Meu Cálculo Numérico

Um livro colaborativo

Arquimedes Macedo REAMAT

31/12/2024

Índice

В	em-Vir	ndo		4
	Licen	ıça		4
D.	refácio			5
			Computacionais	5
	_	0.0.1	Python	5
		0.0.1 $0.0.2$	Octave	5
		0.0.2 $0.0.3$	Scilab	5
		0.0.5	Schab	0
ln	troduç	ão		6
ı	Car	oítulo	1: Representação de números e aritmética	
	-	máqui	•	8
1	Siste	ma de	numeração e mudança de base	10
		1.0.1	Python	11
		1.0.2	Scilab	11
		1.0.3	Octave	11
		1.0.4	Python	12
		1.0.5	Scilab	12
		1.0.6	Octave	13
		1.0.7	Python	14
		1.0.8	Scilab	14
		1.0.9	Octave	15
		1.0.10	Python	15
		1.0.11	Scilab	15
		1.0.12	Octave	16
		1.0.13	Python	16
		1.0.14	Scilab	17
		1.0.15	Octave	17
	1.1	Exercí	cios resolvidos	17
		1.1.1	Exercício	17
		1.1.2	Python	18
		1.1.3	Scilab	18
		1.1.4	Octave	18
		1.1.5	Python	18
		1.1.6	Scilab	18
		1.1.7	Octave	19
		1.1.8	Exercício	19
	1.2	Exercí	cios	19
		1.2.1	Exercício	19
		1.2.2	Exercício	20

Apêndices				
Α	Rápida introdução ao Python	21		
	A.1 Sobre a linguagem Python	21		
	A.1.1 Instalação e execução	21		
	A.1.2 Usando Python	21		
	A.1.3 Exercício	22		

Bem-Vindo

REAMAT é um projeto de escrita colaborativa de recursos educacionais abertos (REA) sobre tópicos de matemática e suas aplicações.

Nosso objetivo é de fomentar o desenvolvimento de materiais didáticos pela colaboração entre professores e alunos de universidades, institutos de educação e demais interessados no estudo e na aplicação da matemática nos mais diversos ramos da ciência e da tecnologia.

O sucesso do projeto depende da colaboração! Participe diretamente da escrita dos recursos educacionais, dê sugestões ou avise-nos de erros e imprecisões. Toda a colaboração é bem-vinda. Veja como participar aqui.

Nós preparamos uma série de ações para ajudá-lo a participar. Em primeiro lugar, o acesso irrestrito aos materias pode se dar através deste site.

Os códigos fontes e a documentação dos recursos estão disponíveis em repositórios GitHub públicos.

Licença

Nada disso estaria completo sem uma licença apropriada à colaboração. Por isso, escolhemos disponibilizar os materiais sob licença Creative Commons Atribuição-CompartilhaIgual 3.0 Não Adaptada (CC-BY-SA 3.0) . Ou seja, você pode copiar, redistribuir, alterar e construir um novo material para qualquer uso, inclusive comercial. Leia a licença para mais informações.

Prefácio

Este livro busca abordar os tópicos de um curso de introdução ao cálculo numérico moderno oferecido a estudantes de matemática, física, engenharias e outros. A ênfase é colocada na formulação de problemas, implementação em computador da resolução e interpretação de resultados. Pressupõe-se que o estudante domine conhecimentos e habilidades típicas desenvolvidas em cursos de graduação de cálculo, álgebra linear e equações diferenciais. Conhecimento prévio em linguagem de computadores é fortemente recomendável, embora apenas técnicas elementares de programação sejam realmente necessárias.

Os códigos computacionais dos métodos numéricos apresentados no livro são implementados em uma abordagem didática. Isto é, temos o objetivo de que a implementação em linguagem computacional auxilie o leitor no aprendizado das técnicas numéricas apresentadas no livro. Implementações computacionais eficientes de técnicas de cálculo numérico podem ser obtidas na série de livros ''Numerical Recipes'', veja (Press 2007).

