SECTION*

Answer ALL Questions

Each question carries ONE mark.

1. *

Cauchy - Riemann equation in Cartesian co-ordinates are

$$(A) u_x = v_y, u_y = -v_x$$

(A)
$$u_x = v_y, u_y = -v_x$$
 (B) $u_x = -v_y, u_y = v_x$

$$(C) u_x = v_y, u_y = v_x$$

(C)
$$u_x = v_y, u_y = v_x$$
 (D) $u_x = -v_y, u_y = -v_x$

D

2. *

The transformation w = a z, where a is a real constant represents

(A) magnification

(B) rotation

(C) reflection

(D) inversion

3. *

The real part of $f(z) = e^{2z}$ is

(A) $e^x \cos y$

(B) $e^x \sin y$

(C) $e^{2x} \cos 2y$

(D) $e^{2x} \sin 2y$

(A) zero	(B) analytic
(C) harmonic	(D) constant
A	
В	
С	
D	
j. *	
A mapping that preserves angles point, both in magnitude and a mapping.	grighten an trigger and argume transfer from Line and a contraction and a contraction and a second and a second
A mapping that preserves angle point, both in magnitude and o	les between every pair of curves through a direction is called a (B) conformal

If w = f(z) = u + iv is an analytic function with constant imaginary part, then f(z) is

(A) zero

(B) analytic

(C) harmonic

(D) constant

- В

The points at which the function $f(z) = \frac{1}{z^2 - 1}$ fails to be analytic are

(A) $z = \pm i$

(B) $z = \pm 1$

(C) $z = \pm 2$

(D) $z = \pm 3$

- Α

8. *

The fixed points of the transformation $w = \frac{z-1}{z+1}$ are

 $(A) \pm i$

 $(B) \pm 1$

(C) ± 2

 $(D) \pm 3$

The harmonic conjugate of $u = e^x \cos y$ is

(A) $e^x \sin y$

(B) $e^{2x} \sin y$

(C) $e^{2x} \cos 2y$

(D) $e^{2x} \sin 2y$

- A

10. *

The critical point of the transformation $w = z^2$ is

(A) z = 0

(B) z = -i

(C) z = 1

(D) z = -1

- В

11. *

The function $f(z) = \bar{z}$ is

(A) not analytic

(B) analytic

(C) constant

(D) equal to 1

If w = f(z) = u + iv is an analytic function, then

- (A) $\nabla^2 |f(z)|^2 = 4|f'(z)|^2$ (B) $\nabla^2 |f'(z)|^2 = 4|f(z)|^2$
- (C) $\nabla^2 |f'(z)| = 2|f(z)|$ (D) $\nabla^2 |f(z)|^2 = 2|f'(z)|^2$

13. *

The transformation w = f(z) = a z, where a is a complex constant represents

(A) magnification

- (B) rotation
- (C) both magnification and rotation
- (D) reflection

- Α

If w = f(z) = u + i v is an analytic function of z, then

- (A) u and v are not harmonic
- (B) u is not harmonic
- (C) both u and v are harmonic
- (D) v is not harmonic

- D

15. *

If w = f(z) = u + iv is analytic, then the family of curves $u = C_1$ and $v = C_2$ where C_1 and C_2 are constants

(A) cut orthogonally

(B) intersect each other

(C) is parallel

(D) coincide

- Α
- В

7/28/2021

If z_1 , z_2 , z_3 and z_4 are four points in the z-plane, then the cross-ratio of these points is

(A)
$$\frac{(z_1 - z_3)(z_4 - z_2)}{(z_1 - z_2)(z_3 - z_4)}$$

(B)
$$\frac{(z_1-z_2)(z_4-z_2)}{(z_1-z_2)(z_3-z_2)}$$

(C)
$$\frac{(z_1-z_4)(z_3-z_2)}{(z_1-z_2)(z_3-z_4)}$$

(D)
$$\frac{(z_1-z_2)(z_3-z_4)}{(z_1-z_4)(z_3-z_2)}$$

17. *

The invariant points of the transformation $w = \frac{6z-9}{z}$ are

(A) 3, 3

(B) 6, 9

(C) 0, 6

(D) 3, -3

If a function v(x, y) satisfies the equation $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$, then v is said

