Predicting Food Inspection Outcomes in Chicago

CS 109A Data Science Final Project, Fall 2016

Calvin J Chiew, Angelo Kastroulis & Tim Hagmann (TF: Taylor Names)

Introduction

Problem

- There are more than 15,000 food establishments in Chicago but fewer than three dozen food inspectors.
- 15% of these establishments will have at least one critical violation on inspection.
- Many of them are discovered long after the violations have occurred, thereby exposing the public to risk of food-borne illnesses in the interim.

Solution

- The City of Chicago developed a model to predict establishments with critical violations and prioritized them for inspections.
- In a pilot study, the data-optimized order of inspections identified unsafe establishments earlier than the usual workflow, by 7.5 days on average.

Chicago's Model

Their model was based on random forests with the following predictors:

- Prior history of critical/serious violations
- 3-day average high temperature
- Nearby sanitation complaints
- Nearby burglaries
- Possession of a tobacco/alcohol license
- Length of time since last inspection
- Length of business operation
- Inspector assigned

Email: calvinjchiew@mail.harvard.edu
GitHub: https://github.com/angelok1/cs109project

Data

Data Sources

- Chicago's publicly available dataset of ~130,000 food inspections from 1
 January 2010 to present
- Requested daily climate data from National Centers for Environmental Information (NCEI)
- Business licenses, crimes and
 sanitation code 311 complaints data
 accessed from Chicago's open data portal

Data Preparation

- Transformed new variables, eg.
 - Days since last inspection
 - Proportion of past inspections failed
 - Most recent inspection outcome
 - 5-day rolling mean of max temperature
- Regrouped into broad categories:
 - Inspection type
 - Facility type
- Mapped to main dataset:
 - Climate data by date
 - Business licenses data by license ID
 - Crime & sanitation data by "cluster"

Data Exploration

- Past failure, inspection type and geographical "cluster" are associated with failed outcome.
- Failure rates tend to increase in the midyear months corresponding to higher temperatures.
- There is geographic variation in crimes and sanitation complaints which may be related to outcome.
- As days since last inspection increases, proportion of failure also increases.

Fig 1: Selected Predictors

Fig 2: Geographic Location

Model

Model Fitting

- We handled missing values, applied one-hot encoding to categorical variables, and split data into training and test sets in 7:3 ratio.
- Using a binary outcome (pass/fail), we created two **baseline models**, an "all-zero" model predicting all inspections to fail, and a "random label" model predicting failures based on overall proportion.
- We explored various classification models and employed logistic regression as an ensemble method to "stack" all the models.
- We also tuned the parameters of our models via cross-validation. (We used a time series cross-validator to prevent information on lag predictors leaking across validation sets).

Model Evaluation

- Overall test accuracies of the various models are shown in Table 1.
- The by-class test accuracies reflect the sensitivity and specificity of the models, which relate to their F1 score. ROC curves are shown in Fig 3.
- Using an out-of-sample test set (last 2 months), we simulated predicting failures and ordering inspections.
- For each model, we scored average number of days earlier (or later) failures were inspected compared to the actual dates, and proportion of failures caught in the first month.

Table 1: Model Test Accuracies

Model	Test Accuracy (%)			
	Overall	"Pass" class (Specificity)	"Fail" class (Sensitivity)	F1 score
Baseline Models				
All zero	22.57	0.00	100.00	0.368
Random label	34.58	22.16	77.21	0.348
Candidate Models	·			
Logistic regression (weighted)	70.59	64.20	92.52	0.587
Linear discriminant analysis (LDA)	77.63	96.45	13.08	0.209
Quadratic discriminant analysis (QDA)	77.56	99.34	2.81	0.054
Random forest (RF)	82.13	91.82	48.91	0.553
Support vector machine (SVM)	77.88	99.58	2.22	0.043
ADA boost (ADA)	80.79	91.85	42.85	0.502
Ensemble	82.13	91.82	48.91	0.553

Fig 3: Model ROC curves

Fig 4: Feature Importance Rank

