# Math Camp

Justin Grimmer

Professor Department of Political Science Stanford University

September 10th, 2018

# Where We've Been, Where We're Going

#### Calculus: Analyze behavior of functions on real line

- Convergence
- Differentiation
- Integration

### Linear Algebra

- Data stored in matrices
- Higher dimensional spaces
  - complex world, condition on many factors
  - flood of big data, store in many dimensions
- Linear Algebra:
  - Algebra of matrices
  - Geometry of high dimensional space
  - Calculus (multivariable) in many dimensions

Very important for regression(!!!!)

### Points + Vectors

- A point in  $\Re^1$ 
  - 1
  - π
  - e
- An ordered pair in  $\Re^2=\Re imes\Re$ 
  - -(1,2)
  - -(0,0)
  - $-(\pi, e)$
- An ordered triple in  $\Re^3=\Re\times\Re\times\Re$ 
  - (3.1, 4.5, 6.11132)

- An ordered n-tuple in  $\Re^n = \Re \times \Re \times \ldots \times \Re$ 
  - $(a_1, a_2, \ldots, a_n)$

### Points and Vectors

#### Definition

A point  $\mathbf{x} \in \mathbb{R}^n$  is an ordered n-tuple,  $(x_1, x_2, \dots, x_n)$ . The vector  $\mathbf{x} \in \mathbb{R}^n$  is the arrow pointing from the origin  $(0, 0, \dots, 0)$  to  $\mathbf{x}$ .

# One Dimensional Example



## Two Dimensional Example



## Three Dimensional Example

- (Latitude, Longitude, Elevation)
- (1, 2, 3)
- (0, 1, 0)

## N-Dimensional Example

- Individual campaign donation records

$$\mathbf{x} = (1000, 0, 10, 50, 15, 4, 0, 0, 0, \dots, 2400000000)$$

- Counties have proportion of vote for Obama

$$y = (0.8, 0.5, 0.6, \dots, 0.2)$$

- Run experiment, assess feeling thermometer of elected official

$$t = (0, 100, 50, 70, 80, \dots, 100)$$

### Arithmetic with Vectors

#### Definition

Suppose  $\mathbf{u}$  and  $\mathbf{v}$  are vectors  $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ ,

$$\mathbf{u} = (u_1, u_2, u_3, \dots, u_n)$$
  
 $\mathbf{v} = (v_1, v_2, v_3, \dots, v_n)$ 

We will say  $\mathbf{u} = \mathbf{v}$  if  $u_1 = v_1, u_2 = v_2, \dots, u_n = v_n$ Define the sum of  $\mathbf{u} + \mathbf{v}$  as

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3, \dots, u_n + v_n)$$

Suppose  $k \in \Re$ . We will call k a scalar.

Define ku as the scalar product

$$k\mathbf{u} = (k\mathbf{u}_1, k\mathbf{u}_2, \dots, k\mathbf{u}_n)$$

## Examples

#### Suppose:

$$u = (1, 2, 3, 4, 5)$$
  
 $v = (1, 1, 1, 1, 1)$   
 $k = 2$ 

Then,

$$\mathbf{u} + \mathbf{v} = (1+1, 2+1, 3+1, 4+1, 5+1) = (2, 3, 4, 5, 6)$$
  
 $k\mathbf{u} = (2 \times 1, 2 \times 2, 2 \times 3, 2 \times 4, 2 \times 5) = (2, 4, 6, 8, 10)$   
 $k\mathbf{v} = (2 \times 1, 2 \times 1, 2 \times 1, 2 \times 1, 2 \times 1) = (2, 2, 2, 2, 2)$ 

# Properties of Arithmetic

### Challenge Proofs—we can do these!

Theorem

Suppose that  $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$  and k and l are scalars.

a) 
$$\boldsymbol{u} + \boldsymbol{v} = \boldsymbol{v} + \boldsymbol{u}$$

Proof.

