CLAIMS

What is claimed is:

1. A compound of Formula (I), (II), (III), (IV), (V), (VI), (VII) or (VIII), or a pharmaceutically acceptable salt thereof;

wherein the compound of Formula (I) is:

$$\begin{array}{c}
R^1 \\
(R^1)_{1-4} \\
C \\
Z^1 \\
Y^1 \\
X^5 \\
a \\
X^1
\end{array}$$

I

wherein:

15

20

25

5

when side b is a double bond, and sides a and c are single bonds, $-X^1-Y^1-Z^1$ is:

(a)
$$-CR^4(R^5)-CR^5(R^{5'})-CR^4(R^5)-$$
;

(b)
$$-C(O)-CR^4(R^{4})-CR^5(R^{5})-$$
;

(c)
$$-CR^4(R^{4})-CR^5(R^{5})-C(O)$$
-;

(d)
$$-(CR^5(R^{5}))_k$$
-O-C(O)-;

(e) -C(O)-O-(
$$CR^5(R^{5_1}))_{k^-}$$
;

(f) -
$$CR^4(R^{4})$$
- NR^3 - $CR^5(R^{5})$ -;

(h)
$$-CR^4 = CR^4 - S$$
-;

(i)
$$-S-CR^4=CR^{4}$$
;-;

$$(j)$$
 -S-N=CR⁴-;

(k)
$$-CR^4 = N-S-$$
;

(1)
$$-N=CR^4-O-$$
;

$$(m)$$
 -O-CR⁴=N-;

(n)
$$-NR^3-CR^4=N-$$
:

(o)
$$-N=CR^4-S-$$
;

```
(p) -S-CR^4=N-;
```

- (q) $-C(O)-NR^3-CR^{5}(R^{5})-$;
- $(r) R^3 N CR^5 = C R^{5}$
- (s) $-CR^4 = CR^5 NR^3 -$;
- (t) $-O-N=CR^4-$;
- (u) $-CR^4 = N O -$;
- (v) -N=N-S-;
- (w) -S-N=N-;
- $(x) N = CR^4 NR^3$;
- 10 $(y) R^3 N N = N ;$

15

20

25

- $(z) -N=N-NR^3-;$
- (aa) $-CR^4(R^{4'})-O-CR^5(R^{5'})-$;
- (bb) $-CR^4(R^{4'})-S-CR^5(R^{5'})-$;
- (cc) $-CR^4(R^{4'})-C(O)-CR^5(R^{5'})-$;
- (dd) $-CR^4(R^{4'})-CR^5(R^{5'})-C(S)$ -;
- (ee) $-(CR^5(R^{5}))_k$ -O-C(S)-;
- (ff) -C(S)-O-($(CR^5(R^{5}))_k$ -;
- $(gg) (CR^{5}(R^{5}))_{k} NR^{3} C(S) -;$
- (hh) $-C(S)-NR^3-(CR^5(R^5))_{k-}$;
- (ii) $-(CR^5(R^{5}))_k$ -S-C(O)-;
- (jj) -C(O)-S-($CR^5(R^{5})$)_k-;
- (kk) -O-CR⁴=CR⁵-;
- (ll) $-CR^4 = CR^5 O$ -;
- $(mm) C(O) NR^3 S -;$
- (nn) -S-NR³-C(O)-;
- $(00) C(O) NR^3 O$ -;
- $(pp) O NR^3 C(O) -;$
- $(qq) NR^3 CR^4 = CR^5 -;$
- $(rr) CR^4 = N NR^3$
- (ss) $-NR^3-N=CR^4-$;
 - (tt) $-C(O)-NR^3-NR^3-$;

```
(uu) -NR^3-NR^3-C(O)-;
                         (vv) -C(O)-O-NR<sup>3</sup>-;
                         (ww) -NR^3 -O-C(O)-;
                         (xx) - O - CR^4 R^{4'} - C(S) -;
                         (zz) - O - CR^4R^{4'} - C(O) -;
 5
                         (aaa) -C(S)-CR^4R^{4'}-O; or
                         (yy) -C(O)-CR<sup>4</sup>R<sup>4</sup>'-O-;
                 when sides a and c are double bonds and side b is a single bond, -X^1-Y^1-Z^1 is:
                         (a) =CR^4-O-CR^5=;
                         (b) =CR^4-NR^3-CR^5=:
10
                         (c) =N-S-CR^4=;
                         (d) =CR^4-S-N=;
                         (e) =N-O-CR^4=;
                         (f) = CR^4 - O - N = ;
                         (g) = N-S-N=;
15
                         (h) = N-O-N=;
                         (i) =N-NR^3-CR^4=;
                         (i) = CR^4 - NR^3 - N = 
                         (k) = N - NR^3 - N = ;
                         (1) =CR^4-S-CR^5=; or
20
                         (m) = CR^4 - CR^4(R^4) - CR^5 = 
                 R<sup>1</sup> is:
                         (a) -S(O)_2-CH_3;
                         (b) -S(O)_2-NR^8(D^1);
                         (c) -S(O)_2-N(D^1)-C(O)-CF_3;
25
                         (d) -S(O)-(NH)-NH(D^1);
                         (e) -S(O)-(NH)-N(D^1)-C(O)-CF_3;
                         (f) -P(O)(CH_3)NH(D^1);
                         (g) -P(O)(CH_3)_2;
                         (h) -C(S)-NH(D^1);
30
                         (i) -S(O)(NH)CH<sub>3</sub>;
```

```
(j) -P(O)(CH_3)OD^1; or
                          (k) -P(O)(CH_3)NH(D^1);
                 R<sup>1'</sup> at each occurrence is independently:
                          (a) hydrogen;
                          (b) halogen;
 5
                          (c) methyl; or
                          (d) CH<sub>2</sub>OH;
                 R<sup>2</sup> is:
                          (a) lower alkyl;
10
                          (b) cycloalkyl;
                          (c) mono-, di- or tri-substituted phenyl or naphthyl, wherein the substituents are
         each independently:
                                   (1) hydrogen;
                                   (2) halo;
                                   (3) alkoxy;
15
                                   (4) alkylthio;
                                   (5) CN;
                                   (6) haloalkyl, preferably CF<sub>3</sub>;
                                   (7) lower alkyl;
20
                                   (8) N_3;
                                   (9) - CO_2D^1;
                                   (10) -CO<sub>2</sub>-lower alkyl;
                                   (11) - (C(R^5)(R^6))_z - OD^1;
                                   (12) –(C(R^5)(R^6))_z-O-lower alkyl;
                                   (13) lower alkyl-CO<sub>2</sub>-R<sup>5</sup>;
25
                                   (14) - OD^1;
                                   (15) haloalkoxy;
                                   (16) amino;
                                   (17) nitro;
                                   (18) alkylsulfinyl; or
30
                                   (19) heteroaryl;
```

	optionally, 1, 2, or 3 additional N atoms; or the heteroaryl is a monocyclic ring of 6 atoms, said
	ring having one heteroatom which is N, and, optionally, 1, 2, 3, or 4 additional N atoms; wherein
5	the substituents are each independently:
	(1) hydrogen;
	(2) halo;
	(3) lower alkyl;
	(4) alkoxy;
10	(5) alkylthio;
	(6) CN;
	(7) haloalkyl, preferably CF ₃ ;
	(8) N_3 ;
	(9) $-C(R^5)(R^6)-OD^1$;
15	(10) $-C(R^5)(R^6)$ -O-lower alkyl; or
	(11) alkylsulfinyl;
	(e) benzoheteroaryl which includes the benzo fused analogs of (d);
	(f) $-NR^{10}R^{11}$;
	(g) $-SR^{11}$;
20	(h) -OR ¹¹ ;
	(i) -R ¹¹ ;
	(j) alkenyl;
	(k) alkynyl;
	(l) unsubstituted, mono-, di-, tri- or tetra-substituted cycloalkenyl, wherein the
25	substituents are each independently:
	(1) halo;
	(2) alkoxy;
	(3) alkylthio;
	(4) CN;
30	(5) haloalkyl, preferably CF ₃ ;
	(6) lower alkyl;

(d) mono-, di- or tri-substituted heteroaryl, wherein the heteroaryl is a

monocyclic aromatic ring of 5 atoms, said ring having one heteroatom which is S, O, or N, and,

independently: (1) hydrogen; (2) halo; (3) lower alkyl; (4) alkoxy; 5 (5) alkylthio; (6) CN; (7) haloalkyl, preferably CF₃; $(8) N_3;$ (9) $-C(R^5)(R^6)-OD^1$; or 10 (10) $-C(R^5)(R^6)$ -O-lower alkyl; (r) K; (s) aryl; (t) arylalkyl; (u) cycloalkylalkyl; 15 $(v) - C(O)R^{11};$ (u) hydrogen; (v) arylalkenyl; (w) arylalkoxy; (x) alkoxy; 20 (y) aryloxy; (z) cycloalkoxy; (aa) arylthio; (bb) alkylthio; 25 (cc) arylalkylthio; or (dd) cycloalkylthio; R³ is: (a) hydrogen; (b) haloalkyl, preferably CF₃;

