Algebra: Chapter 0 Exercises Chapter 2, Section 1

David Melendez

April 28, 2017

Problem 1.3. Prove that $(gh)^{-1} = h^{-1}g^{-1}$ for all elements g, h of a group G.

Proof. We have (by associativity) that $(gh)(g^{-1}h^{-1}) = e$. But $(gh)(gh)^{-1} = e$, so by cancellation $(gh)^{-1} = h^{-1}g^{-1}$.

Problem 1.4. Suppose that $g^2 = e$ for all elements g of a group G; prove that G is commutative.

Proof.
$$gh = ghe = gh(hg)^2 = ghhghg = gghg = hg$$

Problem 1.5. Prove that ever row and every column of the 'multiplication table' of a group contains all elements of the group exactly once.

Solution. That every row of a group G's multiplication table is 'sudoku complete' (if you will) is equivalent to the following:

Proposition. For every $g, h \in G$ $g \neq h$, there exists a unique $x \in G$ such that gx = h.

Proof. Putting $x = g^{-1}h$, we have $gx = gg^{-1}h = h$. If any y satisfies this property, we have

$$gx = h = gy \implies gx = gy$$

 $\implies g^{-1}x = g^{-1}y$
 $\implies x = y$

The proof for columns is entirely analogous.

Problem 1.6. Prove that there is only *one* possible multiplication table for G if G has exactly 1, 2, or 3 elements. Analyze the possible multiplication tables for groups with exactly 4 elements, and show that there are two distinct tables, up to reordering the elements of G.

Solution. .

- 1. The proof for |G| = 1 is trivial.
- 2. For |G| = 2 and $e, a \in G$, we have ee = e, ea = a, and ae = e. Since each element of a group must have an inverse, we must also have $a = a^{-1}$ (since $e \neq a^{-1}$), so $a^2 = e$.
- 3. For |G| = 3, consider the table:

•	e	a	b
е	е	a	b
a	a	?	?
b	b	?	?

We can complete the table like a sudoku puzzle using problem 1.5. Since ea = a, we cannot have $a^2 = a$. Since eb = b, we can't have $a^2 = e$ since that would force ab = b. Hence, $a^2 = b$.

	e	a	b
е	е	a	b
a	a	b	?
b	b	?	?

The rest of the table is forced by problem 1.5.

	e	a	b
е	е	a	b
a	a	b	е
b	b	е	a