WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: H02J 7/04, H01M 10/46

A1

(11) International Publication Number:

WO 96/35253

(43) International Publication Date:

7 November 1996 (07.11.96)

(21) International Application Number:

PCT/IB96/00366

(22) International Filing Date:

23 April 1996 (23.04.96)

(30) Priority Data:

95201111.2

30 April 1995 (30.04.95)

EP

(34) Countries for which the regional or international application was filed:

NL et al.

(71) Applicant: PHILIPS ELECTRONICS N.V. [NL/NL]; Groenewoudseweg 1, NL-5621 BA Eindhoven (NL).

(71) Applicant (for SE only): PHILIPS NORDEN AB [SE/SE]; Kottbygatan 5, Kista, S-164 85 Stockholm (SE).

(72) Inventors: GILLISSEN, Eduard, Engelbert, Alphonsus; Groenewoudseweg 1, NL-5621 BA Eindhoven (US). VAN BEEK, Johann, Reiner, Godefridus, Cornelis, Maria; Groenewoudseweg 1, NL-5621 BA Eindhoven (NL). HANNEN, Gerardus, Everardus, Marie; Groenewoudseweg 1, NL-5621 BA Eindhoven (NL).

(74) Agent: STOLK, Steven, A.; Internationaal Octrooibureau B.V., P.O. Box 220, NL-5600 AE Eindhoven (NL).

(81) Designated States: JP, European patent (AT, BE, CH, DE, DK. ES. FI. FR. GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of

(54) Title: BATTERY RECHARGING APPARATUS

(57) Abstract

Apparatus (1) for recharging a battery (5), comprising a compartment (3) for accommodating the battery (5) in such a manner that its electrical terminals are in contact with a pair of electrodes (7, 9), the electrodes (7, 9) being connectable to corresponding poles of a controllable source (11) of electrical energy, further comprising a strain gauge (15) which is positioned so as to make contact with a wall of the battery (5) when the battery (5) is in place in the compartment (3), the strain gauge (15) comprising a foil (17) which carries a resistive element (19), each of the two extremities (19a, 19b) of the resistive element (19) being connected to electrical (25) means via a separate contact wire (21; 23), whereby the coefficient of thermal expansion of the strain gauge (15) is substantially equal to that of the wall of the battery (5), and the material of one of the contact wires (21) at its juncture with the resistive element (19) has a different Seebeck coefficient to the material of the other contact wire (23) at its juncture with the resistive element (19). In such an apparatus, the battery temper-

ature can be monitored by measuring the DC voltage difference between the contact wires (21, 23), whereas the mechanical deformation of the battery (5) can be monitored by measuring the AC impedance of the resistive element (19), both of which measurements are inde-

pendently conducted using the electrical means (25).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP.	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belanus	KG	Kyrgystan	RU	Russian Federation
		KP	Democratic People's Republic	SD	Sudan
CA	Canada	244	of Korea	SE	Sweden
CF	Central African Republic	KR	Republic of Korea	SG	Singapore
CG	Congo	KZ	Kazakhstan	SI	Slovenia
CH	Switzerland	LI	Liechtenstein	SK	Slovakia
CI	Côte d'Ivoire		Sri Lanka	SN	Senegal
CM	Cameroon	LK		SZ	Swaziland
CN	China	LR	Liberia	TD	Chad
CS	Czechoslovakia	LT	Lithuania		Togo
CZ	Czech Republic	LU	Luxembourg	TG	
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FÍ	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

"Battery recharging apparatus"

The invention relates to an apparatus for recharging a battery, comprising a compartment for accommodating the battery in such a manner that its electrical terminals are in contact with a pair of electrodes, the electrodes being connectable to corresponding poles of a controllable source of electrical energy, further comprising a strain gauge which is positioned so as to make contact with a wall of the battery when the battery is in place in the compartment, the strain gauge comprising a foil which carries a resistive element, each of the two extremities of the resistive element being connected to electrical means via a separate contact wire.

The invention also relates to a method of monitoring both the mechanical deformation and the temperature of a battery during recharging.

The term "battery" is here intended to refer to either single cells or battery packs, and refers specifically to secondary (i.e. rechargeable) batteries.

