Integer Linear Programming

Optimization Techniques (ENGG*6140)

School of Engineering, University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh Winter 2023 Integer Linear Programming

Integer linear programming

A linear programming problem is of the form:

minimize linear function in x

subject to affine inequality constraints in x,

affine equality constraints in x.

An **integer linear programming** problem is of the form:

minimize linear function in x

subject to affine inequality constraints in x,

affine equality constraints in x.

 $\mathbf{x} \in \mathbb{Z}$.

In other words, integer linear programming is linear programming where the optimization variables are restricted to be **integer**.

If some of the variables are integer and some are not, we have mixed-integer programming [1].

Practical Example

- A company has two products. Let x₁ and x₂ denote the number of the first and second products to be produced, respectively. Therefore, x₁, x₂ ≥ 0 and x₁, x₂ ∈ Z.
- The company has profits \$60 and \$30 for the first and second products. Therefore, the total profit of company:

$$c = (60x_1 + 30x_2).$$

- The resources for these products are limited, so we have the following restrictions:
 - ▶ We do not want the first product, with proportion 8, and the second product, with proportion 3, to spend more than \$48, so: $8x_1 + 3x_2 < 48 .
 - ▶ For four of the first product and three of the second product, we have the budget to spend at least \$25, so: $4x_1 + 2x_2 \ge 25 .

The optimization becomes:

$$\begin{array}{ll} \underset{x_{1},x_{2}}{\text{maximize}} & c = 60x_{1} + 30x_{2} \\ \text{subject to} & 8x_{1} + 3x_{2} \leq 48, \\ & 4x_{1} + 2x_{2} \geq 25, \\ & x_{1},x_{2} \geq 0., \\ & x_{1},x_{2} \in \mathbb{Z}. \end{array}$$

Integer linear programming

$$\label{eq:maximize} \begin{aligned} \underset{x_1,x_2}{\text{maximize}} & & c = 5x_1 + 6x_2 \\ \text{subject to} & & x_1 + x_2 \leq 5, \\ & & 4x_1 + 7x_2 \leq 28, \\ & & x_1,x_2 \geq 0, \\ & & x_1,x_2 \in \mathbb{Z}. \end{aligned}$$

Questions:

- Is integer optimization (such as integer linear programming) harder or easier than continuous optimization (such as linear programming)?
- Is the **optimum value of objective function** in integer linear programming better or worse than the that value in linear programming?

We relax the problem to linear programming:

$$\label{eq:continuous} \begin{array}{ll} \underset{x_1,x_2}{\text{maximize}} & c = 5x_1 + 6x_2 \\ \\ \text{subject to} & x_1 + x_2 \leq 5, \\ & 4x_1 + 7x_2 \leq 28, \\ & x_1,x_2 \geq 0. \end{array}$$

$$c^* = 27.67, x_1^* = 2.33, x_2^* = 2.67.$$

$$\label{eq:continuous} \begin{array}{ll} \underset{x_1, x_2}{\text{maximize}} & c = 5x_1 + 6x_2 \\ \text{subject to} & x_1 + x_2 \leq 5, \\ & 4x_1 + 7x_2 \leq 28, \\ & x_1, x_2 \geq 0. \end{array}$$

$$\label{eq:maximize} \begin{array}{ll} \underset{x_1, x_2}{\text{maximize}} & c = 5x_1 + 6x_2 \\ \text{subject to} & x_1 + x_2 \leq 5, \\ & 4x_1 + 7x_2 \leq 28, \\ & x_2 \leq 2, \\ & x_1, x_2 \geq 0. \end{array}$$

$$c^* = 27, x_1^* = 3, x_2^* = 2.$$

$$\begin{array}{ll} \underset{x_{1},x_{2}}{\text{maximize}} & c = 5x_{1} + 6x_{2} \\ \text{subject to} & x_{1} + x_{2} \leq 5, \\ & 4x_{1} + 7x_{2} \leq 28, \\ & x_{2} \leq 2, \\ & x_{1}, x_{2} \geq 0. \end{array}$$

$$\begin{array}{ll} \underset{x_1, x_2}{\text{maximize}} & c = 5x_1 + 6x_2 \\ \text{subject to} & x_1 + x_2 \leq 5, \\ & 4x_1 + 7x_2 \leq 28, \\ & x_2 \geq 3, \\ & x_1, x_2 \geq 0. \end{array}$$

$$c^* = 26.75, x_1^* = 1.75, x_2^* = 3.$$

maximize
$$c = 5x_1 + 6x_2$$

subject to $x_1 + x_2 \le 5$,
 $4x_1 + 7x_2 \le 28$,
 $x_2 \ge 3$,
 $x_1, x_2 \ge 0$.

