(i)
$$(H^{+}) = J_{KW} = 3 \times 10^{-7}$$

 p^{H} at $60^{\circ} C = 7 - lg^{3} = 6.53$

(a)
$$pH(6.7) > New-bod pH =) Basic$$

(b) $pH(6.35) < New-bod pH =) Acidic(6.53)$

(3)
$$(H) = \sqrt{Fw} = 1.6 \times 10^{-7} = 16 \times 10^{-8}$$

 $pH = 8 - 41092 = 6.8$

(b)
$$\frac{Ka}{C} < 10^{-3} \Rightarrow (H^{\dagger}) = \sqrt{Ka.C} = \sqrt{1.8 \times 10^{-5} \times 0.1}$$

 $= \sqrt{1.8 \times 10^{-3}}$
 $pH = 3 - \log \sqrt{1.9} = 2.87$

(c)
$$\frac{K_{b}}{C} \leq 16^{-3} \Rightarrow [OK] = \sqrt{K_{b}.C} = \sqrt{1.8} \times 16^{-3} \times 10^{-3}$$

$$= \sqrt{1.8} \times 16^{-3}$$

$$P^{M} = 3 - \log \sqrt{1.8} = 2.87$$

$$P^{M} = 14 - P^{0M} = 14 - 2.87 = 11.83$$
(d) $HCL(pa) \rightarrow H^{+}(pa) + CL(pa)$

$$(168+x) = 8$$

$$H_{20} \Rightarrow H^{+}(pa) + OH^{-}(pa)$$

$$(x+168) \times K$$

$$K_{W} = (N+168) \times K$$

$$\chi^{2} + 168 \times -16^{-14} = 0$$

$$\chi = -16^{-6} \pm \sqrt{16^{-16} + 4 \times 16^{-14}}$$

$$(H^{+}) = \chi + 16^{-8} = 1.051 \times 16^{-7}$$

$$P^{M} = 7 - \log 1.051 \Rightarrow 6.97$$
(e) $(OM^{-}) = 16^{-10} + 16^{-7} \approx 16^{-7}$

$$P^{M} \approx 7 \Rightarrow P^{M} = 14 - 7 \approx 7$$

(f)
$$\frac{Ken}{C} > 10 \Rightarrow Behave like strong a cid$$
 $CHIJ = 166 \Rightarrow PH = 6$

(9)
$$\frac{K\alpha}{C} = \frac{18 \times 160}{168} > 10 \Rightarrow \text{Behave like strong acid}$$

So $168 \text{ m. } \text{CM_3 COOM is like } 168 \text{ m. } \text{HU (as part)}$
 $\text{CM_3 COOM (A)} \longrightarrow \frac{\text{CM_3 COO}}{168} + \text{Ht}$;

 $(168 + \text{m.})$
 $\text{Hno (1)} \cong \text{M} + \text{OH}^ (168 + \text{m.})$
 $\text{Kw} = 1614 = (\text{m.} + 168) \text{M.}$

Solving quadratic $\text{M} = \text{calculated}$

$$(n+) = 10^{-8} + 10 = 1.051 \times 10^{-7}$$

 $ph = 7 - log 1.051 = 6.97$

(i)
$$(OH) = 2 \times M_{giral}$$

$$= 2 \times 10^{-3} M$$

$$= \frac{100}{100} = 10^{-3}$$

$$P^{0}H = 3 - 1092 = 2.7 \Rightarrow P^{1}H = 14 - 2.7 = 11.30$$

$$(i) (OH) = \frac{10^{-3}}{100} = 10^{-5} M \Rightarrow P^{0}H = 5$$

$$\Rightarrow P^{1}H = 14 - 5 = 9$$

(j)
$$M_1 = 10^{-4} \text{ M}$$
: $M_2 = 19 \times 10^{-4} \text{ M}$

Let V lift of both the two are mixed

$$\begin{bmatrix} H^{+} \end{bmatrix} = \frac{M_1 V_1 + M_2 V_2}{V_1 + V_2} = 10^{-3} \text{ M}$$
 $D^{+} = 3$

(5) (9)
$$K_{0} = \frac{\chi^{2}}{c}$$
 : $\chi = (H^{\dagger}) = 10^{-4.5}$

$$= \frac{(10^{-4.5})^{2}}{0.1} = 10^{-8}$$

(b)
$$F_b = \frac{\chi^2}{C}$$
, $\chi = [0H] = 10^{-1} = 10^{-3.5}$
= $\frac{(10^{-3.5})^2}{0.1} = 10^{-6}$

$$\frac{\sqrt{2}}{\sqrt{2}} = \sqrt{\frac{k_{0}}{2}} = \sqrt{\frac{1.8 \times 10^{-5}}{6 \times 10^{-10}}}$$

$$= 1.732 \times 100 = 1732 : 1$$

B) Ht removed = moles of Ht initially - finally
=
$$M_1V_1 - M_2V_2$$

= $16^2 \times 1 - 10^{-3} \times 1$
= 9×10^{-3}

(9.)
$$M_0 = \frac{\chi^2}{c-\chi}$$
 $| \chi = (0\pi) = 10^{-4}$
 $| \sigma^{-5} = \frac{(10^{-4})^2}{c-10^{-4}} \Rightarrow c = 1.1 \times 10^{-3} \text{ M}$

