Part III: Induction

- 1. Prove each of the following claims by induction:
 - (a) The sum of the first n even number is $n^2 + n$. That is, $\sum_{i=1}^{n} 2i = n^2 + n$.

Proof by Induction:

We need to prove p(n): The sum of the first n even number is $n^2 + n$.

Base Case:

When
$$n = 1$$
, $\sum_{i=1}^{n} 2i = \sum_{i=1}^{1} 2i = 2$ and $n^2 + n = 1 + 1 = 2$, so p(n) is true for $n = 1$.

Inductive Step:

Assume p(k) is true for all $k \ge 1$ i.e. $\sum_{i=1}^{k} 2i = k^2 + k$.

We then show, p(k+1) is true i.e. $\sum_{i=1}^{k+1} 2i = (k+1)^2 + (k+1)$.

Now, when n = k + 1

$$p(n): \sum_{i=1}^{n} 2i = \sum_{i=1}^{k+1} 2i$$

$$= \sum_{i=1}^{k} 2i + \sum_{i=k+1}^{k+1} 2i$$

$$= k^2 + k + 2(k+1) \text{ ($\cdot \cdot$ Using Induction hypothesis)}$$

$$= (k^2 + 2k + 1) + k + 1$$

$$= (k+1)^2 + (k+1) \text{ So p(k+1) is true.}$$

Hence, p(n): The sum of the first n even number is $n^2 + n$, is true for all $n \ge 1$. \square

(b)
$$\sum_{i=1}^{n} 3^{i} = \frac{3}{2}(3^{n} - 1)$$

Proof by Induction:

We need to prove p(n): $\sum_{i=1}^{n} 3^{i} = \frac{3}{2}(3^{n} - 1)$.

Base Case:

When n=1,

Left Hand Side(LHS) = $\sum_{i=1}^{n} 3^{i} = \sum_{i=1}^{1} 3^{i} = 3$, and Right Hand Side(RHS) = $\frac{3}{2}(3^{n} - 1) = \frac{3}{2} \cdot (3 - 1) = 3$

Here LHS = RHS so p(n) is true for n = 1.

Inductive Step:

Assume p(k) is true for all $k \ge 1$ i.e. $\sum_{i=1}^{k} 3^i = \frac{3}{2}(3^k - 1)$.

We then show, p(k+1) is true i.e. $\sum_{i=1}^{k+1} 3^i = \tfrac32 (3^{k+1}-1).$

Now, when n = k + 1

$$p(n): \sum_{i=1}^{n} 3^{i} = \sum_{i=1}^{k+1} 3^{i}$$

$$= \sum_{i=1}^{k} 3^{i} + \sum_{i=k+1}^{k+1} 3^{i}$$

$$= \frac{3}{2} (3^{k} - 1) + 3^{k+1} \ (\because \text{ Using Induction hypothesis})$$

$$= \frac{3 \cdot 3^{k} - 3 + 2 \cdot 3^{k+1}}{2}$$

$$= \frac{3^{k+1} - 3 + 2 \cdot 3^{k+1}}{2}$$

$$= \frac{3}{2} (3^{k+1} - 1) \quad \text{So p(k+1) is true.}$$

Hence, p(n): $\sum_{i=1}^{n} 3^{i} = \frac{3}{2}(3^{n} - 1)$, is true for all $n \ge 1$. \square

(c) For any integer $n \ge 1$, $5^n - 1$ is divisible by 4.

Proof by Induction:

We need to prove p(n): $5^n - 1$ is divisible by 4 for any $n \ge 1$.

Base Case:

When n=1, $5^1-1=5-1=4$ which is divisible by 4. So p(n) is true for n=1.

Inductive Step:

Assume p(k) is true for $k \ge 1$ i.e. $5^k - 1$ is divisible by 4. Then $5^k - 1 = 4z_0$ where $z_0 \in \mathbb{Z}$. We then show, p(k+1) is true i.e. $5^{k+1} - 1$ is divisible by 4.

Now, when n = k + 1

p(n):
$$5^n - 1 = 5^{k+1} - 1$$

= $5^k \cdot 5 - 5 + 4$
= $5(5^k - 1) + 4$
= $5(4z_0) + 4$ (: Using Induction hypothesis)
= $4(5z_0 + 1)$
= $4z_n$ where, $z_n = 5z_0 + 1$

So $5^{k+1} - 1$ is divisible by 4 i.e. p(k+1) is true.

Hence,

p(n) is true for $n \ge 1$ i.e. $5^n - 1$ is divisible by 4 for any $n \ge 1$. \square

2. The function $\max Odd$, given below in pseudocode, takes as input an array A of size n of numbers. It returns the largest odd number in the array. If no odd numbers appear in the array, it returns negative infinity $(-\infty)$. Using induction, prove that the $\max Odd$ function works correctly. Clearly state your recursive invariant at the beginning of your proof.

```
Function maxOdd(A,n)
   If n = 0 Then
     Return -∞
Else
     Set best To maxOdd(A,n-1)
     If A[n-1] > best And A[n-1] is odd Then
        Set best To A[n-1]
     EndIf
     Return best
EndIf
EndFunction
```

Proof:

p(n): The function $\max Odd(A,n)$ returns the largest odd number in the array A and returns $-\infty$ if there are no odd numbers.

Base Case:

p(0): The maxOdd(A,0) returns largest odd number from 0 elements of A i.e. maxOdd returns $-\infty$.

Here we have n=0,

the first if-statement is satisfied so the function will return $-\infty$. Hence, p(0) is True.

Inductive Step:

Assume p(k) is true for $k \ge 0$ i.e. the maxOdd(A, k) returns returns the largest odd number in the array A with k elements and returns $-\infty$ if there are no odd numbers.

We then show,

p(k+1) is true i.e. the function maxOdd(A, k+1) returns returns the largest odd number in the array A with (k+1) elements and returns $-\infty$ if there are no odd numbers.

Now,

As we call maxOdd(A, k+1), we will go to else case of first if-condition and set best = maxOdd(A, k) which is correct for k elements from our induction hypothesis. After that, we will move to the next if-condition:

If A[k] = (k+1)th element of A is an odd number and A[k] > best (i.e. it's a larger odd number), it will set the best to be best = A[k]. Finally the function will return the value of best which will be the (k+1)th element in A if A[k] is a larger odd number else it will be the return value from maxOdd(A, k), which will be largest odd number from (A, k) or is $-\infty$ and this is true from inductive hypothesis. So, p(k+1) is true.

Hence,

p(n): The function maxOdd(A,n) returns the largest odd number in the array A and returns $-\infty$ if there are no odd numbers, is true for all $n \ge 0$. \square

^{***}END OF LAB 6 WRITINGS***