4. CONVERSORES CC-CC PARA ACIONAMENTO DE MÁQUINAS DE CORRENTE CONTÍNUA

As aplicações de máquinas de corrente contínua (MCC) são bastante variadas, incluindo, por exemplo, a tração de veículos elétricos e o acionamento de máquinas operatrizes.

4.1 Princípios de acionamento de máquinas de corrente contínua

Apresentam-se brevemente as equações básicas de uma máquina de corrente contínua, através das quais é possível determinar os parâmetros a serem ajustados quando se deseja controlá-la.

A figura 4.1 mostra um diagrama esquemático indicando o circuito elétrico da MCC.

O enrolamento de campo pode ser conectado de diferentes maneiras em relação ao enrolamento de armadura: em série (as correntes de campo e de armadura são iguais); em paralelo (as tensões de campo e a tensão terminal, V_t , de armadura são iguais) e independente. Embora historicamente tenha se utilizado em grande escala a conexão série para aplicações em tração, devido ao alto torque de partida que produz, com o advento dos conversores eletrônicos de potência passou-se a utilizar a excitação independente, em virtude da maior flexibilidade que apresenta em termos do controle da MCC.

Figura 4.1 Circuito elétrico de MCC

4.1.1 Equações estáticas

Existem 2 equações básicas para a MCC que relacionam as grandezas elétricas às mecânicas:

$$E_{g} = K_{v} \cdot \Phi \cdot \omega \tag{4.1}$$

$$T = K_{t} \cdot \Phi \cdot i_{a} \tag{4.2}$$

Onde:

Eg: força contra-eletro-motriz de armadura

K: constante determinada por características construtivas da MCC (normalmente K=K_v=K_t)

Φ: fluxo de entreferro

ω: velocidade angular da máquina

ia: corrente de armadura

J: momento de inércia incluindo a carga mecânica.

T: torque

B: atrito

Do circuito elétrico da figura 4.1 obtém-se que a tensão terminal da máquina é dada por:

$$v_{t}(t) = E_{g} + R_{a} \cdot i_{a}(t) + L_{a} \cdot \frac{d}{dt} i_{a}(t)$$
 (4.3)

Considerando apenas os valores médios da tensão terminal e da corrente de armadura, o termo relativo à sua derivada torna-se nulo, de modo que se pode escrever de (4.1) e (4.3):

$$\omega = \frac{V_t - R_a \cdot I_a}{K \cdot \Phi} \tag{4.4}$$

Assim, a velocidade de uma MCC pode ser controlada através de 3 variáveis: a tensão terminal, o fluxo de entreferro e a resistência de armadura.

O controle pela resistência de armadura era feito em sistemas de tração, com resistências de potência conectadas em série com a armadura (e com o campo, já que se utilizava excitação série). Tais resistências iam sendo curto-circuitadas à medida que se desejava aumentar a tensão terminal de armadura e, consequentemente, aumentar a velocidade da MCC. Era um controle essencialmente manual, comandado pelo operador do veículo.

O controle da velocidade pelo fluxo de entreferro é utilizado em acionamentos independentes, mas quando se deseja velocidade acima da velocidade base da máquina. Ou seja, tipicamente opera-se com campo pleno (para maximizar o torque) e, ao ser atingida a velocidade base, pelo enfraquecimento do campo pode-se ter uma maior velocidade, às custas de uma diminuição no torque.

A figura 4.2 ilustra um perfil típico de acionamento.

Figura 4.2. Controle de MCC pela armadura e pelo campo

Dada a elevada constante de tempo elétrica do enrolamento de campo (para enrolamento independente), não é possível fazer variações rápidas de velocidade por meio deste controle. Esta

é uma alternativa com uso principalmente em tração, na qual as exigências de resposta dinâmica são menores.

Do ponto de vista de um melhor desempenho sistêmico, o controle através da tensão terminal é o mais indicado, uma vez que permite ajustes relativamente rápidos (sempre limitados pela dinâmica elétrica e mecânica do sistema), além de, adicionalmente, possibilitar o controle do torque, através do controle da corrente de armadura. É o método geralmente utilizado no acionamento de MCC em processos industriais.

4.1.2 Equações dinâmicas

O comportamento dinâmico de um sistema é dado por suas propriedades de armazenamento de energia. No caso de MCC a energia pode ser acumulada, magneticamente, nas indutâncias da máquina e, mecanicamente, na massa girante.

Relacionada à energia magnética, tem-se que ela é armazenada nas indutâncias de campo e de armadura. Como, por construção, os campos produzidos por estes enrolamentos estão a 90° elétricos um do outro, não há indutância mútua entre eles, podendo-se considerá-los independentemente.

Considerando o fluxo de campo constante e excitado separadamente, tem-se o diagrama de blocos mostrado na figura 4.3.

Figura 4.3 Diagrama de blocos de MCC com excitação independente.

A equação do conjugado para o sistema mecânico é dada por:

$$T(t) = K \cdot \Phi \cdot i_a(t) = J \cdot \frac{d}{dt} \omega(t) + B \cdot \omega(t) + T_w(t)$$
(4.5)

Tw é o torque exercido pela carga acoplada ao eixo da máquina. Sendo suposto o linear sistema, pode-se, a partir do modelo da figura 4.3, obter por superposição uma expressão para a velocidade da máquina:

$$\omega(s) = \frac{K \cdot \Phi}{(R_a + sL_a)(B + sJ) + (K \cdot \Phi)^2} \cdot Vt(s) - \frac{R_a + sL_a}{(R_a + sL_a)(B + sJ) + (K \cdot \Phi)^2} \cdot T_w(s)$$
(4.6)

Fazendo Tw(s)=0, a relação dinâmica entre a velocidade e a tensão terminal é:

$$\frac{\omega(s)}{Vt(s)} = \frac{K \cdot \Phi}{\left(R_a + sL_a\right)\left(B + sJ\right) + \left(K \cdot \Phi\right)^2}$$
(4.6.a)

Fazendo Vt(s)=0 tem-se:

$$\frac{\omega(s)}{T_w(s)} = \frac{\left(R_a + sL_a\right)}{\left(R_a + sL_a\right)\left(B + sJ\right) + \left(K \cdot \Phi\right)^2}$$
(4.6.b)

Para ter-se uma visão mais clara sobre o comportamento dinâmico da máquina CC, consideremos que seu atrito viscoso seja desprezível (B=0) e que a máquina esteja sem carga mecânica e que a constante de tempo mecânica seja muito maior que a elétrica, o que permite escrever:

$$\frac{\omega(s)}{Vt(s)} \cong \frac{1}{(1 + \tau_m \cdot s) \cdot (\tau_a \cdot s + 1) \cdot K \cdot \Phi}$$
(4.7)

 τ_a e τ_m são, respectivamente, as constantes de tempo elétrica (de armadura) e mecânica, cujos valores são dados por:

$$\tau_{a} = \frac{L_{a}}{R_{a}} \tag{4.8}$$

$$\tau_{\rm m} = \frac{J \cdot R_{\rm a}}{(K\Phi)^2} \tag{4.9}$$

Dada a característica de segunda ordem do sistema, pode-se obter os parâmetros relativos à freqüência natural não-amortecida do sistema e ao coeficiente de amortecimento, dados respectivamente por:

$$\omega_{\rm n} \cong \sqrt{\frac{1}{\tau_{\rm m} \cdot \tau_{\rm n}}} \tag{4.10}$$

$$\alpha \cong \frac{1}{2\tau_{a}} \tag{4.11}$$

Para máquinas de grande porte, usadas, em geral, em tração, a constante de tempo elétrica é muito menor do que a constante de tempo mecânica, de modo que o sistema, do ponto de vista do acionamento, pode ser considerado como de primeira ordem, desprezando a constante de tempo elétrica. Isto já não ocorre para máquinas de pequeno porte, como as usadas em automação industrial, nas quais o sistema, via de regra, é efetivamente considerado como de segunda ordem.

4.1.3 Quadrantes de operação

Do ponto de vista do acionamento da MCC, pode-se definir, no plano torque x velocidade, 4 regiões de operação, como indicado na figura 4.4. Note-se que o mesmo plano pode ser colocado em termos do valor médio da corrente de armadura (I_a) e da força contra-eletro-motriz de armadura, E_g , caso se suponha constante o fluxo de entreferro.

No quadrante I tem-se torque e velocidade positivos, indicando, que a máquina está operando como motor e girando num dado sentido. Em termos de tração, poder-se-ia dizer que se está operando em tração para frente.

No quadrante III, tanto o torque quanto a velocidade são negativos, caracterizando uma operação de aceleração em ré.

Já o quadrante II se caracteriza por um movimento em ré (velocidade negativa) e torque positivo, implicando, assim, numa frenagem.

No quadrante IV, tem-se velocidade positiva e torque negativo, ou seja, frenagem. Tem-se um movimento de avanço, mas com redução da velocidade.

Sintetizando, tem-se a seguinte tabela:

Quadrante	Torque (I _a)	$Velocidade \ (E_g)$	Sentido de rotação	Variação da velocidade
I	>0	>0	avante	acelera
II	>0	<0	à ré	freia
III	<0	<0	à ré	acelera
IV	<0	>0	avante	freia

Uma outra classificação usual para estes conversores é, ao invés da velocidade, considerar-se a polaridade da tensão média terminal:

- Classe A: Operação no I quadrante
- Classe B: Operação no IV quadrante
- Classe C: Operação no I e IV quadrantes
- Classe D: Operação nos I e II quadrantes
- Classe E: Operação nos 4 quadrantes.

Note-se que não existe uma relação direta entre a polaridade da tensão terminal e o sentido de rotação da MCC, uma vez que, transitoriamente, pode-se ter Vt com uma polaridade e Eg com outra.

Assim, o plano Torque x Velocidade pode ser usado para definir aspectos de tração e frenagem, mas o mesmo não ocorre com o plano Ia x Vt.

Figura 4.4 Regiões de acionamento de MCC.

4.2 Topologias de conversores para acionamento de MCC

A grande maioria dos acionamentos é feita utilizando-se conversores abaixadores de tensão, ou seja, aqueles nos quais a tensão *média* aplicada à carga é menor do que a tensão de alimentação do conversor. Conversores elevadores de tensão são usados quando se deseja freiar a máquina, com envio de energia para a fonte (frenagem regenerativa). Tais conversores são denominados "chopper", em inglês. Em português recebem diferentes denominações, como: recortador, pulsador, chaveador, etc.

Diferentemente do que ocorre com as fontes chaveadas (tema do capítulo 5), neste caso não existe a preocupação com a filtragem da tensão antes de aplicá-la à carga. Assim, a tensão terminal instantânea é a própria tensão sobre o diodo de circulação, enquanto a corrente é filtrada pela indutância de armadura.

O comando usual é por Modulação por Largura de Pulso, com uma freqüência de chaveamento cujo período seja muito menor do que a constante de tempo elétrica da carga, a fim de permitir uma reduzida ondulação na corrente e, portanto, no torque. Outra possibilidade, usada quando se deseja um controle de torque mais preciso é o controle por MLC (histerese)

4.2.1 Conversor Classe A

A figura 4.5 mostra uma topologia de conversor que opera apenas no I quadrante. Dada a característica indutiva da carga, o uso do diodo de circulação (free-wheeling) é indispensável.

Note-se que a corrente da carga pode circular apenas no sentido indicado na figura, assim como a tensão de armadura não pode ser invertida em relação à indicada, uma vez que o diodo impede a existência de tensões negativas aplicadas no terminal da MCC.

Figura 4.5 Conversor para I quadrante.

Em termos do comportamento da corrente de armadura, duas situações são possíveis: o Modo de Condução Contínua e o Modo de Condução Descontínua, como mostrado na figura 4.6. Na hipótese de que a constante de tempo elétrica da máquina seja muito maior do que o período de chaveamento, pode-se considerar que a corrente tem uma variação praticamente linear. Na realidade a variação é do tipo exponencial.

No primeiro caso a corrente de armadura não vai a zero dentro de cada ciclo de chaveamento, o que significa que existe corrente circulando pelo diodo durante todo o tempo em que o transistor permanece desligado, ou seja, uma tensão terminal nula. Já em condução descontínua, a corrente de armadura vai a zero, fazendo com que o diodo deixe de conduzir. Como não há corrente, não há queda de tensão sobre Ra e La, de modo que a tensão vista nos terminais da MCC é a própria tensão de armadura, Eg.

A operação em um ou outro modo de funcionamento depende de diversos parâmetros do sistema. Desprezando as quedas de tensão no transistor e no diodo, o valor médio da tensão terminal, em condução contínua é:

$$V_{t} = E \cdot \frac{t_{1}}{T} = E \cdot \delta \tag{4.12}$$

 δ é o chamado ciclo de trabalho, razão cíclica ou largura de pulso.

Figura 4.6. Formas de onda típicas nos modos de condução contínua e descontínua

No intervalo em que a corrente de armadura cresce (entre 0 e t_1) a corrente é expressa por:

$$i_{a}(t) = Io \cdot e^{-t/\tau_{a}} + \frac{\left(E - E_{g}\right)}{R_{a}} \cdot \left[1 - e^{\left(-t/\tau_{a}\right)}\right]$$
(4.13)

No intervalo de decaimento da corrente, ou seja, entre t_1 e t_2 , tem-se:

$$i_a(t) = I_1 \cdot e^{\left(-(t-t_1)/\tau_a\right)} - \frac{E_g}{R_a} \cdot \left[1 - e^{\left(-(t-t_1)/\tau_a\right)}\right]$$
 (4.14)

Aproximações (1^a ordem) das equações anteriores são dadas, respectivamente, por:

$$i_{a}(t) = Io \cdot \left(1 - \frac{t}{\tau_{a}}\right) + \frac{\left(E - E_{g}\right)}{R_{a}} \cdot \frac{t}{\tau_{a}}$$
(4.15)

$$i_a(t) = I_1 \cdot \left(1 - \frac{(t - t_1)}{\tau_a}\right) - \frac{E_g}{R_a} \cdot \frac{t - t_1}{\tau_a}$$
 (4.16)

No modo de condução descontínua, a corrente Io é nula e t₂<T. A tensão terminal média é:

$$V_{t} = E \cdot \delta + E_{g} \cdot \frac{t_{x}}{T}$$

$$(4.17)$$

A duração do intervalo t_x depende de vários parâmetros, sendo dada por:

$$t_{x} = T - t_{2} = T \cdot (1 - \delta) - \frac{(E - E_{g}) \cdot \tau_{a} \cdot \delta \cdot T}{E_{g} \cdot \tau_{a} + (E - E_{g}) \cdot \delta \cdot T}$$

$$(4.18)$$

Sendo τ_a>>T, a equação anterior se simplifica para:

$$\frac{t_x}{T} \cong 1 - \delta \cdot \frac{E}{E_g} \tag{4.19}$$

Fazendo-se t₂=T obtém-se o ciclo de trabalho que determina a passagem do modo de condução contínua para o modo de condução descontínua, que é dado pela raiz positiva da equação:

$$\delta^2 + \delta \cdot \left[\frac{E \cdot \tau_a}{(E - E_g) \cdot T} - 1 \right] - \frac{E_g \cdot \tau_a}{(E - E_g) \cdot T} = 0$$
 (4.20)

Sendo $\tau_a >> T$, a equação anterior se simplifica para:

$$\delta \cong \frac{E_g}{E} \tag{4.21}$$

No caso crítico, substituindo (4.21) em (4.19), tem-se que t_x =0. A figura 4.7 mostra o valor do ciclo de trabalho crítico para diferentes relações entre a constante de tempo elétrica e o período de chaveamento.

Nas figuras 4.8 e 4.9 tem-se as curvas características estáticas do conversor para diferentes tensões de armadura. Em 4.8, no modo descontínuo, a tensão terminal é igual a Eg, enquanto em 4.9, como a queda resistiva não é desprezível, o valor da tensão terminal é sempre superior à tensão Eg.

Em termos de uma modelagem do conversor para uma análise dinâmica, se a operação ocorrer no modo de condução contínua, pode-se representá-lo por um ganho, o que já não é possível no caso de condução descontínua. Note-se que, nesta situação, o ganho incremental $(dVt/d\delta)$ é muito baixo, tendendo a zero para $\tau_a>>T$.

Figura 4.7. Ciclo de trabalho crítico que delimita o modo de operação.

Figura 4.8. Característica estática do conversor para I quadrante para $\tau_a/T=10$.

Figura 4.9. Característica estática do conversor para I quadrante para $\tau_a/T=1$.

Em condução contínua a ondulação da corrente é dada por:

$$\Delta I = \frac{E}{R_a} \cdot \frac{1 - e^{\left(-\delta T_{\tau_a}\right)} + e^{\left(-T_{\tau_a}\right)} - e^{\left(-(1-\delta)T_{\tau_a}\right)}}{1 - e^{\left(-T_{\tau_a}\right)}}$$
(4.22)

Utilizando as linearizações apresentadas tem-se:

$$\Delta I = \frac{2 \cdot E \cdot \delta \cdot T \cdot (1 - \delta)}{R_a \cdot (2 \cdot \tau_a - \delta \cdot T)}$$
(4.23)

A ondulação será máxima para 50% de ciclo de trabalho, valendo:

$$\Delta I_{\text{max}} = \frac{E \cdot T}{4 \cdot L_a} \tag{4.24}$$

A corrente média é:

$$I_a = \frac{E \cdot \delta - E_g}{R_a} \tag{4.25}$$

4.2.2 Conversor Classe B

Nesta situação, na qual a velocidade mantém seu sentido (portanto também o faz Eg) e o torque (a corrente de armadura) se inverte, a topologia apresenta-se como mostrada na figura 4.10, na qual o diodo e o transistor trocaram de posição, havendo uma inversão no sentido da corrente de armadura e da fonte.

Figura 4.10. Conversor Classe B: operação no IV quadrante - frenagem avante.

Para que seja possível à corrente retornar à fonte (supondo-a receptiva), é necessário que a tensão terminal média tenha um valor maior do que a tensão da fonte. Isto pode ocorrer se Eg>E ou ainda pela ação do próprio conversor.

O primeiro caso (Eg>E) ocorre, por exemplo, quando se faz controle de velocidade através do enfraquecimento do campo. Ao se desejar freiar a MCC, eleva-se a corrente de campo, aumentando Eg, possibilitando a transferência de energia da máquina para a fonte. Isto é possível até a velocidade base. Uma outra possibilidade é a MCC girar, por ação de um torque externo, acima da velocidade base (por exemplo, um veículo numa descida).

Nosso objetivo aqui, no entanto, é analisar esta frenagem quando comandada pelo conversor. As formas de onda mostradas na figura 4.11 referem-se à operação nos modos de condução contínua e descontínua.

Figura 4.11 Formas de onda típicas de conversor classe B.

Durante a condução do transistor acumula-se energia na indutância de armadura. Quando este componente é desligado, a continuidade da corrente por La leva à condução do diodo,

fazendo com que a energia acumulada na indutância e aquela retirada da MCC sejam entregues à fonte. Quanto maior for o ciclo de trabalho, maior será a corrente e, portanto, maior a energia retirada da máquina.

Desprezando as quedas de tensão no transistor e no diodo, o valor médio da tensão terminal, em condução contínua é:

$$V_t = E \cdot (1 - \delta) \tag{4.26}$$

No intervalo em que a corrente de armadura cresce (entre 0 e t_1) a corrente é expressa por:

$$i_{a}(t) = Io \cdot e^{-t/\tau_{a}} + \frac{E_{g}}{R_{a}} \cdot \left[1 - e^{\left(-t/\tau_{a}\right)}\right]$$
(4.27)

No intervalo de decaimento da corrente, ou seja, **entre t**₁ **e t**₂, tem-se:

$$i_{a}(t) = I_{1} \cdot e^{\left(-(t-t_{1})/\tau_{a}\right)} - \frac{E - E_{g}}{R_{a}} \cdot \left[1 - e^{\left(-(t-t_{1})/\tau_{a}\right)}\right]$$
 (4.28)

Aproximações (1ª ordem) das equações anteriores são dadas, respectivamente, por:

$$i_{a}(t) = Io \cdot \left(1 - \frac{t}{\tau_{a}}\right) + \frac{\left(E_{g}\right)}{R_{a}} \cdot \frac{t}{\tau_{a}}$$

$$(4.29)$$

$$i_a(t) = I_1 \cdot \left(1 - \frac{(t - t_1)}{\tau_a}\right) - \frac{E - E_g}{R_a} \cdot \frac{t - t_1}{\tau_a}$$
 (4.30)

No modo descontínuo a corrente Io é nula e t₂<T. A tensão terminal média é:

$$V_{t} = E \cdot (t_{2} - \delta \cdot T) + E_{g} \cdot \frac{t_{x}}{T}$$

$$(4.31)$$

A duração do intervalo t_x depende de vários parâmetros, sendo dada por:

$$t_{x} = T - t_{2} = T \cdot (1 - \delta) + \frac{E_{g} \cdot \tau_{a} \cdot \delta \cdot T}{E_{g} \cdot (\tau_{a} - \delta \cdot T) - E \cdot \tau_{a}}$$

$$(4.32)$$

Sendo $\tau_a >> T$, a equação anterior se simplifica para:

$$\frac{\mathbf{t}_{\mathbf{X}}}{\mathbf{T}} \cong 1 - \delta \cdot \frac{\mathbf{E}}{\mathbf{E} - \mathbf{E}_{\mathbf{g}}} \tag{4.33}$$

O ciclo de trabalho que determina a passagem do modo de condução contínua para o modo de condução descontínua é dado pela raiz positiva da equação:

$$\delta^2 + \delta \cdot \left[\frac{E \cdot \tau_a}{E_g \cdot T} - 1 \right] - \frac{(E - E_g) \cdot \tau_a}{E_g T} = 0$$
 (4.34)

Sendo $\tau_a >> T$, a equação anterior se simplifica para:

$$\delta \cong 1 - \frac{E_g}{E} \tag{4.35}$$

A figura 4.12 mostra o valor do ciclo de trabalho crítico para diferentes relações entre a constante de tempo elétrica e o período de chaveamento.

Na figura 4.13 tem-se as curvas características estáticas do conversor para diferentes tensões de armadura. No modo de condução descontínua, a tensão terminal tende a Eg, supondo a queda resistiva não desprezível, o valor da tensão terminal é sempre inferior a esta tensão.

Em condução contínua, a corrente média de armadura é:

$$I_{a} = \frac{Eg - E \cdot (1 - \delta)}{R_{a}} \tag{4.36}$$

Em condução descontínua a corrente média é baixa, de modo que o torque frenante produzido é pequeno. Uma frenagem eficiente é realizada operando-se com condução contínua.

Na hipótese em que a fonte de alimentação não seja receptiva ao retorno da energia (como, por exemplo, um retificador a diodos), deve-se prever um meio de dissipar a energia retirada da MCC. Em geral, isto é feito sobre uma resistência, caracterizando a chamada frenagem dinâmica.

Figura 4.12. Ciclo de trabalho crítico para conversor Classe B.

Figura 4.13. Característica de transferência estática de conversor Classe B ($\tau_a/T=1$).

4.2.3 Conversor Classe C

Neste caso pode-se operar tanto em tração quanto em frenagem, mas sem alterar o sentido de rotação da máquina. O circuito mostrado na figura 4.14 realiza tal função.

O conjunto T3/D3/Rd, é usado caso se deseje fazer frenagem dinâmica.

O acionamento do I quadrante é feito aplicando-se o sinal de comando em T1, ficando T2 e T3 desligados. O intervalo de circulação se dá via D2 e D3.

A frenagem (IV quadrante) regenerativa é feita mantendo-se T1 desligado e aplicando o sinal de comando a T2, enquanto T3 é mantido constantemente ligado. O intervalo de circulação ocorre via D1 e T3.

A presença de T3 possibilita a realização de frenagem dinâmica, ou seja, dissipativa. Neste caso, T1 é mantido desligado (D1 não existe) e T2 ligado. O sinal de comando é aplicado a T3. Quando T3 desliga a corrente continua a circular pelo resistor Rd, dissipando aí a energia retirada da máquina.

Figura 4.14 Conversor Classe C, com frenagem dinâmica.

Exceto para a operação com frenagem dinâmica, as características estáticas deste conversor são uma união das características descritas para os conversores classe A e B.

4.2.4 Conversor Classe D

Neste tipo de conversor não ocorre frenagem (ou seja, a corrente de armadura circula sempre no mesmo sentido), mas a polaridade da tensão terminal pode ser alternada. A figura 4.15 mostra tal topologia. Uma aplicação típica é no acionamento de motores de passo, de relutância,

ou "brushless" quando se deseja apressar a extinção da corrente após o período de alimentação de uma dada fase do motor.

Figura 4.15 Conversor Classe D.

Tipicamente os transistores são acionados simultaneamente, aplicando uma tensão terminal positiva à MCC. Quando são desligados, a continuidade da corrente se dá pela condução dos diodos, fazendo com que a tensão terminal se inverta. Note que, como não ocorre inversão no sentido da corrente, não está havendo frenagem da máquina. O retorno de energia para a fonte se dá pela absorção da energia acumulada na indutância de armadura e não pela diminuição da energia presente na massa girante acoplada ao eixo da máquina.

A figura 4.16 mostra as formas de onda típicas para operação nos modos de condução contínua e descontínua. Observe que a tensão terminal varia entre +E e -E.

Condução contínua

Condução descontínua

Figura 4.16. Formas de onda do conversor Classe D.

A operação em um ou outro modo de funcionamento depende de diversos parâmetros do sistema. Desprezando as quedas de tensão no transistor e no diodo, o valor médio da tensão terminal, em condução contínua é:

$$V_{t} = E \cdot (2 \cdot \delta - 1) \tag{4.37}$$

Note que para um ciclo de trabalho inferior a 50% ter-se-ia uma tensão terminal negativa. Uma situação deste tipo poderia ocorrer em dois casos: transitoriamente, quando a largura de

pulso é reduzida rapidamente, enquanto a corrente de armadura se mantém contínua, levando os diodos a conduzirem por alguns ciclos completos; a outra hipótese é a de uma tensão de armadura com polaridade oposta à indicada, o que poderia ocorrer, nesta topologia, caso houvesse um torque externo levando a este movimento, ou uma inversão na corrente de campo, uma vez que o conversor não permite um torque que conduza a MCC ao outro sentido de rotação.

No intervalo em que a corrente de armadura cresce (entre 0 e t_1) a corrente é dada por:

$$i_{a}(t) = Io \cdot e^{-t/\tau_{a}} + \frac{\left(E - E_{g}\right)}{R_{a}} \cdot \left[1 - e^{\left(-t/\tau_{a}\right)}\right]$$

$$(4.38)$$

No intervalo de decaimento da corrente, ou seja, entre t_1 e t_2 , tem-se:

$$i_{a}(t) = I_{1} \cdot e^{\left(-(t-t_{1})/\tau_{a}\right)} - \frac{(E+E_{g})}{R_{a}} \cdot \left[1 - e^{\left(-(t-t_{1})/\tau_{a}\right)}\right]$$
 (4.39)

Aproximações (1ª ordem) das equações anteriores são dadas, respectivamente, por:

$$i_{a}(t) = Io \cdot \left(1 - \frac{t}{\tau_{a}}\right) + \frac{\left(E - E_{g}\right)}{R_{a}} \cdot \frac{t}{\tau_{a}}$$
(4.40)

$$i_a(t) = I_1 \cdot \left(1 - \frac{(t - t_1)}{\tau_a}\right) - \frac{(E + E_g)}{R_a} \cdot \frac{t - t_1}{\tau_a}$$
 (4.41)

No modo de condução descontínua a corrente Io é nula e t2<T. A tensão terminal média é:

$$V_{t} = E \cdot \left(2 \cdot \delta - \frac{t_{2}}{T}\right) + E_{g} \cdot \frac{t_{x}}{T}$$
(4.42)

A duração do intervalo t_x depende de vários parâmetros, sendo dada por:

$$t_{x} = T - t_{2} = T \cdot (1 - \delta) - \frac{(E - Eg) \cdot \delta \cdot T \cdot \tau_{a}}{(E - Eg) \cdot \delta \cdot T + (E + Eg) \cdot \tau_{a}}$$

$$(4.43)$$

Sendo τ_a>>T, a equação anterior se simplifica para:

$$\frac{t_x}{T} \cong 1 - \delta \cdot \left(1 + \frac{E - Eg}{E + Eg}\right) \tag{4.44}$$

O ciclo de trabalho que determina a passagem do modo de condução contínua para a descontínua é dado pela raiz positiva da equação:

$$\delta^{2} + \delta \cdot \left[\frac{2 \cdot E \cdot \tau_{a}}{(E - E_{g}) \cdot T} - 1 \right] - \frac{(E + E_{g}) \cdot \tau_{a}}{(E - E_{g}) \cdot T} = 0$$
(4.41)

Sendo $\tau_a >> T$, a equação anterior se simplifica para:

$$\delta \cong \frac{E + E_g}{2 \cdot E} \tag{4.42}$$

A figura 4.17 mostra o valor do ciclo de trabalho crítico para diferentes relações entre a constante de tempo elétrica e o período de chaveamento.

Figura 4.17. Ciclo de trabalho crítico para conversor Classe D.

Na figura 4.18 tem-se as curvas características estáticas do conversor para diferentes tensões de armadura, supondo a queda resistiva desprezível, ou seja, o valor da tensão terminal é igual à tensão Eg. Indicam-se apenas valores para tensão terminal positiva pois esta é a única possibilidade de operação em regime proporcionada pelo conversor sob análise.

Figura 4.18. Característica estática do conversor classe D para $\tau_a >> T$.

4.2.5 Conversor Classe E

Neste tipo de conversor é possível a operação nos quatro quadrantes do plano torque x velocidade, ou seja, tração e frenagem avante e à ré. A figura 4.19 mostra tal topologia.

Figura 4.19 Conversor Classe E.

Diferentes possibilidades de comando dos transistores existem:

4.2.5.1 Comando simultâneo

O par de transistores T1/T4 ou o par T2/T3 é acionado simultaneamente. Quando um par é desligado, a continuidade da corrente se dá pela condução dos diodos em antiparalelo com o outro par, fazendo com que a tensão terminal da MCC se inverta. Note que se não ocorre inversão no sentido da corrente não está havendo frenagem da máquina. O retorno de energia para a fonte se dá pela absorção da energia acumulada na indutância de armadura e não pela diminuição da energia presente na massa girante acoplada ao eixo da máquina. As formas de onda são as mesmas mostradas na figura 4.16.

O acionamento no I e II quadrantes (torque positivo) é feito aplicando-se o sinal de comando a T1 e T4, ficando T2 e T3 desligados. O acionamento no III e IV quadrantes (torque negativo) é feito comandando-se T2 e T3.

As equações e curvas válidas para este conversor são as mesmas, para tração, mostradas para o conversor Classe D, ou seja, desprezando as quedas de tensão nos transistores e nos diodos, o valor médio da tensão terminal, em condução contínua é:

$$V_t = E \cdot (2 \cdot \delta - 1) \tag{4.43}$$

Quando o sistema entra no modo de condução descontínua a corrente média tende a um valor muito baixo e praticamente não há torque, de modo que a velocidade (e consequentemente Eg) permanece praticamente constante.

Note que para um ciclo de trabalho inferior a 50% tem-se uma tensão terminal negativa. Uma situação deste tipo poderia ocorrer transitoriamente, quando a largura de pulso fosse reduzida rapidamente, enquanto a corrente de armadura se mantém contínua, levando os diodos a conduzirem por um intervalo de tempo maior do que o fazem os transistores. Neste caso, como não há inversão no sentido da corrente de armadura e supondo Eg>0, o processo continua sendo de tração e a energia entregue à fonte é aquela acumulada na indutância de armadura.

Uma outra hipótese é a de uma tensão de armadura com polaridade oposta à indicada, ou seja, com a MCC girando no outro sentido de rotação (à ré). Neste caso, mantida a polaridade da corrente média de armadura, tem-se efetivamente um processo de frenagem.

Figura 4.20. Característica estática (em tração, I quadrante e frenagem, II quadrante) do conversor classe E para τ_a>>T.

O acionamento de T2 e T3, deixando T1 e T4 desligados, permite a operação nos quadrantes III e IV. Sempre considerando a polaridade indicada na figura 4.19, isto significa uma corrente de armadura negativa. Para a polaridade da tensão de armadura indicada na figura, ou seja, Eg>0, durante a condução destes transistores a tensão terminal instantânea será negativa e a tensão da fonte se somará a Eg. Durante a condução dos diodos a tensão sobre a indutância (desprezando a queda em R_a) será a diferença destas tensões. A figura 4.21 mostra as formas de onda.

Desprezando as quedas de tensão no transistor e no diodo, o valor médio da tensão terminal, em condução contínua é:

$$V_t = E \cdot (1 - 2 \cdot \delta) \tag{4.44}$$

Ter-se-á frenagem regenerativa, com um fluxo de potência da MCC para a fonte, quando o intervalo de condução dos diodos for superior ao dos transistores. Isto ocorrerá para um ciclo de trabalho inferior a 50%. Sempre supondo Eg>0, para δ>0,5, a energia retirada da fonte é maior do que a devolvida, ou seja, o que se tem é uma frenagem dinâmica com a energia sendo dissipada sobre a resistência de armadura!

No intervalo em que a corrente de armadura cresce em módulo (entre 0 e t_1) a corrente é expressa por:

$$i_{a}(t) = Io \cdot e^{-t/\tau_{a}} + \frac{\left(E + E_{g}\right)}{R_{a}} \cdot \left[1 - e^{\left(-t/\tau_{a}\right)}\right]$$

$$(4.45)$$

No intervalo de decaimento da corrente, ou seja, entre t_1 e t_2 , tem-se:

$$i_{a}(t) = I_{1} \cdot e^{\begin{pmatrix} -(t-t_{1})/\tau_{a} \end{pmatrix}} - \frac{(E-E_{g})}{R_{a}} \cdot \left[1 - e^{\begin{pmatrix} -(t-t_{1})/\tau_{a} \end{pmatrix}} \right]$$
 (4.46)

Aproximações (1ª ordem) das equações anteriores são dadas, respectivamente, por:

$$i_{a}(t) = Io \cdot \left(1 - \frac{t}{\tau_{a}}\right) + \frac{\left(E + E_{g}\right)}{R_{a}} \cdot \frac{t}{\tau_{a}}$$

$$(4.47)$$

$$i_a(t) = I_1 \cdot \left(1 - \frac{(t - t_1)}{\tau_a}\right) - \frac{(E - E_g)}{R_a} \cdot \frac{t - t_1}{\tau_a}$$
 (4.48)

Condução contínua Condução descontínua

Figura 4.21. Formas de onda do conversor Classe E, para frenagem.

No modo de condução descontínua a corrente Io é nula e t₂<T. A tensão terminal média é:

$$V_{t} = E \cdot \left(\frac{t_{2}}{T} - 2 \cdot \delta\right) + E_{g} \cdot \frac{t_{x}}{T}$$
(4.49)

A duração do intervalo t_x depende de vários parâmetros, sendo dada por:

$$t_{x} = T - t_{2} = T \cdot (1 - \delta) - \frac{(E + Eg) \cdot \delta \cdot T \cdot \tau_{a}}{(E + Eg) \cdot \delta \cdot T + (E - Eg) \cdot \tau_{a}}$$

$$(4.50)$$

Sendo τ_a>>T, a equação anterior se simplifica para:

$$\frac{t_x}{T} \cong 1 - \delta \cdot \left(1 + \frac{E + Eg}{E - Eg} \right) \tag{4.51}$$

O ciclo de trabalho que determina a passagem do modo de condução contínua para a descontínua é dado pela raiz positiva da equação:

$$\delta^2 + \delta \cdot \left[\frac{2 \cdot E \cdot \tau_a}{(E + E_g) \cdot T} - 1 \right] - \frac{(E - E_g) \cdot \tau_a}{(E + E_g) \cdot T} = 0$$

$$(4.52)$$

Sendo $\tau_a >> T$, a equação anterior se simplifica para:

$$\delta \cong \frac{E - E_g}{2 \cdot E} \tag{4.53}$$

A figura 4.22 mostra o valor do ciclo de trabalho crítico para diferentes relações entre a constante de tempo elétrica e o período de chaveamento.

Na figura 4.23 tem-se as curvas características estáticas do conversor para diferentes tensões de armadura, supondo a queda resistiva desprezível, ou seja, o valor da tensão terminal igual à tensão Eg.

Se a tensão Eg for negativa, isto significa que a MCC está girando no sentido oposto. Neste caso o comando de T2/T3 implica numa operação de tração à ré. Para δ <0,5, não havendo inversão no sentido da corrente, continua-se num procedimento de tração, mas com uma tensão terminal positiva, o que significa que está sendo retirada energia acumulada na indutância de armadura e entregando-a à fonte. Este procedimento só é possível transitoriamente.

Figura 4.22. Ciclo de trabalho crítico para conversor Classe E, operando em frenagem.

Figura 4.23. Característica estática do conversor classe E para τ_a>>T. Acionamento de T2/T3.

4.2.5.2 Comandos separados

Uma outra forma de comandar os transistores, e que determina diferentes formas de onda para a tensão terminal é descrita a seguir:

- Para tensão terminal positiva mantém-se T1 (ou T4) sempre ligado, fazendo-se a modulação sobre T4 (ou T1). O período de circulação ocorrerá não através da fonte, mas numa malha interna, formada, por exemplo, por T1 e D2, fazendo com que a tensão terminal se anule. Tem-se para o conversor um comportamento igual ao Classe A, valendo, inclusive, as mesmas equações.
- Para tensão terminal negativa mantém-se T2 (ou T3) sempre ligado, fazendo-se a modulação sobre T3 (ou T2). O período de circulação ocorrerá não através da fonte, mas numa malha interna, formada, por exemplo, por T2 e D1.

Este acionamento não permite frenagem regenerativa, uma vez que a corrente que circula pelos diodos não retorna para a fonte. A vantagem é que, em tração, como o ciclo de trabalho crítico é menor do que no caso anterior, a corrente tende ao modo contínuo.

4.2.5.3 Deslocamento de fase

Neste tipo de acionamento os comandos para os pares T1/T4 e T2/T3 são complementares, ou seja, quando se desliga um par se liga o outro. Isto garante a não existência de descontinuidade na corrente pois, quando ela tende a se anular (circulando pelos diodos), os transistores acionados em antiparalelo permitirão sua reversão. O inconveniente é que, mesmo com a MCC parada (tensão média nula) os transistores estão sendo acionados com ciclo de trabalho de 50%.

Para se ter uma tensão média positiva o intervalo de condução de T1/T4 deve ser maior do que o de T2/T3, e vice-versa, como indicado na figura 4.24.

As frenagens ocorrem naturalmente quando, para uma dada polaridade da tensão de armadura se faz o acionamento (com largura de pulso maior que 50%) do par de transistores que produz uma tensão terminal com polaridade oposta.

Figura 4.24 Formas de onda de Conversor Classe E, com acionamento por deslocamento de fase.

4.3 Princípios de motores com ímãs permanentes

Um problema dos motores CC convencionais são as escovas, devido ao desgaste e centelhamento produzido. Uma alternativa é introduzir no rotor um ímã permanente que faz as vezes da armadura. Obviamente não se tem mais a possibilidade de controle através da variação do respectivo campo magnético.

Abrem-se, no entanto, outras possibilidades de acionamento, com o aumento do número de pólos. O funcionamento do motor, no entanto, depende de um conversor eletrônico que faça a adequada alimentação dos enrolamentos do estator.

A figura 4.25 ilustra um motor com 2 pólos e as respectivas bobinas do estator.

Figura 4.25 Estrutura básica de motor de ímas parmanentes de dois pólos e respectivas bobinas. (extraído de http://www.basilnetworks.com/article/motors/analysis3.html em 8/2/2006).

Com a energização sequêncial de cada bobina cria-se um campo resultante que impõe um deslocamento no rotor, buscando o devido alinhamento, o que leva à rotação do eixo.

Motores assim simples são normalmente utilizados em brinquedos e sistemas de baixo custo, como ventiladores para computadores. No entanto o motor de 2 pólos, embora possa operar em elevadas velocidades, apresenta elevada ondulação de torque.

Com o aumento do número de pólos é possível obter um comportamento mais plano do torque embora, normalmente, isso implique numa redução da velocidade. A figura 4.26 mostra um motor com 4 pólos.

A redução da velocidade decorre da dificuldade de se conseguir desmagnetizar a bobina antecessora ao mesmo tempo em que se alimenta a bobina seguinte. Observe que o campo ainda produzido pela bobina anterior produz um torque que se opõe à rotação desejada.

A minimização deste efeito exige que o conversor que alimenta o motor seja capaz de levar a zero da meneira mais rápida possível a corrente da bobina que está sendo desligada, o que justifica o uso de topologias classe D.

Figura 4.26 Motor com ímã permanente com 4 pólos.

Para motores com três fases, que são os de menor custo e exigem menor quantidade de dispositivos eletrônicos, a redução da ondulação de torque pode ser obtida com um acionamento que module a corrente das fases e que permita correntes negativas, o que se consegue com o conversor classe E, ou, para uma quantidade menor de componentes, um conversor trifásico como mostra a figura 4.27.

Figura 4.27 Inversor trifásico para acionamento de motor de 2 pólos (3 enrolamentos de estator). Figura obtida em 8/2/2006 em http://mag-net.ee.umist.ac.uk/reports/P11/p11.html

O acionamento de cada bobina necessita de informações sobre a posição do rotor. Existem diversas técnicas de sensoriamento, assim como estratégias "sensorless". A figura 4.28 ilustra uma aplicação típica que usa sensor de posição e realimentação de corrente.

Figura 4.28 Acionamento de motor "brushless". Figura obtida em 8/2/2006 em http://www.mathworks.com/access/helpdesk/help/toolbox/physmod/powersys/electr33.html

4.4 Motor de relutância comutada

O motor de relutância comutada (ou variável) - utiliza o princípio da atração magnética para produzir torque. Não existem enrolamentos nem ímãs permanentes no rotor, o qual é constituído de chapas de aço com formato adequado para formarem pólos magnéticos, como mostra a figura 4.29. O número de pólos do estator deve ser diferente do rotor, de modo a sempre haver pólos desalinhados.

Quando um dado enrolamento do estator é energizado (no caso da figura, o enrolamento B), o pólo do rotor mais próximo será atraído de forma a minimizar o caminho magnético do fluxo, ou seja, minimizar a relutância. No caso da figura, haverá um movimento do rotor no sentido anti-horário.

A rotação é obtida pela energização seqüencial dos enrolamentos do estator. O torque desenvolvido é função da corrente do estator e das características ferromagnéticas do material. Normalmente é necessário um sensor de posição para identificar qual e quando um enrolamento deve ser energizado, como ilustra a figura 4.30. No entanto existem técnicas mais modernas que podem prescindir do sensor.

Por seu baixo custo, robustez e tolerância a falhas, tais motores tem tido crescente aplicação em aparelhos eletrodomésticos, como refrigeradores, ar-condicionado, máquinas de lavar, etc.

Algumas propriedades deste motor são:

- Robustez, devido à ausência de enrolamentos e contatos com o rotor.
- Para uma mesma aplicação, a inércia é menor do que em motores CC convencionais ou de indução, o que traz benefícios para os mancais, especialmente em aplicações com grande quantidade de partidas e paradas.
- Para uma mesma potência, o tamanho é menor do que motores CC convencionais.

 Tolerante à falha no circuito eletrônico de acionamento, pois é possível manter a rotação mesmo na ausência de alimentação de uma ou mais fases (dependendo do projeto do motor).

- Disponibilidade de torque mesmo com o motor parado.
- Velocidade máxima limitada apenas pelos mancais.
- Elevada eficiência em ampla faixa de torque e velocidade.
- Operação em 4 quadrantes.

Figura 4.29 Princípio construtivo e de operação de motor de relutância comutada. Imagem obtida em 14/2/2006 em http://emsyl.ece.ua.edu/vasquez/websim.html

Figura 4.30 Circuito completo de acionamento e controle de motor de relutância produzido pela NEC. Imagem obtida em 14/2/2006 em:

http://www.eu.necel.com/applications/industrial/motor_control/030_general_motor_control/060_switched_reluctance/

4.5 Referências Bibliográficas

Dewan, S. B.; Slemon, G. R. e Straughen, A.: "Power Semiconductor Drives", John Wiley & Sons, New York, USA, 1984.

N. Mohan, T. M. Undeland e W. P. Robbins: "Power Electronics, Converters, Applications ans Design", 2nd Edition, John Willey & Sons, USA, 1994

Barton, T. H.: "The Transfer Characteristics of a Chopper Drive". IEEE Trans. On Industry Applications, vol. IA-16, no. 4, Jul/Aug 1980, pp. 489-495

Schonek, J.: "Pulsador Reversível para a Alimentação de uma Máquina de Corrente Contínua nos Quatro Quadrantes do Plano Torque velocidade". Anais do II Congresso Brasileiro de Automática, Florianópolis, SC, 1978.

Pomilio, J. A.: "Frenagem Regenerativa de Máquina CC Acionada por Recortador: Maximização da Energia Regenerada". Dissertação de Mestrado, FEC - UNICAMP, 1986.