(10)
$$K_A = \frac{\chi^2}{c-\chi} = \frac{(10^{-3})^2}{(10^{-3}-10^{-3})} = 1.11 \times 10^{-4}$$

(1)
$$\frac{k_{0}}{c} \ge 10^{-3} \Rightarrow (H+) = \sqrt{k_{0} \cdot c} = \sqrt{8 \times 10^{-10} \times 0.5}$$

= 2×10^{-5}
 $ph = 5 - \log 2 = 4.7$

(19) When equal volume not mixed

$$(H^{\dagger})_{final} = \frac{16^{-5} \times V + 16^{-3} \times V}{V + V} = 50.5 \times 10^{-5} M$$

$$pM = 5 - \log(50.5) = 3.3$$

(9)
$$(A)$$
 (A) (A)

(b)
$$(H^{\dagger})_{find} = \int k_{0}(1 + k_{0})(2) \qquad (Mixing # weak avids)$$

$$= 3 \times 10^{-3} M$$

$$p1 = 3 - lig 3 = 2.522$$

(15)
$$H_{2}(20y(4)) \Longrightarrow H^{+}(4) + H(20y(4); Ka_{1})$$
 0.1
 $0.1-x$
 $H(20y^{-}(4)) \Longrightarrow H^{+}(4) + (20y^{-}(4); Ka_{2})$
 $(x-y)=x$
 $(x-y)=x$

(16.) Discretic weak base gives of mainly due to I step

$$K_{b_1} = \frac{\chi^2}{C} \Rightarrow 2\chi 10^{-5} = \frac{\chi^2}{0.2}$$
 $\chi = [0H] = \sqrt{2\chi 10^{-5}\chi 0.2} = 2\chi 10^{-3} M$
 $\chi = [0H] = 3 - \log 2 \Rightarrow pH = |Y - p^{0H}| = 2|1 + \log 2$
 $\chi = [11.3]$

Saut of S.B & W.A

$$K_{h} = \frac{F_{w}}{K_{a}} = \frac{10^{-14}}{1.8 \times 10^{-5}} = \frac{\chi^{2}}{C}$$

$$\mathcal{H} = [011^{-}] = \sqrt{\frac{16^{14}}{1.8 \times 10^{-5}}} \times 0.18 = 10^{-5} M$$

(18)
$$pH = 7 - \frac{1}{2}pF_0 - \frac{1}{2}log C$$
 (Sout of S,A & W.B.)
$$= 7 - \frac{1}{2} \times (5 - log 2) - \frac{1}{2}log 2 = 4.5$$

19.) Salt of S.A.R.W.R.

$$K_{N} = \frac{15^{14}}{K_{0}} = \frac{\chi^{2}}{c} = \frac{\chi^{2}}{c} = 2\chi_{15}^{2}$$
 $K_{b} = 6.25 \times 15^{10}$
 $K_{b} = 6.25 \times 15^{10}$

(20)
$$pH = 7 + \frac{1}{5}pKa - \frac{1}{5}pKb$$
 (Salty W.ARW.B.)
 $= 7$ (as $Ka = Kb$)
 $1/.h = \sqrt{\frac{15^{-14}}{ka \times Kb}} \times 100 = 0.56\%$

21)
$$\frac{K_h}{C} = \sqrt{\frac{10^{-14}}{k_a \times c}} \times 100 = 1.667 \text{ y.}$$
Solt of W.A & S.B.