Linguagens Computacionais

0.0.1 Python

A utilização da linguagem computacional Python¹.

0.0.2 Octave

A utilização da linguagem computacional GNU Octave².

0.0.3 Scilab

A utilização do software livre Scilab³.

¹ https://www.python.org/

https://www.gnu.org/software/octave/

³ https://www.scilab.org/

Introdução

Cálculo numérico é a disciplina que estuda as técnicas para a solução aproximada de problemas matemáticos. Estas técnicas são de natureza analítica e computacional. As principais preocupações normalmente envolvem exatidão e desempenho.

Aliado ao aumento contínuo da capacidade de computação disponível, o desenvolvimento de métodos numéricos tornou a simulação computacional de problemas matemáticos uma prática usual nas mais diversas áreas científicas e tecnológicas. As então chamadas simulações numéricas são constituídas de um arranjo de vários esquemas numéricos dedicados a resolver problemas específicos como, por exemplo: resolver equações algébricas, resolver sistemas de equações lineares, interpolar e ajustar pontos, calcular derivadas e integrais, resolver equações diferenciais ordinárias, etc. Neste livro, abordamos o desenvolvimento, a implementação, a utilização e os aspectos teóricos de métodos numéricos para a resolução desses problemas.

Trabalharemos com problemas que abordam aspectos teóricos e de utilização dos métodos estudados, bem como com problemas de interesse na engenharia, na física e na matemática aplicada.

A necessidade de aplicar aproximações numéricas decorre do fato de que esses problemas podem se mostrar intratáveis se dispomos apenas de meios puramente analíticos, como aqueles estudados nos cursos de cálculo e álgebra linear. Por exemplo, o teorema de Abel-Ruffini nos garante que não existe uma fórmula algébrica, isto é, envolvendo apenas operações aritméticas e radicais, para calcular as raízes de uma equação polinomial de qualquer grau, mas apenas casos particulares:

- Simplesmente isolar a incógnita para encontrar a raiz de uma equação do primeiro grau;
- Fórmula de Bhaskara para encontrar raízes de uma equação do segundo grau;
- Fórmula de Cardano para encontrar raízes de uma equação do terceiro grau;
- Existe expressão para equações de quarto grau;
- Casos simplificados de equações de grau maior que 4 onde alguns coeficientes são nulos também podem ser resolvidos.

Equações não polinomiais podem ser ainda mais complicadas de resolver exatamente, por exemplo:

$$\cos(x) = x \qquad \text{ou} \qquad xe^x = 10 \tag{0.1}$$

Para resolver o problema de valor inicial:

$$y' + xy = x,$$

 $y(0) = 2,$ (0.2)

podemos usar o método de fator integrante e obtemos $y=1+e^{-x^2/2}$. No entanto, não parece possível encontrar uma expressão fechada em termos de funções elementares para a solução exata do problema de valor inicial dado por:

$$y' + xy = e^{-y}, y(0) = 2,$$
 (0.3)

Da mesma forma, resolvemos a integral:

$$\int_{1}^{2} x e^{-x^{2}} dx \tag{0.4}$$

pelo método da substituição e obtemos $\frac{1}{2}(e^{-1}-e^{-4}).$ Porém a integral:

$$\int_{1}^{2} e^{-x^{2}} dx \tag{0.5}$$

não pode ser expressa analiticamente em termos de funções elementares, como uma consequência do teorema de Liouville.

A maioria dos problemas envolvendo fenômenos reais produzem modelos matemáticos cuja solução analítica é difícil (ou impossível) de obter, mesmo quando provamos que a solução existe. Nesse curso propomos calcular aproximações numéricas para esses problemas, que apesar de, em geral, serem diferentes da solução exata, mostraremos que elas podem ser bem próximas.