(c) CN;

(d) lower alkyl;

	(e) $-(C(R_e)(R_f))_p$ -U-V;
	(f) K;
	(g) unsubstituted or substituted:
	(1) lower alkyl-Q;
5	(2) lower alkyl-O- lower alkyl-Q;
	(3) lower alkyl-S-lower alkyl-Q;
	(4) lower alkyl-O-Q;
	(5) lower alkyl-S-Q;
	(6) lower alkyl-O-V;
10	(7) lower alkyl-S-V;
	(8) lower alkyl-O-K; or
	(9) lower alkyl-S-K;
	wherein the substituent(s) reside on the lower alkyl group;
	(h) Q;
15	(i) alkylcarbonyl;
	(j) arylcarbonyl;
	(k) alkylarylcarbonyl;
	(l) arylalkylcarbonyl;
	(m) carboxylic ester;
20	(n) carboxamido;
	(o) cycloalkyl;
	(p) mono-, di- or tri-substituted phenyl or naphthyl, wherein the substituents are
ea	ach independently:
	(1) hydrogen;
25	(2) halo;
	(3) alkoxy;
	(4) alkylthio;
	(5) CN;
	(6) haloalkyl, preferably CF ₃ ;
30	(7) lower alkyl;
	(8) N_3 ;

```
(9) - CO_2D^1;
                                   (10) -CO<sub>2</sub>-lower alkyl;
                                   (11) - (C(R^5)(R^6))_z - OD^1;
                                   (12) –(C(R^5)(R^6))_z-O-lower alkyl;
                                   (13) lower alkyl-CO<sub>2</sub>-R<sup>5</sup>;
 5
                                   (14) - OD^1;
                                   (15) haloalkoxy;
                                   (16) amino;
                                   (17) nitro; or
                                   (18) alkylsulfinyl;
10
                          (q) alkenyl;
                          (r) alkynyl;
                          (s) arylalkyl;
                          (t) lower alkyl-OD<sup>1</sup>;
                          (u) alkoxyalkyl;
15
                          (v) aminoalkyl;
                          (w) lower alkyl-CO<sub>2</sub>R<sup>10</sup>;
                          (x) lower alkyl-C(O)NR^{10}(R^{10'});
                          (y) heterocyclicalkyl; or
                          (z) heterocyclic ring-C(O)-;
20
             R^4, R^4, R^5 and R^5 are each independently:
                          (a) hydrogen;
                          (b) amino;
                          (c) CN;
                          (d) lower alkyl;
25
                          (e) haloalkyl;
                          (f) alkoxy;
                          (g) alkylthio;
                          (h) Q;
30
                          (i) -O-Q;
                          (j) -S-Q;
```

	(k) K;
	(l) cycloalkoxy;
	(m) cycloalkylthio;
	(n) unsubstituted, mono-, or di-substituted phenyl or unsubstituted, mono-, or di-
5	substituted benzyl, wherein the substituents are each independently:
	(1) halo;
	(2) lower alkyl;
	(3) alkoxy;
	(4) alkylthio;
10	(5) CN;
	(6) haloalkyl, preferably CF ₃ ;
	(7) N_3 ;
	(8) Q;
	(9) nitro; or
15	(10) amino;
	(o) unsubstituted, mono-, or di-substituted heteroaryl or unsubstituted, mono-, or
	di-substituted heteroarylmethyl, wherein the heteroaryl is a monocyclic aromatic ring of 5 atoms,
	said ring having one heteroatom which is S, O, or N, and, optionally, 1, 2, or 3 additional N
	atoms; or the heteroaryl is a monocyclic ring of 6 atoms, said ring having one heteroatom which
20	is N, and, optionally, 1, 2, 3, or 4 additional N atoms; said substituents are each independently:
	(1) halo;
	(2) lower alkyl;
	(3) alkoxy;
	(4) alkylthio;
25	(5) CN;
	(6) haloalkyl, preferably CF ₃ ;
	(7) N_3 ;
	$(8) - C(R^6)(R^7) - OD^1;$
	(9) $-C(R^6)(R^7)$ -O-lower alkyl; or
30	(10) alkylsulfinyl
	$(p) - CON(R^8)(R^8);$

	(q) -CH ₂ OR ⁸ ;
	(r) -CH ₂ OCN;
	(s) unsubstituted or substituted:
	(1) lower alkyl-Q;
5	(2) -O-lower alkyl-Q;
	(3) -S-lower alkyl-Q;
	(4) lower alkyl-O-lower alkyl-Q;
	(5) lower alkyl-S-lower alkyl-Q;
	(6) lower alkyl-O-Q;
10	(7) lower alkyl-S-Q;
	(8) lower alkyl-O-K;
	(9) lower alkyl-S-K;
	(10) lower alkyl-O-V; or
	(11) lower alkyl-S-V;
15	wherein the substituent(s) resides on the lower alkyl;
	(t) cycloalkyl;
	(u) aryl;
	(v) arylalkyl;
	(w) cycloalkylalkyl;
20	(x) aryloxy;
	(y) arylalkoxy;
	(z) arylalkylthio;
	(aa) cycloalkylalkoxy;
	(bb) heterocycloalkyl;
25	(cc) alkylsulfonyloxy;
	(dd) alkylsulfonyl;
	(ee) arylsulfonyl;
	(ff) arylsulfonyloxy;
	(gg) -C(O)R ¹⁰ ;
30	(hh) nitro;
	(ii) amino;

	(jj) aminoalkyl;
	(kk) -C(O)-alkyl-heterocyclic ring;
	(ll) halo;
	(mm) heterocyclic ring;
5	(nn) -CO ₂ D ¹ ;
	(oo) carboxyl;
	(pp) amidyl; or
	(qq) alkoxyalkyl;
	alternatively, R ⁴ and R ⁵ together with the carbons to which they are attached are:
10	(a) cycloalkyl;
	(b) aryl; or
	(c) heterocyclic ring;
	alternatively, R ⁴ and R ⁴ or R ⁵ and R ⁵ taken together with the carbon to which they are
	attached are:
15	(a) cycloalkyl; or
	(b) heterocyclic ring;
	alternatively, R ⁴ and R ⁵ , R ⁴ and R ⁵ , R ⁴ and R ⁵ , or R ⁴ and R ⁵ when substituents on adjacent
	carbon atoms taken together with the carbons to which they are attached are:
	(a) cycloalkyl;
20	(b) heterocyclic ring; or
	(c) aryl;
	R ⁶ and R ⁷ are each independently:
	(a) hydrogen;
	(b) unsubstituted, mono- or di-substituted phenyl; unsubstituted, mono- or di-
25	substituted benzyl; unsubstituted, mono- or di-substituted heteroaryl; mono- or di-substituted
	heteroarylmethyl, wherein said substituents are each independently:
	(1) halo;
	(2) lower alkyl;
	(3) alkoxy;
30	(4) alkylthio;
	(5) CN;

```
(6) haloalkyl, preferably CF<sub>3</sub>;
                                       (7) N_3;
                                      (8) - C(R^{14})(R^{15}) - OD^1; or
                                      (9) -C(R^{14})(R^{15})-O-lower alkyl;
                             (c) lower alkyl;
 5
                             (d) -CH_2OR^8;
                             (e) CN;
                             (f) -CH<sub>2</sub>CN;
                             (g) haloalkyl, preferably fluoroalkyl;
                             (h) -CON(R^8)(R^8);
10
                             (i) halo; or
                             (j) -OR^8;
                   R<sup>8</sup> is:
                             (a) hydrogen;
15
                             (b) K; or
                             (c) R^9;
                    alternatively, R<sup>5</sup> and R<sup>5</sup>, R<sup>6</sup> and R<sup>7</sup> or R<sup>7</sup> and R<sup>8</sup> together with the carbon to which they
          are attached form a saturated monocyclic ring of 3, 4, 5, 6 or 7 atoms; optionally containing up to
          two heteroatoms selected from oxygen, S(O)<sub>0</sub> or NR<sub>i</sub>;
                    R<sup>9</sup> is:
20
                             (a) lower alkyl;
                             (b) lower alkyl-CO<sub>2</sub>D<sup>1</sup>;
                             (c) lower alkyl-NHD<sup>1</sup>;
                             (d) phenyl or mono-, di- or tri-substituted phenyl, wherein the substituents are
           each independently:
25
                                       (1) halo;
                                       (2) lower alkyl;
                                       (3) alkoxy;
                                       (4) alkylthio;
                                       (5) lower alkyl-CO<sub>2</sub>D<sup>1</sup>;
30
                                       (6) lower alkyl-NHD<sup>1</sup>;
```

