Fundação Getulio Vargas Escola de Matemática Aplicada

Wellington José

Resumo Álgebra Linear

Ortogonalidade

Seja E um espaço vetorial. Diremos que u e v são ortogonais se $v^Tu=0$ e escrevemos $v\bot u$.

- $v^T u = v \cdot u$
- $||v + u|| = ||v||^2 + ||u||^2$

Sejam V e U dois subespaços vetoriais de E. Diremos que $V \perp U$ se $v \perp u$, para todo $v \in V$ e $u \in U$

•
$$w \in V \cap U \iff w = 0$$

Ortogonalidade e os espaços fundamentais

- $N(A) \perp C(A^T)$
- $C(A) \perp N(A^T)$

Complemento Ortogonal

$$V^\perp = \{w \in E; w \bot V\}$$

 $\bullet~V^T$ é um subespaço de E

Seja $\{v_1,\dots,v_k\}$ gera V. Então

- $\bullet \ w \in V^{\perp} \iff w \bot v_i \, \forall i \in I_k$
- Defina $A = \begin{bmatrix} v_1^T \\ \vdots \\ v_k^T \end{bmatrix}$. Então $V^T = N(A)$ e podemos achar uma base área V^T
- $V \cap V^{\perp} = \{0\}$
- dim V + dim V^{\perp} = dim E
- $\bullet \ V = (V^\perp)^\perp$

Decomposição Ortogonal

Teorema 1 Todo vetor $x \in E$ pode ser escrito como $x = v + v^{\perp}$, onde $v \in V$ e $v^{\perp} \in V^{\perp}$, essa decomposição é única.

Projeção Ortogonal

• Seja a e b dois vetores num espaço vetorial E. A projeção de b em a:

$$p = \frac{aa^T}{a^T a} \cdot b$$

Matriz de Projeção

A matriz de projeção P pode ser escrita como

$$P = \frac{aa^T}{a^T a}$$

Com as propriedades:

- P tem posto 1
- P é simétrico
- $P^2 = P$

Projeção no plano

Seja a_1 e a_2 uma base para o plano. Então queremos achar x_1 e x_2 tal que o vetor projetado p possa ser escrito como $x_1a_1 + x_2a_2$, podemos entender que o plano pode ser entendido como o espaço coluna de $A = [a_1 a_2]$, então temos que fazer a projeção no caso mais geral em C(A)

Projeção em C(A)

Dado b, achar x tal que $a_i^T(b-Ax)=0$ para todo i onde $a_i \in C(A)$, equivalente a $A^TAx=A^tb$, se A^TA é inversível (note que é quadrada), então $P=A(A^TA)^{-1}A^T$, se A for inversível então P=I.

obs.: A projeção em $N(A^T)$ é I-P onde P é a projeção em C(A).

 A^TA

Teorema 2 A^TA tem inversa se e somente se as colunas de A são LI.

Mínimos quadrados

Como nem sempre $Ax^*=b$ tem solução podemos projetar b em C(A) e $Ax^*=b\to A^TAx^*=A^Tb\to x^*=(A^TA)^{-1}A^Tb$ assim x^* é uma solução em mínimos quadrados.

Mínimos Quadrados - Caso Geral

Note que
$$x^* = (A^TA)^{-1}A^Tb$$
, onde $A = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix}$
Além disso $A^TA = \begin{bmatrix} m & \sum t_i \\ \sum t_i & \sum t_i^2 \end{bmatrix}$ e $A^Tb = \begin{bmatrix} \sum b_i \\ \sum t_ib_i \end{bmatrix}$

Vetores Ortonormais

Os vetores q_1, \dots, q_k são ditos ortogonais se $q_i^T q_j = 0$, para $i \neq j$ diremos que são ortonormais se além de ortogonais, eles forem unitários, ou seja, $q_i^T q_i = 1$ para qualquer i.

