Analisi II

Luca Mombelli

2024-25

Indice

1	Top	oologia	2
2	Lim	uiti	3
3	Funzioni reali a valori vettoriali		
	3.1	Limite	4
	3.2	Derivata	4
	3.3	Curva	5
		3.3.1 Parametrizzazione di funzioni	5
	3.4	Integrali	6
		3.4.1 Integrali di linea di prima specie	6
		3.4.2 Lunghezza dell'arco	6
4	Fun	zioni vettoriali a valori reali	7
	4.1	Limiti	7
		4.1.1 Calcolo dei limiti	8
	4.2	Differenziabilità	9
			11
		•	13
	4.3	1	13
	4.4	1	14
	1.1	4.4.1 Domini rettangolari	14
		4.4.2 Dominio non rettangolare	14
		ŭ	15
			16
5	Fun	zione vettoriale a valori vettoriali	17
	5.1		19
6	Can	mpi Vettoriali	19
	6.1	1	19
	6.2		20
	6.3	-	20
	6.4	•	20
	0.1		20
7	Seri	ie	22
	7.1	Criteri di convergenza per serie a termini positivi	${22}$
	7.2	· · ·	23
	7.3	The state of the s	25
	7.4		25
			26

1 Topologia

Definizione. Palla (aperta)

Sia $x \in \mathbb{R}^n$ e r > 0 chiamiamo palla aperta di centro x e raggio e l'insieme :

$$B(x,r) = \{ y \in \mathbb{R}^n \mid ||y - x|| < R \}$$

Definizione. Aperto/chiuso

 \star Sia $A\subseteq\mathbb{R}^n$ diciamo che A è aperto se

$$\forall x \in A \ \exists r > 0 \ t.c \ B(x,r) \subseteq A$$

 \star Sia $C\subseteq\mathbb{R}^n.$ Diciamo che C è chiuso se $\mathbb{R}^n\setminus C$ è aperto

Esistono insieme che non sono ne aperti ne chiusi , ad esempio : $A=\{(x_1,x_2)\in\mathbb{R}^2\mid 0< x_1<1\ 0\leq x_2\leq 1\}$

Figura 1: esempio

Inoltre vi sono unicamente due insieme che sono sia aperti sia chiusi : \emptyset \mathbb{R}^n

Osservazione : A è aperto se $A = A^0$

A è chiuso se $A = \overline{A}$

se A è aperto , allora E non contiene ∂A

se A è chiuso , allora A contiene ∂A

 $A^0 \cup \partial A = \overline{A}$

Definizione. Intorno

Sia $x \in \mathbb{R}^n$ diciamo intorno di x un qualsiasi insieme aperto $U \subseteq \mathbb{R}^n$ che contiene x. In particolare B(x,r),r>0, è detto intorno **sferico** di x.

Definizione. Punto di accumulazione

 $x \in \mathbb{R}^n$ è un punto di accumulazione di $E \subseteq \mathbb{R}^n$ se in ogni intorno sferico centrato in x B(x,r) esiste almeno un punto di E diverso da x

Definizione. Sia $E \subseteq \mathbb{R}^n$

- $\star~x\in\mathbb{R}^n$ è un punto interno per E se $\exists r>0$ t.
c $B(x,r)\subseteq E$ definiamo l'interno E come E^0 =
punti interni di E
- $\star~x \in \mathbb{R}^n$ è un punto di frontiera per E se $\forall r>0$ t.c

$$B(x.r) \cap E \neq \emptyset$$

$$B(x,r) \cap (\mathbb{R}^n \setminus E) \neq \emptyset$$

definiamo la frontiera di E come $\partial E{=}\mathrm{punti}$ di frontiera di E

- * $x \in \mathbb{R}^n$ un punto esterno per E se $\exists r > 0$ t.c $B(x,r) \subseteq \mathbb{R}^n \setminus E$
- \star Definiamo chiusura di E l'insieme $\overline{E} = E \cup \partial E$

Esempio:
$$E = [1, 2)$$
 $\partial E = \{1, 2\}$ $E^0 = (1, 2)$ $\overline{E} = [1, 2]$

Proposizione. Sia $\{A_n\}_n$ una famiglia di insiemi aperti. Allora :

$$\bigcup_{n=1}^{\infty} A_n \text{ è aperto}, \quad \bigcap_{n=1}^{N} A_n \text{ è aperto } N > 0$$

Sia $\{A_n\}_n$ una famiglia di insiemi chiusi. Allora :

$$\bigcup_{n=1}^{N} A_n \text{ è } chiuso, \bigcap_{n=1}^{\infty} A_n \text{ è } chiuso \ N > 0$$

Proposizione. Sia $C \subseteq \mathbb{R}^n$ - Allora C è chiuso $\leftrightarrow \forall \{x_k\}_k \subseteq C$, $x_k \to \overline{x}$, allora $\overline{x} \in C$ C contiene i limiti delle sue successioni convergenti

Definizione. Insieme limitato

Sia $E \subseteq \mathbb{R}^n$. Diciamo che E è limitato se $\exists R > 0$ t.c $E \subseteq B(0,R)$ $(\exists R > 0 \text{ t.c } ||y|| < R \ \forall y \in E)$

Definizione. Insieme finito

Sia $E \subseteq \mathbb{R}^n$ è finito se la cardinalità di E è minore di $+\infty$

Definizione. Insieme convesso

Sia $A \subseteq \mathbb{R}^n$. Diciamo che A è convesso se per ogni coppia di punti $x, y \in A$, il segmento che connette x e y sta interamente in A.

Definizione. Insieme connessi per archi

Sia $E \subseteq \mathbb{R}^n$, diciamo che E è connesso per archi se $\forall x,y \in E$ esiste un arco di curva continua interamente contenuto in E con estremi x e y

Definizione. Insieme semplicemente connesso

Sia $\Omega \subseteq \mathbb{R}^n$, Ω è semplicemente connesso se è connesso (per archi) e ogni curva chiusa interamente contenuta in Ω può essere ridotta a un punto mediante deformazioni continue senza uscire da Ω

2 Limiti

Definizione. Limite per successioni

Sia $\{x_k\}_k \subset \mathbb{R}^n$ e sia $x \in \mathbb{R}^n$. Diciamo che

$$x_k \to \overline{x} \ per \ k \to +\infty \ oppure \lim_{k \to +\infty} x_k = \overline{x}$$

$$\forall \epsilon > 0 \ \exists N > 0 \ t.c. \ x_k \in B(\overline{x}, \epsilon) \ \forall k > N$$

$$||x - \overline{x}|| < \epsilon$$

 $x_k \to \overline{x} \to \text{ogni elemento del vettore converge}$

Definizione. Continuità

 $f: E \subseteq \mathbb{R}^n \to \mathbb{R}^m$ e sia $\overline{x} \in E$ è continua in \overline{x} se

$$\forall \{x_k\}_k \subseteq E, x_k \to \overline{x} \text{ allora } f(x_k) \leftrightarrow f(\overline{x}) \text{ per } k \to +\infty$$

Definizione. Punto di accumulazione

 $Sia\ E \subseteq \mathbb{R}^n, \overline{x} \in \mathbb{R}^n$ è detto punto di accumulazione per E

$$\star$$
 se $\exists \{x_k\}_k \subseteq E, x_n \neq \overline{x} \ \forall k, x_k \to \overline{x}$

 \star se per ogni intorno U di \overline{x} contiene infiniti punti di E

Definiamo $Acc(E)\{x \in \mathbb{R}^n : x \text{ è di acc per E}\}$

Definizione. Punto isolato

sia $E \subseteq \mathbb{R}^n, \overline{x} \in E$ è punto isolato per E se $\overline{x} \notin Acc(E)$

Definizione. Succesionale di limiti funzionale

Sia $f: E \subseteq \mathbb{R}^n \to \mathbb{R}^m$ e sia $\overline{x} \in Acc(E)$ e sia $l \in \mathbb{R}^m$. Diciamo che

$$\lim_{x \to \overline{x}} f(x) = l \text{ se } \forall \{x_k\}_k \subseteq E \text{ allora } f(x_k) \to l$$
$$x_k \to \overline{x}$$
$$x_k \neq \overline{x} \ \forall k$$

Caraterizzazione:

 $f: E \subseteq \mathbb{R}^n \to \mathbb{R}^m$ e sia $\overline{x} \in E \cap Acc(E)$ allora f è continua in \overline{x} se $\lim_{x \to \overline{x}} f(x) = f(\overline{x})$

3 Funzioni reali a valori vettoriali

Una funzione reale a valore vettoriale e una funzione del tipo $r: A \subseteq \mathbb{R} \to \mathbb{R}^m$ $Im(r) = \{x \in \mathbb{R}^n : \exists t \in I \ t.c. \ x = r(t)\}$

Ad esempio una funzione vettoriali è : $r(t) = \binom{cost}{sint}$ $t \in [0, 2\pi]$.

