CS1231S: Discrete Structures Tutorial #3: Sets Answers

Note that the sets here are finite sets, unless otherwise stated.

- 1. Let $\mathcal{P}(A)$ denotes the power set of A. Find the following:
 - a. $\mathcal{P}(\{a,b,c\})$; Answer: $\mathcal{P}(\{a,b,c\}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\}$.
 - b. $\mathcal{P}\left(\mathcal{P}(\mathcal{P}(\emptyset))\right)$. Answer: $\mathcal{P}\left(\mathcal{P}(\mathcal{P}(\emptyset))\right) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$.
- 2. Let $A = \{5,6,7,...,12\}$. Find the following:
 - a. $\{n \in A : n \text{ is even}\};$ **Answer:** $\{6, 8, 10, 12\}$
 - b. $\{n \in A : n = m^2 \text{ for some } m \in \mathbb{Z}\};$ Answer: $\{9\}$
 - c. $\{-5, -4, -3, ..., 5\} \setminus \{1, 2, 3, ..., 10\};$ Answer: $\{-5, -4, -3, -2, -1, 0\}$
 - d. $\overline{\{5,7,9\} \cup \{9,11\}}$, where *A* is considered the universal set;

Answer: $\overline{\{5,7,9\} \cup \{9,11\}} = \overline{5,7,9,11} = \{6,8,10,12\}$ where A is the universal set.

- e. $\{(x,y) \in \{1,3,5\} \times \{2,4\} : x+y \ge 6\}$. Answer: $\{(3,4), (5,2), (5,4)\}$
- 3. (Past year's exam question.)

Denote by |n| the absolute value of the integer n, i.e.,

$$|n| = \begin{cases} n, & \text{if } n \ge 0; \\ -n, & \text{if } n < 0. \end{cases}$$

Given the set $S = \{-9, -6, 1, 3, 5, 8\}$, for each of the following statements, state whether it is true or false, with explanation.

- a. $\exists z \in S \ \forall x, y \in S \ z > |x y|$.
- b. $\exists z \in S \ \forall x, y \in S \ z < |x y|$.

Answers:

a. False.

It suffices to show that its negation, $\forall z \in S \ \exists x, y \in S \ z \leq |x - y|$ is true.

Take any $z \in S$. Let x = 8 and y = -9. Then $x, y \in S$ and |x - y| = |8 - (-9)| = 17 which is larger than every element in S.

b. True.

Let $z=-6 \in S$ (or the other negative value in S, i.e. -9). Then $|x-y| \ge 0 > -1$ for all $x,y \in S$.

4. Let $A = \{2n + 1 : n \in \mathbb{Z}\}$ and $B = \{2n - 5 : n \in \mathbb{Z}\}$. Is A = B? Prove that your answer is correct. What does this tell us about how odd numbers may be defined?

Answer:

Yes, A = B. Proof as shown below. (Recall that: $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$.)

- 1. (⊆)
 - 1.1. Let $a \in A$.
 - 1.2. Use the definition of A to find an integer n such that a = 2n + 1.
 - 1.3. Then a = 2n + 1 = 2(n + 3) 5.
 - 1.4. $n+3 \in \mathbb{Z}$ (by closure of integers under +).
 - 1.5. Therefore, $a \in B$ (by the definition of B).
- 2. (⊇)
 - 2.1. Let $b \in B$.
 - 2.2. Use the definition of B to find an integer n such that b = 2n 5.
 - 2.3. Then b = 2n 5 = 2(n 3) + 1.
 - 2.4. $n-3 \in \mathbb{Z}$ (by closure of integers under -).
 - 2.5. Therefore, $b \in A$ (by the definition of A).
- 3. Therefore, A = B (by the definition of set equality).

We use this definition of odd integers: An integer n is odd if and only if n=2k+1 for some integer k. The above tells us that we may define the set of odd numbers in many other ways.

5. Using definitions of set operations (also called the **element method**), prove that for all sets A, B, C,

$$A \cap (B \setminus C) = (A \cap B) \setminus C$$
.

Answer:

- 1. $A \cap (B \setminus C) = \{x : x \in A \land x \in (B \setminus C)\}$ by the definition of \cap
- 2. = $\{x : x \in A \land (x \in B \land x \notin C)\}$ by the definition of \
- 3. = $\{x : (x \in A \land x \in B) \land x \notin C\}$ by the associativity of \land
- 4. = $\{x : (x \in A \cap B) \land x \notin C\}$ by the definition of \cap
- 5. = $(A \cap B) \setminus C$ by the definition of \

6. (Past year's midterm test question.)

