Regular Positive Representations

Ivan Ip

Hong Kong University of Science and Technology

March 22, 2023

Advances in Cluster Algebra 2023

Overview

Algebraic set up:

- Quantum group $\mathcal{U}_q(\mathfrak{g})$, semisimple Lie type
- Quantum cluster algebra $\mathcal{O}_q(\mathcal{X}^{\mathbf{Q}})$ associated to initial quiver \mathbf{Q}
- Regularity: $\mathcal{U}_q(\mathfrak{g}) \longrightarrow \mathcal{O}_q(\mathcal{X}^{\mathbf{Q}})$

Self-adjoint conditions: $X_i^* = X_i, |q| = 1$:

- Polarization of cluster variables \Longrightarrow representations of $\mathcal{O}_q(\mathcal{X}^{\mathbf{Q}})$ on some Hilbert space \mathcal{H} by Heisenberg operators x_i, p_i .
- Induces positive representations of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$ on \mathcal{H} by positive self-adjoint operators.

Goal: Classify the regular positive representations obtained this way.

Overview

Algebraic set up:

- Quantum group $\mathcal{U}_q(\mathfrak{g})$, semisimple Lie type
- Quantum cluster algebra $\mathcal{O}_q(\mathcal{X}^{\mathbf{Q}})$ associated to initial quiver \mathbf{Q}
- Regularity: $\mathcal{U}_q(\mathfrak{g}) \longrightarrow \mathcal{O}_q(\mathcal{X}^{\mathbf{Q}})$

Self-adjoint conditions: $X_i^* = X_i$, |q| = 1:

- Polarization of cluster variables \Longrightarrow representations of $\mathcal{O}_q(\mathcal{X}^{\mathbf{Q}})$ on some Hilbert space \mathcal{H} by Heisenberg operators x_i, p_i .
- Induces positive representations of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$ on \mathcal{H} by positive self-adjoint operators.

Goal: Classify the regular positive representations obtained this way.

Overview

Algebraic set up:

- Quantum group $\mathcal{U}_q(\mathfrak{g})$, semisimple Lie type
- Quantum cluster algebra $\mathcal{O}_q(\mathcal{X}^{\mathbf{Q}})$ associated to initial quiver \mathbf{Q}
- Regularity: $\mathcal{U}_q(\mathfrak{g}) \longrightarrow \mathcal{O}_q(\mathcal{X}^{\mathbf{Q}})$

Self-adjoint conditions: $X_i^* = X_i$, |q| = 1:

- Polarization of cluster variables \Longrightarrow representations of $\mathcal{O}_q(\mathcal{X}^{\mathbf{Q}})$ on some Hilbert space \mathcal{H} by Heisenberg operators x_i, p_i .
- Induces positive representations of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$ on \mathcal{H} by positive self-adjoint operators.

Goal: Classify the regular positive representations obtained this way.

Definition of $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$

Definition

 $\mathcal{U}_q(\mathfrak{sl}_2)$ = Hopf algebra $\langle \mathbf{E}, \mathbf{F}, \mathbf{K}^{\pm 1} \rangle$ over $\mathbb{C}(q)$ such that

$$\mathbf{KE} = q^2 \mathbf{EK},$$
 $\mathbf{KF} = q^{-2} \mathbf{FK},$ $[\mathbf{E}, \mathbf{F}] = \frac{\mathbf{K} - \mathbf{K}^{-1}}{q - q^{-1}}.$

Coproduct:

$$\Delta(\mathbf{E}) = 1 \otimes \mathbf{E} + \mathbf{E} \otimes \mathbf{K}, \qquad \Delta(\mathbf{F}) = \mathbf{F} \otimes 1 + \mathbf{K}^{-1} \otimes \mathbf{F},$$

$$\Delta(\mathbf{K}) = \mathbf{K} \otimes \mathbf{K}.$$

$$\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$$
: $(|q|=1, e^{\pi \mathbf{i} b^2}, b^2 \in (0,1) \setminus \mathbb{Q})$
 $\mathbf{E}^* = \mathbf{E}, \quad \mathbf{F}^* = \mathbf{F}, \quad \mathbf{K}^* = \mathbf{K}, \quad q^* = q^{-1}.$

Definition of $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$

Definition

 $\mathcal{U}_q(\mathfrak{sl}_2)$ = Hopf algebra $\langle \mathbf{E}, \mathbf{F}, \mathbf{K}^{\pm 1} \rangle$ over $\mathbb{C}(q)$ such that

$$KE = q^2 EK,$$
 $KF = q^{-2} FK,$ $[E, F] = \frac{K - K^{-1}}{q - q^{-1}}.$

Coproduct:

$$\Delta(\mathbf{E}) = 1 \otimes \mathbf{E} + \mathbf{E} \otimes \mathbf{K}, \qquad \Delta(\mathbf{F}) = \mathbf{F} \otimes 1 + \mathbf{K}^{-1} \otimes \mathbf{F},$$

$$\Delta(\mathbf{K}) = \mathbf{K} \otimes \mathbf{K}.$$

$$\begin{split} \mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R})) \colon & \quad (|q| = 1 {\red{pe}} e^{\pi \mathbf{i} b^2}, \, b^2 \in (0,1) \setminus \mathbb{Q}) \\ & \quad \mathbf{E}^* = \mathbf{E}, \quad \quad \mathbf{F}^* = \mathbf{F}, \quad \quad \mathbf{K}^* = \mathbf{K}, \quad \quad q^* = q^{-1}. \end{split}$$

Definition of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$

Definition

 $\mathcal{U}_q(\mathfrak{g}) = \text{Hopf-algebra } \langle \mathbf{E}_i, \mathbf{F}_i, \mathbf{K}_i^{\pm 1} \rangle_{i \in I} \text{ over } \mathbb{C}(q) \text{ such that}$

$$\mathbf{K}_{i}\mathbf{E}_{j} = q_{i}^{a_{ij}}\mathbf{E}_{j}\mathbf{K}_{i}, \qquad \mathbf{K}_{i}\mathbf{F}_{j} = q_{i}^{-a_{ij}}\mathbf{F}_{j}\mathbf{K}_{i}, \qquad [\mathbf{E}_{i}, \mathbf{F}_{j}] = \delta_{ij}\frac{\mathbf{K}_{i} - \mathbf{K}_{i}^{-1}}{q_{i} - q_{i}^{-1}}$$

+ Serre's relations. $(q_i = q^{d_i})$

Coproduct:

$$\Delta(\mathbf{E}_i) = 1 \otimes \mathbf{E}_i + \mathbf{E}_i \otimes \mathbf{K}_i, \qquad \Delta(\mathbf{F}_i) = \mathbf{F}_i \otimes 1 + \mathbf{K}_i^{-1} \otimes \mathbf{F}_i, \Delta(\mathbf{K}_i) = \mathbf{K}_i \otimes \mathbf{K}_i.$$

$$\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$$
: $(|q| = 1, e^{\pi i b^2}, b^2 \in (0, 1) \setminus \mathbb{Q})$
$$\mathbf{E}_i^* = \mathbf{E}_i, \quad \mathbf{F}_i^* = \mathbf{F}_i, \quad \mathbf{K}_i^* = \mathbf{K}_i, \quad q^* = q^{-1}.$$

Definition of $\mathcal{D}_q(\mathfrak{g}_{\mathbb{R}})$

Definition

+ Serre relations + similarly for \mathbf{K}'_i . $\sim \mathbf{K}^{\prime\prime}$.

$$\Delta(\mathbf{E}_i) = 1 \otimes \mathbf{E}_i + \mathbf{E}_i \otimes \mathbf{K}_i, \qquad \Delta(\mathbf{F}_i) = \mathbf{F}_i \otimes 1 + \mathbf{K}_i' \otimes \mathbf{F}_i, \Delta(\mathbf{K}_i) = \mathbf{K}_i \otimes \mathbf{K}_i, \qquad \Delta(\mathbf{K}_i') = \mathbf{K}_i' \otimes \mathbf{K}_i'.$$

$$\mathcal{U}_q(\mathfrak{g}) = \mathcal{D}_q(\mathfrak{g})/\langle \mathbf{K}_i \mathbf{K}_i' = 1 \rangle_{i \in I}.$$

$$\mathbf{e}_i := -\mathbf{i}(q_i - q_i^{-1})\mathbf{E}_i, \quad \mathbf{f}_i := -\mathbf{i}(q_i - q_i^{-1})\mathbf{F}_i, \quad i \in I.$$

Definition of $\mathcal{D}_q(\mathfrak{g}_{\mathbb{R}})$

Definition

$$\mathcal{D}_q(\mathfrak{g}) = \textit{Drinfeld's Double}: \ \langle \mathbf{E}_i, \mathbf{F}_i, \mathbf{K}_i^{\pm 1}, \mathbf{K}_i'^{\pm 1} \rangle_{i \in I}$$

$$\mathbf{K}_{i}\mathbf{E}_{j} = q_{i}^{a_{ij}}\mathbf{E}_{j}\mathbf{K}_{i}, \qquad \mathbf{K}_{i}\mathbf{F}_{j} = q_{i}^{-a_{ij}}\mathbf{F}_{j}\mathbf{K}_{i}, \qquad [\mathbf{E}_{i}, \mathbf{F}_{j}] = \delta_{ij}\frac{\mathbf{K}_{i} - \mathbf{K}_{i}'}{q_{i} - q_{i}^{-1}}$$

+ Serre relations + similarly for \mathbf{K}'_i .

Coproduct:

$$\Delta(\mathbf{E}_i) = 1 \otimes \mathbf{E}_i + \mathbf{E}_i \otimes \mathbf{K}_i, \qquad \Delta(\mathbf{F}_i) = \mathbf{F}_i \otimes 1 + \mathbf{K}_i' \otimes \mathbf{F}_i, \Delta(\mathbf{K}_i) = \mathbf{K}_i \otimes \mathbf{K}_i, \qquad \Delta(\mathbf{K}_i') = \mathbf{K}_i' \otimes \mathbf{K}_i'.$$

$$\mathcal{U}_q(\mathfrak{g}) = \mathcal{D}_q(\mathfrak{g})/\langle \mathbf{K}_i \mathbf{K}_i' = 1 \rangle_{i \in I}.$$

$$\mathbf{e}_i := -\mathbf{i}(q_i - q_i^{-1})\mathbf{E}_i, \quad \mathbf{f}_i := -\mathbf{i}(q_i - q_i^{-1})\mathbf{F}_i, \quad i \in I.$$

Definition of $\mathcal{D}_q(\mathfrak{g}_{\mathbb{R}})$

Definition

$$\mathcal{D}_q(\mathfrak{g}) = \textit{Drinfeld's Double}: \langle \mathbf{E}_i, \mathbf{F}_i, \mathbf{K}_i^{\pm 1}, \mathbf{K}_i'^{\pm 1} \rangle_{i \in I}$$

$$\mathbf{K}_{i}\mathbf{E}_{j} = q_{i}^{a_{ij}}\mathbf{E}_{j}\mathbf{K}_{i}, \qquad \mathbf{K}_{i}\mathbf{F}_{j} = q_{i}^{-a_{ij}}\mathbf{F}_{j}\mathbf{K}_{i}, \qquad [\mathbf{E}_{i}, \mathbf{F}_{j}] = \delta_{ij}\frac{\mathbf{K}_{i} - \mathbf{K}_{i}'}{q_{i} - q_{i}^{-1}}$$

+ Serre relations + similarly for \mathbf{K}'_i .

Coproduct:

$$\Delta(\mathbf{E}_i) = 1 \otimes \mathbf{E}_i + \mathbf{E}_i \otimes \mathbf{K}_i, \qquad \Delta(\mathbf{F}_i) = \mathbf{F}_i \otimes 1 + \mathbf{K}_i' \otimes \mathbf{F}_i, \Delta(\mathbf{K}_i) = \mathbf{K}_i \otimes \mathbf{K}_i, \qquad \Delta(\mathbf{K}_i') = \mathbf{K}_i' \otimes \mathbf{K}_i'.$$

$$\begin{split} \mathcal{U}_q(\mathfrak{g}) &= \mathcal{D}_q(\mathfrak{g})/\langle \mathbf{K}_i \mathbf{K}_i' = 1 \rangle_{i \in I}. \\ \mathbf{e}_i &:= \overbrace{-\mathbf{i}(q_i - q_i^{-1})} \mathbf{E}_i, \qquad \mathbf{f}_i := -\mathbf{i}(q_i - q_i^{-1}) \mathbf{F}_i, \qquad i \in I. \end{split}$$

Example:
$$\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$$

$$e^{2\pi b\rho} f(x) = f(x-ib)$$

$$e^{\pi b(u-2\rho)} := q e^{\pi bu} e^{-2\pi b\rho}$$

Theorem (Faddeev, Teschner (1999))

Irreducible representations \mathcal{P}_{λ} of $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$ parametrized by $\lambda \geq 0$: $(p = \frac{1}{2\pi i} \frac{d}{du})$

$$\begin{split} \pi_{\lambda}(\mathbf{e}) &:= e^{\pi b(u+2p+2\lambda)} + e^{\pi b(-u+2p-2\lambda)} & \qquad \mathbf{v} \\ \pi_{\lambda}(\mathbf{f}) &:= e^{\pi b(u-2p)} + e^{\pi b(-u-2p)} & \qquad \mathbf{C}^{\flat} \mathbf{L}^{2} \text{(IR)} \\ \pi_{\lambda}(\mathbf{K}) &:= e^{\pi b(2u+2\lambda)} \end{split}$$

acting on $L^2(\mathbb{R})$ as (unbounded essentially) positive self-adjoint operators.

