	PID/ FID (ppm)	REMARKS
-25	GROUND SURFACE Concrete and road base					nec.			
-	CLAY (CH) - black (2.5 YR 2.5/0), occasional iron stains, soft to medium stiff, plastic		-	SPT	SB-194	24/12		0/290	
-	CLAY (CH) - A/A		5 -	SPT	SB-19E	24/9		0/30	
-20 -	CLAY (CH) - very dark gray (10 YR 3/1), moderately soft, plastic			SPT		24/18		0/12	
-	SILTY CLAY (CL) - gray (10 YR 5/1), variegated with dark gray, black and brown, silty, damp, plastic		- 10 -	SPT		24/18		0/8	
-15 - -	SILTY CLAY (CL) - strong brown (7.5 YR 5/6), variegated with red and gray, medium stiff, slightly silty, plastic SILTY CLAY (CL) - reddish brown (5 YR 5/4),			SPT		24/12 24/18		0/0	☑ ■ Water level 11.45 feet BLS after 5 minutes
_	gray mottling, silty, stiff to medium stiff, plastic, occasional gray calcareous nodules > 1/4-inch SILTY CLAY (CL) - strong brown (7.5 YR		- 15 -	SPT		24/18		0/15	
-10 -	4/6), occasional gray streaks, silty, stiff, black iron nodules > 1/4-inch SILTY CLAY (CL) - brown (7.5 YR 5/4), occasional gray streaks, silty, stiff,			SPT		24/20		0/0	•
-	occasional black iron nodules SILTY CLAY (CL) - strong brown (7.5 YR 5/6), occasional gray, silty to very silty,			SPT		24/18		0/0	
-5 -	grades to clayey silt, medium stiff SILT (ML) - brown (7.5 YR 5/4), occasional gray, clayey to sandy at base, saturated at base		- 20 - -	SPT	∏sв-190 М	24/20		0/0	
	Total depth = 22 feet BLS								
			·		1 L 	L		L	

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

COORDINATES N 658,995 E 3,218,132

BORING SB-20 SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

PROJECT NUMBER 1K94

SURFACE ELEVATION 25.6

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/5/93

				SAM	PLE INF	ORMA	MOITA		
ELEVATION FEET	SOIL DESCRIPTION GROUND SURFACE	STRATA	Depth Feet		Sample	Inches Adv. / Inches Rec.	Penetr- ometer Blow Counts	PID/ FID (ppm)	REMARKS
-25	Concrete and road base					11001			
• •	CLAY (CH) - black (2.5 YR), soft to stiff, plastic, occasional rootlets, very slight petroleum odor			SPT	SB-204	24/12		4/150	
-20	CLAY (CL) - black (2.5 YR N2.5), soft, silty, occasional iron staining		- 5 -	SPT		24/24		12/450	
	CLAY (CL) - dark gray (2.5 YR N4), iron staining, soft to medium stiff, slightly silty		-	SPT		24/12		0/15	
	CLAY (CL) - light gray with greenish tint, firm to stiff, silty, slight petroleum odor		10 -	SPT	SB-20E	24/24		878/ 1000+	
-15	CLAY (CL) - reddish brown (5 YR 4/4), variegated with gray, pink and green, stiff, dry, silty			SPT		24/18	:	0/7	∀ ₩ater level 10.85 feet BLS after 70 minutes
	CLAY (CL) - reddish brown (5 YR 5/4), occasional black and gray staining, medium stiff, silty in parts			SPT		24/18		0/0	arter 70 minutes
-10	CLAY (CL) - yellowish red (5 YR 5/6), abundant gray streaks, moderately soft, plastic, damp, slightly silty in parts		15 -	SPT		24/18		0/2	
•	SILTY CLAY (CL) - strong brown (7.5 YR 5/6), abundant gray streaks, occasional black, medium stiff, gray and back areas are			SPT		24/24		0/35	
	soft, very silty SILTY CLAY (CL) - dark brown (7.5 YR 4/4), occasional gray streaks, medium soft to medium stiff, silty		20	SPT		24/24		0/2	
-5	SANDY SILT (ML) - dark brown (7.5 YR 4/4), soft, sandy, saturated		20 -	SPT	SB-200	24/24		0/0	
	Total depth = 22 feet BLS								
•						:			
								1	
				5					

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

SB-21

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas PROJECT NUMBER 1K94

COORDINATES N 658,914 E 3,218,136

SURFACE ELEVATION 25.8

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/5/93

SURFA	CE ELEVATION 25.8 DATUM WISL		LUG	JEU BT	E. Basilio	,			DATE DRILLED 6/5/33
N		d		SAMI	PLE INF	ORMA	NOITA		
ELEVATION FEET	SOIL	STRATA				Inches Adv.	Penetr-	PID/	REMARKS
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	DESCRIPTION	STR	'	· ·	Sample	///	o <u>mete</u> r Blow	FID	TIENT WITE
ᆸ	GROUND SURFACE	"	Feet	Туре	ID	Inches Rec.	Counts	(ppm)	
-25	Concrete and road base					1100.			
-25			-						
	CLAY (CH) - black (2.5 YR N2.5), stiff,		-	М	√6B-21A	l <i>I</i> .			
-	rootlets		-	SPT	W	24/8		0/0	
_	CLAY (CH) - black (2.5 YR N2.5), occasional			М	SB-21E	1 . 3			
_	gray and iron staining, moderately soft, plastic		- 5 -	SPT	M	24/24		0/110	
-20	CLAY (CH) - black (2.5 YR N2.5), occasional		-	M	Ħ	1			
-	yellow iron staining, medium stiff, plastic		-	SPT		24/12		0/40	
-	CLAY (CH) - dark gray (5 YR 4/1), some		-	M		1			
-	yellow iron staining, stiff, plastic		-	SPT		24/ 8		0/10	☑ Water level 9.40 feet BLS
-	SILTY CLAY (CL) - dark yellowish brown (10		- 10 -	M		1			after 16 hours
-15	YR 4/6), variegated with gray, green and yellow, silty		-	SPT		24/10		0/10	
-	SILTY CLAY (CL) - red brown (5 YR 4/4),		-	M		1			
-	stiff, silty, occasional calcareous nodules		-	SPT		24/18		0/0	
-	SILTY CLAY (CL) - yellowish red (5 YR 4/6),		-			1			
-	abundant gray streaks, silty to very silty in spots, damp		15 -	SPT		24/24		0/2	
-10	SILTY CLAY (CL) - strong brown (7.5 YR		-	H		1			
-	4/6), abundant gray towards base, soft to firm, silty, damp, gray matter is soft and		-	SPT		24/18		0/1	
-	moist		-	H		<i>''</i>			
-	SAND (SM) - brown (7.5 YR 5/4), silty to		-	SPT		24/22		0/0	
-	slightly clayey, moist		- 20 -	\bigcap	\ \/5B-210	',			
-5	SAND (SM) - A/A, saturated		-	SPT		24/24		0/0	
-	Total depth = 22 feet BLS		} -	H	H	/			
	22 1111 22					,			
				1					
;									
		.1		Ц		L	l		
			COR4841	TAITC.					

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

SB-22

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

COORDINATES N 658,834 E 3,218,140

PROJECT NUMBER 1K94

SURFACE ELEVATION 26.4 DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/11/93

SURFA	CE ELEVATION 20.4 DATON NISE		LOG	32001	L. Dasine	<u>,</u>			DATE DATE DE CONTROL
N		4		SAME	PLE INF	ORMA	NOITA		
ELEVATION FEET	SOIL DESCRIPTION	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv. / Inches Rec.	Penetr- ometer Blow Counts	PID/ FID (ppm)	REMARKS
- -25	GROUND SURFACE SILT (OL) - tan with gravel, rootlets, fill material(?)			SPT		24/12		0/0	
- -				SPT		24/0			·
-	CLAY (CH) - dark gray (7.5 YR 4/0), soft to medium stiff, plastic, some gravel, occasional rootlets		- 5 -	SPT	√6B-22 <i>F</i>	24/12		0/0	
-20 -	CLAY (CH) - very dark gray (5 YR 3/0), occasional brown streaks, soft to medium stiff, plastic, calcareous nodules		_	SPT	SB-22E 	24/12		0/0	
-	CLAY (CH) - dark gray (2.5 YR 4/0), soft to medium stiff, plastic, damp		- 10 -	SPT		24/8		0/0	
_ _15	CLAY (CL) - reddish brown (5 YR 5/4), variegated with black and olive gray, medium stiff, plastic, slightly silty, occasional		-	SPT		24/20		0/0	
-	<1/8-inch calcareous nodules CLAY (CL) - yellowish red (5 YR 5/6), gray streaks, occasional black, medium stiff, occasional pebbles		-	SPT		24/18		0/0	
-	SILTY CLAY (CL) - strong brown (7.5 YR 5/8), occasional gray, silty, medium stiff		- 15 - -	SPT		24/24		0/0	
-10 -	SILTY CLAY (CL) - brown (7.5 YR 5/4), occasional gray streaks, medium stiff, plastic, silty in parts, black iron nodules (>1/4-inch) at base		-	SPT		24/18		0/0	
-	SILTY CLAY (CL) - brown (7.5 YR 5/4), occasional black and gray, medium stiff, plastic, silty, damp		- 20 -	SPT		24/24		0/0	
-5	CLAYEY SILT (ML) - strong brown (7.5 YR 5/6), occasional gray streaks, clayey, less clay with depth, wet at base		-	SPT	 /sB-220	24/24		0/0	
<u> -</u>	SILT (ML) - A/A, saturated Total depth = 24 feet BLS		- -	SPT	WBB-220	24/24		0/0	
	Total depth = 24 feet BL3								
ļ				L.J	<u> </u>	J	<u> </u>	I	<u> </u>

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

SB-23

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

COORDINATES N 658,770 E 3,218,132

PROJECT NUMBER 1K94

SURFACE ELEVATION 26.0 DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/11/93

L	SUNFA	CE ELEVATION 26.0 DATOW WISL		LUG	JEU D I	L. Basino	<u>, </u>			DATE DRILLED 8/11/93
	N O		∢		SAM	PLE INF	ORMA	NOITA		
	ELEVATION FEET	SOIL DESCRIPTION	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv.	Penetr- o <u>mete</u> r Blow	PID/ FID (ppm)	REMARKS
\vdash	25	GROUND SURFACE CLAY (OL) - tan, dry, abundant gravel			SPT	6B-23A	Rec. 24/ 9	Counts	0/0	
-		CLAY (CH) - dark gray (7.5 YR 4/0), soft to medium stiff, plastic, iron staining		- -	SPT		24/12		0/2	
-		CLAY (CH) - very dark gray (7.5 YR 3/0), medium stiff, plastic, dark brown iron staining		- 5 -	SPT		24/14		0/1	
-	20	CLAY (CH) - dark gray (2.5 YR 2.5/0), iron staining, medium stiff to stiff, plastic, white to tan calcareous gravel		_	SPT	√SB-23B	24/ 9		0/3	
-		SILTY CLAY (CL) - light gray (7.5 YR 6/0)		- 10 -	SPT		24/12		0/4	
	15	and reddish yellow (7.5 YR 7/8), medium stiff, silty CLAY (CL) - olive gray (5 Y 4/2), gray with			SPT		24/18		0/0	
-		depth, iron staining, medium stiff, occasional <1/8-inch calcareous nodules CLAY (CL) - brown (7.5 YR 5/4), mottled with gray, medium stiff, plastic, slightly silty			SPT		24/19		0/0	
- - -	10	CLAY (CL) - A/A SILTY CLAY (CL) - brown (7.5 YR 5/3), gray		- 15 - -	SPT		24/19		0/0	
-		mottling, medium stiff, silty, plastic in parts			SPT		24/20		0/0	
-		SILT (ML) - strong brown (7.5 YR 5/6), gray mottling, clayey, damp at base		- - 20 -	SPT		24/18		0/0	
-	5	SILT (ML) - strong brown (7.5 YR 4/6), clayey, sandy at base, saturated at base			SPT	√5B-23C	24/24		0/0	
		Total depth = 22 feet BLS								
								:		
							!			
_					<u> </u>					

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

COORDINATES N 658,846 E 3,218,085

BORING

SB-24

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas PROJECT NUMBER 1K94

SURFACE ELEVATION 24.3

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/13/93

		4		SAM	PL	E INF	ORM	NOITA		
SOIL DESCRIPTION		TRAT/	Depth	Sample	3 8	Sample	Inches Adv.	Penetr- o <u>mete</u> r	PID/	REMARKS
ND SURFACE		S	Feet	Туре		ID	Inches Rec.	Blow Counts	(ppm)	
(CH) - dark gray (2.5 YR 4 ig, medium stiff, plastic, gr	/0), iron avelly (fill?),			SPT	X	5B-24A	24/12		150	Photoionization detector not operational
(CH) - dark gray (5 Y 4/1),	medium			SPT			24/8		14	
	edium stiff,		- 5 -	SPT			24/12		40	
m stiff, plastic, occasional og, occasional calcareous n	iron odules			SPT			24/ 9		15	
d with gray and green, stif 1/4-inch calcareous nodule	f, silty in s		- 10 -	SPT			-7:-		100	≚ Water level 9.55 feet BLS after 5 minutes
d with gray, stiff, moderat Iry to damp	ely plastic,			SPT	\mathbb{N}	SB-24E	24/18		30	
occasional gray, stiff, very i iron staining, occasional bl	silty in		- - 15 -	SPT			24/18		0	
onal gray, silty to very silty silt, stiff	, grades to		 -	SPT			24/18 ,		0	
ng, clayey in parts, moist to				SPT	X	DB-24C	24/24		0	
depth = 19 feet BLS										
									:	
					:					
	DESCRIPTION ND SURFACE ete and road base (CH) - dark gray (2.5 YR 4, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	DESCRIPTION ND SURFACE ete and road base (CH) - dark gray (2.5 YR 4/0), iron 10g, medium stiff, plastic, gravelly (fill?), 11ght petroleum odor (CH) - dark gray (5 Y 4/1), medium 12glastic, iron staining (CH) - gray (10 YR 5/1) medium stiff, 12glastic, iron staining (CH) - light olive brown (2.5 Y 5/2), 12glastic, occasional iron 12glastic, occasional iron 12glastic, occasional iron 12glastic, occasional iron 12glastic, occasional iron 13glastic, occasional iron 13glastic, occasional iron 14glastic, occasional iron 14glastic, occasional iron 14glastic, siff, silty in 14glastic, occasional occasional iron 14glastic, occasional occasional iron 14glastic, occasional occasional occasional gray, stiff, moderately plastic, occasional gray, stiff, very silty in 14glastic, occasional black iron 15glastic, occasional black iron 15glastic, occasional black iron 15glastic, occasional black iron 15glastic, occasional black iron 15glastic, occasional black iron 15glastic, occasional black iron 15glastic, occasional black iron 15glastic, occasional black iron 15glastic, occasional black iron 15glastic, occasional black iron 15glastic, occasional black iron 15glastic, occasional black iron 15glastic, occasional black iron 15glastic, occasional black iron 15glastic, occasional black iron 15glastic, occasional black iron 15glastic, occasional occasional black iron 15glastic, occasional occasional black iron 15glastic, occasional occasional occasional black iron 15glastic, occasional occas	DESCRIPTION ND SURFACE ete and road base (CH) - dark gray (2.5 YR 4/0), iron ng, medium stiff, plastic, gravelly (fill?), light petroleum odor (CH) - dark gray (5 Y 4/1), medium plastic, iron staining (CH) - gray (10 YR 5/1) medium stiff, et, iron staining (CH) - light olive brown (2.5 Y 5/2), m stiff, plastic, occasional iron ng, occasional calcareous nodules (CL) - strong brown (7.5 YR 5/6), and with gray and green, stiff, silty in 1/4-inch calcareous nodules CLAY (CL) - brown (7.5 YR 5/3), and with gray, stiff, moderately plastic, and with gray, stiff, wery silty in iron staining, occasional black iron as (<1/8-inch) CLAY (CL) - brown (7.5 YR 5/4), onal gray, silty to very silty, grades to silt, stiff ML) - strong brown (7.5 YR 5/6), gray ng, clayey in parts, moist to wet at	Peet MD SURFACE ete and road base (CH) - dark gray (2.5 YR 4/0), iron ag, medium stiff, plastic, gravelly (fill?), light petroleum odor (CH) - dark gray (5 Y 4/1), medium plastic, iron staining (CH) - gray (10 YR 5/1) medium stiff, si, iron staining (CH) - light olive brown (2.5 Y 5/2), m stiff, plastic, occasional iron ag, occasional calcareous nodules (CL) - strong brown (7.5 YR 5/6), and with gray and green, stiff, silty in 1/4-inch calcareous nodules CLAY (CL) - brown (7.5 YR 5/3), and with gray, stiff, moderately plastic, dry to damp CLAY (CL) - strong brown (7.5 YR 5/3), and with gray, stiff, very silty in iron staining, occasional black iron as (<1/8-inch) CLAY (CL) - brown (7.5 YR 5/4), onal gray, silty to very silty, grades to silt, stiff ML) - strong brown (7.5 YR 5/6), gray and gr, clayey in parts, moist to wet at	SOIL DESCRIPTION ND SURFACE ete and road base (CH) - dark gray (2.5 YR 4/0), iron ng, medium stiff, plastic, gravelly (fill?), light petroleum odor (CH) - dark gray (5 Y 4/1), medium plastic, iron staining (CH) - gray (10 YR 5/1) medium stiff, s, iron staining (CH) - light olive brown (2.5 Y 5/2), m stiff, plastic, occasional iron ng, occasional calcareous nodules (CL) - strong brown (7.5 YR 5/6), nd with gray and green, stiff, silty in 1/4-inch calcareous nodules CLAY (CL) - brown (7.5 YR 5/3), nd with gray, stiff, moderately plastic, dry to damp CLAY (CL) - strong brown (7.5 YR Depth Sample Type SPT SPT SPT SPT SPT SPT SPT SP	SOIL DESCRIPTION ND SURFACE ete and road base (CH) - dark gray (2.5 YR 4/0), iron ng, medium stiff, plastic, gravelly (fill?), light petroleum odor (CH) - dark gray (5 Y 4/1), medium plastic, iron staining (CH) - gray (10 YR 5/1) medium stiff, plastic, occasional iron ng, occasional calcareous nodules (CL) - strong brown (7.5 YR 5/6), dwith gray and green, stiff, silty in 1/4-inch calcareous nodules CLAY (CL) - brown (7.5 YR 5/3), dwith gray, stiff, moderately plastic, dry to damp CLAY (CL) - strong brown (7.5 YR ccasional gray, stiff, very silty in iron staining, occasional black iron is (<1/8-inch) CLAY (CL) - brown (7.5 YR 5/4), onal gray, silty to very silty, grades to silt, stiff ML) - strong brown (7.5 YR 5/6), gray ng, clayey in parts, moist to wet at	SOIL DESCRIPTION ND SURFACE ete and road base (CH) - dark gray (2.5 YR 4/0), iron ng, medium stiff, plastic, gravelly (fill?), nlight petroleum odor (CH) - dark gray (5 Y 4/1), medium plastic, iron staining (CH) - gray (10 YR 5/1) medium stiff, to, iron staining (CH) - light olive brown (2.5 Y 5/2), m stiff, plastic, occasional iron ng, occasional calcareous nodules (CL) - strong brown (7.5 YR 5/6), d with gray and green, stiff, silty in 1/4-inch calcareous nodules CLAY (CL) - brown (7.5 YR 5/3), d with gray, stiff, moderately plastic, try to damp CLAY (CL) - strong brown (7.5 YR Decasional gray, stiff, very silty in iron staining, occasional black iron is (<1/8-inch) CLAY (CL) - brown (7.5 YR 5/4), onal gray, silty to very silty, grades to silt, stiff ML) - strong brown (7.5 YR 5/6), gray ng, clayey in parts, moist to wet at Depth Sample Feet Type ID Depth Sample Feet Type ID SB-244 SPT SPT SPT SB-244 SPT SB-240 SPT SB-240 SPT SB-240 SPT SB-240 SPT SB-240 SPT SB-240 SPT SB-240	SOIL DESCRIPTION ND SURFACE ete and road base (CH) - dark gray (2.5 YR 4/0), iron ng, medium stiff, plastic, gravelly (fill?), light petroleum odor (CH) - dark gray (5 Y 4/1), medium plastic, iron staining (CH) - gray (10 YR 5/1) medium stiff, r, iron staining (CH) - light olive brown (2.5 Y 5/2), m stiff, plastic, occasional iron ng, occasional calcareous nodules (CL) - strong brown (7.5 YR 5/6), d with gray and green, stiff, silty in 1/4-inch calcareous nodules CLAY (CL) - brown (7.5 YR 5/3), d with gray, stiff, moderately plastic, lry to damp CLAY (CL) - strong brown (7.5 YR 5/4), onal gray, stiff, very silty in iron staining, occasional black iron ss (<1/8-inch) CLAY (CL) - brown (7.5 YR 5/4), onal gray, silty to very silty, grades to silt, stiff ML) - strong brown (7.5 YR 5/6), gray ng, clayey in parts, moist to wet at	ND SURFACE ete and road base (CH) - dark gray (2.5 YR 4/0), iron g, medium stiff, plastic, gravelly (fill?), light petroleum odor (CH) - dark gray (5 Y 4/1), medium plastic, iron staining (CH) - gray (10 YR 5/1) medium stiff, g, iron staining (CH) - light olive brown (2.5 Y 5/2), m stiff, plastic, occasional iron g, occasional calcareous nodules (CL) - strong brown (7.5 YR 5/6), d with gray and green, stiff, silty in 1/4-inch calcareous nodules CLAY (CL) - brown (7.5 YR 5/3), d with gray, stiff, moderately plastic, dry to damp CLAY (CL) - strong brown (7.5 YR Decasional gray, stiff, very silty in iron staining, occasional black iron sts (<1/8-inch) CLAY (CL) - brown (7.5 YR 5/4), onal gray, silty to very silty, grades to silt, stiff ML) - strong brown (7.5 YR 5/6), gray ng, clayey in parts, moist to wet at	SOIL DESCRIPTION Depth Feet Type ID Sample Sample Fild (ppm) Set Type ID Sample Fild (ppm) Set Type ID

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

COORDINATES N 658,922 E 3,218,065

BORING

SB-25

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas PROJECT NUMBER 1K94

SURFACE ELEVATION 23.8

DATUM MSL

LOGGED BY D. Gibson

DATE DRILLED 8/13/93

SURFA	CE ELEVATION 23.8 DATOM WISE		LOG	JED B1	D. Gibso	11			DATE DRILLED 6/13/33
N		4		SAMI	PLE INF	ORMA	NOITA		
ELEVATION FEET	SOIL DESCRIPTION	STRATA	Depth Feet	Sample Type	Sample	Inches Adv.	Penetr- ometer Blow	PID/ FID	REMARKS
ш	GROUND SURFACE Concrete and road base			.,,,,	·-	Inches Rec.	Counts	(ppm)	
-	CLAY (CH) - dark brown (7.5 YR 3/0), minor iron staining, plastic			SPT	∐ √6B-25 <i>A</i>	24/ 9		0/32	
-20	CLAY (CH) - dark brown (7.5 YR 4/0), plastic		_	SPT		24/ 7		0/28	
	CLAY (CH) - dark brown (7.5 YR 4/0), occasional Fe/Mn stains, plastic, petroleum hydrocarbon odor		- 5 -	SPT		24/9		26/66	
- 15	CLAY (CH) - olive (5 Y 4/2), pockets of dark gray mottling, Fe/Mn streaks, plastic, occasional calcareous nodules		-	SPT	SB-25E	24/12		19/50	
- 15	CLAY (CH) - light olive brown (2.5 Y 5/3), dark gray and reddish mottling, gravelly, slight petroleum hydrocarbon odor		10 -	SPT		24/15		10/100	Water level 10.2 feet BLS
_	CLAY (CH) - reddish brown (5 YR 5/4), gray mottling, occasional calcareous nodules			SPT		24/24		0/0	after 10 minutes
-10	CLAY (CH) - brown (7.5 YR 5/4), gray and black mottling,			SPT		24/24		0/0	
_	CLAY (CH) - strong brown (7.5 YR 4/6), blue gray mottling		- 15 - -	SPT		24/24		0/0	
-	SILT (ML) - strong brown (7.5 YR 4/6), no odor			SPT	БВ-25C	24/24		0/0	
-5 -	No recovery. Sampler is wet.		- 20 -	SPT .		24/0	:		
-	Total depth = 21 feet BLS		-			,			

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

BORING SB-26

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas PROJECT NUMBER 1K94

COORDINATES N 659,010 E 3,218,168

SURFACE ELEVATION 26.1

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/13/93

NO	2011	A		SAMI	PLE INF				
ELEVATION FEET	SOIL DESCRIPTION GROUND SURFACE	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv. Inches Rec.	Penetr- ometer Blow Counts	PID/ FID (ppm)	REMARKS
-25	SILT (OL) - black (7.5 YR 2/0), pinkish gray mottling, dry, gravel, rootlets			SPT	6B-26 <i>A</i>	24/12		0/2	
-	SILT (OL) - black (10 YR 2/1), soft to medium stiff, slightly clayey, dry to damp			SPT		24/12		0/20	
-	SILTY CLAY (CL) - dark reddish brown (5 YR 2.5/2), very silty, grades to clayey silt in parts, slight petroleum odor		- 5 -	SPT		24/18		97/420	
-20 -	CLAY (CH) - dark gray (7.5 YR 4/0), iron staining, medium stiff, plastic			SPT	∏SB-266	24/12		71/200	
-	CLAY (CH) - light olive brown (2.5 Y 5/3), mottled with gray, black and brown, iron staining, medium stiff, white calcareous nodules (<1/4-inch), petroleum odor		- - 10 -	SPT		24/12	6	8/1000	+
-15 -	SILTY CLAY (CL) - strong brown (7.5 YR 4/6), variegated with gray, red and black,			SPT		24/18		80/150	☑ Water level 10.7 feet BLS after 8 minutes
-	medium stiff, silty, occasional calcareous nodules CLAY (CL) - strong brown (7.5 YR 4/6), occasional gray, medium stiff to stiff, slightly		- 	SPT		24/18		0/20	
-10	silty, dry SILTY CLAY (CL) - brown (7.5 YR 5/3), occasional gray, silty, stiff SILTY CLAY (CL) - A/A		- 15 - 	SPT		24/19		76/600	,
-	SILT (ML) - strong brown (7.5 YR 4/6),			SPT	MSB-260			7/1000	
-	occasional gray, clayey, soft to stiff, moist to wet at base SILT (ML) - strong brown (7.5 YR 4/6), clayey to sandy, saturated		- 20 -	SPT	Å	24/24		3/1000	
-5	Total depth = 22 feet BLS			SPT		24/18		32/150	
				<u>.</u>					

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

SB-27

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas PROJECT NUMBER 1K94

COORDINATES N 659,020 E 3,218,217

SURFACE ELEVATION 25.9 DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/16/93

SURFA	CE ELEVATION 25.9 DATUM MISL		LOG	GED BY	L. Basilio)			DATE DRILLED 8/16/93
NO		٩		SAMI	PLE INF	ORM	NOITA		
ELEVATION FEET	SOIL DESCRIPTION	STRATA	·	·	Sample	Inches Adv.	Penetr- o <u>mete</u> r Blow	PID/ FID	REMARKS
iii	GROUND SURFACE		Feet	Туре	ID	Inches Rec.	Counts	(ppm)	
-25 -	CLAY (OL) - dark reddish brown (5 YR 3/2), variegated with white, red and black, stiff to hard, dry, gravel, rootlets CLAY (OL) - very dark gray (10 YR 3/1), stiff			SPT	6B-27A	24/12		0	PID not operational
_	to hard, dry, iron stains, pebbles, rootlets		- -	SPT		24/4		0	
- -20	CLAY (CH) - very dark gray (5 Y 3/1), medium stiff, plastic, occasional iron staining		- 5 -	SPT		24/10		0	
-	CLAY (CH) - A/A, occasional calcareous nodules (< 1/4-inch)			SPT		24/12		2	
-	CLAY (CH) - dark gray (7.5 YR 4/0), medium stiff, plastic, iron staining		- 10 -	SPT		24/12		15	₩ater level 9.65 feet BLS
-15	CLAY (CH) - dark gray (2.5 Y 4/0), brown streaks, medium stiff, iron staining, petroleum odor			SPT		24/10		90	after 14 hours
- -	CLAY (CH) - strong brown (7.5 YR 5/6), minor amounts of gray and black, medium stiff to stiff, occasional iron staining, slight		-	SPT		24/18		200	
_ _10	petroleum odor CLAY (CH) - dark brown (7.5 YR 4/4), minor amounts of gray and black, medium stiff to stiff, plastic, slight petroleum odor		- 15 -	SPT	√SB-27E	24/18		400	
-	SILTY CLAY (CL) - strong brown (7.5 YR 4/6), gray mottling, silty, stiff, plastic, <1/8-inch calcareous nodules		-	SPT		24/18		380	
-	SILTY CLAY (CL) - strong brown (7.5 YR 4/6), gray streaks, iron staining, stiff, silty		- - 20 -	SPT		24/20		30	
-5 -	SILT (ML) - strong brown (7.5 YR 4/6), clayey, gravelly, damp		. 20	SPT		24/24		12	
-	SILT (ML) - strong brown (7.5 YR 4/6), sandy to clayey, moist to wet at base			SPT	√SB-270	24/18		3	
	Total depth = 24 feet BLS		-						
DD11.11	NO CONTRACTOR OF THE PARTY	_		NITC.					

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

COORDINATES N 658,867 E 3,218,038

BORING

SB-28

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

PROJECT NUMBER 1K94

SURFACE ELEVATION 24.0 DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/17/93

1	SUKFA	CE ELEVATION 24.0 DATOM WISL		LUG	זם טםנ	L. Basili	U			DATE DRILLED 8/1//93
	N O		Ø		SAM	PLE INF	ORM	ATION		
	ELEVATION FEET	SOIL DESCRIPTION	STRATA	Depth Feet	Sample Type	Sample	/	ometer	PID/ FID	REMARKS
ļ	ш	GROUND SURFACE		1000	7	'5	Inche Rec.	Counts	(ppm)	
		CLAY (CH) - very dark gray (7.5 YR 3/0), soft to medium stiff, plastic			SPT	SB-28	, ,	8	12/130	
-	-20	CLAY (CH) - very dark gray (2.5 Y 3/0), medium stiff, plastic, occasional iron staining			∆ V spt	A	24/	8	0/110	
-		CLAY (CH) - dark gray (2.5 Y 4/0), occasional brown and green streaks, soft to medium stiff, plastic, minor iron staining		- 5 -	SPT		24/1	4	0/600	
	-15	CLAY (CH) - dark gray (5 Y 4/1), medium stiff, plastic, iron staining, occasional <1/8-inch calcareous nodules			SPT	SB-28	24/1	2	0/650	
	15	CLAY (CH) - reddish brown (5 YR 5/4) to olive yellow (2.5 Y 6/6), mottled with gray and black, medium stiff, plastic, iron staining		- 10 -	SPT		24/1	3	0/150	
		CLAY (CL) - yellowish red (5 YR 5/6), occasional gray and black streaks, slightly silty, plastic			SPT		24/1	9	7/0	
	-10	CLÁY (CL) - reddish brown (5 YR 5/4), minor gray which increase with depth, medium stiff, slightly silty, siltier with depth		- - 15 -	SPT		24/2	2	0/0	
-		SILTY CLAY (CL) - reddish brown (5 YR 5/3), occasional gray and black streaks, medium stiff, plastic, silty, iron staining, black iron nodules <1/8-inch			SPT		24/2	4	0/2	☑ Water level 16.05 feet BLS after 5 minutes
-	-5	SILTY CLAY (CL) - light gray (7.5 YR 7/0) and reddish brown, silty, gray is very silty, plastic			SPT	SB-28	24/2	1	0/1	
		SILT (ML) - strong brown (7.5 YR 5/6), gray mottling, clayey, moist to wet at base Total depth = 21 feet BLS		- 20 -	SPT	Å	24/2	1	0/0	
		Total doptil – 21 foot blo								

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

BORING SB-29 SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas PROJECT NUMBER 1K94

COORDINATES N 658,946 E 3,218,025

SURFACE ELEVATION 23.7

DATUM MSL

LOGGED BY D. Gibson

DATE DRILLED 8/17/93

301117	ICE ELEVATION 23.7 DATON MISE				J. G1030	••			
NO		⋖		SAME	PLE INF		NOITA		
ELEVATION FEET	SOIL DESCRIPTION	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv. / Inches	Penetr- o <u>meter</u> Blow	PID/ FID	REMARKS
	GROUND SURFACE			,,		Rec.	Counts	(ppm)	
	CLAY (CH) - very dark gray (10 YR 3/1), medium stiff, plastic			SPT	∬ √SB-29 <i>A</i>	24/12		7/70	
-20	CLAY (CH) - very dark gray (10 YR 3/1), medium stiff, plastic, occasional Fe/Mn pockets			SPT		24/12		0/70	
-	CLAY (CH) - very dark gray (10 YR 3/1), medium stiff, plastic, occasional gravel, limonite streaks			SPT		24/12		0/65	
- 15	CLAY (CH) - dark gray (10 YR 4/1), medium stiff, plastic CLAY (CL) - light olive brown (2.5 YR 5/3),		-	SPT	√SB-29E	24/8		0/10	모 Water level 9.05 feet BLS
- -	mottled blue gray and tan, medium stiff, plastic, slightly silty, scattered calcareous pockets		- 10 -	SPT		24/14 /		0/30	after 13 minutes
-	CLAY (CL) - dark yellowish brown (10 YR 4/6), gray mottling, medium stiff, plastic, occasional gravel CLAY (CL) - yellowish brown (10 YR 5/6),			SPT		24/24 /		0/7	
<u>-</u> 10	orange and gray mottling, stiff, plastic, slightly silty SILTY CLAY (CL) - dark yellow brown (10		- 15 -	SPT		24/18 /		0/9	
_	YR 4/4), stiff, plastic, silty SILT (ML) - strong brown (7.5 YR 5/6),		-	SPT	√SB-290			0/6	
-5	Total depth = 19 feet BLS			SPT	M	24/24		0/7	
:								:	
		<u> </u>	<u> </u>	<u> </u>	<u> </u>			L	

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

COORDINATES N 659,016 E 3,218,335

BORING/WELL NUMBER

SB-30

SHEET 1 OF 1

Ellington Field - POL Storage Area PROJECT

LOCATION Houston, Texas

PROJECT NUMBER 1K94

SURFACE ELEVATION 23.2

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/18/93

3011.7	CELECTATION 23.2 DATON MOL	1								
NO		d		SAM	PLE INF	ORMA	NOITA			WELL
ELEVATION FEET	SOIL	STRATA				Inches Adv.	Penetr-	PID/		CONSTRUCTION
- NEI	DESCRIPTION	TR.	Depth	Sample	Sample	/ /	ometer	FID		DETAIL & REMARKS
=		S	Feet	Туре	ID	Inches	Blow	(ppm)		
	GROUND SURFACE CLAY (OL) - very dark gray (10 YR 3/1),	 			∫6B-30A	Rec.	Counts	ļ		T.O.C. Elev. 23.14
	stiff, moderately plastic, iron staining,			∭ SPT	MDD-202	24/15		0/0		NA '4 NA/-!! NANA/ 1.0
	rootlets	_		Δ	M	/				Monitor Well MW-12
	CLAY (CH) - gray (10 YR 5/1), iron staining, medium stiff, plastic	III		\mathbb{V}_{cot}		24/6		0/0		
-20	medium surr, plastic			SPT		24/ 6		0,0		
F	CLAY (CH) - gray (10 YR 5/1), brown		1	M		1				Compant manut
-	streaks, gold iron staining, medium stiff, plastic		- 5 -	SPT		24/ 7		0/0		Cement grout
-	CLAY (CH) - yellow brown (10 YR 5/6),	III	-			',				
	variegated with gray, red and black, medium		-	X SPT		24/ 7		0/0		
-15	stiff, plastic, occasional < 1/8-inch ∖calcareous nodules /		-			,				7 ■ Water level 7.86 feet
'	SILTY CLAY (CL) - yellowish red (5 YR 4/6),		-	∭ SPT	WBB-30E	24/9		0/5		TOC measured
	occasional gray, medium stiff, moderately plastic, silty, hackly fracture in silty parts		- 10 -	Δ	Δ	/				8/27/93
	SILTY CLAY (CL) - reddish brown (5 YR 5/4),		'	∬ SPT		24/12		0/3		
	occasional gray laminae and streaks, medium stiff to stiff, moderately plastic, occasional			N 3F1		24/12		0/3		Bentonite seal
 	iron staining, silty		_	V		/				
-10	SILTY CLAY (CL) - reddish brown (5 YR 5/4), occasional gray, stiff, moderately plastic,		-	∬ SPT		24/16		0/0		
-	silty		-	H		',				20/40 filter pack
-	SILTY CLAY (CL) - strong brown (7.5 YR 5/8), occasional gray, medium stiff, silty to		- 15 -	X SPT		24/22		0/0		·
	very silty, siltier with depth, occasional			Д	∐ ∖/6B-300					
	<1/4-inch calcareous nodules in upper part		_	∬ SPT	MDD-300	24/18		0/1		
	SILT (ML) - strong brown (7.5 YR 5/8), very slightly clayey at top, sandy at base, moist	ЩЩ		Δ	Щ	/				
⊢ 5	to wet at base			M SPT		24/22				
t	SAND (SM) - strong brown (7.5 YR 5/8), fine grained, unconsolidated, silty, pebbles at 19		20	VI 2.,		24/22				
<u> </u>	feet, saturated		- 20 -	₩		/				#10 slot screen
†	SAND (SM) - A/A, no clay or pebbles, saturated		-	SPT		24/16				
-	saturated		-	\		1				
-0		:{i}.	-	X SPT		24/18				
	SAND (SC) - strong brown (7.5 YR 5/8),	11	_							
	saturated, gray clay laminae (<1-inch)		- 25 -	X SPT		24/16			1:1	
	towards base, stiff, moist		-							
	SAND (SM) - strong brown, saturated, no clay		_	SPT		24/12				
				Δ						
	Total depth = 28 feet BLS									
		Ì								
								1		
		<u> </u>		<u> </u>		<u> </u>		<u> </u>		
1			>1 A B 4 E 7	ED TVD	- 0 INITE	DV/AL C	SE CACIL	10. 2	inch sch	dula 40 PVC

DRILLING CONTRACTOR: Custom Coring Inc.

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

Mobile B-61

DIAMETER, TYPE & INTERVAL OF CASING: 2-inch schedule 40 PVC

WELL SCREEN/INTERVAL:

FILTER PACK-INTERVAL/QUANTITY:

WELL SEAL-INTERVAL/QUANTITY:

#10 slot / 15.21-24.51 ft 12.0-28.0 ft / 4 bags 20/40 silica sand

10.0-12.0 ft / 1 bucket 1/2-inch bentonite

SB-31

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

PROJECT NUMBER 1K94

LOCATION Houston, Texas

COORDINATES N 658,920 E 3,218,290

SURFACE ELEVATION 23.3

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/18/93

NC		Ø		SAMI	PLE INF	ORMA	NOITA		
ELEVATION FEET	SOIL DESCRIPTION	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv.	Penetr- ometer Blow Counts	PID/ FID (ppm)	REMARKS
-	GROUND SURFACE CLAY (OL) - very dark gray (7.5 YR 3/0), stiff to hard, rootlets, iron staining and nodules (<1/8-inch)			₩ SPT	\$B-31A	Rec. 24/6	Counts	0/0	
-20	CLAY (CH) - dark gray (10 YR 4/1), brown streaks, medium stiff, plastic, occasional iron staining			SPT		24/6		0/0	
- -	CLAY (CH) - dark gray (10 YR 4/1), occasional iron stain, medium stiff, plastic		- 5 -	SPT		24/6		0/0	
-	CLAY (CH) - grayish brown (10 YR 5/2), gray and brown mottling, soft to medium stiff, plastic			SPT		24/8		0/6	
-15 -	CLAY (CH) - yellowish red (5 YR 4/6), minor gray and black, medium stiff, plastic, black iron nodules (<1/8-inch)		 - 10 -	SPT		24/ 9		0/100	
-	SILTY CLAY (CL) - light gray (7.5 YR 7/0) and red yellow (7.5 YR 6/6), mottled, medium stiff, plastic, silty, slight petroleum			SPT	∏SB-31E	24/15		5/90	
-10	odor CLAY (CL) - strong brown (7.5 YR 5/6), gray mottling, medium stiff to stiff, moderately			SPT		24/14		0/3	☑ Water level 12.7 feet BLS after 13 minutes
-	\text{plastic, slightly silty} \text{CLAY (CL) - strong brown (7.5 YR 5/6),} \text{variegated with gray, red, yellow, medium}		- 15 - -	SPT	√5B-31C	24/19		0/0	
-	stiff to stiff, iron staining, tan calcareous nodules (<1/4-inch) SILT (ML) - strong brown (7.5 YR 5/6), gray		· -	SPT		24/20		0/0	
	in clayey parts, clayey at top to sandy at base, moist to wet at base Total depth = 18 feet BLS								

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

COORDINATES N 658,915 E 3,218,350

BORING/WELL NUMBER

SB-32

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

PROJECT NUMBER 1K94

SURFACE ELEVATION 23.5

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/19/93

Z		_		SAM	PLE INF	ORMA	NOITA			WELL
ELEVATION	SOIL	STRATA				Inches	Penetr-	DID.	1	CONSTRUCTION
VATI(DESCRIPTION	IR/	Depth	Sample	Sample	Adv.	ometer	PID/ FID		DETAIL &
<u>ii</u>	DESCRIPTION	S	Feet	Type	ID	/	Blow	ł		REMARKS
ш	GROUND SURFACE			.,,,,		Inches Rec.	Counts	(ppm)		T.O.C. Elev. 23.11
_	CLAY (OL) - very dark gray (2.5 YR 3/0),	-		M	SB-324					
	stiff to hard, rootlets, dry, iron staining		-	X SPT	X	24/13		0/0		Monitor Well MW-13
					Д	1.				
-	CLAY (CH) - dark gray (7.5 YR 4/0), soft, plastic, minor iron staining, rootlets			SPT		24/6		0/0		
-20	plastic, minor from staining, rootlets		-	Mari		24/6		0,0		
	CLAY (CH) - gray (10 YR 5/1), soft to		-	H		1				
	medium stiff, plastic, minor iron staining		- 5	X SPT		24/9		0/0		Cement grout
-			_	M						
-	CLAY (CL) - strong brown (5 YR 5/8),			M		/_				
	variegated with red gray and black, stiff to medium stiff, moderately plastic, slightly			SPT		24/8		0/0		7
	silty, iron staining, black iron nodules		-		/SB-32	,				Water level 7.75 feet
- 15	(<1/8-inch), minor amount calcareous gravel		-	SPT	IYPO OZI	24/12		0/0		TOC measured 8/27/93
-	CLAY (CL) - yellowish red (5 YR 5/6) minor gray and black, medium stiff, plastic, very		- 10 -	M	Δ	/				6/27/93
-	slightly silty, occasional gypsum crystals		- 10 -	Μ		/	1			
	SILTY CLAY (CL) - reddish yellow (7.5 YR		-	SPT		24/18		0/0		Bentonite seal
	6/8), mottled with gray and black, silty to		-	Θ		' ,				
 	very silty in parts, medium stiff, moderately plastic		L.	SPT	H	24/18		0/0		
-10	SILTY CLAY (CL) - reddish brown (5 YR 5/4),			W		/				
	minor gray and black, silty to very silty,	J. H.	-	М		1	İ			20/40 filter pack
	medium stiff, moderately plastic SILTY CLAY (CL) - yellowish red (5 YR 4/6),		- 15 -	X SPT		24/24		0/0		
	mottled with gray, silty, medium stiff,			<u> </u>	BB-320	1/,				
-	\moderately plastic		L.	SPT	MB-320	24/24		1/1		
-	SILT (ML) - strong brown (7.5 YR 4/6),			Mari	M	24/24		'/'		
-5	clayey to sandy in parts, wet to saturated at	111	-		H	1		1		
3	SAND (SC) - gray (10 YR 6/1), fine grained,	11.	-	SPT		24/18				
	clayey, gray clay seams with iron staining,	111	- 20 -	N		/ _				
-	pebbles at top, saturated			M and		24/19				#10 slot screen
_	SAND (SC) - gray (10 YR 6/1), abundant	1.7		∭ SPT		24/18	1			
	brown mottling, clayey, no clay laminae, saturated	11	-	Н		1 1				
	SAND (SM) - strong brown (7.5 YR 5/6), fine		-	SPT		24/12				
-0	grained, unconsolidated, slightly clayey to	$ \cdot $		Ц		/				
-	silty, saturated	14.1		M		100/00	1			
L I	SAND (SM) - A/A, occasional gray	 	- 25 -	SPT		24/18	1			
ŀ	SAND (SM) - A/A, occasional pebbles	· · ·	├ -			' ,				
Γ .		[:]:[:		SPT		24/12				
-				M		/	}			
	Total depth = 28 feet BLS		•		1					
]						
				11						
				<u> </u>		<u> </u>		<u></u>		

DRILLING CONTRACTOR: Custom Coring Inc.

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT: Mobile B-61 DIAMETER, TYPE & INTERVAL OF CASING: 2-inch schedule 40 PVC

WELL SCREEN/INTERVAL:

FILTER PACK-INTERVAL/QUANTITY:

WELL SEAL-INTERVAL/QUANTITY:

#10 slot / 15.53-24.50 ft 12.5-28.1 ft / 5 bags 20/40

silica sand

10.0-12.5 ft / 1 bucket 1/2-inch bentonite

COORDINATES N 659,054 E 3,218,288

BORING/WELL NUMBER SB-33

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

PROJECT NUMBER 1K94

SURFACE ELEVATION 24.1

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/19/93

SURFA	ACE ELEVATION 24.1 DATUM MISL		LUGG	PED BA	L. Basilio)			DA	IE DRILLED 8/19/93
NO	0011	4		SAM	PLE INF		ATION			WELL CONSTRUCTION
ELEVATION	SOIL DESCRIPTION	STRATA	Depth Feet	Sample Type	Sample	Inches Adv. / Inches	Penetr- o <u>mete</u> r Blow	PID/ FID		DETAIL & REMARKS
	GROUND SURFACE	<u> </u>		· , , · ·		Rec.	Counts	(ppm)		T.O.C. Elev. 23.99
	CLAY (OL) - dark reddish gray (5 YR 4/2), stiff, slightly plastic, dry, rootlets, platy gypsum crystals		- <u>-</u>	SPT	\\SB-33 <i>I</i>	24/8		12/0		Monitor Well MW-14
-20	CLAY (CH) - very dark gray (10 YR 3/1), stiff, moderately plastic			SPT		24/24		5/2		
-			- 5 -	SPT		24/8	:	16/0		Cement grout
	CLAY (CH) - dark gray (5 Y 4/1), minor iron staining, medium stiff, plastic, tan calcareous nodules (<1/8-inch)			SPT		24/12		4/0		V
_15	CLAY (CL) - olive (5 Y 5/3), variegated with gray, black, and tan, iron staining, very slightly silty, plastic		- 10 -	SPT		24/12		1/5		¥Water level 8.28 feet TOC measured 8/27/93
	CLAY (CL) - strong brown (7.5 YR 5/6), minor gray and black, iron stains, medium stiff to stiff, plastic			SPT		24/18		14/90		Bentonite seal
-10	CLAY (CL) - brown (7.5 YR 5/4), minor gray, medium stiff to stiff, plastic, iron staining			SPT	∯SB-32E	24/18		15/120		
	SILTY CLAY (CL) - strong brown (7.5 YR 4/6), minor gray, iron staining, medium stiff to stiff, plastic, silty in parts, occasional calcareous nodules (<1/8-inch)		- 15 - -	SPT	\/6B-330	24/19		3/65		20/40 filter pack
-	SILT (ML) - strong brown (7.5 YR 4/6), minor gray and black, medium stiff, wet at			SPT	W 330	24/18		0/7		
-5 -	bottom SILT (ML) - brown (7.5 YR 5/4), clayey, saturated, clay laminae in lower part, clay is moist not saturated		- - 20 -	SPT		24/18				#10 slot screen
-	SILTY CLAY (CL) - brown (7.5 YR 5/4), occasional gray streaks, silty to very silty, silt laminae, silt is wet, clay is moist			SPT		24/15				., , , , , , , , , , , , , , , , , , ,
-0	SILTY CLAY (CL) - A/A, grades to silt SILT (ML) - reddish brown (5 YR 5/4), clayey at base, sandy at top, saturated to wet at			SPT	:	24/20				
-	base SILT (ML) - A/A, wet SAND (SM) - reddish brown (5 YR 5/4), fine		- 25 -	SPT	:	24/20				
_	grained, unconsolidated, saturated SILTY CLAY (CL) - reddish brown (5 YR 5/4), iron staining, silty, moist to wet			SPT		24/24				
	SAND (SM) - strong brown (7.5 YR 5/6), fine grained, unconsolidated, silty, saturated Total depth = 28 feet BLS									
		L			Ш					

DRILLING CONTRACTOR: Custom Coring Inc.

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

Mobile B-61

DIAMETER, TYPE & INTERVAL OF CASING: 2-inch schedule 40 PVC

WELL SCREEN/INTERVAL:

FILTER PACK-INTERVAL/QUANTITY:

WELL SEAL-INTERVAL/QUANTITY:

#10 slot / 15.53-24.52 ft 12.5-28.2 ft / 5 bags 20/40

silica sand

10.0-12.5 ft / 1 bucket 1/2-inch bentonite

SB-34

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

COORDINATES N 658,866 E 3,218,273

SURFACE ELEVATION 23.5

DATUM MSL

PROJECT NUMBER 1K94

LOGGED BY L. Basilio

DATE DRILLED 8/20/93

	ACE ELEVATION 20.5								
Z O		d		SAMI	PLE INF	ORMA	NOITA		
ELEVATION	SOIL DESCRIPTION GROUND SURFACE	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv. / Inches Rec.	Penetr- o <u>mete</u> r Blow Counts	PID/ FID (ppm)	REMARKS
-	CLAY (OL) - very dark gray (2.5 YR 3/0), stiff, rootlets, dry			SPT	SB-34 <i>F</i> SB-34 <i>F</i>	24/15		0/0	
-20	CLAY (CH) - gray (10 YR 5/1), soft to			SPT		24/5		0/0	
-	medium stiff, plastic, minor iron stains		- 5 -	SPT		24/12		0/0	
- -15	CLAY (CH) - yellowish red (5 YR 5/8), variegated with gray, black, brown and gold, medium stiff, plastic		- -	SPT		24/12		0/1	
-	CLAY (CH) - reddish yellow (5 YR 7/4), with gray, medium stiff, plastic		- 10 - -	SPT		24/12		0/0	Water level 11.3 feet BLS
-10	CLAY (CL) - reddish yellow (5 YR 6/6), medium stiff, plastic, small calcareous nodules, slightly silty SILTY CLAY (CL) - reddish yellow (5 YR			SPT	/ SB-34E	24/18		0/0	after 5 minutes
-	6/6), gray mottling, minor black, silty, medium stiff, moderately plastic, moist, occasional iron stain SILT (ML) - light reddish brown (5 YR 6/4),		- 15 - 	SPT	ДБВ-340	24/24		0/0	
-	some gray, slightly clayey to sandy in parts, wet to saturated Total depth = 18 feet BLS		-	SPT	Å	24/24		0/0	

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

BORING/WELL NUMBER

SB-35

SHEET 1 OF 1

Ellington Field - POL Storage Area LOCATION Houston, Texas

COORDINATES N 659,057 E 3,218,347

PROJECT NUMBER 1K94

PROJECT

SURFACE ELEVATION 23.9

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/24/93

		 					· · · · · · · · · · · · · · · · · · ·		
ELEVATION	9011	A		SAMI	PLE INF		NOITA		WELL CONSTRUCTION
ATI	SOIL DESCRIPTION	STRATA	Depth	Sample	Sample	Inches Adv.	Penetr- ometer	PID/	DETAIL &
	DESCRIPTION	ST	Feet	Туре	ID	Inches	Blow	FID (ppm)	REMARKS
	GROUND SURFACE	<u> </u>			∱5B-35A	Rec.	Counts	(PP.11)	T.O.C. Elev. 23.45
	CLAY (OL) - brown (7.5 YR 5/4), black streaks, stiff, rootlets, dry			SPT		24/12		0/0	Monitor Well MW-15
-	CLAY (CH) - very dark gray (5 Y 3/1), stiff, moderately plastic, iron stains			SPT		24/6		0/0	
-20	CLAY (CH) - dark gray (10 YR 4/1), minor brown iron stains, medium stiff, plastic		- 5 -	SPT		24/7		0/0	Cement grout
	CLAY (CH) - light brown (7.5 YR 6/4), variegated with black and gray, minor iron stains, medium stiff, plastic, pebbles			SPT		24/8		0/0	abla
-15	CLAY (CH) - reddish brown (2.5 YR 4/6), variegated with brown, gray and black, medium stiff, plastic, dry		_ 10 =	SPT		24/12		0/0	Water level 7.82 feet TOC measured 8/27/93
	CLAY (CL) - reddish yellow (7.5 YR 6/6), minor gray, medium stiff, moderately plastic, silty		- 10 -	SPT		24/18		0/0	Bentonite seal
10	CLAY (CL) - yellowish red (5 YR 5/6), minor gray and gray laminae, medium stiff, moderately plastic, silty, occasional white calcareous nodules (<1/8-inch)		- -	SPT		24/18		0/0	
-	SILTY CLAY (CL) - yellowish red (5 YR 4/6), minor gray and black, some iron staining, medium stiff, moderately plastic, silty to very		- 15 - -	SPT		24/18		0/0	20/40 filter pack
_	\silty at base, gravels at base \silty SILT (ML) - brown (7.5 YR 5/4), minor gray, \slightly clayey to sandy, wet			SPT	√5B-350 ∆	24/12		0/0	
-5	SAND (SM) - brown (7.5 YR 5/4), minor gray, silty, some gravel, saturated SAND (SM) - brown (7.5 YR 5/4), fine grain,		- - 20 -	SPT		24/18			
	silty, some pebbles, saturated SAND (SM) - brown (7.5 YR 5/4), pebbles at top, clayey towards base, saturated			SPT		24/18			#10 slot screen
-0	SAND (SM) - A/A, some pebbles			SPT	•	24/18			
-	SAND (SM) - A/A, clayey at base		- 25 -	SPT		24/12			
L	SAND (SM) - A/A		-	SPT		24/24			
	Total depth = 28 feet BLS		-						
and the second									
	<u> </u>	L			Ц				

DRILLING CONTRACTOR: Custom Coring Inc.