	(/) CN;
	(8) CO_2D^1 ; or
	(9) haloalkyl, preferably fluoroalkyl;
	(e) benzyl, mono-, di- or tri-substituted benzyl, wherein the substituents are each
5	independently:
	(1) halo;
	(2) lower alkyl;
	(3) alkoxy;
	(4) alkylthio;
10	(5) lower alkyl-CO ₂ D ¹ ;
	(6) lower alkyl-NHD ¹ ;
	(7) CN;
	(8) $-CO_2D^1$; or
	(9) haloalkyl, preferably CF ₃ ;
15	(f) cycloalkyl;
	(g) K; or
	(h) benzoyl, mono-, di-, or trisubstituted benzoyl, wherein the substituents are
	each independently:
	(1) halo;
20	(2) lower alkyl;
	(3) alkoxy;
	(4) alkylthio;
	(5) lower alkyl- CO_2D^1 ;
	(6) lower alkyl-NHD ¹ ;
25	(7) CN;
	(8) $-CO_2D^1$; or
	(9) haloalkyl, preferably CF ₃ ;
	R^{10} and R^{10} , are each independently:
	(a) hydrogen; or
30	(b) R^{11} ;
	R ¹¹ is:

	(b) cycloalkyl;
	(c) unsubstituted, mono-, di- or tri-substituted phenyl or naphthyl, wherein the
	substituents are each independently:
5	(1) halo;
	(2) alkoxy;
	(3) alkylthio;
	(4) CN;
	(5) haloalkyl, preferably CF ₃ ;
10	(6) lower alkyl;
	$(7) N_3;$
	(8) $-CO_2D^1$;
	(9) -CO ₂ -lower alkyl;
	$(10) - C(R^{12})(R^{13}) - OD^1;$
15	(11) $-C(R^{12})(R^{13})$ -O-lower alkyl;
	(12) lower alkyl- CO_2D^1 ;
	(13) lower alkyl- CO_2R^{12} ;
	(14) benzyloxy;
	(15) -O-(lower alkyl)- CO_2D^1 ;
20	(16) -O-(lower alkyl)- CO_2R^{12} ; or
	(17) -O-(lower alkyl)- $NR^{12}R^{13}$;
	(d) unsubstituted, mono-, di- or tri-substituted heteroaryl, wherein the heteroaryl
	is a monocyclic aromatic ring of 5 atoms, said ring having one heteroatom which is S, O, or N,
	and, optionally, 1, 2, or 3 additional N atoms; or said heteroaryl is a monocyclic ring of 6 atoms
25	said ring having one heteroatom which is N, and, optionally 1, 2, or 3 additional N atoms, and
	wherein said substituents are each independently:
	(1) halo;
	(2) lower alkyl;
	(3) alkoxy;
30	(4) alkylthio;
	(5) CN;

(a) lower alkyl;

	$(7) N_3;$
	(8) $-C(R^{12})(R^{13})-OD^1$; or
	(9) $-C(R^{12})(R^{13})$ -O-lower alkyl;
5	(e) unsubstituted, mono- or di-substituted benzoheterocycle, wherein the
	benzoheterocycle is a 5, 6, or 7-membered ring which contains 1 or 2 heteroatoms independently
	selected from O, S, or N, and, optionally, a carbonyl group or a sulfonyl group, wherein said
	substituents are each independently:
	(1) halo;
10	(2) lower alkyl;
	(3) alkoxy;
	(4) alkylthio;
	(5) CN;
	(6) haloalkyl, preferably CF ₃ ;
15	(7) N_3 ;
	(8) $-C(R^{12})(R^{13})-OD^1$; or
	(9) $-C(R^{12})(R^{13})$ -O-lower alkyl;
	(f) unsubstituted, mono- or di-substituted benzocarbocycle, wherein the
	carbocycle is a 5, 6, or 7-membered ring which optionally contains a carbonyl group, wherein
20	said substituents are each independently:
	(1) halo;
	(2) lower alkyl;
	(3) alkoxy;
	(4) alkylthio;
25	(5) CN;
	(6) haloalkyl, preferably CF ₃ ;
	$(7) N_3;$
	(8) $-C(R^{12})(R^{13})-OD^1$; or
	(9) $-C(R^{12})(R^{13})$ -O-lower alkyl;
30	(g) hydrogen; or
	(h) K

(6) haloalkyl, preferably CF₃;

```
R<sup>12</sup> and R<sup>13</sup> are each independently:
                           (a) hydrogen;
                           (b) lower alkyl; or
                           (c) aryl; or
                  R^{12} and R^{13} together with the atom to which they are attached form a saturated
5
         monocyclic ring of 3, 4, 5, 6 or 7 atoms;
                  R^{14} and R^{15} are each independently :
                           (a) hydrogen; or
                           (b) lower alkyl; or
                  R^{14} and R^{15} together with the atom to which they are attached form a carbonyl, a thial, or
10
         a saturated monocyclic ring of 3, 4, 5, 6 or 7 atoms;
                  Q is:
                           (a) -C(O)-U-D^1;
                           (b) -CO<sub>2</sub>-lower alkyl;
                           (c) tetrazolyl-5-yl;
15
                           (d) -C(R^7)(R^8)(S-D^1);
                           (e) -C(R^7)(R^8)(O-D^1); or
                           (f) -C(R^7)(R^8) (O-lower alkyl);
                  X<sup>5</sup> is:
                           (a) -(CR^{31}R^{32})_a-;
20
                           (b) -(CR^{31}R^{32})_{bb}-A^{1}-;
                           (c) -A^1-(CR^{31}R^{32})_{bb}:
                           (d) -CR^{31}R^{32}-A^1-CR^{31}R^{32}-:
                           (e) -CR^{31}=; or
                           (f) -A^{1};
25
                  A<sup>1</sup> is:
                           (a) oxygen;
                           (b) thio;
                           (c) sulfinyl;
                           (d) sulfonyl; or
30
                           (c) -N(R^{33})-;
```

	R ³¹ and R ³² are each independently
	(a) hydrogen;
	(b) lower alkyl;
	(c) substituted lower alkyl
5	(d) lower alkoxy;
	(e) lower haloalkyl; or
	(f) halo; or
	R ³¹ and R ³² taken together are;
	(a) oxo;
10	(b) thial;
	(c) oxime; or
	(d) hydrazone;
	R ³³ is:
	(a) lower alkyl;
15	(b) hydrogen; or
	(c) -C(O)H;
	a is an integer equal to 1 or 3;
	bb is an integer equal to 2 or 3;
	D ¹ is:
20	(a) hydrogen or
	(b) D;
	D is:
	(a) V; or
	(b) K;
25	U is:
	(a) oxygen;
	(b) sulfur; or
	$(c) -N(R_a)(R_i)-;$
	V is:
30	(a) -NO;
	(b) $-NO_2$; or

(c) hydrogen

K is $-W_{aa}-E_b-(C(R_e)(R_f))_p-E_c-(C(R_e)(R_f))_x-W_d-(C(R_e)(R_f))_y-W_i-E_j-W_g-(C(R_e)(R_f))_z-U-V;$ wherein aa, b, c, d, g, i and j are each independently an integer from 0 to 3;

p, x, y and z are each independently an integer from 0 to 10;

W at each occurrence is independently:

- (a) -C(O)-;
- (b) -C(S)-;
- (c) -T-;

5

10

15

20

25

30

- (d) $-(C(R_e)(R_f))_h$ -;
- (e) alkyl;
- (f) aryl;
- (g) heterocyclic ring;
- (h) arylheterocyclic ring, or
- (i) $-(CH_2CH_2O)_q$ -;

E at each occurrence is independently a -T- group, an alkyl group, an aryl group, a heterocyclic ring, $-(C(R_e)(R_f))_{h^-}$, an arylheterocyclic ring or $-(CH_2CH_2O)_q$ -;

h is an integer form 1 to 10;

q is an integer from 1 to 5;