Para entender a construção de aproximações é necessário estudar como funciona a aritmética implementada nos computadores e erros de arredondamento. Como computadores, em geral, usam uma base binária para representar números, começaremos falando em mudança de base.

Part I

Capítulo 1: Representação de números e aritmética de máquina

Neste capítulo, abordaremos formas de representar números reais em computadores. Iniciamos com uma discussão sobre representação posicional e mudança de base. Então, enfatizaremos a representação de números com quantidade finita de dígitos, mais especificamente, as representações de números inteiros, ponto fixo e ponto flutuante em computadores.

A representação de números e a aritmética em computadores levam aos chamados erros de arredondamento e de truncamento. Ao final deste capítulo, abordaremos os efeitos do erro de arredondamento na computação científica.

1 Sistema de numeração e mudança de base

Usualmente, utilizamos o sistema de numeração decimal, isto é, base 10, para representar números. Esse é um sistema de numeração em que a posição do algarismo indica a potência de 10 pela qual seu valor é multiplicado.

i Exemplo

O número 293 é decomposto como:

$$293 = 2 \text{ centenas} + 9 \text{ dezenas} + 3 \text{ unidades}$$

= $2 \cdot 10^2 + 9 \cdot 10^1 + 3 \cdot 10^0$ (1.1)

293 é igual a 2 centenas mais 9 dezenas mais 3 unidades. Que também é igual a 2 vezes 10 elevado à potência 2, mais 9 vezes 10 elevado à potência 0

O sistema de numeração posicional também pode ser usado com outras bases. Vejamos a seguinte definição.

\P Sistema de numeração de base b

Dado um número natural b>1 e o conjunto de símbolos $\pm,0,1,2,\ldots,b-1$, a sequência de símbolos

$$\left(d_{n}d_{n-1}\cdots d_{1}d_{0},d_{-1}d_{-2}\cdots\right)_{b}\tag{1.2}$$

representa o número positivo

$$d_n \cdot b^n + d_{n-1} \cdot b^{n-1} + \dots + d_0 \cdot b^0 + d_{-1} \cdot b^{-1} + d_{-2} \cdot b^{-2} + \dots \ (1.3)$$

Para representar números negativos usamos o símbolo — à esquerda do numeral 2 .

$\mbox{\@ifnextcoloredge}$ Dica 1: Observação $(b \geq 10)$

Para sistemas de numeração com base $b \geq 10$ é usual utilizar as seguintes notações:

• No sistema de numeração decimal (b = 10), costumamos representar o número sem os parênteses e o subíndice, ou seja,

²Para b > 10, veja Tip 1.

²O uso do símbolo + é opcional na representação de números positivos.

$$\pm d_n d_{n-1} \dots d_1 d_0, d_{-1} d_{-2} \dots := \pm (d_n d_{n-1} \dots d_1 d_0, d_{-1} d_{-2} \dots)_{10}. \tag{1.4}$$

• Se b>10, usamos as letras A,B,C,\cdots para denotar os algarismos: $A=10,\,B=11,\,C=12,\,D=13,\,E=14,\,F=15.$

i Exemplo (Sistema binário)

O sistema de numeração em base dois é chamado de binário e os algarismos binários são conhecidos como bits (do inglês binary digits). Um bit pode assumir dois valores distintos: 0 ou 1. Por exemplo:

$$x = (1001, 101)_{2}$$

$$= 1 \cdot 2^{3} + 0 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0} + 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3}$$

$$= 8 + 0 + 0 + 1 + 0, 5 + 0 + 0, 125 = 9,625.$$
(1.5)

Ou seja, $(1001, 101)_2$ é igual a 9,625 no sistema decimal.

