Álgebra Linear Equação vetorial, equação matricial e combinação linear

GEOMETRIA ANALÍTICA E ÁLGEBRA LINEAR PROFA. MS.MAGDA MANTOVANI LORANDI

Período 2022-4

LIVRO-TEXTO

LAY, David C. Álgebra linear e suas aplicações. 5 ed. Rio de Janeiro: LTC, 2018.

Podemos nomear uma matriz com apenas uma coluna, por **vetor coluna** ou somente **vetor**.

Exemplos
$$\mathbf{u} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} .2 \\ .3 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$

em que w_1 e w_2 são números reais arbitrários.

Igualdade entre vetores: Dois vetores são iguais se, e somente se suas componentes correspondentes forem iguais.

Assim, os vetores $\begin{bmatrix} 4 \\ 7 \end{bmatrix} e \begin{bmatrix} 7 \\ 4 \end{bmatrix}$ não são iguais,

pois o vetores em \mathbb{R}^2 são pares ordenados de números reais.

3

Algumas vezes, por conveniência (e também para economizar espaço), escrevemos um vetor coluna como $\begin{bmatrix} 3 \\ -1 \end{bmatrix}$ na forma (3, -1). Nesse caso, usamos parênteses e uma vírgula para distinguir o vetor (3, -1) da matriz linha $\begin{bmatrix} 3 \\ -1 \end{bmatrix}$, escrita com colchetes e sem vírgula. Assim,

$$\begin{bmatrix} 3 \\ -1 \end{bmatrix} \neq \begin{bmatrix} 3 & -1 \end{bmatrix}$$

pois as matrizes são de tamanhos diferentes, apesar de terem os mesmos elementos.

4

DESCRIÇÃO GEOMÉTRICA DE \mathbb{R}^2

Considere um sistema de coordenadas cartesianas no plano. Como cada ponto do plano fica determinado por um par ordenado de números, *podemos identificar um ponto geométrico* (a, b) *com o vetor coluna* $\begin{bmatrix} a \\ b \end{bmatrix}$. Podemos considerar, então, \mathbb{R}^2 como o conjunto de todos os pontos do plano. Veja a Figura 1.

FIGURA 1 Vetores como pontos.

FIGURA 2 Vetores com setas.

A visualização geométrica de um vetor como $\begin{bmatrix} 3 \\ -1 \end{bmatrix}$ é auxiliada pela inclusão de uma seta (um segmento de reta orientado) da origem (0,0) até o ponto (3,-1), como na Figura 2.

• Multiplicação de um vetor por um escalar: Dado um vetor v e um número real c, o múltiplo escalar de v por c é o vetor cv, obtido multiplicando-se cada componente de v por c.

Exemplo 3 - pág. 22

EXEMPLO 3 Seja
$$\mathbf{v} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$
. Represente graficamente os vetores \mathbf{v} , $2\mathbf{v}$ e $-\frac{2}{3}\mathbf{v}$.

SOLUÇÃO Veja a Figura na qual \mathbf{v} , $2\mathbf{v} = \begin{bmatrix} 6 \\ -2 \end{bmatrix} \mathbf{e} - \frac{2}{3}\mathbf{v} \begin{bmatrix} -2 \\ 2/3 \end{bmatrix}$ estão representados graficamente.

A seta que representa $2\mathbf{v}$ tem o dobro do comprimento da seta que representa \mathbf{v} , e elas apontam na mesma direção. A seta que representa $-\frac{2}{3}\mathbf{v}$ é dois terços do comprimento da seta que representa \mathbf{v} ,

Adição de vetores:

Regra do paralelogramo para a soma de vetores

A Regra do Paralelogramo para a Soma

Se \mathbf{u} e \mathbf{v} em \mathbb{R}^2 forem representados como pontos no plano, então \mathbf{u} + \mathbf{v} corresponderá ao quarto vértice do paralelogramo cujos outros vértices serão \mathbf{u} , \mathbf{O} e \mathbf{v} . Veja a Figura 3.

FIGURA 3 A regra do paralelogramo.

