

Mixture Models 1/7 D.E. Brown

Mixture Models

Donald E. Brown

School of Data Science University of Virginia Charlottesville, VA 22904

Overview

Mixture Models 2/7 D.E. Brown

- Mixture models provide a general framework for data analysis applicable to a range of problems
- Expectation maximization is an algorithm that makes mixture modeling computationally feasible

Density Estimation

Mixture Models 3/7 D.E. Brown

 A mixture model density combines a set of component models:

$$p(\mathbf{x}|\boldsymbol{\theta}) = \sum_{k=1}^{K} p(\mathbf{x}|\boldsymbol{\theta}_k, k) p(k)$$

- The data in the variables in x are 'visible' or 'observable'
- θ is the vector of parameters, not visible or latent; in general, we can estimate with Bayes rule, but now they are a function of k
- $k=1,\ldots,K$ indexes each component model $p(\mathbf{x}|\boldsymbol{\theta},k)$, along with its weight p(k) and $\sum_{k=1}^{K}p(k)=1$ and; these are also latent
- Mixture models have a natural interpretation in terms of clustering with each k, corresponding to a cluster model $p(\mathbf{x}|\boldsymbol{\theta}_k,k)$.

Univariate Mixture

Mixture Models 4/7 D.E. Brown

- Suppose a population consists of observations from two Gaussians, $N(\mu_i, \sigma_i), i = 1, 2$.
- Let

$$\phi(\mu_1, \sigma_1) = \frac{1}{\sigma_1 \sqrt{2\phi}} exp \left[-\frac{(x - \mu_1)}{2\sigma_1} \right]$$
$$\phi(\mu_2, \sigma_2) = \frac{1}{\sigma_2 \sqrt{2\phi}} exp \left[-\frac{(x - \mu_2)}{2\sigma_2} \right]$$

- Let π_1 be the probability that an observation comes from distribution 1.
- The mixture density is

$$f(x) = \pi_1 \phi(\mu_1, \sigma_1) + (1 - \pi_1) \phi(\mu_2, \sigma_2)$$

Univariate Mixture Model Fitting

Mixture Models 5/7

- The parameters are $\theta = \{\pi_1, \mu_1, \mu_2, \sigma_1, \sigma_2\}$
 - Log-likelihood is

$$\ell(\theta|x) = \sum_{i=1}^{N} log[\pi_1 \phi(\mu_1, \sigma_1) + (1 - \pi_1) \phi(\mu_2, \sigma_2)]$$

- Cannot easily maximize this
- So we iteratively maximize it
 - Start with guessed values for the parameters and calculate the probability of membership in the Gaussians
 - Then calculate the new estimates for the parameters and repeat until the change in values is small

Mixture: Univariate Example

Mixture Models 6/7

Mixture Example: Results

Mixture Models 7/7