Lema 3 Vetores ortogonais são sempre LI

Matriz Ortogonais

Diremos que uma matriz é ortogonal se suas colunas são ortogonals ou $Q_{m\times n}$ é ortogonal se $Q^TQ=I_{n\times n}$. Se Q for quadrada então $Q^T=Q^{-1}$

 \bullet Matrizes ortogonais preservam o comprimento: |Qx|=|x|

Processo de Gram-Schmidt com 2 vetores

Vamos começar com dois vetores LI v_1 e v_2 . Queremos achar u_1 e u_2 tais que $u_1 \perp u_2$ e $span(v_1, v_2) = span(u_1, u_2)$, podemos tomar $u_1 = v_1$ e $u_2 = v_2 - \text{proj}_{u_1} v_2$ e para criar vetores ortonormais basta fazer $q_i = \frac{u_i}{|u_i|}$

$$v_1, v_2$$
 (LI) $\rightarrow u_1, u_2$ (Ortogonal) $\rightarrow q_1, q_2$ (Ortonormal)

Processo de Gram-Schmit geral

Com 3 vetores v_1, v_2 e v_3 criamos u_1 e u_2 como acima e $u_3 = v_3 - \text{proj}_{u_1} v_3 - \text{proj}_{u_2} v_3$ e assim $u_1 \cdot u_3 = u_2 \cdot u_3 = 0$. E o processo se repete para n vetores.

Determinante

Se A é uma matriz 2×2 então $\det(A) = a_{11}a_{22} - a_{12}a_{21}$ Propriedades:

- Determinante de uma matriz permutação é 1 ou -1 dependendo se a matriz troca um número par ou ímpar de linhas.
- Se duas linhas da matriz são iguais, então o determinante é zero.
- Somar $\lambda \in \mathbf{R}$ vezes a linha i na linha j não muda o determinante.
- Se uma linha da matriz é de zeros então o determinante é zero.
- Determinante de uma matriz diagonal é o produto dos valores da diagonal.
- Determinante de uma matriz triangular é o produto dos valores na diagonal.
- Determinante de uma matriz é ± produto dos pivôs.
- $\det AB = \det A \det B$
- $\bullet \ \det A^{-1} = \frac{1}{\det A}$
- $\det A^T = \det A$
- $|\det Q| = 1$, se Q é uma matriz ortogonal.

Fórmula dos pivôs

Como det $A = \pm \prod p_i$, onde p_i é o i-ésimo pivô, p_i pode ser escrito como (supondo que exista ao menos um pivô).

$$p_i = \frac{\det A_i}{\det A_{i-1}}$$

Co-fatores

Ver em Explicação Co-fator.

Inversa usando determinante

Se det $A \neq 0$, então $A^{-1} = \frac{1}{\det A} C^T$, onde C é a matriz de cofatores de A.

Regra de Cramer

Usando a fórmula acima temos que a solução de Ax=b pode ser escrita como

$$x = \frac{1}{\det A} C^T b$$

A Regra de Cramer é outra forma de olhar a equação:

$$x_j = \frac{\det B_j}{\det A}$$

onde B_j é a matriz A trocando a coluna j
 por b.

Área de um triângulo em \mathbb{R}^2

A área de um triângulo em \mathbb{R}^2 é definida dadas as coordenadas dos vértices por:

$$A = \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$$

Produto Vetorial em \mathbb{R}^3

O produto vetorial de dois vetores $u,v\in\mathbb{R}^3$ é definido como

$$u \times v = \begin{vmatrix} e_1 & e_2 & e_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = (u_2v_3 - u_3v_2)e_1 + (u_3v_1 - u_1v_3)e_2 + (u_1v_2 - u_2v_1)e_3$$

Onde e_i é um vetor unitário, e vale:

- $v \times u = -(u \times v)$
- $u \cdot (u \times v) = v \cdot (u \times v) = 0$
- $u \times u = 0$
- $|u \times v| = |u||v||\sin\theta|$
- $(u \times v) \cdot w = 0 \Leftrightarrow u, v, w$ estão no mesmo plano.

