

Smart Energy Management System

소프트웨어공학개론

Team 9

2019311270 김서정

2019311188 김주원

2017312334 김현중

2016311561 송유호

2019310940 이예송

2016312429 임형진

2022.05.01

목차

1. Introduction	7
1.1. Purpose	7
1.2. Scope	7
1.3. Definitions, Acronyms, and Abbreviation	8
1.4. References	9
1.4.1. IEEE 표준 830 에 대한 가이드	9
1.4.2. SRS 우수사례	9
1.4.3. Textbook	10
1.4.4. Flutter documentation	10
1.5. Overview	10
2. Overall Description	10
2.1. Product Perspective	10
2.1.1. System Interface	11
2.1.2. User Interfaces	11
2.1.3. Hardware Interfaces	11
2.1.4. Software Interface	11
2.1.5. Communication Interfaces	11
2.1.6. Memory Constraints	11
2.1.7 Operations	12
2.2. Product Function	12
2.2.1. IoT 기기 등록/해제	12
2.2.2. 기기 사용량 리포트	12
2.2.3. 기기 동작 설정	13
2.2.4. 기기 원격 제어	13

	2.2.5. 스케줄 설정	13
	2.2.6. 맞춤형 알림	14
	2.3. User Characteristics	14
	2.3.1. User	14
	2.3.2 System Manager	14
	2.4. Constraints	14
	2.5. Assumptions and Dependencies	15
3. S	Specific Requirements	15
	3.1. External Interface Requirements	15
	3.1.1. User interface	15
	3.1.2 Hardware interface	20
	3.1.3. Software interface	21
	3.1.4. Communication interface	21
	3.2. Functional Requirements	22
	3.2.1. Use Case	22
	3.2.2. Use Case Diagram	27
	3.2.3. Data Flow Diagram	28
	3.3. Product Requirements	28
	3.3.1. Usability Requirements	28
	3.3.2. Performance Requirements	29
	3.3.3. Space Requirements	29
	3.3.4. Dependability Requirements	29
	3.3.5. Security Requirements	30
	3.4. Organizational Requirements	30
	3.4.1. Environmental Requirements	30

	3.4.2. Development Requirements	30
	3.5. External Requirements	30
	3.5.1. Safety/Security Requirements	31
	3.5.2. Regulatory Requirements	31
	3.5.3. Ethical requirements	31
	3.5.4. Accounting requirements	31
	3.6. Organizing the Specific Requirements	32
	3.6.1. Context Model	32
	3.6.2. Process Model	32
	3.6.3. Interaction Model	33
	3.6.4. Behavior Model	33
	3.7. System Architecture	36
	3.8. System Evolution	37
	3.8.1. Limitation and Assumption	37
	3.8.2. Evolutions of Hardware and Change of User Requirements	37
4.	추가 정보	38
	4.1. 서식	38
	4.2. 문서 시간표	38

표 목차

[표	1] Definition	8
[丑	2] Abbreviation and Acronyms	9
[丑	3] User interface — 홈 화면	16
[丑	4] User interface – 조건 설정	17
[丑	5] User interface — 기기 정보 등록 및 수정	18
[丑	6] User interface — 기기 제어	19
[丑	7] User interface — 알림 설정	19
 [8] User interface — 주간/월별 전력 사용 현황 확인	20
<u></u> 표	9] Hardware interface -System 에 적합한 유저 디바이스	20
[I	10] Software interface - Flutter	21
[丑	11] Communication interface	22
[丑	12] 스마트 전구 등록 사용 케이스	22
[I	13] 스마트 플러그 & 기기 등록 사용 케이스	23
[丑	14] IoT 기기 등록 정보 수정 사용 케이스	23
[丑	15] 조건 & 동작 설정 사용 케이스	24
[丑	16] 전력 사용 리포트 사용 케이스	24
[丑	17] 기기 원격 제어 사용 케이스	25
[丑	18] 스케줄 설정 사용 케이스	25
[丑	19] 관리자 스케줄 추천 사용 케이스	25
[201 맞축형 알림 설정 사용 케이스	26

그림 목차

[그림	1] Use Case Diagram	27
[그림	2] Data Flow Diagram	28
[그림	2] Context Model	32
[그림	3] Process Model	32
[그림	4] 기기 관리 Sequence	33
[그림	5] 동작 설정 Sequence	34
[그림	6] 스케줄 설정 Sequence	34
[그림	7] 기기 소비전력 확인 Sequence	35
[그림	8] Device Control System 의 State	35
[그림	9] Energy Statistics System 의 State	35
[그림	10] Schedule Management System 의 State	36
[그림	11] System Architecture	.37

1. Introduction

1.1. Purpose

이 문서는 Smart Energy Management System 의 요구사항 명세서이다. Smart Energy Management System 은 개인 차원에서의 건물 부문 에너지 절약을 도와 주기 위한 목적으로 성균관대학교 2022 1 학기 소프트웨어공학개론 수업의 제 9 팀에서 구상한 시스템이다. 현재 증가하는 에너지 사용량으로 인해 온실가스 배출량이 상승하고 있다. 이는 폭염, 가뭄, 급격한 기온변화, 생태계 변화 등 심각한 환경문제를 발생시키고 있다. 이러한 온실가스 배출량은 건물, 수송, 산업 부문이 가장 큰 비중을 차지하고 있다. 운송과 산업부문에서는 에너지 절감 노력이 이루어지고 있으나 건물에서의 에너지 절감 노력은 미미하다. 특히나 개인차원에서는 에너지 절약 실천율이 저조하다. Smart Energy Management System 은 에너지 절약을 도와주어 에너지 사용량 감소에 따른 비용 절감과 동시에 환경 보호 기대효과를 누리고자 한다.

본 문서는 Smart Energy Management System 에 대한 요구사항이 분석, 구성, 정리되어 문서화되어 있으며, 기술된 내용을 바탕으로 하여 Smart Energy Management System 의 디자인 및 구현을 진행할 예정이다. 또한, Smart Energy Management System 이 수행해야 할 모든 기능과 제약 조건 등이 기술되어 있다. 본 문서의 목적은 프로젝트 진행에 필요한 요구 사항을 명확하게 제시하여 프로젝트의 개발자 및 사용자가 참조할 수 있는 프레임워크 사양을 제공하는 것이다.

덧붙여 본 문서는 성균관대학교 2022 학년도 1 학기 소프트웨어공학개론 9 조(김서정, 김주원, 김현중, 송유호, 임형진, 이예송)에 의하여 작성되었으며 성균관대학교 소프트웨어공학개론 수업의 교수, 조교, 수강생들의 열람을 염두 하며 작성하였다.

