Lecture 1

Lecture 2

Lecture 3

Lecture 4

Let (x, d) and (Y, ρ) be two metric spaces. A function $f: X \to Y$ is **continuous** at a point x^0 if $\forall \varepsilon > 0 \exists \delta > 0$ s.t. if $d(x, x^0) < \delta$, then $\rho(f(x), f(x^0)) < \varepsilon$.

Continuity at x^0 requires $f(x^0)$ is defined and either x^0 is an isolated point of X ($\exists x^0$ s.t. $B_{\varepsilon}(x^0) = \{x^0\}$) or $\lim_{x \to x^0} f(x)$ exists and equals $f(x^0)$.

Let (X,d) and (Y,ρ) be two metric spaces, $f:X\to Y$. Then f is continuous at x^0 iff either (1) f(x) is defined and either x^0 is an isolated point or x^0 is a limit point of X and $\lim_{x\to x^0}=f(X^0)$ or (2) for any sequence $\{x_n\}$ s.t. $x_n\to x^0$, the sequence $\{f(x_n)\}$ converges to $f(x^0)$.

A function f is continuous if it is continuous at every point of its domain.

$$f^{-1}(A) = \{x \in X | f(x) \to A\}$$

Let (X, d) and (Y, ρ) be two metric spaces, $f: x \to Y$. Then f is continuous iff for any closed set C in (Y, ρ) , the set $f^{-1}(C)$ is closed in (X, d).

Let (X,d) and (Y,ρ) be two metric spaces, $f: x \to Y$. Then f is continuous iff for any open set C in (Y,ρ) , the set $f^{-1}(C)$ is open in (X,d).

Let (X, d) and (Y, ρ) be two metric spaces. A function $f: X \to Y$ is uniformly continuous if $\forall \varepsilon > 0 \exists \delta > 0$ s.t. if $d(x, x^0) < \delta$, then $\rho(f(x), f(x^0)) < \varepsilon$ (δ depends only on ε not on x^0).

Let (X,d) and (Y,ρ) be two metric spaces, $f:X\to Y,E\subset X$. Then f is Lipschitz on E if $\exists K>0$ s.t. $\rho(f(x),f(y))\leq Kd(x,y)\forall x,y\in E$.

Let (X,d) and (Y,ρ) be two metric spaces, $f:X\to Y, E\subset X$. Then f is locally Lipschitz on E if $\forall x\in E\exists \varepsilon>0$ s.t. f is Lipschitz on $B_{\varepsilon}(x)\cap E$.

Lipschitz continuity \implies uniform continuity \implies continuity

Lecture 5

Let $X \subset \mathbb{R}$. Then $u \in \mathbb{R}$ is an upper bound for X if x < u for all $x \in X$.

Let $X \subset \mathbb{R}$. Then $l \in \mathbb{R}$ is an lower bound for X if x > l for all $x \in X$.

Suppose X is bounded above. The **supremum** of X, $\sup X$, is the smallest upper bound for X. That is, $\sup X$ satisfies $\sup X \ge x \forall x \in X$ and $\forall y < \sup X \exists x \in X$ s.t. x > y.

Suppose X is bounded below. The **infimum** of X, inf X, is the largest lower bound for X. That is, inf X satisfies inf $X \le x \forall x \in X$ and $\forall y > \inf X \exists x \in X \text{ s.t. } x < y.$

Supremum Property: Every nonempty set of real numbers that is bounded above has a supremum. This supremum is a real number.

EVT: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then f attains its maximum and minimum on [a,b]: $f(x_M) = \sup_{x \in [a,b]} f(x), f(x_m) = \inf_{x \in [a,b]} f(x), x_M, x_m \in [a,b]$.

IVT: Let $f:[a,b]\to\mathbb{R}$ be a continuous function. Then for any $\gamma\in[f(a),f(b)]$ there exists $c\in[a,b]$ s.t. $f(c)=\gamma$.

 $f: \mathbb{R} \to \mathbb{R}$ is monotonically increasing if $\forall x, y, x < y$ implies f(x) < f(y).

Let $f:(a,b) \to \mathbb{R}$ be monotonically increasing. Then one-sided limits $f(x^+) := \lim_{x \to x^+} f(y)$ and $f(x^-) := \lim_{x \to x^-} f(y)$ exist $\forall x \in (a,b)$. Moreover, $\sup\{f(s)|a < s < x\} = f(x^-) \le f(x) \le f(x^+) = \inf\{f(s)|x < s < b\}$.

Lecture 6

A sequence $\{x_n\}$ in a metric space (X,d) is **Cauchy** if $\forall \varepsilon > 0 \exists N > 0$ s.t. if m, n > N, then $d(x_n, x_m) < \varepsilon$.