Using **set identities** (Theorem 6.2.2), prove that for all sets A, B and C,

$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C).$$

Answer:

$$A \setminus (B \setminus C)$$

- 1. = $A \setminus (B \cap \overline{C})$ by the Set Difference Law
- 2. = $A \cap \overline{(B \cap \overline{C})}$ by the Set Difference Law
- 3. = $A \cap (\bar{B} \cup \bar{C})$ by De Morgan's Law
- 4. = $A \cap (\bar{B} \cup C)$ by the Double Complement Law
- 5. = $(A \cap \overline{B}) \cup (A \cap C)$ by the Distributive Law
- 6. = $(A \setminus B) \cup (A \cap C)$ by the Set Difference Law
- 7. For sets A and B, define $A \oplus B = (A \setminus B) \cup (B \setminus A)$.
 - a. Let $A = \{1,4,9,16\}$ and $B = \{2,4,6,8,10,12,14,16\}$. Find $A \oplus B$.
 - b. Using set identities (Theorem 6.2.2), prove that for all sets A and B,

$$A \oplus B = (A \cup B) \setminus (A \cap B).$$

Answers:

- a. $A \setminus B = \{1,9\}; B \setminus A = \{2,6,8,10,12,14\}.$ Therefore, $A \oplus B = \{1,2,6,8,9,10,12,14\}.$
- b.
 - 1. $A \oplus B$
 - 2. = $(A \setminus B) \cup (B \setminus A)$ by the definition of \oplus
 - 3. = $((A \cap \overline{B}) \cup (B \cap \overline{A}))$ by the Set Difference Law
 - 4. = $((A \cap \overline{B}) \cup B) \cap ((A \cap \overline{B}) \cup \overline{A})$ by the Distributive Law
 - 5. = $(B \cup (A \cap \bar{B})) \cap (\bar{A} \cup (A \cap \bar{B}))$ by the Commutative Law
 - 6. = $((B \cup A) \cap (B \cup \overline{B})) \cap ((\overline{A} \cup A) \cap (\overline{A} \cup \overline{B}))$ by the Distributive Law
 - 7. = $(B \cup A) \cap U \cap (\overline{A} \cup \overline{B})$ by the Complement Law
 - 8. = $((A \cup B) \cap U) \cap ((\bar{A} \cup \bar{B}) \cap U)$ by the Commutative Law
 - 9. $= (A \cup B) \cap (\overline{A} \cup \overline{B})$ by the Identity Law
 - 10. = $(A \cup B) \cap (\overline{A \cap B})$ by De Morgan's Law
 - 11. $= (A \cup B) \setminus (A \cap B)$ by the Set Difference Law

8. Let A and B be set. Show that $A \subseteq B$ if and only if $A \cup B = B$.

Answer:

```
1. (⇒)
    1.1. Suppose A \subseteq B.
           (To show A \cup B = B, we need to show A \cup B \subseteq B and B \subseteq A \cup B.)
    1.2. (To show A \cup B \subseteq B)
          1.2.1. Let z ∈ A \cup B.
           1.2.2. Then z \in A or z \in B (by the definition of \cup).
           1.2.3. Case 1: Suppose z \in A, then z \in B as A \subseteq B from line 1.1.
           1.2.4. Case 2: Suppose z \in B, then z \in B.
           1.2.5. In either case, we have z \in B.
    1.3. (To show A \cup B \supseteq B)
          1.3.1. Let z \in B.
           1.3.2. Then z \in A or z \in B (by generalization).
           1.3.3. So z \in A \cup B (by the definition of \cup).
    1.4. Therefore, A \cup B = B (by the definition of set equality).
2. (⇐)
    2.1. Suppose A \cup B = B.
   2.2. Let z \in A.
           2.2.1. Then z \in A or z \in B (by generalization).
```

3. Therefore, $A \subseteq B$ if and only if $A \cup B = B$ (from 1 and 2).

2.3. Therefore, $A \subseteq B$.

2.2.2. So $z \in A \cup B$ (by the definition of \cup). 2.2.3. So $z \in B$ since $A \cup B = B$ (from line 2.1).

9. Hogwarts School of Witchcraft and Wizardry where Harry Potter attended was divided into 4 houses: Gryffindor, Hufflepuff, Ravenclaw and Slytherin.

Let HSWW be the set of students in the Hogwarts School of Witchcraft and Wizardry, and G, H, R and S be the sets of students in the 4 houses.

What are the necessary conditions for $\{G, H, R, S\}$ to be a partition of HSWW? Explain in English and the write logical statements.