 R_e and R_f are each independently a hydrogen, an alkyl, a cycloalkoxy, a halogen, a hydroxy, an hydroxyalkyl, an alkoxyalkyl, an arylheterocyclic ring. a cycloalkylalkyl, a heterocyclicalkyl, an alkoxy, a haloalkoxy, an amino, an alkylamino, a dialkylamino, an arylamino, a diarylamino, an alkylarylamino, an alkoxyhaloalkyl, a haloalkoxy, a sulfonic acid, a sulfonic ester, an alkylsulfonic acid, an arylsulfonic acid, an arylalkoxy, an alkylthio, an arylthio, a cyano, an aminoalkyl, an aminoaryl, an aryl, an arylalkyl, a carboxamido, a alkylcarboxamido, an arylcarboxamido, an amidyl, a carboxyl, a carbamoyl, an alkylcarboxylic acid, an arylcarboxylic acid, an alkylcarboxylic ester, an alkylcarboxylic ester, an arylcarboxylic ester, a haloalkoxy, a sulfonamido, an alkylsulfonamido, an alkylsulfonyl, an alkylsulfonyloxy, a urea, a nitro, -T-Q'-, or $-(C(R_g)(R_h))_k$ -T-Q' or R_e and R_f taken together are an oxo, a thial, a heterocyclic ring, a cycloalkyl group, an oxime, a hydrazone or a bridged cycloalkyl group;

Q' is -NO or -NO₂;

k is an integer from 1 to 3;

T is independently a covalent bond, a carbonyl, an oxygen, $-S(O)_0$ - or $-N(R_a)R_i$ -, o is an integer from 0 to 2,

Ra is a lone pair of electrons, a hydrogen or an alkyl group;

 R_i is a hydrogen, an alkyl, an aryl, an alkylcarboxylic acid, an arylcarboxylic acid, an alkylcarboxylic ester, an arylcarboxylic ester, an alkylcarboxamido, an arylcarboxamido, an alkylsulfinyl, an alkylsulfonyloxy, an arylsulfinyl, an arylsulfonyloxy, an arylsulfonyloxy, an arylsulfonyl, a sulfonamido, a carboxamido, a carboxylic ester, an aminoalkyl, an aminoaryl, $-OR'_i$, $-CH_2-C(T-Q')(R_g)(R_h)$, a bond to an adjacent atom creating a double bond to that atom or $-(N_2O_2-)^*\bullet M^+$, wherein M^+ is an organic or inorganic cation; with the proviso that when R_i is $-CH_2-C(T-Q')(R_g)(R_h)$ or $-(N_2O_2-)\bullet M^+$; then "-T-Q'" can be a hydrogen, an alkyl group, an alkoxyalkyl group, an aminoalkyl group, a hydroxy group or an aryl group;

R_g and R_h at each occurrence are independently R_e;

R'i is independently selected from Ri;

wherein the compound of Formula (II) is:

$$R^1$$
 $(R^1)_{1-4}$
 R^2
 A
 g
 Z^2
 f
 Y^2
 e
 d
 X^2

wherein:

5

10

15

20

25

A-B is:

- (a) N-C;
- (b) C-N; or
- (c) N-N;

when A-B is N-C, sides d and f are double bonds, and sides e and g are single bonds,

 Π

$-X^2-Y^2-Z^2$ is:

5

15

20

25

30

(a) =
$$CR^4$$
- CR^4 '= CR^5 -;

(b) =
$$N-CR^4=CR^{4}$$
;

(c) =
$$N-CR^4=N-$$
;

(d) =
$$CR^4$$
-N= CR^4 '-;

(e)
$$=CR^4-N=N-$$
:

$$(f) = N - N = CR^4 -;$$

$$(g) = N-N=N-; or$$

(h) =
$$CR^4$$
- CR^5 = N -;

when A-B is C-N, sides e and g are double bonds, and sides d and f are single bonds, $-X^2-Y^2-Z^2-$ is:

(a)
$$-CR^4 = N - N =$$
;

(b)
$$-N=N-CR^4=$$
;

(c)
$$-CR^4 = N - CR^4 = :$$

(d)
$$-N=CR^4-N=$$
:

(e)
$$-CR^4 = CR^4 - N =$$
;

(f)
$$-N=CR^4-CR^5=$$
:

(g)
$$-CR^4 = CR^5 - CR^{5'} =$$
; or

(h)
$$-N=N-N=$$
;

when A-B is C-N, side g is a double bond, and sides d, e and f are single bonds, $-X^2-Y^2-Z^2$ is:

(a)
$$-C(O)-O-CR^4=$$
;

(b)
$$-C(O)-NR^3-CR^4=$$
;

(c)
$$-C(O)-S-CR^4=$$
; or

(d)
$$-C(H)R^4-C(OH)R^5-N=$$
;

when A-B is N-C, sides d is a double bond, and sides e, f and g are single bonds, $-X^2-Y^2-Z^2$ - is:

(a)
$$=CR^4-O-C(O)-;$$

(b)
$$=CR^4-NR^3-C(O)-;$$

(c) =
$$CR^4$$
-S-C(O)-; or

(d) =N-C(OH)
$$R^4$$
-C(H) R^5 -;

when sides f is a double bond, and sides d, e and g are single bonds,

$$-X^2-Y^2-Z^2$$
 is:

(a)
$$-CH(R^4)-CR^5=N-$$
; or

(b)
$$-C(O)-CR^4=CR^5-$$
;

when sides e is a double bond, and sides d, f and g are single bonds,

$$-X^2-Y^2-Z^2$$
 is:

5

10

15

(a)
$$-N=CR^4-CH(R^5)$$
-; or

(b)
$$-CR^4 = CR^5 - C(O)$$
-;

when sides d, e, f and g are single bonds,

$$-X^2-Y^2-Z^2$$
 is:

(a)
$$-C(O)-CR^4(R^4)-C(O)$$
; and

with the proviso that when A-B is C-N, then X⁵ must be -(CR³¹R³²)_a or -(CR³¹R³²)_{bb}-A¹; and wherein R¹, R¹, R², R³, R⁴, R⁴, R⁵, R⁵, X⁵ A¹, R³¹, R³², a and bb are as defined herein; wherein the compound of Formula (III) is:

$$R^{1}$$
 $(R^{1})_{1-4}$
 Y^{3}
 R^{2}
 X^{6}
 X^{3}

Ш

20

25

wherein:

 X^3 is:

- (a) $-C(O)-U-D^1$;
- (b) $-CH_2-U-D^1$;
- (c) -CH₂-C(O)-CH₃;
- (d) $-CH_2-CH_2-C(O)-U-D^1$;

```
(e) -CH_2-O-D^1;
                           (f) -C(O)H or
                            (g) - C(O) - U - R^{12};
                  Y<sup>3</sup> is:
                            (a) -(CR^5(R^{5}))_k-U-D^1;
 5
                            (b) -CH<sub>3</sub>;
                            (c) -CH<sub>2</sub>OC(O)R<sup>6</sup>; or
                            (d) -C(O)H;
                  R^{82}, R^{82'}, R^{83} and R^{83'} are each independently:
                            (a) hydrogen;
10
                            (b) hydroxy;
                            (c) alkyl;
                            (d) alkoxy;
                            (e) lower alkyl-OD<sup>1</sup>;
                            (f) alkylthio;
15
                            (g) CN;
                            (h) -C(O)R<sup>84</sup>; or
                            (i) -OC(O)R^{85};
                   R<sup>84</sup> is:
20
                            (a) hydrogen;
                            (b) lower alkyl; or
                            (c) alkoxy;
                   R<sup>85</sup> is:
                            (a) lower alkyl;
                            (b) alkoxy
25
                            (c) unsubstituted, mono-, di- or tri-substituted phenyl or pyridyl, wherein the
          substituents are each independently:
                                     (1) halo;
                                     (2) alkoxy;
                                     (3) haloalkyl;
30
                                     (4) CN;
```


(b)
$$-(CR^{31}R^{32})_{bb}-A^{1}$$
-; or

(e)
$$-CR^{31}$$
=; and

wherein R^1 , $R^{1'}$, R^2 , R^5 , $R^{5'}$, R^6 , R^{12} , R^{31} , R^{32} , A^1 , U, D^1 , a, bb, o and k are as defined herein;

wherein the compound of Formula (IV) is:

$$R^{21}$$
 X^4
 $(R^{1'})_{1-4}$
 R^{22}

IV

10 wherein:

15

20

5

 X^4 and Z^4 are each independently:

- (a) N; or
- (b) CR^{21} ;

R²⁰ is:

(a) $-S(O)_2-CH_3$;

- (b) $-S(O)_2-NR^8(D^1)$; or
- (c) $-S(O)_2-N(D^1)-C(O)-CF_3$;

R²¹ and R²¹ are each independently:

- (a) hydrogen;
- (b) lower alkyl;
- (c) alkoxy;
- (d) alkylthio;
- (e) haloalkyl, preferably fluoroalkyl;
- (f) haloalkoxy, preferably fluoroalkoxy;
- 25 (g) CN;
 - (h) $-CO_2D^1$;