Adição de vetores: Dados dois vetores u e v, o vetor u+v é obtida, somando-se as componentes correspondentes de u e v

Exemplo 2 - pág. 21

EXEMPLO 2 Os vetores
$$\mathbf{u} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} -6 \\ 1 \end{bmatrix}$ e $\mathbf{u} + \mathbf{v} = \begin{bmatrix} -4 \\ 3 \end{bmatrix}$ estão representados graficamente

FIGURA 4 Soma de vetores

A figuras 4 ilustra a regra do paralelogramo.

A subtração de vetores é um caso particular da adição, pois (pág. 22) u - v = u + (-v)

FIGURA 7 Subtração de vetores.

A subtração de vetores é um caso particular da adição de vetores, pois a diferença u-v é igual a soma de u com o oposto de v

A Figuras 7 ilustra a regra do paralelogramo.

Dados os vetores $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p$ em \mathbb{R}^n e dados os escalares $c_1, c_2, ..., c_p$, o vetor \mathbf{y} definido por

$$\mathbf{y} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p$$

é denotado uma combinação linear de $\mathbf{v}_1,...,\mathbf{v}_n$ com pesos $c_1,...,c_n$. Os pesos de uma combinação linear podem ser quaisquer números reais, incluindo o zero. Por exemplo, algumas combinações lineares dos vetores \mathbf{v}_1 e \mathbf{v}_2 são

$$\sqrt{3}\,\mathbf{v}_1 + \mathbf{v}_2$$
, $\frac{1}{2}\mathbf{v}_1 \ (= \frac{1}{2}\mathbf{v}_1 + 0\mathbf{v}_2)$ e $\mathbf{0} \ (= 0\mathbf{v}_1 + 0\mathbf{v}_2)$

Exemplo 4, pág. 23

EXEMPLO 4 A Figura 8 identifica algumas combinações lineares de $\mathbf{v}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ e $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

(Observe os conjuntos de retas paralelas do reticulado traçadas por múltiplos inteiros de \mathbf{v}_1 e \mathbf{v}_2 .) Faça uma estimativa das combinações lineares de \mathbf{v}_1 e \mathbf{v}_2 , que geram os vetores \mathbf{u} e \mathbf{w} .

FIGURA 8 Combinações lineares de v, e v₂.

A equação vetorial

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{b}$$

tem o mesmo conjunto solução que o sistema linear cuja matriz aumentada é

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n & \mathbf{b} \end{bmatrix}$$

Em particular, b pode ser gerado por uma combinação linear de a, ..., a se e somente se existir solução para o sistema linear correspondente à matriz

Exemplo 5 - pág. 23

EXEMPLO 5 Sejam
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$ e $\mathbf{b} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$. Determine se \mathbf{b} pode ser gerado

(ou escrito) como uma combinação linear de a e a. Em outras palavras, determine se existem pe-

 $sos x_1 e x_2$ tais que

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 = \mathbf{b}$$

Se a equação vetorial (1) tiver solução, encontre-a.

Exercícios 5, 9 e 13 - págs. 26,27

Definição - pág. 25

Dados $\mathbf{v}_1, ..., \mathbf{v}_p$ em \mathbb{R}^n , o conjunto de todas as combinações lineares de $\mathbf{v}_1, ..., \mathbf{v}_p$ é denotado por $\mathcal{L}\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ e é chamado subconjunto de \mathbb{R}^n gerado por $\mathbf{v}_1, ..., \mathbf{v}_p$. Ou seja, $\mathcal{L}\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ é a coleção de todos os vetores que podem ser escritos na forma

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p$$

com $c_1, ..., c_p$ escalares.

Perguntar se um vetor \mathbf{b} está em $\mathcal{L}\{\mathbf{v}_1,...,\mathbf{v}_p\}$ significa perguntar se a equação vetorial

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_p\mathbf{v}_p = \mathbf{b}$$

tem solução ou, de forma equivalente, perguntar se o sistema linear cuja matriz aumentada é $[\mathbf{v}_1 \dots \mathbf{v}_p \mathbf{b}]$ tem solução.

Observe que $\mathcal{L}\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ contém todo múltiplo escalar de \mathbf{v}_1 (por exemplo), já que $c\mathbf{v}_1 = c\mathbf{v}_1 + 0\mathbf{v}_2 + ... + 0\mathbf{v}_p$. Em particular, o vetor nulo pertence a $\mathcal{L}\{\mathbf{v}_1, ..., \mathbf{v}_p\}$.