- to be
 - (A) analytic function
- (B) harmonic function
- (C) differential function
- (D) continuous function

19. *

The condition for the function f(z) = u + iv to be analytic in polar form is

(A)
$$u_r = \frac{1}{r} v_\theta$$
, $v_r = -\frac{1}{r} u_\theta$ (B) $u_r = -\frac{1}{r} v_\theta$, $v_r = \frac{1}{r} u_\theta$

(B)
$$u_r = -\frac{1}{r} v_\theta$$
, $v_r = \frac{1}{r} u_\theta$

(C)
$$u_r = -\frac{1}{r} v_\theta$$
, $v_r = -\frac{1}{r} u_\theta$ (D) $u_r = \frac{1}{r} v_\theta$, $v_r = \frac{1}{r} u_\theta$

(D)
$$u_r = \frac{1}{r} v_\theta$$
, $v_r = \frac{1}{r} u_\theta$

If w = f(z) = u + iv is an analytic function with constant modulus, then f(z) is

(A) zero

(B) analytic

(C) harmonic

(D) constant

- Α

21. *

A point at which the mapping w = f(z) is not conformal is called

(A) fixed point

(B) critical point

(C) singular point

(D) regular point

22. *

The critical points of the transformation $w = z + \frac{1}{z}$ are

 $(A) \pm i$

 $(B) \pm 1$

 $(C) \pm 2$

 $(D) \pm 3$

Α

- С

The transformation $w = \frac{az+b}{cz+d}$ where a, b, c, d are complex constants is said to be bilinear, if

(A) ad-bc=0

(B) $ad-bc \neq 0$

(C) ad-bc<0

(D) ad-bc>0

- D

24. *

Any function which has continuous second order partial derivatives and which satisfies Laplace equation is called _

(A) Harmonic function

(B) Beta function

(C) Gamma function

(D) Alpha function

- D

7/28/2021

25. *

The fixed points of the transformation $w = \frac{5z+4}{z+5}$ are

 $(A) \pm i$

 $(B) \pm 1$

 $(C) \pm 2$

 $(D) \pm 3$

26. *

The point z_0 at which a function f(z) is not analytic is known as

(A) zeros

(B) critical point

(C) singular point

(D) fixed point

- D

27. *

The singular points of $f(z) = \frac{z+3}{(z-3)(z-2)}$ are

(A) z = 1,3

(B) z = 1,0

(C) z = 1, 2

(D) z = 2,3

D

28. *

The residue of $f(z) = \frac{z}{z-1}$ at its pole is

(A)0

(B) 1

(C) -1

(D) $2\pi i$

29. *

The function $f(z) = \frac{1}{(z+2)^4 (z-3)^2 (z-1)}$ has pole of order 2 at the point

(A) z = 4

(B) z = -3

(C) z = 1

(D) z = 3

If $f(z) = \frac{\sin z}{z}$, then the singular point of f(z) is

(A) z = 0

(B) $z = \pi$

(C) $z = 2\pi i$

(D) $z = -2\pi i$

31. *

If C: |z-a| = r is a circle, then f(z) can be expanded as a Taylor's series if

- (A) f(z) is an analytic function at all points within C
- (B) f(z) is not an analytic function
- (C) f(z) is an analytic function outside C
- (D) f(z) is not an analytic function outside C
- A

The value of $\oint_C \frac{\cos z}{z-3} dz$ where C is a circle |z| = 2 is

(A)0

(B) 1

(C) e

(D) 2πi

33. *

A singular point $z = z_0$ is called ______ singular point of f(z), if there is no other singular point in the neighbourhood of z_0 .

