Introducción al Diseño de Sistemas Embebidos usando Zynq

(Adaptado del curso "Embedded System Design Flow" de Xilinx)

Objetivos

► Al completar este módulo, el alumno será capaz de:

- Definir un componente procesador en Zynq All Programmable SoC (AP SoC)
- Enumerar los aspectos claves del sistema de procesamiento Zynq AP SoC
- Describir el flujo de diseño embebido
- Entender la función de la herramienta IP Integrator
- Indicar cómo se relaciona el diseño de hardware al ambiente de desarrollo de software

Temario

- ► Componente Procesador Embebido
- ► Reseña de Vivado para diseño de sistemas embebidos
- ► Flujo de diseño de sistemas embebidos
- Creación de plataforma de hardware
- ▶ Plataforma de software SDK
- ► Resumen

Arquitectura del Diseño Embebdio en Zynq

▶ El diseño embebido con Zynq está basado en:

- Procesador y periféricos
 - Procesador dual ARM® Cortex™ A9
 - Interconexión AXI
 - Periféricos compatibles AXI
 - Reset, clocking, puertos de depuración
- Plataforma de software para el sistema de procesamiento
 - Aplicaciones bare-metal o Sistemas Operativos (ej: Linux, FreeRTOS)
 - Soporte de lenguaje C
 - Drivers en C para el hardware
- Aplicación de usuario
 - Rutinas para servicio de interrupciones (opcional)

PS (Sistema de Pocesamiento) y PL (Lógica Programable)

- ► La arquitecturra Zynq-7000 AP SoC consiste de dos secciones:
 - PS: Sistema de procesamiento
 - Procesador dual basado en ARM Cortex-A9
 - Múltiples periféricos
 - Hard-core de silicio
 - PL: Lógica programable
 - Usa la misma lógica programable de la serie 7
 - Dispositivos basados en Artix™: Z-7010, Z-7015 and Z-7020 (high-range I/O banks only)
 - Dispositivos basados en Kintex™: Z-7030, Z-7035, Z-7045, and Z-7100 (mix of high-range and high-performance I/O banks)

PS Components

► El sistema de procesamiento del Zynq AP SoC está conformado por los siguientes bloques:

- Application processing unit (APU)
- Periféricos I/O (IOP)
 - E/S Multiplexada (MIO), E/S multiplexada extendido (EMIO)
- Interfaces de memoria
- Interconexiones del PS
- DMA
- Timers
 - Público and privado
- Controlador de interrupciones (GIC)
- On-chip memory (OCM): ROM and RAM
- Controlador de depuración: CoreSight

Periféricos incluidos en la Arquitectura Zynq

- ▶ Dos USB 2.0 OTG/Device/Host
- Dos Tri- Mode GigE (10/100/1000)
- Dos interfaces SD/SDIO
 - Memoria, I/O y combo cards
- ▶ Dos CAN 2.0Bs, SPIs , I2Cs, UARTs
- ► Cuatro bloques GPIO de 32bit
 - 54 disponibles a través de MIO; otros a través de EMIO
- Entrada/Salida multiplexada (MIO)
 - Pinout multiplexado de periféricos y memoria estática
- MIO extendida
 - Mapea los puertos de los periféricos del PS al PL

Temario

- ► Componente Procesador Embebido
- ▶ Reseña de Vivado para diseño de sistemas embebidos
- ► Flujo de diseño de sistemas embebidos
- Creación de plataforma de hardware
- ▶ Plataforma de software SDK
- ► Resumen

Vivado

Qué son Vivado, IP Integrator y SDK?

- Vivado es un conjunto de herramientas para el diseño sobre FPGAs de Xilinx e incluye capacidades para el diseño de sistemas embebidos
 - IP Integrator, es parte de Vivado y permite el diseño a nivel de sistema de la parte de hardware de un sistema embebido
 - Vivado incluye todas las herramientas, IPs, y documentación que son requeridas para diseñar sistemas con el Zynq-7000 AP SoC hard core y/o con MicroBlaze, el soft core de 32 bits de Xilinx
 - Vivado + IPI reemplaza a ISE/EDK
- SDK es un ambiente de desarrollo de software basado en Eclipse
 - Permite la integración de componentes de hardware y software
 - Se ejecuta desde Vivado
- ▶ Vivado es el administrador del proyecto completo y es usado para el desarrollo de hardware no-embebido y para instanciar sistemas embebidos