1.2. Scope

Smart Energy Management System 은 하나의 애플리케이션으로 여러 IoT 장치를 제어할 수 있고 스케줄러와 GPS 를 이용한 사용자 기반 서비스를 통해 사용자 맞춤형 에너지 관리 시스템을 제공하고자 한다. 사용자들은 기기 별 및 시간별 에너지 소비량을 파악할 수 있고 소비량과비용을 계산하여 에너지 요금을 확인할 수 있다. 이러한 에너지 소비 확인은 daily report 뿐 아니라 실시간으로도 확인할 수 있다. 에너지 낭비 행동을 할 경우 이에 대한 경고 알림을 주고 사용자 에너지 소비형태에 따른 사용자별 에너지 절약을 위한 유용한 정보를 제공하고 제안하여에너지 절약을 유도한다. 또한, 일별/월별 에너지 소비 보고서를 확인할 수 있으며 이를 알림으로도 받을 수 있다. 에너지 절약 행동 실천을 위해 사용자는 조건을 설정할 수 있으며 조건 별 에너지 절약 행동을 설정할 수 있다. 사용자가 설정한 조건이 충족되면 시스템은 이를 자동으로 감지하여 미리 설정된 작업을 자동으로 실행하거나 알림을 보낸다. 에너지 사용량

데이터를 쉽게 보고 비교할 수 있으며 사용자의 에너지 절약을 유도한다. 에너지 소비가 감소함에 따라 에너지 비용도 감소하기 때문에 비용 절감 효과도 누릴 수 있다. 덧붙여, 에너지 생산 및 운송 과정에서 발생하는 온실가스를 절감하여 기후변화 완화에 도움을 주어 환경보호에 기여할 수 있다.

1.3. Definitions, Acronyms, and Abbreviation

다음 표는 이 문서에 사용된 특정 기술 용어를 정의한다.

용어	정의	
관리자	본 애플리케이션의 서버에 접속하는 자. 데이터를 읽고 관리할 수 있는	
	권한이 있다.	
권한	데이터에 대한 읽기 및 관리를 할 수 있는 권리. 과목에 대한 권한의	
	직접적인 부여 및 조정은 관리자를 통해 진행된다.	
유저	본 애플리케이션에 대한 사용 권한을 갖는 자.	
리포트	기기 별로 수집한 전기 사용량으로 일일 / 주간 / 월간 사용량 데이터를	
	보여준다.	
기기	스마트 플러그, 스마트 전구 등 IoT 기기를 말한다.	
네트워크	통신 설비를 갖춘 컴퓨터를 이용하여 서로 연결시켜 주는 조직이나 체계	
데이터베이스	여러 사람에 의해 공유되어 사용될 목적으로 통합하여 관리되는 데이터의	
	집합	
Model	시스템 데이터 및 해당 데이터에 대한 관련 작업을 관리	
View	데이터가 사용자에게 표시되는 방식을 정의하고 관리	
Controller	사용자 상호작용을 관리하고 이러한 상호작용을 뷰와 모델에 전달	
Software	컴퓨터에서 실행되고 사용되는 프로그램	
Hardware	컴퓨팅을 구성하는 기계장치	
Client	client/server 구성에서 사용자측, 서비스 요구자	
Client server	데이터를 저장, 처리, 전송하는 역할을 하는 컴퓨터로 소프트웨어(서버)와 PC,	
	워크스테이션 등의 단말기(클라이언트)를 접속하여 네트워킹이 가능하게	
	만든 시스템	

[丑 1] Definition

다음 표에는 이 요구 사항 사양 문서에 사용된 약어 및 두문자어가 포함되어 있다.

약어	해설
API	Application Programming Interface
UI	User Interface
IoT	Internet of Things
IP	Internet Protocol (address)
RAM	Random Access Memory
JSON	JavaScript Object Notation
OS	Operating System
Арр	Application
Int	Integer
IEEE	Institute of Electrical and Electronics Engineers
DB	Database

[丑 2] Abbreviation and Acronyms

1.4. References

1.4.1. IEEE 표준 830 에 대한 가이드

IEEE Std 830-1998 IEEE Recommended Practice for Software Requirements Specifications, In IEEEXplore Digital Library (http://ieeexplore.ieee.org/Xplore/guesthome.jsp)

1.4.2. SRS 우수사례

"Software Requirement Specification". SKKU 2021 Introduction to Software Engineering Team1, Last modified on 25 April 2021

(https://github.com/skkuse/2021spring_41class_team1/blob/main/doc/Project%20Highlight_Require ment%202.0.4.pdf)

"Software Requirement Specification". SKKU 2021 Introduction to Software Engineering Team13, Last modified on 25 April 2021

(https://github.com/skkuse/2021spring_41class_team13/blob/master/Team13_SRS.pdf)

1.4.3. Textbook

Software Engineering 10th Edition, Ian Sommerville

1.4.4. Flutter documentation

https://docs.flutter.dev/

1.5. Overview

본 문서는 현재 챕터를 포함하여 총 4개의 챕터와 부록으로 구성되어 있다.

뒤이어 기술되는 두번째 챕터인 'Overall Description'에서는 Energy Management System 의 전체적 개요를 제시한다. 이 챕터에서는 사용자, 소프트웨어, 하드웨어, 시스템 등 여러 인터페이스, 시스템 기능과 시스템 간의 상호작용을 포함하여 제품의 관점에 대한 전반적인 설명을 제공한다. 또한, 이 챕터에서는 다양한 유형의 이해 관계자 및 시스템과의 상호작용, 항목 세부 정보, 제약조건, 가정 및 제품 종속성에 대해서도 기술한다.

세번째 챕터인 'requirements specification'에서는 시스템의 전반적인 요구사항을 자세하게 제공한다. 외부 인터페이스 요구사항, 기능 요구사항, 비기능 요구사항, 시스템 아키텍처, 시스템 진화 등 사용자 및 시스템 관리자를 위한 모든 기능을 정의해준다. 이 챕터에서는 요구사항을 구체화하고 시각화 하여 다양한 이해관계자들이 요구사항을 보다 더 정확히 인지하고 시스템을 판단할 수 있도록 도와준다.

마지막 챕터이자 4 번째 챕터인 'supporting information'에서는 software requirements specification 과 본 문서의 내용이 수정되는 경우 수정일자, 내용, 수정자에 대한 정보를 기록하는 타임라인인 document history(문서기록)이 기술된다.

2. Overall Description

2.1. Product Perspective

이 프로그램은 실내의 에너지를 절약하기 위한 IoT 서버 및 기기를 손쉽게 관리하기 위해 디자인되었다. 이 프로그램을 통해 실내의 에너지 사용량을 확인할 수 있으며, 에너지 절약을 위한 여러가지 설정과 함께 알림을 받을 수 있다.

