Hensel's lemma, valuations, and p-adic numbers

Jordan Bell

jordan.bell@gmail.com

Department of Mathematics, University of Toronto

November 2, 2014

1 Hensel's lemma

Let p be prime and $f(x) \in \mathbb{Z}[x]$. Suppose that $0 \le a_0 < p$, satisfies

$$f(a_0) \equiv 0 \pmod{p}$$

and

$$f'(a_0) \not\equiv 0 \pmod{p}$$
.

Using the power series expansion

$$f(a_0 + h) = f(a_0) + f'(a_0)h + \frac{f''(a_0)}{2}h^2 + \cdots,$$

for any $y \in \mathbb{Z}$ we have

$$f(a_0 + py) = f(a_0) + f'(a_0)py + \frac{f''(a_0)}{2}p^2y^2 + \cdots$$

so

$$\frac{f(a_0 + py)}{p} = \frac{f(a_0)}{p} + f'(a_0)y + \frac{f''(a_0)}{2}py^2 + \cdots$$

Because $f(a_0) \equiv 0 \pmod{p}$, each term on the right-hand side is an integer. Then, $f(a_0 + py) \equiv 0 \pmod{p^2}$ is equivalent to

$$\frac{f(a_0)}{p} + f'(a_0)y + \frac{f''(a_0)}{2}py^2 + \dots \equiv 0 \pmod{p},$$

i.e.,

$$f'(a_0)y \equiv -\frac{f(a_0)}{p} \pmod{p}.$$

Because $f'(a_0) \not\equiv 0 \pmod{p}$, there is a unique $y \pmod{p}$ that solves the above congruence, so there is a unique $y \pmod{p}$ that solves $f(a_0 + py) \equiv 0 \pmod{p^2}$. This y is

$$y \equiv -\frac{f(a_0)}{p}(f'(a_0))^{-1} \pmod{p}.$$

¹Hua Loo Keng, Introduction to Number Theory, Chapter 15, "p-adic numbers".

Let $0 \le a_1 < p$ be $a_1 \equiv y \pmod{p}$. Suppose that

$$x = a_0 + a_1 p + a_2 p^2 + \dots + a_{l-2} p^{l-2}, \qquad 0 \le a_j < p,$$

satisfies

$$f(x) \equiv 0 \pmod{p^{l-1}}$$

and

$$f'(x) \not\equiv 0 \pmod{p}$$
.

Using the power series expansion

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \cdots,$$

for any $y \in \mathbb{Z}$ we have

$$f(x+p^{l-1}y) = f(x) + f'(x)p^{l-1}y + \frac{f''(x)}{2}p^{2l-2}y^2 + \cdots,$$

i.e.

$$\frac{f(x+p^{l-1}y)}{p^{l-1}} = \frac{f(x)}{p^{l-1}} + f'(x)y + \frac{f''(x)}{2}p^{l-1}y^2 + \cdots$$

Because $f(x) \equiv 0 \pmod{p^{l-1}}$, each term on the right-hand side is an integer. Then, $f(x + p^{l-1}y) \equiv 0 \pmod{p^l}$ is equivalent to

$$\frac{f(x)}{p^{l-1}} + f'(x)y + \frac{f''(x)}{2}p^{l-1}y^2 + \dots \equiv 0 \pmod{p},$$

i.e.,

$$f'(x)y \equiv -\frac{f(x)}{p^{l-1}} \pmod{p}.$$

Because $f'(x) \not\equiv 0 \pmod{p}$, there is a unique $y \pmod{p}$ that solves the above congruence, so there is a unique $y \pmod{p}$ that solves $f(x+p^{l-1}y) \equiv 0 \pmod{p^l}$. This y is

$$y \equiv -\frac{f(x)}{p^{l-1}} (f'(x))^{-1} \pmod{p}.$$

Let $0 \le a_{l-1} < p$ be $a_{l-1} \equiv y \pmod{p}$.

We have thus inductively defined a sequence a_0, a_1, a_2, \ldots , with $0 \le a_j < p$, such that for any l,

$$f(a_0 + a_1 p + \dots + a_{l-1} p^{l-1}) \equiv 0 \pmod{p^l}.$$

We wish to make sense of the infinite expression

$$a_0 + a_1 p + a_2 p^2 + a_3 p^3 + \cdots$$

Calling this x, it ought to be the case that $f(x) \equiv 0 \pmod{p}$, $f(x) \equiv 0 \pmod{p^2}$, $f(x) \equiv 0 \pmod{p^3}$, etc.