1.0.1 Python

```
>>> 1*2**3 + 0*2**2 + 0*2**1 + 1*2**0 + 1*2**-1 + 0*2**-2 + 1*2**-3 9.625
```

1.0.2 Scilab

```
--> 1*2^3 + 0*2^2 + 0*2^1 + 1*2^0 + 1*2^{-1} + 0*2^{-2} + 1*2^{-3}
ans = 9.6250
```

1.0.3 Octave

```
>> 1*2^3 + 0*2^2 + 0*2^1 + 1*2^0 + 1*2^{-1} + 0*2^{-2} + 1*2^{-3}
ans = 9.6250
```

i Exemplo (Sistema quaternário)

No sistema quaternário a base b é igual a 4 e, portanto, temos o seguinte conjunto de algarismos $\{0, 1, 2, 3\}$. Por exemplo:

$$(301,2)_4 = 3 \cdot 4^2 + 0 \cdot 4^1 + 1 \cdot 4^0 + 2 \cdot 4^{-1} = 49,5. \tag{1.6} \label{eq:1.6}$$

Verifique no computador!

i Exemplo (Sistema octal)

No sistema octal a base é b=8. Por exemplo:

$$\begin{aligned} (1357,24)_8 &= 1 \cdot 8^3 + 3 \cdot 8^2 + 5 \cdot 8^1 + 7 \cdot 8^0 + 2 \cdot 8^{-1} + 4 \cdot 8^{-2} \\ &= 512 + 192 + 40 + 7 + 0,25 + 0,0625 = 751,3125.7) \end{aligned}$$

Verifique no computador!

i Exemplo (Sistema hexadecimal)

O sistema de numeração cuja base é b=16 é chamado de sistema hexadecimal. Neste, temos o conjunto de algarismos $\{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}$. Convertendo o número $(E2AC)_{16}$ para a base 10 temos

$$(E2AC)_{16} = 14 \cdot 16^{3} + 2 \cdot 16^{2} + 10 \cdot 16^{1} + 12 \cdot 16^{0}$$

= 57344 + 512 + 160 + 12 = 58028. (1.8)

Verifique no computador!

As linguagens oferecem algumas funções para a conversão de números inteiros em dada base para a base decimal. Por exemplo, temos:

1.0.4 Python

```
>>> print(0b1001) # bin
9
>>> print(0o157) # oct
111
>>> print(0xbeba) # hex
48826
```

1.0.5 Scilab

```
-->bin2dec('1001')
ans =
    9.
-->hex2dec('451')
ans =
    1105.
-->oct2dec('157')
ans =
    111.
-->base2dec('BEBA',16)
ans =
    48826.
```

1.0.6 Octave

```
>> bin2dec('1001')
ans = 9
>> hex2dec('451')
ans = 1105
>> base2dec('157',8) #oct -> dec
ans = 111
>> base2dec('BEBA',16)
ans = 48826
```

Nos exemplos acima vimos como converter números representados em um sistema de numeração de base b para o sistema decimal. Agora, vamos estudar como fazer o processo inverso. Isto é, dado um número decimal $(X)_{10}$ queremos escrevê-lo em uma outra base b, isto é, queremos obter a seguinte representação:

$$\begin{split} (X)_{10} &= (d_n d_{n-1} \cdots d_0, d_{-1} \cdots)_b \\ &= d_n \cdot b^n + d_{n-1} \cdot b^{n-1} + \cdots + d_0 \cdot b^0 + d_{-1} \cdot b^{-1} + d_{-2} \cdot b^{-2} + 1.9 \end{split}$$

Separando as partes inteira e fracionária de X, isto é, $X = X^{\dot{1}} + X^{\dot{1}}$, temos

$$X^{\dot{1}} = d_n \cdot b^n + \dots + d_{n-1}b^{n-1} \dots + d_1 \cdot b^1 + d_0 \cdot b^0 \tag{1.10}$$

e

$$X^{f} = \frac{d_{-1}}{b^{1}} + \frac{d_{-2}}{b^{2}} + \cdots \tag{1.11}$$

Nosso objetivo é determinar os algarismos $\{d_n, d_{n-1}, \ldots\}$.