DRILLER:

Z. Ruffin

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

Mobile B-61

DIAMETER, TYPE & INTERVAL OF CASING: 2-inch schedule 40 PVC

WELL SCREEN/INTERVAL:

FILTER PACK-INTERVAL/QUANTITY:

WELL SEAL-INTERVAL/QUANTITY:

#10 slot / 15.38-24.40 ft 12.0-28.0 ft / 4 bags 20/40

silica sand

10.0-12.0 ft / 1 bucket 1/2-inch bentonite

COORDINATES N 659,050 E 3,218,215

BORING/WELL NUMBER MW-11

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

PROJECT NUMBER 1K94

SURFACE ELEVATION 25.8

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/12/93

									,	·
20	2211	4	· · · · · ·	SAME	PLE INF		ATION			WELL CONSTRUCTION
VATI	SOIL	STRATA	Denth	Sample	Sample	Inches Adv.	Penetr-	PID/		DETAIL &
ELEVATION	DESCRIPTION	ST	Feet	Туре	ID	Inches	o <u>mete</u> r Blow	FID		REMARKS
	GROUND SURFACE CLAY (CH) - black (2.5 YR 2.5/0), hard, dry,				\g\/W-11.	Rec.	Counts	(ppm)		T.O.C. Elev. 28.31
-25	gravelly, rootlets			SPT	MINOR TO	24/8		0/0		Monitor Well MW-11
-	CLAY (CH) - dark gray (5 YR 4/1), occasional brown streaks, stiff, minor amount of pebbles, platy gypsum crystals present, dry			SPT		24/12		0/0		
-20	CLAY (CH) - very dark gray (10 YR 3/1), medium stiff, plastic, iron staining, occasional rootlets, damp		- 5 -	SPT		24/20		0/0		Cement grout
-	CLAY (CH) - dark gray (10 YR 4/1), occasional brown streaks, iron stains, medium stiff to stiff, plastic			SPT		24/18		0/0		
-	SILTY CLAY (CL) - light olive brown (2.5 Y 5/2), mottled with brown and gray, iron stains, medium stiff, plastic, slightly silty to silty in parts		- 10 -	SPT		24/8		0/1		
-15	CLAY (CL) - strong brown (7.5 YR 5/8), mottled with gray, medium stiff, plastic			SPT		24/10		17/20		Bentonite seal
-	SILTY CLAY (CL) - strong brown (7.5 YR 5/6), mottled with gray, stiff, dry to damp at base, slightly silty, silty at top SILTY CLAY (CL) - brown (7.5 YR 5/4),			SPT	NW-111	24/18		8/42		¥Water level 12.56 feet TOC measured 8/27/93
-10	occasional gray streaks, stiff, plastic, silty, occasional 1/8-inch calcareous nodules SILTY CLAY (CL) - strong brown (7.5 YR		- 15 - -	SPT	1771	24/18		0/50		20/40 filter pack
-	5/6), gray streaks, stiff to medium stiff, moderately plastic, silty to very silty in parts SILTY CLAY (CL) - strong brown (7.5 YR		 	SPT	ADMW-110	24/18		0/30		
-	5/6), occasional gray, stiff, silty, damp		- - 20 -	SPT	1671	24/15		208/20		#40
-5	SILT (ML) - strong brown (7.5 YR 5/6),			SPT		24/ 0				#10 slot screen
	clayey, loose, saturated SILT (ML) - strong brown (7.5 YR 5/6),			SPT		24/22		0/2		
-0	clayey, stiff, dry SAND (SM) - strong brown (7.5 YR 5/6), very fine grained, unconsolidated, silty,		- 25 -	SPT		24/20		0/1		
	slightly clayey in parts with occasional 1-inch thick clay laminae, saturated SAND (SM) - A/A, no clay, saturated			SPT		24/20		0/1		
	SAND (SM) - A/A		- 30 -	SPT		24/24		0/1		
	Total depth = 30 feet BLS				:					

DRILLING CONTRACTOR: Custom Coring Inc.

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

Mobile B-61 DRILLING EQUIPMENT:

DIAMETER, TYPE & INTERVAL OF CASING: 2-inch schedule 40 PVC

WELL SCREEN/INTERVAL:

FILTER PACK-INTERVAL/QUANTITY:

WELL SEAL-INTERVAL/QUANTITY:

#10 slot / 16.92-25.90 ft 14.5-29.5 ft / 5 bags 20/40 silica sand

12.0-14.5 ft / 1 bucket 1/2-inch bentonite

Appendix C Soil Sample Log Sheets Groundwater Sample Log Sheets

SURFACE SOIL
SUBSURFACE SOIL

	SEDI MENT POND/LAGOON OTHER									
ROJECT NAME <u>Ellinston</u> NUS SAMPLE NO. <u>02-5815-14-</u>		_PROJECT NUMBER	1K94							
NUS SAMPLE NO. 02-5BIS-A-	sol sol	JRCE Soil b.	oring 15							
SAMPLE METHOD:			TE SAMPLE DATA							
California Sampler	SAMPLE	TIME	COLOR/DESCRI PTI ON							
DEPTH SAMPLED:										
0-2										
SAMPLE DATE & TIME: 8/6/93 858										
SAMPLED BY:										
BASILIO										
SI GNATURE(SI :										
TYPE OF SAMPLE										
LOW CONCENTRATION										
HIGH CONCENTRATION										
COMPOSITE GRAB - COMPOSITE		SAMPL	_E DATA							
Gott Got 1	COLOR DES	CRIPTION: (SAND.	CLAY, DRY, MOIST, WET, ETC.)							
	Cla	ey (CH) - bla	ck (2.5 yr 0), stiff,							
ANALYSI S:		vootlets								
	ODCEDVATIONS	/NOTES.								
TPH	OBSERVATI ONS.	/ NU 1E3:								
]									
]									
	4									
	_									
	-	•								
P10 - 0 ppm										
10 4.444										
F10 - 0 ppm										
			•							

SURFACE SOIL
SUBSURFACE SOIL

	☐ SEDIMENT ☐ POND/LAGOON ☐ OTHER									
PROJECT NAME Ellington			PROJECT NUME	ER_ 1K94						
INUS SAMPLE NO. 02 -SB15-B-A			RCE Soil E							
SAMPLE METHOD:		COMPOSITE SAMPLE DATA								
California Sampler	SAMPL	SAMPLE TIME COLOR/DESCRIF								
DEPTH SAMPLED:		_								
12-14										
SAMPLE DATE & TIME: 8/6/93 926										
8/6/93 926 SAMPLED BY:										
Basilio										
SI GNATURE(S):										
TYPE OF SAMPLE										
LOW CONCENTRATION										
☐ HIGH CONCENTRATION SE GRAB					· · · · · · ·					
☐ COMPOSI TE ☐ GRAB - COMPOSI TE			SA	MPLE DATA						
OWER CON COLUE	COLOR	DESC		D, CLAY, DRY, MOIST, WET, E	TC.)					
				wish red (5 yr. 4/6)						
ANALYSI S:	occasional gray streaks, medium stiff,									
HOT				ly silty damp						
	OBSERVA	TI ONS/	NOTES:							
	1									
	1									
	1									
	1									
]									
	1									
PID- 0 ppm										
FID- 10 ppm										
				•						
		_								

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER										
PROJECT NAME Ellington	PROJECT NUMBER 1K94										
HNUS SAMPLE NO. 02-SB15-C-A		_ SOUF	RCE Soil	Boring -15	_						
SAMPLE METHOD:			COMPOS	SITE SAMPLE DATA	4						
California Sampler	SAMPLE		TIME	COLOR/DESCRIPTION	\dashv						
DEPTH SAMPLED:					┨						
20-22					1						
SAMPLE DATE & TIME:					1						
816193 945					1						
SAMPLED BY:					\Box						
Basilio SIGNATURE(S):					4						
SI GNATURET ST:					\dashv						
TYPE OF SAMPLE					\dashv						
LOW CONCENTRATION					-						
☐ HIGH CONCENTRATION ☑ GRAB					\neg						
LT COMPOSI TE			SA	MPLE DATA							
GRAB - COMPOSITE	COLOR	DES		ND, CLAY, DRY, MOIST, WET, ETC.)							
	Silt CML)-brown (7.5 yR 5/4), Clayen,										
ANALYSI S:		S	lighty sa	indy in parts, saturated							
T PH				9							
	OBSERVA"										
	Call	, c + ~	d duplicat	e sample							
	}		- F015-C								
		0 4	7013	•							
	1										
]										
	1			.							
bID- o bbw											
FF: 3 00 MA											
FID-3ppm											
				·							

Environmental Corporation	_ M 	SURFACE SUIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER						
PROJECT NAME Ellington		PROJECT NUMB	er <u>1694</u>					
HNUS SAMPLE NO. 02-SBIG-A-A		SOURCE Soil						
		COMPOSITE SAMPLE DATA						
SAMPLE METHOD:	SAMPLE TIME COLOR/DESCRIPTION							
California Sampler	JAI'S EL							
DEPTH SAMPLED:								
SAMPLE DATE & TIME:								
8/5/93 816								
SAMPLED BY:								
Basilio	ļ							
SI GNATURE(S):	<u> </u>							
102	<u> </u>							
TYPE OF SAMPLE								
□ LOW CONCENTRATION □ HIGH CONCENTRATION								
™ GRAB								
☐ COMPOSITE ☐ GRAB - COMPOSITE			MPLE DATA					
_	COLOR	DESCRIPTION: (SAN	D. CLAY, DRY, MOIST, WET, ETC.)					
		Clay CCH)- ver	ry dark gray (24R 3/2)					
ANALYSI S:		medium fir	-m, plautic					
TPH								
BTEX	OBSERVATI	ONS/NOTES:	-					
	4							
	-{							
	┪							
	1							
	1							
PIO- 3G PPM								
FID - 20 ppm								
	ŀ							
1	1							

☐ SURFACE SOIL

	SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER										
ROJECT NAME Ellington	PROJECT NUMBER 1K94										
NUS SAMPLE NO. 02-SBIG-B-A	<u> </u>	JRCE <u>Soil</u>	3oring - 16								
SAMPLE METHOD:		COMPOSI	TE SAMPLE DATA								
California Sampler	SAMPLE	TIME	COLOR/DESCRIPTION								
DEPTH SAMPLED:				<u>. </u>							
8-10											
SAMPLE DATE & TIME:											
8/5/93 834		 									
SAMPLED BY: Basilio											
SI GNATURE(S):											
TYPE OF SAMPLE											
LOW CONCENTRATION											
☐ HI GH CONCENTRATI ON CERAB											
COMPOSI TE		CAME	LE DATA								
GRAB - COMPOSITE	COLOR DES		CLAY, DRY, MOIST, WET, ETC	:.)							
			brown C2.5 4R 5/2), r								
ANALYSI S:	Uall	on moderate	ly soft to medium st	iff.							
TPH	das	tic : silty . c	occasional gravel								
TCL VOA	OBSERVATÍ ONS.										
TCL BNA]										
	_										
	_										
	_										
PID-284 PPM											
FID-170 PPM											
1											
			•								

SURFACE SOIL

California Sampler SAMPLE TIME COLOR/DESCRIPTION DEPTH SAMPLED: 20-22 SAMPLE DATE & TIME: 8/5/93 907 SAMPLED BY: Basilio SI GNATURE(S): I TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION GRAB COMPOSITE COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.) Silf(ML)-dark brown(7.5 yr 5/4), with ANALYSIS: Gray mothing, Chyey to very sandy Saturated		[□ SEDI	ZAGOON							
SAMPLE METHOD: California Sampler SAMPLE TIME COLOR/DESCRIPTION DEPTH SAMPLED: 20-22 SAMPLE DATE & TIME: 8 5 93	ROJECT NAME Ellington										
California Sampler California Sampler DEPTH SAMPLED: 20-22 SAMPLE DATE & TIME: 8/5/93 907 SAMPLED BY: Basilia SIGNATURE(S): TYPE OF SAMPLE LLOW CONCENTRATION HIGH CONCENTRATION COMPOSITE COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.) Silf(ML)-dark brown (7.5 78 5/4), with analysis: ANALYSIS: Gray mothling, Chyey to very sandy Saturated	NUS SAMPLE NO. 02 - SBIG - C-A	source Soil Boving - 16									
California Sampler SAMPLE TIME COLOR/DESCRIPTION DEPTH SAMPLED: 20-22 SAMPLE DATE & TIME: 8/5/93 907 SAMPLED BY: Basilio SI GNATURE(S): I TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION GRAB COMPOSITE COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.) Silf(ML)-dark brown(7.5 yr 5/4), with ANALYSIS: Gray mothing, Chyey to very sandy Saturated	SAMPLE METHOD:										
SAMPLE DATE & TIME: 8/5/93 907 SAMPLED BY: Basilio SIGNATURE(S): TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION GRAB COMPOSITE COLOR DESCRIPTION: (SAND. CLAY, DRY, MOIST, WET, ETC.) Silt(ML)-dark brown(7.5 yr 5/4), with ANALYSIS: ANALYSIS: GRAU mottling, Chyey to very sandy Saturated		SAMPL	E_E	TIME		C	DLOR/DESCI	RIPTION			
SAMPLE DATE & TIME: 8 5 93	DEPTH SAMPLED:										
SAMPLED BY: Basilio SIGNATURE(S): TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION GRAB COMPOSITE COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.) Silt(ML)-dark brown(7.5 YR 5/4), with ANALYSIS: ANALYSIS: Gray mothing, Chayey to very sandy Saturated											
SAMPLED BY: Basilio SIGNATURE(S): TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION GRAB COMPOSITE COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.) Silt(ML)-dark brown(7.5 7R 5/4), with ANALYSIS: ANALYSIS: Gray mottling, Clayey to very sandy Saturated	` •							· · · · · · · · · · · · · · · · · · ·			
SIGNATURE(S): TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION KGRAB COMPOSITE COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.) Silt(ML)-dark brown(7.5 yr 5/4), with ANALYSIS: ANALYSIS: Gray mothing, Chyey to very sandy Saturated											
TYPE OF SAMPLE LOW CONCENTRATION											
LOW CONCENTRATION HIGH CONCENTRATION GRAB COMPOSITE GRAB - COMPOSITE COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.) Silt(ML)-dark brown(7.5 yr 5/4), with analysis: Gray mothing, Chyey to very sandy TPH Saturated											
LOW CONCENTRATION HIGH CONCENTRATION GRAB COMPOSITE GRAB - COMPOSITE COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.) Silt(ML)-dark brown(7.5 yr 5/4), with analysis: Gray mothing, Chyey to very sandy TPH Saturated	TYPE OF SAMPLE										
HIGH CONCENTRATION GRAB COMPOSITE SAMPLE DATA COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.) Silt(ML)-dark brown(7.5 yr 5/4), with ANALYSIS: Gray mottling, Chyey to very sandy TPH Saturated											
GRAB - COMPOSITE GRAB - COMPOSITE COLOR DESCRIPTION: (SAND. CLAY. DRY. MOIST, WET, ETC.) Silt(ML)-dark brown (7.5 yr 5/4), with analysis: Gray mothling, Chyey to very sandy TPH Saturated	HIGH CONCENTRATION										
GRAB - COMPOSITE COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.) Silt(ML)-dark brown (7.5 yr 5/4), with analysis: gray mothling, Chyey to very sandy TPH Saturated	GRAB COMPOSI TE										
Silt(ML)-dark brown(7.5 yr 5/4), with analysis: gray mothling, Chyey to very sandy TPH Saturated	GRAB - COMPOSITE										
ANALYSIS: gray mottling, Chyey to very sandy TPH Saturated		COLOR									
TPH Saturated			Silt	(ML)-de	ark	brown	<u> </u>	5/4), v			
TPH Saturated		<u></u>	grai	y mothling	ng .	Chyey	to v	ery sc	indy.		
			Satu	moried							
BTEX OBSERVATI ONS/NOTES:	BTEX	I OBSEKVA	11 UN2/	NUTES:							
		-									
		1									
		1									
		1									
		1									
,		1		,							
PID-Oppm	PID- O ppm										
		1									
EID-0 bbw	EID- o bbw										
							•				

☐ SURFACE SOIL

☐ SUBSURFACE SOIL

	SEDIMENT POND/LAGOON OTHER										
PROJECT NAME Ellington		PROJECT NUMB	ER_1K94								
INUS SAMPLE NO. 02-SBIM-A-A	S	OURCE Soil	Boring - 17								
SAMPLE METHOD:		COMPOS	SITE SAMPLE DATA								
California Sampler	SAMPLE	SAMPLE TIME COLOR/DESCRIPTION									
DEPTH SAMPLED:											
2-4											
SAMPLE DATE & TIME: 8/6/93 1107											
SAMPLED BY:				-							
Basilie											
SI GNATURE(S):											
TYPE OF SAMPLE											
LOW CONCENTRATION											
☐ HIGH CONCENTRATION ☑ GRAB											
☐ COMPOSITE ☐ GRAB - COMPOSITE			PLE DATA								
DOLLO COLL	COLOR DE		D, CLAY, DRY, MOIST, WET, ETC.	.)							
			(54R 2.5/1), stiff,								
ANALYSI S:	000	casional roo	tlets, plastic, occasional								
- TPH	inc	on staining									
BTEX	OBSERVATI ON	S/NUTES:									
	-										
]										
	1										
DID- 0 bbw			•								
FID- o ppm											
			•								

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER										
PROJECT NAME Ellington			PROJECT NUMBE	R 1K94							
HNUS SAMPLE NO. 02-5817-8-A		sou	RCE Soil	Boring 17							
SAMPLE METHOD:			COMPOSI	TE SAMPLE DATA							
California Sampler	SAMPL	Ε	TIME	COLOR/DE	SCRI PTI ON						
DEPTH SAMPLED:											
.8-10											
SAMPLE DATE & TIME:											
8/6/93 1/22											
SAMPLED BY: Basilib											
SI GNATURE(S):											
20											
TYPE OF SAMPLE											
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION											
I 5≾(GRAB											
☐ COMPOSI TE ☐ GRAB - COMPOSI TE			SAM	PLE DATA							
Gallis Solve State	COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.)										
		Clau	(CCH)-very	dark gray C5!	dR 3/1), some						
ANALYSI S:	iron staining, medium, stiff, plastic occasional										
				inch calcareou	us- nodules_						
TPH	OBSERVA	TI ONS/	NUIES:		-						
BTEX	1										
	1										
	1										
	1										
	1										
]										
blo - obbw											
FID - 12 PPM											
1 1 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7											
	1										

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER							
ROJECT NAME Ellington	PROJECT NUMBER 1K94							
INUS SAMPLE NO. 02-5817-C-C		sou	RCE Soil	Boring	9 17			
SAMPLE METHOD:	COMPOSITE SAMPLE DATA							
California Sampler	SAMPLE TIME COLOR/DESCRIPTION							
DEPTH SAMPLED:								
22 - 24						····		
SAMPLE DATE & TIME:								
8/6/93 1159				<u> </u>				
SAMPLED BY: Basilio	<u> </u>							
SI GNATURE(S):	1			1				
SI GNATURE! ST:								
TYPE OF SAMPLE								
LOW CONCENTRATION								
☐ HIGH CONCENTRATION ☐ GRAB				_				
T COMPOSITE				DI E DAI	ra .			
GRAB - COMPOSITE	SAMPLE DATA COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET,							
	COLOR		d (SM) brow					
ANALYCI C.	-		ned, silty					
ANALYSI S:		gran	TIEG, OITS		331			
TPH	OBSERVA	TI ONS/	NOTES:					
BTEX	1							
	1							
	_							
	4							
	4							
	-							
PID- 0 PPM								
FID - 2 PPM	1							
170 - 7 //								
					•			
	1				<u> </u>			

SURFACE SOIL

	1	□ SEDI	/LAGOON					
PROJECT NAME Ellington			PROJECT NUMBE	ER_1K94				
HNUS SAMPLE NO. 02-SB18-A-A			RCE Soil					
SAMPLE METHOD:	COMPOSITE SAMPLE DATA							
California Sampler	SAMPL	E	TIME	COLOR/DESCRI PTI ON				
DEPTH SAMPLED:								
0-2								
SAMPLE DATE & TIME:								
8lcl93 1440								
SAMPLED BY: Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE								
LOW CONCENTRATION								
☐ HIGH CONCENTRATION ▼☐ GRAB								
COMPOSI TE			500	PLE DATA				
GRAB - COMPOSITE	COLOR	DESC		D, CLAY, DRY, MOIST, WET, ETC.)				
	COLOIT	Clau	CCHI-VO	ery dark gray (2.5 yr 3/0)				
ANALYSI S:		Stiff	, rootlets					
HINE IST S.		<u> </u>						
TPH	OBSERVA	TI ONS/	NOTES:					
BIEX								
	4							
	4							
	-							
	-							
	-							
PID- Oppm								
FID - oppm								
1								

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER						
ROJECT NAME Ellington		PF	ROJECT NUMBE	R			
NUS SAMPLE NO. 02-SB18-B-A		SOURC	E <u>Soil</u> E	Boring - 18			
SAMPLE METHOD:	COMPOSITE SAMPLE DATA						
California Sampler	SAMPL	E	TIME	COLOR/DESCRI PTI ON			
DEPTH SAMPLED:			· · · · · · · · · · · · · · · · · · ·				
10-12							
SAMPLE DATE & TIME:							
8/6/93 1502							
SAMPLED BY:							
Basilio							
SI GNATURE(S):							
THE OF CAMPUE	,						
TYPE OF SAMPLE ☐ LOW CONCENTRATION							
HIGH CONCENTRATION							
T S GRAB							
☐ COMPOSITE ☐ GRAB - COMPOSITE	SAMPLE DATA						
	COLOR	DESCRI	PTI ON: (SAND,	. CLAY, DRY, MOIST, WET, ETC.)			
		Claya	Ll-yellowisl	h brown (10 4R 5/6) to strong			
ANALYSIS:		brown (7.5 YR 5/6/1	with deoth aray mottling.			
_		soft to	medium s	tiff, very slight petroleum odor			
TPH .	OBSERVA	TI ONS/NO	TES:	9			
TCL VOA							
TCL BNA							
PID- 52 pp m							
FID- 150 PPM							
``							
				•			

☐ SURFACE SOIL

SSUBSURFACE SOIL

☐ SEDIMENT ☐ POND/LAGOON ☐ OTHER									
ROJECT NAME Ellington	PROJECT NUMBER 1K94								
NUS SAMPLE NO. 02-SB18-C-A	sou_	RCE Soil 1	Boring 18						
SAMPLE METHOD:	COMPOSITE SAMPLE DATA								
California Sampler	SAMPLE	TIME	COLOR/DESCRIPTION						
DEPTH SAMPLED:									
18-20	·								
SAMPLE DATE & TIME: 8/6/93 1520									
SAMPLED BY: Basilio									
SI GNATURE(S):									
TYPE OF SAMPLE									
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION									
☐ COMPOSI TE									
GRAB - COMPOSITE			PLE DATA						
	COLOR DESC	CRI PTI ON: (SAND	, CLAY, DRY, MOIST, WET, ETC.)						
			brown (1.5 yr. 4/4); eru clayeu at top						
ANALYSI S:	clayey to Very clayey at top saturated.								
TOH	OBSERVATI ONS								
BTEX]		_						
	1								
	1								
]								
PID- O PPM									
EID - O bbum									
1-70 - 0 thus									
			·						
	<u> </u>								

☐ SURFACE SOIL

] []	SEDI PONI	D/LAGOON ER						
PROJECT NAME Ellington			PROJECT NUMBE						
HNUS SAMPLE NO. 02-SB19-A-A									
SAMPLE METHOD:	COMPOSITE SAMPLE DATA								
California Sampler	SAMPL	E	TIME	COLOR/DESCRIPTION					
DEPTH SAMPLED:				·					
2-4									
SAMPLE DATE & TIME:									
SAMPLED BY: Basilio									
SI GNATURE(S):									
TYPE OF SAMPLE									
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION									
▼ GRAB									
☐ COMPOSI TE ☐ GRAB - COMPOSI TE				PLE DATA					
	COLOR	DESC	RIPTION: (SAND	D, CLAY, DRY, MOIST, WET, ETC.)					
			y CCH)-blan	CK (2.54R 2.5/0), occasional					
ANALYSI S:	ļ <u> </u>	iron	stains, s	oft to medium stiff, plastic					
TPH TCL VOA TCL BNA	OBSERVA	TI ONS/	'NOTES:						
PIO-O PPM FIO-290 PPM									

Environmental Corporation	SURFACE SOIL SI SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER PROJECT NUMBER 1K94						
PROJECT NAME Ellington							
PROJECT NAME Ellington HNUS SAMPLE NO. 02-5819-8-A		sou	RCE Soil	Boring 19			
	COMPOSITE SAMPLE DATA						
SAMPLE METHOD: California Sampler	SAMPLE TIME COLOR/DESCRIPTION						
DEPTH SAMPLED:							
4-6							
SAMPLE DATE & TIME:	· · · · · · · · · · · · · · · · · · ·						
SAMPLED BY:							
BASILID							
SI GNATURE(S):			1				
THE OF CARD F							
TYPE OF SAMPLE LOW CONCENTRATION							
HIGH CONCENTRATION							
GRAB COMPOSITE							
GRAB - COMPOSITE				PLE DATA			
	COLOR	DES	CRIPTION: (SAN	D, CLAY, DRY, MOIST, WET, ETC.)	7		
		Clo	ry CCH)-	A/A black (2.5 YR 2.5/0	_		
ANALYSI S:		1 01	Castonal IVGU	1 stains sort to recture			
	ODCEDVA		liff, clastic	c			
TPH BTEX	OBSERVA	III UNS/	'NUTES:				
	1						
	-						
	1						
	1						
0.70	1						
mgg 0 -029							
FID - 30 ppm							
· ·	1						
				•			

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER						
PROJECT NAME Ellington		PR0	JECT NUMBI	R	<u> </u>		
HNUS SAMPLE NO. 02-SB19-C-A		SOURCE	Soil	Boring	19		
	COMPOSITE SAMPLE DATA						
SAMPLE METHOD:	SAMPL	E	TIME	COL	OR/DESCRIPTION		
California Sampler DEPTH SAMPLED:							
20-22							
SAMPLE DATE & TIME: 8/11/93 1525							
SAMPLED BY: Basilio							
SI GNATURE(S):							
TYPE OF SAMPLE							
LOW CONCENTRATION							
HIGH CONCENTRATION GRAB							
COMPOSITE GRAB - COMPOSITE			SA	MPLE DATA			
GIND COLUMN	COLOR	DESCRI	TION: (SAN	ID, CLAY, DR	Y, MOIST, WET, ETC.)		
		Silt C	4L)-brow	un C1.5 9	R 5/4), occasional		
ANALYSI S:		gray	clayey.	to sandy	at base, saturated		
	OBSERVA	at ba					
TPH	-						
BTEX							
	_						
PID- O PPM							
EID- o bbw							
					•		

Environmental Corporation	<u>.</u> [Z SUBS □ SEDI	/LAGOON				
PROJECT NAME Ellington			PROJECT NUMB	ER\\	۲۹4		
HUS SAMPLE NO. 02-5820- A-	A		ice Soil E				
SAMPLE METHOD:	COMPOSITE SAMPLE DATA						
California Sampler	SAMPL	Ε	TIME		COLOR/DES	CRIPTION	
DEPTH SAMPLED:					· · · · · · · · · · · · · · · · · · ·		
2 -4					<u> </u>		
SAMPLE DATE & TIME: 8/5/93 1055							
SAMPLED BY:							
SIGNATURE(S):							
37 SHATURE 37.							
TYPE OF SAMPLE							
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION				_			
GRAB							
COMPOSITE			SAN	PLE DAT	A		
	COLOR	DESC	RIPTION: (SAN	D, CLAY,	DRY, MOIS	T, WET, ETC.)	
		Clau	(CH)-black 1	(2,541	2), soft t	no stiff,	
ANALYSI S:			c occasion		ilets, veru	y slight	
70.1	ODCEDVA	$\overline{}$	oleum odi	0		-	
TPH	OBSERVAT	1 T NW2\1	NUTES:			_	
BIEX	-						
	_						
	1						
	_						
PID-4 ppmn							
FID- 150 PPM							
					•		

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER							
PROJECT NAME Ellington	PROJECT NUMBER 1K94							
HNUS SAMPLE NO. 02-SB20- B-A		soul	RCE Soil	Bori	<u>ng-2</u>	0		
SAMPLE METHOD:	COMPOSITE SAMPLE DATA							
California Sampler	SAMPL	E	TIME		COLOR/D	DESCRIPTION		
DEPTH SAMPLED:								
8-10								
SAMPLE DATE & TIME: 8/5/93 11/0								
SAMPLED BY:				_				
Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE								
LOW CONCENTRATION				_				
☐ HIGH CONCENTRATION ZIGRAB								
COMPOSI TE			SAL	MPLE DAT	A			
GRAB - COM OST IE	COLOR	DESC	RIPTION: (SAN			DIST, WET,	ETC.)	
			(CL)-light					
ANALYSI S:			to stiff,	Silty	slight	petroleum	odor	
	<u> </u>							
TPH	OBSERVA	TI ONS/	'NOTES:					
TCL VOA	4							
TCL BNA	4							
	1							
	1							
]							
]							
mgg 818-019								
FID - 1000+ ppm								
, i								
					•			

SURFACE SOIL

	[☐ SEDI	/LAGOON				
PROJECT NAME Ellington			PROJECT NUMBE	ER 1K94			
INUS SAMPLE NO. 02-5820-C-A	<u> </u>	SOUP	RCE <u>Soil</u>	Boring - 20			
SAMPLE METHOD:	COMPOSITE SAMPLE DATA						
California Sampler	SAMPL	E	TIME	COLOR/DESCRI PTI ON			
DEPTH SAMPLED:							
20-22							
SAMPLE DATE & TIME: 8/5/93 1140							
SAMPLED BY: Basilio							
SI GNATURE(S):							
TYPE OF SAMPLE							
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION							
GRAB							
GRAB - COMPOSITE			SAM	PLE DATA			
_	COLOR			D. CLAY, DRY, MOIST, WET, ETC.)			
		Silt	CML)-dark	: brown (7.5 YR 4/4),			
ANALYSI S:		Soft	, Sandy,	Saturated			
TPH	OBSERVA	TI ONS/	NOTES:				
BTEX							
014							
]						
·							
	-						
PID-0 ppm							
FID-Oppm							
F7D - 0 64	1						
				•			

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER							
ROJECT NAME Ellington			CT NUMBE					
NUS SAMPLE NO. 02 - 5821 - A - A	Source Soil Boring 21							
SAMPLE METHOD:	COMPOSITE SAMPLE DATA							
California Sampler	SAMPLE	T	IME		COLOR/DESCRIPTION			
DEPTH SAMPLED:				<u> </u>				
2-4								
SAMPLE DATE & TIME:			·					
8/5/93 1415 SAMPLED BY:								
Basilio				ļ				
SI GNATURE(S):				-				
TYPE OF SAMPLE								
CTLOW CONCENTRATION								
☐ HIGH CONCENTRATION GRAB								
fin composite			SAM	PLE DATA	1			
GRAB - COMPOSITE	COLOR	DESCRI PTI	ON: (SAND	, CLAY,	DRY, MOIST	, WET, ETC.)		
		Clay CCH)-black	(2.5	YR N 2.5), stiff,		
ANALYSIS:		rootlets						
		TONO MIOTEO						
TPH	OBSERVAT	I ONS/NOTES	:					
BTEX								
	-							
	4							
	1							
PID- O PPM								
FID- 0 PPM								
1 2 0								
	İ							

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER						
PROJECT NAME Ellington	PROJECT NUMBER 1K94						
HNUS SAMPLE NO. 02-5821-8-A	source Soil Boring 21						
SAMPLE METHOD:	COMPOSITE SAMPLE DATA						
California Sampler	SAMPLE	TIME	COLOR/DESCRI PTI ON				
DEPTH SAMPLED:							
SAMPLE DATE & TIME: 8 5 93 1420							
SAMPLED BY: Basilio							
SI GNATURE(S):							
TYPE OF SAMPLE							
LOW CONCENTRATION							
☐ HIGH CONCENTRATION KGRAB							
COMPOSITE GRAB - COMPOSITE		SAM	PLE DATA				
Gotting Control Control	COLOR D	D, CLAY, DRY, MOIST, WET, ETC.)					
	<u> </u>	lay (CH) - black	(2.5 4RN 2.5), occasional				
ANALYSI S:	gray and iron staining, moderately						
	OBSERVATI O	st, plastic	-				
TAI			-				
BTEX	(ollect	duplicate :	sample				
	02	-F021-B-A	<i>t</i>				
	-						
	1						
PID- Oppm							
FID- 110 pm.							
1-TD- 110 bim.							
			•				

☐ SURFACE SOIL

	() []	SEDIN PONDA OTHER	'LAGOON	
PROJECT NAME Ellington			PROJECT NUMBER	
HNUS SAMPLE NO. <u>02-3B21-C-</u>	<u> </u>	_ SOUR	E Soil R	boring 21
SAMPLE METHOD:			COMPOSI	TE SAMPLE DATA
California Sampler	SAMPLE		TIME	COLOR/DESCRI PTI ON
DEPTH SAMPLED:				
20-22				
SAMPLE DATE & TIME:	<u> </u>			
8/5/93 1505				
SAMPLED BY:				
Rasilio				
SI GNATURE(S):				
TYPE OF SAMPLE	-	-		
LOW CONCENTRATION				
THIGH CONCENTRATION				
SCÎ GRAB	-			
COMPOSITE GRAB - COMPOSITE			SAMP	LE DATA
	COLOR	DESCR	IPTION: (SAND,	CLAY, DRY, MOIST, WET, ETC.)
				/A . Saturated
ANALYSIS:				5/4) silty to slushtly
			xex, moist	·
TPH	OBSERVAT	I ONS/N	OTES:	
BTEX				
	_			
	_			
	4			
mgg 0-019				
FID - 0 ppm				
	1			
				•

SURFACE SOIL

	[SEDIME POND/I	LAGOON				
PROJECT NAME Ellington		PI	ROJECT NUMBE	R 1K94			
INUS SAMPLE NO. 02-SB22-A-A		SOURC	E Soil	Boring-22			
SAMPLE METHOD:	COMPOSITE SAMPLE DATA						
California Sampler	SAMPI	LE	TIME	COLOR/DESCRIPTION			
DEPTH SAMPLED:							
4-6	ļ						
SAMPLE DATE & TIME: 8/11/93 815							
SAMPLED BY: Basilio							
SI GNATURE(S):							
TYPE OF SAMPLE							
LOW CONCENTRATION							
☐ HI GH CONCENTRATION GRAB							
COMPOSITE GRAB - COMPOSITE			CAM	PLE DATA			
CHAR - COMPOSITE	COLOR	DESCR		, CLAY, DRY, MOIST, WET, ETC.)			
	COLOIT			zy (7.5 JR 4/0), soft to medium			
ANALYSI S:				gravel occasional rootlets			
PINTE : 01 0							
TPH	OBSERVA	TI ONS/NO	TES:				
BTEX							
	_						
	4						
	-{						
	-		,				
PID-0 ppm							
FID- 0 ppm							
•				·			

SURFACE SOIL
SUBSURFACE SOIL

	ĺ	□ SEDI □ PONI □ OTHE	D/LAGOON					
PROJECT NAME Ellington	PROJECT NUMBER \K94							
HNUS SAMPLE NO. 02-SB22-B-A		soul	RCE Soil	Boring - 22				
SAMPLE METHOD:		SITE SAMPLE DATA						
California Sampler	SAMPL	E	TIME	COLOR/DESCRIPTION				
DEPTH SAMPLED:								
G-8								
SAMPLE DATE & TIME: 8/11/93 820								
SAMPLED BY: Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE								
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION								
SCI GRAB ☐ COMPOSI TE								
GRAB - COMPOSITE	SAMPLE DATA							
	COLOR			D. CLAY, DRY, MOIST, WET, ET				
		Clay	CCH)-very o	Hark gray (5 4R 310), occasi	onal			
ANALYSIS:			n streaks	soft to medium stiff,				
TPH	OBSERVA			rization				
BTEX								
	1							
PID-Oppm								
1								
EID - O bbw								
				•				
	J							

Environmental Corporation) ((SUB SED PON OTH	D/LAGOON ER			
PROJECT NAME Ellington			PROJECT NUMBI			
HNUS SAMPLE NO. 02 - SB22 - C-A		sou	RCE Soil B	poring - 22	····	
SAMPLE METHOD:	COMPOSITE SAMPLE DATA					
California Sampler	SAMPL	E	TIME	COLOR/DESC	RIPTION	
DEPTH SAMPLED: 22 - 24						
SAMPLE DATE & TIME:						
8/11/93 906						
SAMPLED BY: Basilio						
SI GNATURE(S):					<u></u>	
TYPE OF SAMPLE						
IT LOW CONCENTRATION						
HIGH CONCENTRATION						
GRAB ☐ COMPOSI TE						
☐ GRAB - COMPOSITE				PLE DATA	\ FT FTO \	
	COLOR			D. CLAY, DRY, MOIST	, WEI, EIC.)	
				4. saturated		
ANALYSI S:		3+	eaks, clayey		ccasional gray	
TOU	OBSERVA					
TPH					-	
BTEX						
	1					
	1					
]					
PID-0 ppm						
EID-0 bbw						
				•		

SURFACE SOIL

	1	SEDI N POND OTHER	/LAGOON R				
ROJECT NAME Ellington		F	PROJECT NUMBE	R_ 1K94			
NUS SAMPLE NO. 02-8823-A-	<u>A</u>	SOUR	ce soil e	Boring - 23			
SAMPLE METHOD:				TE SAMPLE DATA			
California Sampler	SAMPL	LE	TIME	COLOR/DESCR	I PTI ON		
DEPTH SAMPLED:							
0-2	-						
SAMPLE DATE & TIME: 8/11/93 1/00	-						
SAMPLED BY: Basilib							
SI GNATURE(S):							
TYPE OF SAMPLE							
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION							
IXI GRAB ☐ COMPOSI TE							
GRAB - COMPOSITE	SAMPLE DATA						
	COLOR	DESCR	RIPTION: (SAND,	. CLAY, DRY, MOIST,	WET, ETC.)		
ANN VOLC	 	Clay	CULJ- Tan	, dry, abundant	aux 61		
ANALYSI S:		ļ					
TPH	OBSERVA	TI ONS/N	IOTES:				
X=18							
	_						
	-						
	1						
]						
	_						
PID- 0 ppm							
FID-oppm.							
. = 5							
				•			

Environmental Corporation		SEDI	O/LAGOON				
PROJECT NAME Ellington			PROJECT NUMBE				
INUS SAMPLE NO. 02-SB23-B-A	4 SOURCE Soil Boring - 23						
SAMPLE METHOD:			COMPOS	ITE SAMPLE DATA			
California Sampler	SAMPLE TIME COLOR/DESCRIPTION						
DEPTH SAMPLED:							
G-8							
SAMPLE DATE & TIME: 8/11/93 1116				·			
SAMPLED BY:							
Basilio		-					
SI GNATURE(S):							
TYPE OF SAMPLE							
LOW CONCENTRATION							
☐ HIGH CONCENTRATION							
☐ COMPOSI TE							
GRAB - COMPOSITE	SAMPLE DATA						
	COLOR			, CLAY, DRY, MOIST, WET, ETC.)			
	j	Clay	(CH)-dark gr	ay (2.5 4R 2.5 10), iron			
ANALYSI S:				still to still, plastic, white			
	OBSERVA		an calcareou	grave)			
TPH	UDSERVH	11 01/2/	NOTES:				
BTEX							
mgg o - CIP							
EID- 3 bbw							
` `	:						
	1						
1	I						

Environmental Corporation	☐ SURFACE SOIL ☐ SUBSURFACE SOIL ☐ SEDIMENT ☐ POND/LAGOON ☐ OTHER						
PROJECT NAME Ellington			PROJECT NUMBE	R K94			
HNUS SAMPLE NO. 02-SB23-C-A				Boring: 23			
SAMPLE METHOD:	COMPOSITE SAMPLE DATA						
California Sampler	SAMPL	E	TIME	COLOR/DESCRI PTI ON			
DEPTH SAMPLED:							
20-22							
SAMPLE DATE & TIME: 8 (11.193 11.57			·				
SAMPLED BY:			<u>.</u>				
Basilio							
SI GNATURE(S):							
TYPE OF SAMPLE							
TLOW CONCENTRATION							
☐ HIGH CONCENTRATION ☆ GRAB							
TI COMPOSI TE				DI E DATA			
GRAB - COMPOSITE	001.00	DECC		PLE DATA), CLAY, DRY, MOIST, WET, ETC.)			
	COLOR	O 11	KIPII UN: (SHNL	ong brown (7.5 YR 4/6),			
			ey, Sandy				
ANALYSI S:		bas	7	DET TOUSE, SETTING			
TPH	OBSERVAT						
BTEX		,	, I				
	(01	rct	duplicate	sample			
			-D23-C-				
		,	5 ** 5				
	1						
	1						
	1						
PID- Oppm							
FID- 0 PPM							
	1						

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER						
PROJECT NAME Ellington	PROJECT NUMBER \\ \\ 94						
HNUS SAMPLE NO. 02-SB24-A-A	SOURCE Soil Boring - 24						
SAMPLE METHOD:			COMPO	SITE SAMPLE DATA			
California Sampler	SAMPLI	E	TIME	COLOR/DESCRIPTION			
DEPTH SAMPLED:							
1-3							
SAMPLE DATE & TIME:	·						
813193 805			· · · · · · · · · · · · · · · · · · ·				
SAMPLED BY: Basilio							
SI GNATURE(S):							
23							
TYPE OF SAMPLE							
LOW CONCENTRATION							
☐ HI GH CONCENTRATI ON GRAB							
FT COMPOSI TE			CA CA	MPLE DATA			
GRAB - COMPOSITE	COLOR	DECC		D, CLAY, DRY, MOIST, WET, ETC	.)		
		Clo.	COUL dode	gray (2.5 4R 4/0), iron			
ANALYSIS:		chain	ing modium	stiff, plastic, gravelly Cfills	?),		
ANALTSIS:		Veru	slight Detr	bleum odor			
TPA	OBSERVAT				_		
BTEX	1						
	1						
	1						
FID- IEO DOM							
FID- 150 ppm							
	1						
				•			

☐ SURFACE SOIL

	(⊠`SUBSURF/ □ SEDIMEN' □ POND/LA/ □ OTHER	Γ					
PROJECT NAME Ellington				R IK94				
NUS SAMPLE NO. 02-5824-13	-A	SOURCE_	Soil	Boring-24				
SAMPLE METHOD:		COMPOSITE SAMPLE DATA						
California Sampler	SAMPL	E	TIME	COLOR/DESCRIPTION				
DEPTH SAMPLED:								
11-13								
SAMPLE DATE & TIME:	ļ							
8/13/93 830								
SAMPLED BY:								
Basilio								
SI GIVAT UNET 37:								
TYPE OF SAMPLE								
LOW CONCENTRATION								
☐ HIGH CONCENTRATION MEGRAB								
TT COMPOSI TE			CAV	DI C. DATA				
GRAB - COMPOSITE	COLOR	DECEDT P		PLE DATA , CLAY, DRY, MOIST, WET, ETC.)				
	COLOR	Clau CC	41-R000	n (7.5 YR 5/3) mottled				
ANALYSIS:		with an		r, moderately plastic,				
HITHLI 31 3:		silty, d		damp				
TPH	OBSERVA	TI ONS/NOTE						
BTEX								
	_							
	_							
		•						
FID-30 ppm								
`								

Bavironmental Corporation		SED	D/LAGOON				
PROJECT NAME Elling ton	PROJECT NUMBER 1K94						
HNUS SAMPLE NO. 02-SB24-C-A							
SAMPLE METHOD:			COMPOSI	TE SAMPLE DATA			
California Sampler	SAMP	LE	TIME	COLOR/DESCRI PTI ON			
DEPTH SAMPLED: パワーマ							
SAMPLE DATE & TIME:							
8/13/93 845							
SAMPLED BY:	· · · · · · · · · · · · · · · · · · ·						
Basilio							
SI GNATURE(S):							
TYPE OF SAMPLE	- 						
LOW CONCENTRATION							
HIGH CONCENTRATION							
©©GRAB ☐ COMPOSI TE							
GRAB - COMPOSITE				PLE DATA			
	COLOR			CLAY, DRY, MOIST, WET, ETC.)			
				ig brown (7.5 4R 5/6).			
ANALYSI S:				layey in parts, moist to			
TPH	OBSERVAT		at base				
BTEX		11 01137					
DIEX							
FID-0 ppm							
				•			

☐ SURFACE SOIL

	[🗀 SEDI I	/LAGOON				
PROJECT NAME Ellington				ER 1K94			
INUS SAMPLE NO. 02-SB25-A-A	<u> </u>	SOUR	ce <u>Soil</u>	Baring-	25		
SAMPLE METHOD:		·····	COMPOS	TTE SAMPLE DATA	\		
California Sampler	SAMPL	E	TIME	COLOR/	DESCRIPTION		
DEPTH SAMPLED:							
1-3							
SAMPLE DATE & TIME: 8/13/93 1019							
SAMPLED BY:	<u> </u>						
Basilio			·				
SI GNATURE(S):							
TYPE OF SAMPLE							
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION							
T☑ GRAB							
☐ COMPOSITE ☐ GRAB - COMPOSITE	SAMPLE DATA						
36	COLOR	DESC			DIST, WET, ETG.)		
				brown C1.5			
ANALYSI S:		mire		staining, plo			
TPH	OBSERVA'	TI ONS/N	IOTES:				
BLEX							
PID-0 ppm							
FID-32 PPM							

Environmental Corporation	75	SUBS	O/LAGOON					
PROJECT NAME Ellington	PROJECT NUMBER \K94							
HNUS SAMPLE NO. 02-SB25-B-A	Source Soil Boring-25							
SAMPLE METHOD:	COMPOSITE SAMPLE DATA							
California Sampler	SAMPL	Ε	TIME	COLOR/DESCRI PTI ON				
DEPTH SAMPLED:								
5-7								
SAMPLE DATE & TIME: 8/13/93 1039								
SAMPLED BY:								
Basillo								
SI GNATURE(S):								
TYPE OF SAMPLE								
☐ HIGH CONCENTRATION	,							
GRAB ☐ COMPOSI TE								
GRAB - COMPOSITE				PLE DATA				
	COLOR			CLAY, DRY, MOIST, WET, ETC.)				
ANALYCI C.		Cay	mostly = E	544(2) pockets of dark /Mn streaks, plastic				
ANALYSI S:		issas,	incol colors	eous nodules				
TPH	OBSERVAT							
BTEX								
	1							
`								
mgg PI - DI9								
EID- 20 ppm								
	1							

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER								
PROJECT NAME Ellington	PROJECT NUMBER 1K94								
INUS SAMPLE NO. 02-SB25-CA	Source Soil Boring 25								
SAMPLE METHOD:		ITE SAMPLE DATA							
California Sampler	SAMPL	E	TIME	COLOR/DESCRIPTI ON					
DEPTH SAMPLED:									
SAMPLE DATE & TIME: 8/13/93 1108									
SAMPLED BY: Basilio									
SI GNATURE(S):									
TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION GRAB									
COMPOSITE GRAB - COMPOSITE			SAM	PLE DATA					
	COLOR			D. CLAY, DRY, MOIST, WET, ETC.)					
		Silt		trong brown (7.5 JR 4/6),					
ANALYSI S:		No	odor						
TPH	OBSERVA	TI ONS/N	NOTES:						
PID-0 ppm	:								
PID-0 ppm FID-0 ppm									
1	1								

Environmental Corporation]	SED!	D/LAGOON		•		
PROJECT NAME Ellington			_PROJECT NUMBE	ER IK94	4		
INUS SAMPLE NO. 02-5826-A-	A	sou	RCE Soil	Borino	- 26		
SAMPLE METHOD:			COMPOS	ITE SAMPL	E DATA		
California Sampler	SAMPL	LE	TIME		COLOR/DESCRI PT	ON	
DEPTH SAMPLED:				<u> </u>			
0-2					,		
SAMPLE DATE & TIME:							
81393 1340				 			
SAMPLED BY:							
Basilio							
SI GNATURE(S):						· · · · · · · · · · · · · · · · · · ·	
TYPE OF SAMPLE							
LOW CONCENTRATION							
HIGH CONCENTRATION							
TXGRAB ☐ COMPOSI TE					* **	·	
GRAB - COMPOSITE	SAMPLE DATA COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.)						
	COLOR						
		112	COLY-block			<u>kish</u>	
ANALYSI S:		awa	mothing, o	ard, o	ravel rootle	25	
TOIL	OBSERVA	TT ONS /	NOTES.				
TPH	OBSERVA	11 01107	110123.				
BTEX	1						
	1						
	1						
	1						
]						
PID-0 ppm							
FID-2 ppm							
12D- 5 66.11							
	1						

☐ SURFACE SOIL

	ĵ ĵ	i sedii i pond. ii othei	/LAGOON R	1160	
ROJECT NAME Ellington	λ		PROJECT NUMBE		
NUS SAMPLE NO. <u>02-5826-8-</u>	4	SOUR	ce Soil		
SAMPLE METHOD:	200			ITE SAMPLE DA	TA /DESCRIPTION
California Sampler	SAMPL	<u> </u>	TIME	LULUR	/ DESCRIFTION
DEPTH SAMPLED: G-8					
SAMPLE DATE & TIME: 8/13/93 1355	`				
SAMPLED BY: Basilio					
SI GNATURE(S):					
TYPE OF SAMPLE					
TILOW CONCENTRATION					
☐ HI GH CONCENTRATI ON					
COMPOSI TE			SAN	PLE DATA	
COULD COLL CO	COLOR	DESC	RIPTION: (SAND	CLAY, DRY,	MOIST, WET, ETC.)
		Clay	(CH)-dark	aray (7.5 3	SR 4/0), iron
ANALYSI S:		stair	ing, medi	ium stiff,	plastic
	ODCEDY4	TI ONC 4	NOTEC-		
TPH TCL VOA	OBSERVA	11 NJ2/1	10 E3		
TCL VOA TCL BNA	-				
ICL ISIVIA	1				
	4				
	-				
PIO-71 Ppm					
FID- 200 6bw					
					•

Environmental Corporation) [SURFACE S SUBSURFACE SEDIMENT POND/LAGE OTHER	DON					
PROJECT NAME Ellington		PROJI	ECT NUMBE	R 1K94				
INUS SAMPLE NO. 02-SB26-C-	A	_SOURCE _	Soil	Boring - 26				
SAMPLE METHOD:		COMPOSITE SAMPLE DATA						
California Sampler	SAMPLE		TIME	COLOR/DESCRI PTI ON				
DEPTH SAMPLED: 18- 20								
SAMPLE DATE & TIME: 8/13/93 1422								
SAMPLED BY: Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION GRAB COMPOSITE								
GRAB - COMPOSITE	SAMPLE DATA							
	COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.) Silt CMLI- Strong brown (7.5 yr 4/6)							
								
ANALYSI S:		occasion moist to		ay, clayey, soft to stiff,				
TPH		I ONS/NOTES		-				
BLEX	Col	Lect du	plicate	sample				
	1							
	D .	r-ED3	6- 6-	4				
	7							
PIO-73 ppm								
EID-1000+ 6bm								

Environmental Corporation)	SED:	D/LAGOON ER						
PROJECT NAME Ellington	PROJECT NUMBER 1K94								
HUS SAMPLE NO. 02-5827-A-A	source Soil Boring - 27								
SAMPLE METHOD:	COMPOSITE SAMPLE DATA								
California Sampler	SAMPL	E	TIME	COLOR/DESCRIPTION					
DEPTH SAMPLED:		<u> </u>							
02									
SAMPLE DATE & TIME: 1534									
SAMPLED BY: Basilio									
SI GNATURE(S):									
TYPE OF SAMPLE									
LOW CONCENTRATION									
☐ HIGH CONCENTRATION ☐ GRAB									
GRAB - COMPOSITE			SAM	PLE DATA					
GRAD - COLL COLLE	COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.)								
				reddish brown (54R 3/2).					
ANALYSI S:		vari	egated with	white, red and black, stiff					
		to h	ard, dry, ar	avel, rootlets					
TPH.	OBSERVA	TI ONS/	'NOTES:						
BTEX	}								
	1								
	1								
	1								
	İ								
FID-0 ppm									
	_1								

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER							
PROJECT NAME Ellington	PROJECT NUMBER 1K94							
INUS SAMPLE NO. 02-SB27-B-A		sou	rce <u>Soil</u>	Bor	ing - 27			
SAMPLE METHOD:	COMPOSITE SAMPLE DATA							
California Sampler	SAMP	E	TIME		COLOR/DESCRI PTI ON			
DEPTH SAMPLED:								
SAMPLE DATE & TIME: 8/16/93 1602								
SAMPLED BY: Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION GRAB COMPOSITE GRAB - COMPOSITE			S	AMPLE [DATA			
_	COLOR				AY, DRY, MOIST, WET, ETC.) C7.5 YR 4/4), minor amo			
ANALYSI S:					medium stiff to stiff			
TPH BTEX	OBSERVA		nic, slight MOTES:	petrole	eum od or			
FID- 400 ppm					·			

