Mathematics for Informatics

Carlos Areces and Patrick Blackburn

areces@loria.fr

http://www.loria.fr/~areces

blackbur@loria.fr

http://www.loria.fr/~blacbur

INRIA Lorraine Nancy, France

2007/2008

Summatory and Productory (from 0)

Theorem

Let $\mathcal C$ be a PRC class. If $f:\mathbb N^{n+1}\to\mathbb N$ is in $\mathcal C$ then the functions

$$g(y, x_1, ..., x_n) = \sum_{t=0}^{y} f(t, x_1, ..., x_n)$$

$$h(y,x_1,\ldots,x_n)=\prod_{t=0}^y f(t,x_1,\ldots,x_n)$$

are also in C.

Summatory and Productory (from 0)

Theorem

Let $\mathcal C$ be a PRC class. If $f:\mathbb N^{n+1}\to\mathbb N$ is in $\mathcal C$ then the functions

$$g(y, x_1, ..., x_n) = \sum_{t=0}^{y} f(t, x_1, ..., x_n)$$

$$h(y,x_1,\ldots,x_n)=\prod_{i=1}^y f(t,x_1,\ldots,x_n)$$

are also in C.

Proof.

$$g(0, x_1, ..., x_n) = f(0, x_1, ..., x_n)$$

 $g(t+1, x_1, ..., x_n) = g(t, x_1, ..., x_n) + f(t+1, x_1, ..., x_n)$

Idem for h with \cdot instead of +.

Observe that it is not important in which variable we do the recursion (we can define g'(x,t) as in the last class and then g(t,x)=g'(x,t))

Sumatorias y productorias (desde 1)

Theorem

Let $\mathcal C$ be a PRC class. If $f:\mathbb N^{n+1}\to\mathbb N$ is in $\mathcal C$ then also the following furncions are in $\mathcal C$

$$g(y, x_1, ..., x_n) = \sum_{t=1}^{y} f(t, x_1, ..., x_n)$$

$$h(y,x_1,\ldots,x_n)=\prod_{t=1}^y f(t,x_1,\ldots,x_n)$$

(as usual, empty summatory = 0, empty productory = 1)

Sumatorias y productorias (desde 1)

Theorem

Let $\mathcal C$ be a PRC class. If $f:\mathbb N^{n+1}\to\mathbb N$ is in $\mathcal C$ then also the following furncions are in $\mathcal C$

$$g(y, x_1, ..., x_n) = \sum_{t=1}^{y} f(t, x_1, ..., x_n)$$

$$h(y,x_1,\ldots,x_n)=\prod_{t=1}^y f(t,x_1,\ldots,x_n)$$

(as usual, empty summatory = 0, empty productory = 1)

Proof.

$$g(0, x_1, ..., x_n) = 0$$

 $g(t+1, x_1, ..., x_n) = g(t, x_1, ..., x_n) + f(t+1, x_1, ..., x_n)$

Idem for h with \cdot instead of + and + instead of + in the base case.

.

Bounded quantification

Let $p: \mathbb{N}^{n+1} \to \{0,1\}$ be a predicate

$$(\forall t)_{\leq y} p(t, x_1, \dots, x_n)$$
 is true iff

 \triangleright $p(0, x_1, \dots, x_n)$ is true and

:

- $ightharpoonup p(y, x_1, \dots, x_n)$ is true
- $(\exists t)_{\leq v} p(t, x_1, \dots, x_n)$ is true iff
 - $ightharpoonup p(0, x_1, \dots, x_n)$ is true or

:

 $ightharpoonup p(y, x_1, \dots, x_n)$ is true

We can also define versions with < y instead of $\le y$.

$$(\exists t)_{\leq y} p(t, x_1, \dots, x_n)$$
 and $(\forall t)_{\leq y} p(t, x_1, \dots, x_n)$

Theorem

Let $p: \mathbb{N}^{n+1} \to \{0,1\}$ be a predicate in a PRC class \mathcal{C} . The following predicates are also in \mathcal{C} :

$$(\forall t)_{\leq y} p(t, x_1, \ldots, x_n)$$

$$(\exists t)_{\leq y} p(t, x_1, \dots, x_n)$$

Theorem

Let $p: \mathbb{N}^{n+1} \to \{0,1\}$ be a predicate in a PRC class \mathcal{C} . The following predicates are also in \mathcal{C} :

$$(\forall t)_{\leq y} p(t, x_1, \dots, x_n)$$

 $(\exists t)_{\leq y} p(t, x_1, \dots, x_n)$

Proof.

