Ten in 10		.5	
Class:	S€.	Semester:	TIL
Course Code:	CSC304	Course Name:	OLCA

Department of Artificial

Name of Student:	SHARVART	ANANO	BHONDE	KAR.	
Roll No. :	06				
Assignment No.:	03				
Title of Assignment:	PROCESSOR	ORGANI	P NOITHE	ARCHITECTURE.	
Date of Submission:	06/09/24				
ate of Correction:	06/09/24.				

Evaluation

Performance Indicator	Max. Marks	Marks Obtained		
pleteness	5	S		
onstrated Knowledge	3	3		
oility	2	2		
Total	10	1.0		

rmance Indicator	Exceed Expectations (EE)	Meet Expectations (ME)	Below Expectations (BE)
ompleteness	5	3-4	1.2
emonstrated edge Legibility	3	2	1 - 2
egibility	2		

Checked by

: Miss. Kshittiga Chharat. : Bharat : 6/9/26 aculty

Implemented by the droub.

Co=(ADB) CAN+BB

Co= (AB + AB) C9m \$ + AB = ARCPm + ABC9m + AB

= ABCPn + ABCPn + AB(1+C9m).

= A. B. C9m + A.B. C9m + AB + AB C9m = BC9n (A. + A) + AB C9n + AB

= BC9n + ABC9n + AB

= BC9n + ABC9n + AB(1+C9n) = BC9n + AB + AC9n (B+B).

i. Co = BC9n + AB + AC9n

1 This expression is same as that for a full adder.

02.) Draw logic Arcust diagram Master-Slave I-R flepflop with PRESENT and CLEAR inputs using MAND gates.
Give its truth table and logic symbol.

-> (2) Cancust Dagram:

ndaran

The Carcult Dagram of Master Slave JK flep-flop with PRESENT. & CLEAR apputs using NAND gates 93 shown as:

Truth tab	(e			Out	puts.	Remark
Case	7 (a) 7 (v) 7 (v) 7 (v) 7 (v) 2 (v)	J. 0.00	W. OO 1 OO 1.	Q 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Q 742 Q 70 Q 70 Q 70	No change No change Reset Set Toggle

JR Flop flop with present and clear inputs

R

R

R

R

ICLR

Athtable.

	Inque		Output	Openation performed.			
K	PR	ChR.		performed.			
	1	1	Qn+1	Mormal 3K FR.			
	0	1	1	ff 99 set.			
	1.	0	0	ff 95 reset.			

11.00	Implement a 3-b9t byrany to gray code converter using decoder Ic 74138.							
<u>→</u>	Step 1: Truth table relating the binary and gray code							
	Declmal	8.	Banary ang	ut Bo	G12	y output	Gro	
	0	O	0	0	0	0	<u>0</u>	
	2	0	1	0	0	1	1.	
	3	0	1.	1	0	1	0	
	4	1	0	1	1	1.	7	
	6	1	1	0	1	0	1	
	7	1	9 A 1	1	1.	0	0	

SHOT ON REDMIYS AI DUAL CAMERA

Sunda

FOR EDUCATIONAL USE

Step 2: Expression for G12, G12 and G10: Normally the expressions for Gray and Gra would have been written as G12= O4+ O3+ O6+07: G1= 02+03+04+08. G10= 01+02+05+06 But the output of IC 74138 are actilize low Hence we will convert these equations. G12= 04+09+06+07. = 04+05+06+07 But A+8. = A.B. :. G12 = 04.05.06.07 - (1) Generally, Gra= 02.03.04.05 - (3) Hence Implementation is as follows.

SHOT ON REDMIYS
ALDUAL CAMERA