

Correcting Multiple Substitutions in Nanopore-Sequencing Reads

Anisha Banerjee¹, **Yonatan Yehezkeally**², Antonia Wachter-Zeh¹, and Eitan Yaakobi³

¹Technical University of Munich Institute for Communications Engineering ²Newcastle University, School of Computing ³Technion – Israel Institute of Technology Department of Computer Science

Outline

Introduction

Channel Model

Minimum Redundancy

Conclusion

Introduction

Channel Mode

Minimum Redundancy

Conclusion

Sono, 100

- Need for dense, reliable, robust storage media
 - ► Molecular storage paradigms e.g., DNA storage.¹

¹ R. Heckel et al., "A characterization of the DNA data storage channel," Scientific Reports, 2019

² D. Deamer *et al.*, "Three decades of nanopore sequencing," *Nat. Biotech.*, 2016

² A. H. Laszlo *et al.*, "Decoding long nanopore sequencing reads of natural DNA," *Nat. Biotech.*, 2014

- Need for dense, reliable, robust storage media
 - ► Molecular storage paradigms e.g., DNA storage.¹
- Faster, cheaper sequencers in development.

¹ R. Heckel *et al.*, "A characterization of the DNA data storage channel," *Scientific Reports*, 2019

² D. Deamer *et al.*, "Three decades of nanopore sequencing," *Nat. Biotech.*, 2016

² A. H. Laszlo *et al.*, "Decoding long nanopore sequencing reads of natural DNA," *Nat. Biotech.*, 2014

- Need for dense, reliable, robust storage media
 - ► Molecular storage paradigms e.g., DNA storage.¹
- Faster, cheaper sequencers in development.
- Nanopore sequencing²:
 - + Can read longer DNA strands
 - More portable
 - High error rates

Source: "Decoding DNA with a pocket-sized sequencer," Science in School. https://www.scienceinschool.org/article/2018/decoding-dna-pocket-sized-sequencer/

¹ R. Heckel *et al.*, "A characterization of the DNA data storage channel," *Scientific Reports*, 2019

² D. Deamer *et al.*, "Three decades of nanopore sequencing," *Nat. Biotech.*, 2016

² A. H. Laszlo *et al.*, "Decoding long nanopore sequencing reads of natural DNA," *Nat. Biotech.*, 2014

- Need for dense, reliable, robust storage media
 - ► Molecular storage paradigms e.g., DNA storage.¹
- Faster, cheaper sequencers in development.
- Nanopore sequencing²:
 - + Can read longer DNA strands
 - More portable
 - High error rates
- Aim: Design coding techniques tailored for nanopore sequencing!

SOURCE: "Decoding DNA with a pocket-sized sequencer," Science in School. https://www.scienceinschool.org/article/2018/decoding-dna-pocket-sized-sequencer/

¹ R. Heckel *et al.*, "A characterization of the DNA data storage channel," *Scientific Reports*, 2019

² D. Deamer *et al.*, "Three decades of nanopore sequencing," *Nat. Biotech.*, 2016

² A. H. Laszlo *et al.*, "Decoding long nanopore sequencing reads of natural DNA," *Nat. Biotech.*, 2014

Nanopore Sequencing

Source: "What is Oxford Nanopore Technology (ONT) sequencing?," https://www.yourgenome.org/facts/what-is-oxford-nanopore-technology-ont-sequencing/

Nanopore Sequencing

 $\textbf{SOUICE: "What is Oxford Nanopore Technology (ONT) sequencing?," https://www.yourgenome.org/facts/what-is-oxford-nanopore-technology-ont-sequencing/nanop$

- Sources of noise [MDK18]:
 - ▶ Nanopore holds $\ell > 1$ nucleotides at a time \rightarrow Intersymbol interference (ISI)!
 - \blacktriangleright Strand moves irregularly \rightarrow backtracking & skipping.
 - Noisy measurements

Channel model & understanding capacity: [MDK18], [HCW21], [MVS22], [RW25]