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$
  
=  $(v_1 + u_1, v_2 + u_2, \dots, v_n + u_n)$   
=  $\mathbf{v} + \mathbf{u}$ 

## Properties of Arithmetic

### Challenge Proofs—we can do these!

Theorem

Suppose that  $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$  and k and l are scalars.

b) 
$$u + 0 = 0 + u = u$$

Proof.

$$\mathbf{u} + \mathbf{0} = (u_1 + 0, u_2 + 0, \dots, u_n + 0)$$
  
=  $(0 + u_1, 0 + u_2, \dots, 0 + u_n) = \mathbf{0} + \mathbf{u}$   
=  $(u_1, u_2, \dots, u_n)$   
=  $\mathbf{u}$ 

# Properties of Arithmetic

Challenge Proofs—we can do these!

#### Theorem

Suppose that  $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \Re^n$  and k and l are scalars.

c) 
$$(l+k)\mathbf{u} = l(\mathbf{u}) + k(\mathbf{u})$$

#### Proof.

How can we show this?



# Challenge Proofs

- Show that  $1\boldsymbol{u} = \boldsymbol{u}$
- Show that  $\boldsymbol{u} + -1\boldsymbol{u} = \boldsymbol{0}$

### Inner Product

#### Definition

Suppose  $\mathbf{u} \in \Re^n$  and  $\mathbf{v} \in \Re^n$  then define  $\mathbf{u} \cdot \mathbf{v}$ ,

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n$$
$$= \sum_{i=1}^{N} u_i v_i$$

## Examples

Suppose 
$$\mathbf{u}=(1,2,3)$$
 and  $\mathbf{v}=(2,3,1)$ . Then, 
$$\begin{aligned} \mathbf{u}\cdot\mathbf{v}&=&1\times2+2\times3+3\times1\\ &=&2+6+3\\ &=&11 \end{aligned}$$
 Suppose  $\mathbf{y}=(y_1,y_2,\ldots,y_N)$  and  $\mathbf{1}=(1,1,1,\ldots,1)$ . Then,

$$\mathbf{y} \cdot \mathbf{1} = y_1 + y_2 + \ldots + y_n$$
$$= \sum_{i=1}^{n} y_i$$

$$= \sum_{i=1}^{n} y_i$$

### R. Code

```
Create a vector in R.
vec <- c(1, 2, 3, 4, 5)
vec<-c()
vec[1]<- 1
vec[2]<- 2
vec[3] < -3
vec[4]<- 4
vec[5]<- 5
x1 < -c(2, 2, 3, 2)
x2 < -c(5, 3, 1, 3)
add \leftarrow x1 + x2
add
[1] 7 5 4 5
```

```
scalar<- 10 *x1
scalar
[1] 20 20 30 20
output<- x1 %*% x2
output
[,1]
[1,] 25
```

## Challenge Problems

- Suppose  $\mathbf{v}=(1,4,1,4)$  and  $\mathbf{w}=(4,1,4,1)$ . Calculate:  $\mathbf{v}\cdot\mathbf{w}$
- Prove  $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$
- Prove  $\mathbf{v} \cdot \mathbf{v} \geq 0$  and  $\mathbf{v} \cdot \mathbf{v} = 0$  if and only if  $\mathbf{v} = \mathbf{0}$ .

# Vector Length



- Pythogorean Theorem: Side with length *a*
- Side with length b and right triangle
- $c = \sqrt{a^2 + b^2}$
- This is generally true

x\_1

## Vector Length

#### Definition

Suppose  $\mathbf{v} \in \Re^n$ . Then, we will define its length as

$$||\mathbf{v}|| = (\mathbf{v} \cdot \mathbf{v})^{1/2}$$
  
=  $(v_1^2 + v_2^2 + v_3^2 + \dots + v_n^2)^{1/2}$ 

## Calculating a Length

Example 1: suppose  $\mathbf{x} = (1, 1, 1)$ .

$$||\mathbf{x}|| = (\mathbf{x} \cdot \mathbf{x})^{1/2}$$
  
=  $(1+1+1)^{1/2}$   
=  $\sqrt{3}$ 

```
Example 2: R code for length function
len.vec<- function(x) {
p1< - sqrt(x% * %x)
return(p1)
}
x <- c(1,1,1)
len.vec(x)
[,1]</pre>
```