(A) removable

(B) isolated

(C) essential

(D) non-removable

- D

7/28/2021

The singular points of the function $f(z) = \frac{1}{z(z-2)}$ are

(A) z = 0, 2

(B) z = 1, 2

(C) z = -1

(D) $z = 2\pi i$

35. *

If $z = z_0$ is a pole of order n, then the residue of f(z) is

(A)
$$\operatorname{Res}[f(z), z_0] = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} (z - z_0)^n f(z)$$

(B) Res
$$[f(z), z_0] = \frac{1}{n!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} (z - z_0)^n f(z)$$

(C) Res
$$[f(z), z_0] = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} f(z)$$

(D)
$$\operatorname{Res}[f(z), z_0] = \frac{1}{(n+1)!} \lim_{z \to z_0} \frac{d}{dz} (z - z_0) f(z)$$

36, *

The residue of $f(z) = \frac{1}{z-1}$ at its pole z=1 is

(A)0

(B)1

(C) -1

(D) 2πi

37. *

The value of $\oint_C \frac{e^z}{(z-1)^3} dz$, where $C: |z| = \frac{1}{2}$ is

(A) 0

(B) $\frac{1}{4}$

(C) $\frac{1}{2}$

(D) $\frac{1}{3}$

- D

The singularity of $f(z) = \frac{z}{(z-2)^3}$ is

- (A) z = 2 is a pole of order 2 (B) z = 2 is a pole of order 3
- (C) z = 2 is a simple pole (D) z = 2 is pole of order 1
- Α

39. *

The value of $\oint_C \frac{3z^2 + 7z + 1}{z + 1} dz$ where C is $|z| = \frac{1}{2}$ using

Cauchy's residue theorem is

(A) 0

(B) $2\pi i$

 $(C) -2\pi i$

(D) 1

The value of $\oint_C \frac{dz}{z-1}$ where C is the circle |z-1| = 1 is

(A)0

(B) 2πi

(C) $-2\pi i$

(D) πi

- Α

41. *

The annular region for the function $f(z) = \frac{1}{z(z-1)}$ is

(A) 0 < |z| < 1

(B) 1 < |z| < 2

(C) 2 < |z| < 3

(D) |z| > 1

The value of $\oint_C \frac{1}{z-4} dz$ where C is |z-2| = 1 by Cauchy's integral

formula is ______.

 $(A) \pi i$

(B) $4\pi i$

(C)0

(D) $2\pi i$

43. *

If f(z) is analytic inside and on C, then the value of $\oint_C \frac{f(z)}{(z-a)^2} dz$,

where C is a simple closed curve and 'a' is any point within C is

(A) 0

(B) $2\pi i f'(a)$

(C) $-2\pi i f(a)$

(D) 1

The value of $\oint_C \frac{z}{z-2} dz$ where C is the circle |z| = 3 is

(A) 0

(B) 4 π i

(C) $-2\pi i$

(D) 1

45. *

The residue of $f(z) = \frac{z-2}{z(z-1)}$ at z = 1 is

(A)0

(B) - 2

(C)2

(D) -1

If f(z) is analytic inside and on C, then the value of $\oint_C \frac{f(z)}{(z-a)^n} dz$, where C is a simple closed curve and 'a' is any point

within C is

(A) 0

(B) $\frac{2\pi i}{n!} f^n(a)$

(C) $-\frac{2\pi i}{n!} f^{n+1}(a)$

(D) $\frac{2\pi i}{(n-1)!} f^{n-1}(a)$

47. *

If f(z) is analytic and f'(z) is continuous at all points inside and on a simple closed curve C, then $\oint f(z) dz =$

(A) 0

(B) 2πi

 $(C) - 2\pi i$

(D) 1

The value of $\oint_C \frac{2z}{z-1} dz$ where C is |z| = 1 by Cauchy's integral formula is

(A) 1

(B) $4\pi i$

(C)0

(D) $2\pi i$

49. *

The value of $\oint_C \frac{z^2}{(z-1)^2(z+1)} dz$, where $C: |z| = \frac{1}{2}$ is

(A)0

(C) $\frac{1}{2}$

The function $f(z) = \frac{z+1}{(z-1)(z+2)}$ has a zero at

(A) z = 1

(B) z = 2

(C) z = -2

(D) z = -1

Create your own Google Form Report Abuse