Figure 1

S. Publication	PECVD Reaction	'Delta-n' Control Method	Post-dep. Thermal
Valence 1007	¥11		Treatment To (OC)
Valette S.,1987	Unknown	P doping	Not specified
Valette S.,1988	Unknown	P doping	400°C
Grand G., 1990	Unknown	P doping	1000°C
Liu K., 1995	Unknown	Content in Si, P	Not specified
Ojha S., 1998	Unknown	Ge, B, or P doping	Not specified
Canning J., 1998	Unknown	Ge doping	Not specified
Bulla D., 1998	TEOS	TEOS	Not specified
Johnson C., 1998	SiH ₄ + O ₂	Si ion Implantation	400°C
Boswell R. W., 1997	SiH ₄ + O ₂	SiH ₄ /O ₂ flow ratio	1000°C
Bazylenko M. V., 1995	$SiH_4 + O_2 + CF_4$	(SiH ₄ +O ₂)/CF ₄ flow ratio	Not specified
Bazylenko M. V., 1996	$SiH_4 + O_2 + CF_4$	(SiH ₄ +O ₂)/CF ₄ flow ratio	1000°C
Durandet A., 1996	$SiH_4 + O_2 + CF_4$	SiH ₄ /O ₂ /CF ₄ flow ratio	100°C
Kapser K., 1991	SiH ₄ + N ₂ O	SiH ₄ /N ₂ O flow ratio	1060°C
Lai Q., 1992	$SiH_4 + N_2O$	SiH ₄ /N ₂ O flow ratio	1100°C
Lai Q.,1993	$SiH_4 + N_2O$	SiH ₄ /N ₂ O flow ratio	1100°C
Pereyra I., 1997	SiH ₄ + N ₂ O	SiH ₂ /N ₂ O flow ratio	400°C
Alayo M., 1998	SiH ₄ + N ₂ O	SiH ₄ /N ₂ O flow ratio	1000°C
Kenyon T., 1997	$SiH_4 + N_2O + Ar$	SiH ₄ /N ₂ O/Ar flow ratio	1000°C
Lam D. K. W., 1984	$SiH_4 + N_2O + NH_3$	SiH ₄ /N ₂ O/NH ₃ flow ratio	Not specified
Bruno F., 1991	$SiH_4 + N_2O + NH_3$	SiH ₄ /N ₂ O/NH ₃ flow ratio	1100°C
Yokohama S., 1995	$SiH_4 + N_2O + NH_3$	SiH ₄ /N ₂ O/NH ₃ flow ratio	Not specified
Agnihotri O. P., 1997	$SiH_4 + N_2O + NH_3$	SiH ₂ /N ₂ O/NH ₃ flow ratio	700-900°C
Germann R., 1999	$SiH_4 + N_2O + NH_3$	Unknown	1100°C
Offrein B., 1999	$SiH_4 + N_2O + NH_3$	Unknown	1150°C
Hoffmann M., 1995	$SiH_4 + N_2O + NH_3 + Ar$	SiH ₄ /N ₂ O/NH ₄ /Ar flow ratio	Not specified
Hoffmann M., 1997	$SiH_4 + N_2O + NH_3 + Ar$	SiH ₄ /N ₂ O/NH ₃ /Ar flow ratio	Not specified
Tu Y., 1995	$SiH_4 + N_2O + NH_3 + N_2$	N ₂ O/(N ₂ O + NH ₃) flow ratio	1050°C
Poenar D., 1997	$SiH_4 + N_2O + NH_3 + N_2$	SiH ₂ /N ₂ O/NH ₂ /N ₂ , flow ratio	850°C
Ridder R., 1998	$SiH_4 + N_2O + NH_3 + N_2$	SiH ₄ /N ₂ O/NH ₃ /Ar flow ratio	1100°C
Worhoff K., 1999	$SiH_4 + N_2O + NH_3 + N_2$	SiH ₄ /N ₂ O/NH ₃ /N ₂ flow ratio	1150°C
Bulat E.S., 1993	$SiH_4 + N_2O + N_2 + O_2 + He + CF_4$	SiH ₄ /(N ₂ O/N ₂)/O ₂ /CF ₄ flow ratio	425°C
This Patent Application	$SiH_4 + N_2O + PH_3 + N_2$	Patented Pending Method	650°C