[1,] 1.732051

## Coding Problem

#### Let's calculate the length of some vectors

- Write a function to assess the length of a vector.
- Use it to calculate the length of:
  - y<- c(10, 20, 30, 40)
  - x<- seq(1, 1000\*pi, len=1000)

## Texts in Space

$$\begin{array}{rcl} \mathsf{Doc1} & = & (1,1,3,\dots,5) \\ \mathsf{Doc2} & = & (2,0,0,\dots,1) \\ \mathsf{Doc1}, \mathsf{Doc2} & \in & \Re^M \end{array}$$

Provides many operations that will be useful Inner Product between documents:

**Doc1** · **Doc2** = 
$$(1, 1, 3, ..., 5)'(2, 0, 0, ..., 1)$$
  
=  $1 \times 2 + 1 \times 0 + 3 \times 0 + ... + 5 \times 1$   
=  $7$ 

#### Length of document:

$$|| \textbf{Doc1}|| \equiv \sqrt{\textbf{Doc1} \cdot \textbf{Doc1}}$$

$$= \sqrt{(1, 1, 3, \dots, 5)'(1, 1, 3, \dots, 5)}$$

$$= \sqrt{1^2 + 1^2 + 3^2 + 5^2}$$

$$= 6$$

Cosine of the angle between documents:

$$\cos \theta \equiv \left(\frac{\mathbf{Doc1}}{||\mathbf{Doc1}||}\right) \cdot \left(\frac{\mathbf{Doc2}}{||\mathbf{Doc2}||}\right)$$
$$= \frac{7}{6 \times 2.24}$$
$$= 0.52$$

# Measuring Similarity

Documents in space  $\rightarrow$  measure similarity/dissimilarity What properties should similarity measure have?

- Maximum: document with itself
- Minimum: documents have no words in common (orthogonal )
- Increasing when more of same words used
- ? s(a,b) = s(b,a).

# Measuring Similarity



Measure 1: Inner product

$$(2,1)^{'} \cdot (1,4) = 6$$



### Problem(?): length dependent

$$(4,2)'(1,4) = 12$$
  
 $a \cdot b = ||a|| \times ||b|| \times \cos \theta$ 

## Cosine Similarity



 $\cos\theta$ : removes document length from similarity measure Project onto Hypersphere  $\cos\theta \to \text{Inverse}$  distance on Hypersphere

von Mises Fisher distribution: distribution on sphere surface

### **Matrices**

#### Definition

A Matrix is a rectangular array of numbers

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

If **A** has m rows n columns we will say that **A** is an  $m \times n$  matrix. Suppose **X** and **Y** are  $m \times n$  matrices. Then **X** = **Y** if  $x_{ij} = y_{ij}$  for all i and j

# Simple Examples

$$I = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

If I is an  $n \times n$  matrix we will call an identity matrix.

## Simple Examples

$$\mathbf{X} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \end{pmatrix}$$

 $\boldsymbol{X}$  is an  $2 \times 3$  matrix

# Matrix Algebra

#### Definition

Suppose X and Y are  $m \times n$  matrices. Then define

$$\mathbf{X} + \mathbf{Y} = \begin{pmatrix}
x_{11} & x_{12} & \dots & x_{1n} \\
x_{21} & x_{22} & \dots & x_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m1} & x_{m2} & \dots & x_{mn}
\end{pmatrix} + \begin{pmatrix}
y_{11} & y_{12} & \dots & y_{1n} \\
y_{21} & y_{22} & \dots & y_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
y_{m1} & y_{m2} & \dots & y_{mn}
\end{pmatrix}$$

$$= \begin{pmatrix}
x_{11} + y_{11} & x_{12} + y_{12} & \dots & x_{1n} + y_{1n} \\
x_{21} + y_{21} & x_{22} + y_{22} & \dots & x_{2n} + y_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m1} + y_{m1} & x_{m2} + y_{m2} & \dots & x_{mn} + y_{mn}
\end{pmatrix}$$

