LECTURE 2

INTEGERS (CONTINUED)

Two's complement:

- Given a single *n*-bit pattern,
 - let u be its unsigned value
 - let s be its signed value,
- If bit $(n-1)=\emptyset$, then:
 - lacksquare s := u
- If bit (n-1)=1, then:
 - $s := u 2^n$

4-bit example:

bit pattern	0000	0001	0010	0011	0100	0101	0110	0111	1000	1 001	1 010	1 011	1 100	1 101	1 110	1111
unsigned u	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\overline{\hspace{1cm}}$ signed s	0	1	2	3	4	5	6	7	-8	-7	-6	-5	-4	-3	-2	-1

• bit
$$(n-1)=\emptyset$$
 \Rightarrow $s=u$

• bit
$$(n-1)=1 \Rightarrow s=u-2^n$$

In general:

bit pattern	00 0		01 1	1 0 0		11 1
unsigned u	0	• • •	$(2^{n-1})-1$	(2^{n-1})	• • •	$(2^n)-1$
$oxed{signed} s$	0		$(2^{n-1})-1$	$-(2^{n-1})$		-1

• Unsigned:
$$u \in \{0,\ldots,(2^n)-1\}$$

• Signed:
$$s \in \{-(2^{n-1}), \ldots, -1, 0, \ldots (2^{n-1}) - 1\}$$

$2^{ m bits}-1$ -1 (max)	$-2^{ m bits}-1$ (min)	n bits
127	-128	8
32767	-32768	16
2,147,483,647	-2,147,483,648	32
$\simeq 9.10^{18}$	$\simeq -9.10^{18}$	64
$\simeq 2.10^{38}$	$\simeq -2.10^{38}$	128

Conversely:

• if s > 0

 $s \in \{0, \dots, (2^n) - 1\}$

• represent with bit pattern of u = s.

• if s < 0

 $s \in \{-(2^{n-1}), \dots, (2^{n-1}) - 1\}$

lacksquare represent with bit pattern of $u=2^n-|s|$.

ullet if $oldsymbol{s}
ot\in\{-(2^{n-1}),\ldots,(2^{n-1})-1\}$

cannot represent, need larger n

Sign extension

Let us represent s=-5 in n-bit signed binary (two's complement):

$$u = 2^n - |s| = 2^n - 5$$

n	S	\boldsymbol{u}	bit pattern
4	-5	11	1011
5	-5	27	11011
6	-5	59	111011
7	-5	123	1111011
8	-5	251	11111011
9	-5	507	111111011
10	-5	1019	1111111011
11	-5	2043	11111111011
12	-5	4091	111111111011

Increasing the number of bits

To convert an n-bit number to an (n+k)-bit number $(k\geq 0)$:

- Unsigned:
 - Additional high-order (leftmost) bits are set to zero
- Signed ("sign extension"):
 - lacktriangle Additional high-order (leftmost) bits are set to the value of bit (n-1)

Base 16

Hexadecimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f

k	oinary	hexadecimal	decimal
0000	0000	00	0
0000	0001	01	1
0000	0010	02	2
0000	0011	03	3
0000	0100	04	4
0000	0101	05	5
0000	0110	06	6
0000	0111	07	7
0000	0000	08	8
0000	1001	09	9
0000	1010	0a	10
0000	1011	0b	11
0000	1100	0с	12
0000	1101	0d	13
0000	1110	0e	14
0000	1111	0f	15

binary	hexadecimal	decimal
0001 0000	10	16
0001 0001	11	17
0001 0010	12	18
0001 0011	13	19
0001 0100	14	20
0001 0101	15	21
0001 0110	16	22
0001 0111	17	23
0001 0000	18	24
0001 1001	19	25
0001 1010	1a	26
0001 1011	1b	27
0001 1100	1c	28
0001 1101	1d	29
0001 1110	1e	30
0001 1111	1f	31

k	oinary	hexadecimal	decimal
0010	0000	20	32
0010	0001	21	33
0010	0010	22	34
0010	0011	23	35
0010	0100	24	36
0010	0101	25	37
0010	0110	26	38
0010	0111	27	39
0010	0000	28	40
0010	1001	29	41
0010	1010	2a	42
0010	1011	2b	43
0010	1100	2c	44
0010	1101	2d	45
0010	1110	2e	46
0010	1111	2f	47

- Pros:
 - Directly maps to binary numbers:

hex 12f3 = binary 0001 0010 1111 0011

- More compact than binary
- Directly maps to bytes:

two hex digits = one byte

- Cons:
 - Not human-friendly (esp. for arithmetic)

CHARACTERS AND TEXT

How do we map bit patterns to characters in order to form text?

