Geometry and Topology: Quick reference

vishvAs vAsuki

February 23, 2011

Part I

Notation

Part II

Themes

Study of properties that describe how a space is assembled, such as connectedness and orientability.

Topology: Studies properties that are preserved through deformations, twistings, and stretchings of objects. Tearing not allowed.

Part III

Euclidean and coordinate geometry

1 Euclidean geometry

See [1]. Deals with \mathbb{R}^k , the Euclidian k space, which is described in the vector spaces survey.

Considers metric properties such as distances between points. Perpendiculars, parallels, projections.

Relationship between angles at the intersection of a line with parallels or in a triangle (and other polygons). Similarity and congruence of triangles (and other polygons). Angle bisectors, Medians in a triangle intersect at incenter, circumcenter.

Circle; lines, angles, triangles, chords, arcs in circles. Tangents, Intersection of circles. Ellipsoids, spheres.

Polytopes: an object in \mathbb{R}^n whose boundary surfaces are flat. Convex polytopes: polytopes which are also convex sets.

1.1 Area/ volume

The notion of area/volume in case of euclidean spaces corresponds to the box (Lebesgue) measure over the euclidean space. This is described in the vector

Ellipse, circle. Surface area of n-ball: $\frac{dV_n}{dr}$. The r-radius n-1 hypersphere $S^{n-1}=\{x\in R^n: \|x\|=r\}$: a n-1 dim manifold. Encloses a n-ball with volume $V_n = \frac{\pi^{\frac{n}{2}} r^n}{\Gamma(\frac{n}{2}+1)}$ [**Find proof**].

1.2 Trigonometry

Obvious with the right construction: $\sin (A+B) = \sin A \cos B + \cos A \sin B$. cos (A+B) = cos A cos B - sin A sin B. Trigonometry in triangle calculations. $\sin^{-1} x, \cos^{-1} x.$

Coordinate geometry

Vector spaces

(See linear algebra ref). Vector and scalar product of 2 vectors; effect of Left vs right handedness of coordinate system.

2.2High dimensional objects

Get vector equations from geometric properties. Use linear transformations like scaling, rotation, projection to describe effects.

2.2.1Hyperplane

Hyperplane $\perp w$ through 0: x such that $w^T x = 0$; shift c from 0: $w^T (x-c) = 0$. For halfspace, replace '=' with \leq .

2.2.2Polyhedron

 $\{x: Ax \leq b\}$: The intersection of halfspaces.

3

2.2.3 Simplex/ hypertriangle

n-d triagle. Construct from (d+1) hyperplanes with linearly independent w's.

2.2.4 Hypersphere surface

$$x^*x = r$$
. Sift from 0: $(x - c)^*(x - c) = x^*x - 2c^*x = r'$.

2.2.5 Hyper-ellipse surface E

2.2.5.1 Aligned with std basis

Skewed norm-ball form E aligned with the standard basis: diagonal $\Sigma \succeq 0$. $\{x: x^*\Sigma x = r^2\}$ is hyper-ellipse aligned with the axes, skewed as per Σ . After rescaling: $\{x: x^*\Sigma x = 1\}$.

Matrix image form Take $\Sigma^{1/2}x=y$, assume $\Sigma\succ 0$. This is $\equiv E=\{My:\|y\|=1\}$, where $\Sigma^{-1/2}=M\succ 0$.

Radii along major axes
$$\left\{\sigma_i^{-1/2}e_i\right\}\subset E$$
. So, radii are: $\left\{\sigma_i^{-1/2}\right\}=\{\sigma_i(M)\}$.

2.2.5.2 Aligned with arbitrary basis

Rotate previous ellipse. Take orthogonal rotator U and apply it to previous ellipses (do $y = U^*x$): major axes of E will then be aligned with U's columns. Radii along major axes remains the same.

Rotated Skewed norm-ball form $\{x: x^*U\Sigma U^*x = 1\}.$

Matrix image form Take: $E = \{M'y : ||y|| = 1\}$, rotate to get: $M = M'U^* \succ 0$. $E = \{My : ||y|| = 1\}$

2.2.5.3 Shifted away from 0

Just use y = x-c.

Radii along major axes remains the same.

Shifted Rotated Skewed norm-ball form
$$\{x: (x-c)^*U\Sigma U^*(x-c)=1\}$$
. Using unscaled $M'=U\Sigma U^*$, the equation is $: (x-c)^*M'(x-c)-r^2=x^*M'x-r^2-2x^*M'c=0$.