Example 1. Take p = 3 and $f(x) = x^2 - 7$, f'(x) = 2x. The two conditions $f(x) \equiv 0 \pmod{p}$ and $f'(x) \not\equiv 0 \pmod{p}$ are satisfied both by $a_0 = 1$ and $a_0 = 2$. Take $a_0 = 1$. Then

$$a_1 \equiv -\frac{f(1)}{3}(f'(1))^{-1} \equiv -\frac{-6}{3}(2)^{-1} \equiv 1 \pmod{3}.$$

So $a_1 = 1$. Then,

$$a_2 \equiv -\frac{f(1+1\cdot 3)}{3^2} (f'(1+1\cdot 3))^{-1} \equiv -\frac{9}{9} (8)^{-1} \equiv -2 \equiv 1 \pmod{3}.$$

So $a_2 = 1$. Then,

$$a_3 \equiv -\frac{f(1+1\cdot 3+1\cdot 3^2)}{3^3} (f'(1+1\cdot 3+1\cdot 3^2))^{-1} \equiv -6\cdot 2 \equiv 0 \pmod{3}.$$

So, $a_3 = 0$. Then,

$$a_4 \equiv -\frac{f(1+1\cdot 3+1\cdot 3^2+0\cdot 3^3)}{3^4} (f'(1+1\cdot 3+1\cdot 3^2+0\cdot 3^3))^{-1} \equiv -2\cdot 2 \equiv 2 \pmod{3}.$$

So, $a_4 = 2$, etc.

2 Absolute values on fields

If K is a field, an **absolute value on** K is a map $|\cdot|: K \to \mathbb{R}_{\geq 0}$ such that |x| = 0 if and only if x = 0, |xy| = |x||y|, and $|x + y| \leq |x| + |y|$. The **trivial absolute value on** K is |0| = 0 and |x| = 1 for all nonzero $x \in K$.

If $|\cdot|$ is an absolute value on K, then d(x,y) = |x-y| is a metric on K. The trivial absolute value yields the discrete metric. Two absolute values $|\cdot|_1, |\cdot|_2$ on K are said to be **equivalent** if they induce the same topology on K.

The following theorem characterizes equivalent absolute values.²

Theorem 2. Two nontrivial absolute values $|\cdot|_1, |\cdot|_2$ are equivalent if and only if there is some real s > 0 such that

$$|x|_1 = |x|_2^s, \qquad x \in K.$$

Proof. Suppose that s>0 and that $|x|_1=|x|_2^s$ for all $x\in K$. Then

$$B_{d_1}(x,r) = \{ y \in K : |y - x|_1 < r \}$$

$$= \{ y \in K : |y - x|_2^s < r \}$$

$$= \{ y \in K : |y - x|_2 < r^{1/s} \}$$

$$= B_{d_2}(x, r^{1/s}).$$

 $^{^2}Absolute\ values,\ valuations\ and\ completion,\ \texttt{https://www.math.ethz.ch/education/bachelor/seminars/fs2008/algebra/Crivelli.pdf}$

Since the collection of open balls for d_1 is equal to the collection of open balls for d_2 , the absolute values $|\cdot|_1, |\cdot|_2$ induce the same topology on K.

Suppose that $|\cdot|_1, |\cdot|_2$ are equivalent. If $|x|_1 < 1$ then $d_1(x^n, 0) = |x^n|_1 = |x|_1^n \to 0$ as $n \to \infty$. Thus $x^n \to 0$ in d_1 and hence, because the topologies induced by $|\cdot|_1$ and $|\cdot|_2$ are equal, $x^n \to 0$ in d_2 , i.e. $|x|_2^n = |x^n|_2 = d_2(x^n, 0) \to 0$. Therefore $|x|_2 < 1$. Thus, $|x|_1 < 1$ if and only if $|x|_2 < 1$.

Let $y \in K$ such that $|y|_1 > 1$ (there is such an element because $|\cdot|_1$ is nontrivial and $|y^{-1}|_1 = |y|_1^{-1}$) and let $x \in K$ with $|x|_1 \neq 0, 1$. There is some nonzero $\alpha \in \mathbb{R}$ such that $|x|_1 = |y|_1^{\alpha}$. Let $\frac{m_i}{n_i} \in \mathbb{Q}$ all be greater than α and

converge to α . Then, because $|y|_1>1$, we have $|x|_1=|y|_1^{\alpha}<|y|_1^{\frac{m_i}{n_i}}$, hence $|x|_1^{n_i}<|y|_1^{m_i}$, hence $\frac{|x^{n_i}|_1}{|y^{m_i}|_1}<1$, hence

$$\left| \frac{x^{n_i}}{y^{m_i}} \right|_1 < 1.$$

Because $|\cdot|_1$ and $|\cdot|_2$ are equivalent,

$$\frac{|x|_2^{n_i}}{|y|_2^{m_i}} = \left| \frac{x^{n_i}}{y^{m_i}} \right|_2 < 1,$$

so $|x|_2 < |y|_2^{\frac{m_i}{n_i}}$. Taking $i \to \infty$ gives

$$|x|_2 \le |y|_2^{\alpha}.$$

Similarly, we check that

$$|x|_2 \geq |y|_2^{\alpha}$$
.