(Irreducible: the only operators strongly commute with them are the scalars.)

Corollary

The Casimir element

$$\mathbf{C} := \mathbf{fe} - q\mathbf{K} - q^{-1}\mathbf{K}$$

acts on \mathcal{P}_{λ} by the scalar

$$\pi_{\lambda}(\mathbf{C}) = e^{2\pi b\lambda} + e^{-2\pi b\lambda} \ge 2.$$

Example: $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$

Theorem (Faddeev, Teschner (1999))

Irreducible representations \mathcal{P}_{λ} of $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$ parametrized by $\lambda \geq 0$: $(p = \frac{1}{2\pi i} \frac{d}{du})$

$$\begin{split} \pi_{\lambda}(\mathbf{e}) &:= e^{\pi b(u+2p+2\lambda)} + e^{\pi b(-u+2p-2\lambda)} \\ \pi_{\lambda}(\mathbf{f}) &:= e^{\pi b(u-2p)} + e^{\pi b(-u-2p)} \\ \pi_{\lambda}(\mathbf{K}) &:= e^{\pi b(2u+2\lambda)} \end{split}$$

acting on $L^2(\mathbb{R})$ as (unbounded essentially) positive self-adjoint operators.

(Irreducible: the only operators strongly commute with them are the scalars.)

Corollary

The Casimir element

$$\mathbf{C} := \mathbf{fe} - q\mathbf{K} - q^{-1}\mathbf{K}$$

acts on \mathcal{P}_{λ} by the scalar

$$\pi_{\lambda}(\mathbf{C}) = e^{2\pi b\lambda} + e^{-2\pi b\lambda} \ge 2.$$

Research program started in [Frenkel-I. (2012)]

- Representations \mathcal{P}_{λ} by positive operators on Hilbert space.
- = "Quantization of principal series representations".
- Generalization of Teschner's representations of $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$.

Theorem (I. (2012))

There exists a family of irreducible representations \mathcal{P}_{λ} of $\mathcal{U}_{q}(\mathfrak{g}_{\mathbb{R}})$:

- Parametrized by $\lambda \in \mathbb{R}_{\geq 0} P^+ \simeq \mathbb{R}_{>0}^{n=\mathrm{rank} \mathfrak{g}}$
- Positivity: $\{\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i\}$ are represented by positive, essentially self-adjoint (unbounded) operators on $L^2(\mathbb{R}^N)$, $N := \ell(w_0)$.
- $\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i$ are expressed in terms of Laurent polynomials of $\{e^{\pi b u_k}, e^{2\pi b p_k}\}_{k=1}^N$ where $[p_j, u_k] = \frac{\delta_{jk}}{2\pi \mathbf{i}}$.
- Transcendental relations (compatibility with modular double $b \longleftrightarrow b^{-1}$) (Langland's duality).

Research program started in [Frenkel-I. (2012)]

- Representations \mathcal{P}_{λ} by positive operators on Hilbert space.
- = "Quantization of principal series representations".
- Generalization of Teschner's representations of $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$.

Theorem (I. (2012))

There exists a family of irreducible representations \mathcal{P}_{λ} of $\mathcal{U}_{q}(\mathfrak{g}_{\mathbb{R}})$:

- Parametrized by $\lambda \in \mathbb{R}_{\geq 0} P^+ \simeq \mathbb{R}_{>0}^{n=\mathrm{rank} \mathfrak{g}}$
- Positivity: $\{\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i\}$ are represented by positive, essentially self-adjoint (unbounded) operators on $L^2(\mathbb{R}^N)$, $N := \ell(w_0)$.
- $\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i$ are expressed in terms of Laurent polynomials of $\{e^{\pi b u_k}, e^{2\pi b p_k}\}_{k=1}^N$ where $[p_j, u_k] = \frac{\delta_{jk}}{2\pi \mathbf{i}}$.
- Transcendental relations (compatibility with modular double $b \longleftrightarrow b^{-1}$) (Langland's duality).

Research program started in [Frenkel-I. (2012)]

- Representations \mathcal{P}_{λ} by positive operators on Hilbert space.
- = "Quantization of principal series representations".
- Generalization of Teschner's representations of $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$.

Theorem (I. (2012))

There exists a family of irreducible representations \mathcal{P}_{λ} of $\mathcal{U}_{q}(\mathfrak{g}_{\mathbb{R}})$:

- Parametrized by $\lambda \in \mathbb{R}_{\geq 0} P^+ \simeq \mathbb{R}_{>0}^{n=\mathrm{rank} \mathfrak{g}}$
- Positivity: $\{\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i\}$ are represented by positive, essentially self-adjoint (unbounded) operators on $L^2(\mathbb{R}^N)$, $N := \ell(w_0)$.
- $\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i$ are expressed in terms of Laurent polynomials of $\{e^{\pi b u_k}, e^{2\pi b p_k}\}_{k=1}^N$ where $[p_j, u_k] = \frac{\delta_{jk}}{2\pi \mathbf{i}}$.
- Transcendental relations (compatibility with modular double $b \longleftrightarrow b^{-1}$) (Langland's duality).

Research program started in [Frenkel-I. (2012)]

- Representations \mathcal{P}_{λ} by positive operators on Hilbert space.
- = "Quantization of principal series representations".
- Generalization of Teschner's representations of $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$.

Theorem (I. (2012))

There exists a family of irreducible representations \mathcal{P}_{λ} of $\mathcal{U}_{q}(\mathfrak{g}_{\mathbb{R}})$:

- Parametrized by $\lambda \in \mathbb{R}_{\geq 0} P^+ \simeq \mathbb{R}_{\geq 0}^{n=\mathrm{rank} \mathfrak{g}}$.
- Positivity: $\{\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i\}$ are represented by positive, essentially self-adjoint (unbounded) operators on $L^2(\mathbb{R}^N)$, $N := \ell(w_0)$.
- $\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i$ are expressed in terms of Laurent polynomials of $\{e^{\pi b u_k}, e^{2\pi b p_k}\}_{k=1}^N$ where $[p_j, u_k] = \frac{\delta_{jk}}{2\pi \mathbf{i}}$.
- Transcendental relations (compatibility with modular double $b \longleftrightarrow b^{-1}$) (Langland's duality).

Research program started in [Frenkel-I. (2012)]

- Representations \mathcal{P}_{λ} by positive operators on Hilbert space.
- = "Quantization of principal series representations".
- Generalization of Teschner's representations of $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$.

Theorem (I. (2012))

There exists a family of irreducible representations \mathcal{P}_{λ} of $\mathcal{U}_{q}(\mathfrak{g}_{\mathbb{R}})$:

- Parametrized by $\lambda \in \mathbb{R}_{\geq 0} P^+ \simeq \mathbb{R}_{>0}^{n=\mathrm{rank} \mathfrak{g}}$.
- Positivity: $\{\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i\}$ are represented by positive, essentially self-adjoint (unbounded) operators on $L^2(\mathbb{R}^N)$, $N := \ell(w_0)$.
- $\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i$ are expressed in terms of Laurent polynomials of $\{e^{\pi b u_k}, e^{2\pi b p_k}\}_{k=1}^N$ where $[p_j, u_k] = \frac{\delta_{jk}}{2\pi \mathbf{i}}$.
- Transcendental relations (compatibility with modular double $b \longleftrightarrow b^{-1}$) (Langland's duality).

Research program started in [Frenkel-I. (2012)]

- Representations \mathcal{P}_{λ} by positive operators on Hilbert space.
- = "Quantization of principal series representations".
- Generalization of Teschner's representations of $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$.

Theorem (I. (2012))

There exists a family of irreducible representations \mathcal{P}_{λ} of $\mathcal{U}_{q}(\mathfrak{g}_{\mathbb{R}})$:

- Parametrized by $\lambda \in \mathbb{R}_{\geq 0} P^+ \simeq \mathbb{R}_{\geq 0}^{n=\mathrm{rank} \mathfrak{g}}$.
- Positivity: $\{\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i\}$ are represented by positive, essentially self-adjoint (unbounded) operators on $L^2(\mathbb{R}^N)$, $N := \ell(w_0)$.
- $\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i$ are expressed in terms of Laurent polynomials of $\{e^{\pi b u_k}, e^{2\pi b p_k}\}_{k=1}^N$ where $[p_j, u_k] = \frac{\delta_{jk}}{2\pi \mathbf{i}}$.
- Transcendental relations (compatibility with modular double $b \longleftrightarrow b^{-1}$) (Langland's duality).

Research program started in [Frenkel-I. (2012)]

- Representations \mathcal{P}_{λ} by positive operators on Hilbert space.
- = "Quantization of principal series representations".
- Generalization of Teschner's representations of $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$.

Theorem (I. (2012))

There exists a family of irreducible representations \mathcal{P}_{λ} of $\mathcal{U}_{q}(\mathfrak{g}_{\mathbb{R}})$:

- Parametrized by $\lambda \in \mathbb{R}_{\geq 0} P^+ \simeq \mathbb{R}_{\geq 0}^{n=\mathrm{rank} \mathfrak{g}}$.
- Positivity: $\{\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i\}$ are represented by positive, essentially self-adjoint (unbounded) operators on $L^2(\mathbb{R}^N)$, $N := \ell(w_0)$.
- $\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i$ are expressed in terms of Laurent polynomials of $\{e^{\pi b u_k}, e^{2\pi b p_k}\}_{k=1}^N$ where $[p_j, u_k] = \frac{\delta_{jk}}{2\pi \mathbf{i}}$.
- Transcendental relations (compatibility with modular double $b \longleftrightarrow b^{-1}$) (Langland's duality).

Research program started in [Frenkel-I. (2012)]

- Representations \mathcal{P}_{λ} by positive operators on Hilbert space.
- = "Quantization of principal series representations".
- Generalization of Teschner's representations of $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$.

Theorem (I. (2012))

There exists a family of irreducible representations \mathcal{P}_{λ} of $\mathcal{U}_{q}(\mathfrak{g}_{\mathbb{R}})$:

- Parametrized by $\lambda \in \mathbb{R}_{\geq 0} P^+ \simeq \mathbb{R}_{\geq 0}^{n=\mathrm{rank} \mathfrak{g}}$.
- Positivity: $\{\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i\}$ are represented by positive, essentially self-adjoint (unbounded) operators on $L^2(\mathbb{R}^N)$, $N := \ell(w_0)$.
- $\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i$ are expressed in terms of Laurent polynomials of $\{e^{\pi b u_k}, e^{2\pi b p_k}\}_{k=1}^N$ where $[p_j, u_k] = \frac{\delta_{jk}}{2\pi \mathbf{i}}$.
- Transcendental relations (compatibility with modular double $b \longleftrightarrow b^{-1}$) (Langland's duality).

Research program started in [Frenkel-I. (2012)]

- Representations \mathcal{P}_{λ} by positive operators on Hilbert space.
- = "Quantization of principal series representations".
- Generalization of Teschner's representations of $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$.

Theorem (I. (2012))

There exists a family of irreducible representations \mathcal{P}_{λ} of $\mathcal{U}_{q}(\mathfrak{g}_{\mathbb{R}})$:

- Parametrized by $\lambda \in \mathbb{R}_{\geq 0} P^+ \simeq \mathbb{R}_{\geq 0}^{n=\mathrm{rank} \mathfrak{g}}$.
- Positivity: $\{\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i\}$ are represented by positive, essentially self-adjoint (unbounded) operators on $L^2(\mathbb{R}^N)$, $N := \ell(w_0)$.
- $\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i$ are expressed in terms of Laurent polynomials of $\{e^{\pi b u_k}, e^{2\pi b p_k}\}_{k=1}^N$ where $[p_j, u_k] = \frac{\delta_{jk}}{2\pi \mathbf{i}}$.
- Transcendental relations (compatibility with modular double $b \longleftrightarrow b^{-1}$) (Langland's duality).

Quantum Cluster Variety

"Quantization of cluster \mathcal{X} variety" [Fock-Goncharov]

Definition

Seed $\mathbf{Q} = (Q, Q_0, B, D)$

- Q = nodes (finite set),
- $Q_0 \subset Q = \text{frozen nodes}$,
- $B = (\varepsilon_{ij})$ exchange matrix (skew-symmetrizable, $\frac{1}{2}\mathbb{Z}$ -valued),
- $D = (d_i)$ multipliers (in \mathbb{Q}). $d := \min d_i$.

Let W := DB such that $w_{ij} = d_i \varepsilon_{ij} = -w_{ji}$.