Dizer que

O vetor **b** está em
$$\mathcal{L}\{\mathbf{v}_1, ..., \mathbf{v}_p\}$$

significa dizer que

- o vetor b é combinação linear de v, ..., v,
 ou
- o vetor b é gerado por

$$\mathbf{v}_1, ..., \mathbf{v}_p$$

UMA DESCRIÇÃO GEOMÉTRICA PARA $\mathscr{L}\{\mathcal{V}\}$ – PÁG. 25

Seja \mathbf{v} um vetor não nulo do \mathbb{R}^3 . Então $\mathcal{L}\{\mathbf{v}\}$ é o conjunto de todos os múltiplos escalares de \mathbf{v} e pode ser visualizado como o conjunto dos pontos na reta em \mathbb{R}^3 contendo \mathbf{v} e \mathbf{O} Veja a Figura 10.

FIGURA 10 $\mathcal{L}\{v\}$ é uma reta contendo a origem.

UMA DESCRIÇÃO GEOMÉTRICA PARA $\mathcal{L}\{u,v\}$ (PÁG.25)

Se \mathbf{u} e \mathbf{v} forem vetores não nulos em \mathbb{R}^3 e se \mathbf{v} não for um múltiplo de \mathbf{u} , então $\mathscr{L}\{\mathbf{u}, \mathbf{v}\}$ será o plano em \mathbb{R}^3 que contém os pontos \mathbf{u} , \mathbf{v} e $\mathbf{0}$. Em particular, $\mathscr{L}\{\mathbf{u}, \mathbf{v}\}$ contém a reta em \mathbb{R}^3 contendo \mathbf{u} e $\mathbf{0}$ e a reta contendo \mathbf{v} e $\mathbf{0}$.

Veja a Figura 11.

FIGURA 11 $\mathcal{L}\{\mathbf{u}, \mathbf{v}\}$ é um plano contendo a origem.

Pense....

como resolver o Exemplo 6 – pág. 25, e verifique se o seu raciocínio está de acordo com o livro:

EXEMPLO 6 Sejam
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 5 \\ -13 \\ -3 \end{bmatrix}$ e $\mathbf{b} = \begin{bmatrix} -3 \\ 8 \\ 1 \end{bmatrix}$. Então $\mathcal{L}\{\mathbf{a}_1, \mathbf{a}_2\}$ é um pla-

no em \mathbb{R}^3 contendo a origem. O vetor b pertence a esse plano?

SOLUÇÃO A equação $x_1 \mathbf{a} + x_2 \mathbf{a} = \mathbf{b}$ tem solução? Para responder, escalonamos a matriz aumentada $[\mathbf{a} \ \mathbf{a} \ \mathbf{b}]$:

EQUAÇÃO MATRICIAL AX = B (PÁG. 29)

Se A for uma matriz $m \times n$ com colunas \mathbf{a} , ..., \mathbf{a} e se \mathbf{x} pertencer a \mathbb{R}^n , então o **produto de** A \mathbf{e} \mathbf{x} , denotado por $A\mathbf{x}$, será a combinação linear das colunas de A usando as componentes correspondentes de \mathbf{x} como pesos, ou seja,

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n$$

EQUAÇÃO MATRICIAL AX = B

Teorema 3 - pág. 30

Se A for uma matriz $m \times n$ com colunas $\mathbf{a}, ..., \mathbf{a}_n$ e se b pertenenca \mathbb{R}^m , a equação matricial

$$A\mathbf{x} = \mathbf{b} \tag{4}$$

terá o mesmo conjunto solução que a equação vetorial

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{b}$$
 (5)

que, por sua vez, terá o mesmo conjunto solução que o s sema de equações lineares cuja matriz aumentada será

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n & \mathbf{b} \end{bmatrix} \tag{6}$$

A equação AX = b tem solução, se e somente se, b for uma combinação linear das colunas de A

EXERCÍCIOS SUGERIDOS

- págs. 26 a 28 7, 11, 13, 15, 17, 19, 32
- pág. 26 Problema prático 2
- pág. 33 9, 13, 14