Therefore,

$$|x|_2 = |y|_2^{\alpha}$$
.

Using this and $|x|_1 = |y|_1^{\alpha}$, we have

$$\log|x|_1 = \alpha \log|y|_1, \qquad \log|x|_2 = \alpha \log|y|_2,$$

and so, as $\alpha \neq 0$,

$$\frac{\log |x|_1}{\log |x|_2} = \frac{\log |y|_1}{\log |y|_2}.$$

This is true for any $x \in K$ with $|x|_1 \neq 0, 1$. We define $s \in \mathbb{R}$ to be this common value. The fact that $|y|_1 > 1$ implies, because $|\cdot|_1$ and $|\cdot|_2$ are equivalent, that $|y|_2 > 1$, and so s > 0.

Now take $x \in K$. If x = 0 then $|x|_1 = 0 = 0^s = |x|_2^s$. Because $|\cdot|_1$ and $|\cdot|_2$ are equivalent, $|x|_2 > 1$ implies that $|x|_1 > 1$ and $|x|_2 < 1$ implies that $|x|_1 < 1$, so if $|x|_1 = 1$ then $|x|_2 = 1$ and hence $|x|_1 = 1 = 1^s = |x|_2^s$. If $|x|_1 \neq 0, 1$, then the above shows that

$$\frac{\log|x|_1}{\log|x|_2} = s,$$

i.e., $|x|_1 = |x|_2^s$, proving the claim.

An absolute value $|\cdot|: K \to \mathbb{R}_{\geq 0}$ is said to be **non-Archimedean** if

$$|x + y| \le \max\{|x|, |y|\}, \quad x, y \in K.$$

An absolute value is called **Archimedean** if it is not non-Archimedean. For example, the absolute value on the field \mathbb{R} is Archimedean, since, for example, $|1+1|=2>\max\{|1|,|1|\}=1$.

Lemma 3. If $|\cdot|$ is a non-Archimedean absolute value on a field K and $|x| \neq |y|$, then

$$|x + y| = \max\{|x|, |y|\}.$$

3 Valuations

A valuation on a field K is a function $v: K \to \mathbb{R} \cup \{\infty\}$ satisfying $v(x) = \infty$ if and only if x = 0, v(xy) = v(x) + v(y), and

$$v(x+y) > \min\{v(x), v(y)\}.$$

The **trivial valuation** is v(x) = 0 for $x \neq 0$ and $v(0) = \infty$.

Lemma 4. Let v be a valuation on a field K. If $v(x) \neq v(y)$, then $v(x+y) = \min\{v(x), v(y)\}$.

Proof. Take $v(y) < v(x) \le \infty$. For x = 0,

$$v(x + y) = v(y) = \min\{\infty, v(y)\} = \min\{v(x), v(y)\}.$$

For $x \neq 0$, assume by contradiction that $\min\{v(x+y),v(x)\}=v(x)$. Then, since $v(-x)=v(-1\cdot x)=v(-1)+v(x)=v(x)$,

$$v(x) > v(y) = v(x + y - x) \ge \min\{v(x + y), v(x)\} = v(x),$$

a contradiction. Hence $\min\{v(x+y),v(x)\}=v(x+y)$. Then

$$v(y) = v(x + y - x)$$

$$\geq \min\{v(x + y), v(x)\}$$

$$= v(x + y)$$

$$\geq \min\{v(x), v(y)\}$$

$$= v(y).$$

Hence $v(x+y) = v(y) = \min\{v(x), v(y)\}$, completing the proof.

Theorem 5. Let K be a field. If $|\cdot|$ is a non-Archimedean absolute value on K and s > 0, then $v_s : K \to \mathbb{R} \cup \{\infty\}$ defined by $v_s(x) = -s \log |x|$ for $x \neq 0$ and $v_s(0) = \infty$ is a valuation on K.

