Learning Theory

Narayana Santhanam

EE 645 Apr 10, 2024

This section

PAC Learning

VC dimension and Sauer's lemma

Learnability of finite classes bounded VC dimension

PAC learning

Example/Instance space $\underline{\mathcal{X}}$, label set $\underline{\mathcal{Y}}$ Hypothesis class \mathcal{H} (set of functions from $\mathcal{X} \to \mathcal{Y}$) Distribution D over \mathcal{X} Training sample S generated by distribution D

Prediction rule $h: \mathcal{X} \to \mathcal{Y}$ that is somehow good

Loss of a prediction rule

Loss (wrt correct labeling f):

$$L_{D,f}(h) = \mathbf{P}_{X \sim D}[h(x) \neq f(x)] = \mathbb{E}\left[1(h(x) + f(x))\right]$$

We cannot observe this in general

Empirical loss on a sample of size n,

$$\hat{L}(h) = \frac{1}{n} \sum \mathbf{1}(h(x_i) \neq f(x_i))$$

This we observe in a supervised setting

What can we infer about L(h) from $\hat{L}(h)$?

(x;,f(xi))

IID assumption

Generally expect every example of our training sample to be generated independently

In this case we can expect $\hat{L}(h)$ to concentrate around L(h) Empirical average pprox real expectation

But by how much? What is the deviation?

Hoeffding's Inequality

Let X_1, \ldots, X_n be *i.i.d.* variables, the variables bounded in range $X_i \in [a, b]$, and let $\mu = \mathbb{E}X_i$. Then for any $\epsilon > 0$,

$$\mathbf{P}\left(\left|\frac{1}{n}\sum_{i}X_{i}-\mu\right|>\epsilon\right)\leq2\exp\left(-\frac{2n\epsilon^{2}}{(b-a)^{2}}\right)$$

$$=\frac{1}{2}\left(\frac{x^{3}}{2}\right)\left(\frac{x^{2}}{2}\right)\left(\frac{1}{2}dx\right)=2\left(\frac{x^{3}}{2}\right)\left(\frac{1}{2}dx\right)$$

$$=\frac{2}{2}\cdot\frac{\Delta^{3}}{2}\cdot\frac{1}{2}=\frac{\Delta^{2}}{2}$$

Hoeffding's Inequality

Let X_1, \ldots, X_n be i.i.d. variables, the variables bounded in range $X_i \in [a, b]$, and let $\mu = \mathbb{E}X_i$. Then for any $\epsilon > 0$,

$$\mathbf{P}\left(\left|\frac{1}{n}\sum_{i}X_{i}-\mu\right|>\epsilon\right)\leq2\exp\left(-\frac{2n\epsilon^{2}}{(b-a)^{2}}\right)$$

If we are working with binary classification (with 0-1 loss), then for

each
$$h$$
,

$$P\left(|\hat{L}(h) - L(h)| > \epsilon\right) \leq 2 \exp\left(-2n\epsilon^{2}\right)$$

$$L \sum 1(h(x_{i}) \neq f(x_{i}))$$

$$E\left[\frac{1}{n} \sum 1(h(x_{i}) \neq f(x_{i}))\right] = \frac{1}{n} \sum E\left[1(h(x_{i}) \neq f(x_{i}))\right] = \frac{1}{n} \sum P(h(x) \neq f(x_{i})) = \frac{1}{n} \sum_{k \in \mathbb{N}} P(h(x) \neq f(x_{i}))$$

Hoeffding's Inequality

Let X_1, \ldots, X_n be i.i.d. variables, the variables bounded in range $X_i \in [a, b]$, and let $\mu = \mathbb{E}X_i$. Then for any $\epsilon > 0$,

$$\mathbf{P}\left(\left|\frac{1}{n}\sum_{i}X_{i}-\mu\right|>\epsilon\right)\leq2\exp\left(-\frac{2n\epsilon^{2}}{(b-a)^{2}}\right)$$

If we are working with binary classification (with 0-1 loss), then for

$$\mathbf{P}\left(\left|\hat{L}(h) - L(h)\right| > \epsilon\right) \le 2\exp\left(-2n\epsilon^2\right)$$

each h, $\mathbf{P}\left(\left|\hat{L}(h) - L(h)\right| > \epsilon\right) \leq 2\exp\left(-2n\epsilon^2\right)$ In a bad set of training samples B(h), $\hat{L}(h)$ deviates significantly from L(h), but the set of misleading training samples have small probability if n is large enough

Union bound

If we have finite number of hypothesis, we can argue that collectively, all the bad sets of all $h \in \mathcal{H}$ don't matter: Union bound

$$\mathbf{P}\left(\sup_{\mathbf{f}\in\mathcal{H}}|\hat{\mathcal{L}}(h)-\mathcal{L}(h)|>\epsilon\right)\leq 2|\mathcal{H}|\exp\left(-2n\epsilon^2\right)$$

Here $|\cdot|$ denotes the size of a set

Union bound

If we have finite number of hypothesis, we can argue that collectively, all the bad sets of all $h \in \mathcal{H}$ don't matter: Union bound

$$\mathbf{P}\left(\sup_{h\in\mathcal{H}}|\hat{L}(h)-L(h)|>\epsilon\right)\leq 2|\mathcal{H}|\exp\left(-2n\epsilon^2\right)$$

Here $|\cdot|$ denotes the size of a set

This is not artificial—in fact, given we only use finite precision and a finite number of network weights, most deep networks also form finite classes in practice.

