Amendments to the Claims

Please amend Claims 4, 6, 9-10 and 13-18. The Claim Listing below will replace all prior versions of the claims in the application:

Claim Listing

1. (Previously Presented) A method of treating a patient suffering from an inflammatory condition, comprising treating said patient with a therapeutically effective amount of a cholinergic agonist selective for an α7 nicotinic receptor, wherein said condition is selected from the group consisting of peritonitis, sepsis, endotoxic shock, adult respiratory distress syndrome, chronic obstructive pulmonary disease, rheumatoid arthritis, systemic lupus erythematosis, allograft rejection, asthma, graft-versus-host-disease, congestive heart failure and cystic fibrosis.

2-3. (Cancelled)

4. (Currently Amended) The method of claim 1, wherein the cholinergic agonist is selected from the group consisting of a quaternary analog of cocaine; (1-aza-bicyclo[2.2.2]oct-3-yl)-carbamic acid 1-(2-fluorophenyl)-ethyl ester or a pharmaceutically acceptable salt thereof; a compound of formula I:

wherein, R represents hydrogen or methyl, and n represents 0 or 1; a pharmaceutically acceptable salt of a compound of formula I; a compound of formula II:

$$(CH_2)_m$$
 $(CH_2)_n$
 X
 Y
 A
 D
 G

H

wherein:

m is 1 or 2,

n is 0 or 1,

Y is CH, N or NO,

X is oxygen or sulfur,

W is oxygen, H₂ or F₂,

A is N or $C(R^2)$,

G is N or $C(R^3)$,

D is N or $C(R^4)$,

with the proviso that no more than one of A, G and D is nitrogen but at least one of Y, A, G and D is nitrogen or NO,

R¹ is hydrogen or C₁-C₄ alkyl,

 R^2 , R^3 and R^4 are independently hydrogen, halogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, aryl, heteroaryl, OH, OC₁- C_4 alkyl, CO_2R_1 , -CN, -NO₂, -NR₅R₆, -CF₃ or -OSO₂CF₃, or R^2 and R^3 , R^3 and R^4 , respectively, may together form another six membered aromatic or heteroaromatic ring sharing A and G, or G and D, respectively, containing between zero and two nitrogen atoms, and substituted with one to two of the following substitutents: independently hydrogen, halogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 -

 C_4 alkynyl, aryl, heteroaryl, OH, OC₁-C₄ alkyl, CO_2R^1 , -CN, -NO₂, -NR⁵R⁶, -CF₃ or -OSO₂CF₃,

 R^5 and R^6 are independently hydrogen, C_1 - C_4 alkyl, $C(O)R^7$, $C(O)NHR^8$, $C(O)OR^9$, SO_2R^{10} or may together be $(CH_2)_jQ(CH_2)_k$ where Q is O, S, NR^{11} , or a bond,

j is 2 to 7,

k is 0 to 2,

 R^7 , R^8 , R^9 , R^{10} and R^{11} are independently C_1 - C_4 alkyl, aryl, or heteroaryl, or an enantiomer thereof; a pharmaceutically acceptable salt of a compound of formula II; a compound of formula III:

$$R_1$$
 R_7
 R_7

Ш

or a pharmaceutically acceptable salt thereof, wherein R_1 , R_6 and R_7 are hydrogen or C_1 - C_4 alkyl, and R_2 is selected from a

group of

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\$$

and

wherein, R₃, R₄ and R₅ are selected from the group consisting of hydrogen, C₁-C₄ alkyl optionally substituted with N,N-dialkylamino having 1 to 4 carbons in each of the alkyls, C₁-C₆ alkoxy optionally substituted with N,N-dialkylamino having 1 to 4 carbons in each of the alkyls, carboalkoxy having 1 to 4 carbons in the alkoxy, amino, amido having 1 to 4 carbons in the acyl, cyano, and N,N-dialkylamino having 1 to 4 carbons in each of the alkyls, halo, hydroxyl or nitro; and a compound of formula IV:

or a pharmaceutically acceptable salt thereof, wherein X is O or S, and R is selected from the group consisting of H, OR₁,

NHC(O) R_1 , and a halogen, wherein R_1 is a C_1 - C_4 alkyl.

