

## Challenges and opportunities in the analysis of clinical data Statistics seminar, Department of Mathematics, King's College London

Eleni-Rosalina Andrinopoulou, PhD

21 January, 2021

# Introduction



#### Introduction: Motivation



A lot of information is available

→ Electronic medical records

#### Introduction: Motivation



A lot of information is available

→ Electronic medical records

Different types of information

- → Baseline characteristics
- → Longitudinal outcomes
- → Time-to-event outcomes



- → Heart valve
- → Stroke
- → Cystic Fibrosis



- → Heart valve
  - ♦ Aortic gradient
  - ♦ Aortic regurgitation
  - ♦ Time-to death/reoperation
- → Stroke
- → Cystic Fibrosis



- → Heart valve
- → Stroke
  - ♦ Extremity performance
  - ♦ Limb strength
- → Cystic Fibrosis



- → Heart valve
- → Stroke
- → Cystic Fibrosis
  - $\diamond FEV_1$
  - ♦ BMI
  - ♦ Time-to death/exacerbation

## Introduction: Common practice



#### Separate analysis

- → Each longitudinal outcome
- → Survival outcomes

## Introduction: Common practice



#### Separate analysis - Stroke data

- ♦ 412 patients
- Outcome of interest:

Fugl-Meyer

van der Vliet, R., Selles, R. W., Andrinopoulou, etc (2020). Predicting upper limb motor impairment recovery after stroke: a mixture model. Annals of Neurology. 87(3), 383-393.



#### Introduction: Extensions



#### Combined analysis - Cystic Fibrosis data

- $\diamond$  17,100 patients
- Outcomes of interest:

```
FEV_1
BMI
weight-for-age
height-for-age
time-to first exacerbation
```

Andrinopoulou, E. R., Clancy, J. P., & Szczesniak, R. D. (2020). Multivariate joint modeling to identify markers of growth and lung function decline that predict cystic fibrosis pulmonary exacerbation onset. BMC pulmonary medicine, 20, 1-11.



## Introduction: Challenges and Opportunities





## Introduction: Challenges and Opportunities



#### Combined analysis - Heart valve data

- → 296 patients
- → Association of Aortic Gradient with time-to-death/reoperation
  - ♦ Aortic Gradient is measured with error

## Introduction: Challenges and Opportunities



#### Combined analysis - Heart valve data

- → 296 patients
- → Association of Aortic Gradient with time-to-death/reoperation
  - ♦ Aortic Gradient is measured with error

Different features of Aortic Gradient



# Statistical Models





# Statistical Models

Let's assume that we have a longitudinal outcome



## Statistical Models: Mixed Models



$$y_{1i}(t) = m_{1i}(t) + \epsilon_{1i} = x_{1i}^{\top}(t)\beta_1 + z_{1i}^{\top}(t)b_{1i} + \epsilon_{1i}(t)$$

$$\diamond b_{1i} \sim N(0, D)$$

$$\diamond \ \epsilon_{1i}(t) \sim N(0, \Sigma_{1i})$$

$$y_{1i}(t) = m_{1i}(t) + \epsilon_{1i} = \mathbf{x}_{1i}^{\top}(t)\beta_1 + z_{1i}^{\top}(t)b_{1i} + \epsilon_{1i}(t)$$

$$\diamond b_{1i} \sim N(0, D)$$

$$\diamond \ \epsilon_{1i}(t) \sim N(0, \Sigma_{1i})$$

$$y_{1i}(t) = m_{1i}(t) + \epsilon_{1i} = x_{1i}^{\top}(t)\beta_1 + \frac{\mathbf{z}_{1i}^{\top}(t)\mathbf{b}_{1i}}{\mathbf{z}_{1i}^{\top}(t)\mathbf{b}_{1i}} + \epsilon_{1i}(t)$$

$$\diamond b_{1i} \sim N(0, D)$$

$$\diamond \ \epsilon_{1i}(t) \sim N(0, \Sigma_{1i})$$



Let's assume that we have two longitudinal outcomes



$$y_{1i}(t) = m_{1i}(t) + \epsilon_{1i} = x_{1i}^{\top}(t)\beta_1 + z_{1i}(t)^{\top}b_{1i} + \epsilon_{1i}(t)$$
  
