9318 Assignment

Name: FUDI ZHENG

ID:5126586

Question 1:

1.

0	location	time	item	quantity
1	Sydney	2005	PS2	1400
2	Sydney	2006	PS2	1500
3	Sydney	2006	Wii	500
4	Sydney	2005	ALL	1400
5	Sydney	2006	ALL	2000
6	Sydney	ALL	PS2	2900
7	Sydney	ALL	Wii	500
8	Sydney	ALL	ALL	3400
9	Melbourne	2005	XBox 360	1700
10	Melbourne	2005	ALL	1700
11	Melbourne	ALL	XBox 360	1700
12	Melbourne	ALL	ALL	1700
13	ALL	2005	PS2	1400
14	ALL	2006	PS2	1500
15	ALL	2006	Wii	500
16	ALL	2005	XBox 360	1700
17	ALL	ALL	PS2	2900
18	ALL	ALL	Wii	500
19	ALL	ALL	XBox 360	1700
20	ALL	2005	ALL 3100	

21	ALL	2006	ALL	2000
22	ALL	ALL	ALL	5100

2.

SELECT Location, Time, Item, SUM(Quantity)

From sales

Group By Location, Time, Item with rollup

Union

SELECT Location, Time, Item, SUM(Quantity)

From sales

Group By Item, Location, Time with rollup

Union

SELECT Location, Time, Item, SUM(Quantity)

From sales

Group By Time, Item, Location with rollup

3.

Location	Time	Item	Quantity 2000	
Sydney	2006	ALL		
Sydney	ALL	PS2	2900	
ALL	ALL	PS2	2900	
ALL	2005	ALL	3100	
ALL	2006	ALL	2000	
Sydney	ALL	ALL	3400	
ALL	ALL	ALL	5100	

4. $f(Location, Time, Item) = (3 * Location + Time) * 4 + Item \\ Step 1:$

Location	Time	Item	Quantity	
1	1	1	1400	
1	2	1	1500	
1	2	3	500	
2	1	2	1700	
1	1	0	1400	
1	2	0	2000	
2	1	0	1700	
1	0	1	2900	
1	0	3	500	
2	0	2	1700	
0	1	1	1400	
0	2	1	1500	
0	2	3	500	
0	1	2	1700	
0	0	1	2900	
0	0	3	500	
0	0	2	1700	
0	1	0	3100	
0	2	2 0 2000		
1	0	0	3400	
2	0	0	1700	
0	0	0	5100	

Step 2:

Offset	Quantity	Offset	Quantity	MD Array
17	1400	0	5100	5100
21	1500	1	2900	2900
23	500	2	1700	1700
30	1700	3	500	500
16	1400	4	3100	3100
20	2000	5	1400	1400
28	1700	6	1700	1700
13	2900	8	2000	2000
15	500	9	1500	1500
26	1700	11	500	500
5	1400	12	3400	3400
9	1500	13	2900	2900
11	500	15	500	500
6	1700	16	1400	1400
1	2900	17	1400	1400
3	500	20	2000	2000
2	1700	21	1500	1500
4	3100	23	500	500
8	2000	24	1700	1700
12	3400	26	1700	1700
24	1700	28	1700	1700
0	5100	30	1700	1700

Question 2:

1.

The naive bayes classifier is:

$$f(x) = argmax_{x \in \{C_j\}} \prod_{i=1}^{n} P(k_i | C_j) \cdot P(C_j)$$

Each feature only have two value(0 and 1). when the feature value is 0:

$$f(x = 0) = \prod_{i=1}^{n} P(k_i | C_0) \cdot P(C_0)$$

Each feature only have two value(0 and 1). when the feature value is 1:

$$f(x = 1) = \prod_{i=1}^{n} P(k_i|C_1) \cdot P(C_1)$$

so
$$f(x) = f(x = 0) - f(x = 1)$$

$$f(x) = \prod_{i=1}^{n} P(k_i \middle| C_0) \cdot P(C_0) - \prod_{i=1}^{n} P(k_i | C_1) \cdot P(C_1)$$

if f(x = 0) - f(x = 1) > 1, f(x) will be classified to 1.