$$(\forall t)_{\leq y} p(t, x_1, \dots, x_n) \text{ iff } \prod_{t=0}^{y} p(t, x_1, \dots, x_n) = 1$$

Theorem

Let $p: \mathbb{N}^{n+1} \to \{0,1\}$ be a predicate in a PRC class \mathcal{C} . The following predicates are also in \mathcal{C} :

$$(\forall t)_{\leq y} p(t, x_1, \dots, x_n)$$

 $(\exists t)_{\leq y} p(t, x_1, \dots, x_n)$

Proof.

$$(\forall t)_{\leq y} \ p(t, x_1, \dots, x_n) \ \text{iff} \ \prod_{t=0}^{y} \ p(t, x_1, \dots, x_n) = 1 \ (\exists t)_{\leq y} \ p(t, x_1, \dots, x_n) \ \text{iff} \ \sum_{t=0}^{y} \ p(t, x_1, \dots, x_n) \neq 0$$

Theorem

Let $p: \mathbb{N}^{n+1} \to \{0,1\}$ be a predicate in a PRC class \mathcal{C} . The following predicates are also in \mathcal{C} :

$$(\forall t)_{\leq y} p(t, x_1, \dots, x_n)$$

 $(\exists t)_{\leq y} p(t, x_1, \dots, x_n)$

Proof.

$$(\forall t)_{\leq y} p(t, x_1, \dots, x_n) \text{ iff } \prod_{t=0}^{y} p(t, x_1, \dots, x_n) = 1$$

 $(\exists t)_{\leq y} p(t, x_1, \dots, x_n) \text{ iff } \sum_{t=0}^{y} p(t, x_1, \dots, x_n) \neq 0$

- lacktriangle summatory and productory are in ${\cal C}$
- ightharpoonup comparison by = is in $\mathcal C$

Theorem

Let $p: \mathbb{N}^{n+1} \to \{0,1\}$ be a predicate in a PRC class \mathcal{C} . Then the following predicates are also in \mathcal{C} :

$$(\forall t)_{\leq y} \ p(t, x_1, \dots, x_n)$$
$$(\exists t)_{\leq y} \ p(t, x_1, \dots, x_n)$$

Proof.

$$(\forall t)_{< y} \ p(t, x_1, \dots, x_n) \ \text{iff} \ (\forall t)_{\leq y} \ (t = y \lor p(t, x_1, \dots, x_n))$$

$$(\exists t)_{< y} \ p(t, x_1, \dots, x_n) \ \text{iff} \ (\exists t)_{\leq y} \ (t \neq y \land p(t, x_1, \dots, x_n))$$

 \triangleright y|x iff y divides x. It can be defined as

$$(\exists t)_{\leq x} \ y \cdot t = x$$

Note that with this definition 0|0.

ightharpoonup prime(x) iff x is prime.

Let $p: \mathbb{N}^{n+1} \to \{0,1\}$ be a predicate in a PRC class \mathcal{C} .

$$g(y,x_1,\ldots,x_n)=\sum_{u=0}^y\prod_{t=0}^u\alpha(p(t,x_1,\ldots,x_n))$$

What does g do?

Let $p: \mathbb{N}^{n+1} \to \{0,1\}$ be a predicate in a PRC class \mathcal{C} .

$$g(y,x_1,\ldots,x_n)=\sum_{u=0}^y\prod_{t=0}^u\alpha(p(t,x_1,\ldots,x_n))$$

What does g do?

▶ suppose that there is $t \le y$ suth that $p(t, x_1, ..., x_n)$ is true

Let $p: \mathbb{N}^{n+1} \to \{0,1\}$ be a predicate in a PRC class \mathcal{C} .

$$g(y,x_1,\ldots,x_n)=\sum_{u=0}^y\prod_{t=0}^u\alpha(p(t,x_1,\ldots,x_n))$$

What does g do?

