Additional Practice Exercises

- A1. Find the sum of $\sum_{k=2}^{\infty} \frac{1}{(k-1)k(k+1)}$ by taking the limit of the partial sums.
- A2. Let $a_1 \ge a_2 \ge a_3 \ge \cdots \ge 0$. If $\sum_{k=1}^{\infty} a_k$ converges, then prove that $\lim_{n\to\infty} na_n = 0$. (*Hint*: Show ka_{2k} and ka_{2k+1} have limit 0.)
- A3. If $\sum_{k=1}^{\infty} a_k$ diverges, then prove that $\sum_{k=1}^{\infty} k a_k$ diverges. Note each a_k may be positive or negative so that comparison tests cannot be used! Letting $c_k = k a_k$, the contrapositive statement asserts that if $\sum_{k=1}^{\infty} c_k$ converges, then $\sum_{k=1}^{\infty} \frac{c_k}{k}$ converges. (*Hint*: Prove the contrapositive using summation by part.)
- A4. Prove that $\sum_{k=1}^{\infty} \left| \frac{\sin k}{k} \right|$ diverges. (*Hint*: Show that there is a constant c > 0 such that for every real number x, $|\sin x| + |\sin(x+1)| \ge c$. Group the series two terms at a time.)
- A5. (a) Let $-B = \{-x : x \in B\}$. If B is nonempty and bounded below, then prove that -B is bounded above and $\sup(-B) = -\inf B$.
 - (b) For a nonempty set B that is bounded above and $c \ge 0$, let $cB = \{cx : x \in B\}$. Prove that $\sup cB = c \sup B$.
 - (c) If $\emptyset \neq A \subseteq B$ and B is bounded below, then prove that A is bounded below and $\inf B \leq \inf A$.
- A6. Since none of the axioms of \mathbb{R} asserts the existence for square roots, in this exercise we will introduce $\sqrt{2}$ by using supremum concept. We begin with the fact that for a, b > 0, if $a \ge b$, then $a^2 \ge b^2$ (by the order axiom). Taking contrapositive, if $a^2 < b^2$, then a < b. Next, let

$$S = \{x : x \in \mathbb{R}, \ x > 0, \ x^2 < 2\}.$$

Note $1 \in S$ so that $S \neq \emptyset$. For all $x \in S$, $x^2 < 2 < 2^2$ implies x < 2. So S is bounded above by 2. By the completeness axiom, $j = \sup S$ exists.

- (a) Prove that $j^2 = 2$ by showing $j^2 < 2$ and $j^2 > 2$ are false. (Hint: Consider j' = (2j+2)/(j+2).) (Remark: In particular, $j^2 = 2$ implies $j \notin S$. Also, $1^2 < j^2 = 2 < 2^2$ implies 1 < j < 2.) So we may denote $\sqrt{2}$ for j.
- (b) Prove that $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$ by assuming $\sqrt{2} = m/n$ with $m \in \mathbb{Z}, n \in \mathbb{N}$ and considering

$$T = \{k : k \in \mathbb{N}, \ k\sqrt{2} \in \mathbb{Z}\}\$$

to get a contradiction from the well-ordering axiom. (Remarks: Since we have not proved any fact about factorization of integers, do not use any such fact like $m^2 = 2n^2$ implies m is even. We are avoiding the usual proof that $j = \sqrt{2}$ is not rational!)

(c) Let $S' = \{x : x \in \mathbb{Q}, x > 0, x^2 < 2\}$. Note S' is nonempty $(1 \in S')$ and bounded above (by 2). Prove that if $x \in S'$, then $x' = (2x+2)/(x+2) \in S'$ and x < x'. Prove that if $M \in \mathbb{Q}$ is an upper bound for S', then $M' = (2M+2)/(M+2) \in \mathbb{Q}$ is also upper bound for S' with M' < M. (Remark: So S' has no least upper bound in \mathbb{Q} . Hence, there is no the completeness axiom for \mathbb{Q} .)

A7. Use the summation by parts formula to prove the so-called <u>Dirichlet's Test</u>: if there exists a number M>0 such that for every $n\in\mathbb{N}, \left|\sum_{k=1}^n a_k\right|\leq M$ and $b_k\searrow 0$ as $k\to\infty$, then $\sum_{k=1}^\infty a_kb_k$ converges.

Remarks. (1) The case $a_k = (-1)^{k+1}$ and M = 1 is the alternating series test.

(2) Similarly, there is $\underline{Abel's\ Test}$: If $\sum_{k=1}^{\infty} a_k$ converges and $d_k \setminus d$, then $\sum_{k=1}^{\infty} a_k d_k$ converges. (Since

 $\sum_{k=1}^{\infty} a_k$ converges implies its partial sum sequence $S_n = \sum_{k=1}^n a_k$ has a limit and there exists a number

M > 0 such that for every $n \in \mathbb{N}$, $|S_n| = \left| \sum_{k=1}^n a_k \right| \le M$, so by taking $b_k = d_k - d$, Dirichlet's test implies Abel's test. The case $d_k = 1/k$ is exercise A3 above.)

- A8. Show $1 + \frac{1}{2} \frac{1}{3} + \frac{1}{4} + \frac{1}{5} \frac{1}{6} + \dots = \sum_{n=1}^{\infty} a_n$ diverges, where $a_n = \begin{cases} 1/n & \text{if } n \text{ is not a multiple of } 3 \\ -1/n & \text{if } n \text{ is a multiple of } 3 \end{cases}$
- A9. (a) Let S be the set of all numbers in [0,1] having decimal representations of the form $0.a_1a_2a_3...$, where $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$. Show that S is countable.
 - (b) Let T be the set of all numbers in [0,1] having decimal representations of the form $0.a_1a_2a_3...$, where $|a_n a_{n+1}| \le 1$ for all $n \in \mathbb{N}$. Determine (with proof) if T is countable or not.

(A)
$$\frac{1}{(n-1)n(n+1)} = \frac{11}{2n} \left(\frac{1}{n-1} - \frac{1}{n+1} \right) = \frac{1}{2} \left(\frac{1}{n-1} - \frac{1}{n} \right) - \left(\frac{1}{n-1} - \frac{1}{n+1} \right) - \left(\frac{1}{n-1}$$

(Az) tet $S_n=a_1+\dots+a_n$. Since $\sum_{k=1}^{\infty}a_k$ converges to some number a, $\lim_{n\to\infty} S_n=a_n$. If n is even, then n=2k and $0\leq nq_n=2kq_{2k}\leq 2(q_{k+1}+\dots+q_{2k})=2(s-s_k)=2(s_n-s_{\lfloor n/2\rfloor})$, If n is odd, then n=2k+1 and $0\leq nq_n\leq (2k+2)q_{2k+1}=2(k+1)q_{2k+1}\leq 2(q_{k+1}+\dots+q_{2k+1})=2(s_{\lfloor n/2\rfloor}+s_k)=2(s_n-s_{\lfloor n/2\rfloor})$. So $0\leq nq_n\leq 2(s_n-s_{\lfloor n/2\rfloor}) \Rightarrow 2(a-a)=0$, By Sandwich theorem, $\lim_{n\to\infty} nq_n=0$.

(A3) Let $C_n = na_n$. Assume $\sum_{n=1}^{\infty} C_n = \sum_{n=1}^{\infty} na_n$ converges to some number C.

Then $S_n = C_1 + \dots + C_n \to C$. Applying Summation by Parts, we have $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \sum_{n=1}^{\infty} (nn + \lim_{n \to \infty} (S_n) + \sum_{n=1}^{\infty} S_n(\frac{1}{n+1} - \frac{1}{n})) = \sum_{n=1}^{\infty} S_n(\frac{1}{n} - \frac{1}{n+1})$ Now $|S_n(\frac{1}{n} - \frac{1}{n+1})| \leq (|S_n| + 1)(\frac{1}{n} - \frac{1}{n+1})$ and $\lim_{n \to \infty} \frac{|C| + 1}{|S_n| + 1} = 1$. So $\sum_{n=1}^{\infty} (|C| + 1)(\frac{1}{n} - \frac{1}{n+1}) = |C| + 1 + \sum_{n=1}^{\infty} (|C| + 1)(\frac{1}{n} - \frac{1}{n+1}) = |C| + 1 + \sum_{n=1}^{\infty} |S_n(\frac{1}{n} - \frac{1}{n+1})|$ by Conpanison $\sum_{n=1}^{\infty} |S_n(\frac{1}{n} - \frac{1}{n+1})|$ converges $\sum_{n=1}^{\infty} |S_n(\frac{1}{n} - \frac{1}{n+1})|$ therefore, $\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} |S_n(\frac{1}{n} - \frac{1}{n+1})|$ converges. A contradiction.

