Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment	No
	1 1 V · · · · · · · · · · · · · · · · ·

Faculty of Engineering End Sem (Odd) Examination Dec-2022 IT3ED02 Data Mining & Warehousing

Programme: B.Tech. Branch/Specialisation: IT

Duration: 3 Hrs. Maximum Marks: 60

(a) Sub-division (b) Sub-dimension (c) Sub-Fact (d) None of these ii. According to Inmon, a data warehouse is a subject-orien integrated, time-variant, and collection of data. (a) Non-volatile (b) Volatile (c) Summarized (d) Combined iii. The KDD is abbreviation for- (a) Knowledge Database Definition (b) Knowledge Discovery in Databases (c) Knowledge Discovery Definition (d) Knowledge Data Definition iv. The various aspects of data mining methodologies is/are I. Mining various and new kinds of knowledge. II. Mining knowledge in multidimensional space. III. Pattern evaluation and pattern or constraint-guided mining. IV. Handling uncertainty, noise, or incompleteness of data. (a) I, II and IV only (b) II, III and IV only (c) I, II and III only (d) I, II, III and IV v. What do you mean back propagation?	i.	Qs) should be written in full instead of only a, b, c or d. Snowflake schema has table(s).	1
(c) Sub-Fact (d) None of these ii. According to Inmon, a data warehouse is a subject-orien integrated, time-variant, and collection of data. (a) Non-volatile (b) Volatile (c) Summarized (d) Combined iii. The KDD is abbreviation for- (a) Knowledge Database Definition (b) Knowledge Discovery in Databases (c) Knowledge Discovery Definition (d) Knowledge Data Definition iv. The various aspects of data mining methodologies is/are I. Mining various and new kinds of knowledge. II. Mining knowledge in multidimensional space. III. Pattern evaluation and pattern or constraint-guided mining. IV. Handling uncertainty, noise, or incompleteness of data. (a) I, II and IV only (b) II, III and IV only (c) I, II and III only (d) I, II, III and IV v. What do you mean back propagation? (a) It is the transmission of error back through the network to the inputs. (b) It is the transmission of error back through the network to weights to be adjusted so that the network can learn. (c) It is another name given to the curvy function in the perceptron			
ii. According to Inmon, a data warehouse is a subject-orien integrated, time-variant, and collection of data. (a) Non-volatile (b) Volatile (c) Summarized (d) Combined iii. The KDD is abbreviation for- (a) Knowledge Database Definition (b) Knowledge Discovery in Databases (c) Knowledge Discovery Definition (d) Knowledge Data Definition iv. The various aspects of data mining methodologies is/are I. Mining various and new kinds of knowledge. II. Mining knowledge in multidimensional space. III. Pattern evaluation and pattern or constraint-guided mining. IV. Handling uncertainty, noise, or incompleteness of data. (a) I, II and IV only (b) II, III and IV only (c) I, II and III only (d) I, II, III and IV v. What do you mean back propagation? (a) It is the transmission of error back through the network to the inputs. (b) It is the transmission of error back through the network to weights to be adjusted so that the network can learn. (c) It is another name given to the curvy function in the perceptron			
 (a) Non-volatile (b) Volatile (c) Summarized (d) Combined iii. The KDD is abbreviation for- (a) Knowledge Database Definition (b) Knowledge Discovery in Databases (c) Knowledge Discovery Definition (d) Knowledge Data Definition iv. The various aspects of data mining methodologies is/are I. Mining various and new kinds of knowledge. II. Mining knowledge in multidimensional space. III. Pattern evaluation and pattern or constraint-guided mining. IV. Handling uncertainty, noise, or incompleteness of data. (a) I, II and IV only (b) II, III and IV only (c) I, II and III only (d) I, II, III and IV v. What do you mean back propagation? (a) It is the transmission of error back through the network to the inputs. (b) It is the transmission of error back through the network to weights to be adjusted so that the network can learn. (c) It is another name given to the curvy function in the perceptron 	ii.	According to Inmon, a data warehouse is a subject-oriented,	1
 (a) Non-volatile (b) Volatile (c) Summarized (d) Combined iii. The KDD is abbreviation for- (a) Knowledge Database Definition (b) Knowledge Discovery in Databases (c) Knowledge Discovery Definition (d) Knowledge Data Definition iv. The various aspects of data mining methodologies is/are I. Mining various and new kinds of knowledge. II. Mining knowledge in multidimensional space. III. Pattern evaluation and pattern or constraint-guided mining. IV. Handling uncertainty, noise, or incompleteness of data. (a) I, II and IV only (b) II, III and IV only (c) I, II and III only (d) I, II, III and IV v. What do you mean back propagation? (a) It is the transmission of error back through the network to the inputs. (b) It is the transmission of error back through the network to weights to be adjusted so that the network can learn. (c) It is another name given to the curvy function in the perceptron 		integrated, time-variant, and collection of data.	
