Lecture 18. Bayesian regression

COMP90051 Statistical Machine Learning

Lecturer: Zahra Dasht Bozorgi

This lecture

- Uncertainty not captured by point estimates
- Bayesian approach preserves uncertainty
- Sequential Bayesian updating
- Conjugate prior (Normal-Normal)
- Using posterior for Bayesian predictions on test

Training == optimisation (?)

Stages of learning & inference:

Formulate model

Regression

$$p(y|\mathbf{x}) = \operatorname{sigmoid}(\mathbf{x}'\mathbf{w})$$
 $p(y|\mathbf{x}) = \operatorname{Normal}(\mathbf{x}'\mathbf{w}; \sigma^2)$

Fit parameters to data

$$\hat{\mathbf{w}} = \operatorname{argmax}_{\mathbf{w}} p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})$$
 ditto

Make prediction

$$p(y_*|\mathbf{x}_*) = \operatorname{sigmoid}(\mathbf{x}'_*\hat{\mathbf{w}}) \qquad E[y_*] = \mathbf{x}'_*\hat{\mathbf{w}}$$

 $\hat{\boldsymbol{w}}$ referred to as a 'point estimate'

Bayesian Alternative

Nothing special about \hat{w} ... use more than one value?

Formulate model

Regression

$$p(y|\mathbf{x}) = \operatorname{sigmoid}(\mathbf{x}'\mathbf{w})$$
 $p(y|\mathbf{x}) = \operatorname{Normal}(\mathbf{x}'\mathbf{w}; \sigma^2)$

 Consider the space of likely parameters – those that fit the training data well

$$p(\mathbf{w}|\mathbf{X},\mathbf{y})$$

Make 'expected' prediction

$$p(y_*|\mathbf{x}_*) = E_{p(\mathbf{w}|\mathbf{X}_{,\mathbf{y}})} [\operatorname{sigmoid}(\mathbf{x}_*'\mathbf{w})]$$

$$p(y_*|\mathbf{x}_*) = E_{p(\mathbf{w}|\mathbf{X}_{,\mathbf{y}})} \left[\text{Normal}(\mathbf{x}_*'\mathbf{w}, \sigma^2) \right]$$

Uncertainty

From small training sets, we rarely have complete confidence in any models learned. Can we quantify the uncertainty, and use it in making predictions?

Regression Revisited

- Learn model from data
 - * minimise error residuals by choosing weights $\hat{\mathbf{w}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$
- But... how confident are we
 - * in $\widehat{\mathbf{w}}$?
 - in the predictions?

Linear regression: $y = w_0 + w_1 x$ (here y = humidity, x = temperature)

Do we trust point estimate $\hat{\mathbf{w}}$?

- How stable is learning?
 - * $\hat{\mathbf{w}}$ highly sensitive to noise
 - * how much uncertainty in parameter estimate?
 - more informative if neg log likelihood objective highly peaked

E[2nd deriv of NLL]

$$\mathcal{I} = \frac{1}{\sigma^2} \mathbf{X}' \mathbf{X}$$

* measures curvature of objective about $\hat{\mathbf{w}}$

Figure: Rogers and Girolami p81

Mini Summary

- Uncertainty not captured by point estimates (MLE, MAP)
- Uncertainty might capture range of plausible parameters
- (Frequentist) idea of Fisher information as likelihood sensitivity at point estimates

Next time: The Bayesian view (reminder)

The Bayesian View

Retain and model all unknowns (e.g., uncertainty over parameters) and use this information when making inferences.

A Bayesian View

- Could we reason over all parameters that are consistent with the data?
 - * weights with a better fit to the training data should be more probable than others
 - * make predictions with all these weights, scaled by their probability
- This is the idea underlying Bayesian inference

Uncertainty over parameters

- Many reasonable solutions to objective
 - * why select just one?
- Reason under all possible parameter values
 - weighted by their posterior probability
- More robust predictions
 - less sensitive to overfitting, particularly with small training sets
 - * can give rise to more expressive model class (Bayesian logistic regression becomes non-linear!)