[MDK18] W. Mao *et al.*, "Models and information-theoretic bounds for nanopore sequencing," *TIT*, 2018 [HCW21] R. Hulett *et al.*, "On coding for an abstracted nanopore channel for DNA storage," in *ISIT*, 2021 [MVS22] B. McBain *et al.*, "Finite-state semi-markov channels for nanopore sequencing," in *ISIT*, 2022 [RW25] A. Rameshwar and N. Weinberger, "On achievable rates over noisy nanopore channels," in *ISIT*, 2025 [CVVY21] Y. M. Chee *et al.*, "Coding for transverse-reads in domain wall memories," in *ISIT*, 2021

- Channel model & understanding capacity: [MDK18], [HCW21], [MVS22], [RW25]
- Similar channel model for racetrack memories: [CVVY21]

[MDK18] W. Mao *et al.*, "Models and information-theoretic bounds for nanopore sequencing," *TIT*, 2018 [HCW21] R. Hulett *et al.*, "On coding for an abstracted nanopore channel for DNA storage," in *ISIT*, 2021 [MVS22] B. McBain *et al.*, "Finite-state semi-markov channels for nanopore sequencing," in *ISIT*, 2022 [RW25] A. Rameshwar and N. Weinberger, "On achievable rates over noisy nanopore channels," in *ISIT*, 2025 [CVVY21] Y. M. Chee *et al.*, "Coding for transverse-reads in domain wall memories," in *ISIT*, 2021

- Channel model & understanding capacity: [MDK18], [HCW21], [MVS22], [RW25]
- Similar channel model for racetrack memories: [CVVY21]
- [MDK18] & [CVVY21] inspired a simplified model of nanopore sequencing.

[MDK18] W. Mao *et al.*, "Models and information-theoretic bounds for nanopore sequencing," *TIT*, 2018 [HCW21] R. Hulett *et al.*, "On coding for an abstracted nanopore channel for DNA storage," in *ISIT*, 2021 [MVS22] B. McBain *et al.*, "Finite-state semi-markov channels for nanopore sequencing," in *ISIT*, 2022 [RW25] A. Rameshwar and N. Weinberger, "On achievable rates over noisy nanopore channels," in *ISIT*, 2025 [CVVY21] Y. M. Chee *et al.*, "Coding for transverse-reads in domain wall memories," in *ISIT*, 2021

Introduction

Channel Model

Minimum Redundancy

Conclusion

W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018

We model

- ISI as length-ℓ-sliding window
- Measurement noise as substitutions

We model

- ISI as length- ℓ -sliding window
- Measurement noise as substitutions

Assumptions:

- Input $x \in \{0, 1\}^n$
- $\bullet\,$ DMC maps $\ell\text{-mers}$ to Hamming weights.

W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018

We model

- ISI as length-ℓ-sliding window
- Measurement noise as substitutions

Assumptions:

- Input $\mathbf{x} \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

Example ($\ell = 3$)

$$(1,0,1,1,0,0) = x \longrightarrow \ell - windowing \xrightarrow{\ell - mers} wt(\cdot)$$

We model

- ISI as length-ℓ-sliding window
- Measurement noise as substitutions

Assumptions:

- Input $\mathbf{x} \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

Example ($\ell = 3$)

We model

- ISI as length-ℓ-sliding window
- Measurement noise as substitutions

Assumptions:

- Input $\mathbf{x} \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

Example ($\ell = 3$)

W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018

We model

- ISI as length-ℓ-sliding window
- Measurement noise as substitutions

Assumptions:

- Input $\mathbf{x} \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

Example ($\ell = 3$)

$$(1,0,1,1,0,0) = x \longrightarrow \ell - \text{windowing} \xrightarrow{\ell\text{-mers}} \text{wt}(\cdot) \longrightarrow (1,1,2,0)$$

We model

- ISI as length-ℓ-sliding window
- Measurement noise as substitutions

Assumptions:

- Input $\mathbf{x} \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

Example ($\ell = 3$)

$$(1,0,1,1,0,0) = x \longrightarrow \ell - \text{windowing} \xrightarrow{\ell\text{-mers}} \text{wt}(\cdot) \longrightarrow (1,1,2,\frac{2}{2},0)$$

We model

- ISI as length-ℓ-sliding window
- Measurement noise as substitutions

Assumptions:

- Input $\mathbf{x} \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

Example ($\ell = 3$)

$$(1, 0, 1, 1, 0, 0) = \mathbf{x} \longrightarrow \ell - \text{windowing} \xrightarrow{\ell - \text{mers}} \text{wt}(\cdot) \longrightarrow (1, 1, 2, 2, 2, 2, 0)$$

We model

- ISI as length-ℓ-sliding window
- Measurement noise as substitutions

Assumptions:

- Input $\mathbf{x} \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

Example ($\ell = 3$)

W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018

We model

- ISI as length-ℓ-sliding window
- Measurement noise as substitutions

Assumptions:

- Input $\mathbf{x} \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

Example ($\ell = 3$)

$$(1, 0, 1, 1, 0, 0) = x \longrightarrow \ell - \text{windowing} \xrightarrow{\ell - \text{mers}} \text{wt}(\cdot) \longrightarrow (1, 1, 2, 2, 2, 1, 0, 0)$$

We model

- ISI as length-ℓ-sliding window
- Measurement noise as substitutions

Assumptions:

- Input $\mathbf{x} \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

Example ($\ell = 3$)

$$(1, 0, 1, 1, 0, 0) = x \longrightarrow \ell - windowing \xrightarrow{\ell - windowing} wt(\cdot) \longrightarrow (1, 1, 2, 2, 2, 1, 0, 0)$$

W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018

We model

- ISI as length-ℓ-sliding window
- Measurement noise as substitutions

Assumptions:

- Input $\mathbf{x} \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

Example ($\ell = 3$)

$$(1, 0, 1, 1, 0, 0) = \mathbf{x} \longrightarrow \boxed{\ell - \text{windowing}} \xrightarrow{\ell - \text{mers}} \left[\text{wt}(\cdot) \right] \longrightarrow (1, 1, 2, 2, 2, 1, 0, 0) = \mathcal{R}(\mathbf{x})$$

W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018

Definition

The ℓ -*read vector* of any $\mathbf{x} \in \Sigma_2^n$ is

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n))$$

where $wt(\cdot)$ denotes Hamming weight.

Y. M. Chee et al., "Coding for transverse-reads in domain wall memories," in ISIT, 2021

Definition

The ℓ -*read vector* of any $\mathbf{x} \in \Sigma_2^n$ is

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n))$$

where wt(·) denotes Hamming weight.

• Read vectors have special properties.

Y. M. Chee et al., "Coding for transverse-reads in domain wall memories," in ISIT, 2021

Definition

The ℓ -read vector of any $\mathbf{x} \in \Sigma_2^n$ is

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n))$$

where wt(·) denotes Hamming weight.

• Read vectors have special properties.

$$|\mathcal{R}(\mathbf{x})_i - \mathcal{R}(\mathbf{x})_{i-1}| \leq 1 \iff \mathcal{R}(\mathbf{x})_i - \mathcal{R}(\mathbf{x})_{i-1} = x_i - x_{i-\ell}$$

Y. M. Chee et al., "Coding for transverse-reads in domain wall memories," in ISIT, 2021

Definition

The ℓ -*read vector* of any $\mathbf{x} \in \Sigma_2^n$ is

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n))$$

where $wt(\cdot)$ denotes Hamming weight.

- Read vectors have special properties.
 - $ightharpoonup |\mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1}| \leq 1$,
 - $\blacktriangleright \sum_{i} \mathcal{R}(\mathbf{x})_{i} \bmod \ell = 0 \iff \sum_{i} \mathcal{R}(\mathbf{x})_{i} = \ell \cdot \operatorname{wt}(\mathbf{x})$

Y. M. Chee et al., "Coding for transverse-reads in domain wall memories," in ISIT, 2021

Definition

The ℓ -*read vector* of any $\mathbf{x} \in \Sigma_2^n$ is

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n))$$

where $\operatorname{wt}(\cdot)$ denotes Hamming weight.