- Many standards
- Some similaritites
- Some incompatibilities

ASCII (1963-)

- American Standard Code for Information Interchange
- Each character stored stored in 1 byte (8 bits, 256 possible characters)
- 128 standardized characters
- Many derivatives specify the remaining 128

Unicode (1988-)

- Associates "code points" (roughly, characters) to integers
- Up to 1,112,064 code points (currently 149,186 assigned)
- First 128 code points coincide with ASCII
- Multiple possible encodings into bytes ("transmission formats"):
 - UTF-8
 - First 128 code points encoded into a single byte (backward compatible with ASCII)
 - Sets most significant bit (bit 7) to 1 to signify "more bytes needed"
 - Up to 4 bytes per code point
 - Default on BSD, iOS/MacOS, Android/Linux and on most internet communications
 - UTF-16
 - Code points are encoded by either two or four bytes
 - Default on Windows, for Java code, and for SMS

Unicode (1988-)

- Aims at encoding all languages:
 - including extinct ones
 - left-to-right, right-to-left or vertical
 - and more (emojis ²/₂)
- Some "characters" require multiple code points (flag emojis, skin tone modifiers)
- What is even a "character"? (code point, glpyh, grapheme, cluster)
- Unicode is extremely complicated
- Latest version (v15.0.0, 2022) specification is 1,060 pages

HARDWARE

Logic gates allow us to compute Boolean functions "instantly" (subject to physical limits).

But we need many logic gates, even for simple things (like 64-bit integer division).

→ We break down complex algorithms into simple steps.

COMPONENTS IN A COMPUTER

- Logic gates
- A clock
- Memory
- Input and output devices

A first abstraction

- ullet Memory is N bits $x \in \{0,1\}^N$ (e.g. for 16 GB, $N \simeq 128.10^9$)
- At every clock cycle (e.g. 1.2 GHz), we update the memory:

$$x_i' \leftarrow f_i(x) \qquad orall i = 0, \dots, N$$

- Some of the memory comes from input devices
- Some of the memory is sent to output devices

A more realistic model

- We cannot update the whole memory at every clock cycle
 - That would be $128 \times 10^9 \times 1.2 \times 10^9 = 153.6 \times 10^{18}$ B/s $\simeq 153,600,000,000$ GB/s
 - lacktriangledown As of 2023, memory maxes out at ~ 800 GB/s
 - Instead, at each cycle, we only read/write a tiny amount of memory
- ullet We cannot have too many different Boolean function f_i
 - Instead, at each cycle, the computer executes one of a limited set of **instructions** in a "processor" (aka. "Central Processing Unit", CPU), e.g.
 - memory read / write
 - 64-bit arithmetic (+, -, ×, /, ...)
 - comparison (<, >, =, ...)
 - ∘ branch (if, while, ...)

INSTRUCTION SET ARCHITECTURES (ISA)

An **ISA** specifies:

- How the machine is organized (memory, etc.)
- What instructions are available
- How instructions are encoded into bits

Two major ISAs in practice:

- x86_64 (aka. x64, x86_64, AMD64): Intel® and AMD® 64-bit CPUs
- AArch64 (aka. ARM64): ARM®-based 64-bits CPUs (phones, Apple M1 & M2)

Many older and less prominent ISAs:

x86, Itanium, ARMv7, RISC-V, PowerPC, ...

```
int f(int a, int b, int c)
{
    return (a * b) / c;
}
```

x86_64:

89 f8 89 d1 0f af c6 99 f7 f9 c3

AArch64:

1b 01 7c 00 1a c2 0c 00 d6 5f 03 c0

```
f:
  mov eax, edi  # 89 f8
  mov ecx, edx  # 89 d1
  imul eax, esi  # 0f af c6
  cdq  # 99
  idiv ecx  # f7 f9
  ret  # c3
```

```
f:
mul w0, w0, w1  # 1b 01 7c 00
sdiv w0, w0, w2  # 1a c2 0c 00
ret  # d6 5f 03 c0
```

† assembly †

Assembly

- Assembly is the lowest-level programming language
- Assembly is in 1:1 correspondence with binary encoding of instructions
- Typically, one line per instruction

Instructions (x86_64)

$\max a, b$	move	$a \leftarrow b$
$\verb"imul"a,b$	signed integer multiply	$a \leftarrow a imes b$
$oxdot{idiv}a$	signed integer divide	$eax \leftarrow eax / b$
cdq	convert double-word (32 bits) to quad-word (64 bits)	sign-extend eax into edx:eax
ret	return	return to calling function

Instructions (AArch64)

```
f:
    mul w0, w0, w1  # 1b 01 7c 00
    sdiv w0, w0, w2  # 1a c2 0c 00
    ret  # d6 5f 03 c0
```

$\operatorname{mul} a, b, c$	multiply	$a \leftarrow b imes c$
$\verb"sdiv"a,b,c"$	signed integer divide	$a \leftarrow b/c$
ret	return	return to calling function