Inoltre una funziona vettoriali può essere vista nel seguente modo :

$$r(t) = (r_1(t), r_2(t), \dots, r_m(t)) \in \mathbb{R}^m \quad con \ r_i : I \subseteq \mathbb{R} \to \mathbb{R}$$

3.1 Limite

Questo rende possibile calcolare il limiti di una funzione vettoriale calcolando il limite componente per componente :

$$\lim_{t \to t_0} (r_1(t), r_2(t), \dots, r_m(t)) = (\lim_{t \to t_0} r_1(t), \lim_{t \to t_0} r_2(t), \dots, \lim_{t \to t_0} r_m(t))v$$

Quindi anche la continuità va studiata componente per componente

3.2 Derivata

Definizione. Derivata di una funzione vettoriale

Sia $r:I\subseteq\mathbb{R}\to\mathbb{R}^m$ e $t_0\in Acc(I)$, si dice che r è derivabile in t_0 se esiste finito

$$\lim_{h \to 0} \frac{r(t_0 + h) - r(t_0)}{h} = r'(t_0)$$

Notiamo che il rapporto incrementale è un quoziente tra un vettore e uno scalare , quindi rimane un vettore. Ricordando che poi limiti vengono calcolati componente per componente si vede che:

$$r'(t_0) = \left(\lim_{h \to 0} \frac{r_1(t_0 + h) - r_1(t_0)}{h}, \lim_{h \to 0} \frac{r_2(t_0 + h) - r_2(t_0)}{h}, \dots, \lim_{h \to 0} \frac{r_m(t_0 + h) - r_m(t_0)}{h}\right)$$
$$= (r'_1(t_0), r'_2(t_0), \dots, r'_m(t_0))$$

Proprietà delle derivate:

Sia $I \subseteq \mathbb{R}$. Se $u, v : I \to \mathbb{R}^m$ sono derivabili allora :

- $\star (u+v)' = u' + v'$
- $\star c \in \mathbb{R}, (cu)' = cu'$
- \star se $f:I\to\mathbb{R}$ è una funzione derivabile (f~u)'=f'u+fu'
- \star se $\varphi: \mathbb{R} \to I$ è una funzione derivabile $[u(\varphi(t))]' = u'(\varphi(t))\varphi'(t)$
- $\star (u \cdot v)' = u' \cdot v \grave{e} u \cdot v'$
- \star Se m=3 $(u \times v)' = u' \times v + u \times v'$

3.3 Curva

Definizione. Arco di curva continua

Sia $I \subseteq \mathbb{R}$. Si dice arco di curva continua in \mathbb{R}^m una funzione $r: I \to \mathbb{R}^m$ continua.

Più precisamente un arco di curva continua γ è la coppia costituita da una funzione $r:I\to\mathbb{R}^m$ detta parametrizzazione della curva e l'immagine di r (Im(r)) che chiamiamo sostegno della curva

Definizione. Curva chiusa

 $r:[a,b]\to\mathbb{R}^m$ è una curva chiusa se r(a)=r(b)

Definizione. Curva aperta

 $r:[a,b]\to\mathbb{R}^m$, rè una curva semplice se

$$\forall t_1, t_2 \in [a, b]$$

$$t_1 \neq t_2 \Rightarrow r(t_1) \neq r(t_2)$$

$$(t_1, t_1) \neq (a, b)$$

Definizione. Velocità scalare

Se $r'(t_0) \neq 0$ allora $r'(t_0)$ è un vettore tangente alla curva r(t) in t_0 . Diciamo che $r'(t_0) \neq 0$ è il vettore velocità istantanea, chiamiamo $||r'(t_0) \neq 0||$ velocità scalare

Definizione. $r:I\subseteq\mathbb{R}\to\mathbb{R}^m$ r si dice curva regolare se

$$r \in C^1(I) \ e \ r'(t_0) \neq 0 \ \forall t \in I$$

Per curve regolari è definito il versore tangente

$$\mathbf{T} = \frac{r'(t)}{||r'(t)||}$$

Definizione. Curva regolare a tratti

Si dice arco di curva regolare a tratti un arco di curva $r:[a,b] \to \mathbb{R}^m$ tale che : r è continua e l'intervallo I può essere suddiviso in numero finito di sotto intervalli, su ciascuno dei quali r è un arco di curva regolare.

3.3.1 Parametrizzazione di funzioni

- \star Circonferenza
 - con centro $\binom{0}{0}$ e raggio R

$$r(t) = \begin{pmatrix} Ros(t) \\ Rsin(t) \end{pmatrix} \quad \forall t \in [0, 2\pi]$$

— con centro $\binom{x_c}{y_c}$ e raggio R

$$r(t) = \begin{pmatrix} x_c + R\cos(t) \\ y_c + R\sin(t) \end{pmatrix} \quad \forall t \in [0, 2\pi]$$

- \star Elisse :
 - con centro $\binom{0}{0}$ e semiassi a e b

$$r(t) = \begin{pmatrix} acos(t) \\ bsin(t) \end{pmatrix} \quad \forall t \in [0, 2\pi]$$

-con centro ${x_c \choose y_c}$ e semiassi a e b

$$r(t) = \begin{pmatrix} x_c + acos(t) \\ y_c + bsin(t) \end{pmatrix} \quad \forall t \in [0, 2\pi]$$

5

 \star Segmenti da P_1 a P_2 :

$$r(t) = (1-t)P_1 + tP_2 \quad \forall t \in [0,1]$$

Per invertire il senso abbiamo più opzioni :

- Scambiamo i due punti
- sostituiamo t con -t
- ★ Funzioni :

grafico di
$$f : \{(x,y) : y = f(x)\} = \{(x,f(x))\}$$
 quindi $r(t) = (t,f(t))$

ad esempio: $f(x) = 4 - x^2$

$$r(t) = \begin{pmatrix} t \\ 4 - t^2 \end{pmatrix} \quad \forall t \in [-2, 0]$$

 \star Retta passante $P \in \mathbb{R}^n$ per un punto con giacitura $V \in \mathbb{R}^n$

$$r(t) = P + tV$$

3.4 Integrali

3.4.1 Integrali di linea di prima specie

Definizione. Sia $r:[a,b] \to \mathbb{R}^m$ un arco di curva regolare di sostegno γ e sia f una funzione a valori reali definiti in un sottoinsieme A di \mathbb{R}^m contenente γ cioè , $f:A \subset \mathbb{R}^m \to \mathbb{R}$ con $A \supset \gamma$. Si dice integrale di linea (di prima specie) di f lungo γ l'integrale

$$\int_{\gamma} f ds = \int_{a}^{b} f(r(t)) ||r'(t)|| dt$$

Proposizione. L'integrale di f di prima specie lungo γ è invariante per parametrizzazioni equivalenti ed anche per cambiamento di orientamento di γ

3.4.2 Lunghezza dell'arco

La lunghezza dell'arco di curva r(t):

lunghezza arco di curva =
$$\int_a^b ||r'(t)||$$

6

4 Funzioni vettoriali a valori reali

Una funzione vettoriale a valori reali è una funzione del tipo $f: \mathbb{R}^n \to \mathbb{R}$. Il grafico di una funzione vettoriale a valori reali è :

grafico di
$$f: \{(x, f(x)) \in \mathbb{R}^{n+1}\}$$

Definizione. Ipersuperficie di livello o Curve di livello

$$f: \mathbb{R}^n \to \mathbb{R} \quad \forall z \in \mathbb{R} \quad c_z = \{x \in \mathbb{R}^n : f(x) = z\}$$

$$f:A\subseteq\mathbb{R}^n\to\mathbb{R}$$

continuità : vale la definizione generale (somma , differenza , prodotto di funzioni continue è continua)

Teorema 4.1: Degli zeri

Sia $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$ continua con A insieme aperto e connesso per archi 1. Supponiamo che per $x,y\in A$ si abbia $f(x)\cdot f(y)<0$ Allora $\exists z\in A: f(z)=0$