Environmental Corporation	[] []						
ROJECT NAME Ellington			PROJECT NUMBE	R 1K94			
NUS SAMPLE NO. 02-SB27-C-A		_ soul	RCE Soil	Boring - 27			
SAMPLE METHOD:	COMPOSITE SAMPLE DATA						
California Sampler	SAMPL	E	TIME	COLOR/DESCRIPTION			
DEPTH SAMPLED:							
22-24							
SAMPLE DATE & TIME: 8/16/93 1620							
SAMPLED BY:		***************************************					
Basilio							
SI GNATURE(S):		-					
TYPE OF SAMPLE							
LOW CONCENTRATION							
☐ HIGH CONCENTRATION		·					
GRAB							
GRAB - COMPOSITE	SAMPLE DATA						
	COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.)						
		311	(ML)-Stron	ng brown (7.5 YR 4/6). yey, maist to wet at base			
ANALYSI S:		Sano	ly to chai	jey, moist to vvet at take			
7011	OBSERVA	TI ONS/	NOTES:				
TPH	ODSERVI						
BTEX							
				.			
	<u> </u>						
FID-3 ppm							
	1						
	l						

SURFACE SOIL
SUBSURFACE SOIL

		SEDI	D/LAGOON ER					
PROJECT NAME Ellington			PROJECT NUMBE					
INUS SAMPLE NO. <u>02-SB28-A-A</u>	source Soil Boring - 28							
SAMPLE METHOD:		TE SAMPLE DATA						
California Sampler	SAMP	LE	TIME	COLOR/DESCRIPTION				
DEPTH SAMPLED:					_			
1-3								
SAMPLE DATE & TIME: 8/17/93 0854					_			
SAMPLED BY: Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE								
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION ☑ GRAB	·							
COMPOSI TE								
GRAB - COMPOSITE	SAMPLE DATA							
	Clay (CH)-Very dark gray (7.5 4R 30).							
ANALYSI S:			to medium		_			
Part Co.) - ()	11,000,100,1					
TPH BTEX	OBSERVA	TI ONS/	NOTES:	_	-			
]							
	4							
	4							
	-							
	1							
PID-12 Ppm								
FID-130 ppm								
				•				
1								

SURFACE SOIL

PROJECT NAME Ellington		SEDI POND	/LAGOON	• 1K94				
HNUS SAMPLE NO. 02-8828-8-A				oring - 28				
SAMPLE METHOD:	·			COMPOSITE SAMPLE DATA				
California Sampler	SAMP	LE	TIME	COLOR/DESCRIPTION				
7-9								
SAMPLE DATE & TIME:								
SAMPLED BY: Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION GRAB COMPOSITE GRAB - COMPOSITE ANALYSIS: TPH BTEX	COLOR	Clay plastic Calcar	RIPTION: (SAND. (CH) dark o :, ivon staini reous Nodu	LE DATA CLAY, DRY, MOIST, WET, Etgray (5 4 4/1), Medium ng, occasional < 1/8 - i				
PID-O PPM FID-G50 PPM								

SURFACE SOIL

SUBSURFACE SOIL SEDI MENT POND/LAGOON OTHER										
PROJECT NAME Ellington HNUS SAMPLE NO. 02-5828-C-			PROJECT NUMBE							
SAMPLE METHOD:	l			ITE SAMPLE DATA						
California Sampler	SAMP	LE	TIME	COLOR/DESCRIPTION						
DEPTH SAMPLED: 20-22			-							
SAMPLE DATE & TIME: 8/17/93 0943										
SAMPLED BY: Basilio										
SI GNATURE(S):										
TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION GRAB COMPOSITE GRAB - COMPOSITE										
	SAMPLE DATA									
	COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.) Silt CML) strong brown (7.5 yr 5/6), gray									
ANALYSI S:		mothli		y moist to wet at base						
TPH BTEX	OBSERVA	I TI ONS/N	NOTES:							
PID-0 ppm										
FID-0 ppm										

SURFACE SOIL
SUBSURFACE SOIL

SEDI MENT

		☐ POND. ☐ OTHE		ł					
PROJECT NAME Ellinaton		[PROJECT	NUMBE	R	94			
INUS SAMPLE NO. 02-5829- A-	4-	SOUR	CE	Soil	Borina	g 20	7		
SAMPLE METHOD:		· · · · · ·		COMPOSI	TE SAMP	LE DATA			
California Sampler	SAMPI	LE	TIN	Æ	COLOR/DESCRIPTION				
DEPTH SAMPLED:									
1-3 1211									
SAMPLE DATE & TIME:									
SAMPLED BY:									
Basilia									
SI GNATURE(S):									
TYPE OF SAMPLE									
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION	<u> </u>								
GRAB									
☐ COMPOSI TE ☐ GRAB - COMPOSI TE		<u> </u>		SAMP	LE DATA				
	COLOR	DESCR	I PTI ON			DRY, MO	IST, WE	T, ETC.)
ANALYSI S:		med	ium	Stiff	plas	gray stic			<i>y</i>
-	00000	7 010 01	0750						
TPH	OBSERVA	11 UNS/N	UIES:						
BIEX	1								
	1								
]								
]								
	1								
mag r- CIA									
EJD- 40 bb w									
	1								

Environmental Corporation) (SUBS	D/LAGOON	L				
PROJECT NAME Ellington		·	_PROJECT NUI	MBER_	IK94			·
HNUS SAMPLE NO. 02-5829-8-4	4	sou	RCE Soil	Bo	oring	- 2	9	
SAMPLE METHOD:			COMP	OSI T	E SAMPLE	DATA	<u> </u>	_
California Sampler	SAMPL	E	TIME		CC	DLOR/DESC	RIPTION	
DEPTH SAMPLED:								
5.7								
SAMPLE DATE & TIME: 1222								
SAMPLED BY: Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE			<u> </u>					
LOW CONCENTRATION								
☐ HIGH CONCENTRATION ☑ GRAB								
COMPOSI TE								
☐ GRAB - COMPOSITE	SAMPLE DATA COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.)							
	COLOR							
		1	y CCH) - d				4/1).	
ANALYSI S:		Med	lium sti	iff,	plastic		<u></u>	
701	OBSERVA	TT ONS/	NOTES:					
TPH BTEX		12 0.107						
1312	}							
	1							
	1							
]							
	1							
						•		

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER									
PROJECT NAME Ellington			_PROJECT NUMBE	R IK94						
HNUS SAMPLE NO. 02-SB29-C-A		sou	RCE Soil (3orina - 29						
SAMPLE METHOD:			COMPOST	TE SAMPLE DATA						
California Sampler	SAMP	LE	TIME	COLOR/DESCRIPTION						
DEPTH SAMPLED:										
SAMPLE DATE & TIME: 8/17/93 /245										
SAMPLED BY: Basilio										
SI GNATURE(S):			Mar.							
TYPE OF SAMPLE										
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION										
GRAB			 							
GRAB - COMPOSITE			SAMP	PLE DATA						
	COLOR			CLAY, DRY, MOIST, WET, ETČ.)						
		Γ		ng brown C1.5 YR 5/G),						
ANALYSI S:		Sand	ly, satura-	led						
TPH	OBSERVA	TI ONS/	NOTES:							
BTEX										
			•							
PID- 0 ppm										
FID- 1 PPM										
,										
	l									

SURFACE SOIL
SUBSURFACE SOIL

		SED PON	ID/LAGOON			
PROJECT NAME Ellington			_PROJECT NUMBE	R 1K94		
INUS SAMPLE NO. 02-SB30-AA		SOU	IRCE Soil			
SAMPLE METHOD:			COMPOS	ITE SAMPLE	DATA	
California Sampler	SAMP	LE	TIME	COL	LOR/DESCRIPTION	
DEPTH SAMPLED: O ~ 2						
SAMPLE DATE & TIME: 8/18/93 856						
SAMPLED BY: Basilio						
SI GNATURE(S):						
TYPE OF SAMPLE						
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION ☑ GRAB						
COMPOSITE			SAM	PLE DATA		
20.22 00.000.0	COLOR	DESC	" 		, MOIST, WET, ET	<u>C.)</u>
					(COYR 3/1),	
ANALYSIS:			moderatel	y plastici	iron staining	9
TPH	OBSERVA	TIONS				
BLEX						
PID-0 Ppm						
EID- O 6 bw						
				-		

Environmental Corporation	,	SUBSEDI	D/LAGOON ER				
PROJECT NAME Ellington HNUS SAMPLE NO. 02-5830- F			PROJECT NU	IMBER_	IKAC	Ĥ	
HNUS SAMPLE NO. <u>02-5830-</u>	3-A_	sou	rce <u>Soil</u>	Bo	princ	- 30	
SAMPLE METHOD:	T		COM	OSI TE	SAMPLE	DATA	
California Sampler	SAMP	LE	TIME		CO	LOR/DESC	RIPTION
DEPTH SAMPLED:							
SAMPLE DATE & TIME: 8/18/93 910							
SAMPLED BY: Basilio							
SI GNATURE(S):							
TYPE OF SAMPLE			·				
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION							
GRAB				-			
☐ COMPOSITE ☐ GRAB - COMPOSITE			<u> </u>	SAMPLE	DATA		
	COLOR	DESC				Y, MOIST,	WET, ETC.)
		Clay (CL)-yellow	ish i	red (5	3R 4/6/	occasional
ANALYSI S:		gray	, mediur	n st	iff mod	ierately	plastic
701	OBSERVA	Silty	hackly	trac	ture in	r silty	parts
TPH BTEX	LOBSEKAH	II DIAZVI	MU152:				
610/	1						
]						
	-						
	-						
	-						
PD-0ppm							
FID-5 ppm							

Environmental Corporation	,	SUB!	D/LAGOON			
PROJECT NAME Ellington			PROJECT NUMBE	R_\K9	4	
HNUS SAMPLE NO. 02 - SB 30-C	A	SOU	RCE Soil	Borina	- 30	
SAMPLE METHOD:			COMPOSI	TE SAMPLE	DATA	
California Sampler	SAMP	LE	TIME	CO	LOR/DESCRIPTION	
DEPTH SAMPLED:						
SAMPLE DATE & TIME:						
8/18/93 929	_					
SAMPLED BY:	ļ					
Basilio SIGNATURE(S):						
SIGNATURE 37:						
TYPE OF SAMPLE						·
LOW CONCENTRATION						
□ HIGH CONCENTRATION ☑ GRAB						
COMPOSITE	-					
CONFOSTIE	COLOR	DESC		LE DATA	/ MOTOT LET E	TC \
	COLON				Y, MOIST, WET, E	16.7
ANALYSI S:					top, sandy	at
		base	moist to	wet at	base	
TPH	OBSERVA	TI ONS/N	OTES:			-
BTEX	_					
	-					
	-					
	-					
	7					
mgg 0-DIG	; ;					
FID-18pm						
					•	
1						
	1					

Environmental Corporation	,	⊠ SUB □ SED	D/LAGOON ER	
PROJECT NAME Ellington			_PROJECT NUMB	DER IK94
HUS SAMPLE NO. 02-SB31- A-A		sou	RCE Soil	Boring-31
SAMPLE METHOD:			COMPOS	SITE SAMPLE DATA
California Sampler	SAMP	LE	TIME	COLOR/DESCRI PTI ON
DEPTH SAMPLED: O = 2_				
SAMPLE DATE & TIME: 8/18/93 1005	`			
SAMPLED BY: Basilio				
SI GNATURE(S):				
TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION GRAB COMPOSITE GRAB - COMPOSITE				PLE DATA
	COLOR			dark gray (7.5 4R 3/6)
ANALYSI S:				pootlets, iron staining and
TPH BTEX	OBSERVA		<u>lles < √8-in</u> NOTES:	ich)
PID-0 ppm				
FID-0 ppm				

Environmental Corporation	ĵ. 1	SED1	D/LAGOON ER					
ROJECT NAME Ellington			PROJECT NUMBER	R				
NUS SAMPLE NO. <u>02-8831-8-A</u>	source Soil Boring - 31							
SAMPLE METHOD:				TE SAMPLE DATA				
California Sampler	SAMPL	Ε	TIME	COLOR/DESCRIPTION				
DEPTH SAMPLED:								
SAMPLE DATE & TIME: 8/18/93 1025								
SAMPLED BY: Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE								
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION								
GRAB		y						
COMPOSITE GRAB - COMPOSITE			SAMF	PLE DATA				
	COLOR			, CLAY, DRY, MOIST, WET, ETC.)				
				gray (7.5 YR 7/0) and red				
ANALYSI S:				ale mottled, medium stiff,				
H9T	OBSERVA			light petroleum odor				
BLE X	1	. /						
014]							
]							
	-							
	4.							
	1							
PIO-5 ppm								
FID-90 ppm								
3 4								
				•				

Environmental Corperation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER								
PROJECT NAME Ellinaton			PROJECT NUMBE	r 1K94					
HNUS SAMPLE NO. 02-SB31-C-A		sou	rce <u>Soil</u>	Boring-31					
SAMPLE METHOD:			COMPOSI	TE SAMPLE DATA					
California Sampler	SAMPL	E	TIME	COLOR/DESCRI PTI ON					
DEPTH SAMPLED:									
SAMPLE DATE & TIME:									
8/18/93 1037									
SAMPLED BY:									
Basilio									
SI GNATURE(S):									
TYPE OF SAMPLE									
□ LOW CONCENTRATION □ HIGH CONCENTRATION									
GRAB									
COMPOSITE GRAB - COMPOSITE			SAMF	PLE DATA					
	COLOR			CLAY, DRY, MOIST, WET, ETC.)					
		Silt	CMLJ-Stron	g brown (7.5 4R 5/6) gray at top to sandy					
ANALYSIS:		in	clayey pans hase maist	to wet at loase					
HAT	OBSERVAT			10 2861 001					
BTEX				1					
	(01)	rc+	duplicate	sample					
	0	1 - F	1031-C-A						
		,							
				··					
PIO-0 ppm									
FID-Oppm									

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER								
PROJECT NAME Ellington			_PROJECT NUM	BER_	1K94				
HNUS SAMPLE NO. <u>02-8B32-A-A</u>	source Soil Boring - 32								
SAMPLE METHOD:	COMPOSITE SAMPLE DATA								
California Sampler	SAMP	LE	TIME		COLOR/DESCRI PT	ON			
DEPTH SAMPLED: O- 2				-					
SAMPLE DATE & TIME: 8 19 93 833									
SAMPLED BY: Basilio									
SI GNATURE(S):									
TYPE OF SAMPLE LOW CONCENTRATION				1					
LIGH CONCENTRATION	<u> </u>								
GRAB COMPOSI TE				-					
GRAB - COMPOSITE			SA	MPLE	DATA				
	COLOR				CLAY, DRY, MOIST, WET				
ANALYSI S:		Clau	COL)-very	7 9	ark gray C2.5 yr	3/0/,			
HAHLISIS:		जाम	to hard,	100	tlets dry, iron s	staining			
H9T	OBSERVA	TI ONS/	NOTES:			_			
BLE X									
PID-oppm									
FID-oppm									

Environmental Corporation) [[SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER								
PROJECT NAME Ellington			PROJECT NUMBE	R 1K94						
INUS SAMPLE NO. <u>02-SB32-B-A</u>		soul	rce <u>Soil</u>	Boring-32						
SAMPLE METHOD:			COMPOSI	TE SAMPLE DATA						
California Sampler	SAMPL	Ε	TIME	COLOR/DESCRIPTION						
DEPTH SAMPLED:										
SAMPLE DATE & TIME: 846										
SAMPLED BY: Basilio										
SI GNATURE(S):										
TYPE OF SAMPLE										
☐ LOW CONCENTRATION ☐ JUIGH CONCENTRATION										
GRAB COMPOSI TE										
GRAB - COMPOSITE				PLE DATA						
	COLOR			. CLAY, DRY, MOIST. WET. ETC.)						
ANALYSIS:		arau	and black.	medium stiff clastic, very						
		diant	ly sity, occas	sional gypsum crystals						
BLEX	OBSERVAT	TI ONS/	NOTES:							
PIO-0 ppm										
FID-0 ppm										
				·						

Ezvironmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER								
PROJECT NAME Ellington			PROJECT NUMBER	R					
HNUS SAMPLE NO. 02-SB32-C-A		_ sou	rce <u>Soil</u>	Boring-32					
SAMPLE METHOD:			COMPOSI	TE SAMPLE DATA					
California Sampler	SAMPLE		TIME	COLOR/DESCRIPTION					
DEPTH SAMPLED:									
SAMPLE DATE & TIME:		_							
8/19/93 0909									
sampled by: Basilio									
SI GNATURE(S):									
29									
TYPE OF SAMPLE									
LOW CONCENTRATION HIGH CONCENTRATION									
GRAB COMPOSITE									
GRAB - COMPOSITE			SAMP	LE DATA					
	COLOR			CLAY, DRY, MOIST, WET, ETC.)					
, , , , , , , , , , , , , , , , , , ,				ong brown (7.5 yR 4/6),					
ANALYSI S:		ĺ		dy in Parts, wet to					
TOIL	OBSERVAT		rated at	base					
TPH RTE X	OBSERVAL	1 01137	No i La:						
BIEA	(01	lect	- duplicate	sample					
	0.	ナ ー :	FD32-C-	A					
	-								
	1								
	1								
PIO-1 ppm									
FID- 1 ppm									
	1								

Environmental Corporation	֓֞֟֝֟֝֟ ֖֖֓֞֞֓֞֞֓֓֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֩֞֞֞֩֞֞֩֞	SUB!	D/LAGOON	,	
PROJECT NAME Ellington			PROJECT NUMBE	R 1K94	
HNUS SAMPLE NO. 02 - SB33- A-A		sou	rce <u>Soil</u>	Boring-33	
SAMPLE METHOD:			COMPOSI	TE SAMPLE DATA	
California Sampler	SAMPL	Ε	TIME	COLOR/DESCRI PTI ON	
DEPTH SAMPLED:					
0-2					
SAMPLE DATE & TIME: 8/19/93 1006					
SAMPLED BY: Basilio					
SI GNATURE(S):					
20					
TYPE OF SAMPLE					
LOW CONCENTRATION JUIGH CONCENTRATION					
GRAB					
COMPOSITE GRAB - COMPOSITE			SAM	PLE DATA	
_	COLOR			, CLAY, DRY, MOIST, WET, ETC.	.)
				reddish gray (5 YR 4/2):	
ANALYSI S:				ustic; dry; rootlets, platy	
Fort	OBSERVAT		sum crystal	\$	
TPH BTE X	OBSERVA	11 01137	NO I CO:		
BIEV	į				
	j				
PIO- 12 gpm					
FID- Oppm					
1					

Environmental Corporation) [SUBS	D/LAGOON ER					
PROJECT NAME Ellington			PROJECT NUMBE					
HNUS SAMPLE NO. 02-SB33-B-A	source Soil Boring-33							
SAMPLE METHOD:			COMPOSI	TE SAMPLE DATA				
California Sampler	SAMPL	LE	TIME	COLOR/DESCRI PTI ON				
DEPTH SAMPLED: 12-14								
SAMPLE DATE & TIME: 8/19/93 1034	·							
SAMPLED BY: Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE LOW CONCENTRATION								
HIGH CONCENTRATION GRAB COMPOSITE								
GRAB - COMPOSITE	COLOR	DESI		PLE DATA , CLAY, DRY, MOIST, WET, ETC.)				
	COLON			(7.5 YR 5/4), minor gray,				
ANALYSIS:				stiff, plastic, iron stainin	0)			
BLE X L b H	OBSERVA	TI ONS/	'NOTES:	_	-			
	1							
PIO-15 PP M								
FID-120 Ppm								
				•				

Environmental Corporation) 	SUB: SED: PONI	D/LAGOON ER					
ROJECT NAME Ellington			PROJECT NUMBE	R_1K94				
NUS SAMPLE NO. 02-5833-C-A	source Soil Boring - 33							
SAMPLE METHOD:	COMPOSITE SAMPLE DATA							
California Sampler	SAMPL	E	TIME	COLOR/DESCRIPTION				
DEPTH SAMPLED: \6~ 18								
SAMPLE DATE & TIME: 8/19/93 1042								
SAMPLED BY: Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION GRAB								
COMPOSITE			SAM	PLE DATA				
	COLOR		CRIPTION: (SAND	. CLAY, DRY, MOIST, WET, ETC.)				
				brown (7.5 4R 4/6), minor				
ANALYSI S:				medium stiff, wet at				
TPH BTE X	OBSERVA	bothe TI ONS/						
PIO-Oppm								
EID-4 bbw								

Environmental Corporation	ָנ נו נו	SUBS SEDI PONI	D/LAGOON ER					
PROJECT NAME Ellington	PROJECT NUMBER 1K94							
INUS SAMPLE NO. 02-8834- A-A	source Soil Boring-34							
SAMPLE METHOD:	COMPOSITE SAMPLE DATA							
California Sampler	SAMPL	E	TIME	COLOR/DESCRI PT	ON			
DEPTH SAMPLED:								
SAMPLE DATE & TIME:								
8/26/93 735								
SAMPLED BY:								
Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE								
TLOW CONCENTRATION								
☐ HI GH CONCENTRATION A GRAB								
COMPOSI TE			CANT	PLE DATA				
GRAB - COMPOSITE	COLOR	DESI		CLAY, DRY, MOIST, WE	T, ETC.)			
			COL)-very					
ANALYSI S:		Bite						
				•				
H97	OBSERVA	TI ONS/	NUTES:					
BTEX	1							
	1							
]							
	4.							
	-							
	1							
PIO- 0 ppm								
FID-0 ppm								
				•				