- ▶ suppose that there is $t \le y$ suth that $p(t, x_1, ..., x_n)$ is true
 - ightharpoonup let t_0 be the maximal such t

Let $p: \mathbb{N}^{n+1} \to \{0,1\}$ be a predicate in a PRC class \mathcal{C} .

$$g(y,x_1,\ldots,x_n)=\sum_{u=0}^y\prod_{t=0}^u\alpha(p(t,x_1,\ldots,x_n))$$

What does g do?

- ▶ suppose that there is $t \le y$ suth that $p(t, x_1, ..., x_n)$ is true
 - ightharpoonup let t_0 be the maximal such t
 - ▶ $p(t, x_1, ..., x_n) = 0$ for each $t < t_0$

Let $p: \mathbb{N}^{n+1} \to \{0,1\}$ be a predicate in a PRC class \mathcal{C} .

$$g(y,x_1,\ldots,x_n)=\sum_{u=0}^y\prod_{t=0}^u\alpha(p(t,x_1,\ldots,x_n))$$

What does g do?

- ▶ suppose that there is $t \le y$ suth that $p(t, x_1, ..., x_n)$ is true
 - let t_0 be the maximal such t
 - ▶ $p(t, x_1, ..., x_n) = 0$ for each $t < t_0$

Let $p: \mathbb{N}^{n+1} \to \{0,1\}$ be a predicate in a PRC class \mathcal{C} .

$$g(y,x_1,\ldots,x_n)=\sum_{u=0}^y\prod_{t=0}^u\alpha(p(t,x_1,\ldots,x_n))$$

What does g do?

- ▶ suppose that there is $t \le y$ suth that $p(t, x_1, ..., x_n)$ is true
 - let t_0 be the maximal such t
 - ▶ $p(t, x_1, ..., x_n) = 0$ for each $t < t_0$
 - $p(t_0, x_1, \ldots, x_n) = 1$

Let $p: \mathbb{N}^{n+1} \to \{0,1\}$ be a predicate in a PRC class \mathcal{C} .

$$g(y,x_1,\ldots,x_n)=\sum_{u=0}^y\prod_{t=0}^u\alpha(p(t,x_1,\ldots,x_n))$$

What does g do?

- ▶ suppose that there is $t \le y$ suth that $p(t, x_1, ..., x_n)$ is true
 - ightharpoonup let t_0 be the maximal such t
 - ▶ $p(t, x_1, ..., x_n) = 0$ for each $t < t_0$
 - $p(t_0, x_1, \ldots, x_n) = 1$

 - $g(y, x_1, \ldots, x_n) = \underbrace{1 + 1 + \cdots + 1}_{t_0} = t_0$
 - ▶ then $g(x_1,...,x_n)$ is the maximal t such that $p(t,x_1,...,x_n)$ is true

Let $p: \mathbb{N}^{n+1} \to \{0,1\}$ be a predicate in a PRC class \mathcal{C} .

$$g(y,x_1,\ldots,x_n)=\sum_{u=0}^y\prod_{t=0}^u\alpha(p(t,x_1,\ldots,x_n))$$

What does g do?

- ▶ suppose that there is $t \le y$ suth that $p(t, x_1, ..., x_n)$ is true
 - ightharpoonup let t_0 be the maximal such t
 - $p(t, x_1, ..., x_n) = 0$ for each $t < t_0$
 - $p(t_0, x_1, \ldots, x_n) = 1$

 - $g(y, x_1, \ldots, x_n) = \underbrace{1 + 1 + \cdots + 1}_{t_0} = t_0$
 - ▶ then $g(x_1,...,x_n)$ is the maximal t such that $p(t,x_1,...,x_n)$ is true
- ▶ if there is no such t, then $g(y, x_1, ..., x_n) = y + 1$

We note

$$\min_{t \leq y} p(t, x_1, \dots, x_n) = \begin{cases} \text{smallest } t \leq y \text{ such that} \\ p(t, x_1, \dots, x_n) \text{ is true} \end{cases}$$
 if thre is such a t

Theorem

Let $p: \mathbb{N}^{n+1} \to \{0,1\}$ be a predicate in a PRC class \mathcal{C} . Then the function

$$\min_{t\leq y}p(t,x_1,\ldots,x_n)$$

is also in C.

► x div y is the integer division of x by y

$$\min_{t \le x} ((t+1) \cdot y > x)$$

Note that with this definition 0 div 0 is false.

