EXERCISE – II MULTIPLE CORRECT (OBJECTIVE QUESTIONS)

1. If $C_1 \equiv y = \frac{1}{1+x^2}$ and $C_2 \equiv y = \frac{x^2}{2}$ be two curve

lying in XY plane. Then

- (A) area bounded by curve C, and y = 0 is π
- (B) area bounded by C_1 and C_2 is $\frac{\pi}{2} \frac{1}{3}$
- (C) area bounded by C_1 and C_2 is $1-\frac{\pi}{2}$
- (D) area bounded by curve C_1 and x-axis is $\frac{\pi}{2}$
- **2.** Area enclosed by the curves $y = \ell nx$, $y = \ell n |x|$; $y = |\ell nx|$ and $y = |\ell n| x |$ is equal to
- (A) 2

(B)4

(C) 8

- (D) cannot be determined
- **3.** y = f(x) is a function which satisfies
- (i) f(0) = 0
- (ii) f''(x) = f'(x) and (iii) f'(0) = 1

then the area bounded by the graph of y = f(x), the lines x = 0, x - 1 = 0 and y + 1 = 0, is

- (A) e
- (B) e 2
- (C) e 1
- (D) e + 1
- **4.** Let T be the triangle with vertices (0, 0), $(0, c^2)$ and (c, c^2) and let R be the region between y = cxand $y = x^2$ where c > 0 then
- (A) Area (R) = $\frac{c^3}{6}$ (B) Area of R = $\frac{c^3}{3}$
- (C) $\lim_{c \to 0^+} \frac{\text{Area}(T)}{\text{Area}(R)} = 3$ (D) $\lim_{c \to 0^+} \frac{\text{Area}(T)}{\text{Area}(R)} = \frac{3}{2}$
- **5.** Suppose q(x) = 2x + 1 and $h(x) = 4x^2 + 4x + 5$ and h(x) = (fog)(x). The area enclosed by the graph of the function y = f(x) and the pair of tangents drawn to it from the origin, is

- (A) $\frac{8}{3}$ (B) $\frac{16}{3}$ (C) $\frac{32}{3}$
- (D) none
- **6.** Let $f(x) = x^2 + 6x + 1$ and R denote the set of points (x, y) in the coordinate plane such that $f(x) + f(y) \le 0$ and $f(x) - f(y) \le 0$. The area of R is equal to
- (A) 16π
- (B) 12π
- (C) 8π
- (D) 4π

7. The value of 'a' (a > 0) for which the area bounded

by the curves $y = \frac{x}{6} + \frac{1}{x^2}$, y = 0, x = a and x = 2a

has the least value, is

- (A) 2
- (B) $\sqrt{2}$
- (C) $2^{1/3}$
- (D) 1
- 8. Consider the following regions in the plane

$$R_1 = \{(x, y) : 0 \le x \le 1 \text{ and } 0 \le y \le 1\} \text{ and }$$

$$R_2 = \{(x,y)\} : x^2 + y^2 \le 4/3\}$$

The area of the region $R_1 \cap R_2$ can be expressed as

 $\frac{a\sqrt{3}+b\pi}{a}$, where a and b are integers, then

- (A) a = 3 (B) a = 1 (C) b = 1
- 9. The area of the region of the plane bounded by

$$(|x|, |y|) \le 1 \& xy \le \frac{1}{2}$$
 is

- (A) less than $4 \ln 3$ (B) $\frac{15}{4}$
- (C) $2 + 2 \ln 2$
- (D) $3 + \ell n 2$
- 10. A point P moves inside a triangle formed by A(0, 0), $B(2, 2\sqrt{3})$, C(4, 0) such that $\{min (PA, PB, PC)\} = 2$, then the area bounded by the curve traced by P is
- (A) $3\sqrt{3} \frac{3\pi}{2}$ (B) $4\sqrt{3} 2\pi$ (C) $\sqrt{3} \frac{\pi}{2}$ (D) 2π
- 11. Area of the region enclosed between the curves $x = y^2 - 1$ and $x = |y| \sqrt{1 - y^2}$ is
- (A) 1 (B) $\frac{4}{3}$ (C) $\frac{2}{3}$
- (D) 2
- **12.** If the tangent to the curve $y = 1 x^2$ at $x = \alpha$, where 0 < α < 1, meets the axes at P and Q. Also α varies, the minimum value of the area of the triangle OPQ is k times area bounded by the axes and the part of the curve for which 0 < x < 1, then k is equal to
- (A) $\frac{2}{\sqrt{3}}$ (B) $\frac{75}{16}$ (C) $\frac{25}{18}$ (D) $\frac{2}{3}$