Teorema 4.2: Di Weierstrass

 $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$ continua , con A chiuso e limitato ; Allora f
 ammette massimo e minimo assoluti in A , ovvero esistono
 $x_m,x_n\in A$ tali che

$$f(x_m) \le f(x) \le f(x_n)$$

Teorema 4.3: Del valor medio (Teorema di Lagrange())

ia $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$, A aperto e convesso 1. Supponiamo che f
 sia differenziabile in A , allora per ogni coppia di punt
i $x,y\in A$, esiste un punto $c\in A$ tale che :

$$f(y) - f(x) = \nabla f(c) \cdot (y - x)$$

In particolare , $|f(y) - f(x)| \le ||\nabla f(c)|| \ ||y - x||$

4.1 Limiti

Definizione. Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ definita almeno in un intorno sferico di $X_0 \in \mathbb{R}^n$ e sia $L \in \mathbb{R}^*$. Diremo allora che :

$$\lim_{x \to x_0} f(x) = L$$

se $\forall \{x_k\}_{k=1}^{\infty}$ di punti di $\mathbb{R}^n: x_k \to x_0 \ per \ k \to \infty (\ con \ x_k \neq x_0 \ \forall k)$ si ha che :

$$\lim_{k \to \infty} f(x_k) = L$$

Definizione. Continuità

Sia $f: \mathbb{D} \subseteq \mathbb{R}^n, c \in D$. Diciamo che f è **continua** in c se e solo se :

$$\forall \{x_n\} \subseteq \mathbb{D} : x_n \to c \text{ abbiamo che } f(x_n) \to f(c)$$

Teorema 4.4: Del confronto

siano $f,g,h;A\subseteq\mathbb{R}^n\to\mathbb{R}\quad c\in A$, supponiamo che :

$$\star f(x) \le h(x) \le g(c) \ per \ x \to c$$

$$\star f(x) \to l \in \mathbb{R} \ per \ x \to c$$

$$\star g(x) \to l \in \mathbb{R} \ per \ x \to c$$

allora $h(x) \to l \ per \ x \to c$

Teorema 4.5: Di permanenza del segno

ia $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$ definita almeno in un intorno sferico di $x_0\in\mathbb{R}^n$. Supponiamo che esista :

$$\lim_{x \to x_0} f(x) = L \in \mathbb{R}^*$$

- 1. se L>0 allora f(x) si mantiene positiva almeno in un intorno di $x_0\in\mathbb{R}^n$, cioè esiste $\delta>0$ tale che f(x)>0 purchè $0<|x-x_0|<\delta$
- 2. Se $f(x) \ge 0$ in un intorno di x_0 (salvo al più x_0) allora $L \ge 0$ Notiamo che non si puà affermare che L > 0. anche se f(x) > 0
- 3. se f(x) è continua in x_0 e f(x)>0 allora f(x) si mantiene positiva almeno in un intorno x_0 , cioè esiste $\delta>0$ tale che f(x)>0 purchè $0<|x-x_0|<\delta$

Osservazione:

I seguenti insieme sono aperti:

$$A = \{x \in \mathbb{R}^n | f(x) > 0\}$$

$$B = \{x \in \mathbb{R}^n | f(x) < 0\}$$

$$C = A \cup B = \{x \in \mathbb{R}^n | f(x) \neq 0\}$$

I seguenti insiemi sono chiusi:

$$A = \{x \in \mathbb{R}^n | f(x) \ge 0\}$$

$$B = \{x \in \mathbb{R}^n | f(x) \le 0\}$$

$$C = A \cap B = \{x \in \mathbb{R}^n | f(x) = 0\}$$

4.1.1 Calcolo dei limiti

Restrizione di una funzione ad una curva e non esistenza del limite

Se $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$ è un funzione reale di n
 variabili , $r:I\subseteq\mathbb{R}\to\mathbb{R}^n$ è una arco di curva in \mathbb{R}^n ed esiste la funziona composta

$$g(t) = f(r(t))$$

questa si dice restrizione di f alla curva \mathbf{r} Per dimostrare che il limite per $x \to x_0$ di una certa funzione f(x) non esiste è sufficiente determinare due curve che passano da x_0 , lungo le quali la funzione tende a due limiti diversi.

Provare l'esistenza di un limite

Teorema 4.6

Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ definita almeno in un intorno di x_0 e sia $L \in \mathbb{R}$ se $g(0, +\infty) \to \mathbb{R}$ è una funziona tale che $g(\rho) \to 0$ per $\rho \to 0$ e

$$|f(x) - L| < g(|x - x_0|)$$

per ogni x in un opportuno introno sferico di x_0 allora

$$\lim_{x \to x_0} f(x) = L$$

Per prima cosa calcoliamo il potenziale valore del limiti utilizzando la restrizione di una funzione ad una curva e poi attraverso l'uso di *maggiorazioni con funzioni radiali* ne proviamo l'esistenza. Esempio :

$$\lim_{(x,y)\to(0,0)} \frac{2x^2y}{x^2+y^2}$$

ci restringiamo a (x,0) quindi

$$\lim_{(x,0)\to(0,0)} \frac{2x^2\cdot 0}{x^2+0} = 0$$

Ora per dimostrarlo, riscriviamo la funzione in coordinate polari

$$\frac{2x^2y}{x^2+y^2} = \frac{2\rho^3\cos^2(\theta)\sin(\theta)}{\rho^2}$$

utilizzando poi il Teorema 4.1.1 abbiamo che:

$$\left|\frac{2x^2y}{x^2+y^2}\right| = \left|\frac{2\rho^3cos^2(\theta)sin(\theta)}{\rho^2}\right| = 2\rho|cos^2\theta sin\theta| \leq 2\rho$$

quindi $2\rho \to 0 \ \ \rho \to 0$ allora

$$\lim_{(x,y)\to(0,0)} \frac{2x^2y}{x^2+y^2} = 0$$

4.2 Differenziabilità

Definizione. Derivata direzionale

Sia $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$, A aperto , $c\in A$, $v\in\mathbb{R}^n$ un versore. Sia r(t)=c+vt la retta passante per c con direzione v e sia g(t)=f(r(t)). Definiamo la derivata direzionale di f nel punto c e nella direzione v.

$$D_V f(c) = g'(0) = \lim_{t \to 0} \frac{f(c+tv) - f(c)}{t}$$

Definizione. Derivata Parziale

Sia $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$, A aperto , $c\in A$. Diciamo derivata parziale di f :

$$\frac{\partial f}{\partial x_i}(c) = D_{e_i} f(c) = \lim_{h \to 0} \frac{f(c + he_i) - f(c)}{h}$$

Derivata direzionale nella direzione coordinata $e_i = (0, \dots, 1, \dots, 0)$. Altre notazioni equivalenti sono : $\partial_{x_i} f, D_{x_i} f, D_{i} f, f_{x_i}$

Definizione. Gradiente : è il vettore che collezione le derivata parziali :

$$\nabla f(c) = (\partial_{x_1} f, \partial_{x_2} f, \dots, \partial_{x_n} f(c))$$

Definizione. Derivabilità

F è derivabile (ammette derivate parziali) se esiste il gradiente di f

Definizione. Differenziabilità

sia $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$, A aperto, $c\in A$. Diciamo che f è differenziabile in c se e esiste un vettore $a\in\mathbb{R}^n$ tale che :

$$f(c+h) = f(c) + a \cdot h + o(||h||) \quad h \to 0$$

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - a \cdot h}{||h||} = 0$$

$$f(x) = f(x_0) + a \cdot (x - x_0) + o(||x - x_0||) \quad x \to x_0$$

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - a \cdot (x - x_0)}{||x - x_0||} = 0$$

Proposizione. Se f è differenziabile in x_0 , allora f è derivabile in x_0 e il vettore \mathbf{a} è il gradiente calcolato un x_0 :

$$a = \nabla f(x_0)$$

Definizione. Se f è differenziabile in x_0 , si dice differenziale di f calcolato in x_0 l'applicazione lineare $df(x_0): \mathbb{R}^n \to \mathbb{R}$ definita da :

$$df(x_0) : \mapsto \nabla f(x_0) \cdot h$$

Definizione. Iperpiano tangente

Se f è differenziabile in x_0 si dice *iperpiano tangente* al grafico di f in x_0 , il petrpiano

$$z = f(x_0) + \nabla f(X_0) \cdot (x - x_0)$$
$$z = f(x_0) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x_0) (x - x_i^0)$$

La differenziabilità è una condizione più forte sia della continuità sia della derivabilità. Però la differenziabilità non è facile da verificare direttamente. In caso n=2 la differenziabilità (x_0, y_0) significa provare che :

$$\lim_{\substack{(h,k)\to(0,0)}} \frac{f(x_0+h,y_0+k) - f(x_0,y_0) - \frac{\partial f}{\partial x}(x_0,y_0) \ h - \frac{\partial f}{\partial y}(x_0,y_0) \ k}{\sqrt{h^2 + k^2}}$$

Teorema 4.7: Della differenzia
bilità totale , condizione sufficiente di differenzia
bilità

Siano $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$, con A aperto e $x_0\in A$. Supponiamo che le derivate parziali di f esistano in un intorno di x_0 e siano continue in x_0 . Allora f è differenziabile.

