Séance du 25/11/20

Extrair de l'I.E Nº3 (2015-2016)

(A)

- · Rest réflexive: can pour x=1,2,3 er 4, on a x Rx.
- · R n'est pas symétrique: car 3 R 4 et 4 R 3.
- . A est transitive: En effet, soient 21,4,2 E
 - (A) Supposono que 2 Ry er y Rz
 - D. Sizzy: alors x Rz (puisque y Rz)
 - · Siy=2: alors xRZ (puisque xRy)
 - Si $x \neq y \neq x \neq z$: alons $(x_1y_1z) = (1, 2, 1)$ ou $(x_1y_1z) = (2, 1, 2)$.

 \Rightarrow Si (2,14,2) = (1,2,1) alors $\times R2$ (car 1R1) \Rightarrow Si (2,14,2) = (2,1,2) alors $\times R2$ (car 1R2) \Rightarrow Done $\times R2$

(C) Donc X RZ (dans tous les cas)

2) Comme 9 dour être symétrique et que l'on 0 3 R4, il faut avour 4 R3. Chaisissons donc (x,y) = (4,3).

Alors avec ce choix, ona:

191, 292, 393, 494, 192, 291, 394 er 493 Mg & est alors une relation d'équiralence:

- · Serreflexive: can pour x=1,2,3 er4, on a x Sx
- · Le est symétrique: en effet, comme on a:

191, 292, 393, 494, 192, 291, 394 er 493 il faur vérifier que l'on a 191, 292, 393, 494, 291, 192, 493 er 394 ce qui est le cas

. Il est transitive: (Même raisonnement que dans 1.))

Soienr 11,4,2 E

- (A) Supposono que 29 y er y 82
- D. Sizzy: alas x Sz (puisque y Sz)
 - · Siy==: alas x Sz (puisque x Sy)
 - Si $x \neq y \neq y \neq z$: alons $(x_1y_1z) = (1,2,1)$, $(x_1y_1z) = (2,1,2)$ ou $(x_1y_1z) = (3,4,3)$ • Si $(x_1y_1z) = (4,2,1)$ alons xyz (can 1y1) • Si $(x_1y_1z) = (1,2,1)$ alons xyz (can 1y1) • Si $(x_1y_1z) = (1,1,2)$ alons xyz (can 1yz) • Si $(x_1y_1z) = (3,4,3)$ alons xyz (can 1yz) Done 1xyz

C) Donc x42 (dans trous les cas)

Donc 9 est une relation d'équivalence.

on a:
$$\sqrt{1} = \{1, 2\}$$

 $\sqrt{2} = \overline{1}$ (car $2 \in \overline{1}$)
 $\sqrt{3} = \{3, 4\}$
 $\sqrt{4} = \overline{3}$

Donc E/cg = 27,34

(B) 1) Restreplexie: Sour $x \in \mathbb{R}$; alors $x^2 - x^2 = 4(x - xy)$. Donc $x \in \mathbb{R}$

Reor symétrique: Soientra, y en rels que x Ry. Alors $x^2-y^2=4(x-y)$; donc $-(x^2-y^2)=-4(x-y)$, c'estat de $y^2-x^2=4(y-x)$; doncy Rx.

Rest transitive: Sovient $x,y,z \in \mathbb{R}$ tels que $x \cdot Qy \cdot e^{y} \cdot Qz$.
Alors $x^{2}-y^{2}=4(x-y)$ et $y^{2}-z^{2}=4(y-z)$. Donc pour addition membre de ces l'égaletés, on obtient:

$$(x^2-y^2) + (y^2-z^2) = 4(x-y) + 4(y-z)$$

c'est à due: $x^2-z^2 = 4(x-z)$

Done x RZ

Donc Resture relation d'équivalence.

