Статистический анализ многомерных повторных наблюдений

Дамбаев Биликто Намсараевич, гр. 19.Б04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к. ф.-м. н., доцент Алексеева Н.П. Рецензент: младший научный сотрудник АО «Биокад», Мандрикова А.А.

Санкт-Петербург 2023г.

Введение

Саногенез — комплекс защитно-приспособительных механизмов, направленных на восстановление саморегуляции организма.

Рассматриваем модель **кривой саногенеза** (Барт, 2003), представляемую в виде двойной правой обратной функции $S(t)=e^{-\eta t}\cos \tau t.$

Рис.: Функция $S(t)=e^{-\eta t}\cos \tau t$ и ее двойная правая обратная.

Постановка задачи

 $S(t) = e^{-\eta t}\cos au t$ — вещественная часть корреляционной функции КМНС процесса.

Задачи:

- Выявить сочетания категориальных показателей, наибольшим образом влияющие на кривые саногенеза.
- Необходима статистика для проверки значимости отличия параметров кривых саногенеза.
- Выяснить, как отражается различие корреляционной структуры КМНС процесса на динамике линейной комбинации вещественной и мнимой его частей с наибольшей значимостью эффектов взаимодействия.

¹Комплексный марковский нормальный стационарный процесс

Оценка параметров КМНС процесса

- $x_j(t) = u_j(t) + iv_j(t), \ j \in 1..n, \ t \in 1..k_j$, где k_j число точек наблюдения у j-го индивида, n число индивидов.
- ullet $\mathbb{E} x_j(t)=0$, ковариационная функция имеет вид

$$\mathcal{B}(t) = \mathbb{E}x_j(k)x_j(k+t)^* = \sigma^2 e^{-\eta|t|-i\tau t}, \ \eta > 0.$$

- Обозначим через $r=e^{-\eta-i\tau}$, затем преобразуем параметр $\eta=-\ln\theta$ из $rr^*=\theta^2.$
- $A(l, m, t) = \sum_{j=1}^{n} \sum_{i=l}^{m} x_j(i)^* x_j(i+t)$

ОМП $\hat{ au},\hat{\eta}$ и их асимптотические дисперсии

Теорема (Алексеева, 2012)

Пусть $x_j(t)=u_j(t)+iv_j(t)-n$ независимых реализаций КМНС процесса в k_j временных точках, $N=\sum_j k_j-$ общее число всех точек наблюдений,

$$A_1 = A(1, k_j, 0), A_2 = A(2, k_j - 1, 0), A_3 = A(1, k_j - 1, 1),$$

 $Z(\tau) = \operatorname{Re}(A_3)\cos \tau + \operatorname{Im}(A_3)\sin \tau.$ Тогда для оценки $\hat{\tau}$ выполняется

$$\operatorname{tg}\hat{\tau} = \frac{\operatorname{Im} A_3}{\operatorname{Re} A_3},$$

а оценка $\hat{ heta} := e^{-\hat{\eta}}$ является решением

$$A_2(N-n)\theta^3 - Z(\hat{\tau})(N-2n)\theta^2 - (NA_2 + nA_1)\theta + Z(\hat{\tau})N = 0.$$

Асимптотические дисперсии оценок имеют вид

$$\mathbf{D}\hat{\tau} = \frac{1 - \theta^2}{2\theta^2 (N - n)}, \ \mathbf{D}\hat{\theta} = \frac{N(1 - \theta^2)}{2(N - n)(N - (N - 2n)\theta^2)}.$$

Проверка однородности параметров

На основании полученных дисперсий и асимптотической нормальности ОМП получаем критерий для проверки однородности параметров.

Критерий проверки однородности параметров

Пусть $\zeta = \theta$ или au. Тогда

$$H_0: \zeta_1 = \zeta_2,$$

$$H_1: \zeta_1 \neq \zeta_2,$$

$$z = \frac{\hat{\zeta}_1 - \hat{\zeta}_2}{\sqrt{\mathbf{D}\hat{\zeta}_1 + \mathbf{D}\hat{\zeta}_2}} \xrightarrow{D} \mathcal{N}(0, 1).$$

Приложение метода к реальным данным

Решается задача систематизации многомерных повторяемых наблюдений при помощи сочетания модели кривых саногенеза и дисперсионного анализа на примере данных больных с алкогольно-абстинентным синдромом (AAC).

Используемые данные

Имеются показания разных метрик в течение реабилитационно-восстановительного периода алкоголиков.

