Linear Algebra – MAT 2610

Section 2.1 (Matrix Operations)

Dr. Jay Adamsson

jay@aorweb.ca

jadamsson@upei.ca

Theorem 1

Let A, B, C be $m \times n$ matrices, and let s and t be any scalars. Then

a)
$$A + B = B + A$$

(commutative law)

b)
$$(A + B) + C = A + (B + C)$$
 (associative law)

c)
$$A + 0 = A$$

$$d) \ s(A+B) = sA + sB$$

$$e) (s+t)A = sA + tA$$

$$f$$
) $(st)A = s(tA)$

Definition: The product AB of the $m \times n$ matrix A and the $n \times p$ matrix B is defined as

$$AB = [Ab_1 \quad Ab_2 \quad \dots \quad Ab_p]$$

where b_i is the i^{th} column of B

Example:

$$\begin{bmatrix} 2 & 3 & -2 \end{bmatrix} \begin{bmatrix} r & -2 \\ s & t \\ 2 & -3 \end{bmatrix} =$$

Note: The product AB of the $m \times n$ matrix A and the $n \times p$ matrix B results in a $m \times p$ matrix.

Example: If A is a 4×3 matrix and B is a 3×5 matrix, then

- Its product AB will be a 4×5 matrix
- The entry in the 1st row and 1st column will be the product of the 1st row of A and the 1st column of B
- ...
- The entry in the i^{th} row and j^{th} column will be the product of the i^{th} row of A and the j^{th} column of B

Row-Column rule for the (i, j)-entry of a Matrix Product:

To compute the (i,j)-entry of a Matrix Product AB, locate the i^{th} row of A and the j^{th} column of B as in the diagram. Moving across the the i^{th} row of A and the j^{th} column of B, multiply each entry of the row by the corresponding entry of the column. The sum of these products is the (i,j)-entry AB:

Example: Let
$$A = \begin{bmatrix} -3 & 3 \\ 2 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & x & 1 \\ y & -3 & z \end{bmatrix}$

1.
$$AB =$$

$$2. BA =$$

Theorem 2

Let A and B be $k \times m$ matrices, C be an $m \times n$ matrix, and P and Q be $n \times p$ matrices. Then:

- 1. (AC)P = A(CP)
- 2. C(P+Q)=CP+CQ
- 3. (A+B)C = AC + BC
- 4. s(AC) = (sA)C = A(sC) for any scalar s
- $5. I_k A = A = AI_k$

Very Important Point I: Matrix Multiplication is not commutative. In other words, $AB \neq BA$ in general

Example: Let
$$A = \begin{bmatrix} -3 & 3 \\ 2 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 \\ -2 & 1 \end{bmatrix}$

1.
$$AB =$$

$$2. BA =$$

Very Important Point II: Cancellation laws do not hold in general for matrix multiplication

Example: Let
$$A = \begin{bmatrix} -3 & 3 \\ 2 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 \\ -2 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 4 & 5 \\ 0 & 5 \end{bmatrix}$

1.
$$AC = \begin{bmatrix} -12 & 0 \\ 8 & 0 \end{bmatrix}$$

2.
$$BC = \begin{bmatrix} -12 & 0 \\ 8 & 0 \end{bmatrix}$$

Very Important Point III: If the product of matrices is the zero matrix, you cannot conclude that either of your original matrices are zero

Example: Let
$$A = \begin{bmatrix} -3 & 3 \\ 2 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$

Then
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Definition: If A is an $n \times n$ matrix, then

$$AA = A^{2}$$

$$AAA = A^{3}$$

$$AAAA = A^{4}$$

and so on.

Also,
$$A^0 = I_n$$

Definition: The (i, j)-entry of a matrix A is a **diagonal entry** if i = j. The set of diagonal entries is the **diagonal** of A. A square matrix A is a **diagonal matrix** if all non-diagonal entries are 0.

Theorem 3

Let A, B be $m \times n$ matrices, and let s be any scalar. Then

a)
$$(A^{T})^{T} = A$$

b)
$$(A + B)^T = A^T + B^T$$

c)
$$(sA^T) = sA^T = s(A^T)$$

d)
$$(AB)^T = B^T A^T$$

Linear Algebra – MAT 2610

Section 2.1 (Matrix Operations)

Dr. Jay Adamsson

jay@aorweb.ca

jadamsson@upei.ca