ДИСКРЕТНИ СТРУКТУРИ 2 ТЕОРИЯ 2

КСГ

- **1.** Контекстно-свободна граматика. КСГ наричаме следната наредена четворка $G = < V, \sum, R, S >$, където:
- *V* азбука;
- $\sum_{i=1}^{N} \subseteq V$ множество на терминалните символи. $V \setminus \sum_{i=1}^{N}$ множество на нетерминалните символи;
- нетерминалните символи; $R\subseteq (V\setminus \sum)\times V^*$ крайно множество от правила;
- $S \in V \setminus \sum_{i=1}^{N}$ начален символ.
- **2.** Релацията \Rightarrow_G за дадена контекстно-свободна граматика (КСГ) G. Нека $G=< V, \sum, R, S>$ е КСГ. За всеки две думи $u,v\in V^*:\ u\Rightarrow_G v$ (за една стъпка) $\ \Leftrightarrow\ \exists x,y\in V^*$ и $A\in V\setminus\sum:v=xv'y,\ u=xAy$ и правило $A\to_G v'$.
- **3.** Кога една дума се приема от КСГ $(w \in L(G))$. Казваме, че $w \in L(G)$ т.т.к. от началния символ S за краен брой стъпки се извежда $w: S \Rightarrow_G^* w$, където \Rightarrow_G^* е рефлексивно и транзитивно затваряне на $\Rightarrow_G (L(G) = \{w \mid S \Rightarrow_G^* w \text{ } w \text{ } w \in \sum * \}).$
- **4.** Граматика в нормална форма на Чомски. Казваме, че КСГ $G = \langle V, \sum, R, S \rangle$ е в нормално форма на Чомски, ако $R \subseteq (V \setminus \sum) \times V^2$ (G не може да породи дума с дължина по малка от 2).
- **5.** Лемата за разрастването на граматични дървета. Нека $G = \langle V, \sum, R, S \rangle$ е КСГ. За всяка дума $w \in L(G)$, т.ч. $|w| > \Phi(G)^{|V \setminus \sum|}$, съществуват думи u, v, x, y, z, такива че $w = u \cdot v \cdot x \cdot y \cdot z$, $v \cdot y \neq \epsilon$ и за всяко $i \in \mathbb{N}_0$: $u \cdot v^i \cdot x \cdot y^i \cdot z \in L(G)$.

CTEKOB ABTOMAT

- **6.** Стеков автомат. Стеков автомат наричаме следната наредена шесторка $M = < K, \sum, \Gamma, \Delta, s, F >$, където:
- K крайно множество от състояния;
- $-\sum$ азбука от входните символи;
- Γ азбука от стековите символи;
- s ∈ K начално състояние;
- $F \subseteq K$ множество от финалните състояния;

-
$$\Delta$$
 - релация на преходите: крайно подмножество на $\left(K imes \left(\sum \cup \{\epsilon\}\right) imes \Gamma^*\right) imes \left(K imes \Gamma^*\right).$

- **7.** \vdash_M за стеков автомат M. Елементите на $K \times \sum {}^* \times \Gamma {}^*$ ще наричаме конфигурации на M, където $M=< K, \sum, \Gamma, \Delta, \overline{s}, F>$. Нека (p,u,α) и (q,v,γ) са две конфигурации на M. Дефинираме релацията \vdash_M по следния начин: $(p,u,\alpha) \vdash (q,v,\gamma) \overset{\text{def.}}{\Leftrightarrow} \exists \big((p,a,\beta), (q,\delta) \big) \in \Delta \text{, t.y. } u = a \cdot v, \, \alpha = \beta \cdot \eta, \, \gamma = \delta \cdot \eta,$ за някое $n \in \Gamma^*$
- 8. Кога една дума се приема от стеков автомат. Казваме, че стековият автомат $M = \langle K, \sum, \Gamma, \Delta, s, F \rangle$ приема думата w, ако е изпълнено $(s,w,\epsilon)\vdash_{\scriptscriptstyle{M}}^{*}(f,\epsilon,\epsilon),f\in F,\vdash_{\scriptscriptstyle{M}}^{*}$ е рефлексивно и транзитивно затваряне на $\vdash_{\scriptscriptstyle{M}}$.
- **9.** Прост стеков автомат. Казваме, че стековия автомат $M = < K, \; \sum, \Gamma, \Delta, s, F >$ е прост, ако за всяко правило $\big((q,a,\beta),(p,\gamma)\big)\in \Delta$, такова че $q\neq s$ е изпълнено, че $\beta \in \Gamma$ и $|\gamma| \le 2$.

