невых деревьев на рис. 7 (а также из табл. 3) получается бесконечная серия неизоморфных пар деревьев с тождественными вероятностями связности.

ЛИТЕРАТУРА

1. Ф. Харари. Теория графов. М., «Мир», 1973.

А. К. Кельманс. Связность графов со случайно выпадающими вершинами. — АиТ, 1972, № 4, с. 98—106.
 Е. А. Диниц, М. А. Зайцев. Алгоритмы генерации неизоморфных деревев, АиТ, 1977, № 4, с. 121—126.
 Е. А. Диниц, М. А. Зайцев. Линейное упорядочение и порождение дерегоственность в предоставляющих деревьють в предоставления порождение дерегоставляющих деревьють в предоставляющих деревьють деревьють в предоставляющих деревьють в предоставляющих деревьють дер

ревьев. - В наст. сб.

5. E. A. Dinic, A. K. Kel'mans, M. A. Zaitsev. Non-isomorphic trees with the same T-polynomials. — Inform. Process. Letters, 1977, 6, N 3, p. 73-76,

КОНСТРУКТИВНОЕ ПЕРЕЧИСЛЕНИЕ КОМБИНАТОРНЫХ БЛОК-СХЕМ

А. В. ИВАНОВ, И. А. ФАРАДЖЕВ

1. Комбинаторные блок-схемы в последнее время сделались объектом пристального внимания исследователей, что объяснить двумя причинами. С одной стороны, блок-схемы находят важные практические применения (планирование экспериментов [1], теория кодирования [2]) и связаны с бурно развивающимися областями современной математики (алгебраическая топология, комбинаторная теория чисел, конечная геометрия [3, 4], теория конечных групп [5] и т. д.). Уместно отметить тесную связь блок-схем с другими комбинаторными объектами — сильно-регулярными графами, проективными плоскостями, латинскими квадратами, матрицами Адамара и т. д. С другой стороны, многие теоретические вопросы, связанные с блок-схемами, до сих пор не поддаются решению.

Главными из таких вопросов являются вопросы существования блок-схем с заданными параметрами. Известны различные необходимые условия существования блок-схем, которые формулируются в терминах арифметических свойств параметров. Коннор [6] установил некоторые необходимые условия существования блок-схемы в терминах ее структуры. Ханани [7, 8] показал, что для некоторых классов блок-схем необходимые условия существования являются достаточными. Положение в настоящее время в общем таково: для одних наборов параметров известны все неизоморфные блок-схемы (тройки Штейнера на $v \leqslant 15$ элементах, проективные и афинные плоскости порядка $n \leq 8$), для других параметров известны одна или несколько схем и, наконец, для некоторых наборов параметров существование схем неизвестно

(например, проективная плоскость порядка 10).

Известные методы построения блок-схем (см. [4]) можно разбить на две группы: алгебраические, позволяющие построить схему, допускающую заданные автоморфизмы, и рекурсивные, связанные с использованием при построении схем меньшего размера. Прямой комбинаторный метод построения блок-схем, использованный в работе [9] для перечисления всех неизоморфных троек Штейнера на 15 элементах, настолько трудоемок, что реализация подобных методов представляется возможной только с использованием ЭВМ. Вычислительные машины для построения и исследования блок-схем применены в работах [10, 11].

В настоящей статье описывается алгоритм построения неполных уравновешенных блок-схем с заданными параметрами, поволяющий в принципе сгенерировать все попарно-неизоморфные блок-схемы, и приводятся первые результаты машинных экс-

периментов с использованием этого алгоритма.

2. Рассмотрим множество элементов $X = \{x_i\}$, |X| = v и систему $\mathfrak{B} = \{B_j\}$, $B_j \subseteq X$, $|\mathfrak{B}| = b$ подмножеств множества X (блоков). Пара (X, \mathfrak{B}) называется системой инциденций. Системе инциденций поставим в соответствие булевскую $(v \times b)$ матрицу инциденций $A = (a_{ij})$, $a_{ij} \in \{0, 1\}$, определяемую условием $a_{ij} = 1 \Leftrightarrow x_i \in B_j$. Системы (X, \mathfrak{B}) и (X', \mathfrak{B}') называются изоморфными, если они переводятся друг в друга подстановками на множествах элементов и блоков: $(X, \mathfrak{B}) \sim (X', \mathfrak{B}') \Leftrightarrow \exists \alpha : X \leftrightarrow X', \exists \beta : \mathfrak{B} \leftrightarrow \mathfrak{B}'$: $(\forall ij \ x_i \in B_j \Leftrightarrow \alpha x_i \in \beta B_j)$. В терминах матриц инциденций это означает, что $A \sim A' \Leftrightarrow \forall g \in S_v$, $\forall h \in S_b : gAh^{-1} = A'$, где S_p — симметрическая группа матриц-подстановок степени p. Система инциденций (X, \mathfrak{B}) называется неполной уравновешенной блок-схемой (ВІВ-схемой) с параметрами (v, b, r, k, λ) , если выполнены условия