2.1.1. System Interface

하루 전력 사용량, 기기 별 전력 사용량, IoT 기기의 정보를 MySQL을 이용하여 로컬 IoT 서버에 저장된다. 데이터베이스에 저장된 정보들은 API를 이용하여 불러올 수 있다.

2.1.2. User Interfaces

UI 는 스마트폰 화면에 표시된다. 초기 IoT 기기등록, 에너지 절약을 위한 조건 설정, 일정 등록은 스마트폰의 텍스트 입력을 통해 이루어진다. 또는 IoT 기기 수동제어는 화면에 표시된 UI 를 이용자가 터치를 통해 조정할 수 있다. 또한 에너지 절약 알림은 스마트폰의 알림 기능을 이용한다.

2.1.3. Hardware Interfaces

이 시스템은 스마트 디바이스에 최적화되어 있다. 디바이스는 최소 1GB 의 RAM 과 1GHZ 싱글 코어를 포함해야 한다.

2.1.4. Software Interface

안드로이드 운영체제를 사용하는 디바이스의 경우 Android 6.0(API 23) 이상 버전에 최적화되어 있다. iOS 운영체제를 사용하는 디바이스의 경우 iOS 10 버전 이상에 최적화되어 있다.

2.1.5. Communication Interfaces

유저 IoT 기기와 유저 로컬 IoT 서버는 API를 통해 JSON 형식으로 정보를 주고받는다.

2.1.6. Memory Constraints

이 시스템의 원활한 구동을 위해 디바이스는 1GB 의 RAM 과, 실행과 설치를 위해 적어도 1GB의 저장 공간이 요구된다.

2.1.7 Operations

2.1.7.1 유저

2.1.7.1.1. IoT 기기 정보 등록 및 수정

기기의 정보를 등록하며, 수정할 수 있다.

2.1.7.1.2. 조건 설정

에너지 절약을 위한 알림이 오거나 자동 제어를 위한 시간 및 환경에 대한 조건 설정을 한다.

2.1.7.1.3. 기기 제어

사용자가 IoT 기기를 제어할 수 있다.

2.2. Product Function

2.2.1. IoT 기기 등록/해제

애플리케이션을 활용해 시스템에 IoT 기기를 등록하거나 등록된 IoT 기기를 해제하는 기능이다. 스마트 전구와 스마트 플러그를 등록 가능하고, 스마트 플러그의 경우 추가로 해당 스마트 플러그에 연결된 전기 기기가 무엇인지 등록할 수 있다. 등록할 때 기기에 사용자가 원하는 명칭을 부여할 수 있다.

해제는 등록된 IoT 기기에 대해서만 가능하다. 특정 IoT 기기의 등록을 해제하면 화면에 해당 기기의 UI 가 표시되지 않고 애플리케이션의 다른 기능이 지원되지 않으며 관련 데이터도 삭제된다.

기기 등록 시에 작성한 내용은 수정이 가능하다. 플러그와 연결된 전기 기기와 명칭을 수정할 수 있다.

2.2.2. 기기 사용량 리포트

사용자에게 사용량과 관련해 일일 / 주간 / 월간 리포트를 제공하고, 이를 위한 데이터를 계산해 생성하는 기능이다. 기기별로 전기 사용량 데이터를 실시간으로 전송 받으면, 해당 데이터를 1 시간 단위로 누적해 시간당 전기 사용량 데이터를 생성한다. 이 시간당 데이터를 기반으로 24 시간 단위로 계산해 일일 리포트, 일주일 단위로 일일 사용량 데이터를 계산해 주간 리포트, 한 달 단위로 일일 데이터를 계산해 월간 리포트를 생성한다. 스마트폰 알림 기능을 통해 사용자에게 리포트가 생성됐다는 알림이 전달되고, 해당 알림을 클릭할 시 애플리케이션이 실행되어 리포트를 확인할 수 있다. 리포트에서 특정 날짜와 기기를 선택하면 해당 기기의 그 날 시간당 사용량 데이터를 확인할 수 있다.

리포트에 사용된 데이터는 Excel 파일의 형태로 스마트폰의 저장소에 저장할 수 있다. 전기 사용량 데이터가 시간 순으로 정렬되어 파일에 저장된다.

2.2.3. 기기 동작 설정

사용자가 사전에 제공되는 비효율적 전기 소모 상황이 발생할 수 있는 조건을 조합해, 해당 조건이 참일 때 이에 따라 어떤 동작을 취할지 설정할 수 있다.

조건으로는 특정 두 기기가 동시에 가동 중일 때 / 특정 기기가 N 시간 이상 가동 중일 때 / 온도가 N 이상 혹은 이하일 때 특정 기기가 가동 중일 때 / 습도가 N 이상 혹은 이하일 때 특정 기기가 가동 중일 때로 나눠진다.

사용자는 어느 조건을 사용할지 정한 후 조건에 따라 특정 두 기기 / 기기와 시간 / 기기와 온도 이상, 이하 / 기기와 습도 이상, 이하를 설정하고, 해당 조건이 참일 때 전력 공급 / 차단 중 어느 동작을 할지 설정한다.

2.2.4. 기기 원격 제어

모든 유저는 애플리케이션에 등록된 기기를 원격으로 제어할 수 있다. 기기의 종류에 따라 다른 기능을 제공한다. 스마트 전구는 전원을 on/off 하고, 스마트 플러그의 경우 전원 제어 뿐만 아니라 기기의 작동을 원격으로 제어한다.

2.2.5. 스케줄 설정

애플리케이션에 등록된 기기가 특정 시간에 작동하도록 설정하는 기능이다. 사용자가 직접 기상 시간, 퇴근 시간, 취침 시간 등 원하는 시간에 따라 기기의 예약을 설정한다. 시간과 요일을 정해 주기적인 활동을 지원한다. 동시에 여러 기기가 작동하도록 설정할 수 있다.

2.2.6. 맞춤형 알림

자신이 원하는 알림을 받을 수 있도록 설정한다. 요금 또는 사용량을 알려주거나 현재 사용량을 파악해 사용량 감소 방법을 제안하는 등 여러 종류의 알림을 제공한다. 각 알림을 켜고 끄는 기능을 통해 커스터마이징 할 수 있다.

2.3. User Characteristics

유저는 일반 User 와 System Manager 로 나뉘어진다.

