Christof Teuscher

ECE 410/510: Hardware for AI and ML

Neuromorphic chips

Portland State University

Department of Electrical and Computer Engineering (ECE)

www.teuscher-lab.com teuscher@pdx.edu

How can we accelerate an algorithm?

Or in other words: solve a problem as fast as possible?

How can we accelerate an algorithm?

- Technology scaling (but Moore's law is flattening out)
- · Cache optimizations
- · Code optimization
- Exploiting parallelism
- GPUs
- TPUs
- Fancier CPUs? More pipelining? Faster storage? Better networking?
- HW/SW co-design
- Improve the algorithm (trade time for space, approximations, etc.)
- Emerging technology

Non-von Neuman architectures In-memory computation (IMC or PiM)

www.teuscher-lab.com/teaching

Stacked 3D chips

Figure 5. (a) Proposed Neurocube architecture and (b) Organization of the processing elements (PEs).

Mishra et al.

Kim et al., Neurocube

www.teuscher-lab.com/teaching

Conventional vs Processing-in-Memory (PiM)

Mishra et al.

Matrix-vector multiplication (MCM)

MVM
$$\vec{c} = \mathbf{A} \times \vec{b}$$

FIGURE 2: The spatial architecture for data-movement/memory-accessing amortization.

Verma et al., In-Memory Computing, 2019

Christof Teuscher • teu

multiplication.

MVM (Matrix-Vector Multiplication) can be executed in a crosspoint memory array by

universal circuit laws, such as Kirchhoff's current law for summation and Ohm's law for

 $\label{thm:continuous}$ This is schematically shown in Fig. 5(a), where the application of a voltage V_j at the jth column results in a current at the ith row, connected to ground,

$$I_i = \sum_{j=1}^{N} G_{i,j} \cdot V_j, \quad (1)$$

www.teuscher-lab.com/teaching

where G_{ij} is the conductance of the memory element at position i,j and N is the number of rows and columns. $^{(i)D}$ Equation (1) can be written in the compact matrix form $i = G_V$, thus evidencing the multiplication of the conductance matrix G with the voltage vector v.

FIG. 5. Various cell structures for crosspoint array circuits. (a) One-resistor (1R) structure where the cell consists of a passive resistive device. (b) One-selector/one-resistor (1S1R) structure where the sneak path problem is circumvented by a non-linear selector device without affecting the integration density. (c) One-transistor/one-resistor (1T1R) structure allows for the selection of individual cells during programming and reading at the cost of a lower integration density. (d) One-capacitor (1C) structure, which prevents static leakage during MVM.

Mannocci et al.

IMC vs non-IMC comparison

IMC enables ~ 10x gains in each metric.

Verma et al., In-Memory Computing, 2019

How can we man a NN onto a crossbar?

How can we map a NN onto a crossbar?

Parallel multiplication: When voltage is applied to the rows, the current flowing through each memristive junction is proportional to the product of the input voltage and the junction's conductance. This effectively performs multiplication at each intersection point simultaneously.

Current summation: The currents from all intersections in a column are naturally summed according to Kirchhoff's current law, effectively adding up all the partial products.

https://doi.org/10.3389/fnins.2021.690418

Christof Teuscher teuscher@pdx.edu

How can we map a NN onto a crossbar?

 $\underline{\text{https://nanoconvergencejournal.springeropen.com/articles/10.1186/s40580-024-00463-0}$

www.teuscher-lab.com/teaching

Sneak paths (1)

Sneak paths (2)

Make a drawing of where the current flows

Sneak paths (3)

Sneak-paths in crossbars are unintended current pathways that occur in memory array architectures.

Solutions: diodes or 1T1R structures

Questions

- · What is the primary advantage of in-memory computing.
- In a typical crossbar implementation of a neural network, where are the synaptic weights physically represented?
- What are the benefits of spiking neural nets over analog neural nets?

Neuromorphic chips

What are neuromorphic chips?

Neuromorphic chips are specialized hardware designed to mimic the structure and function of the human brain.

> What neuromorphic HW would you build? What are characteristics one would like to see in such HW? Compute? Communication? Memory? Do we need neuromorphic HW at all? If so, for what? Why not do everything in software?

What are neuromorphic chips?

- Neuromorphic chips are specialized hardware designed to mimic the structure and function of the human brain. Unlike traditional computing architectures, these chips are built to process information in ways similar to biological neural networks.
 - Cerebras WSE-3
 - · 300-millimeter wafer
 - 4 trillion transistors
 - TSMC 5nm
 - 57x larger than an **NVIDIA H100**
 - Accelerate Al workloads, particularly training and inference of large language models.