 iii. The KDD is abbreviation for- (a) Knowledge Database Definition (b) Knowledge Discovery in Databases (c) Knowledge Discovery Definition (d) Knowledge Data Definition iv. The various aspects of data mining methodologies is/are I. Mining various and new kinds of knowledge. II. Mining knowledge in multidimensional space. III. Pattern evaluation and pattern or constraint-guided mining. IV. Handling uncertainty, noise, or incompleteness of data. (a) I, II and IV only (b) II, III and IV only (c) I, II and III only (d) I, II, III and IV v. What do you mean back propagation? (a) It is the transmission of error back through the network to the inputs. (b) It is the transmission of error back through the network to weights to be adjusted so that the network can learn. (c) It is another name given to the curvy function in the perceptron 			
 (a) Knowledge Database Definition (b) Knowledge Discovery in Databases (c) Knowledge Discovery Definition (d) Knowledge Data Definition iv. The various aspects of data mining methodologies is/are I. Mining various and new kinds of knowledge. II. Mining knowledge in multidimensional space. III. Pattern evaluation and pattern or constraint-guided mining. IV. Handling uncertainty, noise, or incompleteness of data. (a) I, II and IV only (b) II, III and IV only (c) I, II and III only (d) I, II, III and IV v. What do you mean back propagation? (a) It is the transmission of error back through the network to the inputs. (b) It is the transmission of error back through the network to weights to be adjusted so that the network can learn. (c) It is another name given to the curvy function in the perceptron 		(c) Summarized (d) Combined	
 (b) Knowledge Discovery in Databases (c) Knowledge Discovery Definition (d) Knowledge Data Definition iv. The various aspects of data mining methodologies is/are I. Mining various and new kinds of knowledge. II. Mining knowledge in multidimensional space. III. Pattern evaluation and pattern or constraint-guided mining. IV. Handling uncertainty, noise, or incompleteness of data. (a) I, II and IV only (b) II, III and IV only (c) I, II and III only (d) I, II, III and IV v. What do you mean back propagation? (a) It is the transmission of error back through the network to the inputs. (b) It is the transmission of error back through the network to weights to be adjusted so that the network can learn. (c) It is another name given to the curvy function in the perceptron 	iii.	The KDD is abbreviation for-	1
 (c) Knowledge Discovery Definition (d) Knowledge Data Definition iv. The various aspects of data mining methodologies is/are I. Mining various and new kinds of knowledge. II. Mining knowledge in multidimensional space. III. Pattern evaluation and pattern or constraint-guided mining. IV. Handling uncertainty, noise, or incompleteness of data. (a) I, II and IV only (b) II, III and IV only (c) I, II and III only (d) I, II, III and IV v. What do you mean back propagation? (a) It is the transmission of error back through the network to the inputs. (b) It is the transmission of error back through the network to weights to be adjusted so that the network can learn. (c) It is another name given to the curvy function in the perceptron 		(a) Knowledge Database Definition	
 (d) Knowledge Data Definition iv. The various aspects of data mining methodologies is/are I. Mining various and new kinds of knowledge. II. Mining knowledge in multidimensional space. III. Pattern evaluation and pattern or constraint-guided mining. IV. Handling uncertainty, noise, or incompleteness of data. (a) I, II and IV only (b) II, III and IV only (c) I, II and III only (d) I, II, III and IV v. What do you mean back propagation? (a) It is the transmission of error back through the network to the inputs. (b) It is the transmission of error back through the network to weights to be adjusted so that the network can learn. (c) It is another name given to the curvy function in the perceptron 		(b) Knowledge Discovery in Databases	
 iv. The various aspects of data mining methodologies is/are I. Mining various and new kinds of knowledge. III. Mining knowledge in multidimensional space. III. Pattern evaluation and pattern or constraint-guided mining. IV. Handling uncertainty, noise, or incompleteness of data. (a) I, II and IV only (b) II, III and IV only (c) I, II and III only (d) I, II, III and IV v. What do you mean back propagation? (a) It is the transmission of error back through the network to the inputs. (b) It is the transmission of error back through the network to weights to be adjusted so that the network can learn. (c) It is another name given to the curvy function in the perceptron 		(c) Knowledge Discovery Definition	