МАШИНА НА ТЮРИНГ

- 10. Машина на Тюринг. МТ наричаме следната наредена петорка $M = \langle K, \sum_{i}, \delta, s, H \rangle$, където:
- \underline{K} крайно множество от състояния;
- \sum азбука, която съдържа символ за празна клетка \sqcup и символ за ляв ограничител \triangleright , но не съдържа ← и \rightarrow ;
- s ∈ K начално състояние;
- H ∈ K множество от стоп състояния;
- δ функция на преходите: $(K \backslash H) \times \sum \to K \times (\sum \cup \{\ \leftarrow\ , \to\ \})$, за която за всяко $q \in K \backslash H$:
- ако $\delta(q, \rhd) = (p,b)$, то $b = \to$; $\forall a \in \sum$, ако $\delta(q,a) = (p,b)$ то $b \lnot \rhd$.
- **11.** Кога една машина на Тюринг разпознава един език. Езикът L се разпознава от машина на Тюринг $M = < K, \sum, \delta, s, H > \ {\rm c} \ y, n \in H$, ако за всяка дума $w \in \sum o^*$ (азбука с допълнителен символ) е изпълнено:
- ако $w \in L$, то M приема $w \mid ((s, \rhd \underline{\sqcup} w)$ спира на приемаща конфигурация (такава с v));
- ако $w \notin L$, то M отхвърля w $((s, \triangleright \underline{\sqcup} w)$ спира на отхвърляща конфигурация (такава с n));

12. Какво и в какво преобразува простата машина на Тюринг R_{\sqcup} . $hd w_1 \ \underline{\sqcup} \ w_2 \to_{R_{\sqcup}}
hd w_1 \ \underline{\sqcup} \ w_2 \ \underline{\sqcup} \ , \ w_2 \in (\ \sum \setminus \{\
hd \ , \ \sqcup \ \})^*$ - обхожда (сканира) лентата

надясно докато не намери символ за празната клетка.

13. Какво и в какво преобразува простата машина на Тюринг L_\sqcup .

$$\rhd w_1 \sqcup w_2 \, \underline{\sqcup} \to_{L_{\sqcup}} \rhd w_1 \, \underline{\sqcup} \, w_2, \, w_2 \in (\, \sum \, \backslash \{\, \rhd \, , \, \sqcup \, \})^*$$

- обхожда (сканира) лентата наляво докато не намери символ за празната клетка.
- **14.** Какво и в какво преобразува машината (*копи-машината*) C на Тюринг.

$$\sqcup w \ \underline{\sqcup} \xrightarrow{\mathbf{C}} \sqcup w \ \sqcup w \ \underline{\sqcup} \ , \ w_2 \in (\sum \setminus \{ \ \rhd \ , \sqcup \ \})^*$$

15. Какво и в какво преобразува машината (*шифт-машината*) на Тюринг.

$$\sqcup w \ \underline{\sqcup} \xrightarrow{\mathbf{S}} \sqcup \sqcup w \ \underline{\sqcup} \ , \ w_2 \in (\sum \setminus \{ \, \triangleright \, , \sqcup \, \})^*$$

16. Какво и в какво преобразува delete машината на Тюринг. Заменя непразните символи от лентата с празни (изтриване).

- 17. Твърденията за разрешимите (рекурсивните) и полуразрешимите (рекурсивно номеруемите) езици:
- всеки разрешим език е полуразрешим;
- ако $\overline{L}=(\sum\setminus\{\ \rhd\ ,\sqcup\ \})^*$ е разрешим език, то и допълнението му

 $\overline{L} = (\sum \setminus \{ \rhd, \sqcup \})^*$ също е разрешим език;

- съществува полуразрешим език, който не е разрешим.
- **18.** Кога една функция $f: \sum o *
 ot > \sum o *$ се изчисляа с помощта на машина на Тюринг $M= <\underline{K}, \sum, \delta, s, \overline{H}> ,\ \sum \overline{o} \subseteq \sum \setminus \{\ \rhd \ , \sqcup \ \}. <\!$ br> Тогава, когато за всяка дума $w \in \sum o^*$ са изпълнени условията:

$$-(s, \rhd \underline{\sqcup} w) \vdash_{M}^{*} (\overline{h}, \rhd \underline{\sqcup} y), \text{ sa } y \in \sum o * \Leftrightarrow f(w) = y;$$

-f(w) е определена $\Leftrightarrow M$ спира работа върху $(s, \triangleright \sqcup w)$, т.е. M(w) = y.