Figure 2

		Ŧ	Ī	Ι	Ŧ	Ŧ	0	٨	i <u>s</u>	is:	Z	Ξ	Si	ίς.
		но-н	SIO-H	SiN-H	Si:N-H	SI-H	0≓!S	N=N	S-0-IS	Si-O-S	Si-ON	HO-is	Si-O-Si	Si-O-Si
					•				•	0,			0)	0,
3.0	Min	3550	3470	3380	3300	2210	1800	1530	1080	1000	910	860	740	410
FTIR 1st mode (cm-1)	Ave	3650	3510	3420	3380	2260	1875	1555	1180	1080	950	885	810	460
4 50	Max	3750	3550	3460	3460	2310	1950	1580	1280	1160	990	910	880	510
1st mode (µm)	Min	2.817	2.882	2.959	3.030	4.525	5.556	6.536	9.259	10.000	10.989	11.628	13.514	24.390
	Ave	2.740	2.849	2.924	2.959	4.425	5.333	6.431	8.475	9.259	10.526	11.299	12.346	21.739
	Max	2.667	2.817	2.890	2.890	4.329	5.128	6.329	7.813	8.621	10.101	10.989	11.364	19.608
2nd mode (µm)	Min	1.408	1.441	1.479	1.515	2.262	2.778	3.268	4.630	5.000	5.495	5.814	6.757	12.195
	Ave	1.370	1.425	1.462	1.479	2.212	2.667	3.215	4.237	4.630	5.263	5.650	6.173	10.870
	Max	1.333	1.408	1.445	1.445	2.165	2.564	3.165	3.906	4.310	5.051	5.495	5.682	9.804
0	Min	0.939	0.961	0.986	1.010	1.508	1.852	2.179	3.086	3.333	3.663	3.876	4.505	8.130
3rd mode (µm)	Ave	0.913	0.950	0.975	0.986	1.475	1.778	2.144	2.825	3.086	3.509	3.766	4.115	7.246
	Max	0.889	0.939	0.963	0.963	1.443	1.709	2.110	2.604	2.874	3.367	3.663	3.788	6.536
0 %	Min	0.704	0.720	0.740	0.758	1.131	1.389	1.634	2.315	2.500	2.747	2.907	3.378	6.098
4th mode (µm)	Ave	0.685	0.712	0.731	0.740	1.106	1.333	1.608	2.119	2.315	2.632	2.825	3.086	5.435
	Max	0.667	0.704	0.723	0.723	1.082	1.282	1.582	1.953	2.155	2.525	2.747	2.841	4.902
Sth mode (µm)	Min	0.563	0.576	0.592	0.606	0.905	1.111	1.307	1.852	2.000	2.198	2.326	2.703	4.878
	Ave	0.548	0.570	0.585	0.592	0.885	1.067	1.286	1.695	1.852	2.105	2.260	2.469	4.348
	Max	0.533	0.563	0.578	0.578	0.866	1.026	1.266	1.563	1.724	2.020	2.198	2.273	3.922
eth mode (µm)	Min	0.469	0.480	0.493	0.505	0.754	0.926	1.089	1.543	1.667	1.832	1.938	2.252	4.065
	Ave	0.457	0.475	0.487	0.493	0.737	0.889	1.072	1.412	1.543	1.754	1.883	2.058	3.623
	Max	0.444	0.469	0.482	0.482	0.722	0.855	1.055	1.302	1.437	1.684	1.832	1.894	3.268
7th mode (µm)	Min	0.402	0.412	0.423	0.433	0.646	0.794	0.934	1.323	1.429	1.570	1.661	1.931	3.484
	Ave	0.391	0.407	0.418	0.423	0.632	0.762	0.919	1.211	1.323	1.504	1.614	1.764	3.106
	Max	0.381	0.402	0.413	0.413	0.618	0.733	0.904	1.116	1.232	1.443	1.570	1.623	2.801
8th mode (µm)	Min	0.352	0.360	0.370	0.379	0.566	0.694	0.817	1.157	1.250	1.374	1.453	1.689	3.049
	Ave	0.342	0.356	0.365	0.370	0.553	0.667	0.804	1.059	1.157	1.316	1.412	1.543	2.717
	Max	0.333	0.352	0.361	0.361	0.541	0.641	0.791	0.977	1.078	1.263	1.374	1.420	2.451

Figure 3a

Figure 3b

Figure 3c

Figure 3d

Figure 4a

Figure 4b

Figure 4c

Figure 4d

Figure 5c

Figure 5d

Figure 6a

Figure 6b

Figure 6c

Figure 6d

Figure 7a

Figure 7b

Figure 7c

Figure 7d

Figure 8a

Figure 8b

Figure 8c

Figure 8d

Figure 9a

Figure 9b

Figure 9c

Figure 9d

Figure 10

Figure 11

Figure 12

Tensile stress Core

(Core wants to contract)

Desired vertical deep-etched profile

Compressive stress Buffer (Clad)
(Buffer (Clad) wants to expand)

Tensile stress Core

(Core wants to contract)

Desired vertical deep etched profile

Compressive stress Buffer (Clad)

(Buffer (Clad) wants to expand).

Tensile stress Core

(Core wants to contract)

Desired vertical deep-etched profile

Compressive stress Buffer (Clad)

(Buffer (Clad) wants to expand)

Figure 13

The relative position between an isolated $5.0\mu m$ wide deep-etched waveguide and its neighboring $1150\mu m$ wide deep-etched grating at two different magnifications.

The side-wall of the 5.0µm wide deepetched waveguide facing the neighboring grating has a slope of about 90°.

The side-wall of the 1150µm wide deepetched grating facing the neighboring deep-etched waveguide has a much smaller slope of about 84°.

Figure 14

Figure 15

Figure 16

1 microns

10kev 37000x

Figure 17

Figure 18b

Figure 18c

Figure 18d

Figure 18e

Figure 18f

Figure 18g

Figure 18h

Figure 18i

Figure 18k

Figure 181

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

