Master of Technology in Artificial Intelligence Systems - Capstone Project

By Richard Chai

Email: e0700541@u.nus.edu

https://www.linkedin.com/in/richardchai/

Supervisor:

Dr Wang Aobo (Lecturer & Consultant, Artificial

Intelligence Practice)

Email: isswan@nus.edu.sg

CEREBRO INDEX (CI) FRAMEWORK

Question Complexity Measurement Framework, Generation and Scoring System

AGENDA

- THE CORE PROBLEM & RESEARCH QUESTION
- WHY EXISTING METHODS FALL SHORT
- INTRODUCING THE CEREBRO INDEX (CI) FRAMEWORK
- SYSTEM ARCHITECTURE & IMPLEMENTATION
- THE VALIDATION STUDY -METHODOLOGY

AGENDA

- DISCUSSION, LIMITATIONS & FUTURE WORK
- CONCLUSION

THE CORE PROBLEM & RESEARCH QUESTION

Bridging the AI-Human Gap in Question Difficulty Perception

BRIDGING THE AI-HUMAN GAP IN QUESTION DIFFICULTY PERCEPTION

Market Impetus

AI-driven education (adaptive learning, LLM question generation) is growing rapidly.

Critical Challenge

AI systems interpret 'complexity' differently from humans and from each other too, which can lead to misaligned or inaccurate assessments.

Research Question

"How can we improve the AI system's ability to generate questions with complexity levels that consistently align with human expectations of difficulty?"

Complexity: Al vs Human Perception

Differing Complexity Perception

Al assesses complexity differently

Subjective Difficulty

Difficulty depends on the learner

WHY EXISTING METHODS FALL SHORT

The Limitations of Current Complexity/Difficulty Measurement

THE LIMITATIONS OF CURRENT COMPLEXITY/DIFFICULTY MEASUREMENT

Subjective

Educator intuition is inconsistent.

Rigid

Rule-based systems lack nuance and scalability.

Opacity

ML models can be black boxes and lack interpretability

No Standard

No unified, objective metric for complexity

Challenges in Measuring Complexity/Difficulty

INTRODUCING THE CEREBRO INDEX (CI)

A Multi-Dimensional, Quantifiable Question Complexity Scoring Framework

THE CEREBRO INDEX (CI) FRAMEWORK

Quantifying Question Complexity

The Cerebro Index (CI) assigns a score from 0.0 to 10.0, objectively measuring the inherent complexity of questions.

Six Core Attributes

CI integrates cognitive level, ambiguity, conceptual links, information density, syntactic structure, and susceptibility to guessing, with Bloom's Taxonomy driving 80% of the weight.

Complexity vs. Difficulty

Unlike learner-dependent difficulty, CI captures question complexity itself, making it essential for adaptive AI and education systems.

SYSTEM ARCHITECTURE & IMPLEMENTATION

From Theory to Practice: Building the CI System

SYSTEM ARCHITECTURE - COMPONENTS

SYSTEM ARCHITECTURE - API ENDPOINTS

SYSTEM IMPLEMENTATION

Cerebro Index Development Funnel

Rapid Prototyping

Developing a minimal viable version

User Feedback Collection

Gathering insights for improvement

Iterative Refinement

Refining based on user feedback

Transition to Open Source

Moving to fine-tuned open-source models

Model Quantisation

Optimising for efficiency and scalability

THE VALIDATION STUDY - METHODOLOGY

Rigorous Empirical Validation: Does CI Align with Human Judgment?

VALIDATING THE CEREBRO INDEX

Objective

To validate the Cerebro Index (CI) as a proxy for human-perceived question complexity across multiple domains.

Design

Cross-sectional perceptual study using ordinal rankings and complexity labels by human raters, compared to CI outputs.

Research Questions

RQ1: Do CI scores positively correlate with human-perceived question complexity rankings?

RQ2: Do CI complexity categories align with those assigned by human evaluators?

FINDING #1: CI SCORES STRONGLY CORRELATE WITH HUMAN RANKINGS

Overall

Significant, moderate-to-strong positive correlation ρ = 0.63, 95% CI [0.436, 0.769], ρ <0.05.

Domain Question Format Highlights.

True/False: Exceptional correlation in ML (ρ =0.986, p=0.0003) and Math (ρ =0.87, p=0.0244).

MCQ: Very strong correlation in Time (ρ =0.943, ρ =0.0048)

Conclusion

CI is a statistically valid measure of perceived complexity, especially for structured formats (MCQ, T/F).