 I. Mining various and new kinds of knowledge. II. Mining knowledge in multidimensional space. III. Pattern evaluation and pattern or constraint-guided mining. IV. Handling uncertainty, noise, or incompleteness of data. (a) I, II and IV only (b) II, III and IV only (c) I, II and III only (d) I, II, III and IV v. What do you mean back propagation? (a) It is the transmission of error back through the network to the inputs. (b) It is the transmission of error back through the network to weights to be adjusted so that the network can learn. (c) It is another name given to the curvy function in the perceptron 		(d) Knowledge Data Definition	
 II. Mining knowledge in multidimensional space. III. Pattern evaluation and pattern or constraint-guided mining. IV. Handling uncertainty, noise, or incompleteness of data. (a) I, II and IV only (b) II, III and IV only (c) I, II and III only (d) I, II, III and IV v. What do you mean back propagation? (a) It is the transmission of error back through the network to the inputs. (b) It is the transmission of error back through the network to weights to be adjusted so that the network can learn. (c) It is another name given to the curvy function in the perceptron 	iv.	The various aspects of data mining methodologies is/are	1
 III. Pattern evaluation and pattern or constraint-guided mining. IV. Handling uncertainty, noise, or incompleteness of data. (a) I, II and IV only (b) II, III and IV only (c) I, II and III only (d) I, II, III and IV v. What do you mean back propagation? (a) It is the transmission of error back through the network to the inputs. (b) It is the transmission of error back through the network to weights to be adjusted so that the network can learn. (c) It is another name given to the curvy function in the perceptron 		I. Mining various and new kinds of knowledge.	
 IV. Handling uncertainty, noise, or incompleteness of data. (a) I, II and IV only (b) II, III and IV only (c) I, II and III only (d) I, II, III and IV v. What do you mean back propagation? (a) It is the transmission of error back through the network to the inputs. (b) It is the transmission of error back through the network to weights to be adjusted so that the network can learn. (c) It is another name given to the curvy function in the perceptron 		II. Mining knowledge in multidimensional space.	
 (a) I, II and IV only (b) II, III and IV only (c) I, II and III only (d) I, II, III and IV v. What do you mean back propagation? (a) It is the transmission of error back through the network to the inputs. (b) It is the transmission of error back through the network to weights to be adjusted so that the network can learn. (c) It is another name given to the curvy function in the perceptron 		III. Pattern evaluation and pattern or constraint-guided mining.	
 (c) I, II and III only (d) I, II, III and IV v. What do you mean back propagation? (a) It is the transmission of error back through the network to the inputs. (b) It is the transmission of error back through the network to weights to be adjusted so that the network can learn. (c) It is another name given to the curvy function in the perceptron 		IV. Handling uncertainty, noise, or incompleteness of data.	
 v. What do you mean back propagation? (a) It is the transmission of error back through the network to the inputs. (b) It is the transmission of error back through the network to weights to be adjusted so that the network can learn. (c) It is another name given to the curvy function in the perceptron 		(a) I, II and IV only (b) II, III and IV only	
(a) It is the transmission of error back through the network to the inputs.(b) It is the transmission of error back through the network to weights to be adjusted so that the network can learn.(c) It is another name given to the curvy function in the perceptron		(c) I, II and III only (d) I, II, III and IV	
the inputs.(b) It is the transmission of error back through the network to weights to be adjusted so that the network can learn.(c) It is another name given to the curvy function in the perceptron	v.	What do you mean back propagation?	1
(b) It is the transmission of error back through the network to weights to be adjusted so that the network can learn.(c) It is another name given to the curvy function in the perceptron		(a) It is the transmission of error back through the network to adjust	
weights to be adjusted so that the network can learn. (c) It is another name given to the curvy function in the perceptron		•	
(c) It is another name given to the curvy function in the perceptron		•	
		e e	
(d) None of these			
		(d) None of these	