$$\begin{aligned} &\forall j \mid B_j \mid = k, \\ &\forall i \mid \{j : x_i \in B_j\} \mid = r, \\ &\forall i, i' \mid \{j : x_i \in B_j \& x_{i'} \in B_j\} \mid = \lambda \quad \text{при } i \neq i'. \end{aligned} \tag{1}$$

Параметры BIB-схемы связаны очевидными условиями: bk = vr, $r(k-1) = \lambda (v-1)$. Обозначая через a_i и a_j^T i-ю строку и j-й столбец матрицы A, перепишем условия (1) в терминах матрицы инциденций блок-схемы:

$$\begin{aligned} & \forall j \ (a_j^T, \ a_j^T) = k, \\ & \forall i, i' \ (a_i, a_{i'}) = \begin{cases} r & \text{при } i = i', \\ \lambda & \text{при } i \neq i'. \end{cases} \end{aligned} \tag{2}$$

Задача конструктивного перечисления ВІВ-схем с параметрами (v, b, r, k, λ) заключается в нахождении всех попарно-неизоморфных булевских $(v \times b)$ -матриц, удовлетворяющих условиям (2).

3. Следуя [12], определим на множестве булевских матриц одинакового размера линейный порядок $(a_{ij}) = A > A' = (a'_{ij}) \Leftrightarrow (a_{11}, a_{12}, \ldots, a_{1b}, \ldots, a_{v1}, \ldots, a_{vb}) > (a'_{11}, a'_{12}, \ldots, a'_{1b}, \ldots, a'_{vb})$, где порядок vb-мерных векторов лексикографический. Максимальный (в смысле введенного порядка) элемент в множестве изоморфных матриц назовем каноническим и введем предикат каноничности C, истинный только на канонических матрицах $C\left(A\right)\equiv \mathbb{V}\left(g,\ h
ight)\in S_{\mathfrak{v}}\oplus S_{\mathfrak{b}}\ A\geqslant gAh^{-1}$. Очевидно, что две различные канонические матрицы неизоморфны.

Таким образом, для решения задачи конструктивного перечисления системы инциденций достаточно генерировать только ка-

нонические матрицы.

Утверждение 1. $C(A) \Rightarrow \forall w < v \ C(A^w)$, где $A^w - (w \times b)$ -

матрица, состоящая из первых w строк матрицы A.

 $f{Y}$ тверждение 2. a) C $(A) \Rightarrow (\forall i, i' \ i < i' \Rightarrow a_i \geqslant a_i);$ б) $C(A) \Rightarrow (\forall j, j'j < j' \Rightarrow a_j^T \geqslant a_{j'}^T$, где порядки на множествах b-мерных векторов a_i и v-мерных векторов a_i^T лексикографические.

Доказательство утверждений 1 и 2 непосредственно следует

из определения каноничности.

Вследствие утверждения 2б в канонической матрице инциденций столбцы расположены в порядке лексикографического убывания (вообще говоря, не строгого). Столбцы ј и ј будем называть w-эквивалентными, если j-й и j'-й столбцы матрицы A^w равны $i_{\widetilde{w}}i' \Leftrightarrow a_i^{wT} = a_{i'}^{wT}$. Относительно введенной эквивалентности множество $\{1,\ldots,b\}$ распадается на классы $\mathfrak{D}^w=(Y^w_s)$, причем порядок на классах Y_s^w индуцируется порядком на векторах a_j^{wT} , $j \in Y_s^w$. Связь разбиений \mathfrak{D}^w и \mathfrak{D}^{w+1} устанавливает следующее

Утверждение 3. В канонической матрице А для любого $1\leqslant s\leqslant |\mathfrak{Y}^w|$ либо $Y^w_s=Y^{w+1}_{s'} \in \mathfrak{Y}^{w+1}$, либо $Y^w_s=Y^{w+1}_{s'} \cup Y^{w+1}_{s'+1}$, где $Y^{w+1}_{s'}, Y^{w+1}_{s'+1} \in \mathfrak{Y}^{w+1}$.