SUBSURFACE SOIL

SEDI MENT

	_	OTHE	_		
ROJECT NAME Ellington			PROJECT NUMBE	R_1K94	
INUS SAMPLE NO. 02-5834- B-A		SOUF	ice <u>Soil</u>	Boring-34	
SAMPLE METHOD:			COMPOST	TE SAMPLE DATA	
California Sampler	SAMPL	E	TIME	COLOR/DESCRIPTION	
DEPTH SAMPLED:					
14-16		·			
SAMPLE DATE & TIME: 8/20/93 807					
SAMPLED BY: Basilio					
SI GNATURE(S):					
TYPE OF SAMPLE					
TILOW CONCENTRATION					
HIGH CONCENTRATION					
COMPOSI TE			CAM	PLE DATA	
GRAB - COMPOSITE	COLOR	DESC		, CLAY, DRY, MOIST, WET, ETC.)
	COLOR	Clay	CI 1- raddish i	yellow C5 YR G/G/ gray mottling	0
ANALYSI S:		minor	- black, silty, m	redium stiff, moderately plast	ا ادر
Paris. 02 0			, bocasional i	,	
HAT	OBSERVA	TI ONS/	NOTES:		
BTEX	_				
	_				
	-				
	-				
	-1 ·				
	7				
PID-0 ppm					
EID-0 ppm					
```				•	



Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER PROJECT NUMBER \K94							
PROJECT NAME Ellington								
HNUS SAMPLE NO. 02-SB34-C-A	source Soil Boring-34							
SAMPLE METHOD:			COMPOSI	TE SAMPLE DATA				
California Sampler	SAMPL	Ε	TIME	COLOR/DESCRIPTION				
DEPTH SAMPLED:								
SAMPLE DATE & TIME: 8/20/93 8(1								
SAMPLED BY:								
Basilio SIGNATURE(S):								
13								
TYPE OF SAMPLE								
LOW CONCENTRATION USE CONCENTRATION	-							
<b>⊠</b> GRAB								
COMPOSITE GRAB - COMPOSITE		-	SAMP	LE DATA				
	COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.)							
		Sill(	(ML)-light a	eddish brown (54R G/4),				
ANALYSI S:				ly clayey to sandy in parts				
HAT	OBSERVAT	wet Inucu	to saturat	ed				
RTE X	┪			_				
OTE A	Coll	rct	duplicate	sample				
			034-C-A					
	- "							
	]							
	]							
PID-0 ppm								
FID-0 Ppm								
ID O JIM				·				



Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER PROJECT NUMBER								
PROJECT NAME Ellington			PROJECT NUMBE	R IK94					
HNUS SAMPLE NO. 02-WWII- A-A	source Soil Boring- MW-11								
SAMPLE METHOD:			COMPOSI	TE SAMPLE DATA					
California Sampler	SAMPI	LE	TIME	COLOR/DESCRIPTION					
DEPTH SAMPLED:									
SAMPLE DATE & TIME:									
8/12/93 0817									
SAMPLED BY: Basilio	:								
SI GNATURE(S):									
TYPE OF SAMPLE									
LOW CONCENTRATION									
☐ HIGH CONCENTRATION ☑ GRAB									
1 COMPOSI TE									
GRAB - COMPOSITE	COLOR	DESC		CLAY, DRY, MOIST, WET, ETC.)					
	COLOR	<del>+</del>		2.5 JR 2.5/0) hard dry					
ANALYSIS:			elly, rootlets						
		3							
TPH	OBSERVA	TI ONS/	NOTES:						
BTEX									
PIO-0 ppm									
EID- O bbw									



Environmental Corporation	•	SUB	D/LAGOON					
PROJECT NAME Ellington			_PROJECT NUMBE					
HNUS SAMPLE NO. 02-MWII- B-A		50U	IRCE Soil F	Boring-MWII				
SAMPLE METHOD:				TE SAMPLE DATA				
California Sampler	SAMP	LE	TIME	COLOR/DESCRI PTI ON				
DEPTH SAMPLED:								
SAMPLE DATE & TIME: 8/12/93 0905								
SAMPLED BY: (Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE								
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION								
GRAB COMPOSI TE								
GRAB - COMPOSITE	SAMPLE DATA							
	COLOR			CLAY, DRY, MOIST, WET, ETC.)				
ANALYSIS				(7.5 yR 5/4) occasional				
ANALYSIS:				iff, plastic, silty, occasional				
TPH	OBSERVA'			bus noaujer				
BTEX								
PID-0 ppm				•				
ETO ET DOM								
FID-50 Ppm								
				-				



Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER								
PROJECT NAME Ellington			PROJECT NUMBE	R KA4					
HNUS SAMPLE NO. 02-MW11-C-A	SOURCE Soil Boring - MWII								
SAMPLE METHOD:	1		COMPOSI	TE SAMPLE DATA					
California Sampler	SAMP	LE	TIME	COLOR/DESCRIPTION					
DEPTH SAMPLED:									
18-20									
SAMPLE DATE & TIME:	<u> </u>		<del></del>						
8/12/93 0921									
SAMPLED BY: Basilio									
SI GNATURE( S):									
20									
TYPE OF SAMPLE									
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION									
GRAB									
☐ COMPOSITE ☐ GRAB - COMPOSITE	SAMPLE DATA								
<del>-</del>	COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.)								
		Clay	CCL) - strong	brown (7.5 4R 5/6).					
ANALYSIS:		occasi	ional gray.	stiff, silly damp					
	00050			J ,					
TPH	observa 	II UNS/N	IUTES:						
BIEX	1								
	1								
	]								
	1								
	-								
PID- 208 Ppm									
FID- 20 PPM									
				•					
	Ī								



Environmental Corporation	ב ב ב ב	SURFACE SUBSURF SEDIMEN POND/LA OTHER	ACE SOIL T				
ROJECT NAME Ellington		PR0	JECT NUMB		K94		
ROJECT NAME Ellington NUS SAMPLE NO. 02-5B35-A-	A	SOURCE	501	boring	35		
SAMPLE METHOD:	T	COMPOSITE SAMPLE DATA					
California Sampler	SAMPL	E	TIME		COLOR/DESCRI	PTION	
DEPTH SAMPLED:							
SAMPLE DATE & TIME: /							
8/24/93 8/35							
SAMPLED BY:				_			
SI GNATURE(S):							
1/2				_			
TYPE OF SAMPLE							
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION							
GRAB  COMPOSI TE							
GRAB - COMPOSITE	SAMPLE DATA  COLOR   DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET						
·	COLOR	Clay (	0L) - 6	rown (	7.5 ×R 5/	1), black	
ANALYSI S:		Stre	ats, s	tiff, vo	others, dry		
					-		
TPH	- OBSERVA	TI ONS/NOT	ES:			_	
BTEX							
	_						
P10 - 0 ppm							
F10 - 0 PPM							
					•		



SURFACE SOIL

Environmental Corporation	<b>33</b>	SUBSURFACE SOIL SEDIMENT POND/LAGOON	
		OTUED	0.1.6
ROJECT NAME Ellington HUS SAMPLE NO. 02-5035-1	· <del></del>	PROJECT NUMB	ER
ROJECT NAME ETTING TOX	3 - 4	SOURCE S	oil boving 35
IUS SAMPLE NO	<i></i>		SITE SAMPLE DATA
SAMPLE METHOD:			COLOR/DESCRIPTION
California Sampler	SAMPLE	IIME	COLOTIO DE COLOTIO
DEPTH SAMPLED: / 6 - 18			
SAMPLE DATE & TIME: 8/24/93 913			
SAMPLED BY: BASILID			
SI GNATURE(S):			
TYPE OF SAMPLE			
LOW CONCENTRATION			
☐ HI GH CONCENTRATI ON  GRAB			
IT COMPOSITE		SA	MPLE DATA
GRAB - COMPOSITE	COLOR	DESCRIPTION: ( SAI	ND. CLAY, DRY, MOIST, WET, ETC.)
	00001	Silt (ML) -	brown (7.5 YR 5/4), MINOR
ANALYSIS:		gray, slist	hty clayey to sandy
ANAL 151 5:		wet	
TrH	OBSERVAT	I ONS/NOTES:	
BTEX			
PID- OPPM			
FID - Oppm			
			•



PROJECT NAME E	Ilington		PR(	DJECT NU	JMBER	IK	74		
NUS SAMPLE NO. O	2-MW07-	A-A	SOURCE	<u></u>	Mw-7	<b>)</b>			
TOTAL WELL DEPTH:					PURGE	DATA (	D. O.	<del></del>	
WELL CASING SIZE &	DEPTH:	VOLUME	PH	S.C.	TEMP. ( ° C)	JDS	COLOR &	TURBI DI TY	
2"- PUC	28.03 (TOC)	(	6.98	1130	24.1	1.19	Clear	19	
STATIC WATER LEVEL:	6.64 (TOL)						,		
ONE CASING VOLUME:	14.8 sal	2	6.95	1120	24.1	1.09	Clear	10	
START PURGE (HRS.):									
END PURGE (HRS.):	1316	3	6.98	1110	23,4	1.33	Clear	2	
TOTAL PURGE TIME (M	IN.): 34								
TOTAL AMOUNT PURGED	(GAL.): 45								
MONITOR READING:									
1 0 p	om								
PURGE METHOD: Sub	nersible Pump								
	flow backer	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		
	- line	<u> </u>			··-				
SAMPLE DATE & TIME:			SAMPLE DATA D.O.						
8/27/93	1330	PH	S. C.	TEMP. (°C)		TOS	COLOR &	TURBI DI TY	
SAMPLED BY:		1,00	112-	130 23.8		1.45	Clear	11	
BASILI	0	6.99	1130	<u> </u>	0	" "	CHAN		
SI GNATURE(S):	/	OBSERVATI ONS/NOTES:							
7-64	<i>L</i>	101.4	. 1	1			ing = 6	97'	
Paun		voar	er heve	el pri	or to s	ampi	inf = 6	· / /	
TYPE OF									
LOW CONCENTRA									
GRAB	MITON								
COMPOSI TE	N TE								
GRAB - COMPOS									
ANALYSI S:	PRESERVATI VE	ļ							
TPH		}							
TIL VOA									
TLL BNA		}							
TOS		1							
		1							
		1							
		1							
		1							
1	)	1							



PROJECT NAME E	Ilington		PR0	JECT NU	IMBER	IK	34	
NUS SAMPLE NO.	92-MW08-	A-4	SOURCE	ľ	nw-8			
TOTAL WELL DEPTH:						DATA (	2.10.	
WELL CASING SIZE &	DEPTH:	VOLUME	PH	S. C.	TEMP. (°C)			TURBI DI TY
2"- PUC	27.37 (TOC)	I	7.03	990	23,4	1.73	Clear	5
STATIC WATER LEVEL:				,				
ONE CASING VOLUME:		2	7.04	990	22.9	1.76	Clar	2
START PURGE (HRS.):								
END PURGE (HRS.):	1323	3	6.98	990	23,4	0.84	Char	5
TOTAL PURGE TIME (M	IN.): 35							
TOTAL AMOUNT PURGED	(GAL.): 45							
MONITOR READING:								
0 pr	om							
PURGE METHOD: Sub	nersible Pump							
SAMPLE METHOD: To	· Hon bailer							
DEPTH METHOD: G	- line							
SAMPLE DATE & TIME:		SAMPLE DATA						
8/27/93	1348	PH	S. C.	S.C. TEMP. (°C)		JBS	COLOR &	TURBI DI TY
SAMPLED BY:		ا ، ، ، ا	000	2//		194	Clean	42
BASILI	0	7,04	990	24.	4	117	CHAV	<u> </u>
SI GNATURE(S):		OBSERVAT	TI ONS/NOTE	S:				
2-Barry	lis	Wate	- level	prior	to sa	mp/i	is = -	7,71
TYPE OF	SAMPLE	1			,			
□LOW CONCENTRA □HIGH CONCENTR								
GRAB  COMPOSITE								
GRAB - COMPOS	SI TE							
ANALYSIS:	PRESERVATI VE	]						
TPH								
BTEX								
	·							
		}						
		]						
		]						



PROJECT NAME E	Ilington		PR(	DJECT NU	IMBER	IKG	34	
NUS SAMPLE NO. 02- 1V					MW-9			
TOTAL WELL DEPTH:	<del></del>	1			PURGE	DATA (	20	
WELL CASING SIZE &	DEPTH:	VOLUME	PH	S. C.	TEMP. ( ° C)			TURBI DI TY
	32.65 (704)		6.80	1170	24.3	,95	Clear	1
STATIC WATER LEVEL:								
ONE CASING VOLUME:	15.1 sel	2	6.83	1180	24.0	1,95	Clear	4
START PURGE (HRS.):	1057							
END PURGE (HRS.):	1124	3	6.84	1150	24.2	1.29	Clar	0
TOTAL PURGE TIME (M	IN.): 27							
TOTAL AMOUNT PURGED	(GAL.): 45							
MONITOR READING:								
Opi	om							
PURGE METHOD: Subi	nersible Pump							<del>-</del>
SAMPLE METHOD: To	flou bailer							
	- line				····			
SAMPLE DATE & TIME:				S	AMPLE DAT			
8/27/93	1505	PH	S. C.	TEM	P.(°C)	TDS	COLOR &	TURBI DI TY
SAMPLED BY:				26:	2	2.20	-/	1 -
BASILI	0	7.04		<u> </u>	<u>ی</u>	2.20	Clar	/3
SI GNATURE( S):		Ł	TI ONS/NOTE				-	
2-barr	lis	Wate	r level	prior	to s	amp	luy =	9.55
TYPE OF	SAMPLE				•			
LOW CONCENTRA	TION						_	
☐ HI GH CONCENTE  Margrab	HII UN				•			
☐ COMPOSI TE								-
☐ GRAB - COMPOS								
ANALYSIS:	PRESERVATI VE				•			
TPH		}						
BTEX		-						
		ł						
		1						
-		1			-			



PROJECT NAME E			PR	OJECT NU	JMBER	IK	74	
NUS SAMPLE NO	2-MW10-A	-A	SOURCE		mw-	10		
TOTAL WELL DEPTH:				<u> </u>	PURGE	DATA (	). O.	
WELL CASING SIZE &		VOLUME	PH	S. C.	TEMP. ( °C)			TURBI DI TY
2"- PUC	34.83 (TOL)	1	6.95	1290	22,7	.85	Clear	4
STATIC WATER LEVEL:	11.50 (700)							
ONE CASING VOLUME:	1511 50	2	6.97	1310	23,(	.92	Clear	5
START PURGE (HRS.):	1140							
END PURGE (HRS.):	1220	3	6.95	1300	23,2	.85	Clear	5
TOTAL PURGE TIME (								
TOTAL AMOUNT PURGE	) (GAL.): 45							
MONI TOR READING:								
	PM							
PURGE METHOD: Sub								
SAMPLE METHOD: T	eflou bailer							
	- line				<u>-</u>			
SAMPLE DATE & TIME:				S	AMPLE DATA	DE	),	
8/27/93	1534	PH	S. C.		P.(°C)	JBS	COLOR &	TURBI DI TY
SAMPLED BY:		7 0 6	10.0	2.2	0	1.50	Clar	14
BASILI	<i>D</i>	1.05	1290	23,	0	175 1	Clav	14
SI GNATURE( S):		OBSERVAT	TI ONS/NOTE	S:				
2-Barr	lis	Wate	er Levi	el pria	r to s	ampl	my = 1.	1,56
TYPE OF	SAMPLE				•			
□LOW CONCENTRA □HIGH CONCENTRA		collec	et du	plicate	samy	le		
GRAB				_				
☐ COMPOSI TE ☐ GRAB - COMPOS			01-	FDIC	) - A-A			
ANALYSIS:	PRESERVATI VE							
TPH								
TCL VOA								
TCC BNA								
TOS								



PROJECT NAME =	lling ton		PR	DJECT NU	IMBER	IK	94	
NUS SAMPLE NO		A	SOURCE		MW-1			
TOTAL WELL DEPTH:	<del></del>		<del></del>		PURGE	DATA (	2.0.	<del> </del>
WELL CASING SIZE &	DEPTH:	VOLUME	PH	S.C.	TEMP. ( °C)			TURBI DI TY
2"- PUC	31.65 (700)	1	6.83	1390	22.8	2.79	light tan	297
STATIC WATER LEVEL:								
ONE CASING VOLUME:	14.1	2	4.89	13/0	22.9	2.24	Clear	27
START PURGE (HRS.):								
END PURGE (HRS.):	12 10	3	4.76	1410	22.5	2.78	Clear	34
TOTAL PURGE TIME (M	IN.): 65							
TOTAL AMOUNT PURGED	(GAL.): 45							
MONI TOR READING:								
1 0 p	pm	· · · · · · · · · · · · · · · · · · ·						
PURGE METHOD: Sub	mersible Pump							
SAMPLE METHOD: To	flow backer							
DEPTH METHOD: E	-line							
SAMPLE DATE & TIME:	4			S	AMPLE DATA	$A P_{i}$	0.	
8/27/93	1600	PH	S.C.	TEM	P.(°C)	705	COLOR &	TURBI DI TY
SAMPLED BY:		101	1400	22.	9	204	Tan	277
BASILI	<i>D</i>	4.81				اعم	lan	<u> </u>
SI GNATURE( S):		1	TI ONS/NOTE					
2-bass	lis	W. L	·05+ 7	tflou	bailer	dou	un. We	u,
TYPE OF	SAMPLE •	1						
LOW CONCENTRA	TION							
☐ HIGH CONCENTR	RATION							
COMPOSI TE		·						
☐ GRAB - COMPOS	SITE							
ANALYSIS:	PRESERVATI VE							
TPH								
TCL VOA		1						
TCL BNA								
TOS		]						



PROJECT NAME			PR	OJECT N	JMBER	IK	94	
NUS SAMPLE NO.	02-mw12-	A-A	SOURCE		MW-1:	2		
TOTAL WELL DEPTH:				-	PURGE	DATA (	2.0	
WELL CASING SIZE &	DEPTH:	VOLUME	РН	S. C.	TEMP. ( °C)			TURBI DI TY
2"- PUC	27.18 (TOC)	l	6.92	1060	21.7	670	Clear	62
STATIC WATER LEVEL:	77 70 ( 100)							
ONE CASING VOLUME:	14,9	2	6.88	924	21.7	.73	tan	535
START PURGE (HRS.):								
END PURGE (HRS.):	1028	3	4.88	924	21.7	.72	Cleur	66
TOTAL PURGE TIME (								
TOTAL AMOUNT PURGE	D (GAL.): 55	3.5	6.88	922	21.6	•73	Clear	21
MONITOR READING:								
	pm							
PURGE METHOD: Sub								
	effon backer							·
DEPTH METHOD: © SAMPLE DATE & TIME:	- line				-			
8/27/93	1428	<b>5</b> 11 1			AMPLE DATA			
SAMPLED BY:	/120	PH	S. C.	TEM	P.(°C)	TDS	COLOR &	TURBI DI TY
BASILI	n	7.04	1050	25,	3	3.54	Clear	48
SI GNATURE( S):		OBSERVAT	I ONS/NOTE	S:	<u> 1</u>			
2-Bair	lis				ior to	Sam	plins =	7,51
TYPE OF	i							
☐ LOW CONCENTRA ☐ HI GH CONCENTR ☐ GRAB ☐ COMPOSI TE	RATI ON							
☐ GRAB - COMPOS								
ANALYSI S:	PRESERVATI VE							i
- N 14								I
TPH								
BTEX								



PROJECT NAME	1/ington		PR(	OJECT NI	UMBER	IK	74	
NUS SAMPLE NO	D2-MW13-1	A-A	SOURCE	r	4W-13	3		
TOTAL WELL DEPTH:		T			PURGE	DATA	D. D.	
WELL CASING SIZE &		VOLUME	PH	S.C.	TEMP. ( ° C)			& TURBIDITY
2"- PUC	27.64 (TOL)	1_	6.91	934	21.7	179	1,54+	
STATIC WATER LEVEL:				1			†	
ONE CASING VOLUME:	14.1	7	6.90	939	21.7	.44	II	156
START PURGE (HRS.):	1015							
END PURGE (HRS.):	1038	3	6.92	934	21.6	,89	17	150
TOTAL PURGE TIME (N								
TOTAL AMOUNT PURGE	) (GAL.): 43							
MONI TOR READING:								,
	pm							
PURGE METHOD: Sub								-
SAMPLE METHOD: T	eflou bailer							
	- line							
SAMPLE DATE & TIME:				S	SAMPLE DATA	A Dic	·	
8/27/93	1437	PH	S.C.		P. ( * C)	JBS		& TURBIDITY
SAMPLED BY:				2.3			71.	100
BASILI	0	7,03	1060		,5	1,74	light to	an 109
SI GNATURE( S):		OBSERVAT	TI ONS/NOTE:	S:			_	
2-Barr	lis	Wate	er leve	( pv.	or to	sam	oliuc:	· 7.80
TYPE OF	SAMPLE	ĺ		•		,	Γ σ	
LOW CONCENTRA	1	l						
☐ HIGH CONCENTR								-
GRAB  COMPOSITE		l			•			
GRAB - COMPOS	SITE	İ						-
ANALYSI S:	PRESERVATIVE							
		İ			f			
TPH		İ			-			
BTEX		İ						
		l						
		ļ						
		i						:
		ļ						
		ļ						
		l						
		i			•			



PROJECT NAME E	lling ton		PRO	JECT NU	IMBER	IKG	74	
NUS SAMPLE NO	2-MW14-4	- A	SOURCE	N	1W-14			
TOTAL WELL DEPTH:					PURGE	DATA P	0,00	
WELL CASING SIZE &	DEPTH:	VOLUME	PH	S. C.	TEMP. ( °C)	JBS	COLOR &	TURBI DI TY
2"- PUC	27.70 (Toc)	1	6.81	1260	21.9	1.36	Brown	999
STATIC WATER LEVEL:	8.28 (Tec)							
ONE CASING VOLUME:	14.6	2	6.80	1250	21.9	1.29	Brown	999
START PURGE (HRS.):	910							
END PURGE (HRS.):	1004	3	6.80	1250	21.9	1,14	Brown	957
TOTAL PURGE TIME (M	IN.): 54							
TOTAL AMOUNT PURGED	(GAL.): 45							
MONITOR READING:								
O Pr	m							
PURGE METHOD: Subi								
SAMPLE METHOD: To	flow bailer							
DEPTH METHOD: E	-line							
SAMPLE DATE & TIME:				S	AMPLE DATA	0,0	),	
8/27/93	1408	PH	S. C.	TEM	P.(°C)	ZBS.	COLOR &	TURBI DI TY
SAMPLED BY:			15.5			1.63	Clear	121
BASILI	D	6.95	1230	24	. <u>2</u>	,,,,,	CHAr	151
SI GNATURE( S):		OBSERVAT	TI ONS/NOTE	S:				
2-Bass	lis	Wate	er leur	l pri	or h	samp	ling =	9.25
TYPE OF	SAMPLE			•	•			
LOW CONCENTRA	TION							
☐ HI GH CONCENTR ☐ GRAB	HIIUN							
☐ COMPOSI TE								
GRAB - COMPOS	TTE							
ANALYSIS:	PRESERVATI VE							
		]						
TPH								
BTEX								
		}						
		1						
		1						
		1.						



PROJECT NAME Elling fon		PR0	DJECT NU	IMBER	IKG	34	
NUS SAMPLE NO. 02- MW15- 4-	4	SOURCE		4W-13	7		
TOTAL WELL DEPTH:	1			PURGE	DATA D	, D,	
WELL CASING SIZE & DEPTH:	VOLUME	PH	S. C.	TEMP. ( °C)			TURBI DI TY
2"- PUC 26.38 (TUC)	1	6.69	1070	22.2	1,08	Clear	103
STATIC WATER LEVEL: 7.82 (70)							
ONE CASING VOLUME: /4.7	2	4.43	1030	21.8	1.21	Clear	15
START PURGE (HRS.): 9/5							
END PURGE (HRS.): 944	3	4.95	1030	21.7	1.40	Clear	<u>33</u>
TOTAL PURGE TIME (MIN.): 3 /						<u> </u>	
TOTAL AMOUNT PURGED (GAL.): 48							
MONITOR READING:							
O ppm							
PURGE METHOD: Submersible Pump							
SAMPLE METHOD: Teflow backer		<u> </u>	<u> </u>				
DEPTH METHOD: E-lina				<del> </del>			
SAMPLE DATE & TIME:			S	AMPLE DAT	A		
8/27/93 14/5	PH	S. C.	TEM	P.(°C)	TDS	COLOR &	TURBI DI TY
SAMPLED BY:		1030	24	5	2.84	dece	40
BASILIO	7.05					CHAV	90
SI GNATURE(S):	i	TI ONS/NOTE					
1 2 Baile	l.,.	1	/	ior to			785
Many	Wate	r lev	al po	100 10	sar	upling.	; 1,00
TYPE OF SAMPLE							
LOW CONCENTRATION							
☐ HIGH CONCENTRATION  GRAB							
☐ COMPOSI TE							
☐ GRAB - COMPOSITE							
ANALYSI S: PRESERVATI VE	<u> </u>						
				•			
TPH	]						
BTEX							
	]						
	1						
	1						
	1						
	_						
	<u> </u>						
	1						

Appendix D

Monitor Well Development Forms



DATE 8/16/93

		J0	B NUMBER 14	94 LOCATION	SITE NUMBER	
WELL NUMBE	MW-			SIH, SIH,	nterval: , clay , silty sand	
WELL CASIN	SIZE AND T	YPE: PUC			COMMENTS	
WELL DEPTH		12.08	706	Before development	ut - 28:05 Toc ment - 31:65 Toc	i
STATIC WAT		2.08	Toc			
ONE CASING	VOLUME:	3,13	sal	31.65-12.08 =	19,57 × ,16 = 3,13	
PURGE METH	nn•	mersible		Pump vate 3	1.3 Sym	
START PURG	Ε:	140				
END PURGE:	14	105		Final Water -	ilvar, non-turbil,	
TOTAL AMOU	NT PURGED: ((	GALLONS )	70 sal		3 COEFFER	
TOTAL AMOUI		WELL VOLUMES) 5 6	(22)			
VOLUME #	TEMPERATURE	рН	SPECIFIC CONDUCTIVITY	TUNBIOITY	20 משטו פצום	
17 sal	23.3	6.98	1290	286	1.76	
32 sel	24.9	7,30	1410	690	1,39	
43 sal	24.1	7,15	1330	/03	1,75	
55 sd	24.(	6.94	(378	55	0.96	
60 sal	23,8	6.87	1390	3 (	0,90	
65 sel	23.7	6.85	1390	30	0,93	
70 sel	23.8	6.84	1400	3 3	0,93	



DATE 8/20/93

		Jo	B NUMBER 14	94 LOCATION_	SITE NUMBER
WELL NUMBE	ir: MW	-12		LITHOLOGY OF SCREENED IN	
WELL CASIN	IG SIZE AND T	YPE:		JIIF , 30	,
WELL DEPTH			<del></del>	Before development	COMMENTS 24.66 TOC
STATIC WAT	ER LEYEL:			Alter developmen	it - 27,18 Toc.
	·	7.28	Toc		
ONE CASING	3 VULUME:	118 5	d .	27,18 - 7.28 =	19.9 x 1/6 = 3.18
PURGE METH Sign	00: c / Subi	,		Pump rate &	1.3 gpm
START PURG	e: <u>/3/</u>	7	•		
END PURGE:		42	•		clear, non turbid,
TOTAL AMOU	NT PURGED: (	CALL ONS 1	90		no sediment
TOTAL AMOU	NT PURGED: ()				
1 2	3 4	5 6	(28)		
VOLUME #	TEMPERATURE	рН	SPECIFIC CONDUCTIVITY	Tunsioity (NTU)	DISSOLUED D2
60 Sal	23.9	NA	905	241	0.57
70 sal	23,5	N4	903	66	2.25
80 sal	23.2	NA	1030	34	0.76
905al	22-7	NA	902	23	0.40
	-				
ļ					



DATE 8/24/93

CLI ENT <u>E</u>	llinston	JO	B NUMBER 1/1	44 LOCATION_	SITE NUMBER
WELL NUMBE				LITHOLOGY OF SCREENE	
WELL CASIN	MW-13	<u>3</u>		Saud an	d Selt
NELL CASIN	G SIZE AND T	( )			COMMENTS
WELL DEPTH	:			Before develop	ment - 22.35 TOC
STATIC WAT	ED LEVEL.			After develo	yment - 27.64 Toc
STATIC NAT		38 T	00		
ONE CASING	VOLUME:			27.64 - 7.38	= 20.26 X.16 = 3.24
PURGE METH		.24 5	<u>વ્ય</u>		
Sugar	, / Su	bmersibl	Vamo	Pump vate	2 1,3 5pm
START PURG	Ε:		2 / 00/14		
	/ 32	36			
END PURGE:	15	05		Final water -	Clear, non turbil, no sediment
TOTAL AMOU	NT PURGED: ((	CALL ONS 1			
		8			
TOTAL ANOU! 1 2		NELL VOLUMES:	(26)	Tunsipity	01550/VERO 02
		· · · · · · · · · · · · · · · · · · ·		(N7U)	
VOLUME #	TEMPERATURE	рН	SPECIFIC CONDUCTIVITY		
10.1	22//	7.4	10 +0	3.6.14	
60 gal	23,4	7.28	1050	294	0.82
65 gal	22.8	7.15	1100	167	0.87
•	22 /	_ ,,,			
70 sal	22.6	7,14	970	84	0,80
75 sal	22.8	7.11	1030	44	0.64
-	2.2 Ø				
80 sal	22.8	7,10	1050	30	0.63
85 Sal	22.7	7.12	1040	28	0.65
- J					
				<u> </u>	



DATE 8/24/93

CLIENT Ellington JOB NUMBER 1/794 LOCATION_ LITHOLOGY OF SCREENED INTERVAL: WELL NUMBER: MW-14 Silt, Silty clay WELL CASING SIZE AND TYPE: 2" PUC Before development -22.96 TOC After development -27.70 STATIC WATER LEVEL: 8,25 TOCONE CASING VOLUME: 27.70 - 8.25 = 19.45 X .16 = 3,11 3, 11 gallons Pump vate 2 1,3 9pm Surging / Submersible Pump 1026 END PURGE: clear, very st turbed FINAL WATER -/ 2 2 5
TOTAL AMOUNT PURGED: (GALLONS) trace sediment / 6 D
TOTAL AMOUNT PURGED: (WELL YOLUMES) TURBIDITY DISSOLUED OA SPECIFIC VGLUME # TEMPERATURE CONDUCTIVITY (NTU) 60 gal 22.9 7,12 1220 999 2.35 70 50 | 22.8 7.04 1230 736 2.55 80 gal | 22.6 6.98 1220 746 2,19 90 sal | 22.8 6.99 1230 375 2.18 100 sal 22.9 6.97 1210 329 2.03 110 sal 22.8 6.94 1220 530 2,13 12050 23.0 6,87 1210 2.16 325 130 gal 22.8 6.87 1220 245 2.24 140 sal 23.1 6.89 149 1210 2.18 150 50 22.8 6.91 1210 240 2,50 160 gal 23.1 6.89 1190 118 2.68



DATE 8/25/93

CLI ENT <u>E</u>	llington	JO	B NUMBER 1K9	44 LOCATION SITE NUMBER	
WELL NUMBE	r: MW-			LITHOUGH OF SCREENED INTERVAL:	-
WELL CASIN				Sand and Silt	
	SIZE AND T	ÜC		COMMENTS	
WELL DEPTH	:			Before development - 24.27 TOC After development - 26.38 TOC	
STATIC WAT	ER LEVEL:	<del></del>		After development - 26.38 TOC	
		7,89			
ONE CASING	VOLUME:	,96		26.38 - 7.89 = 18.49 × .16 = 2.96	
PURGE METH	OD: , ,			Pump vate = 1.3 spm	
Surg	c / Sul	mersible	Pump		
START PURG	E: &	20			
END PURGE:				Final water - clear, non turbid,	
		56		No Sediment	
I IDIAL AMOU	NT PURGED: (		50		
1		NELL VOLUMES	1	TURBIPITY DISSOLUED D2	
1 2	3 4	5 6	(34)	TURBIPITY DISSOLUCIO DZ (NTU)	
VOLUME #	TEMPERATURE	рН	SPECIFIC CONDUCTIVITY		
7- 1	2.5.0			48	
70 sal	よよいて	7,30	908	2,43	
80 cal	23.(	7.17	1000	255 1,32	
90 sel			1,000		
ı		7.16	1000	50 1.40	
100 sel	23.1	7.16	1000	38 1.60	
					- 1

Appendix E

Chain of Custody Forms

# CHAIN-OF-CUSTODY RECORD Analytical Request

Client B + M Choppenmente	/e/	Report To: Leda Stell 2	Pace Client No.
Address		Bill To:	Pace Project Manager
		P.O. # / Billing Reference	Pace Project No.
Phone		Project Name / No. 6-17	*Requested Due Date:
Sampled By (PRINT):		PRESERVATIVES ANALYSES /	
Larry Basilio		Φ	
Sampler Signature Sampled	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	OON.	
C Chara		10 .C	
II EM SAMPLE DESCRIPTION NO.	TIME MATRIX PACEN	ΛU ΣΗ	KEMAKKS
1 B2-5820-A-A	100S S		
2 BJ-5B20-B-A	1110 5	XXX	
3 N2 - SB20 - C-A	5 04//	×× -	
4 87 - TBD1 - A.A	3	× ×	
١.	73	Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Section 1997 And Sectio	
1001		学者を発展する。 ・	
6 02 - 16801 - A-A	<u> </u>	く · · · · · · · · · · · · · · · · · · ·	
7 02- F001- A-4	M SESI	ス マ マ	
8 02- FB02- A-A	1545 W	4	
COOLER NOS. BAILERS	SHIPMENT METHOD OUT / DATE   RETURNE	METHOD ITEM RELINQUISHED BY / AFFILIATION ACCEPTED BY / AFFILIATION RETURNED / DATE NUMBER	/ AFFILIATION DATE TIME
			Don- 1 PMG 8/5 1645
Additional Comments			
		H245825-843	

SEE REVERSE SIDE FOR INSTRUCTIONS

# CHAIN-OF-CUSTODY RECORD Analytical Request

REMARKS Pace Project Manager 'Requested Due Date: Pace Project No. Pace Client No. XXXX Report To: LIN & Staufile 戸川がかり P.O. # / Billing Reference  $/\mathcal{K}$  9  $\mathcal{G}$ ANALYSES REQUEST SANTER SUBST Project Name / No. **PRESERVATIVES** AOV €ОИН OS²H NAPRESERVED NO. OF CONTAINERS PACE NO. 90 8/1/83 B+R Chromman Date Sampled A-2-51816-60 02- FD21-8-A A-A-7105-60 A-8-516-B-60 02-5B21-B-A 5021- C- A 02-5821-A-A 1 4117 Sampled By (PRINT): Sampler Signature Address Client Phone က ß ဖ a

Spr. 46 (John 1988 8/15 1/45) 

ACCEPTED BY / AFFILIATION

SHIPN OUT / DATE

COOLER NOS

Additional Comments

H 245 825-843

SEE REVERSE SIDE FOR INSTRUCTIONS

128249

CHAIN-OF-CUSTODY RECORD Analytical Request

	<b>"</b>			// "	
Client (5+1/ CNUSUMMENT	£		Report To: Liuch Steating	a Stealthy	Pace Client No.
Address			Bill To:	Buć	Pace Project Manager
			P.O. # / Billing Reference	ence $\mathcal{W}$ 44	Pace Project No.
Phone			Project Name / No.	Ellington	*Requested Due Date:
Sampled By (PRINT):			PRESERVATIVES	ANALYSES	
Lavy Dasili				In the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the	
Sampler Signature	\ \ '	1,	SEEV	an Ara	
Male	<b>(</b> )		O [†]		
ITEM SAMPLE DESCRIPTION NO.	TIME MATRIX	PACE NO.			/ REMARKS
1 BJ-5818-A-A	146 5			××	
2 02-5018-B-A	1502 S			× × ×	
3 02-5618-6-4	1520 5			メス	
	858 5				-
4	5 726				:
	945 5				
	5 246		THE SAME WAS SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED AND THE SELECTED A		
<del>.</del> .	)				
COOLER NOS. BAILERS	SHIPMENT METHOD OUT / DATE	IT METHOD RETURNED / D	ITEM RELINQUISHED	RELINQUISHED BY / AFFILIATION ACCEPTEF BY	ACCEPTED BY / ZFFILIATION DATE TIME
				1 one Will alk	Mec 8663 1800
Additional Comments			8/6/93	\$ (860 mm / m/m)	
			A A Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Ma	1246033-044	

# CHAIN-OF-CUSTODY RECORD Analytical Request

Healthy Pace Client No.	Pace Project Manager	1494 Pace Project No.	Flight for **Requested Due Date:	ANALYSES / / / / / /	<u> </u>	/ / / / / / / / / / / / / / / / / / /	1/2/0/0/2/	/ / / / / / REMARKS	とと	シシ	<u></u>	<b>×</b>	×× ×	Mold Po ust			FILIATION ACCEPTED BY / AFFILIATION DATE TIME	July 1900 846 2 11/13 1900	
Report To: Linda Steakley	Bill To: おんび	P.O. # / Billing Reference	Project Name / No.	PRESERVATIVES	Œ	СОИТ	). OF SO₄ SO4	H ^S 8				7					TELINGUISHED BY / AFFILIATION NUMBER	Male Be	1800
ental					•	0///		TIME MATRIX PACE NO	2 1011	1122 5	157 5	3	Nas W	No15 W	1340 12	1605/20	SHIPMENT METHOD OUT / DATE RETURNED		
B+R Chrismmental					· 15as./1.	Date Sampled		SAMPLE DESCRIPTION	01-5817-4-4	O2- SB17-B-A	D2-5017-C-A	02- TB03-A-A	01- KB02- A-A	51-95	50-17	SB -18	BAILERS		
Client $S + Y$	Address		Phone	Sampled By (PRINT):	dark /	Sampler Signature		NO.	1 01-58	2 O2 SB	3 20 5	4 02- TB	5 01- KB	9 8 8	7 50	8 58	COOLER NOS.		Additional Comments

SEE REVERSE SIDE FOR INSTRUCTIONS

B+K Khuwamenta

Address

Client

575 4750 Sampled By (PRINT):

Date Sampled

Sampler Signature

**PRESERVATIVES** 

Ellinster Project Name / No.

P.O. # / Billing Reference

Pace Project No.

'Requested Due Date:

Pace Project Manager

Pace Client No.

Report To: Mach Secus

CHAIN-OF-CUSTODY RECORD Analytical Request

128121

ANALYSES REQUEST AOV ⁶ОИН ⁷OS²H JUPRESERVED OF CONTAINERS PACE NO.

3

525

02-5B19-C-A

02-5819-B-A

02-5019-A-A

02-5B23-A-A

8

OL-5823-C-A

02-5823-8-4

S

02-FD23-C-A

02-T804-A

Additional Comments

1435

REMARKS

SHIPME OUT / DATE

SICI 11/8-DAY/ENDERS

というでは、10mmに対象を表現した。これでは、10mmに対象を表現した。

80C-C600142H

SEE REVERSE SIDE FOR INSTRUCTIONS

CHAIN-OF-CUSTODY RECORD Analytical Request

Pace Project Manager

Pace Client No.

Report To: May Steller

BRE

P.O. # / Billing Reference

Project Name / No.

Pace Project No.

Requested Due Date:



B+R Envisament

Address

Client

675 4750

Phone

, Date Sampled BAS/L10 Sampled By (PRINT): Sampler Signature

8/11/8

UNPRESERVED OF CONTAINERS TIME MATRIX PACE NO.

ANALYSES REQUEST **PRESERVATIVES** AO_V ^εON⊢ [†]OS²H

REMARKS

1600 1 Ø 959 1635 **SK** 32 30% 02-5B22-C-A 02-11803-A-A U2-5622-8-A 62-5B22-A-A SAMPLE DESCRIPTION 5622 SB23 വ ဖ

Hold. Bouct

ANAXOL

116

ACCEPTED BY / AFFILIATION RELINQUISHED BY / AFFILIATION 

SHIPMENT METHOD

ATE | RETURNED / DATE

OUT / DATE

COOLER NOS.

Additional Comments

on Holdens (PACE 3/11 2)

A CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONT

424(0097-708

ORIGINAL



## CHAIN-OF-CUSTODY RECORD Analytical Request REMARKS Pace Project Manager *Requested Due Date: Pace Project No. Pace Client No. XX から ソ/ Project Name / No. Elling for Report To: Mark Speacer ANALYSES REQUEST P.O. # / Billing Reference TO ACMINICAL MARCHEST BAE **PRESERVATIVES** AOV Bill To: HNO OS²H NAPRESERVED OF CONTAINERS PACE NO. 7 3 273 ):08 | Ze; TIME MATRIX 10605 50;1 150/180 Client Bour & Rust Environmen Date Sampled 475C SAMPLE DESCRIPTION A-A-11482-60 02-58 MW11-B-A 02-5BMU11 - C-A 62-RB64-A-A 575 12-TB05-A O. G. 6504 Sampled By (PRINT): 603) Sampler Signature Address Phone N

TIME	(400		-		
DATE	8-12-73 (600				
ACCEPTED BY / AFFILIATION	Just 20 Pec	というというというというというというというというというというというというというと			クレートルから
RELINQUISHED BY / AFFILIATION					
RELINQUISHED					
ITEM NUMBER	<b>78</b>			No.	
SHIPMENT METHOD OUT / DATE RETURNED / DATE					
SHIPMEN DATE					
OUT/I					
BAILERS					

Additional Comments

COOLER NOS.

ACONTRACTOR ACTION OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE

ဖ

SEE REVERSE SIDE FOR INSTRUCTIONS

CHAIN-OF-CUSTODY RECORD Analytical Request

	0	7
	E	OUALITY
	-	Ä
	⋖	
W	Œ	0 F
	0	
	ے	ž
	æ	æ
W	0	ASSURANCE
	ں	¥
	z	THE
	_	

_
mertal
h Divon
1.1
7
7

2- Udan=19KE \$/14 1100 REMARKS Pace Project Manager *Requested Due Date: Pace Project No. Pace Client No. ACCEPTED BY / AFFILIATION Report To: Mark Spence ANALYSES REQUEST P.O. # / Billing Reference Project Name / No. **PRESERVATIVES** AOV OS^zH **ONPRESERVED** OF CONTAINERS 8/13/93 OUT / DATE 808 1039 02-5824-8-A 122 SB2-A-A 02-5025-C-A 02-5BU-B-A 02-5825-B-A 02-5B24-A-A 02-SB28-4-A Additional Comments Sampled By (PRINT): Sampler Signature Address Client ω

CHAIN-OF-CUSTODY RECORD Analytical Request

Pace Client No.  Pace Project Manager  Pace Project No.  *Requested Due Date:	KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Survey Colons/PACE 8/14 1130
Report To: Mark Spencer Bill To: BRC P.O. #/Billing Reference /H94 Project Name/No. Ellingston	NO. OF CONTRINERS HEQUEST HOS HOS HOS HOS HOS TO A MALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYSES  ANALYS	ED/OATE NUMBER RELINQUISHED BY/AFFILIATION ACCEPTED BY/AFFILIATION  RELINQUISHED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION  ACCEPTED BY/AFFILIATION
Client $3 + 16 - 100$ Warman Address Address Phone $575-4750$	Sampled By (PRINT):  Sampler Signature,  Sampler Signature,  Date Sampled  P / 13/9 3  Time MATRIX PACE NO.  1	COOLER NOS.  BAILERS OUT / DATE   RETURNED Additional Comments

CHAIN OF CUSTODY

Environmental Corporation		MAN								_			, , ,	INTUICE TO:	
		Laure Control	707		COMPANY BOF	. 6				2	COMP ANY	۲,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	PROJECT NUMBER	S Y	ER 4		ADDRESS BOX	45	10			AG.	ADDRESS		,		
16360 PARK 10 PLACE DRIVE. SUITE 300	PMS	CODE			CITY Pars Par			STATE	21P ファメイク	1	CITY		STATE	41Z 3	
HUUSIUN, IEAAS 11064 [713] 492-1688				<b>Y</b>	Mark		Spenier	PHONE #	٠.		ATT.		4	PHONE #	
		-			-	_					REQUESTED		ANALYSIS		
SAMPLE NUMBER DATE $(43)$	DATE TIME	A NO X TO N F A	0 K 4 B	SAMPLE SOURCE & DESCRIPTION	Z 🗆 🗷 co u cc	ON-A-NEGO	hal	1 3 7 X	100 751 100 751					REMARKS	S
1/8 4-4-7 28.2-0		<b>3</b> -	¥	C'Z SUBSUFACE	Soil	× /	×						_	Note: Please	2
" A-8-1283-60		1602	マ	15/6/	7	X	X						ŭ	anclyse sample	Jou
- 5827		<u>.</u>	×	7 22-26		<u>x</u>	×						0	02-5827-B-A	B-A
													0	On 24 her	
													77	Turktound	
							-								
						+	$\overline{\parallel}$	<u></u>							
							_			+		1			
						-   -									
\	n '	RECE	1VE0 B	RECEIVED BY: SIGN	RELI	RELINQUISHED BY: SIGN	BY: S	S.		DATE/TIME		RECEIVED BY:	SIGN		
RECINQUISHED BY: SIGN	DATE/TIME	E HEPHYED		OR LABORATORY BY: SIGN DA	DATE/TIME SAMPLE CONDITION	LE COND	NO I	=	0	0	700				
			3	W 40 8/1/13	100			口	174 1515-587	7	50				

CHAIN OF CUSTODY

			Z	5												
M NOTGINI INTO WAY								REPORT	JRT T	10:				IN	INVOICE TO:	
Environmental Corporation		PROJECT N	3,7	ton		COMPANY	BAE					COMPANY	<b>&gt;</b> -	So. 4	h	
		PROJECT NUMBER	E V	36		ADDRESS	0	Box	95	1		I	S			
16360 PARK 10 PLACE DRIVE. SUITE 300	00	PMS CODE	<u></u>			CITY LUS TO	Ę		STATE	1	אגלר	I			STATE	412
(713) 492-1888	•					MI Mark	.k S	Dan 10-	١.	PHONE # 57	1964 565	ATT.			PHONE #	
			$\vdash$	<u> </u>								REO	REQUESTED	ANALYSIS	SIS	
SAMPLE NUMBER	DATE (93)	11ME	OOMEON-FW	0 K 4 B	SAMPLE SOURCE & DESCRIPTION	w <u>s</u>	NDZEGE NDZEGE		TI O	1333	407 77					REMARKS
102-5828-A-A	2//8	7280	1	<del> </del> ×	1-3 SUBSURFACE	Suc	~	×	V			$\downarrow$		_		
SR28-13-A	i	7160		7			`	×	×							
3 C. 2 - S. B.2 8- C-A	7	0543		ース	9-21'		>	K	¥							
				<u> </u>	(-3		<u> </u>	×	×							
8-8-8628-608				≺	7-9'		1	X	×							
602-3B29-C-A	->			7	17:-19:		4	X	×	$\frac{1}{1}$						
امہ یا		ļ		×	WANK		6	_	×							
2	2+	$\mathcal{I}$		+	11		_			_						
6				+-												
2 =				+-												
12							-									
13				+-												
51				-			-									
RELINDUTSHED BY: SIGN	ت ا	OATE/TIME RA	RACE IVED BY		Noisi		REL INOL	SHED E	RELINQUISHED BY: SIGN		DA	E/TIME R	DATE/TIME RECEIVED BY:	Y: SIGN		
HELINOUISHED BY: SIGN		DATE/TIME H	SE 1YED	0 5 699	A A MAN BY IS STON	DATE/TIME SAMPLE CONDITION	SAMPLE	CONDIT		101	0 6	0 0				
		**	3	?}		200			-	17	1312-584	1286				
		•	>		<u>-</u>											



CHAIN-OF-CUSTODY RECORD	Analytical Request

Client B&R Excirctmen Kl		Report To:	Pace Client No.  Pace Project Manager  Pace Project No.
Phone 575 4753		Project Name / No. Ellin, to4	*Requested Due Date:
Sampled By (PRINT):			
Sampler Signature Date Sampled		SERVEI	
ITEM SAMPLE DESCRIPTION NO.	TIME MATRIX PACENO.		/// REMARKS
1 02 - RBOG-A-A	1333 WATE	S A Sharmon for a real state and a charge as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as they are seen as the seen as the seen as the seen as they are seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as	
2			
დ <b>4</b>			
Ľ.		SHEWARD BOOK STREET OF ACCOUNTS OF SHEWARD	
<b>.</b>			
ACONT TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN TO THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE TAKEN THE			
COOLER NOS. BAILERS	SHIPMENT METHOD OUT / DATE RETURNED / DATE	ITEM RELINQUISHED BY / AFFILIATION WINDER WATER TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO	ACCEPTED BY / AFFILIATION DATE TIME
Additional Comments			× .

# Instructions for completing Chain of Custody (COC)

- Complete all Client Information at top of sheet: name, address, phone, contact (person to whom report will be sent and contact can be made if questions arise). billing information if different rom client, PO#, Project Name and/or Project Number as it will appear on the report.
- PACE Client No., Project Manager and Project No. will be completed by PACE.

 $\mathbf{c}$ 

٠-,

uC.

- A separate COC must be filled out for each day of sample collection.
- Sampler should print their name in the space provided and sign their name followed by the date of the sampling event.
- Complete Sample Description as it will appear on the laboratory report; include time of sampling, sample matrix, no. of containers and container types.
- Analyses Requested: Complete analyses on the lines provided and place a check in the column for the samples requiring the analysis. It may be necessary to use the space provided for additional comments or include attachments for extended lists of parameters. တ်
- Indicate method of shipment used for return of samples and date sent. 7.
- Submission of samples to laboratory: Indicate Item Number of those samples being transferred; sign relinquished by, and include your affiliation. ထ

# *IMPORTANT NOTE:

Standard Turnaround Time is 3-4 weeks. If this does not satisfy your requirements, arrangements must be made prior to samples being submitted to the laboratory. Contact your project manager. Special Project Requirements such as Low Level Detection Limits or level of QC reported must be indicated on the chain of custody. (Use Additional Comments Section.)

ريم

CHAIN OF CUSTODY

	_	CHAIN OF		_				
NOTATION IN INC.							REPORT TO:	- 1
Compensation (Separation)		PROJECT N.	AME	40,1		CONPANY E	Emmones tal	CONTANY
		PROJECT NUMBER	120 120			1	חבאת	ADDRESS
16360 PARK 10 PLACE DRIVE. SUITE		PMS CODE	드			CITY	SIAIE ZIP	CITY STATE ZIP
HDUSTON, TEXAS 77084 (713) 492-1888						AII. Spencer	PHONE # 4761	ATT. PHONE #
						·		REQUESTED ANALYSIS
			ပဝΣ	٢		Z D		
SAMPLE NUMBER	DATE (%)	TIME	- 0 v -	∞ ∢ @	SAMPLE SOURCE & DESCRIPTION	<b>≭</b> ∞ ພ (		
	<u> </u>	·	- ⊢ ш				12/20/21	REMARKS
A-A- (3 A2-CO	61/8	833		×	0'-1' SUBSUNPACE	1 705	メメ	
03 - 5R 32 - B-A	61/8	248		¥	,0/-,8	~	* *	
01-5831-6-4	8/18	5262		¥	16-18	7	よく	
	8/13	1001		V	٥٠٦١	~	イン	
01-5833-B-A	8/19	1034		γ	12/14	~	7 7	
- 5833-	3/19	1042		¥	10,-18,	~	マイ	
1	8/19	0908		×	10,-18,		アア	
	8/18	1		×	water	76	×	
·				_				
			1					
13								
14								
RELIDENCE SERVICE		SETTING IN	ECELI	03, 03,	TTME RECEIVED BY: SIGN	REL INQUIS	RELINQUISHED BY: SIGN D	DATE/TIME RECEIVED BY: SIGN
HEL INDUISHED BY: SIGN		ATE/TIME H	HECE IVED F	veo F	OR LABORATORY BY: SIGN	DATE/TIME SAMPLE CONDITION	El-27974	15-82
		7	3	þ				

CHAIN-OF-CUSTODY RECORD Analytical Request



Client Bot R Environment & ( Address D.C. Bur 4574  Husten +* 17210  Phone 575 476(		Bill To: Sq. m.c.  P.O. # / Billing Reference  Project Name / No. £ / (; h.)  Project Name / No. £ / (; h.)		Pace Client No. Pace Project Manager Pace Project No. *Requested Due Date:
Sampled By (PRINT):  Sampler Signature  Sample Sampled  Sample Sample Sampled  Sample Description  Time M	1/53 TIME MATRIX PACE NO.		BIES	REMARKS
<b>\$</b>	7.25   208	XX To Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the Combany of the		
C2-5834-C-A 62-F034-C-A 02-T804-A-A	2 7 7	A second that is the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of	A National Pale Pale Pale Pale Pale Pale Pale Pa	·
02-R667-A-A	7 891			
COOLER NOS. BAILERS	SHIPMENT METHOD OUT / DATE RETURNED /	TDATE NUMBER PELINQUISHED BY AFFILIATION	HOOV HOOSE	ASSOLVA FFILIATION DATE TIME
Additional Comments		8	7 757 6677	

SEE REVERSE SIDE FOR INSTRUCTIONS

15-05:25-810875-33:50-81

CHAIN-OF-CUSTODY RECORD Analytical Request



Client Brown + Part Envisormen	h	To: Man K Spenier	Pace Client No.
Address (ひりら) タ		Bill To: 15 R C Pace	Pace Project Manager
He., h., T.A 77210		P.O. # / Billing Reference         9	Pace Project No.
		Project Name / No. £ / (ins to.	*Requested Due Date:
Sampled By (PRINT):		## PRESERVATIVES ANALYSES	
Sampler Signature Date Sampled			
D. Il	124193	0³ ?Oʻ bBES	
ITEM SAMPLE DESCRIPTION NO.	TIME MATRIX PACE NO.	NO NO NO NO NO NO NO NO NO NO NO NO NO N	REMARKS
02-5B35-A-A	835 5016	<b>→</b>	
01-5835-8-1	913 5014	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
62-TB11-AA	W COM	×	Alex
		1000 1000 1000 1000 1000 1000 1000 100	arv
COOLER NOS. BAILERS	SHIPMENT METHOD OUT / DATE RETURNED /	ITEM RELINQUISHED BY / AFFILIATION ACCEPTED BY / AFFILIATION	FILIATION DATE TIME
		The low sold	0 - MKE 8/41 1003
Additional Comments Those are the 16st of the Suil	the soil	02500 63/63	
Samples from Elliaston.			
		151848 #	-(53



INCORPORATED THE ASSURANCE OF OUALITY		CH. Ans	CHAIN-OF-CUSTODY RECORD Analytical Request
Client 1512		Report To: Mauli Spencer Pac	Pace Client No.
y,		BUE	Pace Project Manager
100000000000000000000000000000000000000		P.O. # / Billing Reference 1794	Pace Project No.
777-4750 Phone		Project Name / No. 21/14/ for "Rec	*Requested Due Date:
Sampled By (PRINT):		PRESERVATIVES ANALYSES  REQUEST	
	8/27/93	132 g	
NOI	TIME MATRIX PACE NO.		REMARKS
02-MW07-A-A	130 15	X X X X	
2 OL-MWO8-14-14	1348 W	××××××××××××××××××××××××××××××××××××××	
3 02-MW 09-A-A	1505 W	2 2	
4 02- MW10-17-14	1834 12	XXX X	
5 02-MW11-A-A	Ilea W	ベ × × × ×	
6 D2-F010-A-A	1534		
7 82-MW12-4-A	~ 823√	さ と	
<u>s</u> t-	N 72/1		
COOLER NOS. BAILERS	SHIPMENT METHOD OUT / DATE RETURNED / DATE	ITEM RELINQUISHED BY /	FFILIATION DATE TIME