- (10) -CO₂-lower alkyl;
- $(11) C(R^{14})(R^{15}) OD^1;$
- $(12) OD^1$;
- (13) lower alkyl-CO₂-R¹⁴; or
- (14) lower alkyl-CO₂-D¹;
- (b) $-T-C(R^{23})(R^{24})-(C(R^{25})(R^{26}))_{o}-C(R^{27})(R^{28})-U-D^{1};$
- (c)

- (d) arylalkyl; or
- (e) cycloalkylalkyl;

wherein:

5

10

15

25

 R^{14} and R^{15} are each independently:

- (a) hydrogen; or
- (b) lower alkyl;

 R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{28} are each independently:

- (a) hydrogen; or
- (b) lower alkyl; or

R²³ and R²⁷, or R²⁷ and R²⁸ together with the atoms to which they are attached form a carbocyclic ring of 3, 4, 5, 6 or 7 atoms, or R²³ and R²⁵ are joined to form a covalent bond;

 Y^5 is:

- (a) $CR^{29}R^{30}$;
- (b) oxygen; or
- (c) sulfur;

R²⁹ and R³⁰ are each independently:

- (a) hydrogen;
- (b) lower alkyl;

(c)
$$(CH_2)_o$$
- OD^1 ;

(d) halo; or

R²⁹ and R³⁰ taken together are an oxo group;

s is an integer from 2 to 4; and

wherein R1', R8, X5, D1, T, U, K and o are as defined herein;

wherein the compound of Formula (V) is:

$$R^{1}$$
 $(Y^{7})_{1-4}$
 R^{50}
 X^{7}
 X^{7}
 X^{7}

wherein:

15

20

5

 X^7 is:

- (a) oxygen;
- (b) sulfur;
- (c) $-NR^{51}$;
- (d) $-N-O-R^{52}$; or
- (e) $-N-NR^{52}R^{53}$;

Y⁷ at each occurrence is independently:

- (a) hydrogen;
- (b) halo;
- (c) lower alkyl;
- (d) alkenyl; or
- (e) alkynyl;

 Z^7 is:

(a) $-(CR^{31}R^{32})_{a}$ -;

```
R<sup>49</sup> is:
                          (a) R^3; or
                          (b) R^4;
                 R^{50} and R^{50} are each independently:
                          (a) hydrogen;
5
                          (b) halo;
                          (c) lower alkyl;
                          (d) aryl;
                          (e) arylalkyl;
                          (f) cycloalkyl;
10
                          (g) cycloalkylalkyl;
                          (h) -OD<sup>1</sup>;
                          (i) lower alkyl-OD<sup>1</sup>;
                          (j) carboxamido;
                          (k) amidyl; or
15
                          (l) K;
                  R<sup>51</sup> is:
                          (a) lower alkyl;
                           (b) alkenyl;
                           (c) cycloalkyl;
20
                           (d) cycloalkylalkyl;
                           (e) aryl;
                           (f) arylalkyl;
                           (g) heterocyclic ring; or
                           (h) lower alkyl-heterocyclic ring;
25
                  R<sup>52</sup> and R<sup>53</sup> are each independently:
                            (a) lower alkyl;
                            (b) cycloalkyl;
                            (c) cycloalkylalkyl;
                           (d) aryl;
30
                           (e) arylalkyl;
```

- (f) heterocyclic ring; or
- (g) heterocyclicalkyl; and

wherein R¹, R³, R⁴, R³¹, R³², K, D¹ and a are as defined herein; wherein the compound of Formula (VI) is:

VI

wherein:

5

10

15

20

 X^9 is -C(O)-U-D¹ and Y^9 is -CH₂-CR⁵(R⁵)-U-D¹; or

 X^9 is $-CH_2$ - $CR^5(R^5)$ -U- D^1 and Y^9 is -C(O)-U- D^1 ; or

X⁹ and Y⁹ taken together are:

(a) -C(O)-O-CR⁴(R⁴')-CR⁵(R⁵')-;

(b) $-(CR^4(R^{4'}))_k$ - $CR^5(R^{5'})$ - $CR^5(R^{5'})$ -;

(c) $-C(O)-(CR^4(R^{4'}))_k-CR^5(R^{5'})-;$

(d) $-(CR^4(R^{4'}))_k$ - $CR^5(R^{5'})$ -C(O)-; or

(e) $-C(O)-CR^4(R^{4'})-CR^5(R^{5'})-$;

wherein X⁹ is the first carbon atom of a, b, c, d and e; and

wherein R^1 , R^1 , R^2 , R^4 , R^4 , R^5 , R^5 , R^5 , X^6 , U, D^1 and K are as defined herein;

wherein the compound of Formula (VII) is:

$$R^{1}$$
 $(R^{1})_{1-4}$
 j
 Z^{10}
 k
 K^{10}
 K^{10}
 K^{10}
 K^{10}

wherein:

5

when side h, k, and j are single bonds, and side i and l are a double bond, $-X^{10}-Y^{10}-Z^{10}$ is:

(a)

$$\begin{array}{c|c}
 & N & j \\
 & k & q \\
 & Q^{10} & Q^{10'} & \text{or} \\
 & R^{60} & R^{61}
\end{array}$$

(b)

is:

10

when sides i, k and l are single bonds, and sides h and j are double bonds, $-X^{10}-Y^{10}-Z^{10}-Z^{10}$

when side h and j are single bonds, l is a double bond, and side k and i is a single or a double bond, $-X^{10}-Y^{10}-Z^{10}$ is:

(a)

 A^{10} A^{10} D^{10} or

(b)

$$\int_{h}^{j} \int_{N}^{R^{61}}$$

10

15

20

5

P¹⁰ is:

- (a) -N=;
- (b) $-NR^3$ -;
- (c) -O-; or
- (d) -S-;

(a) -S

 Q^{10} and $Q^{10'}$ are each independently:

- (a) CR⁶⁰; or
- (b) nitrogen;

 A^{10} - B^{10} - C^{10} - D^{10} - is:

(a) $-CR^4 = CR^{4'} - CR^5 = CR^{5'}$ -;

(b) $-CR^4(R^4)-CR^5(R^5)-CR^4(R^4)-C(O)$ -;

(c) -CR⁴(R⁴')-CR⁵(R⁵')-C(O)-CR⁴(R⁴')-;

(d) $-CR^4(R^4)-C(O)-CR^4(R^4)-CR^5(R^5)-$;

(e) -C(O)-CR⁴(R⁴')-CR⁵(R⁵')-CR⁴(R⁴')-;

```
(f) -CR^4(R^{4'})-CR^5(R^{5'})-C(O)-;
                            (g) -CR^4(R^4)-C(O)-CR^5(R^5)-;
                            (h) -C(O)-CR^4(R^{4'})-CR^5(R^{5'}) -;
                            (i) -CR<sup>4</sup>(R<sup>4</sup>')-CR<sup>5</sup>(R<sup>5</sup>')-O-C(O)-;
                            (j) -CR^4(R^4)-O-C(O)-CR^5(R^5) -;
 5
                            (k) -O-C(O)-CR^4(R^{4'})-CR^5(R^{5'}) -;
                            (I) -CR^4(R^{4'})-CR^5(R^{5'})-C(O)-O-;
                            (m) -CR^4(R^{4'})-C(O)-O-CR^5(R^{5'})-;
                            (n) -C(O)-O-CR^4(R^{4'})-CR^5(R^{5'})-;
                            (o) -CR^{12}(R^{13})-O-C(O)-;
10
                            (p) -C(O)-O-CR^{12}(R^{13})-;
                            (q) -O-C(O)-CR^{12}(R^{13})-;
                            (r) - CR^{12}(R^{13}) - C(O) - O -;
                            (s) -N=CR^4-CR^4=CR^5-:
                            (t) -CR^4 = N - CR^{4'} = CR^5 - :
15
                            (u) -CR^4 = CR^4 - N = CR^5 -:
                            (v) -CR^4 = CR^5 - CR^5' = N-;
                            (w) -N=CR^4-CR^4=N-;
                            (x) - N = CR^4 - N = CR^{4'}-:
                            (v) - CR^4 = N - CR^{4'} = N - :
20
                            (z) -S-CR^4 = N-;
                             (aa) -S-N=CR^4-;
                             (bb) -N=N-NR^3
                             (cc) -CR<sup>4</sup>=N-S-;
                             (dd) -N=CR^4-S-;
25
                             (ee) -O-CR^4=N-;
                             (ff) -O-N=CR^4-; or
                             (gg) -N=CR<sup>4</sup>-O-;
                   A^{10}, -B^{10}, -D^{10}, is:
                             (a) -CR^4 = CR^5 - CR^{5'} =
30
```

