CS388T Project: Karp-Lipton Style Theorems

Maruth Goyal

UT Austin

Spring 2020

Table of Contents

- Introduction
- 2 Interactive Proofs
- PP and more
- 4 Lower bounds for P^{NF}
- 6 Algebraization

Until about 70s, primary way to show lower bounds was by considering Turing Machines as black boxes.

- Until about 70s, primary way to show lower bounds was by considering Turing Machines as black boxes.
- Baker, Gill, and Solovay [Baker et al., 1975] introduced the relativization barrier

- Until about 70s, primary way to show lower bounds was by considering Turing Machines as black boxes.
- Baker, Gill, and Solovay [Baker et al., 1975] introduced the relativization barrier
- This created the need for a computation model which is more "explicit"

- Until about 70s, primary way to show lower bounds was by considering Turing Machines as black boxes.
- Baker, Gill, and Solovay [Baker et al., 1975] introduced the relativization barrier
- This created the need for a computation model which is more "explicit"
- Enter: circuits

 Circuits act as a low-level model of computation, everything is at the bit level

- Circuits act as a low-level model of computation, everything is at the bit level
- They let us be more explicit about our constructions

- Circuits act as a low-level model of computation, everything is at the bit level
- They let us be more explicit about our constructions
- Have proven to be very useful method for analyzing computational complexity.

• Many big results over the years, PARITY \notin AC⁰, NEXP $\not\subset$ ACC⁰, . . .

- **1** Many big results over the years, PARITY \notin AC⁰, NEXP $\not\subset$ ACC⁰, . . .
- We focus on circuit lower bounds for complexity classes

- **1** Many big results over the years, PARITY \notin AC⁰, NEXP $\not\subset$ ACC⁰, . . .
- We focus on circuit lower bounds for complexity classes
- In particular, the role of Karp-Lipton style theorems in proving these bounds

Karp-Lipton Theorem I

Recall:

Theorem

[Karp and Lipton, 1980] If NP \subseteq P/poly then $\Pi_2 = \Sigma_2$, and thus PH $= \Sigma_2$

Proof.

Simulate $\forall y \exists z \varphi(x, y, z)$ in Σ_2 by guessing the poly-size circuit to generate witnesses for SAT, i.e $\exists C \forall y \varphi(x, y, C(\varphi, x, y))$.

Karp-Lipton Theorem II

From this, we derived Kannan's theorem:

Theorem

[Kannan, 1982] $\Sigma_2 \not\subset \mathsf{SIZE}(n^k)$ for all k > 0

Proof.

If NP $\not\subset$ P/poly, we are done. Otherwise PH = Σ_2 , thus the Σ_3 language $L \notin \mathsf{SIZE}(n^k)$ is in Σ_2 .

Karp-Lipton Theorems

① General framework: If $C \in P/poly$, the a "big" class collapses down to C, but PH doesn't have poly-size circuits

Karp-Lipton Theorems

- General framework: If $C \in P/poly$, the a "big" class collapses down to C, but PH doesn't have poly-size circuits
- Turns out, very useful framework. Used to prove
 - PP $\not\subset$ SIZE(n^k) [Vinodchandran, 2005]
 - PP does not have poly-size quantum circuits, even with quantum advice [Aaronson, 2006]
 - **③** Promise MA $\not\subset$ SIZE(n^k) [Santhanam, 2009]
 - MA_{EXP}
 ⊄ P/poly
 - **⑤** ...

Karp-Lipton Theorems

- General framework: If $C \in P/poly$, the a "big" class collapses down to C, but PH doesn't have poly-size circuits
- Turns out, very useful framework. Used to prove
 - PP $\not\subset$ SIZE(n^k) [Vinodchandran, 2005]
 - PP does not have poly-size quantum circuits, even with quantum advice [Aaronson, 2006]
 - **③** Promise $MA \not\subset SIZE(n^k)$ [Santhanam, 2009]
 - MA_{EXP}
 ⊄ P/poly
 - **⑤** ...
- Even "unavoidable" in a sense

Theorem

 $\mathsf{P}^\mathsf{NP} \not\subset \mathsf{SIZE}(n^k)$ iff $\mathsf{NP} \subset \mathsf{P}/\mathrm{poly} \implies \mathsf{PH} = \mathrm{i.o.} - \mathsf{P}_{/n}^\mathsf{NP}$ [Chen et al., 2019]

Table of Contents

- Introduction
- 2 Interactive Proofs
- PP and more
- 4 Lower bounds for P^{NF}
- 6 Algebraization

Results about MA

• This framework has been used to prove a bunch of results for MA and its friends.

