Squeezed states of waveguided sources with varying brightnesses are partially distinguishable

POLYTECHNIQUE MONTRÉAL **TECHNOLOGICAL** UNIVERSIT

Martin Houde, Nicolás Quesada, École Polytechnique de Montréal, Montréal, Canada.

MOTIVATIONS

Recent Gaussian Boson Sampling experiments have set out to prove quantum computational advantage using squeezed light sources with mean number of photons ranging from $\langle N_S \rangle \sim 3$ to $\langle N_S \rangle \sim 10$.

We provide a physical mechanism to explain partial distinguishability as well as variations in mean photon number by investigate the temporal mode structure of squeezed light generated

- Identical χ^2 nonlinear crystals.
- Identical pump profiles.
- Varying pump intensities.

MODEL: TWIN BEAM GENERATION IN WAVEGUIDES

- Classical pump
- Ignore self and cross-phase modulation
- Poling to induce Gaussian phase-matching function

$$\frac{\partial}{\partial z}a_{s}(z,\omega) = i\left(\frac{1}{v_{s}} - \frac{1}{v_{p}}\right)(\omega - \bar{\omega}_{s})a_{s}(z,\omega) + i\frac{\gamma_{SPDC}g(z)}{\sqrt{2\pi}}\int d\omega'\beta(\omega + \omega')a_{i}^{\dagger}(z,\omega')$$

$$\frac{\partial}{\partial z}a_{i}^{\dagger}(z,\omega) = -i\left(\frac{1}{v_{i}} - \frac{1}{v_{p}}\right)(\omega - \bar{\omega}_{i})a_{i}^{\dagger}(z,\omega) - i\frac{\gamma_{SPDC}g(z)}{\sqrt{2\pi}}\int d\omega'\beta^{*}(\omega + \omega')a_{s}(z,\omega')$$

g(z): Poling function

 $\beta(\omega)$:Pump envelope

EXPERIMENTAL REALIZATION

- PPKTP Crystals
- Gaussian Boson Sampling Experiments

Han-Sen Zhong et al., Phys.Rev.Lett. 127. 180502 (2021)

JOINT SPECTRAL AMPLITUDE AND SPECTRAL PURITY

Decrease in Spectral Purity

- Schmidt number increases with gain.
- Decrease in spectral purity.
- Still very close to unity.

TEMPORAL MODE STRUCTURE AND FIDELITY

Temporal modes at different brightnesses

- Temporal modes at different brightnesses can differ greatly.
- Fidelity between temporal modes of different brightness < 1.
- States are distinguishable.

FILTERING AND PURITY

- Commonly used to decrease distinguishability.
- Increases Fidelity.

CONCLUSIONS AND OUTLOOKS

- Varying pump intensities lead to temporal phase mismatch and partial distinguishability
- Filtering decreases distinguishability at the cost of decreasing purity.
- Considered only a single pass through crystal.
- How are the outcomes modified with double or multiple passes?

• Brighter modes incur greater purity loss.