The quantum torus algebra $\mathcal{X}_q^{\mathbf{Q}}$ is generated by $\langle X_i \rangle_{i \in Q}$ over $\mathbb{C}[q^{\pm d}]$ with

$$X_i X_j = q^{-2w_{ij}} X_j X_i$$

 $X_i = \text{quantum cluster variables}.$

"Quantization of cluster \mathcal{X} variety" [Fock-Goncharov]

Definition

Seed **Q** = (Q, Q_0, B, D) :

- Q = nodes (finite set),
- $Q_0 \subset Q = \text{frozen nodes},$
- $B = (\varepsilon_{ij})$ exchange matrix (skew-symmetrizable, $\frac{1}{2}\mathbb{Z}$ -valued),
- $D = (d_i)$ multipliers (in \mathbb{Q}). $d := \min d_i$.

Let W := DB such that $w_{ij} = d_i \varepsilon_{ij} = -w_{ji}$.

The quantum torus algebra $\mathcal{X}_q^{\mathbf{Q}}$ is generated by $\langle X_i \rangle_{i \in Q}$ over $\mathbb{C}[q^{\pm d}]$ with

$$X_i X_j = q^{-2w_{ij}} X_j X_i$$

 $X_i = \text{quantum cluster variables}$

"Quantization of cluster \mathcal{X} variety" [Fock-Goncharov]

Definition

Seed **Q** = (Q, Q_0, B, D) :

- Q = nodes (finite set),
- $Q_0 \subset Q = \text{frozen nodes}$,
- $B = (\varepsilon_{ij})$ exchange matrix (skew-symmetrizable, $\frac{1}{2}\mathbb{Z}$ -valued),
- $D = (d_i)$ multipliers (in \mathbb{Q}). $d := \min d_i$.

Let W := DB such that $w_{ij} = d_i \varepsilon_{ij} = -w_{ji}$.

The quantum torus algebra $\mathcal{X}_q^{\mathbf{Q}}$ is generated by $\langle X_i \rangle_{i \in Q}$ over $\mathbb{C}[q^{\pm d}]$ with

$$X_i X_j = q^{-2w_{ij}} X_j X_i.$$

 $X_i = \text{quantum cluster variables.}$

"Quantization of cluster \mathcal{X} variety" [Fock-Goncharov]

Definition

Seed **Q** = (Q, Q_0, B, D) :

- $\Lambda_{\mathbf{Q}} = \mathbb{Z}$ -Lattice with basis $\{e_i\}_{i \in Q}$,
- (-,-) skew-symmetric form, $(e_i, e_j) := w_{ij}$.

The quantum torus algebra $\mathcal{X}_q^{\mathbf{Q}}$ is generated by $\langle X_{\lambda} \rangle_{\lambda \in \Lambda_{\mathbf{Q}}}$ over $\mathbb{C}[q^{\pm d}]$ with

$$X_{\lambda+\mu} = q^{(\lambda,\mu)} X_{\lambda} X_{\mu}.$$

We use notation

$$X_i := X_{e_i}$$

$$X_{i_1, i_2, \dots, i_k} := X_{e_{i_1} + e_{i_2} + \dots + e_{i_k}}.$$

"Quantization of cluster \mathcal{X} variety" [Fock-Goncharov]

Definition

Seed **Q** = (Q, Q_0, B, D) :

- $\Lambda_{\mathbf{O}} = \mathbb{Z}$ -Lattice with basis $\{e_i\}_{i \in \mathcal{O}}$,
- (-,-) skew-symmetric form, $(e_i,e_j):=w_{ij}$.

The quantum torus algebra $\mathcal{X}_q^{\mathbf{Q}}$ is generated by $\langle X_{\lambda} \rangle_{\lambda \in \Lambda_{\mathbf{Q}}}$ over $\mathbb{C}[q^{\pm d}]$ with

$$X_{\lambda+\mu} = q^{(\lambda,\mu)} X_{\lambda} X_{\mu}.$$

We use notation

$$X_1 X_2 = e^{-2} X_2 X_1$$

Cluster seed $\mathbf{Q} \sim$ quiver with adjacency matrix (c_{ij}) where

$$c_{ij} := \begin{cases} \varepsilon_{ij} d_i d_j^{-1} & \text{if } d_j > d_i, \\ \varepsilon_{ij} & \text{otherwise.} \end{cases}$$

An arrow

represents the algebraic relation

$$X_i X_j = \begin{cases} q_i^{-2} X_j X_i & \text{if } d_i \ge d_j, \\ q_j^{-2} X_j X_i & \text{if } d_j \ge d_i. \end{cases}$$

(□---->□ between frozen nodes represents half the weight.)

Cluster seed $\mathbf{Q} \sim$ quiver with adjacency matrix (c_{ij}) where

$$c_{ij} := \begin{cases} \varepsilon_{ij} d_i d_j^{-1} & \text{if } d_j > d_i, \\ \varepsilon_{ij} & \text{otherwise.} \end{cases}$$

An arrow

represents the algebraic relation

$$X_i X_j = \left\{ \begin{array}{ll} q_i^{-2} X_j X_i & \text{if } d_i \ge d_j, \\ q_j^{-2} X_j X_i & \text{if } d_j \ge d_i. \end{array} \right.$$

We also use **thickness** to indicate commutation relations w.r.t. q, but thickness is **not** part of the data of \mathbf{Q} .

For example,

represents the relations

$$X_1 X_2 = q^{-2} X_2 X_1$$

$$X_2 X_3 = q_3^{-2} X_3 X_2 = q^{-4} X_3 X_2$$

$$X_1 X_3 = X_3 X_1$$

Note: we can recover \mathbf{Q} from the quiver and multipliers.

We also use **thickness** to indicate commutation relations w.r.t. q, but thickness is **not** part of the data of \mathbf{Q} .

For example,

represents the relations

$$X_1X_2 = q^{-2}X_2X_1$$

 $X_2X_3 = q_3^{-2}X_3X_2 = q^{-4}X_3X_2$
 $X_1X_3 = X_3X_1$

Note: we can recover \mathbf{Q} from the quiver and multipliers.

We also use **thickness** to indicate commutation relations w.r.t. q, but thickness is **not** part of the data of \mathbf{Q} .

For example,

represents the relations

$$X_1 X_2 = q^{-2} X_2 X_1$$

$$X_2 X_3 = q_3^{-2} X_3 X_2 = q^{-4} X_3 X_2$$

$$X_1 X_3 = X_3 X_1$$

Note: we can recover \mathbf{Q} from the quiver and multipliers.

Polarization of $\mathcal{X}_q^{\mathbf{Q}}$

Recall $q = e^{\pi i b^2}$ such that |q| = 1.

Definition

A polarization of $\mathcal{X}_q^{\mathbf{Q}}$ is a choice of representation of the cluster variables $X_k \in \mathcal{X}_q^{\mathbf{Q}}$ of the form $X_k = e^{2\pi b x_k}$ such that

- x_k is a \mathbb{Q} -linear combination of $u_i, p_i = \frac{1}{2\pi i} \frac{\partial}{\partial u_i}$ and scalars $\lambda_i \in \mathbb{R}$.
- x_k satisfies the Heisenberg algebra relations

$$[x_j, x_k] = \frac{1}{2\pi \mathbf{i}} \varepsilon_{jk},$$

 X_k acts on some Hilbert space $\mathcal{H}_{\mathbf{Q}} \simeq L^2(\mathbb{R}^M, du_i)$ as positive operators.

Remark

Modular double $\widetilde{X}_k := X^{\frac{1}{b^2}}$ acts by $e^{2\pi b^{-1}x_k}$ on $\mathcal{H}_{\mathbf{Q}}$.

Polarization of $\mathcal{X}_q^{\mathbf{Q}}$

Recall
$$q = e^{\pi i b^2}$$
 such that $|q| = 1$.

Definition

A polarization of $\mathcal{X}_q^{\mathbf{Q}}$ is a choice of representation of the cluster variables $X_k \in \mathcal{X}_q^{\mathbf{Q}}$ of the form $X_k = e^{2\pi b x_k}$ such that

- x_k is a \mathbb{Q} -linear combination of $u_i, p_i = \frac{1}{2\pi i} \frac{\partial}{\partial u_i}$ and scalars $\lambda_i \in \mathbb{R}$.
- \bullet x_k satisfies the Heisenberg algebra relations

$$[x_j, x_k] = \frac{1}{2\pi \mathbf{i}} \varepsilon_{jk},$$

 X_k acts on some Hilbert space $\mathcal{H}_{\mathbf{Q}} \simeq L^2(\mathbb{R}^M, du_i)$ as positive operators.

Remark

Modular double $\widetilde{X}_k := X^{\frac{1}{b^2}}$ acts by $e^{2\pi b^{-1}x_k}$ on $\mathcal{H}_{\mathbf{Q}}$.

Polarization of $\mathcal{X}_q^{\mathbf{Q}}$

Example

For $X_1X_2 = q^2X_2X_1$, we have

$$X_1 = e^{2\pi bu}, \qquad X_2 = e^{2\pi bp}$$

acting on $L^2(\mathbb{R}, du)$ as positive operators.

Definition

- The center of $\mathcal{X}_q^{\mathbf{Q}}$ is generated by $|Q| \operatorname{rank}(B)$ central monomials.
- A polarization is irreducible if every central monomial acts by a scalar.

Proposition

Any irreducible polarization with the same action of the central monomials are unitarily equivalent.

Polarization of $\mathcal{X}_q^{\mathbf{Q}}$

Example

For $X_1X_2 = q^2X_2X_1$, we have

$$X_1 = e^{2\pi bu}, \quad X_2 = e^{2\pi bp}$$

acting on $L^2(\mathbb{R}, du)$ as positive operators.

Definition

- The center of $\mathcal{X}_q^{\mathbf{Q}}$ is generated by $|Q| \operatorname{rank}(B)$ central monomials.
- A polarization is irreducible if every central monomial acts by a scalar.

Proposition

Any irreducible polarization with the same action of the central monomials are unitarily equivalent.

Polarization of $\mathcal{X}_q^{\mathbf{Q}}$

Example

For $X_1X_2 = q^2X_2X_1$, we have

$$X_1 = e^{2\pi bu}, \quad X_2 = e^{2\pi bp}$$

acting on $L^2(\mathbb{R}, du)$ as positive operators.

Definition

- The center of $\mathcal{X}_q^{\mathbf{Q}}$ is generated by $|Q| \operatorname{rank}(B)$ central monomials.
- A polarization is irreducible if every central monomial acts by a scalar.

Proposition

Any irreducible polarization with the same action of the central monomials are unitarily equivalent.

 $\mathbf{T}_q^{\mathbf{Q}} := \text{(non-commutative) field of fractions of } \mathcal{X}_q^{\mathbf{Q}}.$ Usual cluster mutation μ_k induces $\mu_k^q : \mathbf{T}_q^{\mathbf{Q}'} \longrightarrow \mathbf{T}_q^{\mathbf{Q}}:$

$$\mu_k^q(X_i') := \left\{ \begin{array}{ll} X_k^{-1} & i = k, \\ X_i \prod_{\substack{j \in_{ki} \\ r = 1}}^{|\varepsilon_{ki}|} (1 + q_i^{2r-1} X_k) & i \neq k, \varepsilon_{ki} < 0, \\ X_i \prod_{r=1}^{\varepsilon_{ki}} (1 + q_i^{2r-1} X_k^{-1})^{-1} & i \neq k, \varepsilon_{ki} > 0. \end{array} \right.$$

Can be rewritten as

$$\mu_k^q = \mu_k^\# \circ \mu_k^m,$$

$$\mu_k^m(X_i') := \begin{cases} X_k^{-1} & i = k, \\ X_i & i \neq k, \varepsilon_{ki} < 0 \\ q_i^{\varepsilon_{ik}\varepsilon_{ki}} X_i X_k^{\varepsilon_{ik}} & i \neq k, \varepsilon_{ki} > 0 \end{cases}$$

$$\mu_k^\# := Ad_{g_b^*(X_k)}$$

 $g_b(X) = \text{quantum dilogarithm}$

 $\mathbf{T}_q^{\mathbf{Q}} := \text{(non-commutative) field of fractions of } \mathcal{X}_q^{\mathbf{Q}}.$

Usual cluster mutation μ_k induces $\mu_k^q : \mathbf{T}_q^{\mathbf{Q}'} \longrightarrow \mathbf{T}_q^{\mathbf{Q}}$:

$$\mu_k^q(X_i') := \begin{cases} X_k^{-1} & i = k, \\ X_i \prod_{\substack{|\varepsilon_{ki}| \\ \varepsilon_{ki}}} (1 + q_i^{2r-1} X_k) & i \neq k, \varepsilon_{ki} < 0, \\ X_i \prod_{\substack{\varepsilon_{ki} \\ \varepsilon_{ki}}} (1 + q_i^{2r-1} X_k^{-1})^{-1} & i \neq k, \varepsilon_{ki} > 0. \end{cases}$$

Can be rewritten as

$$\mu_k^q = \mu_k^\# \circ \mu_k^m,$$

$$\mu_k^m(X_i') := \begin{cases} X_k^{-1} & i = k, \\ X_i & i \neq k, \varepsilon_{ki} < 0, \\ q_i^{\varepsilon_{ik}\varepsilon_{ki}}X_iX_k^{\varepsilon_{ik}} & i \neq k, \varepsilon_{ki} > 0. \end{cases}$$

$$\mu_k^\# := Ad_{g_b^*(X_k)}$$

 $g_b(X) = \text{quantum dilogarithm}$

Proposition

• If π is a polarization of $\mathcal{X}_q^{\mathbf{Q}}$ on $\mathcal{H}_{\mathbf{Q}}$, then

$$\pi'(X_i) := \pi(\mu_k^m(X_i))$$

is a polarization of $\mathcal{X}_q^{\mathbf{Q'}}$.