Frequentist vs Bayesian "divide"

- Frequentist: learning using point estimates, regularisation, p-values ...
 - * backed by sophisticated theory on simplifying assumptions
 - mostly simpler algorithms, characterises much practical machine learning research
- Bayesian: maintain uncertainty, marginalise (sum) out unknowns during inference
 - some theory
 - often more complex algorithms, but not always
 - * often (not always) more computationally expensive

Mini Summary

- Frequentist's central preference of point estimates don't capture uncertainty
- Bayesian view is to quantify belief in prior, update it to posterior using observations

Next time: Bayesian approach to linear regression

Bayesian Regression

Application of Bayesian inference to linear regression, using Normal prior over **w**

Revisiting Linear Regression

- Recall probabilistic formulation of linear regression $y \sim \mathrm{Normal}(\mathbf{x}'\mathbf{w}, \sigma^2)$
- $I_D = D \times D$ identity matrix

Bayes rule:

$$\mathbf{w} \sim \text{Normal}(\mathbf{0}, \gamma^2 \mathbf{I}_D)$$

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$
$$\max_{\mathbf{w}} p(\mathbf{w}|\mathbf{X}, \mathbf{y}) = \max_{\mathbf{w}} p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})$$

 Gives rise to penalised objective (ridge regression)

point estimate taken here, avoids computing marginal likelihood term

Bayesian Linear Regression

Rewind one step, consider full posterior

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \sigma^2) = rac{p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \sigma^2)p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X}, \sigma^2)}$$
The we he noise $p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \sigma^2)p(\mathbf{w}) = rac{p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \sigma^2)p(\mathbf{w})}{\int p(\mathbf{y}, |\mathbf{X}, \mathbf{w}, \sigma^2)p(\mathbf{w})d\mathbf{w}}$

Here we assume noise var. known

* if so, we can use the full posterior, not just its mode

Bayesian Linear Regression (cont)

- We have two Normal distributions
 - * normal likelihood x normal prior
- Their product is also a Normal distribution
 - * conjugate prior: when product of likelihood x prior results in the same distribution as the prior
 - * evidence can be computed easily using the normalising constant of the Normal distribution

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \sigma^2) \propto \text{Normal}(\mathbf{w}|\mathbf{0}, \gamma^2 \mathbf{I}_D) \text{Normal}(\mathbf{y}|\mathbf{X}\mathbf{w}, \sigma^2 \mathbf{I}_N)$$

 $\propto \text{Normal}(\mathbf{w}|\mathbf{w}_N, \mathbf{V}_N)$

closed form solution for posterior!

Bayesian Linear Regression (cont)

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \sigma^2) \propto \mathrm{Normal}(\mathbf{w}|\mathbf{0}, \gamma^2 \mathbf{I}_D) \mathrm{Normal}(\mathbf{y}|\mathbf{X}\mathbf{w}, \sigma^2 \mathbf{I}_N)$$
 $\propto \mathrm{Normal}(\mathbf{w}|\mathbf{w}_N, \mathbf{V}_N)$
where $\mathbf{w}_N = \frac{1}{\sigma^2} \mathbf{V}_N \mathbf{X}' \mathbf{y}$
 $\mathbf{V}_N = \sigma^2 (\mathbf{X}' \mathbf{X} + \frac{\sigma^2}{\gamma^2} \mathbf{I}_D)^{-1}$

Advanced: verify by expressing product of two Normals, gathering exponents together and 'completing the square' to express as squared exponential (i.e., Normal distribution).

COMP90051 Statistical Machine Learning

Example

- Given: The data comes from a Normal distribution with variance 1 but unknown mean θ .
- Goal: Find the posterior over the mean after seeing one data point where X=1. Assume a Normal prior over θ with mean 0 and variance 1.

$$P(\theta|X=1) = \frac{P(X=1|\theta)P(\theta)}{P(X=1)}$$

$$P(X=1) = \frac{P(X=1|\theta)P(\theta)}{P(X=1)}$$
The Normal distribution:
$$\mathcal{N}(x;\mu,\sigma^2) \equiv \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$= \left[\frac{1}{\sqrt{2\pi}} exp\left(-\frac{(1-\theta)^2}{2}\right)\right] \left[\frac{1}{\sqrt{2\pi}} exp\left(-\frac{\theta^2}{2}\right)\right]$$

$$\propto exp\left(-\frac{(1-\theta)^2+\theta^2}{2}\right) = exp\left(-\frac{2\theta^2-2\theta+1}{2}\right)$$

$$= exp\left(-\frac{\theta^2-\theta+\frac{1}{2}}{2\times\frac{1}{2}}\right)$$
Make leading numerator zero:
$$\times \frac{1}{2}$$
 on top and bottom

