COMS 4771 Lecture 4

1. Decision trees.

DECISION TREES

K-D tree: data structure for supporting NN search in \mathbb{R}^d (and hence for implementing NN classifiers where $\mathcal{X} = \mathbb{R}^d$).

Construction procedure

Given points $S \subset \mathbb{R}^d$:

- 1. Pick a coordinate $j \in \{1, 2, \dots, d\}$.
- 2. Let m be the median of $\{x_j : x \in S\}$.
- 3. Split points into halves:

$$L := \{ x \in S : x_j < m \},$$

 $R := \{ x \in S : x_j \ge m \}.$

4. Recurse on L and R.

K-D tree: data structure for supporting NN search in \mathbb{R}^d (and hence for implementing NN classifiers where $\mathcal{X} = \mathbb{R}^d$).

Construction procedure

Given points $S \subset \mathbb{R}^d$:

- 1. Pick a coordinate $j \in \{1, 2, \dots, d\}$.
- 2. Let m be the median of $\{x_j : x \in S\}$.
- 3. Split points into halves:

$$L := \{ x \in S : x_j < m \},$$

 $R := \{ x \in S : x_j \ge m \}.$

4. Recurse on L and R.

Searching a K-D tree for a NN: requires some *backtracking*, still fast when d is small, but can be slow when d is large.

K-D tree: data structure for supporting NN search in \mathbb{R}^d (and hence for implementing NN classifiers where $\mathcal{X} = \mathbb{R}^d$).

Construction procedure

Given points $S \subset \mathbb{R}^d$:

- 1. Pick a coordinate $j \in \{1, 2, \dots, d\}$.
- 2. Let m be the median of $\{x_j : x \in S\}$.
- 3. Split points into halves:

$$L := \{ x \in S : x_j < m \},$$

 $R := \{ x \in S : x_j \ge m \}.$

4. Recurse on L and R.

Searching a K-D tree for a NN: requires some *backtracking*, still fast when d is small, but can be slow when d is large.

Fast and loose alternative: defeatist search—route test point to a single leaf without any backtracking; might not return actual NN.

K-D tree: data structure for supporting NN search in \mathbb{R}^d (and hence for implementing NN classifiers where $\mathcal{X} = \mathbb{R}^d$).

Construction procedure

Given points $S \subset \mathbb{R}^d$:

- 1. Pick a coordinate $j \in \{1, 2, \dots, d\}$.
- 2. Let m be the median of $\{x_j : x \in S\}$.
- 3. Split points into halves:

$$L := \{ x \in S : x_j < m \},$$

 $R := \{ x \in S : x_j \ge m \}.$

4. Recurse on L and R.

Searching a K-D tree for a **NN**: requires some *backtracking*, still fast when d is small, but can be slow when d is large.

Fast and loose alternative: defeatist search—route test point to a single leaf without any backtracking; might not return actual NN.

K-D tree construction doesn't even look at the labels!

DECISION TREES

Directly optimize tree structure for good classification.

A **decision tree** is a function $f: \mathcal{X} \to \mathcal{Y}$, represented by a binary tree in which:

- ▶ Each tree node is associated with a splitting rule $h: \mathcal{X} \to \{0, 1\}$.
- ▶ Each **leaf node** is associated with a label $y \in \mathcal{Y}$.

DECISION TREES

Directly optimize tree structure for good classification.

A **decision tree** is a function $f: \mathcal{X} \to \mathcal{Y}$, represented by a binary tree in which:

- ▶ Each tree node is associated with a splitting rule $h: \mathcal{X} \to \{0, 1\}$.
- ▶ Each leaf node is associated with a label $y \in \mathcal{Y}$.

When $\mathcal{X} = \mathbb{R}^d$, typically only consider splitting rules of the form

$$h(\boldsymbol{x}) = \mathbb{1}\{x_i > t\}$$

for some $i \in [d]$ and $t \in \mathbb{R}$. Called *axis-aligned*, *coordinate*, or *Stoller* splits.