Remarks Using the boundedness theorem, we can say since S_n has limit, $\{S_1,S_2,S_3,\dots\}$ is bounded. So $\exists M$ such that $\forall n$, $|S_n| \leq M$. Then $|S_n(n-\frac{1}{n+1})| \leq M(n-\frac{1}{n+1})$ and $\sum_{n=1}^{\infty} M(n-\frac{1}{n+1}) = M\sum_{n=1}^{\infty} (n-\frac{1}{n+1}) = M$. So $\sum_{n=1}^{\infty} S_n(n-\frac{1}{n+1})$ converges by comparison test and absolute convergence test.

 $\begin{array}{l} (A4) f(x) = |\operatorname{Sin} x| + |\operatorname{Sin} (x+1)| \text{ is } 2\pi - \operatorname{periodic.} & On [0, \overline{E}] \cup (\overline{5\pi}, \overline{7\pi}) \cup (\overline{11\pi}, 2\pi), \\ |\operatorname{Sin} (x+1)| \geq |\operatorname{Sin} (1-\overline{E}) > O \text{ and on } [\overline{E}, \overline{5\pi}] \cup [\overline{E}, \overline{11\pi}], |\operatorname{Sin} x| \geq |\operatorname{Sin} \overline{E}| > |\operatorname{Sin} (1-\overline{E}), \\ |\operatorname{So} \forall x \in \mathbb{R}, & f(x) \geq C = |\operatorname{Sin} (1-\overline{E}) > O. & \operatorname{Assume} \sum_{k=1}^{\infty} |\frac{|\operatorname{Sin} n|}{n}| & \operatorname{converges}. \\ |\operatorname{Then} \sum_{k=1}^{\infty} |\frac{|\operatorname{Sin} n|}{n}| = \sum_{k=1}^{\infty} \left(\frac{|\operatorname{Sin} (2k-1)|}{2k-1} + \frac{|\operatorname{Sin} (2k)|}{2k}\right) \geq \sum_{k=1}^{\infty} \frac{|\operatorname{Sin} (2k-1)| + |\operatorname{Sin} (2k)|}{2k} \geq C \sum_{k=1}^{\infty} |K|. \\ |\operatorname{Since} \sum_{k=1}^{\infty} |K| & \operatorname{diverges} |\operatorname{Syp} (2k-1)| + |\operatorname{Sin} (2k)| & \operatorname{diverges} |\operatorname{Syn} (2k-1)| + |\operatorname{Sin} (2k)| & \operatorname{Sin} (2k-1)| + |\operatorname{Sin} (2k-1)| & \operatorname{Sin} (2k-1)| & \operatorname{Sin}$

AT) Σ g, be = lim Σ a, be = lim (Snbn-Σ Sh Aba). Since |Snbn| = |Σ a, bn| ≤ M |bn|

and limbe = 0, by Sandwich theorem, lim Snbn = 0. Next |Se Aba| ≤ M (ba-ba+1).

By the telescoping test, Σ M (ba-ba+1) = M (ba-limbert) = M ba, By comparison test,

Se Aba | Converges, By the absolute Convergence test, Σ Sh Aba = lim Σ Sh Aba

Converges, therefore, Σ Ga be = lim Snbn-lim Σ Sh Aba = -Σ Sh Aba Converges.

Comment on A6 part (b): In place of JZ, you can modify the proof of A6 part (b) to show "Im is irrational" for every positive integer in that is not the square of any integer. For example, "JoI is irrational" can be shown by considering

T= $\{k; k \in \mathbb{N} \text{ and } k \sqrt{61} \in \mathbb{Z} \}$ and since $7 < \sqrt{61} < 8$, we have $0 < \sqrt{61} - 7 < 1$ so for the "least k" in T, we can use $k_0 = k\sqrt{61} - 7k < k$ and $k_0 = k_0 = k = k_0 =$

Extra Exercises on Cauchy Sequences and Limit of Functions

Notation: In the following exercises, a sequence x_1, x_2, x_3, \ldots may also be briefly denoted by $\{x_n\}$. This is a common notation in many math books or courses (including Math 202). It should not be confused with a set of one element, since we rarely discuss any set with one element (specifically of the form x_n).

- 1. Let $0 < a_n < 1$ for all $n = 1, 2, 3, \ldots$ If sequence $b_n = \frac{1}{a_n}$ is a Cauchy sequence, then prove that sequence $c_n = b_n + \frac{1}{b_n}$ is also a Cauchy sequence by checking the definition of Cauchy sequence. (You will get 0 mark if you use Cauchy's theorem!)
- 2. If sequence $\{a_n\}$ is a Cauchy sequence, then prove that sequence $\{\sin(a_n^3)\}$ is also a Cauchy sequence by checking the definition of Cauchy sequence. (You will get 0 mark if you use Cauchy's theorem!) <u>Hint</u>: Recall Cauchy sequences are bounded!
- 3. If sequence $\{a_n\}$ is consisted of distinct real numbers (i.e. $i \neq j$ implies $a_i \neq a_j$) and $\left|\frac{a_{n+1}-a_n}{a_{n+2}-a_{n+1}}\right| > 2$ for all $n=1,2,3,\ldots$, then prove that sequence $\{a_n\}$ is a Cauchy sequence by checking the definition of Cauchy sequence.
- 4. If sequence $\{a_n\}$ is a Cauchy sequence, then prove that sequence $\{a_n^2 + \frac{1}{n^2}\}$ is also a Cauchy sequence by checking the definition of Cauchy sequence. (You will get 0 mark if you use Cauchy's theorem!)
- 5. Prove that $\lim_{x\to 1} \left(x + \frac{1}{x^3 + 1}\right) = 1 + \frac{1}{2}$ by checking the definition of limit. (You will get 0 mark if you use computation formulas, sandwich theorem or l'Hopital's rule!)
- 6. Prove that $\lim_{x\to 1} \sin\left(\frac{x}{x^2+1}\right) = \sin\frac{1}{2}$ by checking the definition of limit. (You will get 0 mark if you use computation formulas, sandwich theorem or l'Hopital's rule!)
- 7. For every nonzero $a \in \mathbb{R}$, prove that $\lim_{x\to a} \arctan(\frac{1}{x}) = \arctan(\frac{1}{a})$ by checking the definition of limit. (You will get 0 mark if you use computation formulas, sandwich theorem or l'Hopital's rule!)
- 8. (a) Prove that if $f: \mathbb{R} \to \mathbb{R}$ satisfies $f(x) \neq 1$ for all $x \in \mathbb{R}$ and $\lim_{x \to 1} f(x) = 1$, then $\lim_{x \to 1} f(f(x)) = 1$ by checking the definition of limit.
 - (b) Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ such that $\lim_{x \to 1} f(x) = 1$ and $\lim_{x \to 1} f(f(x)) \neq 1$.

- $\frac{9}{7}$. Prove that $\lim_{x\to 2} \sqrt[3]{x} = \sqrt[3]{2}$ by checking the definition of limit.
- 10. Prove that $\lim_{x\to 1} \frac{x^3+1}{x+2} = \frac{2}{3}$ by checking the definition of limit.
- // If $f: \mathbb{R} \to \mathbb{R}$ is continuous at x = 0, then prove that $f(x)^3$ and $\cos f(x)$ are continuous at x = 0 by checking the definition of continuity at a point.
- /2 Let $a_1 = 1$ and $a_n = a_{n-1} + \frac{\cos n}{(1 + a_n^2)n^{50}}$ for $n = 2, 3, 4, \ldots$ Prove that the sequence $\{a_n\}$ converges by checking the definition that it is a Cauchy sequence.
- 13 Let $\{a_n\}$ be a sequence such that $\{a_{2n}\}$ and $\{a_{2n+1}\}$ are Cauchy sequences. If also $\lim_{n\to\infty}(a_{2n+1}-a_{2n})=0$, then prove that $\{a_n\}$ is a Cauchy sequence by checking the definition of Cauchy sequence.