Доказательство. Столбец $a_j^{(w+1)T}$ получается из столбца a_j^{wT} добавлением последней координаты a_{w+1} , которая в силу булевости матрицы A может иметь два значения: 0 или 1. Если для всех $j \in Y_s^w$ значения $a_{w+1,j}$ совпадают, то разбиения класса Y_s^w не происходит, в противном случае Y^w_s разбивается на два последовательных класса.

Для i > w обозначим через x_{is}^w количество единиц в пересечении i-й строки и столбцов из Y^w_s в матрице A и поставим в соответствие *i*-й строке вектор $X_i^w = (x_{is}^w)$, $s = 1, \ldots, | \mathfrak{D}^w |$.

Утверждение 4. Если A — каноническая матрица, то X_{w+1}^w однозначно определяет ее (w+1)-ю строку.

Доказательство. Действительно, если $x_{w+1,s}^w=0$ $(x_{w+1,s}^w=\mid Y_s^w\mid)$, то все элементы в пересечении (w+1)-й строки и столбцов из Y_s^w равны нулю (единице). Если же $0 < x_{w+1,s}^w < 1$

 $<|Y_s^w|$, то в силу утверждения 3 все $x_{w+1,s}^w$ единиц в пересечении (w+1)-й строки и столбцов из Y_s^w должны быть расположены левее (в столбцах с младшими номерами) всех $|Y_s^w| - x_{w+1,s}^w$ нулей.

Утверждение 5. $C(A) \Rightarrow \forall w, \ \forall i > w+1 \ X_i^w \leqslant X_{w+1}^w$.

Доказательство. Пусть $X_i^w > X_{w+1}^w$ при i > w+1. Тогда можно i-ю строку переставить на (w+1)-е место и выполнить такие подстановки внутри множеств Y_s^w (от таких подстановок A^w не меняется), что (w+1)-я строка увеличится. Это приведет к увеличению матрицы A. Следовательно, матрица A не каноническая.

4. Утверждения 4 и 5 дают некоторые необходимые условия каноничности матрицы инциденций в терминах количества единиц в пересечениях строк и классов эквивалентности столбцов матрицы. Сформулируем в тех же терминах условие для того, чтобы матрица А представляла ВІВ-схему.

Пусть $\mathfrak{D}_i^w \subset \mathfrak{D}^w$ при $i \leqslant w$ — классы эквивалентности столбцов, такие, что $\forall j \in Y_s^w \in \mathfrak{D}_i^w$ $a_{ij}=1$. Тогда второе из условий (2) при i'>w принимает вид

$$\sum_{\substack{Y_s^w \in \mathfrak{Y}_i^w \\ Y_s^w \in \mathfrak{Y}_i^w}} x_{i',s}^w = r,$$

$$\sum_{\substack{Y_s^w \in \mathfrak{Y}_i^w \\ i}} x_{i',s}^w = \lambda, \quad i = 1, \dots, w.$$
(3)

Целочисленные решения системы (3) вместе с условием

$$0 \leqslant x_{i',s}^w \leqslant |Y_s^w| \tag{4}$$

определяют все возможные векторы $X_{i'}^w$, i' > w для матриц инциденций BIB-схем с заданными первыми w строками. Множество этих решений (сами решения, очевидно, не зависят от номера строки i') обозначим \mathfrak{X}^w . В силу утверждения 4 вектор X_{w+1}^w однозначно определяет (w+1)-ю строку канонической матрицы. Таким образом, все канонические матрицы инциденций BIB-схем с заданными параметрами содержатся среди матриц, порождаемых back-track процедурой, один шаг которой состоит в следующем. Пусть уже определены w строк матрицы A и построены множества \mathfrak{I}^w и \mathfrak{I}^w для $i \leqslant w$. Решением системы \mathfrak{I}^w — \mathfrak{I}^w определяем множество векторов $\mathfrak{X}^w = \{X^w\}$. Если $\mathfrak{X}^w = \emptyset$, то матрицу A^w нельзя пополнить до матрицы инциденций BIB-схемы. В противном случае выбираем из \mathfrak{X}^w лексикографически младшее решение и, используя его в качестве X_{w+1}^w , определяем (w+1)-ю строку. После вычисления множеств \mathfrak{I}^w и \mathfrak{I}^w в соответствии с утверждением \mathfrak{I}^w мы готовы к выполнению следующего шага перебора. Когда все