(Notation:
$$[d] := \{1, 2, \dots, d\}$$
)

base on single dimension

- $ightharpoonup \mathcal{X} = \mathbb{R}^2$, $\mathcal{Y} = \{1, 2, 3\}$
- $x_1 = \text{ratio of sepal length to width}$
- $ightharpoonup x_2 = {\sf ratio} \ {\sf of} \ {\sf petal} \ {\sf length} \ {\sf to} \ {\sf width}$

- $ightharpoonup \mathcal{X} = \mathbb{R}^2$, $\mathcal{Y} = \{1, 2, 3\}$
- $ightharpoonup x_1 = \text{ratio of sepal length to width}$
- $ightharpoonup x_2 = {\sf ratio} \ {\sf of} \ {\sf petal} \ {\sf length} \ {\sf to} \ {\sf width}$

- $ightharpoonup \mathcal{X} = \mathbb{R}^2$, $\mathcal{Y} = \{1, 2, 3\}$
- $ightharpoonup x_1 = \text{ratio of sepal length to width}$
- $ightharpoonup x_2 = {\sf ratio} \ {\sf of} \ {\sf petal} \ {\sf length} \ {\sf to} \ {\sf width}$

- $ightharpoonup \mathcal{X} = \mathbb{R}^2$, $\mathcal{Y} = \{1, 2, 3\}$
- $ightharpoonup x_1 = \text{ratio of sepal length to width}$
- $ightharpoonup x_2 = {\sf ratio} \ {\sf of} \ {\sf petal} \ {\sf length} \ {\sf to} \ {\sf width}$

- $\mathcal{X} = \mathbb{R}^2, \ \mathcal{Y} = \{1, 2, 3\}$
- $ightharpoonup x_1 = \text{ratio of sepal length to width}$
- $ightharpoonup x_2 = {\sf ratio} \ {\sf of} \ {\sf petal} \ {\sf length} \ {\sf to} \ {\sf width}$

- $\mathcal{X} = \mathbb{R}^2, \ \mathcal{Y} = \{1, 2, 3\}$
- $ightharpoonup x_1 = \text{ratio of sepal length to width}$
- $ightharpoonup x_2 = {\sf ratio} \ {\sf of} \ {\sf petal} \ {\sf length} \ {\sf to} \ {\sf width}$

Basic decision tree learning algorithm

Basic "top-down" greedy algorithm

- ▶ Initially, tree is a single leaf node containing all (training) data.
- Loop: how to measure uncertainty.
 - ▶ Pick the leaf ℓ and rule h that maximally reduces uncertainty.
 - ▶ Split data in ℓ using h, and grow tree accordingly.

... until some stopping criterion is satisfied.

[Label of a leaf is the plurality label among the data contained in the leaf.]

NOTIONS OF UNCERTAINTY

Notions of uncertainty: binary case $(\mathcal{Y} = \{0, 1\})$

Suppose in a set of examples $S \subseteq \mathcal{X} \times \{0,1\}$, a p fraction are labeled as 1.

1. Classification error:

$$u(S) := \min\{p, 1-p\}$$

2. Gini index:

$$u(S) := 2p(1-p)$$

3. Entropy:

$$u(S) := p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p}$$

Gini index and entropy (after some rescaling) are concave upper-bounds on classification error.

NOTIONS OF UNCERTAINTY

Notions of uncertainty: general case

Suppose in $S \subseteq \mathcal{X} \times \mathcal{Y}$, a p_k fraction are labeled as k (for each $k \in \mathcal{Y}$).

1. Classification error:

$$u(S) := 1 - \max_{k \in \mathcal{Y}} p_k$$

2. Gini index:

$$u(S) := 1 - \sum_{k \in \mathcal{Y}} p_k^2$$

3. Entropy:

$$u(S) := \sum_{k \in \mathcal{Y}} p_k \log \frac{1}{p_k}$$

NOTIONS OF UNCERTAINTY

Notions of uncertainty: general case

Suppose in $S \subseteq \mathcal{X} \times \mathcal{Y}$, a p_k fraction are labeled as k (for each $k \in \mathcal{Y}$).