Teorema 4.8: Formula del gradiente

Sia $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$, A aperto , $c\in A$, $v\in\mathbb{R}^n$. Supponiamo che **f sia differenziabile** in c. Allora

$$D_v f(c) = \nabla f(c) \cdot v = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(c) \cdot v_i$$

Dimostrazione. f è differenziale in c , $f(c+h) = f(c) + \nabla f(c) \cdot h + o(||h||)$ sia h = tv per $t \in \mathbb{R}$ se $t \to 0$ allora $h \to 0$

$$\begin{split} f(c+tv) - f(c) &= \nabla f(c) \cdot (tv) + o(t) \quad t \to 0 \\ \frac{f(c+tv) - f(c)}{t} &= \nabla f(c) \cdot v + \frac{o(t)}{t} \quad t \to 0 \\ D_v f(c) &= \nabla f(c) \cdot v \end{split}$$

Corollario. Direzioni di massima e minima crescita

Sia $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$ con A aperto di \mathbb{R}^n , f differenziabile in $x_0\in A$. Allora il vettore $\nabla f(x_0)$ indica la direzione e il verso di massimo accrescimento di f, ossia la direzione corrispondente alla massima derivata direzionale : $-\nabla f(x_0)$ indica la direzione corrispondente alla minima derivata direzionale : infine, nella direzione ortogonale al gradiente le derivate direzionali sono nulle-

Definizione. Massimo e minimo locale globale Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ e $x_0 \in A$ Diciamo che :

1. x_0 è punto di massimo (minimo) assoluto per f in A e che $f(x_0)$ è il massimo (minimo) assoluto o globale di f in A se

$$\forall x \in A : f(x) \le f(x_0) \ (f(x_0) \le f(x))$$

2. x_0 è punto di massimo (minimo) relativo o locale per f e che $f(x_0)$ è massimo (minimo) relativo o locale di f se esiste un intorno U di x_0 tale che :

$$\forall x \in U : f(x) < f(x_0) \ (f(x_0) < f(x))$$

Teorema 4.9: Di Fermat

Sia $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$, con A aperto e $x_0\in A$ un punto di massimo o minimo locale per f. Se f è derivabile in x_0 , allora $\nabla f(x_0)=0$

I punti in cui si annulla il gradiente sono detti punti stazionari/ critici. Come per il caso in una dimensione non tutti i punti critici sono massimi e minimi. Introduciamo quindi il punto di sella

Definizione. Punto di sella

Sia $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$, con A aperto e $x_0\in A$. x_0 è un punto di sella se per f esistono due direzioni $v_1,v_2\in\mathbb{R}^n$ tali che :

$$g_1(t) = f(c + v_1 t)$$
 ammette un massimo per $t = 0$
 $g_2(t) = f(c + v_2 t)$ ammette un minimo per $t = 0$

se non è un punto ne di massimo e minimo

4.2.1 Derivata parziale di secondo ordine

Se provvediamo a calcolare la derivata parziale rispetto a una delle variabili del gradiente della funzione f(x, y) rispetto una delle variabili abbiamo una derivata parziale di secondo

ordine. Indichiamo la derivata parziale del secondo ordine con i seguenti simboli :

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (\frac{\partial f}{\partial x}) = f_{xx}$$

$$\frac{\partial^2 f}{\partial yx} = \frac{\partial}{\partial y} (\frac{\partial f}{\partial x}) = f_{xy}$$

$$\frac{\partial^2 f}{\partial xy} = \frac{\partial}{\partial x} (\frac{\partial f}{\partial y}) = f_{yx}$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (\frac{\partial f}{\partial y}) = f_{yy}$$

Definizione. Matrice hessiana

Data una funzione $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ se tutte le derivate parziali seconde esistono allora si definisce la matrice hessiana della funzione f la matrice Hf(x) data da :

$$Hf = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n^2} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix} , \quad (Hf)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

Teorema 4.10: Di Schwarz

Sia $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$, con A aperto. Supponiamo che per certi indici $i,j\in\{1,2,\ldots,n\}$ le derivate seconde miste $f_{x_ix_j}.f_{x_jx_i}$ esistano un intorno di un punto x_0 e siano entrambe continue in x_0 ; allora esse coincido no in x_0 .

In particolare se le derivare secondo miste $f_{x_ix_j}.f_{x_jx_i}$ esistono e sono continue in A , allora esse coincidono in tutto A

Sotto le ipotesi del teorema 4.2.1, l'hessiana di f $\grave{\rm e}$ una matrice simmetrica in ogni punto di A

Definizione. Differenziale secondo

Se $f \in C^2(A)$ e $x_0 \in A$ si dice differenziale secondo di f in x_0 la funzione;

$$d^{2}f(x_{0}): \mathbb{R}^{n} \to \mathbb{R}$$
$$h \mapsto h^{t}H_{f}(c)h = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2}f}{\partial x_{i}x_{j}}(c) h_{i}h_{j}$$

Teorema 4.2.1. Formula di Taylor con resto di Lagrange

Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$, A aperto e convesso, $f \in C^2(A)$. Sia $c \in A$, $h \in \mathbb{R}^n$ tale che $c + h \in A$. Allora $\exists \delta \in (0,1)$, dipendente da $c \in h$, tale che

$$f(c+h) = f(c) + \nabla f(c) \cdot h + \frac{1}{2}h^t H_f(c+\delta h)h$$

Teorema 4.2.2. Formula di Taylor con resto di Peano Sia $f \in C^2(A)$, $\forall c \in A \ vale$:

$$f(c+h) = f(c) + \nabla f(c) \cdot h + \frac{1}{2} h^t H_f(c) h + o(||h^2||) \qquad h \to 0$$

Teorema 4.2.3. Formula di Taylor

Sia $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ di classe $C^k(\Omega)$ dove Ω è un insieme aperto. Allora in un intorno $a \in \Omega$:

$$f(x) = \sum_{|\alpha| \le k} \frac{D^{\alpha} f(a)}{\alpha!} (x - a)^{\alpha} + \sum_{|\alpha| = k} R_{\alpha}(x) (x - a)^{\alpha}$$

4.2.2 Studio della natura dei punti critici

Teorema 4.2.4. Sia $q(h) = h^T M h$ una forma quadratica in \mathbb{R}^n . Se q è definita postiva allora

$$q(h) \ge \lambda_{min} ||h||^2 \quad \forall h \in \mathbb{R}^n$$

Se q è una forma definita negativa , allora

$$q(h) \le \lambda_{max} ||h||^2 \quad \forall h \in \mathbb{R}^n$$

Teorema 4.2.5. Sia $f \in C^2(A)$ e $x_0 \in A$ un punto critico per f ($\nabla f(x_0) = 0$). Se la forma quadratica

$$q(h) = h^T H_f(x_0) h$$

 \grave{e} :

- 1. Definita positiva (negativa) allora x_0 è un punto di minimo (massimo) locale forte
- 2. Indefinita, allora x_0 è un punto di sella
- 3. Semidefinita positiva o negativa, allora il criterio è inconcludente

Teorema 4.2.6. dei moltiplicatori di Lagrange

Siano $f, g \in C^1(\mathbb{R}^2)$ e (x^*, y^*) punto di estremo vincolato sotto il vincolo g(x, y) = bSe (x^*, y^*) è regolare per il vincolo cioè $\nabla g(x^*, y^*) \neq 0$ allora esiste $\lambda^* \in \mathbb{R}$ tale che :

$$\nabla f(x^*, y^*) = \lambda^* \nabla g(x^*, y^*)$$

Introducendo la funzione

$$\mathcal{L}(x, y, \lambda) = f(x, y) - \lambda [g(x, y) - b]$$

Il teorema afferma che se (x^*, y^*) è un punto di estremo vincolato , allora esiste λ^* tale che il punto (x^*, y^*, λ^*) sia un punto critico libero per $\mathcal L$ Infatti i punti critici di L sono soluzioni del sistema

$$\begin{cases} \mathcal{L}_x = f_x - \lambda_x = 0 \\ \mathcal{L}_y = f_y - \lambda_y = 0 \\ \mathcal{L}_x = b - g = 0 \end{cases}$$

Il modo di procedere è il seguente :

- 1. Si isolano gli eventuali punti non regolari dell'insieme g(x,y)=b che vanno esaminati a parte
- 2. si cercano i punti critici liberi della Lagrangiana e cioè le soluzioni del sistema
- 3. Si determina a natura dei punti critici, A questo proposito risulta spesso utile (se possibile) applicare il teorema di weierstrass

4.3 Funzioni Implicite

Teorema 4.11: Di Dini o della funzione implicita

Sia $A \subseteq \mathbb{R}^2$ e sia $f: A \to \mathbb{R}$ un funzione di classe $C^1(A)$. Sia $(x_0, y_0) \in A$. Supponiamo che $f(x_0, y_0) = 0$ e $\partial_y f(x_0, y_0) \neq 0$.