2.3.1. User

일반 user 는 IoT 기기들을 등록 및 등록 해지 할 수 있고 이 기기들을 원격으로 제어할 수 있다. 이들은 일간/월간 전력 사용량을 확인할 수 있고 실시간으로도 전력소모를 확인할 수 있으며 기기 별 전력 사용량도 확인 할 수 있다. 또한, user 들은 에너지 절약을 위한 조건 설정 및 일정 등록을 할 수 있다. 뿐만 아니라, 사용자 위치 정보 접근 권한을 허용할 경우 GPS 를 이용한 사용자 기반 서비스도 제공받을 수 있고 에너지 절약 푸쉬 알림에 대한 여러 조건들을 user 스스로 디자인할 수 있다.

2.3.2 System Manager

시스템 관리자는 시스템이 정상적으로 운용되도록 안전하고 체계적으로 운영관리하고 사용자들에게 각종 서비스를 제공한다. 또한, 정기적인 데이터백업과 예방점검을 하며 사용자들의 등록관리, 사용권한 부여, 불편사항/요구사항 접수 및 개선을 한다. 시스템 관리자는 무단 접근을 감시하고 바이러스 등 시스템을 남용하거나 악용하는 프로그램이 시스템에 침입하지 못하도록 방지할 책임이 있다. 이에 더해, 이들은 오류 발생시 즉시 원인을 파악하여 최단시간내에 능동적으로 대처할 수 있어야한다. 이를 위해 시스템 관리자는 시스템에 대한 충분한 기술, 지식이 있어야 하며 시스템 상황에 대한 전체적 이해력을 필요로 한다. 시스템 전반적인 설치운영복구를 하므로 책임성과 끈기, 인내가 필요하며 소프트웨어 윤리 의식도 갖추고 있어야한다.

2.4. Constraints

이 시스템은 본 문서에 기술된 내용을 기반으로 설계 및 구현된다. 세부 사항은 사용자의 세부적인 요구사항과 개발여건에 따라 결정되되, 이하의 제약사항은 반드시 지켜져야 한다.

- 사용자 기기에 대한 접근권한을 반드시 요구해야 하며, 권한에 대한 변경이 가능해야 한다.
- 다수의 사용자가 동시에 접속하는 환경에서 네트워크 트래픽이 발생하면 안 된다.
- 전체적인 시스템 성능을 향상시키는 방향으로 개발해야 한다.
- 향후 유지보수를 위해 소스코드를 작성할 때 충분한 주석을 달아주어야 한다.
- 시스템 리소스 낭비를 막기위해 최적화에 힘써야 한다.

2.5. Assumptions and Dependencies

- Smart Energy Management System 은 Android OS 와 iOS 를 기반으로 한다. 구동환경으로 안드로이드 OS 6.0(API 레벨 23), iOS 13.0 이상의 버전을 갖추어 두었음을 전제하고 있기 때문에 더 낮은 사양 혹은 이전 버전의 OS는 Smart Energy Management System 의 서비스를 온전하게 체험하지 못할 수 있다.
- Smart Energy Management System 이 구동되는 사용자 기기는 최소 사양으로 1GB 의 RAM 용량과 1GHz 싱글 코어가 기기에 내장되어 있음을 전제한다.
- 사용자의 기기의 위치 정보, 푸시 알림에 대한 허용권한을 요구할 수 있으며, 충분한 권한이 허용되지 않았을 경우 서비스 이용에 차질이 있을 수 있다.

3. Specific Requirements

3.1. External Interface Requirements

3.1.1. User interface

Name	홈 화면
Purpose / Description	사용 가능한 App 기능들을 화면에 표시
	한다.
Input source / Output destination	유저 입력/Android OS 혹은 iOS가 깔린
	유저 디바이스
Range / Accuracy / Margin of error	해당사항 없음
Units of measure	Screen
Timing	즉각적인 반응

Relationships to other inputs/outputs	해당사항 없음
Format and configuration of screen	App 에서 사용가능한 기능인 IoT 기기 정보
	등록 및 수정, 조건 설정, 시간 설정, 기기
	제어, 알림 설정을 grid 형태의 버튼으로 보여
	주며 각 버튼 클릭 시 해당 기능의 화면으로
	넘어갈 수 있게 한다.
Format and configuration of window	해당사항 없음
Data formats	Int
Command formats	Button code 의 int 값
End message	해당사항 없음

[표 3] User interface — 홈 화면

Name	조건 설정
Purpose / Description	유저가 등록된 각 IoT 기기에 대해 특정
	시간대에 on/off를 자동으로 하거나 알림이
	올 수 있도록 스케줄링을 하게 해준다. 또한
	시간 이외의 동시에 켜져 있는지 여부와
	작동 시간, 온도, 습도와 같은 부가적인
	조건에 따라 알림이 오거나 on/off가 되도록
	커스터마이징 할 수 있다.
Input source / Output destination	유저 입력/Android OS 혹은 iOS 가 깔린
	유저 디바이스
Range / Accuracy / Margin of error	해당사항 없음
Units of measure	Screen
Timing	즉각적인 반응
Relationships to other inputs/outputs	해당사항 없음
Format and configuration of screen	상단부에 "IoT 기기"란 버튼과 "스케줄"이란
	버튼을 넣어 두 가지 형식으로 확인할 수
	있도록 한다.
	IoT 기기 버튼 클릭 시 등록된 IoT 기기
	목록을 List 형식으로 나타내고 List 내에
	loT 기기 항목을 클릭 시 해당 기기의 요일,
	날짜, 시간별 알림 혹은 on/off에 대한

	설정을 할 수 있는 화면이 팝업창 형식으로
	떠오른다. 또한 해당 팝업창 내부엔 동시에
	작동 시 알림이 가게 할 다른 IoT 기기를
	등록할 수 있고 최대 몇시간까지 작동할 수
	있게 할지 하는 입력란과 작동 여부를
	조절할 온도, 습도조건 입력란이 존재한다.
	스케줄 버튼 클릭 시 달력 형태의 화면이
	grid 형식으로 떠올라서 각 날짜항목을 클릭
	시 해당 날짜에 등록되어 있는 IoT기기의
	스케줄을 확인 및 수정할 수 있는 화면이
	팝업창으로 떠오른다.
Format and configuration of window	상단 App bar의 좌측 "<" 버튼 클릭 시 이전
	화면으로 전환
Data formats	Int
Command formats	Query
End message	해당사항 없음

[표 4] User interface – 조건 설정

Name	기기 정보 등록 및 수정
Purpose / Description	유저가 등록된 IoT 서버에 IoT 기기를 초기
	등록하는 것 혹은 수정을 하는 것을
	의미한다.
Input source / Output destination	유저 입력/Android OS 혹은 iOS 가 깔린
	유저 디바이스
Range / Accuracy / Margin of error	해당사항 없음
Units of measure	Screen
Timing	즉각적인 반응
Relationships to other inputs/outputs	해당사항 없음
Format and configuration of screen	앱 초기 홈 화면에 "loT 기기 등록" 버튼을
	넣어, 직관적으로 이해하기 쉬운 UI를
	만든다. 이 버튼 클릭 시 현재 등록된 loT
	기기 목록을 보여줌과 동시에 새로운 loT
	기기의 정보를 입력하는 입력 창이 나타난다.