if f(x = 0) - f(x = 1) < 1, f(x) will be classified to 0.

because $k_i \in \{\text{0, 1}\},\ k_1 = \text{1} - k_0$, the function could be:

$$f(x) = \sum_{i=1}^{n} \log \frac{P(k_i|C_0)}{(1 - P(k_i|C_0))} + 2 \cdot \log(P(C_0)) - 1$$

Let

$$x_i = \log \frac{P(k_i|C_0)}{\left(1 - P(k_i|C_0)\right)}$$
$$x_0 = 2 \cdot \log(P(C_0)) - 1$$

It will equal the vector w_i in binary classification. so they are the same. Because it has x_i (actually it should be w_i), the total dimension will be n + 1. Input x_i should always equals 1 or 0.

2.

For Naïve Bayes classifier, w_{NB} can be learned by calculating the values of P(y) and P(x|y), which can be estimated from frequency counts of training data and this is not that difficult, while for Logistic Regression classifier, it is less restrictive and w_{LR} is chosen arbitrarily and thus requires a full search over the linear space of possible models. The data requirement for learning w_{LR} is O(n), while it is $O(\log n)$ for learning w_{NB} . Therefor Logistic Regression converges slower to its asymptotic accuracy than Naïve Bayes, and learning w_{NB} is much easier than learning w_{LR} .

Question 3:

1.

The loss function of Logistic Regression , the probability P(y=0|x)

$$P(y = 1 | x) = \frac{1}{1 + e^{-w^{T}x}}$$

The loss function of Logistic Regression , the probability P(y=1|x)

$$P(y = 0 | x) = 1 - \frac{1}{1 + e^{-w^{T}x}}$$

the loss function is

$$l(w) = \sum_{i=1}^{n} y_i * ln\left(\sigma(w^T x_i)\right) + (1 - y_i) * ln\left(1 - \sigma(w^T x_i)\right)$$

this can drives(prove process):

$$l(w) = \sum_{i=1}^{n} y_i * \ln(\sigma(w^T x_i)) + (1 - y_i) * \ln(1 - \sigma(w^T x_i))$$

$$= \sum_{i=1}^{n} y_i * \ln\left(\frac{1}{1 + e^{z_i}}\right) + (1 - y_i) * \ln\left(1 - \frac{1}{1 + e^{z_i}}\right)$$

$$= \sum_{i=1}^{n} -y_i * \left(\ln\frac{e^{z_i}}{1 + e^{z_i}} - \ln\frac{1}{1 + e^{z_i}}\right) - \ln\left(\frac{1 + e^{z_i}}{e^{z_i}}\right)$$

$$= \sum_{i=1}^{n} -y_i * z_i - \ln(1 + e^{-z_i})$$

$$= \sum_{i=1}^{n} y_i * w^T x_i - \ln(1 + \exp(w^T x_i))$$

because of minimized the loss function equals maximized log-likelihood (loss function=-log likelihood)

 $\sum_{i=1}^{n} -y_i * w^T x_i + \ln (1 + \exp (w^T x_i))$ is the loss function for logistic regression that we want to prove.

The loss function of Logistic Regression:

$$loss(f(w^{T}x), y) = -log(f(w^{T}x))$$
 if $y = 1$

$$loss(f(w^Tx), y) = -\log(1 - f(w^Tx)) \quad \text{if } y = 0$$

the loss function of the total dataset is:

$$l(w) = \sum_{i=1}^{n} -y_i * log(f(w^Tx_i)) - (1 - y_i) * log(1 - y_i) + log(1 - y$$

$$f(w^{T}X_{i})) = \sum_{i=1}^{n} y_{i} * \left(\log \frac{1 - f(w^{T}x)}{f(w^{T}x)}\right) - \log (1 - f(w^{T}x))$$