Shifted Matrix image form $\{c + My | ||y|| = 1\}$ for M > 0. This can be reparametrized as: $\{x | ||M^{-1}x - M^{-1}c|| = 1\} = \{x : ||Ax + b|| = 1\}.$

2.2.5.4 Volume

Take the general expression for E: $\{c + My | ||y|| = 1\}$. $vol(E) \propto \prod r_i$, where $r_i = \sigma_i(M)$ are the radii along the major axes of the ellipsoid E. [**Find proof**] So, $vol(E) \propto det(M^{-1}) = det(A^{-1})$. For 2-D ellipsoids: $vol(E) = \pi \prod r_i$.

2.3 Other coordinate systems

Cylindrical and spherical coordinates: $x = r \cos \theta$.

2.4 Graph drawing

Find axis meeting points, maxima/ minima, inflection points.

For visualization of functionals over vector spaces, their gradients: see linear algebra ref.

2.5 Manifold

Take any small enough area in a manifold: it resembles a euclidian space of a certain dimension, aka the manifold's dimension. 0 dim manifold: A point. 1 dim manifold: line, arc. 2 dim manifold: sphere surface.

Part IV

Metric spaces and topologies

3 Metric space S

Set with a metric $d: S \times S \to R^{\geq 0}$. Metric obeys non negativity, positive definiteness, symmetry, \triangle inequality. Eg: Euclidian k space: R^k : every point is a vector.

Absolute value: |x| = d(x,0) for some 0.

3.1 Open ball around p of radius r

Aka r- neighborhood (nbd) of p: $N_r(p) = \{x \in S : d(x, p) < r\}$. Similarly define r-nbd of set of points S. A uniform nbd of S contains some r-nbd of S.

Set of open balls defines a topological space: topology from nbds. Similar topologies for vector spaces, manifolds.

Open ball in \mathbb{R}^k is convex.

3.1.1 Interior point p of S

If $\exists r: N_r(p) \subset S$. $(0,0) \in N_2(1,1) \subset R^{\geq 0} \times R^{\geq 0}$ is interior pt. All others are boundary points. Thence defined interior of S: $\operatorname{int}(S)$, and boundary of S: $\operatorname{bd}(S) = \operatorname{cl}(S)$ - $\operatorname{int}(S)$. If S has a non-empty interior, it is **solid!**

[0, 1] has an interior wrt R, but not wrt R^2 : then every pt is in boundary.

3.1.2 Limit point p of set S

 $\forall r: N_r(p)$ contains a pt in S other than itself.

 $\forall r: |N_r(p)| = \infty$: Else, can find small r' with $N_{r'}(p) = \{p\}$. So, a finite set has no limit points.

p is the limit of some Cauchy sequence: Keep reducing r and pick $q \neq p \in N_r(p)$ in each step.

Every interior pt is a limit pt, but not vice versa. For $E \subset R$, sup(E) is a limit pt.

If p is a lt pt of E, \exists convergent seq (s_i) in S with $s_i \to p$. Set with 1 limit pt: A convergent sequence in R.

3.1.3 Closure of E

cl(E): E with all its limit pts. Also: cl(E) = S - int(S - E).

3.1.4 Diameter of E

 $diam(E) = \sup_{p,q} d(p,q)$. diam(E) = diam(cl(E)): by $\Rightarrow \Leftarrow$, using triangle inequality.

3.2 Sets in S: Topology

3.2.1 Nature of the boundary

3.2.1.1 Open set S

Aka Open space. For every $p \in S$ is an interior point. Diagramatic representation: [] and () in R, dotted an undotted lines in \mathbb{R}^2 . Eg: dotted dumbbell in \mathbb{R}^2 .

Open sets S_i : $\bigcup S_i$ is open. $S = \bigcap_{i=1}^k S_i$ is open: for any $p \in S$, pick r small enough to ensure $\forall i : N_r(p) \in S_i$.

If $S \subset Y \subset X$: S open wrt Y iff $\exists G \subset X$, G open wrt X and $S = G \cap Y$: [**Proof**]: i \Box f G open wrt Y, $G \cap Y$ open wrt Y; If S open wrt Y, take $\cup_{v \in S} N_r^X(p)$ where r is radius which shows interiorness of p in S.

3.2.1.2 Closed set S

Set with all its limit points. So, finite sets closed. $[n, \infty)$ closed. Same as S with all its boundary points.