Componentes de Vivado

Vivado/IP Integrator

- Ambiente de diseño para la configuración de PS, y diseño de hardware para PL
- Plataforma de hardware (xml)
- Simulación de la plataforma, el software y los periféricos
- Integración de un analizador lógico

Software Development Kit (SDK)

- Workspace del proyecto
- Definición de la plataforma de hardware
- Board Support Package (BSP)
- Aplicación de software
- Depuración de software

Herramientas para el Sistema Embebido: Hardware

► Herramientas de desarrollo de hardware y software

- IP Integrator
- IP Packager
- Generación de una netlist de hardware
- Generación de un modelo de simulación
- Xilinx Microprocessor Debugger (XMD)
- Depuración de hardware usando el analizador lógico (Vivado logic analyzer)

Herramientas para el Sistema Embebido: Software

► Software Development Kit (SDK) (IDE basado en Eclipse)

- Creación de Board support package
- Herramientas GNU de desarrollo de software
- Compilador C/C++ para los procesadores MicroBlaze y ARM Cortex-A9 (gcc)
- Depurador para los procesadores MicroBlaze y ARM Cortex-A9 (gdb)
- TCF depuración multicore (Target Communication Framework)

Board support packages (BSPs)

- Stand-alone BSP
 - Drivers para dispositivos básicos y utilidades de Xilinx

Vista de Vivado

Paneles configurables

- ► A: Administración de proyecto
- ▶ B: IP Integrator
- C: FPGA Flow
- ▶ D: Selección de Layout
- ► E: Project view/Panel de previsualización
- ► F: Consola, Mensajes, Logs

Configuración del Sistemas de procesamiento Zynq

- Zynq Block Design
- Configuración de la interfaz PS-PL
- Pines de E/S de los periféricos
- ► Configuración MIO/Vista Tabla
- Configuración del reloj
- Configuración de la DDR
- ► Cálculo de tiempos
- ► Interrupciones

Configuración MIO

Pines de E/S de los Periféricos

Archivos de Proyecto

► Top level Directory

- .xpr Vivado Project File (xml file), log files, journal

> .srcs

Archivos fuente del proyecto, archivos del IP Integrator

▶ .sim

Arhivos relacionados con la simulación

> .runs

Síntesis, corridas de implementación

▶ .sdk

Directorio SDK Export, Plataforma de Hardware (xml)

.cache

Archivos temporales

Temario

- ► Componente Procesador Embebido
- ► Reseña de Vivado para diseño de sistemas embebidos
- ▶ Flujo de diseño de sistemas embebidos
- Creación de plataforma de hardware
- ▶ Plataforma de software SDK
- ► Resumen

Flujo de Diseño de un Sistema Embebido para Zynq-7000 AP SoC

Diseño de un Sistema Embebido usando Vivado

- ► Crear un nuevo proyecto en Vivado, o abrir uno existente
- ► Invocar a IP Integrator
- ► Construir (modificar) la porción de hardware del diseño embebido
- Crear (Actualizar) el wrapper del nivel superior del HDL
- ▶ [opcional] Sintetizar cualquier componente no-embebido e implementarlo en Vivado
- ► Exportar la descripción de hardware, y lanzar el SDK
- ► Crear un nuevo software board support package y proyectos de aplicación en el SDK
- ► Compilar el software con el cross-compilador GNU en SDK
- ▶ [opcional] Descargar el bitstream de la lógica programable
- ▶ Usar el SDK para descargar el programa (el archivo .ELF)

Diseño de un Sistema Embebido usando Vivado

Integrator Block Diagram

- ► IP Integrator Block Diagram abre una ventana en blanco
- Puede ser agregada IP desde el catálogo de IP
- Interfaz Drag and drop
- Ambiente de Diseño Inteligente
 - Asistencia de diseño
 - Automatización de conexiones
 - Resaltado de conexiones válidas
 - Agrupamiento, creación de bloques jerárquicos
- Puede crear e importar IP propia usando IP Packager

Configurando Hardware en el IP Integrator

- Doble click sobre los bloques para acceder a las opciones de configuración
- Arrastrar el puntero para realizar conexiones
 - Se resaltan las conexiones válidas
- Conexiones automáticas
 - Conecta automáticamente las interfaces reconocidas
- Redibujo del sistema de manera automática

📴 Re-customize IP

Exportando al SDK

Primero exportar hardware

- El archivo de descripción del hardware (hdf) que contiene toda la información relevante será creado y ubicado en el directorio *.sdk
- Se incluye el bitstream si es que fue generado

