## DIABETES PREDICTION

In this diabetes prediction model, we used a dataset containing various health measurements of individuals, including blood sugar levels, body mass index (BMI), and age, among others. The goal was to predict whether a person is diabetic based on these measurements.

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

## **DATA PREPARATION**

We loaded the diabetes dataset into a Pandas DataFrame. We separated the features (input data) from the labels (output, or whether the person is diabetic). The dataset was split into training and testing sets, with 20% of the data reserved for testing.

data = pd.read\_csv('/content/diabetes.csv')
data

| <del>_</del> | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | BMI  | ${\tt DiabetesPedigreeFunction}$ | Age | Outcome |
|--------------|-------------|---------|---------------|---------------|---------|------|----------------------------------|-----|---------|
| 0            | 6           | 148     | 72            | 35            | 0       | 33.6 | 0.627                            | 50  | 1       |
| 1            | 1           | 85      | 66            | 29            | 0       | 26.6 | 0.351                            | 31  | 0       |
| 2            | 8           | 183     | 64            | 0             | 0       | 23.3 | 0.672                            | 32  | 1       |
| 3            | 1           | 89      | 66            | 23            | 94      | 28.1 | 0.167                            | 21  | 0       |
| 4            | 0           | 137     | 40            | 35            | 168     | 43.1 | 2.288                            | 33  | 1       |
|              |             |         |               |               |         |      |                                  |     |         |
| 763          | 10          | 101     | 76            | 48            | 180     | 32.9 | 0.171                            | 63  | 0       |
| 764          | 2           | 122     | 70            | 27            | 0       | 36.8 | 0.340                            | 27  | 0       |
| 765          | 5           | 121     | 72            | 23            | 112     | 26.2 | 0.245                            | 30  | 0       |
| 766          | 1           | 126     | 60            | 0             | 0       | 30.1 | 0.349                            | 47  | 1       |
| 767          | 1           | 93      | 70            | 31            | 0       | 30.4 | 0.315                            | 23  | 0       |

Next steps: Generate code with data View recommended plots New interactive sheet

data.isnull().sum()



data.info()

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
# Column Non-Null Count Dtype

| 0 | Pregnancies              | 768 non-null | int64   |
|---|--------------------------|--------------|---------|
| 1 | Glucose                  | 768 non-null | int64   |
| 2 | BloodPressure            | 768 non-null | int64   |
| 3 | SkinThickness            | 768 non-null | int64   |
| 4 | Insulin                  | 768 non-null | int64   |
| 5 | BMI                      | 768 non-null | float64 |
| 6 | DiabetesPedigreeFunction | 768 non-null | float64 |
| 7 | Age                      | 768 non-null | int64   |
| 8 | Outcome                  | 768 non-null | int64   |
|   |                          |              |         |

dtypes: float64(2), int64(7) memory usage: 54.1 KB

data.shape

**→** (768, 9)

data.describe()

| <b>→</b> |       | Pregnancies | Glucose    | BloodPressure | SkinThickness | Insulin    | BMI        | DiabetesPedigreeFunction | Age        | Outcome    |
|----------|-------|-------------|------------|---------------|---------------|------------|------------|--------------------------|------------|------------|
|          | count | 768.000000  | 768.000000 | 768.000000    | 768.000000    | 768.000000 | 768.000000 | 768.000000               | 768.000000 | 768.000000 |
|          | mean  | 3.845052    | 120.894531 | 69.105469     | 20.536458     | 79.799479  | 31.992578  | 0.471876                 | 33.240885  | 0.348958   |
|          | std   | 3.369578    | 31.972618  | 19.355807     | 15.952218     | 115.244002 | 7.884160   | 0.331329                 | 11.760232  | 0.476951   |
|          | min   | 0.000000    | 0.000000   | 0.000000      | 0.000000      | 0.000000   | 0.000000   | 0.078000                 | 21.000000  | 0.000000   |
|          | 25%   | 1.000000    | 99.000000  | 62.000000     | 0.000000      | 0.000000   | 27.300000  | 0.243750                 | 24.000000  | 0.000000   |
|          | 50%   | 3.000000    | 117.000000 | 72.000000     | 23.000000     | 30.500000  | 32.000000  | 0.372500                 | 29.000000  | 0.000000   |
|          | 75%   | 6.000000    | 140.250000 | 80.000000     | 32.000000     | 127.250000 | 36.600000  | 0.626250                 | 41.000000  | 1.000000   |
|          | max   | 17.000000   | 199.000000 | 122.000000    | 99.000000     | 846.000000 | 67.100000  | 2.420000                 | 81.000000  | 1.000000   |