 $S \subset X$ closed iff S' open (good trick to show closedness). \cap of closed sets S_i is closed: $\cup S_i'$ is open. Similarly, $\cap_{i=1}^k S_i$ is closed. $\operatorname{cl}(E)$ is closed: as $(\operatorname{cl}(E))'$ is open.

3.2.1.3 Non-oppositeness of Openness and Closedness

Eg: ϕ and R are both open and closed. (0, 1) open wrt R but nor wrt R^2 . Half open intervals in R are neither open nor closed.

3.2.1.4 Boundedness of set S

A is bounded if $\exists r, p : A \subset N_r(p)$.

3.2.2 Compactness

3.2.2.1 Open cover of S

Bounded Open sets $\{G_i\}$ with $\cup G_i \supset S$. Subcovers: Subsets of open cover which also cover S.

3.2.2.2 Definition

Every open cover of S has a finite sub cover. In \mathbb{R}^d , compactness \equiv closed and bounded.

3.2.2.3 Properties

Finite S is compact. R is not compact: Take $G_n = (n - \frac{2}{3}, n + \frac{2}{3}), \{G_{n \in \mathbb{Z}}\}$ is an open cover, but no finite or even proper subcover. Similarly, $[n, \infty]$ closed but not compact.

Any compact set S is closed: Any $p \in S'$ is interior pt in S': $\bigcup_{q \in S} N_r(q) : r = \frac{d(p-q)}{2}$ is an open cover of S, within it is some finite subcover; so $\exists N_{r'}(p) \subset S'$.

Closed subset E of compact set S is compact: Take any open cover of E; add open set E' to it to get open cover of S; some finite subset of this without E' is also open cover of E.

Finite union of compact sets is compact.

If F closed and K compact, $F \cap K \subset K$ compact: $F \cap K$ is closed.

If $\{K_i\}$ is (possibly ∞) set of compact sets and if \cap of every finite subclass $\neq \phi$, $\cap K_i \neq \phi$. Assume $\cap K_i = \phi$; Take K_1 ; every $p \in K_1$ is $\notin \cap_{i \neq 1} K_i$; so $p \in \bigcup_{i \neq 1} K_i'$; so finite subset of $\{K_i'\}$ is an open cover of K_1 ; so some finite \cap of $\{K_i\}$ is ϕ : contradiction.

So, if $\{K_i\}$ compact, $K_n \supset K_{n+1} : \cap_i K_i \neq \phi$. Does not hold for open sets: Take $G_n = (0, n^{-1})$.

If E is an ∞ subset of compact set K, E has a limit pt in K: Else every $p \in K$ would have some $N_r(p) = \{p\}; \cup N_r(p)$ is an open cover of E without a finite subcover. Also, if every $E \subset K, |E| = \infty$ has a lt pt in K, K is compact. [Find proof]

If $\{K_i\}$ compact, $K_n \supset K_{n+1} \neq \phi$, $\lim_{n\to\infty} diam(K_n) = 0$, then $\cap K_n$ is 1 pt: else $\Rightarrow \Leftarrow$.

3.2.3 Connectedness and completeness

3.2.3.1 Connectedness

A, B separated if $A \cap cl(B) = cl(B) \cap A = \phi$. Eg: (0, 1) and (1, 2) but not (0,1] and (1, 2). S is connected if it is not \cup of separated sets. $E \subset R$ connected iff it is an interval.

3.2.3.2 Dense set

Contains points in the neighborhood of every point.

3.2.3.3 Completeness of S

Limit of every Cauchy sequence (s_n) wrt metric = some point $s \in S$. Any closed set in complete metric space S is complete. Also, any compact space is complete.

3.2.4 Sigma algebra of open sets

Aka Borel Sigma algebra. This is the sigma algebra (X, \mathbf{S}) formed by the closure wrt \cup, \cap, \bar{X} of all open sets in X. All sets in \mathbf{S} are called Borel sets.

3.3 Covering and packing Number

Let the space have norm $\|\cdot\|$, and let C be a set in it.

3.3.1 Covering number $N(\epsilon, C, ||||)$

 ϵ covering F_{ϵ} : Set of ϵ balls which contains C. Covering number $N(\epsilon, C, ||||) = \min |F_{\epsilon}|$.

3.3.1.1 Covering entropy

Aka metric entropy. $\log(N(\epsilon, C, ||||))$.

3.3.1.2 Total boundedness

If $N(\epsilon, C, ||||)$ is finite for all ϵ , C is totally bounded. Else, C is non totally bounded: for every n, there is some $\epsilon : N(\epsilon, C, ||||) > n$.