Lanzar SDK

- El desarrollo de software se realiza con la herramienta SDK (Software Development Kit) de Xilinx
- La herramienta de SDK asociará entonces los proyectos de software de usuario al hardware

Flujo de Desarrollo de Software

- Crear un proyecto de plataforma de hardware
 - Ejecutado automáticamente cuando la herramienta SDK es lanzada desde un proyecto de Vivado
- Crear BSP
 - Software de sistema, paquete de soporte de placa (board support package)
- Crear aplicación de software
- ► Crear el linker script
- Compilar el proyecto
 - compilar, ensamblar, linkear el archivo de salida <app_project>.elf

Configurando la FPGA y Descargando una Aplicación

- Descarga del bitstream
 - Sólo si es usado el PL (lógica programable)
 - Archivo de entrada <top_name>.bit
- ► El bitstream puede ser descargado desde
 - Vivado
 - SDK
- ► Requiere que el cable de download esté conectado

Temario

- ► Componente Procesador Embebido
- ► Reseña de Vivado para diseño de sistemas embebidos
- ► Flujo de diseño de sistemas embebidos
- Creación de plataforma de hardware
- ▶ Plataforma de software SDK
- ► Resumen

Configuración de la GUI de Zynq

- Provee una vista gráfica del PS para configurar
 - los núcleos de ARM
 - los periféricos de E/S
 - el controlador DDR
 - los sistemas de memoria
- Reparto de E/S entre pines dedicados de PS y E/S de lógica programable
- ► El Zynq-7000 AP SoC PS es configurado a través de un conjunto de registros de configuración mapeados en memoria

Configuración del Reloj

Configuración del Reloj

- La frecuencia de entrada puede ser establecida
- Todas las frecuencias de reloj IOP pueden ser establecidas
- Los relojes de fábrica
 de la PL pueden ser
 habilitados y configurados
- Establecimiento de Timers

Ajustes del Proyecto

- ► Se accede desde el *flow navigator*
- La configuración por defecto es la típicamente usada
- Especificar/cambiar el dispositivo destino
 - Arquitectura, tamaño, encapsulado, grado de velocidad (speed grade)
- Simulación, Síntesis, Implementación, opciones de Bitstream
- ► Directorio del repositorio de IP
 - Provee acceso a IP personalizada que no está presente en la estructura de directorios del proyecto actual

Temario

- ► Componente Procesador Embebido
- ► Reseña de Vivado para diseño de sistemas embebidos
- ▶ Flujo de diseño de sistemas embebidos
- Creación de plataforma de hardware
- ▶ Plataforma de software SDK
- ► Resumen

Software Development Kit (SDK)

- ► Entorno de diseño de software con funciones completas
- ► Herramienta separada de Vivado puede ser instalada de manera independiente para equipos de software
- ▶ Basado en Eclipse
- Usado sólo para aplicaciones de software; el diseño de hardware y sus modificaciones son realizadas en Vivado
- ► Entorno integrado para depuración fluida de targets embebidos
- Entorno de diseño de software sofisticado con muchas opciones y funciones con soporte para:
 - Múltiples procesadores
 - Múltiples plataformas de software
 - Múltiples aplicaciones de software
- ▶ Editor de código C/C++ con funciones completas y navegador de error

Vistas de los Workbenchs del SDK

- 1. El Project Explorer muestra los elementos de un proyecto
- 2. Editor C/C++ para la creación de software integrado
- 3. Code outline muestra los elementos del archivo de software bajo desarrollo con iconos para una sencilla identificación
- 4. Problemas, Consola, vista de la información de salidas aociada con el flujo de desarrollo del software

Ajuste del Administrador del Software

Temario

- ► Componente Procesador Embebido
- ► Reseña de Vivado para diseño de sistemas embebidos
- ► Flujo de diseño de sistemas embebidos
- Creación de plataforma de hardware
- ▶ Plataforma de software SDK
- ► Resumen

Resumen

- Vivado incluye todas las herramientas, documentación, e IP necesaria para construir sistemas embebidos
- ▶ IPI es una herramienta de diseño a nivel de sistema que incrementa la productividad, permitiendo que los diseños se completen más rapidamente
- ► El Software Development Kit (SDK) es un entorno de desarrollo de software completo para aplicaciones de software
- Un embedded processing system component está construido con IP provista en el catálogo de IP. Los diseñadores pueden también agregar su propia IP a este catálogo
- El asistente de configuración del Sistema de Procesamiento (PS Configuration wizard) permite acceso a varias características configurables del PS