Not considered a neuromorphic chip

Key characteristics of all neuromorphic chips

- Parallel processing Unlike traditional Von Neumann computing where processing and memory are separate, neuromorphic chips integrate computation and memory in the same physical structures (similar to how brain cells work).
- Event-driven computation Most neuromorphic chips operate based on events or "spikes" rather than continuous clock cycles, making them more energy-efficient by only consuming power when processing information.
- Adaptability Many neuromorphic designs incorporate on-chip learning mechanisms that allow synaptic connections to strengthen or weaken based on activity patterns.
- Distributed memory Information is stored across the network in the connection strengths between neurons, rather than in a centralized memory unit.

Feature	Traditional Computing	Neuromorphic Computing Brain-inspired (integrated memory and processing)			
Architecture	Von Neumann (separate memory and processing)				
Processing	Sequential, clock-driven	Parallel, event-driven			
Power Consumption	High	Low to very low (typically)			
Learning Capability	Requires separate algorithms	Often incorporates on-chip learning			
Precision	High precision arithmetic	Variable/lower precision, stochastic			
Fault Tolerance	Limited	High (distributed processing)			
Specialization	General-purpose	Specialized for pattern recognition, sensor processing			

What are the different approaches?

- Implement neurons directly in silicon (Loihi, TrueNorth, etc.)
- Simulate neurons with specialized processors (SpiNNaker).
- Analog
- Digital
- Mixed-signal
- What is a key building block for directly implementing neurons on silicon in many modern neuromorphic chips?
- Can you draw a generic architecture diagram of a neuromorphic chip?

Key building block: the crossbar

 Crossbar arrays provide the critical architecture for efficiently implementing synaptic connections between neurons.

- Why?
 - · Efficient matrix-vector multiplication
 - In-memory computing
 - Implementation of synaptic weights
 - Parallel processing
 - Integration with emerging technologies

Generic diagram?

https://doi.org/10.1038/s41467-025-57352-1

Academic and research chips

Chip	Developer	Architecture	Neurons	Synapses	Power Efficiency	Key Technologies
Loihi	Intel	Asynchronous	130,000+ per chip	130M per chip	~1000x more efficient than GPUs	On-chip learning, Sparse coding
TrueNorth	IBM	Event-driven	1M per chip	256M per chip	70mW at peak	Crossbar array, Non- von Neumann
SpiNNaker	University of Manchester	Multi-core ARM-based	~1M	Configurable	Medium	Packet- switched network
BrainScaleS	Heidelberg University	Analog/mixed- signal	4M	1B	Medium- high	Wafer-scale integration
Neurogrid	Stanford	Mixed analog- digital	1M	Billions	~1000x more efficient	lon channel dynamics

Commercial and emerging neuromorphic chips

Chip	Developer	Architecture	Neurons	Synapses	Power Efficiency	Key Technologie	
Tianjic	Tsinghua University	Hybrid	40,000	10M	Medium	Combines ANNs and SNNs	
Akida	BrainChip	Event-based digital	1.2M	10B	Very high (sub-mW)	Edge AI, On-	
DYNAP- SE	aiCTX/SynSense	Analog/mixed- signal	1,000 per core	64,000 per core	Ultra-low power	Subthreshol analog circuits	
Zeroth	Qualcomm	Digital	Varies	Varies	Low	Event-driver processing	
Cerebras CS- 1/CS-2	Cerebras	Wafer-scale	850,000 cores	Trillions	High performance but high power	Wafer-scale	