		Many BRE Hamak M	teb 8-27-93 (730
Additional Comments Stadies 8/30/93 - Shange analysis	hange analysis	8/27/63 /736	
request to TPH and BTEX 08-MW18-A-A and OA-MU	1 ONUY JON 3 8/20/93	LEGULAL TO TOH AND BIEX ONLY FOR SISHABON TO THE CONTROLL OF THE ONLY ONLY SAME SISHABON TO THE CONTROLL ONLY ONLY SAME SISHABON TO THE CONTROLL ONLY ONLY ONLY ONLY ONLY ONLY ONLY O	
		エグエカ	



IN CORPORATED THE ASSURANCE OF QUALITY		CHAIN-OF-CUSTODY RECORD Analytical Request
Shert BRE	Report To: Mark Spenier	Pace Client No.
Ardress	Bill To: BNC	Pace Project Manager
	P.O. # / Billing Reference // 94	Pace Project No.
Phone	Project Name / No. Elly for	*Requested Due Date:
Sampled By (PRINT): // AS/L/O	PRESERVATIVES ANALYSES	
E		
1 /2/all 8/27/	30.0F	
NO. SAMPLE DESCRIPTION TIME MAIHIX	H H	HEMARKS
	Che cassimities and Company Surfaces at mail ruly	
17 - 17 - 17 WILL		
3 02-7812-4-4 - 12		
4 D2- RBO8-A-A KYS W		
· ·	200	Same Same Same Same Same Same Same Same
	CHARLES AND CAMERATE REPRESENTATION OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CON	
2		
****		
COOLER NOS. BAILERS OUT / DATE	SHIPMENT METHOD ITEM RELINQUISHED BY / AFFILIATION ACC PTER NUMBER ACC PTER	ACCEPTED BY / AFFILIATION DATE TIME
	They led bu	3/14ce 8-2793 17so
Additional Comments	123 cm (2) 6 1/3 cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2) cm (2)	
	トントンクトンンのです	
	1,511, (125) 'EUL XIVOT	

Appendix F

Aquifer Test Data



>>>>>>>>>>	>>>>>>
AQTESOLV RESULTS Version 1.10	
09/09/93	07:34:34
======================================	
Data set       11in         Data set title	
======================================	=======================================
Bouwer-Rice (Unconfined Aquifer Slug Test)	

______

<<<<<<<<<<<<<<<<<<<>>>>>

#### RESULTS FROM STATISTICAL CURVE MATCHING

#### STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error

K = 5.9701E-004 +/- 2.5658E-006y0 = 1.7227E+000 +/- 1.9588E-003

ANALYSIS OF MODEL RESIDUALS

residual = calculated - observed weighted residual = residual * weight

#### Weighted Residual Statistics:

#### Model Residuals:

	Time	Observed	Calculated	Residual	Weight
•	0.0067	1.74	1.7157	0.024332	1
	0.01	1.72	1.7122	0.0077747	1
	0.0134	1.72	1.7087	0.011315	1
	0.0167	1.72	1.7053	0.014743	1
	0.02	1.7	1.7018	-0.0018348	1
	0.0234	1.7	1.6983	0.0016836	1
	0.0267	1.7	1.6949	0.0050916	1
	0.03	1.69	1.6915	-0.0015073	1
	0.0334	1.69	1.688	0.0019898	1
	0.0367	1.69	1.6846	0.0053771	1
	0.04	1.69	1.6812	0.0087575	1
	0.0434	1.69	1.6778	0.012233	1
	0.0467	1.69	1.6744	0.0156	1
	0.05	1.67	1.671	-0.0010399	1
	0.0534	1.67	1.6676	0.0024148	1
	0.0567	1.67	1.6642	0.0057611	1
	0.06	1.67	1.6609	0.0091007	1
	0.0634	1.66	1.6575	0.0025344	1
	0.0667	1.66	1.6541	0.0058604	1
	0.07	1.66	1.6508	0.0091797	1
	0.0734	1.66	1.6474	0.012593	1
	0.0767	1.66	1.6441	0.015898	1
	0.08	1.64	1.6408	-0.00080235	1
	0.0834	1.64	1.6374	0.0025899	1
	0.0867	1.64	1.6341	0.0058756	1
1 N 5c K1	0.09	1.62	1.6308	-0.010845	1
	.0.0934	1.62	1.6275	-0.0074736	1
0.096	7 0.1134	1.61	1.6078	0.0022189	1
	0.1301	1.59	1.5915	-0.0015205	1
	0.1467	1.58	1.5755	0.0044798	1
	0.1634	1.56	1.5596	0.00041406	1
	0.1801	1.54	1.5438	-0.0038128	1
	0.1967	1.53	1.5283	0.0017078	1
	0.2134	1.51	1.5128	-0.0028355	1
	0.2301	1.5	1.4975	0.0024648	1
	0.2467	1.48	1.4825	-0.0024798	1
	0.2634	1.46	1.4675	-0.0074865	1
	0.2801	1.45	1.4526	-0.0026448	1

0.2964	1.43	1.4383	-0.0083033	1
0.3134	1.42	1.4235	-0.0034968	1
0.3301	1.4	1.4091	-0.0091	1
0.3467	1.38	1.3949	-0.014934	1
0.3634	1.37	1.3808	-0.010826	1
0.3801	1.35	1.3669	-0.016861	1
0.3967	1.35	1.3531	-0.003119	1
0.3967	1.33	1.3394	0.00056605	
				1
0.4301	1.32	1.3259	-0.0058873	1
0.4467	1.31	1.3126	-0.0025576	1
0.4634	1.29	1.2993	-0.0092828	1
0.4801	1.29	1.2861	0.0038577	1
0.4967	1.27	1.2732	-0.0032122	1
0.5134	1.26	1.2603	-0.0003353	1
0.5301	1.24	1.2476	-0.0075887	1
0.5467	1.23	1.235	-0.0050461	1
0.5634	1.21	1.2226	-0.012555	1
0.5801	1.21	1.2102	-0.00019073	1
0.5967	1.19	1.198	-0.0080242	1
0.6134	1.18	1.1859	-0.0059077	1
0.6301	1.16	1.1739	-0.013914	1
0.6467	1.16	1.1621	-0.002112	1
0.6634	1.15	1.1504	-0.002112	1
0.6801	1.13	1.1387	-0.0087244	1
0.6967	1.11	1.1273	-0.017276	1
0.7134	1.11	1.1159	-0.0058754	1
0.7301	1.1	1.1046	-0.0045898	1
0.7467	1.08	1.0935	-0.013485	1
0.7634	1.08	1.0824	-0.0024257	1
0.9634	0.94	0.95836	-0.018358	1
1.1634	0.83	0.84851	-0.018511	1
1.3634	0.73	0.75125	-0.021254	1
1.5634	0.65	0.66515	-0.015145	1
1.7634	0.59	0.58891	0.0010939	1
1.9634	0.53	0.52141	0.0085944	1
2.1634	0.46	0.46164	-0.0016419	1
2.3634	0.41	0.40873	0.0012716	1
2.5634	0.37	0.36188	0.0081201	1
2.7634	0.34	0.3204	0.019599	1
2.9634	0.29	0.28368	0.0063233	1
3.1634	0.26	0.25116	0.0003233	1
3.3634	0.24	0.22237	0.0088384	1
3.5634	0.24	0.22237	0.017627	
-				1
3.7634	0.19	0.17432	0.015682	1
3.9634	0.18	0.15434	0.025662	1
4.1634	0.16	0.13665	0.023353	1
4.3634	0.13	0.12098	0.0090152	1
4.5634	0.13	0.10712	0.022883	1
4.7634	0.11	0.09484	0.01516	1
4.9634	0.1	0.083969	0.016031	1
5.1634	0.1	0.074345	0.025655	1
5.3634	0.08	0.065823	0.014177	1
5.5634	0.08	0.058278	0.021722	1
5.7634	0.06	0.051599	0.0084014	1
				<del>-</del>

•

1	0.014316	0.045684	0.06	5.9634
1	0.009552	0.040448	0.05	6.1634
1	0.014188	0.035812	0.05	6.3634
1	0.018293	0.031707	0.05	6.5634
1	0.021927	0.028073	0.05	6.7634
1	0.0051449	0.024855	0.03	6.9634
1	0.0079938	0.022006	0.03	7.1634
1	0.010516	0.019484	0.03	7.3634
1	0.012749	0.017251	0.03	7.5634
1	0.0047267	0.015273	0.02	7.7634
1	0.0064773	0.013523	0.02	7.9634
1	0.0080273	0.011973	0.02	8.1634
1	0.0093996	0.0106	0.02	8.3634
1	0.010615	0.0093854	0.02	8.5634
1	0.01169	0.0083096	0.02	8.7634
1	0.012643	0.0073572	0.02	8.9634
1	0.013486	0.0065139	0.02	9.1634

______

#### RESULTS FROM VISUAL CURVE MATCHING

#### VISUAL MATCH PARAMETER ESTIMATES

#### Estimate

K = 5.9701E-004y0 = 1.7227E+000

#### TYPE CURVE DATA

K = 5.59992E-004y0 = 1.60594E+000

Time Drawdown Time Drawdown Time Drawdown

-----0.000E+000 1.606E+000 1.000E+001 5.323E-003

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	( )						
0	0.0000	-0.2366	10.978	0.48	1.23	0.72	0.56
1	0.0033	-0.2333	9.067	-1.43	3.14	1.84	1.43
2.	0.0067	-0.2299	9.290	-1.21	2.91	1.71	1.32
3	0.0100	-0.2266	9.402	-1.10	2.80	1.64	1.27
4	0.0133	-0.2233	10.978	0.48	1.23	0.72	0.56
5	0.0167	-0.2199	10.421	-0.08	1.78	1.05	0.81
6	0.0200	-0.2166	11.535	1.04	0.67	0.39	0.30
7	0.0233	-0.2133	9.020	-1.48	3.18	1.87	1.45
8	0.0267	-0.2099	8.988	-1.51	3.22	1.89	1.46
9	0.0300	-0.2066	9.641	-0.86	2.56	1.50	1.17
10	0.0333	-0.2033	10.214	-0.29	1.99	1.17	0.90
11	0.0366	-0.2000	11.885	1.39	0.32	0.19	0.15
12	0.0400	-0.1966	10.532	0.03	1.67	0.98	0.76
13	0.0433	-0.1933	9.052	-1.45	3.15	1.85	1.43
14	0.0466	-0.1900	10.596	0.10	1.61	0.94	0.73
15	0.0500	-0.1866	10.484	-0.02	1.72	1.01	0.78
16	0.0533	-0.1833	9.131	-1.37	3.07	1.80	1.40
17	0.0566	-0.1800	9.242	-1.26	2.96	1.74	1.35
18	0.0600	-0.1766	9.720	-0.78	2.48	1.46	1.13
19	0.0633	-0.1733	9.306	-1.19	2.90	1.70	1.32
20	0.0666	-0.1700	11.280	0.78	0.92	0.54	0.42
21	0.0700	-0.1666	11.360	0.86	0.84	0.50	0.38
22	0.0733	-0.1633	10.261	-0.24	1.94	1.14	0.88
23	0.0766	-0.1600	10.166	-0.33	2.04	1.20	0.93
24	0.0800	-0.1566	10.389	-0.11	1.82	1.07	0.83
25	0.0833	-0.1533	10.214	-0.29	1.99	1.17	0.90
26	0.0866	-0.1500	10.277	-0.22	1.93	1.13	0.88
27	0.0900	-0.1466	10.293	-0.21	1.91	1.12	0.87
28	0.0933	-0.1433	10.277	-0.22	1.93	1.13	0.88
29	0.0966	-0.1400	10.230	-0.27	1.97	1.16	0.90
30	0.1000	-0.1366	10.293	-0.21	1.91	1.12	0.87

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
31	0.1033	-0.1333	10.437	-0.06	1.77	1.04	0.80
32	0.1066	-0.1300	10.214	-0.29	1.99	1.17	0.90
33	0.1100	-0.1266	10.325	-0.18	1.88	1.10	0.85
34	0.1133	-0.1233	10.325	-0.18	1.88	1.10	0.85
35	0.1166	-0.1200	10.309	-0.19	1.90	1.11	0.86
36	0.1200	-0.1166	10.341	-0.16	1.86	1.09	0.85
37	0.1233	-0.1133	10.325	-0.18	1.88	1.10	0.85
38	0.1266	-0.1100	10.309	-0.19	1.90	1.11	0.86
39	0.1300	-0.1066	10.357	-0.14	1.85	1.08	0.84
40	0.1333	-0.1033	10.293	-0.21	1.91	1.12	0.87
41	0.1366	-0.1000	10.421	-0.08	1.78	1.05	0.81
42	0.1400	-0.0966	10.341	-0.16	1.86	1.09	0.85
43	0.1433	-0.0933	10.309	-0.19	1.90	1.11	0.86
44	0.1466	-0.0900	10.437	-0.06	1.77	1.04	0.80
45	0.1500	-0.0866	10.341	-0.16	1.86	1.09	0.85
46	0.1533	-0.0833	10.325	-0.18	1.88	1.10	0.85
47	0.1566	-0.0800	10.468	-0.03	1.74	1.02	0.79
48	0.1600	-0.0766	10.341	-0.16	1.86	1.09	0.85
49	0.1633	-0.0733	10.389	-0.11	1.82	1.07	0.83
50	0.1666	-0.0700	10.389	-0.11	1.82	1.07	0.83
51	0.1700	-0.0666	10.389	-0.11	1.82	1.07	0.83
52	0.1733	-0.0633	10.421	-0.08	1.78	1.05	0.81
53	0.1766	-0.0600	10.389	-0.11	1.82	1.07	0.83
54	0.1800	-0.0566	10.405	-0.10	1.80	1.06	0.82
55	0.1833	-0.0533	10.421	-0.08	1.78	1.05	0.81
56	0.1866	-0.0500	10.405	-0.10	1.80	1.06	0.82
57	0.1900	-0.0466	10.421	-0.08	1.78	1.05	0.81
58	0.1933	-0.0433	10.421	-0.08	1.78	1.05	0.81
59	0.1966	-0.0400	10.421	-0.08	1.78	1.05	0.81
60	0.2000	-0.0366	10.437	-0.06	1.77	1.04	0.80
61	0.2033	-0.0333	10.437	-0.06	1.77	1.04	0.80

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
62	0.2066	-0.0300	10.437	-0.06	1.77	1.04	0.80
63	0.2100	-0.0266	10.437	-0.06	1.77	1.04	0.80
64	0.2133	-0.0233	10.437	-0.06	1.77	1.04	0.80
65	0.2166	-0.0200	10.405	-0.10	1.80	1.06	0.82
66	0.2200	-0.0166	10.484	-0.02	1.72	1.01	0.78
67	0.2233	-0.0133	10.437	-0.06	1.77	1.04	0.80
68	0.2266	-0.0100	10.452	-0.05	1.75	1.03	0.80
69	0.2300	-0.0066	10.468	-0.03	1.74	1.02	0.79
70	0.2333	-0.0033	10.421	-0.08	1.78	1.05	0.81
71	0.2366	0.0000	10.500	0.00	1.70	1.00	0.77
72	0.2400	0.0034	10.468	-0.03	1.74	1.02	0.79
73	0.2433	0.0067	10.468	-0.03	1.74	1.02	0.79
74	0.2466	0.0100	10.484	-0.02	1.72	1.01	0.78
75	0.2500	0.0134	10.484	-0.02	1.72	1.01	0.78
76	0.2533	0.0167	10.484	-0.02	1.72	1.01	0.78
77	0.2566	0.0200	10.500	0.00	1.70	1.00	0.77
78	0.2600	0.0234	10.500	0.00	1.70	1.00	0.77
79	0.2633	0.0267	10.500	0.00	1.70	1.00	0.77
80	0.2666	0.0300	10.516	0.02	1.69	0.99	0.77
81	0.2700	0.0334	10.516	0.02	1.69	0.99	0.77
82	0.2733	0.0367	10.516	0.02	1.69	0.99	0.77
83	0.2766	0.0400	10.516	0.02	1.69	0.99	0.77
84	0.2800	0.0434	10.516	0.02	1.69	0.99	0.77
85	0.2833	0.0467	10.516	0.02	1.69	0.99	0.77
86	0.2866	0.0500	10.532	0.03	1.67	0.98	0.76
87	0.2900	0.0534	10.532	0.03	1.67	0.98	0.76
88	0.2933	0.0567	10.532	0.03	1.67	0.98	0.76
89	0.2966	0.0600	10.532	0.03	1.67	0.98	0.76
90	0.3000	0.0634	10.548	0.05	1.66	0.97	0.75
91	0.3033	0.0667	10.548	0.05	1.66	0.97	0.75
92	0.3066	0.0700	10.548	0.05	1.66	0.97	0.75

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
93	0.3100	0.0734	10.548	0.05	1.66	0.97	0.75
94	0.3133	0.0767	10.548	0.05	1.66	0.97	0.75
95	0.3166	0.0800	10.564	0.06	1.64	0.96	0.75
96	0.3200	0.0834	10.564	0.06	1.64	0.96	0.75
97	0.3233	0.0867	10.564	0.06	1.64	0.96	0.75
98	0.3266	0.0900	10.580	0.08	1.62	0.95	0.74
99	0.3300	0.0934	10.580	0.08	1.62	0.95	0.74
100	0.3333	0.0967	10.548	0.05	1.66	0.97	0.75
101	0.3500	0.1134	10.596	0.10	1.61	0.94	0.73
102	0.3667	0.1301	10.612	0.11	1.59	0.93	0.72
103	0.3833	0.1467	10.628	0.13	1.58	0.92	0.72
104	0.4000	0.1634	10.644	0.14	1.56	0.92	0.71
105	0.4167	0.1801	10.659	0.16	1.54	0.91	0.70
106	0.4333	0.1967	10.675	0.18	1.53	0.90	0.69
107	0.4500	0.2134	10.691	0.19	1.51	0.89	0.69
108	0.4667	0.2301	10.707	0.21	1.50	0.88	0.68
109	0.4833	0.2467	10.723	0.22	1.48	0.87	0.67
110	0.5000	0.2634	10.739	0.24	1.46	0.86	0.67
111	0.5167	_0.2801	10.755	0.26	1.45	0.85	0.66
112	0.5333	0.2967	10.771	0.27	1.43	0.84	0.65
113	0.5500	0.3134	10.787	0.29	1.42	0.83	0.64
114	0.5667	0.3301	10.803	0.30	1.40	0.82	0.64
115	0.5833	0.3467	10.819	0.32	1.38	0.81	0.63
116	0.6000	0.3634	10.835	0.34	1.37	0.80	0.62
117	0.6167	0.3801	10.851	0.35	1.35	0.79	0.61
118	0.6333	0.3967	10.851	0.35	1.35	0.79	0.61
119	0.6500	0.4134	10.866	0.37	1.34	0.79	0.61
120	0.6667	0.4301	10.882	0.38	1.32	0.78	0.60
121	0.6833	0.4467	10.898	0.40	1.31	0.77	0.59
122	0.7000	0.4634	10.914	0.41	1.29	0.76	0.59
123	0.7167	0.4801	10.914	0.41	1.29	0.76	0.59

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
124	0.7333	0.4967	10.930	0.43	1.27	0.75	0.58
125	0.7500	0.5134	10.946	0.45	1.26	0.74	0.57
126	0.7667	0.5301	10.962	0.46	1.24	0.73	0.56
127	0.7833	0.5467	10.978	0.48	1.23	0.72	0.56
128	0.8000	0.5634	10.994	0.49	1.21	0.71	0.55
129	0.8167	0.5801	10.994	0.49	1.21	0.71	0.55
130	0.8333	0.5967	11.010	0.51	1.19	0.70	0.54
131	0.8500	0.6134	11.026	0.53	1.18	0.69	0.54
132	0.8667	0.6301	11.041	0.54	1.16	0.68	0.53
133	0.8833	0.6467	11.041	0.54	1.16	0.68	0.53
134	0.9000	0.6634	11.057	0.56	1.15	0.67	0.52
135	0.9167	0.6801	11.073	0.57	1.13	0.66	0.51
136	0.9333	0.6967	11.089	0.59	1.11	0.65	0.51
137	0.9500	0.7134	11.089	0.59	1.11	0.65	0.51
138	0.9667	0.7301	11.105	0.61	1.10	0.64	0.50
139	0.9833	0.7467	11.121	0.62	1.08	0.64	0.49
140	1.0000	0.7634	11.121	0.62	1.08	0.64	0.49
141	1.2000	0.9634	11.264	0.76	0.94	0.55	0.43
142	1.4000	1.1634	11.376	0.88	0.83	0.49	0.38
143	1.6000	1.3634	11.471	0.97	0.73	0.43	0.33
144	1.8000	1.5634	11.551	1.05	0.65	0.38	0.30
145	2.0000	1.7634	11.615	1.12	0.59	0.35	0.27
146	2.2000	1.9634	11.678	1.18	0.53	0.31	0.24
147	2.4000	2.1634	11.742	1.24	0.46	0.27	0.21
148	2.6000	2.3634	11.790	1.29	0.41	0.24	0.19
149	2.8000	2.5634	11.838	1.34	0.37	0.21	0.17
150	3.0000	2.7634	11.869	1.37	0.34	0.20	0.15
151	3.2000	2.9634	11.917	1.42	0.29	0.17	0.13
152	3.4000	3.1634	11.949	1.45	0.26	0.15	0.12
153	3.6000	3.3634	11.965	1.47	0.24	0.14	0.11
154	3.8000	3.5634	11.997	1.50	0.21	0.12	0.09

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
155	4.0000	3.7634	12.013	1.51	0.19	0.11	0.09
156	4.2000	3.9634	12.028	1.53	0.18	0.10	0.08
157	4.4000	4.1634	12.044	1.54	0.16	0.09	0.07
158	4.6000	4.3634	12.076	1.58	0.13	0.08	0.06
159	4.8000	4.5634	12.076	1.58	0.13	0.08	0.06
160	5.0000	4.7634	12.092	1.59	0.11	0.07	0.05
161	5.2000	4.9634	12.108	1.61	0.10	0.06	0.04
162	5.4000	5.1634	12.108	1.61	0.10	0.06	0.04
163	5.6000	5.3634	12.124	1.62	0.08	0.05	0.04
164	5.8000	5.5634	12.124	1.62	0.08	0.05	0.04
165	6.0000	5.7634	12.140	1.64	0.06	0.04	0.03
166	6.2000	5.9634	12.140	1.64	0.06	0.04	0.03
167	6.4000	6.1634	12.156	1.66	0.05	0.03	0.02
168	6.6000	6.3634	12.156	1.66	0.05	0.03	0.02
169	6.8000	6.5634	12.156	1.66	0.05	0.03	0.02
170	7.0000	6.7634	12.156	1.66	0.05	0.03	0.02
171	7.2000	6.9634	12.172	1.67	0.03	0.02	0.01
172	7.4000	7.1634	12.172	1.67	0.03	0.02	0.01
173	7.6000	7.3634	12.172	1.67	0.03	0.02	0.01
174	7.8000	7.5634	12.172	1.67	0.03	0.02	0.01
175	8.0000	7.7634	12.188	1.69	0.02	0.01	0.01
176	8.2000	7.9634	12.188	1.69	0.02	0.01	0.01
177	8.4000	8.1634	12.188	1.69	0.02	0.01	0.01
178	8.6000	8.3634	12.188	1.69	0.02	0.01	0.01
179	8.8000	8.5634	12.188	1.69	0.02	0.01	0.01
180	9.0000	8.7634	12.188	1.69	0.02	0.01	0.01
181	9.2000	8.9634	12.188	1.69	0.02	0.01	0.01
182	9.4000	9.1634	12.188	1.69	0.02	0.01	0.01
183	9.6000	9.3634	12.204	1.70	-0.00	-0.00	-0.00
184	9.8000	9.5634	12.204	1.70	-0.00	-0.00	-0.00
185	10.0000	9.7634	12.204	1.70	-0.00	-0.00	-0.00



AQTESOLV RESULTS Version 1.10	
09/14/93	08:52:42
TEST DESCRIPTION	<b></b>
Data set 11out	
Data set title SLUG OUT TEST MW-11	
Company Halliburton NUS	
Project 1K94	
Client Ellington Field (ANG)	
Location POL Storage Area	
Test date 09/03/93	
Obs. well MW-11	
Knowns and Constants:	
No. of data points	
Radius of well casing 0.08333	
Radius of well 0.3438	
Aquifer saturated thickness 13.5	
Well screen length10	
Static height of water in well 15.81	
Log(Re/Rw)2.825	
A, B, C 0.000, 0.000, 1.940	
=======================================	=======================================
=======================================	=
ANALYTICAL METHOD	
Bouwer-Rice (Unconfined Aquifer Slug Test)	

______

RESULTS FROM STATISTICAL CURVE MATCHING

<<<<<<<<<<<<<<<<<>>>>>

# STATISTICAL MATCH PARAMETER ESTIMATES

______

Estimate Std. Error

K = 5.8477E-004 +/- 2.9403E-006y0 = 2.1053E+000 +/- 2.4768E-003

ANALYSIS OF MODEL RESIDUALS

#### residual = calculated - observed weighted residual = residual * weight

#### Weighted Residual Statistics:

#### Model Residuals:

Time	Observed	Calculated	Residual	Weight
0.0033	2.17	2.1012	0.068805	 1
0.0067	2.15	2.0969	0.05306	1
0.01	2.15	2.0928	0.057182	1
0.0133	2.13	2.0887	0.041295	1
0.0167	2.13	2.0845	0.045525	1
0.02	2.13	2.0804	0.049622	1
0.0233	2.12	2.0763	0.043711	1
0.0267	2.12	2.0721	0.047916	1
0.03	2.12	2.068	0.051989	1
0.0333	2.1	2.0639	0.036054	1
0.0366	2.09	2.0599	0.03011	1
0.04	2.09	2.0557	0.034282	1
0.0433	2.09	2.0517	0.038322	1
0.0466	2.07	2.0476	0.022355	1
0.05	2.07	2.0435	0.026502	1
0.0533	2.05	2.0395	0.010518	1
0.0566	2.05	2.0355	0.014527	1
0.06	2.04	2.0314	0.0086491	1
0.0633	2.04	2.0274	0.012642	. 1
0.0666	2.04	2.0234	0.016627	1
0.07	2.04	2.0193	0.020724	1
0.0733	2.02	2.0153	0.0046932	1
0.0766	2.02	2.0113	0.0086545	1
0.08	2.02	2.0073	0.012728	1
0.0833	2.01	2.0033	0.006673	1
0.0866	2.01	1.9994	0.010611	1
0.09	2.01	1.9953	0.01466	1
0.0933	1.99	1.9914	-0.0014184	1
0.0966	1.99	1.9875	0.0024958	1
0.1	1.99	1.9835	0.0065207	1
0.1033	1.97	1.9796	-0.0095807	1
0.1066	1.97	1.9757	-0.0056897	1
0.11	1.97	1.9717	-0.0016888	1
0.1133	1.96	1.9678	-0.0078133	1
0.1166	1.96	1.9639	-0.0039454	1
0.12	1.96	1.96	3.1716E-005	1
0.1233	1.94	1.9561	-0.016116	1
0.1266	1.94	1.9523	-0.012271	1

0.13	1.94	1.9483	-0.0083175	1
0.1333	1.94	1.9445	-0.0044879	1
0.1366	1.93	1.9407	-0.010666	1
0.14	1.93	1.9367	-0.0067359	1
0.1433	1.93	1.9329	-0.0029291	1
0.1466	1.91	1.9291	-0.01913	1
0.1460	1.91	1.9252	-0.015223	1
0.1533	1.91	1.9214	-0.013223	1
0.1566	1.91	1.9177	-0.0076623	1
0.1300	1.91	1.9177	-0.0070023	1
0.1633	1.91	1.9136	-0.0037789	1
0.1666	1.9	1.9063	-0.006263	1
0.1000	1.9	1.9003	-0.000203	
				1
0.1733	1.88	1.8987	-0.018663	1
0.1766	1.88	1.8949	-0.014931	1
0.18	1.88	1.8911	-0.011094	1
0.1833	1.88	1.8874	-0.007377	1
0.1866	1.86	1.8837	-0.023667	1
0.19	1.86	1.8799	-0.019853	1
0.1933	1.86	1.8762	-0.016158	1
0.1966	1.86	1.8725	-0.01247	1
0.2	1.85	1.8687	-0.018678	1
0.2033	1.85	1.865	-0.015005	1
0.2066	1.85	1.8613	-0.011339	1
0.21	1.85	1.8576	-0.00757	1
0.2133	1.85	1.8539	-0.0039188	1
0.2166	1.85	1.8503	-0.00027478	1
0.22	1.83	1.8465	-0.016528	1
0.2233	1.83	1.8429	-0.012898	1
0.2266	1.83	1.8393	-0.009276	1
0.23	1.82	1.8356	-0.015551	1
0.2333	1.82	1.8319	-0.011943	1
0.2366	1.82	1.8283	-0.0083427	1
0.24	1.82	1.8246	-0.0046401	1
0.2433	1.8	1.8211	-0.021054	1
0.2466	1.8	1.8175	-0.017474	1
0.25	1.8	1.8138	-0.013794	1
0.2533	1.8	1.8102	-0.010229	1
0.2566	1.8	1.8067	-0.0066705	1
0.26	1.78	1.803	-0.023012	1
0.2633	1.78	1.7995	-0.019468	1
0.2666	1.78	1.7959	-0.015931	1
0.27	1.78	1.7923	-0.012294	1
0.2733	1.78	1.7888	-0.0087712	1
0.2766	1.77	1.7853	-0.015255	1
0.28	1.77	1.7816	-0.01164	1
0.2833	1.77	1.7781	-0.0081381	1
0.2866	1.77	1.7746	-0.004643	1
0.29	1.77	1.771	-0.0010492	1
0.2933	1.75	1.7676	-0.017568	1
0.2966	1.75	1.7641	-0.014094	1
0.3	1.75	1.7605	-0.010521	1
0.3033	1.74	1.7571	-0.017061	1
0.3066	1.74	1.7536	-0.013607	1
3.5500	4.7.7	1.7550	0.015007	1

0.31	1.74	1.7501	-0.010056	1
0.3133	1.74	1.7466	-0.0066163	1
0.3166	1.74	1.7432	-0.0031833	1
0.32	1.74	1.7397	0.00034681	1
0.3233	1.72	1.7362	-0.016234	1
0.3266	1.72	1.7328	-0.012821	1
0.33	1.72	1.7293	-0.009312	1
0.33	1.72	1.7259	-0.0059129	1
0.333	1.72	1.7088	-0.0088137	1
	1.69	1.6919	-0.0018839	1
0.3667		1.6752	-0.0018839	1
0.3833	1.66		-0.013222	1
0.4	1.64	1.6586		
0.4167	1.62	1.6422	-0.022192	1
0.4333	1.61	1.626	-0.016019	1
0.45	1.61	1.6099	9.0214E-005	1
0.4667	1.58	1.594	-0.01396	1
0.4833	1.56	1.5783	-0.018262	1
0.5	1.54	1.5626	-0.022626	1
0.5167	1.53	1.5471	-0.017144	1
0.533	1.53	1.5322	-0.0021814	1
0.55	1.51	1.5167	-0.0067303	1
0.5667	1.5	1.5017	-0.0017035	1
0.5833	1.48	1.4869	-0.0069143	1
0.6	1.46	1.4722	-0.012183	1
0.6167	1.45	1.4576	-0.0075975	1
0.6333	1.43	1.4432	-0.013243	1
0.65	1.42	1.4289	-0.0089439	1
0.6667	1.4	1.4148	-0.014787	1
0.6833	1.4	1.4009	-0.00085358	1
0.7	1.38	1.387	-0.0069748	1
0.7167	1.37	1.3732	-0.0032336	1
0.7333	1.35	1.3597	-0.0097096	1
0.75	1.35	1.3462	0.0037615	1
0.7667	1.32	1.3329	-0.012901	1
0.7833	1.32	1.3198	0.00022602	1
0.7633	1.31	1.3067	0.0033015	1
0.8	1.31	1.2938	-0.0033013	1
0.8333	1.29	1.2938	-0.0037320 -0.011011	1
	1.27	1.2683	0.0016801	1
0.85			0.0016801	1
0.8667	1.26	1.2558		1
0.8833	1.24	1.2434	-0.0033872	
0.9	1.23	1.2311	-0.0010685	1
0.9167	1.23	1.2189	0.011128	1
0.9333	1.21	1.2069	0.003132	1
0.95	1.19	1.1949	-0.0049112	1
0.9667	1.19	1.1831	0.0069272	1
0.9833	1.18	1.1714	0.0085785	1
1	1.16	1.1598	0.00018416	1
1.2	1.02	1.0294	-0.0094439	1
1.4	0.91	0.91373	-0.0037267	1
1.6	0.81	0.81102	-0.001017	1
1.8	0.73	0.71985	0.010147	1
2	0.65	0.63894	0.011064	1
2.2	0.59	0.56711	0.022885	1

2.4	0.53	0.50337	0.026633	1
2.6	0.48	0.44678	0.033215	1
2.8	0.43	0.39656	0.033437	1
3	0.38	0.35199	0.028014	1
3.2	0.34	0.31242	0.02758	1
3.4	0.3	0.2773	0.022698	1
3.6	0.27	0.24613	0.023869	1
3.8	0.24	0.21846	0.021536	1
4	0.22	0.19391	0.026093	1
4.2	0.21	0.17211	0.03789	1
4.4	0.18	0.15276	0.027236	1
4.6	0.16	0.13559	0.024408	1
4.8	0.14	0.12035	0.019649	1
5	0.13	0.10682	0.023178	1
5.2	0.11	0.094815	0.015185	1
5.4	0.11	0.084157	0.025843	1
5.6	0.1	0.074697	0.025303	1
5.8	0.08	0.0663	0.0137	1
6	0.08	0.058848	0.021152	1
6.2	0.06	0.052233	0.0077672	1
6.4	0.06	0.046361	0.013639	1
6.6	0.05	0.04115	0.0088499	1
6.8	0.05	0.036525	0.013475	1
7	0.05	0.032419	0.017581	1
7.2	0.05	0.028775	0.021225	1
7.4	0.03	0.02554	0.0044597	1
7.6	0.03	0.022669	0.0073307	1
7.8	0.03	0.020121	0.0098789	1
8	0.03	0.017859	0.012141	1
8.2	0.02	0.015852	0.0041482	1
8.4	0.02	0.01407	0.00593	1
8.6	0.02	0.012488	0.0075116	1
8.8	0.02	0.011085	0.0089154	1
9	0.02	0.0098386	0.010161	1
9.2	0.02	0.0087327	0.011267	1
9.4	0.02	0.0077511	0.012249	1

#### RESULTS FROM VISUAL CURVE MATCHING

#### **VISUAL MATCH PARAMETER ESTIMATES**

#### Estimate

K = 5.8477E-004y0 = 2.1053E+000

#### TYPE CURVE DATA

K = 5.36463E-004y0 = 1.86343E+000

Time Drawdown Time Drawdown Time Drawdown

0.000E+000 1.863E+000 1.000E+001 7.850E-003

				Н			
SAMPLE	TIME	<b>T</b> (0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	(=-==)						
0	0.0000	0.0000	14.512	0.00	2.18	1.00	0.99
1	0.0033	0.0033	14.496	0.02	2.17	0.99	0.98
2	0.0067	0.0067	14.480	0.03	2.15	0.99	0.98
3	0.0100	0.0100	14.480	0.03	2.15	0.99	0.98
4	0.0133	0.0133	14.464	0.05	2.13	0.98	0.97
5	0.0167	0.0167	14.464	0.05	2.13	0.98	0.97
6	0.0200	0.0200	14.464	0.05	2.13	0.98	0.97
7	0.0233	0.0233	14.449	0.06	2.12	0.97	0.96
8	0.0267	0.0267	14.449	0.06	2.12	0.97	0.96
9	0.0300	0.0300	14.449	0.06	2.12	0.97	0.96
10	0.0333	0.0333	14.433	0.08	2.10	0.96	0.96
11	0.0366	0.0366	14.417	0.10	2.09	0.96	0.95
12	0.0400	0.0400	14.417	0.10	2.09	0.96	0.95
13	0.0433	0.0433	14.417	0.10	2.09	0.96	0.95
14	0.0466	0.0466	14.401	0.11	2.07	0.95	0.94
15	0.0500	0.0500	14.401	0.11	2.07	0.95	0.94
16	0.0533	0.0533	14.385	0.13	2.05	0.94	0.93
17	0.0566	0.0566	14.385	0.13	2.05	0.94	0.93
18	0.0600	0.0600	14.369	0.14	2.04	0.93	0.93
19	0.0633	0.0633	14.369	0.14	2.04	0.93	0.93
20	0.0666	0.0666	14.369	0.14	2.04	0.93	0.93
21	0.0700	0.0700	14.369	0.14	2.04	0.93	0.93
22	0.0733	0.0733	14.353	0.16	2.02	0.93	0.92
23	0.0766	0.0766	14.353	0.16	2.02	0.93	0.92
24	0.0800	0.0800	14.353	0.16	2.02	0.93	0.92
25	0.0833	0.0833	14.337	0.18	2.01	0.92	0.91
26	0.0866	0.0866	14.337	0.18	2.01	0.92	0.91
27	0.0900	0.0900	14.337	0.18	2.01	0.92	0.91
28	0.0933	0.0933	14.321	0.19	1.99	0.91	0.90
29	0.0966	0.0966	14.321	0.19	1.99	0.91	0.90
30	0.1000	0.1000	14.321	0.19	1.99	0.91	0.90

SAMPLE NUMBER	TIME (MINUTES)	T(0) TRANS.	XD READING	H A/B DATUM TRANS.	H TRANS.	H/H(0) TRANS.	H/H(0) THEOR
31	0.1033	0.1033	14.305	0.21	1.97	0.91	0.90
32	0.1066	0.1066	14.305	0.21	1.97	0.91	0.90
33	0.1100	0.1100	14.305	0.21	1.97	0.91	0.90
34	0.1133	0.1133	14.289	0.22	1.96	0.90	0.89
35	0.1166	0.1166	14.289	0.22	1.96	0.90	0.89
36	0.1200	0.1200	14.289	0.22	1.96	0.90	0.89
37	0.1233	0.1233	14.274	0.24	1.94	0.89	0.88
38	0.1266	0.1266	14.274	0.24	1.94	0.89	0.88
39	0.1300	0.1300	14.274	0.24	1.94	0.89	0.88
40	0.1333	0.1333	14.274	0.24	1.94	0.89	0.88
41	0.1366	0.1366	14.258	0.25	1.93	0.88	0.88
42	0.1400	0.1400	14.258	0.25	1.93	0.88	0.88
43	0.1433	0.1433	14.258	0.25	1.93	0.88	0.88
44	0.1466	0.1466	14.242	0.27	1.91	0.88	0.87
45	0.1500	0.1500	14.242	0.27	1.91	0.88	0.87
46	0.1533	0.1533	14.242	0.27	1.91	0.88	0.87
47	0.1566	0.1566	14.242	0.27	1.91	0.88	0.87
48	0.1600	0.1600	14.242	0.27	1.91	0.88	0.87
49	0.1633	0.1633	14.226	0.29	1.90	0.87	0.86
50	0.1666	0.1666	14.226	0.29	1.90	0.87	0.86
51	0.1700	0.1700	14.226	0.29	1.90	0.87	0.86
52	0.1733	0.1733	14.210	0.30	1.88	0.86	0.85
53	0.1766	0.1766	14.210	0.30	1.88	0.86	0.85
54	0.1800	0.1800	14.210	0.30	1.88	0.86	0.85
55	0.1833	0.1833	14.210	0.30	1.88	0.86	0.85
56	0.1866	0.1866	14.194	0.32	1.86	0.85	0.85
57	0.1900	0.1900	14.194	0.32	1.86	0.85	0.85
58	0.1933	0.1933	14.194	0.32	1.86	0.85	0.85
59	0.1966	0.1966	14.194	0.32	1.86	0.85	0.85
60	0.2000	0.2000	14.178	0.33	1.85	0.85	0.84
61	0.2033	0.2033	14.178	0.33	1.85	0.85	0.84

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
60	0.0066	0.0066	4.450	0.22	4.07	0.05	0.04
62	0.2066	0.2066	14.178	0.33	1.85	0.85	0.84
63	0.2100	0.2100	14.178	0.33	1.85	0.85	0.84
64	0.2133	0.2133	14.178	0.33	1.85	0.85	0.84
65	0.2166	0.2166	14.178	0.33	1.85	0.85	0.84
66	0.2200	0.2200	14.162	0.35	1.83	0.84	0.83
67	0.2233	0.2233	14.162	0.35	1.83	0.84	0.83
68	0.2266	0.2266	14.162	0.35	1.83	0.84	0.83
69	0.2300	0.2300	14.146	0.37	1.82	0.83	0.83
70	0.2333	0.2333	14.146	0.37	1.82	0.83	0.83
71	0.2366	0.2366	14.146	0.37	1.82	0.83	0.83
72	0.2400	0.2400	14.146	0.37	1.82	0.83	0.83
73	0.2433	0.2433	14.130	0.38	1.80	0.82	0.82
74	0.2466	0.2466	14.130	0.38	1.80	0.82	0.82
75	0.2500	0.2500	14.130	0.38	1.80	0.82	0.82
76	0.2533	0.2533	14.130	0.38	1.80	0.82	0.82
77	0.2566	0.2566	14.130	0.38	1.80	0.82	0.82
78	0.2600	0.2600	14.114	0.40	1.78	0.82	0.81
<b>7</b> 9	0.2633	0.2633	14.114	0.40	1.78	0.82	0.81
80	0.2666	0.2666	14.114	0.40	1.78	0.82	0.81
81	0.2700	0.2700	14.114	0.40	1.78	0.82	0.81
82	0.2733	0.2733	14.114	0.40	1.78	0.82	0.81
83	0.2766	0.2766	14.098	0.41	1.77	0.81	0.80
84	0.2800	0.2800	14.098	0.41	1.77	0.81	0.80
85	0.2833	0.2833	14.098	0.41	1.77	0.81	0.80
86	0.2866	0.2866	14.098	0.41	1.77	0.81	0.80
87	0.2900	0.2900	14.098	0.41	1.77	0.81	0.80
88	0.2933	0.2933	14.082	0.43	1.75	0.80	0.80
89	0.2966	0.2966	14.082	0.43	1.75	0.80	0.80
90	0.3000	0.3000	14.082	0.43	1.75	0.80	0.80
91	0.3033	0.3033	14.067	0.45	1.74	0.80	0.79
92	0.3066	0.3066	14.067	0.45	1.74	0.80	0.79
		2000		10	'	0.00	0.17

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
93	0.3100	0.3100	14.067	0.45	1.74	0.80	0.79
94	0.3133	0.3133	14.067	0.45	1.74	0.80	0.79
95	0.3166	0.3166	14.067	0.45	1.74	0.80	0.79
96	0.3200	0.3200	14.067	0.45	1.74	0.80	0.79
97	0.3233	0.3233	14.051	0.46	1.72	0.79	0.78
98	0.3266	0.3266	14.051	0.46	1.72	0.79	0.78
99	0.3300	0.3300	14.051	0.46	1.72	0.79	0.78
100	0.3333	0.3333	14.051	0.46	1.72	0.79	0.78
101	0.3500	0.3500	14.035	0.48	1.70	0.78	0.77
102	0.3667	0.3667	14.019	0.49	1.69	0.77	0.77
103	0.3833	0.3833	13.987	0.53	1.66	0.76	0.75
104	0.4000	0.4000	13.971	0.54	1.64	0.75	0.75
105	0.4167	0.4167	13.955	0.56	1.62	0.74	0.74
106	0.4333	0.4333	13.939	0.57	1.61	0.74	0.73
107	0.4500	0.4500	13.939	0.57	1.61	0.74	0.73
108	0.4667	0.4667	13.907	0.61	1.58	0.72	0.72
109	0.4833	0.4833	13.891	0.62	1.56	0.72	0.71
110	0.5000	0.5000	13.875	0.64	1.54	0.71	0.70
111	0.5167	0.5167	13.860	0.65	1.53	0.70	0.69
112	0.5333	0.5333	13.860	0.65	1.53	0.70	0.69
113	0.5500	0.5500	13.844	0.67	1.51	0.69	0.69
114	0.5667	0.5667	13.828	0.68	1.50	0.69	0.68
115	0.5833	0.5833	13.812	0.70	1.48	0.68	0.67
116	0.6000	0.6000	13.796	0.72	1.46	0.67	0.67
117	0.6167	0.6167	13.780	0.73	1.45	0.66	0.66
118	0.6333	0.6333	13.764	0.75	1.43	0.66	0.65
119	0.6500	0.6500	13.748	0.76	1.42	0.65	0.64
120	0.6667	0.6667	13.732	0.78	1.40	0.64	0.64
121	0.6833	0.6833	13.732	0.78	1.40	0.64	0.64
122	0.7000	0.7000	13.716	0.80	1.38	0.64	0.63
123	0.7167	0.7167	13.700	0.81	1.37	0.63	0.62

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	Н	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
1(01/12/21)	(2.22.						
124	0.7333	0.7333	13.684	0.83	1.35	0.62	0.61
125	0.7500	0.7500	13.684	0.83	1.35	0.62	0.61
126	0.7667	0.7667	13.653	0.86	1.32	0.61	0.60
127	0.7833	0.7833	13.653	0.86	1.32	0.61	0.60
128	0.8000	0.8000	13.637	0.88	1.31	0.60	0.59
129	0.8167	0.8167	13.621	0.89	1.29	0.59	0.59
130	0.8333	0.8333	13.605	0.91	1.27	0.58	0.58
131	0.8500	0.8500	13.605	0.91	1.27	0.58	0.58
132	0.8667	0.8667	13.589	0.92	1.26	0.58	0.57
133	0.8833	0.8833	13.573	0.94	1.24	0.57	0.56
134	0.9000	0.9000	13.557	0.96	1.23	0.56	0.56
135	0.9167	0.9167	13.557	0.96	1.23	0.56	0.56
136	0.9333	0.9333	13.541	0.97	1.21	0.55	0.55
137	0.9500	0.9500	13.525	0.99	1.19	0.55	0.54
138	0.9667	0.9667	13.525	0.99	1.19	0.55	0.54
139	0.9833	0.9833	13.509	1.00	1.18	0.54	0.54
140	1.0000	1.0000	13.493	1.02	1.16	0.53	0.53
141	1.2000	1.2000	13.350	1.16	1.02	0.47	0.46
142	1.4000	1.4000	13.239	1.27	0.91	0.42	0.41
143	1.6000	1.6000	13.143	1.37	0.81	0.37	0.37
144	1.8000	1.8000	13.064	1.45	0.73	0.34	0.33
145	2.0000	2.0000	12.984	1.53	0.65	0.30	0.30
146	2.2000	2.2000	12.920	1.59	0.59	0.27	0.27
147	2.4000	2.4000	12.857	1.66	0.53	0.24	0.24
148	2.6000	2.6000	12.809	1.70	0.48	0.22	0.22
149	2.8000	2.8000	12.761	1.75	0.43	0.20	0.20
150	3.0000	3.0000	12.713	1.80	0.38	0.18	0.17
151	3.2000	3.2000	12.666	1.85	0.34	0.15	0.15
152	3.4000	3.4000	12.634	1.88	0.30	0.14	0.14
153	3.6000	3.6000	12.602	1.91	0.27	0.12	0.12
154	3.8000	3.8000	12.570	1.94	0.24	0.11	0.11

					H			
	SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
	NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
•		,						
	155	4.0000	4.0000	12.554	1.96	0.22	0.10	0.10
156 157 158	156	4.2000	4.2000	12.538	1.97	0.21	0.09	0.09
	157	4.4000	4.4000	12.507	2.01	0.18	0.08	0.08
	158	4.6000	4.6000	12.491	2.02	0.16	0.07	0.07
	159	4.8000	4.8000	12.475	2.04	0.14	0.07	0.07
	160	5.0000	5.0000	12.459	2.05	0.13	0.06	0.06
	161	5.2000	5.2000	12.443	2.07	0.11	0.05	0.05
	162	5.4000	5.4000	12.443	2.07	0.11	0.05	0.05
	163	5.6000	5.6000	12.427	2.09	0.10	0.04	0.04
	164	5.8000	5.8000	12.411	2.10	0.08	0.04	0.04
	165	6.0000	6.0000	12.411	2.10	0.08	0.04	0.04
	166	6.2000	6.2000	12.395	2.12	0.06	0.03	0.03
	167	6.4000	6.4000	12.395	2.12	0.06	0.03	0.03
	168	6.6000	6.6000	12.379	2.13	0.05	0.02	0.02
	169	6.8000	6.8000	12.379	2.13	0.05	0.02	0.02
	170	7.0000	7.0000	12.379	2.13	0.05	0.02	0.02
	171	7.2000	7.2000	12.379	2.13	0.05	0.02	0.02
	172	7.4000	7.4000	12.363	2.15	0.03	0.01	0.01
	173	7.6000	7.6000	12.363	2.15	0.03	0.01	0.01
	174	7.8000	7.8000	12.363	2.15	0.03	0.01	0.01
	175	8.0000	8.0000	12.363	2.15	0.03	0.01	0.01
	176	8.2000	8.2000	12.347	2.17	0.02	0.01	0.01
	177	8.4000	8.4000	12.347	2.17	0.02	0.01	0.01
	178	8.6000	8.6000	12.347	2.17	0.02	0.01	0.01
	179	8.8000	8.8000	12.347	2.17	0.02	0.01	0.01
	180	9.0000	9.0000	12.347	2.17	0.02	0.01	0.01
	181	9.2000	9.2000	12.347	2.17	0.02	0.01	0.01
	182	9.4000	9.4000	12.347	2.17	0.02	0.01	0.01
	183	9.6000	9.6000	12.331	2.18	-0.00	-0.00	-0.00
	184	9.8000	9.8000	12.331	2.18	-0.00	-0.00	-0.00
	185	10.0000	10.0000	12.331	2.18	-0.00	-0.00	-0.00



AOTESOLV RESULTS Version 1.10 11:20:09 09/08/93 ------------TEST DESCRIPTION Data set...... 12in Data set title..... SLUG IN TEST MW-12 Company...... Halliburton NUS Project..... 1K94 Client..... Ellington Field (ANG) Location...... POL Storage Area Test date...... 09/03/93 Obs. well...... MW-12 Knowns and Constants: No. of data points...... 157 Radius of well casing..... 0.08333 Radius of well...... 0.3438 Aquifer saturated thickness....... 13.5 Well screen length...... 10 Static height of water in well..... 16.6 A, B, C...... 0.000, 0.000, 1.940 ______ _____

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

_____

RESULTS FROM STATISTICAL CURVE MATCHING

STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error

K = 2.0716E-003 + /- 1.9934E-005

y0 = 1.1757E + 000 + / - 4.5939E - 003

ANALYSIS OF MODEL RESIDUALS

#### residual = calculated - observed weighted residual = residual * weight

#### Weighted Residual Statistics:

#### Model Residuals:

Time	Observed	Calculated	Calculated Residual	
0.0033	1.24	1.1676	0.07236	 1
0.0067	1.21	1.1594	0.050631	1
0.01	1.18	1.1514	0.028602	1
0.0133	1.16	1.1435	0.016518	1
0.0167	1.16	1.1354	0.024617	1
0.02	1.16	1.1276	0.032423	1
0.0233	1.15	1.1198	0.030175	1
0.0267	1.15	1.1119	0.038107	1
0.03	1.13	1.1042	0.025752	1
0.0333	1.11	1.0967	0.013344	1
0.0367	1.11	1.0889	0.021111	1
0.04	1.1	1.0814	0.018598	1
0.0433	1.08	1.074	0.0060325	1
0.0467	1.08	1.0664	0.013639	1
0.05	1.07	1.059	0.010971	1
0.0533	1.07	1.0517	0.018252	1
0.0567	1.05	1.0443	0.0057014	1
0.06	1.05	1.0371	0.012881	1
0.0633	1.04	1.03	0.010012	1
0.0667	1.02	1.0227	-0.002693	1
0.07	1.02	1.0157	0.0043383	1
0.0733	1.02	1.0087	0.011321	1
0.0767	1	1.0015	-0.0015343	1
0.08	0.99	0.99465	-0.0046485	1
0.0833	0.99	0.98781	0.00219	1
0.0867	0.99	0.98081	0.0091866	1
0.09	0.97	0.97407	-0.0040701	1
0.0933	0.97	0.96737	0.002627	1
0.0967	0.96	0.96052	-0.00052124	. 1
0.1	0.96	0.95392	0.0060826	1
0.1033	0.94	0.94736	-0.0073589	1
0.1067	0.94	0.94065	-0.00064887	1
0.11	0.92	0.93418	-0.014182	1
0.1133	0.92	0.92776	-0.0077589	1
0.1167	0.91	0.92119	-0.011188	1
0.12	0.91	0.91485	-0.0048542	1
0.1233	0.89	0.90856	-0.018564	1
0.1267	0.89	0.90213	-0.012129	1

0.13	0.89	0.89593	-0.0059267	1
0.1333	0.88	0.88977	-0.0097669	1
0.1367	0.88	0.88346	-0.0034648	1
0.14	0.86	0.87739	-0.017391	1
0.1433	0.86	0.87136	-0.011358	1
0.1467	0.86	0.86519	-0.0051866	1
0.15	0.84	0.85924	-0.019238	1
0.1533	0.84	0.85333	-0.013331	1
0.1567	0.83	0.84729	-0.017287	1
0.16	0.83	0.84146	-0.011461	1
0.1633	0.81	0.83568	-0.025676	1
0.1667	0.81	0.82976	-0.019757	1
0.17	0.81	0.82405	-0.014052	1
0.1733	0.8	0.81839	-0.018387	1
0.1767	0.8	0.81259	-0.01259	1
0.18	0.8	0.807	-0.0070033	1
0.1833	0.78	0.80145	-0.021455	1
0.1867	0.78	0.79578	-0.015778	1
0.19	0.76	0.79031	-0.030307	1
0.1933	0.76	0.78487	-0.024873	1
0.1967	0.76	0.77931	-0.019314	1
0.2	0.76	0.77396	-0.013956	1
0.2033	0.75	0.76864	-0.018635	1
0.2067	0.75	0.76319	-0.013191	1
0.21	0.75	0.75794	-0.0079438	1
0.2133	0.73	0.75273	-0.022733	1
0.2167	0.73	0.7474	-0.017401	1
0.22	0.73	0.74226	-0.012263	1
0.2233	0.72	0.73716	-0.017159	1
0.2267	0.72	0.73194	-0.011938	1
0.23	0.72	0.72691	-0.0069058	1
0.2333	0.7	0.72191	-0.021908	1
0.2367	0.7	0.71679	-0.016795	1
0.24	0.7	0.71187	-0.011867	1
0.2433	0.68	0.70697	-0.026972	. 1
0.2467	0.68	0.70197	-0.021965	1
0.25	0.68	0.69714	-0.017139	1
0.2533	0.68	0.69235	-0.012346	1
0.2567	0.67	0.68744	-0.017442	1
0.26	0.67	0.68272	-0.012716	1
0.2633	0.67	0.67802	-0.0080218	1
0.2667	0.65	0.67322	-0.023219	1
0.27	0.65	0.66859	-0.018591	1
0.2733	0.65	0.66399	-0.013994	1
0.2767	0.64	0.65929	-0.019291	1
0.28	0.64	0.65476	-0.014758	1
0.2967	0.62	0.63229	-0.012293	1
0.3134	0.59	0.6106	-0.020598	1
0.33	0.57	0.58977	-0.019772	1
0.3467	0.56	0.56954	-0.009536	1
0.3634	0.54	0.54999	-0.0099947	1
0.38	0.53	0.53123	-0.001235	1
0.3967	0.51	0.51301	-0.0030078	1
0.4134	0.49	0.49541	-0.0054061	1
U. 1137	3.72	0. 170 11	0.000 1001	_

0.43	0.46	0.47851	-0.018508	1
0.4467	0.46	0.46209	-0.0020903	1
0.4634	0.45	0.44624	0.0037644	1
<del>0.4797 ن 18</del> 0 ن	0.43	0.43129	-0.0012854	1
0.4967	0.41	0.41623	-0.0062264	1
0.5134	0.4	0.40195	-0.0019454	1
0.53	0.4	0.38824	0.011765	1
0.5467	0.38	0.37491	0.0050853	1
0.5634	0.37	0.36205	0.0079489	1
0.58	0.37	0.3497	0.020298	1
0.5967	0.35	0.3377	0.012297	1
0.6134	0.33	0.32612	0.0038836	1
0.63	0.33	0.31499	0.015007	1
0.6467	0.32	0.30419	0.015815	1
0.6634	0.32	0.29375	0.026252	1
0.68	0.32	0.28373	0.016271	1
0.6967	0.3	0.27399	0.026006	1
0.7134	0.3	0.26459	0.025407	1
0.7134	0.29	0.25557	0.023407	1
	0.27	0.23337	0.014432	1
0.7467		0.2468	0.023201	1
0.7634	0.27	0.23833	0.031669	
0.78	0.25			1
0.7967	0.25	0.2223	0.027696	1
0.8134	0.24	0.21468	0.025324	1
0.83	0.24	0.20735	0.032646	1
0.8467	0.24	0.20024	0.039761	1
0.8634	0.22	0.19337	0.026631	1
0.88	0.22	0.18677	0.033227	1
0.8967	0.21	0.18037	0.029635	1
0.9134	0.21	0.17418	0.035823	1
0.93	0.21	0.16824	0.041764	1
0.9467	0.21	0.16246	0.047537	1
1.1467	0.14	0.10695	0.033054	1
1.3467	0.13	0.070401	0.059599	1
1.5467	0.09	0.046344	0.043656	1
1.7467	0.08	0.030507	0.049493	1
1.9467	0.06	0.020082	0.039918	1
2.1467	0.06	0.01322	0.04678	1
2.3467	0.05	0.0087023	0.041298	1
2.5467	0.05	0.0057286	0.044271	1
2.7467	0.05	0.003771	0.046229	1 .
2.9467	0.03	0.0024824	0.027518	1
3.1467	0.03	0.0016341	0.028366	1
3.3467	0.03	0.0010757	0.028924	1
3.5467	0.03	0.00070811	0.029292	1
3.7467	0.03	0.00046614	0.029534	1
3.9467	0.03	0.00030685	0.029693	1
4.1467	0.03	0.00030083	0.019798	1
4.3467	0.02	0.00020199	0.019798	1
4.5467 4.5467	0.02	8.7531E-005	0.019807	1
	0.02	5.762E-005	0.019912	1
4.7467		3.762E-005 3.793E-005	0.019942	
4.9467	0.02			1
5.1467	0.02	2.4969E-005	0.019975	1
5.3467	0.02	1.6436E-005	0.019984	1

5.5467	0.02	1.082E-005	0.019989	1
5.7467	0.02	7.1224E-006	0.019993	1
5.9467	0.02	4.6886E-006	0.019995	1
6.1467	0.02	3.0864E-006	0.019997	1
6.3467	0.02	2.0317E-006	0.019998	1
6.5467	0.02	1.3374E-006	0.019999	1
6.7467	0.02	8.8041E-007	0.019999	1
6.9467	0.02	5.7956E-007	0.019999	1
7.1467	0.02	3.8151E-007	0.02	1
7.3467	0.02	2.5114E-007	0.02	1
7.5467	0.02	1.6532E-007	0.02	1

### RESULTS FROM VISUAL CURVE MATCHING

## VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 1.6504E-003y0 = 9.4905E-001

### TYPE CURVE DATA

K = 1.65044E-003y0 = 9.49047E-001

Time Drawdown Time Drawdown Time Drawdown

0.000E+000 9.490E-001 4.000E+000 1.213E-003

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
0	0.0000	-0.0533	5.369	-0.77	2.02	1.61	0.92
1	0.0033	-0.0500	5.767	-0.37	1.62	1.29	0.74
2	0.0067	-0.0466	6.150	0.02	1.24	0.99	0.56
3	0.0100	-0.0433	5.927	-0.21	1.46	1.16	0.67
4	0.0133	-0.0400	5.417	-0.72	1.97	1.57	0.90
5	0.0167	-0.0366	7.296	1.16	0.09	0.08	0.04
6	0.0200	-0.0333	6.532	0.40	0.86	0.68	0.39
7	0.0233	-0.0300	6.563	0.43	0.83	0.66	0.38
8	0.0267	-0.0266	6.054	-0.08	1.34	1.06	0.61
9	0.0300	-0.0233	5.974	-0.16	1.42	1.13	0.64
10	0.0333	-0.0200	5.847	-0.29	1.54	1.23	0.70
11	0.0366	-0.0167	5.911	-0.22	1.48	1.18	0.67
12	0.0400	-0.0133	6.086	-0.05	1.31	1.04	0.59
13	0.0433	-0.0100	6.229	0.09	1.16	0.92	0.53
14	0.0466	-0.0067	6.261	0.13	1.13	0.90	0.51
15	0.0500	-0.0033	6.197	0.06	1.19	0.95	0.54
16	0.0533	-0.0000	6.134	0.00	1.26	1.00	0.57
17	0.0566	0.0033	6.150	0.02	1.24	0.99	0.56
18	0.0600	0.0067	6.181	0.05	1.21	0.96	0.55
19	0.0633	0.0100	6.213	0.08	1.18	0.94	0.54
20	0.0666	0.0133	6.229	0.09	1.16	0.92	0.53
21	0.0700	0.0167	6.229	0.09	1.16	0.92	0.53
22	0.0733	0.0200	6.229	0.09	1.16	0.92	0.53
23	0.0766	0.0233	6.245	0.11	1.15	0.91	0.52
24	0.0800	0.0267	6.245	0.11	1.15	0.91	0.52
25	0.0833	0.0300	6.261	0.13	1.13	0.90	0.51
26	0.0866	0.0333	6.277	0.14	1.11	0.89	0.51