(b) $-CR^4(R^{4'})-CR^5(R^{5'})-CR^4(R^{4'})-$;

- (c) $-C(O)-CR^4(R^{4'})-CR^5(R^{5'})-$;
- (d) $-CR^4(R^{4'})-CR^5(R^{5'})-C(O)-$;
- (e) $-N=CR^4-CR^5=$;
- (g) $-N=N-CR^4=$;
- (h) $-N=N-NR^3-$;
- (i) -N=N-N=;
- (j) $-N=CR^4-NR^3-$;
- (k) $-N=CR^4-N=$;
- (1) $-CR^4 = N NR^3 -$;
- 10 (m) $-CR^4 = N N =$;

15

- (n) $-CR^4 = N CR^5 =$;
- (o) $-CR^4 = CR^5 NR^3 -$;
- (p) $-CR^4 = CR^5 N =$;
- $(q) -S-CR^4=CR^5-;$
- $(r) O CR^4 = CR^5$;
- (s) $-CR^4 = CR^5 O$ -;
- (t) $-CR^4 = CR^5 S$;
- (u) $-CR^4 = N-S-$;
- $(v) CR^4 = N O -;$
- (w) $-N=CR^4-S-$;
- $(x) N = CR^4 O -;$
- $(y) -S-CR^4 = N-;$
- $(z) O CR^4 = N -;$
- (aa) -N=N-S-;
- 25 (bb) -N=N-O-;
 - (cc) -S-N=N-;
 - (dd) -O-N=N-;
 - (ee) $-CR^4=CR^5-S$;
 - (ff) -CR⁴(R⁴)-CR⁵(R⁵)-S-;
- 30 $(gg) CR^4(R^4) CR^5(R^5) O-;$
 - (hh) $-S-CR^4(R^{4'})-CR^5(R^{5'})$ -; or

(ii)
$$-O-CR^4(R^{4'})-CR^5(R^{5'})-$$
;

R⁶⁰ and R⁶¹ are each independently:

- (a) lower alkyl;
- (b) haloalkyl, preferably fluoroalkyl;
- (c) alkoxy;

5

10

15

20

25

- (d) alkylthio;
- (e) lower alkyl-OD¹;
- (f) -C(O)H;
- (h) $-(CH_2)_q$ - CO_2 -lower alkyl;
- (i) $-(CH_2)_q-CO_2D^1$;
- (j) -O-(CH₂)_q-S-lower alkyl;
- (k) - $(CH_2)_q$ -S-lower alkyl;
- (l) -S(O)₂-lower alkyl;
- (m) - $(CH_2)_q$ - $NR^{12}R^{13}$; or
- (n) $-C(O)N(R^8)(R^8)$; and

wherein R^1 , $R^{1'}$, R^2 , R^3 , R^4 , R^4 , R^5 , R^5 , R^8 , R^{12} , R^{13} , X^5 , T, D^1 and q are as defined herein;

wherein the compound of Formula (VIII) is:

$$R^{1}$$
 $(R^{1'})_{1-4}$
 R^{2}
 X^{5}
 X^{14}
 A^{14}

VIII

wherein:

X¹⁴ is:

(a) -C(O)-; or

(b) -C(S)-;

```
Y<sup>14</sup> is:
```

10

15

20

25

- (a) -O-; or
- (b) -S-;

 $A^{14}-B^{14}-D^{14}$ - is:

- (a) $-CR^4 = CR^{4'} CR^5 = CR^{5'} -$;
 - (b) -CR⁴(R⁴)-CR⁵(R⁵)-C(O)-;
 - (c) $-CR^4(R^4)-C(O)-CR^5(R^5)-$;
 - (d) -C(O)-CR⁴(R⁴')-CR⁵(R⁵') -;
 - (e) $-CR^4(R^5)-O-C(O)-$;
 - (f) $-C(O)-O-CR^4(R^5)--$;
 - (g) $-O-C(O)-CR^4(R^5)-$;
 - (h) $-S-N=CR^4-$;
 - (i) $-O-N=CR^4-$;
 - (j) $-CR^4(R^5)-NR^3-C(O)$ -;
 - (k) $-C(O)-NR^3-CR^4(R^5)--$;
 - (1) $-NR^3-C(O)-CR^4(R^5)-$;
 - (m) $-CR^4(R^5)-S-C(O)-$;
 - (n) $-C(O)-S-CR^4(R^5)--$;
 - (o) $-S-C(O)-CR^4(R^5)-$;
 - (p) $-CR^4 = CR^{4'} C(O)$ -;
 - $(q) C(O) CR^4 = CR^{4'} -;$
 - $(r) O CR^4 = CR^{4'} -;$
 - (s) $-S-CR^4=CR^{4'}-$;
 - (t) $-NR^3-CR^4=CR^5-$;
 - (u) $-S-NR^3-C(O)-$;
 - (v) $-O-NR^3-C(O)-$; or
 - (w) $-NR^3-N=CR^4-$; and

wherein R^1 , R^1 , R^2 , R^3 , R^4 , R^4 , R^5 , R^5 and X^5 are as defined herein.

2. A composition comprising the compound of claim 1 and a pharmaceutically acceptable carrier.

5

10

15

20

25

- 3. A method for treating or reducing inflammation, pain or fever in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 2.
- 4. A method for treating a gastrointestinal disorder, or improving the gastrointestinal properties of a COX-2 inhibitor in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 2.
- 5. The method of claim 4, wherein the gastrointestinal disorder is an inflammatory bowel disease, Crohn's disease, gastritis, irritable bowel syndrome, ulcerative colitis, a peptic ulcer, a stress ulcer, a bleeding ulcer, gastric hyperacidity, dyspepsia, gastroparesis, Zollinger-Ellison syndrome, gastroesophageal reflux disease, a bacterial infection, short-bowel (anastomosis) syndrome, or a hypersecretory state associated with systemic mastocytosis or basophilic leukemia and hyperhistaminemia
- 6. A method for facilitating wound healing in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 2.
 - 7. The method of claim 6, wherein the wound is an ulcer.
- 8. A method for treating or reversing renal and/or respiratory toxicity in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 2.
- 9. A method for treating a disorder resulting from elevated levels of COX-2 in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 2.
- 10. The method of claim 9, wherein the disorder resulting from elevated levels of COX-2 is angiogenesis, arthritis, asthma, bronchitis, menstrual cramps, premature labor, tendinitis, bursitis, a skin-related condition, neoplasia, an inflammatory process in a disease, an ophthalmic disorder, pulmonary inflammation, a central nervous system disorder, allergic rhinitis, respiratory distress syndrome, endotoxin shock syndrome, atherosclerosis, a microbial infection, a cardiovascular disorder, a urinary disorder, a urological disorder, endothelial dysfunction, organ deterioration, tissue deterioration, or activation, adhesion and infiltration of neutrophils at the site of inflammation.

11. The method of claim 10, wherein the neoplasia is a brain cancer, a bone cancer, an epithelial cell-derived neoplasia (epithelial carcinoma), a basal cell carcinoma, an adenocarcinoma, a gastrointestinal cancer, a lip cancer, a mouth cancer, an esophageal cancer, a small bowel cancer, a stomach cancer, a colon cancer, a liver cancer, a bladder cancer, a pancreas cancer, an ovary cancer, a cervical cancer, a lung cancer, a breast cancer, a skin cancer, a squamus cell cancer, a basal cell cancer, a prostate cancer, a renal cell carcinoma, a cancerous tumor, a growth, a polyp, an adenomatous polyp, a familial adenomatous polyposis or a fibrosis resulting from radiation therapy.

5

10

15

20

25

- 12. The method of claim 10, wherein the central nervous system disorder is cortical dementia, Alzheimer's disease, vascular dementia, multi-infarct dementia, pre-senile dementia, alcoholic dementia, senile dementia, or central nervous system damage resulting from stroke, ischemia or trauma.
- 13. A method for inhibiting platelet aggregation in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 2.
 - 14. The composition of claim 2, further comprising at least one therapeutic agent.
- 15. The composition of claim 14, wherein the therapeutic agent is a steroid, a nonsteroidal antiinflammatory compound, a 5-lipoxygenase (5-LO) inhibitor, a leukotriene B₄ receptor antagonist, a leukotriene A₄ hydrolase inhibitor, a 5-HT agonist, a 3-hydroxy-3-methylglutaryl coenzyme A inhibitor, a H₂ antagonist, an antineoplastic agent, an antiplatelet agent, a thrombin inhibitor, a thromboxane inhibitor, a decongestant, a diuretic, a sedating or non-sedating anti-histamine, an inducible nitric oxide synthase inhibitor, an opioid, an analgesic, a *Helicobacter pylori* inhibitor, a proton pump inhibitor, an isoprostane inhibitor, or a mixture of two or more thereof.
- 16. The composition of claim 15, wherein the nonsteroidal antiinflammatory compound is acetaminophen, aspirin, diclofenac, ibuprofen, ketoprofen, indomethacin or naproxen.
- 17. A method for treating or reducing inflammation, pain or fever in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 14.
 - 18. A method for treating a gastrointestinal disorder, or improving the gastrointestinal

properties of a COX-2 inhibitor in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 14.