# Matrix Algebra

#### Definition

Suppose **X** is an  $m \times n$  matrix and  $k \in \Re$ . Then,

$$kX = \begin{pmatrix} kx_{11} & kx_{12} & \dots & kx_{1n} \\ kx_{21} & kx_{22} & \dots & kx_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ kx_{m1} & kx_{m2} & \dots & kx_{mn} \end{pmatrix}$$

Prove theorems about this tonight

### R Code

```
dim(mat1)
[1] 3 2
mat1 + mat1
[,1] [,2]
[1,] 2.000000 4
[2,] 2.000000 8
[3,] 5.436564 8
```

#### R. Code

```
What if the matrices are of different dimension
mat1<- matrix(1, nrow=3, ncol=2)
mat2<- matrix(2, nrow=10, ncol=3)
mat1 + mat2
Error in mat1 + mat2 : non-conformable arrays
```

## Matrix Transpose

We will use matrix transpose to flip the dimensionality of a matrix

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{pmatrix}$$

$$\mathbf{X}' = \begin{pmatrix} x_{11} & x_{21} & \dots & x_{m1} \\ x_{12} & x_{22} & \dots & x_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1n} & x_{2n} & \dots & x_{mn} \end{pmatrix}$$

If X is an  $m \times n$  then X' is  $n \times m$ . If X = X' then we say X is symmetric.

# Matrix Transpose

Example 1: 
$$\mathbf{X} = \begin{pmatrix} 4 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$
 then  $\mathbf{X}' = \begin{pmatrix} 4 & 1 \\ 1 & 2 \\ 2 & 3 \end{pmatrix}$ 

```
In R
mat1<- matrix(c(1, 2, 3), nrow=3, ncol=2)
mat2<- t(mat1)
dim(mat1)
3 2
dim(mat2)
2 3</pre>
```

# Matrix Multiplication

How do we multiply matrices?

Because we want to use matrix multiplication to solve equations we won't use an intuitive definition

Suppose we have two matrices

$$\mathbf{X} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \ \mathbf{Y} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

We will create a new matrix **A** by matrix multiplication:

$$\begin{array}{rcl}
A & = & XY \\
 & = & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \\
 & = & \begin{pmatrix} 1 \times 1 + 1 \times 3 & 1 \times 2 + 1 \times 4 \\ 1 \times 1 + 1 \times 3 & 1 \times 2 + 1 \times 4 \end{pmatrix} \\
 & = & \begin{pmatrix} 4 & 6 \\ 4 & 6 \end{pmatrix}
\end{array}$$

# Matrix Multiplication

#### Definition

Suppose X is an  $m \times n$  matrix and Y is an  $n \times k$  matrix. Then define the matrix A an  $m \times k$  matrix that obtains from multiplying X and Y as,

$$A = XY$$

$$= \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{pmatrix} \begin{pmatrix} y_{11} & y_{12} & \dots & y_{1k} \\ y_{21} & y_{22} & \dots & y_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n1} & y_{n2} & \dots & y_{nk} \end{pmatrix}$$

$$= \begin{pmatrix} x_{11}y_{11} + x_{12}y_{21} + \dots + x_{1n}y_{n1} & \dots & x_{11}y_{1k} + x_{12}y_{2k} + \dots + x_{1n}y_{nk} \\ \vdots & & \ddots & & \vdots \\ x_{m1}y_{11} + x_{m2}y_{21} + \dots + x_{mn}y_{n1} & \dots & x_{m1}y_{11} + x_{m2}y_{12} + \dots + x_{mn}y_{nk} \end{pmatrix}$$

#### Definition

Suppose  ${\pmb X}$  is an  $m \times n$  matrix and  ${\pmb Y}$  is an  $n \times k$  matrix. Write the row

vectors of 
$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_m \end{pmatrix}$$
 and  $\mathbf{Y}$  as column vector  $\mathbf{Y} = (\mathbf{y}_1 \ \mathbf{y}_2 \ \dots \ \mathbf{y}_k)$ .