Theorem

If $NP \subseteq P/poly$ then AM = MA [Arvind et al., 1995]

Proof Sketch

A formulation for AM is $x \in L \implies \Pr[\exists y \; M(x,y,z) = 1] \geq 2/3$, and similarly for MA, $x \in L \implies \exists y \; \Pr[M(x,y,z) = 1] \geq 2/3$. Expression inside brackets AM is essentially an NP language. Reduce to SAT, replace condition with guessed poly-size circuit. et voila, MA.

Results about MA

Theorem

Promise – MA $\not\subset$ SIZE (n^k) [Santhanam, 2009]

Lemma

 $\mathsf{MA}/\mathit{O}(n) \not\subset \mathsf{SIZE}(n^k) \implies \mathrm{Promise} - \mathsf{MA} \not\subset \mathsf{SIZE}(n^k)$

Results about MA

Theorem

Promise – MA $\not\subset$ SIZE (n^k) [Santhanam, 2009]

Lemma

 $\mathsf{MA}/\mathit{O}(n) \not\subset \mathsf{SIZE}(n^k) \implies \mathrm{Promise} - \mathsf{MA} \not\subset \mathsf{SIZE}(n^k)$

Proof Sketch

Pick language L and MA machine M that takes cn advice that solves it. Define promise problem X. Promise not satisfied if $|x| \neq (c+1)n$ for some n. U_{YES} if M outputs yes with first n bits as input, and next cn bits as advice, otherwise U_{NO} . If poly size circuits $\{C_n\}$ for X, then construct poly-size circuit for L by padding x with correct advice and passing to $\{C_n\}$. Contradiction.

Table of Contents

- PP and more

Results about PP

Theorem

 $PP \not\subset SIZE(n^k)$ [Vinodchandran, 2005]

Proof.

```
If \mathsf{PP} \not\subset \mathsf{P/poly}, done. Otherwise \mathsf{PP} \subset \mathsf{P/poly} \Longrightarrow \mathsf{PP} \subseteq \mathsf{MA}. From Toda's theorem, \mathsf{PH} \subseteq \mathsf{BP} \cdot \mathsf{PP}, thus \mathsf{PH} \subseteq \mathsf{BP} \cdot \mathit{MA} = \mathit{AM}. But \mathsf{AM} = \mathsf{MA} under assumption. So \mathsf{PH} = \mathsf{MA}, but \mathsf{PH} \not\subset \mathsf{SIZE}(n^k). Thus, \mathsf{MA} \not\subset \mathsf{SIZE}(n^k). But \mathsf{MA} \subset \mathsf{PP}, so \mathsf{PP} \not\subset \mathsf{SIZE}(n^k).
```

Vinodachandran's proof kind of unsatisfactory.

- Vinodachandran's proof kind of unsatisfactory.
- Aaronson's proof constructs explicit languages to show P^{PP} doesn't have poly size [quantum] circuits.

- Vinodachandran's proof kind of unsatisfactory.
- Aaronson's proof constructs explicit languages to show P^{PP} doesn't have poly size [quantum] circuits.
- Remarkably, language for classical circuits extends almost directly to quantum equivalent.

- Vinodachandran's proof kind of unsatisfactory.
- Aaronson's proof constructs explicit languages to show P^{PP} doesn't have poly size [quantum] circuits.
- Remarkably, language for classical circuits extends almost directly to quantum equivalent.
- Finish proof with "Quantum Karp-Lipton" theorem

Theorem

If $PP \subset BQP/\mathrm{poly}$ then QCMA = PP. Likewise, if $PP \subset BQP/\mathrm{qpoly}$ then CH = MA[Aaronson, 2006].

- Vinodachandran's proof kind of unsatisfactory.
- Aaronson's proof constructs explicit languages to show P^{PP} doesn't have poly size [quantum] circuits.
- Remarkably, language for classical circuits extends almost directly to quantum equivalent.
- Finish proof with "Quantum Karp-Lipton" theorem

Theorem

If $PP \subset BQP/\mathrm{poly}$ then QCMA = PP. Likewise, if $PP \subset BQP/\mathrm{qpoly}$ then CH = MA[Aaronson, 2006].

3 Aaronson did demonstrate Vinodachandran's proof does not relativize, by constructing an oracle A such that $PP^A \subseteq SIZE^A(n^k)$.

Table of Contents

- 4 Lower bounds for P^{NP}

This must all be a big co-incidence

- 1 This must all be a big co-incidence
- There is certainly a way to side-step these K-L theorems right? A combinatorial argument, perhaps?

WRONG

Theorem

 $P^{NP} \not\subset SIZE(n^k)$ iff $NP \subset P/\mathrm{poly} \implies PH = \mathrm{i.o.} - P_{/n}^{NP}$ [Chen et al., 2019]

1 $L \in \text{i.o.} - \mathcal{C}$ means there's some language $L' \in \mathcal{C}$ for which there are infinitely many n such that $L_n = L'_n$

Theorem,

 $P^{NP} \not\subset SIZE(n^k)$ iff $NP \subset P/\mathrm{poly} \implies PH = \mathrm{i.o.} - P_{/n}^{NP}$ [Chen et al., 2019]

- **1** $L \in \text{i.o.} \mathcal{C}$ means there's some language $L' \in \mathcal{C}$ for which there are infinitely many n such that $L_n = L'_n$
- ② i.o. $-P_{/n}^{NP}$: Set of languages decidable in P with oracle access to NP, given n bits of advice, infinitely often.

Theorem

 $P^{NP} \not\subset SIZE(n^k)$ iff $NP \subset P/poly \implies PH = i.o. - P_{/n}^{NP}$ [Chen et al., 2019]

Theorem

 $\mathsf{P}^\mathsf{NP} \not\subset \mathsf{SIZE}(n^k) \ \mathit{iff} \ \mathsf{NP} \subset \mathsf{P}/\mathrm{poly} \implies \mathsf{PH} = \mathrm{i.o.} - \mathsf{P}_{/n}^\mathsf{NP}$ [Chen et al., 2019]

Lemma

Suppose there is a k such that for all functions f in FP^NP , f(x) has circuit complexity at most $|x|^k$ for all but finitely many x, then $\mathsf{P}^\mathsf{NP} \subseteq \Sigma_3\mathsf{TIME}[\mathsf{n}^\mathsf{O(k)}]$.

Lower bounds fo<u>r P^{NP}</u>

Theorem

 $P^{NP} \not\subset SIZE(n^k)$ iff $NP \subset P/\mathrm{poly} \implies PH = i.o. - P_{/n}^{NP}$ [Chen et al., 2019]

Lemma

Suppose there is a k such that for all functions f in FP^NP , f(x) has circuit complexity at most $|x|^k$ for all but finitely many x, then $\mathsf{P}^\mathsf{NP} \subseteq \Sigma_3\mathsf{TIME}[\mathsf{n}^\mathsf{O(k)}]$.

Proof of Theorem

Assume $\mathsf{P}^\mathsf{NP} \not\subset \mathsf{SIZE}(n^k)$ and $\mathsf{NP} \subset \mathsf{P/poly}$. Then, $\Sigma_3\mathsf{TIME}[\mathsf{n}^{\mathsf{O}(\mathsf{k})}] \subseteq \mathsf{SIZE}(n^k)$. However, by our first assumption we get $\mathsf{P}^\mathsf{NP} \not\subset \Sigma_3\mathsf{TIME}[\mathsf{n}^{\mathsf{O}(\mathsf{k})}]$.

Lower bounds for PNP

Theorem

 $P^{NP} \not\subset SIZE(n^k)$ iff $NP \subset P/\mathrm{poly} \implies PH = i.o. - P_{/n}^{NP}$ [Chen et al., 2019]

Lemma

Suppose there is a k such that for all functions f in FP^NP , f(x) has circuit complexity at most $|x|^k$ for all but finitely many x, then $\mathsf{P}^\mathsf{NP} \subseteq \Sigma_3\mathsf{TIME}[\mathsf{n}^\mathsf{O(k)}]$.

Proof of Theorem

Assume $\mathsf{P}^\mathsf{NP} \not\subset \mathsf{SIZE}(n^k)$ and $\mathsf{NP} \subset \mathsf{P}/\mathsf{poly}$. Then, $\Sigma_3\mathsf{TIME}[\mathsf{n}^{\mathsf{O}(k)}] \subseteq \mathsf{SIZE}(n^k)$. However, by our first assumption we get $\mathsf{P}^\mathsf{NP} \not\subset \Sigma_3\mathsf{TIME}[\mathsf{n}^{\mathsf{O}(k)}]$. Thus, by the contrapositive of the lemma, for all k there is a function $B \in \mathsf{FP}^\mathsf{NP}$ with circuit complexity at least $|x|^k$ for infinitely many x.

Lower bounds for PNP

Theorem

 $\mathsf{P}^\mathsf{NP} \not\subset \mathsf{SIZE}(n^k)$ iff $\mathsf{NP} \subset \mathsf{P}/\mathrm{poly} \implies \mathsf{PH} = \mathrm{i.o.} - \mathsf{P}_{/n}^\mathsf{NP}$ [Chen et al., 2019]

Proof of Theorem cont'd

From [Köbler and Watanabe, 1998], PH collapses to ZPP^NP under $\mathsf{NP} \subset \mathsf{P/poly}$. We derandomize ZPP^NP in i.o. $-\mathsf{P^{NP}}_{/n}$ by passing in the seed for our PRG (obtained from B) as advice, and using the NP oracle to answer the $\mathsf{ZPP^{NP}}$ oracle queries.