возможности достройки матрицы A^{w+1} исчерпаны, изменяем (w+1)-ю строку, взяв в качестве X_{w+1}^w очередное решение из \mathfrak{X}^w .

Решения для 1-й и 2-строк канонической матрицы инциденций ВІВ-схемы единственны: $X_1^0 = (r), X_2^1 = (\lambda, r - \lambda)$.

Недостаток описанного выше алгоритма заключается в том, что неизвестен эффективный способ решения системы (3)—(4). Однако множество решений \mathfrak{X}^w этой системы можно получать рекуррентно, используя вычисленное ранее множество решений \mathfrak{X}^{w-1} .

Утверждение 6. Множество целочисленных решений системы

$$\sum_{\substack{Y_l^w \in \mathfrak{Y}_w^w \\ x_s^w + x_{s+1}^w = \tilde{x}_{s'}^{w-1} \quad \text{при } Y_{s'}^{w-1} = Y_s^w \bigcup Y_{s+1}^w, \\ x_s^w = \tilde{x}_{s'}^{w-1} \quad \text{при } Y_{s'}^{w-1} = Y_s^w, \\ 0 \leqslant x_s^w \leqslant |Y_s^w|,$$
 (5)

где $\widetilde{X}^{w-1} = (\widetilde{x}^{w-1}_s) \in \mathfrak{X}^{w-1}$ совпадает с множеством \mathfrak{X}^w целочисленных решений системы (3)-(4).

Доказательство непосредственно следует из утверждения 3. Очевидно, что если X_i^w удовлетворяет (5) при некотором $X_i^{w-1} \in \mathcal{X}_i^{w-1}$, то $X_i^{v-1} = X_i^{w-1}$.

Утверждение 7. Если матрица A каноническая и X_{w+1}^w удовлетворяет (5) при некотором $X^{w-1} \subset \mathfrak{X}^{w-1}$, то $X_w^{w-1} \geqslant X^{w-1}$.

Доказательство. Действительно, $X_{w+1}^{w-1}=\tilde{X}^{w-1}$ и из каноничности A в силу утверждения 5 следует $X_w^{w-1}\geqslant \tilde{X}^{w-1}$.

Утверждения 6,7 позволяют реализовать шаг перебора следующим образом. Пусть построены матрица A^{w-1} и множество допустимых решений \mathfrak{X}^{w-1} . Фиксируя одно из этих решений в качестве X_w^{w-1} , получаем матрицу A^w и, решая систему (5) при $X^{w-1} \in \mathfrak{X}^{w-1}$ и $X^{w-1} \leqslant X_w^{w-1}$, получаем множество допустимых решений \mathfrak{X}^w . Еще больше сузить множество допустимых решений позволяет

Утверждение 8. Пусть A^w , для которой $X_w^{w-1} = X^*$ — неканоническая матрица и существует пара $(g,h) \in S_w \oplus S_b$, такая, что $(gA^w h^{-1})^{w-1} > A^{w-1}$. Тогда любая матрица A', такая, что $A'^{w-1} = A^{w-1}$ и для некоторого i > w $X_i^{w-1} = X^*$,— не каноническая.

Доказательство. Пусть $(g',h') \in S_v \oplus S_b$ меняет местами строки w, i и переставляет столбцы в классах Y_s^{w-1} так, чтобы $(g'A'h'^{-1}h^{-1})^w = A^w$. Рассмотрим пару $(gg',hh') \in S_v \oplus S_b$. Очевидно, что $(gg'A'h'^{-1}h^{-1})^{w-1} = (g(g'A'h'^{-1})^wh^{-1})^{w-1} = (gA^wh^{-1}) > A^{w-1} = A'^{w-1}$. Таким образом, по утверждению 1, A' не каноническая.