2) Soir (n,y) & 122. Alers:

$$x Ry = x^2 - y^2 = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y)$$

$$(x - y)(x + y) = 4(x - y)$$

$$(x - y)(x + y$$

0'ou; x Ry () [y=x ou y=4-2]

3:) Sour $x \in \mathbb{R}$. On a $\overline{x} = dy \in \mathbb{R}$, $y \in \mathbb{R}$ $x \in \mathbb{R}$ $y \in \mathbb{R}$

O x=4-x => 2x=4 => x=2

Donc $\begin{cases} 5ix = 1 : \overline{x} = \frac{1}{2} \end{cases}$ (can x = 4 - x quand x = 2) $\begin{cases} 5ix \neq 2 : \overline{x} = \frac{1}{2} \end{cases}$ (can $x \neq 4 - x$ quand $x \neq 2$)

Ex4:

MAN'

Cas M = N'

MAN'

MAN'

MAN'

- 1). Rest réflexive: sout M& P. Alcrs on a M=M; donc on a [M=Mou (M≠Mer (MM)//D)]

 Donc MRM, Vrai
 - · Pa est symétrique: Soient M, N es
 - A Supposons que MAN
 - D Alons M=N ou (M≠N er (MN)// D)
 - . let cas; SI M=N: alos N=M. Donc NRM.
 - . 2 ene cas; SIM # N: alors (MN)//D; donc (NM)//D (car (MN) =(NM)). Donc NRM
 - (Done NRM
 - . Rest mansitive: Sovenir M,N,Peg
 - (H) Supposons que MRNerNRP
 - (N=P ou (N \ P er (NP) // D)]

Il y a donc 4 cas à considérer:

Donc MRP. Dans ce cas M=P

2 eme cas (M=N) er (N ≠ P er (NP //2):

Alons M & P er (MP) // D

(puisqu'évant donné que M=N, on peut remplace, N par M dans l'affirmation "N7Per (NP)//D")
Donc MRI.

3 ene cas (M # N er (MN) // D) er (N=P)

Alos M ≠ P er (MP) // D (puisqu'é rant donné que N=P, on peut remplacer N par P dans l'affirmation "M ≠ N er (MN) // D").

Donc MRP.

4erre cos (M # N er (MN//D) er (N # P er (NP)//D)

On envisage alors 2 sous-cas

1et sous-cas! M=P: alors MQP.

2° 50 us - cas: M + P: Dans ce cas, (MP) est

une dioite; de plus (MN) // (NP) (can

(MN) // D er (NP) // D). Or (MN) er (NP) ont un

point commun (qui est N). Donc (MN) = (NP)

Donc M & (NP); donc M, N er P sont aligné

Donc (MP) = (NP). Par consequent (MP) // D

(puisque (NP) // D). On a donc (M+P) et

(MP) // D. Donc M RP.

- Dans tous les cas, on a MAP

 Par conséquent: Rest une relation déquivalence.
- Sour $M \in \mathcal{P}$; on a $M = 1 N \in \mathcal{P}$, $N \in \mathcal{R} M \in \mathcal{P}$.

 Sour Δ la droite passant par M et parallèle à \mathcal{D} .

 Montrons que $M = \Delta$ (par double inclusion)
 - · Mg: ACM:
 - (H) supposons que NEA.
 - (D) Alons N=M ou N ≠ M.
 - · SIN=M: alors NRM; donc NEM.
 - · SIN 7 M: alons dans ce cas $\Delta = (NM)$ (puisque Met N sont 2 points distuncts de Δ) er donc (NM) // D (puisque $\Delta // D$) Donc NRM; donc NEM.
 - © DONG NEM.

· Mg Mc A

- (H) SOUR NEM
- DAPONS NAM; donc (N=M) ou (N ≠ M et (NM)//D)
 - . SIN=M: alors comme MEA, on en déduit que NEA.
 - . Si N≠M er (NM)/D): alors (NM) = ∆ En effer, il n'existe qu'une seule droite passant par M er parallèle à D: c'est A. Cr (NM) est aussi une droite passant par M er parallèle à D. Donc (NM) = ∆ On en déduir que N ∈ ∆

C) Donc NED

Il en résulte que $M = \Delta$ où Δ en la droite passant par M et paralletle à D

3) B/R (qui est l'ensemble quotient) est l'ensemble de toutes les classes d'équivalence pour R,

Donc P/R est l'ensemble de toutes les droites parallèles à D.

