Customer Personality Analysis using Clustering

BY GRISHMA VEMIREDDY

Introduction

Problem statement:

Perform customer segmentation to understand different groups of customers.

Using clustering algorithm like K-means and Hierarchical, try to identify meaningful patterns.

Purpose:

Helps businesses target marketing efforts more effectively.

Identifies different types of consumer groups

RangeIndex: 2240 entries, 0 to 2239 Data columns (total 29 columns):

	C-1	-			
#	Column	Non-Null Count	Dtype		
		2242			
0	ID	2240 non-null	int64		
1	Year_Birth	2240 non-null	int64		
2	Education	2240 non-null	object		
3	Marital_Status	2240 non-null	object		
4	Income	2216 non-null	float6		
5	Kidhome	2240 non-null	int64		
6	Teenhome	2240 non-null	int64		
7	Dt_Customer	2240 non-null	object		
8	Recency	2240 non-null	int64		
9	MntWines	2240 non-null	int64		
10	MntFruits	2240 non-null	int64		
11	MntMeatProducts	2240 non-null	int64		
12	MntFishProducts	2240 non-null	int64		
13	MntSweetProducts	2240 non-null	int64		
14	MntGoldProds	2240 non-null	int64		
15	NumDealsPurchases	2240 non-null	int64		
16	NumWebPurchases	2240 non-null	int64		
17	NumCatalogPurchases	2240 non-null	int64		
18	NumStorePurchases	2240 non-null	int64		
19	NumWebVisitsMonth	2240 non-null	int64		
20	AcceptedCmp3	2240 non-null	int64		
21	AcceptedCmp4	2240 non-null	int64		
22	AcceptedCmp5	2240 non-null	int64		
23	AcceptedCmp1	2240 non-null	int64		
24	AcceptedCmp2	2240 non-null	int64		
25	Complain	2240 non-null	int64		
26	Z_CostContact	2240 non-null	int64		
27	Z Revenue	2240 non-null	int64		
28	Response	2240 non-null	int64		
	•				

Dataset overview

Source: Kaggle (<u>Customer Segmentation</u>: <u>Clustering</u>)

Data description:

2,240 total observations

29 features

Some missing values performed Imputation (using mean)

data_df = pd.read_csv("customer_segmentation.csv")
data_df.head()

		ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	R
Ī	0	5524	1957	Graduation	Single	58138.0	0	0	04-09-2012	
	1	2174	1954	Graduation	Single	46344.0	1	1	08-03-2014	
	2	4141	1965	Graduation	Together	71613.0	0	0	21-08-2013	
	3	6182	1984	Graduation	Together	26646.0	1	0	10-02-2014	
	4	5324	1981	PhD	Married	58293.0	1	0	19-01-2014	

5 rows × 29 columns

Methodology

Data cleaning and preparation:

Handled missing data by imputation

Encoded categorical variables

Dropped some irreverent features

Scaled numerical features (ScandardScaler)

Data exploration:

Plotted distribution of Income, spending on Wine and other spending features to identify and patterns in spending.

The heatmap shows some correlation between some features.

Modeling

K-means clustering:

Partition data into specific numb of cluster, K need to be defined so used elbow method and Silhouetted score analysis.

This method is simple, fast, and scalable on large datasets

```
# K-means clustering

#find optimal K
from sklearn.cluster import KMeans

# where we'll store all of the wcss values for plotting later.

wcss = []
silhouette_scores = []

for i in range(2, 11):
    # random_state just to ensure we get the same values in the end.
    kmeans = KMeans(n_clusters = i, random_state = 42)
    kmeans.fit(scaled_data)
    # inertia method returns wcss for that model.
    wcss.append(kmeans.inertia_)
    silhouette_avg = silhouette_score(scaled_data, kmeans.labels_)
    silhouette_scores.append(silhouette_avg)
    print(f"Clusters: {i}, Silhouette_Score: {silhouette_avg:.4f}")
```

Hierarchical clustering:

Agglomerative Hierarchical Clustering starts with each point as a cluster and mergers as they go up. This method is good at discovering nested or hierarchical relationships. No need to specify k, works well with complex data.

Performed PCA as there are so many features.

```
pca = PCA(n_components=2)
X_pca = pca.fit_transform(scaled_data)

pca_df = pd.DataFrame(data=X_pca, columns=['PC1', 'PC2'])
```

```
for n_clusters in range(2, 11):
    agglom = AgglomerativeClustering(n_clusters=n_clusters)
    cluster_labels = agglom.fit_predict(scaled_data)
```

Results and Visualization

Conclusion

Based on the silhouette score of k-mean 2 cluster is the best but looking at the elbow method plot 7 clusters seem to be the mark and according to the silhouette score k = 7 has the second best score.

However, agglomerative clustering has best silhouette score for 9 cluster and the performance of this model is slightly better than K-mean. Though both models show weak silhouette scores.

Hierarchical clustering fit this data better than Kmeans based off the silhouette scores.

Thank You!