• Cluster mutations \longleftrightarrow unitary transformations $\mathcal{H}_{\mathbf{Q}} \simeq \mathcal{H}_{\mathbf{Q}'}$.

Definition

 $\mathcal{O}_q(\mathcal{X})$ denotes the quantum upper cluster algebra of the cluster variety \mathcal{X} .

The elements of $\mathcal{O}_q(\mathcal{X})$ consists of all elements $f \in \mathcal{X}_q^{\mathbf{Q}}$ which remain Laurent polynomials over $\mathbb{Z}[q^{\pm d}]$ under any quantum cluster mutations.

We call elements $f \in \mathcal{O}_q(\mathcal{X})$ universally Laurent polynomials.

Proposition

• If π is a polarization of $\mathcal{X}_q^{\mathbf{Q}}$ on $\mathcal{H}_{\mathbf{Q}}$, then

$$\pi'(X_i) := \pi(\mu_k^m(X_i))$$

is a polarization of $\mathcal{X}_q^{\mathbf{Q}'}$.

• Cluster mutations \longleftrightarrow unitary transformations $\mathcal{H}_{\mathbf{Q}} \simeq \mathcal{H}_{\mathbf{Q}'}$.

Definition

 $\mathcal{O}_q(\mathcal{X})$ denotes the quantum upper cluster algebra of the cluster variety \mathcal{X} .

The elements of $\mathcal{O}_q(\mathcal{X})$ consists of all elements $f \in \mathcal{X}_q^{\mathbf{Q}}$ which remain Laurent polynomials over $\mathbb{Z}[q^{\pm d}]$ under any quantum cluster mutations.

We call elements $f \in \mathcal{O}_q(\mathcal{X})$ universally Laurent polynomials.

Proposition

• If π is a polarization of $\mathcal{X}_q^{\mathbf{Q}}$ on $\mathcal{H}_{\mathbf{Q}}$, then

$$\pi'(X_i) := \pi(\mu_k^m(X_i))$$

is a polarization of $\mathcal{X}_q^{\mathbf{Q}'}$.

• Cluster mutations \longleftrightarrow unitary transformations $\mathcal{H}_{\mathbf{Q}} \simeq \mathcal{H}_{\mathbf{Q}'}$.

Definition

 $\mathcal{O}_q(\mathcal{X})$ denotes the quantum upper cluster algebra of the cluster variety \mathcal{X} .

The elements of $\mathcal{O}_q(\mathcal{X})$ consists of all elements $f \in \mathcal{X}_q^{\mathbf{Q}}$ which remain Laurent polynomials over $\mathbb{Z}[q^{\pm d}]$ under any quantum cluster mutations.

We call elements $f \in \mathcal{O}_q(\mathcal{X})$ universally Laurent polynomials.

Proposition

• If π is a polarization of $\mathcal{X}_q^{\mathbf{Q}}$ on $\mathcal{H}_{\mathbf{Q}}$, then

$$\pi'(X_i) := \pi(\mu_k^m(X_i))$$

is a polarization of $\mathcal{X}_q^{\mathbf{Q}'}$.

• Cluster mutations \longleftrightarrow unitary transformations $\mathcal{H}_{\mathbf{Q}} \simeq \mathcal{H}_{\mathbf{Q}'}$.

Definition

 $\mathcal{O}_q(\mathcal{X})$ denotes the quantum upper cluster algebra of the cluster variety \mathcal{X} .

The elements of $\mathcal{O}_q(\mathcal{X})$ consists of all elements $f \in \mathcal{X}_q^{\mathbf{Q}}$ which remain Laurent polynomials over $\mathbb{Z}[q^{\pm d}]$ under any quantum cluster mutations.

We call elements $f \in \mathcal{O}_q(\mathcal{X})$ universally Laurent polynomials.

S=Riemann surface with marked points on ∂S and punctures.

Fock-Goncharov's $\mathcal{X}_{G,S}$ -space= "(framed) local G-system

- $\mathcal{X}_{G,S}$ has Poisson cluster \mathcal{X} variety structure \leadsto quantization $\mathcal{X}_{G,S}^q$
- \bullet To each triangle of ideal triangulation of S, assign a basic quiver.
- $G = PGL_{n+1}$: "n-triangulation"

(Full generality: [I. (2016)], [Le (2016)], [Goncharov-Shen (2019)]) For any longest word $w_0 \in W \rightsquigarrow \mathbf{Q} \leadsto \mathcal{X}_q^{\mathbf{Q}}$.

S=Riemann surface with marked points on ∂S and punctures. Fock-Goncharov's $\mathcal{X}_{G,S}$ -space= "(framed) local G-system"

- $\mathcal{X}_{G,S}$ has Poisson cluster \mathcal{X} variety structure \leadsto quantization $\mathcal{X}_{G,S}^q$
- \bullet To each triangle of ideal triangulation of S, assign a basic quiver.
- $G = PGL_{n+1}$: "n-triangulation"

(Full generality: [I. (2016)], [Le (2016)], [Goncharov-Shen (2019)]) For any longest word $w_0 \in W \leadsto \mathbf{Q} \leadsto \mathcal{X}^{\mathbf{Q}}_{*}$.

S=Riemann surface with marked points on ∂S and punctures. Fock-Goncharov's $\mathcal{X}_{G,S}$ -space= "(framed) local G-system"

- $\mathcal{X}_{G,S}$ has Poisson cluster \mathcal{X} variety structure \rightsquigarrow quantization $\mathcal{X}_{G,S}^q$
- \bullet To each triangle of ideal triangulation of S, assign a basic quiver.
- $G = PGL_{n+1}$: "n-triangulation"

(Full generality: [I. (2016)], [Le (2016)], [Goncharov-Shen (2019)]) For any longest word $w_0 \in W \rightsquigarrow \mathbf{Q} \rightsquigarrow \mathcal{X}_q^{\mathbf{Q}}$.

S=Riemann surface with marked points on ∂S and punctures. Fock-Goncharov's $\mathcal{X}_{G,S}$ -space= "(framed) local G-system"

- $\mathcal{X}_{G,S}$ has Poisson cluster \mathcal{X} variety structure \rightsquigarrow quantization $\mathcal{X}_{G,S}^q$
- \bullet To each triangle of ideal triangulation of S, assign a basic quiver.
- $G = PGL_{n+1}$: "n-triangulation"

(Full generality: [I. (2016)], [Le (2016)], [Goncharov-Shen (2019)]) For any longest word $w_0 \in W \leadsto \mathbf{Q} \leadsto \mathcal{X}_{\mathbf{Q}}^{\mathbf{Q}}$.

S=Riemann surface with marked points on ∂S and punctures. Fock-Goncharov's $\mathcal{X}_{G,S}$ -space= "(framed) local G-system"

- $\mathcal{X}_{G,S}$ has Poisson cluster \mathcal{X} variety structure \rightsquigarrow quantization $\mathcal{X}_{G,S}^q$
- \bullet To each triangle of ideal triangulation of S, assign a basic quiver.
- $G = PGL_{n+1}$: "n-triangulation"

(Full generality: [I. (2016)], [Le (2016)], [Goncharov-Shen (2019)]) For any longest word $w_0 \in W \rightsquigarrow \mathbf{Q} \rightsquigarrow \mathcal{X}_q^{\mathbf{Q}}$.

We can flip the triangulation with $\binom{n+2}{3}$ quiver mutations.

[Fock-Goncharov]

Amalgamation of 2 quivers

$$\mathbf{D}_{\mathfrak{sl}_{n+1}}$$
-quiver $\sim \mathcal{X}_q^{std}$ [Schrader-Shapiro]

$$\iota: \mathcal{D}_q(\mathfrak{sl}_{n+1}) \hookrightarrow \mathcal{X}_q^{std}$$
$$\mathcal{U}_q(\mathfrak{sl}_{n+1}) \hookrightarrow \mathcal{X}_q^{std} / \langle \iota(\mathbf{K}_i \mathbf{K}_i') = 1 \rangle$$

Embedding of
$$F_i \in \mathfrak{D}_{\mathfrak{sl}_4} \hookrightarrow \mathcal{X}_q^{std}$$

$$\mathbf{f}_1 = X_1 + X_{1,2} + X_{1,2,3} + X_{1,2,3,4} + X_{1,2,3,4,5} + X_{1,2,3,4,5,6}$$

$$\mathbf{f}_2 = X_8 + X_{8,9} + X_{8,9,10} + X_{8,9,10,11}$$

$$\mathbf{f}_3 = X_{13} + X_{13,14}$$

$$\mathbf{K}_1' = X_{1,2,3,4,5,6,7}$$
 $\mathbf{K}_2' = X_{8,9,10,11,12}$ $\mathbf{K}_3' = X_{13,14,15}$

$$\mathbf{K}_{2}' = X_{13,14,15}$$

Embedding of $E_i \in \mathfrak{D}_{\mathfrak{sl}_4} \hookrightarrow \mathcal{X}_q^{std}$

$$\begin{aligned} \mathbf{e}_1 &= X_7 + X_{7,16} \\ \mathbf{e}_2 &= X_{12} + X_{12,6} + X_{12,6,17} + X_{12,6,17,2} \\ \mathbf{e}_3 &= X_{15} + X_{15,11} + X_{15,11,5} + X_{15,11,5,18} + X_{15,11,5,18,3} + X_{15,11,5,18,3,9} \\ \mathbf{K}_1 &= X_{7,16,1} \quad \mathbf{K}_2 &= X_{12,6,17,2,8} \quad \mathbf{K}_3 &= X_{15,11,5,18,3,9,13} \end{aligned}$$

V type 9.

Theorem (Schrader-Shapiro, I. (2016))

Given a longest reduced word \mathbf{i}_0

ullet There exists a quiver $\mathbf{D}(\mathbf{i}_0)$ associated to igoplus and an embedding

$$\mathcal{D}_q(\mathfrak{g}) \hookrightarrow \mathcal{X}_q^{std}.$$

• We recover the positive representations \mathcal{P}_{λ} through a polarization of \mathcal{X}_q^{std} .

Theorem (I. (2016), Goncharov-Shen (2019))

e_i, f_i, K_i, K'_i are universally Laurent polynomials in O_q(X^{std})
D_q(g) → X_q^{std} can be described by paths on the quiver D(i₀).
f_i paths are simple ~ Feigin's homomorphism U_q⁻(g) → X_q.

Theorem (Schrader-Shapiro, I. (2016))

Given a longest reduced word \mathbf{i}_0

ullet There exists a quiver $\mathbf{D}(\mathbf{i}_0)$ associated to igg(ullet) and an embedding

$$\mathcal{D}_q(\mathfrak{g}) \hookrightarrow \mathcal{X}_q^{std}$$
.

• We recover the positive representations \mathcal{P}_{λ} through a polarization of \mathcal{X}_{q}^{std} .

Theorem (I. (2016), Goncharov-Shen (2019))

- $\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i, \mathbf{K}'_i$ are universally Laurent polynomials in $\mathcal{O}_q(\mathcal{X}^{std})$.
- $\mathcal{D}_q(\mathfrak{g}) \hookrightarrow \mathcal{X}_q^{std}$ can be described by paths on the quiver $\mathbf{D}(\mathbf{i}_0)$.
- \mathbf{f}_i paths are simple \sim Feigin's homomorphism $\mathcal{U}_q^-(\mathfrak{g}) \hookrightarrow \mathcal{X}_q$.

Theorem (Schrader-Shapiro, I. (2016))

Given a longest reduced word \mathbf{i}_0

ullet There exists a quiver $\mathbf{D}(\mathbf{i}_0)$ associated to igg(ullet) and an embedding

$$\mathcal{D}_q(\mathfrak{g}) \hookrightarrow \mathcal{X}_q^{std}$$
.

• We recover the positive representations \mathcal{P}_{λ} through a polarization of \mathcal{X}_q^{std} .

Theorem (I. (2016), Goncharov-Shen (2019))

- $\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i, \mathbf{K}'_i$ are universally Laurent polynomials in $\mathcal{O}_q(\mathcal{X}^{std})$.
- $\mathcal{D}_q(\mathfrak{g}) \hookrightarrow \mathcal{X}_q^{std}$ can be described by paths on the quiver $\mathbf{D}(\mathbf{i}_0)$.
- \mathbf{f}_i paths are simple \rightsquigarrow Feigin's homomorphism $\mathcal{U}_q^-(\mathfrak{g}) \hookrightarrow \mathcal{X}_q$.

Theorem (Schrader-Shapiro, I. (2016))

Given a longest reduced word \mathbf{i}_0

ullet There exists a quiver $\mathbf{D}(\mathbf{i}_0)$ associated to igoplus and an embedding

$$\mathcal{D}_q(\mathfrak{g}) \hookrightarrow \mathcal{X}_q^{std}$$
.