Registers

```
AArch64:
                     x86_64:
f:
                                                       f:
                                                        mul w0, w0, w1 # 1b 01 7c 00
 mov eax, edi # 89 f8
                                                         sdiv w0, w0, w2 # 1a c2 0c 00
 mov ecx, edx # 89 d1
 imul eax, esi # 0f af c6
                                                                 # d6 5f 03 c0
                                                        ret
              # 99
 cdq
 idiv ecx
          # f7 f9
               # c3
 ret
```

- small, fixed set of variables that can be accessed instantly
- 16 (x86_64) or 31 (AArch64) general-purpose 64-bit registers
- special registers and flags (not accessible directly)
- larger registers for extended operations (e.g. non-integer numbers)

Registers (x86_64)

• sixteen 64-bit registers:

```
rax, rbx, rcx, rdx, rbp, rsp, rsi, rdi, r8, r9, r10, r11, r12, r13, r14, r15
```

• we can access the lower 32 bits separately:

```
eax, ebx, ecx, edx, ebp, esp, esi, edi, r8d, r9d, r10d, r11d, r12d, r13d, r14d, r15d
```

• we can access the lower 16 bits separately:

```
ax, bx, cx, dx, bp, sp, si, di, r8w, r9w, r10w, r11w, r12w, r13w, r14w, r15w
```

we can access the lower 8 bits separately:

```
al, bl, cl, dl, bpl, spl, sil, dil, r8b, r9b, r10b, r11b, r12b, r13b, r14b, r15b
```

we can access bits 8-15 separately for some registers:

```
ah, bh, ch, dh
```

Example:

bits	6356	5548	4740	3932	3124	2316	158	70
64	rax							
32	eax							
16							a	K
8							ah	al

Registers (AArch64)

• thirty-one 64-bit registers:

• we can access the lower 32 bits separately:

• register 31 (x31, w31) is read-only (zero in most cases)

Example:

bits	6356	5548	4740	3932	3124	2316	158	70
64	x0							
32	w0							

MEMORY

```
int g(int *a, int *b)
{
    return *a + *b;
}
```

x86_64:

AArch64:

```
g:
    mov eax, DWORD PTR [rsi]
    add eax, DWORD PTR [rdi]
    ret
```

```
g:
    ldr w2, [x0]
    ldr w0, [x1]
    add w0, w2, w0
    ret
```

Memory

- From a process' perspective, memory is seen as a single long array of bytes (8 bits)
- Like registers, memory can be accessed in larger chunks (16, 32 or 64 bits)
- But the smallest addressable unit is the byte

Byte ordering

```
        address
        0
        1
        2
        3
        ...
        239
        240
        241
        242
        243
        244
        ...

        value (hex)
        ef
        cd
        ab
        89
        ...
        ff
        a0
        a1
        a2
        a3
        42
        ...
```

- the byte at address 240 is (hex) a0 = (decimal) 160
- the byte at address 241 is (hex) a1 = (decimal) 161
- the byte at address 242 is (hex) a2 = (decimal) 162
- the byte at address 243 is (hex) a3 = (decimal) 163

Q: What is the value of the 32-bit integer at address 240?

A: It depends!

Byte ordering / "Endianess"

```
        address
        0
        1
        2
        3
        ...
        239
        240
        241
        242
        243
        244
        ...

        value (hex)
        ef
        cd
        ab
        89
        ...
        ff
        a0
        a1
        a2
        a3
        42
        ...
```

• "big-endian" (BE): 32-bit int at 240 is (hex) a0 a1 a2 a3

= (decimal)
$$160 \times 2^{24} + 161 \times 2^{16} + 162 \times 2^8 + 163$$
 = (decimal) 2,694,947,491

• "little-endian" (LE): 32-bit int at 240 is (hex) a3 a2 a1 a0

= (decimal)
$$163 \times 2^{24} + 162 \times 2^{16} + 161 \times 2^8 + 160$$
 = (decimal) 2,745,344,416

- x86_64 is LE
- AArch64 is LE by default (LE-only on Windows, MacOS, Linux)

Bit ordering

Because we cannot access individual bits on a CPU (smallest chunk is a byte), bit ordering does not matter here.

However the same problem crops up in other contexts (USB, Ethernet, Wifi, ...)

Memory access notation

- In assembly, accessing memory is denoted using "[" and "]"
 - Moving the value 240 into a register:

```
mov eax, 240 # eax = 240 ldr w0, 240 # w0 = 240
```

■ Moving the 4 bytes of memory at address 240 into a register:

```
mov eax, DWORD PTR [240] # eax = (hex) a3a2a1a0
ldr w0, [240] # w0 = (hex) a3a2a1a0
```