5. Займемся первым из условий (2): $(a_j^T, a_j^T) = k$. Для каждого класса $Y_s^w \subseteq \mathfrak{P}^w$ через z_s^w обозначим количество единиц в столбиах $a_j^{w^T}$ из этого класса: $z_s^w = |\{i \leqslant w : \forall j \in Y_s^w, a_{ij} = 1\}|$ и образуем вектор $Z^w = (z_s^w)$. Очевидно следующее

Утверждение 9. Если A — матрица инциденций BIB-схемы,

то

$$\forall w, \ \forall Y_s^w \subseteq \mathfrak{D}^w \quad k - v + w \leqslant \mathbf{z}_s^w \leqslant k.$$

В случае, если $z_s^w = k$ ($z_s^w = k - v + w$), для выполнения условия необходимо, чтобы остальные (при i > w) элементы столбцов из Y_s^w были нулями (единицами). Поэтому при генерации матриц инциденций ВІВ-схем из множества \mathfrak{X}^w можно удалить все решения X^w , у которых $x_s^w \neq 0$ при $z_s^w = k$ или $x_s^w \neq |Y_s^w|$ при $z_s^w = k - v + w$. После этого можно выбросить из \mathfrak{Y}^w классы Y_s^w с $z_s^w = k$ или $z_s^w = k - v + w$ и вычеркнуть у оставшихся в \mathfrak{X}^w векторов X^w соответствующие координаты. При этом следует скорректировать первое из уравнений в системе (5):

$$\sum_{\mathbf{Y}_{\mathbf{s}}^w \in \mathbf{\mathfrak{D}}_{w}^w} x_{\mathbf{s}}^w = \lambda - \lambda^w,$$

где

$$\lambda^w = \sum_{u < v} \sum_{z^u = k - v + u} |Y^u_s|. \tag{6}$$

Возможность дальнейшего сокращения перебора за счет сужения множества \mathfrak{X}^w указывает

Утверждение 10. Пусть для всех $Y_s^w \in \mathfrak{D}^w$ $z_s^w \neq k$ и $z_s^w \neq k - v + w$, и пусть $X^* \in \mathfrak{X}^w$ такой, что найдется $Y_s^w \in \mathfrak{D}^w$, так что выполнено одно из двух условий:

a)
$$\forall X \subseteq \mathfrak{X}^w \ X \leqslant X^* \Rightarrow x_s^w = 0$$
,

6)
$$\forall X \in \mathfrak{X}^w \quad X \leqslant X^* \Rightarrow x_s^w = |Y_s^w|. \tag{7}$$

Тогда матрица A^{w+1} , полученная из A^w использованием $X^w_{m+1} = X^*$, не достраивается до канонической матрицы инциденций BIB-схемы.

До казательство. Утверждение 7 показывает, что для получения канонической матрицы в правую часть системы (5) нужно подставить решения $\widetilde{X}^w \subseteq \widetilde{\mathfrak{X}}^w \subseteq \mathfrak{X}^w$, такие, что $\widetilde{X}^w \leqslant X_{w+1}^w$. Но по условию все такие решения удовлетворяют (7). В этом случае вследствие утверждения 3 разбиения класса Y_s^w не произойдет и из системы (5) видно, что для всех $X \subseteq \mathfrak{X}^{w+1}$ будет либо $x_{s'}^{w+1} = 0$, либо $x_{s'}^{w+1} = |Y_{s'}^{w+1}| = |Y_s^w|$. Таким образом, любое решение из \widetilde{X}^{w+1} удовлетворяет условиям утверждения и по индукции легко получить, что все столбцы из Y_s^w достроятся

нулями или единицами. Но так как $z_s^w \neq k$ и $z_s^w \neq k - v + w$, то $z_s^v \neq k$, т. е. полученная матрица не является матрицей инципенций блок-схемы.

6. Приводим подробное описание процедуры построения всех канонических матриц инциденций BIB-схем с параметрами (v, b, v) r, k, λ), основанной на теоретических рассмотрениях п. 3—5. Состояние перебора характеризуется следующими величинами: w количество выставленных строк; A^w — булевская (w imes b)-матрица; \mathfrak{D}^w — разбиение недостроенных столбцов на классы эквивалентности; J_0^w и J_1^w — множества столбцов, форсированно достраивающихся нулями и единицами; \mathfrak{X}^w — множество $|\mathfrak{D}^w|$ -мерных векторов допустимых решений, упорядоченных в порядке лексикографического возрастания; t^w — номер очередного решения в \mathfrak{X}^w ; $\widetilde{\mathfrak{X}}^w$ — допустимые векторы для правой части системы (5); $Z^w - |\mathfrak{D}^w|$ -мерный вектор количества единиц в классах эквивалентности недостроенных столбцов.