3.3.1.3 For D dim sphere

$$\frac{Vol(sphere(r_1))}{Vol(sphere(r_2))} = (\frac{r_1}{r_2})^D. \text{ Let } vol(B(f',\epsilon)) = k\epsilon^D. \text{ Then,}$$

$$k(R+\epsilon)^N \geq N(\epsilon,C,\|\|)k\epsilon^D \geq kR^D. \text{ Thence, } \log(N(\epsilon,C,\|\|)) \approx D\log(\frac{R}{\epsilon}).$$

3.3.2 Packing number $M(\epsilon, C, ||||)$

 ϵ packing is a set of points $\{g_i\}$ with $g_i \in C$; $||g_i - g_j|| \ge \epsilon$. The maximal ϵ packing: packing number.

3.3.2.1 Relationship with N

 $M(2\epsilon, C, ||||) \le N(\epsilon, C, ||||) \le M(\epsilon, C, ||||)$. 2nd ineq: For maximal packing $\{g_i\}$, $\forall h \in \mathbb{C}$: $||g_i - h|| \le \epsilon$. 1st ineq: For maximal 2ϵ packing: Any ϵ ball has ≤ 1 g_i .

3.3.2.2 Use

Often easier to find than covering number; thence can bound covering number.

3.4 R^k : Topological properties

See complex analysis ref.

3.5 Sequence (s_n) in S

For properties of sequences in fields and vector spaces, see complex analysis and linear algebra ref.

3.5.1 Cauchy sequence

After some point, elements get closer as sequence progresses: contraction or Cauchy criterion: $\forall m, n > N : d(p_m, p_n) < \epsilon$ or diameter of tail of seq tends to 0. Limit of sequence may not exist in S. Like convergence without needing a limit.

Any cauchy seq S in compact set X converges: As X compact, S has limit pt in X, also limit of S is unique.

3.5.2 Bounded sequences

Range is bounded.

3.5.3 Convergent sequence

Convergence to limit c: $\forall i > N : d(x_i, c) < \epsilon : x_n \to c$. Divergence. Limit is unique. If $x_n \to c$, every $N_r(c)$ has all but finitely many x_i .

Any convergent sequence is bounded. 1^n convergent but has finite range. If range not 1, it is ∞ .

All convergent sequences are cauchy sequences.

Every subsequence of a convergent sequence converges to the same limit. If every subsequence of a sequence converges to the same limit, the sequence is convergent.

Sequence (s_n) in compact S has convergent subsequence: If S compact, every ∞ subset has limit pt p; make seq out of s_i in decreasing $N_r(p)$.

3.5.4 Subsequential limits

Take seq s_n , subsequential limits form closed set E: Take any limit pt p of E, can find subseq limit e close to it, so can find s_n close to it; so p is in E.

3.6 Function across metric spaces: f:X to Y

See algebra ref for general properties of functions. Also ref on analysis of functions over R and C.

3.6.1 Limit of f

 $\lim_{x\to p} f(x) = q : \forall \epsilon, \exists \delta : 0 < d(x,p) < \delta \implies d(f(x),q) < \epsilon$: f has a limit at p. q is unique. Visualize as balls in X, f(X).

 $\forall (p_n), p_n \to p, f(p_n) \to q \equiv lt_{x \to p} f(x) = q$: show \Longrightarrow by $\Longrightarrow \Leftarrow$. So, can use properties of sequences. So, get $\lim f + g, f(x)g(x), f/g$.

3.6.2 Continuity of f:X to Y

f continuous at $p \in E$ if $\forall \epsilon \exists \delta : d(x,p) < \delta \implies d(f(x),f(p)) < \epsilon$. If f has limit at p, continuity iff $\lim_{x\to p} f(x) = f(p)$: f defined only over p has no limit at p but is continuous. Continuity over $E \subseteq X$.

If f continuous at p, g continuous at f(p), then f(g(x)) continuous at p.

f continuous over X iff \forall open $V \subseteq Y$, $f^{-1}(V)$ open in X: Visualize interior pts, match δ balls in X with ϵ balls in Y.

If f continuous, X compact, then f(X) compact: Take open cover $\{V_i\}$ of f(X); $\{f^{-1}(V_i)\}$ is open, covers X; so take finite subcover; get $f(X) \subseteq \bigcup_{i=1}^k f(f^{-1}(V_i)) \subseteq \bigcup_{i=1}^k V_i$.