Solutions to Extra Exercises on Cauchy Sequences and Limit of Functions

(1) Note $O(an(1)) = b_n = \frac{1}{an} > 1$. For every E > 0, Since b_n is Cauchy, $\exists K \in \mathbb{N} \text{ Such that } m, n \ge K \Rightarrow |b_m - b_n| < \frac{\varepsilon}{2}$.

Then $m, n \ge K$ implies $|C_m - C_n| = |b_m + \frac{1}{b_m} - b_n - \frac{1}{b_m}| \le |b_m - b_n| + |b_m - b_n|$ $\le |b_m - b_n| + |b_m - b_n| = 2|b_m - b_n| < \varepsilon$.

Therefore, C_n is a Cauchy sequence.

Since fang Cauchy \Rightarrow fang bounded, so there is a constant C such that $|q_n| < C$ for all n. $|\sin a - \sin b| \le |a - b|$ Note $|\sin(a_m^3) - \sin(a_n^3)| \le |a_m^3 - a_n^3| = |a_m - a_n| |a_m^2 + a_m^2 + a_n^2|$ $\le |a_m - a_n| (|a_m|^2 + |a_m||a_n| + |a_n|^2)$ $\le 3C^2 |a_m - a_n|$. Since $|a_n|^2$ is Cauchy, for every |E| > 0, there is |E| > 0 such that |E| > 0, there is |E| > 0.

Note $\left|\frac{a_{n+2}-a_{n+1}}{a_{n+2}-a_{n+1}}\right| < \frac{(a_{n+2}-a_{n})}{2}$ for n=1,2,3,... $\Rightarrow |a_n-a_{n-1}| < \frac{|a_{n-1}-a_{n-2}|}{2!} < \frac{|a_{n-2}-a_{n-2}|}{2^2} < ... < \frac{|a_2-a_1|}{2^{n-2}}$ Now for every E>0, let $K>\log_2\frac{4|a_2-a_1|}{2}$ Then $m,n\geq K$ (say m>n) implies $|a_m-a_n| \leq |a_m-a_{m-1}| + |a_{m-1}-a_{m-2}| + ... + |a_{n+1}-a_n|$ $\leq |a_2-a_1| + |a_2-a_1| + ... + |a_2-a$

Since $\{a_n\}$ Cauchy \Rightarrow $\{a_n\}$ bounded, so there is a constant C such that $|a_n| < C$ for all n. Note $|(a_m^2 + \frac{1}{n^2}) - (a_n^2 + \frac{1}{n^2})| = |(a_m^2 - a_n^2) + (\frac{1}{m^2} - \frac{1}{n^2})|$

 $\leq |a_{m}^{2}-a_{n}^{2}|+|\frac{1}{m^{2}}-\frac{1}{n^{2}}|$ $\leq |a_{m}+a_{n}||a_{m}-a_{n}|+\frac{1}{k^{2}}|$ $\leq 2C||a_{m}-a_{n}|+\frac{1}{k^{2}}|$

Since $\{a_n\}$ is Cauchy, for every $\varepsilon > 0$, there is $K \in \mathbb{N}$ such that $M, N \ge K_1 \Rightarrow |a_m - a_n| < \frac{\varepsilon}{4C}$, Let $K > \max(K_1, \sqrt{\frac{2}{\varepsilon}})$, then $m, n \ge K \Rightarrow |(a_m^2 + \frac{1}{m^2}) - (a_n^2 + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$ $|(A_m + \frac{1}{m^2}) - (A_n + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$ $|(A_m + \frac{1}{m^2}) - (A_n + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$ $|(A_m + \frac{1}{m^2}) - (A_n + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$ $|(A_m + \frac{1}{m^2}) - (A_n + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$ $|(A_m + \frac{1}{m^2}) - (A_n + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$ $|(A_m + \frac{1}{m^2}) - (A_n + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$ $|(A_m + \frac{1}{m^2}) - (A_n + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$ $|(A_m + \frac{1}{m^2}) - (A_n + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$ $|(A_m + \frac{1}{m^2}) - (A_n + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$ $|(A_m + \frac{1}{m^2}) - (A_n + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$ $|(A_m + \frac{1}{m^2}) - (A_n + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$ $|(A_m + \frac{1}{m^2}) - (A_n + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$ $|(A_m + \frac{1}{m^2}) - (A_m + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$ $|(A_m + \frac{1}{m^2}) - (A_m + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$ $|(A_m + \frac{1}{m^2}) - (A_m + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$ $|(A_m + \frac{1}{m^2}) - (A_m + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$ $|(A_m + \frac{1}{m^2}) - (A_m + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$ $|(A_m + \frac{1}{m^2}) - (A_m + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$ $|(A_m + \frac{1}{m^2}) - (A_m + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$ $|(A_m + \frac{1}{m^2}) - (A_m + \frac{1}{h^2})| \le 2C|a_m - a_n| + \frac{1}{K^2}$

 $\frac{1}{5} \quad \forall \epsilon > 0, \text{ set } \delta = \min(1, \frac{2}{9}\epsilon), \text{ Then} \\
0 < |x - 1| < \delta \Rightarrow |(x + \frac{1}{x^{3}+1}) - (1 + \frac{1}{2})| = |x - 1| + (\frac{1}{x^{3}+1} - \frac{1}{2})| \\
\leq |x - 1| + |\frac{1 - x^{3}}{2(x^{3}+1)}| \\
= |x - 1| + |\frac{1 - x^{3}}{2(x^{3}+1)}| \\
= |x - 1| + |\frac{1 + x + x^{2}}{2(x^{3}+1)}| \\
|x - 1| < \frac{2}{9}\epsilon \Rightarrow < \epsilon$

(6) $\forall \xi \neq 0$, set $S = \sqrt{2\xi}$. Then $0 < |x-1| < S \Rightarrow |\sin(\frac{x}{x^2+1}) - \sin(\frac{1}{2})| \le |\frac{x}{x^2+1} - \frac{1}{2}| = |-x^2 + 2x - 1|$ $= |x-1|^2 < |x-1|^2 < \frac{|x-1|^2}{2(x^2+1)} < \frac{|x-1|^2}{2} < \frac{\xi}{|x-1|^2}$

Golition Note of arctan x= | 1 x2 < 1 > | arctan v-arctan w| = | v-w| For every nonzero ack, this or or of the let ocrolal. For every E>0, let S= min (r, lal(lal-r) E). Then Oclx-al<f => [x-al<r => lal-1x|<r => lal-r<1x]. and larctan (+) - arctan (+) $\leq \left| \frac{1}{x} - \frac{1}{a} \right| = \frac{|x-a|}{|a||x|} < \frac{|x-a|}{|a||a|-r|} < \epsilon$

Solution 2 Note | ax arctan() = | = 1+(1)2(-12) = x2+1<1. If 0 \$[v,w], then arctan & is differentiable on [v. nv] and |arctan - arctan w | \ \frac{1}{c+1} |v-w| \ |v-w| For every nonzero $A \in \mathbb{R}$, let O < r < |a|. For every E > 0, let $S = \min(r, E)$. Then $O < |x-a| < S \Rightarrow \int |x-a| < r \Rightarrow O \notin [a,x]$, [x,a] (as in solution 1).

 $\left| \left| \operatorname{arctanl}_{X}^{\perp} \right| - \operatorname{arctan}\left(\frac{1}{a}\right) \right| \leq |x-a| < \varepsilon$.

