

Seasonability

```
def decompose_absence(dfs, value_col='Total_Lost', samples='all', period=7):
   Decompose a daily time series into trend, seasonality, and residuals.
   Parameters:
    _____
   dfs : pandas.DataFrame
       Your daily dataframe (e.g. df_grouped)
       with a 'Date' column of type datetime64[ns].
   value_col : str
        The name of the column you want to decompose (default 'Total_Lost').
    samples : int or 'all'
       How many recent samples (days) to use for decomposition.
       If 'all', use the entire time series.
    period : int
       The seasonality period.
       For daily data with weekly seasonality, period=7.
       For monthly ~30, for yearly ~365, etc.
    0.00
   # Make a copy if you don't want to modify dfs in place
   df_copy = dfs.copy()
   # Ensure 'Date' is a DateTime index
   df_copy = df_copy.set_index('Date').sort_index()
   # Grab the series we want to decompose
   series = df_copy[value_col]
   # If we only want to decompose a portion of the data
   if samples != 'all':
        series = series.iloc[-samples:] # last N samples
   # Perform seasonal decomposition
   result = seasonal_decompose(series, model='additive', period=period)
   # Extract the components
   observed = result.observed
   trend = result.trend
   seasonal = result.seasonal
   residual = result.resid
   # Plot the results
   fig, axs = plt.subplots(4, 1, figsize=(14, 10), sharex=True)
```

```
axs[0].set_title(f'Observed Total Lost', fontsize=14)
axs[0].plot(observed, label='Observed')
axs[0].grid(True)

axs[1].set_title(f'Trend Total Lost', fontsize=14)
axs[1].plot(trend, color='orange', label='Trend')
axs[1].grid(True)

axs[2].set_title(f'Seasonality Total Lost', fontsize=14)
axs[2].plot(seasonal, color='green', label='Seasonality')
axs[2].grid(True)

axs[3].set_title(f'Residual Total Lost', fontsize=14)
axs[3].plot(residual, color='red', label='Residual')
axs[3].scatter(x=residual.index, y=residual, alpha=0.5, color='red')
axs[3].grid(True)

plt.tight_layout()
plt.show()
```

Decompose weekly seasonality (period=7) & ACF & PACF Analysis

```
# 1) Decompose weekly seasonality (period=7)
decompose_absence(df_grouped, value_col='Total_Lost', samples='all', period=7)
# 2) Plot ACF and PACF side by side for up to 60 lags (about 2 months)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 5))

plot_acf(df_grouped['Total_Lost'], lags=60, ax=ax1)
ax1.set_title('Autocorrelation (ACF) up to 60 days')

plot_pacf(df_grouped['Total_Lost'], lags=60, ax=ax2)
ax2.set_title('Partial Autocorrelation (PACF) up to 60 days')

plt.tight_layout()
plt.show()
```


📊 1. Decomposition Analysis

Observed:

- Our daily Total Losts series shows considerable variation:
 - Spikes: Total Losts values occasionally spike between 80–100.
 - Baseline: Fluctuates around 20–40 over extended periods.

Trend:

- The **Trend line** gradually **rises and falls** over several months, suggesting:
 - Long-term drift possibly influenced by:
 - Business cycles
 - Policy changes
 - Workforce dynamics

Seasonality (Period = 7):

- The green seasonality plot forms a repeating wave every 7 days, indicating a weekly pattern.
- Amplitude ranges from roughly +5 down to -15, implying:
 - Certain days of the week consistently have higher or lower Total Losts rates.

Residual:

- The red scatter/line represents what's left after removing Trend and Seasonality:
 - Fluctuates between -40 and +40, with some extreme spikes.
 - Indicates the presence of additional drivers, such as:
 - Holidays
 - One-off events
 - Group-specific factors that aren't captured by a simple weekly seasonality.

Key Takeaway:

- We observe a clear weekly seasonality (7-day cycle).
- There's also a noticeable long-term trend.
- Our future models should account for both using:
 - Seasonal terms
 - Dummy variables for the day of the week
 - Other time-based features

📊 2. ACF & PACF Analysis

We plotted the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) for lags = 60 (covering ~2 months).

