Modelagem XGBOOST para a classificação de avaliações de livros

Ana Luzielma Dias Campos Jaylhane Veloso Nunes Raianny da Silva Soares

Introdução

Quando se está procurando uma nova leitura, uma das coisas que pode ser observada é a avaliação do livro. De acordo com ela, pode-se ter uma ideia inicial se o livro é bom ou se ele segue uma dinâmica que se está habituado, já que muitas pessoas deram uma nota alta de avaliação. Pensando sobre isso, levantamos o questionamento: seria possível predizer se um livro é bom sem ter acesso a nota da avaliação? Dessa forma pensamos em realizar um modelo para classificar a avaliação de um livro. Para esta tarefa utilizaremos o seguinte conjunto de dados: Goodreads-books| Kaggle e como inspiração para construção do modelo utilizaremos o seguinte guia: Tune xgboost models with early stopping to predict shelter animal status| Julia Silge.

Assim, uma das possibilidades é fazer uma categorização das avaliações dos livros em "Ruim", "Bom" e ''Ótimo", considerando respectivamente os intervalos das notas como, [0, 3.5), [3.5, 4] e (4, 5], e a partir daí predizer a avaliação dos livros utilizando o XGboost. O critério de intervalo para as categorias das notas foi definido subjetivamente ao acaso entre as participantes do grupo, tentando balancear a quantidade de observações que ficariam em cada grupo.

Além disso, como o objetivo é classificar os livros sem olhar as avaliações, as notas não farão parte do modelo, elas serão utilizadas apenas para criar as categorias e estamos supondo que de alguma forma as variáveis como número de páginas, idade do livro, editora, quantidade de notas de avaliações e quantidade de avaliações escritas estão relacionadas com a avaliação do livro.

Análise exploratória

• Limpeza dos dados

• Verificando a língua

Análisando o conjunto de dados percebemos que algumas variáveis nos códigos da linguagem estavam em formato de númeração e precisaram ser removidas.

```
summary(as.factor(livros$language_code))
```

```
## 9780674842113 9780851742717 9781563841552 9781593600112
                                                                           ale
##
                                              1
                                                                             1
                1
                               1
                                                              1
##
              ara
                           en-CA
                                          en-GB
                                                         en-US
                                                                           eng
##
                               7
                                            214
                                                          1408
                                                                          8908
                1
##
                                                                           glg
              enm
                             fre
                                            ger
                                                           gla
##
                3
                             144
                                             99
                                                             1
                                                                             1
##
              grc
                             ita
                                            jpn
                                                            lat
                                                                           msa
                               5
##
                                             46
                                                             3
               11
                                                                             1
##
              mul
                              nl
                                            nor
                                                                           rus
                                                           por
##
               19
                                                                             2
                               1
                                              1
                                                             10
                                                           tur
                                                                           wel
##
              spa
                                            swe
                             srp
##
              218
                               1
                                              2
                                                              1
                                                                             1
##
              zho
##
               14
```

Fazendo o gráfico de barras para ver a variação dessas linguagens, obtemos o seguinte resultado:

```
livros %>%
  ggplot(aes(language_code))+
  geom_bar()+
  coord_flip()
```


Como há muito pouca variação linguistica comparado ao grupo inglês, dividiremos a categoria de language_code em duas: inglês e outros.

```
livros <- livros %>%
  mutate(publication_date = mdy(publication_date),
         average_rating = as.double(average_rating),
         num_pages = as.integer(num_pages),
         book_age = year(today())-year(publication_date),
         month_publication = as.factor(month(publication_date)),
         year_publication = as.factor(year(publication_date)),
         language_code = factor(
           ifelse(language_code %in% c("enm",
                                        "eng",
                                        "en-US",
                                        "en-GB",
                                        "en-CA"),
                  "English", "Other")
         )
  ) %>%
  select(-authors, -publisher) %>%
  na.omit()
```