• We recover the positive representations \mathcal{P}_{λ} through a polarization of \mathcal{X}_q^{std} .

Theorem (I. (2016), Goncharov-Shen (2019))

- $\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i, \mathbf{K}'_i$ are universally Laurent polynomials in $\mathcal{O}_q(\mathcal{X}^{std})$.
- $\mathcal{D}_q(\mathfrak{g}) \hookrightarrow \mathcal{X}_q^{std}$ can be described by paths on the quiver $\mathbf{D}(\mathbf{i}_0)$.
- \mathbf{f}_i paths are simple \sim Feigin's homomorphism \mathcal{U}_q $\hookrightarrow \mathcal{X}_q$.

49(6-)

Regular positive representations

Definition

A representation \mathcal{P} of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$ is called a regular positive representation if $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$ acts by a polarization of some quantum upper cluster algebra $\mathcal{O}_q(\mathcal{X})$.

In other words.

- There exists a homomorphism $\iota : \mathcal{D}_q(\mathfrak{g}) \longrightarrow \mathcal{O}_q(\mathcal{X})$.
- i.e. The image of $\{\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i, \mathbf{K}_i'\}$ are universally Laurent. $(\Longrightarrow?)$ The image of $\{\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i, \mathbf{K}_i'\}$ are universally polynomial. [I.-Ye 2023]
- The representation \mathcal{P} is obtained via an irreducible polarization of $\mathcal{O}_q(\mathcal{X})$ (where the central monomials $\iota(\mathbf{K}_i\mathbf{K}_i')$ act as 1.)

Main Question: Classify all irreducible regular positive representations!

- ullet If $\mathcal P$ is irreducible, the Casimir elements act as multiplications by real scalars.
- Which eigenvalues of the Casimirs arise from the regular positive representations?
- Do the actions of the Casimirs uniquely determine a regular positive representation?

Regular positive representations

Definition

A representation \mathcal{P} of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$ is called a regular positive representation if $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$ acts by a polarization of some quantum upper cluster algebra $\mathcal{O}_q(\mathcal{X})$.

In other words,

- There exists a homomorphism $\iota : \mathcal{D}_q(\mathfrak{g}) \longrightarrow \mathcal{O}_q(\mathcal{X})$.
- i.e. The image of $\{\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i, \mathbf{K}_i'\}$ are universally Laurent. $(\Longrightarrow?)$ The image of $\{\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i, \mathbf{K}_i'\}$ are universally polynomial. [I.-Ye 2023]
- The representation \mathcal{P} is obtained via an irreducible polarization of $\mathcal{O}_q(\mathcal{X})$ (where the central monomials $\iota(\mathbf{K}_i\mathbf{K}_i')$ act as 1.)

Main Question: Classify all irreducible regular positive representations!

- ullet If $\mathcal P$ is irreducible, the Casimir elements act as multiplications by real scalars.
- Which eigenvalues of the Casimirs arise from the regular positive representations?
- Do the actions of the Casimirs uniquely determine a regular positive representation?

Regular positive representations

Definition

A representation \mathcal{P} of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$ is called a regular positive representation if $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$ acts by a polarization of some quantum upper cluster algebra $\mathcal{O}_q(\mathcal{X})$.

In other words,

- There exists a homomorphism $\iota : \mathcal{D}_q(\mathfrak{g}) \longrightarrow \mathcal{O}_q(\mathcal{X})$.
- i.e. The image of $\{\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i, \mathbf{K}_i'\}$ are universally Laurent. $(\Longrightarrow?)$ The image of $\{\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i, \mathbf{K}_i'\}$ are universally polynomial. [I.-Ye 2023]
- The representation \mathcal{P} is obtained via an irreducible polarization of $\mathcal{O}_q(\mathcal{X})$ (where the central monomials $\iota(\mathbf{K}_i\mathbf{K}_i')$ act as 1.)

Main Question: Classify all irreducible regular positive representations!

- \bullet If \mathcal{P} is irreducible, the Casimir elements act as multiplications by real scalars.
- Which eigenvalues of the Casimirs arise from the regular positive representations?
- Do the actions of the Casimirs uniquely determine a regular positive representation?

The standard positive representation \mathcal{P}_{λ} is constructed by quantizing the principal series representation on

$$L^2((B_- \setminus G)_{>0})$$
 (" $\simeq \operatorname{Ind}_{B_-}^G(\mathbb{C}_{\lambda})$ ")

Definition

Parabolic Positive Representations $\mathcal{P}_{\lambda}^{J}$ is a family of positive representations of $\mathcal{U}_{q}(\mathfrak{g}_{\mathbb{R}})$ based on quantizing the parabolic induction representations on $L^{2}((P_{J}\setminus G)_{>0})$, where $P_{J}\subset G$ is a parabolic subgroup indexed by $J\subset I$.

The standard representation \mathcal{P}_{λ} corresponds to $J = \emptyset$, i.e. $P_J = B_-$ the lower Borel subgroup.

The standard positive representation \mathcal{P}_{λ} is constructed by quantizing the principal series representation on

$$L^2((B_- \setminus G)_{>0})$$
 (" $\simeq \operatorname{Ind}_{B_-}^G(\mathbb{C}_{\lambda})$ ")

Definition

Parabolic Positive Representations $\mathcal{P}_{\lambda}^{J}$ is a family of positive representations of $\mathcal{U}_{q}(\mathfrak{g}_{\mathbb{R}})$ based on quantizing the parabolic induction representations on $L^{2}((P_{J}\setminus G)_{>0})$, where $P_{J}\subset G$ is a parabolic subgroup indexed by $J\subset I$.

The standard representation \mathcal{P}_{λ} corresponds to $J = \emptyset$, i.e. $P_J = B_-$ the lower Borel subgroup.

Parabolic induction \longleftrightarrow truncating $\mathbf{i}_J \subset \mathbf{i}_0$ where $\mathbf{i}_J, \mathbf{i}_0$ are the longest word of the Weyl groups $W_J \subset W$.

$$w_0 = w_J \overline{w}$$
$$\overline{w} \longleftrightarrow \overline{\mathbf{i}}$$

Example

$$W_{\mathfrak{sl}_3} \subset W_{\mathfrak{sl}_4}$$

$$\mathbf{i}_0 = (1, 2, 1, 3, 2, 1)$$

Observe that

$$\mathbf{Q}(\mathbf{i}_0) = \mathbf{Q}(\mathbf{i}_J) * \mathbf{Q}(\bar{\mathbf{i}}).$$

Parabolic induction \longleftrightarrow truncating $\mathbf{i}_J \subset \mathbf{i}_0$ where $\mathbf{i}_J, \mathbf{i}_0$ are the longest word of the Weyl groups $W_J \subset W$.

$$w_0 = w_J \overline{w}$$
$$\overline{w} \longleftrightarrow \overline{\mathbf{i}}$$

Example

$$W_{\mathfrak{sl}_3} \subset W_{\mathfrak{sl}_4}$$
$$\mathbf{i}_0 = (1, 2, 1, 3, 2, 1)$$

Observe that

$$\mathbf{Q}(\mathbf{i}_0) = \mathbf{Q}(\mathbf{i}_J) * \mathbf{Q}(\bar{\mathbf{i}})$$

Parabolic induction \longleftrightarrow truncating $\mathbf{i}_J \subset \mathbf{i}_0$ where $\mathbf{i}_J, \mathbf{i}_0$ are the longest word of the Weyl groups $W_J \subset W$.

$$w_0 = w_J \overline{w}$$
$$\overline{w} \longleftrightarrow \overline{\mathbf{i}}$$

Example

$$W_{\mathfrak{sl}_3} \subset W_{\mathfrak{sl}_4}$$
$$\mathbf{i}_0 = (1, 2, 1, 3, 2, 1)$$

Observe that

$$\mathbf{Q}(\mathbf{i}_0) = \mathbf{Q}(\mathbf{i}) * \mathbf{Q}(\mathbf{ar{i}})$$

O 314 q

$$\begin{aligned} \mathbf{e}_1 &= X_3 + X_{3,0} \\ \mathbf{e}_2 &= X_6 + X_{6,2} \\ \mathbf{e}_3 &= X_9 + X_{9,5} \\ \mathbf{f}_1 &= X_1 + X_{1,2} \\ \mathbf{f}_2 &= X_4 + X_{4,5} \end{aligned}$$

$$\mathbf{e}_3 = X_9 + X_{9,5}$$
 $\mathbf{f}_1 = X_1 + X_{1,2}$
 $\mathbf{f}_2 = X_4 + X_{4,5}$
 $\mathbf{f}_3 = X_7 + X_{7,8}$

 $K_1 = X_{3.0.1}$

 $\mathbf{K}_2 = X_{6,2,4}$

 $K_3 = X_{9.5.7}$ $\mathbf{K}_{1}' = X_{1,2,3}$

 $\mathbf{K}_2' = X_{4,5,6}$

 $K_3' = X_{7.8.9}$

Parabolic positive representation is regular.

Theorem (I. (2020), I.-Ye (2023))

• There is a homomorphism

$$\mathcal{D}_q(\mathfrak{g}) \longrightarrow \mathcal{O}_q(\mathcal{X}^{\mathbf{D}(\bar{\mathbf{i}})})$$

such that the image of $\langle \mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i, \mathbf{K}_i' \rangle$ are universally polynomials.

• A polarization of $\mathcal{O}_q(\mathcal{X}^{\mathbf{D}(\overline{1})})$ induces a family of irreducible representations \mathcal{P}^J_{λ} of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$ parametrized by $\lambda \in \mathbb{R}^{|I \setminus J|}$ as positive self-adjoint operators on $L^2(\mathbb{R}^{l(\overline{w})})$.

Parabolic positive representation is regular.

Theorem (I. (2020), I.-Ye (2023))

• There is a homomorphism

$$\mathcal{D}_q(\mathfrak{g}) \longrightarrow \mathcal{O}_q(\mathcal{X}^{\mathbf{D}(\bar{\mathbf{i}})})$$

such that the image of $\langle \mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i, \mathbf{K}_i' \rangle$ are universally polynomials.

• A polarization of $\mathcal{O}_q(\mathcal{X}^{\mathbf{D}(\overline{\mathbf{i}})})$ induces a family of irreducible representations \mathcal{P}^J_{λ} of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$ parametrized by $\lambda \in \mathbb{R}^{|I \setminus J|}$ as positive self-adjoint operators on $L^2(\mathbb{R}^{l(\overline{w})})$.

Example: E_6

$$A_1 \subset A_2 \subset A_3 \subset D_4 \subset D_5 \subset E_6$$

Example: E_6

Example: B_5

Example: B_5

Back to $\mathcal{U}_q(\mathfrak{sl}_2)$

We have $\iota : \mathcal{D}_q(\mathfrak{sl}_2) \hookrightarrow \mathcal{X}_q^{std}$:

$$\begin{aligned} \mathbf{e} &\mapsto X_3 + X_{3,4} \\ \mathbf{f} &\mapsto X_1 + X_{1,2} \\ \mathbf{K} &\mapsto X_{3,4,1} \\ \mathbf{K}' &\mapsto X_{1,2,3} \end{aligned}$$

exactly Toschnor's rep

- The Casimir is given by $C \mapsto X_{1,3} + X_{1,2,3,4}$.
- The center is generated by $\iota(\mathbf{K}\mathbf{K}') = X_{1^2,2,3^2,4}$ and $Q = X_{2,4}$.
- We recover the previous \mathcal{P}_{λ} with a polarization of \mathcal{X}_{a}^{std} .

We have $\iota : \mathcal{D}_q(\mathfrak{sl}_2) \hookrightarrow \mathcal{X}_q^{std}$:

$$\mathbf{e} \mapsto X_3 + X_{3,4}$$

$$\mathbf{f} \mapsto X_1 + X_{1,2}$$

$$\mathbf{K} \mapsto X_{3,4,1}$$

$$\mathbf{K}' \mapsto X_{1,2,3}$$

- The Casimir is given by $\mathbf{C} \mapsto X_{1,3} + X_{1,2,3,4}$.
- The center is generated by $\iota(\mathbf{K}\mathbf{K}') = X_{1^2,2,3^2,4}$ and $Q = X_{2,4}$.
- We recover the previous \mathcal{P}_{λ} with a polarization of \mathcal{X}_{a}^{std} .

Do a mutation at vertex 2:

The vertex 2 and 4 become symmetric in \mathcal{X}_q^{sym} .

$$\mathbf{e} \mapsto X_3 + X_{3,2} + X_{3,4} + X_{3,2,4}$$
 $\mathbf{f} \mapsto X_1$
 $\mathbf{K} \mapsto X_{3,2,4,1}$
 $\mathbf{K}' \mapsto X_{1,3}$

and the Casimir element is given by

$$\mathbf{C} \mapsto X_{1,2,3} + X_{1,3,4}$$

= $X_{1,3}(X_2 + X_4)$.

