STATISTICS HELP CARD

Summary Measures

$$\bar{x} = \frac{\text{Sample Mean}}{n} = \frac{\sum x_i}{n}$$

Sample Standard Deviation

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

Probability Rules

Complement Rule: $P(A^c) = 1 - P(A)$

Addition Rule: P(A or B) = P(A) + P(B) - P(A and B)

Conditional Probability: $P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$

Events A and B are independent if P(A|B) = P(A)Events A and B are independent if P(A and B) = P(A)P(B)If A and B are disjoint events then P(A and B) = 0

General Discrete Random Variable

Mean
$$E(X) = \mu = \sum x_i p_i = x_1 p_1 + x_2 p_2 + \dots + x_k p_k$$

Standard Deviation s. d. $(X) = \sigma = \sqrt{\sum (x_i - \mu)^2 p_i}$

Standard Score

$$Standard\ Score = \frac{Observation - Mean}{Standard\ Deviation}$$

Z Score

If X follows a Normal distribution with mean μ and standard deviation σ , then the random variable $Z = \frac{X - \mu}{\sigma}$ has a N(0,1) distribution

Sample Proportion

$$\hat{p} = \frac{x}{n}$$

Mean
$$E(\hat{p}) = p$$

Standard Deviation
$$s.d.(\hat{p}) = \sqrt{\frac{p(1-p)}{n}}$$

Sampling Distribution of \widehat{p}

If the sample size n is large enough (namely, $np \ge 10$ and $n(1-p) \ge 10$), then the distribution of all possible sample proportion values is approximately

$$N\left(p,\sqrt{\frac{p(1-p)}{n}}\right)$$

Sample Mean

$$\bar{x} = \frac{\sum x_i}{n}$$

Mean
$$E(\bar{X}) = \mu$$

Standard Deviation $s.d.(\bar{X}) = \frac{\sigma}{\sqrt{n}}$

Sampling Distribution of \overline{X}

If X has Normal distribution with mean μ and standard deviation σ , then the distribution of all possible sample mean values is

$$N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

Central Limit Theorem

If X follows any distribution with mean μ and standard deviation σ and the sample size n is large enough, then the distribution of all possible sample mean values is approximately

$$N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

One Population Proportion	Difference in Two Population Proportions	One Population Mean	Population Mean of Differences
Parameter p	Parameter $p_1 - p_2$	Parameter μ	Parameter μ_d
Statistic \hat{p}	Statistic $\hat{p}_1 - \hat{p}_2$	Statistic \bar{x}	Statistic $ar{d}$
Standard Error	Standard Error	Standard Error	Standard Error
$s.e.(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	$s.e.(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$	$s. e. (\bar{x}) = \frac{s}{\sqrt{n}}$	$s. e. (\bar{x}_d) = \frac{s_d}{\sqrt{n}}$
Confidence Interval	Confidence	Confidence Interval	Confidence
$\hat{p} \pm z^* \times s. e. (\hat{p})$	Interval	- 1 (*	Interval
Conservative	$(\hat{p}_1 - \hat{p}_2) \pm z^* \times s. e. (\hat{p}_1 - \hat{p}_2)$	$\bar{x} \pm t^* \times s. e. (\bar{x})$ $df = n - 1$	$\bar{x}_d \pm t^* \times s. e. (\bar{x}_d)$
Confidence Interval $\hat{p} \pm \frac{z^*}{2\sqrt{n}}$		$\omega_j = n - 1$	df = n - 1
Sample Size			
$n = \left(\frac{z^*}{2m}\right)^2$			
m=desired margin of error			
Large Sample z-Test	Large Sample z-Test	One-Sample t-Test	Paired t-Test
$z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)}}$	$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	$t = \frac{\bar{x} - \mu_o}{s. e. (\bar{x})}$	$t = \frac{\bar{x}_d - 0}{s. e. (\bar{x}_d)}$
$\sqrt{\frac{p_0(2-p_0)}{n}}$	where $\hat{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$	df = n - 1	df = n - 1

n_1+n_2				
Difference in Two Population Means				
Unpooled (Welch's)	Pooled			
Parameter $\mu_1 - \mu_2$	Parameter $\mu_1 - \mu_2$			
Statistic $\bar{x}_1 - \bar{x}_2$	Statistic $\bar{x}_1 - \bar{x}_2$			
Standard Error	Standard Error			
$s. e. (\bar{x}_1 - \bar{x}_2) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	pooled s.e. $(\bar{x}_1 - \bar{x}_2) = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$			
	where $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$			
Confidence Interval	Confidence Interval			
$(\bar{x}_1 - \bar{x}_2) \pm t^* \times s. e. (\bar{x}_1 - \bar{x}_2)$	$(\bar{x}_1 - \bar{x}_2) \pm t^* \times (pooled \ s.e.(\bar{x}_1 - \bar{x}_2))$			
df from technology **	$df = n_1 + n_2 - 2$			
Two-Sample t-Test	Pooled Two-Sample t-Test			
$t = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{s. e. (\bar{x}_1 - \bar{x}_2)} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	$t = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{pooled \ s. \ e. \ (\bar{x}_1 - \bar{x}_2)} = \frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$			
df from technology **	$df = n_1 + n_2 - 2$			
**If technology not available, use conservative df = the minimum of $n_1-1\ and\ n_2-1$				

Note: A z-distribution is often used in statistical methods in place of a t-distribution when sample sizes are sufficiently large.

Pearson Correlation and Linear Regression

Pearson Correlation and its square

$$r = \sum \left(\frac{x - \bar{x}}{s_x}\right) \left(\frac{y - \bar{y}}{s_y}\right)$$

$$r^2 = \frac{SSReg}{SSTotal}$$
 where $SSTotal = \sum (y - \bar{y})^2 = SSReg + SSE$

Estimate of σ

$$s = \sqrt{MSE} = \sqrt{\frac{SSE}{n-2}}$$
 where $SSE = \sum (y - \hat{y})^2 = \sum e^2$

Linear Regression Model

Population Version

Mean: $E(Y|x) = \beta_0 + \beta_1 x$ Individual: $y_i = \beta_0 + \beta_1 x + \varepsilon_i$

where ε_i is $N(0, \sigma)$

Sample Version

Mean: $\hat{y} = b_0 + b_1 x$

Individual: $y_i = b_0 + b_1 x + e_i$

Standard Error of the Sample Slope

$$s.e.(b_1) = \frac{s}{\sqrt{\sum (x - \bar{x})^2}}$$

Confidence Interval for β_1

$$b_1 \pm t^* \times s.e.(b_1)$$

df = n - 2

t-Test for β_1

$$t = \frac{b_1 - 0}{s.e.(b_1)}$$

df = n - 2

Parameter Estimators

$$b_1 = r \frac{s_y}{s_x}$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

Confidence Interval for the Mean Response

$$\hat{y} \pm t^* \times s.e.(fit)$$

$$df = n - 2$$

where s. e.
$$(fit) = s\sqrt{\frac{1}{n} + \frac{(x-\bar{x})^2}{\sum (x_i - \bar{x})^2}}$$

Residuals

$$e = y - \hat{y} = observed y - predicted y$$

Prediction Interval for an Individual Response

$$\hat{y} \pm t^* \times s.e.(pred)$$

$$df = n - 2$$

where s.e.
$$(pred) = \sqrt{s^2 + (s.e.(fit))^2}$$

Properties of a Chi-Square Distribution

A χ^2 random variable has mean = df and standard deviation = $\sqrt{2df}$