27	0.0900	0.0367	6.277	0.14	1.11	0.89	0.51
28	0.0933	0.0400	6.293	0.16	1.10	0.87	0.50
29	0.0966	0.0433	6.309	0.17	1.08	0.86	0.49
30	0.1000	0.0467	6.309	0.17	1.08	0.86	0.49

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
31	0.1033	0.0500	6.325	0.19	1.07	0.85	0.48
32	0.1066	0.0533	6.325	0.19	1.07	0.85	0.48
33	0.1100	0.0567	6.341	0.21	1.05	0.84	0.48
· 34	0.1133	0.0600	6.341	0.21	1.05	0.84	0.48
35	0.1166	0.0633	6.356	0.22	1.04	0.82	0.47
36	0.1200	0.0667	6.372	0.24	1.02	0.81	0.46
37	0.1233	0.0700	6.372	0.24	1.02	0.81	0.46
38	0.1266	0.0733	6.372	0.24	1.02	0.81	0.46
39	0.1300	0.0767	6.388	0.25	1.00	0.80	0.46
40	0.1333	0.0800	6.404	0.27	0.99	0.79	0.45
41	0.1366	0.0833	6.404	0.27	0.99	0.79	0.45
42	0.1400	0.0867	6.404	0.27	0.99	0.79	0.45
43	0.1433	0.0900	6.420	0.29	0.97	0.77	0.44
44	0.1466	0.0933	6.420	0.29	0.97	0.77	0.44
45	0.1500	0.0967	6.436	0.30	0.96	0.76	0.43
46	0.1533	0.1000	6.436	0.30	0.96	0.76	0.43
47	0.1566	0.1033	6.452	0.32	0.94	0.75	0.43
48	0.1600	0.1067	6.452	0.32	0.94	0.75	0.43
49	0.1633	0.1100	6.468	0.33	0.92	0.73	0.42
50	0.1666	0.1133	6.468	0.33	0.92	0.73	0.42
51	0.1700	0.1167	6.484	0.35	0.91	0.72	0.41
52	0.1733	0.1200	6.484	0.35	0.91	0.72	0.41
53	0.1766	0.1233	6.500	0.37	0.89	0.71	0.41
54	0.1800	0.1267	6.500	0.37	0.89	0.71	0.41
55	0.1833	0.1300	6.500	0.37	0.89	0.71	0.41
56	0.1866	0.1333	6.516	0.38	0.88	0.70	0.40
57	0.1900	0.1367	6.516	0.38	0.88	0.70	0.40
58	0.1933	0.1400	6.532	0.40	0.86	0.68	0.39
59	0.1966	0.1433	6.532	0.40	0.86	0.68	0.39
60	0.2000	0.1467	6.532	0.40	0.86	0.68	0.39
61	0.2033	0.1500	6.548	0.41	0.84	0.67	0.38

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
62	0.2066	0.1533	6.548	0.41	0.84	0.67	0.38
63	0.2100	0.1567	6.563	0.43	0.83	0.66	0.38
64	0.2133	0.1600	6.563	0.43	0.83	0.66	0.38
65	0.2166	0.1633	6.579	0.44	0.81	0.65	0.37
66	0.2200	0.1667	6.579	0.44	0.81	0.65	0.37
67	0.2233	0.1700	6.579	0.44	0.81	0.65	0.37
68	0.2266	0.1733	6.595	0.46	0.80	0.63	0.36
69	0.2300	0.1767	6.595	0.46	0.80	0.63	0.36
70	0.2333	0.1800	6.595	0.46	0.80	0.63	0.36
71	0.2366	0.1833	6.611	0.48	0.78	0.62	0.35
72	0.2400	0.1867	6.611	0.48	0.78	0.62	0.35
73	0.2433	0.1900	6.627	0.49	0.76	0.61	0.35
74	0.2466	0.1933	6.627	0.49	0.76	0.61	0.35
75	0.2500	0.1967	6.627	0.49	0.76	0.61	0.35
76	0.2533	0.2000	6.627	0.49	0.76	0.61	0.35
77	0.2566	0.2033	6.643	0.51	0.75	0.60	0.34
78	0.2600	0.2067	6.643	0.51	0.75	0.60	0.34
79	0.2633	0.2100	6.643	0.51	0.75	0.60	0.34
80	0.2666	0.2133	6.659	0.52	0.73	0.58	0.33
81	0.2700	0.2167	6.659	0.52	0.73	0.58	0.33
82	0.2733	0.2200	6.659	0.52	0.73	0.58	0.33
83	0.2766	0.2233	6.675	0.54	0.72	0.57	0.33
84	0.2800	0.2267	6.675	0.54	0.72	0.57	0.33
85	0.2833	0.2300	6.675	0.54	0.72	0.57	0.33
86	0.2866	0.2333	6.691	0.56	0.70	0.56	0.32
87	0.2900	0.2367	6.691	0.56	0.70	0.56	0.32
88	0.2933	0.2400	6.691	0.56	0.70	0.56	0.32
89	0.2966	0.2433	6.707	0.57	0.68	0.54	0.31
90	0.3000	0.2467	6.707	0.57	0.68	0.54	0.31
91	0.3033	0.2500	6.707	0.57	0.68	0.54	0.31
92	0.3066	0.2533	6.707	0.57	0.68	0.54	0.31

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
93	0.3100	0.2567	6.723	0.59	0.67	0.53	0.30
94	0.3133	0.2600	6.723	0.59	0.67	0.53	0.30
95	0.3166	0.2633	6.723	0.59	0.67	0.53	0.30
96	0.3200	0.2667	6.739	0.60	0.65	0.52	0.30
97	0.3233	0.2700	6.739	0.60	0.65	0.52	0.30
98	0.3266	0.2733	6.739	0.60	0.65	0.52	0.30
99	0.3300	0.2767	6.755	0.62	0.64	0.51	0.29
100	0.3333	0.2800	6.755	0.62	0.64	0.51	0.29
101	0.3500	0.2967	6.770	0.64	0.62	0.49	0.28
102	0.3667	0.3134	6.802	0.67	0.59	0.47	0.27
103	0.3833	0.3300	6.818	0.68	0.57	0.46	0.26
104	0.4000	0.3467	6.834	0.70	0.56	0.44	0.25
105	0.4167	0.3634	6.850	0.72	0.54	0.43	0.25
106	0.4333	0.3800	6.866	0.73	0.53	0.42	0.24
107	0.4500	0.3967	6.882	0.75	0.51	0.40	0.23
108	0.4667	0.4134	6.898	0.76	0.49	0.39	0.22
109	0.4833	0.4300	6.930	0.80	0.46	0.37	0.21
110	0.5000	0.4467	6.930	0.80	0.46	0.37	0.21
111	0.5167	0.4634	6.946	0.81	0.45	0.35	0.20
112	0.5333	0.4800	6.961	0.83	0.43	0.34	0.20
113	0.5500	0.4967	6.977	0.84	0.41	0.33	0.19
114	0.5667	0.5134	6.993	0.86	0.40	0.32	0.18
115	0.5833	0.5300	6.993	0.86	0.40	0.32	0.18
116	0.6000	0.5467	7.009	0.88	0.38	0.30	0.17
117	0.6167	0.5634	7.025	0.89	0.37	0.29	0.17
118	0.6333	0.5800	7.025	0.89	0.37	0.29	0.17
119	0.6500	0.5967	7.041	0.91	0.35	0.28	0.16
120	0.6667	0.6134	7.057	0.92	0.33	0.27	0.15
121	0.6833	0.6300	7.057	0.92	0.33	0.27	0.15
122	0.7000	0.6467	7.073	0.94	0.32	0.25	0.14
123	0.7167	0.6634	7.073	0.94	0.32	0.25	0.14

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	(						
124	0.7333	0.6800	7.089	0.96	0.30	0.24	0.14
125	0.7500	0.6967	7.089	0.96	0.30	0.24	0.14
126	0.7667	0.7134	7.105	0.97	0.29	0.23	0.13
127	0.7833	0.7300	7.121	0.99	0.27	0.21	0.12
128	0.8000	0.7467	7.121	0.99	0.27	0.21	0.12
129	0.8167	0.7634	7.121	0.99	0.27	0.21	0.12
130	0.8333	0.7800	7.137	1.00	0.25	0.20	0.12
131	0.8500	0.7967	7.137	1.00	0.25	0.20	0.12
132	0.8667	0.8134	7.153	1.02	0.24	0.19	0.11
133	0.8833	0.8300	7.153	1.02	0.24	0.19	0.11
134	0.9000	0.8467	7.153	1.02	0.24	0.19	0.11
135	0.9167	0.8634	7.168	1.03	0.22	0.18	0.10
136	0.9333	0.8800	7.168	1.03	0.22	0.18	0.10
137	0.9500	0.8967	7.184	1.05	0.21	0.16	0.09
138	0.9667	0.9134	7.184	1.05	0.21	0.16	0.09
139	0.9833	0.9300	7.184	1.05	0.21	0.16	0.09
140	1.0000	0.9467	7.184	1.05	0.21	0.16	0.09
141	1.2000	1.1467	7.248	1.11	0.14	0.11	0.07
142	1.4000	1.3467	<b>7.</b> 264 .	1.13	0.13	0.10	0.06
143	1.6000	1.5467	7.296	1.16	0.09	0.08	0.04
144	1.8000	1.7467	7.312	1.18	0.08	0.06	0.04
145	2.0000	1.9467	7.328	1.19	0.06	0.05	0.03
146	2.2000	2.1467	7.328	1.19	0.06	0.05	0.03
147	2.4000	2.3467	7.344	1.21	0.05	0.04	0.02
148	2.6000	2.5467	7.344	1.21	0.05	0.04	0.02
149	2.8000	2.7467	7.344	1.21	0.05	0.04	0.02
150	3.0000	2.9467	7.360	1.23	0.03	0.02	0.01
151	3.2000	3.1467	7.360	1.23	0.03	0.02	0.01
152	3.4000	3.3467	7.360	1.23	0.03	0.02	0.01
153	3.6000	3.5467	7.360	1.23	0.03	0.02	0.01
154	3.8000	3.7467	7.360	1.23	0.03	0.02	0.01

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
155	4.0000	3.9467	7.360	1.23	0.03	0.02	0.01
156	4.2000	4.1467	7.375	1.24	0.02	0.01	0.01
157	4.4000	4.3467	7.375	1.24	0.02	0.01	0.01
158	4.6000	4.5467	7.375	1.24	0.02	0.01	0.01
159	4.8000	4.7467	7.375	1.24	0.02	0.01	0.01
160	5.0000	4.9467	7.375	1.24	0.02	0.01	0.01
161	5.2000	5.1467	7.375	1.24	0.02	0.01	0.01
162	5.4000	5.3467	7.375	1.24	0.02	0.01	0.01
163	5.6000	5.5467	7.375	1.24	0.02	0.01	0.01
164	5.8000	5.7467	7.375	1.24	0.02	0.01	0.01
165	6.0000	5.9467	7.375	1.24	0.02	0.01	0.01
166	6.2000	6.1467	7.375	1.24	0.02	0.01	0.01
167	6.4000	6.3467	7.375	1.24	0.02	0.01	0.01
168	6.6000	6.5467	7.375	1.24	0.02	0.01	0.01
169	6.8000	6.7467	7.375	1.24	0.02	0.01	0.01
170	7.0000	6.9467	7.375	1.24	0.02	0.01	0.01
171	7.2000	7.1467	7.375	1.24	0.02	0.01	0.01
172	7.4000	7.3467	7.375	1.24	0.02	0.01	0.01
173	7.6000	7.5467	7.375	1.24	0.02	0.01	0.01
174	7.8000	7.7467	7.391	1.26	0.00	0.00	0.00
175	8.0000	7.9467	7.375	1.24	0.02	0.01	0.01
176	8.2000	8.1467	7.375	1.24	0.02	0.01	0.01
177	8.4000	8.3467	7.391	1.26	0.00	0.00	0.00
178	8.6000	8.5467	7.391	1.26	0.00	0.00	0.00
179	8.8000	8.7467	7.391	1.26	0.00	0.00	0.00
180	9.0000	8.9467	7.391	1.26	0.00	0.00	0.00
181	9.2000	9.1467	7.391	1.26	0.00	0.00	0.00
182	9.4000	9.3467	7.391	1.26	0.00	0.00	0.00
183	9.6000	9.5467	7.391	1.26	0.00	0.00	0.00
184	9.8000	9.7467	7.391	1.26	0.00	0.00	0.00
185	10.0000	9.9467	7.391	1.26	0.00	0.00	0.00



>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	·>>>>
AQTESOLV RESULTS Version 1.10	
09/08/93 10:56	5:58
TEST DESCRIPTION	
Data set	
Knowns and Constants:       No. of data points	
ANALYTICAL METHOD	

______

<<<<<<<<<<<<<<<<<<<<<<<<><

RESULTS FROM STATISTICAL CURVE MATCHING

### STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error

K = 2.4071E-003 +/- 2.2587E-005y0 = 1.5348E+000 +/- 6.5953E-003

Bouwer-Rice (Unconfined Aquifer Slug Test)

ANALYSIS OF MODEL RESIDUALS

## residual = calculated - observed weighted residual = residual * weight

## Weighted Residual Statistics:

### Model Residuals:

Time	Observed	Calculated	Residual	Weight
0.0033	1.59	1.5226	0.067448	1
0.0067	1.58	1.51	0.069971	1
0.01	1.56	1.498	0.062027	1
0.0133	1.54	1.486	0.053987	1
0.0167	1.53	1.4738	0.05621	1
0.02	1.51	1.462	0.047977	1
0.0233	1.5	1.4504	0.04965	1
0.0267	1.48	1.4384	0.041579	1
0.03	1.46	1.4269	0.033064	1
0.0333	1.45	1.4155	0.034457	1
0.0366	1.43	1.4042	0.025759	1
0.04	1.42	1.3927	0.027309	1
0.0433	1.4	1.3816	0.018428	1
0.0466	1.4	1.3705	0.029459	1
0.05	1.38	1.3593	0.020732	1
0.0533	1.37	1.3484	0.021584	1
0.0566	1.35	1.3376	0.01235	1
0.06	1.34	1.3266	0.013353	1
0.0633	1.32	1.3161	0.0039448	1
0.0666	1.3	1.3055	-0.0055475	1
0.07	1.3	1.2948	0.0051907	1
0.0733	1.29	1.2845	0.0055287	1
0.0766	1.27	1.2742	-0.0042158	1
0.08	1.26	1.2637	-0.0037353	1
0.0833	1.26	1.2536	0.0063546	1
0.0866	1.24	1.2436	-0.0036361	1
0.09	1.23	1.2334	-0.003407	1
0.0933	1.21	1.2236	-0.013559	1
0.0966	1.21	1.2138	-0.0037902	1
0.1	1.19	1.2038	-0.013807	1
0.1033	1.18	1.1942	-0.014195	1
0.1066	1.18	1.1847	-0.0046605	1
0.11	1.16	1.1749	-0.014917	1
0.1133	1.15	1.1655	-0.015536	1
0.1166	1.15	1.1562	-0.00623	1
0.12	1.13	1.1467	-0.01672	1
0.1233	1.11	1.1376	-0.027564	1
0.1266	1.11	1.1285	-0.018482	1

0.13	1.1	1.1192	-0.0192	1
0.1333	1.1	1.1103	-0.010264	1
0.1366	1.08	1.1014	-0.021399	1
0.14	1.07	1.0923	-0.02234	1
0.1433	1.07	1.0836	-0.013619	1
0.1466	1.05	1.075	-0.024967	1
0.15	1.05	1.0661	-0.016125	1
0.1533	1.03	1.0576	-0.027613	1
0.1566	1.03	1.0492	-0.019169	1
0.16	1.02	1.0405	-0.020539	1
0.1633	1	1.0322	-0.032232	1
0.1666	1	1.024	-0.02399	1
0.17	0.99	1.0156	-0.025568	1
0.1733	0.99	1.0075	-0.017459	1
0.1766	0.97	0.99942	-0.029415	1
0.18	0.97	0.9912	-0.021195	1
0.1833	0.95	0.98328	-0.033281	1
0.1866	0.95	0.98528	-0.035281	1
0.19	0.94	0.96741	-0.027408	
0.1933	0.94	0.95968	-0.027408	1
0.1955	0.94	0.95202	-0.019084	1
0.1900	0.92	0.93202		1
0.2033	0.92	0.94419	-0.024191 -0.026652	1
0.2055	0.91			1
0.2000	0.91	0.92917	-0.019174	1
		0.92153	-0.031531	1
0.2133	0.89	0.91417	-0.024174	1
0.2166	0.87	0.90687	-0.036875	1
0.22	0.87	0.89942	-0.029416	1
0.2233	0.87	0.89223	-0.022234	1
0.2266	0.86	0.88511	-0.025111	1
0.23	0.86	0.87783	-0.017831	1
0.2333	0.84	0.87082	-0.030822	1
0.2366	0.84	0.86387	-0.023869	1
0.24	0.83	0.85676	-0.026764	1
0.2433	0.83	0.84992	-0.019923	1
0.2466	0.83	0.84314	-0.013137	1
0.25	0.81	0.8362	-0.026202	1
0.2533	0.81	0.82953	-0.019526	1
0.2566	0.81	0.8229	-0.012903	1
0.26	0.8	0.81613	-0.016134	1
0.2633	0.8	0.80962	-0.0096181	1
0.2666	0.78	0.80315	-0.023154	1
0.27	0.78	0.79655	-0.016548	1
0.2733	0.78	0.79019	-0.010188	1
0.2766	0.76	0.78388	-0.023879	1
0.28	0.76	0.77743	-0.017432	1
0.2833	0.76	0.77122	-0.011225	1
0.2866	0.75	0.76507	-0.015067	1
0.29	0.75	0.75877	-0.0087742	1
0.2933	0.73	0.75272	-0.022716	1
0.2966	0.73	0.74671	-0.016706	1
0.3	0.73	0.74056	-0.010564	1
0.3033	0.72	0.73465	-0.014652	1
0.3066	0.72	0.72879	-0.008786	1

.

•

0.31	0.72	0.72279	-0.0027917	1
0.3133	0.7	0.71702	-0.017021	1
0.3166	0.7	0.7113	-0.011296	1
0.32	0.7	0.70545	-0.0054455	1
0.3233	0.68	0.69981	-0.019813	1
0.3266	0.68	0.69423	-0.014226	1
0.33	0.68	0.68852	-0.0085156	1
0.3333	0.64	0.68302	-0.043018	1
0.35	0.65	0.65586	-0.0058649	1
0.3667	0.62	0.62979	-0.0097909	1
0.3833	0.61	0.6049	0.0050996	1
0.4	0.57	0.58085	-0.010853	1
0.4167	0.56	0.55776	0.0022393	1
0.4333	0.54	0.53572	0.004283	1
0.45	0.53	0.51442	0.01558	1
0.4667	0.51	0.49397	0.016031	1
0.4833	0.49	0.47445	0.015554	1
0.4655	0.48	0.45558	0.024415	1
0.5167	0.46	0.43747	0.022527	1
0.533	0.43	0.42049	0.0095107	1
0.55	0.43	0.40348	0.026521	1
0.5667	0.43	0.38744	0.022562	1
0.5833	0.41	0.37213	0.027874	1
0.5655	0.38	0.35733	0.022668	1
0.6167	0.37	0.34313	0.026874	1
0.6333	0.37	0.32957	0.040435	1
0.65	0.37	0.32937	0.033537	1
0.6667	0.33	0.30388	0.026118	1
0.6833	0.33	0.30388	0.028118	1
0.0833	0.33	0.29187	0.039731	1
0.7	0.32	0.26913	0.039731	1
0.7107	0.3	0.25849	0.030873	1
0.75	0.29	0.23849	0.041303	1
0.76	0.29	0.23835	0.051654	1
0.7833	0.29	0.22893	0.031034	1
0.7833	0.27	0.22893	0.050174	1
0.8	0.27	0.21109	0.038914	1
0.8107	0.25	0.20274	0.038914	1
0.85	0.25	0.20274	0.055316	1
0.8667	0.23	0.13408	0.053056	1
0.8833	0.24	0.17956	0.040444	1
0.8833	0.22	0.17242	0.047583	1
0.9	0.22	0.17242	0.047383	1
0.9107	0.22	0.15902	0.054437	1
	0.21	0.15902	0.03098	·1
0.95	0.21	0.1327	0.037302	1
0.9667	0.21	0.14083	0.003373	1
0.9833	0.19	0.14083	0.049168	1
1 1.2	0.19	0.13523	0.034767	1
		0.083194	0.046806	1
1.4	0.11 0.1	0.03118	0.03882	1
1.6	0.1	0.031485	0.068313	1
1.8				
2	0.06	0.011916 0.0073303	0.048084	1 1
2.2	0.05	0.00/3303	0.04267	1

2.4	0.05	0.0045095	0.045491	1
2.6	0.05	0.0027742	0.047226	1
2.8	0.03	0.0017066	0.028293	1
3	0.03	0.0010499	0.02895	1
3.2	0.03	0.00064588	0.029354	1
3.4	0.03	0.00039734	0.029603	1
3.6	0.02	0.00024444	0.019756	1

______

______

## RESULTS FROM VISUAL CURVE MATCHING

### VISUAL MATCH PARAMETER ESTIMATES

### Estimate

K = 1.7472E-003y0 = 1.1100E+000

### TYPE CURVE DATA

K = 1.83635E-003y0 = 1.15000E+000

Time Drawdown Time Drawdown Time Drawdown

----0.000E+000 1.150E+000 4.000E+000 6.941E-004

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
0	0.0000	0.0000	8.936	0.00	1.61	1.00	0.73
1	0.0033	0.0033	8.920	0.02	1.59	0.99	0.72
2	0.0067	0.0067	8.904	0.03	1.58	0.98	0.72
3	0.0100	0.0100	8.888	0.05	1.56	0.97	0.71
	0.0133	0.0133	8.872	0.06	1.54	0.96	0.70
4 5	0.0167	0.0167	8.856	0.08	1.53	0.95	0.69
6	0.0200	0.0200	8.840	0.10	1.51	0.94	0.69
7	0.0233	0.0233	8.824	0.11	1.50	0.93	0.68
8	0.0267	0.0267	8.808	0.13	1.48	0.92	0.67
9	0.0300	0.0300	8.792	0.14	1.46	0.91	0.67
10	0.0333	0.0333	8.776	0.16	1.45	0.90	0.66
11	0.0366	0.0366	8.761	0.18	1.43	0.89	0.65
12	0.0400	0.0400	8.745	0.19	1.42	0.88	0.64
13	0.0433	0.0433	8.729	0.21	1.40	0.87	0.64
14	0.0466	0.0466	8.729	0.21	1.40	0.87	0.64
15	0.0500	0.0500	8.713	0.22	1.38	0.86	0.63
16	0.0533	0.0533	8.697	0.24	1.37	0.85	0.62
17	0.0566	0.0566	8.681	0.26	1.35	0.84	0.61
18	0.0600	0.0600	8.665	0.27	1.34	0.83	0.61
19	0.0633	0.0633	8.649	0.29	1.32	0.82	0.60
20	0.0666	0.0666	8.633	0.30	1.30	0.81	0.59
21	0.0700	0.0700	8.633	0.30	1.30	0.81	0.59
22	0.0733	0.0733	8.617	0.32	1.29	0.80	0.59
23	0.0766	0.0766	8.601	0.33	1.27	0.79	0.58
24	0.0800	0.0800	8.586	0.35	1.26	0.78	0.57
25	0.0833	0.0833	8.586	0.35	1.26	0.78	0.57
26	0.0866	0.0866	8.569	0.37	1.24	0.77	0.56
27	0.0900	0.0900	8.554	0.38	1.23	0.76	0.56
28	0.0933	0.0933	8.538	0.40	1.21	0.75	0.55
29	0.0966	0.0966	8.538	0.40	1.21	0.75	0.55
30	0.1000	0.1000	8.522	0.41	1.19	0.74	0.54

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
31	0.1033	0.1033	8.506	0.43	1.18	0.73	0.54
32	0.1066	0.1066	8.506	0.43	1.18	0.73	0.54
33	0.1100	0.1100	8.490	0.45	1.16	0.72	0.53
34	0.1133	0.1133	8.474	0.46	1.15	0.71	0.52
35	0.1166	0.1166	8.474	0.46	1.15	0.71	0.52
36	0.1200	0.1200	8.458	0.48	1.13	0.70	0.51
37	0.1233	0.1233	8.442	0.49	1.11	0.69	0.51
38	0.1266	0.1266	8.442	0.49	1.11	0.69	0.51
39	0.1300	0.1300	8.426	0.51	1.10	0.68	0.50
40	0.1333	0.1333	8.426	0.51	1.10	0.68	0.50
41	0.1366	0.1366	8.410	0.53	1.08	0.67	0.49
42	0.1400	0.1400	8.394	0.54	1.07	0.66	0.48
43	0.1433	0.1433	8.394	0.54	1.07	0.66	0.48
44	0.1466	0.1466	8.379	0.56	1.05	0.65	0.48
45	0.1500	0.1500	8.379	0.56	1.05	0.65	0.48
46	0.1533	0.1533	8.363	0.57	1.03	0.64	0.47
47	0.1566	0.1566	8.363	0.57	1.03	0.64	0.47
48	0.1600	0.1600	8.347	0.59	1.02	0.63	0.46
49	0.1633	0.1633	8.331	0.61	1.00	0.62	0.46
50	0.1666	0.1666	8.331	0.61	1.00	0.62	0.46
51	0.1700	0.1700	8.315	0.62	0.99	0.61	0.45
52	0.1733	0.1733	8.315	0.62	0.99	0.61	0.45
53	0.1766	0.1766	8.299	0.64	0.97	0.60	0.44
54	0.1800	0.1800	8.299	0.64	0.97	0.60	0.44
55	0.1833	0.1833	8.283	0.65	0.95	0.59	0.43
56	0.1866	0.1866	8.283	0.65	0.95	0.59	0.43
57	0.1900	0.1900	8.267	0.67	0.94	0.58	0.43
58	0.1933	0.1933	8.267	0.67	0.94	0.58	0.43
59	0.1966	0.1966	8.251	0.69	0.92	0.57	0.42
60	0.2000	0.2000	8.251	0.69	0.92	0.57	0.42
61	0.2033	0.2033	8.235	0.70	0.91	0.56	0.41

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
62	0.2066	0.2066	8.235	0.70	0.91	0.56	0.41
63	0.2100	0.2100	8.219	0.72	0.89	0.55	0.40
64	0.2133	0.2133	8.219	0.72	0.89	0.55	0.40
65	0.2166	0.2166	8.203	0.73	0.87	0.54	0.40
66	0.2200	0.2200	8.203	0.73	0.87	0.54	0.40
67	0.2233	0.2233	8.203	0.73	0.87	0.54	0.40
68	0.2266	0.2266	8.187	0.75	0.86	0.53	0.39
69	0.2300	0.2300	8.187	0.75	0.86	0.53	0.39
70	0.2333	0.2333	8.171	0.77	0.84	0.52	0.38
71	0.2366	0.2366	8.171	0.77	0.84	0.52	0.38
72	0.2400	0.2400	8.156	0.78	0.83	0.51	0.38
73	0.2433	0.2433	8.156	0.78	0.83	0.51	0.38
74	0.2466	0.2466	8.156	0.78	0.83	0.51	0.38
75	0.2500	0.2500	8.140	0.80	0.81	0.50	0.37
76	0.2533	0.2533	8.140	0.80	0.81	0.50	0.37
77	0.2566	0.2566	8.140	0.80	0.81	0.50	0.37
78	0.2600	0.2600	8.124	0.81	0.80	0.50	0.36
79	0.2633	0.2633	8.124	0.81	0.80	0.50	0.36
80	0.2666	0.2666	8.108	0.83	0.78	0.49	0.35
81	0.2700	0.2700	8.108	0.83	0.78	0.49	0.35
82	0.2733	0.2733	8.108	0.83	0.78	0.49	0.35
83	0.2766	0.2766	8.092	0.84	0.76	0.48	0.35
84	0.2800	0.2800	8.092	0.84	0.76	0.48	0.35
85	0.2833	0.2833	8.092	0.84	0.76	0.48	0.35
86	0.2866	0.2866	8.076	0.86	0.75	0.47	0.34
87	0.2900	0.2900	8.076	0.86	0.75	0.47	0.34
88	0.2933	0.2933	8.060	0.88	0.73	0.46	0.33
89	0.2966	0.2966	8.060	0.88	0.73	0.46	0.33
90	0.3000	0.3000	8.060	0.88	0.73	0.46	0.33
91	0.3033	0.3033	8.044	0.89	0.72	0.45	0.33
92	0.3066	0.3066	8.044	0.89	0.72	0.45	0.33

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
93	0.3100	0.3100	8.044	0.89	0.72	0.45	0.33
94	0.3133	0.3133	8.028	0.91	0.70	0.44	0.32
95	0.3166	0.3166	8.028	0.91	0.70	0.44	0.32
· 96	0.3200	0.3200	8.028	0.91	0.70	0.44	0.32
97	0.3233	0.3233	8.012	0.92	0.68	0.43	0.31
98	0.3266	0.3266	8.012	0.92	0.68	0.43	0.31
99	0.3300	0.3300	8.012	0.92	0.68	0.43	0.31
100	0.3333	0.3333	7.966	0.97	0.64	0.40	0.29
101	0.3500	0.3500	7.981	0.96	0.65	0.41	0.30
102	0.3667	0.3667	7.949	0.99	0.62	0.39	0.28
103	0.3833	0.3833	7.933	1.00	0.61	0.38	0.28
104	0.4000	0.4000	7.901	1.04	0.57	0.36	0.26
105	0.4167	0.4167	7.885	1.05	0.56	0.35	0.25
106	0.4333	0.4333	7.869	1.07	0.54	0.34	0.25
107	0.4500	0.4500	7.853	1.08	0.53	0.33	0.24
108	0.4667	0.4667	7.837	1.10	0.51	0.32	0.23
109	0.4833	0.4833	7.821	1.12	0.49	0.31	0.22
110	0.5000	0.5000	7.805	1.13	0.48	0.30	0.22
111	0.5167	0.5167	7.789	1.15	0.46	0.29	0.21
112	0.5333	0.5333	7.758	1.18	0.43	0.27	0.20
113	0.5500	0.5500	7.758	1.18	0.43	0.27	0.20
114	0.5667	0.5667	7.742	1.19	0.41	0.26	0.19
115	0.5833	0.5833	7.726	1.21	0.40	0.25	0.18
116	0.6000	0.6000	7.710	1.23	0.38	0.24	0.17
117	0.6167	0.6167	7.694	1.24	0.37	0.23	0.17
118	0.6333	0.6333	7.694	1.24	0.37	0.23	0.17
119	0.6500	0.6500	7.678	1.26	0.35	0.22	0.16
120	0.6667	0.6667	7.662	1.27	0.33	0.21	0.15
121	0.6833	0.6833	7.662	1.27	0.33	0.21	0.15
122	0.7000	0.7000	7.646	1.29	0.32	0.20	0.14
123	0.7167	0.7167	7.630	1.31	0.30	0.19	0.14

				Н			•
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
124	0.7333	0.7333	7.630	1.31	0.30	0.19	0.14
125	0.7500	0.7500	7.614	1.32	0.29	0.18	0.13
126	0.7667	0.7667	7.614	1.32	0.29	0.18	0.13
127	0.7833	0.7833	7.598	1.34	0.27	0.17	0.12
128	0.8000	0.8000	7.598	1.34	0.27	0.17	0.12
129	0.8167	0.8167	7.582	1.35	0.25	0.16	0.12
130	0.8333	0.8333	7.582	1.35	0.25	0.16	0.12
131	0.8500	0.8500	7.582	1.35	0.25	0.16	0.12
132	0.8667	0.8667	7.566	1.37	0.24	0.15	0.11
133	0.8833	0.8833	7.551	1.39	0.22	0.14	0.10
134	0.9000	0.9000	7.551	1.39	0.22	0.14	0.10
135	0.9167	0.9167	7.551	1.39	0.22	0.14	0.10
136	0.9333	0.9333	7.535	1.40	0.21	0.13	0.09
137	0.9500	0.9500	7.535	1.40	0.21	0.13	0.09
138	0.9667	0.9667	7.535	1.40	0.21	0.13	0.09
139	0.9833	0.9833	7.519	1.42	0.19	0.12	0.09
140	1.0000	1.0000	7.519	1.42	0.19	0.12	0.09
141	1.2000	1.2000	7.455	1.48	0.13	0.08	0.06
142	1.4000	1.4000	7.439	1.50	0.11	0.07	0.05
143	1.6000	1.6000	7.423	1.51	0.10	0.06	0.04
144	1.8000	1.8000	7.407	1.53	0.08	0.05	0.04
145	2.0000	2.0000	7.391	1.55	0.06	0.04	0.03
146	2.2000	2.2000	7.375	1.56	0.05	0.03	0.02
147	2.4000	2.4000	7.375	1.56	0.05	0.03	0.02
148	2.6000	2.6000	7.375	1.56	0.05	0.03	0.02
149	2.8000	2.8000	7.360	1.58	0.03	0.02	0.01
150	3.0000	3.0000	7.360	1.58	0.03	0.02	0.01
151	3.2000	3.2000	7.360	1.58	0.03	0.02	0.01
152	3.4000	3.4000	7.360	1.58	0.03	0.02	0.01
153	3.6000	3.6000	7.344	1.59	0.02	0.01	0.01
154	3.8000	3.8000	7.344	1.59	0.02	0.01	0.01

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
155	4.0000	4.0000	7.344	1.59	0.02	0.01	0.01
156	4.2000	4.2000	7.344	1.59	0.02	0.01	0.01
157	4.4000	4.4000	7.344	1.59	0.02	0.01	0.01
158	4.6000	4.6000	7.344	1.59	0.02	0.01	0.01
159	4.8000	4.8000	7.344	1.59	0.02	0.01	0.01
160	5.0000	5.0000	7.344	1.59	0.02	0.01	0.01
161	5.2000	5.2000	7.328	1.61	0.00	0.00	0.00
162	5.4000	5.4000	7.328	1.61	0.00	0.00	0.00
163	5.6000	5.6000	7.344	1.59	0.02	0.01	0.01
164	5.8000	5.8000	7.344	1.59	0.02	0.01	0.01
165	6.0000	6.0000	7.344	1.59	0.02	0.01	0.01
166	6.2000	6.2000	7.344	1.59	0.02	0.01	0.01
167	6.4000	6.4000	7.344	1.59	0.02	0.01	0.01
168	6.6000	6.6000	7.344	1.59	0.02	0.01	0.01
169	6.8000	6.8000	7.344	1.59	0.02	0.01	0.01
170	7.0000	7.0000	7.344	1.59	0.02	0.01	0.01
171	7.2000	7.2000	7.344	1.59	0.02	0.01	0.01
172	7.4000	7.4000	7.344	1.59	0.02	0.01	0.01
173	7.6000	7.6000	7.344	1.59	0.02	0.01	0.01
174	7.8000	7.8000	7.344	1.59	0.02	0.01	0.01
175	8.0000	8.0000	7.344	1.59	0.02	0.01	0.01
176	8.2000	8.2000	7.344	1.59	0.02	0.01	0.01
177	8.4000	8.4000	7.344	1.59	0.02	0.01	0.01
178	8.6000	8.6000	7.344	1.59	0.02	0.01	0.01
179	8.8000	8.8000	7.344	1.59	0.02	0.01	0.01
180	9.0000	9.0000	7.344	1.59	0.02	0.01	0.01
181	9.2000	9.2000	7.344	1.59	0.02	0.01	0.01
182	9.4000	9.4000	7.344	1.59	0.02	0.01	0.01
183	9.6000	9.6000	7.344	1.59	0.02	0.01	0.01
184	9.8000	9.8000	7.344	1.59	0.02	0.01	0.01
185	10.0000	10.0000	7.344	1.59	0.02	0.01	0.01



<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>	
AQTESOLV RESULTS Version 1.10	
09/08/93	13:14:42
======================================	
Data set	
Obs. well MW-13  Knowns and Constants: No. of data points 133	

No. of data points	133		
Radius of well casing	0.083	33	
Radius of well	0.3438		
Aquifer saturated thickness	13.5		
Well screen length	10		
Static height of water in well	16.39	)	
Log(Re/Rw)	2.846		
A, B, C	. 0.000,	0.000,	1.940

_______

# 

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM STATISTICAL CURVE MATCHING

### STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error K = 2.0970E-003 +/- 2.6353E-005 y0 = 1.0309E+000 +/- 5.2426E-003

ANALYSIS OF MODEL RESIDUALS

### residual = calculated - observed weighted residual = residual * weight

## Weighted Residual Statistics:

### Model Residuals:

Time	Observed	Calculated	Residual	Weight
0.0033	1.1	1.0237	0.076295	1
0.0067	1.08	1.0163	0.063654	1
0.01	1.07	1.0093	0.060746	1
0.0133	1.05	1.0022	0.047788	1
0.0167	1.04	0.99501	0.044992	1
0.02	1.02	0.98806	0.031935	1
0.0233	1.02	0.98117	0.03883	1
0.0267	1	0.97412	0.025883	1
0.03	1	0.96732	0.03268	1
0.0333	0.99	0.96057	0.02943	1
0.0367	0.97	0.95367	0.016335	1
0.04	0.97	0.94701	0.022989	1
0.0433	0.96	0.9404	0.019597	1
0.0467	0.96	0.93364	0.026357	1
0.05	0.94	0.92713	0.012872	1
0.0533	0.92	0.92066	-0.00065899	1
0.0567	0.92	0.91404	0.0059591	1
0.06	0.91	0.90766	0.002337	1
0.0633	0.91	0.90133	0.0086705	1
0.0667	0.89	0.89485	-0.0048504	1
0.07	0.89	0.88861	0.0013937	1
0.0733	0.88	0.88241	-0.0024059	1
0.0767	0.88	0.87606	0.0039373	1
0.08	0.86	0.86995	-0.0099498	1
0.0833	0.86	0.86388	-0.0038795	1
0.0867	0.84	0.85767	-0.01767	1
0.09	0.84	0.85168	-0.011685	1
0.0933	0.84	0.84574	-0.0057421	1
0.0967	0.83	0.83966	-0.0096626	1
0.1	0.83	0.8338	-0.0038036	1
0.1033	0.81	0.82799	-0.017986	1
0.1067	0.81	0.82203	-0.012034	1
0.11	0.81	0.8163	-0.0062977	1
0.1133	0.8	0.8106	-0.010602	1
0.1167	0.8	0.80477	-0.0047748	1
0.12	0.78	0.79916	-0.019159	1
0.1233	0.78	0.79358	-0.013583	1
0.1267	0.77	0.78788	-0.017878	1

0.13	0.77	0.78238	-0.012381	1
0.1333	0.77	0.77692	-0.0069215	1
0.1367	0.75	0.77134	-0.021337	1
0.14	0.75	0.76595	-0.015954	1
0.1433	0.75	0.76061	-0.01061	1
0.1467	0.73	0.75514	-0.025142	1
0.15	0.73	0.74987	-0.019873	1
0.1533	0.73	0.74464	-0.014641	1
0.1567	0.72	0.73929	-0.019288	1
0.16	0.72	0.73413	-0.014129	1
0.1633	0.7	0.72901	-0.029007	1
0.1667	0.7	0.72377	-0.023766	1
0.17	0.7	0.71872	-0.018716	1
0.1733	0.7	0.7137	-0.013701	1
0.1767	0.69	0.70857	-0.018571	1
0.18	0.69	0.70363	-0.013626	1
0.1833	0.69	0.69872	-0.0087166	1
0.1867	0.67	0.69369	-0.023694	1
0.19	0.67	0.68885	-0.018854	1
0.1933	0.67	0.68405	-0.014047	1
0.1967	0.65	0.67913	-0.02913	1
0.1507	0.65	0.67439	-0.024391	1
0.2033	0.65	0.66969	-0.019685	1
0.2053	0.64	0.66487	-0.024871	1
0.2007	0.64	0.66023	-0.020232	1
0.21	0.64	0.65562	-0.015625	1
0.2153	0.64	0.65091	-0.019023	1
0.22	0.62	0.64637	-0.02637	1
0.2233	0.62	0.64186	-0.02186	1
0.2267	0.62	0.63725	-0.017246	1
0.23	0.61	0.6328	-0.022799	1
0.2333	0.61	0.62838	-0.018384	1
0.2367	0.61	0.62387	-0.013867	1
0.24	0.61	0.61951	-0.0095136	1
0.2433	0.59	0.61519	-0.025191	1
0.2467	0.59	0.61077	-0.020769	1
0.25	0.59	0.60651	-0.016507	1
0.2533	0.59	0.60227	-0.012275	1
0.2567	0.59	0.59795	-0.0079453	1
0.26	0.57	0.59377	-0.023773	1
0.2633	0.57	0.58963	-0.01963	1
0.2667	0.57	0.58539	-0.015391	1
0.27	0.57	0.58131	-0.011307	1
0.2867	0.54	0.56107	-0.021068	1
0.3034	0.53	0.54153	-0.011535	1
0.32	0.51	0.52279	-0.012792	1
0.3367	0.49	0.50459	-0.014591	1
0.3534	0.49	0.30439	-0.007024	1
0.3334	0.46	0.47017	-0.007024	1
0.37	0.40	0.4538	-0.010108	1
0.3867	0.43	0.4338	-0.0037992	1
0.4034	0.43	0.438	-0.012841	1
0.42	0.41	0.42284	-0.012641	1
0.4534	0.4	0.40812	0.0060888	1
0.4334	0.4	0.39391	0.0000000	1

0.4700	0:4697-	0.38	0.38052	-0.00052	1
	0.4867	0.37	0.36704	0.0029615	1
	0.5034	0.37	0.35426	0.01574	1
	0.52	0.35	0.342	0.0080009	1
	0.5367	0.33	0.33009	-9.2449E-005	1
	0.5534	0.33	0.3186	0.0114	1
	0.57	0.32	0.30757	0.012426	1
	0.5867	0.32	0.29687	0.023135	1
	0.6034	0.3	0.28653	0.01347	1
	0.62	0.29	0.27661	0.013387	1
	0.6367	0.29	0.26698	0.023017	1
	0.6534	0.27	0.25769	0.012312	1
	0.67	0.27	0.24877	0.021231	1
	0.6867	0.25	0.24011	0.0098915	1
	0.7034	0.25	0.23175	0.018251	1
`	0.72	0.25	0.22373	0.026272	1
	0.7367	0.24	0.21594	0.024061	1
	0.7534	0.24	0.20842	0.031579	1
	0.77	0.24	0.20121	0.038792	1
	0.7867	0.22	0.1942	0.025797	1
	0.8034	0.22	0.18744	0.032558	1
	0.82	0.22	0.18095	0.039046	1
	0.8367	0.21	0.17465	0.035346	1
	0.8534	0.21	0.16857	0.041426	1
	0.87	0.21	0.16274	0.047261	1
	0.8867	0.19	0.15707	0.032926	1
	0.9034	0.19	0.15161	0.038395	1
	0.92	0.19	0.14636	0.043642	1
	0.9367	0.18	0.14126	0.038737	1
	1.1367	0.14	0.092411	0.047589	1
	1.3367	0.11	0.060453	0.049547	1
	1.5367	0.1	0.039547	0.060453	1
	1.7367	0.08	0.025871	0.054129	1
	1.9367	0.06	0.016924	0.043076	1
	2.1367	0.05	0.011071	0.038929	1
	2.3367	0.05	0.0072427	0.042757	1
	2.5367	0.05	0.004738	0.045262	1
	2.7367	0.03	0.0030995	0.026901	1
	2.9367	0.03	0.0020276	0.027972	1

## RESULTS FROM VISUAL CURVE MATCHING

## VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 2.0970E-003y0 = 1.0309E+000

<<<<<<<<<<<<<<<>>>>>

## TYPE CURVE DATA

K = 1.65959E-003y0 = 8.54744E-001

Time Drawdown Time Drawdown Time Drawdown

0.000E+000 8.547E-001 3.000E+000 5.546E-003

		Н					
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	· ·						
0	0.0000	-0.0633	6.373	0.10	1.00	0.91	0.46
1	0.0033	-0.0600	6.054	-0.22	1.32	1.20	0.60
2	0.0067	-0.0566	5.497	-0.78	1.88	1.71	0.85
3	0.0100	-0.0533	5.003	-1.27	2.37	2.16	1.08
4	0.0133	-0.0500	4.828	-1.45	2.55	2.32	1.16
5	0.0167	-0.0466	4.892	-1.39	2.48	2.26	1.13
6	0.0200	-0.0433	5.003	-1.27	2.37	2.16	1.08
7	0.0233	-0.0400	5.401	-0.88	1.98	1.80	0.90
8	0.0267	-0.0366	7.853	1.58	-0.48	-0.43	-0.22
9	0.0300	-0.0333	6.755	0.48	0.62	0.57	0.28
10	0.0333	-0.0300	6.978	0.70	0.40	0.36	0.18
11	0.0366	-0.0267	6.293	0.02	1.08	0.99	0.49
12	0.0400	-0.0233	6.054	-0.22	1.32	1.20	0.60
13	0.0433	-0.0200	5.943	-0.33	1.43	1.30	0.65
14	0.0466	-0.0167	5.959	-0.32	1.42	1.29	0.64
15	0.0500	-0.0133	6.134	-0.14	1.24	1.13	0.56
16	0.0533	-0.0100	6.277	0.00	1.10	1.00	0.50
17	0.0566	-0.0067	6.341	0.06	1.04	0.94	0.47
18	0.0600	-0.0033	6.325	0.05	1.05	0.96	0.48
19	0.0633	-0.0000	6.277	0.00	1.10	1.00	0.50
20	0.0666	0.0033	6.277	0.00	1.10	1.00	0.50
21	0.0700	0.0067	6.293	0.02	1.08	0.99	0.49
22	0.0733	0.0100	6.309	0.03	1.07	0.97	0.48
23	0.0766	0.0133	6.325	0.05	1.05	0.96	0.48
24	0.0800	0.0167	6.341	0.06	1.04	0.94	0.47
25	0.0833	0.0200	6.357	0.08	1.02	0.93	0.46
26	0.0866	0.0233	6.357	0.08	1.02	0.93	0.46
27	0.0900	0.0267	6.373	0.10	1.00	0.91	0.46
28	0.0933	0.0300	6.373	0.10	1.00	0.91	0.46
29	0.0966	0.0333	6.388	0.11	0.99	0.90	0.45
30	0.1000	0.0367	6.404	0.13	0.97	0.88	0.44

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
31	0.1033	0.0400	6.404	0.13	0.97	0.88	0.44
32	0.1066	0.0433	6.420	0.14	0.96	0.87	0.43
33	0.1100	0.0467	6.420	0.14	0.96	0.87	0.43
34	0.1133	0.0500	6.436	0.16	0.94	0.86	0.43
35	0.1166	0.0533	6.452	0.17	0.92	0.84	0.42
36	0.1200	0.0567	6.452	0.17	0.92	0.84	0.42
37	0.1233	0.0600	6.468	0.19	0.91	0.83	0.41
38	0.1266	0.0633	6.468	0.19	0.91	0.83	0.41
39	0.1300	0.0667	6.484	0.21	0.89	0.81	0.41
40	0.1333	0.0700	6.484	0.21	0.89	0.81	0.41
41	0.1366	0.0733	6.500	0.22	0.88	0.80	0.40
42	0.1400	0.0767	6.500	0.22	0.88	0.80	0.40
43	0.1433	0.0800	6.516	0.24	0.86	0.78	0.39
44	0.1466	0.0833	6.516	0.24	0.86	0.78	0.39
45	0.1500	0.0867	6.532	0.25	0.84	0.77	0.38
46	0.1533	0.0900	6.532	0.25	0.84	0.77	0.38
47	0.1566	0.0933	6.532	0.25	0.84	0.77	0.38
48	0.1600	0.0967	6.548	0.27	0.83	0.75	0.38
49	0.1633	0.1000	6.548	0.27	0.83	0.75	0.38
50	0.1666	0.1033	6.563	0.29	0.81	0.74	0.37
51	0.1700	0.1067	6.563	0.29	0.81	0.74	0.37
52	0.1733	0.1100	6.563	0.29	0.81	0.74	0.37
53	0.1766	0.1133	6.579	0.30	0.80	0.73	0.36
54	0.1800	0.1167	6.579	0.30	0.80	0.73	0.36
55	0.1833	0.1200	6.595	0.32	0.78	0.71	0.36
56	0.1866	0.1233	6.595	0.32	0.78	0.71	0.36
57	0.1900	0.1267	6.611	0.33	0.77	0.70	0.35
58	0.1933	0.1300	6.611	0.33	0.77	0.70	0.35
59	0.1966	0.1333	6.611	0.33	0.77	0.70	0.35
60	0.2000	0.1367	6.627	0.35	0.75	0.68	0.34
61	0.2033	0.1400	6.627	0.35	0.75	0.68	0.34

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
62	0.2066	0.1433	6.627	0.35	0.75	0.68	0.34
63	0.2100	0.1467	6.643	0.37	0.73	0.67	0.33
64	0.2133	0.1500	6.643	0.37	0.73	0.67	0.33
65	0.2166	0.1533	6.643	0.37	0.73	0.67	0.33
66	0.2200	0.1567	6.659	0.38	0.72	0.65	0.33
67	0.2233	0.1600	6.659	0.38	0.72	0.65	0.33
68	0.2266	0.1633	6.675	0.40	0.70	0.64	0.32
69	0.2300	0.1667	6.675	0.40	0.70	0.64	0.32
70	0.2333	0.1700	6.675	0.40	0.70	0.64	0.32
71	0.2366	0.1733	6.675	0.40	0.70	0.64	0.32
72	0.2400	0.1767	6.691	0.41	0.69	0.62	0.31
73	0.2433	0.1800	6.691	0.41	0.69	0.62	0.31
74	0.2466	0.1833	6.691	0.41	0.69	0.62	0.31
75	0.2500	0.1867	6.707	0.43	0.67	0.61	0.30
76	0.2533	0.1900	6.707	0.43	0.67	0.61	0.30
77	0.2566	0.1933	6.707	0.43	0.67	0.61	0.30
78	0.2600	0.1967	6.723	0.45	0.65	0.59	0.30
79	0.2633	0.2000	6.723	0.45	0.65	0.59	0.30
80	0.2666	0.2033	6.723	0.45	0.65	0.59	0.30
81	0.2700	0.2067	6.739	0.46	0.64	0.58	0.29
82	0.2733	0.2100	6.739	0.46	0.64	0.58	0.29
83	0.2766	0.2133	6.739	0.46	0.64	0.58	0.29
84	0.2800	0.2167	6.739	0.46	0.64	0.58	0.29
85	0.2833	0.2200	6.755	0.48	0.62	0.57	0.28
86	0.2866	0.2233	6.755	0.48	0.62	0.57	0.28
87	0.2900	0.2267	6.755	0.48	0.62	0.57	0.28
88	0.2933	0.2300	6.770	0.49	0.61	0.55	0.28
89	0.2966	0.2333	6.770	0.49	0.61	0.55	0.28
90	0.3000	0.2367	6.770	0.49	0.61	0.55	0.28
91	0.3033	0.2400	6.770	0.49	0.61	0.55	0.28
92	0.3066	0.2433	6.786	0.51	0.59	0.54	0.23
						··· ·	0.27

		$\mathbf{H}$					
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
93	0.3100	0.2467	6.786	0.51	0.59	0.54	0.27
94	0.3133	0.2500	6.786	0.51	0.59	0.54	0.27
95	0.3166	0.2533	6.786	0.51	0.59	0.54	0.27
96	0.3200	0.2567	6.786	0.51	0.59	0.54	0.27
97	0.3233	0.2600	6.802	0.52	0.57	0.52	0.26
98	0.3266	0.2633	6.802	0.52	0.57	0.52	0.26
99	0.3300	0.2667	6.802	0.52	0.57	0.52	0.26
100	0.3333	0.2700	6.802	0.52	0.57	0.52	0.26
101	0.3500	0.2867	6.834	0.56	0.54	0.49	0.25
102	0.3667	0.3034	6.850	0.57	0.53	0.48	0.24
103	0.3833	0.3200	6.866	0.59	0.51	0.46	0.23
104	0.4000	0.3367	6.882	0.60	0.49	0.45	0.22
105	0.4167	0.3534	6.898	0.62	0.48	0.43	0.22
106	0.4333	0.3700	6.914	0.64	0.46	0.42	0.21
107	0.4500	0.3867	6.930	0.65	0.45	0.41	0.20
108	0.4667	0.4034	6.8469	0.37	0.73.43	0.66	0.33
109	0.4833	0.4200	6.962	0.68	0.41	0.38	0.19
110	0.5000	0.4367	6.978	0.70	0.40	0.36	0.18
111	0.5167	0.4534	6.978	0.70	0.40	0.36	0.18
112	0.5333	0.4700	6.993	0.72	0.38	0.35	0.17
113	0.5500	0.4867	7.009	0.73	0.37	0.33	0.17
114	0.5667	0.5034	7.009	0.73	0.37	0.33	0.17
115	0.5833	0.5200	7.025	0.75	0.35	0.32	0.16
116	0.6000	0.5367	<b>7.04</b> 1	0.76	0.33	0.30	0.15
117	0.6167	0.5534	7.041	0.76	0.33	0.30	0.15
118	0.6333	0.5700	7.057	0.78	0.32	0.29	0.14
119	0.6500	0.5867	7.057	0.78	0.32	0.29	0.14
120	0.6667	0.6034	7.073	0.80	0.30	0.28	0.14
121	0.6833	0.6200	7.089	0.81	0.29	0.26	0.13
122	0.7000	0.6367	7.089	0.81	0.29	0.26	0.13
123	0.7167	0.6534	7.105	0.83	0.27	0.25	0.12

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
124	0.7333	0.6700	7.105	0.83	0.27	0.25	0.12
125	0.7500	0.6867	7.121	0.84	0.25	0.23	0.12
126	0.7667	0.7034	7.121	0.84	0.25	0.23	0.12
127	0.7833	0.7200	7.121	0.84	0.25	0.23	0.12
128	0.8000	0.7367	7.137	0.86	0.24	0.22	0.11
129	0.8167	0.7534	7.137	0.86	0.24	0.22	0.11
130	0.8333	0.7700	7.137	0.86	0.24	0.22	0.11
131	0.8500	0.7867	7.153	0.88	0.22	0.20	0.10
132	0.8667	0.8034	7.153	0.88	0.22	0.20	0.10
133	0.8833	0.8200	7.153	0.88	0.22	0.20	0.10
134	0.9000	0.8367	7.168	0.89	0.21	0.19	0.09
135	0.9167	0.8534	7.168	0.89	0.21	0.19	0.09
136	0.9333	0.8700	7.168	0.89	0.21	0.19	0.09
137	0.9500	0.8867	7.184	0.91	0.19	0.17	0.09
138	0.9667	0.9034	7.184	0.91	0.19	0.17	0.09
139	0.9833	0.9200	7.184	0.91	0.19	0.17	0.09
140	1.0000	0.9367	7.200	0.92	0.18	0.16	0.08
141	1.2000	1.1367	7.232	0.96	0.14	0.13	0.07
142	1.4000	1.3367	7.264	0.99	0.11	0.10	0.05
143	1.6000	1.5367	7.280	1.00	0.10	0.09	0.04
144	1.8000	1.7367	7.296	1.02	0.08	0.07	0.04
145	2.0000	1.9367	7.312	1.04	0.06	0.06	0.03
146	2.2000	2.1367	7.328	1.05	0.05	0.04	0.02
147	2.4000	2.3367	7.328	1.05	0.05	0.04	0.02
148	2.6000	2.5367	7.328	1.05	0.05	0.04	0.02
149	2.8000	2.7367	7.344	1.07	0.03	0.03	0.01
150	3.0000	2.9367	7.344	1.07	0.03	0.03	0.01
151	3.2000	3.1367	7.344	1.07	0.03	0.03	0.01
152	3.4000	3.3367	7.360	1.08	0.02	0.01	0.01
153	3.6000	3.5367	7.360	1.08	0.02	0.01	0.01
154	3.8000	3.7367	7.360	1.08	0.02	0.01	0.01

		Н					
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
		•					
155	4.0000	3.9367	7.360	1.08	0.02	0.01	0.01
156	4.2000	4.1367	7.360	1.08	0.02	0.01	0.01
157	4.4000	4.3367	7.360	1.08	0.02	0.01	0.01
158	4.6000	4.5367	7.360	1.08	0.02	0.01	0.01
159	4.8000	4.7367	7.360	1.08	0.02	0.01	0.01
160	5.0000	4.9367	7.360	1.08	0.02	0.01	0.01
161	5.2000	5.1367	7.360	1.08	0.02	0.01	0.01
162	5.4000	5.3367	7.360	1.08	0.02	0.01	0.01
163	5.6000	5.5367	7.376	1.10	-0.00	-0.00	-0.00
164	5.8000	5.7367	7.376	1.10	-0.00	-0.00	-0.00
165	6.0000	5.9367	7.376	1.10	-0.00	-0.00	-0.00
166	6.2000	6.1367	7.360	1.08	0.02	0.01	0.01
167	6.4000	6.3367	7.360	1.08	0.02	0.01	0.01
168	6.6000	6.5367	7.360	1.08	0.02	0.01	0.01
169	6.8000	6.7367	7.360	1.08	0.02	0.01	0.01
170	7.0000	6.9367	7.344	1.07	0.03	0.03	0.01
171	7.2000	7.1367	7.344	1.07	0.03	0.03	0.01
172	7.4000	7.3367	7.344	1.07	0.03	0.03	0.01
173	7.6000	7.5367	7.360	1.08	0.02	0.01	0.01
174	7.8000	7.7367	7.360	1.08	0.02	0.01	0.01
175	8.0000	7.9367	7.360	1.08	0.02	0.01	0.01
176	8.2000	8.1367	7.360	1.08	0.02	0.01	0.01
177	8.4000	8.3367	7.360	1.08	0.02	0.01	0.01
178	8.6000	8.5367	7.360	1.08	0.02	0.01	0.01
179	8.8000	8.7367	7.360	1.08	0.02	0.01	0.01
180	9.0000	8.9367	7.360	1.08	0.02	0.01	0.01
181	9.2000	9.1367	7.360	1.08	0.02	0.01	0.01
182	9.4000	9.3367	7.360	1.08	0.02	0.01	0.01
183	9.6000	9.5367	7.360	1.08	0.02	0.01	0.01
184	9.8000	9.7367	7.376	1.10	-0.00	-0.00	-0.00
185	10.0000	9.9367	7.376	1.10	-0.00	-0.00	-0.00



AOTESOLV RESULTS Version 1.10 09/08/93 13:00:14 _____ ________ TEST DESCRIPTION Data set...... 13out Data set title..... SLUG OUT TEST MW-13 Company...... Halliburton NUS Project..... 1K94 Client..... Ellington Field (ANG) Location...... POL Storage Area Test date..... 09/03/93 Obs. well...... MW-13 Knowns and Constants: No. of data points......149 Radius of well casing...... 0.08333 Aquifer saturated thickness....... 13.5 Well screen length...... 10 Static height of water in well..... 16.39 Log(Re/Rw)......2.846 A, B, C...... 0.000, 0.000, 1.940 _____ ________

#### ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

_____

______

### RESULTS FROM STATISTICAL CURVE MATCHING

### STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error

K = 2.7570E-003 +/- 4.1493E-005y0 = 1.4065E+000 +/- 1.0291E-002

ANALYSIS OF MODEL RESIDUALS

## residual = calculated - observed weighted residual = residual * weight

## Weighted Residual Statistics:

### Model Residuals:

Time	Observed	Calculated	Calculated Residual	
0.0033	1.56	1.3936	0.16643	1
0.0067	1.51	1.3804	0.12959	1
0.01	1.48	1.3678	0.11224	1
0.0133	1.45	1.3552	0.094773	1
0.0167	1.43	1.3424	0.087567	1
0.02	1.42	1.3301	0.089869	1
0.0233	1.38	1.3179	0.062058	1
0.0267	1.37	1.3055	0.064499	1
0.03	1.35	1.2935	0.056463	1
0.0333	1.32	1.2817	0.038317	1
0.0366	1.3	1.2699	0.030062	1
0.04	1.29	1.2579	0.03205	1
0.0433	1.27	1.2464	0.023578	1
0.0466	1.26	1.235	0.025	1
0.05	1.24	1.2233	0.016659	1
0.0533	1.23	1.2121	0.017869	1
0.0566	1.19	1.201	-0.011023	1
0.06	1.19	1.1897	0.00031493	1
0.0633	1.18	1.1788	0.001217	. 1
0.0666	1.16	1.168	-0.0079808	1
0.07	1.15	1.157	-0.0069548	1
0.0733	1.13	1.1464	-0.016353	1
0.0766	1.11	1.1358	-0.025848	1
0.08	1.11	1.1251	-0.015125	1
0.0833	1.1	1.1148	-0.014814	1
0.0866	1.08	1.1046	-0.024598	1
0.09	1.07	1.0942	-0.024171	1
0.0933	1.05	1.0841	-0.034144	1
0.0966	1.05	1.0742	-0.024209	1
0.1	1.03	1.0641	-0.034068	1
0.1033	1.02	1.0543	-0.034317	1
0.1066	1.02	1.0447	-0.024656	1
0.11	1	1.0348	-0.034794	1
0.1133	0.99	1.0253	-0.035311	1
0.1166	0.97	1.0159	-0.045915	1
0.12	0.97	1.0063	-0.036325	1
0.1233	0.95	0.9971	-0.047103	1
0.1266	0.95	0.98797	-0.037966	1

0.13	0.94	0.97864	-0.038639	1
0.1333	0.94	0.96967	-0.029671	1
0.1366	0.92	0.96079	-0.040785	1
0.14	0.91	0.95172	-0.041715	1
0.1433	0.91	0.94299	-0.032994	1
0.1466	0.89	0.93435	-0.044352	1
0.15	0.89	0.92553	-0.035532	1
0.1533	0.87	0.91705	-0.04705	1
0.1566	0.87	0.90865	-0.038647	1
0.16	0.86	0.90007	-0.040069	1
0.1633	0.86	0.89182	-0.031821	1
0.1666	0.84	0.88365	-0.043648	1
0.17	0.84	0.87531	-0.035306	1
0.1733	0.83	0.86729	-0.037285	1
0.1766	0.83	0.85934	-0.029337	1
0.1700	0.81	0.85123	-0.041225	1
0.1833	0.81	0.84342	-0.033425	1
0.1855	0.81	0.8357	-0.035696	1
0.1800	0.8	0.82781	-0.027806	1
0.1933	0.8	0.82781	-0.027800	1
0.1933	0.78	0.82022	-0.032704	1
	0.78	0.80503	-0.032704	1
0.2	0.78	0.80303	-0.023032	1
0.2033				
0.2066	0.76	0.79035	-0.030345	1
0.21	0.75	0.78288	-0.032884	1
0.2133	0.75	0.77571	-0.02571	1