An apparatus as specified in the opening paragraph is known from United States Patent US 5,260,638 and from laid-open Japanese Patent Applications JP 63-268445 (filed 24.04.87) and JP 5-326027 (filed 22.05.92). These documents describe how the physical dimensions of a battery can change as a result of increased internal pressure and temperature during charging. Such increase is attributable to the occurrence of certain chemical reactions within the battery, the rate and type of which are determined by the battery's charge state at any given time. In particular, at the end of a charging procedure, additional electrical energy supplied to the battery will, in general, no longer cause an increase in its internal charge, but will instead provoke a sharp rise in the battery's internal pressure and temperature, causing the battery to expand (these effects being particularly prominent in NiCd and NiMH batteries). The strain gauge is employed to monitor any such mechanical deformation of the battery, and the detection of (the onset of) sharply increasing deformation can then be used as an indication that efficient charging has been completed, and that the electrical energy source should be switched off. Such action is particularly important

10

15

in the case of so-called "quick charging", where the battery can be severely damaged if the charging process is not carefully monitored and interrupted in good time.

It is an object of the invention to provide an improvement of the above-described apparatus. In particular, it is an object of the invention to provide battery recharging apparatus with which, in addition to the mechanical deformation of the battery, the temperature of the battery can also be accurately and independently measured, as a separate monitor of the battery's charge state. Moreover, it is an object of the invention that such temperature measurement should be performable using the strain gauge already present in the apparatus.

These and other objects are achieved in an apparatus as specified in the opening paragraph, characterised in that the coefficient of thermal expansion of the strain gauge is substantially equal to that of the wall of the battery, and that the material of one of the contact wires at its juncture with the resistive element has a different Seebeck coefficient to the material of the other contact wire at its juncture with the resistive element.

The invention hereby provides a method of monitoring both the mechanical deformation and the temperature of a battery during recharging, characterised in that the battery temperature can be monitored by measuring the DC voltage difference between the contact wires, whereas the mechanical deformation of the battery can be monitored by measuring the AC impedance of the resistive element. These measurements can be conducted, for example, by embodying the electrical means to comprise a Wheatstone bridge which is connected across an AC voltage source, whereby the resistive element of the strain gauge comprises one of the legs of the Wheatstone bridge.

A particular embodiment of the inventive apparatus is characterised in that the resistive element is comprised of a first metallic material, that one of the contact wires is comprised of a second metallic material, and that the other contact wire comprises two adjacent collinear segments, the segment nearest the resistive element being comprised of the first metallic material and the other segment being comprised of the second metallic material.

In a preferential embodiment of an apparatus as specified in the previous paragraph, the first metallic material comprises constantan, and the second metallic material is selected from the group comprising Cu, Al, Au, Ag, Fe, Sn, W, and their mixtures. In the case of a constantan/Cu junction, for example, the thermal DC voltage-difference across the junction amounts to approximately 35 μ V/°C.

5

20

25

The strain gauge in the apparatus according to the invention may be mounted on the battery itself, or it may be positioned in the compartment in such a manner that it makes intimate mechanical and thermal contact with a wall of the battery. This latter scenario has the advantage that the inventive apparatus is then suitable for recharging different batteries, which can be inserted into or removed from the compartment without having to remove and replace the strain gauge each time. For example, the strain gauge can be mounted on one of the electrodes in the compartment, and elastic means (such as a spring) can be used to push the battery tightly against this electrode.

With the aid of calibration experiments, it is possible to independently monitor the mechanical deformation and the temperature of the battery as a function of charging time, whilst simultaneously measuring the charge supplied to the battery. When recharging the battery on subsequent occasions, the measured strain and/or temperature at any given time then allows the corresponding charge value to be deduced. In this way, the electrical voltage and/or current supplied to the battery during charging can, if so desired, be automatically tailored to particular requirements, by allowing the electrical means to administer the controllable source of electrical energy. For example, it is possible to automatically interrupt charging when the battery is 90% charged, or to slow down the charging procedure as charge saturation is approached. In any case, it is possible to automatically stop the charging procedure when a sudden increase in battery temperature or expansion is detected.

170

100

reserved AND

The invention and its attendant advantages will be further elucidated with the aid of examplary embodiments and the accompanying schematic Figures, whereby:

Figure 1 depicts an apparatus in accordance with the invention;

Figure 2 depicts electrical means suitable for use in conjunction with the strain gauge in the apparatus of Figure 1.