Allora esiste un intorno I di x_0 e un'unica funzione $g: I \to \mathbb{R}$ tale che

$$y_0 = g(x_0) \ e \ f(x, g(x)) = 0 \ \forall x \in I$$

Inoltre $g \in C^1(I)$ e

$$g'(x) = -\frac{f_x(x, g(x))}{f_y(x, g(x))} \quad \forall x \in I$$

Teorema 4.12: Di Dini nel caso n-dimensionale

 $A \subseteq \mathbb{R}^{n+1}$, A aperto, $f: A \to R$ un funzione di classe $C^1(A)$. Supponiamo che $f(x_0, y_0) = 0$ e $\partial_y f(x_0, y_0) \neq 0$ $x_0 \in \mathbb{R}^n$ $y_o \in \mathbb{R}$. Allora esiste un intorno U di $x_0 \in \mathbb{R}^n$ e un'unica funzione $\varphi: U \to \mathbb{R}$ tale che

$$f(x, \varphi(x)) = 0 \ \forall x \in U$$

Inoltre $g \in C^1(I)$

$$\frac{\partial \varphi'}{\partial x_j}(x) = -\frac{f_{x_j}(x, \varphi(x))}{f_y(x, \varphi(x))} \quad \forall x \in U \ , \ \forall j = 1 \to n$$

4.4 Integrali

4.4.1 Domini rettangolari

Teorema 4.13

Se $f_{\lceil}a,b]\times [c,d]\to \mathbb{R}$ è continua allora è integrabile

Per una funzione continua e non negativa su un rettangolo , l'integrale doppio ha il significato geometrico di volume della regione tridimensionale compresa fra il piano xy e il grafico della funzione

Teorema 4.14: Di riduzione, per un rettangolo

Se $f_[a,b] \times [c,d] \to \mathbb{R}$ è continua allora il suo integrale doppio si può calcolare come integrale iterato al modo seguente

$$\iint_{[a,b]\times[c,d]} f(x,y) dx dy = \int_a^b \left(\int_c^d f(x,y) dy \right) dx = \int_c^d \left(\int_a^b f(x,y) dx \right) dy$$

4.4.2 Dominio non rettangolare

Definizione. Un insieme $E \subset \mathbb{R}$ si dice

* Insieme y-semplice :

$$E = \{(x, y) \in \mathbb{R} : x \in [a, b], g_1(x) \le y \le g_2(x)\}$$

con g_1, g_2 funzioni continue

* Insieme x-semplice;

$$E = \{(x, y) \in \mathbb{R} : y \in [c, d], h_1(y) \le x \le h_2(y)\}\$$

con h_1, h_2 funzioni continue

E si dice semplice se è y-semplice oppure x-semplice.

E si dice regolare se è unione *finita* di insiemi semplici

Teorema 4.15

Sia $\Omega \subseteq \mathbb{R}^2$ un dominio regolare e $f:\Omega \to \mathbb{R}$ continua. Allora f è integrabile in Ω

Definizione. Insieme Misurabile

Un insieme limitato $\Omega \subseteq \mathbb{R}^2$ si dirà *misurabile* se la funzione cotante 1 è integrabile in Ω . In tal caso chiameremo *Misura* di Ω il numero

$$|\Omega| = \iint_{\Omega} 1 dx dy$$

Proposizione. Sia $g:[a,b]\to\mathbb{R}$ una funzione continua. Allora il grafico di g è un insieme di misura nulla

Proposizione. L'unione di un numero finito di insiemi di misura nulla ha misura nulla

Corollario. Il bordo di un insieme regolare ha misura nulla

Teorema 4.16

Sia $\Omega \subseteq \mathbb{R}^2$ un dominio regolare e $f:\Omega \to \mathbb{R}^2$ una funzione limitata e continua ad eccezione di un insieme di misura nulla di punti di discontinuità. Allora f è integrabile in Ω

Teorema 4.17: Di riduzione di funzione discontinue

Sia $f:[a,b]\times[c,d]\to\mathbb{R}$ una funzione limita , continua salvo un insieme di misura nulla di punti di discontinuità. Allora il suo integrale doppio si può calcolare come integrale iterato

4.4.3 Calcolo degli integrali doppi

Teorema 4.18: Di riduzione , per domini semplici

Sia $f: \Omega \to \mathbb{R}$ continua e sia Ω un dominio x-semplice , ossia :

$$\Omega = \{(x, y) \in \mathbb{R} : y \in [c, d], h_1(y) \le x \le h_2(y)\}$$

con h_1, h_2 funzioni continue. Allora l'integrale doppio di f
 si può calcolare come integrale iterata nel modo seguente

$$\iint_{\Omega} f(x,y)dxdy = \int_{c}^{d} \left(\int_{h_{1}(y)}^{h_{2}(y)} f(x,y)dx \right) dy$$

Se invece Ω è y-semplice :

$$\Omega = \{(x, y) \in \mathbb{R} : x \in [a, b], g_1(x) \le y \le g_2(x)\}$$

con g_1, g_2 funzioni continue :

$$\iint_{\Omega} f(x,y)dxdy = \int_{a}^{b} \left(\int_{g_{1}(x)}^{g_{2}(x)} f(x,y)dy \right) dx$$

Teorema 4.19

Sia $dD\subseteq\mathbb{R}^2$ un dominio regolare $f:D\to\mathbb{R}$ una funzione continua e $T:D'\to D$, (x,y)=T(u.v) con

$$\begin{cases} x = g(u.v) \\ y = h(u,v) \end{cases}$$

Una trasformazione di coordinate , o più precisamente , un $\operatorname{\mathbf{diffeomorfismo}}$ globale .

Allora:

$$\iint_D f(x,y) dx dy) \iint_D f(g(u,v),h(u,v)) |det JT(u,v)| du dv$$

Dove JT indica la matrice jacobiana della trasformazione

4.4.4 Calcolo integrali tripli

Integrazione per fili Sia Ω un dominio di \mathbb{R}^3 che si può rappresentare analiticamente in forma

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D, g_1(x, y) \le z \le g_2(x, y)\}$$

dove D è un dominio regolare nel piano e g_1, g_2 sono continue. Allora se $f: \Omega \to \mathbb{R}$ è una funzione continua, f è integrabile in Ω e l'integrale si può calcolare mediante la formula

$$\iiint_{\Omega} f(x,y,z) dx dy dz = \iint_{D} \left(\int_{g_{1}(x,y)}^{g_{2}(x,y)} f(x,y,x) dz \right) dx dy$$

Figura 2: Integrazione per fili

Integrazione per strati – Supponiamo ora che Ω sia un dominio di \mathbb{R}^3 rappresentabile nella forma

$$\Omega = \{(x, y, z) : h_1 \le z \le h_2, (x, y) \in \Omega(z)\}$$

 $\Omega(z)$ è un dominio regolare nel piano

Teorema 4.20: Formula di cambiamento di variabili negli integrali tripli

Sia $dD\subseteq\mathbb{R}^3$ un dominio regolare $f:D\to\mathbb{R}$ una funzione continua e $T:D'\to D$ un diffeomorfismo globale con (x,y,z)=T(u,v,w) con

$$\begin{cases} x = x(u, v, w) \\ y = y(u, v.w) \\ z = z(u, v, w) \end{cases}$$

Allora

$$\begin{split} & \iiint_D f(x,y,z) dx dy dz = \\ & = \iiint_{D'} f(x(u,v,w),y(u,v,w),z(u,v,w)) |det JT(u,v,w)| du \ dv \ dw \end{split}$$

Dove JT indica la matrice jacobiana della trasformazione

5 Funzione vettoriale a valori vettoriali

Funzioni del tipo ; $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ dove $f(x) = (f_1(x), f_2(x), \dots, f_m(x))$ $f_i: \mathbb{R}^n \to R$

Definizione. Matrice jacobiana

Sia $f:A\subseteq\mathbb{R}^n\to\mathbb{R}^m$, A aperto. La matrice jacobiana della funzione f in $X=(x_1,\ldots,x_n)$ è la matrice $\in R^{m\times n}$ delle derivate parziali prime della funzione calcolate in x

$$Jf(X) = Df(X) = \begin{pmatrix} \partial x_1 f_1 & \dots & \partial_{x_n} f_1 \\ \vdots & \ddots & \vdots \\ \partial x_1 f_m & \dots & \partial_{x_n} f_m \end{pmatrix} (X)$$