0.2166	0.73	0.7686	-0.038601	1
0.22	0.73	0.76135	-0.031346	1
0.2233	0.73	0.75437	-0.024369	1
0.2266	0.72	0.74746 0.7404	-0.027456	1
0.23	0.72		-0.0204	1
0.2333	0.7	0.73361	-0.033615	1 .
0.2366	0.7	0.72689	-0.026892	1
0.24	0.7	0.72003	-0.02003	1
0.2433	0.68	0.71343	-0.033432	1
0.2466	0.68	0.70689	-0.026894	1
0.25	0.68	0.70022	-0.020221	1
0.2533	0.67	0.6938	-0.023804	1
0.2566	0.67	0.68745	-0.017446	1
0.26	0.67	0.68096	-0.010956	1
0.2633	0.65	0.67472	-0.024716	1
0.2666	0.65	0.66853	-0.018533	1
0.27	0.64	0.66222	-0.022222	1
0.2733	0.64	0.65615	-0.016154	1
0.2766	0.64	0.65014	-0.010141	1
0.28	0.64	0.644	-0.0040032	1
0.2833	0.62	0.6381	-0.018102	1
0.2866	0.62	0.63225	-0.012254	1
0.29	0.6	0.62629	-0.026286	1
0.2933	0.6	0.62055	-0.020546	1
0.2966	0.6	0.61486	-0.01486	1
0.3	0.6	0.60906	-0.0090554	1
0.3033	0.59	0.60347	-0.013474	1
0.3066	0.59	0.59794	-0.0079439	1

•

0.31	0.59	0.5923	-0.0022992	1
0.3133	0.59	0.58687	0.0031286	1
0.3166	0.57	0.58149	-0.011493	1
0.32	0.57	0.576	-0.006004	1
0.3233	0.57	0.57073	-0.00072559	1
0.3266	0.57	0.5655	0.0045045	1
0.33	0.56	0.56016	-0.00015713	1
0.3333	0.56	0.55502	0.0049761	1
0.35	0.54	0.52976	0.010241	1
0.3667	0.51	0.50564	0.0043553	1
0.3833	0.49	0.48276	0.0072375	1
0.4	0.48	0.46079	0.019213	1
0.4167	0.46	0.43981	0.020188	1
0.4333	0.44	0.41991	0.020091	1
0.45	0.41	0.40079	0.009205	1
0.4667	0.4	0.38255	0.017449	1
0.4833	0.4	0.36524	0.034761	1
0.7055	0.38	0.34861	0.031387	1
0.5167	0.37	0.33274	0.037255	1
0.5333	0.35	0.31795	0.032047	1
0.55	0.33	0.30323	0.026774	1
0.5667	0.33	0.28942	0.040577	1
0.5833	0.33	0.27633	0.043675	1
0.3633	0.32	0.27033	0.056253	1
0.6167	0.32	0.20373	0.048259	1
0.6333	0.3	0.24035	0.049651	1
0.65	0.29	0.24033	0.060591	1
0.6667	0.29	0.22341	0.051034	1
0.6833	0.27	0.21897	0.060943	1
0.0833	0.27	0.20300	0.050459	1
0.7	0.25	0.19934	0.059542	1
0.7107	0.25	0.19040	0.068161	1
0.75	0.23	0.18184	0.066439	1
0.76	0.24	0.17556	0.00433	1
0.7833	0.24	0.15816	0.061836	1
0.7633	0.22	0.15096	0.069035	1
0.8167	0.22	0.13030	0.075907	1
0.8333	0.22	0.13757	0.072428	1
0.85	0.21	0.13737	0.07869	1
0.8667	0.19	0.12533	0.064667	1
0.8833	0.19	0.12955	0.070339	1
0.0055	0.19	0.11421	0.075786	1
0.9167	0.19	0.10901	0.080985	1
0.9333	0.19	0.10301	0.075918	1
0.95	0.18	0.10400	0.080656	1
0.9667	0.18	0.093344	0.085178	1
0.9833	0.18	0.094622	0.089469	1
0.9655	0.16	0.090331	0.089469	1
1.2	0.16	0.06041	0.07339	1
1.4	0.11	0.049439	0.000341	1
1.4	0.1	0.02831	0.07169	1
1.8	0.05	0.016204	0.043796	1
1.8	0.05	0.0092749	0.040725	
				1
2.2	0.03	0.0030387	0.026961	1

2.4	0.03	0.0017393	0.028261	1
2.6	0.02	0.00099554	0.019004	1
2.8	0.02	0.00056983	0.01943	1

______

## RESULTS FROM VISUAL CURVE MATCHING

### VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 2.7570E-003y0 = 1.4065E+000

#### TYPE CURVE DATA

K = 1.71994E-003y0 = 9.18665E-001

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
0	0.0000	0.0000	8.936	0.00	1.56	1.00	0.71
1	0.0033	0.0033	8.936	0.00	1.56	1.00	0.71
2	0.0067	0.0067	8.888	0.05	1.51	0.97	0.69
. 3	0.0100	0.0100	8.856	0.08	1.48	0.95	0.67
4	0.0133	0.0133	8.824	0.11	1.45	0.93	0.66
5	0.0167	0.0167	8.808	0.13	1.43	0.92	0.65
6	0.0200	0.0200	8.792	0.14	1.42	0.91	0.64
7	0.0233	0.0233	8.760	0.18	1.38	0.89	0.63
8	0.0267	0.0267	8.745	0.19	1.37	0.88	0.62
9	0.0300	0.0300	8.729	0.21	1.35	0.87	0.61
10	0.0333	0.0333	8.697	0.24	1.32	0.85	0.60
11	0.0366	0.0366	8.681	0.26	1.30	0.84	0.59
12	0.0400	0.0400	8.665	0.27	1.29	0.83	0.59
13	0.0433	0.0433	8.649	0.29	1.27	0.82	0.58
14	0.0466	0.0466	8.633	0.30	1.26	0.81	0.57
15	0.0500	0.0500	8.617	0.32	1.24	0.80	0.56
16	0.0533	0.0533	8.601	0.33	1.23	0.79	0.56
17	0.0566	0.0566	8.570	0.37	1.19	0.77	0.54
18	0.0600	0.0600	8.570	0.37	1.19	0.77	0.54
19	0.0633	0.0633	8.554	0.38	1.18	0.76	0.54
20	0.0666	0.0666	8.538	0.40	1.16	0.74	0.53
21	0.0700	0.0700	8.522	0.41	1.15	0.73	0.52
22	0.0733	0.0733	8.506	0.43	1.13	0.72	0.51
23	0.0766	0.0766	8.490	0.45	1.11	0.71	0.51
24	0.0800	0.0800	8.490	0.45	1.11	0.71	0.51
25	0.0833	0.0833	8.474	0.46	1.10	0.70	0.50
26	0.0866	0.0866	8.458	0.48	1.08	0.69	0.49
27	0.0900	0.0900	8.442	0.49	1.07	0.68	0.48
28	0.0933	0.0933	8.426	0.51	1.05	0.67	0.48
29	0.0966	0.0966	8.426	0.51	1.05	0.67	0.48
30	0.1000	0.1000	8.410	0.53	1.03	0.66	0.47

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
31	0.1033	0.1033	8.394	0.54	1.02	0.65	0.46
32	0.1066	0.1066	8.394	0.54	1.02	0.65	0.46
33	0.1100	0.1100	8.378	0.56	1.00	0.64	0.46
34	0.1133	0.1133	8.363	0.57	0.99	0.63	0.45
35	0.1166	0.1166	8.347	0.59	0.97	0.62	0.44
36	0.1200	0.1200	8.347	0.59	0.97	0.62	0.44
37	0.1233	0.1233	8.331	0.61	0.95	0.61	0.43
38	0.1266	0.1266	8.331	0.61	0.95	0.61	0.43
39	0.1300	0.1300	8.315	0.62	0.94	0.60	0.43
40	0.1333	0.1333	8.315	0.62	0.94	0.60	0.43
41	0.1366	0.1366	8.299	0.64	0.92	0.59	0.42
42	0.1400	0.1400	8.283	0.65	0.91	0.58	0.41
43	0.1433	0.1433	8.283	0.65	0.91	0.58	0.41
44	0.1466	0.1466	8.267	0.67	0.89	0.57	0.40
45	0.1500	0.1500	8.267	0.67	0.89	0.57	0.40
46	0.1533	0.1533	8.251	0.69	0.87	0.56	0.40
47	0.1566	0.1566	8.251	0.69	0.87	0.56	0.40
48	0.1600	0.1600	8.235	0.70	0.86	0.55	0.39
49	0.1633	0.1633	8.235	0.70	0.86	0.55	0.39
50	0.1666	0.1666	8.219	0.72	0.84	0.54	0.38
51	0.1700	0.1700	8.219	0.72	0.84	0.54	0.38
52	0.1733	0.1733	8.203	0.73	0.83	0.53	0.38
53	0.1766	0.1766	8.203	0.73	0.83	0.53	0.38
54	0.1800	0.1800	8.187	0.75	0.81	0.52	0.37
55	0.1833	0.1833	8.187	0.75	0.81	0.52	0.37
56	0.1866	0.1866	8.172	0.76	0.80	0.51	0.36
57	0.1900	0.1900	8.172	0.76	0.80	0.51	0.36
58	0.1933	0.1933	8.156	0.78	0.78	0.50	0.35
59	0.1966	0.1966	8.156	0.78	0.78	0.50	0.35
60	0.2000	0.2000	8.156	0.78	0.78	0.50	0.35
61	0.2033	0.2033	8.140	0.80	0.76	0.49	0.35

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
62	0.2066	0.2066	8.140	0.80	0.76	0.49	0.35
63	0.2100	0.2100	8.124	0.81	0.75	0.48	0.34
64	0.2133	0.2133	8.124	0.81	0.75	0.48	0.34
65	0.2166	0.2166	8.108	0.83	0.73	0.47	0.33
66	0.2200	0.2200	8.108	0.83	0.73	0.47	0.33
67	0.2233	0.2233	8.108	0.83	0.73	0.47	0.33
68	0.2266	0.2266	8.092	0.84	0.72	0.46	0.33
69	0.2300	0.2300	8.092	0.84	0.72	0.46	0.33
70	0.2333	0.2333	8.076	0.86	0.70	0.45	0.32
71	0.2366	0.2366	8.076	0.86	0.70	0.45	0.32
72	0.2400	0.2400	8.076	0.86	0.70	0.45	0.32
73	0.2433	0.2433	8.060	0.88	0.68	0.44	0.31
74	0.2466	0.2466	8.060	0.88	0.68	0.44	0.31
75	0.2500	0.2500	8.060	0.88	0.68	0.44	0.31
76	0.2533	0.2533	8.044	0.89	0.67	0.43	0.30
77	0.2566	0.2566	8.044	0.89	0.67	0.43	0.30
78	0.2600	0.2600	8.044	0.89	0.67	0.43	0.30
79	0.2633	0.2633	8.028	0.91	0.65	0.42	0.30
80	0.2666	0.2666	8.028	0.91	0.65	0.42	0.30
81	0.2700	0.2700	8.012	0.92	0.64	0.41	0.29
82	0.2733	0.2733	8.012	0.92	0.64	0.41	0.29
83	0.2766	0.2766	8.012	0.92	0.64	0.41	0.29
84	0.2800	0.2800	8.012	0.92	0.64	0.41	0.29
85	0.2833	0.2833	7.996	0.94	0.62	0.40	0.28
86	0.2866	0.2866	7.996	0.94	0.62	0.40	0.28
87	0.2900	0.2900	7.980	0.96	0.60	0.39	0.27
88	0.2933	0.2933	7.980	0.96	0.60	0.39	0.27
89	0.2966	0.2966	7.980	0.96	0.60	0.39	0.27
90	0.3000	0.3000	7.980	0.96	0.60	0.39	0.27
91	0.3033	0.3033	7.965	0.97	0.59	0.38	0.27
92	0.3066	0.3066	7.965	0.97	0.59	0.38	0.27

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
93	0.3100	0.3100	7.965	0.97	0.59	0.38	0.27
94	0.3133	0.3133	7.965	0.97	0.59	0.38	0.27
95	0.3166	0.3166	7.949	0.99	0.57	0.37	0.26
96	0.3200	0.3200	7.949	0.99	0.57	0.37	0.26
97	0.3233	0.3233	7.949	0.99	0.57	0.37	0.26
98	0.3266	0.3266	7.949	0.99	0.57	0.37	0.26
99	0.3300	0.3300	7.933	1.00	0.56	0.36	0.25
100	0.3333	0.3333	7.933	1.00	0.56	0.36	0.25
101	0.3500	0.3500	7.917	1.02	0.54	0.35	0.25
102	0.3667	0.3667	7.885	1.05	0.51	0.33	0.23
103	0.3833	0.3833	7.869	1.07	0.49	0.32	0.22
104	0.4000	0.4000	7.853	1.08	0.48	0.31	0.22
105	0.4167	0.4167	7.837	1.10	0.46	0.30	0.21
106	0.4333	0.4333	7.821	1.12	0.44	0.29	0.20
107	0.4500	0.4500	7.789	1.15	0.41	0.26	0.19
108	0.4667	0.4667	7.773	1.16	0.40	0.25	0.18
109	0.4833	0.4833	7.773	1.16	0.40	0.25	0.18
110	0.5000	0.5000	7.758	1.18	0.38	0.24	0.17
111	0.5167	0.5167	7.742	1.19	0.37	0.23	0.17
112	0.5333	0.5333	7.726	1.21	0.35	0.22	0.16
113	0.5500	0.5500	7.710	1.23	0.33	0.21	0.15
114	0.5667	0.5667	7.710	1.23	0.33	0.21	0.15
115	0.5833	0.5833	7.694	1.24	0.32	0.20	0.14
116	0.6000	0.6000	7.694	1.24	0.32	0.20	0.14
117	0.6167	0.6167	7.678	1.26	0.30	0.19	0.14
118	0.6333	0.6333	7.662	1.27	0.29	0.18	0.13
119	0.6500	0.6500	7.662	1.27	0.29	0.18	0.13
120	0.6667	0.6667	7.646	1.29	0.27	0.17	0.12
121	0.6833	0.6833	7.646	1.29	0.27	0.17	0.12
122	0.7000	0.7000	7.630	1.31	0.25	0.16	0.12
123	0.7167	0.7167	7.630	1.31	0.25	0.16	0.12

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
124	0.7333	0.7333	7.630	1.31	0.25	0.16	0.12
125	0.7500	0.7500	7.614	1.32	0.24	0.15	0.11
126	0.7667	0.7667	7.614	1.32	0.24	0.15	0.11
127	0.7833	0.7833	7.598	1.34	0.22	0.14	0.10
128	0.8000	0.8000	7.598	1.34	0.22	0.14	0.10
129	0.8167	0.8167	7.598	1.34	0.22	0.14	0.10
130	0.8333	0.8333	7.583	1.35	0.21	0.13	0.09
131	0.8500	0.8500	7.583	1.35	0.21	0.13	0.09
132	0.8667	0.8667	7.567	1.37	0.19	0.12	0.09
133	0.8833	0.8833	7.567	1.37	0.19	0.12	0.09
134	0.9000	0.9000	7.567	1.37	0.19	0.12	0.09
135	0.9167	0.9167	7.567	1.37	0.19	0.12	0.09
136	0.9333	0.9333	7.551	1.39	0.18	0.11	0.08
137	0.9500	0.9500	7.551	1.39	0.18	0.11	0.08
138	0.9667	0.9667	<b>7.</b> 551	1.39	0.18	0.11	0.08 ·
139	0.9833	0.9833	7.551	1.39	0.18	0.11	0.08
140	1.0000	1.0000	7.535	1.40	0.16	0.10	0.07
141	1.2000	1.2000	7.487	1.45	0.11	0.07	0.05
142	1.4000	1.4000	7.471	1.47	0.10	0.06	0.04
143	1.6000	1.6000	7.439	1.50	0.06	0.04	0.03
144	1.8000	1.8000	7.423	1.51	0.05	0.03	0.02
145	2.0000	2.0000	7.423	1.51	0.05	0.03	0.02
146	2.2000	2.2000	7.407	1.53	0.03	0.02	0.01
147	2.4000	2.4000	7.407	1.53	0.03	0.02	0.01
148	2.6000	2.6000	7.391	1.55	0.02	0.01	0.01
149	2.8000	2.8000	7.391	1.55	0.02	0.01	0.01
150	3.0000	3.0000	7.376	1.56	0.00	0.00	0.00
151	3.2000	3.2000	7.376	1.56	0.00	0.00	0.00
152	3.4000	3.4000	7.376	1.56	0.00	0.00	0.00
153	3.6000	3.6000	7 <b>.</b> 391	1.55	0.02	0.01	0.01
154	3.8000	3.8000	7.391	1.55	0.02	0.01	0.01

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	<b>READING</b>	TRANS.	TRANS.	TRANS.	THEOR
	` ,						
155	4.0000	4.0000	7.391	1.55	0.02	0.01	0.01
156	4.2000	4.2000	7.391	1.55	0.02	0.01	0.01
157	4.4000	4.4000	7.391	1.55	0.02	0.01	0.01
158	4.6000	4.6000	7.391	1.55	0.02	0.01	0.01
159	4.8000	4.8000	7.391	1.55	0.02	0.01	0.01
160	5.0000	5.0000	7.391	1.55	0.02	0.01	0.01
161	5.2000	5.2000	7.391	1.55	0.02	0.01	0.01
162	5.4000	5.4000	7.391	1.55	0.02	0.01	0.01
163	5.6000	5.6000	7.391	1.55	0.02	0.01	0.01
164	5.8000	5.8000	7.391	1.55	0.02	0.01	0.01
165	6.0000	6.0000	7.391	1.55	0.02	0.01	0.01
166	6.2000	6.2000	7.391	1.55	0.02	0.01	0.01
167	6.4000	6.4000	7.391	1.55	0.02	0.01	0.01
168	6.6000	6.6000	7.376	1.56	0.00	0.00	0.00
169	6.8000	6.8000	7.376	1.56	0.00	0.00	0.00
170	7.0000	7.0000	7.376	1.56	0.00	0.00	0.00
171	7.2000	7.2000	7.376	1.56	0.00	0.00	0.00
172	7.4000	7.4000	7.360	1.58	-0.02	-0.01	-0.01
173	7.6000	7.6000	7.376	1.56	0.00	0.00	0.00
174	7.8000	7.8000	7.360	1.58	-0.02	-0.01	-0.01
175	8.0000	8.0000	7.360	1.58	-0.02	-0.01	-0.01
176	8.2000	8.2000	7.360	1.58	-0.02	-0.01	-0.01
177	8.4000	8.4000	7.360	1.58	-0.02	-0.01	-0.01
178	8.6000	8.6000	7.344	1.59	-0.03	-0.02	-0.01
179	8.8000	8.8000	7.344	1.59	-0.03	-0.02	-0.01
180	9.0000	9.0000	7.360	1.58	-0.02	-0.01	-0.01
181	9.2000	9.2000	7.344	1.59	-0.03	-0.02	-0.01
182	9.4000	9.4000	7.344	1.59	-0.03	-0.02	-0.01
183	9.6000	9.6000	7.360	1.58	-0.02	-0.01	-0.01
184	9.8000	9.8000	7.360	1.58	-0.02	-0.01	-0.01
185	10.0000	10.0000	7.360	1.58	-0.02	-0.01	-0.01

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
186	12.0000	12.0000	7.391	1.55	0.02	0.01	0.01



#### TEST DESCRIPTION

Knowns and Constants:

 No. of data points
 155

 Radius of well casing
 0.08333

 Radius of well
 0.3438

 Aquifer saturated thickness
 13.5

 Well screen length
 10

 Static height of water in well
 16.13

 Log(Re/Rw)
 2.837

 A, B, C
 0.000, 0.000, 1.940

#### ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM STATISTICAL CURVE MATCHING

#### STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error K = 8.7549E-004 +/- 1.2416E-005y0 = 1.4669E+000 +/- 5.6587E-003

ANALYSIS OF MODEL RESIDUALS

residual = calculated - observed weighted residual = residual * weight

## Weighted Residual Statistics:

### Model Residuals:

Time	Observed	Calculated	Residual	Weight
0.0034	1.58	1.4624	0.11758	1
0.0067	1.53	1.4581	0.071859	1
0.01	1.51	1.4539	0.05613	1
0.0134	1.51	1.4495	0.060517	1
0.0167	1.51	1.4452	0.064762	1
0.02	1.51	1.441	0.068995	1
0.0234	1.5	1.4367	0.063344	1
0.0267	1.48	1.4324	0.047552	1
0.03	1.47	1.4283	0.041747	1
0.0334	1.47	1.4239	0.046057	1
0.0367	1.47	1.4198	0.050228	1
0.04	1.47	1.4156	0.054386	1
0.0434	1.45	1.4113	0.038658	1
0.0467	1.43	1.4072	0.022791	1
0.05	1.42	1.4031	0.016913	1
0.0534	1.42	1.3989	0.021147	1
0.0567	1.42	1.3948	0.025244	1
0.06	1.42	1.3907	0.029329	1
0.0634	1.4	1.3865	0.013526	1
0.0667	1.4	1.3824	0.017586	1
0.07	1.39	1.3784	0.011635	1
0.0734	1.39	1.3742	0.015795	1
0.0767	1.39	1.3702	0.01982	1
0.08	1.37	1.3662	0.0038329	1
0.0834	1.37	1.362	0.0079554	1
0.0867	1.35	1.3581	-0.0080553	1
0.09	1.35	1.3541	-0.0040777	1
0.0934	1.35	1.35	8.3402E-006	1
0.0967	1.34	1.346	-0.0060376	- 1
0.1	1.34	1.3421	-0.0020952	1
0.1034	1.34	1.338	0.0019547	1
0.1067	1.32	1.3341	-0.014126	1
0.11	1.32	1.3302	-0.010219	1
0.1134	1.31	1.3262	-0.016205	1
0.1167	1.31	1.3223	-0.01232	1
0.12	1.31	1.3184	-0.0084474	1
0.1234	1.31	1.3145	-0.0044689	1
0.1267	1.29	1.3106	-0.020619	1

0.13	1.29	1.3068	-0.01678	1
0.1334	1.29	1.3028	-0.012837	1
0.1367	1.29	1.299	-0.009021	1
0.14	1.27	1.2952	-0.025216	1
0.1434	1.27	1.2913	-0.021308	1
0.1467	1.26	1.2875	-0.027526	1
0.15	1.26	1.2838	-0.023755	1
0.1534	1.26	1.2799	-0.019881	1
0.1567	1.26	1.2761	-0.016132	1
0.16	1.24	1.2724	-0.032394	1
0.1634	1.24	1.2686	-0.028555	1
0.1667	1.24	1.2648	-0.024839	1
0.17	1.24	1.2611	-0.021135	1
0.1734	1.23	1.2573	-0.027329	1
0.1767	1.23	1.2536	-0.023647	1
0.18	1.23	1.25	-0.019975	1
0.1834	1.23	1.2462	-0.016203	1
0.1867	1.21	1.2426	-0.032553	1
0.19	1.21	1.2389	-0.028914	1
0.1934	1.21	1.2352	-0.025175	1
0.1967	1.21	1.2316	-0.021557	1
0.2	1.19	1.228	-0.03795	1
0.2034	1.19	1.2242	-0.034245	1
0.2067	1.19	1.2207	-0.030659	1
0.21	1.19	1.2171	-0.027084	1
0.2134	1.18	1.2134	-0.033411	1
0.2167	1.18	1.2099	-0.029857	1
0.22	1.18	1.2063	-0.026314	1
0.2234	1.18	1.2027	-0.022674	1
0.2267	1.18	1.1992	-0.019151	1
0.23	1.16	1.1956	-0.035639	1
0.2334	1.16	1.192	-0.032031	1
0.2367	1.16	1.1885	-0.02854	1
0.24	1.16	1.1851	-0.025058	1
0.2434	1.15	1.1815	-0.031482	. 1
0.2467	1.15	1.178	-0.028022	1
0.25	1.15	1.1746	-0.024572	1
0.2534	1.15	1.171	-0.021027	1
0.2567	1.15	1.1676	-0.017597	1
0.26	1.15	1.1642	-0.014178	1
0.2634	1.15	1.1607	-0.010665	1
0.2667	1.15	1.1573	-0.0072651	1
0.2834	1.16	1.1402	0.019786	1
0.3001	1.16	1.1234	0.036587	1
0.3167	1.15	1.107	0.043041	1
0.3334	1.13	1.0906	0.039351	1
0.3501	1.1	1.0746	0.025421	1
0.3667	1.08	1.0588	0.02116	1
0.3834	1.05	1.0432	0.0067613	1
0.4001	1.04	1.0279	0.012133	1
0.4167	1	1.0128	-0.012812	1
0.4334	0.99	0.99789	-0.0078894	1
0.4501	0.97	0.98319	-0.013186	1
0.4667-0.4664	0.96	0.96904	-0.0090441	1
U ( 1 - ( - 57,100 )	<del>-</del>			-

0.4834	0.94	0.95451	-0.014511	1
0.5001	0.92	0.94045	-0.020447	1
0.5167	0.91	0.92667	-0.016673	1
0.5334	0.89	0.91302	-0.023019	1 .
0.5501	0.88	0.89957	-0.019566	1
0.5667	0.86	0.88639	-0.026391	1
0.5834	0.84	0.87333	-0.03333	1
0.6001	0.83	0.86046	-0.030462	1
0.6167	0.83	0.84786	-0.01786	1
0.6334	0.81	0.83537	-0.025367	1
0.6501	0.8	0.82306	-0.023058	1
0.6667	0.78	0.811	-0.031003	1
0.6834	0.78	0.79905	-0.019054	1
0.7001	0.77	0.78728	-0.01728	1
0.7167	0.75	0.77575	-0.025749	1
0.7334	0.75	0.76432	-0.014319	1
0.7501	0.73	0.75306	-0.023057	1
0.7667	0.73	0.73300	-0.023037	1
0.7834	0.73	0.74203	-0.012028	1
0.7834	0.72	0.73103	-0.020322	1
0.8001	0.7	0.72032	-0.020322	1
	0.7	0.70977	-0.0097719	1
0.8334		0.68901	0.0093139	1
0.8501	0.69		-0.0089183	1
0.8667	0.67	0.67892	0.0010851	
0.8834	0.67	0.66891		1 1
0.9001	0.65	0.65906	-0.009059	
0.9167	0.65	0.64941	0.00059408	1
0.9334	0.64	0.63984	0.00016261	1
1.1334	0.54	0.53563	0.0043705	1
1.3334	0.48	0.44839	0.031606	1
1.5334	0.41	0.37537	0.034635	1
1.7334	0.37	0.31423	0.055769	1
1.9334	0.34	0.26305	0.076947	1
2.1334	0.3	0.22021	0.079789	1
2.3334	0.27	0.18435	0.085654	1
2.5334	0.24	0.15432	0.085678	1
2.7334	0.21	0.12919	0.080812	1
2.9334	0.19	0.10815	0.081852	1
3.1334	0.18	0.090534	0.089466	1
3.3334	0.16	0.075789	0.084211	1
3.5334	0.14	0.063446	0.076554	1
3.7334	0.13	0.053113	0.076887	1
3.9334	0.11	0.044462	0.065538	1
4.1334	0.1	0.037221	0.062779	1
4.3334	0.1	0.031159	0.068841	1
4.5334	0.08	0.026084	0.053916	1
4.7334	0.06	0.021836	0.038164	1
4.9334	0.06	0.01828	0.04172	1
5.1334	0.06	0.015302	0.044698	1
5.3334	0.05	0.01281	0.03719	1
5.5334	0.05	0.010724	0.039276	1
5.7334	0.05	0.0089773	0.041023	1
5.9334	0.03	0.0075152	0.022485	1
6.1334	0.03	0.0062912	0.023709	1
		<del></del>		

6.3334	0.03	0.0052666	0.024733	1
6.5334	0.03	0.0044089	0.025591	1
6.7334	0.03	0.0036908	0.026309	1
6.9334	0.02	0.0030897	0.01691	1
7.1334	0.02	0.0025865	0.017414	1
7.3334	0.02	0.0021652	0.017835	1
7.5334	0.02	0.0018126	0.018187	1
7.7334	0.02	0.0015174	0.018483	1
7.9334	0.02	0.0012703	0.01873	1

______

### RESULTS FROM VISUAL CURVE MATCHING

### VISUAL MATCH PARAMETER ESTIMATES

### Estimate

K = 8.7549E-004y0 = 1.4669E+000

### TYPE CURVE DATA

K = 5.67094E-004y0 = 1.02274E+000

Time Drawdown Time Drawdown Time Drawdown

----0.000E+000 1.023E+000 8.000E+000 1.022E-002

			H			
TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
(MINUTES)		READING	TRANS.	TRANS.	TRANS.	THEOR
0.0000	-0.0666	5.417	-1.16	2.76	1.73	1.25
0.0033	-0.0633	5.481	-1.10	2.69	1.69	1.22
0.0067	-0.0599	5.465	-1.12	2.71	1.70	1.23
0.0100	-0.0566	5.338	-1.24	2.83	1.78	1.29
0.0133	-0.0533	5.274	-1.31	2.90	1.82	1.32
0.0167	-0.0499	5.385	-1.20	2.79	1.75	1.27
0.0200	-0.0466	5.417	-1.16	2.76	1.73	1.25
0.0233	-0.0433	5.561	-1.02	2.61	1.64	1.19
0.0267	-0.0399	5.561	-1.02	2.61	1.64	1.19
0.0300	-0.0366	6.150	-0.43			0.92
0.0333	-0.0333	6.771				0.64
0.0366	-0.0300	7.232				0.43
0.0400	-0.0266					0.60
0.0433	-0.0233					0.70
0.0466	-0.0200					0.77
0.0500	-0.0166					0.79
0.0533						0.75
						0.67
						0.69
						0.71
						0.72
						0.72
						0.70
0.0766	0.0100					0.69
0.0800						0.69
0.0833	0.0167	6.659	0.08	1.51		0.69
0.0866	0.0200	6.659	0.08	1.51		0.69
0.0900	0.0234	6.675	0.09	1.50		0.68
0.0933	0.0267	6.691	0.11	1.48	0.93	0.67
0.0966	0.0300	6.707	0.13	1.47	0.92	0.67
0.1000	0.0334	6.707	0.13	1.47	0.92	0.67
	0.0000 0.0033 0.0067 0.0100 0.0133 0.0167 0.0200 0.0233 0.0267 0.0300 0.0333 0.0366 0.0400 0.0433 0.0466 0.0500 0.0533 0.0566 0.0600 0.0633 0.0566 0.0600 0.0633 0.0666 0.0700 0.0733 0.0766 0.0800 0.0833 0.0866 0.0900 0.0933 0.0966	(MINUTES)         TRANS.           0.0000         -0.0666           0.0033         -0.0599           0.0100         -0.0566           0.0133         -0.0533           0.0167         -0.0499           0.0200         -0.0466           0.0233         -0.0433           0.0267         -0.0399           0.0300         -0.0366           0.0333         -0.0333           0.0466         -0.0300           0.04400         -0.0266           0.0433         -0.0233           0.0466         -0.0200           0.0500         -0.0166           0.0533         -0.0133           0.0566         -0.0100           0.0600         -0.0066           0.0633         -0.0033           0.0666         0.0000           0.0700         0.0034           0.0733         0.0067           0.0766         0.0100           0.0800         0.0134           0.0833         0.0167           0.0866         0.0200           0.0900         0.0234           0.0933         0.0267           0.0966         0.0300	(MINUTES)         TRANS.         READING           0.0000         -0.0666         5.417           0.0033         -0.0633         5.481           0.0067         -0.0599         5.465           0.0100         -0.0566         5.338           0.0133         -0.0533         5.274           0.0167         -0.0499         5.385           0.0200         -0.0466         5.417           0.0233         -0.0433         5.561           0.0267         -0.0399         5.561           0.0300         -0.0366         6.150           0.0333         -0.0333         6.771           0.0366         -0.0300         7.232           0.0400         -0.0266         6.850           0.0433         -0.0233         6.627           0.0466         -0.0200         6.484           0.0500         -0.0166         6.436           0.0533         -0.0133         6.532           0.0566         -0.0100         6.691           0.0600         -0.0066         6.659           0.0733         0.0067         6.643           0.0766         0.0100         6.659           0.0800	TIME (MINUTES)         T(0)         XD READING         A/B DATUM TRANS.           0.0000         -0.0666         5.417         -1.16           0.0033         -0.0633         5.481         -1.10           0.0067         -0.0599         5.465         -1.12           0.0100         -0.0566         5.338         -1.24           0.0133         -0.0533         5.274         -1.31           0.0167         -0.0499         5.385         -1.20           0.0200         -0.0466         5.417         -1.16           0.0233         -0.0433         5.561         -1.02           0.0267         -0.0399         5.561         -1.02           0.0300         -0.0366         6.150         -0.43           0.0333         -0.0333         6.771         0.19           0.0366         -0.0300         7.232         0.65           0.0400         -0.0266         6.850         0.27           0.0433         -0.0233         6.627         0.05           0.0466         -0.0200         6.484         -0.10           0.0500         -0.0166         6.436         -0.14           0.0533         -0.0133         6.532	TIME (MINUTES)         T(0)         XD READING         A/B DATUM TRANS.         TRANS.           0.0000         -0.0666         5.417         -1.16         2.76           0.0033         -0.0633         5.481         -1.10         2.69           0.0067         -0.0599         5.465         -1.12         2.71           0.0100         -0.0566         5.338         -1.24         2.83           0.0133         -0.0533         5.274         -1.31         2.90           0.0167         -0.0499         5.385         -1.20         2.79           0.0200         -0.0466         5.417         -1.16         2.76           0.0233         -0.0433         5.561         -1.02         2.61           0.0267         -0.0399         5.561         -1.02         2.61           0.0300         -0.0366         6.150         -0.43         2.02           0.0333         -0.0333         6.771         0.19         1.40           0.0366         -0.300         7.232         0.65         0.94           0.0400         -0.0266         6.850         0.27         1.32           0.0433         -0.0233         6.627         0.05         1.55 </td <td>TIME (MINUTES)         T(0)         XD READING         A/B DATUM TRANS.         H H/H(0)           0.0000         -0.0666         5.417         -1.16         2.76         1.73           0.0033         -0.0633         5.481         -1.10         2.69         1.69           0.0067         -0.0599         5.465         -1.12         2.71         1.70           0.0100         -0.0566         5.338         -1.24         2.83         1.78           0.0133         -0.0533         5.274         -1.31         2.90         1.82           0.0167         -0.0499         5.385         -1.20         2.79         1.75           0.0200         -0.0466         5.417         -1.16         2.76         1.73           0.0233         -0.0433         5.561         -1.02         2.61         1.64           0.0267         -0.0399         5.561         -1.02         2.61         1.64           0.0300         -0.0366         6.150         -0.43         2.02         1.27           0.0333         -0.0333         6.771         0.19         1.40         0.88           0.0366         -0.300         7.232         0.65         0.94         0.59</td>	TIME (MINUTES)         T(0)         XD READING         A/B DATUM TRANS.         H H/H(0)           0.0000         -0.0666         5.417         -1.16         2.76         1.73           0.0033         -0.0633         5.481         -1.10         2.69         1.69           0.0067         -0.0599         5.465         -1.12         2.71         1.70           0.0100         -0.0566         5.338         -1.24         2.83         1.78           0.0133         -0.0533         5.274         -1.31         2.90         1.82           0.0167         -0.0499         5.385         -1.20         2.79         1.75           0.0200         -0.0466         5.417         -1.16         2.76         1.73           0.0233         -0.0433         5.561         -1.02         2.61         1.64           0.0267         -0.0399         5.561         -1.02         2.61         1.64           0.0300         -0.0366         6.150         -0.43         2.02         1.27           0.0333         -0.0333         6.771         0.19         1.40         0.88           0.0366         -0.300         7.232         0.65         0.94         0.59

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
31	0.1033	0.0367	6.707	0.13	1.47	0.92	0.67
32	0.1066	0.0400	6.707	0.13	1.47	0.92	0.67
33	0.1100	0.0434	6.723	0.14	1.45	0.91	0.66
.34	0.1133	0.0467	6.739	0.16	1.43	0.90	0.65
35	0.1166	0.0500	6.755	0.17	1.42	0.89	0.64
36	0.1200	0.0534	6.755	0.17	1.42	0.89	0.64
37	0.1233	0.0567	6.755	0.17	1.42	0.89	0.64
38	0.1266	0.0600	6.755	0.17	1.42	0.89	0.64
39	0.1300	0.0634	6.771	0.19	1.40	0.88	0.64
40	0.1333	0.0667	6.771	0.19	1.40	0.88	0.64
41	0.1366	0.0700	6.787	0.21	1.39	0.87	0.63
42	0.1400	0.0734	6.787	0.21	1.39	0.87	0.63
43	0.1433	0.0767	6.787	0.21	1.39	0.87	0.63
44	0.1466	0.0800	6.803	0.22	1.37	0.86	0.62
45	0.1500	0.0834	6.803	0.22	1.37	0.86	0.62
46	0.1533	0.0867	6.818	0.24	1.35	0.85	0.62
47	0.1566	0.0900	6.818	0.24	1.35	0.85	0.62
48	0.1600	0.0934	6.818	0.24	1.35	0.85	0.62
49	0.1633	0.0967	6.834	0.25	1.34	0.84	0.61
50	0.1666	0.1000	6.834	0.25	1.34	0.84	0.61
51	0.1700	0.1034	6.834	0.25	1.34	0.84	0.61
52	0.1733	0.1067	6.850	0.27	1.32	0.83	0.60
53	0.1766	0.1100	6.850	0.27	1.32	0.83	0.60
54	0.1800	0.1134	6.866	0.29	1.31	0.82	0.59
55	0.1833	0.1167	6.866	0.29	1.31	0.82	0.59
56	0.1866	0.1200	6.866	0.29	1.31	0.82	0.59
57	0.1900	0.1234	6.866	0.29	1.31	0.82	0.59
58	0.1933	0.1267	6.882	0.30	1.29	0.81	0.59
59	0.1966	0.1300	6.882	0.30	1.29	0.81	0.59
60	0.2000	0.1334	6.882	0.30	1.29	0.81	0.59
61	0.2033	0.1367	6.882	0.30	1.29	0.81	0.59

				H			,
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
1.01.12.11	(						
62	0.2066	0.1400	6.898	0.32	1.27	0.80	0.58
63	0.2100	0.1434	6.898	0.32	1.27	0.80	0.58
64	0.2133	0.1467	6.914	0.33	1.26	0.79	0.57
65	0.2166	0.1500	6.914	0.33	1.26	0.79	0.57
66	0.2200	0.1534	6.914	0.33	1.26	0.79	0.57
67	0.2233	0.1567	6.914	0.33	1.26	0.79	0.57
68	0.2266	0.1600	6.930	0.35	1.24	0.78	0.56
69	0.2300	0.1634	6.930	0.35	1.24	0.78	0.56
70	0.2333	0.1667	6.930	0.35	1.24	0.78	0.56
71	0.2366	0.1700	6.930	0.35	1.24	0.78	0.56
72	0.2400	0.1734	6.946	0.37	1.23	0.77	0.56
73	0.2433	0.1767	6.946	0.37	1.23	0.77	0.56
74	0.2466	0.1800	6.946	0.37	1.23	0.77	0.56
75	0.2500	0.1834	6.946	0.37	1.23	0.77	0.56
76	0.2533	0.1867	6.962	0.38	1.21	0.76	0.55
77	0.2566	0.1900	6.962	0.38	1.21	0.76	0.55
78	0.2600	0.1934	6.962	0.38	1.21	0.76	0.55
79	0.2633	0.1967	6.962	0.38	1.21	0.76	0.55
80	0.2666	0.2000	6.978	0.40	1.19	0.75	0.54
81	0.2700	0.2034	6.978	0.40	1.19	0.75	0.54
82	0.2733	0.2067	6.978	0.40	1.19	0.75	0.54
83	0.2766	0.2100	6.978	0.40	1.19	0.75	0.54
84	0.2800	0.2134	6.994	0.41	1.18	0.74	0.54
85	0.2833	0.2167	6.994	0.41	1.18	0.74	0.54
86	0.2866	0.2200	6.994	0.41	1.18	0.74	0.54
87	0.2900	0.2234	6.994	0.41	1.18	0.74	0.54
88	0.2933	0.2267	6.994	0.41	1.18	0.74	0.54
89	0.2966	0.2300	7.009	0.43	1.16	0.73	0.53
90	0.3000	0.2334	7.009	0.43	1.16	0.73	0.53
91	0.3033	0.2367	7.009	0.43	1.16	0.73	0.53
92	0.3066	0.2400	7.009	0.43	1.16	0.73	0.53

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
93	0.3100	0.2434	7.025	0.45	1.15	0.72	0.52
94	0.3133	0.2467	7.025	0.45	1.15	0.72	0.52
95	0.3166	0.2500	7.025	0.45	1.15	0.72	0.52
96	0.3200	0.2534	7.025	0.45	1.15	0.72	0.52
97	0.3233	0.2567	7.025	0.45	1.15	0.72	0.52
98	0.3266	0.2600	7.025	0.45	1.15	0.72	0.52
99	0.3300	0.2634	7.025	0.45	1.15	0.72	0.52
100	0.3333	0.2667	7.025	0.45	1.15	0.72	0.52
101	0.3500	0.2834	7.009	0.43	1.16	0.73	0.53
102	0.3667	0.3001	7.009	0.43	1.16	0.73	0.53
103	0.3833	0.3167	7.025	0.45	1.15	0.72	0.52
104	0.4000	0.3334	7.041	0.46	1.13	0.71	0.51
105	0.4167	0.3501	7.073	0.49	1.10	0.69	0.50
106	0.4333	0.3667	7.089	0.51	1.08	0.68	0.49
107	0.4500	0.3834	7.121	0.54	1.05	0.66	0.48
108	0.4667	0.4001	7.137	0.56	1.04	0.65	0.47
109	0.4833	0.4167	7.169	0.59	1.00	0.63	0.46
110	0.5000	0.4334	7.185	0.60	0.99	0.62	0.45
111	0.5167	0.4501	7.201	0.62	0.97	0.61	0.44
112	0.5333	0.4667	7.216	0.64	0.96	0.60	0.43
113	0.5500	0.4834	7.232	0.65	0.94	0.59	0.43
114	0.5667	0.5001	7.248	0.67	0.92	0.58	0.42
115	0.5833	0.5167	7.264	0.68	0.91	0.57	0.41
116	0.6000	0.5334	7.280	0.70	0.89	0.56	0.41
117	0.6167	0.5501	7.296	0.72	0.88	0.55	0.40
118	0.6333	0.5667	7.312	0.73	0.86	0.54	0.39
119	0.6500	0.5834	7.328	0.75	0.84	0.53	0.38
120	0.6667	0.6001	7.344	0.76	0.83	0.52	0.38
121	0.6833	0.6167	7.344	0.76	0.83	0.52	0.38
122	0.7000	0.6334	7.360	0.78	0.81	0.51	0.37
123	0.7167	0.6501	7.376	0.80	0.80	0.50	0.36

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
124	0.7333	0.6667	7.392	0.81	0.78	0.49	0.35
125	0.7500	0.6834	7.392	0.81	0.78	0.49	0.35
126	0.7667	0.7001	7.407	0.83	0.77	0.48	0.35
127	0.7833	0.7167	7.423	0.84	0.75	0.47	0.34
128	0.8000	0.7334	7.423	0.84	0.75	0.47	0.34
129	0.8167	0.7501	7.439	0.86	0.73	0.46	0.33
130	0.8333	0.7667	7.439	0.86	0.73	0.46	0.33
131	0.8500	0.7834	7.455	0.88	0.72	0.45	0.33
132	0.8667	0.8001	7.471	0.89	0.70	0.44	0.32
133	0.8833	0.8167	7.471	0.89	0.70	0.44	0.32
134	0.9000	0.8334	7.487	0.91	0.69	0.43	0.31
135	0.9167	0.8501	7.487	0.91	0.69	0.43	0.31
136	0.9333	0.8667	7.503	0.92	0.67	0.42	0.30
137	0.9500	0.8834	7.503	0.92	0.67	0.42	0.30
138	0.9667	0.9001	7.519	0.94	0.65	0.41	0.30
139	0.9833	0.9167	7.519	0.94	0.65	0.41	0.30
140	1.0000	0.9334	7.535	0.96	0.64	0.40	0.29
141	1.2000	1.1334	7.630	1.05	0.54	0.34	0.25
142	1.4000	1.3334	7.694	1.11	0.48	0.30	0.22
143	1.6000	1.5334	7.758	1.18	0.41	0.26	0.19
144	1.8000	1.7334	7.806	1.23	0.37	0.23	0.17
145	2.0000	1.9334	7.837	1.26	0.34	0.21	0.15
146	2.2000	2.1334	7.869	1.29	0.30	0.19	0.14
147	2.4000	2.3334	7.901	1.32	0.27	0.17	0.12
148	2.6000	2.5334	7.933	1.35	0.24	0.15	0.11
149	2.8000	2.7334	7.965	1.39	0.21	0.13	0.09
150	3.0000	2.9334	7.981	1.40	0.19	0.12	0.09
151	3.2000	3.1334	7.997	1.42	0.18	0.11	0.08
152	3.4000	3.3334	8.013	1.43	0.16	0.10	0.07
153	3.6000	3.5334	8.028	1.45	0.14	0.09	0.07
154	3.8000	3.7334	8.044	1.46	0.13	0.08	0.06

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
155	4.0000	3.9334	8.060	1.48	0.11	0.07	0.05
156	4.2000	4.1334	8.076	1.50	0.10	0.06	0.04
157	4.4000	4.3334	8.076	1.50	0.10	0.06	0.04
158	4.6000	4.5334	8.092	1.51	0.08	0.05	0.04
159	4.8000	4.7334	8.108	1.53	0.06	0.04	0.03
160	5.0000	4.9334	8.108	1.53	0.06	0.04	0.03
161	5.2000	5.1334	8.108	1.53	0.06	0.04	0.03
162	5.4000	5.3334	8.124	1.54	0.05	0.03	0.02
163	5.6000	5.5334	8.124	1.54	0.05	0.03	0.02
164	5.8000	5.7334	8.124	1.54	0.05	0.03	0.02
165	6.0000	5.9334	8.140	1.56	0.03	0.02	0.01
166	6.2000	6.1334	8.140	1.56	0.03	0.02	0.01
167	6.4000	6.3334	8.140	1.56	0.03	0.02	0.01
168	6.6000	6.5334	8.140	1.56	0.03	0.02	0.01
169	6.8000	6.7334	8.140	1.56	0.03	0.02	0.01 •
170	7.0000	6.9334	8.156	1.58	0.02	0.01	0.01
171	7.2000	7.1334	8.156	1.58	0.02	0.01	0.01
172	7.4000	7.3334	8.156	1.58	0.02	0.01	0.01
173	7.6000	7.5334	8.156	1.58	0.02	0.01	0.01
174	7.8000	7.7334	8.156	1.58	0.02	0.01	0.01
175	8.0000	7.9334	8.156	1.58	0.02	0.01	0.01
176	8.2000	8.1334	8.172	1.59	-0.00	-0.00	-0.00
177	8.4000	8.3334	8.172	1.59	-0.00	-0.00	-0.00
178	8.6000	8.5334	8.172	1.59	-0.00	-0.00	-0.00
179	8.8000	8.7334	8.172	1.59	-0.00	-0.00	-0.00
180	9.0000	8.9334	8.172	1.59	-0.00	-0.00	-0.00
181	9.2000	9.1334	8.172	1.59	-0.00	-0.00	-0.00
182	9.4000	9.3334	8.172	1.59	-0.00	-0.00	-0.00
183	9.6000	9.5334	8.172	1.59	-0.00	-0.00	-0.00
184	9.8000	9.7334	8.172	1.59	-0.00	-0.00	-0.00
185	10.0000	9.9334	8.172	1.59	-0.00	-0.00	-0.00



>>>>>>>>>>	>>>>>>>
AQTESOLV RESULTS Version 1.10	
09/08/93	13:59:42
======================================	 ==
Data set	
Knowns and Constants:       177         No. of data points	0
======================================	
Bouwer-Rice (Unconfined Aquifer Slug Test)	

______

<<<<<<<<<<<<<<<<>>>>>

RESULTS FROM STATISTICAL CURVE MATCHING

### STATISTICAL MATCH PARAMETER ESTIMATES

______

Estimate Std. Error K = 9.9383E-004 +/- 1.7123E-005 y0 = 1.6339E+000 +/- 8.3480E-003

ANALYSIS OF MODEL RESIDUALS

## residual = calculated - observed weighted residual = residual * weight

## Weighted Residual Statistics:

### Model Residuals:

Time	Observed	Calculated	Residual	Weight
0.0034	1.78	1.6283	0.15166	1
0.0067	1.74	1.6229	0.11708	1
0.01	1.74	1.6175	0.12247	1
0.0134	1.74	1.612	0.12801	1
0.0167	1.72	1.6066	0.11337	1
0.02	1.7	1.6013	0.098709	1
0.0233	1.69	1.596	0.094032	1
0.0267	1.69	1.5905	0.099498	1
0.03	1.67	1.5852	0.084785	1
0.0333	1.66	1.5799	0.080054	1
0.0367	1.64	1.5745	0.065465	1
0.04	1.64	1.5693	0.070699	1
0.0433	1.62	1.5641	0.055916	1
0.0467	1.61	1.5587	0.051273	1
0.05	1.61	1.5535	0.056454	1
0.0533	1.59	1.5484	0.041618	1
0.0567	1.59	1.5431	0.046921	1
0.06	1.58	1.5379	0.042051	1
0.0633	1.56	1.5328	0.027163	1
0.0667	1.56	1.5276	0.032412	1
0.07	1.54	1.5225	0.01749	1
0.0733	1.54	1.5174	0.022551	1
0.0767	1.53	1.5123	0.017748	1
0.08	1.53	1.5072	0.022775	1
0.0833	1.51	1.5022	0.0077856	1
0.0867	1.51	1.4971	0.01293	1
0.09	1.5	1.4921	0.0079068	1
0.0933	1.5	1.4871	0.012867	1
0.0967	1.48	1.482	-0.0020402	1
0.1	1.48	1.4771	0.0028863	1
0.1033	1.46	1.4722	-0.012204	1
0.1067	1.46	1.4672	-0.0071616	1
0.11	1.46	1.4623	-0.0022845	1
0.1133	1.45	1.4574	-0.0074237	1
0.1167	1.45	1.4524	-0.0024324	1
0.12	1.43	1.4476	-0.017604	1
0.1233	1.43	1.4428	-0.012792	1
0.1267	1.42	1.4379	-0.017851	1

0.13	1.42	1.4331	-0.013071	1
0.1333	1.42	1.4283	-0.0083076	1
0.1367	1.4	1.4234	-0.023416	1
0.14	1.4	1.4187	-0.018684	1
0.1433	1.39	1.414	-0.023968	1
0.1467	1.39	1.4091	-0.019126	1
0.15	1.39	1.4044	-0.014442	1
0.1533	1.37	1.3998	-0.029773	1
0.1567	1.37	1.395	-0.024979	1
0.16	1.37	1.3903	-0.020342	1
0.1633	1.35	1.3857	-0.03572	1
0.1667	1.35	1.381	-0.030975	1
0.17	1.35	1.3764	-0.026384	1
0.1733	1.34	1.3718	-0.031809	1
0.1767	1.34	1.3671	-0.027111	1
0.18	1.34	1.3626	-0.022566	1
0.1833	1.32	1.358	-0.038037	1
0.1867	1.32	1.3534	-0.033386	1
0.19	1.32	1.3489	-0.028887	1
0.1933	1.31	1.3444	-0.034403	1
0.1967	1.31	1.3398	-0.029799	1
0.2	1.31	1.3353	-0.025345	1
0.2033	1.29	1.3309	-0.040906	1
0.2067	1.29	1.3263	-0.036348	1
0.21	1.29	1.3219	-0.031939	1
0.2133	1.27	1.3175	-0.047545	1
0.2167	1.27	1.3173	-0.043033	1
0.22	1.27	1.3087	-0.038668	1
0.2233	1.27	1.3043	-0.034318	1
0.2267	1.26	1.2999	-0.039851	1
0.23	1.26	1.2955	-0.03553	1
0.2333	1.26	1.2912	-0.03333	1
0.2367	1.26	1.2868	-0.031223	1
0.2307	1.24	1.2825	-0.042524	1
0.2433	1.24	1.2783	-0.03826	1
0.2455	1.24	1.2739	-0.033883	1
0.2407	1.24	1.2696	-0.039648	1
0.2533	1.23	1.2654	-0.035428	1
0.2567	1.23	1.2611	-0.033428	1
0.26	1.23	1.2569	-0.031094	1
0.2633	1.21	1.2527	-0.042724	1
0.2667	1.21	1.2484	-0.042724	1
0.2007	1.21	1.2464	-0.034283	
0.27	1.19	1.2443		1
0.2753			-0.050147	1
0.2767	1.19	1.2359	-0.0459	1
	1.19	1.2318	-0.041792	1
0.2833	1.19	1.2277	-0.037697	1
0.2867	1.18	1.2235	-0.043492	1
0.29	1.18	1.2194	-0.039425	1
0.2933	1.18	1.2154	-0.035372	1
0.2967	1.16	1.2112	-0.051209	1
0.3	1.16	1.2072	-0.047183	1
0.3033	1.16	1.2032	-0.04317	1
0.3067	1.16	1.199	-0.03905	1

•

•

0.31	1.16	1.1951	-0.035064	1
0.3133	1.15	1.1911	-0.041091	1
0.3167	1.15	1.187	-0.037012	1
0.32	1.15	1.1831	-0.033066	1
0.3367	1.11	1.1633	-0.053298	1
0.3534	1.1	1.1439	-0.043861	1
0.37	1.08	1.1249	-0.044861	1
0.3867	1.07	1.1061	-0.036066	1
0.4034	1.05	1.0876	-0.037584	1
0.42	1.04	1.0695	-0.02952	1
0.4367	1.02	1.0516	-0.031649	1
0.4534	1	1.0341	-0.034077	1
0.47	0.99	1.0169	-0.026901	1
0.4867	0.97	0.99991	-0.029909	1
0.5034	0.96	0.9832	-0.023202	1
0.52000. <del>5197</del>	0.94	0.96716	-0.027163	1
0.5367	0.92	0.95072	-0.030715	1
0.5534	0.91	0.93483	-0.024829	1
0.57	0.91	0.9193	-0.009302	1
0.5867	0.89	0.90394	-0.013941	1
0.6034	0.88	0.88884	-0.0088371	1
0.62	0.86	0.87407	-0.014074	1
0.6367	0.86	0.85947	0.00053141	1
0.6534	0.84	0.84511	-0.0051076	1
0.67	0.83	0.83107	-0.0010704	1
0.6867	0.81	0.81718	-0.0071839	1
0.7034	0.81	0.80353	0.0064705	1
0.72	0.8	0.79018	0.0098171	1
0.7367	0.78	0.77698	0.0030204	1
0.7534	0.78	0.764	0.016003	1
0.77	0.76	0.75131	0.008693	1
0.7867	0.75	0.73875	0.011247	1
0.8034	0.75	0.72641	0.023591	1
0.82	0.73	0.71434	0.015656	1
0.8367	0.72	0.70241	0.017592	1
0.8534	0.72	0.69067	0.029329	1
0.87	0.7	0.6792	0.020801	1
0.8867	0.7	0.66785	0.03215	1
0.9034	0.68	0.65669	0.023309	1
0.92	0.68	0.64578	0.034217	1
0.9367	0.67	0.63499	0.035007	1
0.9534	0.65	0.62438	0.025617	1
0.97	0.65	0.61401	0.035988	1
0.9867	0.65	0.60375	0.046248	1
1.1867	0.54	0.49342	0.046579	. 1
1.3867	0.48	0.40325	0.076747	1
1.5867	0.43	0.32956	0.10044	1
1.7867	0.38	0.26934	0.11066	1
1.9867	0.33	0.22012	0.10988	1
2.1867	0.3	0.17989	0.12011	1
2.3867	0.27	0.14702	0.12298	1
2.5867	0.24	0.12015	0.11985	1
2.7867	0.22	0.098196	0.1218	1
2.9867	0.19	0.080251	0.10975	1
		- · · · <del>-</del>	_	

1	0.10441	0.065586	0.17	3.1867
1	0.1064	0.053601	0.16	3.3867
1	0.11619	0.043806	0.16	3.5867
1	0.1042	0.0358	0.14	3.7867
1	0.10074	0.029258	0.13	3.9867
1	0.086088	0.023912	0.11	4.1867
1	0.070458	0.019542	0.09	4.3867
1	0.074029	0.015971	0.09	4.5867
1	0.066948	0.013052	0.08	4.7867
1	0.069333	0.010667	0.08	4.9867
1	0.071282	0.0087177	0.08	5.1867
1	0.052875	0.0071246	0.06	5.3867
1	0.054177	0.0058227	0.06	5.5867
1	0.055241	0.0047586	0.06	5.7867
1	0.046111	0.003889	0.05	5.9867
1	0.046822	0.0031783	0.05	6.1867
1	0.047402	0.0025975	0.05	6.3867
1	0.047877	0.0021228	0.05	6.5867
1	0.048265	0.0017349	0.05	6.7867
1	0.048582	0.0014179	0.05	6.9867
1	0.048841	0.0011588	0.05	7.1867
1	0.049053	0.00094701	0.05	7.3867
1	0.049226	0.00077395	0.05	7.5867
1	0.029367	0.00063252	0.03	7.7867
1	0.029483	0.00051693	0.03	7.9867