ACF (Autocorrelation Function):

- Lag 1: A large spike, indicating that today's Total Losts strongly correlate with yesterday's.
- Weekly Pattern: Noticeable spikes at lags 7, 14, 21, etc., confirming the weekly pattern.
- Monthly Effect?: Smaller spikes around 30 days may suggest a monthly trend (less pronounced but worth exploring).

PACF (Partial Autocorrelation Function):

- Lag 1: The largest spike, highlighting a strong direct correlation with the previous day's Total Losts.
- Lag 7: Another notable spike, showing a weekly effect beyond just the day-to-day correlation.
- **Higher Lags (14, 21, 28)**: Smaller spikes, suggesting that once we account for **lag 1** and **lag 7**, additional multiples of 7 add **less explanatory power**.

In General:

- If ACF remains high at lags like 14, 21, 28, but PACF is low, it implies that these correlations are indirectly explained by lag 1 or lag 7.
- Spikes around 30 days hint at potential monthly patterns, although weekly trends often dominate in business contexts.

Key Takeaway:

- The time series has a strong autoregressive structure:
 - Depends on past values, especially 1 day ago and 7 days ago.
- We can enhance model performance by introducing lagged features such as:
 - Total Losts_{t-1} (previous day)
 - Total Losts_{t-7} (previous week)
 - Potentially Total Losts_{t-14}, Total Losts_{t-30}, if data shows benefits.

Final Thoughts

Key Conclusions:

Lag Features Are Applicable:

ACF and PACF confirm that past Total Losts values help predict future Total Losts.

- Critical Lags Identified:
 - Lag 1 (yesterday's Total Losts)
 - Lag 7 (Total Losts from the same day last week)
 - Potentially Lag 14 or Lag 30, depending on model performance.
- Seasonality Confirmed:

Seasonal decomposition reaffirms a weekly pattern.

Next Steps for Modeling:

- Introduce lag features, particularly day 1 and day 7.
- Consider adding:
 - Explicit day-of-week features
 - A 7-day seasonal term for time-series models that support seasonality.

Introducing these lag features can significantly **improve predictive accuracy**, ensuring the model captures both **short-term dependencies** and **long-term seasonal trends**.

Decomposementally seasonality (period=30) & ACF & PACF Analysis

📊 1. Decomposition Analysis (Period = 30)

- Observed (Total Losts)
 - The daily Total Losts data continues to show significant variability:
 - Spikes near 100 and periods closer to 0-20.
 - Compared to the weekly decomposition:

- The overall shape remains the same (as it's the same dataset).
- Now focusing on extracting a 30-day repeating cycle.

Trend

- The orange trend line reveals a long-term, slowly varying pattern:
 - Rises from near 0 to around 40.
 - Gradually declines toward the end of the series.
- This suggests influences from:
 - External factors (e.g., policy changes, business trends).
 - Seasonal workforce dynamics or general workforce behavior over months.

Seasonality (Period ≈ 30 Days)

- The green line attempts to capture a monthly pattern:
 - A wave repeats approximately every 30 data points.
 - Amplitude ranges from about +5 down to −1 or −2, indicating:
 - Certain days of the month systematically show higher/lower Total Losts rates.

Comparison with Weekly Analysis:

- The weekly amplitude was larger (±15).
- The monthly amplitude is smaller but still visible.

Residual

- After removing the 30-day seasonality and trend, the residual (in red) shows:
 - Notable spikes ranging from -40 to +80.
- · This indicates that:
 - A simple 30-day cycle doesn't fully explain daily fluctuations.
 - There are likely **other influences** such as:
 - Weekly effects (day-of-week patterns are strong).
 - Holidays and random events.

📊 2. ACF & PACF Analysis (Up to 90 Days)

Lag 1: A large spike, showing a strong correlation with yesterday's Total Losts.