summary(livros)

```
average_rating
                    language_code
                                       num_pages
                                                       ratings_count
##
           :0.000
                    English:10539
    Min.
                                     Min.
                                           :
                                                0.0
                                                       Min.
                                                              :
    1st Qu.:3.770
                    Other : 582
##
                                     1st Qu.: 192.0
                                                       1st Qu.:
                                                                   104
##
   Median :3.960
                                     Median : 299.0
                                                       Median:
                                                                   745
                                           : 336.3
##
    Mean
           :3.934
                                     Mean
                                                       Mean
                                                                 17945
    3rd Qu.:4.140
                                     3rd Qu.: 416.0
                                                                  4996
##
                                                       3rd Qu.:
##
   Max.
           :5.000
                                     Max.
                                            :6576.0
                                                       Max.
                                                              :4597666
##
##
   text_reviews_count publication_date
                                                book_age
                                                               month_publication
##
                0.0
                               :1900-01-01
   Min.
         :
                       Min.
                                                     : 2.00
                                                               9
                                                                      :1278
##
   1st Qu.:
                9.0
                       1st Qu.:1998-07-17
                                             1st Qu.: 17.00
                                                               10
                                                                      :1212
               47.0
                       Median :2003-03-01
                                             Median : 19.00
                                                                      :1057
##
   Median:
                                                               1
                               :2000-08-29
                                                     : 21.83
                                                                      : 991
##
    Mean
           : 542.1
                       Mean
                                             Mean
                                                               4
                                                                      : 922
##
    3rd Qu.: 238.0
                       3rd Qu.:2005-10-01
                                             3rd Qu.: 24.00
                                                               5
##
    Max.
           :94265.0
                       Max.
                               :2020-03-31
                                             Max.
                                                     :122.00
                                                               6
                                                                      : 879
                                                               (Other):4782
##
##
    year_publication
##
    2006
           :1700
##
    2005
           :1260
##
    2004
           :1069
##
    2003
           : 931
##
  2002
           : 798
##
    2001
           : 656
##
    (Other):4707
```

• Separando os grupos

Temos 50% das observações estão entre [0,3.96] e o 1° Q é 3.77, que é bem próximo, mostrando que há uma concentração de avaliações, verificando o histograma dessa variável temos:

E conferindo a quantidade de observações menores de 3 temos:

```
livros %>%
  filter(average_rating<3.5) %>%
  count()
```

```
summary(livros$average_rating)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 3.770 3.960 3.934 4.140 5.000
```

```
quantile(livros$average_rating,.67)
```

```
## 67%
## 4.07
```

```
livros %>%
  filter(average_rating>4) %>%
  count()
```

Dessa forma, trabalharemos apenas com três categorias, "Ruim", "Bom" e ''Ótimo", considerando respectivamente os intervalos de nota de [0, 3.5), de [3.5, 4] e de (4, 5], uma vez que pelo histograma é notado a distribuição nas avaliações de 3 a 5.

Sendo assim, nosso conjunto de dados final é composto por três categorias: "Ruim", "Bom" e ''Ótimo". Aplicando no conjunto de dados:

Análise Descritiva e Exploratória

• Separando em Treino e Teste

```
set.seed(1904, kind = "Mersenne-Twister", normal.kind = "Inversion")
livros_split <- initial_split(livros, prop = .75, strata = book_rating)
livros_treino <- training(livros_split)
livros_teste <- testing(livros_split)</pre>
```

• Verificando a correlação das variáveis quantitativas

```
livros_treino %>%
select(where(is.numeric)) %>%
ggpairs(upper = list(continuous = wrap("cor", method = "spearman")))
```


Dado que identificamos alta correlação entre as variáveis text_reviews_counte rating_count a variável text será removida pois não necessariamente todo mundo que dá uma nota de avaliação também deixa uma avaliação escrita, o que inclusive explica a forte correlação entre essas variáveis, pois certamente todos que deixaram avaliação escrita também deixaram nota, no entanto, consideramos essa medida importante para avaliar se o livro é ótimo ou ruim, supondo que quando um livro for uma dessas duas opções as pessoas façam mais questão de comentar.

Sendo assim, criaremos uma variável proporção:

```
livros_treino <- livros_treino %>%
  mutate(prop_text_reviews = text_reviews_count / ratings_count) %>%
  select(-text_reviews_count)

cor(livros_treino$prop_text_reviews,livros_treino$ratings_count,
    use = "complete", method = "spearman")
```

[1] -0.3605444

Com essa nova variável tivemos uma baixa correlação, assim evitamos a multicolineariedade.