(29) Amphiprotic anion
$$pH = \frac{pH_1 + pH_2}{2} = \frac{7 - \log 5 + 11 - \log 5}{2} = 8.3$$

(23) a)
$$K_h = \frac{\pi^2}{C}$$
 $\Rightarrow \pi = (H^{\dagger}) = \sqrt{K_h \cdot C}$
 $= \sqrt{10^{-9} \times 0.001} = 16^{6} M$
 $\Rightarrow \rho M = 6$
 $b) K_h = \frac{16^{-1} Y}{K_{hh}} \Rightarrow K_{b_2} = \frac{16^{-1} Y}{K_h} = \frac{16^{-1} Y}{16^{-9}} = 16^{-5}$

$$\begin{array}{lll}
94) & pH = pKa + log(%) = 9 + log(\frac{0.1}{0.1}) = 9 \\
\hline
95) & pOH = pKb + log(%) = 5 - log 1.8 + log(%).2) \\
pH = 14 - poH = 9.56
\end{array}$$

$$pH = pKa + log(\frac{5}{4}) = 5 - log log + log(\frac{0.4}{0.4 \times \frac{500}{1000}})$$

= 5.04

$$(NHy)_2SO_Y \longrightarrow 2NH_Y^{\dagger} + 80y^2$$
 $\times mol$
 $\times mol$
 $\times mol$

$$poH = pH_0 + log(H_0)$$

 $(14-9.26) = 4.74 + log(\frac{2x}{0.1})$
 $x = \frac{0.1}{2} = 0.05$

$$ph = p^{ka}(hce_5) + log \frac{[co_3^2-)}{[hce_5]} = 11 - log y + log (\frac{0.1}{0.2})$$

= 10.1

CH3(00H + NaOH
$$\longrightarrow$$
 CH3 COONA + H2O
50X08=10

5 (50X01)

5

For acidic buffer formed
$$pn = pta + log(5/a) = 4.74 + log(5/5) = 4.74$$

$$NH_{Y}Q + N_{Q}OH \longrightarrow NH_{Y}OH + N_{Q}Q$$

$$75\times0.1 = 7.5 \quad 50\times0.1 = 5$$

$$2.5 \quad \times \quad 5$$

$$poH = pHb + log(Hb) = (14-9.26) + log(2.5)$$

= $14-9.26 - log 2$
 $pH = 14-poH = 9.26 + log 2 = 9.56$

32)
$$NH_3 + HQ \longrightarrow NH_4Q$$

20 15

5 X

15

PON = PKS + log (%) = 4.74 + log (15/5) = 4.74 + log

PM = 14 - POM = 8.7782

23) Let b millimales of NaOH one added

CH3 COOH + NaOH
$$\rightarrow$$
 (M3 COONA + H2O)

initially 10 b 10

After 10-b \times 10+b

reaction

$$pH_1 = pKa + log(\frac{lo}{lo}) = pKa$$

$$pM_2 = pKa + log(\frac{lotb}{lo-b}) = 0.3 = log 2 \Rightarrow b = \frac{10}{3} = 3.33$$

CH₃ COOM + NGOM
$$\longrightarrow$$
 Ch₃ COON α + H₂O
 $\frac{0.2}{2} = 0.1M$ $\frac{0.1}{2} = 0.1M$ $0.1M$

(at equivalence point equal volumes are added so concentration becomes half)

for salt of SB = W.A.

$$K_{1} = \frac{16^{14}}{K_{1}} = \frac{\pi^{2}}{C} \times 0.1$$
 $\chi = [0H] = \sqrt{\frac{16^{14}}{K_{1}}} \times C = 10^{-5} M$

35) at equivalence point chacooks forms,
$$c = \frac{0.1}{2}M$$
 $K_{1} = \frac{10^{-14}}{K_{0}} = \frac{x^{2}}{C}$
 $N = [0n^{-1}]$
 $N = [0n^{-1}]$

36) at equivalence point NhyU forms,
$$C = \frac{0.4}{x} = 0.2M$$

$$F_h = \frac{10^{-14}}{F_b} = \frac{\chi^2}{C} \Rightarrow \chi = (H^{+}) = 10^{-5} M$$

$$P^{M} = 5$$

(37) a)
$$\frac{nt \text{ owl NnoH}}{tor (N_3 \text{ cool})}$$
, $(nt) = \sqrt{14.c} = \sqrt{2} \times 16^{-3}$
 $pM = 3 - \frac{1}{2} \log 2 = 2.85$

c)
$$\frac{1}{25} \frac{1}{25} \frac{1}{100} \frac{1$$

(e) at som NgOM: - chicona, c=
$$\sqrt{2}$$

but
$$\frac{14f_n}{10^{-3}} = \frac{(n+)(f_n-1)}{(n+n)} = \frac{4x10^{-3} \times (10n-n)}{x}$$

$$ka = 6 \times 16^5 = \frac{(n+)(J_{n-1})}{(NJ_{n})} = 10^{-5} \times \left(\frac{\chi}{100-N}\right)$$