Do a mutation at vertex 2:

The vertex 2 and 4 become symmetric in \mathcal{X}_q^{sym} .

$$\mathbf{e} \mapsto X_3 + X_1^{-1}\mathbf{C} + X_{3,2,4}$$

$$\mathbf{f} \mapsto X_1$$

$$\mathbf{K} \mapsto X_{3,2,4,1}$$

$$\mathbf{K}' \mapsto X_{1,3}$$

and the Casimir element is given by

$$\mathbf{C} \mapsto X_{1,2,3} + X_{1,3,4}$$

= $X_{1,3}(X_2 + X_4)$.

Setting $C = 0 \rightsquigarrow \text{folding}$, where we identify the vertex 2 and 4:

$$X_{\star} := X_{2,4}$$

and obtain a new skew-symmetrizable \mathcal{X}_q^0 with $d_{\star} := 2$.

and a homomorphism
$$\mathcal{D}_q(\mathfrak{sl}_2) \longrightarrow \mathcal{X}_q^0$$
:

$$\mathbf{e} \mapsto X_3 + X_{3,\star}$$
 $\mathbf{f} \mapsto X_1$
 $\mathbf{K} \mapsto X_{3,\star,1}$

$$\mathbf{K}' \mapsto X_{1,3}$$

We obtain the degenerate representation \mathcal{P}^0 of $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$ by polarization!

Setting $C = 0 \sim$ folding, where we identify the vertex 2 and 4:

$$X_{\star} := X_{2,4}$$

and obtain a new skew-symmetrizable \mathcal{X}_q^0 with $d_{\star} := 2$.

and a homomorphism $\mathcal{D}_q(\mathfrak{sl}_2) \longrightarrow \mathcal{X}_q^0$:

$$\mathbf{e} \mapsto X_3 + X_{3,\star}$$

$$\mathbf{f} \mapsto X_1$$

$$\mathbf{K} \mapsto X_{3,\star,1}$$

$$\mathbf{K}' \mapsto X_{1,3}$$

We obtain the degenerate representation \mathcal{P}^0 of $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$ by polarization!

Positive Representations at Zero Casimir

Theorem

The center of $\dot{\mathcal{U}}_q(\mathfrak{g}) := \mathcal{U}_q(\mathfrak{g})[\mathbf{K}_i^{\frac{1}{h}}]$ is spanned by rank $\mathfrak{g} = n$ generalized Casimirs

$$\mathbf{C}_k := (1 \otimes \operatorname{Tr}|_{V_k}^q)(RR_{21}).$$

- $R \in \dot{\mathcal{U}}_q(\mathfrak{g}) \widehat{\otimes} \dot{\mathcal{U}}_q(\mathfrak{g}) = universal \ R \ matrix.$
- $\{V_k\}_{k=1}^n = fundamental \ representations \ of \ \mathcal{U}_q(\mathfrak{g}).$
- The quantum trace $\operatorname{Tr}|_{V}^{q}$ is given by

$$\operatorname{Tr}|_{V}^{q}(x) := \operatorname{Tr}|_{V}(xu^{-1}), \quad x \in \dot{\mathcal{U}}_{q}(\mathfrak{g})$$

where $u \in \dot{\mathcal{U}}_q(\mathfrak{g})$ invertible such that $\mathrm{Ad}(u) = S^2$.

To ensure positivity of \mathbf{C}_k in \mathcal{P}_{λ} , we choose [I. (2016)]

$$u := \mathbf{K}_{2\rho} \widetilde{\mathbf{K}}_{2\rho} \in \dot{\mathcal{U}}_{q\widetilde{q}}(\mathfrak{g}_{\mathbb{R}})$$

where $\rho = \frac{1}{2} \sum_{\alpha \in \Delta_+} \alpha$

Theorem

The center of $\dot{\mathcal{U}}_q(\mathfrak{g}) := \mathcal{U}_q(\mathfrak{g})[\mathbf{K}_i^{\frac{1}{h}}]$ is spanned by rank $\mathfrak{g} = n$ generalized Casimirs

$$\mathbf{C}_k := (1 \otimes \operatorname{Tr}|_{V_k}^q)(RR_{21}).$$

- $R \in \dot{\mathcal{U}}_q(\mathfrak{g}) \widehat{\otimes} \dot{\mathcal{U}}_q(\mathfrak{g}) = universal \ R \ matrix.$
- $\{V_k\}_{k=1}^n = fundamental \ representations \ of \ \mathcal{U}_q(\mathfrak{g}).$
- The quantum trace $\operatorname{Tr}|_V^q$ is given by

$$\operatorname{Tr}|_{V}^{q}(x) := \operatorname{Tr}|_{V}(xu^{-1}), \quad x \in \dot{\mathcal{U}}_{q}(\mathfrak{g})$$

where $u \in \dot{\mathcal{U}}_q(\mathfrak{g})$ invertible such that $\mathrm{Ad}(u) = S^2$.

To ensure positivity of C_k in \mathcal{P}_{λ} , we choose [I. (2016)]

$$u:=\mathbf{K}_{2\rho}\widetilde{\mathbf{K}}_{2\rho}\in\dot{\mathcal{U}}_{q\widetilde{q}}(\mathfrak{g}_{\mathbb{R}})$$

where $\rho = \frac{1}{2} \sum_{\alpha \in \Delta_+} \alpha$.

Example

In $\mathcal{U}_q(\mathfrak{sl}_2)$, the Casimir is

$$\mathbf{C} = \mathbf{fe} - q\mathbf{K} - q^{-1}\mathbf{K}^{-1}.$$

Example

In $\mathcal{U}_q(\mathfrak{sl}_3)$, the two generalized Casimirs are

$$\begin{aligned} \mathbf{C}_1 = & \mathbf{K}(q^{-2}\mathbf{K}_1\mathbf{K}_2 + \mathbf{K}_1^{-1}\mathbf{K}_2 + q^2\mathbf{K}_1^{-1}\mathbf{K}_2^{-1} - q^{-1}\mathbf{K}_2\mathbf{e}_1\mathbf{f}_1 - q\mathbf{K}_1^{-1}\mathbf{e}_2\mathbf{f}_2 + \mathbf{e}_{21}\mathbf{f}_{12}), \\ \mathbf{C}_2 = & \mathbf{K}^{-1}(q^2\mathbf{K}_1^{-1}\mathbf{K}_2^{-1} + \mathbf{K}_1\mathbf{K}_2^{-1} + q^{-2}\mathbf{K}_1\mathbf{K}_2 - q\mathbf{K}_2^{-1}\mathbf{e}_1\mathbf{f}_1 - q^{-1}\mathbf{K}_1\mathbf{e}_2\mathbf{f}_2 + \mathbf{e}_{12}\mathbf{f}_{21}), \end{aligned}$$

where $\mathbf{K} = \mathbf{K}_1^{\frac{1}{3}} \mathbf{K}_2^{-\frac{1}{3}}$, and

$$\mathbf{e}_{ij} := \frac{q^{\frac{1}{2}}\mathbf{e}_{j}\mathbf{e}_{i} - q^{-\frac{1}{2}}\mathbf{e}_{i}\mathbf{e}_{j}}{q - q^{-1}}, \quad \mathbf{f}_{ij} := \frac{q^{\frac{1}{2}}\mathbf{f}_{j}\mathbf{f}_{i} - q^{-\frac{1}{2}}\mathbf{f}_{i}\mathbf{f}_{j}}{q - q^{-1}}$$

are obtained by the *symmetrized* Lusztig's transformations

Example

In $\mathcal{U}_q(\mathfrak{sl}_2)$, the Casimir is

$$\mathbf{C} = \mathbf{fe} - q\mathbf{K} - q^{-1}\mathbf{K}^{-1}.$$

Example

In $\mathcal{U}_q(\mathfrak{sl}_3)$, the two generalized Casimirs are

$$\begin{split} \mathbf{C}_1 = & \mathbf{K}(q^{-2}\mathbf{K}_1\mathbf{K}_2 + \mathbf{K}_1^{-1}\mathbf{K}_2 + q^2\mathbf{K}_1^{-1}\mathbf{K}_2^{-1} - q^{-1}\mathbf{K}_2\mathbf{e}_1\mathbf{f}_1 - q\mathbf{K}_1^{-1}\mathbf{e}_2\mathbf{f}_2 + \mathbf{e}_{21}\mathbf{f}_{12}), \\ \mathbf{C}_2 = & \mathbf{K}^{-1}(q^2\mathbf{K}_1^{-1}\mathbf{K}_2^{-1} + \mathbf{K}_1\mathbf{K}_2^{-1} + q^{-2}\mathbf{K}_1\mathbf{K}_2 - q\mathbf{K}_2^{-1}\mathbf{e}_1\mathbf{f}_1 - q^{-1}\mathbf{K}_1\mathbf{e}_2\mathbf{f}_2 + \mathbf{e}_{12}\mathbf{f}_{21}), \end{split}$$

where $\mathbf{K} = \mathbf{K}_{1}^{\frac{1}{3}} \mathbf{K}_{2}^{-\frac{1}{3}}$, and

$$\mathbf{e}_{ij} := \frac{q^{\frac{1}{2}} \mathbf{e}_{j} \mathbf{e}_{i} - q^{-\frac{1}{2}} \mathbf{e}_{i} \mathbf{e}_{j}}{q - q^{-1}}, \qquad \mathbf{f}_{ij} := \frac{q^{\frac{1}{2}} \mathbf{f}_{j} \mathbf{f}_{i} - q^{-\frac{1}{2}} \mathbf{f}_{i} \mathbf{f}_{j}}{q - q^{-1}}$$

are obtained by the *symmetrized* Lusztig's transformations.

Theorem (I. (2016))

The generalized Casimirs \mathbf{C}_k act on \mathcal{P}_{λ} by the scalars

$$\pi_{\lambda}(\mathbf{C}_k) = \sum_{\mathcal{V} \subset V_k} \exp\left(-4\pi\mu_{\mathcal{V}}(\overrightarrow{\lambda_{\mathfrak{h}}})\right),$$

over all weight subspaces $\mathcal{V} \subset V_k$ with weight $\mu_{\mathcal{V}} \in \mathfrak{h}_{\mathbb{R}}^*$, and

$$\overrightarrow{\lambda_{\mathfrak{h}}} = \sum_{i \in I} \lambda_i b_i W_i \in \mathfrak{h}_{\mathbb{R}}$$

where $W_i = fundamental coweights dual to \alpha_i$.

Remark

 $\pi_{\lambda}(\mathbf{C}_k)$ can also be computed by the Weyl character formula.

Theorem (I. (2016))

The generalized Casimirs \mathbf{C}_k act on \mathcal{P}_{λ} by the scalars

$$\pi_{\lambda}(\mathbf{C}_k) = \sum_{\mathcal{V} \subset V_k} \exp\left(-4\pi\mu_{\mathcal{V}}(\overrightarrow{\lambda_{\mathfrak{h}}})\right),$$

over all weight subspaces $\mathcal{V} \subset V_k$ with weight $\mu_{\mathcal{V}} \in \mathfrak{h}_{\mathbb{R}}^*$, and

$$\overrightarrow{\lambda_{\mathfrak{h}}} = \sum_{i \in I} \lambda_i b_i W_i \in \mathfrak{h}_{\mathbb{R}}$$

where $W_i = fundamental coweights dual to \alpha_i$.

Remark

 $\pi_{\lambda}(\mathbf{C}_k)$ can also be computed by the Weyl character formula.

Proposition

In type A_n , $V_k = \Lambda^k V_1$, and the actions of \mathbf{C}_k on \mathcal{P}_{λ} are given by

$$\pi_{\lambda}(\mathbf{C}_k) = \mathcal{E}_k\left(e^{4\pi b\varpi_0}, ..., e^{4\pi b\varpi_n}\right).$$

where \mathcal{E}_k are the elementary symmetric polynomials in n+1 variables, and

$$\varpi_i := \frac{1}{n+1} \sum_{k=1}^n k \lambda_k - \sum_{j=n+1-i}^n \lambda_j, \quad i = 0, ..., n.$$

$\operatorname{Example}$

In $\mathcal{U}_q(\mathfrak{sl}_3)$, (type A_2) we have

$$\pi_{\lambda}(\mathbf{C}_{1}) = e^{\frac{4}{3}\pi b\lambda_{1} + \frac{8}{3}\pi\lambda_{2}} + e^{\frac{4}{3}\pi b\lambda_{1} - \frac{4}{3}\pi\lambda_{2}} + e^{-\frac{8}{3}\pi b\lambda_{1} - \frac{4}{3}\pi\lambda_{2}},$$

$$\pi_{\lambda}(\mathbf{C}_{2}) = e^{\frac{8}{3}\pi b\lambda_{1} + \frac{4}{3}\pi\lambda_{2}} + e^{-\frac{4}{3}\pi b\lambda_{1} + \frac{4}{3}\pi\lambda_{2}} + e^{-\frac{4}{3}\pi b\lambda_{1} - \frac{8}{3}\pi\lambda_{2}}$$

Proposition

In type A_n , $V_k = \Lambda^k V_1$, and the actions of \mathbf{C}_k on \mathcal{P}_{λ} are given by

$$\pi_{\lambda}(\mathbf{C}_k) = \mathcal{E}_k \left(e^{4\pi b \varpi_0}, ..., e^{4\pi b \varpi_n} \right).$$

where \mathcal{E}_k are the elementary symmetric polynomials in n+1 variables, and

$$\varpi_i := \frac{1}{n+1} \sum_{k=1}^n k \lambda_k - \sum_{j=n+1-i}^n \lambda_j, \quad i = 0, ..., n.$$

Example

In $\mathcal{U}_q(\mathfrak{sl}_3)$, (type A_2) we have

$$\pi_{\lambda}(\mathbf{C}_{1}) = e^{\frac{4}{3}\pi b\lambda_{1} + \frac{8}{3}\pi\lambda_{2}} + e^{\frac{4}{3}\pi b\lambda_{1} - \frac{4}{3}\pi\lambda_{2}} + e^{-\frac{8}{3}\pi b\lambda_{1} - \frac{4}{3}\pi\lambda_{2}},$$

$$\pi_{\lambda}(\mathbf{C}_{2}) = e^{\frac{8}{3}\pi b\lambda_{1} + \frac{4}{3}\pi\lambda_{2}} + e^{-\frac{4}{3}\pi b\lambda_{1} + \frac{4}{3}\pi\lambda_{2}} + e^{-\frac{4}{3}\pi b\lambda_{1} - \frac{8}{3}\pi\lambda_{2}}.$$

We start with the standard quiver $\mathbf{D}(\mathbf{i}_0)$ for $\mathbf{i}_0 = (1\ 21\ 321\ 4321\cdots n\ \cdots\ 1)$.

