

History

- Soviet Union first to launch a satellite into orbit
- Cold war: space race begins
- U.S. military launches
 Defence Advanced
 Research Projects
 Agency (DARPA)
 - Formed in 1962 to link military computers

Sputnik 1
Launched 1957 by USSR

ARPANET

- DARPA mission: keep U.S. technologically ahead of it's enemies
- created ARPANET
- started in California between UCLA and Stanford
 - Went live Oct. 29, 1969
- added universities and military sites
- evolved into the Internet
 - The term internet first appears in 1974
 - Meant any network using TCP/IP
 - Became global in the 1980's

Internet Protocols

The language at the heart of the Internet is TCP/IP...

(actually a protocol stack – 4 layers)

Transmission Control Protocol/Internet Protocol

... that allows cross-network communication

Internet Protocols

TCP breaks messages into packets

- Each packet has all the information needed to travel from network to network
- Host systems called Routers determine how to route transmissions

Packot - E-mail Example		
Header	Sender's IP address Receiver's IP address Protocol Packet number	96 bits
Payload	Data	896 bits
Trailer	Data to show end of packet Error correction	32 bits

Internet Protocols

IP is about...

- Addressing & Delivery
 - Each Internet host computer has a unique IP Address
 - Each address is comprised of four sets of numbers separated by periods, such as 142.104.95.126
 - Each set can contain numbers from 0 to 255
 - Separated into classes A to E

Looking to the Future

- IPv4 (Internet Protocol version 4)
- e.g. 142.104.231.5
- □ addresses available: 4,294,967,296 (~4.3 billion)
- number of humans on the planet: ~6.5 billion
- Static vs. dynamic
- All have been allocated as of Feb. 3, 2011
- IPv6 (Internet Protocol version 6)
- Started in 1998
- e.g. 2001:0db8:0000:0000:0000:0000:1428:57ab
- addresses available: 340,282,366,920,938,463,463,374,607,431,768,211,456
- enough to give

Domain Name System

- translate domain names into internet addresses
- □ E.g. www.uvic.ca = 142.104.5.64
- Started in 1983
- Distributed database
- Complex, well-hidden task
 - Billions of IP addresses
 - Billions of DNS requests per day
 - Domain names and IPs change daily
 - New domain names created daily
 - Millions of people work on multiple systems

Domains

TCP-IP, the Domain Name System and Internet Routers In-class diagram example

Internet Services

The Internet provides a variety of services such as:

- Electronic mail (send/receive mail messages)
- Remote login (Telnet access to other computers)
- File transfer (ftp)
- Talk/chat (instant messenger)
- Video conference
- VolP

What's the common theme with all these services?

Internet and World Wide Web

The Internet and the World Wide Web are NOT the same thing

- Internet: A global interconnected network of computer networks that transmit data by packet switching
- World Wide Web: A collection of multimedia documents linked by hyperlinks. The WWW forms part of the Internet.

Inside the Web

Web Protocols: HTTP and HTML

✓ HTTP (Hypertext transfer protocol) used to transfer Web pages

✓ HTML (HyperText Markup Language) created for encoding and displaying documents

Inside the Web

✓ HTML is not WYSIWYG (What You See Is What You Get).

Tim Berners-Lee Weaves the Web for Everybody

- ✓Born in London in 1955
- ✓ Wanted to create an open-ended distributed hypertext system with no boundaries, so scientists everywhere could link their work together
- ✓ Invented the World Wide Web and gave it to all
- ✓ Now works at MIT
- ✓ Heads the World Wide Web Consortium (W3C)

Example

- Let's take an example and see how these pieces fit together.
- Example:
 - Your friend suggests that you take a look at Flickr, one of many places to share photos on the web. She sends you a link to: http://www.flickr.com/explore/
 - You open the link in a web browser.

HTTP Protocol

Step 1:

The web browser prepares a request using the http protocol.

The address you entered:

http://www.flickr.com/explore

becomes the request:

GET /explore HTTP/1.1

Host: www.flickr.com

Uniform Resource Locator (URL)

Step 2:

 The Internet Protocol must interpret the web address – Universal Resource Locator (URL)

- you entered.

GET /explore HTTP/1.1 Host: www.flickr.com

Domain Name System

Step 3:

Access the Domain Name System (DNS) to translate the URL into an IP address.

www.flickr.com

68.142.214.24

Transmission Control Protocol (TCP)/ Internet Protocol (IP)

Step 4:

- We can now split the message into packets and add headers
- Address the packets
- Send the message out.

Packet #: 1

Sender: 142.104.5.63

Receiver: 68.142.214.24

Other header info....

GET /explore HTTP/1.1

Host: www.flickr.com

ADSL, Cable and Phone

Step 5:

 The message passes through the modem – whether it is an ADSL, cable or phone modem.

The modem converts from digital to analog, as necessary.

Routing

Step 6:

The message is routed through the Internet.

Client / Server

Step 7:

The appropriate web server receives the request and uses the path to find the files.

Response

Step 8:

- Send a response
 - Prepare files
 - IP protocol
 - TCP protocol
 - Send through hardware
 - Route through Internet

Receive response

Step 9:

- Received by your computer
 - Converted through modem
 - Collected by TCP
 - Reassembled by IP
 - Rendered by your web browser

Tools

- Can we see this routing?
 - tracert domain name

- What's your IP address
 - ipconfig/all

E-mail Addresses

An Internet address includes: username@hostname.sub.dom

- username is the person's "mailbox"
- hostname is the name of the host computer and is followed by one or more domains separated by periods:
 - · host.subdomain.domain
 - · host.domain
 - host.subdomain.subdomain.domain

How does email work?

- We saw how messages are divided up when they are sent
- But where is the mailbox actually kept?
 - They are kept on a server
 - We tell our email client (application) where to look for our messages
- Example email clients:
 - Microsoft Outlook
 - Microsoft Outlook Express
 - Mozilla Thunderbird

Accessing Email

Sending and Receiving Email

How does email work?

- When you set up your email client, it will ask you for information about the servers to use.
 - What is your incoming server?
 - What is your outgoing server?

What's with all the protocols?

- □ POP (Post Office Protocol) e.g. pop.uvic.ca
 - messages downloaded to computer, not kept on server
 - once downloaded, can only be viewed on that computer, but you don't need access to the Internet to read them
- IMAP (Internet Messaging Access Protocol) imap.uvic.ca
 - messages kept on server
 - messages accessible anywhere, but requires Internet connection
- SMTP (Simple Mail Transfer Protocol) e.g. smtp.uvic.ca
 - common protocol for sending email

Online email

With online email, this process still exists.

However, since you're viewing them in a web browser and not downloading them, these details are hidden from you.

Ports

- How does a server know it is receiving an http request?
- How does a server know it is receiving an ftp request?
- How does a server know it is receiving an e-mail request?

Port Numbers

- Specify the type of communication
- In the header of the packet
- Maps the body of the packet to the proper application
- □ There are 50,000 ports with some conventions:
 - smtp = 25
 - pop3 = 110
 - http = 80
 - ftp = 22
 - https = 443