(40) theoritically indicator changes the colour when pH = pkm = 4-log4 = 3.4

i.e pH snuge = 2.4 to 4.4

So suitable for titantions involving strong acids only like opdin (b) & (c)

$$p^{M} = p^{k} In + log \left(\frac{7n^{-}}{Hz_{n}}\right)$$

$$p^{M_{1}} = p^{k} In + log \left(\frac{25}{5}\right)$$

$$p^{M_{2}} = p^{k} In + log \left(\frac{75}{5}\right)$$

$$q^{M_{2}} = p^{k} In + log \left(\frac{75}{5}\right)$$

$$q^{M_{2}} = p^{K} In + log \left(\frac{75}{5}\right)$$

$$q^{M_{2}} = p^{K} In + log \left(\frac{75}{5}\right)$$

$$\Delta pH = pH_2 - pH_1 = 2 | 93 = 0.95$$

(9)
$$Mx: - K_{3p} = S^{2} \Rightarrow S_{1} = \sqrt{K_{3p}} = 2 \times 10^{-9} M$$

$$2 \times 2: - K_{3p} = 4 \times 3^{3} \Rightarrow S_{2} = (\frac{K_{3p}}{4})^{3} = 10^{-6} M$$

$$S_{2} > S_{1}$$

(43)
$$S = \frac{0.0608}{304} = 2 \times 10^{-4} \text{ M}$$

$$Ksp = S^2 = (2 \times 10^{4})^2 = 4 \times 10^{-8}$$

(44)

$$CuI(s) \Longrightarrow Cut(ne) + I^{-}(ne) : Ksp$$
 $x molk$
 $x molk$

(45)
$$G_{1}F_{2}(S) \Rightarrow C_{1}f_{1}(A_{1}) + 2F_{1}(A_{2}); K_{3}p$$

$$2x = 4x 16^{4}$$

$$K_{3}p = x(2n)^{2} = 2x 10^{-4} x(4x 16^{4})^{2} = 2.2x 16^{-1}$$

(47)
$$K_{sp} = (2)^{2} (3)^{3} s^{5} = 108 s^{5}$$

$$S = \left(\frac{K_{sp}}{108}\right)^{1/5} = \left(\frac{1.08 \times 10^{-23}}{108}\right)^{1/5} = 10.5 \text{ M}$$

Ag(1(s)
$$\Rightarrow$$
 Ag⁺(re.) + ci(re.): Fgp
'x' mol/ \Rightarrow $(x + xx_{0.1})$ from BaCl₂
 \Rightarrow 0,2

$$Ksp = X \times 0.2$$

$$x = \frac{Fsp}{0.2} = 5 \times 10^{-10}$$

(49)
$$(q_3(P0y)_2 (s)) = 3 (a+2 (a+1) + 2 P0y^3 (a+1) : Kgp$$
 (x') $(3x+0.1)$ $2x$
 $= 0.1$ from $(a \times 1)^2$
 $(x)^2$
 $(x)^2$
 $(x)^3$
 $(x)^3$

Fryx
$$F_{f} = \left(\frac{\chi}{c-2\pi}\right)^{2} \Rightarrow \frac{\chi}{c-2\pi} = \sqrt{\frac{F_{f} \times F_{f}}{c-2\pi}}$$

here $c = 6.2 \text{M}$ 2 χ is solubility

$$\frac{\chi}{0.2-2\pi} = 4 \times 10^{-4} \Rightarrow \chi = 4 \times 10^{-4} \Rightarrow \chi = 4 \times 10^{-3} \text{M}$$

$$\Rightarrow \chi = 4 \times 10^{-3} \text{M}$$

$$\frac{K_{SP}}{K_{A}} = \frac{\chi^{2}}{(H^{+})}; \quad \chi = Solubility$$

$$\chi = \sqrt{\frac{K_{SP}}{K_{A}}} \times (H^{+}) = \sqrt{\frac{8\chi |\delta^{-}|^{0}}{5\chi |\delta^{-}|^{0}}} = 4\chi |\delta^{-}|^{2}M$$

(a)
$$Q_{SP} = \lceil M_g + 1 \rceil \quad \lceil ONT \rceil^2 = 16^3 \times (16^5)^2 = 16^{13}$$

 $Q_{SP} < K_{SP} \Rightarrow No PPt.$
(b) $Q_{SP} = (16^{-3}) (16^{-3})^2 = 16^{-9}$
 $Q_{SP} > K_{SP} \Rightarrow PPt.$

(55)
$$K_{SP} = 8 \times 10^{-8} = [B_{0}t^{2}] (S_{0}t^{2})$$
 $Z_{X}|_{0}^{-5}$
 $Z_{X}|_{0}^{-5}$
 $S_{0}t^{2}$) = $Y_{X}|_{0}^{-3}$ moly

 $S_{0}t^{2}$ = $Y_{X}|_{0}^{-3}$ moly

 $S_{0}t^{2}$ = $Y_{X}|_{0}^{-3}$ x $Y_{X}|_{0}^{-3}$