- 34 индивида.
- 27 показателей 18 категориальных и 9 количественных.
- 4 временные точки 1, 2, 3 и 9 дни реабилитации.

Описание признаков. Выбор пар некоррелируемых признаков

Таблица: Описание основных признаков.

SBP	Артериальное систолическое давление		
SV	Ударный объем сердца		
Headache (H)	Наличие головной боли		
Sweating (S)	Степень потоотделения		
Tremor (T)	Степень тремора		

Выбор и и у

Для построения оценок $\hat{ heta}=\hat{ heta}(\mathbf{u},\mathbf{v})$ и $\hat{ au}=\hat{ au}(\mathbf{u},\mathbf{v})$ выявлена пара некоррелируемых признаков на уровне значимости lpha=0.1:

$$(\mathbf{u}, \mathbf{v}) = (SBP, SV)$$

Оценки параметров η , au в зависимости от фактора H

Признаки	р-значение	Heт $(H=0)$ $n=21$	Есть $(H = 1)$ n = 13
(SBP,SV)	$H_0: \theta_0 = \theta_1$ 0.024	$\hat{\theta}_0 = 0.30 \pm 0.18$ $\hat{\tau}_0 = 0.11 \pm 0.59$	$\hat{\theta}_1 = 0.62 \pm 0.20$ $\hat{\tau}_1 = -0.28 \pm 0.30$

Таблица: Оценки $\hat{\theta}=e^{-\hat{\eta}}$ и $\hat{ au}$ для SBP+iSV по фактору H.

Рис.: График кривых саногенеза, построенных на паре SBP-SV и сгруппированных по фактору головной боли ${\cal H}$

Задача поиска фактора наиболее значимого для различия кривых саногенеза

Из 18 категориальных переменных наибольшее различие по параметру θ получено по фактору H. Возникает вопрос — не будет ли более значимым какое-то сочетание факторов?

Одностороннее расстояние между кривыми саногенеза

Пусть $S^{(0)},\ S^{(1)}$ — кривые саногенеза, построенные при условии X=0 и X=1 соответственно. Тогда

$$d(S^{(0)}, S^{(1)}) := (\theta_0 - \theta_1)^2$$

Симптомно-синдромальный метод

Симптом (Алексеева, 2021)

 $\mathbb{X}_k = (X_0, X_1, \dots, X_{k-1})$ — случайный k-мерный вектор с реализациями на $\{0,1\}$.

Тогда симптомом называется $\mathcal{L}(\mathbb{X}_k) = \alpha_0 X_0 + \ldots + \alpha_{k-1} X_{k-1} \pmod 2$, где $\alpha_i \in \{0,1\}$.

Вектор $(X_0, X_1, X_0 + X_1 \pmod 2)$ — синдром 1-го порядка.

Синдром $S(\mathbb{X}_{k+1})$ k-го порядка

Пусть $X_k \notin S(\mathbb{X}_k)$, а сложение определено покомпонентно $S(\mathbb{X}_k) + X_k \pmod 2 := \{(S(\mathbb{X}_k))_i + X \mod 2\}_{i=1}^{2^k-1}$. $S(\mathbb{X}_1) = S(X_0) = X_0, \ S(\mathbb{X}_2) = S(X_0, X_1) = (X_0, X_1, X_0 + X_1 \pmod 2)$. Тогда $S(\mathbb{X}_{k+1}) = (S(\mathbb{X}_k), X_k, S(\mathbb{X}_k) + X_k \pmod 2)$.

Симптомно-синдромальный метод

Синдром $V(\mathbb{X}_{k+1})$ k-го порядка

Пусть $X_k \notin V(\mathbb{X}_k)$, а умножение определено покомпонентно $V(\mathbb{X}_k)X_k:=\{(V(\mathbb{X}_k))_iX\}_{i=1}^{2^k-1}.\ V(\mathbb{X}_1)=V(X_0)=X_0,\ V(\mathbb{X}_2)=V(X_0,X_1)=(X_0,X_1,X_0X_1).$ Тогда $V(\mathbb{X}_{k+1})=(V(\mathbb{X}_k),X_k,V(\mathbb{X}_k)X_k).$

Если в качестве базовых элементов $S(\mathbb{X}_k)$ использовать элементы $V(\mathbb{X}_k)$, то получим полиномы Жегалкина.