Definizione. Una funzione si dice differenziabile in x_0 se

$$f(x_0 + h) - f(x_0) - JF(x_0)h = o(||h||) \quad per \ h \to 0$$

Definizione. Il differenziale primo di f in x_0 è la funzione lineare :

$$df(x_0) : \mathbb{R}^n \to \mathbb{R}^m$$

 $df(x_0) : h \mapsto Jf(x_0)h$

Teorema 5.1: Derivata di funzioni composte

Siano $f:A\subseteq\mathbb{R}^n\to\mathbb{R}^m$ e $g:B\subseteq\mathbb{R}^m\to\mathbb{R}^k$ e supponiamo che sia ben definita almeno in un intorno C di $x_0\in A$ la funzione composta $g\circ f:C\subseteq\mathbb{R}^n\to\mathbb{R}^k$. Se f è differenziabile in x_0 e g è differenziabile in $y_0=f(x_0)$ anche $g\circ f$ è differenziabile in x_0 e la sua matrice jacobiana si ottiene come prodotto matriciale delle matrice jacobiane di f e g calcolate nei punti x_0 e y_0 :

$$J(g \circ f)(x_0) = Jg(f(x_0))Jf(x_0)$$

Teorema 5.2: Di Dini, della funzione implicita: caso generale

Si A un aperto di \mathbb{R}^{n+m} , $f:A\to\mathbb{R}^m$, $f\in C^1(A)$ e supponiamo che nel punto $(x_o,y_o)\in A$ sia

$$f(x_0, y_0) = 0$$
 det $J_y f(x_0, y_0) \neq 0$

Allora esistono un intorno $U\subset R^{n+m}$ di x_0 e un'**unica** funzione $g:U\to R^m$, $g\in C^1(U)$ tale che $\forall x\in U$

$$f(x, g(x)) = 0$$

 $Jg(x) = -J_y f(x, g(x))^{-1} J_x f(x, g(x))$

Data la matrice jacobiana

$$Df(x_0, y_0) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_0, y_0) & \dots & \frac{\partial f_1}{\partial x_n}(x_0, y_0) & & \frac{\partial f_1}{\partial y_1}(x_0, y_0) & \dots & \frac{\partial f_1}{\partial y_m}(x_0, y_0) \\ \vdots & \ddots & \vdots & & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(x_0, y_0) & \dots & \frac{\partial f_n}{\partial x_n}(x_0, y_0) & & \frac{\partial f_n}{\partial y_1}(x_0, y_0) & \dots & \frac{\partial f_n}{\partial y_m}(x_0, y_0) \end{bmatrix} = \begin{bmatrix} D_x & | & D_y \end{bmatrix}$$

Teorema 5.3: Della funzione inversa

Sia $f:A\subseteq\mathbb{R}^n\to\mathbb{R}^n$, con A aperto , tale che $f\in C^1(A)$. Supponiamo che per un dato punto di $x_0\in A$ sia la matrice Jacobiana invertibile .

$$det \mathbf{Df}(x_0) \neq 0$$

Allora esiste un intorno di x_0 e un intorno di V di $f(x_0)$ tra i quali la funzione f è biunivoca; detta $g:V\to U$ la corrispondenza inversa , si ha che $g\in C^1(V)$ e

$$Dg(f(x)) = Df(x)^{-1}$$

Nel caso di n > 1 anche se le ipotesi del teorema di invertibilità locale sono soddisfatte da ogni punto del dominio , la funzione può non essere invertibile globalmente. In questo possiamo affermare unicamente che ogni punto ha un intorno in cui la funzione è invertibile , cioè la funzione è localmente invertibile

Definizione. Diffeomorfismo

Sia A un aperto di \mathbb{R}^n . Una trasformazione di coordinate $f:A\subseteq\mathbb{R}^n\to\mathbb{R}^n$ si dice **diffeomorfismo** (Diffeomorfismo globale) se $f\in C^1(A)$ e f è globale invertibile in A e la sua funzione inversa $g:f(A)\to A$ è C^1 nel suo dominio-

Si dice **Diffeomorfismo locale** se $f \in C^1(A)$ e ogni punto $x_0 \in A$ ha un introno $U \subset A$ in cui f è invertibile, con inversa C^1

5.1 Coordinate sferiche

$$\begin{cases} x = \rho \sin\varphi \, \cos\theta \\ y = \rho \, \sin\varphi \, \sin\theta \end{cases} \qquad con \, \rho > 0 \, , \, \varphi \in [0, \pi] \, , \, \theta \in [0, 2\pi) \\ z = \rho \, \cos\varphi \end{cases}$$

6 Campi Vettoriali

Definizione. Campo Vettoriale Si dice campo vettoriale una funzione

$$F: A \subseteq \mathbb{R}^n \to \mathbb{R}^n$$

Definizione. Dato un campo vettoriale $F:A\subseteq\mathbb{R}^3\to\mathbb{R}^3$ con $F\in C^1(A)$, chiameremo linea di campo una qualsiasi curva regolare tangente in ogni punto a F

I punti nei quali escono le linee di campo sono detti sorgenti. I punti nei quali entrano le linee di campo sono detti pozzi. Pozzi e sorgenti sono punti singolare per il campo .

6.1 Operatori differenziali

Definizione. Gradiente : Trasforma un campo scalare in un campo vettoriale

$$\nabla = \hat{i}\partial_x + \hat{i}\partial_y + \hat{k}\partial_z$$

Definizione. Operatore di Laplace

$$\Delta = \nabla^2 = \partial_{x_1}^2 + \dots + \partial_{x_n}^2$$

 ${f Definizione.}$ Rotore : trasforma un campo vettoriale in un altro campo vettoriale

$$\nabla \times F = \begin{vmatrix} i & j & k \\ \partial_x & \partial_y & \partial_z \\ F_1 & F_2 & F_3 \end{vmatrix} = i(\partial_y F_3 - \partial_z F_2) - j(\partial_x F_3 - \partial_z F_1) + k(\partial_x F_2 - \partial_y F_1)$$

Definizione. Divergenza : Trasforma un campo vettoriale in un campo scalare $F:A\subseteq\mathbb{R}^3\to\mathbb{R}^3$ con $F\in C^1(A)$

$$divF = \nabla \cdot F = (\partial_x, \partial_y, \partial_z) \cdot (F_1, F_2, F_3)^T = \frac{\partial F_1}{\partial_x} + \frac{\partial F_2}{\partial_y} + \frac{\partial F_3}{\partial_z}$$

Se la divergenza è uguale a zero allora il campo è detto solenoidale

Proposizione. $u: \mathbb{R}^3 \to \mathbb{R}$, $F: \mathbb{R}^3 \to \mathbb{R}^3$, $u, F \in C^2(\mathbb{R}^3)$

- $\star \ \nabla \times (\nabla u) = 0$ il rotore di un gradiente è nullo
- $\star \ \nabla \cdot (\nabla \times F) = 0$ la divergenza di un rotore è nulla
- $\star \nabla \cdot (\nabla u) = \Delta u$ La divergenza del gradiente è il laplaciano

6.2 Lavoro di un campo vettoriale

Definizione. Lavoro di un campo vettoriale

Sia γ un arco di curva regolare, parametrizzata da $r:[a,b]\to\mathbb{R}^3$ $t\mapsto (x(t),y(t),z(t))$, sia $F:\mathbb{R}^3\to\mathbb{R}^3$. Definiamo integrale di linea o lavoro di F lungo γ l'integrale:

$$\int_{\gamma} F dr = \int_{a}^{b} F(r(t)) \cdot r'(t) dt = \int_{a}^{b} F_{1}(x(t), y(t), z(t)) x'(t) + F_{2}(x(t), y(t), z(t)) y'(t) + F_{3}(x(t), y(t), z(t)) z'(t) dt$$

Se la curva γ è semplice e chiusa , si usa il simbolo $\oint_{\mathbb{R}} F dt$

Inoltre a differenza dell'integrale di linea di prima specie , questo integrale dipende dal verso della parametrizzazione della curva γ

6.3 Campi conservativi

Definizione. Campo conservativo

Un campo vettoriale $F:A\subseteq\mathbb{R}^3\to\mathbb{R}^3$ si dice conservativo in A se $F\in C^1(A)$ ed esiste una funzione $U:A\to\mathbb{R}$, detta potenziale di F, tale che $U\in C^2(A)$ e $F=\nabla U$ in A, cioè

$$F_1 = \frac{\partial U}{\partial x}$$
 $F_2 = \frac{\partial U}{\partial y}$ $F_3 = \frac{\partial U}{\partial z}$

