

EECS 204002 Data Structures 資料結構 Prof. REN-SONG TSAY 蔡仁松 教授 NTHU

CH. 8 HASHING

8.1

Motivation

- Operations in a dictionary
 - Get, Insert and Delete
- Binary search tree
 - Get, Insert and Delete take O(n)
- Balanced binary search tree (AVL tree)
 - Get, Insert and Delete take $O(\log n)$
- Hashing
 - \circ Get, Insert and Delete take O(1)
 - Static hashing
 - Dynamic hashing

8.2

Static Hashing

Overview of Hashing

- The file blocks are divided into M equal-sized buckets
- The record with hash key value K is stored in bucket i
 - i = h(K), and h is the hashing function

8.2.1

Hash Tables

Hash table (ht)

- pair=[record, key]
- A container stores dictionary pairs.
- Hash table is partitioned into b buckets
 - ht[0], ht[1], ..., ht[b-1]
 - Each bucket holds s dictionary pairs (slots)
 - Usually s = 1, i.e. each bucket can hold exactly one pair.

8.2.2

Hash Function

- The hash (bucket address) of a pair with key k is determined by a hash function, h(k).
- Hash function maps keys into buckets by returning an integer in the range

Definitions

- Key density (n/T)
 - n:# of pairs in the table
 - T:Total # of possible keys
- Loading density or loading factor
 - $\circ \alpha = n/(s \cdot b)$
- Two keys, k_1 and k_2 , are said to be synonyms w.r.t. h, if $h(k_1) = h(k_2)$.

Definitions

- Many keys might be mapped to the same home bucket (synonyms)
- Collision
 - When a key is mapped to a non-empty home bucket
- Overflow
 - When a key is mapped to a full home bucket
- Overflow and collision occur simultaneously when each bucket has 1 slot.

- Given a set of 8 keys (n = 8)
 {GA, D, A, G, L, A2, A1, A3}.
- Consider a h_t with b = 26 and s = 2.

$$\alpha = \frac{n}{s \cdot b} = \frac{8}{2 \cdot 26} = 0.154$$

- The hash function maps each key into a bucket using its leading letter.
 - \circ Represent A Z as 0 25

Example (cont'd)

GA, D, A, G, A2 A3 A4

Collision

Overflow

mapping						
A 0						
D	3					
G	6					

Overflow

- A new record hashes to a bucket that is already full
 - An overflow file is kept for storing such records
 - Overflow records that hash to each bucket can be linked together

Hashing Properties

- If the # of slots is small, all operations (search, insert and delete) can be performed in O(1).
- Using leading letter is not a good hash function.
 - Keys might bias toward certain buckets.
- A good hash function should be
 - Easy to compute
 - Few collisions

8.2.2

Uniform Hash Function

- A hash function that does not result in a biased use of the hash table for random keys.
- Given a key k chosen at random, probability $[h(k) = i] = \frac{1}{b}$, $\forall i$.
- Four popular hash functions
 - Division
 - Mid-Square
 - Folding
 - Digit Analysis

8.2.2.I

Division

- h(k) = k % D
- Keys are non-negative integer
- The home bucket is obtained by using the modulo (%) operator.
- Bucket address range from 0 to D-1,
 - hash table must have at least b = D buckets.
- Using a prime number for D (see textbook).
- Ex: h(k = 219) = 219%8 = 3

8.2.2.2

Mid-Square

- Squaring the keys.
- Use an appropriate number of bits from the middle of the squared key as bucket address.
- If r bits is used, the size of the table is 2^r
 - If there are 8 buckets (2³), we need the middle 3-bits to determine the bucket address

h(219)=5

8.2.2.3

Folding

- The key is partitioned into several parts
- These parts are added together to obtain the key address

k=12320324111220

699

8.2.2.4

Digit Analysis

- All the keys in the table are known in advance
- Represent each key as a number in radix r
- Digits having the most skewed distributions are deleted
- Employ the remaining digits
- Example: I00 buckets = 2 digits
 - $m = 10^5$ \rightarrow delete 3 digits

k ₁ =	d ₁₁	d_{12}		d_{1n}		
$k_2 = d_{21}$		d_{22}		d_{2n}		
•••						
k_m =	d_{m1}	d_{m2}		d_{mn}		

8.2.3

The Secure Hash Algorithm (SHA)

4 runs * 20 steps

t	Step #, $0 \le t \le 79$
f_t	logical function
<<< _k	Circular left shift k bits
W_t	A 32-bit value derived from M_i
K_t	A constant

$$f_t(B,C,D) = \begin{cases} (B \land C) \lor ((\neg B) \land D) & \text{if } 0 \le t \le 19\\ B \oplus C \oplus D & \text{if } 20 \le t \le 39\\ (B \land C) \lor (B \land D) \lor (C \land D) & \text{if } 40 \le t \le 59\\ B \oplus C \oplus D & \text{if } 60 \le t \le 79 \end{cases}$$

