Aufgabe 1.2

1. Für $\mathcal{A} \implies (\mathcal{B} \wedge \mathcal{C})$ gilt folgender Wahrheitstafel:

\mathcal{A}	$\mid \mathcal{B} \mid$	\mathcal{C}	$(\mathcal{B} \wedge \mathcal{C})$	$A \implies (\mathcal{B} \wedge \mathcal{C})$
W	W	W	W	W
W	w	f	f	f
W	f	w	f	f
W	f	f	f	f
f	w	w	w	W
f	w	f	f	W
f	f	w	f	W
f	f	f	f	W

Für $(\mathcal{A} \implies \mathcal{B}) \wedge (\mathcal{A} \implies \mathcal{C})$ gilt folgende Wahrheitstafel:

\mathcal{A}	$\mid \mathcal{B} \mid$	\mathcal{C}	$(\mathcal{A} \implies \mathcal{B})$	$(\mathcal{A} \implies \mathcal{C})$	$\big \ (\mathcal{A} \implies \mathcal{B}) \land (\mathcal{A} \implies \mathcal{C}) \ $
w	w	w	W	W	w
w	w	f	w	f	f
w	f	w	f	W	f
w	f	f	f	f	f
\mathbf{f}	w	w	w	W	W
f	w	f	w	W	w
f	f	w	w	W	w
\mathbf{f}	f	f	w	W	w

Die letzte Spalte ist in beiden Wahrheitstafeln identisch, also sind die beiden Aussagen logisch äquivalent.

2. Für $\mathcal{A} \implies (\mathcal{B} \vee \mathcal{C})$ gilt folgende Wahrheitstafel:

\mathcal{A}	$\mid \mathcal{B} \mid$	\mathcal{C}	$(\mathcal{B} \lor \mathcal{C})$	$A \implies (B \lor C)$
w	w	w	W	w
\mathbf{w}	w	f	W	w
\mathbf{w}	f	w	W	w
W	f	f	f	f
\mathbf{f}	w	w	W	w
\mathbf{f}	w	f	W	W
f	f	w	w	w
f	f	f	f	w

Für $(\mathcal{A} \implies \mathcal{B}) \vee (\mathcal{A} \implies \mathcal{C})$ gilt folgende Wahrheitstafel:

\mathcal{A}	$\mid \mathcal{B} \mid$	\mathcal{C}	$(\mathcal{A} \implies \mathcal{B})$	$(\mathcal{A} \implies \mathcal{C})$	$\big \; (\mathcal{A} \implies \mathcal{B}) \vee (\mathcal{A} \implies \mathcal{C}) \;$
W	w	W	W	W	w
W	w	f	w	f	w
W	f	w	f	W	w
W	f	f	f	f	f
\mathbf{f}	w	w	w	W	w
\mathbf{f}	w	f	w	W	w
f	f	w	w	W	w
f	f	f	w	w	W

Die letzte Spalte ist in beiden Wahrheitstafeln identisch, also sind die beiden Aussagen logisch äquivalent.

Aufgabe 1.3

Es fällt auf, dass SA aus A dadurch entsteht, dass nacheinander folgende elementare Zeilenumformungen an A vorgenommen werden.

- 1. von Zeile 1 wird das 3-fache von Zeile 3 abgezogen
- 2. von Zeile 2 wird das 8-fache von Zeile 3 abgezogen
- 3. Zeile 1 und Zeile 2 werden vertauscht

Man erhält die gesuchte Matrix S, indem man die Elementarmatrizen, die diese Transformationen bewerkstelligen, miteinander multipliziert:

$$S = P_{12}T_{23}(-8)T_{13}(-3)$$

$$= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -8 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & -8 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 & -8 \\ 1 & 0 & -3 \\ 0 & 0 & 1 \end{pmatrix}$$

Mit
$$S = \begin{pmatrix} 0 & 1 & -8 \\ 1 & 0 & -3 \\ 0 & 0 & 1 \end{pmatrix}$$
 ist $SA = \begin{pmatrix} 6 & 7 & 0 & 9 & 10 \\ 1 & 2 & 0 & 4 & 5 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$

Aufgabe 1.4

- 1. Sei $x \in \mathbb{K}$, dann gilt $\begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} \in M_{22}(\mathbb{K})$ und es ist $f(\begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}) = x + 0 = x$ Jedes $x \in \mathbb{K}$ besitzt also ein Urbild unter f, also ist f surjektiv.
- 2. Sei $x \in \mathbb{K}$. Es sind $A = \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}$ und $B = \begin{pmatrix} 0 & 0 \\ 0 & x \end{pmatrix}$ verschiedene Elemente in $M_{22}(\mathbb{K})$ Es gilt f(A) = f(B) = x Es folgt, dass f nicht injektiv ist.
- 3. Sei $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ und $B = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ Dann gilt:

$$f(AB) = f(\begin{pmatrix} a \cdot a' + b \cdot c' & a \cdot b' + b \cdot d' \\ c \cdot a' + d \cdot c' & c \cdot b' + d \cdot d' \end{pmatrix}) = (a \cdot a' + b \cdot c') + (c \cdot b' + d \cdot d') \neq (a + d) \cdot (a' + d') = f(A) \cdot f(B)$$

Die Behauptung 3. ist also falsch.

4. Sei $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ und $B = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ Dann gilt:

$$f(A+B) = f(\begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix}) = (a+a'+d+d') = (a+d) + (a'+d') = f(A) + f(B)$$

Behauptung 4. ist also richtig.