- 19. The method of claim 18, wherein the gastrointestinal disorder is an inflammatory bowel disease, Crohn's disease, gastritis, irritable bowel syndrome, ulcerative colitis, a peptic ulcer, a stress ulcer, a bleeding ulcer, gastric hyperacidity, dyspepsia, gastroparesis, Zollinger-Ellison syndrome, gastroesophageal reflux disease, a bacterial infection, short-bowel (anastomosis) syndrome, or a hypersecretory state associated with systemic mastocytosis or basophilic leukemia and hyperhistaminemia.
- 20. A method for facilitating wound healing in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 14.
 - 21. The method of claim 20, wherein the wound is an ulcer.

5

10

15

20

25

- 22. A method for treating or reversing renal and/or respiratory toxicity in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 14.
- 23. A method for treating a disorder resulting from elevated levels of COX-2 in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 14.
- 24. The method of claim 23, wherein the disorder resulting from elevated levels of COX-2 is angiogenesis, arthritis, asthma, bronchitis, menstrual cramps, premature labor, tendinitis, bursitis, a skin-related condition, neoplasia, an inflammatory process in a disease, an ophthalmic disorder, pulmonary inflammation, a central nervous system disorder, allergic rhinitis, respiratory distress syndrome, endotoxin shock syndrome, atherosclerosis, a microbial infection, a cardiovascular disorder, a urinary disorder, a urological disorder, endothelial dysfunction, organ deterioration, tissue deterioration, or activation, adhesion and infiltration of neutrophils at the site of inflammation.
- 25. The method of claim 24, wherein the neoplasia is a brain cancer, a bone cancer, an epithelial cell-derived neoplasia (epithelial carcinoma), a basal cell carcinoma, an adenocarcinoma, a gastrointestinal cancer, a lip cancer, a mouth cancer, an esophageal cancer, a small bowel cancer, a stomach cancer, a colon cancer, a liver cancer, a bladder cancer, a pancreas cancer, an ovary cancer, a cervical cancer, a lung cancer, a breast cancer, a skin cancer, a squamus cell cancer, a basal cell cancer, a prostate cancer, a renal cell carcinoma, a cancerous

tumor, a growth, a polyp, an adenomatous polyp, a familial adenomatous polyposis or a fibrosis resulting from radiation therapy.

- 26. The method of claim 24, wherein the central nervous system disorder is cortical dementia, Alzheimer's disease, vascular dementia, multi-infarct dementia, pre-senile dementia, alcoholic dementia, senile dementia, or central nervous system damage resulting from stroke, ischemia or trauma.
- 27. A method for inhibiting platelet aggregation in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 14.
- 28. A composition comprising at least one compound of claim 1 and at least one compound that donates, transfers or releases nitric oxide, or induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase.
- 29. The composition of claim 28, further comprising a pharmaceutically acceptable carrier.
- 30. The composition of claim 28, wherein the compound that donates, transfers, or releases nitric oxide, or induces the production of endogenous nitric oxide or endothelium-derived relaxing factor or is a substrate for nitric oxide synthase is an S-nitrosothiol.
- 31. The composition of claim 30, wherein the S-nitrosothiol is S-nitroso-N-acetylcysteine, S-nitroso-captopril, S-nitroso-N-acetylpenicillamine, S-nitroso-homocysteine, S-nitroso-cysteine, S-nitroso-glutathione, or S-nitroso-cysteinyl-glycine.
 - 32. The composition of claim 30, wherein the S-nitrosothiol is:
 - (i) $HS(C(R_e)(R_f))_mSNO$;

5

10

15

20

25

- (ii) $ONS(C(R_e)(R_f))_mR_e$; or
- (iii) H₂N-CH(CO₂H)-(CH₂)_m-C(O)NH-CH(CH₂SNO)-C(O)NH-CH₂-CO₂H; wherein m is an integer from 2 to 20; R_e and R_f are each independently a hydrogen, an alkyl, a cycloalkoxy, a halogen, a hydroxy, an hydroxyalkyl, an alkoxyalkyl, an arylheterocyclic ring. a cycloalkylalkyl, a heterocyclicalkyl, an alkoxy, a haloalkoxy, an amino, an alkylamino, a diarylamino, an alkylarylamino, an alkoxyhaloalkyl, a haloalkoxy, a sulfonic acid, a sulfonic ester, an alkylsulfonic acid, an arylsulfonic acid, an arylalkoxy, an alkylthio, an arylthio, a cyano, an aminoalkyl, an aminoaryl, an aryl, an arylalkyl, a

carboxamido, a alkylcarboxamido, an arylcarboxamido, an amidyl, a carboxyl, a carbamoyl, an alkylcarboxylic acid, an arylcarboxylic acid, an alkylcarbonyl, an arylcarbonyl, an ester, a carboxylic ester, an alkylcarboxylic ester, an arylcarboxylic ester, a haloalkoxy, a sulfonamido, an alkylsulfonamido, an arylsulfonamido, an alkylsulfonyl, an alkylsulfonyloxy, an arylsulfonyl, an arylsulfonyloxy, a urea, a nitro, -T-Q'-, or $-(C(R_g)(R_h))_k$ -T-Q' or R_e and R_f taken together are an oxo, a methanthial, a heterocyclic ring, a cycloalkyl group, an oxime, a hydrazone or a bridged cycloalkyl group; Q' is -NO or -NO₂; and T is independently a covalent bond, a carbonyl, an oxygen, -S(O)₀- or -N(R_a)R_i-, wherein o is an integer from 0 to 2, R_a is a lone pair of electrons, a hydrogen or an alkyl group; Ri is a hydrogen, an alkyl, an aryl, an alkylcarboxylic acid, an arylcarboxylic acid, an alkylcarboxylic ester, an arylcarboxylic ester, an alkylcarboxamido, an arylcarboxamido, an alkylsulfinyl, an alkylsulfonyl, an alkylsulfonyloxy, an arylsulfinyl, an arylsulfonyloxy, an arylsulfonyl, a sulfonamido, a carboxamido, a carboxylic ester, an aminoalkyl, an aminoaryl, $-CH_2-C(T-Q')(R_g)(R_h)$, or $-(N_2O_2-)^{-\bullet}M^+$, wherein M^+ is an organic or inorganic cation; with the proviso that when R_i is $-CH_2$ - $C(T-Q')(R_g)(R_h)$ or $-(N_2O_2) \cdot M^+$; then "-T-Q'" can be a hydrogen, an alkyl group, an alkoxyalkyl group, an aminoalkyl group, a hydroxy group or an aryl group; and R_g and R_h at each occurrence are independently Re.

5

10

15

20

- 33. The composition of claim 28, wherein the compound that donates, transfers, or releases nitric oxide, or induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase is L-arginine, L-homoarginine, N-hydroxy-L-arginine, nitrosated L-arginine, nitrosated L-arginine, nitrosated N-hydroxy-L-arginine, nitrosated L-homoarginine, nitrosylated L-homoarginine, nitrosylated L-homoarginine), citrulline, ornithine, glutamine, lysine, an arginase inhibitor or a nitric oxide mediator.
- 34. The composition of claim 28, wherein the compound that donates, transfers, or releases nitric oxide, or induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase is:
 - (i) a compound that comprises at least one ON-O- or ON-N- group;
- (ii) a compound that comprises at least one O_2N -O-, O_2N -N- or O_2N -S- or group;
 - (iii) a N-oxo-N-nitrosoamine having the formula: R¹"R²"N-N(O-M⁺)-NO, wherein

- R¹" and R²" are each independently a polypeptide, an amino acid, a sugar, an oligonucleotide, a straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted hydrocarbon, or a heterocyclic group, and M⁺ is an organic or inorganic cation.
- 35. The composition of claim 34, wherein the compound comprising at least one ON-O- or ON-N- group is an ON-O-polypeptide, an ON-N-polypeptide, an ON-O-amino acid, an ON-N-amino acid, an ON-O-sugar, an ON-N-sugar, an ON-O-oligonucleotide, an ON-N-oligonucleotide, a straight or branched, saturated or unsaturated, substituted or unsubstituted, aliphatic or aromatic ON-O-hydrocarbon, a straight or branched, saturated or unsaturated, substituted or unsubstituted, aliphatic or aromatic ON-N-hydrocarbon, an ON-O-heterocyclic compound or an ON-N-heterocyclic compound.