5. (Original) The method of claim 1, wherein the cholinergic agonist is a compound of formula I:

wherein, R represents hydrogen or methyl, and n represents 0 or 1;

or a pharmaceutically acceptable salt thereof.

6. (Currently Amended) The method of claim 5, wherein the cholinergic agonist is (-)-spiro[1-azabicyclo[2.2.2]octane-3,5'-oxazolidin-2'-one]

or a pharmaceutically acceptable salt thereof.

7. (Original) The method of claim 1, wherein the cholinergic agonist is a compound of formula II:

$$(CH_2)_m$$
 $(CH_2)_n$
 X
 D
 A

wherein:

m is 1 or 2;

n is 0 or 1;

```
Y is CH, N or NO;
X is oxygen or sulfur;
W is oxygen, H<sub>2</sub> or F<sub>2</sub>;
A is N or C(R<sup>2</sup>);
G is N or C(R<sup>3</sup>);
D is N or C(R<sup>4</sup>);
```

with the proviso that no more than one of A, G and D is nitrogen but at least one of Y, A, G and D is nitrogen or NO;

 R^1 is hydrogen or C_1 - C_4 alkyl;

R², R³ and R⁴ are independently hydrogen, halogen, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, aryl, heteroaryl, OH, OC₁-C₄ alkyl, CO₂R₁, -CN, -NO₂, -NR₅R₆, -CF₃ or -OSO₂CF₃, or R² and R³, R³ and R⁴, respectively, may together form another six membered aromatic or heteroaromatic ring sharing A and G, or G and D, respectively, containing between zero and two nitrogen atoms, and substituted with one to two of the following substitutents: independently hydrogen, halogen, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, aryl, heteroaryl, OH, OC₁-C₄ alkyl, CO₂R¹, -CN, -NO₂, -NR⁵R⁶, -CF₃ or -OSO₂CF₃;

 R^5 and R^6 are independently hydrogen, C_1 - C_4 alkyl, $C(O)R^7$, $C(O)NHR^8$, $C(O)OR^9$, SO_2R^{10} or may together be $(CH_2)_jQ(CH_2)_k$ where Q is O, S, NR^{11} , or a bond;

j is 2 to 7; k is 0 to 2;

R⁷, R⁸, R⁹, R¹⁰ and R¹¹ are independently C₁-C₄ alkyl, aryl, or heteroaryl, or an enantiomer thereof, or a pharmaceutically acceptable salts thereof.

8. (Original) The method of claim 7, wherein the cholinergic agonist is a compound of formula II wherein m is 1; n is 0; p is 0; x is oxygen; A is $C(R^2)$; G is $C(R^3)$; and D is $C(R^4)$.

- 9. (Currently Amended) The method of claim 7, wherein the cholinergic agonist is 5'-phenylspiro[1- azabicyclo[2.2.2]octane-3,2'-(3'H)-furo[2,3-b]pyridin], or a pharmaceutically acceptable salt thereof.
- 10. (Currently Amended) The method of claim 1, wherein the cholinergic agonist is a compound of formula III:

$$R_1$$
 R_7
 R_7
 R_7
(III)

or a pharmaceutically acceptable salt thereof, wherein R_1 , R_6 and R_7 are hydrogen or C_1 - C_4 alkyl; and R_2 is selected from a group of

$$\begin{cases} \begin{array}{c} R_3 \\ R_5 \end{array} \\ \\ \begin{array}{c} R_3 \\ R_5 \end{array} \\ \\ \begin{array}{c} R_3 \\ R_5 \end{array} \\ \\ \begin{array}{c} R_3 \\ R_4 \\ \\ \end{array}$$

and wherein, R_3 , R_4 and R_5 are selected from the group consisting of hydrogen, C_1 - C_4 alkyl optionally substituted with N,N-dialkylamino having 1 to 4 carbons in each of the alkyls, C_1 - C_6 alkoxy optionally substituted with N,N-dialkylamino having 1 to 4 carbons in each of the alkyls, carboalkoxy having 1 to 4 carbons in the alkoxy, amino, amido

having 1 to 4 carbons in the acyl, cyano, and N,N-dialkylamino having 1 to 4 carbons in each of the alkyls, halo, hydroxyl or nitro.