If v is a valuation on K and q > 1, then the function $|\cdot|_q : K \to \mathbb{R}_{\geq 0}$ defined by $|x|_q = q^{-v(x)}$ for $x \neq 0$ and $|0|_q = 0$ is a non-Archimedean absolute value on K

Proof. Suppose that $|\cdot|$ is a non-Archimedean absolute value on K and that s > 0. Let $x, y \in K$. If either is 0, then it is immediate that $v_s(xy) = \infty = v_s(x) + v_s(y)$. If neither is 0, then

$$v_s(xy) = -s\log|xy| = -s\log(|x||y|) = -s\log|x| - s\log|y| = v_s(x) + v_s(y).$$

Now, if both x, y are 0 then

$$v_s(x+y) = v_s(0) = \infty = \min\{\infty, \infty\} = \min\{v_s(x), v_s(y)\}.$$

If x = 0 and $y \neq 0$ then

$$v_s(x+y) = v_s(y) = -s\log|y| = \min\{-s\log|y|, \infty\} = \min\{v_s(y), v_s(x)\}.$$

If neither x, y is 0 but x = -y, then

$$v_s(x+y) = v_s(0) = \infty \ge \min\{v_s(x), v_s(y)\}.$$

Finally, if neither x, y is 0 and $x \neq -y$, then, because $|\cdot|$ is non-Archimedean,

$$\begin{aligned} v_s(x+y) &= -s \log |x+y| \\ &\geq -s \log(\max\{|x|,|y|\}) \\ &= \min\{-s \log |x|, -s \log |y|\} \\ &= \min\{v_s(x), v_s(y)\}. \end{aligned}$$

Thus v_s is a valuation on K.

Suppose that v is a valuation on K and that q > 1. If x, y are nonzero, then

$$|xy|_q = q^{-v(xy)} = q^{-v(x)-v(y)} = q^{-v(x)}q^{-v(y)} = |x|_q|y|_q.$$

Let $x,y\in K$. To show that $|x+y|_q\leq |x|_q+|y|_q$, it suffices to show that $|x+y|_q\leq \max\{|x|_q,|y|_q\}$; proving this will establish that $|\cdot|_q$ is an absolute value and furthermore that $|\cdot|_q$ is non-Archimedean. If x,y are both 0, then $|x+y|_q=|0|_q=0=\max\{0,0\}=\max\{|x|_q,|y|_q\}$. If x=0 and $y\neq 0$, then $|x+y|_q=|y|_q=q^{-v(y)}=\max\{q^{-v(y)},0\}=\max\{|y|_q,|x|_q\}$. If neither x,y is 0 but x=-y, then

$$|x+y|_q = |0|_q = 0 \le \max\{|x|_q, |y|_q\}.$$

Finally, if neither x, y is 0 and $x \neq -y$, then

$$\begin{split} |x+y|_q &= q^{-v(x+y)} \\ &\leq q^{-\min\{v(x),v(y)\}} \\ &= \max\{q^{-v(x)},q^{-v(y)}\} \\ &= \max\{|x|_q,|y|_q\}. \end{split}$$

Two valuations v_1, v_2 on a field K are said to be **equivalent** if there is some real s > 0 such that

$$v_1 = sv_2$$
.

A valuation v on a field K is said to be **discrete** if there is some real s>0 such that

$$v(K^*) = s\mathbb{Z}.$$

A valuation is said to be **normalized** if

$$v(K^*) = \mathbb{Z}.$$

4 Valuation rings

Theorem 6. If K is a field and v is a nontrivial valuation on K, then

$$\mathcal{O}_v = \{ x \in K : v(x) \ge 0 \}$$

is a maximal proper subring of K, and for all $x \neq 0$, $x \in \mathcal{O}_v$ or $x^{-1} \in \mathcal{O}_v$. The set

$$\{x \in K : v(x) = 0\}$$

is the group of invertible elements of \mathcal{O}_v , and the set

$$\mathfrak{p}_v = \{ x \in K : v(x) > 0 \}$$

is the unique maximal ideal of \mathcal{O}_v .

Proof. It is immediate that $0, 1 \in \mathcal{O}_v$. For $x \in \mathcal{O}_v$, $v(-x) = v(x) \ge 0$, so $-x \in \mathcal{O}_v$. For $x, y \in \mathcal{O}_v$, $v(xy) = v(x) + v(y) \ge 0$, so $xy \in \mathcal{O}_v$. And $v(x+y) \ge \min\{v(x), v(y)\} \ge 0$, so $x+y \in \mathcal{O}_v$. Thus \mathcal{O}_v is a subring of K. For nonzero $x \in K$, if $v(x) \ge 0$ then $x \in \mathcal{O}_v$, and if v(x) < 0 then $v(x^{-1}) = -v(x) > 0$, so $x^{-1} \in \mathcal{O}_v$.

Since v is nontrivial, there is some $x \in K$ with $v(x) \neq 0, \infty$. If $x \in \mathcal{O}_v$ then v(x) > 0 and so $v(x^{-1}) = -v(x) < 0$, giving $x^{-1} \notin \mathcal{O}_v$. Hence $\mathcal{O}_v \neq K$, showing that \mathcal{O}_v is a proper subring of K.