► x div y is the integer division of x by y

$$\min_{t \le x} ((t+1) \cdot y > x)$$

Note that with this definition 0 div 0 is false.

x mod y is the reminder of dividing x by y

x div y is the integer division of x by y

$$\min_{t \le x} ((t+1) \cdot y > x)$$

Note that with this definition 0 div 0 is false.

- x mod y is the reminder of dividing x by y
- ▶ p_n is the *n*-th prime (n > 0). It is defined as $p_0 = 0, p_1 = 2, p_2 = 3, p_3 = 5, ...$

x div y is the integer division of x by y

$$\min_{t \le x} ((t+1) \cdot y > x)$$

Note that with this definition 0 div 0 is false.

- x mod y is the reminder of dividing x by y
- ▶ p_n is the *n*-th prime (n > 0). It is defined as $p_0 = 0, p_1 = 2, p_2 = 3, p_3 = 5,...$

$$p_0 = 0$$
 $p_{n+1} = \min_{t}(primo(t) \land t > p_n)$

x div y is the integer division of x by y

$$\min_{t \le x} ((t+1) \cdot y > x)$$

Note that with this definition 0 div 0 is false.

- x mod y is the reminder of dividing x by y
- ▶ p_n is the n-th prime (n > 0). It is defined as $p_0 = 0$, $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, . . .

$$p_0 = 0$$

$$p_{n+1} = \min_{t \le K(n)} (primo(t) \land t > p_n)$$

We need a good bound K(n), i.e.

- sufficiently big and
- primitive recursive

x div y is the integer division of x by y

$$\min_{t \le x} ((t+1) \cdot y > x)$$

Note that with this definition 0 div 0 is false.

- x mod y is the reminder of dividing x by y
- ▶ p_n is the *n*-th prime (n > 0). It is defined as $p_0 = 0, p_1 = 2, p_2 = 3, p_3 = 5,...$

$$p_0 = 0$$

$$p_{n+1} = \min_{t \le K(n)} (primo(t) \land t > p_n)$$

We need a good bound K(n), i.e.

- sufficiently big and
- primitive recursive

$$K(n) = p_n! + 1$$
 is enough (note that $p_{n+1} \le p_n! + 1$).

Bounded minimization

Recall the definition of bounded minimization:

$$\min_{t \leq y} p(t, x_1, \dots, x_n) = \left\{ egin{array}{ll} ext{smallest } t \leq y ext{ such that} \\ p(t, x_1, \dots, x_n) ext{ if ther is such a } t \\ 0 & ext{otherwise} \end{array}
ight.$$

Bounded minimization

Recall the definition of bounded minimization:

$$\min_{t \leq y} p(t, x_1, \dots, x_n) = \left\{ egin{array}{ll} ext{smallest } t \leq y ext{ such that} \\ p(t, x_1, \dots, x_n) ext{ if ther is such a } t \\ 0 & ext{otherwise} \end{array}
ight.$$

What happens if there is no bound? We define unbounded minimization as

$$\min_t p(t,x_1,\ldots,x_n) = \left\{egin{array}{ll} ext{smallest } t ext{ such that} & ext{if there is such a } t \ & p(t,x_1,\ldots,x_n) ext{ is true} \ & & ext{otherwise} \end{array}
ight.$$

Unbounded minimisation

Theorem

If $p: \mathbb{N}^{n+1} \to \{0,1\}$ is a computable predicate then

$$\min_{t} p(t, x_1, \ldots, x_n)$$

is a partially computable predicate.

Unbounded minimisation

Theorem

If $p: \mathbb{N}^{n+1} \to \{0,1\}$ is a computable predicate then

$$\min_{t} p(t, x_1, \ldots, x_n)$$

is a partially computable predicate.

Proof.

The following program computes $\min_t p(t, x_1, \dots, x_n)$:

[A] IF
$$p(X_1, ..., X_n, Y) = 1$$
 GOTO E

$$Y \leftarrow Y + 1$$
GOTO A

Bounded and unbounded minimization

What we know:

- a while can simulate an unbounded minimization
- a for can simulate a bounded minimization

Bounded and unbounded minimization

What we know:

- a while can simulate an unbounded minimization
- a for can simulate a bounded minimization

Questions:

- lacktriangle Can we write every program of ${\mathscr S}$ as a for-programa?
- can we find, for any unbounded minimization, a proper bound to turn it into a bounded minimization?
- computable = primitive recursive?