SHA-1: a Merkle-Damgard Hash Function

- Padding: Given an m-bit message, a single bit "1" is appended as the (m+1)-th bit and then $(448-(m+1)) \mod 512$ (between 0 and 511) zero bits are appended. As a result, the message becomes 64-bit short of being a multiple of 512 bits long.
- Merkle-Damgard Strengthening: append the 64-bit representation of the original length of m, making the result a multiple of 512 bits long.
- Divide the result into 512-bit blocks, denoted by M_1, M_2, \dots, M_l .

m bits	I bit		64 bits
message	I	0000	m

SHA-I

- The internal state of SHA-I is composed of five 32-bit words A, B, C, D and E, used to keep the 160-bit chaining value h_i .
- Initialization: The initial value (h_0) is (in hexadecimal)
 - $A_0 = 67452301x$
 - $B_0 = EFCDAB89x$
 - C_0 = 98BADCFEx
 - $D_0 = 10325476x$
 - $E_0 = C3D2EIF0x$.
- Compression: For each block, the compression function $h_i = H(h_{i-1}, M_i)$ is applied on the previous value of $h_{i-1} = (A, B, C, D, E)$ and the message block.
- Output: The hash value is the 160-bit value $h_1 = (A, B, C, D, E)$.

The Compression Function H

- Divide M_i into 16*32-bit words:
 - $W_0, W_1, W_2, \ldots, W_{15}.$
- for t = 16 to 79 compute $W_t = (W_{t-3} \oplus W_{t-8} \oplus W_{t-14} \oplus W_{t-16}) \ll 1$.
 - \circ Remark: The one-bit rotate in computing W_t was not included in SHA, and is the only difference between SHA and SHA-1.
- Set $h_0 = (A_0, B_0, C_0, D_0, E_0)$.
- For t = 0 to 79 do
 - $T = A_t \ll 5 + f_t(B_t, C_t, D_t) + E_t + W_t + K_t.$
 - $E_{t+1} = D_t$, $D_{t+1} = C_t$, $C_{t+1} = B_t \ll 30$, $B_{t+1} = A_t$, $A_{t+1} = T$.
- Output $A = A_0 + A_{80}$, $B = B_0 + B_{80}$, $C = C_0 + C_{80}$, $D = D_0 + D_{80}$, and $E = E_0 + E_{80} (modulo\ 232)$.
- The function f_t and the values K_t used above are:

	$f_t(X,Y,Z) =$	$K_t =$
$0 \le t \le 19$	$XY \lor (\neg X)Z$	5A827999
$20 \le t \le 39$	$X \oplus Y \oplus Z$	6ED9EBAI
$40 \le t \le 59$	$XY \lor XZ \lor YZ$	8FIBBCDC
$60 \le t \le 79$	$X \oplus Y \oplus Z$	CA62CID6

8.2.4

Overflow Handling

- Open addressing
 - Linear probing
 - Quadratic probing
 - Rehashing
 - Random probing
- Chaining

Linear Probing: Insert

- Find the closest unfilled bucket.
- To insert a key k.
 - Compute h(k).
 - Check the hash table buckets in the order $h_t[h(k)], h_t[(h(k) + 1)\%b], ..., h_t[(h(k) + j)\%b]$ until an empty bucket is found.
 - If no empty bucket is found, double the size of h_t .
- e.g. GA, D, A, G, A2

Α 0 **A2** D 3 4 5 GA G 8 9

Linear Probing: Search

- Searching for a key k.
 - Compute h(k).
 - Examine the hash table buckets in the order $h_t[h(k)], h_t[(h(k) + 1)\%b], \dots, h_t[(h(k) + j)\%b]$ until:
 - $h_t[(h(k)+j)\%b]$ has the same key. Found!
 - $h_t[(h(k) + j)\%b]$ is empty. Not found!
 - Go back to starting point. Not found!
- Disadvantage:
 - Keys tend to cluster together.

Others

- Quadratic probing:
 - Compute h(k).
 - Examine buckets at h(k), $(h(k) + i^2)\%b$, and $(h(k) i^2)\%b$, $1 \le i \le (b-1)/2$.
- Rehashing:
 - \circ A series of hashing functions h_1 , h_2 , ..., h_n .
 - Bucket is searched by h_1 , h_2 , ..., h_n .