• Read vectors have special properties.

$$ightharpoonup |\mathcal{R}(\mathbf{x})_i - \mathcal{R}(\mathbf{x})_{i-1}| < 1$$
,

$$ightharpoonup \sum_{i} \mathcal{R}(\mathbf{x})_{i} \bmod \ell = 0$$
, etc.

Y. M. Chee et al., "Coding for transverse-reads in domain wall memories," in ISIT, 2021

- Error correction for the read vector channel
 - ► [BYWY24] , [BYWY25] , [CIV24] , [SG25] , [YYS25]
- Weighted Read Vector channel [YEY24]

[BYWY24] A. Baneriee et al., "Error-correcting codes for nanopore sequencing," TIT, 2024

[BYWY25] A. Banerjee et al., "Correcting a single deletion in reads from a nanopore sequencer," in ISIT, 2024

[CIV24] Y. M. Chee et al., "Coding scheme for noisy nanopore sequencing with backtracking and skipping errors," in ISIT, 2024

[SG25] Y. Sun and G. Ge, "Bounds and constructions of ℓ-read codes under the hamming metric," TIT, 2025

[YYS25] W. Yu et al., "On the asymptotic rate of optimal codes that correct tandem duplications for nanopore sequencing," TIT, 2025

[YEY24] O. Yerushalmi et al., "The capacity of the weighted read channel," in ISIT, 2024

ℓ-Read Codes

- Read vectors possess inherent redundancy.
 - ► May aid in error correction!

ℓ-Read Codes

- Read vectors possess inherent redundancy.
 - ► May aid in error correction!

Definition [Error-correcting Code]

C is an ℓ -read code if for all $x, y \in C$,

$$E(\mathcal{R}(\mathbf{x})) \cap E(\mathcal{R}(\mathbf{y})) = \emptyset,$$

where $E(\cdot)$ is the error ball.

Comparison with the Classical Channel

• Do \(\ell \)-read codes require lesser redundancy?

¹⁵ A. Banerjee *et al.*, "Error-correcting codes for nanopore sequencing," *TIT*, 2024 Yonat Banerjee *et al.*, "Correcting a single deletion in reads from a nanopore sequencer," in *ISIT*, 2024

Comparison with the Classical Channel

- Do ℓ-read codes require lesser redundancy?
 - ▶ 'Classical' $\rightarrow \ell = 1$.
 - ▶ 'Nanopore' $\rightarrow \ell \geq 2$.

¹⁵ A. Banerjee et al., "Error-correcting codes for nanopore sequencing," T/T, 2024

 $v_{\rm OnAt}^{16}$ At Bangriee et al., "Correcting a single deletion in reads from a nanopore sequencer," in ISIT, 2024

Comparison with the Classical Channel

- Do ℓ-read codes require lesser redundancy?
 - 'Classical' $\rightarrow \ell = 1$.
 - ▶ 'Nanopore' $\rightarrow \ell \geq 2$.

	Classical	Nanopore
1 substitution ¹⁵	log n	log log <i>n</i>
1 deletion ¹⁶	log <i>n</i>	$\log n - \ell$
1 deletion, 2 reads ¹⁶	log log n	0

¹⁵ A. Banerjee *et al.*, "Error-correcting codes for nanopore sequencing," *TIT*, 2024 \(\frac{16}{2014} \) \(\frac{1}{2014} \) \(\f

Comparison with the Classical Channel

- Do ℓ-read codes require lesser redundancy?
 - ightharpoonup 'Classical' $\rightarrow \ell = 1$.
 - ▶ 'Nanopore' $\rightarrow \ell > 2$.

	Classical	Nanopore
1 substitution ¹⁵	log n	log log <i>n</i>
1 deletion ¹⁶	log n	$\log n - \ell$
1 deletion, 2 reads ¹⁶	log log n	0
$t \geq$ 2 substitutions	t log n	?