• Análise das variávies

```
livros_treino %>%
  select(where(is.numeric),book_rating) %>%
  pivot_longer(-book_rating) %>%
```

Boxplot das variáveis por classificação do livro

Pelos box-plots é notado que as distribuições das classificações de acordo com as variáveis há poucas diferenças entre si.

É observado que há uma maior avaliação de livros a partir dos anos 80 até em torno do ano de 2012. Nesses anos tiveram muitas avaliações de livros e a porcentagem de avaliação para ótimo está em torno de 25% a 75% em sua maioria.

Verificando a distribuição de livros publicados ao longo dos anos temos:

```
livros_treino %>%
 group_by(
   mes = month_publication,
   ano = year_publication
  ) %>%
  count() %>%
  ggplot(aes(n,ano, fill=mes))+
  geom_col()+
  geom_hline(yintercept = "1986", color = "blue", lty=2)+
  geom_hline(yintercept = "2008", color = "blue", lty=2)+
  theme(panel.border = element blank(),
        panel.grid.major.y = element_blank(),
       panel.grid.minor = element_blank())+
  labs(x = "Quantidade Publicações",
       y = "Ano",
       fill = "Mês",
       title = "Quantidade de Publicações por Ano")+
  scale_fill_viridis_d()
```


O aumento das publicações dos livros foram bem proporcionais entre 1986 e 2007, não é perceptível algum mês que se destaque entre os demais. Inclusive até mesmo no ano 2008 em que teve uma redução, ainda assim também foi proporcional entre os meses.

Como o boxplot apresentou muitos outliers e percebemos uma concentração nos dados iremos realizar uns filtros para melhorar a modelagem:

```
gridExtra::grid.arrange(ncol=2,
                        livros_treino %>%
  ggplot(aes(x=book_age)) +
  geom_histogram(bins=30)+
  geom_vline(xintercept = quantile(livros_treino$book_age),
             color="green", lty=2)+
  labs(title = "Histograma book_age",
       v="")
livros_treino %>%
  ggplot(aes(x=num_pages)) +
  geom_histogram(bins=30)+
  geom_vline(xintercept = quantile(livros_treino$num_pages),
            color="green", lty=2)+
  labs(title = "Histograma num_pages",
       x=""
       y="")
livros_treino %>%
```


Com os histogramas das variáveis númericas percebemos que a maioria tem uma assimetria a direita, então com isso decidimos aplicar filtros nessas variáveis para diminuir os outliers dos nossos dados. A única variável em que o filtro não será aplicado por não ter a assimetria será a ratings_count.

E agora o novo boxplot com os filtros aplicados:

```
livros_treino %>%
filter(book_age<40) %>%
```

```
filter(num_pages<1000) %>%
filter(ratings_count<1000) %>%
select(where(is.numeric),book_rating) %>%
pivot_longer(-book_rating) %>%
ggplot(.,aes(fill = book_rating)) +
geom_boxplot(aes(y=value)) +
facet_wrap(~ name, scales = "free") +
labs(x="",
    y="Valor",
    fill = "Classificação\ndo Livro",
    title = "Boxplot das variáveis por classificação do livro")+
scale_fill_viridis_d()
```

Boxplot das variáveis por classificação do livro

Com as mudanças feitas, houve uma diferença notável nas distribuições da idade do livro, número de páginas e avaliações, as amplitudes e variações em comparação aos box-plots anteriores. As contagens de avaliações, na classificação ótimas a amplitude e a variação é maior que as demais, se assemelha a classificação "Bom", "Ruim" é a que possui mais outliers mas sua amplitude e vaiação é a menor.