Суперсиндром $SV(\mathbb{X}_k)$

$$SV(\mathbb{X}_k) = S(V(\mathbb{X}_k))$$
, размерности 2^K-1 , где $K=2^k-1$

Применение симптомно-синдромальный метода

Наиболее значимый фактор

Пусть задан \mathbb{X} , $S^{(0)},\ S^{(1)}$ — кривые саногенеза, построенные при условии X=0 и X=1 соответственно. Тогда X^* , такой что

$$X^* = \underset{X \in SV(\mathbb{X})}{\operatorname{arg\,max}} d(S^{(0)}, S^{(1)}).$$

— наиболее значимый фактор.

 $\mathbb{X}=(H,S,T)$, $\dim SV(\mathbb{X})=2^{2^3-1}-1=127$. Среди $SV(\mathbb{X})$ выделяем фактор $X^*=H+HT=H\overline{T}$, который характеризует церебральный/соматический вариант AAC^2 .

² Алкогольно-абстинентный синдром

Оценки параметра heta в зависимости от фактора $H\overline{T}$

Признаки	р-значение	$H\overline{T} = 0 \ (n = 26)$	$H\overline{T} = 1 \ (n = 8)$
(SBP,SV)	$H_0: \theta_0 = \theta_1$ 0.0003	$\hat{\theta}_0 = 0.28 \pm 0.17$	$\hat{\theta}_1 = 0.78 \pm 0.22$

Таблица: Оценки $\hat{\theta}=e^{-\hat{\eta}}$ для SBP+iSV при группировке по фактору $H\overline{T}$

Рис.: График кривых саногенеза, построенных по паре SBP-SV и сгруппированных по фактору $H\overline{T}$.

Двухфакторная модель дисперсионного анализа с повторными наблюдениями

Модель

Пусть y_{iit} наблюдение из i-ой группы, $i \in 1...I$, j-го индивида, $j \in 1..J$, в t-ый момент времени, $t \in 1..T$.

$$y_{ijt} = \mu + \alpha_i + e_{ij}^1 + \beta_t + \gamma_{it} + e_{ijt}$$

- μ генеральное среднее,
- α_i фиксированный эффект группы,
- β_t фиксированный эффект времени,
- ullet γ_{it} фиксированный эффект взаимодействия группы и времени,
- ullet $e_{ii}^1 \sim N(0, \sigma_1^2)$ ошибка, связанная с разнообразием индивидов,
- $\bullet \ e_{iit} \sim N(0, \sigma^2)$ общая ошибка модели.

Многомерная дисперсионная модель

Модель:

$$Y_{rt} = y_{ijt}^{(r)} = \mu^{(r)} + \alpha_i^{(r)} + e_{ij}^{1(r)} + \beta_t^{(r)} + \gamma_{it}^{(r)} + e_{ijt}^{(r)}$$

 $r \in 1..p$, где p — число моделей.

Задача: нахождение коэффициентов $a_1 \dots a_p$:

$$Z_t = \sum_{r=1}^p a_r Y_{rt} \quad t \in 1..T,$$

$$F_{AB}(a_1 \dots a_p) \to \max_{a_1 \dots a_p},$$

где F_{AB} — статистика критерия Фишера для проверки эффекта взаимодействия группы и времени.

Применение модели дисперсионного анализа

Согласно выбору пары ортогональных признаков, необходимо найти коэффициенты a_1,a_2 линейной комбинации

$$Z = a_1 Y_1 + a_2 Y_2,$$

где $(Y_1,Y_2)=(\mathsf{SBP},\mathsf{SV})$, при которой различие во взаимодействии должно быть наибольшим.

Гипотеза:

$$H_0: \gamma_{it} = 0 \quad \forall i \in 1, \dots, I, \ \forall t \in 1, \dots, T.$$

$$F_{AB}(a_1, a_2) \to \max_{a_1, a_2}.$$

Результаты MANOVA RM для $H\overline{T}$

Таблица: Минимальное p-значение эффекта взаимодействия $H\overline{T}$ и времени для пары SBP-SV

Признаки	р-значение	Коэффициенты линейной комбинации: (a_1,a_2)
SBP-SV	0.015	(-0.640,0.767)

Рис.: Два типа динамики признака -0.64SBP+0.767SV (функционально стабильный и прогрессирующий).

Заключение

Результаты:

- Построен критерий для проверки однородности параметров кривых саногенеза.
- Разработан метод кластеризации данных по структуре корреляционных зависимостей повторных наблюдений на основе сочетания модели кривых саногенеза и дисперсионного анализа.
- В прикладном плане при помощи симптомного анализа выявлен латентный фактор $H\overline{T}$, характерный для разных форм алкогольно-абстинентного синдрома: церебрального и вегетативно-соматического варианта.