To show that \mathcal{O}_v is a maximal proper subring, it suffices to show that if $z \in K \setminus \mathcal{O}_v$ then $\mathcal{O}_v[z] = K$, i.e., that the smallest ring containing \mathcal{O}_v and z is K. As $z \notin \mathcal{O}_v$, v(z) < 0. Let $y \in K$. For any positive integer j we have $v(yz^{-j}) = v(y) - jv(z)$, and because v(z) < 0, there is some j = j(y) such that $v(yz^{-j}) > 0$. For this j, $yz^{-j} \in \mathcal{O}_v$. Hence $y \in \mathcal{O}_v[z]$, and so $\mathcal{O}_v[z] = K$, showing that \mathcal{O}_v is a maximal proper subring.

Suppose that $x \in \mathcal{O}_v$ and $x^{-1} \in \mathcal{O}_v$. If v(x) > 0, then $v(x^{-1} = -v(x) < 0$, contradicting that $x^{-1} \in \mathcal{O}_v$. Hence v(x) = 0. If v(x) = 0, then, as $x^{-1} \in K$, $v(x^{-1}) = -v(x) = 0$, so $x^{-1} \in \mathcal{O}_v$, hence x is an element of \mathcal{O}_v whose inverse is in \mathcal{O}_v .

Let $x, y \in \mathfrak{p}_v$. Then, since v(x) > 0 and v(y) > 0,

$$v(x - y) \ge \min\{v(x), v(-y)\} = \min\{v(x), v(y)\} > 0,$$

showing that $x - y \in \mathfrak{p}_v$, and thus that \mathfrak{p}_v is an additive subgroup of \mathcal{O}_v . Let $x \in \mathfrak{p}_v$ and $z \in \mathcal{O}_v$. Then, since $v(z) \geq 0$ and v(x) > 0,

$$v(zx) = v(z) + v(x) \ge v(x) > 0,$$

showing that $zx \in \mathfrak{p}_v$. Therefore \mathfrak{p}_v is an ideal in the ring \mathcal{O}_v . Since v(1) = 0, $1 \notin \mathfrak{p}_v$, so \mathfrak{p}_v is a proper ideal.

The fact that \mathfrak{p}_v is maximal follows from it being the set of noninvertible elements of \mathcal{O}_v . Suppose that B is a maximal ideal B of \mathcal{O}_v . Because B is a proper ideal it contains no invertible elements, and hence is contained in \mathfrak{p}_v , the set of noninvertible elements of \mathcal{O}_v . Since B is maximal, it must be that $B = \mathfrak{p}_v$. Therefore, any maximal ideal of \mathcal{O}_v is \mathfrak{p}_v , showing that \mathfrak{p}_v is the unique maximal ideal of \mathcal{O}_v .

The above ring \mathcal{O}_v is called the **valuation ring**. Generally, a ring that has a unique maximal ideal is called a **local ring**, and thus the above theorem shows that the valuation ring is a local ring. We call the quotient $\mathcal{O}_v/\mathfrak{p}_v$ the **residue** field of \mathcal{O}_v .

Lemma 7. If v is a normalized valuation on a field K then for all nonzero $x \in K$ and $t \in \mathfrak{p}_v$, v(t) = 1, there is some $u \in \mathcal{O}_v^*$ such that

$$x = ut^n, \qquad n = v(x).$$

Proof. Since $x \neq 0$, $v(x) = n \in \mathbb{Z}$. Hence $v(xt^{-n}) = v(x) - nv(t) = v(x) - n = 0$, and therefore $u = xt^{-n} \in \mathcal{O}^*$. Then $x = ut^n$, completing the proof.

Theorem 8. If v is a normalized valuation on a field K, then \mathcal{O}_v is a principal ideal domain. If A is a nonzero ideal of \mathcal{O}_v , then there is some $t \in \mathfrak{p}$, v(t) = 1 and $n \geq 0$ such that

$$A = t^n \mathcal{O}_v = \{ x \in K : v(x) \ge n \} = \mathfrak{p}_v^n,$$

and

$$\mathfrak{p}_v^n/\mathfrak{p}_v^{n+1} \cong \mathcal{O}_v/\mathfrak{p}_v,$$

as $\mathcal{O}_v/\mathfrak{p}_v$ -linear vector spaces.