${\bf Modelagem}$

Considerando as alterações sofridas no conjunto de dados após a análise exploratória, será necessário carregar novamente o conjunto de dados, bem como gerar novo conjunto de treino e teste:

```
livros <- read.csv("./Conjunto de Dados/books_t.csv",</pre>
                   encoding = "UTF-8") %>%
  mutate(publication_date=as.Date(publication_date),
         prop_text_reviews = text_reviews_count / ratings_count,
         prop_text_reviews = ifelse(prop_text_reviews %in% c(NaN,Inf), 0, prop_text_reviews),
         book_rating=factor(book_rating,
                            levels = c("Ótimo", "Bom", "Ruim"))) %>%
  select(-month publication, -year publication, -text reviews count) %>%
  filter(book age<40) %>%
  filter(num pages<1000) %>%
  filter(ratings_count<1000)
set.seed(1904, kind = "Mersenne-Twister", normal.kind = "Inversion")
livros_split <- initial_split(livros, prop = .75, strata = book_rating)</pre>
livros_treino <- training(livros_split)</pre>
livros_teste <- testing(livros_split)</pre>
#####Criando Métricas####
(livros_metricas <- metric_set(accuracy, roc_auc, mn_log_loss))</pre>
## # A tibble: 3 x 3
                              direction
    metric class
##
    <chr>
                <chr>
                              <chr>>
## 1 accuracy class metric maximize
## 2 roc auc
               prob_metric maximize
## 3 mn_log_loss prob_metric minimize
#####Criando Folds####
set.seed(1989)
(livros_folds <- vfold_cv(livros_treino, strata = book_rating, v=10))
```

Pre-processamento dos Dados

Grid de Procura, Tune e Parada antecipada

```
stopping_spec <-</pre>
  boost_tree(
   trees = 500,
    mtry = tune(),
    learn_rate = tune(),
    stop_iter = tune()
  ) %>%
  set_engine("xgboost", validation = 0.2) %>%
  set_mode("classification")
stopping_grid <-
  grid_latin_hypercube(
    mtry(range = c(5L, 18L)),
    learn_rate(\frac{range}{range} = c(-5, -1)),
    stop_iter(range = c(10L, 50L)),
    size = 10
  )
early_stop_wf <- workflow(livros_rec, stopping_spec)</pre>
doParallel::registerDoParallel()
set.seed(2022)
stopping_rs <- tune_grid(</pre>
  early_stop_wf,
  livros_folds,
 grid = stopping_grid,
  metrics = livros_metricas
```

Avaliação do Modelo

```
autoplot(stopping_rs)
```



```
show_best(stopping_rs, metric = "mn_log_loss")

stopping_fit <- early_stop_wf %>%
    finalize_workflow(select_best(stopping_rs, "mn_log_loss")) %>%
    last_fit(livros_split)

stopping_fit

collect_metrics(stopping_fit)

extract_workflow(stopping_fit) %>%
```

```
extract_workflow(stopping_fit) %>%
  extract_fit_parsnip() %>%
  vip(num_features = 15, geom = "point")+
  ggtitle("Variáveis mais importantes no modelo")
```


As variáveis mais importantes para o modelo são os número de páginas, contagem de avaliações, comentários de textos e a idade do livro.

O que faz sentido pois a junção dessas variáveis para fazer uma classificação, É difícil ter muitos livros com muitas páginas, conseguir seguir uma linha de raciocínio e uma trama na qual prenda o leitor. Além disso, quanto mais páginas provavelmente mais caro será o livro.

Principalmente, atualmente, a questão de um livro está sendo muito avaliado, muito divulgado nas redes, faz com que mais pessoas queiram consumir eles, tanto pela curiosidade de saber por que ele é tão bem avaliado e descutido. Em relação a idade

A idade do livro é um fator interessante, há os livros que se tornam clássicos, os que são deixados de lado e os que é possível fazer sucesso mesmo com um certo tempo de publicação.

```
collect_predictions(stopping_fit) %>%
  conf_mat(book_rating, .pred_class) %>%
  autoplot(type = "heatmap")+
  ggtitle("Mapa de Calor das Predições")
```

Mapa de Calor das Predições

O modelo não foi o melhor, principalmente para avaliar "Ótimo" e "Bom".

Dos livros classificados como "Ótimo", o modelo classificou 189 como "Bom" e 146 como "Ruim".

Dos livros classificados como "Bom", o modelo classificou 200 como "Ótimo" e 209 como "Ruim".

Verdadeiro positivo collect_predictions(stopping_fit, summarize = TRUE) %>% sens(book_rating, .pred_class)

```
## Verdadeiro negativo
collect_predictions(stopping_fit, summarize = TRUE) %>%
   spec(book_rating, .pred_class)
```