- **19.** Кога една машина на Тюринг изчислява една функция $F: \mathbb{N}^k op \mathbb{N}$ на k променливи. Нека $F: \mathbb{N}^k op \mathbb{N}$. Казваме, че машината на Тюринг $M = \langle K, \sum, \delta, s, H \rangle$ изчислява функцията F точно тогава, когато са изпълнени следните условия:
- $![F](n_1,\ldots,n_k)$ е дефинирана $]\Leftrightarrow M(1^{n_1}\sqcup\ldots\sqcup 1^{n_k})\searrow$ спира работа: $(s,\rhd \underline{\sqcup} 1^{n_1}\sqcup\ldots\sqcup 1^{n_k})\vdash_M^* (h,\rhd \underline{\sqcup} 1^{f(n_1,\ldots,n_k)});$ ако $F(n_1,\ldots,n_k)=m$, то $M(1^{n_1}\sqcup\ldots\sqcup 1^{n_k})=1^m.$
- 20. Теоремата за неразрешимите проблеми на машина на Тюринг свързани с:
- а) празната дума;
- б) съществуването на вход;
- в) стоп-проблема;
- г) всеки вход;
- д) две машини на Тюринг;
- е) регулярните езици;
- Следните проблеми на машината на Тюринг M са неразрешими:
- дали M спира върху празната дума;
- дали M спира върху поне един вход (т.е. дали $\exists w : M(w) \setminus$);
- дали M спира при вход $w, M \searrow$;
- дали M спира за всяки вход (т.е. дали $M(w) \searrow$ за всяко w);
- дали за дадени машини на Тюринг M_1 и M_2 , M_1 и M_2 спират върху един и същ вход;
- дали L(M) е регулярен език.

ФОРМАЛИЗИРАНЕ НА ОПЕРАЦИИТЕ

- **21.** Операцията минимизация. Нека $f: \mathbb{N}^{n+1} \to \mathbb{N}$. Казваме, че $g: \mathbb{N}^n \to \mathbb{N}$ се получава от f с помощта на операцията минимизация (μ -операция), ако за произволни x_1, \ldots, x_n, y е изпълнена еквивалентността:
 $g(x_1, \ldots, x_n) = y \Leftrightarrow f(x_1, \ldots, x_n, y) = 0 \ \& \ \forall z < y: f(x_1, \ldots, x_n, z)$ е дефинирана и $f(x_1, \ldots, x_n, z) > 0$.
- **22.** Операцията примитивна рекурсия. Нека $f: \mathbb{N} \to \mathbb{N}$ и $g: \mathbb{N}^3 \to \mathbb{N}$. Казваме, че $h: \mathbb{N}^2 \to \mathbb{N}$ се определя с помощта на операцията примитивна рекурсия от f и g, ако за $\forall x, y \in \mathbb{N}$ е в сила:

$$\begin{cases} h(x,0) = f(x) \\ h(x,y+1) = g(x,y,h(x,y)) \end{cases}$$

- 23. Примитивно рекурсивна функция. Индуктивна дефиниция:
- а) всички изходни ПРФ $\left(\{O,S,I_i^n\}\right)$ са ПРФ;
- б) ако f, g_1, \ldots, g_n са ПРФ, то и функцията h, която се получава от тях с помощта на операцията суперпозиция, също е ПРФ;

- в) ако f и g са ПРФ, то и функцията h, която се получава от f и g с помощта на операцията примитивна рекурсия, също е ПРФ.
- 24. Частично рекурсивна функция. Индуктивна дефиниция:
- а) всички изходни ПРФ $\left(\{O,S,I_i^n\}\right)$ са ЧРФ;
- б) ако f,g_1,\dots,g_n са ЧРФ, то и функцията h, която се получава от тях с помощта на операцията суперпозиция, също е ЧРФ;
- в) ако f и g са ЧРФ, то и функцията h, която се получава от f и g с помощта на операцията примитивна рекурсия, също е ЧРФ.
- г) ако f е ЧРФ, то и g, която се получава от f с μ -операция (минимизация), също е ЧРФ.

github.com/andy489