Lecture 6: Improving visualiztion quality using uncertainty

Michael Lopez, Skidmore College

Examples

- 1. What are the plots trying to show?
- 2. What are the plots actually showing?
- 3. Are the plots accurate?
- 4. Truth continuum
- 5. Model bugs: audience

Example plot 1

MLB's real home run derby curse impacts second place, (link)

Example plot 2

The web is dead, (Wired.com)

Figure 2:Proportion of total internet traffic.

Example plot 3

More or less crime?, (Vox.com)

Today's goals

- 1. Communicating Variability
- 2. Variability by variable type
- 3. Graphing variability
- 4. Communicating change

Accounting for variability - communicating change

<u>Untrue</u> True

Cal-Berkeley admissions, 1973

Table 1:Cal-Berkeley admissions, 1973

	Admitted	Rejected	
Male	1198	1493	
Female	557	1278	

What does this look like? How can we visualize?

```
library(dplyr); library(ggplot2)
cb.df <- data.frame(apply(UCBAdmissions, c(2, 1), sum))
cb.df</pre>
```

```
## Admitted Rejected
## Male 1198 1493
## Female 557 1278
```

```
## Admitted Rejected Gender Percent n
## 1 1198 1493 Male 0.4451877 2691
## 2 557 1278 Female 0.3035422 1835
```

```
ggplot(cb.df, aes(x = Gender, y = Percent, fill = Gender)) +
  geom_bar(stat = "identity") +
  ggtitle("Percent admission at UCB") +
  theme(legend.position = "none")
```

Percent admission at UCB


```
ggplot(cb.df, aes(x = Gender, y = Percent, size = n)) +
  geom_point() +
  ggtitle("Percent admission at UCB")
```

Percent admission at UCB

Possible explanations?

Definitions in statistics

▶ Observation/unit

Standard deviation

► Statistic

► Standard error

▶ Margin of error

Margins of error + assumptions

► Continuous data

Proportions

► Trends

An aside

Margin of error for proportions: a proof for the rule of thumb

```
cb.df <- mutate(cb.df, MOE = 1/sqrt(n))
cb.df</pre>
```

```
## Admitted Rejected Gender Percent n MOE
## 1 1198 1493 Male 0.4451877 2691 0.01927716
## 2 557 1278 Female 0.3035422 1835 0.02334436
```

```
limits <- aes(ymin = Percent - MOE, ymax = Percent + MOE)
ggplot(cb.df, aes(x = Gender, y = Percent, fill = Gender)) +
  geom_bar(stat = "identity") +
  geom_errorbar(limits, width=0.25) +
  ggtitle("Percent admission at UCB") +
  theme(legend.position = "none")</pre>
```

Percent admission at UCB

Example, continuous data

Midwest data - county-level percentages of elderly in poverty, by state.

```
## Source: local data frame [5 x 5]
##
##
    state mean.county sd.county n.county moe.county
##
     (chr)
                (db1)
                          (dbl)
                                   (int)
                                              (db1)
## 1
       TT.
             12.08606 4.372512
                                     102 0.8658863
            11.01617 3.141212
## 2
       IN
                                     92 0.6549881
## 3
       MΤ
            11.77796 2.940704
                                     83 0.6455683
## 4
       ΠH
             11.33227 4.145811
                                     88 0.8838898
## 5
       WI
             10.49910 3.092291
                                     72 0.7288600
```

Example, continuous data

```
limits <- aes(ymin = mean.county - moe.county, ymax = mean.county + moe.county)
ggplot(midwest1, aes(x = state, y = mean.county, fill = state)) +
  geom_bar(stat = "identity") +
  geom_errorbar(limits, width=0.25) +
  ggtitle("Average county-level poverty %") +
  theme(legend.position = "none")</pre>
```

Average county-level poverty %

Back to the UCB data

```
Department Admitted Applied Gender
##
## 1
                     512
                             825
                                   Male
              а
## 2
              h
                     353
                             560 Male
## 3
                     120
                             325 Male
## 4
                             417 Male
              d
                     138
## 5
                      53
                             191 Male
## 6
              f
                      22
                             373 Male
## 7
                      89
                             108 Female
              a
## 8
              h
                      17
                              25 Female
## 9
                     202
                             593 Female
## 10
              А
                     131
                             375 Female
## 11
                      94
                             393 Female
              f
                      24
                             341 Female
## 12
```

Back to the UCB data

```
df.UCB <- df.UCB %>%
  mutate(Percent = Admitted/Applied, MOE = 1/sqrt(Applied)) %>%
  arrange(Department)
df.UCB
```

##		Department	${\tt Admitted}$	Applied	Gender	Percent	MOE
##	1	a	512	825	Male	0.62060606	0.03481553
##	2	a	89	108	${\tt Female}$	0.82407407	0.09622504
##	3	b	353	560	Male	0.63035714	0.04225771
##	4	b	17	25	${\tt Female}$	0.68000000	0.20000000
##	5	С	120	325	Male	0.36923077	0.05547002
##	6	С	202	593	${\tt Female}$	0.34064081	0.04106508
##	7	d	138	417	Male	0.33093525	0.04897021
##	8	d	131	375	${\tt Female}$	0.34933333	0.05163978
##	9	е	53	191	Male	0.27748691	0.07235746
##	10	е	94	393	${\tt Female}$	0.23918575	0.05044333
##	11	f	22	373	Male	0.05898123	0.05177804
##	12	f	24	341	Female	0.07038123	0.05415304

Back to the UCB data

```
limits <- aes(ymin = Percent - MOE, ymax = Percent + MOE)
ggplot(df.UCB, aes(x = Gender, y = Percent, fill = Gender)) +
    geom_bar(stat = "identity") +
    geom_errorbar(limits, width=0.25) +
    ggtitle("Percent admission at UCB, by dept") +
    facet_wrap(-Department)+
    theme(legend.position = "none")</pre>
```

Percent admission at UCB, by dept

Conclusions