$$y_{2i}(t) = m_{2i}(t) + \epsilon_{2i} = x_{2i}^{\top}(t)\beta_1 + z_{2i}(t)^{\top}b_{2i} + \epsilon_{2i}(t)$$

$$\diamond \ b_i^\top = (b_{1i}^\top, b_{2i}^\top) \sim N(0, D)$$

$$y_{1i}(t) = m_{1i}(t) + \epsilon_{1i} = x_{1i}^{\top}(t)\beta_1 + z_{1i}(t)^{\top}b_{1i} + \epsilon_{1i}(t)$$
  
$$y_{2i}(t) = m_{2i}(t) + \epsilon_{2i} = x_{2i}^{\top}(t)\beta_1 + z_{2i}(t)^{\top}b_{2i} + \epsilon_{2i}(t)$$

$$\diamond \ b_i^\top = (b_{1i}^\top, b_{2i}^\top) \sim N(0, D)$$

**Challenge**: Quantify the association between  $y_1$  and  $y_2$ 



$$y_{1i}(t) = m_{1i}(t) + \epsilon_{1i} = x_{1i}^{\top}(t)\beta_1 + z_{1i}(t)^{\top}b_{1i} + \alpha m_{2i}(t) + \epsilon_{1i}(t)$$
$$y_{2i}(t) = m_{2i}(t) + \epsilon_{2i} = x_{2i}^{\top}(t)\beta_1 + z_{2i}(t)^{\top}b_{2i} + \epsilon_{2i}(t)$$

 $\diamond \alpha$  denotes the association

$$y_{1i}(t) = m_{1i}(t) + \epsilon_{1i} = x_{1i}^{\top}(t)\beta_1 + z_{1i}(t)^{\top}b_{1i} + \alpha m_{2i}(t) + \epsilon_{1i}(t)$$
$$y_{2i}(t) = m_{2i}(t) + \epsilon_{2i} = x_{2i}^{\top}(t)\beta_1 + z_{2i}(t)^{\top}b_{2i} + \epsilon_{2i}(t)$$

 $\diamond \alpha$  denotes the association

**Challenge**: Is that our only option?









$$y_{1i}(t) = m_{1i}(t) + \epsilon_{1i} = x_{1i}^{\top}(t)\beta_1 + z_{1i}(t)^{\top}b_{1i} + \alpha \left[ f\{\mathcal{M}_{2i}(t)\} \right] + \epsilon_{1i}(t)$$
$$y_{2i}(t) = m_{2i}(t) + \epsilon_{2i} = x_{2i}^{\top}(t)\beta_1 + z_{2i}(t)^{\top}b_{2i} + \epsilon_{2i}(t)$$

- $\diamond \alpha$  denotes the association
- $\diamond \mathcal{M}_{2i}(t)$  denotes the history of the true unobserved longitudinal process up to time point t







$$y_{1i}(t) = m_{1i}(t) + \epsilon_{1i} = x_{1i}^{\top}(t)\beta_1 + z_{1i}(t)^{\top}b_{1i} + \alpha \frac{d}{dt}m_{2i}(t) + \epsilon_{1i}(t),$$
  
$$y_{2i}(t) = m_{2i}(t) + \epsilon_{2i} = x_{2i}^{\top}(t)\beta_1 + z_{2i}(t)^{\top}b_{2i} + \epsilon_{2i}(t),$$

where

 $\diamond \alpha$  denotes the association





$$y_{1i}(t) = m_{1i}(t) + \epsilon_{1i} = x_{1i}^{\top}(t)\beta_1 + z_{1i}(t)^{\top}b_{1i} + \alpha \int_0^t m_{2i}(s)dt + \epsilon_{1i}(t),$$
  
$$y_{2i}(t) = m_{2i}(t) + \epsilon_{2i} = x_{2i}^{\top}(t)\beta_1 + z_{2i}(t)^{\top}b_{2i} + \epsilon_{2i}(t),$$

where

 $\diamond \alpha$  denotes the association



Let's assume that we have a longitudinal and a survival outcome

- → Naive joint analysis
  - ♦ Cox model using the last observation
  - ♦ Time-dependent Cox model

Data is discarded!