1. Classification error:

$$u(S) := 1 - \max_{k \in \mathcal{Y}} p_k$$

2. Gini index:

$$u(S) := 1 - \sum_{k \in \mathcal{V}} p_k^2$$

3. Entropy:

$$u(S) := \sum_{k \in \mathcal{Y}} p_k \log \frac{1}{p_k}$$

Each is *maximized* when $p_k = 1/|\mathcal{Y}|$ for all $k \in \mathcal{Y}$ (i.e., equal numbers of each label in S).

Each is *minimized* when $p_k = 1$ for a single label $k \in \mathcal{Y}$ (so S is **pure** in label).

Uncertainty reduction

Suppose the data S at a leaf ℓ is split by a rule h into S_L and S_R , where $p_L := |S_L|/|S|$ and $p_R := |S_R|/|S|$.

should try to minimize the uncertainty. thus push the same class into the same side

Uncertainty reduction

Suppose the data S at a leaf ℓ is split by a rule h into S_L and S_R , where $p_L:=|S_L|/|S|$ and $p_R:=|S_R|/|S|$.

note: how to compute a node's uncertaintity

The reduction in uncertainty from using rule h at leaf ℓ is

$$u(S) - \Big(p_L \cdot u(S_L) + p_R \cdot u(S_R)\Big).$$

UNCERTAINTY REDUCTION

One leaf (with $\hat{y}=1$) already has zero uncertainty (a pure leaf).

Uncertainty reduction

One leaf (with $\hat{y} = 1$) already has zero uncertainty (a pure leaf).

Other leaf (with $\hat{y} = 3$) has Gini index

$$u(S) = 1 - \left(\frac{1}{101}\right)^2 - \left(\frac{50}{101}\right)^2 - \left(\frac{50}{101}\right)^2$$
$$= 0.5098.$$

Uncertainty reduction

One leaf (with $\hat{y} = 1$) already has zero uncertainty (a pure leaf).

Other leaf (with $\hat{y} = 3$) has Gini index

$$u(S) = 1 - \left(\frac{1}{101}\right)^2 - \left(\frac{50}{101}\right)^2 - \left(\frac{50}{101}\right)^2$$

= 0.5098.

cause there are three classes, we can't only pick the pick one

UNCERTAINTY REDUCTION

One leaf (with $\hat{y} = 1$) already has zero uncertainty (a pure leaf).

Other leaf (with $\hat{y} = 3$) has Gini index

$$u(S) = 1 - \left(\frac{1}{101}\right)^2 - \left(\frac{50}{101}\right)^2 - \left(\frac{50}{101}\right)^2$$

= 0.5098.

Split S with $\mathbb{1}\{x_2 > t\}$ to S_L, S_R :

peak one!

Uncertainty reduction

One leaf (with $\hat{y} = 1$) already has zero uncertainty (a pure leaf).

Other leaf (with $\hat{y} = 3$) has Gini index

$$u(S) = 1 - \left(\frac{1}{101}\right)^2 - \left(\frac{50}{101}\right)^2 - \left(\frac{50}{101}\right)^2$$

= 0.5098.

$$\begin{split} & \text{Split } S \text{ with } \mathbbm{1}\{x_2 > 2.7222\} \text{ to } S_L, S_R: \\ & u(S_L) = 1 - \left(\frac{0}{30}\right)^2 - \left(\frac{1}{30}\right)^2 - \left(\frac{29}{30}\right)^2 = 0.0605, \\ & u(S_R) = 1 - \left(\frac{1}{71}\right)^2 - \left(\frac{49}{71}\right)^2 - \left(\frac{27}{71}\right)^2 = 0.4197. \end{split}$$

Reduction in uncertainty:

$$0.5098 - \left(\frac{30}{101} \cdot 0.0605 + \frac{71}{101} \cdot 0.4197\right)$$
$$= 0.2039.$$

COMPARING NOTIONS OF UNCERTAINTY

It is possible to have a splitting rule \boldsymbol{h} with

- zero reduction in classification error, but
- non-zero reduction in Gini index or entropy.