- 11. (Original) The method of claim 10, wherein the cholinergic agonist is a compound of formula III, wherein R₂ is attached to the 3-position of the tetrahydropyridine ring, and further wherein R₃, which is attached to the 4- or the 2- position of the phenyl ring, is selected from the group consisting of amino, hydroxyl, chloro, cyano, dimethylamino, methyl, methoxy, acetylamino, acetoxy, and nitro.
- (Original) The method of claim 10, wherein the cholinergic agonist is a compound selected from the group consisting of formula III, wherein R₃ is hydroxyl, and wherein R₁, R₄, and R₅ are hydrogen; formula III, wherein R₃ is acetylamino and wherein R₁, R₄, and R₅ are hydrogen; formula III, wherein R₃ is acetoxy and wherein R₁, R₄, and R₅ are hydrogen; formula III, wherein R₃ is methoxy, and wherein R₁, R₄, and R₅ are hydrogen; formula III, wherein R₃ is methoxy and wherein R₁ and R₄ are hydrogen, and further wherein R₃ is attached to the 2-position of the phenyl ring, and R₅, which is attached to the 4-position of the phenyl ring, is methoxy or hydroxy.
- 13. (Currently Amended) The method of claim 10, wherein the cholinergic agonist is selected from the group consisting of 3-2,4-dimethoxybenzylidine anabaseine (DMXB-A), 3-(4-hydroxybenzylidene)anabaseine, 3-(4-methoxybenzylidene)anabaseine, 3-(4-aminobenzylidene)anabaseine, 3-(4-hyrdoxy-2-methoxybenzylidene)anabaseine, 3-(4-methoxy-2-hydroxybenzylidene)anabaseine, trans-3-cinnamylidene anabaseine, trans-3-(2-methoxy-cinnamylidene)anabaseine and trans-3-(4-methoxycinnamylidene)anabaseine or a pharmaceutically acceptable salt of any of the foregoing.
- 14. (Currently Amneded) The method of claim 10, wherein the cholinergic agonist is 3-(4-hydroxy-2-methoxybenzylidene)anabasine

or a pharmaceutically acceptable salt thereof.

15. (Currently Amended) The method of claim 10, wherein the cholinergic agonist is 3-(2,4-dimethoxybenzylidene)anabaseine.

or a pharmaceutically acceptable salt thereof.

16. (Currently Amended) The method of claim 1, wherein the cholinergic agonist is a compound of formula IV:

or a pharmaceutically acceptable salt thereof, wherein X is O or S; and R is selected from the group consisting of H, OR_1 , $NHC(O)R_1$, and a halogen, wherein R_1 is a C_1 - C_4 alkyl.

- 17. (Currently Amended) The method of claim 15, wherein the cholinergic agonist is selected from a group consisting of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-(4-hydroxyphenoxy)benzamide, N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-(4-acetamidophenoxy)benzamide, N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-(phenylsulfanyl)benzamide, and N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-(3-chlorophenylsulphonyl)benzamide, or a pharmaceutically acceptable salt of any of the foreging.
- 18. (Currently Amended) The method of claim 15, wherein the cholinergic agonist is N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-(phenylsulfanyl)benzamide, or a pharmaceutically acceptable salt thereof.
- 19. (Original) The method of claim 1, wherein the cholinergic agonist is cocaine methiodide.
- 20-23. (Cancelled)
- 24. (Original) The method of claim 1, wherein the condition is sepsis.
- 25-55. (Cancelled)