Then the  $m \times k$  matrix  $\mathbf{A} = \mathbf{X} \mathbf{Y}$  can be written as

$$\mathbf{A} = \begin{pmatrix} \mathbf{x}_1 \cdot \mathbf{y}_1 & \mathbf{x}_1 \cdot \mathbf{y}_2 & \dots & \mathbf{x}_1 \cdot \mathbf{y}_k \\ \mathbf{x}_2 \cdot \mathbf{y}_1 & \mathbf{x}_2 \cdot \mathbf{y}_2 & \dots & \mathbf{x}_2 \cdot \mathbf{y}_k \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_m \cdot \mathbf{y}_1 & \mathbf{x}_m \cdot \mathbf{y}_2 & \dots & \mathbf{x}_m \cdot \mathbf{y}_k \end{pmatrix}$$

# Matrix Multiplication

Let's work on an example together!

$$\mathbf{X} = \begin{pmatrix} 1 & 4 & 5 \\ 10 & 2 & 3 \end{pmatrix}$$

$$\mathbf{Y} = \begin{pmatrix} 2 & 3 \\ 1 & 5 \\ 3 & 5 \end{pmatrix}$$
 What is  $\mathbf{X}\mathbf{Y}$ ?

Not all matrices can be multiplied.

Matrix AB exists only if the number of columns in A = number of rows in B. If AB exists we will say the matrices are conformable

# Matrix Multiplication with a Vector

Suppose 
$$\mathbf{X} = \begin{pmatrix} 2 & 3 & 4 & 5 \\ 1 & 5 & 1 & 2 \\ 3 & 5 & 3 & 4 \end{pmatrix}$$
 a  $3 \times 4$  matrix and that  $\mathbf{v} = \begin{pmatrix} 3 \\ 3 \\ 4 \\ 10 \end{pmatrix}$  a  $4 \times 1$ 

matrix (or a column vector) what is

Xv?

What is  $\mathbf{X}'\mathbf{v}$ ?

# Algebraic Properties

Suppose  $\boldsymbol{X}$  is an  $m \times n$  matrix and  $\boldsymbol{Y}$  is an  $n \times k$  matrix. Suppose that

$$I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$
 as the identity matrix and that  $k \in Re$ .

- XY ≠ YX in general !!!! (but it could)
- $\boldsymbol{XI} = \boldsymbol{X}$  (let's talk it out!)
- $(\boldsymbol{X}')' = \boldsymbol{X}$
- $(\boldsymbol{X} \boldsymbol{Y})' = \boldsymbol{Y}' \boldsymbol{X}'$
- $-(k\boldsymbol{X})'=k\boldsymbol{X}'$
- $(\boldsymbol{X} + \boldsymbol{Y})' = \boldsymbol{X}' + \boldsymbol{Y}'$

# Examples, Implenting in R

```
R and matrix multiplication
X<- matrix(NA, nrow=2, ncol=3)</pre>
Y<- matrix(NA, nrow=3, ncol=2)
X[1,] < -c(1, 4. 5)
X[2,] \leftarrow c(10, 2, 3)
Y[1,] < -c(2, 3)
Y[2,] < -c(1.5)
Y[3,] < -c(3.5)
A \leftarrow X\% * \%Y
> A
[,1] [,2]
[1,] 21 48
[2,] 31 55
```

Big topic: suppose X is an  $n \times n$  matrix. We want to find the matrix  $X^{-1}$  such that

$$X^{-1}X = XX^{-1} = I$$

where I is the  $n \times n$  identity matrix.

## Why?

- Regression
- Solving systems of equations
- Will provide intuition about "colinearity", "fixed effects", "treatment designs" and what we can learn as social scientists

Calculate  $\leadsto$  Properties of Inverses  $\leadsto$  when do inverses exist  $\leadsto$  Application to regression analysis



# Some Motivating Examples

Consider the following equations:

$$x_1 + x_2 + x_3 = 0$$
  
 $0x_1 + 5x_2 + 0x_3 = 5$   
 $0x_1 + 0x_2 + 3x_3 = 6$ 

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \\ \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \end{pmatrix}$$

$$\mathbf{x}=(x_1,x_2,x_3)$$

$$b = (0, 5, 6)$$

The system of equations are now,

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

 $\mathbf{A}^{-1}$  exists if and only if  $\mathbf{A}\mathbf{x} = \mathbf{b}$  has only one solution.