Solution > For every \$>0, let S = min (lal, tan E). (lal tal) or the late of Then $0 < |x-a| < \delta \Rightarrow \int 0 < |x-a| < |a| \Rightarrow a, x both regative or both positive$ $\left| \arctan(\frac{1}{x}) - \arctan(\frac{1}{a}) \right| = \left| \arctan(\frac{x-a}{1+\frac{1}{a}}) \right|$ = $\left| \arctan \left(\frac{a-x}{ax+1} \right) \right| = \arctan \left| \frac{a-x}{ax+1} \right|$ $\left| \frac{a-x}{ax+1} \right|$ $\left| \frac{a-x}{ax+1} \right|$ arctan is strictly | |ax+1/1| | |ax+1/1|S≤ tan ε and orctan(tan ε)≤ε 1 a-x | C/6-x/28

 $(\widehat{8})$ (a) For every \$>0, Since lin f(t)=1, there exists \$6>0 Such that O<|t-1| < So implies If(t)-1| < E. Since So>0 and limf(x)=1, there exists \$ >0 such that 0< (x-1) < S implies |f(x)-1|<80. Now $\delta > 0$ Satisfies $0 < |x-1| < \delta \Rightarrow |f(x)-1| < \delta_0 \Rightarrow |f(f(x))-1| < \epsilon$. Therefore, $\lim_{x \to 0} f(f(x)) = 1$. Therefore, $\lim_{x\to 1} f(f(x)) = 1$

Define $f(x) = \begin{cases} 1 & \text{if } x \neq 1 \\ 2 & \text{if } x = 1 \end{cases}$ then $\lim_{x \to 1} f(x) = 1$ and $\lim_{x \to 1} f(f(x)) = \lim_{x \to 1} f(1) = \lim_{x \to 1} 2 = 2 \neq 1$

 $\frac{9}{9} \forall \epsilon > 0, \text{ set } \delta = \min(1, 2^{\frac{1}{3}} \epsilon). \text{ Then} \qquad |x-2| < 1 \Rightarrow x \epsilon(1, 3)$ $0 < |x-2| < \delta \Rightarrow |\sqrt[3]{x} - \sqrt[3]{z}| = \frac{|x-2|}{|x^{\frac{1}{3}} + 2^{\frac{1}{3}} + 2^{\frac{1}{3}}} < \frac{|x-2| < 1}{z^{\frac{1}{3}}} < \frac{|x-1| < 2^{\frac{1}{3}} \epsilon}{z^{\frac{1}{3}}}$ (0) $\forall \epsilon > 0$, set $\delta = \min(1, \frac{6}{19}\epsilon)$. Then $|x-1| < 1 \Rightarrow x \in (0, 2)$ $|x-1| < \frac{6}{19}\epsilon$ $0 < |x-1| < \delta \Rightarrow \left| \frac{x^3+1}{x+2} - \frac{2}{3} \right| = \frac{|3x^3-2x-1|}{3|x+2|} = \frac{|x-1||3x^2+3x+1|}{3|x+2|} < \frac{|9|}{6|x-1| < \epsilon}$ Since f(x) is continuous at 0, IS, such that o(1x-01<S, =) [f(x)-f(0)]<1 Then If(x) = (f(x)-f(0)+f(0)| \le (f(x)-f(0))+f(0)| \le (+ 1f(0)). Now (f(x) - f(0) = (f(x) - f(0)) (f(x) + f(x) f(6) + f(6)) and call this L H(x)2+f(x)f(0)+f(0)2|≤|f(x)12+ (f(x)11f(0))+(f(0))2≤(1+1f(0))+(1+1f(0)))f(0)|+|f(0)]2. Again since f is continuous at 0, $\exists S_2$ such that $0 < |x-0| < S_2 \Rightarrow |f(x)-f(0)| < \frac{\epsilon}{L}$. Let $S = \min(S_1, S_2)$. Then $0 < |x-0| < S \Rightarrow |f(x)-f(0)| < \epsilon$. Next, Since f is continuous at 0, 42>0, 3 S>0 such that 0<1x-01<80 $\Rightarrow |f(x)-f(0)| < \varepsilon$. Then $|\cos f(x)-\cos f(0)| \leq |f(x)-f(0)| < \varepsilon$. (12) YE70, choose K> = . Then m>n > K implies $|a_{m}-a_{n}| \leq |a_{m}-a_{m-1}| + |a_{m-1}-a_{m-2}| + \dots + |a_{n+1}-a_{n}| = \frac{|cosm|}{(1+a_{m}^{2})^{50}} + \dots + \frac{|cos(n+1)|}{(1+a_{n+1}^{2})(n+1)^{50}}|$ $\leq \frac{1}{m^{50}} + \dots + \frac{1}{(n+1)^{50}} \leq \frac{1}{m^{2}} + \dots + \frac{1}{(n+1)^{2}} \leq \frac{1}{(n+1)^{2}} + \dots + \frac{1}{(n+1)^{2}} = \frac{1}{m^{-1}} - \frac{1}{m^{-1}} + \dots + \frac{1}{(n-n+1)^{2}}$ $= \frac{1}{m^{-1}} - \frac{1}{m^{-1}} \leq \frac{1}{m$ fazn3 Cauchy >> 4 €>0 JK, €(N Such that p, g≥K,=> (azp-azz) (E/2. farner's Cauchy=> 4E>0]KEN such that Pig ≥ Kz => |azper-azger |< 8/2. lin (aznti-azn)=0 => VE>0 = K3 EN Such that V= K3 => |azrti-azr| < 8/2 To show fant is Cauchy, YE>O, let K= max (2K1, 2K2+1, 2K3). Then for m, n ≥ K, there are 4 cases: 1) m even, neven (2) m even, nodd (3) modd, neven (4) modd, nodd. For case ①, say m=2p, n=2g. Then m, n≥K ⇒ p, g≥ K, > lam-an |= |azo-azg|< /2< 2. For Case (2), Say m=2p+1, n=2q. Then m, n=K=>p,q=K1, K3 => lam-an |= |azo+1-azo| = | azp+1 - azp+azp-azz| = | azp+1-azp|+ | azp-azz| < \(\xeta \) + \(\xeta \) = \(\xeta . Case 3 follows from case 2 as |am-an|= |an-an|.
For case 4), say m=2pt1, n=2gt1. Then m,n=K=>p,g=Kz=>|aman|=|app+aze+|K=<E.

Continuity and Differentiation Problems

<u>Notation.</u> In the following problems, $f^{(n)}$ will denote the composition $\underbrace{f \circ f \circ \cdots \circ f}_{n, f's}$.

- 1. Let $f, g : \mathbb{R} \to \mathbb{R}$ be continuous and f(g(x)) = g(f(x)) for all $x \in \mathbb{R}$. Prove that if the equation $f^{(2)}(x) = g^{(2)}(x)$ has a solution, then f(x) = g(x) also has a solution.
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous. If there exist $a \in \mathbb{R}$ and c > 0 such that $|f^{(n)}(a)| < c$ for $n = 1, 2, 3, \ldots$, then prove that f has a fixed point (i.e. there exists $w \in \mathbb{R}$ such that f(w) = w.)
- 3. A function $f:[0,1] \to \mathbb{R}$ satisfies f(0) < 0 and f(1) > 0, and there exists a function g continuous on [0,1] and such that f+g is decreasing. Prove that the equation f(x)=0 has a solution in the open interval (0,1). (Hint: Consider $A = \{x : f(x) \ge 0\}$.)
- 4. Show that every bijection $f: \mathbb{R} \to [0, +\infty)$ has infinitely many points of discontinuity.
- 5. Let n be a positive integer and $a_0, a_1, \ldots, a_n \in \mathbb{R}$ be such that $a_0 + \frac{a_1}{2} + \frac{a_2}{3} + \cdots + \frac{a_n}{n+1} = 0$. Prove that the polynomial $P(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ has a root in the open interval (0, 1).
- 6. Let $f:[1,+\infty)$ be continuous. Also, f is differentiable on $(1,+\infty)$. If $e^{-x}f'(x)$ is bounded on $(1,+\infty)$, then prove that $e^{-x}f(x)$ is also bounded on $(1,+\infty)$. (*Hint*: $(f(x)-f(1))/(e^x-e)$ is bounded on $(1,+\infty)$.)
- 7. Let $f:[a,b] \to \mathbb{R}$ be continuous such that both f'(x) and f''(x) are continuous on (a,b). If f(a)=f(b)=0 and there exists a function $g:(a,b)\to\mathbb{R}$ such that f''(x)+f'(x)g(x)-f(x)=0 for all $x\in(a,b)$, then prove that f(x)=0 for all $x\in(a,b)$. (*Hint*: Prove that if the maximum of f is greater than 0, then it is a minimum to get a contradiction.)
- 8. Let $f:[a,b] \to \mathbb{R}$ be continuous. Also, f is differentiable on (a,b). If $\theta \in (a,b)$ and $f'(\theta)$ is not the supremum nor the infimum of $\{f'(x): x \in (a,b)\}$, then prove that there exists distinct $c,d \in (a,b)$ such that $f'(\theta) = \frac{f(c) f(d)}{c d}$. Give an example to show that if $f'(\theta)$ is the supremum or infimum of $\{f'(x): x \in (a,b)\}$, then there may not be any such $c,d \in (a,b)$. (*Hint*: Consider $g(x) = f(x) f'(\theta)x$. First show g cannot be injective.)
- 9. Let f(x) be a polynomial on \mathbb{R} with real coefficients. If for every polynomial g(x) on \mathbb{R} with real coefficients, we have f(g(x)) = g(f(x)) for all $x \in \mathbb{R}$, then prove that f(x) = x for all $x \in \mathbb{R}$.
- 10. Let $f:[0,1]\to\mathbb{R}$ be continuous. Prove that there exists $c\in[0,1]$ such that $f(c)=\sqrt[3]{\int_0^1 f^3(t)\ dt}$.
- 11. Let $f:[0,1]\to\mathbb{R}$ be continuous such that f(0)=f(1). For every positive integer n, prove that there exists $t\in\left[0,1-\frac{1}{n}\right]$ such that $f(t+\frac{1}{n})=f(t)$.
- 12. For $f \in C^2(\mathbb{R})$ (i.e. f' and f'' exist and are continuous on \mathbb{R}), if f is bounded, then prove that there exists x_0 such that $f''(x_0) = 0$. (*Hint*: Assume f''(x) > 0 for all x, then do Taylor expansion of f at a center c such that $f'(c) \neq 0$ to get a contradiction.)
- 13. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable. If $\lim_{x \to +\infty} f(x)$ and $\lim_{x \to +\infty} f'(x)$ exist, then prove that $\lim_{x \to +\infty} f'(x) = 0$.

