Aprendizaje Supervisado

Encontrando la solución de regresión

ML-6561

October 31, 2023

Contenido

Masta ahora

- Solución paso a paso
 - Tarea 1
 - Tarea 2
 - Tarea 3

Índice

Masta ahora

- Solución paso a paso
 - Tarea 1
 - Tarea 2
 - Tarea 3

Regresión Lineal

La regresión lineal es un modelo estadístico que busca modelar la relación lineal entre una variable dependiente Y y una o más variables independientes X. En forma matricial, esto se representa como:

$$Y = X\beta + \varepsilon$$

donde:

- Y es el vector de variables dependientes.
- X es la matriz de variables independientes.
- β es el vector de coeficientes.
- ε es el vector de errores.

Mínimos cuadrados ordinarios (OLS)

Notación matricial

$$\min_{\beta} \|y - X\beta\|^2 \tag{1}$$

donde:

 $m{X} \in \mathbb{R}^{?,?}$ Matriz de datos $m{\beta} \in \mathbb{R}^{?,?}$ es el vector de coeficientes, $y \in \mathbb{R}^{?,?}$ es el vector de observacionesi, m es el número de predictores n es el número de observaciones.

Tarea

Encontrar las dimensiones de X, β y y

Mínimos cuadrados ordinarios (OLS)

Notación vectorial

$$\min_{\beta} \sum_{i=1}^{?} (y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2 \tag{2}$$

donde:

 $\mathbf{x}_i \in \mathbb{R}^{?,?}$ es el vector de variables predictoras para la observación i,

 $\beta \in \mathbb{R}^{?,?}$ es el vector de coeficientes,

 $y_i \in \mathbb{R}^{?,?}$ es el valor observado para la observación i,

m es el número de predictores

n es el número de observaciones.

Tarea

Encontrar las dimensiones de x_i , β y y_i

Ecuaciones normales

Para encontrar los coeficientes β que minimizan el error cuadrático, se pueden utilizar las ecuaciones normales:

$$X^T X \beta = X^T Y$$

La solución para β es:

$$\beta = (X^T X)^{-1} X^T Y$$

Tarea

- Encontrar la expresión cerrada para 1 variable.
- 2 Intentar conseguir la solución general.
- 3 Investigar la definición de X^TX para cualquier matrix X.

Índice

Hasta ahora

- Solución paso a paso
 - Tarea 1
 - Tarea 2
 - Tarea 3

Mínimos cuadrados ordinarios (OLS)

Divide y vencerás

$$\min_{\beta} \| y - X\beta \|^2 \tag{3}$$

 $X \in \mathbb{R}^{?,?}$ Matriz de datos $\beta \in \mathbb{R}^{?,?}$ es el vector de coeficientes, $y \in \mathbb{R}^{?,?}$ es el vector de observacionesi, m es el número de predictores n es el número de observaciones.

Tarea

Encontrar las dimensiones de X, β y y

ML-6561 Aprendizaje Supervisado

Comenzamos con y

Vector

Denotamos como $x \in \mathbb{R}^n$, un vector de n componentes.

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Si por ejemplo, n = 3 un vector en \mathbb{R}^3 pudiese ser

$$x = \left[\begin{array}{c} 1 \\ 2 \\ 8 \end{array} \right]$$

Podemos resolver ya para y y para β

Mínimos cuadrados ordinarios (OLS) Tarea 1

$$\min_{\beta} \|y - X\beta\|^2 \tag{4}$$

 $\mathbf{X} \in \mathbb{R}^{?,?}$ Matriz de datos $\mathbf{\beta} \in \mathbb{R}^m$ es el vector de coeficientes, $\mathbf{y} \in \mathbb{R}^n$ es el vector de observaciones \mathbf{i} , \mathbf{m} es el número de predictores \mathbf{n} es el número de observaciones.

Ahora vamos con X

Matriz

Con $A \in \mathbb{R}^{m \times n}$ vamos a denotar matrices con m filas y n columnas, donde las entradas de A son números reales.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- m y n no tienen que ser iguales.
- Si m = n entonces decimos que A es cuadrada, de lo contrario rectangular.

Podemos resolver para X

Mínimos cuadrados ordinarios (OLS) Tarea 1

$$\min_{\beta} \|y - X\beta\|^2 \tag{5}$$

 $X \in \mathbb{R}^{n,m}$ Matriz de datos $\beta \in \mathbb{R}^m$ es el vector de coeficientes, $y \in \mathbb{R}^n$ es el vector de observacionesi, m es el número de predictores n es el número de observaciones.