Lemma. Sia $F = \nabla U$ un campo conservativo in A e sia γ una curva regolare a tratti e contenuta in A , parametrizzata da $r:[a,b] \to A, t \mapsto r(t)$. Siano p=U(r(a)) , q=U(r(b)). Il Lavoro di F lungo γ è dato da :

$$\int_{\gamma} F \cdot dr = p - q$$

Teorema 6.1: di caratterizzazione di campi conservativi

Sia $F \in C^1(A)$. Le seguenti tre affermazioni equivalenti

1. per ogni coppia di curve regolari a tratti γ_1,γ_2 contenute in A e aventi lo stesso punto iniziale e stesso punto finale

$$\int_{\gamma_1} F \cdot dr = \int_{\gamma_2} F \cdot dr$$

2. Per ogni curva chiusa γ , semplice, regolare a tratti e contenuta in A

$$\oint_{\gamma} F \cdot dr = 0$$

3. F è conservativo

Teorema 6.2

Sia $F\in C^1(A)$ e sia A semplicemente connesso. Se $\nabla\times F=0$ (il campo è irrotazionale) , allora F è conservativo

6.4 Flusso

6.4.1 Superfici

Definizione. Superficie Regolare

Sia Σ una superficie parametrizzata da $r: T \subset \mathbb{R}^2 \to \mathbb{R}^3, r = r(u, v)$: Σ si dice regolare se r è differenziabile (ogni componente di r è differenziabile) ed inoltre vediamo che

la matrice Jacobiana di r ha rango massimo (in questo caso 2). Infine i punti in cui

$$Dr = \begin{pmatrix} x_u & x_v \\ y_u & y_v \\ z_u & z_v \end{pmatrix} = [r_u, r_v]$$
 non ha rango massimo sono detti punti singolari di Σ

Definizione. Versore normale

Definiamo $n(u,v) = r_u \times r_v \ \forall (u,v) \in T, \hat{n}(u,v) = \frac{n(u,v)}{||n(u,v)||}$ dove $\hat{n}(u,v)$ è detto versore normale a Σ nel punto r(u,v).

Quindi

$$(x - r_1(u_0, v_0), y - r_2(u_0, v_0), z - r_3(u_0, v_0)) \cdot n(u_0, v_0)$$

identifica il pianto tangente a Σ passante per il punto $(u_0, v_0) \in T$ Esempio : Toro

$$r(u,v) = \begin{cases} (R + r\cos(u)) & \cos(v) \\ (R + r\cos(u)) & \sin(v) \end{cases} \quad u, v \in [0, 2\pi)$$

$$r \sin(u)$$

Definizione. Integrale di superficie (di prima specie)

Sia $f: \mathbb{R}^3 \to \mathbb{R}$ e sia $r: T \subset \mathbb{R}^2 \to \mathbb{R}^3, r = r(u, v)$ allora possiamo definire

$$\iint_{\Sigma} f dS = \iint_{T} f(r(u, v)) ||r_{u} \times r_{v}|| du dv$$

Definizione. L'area di Σ è assegnata dalla formula

$$a(\Sigma) = \iint_{\Sigma} 1 dS = \iint_{T} ||r_{u} \times r_{v}|| du dv$$

Definizione. Superficie Orientabile

Una superficie regolare Σ si dice orientabile se per ogni curva chiusa e continua γ che giace su Σ con $\gamma:[a,b]\to\Sigma$ si ha che $n(\gamma(a)=n(\gamma(b)))$

Definizione. Flusso

Sia Σ una superficie regoalre orientata con versore normale \hat{n} .

Sia $F: \mathbb{R}^3 \to \mathbb{R}^3$ un campo vettoriale di classe C^1 un introno di Σ .

Si definisce flusso del vettore F attraverso Σ nella direzione e verso \hat{n} l'integrale .

$$\Phi(F,\Sigma) = \iint_{\Sigma} F \cdot \hat{n} dS = \iint_{T} F(r(u,v)) \cdot \hat{n} ||n(u,v)|| \ du dv = \iint_{T} F(r(u,v)) \cdot n(u,v) \ du dv$$

Teorema 6.3: Teorema di Gauss o della Divergenza

Sia $D \subset \mathbb{R}^3$ una dominio limitato , semplice rispetto a tutti gli assi , la cui frontiera è una superficie regolare a pezzi e orientabile. Sia $\hat{n_e}$ il versore normale esterno a ∂D e sia D un campo vettoriale di classe C^1 su D. Allora vale

$$\iiint_D \nabla \cdot F \ dxdydz = \iint_{\partial D} F \cdot \hat{n_e} \ dS$$

Teorema 6.4: Teorema di Stokes o del Rotore

Sia Σ una superficie regolare e orientabile , orientata con il versore normale \hat{n} , dotata di bordo ∂^+D orientato positivamente.

Supponiamo che $\partial^+ D$ sia una curva regolare , o l'unione di più curve regolari , e sia T il versore tangente a $\partial^+ D$. Sia F un campo vettoriale di classe C^1 in un intorno di Σ , allora vale

$$\iint_{\Sigma} (\nabla \times F) \cdot \hat{n} \ dS = \oint_{\partial^{+}D} F \cdot T dl$$

$$\iint_{\Sigma} (\nabla \times F) \cdot \hat{n} \ dS = \oint_{\partial^+ D} F dr$$

Il teorema di Stokes quindi metti in correlazione un'integrale doppio di flusso con un integrale di linea di seconda specie (quid una circuitazione)

Teorema 6.5: Teorema di Gauss-Green

Sia D un dominio limitato in \mathbb{R}^2 che sia semplice rispetto a entrambi gli assi. Sia F=(P,Q,0) un campo vettoriale di classe $\mathbb{C}^1(D)$ allora vale la formula :

$$\iint_D (Q_x - P_y) dx dy = \oint_{\partial^+ D} P dx + Q dy = \int_a^b P(x(t), y(t)) x'(t) + Q(x(t), y(t)) y'(t) dt$$

7 Serie

Data una successione $\{a_n\}_n \in \mathbb{R}$ si costruisce la successione delle somme parziali associata ad $\{a_n\}_n \in \mathbb{R}$ come segue :

$$s_1 = a_1$$

 $s_2 = a_1 + a_2$
 $s_3 = a_3 + a_2 + a_1$
...
 $s_n = a_n + \dots + a_2 + a_1$

Definizione. Sia $\sum_{n=1}^{\infty} a_n$ una serie e sia $\{s_n\}_n$ la successione delle somme parziali. Allora

- 1. se $\lim_{n\to\infty} s_n = S \in \mathbb{R}$ allora la serie converge e $s = \sum_{n=1}^\infty$
- 2. se $\lim_{n\to\infty} s_n = \pm \infty$ allora la serie diverge
- 3. se $\lim_{n\to\infty} s_n$ non esiste allora la serie è irregolare

7.1 Criteri di convergenza per serie a termini positivi

Condizione necessaria

Data una successione $\{a_n\}_n\in\mathbb{R}$, affinchè la serie $\sum_{n=0}^\infty a_n$ converga è necessario (ma non sufficiente) che

$$\lim_{n \to \infty} a_n = 0$$

Noi ci limiteremo allo studio delle serie a termini non negativi quindi $a_n \ge 0 \ \forall n$ Queste serie posso unicamente divergere o convergere poichè la successione delle somme parziali è monotona crescente (teorema di esistenza del limite nel caso di successioni monotone)

$$s_{n+1} = s_n + a_{n+1} \ge s_n$$

Criterio del confronto

Date due serie $\sum_{n=0}^{\infty} a_n$ e $\sum_{n=0}^{\infty} b_n$ con $a_n, b_n \ge 0 \ \forall n$.

$$\star$$
se $a_n \geq b_n$ e $\sum_{n=0}^{\infty} b_n = \infty$ allora $\sum_{n=0}^{\infty} a_n = \infty$

$$\star$$
se $a_n \leq b_n$ e $\sum_{n=0}^{\infty} b_n < \infty$ allora $\sum_{n=0}^{\infty} a_n < \infty$

Criterio del confronto asintotico

Se le due successioni $\{a_n\}$ e $\{b_n\}$ sono asintotiche a_n b_n allora le corrispondenti serie $\sum a_n$ e $\sum b_n$ hanno lo stesso carattere, cioè o sono entrambe convergenti o sono entrambe divergenti.

