Third Party Signs and Traffic Accidents in Toronto

Shawn Mills York University CSDA1050 August 23, 2019

Introduction

- Distracted driving is not a new phenomenon
- Audible distractions
 - Music, passengers, horns, sirens, etc.
- Visual distractions
 - Pedestrians, animals, advertisements, cell phones, etc.

Background

- City of Toronto enacted its Sign By-law in 2010
- Signage is divided into two categories:
 - First-party signs identifies business or service at the location
 - Third-party signs advertisements for goods or services not related to the business on premises
- Permits are required for third-party signs

Literature Review

- Other articles on distracted driving:
 - The role of roadside advertising signs in distracting drivers

(https://www.researchgate.net/publication/222691471_The_role_of_roadside_advertising_signs_in_distracting_drivers)

 Digital signage is a distracted driving hazard (https://www.myparkingsign.com/blog/digitalsignage-distracted-driving/)

Research Question

Does the presence of third-party signs affect the volume of traffic accidents in Toronto?

Data and Description

- Third-party Signs Inventory
 (https://www.toronto.ca/city-government/data-researchmaps/open-data/open-data-catalogue/business/#9b6f952e-52d7-1fc4-51f6-4ad6bc913218)
- Toronto Police Service Killed or Seriously Injured (KSI) Data (http://data.torontopolice.on.ca/datasets/ksi/data)
- SimplyAnalytics Census Tracts and Demographic Data (https://simplyanalytics.com/)

Methodology

- Geospatial analytics determine location of signs relative to location of traffic accidents
- Geospatial Autocorrelation used to uncover geographic relationships between signs and the number of traffic accidents
- Visualizations and backing statistics

Python Environment

- Python 3.5.8
- Non-geographic libraries:
 - Pandas 0.25.0
 - Numpy 1.16.4
 - XIrd 1.2.0
- Visualization libraries:
 - Matplotlib 3.1.1
 - Seaborn 0.9.0

Python Environment (Continued)

- Geographic and spatial libraries:
 - Geopandas 0.5.1
 - Shapely 1.6.4.post1
 - Fiona 1.8.4
 - Pycrs 1.0.1
 - Pysal 2.0.0

Locations of Signs and Accidents

- Blue marks represent sign locations
- Red marks represent accident locations
- Overlapping of colours is evident
- Large clustering exists in the south-central tracts

Question:

Is there a geospatial relationship to the location of the signs amongst themselves within the city?

Signs per Square Km

 Darker colours show tracts with greater density of signs per square Km

Spatial Autocorrelation

- Displays clusters of similar regions based on a given feature or attribute
- PySAL library provides the tools necessary to conduct spatial autocorrelation analysis

What is Similarity?

Spatial Similarity

 spatial weights are used to determine which regions are neighbours (ie. neighbours are spatially similar)

Attribute Similarity

 spatial lag is the measurement used to determine how similar a feature is between neighbouring regions

Spatial Autocorrelation Visualized

- Spatial Lag of Signs per Square Km
- Clustering appears in the south and upwards through the central-west tracts (darker)
- Visually there appears to be some spatial correlation amongst the census tracts

Local Indicators of Spatial Association (LISA) Visualized

- Red clusters indicate significantly higher number of signs per square Km
- Blue clusters indicate significantly lower number of signs per square Km

Moran Scatterplot

- Scatterplot of Signs per Square Km vs. their spatial lag
- Moran's I value is shown as the red line
- A positive relationship is visible

Statistical Results

- Moran's I = 0.31
 - since this is positive, there is some clustering of similar values
 - since this is somewhat close to zero, there may be some randomness to these values
- *p*-value = 0.001
 - reject the null; I was not generated by chance

Question:

Is there a geospatial relationship to the location of the signs and the number of nearby traffic accidents?

Accidents per Sign per Square Km

 Darker colours show tracts with greater density of accidents per sign per square Km

Spatial Autocorrelation Visualized

- Spatial Lag of Accidents per Sign per Square Km
- Clustering is visible, but appears to be more randomly dispersed across the city in comparison to the spatial lag map of the signs per square Km

LISA Visualized

- Red clusters indicate significantly higher number of accidents per sign per square Km
- Blue clusters indicate significantly lower number of accidents per sign per square Km

Moran Scatterplot

- Scatterplot of Accidents per Sign per Square Km vs. their spatial lag
- Moran's I value is shown as the red line
- A positive relationship is visible, but it is very weak

Statistical Results

- Moran's I = 0.02
 - since this is only barely positive, there is very little to no clustering of similar values
 - since this is almost zero, there is close to perfect randomness in these values
- *p*-value = 0.181
 - Cannot reject the null; I could have generated by chance

Question:

Is there a demographic reason that could help explain this lack of relationship?

- Most advertising signs (61.4%) are found in census tracts with above average population (AAP)
- Check for a relationship in only these census tracts

Sign Locations and Population

- Sign locations are shown in red
- Census tracts with above average population (AAP) are shown in yellow
- Purple areas will be excluded

Accidents per Sign per Square Km - AAP Tracts Only

- Darker colours show tracts with greater density of accidents per sign per square Km
- Gaps between some census tracts represent areas below the average population

Spatial Autocorrelation Visualized

- Spatial Lag of Accidents per Sign per Square Km in AAP Census Tracts
- Similar results to the total spatial lag of accidents per square Km map
- Clustering is visible, but appears to be randomly dispersed across the city

LISA Visualized

- Red clusters indicate significantly higher number of accidents per sign per square Km in AAP census tracts
- Blue clusters indicate significantly lower number of accidents per sign per square Km in AAP census tracts
- Both appear randomly across the city

Moran Scatterplot

- Scatterplot of Accidents per Sign per Square Km vs. their spatial lag in AAP census tracts
- Moran's I value is shown as the red line
- No correlation appears to exist

Statistical Results

- Moran's I = -0.004
 - since this is almost zero, there is close to perfect randomness and no clustering in these values
- *p*-value = 0.443
 - Cannot reject the null; I could have generated by chance
- Much of the spatial similarity was lost by removing low population census tracts

Conclusion

- There appears to be no correlation between the number of accidents and the presence of advertising signs in Toronto
- The volume of accidents did not necessarily increase with the presence of more signs and no statistically significant relationship was found

Thank you

...and keep your eyes on the roads