Comparing notions of uncertainty

It is possible to have a splitting rule h with

- zero reduction in classification error, but
- non-zero reduction in Gini index or entropy.

Comparing notions of uncertainty

It is possible to have a splitting rule h with

- zero reduction in classification error, but
- ▶ non-zero reduction in Gini index or entropy.

Reduction in classification error: $\frac{1}{3} - \left(\frac{2}{3} \cdot \frac{2}{5} + \frac{1}{3} \cdot \frac{1}{5}\right) = 0$ Reduction in Gini index: $\frac{4}{9} - \left(\frac{2}{3} \cdot \frac{12}{25} + \frac{1}{3} \cdot \frac{8}{25}\right) = \frac{4}{225}$

The (Shannon) entropy of \mathcal{Z} -valued random variable Z with is

$$H(Z) := \sum_{z \in \mathcal{Z}} \Pr[Z = z] \log \frac{1}{\Pr[Z = z]}.$$

The (Shannon) **entropy** of \mathcal{Z} -valued random variable Z with is

$$H(Z) := \sum_{z \in \mathcal{Z}} \Pr[Z = z] \log \frac{1}{\Pr[Z = z]}.$$

The conditional entropy of Z given a \mathcal{W} -valued random variable W is

$$H(Z|W) := \sum_{w \in \mathcal{W}} \Pr[W = w] \cdot H(Z|W = w).$$

(Weighted average of entropies of random variables of form Z|W=w.)

The (Shannon) entropy of Z-valued random variable Z with is

$$H(Z) := \sum_{z \in \mathcal{Z}} \Pr[Z = z] \log \frac{1}{\Pr[Z = z]}.$$

The conditional entropy of Z given a \mathcal{W} -valued random variable W is

$$H(Z|W) := \sum_{w \in \mathcal{W}} \Pr[W = w] \cdot H(Z|W = w).$$

(Weighted average of entropies of random variables of form Z|W=w.)

Think of (X,Y) as random pair taking value $(x,y) \in S$ with probability 1/|S|. Using entropy as uncertainty measure, u(S) = H(Y).

The (Shannon) **entropy** of Z-valued random variable Z with is

$$H(Z) := \sum_{z \in \mathcal{Z}} \Pr[Z = z] \log \frac{1}{\Pr[Z = z]}.$$

The conditional entropy of Z given a \mathcal{W} -valued random variable W is

$$H(Z|W) := \sum_{w \in \mathcal{W}} \Pr[W = w] \cdot H(Z|W = w).$$

(Weighted average of entropies of random variables of form Z|W=w.)

Think of (X,Y) as random pair taking value $(x,y) \in S$ with probability 1/|S|. Using entropy as uncertainty measure, u(S) = H(Y).

Reduction in uncertainty after a split $h \colon \mathcal{X} \to \{0,1\}$ is

$$H(Y) - \left(\Pr[h(X) = 0] \cdot H(Y|h(X) = 0) + \Pr[h(X) = 1] \cdot H(Y|h(X) = 1)\right)$$

= $H(Y) - H(Y|h(X))$.

This is called **mutual information** between Y and h(X).

The (Shannon) **entropy** of Z-valued random variable Z with is

$$H(Z) := \sum_{z \in \mathcal{Z}} \Pr[Z = z] \log \frac{1}{\Pr[Z = z]}.$$

The **conditional entropy** of Z given a \mathcal{W} -valued random variable W is

$$H(Z|W) := \sum_{w \in \mathcal{W}} \Pr[W = w] \cdot H(Z|W = w).$$

(Weighted average of entropies of random variables of form Z|W=w.)

Think of (X,Y) as random pair taking value $(x,y) \in S$ with probability 1/|S|. Using entropy as uncertainty measure, u(S) = H(Y).

