

Design of a Sounding Rocket

Lesson 3: Aerodynamic Design of Sounding rockets

李易 博士

Dr.-Ing LI Yi

School of Astronautics

Forces acting on the rocket

Weight, Thrust, Drag, Lift

Sounding rocket: uncontrolled

Aerodynamic forces: Lift and Drag

Aerodynamic forces: Pressure and Friction

Source: NASA

School of Astronautics

Earth Atmosphere

1. The missions of aerodynamic design

Sounding rocket: uncontrolled

- Stable flight
- Protect the rocket from aerodynamic loads, heating loads...
- Low cost (low drag)

Normal configurations of sounding rocket

Pressure Distribution Around a Rocket

Source: Rønningen

School of Astronautics

Center of Pressure

Center of Pressure is the average location of the pressure. Pressure varies around the surface of an object. P = P(x)

$$C_p = \frac{\int x \cdot p(x) \cdot dx}{\int p(x) \cdot dx}$$

Aerodynamic force acts through the center of pressure.

Center of pressure moves with angle of attack.

Source: NASA

Determine Center of Pressure

Each component has some area a_i located some distance d_i from reference line.

Distance *cp* times the area A equals the sum of the component distance times area.

$$cp \mathbf{A} = d_n a_n + d_b a_b + d_f a_f$$

Head configurations

Drag: Wave drag and friction drag

Head: conic or parabolic

More L/D (length/diameter) less drag

Subsonic flight: parabolic head is preferred

Supersonic flight: conic head is prefered

Head configurations

For supersonic flight, skin friction drag and base drag are relatively small. Supersonic drag is dominated by the drag due to the shock wave on the nose.

$$(CD_0)_{Body,Wave} = 3.6/[(l_N/d)(M-1)+3]$$

 $\begin{array}{l} (\ C_{D_0}\)_{Body,\,Wave} = 3.6\ /\ [(\ I_N\ /\ d\)\ (\ M\ -1\) + 3\], \ if\ M\ > 1\ and\ (\ C_{D_0}\)_{Body,\,Wave} = 0, \ if\ M\ < 1\ \\ (\ C_{D_0}\)_{Base,Coast} = 0.25\ /\ M, \ if\ M\ > 1\ and\ (\ C_{D_0}\)_{Base,Coast} = (\ 0.12\ +\ 0.13\ M^2\), \ if\ M\ < 1\ \\ (\ C_{D_0}\)_{Base,Powered} = (\ 1\ -\ A_e\ /\ S_{ref}\)\ (\ 0.12\ +\ 0.13\ M^2\), \ if\ M\ < 1\ \\ (\ C_{D_0}\)_{Base,Powered} = (\ 1\ -\ A_e\ /\ S_{ref}\)\ (\ 0.12\ +\ 0.13\ M^2\), \ if\ M\ < 1\ \\ (\ C_{D_0}\)_{Body,Friction} = 0.053\ (\ I\ /\ d\)\ [\ M\ /\ (\ q\ I\)]^{0.2} \\ (\ C_{D_0}\)_{Body,Friction} = 0.053\ (\ I\ /\ d\)\ [\ M\ /\ (\ q\ I\)]^{0.2} \\ (\ C_{D_0}\)_{Body,Wave} = (\ C_{D_0}\)_{Base} + (\ C_{D_0}\)_{Body,Friction} \\ Note: (\ C_{D_0}\)_{Body,Wave} = body\ zero-lift\ drag\ coefficient,\ (\ C_{D_0}\)_{Base} = body\ base\ drag\ coefficient,\ (\ C_{D_0}\)_{Body,Friction} = body\ skin\ friction\ drag\ coefficient,\ (\ C_{D_0}\)_{Body} = body\ zero-lift\ drag\ coefficient,\ i_N = nose\ length,\ d\ =\ missile\ diameter,\ i\ =\ missile\ body\ length,\ A_e\ =\ nozzle\ exit\ area,\ S_{Ref}\ =\ reference\ area,\ q\ =\ dynamic\ pressure \\ \end{array}$

Example for Rocket Baseline:

$$\begin{array}{c} (\ C_{D_0})_{Body,\,Wave} & (\ C_{D_0})_{Body,\,Friction} & (\ C_{D_0})_{Base} \\ \hline \\ f_N = I_N / d = 2.4,\, A_e = 11.22\,in^2,\, S_{ref} = 50.26\,in^2,\, M = 2,\, h = 20K\,ft,\, q = 2725\,psf,\, I / d = 18,\, I = 12\,ft \\ (\ C_{D_0})_{Body,\,Wave} = 3.6 / [\,2.4\,(\,2\,-1\,)\,+\,3] = 0.67 \\ (\ C_D)_{Base\,\,Coast} = 0.25 / 2 = 0.13 \\ (\ C_D)_{Base\,\,Coast} = 0.25 / 2 = 0.13 \\ (\ C_D)_{Base\,\,Powered} = (\,1\,-\,\,0.223\,)\,(\,0.25\,/\,2\,) = 0.10 \\ (\ C_{D_0})_{Body,\,\,Friction} = 0.053\,(\,18\,)\,\{\,(\,2\,)\,/\,[(\,2725\,)\,(\,12\,)\,]\}^{0.2} = 0.14 \\ (\ C_{D_0})_{Body,\,\,Coast} = 0.67\,+\,0.13\,+\,0.14 = 0.94 \\ (\ C_{D_0})_{Body,\,\,Powered} = 0.67\,+\,0.10\,+\,0.14 = 0.91 \\ \hline \end{array}$$

The shape of an object has a very great effect on the amount of drag.

NORTHWESTERN POLYTECHNICAL UNIVERSITY

C_D Values for Various Nose Designs

Cd for different nose design (subsonic velocity) and zero alpha:

Tail configurations

Fins: ensure the stability

Fins: ensure the stability

3. Computation of Aerodynamics

- Engineering method (Datcom)
- Navier-Stokes
 - Potential flow
 - Euler flow
 - Turbulent flow