data['Outcome'].value\_counts()



count

| Outcome |     |  |  |  |  |  |  |
|---------|-----|--|--|--|--|--|--|
| 0       | 500 |  |  |  |  |  |  |
| 1       | 268 |  |  |  |  |  |  |

dtype: int64

data.groupby('Outcome').mean()

| <del>_</del> |         | Pregnancies | Glucose    | BloodPressure | SkinThickness | Insulin    | BMI       | DiabetesPedigreeFunction | Age       |     |
|--------------|---------|-------------|------------|---------------|---------------|------------|-----------|--------------------------|-----------|-----|
|              | Outcome |             |            |               |               |            |           |                          |           | ıl. |
|              | 0       | 3.298000    | 109.980000 | 68.184000     | 19.664000     | 68.792000  | 30.304200 | 0.429734                 | 31.190000 |     |
|              | 1       | 4.865672    | 141.257463 | 70.824627     | 22.164179     | 100.335821 | 35.142537 | 0.550500                 | 37.067164 |     |

x = data.drop(columns='Outcome',axis=1)

|        | Pregnancies    | Glucose | BloodPressure | SkinThickness | Insulin | BMI  | ${\tt DiabetesPedigreeFunction}$ | Age |  |
|--------|----------------|---------|---------------|---------------|---------|------|----------------------------------|-----|--|
| 0      | 6              | 148     | 72            | 35            | 0       | 33.6 | 0.627                            | 50  |  |
| 1      | 1              | 85      | 66            | 29            | 0       | 26.6 | 0.351                            | 31  |  |
| 2      | 8              | 183     | 64            | 0             | 0       | 23.3 | 0.672                            | 32  |  |
| 3      | 1              | 89      | 66            | 23            | 94      | 28.1 | 0.167                            | 21  |  |
| 4      | 0              | 137     | 40            | 35            | 168     | 43.1 | 2.288                            | 33  |  |
|        |                |         |               |               |         |      |                                  |     |  |
| 763    | 10             | 101     | 76            | 48            | 180     | 32.9 | 0.171                            | 63  |  |
| 764    | 2              | 122     | 70            | 27            | 0       | 36.8 | 0.340                            | 27  |  |
| 765    | 5              | 121     | 72            | 23            | 112     | 26.2 | 0.245                            | 30  |  |
| 766    | 1              | 126     | 60            | 0             | 0       | 30.1 | 0.349                            | 47  |  |
| 767    | 1              | 93      | 70            | 31            | 0       | 30.4 | 0.315                            | 23  |  |
| 768 rc | ws × 8 columns |         |               |               |         |      |                                  |     |  |

Next steps:

Generate code with  $\,\times\,$ 

View recommended plots

New interactive sheet

y = data['Outcome']
y

| ₹ |     | Outcome |
|---|-----|---------|
|   | 0   | 1       |
|   | 1   | 0       |
|   | 2   | 1       |
|   | 3   | 0       |
|   | 4   | 1       |
|   |     |         |
|   | 763 | 0       |
|   | 764 | 0       |
|   | 765 | 0       |
|   | 766 | 1       |
|   | 767 | 0       |
| _ |     |         |

768 rows × 1 columns

dtype: int64

## **DATA STANDARDIZATION**

We standardized the feature data to ensure that all measurements are on a similar scale. This helps the model learn more effectively since SVM is sensitive to the scale of the data.

```
standard_data = scaler.transform(x)
standard_data
```

StandardScaler()

```
array([[ 0.63994726, 0.84832379, 0.14964075, ..., 0.20401277, 0.46849198, 1.4259954 ], [-0.84488565, -1.12339636, -0.16054575, ..., -0.68442195, -0.36506078, -0.19067191], [ 1.23388019, 1.94372388, -0.26394125, ..., -1.10325546,
```

```
0.60439732, -0.10558415],
              [ 0.3429808 , 0.00330087, 0.14964075, ..., -0.73518964,
             -0.68519336, -0.27575966],
[-0.84488505, 0.1597866 , -0.47073225, ..., -0.24020459,
             -0.37110101, 1.17073215],
[-0.84488505, -0.8730192 , 0.04624525, ..., -0.20212881, -0.47378505, -0.87137393]])
x = standard_data
⇒ array([[ 0.63994726, 0.84832379, 0.14964075, ..., 0.20401277,
                0.46849198, 1.4259954 ],
              [-0.84488505, -1.12339636, -0.16054575, ..., -0.68442195, -0.36506078, -0.19067191],
             [ 1.23388019, 1.94372388, -0.26394125, ..., -1.10325546, 0.60439732, -0.10558415],
              [\ 0.3429808\ ,\ 0.00330087,\ 0.14964075,\ \ldots,\ -0.73518964,
               -0.68519336, -0.27575966],
              [-0.84488505, 0.1597866, -0.47073225, ..., -0.24020459,
               -0.37110101, 1.17073215],
              [-0.84488505,\ -0.8730192\ ,\ 0.04624525,\ \ldots,\ -0.20212881,
               -0.47378505, -0.87137393]])
y = data['Outcome']
У
<del>_</del>
            Outcome
        0
                   1
        1
                   0
        2
                   1
        3
                    0
                   1
       ...
       763
                   0
       764
                   0
       765
                   0
       766
                    1
       767
                   0
      768 rows × 1 columns
     dtype: int64
DATA TRAINING
from sklearn.model_selection import train_test_split
x\_train, x\_test, y\_train, y\_test = train\_test\_split(x, y, test\_size=0.2, stratify=y, random\_state=2)
x_train.shape
→ (614, 8)
y_train.shape
→ (614,)
```