30 Embodiment 1

Figure 1 renders a schematic view of an apparatus 1 in accordance with the present invention. This apparatus 1 comprises a plastic compartment 3 for accommodating a battery 5. The battery 5 is thus positioned that its terminals are in contact

10

15

20

with a pair of electrodes 7, 9. These electrodes 7, 9 are in turn connected to a source 11 of electrical energy, which can be switched with the aid of a switch 13. The electrode 9 is pushed firmly against the battery 5 by elastic means 9a.

A strain gauge 15 is also shown, in this case pressed against a side wall of the battery 5. This strain gauge 15 comprises a foil 17 which carries a resistive element 19. This resistive element 19 has extremities 19a, 19b, which are connected to electrical means 25 via respective contact wires 21, 23. The resistive element 19 is comprised of constantan, and the contact wire 21 is comprised of Cu; on the other hand, the contact wire 23 is comprised of two adjacent collinear segments 23a, 23b, the segment 23a being comprised of constantan and the segment 23b being comprised of Cu. The apparatus 1 therefore comprises two constantan/Cu junctions, at the points X and Y.

Since constantan and Cu have different Seebeck coefficients (approximately -32.2 and + 5.9 μ V/°C, respectively), a temperature-dependent voltage difference will arise between points X and Y. This voltage difference can be measured by the electrical means 25. The electrical means 25 also serve to measure the AC impedance of the resistive element 19, which is a function of the strain exercised on the strain gauge 15.

In this way, the electrical means 25 can be employed to independently monitor both the temperature and the mechanical deformation of the battery 5 during recharging. In a particular embodiment of the inventive apparatus, the electrical means 25 supply a signal to the switch 13 via a signal carrier 27. Such a signal can serve to open the switch 13 automatically, e.g. once a sudden temperature rise and/or mechanical deformation have been determined.

25 Embodiment 2

10

15

20

Figure 2 depicts a suitable embodiment of the electrical means 25 employed to monitor the temperature and mechanical deformation of the battery 5 in Figure 1. Corresponding features in Figures 2 and 1 are denoted by the same reference symbols.

The points X and Y delimit the extremities of a series-combination of a variable resistor 19 and a thermocouple 31, corresponding respectively to the resistive element 19 and the Seebeck temperature sensor of Figure 1. The point Y is series-connected to a resistor 33, and the series combination 19, 31, 33 is connected across an AC voltage

. . . .

- 45

, A.

٠<u>١</u>٠

. 42

source 35, in parallel with a series-connected pair of resistors 37, 39. The series-connected resistor-pair 37, 39 is delimited by points a and b, and is saddled about a point c.

Point a is connected to one input of a comparator 45 via a seriesconnected resistor 41 and capacitor 43. Point b is connected directly to the other input of the comparator 45. A resistor 47 is connected across the two inputs of the comparator 45.

Point c is connected via a capacitor 51 to one input of an operational amplifier 49. Point Y is connected directly to the other input of the amplifier 49. A resistor 53 is connected across the two inputs of the amplifier 49.

The outputs of the comparator 45 and amplifier 49 are connected to respective inputs of a multiplier 57, whose output signal is passed to an output 61 via a low-pass filter 59.

The capacitor 51 is connected across the two inputs of an operational amplifier 55, whose output signal is passed to an output 65 via a low-pass filter 63.

The resistors 33, 37, 39 and 41 have a common value R, whereas the resistors 47 and 53 have a common value R_F . The capacitors 43 and 51 have a common value C_P . The AC voltage source 35 operates with a period τ . The values of R, R_P and C_P are thus chosen that the relationships:

$$R_F \gg R$$

5

$$R_p \times C_p > \tau$$

20 are satisfied.

The measured voltage V_p at the output 61 is dependent on the resistance value of the resistive element 19, which in turn depends on the pressure p exerted by the battery 5 on the strain gauge 15. On the other hand, the measured voltage V_T at the output 65 is dependent on the voltage across the thermocouple 31, which in turn depends on the temperature T of the battery 5.

If so desired, the voltages V_p and V_T at the respective outputs 61, 65 may be passed to separate comparators (not depicted), where they can be compared with respective reference voltages V_{po} and V_{To} . Referring to Figure 1, either or both of the conditions:

$$30 \quad V_p = V_{po}$$

25

$$V_T = V_{To}$$

can then be used to trigger a relay (via the carrier 27) so as to open (or close) the switch 13.