- Weekly Patterns: Ongoing spikes at multiples of 7 (lags 7, 14, 21, etc.), confirming the weekly cycle.
- Monthly Signals: Moderate spikes near 30, 60, and 90 days hint at monthly correlations, though less
 pronounced compared to weekly lags.

- Lag 1: The dominant direct effect, meaning most of the correlation is with the previous day's Total Losts.
- Lag 7: Shows significance, consistent with the weekly pattern.
- Lag 30: The partial autocorrelation is smaller, suggesting:
 - Once accounting for shorter lags (especially lag 1 and lag 7), the monthly effect adds less direct explanatory power.

Yey Insight:

- ACF shows evidence of a monthly cycle.
- PACF suggests this monthly effect might be indirect, influenced by weekly patterns or other variables.

- 📊 Insights:
 - There is a monthly signal, but it's weaker compared to the weekly effect.

3. Key Takeaways for Monthly Seasonality

• **Residual noise** remains **substantial** after accounting for the 30-day cycle, indicating **stronger drivers** (like weekly patterns).

ACF vs. PACF:

- Minor correlation spikes near 30 days in the ACF.
- PACF for those lags is not as large, implying the monthly pattern may be partly indirect:
 - Monthly patterns might result from accumulated weekly effects or external variables.

? Should We Use a Monthly Lag?

- Yes, we can consider including Total Losts_{t-30} as a feature.
- However, the data strongly suggests that:
 - Weekly lags (|t-7|) and lag 1 are more critical.
- · Given:
 - 12+ months of data
 - Business relevance (e.g., payroll, scheduling, monthly reporting deadlines)

Adding a monthly seasonal component or monthly lags could help, but it's essential to experiment and assess if it meaningfully improves model accuracy compared to using only weekly or daily lags.

4. Overall Conclusion

Comparing Monthly vs. Weekly Decomposition:

- Weekly patterns and short-term lags (1 day, 7 days) are more dominant in both:
 - Seasonal decomposition
 - ACF/PACF analysis
- · Monthly seasonality exists but is less pronounced.
 - We may capture this with a 30-day lag.

Modeling Plan:

- Start with lagged features:
 - Total Losts_{t-1} o Total Losts_{t-7}
 - Possibly Absence_{t-14}
- Test whether adding:
 - Total Losts_{t-30}
 - Monthly dummies Yields any performance improvement.

? Final Thought:

While weekly patterns dominate, exploring monthly lags could uncover subtle trends, especially in business contexts where monthly cycles matter. Continuous testing and validation will determine their true predictive value. 🚀

```
#### Filter by Date & Select Columns
# df_grouped = df_grouped[df_grouped['Date']<='2025-01-01']</pre>
test_columns = ['Date',
 'Year',
 'Season',
 'Month',
 'WeekofYear',
 'DayofMonth',
 'DayofWeek',
```

```
'Is_Holiday',
 'Is_Strike',
 'HC',
 'Scheduled',
 'Total_Lost',
 'Absence',
 'Early',
 'Late']
df_grouped_test = df_grouped[test_columns].copy()
df_grouped_test['Is_Holiday'] = df_grouped_test['Is_Holiday'].astype(int)
# 1) Convert to DateTime if it isn't already
df_grouped_test['Date'] = pd.to_datetime(df_grouped_test['Date'])
# 2) Set the index to the Date
df_grouped_test = df_grouped_test.set_index('Date')
# We'll overwrite them to be 100% sure they match the index
df_grouped_test['Year'] = df_grouped_test.index.year
df_grouped_test['Month'] = df_grouped_test.index.month
df_grouped_test['DayofMonth'] = df_grouped_test.index.day
df_grouped_test['DayofWeek'] = df_grouped_test.index.dayofweek # Monday=0, Sunday=6
df_grouped_test['WeekofYear'] = df_grouped_test.index.isocalendar().week # returns 1..53
```

