3. Übung zur Vorlesung Lineare Algebra für Informatik

Mathematisches Institut, Universität Leipzig

Dozent: Dr. habil. Jan-David Hardtke

Ausgabe: Donnerstag, 25.4.2024

Abgabe: Donnerstag, 2.5.2024 bis 11:00 Uhr im Moodle-Kurs

Wichtig: Die Abgabe muss in Form einer pdf-Datei erfolgen und ist mit Namen, Matrikelnummer, Übungstermin und Namen des Übungsleiters zu versehen. Die Aufgaben müssen selbstständig bearbeitet werden (d. h. keine Partnerabgabe).

Aufgabe 1 (4 Punkte). Sei $\mathbb{R}_+ = \{x \in \mathbb{R} : x > 0\}$. Für $x, y \in \mathbb{R}_+$ und $\lambda \in \mathbb{R}$ setzen wir:

$$x \diamond y = xy$$
 und $\lambda \odot x = x^{\lambda}$

Zeigen Sie, dass $(\mathbb{R}_+, \diamond, \odot)$ einen Vektorraum über \mathbb{R} bildet.

Aufgabe 2 (1 Punkt pro Teilaufgabe). Entscheiden Sie jeweils, ob es sich bei den folgenden Mengen um Unterräume des \mathbb{R}^2 bzw. des \mathbb{R}^3 handelt (und begründen Sie Ihre Antworten).

(i)
$$U_1 = \left\{ \left(\begin{array}{c} 2x \\ x^2 \end{array} \right) : x \in \mathbb{R} \right\}$$

(ii)
$$U_2 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : 6x - y = z \right\}$$

(iii)
$$U_3 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : xy = 3z \right\}$$

Aufgabe 3 (3 Punkte). Es sei V ein Vektorraum über einem Körper K und es seien $U_1, U_2 \subseteq V$ Unterräume von V.

Zeigen Sie: $U_1 \cup U_2$ ist ein Unterraum von V genau dann, wenn $U_1 \subseteq U_2$ oder $U_2 \subseteq U_1$ gilt.