5. Sei $A = \begin{pmatrix} r & s \\ t & u \end{pmatrix}$

Dann gilt:

$$f(aA) = f\begin{pmatrix} ar & as \\ at & au \end{pmatrix} = ar + au = a(r+u) = af(A)$$

Behauptung 5. ist also richtig.

Aufgabe 1.5

1. Falls A invertierbar ist, muss gelten:

$$A \cdot A^{-1} = I_3$$

Wobei für I_3 gilt:

 $I_3 = (c_{ij}) \in M_m m(\mathbb{K})$ mit $c_{ii} = 1$ für alle $1 \le i \le m$ und $c_{ij} = 0$ für alle $i \ne j$ Ist nun die k-te Zeile von A eine Nullzeile und sei $A = (a_{ij}), A^{-1} = (b_{ij})$ und $C = (c_{ij}),$ dann gilt für das Matrizenprodukt $AA^{-1} = C$:

$$c_{kk} = \sum_{j=1}^{m} a_{kj} b_{jk} = \sum_{j=1}^{m} 0 \cdot b_{jk} = 0$$

Wenn $c_{kk} = 0$ ist, kann C nicht die Einheitsmatrix sein. Es folgt, dass A nicht invertierbar ist.

Ist nun die k-te Spalte von A eine Nullspalte, und sei wieder $A = (a_{ij}), A^{-1} = (b_{ij})$ und $C = (c_{ij})$, dann gilt für das Matrizenprodukt $A^{-1}A = C$:

$$c_{kk} = \sum_{j=1}^{m} b_{kj} a_{jk} = \sum_{j=1}^{m} b_{jk} \cdot 0 = 0$$

Auch hier ist also $c_{kk} = 0$ und C kann nicht die Einheitsmatrix sein: Es folgt, dass A nicht invertierbar ist, wenn A eine Nullspalte hat.

2. Sei $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

Angenommen, A sei invertierbar, dann gibt es eine Matrix $A^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{22}(\mathbb{K})$, so dass gilt:

$$AA^{-1} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ a+c & b+d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Da nicht gleichzeitig a + c = 1 und a + c = 0 gelten kann, folgt, dass es keine Matrix A^{-1} mit $AA^{-1} = I_2$ gibt.

Aufgabe 1.6

1. Es gilt $\sum_{i=1}^{n} i(i+2) = \frac{n(n+1)(2n+7)}{6}$ für alle $n \in \mathbb{N}$. Induktionsanfang: Sei $n_0 = 1$. Dann gilt $1(1+2) = 3 = \frac{1(1+1)(2\cdot 1+7)}{6}$

Induktionsannahme: Für ein $n \in \mathbb{N}$ gilt $\sum_{i=1}^{n} i(i+2) = \frac{n(n+1)(2n+7)}{6}$

Induktionsschritt: Zu zeigen ist

$$\sum_{i=1}^{n} i(i+2) = \frac{n(n+1)(2n+7)}{6} \Rightarrow \sum_{i=1}^{n+1} i(i+2) = \frac{(n+1)(n+2)(2(n+1)+7)}{6} = \frac{(n+1)(2n^2+13n+18)}{6}$$

Es gilt

$$\begin{split} \sum_{i=1}^{n+1} i(i+2) &= \sum_{i=1}^{n} i(i+2) + (n+1)(n+3) \\ &= \frac{(n)(n+1)(2n+7)}{6} + \frac{6(n+1)(n+3)}{6} \\ &= \frac{(n+1)((n(2n+7)+6(n+3))}{6} \\ &= \frac{(n+1)(2n^2+7n+6n+18)}{6} \\ &= \frac{(n+1)(2n^2+13n+18)}{6} \end{split}$$

Mit dem Prinzip der vollständigen Induktion folgt, dass $\sum_{i=1}^{n} i(i+2) = \frac{n(n+1)(2n+7)}{6}$ für alle $n \in \mathbb{N}$ gilt.

2. Es gilt $\sum_{i=1}^{n} a^{i-1} = \frac{a^n-1}{a-1}$ für alle $n \in \mathbb{N}$ und alle $a \in \mathbb{R} \setminus \{0,1\}$. Induktionsanfang: Sei $n_0 = 1$. Dann gilt $a^0 = 1 = \frac{a^1-1}{a-1}$

Induktionsannahme: Für ein $n \in \mathbb{N}$ gilt $\sum_{i=1}^n a^{i-1} = \frac{a^n-1}{a-1}$

Induktionsschritt: Zu zeigen ist

$$\sum_{i=1}^{n} a^{i-1} = \frac{a^n - 1}{a - 1} \Rightarrow \sum_{i=1}^{n+1} a^{i-1} = \frac{a^n}{a - 1}$$

Es gilt

$$\sum_{i=1}^{n+1} a^{i-1} = \sum_{i=1}^{n} a^{i-1} + a^{n}$$

$$= \frac{a^{n} - 1}{a - 1} + a^{n}$$

$$= \frac{a^{n} - 1 + a^{n}(a - 1)}{a - 1}$$

$$= \frac{a^{n} - 1 + a^{n+1} - a^{n}}{a - 1}$$

$$= \frac{a^{n+1} - 1}{a - 1}$$

Mit dem Prinzip der vollständigen Induktion folgt, dass $\sum_{i=1}^{n} a^{i-1} = \frac{a^n - 1}{a-1}$ für alle $n \in \mathbb{N}$ und alle $a \in \mathbb{R} \setminus \{0, 1\}$ gilt.