Inoltre possiamo dimostrare per induzione i seguenti risultati:

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \ \ \text{converge se} \ \ \alpha > 1 \ ; \ \text{diverge se} \ 0 < \alpha \leq 1$$

$$\sum_{k=0}^{\infty} x^k \quad \text{converge se } |x| < 1 \quad , \quad \text{diverge se } x = 1 \quad , \quad \text{indeterminata se } x < -1$$

Criterio della radice

Sia $\sum a_n$ una serie a termini non negativi. Se esiste il limite

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = l \quad \begin{cases} l > 1 & \text{La serie diverge} \\ l < 1 & \text{la serie converge} \\ l = 1 & \text{il criterio è inconcludente} \end{cases}$$

Criterio del rapporto

Sia $\sum a_n$ una serie a termini positivi. Se esiste il limite

$$\lim_{n\to +\infty} \frac{a_{n+1}}{a_n} = l \quad \begin{cases} l>1 & \text{La serie diverge} \\ l<1 & \text{la serie converge} \\ l=1 & \text{il criterio è inconcludente} \end{cases}$$

7.2 Serie a termini di segno variabile

Definizione. una serie $\sum a_n$ si dirà assolutamente convergente se converge la serie $\sum |a_n|$

Inoltre vale il seguente teorema

Teorema 7.1

Se la serie $\sum a_n$ converge assolutamente, allora converge.

Serie a termini di segno alternato

Teorema 7.2: Criterio di Leibniz

Sia data la serie:

$$\sum_{n=0}^{\infty} (-1)^n a_n \ con \ a_n \ge 0 \ \forall n$$

Sia:

1. la succesione $\{a_n\}$ è decrescente

2.
$$\lim_{n\to\infty} a_n = 0$$

Allora la serie è convergente.

Definizione. Spazio metrico

Diciamo uno spazio metrico la coppia (X,d) dove X è un insieme e $d: X \times X \to \mathbb{R}$

$$\star d(x,y) > 0 \iff x \neq y$$

$$\star d(x,y) = 0 \iff x = y$$

$$\star d(x,y) = d(y,x)$$

$$\star d(x,y) \le d(x,z) + d(z,y)$$

Definizione. Sia (X,d) uno spazio metrico e sia $\{x_n\}_n$ una successione in X. Diciamo che $\{x_n\}_n$ è di Cauchy se

$$\forall \epsilon > 0 \ \exists N > 0 \ t.c \ d(x_n, x_m) < \epsilon \ \forall n, m > N$$

Definizione. Sia (X,d) uno spazio metrico e sia $\{x_n\}_n \subset X$.

Diciamo che $x_n \to x \in X$ se

$$\lim_{n \to +\infty} d(x_n, x) = 0$$

Definizione. Spazio metrico completo

SIa (X,d) uno spazio metrico. Diciamo che (X,d) è completo se ogni successione di Cauchy è convergente

Definizione. Diciamo spazio normato la coppia $(X,||\cdot||)$ dove X è uno spazio vettoriale (su campo \mathbb{R}) e $||\cdot||:X\to\mathbb{R}$ è una funzione , detta norma su X , che soddisfa :

$$\star ||x|| > 0 \quad \forall x > 0$$

$$\star ||x|| = 0 \iff x = 0$$

$$\star ||\lambda x|| = |\lambda| ||x||$$

$$\star ||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in X$$

Definizione. Spazio di Banach

Uno spazio di Banach è uno spazio vettoriale normato tale che ogni successione di Cauchy sia convergente a un elemento dello spazio (cioè lo spazio vettoriale normato è completo rispetto alla metrica indotta)

Teorema

Lo spazio $(C^0(A), ||\cdot||_{\infty})$ è uno spazio di banach

Successioni di Funzioni 7.3

Definizione. Successione di funzioni

Definizione. Convergenza puntuale

Sia $\{f_n\}$ una successione di funzioni $f_n:A\to\mathbb{R}$ e sia $f:A\to\mathbb{R}$. Diciamo che $f_n\to f$ puntualmente se

$$f_n(x) \to f(x) \quad \forall x \in A$$

Definizione. Convergenza uniforme

Sia $\{f_n\}$ una successione di funzioni $f_n:A\to\mathbb{R}$ e sia $f:A\to\mathbb{R}$. Diciamo che $f_n\to f$ su A se

$$\forall \epsilon > 0 \ \exists N > 0 \ t.c \ d(f_n(x) - f(x)) < \epsilon \ \forall x \in A, \forall n > N$$

Figura 3: Convergenza uniforme

Se $f_n \in C^0(A)$, allora $f_n \to f$ uniformemente $\iff f_n \to \mathbb{R}$ nello norma superiore $f_n \to f$ nello spazio normato se $||f_n - f||_{\infty} \to 0$ se $\sup_{x \in A} (|f_n(x) - f(x)|) \to 0$

Teorema

Sia $\{f_n\}$: n una successione di funzioni, supponiamo che f_n sia limitata su A per ogni n e che $f_n \to f$ uniformemente. Allora f è limitata

Dimostrazione. Sia $\epsilon=1$, date che $f_n\to f$ uniformemente $\exists N>0$ tale che

$$|f_n(x) - f(x)| < 1 \quad \forall n > N \quad f(x) - 1 \le f_n(x) \le f(x) + 1$$

Consideriamo n > N. Dal momento che f_n è limitata esiste $M_n \in \mathbb{R}$ tale che $|f_n(x)| <$ $M_n \ \forall x \in A.$ Ora

$$|f(x)| = |f(x) - f_n(x) + f_n(x)| \le |f(x) - f_n(x)| + |f_n(x)| \le 1 + M_n \quad \forall x \in A$$

f è limitata П

Teorema 7.3

Sia $\{f_n\}$: n una successione di funzioni $f_n:A\to\mathbb{R}$ continue, supponiamo che $f_n \to f$ uniformemente su A. Allora f è continua

Serie di funzioni 7.4

Data una successione $\{f_n\}$ costruiamo $\sum_{n=1}^{\infty} f_n$

Definizione. Convergenza puntuale

 $f_n:A\to\mathbb{R}$, la serie $\sum_n^\infty f_n$. Diciamo che la serie converge puntualmente se la serie numerica $\sum_n^\infty f_n$ converge per ogni $x\in A$ fissato.

In alternativa Sia $S_n(x)$ la funzione delle somme parziali, ho convergenza puntuale della se serie se $\{S_n\}$ converge puntualmente

Esempi:

$$\sum_{n=1}^{\infty} x^n = \frac{1}{1-x} \ \forall x \in (-1,1)$$

$$\sum_{n=1}^{\infty} \frac{\sin(3^n x)}{2^n} \ \, \forall x \, \, fissato \ \, \sum_{n} \frac{\sin(3^n x)}{2^n} \, \, e' \, \, comvergente$$

Definizione. Convergenza totale delle serie

 $f_n:A\to\mathbb{R}$ la serie $\sum_n^\infty f_n$, supponiamo che esista una successione $\{a_n\}\subset[0,\infty)$ tale che :

- $\star |f_n| \le a_n \ \forall x \in A \ \forall n$
- $\star \sum_{n} a_n$ converge

Allora la serie $\sum_n f_n(x)$ converge totalmente . In oltre $S_n(x)=\sum_{K=1}^n f_n(x)$ converge uniformemente

Teorema 7.4

Sia $\sum_{n=1}^{\infty} f_n$ una serie totalmente convergente e supponiamo che f_n sia continua allora

$$f(x) = \sum_{n=0}^{\infty} f_n(x)$$

è continua

Teorema 7.5

Sia $\sum_{n=1}^{\infty} f_n$ una serie totalmente convergente e $f_n: [a,b] \to \mathbb{R}$ continue .

$$\int_{a}^{b} \left(\sum f_{n}(x) \right) dx = \sum_{n} \left(\int_{a}^{b} f_{n}(x) dx \right)$$

Teorema 7.6

 $I \subseteq \mathbb{R}$, $f_n: I \to \mathbb{R}$ derivabili. Supponiamo che

- \star la serie $\sum_n f_n$ converge puntualmente
- \star la serie $\sum_n f_n'$ converge totalmente

Allora

$$\left(\sum_{n} f_{n}\right)' = \sum_{n} f'_{n}$$

7.4.1 Serie di potenze

Definizione. Serie di potenze di centro $x_0 \in \mathbb{R}$ una serie di funzioni del tipo continue.

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

dove $\{a_n\}$ è una successione a valori reali. Gli a_n si dicono coefficienti della serie di potenze

Definizione (Raggio di convergenza). Data una serie di potenze $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ e supponiamo che esista

$$l = \lim_{n \to \infty} \sqrt[n]{|a_n|} \quad Poniamo \quad R = \begin{cases} \frac{1}{l} & se \ l \neq 0, \infty \\ +\infty & se \ l = 0 \\ 0 & se \ l = \infty \end{cases}$$

Allora

- \star se $|x-x_0| < R$ la serie converge assolutamente
- \star se $|x-x_0|>R$ la serie non converge