Every **convergent** sequence in a metric space is **Cauchy**.

A metric space (X,d) is **complete** if every Cauchy sequence contained in X converges to some point in X.

Euclidean space (\mathbb{R}^m, d_E) is complete for any m.

If (X,d) is a complete metric space and $Y \subset X$, then (Y,d) is complete iff Y is closed.

A function $T: X \to X$ from a metric space to itself is called and **operator**.

An operator $T: X \to X$ is a **contraction of modulus** β if $\beta < 1$ and $d(T(x), T(y)) \le \beta d(x, y) \forall x, y \in X$.

Every contraction is uniformly continuous.

A fixed point of an operator T is an element $x^* \in X$ s.t. $T(x^*) = x^*$.

Contraction Mapping Theorem: Let (X,d) be a nonempty complete metric space and $T: X \to X$ a contraction with modulus $\beta < 1$. Then T has a unique fixed point x^* and $\forall x_0 \in X$ the sequence $\{x_n\}$, where $x_n = T^n(x_0) = T(T(...T(x_0)))$ converges to x^* .

Continuous Dependence of the Fixed Point on Parameters: Let (X,d) and (Ω,ρ) be two metric spaces and $T: X \times \Omega \to X$. For each $\omega \in \Omega$, let $T_{\omega}: X \to X$ be defined by $T_{\omega}(x) = T(x,\omega)$. Suppose (X,d) is complete, T is continuous in ω , and $\exists \beta < 1$ s.t. T_{ω} is a contraction of modulus β for all $\omega \in \Omega$. Then the fixed point function $x^*: \Omega \to X$ defined by $x^*(\omega) = T_{\omega}(x^*(\omega))$ is continuous.

Blackwell's Sufficient Conditions: Let B(X) be the set of all bounded functions from X to \mathbb{R} with metric $d_{\infty}(f,g) = \sup_{x \in X} |f(x) - g(x)|$. Let $T : B(X) \to B(X)$ satisfy monotonicity (if $f(x) \le g(x) \forall x \in X$, then $(T(f))(x) \le (T(g))(x)$ for all $x \in X$) and discounting $(\exists \beta \in (0,1) \text{ s.t.}$ for every $\alpha \ge 0$ and $x \in X$, $(T(f+a))(x) \le (T(f))(x) + \beta \alpha$, then T is a contraction with modulus β .

Lecture 7

A collection of sets $\mathcal{U} = \{U_{\lambda} | \lambda \in \Lambda\}$ in a metric space (X, d) is an **open cover** of the set A if U_{λ} is open for all $\lambda \in \Lambda$ and $A \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}$.

A set A in a metric space is **compact** if every open cover of A contains a **finite subcover** of A. That is, if $\{U_{\lambda} | \lambda \in \Lambda\}$ is an open cover of A, then $\exists n \in \mathbb{N}$ and $\lambda_1, ..., \lambda_n \in \Lambda$ such that $A \subset U_{\lambda_1} \cup ... \cup U_{\lambda_n}$.

Any closed subset of a compact space is compact.

If A is a compact subset of a metric space, then A is closed and bounded.

Heine-Borel Theorem: If $A \subset \mathbb{R}^m$, then A is compact iff A is closed and bounded.

Closed interval $[a,b] = \{a \in \mathbb{R}^m | a_i \leq x_i \leq b_i, i=1,...,m\}$ is compact in (\mathbb{R}^m, d_E) for any $a,b, \in \mathbb{R}^m$.

Let (X, d) and (Y, ρ) be metric spaces. If $f: X \to Y$ is continuous and C is a compact set in (X, d), then f(C) is compact in (Y, ρ) .

EVT: If C is a compact set in a metric space (X,d) and $f:C\to\mathbb{R}$ is continuous, then f is bounded on C and attains its maximum and minimum.

Let (X,d) and (Y,ρ) be metric spaces, $C \subset X$ compact, $f: C \to Y$ continuous. Then f is uniformly continuous on C.

Lecture 8

A **vector space** V is a collection of obejets called vectors, which may be added together and multiplied by real numbers, called scalars, satisfying $\forall x, y, z \in V$, $\forall \alpha, \beta \in \mathbb{R}$: (1) (x+y)+z=x+(y+z), (2) x+y=y+x, (3) $\exists \bar{0} \in V$ s.t. $x+\bar{0}=\bar{0}+x=x$, (4) $\exists (-x) \in V$ s.t. $x+(-x)=\bar{0}$, (5) $\alpha(x+y)=\alpha x+\alpha y$, (6) $(\alpha+\beta)x=\alpha x+\beta x$, (7) $(\alpha\cdot\beta)x=\alpha(\beta\cdot x)$, (8) $1\cdot x=x$.

Lecture 9