Proof. Let $A \neq \{0\}$ be an ideal of \mathcal{O}_v . For any $y \in A$, $v(y) \geq 0$, and we take $x \in A$ such that

$$v(x) = \min\{v(y) : y \in A\}. \tag{1}$$

Since $v(K^*) = \mathbb{Z}$, there is some $t \in K$ with v(t) = 1, and because v(t) > 0, $t \in \mathfrak{p}_v$. By Lemma 7, there is some $u \in \mathcal{O}^*$ such that $x = ut^n$, n = v(x). For any $z \in \mathcal{O}$, $xz \in A$ and so $t^nz \in A$. Thus $t^n\mathcal{O}_v \subset A$. On the other hand, let $y \in A$. Then also by Lemma 7 there is some $w \in \mathcal{O}_v^*$ such that $y = wt^m$,

m=v(y). By (1), $m=v(y)\geq v(x)=n$, so $v(t^{m-n})=(m-n)v(t)=m-n\geq 0$ so $t^{m-n}\in\mathcal{O}_v$, giving

$$y = wt^m = t^n(wt^{m-n}) \in t^n \mathcal{O}_v.$$

Therefore $A \subset t^n \mathcal{O}_v$, and so $A = t^n \mathcal{O}_v$. That is, A is the principal ideal generated by t^n , which shows that \mathcal{O}_v is a principal ideal domain.

Let $t \in \mathfrak{p}_v$ with v(t) = 1, and define $\phi : \mathfrak{p}_v^n \to \mathcal{O}_v/\mathfrak{p}_v$ by $v(at^n) = a + \mathfrak{p}$, for $a \in \mathcal{O}_v$.

Lemma 9. If v_1, v_2 are discrete valuations on a field K such that $\mathcal{O}_{v_1} = \mathcal{O}_{v_2}$, then v_1 and v_2 are equivalent.

5 p-adic valuations

Fix a prime number p. For nonzero $a \in \mathbb{Q}$, there are unique integers n, r, s satisfying

$$a = \frac{r}{s}p^n$$
,

where r, s are coprime, s > 0, and $p \nmid rs$. We define $v_p(a) = n$. Furthermore, we define $v_p(0) = \infty$.

Theorem 10. $v_p: \mathbb{Q} \to \mathbb{R} \cup \{\infty\}$ is a normalized valuation.

Proof. For nonzero $a, b \in \mathbb{Q}$, write

$$a = \frac{r_1}{s_1} p^m, \qquad b = \frac{r_2}{s_2} p^n,$$

where $gcd(r_1, s_1) = gcd(r_2, s_2) = 1$, $s_1, s_2 > 0$, and $p \nmid r_1 s_1, p \nmid r_2 s_2$. Then,

$$ab = \frac{r_1 r_2}{s_1 s_2} p^{m+n},$$

where $p \nmid r_1s_1r_2s_2$; the fraction $\frac{r_1r_2}{s_1s_2}$ need not be in lowest terms. So $v_p(ab) = m + n = v_p(a) + v_p(n)$.

Suppose that $v_p(a) \leq v_p(b)$. Then

$$a+b=\frac{r_1}{s_1}p^m+\frac{r_2}{s_2}p^n=\left(\frac{r_1}{s_1}+\frac{r_2}{s_2}p^{n-m}\right)p^m=\frac{r_1s_2+r_2s_1p^{n-m}}{s_1s_2}p^m.$$

Since $p \nmid s_1$ and $p \nmid s_2$, then

$$v_n(a+b) \ge m = v_n(a) = \min\{v_n(a), v_n(b)\}.$$

We call v_p the p-adic valuation. The valuation ring of $\mathbb Q$ corresponding to v_p is

$$\mathcal{O}_p = \{ x \in \mathbb{Q} : v_p(x) \ge 0 \},$$

in other words, those rational numbers such that in lowest terms, p does not divide their denominator. For example, $\frac{11}{169}, -\frac{9}{35} \in \mathcal{O}_3$, and $\frac{5}{3} \notin \mathcal{O}_3$. By Theorem 6, the group of units of the valuation ring \mathcal{O}_p is

$$\mathcal{O}_p^* = \{ x \in \mathbb{Q} : v_p(x) = 0 \},$$

in other words, those rational numbers such that in lowest terms, p divides neither their numerator nor their denominator. As well by Theorem 6, \mathcal{O}_p is a local ring whose unique maximal ideal is

$$\mathfrak{p}_p = \{ x \in \mathbb{Q} : v_p(x) > 0 \},$$

in other words, those rational numbers such that in lowest terms, p divides their numerator and does not divide their denominator. We see that $p \in \mathfrak{p}_p$ and $v_p(p) = 1$, so the nonzero ideals of \mathcal{O}_p are of the form

$$p^n \mathcal{O}_n$$
.

Lemma 11. $\mathcal{O}_p/\mathfrak{p}_p \cong \mathbb{Z}/p\mathbb{Z}$.