1	0.019578	0.00042247	0.02	8.1867
1	0.019655	0.00034526	0.02	8.3867
1	0.019718	0.00028217	0.02	8.5867
1	0.019769	0.00023061	0.02	8.7867
1	0.019812	0.00018846	0.02	8.9867
1	0.019846	0.00015402	0.02	9.1867

______

______

### RESULTS FROM VISUAL CURVE MATCHING

### VISUAL MATCH PARAMETER ESTIMATES

#### Estimate

K = 9.9383E-004y0 = 1.6339E+000

## TYPE CURVE DATA

K = 5.38739E-004y0 = 9.95513E-001 Time Drawdown Time Drawdown Time Drawdown

0.000E+000 9.955E-001 1.000E+001 4.194E-003

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
0	0.0000	-0.0133	10.226	-0.21	2.04	1.11	0.93
1	0.0033	-0.0100	10.146	-0.13	1.96	1.07	0.89
2	0.0067	-0.0066	9.891	0.13	1.70	0.93	0.77
3	0.0100	-0.0033	9.939	0.08	1.75	0.96	0.80
4	0.0133	0.0000	10.019	0.00	1.83	1.00	0.83
5	0.0167	0.0034	9.971	0.05	1.78	0.97	0.81
6	0.0200	0.0067	9.923	0.10	1.74	0.95	0.79
7	0.0233	0.0100	9.923	0.10	1.74	0.95	0.79
8	0.0267	0.0134	9.923	0.10	1.74	0.95	0.79
9	0.0300	0.0167	9.907	0.11	1.72	0.94	0.78
10	0.0333	0.0200	9.891	0.13	1.70	0.93	0.77
11	0.0366	0.0233	9.875	0.14	1.69	0.92	0.77
12	0.0400	0.0267	9.875	0.14	1.69	0.92	0.77
13	0.0433	0.0300	9.859	0.16	1.67	0.91	0.76
14	0.0466	0.0333	9.843	0.18	1.66	0.90	0.75
15	0.0500	0.0367	9.828	0.19	1.64	0.90	0.75
16	0.0533	0.0400	9.828	0.19	1.64	0.90	0.75
17	0.0566	0.0433	9.812	0.21	1.62	0.89	0.74
18	0.0600	0.0467	9.796	0.22	1.61	0.88	0.73
19	0.0633	0.0500	9.796	0.22	1.61	0.88	0.73
20	0.0666	0.0533	9.780	0.24	1.59	0.87	0.72
21	0.0700	0.0567	9.780	0.24	1.59	0.87	0.72
22	0.0733	0.0600	9.764	0.26	1.58	0.86	0.72
23	0.0766	0.0633	9.748	0.27	1.56	0.85	0.71
24	0.0800	0.0667	9.748	0.27	1.56	0.85	0.71
25	0.0833	0.0700	9.732	0.29	1.54	0.84	0.70
26	0.0866	0.0733	9.732	0.29	1.54	0.84	0.70
27	0.0900	0.0767	9.716	0.30	1.53	0.83	0.69
28	0.0933	0.0800	9.716	0.30	1.53	0.83	0.69
29	0.0966	0.0833	9.700	0.32	1.51	0.83	0.69
30	0.1000	0.0867	9.700	0.32	1.51	0.83	0.69

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
31	0.1033	0.0900	9.684	0.34	1.50	0.82	0.68
32	0.1066	0.0933	9.684	0.34	1.50	0.82	0.68
33	0.1100	0.0967	9.668	0.35	1.48	0.81	0.67
34	0.1133	0.1000	9.668	0.35	1.48	0.81	0.67
35	0.1166	0.1033	9.652	0.37	1.46	0.80	0.67
36	0.1200	0.1067	9.652	0.37	1.46	0.80	0.67
37	0.1233	0.1100	9.652	0.37	1.46	0.80	0.67
38	0.1266	0.1133	9.636	0.38	1.45	0.79	0.66
39	0.1300	0.1167	9.636	0.38	1.45	0.79	0.66
40	0.1333	0.1200	9.621	0.40	1.43	0.78	0.65
41	0.1366	0.1233	9.621	0.40	1.43	0.78	0.65
42	0.1400	0.1267	9.605	0.41	1.42	0.77	0.64
43	0.1433	0.1300	9.605	0.41	1.42	0.77	0.64
44	0.1466	0.1333	9.605	0.41	1.42	0.77	0.64
45	0.1500	0.1367	9.589	0.43	1.40	0.77	0.64
46	0.1533	0.1400	9.589	0.43	1.40	0.77	0.64
47	0.1566	0.1433	9.573	0.45	1.39	0.76	0.63
48	0.1600	0.1467	9.573	0.45	1.39	0.76	0.63
49	0.1633	0.1500	9.573	0.45	1.39	0.76	0.63
50	0.1666	0.1533	9.557	0.46	1.37	0.75	0.62
51	0.1700	0.1567	9.557	0.46	1.37	0.75	0.62
52	0.1733	0.1600	9.557	0.46	1.37	0.75	0.62
53	0.1766	0.1633	9.541	0.48	1.35	0.74	0.62
54	0.1800	0.1667	9.541	0.48	1.35	0.74	0.62
55	0.1833	0.1700	9.541	0.48	1.35	0.74	0.62
56	0.1866	0.1733	9.525	0.49	1.34	0.73	0.61
57	0.1900	0.1767	9.525	0.49	1.34	0.73	0.61
58	0.1933	0.1800	9.525	0.49	1.34	0.73	0.61
59	0.1966	0.1833	9.509	0.51	1.32	0.72	0.60
60	0.2000	0.1867	9.509	0.51	1.32	0.72	0.60
61	0.2033	0.1900	9.509	0.51	1.32	0.72	0.60

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
62	0.2066	0.1933	9.493	0.53	1.31	0.71	0.59
63	0.2100	0.1967	9.493	0.53	1.31	0.71	0.59
64	0.2133	0.2000	9.493	0.53	1.31	0.71	0.59
.65	0.2166	0.2033	9.477	0.54	1.29	0.70	0.59
66	0.2200	0.2067	9.477	0.54	1.29	0.70	0.59
67	0.2233	0.2100	9.477	0.54	1.29	0.70	0.59
68	0.2266	0.2133	9.461	0.56	1.27	0.70	0.58
69	0.2300	0.2167	9.461	0.56	1.27	0.70	0.58
70	0.2333	0.2200	9.461	0.56	1.27	0.70	0.58
71	0.2366	0.2233	9.461	0.56	1.27	0.70	0.58
72	0.2400	0.2267	9.445	0.57	1.26	0.69	0.57
73	0.2433	0.2300	9.445	0.57	1.26	0.69	0.57
74	0.2466	0.2333	9.445	0.57	1.26	0.69	0.57
75	0.2500	0.2367	9.445	0.57	1.26	0.69	0.57
76	0.2533	0.2400	9.430	0.59	1.24	0.68	0.56
77	0.2566	0.2433	9.430	0.59	1.24	0.68	0.56
78	0.2600	0.2467	9.430	0.59	1.24	0.68	0.56
79	0.2633	0.2500	9.414	0.61	1.23	0.67	0.56
80	0.2666	0.2533	9.414	0.61	1.23	0.67	0.56
81	0.2700	0.2567	9.414	0.61	1.23	0.67	0.56
82	0.2733	0.2600	9.398	0.62	1.21	0.66	0.55
83	0.2766	0.2633	9.398	0.62	1.21	0.66	0.55
84	0.2800	0.2667	9.398	0.62	1.21	0.66	0.55
85	0.2833	0.2700	9.398	0.62	1.21	0.66	0.55
86	0.2866	0.2733	9.382	0.64	1.19	0.65	0.54
87	0.2900	0.2767	9.382	0.64	1.19	0.65	0.54
88	0.2933	0.2800	9.382	0.64	1.19	0.65	0.54
89	0.2966	0.2833	9.382	0.64	1.19	0.65	0.54
90	0.3000	0.2867	9.366	0.65	1.18	0.64	0.54
91	0.3033	0.2900	9.366	0.65	1.18	0.64	0.54
92	0.3066	0.2933	9.366	0.65	1.18	0.64	0.54

				H			•
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
93	0.3100	0.2967	9.350	0.67	1.16	0.63	0.53
94	0.3133	0.3000	9.350	0.67	1.16	0.63	0.53
95	0.3166	0.3033	9.350	0.67	1.16	0.63	0.53
96	0.3200	0.3067	9.350	0.67	1.16	0.63	0.53
97	0.3233	0.3100	9.350	0.67	1.16	0.63	0.53
98	0.3266	0.3133	9.334	0.69	1.15	0.63	0.52
99	0.3300	0.3167	9.334	0.69	1.15	0.63	0.52
100	0.3333	0.3200	9.334	0.69	1.15	0.63	0.52
101	0.3500	0.3367	9.302	0.72	1.11	0.61	0.51
102	0.3667	0.3534	9.286	0.73	1.10	0.60	0.50
103	0.3833	0.3700	9.270	0.75	1.08	0.59	0.49
104	0.4000	0.3867	9.254	0.77	1.07	0.58	0.48
105	0.4167	0.4034	9.238	0.78	1.05	0.57	0.48
106	0.4333	0.4200	9.223	0.80	1.04	0.57	0.47
107	0.4500	0.4367	9.207	0.81	1.02	0.56	0.46
108	0.4667	0.4534	9.191	0.83	1.00	0.55	0.46
109	0.4833	0.4700	9.175	0.84	0.99	0.54	0.45
110	0.5000	0.4867	9.159	0.86	0.97	0.53	0.44
111	0.5167	0.5034	9.143	0.88	0.96	0.52	0.43
112	0.5333	0.5200	9.127	0.89	0.94	0.51	0.43
113	0.5500	0.5367	9.111	0.91	0.92	0.50	0.42
114	0.5667	0.5534	9.095	0.92	0.91	0.50	0.41
115	0.5833	0.5700	9.095	0.92	0.91	0.50	0.41
116	0.6000	0.5867	9.079	0.94	0.89	0.49	0.41
117	0.6167	0.6034	9.063	0.96	0.88	0.48	0.40
118	0.6333	0.6200	9.047	0.97	0.86	0.47	0.39
119	0.6500	0.6367	9.047	0.97	0.86	0.47	0.39
120	0.6667	0.6534	9.031	0.99	0.84	0.46	0.38
121	0.6833	0.6700	9.016	1.00	0.83	0.45	0.38
122	0.7000	0.6867	9.000	1.02	0.81	0.44	0.37
123	0.7167	0.7034	9.000	1.02	0.81	0.44	0.37

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
124	0.7333	0.7200	8.984	1.04	0.80	0.43	0.36
125	0.7500	0.7367	8.968	1.05	0.78	0.43	0.35
126	0.7667	0.7534	8.968	1.05	0.78	0.43	0.35
127	0.7833	0.7700	8.952	1.07	0.76	0.42	0.35
128	0.8000	0.7867	8.936	1.08	0.75	0.41	0.34
129	0.8167	0.8034	8.936	1.08	0.75	0.41	0.34
130	0.8333	0.8200	8.920	1.10	0.73	0.40	0.33
131	0.8500	0.8367	8.904	1.12	0.72	0.39	0.33
132	0.8667	0.8534	8.904	1.12	0.72	0.39	0.33
133	0.8833	0.8700	8.888	1.13	0.70	0.38	0.32
134	0.9000	0.8867	8.888	1.13	0.70	0.38	0.32
135	0.9167	0.9034	8.872	1.15	0.68	0.37	0.31
136	0.9333	0.9200	8.872	1.15	0.68	0.37	0.31
137	0.9500	0.9367	8.856	1.16	0.67	0.36	0.30
138	0.9667	0.9534	8.840	1.18	0.65	0.36	0.30
139	0.9833	0.9700	8.840	1.18	0.65	0.36	0.30
140	1.0000	0.9867	8.840	1.18	0.65	0.36	0.30
141	1.2000	1.1867	8.729	1.29	0.54	0.30	0.25
142	1.4000	1.3867	8.665	1.35	0.48	0.26	0.22
143	1.6000	1.5867	8.618	1.40	0.43	0.23	0.20
144	1.8000	1.7867	8.570	1.45	0.38	0.21	0.17
145	2.0000	1.9867	8.522	1.50	0.33	0.18	0.15
146	2.2000	2.1867	8.490	1.53	0.30	0.16	0.14
147	2.4000	2.3867	8.458	1.56	0.27	0.15	0.12
148	2.6000	2.5867	8.426	1.59	0.24	0.13	0.11
149	2.8000	2.7867	8.411	1.61	0.22	0.12	0.10
150	3.0000	2.9867	8.379	1.64	0.19	0.10	0.09
151	3.2000	3.1867	8.363	1.66	0.17	0.10	0.08
152	3.4000	3.3867	8.347	1.67	0.16	0.09	0.07
153	3.6000	3.5867	8.347	1.67	0.16	0.09	0.07
154	3.8000	3.7867	8.331	1.69	0.14	0.08	0.06

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
155	4.0000	3.9867	8.315	1.70	0.13	0.07	0.06
156	4.2000	4.1867	8.299	1.72	0.11	0.06	0.05
157	4.4000	4.3867	8.283	1.74	0.09	0.05	0.04
158	4.6000	4.5867	8.283	1.74	0.09	0.05	0.04
159	4.8000	4.7867	8.267	1.75	0.08	0.04	0.04
160	5.0000	4.9867	8.267	1.75	0.08	0.04	0.04
161	5.2000	5.1867	8.267	1.75	0.08	0.04	0.04
162	5.4000	5.3867	8.251	1.77	0.06	0.03	0.03
163	5.6000	5.5867	8.251	1.77	0.06	0.03	0.03
164	5.8000	5.7867	8.251	1.77	0.06	0.03	0.03
165	6.0000	5.9867	8.235	1.78	0.05	0.03	0.02
166	6.2000	6.1867	8.235	1.78	0.05	0.03	0.02
167	6.4000	6.3867	8.235	1.78	0.05	0.03	0.02
168	6.6000	6.5867	8.235	1.78	0.05	0.03	0.02
169	6.8000	6.7867	8.235	1.78	0.05	0.03	0.02
170	7.0000	6.9867	8.235	1.78	0.05	0.03	0.02
171	7.2000	7.1867	8.235	1.78	0.05	0.03	0.02
172	7.4000	7.3867	8.235	1.78	0.05	0.03	0.02
173	7.6000	7.5867	8.235	1.78	0.05	0.03	0.02
174	7.8000	7.7867	8.220	1.80	0.03	0.02	0.01
175	8.0000	7.9867	8.220	1.80	0.03	0.02	0.01
176	8.2000	8.1867	8.204	1.81	0.02	0.01	0.01
177	8.4000	8.3867	8.204	1.81	0.02	0.01	0.01
178	8.6000	8.5867	8.204	1.81	0.02	0.01	0.01
179	8.8000	8.7867	8.204	1.81	0.02	0.01	0.01
180	9.0000	8.9867	8.204	1.81	0.02	0.01	0.01
181	9.2000	9.1867	8.204	1.81	0.02	0.01	0.01
182	9.4000	9.3867	8.188	1.83	0.00	0.00	0.00
183	9.6000	9.5867	8.188	1.83	0.00	0.00	0.00
184	9.8000	9.7867	8.188	1.83	0.00	0.00	0.00
185	10.0000	9.9867	8.188	1.83	0.00	0.00	0.00



<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>
AQTESOLV RESULTS Version 1.10
09/08/93 15:29:59
======================================
Data set
Knowns and Constants:       No. of data points
======================================

#### ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

_____

______

RESULTS FROM STATISTICAL CURVE MATCHING

### STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error

K = 6.8041E-004 +/- 8.1872E-006

y0 = 1.1927E + 000 + /- 3.5066E - 003

ANALYSIS OF MODEL RESIDUALS

## residual = calculated - observed weighted residual = residual * weight

### Weighted Residual Statistics:

### Model Residuals:

Time	Observed	Calculated	Residual	Weight
0.0033	1.26	1.19	0.07	1
0.0067	1.24	1.1872	0.052792	1
0.01	1.23	1.1845	0.045495	1
0.0133	1.23	1.1818	0.048192	1
0.0167	1.23	1.179	0.050965	1
0.02	1.23	1.1764	0.053649	1
0.0233	1.21	1.1737	0.036328	1
0.0267	1.21	1.1709	0.039081	1
0.03	1.21	1.1683	0.041747	1
0.0333	1.19	1.1656	0.024408	1
0.0367	1.19	1.1629	0.027142	1
0.04	1.19	1.1602	0.02979	1
0.0433	1.18	1.1576	. 0.022432	1
0.0467	1.18	1.1549	0.025147	1
0.05	1.18	1.1522	0.027777	1
0.0533	1.18	1.1496	0.030401	1
0.0567	1.16	1.1469	0.013097	1
0.06	1.16	1.1443	0.015709	1
0.0633	1.16	1.1417	0.018315	1
0.0667	1.15	1.139	0.010993	1
0.07	1.15	1.1364	0.013586	1
0.0733	1.15	1.1338	0.016174	1
0.0767	1.15	1.1312	0.018834	1
0.08	1.13	1.1286	0.0014097	1
0.0833	1.13	1.126	0.0039795	1
0.0867	1.13	1.1234	0.0066211	1
0.09	1.13	1.1208	0.0091791	1
0.0933	1.13	1.1183	0.011731	1
0.0967	1.12	1.1156	0.0043546	1
0.1	1.12	1.1131	0.006895	1
0.1033	1.12	1.1106	0.0094296	1
0.1067	1.12	1.108	0.012035	1
0.11	1.1	1.1054	-0.0054422	1
0.1133	1.1	1.1029	-0.0029251	1
0.1167	1.1	1.1003	-0.00033769	1
0.12	1.1	1.0978	0.0021678	1
0.1233	1.1	1.0953	0.0046676	1
0.1267	1.08	1.0928	-0.012763	1

0.13	1.08	1.0903	-0.010275	1
0.1333	1.08	1.0878	-0.007792	1
0.1367	1.08	1.0852	-0.0052401	1
0.14	1.07	1.0828	-0.012769	1
0.1433	1.07	1.0803	-0.010303	1
0.1467	1.07	1.0778	-0.0077691	1
0.15	1.07	1.0753	-0.005315	1
0.1533	1.07	1.0729	-0.0028665	1
0.1567	1.05	1.0703	-0.02035	1
0.16	1.05	1.0679	-0.017912	1
0.1633	1.05	1.0655	-0.015481	1
0.1667	1.05	1.063	-0.012981	1
0.17	1.05	1.0606	-0.010561	1
0.1733	1.05	1.0581	-0.0081457	1
0.1767	1.04	1.0557	-0.015663	1
0.18	1.04	1.0533	-0.01326	1
0.1833	1.04	1.0509	-0.010861	1
0.1867	1.04	1.0484	-0.008396	1
0.19	1.04	1.046	-0.0060088	1
0.1933	1.02	1.0436	-0.023627	1
0.1967	1.02	1.0412	-0.021179	1
0.2	1.02	1.0388	-0.018808	1
0.2033	1.02	1.0364	-0.016443	1
0.2067	1.02	1.034	-0.014011	1
0.21	1.02	1.0317	-0.011657	1
0.2133	1.02	1.0293	-0.0093075	1
0.2167	1.02	1.0269	-0.0068928	1
0.22	1	1.0246	-0.024555	1
0.2233	1	1.0222	-0.022222	1
0.2267	1	1.0198	-0.019824	1
0.23	1	1.0175	-0.017501	1
0.2333	1	1.0152	-0.015184	1
0.2367	0.99	1.0128	-0.022803	1
0.24	0.99	1.0105	-0.020497	1
0.2567	0.97	0.99891	-0.028906	1
0.2734	0.97	0.98745	-0.017449	1
0.29	0.96	0.97619	-0.01619	1
0.3067	0.94	0.96499	-0.024993	1
0.3234	0.92	0.95392	-0.033925	1
0.34	0.92	0.94305	-0.023048	1
0.3567	0.91	0.93223	-0.022232	1
0.3734	0.89	0.92154	-0.031539	1
0.39	0.89	0.91103	-0.021032	1
0.4067	0.88	0.90058	-0.020582	1
0.4234	0.86	0.89025	-0.030253	1
-0.4 <del>397</del>	0.86	0.88028	-0.020285	1
0.4567	0.84	0.87001	-0.030007	1
0.4734	0.84	0.86003	-0.020028	1
0.49	0.83	0.85022	-0.020223	1
0.5067	0.81	0.84047	-0.030471	1
0.5234	0.81	0.83083	-0.02083	1
0.54	0.81	0.82136	-0.011358	1
0.5567	0.8	0.81194	-0.011937	1
0.5734	0.78	0.80262	-0.022624	1
0.0754	0.70	0.00202	J. Outubout	*

0,4400

0.59	0.78	0.79347	-0.013472	1
0.6067	0.76	0.78437	-0.024371	1
0.6234	0.76	0.77537	-0.015375	1
0.64	0.75	0.76653	-0.016534	1
0.6567	0.75	0.75774	-0.0077418	1
0.6734	0.73	0.74905	-0.01905	1
0.69	0.73	0.74051	-0.01051	1
0.7067	0.72	0.73202	-0.012016	1
0.7234	0.72	0.72362	-0.0036201	1
0.74	0.7	0.71537	-0.01537	1
0.7567	0.7	0.70716	-0.0071643	1
0.7734	0.7	0.69905	0.00094686	1
0.79	0.68	0.69108	-0.011083	1
0.8067	0.68	0.68316	-0.003156	1
0.8234	0.67	0.67532	-0.0053202	1
0.84	0.67	0.66762	0.0023796	1
0.8567	0.65	0.65996	-0.0099628	1
0.8734	0.65	0.65239	-0.002393	1
0.89	0.65	0.64495	0.0050454	1
0.9067	0.64	0.63756	0.002443	1
1.1067	0.56	0.55529	0.0047133	1
1.3067	0.49	0.48363	0.0063675	1
1.5067	0.43	0.42122	0.0087754	1
1.7067	0.4	0.36687	0.03313	1
1.9067	0.35	0.31953	0.030471	1
2.1067	0.32	0.2783	0.041703	1
2.3067	0.29	0.24239	0.047614	1
2.5067	0.25	0.21111	0.038892	1
2.7067	0.22	0.18387	0.036133	1
2.9067	0.19	0.16014	0.029859	1
3.1067	0.17	0.13948	0.030524	1
3.3067	0.16	0.12148	0.038522	1
3.5067	0.14	0.1058	0.034197	1
3.7067	0.14	0.09215	0.04785	1
3.9067	0.13	0.080259	0.049741	1
4.1067	0.11	0.069902	0.040098	1
4.3067	0.1	0.060882	0.039118	1
4.5067	0.1	0.053026	0.046974	1
4.7067	0.08	0.046183	0.033817	1
4.9067	0.08	0.040224	0.039776	1
5.1067	0.08	0.035033	0.044967	1
5.3067	0.06	0.030513	0.029487	1
5.5067	0.06	0.026575	0.033425	1
5.7067	0.05	0.023146	0.026854	1
5.9067	0.05	0.020159	0.029841	1
6.1067	0.03	0.017558	0.012442	1
6.3067	0.03	0.015292	0.014708	1
6.5067	0.03	0.013319	0.016681	1
6.7067	0.03	0.0116	0.0184	1
6.9067	0.02	0.010103	0.0098966	1
7.1067	0.02	0.0087996	0.0112	1
7.3067	0.02	0.0076641	0.012336	1
7.5067	0.02	0.0066751	0.013325	1
7.7067	0.02	0.0058138	0.014186	1

•

7.9067	0.02	0.0050636	0.014936	1
8.1067	0.02	0.0044102	0.01559	1
8.3067	0.02	0.0038411	0.016159	1
8.5067	0.02	0.0033454	0.016655	1
8.7067	0.02	0.0029137	0.017086	1

_______

#### RESULTS FROM VISUAL CURVE MATCHING

#### VISUAL MATCH PARAMETER ESTIMATES

#### Estimate

K = 6.8041E-004y0 = 1.1927E+000

#### TYPE CURVE DATA

K = 5.81272E-004y0 = 1.02823E+000

Time Drawdown Time Drawdown Time Drawdown

-----0.000E+000 1.028E+000 7.000E+000 1.652E-002

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
0	0.0000	-0.0933	5.385	-1.02	2.28	1.81	1.04
1	0.0033	-0.0900	5.321	-1.08	2.34	1.86	1.06
2	0.0067	-0.0866	5.528	-0.88	2.13	1.70	0.97
3	0.0100	-0.0833	5.783	-0.62	1.88	1.49	0.85
4	0.0133	-0.0800	5.942	-0.46	1.72	1.37	0.78
5	0.0167	-0.0766	5.879	-0.53	1.78	1.42	0.81
6	0.0200	-0.0733	5.512	-0.89	2.15	1.71	0.98
7	0.0233	-0.0700	5.114	-1.29	2.55	2.03	1.16
8	0.0267	-0.0666	4.939	-1.47	2.72	2.16	1.24
9	0.0300	-0.0633	4.908	-1.50	2.75	2.19	1.25
10	0.0333	-0.0600	5.465	-0.94	2.20	1.75	1.00
11	0.0366	-0.0567	8.426	2.02	-0.76	-0.61	-0.35
12	0.0400	-0.0533	6.802	0.40	0.86	0.68	0.39
13	0.0433	-0.0500	6.515	0.11	1.15	0.91	0.52
14	0.0466	-0.0467	6.722	0.32	0.94	0.75	0.43
15	0.0500	-0.0433	5.656	-0.75	2.01	1.59	0.91
16	0.0533	-0.0400	6.006	-0.40	1.66	1.32	0.75
17	0.0566	-0.0367	6.038	<b>-0.37</b>	1.62	1.29	0.74
18	0.0600	-0.0333	6.372	-0.03	1.29	1.03	0.59
19	0.0633	-0.0300	6.547	0.14	1.12	0.89	0.51
20	0.0666	-0.0267	6.515	0.11	1.15	0.91	0.52
21	0.0700	-0.0233	6.388	-0.02	1.27	1.01	0.58
22	0.0733	-0.0200	6.293	-0.11	1.37	1.09	0.62
23	0.0766	-0.0167	6.309	-0.09	1.35	1.08	0.61
24	0.0800	-0.0133	6.356	-0.05	1.31	1.04	0.59
25	0.0833	-0.0100	6.420	0.02	1.24	0.99	0.56
26	0.0866	-0.0067	6.436	0.03	1.23	0.97	0.56
27	0.0900	-0.0033	6.420	0.02	1.24	0.99	0.56
28	0.0933	-0.0000	6.404	0.00	1.26	1.00	0.57
29	0.0966	0.0033	6.404	0.00	1.26	1.00	0.57

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
30	0.1000	0.0067	6.420	0.02	1.24	0.99	0.56
31	0.1033	0.0100	6.436	0.03	1.23	0.97	0.56
32	0.1066	0.0133	6.436	0.03	1.23	0.97	0.56
33	0.1100	0.0167	6.436	0.03	1.23	0.97	0.56
34	0.1133	0.0200	6.436	0.03	1.23	0.97	0.56
35	0.1166	0.0233	6.452	0.05	1.21	0.96	0.55
36	0.1200	0.0267	6.452	0.05	1.21	0.96	0.55
37	0.1233	0.0300	6.452	0.05	1.21	0.96	0.55
38	0.1266	0.0333	6.468	0.06	1.19	0.95	0.54
39	0.1300	0.0367	6.468	0.06	1.19	0.95	0.54
40	0.1333	0.0400	6.468	0.06	1.19	0.95	0.54
41	0.1366	0.0433	6.484	0.08	1.18	0.94	0.54
42	0.1400	0.0467	6.484	0.08	1.18	0.94	0.54
43	0.1433	0.0500	6.484	0.08	1.18	0.94	0.54
44	0.1466	0.0533	6.484	0.08	1.18	0.94	0.54 •
45	0.1500	0.0567	6.500	0.10	1.16	0.92	0.53
46	0.1533	0.0600	6.500	0.10	1.16	0.92	0.53
47	0.1566	0.0633	6.500	0.10	1.16	0.92	0.53
48	0.1600	0.0667	6.515	0.11	1.15	0.91	0.52
49	0.1633	0.0700	6.515	0.11	1.15	0.91	0.52
50	0.1666	0.0733	6.515	0.11	1.15	0.91	0.52
51	0.1700	0.0767	6.515	0.11	1.15	0.91	0.52
52	0.1733	0.0800	6.531	0.13	1.13	0.90	0.51
53	0.1766	0.0833	6.531	0.13	1.13	0.90	0.51
54	0.1800	0.0867	6.531	0.13	1.13	0.90	0.51
55	0.1833	0.0900	6.531	0.13	1.13	0.90	0.51
56	0.1866	0.0933	<b>6.531</b>	0.13	1.13	0.90	0.51
57	0.1900	0.0967	6.547	0.14	1.12	0.89	0.51
58	0.1933	0.1000	6.547	0.14	1.12	0.89	0.51
59	0.1966	0.1033	6.547	0.14	1.12	0.89	0.51
60	0.2000	0.1067	6.547	0.14	1.12	0.89	0.51

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
TOMBLIC	(1,11,10,110)						
61	0.2033	0.1100	6.563	0.16	1.10	0.87	0.50
62	0.2066	0.1133	6.563	0.16	1.10	0.87	0.50
63	0.2100	0.1167	6.563	0.16	1.10	0.87	0.50
64	0.2133	0.1200	6.563	0.16	1.10	0.87	0.50
65	0.2166	0.1233	6.563	0.16	1.10	0.87	0.50
66	0.2200	0.1267	6.579	0.17	1.08	0.86	0.49
67	0.2233	0.1300	6.579	0.17	1.08	0.86	0.49
68	0.2266	0.1333	6.579	0.17	1.08	0.86	0.49
69	0.2300	0.1367	6.579	0.17	1.08	0.86	0.49
70	0.2333	0.1400	6.595	0.19	1.07	0.85	0.49
71	0.2366	0.1433	6.595	0.19	1.07	0.85	0.49
72	0.2400	0.1467	6.595	0.19	1.07	0.85	0.49
73	0.2433	0.1500	6.595	0.19	1.07	0.85	0.49
74	0.2466	0.1533	6.595	0.19	1.07	0.85	0.49
75	0.2500	0.1567	6.611	0.21	1.05	0.84	0.48
76	0.2533	0.1600	6.611	0.21	1.05	0.84	0.48
77	0.2566	0.1633	6.611	0.21	1.05	0.84	0.48
78	0.2600	0.1667	6.611	0.21	1.05	0.84	0.48
79	0.2633	0.1700	6.611	0.21	1.05	0.84	0.48
80	0.2666	0.1733	6.611	0.21	1.05	0.84	0.48
81	0.2700	0.1767	6.627	0.22	1.04	0.82	0.47
82	0.2733	0.1800	6.627	0.22	1.04	0.82	0.47
83	0.2766	0.1833	6.627	0.22	1.04	0.82	0.47
84	0.2800	0.1867	6.627	0.22	1.04	0.82	0.47
85	0.2833	0.1900	6.627	0.22	1.04	0.82	0.47
86	0.2866	0.1933	6.643	0.24	1.02	0.81	0.46
87	0.2900	0.1967	6.643	0.24	1.02	0.81	0.46
88	0.2933	0.2000	6.643	0.24	1.02	0.81	0.46
89	0.2966	0.2033	6.643	0.24	1.02	0.81	0.46
90	0.3000	0.2067	6.643	0.24	1.02	0.81	0.46
91	0.3033	0.2100	6.643	0.24	1.02	0.81	0.46

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	, ,						
92	0.3066	0.2133	6.643	0.24	1.02	0.81	0.46
93	0.3100	0.2167	6.643	0.24	1.02	0.81	0.46
94	0.3133	0.2200	6.659	0.25	1.00	0.80	0.46
95	0.3166	0.2233	6.659	0.25	1.00	0.80	0.46
96	0.3200	0.2267	6.659	0.25	1.00	0.80	0.46
97	0.3233	0.2300	6.659	0.25	1.00	0.80	0.46
98	0.3266	0.2333	6.659	0.25	1.00	0.80	0.46
99	0.3300	0.2367	6.675	0.27	0.99	0.78	0.45
100	0.3333	0.2400	6.675	0.27	0.99	0.78	0.45
101	0.3500	0.2567	6.691	0.29	0.97	0.77	0.44
102	0.3667	0.2734	6.691	0.29	0.97	0.77	0.44
103	0.3833	0.2900	6.707	0.30	0.96	0.76	0.43
104	0.4000	0.3067	6.722	0.32	0.94	0.75	0.43
105	0.4167	0.3234	6.738	0.33	0.92	0.73	0.42
106	0.4333	0.3400	6.738	0.33	0.92	0.73	0.42
107	0.4500	0.3567	6.754	0.35	0.91	0.72	0.41
108	0.4667	0.3734	6.770	0.37	0.89	0.71	0.41
109	0.4833	0.3900	6.770	0.37	0.89	0.71	0.41
110	0.5000	0.4067	6.786	0.38	0.88	0.70	0.40
111	0.5167	0.4234	6.802	0.40	0.86	0.68	0.39
112	0.5333	0.4400	6.802	0.40	0.86	0.68	0.39
113	0.5500	0.4567	6.818	0.41	0.84	0.67	0.38
114	0.5667	0.4734	6.818	0.41	0.84	0.67	0.38
115	0.5833	0.4900	6.834	0.43	0.83	0.66	0.38
116	0.6000	0.5067	6.850	0.45	0.81	0.65	0.37
117	0.6167	0.5234	6.850	0.45	0.81	0.65	0.37
118	0.6333	0.5400	6.850	0.45	0.81	0.65	0.37
119	0.6500	0.5567	6.866	0.46	0.80	0.63	0.36
120	0.6667	0.5734	6.882	0.48	0.78	0.62	0.35
121	0.6833	0.5900	6.882	0.48	0.78	0.62	0.35
122	0.7000	0.6067	6.898	0.49	0.76	0.61	0.35

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
123	0.7167	0.6234	6.898	0.49	0.76	0.61	0.35
124	0.7333	0.6400	6.914	0.51	0.75	0.59	0.34
125	0.7500	0.6567	6.914	0.51	0.75	0.59	0.34
.126	0.7667	0.6734	6.930	0.53	0.73	0.58	0.33
127	0.7833	0.6900	6.930	0.53	0.73	0.58	0.33
128	0.8000	0.7067	6.945	0.54	0.72	0.57	0.33
129	0.8167	0.7234	6.945	0.54	0.72	0.57	0.33
130	0.8333	0.7400	6.961	0.56	0.70	0.56	0.32
131	0.8500	0.7567	6.961	0.56	0.70	0.56	0.32
132	0.8667	0.7734	6.961	0.56	0.70	0.56	0.32
133	0.8833	0.7900	6.977	0.57	0.68	0.54	0.31
134	0.9000	0.8067	6.977	0.57	0.68	0.54	0.31
135	0.9167	0.8234	6.993	0.59	0.67	0.53	0.30
136	0.9333	0.8400	6.993	0.59	0.67	0.53	0.30
137	0.9500	0.8567	7.009	0.61	0.65	0.52	0.30
138	0.9667	0.8734	7.009	0.61	0.65	0.52	0.30
139	0.9833	0.8900	7.009	0.61	0.65	0.52	0.30
140	1.0000	0.9067	7.025	0.62	0.64	0.51	0.29
141	1.2000	1.1067	7.105	0.70	0.56	0.44	0.25
142	1.4000	1.3067	7.168	0.76	0.49	0.39	0.22
143	1.6000	1.5067	7.232	0.83	0.43	0.34	0.20
144	1.8000	1.7067	7.264	0.86	0.40	0.32	0.18
145	2.0000	1.9067	7.312	0.91	0.35	0.28	0.16
146	2.2000	2.1067	7.343	0.94	0.32	0.25	0.14
147	2.4000	2.3067	7.375	0.97	0.29	0.23	0.13
148	2.6000	2.5067	7.407	1.00	0.25	0.20	0.12
149	2.8000	2.7067	7.439	1.04	0.22	0.18	0.10
150	3.0000	2.9067	7.471	1.07	0.19	0.15	0.09
151	3.2000	3.1067	7.487	1.08	0.17	0.14	0.08
152	3.4000	3.3067	7.503	1.10	0.16	0.13	0.07
153	3.6000	3.5067	7.519	1.12	0.14	0.11	0.06

				H			•
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
154	3.8000	3.7067	7.519	1.12	0.14	0.11	0.06
155	4.0000	3.9067	7.534	1.13	0.13	0.10	0.06
156	4.2000	4.1067	7.550	1.15	0.11	0.09	0.05
157	4.4000	4.3067	7.566	1.16	0.10	0.08	0.04
158	4.6000	4.5067	7.566	1.16	0.10	0.08	0.04
159	4.8000	4.7067	7.582	1.18	0.08	0.06	0.04
160	5.0000	4.9067	7.582	1.18	0.08	0.06	0.04
161	5.2000	5.1067	7.582	1.18	0.08	0.06	0.04
162	5.4000	5.3067	7.598	1.19	0.06	0.05	0.03
163	5.6000	5.5067	7.598	1.19	0.06	0.05	0.03
164	5.8000	5.7067	7.614	1.21	0.05	0.04	0.02
165	6.0000	5.9067	7.614	1.21	0.05	0.04	0.02
166	6.2000	6.1067	7.630	1.23	0.03	0.03	0.01
167	6.4000	6.3067	7.630	1.23	0.03	0.03	0.01
168	6.6000	6.5067	7.630	1.23	0.03	0.03	0.01
169	6.8000	6.7067	7.630	1.23	0.03	0.03	0.01
170	7.0000	6.9067	7.646	1.24	0.02	0.01	0.01
171	7.2000	7.1067	7.646	1.24	0.02	0.01	0.01
172	7.4000	7.3067	7.646	1.24	0.02	0.01	0.01
173	7.6000	7.5067	7.646	1.24	0.02	0.01	0.01
174	7.8000	7.7067	7.646	1.24	0.02	0.01	0.01
175	8.0000	7.9067	7.646	1.24	0.02	0.01	0.01
176	8.2000	8.1067	7.646	1.24	0.02	0.01	0.01
177	8.4000	8.3067	7.646	1.24	0.02	0.01	0.01
178	8.6000	8.5067	7.646	1.24	0.02	0.01	0.01
179	8.8000	8.7067	7.646	1.24	0.02	0.01	0.01
180	9.0000	8.9067	7.662	1.26	0.00	0.00	0.00
181	9.2000	9.1067	7.662	1.26	0.00	0.00	0.00
182	9.4000	9.3067	7.662	1.26	0.00	0.00	0.00
183	9.6000	9.5067	7.662	1.26	0.00	0.00	0.00
184	9.8000	9.7067	7.662	1.26	0.00	0.00	0.00

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
185	10.0000	9.9067	7.662	1.26	0.00	0.00	0.00



>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>
AQTESOLV RESULTS Version 1.10	
09/08/93	15:05:39
TEST DESCRIPTION	
Data set	
Knowns and Constants:       No. of data points	
ANALYTICAL METHOD	

<<<<<<<<<<<<<<<<<<<<<<<><

### RESULTS FROM STATISTICAL CURVE MATCHING

### STATISTICAL MATCH PARAMETER ESTIMATES

______

Estimate Std. Error K = 7.3324E-004 +/- 4.7520E-006 y0 = 1.6989E+000 +/- 2.8226E-003

Bouwer-Rice (Unconfined Aquifer Slug Test)

ANALYSIS OF MODEL RESIDUALS

## residual = calculated - observed weighted residual = residual * weight

## Weighted Residual Statistics:

### Model Residuals:

Time	Observed	Calculated	Residual	Weight
0.0033	1.74	1.6947	0.045292	 1
0.0066	1.74	1.6906	0.04945	1
0.01	1.72	1.6863	0.033723	1
0.0133	1.72	1.6821	0.037861	1
0.0166	1.7	1.678	0.021988	1
0.02	1.7	1.6738	0.02623	1
0.0233	1.7	1.6697	0.030336	1
0.0266	1.69	1.6656	0.024433	1
0.0299	1.69	1.6615	0.02852	1
0.0333	1.69	1.6573	0.03272	1
0.0366	1.67	1.6532	0.016786	1
0.0399	1.67	1.6492	0.020842	1
0.0433	1.67	1.645	0.025011	1
0.0466	1.66	1.641	0.019047	1
0.0499	1.66	1.6369	0.023074	1
0.0533	1.64	1.6328	0.0072114	1
0.0566	1.64	1.6288	0.011218	1
0.0599	1.64	1.6248	0.015214	1
0.0633	1.64	1.6207	0.019321	1
0.0666	1.62	1.6167	0.0032977	1
0.0699	1.62	1.6127	0.0072645	1
0.0733	1.62	1.6087	0.011341	1
0.0766	1.61	1.6047	0.0052882	1
0.0799	1.61	1.6008	0.0092255	1
0.0833	1.61	1.5967	0.013272	1
0.0866	1.59	1.5928	-0.0028102	1
0.0899	1.59	1.5889	0.0010979	1
0.0933	1.59	1.5849	0.0051144	1
0.0966	1.59	1.581	0.0090031	1
0.0999	1.58	1.5771	0.0028822	1
0.1033	1.58	1.5731	0.0068689	1
0.1066	1.58	1.5693	0.010729	1
0.1099	1.58	1.5654	0.014579	1
0.1133	1.56	1.5615	-0.0014637	1
0.1166	1.56	1.5576	0.0023675	1
0.1199	1.56	1.5538	0.0061893	1
0.1233	1.54	1.5499	-0.0098829	1
0.1266	1.54	1.5461	-0.0060801	1

0.1299	1.54	1.5423	-0.0022867	1
0.1333	1.54	1.5384	0.001612	1
0.1366	1.53	1.5346	-0.0046134	1
0.1399	1.53	1.5308	-0.00084807	1
0.1433	1.53	1.527	0.0030217	1
0.1466	1.51	1.5232	-0.013232	1
0.1499	1.51	1.5195	-0.0094943	1
0.1533	1.51	1.5153	-0.0056533	
0.1566	1.51	1.5137	-0.0036333	1
0.1599	1.51			1
		1.5082	-0.0082248	1
0.1633	1.5	1.5044	-0.0044122	1
0.1666	1.5	1.5007	-0.00072099	1
0.1699	1.5	1.497	0.0029612	1
0.1733	1.5	1.4933	0.0067455	1
0.1766	1.48	1.4896	-0.0095907	1
0.1799	1.48	1.4859	-0.0059358	1
0.1833	1.48	1.4822	-0.0021796	1
0.1866	1.46	1.4785	-0.018543	1
0.1899	1.46	1.4749	-0.014915	1
0.1933	1.46	1.4712	-0.011187	1
0.1966	1.46	1.4676	-0.0075771	1
0.1999	1.46	1.464	-0.0039763	1
0.2033	1.45	1.4603	-0.010276	1
0.2066	1.45	1.4567	-0.0066926	1
0.2099	1.45	1.4531	-0.0031185	1
0.2133	1.45	1.4494	0.00055479	1
0.2166	1.43	1.4459	-0.015889	1
0.2199	1.43	1.4423	-0.012341	1
0.2233	1.43	1.4387	-0.0086952	1
0.2266	1.42	1.4352	-0.015165	1
0.2299	1.42	1.4316	-0.011644	1
0.2333	1.42	1.428	-0.0080249	1
0.2366	1.42	1.4245	-0.0045211	1
0.2399	1.4	1.421	-0.021026	1
0.2433	1.4	1.4174	-0.017434	1
0.2466	1.4	1.414	-0.017434	1
0.2499	1.4	1.4105	-0.010487	
0.2533				1
0.2566	1.4 1.39	1.4069 1.4035	-0.0069212	1
0.2599	1.39	1.4033	-0.013469 -0.010026	.1
0.2633				1
	1.39	1.3965	-0.0064866	1
0.2666	1.39	1.3931	-0.0030601	1
0.2699	1.39	1.3896	0.00035787	1
0.2733	1.37	1.3861	-0.016129	1
0.2766	1.37	1.3827	-0.012728	1
0.2799	1.37	1.3793	-0.0093357	1
0.2833	1.37	1.3758	-0.0058489	1
0.2866	1.35	1.3725	-0.022473	1
0.2899	1.35	1.3691	-0.019106	1
0.2933	1.35	1.3656	-0.015645	1
0.2966	1.35	1.3623	-0.012294	1
0.2999	1.35	1.359	-0.0089515	1
0.3033	1.35	1.3555	-0.0055162	1
0.3066	1.34	1.3522	-0.01219	1
				-

0.3099	1.34	1.3489	-0.0088726	1
0.3133	1.34	1.3455	-0.0054629	1
0.3166	1.34	1.3422	-0.0021616	1
TE 0.3199	1.32	1.3389	-0.018869	1
0.3233	1.32	1.3355	-0.015484	1
0.3266	1.32	1.3322	-0.012207	1
0.3433	1.31	1.3157	-0.0057479	1
0.36	1.29	1.2995	-0.0094919	1
0.3766	1.27	1.2835	-0.013532	1
0.3933	1.26	1.2677	-0.0076742	1
0.41	1.24	1.252	-0.012012	1
0.4266	1.23	1.2366	-0.0066355	1
0.4433	1.21	1.2214	-0.011357	1
0.46	1.19	1.2063	-0.016267	1
0.4766	1.18	1.1915	-0.011452	1
0.4933	1.16	1.1767	-0.016732	1
0.51	1.15	1.1622	-0.012193	1
0.5263	1.13	1.1482	-0.018176	1
0.5433	1.13	1.1337	-0.0037375	1
0.56	1.11	1.1197	-0.0097302	1
0.5766	1.1	1.106	-0.0059782	1
0.5933	1.08	1.0923	-0.012314	1
0.61	1.07	1.0788	-0.0088184	1
0.6266	1.05	1.0656	-0.015569	1
0.6433	1.03	1.0524	-0.022404	1
0.66	1.03	1.0394	-0.0094014	1
0.6766	1.02	1.0266	-0.006636	1
0.6933	1	1.014	-0.013952	1
0.71	1	1.0014	-0.0014246	1
0.7266	0.99	0.98913	0.00087439	1
0.7433	0.97	0.9769	-0.006905	1
0.76	0.96	0.96484	-0.0048353	1
0.7766	0.94	0.95299	-0.012986	1
0.7933	0.94	0.94121	-0.0012116 -0.009583	1
0.81	0.92	0.92958 0.91817	-0.009583 -0.0081663	1
0.8266 0.8433	0.91 0.91	0.91817	0.0031776	1
0.8433	0.91	0.90682	-0.0056186	1
0.8766	0.89	0.89362	-0.0036186	1
0.8933	0.88	0.87369	0.0063104	1
0.8933	0.86	0.8629	-0.0028952	1
0.9266	0.84	0.8523	-0.0028932	1
0.9433	0.84	0.8323	-0.0017675	1
0.9433	0.83	0.83137	-0.0017073	1
0.9766	0.83	0.83137	0.008843	1
0.9700	0.83	0.82110	-0.0010117	1
1.1933	0.81	0.69882	0.0010117	1
1.3933	0.7	0.60215	0.0078472	1
1.5933	0.53	0.51886	0.0076472	1
1.7933	0.46	0.44708	0.012919	1
1.9933	0.40	0.38524	0.024765	1
2.1933	0.35	0.33194	0.018055	1
2.3933	0.32	0.28603	0.033974	1
2.5933	0.29	0.24646	0.04354	1
2.3733	رد	0.2 road	3.0 1334	*

	2.7933	0.25	0.21237	0.037634	1
	2.9933	0.22	0.18299	0.037011	1
	3.1933	0.19	0.15768	0.032324	1
:	3.3933	0.18	0.13586	0.044136	1
	3.5933	0.16	0.11707	0.04293	1
	3.7933	0.14	0.10088	0.039125	1
	3.9933	0.13	0.086921	0.043079	1
	4.1933	0.11	0.074897	0.035103	1
	4.3933	0.11	0.064536	0.045464	1
	4.5933	0.1	0.055609	0.044391	1
	4.7933	0.08	0.047916	0.032084	1
	4.9933	0.08	0.041288	0.038712	1
	5.1933	0.08	0.035577	0.044423	1
	5.3933	0.06	0.030655	0.029345	1
;	5.5933	0.06	0.026415	0.033585	1
:	5.7933	0.06	0.022761	0.037239	1
;	5.9933	0.05.0.06	0.019612	0.040388	1
(	6.1933	0.05	0.016899	0.033101	1
(	6.3933	0.05	0.014561	0.035439	1
(	6.5933	0.05	0.012547	0.037453	1
(	6.7933	0.05	0.010811	0.039189	1
(	6.9933	0.05	0.0093158	0.040684	1
•	7.1933	0.05 0.03	0.0080272	0.021973	1
•	7.3933	0.03	0.0069167	0.023083	1
•	7.5933	0.03	0.0059599	0.02404	1
•	7.7933	0.03	0.0051355	0.024865	1
•	7.9933	0.02	0.0044251	0.015575	1
	8.1933	0.02	0.0038129	0.016187	1

### RESULTS FROM VISUAL CURVE MATCHING

#### VISUAL MATCH PARAMETER ESTIMATES

#### Estimate

K = 7.3324E-004y0 = 1.6989E+000

#### TYPE CURVE DATA

K = 5.83503E-004y0 = 1.33197E+000

Time Drawdown Time Drawdown Time Drawdown

0.000E+000 1.332E+000 9.000E+000 6.441E-003

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
0	0.0000	-0.0067	9.620	0.02	1.74	0.99	0.79
1	0.0033	-0.0034	9.636	0.00	1.75	1.00	0.80
2	0.0067	0.0000	9.636	0.00	1.75	1.00	0.80
3	0.0100	0.0033	9.620	0.02	1.74	0.99	0.79
4	0.0133	0.0066	9.620	0.02	1.74	0.99	0.79
5	0.0167	0.0100	9.604	0.03	1.72	0.98	0.78
6	0.0200	0.0133	9.604	0.03	1.72	0.98	0.78
7	0.0233	0.0166	9.588	0.05	1.70	0.97	0.77
8	0.0267	0.0200	9.588	0.05	1.70	0.97	0.77
9	0.0300	0.0233	9.588	0.05	1.70	0.97	0.77
10	0.0333	0.0266	9.572	0.06	1.69	0.96	0.77
11	0.0366	0.0299	9.572	0.06	1.69	0.96	0.77
12	0.0400	0.0333	9.572	0.06	1.69	0.96	0.77
13	0.0433	0.0366	9.556	0.08	1.67	0.95	0.76
14	0.0466	0.0399	9.556	0.08	1.67	0.95	0.76
15	0.0500	0.0433	9.556	0.08	1.67	0.95	0.76
16	0.0533	0.0466	9.540	0.10	1.66	0.95	0.75
17	0.0566	0.0499	9.540	0.10	1.66	0.95	0.75
18	0.0600	0.0533	9.524	0.11	1.64	0.94	0.74
19	0:0633	0.0566	9.524	0.11	1.64	0.94	0.74
20	0.0666	0.0599	9.524	0.11	1.64	0.94	0.74
21	0.0700	0.0633	9.524	0.11	1.64	0.94	0.74
22	0.0733	0.0666	9.509	0.13	1.62	0.93	0.74
23	0.0766	0.0699	9.509	0.13	1.62	0.93	0.74
24	0.0800	0.0733	9.509	0.13	1.62	0.93	0.74
25	0.0833	0.0766	9.492	0.14	1.61	0.92	0.73
26	0.0866	0.0799	9.492	0.14	1.61	0.92	0.73
27	0.0900	0.0833	9.492	0.14	1.61	0.92	0.73
28	0.0933	0.0866	9.477	0.16	1.59	0.91	0.72
29	0.0966	0.0899	9.477	0.16	1.59	0.91	0.72
30	0.1000	0.0933	9.477	0.16	1.59	0.91	0.72

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
31	0.1033	0.0966	9.477	0.16	1.59	0.91	0.72
32	0.1066	0.0999	9.461	0.17	1.58	0.90	0.72
33	0.1100	0.1033	9.461	0.17	1.58	0.90	0.72
34	0.1133	0.1066	9.461	0.17	1.58	0.90	0.72
35	0.1166	0.1099	9.461	0.17	1.58	0.90	0.72
36	0.1200	0.1133	9.445	0.19	1.56	0.89	0.71
37	0.1233	0.1166	9.445	0.19	1.56	0.89	0.71
38	0.1266	0.1199	9.445	0.19	1.56	0.89	0.71
39	0.1300	0.1233	9.429	0.21	1.54	0.88	0.70
40	0.1333	0.1266	9.429	0.21	1.54	0.88	0.70
41	0.1366	0.1299	9.429	0.21	1.54	0.88	0.70
42	0.1400	0.1333	9.429	0.21	1.54	0.88	0.70
43	0.1433	0.1366	9.413	0.22	1.53	0.87	0.69
44	0.1466	0.1399	9.413	0.22	1.53	0.87	0.69
45	0.1500	0.1433	9.413	0.22	1.53	0.87	0.69
46	0.1533	0.1466	9.397	0.24	1.51	0.86	0.69
47	0.1566	0.1499	9.397	0.24	1.51	0.86	0.69
48	0.1600	0.1533	9.397	0.24	1.51	0.86	0.69
49	0.1633	0.1566	<b>9.397</b> .	0.24	1.51	0.86	0.69
50	0.1666	0.1599	9.381	0.25	1.50	0.85	0.68
51	0.1700	0.1633	9.381	0.25	1.50	0.85	0.68
52	0.1733	0.1666	9.381	0.25	1.50	0.85	0.68
53	0.1766	0.1699	9.381	0.25	1.50	0.85	0.68
54	0.1800	0.1733	9.381	0.25	1.50	0.85	0.68
55	0.1833	0.1766	9.365	0.27	1.48	0.85	0.67
56	0.1866	0.1799	9.365	0.27	1.48	0.85	0.67
57	0.1900	0.1833	9.365	0.27	1.48	0.85	0.67
58	0.1933	0.1866	9.349	0.29	1.46	0.84	0.67
59	0.1966	0.1899	9.349	0.29	1.46	0.84	0.67
60	0.2000	0.1933	9.349	0.29	1.46	0.84	0.67
61	0.2033	0.1966	9.349	0.29	1.46	0.84	0.67

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	, ,						
62	0.2066	0.1999	9.349	0.29	1.46	0.84	0.67
63	0.2100	0.2033	9.333	0.30	1.45	0.83	0.66
64	0.2133	0.2066	9.333	0.30	1.45	0.83	0.66
65	0.2166	0.2099	9.333	0.30	1.45	0.83	0.66
66	0.2200	0.2133	9.333	0.30	1.45	0.83	0.66
67	0.2233	0.2166	9.317	0.32	1.43	0.82	0.65
68	0.2266	0.2199	9.317	0.32	1.43	0.82	0.65
69	0.2300	0.2233	9.317	0.32	1.43	0.82	0.65
70	0.2333	0.2266	9.302	0.33	1.42	0.81	0.64
71	0.2366	0.2299	9.302	0.33	1.42	0.81	0.64
72	0.2400	0.2333	9.302	0.33	1.42	0.81	0.64
73	0.2433	0.2366	9.302	0.33	1.42	0.81	0.64
74	0.2466	0.2399	9.286	0.35	1.40	0.80	0.64
75	0.2500	0.2433	9.286	0.35	1.40	0.80	0.64
76	0.2533	0.2466	9.286	0.35	1.40	0.80	0.64 •
<b>7</b> 7	0.2566	0.2499	9.286	0.35	1.40	0.80	0.64
78	0.2600	0.2533	9.286	0.35	1.40	0.80	0.64
79	0.2633	0.2566	9.270	0.37	1.39	0.79	0.63
80	0.2666	0.2599	9.270	0.37	1.39	0.79	0.63
81	0.2700	0.2633	9.270	0.37	1.39	0.79	0.63
82	0.2733	0.2666	9.270	0.37	1.39	0.79	0.63
83	0.2766	0.2699	9.270	0.37	1.39	0.79	0.63
84	0.2800	0.2733	9.254	0.38	1.37	0.78	0.62
85	0.2833	0.2766	9.254	0.38	1.37	0.78	0.62
86	0.2866	0.2799	9.254	0.38	1.37	0.78	0.62
87	0.2900	0.2833	9.254	0.38	1.37	0.78	0.62
88	0.2933	0.2866	9.238	0.40	1.35	0.77	0.62
89	0.2966	0.2899	9.238	0.40	1.35	0.77	0.62
90	0.3000	0.2933	9.238	0.40	1.35	0.77	0.62
91	0.3033	0.2966	9.238	0.40	1.35	0.77	0.62
92	0.3066	0.2999	9.238	0.40	1.35	0.77	0.62

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
93	0.3100	0.3033	9.238	0.40	1.35	0.77	0.62
94	0.3133	0.3066	9.222	0.41	1.34	0.76	0.61
95	0.3166	0.3099	9.222	0.41	1.34	0.76	0.61
96	0.3200	0.3133	9.222	0.41	1.34	0.76	0.61
97	0.3233	0.3166	9.222	0.41	1.34	0.76	0.61
98	0.3266	0.3199	9.206	0.43	1.32	0.75	0.60
99	0.3300	0.3233	9.206	0.43	1.32	0.75	0.60
100	0.3333	0.3266	9.206	0.43	1.32	0.75	0.60
101	0.3500	0.3433	9.190	0.45	1.31	0.75	0.59
102	0.3667	0.3600	9.174	0.46	1.29	0.74	0.59
103	0.3833	0.3766	9.158	0.48	1.27	0.73	0.58
104	0.4000	0.3933	9.142	0.49	1.26	0.72	0.57
105	0.4167	0.4100	9.126	0.51	1.24	0.71	0.56
106	0.4333	0.4266	9.111	0.52	1.23	0.70	0.56
107	0.4500	0.4433	9.095	0.54	1.21	0.69	0.55
108	0.4667	0.4600	9.079	0.56	1.19	0.68	0.54
109	0.4833	0.4766	9.063	0.57	1.18	0.67	0.54
110	0.5000	0.4933	9.047	0.59	1.16	0.66	0.53
111	0.5167	0.5100	9.031	0.60	1.15	0.65	0.52
112	0.5333	0.5266	9.015	0.62	1.13	0.65	0.51
113	0.5500	0.5433	9.015	0.62	1.13	0.65	0.51
114	0.5667	0.5600	8.999	0.64	1.11	0.64	0.51
115	0.5833	0.5766	8.983	0.65	1.10	0.63	0.50
116	0.6000	0.5933	8.967	0.67	1.08	0.62	0.49
117	0.6167	0.6100	8.951	0.68	1.07	0.61	0.48
118	0.6333	0.6266	8.935	0.70	1.05	0.60	0.48
119	0.6500	0.6433	8.919	0.72	1.03	0.59	0.47
120	0.6667	0.6600	8.919	0.72	1.03	0.59	0.47
121	0.6833	0.6766	8.904	0.73	1.02	0.58	0.46
122	0.7000	0.6933	8.888	0.75	1.00	0.57	0.46
123	0.7167	0.7100	8.888	0.75	1.00	0.57	0.46

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
124	0.7333	0.7266	8.872	0.76	0.99	0.56	0.45
125	0.7500	0.7433	8.856	0.78	0.97	0.55	0.44
126	0.7667	0.7600	8.840	0.80	0.96	0.55	0.43
127	0.7833	0.7766	8.824	0.81	0.94	0.54	0.43
128	0.8000	0.7933	8.824	0.81	0.94	0.54	0.43
129	0.8167	0.8100	8.808	0.83	0.92	0.53	0.42
130	0.8333	0.8266	8.792	0.84	0.91	0.52	0.41
131	0.8500	0.8433	8.792	0.84	0.91	0.52	0.41
132	0.8667	0.8600	8.776	0.86	0.89	0.51	0.41
133	0.8833	0.8766	8.760	0.88	0.88	0.50	0.40
134	0.9000	0.8933	8.760	0.88	0.88	0.50	0.40
135	0.9167	0.9100	8.744	0.89	0.86	0.49	0.39
136	0.9333	0.9266	8.728	0.91	0.84	0.48	0.38
137	0.9500	0.9433	8.728	0.91	0.84	0.48	0.38
138	0.9667	0.9600	8.712	0.92	0.83	0.47	0.38
139	0.9833	0.9766	8.712	0.92	0.83	0.47	0.38
140	1.0000	0.9933	8.697	0.94	0.81	0.46	0.37
141	1.2000	1.1933	8.585	1.05	0.70	0.40	0.32
142	1.4000	1.3933	8.490	1.15	0.61	0.35	0.28
143	1.6000	1.5933	8.410	1.23	0.53	0.30	0.24
144	1.8000	1.7933	8.346	1.29	0.46	0.26	0.21
145	2.0000	1.9933	8.299	1.34	0.41	0.24	0.19
146	2.2000	2.1933	8.235	1.40	0.35	0.20	0.16
147	2.4000	2.3933	8.203	1.43	0.32	0.18	0.14
148	2.6000	2.5933	8.171	1.47	0.29	0.16	0.13
149	2.8000	2.7933	8.139	1.50	0.25	0.15	0.12
150	3.0000	2.9933	8.108	1.53	0.22	0.13	0.10
151	3.2000	3.1933	8.076	1.56	0.19	0.11	0.09
152	3.4000	3.3933	8.060	1.58	0.18	0.10	0.08
153	3.6000	3.5933	8.044	1.59	0.16	0.09	0.07
154	3.8000	3.7933	8.028	1.61	0.14	0.08	0.07

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	· ·						
155	4.0000	3.9933	8.012	1.62	0.13	0.07	0.06
156	4.2000	4.1933	7.996	1.64	0.11	0.06	0.05
157	4.4000	4.3933	7.996	1.64	0.11	0.06	0.05
158	4.6000	4.5933	7.980	1.66	0.10	0.05	0.04
159	4.8000	4.7933	7.964	1.67	0.08	0.05	0.04
160	5.0000	4.9933	7.964	1.67	0.08	0.05	0.04
161	5.2000	5.1933	7.964	1.67	0.08	0.05	0.04
162	5.4000	5.3933	7.948	1.69	0.06	0.04	0.03
163	5.6000	5.5933	7.948	1.69	0.06	0.04	0.03
164	5.8000	5.7933	7.948	1.69	0.06	0.04	0.03
165	6.0000	5.9933	7.932	1.70	0.05	0.03	0.02
166	6.2000	6.1933	7.932	1.70	0.05	0.03	0.02
167	6.4000	6.3933	7.932	1.70	0.05	0.03	0.02
168	6.6000	6.5933	7.932	1.70	0.05	0.03	0.02
169	6.8000	6.7933	7.932	1.70	0.05	0.03	0.02
170	7.0000	6.9933	7.932	1.70	0.05	0.03	0.02
171	7.2000	7.1933	7.932	1.70	0.05	0.03	0.02
172	7.4000	7.3933	7.916	1.72	0.03	0.02	0.01
173	7.6000	7.5933	7.916	1.72	0.03	0.02	0.01
174	7.8000	7.7933	7.916	1.72	0.03	0.02	0.01
175	8.0000	7.9933	7.901	1.73	0.02	0.01	0.01
176	8.2000	8.1933	7.901	1.73	0.02	0.01	0.01
177	8.4000	8.3933	7.885	1.75	0.00	0.00	0.00
178	8.6000	8.5933	7.885	1.75	0.00	0.00	0.00
179	8.8000	8.7933	7.885	1.75	0.00	0.00	0.00
180	9.0000	8.9933	7.885	1.75	0.00	0.00	0.00
181	9.2000	9.1933	7.885	1.75	0.00	0.00	0.00
182	9.4000	9.3933	7.885	1.75	0.00	0.00	0.00
183	9.6000	9.5933	7.901	1.73	0.02	0.01	0.01
184	9.8000	9.7933	7.901	1.73	0.02	0.01	0.01
185	10.0000	9.9933	7.885	1.75	0.00	0.00	0.00