- 14. Let $f:(a,b) \to [0,+\infty)$ be twice differentiable and $f''(x) \ge 0$ for all $x \in (a,b)$. For every nonempty open subinterval, f(x) is not the zero function. Prove that f(x) has at most one root on (a,b). (Hint: If f has 2 roots x_1 and x_2 , then explain there is a critical point on (x_1,x_2) and use it as center for a Taylor expansion of f.)
- 15. Let $f, g: (a, b) \to \mathbb{R}$ be differentiable such that $f(x)g'(x) f'(x)g(x) \neq 0$ for all $x \in (a, b)$. If there exist x_0, x_1 such that $a < x_0 < x_1 < b$ and $f(x_0) = f(x_1) = 0$, then prove that there exists $c \in (x_0, x_1)$ such that g(c) = 0. (*Hint*: Assume opposite of conclusion and study h(x) = f(x)/g(x).)
- 16. If $|f''(x)| \le |f'(x)| + |f(x)|$ for all $x \in (a, b)$ and there exists $c \in (a, b)$ such that f(c) = f'(c) = 0, then f(x) = 0 for all $x \in (a, b)$.
- 17. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable and bounded. If $|f(x) + f'(x)| \le 1$ for all $x \in \mathbb{R}$, then prove that $|f(x)| \le 1$ for all $x \in \mathbb{R}$. (*Hint*: Show $e^x(f(x) \pm 1)$ are monotone on \mathbb{R} and consider $x \to -\infty$.)
- 18. Let $f:[0,1] \to \mathbb{R}$ be continuous. If f(0) = 0 and f is differentiable on (0,1) with f' decreasing on (0,1), then prove that for $0 \le a \le b \le a+b \le 1$, we have $f(a+b) \le f(a) + f(b)$. (*Hint*: Draw chords to graphs of f(x) over [0,a] and [b,a+b].)
- 19. Let $f:[a,b] \to [a,b]$ be such that |f(x)-f(y)| < |x-y| for all $a \le x < y \le b$, then there exists $c \in [a,b]$ such that f(c) = c. (*Hint*: Minimize |f(x)-x|.)
- 20. Let f be bounded on [a, b], g be differentiable, g(a) = 0 and c is a nonzero constant such that $|g(x)f(x) + cg'(x)| \le |g(x)|$ for all $x \in [a, b]$, then prove that g(x) = 0 for all $x \in [a, b]$.
- 21. Let $f: \mathbb{R} \to \mathbb{R}$ be three times differentiable. If f and f''' are bounded on \mathbb{R} , then prove that f' and f'' are also bounded on \mathbb{R} . (*Hint*: Use x as center for a Taylor expansion of f. Evaluate f at x+1 on the left side.)
- 22. Let $f:[0,1]\to\mathbb{R}$ be continuous and f(0)=f(1). If f is twice differentiable on (0,1) and there is M>0 such that $|f''(x)|\leq M$ for all $x\in(0,1)$, then prove that $|f'(x)|\leq \frac{1}{2}M$ for all $x\in(0,1)$.
- 23. Let $f: \mathbb{R} \to \mathbb{R}$ be three times differentiable and satisfy $\lim_{x \to +\infty} f(x) = c \in \mathbb{R}$, $\lim_{x \to +\infty} f'''(x) = 0$. Prove that $\lim_{x \to +\infty} f'(x) = 0$ and $\lim_{x \to +\infty} f''(x) = 0$. (*Hint*: Use x as center for a Taylor expansion of f. Evaluate f at x+1 on the left side.)
- 24. Let $f: [-2,2] \to \mathbb{R}$ be continuous. Also, let f be twice differentiable on (-2,2), $|f(x)| \le 1$ for all $x \in [-2,2]$ and $f^2(0) + f'^2(0) = 4$. Prove that there exists $\theta \in (-2,2)$ such that $f(\theta) + f''(\theta) = 0$.

Solutions to Sample Problems for Extra Credit Open Book Quizzes

- 1) Assume f(x)=g(x) has no solution. Then $f(x)=f(x)-g(x)\neq 0$. Since f(x) is Continuous, either $\forall x$, f(x) > 0 or $\forall x$, f(x) < 0, Then $\forall x$, f(x) = f(x) + f(g(x)) + f(g(x))
- ② Assume $\forall w \in \mathbb{R}$, $f(w) \neq w$. Since f(w) w is Continuous and never O, we may assume f(w) w > 0. Then a < f(a) < f(a) < c. and f'(a) < c.

 So $\lim_{n \to \infty} f^{(n)}(a) = x$. By Continuity of f, $f(x) = f(\lim_{n \to \infty} f^{(n)}(a)) = \lim_{n \to \infty} f^{(n+1)}(a) = x$, a Contradiction.
- B Let $A = \{x \in [0, 1] : f(x) \ge 0\}$, then $1 \in A$ and A is bounded below by O. So $S = \inf A$ exists. Now h = f + g decreasing $\Rightarrow h(s) \ge h(x) \ge g(x)$ for all $x \in A$. Since g is continuous and $S = \lim_{n \to \infty} x_n$ for some $x_n \in A$, so $h(s) \ge \lim_{n \to \infty} f(x_n) = g(s)$. Hence $f(s) = h(s) g(s) \ge 0$. Now $g(o) = h(o) f(o) > h(o) \ge h(s) \ge g(s)$. Since g is continuous, by the intermediate value theorem, $\exists f \in [0, s]$ such that g(t) = h(s). Then $h(t) \ge h(s) = g(t)$, which implies $f(t) = h(t) g(t) \ge 0$. By definition of S, t = S. So g(s) = h(s), i.e. f(s) = 0.
- (4) Step 1 (f is not continuous). Assume f is continuous. As a bijection, f is injective. So f is strictly monotone, say strictly increasing. Now f(xo)=0 for some xo, but then f(xo-1) < 0, contradiction. (for strictly decreasing case, f(xo+1) < 0.)

 Step 2 (f has infinitely many discontinuities). Assume f is discontinuous at x1 < x2 < ... < xn only. Then f is Continuous and injective, hence strictly monotone, on each of the intervals (-ao, x1), (x, x2), ..., (xn, ao). By injectivity of f and the intermediate value theorem, their ranges f(-ao, x1), f(x1, x2), ..., f(xn, ao) are painwise disjoint open intervals. Now

 R ((-ao, x1) u(x1, x2) u ··· u(xn, ao)) = {x1, x2, ..., xn}, but

 [0, ao) \ (f(-ao, x1) u f(x1, x2) u ··· u f(xn, ao)) contains 0 and n other numbers.

