Creating a kml file for the Chile 2010 Tsunami propagation example ¶

This notebook uses the same data as in <u>Chile2010 tsunami.ipynb (Chile2010 tsunami.ipynb)</u>, and illustrates how to turn a plot of the tsunami elevation into a kml file that can be viewed interactively, e.g. with Google Earth or Cesium.

```
In [1]: %matplotlib inline
In [2]:
        import numpy as np
        import matplotlib.pyplot as plt
        from numpy import ma # masked arrays
        from __future__ import print_function
        from data tools import read asc file
        topo_file = '../geoclaw_output/chile2010/topo.asc'
        topo_data_dict = read_asc_file(topo_file, verbose = False)
        X = topo_data_dict['X']
        Y = topo data dict['Y']
        topo = topo data dict['values']
In [3]: frame times = np.linspace(0,5.5,12)
        print("The data is at the following times (in hours after the earthquake):\n
        The data is at the following times (in hours after the earthquake):
                             1.5 2.
            [ 0.
                   0.5 1.
                                       2.5 3.
                                                 3.5 4.
                                                            4.5 5.
        First experiment with one time frame:
In [4]: | frameno = 9
        filename = 'eta_%s.asc' % str(frameno).zfill(4) # pads with zeros to fill 4 char
        eta file = '../geoclaw output/chile2010/%s' % filename
        print('Reading file %s\nTsunami simulation at time %4.1f hours after quake\n' \
            % (eta file, frame times[frameno]))
        eta_data_dict = read_asc_file(eta_file, verbose=False)
        Eta = eta_data_dict['values']
        Reading file ../geoclaw output/chile2010/eta 0009.asc
        Tsunami simulation at time 4.5 hours after quake
```

Mask Eta on shore to only show ocean surface:

```
In [5]: Eta_offshore = ma.masked_where(topo>0, Eta)
```

We can choose a colormap and breakpoints.

Note that we set the colors to also contain a transparency alpha, so the elements of the list have the form [R,G,B,alpha]. We set alpha = 0 for the range between -0.05 and 0.05 so that the flat surface does not get colored at all, and to the value alpha wave where the tsunami height is larger.

Create image suitable for displaying in kml file

Create kml file showing this image

```
In [8]: from lxml import etree
        from pykml.factory import KML ElementMaker as KML
        # Latlong box
        x1 = -120 # east
        x2 = -60 # west
        y1 = -60 # south
        y2 = 0.0 # north
        # Create KML file using pyKML
        doc = KML.kml(KML.Document())
        doc.Document.append(KML.Folder(
                  KML.GroundOverlay(KML.Icon(
                                         KML.href(fname + '.png')),
                                     KML.LatLonBox(
                                         KML.north(y2),
                                         KML.south(y1),
                                         KML.east(x2),
                                         KML.west(x1)))))
        # doc.Document.Folder.append(go)
        docfilename = "%s.kml" % fname
        docfile = open(docfilename,'w')
        docfile.write('<?xml version="1.0" encoding="UTF-8"?>\n')
        kml_text = etree.tostring(etree.ElementTree(doc),pretty_print=True).decode('utf8'
        docfile.write(kml text)
        docfile.close()
        print("Created %s containing....\n" % docfilename)
        print(kml_text)
        Created chile.kml containing....
        <kml xmlns:atom="http://www.w3.org/2005/Atom" xmlns:gx="http://www.google.com/k</pre>
        ml/ext/2.2" xmlns="http://www.opengis.net/kml/2.2">
          <Document>
            <Folder>
              <GroundOverlay>
                <Icon>
                  <href>chile.png</href>
                </Icon>
                <LatLonBox>
                  <north>0.0</north>
                  <south>-60</south>
                  <east>-60</east>
                  <west>-120</west>
                </LatLonBox>
              </GroundOverlay>
            </Folder>
          </Document>
        </kml>
```

This kml file can be opened in Google Earth or other tools that support kml files.

Cesium

Here we open it using <u>cesiumpy (https://pypi.python.org/pypi/cesiumpy)</u>, a Python wrapper for <u>cesium.is (http://cesiumis.org/)</u>.

```
In [9]: import cesiumpy
    ds = cesiumpy.KmlDataSource('chile.kml')
    v = cesiumpy.Viewer()
    v.dataSources.add(ds)
    v
```

/opt/conda/lib/python2.7/site-packages/cesiumpy/util/html.py:14: UserWarning: U
nable to read specified path, be sure to the output HTML can read the path:
 warnings.warn(msg.format(sourceUri))

Out[9]:

Javascript error adding output!

TypeError: Cesium.Viewer is not a constructor

See your browser Javascript console for more details.