

# What the DAAM: Interpreting Stable Diffusion Using Cross Attention

Raphael Tang Linqing Liu Akshat Pandey Zhiying Jiang Gefei Yang et al.

Comcast Applied Al

University College London

University of Waterloo

#### **Abstract**



• Find out how individual words from the text prompt affects each output pix el, i.e., understand the conditional part of Stable Diffusion.



Figure 1: The original synthesized image and three DAAM maps for "monkey," "hat," and "walking," from the prompt, "monkey with hat walking."

# **Background: Diffusion Models**



- Generative Model capable of state-of-the-art generation of pictures, video s, 3D models, etc.
- Consists of a forward process, where a datum is progressively noised, an
  d a reverse process, where the datum is restored from noise.



Yang, Ling, et al. "Diffusion models: A comprehensive survey of methods and applications." *arXiv preprint arXiv:2209.00796* (2022).

# **Background: Diffusion Models**



The forward process:

$$q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

progressively adds noise, until  $q(\mathbf{x}_T) \approx \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$ 

i.e., data is transformed in to zero-mean isotropic Gaussian.

The reverse process transforms unit Gaussian noise back to original data by traversing the path backwards using a learnable kernel:

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \coloneqq \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

# **Background: Stable Diffusion**



- Rombach, Robin, et al. "High-resolution image synthesis with latent diffusi on models." *Proceedings of the IEEE/CVF Conference on Computer Visio n and Pattern Recognition*. 2022.
- Generates high-quality image given a text prompt (and others)



#### **Background: Stable Diffusion**





#### Observations:

- Image is generated in latent space, and restored via Convolutional VAE.
- Denoising kernel is conditioned on the prompt text.

#### **Approach: Denoiser**



- Denoiser  $\epsilon_{\theta}(l, t; X)$
- Where X is a list of word (CLIP) emb eddings:  $X = [x_1; ...; x_{l_w}]$

- Denoiser is a convolutional U-Net:
  - Downsampling block i (i = 1, ..., K) outp ut:  $\mathbf{h}_{i,t}^{\downarrow} \in \mathbf{R}^{\left[\frac{w}{c^i}\right] \times \left[\frac{h}{c^i}\right]}$
  - Using multi-headed cross-attention layer :  $\mathbf{h}_{i,t}^{\downarrow} = F_t^{(i)}(\widehat{\mathbf{h}}_{i,t}^{\downarrow}, \mathbf{X}) \cdot (W_v^{(i)}\mathbf{X})$ , i.e., att. sc ores btw  $\widehat{\mathbf{h}}_{i,t}^{\downarrow}$  (Q) are calculated for each word embedding  $\mathbf{X}$  (K, V).



#### **Approach: Denoiser**



 Due to the convolutional nature of the U-Net and the VAE, we can upso ale each U-Net block to original image size and aggregate them:

$$D_k^{\mathbb{R}}[x,y] := \sum_{i,j,\ell} \tilde{F}_{t_j,k,\ell}^{(i)\downarrow}[x,y] + \tilde{F}_{t_j,k,\ell}^{(i)\uparrow}[x,y], \qquad (6)$$

k: word, l: head

Thresholded for segmentation tasks:

$$D_k^{\mathbb{I}_{\tau}}[x,y] := \mathbb{I}\left(D_k^{\mathbb{R}}[x,y] \ge \tau \max_{i,j} D_k^{\mathbb{R}}[i,j]\right), \quad (7)$$

#### **Result: Object Attribution**



 Synthesize images based on COCO image captions dataset, hand-seg ment each noun, and compare results with image segmentation models:

| # Method                     | COCO-Gen Unreal-Gen |                 |                    |                 |
|------------------------------|---------------------|-----------------|--------------------|-----------------|
|                              | mIoU <sup>80</sup>  | $mIoU^{\infty}$ | mIoU <sup>80</sup> | $mIoU^{\infty}$ |
| Supervised Methods           |                     |                 |                    |                 |
| 1 Mask R-CNN (ResNet-101)    | 82.9                | 32.1            | 76.4               | 31.2            |
| 2 QueryInst (ResNet-101-FPN) | 80.8                | 31.3            | 78.3               | 35.0            |
| 3 Mask2Former (Swin-S)       | 84.0                | 32.5            | 80.0               | 36.7            |
| 4 CLIPSeg                    | 78.6                | 71.6            | 74.6               | 70.9            |
| Unsupervised Methods         |                     |                 |                    |                 |
| 5 Whole image mask           | 20.4                | 21.1            | 19.5               | 19.3            |
| 6 PiCIE + H                  | 31.3                | 25.2            | 34.9               | 27.8            |
| 7 STEGO (DINO ViT-B)         | 35.8                | 53.6            | 42.9               | 54.5            |
| 8 Our DAAM-0.3               | 64.7                | 59.1            | 59.1               | <b>58.9</b>     |
| 9 Our DAAM-0.4               | 64.8                | <b>60.7</b>     | 60.8               | 58.3            |
| 10 Our DAAM-0.5              | 59.0                | 55.4            | 57.9               | 52.5            |

#### **Result: Generalized Attribution**







# **Visuosyntactic Analysis**



• How syntax relates to generated pixels by measuring mIoU  $(\frac{|A \cap B|}{|A \cup B|})$ , mIoD (

 $\frac{|A \cap B|}{|A|}$ ), and mIoH  $(\frac{|A \cap B|}{|B|})$ .



# Visuosemantic Analysis: Cohyponym Entanglement





Figure 7: Rows starting from the top: generated images for cohyponyms "a giraffe and a zebra," heat maps for the first two images, and heat maps for non-cohyponymic zebra–fridge and giraffe–fridge prompts.

# Visuosemantic Analysis: Adjectival Entanglement





Figure 8: First row: a DAAM map for "rusty" and three generated images for "a <adj> shovel sitting in a clean shed;" second row: a map for "bumpy" and images for "a <adj> ball rolling down a hill."

#### **Conclusions**



- Study visuolinguistic phenomena in diffusion models by interpreting wordpixel cross-attention maps, and the attribution method is proven correct us ing experiments.
- Find feature entanglement.