(1) Linear Algebra: a brief overview (I)

Basic notation

- 1. Size, row, column, entry
 - Let number of rows = m
 - Let number of columns = n
 - Let the (i, j)-entry be $a_{i,j}$
- 2. For two matrices, **A** and **B**, **A** = **B** if and only if they have the same size and $[a_{ij}] = [b_{ij}]$.
- 3. Vector: when m or n equal to 1.
- 4. transpose
- 5. Square matrix: m = n
 - main diagonal
 - symmetric matrix
 - diagonal matrix, identity matrix, upper triangular matrix and lower triangular matrix
- 6. Addition, Subtraction and Multiplication

7. Properties

Let A, B, C be matrices such that AB, AC and BC are defined. Assume that B and C have the same dimension. Also, let r be a scalar.

- $\bullet \ IA = A = AI$
- A(BC) = (AB)C
- $\bullet \ \mathbf{A}(\mathbf{B} \pm \mathbf{C}) = \mathbf{A}(\mathbf{B} \pm \mathbf{C})$
- $r(\mathbf{AB}) = (r\mathbf{A})\mathbf{B}$
- $\bullet \ (\mathbf{AB})' = \mathbf{B}'\mathbf{A}'$
- 8. Linear Equations in matrix notation

Example:

$$4x_1 - 2x_2 + x_3 = 11$$

$$2x_1 + 3x_2 + 2x_3 = 6$$

Express the above in the form of

$$AX = b$$

What are \mathbf{A}, \mathbf{X} and \mathbf{b} ? Is there any solution?

- 9. Inverse (Let **A** and **B** be square matrices with the same size)
 - If B is an inverse of A, then AB = I and BA = I.
 - If **A** has an inverse (\mathbf{A}^{-1}) , then **A** is an invertible matrix.
 - \bullet If A is invertible, the system of linear equations AX=b has the unique solution $X=A^{-1}b$
 - If **A** is invertible, $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$
 - If **A** and **B** are invertible, $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$
 - The above can be generalized to product of more than two matrices.
 - Let k be an integer ≥ 1 . Then if **A** is invertible, $(\mathbf{A}^k)^{-1} = (\mathbf{A}^{-1})^k$
 - Let $a \neq 0$ be a scalar and if **A** is invertible, $(a\mathbf{A})^{-1} = \frac{1}{a}\mathbf{A}^{-1}$
 - \bullet If ${\bf A}$ is invertible, $({\bf A}')^{-1}=({\bf A}^{-1})'$
 - Rank and inverse

10. LU factorization

- For an $m \times n$ matrix **A**, the entries $a_{11}, a_{22}, ...$ are called the main diagonal of **A**.
- Let **A** be $m \times n$. LU factorization of **A**: $\mathbf{A} = \mathbf{L}\mathbf{U}$ where **L** is a lower triangular $m \times m$ matrix and **U** is an upper $m \times n$ triangular matrix.
- Consider the system of linear equations $\mathbf{AX} = \mathbf{b}$. If \mathbf{A} can be factored by LU factorization, the system can be solved by the following two steps.
 - (a) Solve LY = b for Y by forward substitution.
 - (b) Solve $\mathbf{U}\mathbf{X} = \mathbf{Y}$ for \mathbf{X} by back substitution.
- Example:

$$\mathbf{A} = \begin{bmatrix} -2 & 2 & -4 & 2 \\ 1 & -2 & 1 & 3 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 1 & -2 \end{bmatrix}$$
$$\mathbf{b} = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \end{bmatrix}$$

11. Determinant $(|\mathbf{A}|)$

- Square matrix
- If **A** has a row or column of zeros, $|\mathbf{A}| = 0$
- ullet The determinant of the resulting matrix is $-|\mathbf{A}|$ if two rows (or columns) are interchanged
- If a row (or a column) of \mathbf{A} is multiplied by c (a scalar), the resulting determinant is $c|\mathbf{A}|$
- If two rows (or columns) of **A** are identical, $|\mathbf{A}| = 0$
- Determinant of identity matrix, diagonal matrix and triangular matrix.
- $\bullet ||\mathbf{A}\mathbf{B}|| = |\mathbf{A}||\mathbf{B}|$
- $\bullet \ |\mathbf{A}^{'}| = |\mathbf{A}|$
- If **A** is not invertible (singular), $|\mathbf{A}| = 0$.

12. Trace

- Square matrix
- \bullet The trace is the sum of the main diagonal elements
- $trace(\mathbf{AB}) = trace(\mathbf{BA})$

13. Eigenvalues and eigenvectors

• Let **A** be an $n \times n$ matrix. Let $\mathbf{x} \neq \mathbf{0}$ be an $n \times 1$ vector such that

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}.$$

Then, λ is the eigenvalue (characteristic root) and \mathbf{x} is the corresponding eigenvector (characteristic vector).

• For the above equation $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$, we have

$$(\lambda \mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{0}.$$

However, $\mathbf{x} \neq 0$, implying that $(\lambda \mathbf{I} - \mathbf{A})$ is not invertible. Therefore

$$|(\lambda \mathbf{I} - \mathbf{A})| = \mathbf{0}$$

which is called the characteristic equation.

- $|\mathbf{A}| = \prod_{i=1}^n \lambda_i$
- trace(**A**) = $\sum_{i=1}^{n} \lambda_i$
- Examples:

$$\mathbf{A} = \left[\begin{array}{rrr} 2 & 0 & 0 \\ 1 & 2 & -1 \\ -1 & 3 & -2 \end{array} \right]$$

(b)
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & -3 \\ 2 & 0 & 6 \\ 1 & -1 & 5 \end{bmatrix}$$

(c)
$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix}$$

14. Diagonalization of a square matrix

- ullet A matrix is diagonalizable if and only if every eigenvalue of multiplicity m yields m basic eigenvectors.
- Let **A** be diagonalizable with eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_n$ and corresponding eigenvectors $\mathbf{x_1}, ..., \mathbf{x_n}$. Let $\mathbf{P} = [\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_n}]$. Then

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P}=\mathbf{D}$$

where \mathbf{D} is a diagonal matrix with the eigenvalues on the diagonal.

- \bullet If **A** is symmetric
 - **P** always exists and it is orthogonal.
 - (spectral decomposition)

$$\mathbf{A} = \sum_{i=1}^{n} \lambda_{i} \mathbf{e_{i}} \mathbf{e_{i}^{'}}$$

where $\mathbf{e_i}$ is the normalized eigenvector.

• Example:

$$\mathbf{A} = \begin{bmatrix} 13 & -4 & 2 \\ -4 & 13 & -2 \\ 2 & -2 & 10 \end{bmatrix}$$