Basics of Programming

L12: Data Visualization
Apr 2020

Dr. Ram P Rustagi
Professor, CSE Dept
KRP, KSGI
rprustagi@ksit.edu.in

Resources

- Visualization with python
 - https://matplotlib.org
- Data Science from Scracth, 2nd edition
 - author: Joel Grus
 - publisher: O'Reilly, 2019

Visualization

- Data Visualization
 - A technique to see the data visually i.e
 - Graphs, curve, scatter plots, images etc.
 - Famous saying
 - A picture is better than thousand words
 - Corollary:
 - A data plot is better than values in the list/tables etc.
- Example:
 - python hanoi.py 4

Basic 2D Plot

- A basic 2D plot
 - X-axis (data labels)
 - Y-axis (value, f(x))
 - Graph type
 - Line, bar chart, pie chart, scatter plot (pts) etc
- Python tool for plotting
 - matplotlib: A library to graph the data import matplotlib.pyplot as plt
 - -plot() function to plot the graph

Simple Examples

- Draw y=mx+c e.g. y=2x+1x= [0,1,2,3,4,5]; y= [1,3,5,7,9,11]
- The simple program for this line

```
import matplotlib.pyplot as plt
xval=[i for i in range(6)]
yval=[2*i+1 for i in range(6)]
```

```
fig = plt.figure()
plt.plot(xval, yval)
plt.show()
```


Linear Eqn: y=mx+c

```
# Get m, c and cnt as cmd arguments
xval=[i for i in range(cnt)]
yval=[m*i + c for i in range(cnt)]
plt.plot(xval, yval, label="y=mx+c")
plt.xlabel("x values")
plt.ylabel("y values")
plt.title("Graph for y=" + str(m) +
"x+" + str(c)
plt.legend()
plt.show()
```

Graph for y=5.0x+3.0

RPR/KSGI/TechTraining

Python/Intro to Recursion Basics-I

Formatting Style of Plot

- documentation:
 - https://matplotlib.org/api/as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot
- plt.axis(low_x,upper_x, lower_y,upper_y)
 - Defines range of X and Y axis
- plt.plot([xlist], ylist, [fmt])
 - format option : [color][marker][line]
 - b-: solid blue line
 - bo: blue circles
 - ro: red circle
 - r+: red plusses

Formatting Style of Plot

- colors
 - b: blue
 - g: green
 - r: red
 - c: cyan
 - m: magenta
 - y: yellow
 - k: black
 - w: white

- line styles
 - solid line
 - -- dashed line
 - -. dash dot line
 - : dotted line

- markers
 - . point marker
 - , pixel marker
 - o circle marker
 - v triangle down
 - ^ triangle up
 - < triangle left
 - > triangle right
 - p pentagon marker
 - x x marker
 - D diamond
 - d thin diamond
 - * star marker
 - + plus marker

Graph for y=5.0x+3.0

Multiline plots

- plot (x,y1,fmt1, x,y2,fmt2, x,y3,fmt3)
- Example

```
import matploylib.pyplot as plt
x=[i for i in range(10)]
y1=[i for i in range(10)]
y2=[i*i for i in range(10)]
y3=[i*i*i for i in range(10)]
plt.plot(x,y1,"b-", x,y2,"r--.", x,y3,"gs")
plot.show()
```

Trigonometric Curves

• Sin θ curve from 0 to 2π

```
import sys
import math
import matplotlib.pyplot as plt
cnt=100
xmax = 2*math.pi
x=[xmax*i/cnt for i in range(cnt)]
y0=[0 for i in range(cnt)] # base line
y1=[math.sin(xmax*i/cnt) for i in
range(cnt)]
plt.plot(x, y0, 'k--', x, y1, 'b.')
plt.show()
```

Trigonometric Curves

• Sin θ and cos θ curve from 0 to 4π

```
xmax = 4*math.pi
x=[xmax*i/cnt for i in range(100)]
y0=[0 \text{ for i in range}(100)]
y1=[math.sin(xmax*i/100) for i in range(100)]
y2=[math.cos(xmax*i/100) for i in range(100)]
plt.plot(x,y0,'k--', label="baseline")
plt.plot(x,y1,'b.', label="Sin" +r'$\theta$')
plt.plot(x,y2,'g.', label="Cos" +r'$\theta)
plt.xlabel(r"$\theta$ values")
plt.ylabel("Sin and cos curves")
plt.xticks([i*math.pi for i in range(5)],
   [r'$0$',r'$\pi$',r'$2\pi$',r'$3\pi$',r'$4\pi$'])
plt.legend()
plt.show()
```


Exercises

- Ex 01: Plot a curve of your percentage marks from class class 8 to class 12
- Ex 02: Draw a graph for sin20+cos20 and show that value is always 1.
- Ex 03: Draw a graph for last 7 days, number of whatsapp messages sent and received.

Questions

