Import libraries

In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: data = pd.read_csv(r"C:\Users\user\Downloads\2015.csv")
 data

Out[2]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Fre	
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	0.6	
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	0.6	
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	0.6	
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	0.6	
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	0.6	
								•••		
153	Rwanda	Sub- Saharan Africa	154	3.465	0.03464	0.22208	0.77370	0.42864	0.5	
154	Benin	Sub- Saharan Africa	155	3.340	0.03656	0.28665	0.35386	0.31910	0.4	
155	Syria	Middle East and Northern Africa	156	3.006	0.05015	0.66320	0.47489	0.72193	0.1	
156	Burundi	Sub- Saharan Africa	157	2.905	0.08658	0.01530	0.41587	0.22396	0.	
157	Togo	Sub- Saharan Africa	158	2.839	0.06727	0.20868	0.13995	0.28443	0.3	
158 r	158 rows × 12 columns									

158 rows × 12 columns

```
In [3]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 158 entries, 0 to 157
        Data columns (total 12 columns):
             Column
                                             Non-Null Count Dtvpe
         ---
         0
             Country
                                                             object
                                             158 non-null
             Region
                                             158 non-null
                                                             object
         1
         2
             Happiness Rank
                                             158 non-null
                                                             int64
         3
             Happiness Score
                                             158 non-null
                                                             float64
         4
             Standard Error
                                             158 non-null
                                                             float64
         5
             Economy (GDP per Capita)
                                             158 non-null
                                                             float64
         6
                                             158 non-null
                                                             float64
         7
             Health (Life Expectancy)
                                             158 non-null
                                                             float64
         8
             Freedom
                                             158 non-null
                                                             float64
         9
             Trust (Government Corruption) 158 non-null
                                                             float64
         10 Generosity
                                             158 non-null
                                                             float64
                                                             float64
         11 Dystopia Residual
                                             158 non-null
        dtypes: float64(9), int64(1), object(2)
        memory usage: 14.9+ KB
In [4]: data.columns
Out[4]: Index(['Country', 'Region', 'Happiness Rank', 'Happiness Score',
                'Standard Error', 'Economy (GDP per Capita)', 'Family',
                'Health (Life Expectancy)', 'Freedom', 'Trust (Government Corruptio
        n)',
                'Generosity', 'Dystopia Residual'],
              dtype='object')
```

EDA and visualization

In [5]: sns.pairplot(data)

Out[5]: <seaborn.axisgrid.PairGrid at 0x25ddade55e0>


```
In [6]: sns.distplot(data['Dystopia Residual'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[6]: <AxesSubplot:xlabel='Dystopia Residual', ylabel='Density'>


```
In [8]: sns.heatmap(data1.corr())
```

Out[8]: <AxesSubplot:>

model building

```
In [13]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[13]:

	Co-efficient
Happiness Rank	0.000013
Happiness Score	1.000542
Standard Error	0.001271
Economy (GDP per Capita)	-1.000040
Family	-1.000328
Health (Life Expectancy)	-0.999853
Freedom	-0.999523
Trust (Government Corruption)	-1.000342
Generosity	-1.000311

```
In [14]: prediction = lr.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[14]: <matplotlib.collections.PathCollection at 0x25de1833250>


```
In [15]: print(lr.score(x_test,y_test))
```

0.9999996478049162

```
In [16]: lr.score(x_train,y_train)
```

Out[16]: 0.9999997675698966

```
In [17]: from sklearn.linear_model import Ridge,Lasso
```

```
In [18]: rr = Ridge(alpha=10)
    rr.fit(x_train,y_train)
    rr.score(x_train,y_train)

Out[18]: 0.6317791746434437

In [19]: rr.score(x_test,y_test)

Out[19]: 0.6355803153875847

In [20]: ls = Lasso(alpha=10)
    ls.fit(x_train,y_train)
    ls.score(x_train,y_train)

Out[20]: 0.06899513537405721

In [21]: ls.score(x_test,y_test)

Out[21]: 0.07408878293414523

In []:
```