Union bound

If we have finite number of hypothesis, we can argue that collectively, all the bad sets of all $h \in \mathcal{H}$ don't matter: Union bound

$$\mathbf{P}\left(\sup_{h\in\mathcal{H}}|\hat{L}(h)-L(h)|>\epsilon\right)\leq 2|\mathcal{H}|\exp\left(-2n\epsilon^{2}\right)$$

Here $|\cdot|$ denotes the size of a set

This is not artificial—in fact, given we only use finite precision and a finite number of network weights, most deep networks also form finite classes in practice.

Catch is, we don't have to wait till we are guaranteed convergence like above: usually our estimators work good well before we need to sample to reduce the right side to within a given confidence

Vapnik Chervonenkis dimension

Again, binary classification, 0-1 loss.

Vapnik Chervonenkis dimension

Again, binary classification, 0-1 loss.

A set of points S is shattered by a hypothesis class \mathcal{H} if all $2^{|S|}$ labelings on S are produced by hypothesis in \mathcal{H} , namely

$$|\mathcal{H}(S)| = 2^{|S|}$$

Examples

Vapnik Chervonenkis dimension

The VC dimension of \mathcal{H} is the size of the largest set S of points it shatters.

If the VC dimension of $\mathcal H$ is d, it doesn't mean every set of d points is shattered by $\mathcal H$ only that some set of d points is

But it does mean no set of d+1 points can be shattered by ${\cal H}$

Larger VC dimension, more power

Sauer's lemma

If \mathcal{H} has VC dimension d, how many labelings on a sample S of size *n* can it generate?

Trivially, if n > d, then number of labelings is $< 2^n$ But one would imagine 2^n is a gross overestimate Proposed by Erdös, solved (1972) and re-proved several times in other contexts including by Vapnik and Chervonenkis

Sauer's lemma

If \mathcal{H} has VC dimension d and S is a sample of size n,

$$|\mathcal{H}(S)| \leq \sum_{i=0}^d \binom{n}{i}.$$

Proof (simple, and by induction)

We prove a stronger result that

$$|\mathcal{H}(S)| \leq |B \subset S : \mathcal{H} \text{ shatters } B|.$$

Induction argument

To prove:

$$|\mathcal{H}(S)| \leq |B \subset S : \mathcal{H} \text{ shatters } B|.$$

Proof: When n = 1, either both sides are 1 or both are 2.

Induction hypothesis: Assume true for all sets S with size < n, will prove for all S of size n

Hence qed

Proof

To prove:

$$|\mathcal{H}(S)| \leq |B \subset S : \mathcal{H} \text{ shatters } B|.$$

Let S' be the sample with the last example removed (so size n-1) and let

$$Y_0 = \{ \mathbf{y}(S') : \mathbf{y}(S') \in \mathcal{H}(S') \}$$

and

$$Y_1 = \{ \mathbf{y}(S') : (\mathbf{y}(S'), \mathbf{0}) \text{ and } (\mathbf{y}(S'), \mathbf{1}) \in \mathcal{H}(S) \}$$

Clearly

$$|\mathcal{H}(S)| = |Y_0| + |Y_1|$$

Proof

To prove:

$$|\mathcal{H}(S)| \leq |B \subset S : \mathcal{H} \text{ shatters } B|.$$

Recall S' be the sample with the last example removed (so size n-1) and that

$$Y_0 = \{ \mathbf{y}(S') : \mathbf{y}(S') \in \mathcal{H}(S') \}$$

From induction hypothesis

$$|Y_0| \le |\{B \in S : \mathcal{H} \text{ shatters } B \text{ and } y_n \notin B\}|$$

Proof

To prove:

$$|\mathcal{H}(S)| \leq |B \subset S : \mathcal{H} \text{ shatters } B|.$$

Recall S' be the sample with the last example removed (so size n-1) and

$$Y_1 = \{ \mathbf{y}(S') : (\mathbf{y}(S'), \mathbf{0}) \text{ and } (\mathbf{y}(S'), \mathbf{1}) \in \mathcal{H}(S) \}$$

Let \mathcal{H}' be a subset of \mathcal{H} . We put a pair h, h' into \mathcal{H}' if h, h' agree on S' but disagree on the last example.

Now we claim $|Y_1| = |\mathcal{H}'(S')|$ and therefore that

$$|\mathcal{H}'(S')| \leq |\{B \in S : \mathcal{H} \text{ shatters } B \text{ and } y_n \in B\}|$$

<u>Proof</u>

Therefore

$$|\mathcal{H}(S)| = |Y_0| + |Y_1|,$$

but

$$|Y_0| \leq |\{B \in S : \mathcal{H} \text{ shatters } B \text{ and } y_n \notin B\}|$$

and

$$|Y_1| \leq |\{B \in S : \mathcal{H} \text{ shatters } B \text{ and } y_n \in B\}|$$

and so, the result follows!

Next steps

How Sauer's lemma gives us learnability results for infinite classes

Still, not strong enough to explain neural networks

PAC Bayes approaches