52 Į -1 3 Q3 ø Μ D -3M М

Sı

RHS

28

$$\begin{array}{ll} \underset{x_{1},x_{2}}{\text{maximize}} & c = 5x_{1} + 6x_{2} \\ \text{subject to} & x_{1} + x_{2} \leq 5, \\ & 4x_{1} + 7x_{2} \leq 28, \\ & x_{2} \geq 3, \\ & x_{1} \leq 1, \\ & x_{1}, x_{2} \geq 0. \end{array}$$

$$c^* = 25.75, x_1^* = 1, x_2^* = 3.42.$$

$$\label{eq:maximize} \begin{array}{ll} \underset{x_1,x_2}{\text{maximize}} & c = 5x_1 + 6x_2 \\ \text{subject to} & x_1 + x_2 \leq 5, \\ & 4x_1 + 7x_2 \leq 28, \\ & x_2 \geq 3, \\ & x_1 \leq 1, \\ & x_1,x_2 \geq 0. \end{array}$$

	{	Яį	Яz	۶,	5ي	53	a 4	eq 1	RHS
-	一		١	1	0	0	8 8	۵	5
	>1	4	っ	,	1	ъ	0	•	28
	52	-	+			1	5	٥	1
	۶3	()				•	ı	_ (3
	04	0	(0
		-5	-6	0	0		M		1
k av	<u> </u>	-		.al	6	5 6		Μ	-3M
K-WX		1->	-0.						•

$$\begin{array}{ll} \underset{x_{1},x_{2}}{\text{maximize}} & c = 5x_{1} + 6x_{2} \\ \text{subject to} & x_{1} + x_{2} \leq 5, \\ & 4x_{1} + 7x_{2} \leq 28, \\ & x_{2} \geq 3, \\ & x_{1} \geq 2, \\ & x_{1}, x_{2} \geq 0. \end{array}$$

Solution: No feasible solution!

$$\label{eq:maximize} \begin{array}{ll} \underset{x_1,x_2}{\text{maximize}} & c = 5x_1 + 6x_2 \\ \\ \text{subject to} & x_1 + x_2 \leq 5, \\ & 4x_1 + 7x_2 \leq 28, \\ & x_2 \geq 3, \\ & x_1 \geq 2, \\ & x_2 \leq 3, \\ & x_1, x_2 \geq 0. \end{array}$$

$$c^* = 23, x_1^* = 1, x_2^* = 3$$

$$\begin{array}{ll} \underset{x_{1},x_{2}}{\text{maximize}} & c = 5x_{1} + 6x_{2} \\ \\ \text{subject to} & x_{1} + x_{2} \leq 5, \\ & 4x_{1} + 7x_{2} \leq 28, \\ & x_{2} \geq 3, \\ & x_{1} \geq 2, \\ & x_{2} \geq 4, \\ & x_{1}, x_{2} \geq 0. \end{array}$$

$$c^* = 24, x_1^* = 0, x_2^* = 4$$

Sub problems in a nutshell

- Compare solutions of subproblems 2, 5, 6, and 7 (with integer solutions).
- The final solution is the solution of subproblem 2 with the maximum objective function value:

$$x^* = 27, x_1^* = 3, x_2^* = 2.$$

Acknowledgment

This lecture is inspired by the lectures of Prof. Shokoufeh Mirzaei on integer linear programming: [Link]

References

[1] B. Chachuat, "Mixed-integer linear programming (MILP): Model formulation," *McMaster University Department of Chemical Engineering*, vol. 17, 2019.