Primeiramente, vejamos como tratar a parte inteira $X^{\dot{1}}$. Calculando o quociente de $X^{\dot{1}}$ por b, temos:

$$\frac{X^1}{b} = \frac{d_0}{b} + d_1 + d_2 \cdot b^1 + \dots + d_{n-1} \cdot b^{n-2} + d_n \cdot b^{n-1}. \tag{1.12}$$

Observe que d_0 é o resto da divisão de $X^{\mathbf{i}}$ por b, pois $d_1+d_2\cdot b^1+\cdots+d_{n-1}\cdot b^{n-2}+d_n\cdot b^{n-1}$ é inteiro e $\frac{d_0}{b}$ é uma fração com $d_0< b$. Da mesma forma, o resto da divisão de $d_1+d_2\cdot b^1+\cdots+d_{n-1}\cdot b^{n-2}+d_n\cdot b^{n-1}$ por b é d_1 . Ou seja, repetindo este processo encontramos os algarismos d_0 , $d_1,d_2,...,d_n$.

Vamos, agora, converter a parte fracionária X^{f} do número decimal X para o sistema de base b. Multiplicando X^{f} por b, temos

$$bX^{f} = d_{-1} + \frac{d_{-2}}{b} + \frac{d_{-3}}{b^{2}} + \cdots$$
 (1.13)

Observe que a parte inteira desse produto é d_{-1} e $\frac{d_{-2}}{b}+\frac{d_{-3}}{b^2}+\cdots$ é a parte fracionária. Quando multiplicamos $\frac{d_{-2}}{b}+\frac{d_{-3}}{b^2}+\cdots$ por b novamente, encontramos d_{-2} . Repetindo este processo encontramos os demais algarismos.

i Exemplo

Vamos converter o número 9,625 para a base binária (b=2). Primeiramente, decompomos 9,625 na soma de suas partes inteira e fracionária.

$$9,625 = 9 + 0,625 \tag{1.14}$$

Conversão da parte inteira. Para converter a parte inteira, fazemos sucessivas divisões por b=2 obtendo

$$9 = 4 \cdot 2 + 1 \tag{1.15}$$

$$= (2 \cdot 2 + 0) \cdot 2 + 1 \tag{1.16}$$

$$= 2^3 + 1. (1.17)$$

Ou seja, temos que $9 = (1001)_2$.

Podemos usar os comandos para truncamento e resto da divisão para computar esta conversão da seguinte forma

1.0.7 Python

```
>>> x = 9
>>> d0 = x%2; x = int(x/2); print(f"d0 = {d0}, x = {x}")
d0 = 1, x = 4
>>> d1 = x%2; x = int(x/2); print(f"d1 = {d1}, x = {x}")
d1 = 0, x = 2
>>> d2 = x%2; x = int(x/2); print(f"d2 = {d2}, x = {x}")
d2 = 0, x = 1
>>> d3 = x%2; x = int(x/2); print(f"d3 = {d3}, x = {x}")
d3 = 1, x = 0
```

1.0.8 Scilab

```
-->_{\rm X} = 9
x =
    9.
-->d0 = modulo(x,2), x = fix(x/2)
d0 =
    1.
    4.
-->d1 = modulo(x,2), x = fix(x/2)
d1 =
    0.
   =
    2.
-->d2 = modulo(x,2), x = fix(x/2)
d2 =
    0.
   =
X
    1.
```

```
-->d3 = modulo(x,2), x = fix(x/2)
d3 =
1.
x =
0.
```

1.0.9 Octave

```
>> x = 9
x = 9
>> d0 = mod(x,2), x = fix(x/2)
d0 = 1
x = 4
>> d1 = mod(x,2), x = fix(x/2)
d1 = 0
x = 2
>> d2 = mod(x,2), x = fix(x/2)
d2 = 0
x = 1
>> d3 = mod(x,2), x = fix(x/2)
d3 = 1
x = 0
```