6 p-adic absolute values and metrics

We define $|\cdot|_p:\mathbb{Q}\to\mathbb{R}_{\geq 0}$ by $|a|_p=p^{-v_p(n)}$ for $a\neq 0$ and $|0|_p=0$. This is a non-Archimedean absolute value on \mathbb{Q} , which we call the *p*-adic absolute value.

Example 12. For p = 3 and $a = -\frac{57}{10}$, we have n = 1, r = -19, s = 10. Thus $\left|-\frac{57}{10}\right|_3 = 3^{-1}$.

For
$$p = 5$$
 and $a = \frac{28}{75}$, we have $n = -2, r = 28, s = 3$. Thus $\left| \frac{28}{75} \right|_5 = 5^2$.

We define $d_p(x,y) = |x-y|_p$. The sequences $x_l = a_0 + a_1p + a_2p^2 + \cdots + a_{l-1}p^{l-1}$ constructed when applying Hensel's lemma satisfy, for m < n,

$$x_n - x_m = a_m p^m + a_{m+1} p^{m+1} + \dots + a_{n-1} p^{n-1} \equiv 0 \pmod{p^m},$$

so

$$|x_n - x_m|_p \le p^{-m}$$

and

$$f(x_n) \equiv 0 \pmod{p^n},$$

so

$$|f(x_n)|_p \le p^{-n}.$$

Thus, x_n is a Cauchy sequence in the *p*-adic metric $d_p(x,y) = |x-y|_p$, and $f(x_n) \to 0$ as $n \to \infty$.

Lemma 13. If x_n and y_n are Cauchy sequences in (\mathbb{Q}, d_p) , then $x_n + y_n$ and $x_n \cdot y_n$ are Cauchy sequences in (\mathbb{Q}, d_p) .

Proof. The claim follows from

$$|x_n + y_n - (x_m + y_m)|_p \le |x_n - x_m|_p + |y_n - y_m|_p$$

and

$$|x_n \cdot y_n - x_m \cdot y_m|_p = |x_n \cdot y_n - x_m \cdot y_n + x_m \cdot y_n - x_m \cdot y_m|_p$$

$$\leq |x_n - x_m|_p |y_n|_p + |x_m|_p |y_n - y_m|_p,$$

and the fact that x_n, y_n being Cauchy implies that $|x_n|_p, |y_n|_p$ are bounded. \square

7 Completions of metric spaces

If (X,d) is a metric space, a **completion** of X is a complete metric space (Y,ρ) and an isometry $i:X\to Y$ such that for every metric space (Z,r) and isometry $j:X\to Z$, there is a unique isometry $J:Y\to Z$ such that $J\circ i=j$. It is a fact that any metric space has a completion, and that if (Y_1,ρ_1) and (Y_2,ρ_2) are completions then there is a unique isometric isomorphism $f:Y_1\to Y_2$.

For p prime, let (\mathbb{Q}_p, d_p) be the completion of (\mathbb{Q}, d_p) . Elements of \mathbb{Q}_p are called p-adic numbers. For $x, y \in \mathbb{Q}_p$, there are Cauchy sequences x_n, y_n in (\mathbb{Q}, d_p) such that $x_n \to x$ and $y_n \to y$ in (\mathbb{Q}_p, d_p) . We define addition and multiplication on the set \mathbb{Q}_p by

$$x + y = \lim(x_n + y_n), \qquad x \cdot y = \lim(x_n \cdot y_n);$$

that these limits exists follows from Lemma 13. If $x \in \mathbb{Q}_p$, $x \neq 0$, then there is a sequence $x_n \in \mathbb{Q}$, each term of which is $\neq 0$, such that $x_n \to x$ in (\mathbb{Q}_p, d_p) . Then x_n^{-1} is a Cauchy sequence in (\mathbb{Q}, d_p) hence converges to some $y \in \mathbb{Q}_p$ which satisfies $x \cdot y = 1$. Therefore \mathbb{Q}_p is a field.

We define $v_p: \mathbb{Q}_p \to \mathbb{R} \cup \{\infty\}$

$$v_p(x) = \lim v_p(x_n), \qquad x_n \to x.$$

One proves that v_p is a normalized valuation on the field \mathbb{Q}_p .³ We then define $|\cdot|_p:\mathbb{Q}_p\to\mathbb{R}_{\geq 0}$ by $|x|_p=p^{-v_p(x)}$ for $x\neq 0$ and $|0|_p=\infty$.

