EE230: Analog Circuits Lab Square Root Amplifier Lab No. 4

Anupam Rawat, 22b3982

January 25, 2024

1 Aim of the experiment

Construct a square root amplifier and fine tune it to utmost precision

2 Design

The current through the diode in forward bias is given by the following equation

$$I_D = I_S * (e^{V_D/nV_T} - 1) (1)$$

Rearranging the terms we get

$$V_D = n \cdot V_T * (ln(I_D) - ln(I_S))$$
(2)

The output of Block-1 is given by $\overline{V_{out1}}$:

$$V_{out1} = -V_D = n \cdot V_T * (ln(I_S R) - ln(V_{in}))$$
(3)

The output of Block-2 is given by V_{out2} :

$$V_{out2} = -n \cdot V_T \cdot ln(I_S R) + (ln(V_{in}))V_T \cdot n + 2V_{b1}$$
(4)

We can remove the offset terms which don't include V_{in} by choosing:

$$V_{b1} = \frac{n \cdot V_T \cdot ln(I_S \cdot R)}{2} \tag{5}$$

$$V_{out2} = n \cdot V_T \cdot ln(V_{in}) \tag{6}$$

The output of Block-3 can be given by:

$$V_{out3} = -\frac{R_{22}}{R_{21}} \cdot V_{out2} = -\frac{R_{22}}{R_{21}} \cdot V_T \cdot ln(V_{in}) = ln(V_{in}^{-\frac{R_{22}}{R_{21}}nV}T)$$
 (7)

For Block-4, $V_x = V_{b2}$ (virtual ground) and:

$$V_{out} = R_3 \cdot I_{D2} + V_{b2} = R_3 \cdot T_{S2} \cdot e^{\frac{V_{b2}}{n_2 \cdot V_T}} V_{in}^{\frac{n_1}{n_2} \frac{R_{22}}{R_{21}}} + V_{b2}$$
 (8)

We can simplify the circuit as:

$$V_{R3} = V_{out} - V_x = \beta_1 \cdot V_{in}^{\beta 2} \tag{9}$$

For square root amplifier, we can choose $\beta_1 = 1$ and $\beta_2 = \frac{1}{2}$

Figure 1: Circuit Diagram

3 Simulation Results

4 Circuit Schematics

5 Experimental results

Plot $ln(I_D)$ v/s V_D :

manually identify the range over which $ln(I_D)$ is a linear function of V_D :

As it can be seen from the figure (a) on the top of this page, the last point to be on the line is, the values of which are - $V_D = 0.75$, $I_{D1} = 0.01633$ and

$$V_D = 0.725$$
 and $I_{D2} = 1.48e-02$

determine I_S and n:

The value of:

$$I_{S1} = \frac{1}{e^1 8.8507} = 6.5e - 9$$
 $n_1 = \frac{1}{slope_1 \cdot V_T} = \frac{1}{19.65 \cdot 0.026} = 1.95$ $I_{S2} = \frac{1}{e^1 8.6934} = 7.6e - 9$ $n_2 = \frac{1}{slope_2 \cdot V_T} = \frac{1}{19.96 \cdot 0.026} = 1.926$

Choose diode for Block-1 and determine the value of R:

We'll choose Diode 1 since it's correlation is more i.e. it's linear over a larger range as compared to Diode 2. $I_{D1}=0.01066, R=\frac{15}{I_{D1}}=\frac{15}{0.01066}=1407.13\Omega$

Determine the expression for V_{out1} :

$$V_{out1} = n V_T (\ln(I_S R) - \ln(V_{in})) = 0.0508(-11.6 - \ln(V_{in}))$$

Determine V_{b1} to remove offset and choose R_1 arbitrarily:

 $V_{b1} = \frac{nV_T ln(I_SR)}{2} = -0.0294 \text{ V}$ and choosing $R_1 = 1 \text{k}\Omega$. Corresponding V_{out1} becomes -0.589V.

Select V_{b2} and R_3 such that $V_{R3} = 1V$:

choosing $R_3 = 10 \text{k}\Omega$

and substituting the values in equation (8) and equation (9), we get, $V_{R3} = 0.475$ for $R_3 = 10$ k Ω , $I_{S2} = 7.6$ e-09, $n_2 = 19.96$ and $V_T = 0.026$.

Choose R_{21} and R_{22} and also fine tune for finding sqrt when $V_{in}=9V$:

We want
$$\beta_2 = \frac{1}{2} \text{ OR } \frac{n_1}{n_2} \cdot \frac{R_{22}}{R_{21}} = \frac{1}{2}$$

 $R_{21} = 2.03 * R_{22}$. Let's take $R_{22} = 1 \text{k}\Omega$, $R_{21} = 2.03 \text{k}\Omega$.

When we fine tune the circuit, we get, $V_{b1} = -0.2980989999999$ V.

6 Experiment completion status

The full experiment along with the handwritten reports was completed during the lab hours.