Table of Contents

- Introduction
- 2 Interactive Proofs
- PP and more
- 4 Lower bounds for P^{NF}
- 6 Algebraization

Meta time

KL-theorems seem to be pretty useful

Meta time

- KL-theorems seem to be pretty useful
- Moreover, a lot of the proofs don't relativize, or naturalize

Meta time

- KL-theorems seem to be pretty useful
- Moreover, a lot of the proofs don't relativize, or naturalize
- Uife seems pretty great, right?

WRONG

• Aaronson and Wigderson [Aaronson and Wigderson, 2009] introduced the Algebraization proof Barrier.

• Aaronson and Wigderson [Aaronson and Wigderson, 2009] introduced the Algebraization proof Barrier.

Definition

A separation $\mathcal{C} \not\subset \mathcal{D}$ is said to algebraize if for all oracles A, and their "low-degree extensions" \tilde{A} , $\mathcal{C}^{\tilde{A}} \not\subset \mathcal{D}^{A}$.

② They showed that any proof for NP $\not\subset$ P must be non-algebraizing, as well as for NP $\not\subset$ SIZE(n^k).

• Aaronson and Wigderson [Aaronson and Wigderson, 2009] introduced the Algebraization proof Barrier.

Definition

A separation $\mathcal{C} \not\subset \mathcal{D}$ is said to algebraize if for all oracles A, and their "low-degree extensions" \tilde{A} , $\mathcal{C}^{\tilde{A}} \not\subset \mathcal{D}^{A}$.

- ② They showed that any proof for NP $\not\subset$ P must be non-algebraizing, as well as for NP $\not\subset$ SIZE(n^k).
- Unfortunately, a lot of the proofs mentioned today, do algebraize

The following results algebraize: (non-exhaustive)

- Promise MA $\not\subset$ SIZE (n^k)
- $② \mathsf{MA}_{\mathsf{EXP}} \not\subset \mathsf{P}/\mathrm{poly}$
- \bigcirc PP $\not\subset$ SIZE(n^k)
- 4 . . .

• Still, given all the results seen today seems like KL-theorems are still a powerful framework for circuit lower bounds.

- Still, given all the results seen today seems like KL-theorems are still a powerful framework for circuit lower bounds.
- They might be a smaller part of an overall non-algebraizing proof for future results.

- Still, given all the results seen today seems like KL-theorems are still a powerful framework for circuit lower bounds.
- They might be a smaller part of an overall non-algebraizing proof for future results.
- Solution For the future, interesting if we can get even tighter collapses of PH (for instance, getting rid of the advice, or infinitely-often parts).

- Still, given all the results seen today seems like KL-theorems are still a powerful framework for circuit lower bounds.
- They might be a smaller part of an overall non-algebraizing proof for future results.
- For the future, interesting if we can get even tighter collapses of PH (for instance, getting rid of the advice, or infinitely-often parts).
- PNP seems "barely" above NP, can we get a similar equivalence for something just below PNP?

Questions?

Thank You!

- Aaronson, S. (2006).
 - Oracles are subtle but not malicious.
 - In 21st Annual IEEE Conference on Computational Complexity (CCC'06), pages 15-pp. IEEE.
- Aaronson, S. and Wigderson, A. (2009).

 Algebrization: A new barrier in complexity theory.

 ACM Transactions on Computation Theory (TOCT), 1(1):1–54.
- Arvind, V., Köbler, J., Schöning, U., and Schuler, R. (1995). If np has polynomial-size circuits, then ma= am. *Theoretical Computer Science*, 137(2):279–282.
- Baker, T., Gill, J., and Solovay, R. (1975). Relativizations of the p=?np question. SIAM Journal on computing, 4(4):431–442.
 - Chen, L., McKay, D. M., Murray, C. D., and Williams, R. R. (2019). Relations and equivalences between circuit lower bounds and karp-lipton theorems.

- In 34th Computational Complexity Conference (CCC 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
- Kannan, R. (1982).
 Circuit-size lower bounds and non-reducibility to sparse sets. *Information and control*, 55(1-3):40–56.
- Karp, R. M. and Lipton, R. J. (1980).

 Some connections between nonuniform and uniform complexity classes.
 - In Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, STOC '80, page 302–309, New York, NY, USA. Association for Computing Machinery.
- Köbler, J. and Watanabe, O. (1998).

 New collapse consequences of np having small circuits.

 SIAM Journal on Computing, 28(1):311–324.
- Circuit lower bounds for merlin–arthur classes.

 SIAM Journal on Computing, 39(3):1038–1061.

Santhanam, R. (2009).

Vinodchandran, N. (2005).

A note on the circuit complexity of pp.

Theoretical Computer Science, 347(1-2):415–418.