8 The exponential function

Lemma 14. For $a_1, \ldots, a_r \in \mathbb{Q}_p$,

$$|a_1 + \dots + a_r|_p \le \max\{|a_1|, \dots, |a_r|\}.$$

 $^{^3} cf.$ Paul Garrett, Classical definitions of \mathbb{Z}_p and $\mathbb{A}, \texttt{http://www.math.umn.edu/~garrett/m/mfms/notes/05_compare_classical.pdf}$

Lemma 15. A sequence $a_i \in \mathbb{Q}_p$ is Cauchy if and only if $a_{i+1} - a_i \to 0$ as $i \to \infty$

Proof. Assume that $a_{i+1} - a_i \to 0$ and let $\epsilon > 0$. Then there is some i_0 such that $i \ge i_0$ implies $|a_{i+1} - a_i|_p < \epsilon$. For $i_0 \le i < j$,

$$|a_{j} - a_{i}|_{p} = |a_{j} - a_{j-1} + a_{j-1} + \dots - a_{i+1} + a_{i+1} - a_{i}|_{p}$$

$$= |(a_{j} - a_{j-1}) + \dots + (a_{i+1} - a_{i})|_{p}$$

$$\leq \max\{|a_{j} - a_{j-1}|, \dots, |a_{i+1} - a_{i}|\}$$

$$< \epsilon.$$

The above shows that if $a_i \to 0$ in (\mathbb{Q}_p, d_p) then the series $\sum a_i$ converges in (\mathbb{Q}_p, d_p) .

Lemma 16 (Exponential power series). If $v_p(x) > \frac{1}{p-1}$, then

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

converges in (\mathbb{Q}_p, d_p) .

Proof.

$$v_p(n!) = \sum_{j=1}^{\infty} \left[\frac{n}{p^j} \right] \le \sum_{j=1}^{\infty} \frac{n}{p^j} = \frac{1}{np} \frac{1}{1 - \frac{1}{p}} = \frac{n}{p-1}.$$

Then

$$v_p\left(\frac{x^n}{n!}\right) = nv_p(x) - v_p(n!) \ge nv_p(x) - \frac{n}{p-1} = n\left(v_p(x) - \frac{1}{p-1}\right).$$

As $n \to \infty$ this tends to $+\infty$, hence

$$\left| \frac{x^n}{n!} \right|_p = p^{-v_p\left(\frac{x^n}{n!}\right)} \to 0,$$

and thus the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges.

Lemma 17 (Logarithm power series). If $v_p(x) > 0$, then

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$$

converges in (\mathbb{Q}_p, d_p) .

Proof. For n a positive integer we have $v_p(n) \leq \log_p n$. Then,

$$v_p\left(\frac{x^n}{n}\right) = nv_p(x) - v_p(n) \ge nv_p(x) - \log_p n.$$

If $v_p(x) > 0$ then this tends to $+\infty$ as $n \to \infty$.

9 Topology

We define \mathbb{Z}_p to be the valuation ring of \mathbb{Q}_p . Elements of \mathbb{Z}_p are called p-adic integers. For $x \in \mathbb{Q}_p$ and real r > 0, write

$$\overline{B}_p(r, x) = \{ y \in \mathbb{Q}_p : |x - y|_p \le r \} = \{ y \in \mathbb{Q}_p : v_p(x - y) \ge -\log_p r \}.$$

In particular,

$$\overline{B}_p(0,1) = \mathbb{Z}_p.$$

Because v_p is discrete, there is some $\epsilon > 0$ such that

$$\{y \in \mathbb{Q}_p : |x - y|_p \le r\} = \{y \in \mathbb{Q}_p : |x - y|_p < r + \epsilon\}.$$

This shows that $\overline{B}_p(x,r)$ is open in the topology induced by v_p , and thus is both closed and open. It follows that \mathbb{Q}_p is **totally disconnected**.⁴

Theorem 18. \mathbb{Z}_p is totally bounded.

The fact that \mathbb{Z}_p is a totally bounded subset of a complete metric space implies that \mathbb{Z}_p is compact. Then because

$$\overline{B}_d(0, p^k) = \{ y \in \mathbb{Q}_p : |y|_p \le p^k \} = \{ y \in \mathbb{Q}_p : |p^k y|_p \le 1 \} = p^{-k} \mathbb{Z}_p$$

and translation is a homeomorphism, any closed ball in \mathbb{Q}_p is compact. Therefore \mathbb{Q}_p is locally compact.

 \mathbb{Q}_p is a locally compact abelian group under addition, and we take Haar measure on it satisfying $\mu(\mathbb{Z}_p) = 1$. One can explicitly calculate the characters on \mathbb{Q}_p .⁵

⁴Gerald B. Folland, A Course in Abstract Harmonic Analysis, pp. 34–36.

⁵Gerald B. Folland, *A Course in Abstract Harmonic Analysis*, pp. 91-93, 104. Cf. Keith Conrad, *The character group of Q*, http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/characterQ.pdf