

EEL891 – Aprendizado de Máquina

Heraldo Luís Silveira de Almeida, D.Sc.

Professor Associado

Depto. Engenharia Eletrônica e de Computação Universidade Federal do Rio de Janeiro (UFRJ)

> Sala H219 Gabinete 18 Tel. 55 21 3938-8192

www.del.ufrj.br/~heraldo

heraldo@ufrj.br

0

Informações sobre a Disciplina

0. Informações sobre a Disciplina

- 0.1. Objetivo
- 0.2. Metodologia
- 0.3. Ementa
- 0.4. Bibliografia
- 0.5. Avaliação
- 0.6. Links Úteis
- 0.7. Uma Enquete Rápida

0.1. Objetivo

Proporcionar ao aluno conhecimentos na área de *Machine Learning*, capacitando-o a construir e validar modelos para tarefas tais como:

- classificação
- ☐ regressão
- □ agrupamento (*clustering*)
- detecção de anomalias
- □ separação de sinais
- otimização de processos decisórios

aplicando os mais modernos e eficazes algoritmos de aprendizado automático com base em dados.

0.2. Metodologia

- ☐ Exposição teórica dos conceitos matemáticos, técnicas e algoritmos de aprendizado de máquina.
- Experimentos computacionais apresentados pelo professor em sala de aula.
- ☐ Uso de linguagem de programação e ferramentas de software gratuitas amplamente utilizadas no mercado.
- ☐ Serão utilizadas neste semestre a linguagem *Python* e as ferramentas *scikit-learn* e *TensorFlow*.

0.3. Ementa

Aprendizado supervisionado: algoritmos para classificação e regressão (percéptron, modelos <i>bayesianos</i> , redes neurais, SVM, k-NN, árvores/florestas de decisão, etc.).
Generalização, medidas de erro, treinamento e teste, viés e variância, <i>overfitting</i> , técnicas de regularização e algoritmos de validação.
Aprendizado não-supervisionado: algoritmos para agrupamento, detecção de anomalia, separação de sinais e estimação de densidade.
Aprendizado por reforço: modelagem como processo de decisão de Markov e algoritmos de otimização de estratégia de decisão.
Redes neurais profundas e deep learning.

0.4. Bibliografia

Livros nos quais o curso se baseia:

MARSLAND, S. Machine Learning – An Algorithmic Perspective. CRC Press, 2015.

MÜLLER, A. C. & GUIDO, S. *Introduction to Machine Learning with Python.* O'Reilly Media, 2017.

GÉRON, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow. O'Reilly Media, 2017.

0.4. Bibliografia

Livros nos quais o curso se baseia:

0.4. Bibliografia

Outros livros:

Clássicos sobre o assunto:

BISHOP, C. M. Pattern Recognition and Machine Learning. Springer, 2013.

HASTIE, T., TIBSHIRANI, R. & FRIEDMAN J. The Elements of Statistical Learning. Springer, 2016.

Outros recomendados:

ABU-MOSTAFA, Y. S., MAGDON-ISMAIL, M. & LIN, H. *Learning from Data.* AMLbook, 2012.

GOODFELLOW, I., YOSHUA, B. & COURVILLE, A. Deep Learning The MIT Press, 2016.

0.5. Avaliação

- ☐ Trabalhos práticos individuais envolvendo linguagem Python e bibliotecas Scikit-Learn e/ou TensorFlow.
- ☐ Quantidade de trabalhos ainda a ser definida (provavelmente entre 2 e 4 trabalhos).
- ☐ Pontuação dos trabalhos na escala de 0 a 10:
 - 5 pontos pela entrega do trabalho (código-fonte + dados + relatório em formato PDF) conforme especificado;
 - 2 pontos pela qualidade do relatório em formato PDF;
 - 3 pontos pelo desempenho da máquina desenvolvida;
 - "multas" por atraso na entrega a serem definidas.
- Média Final = média aritmética das notas dos trabalhos

0.6. Links Úteis

Pacotes de Software Utilizados no Curso:		
☐ Python (https://www.python.org)		
pandas (https://pandas.pydata.org)		
□ NumPy (<u>www.numpy.org</u>)		
☐ Matplotlib (https://matplotlib.org)		
scikit-learn (http://scikit-learn.org)		
☐ TensorFlow (https://www.tensorflow.org)		
Roteiro de Instalação de Software para o Curso:		
☐ Linux Ubuntu (<u>www.del.ufrj.br/~heraldo/eel891/RoteiroUbuntu.pdf</u>)		

0.6. Links Úteis

Bons	repositórios de dados para usar nos experimentos:		
	UCI Machine Learning Repository http://archive.ics.uci.edu/ml/index.php		
	Kaggle Datasets https://www.kaggle.com/datasets		
	OpenML https://www.openml.org/		
Sites que listam diversos repositórios de dados para ML:			
	KD Nuggets https://www.kdnuggets.com/datasets/index.html		
	Wikipedia https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research		

0.6. Links Úteis

Cursos Online Gratuitos de ML de Universidades dos EUA (provavelmente melhores que o meu!) :

- Prof. Andrew Ng (Stanford University) https://www.coursera.org/learn/machine-learning
- □ Prof. Yaser Abu-Mostafa (CalTech University) https://www.coursera.org/learn/machine-learning
- □ Prof. John Paisley (Columbia University)
 https://www.edx.org/course/machine-learning-columbiax-csmm-102x-3

0.6. Links Úteis

Tarefas que todos devem fazer:

- 1. Cadastrar-se no Kaggle (<u>www.kaggle.com</u>)
- 2. Instalar o Anaconda (www.anaconda.org)

0.7. Uma Enquete Rápida

- ☐ Quantos de vocês já *ouviram falar* de Machine Learning?
- Quantos de vocês estudaram algo sobre Machine Learning?
- Quantos de vocês já *implementaram* Machine Learning?
- Quantos de vocês já usaram *scikit-learn*?
- Quantos de vocês já usaram *TensorFlow*?