	이 입력 창들에 사용자가 버튼을 클릭하여
	정보를 입력 혹은, 텍스트를 직접적으로
	입력할 수 있다.
	해당 기기의 이름, 종류, 각종 전력 사용
	절약을 위한 제어 조건을 입력할 수 있다.
	입력이 끝나면 화면에 "기기등록이
	완료되었습니다"라는 메시지와 함께,
	기기등록 성공 여부가 나타난다.
Format and configuration of window	상단 App bar의 좌측 "<" 버튼 클릭 시 이전
	화면으로 전환
Data formats	JSON
Command formats	Query
End message	해당사항 없음

[표 5] User interface – 기기 정보 등록 및 수정

Name	기기 제어
Purpose / Description	IoT 기기 별로 수동으로 on/off를 할 수
	있도록 해준다.
Input source / Output destination	유저 입력/Android OS 혹은 iOS가 깔린
	유저 디바이스
Range / Accuracy / Margin of error	해당사항 없음
Units of measure	Screen
Timing	즉각적인 반응
Relationships to other inputs/outputs	해당사항 없음
Format and configuration of screen	등록된 IoT 기기가 List 형식으로 나타난다.
	각 IoT기기 항목마다 on/off 여부를 확인할
	수 있는 버튼이 좌측에 나타난다. 유저는
	해당 버튼을 클릭함을 통해 기기의 on/off
	수동으로 원격제어 할 수 있게 한다.
Format and configuration of window	상단 App bar의 좌측 "<" 버튼 클릭 시 이전
	화면으로 전환
Data formats	int
Command formats	Button code 의 int 값

End message	해당사항 없음
-------------	---------

[표 6] User interface – 기기 제어

Name	알림 설정
Purpose / Description	요금 리포트, 현재 사용량, 과도한 사용, 조건
	설정된 상황 발생, 누진세 적용 금액 단계
	변화 등의 알림을 사용자에게 보내고 확인
	및 클릭을 통해 App 내 해당 페이지로 바로
	이동하도록 한다.
Input source / Output destination	유저 입력/Android OS 혹은 iOS가 깔린
	유저 디바이스
Range / Accuracy / Margin of error	해당사항 없음
Units of measure	Screen
Timing	즉각적인 반응
Relationships to other inputs/outputs	해당사항 없음
Format and configuration of screen	통계 리포트, 현재 사용량, 과도한 사용,
	누진세 적용 금액 단계 변화내역이 리스트
	형태로 나와 있고, 각각에 대하여 알림이
	오게 할지 말지를 선택할 수 있는
	toggle 버튼이 존재한다. 또한 현재 사용량,
	과도한 사용량의 경우는 알림이 오는 기준
	값을 사용자가 직접 입력하도록 한다.
Format and configuration of window	상단 App bar 의 좌측 "<" 버튼 클릭 시 이전
	화면으로 전환
Data formats	Int
Command formats	Button code 의 int 값
End message	해당사항 없음

[표 7] User interface - 알림 설정

	Name	주간/월별 전력 사용 현황 확인	
--	------	-------------------	--

Purpose / Description	주간/월별 전력 사용 리포트를 사용자가 볼
	수 있게 함으로써, 보다 더 효율적인 전력
	사용을 유도한다.
Input source / Output destination	유저 입력/Android OS 혹은 iOS가 깔린
	유저 디바이스
Range / Accuracy / Margin of error	해당사항 없음
Units of measure	Screen
Timing	즉각적인 반응
Relationships to other inputs/outputs	해당사항 없음
Format and configuration of screen	홈 화면에서 주간/월별 전력 사용량 버튼을
	클릭하면, 해당 주/월의 전력 사용량 기록을
	볼 수 있다. loT 기기별로 자세한 내용을
	확인하기 위해서는, 리포트에 있는 IoT
	기기를 클릭하면, 시간 별 전력 사용량
	리포트를 확인할 수 있다. 이용자의 전력
	사용 패턴을 기반으로 스케줄 추천을 한다.
	추천에 응한다면, 스케줄 설정창으로 넘어가,
	이용자가 스케줄을 설정할 수 있다.
Format and configuration of window	상단 App bar의 좌측 "<" 버튼 클릭 시 이전
	화면으로 전환
Data formats	JSON
Command formats	Button code의 int 값
End message	해당사항 없음

[표 8] User interface - 주간/월별 전력 사용 현황 확인

3.1.2 Hardware interface

Name	System 에 적합한 유저 디바이스
Purpose/ Description	해당 조건을 만족하는 hardware 을 이용하여
	사용자들이 시스템의 서비스를 제공받을 수
	있도록 한다. /Android OS smart phone
	(Android 6.0 이상), iOS 기기 (iOS 13.0 이상)

[표 9] Hardware interface -System 에 적합한 유저 디바이스

3.1.3. Software interface

Name	Flutter	
Purpose/ Description	App 의 전체적인 틀 제작	
Input source/ Output destination	유저 입력/디바이스 화면	
Range/ Accuracy/ Margin of error	Flutter 성능에 따라 달라짐	
Units of measure	해당사항 없음	
Timing	즉각적인 반응	
Relationship with other input/outputs	서버의 모든 입출력과 연관됨	
Format and configuration of screen	해당사항 없음	
Format and configuration of window	해당사항 없음	
Data formats	Dart	
Command formats	Dart statement	
End message	해당사항 없음	

[丑 10] Software interface - Flutter

3.1.4. Communication interface

Description	Client to Client Server System
Purpose	사용자와 IOT 홈 서버, IOT 기기 사이의
	원활한 통신을 목적으로 한다. 이
	통신시스템은 사용자와 여러 기기 사이의
	제어 정보를 주고받는 역할을 담당한다.
Input source/ Output destination	유저 입력/디바이스 화면
Range/ Accuracy/ Margin of error	즉각적인 반응
Units	Async
Timing	즉각적인 반응
Relationship with other input/outputs	서버의 모든 입출력과 연관됨
Format and configuration of screen	해당사항 없음
Format and configuration of window	해당사항 없음
Data formats	Size(limit), from(offsets), sorting, filtering,
	aggregation

Command formats	Text
End message	해당사항 없음

 $[\pm 11]$ Communication interface

3.2. Functional Requirements

3.2.1. Use Case

Use case name	스마트 전구 등록
Actor	사용자
Description	새로 스마트 전구를 등록한다.
Action	1. IoT 기기 등록 버튼을 터치한다.
	2. 종류로 스마트 전구를 선택한다.
	3. 이름을 타자로 입력한다.(입력하지 않으면 디폴트 이름 저장)
Pre-condition	애플리케이션에서 연동 가능한 API의 스마트 전구가 존재해야 한다.
Post-condition	애플리케이션 화면에서 등록된 스마트 전구가 표시된다.