Chaining

- Use chained hash table to solve collisions
- Each bucket holds a list of keys (key chain)

8.3

Dynamic Hashing

8.3.1

Manage Overflow Problems

- Add overflow pages
- Double the size of the buckets
- Double the number of the buckets and

reorganize

h(key) mod N key

overhead to rebuild

Dynamic Hashing

- Also called Extendible Hashing
- Idea: Use directory of pointers to buckets
 - Use the binary representation of the hash value h(K) in order to access a directory
 - Double #buckets by doubling the directory
 - Splitting just the bucket that is overflowed!
- Directory is much smaller than bucket file
 - Much cheaper to double the directory
 - Split only the page of data entries. No overflow page!

Directory

- An array of size 2^d where d is called the global depth
- Expand or shrink dynamically
- Entries point to the buckets
 - That contain the stored records
 - When an insertion in a bucket that is full the bucket splits into two buckets
 - The records are redistributed among the two buckets
- Update directory appropriately

Example of Dynamic Hashing

Dynamic Hashing: Example

Dynamic Hashing: Insert 13*

Dynamic Hashing: Insert 20*

Dynamic Hashing: Insert 20*

Dynamic Hashing: Insert 9*

Dynamic Hashing: Insert 9*

When to Double Directory

- Initially, all local depths are equal to global depth
 - # of bits need to express the total # of buckets
- During the process of split, if the bucket whose local depth = global depth
 - The directory must be doubled
- Global depth +1 when the directory doubles
 - Local depth +1 when a bucket is split

Introduction

- Generalize the hashing ideas
 - $h(k_1) = h(k_2) \Rightarrow k_1? k_2$
 - $h(k_1) \neq h(k_2) \Rightarrow k_1 \neq k_2$
- Approximate set membership problem
- Trade-off between the space and the false positive probability

Approximate Set Membership Problem

Given a set

$$S = \{s_1, s_2, \dots, s_n\} \subseteq U$$
 (Universe)

- Want to check if "x is an element of S"
- Approximated approach

$$b(S) = h(s_1) \vee h(s_2) \vee \dots \vee h(s_n)$$

•
$$h(x) \wedge h(S) = \begin{cases} 1 & x?S & \text{false positive} \\ 0 & x \notin S & \text{sure exclusion} \end{cases}$$

Take little space

Bloom Filters

- I. An n-bit array A[n], initially set to 0
- 2. k independent random hash functions

$$h_1, ..., h_k: U \Rightarrow \{0, 1, ..., n-1\}$$

3. $\forall s \in S$, A[hi(s)] = 1 for $1 \le i \le k$

To check if $x \in S$, calculate

$$\bigcap_{1 \le i \le k} A[h_i(x)] = \begin{cases} 1 & x?S & \text{assume } x \in S \\ 0 & x \notin S & \text{sure exclusion} \end{cases}$$

BF Design Consideration

- Choose n (filter size in bits).
 - Use as much memory as is available.
- Pick k (number of hash functions).
 - k too small \Rightarrow high probability for different keys to have same signature.
 - k too large \Rightarrow soon to fill ones in the filter
- Select the k hash functions.
 - Hash functions should be relatively independent.

1		1	1	0	1	0	1	1	0	0
0		2	3	4	5	6	7	8	9	10

- $\bullet \ h_1(s) = s \bmod n.$
- $h_2(s) = 2(s+1) \mod n$.

$$my class m = 3$$

	Student ID	h_1	h_2
-	105021121	7	5
-	210510215	3	8
-	106000103	0	2
	107062601	8	7
	104034052	1	4

false positive not in class

The Probability of a False Positive

- We assume the hash function are random.
- After all the elements of S are hashed into the bloom filters, the probability that a specific bit is still 0 is

$$p = (1 - 1/n)^{km} \approx e^{-km/n}$$

Note:

$$e^{-x} = 1 - x + \frac{x^2}{2} - \dots \approx 1 - x$$

 $(e^{-x})^{km} \approx (1 - x)^{km}$

Optimal n & k

- The probability of a false positive f is $f = (1 p)^k \approx (1 e^{-km/n})^k$
- To find the optimal k to minimize f.

Minimize f iff minimize $g = \ln(f)$

$$\frac{dg}{dk} = \ln(1 - e^{-km/n}) + \frac{km}{n} \frac{e^{-\frac{km}{n}}}{(1 - e^{-km/n})}$$

$$\Rightarrow k = \ln(2) * (n/m),$$

$$\Rightarrow f = (1/2)^k = (0.6185)^{n/m}$$

The false positive probability falls exponentially in n/m, the number of bits used per item !!

Conclusion

- A Bloom filters is like a hash table, and simply uses one bit to keep track whether an item hashed to the location.
- If k = 1, it's equivalent to a hashing based fingerprint system.
- If n=cm for small constant c, such as c=8, then k=5 or 6, the false positive probability is just over 2%.
- It's interesting that when k is optimal $k = \ln(2) * (n/m)$, then p = 1/2.

An optimized Bloom filters looks like a random bitstring