Erasmus MC

- → Naive joint analysis
  - ♦ Cox model using the last observation
  - ♦ Time-dependent Cox model

Time-dependent Cox models are suitable only for exogenous covariates!







$$y_i(t) = m_i(t) + \epsilon_i = x_i^{\top}(t)\beta + z_i^{\top}(t)b_{1i} + \epsilon_i(t)$$
$$h_i(t) = h_0(t)[\gamma^{\top}w_i + \alpha m_i(t)]$$

#### where

 $\diamond \alpha$  denotes the association





$$y_i(t) = m_i(t) + \epsilon_i = x_i^{\top}(t)\beta + z_{1i}^{\top}(t)b_i + \epsilon_i(t)$$
$$h_i(t) = h_0(t)[\gamma^{\top}w_i + \sum_{j=1}^{J} \alpha_j f_j \{\mathcal{M}_i(t)\}]$$

#### where

- $\diamond \alpha_i$  denotes the association
- ♦ Shrinkage

Andrinopoulou, E. R., & Rizopoulos, D. (2016). Bayesian shrinkage approach for a joint model of longitudinal and survival outcomes assuming different association structures. Statistics in medicine, 35(26), 4813-4823.



Let's assume that we have two longitudinal and a survival outcome





$$y_{1i}(t) = m_{1i}(t) + \epsilon_{1i} = x_{1i}^{\top}(t)\beta_1 + z_{1i}(t)^{\top}b_{1i} + \epsilon_{1i}(t)$$
  

$$y_{2i}(t) = m_{2i}(t) + \epsilon_{2i} = x_{2i}^{\top}(t)\beta_1 + z_{2i}(t)^{\top}b_{2i} + \epsilon_{2i}(t)$$
  

$$h_i(t) = h_0(t)[\gamma^{\top}w_i + \alpha_{S1}f\{\mathcal{M}_{1i}(t)\} + \alpha_{S2}f\{\mathcal{M}_{2i}(t)\}],$$

where

 $\diamond \alpha_{S1}$  and  $\alpha_{S2}$  denote the associations



What about the association between the longitudinal outcomes?



$$y_{1i}(t) = m_{1i}(t) + \epsilon_{1i} = x_{1i}^{\top}(t)\beta_1 + z_{1i}(t)^{\top}b_{1i} + \alpha_L f\{\mathcal{M}_{2i}(t)\} + \epsilon_{1i}(t)$$
$$y_{2i}(t) = m_{2i}(t) + \epsilon_{2i} = x_{2i}^{\top}(t)\beta_1 + z_{2i}(t)^{\top}b_{2i} + \epsilon_{2i}(t)$$
$$h_i(t) = h_0(t)[\gamma^{\top}w_i + \alpha_S f\{\mathcal{M}_{1i}(t)\}]$$

#### where

- $\diamond \alpha_S$  denotes the survival association
- $\diamond \alpha_L$  denotes the longitudinal association

$$y_{1i}(t) = m_{1i}(t) + \epsilon_{1i} = x_{1i}^{\top}(t)\beta_1 + z_{1i}(t)^{\top}b_{1i} + \alpha_L f\{\mathcal{M}_{2i}(t)\} + \epsilon_{1i}(t)$$
$$y_{2i}(t) = m_{2i}(t) + \epsilon_{2i} = x_{2i}^{\top}(t)\beta_1 + z_{2i}(t)^{\top}b_{2i} + \epsilon_{2i}(t)$$
$$h_i(t) = h_0(t)[\gamma^{\top}w_i + \alpha_S f\{\mathcal{M}_{1i}(t)\}]$$

#### where

- $\diamond \alpha_{S}$  denotes the survival association
- $\diamond \alpha_I$  denotes the longitudinal association



$$y_{1i}(t) = m_{1i}(t) + \epsilon_{1i} = x_{1i}^{\top}(t)\beta_1 + z_{1i}(t)^{\top}b_{1i} + \alpha_L f\{\mathcal{M}_{2i}(t)\} + \epsilon_{1i}(t)$$
$$y_{2i}(t) = m_{2i}(t) + \epsilon_{2i} = x_{2i}^{\top}(t)\beta_1 + z_{2i}(t)^{\top}b_{2i} + \epsilon_{2i}(t)$$
$$h_i(t) = h_0(t)[\gamma^{\top}w_i + \alpha_S f\{\mathcal{M}_{1i}(t)\}]$$