Mínimos cuadrados ordinarios (OLS)

$$\min_{\beta} \sum_{i=1}^{?} (\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta})^2$$
 (6)

 $\mathbf{x}_i \in \mathbb{R}^{?,?}$ es el vector de variables predictoras para la observación i, $\beta \in \mathbb{R}^{?,?}$ es el vector de coeficientes, $\mathbf{y}_i \in \mathbb{R}^{?,?}$ es el valor observado para la observación i, m es el número de predictores n es el número de observaciones.

Tarea 2

Vamos con x_i^T

Otra representación de matrices

Con $A \in \mathbb{R}^{m \times n}$ vamos a denotar matrices con m filas y n columnas, donde las entradas de A son números reales.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \end{vmatrix} & - \begin{bmatrix} & & & & \\ & & & & \\ & & & & & \\ & & & & & \end{bmatrix} = \begin{bmatrix} & - & a_1^T & - \\ - & a_2^T & - \\ & & \vdots & \\ & & & & \\ & & & & \end{bmatrix}$$

- Si queremos denotar el vector columna k, hacemos a^k .
- Si queremos denotar el vector fila k, hacemos a_k^T .

Vamos con $x_i^T \beta$

Operaciones entre vectores

• Producto interno o producto punto.

$$x^T y \in \mathbb{R} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i$$

Producto externo

$$xy^{T} \in \mathbb{R}^{m \times n} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} = \begin{bmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_n \\ x_2y_1 & x_2y_2 & \cdots & x_2y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_my_1 & x_my_2 & \cdots & x_my_n \end{bmatrix}$$

Vamos con $x_i^T \beta$ Operaciones entre vectores

En resumen, la expresión $x_i^T \beta$ es el producto interno de la fila i de X y el

vector de coeficientes β , este producto nos retorna un número.

Recordemos, para dos vectores $x \in \mathbb{R}^s$ y $y \in \mathbb{R}^s$

$$x^T y \in \mathbb{R}$$

para nuestro caso es (y con esto resolvemos toda la tarea)

$$\mathbf{x}_i^T \beta$$

Mínimos cuadrados ordinarios (OLS)

Tarea 2

$$\min_{\beta} \sum_{i=1}^{?} (\mathbf{y}_i - \mathbf{x}_i^T \boldsymbol{\beta})^2 \tag{7}$$

 $\mathbf{x}_i \in \mathbb{R}^m$ es el vector de variables predictoras para la observación i, $\boldsymbol{\beta} \in \mathbb{R}^m$ es el vector de coeficientes, $\mathbf{y}_i \in \mathbb{R}$ es el valor observado para la observación i, m es el número de predictores n es el número de observaciones.

Mínimos cuadrados ordinarios (OLS) Tarea 3

$$\min_{\beta} ||y - X\beta||^2 \tag{8}$$

 $X \in \mathbb{R}^{n,m}$ Matriz de datos $\beta \in \mathbb{R}^m$ es el vector de coeficientes, $y \in \mathbb{R}^n$ es el vector de observacionesi, m es el número de predictores n es el número de observaciones.

Ecuaciones normales

Para encontrar los coeficientes β que minimizan el error cuadrático, se pueden utilizar las ecuaciones normales:

$$X^T X \beta = X^T Y$$

La solución para β es:

$$\beta = (X^T X)^{-1} X^T Y$$

Tarea

- Encontrar la expresión cerrada para 1 variable.
- Intentar conseguir la solución general.
- 1 Investigar la definición de X^TX para cualquier matrix X.

Producto Matriz-Vector

• Si escribimos A como filas, podemos expresar Ax como,

$$y = Ax = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ \vdots & & \\ - & a_m^T & - \end{bmatrix} x = \begin{bmatrix} a_1^T x \\ a_2^T x \\ \vdots \\ a_m^T x \end{bmatrix}$$

Producto Matriz-Vector

• Si escribimos A por columnas, tenemos:

$$y = Ax = \begin{bmatrix} \begin{vmatrix} & & & & & | \\ a^1 & a^2 & \dots & a^n \\ & & & & | \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = [a^1] x_1 + [a^2] x_2 + \dots + [a^n] x_n.$$

y es una combinación lineal de las columnas de A.

Curiosidad (Lo hablamos en otra clase)

Este resultado nos dice entonces que el problema fundamental de álgebra lineal Ax = b se conecta con combinaciones lineales!

Producto matriz vector (no tan común)

Es posible premultiplicar una matrix por la izquierda siempre que sea un vector fila.