Reduction in uncertainty after a split $h \colon \mathcal{X} \to \{0,1\}$ is

$$H(Y) - \left(\Pr[h(X) = 0] \cdot H(Y|h(X) = 0) + \Pr[h(X) = 1] \cdot H(Y|h(X) = 1)\right)$$

= $H(Y) - H(Y|h(X))$.

This is called **mutual information** between Y and h(X). More on information theory later in the course.

LIMITATIONS OF UNCERTAINTY NOTIONS

Suppose $\mathcal{X} = \mathbb{R}^2$ and $\mathcal{Y} = \{\text{red}, \text{blue}\}$, and the data is as follows:

Every split of the form $\mathbb{1}\{x_i>t\}$ provides no reduction in uncertainty (whether based on classification error, Gini index, or entropy).

LIMITATIONS OF UNCERTAINTY NOTIONS

Suppose $\mathcal{X} = \mathbb{R}^2$ and $\mathcal{Y} = \{\text{red}, \text{blue}\}$, and the data is as follows:

Every split of the form $\mathbb{1}\{x_i > t\}$ provides no reduction in uncertainty (whether based on classification error, Gini index, or entropy).

Upshot:

Zero reduction in uncertainty is not necessarily a desirable stopping condition.

Basic decision tree learning algorithm

Basic "top-down" greedy algorithm

- ▶ Initially, tree is a single leaf node containing all (training) data.
- ► Loop:
 - \blacktriangleright Pick the leaf ℓ and rule h that maximally reduces uncertainty.
 - ▶ Split data in ℓ using h, and grow tree accordingly.

... until some stopping criterion is satisfied.

[Label of a leaf is the plurality label among the data contained in the leaf.]

Many alternatives; two common choices are:

Many alternatives; two common choices are:

1. Stop when the tree reaches a pre-specified size.

Many alternatives; two common choices are:

1. Stop when the tree reaches a pre-specified size.

Involves setting additional "tuning parameters"—use hold-out or cross-validation.

Many alternatives; two common choices are:

1. Stop when the tree reaches a pre-specified size.

Involves setting additional "tuning parameters"—use hold-out or cross-validation.

2. Stop when every leaf is pure. (More common.)

Many alternatives; two common choices are:

1. Stop when the tree reaches a pre-specified size.

Involves setting additional "tuning parameters"—use hold-out or cross-validation.

2. Stop when every leaf is pure. (More common.)

Serious danger of **overfitting** spurious structure due to sampling.

Many alternatives; two common choices are:

1. Stop when the tree reaches a pre-specified size.

Involves setting additional "tuning parameters"—use hold-out or cross-validation.

2. Stop when every leaf is pure. (More common.)

Serious danger of **overfitting** spurious structure due to sampling.

Many alternatives; two common choices are:

1. Stop when the tree reaches a pre-specified size.

Involves setting additional "tuning parameters"—use hold-out or cross-validation.

2. Stop when every leaf is pure. (More common.)

Serious danger of verfitting spurious structure due to sampling.

Many alternatives; two common choices are:

1. Stop when the tree reaches a pre-specified size.

Involves setting additional "tuning parameters"—use hold-out or cross-validation.

2. Stop when every leaf is pure. (More common.)

Serious danger of overfitting spurious structure due to sampling.

OVERFITTING

- ▶ Training error goes to zero as the number of nodes in the tree increases.
- ► True error decreases initially, but eventually increases due to overfitting.

Preventing overfitting

Split training data S into two parts, S' and S'':

- lacktriangle Use first part S' to grow the tree until all leaves are pure.
- ightharpoonup Use second part S'' to choose a good pruning of the tree.

Preventing overfitting

Split training data S into two parts, S' and S'':

- Use first part S' to grow the tree until all leaves are pure.
- ▶ Use second part S'' to choose a good pruning of the tree.

Pruning algorithm

Loop:

lacktriangle Replace any tree node by a leaf node if it improves the error on S''.

... until no more such improvements possible.