 $Conversão\ da\ parte\ fracionária.$ Para converter a parte fracionária, fazemos sucessivas multiplicações por b=2 obtendo

$$0,625 = 1,25 \cdot 2^{-1} = 1 \cdot 2^{-1} + 0,25 \cdot 2^{-1}$$

$$= 1 \cdot 2^{-1} + (0,5 \cdot 2^{-1}) \cdot 2^{-1} = 1 \cdot 2^{-1} + 0,5 \cdot 2^{-2}$$

$$= 1 \cdot 2^{-1} + (1 \cdot 2^{-1}) \cdot 2^{-2} = 1 \cdot 2^{-1} + 1 \cdot 2^{-3}.$$

$$(1.18)$$

$$(1.19)$$

Ou seja, temos que $0,625 = (0,101)_2$.

Podemos computar esta conversão da parte fracionária da seguinte forma

1.0.10 Python

```
>>> x=0.625

>>> d = int(2*x); x = 2*x - d; print("d = %d, x = %f" % (d,x))

d = 1, x = 0.250000

>>> d = int(2*x); x = 2*x - d; print("d = %d, x = %f" % (d,x))

d = 0, x = 0.500000

>>> d = int(2*x); x = 2*x - d; print("d = %d, x = %f" % (d,x))

d = 1, x = 0.000000
```

1.0.11 Scilab

```
-->x = 0.625
x =
   0.625
-->d = fix(2*x), x = 2*x - d
   1.
x =
   0.25
-->d = fix(2*x), x = 2*x - d
   0.
x =
   0.5
-->d = fix(2*x), x = 2*x - d
d =
   1.
x =
0.
```

1.0.12 Octave

```
>> x = 0.625

x = 0.62500

>> d = fix(2*x), x = 2*x - d

d = 1

x = 0.25000

>> d = fix(2*x), x = 2*x - d

d = 0

x = 0.50000

>> d = fix(2*x), x = 2*x - d

d = 1

x = 0
```

 $Conclus\~ao.$ Da conversão das partes inteira e fracionária de 9,625, obtemos 9 = $(1001)_2$ e 0,625 = $(0,101)_2.$ Logo, concluímos que 9,625 = $(1001,101)_2.$

Existem algumas funções para a conversão de números inteiros em base decimal para uma dada base. Por exemplo, temos:

1.0.13 Python

```
>>> print(bin(9))
0b1001
>>> print(oct(111))
0o157
>>> print(hex(48826))
0xbeba
```

1.0.14 Scilab

```
-->dec2base(<mark>9,2</mark>)
ans =
1001
-->dec2base(111,8)
ans =
157
-->dec2base(48826,16)
BEBA
```

1.0.15 Octave

```
>> dec2base(9,2)
ans = 1001
>> dec2base(111,8)
ans = 157
>> dec2base(48826,16)
ans = BEBA
```

Observação

Uma maneira de converter um número dado em uma base b_1 para uma base b_2 é fazer em duas partes: primeiro converter o número dado na base b_1 para base decimal e depois converter para a base b_2 .

1.1 Exercícios resolvidos

1.1.1 Exercício

Obtenha a representação do número 125, 583 na base 6.

A Resposta

Decompomos $125, 58\bar{3}$ nas suas partes inteira 125 e fracionária $0, 58\bar{3}$. Então, convertemos cada parte.

Conversão da parte inteira. Vamos escrever o número 125 na base 6. Para tanto, fazemos sucessivas divisões por 6 como segue:

$$125 = 20 \cdot 6 + 5 \quad (125 \text{ dividido por } 6 \text{ \'e igual a } 20 \text{ e resta } 5)$$

= $(3 \cdot 6 + 2) \cdot 6 + 5 = 3 \cdot 6^2 + 2 \cdot 6 + 5,$ (1.21)

 $\log 125 = (325)_6$.