P.T.O.

	vi.	Confidence (A>B) = Support (A U B) /	1
		(a) Support (A) (b) Support (B)	
		(c) Support (C) (d) None of these	
	vii.	K-means is an example of-	1
		(a) Classification	
		(b) Association	
		(c) Clustering	
		(d) Prediction	
	viii.	is a clustering procedure characterized by the development of a	1
		tree-like structure.	
		(a) Non-hierarchical clustering	
		(b) Hierarchical clustering	
		(c) Divisive clustering	
		(d) Agglomerative clustering	
	ix.	Which of the following operations is not an OLAP operation?	1
		(a) Roll-up (b) Slice	
		(c) Drill-down (d) Zoom-in	
	х.	MOLAP stands for-	1
		(a) Multidimensional Operational Analytic Processing	
		(b) Multidimensional Online Analytical Processing	
		(c) Mining Online Analytical Program	
		(d) Mining Operational Analytical Processing	
Q.2	i.	What is Data Mart?	2
۷.2	ii.	Define data warehouse. Explain the data warehouse architecture with	3
		diagram.	
	iii.	Briefly explain different types of sources used in data warehouse from	5
		where data can be extracted.	
OR	iv.	Explain the star and snowflake schema of data warehouse.	5
Q.3	i.	What is data cleaning? Describe the approaches to fill missing values	4
		and noisy data.	
	ii.	Describe challenges to data mining regarding data mining	6
		methodology and user interaction issues.	
OR	iii.	Explain KDD process with the help of a diagram.	6

Q.4	Attempt any	two:

With the help of decision tree find means of predicting which company 5 profiles will lead to a increase or decrease in profits based on the following data:

Age	Competition	Type	Profit
Old	Yes	Software	Down
Old	No	Software	Down
Old	No	Hardware	Down
Mid	Yes	Software	Down
Mid	Yes	Hardware	Down
Mid	No	Hardware	Up
Mid	No	Software	Up
New	Yes	Software	Up
New	No	Hardware	Up
New	No	Software	Up

Profit is class attribute.

ii. A database has five transactions. Let minimum support=60% and minimum confidence=80%.

TID ITEMS_BOUGHT

T100 {M, O, N, K, E, Y}

T200 {D, O, N, K, E, Y}

T300 {M, A, K, E}

T400 {M, U, C, K, Y}

T500 {C, O, R, K, I, E}

Find all frequent itemsets using Apriori algorithm.

iii. Define FP-Growth algorithm with suitable example.

Define Clustering. What are the requirements for cluster analysis? Q.5 i.

Explain DBSCAN algorithm with suitable example.

OR iii. Suppose we have the following points: (1,1), (2,4), (3,4), (5,8), (6,2), 6 (7,8). Use k - means algorithm (k = 2) to find two cluster. The distance function is Euclidean distance.

Q.6 Attempt any two:

Describe typical OLAP operations with diagram.

Differentiate between OLTP and OLAP.

iii. Explain types of OLAP.

5

5

4

5

Marking Scheme IT3ED02 Data Mining and Warehousing

Q.1	i)	Snow flake schema has table(s). (b) Sub-dimension	1
	ii)	According to Inmon, a data warehouse is a subject-oriented, integrated, time-variant, and collection of data. a) Non-volatile	1
	iii)	The KDD is abbreviation for (b) Knowledge Discovery in Databases	1
	iv)	The various aspects of data mining methodologies is/are I. Mining various and new kinds of knowledge. II. Mining knowledge in multidimensional space. III. Pattern evaluation and pattern or constraint-guided mining. IV. Handling uncertainty, noise, or incompleteness of data. (d) All I, II, III and IV	1
	v)	Confidence (A>B) = Support (A U B) / (a) Support (A)	1
	vi)	What do you mean back propagation? (b) It is the transmission of error back through the network to allow weights to be adjusted so that the network can learn	1
	vii)	K-means is an example of (c) Clustering	1
	viii)	is a clustering procedure characterized by the development of a tree-like structure. (b) Hierarchical clustering	1
	ix)	Which of the following operations is not an OLAP operation? (d) Zoom-in	1
	x)	MOLAP stands for: (b) Multidimensional Online Analytical Processing	1
Q.2	i.	What is Data Mart? 2 marks	2
	ii.	Define Data Warehouse. Explain the data warehouse architecture with diagram. Data Warehouse Definition: Data warehouse architecture: 1 mark 2 marks	3
	iii.	Briefly explain different types of sources used in Data Warehouse from where data can be extracted. 5 types: 5 marks	5
OR	iv.	Explain the Star and Snowflake schema of Data Warehouse. Star schema: 2.5 marks	5