Scenario A: Modeling Without Lags

```
def train_time_series(df, target='Total_Lost', horizon=30):
    Trains an LGBMRegressor on time series data, splitting the last `horizon` rows as the
test set.
    # 1) Separate features and target
   X = df.drop(columns=[target])
    y = df[tarqet]
    # 2) Split train/test by last 'horizon' rows
    X_train, X_test = X.iloc[:-horizon, :], X.iloc[-horizon:, :]
    y_train, y_test = y.iloc[:-horizon], y.iloc[-horizon:]
    # 3) Train LGBM with tuned hyperparameters and early stopping
    model = LGBMRegressor(
        random_state=42,
        learning_rate=0.05,
        n_estimators=1000,
        max_depth=7,
        num_leaves=31,
        verbose=-1 # Suppress LightGBM output
```

```
)
    # Use early stopping
    model.fit(
       X_train, y_train,
        eval_set=[(X_test, y_test)],
        callbacks=[early_stopping(stopping_rounds=50, verbose=-1)]
    )
    # 4) Predict on test
    preds = model.predict(X_test)
    # 5) Calculate MAE
    mae = mean_absolute_error(y_test, preds)
    mse = mean_squared_error(y_test, preds)
    rmse = np.sqrt(mse)
    r2 = r2_score(y_test, preds)
    # 6) Print evaluation metrics and averages
    print(f"R-squared (R2) score: {r2:.3f}")
    print(f"Mean Squared Error (MSE): {mse:.3f}")
    print(f"Mean Absolute Error (MAE): {mae:.3f}")
    print(f"Root Mean Squared Error (RMSE): {rmse:.3f}")
    print(f"Average of Actual Total_Lost: {y_test.mean():.3f}")
    print(f"Average of Predictions Total_Lost: {preds.mean():.3f}")
    # 7) Plot Real vs Prediction
    plt.figure(figsize=(12, 6))
    plt.plot(y_test.index, y_test.values, label='Real', color='red')
    plt.plot(y_test.index, preds, label='Prediction', color='green')
    plt.title(f"Real vs. Prediction, MAE={mae:.3f}", fontsize=16)
    plt.legend()
    plt.grid()
    plt.show()
    # 8) Feature importances
    feat_imp = pd.DataFrame({
        'feature': X_train.columns,
        'importance': model.feature_importances_
    }).sort_values(by='importance', ascending=False)
    plt.title("Feature Importances", fontsize=14)
    sns.barplot(x='importance', y='feature', data=feat_imp, orient='h')
    plt.show()
    return model, mae
# Run the model
model_no_lags, mae_no_lags = train_time_series(df=df_grouped_test, target='Total_Lost',
horizon=60)
print(f"MAE without lags = {mae_no_lags:.3f}")
```

Training until validation scores don't improve for 50 rounds

Early stopping, best iteration is:

[121] valid_0's l2: 9.93353

R-squared (R2) score: 0.972

Mean Squared Error (MSE): 9.934

Mean Absolute Error (MAE): 1.350

Root Mean Squared Error (RMSE): 3.152

Average of Actual Total_Lost: 23.145

Average of Predictions Total_Lost: 22.748

Scenario B: Create Lags & Model With Lags

Now we'll add weekly (lag=7) and monthly (lag=30) lags for Absence, Early, and Late, just like you mentioned. Then we'll repeat the train/test approach.

```
df_with_lags = df_grouped_test.copy()
# Create weekly lag (7 days) and monthly lag (30 days) for Absence, Early, Late
df_with_laqs['Total_Lost_laq7'] = df_with_laqs['Total_Lost'].shift(7)
df_with_lags['Total_Lost_lag30'] = df_with_lags['Total_Lost'].shift(30)
df_with_lags['Absence_lag7'] = df_with_lags['Absence'].shift(7)
df_with_lags['Absence_lag30'] = df_with_lags['Absence'].shift(30)
df_with_lags['Early_lag7']
                              = df_with_lags['Early'].shift(7)
df_with_lags['Early_lag30']
                              = df_with_lags['Early'].shift(30)
df_with_lags['Late_lag7']
                              = df_with_lags['Late'].shift(7)
df_with_lags['Late_lag30']
                              = df_with_lags['Late'].shift(30)
# Drop rows that became NaN due to shifting (first 30 days)
df_with_lags.dropna(axis=0, how='any', inplace=True)
print("Shape after adding lags and dropping NaNs:", df_with_lags.shape)
# Re-run train_time_series
model_with_lags, mae_with_lags = train_time_series(df=df_with_lags,
                                                   target='Total_Lost',
                                                   horizon=60)
```

print(f"MAE with lags = {mae_with_lags:.3f}")