Answers:

The necessary conditions are every student is in exactly one of the four houses, and every house has at least one student.

```
G \cap H = G \cap R = G \cap S = H \cap R = H \cap S = R \cap S = \emptyset. (That is, the houses are mutually disjoint sets.) G \cup H \cup R \cup S = HSWW. (That is, every Hogwarts student is in one of the houses.) G \neq \emptyset \land H \neq \emptyset \land R \neq \emptyset \land S \neq \emptyset. (That is, every house has at least one student.)
```

For questions 10 to 12, for sets A_m , A_{m+1} , ..., A_n , we define the following:

$$\bigcup_{i=m}^{n} A_i = A_m \cup A_{m+1} \cup ... \cup A_n$$

and

$$\bigcap_{i=m}^{n} A_i = A_m \cap A_{m+1} \cap \dots \cap A_n$$

10. Let $A_i = \{x \in \mathbb{Z} : x \ge i\}$ for all integers i. Write down $\bigcup_{i=2}^5 A_i$ and $\bigcap_{i=2}^5 A_i$ in **roster notation**. *Answers:*

$$\bigcup_{i=2}^{5} A_i = \{2,3,4,5,\dots\}$$

$$\bigcap_{i=2}^{5} A_i = \{5,6,7,8,\dots\}$$

11. Let $V_i = \left\{ x \in \mathbb{R} : -\frac{1}{i} \le x \le \frac{1}{i} \right\} = \left[-\frac{1}{i}, \frac{1}{i} \right]$ for all positive integers i.

- a. What is $\bigcup_{i=1}^{4} V_i$? **Answer:** $\bigcup_{i=1}^{4} V_i = [-1,1]$.
- b. What is $\bigcap_{i=1}^{4} V_i$? **Answer:** $\bigcap_{i=1}^{4} V_i = \left[-\frac{1}{4}, \frac{1}{4} \right]$
- c. What is $\bigcup_{i=1}^{n} V_i$, where n is a positive integer? **Answer:** $\bigcup_{i=1}^{n} V_i = [-1,1]$.
- d. What is $\bigcap_{i=1}^n V_i$, where n is a positive integer? **Answer**: $\bigcap_{i=1}^n V_i = \left[-\frac{1}{n}, \frac{1}{n}\right]$.
- e. Are V_1 , V_2 , V_3 , ... mutually disjoint?

Answer: V_1 , V_2 , V_3 , ... are not mutually disjoint. They have the common element 0.

$$V_1 = [-1,1]; V_2 = \left[-\frac{1}{2}, \frac{1}{2}\right]; V_3 = \left[-\frac{1}{3}, \frac{1}{3}\right]; V_4 = \left[-\frac{1}{4}, \frac{1}{4}\right]; \dots; V_n = \left[-\frac{1}{n}, \frac{1}{n}\right]$$

12. Let $B_1, B_2, B_3, \dots, B_k$ and $C_1, C_2, C_3, \dots, C_l$ be sets such that

$$\bigcup_{i=1}^k B_i \subseteq \bigcap_{j=1}^l C_j$$

Show that $B_i \subseteq C_i$ for any $i \in \{1, 2, ..., k\}$ and any $j \in \{1, 2, ..., l\}$.

Answer:

- 1. Let $r \in \{1, 2, ..., k\}$ and $s \in \{1, 2, ..., l\}$.
- 2. Take any $z \in B_r$.
 - 2.1. Then $z \in B_1 \lor z \in B_2 \lor ... \lor z \in B_k$ as $r \in \{1, 2, ..., k\}$.
 - 2.2. So, $z \in B_1 \cup B_2 \cup ... \cup B_k = \bigcup_{i=1}^k B_i$ (by the definition of \cup).
 - 2.3. Hence, $z \in \bigcap_{j=1}^l C_j = C_1 \cap C_2 \cap ... \cap C_l$ (as we are given $\bigcup_{i=1}^k B_i \subseteq \bigcap_{j=1}^l C_j$).
 - 2.4. Thus $z \in C_1 \land z \in C_2 \land ... \land z \in C_l$ (by the definition of \cap).
 - 2.5. In particular, $z \in C_s$ as $s \in \{1, 2, ..., l\}$.
- 3. Therefore, $B_i \subseteq C_i$ for any $i \in \{1, 2, ..., k\}$ and any $j \in \{1, 2, ..., l\}$.

Note: I asked students to draw a Venn diagram for $\bigcup_{i=1}^k B_i \subseteq \bigcap_{j=1}^l C_j$ (try it yourself!) and the above proof is derived from the diagram. There are other ways to write the proof, for instance, using Theorem 6.2.1.