10

15

20

25

- 36. The composition of claim 34, wherein compound comprising at least one O₂N-O-, O₂N-N- or O₂N-S- group is an O₂N-O-polypeptide, an O₂N-N-polypeptide, an O₂N-S- polypeptide, an O₂N-O-amino acid, O₂N-N-amino acid, O₂N-S-amino acid, an O₂N-O-sugar, an O₂N-N-sugar, O₂N-S-sugar, an O₂N-O-oligonucleotide, an O₂N-N-oligonucleotide, an O₂N-S-oligonucleotide, a straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted O₂N-O-hydrocarbon, a straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted O₂N-N-hydrocarbon, a straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted O₂N-S-hydrocarbon, an O₂N-O-heterocyclic compound, an O₂N-N-heterocyclic compound or an O₂N-S-heterocyclic compound.
 - 37. The composition of claim 28, further comprising at least one therapeutic agent.
- 38. The composition of claim 37, wherein the therapeutic agent is a steroid, a nonsteroidal antiinflammatory compound, a 5-lipoxygenase (5-LO) inhibitor, a leukotriene B₄ receptor antagonist, a leukotriene A₄ hydrolase inhibitor, a 5-HT agonist, a HMG CoA inhibitor, a H₂ antagonist, an antineoplastic agent, an antiplatelet agent, a thrombin inhibitor, a thromboxane inhibitor, a decongestant, a diuretic, a sedating or non-sedating anti-histamine, an inducible nitric oxide synthase inhibitor, an opioid, an analgesic, a *Helicobacter pylori* inhibitor, a proton pump inhibitor, an isoprostane inhibitor, or a mixture of two or more thereof.
- 39. The composition of claim 38, wherein the nonsteroidal antiinflammatory compound is acetaminophen, aspirin, diclofenac, ibuprofen, ketoprofen, indomethacin or naproxen.

- 40. A method for treating or reducing inflammation, pain or fever in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 29 or 37.
- 41. A method for treating a gastrointestinal disorder, or improving the gastrointestinal properties of a COX-2 inhibitor in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 29 or 37.

10

15

20

25

- The method of claim 41, wherein the gastrointestinal disorder is an inflammatory bowel disease, Crohn's disease, gastritis, irritable bowel syndrome, ulcerative colitis, a peptic ulcer, a stress ulcer, a bleeding ulcer, gastric hyperacidity, dyspepsia, gastroparesis, Zollinger-Ellison syndrome, gastroesophageal reflux disease, a bacterial infection, short-bowel (anastomosis) syndrome, or a hypersecretory state associated with systemic mastocytosis or basophilic leukemia and hyperhistaminemia.
- 43. A method for facilitating wound healing in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 29 or 37.
 - 44. The method of claim 43, wherein the wound is an ulcer.
- 45. A method for treating or reversing renal and/or respiratory toxicity in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 29 or 37.
- 46. A method for treating a disorder resulting from elevated levels of COX-2 in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 29 or 37.
- 47. The method of claim 46, wherein the disorder resulting from elevated levels of COX-2 is angiogenesis, arthritis, asthma, bronchitis, menstrual cramps, premature labor, tendinitis, bursitis, a skin-related condition, neoplasia, an inflammatory process in a disease, an ophthalmic disorder, pulmonary inflammation, a central nervous system disorder, allergic rhinitis, respiratory distress syndrome, endotoxin shock syndrome, atherosclerosis, a microbial infection, a cardiovascular disorder, a urinary disorder, a urological disorder, endothelial dysfunction, organ deterioration, tissue deterioration, or activation, adhesion and infiltration of neutrophils at the site of inflammation.
 - 48. The method of claim 47, wherein the neoplasia is a brain cancer, a bone cancer,

an epithelial cell-derived neoplasia (epithelial carcinoma), a basal cell carcinoma, an adenocarcinoma, a gastrointestinal cancer, a lip cancer, a mouth cancer, an esophageal cancer, a small bowel cancer, a stomach cancer, a colon cancer, a liver cancer, a bladder cancer, a pancreas cancer, an ovary cancer, a cervical cancer, a lung cancer, a breast cancer, a skin cancer, a squamus cell cancer, a basal cell cancer, a prostate cancer, a renal cell carcinoma, a cancerous tumor, a growth, a polyp, an adenomatous polyp, a familial adenomatous polyposis or a fibrosis resulting from radiation therapy.

- 49. The method of claim 47, wherein the central nervous system disorder is cortical dementia, Alzheimer's disease, vascular dementia, multi-infarct dementia, pre-senile dementia, alcoholic dementia, senile dementia, or central nervous system damage resulting from stroke, ischemia or trauma.
- 50. A method for inhibiting platelet aggregation in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 29 or 37.
 - 51. A kit comprising at least one compound of claim 1.

5

10

15

20

25

- 52. The kit of claim 51, further comprising (i) at least one compound that donates, transfers or releases nitric oxide, induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase; (ii) at least one therapeutic agent; or (iii) at least one compound that donates, transfers or releases nitric oxide, induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase and at least one therapeutic agent.
- 53. The kit of claim 52, wherein the at least one compound that donates, transfers or releases nitric oxide, induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase; the at least one therapeutic agent; or the at least one compound that donates, transfers or releases nitric oxide, induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase and at least one therapeutic agent; are in the form of separate components in the kit
 - 54. A kit comprising the composition of claim 14, 29 or 37.
- 55. A compound selected from the group consisting of:

 1-(1-(cyclohexylmethyl)-3-(hydroxymethyl)pyrazol-5-yl)-4-(methylsulfonyl) benzene;

 4-(1-(cyclohexylmethyl)-3-((2-hydroxyethoxy)methyl)pyrazol-5-yl)-1-(methylsulfonyl)benzene;

- 1-(3-(hydroxymethyl)-1-benzylpyrazol-5-yl)-4-(methylsulfonyl)benzene;
- 1-(3-((1E)-3-hydroxyprop-1-enyl)-1-(cyclohexylmethyl)pyrazol-5-yl)-4-(methylsulfonyl) benzene;
- 1-(1-(cyclohexylmethyl)-3-(3-hydroxypropyl)pyrazol-5-yl)-4-(methylsulfonyl)benzene;
- 5 1-(1-(cyclohexylmethyl)-3-vinylpyrazol-5-yl)-4-(methylsulfonyl)benzene;
 - methyl (2E)-3-(1-(cyclohexylmethyl)-5-(4-(methylsulfonyl)phenyl)pyrazol-3-yl) prop-2-enoate; methyl 5-(4-(methylsulfonyl)phenyl)-1-benzylpyrazole-3-carboxylate;
 - 1-(1-(cyclohexylmethyl)-3-((nitrooxy)methyl)pyrazol-5-yl)-4-(methylsulfonyl)benzene;
 - 4-(1-(cyclohexylmethyl)-3-((2-(nitrooxy)ethoxy)methyl)pyrazol-5-yl)-1-(methylsulfonyl)
- 10 benzene;

20

- 4-(methylsulfonyl)-1-(3-((nitrooxyl)methyl)-1-benzylpyrazol-5-yl)benzene;
- 1-(3-((1E)-3-nitrooxyprop-1-enyl)-1-(cyclohexylmethyl)pyrazol-5-yl)-4-(methylsulfonyl) benzene;
- 1-(1-(cyclohexylmethyl)-3-(3-(nitrooxy)propyl)pyrazol-5-yl)-4-(methylsulfonyl) benzene;
- 3-(4-(methylsulfonyl)phenyl)-5-(trifluoromethyl)(2-pyridyl) phenyl ketone;
- 2-(3-(4-(methylsulfonyl)phenyl)-5-(trifluoromethyl)(2-pyridyl))-2-phenylethanenitrile;
- 3-fluorophenyl 2-(4-methylsulfonylphenyl)(3-pyridyl) ketone
- 2-(4-(methylsulfonyl)phenyl)(3-pyridyl) 2-pyridyl ketone;
- ethyl 3-((2-(4-(methylsulfonyl)phenyl)-3-pyridyl)carbonyl)benzoate; or a pharmaceutically acceptable salt thereof.
- 56. A composition comprising at least one compound of claim 55 and a pharmaceutically acceptable carrier.
- 57. The composition of claim 56, further comprising (i) at least one compound that donates, transfers or releases nitric oxide, induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase; (ii) at least one therapeutic agent; or (iii) at least one compound that donates, transfers or releases nitric oxide, induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase and at least one therapeutic agent.
 - 58. A kit comprising at least one compound of claim 55.