If f continuous, bijection, then f^{-1} is cont: f(V) open iff V is open.

If f continuous, $E \subseteq X$ connected, then f(E) connected: else if f(E) separated into A, B but $f^{-1}(A) \cup f^{-1}(B)$ not separated, $cl(f^{-1}(A)) \cap f^{-1}(B) \neq \phi$ or $cl(f^{-1}(B)) \cap f^{-1}(A) \neq \phi$; then continuity of f violated, so $\Rightarrow \Leftarrow$.

3.6.3 Uniform continuity over X

 $\forall p, q \in X \forall \epsilon > 0, \exists \delta$:

 $d_x(p,q) < \delta \implies d_y(f(p),f(q)) < \epsilon$. 1/x continuous, but not uniformly cont over R: consider points near 0; neither is x^2 . A measure of whether gradient gets very big.

If f continuous, X compact, then f uniformly cont: As Y compact: Given ϵ , take $\forall p \in X : g(p)$, radius which guarantees $\epsilon/2$ closedness to f(p); make open cover $\{N_{g(p)}\}$; get finite subcover; take max g(p); use \triangle ineq to guarantee ϵ closedness anywhere.

Also see the more powerful notion of absolute continuity in the complex analysis survey.

3.6.4 Bounding steepness

Aka Lipschitz continuity/ smoothness. Lipschitz condition: $d(f(x), f(y)) \le Ld(x, y)$. L is lipschitz constant. Note that it implies the usual notion of continuity.

But, it does not imply differentiability! When differentiable, there is a relationship with the derivative, see complex analysis ref.

3.6.4.1 A generalization

Holder continuity: Holder condition of order a: $d(f(x), f(y)) \leq Ld(x, y)^a$.

3.7 Sequence of functions $(f_n : \mathbf{X} \to Y)$

Consider the properties of sequence of functions from any set to a metric space, which is described in the survey on basic mathematical structures.

If x is a limit pt of $E \subseteq X$, $lt_{t\to x}f_n(t) = A_n$, then A_n converges, $lt_{t\to x}f(t) = li_{n\to\infty}A_n$. Pf: $d(f(t),A) \le d(f(t),f_n(t)) + d(f_n(t),A_n) + d(A_n,A)$: make 1st and 3rd terms small by picking large N, make 2nd term small by picking large t.

So, if (f_n) continuous, f continuous: see $lt_{t\to x}f_n(t)=f_n(x)$, get $lt_{t\to x}f(t)=lt_{t\to x}f_n(x)=f(x)$.

4 Point set topology

4.1 Motivation

Coffee cup and donut are geometrically different, but topologically same: isotopes! Can deform one to the other. Generalize notions of convergence, connectedness, continuity.

4.2 The topological space

Set of points or Topological space X. Topology T: Class of some sets of points closed under \cup , \cap .

Sets S_i in T are said to be open. S_i' are closed sets. Neighborhood of p is a set $V \supset$ open set $U \ni p$. Similarly define nbd of set S of points. $A \in X$ is dense if any nbd has some $a \in A$.

Spanning set (of sets); its linear span. Basis of topology.

BIBLIOGRAPHY 11

4.3 Topological Morphisms

Every 'object' in Y is a continuous function $f: X \to Y$, where X and Y are topological spaces. A tea-cup is a function to \mathbb{R}^3 .

4.3.1 Homotopy

Take 2 objects/ cont functions $f, g: X \to Y$. Homotopy is continuous function $H: X \times [0,1] \to Y$, with H(x,0) = f; H(x,1) = g. Think of second parameter as time, and H as a continuous deformation.

If H(x,t) is also 1:1, H is an isotopy.

4.3.2 Continuous morphism

f(x) neighborhood corresponds to x neighborhood.

4.3.3 Homeomorphism

A bicontinuous fn: $X \to Y$. Respects topological properties.

4.4 Knots

A circular piece of thread. The simple ring or the unknot. The trefoil. Sketching knots. Strands: segments involved in a cross-over.

4.5 The 3 Reidemeister moves

See wikipedia article for figures. Sufficient and necessary to produce any valid deformation possible from a starting configuration.

4.5.1 Knot invariants

Property invariant to the Reidemesiter moves. 3 colorability of strands: Can assign 3 colors to strands such that all 3 colors are used; at each crossing, 3 or 1 colors seen.

Bibliography

[1] Hall and Stevens. School Geometry. Macmillian, 1906.