Spearman correlation coefficient: 0.6305 P-value: 0.0000003229

P-value: 0.0000003225

FINDING #2: HUMAN EVALUATORS ALMOST ALWAYS DO NOT AGREE WITH EACH OTHER

Summary of Krippendorff's Alpha Values:

Overall : -0.009 (Poor agreement) Domain: math_used_in_supermarket : -0.043 (Poor agreement) Domain: supervised_machine_learning : 0.106 (Poor agreement) Domain: time in personal travel : -0.042 (Poor agreement) Format: mcq : 0.016 (Poor agreement) : -0.044 (Poor agreement) Format: short_answer Format: true_false : -0.048 (Poor agreement) math_used_in_supermarket - mcg : -0.095 (Poor agreement) math used in supermarket - short answer : -0.009 (Poor agreement) math used in supermarket - true false : -0.126 (Poor agreement) supervised_machine_learning - mcq : 0.428 (Moderate agreement) supervised_machine_learning - short_answer: -0.031 (Poor agreement) supervised_machine_learning - true_false: -0.134 (Poor agreement) time_in_personal_travel - mcq : -0.115 (Poor agreement) time_in_personal_travel - short_answer : -0.160 (Poor agreement) time in personal travel - true false : -0.093 (Poor agreement)

FINDING #2: BUT MAJORITY OF HUMAN EVALUATORS SHOW SUBSTANTIAL AGREEMENT WITH CI ADJACENT CATEGORIES

• Overall $\kappa = 0.619$:

Substantial agreement beyond chance

Off-by-one agreement = 0.778:

CI mapped complexity category and human assigned (majority voting) are usually within one category of each other.

```
AGREEMENT BETWEEN AI PREDICTIONS AND HUMAN MAJORITY VOTE
Overall Agreement:
 Accuracy: 8.284
 Cohen's Kappa: 0.619
 Exact Agreement: 0.204
 Off-by-One Agreement: 0.778
 Number of Questions: 54
By Domain:
 math_used_in_supermarket:
   Accuracy: 0.222
   Cohen's Kappa: 0.615
   Exact Agreement: 0.222
   Off-by-One Agreement: 0.722
   Number of Questions: 18
 supervised_machine_learning:
   Accuracy: 0.278
   Cohen's Kappa: 0.640
   Exact Agreement: 0.278
   Off-by-One Agreement: 0.889
   Number of Questions: 18
 time_in_personal_travel:
   Accuracy: 0.111
   Cohen's Kappa: 0.612
   Exact Agreement: 0.111
   Off-by-One Agreement: 0.722
   Number of Questions: 18
```

FINDING #3:THE PRIMARY CRITERIA APPLIED BY HUMAN EVALUATORS APPEAR TO BE BROADLY CONGRUENT WITH THE FACTORS INCORPORATED INTO THE CI

Key Assessment Factors considered by Human Evaluators

Cognitive effort: Time to understand/solve questions and number of cognitive steps required.

Knowledge requirements: Level of specialised expertise needed

Language characteristics: Sentence length, vocabulary complexity, and clarity

 This is in-line with the components that Cerebro Index considers when determining the CI Score for a question.

DISCUSSION, LIMITATIONS & FUTURE WORK

Critical Reflection: Successes, Constraints, and the Path Forward

LIMITATIONS

Small Sample Size

Only 54 unique questions and 51 evaluators, resulting in 588 evaluated questions; limited statistical power

Methodological gaps

No standardized rubric and varied evaluator expertise

Narrow Coverage

Only 3 domains, 3 question formats per domain and 6 questions per question format

Statistical Limits

Several weak/non-significant correlations

Validation Study Limitations

Despite these issues, the study confirmed the framework's potential and identified clear paths for refinement.

FUTURE WORKS

Near Term:

Optimize Complexity Category Boundary; develop formatspecific weightings.

Near Term :

Conduct a larger-scale validation (200-500 unique questions) with a standardized rubric.

Long-term:

Integrate CI into existing learning platforms; explore its use for AI benchmarking.

Future Research Directions for Cerebro Index System

BEYOND THE CAPSTONE: THE TRANSFORMATIVE POTENTIAL OF CEREBRO INDEX(CI) FRAMEWORK

Cerebro Index (CI): A Universal Complexity Standard

The **Cerebro Index (CI)** Framework is a validated framework that quantifies question complexity using a continuous, multi-dimensional scoring system. It bridges subjective perception and objective measurement, offering a scalable and psychometrically grounded tool for advancing AI assessment and intelligent education.

CEREBRO INDEX (CI) FRAMEWORK

Validated Framework for Objective Question Complexity Measurement

DEMO

CEREBRO INDEX (CI) FRAMEWORK

Validated Framework for Objective Question Complexity Measurement

CEREBRO INDEX (CI) FRAMEWORK

A psychometrically grounded measure of question complexity for education and AI.

Thank you!