		Snowflake scher	na:		2.5 marks	
Q.3	i.	What is Data Cleaning? Describe the approaches to fill missing				4
(13		values and noisy	_		8	-
		Data Cleaning:			1.5 Marks	
		Approaches:			2.5 Marks	
	ii.	Describe challe	nges to Data	Mining regarding	ng data mining	6
		methodology and	d user interaction	issues.		
		Challenges:			4 Marks	
		User interaction			2 Marks	
OR	iii.	Explain KDD pr	ocess with the he	elp of a diagram.		6
		Diagram:			2 Marks	
		KDD Explanation	n:		4 Marks	
Q.4	i.	-		<u>-</u>	predicting which	5
				a increase or de	crease in profits	
		based on the foll	owing data:			
			Г	T		
		Age	Competition	Type	Profit	
		Old	Yes	Software	Down	
		Old	No	Software	Down	
		Old	No	Hardware	Down	
		Mid	Yes	Software	Down	
		Mid	Yes	Hardware	Down	
		Mid	No	Hardware	Up	
		Mid	No	Software	Up	
		New	Yes	Software	Up	
		New	No	Hardware	Up	
		New	No	Software	Up	
		Profit is class attribute.				
		2 Marks for calculating information gain for 3 attributes				
		2 Marks for calculating 2nd level splitting attribute				
		1 Mark for drawing the tree A database has five transactions. Let minimum support=60% and 5				_
	ii.			Let minimum su	pport=60% and	5
		minimum confidence=80%.				
		TID ITEMS_BC				
		T100 {M, O, N,				
		T200 {D, O, N, K, E, Y }				
		T300 {M, A, K, E}				
		T400 {M, U, C,	, ,			
		T500 {C, O, R, I	Λ, I, E}			

	Find all frequent itemsets using Apriori algorithm.	
	Support Calculation: 3 marks	
	Confidence: 2 marks	
iii.	Define FP-Growth Algorithm with suitable example.	5
	FP-Growth Algorithm: 2 Marks	
	Example: 3 marks	
i.	Define Clustering. What are the requirements for cluster analysis?	4
	<u> </u>	
ii.		6
	DBSCAN: 2 marks	
	Algorithm: 4 marks	
iii.	Suppose we have the following points: (1,1), (2,4), (3,4), (5,8),	6
	(6,2), $(7,8)$. Use k - means algorithm (k = 2) to find two cluster.	
	The distance function is Euclidean distance.	
	Stepwise marking: 6 marks	
	Attempt any two:	
i.	Describe typical OLAP operations with diagram.	5
	5 Operations: 1 mark for each	
ii.	Differentiate between OLTP and OLAP: 1 mark for each	5
	difference.	
iii.	Explain types of OLAP.	5
	ROLAP: 2 marks	
	MOLAP: 2 marks	
	HOLAP: 1 mark	
	i. ii. iii.	Support Calculation: Confidence: 2 marks iii. Define FP-Growth Algorithm with suitable example. FP-Growth Algorithm: 2 Marks Example: 3 marks i. Define Clustering. What are the requirements for cluster analysis? Clustering: 2 marks Requirements: 2 marks ii. Explain DBSCAN Algorithm with suitable example. DBSCAN: Algorithm: 4 marks iii. Suppose we have the following points: (1,1), (2,4), (3,4), (5,8), (6,2), (7,8). Use k - means algorithm (k = 2) to find two cluster. The distance function is Euclidean distance. Stepwise marking: 6 marks Attempt any two: i. Describe typical OLAP operations with diagram. 5 Operations: 1 mark for each ii. Differentiate between OLTP and OLAP: 1 mark for each difference. iii. Explain types of OLAP. ROLAP: ROLAP: ROLAP: 2 marks MOLAP: 2 marks