Исходное состояние: w = 1; A^1 определяется значением $X_1^0 =$ = (r); $\mathfrak{D}^1 = (Y_1^1, Y_2^1)$, rge $Y_1^1 = \{1, \ldots, r\}$, $Y_2^1 = \{r + 1, \ldots, b\}$; $J_0^1 = J_1^1 = \emptyset; \ \mathfrak{X}^1 = \{X^1 = (\lambda, r - \lambda)\}; \ t^1 = 1; \ \widetilde{\mathfrak{X}}^1 = \emptyset; \ Z^1 = \emptyset$ = (1, 0).

- 1. Из \mathfrak{X}^w выбираем решение с номером t^w и полагаем X_{w+1}^w равным этому решению.
 - 2. Используя A^w , \mathfrak{P}^w , J^w_0 , J^w_1 и X^w_{w+1} , строим A^{w+1} .
- 3. Проверяем каноничность A^{w+1} (алгоритм проверки каноничности изложен в работе [13]).
- 4. Если при проверке каноничности не обнаружено такой пары (g,h), что $(gA^{w+1}h^{-1})^w > A^w$, то присоединяем X_{w+1}^w к $\widetilde{\mathfrak{X}}^w$. 5. Если матрица A^{w+1} не каноническая, то переходим к п. 12.
- 6. Если w+1=v, то A^w каноническая матрица BIB-схемы. Выводим A^w . Переходим к п. 12.
 - 7. По \mathfrak{D}^w, Z^w и X_{w+1}^w вычисляем \mathfrak{D}^{w+1} и Z^{w+1} .
- 8. Используя \mathfrak{D}^w , \mathfrak{D}^{w+1} , X_{w+1}^w и $\lambda^w = |J_1^w|$, составляем систему (5) с поправкой (6) и решаем ее, подставляя в правую часть все векторы из $\widetilde{\mathfrak{X}}^w$. Получаем множество решений ${\mathfrak{X}}^{w+1}$.
- 9. Производим форсированную достройку столбцов, т. е. для всех $Y_s^{w+1} \in \mathfrak{D}^{w+1}$, таких что $z_s^{w+1} = k$ (или $z_s^{w+1} = k - v + w + w$ + 1); из \mathfrak{X}^{w+1} удаляем векторы с $x_s^{w+1} \neq 0$ (или с $x_s^{w+1} \neq |Y_s^{w+1}|$), выбрасываем соответствующие классы из \mathfrak{Y}^{w+1} и координаты из $\mathfrak{X}^{w_{+1}}$ и $Z^{w_{+1}}$ и формируем множества J_0^{w+1} и J_1^{w+1} добавлением форсированно достроенных классов к $\boldsymbol{J}_{\mathbf{0}}^{w}$ и $\boldsymbol{J}_{\mathbf{1}}^{w}$.
- 10. Ищем в \mathfrak{X}^{w+1} минимальное решение X^* , не удовлетворяюшее условиям (7) и полагаем t^{v+1} равным номеру этого решения. Если такого решения не нашлось (или $\mathfrak{X}^{w_{+1}} = \emptyset$), переходим к п. 12.

- 11. Образуем $\widetilde{\mathfrak{X}}^{w+1}$ из решений \mathfrak{X}^{w+1} с номерами, меньшими t^{w+1} , увеличиваем w на единицу и переходим к п. 1. 12. Увеличиваем t^w на единицу. Если $t^w \leqslant |\mathfrak{X}^w|$, то перехо-
- лим к п. 1.
- 13. Уменьшаем w на 1. Если w > 1, переходим к п. 12, иначе — конец работы.

Описанный алгоритм был запрограммирован на языке типа АССЕМБЛЕР для машины ICL 4-70 (быстродействие 300 000 оп/сек) и использован для составления полных списков ВІВ-схем с некоторыми наборами параметров. Количество построенных попарно-неизоморфных схем и время их генерации привелено в таблице.