Estes cálculos podem ser feitos da seguinte forma: primeiro calcula o resto da divisão entre dois números, depois retorna a parte inteira de um número dado. No nosso exemplo, temos:

1.1.2 Python

```
>>> q = 125; d0 = (q % 6); print(q,d0)

>>> q = int(q/6); d1 = (q % 6); print(q,d1)

>>> q = int(q/6); d2 = (q % 6); print(q,d2)
```

1.1.3 Scilab

```
-->q = 125, d0 = modulo(q,6)

-->q = int(q/6), d1 = modulo(q,6)

-->q = int(q/6), d2 = modulo(q,6)
```

1.1.4 Octave

```
>> x = 125
x = 125
>> d = mod(x,6), x = fix(x/6)
d = 5
x = 20
>> d = mod(x,6), x = fix(x/6)
d = 2
x = 3
>> d = mod(x,6), x = fix(x/6)
d = 3
x = 0
```

Verifique!

Conversão da parte fracionária. Para converter $0,58\bar{3}$ para a base 6, fazemos sucessivas multiplicações por 6 como segue:

```
\begin{array}{l} 0,58\overline{3}=3,5\cdot 6^{-1} & (0,58\overline{3} \text{ multiplicado por 6 \'e igual a } 3,5) \\ =3\cdot 6^{-1}+0,5\cdot 6^{-1} \\ =3\cdot 6^{-1}+(3\cdot 6^{-1})\cdot 6^{-1} \\ =3\cdot 6^{-1}+3\cdot 6^{-2}, \end{array} \tag{1.22}
```

 $\log 0.58\overline{3} = (0.33)_6.$

1.1.5 Python

```
>>> x = 0.58 + 1/3/100; print("x = {}".format(x))
x = 0.5833333333333333
>>> d = int(6*x); x = round(6*x,1) - d; print("d = {}, x = {}".format(d, x))
d = 3, x = 0.5
>>> d = int(6*x); x = round(6*x,1) - d; print("d = {}, x = {}".format(d, x))
d = 3, x = 0.0
```

1.1.6 Scilab

As contas feitas aqui, também podem ser computadas no Scilab. Você sabe como?

1.1.7 Octave

```
>> x = 0.58 + 1/3/100

x = 0.58333

>> d = fix(6*x), x = 6*x - d

d = 3

x = 0.50000

>> x = 0.5 \#isso \ \'e realmente necessário?

x = 0.50000

>> d = fix(6*x), x = 6*x - d

d = 3

x = 0
```

1.1.8 Exercício

Obtenha a representação na base 4 do número $(101,01)_2$.

Começamos convertendo $(101,01)_2$ para a base decimal:

$$(101,01)_2 = 1 \cdot 2^2 + 1 \cdot 2^0 + 1 \cdot 2^{-2} = 5,25.$$
 (1.23)

Então, convertemos 5,25 para a base 4. Para sua parte inteira, temos

$$5 = 1 \cdot 4 + 1 = (11)_4. \tag{1.24}$$

Para sua parte fracionária, temos

$$0,25 = 1 \cdot 4^{-1} = (0,1)_4. \tag{1.25}$$

Logo, $(101,01)_2 = (11,1)_4$. Verifique estas contas no computador!

1.2 Exercícios

1.2.1 Exercício

Converta para base decimal cada um dos seguintes números:

- a) $(100)_2$
- b) $(100)_3$
- c) $(100)_b$
- d) $(12)_5$
- e) $(AA)_{16}$
- f) $(7,1)_8$
- g) $(3,12)_5$

A Resposta

- a) ~ 4
- b) ~ 9
- c) $\sim b^2$
- d) ~7
- e) ~ 170
- f) $\sim 7,125$
- g) $\sim 3,28$

1.2.2 Exercício

Escreva cada número dado para a base b.