E×5:

1) Restréflexie: Sourze C*. Alors z=1z; donc: Jac R* (a=1) telque 2-2z. Donc ZRZ.

Rest symétrique: Soient 2,2'el

- (F) Supposons que Z R 2'.
- ① Alors il exciste $a \in \mathbb{R}^*$ rel que z = az'. Comme $a \neq 0$, on en déduir que $z' = \frac{1}{a}z$; donc z' = a'z (où $a' = \frac{1}{a} \in \mathbb{R}^*$)

 Il exciste donc $a' \in \mathbb{R}^*$ rel que z' = a'z
- O Donc Z'QZ

a est transitive: Soient Z, Z', Z" & C"

- (A) Supposons que z Rz' er z'Rz".
- ① Alors: $\exists a, a' \in \mathbb{R}^n$ the que $z = az' \in \mathbb{R}^n$.

 Donc z = az' = a(a'z'') = (aa')z''.

 Posons a'' = aa'. Alors $a'' \in \mathbb{R}^n$ et z = a''z''.

 It excists donc $a'' \in \mathbb{R}^n$ the que z = a''z''.
- (C) Donc 2 R 2"

Donc Rest une relation d'équivalence.

2) Soir ZE (...

. Existence de O E (O,TC tel que Gla (2)= Gla (e10)

Comme $z \neq 0$, il escuste $\tau \in J_{0,1+\infty}($ er $\forall \in [0,lT($ tel que $z = \tau e^{id}$ (Forme exponentielle de z). Envisageons deux cas suivant que $\forall \in [0,T[$ or $\forall \in [T,2T[$]:

- Si de [0, π [: Posons $\Theta = d$; alors $z = re^{i\Theta}$ are $r \in \mathbb{R}^*$ er $\Theta \in [0,\pi]$.

 Donc $Z R e^{i\Theta}$. Donc $\text{Ul}_R(Z) = \text{Ul}_R(e^{i\Theta})$ or $\Theta \in [0,\pi]$
- Si de $[\Pi, 2\Pi]$: Pasons $\Theta = d \Pi$; along $\Theta \in [0, \Pi]$ et on a: $2 = \pi e^{i(\Theta + \Pi)} = \pi e^{i\Pi} e^{i\Theta} = (-\pi) e^{i\Theta}$

Aurhement dir, il exciste $(r) \in \mathbb{R}^*$ the que $z = (r) e^{i\theta}$ Ocno $z \in \mathbb{R}^{e^{i\theta}}$; par conséquent $(ll_{R}(z) = (ll_{R}(e^{i\theta})) \text{ our } \Theta \in [0,17]$

Donc: $\exists \Theta \in [0,\pi]$ the que $(ll_{R}(z) = (ll_{R}(e^{i\hat{\Theta}}))$ cela prouve l'escustrence de Θ .

· Unicité de O « [OIT[tel que lla (z) = lla (eio)

Supposons qu'il esuiste $\Theta, \Theta' \in [0, \Pi]$ tels que $|\mathcal{C}| = \mathcal{C} |\mathcal{C}| = \mathcal{C}| = \mathcal{C} |\mathcal{C}| = \mathcal{C}| = \mathcal{C$

Alors $(l_R(e^{i\Theta}) = (l_R(e^{i\Theta'}), Donc e^{i\Theta} R e^{i\Theta'})$ Il exciste donc $a \in \mathbb{R}^n$ then que $e^{i\Theta} = a e^{i\Theta'}$ On a alors $a = e^{i(\Theta-\Theta')} = cos(\Theta-\Theta') + i svin(\Theta-\Theta')$. Par consequent: $sin(\Theta-\Theta') = O(car a \in \mathbb{R}^n)$ D' author pour: $\Theta-\Theta' \in J-\Pi,\Pi \in \mathbb{R}^n$ On en dedurique $O-O'=O(car sin(\Theta-\Theta') = O(er O-O') = J-\Pi,\Pi \in \mathbb{R}^n)$ Donc O = O'(ce qui prouve l'univate de O) $Donc: V \ge C^*$, $\exists ! \Theta \in J_0,\Pi \in \mathbb{R}^n$, $(l_R(z)) = (l_R(e^{i\Theta}))$

