

SMART SOLAR POWER

OTT KEKIŠEV

project owner

AAP VARE

CHAN WAI TIK JEYHUN ABBASOV **TOFIG BAKHSHIYEV**

team members

The Problem

Time Series Forecast

- Tartu
- Interval Flux Rate on 5min
 - Model Train on 1 hrs avg
- Inference on 5mins interval (Base on the properity of continuous time modelling of birth and death process
- Washing Machine Scheduling

Our Approach

Data

- Estonia Weather Service [1]
- https://meteo.physic.ut.ee
- From 2019 to 2021

2

Independent Variable

- 1st layer cloud coverage
- Wind direction, speed
- Bearing (base on Tartu)
- Distance(base on Tartu)
- 4 surrounding city
- 3 Timelag (pre 3 hrs)

3

Dependent Variable

Next hours avg Flux (MinMaxTransformed to %)

4

Technique

- Physic Informed
 Neural Network [2]
- Simple Birth & death process

Training/Validation Results (hour avg)

Epocs

500 epochs - L1loss

converage - 300 epochs

avg validation loss (0.04) ~ 4% in average (max flux 1132)

	Data
Training	2019
Validation	2020
Testing	2021 until Nov

CPINN Loss Plot

Testing Results on loss (5min Interval -max flux 1132)

All hours(Day+Night)	2019 (77828 rows)	2020 (97837 rows)	2021 (84839)
avg loss	0.024 (2.4%)	0.025 (2.5%)	0.028 (2.8%)
std. deviation	0.05 (5%)	0.05 (5%)	0.057 (5.7%)
median	0.0039 (0.4%)	0.0037 (0.37%)	0.006 (0.6%)
75% quantile	0.028 (2.8%)	0.027 (2.7%)	0.032 (3.2%)
Max	0.735 (73%)	0.8 (80%)	0.8 (80%)

Only Date time	2019	2020	2021
avg loss	0.047 (4.7%)	0.05 (5%)	0.052 (5.2%)
std. deviation	0.0615 (6.15%)	0.069 (6.9%)	0.071 (7.1%)
median	0.029 (3%)	0.029 (3%)	0.030 (3%)
75% quantile	0.056 (5.6%)	0.059 (5.9%)	0.059 (5.9%)
Max	0.735 (73%)	0.8 (80%)	0.8 (80%)

Testing Results on loss (5min Interval -max flux 1132)

Expectations vs Results (Hours avg)

- random selected date
- 24 hours intervals

Expectations vs Results (Hours avg)

- random selected Month, date, hour
- 24 hours intervals

Expectations vs Results (5mins)

- random selected Month, date, hours, mins
- 2 hours intervals

Expectations vs Results (5mins)

- random selected Month, date, hours, mins
- 2 hours intervals

We've learned

Soft Skills

- Out of box thinking
- Make a comporise from different opinions
- How to interact with people from different cultures

Technical Skills

- Pytorch
- Data Mining
- Basic Idea on Time Series Forecast
- Physic Informed Neural Network [2]
- Data Explorartion and Transformation (pandas)

References

[1] Estonia Weather Service

https://www.ilmateenistus.ee/?lang=en

https://meteo.physic.ut.ee/

[2] Physic Informed Neural Network

https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/

https://github.com/jayroxis/PINNs/blob/master/Burgers%20Equation/Burgers%20Inference%20(PyTorch).ipynb

https://maziarraissi.github.io/PINNs/

Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations

Physics Informed Deep Learning (Part II)Data-driven Discovery of Nonlinear Partial Differential Equations

[3] Smart Solar Power Project Source Code

https://github.com/tik65536/2021UTML_Solar

Reference2

hourly flux std. deviation (base on 5mins data) 2019

```
stat[('Irradiation flux', 'std')].describe()
         8453.000000
count
           23.878684
mean
          42.418104
std
min
           0.000000
25%
           0.270648
           3.291532
50%
           31.456848
          347.276330
max
Name: (Irradiation flux, std), dtype: float64
```

Correlation of cloud coverage and flux

Reference3

Correlation of cloud coverage between Tartu, Turi, Voru, Vaike, Vilsandi

1	data2019[[']	[_layer_amo	unt','I_layer	_amount_Turi',	'I_layer_amoun	t_Voru','I_layer
		I_layer_amount	I_layer_amount_Turi	I_layer_amount_Voru	I_layer_amount_Vaike	I_layer_amount_Vilsandi
	I_layer_amount	1.000000	0.605705	0.659917	0.603170	0.538266
L	_layer_amount_Turi	0.605705	1.000000	0.526393	0.660447	0.596965
L	layer_amount_Voru	0.659917	0.526393	1.000000	0.528558	0.486318
l_la	ayer_amount_Vaike	0.603170	0.660447	0.528558	1.000000	0.541491
I_laye	er_amount_Vilsandi	0.538266	0.596965	0.486318	0.541491	1.000000

CPINN model (Data Cube)

Time Encoding (Hrs): Time = Month-1 + hrs*(1/23)

Time Encoding (mins): Time = Month-1 + mins*(1/23/60)

CPINN model (Network Structure) Training

CPINN model (Network Structure) Predict (5mins)

CPINN model (Network Summary)

CNN Summary

```
Training Set birth data len 7067
Validation Set birth data len 7885
CDNN(
  (activation): ReLU()
  (dnn1): Sequential(
    (0): Conv2d(6, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (5): ReLU()
    (6): Flatten(start dim=1, end dim=-1)
    (7): Linear(in_features=1536, out_features=1024, bias=True)
    (8): ReLU()
    (9): Linear(in features=1024, out features=256, bias=True)
    (10): ReLU()
    (11): Linear(in features=256, out features=1, bias=True)
```

MLP Summary

```
Training Set birth data len 7067
Validation Set birth data len 7885
DNN(
  (layers): Sequential(
    (layer 0): Linear(in features=17, out features=40, bias=True)
    (activation 0): ReLU()
    (layer 1): Linear(in features=40, out features=40, bias=True)
    (activation 1): ReLU()
    (layer 2): Linear(in features=40, out features=40, bias=True)
    (activation 2): ReLU()
    (layer 3): Linear(in features=40, out features=40, bias=True)
    (activation 3): ReLU()
    (layer 4): Linear(in features=40, out features=40, bias=True)
    (activation 4): ReLU()
    (layer 5): Linear(in features=40, out features=40, bias=True)
    (activation 5): ReLU()
    (layer 6): Linear(in features=40, out features=40, bias=True)
    (activation_6): ReLU()
    (layer 7): Linear(in features=40, out features=40, bias=True)
    (activation_7): ReLU()
    (layer 8): Linear(in features=40, out features=1, bias=True)
```

CPINN model (B,D,S) 1.5 0.5 -1

CPINN model (B,D,S)

