사전지식

논리회로

부경대 컴퓨터 인공지능공학부 최필주

목차

- 반도체 개요
- 다이오드
- 트렌지스터
- 디지털 논리 소자의 설계

● 고유 반도체

```
3
                              28 | 29 | 30
Ni | Cu | Zn
                             1 46
Pd 1
                     43
Tc
                       44 | 45
Ru | Rh
                                 47
Ag
                                    48
Cd
5
                     75 76 77
Re Os Ir
            92 93 94 95 96
U Np Pu Am Cm
 - Si(실리콘, 규소)의 전자 수: 2 + 8 + 4
                                          최외각 전자가 4개
  - Ge(게르마늄)의 전자 수: 2 + 8 + 18 + 4
  ※ 갈룸 비소(GaAs) 화합물도 반도체 재료로 사용됨
```

• 고유 반도체

● 고유 반도체

• 고유 반도체

• 고유 반도체

온도 상승

• 고유 반도체 vs. 불순물 반도체

3족 원소 추가 (예: 붕소)

• 고유 반도체 vs. 불순물 반도체

5쪽 원소 추가 (예: 인)

● 고유 반도체 vs. 불순물 반도체

	고유 반도체	P형 반도체	N형 반도체
사용되는 원소	4족 원소	4족 원소 + acceptor(3족)	4족 원소 + donor(5족)
반송자(절대0도)	없음	정공	자유 전자
반송자 수(온도↑)	정공=자유전자	정공>자유전자	정공<자유전자
전기적 특성	중성	중성	중성

- 다이오드 개요
 - P형 반도체와 N형 반도체를 접합하여 만든 반도체 소자
 - 전류의 흐름: p형(anode) → n형(cathode)

- 1/2: 문턱 전압, 순방향 브레이크 오버 전압
 - 다이오드에 전류가 흐르기 위해 필요한 최소 공급 전압
 - 반도체 물질에 따라 달라짐

● 접합 부위에서 발생하는 현상

- 농도 차로 인한 확산
- 농도차가 0이 될 때까지 확산이 지속될까??

● 접합 부위에서 발생하는 현상

- 농도 차로 인한 확산 → 공핍층 생성 → 전위차로 인한 전기장 생성
 → 확산 방해 (절열체처럼 기능)
 - 전위차: 실리콘 0.7V, 게르마늄 0.3V

- 전원 연결 순방향 연결
 - P형에 (+)극, N형에 (-)극을 연결하는 경우

- 반송자 제공
 - P형: 전원의 (+)극에서 정공을 공급받음 → (-)극을 갖는 공핍층 감소
 - N형: 전원의 (-)극에서 전자를 공급받음 → (+)극을 갖는 공핍층 감소
- 공핍층의 전압의 **반대**로 외부 전압 인가 → 공핍층의 전위차 감소
- 공핍층 전압보다 더 높은 전압이 걸리면 전류가 흐름

- 전원 연결 역방향 연결
 - P형에 (-)극, N형에 (+)극을 연결하는 경우

- 반송자 제공
 - P형: 전원의 (-)극으로 정공을 빼앗김 → (-)극을 갖는 공핍층 증가
 - N형: 전원의 (+)극으로 전자를 빼앗김 → (+)극을 갖는 공핍층 증가
- 공핍층의 전압의 **반대**로 외부 전압 인가 → 공핍층의 전위차 증가
- 전류가 흐르지 않음

● 정리

트랜지스터

- 트랜지스터 개요
 - P형+N형+P형 또는 N형+P형+N형 반도체를 접합하여 만든 반도체 소자
 - 종류
 - 양극 접합 트랜지스터(BJTs, Bipolar Junction Transistors)
 - 전계 효과 트랜지스터(FETs, Field Effect Transistors)
 - JFET, MOSFET, MESFET, MODFER 등
 - 용도
 - 증폭, 스위칭
 - 디지털 집적회로(IC, integrated circuit)에는 보통 MOSFET의 사용
 - NOT, AND, OR 등의 논리 게이트를 만드는데 사용됨

● 구조

■ Gate에 절연체(SiO₂ 산화막)가 추가된 형태

■ Gate 전류가 없음

	PMOS	NMOS
구조	PNP	NPN
On 조건	$V_{\rm GS} < -V_{ m T}$	$V_{\rm GS} > V_{\rm T}$
채널	P채널	N채널
반송자	정공	전자

산화막

■ Source와 drain 사이의 구조적 차이는 없음

	역할	PMOS	NMOS	비고
Source	반송자 제공	전원 연결	접지 연결	보통 body와 연결(전류X)
Drain	반송자 회수	접지 연결	전원 연결	