Preventing overfitting

Split training data S into two parts, S' and S'':

- Use first part S' to grow the tree until all leaves are pure.
- ▶ Use second part S'' to choose a good pruning of the tree.

Pruning algorithm

Loop:

- ightharpoonup Replace any tree node by a leaf node if it improves the error on S''.
- ... until no more such improvements possible.

This can be done efficiently using **dynamic programming** (bottom-up traversal of the tree).

Preventing overfitting

Split training data S into two parts, S' and S'':

- Use first part S' to grow the tree until all leaves are pure.
- \blacktriangleright Use second part S'' to choose a good pruning of the tree.

Pruning algorithm

Loop:

- ightharpoonup Replace any tree node by a leaf node if it improves the error on S''.
- ... until no more such improvements possible.

This can be done efficiently using **dynamic programming** (bottom-up traversal of the tree).

Independence of S^\prime and $S^{\prime\prime}$ make it unlikely for spurious structures in each to perfectly align.

EXAMPLE: SPAM FILTERING

Data

- ▶ 4601 e-mail messages, 39.4% are spam.
- $\triangleright \mathcal{Y} = \{\text{spam}, \text{not spam}\}\$
- ▶ E-mails represented by 57 features:
 - ▶ 48: percentange of e-mail words that is specific word (e.g., "free", "business")
 - 6: percentage of e-mail characters that is specific character (e.g., "!").
 - ▶ 3: other features (e.g., average length of ALL-CAPS words).

Results

Using variant of greedy algorithm to grow tree; prune tree using validation set.

Chosen tree has just 17 leaves. Test error is 4.51%.

	$\hat{y} = not \; spam$	$\hat{y} = spam$
$y = not \; spam$	57.3%	4.0%
y = spam	5.3%	33.4%

EXAMPLE: SPAM FILTERING

- Decision trees are very flexible classifiers (like NN).
 - ▶ Certain greedy strategies for training decision trees are **consistent**: $\operatorname{err}(\hat{f}) \to \operatorname{err}(f^*)$ as $n \to \infty$.
 - But also very prone to overfitting in most basic form.
 - ► (NP-hard to find smallest decision tree consistent with data.)

- Decision trees are very flexible classifiers (like NN).
 - ▶ Certain greedy strategies for training decision trees are **consistent**: $\operatorname{err}(\hat{f}) \to \operatorname{err}(f^*)$ as $n \to \infty$.
 - ▶ But also **very prone to overfitting** in most basic form.
 - ► (NP-hard to find smallest decision tree consistent with data.)
- ► Current theoretical understanding of (greedy) decision tree learning:
 - As fitting a non-parametric model (like NN).
 - As meta-algorithm for combining classifiers (splitting rules).

- Decision trees are very flexible classifiers (like NN).
 - ▶ Certain greedy strategies for training decision trees are **consistent**: $\operatorname{err}(\hat{f}) \to \operatorname{err}(f^*)$ as $n \to \infty$.
 - ▶ But also **very prone to overfitting** in most basic form.
 - ► (NP-hard to find smallest decision tree consistent with data.)
- ► Current theoretical understanding of (greedy) decision tree learning:
 - As fitting a non-parametric model (like NN).
 - As meta-algorithm for combining classifiers (splitting rules).
- Basic form of decision trees only uses splitting rules that only look at a single feature—easy to deal with computationally.

- Decision trees are very flexible classifiers (like NN).
 - Certain greedy strategies for training decision trees are **consistent**: $\operatorname{err}(\hat{f}) \to \operatorname{err}(f^*)$ as $n \to \infty$.
 - But also very prone to pverfitting in most basic form.
 - ► (NP-hard to find smallest decision tree consistent with data.)
- ► Current theoretical understanding of (greedy) decision tree learning:
 - As fitting a non-parametric model (like NN).
 - As meta-algorithm for combining classifiers (splitting rules).
- Basic form of decision trees only uses splitting rules that only look at a single feature—easy to deal with computationally.

Next time: how to find simple rules that use several features at a time?