• Si escribimos A por columnas, entonces podemos expresar $x^T A$ como,

$$y^T = x^T A = x^T \begin{bmatrix} | & | & | \\ a^1 & a^2 & \cdots & a^n \\ | & | & | \end{bmatrix} = \begin{bmatrix} x^T a^1 & x^T a^2 & \cdots & x^T a^n \end{bmatrix}$$

Producto matriz vector (no tan común)

Es posible premultiplicar una matrix por la izquierda siempre que sea un vector fila.

• expresando A en términos de filas tenemos:

$$y^{T} = x^{T} A = \begin{bmatrix} x_1 & x_2 & \cdots & x_m \end{bmatrix} \begin{bmatrix} - & a_1^{T} & - \\ - & a_2^{T} & - \\ \vdots & \vdots & \vdots \\ - & a_m^{T} & - \end{bmatrix}$$
$$= x_1 \begin{bmatrix} - & a_1^{T} & - \end{bmatrix} + \cdots + x_m \begin{bmatrix} - & a_m^{T} & - \end{bmatrix}$$

 y^T es una combinación lineal de las filas de A.

Curiosidad (Lo hablamos en otra clase)

Esto conecta el resultado fundamental de que el rango de A y de A^T es el mismo!

La traspuesta

La matriz traspuesta es el resultado de "voltear" las filas y las colimnas.

Dada una matriz $A \in \mathbb{R}^{m \times n}$, su traspuesta, escrita $A^T \in \mathbb{R}^{n \times m}$, es la matriz de dimensión $n \times m$ cuyas entradas son:

$$\left(A^{T}\right)_{ij}=A_{ji}$$

Propiedades de la traspuesta:

- $(A^T)^T = A$
- $\bullet (AB)^T = B^T A^T$
- $(A + B)^T = A^T + B^T$

La norma de un vector $\|x\|$ es informalmente conocida como una

De manera formal, una norma es **cualquier función** $f: \mathbb{R}^n \to \mathbb{R}$ que cumpla 4 propiedades fundamentales:

- Para todo $x \in \mathbb{R}^n$, $f(x) \ge 0$ (no-negatividad).
- ② f(x) = 0 si y solo si x = 0 (definitividad).
- **3** Para todo $x \in \mathbb{R}^n$, $t \in \mathbb{R}$, f(tx) = |t|f(x) (homogénea).
- **a** Para todo $x, y \in \mathbb{R}^n$, $f(x+y) \le f(x) + f(y)$ (Designaldad triangular).

"medida" del vector.

Ejemplos de Normas

La comunmente llamada norma euclideana o ℓ_2 ,

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2} \implies ||x||_2^2 = x^T x$$

La norma 1 ℓ_1 ,

$$||x||_1 = \sum_{i=1}^n |x_i|$$

La norma infinito ℓ_{∞} ,

$$||x||_{\infty} = \max_{i} |x_i|.$$

Cálculo en matrices

Asumamos las siguientes propiedades ciertas

- $\nabla_x b^T x = b$
- $\nabla_x^2 b^T x = 0$
- $\nabla_x x^T A x = 2Ax$ (si A es simétrica)
- $\nabla_x^2 x^\top A x = 2A$ (si A es simétrica)

Tarea 3.5

Luedo de este repaso, consigan las ecuaciones normales.

Preliminar: definición formal

- Dada una matriz con rango completo $X \in \mathbb{R}^{n \times m}$, y un vector $y \in \mathbb{R}^n$ tal que $y \notin \mathcal{R}(A)$, queremos conseguir un vector β tal que $X\beta$ esté tan cerca posible de y, **medido** a partir de la norma euclideana $\|y X\beta\|_2^2$.
- Usando la definición $||x||_2^2 = x^T x$, tenemos

$$||y - X\beta||_2^2 = (y - X\beta)^T (y - X\beta) = \beta^T X^T X\beta - 2y^T X\beta + y^T y$$

solución

• Tomando el gradiente respecto a β :

$$\nabla_{\beta} \left(\beta^{T} X^{T} X \beta - 2 y^{T} X \beta + y^{T} y \right) = \nabla_{\beta} \beta^{T} X^{T} X \beta - \nabla_{\beta} 2 y^{T} X \beta + \nabla_{\beta} y^{T} y$$
$$= 2 X^{T} X \beta - 2 X^{T} y$$

• Igualando la expresión a 0 y despejando β tenemos las ecuaciones normales

$$\beta^* = \left(X^T X\right)^{-1} X^T y$$