x\_test.shape → (154, 8)

y\_test.shape



## **DATA MODEL TRAINING**

We used a Support Vector Machine (SVM) classifier with a linear kernel to train the model on the training data.

```
Suggested code may be subject to a license | | Sathvik902/Diabetes-Analysis from sklearn import svm

classifier = svm.SVC(kernel='linear')
classifier.fit(x_train,y_train)

SVC (i) (?)
SVC(kernel='linear')
```

Why SVM Was Used Support Vector Machine (SVM) was chosen for this model for several reasons:

**Effective in High Dimensions:** SVM is particularly powerful for classification problems in high-dimensional spaces, which is often the case with medical datasets where many features can be present.

**Robust to Overfitting:** Especially with a linear kernel, SVM can avoid overfitting when the dataset is not too large. This makes it a good choice for smaller datasets like the diabetes dataset.

Clear Margin of Separation: SVM finds the hyperplane that best separates the classes (diabetic vs. non-diabetic), which can lead to good classification performance.

Flexibility: By using different kernels (like linear, polynomial, or RBF), SVM can be adapted to a variety of classification problems.

```
x_pred = classifier.predict(x_train)
x_pred
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
          0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
          1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1,
                                                        1, 0,
          1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                                                        1, 0, 1, 1,
          1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
          1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0,
          1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
          0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1,
          0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,
          0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 1,\ 0,\ 0,\ 0,\ 0,\ 1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,
          0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
          0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1,
               1,
                  0, 0, 0, 0, 1, 0, 0, 0,
                                        1, 1, 0, 1, 0, 0, 0, 0, 1,
          0, 0, 1, 1,
                     1, 0, 1, 0, 0,
                                  0, 1, 0, 1, 0,
                                                0, 0, 1, 0, 0,
          0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
          0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1,
                                        0,
                                           0, 0, 1, 0, 0, 0,
          0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
               0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0,
          0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0,
          0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
          0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
          0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0,
          0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0])
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(x_pred,y_train)
```

Accuracy - 0.7866449511400652

print('Accuracy - ',accuracy)

```
df = (7,244,64,46,88,24.6,0.34,45)
df_np = np.asarray(df)
df_np
→ array([ 7. , 244. , 64. , 46. , 88. , 24.6 , 0.34, 45. ])
df_r = df_np.reshape(1,-1)
df_r
→ array([[ 7. , 244. , 64. , 46. , 88. , 24.6 , 0.34, 45. ]])
std= scaler.transform(df_r)
std
    /usr/local/lib/python3.10/dist-packages/sklearn/base.py:493: UserWarning: X does not have valid feature names, but StandardScaler was fi
<del>_</del>
      warnings.warn(
     {\sf array}([[\ 0.93691372,\ 3.85284975,\ -0.26394125,\ 1.5972786\ ,\ 0.07120427,
             -0.93826044, -0.39828208, 1.00055664]])
pred = classifier.predict(std)
pred
→ array([1])
if pred[0] == 0:
 print('Non-Diabetic')
else:
 print('Diabetic')
→ Diabetic
```

we successfully built a diabetes prediction model using a Support Vector Machine classifier. After standardizing the data and training the model, we were able to predict whether an individual is likely to be diabetic based on their health measurements.

The use of SVM allowed us to effectively handle the classification task, leveraging its strengths in high-dimensional data and its robust performance. The model's predictions can help in identifying individuals at risk of diabetes, leading to timely interventions and better health outcomes.

By continually refining the model, perhaps through hyperparameter tuning or experimenting with different kernels, we could further improve its accuracy and reliability.