WHAT IS CLAIMED IS:

1. A process for producing a cold field-emission cathode by patterning an aligned carbon nanotube film on a surface of a substrate for electrode, comprising the steps of;

preparing an aligned carbon nanotube film on a surface of a basic substrate;

patterning a conductive binder on a surface of a substrate for electrode: and

bonding a surface of the aligned carbon nanotube film to a surface of the conductive binder and then transferring the aligned carbon nanotube film by stripping the basic substrate, leaving those portions of the aligned carbon nanotube film behind which have been bonded to the conductive binder.

2. A process for producing a cold field-emission cathode by patterning an aligned carbon nanotube film on a surface of a substrate for electrode, comprising the steps of:

preparing an aligned carbon nanotube film on a surface of a basic substrate;

bonding a surface of the aligned carbon nanotube film to a surface of a flexible substrate having a reversibly adhesive surface and then transferring the aligned carbon nanotube film by stripping the basic substrate, leaving those portions of the aligned carbon nanotube film behind which have been bonded to the surface of the flexible substrate;

patterning a conductive binder on a surface of a substrate for electrode; and

bonding to a surface of the conductive binder a surface of the aligned carbon nanotube film that has been transferred to the flexible substrate and then transferring the aligned carbon nanotube film by stripping the flexible substrate, leaving those portions of the aligned carbon nanotube film behind which have been bonded to the conductive binder.

3. A process for producing a cold field-emission cathode by patterning an aligned carbon nanotube film on a surface of a substrate for electrode, comprising the steps of:

preparing an aligned carbon nanotube film on a surface of a basic substrate;

bonding a surface of the aligned carbon nanotube film to a surface of a flexible substrate having a reversibly adhesive surface and then transferring the aligned carbon nanotube film by stripping the basic substrate, leaving those portions of the aligned carbon nanotube film behind which have been bonded to the reversibly adhesive surface;

bonding to a surface of a second flexible substrate having a reversibly adhesive surface a surface of the aligned carbon nanotube film that has been transferred to the first flexible substrate and then transferring the aligned carbon nanotube film by stripping the first flexible substrate, leaving those portions of the aligned carbon nanotube film behind which have been bonded to the surface of the second flexible substrate;

patterning a conductive binder on a surface of a substrate for electrode;

bonding to a surface of the conductive binder a surface of the aligned carbon nanotube film that has been transferred to the second flexible substrate and then transferring the aligned carbon nanotube film by stripping the second flexible substrate, leaving those portions of the aligned carbon nanotube film behind which have been bonded to the conductive binder.

- 4. The process according to any one of claims 1-3, wherein the step of preparing an aligned carbon nanotube film on a surface of a basic substrate comprises decomposing a gaseous carbon compound in the presence of a basic substrate prepared by coating a supporting substrate with an inert substance and then allowing it to carry a transition metal catalyst or a transition metal compound catalyst, whereby a carbon nanotube film is grown on a surface of the basic substrate in a direction perpendicular to the basic substrate.
- 5. The process according to claim 4, wherein the inert substance with which the supporting substrate is coated is one member of the group consisting of aluminum, germanium and oxides thereof.
- 6. The process according to claim 4, wherein the supporting substrate is coated with the inert substance by vacuum evaporation, electrodeposition, sputtering or a solgel method.
- 7. The process according to claim 4, wherein the supporting substrate coated with the inert substance is allowed to carry a transition metal catalyst or a

transition metal compound catalyst by impregnation, immersion or a sol-gel method.

- 8. The process according to claim 4, wherein the carbon compound is at least one member of the group consisting of saturated hydrocarbon compounds, unsaturated hydrocarbon compounds, aromatic hydrocarbon compounds and oxygen-containing hydrocarbon compounds.
- 9. The process according to any one of claims 1-3, wherein the carbon nanotubes composing the aligned carbon nanotube film have outside diameters not greater than 10 nm.
- 10. The process according to claim 2 or 3, wherein the step of bonding a surface of the aligned carbon nanotube film to a surface of a flexible substrate having a reversibly adhesive surface comprises bringing the surface of the aligned carbon nanotube film into contact with the reversibly adhesive surface of the flexible substrate and performing drying, compressing, heating or thermocompression to bond the two members together.
- 11. The process according to any one of claims 1-3, wherein the substrate for electrode is an insulating plate with a conductive circuit preliminarily formed on a surface.
- 12. The process according to any one of claims 1-3, wherein the step of patterning a conductive binder on a surface of a substrate for electrode comprises depositing the conductive binder on a conductive circuit.
- 13. The process according to any one of claims 1-3,

wherein the step of bonding a surface of the aligned carbon nanotube film to a surface of the conductive binder comprises bringing the surface of the aligned carbon nanotube film into contact with the surface of the conductive binder and performing drying, compressing, heating or thermocompression to bond the mating surfaces together.

- 14. The process according to any one of claims 1-3, wherein the conductive binder is conductive paste.
- 15. The process according to claim 14, wherein the conductive paste is conductive silver paste, conductive gold paste, conductive carbon paste or conductive copper paste.
- 16. The process according to any one of claims 1-3, wherein the conductive binder is a low-melting point metal.
- 17. The process according to claim 16, wherein the low-melting point metal is indium, tin, lead, zinc, copper or an alloy containing at least one of these metals.
- 18. The process according to claim 2 or 3, wherein the flexible substrate having a reversibly adhesive surface is a resin sheet coated with a tackiness agent on a surface.