 Then f cannot be bijective, Contradiction.

By Rolle's theorem, Q'(x) = P(x) = 0 for some $x \in (0,1)$.

- (b) Suppose $|e^{x}f'(x)| \leq M$ for all $x \in (1, +\infty)$. Then for x > 1, $|e^{-x}f(x)| = \frac{|f(x)-f(1)+f(1)|}{e^{x}} \leq \frac{|f(x)-f(1)|}{e^{x}} + \frac{|f(1)|}{e^{x}} \leq \frac{|f(x)-f(1)|}{e^{x}-e^{i}} + \frac{|f(1)|}{e}$.

 By mean-value theorem, $|f(x)-f(1)| = |f'(0)| = e^{0}|f'(0)| \leq M$ for some 0 between x and 1. Therefore, $|e^{-x}f(x)| \leq M + \frac{|f(1)|}{e}$.
- The have $m = \min_{x \in [a,b]} f(x) \le f(a) = 0 = f(b) \le \max_{x \in [a,b]} f(x) = M$. Assume $f(x) \not\equiv 0$, then M > 0 or m < 0. If M > 0, then $\exists c \in (a,b)$ such that f(c) = M > 0 so that f'(c) = 0. Then $f''(c) 0 g(c) f(c) = 0 \Rightarrow f''(c) = f(c) = M > 0$. This implies M is $\min_{x \in [a,b]} f(x) = m$, Contradiction. Similarly, m < 0 leads to m is $\max_{x \in [a,b]} f(x) = M$.
- The function g(x) = f(x) f'(0)x is continuous! Assume g(x) is injective. Then g(x) is strictly increasing or strictly decreasing. In the former case, since $f'(0) \neq \inf \{f'(x) : x \in (a,b)\}$, $\exists t \in (a,b) \in f(x) = \inf \{f(x) < f'(0)\}$. For x > t, $g(x) > g(x) \Rightarrow f(x) f'(0) \times f(x) f'(0) = \inf \{f(x) f(x)\} = f(x) f(x) = f(x) f(x) = f(x) f(x) = g(x) = g($
- Use $f(x) = -x^3$ on (-1,1).

 (1) Let g(x) = x + h, then f(g(x)) = g(f(x)) implies f(x + h) = f(x) + h. So $f(x) = \lim_{n \to \infty} \frac{f(x + h) f(x)}{h} = \lim_{n \to \infty} \frac{h}{h} = 1 \implies f(x) = x + c$. Let g(x) = 0, then f(0) = 0.

 So c = 0. Therefore, f(x) = x.
- (1) Since f is continuous on [6,1], $\exists a,b \in [0,1]$ such that $\min_{x \in [0,1]} f(x) = f(a)$ and $\max_{x \in [0,1]} f(x) = f(b)$. Now $f(a) = \iint_0^1 f(a) dx \le \iint_0^1 f(b) dx = f(b)$. By the intermediate value theorem, $\exists c \in [0,1]$ such that $f(c) = \iint_0^1 f(c) dx$.

(16) By Taylor's theorem, f(x) = f(c) + f'(c)(x-c) + f''(0) = f'(0)(x-c) = f'(0)(x-c) = f'(0)(x-c) = f''(0)(x-c) = f''(0)(x-c)

 $M = |f(x_0)| + |f(x_0)| = \frac{1}{2} |f''(\theta_0)| |x_0 c|^2 + |f''(\theta_0)| |x_0 c| \le \delta \left(|f''(\theta_0)| + |f''(\theta_0)| \right) \le \delta \left(|f''(\theta_0)| + |f'(\theta_0)| + |f'(\theta_0)| \right) \le 2\delta M \implies M = 0 \text{ since } 2\delta < 1$ So $f(x) = 0 \quad \forall x \in [c-\delta, c+\delta]$. We can repeat this argument to cover the whole interval (a, b) since $0 < \delta < \frac{1}{2}$.

(1) Let g(x) = f(x) - 1, then $g(x) + g'(x) = f(x) - 1 + f'(x) \le 0$. So $f(x) = e^x g(x) = e^x g(x) + e^x g'(x) \le 0 \Rightarrow e^x g(x)$ is decreasing on \mathbb{R} . Then $e^x g(x) \le \lim_{x \to -\infty} e^x g(x) = 0$ (since $|g(x)| \le |f(x)| + 1 \Rightarrow g(x)$ is bounded). Hence $g(x) \le 0 \iff f(x) \le 1$. Similarly, considering f(x) = f(x) + 1, $f(x) + f'(x) = f(x) + (+f'(x) \ge 0 \Rightarrow f(x) \ge 0 \iff f(x) \ge -1$. Combining, we get $|f(x)| \le 1$.

(18) The case a=0 is clear. For a>0, f(a)=f(a)-f(b)=f(b) for some $\theta_0\in(0,a)$ and f(a+b)-f(b)=f'(b) for some $\theta_1\in(b,a+b)$. Since $\theta_0<\alpha< b<\theta_1$, $f'(\theta_0)\geq f'(\theta_1)$ and so $f(a)\geq f'(a+b)-f(b)=f'(a+b)=f(a+b)\leq f'(a)+f'(b)$.

(19) Assume $f(x) \neq x$ for all $x \in [a,b]$, then |f(x)-x| is Continuous. By the extreme value theorem, min $|f(x)-x|=|f(x_0)-x_0|\neq 0$ for some $x_0 \in [a,b]$, thousever the inequality implies $|f(f(x_0))-f(x_0)| < |f(x_0)-x_0| = \min |f(x)-x|$, which is a Contradiction. Therefore, f(c)=c for some $c \in [a,b]$.

(20) - Smarf is bounded on [a, b],] K>O such that If(x) [K Yxe [a, 6],
Then 19(x) (fd 9(x) f(x) + 9(x) (+ 12/9(x) f(x)) < 19(x) (1+ A(x)) = 1+K 19(x) Call L=1+K
So 9(x) \le L 9(x) \for xe[a,b]. For xe[a,a+\frac{1}{2}], we have 9(x) \le max 9(t) = M = 0(t) \left(\in \tau \) \for \for \for \for \for \for \for \for
= 19(to) for some to E[9, 9+ \frac{1}{2L}]. By the mean-value theorem,
M=19(b)=19(b)-g(a)=19'(0) to-a , < 19(0) =1 < M > M=0.
So g(x)=0 for xE [a, a+ \frac{1}{2L}]. Since \frac{1}{2L}>0, we can repeat this \[\frac{b-a}{1/2L} \] time.
to get glx)=0 for all xe[a,6].
) Assure fis not bounded above then I xn ER such that f(xn) > too.
By Taylor's theorem, $f(x_n+1) = f(x_n) + f(x_n) + \frac{1}{2}f''(x_n) + \frac{1}{2}f'''(\theta_n)$ (1)
and $f(x_n-1) = f(x_n) + f(x_n) + \frac{1}{2}f'(x_n) - \frac{1}{6}f''(\sigma_n)$, (2)

By Taylox's theorem, $f(x_n+1) = f(x_n) + f(x_n) + \frac{1}{2}f''(x_n) + \frac{1}{6}f'''(\theta_n)$ (1)

and $f(x_n-1) = f(x_n) + \frac{1}{2}f''(x_n) + \frac{1}{6}f'''(\theta_n)$, (2)

where $x_n-1 < \sigma_n < x_n < \theta_n < x_n+1$. Since f and f''' are bounded, equation (1)

Theorem $f''(x_n) \rightarrow -\infty$, but equation (2) implies $f'''(x_n) \rightarrow +\infty$, Contradiction. $2(f(x_n)-f(x_n)-f'(x_n)-f'''(\theta_n))$, $2(f(x_n-1)-f(x_n)+f'(x_n)+f'''(\sigma_n))$ Similarly, f'' is bounded below. So f'' is bounded, Dimilarly, f''' is bounded.