Autovalores e Autovetores

Definição 1 Diremos que λ é um **autovalor** de A se existe x tal que $Ax = \lambda x$ e x é dito **autovetor** de A e por linearidade αx é autovetor para $\forall \alpha \in \mathbb{R}$.

Se 0 é autovalor de A, os autovetores serão os elementos de N(A). Além disso, A é dito singular.

Calculando Autovalores e Autovetores

 λ é um **autovalor** de A se e só se $A - \lambda I$ é singular, o que é equivalente a $\det(A - \lambda I) = 0$, onde

$$p(\lambda) = \det(A - \lambda I)$$

É dito o **polinômio característico** de A, e os autovalores são as raízes desse polinômio, p é de grau n e portanto toda matriz tem n autovalores (podendo ser repetidos ou complexos), daí os **autovetores** são calculados a partir do sistema $(A - \lambda I)x = 0$. Note que autovetor $\in N(A - \lambda I)$.

Propriedades

- Se $Ax = \lambda x$ e $Bx = \mu x$, então $\lambda + \mu$ é autovalor de A + B.
- $A^k x = \lambda^k x$
- Se $\lambda \neq 0$ e λ é autovalor de A, então $A^{-1}x = \frac{1}{\lambda}x$, ou seja $\frac{1}{\lambda}$ é autovalor da inversa.
- $E_{\lambda} = \{x; Ax = \lambda x\}$ é um subespaço vetorial.
- $p(\lambda) = (-1)^n \det(\lambda I A) = (-1)^n (\lambda^n + c_{n-1}\lambda^{n-1} + \dots + c_1\lambda + c_0)$
- $\det A = \lambda_1 \cdots \lambda_n$
- trace(A) := $a_{11} + \cdots + a_{nn} = \lambda_1 + \cdots + \lambda_n$

Diagonalização

Teorema 4 Os autovetores são LI quando os seus respectivos autovalores são distintos.

Seja A matriz com n autovetores LI, x_1, \dots, x_n e os respectivos autovalores $\lambda_1, \dots, \lambda_n$. Tome $S = [x_1 \dots x_n]$, assim

$$S^{-1}AS = \Lambda$$

Onde Λ é uma matriz diagonal com os termos λ_i e $AS = S\Lambda$

MA e MG

A multiplicidade algébrica (MA) de um autovalor λ como multiplicidade da raiz no polinômio característico. Já a multiplicidade geométrica (MG) de um autovalor λ é a dim $(N(A - \lambda I)) = \dim(E_{\lambda})$. Se MG = MA para todo autovalor, então A é diagonalizável.

Potências de Matrizes

Teorema 5 Se todo autovalor satisfaz $|\lambda| < 1$, então $A^k \to 0$, quando $k \to +\infty$.

Teorema Espectral

Teorema 6 Se A é uma matriz simétrica $(A^T = A)$, então existe uma matriz ortogonal Q tal que $A = Q\Lambda Q^T$, ou seja, A é diagonalizável.

Autovalores Reais

Teorema 7 Se A é simétrica, então seus autovalores são reais.

Corolário 7.1 Se $\lambda \in \mathbb{C}$ é autovalor de A e x é seu respectivo autovetor, então $\overline{\lambda}$ é um autovalor de A (onde $\overline{a+ib}=a-ib$) e \overline{x} é seu respectivo autovetor. Ou seja, $Ax=\lambda x$ e $A\overline{x}=\overline{\lambda}\overline{x}$ onde $\lambda \in \mathbb{C}$

Autovetores Ortogonais

Teorema 8 Se A possui $\lambda_1 \neq \lambda_2$, com respectivos autovetores x_1, x_2 , então $x_1 \perp x_2$

Autovalores e Pivôs

Lema 9 O número de pivôs é igual ao número de autovalores não nulos.

Teorema 10 Se A é simétrica, então os sinais dos autovalores e pivôs são iguais.

Equações Diferenciais (Aplicação da diagonalização)

Suponha que u(t) satisfaz a equação:

$$u'(t) = \lambda u(t)$$

A solução é $u(t) = Ce^{\lambda t}$, onde C é uma constante definida usando o valor de u(0), por exemplo.

Podemos muitas equações então se escrevemos

$$\mathbf{u}(t) = \left[\begin{array}{c} u_1(t) \\ \vdots \\ u_n(t) \end{array} \right]$$

E tomamos todas as equações na forma de matriz:

$$\mathbf{u}'(t) = A\mathbf{u}(t)$$

Onde A é uma matriz $n \times n$ e $\mathbf{u}(\mathbf{0})$ é dado. Suponha que A é diagonal, então as equações são desacopladas (e fica mais fácil resolver). Então no caso em que A é diagonalizável, a ideia é mudar de base usando os autovetores de A e resolver as equações desacopladas.

Exponencial de Matriz (Aplicação)

Sabemos que

$$e^x = 1 + x + \frac{x^2}{2} + \dots = \sum_{n=0}^{+\infty} \frac{x^n}{n!} \quad \forall x \in \mathbb{R}$$

A série (de Taylor) acima converge também se considerarmos uma matriz A:

$$e^{A} = 1 + A + \frac{A^{2}}{2} + \dots = \sum_{n=0}^{+\infty} \frac{A^{n}}{n!}$$

Lema 11 $Se A = S\Lambda S^{-1}$, então $e^A = Se^{\Lambda}S^{-1}$

$$(I-A)^{-1}$$
 (Aplicação)

Suponha A é diagonalizável e $|\lambda_i| < 1$ (λ_i é o i-ésimo autovetor de A), assim $A^n \to 0$ quando $n \to +\infty$. Então

$$(I-A)^{-1} = \sum_{n=0}^{+\infty} A^n = I - A^{n-1} = I$$

Equação de Segunda Ordem (Aplicação)

Considere a equação y''(t) + by'(t) + ky(t) = 0. Tome:

$$u(t) = \left[\begin{array}{c} y'(t) \\ y(t) \end{array} \right], A = u'(t) = \left[\begin{array}{c} y''(t) \\ y'(t) \end{array} \right] = \left[\begin{array}{c} -b & -k \\ 1 & 0 \end{array} \right] u(t)$$

E tome o polinômio característico $p_A = \det(I - \lambda I) = \lambda^2 + b\lambda + k$. Se existem $\lambda_1, \lambda_2 \in \mathbb{R}$ raízes:

$$u(t) = Se^{\Lambda t}S^{-1}u(0)$$

Daí achamos $y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$, onde c_1, c_2 são constantes e dependem de A que depende de b, k.

Formas Quadráticas

Uma forma quadrática em \mathbb{R}^2 é uma equação da forma

$$ax^2 + 2bxy + cy^2 = 1$$

Definição 2 Uma forma quadrática em \mathbb{R}^n é definida como (supondo A simétrico)

$$q(x) = x^T A x = \sum_{i,j=1}^n a_{ij} x_i x_j$$

E usando o Teorema Espectral $x^TAx=y^T\Lambda y=\sum_{i=1}^n\lambda_iy_i^2$ onde $y=Q^T$ (ou $y_i=q_i^Tx$)

Positiva Definida

Definição 3 Diremos que A é positiva definida se $x^T A x > 0$. A matriz A é dita positiva semi-definida se $x^T A x \leq 0$

Teorema 12 A é positiva definida se e somente se todos seus autovalores são estritamente positivos.

Propriedade: Se A e B são positivas definidas, então A+B é positiva definida.

Raiz Quadrada (Aplicação de matriz positiva definida)

Suponha que A é uma matriz positiva definida (A é simétrica). Diremos que R é raiz quadrada de A se $A=R^TR$. Se $A=Q\Lambda Q^T$, então $R=\sqrt{\Lambda}Q^T$.

Decomposição de Cholesky

Definição 4 Dada uma matriz positiva definida A, a sua decomposição de Cholesky é uma raiz quadrada triangular inferior, $A = CC^T$.

Matrizes Similares (generalização de diagonalização)

Definição 5 A e B são ditas **similares** se existe uma matriz invertível M tal que $A = MBM^{-1}$.

