Large Scale Machine Learning: Decision Trees

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

Decision Tree Learning

- Give one attribute (e.g., wealth), try to predict the value of new people's wealths by means of some of the other available attribute
- Input attributes:
 - d features/attributes: X₁, X₂, ... X_d
 - Each X_j has domain O_j
 - Categorical: O_i = {red, blue}
 - Numerical: H_i = (0, 10)
 - Y is output variable with domain O_Y :
 - Categorical: Classification, Numerical: Regression
- Data D:
 - n examples (x_i, y_i) where x_i is a d-dim feature vector, $y_i \in O_Y$ is output variable
- Task:
 - Given an input data vector x predict y

Decision Trees

 A Decision Tree is a tree-structured plan of a set of attributes to test in order to predict the output

Decision Trees (1)

Decision trees:

- Split the data at each internal node
- Each leaf node makes a prediction

Lecture today:

- Binary splits: X_i<v</p>
- Numerical attrs.
- Regression

How to make predictions?

Input: Example x_i

Output: Predicted y_i'

- "Drop" x_i down the tree until it hits a leaf node
- Predict the value stored in the leaf that x_i hits

Decision Trees Vs. SVM

Alternative view:

