

CSE 473 Pattern Recognition

- Recall context free classification
 - No relation exist among classes
 - No relation exists among objects (feature vectors)
 - A new object is classified to any class independent of the previous objects' classes

- In Context dependent classification, the class of a feature vector depends on
 - Its own value
 - Value of other feature vectors
 - Classes assigned to other vectors

- Application
 - Communication
 - Image Processing
 - Signal Processing

Solution for Context Dependent Classification

 Recall Bayesian formulation for context free classification

- Assign x to
$$\omega_i$$
 if $P(\omega_i | \underline{x}) > P(\omega_j | \underline{x}), \ \forall j \neq i$

 In context dependent classification, we cannot apply it directly because of interdependency of features and classes

Solution for Context Dependent Classification

 This interrelation demands the classification to be performed simultaneously for all available feature vectors

• we assume that the training vectors $\underline{x}_1, \underline{x}_2, ..., \underline{x}_N$ occur in sequence, one after the other and we will refer to them as **observations**

Context Dependent Bayesian Classifier

- Let $X : \{\underline{x}_1, \underline{x}_2, ..., \underline{x}_N\}$ be sequence of observations
- Let ω_i , i = 1, 2, ..., M be the available M classes
- Let Ω_i be a possible sequence of assigned classes, that is

$$\Omega_i:\omega_{i1}\;\omega_{i2}\;...\;\omega_{iN}$$
 where,
$$i_k\in\{1,2,\ldots,M\}\;\mathrm{for}\;k=1,2,\ldots,N$$

• There are M^N of Ω_i

Context Dependent Bayesian Classifier

• Now, given $X : \{\underline{x}_1, \underline{x}_2, ..., \underline{x}_N\}$ and $\Omega_i : \omega_{i1} \omega_{i2} ... \omega_{iN}$

Classify X to using the Bayesian rule

$$X \to \Omega_i: P(\Omega_i | X) > P(\Omega_j | X) \quad \forall i \neq j, \quad i, j = 1, 2, ..., M^N$$

This is equivalent to classifying

 x_1 to class ω_{i_1} , x_2 to ω_{i_2} , and so on

Context Dependent Bayesian Classifier

The rule

$$P(\Omega_i | X) > P(\Omega_j | X) \ \forall i \neq j$$

can be simplified as

$$P(\Omega_t)p(X|\Omega_t) > P(\Omega_f)p(X|\Omega_f), \quad \forall i \neq j$$

$$P(\Omega_t)p(X|\Omega_t) > P(\Omega_t)p(X|\Omega_t), \quad \forall i \neq j$$

Markov Chain Models (for class dependence)

$$P(\omega_{i_{k}} | \omega_{i_{k-1}}, \omega_{i_{k-2}}, ..., \omega_{i_{1}}) = P(\omega_{i_{k}} | \omega_{i_{k-1}})$$

which means class dependence is limited to only within two successive classes

Markov Chain Models (for class dependence)

$$P(\omega_{i_k} | \omega_{i_{k-1}}, \omega_{i_{k-2}}, ..., \omega_{i_1}) = P(\omega_{i_k} | \omega_{i_{k-1}})$$

in other words,

observations $x_{k-1}, x_{k-2}, \ldots, x_1$ belong to classes $\omega_{i_{k-1}}, \omega_{i_{k-2}}, \ldots, \omega_{i_1}$

then observation x_k , at stage k, belonging to class ω_{i_k} depends on the class from which observation x_{k-1} , at stage k-1 has occurred

Markov Chain Models (for class dependence)

$$P(\omega_{i_k} | \omega_{i_{k-1}}, \omega_{i_{k-2}}, ..., \omega_{i_1}) = P(\omega_{i_k} | \omega_{i_{k-1}})$$

Therefore, we can write

$$P(\Omega_t) \equiv P(\omega_{t_1}, \omega_{t_2}, \dots, \omega_{t_N})$$

$$= P(\omega_{t_N}|\omega_{t_{N-1}},\ldots,\omega_{t_1})P(\omega_{t_{N-1}}|\omega_{t_{N-2}},\ldots,\omega_{t_1})\ldots P(\omega_{t_1})$$

Markov Chain Models (for class dependence)

$$P(\omega_{i_k} | \omega_{i_{k-1}}, \omega_{i_{k-2}}, ..., \omega_{i_1}) = P(\omega_{i_k} | \omega_{i_{k-1}})$$

Therefore, we can write

$$P(\Omega_t) \equiv P(\omega_{t_1}, \omega_{t_2}, \dots, \omega_{t_N})$$

= $P(\omega_{t_N} | \omega_{t_{N-1}}, \dots, \omega_{t_1}) P(\omega_{t_{N-1}} | \omega_{t_{N-2}}, \dots, \omega_{t_1}) \dots P(\omega_{t_1})$

We find,

$$P(\Omega_t) = P(\omega_{t_1}) \prod_{k=2}^{N} P(\omega_{t_k} | \omega_{t_{k-1}})$$

- Further assumption
 - $-\underline{x}_i$ statistically mutually independent

$$p(X|\Omega_i) = p(\underline{x}_1, \underline{x}_2, \underline{x}_3 \cdots, \underline{x}_N | \Omega_i)$$

$$= p(\underline{x}_1 | \Omega_i) p(\underline{x}_2 | \Omega_i) p(\underline{x}_3 | \Omega_i) \cdots p(\underline{x}_N | \Omega_i)$$

$$= \prod_{k=1}^N p(\underline{x}_k | \Omega_i)$$

- Further assumption
 - $-\underline{x}_i$ statistically mutually independent

$$\begin{aligned} p(X | \Omega_i) &= p(\underline{x}_1, \underline{x}_2, \underline{x}_3 \cdots, \underline{x}_N | \Omega_i) \\ &= p(\underline{x}_1 | \Omega_i) p(\underline{x}_2 | \Omega_i) p(\underline{x}_3 | \Omega_i) \cdots p(\underline{x}_N | \Omega_i) \\ &= \prod_{k=1}^N p(\underline{x}_k | \Omega_i) \end{aligned}$$

 If the pdf in one class is independent of the others, then

$$p(\vec{x}_k \mid \Omega_i) = p(\vec{x}_k \mid \omega_{i1} \mid \omega_{i2} \dots \omega_{iN}) = p(\vec{x}_k \mid \omega_{ik})$$

- Further assumption
 - $-\underline{x}_i$ statistically mutually independent

$$\begin{aligned} p(X \middle| \Omega_i) &= p(\underline{x}_1, \underline{x}_2, \underline{x}_3 \cdots, \underline{x}_N \middle| \Omega_i) \\ &= p(\underline{x}_1 \middle| \Omega_i) p(\underline{x}_2 \middle| \Omega_i) p(\underline{x}_3 \middle| \Omega_i) \cdots p(\underline{x}_N \middle| \Omega_i) \\ &= \prod_{k=1}^N p(\underline{x}_k \middle| \Omega_i) \end{aligned}$$

The pdf in one class independent of the others, then

$$p(\vec{x}_k \mid \Omega_i) = p(\vec{x}_k \mid \omega_{i1} \mid \omega_{i2} \dots \mid \omega_{iN}) = p(\vec{x}_k \mid \omega_{ik})$$
 Finally,
$$p(X \mid \Omega_i) = \prod_{k=1}^N p(\underline{x}_k \mid \omega_{i_k})$$

 From the above, the Bayes rule is readily seen to be equivalent to:

$$P(\Omega_{i}|X) \quad (><) \quad P(\Omega_{j}|X)$$

$$P(\Omega_{i})p(X|\Omega_{i}) \quad (><) \quad P(\Omega_{j})p(X|\Omega_{j})$$

 From the above, the Bayes rule is readily seen to be equivalent to:

$$P(\Omega_{i}|X) \quad (><) \quad P(\Omega_{j}|X)$$

$$P(\Omega_{i})p(X|\Omega_{i}) \quad (><) \quad P(\Omega_{j})p(X|\Omega_{j})$$

that is, it turns to:

$$p(X|\Omega_{i})P(\Omega_{i}) = P(\omega_{i_{1}})p(\underline{x}_{1}|\omega_{i_{1}}).$$

$$\prod_{k=2}^{N} P(\omega_{i_{k}}|\omega_{i_{k-1}})p(\underline{x}_{k}|\omega_{i_{k}})$$

 From the above, the Bayes rule is readily seen to be equivalent to:

$$P(\Omega_{i}|X) \quad (><) \quad P(\Omega_{j}|X)$$

$$P(\Omega_{i})p(X|\Omega_{i}) \quad (><) \quad P(\Omega_{j})p(X|\Omega_{j})$$

that is, it rests on

$$p(X|\Omega_i)P(\Omega_i) = P(\omega_{i_1})p(\underline{x}_1|\omega_{i_1}).$$

$$\prod_{k=2}^N P(\omega_{i_k}|\omega_{i_{k-1}})p(\underline{x}_k|\omega_{i_k})$$

• To find the above maximum in brute-force task we need $O(NM^N)$ operations!!

given a observation sequence

$$X = [\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \cdots, \mathbf{x}_N]$$

Let two class sequences

$$\Omega_i = \left[\omega_3, \omega_1, \omega_M, \cdots, \omega_1, \omega_9\right]$$

and
$$\Omega_{i} = [\omega_{3}, \omega_{1}, \omega_{M}, \cdots, \omega_{1}, \omega_{8}]$$

given a observation sequence

$$X = [\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \cdots, \mathbf{x}_N]$$

Let two class sequences

$$\Omega_{i} = \left[\omega_{3}, \omega_{1}, \omega_{M}, \cdots, \omega_{1}, \omega_{9}\right]$$
and
$$\Omega_{j} = \left[\omega_{3}, \omega_{1}, \omega_{M}, \cdots, \omega_{1}, \omega_{8}\right]$$

$$\begin{bmatrix} \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \cdots, \mathbf{x}_{N} \end{bmatrix}$$

Let two class sequences

$$\Omega_{i} = \left[\omega_{3}, \omega_{1}, \omega_{M}, \cdots, \omega_{1}, \omega_{9}\right]$$
and
$$\Omega_{j} = \left[\omega_{3}, \omega_{1}, \omega_{M}, \cdots, \omega_{1}, \omega_{8}\right]$$

$$\begin{bmatrix} \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \cdots, \mathbf{x}_{N} \end{bmatrix}$$

$$p(X|\Omega_i)P(\Omega_i)$$
 and $p(X|\Omega_j)P(\Omega_j)$ differ only in the last term

N dot columns

M possible classes

Successive columns k=1 correspond to successive x_k observations x_k , k=1, 2, ..., N

• Each of the class sequences Ω_i corresponds to a specific path of successive transitions

- Each transition from class ω_i to ω_j has a fixed probability $P(\omega_i \mid \omega_i)$
- Also, assume $p(x | \omega_i)$ is known

 Now the problem can be stated as,

Given a sequence of observations x_1, x_2, \ldots, x_N , find the path of successive (class) transitions that maximizes

$$p(X|\Omega_i)P(\Omega_i) = P(\omega_{i_1})p(\underline{x}_1|\omega_{i_1}) \cdot \prod_{k=2}^N P(\omega_{i_k}|\omega_{i_{k-1}})p(\underline{x}_k|\omega_{i_k})$$

Now the problem can be stated as,

Given a sequence of observations x_1, x_2, \ldots, x_N , find the path of successive (class) transitions that maximizes

$$p(X|\Omega_i)P(\Omega_i) = P(\omega_{i_1})p(\underline{x}_1|\omega_{i_1}) \cdot \prod_{k=2}^N P(\omega_{i_k}|\omega_{i_{k-1}})p(\underline{x}_k|\omega_{i_k})$$

That is, find an optimal path (e. g., the black line)

• The classes along this optimal path are the classes of the respective observations.

Looking at

$$p(X|\Omega_i)P(\Omega_i) = P(\omega_{i_1})p(\underline{x}_1|\omega_{i_1}) \cdot \prod_{k=2}^N P(\omega_{i_k}|\omega_{i_{k-1}})p(\underline{x}_k|\omega_{i_k})$$

The cost of a transition is

$$\hat{d}(\omega_{i_k}, \omega_{i_{k-1}}) = P(\omega_{i_k} | \omega_{i_{k-1}}) \cdot p(\underline{x}_k | \omega_{i_k})$$

And the cost at initial transition is

$$\hat{d}(\omega_{i_1}, \omega_{i_0}) \equiv P(\omega_{i_1}) p(\underline{x}_i | \omega_{i_1})$$

Using the notations

$$\hat{d}(\omega_{i_k}, \omega_{i_{k-1}}) = P(\omega_{i_k} | \omega_{i_{k-1}}) \cdot p(\underline{x}_k | \omega_{i_k}) \quad \text{and} \quad \hat{d}(\omega_{i_1}, \omega_{i_0}) \equiv P(\omega_{i_1}) p(\underline{x}_i | \omega_{i_1})$$

The equation

$$p(X|\Omega_i)P(\Omega_i) = P(\omega_{i_1})p(\underline{x}_1|\omega_{i_1}) \cdot \prod_{k=2}^N P(\omega_{i_k}|\omega_{i_{k-1}})p(\underline{x}_k|\omega_{i_k})$$

can be written as

$$\hat{D} = \prod_{k=1}^{N} \hat{d}(\omega_{i_k}, \omega_{i_{k-1}}) = p(X | \Omega_i) P(\Omega_i)$$

The equation

$$\hat{D} = \prod_{k=1}^{N} \hat{d}(\omega_{i_k}, \omega_{i_{k-1}}) = p(X|\Omega_i)P(\Omega_i)$$

can be written as

$$\ln(\hat{D}) = \sum_{k=1}^{N} \ln \hat{d}(\omega_{t_k}, \omega_{t_{k-1}}) \quad \equiv \sum_{k=1}^{N} d(\omega_{t_k}, \omega_{t_{k-1}}) \equiv D$$

The equation

$$\hat{D} = \prod_{k=1}^{N} \hat{d}(\omega_{i_k}, \omega_{i_{k-1}}) = p(X|\Omega_i)P(\Omega_i)$$

can be written as

$$\ln(\hat{D}) = \sum_{k=1}^{N} \ln \hat{d}(\omega_{t_k}, \omega_{t_{k-1}}) \quad \equiv \sum_{k=1}^{N} d(\omega_{t_k}, \omega_{t_{k-1}}) \equiv D$$

We can use Bellman's optimality principle!!!

- To use Bellman's theorem
 - Define the cost up to node k as

$$D(\omega_{t_k}) = \sum_{r=1}^k d(\omega_{t_r}, \omega_{t_{r-1}})$$

- To use Bellman's theorem
 - Define the cost up to node k as

$$D(\omega_{t_k}) = \sum_{r=1}^k d(\omega_{t_r}, \omega_{t_{r-1}})$$

Bellman's principle now states

$$\begin{split} D_{\max}\left(\omega_{i_k}\right) &= \max_{i_{k-1}} \left[D_{\max}\left(\omega_{i_{k-1}}\right) + d\left(\omega_{i_k}, \omega_{i_{k-1}}\right)\right] \\ i_k, i_{k-1} &= 1, 2, ..., M \\ \text{with} \qquad \qquad D_{\max}\left(\omega_{i_0}\right) &= 0 \end{split}$$

Bellman's principle now states

$$\begin{split} D_{\max}\left(\omega_{i_k}\right) &= \max_{i_{k-1}} \left[D_{\max}\left(\omega_{i_{k-1}}\right) + d\left(\omega_{i_k}, \omega_{i_{k-1}}\right)\right] \\ i_k, i_{k-1} &= 1, 2, ..., M \\ \text{with} \\ D_{\max}\left(\omega_{i_0}\right) &= 0 \end{split}$$

• Finally, the optimal path terminates at $\, \omega_{iN}^{^{st}} : \,$

$$\omega_{i_N}^* = \arg\max_{\omega_{i_N}} D_{\max}(\omega_{i_N})$$

Viterbi Algorithm: Calculate $p(X|\Omega_i)p(\Omega_i)$

- Total M nodes in each of N columns
- Each node has M transitions
- Thus, complexity is $O(NM^2)$

- The problem
 - Information bits I_k are transmitted
 - We receive x_k

$$I_k \to \text{Channel} \to x_k$$

$$x_k = f(I_k, I_{k-1}, ..., I_{k-n+1}) + n_k$$

where, f is the action of channel n_k is the noise

$$I_k \to \text{Channel} \to x_k$$

We want the bits back

$$\underline{x}_k \to \text{equalizer} \to \hat{I}_k$$

where,

$$\underline{x}_{k} \equiv [x_{k}, x_{k-1}, ..., x_{k-l+1}]^{T}$$

$$I_k \to \text{Channel} \to x_k$$

We want the bits back

$$\underline{x}_k \to \text{equalizer} \to \hat{I}_{k-r}$$

OR
$$\underline{x}_k \to \hat{I}_k$$
 or \hat{I}_{k-r} if we allow delay r

$$I_k \to \text{Channel} \to x_k$$

We want the bits back

$$\underline{x}_k \to \text{equalizer} \to \hat{I}_{k-r}$$

OR
$$\underline{x}_k \to \hat{I}_k$$
 or \hat{I}_{k-r} if we allow delay r

This means we use the vector \underline{x}_k to get a single bit \hat{I}_k or \hat{I}_{k-r}

Example

•
$$x_k = 0.5I_k + I_{k-1} + n_k$$

•
$$\underline{x}_k = \begin{bmatrix} x_k \\ x_{k-1} \end{bmatrix}, l = 2$$

• In vector \underline{x}_k three input symbols are involved:

$$I_{k}, I_{k-1}, I_{k-2}$$

I_k	I_{k-1}	I_{k-2}		\hat{I}_{k}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

	I_{k-2}		\hat{I}_{k}
	0		
	1		
	0		
	1		
	0		
	1		
	0		
	1		

I_{k-1}	I_{k-2}		\hat{I}_{k}
0	0		
0	1		
1	0		
1	1		
0	0		
0	1		
1	0		
1	1		

I_k	I_{k-1}	I_{k-2}		\hat{I}_{k}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

I_{k-1}	I_{k-2}	x_{k-1}	
0	0	0	
0	1	1	
1	0	0.5	
1	1	1.5	
0	0	0	
0	1	1	
1	0	0.5	
1	1	1.5	

$$I_{k-1} \rightarrow \text{Channel} \rightarrow x_{k-1}$$

$$x_{k-1} = 0.5I_{k-1} + I_{k-2}$$

I_k	I_{k-1}	x_k	
0	0	0	
0	0	0	
0	1	1	
0	1	1	
1	0	0.5	
1	0	0.5	
1	1	1.5	
1	1	1.5	

$$I_k \rightarrow \text{Channel} \rightarrow x_k$$

$$x_k = 0.5I_k + I_{k-1}$$

• Assuming $n_k = 0$

I_k	I_{k-1}	I_{k-2}	x_k	x_{k-1}	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	1	0.5	
0	1	1	1	1.5	
1	0	0	0.5	0	
1	0	1	0.5	1	
1	1	0	1.5	0.5	
1	1	1	1.5	1.5	

• Estimate I_k from (x_k, x_{k-1})

• Assuming $n_k = 0$

I_k	I_{k-1}	I_{k-2}	x_k	x_{k-1}	
0	0	0	0	0	ω_1
0	0	1	0	1	ω_2
0	1	0	1	0.5	ω_3
0	1	1	1	1.5	ω_4
1	0	0	0.5	0	ω_5
1	0	1	0.5	1	ω_6
1	1	0	1.5	0.5	ω_7
1	1	1	1.5	1.5	ω_8

Eight possible clusters

• Assuming $n_k = 0$

I_k	I_{k-1}	I_{k-2}	x_k	x_{k-1}	
0	0	0	0	0	ω_1
0	0	1	0	1	ω_2
0	1	0	1	0.5	ω_3
0	1	1	1	1.5	ω_4
1	0	0	0.5	0	ω_5
1	0	1	0.5	1	ω_6
1	1	0	1.5	0.5	ω_7
1	1	1	1.5	1.5	ω_8

• '+' means I_k was 1, 'o' means I_k was 0

I_k	I_{k-1}	I_{k-2}	x_k	x_{k-1}	
0	0	0	0	0	ω_1
0	0	1	0	1	ω_2
0	1	0	1	0.5	ω_3
0	1	1	1	1.5	ω_4
1	0	0	0.5	0	ω_5
1	0	1	0.5	1	ω_6
1	1	0	1.5	0.5	ω_7
1	1	1	1.5	1.5	ω_8

• Big cluster exists when the noise n_k is NOT 0 (zero)

I_k	I_{k-1}	I_{k-2}	x_k	x_{k-1}	
0	0	0	0	0	ω_1
0	0	1	0	1	ω_2
0	1	0	1	0.5	ω_3
0	1	1	1	1.5	ω_4
1	0	0	0.5	0	ω_5
1	0	1	0.5	1	ω_6
1	1	0	1.5	0.5	ω_7
1	1	1	1.5	1.5	ω_8

- Estimate \hat{I}_k from (x_k, x_{k-1})
- A two class problem
- Each class is a union of clusters

I_k	I_{k-1}	I_{k-2}	x_k	x_{k-1}	
0	0	0	0	0	ω_1
0	0	1	0	1	ω_2
0	1	0	1	0.5	ω_3
0	1	1	1	1.5	ω_4
1	0	0	0.5	0	ω_5
1	0	1	0.5	1	ω_6
1	1	0	1.5	0.5	ω_7
1	1	1	1.5	1.5	ω_8

- During training,
 - send all values of (I_{k-2}, I_{k-1}, I_k) and calculate (x_{k-1}, x_k)
 - Calculate the cluster centers μ_k
 - Assign the bit I_k to the cluster μ_k

I_k	I_{k-1}	I_{k-2}	x_k	x_{k-1}	
?			0	0	ω_1
?			0	1	ω_2
?			1	0.5	ω_3
?			1	1.5	ω_4
?			0.5	0	ω_5
?			0.5	1	ω_6
?			1.5	0.5	ω_7
?			1.5	1.5	ω_8

- During equalization (testing),
 - Get (x_{k-1}, x_k) from the channel
 - Find the nearest cluster μ_i
 - The bit of μ_i is the estimated transmitted bit

I_k	I_{k-1}	I_{k-2}	x_k	x_{k-1}	
0	0	0	0	0	ω_1
0	0	1	0	1	ω_2
0	1	0	1	0.5	ω_3
0	1	1	1	1.5	ω_4
1	0	0	0.5	0	ω_5
1	0	1	0.5	1	ω_6
1	1	0	1.5	0.5	ω_7
1	1	1	1.5	1.5	ω_8

Let

$$(I_k, I_{k-1}, I_{k-2}) = (0, 0, 1)$$

which corresponds to ω_2

I_k	I_{k-1}	I_{k-2}	x_k	x_{k-1}	
0	0	0	0	0	ω_1
0	0	1	0	1	ω_2
0	1	0	1	0.5	ω_3
0	1	1	1	1.5	ω_4
1	0	0	0.5	0	ω_5
1	0	1	0.5	1	ω_6
1	1	0	1.5	0.5	ω_7
1	1	1	1.5	1.5	ω_8

Let

$$(I_k, I_{k-1}, I_{k-2}) = (0, 0, 1)$$

which corresponds to ω_2

I_{k+1}	I_k	I_{k-1}	I_{k-2}	x_k	x_{k-1}	
?	0	0	0	0	0	ω_1
?	0	0	1	0	1	ω_2
?	0	1	0	1	0.5	ω_3
?	0	1	1	1	1.5	ω_4
?	1	0	0	0.5	0	ω_5
?	1	0	1	0.5	1	ω_6
?	1	1	0	1.5	0.5	ω_7
?	1	1	1	1.5	1.5	ω_8

Let

$$(I_k, I_{k-1}, I_{k-2}) = (0, 0, 1)$$

which corresponds to ω_2

• What will be the next bit I_{k+1}

I_{k+1}	I_k	I_{k-1}	I_{k-2}	x_k	x_{k-1}		
?	0	0	0	0	0	ω_1	
0, 1	0	0	1	0	1	ω_2	
?	0	1	0	1	0.5	ω_3	
?	0	1	1	1	1.5	ω_4	
?	1	0	0	0.5	0	ω_5	
?	1	0	1	0.5	1	ω_6	
?	1	1	0	1.5	0.5	ω_7	
?	1	1	1	1.5	1.5	ω_8	

Let

$$(I_k, I_{k-1}, I_{k-2}) = (0, 0, 1)$$

which corresponds to ω_2

• The next bit I_{k+1} can be either 1 or 0

$$(I_{k+1}, I_k, I_{k-1})$$
 $(1, 0, 0)$
 ω_5
 $(0, 0, 0)$

I_{k+1}	I_k	I_{k-1}	I_{k-2}	x_k	x_{k-1}	
?	0	0	0	0	0	$ \omega_1 $
0, 1	0	0	1	0	1	ω_2
?	0	1	0	1	0.5	ω_3
?	0	1	1	1	1.5	ω_4
?	1	0	0	0.5	0	ω_5
?	1	0	1	0.5	1	ω_6
?	1	1	0	1.5	0.5	ω_7
?	1	1	1	1.5	1.5	ω_8

 This means, all transitions are not possible!!

```
    In other words, after (0, 0, 1) we will find
        either (1, 0, 0)
        or (0, 0, 0)
```

I_{k+1}	I_k	I_{k-1}	I_{k-2}	x_k	x_{k-1}	
0, 1	0	0	0	0	0	ω_1
0, 1	0	0	1	0	1	ω_2
0, 1	0	1	0	1	0.5	ω_3
0, 1	0	1	1	1	1.5	ω_4
0, 1	1	0	0	0.5	0	ω_5
0, 1	1	0	1	0.5	1	ω_6
0, 1	1	1	0	1.5	0.5	ω_7
0, 1	1	1	1	1.5	1.5	ω_8

- This means, all transitions are NOT possible!!
- Alternately, after (0, 0, 1) we can get either (1, 0, 0) or (0, 0,0)

I_{k+1}	I_k	I_{k-1}	I_{k-2}	x_k	x_{k-1}	
0, 1	0	0	0	0	0	ω_1
0, 1	0	0	1	0	1	ω_2
0, 1	0	1	0	1	0.5	ω_3
0, 1	0	1	1	1	1.5	ω_4
0, 1	1	0	0	0.5	0	ω_5
0, 1	1	0	1	0.5	1	ω_6
0, 1	1	1	0	1.5	0.5	ω_7
0, 1	1	1	1	1.5	1.5	ω_8

We can use Viterbi algorithm now !!!

Solution (2): Viterbi Algorithm

I_{k+1}	I_k	I_{k-1}	I_{k-2}	x_k	x_{k-1}	
0, 1	0	0	0	0	0	ω_1
0, 1	0	0	1	0	1	ω_2
0, 1	0	1	0	1	0.5	ω_3
0, 1	0	1	1	1	1.5	ω_4
0, 1	1	0	0	0.5	0	ω_5
0, 1	1	0	1	0.5	1	ω_6
0, 1	1	1	0	1.5	0.5	ω_7
0, 1	1	1	1	1.5	1.5	ω_8

- We need to define:
- $P(\omega_i | \omega_j)$
- Cost function

Solution (2): Viterbi Algorithm

I_{k+1}	I_k	I_{k-1}	I_{k-2}	x_k	x_{k-1}	
0, 1	0	0	0	0	0	ω_1
0, 1	0	0	1	0	1	ω_2
0, 1	0	1	0	1	0.5	ω_3
0, 1	0	1	1	1	1.5	ω_4
0, 1	1	0	0	0.5	0	ω_5
0, 1	1	0	1	0.5	1	ω_6
0, 1	1	1	0	1.5	0.5	ω_7
0, 1	1	1	1	1.5	1.5	ω_8

- Assuming equiprobability of the next bit:
 - $P(\omega_1 | \omega_1) = 0.5 = P(\omega_1 | \omega_5)$

Solution (2): Viterbi Algorithm

Cost function of transition

$$d(\omega_{i_k}, \omega_{i_{k-1}}) = d_{\omega_{i_k}}(\mathbf{x}_k)$$

Where, either Euclidean distance

$$d_{\omega_{l_k}}(x_k) = \|x_k - \boldsymbol{\mu}_{l_k}\|$$

Or Mahalanobis distance

$$d_{\omega_{t_k}}(\boldsymbol{x}_k) = \left((\boldsymbol{x}_k - \boldsymbol{\mu}_{t_k})^T \boldsymbol{\Sigma}_{t_k}^{-1} (\boldsymbol{x}_k - \boldsymbol{\mu}_{t_k}) \right)^{1/2}$$

Can be used