Ex 6:

Remarque préliminarie: Posono $f: \mathbb{R} \longrightarrow \mathbb{R}$ $\chi_1 \longrightarrow f(\chi) = \chi e^{-\chi}$

Alors: $V(x,y) \in \mathbb{R}^2$, $x \in \mathbb{R}^2$ $\Rightarrow x \in \mathbb{R}^2 = y \in \mathbb{R}^2 \Leftrightarrow x \in \mathbb{R}^2 \Rightarrow x$

4). Reor reflexive: Pour rout $x \in \mathbb{R}$, f(x) = f(x); done pour tour $x \in \mathbb{R}$, $x \in \mathbb{R}$.

Reor symétrique: Soient $x, y \in \mathbb{R}$.

- (H) SizRy
- ① Alons f(x) = f(y). Donc f(y) = f(x).
- @ Donc y Rx.

Rest transitive: Soverur x, y, z & IR.

- H) Six Ry ery Rz
- ① Alons f(x) = f(y) er f(y) = f(z); donc f(x) = f(z)
- O Donc 2 QZ

Par conséquent Resture relation d'équivalence.

2) Soir $x \in \mathbb{R}$. Alors: $(ll(x) = \{x \in \mathbb{R}, x' \in \mathbb{R}, x' \in \mathbb{R}\}$ $= \{x' \in \mathbb{R}, f(x') = f(x)\}$

Donc Ul(x) = ensemble des antrécédents de x.

Pour déterminer le nombre d'antécedents de x, on va donc commencer par tracer la combe représentative de f

Etude de l'opplication f . fest contrinue et dérivable sur R (qui est son ens de définition)

·
$$\lim_{\chi \to +\infty} f(\chi) = \lim_{\chi \to +\infty} \chi = \lim_{\chi \to +\infty} \frac{1}{\chi \to +\infty} = 0$$

· $\lim_{\chi \to +\infty} f(\chi) = \lim_{\chi \to -\infty} \chi = -\infty$
· $\lim_{\chi \to -\infty} f(\chi) = \lim_{\chi \to -\infty} \chi = -\infty$

$$\cdot \forall x \in \mathbb{R}$$
, $f'(x) = (4-x)e^{-x}$; donc signe $(f'(x)) = signe(1-x)$

. On en dédeut :

x	- 20		1		د +
1- X		+	O	_	
P'(x)		t	0	_	
\$(n)	->>	/	71 1/e		>> 0

Course représentative de f:

D'après le trableau de variation (et la courbe), on en déduit que pour tour y & PR;

). Si y > \frac{1}{e}: y n'a pas d'antécedent pauf.

Si y = \frac{1}{e}: y admer un seul antécédent (qui et x = 1)

O < y < \frac{1}{e}: y admer 2 antécédents (l'un dans Jo, 1[, l'auhe dans J 1, txo())

Si y < 0: y admer un seul antécédent (qui est régalif)

```
Donc: \begin{cases} \text{Si} & \text{$x \in ]-\infty,0]} : f(x) \in ]-\infty,0] : \text{donc} & \text{$x$ admet $1$ anteredent} \\ \text{(aui est $x$)} \end{cases} Si & \text{$x \in ]0,1[\cup]-1,+\infty[} : f(x) \in ]0, \frac{1}{6}[ : \text{donc} & \text{$x$ admet $2$} \\ & \text{anteredents} . \end{cases} Si & \text{$x = 1} : f(x) = 1/6 : \text{donc} & \text{$x$ admet $4$ anteredent} \\ \text{(aui est $x = 1$)} \end{cases}

Donc: \begin{cases} \text{Si} & \text{$x \in ]-\infty,0]$ ou $x = 1$} : \text{Cl}(x) \text{ est une singleton} \left(\text{Cl}_{A}(x) = \frac{1}{2}x\right) \\ \text{Si} & \text{$x \in ]-\infty,0]$ ou $x = 1$} : \text{Cl}(x) \text{ est une paire} \end{cases}
```