Shape after adding lags and dropping NaNs: (724, 22)

Training until validation scores don't improve for 50 rounds

Early stopping, best iteration is:

[120] valid_0's l2: 8.15827

R-squared (R2) score: 0.977

Mean Squared Error (MSE): 8.158

Mean Absolute Error (MAE): 1.253

Root Mean Squared Error (RMSE): 2.856

Average of Actual Total_Lost: 23.145

Average of Predictions Total_Lost: 22.887

MAE with lags = 1.253

🙀 Model Performance and Readiness for Testing

Key Observations

Based on the observed Mean Absolute Error (MAE) and feature importance analysis, it is evident that:

- Introducing lagged columns has significantly improved the model's performance, particularly in terms of:
 - Feature relevance
 - Predictive power

Why Lagged Features Matter:

- They provide valuable context by capturing temporal patterns and trends.
- This is essential for accurate time series forecasting as they:
 - Reflect short-term dependencies (e.g., yesterday's absence).
 - Capture seasonal effects (e.g., weekly or monthly cycles).

Readiness for Testing Phase

Given the enhanced model performance with the inclusion of lag features, we are now ready to proceed to the:

- Testing Phase for Absence predictions.
- Ensuring that the model delivers robust and reliable results.

Important Note

- The model currently demonstrates a **very high R2 value** with **acceptable performance** because we **retained the following measures** in our dataset:
 - Absence
 - Early
 - Late
- These variables were included to explore seasonality during the model development phase.

Impact of Removing Absence, Early, and Late:

- When these measures are removed:
 - The model's performance declines significantly, especially in:
 - R2 score
 - Other evaluation metrics (e.g., MAE, RMSE)
- This highlights the critical role these variables play in capturing seasonality and explaining variations
 in absenteeism.

* Approach for Model Experimentation

- For the model experimentation process, we will:
 - Use a well-adjusted dataset tailored for both training and testing.
 - Ensure that the dataset:
 - Maintains relevant lagged features.
 - Is structured to balance performance while minimizing dependence on unavailable future data.

Final Thought:

The **lagged features** have proven to be **crucial** for capturing temporal dependencies. Moving forward, we will focus on **refining** the dataset and **evaluating** the model's robustness in different scenarios to ensure **consistent** and **accurate absenteeism predictions**.

```
# Step 1: Filter the dataframe
   dfprep = df[df['Is_Actual'] == 'Actual']
   if mu name != 'All':
       dfprep = dfprep[(dfprep['MU_Name'] == mu_name)]
   # Step 2: Groupby and aggregate
   dfprep = dfprep.groupby(groupbycols, as_index=False).agg(
       Is_Holiday=('Is_Holiday', np.mean), # Avg holiday % across countries
       # Headcount
StrikeP=('Strike', np.mean), # Strike participation %
Waha=('Waha', np.mean)
       Waha=('Waha', np.mean),
                                            # Waha employee %
       Scheduled=('Scheduled', np.sum), # Scheduled hours sum
       Worked=('Worked', np.sum),
                                            # Worked hours sum
       Overtime=('Overtime', np.sum),
                                            # Overtime hours sum
       Training=('Training', np.sum), # Training hours sum
       Vacation=('Vacation', np.sum),
                                            # Vacation hours sum
       Sick=('Sick', np.sum),
                                            # Sick hours sum
       Total_Lost=('Total_Lost', np.sum),  # Total lost = Absence + Early + Late
       Absence=('Absence', np.sum), # Absence hours sum Early=('Early', np.sum), # Early leaving hour
                                            # Early leaving hours sum
       Late=('Late', np.sum)
                                            # Late arrivals sum
   ).reset_index(drop=True)
   # Step 3: Define columns for rolling sums
   rolling_columns = ['Total_Lost', 'Absence', 'Early', 'Late', 'Scheduled', 'Worked',
'Training', 'Vacation', 'Sick']
   # Step 4: Define rolling windows
   rolling_windows = {
       '1W': 7, # Last 1 week
       '1M': 30, # Last 1 Month
   }
   # Step 5: Sort by date before rolling calculations
   dfprep = dfprep.sort_values(by=['Date'])
   # Step 6: Compute rolling sums with 1-week delay
   for window_label, window_size in rolling_windows.items():
       for col in rolling_columns:
           dfprep[f'{col}_RollingSum_{window_label}'] = (
               dfprep[col].shift(7) # Shift by 7 days to delay calculation
               .rolling(window=window_size, min_periods=1)
               .sum()
               .reset_index(drop=True)
   # Step 6: Compute rolling AVG with 1-week delay
   for window_label, window_size in rolling_windows.items():
       for col in rolling_columns:
            dfprep[f'{col}_RollingAVG_{window_label}'] = (
               dfprep[col].shift(7) # Shift by 7 days to delay calculation
                .rolling(window=window_size, min_periods=1)
```

```
.mean()
                .reset_index(drop=True)
    # Step 7: Convert 'Date' to datetime and set index
    dfprep['Date'] = pd.to_datetime(dfprep['Date'])
    dfprep = dfprep.set_index('Date')
    # Step 8: Overwrite columns based on index
    dfprep['Year'] = dfprep.index.year
    dfprep['Month'] = dfprep.index.month
    dfprep['DayofMonth'] = dfprep.index.day
    dfprep['DayofWeek'] = dfprep.index.dayofweek # Monday=0, Sunday=6
    dfprep['WeekofYear'] = dfprep.index.isocalendar().week
    # Step 9: Create lagged features
    lag_days = [7,30]
    for lag in lag_days:
        for col in ['Scheduled', 'Worked','Total_Lost', 'Absence', 'Early', 'Late',
'Training', 'Vacation', 'Sick']:
            dfprep[f'{col}_lag{lag}'] = dfprep[col].shift(lag)
    # Step 10: Drop rows with NaN values introduced by shifting
    dfprep.dropna(axis=0, how='any', inplace=True)
    # Step 11: Drop unnecessary columns
    drop_cols = ['Absence', 'Early', 'Late', 'Worked', 'Training', 'Vacation',
'Sick','Overtime',]
    dfprep.drop(columns=drop_cols, inplace=True)
    dfprep['Month_sin'] = np.sin(2 * np.pi * dfprep['Month'] / 12)
    dfprep['Month_cos'] = np.cos(2 * np.pi * dfprep['Month'] / 12)
    dfprep['DayofWeek_sin'] = np.sin(2 * np.pi * dfprep['DayofWeek'] / 7)
    dfprep['DayofWeek_cos'] = np.cos(2 * np.pi * dfprep['DayofWeek'] / 7)
    dfprep['DayofMonth_sin'] = np.sin(2 * np.pi * dfprep['DayofMonth'] / 31)
    dfprep['DayofMonth_cos'] = np.cos(2 * np.pi * dfprep['DayofMonth'] / 31)
    return dfprep
# Example usage with default 'All' filters
processed_df = prepare_dataframe(df)
```

Training until validation scores don't improve for 50 rounds

Early stopping, best iteration is:

[56] valid_0's l2: 242.982

R-squared (R2) score: 0.368

Mean Squared Error (MSE): 242.982

Mean Absolute Error (MAE): 13.931

Root Mean Squared Error (RMSE): 15.588

Average of Actual Total_Lost: 38.964

Average of Predictions Total_Lost: 36.791