By Taylor's theorem, $f(1) = f(x) + f'(x)(1-x) + f''(0)(1-x)^2$ for some $\theta \in (x, 1)$ and $f(0) = f(x) - f'(x)x + f''(0)x^2$ for some $\sigma \in (0, x)$. Since f(1) = f(0), subtracting these equations, we get $f'(x) = f''(0)x^2 - f''(0)(1-x)^2$. Then $|f(x)| \leq \frac{M}{2}(x^2+(1-x)^2) \leq \frac{M}{2}$.

By Taylor's theorem, $f(x+1) = f(x) + f(x) + \frac{1}{2}f'(x) + \frac{1}{6}f''(0x)$ for some $\theta_x \in (x, x+1)$ and $f(x-1) = f(x) - f(x) + \frac{1}{2}f'(x) - \frac{1}{6}f''(0x)$ for some $\sigma_x \in (x-1,x)$. Adding and subtracting these, we get $f''(x) = f(x+1) - 2f(x) + f(x-1) - \frac{1}{6}f''(0x) + \frac{1}{6}f''(0x) \rightarrow 0$ as $x \rightarrow +\infty$ and $2f'(x) = f(x+1) - f(x-1) - \frac{1}{6}f''(0x) - \frac{1}{6}f'''(0x) \rightarrow 0$ as $x \rightarrow +\infty$ Since $x \rightarrow +\infty \Rightarrow \theta_x, \sigma_x \rightarrow +\infty$.

24) By the mean-value theorem, f(0)-f(-2)=f'(a) and f(2)-f(0)=f'(6) for some $a \in (-2,0)$ and $b \in (0,2)$. Since $|f(x)| \le 1$, we get $|f'(a)| \le 1$ and $|f'(6)| \le 1$. Define g(x) = f'(x) + f'(x). Then $g(a) \le 2$ and $g(b) \le 2$, Since g(0) = 4, we get $g(0) = \max\{g(x) : x \in [a,b]\} \ge 4$ with $\theta \in [a,b)$, g(0) = 0. If f'(0) = 0, then $f^{2}(0) = g(0) \ge 4 \implies f(0) \ge 2$, contradiction, So $f'(0) \ne 0$. Then $0 = g'(0) = 2f'(0)(f(0) + f''(0)) \implies f(0) + f''(0) = 0$.

Additional Integration Exercises

- 351. (a) Let f(x) have a continuous derivative on [0,1]. If f(0)=f(1)=0, then prove by using $dx=d(x-\frac{1}{2})$ that $\left|\int_0^1 f(x)\ dx\right| \leq \frac{1}{4}\max\{|f'(x)|:x\in[0,1]\}$.
 - (b) Let g(x) have a continuous second derivative on [0,2]. If g(1)=0, then prove by using Taylor's theorem that $\left|\int_0^2 g(x) \ dx\right| \leq \frac{1}{3} \max\{|g''(x)| : x \in [0,2]\}.$
- 352. Give an example of a bounded continuous function $f:[0,+\infty)\to [0,+\infty)$ such that $\int_0^{+\infty} f(x)\ dx < \infty$, but $\lim_{x\to +\infty} f(x) \neq 0$. So there is no term test for improper integral.
- 353. (a) Prove that $\int_0^{\pi/2} \ln(\sin x) \ dx$ and $\int_0^{\pi/2} \ln(\tan x) \ dx$ converge.
 - (b) Find the value of $\int_0^{\pi/2} \ln(\sin x) \, dx$ by substituting x = 2t and using $\sin 2t = 2\sin t \cos t$. Find the value of $\int_0^{\pi/2} \ln(\tan x) \, dx$ by substituting $t = \tan x$, writing $\int_0^{+\infty} = \int_0^1 + \int_1^{+\infty}$ and using $\ln \frac{1}{t} = -\ln t$.
 - (c) Find the value of $\int_0^1 \frac{\arcsin x}{x} dx$ by substituting $x = \sin t$ and integrating by parts.
- 354. (a) Let f(x) have a continuous derivative on [0,1]. Prove that

$$\int_{0}^{1} |f(x)| \ dx \le \max \left\{ \int_{0}^{1} |f'(x)| \ dx, \left| \int_{0}^{1} f(x) \ dx \right| \right\}.$$

(*Hint*: Does f have a root?)

- (b) Let g(x) be decreasing on [0,1]. Prove that for every $c \in (0,1)$, $\int_0^c g(x) dx \ge c \int_0^1 g(x) dx$.
- (c) Let h(x) be differentiable on [0,1], h(0)=0 and for all $x\in(0,1)$, 0< h'(x)<1. Prove that $\left(\int_0^1 h(x)\,dx\right)^2 > \int_0^1 h(x)^3\,dx$ by using the generalized mean value theorem.
- 355. (a) Prove that $\int_0^{+\infty} e^{-x} \ln x \, dx$ converges. Determine if $\int_1^{+\infty} \frac{\ln x}{x + e^{-x}} \, dx$ converges.
 - (b) Determine if $\int_0^2 \frac{dx}{\sqrt{|x-1|}}$ conveges. Determine if P.V. $\int_0^2 \frac{dx}{\sqrt{|x-1|}}$ conveges.
- 356. (a) Prove the <u>Dirichlet test</u>: if f(x) is continuous on $[a, +\infty)$, $F(t) = \int_a^t f(x) \, dx$ is bounded on $[a, +\infty)$ and g(t) is monotone and continuously differentiable on $[a, +\infty)$ with $\lim_{t \to +\infty} g(t) = 0$, then $\int_a^{+\infty} f(x)g(x) \, dx$ converges.
 - (b) Prove that $\int_{100}^{+\infty} \frac{\sqrt{x} \cos x}{100 + x} dx$ converges, but $\int_{100}^{+\infty} \left| \frac{\sqrt{x} \cos x}{100 + x} \right| dx$ diverges by using $|\cos x| \ge \cos^2 x = (1 + \cos 2x)/2$.

- (c) Prove the <u>Abel test</u>: if f(x) is continuous on $[a, +\infty)$, $\int_a^{+\infty} f(x)dx$ converges and g(t) is monotone, continuously differentiable and bounded on $[a, +\infty)$, then $\int_a^{+\infty} \frac{\arctan x}{x} \sin x \, dx$ converges. Prove that $\int_a^{+\infty} \frac{\arctan x}{x} \sin x \, dx$ converges.
- 357. (a) Determine if each of the following improper integral converges :

$$\int_{1}^{5} \frac{dx}{\sqrt{(5-x)(x-1)}}, \quad \int_{0}^{1} \frac{1}{x} \sin \frac{1}{x} \, dx, \quad \int_{0}^{\pi/2} \sqrt{\sin x \tan x} \, dx.$$

(b) The <u>Beta function</u> is defined as $B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$. Determine for which real numbers p and q the integeral converges.