Bayesian Linear Regression example

Step 1: select prior, here spherical about **0**

Step 2: observe training data

Samples from posterior

Sequential Bayesian Updating

- Can formulate $p(\mathbf{w}|\mathbf{X},\mathbf{y},\sigma^2)$ for given dataset
- What happens as we see more and more data?
 - 1. Start from prior $p(\mathbf{w})$
 - 2. See new labelled datapoint
 - 3. Compute posterior $p(\mathbf{w}|\mathbf{X},\mathbf{y},\sigma^2)$
 - 4. The posterior now takes role of prior& repeat from step 2

Sequential Bayesian Updating

- Initially know little, many regression lines licensed
- Likelihood constrains
 possible weights such that
 regression is close to point
- Posterior becomes more refined/peaked as more data introduced
- Approaches a point mass

Bishop Fig 3.7, p155

Stages of Training

- 1. Decide on model formulation & prior
- 2. Compute *posterior* over parameters, $p(\mathbf{w}|\mathbf{X},\mathbf{y})$

MAP

approx. Bayes

exact Bayes

- Find *mode* for **w** 3. Sample many **w**
- Use to make prediction on test
- 4. Use to make ensemble average prediction on test
- Use *all w* to make *expected* prediction on test

Prediction with uncertain w

- Could predict using sampled regression curves
 - * sample S parameters, $\mathbf{w}^{(s)}$, $s \in \{1, ..., S\}$
 - * for each sample compute prediction $y_*^{(s)}$ at test point \mathbf{x}_*
 - * compute the mean (and var.) over these predictions
 - * this process is known as Monte Carlo integration
- For Bayesian regression there's a simpler solution
 - integration can be done analytically, for

$$p(\hat{y}_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_*, \sigma^2) = \int p(\mathbf{w} | \mathbf{X}, \mathbf{y}, \sigma^2) p(\mathbf{y}_* | \mathbf{x}_*, \mathbf{w}, \sigma^2) d\mathbf{w}$$

Prediction (cont.)

 Pleasant properties of Gaussian distribution means integration is tractable

$$p(y_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}, \sigma^2) = \int p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \sigma^2) p(y_*|\mathbf{x}_*, \mathbf{w}, \sigma^2) d\mathbf{w}$$

$$= \int \text{Normal}(\mathbf{w}|\mathbf{w}_N, \mathbf{V}_N) \text{Normal}(y_*|\mathbf{x}_*'\mathbf{w}, \sigma^2) d\mathbf{w}$$

$$= \text{Normal}(y_*|\mathbf{x}_*'\mathbf{w}_N, \sigma_N^2(\mathbf{x}_*))$$

$$\sigma_N^2(\mathbf{x}_*) = \sigma^2 + \mathbf{x}_*' \mathbf{V}_N \mathbf{x}_*$$

- additive variance based on x* match to training data
- * cf. MLE/MAP estimate, where variance is a fixed constant

Bayesian Prediction example

Point estimate

MLE (blue) and MAP (green) point estimates, with fixed variance

Data: $y = x \sin(x)$; Model = cubic

Bayesian inference

Caveats

- Assumptions
 - * known data noise parameter, σ^2
 - * data was drawn from the model distribution
- In real settings, σ^2 is unknown
 - * has its own conjugate prior Normal likelihood X InverseGamma prior results in InverseGamma posterior
 - * closed form predictive distribution, with student-T likelihood (see Murphy, 7.6.3)

Mini Summary

- Uncertainty not captured by point estimates (MLE, MAP)
- Bayesian approach preserves uncertainty
 - care about predictions NOT parameters
 - choose prior over parameters, then model posterior
- New concepts:
 - sequential Bayesian updating
 - conjugate prior (Normal-Normal)
- Using posterior for Bayesian predictions on test

Next time: Bayesian classification, then PGMs