Problem Solving Techniques 문제해결

Jinkyu Lee

Dept. of Computer Science and Engineering, Sungkyunkwan University (SKKU)

Homework 4b

- 50 points for coding evaluation
 - Submission format
 - Your file should work on skku.goorm.io with gcc 11.1.0 complier
 - Submission site: https://skku.goorm.io
 - [Homework] 4b (code)
- 5 points for report
 - The report is not evaluated in detail but evaluated as Pass/Fail
 - Submission format: [Template] Report for exercise/homework
 - File name: yourid_HW4b.pdf
 - Example: 2000123456_HW4b.pdf
 - Submission site: https://icampus.skku.edu/
 - Week 12: [Homework] 4b (report)
- Due date: 5/24 23:59 (no late submission accepted)

Rules for homework

- You should follow instructions.
 - Complier
 - You will get no/less point if your program cannot be complied with the specified complier
 - Input/output format
 - You will get no/less point if TA's automatic evaluation program cannot parse your input or output.
 - Permitted modification scope
 - You will get no/less point if you modify code outside of the permitted modification scope
 - All other rules
 - You will get severe penalty or no/less point if you violate the given rules.

Complier for homework

■ Complier

- C language, not C++ language
- skku.goorm.io -> gcc 11.1.0
- Your program will be correctly evaluated *only if* your program works on skku.goorm.io with gcc 11.1.0 complier

Problem

- Recall the task model in Lecture Note 14.
 - Periodic task (T,C)
 - Its jobs repeat regularly
 - Period T = inter-release time (0 < T)
 - Execution time C = maximum execution time $(0 < C \le T)$
 - Utilization U = C/T

Problem

- Different from the scheduling algorithm called Fixed-Priority scheduling (in which the priority is assigned to each task), EDF (Earliest Deadline First) scheduling assigns the priority to each job, such that a job with an earlier deadline has a higher priority.
- Under EDF, it was proven that a given task set on a processor never miss their job deadlines as long as the sum of C_i/T_i is no larger than 1.0, i.e., $\sum_{i=1}^{\infty} \frac{C_i}{T_i} \le 1.0$

■ Suppose that you have 5 processors (whose indexes are 1, 2, 3, 4 and 5) and $10 \le n \le 30$ tasks. Find a correct task-processor mapping such that (i) every task is assigned to one of the processors and (ii) a subset of tasks assigned to each processor satisfies the above condition.

■ For each task, $C_i \le T_i$ holds, and C_i and T_i are integers between 1 and 1000.

Input/Output Format

- In every TA's test case, there exists at least one correct task-processor mapping.
 - If there exist multiple correct task-processor mapping, print only one of them.

Template

- **■** Template
 - No C code template

Evaluation

■ Evaluation

- TA will test several cases.
- For each test case,
 - If your C code results in an answer within 10 seconds on skku.goorm.io with gcc 11.1.0 complier,
 - If your answer finds a correct task-processor mapping,
 - You get 100%.
 - Else,
 - You get 0%.
 - Else,
 - You get 0%.

Before submission, test your program on skku.goorm.io with gcc 11.1.0 complier! Otherwise, you may get zero point although your program works on your environment.

