| Last name  |  |
|------------|--|
| First name |  |

## LARSON—MATH 610—CLASSROOM WORKSHEET 19 Linear Transformations.

## Concepts & Notation

- (Sec. 3.1) linear transformation, rank, nullity.
- (Sec. 3.2) L(V, W), linear operator, invertible linear transformation, non-singular linear transformation.

## Review

1. (Rank-Nullity Theorem:) If V is a finite-dimensional vector space and T is a linear transformation from V to a vector space W then rank(T) + nullity(T) = dim(V).

New

2. (Claim:) If  $\alpha_1, \ldots, \alpha_n$  are a basis for a finite-dimensional vector space V and  $\beta_1, \ldots, \beta_n$  are any vectors in a vector space W then there is a *unique* linear transformation T with  $T(\alpha_1) = \beta_1, \ldots, T(\alpha_n) = \beta_n$ .

3. (Claim:) If A is an  $m \times n$  matrix with entries in the field  $\mathbb{F}$ , then the row rank of A equals its column rank.

