Numerical Analysis - Fall 2023

Assignment #4

Issued: Oct. 28, 2023 Due: Nov. 8, 2023

Please upload to the 'hw4' directory if you submit your homework in time.

Problem 1:

Construct the Lagrange interpolating polynomials for the following functions, and find a bound for the absolute error on the interval $[x_0, x_n]$.

a.
$$f(x) = e^{2x} \cos 3x$$
, $x_0 = 0$, $x_1 = 0.3$, $x_2 = 0.6$, $n = 2$

b.
$$f(x) = \sin(\ln x), \quad x_0 = 2.0, x_1 = 2.4, x_2 = 2.6, n = 2$$

Problem 2:

Let $P_3(x)$ be the interpolating polynomial for the data (0,0), (0.5,y), (1,3), and (2,2). The coefficient of x^3 in $P_3(x)$ is 6. Find y.

Problem 3:

Neville's method is used to approximate f(0.4), giving the following table.

Determine $P_2 = f(0.5)$.

Suppose $x_i = j$, for j = 0, 1, 2, 3 and it is known that

$$P_{0,1}(x) = 2x + 1$$
, $P_{0,2}(x) = x + 1$, and $P_{1,2,3}(2.5) = 3$.

Find $P_{0,1,2,3}(2.5)$.

Problem 4:

For a function f, the forward-divided differences are given by

$$x_0 = 0.0$$
 $f[x_0]$ $f[x_0, x_1]$ $f[x_0, x_1]$ $f[x_0, x_1, x_2] = \frac{50}{7}$ $x_2 = 0.7$ $f[x_2] = 6$

Determine the missing entries in the table.

Problem 5:

Determine the natural cubic spline S that interpolates the data f(0) = 0, f(1) = 1, and f(2) = 2. Determine the clamped cubic spline S that interpolates the data f(0) = 0, f(1) = 1, f(2) = 2 and satisfies s'(0) = s'(2) = 1.

Problem 6:

Use the most accurate three-point formula to determine each missing entry in the following tables.

a.	X	f(x)	f'(x)	b.	х	f(x)	f'(x)
	1.1	9.025013			8.1	16.94410	
	1.2	11.02318			8.3	17.56492	
	1.3	13.46374			8.5	18.19056	
	1.4	16.44465			8.7	18.82091	

Problem 7:

Suppose that N(h) is an approximation to M for every h > 0 and that

$$M = N(h) + K_1h^2 + K_2h^4 + K_3h^6 + \cdots,$$

for some constants K_1 , K_2 , K_3 , Use the values N(h), $N\left(\frac{h}{3}\right)$, and $N\left(\frac{h}{9}\right)$ to produce an $O(h^6)$ approximation to M.

Problem 8:

Consider the following data:

i	Xi	yi	
1	0	6	
2	2	8	
3	4	14	
4	5	20	

- 1. Compute the linear least squares polynomial approximation for this data.
- 2. Compute the error E of the above approximation.