금속 전극

- 종류
 - 증가형(Enhancement-type) MOSFET: Gate 전압 인가 시 채널 생성
 - 공핍형(Depletion-type) MOSFET: 제조시 채널 생성 → Gate 전압 인가시 채널 감소

- N채널 EMOSFET의 동작
 - Off mode: $V_{GS} < V_{th}$
 - 공핍층으로 인해 S-D 전류 X
 - Cut-off mode라고도 함
 - 문턱 전압 V_{th}
 - 도핑 상태, 절연체 재료/두께 등에 의해 달라짐
 - 보통 0.7 ~ 0.8 V

- N채널 EMOSFET의 동작
 - Off mode: $V_{GS} < V_{th}$
 - On mode: $V_{GS} > V_{th}$
 - 반전층이 생성되어 채널 역할
 - 반전층: 기판의 다수 반송자의 반대 반송자가 모여 있는 상태

- N채널 EMOSFET의 동작
 - Off mode: $V_{GS} < V_{th}$
 - On mode: $V_{GS} > V_{th}$
 - 반전층이 생성되어 채널 역할
 - 반전층: 기판의 다수 반송자의 반대 반송자가 모여 있는 상태
 - $V_{GD} = V_{GS} V_{DS}$ 에 따라 두 가지 모드로 나뉨
 - Linear (triode) mode ($V_{\rm GD} > V_{\rm th}$): $I_{\rm D}$ 선형 증가
 - ✓ 수도꼭지가 열린 상태에서 물을 튼 상태
 - ✓ 물을 세게 틀수록(I_D가 커질 수록) 더 빠르게
 - ✓ 문이 크게 열릴수록(V_{GS} 가 커질수록) 더 빠르게
 - Saturation mode ($V_{\rm GD} < V_{\rm th}$): $I_{\rm D}$ 일정
 - ✓ 물을 세게 틀어도 어느 한계이상 빨라질 수 없음

● N채널 EMOSFET의 동작

Mode	$V_{\rm GS}$	$V_{ m GD}$	I_{D}
Cut-off	$< V_{ m th}$	_	0
Linear	> 17	$> V_{ m th}$	V _{DS} 에 비례
Saturation	$>V_{\mathrm{th}}$	$< V_{ m th}$	일정

- Linear: 신호 증폭기로 사용
- Cut-off, Saturation: 스위칭에 사용
 - $V_{GD} = V_{GS} V_{DS}$ 이므로 S와 D에 일정한 전압이 걸려 있는 경우 G에 걸리는 전압으로 on/off 제어 가능

● EMOSFET – NMOS vs. PMOS

	NMOS	PMOS
회로 기호	D J S	D J S
source와 body의 연결	보통 GND에 연결	보통 V _{DD} 에 연결
cut-off 조건	$V_{\rm GS} < V_{ m th}$	$V_{\rm GS} > -V_{\rm th}$
Saturation 조건	$V_{\rm GS} > V_{\rm th}$	$V_{\rm GS} < -V_{\rm th}$

● EMOSFET – NMOS vs. PMOS

	NMOS	PMOS
회로 기호	D J S	D J S
source와 body의 연결	보통 GND에 연결	보통 V _{DD} 에 연결
cut-off 조건	V _{GS} < V _{th} → V _G = 0일 때 충족	$V_{\rm GS} > -V_{\rm th} \rightarrow V_{\rm G} = V_{\rm DD}$ 일 때 충족
Saturation 조건	$V_{\rm GS} > V_{\rm th} \rightarrow V_{\rm G} = V_{\rm DD}$ 일 때 충족	V _{GS} < -V _{th} → V _G = 0일 때 충족

- NOT gate
 - NMOS + 저항기: 높은 저항 값을 얻기 위해 큰 면적 차지

- NOT gate
 - NMOS + 저항기: 높은 저항 값을 얻기 위해 큰 면적 차지
 - NMOS + NMOS: 더 적은 면적

- NOT gate
 - NMOS + 저항기: 높은 저항 값을 얻기 위해 큰 면적 차지
 - NMOS + NMOS: 더 적은 면적
 - NMOS + PMOS: 더 적은 전력 소비 ... Complementary MOS (CMOS)

• CMOS 기반 NOT gate

• CMOS 기반 NOT gate

• CMOS 기반 AND vs. NAND

A	В	Vout
0	0	0
0	1	0
1	0	0
1	1	1

• CMOS 기반 AND vs. NAND

■ 구현의 어려움으로 인해 AND는 NAND + NOT으로 구현

 \mathbf{O}

• CMOS 기반 NAND

• CMOS 기반 NAND vs. NOR

A	В	V _{out}
0	0	1
0	1	1
1	0	1
1	1	0

A	В	V _{out}
0	0	1
0	1	0
1	0	0
1	1	0

● 디지털 소자들의 배치