- a) $(45,1)_8$ para a base b=2
- b) $(21, 2)_8$ para a base b = 16
- c) $(1001, 101)_2$ para a base b = 8
- d) $(1001, 101)_2$ para a base b = 16

A Resposta

- a) $\sim (100101, 001)_2$
- b) $\sim (11, 4)_{16}$
- c) $\sim (11, 5)_8$
- d) $\sim (9, A)_{16}$

1.2.3 Exercício

Quantos algarismos são necessários para representar o número 937163832173947 em base binária? E em base 7?

Dica

Qual é o menor e o maior inteiro que pode ser escrito em dada base com N algarismos?

A Resposta

50; 18.

A Rápida introdução ao Python

Neste apêndice, discutiremos os principais aspectos da linguagem computacional Python que são essenciais para uma boa leitura desta versão do livro. O material aqui apresentado, é uma adaptação livre do Apêndice A de (Todos os Colaboradores 2016).

A.1 Sobre a linguagem Python

Python 4 é uma linguagem de programação de alto nível, interpretada e multi-paradigma. Lançada por Guido van Rossum 5,6 em 1991 é, atualmente, mantida de forma colaborativa e aberta.

Para mais informações, consulte:

- Página oficial da linguagem Python: https://www.python.org/
- Comunidade Python Brasil: http://wiki.python.org.br/

Para iniciantes, recomendamos o curso EAD gratuito no site Codecademy⁷:

https://www.codecademy.com/learn/python

A.1.1 Instalação e execução

Para executar um código Python é necessário ter instalado um interpretador para a linguagem. No site oficial do Python⁸ estão disponíveis para download os interpretadores para vários sistemas operacionais, como Linux, Mac OS e Windows. Muitas distribuições de Linux (Linux Mint, Ubuntu, etc.) têm o Python no seu sistema de pacotes (incluindo documentação em várias línguas).

Ao longo do texto, assumiremos que o leitor esteja usando um computar rodando Linux. Para outros sistemas, pode ser necessário fazer algumas adaptações.

A.1.2 Usando Python

O uso do Python pode ser feito de três formas básicas:

- usando um console Python de modo iterativo;
- executando um código codigo.py no console Python;
- executando um código Python codigo.py diretamente em terminal;

4 https://www.python.org/

- 5 https://gvanrossum. github.io//
- ⁶ Guido van Rossum, nascido em 1956, programador de computadores dos Países Baixos.
- ⁷ https://www.codecademy.com/

8 https://www.python.org/

A.1.3 Exercício

Considere o seguinte pseudocódigo:

```
s = "Olá, mundo!". (Sem imprimir na tela o resultado.)
saída(s). (Imprime na tela.)
```

Implemente este pseudocódigo em Python:

- a) usando diretamente um console;
- b) digitando seu código em um arquivo separado e executando-o no console Python com a função execfile.
- c) digitando seu código em um arquivo separado e executando-o em terminal com o comando Python.

A Resposta

Seguem as soluções de cada item:

a) No console temos:

```
>>> s = "Olá, mundo!"
>>> print(s)
Olá, mundo!
```

Para sair do console, digite:

```
>>> quit()
```

b) Abra o editor de texto de sua preferência e digite o código:

```
#!/usr/bin/env python
# -*- coding: utf-8 -*-
s = '01á'
print(s)
```

Salve o arquivo como, por exemplo, ola.py. No console Python, digite:

```
>>> execfile("ola.py")
```

c) Abra o editor de texto de sua preferência e digite o código:

```
#!/usr/bin/env python
# -*- coding: utf-8 -*-
s = '01á'
print(s)
```

Salve o arquivo como, por exemplo, ola.py. No terminal, digite:

```
$ python ola.py
```

Press, W. H. 2007. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press. https://books.google.com.br/books?id=1aAOdzK3FegC.

Todos os Colaboradores. 2016. "Cálculo Numérico - Um Livro Colaborativo - Versão Com Scilab."