Task Discussion Tetris

Andreas Bärtschi based on slides by Jan Hązła

ETH Zürich

December 16, 2015

The problem

Given:

- A playing field of width w.
- n (height 1) rectangles with coordinates $[a_i, b_i]$.

Use the rectangles to create as many full lines [0, w] as possible.

Each rectangle can be used at most once. Moreover, each coordinate can be used as a **splitting point** between two rectangles at most once.

Problem size \rightarrow Running time

```
w < 500, n < 200'000. w small, n large.
```

Acceptable running time for the algorithm:

- $\blacksquare n \cdot w$,
- $n \cdot \log n$,
- \mathbf{w}^3 .

Solution – simplified case

What if there is no "splitting point" restriction?

Make a graph G with vertices $\{0, \ldots, w\}$. For each rectangle [a, b] create a directed edge (a, b) with capacity 1.

Each possible full line corresponds to 0-w path in G.

Therefore, we want to maximise the number of edge-disjoint 0-w paths.

But this is the **maximum** 0-w **flow** in G!

Solution & Implementation

What about the splitting points restriction?

It means that for each coordinate in $\{1, \ldots, w-1\}$ the flow through its vertex should be at most 1.

But this can be implemented with a standard trick: replace each w with two vertices and an "internal" edge.

Implementation:

A single flow call to a graph with 2w vertices and 2w - 2 + n edges.

- Edmonds-Karp: $O(|f| \cdot |E|) = O(w \cdot n)$.
- Push-Relabel: $O(|V|^3) = O(w^3)$.
- Watch out for bordercases: There can be multiple [0, w] edges.

Food for thought: Can you solve it when $w = 10^9$, and n = 200?