# Matrix Inversion, Definition

#### Definition

Suppose X is an  $n \times n$  matrix. We will call  $X^{-1}$  the inverse of X if

$$X^{-1}X = XX^{-1} = I$$

If  $X^{-1}$  exists then X is invertible. If  $X^{-1}$  does not exist, then we will say X is singular.

You'll never invert a matrix by hand.

## We're going to use R

$$X[1,] \leftarrow c(2, 3, 4)$$

$$X[2,] \leftarrow c(3, 1, 3)$$

$$X[3,] \leftarrow c(2, 4, 2)$$

- 1) Calculate Inverses
- 2) Properties of Inverses

#### Theorem

The inverse of matrix X,  $X^{-1}$ , is unique

#### Proof.

By way of contradiction, suppose not. Then there are at least two matrices  $\boldsymbol{A}$  and  $\boldsymbol{C}$  such that  $\boldsymbol{AX} = \boldsymbol{I}$  and  $\boldsymbol{CX} = \boldsymbol{I}$ . This implies that,

$$\begin{array}{rcl}
\mathbf{AXC} &=& (\mathbf{AX})C \\
&=& \mathbf{IC} \\
&=& \mathbf{C}
\end{array}$$

But it also implies that

$$\begin{array}{rcl}
AXC & = & A(XC) \\
 & = & A(I) \\
 & = & A
\end{array}$$

So C = AXC = A or C = A but this contradicts our assumption that there are two unique inverses.

#### Theorem

Suppose **A** has inverse  $A^{-1}$  and **B** has inverse  $B^{-1}$ . Then,

$$(AB)^{-1} = B^{-1}A^{-1}$$

#### Proof.

We need to show that  $(\mathbf{B}^{-1}\mathbf{A}^{-1})(\mathbf{A}\mathbf{B})=(\mathbf{A}\mathbf{B})(\mathbf{B}^{-1}\mathbf{A}^{-1})=\mathbf{I}$ .

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B$$
  
=  $B^{-1}IB$   
=  $B^{-1}B$   
=  $I$ 

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1}$$
  
=  $AIA^{-1}$   
=  $AA^{-1}$   
=  $I$ 

So AB is invertible and  $(AB)^{-1} = B^{-1}A^{-1}$ .

# Challenge Inversion Proofs

- Show that  $({\bf A}^{-1})^{-1} = {\bf A}$ .
- Show that  $(k\mathbf{A})^{-1}=\frac{1}{k}\mathbf{A}^{-1}$

- 1) How to Calculate an Inverse
- 2) Inversion properties
- 3) When do inverses exist?

Linear Independence: not repeated information in matrix will be the key (for both inversion and regressions)

#### Definition

Suppose we have a set of vectors  $S = \{v_1, v_2, \dots, v_r\}$ And consider the system of equations

$$k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + \ldots + k_r\mathbf{v}_r = \mathbf{0}$$

If the only solution is  $k_1 = 0$ ,  $k_2 = 0$ ,  $k_3 = 0$ , ...,  $k_r = 0$  then we say that the set is linearly independent. If there are other solutions, then the set is linearly dependent.