[표 12] 스마트 전구 등록 사용 케이스

Use case name	스마트 플러그 & 기기 등록
Actor	사용자
Description	스마트 플러그와 해당 플러그에 연결될 기기를 등록한다.
Action	1. IoT 기기 등록 버튼을 터치한다.
	2. 종류로 스마트 플러그를 선택한다.
	3. 스마트 플러그에 사용할 이름을 입력한다. (입력하지 않으면
	디폴트 이름으로 저장)
	4. 스마트 플러그에 사용할 기기를 선택한다. 기기의 종류는
	스크롤 가능한 리스트 형태로 제공된다.
	5. 연결할 기기가 없으면 없음을 선택하고, 리스트 중에 없을 때는
	직접 입력을 선택한 후 타자로 입력한다.
Pre-condition	애플리케이션에서 연동 가능한 스마트 플러그가 존재해야 한다.

Post-condition	애플리케이션 화면에서 등록된 스마트 플러그가 표시된다.
----------------	--------------------------------

[표 13] 스마트 플러그 & 기기 등록 사용 케이스

Use case name	IoT 기기 등록 정보 수정			
Actor	사용자			
Description	등록된 기기의 정보를 수정한다.			
Action	1. IoT 기기 등록 버튼을 터치한다.			
	2. 등록된 IoT 기기 목록에서 수정할 기기를 선택한다.			
	3. 이름을 수정할 시 이름을 터치 후 새 이름을 타자로 입력한다.			
	4. 기기를 수정할 시 기기를 터치 후 리스트 중 고르거나 직접			
	입력 선택 후 타자로 입력한다.			
Pre-condition	하나 이상의 기기가 등록되어 있어야 한다.			
Post-condition	해당 기기의 정보를 조회하면 수정된 내용으로 표시된다.			

[표 14] IoT 기기 등록 정보 수정 사용 케이스

Use case name	조건 & 동작 설정				
Actor	사용자				
Description	특정 기기의 동작 조건과 동작 내용을 설정한다.				
Action	1. IoT 기기 목록에서 기기를 선택한다.				
	2. 이 기기와 동시에 가동하지 않을 기기를 선택한다.				
	3. 이 기기의 최대 가동 시간을 타자로 입력한다.				
	4. 기준으로 삼을 온도를 타자로 입력한 후 이상, 이하를 선택한다.				
	5. 기준으로 삼을 습도를 타자로 입력한 후 이상, 이하를 선택한다				
	6. 위의 각 조건에 대해 충족할 시의 동작을 설정하고 싶은 경우				
	전력 공급 ON/OFF 중에서 동작을 선택한다.				
	7. 위의 각 조건에 대해 충족할 시 알림을 설정하고 싶은 경우				
	알림 ON/OFF 중에서 선택한다.				
Pre-condition	하나 이상의 기기가 등록되어 있어야 한다.				
	온/습도 센서가 작동해 서버에서 데이터를 받을 수 있어야 한다.				
Post-condition	해당 기기의 정보를 조회하면 설정한 조건과 동작에 대한 정보를 조회				
	가능하다.				
	기기가 해당 조건을 충족할 시 설정해둔 동작이 실행된다.				

[표 15] 조건 & 동작 설정 사용 케이스

Use case name	전력 사용 리포트 확인			
Actor	사용자			
Description	시간당 / 일일 / 주간 / 월간 전력 사용 내용을 확인한다.			
Action	1. 전력 사용량 버튼을 터치한다.			
	2. 일일 / 주간 / 월간 중 원하는 기간을 선택한다.			
	3. 일일 리포트에서는 기기 별로 해당 날짜의 24 시간 누적 7	던력		
	사용량이 표시된다.			
	4. 주간 리포트에서는 해당 주의 월요일~일요일의 요일 별 -	_구 적		
	사용량이 막대 그래프의 형태로 표시된다. 특정 요일 막다	내를		
	선택해 해당 날짜의 기기 별 전력 사용량을 확인 가능하다.			
	5. 월별 리포트에서는 해당 달의 일일 누적 사용량이 덕	막대		
	그래프의 형태로 표시된다. 특정 막대를 선택하면 해당 날재	자의		
	기기 별 전력 사용량을 확인 가능하다.			
	6. 일일 / 주간 / 월간 리포트에서 특정 기기를 선택하면 기기	기의		
	실시간 전력 사용량과 특정 날짜의 전력 사용량 데이터	터가		
	1 시간 단위로 나뉘어 표시된다.			
	7. 리포트 마지막 부분에는 전력 사용 패턴을 기반으로 추천 2	조건		
	/ 스케줄 설정을 제안한다. 추천 내용을 터치하면 조건 실	설정		
	페이지로 이동해 설정이 가능하다.			
	8. 알림 설정에서 리포트 알림을 ON 으로 설정했을 경우, 일일	일 /		
	주간 / 월간 주기에 맞춰 리포트가 생성될 때 스마트폰 알림	립이		
	전송된다.			
	9. 데이터 엑셀 저장을 선택하면 리포트의 데이터가 엑셀 파음	일의		
	형태로 스마트폰 내부 저장소에 저장된다.			
Pre-condition	하나 이상의 기기가 등록되어 있어야 한다.	이상의 기기가 등록되어 있어야 한다.		
	스마트 플러그에서 전력 사용량 데이터를 서버가 받을 수 있어야 한데	라 .		
Post-condition	일일 / 주간 / 월간 주기마다 리포트가 생성된다.			

[표 16] 전력 사용 리포트 사용 케이스

Use case name	기기 원격 제어

Actor	사용자			
Description	등록된 기기를 원격으로 제어한다.			
Action	1. 기기 원격 제어 탭에 진입한다.			
	2. 제어를 원하는 기기를 선택한다.			
	3. 제품의 기능에 따른 여러 작동을 애플리케이션으로 설정한다.			
Pre-condition	기기가 하나 이상 등록되어 있어야 한다.			
Post-condition	완료 버튼을 누르면, 기기는 사용자가 입력한 작동을 시작한다.			