- The center of \mathcal{X}_q^{std} is generated by $\iota(\mathbf{K}_i\mathbf{K}_i')$ and the monodromies Q_i around the puncture.
- The polarization is given by $\pi_{\lambda}(\mathbf{K}_{i}\mathbf{K}'_{i}) = 1$ and $\pi_{\lambda}(Q_{i}) = e^{4\pi b\lambda_{i}}$.

We start with the standard quiver $\mathbf{D}(\mathbf{i}_0)$ for $\mathbf{i}_0 = (1\ 21\ 321\ 4321\cdots n\ \cdots\ 1)$.

- The center of \mathcal{X}_q^{std} is generated by $\iota(\mathbf{K}_i\mathbf{K}_i')$ and the monodromies Q_i around the puncture.
- The polarization is given by $\pi_{\lambda}(\mathbf{K}_{i}\mathbf{K}'_{i}) = 1$ and $\pi_{\lambda}(Q_{i}) = e^{4\pi b\lambda_{i}}$.

We perform the flip to obtain a self-folded triangulation

and obtain the following quiver.

There is a mutation sequence by [Schrader-Shapiro] which transform the top half of the quiver into \mathcal{X}_{q}^{sym} .

We perform the flip to obtain a self-folded triangulation

and obtain the following quiver.

There is a mutation sequence by [Schrader-Shapiro] which transform the top half of the quiver into \mathcal{X}_q^{sym} .

We perform the flip to obtain a self-folded triangulation

and obtain the following quiver.

There is a mutation sequence by [Schrader-Shapiro] which transform the top half of the quiver into \mathcal{X}_q^{sym} .

The central monodromies become

$$Q_i := X_{c_i} X_{c_{i-1}}^{-1}, \quad \pi_{\lambda}(Q_i) = e^{4\pi b \lambda_i}$$

The embedding of the generators $\mathbf{f}_1, ..., \mathbf{f}_n$ as well as $\mathbf{e}_1, ..., \mathbf{e}_{n-1}$ does not involve the indices c_i .

However, \mathbf{e}_n is of the form

$$\iota(\mathbf{e}_n) = \sum A_k B_k$$

The central monodromies become

$$Q_i := X_{c_i} X_{c_{i-1}}^{-1}, \quad \pi_{\lambda}(Q_i) = e^{4\pi b \lambda_i}$$

The embedding of the generators $\mathbf{f}_1, ..., \mathbf{f}_n$ as well as $\mathbf{e}_1, ..., \mathbf{e}_{n-1}$ does not involve the indices c_i .

However, \mathbf{e}_n is of the form

$$\iota(\mathbf{e}_n) = \sum A_k B_k$$

The central monodromies become

$$Q_i := X_{c_i} X_{c_{i-1}}^{-1}, \quad \pi_{\lambda}(Q_i) = e^{4\pi b \lambda_i}$$

The embedding of the generators $\mathbf{f}_1, ..., \mathbf{f}_n$ as well as $\mathbf{e}_1, ..., \mathbf{e}_{n-1}$ does not involve the indices c_i .

However, \mathbf{e}_n is of the form

$$\iota(\mathbf{e}_n) = \sum A_k B_k$$

The central monodromies become

$$Q_i := X_{c_i} X_{c_{i-1}}^{-1}, \quad \pi_{\lambda}(Q_i) = e^{4\pi b \lambda_i}$$

The embedding of the generators $\mathbf{f}_1, ..., \mathbf{f}_n$ as well as $\mathbf{e}_1, ..., \mathbf{e}_{n-1}$ does not involve the indices c_i .

However, \mathbf{e}_n is of the form

$$\iota(\mathbf{e}_n) = \sum A_k B_k$$

We can now perform the folding of the symmetric variables to get \mathcal{X}_q^0 , where

$$X_{\star} := \prod_{k=0}^{n} X_{c_k}$$

and assign $d_{\star} := n + 1$.

- The embeddings of $\mathbf{f}_1, ..., \mathbf{f}_n$ and $\mathbf{e}_1, ..., \mathbf{e}_{n-1}$ are unaffected.
- $\iota(\mathbf{e}_n)$ is modified such that

$$\begin{cases} B_k \mapsto 0 & k = 1, ..., n, \\ B_{n+1} \mapsto X_{\star}. \end{cases}$$

By construction $\mathbf{C}_k = 0$ in \mathcal{X}_q^0 .

We can now perform the folding of the symmetric variables to get \mathcal{X}_q^0 , where

$$X_{\star} := \prod_{k=0}^{n} X_{c_k}$$

and assign $d_{\star} := n + 1$.

- The embeddings of $\mathbf{f}_1, ..., \mathbf{f}_n$ and $\mathbf{e}_1, ..., \mathbf{e}_{n-1}$ are unaffected.
- $\iota(\mathbf{e}_n)$ is modified such that

$$\begin{cases} B_k \mapsto 0 & k = 1, ..., n, \\ B_{n+1} \mapsto X_{\star}. \end{cases}$$

By construction $\mathbf{C}_k = 0$ in \mathcal{X}_q^0 .

We can now perform the folding of the symmetric variables to get \mathcal{X}_q^0 , where

$$X_{\star} := \prod_{k=0}^{n} X_{c_k}$$

and assign $d_{\star} := n + 1$.

- The embeddings of $\mathbf{f}_1, ..., \mathbf{f}_n$ and $\mathbf{e}_1, ..., \mathbf{e}_{n-1}$ are unaffected.
- $\iota(\mathbf{e}_n)$ is modified such that

$$\begin{cases} B_k \mapsto 0 & k = 1, ..., n, \\ B_{n+1} \mapsto X_{\star}. \end{cases}$$

By construction $\mathbf{C}_k = 0$ in \mathcal{X}_q^0 .

Main Theorem: Type A_n

Theorem (I.-Man (2022), I.-Ye (2023))

There is an embedding

$$\mathcal{D}_q(\mathfrak{sl}_{n+1})/\langle \mathbf{C}_k = 0 \rangle \hookrightarrow \mathcal{O}_q(X^0)$$

to a skew-symmetrizable quantum cluster algebra such that

- The image of $\{e_i, f_i, K_i, K'_i\}$ are universally polynomials.
- We have an irreducible representation \mathcal{P}^0 of $\mathcal{U}_q(\mathfrak{sl}(n+1,\mathbb{R}))$ acting on $L^2(\mathbb{R}^N)$ as positive operators, such that $\pi(\mathbf{C}_k) = 0$.

Main Theorem: Type A_n

Theorem (I.-Man (2022), I.-Ye (2023))

There is an embedding

$$\mathcal{D}_q(\mathfrak{sl}_{n+1})/\langle \mathbf{C}_k = 0 \rangle \hookrightarrow \mathcal{O}_q(X^0)$$

to a skew-symmetrizable quantum cluster algebra such that

- The image of $\{e_i, f_i, K_i, K'_i\}$ are universally polynomials.
- We have an irreducible representation \mathcal{P}^0 of $\mathcal{U}_q(\mathfrak{sl}(n+1,\mathbb{R}))$ acting on $L^2(\mathbb{R}^N)$ as positive operators, such that $\pi(\mathbf{C}_k) = 0$.

Degenerate Modular Double

Recall

The vertex 2 and 4 are symmetric in \mathcal{X}_q^{sym} .

$$\mathbf{e} \mapsto X_3 + X_1^{-1}\mathbf{C} + X_{3,2,4}$$

$$\mathbf{f} \mapsto X_1$$

$$\mathbf{K} \mapsto X_{3,2,4,1}$$

$$\mathbf{K}' \mapsto X_{1,3}$$

Degenerate Modular Double

By reversing the folding, we obtain a new skew-symmetrizable $\tilde{\mathcal{X}}_q^0$

and a homomorphism $\mathcal{D}_q(\mathfrak{sl}_2) \longrightarrow \widetilde{\mathcal{X}}_q^0$:

$$\mathbf{e} \mapsto X_3 + (q^{\frac{1}{2}} + q^{-\frac{1}{2}})X_{3,\star} + X_{3,\star^2}$$

$$\mathbf{f} \mapsto X_1$$

$$\mathbf{K} \mapsto X_{3,\star^2,1}$$

$$\mathbf{K}' \mapsto X_{1,3}$$

We obtain the modular double counterpart of the degenerate representation $\widetilde{\mathcal{P}}^0$ of $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$ by polarization!

Degenerate representations of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$

• Recall a parabolic subgroup $\longleftrightarrow J \subset I$ provides a decomposition of \mathcal{X}_q^{std} .

$$\mathbf{i}_0 = \mathbf{i}_J \mathbf{i}'.$$

- We can fold the \mathbf{i}_J part if it is of type $A_{k_1} \times \cdots \times A_{k_m}$.
- The number of central parameters are reduced by $|J| = k_1 + \cdots + k_m$.

• Recall a parabolic subgroup $\longleftrightarrow J \subset I$ provides a decomposition of \mathcal{X}_q^{std} .

$$\mathbf{i}_0 = \mathbf{i}_J \mathbf{i}'.$$

- We can fold the \mathbf{i}_J part if it is of type $A_{k_1} \times \cdots \times A_{k_m}$.
- The number of central parameters are reduced by $|J| = k_1 + \cdots + k_m$.

• Recall a parabolic subgroup $\longleftrightarrow J \subset I$ provides a decomposition of \mathcal{X}_q^{std} .

$$\mathbf{i}_0 = \mathbf{i}_J \mathbf{i}'$$
.

- We can fold the \mathbf{i}_J part if it is of type $A_{k_1} \times \cdots \times A_{k_m}$.
- The number of central parameters are reduced by $|J| = k_1 + \cdots + k_m$.

Theorem (I.-Man (2022))

For each parabolic subgroup $W_J \subset W$ of type $A_{k_1} \times \cdots \times A_{k_m}$:

• We have a homomorphism

$$\mathcal{D}_q(\mathfrak{g}) \longrightarrow \mathcal{O}_q(\mathcal{X}^0)$$

to some skew-symmetrizable quantum cluster algebra.

- $\{e_i, f_i, K_i, K_i'\}$ are universally polynomials.
- We have a family of irreducible regular positive representations $\mathcal{P}_{\lambda}^{0,J}$ of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$ parametrized by $\lambda \in \mathbb{R}^{n-|J|}$.

• The same results hold for the modular double counterpart with \mathcal{X}_q^0 , where the multipliers d_{\star} of any folded vertices are inverted.

Theorem $(I.-Man\ (2022))$

For each parabolic subgroup $W_J \subset W$ of type $A_{k_1} \times \cdots \times A_{k_m}$:

• We have a homomorphism

$$\mathcal{D}_q(\mathfrak{g}) \longrightarrow \mathcal{O}_q(\mathcal{X}^0)$$

to some skew-symmetrizable quantum cluster algebra.

- $\{\mathbf{e}_i, \mathbf{f}_i, \mathbf{K}_i, \mathbf{K}_i'\}$ are universally polynomials.
- We have a family of irreducible regular positive representations $\mathcal{P}_{\lambda}^{0,J}$ of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$ parametrized by $\lambda \in \mathbb{R}^{n-|J|}$.
- The same results hold for the modular double counterpart with $\widetilde{\mathcal{X}}_q^0$, where the multipliers d_\star of any folded vertices are inverted.

Maximal Degenerate Representations

 $\mathbf{i}_0 = \mathbf{i}_{A_4} \mathbf{i}' = (1213214321)(545345234512345)$

Maximal Degenerate Representations

Maximal Degenerate Representations

Polarization gives the degenerate representation $P_{\lambda}^{0,J}$ of $\mathcal{U}_q(\mathfrak{g}_{B_5})$.

