Sistemas de Radiocomunicación

Ingeniero de Telecomunicación

Examen – Convocatoria de Septiembre de 2012

7 de Septiembre de 2012

Apellidos:
Nombre:
D.N.I. :

Teoría:

- 1) Suponer una transmisión por radio donde se tienen canales de 300 kHz de ancho de banda cuyas portadoras están separadas 400 kHz y están distribuidas entre 90 MHz y 110 MHz. Diseñar, a nivel de diagrama de bloques, un receptor sintonizado, un receptor superheterodino y un receptor superheterodino de doble conversión. Para cada uno de ellos, dibujar el diagrama de bloques, indicando y justificando las especificaciones de cada bloque. Discutir el funcionamiento, las ventajas e los inconvenientes de cada aproximación (6 puntos).
- 2) En el ejemplo anterior, suponer que el oscilador local del receptor superheterodino se implementa con un sintetizador de frecuencias construido con un PLL. Trazar el diagrama de bloques, indicando y justificando las especificaciones de cada bloque. Explicar el funcionamiento del sintetizador de frecuencias (4 puntos).

Sistemas de Radiocomunicación

Ingeniero de Telecomunicación

Examen – Convocatoria de Septiembre de 2012

7 de Septiembre de 2012

Apellidos:	 	
Nombre:	 	
D.N.I. :		

Problemas:

- Diseñar un amplificador sintonizado a la frecuencia de 20 MHz con factor de calidad Q=25. Considérese un transistor BJT polarizado con intensidad de colector de 1.0 mA con los siguientes parámetros:
 - Beta = 40:
 - tensión de Early = 30V;
 - C_mu = 1 pF;
 - C_pi = 20 pF;
 - r_mu infinita;
 - resistencia distribuida de base nula.

Estabilizar el dispositivo realimentando y determinar el factor C de Linvill del transistor realimentado. Diseñar las redes de adaptación de impedancias de fuente y carga considerando una impedancia compleja en la fuente de (50 – j 12) Ohmios y una impedancia compleja en la carga de (100 – j 25) Ohmios. Determinar la ganancia del amplificador. Diseñar el circuito de polarización (5 puntos).

2) Diseñar un oscilador de Clapp con una etapa base común, que oscile a 30 MHz y entregue 10mW a una resistencia de carga de 2 kOhm. Considerar bobinas de 1 uH con resistencia serie de 0.5 Ohmios (5 puntos).