Consider  $\mathbf{v}_1=(1,0,0)$ ,  $\mathbf{v}_2=(0,1,0)$ ,  $\mathbf{v}_3=(0,0,1)$ Can we write this as a combination of other vectors? no! Consider  $\mathbf{v}_1=(1,0,0)$ ,  $\mathbf{v}_2=(0,1,0)$ ,  $\mathbf{v}_3=(0,0,1)$ ,  $\mathbf{v}_4=(1,2,3)$ . Can we write this as a combination of other vectors?

$$\mathbf{v}_4 = \mathbf{v}_1 + 2\mathbf{v}_2 + 3\mathbf{v}_3$$

#### Theorem

Suppose  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_K \in \Re^n$ . If K > n then the set is linearly dependent

- $\mathbf{v}_1 = (v_{11}, v_{21}, \dots, v_{n1})$
- Says that if there are more vectors in the set than elements in each vector, one must be linearly dependent

## We care because of the following theorem

Theorem

Suppose 
$$\boldsymbol{X}$$
 is an  $n \times n$  matrix. Recall we can write this matrix as  $\begin{pmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \vdots \\ \boldsymbol{x}_n \end{pmatrix}$ . Then  $\boldsymbol{X}$  has an inverse if and only if  $S = \{\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n\}$  is linearly independent

independent

If this is true, we say X has full rank

# Linear Regression

In methods classes you learn about linear regression. For each i (individual) we observe covariates  $x_{i1}, x_{i2}, \dots, x_{ik}$  and independent variable  $Y_i$ . Then,

$$Y_{1} = \beta_{0} + \beta_{1}x_{11} + \beta_{2}x_{12} + \dots + \beta_{k}x_{1k}$$

$$Y_{2} = \beta_{0} + \beta_{1}x_{21} + \beta_{2}x_{22} + \dots + \beta_{k}x_{2k}$$

$$\vdots \quad \vdots \quad \vdots$$

$$Y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{k}x_{ik}$$

$$\vdots \quad \vdots \quad \vdots$$

$$Y_{n} = \beta_{0} + \beta_{1}x_{n1} + \beta_{2}x_{n2} + \dots + \beta_{k}x_{nk}$$

# Linear Regression

- Define 
$$x_i = (1, x_{i1}, x_{i2}, \dots, x_{ik})$$

- Define 
$$\boldsymbol{X} = \begin{pmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \vdots \\ \boldsymbol{x}_n \end{pmatrix}$$

- Define  $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_k)$
- Define  $Y = (Y_1, Y_2, ..., Y_n)$ .

Then we can write

$$Y = X\beta$$

# Linear Regression

$$\begin{array}{rcl}
\mathbf{Y} &=& \mathbf{X}\boldsymbol{\beta} \\
\mathbf{X}'\mathbf{Y} &=& \mathbf{X}'\mathbf{X}\boldsymbol{\beta} \\
(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} &=& (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta} \\
(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} &=& \boldsymbol{\beta}
\end{array}$$

Big question: is  $(\mathbf{X}'\mathbf{X})^{-1}$  invertible? We'll investigate in homework!

# An Introduction to Eigenvectors, Values, and Diagonalization

#### Definition

Suppose **A** is an  $N \times N$  matrix and  $\lambda$  is a scalar. If

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

Then x is an eigenvector and  $\lambda$  is the associated eigenvalue

- **A** stretches the eigenvector **x**
- ${\bf A}$  stretches  ${\bf x}$  by  $\lambda$
- To find eigenvectors/values: (eigen in R )
  - Find  $\lambda$  that solves  $\det(\mathbf{A} \lambda \mathbf{I}) = 0$
  - Find vectors in null space of:

$$(\mathbf{A} - \lambda \mathbf{I}) = 0$$

#### Definition

Suppose A is an  $N \times N$  matrix and A has N linearly independent eigenvectors. Then, we can write A as

$$\mathbf{A} = \mathbf{W}' \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_N \end{pmatrix} \mathbf{W}$$

Where  $\lambda_1, \lambda_2, \dots, \lambda_N$  are the eigenvalues and  $\mathbf{w}$  is a matrix of the eigenvectors.

#### Definition

Suppose X is an  $N \times J$  matrix. Then X can be written as:

$$X = \underbrace{U}_{N \times N} \underbrace{S}_{N \times J} \underbrace{V'}_{J \times J}$$

Where:

$$U'U = I_N$$
  
 $V'V = VV' = I_J$ 

**S** contains min(N, J) singular values,  $\sqrt{\lambda_j} \geq 0$  down the diagonal and then 0's for the remaining entries