

Winning Space Race with Data Science

Name: Sudhanshu Prakash

Date: Jan 23, 2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data collection
 - Data wrangling
 - EDA with data visualization
 - EDA with SQL
 - Building an interactive map with Folium
 - Building a Dashboard with Plotly Dash
 - Predictive analysis (Classification)
- Summary of all results
 - EDA results
 - Interactive analytics
 - Predictive analysis

Introduction

- SpaceX is one of the most successful for sending spacecraft to the International Space Station. It re-uses first stage to reduce cost in second stage of the launch. Sometimes first stage crashes due to the mission parameters like payload, orbit, and customer
- The price of each launch will be determined. Whether SpaceX will reuse the first stage will be determined. Instead of using rocket science to determine if the first stage will land successfully, machine learning model and public information will be used to predict if SpaceX will reuse the first stage.

Methodology

Executive Summary

Data collection methodology:

SpaceX launch data was gathered from an API, specifically the SpaceX REST API (api.spacexdata.com/v4/)

Perform data wrangling

Missing values replaced with mean value, correct data types and the data is normalized

- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- The following datasets was collected:
- SpaceX launch data that is gathered from the SpaceX REST API.
- This API will give us data about launches, including information about the rocket used, payload delivered, launch specifications, landing specifications, and landing outcome.
- The SpaceX REST API endpoints, or URL, starts with api.spacexdata.com/v4/.
- Another popular data source for obtaining Falcon 9 Launch data is web scraping Wikipedia using BeautifulSoup.

Data Collection - SpaceX API

- Data collection with SpaceX
 REST calls
- Github url:

 https://github.com/sudhanshu-prakash/Spacex-Data-Science-Project/blob/main/jupyter-labs-spacex-data-collection-api.ipynb

Data Collection - Scraping

 Present your web scraping process using key phrases and flowcharts

 https://github.com/sudhansh u-prakash/Spacex-Data-Science-Project/blob/main/jupyterlabs-webscraping.ipynb

TASK 1: Request the Falcon9 Launch Wiki page from its URL

First, let's perform an HTTP GET method to request the Falcon9 Launch HTML page, as an HTTP response.

```
: response = requests.get(static_url)
```

Create a BeautifulSoup object from the HTML response

```
: soup = BeautifulSoup(response.content)
```

TASK 2: Extract all column/variable names from the HTML table header

Next, we want to collect all relevant column names from the HTML table header

Let's try to find all tables on the wiki page first. If you need to refresh your memory about BeautifulSoup, pleathe end of this lab

```
# Use the find_all function in the BeautifulSoup object, with element type `table`
# Assign the result to a list called `html_tables`
html_tables = soup.find_all('table')
len(html_tables)
```

TASK 3: Create a data frame by parsing the launch HTML tables

We will create an empty dictionary with keys from the extracted column names in the previous task. Later, this c dataframe

```
launch_dict= dict.fromkeys(column_names)
```

Data Wrangling

Github URL: https://github.com/sudhanshu-prakash/Spacex-Data-Science-Project/blob/main/jupyter-labs-webscraping.ipynb

EDA with Data Visualization

Visualize the relationship between Flight Number and Launch Site

Visualize the relationship between Payload and Launch Site

Visualize the relationship between Payload and Orbit type

Github URL: https://github.com/sudhanshu-prakash/Spacex-Data-Science-Project/blob/main/jupyter-labs-eda-dataviz.ipynb

Visualize the relationship between success rate of each orbit type

Visualize the relationship between FlightNumber and Orbit type

Visualize the launch success yearly trend

EDA with SQL

SQL queries performed include:

- > Displaying the names of the unique launch sites in the space mission
- > Displaying 5 records where launch sites begin with the string 'KSC'
- > Displaying the total payload mass carried by boosters launched by NASA (CRS)
- Displaying average payload mass carried by booster version F9 v1.1
- Listing the date where the successful landing outcome in drone ship was achieved.
- > Listing the names of the boosters which have success in ground pad and have payload mass greater than 4000 but less than 6000
- > Listing the total number of successful and failure mission outcomes
- > Listing the names of the booster versions which have carried the maximum payload mass.
- > Listing the records which will display the month names, successful landing outcomes in ground pad ,booster versions, launch site for the months in year 2017
- > Ranking the count of successful landing outcomes between the date 2010-06-04 and 2017-03-20 in descending order.
- <u>Github URL: https://github.com/sudhanshu-prakash/Spacex-Data-Science-Project/blob/main/jupyter-labs-eda-sql-coursera.ipynb</u>

Build an Interactive Map with Folium

Build a Dashboard with Plotly Dash

Success launches by all Site

Total Sucess launches for Site CCAFS LC-40

https://github.com/sudhanshuprakash/Spacex-Data-Science-Project/blob/main/spacex dash ap p.py

Predictive Analysis (Classification)

• The SVM, KNN, and Logistic Regression model achieved the highest accuracy at 83.3%, while the SVM performs the best in

terms of Area Under the Curve at 0.958. confusion Matrix

Results

- The SVM, KNN, and Logistic Regression models are the best in terms of prediction accuracy for this dataset.
- Low weighted payloads perform better than the heavier payloads.
- The success rates for SpaceX launches is directly proportional time in years they will eventually perfect the launches.
- KSC LC 39A had the most successful launches from all the sites.
- Orbit GEO, HEO, SSO, ES L1 has the best Success Rate.

Flight Number vs. Launch Site

 Launches from the site of CCAFS SLC 40 are significantly higher than launches form other sites.