CLAIMS

- 1. Apparatus for recharging a battery, comprising a compartment for accommodating the battery in such a manner that its electrical terminals are in contact with a pair of electrodes, the electrodes being connectable to corresponding poles of a controllable source of electrical energy, further comprising a strain gauge which is positioned so as to make contact with a wall of the battery when the battery is in place in the compartment, the strain gauge comprising a foil which carries a resistive element, each of the two extremities of the resistive element being connected to electrical means via a separate contact wire, characterised in that the coefficient of thermal expansion of the strain gauge is substantially equal to that of the wall of the battery, and that the material of one of the contact wires at its juncture with the resistive element.
 - 2. Apparatus according to Claim 1, characterised in that the resistive element is comprised of a first metallic material, that one of the contact wires is comprised of a second metallic material, and that the other contact wire comprises two adjacent collinear segments, the segment nearest the resistive element being comprised of the first metallic material and the other segment being comprised of the second metallic material.
 - 3. Apparatus according to Claim 2, characterised in that the first metallic material comprises constantan, and that the second metallic material is selected from the group comprising Cu, Al, Au, Ag, Fe, Sn, W, and their mixtures.
- 4. Apparatus according to any of the Claims 1-3, characterised in that the strain gauge is mounted on an elastic surface within the battery compartment, against which surface the battery exerts a force when it is in place in the compartment.
 - 5. Apparatus according to any of the Claims 1-3, characterised in that the strain gauge is mounted on the battery itself.
- 25 6. A method of monitoring both the mechanical deformation and the temperature of a battery during recharging, characterised in that a strain gauge is positioned in contact with a wall of the battery, the strain gauge comprising a foil which carries a resistive element, each of the two extremities of the resistive element being connected to electrical means via a separate contact wire, the strain gauge having a coefficient of thermal

expansion which is substantially equal to that of the battery wall, the material of one of the contact wires at its juncture with the resistive element having a different Seebeck coefficient to the material of the other contact wire at its juncture with the resistive element, whereby the battery temperature is monitored by measuring the DC voltage difference between the contact wires, and the mechanical deformation of the battery is monitored by measuring the AC impedance of the resistive element, both of which measurements are independently conducted using the electrical means.

FIG. 1

FIG. 2

Documentation searched other than minimum documentation to the extent that such documents are included in the needs searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) WPI C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category* 1,6 DE 1810393 A (ATSUMI MANUFACTURING CO. LTD.), A 10 July 1969 (10.07.69) 1,6 Patent Abstracts of Japan, Vol 13, No 374, E-808, A abstract of JP,A,1-126135 (MURATA MFG CO LTD), 18 May 1989 (18.05.89) 1,6 Patent Abstracts of Japan, Vol 13, No 92, E-722, A abstract of JP,A,63-268445 (NEC HOME ELECTRONICS LTD), 7 November 1988 (07.11.88) See patent family annex. Further documents are listed in the continuation of Box C. T later document published after the international filing date or priority date and not in conflict with the application but cited to understand Special categories of cited documents: "A" document defining the general state of the art which is not considered the principle or theory underlying the invention "X" document of particular relevance: the claimed invention cannot be to be of particular relevance "E" erlier document but published on or after the international filing date considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive sep when the document is special reason (as specified) combined with one or more other such documents, such combination "O" document referring to an oral disclosure, use, exhibition or other being obvious to a person skilled in the art document published prior to the international filing date but later than "&" document member of the same patent family the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 02.09.96 2 Sept 1996 Authorized officer Name and mailing address of the ISA/ **Swedish Patent Office** Håkan Sandh Box 5055, S-102 42 STOCKHOLM +46 8 782 25 00 Telephone No. Facsimile No. + 46 8 666 02 86

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/IB 96/00366

	PC1/1B 30/4		
C (Continu	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
A	Patent Abstracts of Japan, Vol 18, No 139, E-1519, abstract of JP,A,5-326027 (HONDA MOTOR CO LTD), 10 December 1993 (10.12.93)	1,6	
A	US 5260638 A (M. HIRAHARA), 9 November 1993 (09.11.93), column 2, line 25 - column 3, line 13	1,6	
		1.	
i			
	•		
		`	
		-	
		-	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

31/07/96

International application No.
PCT/IB 96/00366

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
DE-A-	1810393	10/07/69	NONE		
US-A-	5260638	09/11/93	JP-A-	5121103	18/05/93

Form PCT/ISA/210 (patent family annex) (July 1992)