Chip/neural computer	In-memory computation	Signal	Size neurons/synapses	On-device learning	Analog	Event-based	nm	Features
CPU/GPU/TPU	No	Real numbers, spikes		Backprop/STDP	No	No	5	High popularity, rich ecosystem, advanced engineering technologies
TrueNorth	Near-memory	Spikes	1M/256M	No	No	Yes	28	First industrial neuromorphic chip without training (IBM)
Loihi	Near-memory	Spikes	128K/128M	STDP	No	Yes	14	First neuromorphic chip with training (Intel)
Loihi2	Near-memory	Real numbers, spikes	120K/1M	STDP, surrogate backprop	No	Yes	7	Development of Loihi ideas, non-binary spikes, neurons can be programmed
Tianjic	Near-memory	Real numbers, spikes	40K/10M	No	No	Yes	28	Hybrid chip with effective support of both SNN and ANN, energy efficiency
SpiNNaker	Near-memory	Real numbers, spikes		STDP	No	No	22	Scalable computer for SNN simulation
Brain-ScaleS	Yes	Real numbers, spikes	512/130K	STDP, Surrogate gradient	Yes, membrane	Yes	65	Analog neurons at RC circuits, large size
GrA1One (Neuron- Flow)	Near-memory	Real numbers, Spikes	200K/	No	No	Yes	28	NeuronFlow architecture, effective support of sparse computations, support of ANN and SNN
DYNAP SE2, SEL, CNN	Near-memory	Spikes	1K/65K 1K/80K 1M/4M	STDP (SEL)	SE2, SEL	Yes	22	Proprietary communication protocol
Akida	Near-memory	Spikes	1,2M/10B	STDP (last layer)	No	Yes	28	First commercial neuromorphic processor with incremental, one-shot, and continuous learning for CNN
Mythic	In-memory	Real numbers	/80M		Yes	Yes	40	
Memristor (Tsinghua University)	Yes	Real numbers	192/ 2048	No	Yes (15 signal levels)	Yes	500	CNN-optimized memristor chip, one chip contains 2048 1T1R elements
Memristor (Univ. of Massachusetts)	Yes	Spikes	192/ 2048	No	Yes	Yes	2 μm	128×64 memristor array according to $1T1R$ circuit
Memristor (IBM)	Yes	Spike	512/ 64k	Yes	Yes	Yes	50	2T1R design allows each synaptic cell to operate asynchronously in either LIF or

Current limitations and challenges

- Programming Models: Lack of standardized programming frameworks for neuromorphic hardware
- Application Development: Limited software ecosystem compared to traditional computing
- Scaling: Challenges in scaling to human-brain levels while maintaining efficiency
- Algorithm Mapping: Difficulty in mapping existing Al algorithms to neuromorphic architectures
- Adoption: Industry adoption still in early stages outside of research applications.
- Cost: Silicon cost of large-scale applications is prohibitive. Also: most neuromorphic chips rely on SRAM, which is ~2 orders of magnitude more expensive than DRAM.

Applications

Real-Time Sensing and Processing

- Autonomous Vehicles
- Edge Computing and IoT
- · Advanced Robotics

Intelligent Analysis and Security

- Cybersecurity
- Healthcare Monitoring
- · Voice and Speech Recognition
- · Advanced Al Applications

Advanced AI Applications

- Efficient Machine Learning
- Brain Research
- · Aerospace and Defense

Autonomous Vehicles

- NVIDIA DRIVE AGX provides "a scalable and energy-efficient Al computing platform designed to process the complex workloads required for autonomous driving."
- Full Self-Driving (FSD) Computer: Tesla initially used NVIDIA hardware but has since developed its own custom SoC.
 According to Elon Musk, designing their own chip allows Tesla "to be able to run the neural network at a fundamental, bare metal level" and optimize specifically for their needs. Tesla's FSD computer delivers 144 TOPS while consuming 72 watts of power.
- Intel Mobileye EyeQ: BMW, Volkswagen, and Nissan use Mobileye technology.
- Qualcomm's Snapdragon Ride: "designed to power all levels of automated driving" with a scalable architecture that can handle everything from basic driver assistance to fully autonomous driving. Volkswagen, BMW, General Motors, and Toyota have partnered with Qualcomm for their autonomous technology

How to communicate spikes?

It's all about AER (Address Event Representation)

- Address Event Representation (AER) is a spike event message passing protocol for Network-on-Chip (NoC).
- · Almost all hardware and software simulation environments use a variant of AER
- The simplest and most efficient implementation of AER sends a firing neuron's unique identification number to all of the nodes containing any of that neuron's targets.
- Each spike is typically encoded as a packet containing source/destination information
- · Only active neurons that produce spikes generate messages.
- The timing information is implicit in when the message is sent.
- Efficient, event-driven communication system.
- AER allows for asynchronous, sparse communication between neuromorphic cores
- A NoC routes these spike event messages between different neural processing elements.

BOAHEN: POINT-TO-POINT CONNECTIVITY BETWEEN NEUROMORPHIC CHIPS

Fig. 1. The AER pulses from spiking neurons are transmitted serially by broadcasting addresses on a digital bus. Multiplexing is transparent if the encoding, transmission, and decoding processes cycle in less than Δ/n s, where Δ is the desired spike-timing precision and n is the maximum number of neurons that are active during this time (adapted from [4]).

Point-to-Point Connectivity Between Neuromorphic Chips Using Address Events