Параметры						
v	ь	r	k	λ	Число блок-схем	Время генера- ции (сек)
6	10	5	3	2	1	0,08
7	7	3	3	1	1	0,14
8	14	7	4	3	4	1,2
9	12	4	3	1	1	0,13
10	18	9	5	4	21	76
11	11	5	5	2	1	0,22
13	13	4	4	1	1	0,07
13	26	6	3	1	2	40
15	15	7	7	3	5	16
16	16	6	6	2	3	20
15	15	7	7	1	5	

Быстродействие описанного алгоритма не позволяет использовать его для проверки существования неизвестных схем с параметрами (22, 33, 12, 8, 4) й (33, 44, 12, 9, 3). Однако в алгоритме есть большие резервы сокращения перебора за счет более раннего обнаружения того факта, что рассматриваемая матрица не достраивается до матрицы инциденций ВІВ-схемы. Для этого, например, можно использовать условия Коннора [6] на уже построенные блоки BIB-схемы, условия Агреваля [14] на число общих элементов в двух блоках и т. д.

Следует отметить, что развитая в статье техника может быть использована для генерации не только BIB-схем, но и других классов систем инциденций.

- 1. H. B. Mann. Analysis and design of experiment. London, Dover, 1949.
- 2. Ф. Дельсарт. Алгебраический подход к схемам отношений теории кодирования. М., «Мир», 1976. 3. М. Холл. Блок-схемы.— В кн.: Прикладная комбинаторная математика.
- М., «Мир», 1968, с. 203—242. 4. *М. Холл*. Комбинаторика. М., «Мир», 1970.
- 5. М. Холл. Теория групп и блок-схемы. В кн.: Комбинаторный анализ, вып. 1. Изд-во МГУ, 1971, с. 10—34.
 6. W. S. Connor. On the structure of balanced incomplete block design. —
- Ann. Math. Stat., 1952, N 23, p. 57-71.
- H. Hanani. The exsistance and construction of balanced incomplete block design. Ann. Math. Stat., 1961, N 32, p. 361—386.
 H. Hanani. On balanced incomplete block design with block having five
- elements.— J. Comb. Theory, 1972, N 12, p. 184—201.

 9. H. S. White, F. N. Cole, L. D. Cummings. Complete classification of the triad systems on fifteen elements.— Mem. Nat. Acad. Sci. U. S. A., 1925, 14, p. 1-89.
- 10. M. Hall, J. D. Swift. Determination of Steiner triple systems of order 15.— MTAC, 1955, N 9, p. 146—156.
- 11. P. Gibbons. Computing techniques for the construction and analysis of block designs. - Techn. Rept N 92, Dept Comp. Sci., Univ. Toronto, 1976.
- 12. И. А. Фараджев. Конструктивное перечисление комбинаторных объектов. — В наст. сб. 13. В. А. Зайченко, И. А. Фараджев. Алгоритм проверки каноничности
- системы инциденций. В наст. сб.
- 14. H. L. Agreval. On the bound of the member of commun treatment between blocks design. — J. Amer. Stat. Assoc., 1964, N 59, p. 867—871.

АЛГОРИТМЫ ПРОВЕРКИ КАНОНИЧНОСТИ систем инциденций

В. А. ЗАЙЧЕНКО, И. А. ФАРАДЖЕВ

1. Пусть $A = (a_{ij})$ — булевская $(n \times m)$ -матрица, представляющая систему инциденций, т. е. вхождения элементов конечного множества мощностью n в m его подмножеств. Две системы инциденций называются изоморфными, если соответствующие матрицы переводятся друг в друга перестановкой строк и столбцов $A \sim A' \Leftrightarrow \exists g \in S_n, \exists h \in S_m : gAh^{-1} = A',$ где S_k — симметрическая группа степени k.

Упорядочивая элементы булевских матриц по строкам, введем на множестве матриц одинакового размера линейный порядок: $(a_{ij}) = A > A' = (a'_{ij}) \Leftrightarrow (a_{11}, a_{12}, \ldots, a_{1m}, \ldots, a_{n1}, \ldots, a_{nm}) >$ > $(a_{11}', a_{12}', \ldots, a_{1m}', \ldots, a_{n1}', \ldots, a_{nm}')$, где порядок на nm-мерных векторах — лексикографический.

Максимальную (в смысле введенного порядка) матрицу в классе всех изоморфных между собой матриц будем называть канонической.