Solutions to Additional Integration Exercises
(35) Let M=max { [fix) : x ∈ [0,1]}. Integrating by parts using dx=d(x-1), we a
$(\int_{0}^{f(x)} dx = [(x - \frac{1}{2})f(x)]_{0}^{f(x)} - \int_{0}^{f(x)} f(x) dx = \int_{0}^{1} \int_{0}^{1} x - \frac{1}{2} M dx = \frac{1}{4}M.$
(b) By Taylor's theorem, g(x)=g(1)+g(1)(x-1)+ g(6)(x-1) Let N=max g(x)
$ \int_{0}^{\infty} g(x) dx = g(1) \int_{0}^{\infty} (x-1) dx + \int_{0}^{\infty} \frac{g''(6)}{2} (x-1)^{2} dx \leq \frac{N}{2} \int_{0}^{\infty} (x-1)^{2} dx = \frac{N}{2}$
(352) 1 Define f so the graph of f is as on the left.
The fine f so the graph of f is as on the left. The fine f so the graph of f is as on the left. The fine f so the graph of f is as on the left. The fine f so the graph of f is as on the left. The fine f so the graph of f is as on the left. The fine f so the graph of f is as on the left. The fine f so the graph of f is as on the left. The fine f so the graph of f is as on the left. The fine f so the graph of f is as on the left. The fine f so the graph of f is as on the left. The fine f so the graph of f is as on the left. The fine f so the graph of f is as on the left. The fine f so the graph of f is as on the left. The fine f so the graph of f is as on the left. The fine f so the graph of f is as on the left. The fine f so the graph of f is as on the left. The fine f so the graph of f is as on the left.
0 1 1/2 2 24 33/ lim f(x) does not exist.
(353) (a) (lusin x is unbounded near O) Since sin x ~ x near O her consorte with lux
(353) (a) (lusin x is unbounded near 0) Since sin x ~ x near 0, we compare with lux. Since lim lusinx = lim + Cosx sin x lim x class class lim x dx < co (see examples) So (1/2 lusinx dx Compares (s.) lusinx luxinx lu
So John Smx dx Converges by the limit comparison test
(butan x is unbounded mont O and near I) Since
x>ot (lnx - lnx - lnx)=1-0=1 => So lutenxdx <00 and
lin flutanx - \frac{tanx Sec^2x}{1 + \frac{x-\frac{\pi}{2}}{1 + \frac{\pi}{2} + \frac{\pi}
=> \internal \text{\text{lntan}} \times dx \left\ \internal \text{\text{so}} \internal \text{\text{so}} \left\ \text{\text{converges}}.
(6) $I = \int_0^{\sqrt{2}} \ln \sin x dx = 2 \int_0^{\sqrt{4}} \ln \sin x dx + \int_0^{\sqrt{4}} \ln \sin x dx + \int_0^{\sqrt{4}} \ln \cos x dx$
$\int_0^{\pi/4} \ln \cos t dt = \int_0^{\pi/2} \ln \sin y dy \Rightarrow I = I \ln_2 + 2 \int_0^{\pi/2} \ln \sin x dx = I \int_0^{\pi/2} \ln x dx dx = I \int_0^{\pi/2} \ln x dx dx = I \int_0^{\pi/2} \ln x dx dx = I \int_0^{\pi/2} \ln x dx = I \int$
$\frac{1}{\int \sqrt{x}} \int \frac{1}{x} \int$
$\frac{t=\overline{z}-y^{4}}{J=\int_{0}^{\sqrt{z}}\ln\tan xdx=\int_{0}^{t=\tan x}\int_{1+t^{2}}^{too}\ln tdt=\int_{0}^{t}\ln tdt=\int_{0}^{t}\ln tdt=\int_{0}^{t}\ln tdt=\int_{0}^{t}\ln tdt=\int_{0}^{t}\ln tdt=0.$
(c) $\int_{0}^{1} \frac{arcsin \times}{x} dx = \int_{0}^{\infty} \frac{t}{sint} cost dt = t \ln sint \left \frac{\pi}{2} - \int_{0}^{\infty} \ln sint dt = \frac{\pi t}{2} \ln 2 \right $
(c) $\int_{0}^{1} \frac{arcsin \times}{x} dx = \int_{0}^{\infty} \frac{t}{sint} cost dt = t \ln sint \int_{0}^{\infty} - \int_{0}^{\infty} \ln sint dt = \frac{\pi t}{2} \ln 2$. Proper integral since $\lim_{x \to 0t} \frac{t}{x} = \lim_{t \to 0t} \frac{t}{sint} = 1$ $t = 0 - 0 = 0$

So I to lnx dx diverges.

(6) (is unbounded near ().
$\int_{0}^{2} \frac{dx}{\sqrt{ x-1 }} = \lim_{c \to 1^{-}} \int_{0}^{c} \frac{dx}{\sqrt{1-x}} + \lim_{b \to 1^{+}} \int_{b}^{2} \frac{dx}{\sqrt{ x-1 }} = \lim_{c \to 1^{-}} (-2(1-x)^{\frac{1}{2}})_{0}^{c} + \lim_{c \to 1^{-}} 2(x-1)^{\frac{1}{2}} _{c}^{2} = 4$ $\therefore \int_{0}^{2} \frac{dx}{\sqrt{ x-1 }} Converges \text{ and hence also PV}_{0}^{2} \frac{dx}{\sqrt{ x-1 }} Converges.$
Jo VIX-11 Converges and hence also PV Jo VIX-11 Converges.
356) (a) $\int_{a}^{+\infty} f(x)g(x)dx = \int_{a}^{+\infty} F(x)g(x)dx = \lim_{a \to +\infty} \int_{a}^{+\infty} F(x)g(x)dx = \lim_{a \to +\infty} \left(\frac{F(x)g(x)}{F(x)g(x)} - \frac{F(x)g(x)}{F(x)g(x)} \right) = \lim_{a \to +\infty} \frac{F(x)g(x)}{F(x)g(x)} = \lim_{a \to +\infty} \frac{F(x)g(x)}{F(x)} = \lim$
$\lim_{t \to +\infty} F(t)g(t) = 0 \text{ and } \int_{0}^{+\infty} F(x)g'(x) dx \leq K \left \int_{0}^{+\infty} g'(x) dx \right = K \left 0 - g(a) \right < \infty.$
So lim (F(x)g(x)(a) and stop f(x)g(x)dx Converges f(x)g(x)dx
(6) Let $f(x) = \cos x$ and $g(x) = \frac{\sqrt{x}}{100+x}$. Then $F(t) = \int_{100}^{t} \cos x dx = \sin t - \sin 100$
(b) Let $f(x) = \cos x$ and $g(x) = \frac{100 + x}{100 + x}$. Then $f(x) = \int \cos x dx = \sin t - \sin 100$ Ts bounded and $g(x) = \frac{100 - x}{2\sqrt{x}(100 + x)^2} < 0$ on $(100, +\infty)$, $0 < g(x) < \frac{\sqrt{x}}{x} = \frac{1}{\sqrt{x}} > 0$ $\Rightarrow \int \frac{\sqrt{x}(\cos x)}{100 + x} dx$ Converges.
Dirichlet test 100 100+x dx Converges.
Using cosx > cos2x = (1+cos2x)/2, we have
$\int_{100}^{+\infty} \left \frac{\sqrt{x} \cos x}{100 + x} \right dx \ge \frac{1}{2} \int_{00}^{+\infty} \frac{\sqrt{x}}{100 + x} dx + \frac{1}{2} \int_{100}^{+\infty} \frac{\sqrt{x} \cos 2x}{100 + x} dx \text{ diverges.}$
diverges Converges by Dividlet fest as $\int_{00}^{\infty} \cos 2x dx$ Since $\frac{\sqrt{x}}{100 + x} \sim \frac{\sqrt{x}}{x} = \frac{1}{\sqrt{x}} \int_{00}^{+\infty} dx diverges by p-test is bounded too} \int_{00}^{+\infty} x dx diverges.$
(c) Ntoo 1 cts 1
Ja $f(x)dx = \lim_{t \to +\infty} \int_{a}^{b} f(x)dx = \lim_{t \to +\infty} F(t) = \lim_{t \to +\infty} f(t)dx$ bounded on $[a, +\infty)$ ght) monotone and bounded $\Rightarrow \lim_{t \to a} f(t) = C$ exists $\Rightarrow g(t) - c$ monotone By Dirichlet test, $\int_{a}^{+\infty} f(x)(g(x)-c)dx$ converges. Then and has limit 0 as $t \to +\infty$.
By Dirichlet test, Saffx)(g(x)-c)dx converges. Then as timet 0
$\int_{a}^{a} f(x)g(x)dx = \int_{a}^{a} f(x)(g(x)-c)dx + c \int_{a}^{a} f(x)dx \text{ conveyes.}$
Let $f(x) = \frac{\sin x}{x}$ and $g(x) = \arctan x$, then $\int_{-\infty}^{+\infty} \frac{\sin x}{x} dx = \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx + \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx = \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx + \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx = \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx + \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx = \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx + \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx = \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx + \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx = \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx + \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx = \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx + \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx = \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx + \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx = \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx + \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx = \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx + \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx = \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx + \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx = \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx + \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx = \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx + \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx = \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx + $
and g(x) / It as x > +00. proper integral converges
and $g(x) \nearrow f$ as $x \to +\infty$. Proper integral Converges i. by Abel test, $\int_{0}^{+\infty} \frac{ax t_{an} \times f_{in} \times dx}{x} f_{in} \times dx$ Converges. (class example)
' .

and lim x - (1-x) - = lim x - = 1 and f (1-x) dx = ft dt = 1-g <1 => g>0, So B(p, g) = ∫ x p-1(1-x) 3-1 dx conveyes (>> p>0 and g>0.