#### where

- $\diamond \alpha_{S}$  denotes the survival association
- $\diamond \alpha_L$  denotes the longitudinal association



## **Simulations**





## **Simulations**

Multivariate Mixed Models





#### Simulate

→ Outcome 1

Linear time

Treatment

Value of outcome 2

→ Outcome 2

Linear time





#### Simulate

→ Outcome 1

Linear time Treatment

Value of outcome 2

→ Outcome 2

Linear time

#### Fit

→ Outcome 1

Linear time Treatment Value of outcome 2

→ Outcome 2

Linear time



#### Simulate

→ Outcome 1

Linear time Treatment

Value of outcome 2

→ Outcome 2

Linear time

#### Fit

→ Outcome 1

Linear time Treatment Value of outcome 2

→ Outcome 2

I inear time

All models were fitted under the Bayesian framework









#### **Simulate**

→ Outcome 1

Linear time

Treatment

Value of outcome 2

→ Outcome 2

Linear time

#### Fit

→ Outcome 1

Linear time

Treatment

Slope/Area of outcome 2

→ Outcome 2

Linear time









What if we fit all functional forms







<sup>⊕</sup> www.erandrinopoulou.com ■ eandrinopoulou@erasmusmc.nl ♥@ERandrinopoulou











Let's investigate a more complicated scenario





#### Simulate

#### → Outcome 1

Non linear time

Treatment

Value of outcome 2

Slope of outcome 2

#### → Outcome 2

Non linear time



#### Simulate

→ Outcome 1

Non linear time

Treatment

Value of outcome 2

Slope of outcome 2

→ Outcome 2

Non linear time

#### Fit

→ Outcome 1

Non linear time

Treatment

Value of outcome 2

Slope of outcome 2

Area of outcome 2

→ Outcome 2

Non linear time

















## Joint Models



#### **Simulate**

### → Longitudinal outcome

Non linear time Treatment

#### → Survival outcome

Treatment Value of longitudinal outcome



#### Simulate

→ Longitudinal outcome

Non linear time Treatment

→ Survival outcome

Treatment Value of longitudinal outcome

#### Fit

→ Longitudinal outcome

Non linear time Treatment

→ Survival outcome

Treatment Slope/Area of longitudinal outcome









What if we fit all functional forms

















Let's combine everything





#### Simulate

→ Longitudinal outcome 1

Non linear time

**Treatment** 

Value of longitudinal outcome 2

→ Longitudinal outcome 2

Linear time

→ Survival outcome

Treatment

Value of longitudinal outcome 1





#### Simulate

→ Longitudinal outcome 1

Non linear time

**Treatment** 

Value of longitudinal outcome 2

→ Longitudinal outcome 2

Linear time

→ Survival outcome

Treatment

Value of longitudinal outcome 1

#### Fit

→ Longitudinal outcome 1

Non linear time

Treatment

Value of longitudinal outcome 2

→ Longitudinal outcome 2

Linear time

→ Survival outcome

Treatment

Value of longitudinal outcome 1



1.0

2.0







## Software



## Software: R.



- → Joint models
  - ♦ JMbayes, JMbayes2, JM
  - ⋄ joineR, joineRML
  - ♦ frailtypack
  - ♦ stan\_jm
  - ♦ lcmm
  - ♦ bamlss
  - ♦ JointAT

- → Multivariate mixed models
  - ♦ 1cmm
  - ♦ brms
  - ♦ MCMCglmm
  - ♦ JointAT





- → A lot of information is available
- → Correlation between outcomes



- → A lot of information is available
- → Correlation between outcomes

- → Challenges and opportunities
  - Functional forms

- → A lot of information is available
- → Correlation between outcomes

- → Challenges and opportunities
  - Functional forms

- → Future steps
  - ♦ Dynamic predictions





# Thank you for your attention!

The slides are available at: https://www.erandrinopoulou.com