Payload vs. Launch Site

 The majority of IPay Loads with lower Mass have been launched from CCAFS SLC 40.

Success Rate vs. Orbit Type

• The orbit types of ES-L1, GEO, HEO, SSO are among the highest success rate.

Flight Number vs. Orbit Type

 A trend can be observed of shifting to VLEO launches in recent years.

Payload vs. Orbit Type

 There are strong correlation between ISS and Payload at the range around 2000, as well as between GTO and the range of 4000-8000.

Launch Success Yearly Trend

 Launch success rate has increased significantly since 2013 and has stabalised since 2019, potentially due to advance in technology and lessons learned.

All Launch Site Names

%sql select distinct(LAUNCH_SITE) from SPACEXTBL

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Launch Site Names Begin with 'CCA'

%sql select * from SPACEXTBL where LAUNCH_SITE like 'CCA%' limit 5

DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2010-06- 04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12- 08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05- 22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10- 08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03-	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

%sql select sum(PAYLOAD_MASS__KG_) from SPACEXTBL where CUSTOMER
 = 'NASA (CRS)'

45596

Average Payload Mass by F9 v1.1

 %sql select avg(PAYLOAD_MASS__KG_) from SPACEXTBL where BOOSTER_VERSION = 'F9 v1.1'

2928.400000

First Successful Ground Landing Date

%sql select min(DATE) from SPACEXTBL where Landing___Outcome = 'Success (ground pad)'

2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

%sql select BOOSTER_VERSION from SPACEXTBL where Landing__Outcome
 = 'Success (drone ship)' and PAYLOAD_MASS__KG_ > 4000 and
 PAYLOAD_MASS__KG_ < 6000

booster version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

%sql select count(MISSION_OUTCOME) from SPACEXTBL where
 MISSION_OUTCOME = 'Success' or MISSION_OUTCOME = 'Failure (in flight)'

100

Boosters Carried Maximum Payload

 %sql select BOOSTER_VERSION from SPACEXTBL where PAYLOAD_MASS _____KG_ = (select max(PAYLOAD_MASS__KG_) from SPACEXTBL)

```
F9 B5 B1048.4
F9 B5 B1049.4
F9 B5 B1051.3
F9 B5 B1056.4
F9 B5 B1048.5
F9 B5 B1049.5
F9 B5 B1060.2
F9 B5 B1051.6
F9 B5 B1060.3
F9 B5 B1060.3
```

2015 Launch Records

• %sql select * from SPACEXTBL where Landing_Outcome like 'Success%' and (DATE between '2015-01-01' and '2015-12-31') order by date desc

landing_outcome	mission_outcome	customer	orbit	payload_mass_kg_	payload	launch_site	booster_version	timeutc_
Success (ground pad)	Success	NASA (CRS)	LEO (ISS)	2490	SpaceX CRS-10	KSC LC-39A	F9 FT B1031.1	14:39:00
Success (drone ship)	Success	Iridium Communications	Polar LEO	9600	Iridium NEXT 1	VAFB SLC-4E	F9 FT B1029.1	17:54:00
Success (drone ship)	Success	SKY Perfect JSAT Group	GTO	4600	JCSAT-16	CCAFS LC- 40	F9 FT B1026	05:26:00
Success (ground pad)	Success	NASA (CRS)	(ISS)	2257	SpaceX CRS-9	CCAFS LC- 40	F9 FT B1025.1	04:45:00
Success (drone ship)	Success	Thaicom	GTO	3100	Thaicom 8	CCAFS LC- 40	F9 FT B1023.1	21:39:00
	18	SKY Perfect JSAT	CTO	1505	ICCAT AA	CCAFS LC-	FO FT 04000	05.04.00

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

%sql select * from SPACEXTBL where Landing___Outcome like 'Success%' and (DATE between '2010-06-04' and '2017-03-20') order by date desc

Success (drone ship	Success	Thaicom	GTO	3100	Thaicom 8	CCAFS LC- 40	F9 FT B1023.1	21:39:00	2016-05- 27
Success (drone ship	Success	SKY Perfect JSAT Group	GTO	4696	JCSAT-14	CCAFS LC- 40	F9 FT B1022	05:21:00	016-05- 06
Success (drone ship	Success	NASA (CRS)	LEO (ISS)	3136	SpaceX CRS-8	CCAFS LC- 40	F9 FT B1021.1	20:43:00	016-04- 08
Success (ground	Success	Orbcomm	LEO	2034	OG2 Mission 2 11 Orbcomm-OG2 satellites	CCAFS LC- 40	F9 FT B1019	01:29:00	2015-12-

Folium Map Screenshot 1: All launch sites marked on a map

- •All launch sites are in proximity to the Equator line.
- •Yes, all launch sites are in very close proximity to the coast.

Folium Map Screenshot 2: Success/failed launches marked on the map

 From the color-labeled markers in marker clusters, are able to easily identify which launch sites have relatively high success rates.

Folium Map Screenshot 3: Distances between a launch site to its proximities

Total success launches by all sites

Success rate by site

Payload vs launch outcome

Classification Accuracy

Confusion Matrix

Conclusions

- The SVM, KNN, and Logistic Regression models are the best in terms of
- prediction accuracy for this dataset.
- Low weighted payloads perform better than the heavier payloads.
- The success rates for SpaceX launches is directly proportional time in years they will eventually perfect the launches.
- KSC LC 39A had the most successful launches from all the sites.
- Orbit GEO,HEO,SSO,ES L1 has the best Success Rate.

Appendix

• Github project :

https://github.com/sudhanshu-prakash/Spacex-Data-Science-Project