Teorema 13 Matrizes similares tem os mesmos autovalores (maz autovetores mudam).

Corolário 13.1 Matrizes similares tem o mesmo determinante, o mesmo número de autovetores independentes e uma é diagonalizável se e só se a outra também é.

Decomposição em Valores Singulares - SVD

Pode ser entendido com uma generalização do Teorema Espectral para matrizes retangulares.

Teorema 14 Sendo $A_{m \times n}$ existem matrizes ortogonais $U_{m \times m}$ e $V_{n \times n}$ e uma matriz diagonal $\Sigma_{m \times n}$ com diagonal positiva tais que $A = U \Sigma V^T$.

Vamos definir $U, V \in \Sigma$.

- Defina $\sigma_j = \sqrt{\lambda_j}$, que chamamos de valores singulares de A.
- Para $j = 1, \dots, r$, definimos

$$u_j = \frac{Aq_j}{\sigma_i}$$

- Complete a base ortonormal com u_{r+1}, \dots, u_n
- Σ é uma matriz diagonal com $\Sigma_{jj} = \sigma_j$
- E V = Q. Logo

$$U\Sigma = [\sigma_1 u_1 \quad \cdots \quad \sigma_r u_r \quad 0 \quad \cdots \quad 0] = [Aq_1 \quad \cdots \quad Aq_r \quad \cdots \quad Aq_n] = AV$$

Exemplo de SVD

Encontrar U,V,Σ para a matriz $A=\begin{bmatrix}1&1\\0&1\\1&0\end{bmatrix}$. $A^TA=\begin{bmatrix}2&1\\1&2\end{bmatrix}$

Calculando os autovalores fica $\lambda_1=3$ e $\lambda_2=1$ e então temos os valores singulares $\sigma_1=\sqrt{3}$ e $\sigma_2=1$.

Temos $V=Q=\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$, note que a posição dos autovetores q_1 e q_2 na matriz Q é de acordo com os autovalores.

 $\mathbf{E} \; \Sigma = \left[\begin{array}{cc} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{array} \right], \; \mathrm{diagonal} \; \mathrm{com} \; \mathrm{os} \; \mathrm{valores} \; \mathrm{singulares}.$

Como U é 3×3 , vamos calcular $u_1, u_2 \in u_3$

$$u_1 = \frac{Aq_1}{\sigma_1} = \begin{bmatrix} \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}$$

$$u_2 = \frac{Aq_2}{\sigma_2} = \begin{bmatrix} 0 \\ -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$u_3 = e_1 - (e_1^T u_1)u_1 - (e_1^T u_2)u_2 = \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ -\frac{1}{3} \end{bmatrix}$$

Note que u_3 não está normalizado, então normalizado u_3 a matriz fica

$$U = \begin{bmatrix} \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \end{bmatrix}$$

SVD - Bases dos Espaços Fundamentais

Sendo $A = U\Sigma V^T$

• v_1, \dots, v_r é uma base ortonormal para $C(A^T)$.

- u_1, \dots, u_r é uma base ortonormal para C(A).
- v_{r+1}, \dots, v_n é uma base ortonormal para N(A).
- u_{r+1}, \cdots, u_n é uma base ortonormal para $N(A^T)$

SVD - Mínimos Quadrados

Queremos calcular $\min_x = |Ax - b|$, a solução em mínimos quadrados fica:

$$x^* = \sum_{i=1}^r \frac{u_i^T b}{\sigma_i} v_i$$

Transformações Lineares

Definição 6 Sejam U e V dois espaços vetoriais. Diremos que $T:U\to V$ é uma transformação linear se

- $\bullet \ T(u+v) = T(u) + T(v)$
- $T(\alpha u) = \alpha T(u)$

Teorema 15 Se dim U = n, seja $\{u_1, \dots, u\}$ uma base de U, então

$$T(u) = x_1 T(u_1) + \dots + x_n T(u_n)$$

Onde $u = x_1 u_1 + \dots + x_n u_n$

Podemos escrever uma certa