[표 17] 기기 원격 제어 사용 케이스

Use case name	스케줄 설정			
Actor	사용자			
Description	유저가 원하는 시간에 기기들이 작동하도록 설정한다.			
Action	1. 예약 설정을 위해 스케줄 설정 탭에 진입한다.			
	2. 스케줄 추가 버튼을 누른다. 원하는 시간과 요일을 선택한 후,			
	기기를 선택해 원하는 기능을 설정한다. 여러 기기를 동시에			
	추가할 수 있다.			
	3. 수정하고 싶은 스케줄을 선택해 요일, 시간, 기기를 수정한다.			
	4. 삭제하고 싶은 스케줄을 선택해 삭제 버튼을 누른다.			
Pre-condition	기기가 하나 이상 등록되어 있어야 한다.			
Post-condition	취소 버튼을 누르면 원래 정보가 저장되어야 한다. 완료 버튼을 누르면			
	바뀐 정보가 저장된다.			

[표 18] 스케줄 설정 사용 케이스

Use case name	스케줄 추천			
Actor	관리자			
Description	유저의 사용 패턴에 따른 효율적인 스케줄을 추천한다.			
Action	1. 시간별 사용량을 분석한다.			
	2. 사용자 패턴에 따른 기기의 작동을 추천한다.			
Pre-condition	기기가 하나 이상 등록되어 있어야 한다.			
	시스템이 사용자의 사용량을 저장해야 한다.			
Post-condition	추천된 스케줄이 리포트에 나타난다.			

[표 19] 관리자 스케줄 추천 사용 케이스

Use case name	맞춤형 알림 설정				
Actor	사용자				
Description	유저가 원하는 알림을 받을 수 있게 설정한다.				
Action	1. 유저가 알림을 변경하기 위해 해당 탭에 진입한다.				
	2. 나열된 여러 종류의 알림 중 하나를 선택한다.				
	3. ON/OFF 버튼을 눌러 알림을 켜거나 끈다.				
Pre-condition	이 앱으로부터 알림 받기로 설정되어 있어야 한다.				
Post-condition	취소 버튼을 누르면 원래 정보가 저장되어야 한다. 완료 버튼을 누르면				
	바뀐 정보가 저장된다.				

[표 20] 맞춤형 알림 설정 사용 케이스

3.2.2. Use Case Diagram

[그림 1] Use Case Diagram

유저 유저 등록 유저 DB 유저 프로필 로그인 유저 정보 유저 프로필 변경 엑셀 파일 기기 정보 리포트 기기 등록 스케줄 설정 동작 설정 수정 데이터 추출 리포트 기기 기기 정보 DB 기기 인증 정보 조건 & 동작 정보 실시간 사용량 기기 정보 동작 명령 조건 확인 시스템 사용량 .데이터 관리 FALSE 전력 사용량 기기별 사용량 기기 정보 맞춤형 알림 시간별 사용량 동작 실행 정보 스케줄 추천 계산 & 리포트 생성 리포트 DB 스케줄 조언

3.2.3. Data Flow Diagram

[그림 2] Data Flow Diagram

3.3. Product Requirements

이 섹션은 비기능적 요구사항의 일부로써 본 문서에서 다루고 있는 소프트웨어의 런타임 동작을 지정하고 제한하는데 사용되는 요구 사항을 다룬다. 요구 사항은 다음과 같다.

3.3.1. Usability Requirements

- 대부분의 사용자는 비전문가이기 때문에 비전문가들도 쉽게 사용할 수 있도록 설계되어야 한다. 따라서 UI 는 그들이 사용하기에 직관적이고 간결해야 하며 시스템에 대한 사전 기술 지식이 없어도 사용하기 쉬워야 한다. 또한, 사용자 오류가 최소화되도록 구성되어야 한다.
- 모든 화면에서 이전 화면으로 넘어가는 버튼, 홈으로 가는 버튼 등 화면 움직임이 자유롭도록 버튼들이 잘 구축되어 있어야 한다.

- 모든 사용자들이 별도의 설명서 없이도 모든 기능을 쉽게 사용할 수 있도록 해야 한다. 설명이 필요한 경우에는 가능한 한 쉽게 설명하여야 한다.
- 전문용어의 사용보다는 비전문가들도 알 수 있는 보편적 언어를 사용하여야 한다.
- 에너지 사용량 데이터를 쉽게 보고 비교할 수 있어야 하며 등록한 여러 개의 IoT device 들을 편리하게 control 할 수 있도록 해야 한다.
- 알림이 직관적으로 잘 보이도록 하여야 한다.
- 한국뿐 아니라 전세계 사람들이 사용할 수 있도록 언어는 한국어와 세계 공용어인 영어를 지원해야한다.

3.3.2. Performance Requirements

- 앱이 실행되면 2초 안에 메인 화면에 진입해야 한다.
- 모든 요청과 명령은 2초 이내로 응답해야 한다.
- 1 개이상의 IoT 기기를 등록할 수 있어야한다.
- 시스템은 동시 사용자가 2명 이상인 상황에서도 잘 작동해야 한다.
- 변경이 발생하면 UI 에 변경 사항이 즉시 반영되어 화면에 표시되어야 하며 최대 2 초 이내에 응답해야 한다. 또한 새로 고침 버튼으로 DB의 변경 사항을 조회할 수 있어야 한다.

3.3.3. Space Requirements

- 앱이 차지하는 저장공간은 500MB를 넘지 않아야 한다.
- 프로그램은 모든 기능을 수행함에 있어 250MB 이상의 메모리를 사용하지 않아야 한다.

3.3.4. Dependability Requirements

- 데이터베이스에 저장된 정보와 앱에 표시되는 정보의 일관성이 보장되어야 한다.
- 작업 중에 오류가 발생하면 시스템은 사용자에게 즉시 알리고 진행 중인 모든 사항들을 롤백해야 한다.
 - 누락되거나 잘못 표시되는 정보가 없도록 해야 한다.

- 서버 불안정으로 인하여 접속이 잘 되지 않는 경우와 이용 중 오류로 인한 멈춤 현상 등의 빈도를 줄여야 한다.

3.3.5. Security Requirements

- 사용자는 IP 와 비밀번호 조합을 통해 시스템을 사용할 수 있으며, 시스템 관리를 위해서는 별도의 관리자 인증을 받아야 시스템 관리 권한을 가질 수 있도록 해야 한다.
- 시스템 관리 및 개인정보와 관련된 정보에 권한이 없는 사용자가 접근하지 못하도록 해야 한다.
- 모든 개인 정보는 사용자가 동의한 범위 내에서만 사용되어야 한다.

3.4. Organizational Requirements

이 섹션은 비기능적 요구사항의 일부로써 본 문서에서 다루고 있는 시스템을 사용하는 고객 및 시스템을 개발하는 개발자 조직의 정책 및 절차에서 파생되는 시스템 요구 사항이다. 요구 사항은 다음과 같다.