We have the following list of irreducible regular positive representations of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$:

- (1) The standard positive representations \mathcal{P}_{λ} , parametrized by n positive scalars.
- (2) The parabolic positive representations $\mathcal{P}_{\lambda}^{J}$, with respect to parabolic subgroup $W_{J} \subset W$ parametrized by n |J| positive scalars.
- (3) The degenerate representations $\mathcal{P}_{\lambda}^{0,J}$ with respect to parabolic subgroup $W_J \subset W$ of type $A_{k_1} \times \cdots \times A_{k_m}$, parametrized by n |J| positive scalars.
- (4) The modular double counterpart of the degenerate representations $\mathcal{P}_{\tilde{\lambda}}^{0,J}$, also parametrized by n-|J| positive scalars.
- (5) A mixture of type (2)–(4) for disconnected subsets of Dynkin index.

Conjecture

The classes of all irreducible regular positive representations of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$ are classified by the list (1)-(5) above.

We have the following list of irreducible regular positive representations of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$:

- (1) The standard positive representations \mathcal{P}_{λ} , parametrized by n positive scalars.
- (2) The parabolic positive representations $\mathcal{P}_{\lambda}^{J}$, with respect to parabolic subgroup $W_{J} \subset W$ parametrized by n |J| positive scalars.
- (3) The degenerate representations $\mathcal{P}_{\lambda}^{0,J}$ with respect to parabolic subgroup $W_J \subset W$ of type $A_{k_1} \times \cdots \times A_{k_m}$, parametrized by n |J| positive scalars
- (4) The modular double counterpart of the degenerate representations $\mathcal{P}_{\tilde{\lambda}}^{0,J}$, also parametrized by n-|J| positive scalars.
- (5) A mixture of type (2)–(4) for disconnected subsets of Dynkin index.

Conjecture

The classes of all irreducible regular positive representations of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$ are classified by the list (1)-(5) above.

We have the following list of irreducible regular positive representations of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$:

- (1) The standard positive representations \mathcal{P}_{λ} , parametrized by n positive scalars.
- (2) The parabolic positive representations $\mathcal{P}_{\lambda}^{J}$, with respect to parabolic subgroup $W_{J} \subset W$ parametrized by n |J| positive scalars.
- (3) The degenerate representations $\mathcal{P}_{\lambda}^{0,J}$ with respect to parabolic subgroup $W_J \subset W$ of type $A_{k_1} \times \cdots \times A_{k_m}$, parametrized by n |J| positive scalars.
- (4) The modular double counterpart of the degenerate representations $\mathcal{P}_{\tilde{\lambda}}^{0,J}$, also parametrized by n-|J| positive scalars.
- (5) A mixture of type (2)–(4) for disconnected subsets of Dynkin index.

Conjecture

The classes of all irreducible regular positive representations of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$ are classified by the list (1)–(5) above.

We have the following list of irreducible regular positive representations of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$:

- (1) The standard positive representations \mathcal{P}_{λ} , parametrized by n positive scalars.
- (2) The parabolic positive representations $\mathcal{P}_{\lambda}^{J}$, with respect to parabolic subgroup $W_{J} \subset W$ parametrized by n |J| positive scalars.
- (3) The degenerate representations $\mathcal{P}_{\lambda}^{0,J}$ with respect to parabolic subgroup $W_J \subset W$ of type $A_{k_1} \times \cdots \times A_{k_m}$, parametrized by n |J| positive scalars.
- (4) The modular double counterpart of the degenerate representations $\mathcal{P}_{\widetilde{\lambda}}^{0,J}$, also parametrized by n-|J| positive scalars.
- (5) A mixture of type (2)–(4) for disconnected subsets of Dynkin index.

Conjecture

The classes of all irreducible regular positive representations of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$ are classified by the list (1)–(5) above.

We have the following list of irreducible regular positive representations of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$:

- (1) The standard positive representations \mathcal{P}_{λ} , parametrized by n positive scalars.
- (2) The parabolic positive representations $\mathcal{P}_{\lambda}^{J}$, with respect to parabolic subgroup $W_{J} \subset W$ parametrized by n |J| positive scalars.
- (3) The degenerate representations $\mathcal{P}_{\lambda}^{0,J}$ with respect to parabolic subgroup $W_J \subset W$ of type $A_{k_1} \times \cdots \times A_{k_m}$, parametrized by n |J| positive scalars.
- (4) The modular double counterpart of the degenerate representations $\mathcal{P}_{\tilde{\lambda}}^{0,J}$, also parametrized by n-|J| positive scalars.
- (5) A mixture of type (2)–(4) for disconnected subsets of Dynkin index.

Conjecture

The classes of all irreducible regular positive representations of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$ are classified by the list (1)–(5) above.

We illustrate the joint spectrum $(\pi_{\lambda}(\mathbf{C}_1), \pi_{\lambda}(\mathbf{C}_2))$ of the Casimirs of the irreducible regular positive representations of $\mathcal{U}_q(\mathfrak{sl}_3)$. We assume $\lambda \geq 0$ and q not a root of unity.

		$\pi_{\lambda}(\mathbf{C}_{1}) = e^{\frac{4}{3}\pi b\lambda_{1} + \frac{8}{3}\pi b\lambda_{2}} + e^{\frac{4}{3}\pi b\lambda_{1} - \frac{4}{3}\pi b\lambda_{2}} + e^{-\frac{8}{3}\pi b\lambda_{1} - \frac{4}{3}\pi b\lambda_{2}}$
		$\pi_{\lambda}(\mathbf{C}_{2}) = e^{\frac{8}{3}\pi b\lambda_{1} + \frac{4}{3}\pi b\lambda_{2}} + e^{-\frac{4}{3}\pi b\lambda_{1} + \frac{4}{3}\pi b\lambda_{2}} + e^{-\frac{4}{3}\pi b\lambda_{1} - \frac{8}{3}\pi b\lambda_{2}}$
		$\pi_{\lambda}(\mathbf{C}_{1}) = e^{-\frac{8}{3}\pi b\lambda} - (q+q^{-1})e^{\frac{4}{3}\pi b\lambda}$
		$\pi_{\lambda}(\mathbf{C}_{2}) = e^{\frac{8}{3}\pi b\lambda} - (q+q^{-1})e^{-\frac{4}{3}\pi b\lambda}$
		$\pi_{\lambda}(\mathbf{C}_{1}) = e^{\frac{8}{3}\pi b\lambda} - (q+q^{-1})e^{-\frac{4}{3}\pi b\lambda}$
		$\pi_{\lambda}(\mathbf{C}_{2}) = e^{-\frac{8}{3}\pi b\lambda} - (q+q^{-1})e^{\frac{4}{3}\pi b\lambda}$
		$\pi_{\lambda}(\mathbf{C}_1) = 0$
		$\pi_{\lambda}(\mathbf{C}_2) = 0$
		$\pi_{\lambda}(\mathbf{C}_1) = e^{\frac{8}{3}\pi b\lambda}$
		$\pi_{\lambda}(\mathbf{C}_2) = e^{-\frac{8}{3}\pi b\lambda}$
		$\pi_{\lambda}(\mathbf{C}_1) = e^{-\frac{8}{3}\pi b\lambda}$
		$\pi_{\lambda}(\mathbf{C}_2) = e^{\frac{8}{3}\pi b\lambda}$
		$\pi_{\lambda}(\mathbf{C}_1) = q^{\frac{2}{3}} + 1 + q^{-\frac{2}{3}}$
		$\pi_{\lambda}(\mathbf{C}_2) = q^{\frac{2}{3}} + 1 + q^{-\frac{2}{3}}$
		$\pi_{\lambda}(\mathbf{C}_1) = e^{\frac{8}{3}\pi b\lambda} + (q^{\frac{1}{2}} + q^{-\frac{1}{2}})e^{-\frac{4}{3}\pi b\lambda}$
		$\pi_{\lambda}(\mathbf{C}_2) = e^{-\frac{8}{3}\pi b\lambda} + (q^{\frac{1}{2}} + q^{-\frac{1}{2}})e^{\frac{4}{3}\pi b\lambda}$
		$\pi_{\lambda}(\mathbf{C}_1) = e^{-\frac{8}{3}\pi b\lambda} + (q^{\frac{1}{2}} + q^{-\frac{1}{2}})e^{\frac{4}{3}\pi b\lambda}$
		$\pi_{\lambda}(\mathbf{C}_2) = e^{\frac{8}{3}\pi b\lambda} + (q^{\frac{1}{2}} + q^{-\frac{1}{2}})e^{-\frac{4}{3}\pi b\lambda}$

We illustrate the joint spectrum $(\pi_{\lambda}(\mathbf{C}_1), \pi_{\lambda}(\mathbf{C}_2))$ of the Casimirs of the irreducible regular positive representations of $\mathcal{U}_q(\mathfrak{sl}_3)$. We assume $\lambda \geq 0$ and q not a root of unity.

Representations	J	Action of Casimirs
\mathcal{P}_{λ}		$\pi_{\lambda}(\mathbf{C}_{1}) = e^{\frac{4}{3}\pi b\lambda_{1} + \frac{8}{3}\pi b\lambda_{2}} + e^{\frac{4}{3}\pi b\lambda_{1} - \frac{4}{3}\pi b\lambda_{2}} + e^{-\frac{8}{3}\pi b\lambda_{1} - \frac{4}{3}\pi b\lambda_{2}}$
		$\pi_{\lambda}(\mathbf{C}_{2}) = e^{\frac{8}{3}\pi b\lambda_{1} + \frac{4}{3}\pi b\lambda_{2}} + e^{-\frac{4}{3}\pi b\lambda_{1} + \frac{4}{3}\pi b\lambda_{2}} + e^{-\frac{4}{3}\pi b\lambda_{1} - \frac{8}{3}\pi b\lambda_{2}}$
	{1}	$\pi_{\lambda}(\mathbf{C}_{1}) = e^{-\frac{8}{3}\pi b\lambda} - (q + q^{-1})e^{\frac{4}{3}\pi b\lambda}$
		$\pi_{\lambda}(\mathbf{C}_{2}) = e^{\frac{8}{3}\pi b\lambda} - (q + q^{-1})e^{-\frac{4}{3}\pi b\lambda}$
$\mathcal{P}_{\lambda}^{J}$	{2}	$\pi_{\lambda}(\mathbf{C}_1) = e^{\frac{\aleph}{3}\pi b\lambda} - (q+q^{-1})e^{-\frac{4}{3}\pi b\lambda}$
		$\pi_{\lambda}(\mathbf{C}_{2}) = e^{-\frac{8}{3}\pi b\lambda} - (q + q^{-1})e^{\frac{4}{3}\pi b\lambda}$
$\mathcal{P}_{\lambda}^{0,J}$	{1,2}	$\pi_{\lambda}(\mathbf{C}_1) = 0$
		$\pi_{\lambda}(\mathbf{C}_2) = 0$
	{1}	$\pi_{\lambda}(\mathbf{C}_1) = e^{\frac{8}{3}\pi b\lambda}$
		$\pi_{\lambda}(\mathbf{C}_2) = e^{-\frac{8}{3}\pi b\lambda}$
	{2}	$\pi_{\lambda}(\mathbf{C}_1) = e^{-\frac{8}{3}\pi b\lambda}$
		$\pi_{\lambda}(\mathbf{C}_2) = e^{\frac{8}{3}\pi b\lambda}$
$\mathcal{P}^{0,J}_{\widetilde{\lambda}}$	{1,2}	$\pi_{\lambda}(\mathbf{C}_1) = q^{\frac{2}{3}} + 1 + q^{-\frac{2}{3}}$
		$\pi_{\lambda}(\mathbf{C}_2) = q^{\frac{2}{3}} + 1 + q^{-\frac{2}{3}}$
	{1}	$\pi_{\lambda}(\mathbf{C}_{1}) = e^{\frac{8}{3}\pi b\lambda} + (q^{\frac{1}{2}} + q^{-\frac{1}{2}})e^{-\frac{4}{3}\pi b\lambda}$
		$\pi_{\lambda}(\mathbf{C}_{2}) = e^{-\frac{8}{3}\pi b\lambda} + (q^{\frac{1}{2}} + q^{-\frac{1}{2}})e^{\frac{4}{3}\pi b\lambda}$
	{2}	$\pi_{\lambda}(\mathbf{C}_{1}) = e^{-\frac{8}{3}\pi b\lambda} + (q^{\frac{1}{2}} + q^{-\frac{1}{2}})e^{\frac{4}{3}\pi b\lambda}$
		$\pi_{\lambda}(\mathbf{C}_{2}) = e^{\frac{8}{3}\pi b\lambda} + (q^{\frac{1}{2}} + q^{-\frac{1}{2}})e^{-\frac{4}{3}\pi b\lambda}$

A generic plot of $(x, y) = (\pi_{\lambda}(\mathbf{C}_1), \pi_{\lambda}(\mathbf{C}_2))$ with $b \sim 0.5$.

If q is a root of unity, these family of Casimir values can overlap!

A generic plot of $(x, y) = (\pi_{\lambda}(\mathbf{C}_1), \pi_{\lambda}(\mathbf{C}_2))$ with $b \sim 0.5$.

If q is a root of unity, these family of Casimir values can overlap!

Thank you for your attention!