3.4.1. Environmental Requirements

- 이 시스템은 스마트폰에 최적화 되어있으며 안드로이드 6.0 버전 이상, iOS 13.0 이상에서 모든 기능이 지원되야 한다.
- 홈 서버에 접속할 때 IP, 비밀번호를 통해 사용자/기기를 식별해야 한다.

3.4.2. Development Requirements

- Android 와 iOS 앱 개발은 Flutter을 통해 이루어져야 한다
- Android 앱 개발은 Android 6.0 이상에 대하여 이루어져야 한다.
- iOS 앱 개발은 iOS 13.0 이상에 대하여 이루어져야 한다.
- 유저 IoT 기기와 유저 로컬 IoT 서버는 API를 통해 JSON 형식으로 정보를 주고 받아야한다.

3.5. External Requirements

이 섹션은 비기능적 요구사항의 일부로써 시스템 및 개발의 외부 요인에서 파생되는 요구사항을 다룬다. 요구 사항은 다음과 같다.

3.5.1. Safety/Security Requirements

- 외부 시스템, 외부 사용자, 권한이 없는 사용자가 시스템에 접근할 수 없도록 설계 되어야한다.
- 외부 침입 및 해킹, 외부의 충격으로 인한 데이터 훼손 및 손실 등으로부터 사용자들의 데이터를 안전하게 보호해야한다.

3.5.2. Regulatory Requirements

- 시스템은 승인되지 않은 자산을 허가 없이 사용하지 않도록 해야 한다.
- 사용자들의 개인정보는 개인정보보호법에 따라 보호되어야 하며 침해되지 않도록 해야 하며 사용자가 동의한 범위 내에서만 사용되어야 한다.

3.5.3. Ethical requirements

- 시스템의 개발 및 운영에 있어 악의적으로 금전적 이득을 취하는 집단이 없어야 한다.
- 시스템이 범죄에 악용되어서는 안 된다.

3.5.4. Accounting requirements

- 시스템을 개발하고 운영하는 데 사용되는 비용은 계약 조항에 따라야 한다.

3.6. Organizing the Specific Requirements

3.6.1. Context Model

[그림 2] Context Model

3.6.2. Process Model

[그림 3] Process Model

3.6.3. Interaction Model

3.2.2. Use Case Diagram 참고

3.6.4. Behavior Model

3.6.4.1. Sequence Diagram

3.6.4.1.1. 기기 관리 Sequence

[그림 4] 기기 관리 Sequence

3.6.4.1.2. 동작 설정 Sequence

[그림 5] 동작 설정 Sequence

3.6.4.1.3. 스케줄 설정 Sequence

[그림 6] 스케줄 설정 Sequence

3.6.4.1.4. 기기 소비전력 확인 Sequence

[그림 7] 기기 소비전력 확인 Sequence

3.6.4.2. State Diagram

3.6.4.2.1. Device Control System ♀ State

[그림 8] Device Control System 의 State

3.6.4.2.2. Energy Statistics System 의 State

[그림 9] Energy Statistics System 의 State

3.6.4.2.3. Schedule Management System 의 State

[그림 10] Schedule Management System 의 State

3.7. System Architecture

해당 장에서는 MVC 패턴에 기반하여 시스템 구조를 설명한다. View 는 사용자의 요청을 받아서 controller 에게 넘겨주고, 받은 정보를 사용자에게 보여준다. Controller 에서는 기본적인 동작과 view 로부터 오는 사용자의 명령을 보고 model 에게 데이터를 요청해 view 에게 넘겨준다. Model 은 controller 로부터 오는 요청에 맞는 데이터를 전달한다.

여기에 추가로 controller 에서는 등록한 IoT 나 센서 기기와 서로 통신하면서 데이터를 받거나 조작한다.

[그림 11] System Architecture

3.8. System Evolution

이 목차에서는 시스템이 기반이 되는 환경에 근본적인 추정들을 다룬다. 또한 하드웨어 유지보수나 요구사항의 변화로 인한 예상되는 수정 사항들도 다룬다. 이 목차는 미래의 유지보수를 책임지는 개발자와 디자이너에게 유용할 것이다.

3.8.1. Limitation and Assumption

본 시스템은 각 가정마다 홈 서버를 구축하기 때문에 가정에 인터넷이 되는 환경이어야 하고, 홈 서버를 관리할 관리자가 필요하다. 또한 현재 지원하는 스마트 기기는 스마트 전구와 스마트 플러그 2 가지 종류로 제한되어 있다.

3.8.2. Evolutions of Hardware and Change of User Requirements

현재 기준으로 삼고 있는 스마트폰의 OS 버전이 올라가면서 추가적인 요구사항이 생길 수 있다. E 또한 추가적인 스마트 기기 지원 요구가 들어올 수 있다. 향후 전기세 제도의 변화로 요금이 달라지거나 사용 시간대에 따라 다른 요금을 적용하는 경우를 테스트하고 있기 때문에 제도 변화에 맞춰서 전기요금 계산방식 변경이나 사용자 맞춤 알림 서비스를 수정할 수 있다.

새로운 하드웨어가 나오면서 홈 서버의 하드웨어를 교체해야 할 수 있는데, 기존의 정보들을 이전하는 방법이 필요할 수 있다.

4. 추가 정보

4.1. 서식

이 요구사항 명세서는 IEEE Recommendation (IEEE Recommended Practice for Software Requirements Specifications, IEEE-Std-830). 서식을 따라 제작되었다.

4.2. 문서 시간표

날짜	버전	설명 (편집 파트)	참가자
2022/4/27	0.0.0	문서 작업 시작	전체
2022/4/28	0.1.0	1, 2, 3	이예송
2022/4/28	0.2.0	2.1, 3.1	김주원, 송유호
2022/4/29	0.3.0	2.2, 3.2	김서정, 김현중
2022/4/29	0.4.0	3.6, 3.7, 3.8	임형진
2022/4/30	1.0.0	목차 정리	김서정
2022/4/30	1.0.1	어체 정리	전체
2022/4/30	1.0.2	1,2,3 수정	이예송
2022/5/1	1.0.3	2.1, 3.1 수정	김현중
2022/5/1	1.0.4	2.1, 3.1 내용 추가	김주원
2022/5/1	1.1.0	표 정리/캡션 수정	김서정
2022/5/1	1.1.1	3.2 내용 추가, 오타 수정	김현중
2022/5/1	1.1.2	3.6 내용 수정, 표/그림 목차 추가	임형진
2022/5/1	1.1.3	1.3 내용 추가	김현중
2022/5/1	1.1.5	용어 통일/1.3 내용 추가	김서정
2022/5/1	1.1.6	어체 통일 1.3 내용 추가	이예송