¹⁵ A. Banerjee et al., "Error-correcting codes for nanopore sequencing," TIT, 2024

Vorlat Bangring steal w "Correcting a single deletion in reads from a nanopore sequencer," in ISIT, 2024

Comparison with the Classical Channel

- Do ℓ-read codes require lesser redundancy?
 - 'Classical' $\rightarrow \ell = 1$.
 - ▶ 'Nanopore' $\rightarrow \ell \geq 2$.

	Classical	Nanopore
1 substitution ¹⁵	log n	log log <i>n</i>
1 deletion ¹⁶	log n	$\log n - \ell$
1 deletion, 2 reads ¹⁶	log log n	0
$t \geq$ 2 substitutions	t log n	t log n

¹⁵ A. Banerjee *et al.*, "Error-correcting codes for nanopore sequencing," *TIT*, 2024

Vorlat Bangring steal w "Correcting a single deletion in reads from a nanopore sequencer," in ISIT, 2024

Introduction

Channel Mode

Minimum Redundancy

Conclusion

Minimum Redundancy

Theorem

The redundancy of any t-substitution ℓ -read code, for $t,\ell \geq 2$, is bounded from below by

$$t \log n - O(1)$$
.

Minimum Redundancy

Theorem

The redundancy of any t-substitution ℓ -read code, for $t,\ell \geq 2$, is bounded from below by

$$t \log n - O(1)$$
.

• But for t = 1, we need $\log \log n - o(1)$ redundant bits.

Minimum Redundancy

Theorem

The redundancy of any *t*-substitution ℓ -read code, for $t, \ell \geq 2$, is bounded from below by

$$t \log n - O(1)$$
.

• But for t = 1, we need $\log \log n - o(1)$ redundant bits.

- Recall that for any $\mathbf{x} \in \Sigma_2^n$,
 - $ightharpoonup \mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}_{i-\ell+1}^i)$ and $x_i = 0$ for $i \notin [1, n]$.

- Recall that for any $\mathbf{x} \in \Sigma_2^n$,
 - $ightharpoonup \mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}_{i-\ell+1}^i)$ and $x_i = 0$ for $i \notin [1, n]$.
- Can reconstruct \mathbf{x} from $\mathcal{R}(\mathbf{x})$ with
 - $\blacktriangleright \quad \mathcal{R}(\boldsymbol{x})_i \mathcal{R}(\boldsymbol{x})_{i-1} = x_i x_{i-\ell}.$

- Recall that for any $\mathbf{x} \in \Sigma_2^n$,
 - $ightharpoonup \mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}_{i-\ell+1}^i) \text{ and } x_i = 0 \text{ for } i \notin [1, n].$
- Can reconstruct \boldsymbol{x} from $\mathcal{R}(\boldsymbol{x})$ with
 - $\blacktriangleright \quad \mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}.$

Example ($\ell = 3$)

$$\mathcal{R}(\mathbf{x}) \xrightarrow{\text{1substitution}} \mathcal{R}(\mathbf{x})' = (1, 1, 2, 3, 2, 1, 0, 0)$$

Yonatan Yehezkeally

- Recall that for any $\mathbf{x} \in \Sigma_2^n$,
 - $ightharpoonup \mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}_{i-\ell+1}^i) \text{ and } x_i = 0 \text{ for } i \notin [1, n].$
- Can reconstruct \boldsymbol{x} from $\mathcal{R}(\boldsymbol{x})$ with
 - $\blacktriangleright \quad \mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}.$

Example ($\ell = 3$)

$$\mathcal{R}(\mathbf{x}) \xrightarrow{\text{1substitution}} \mathcal{R}(\mathbf{x})' = (\mathbf{1}, 1, 2, 3, 2, 1, 0, 0)$$

•
$$x_1' = 1$$
,

- Recall that for any $\mathbf{x} \in \Sigma_2^n$,
 - $ightharpoonup \mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}_{i-\ell+1}^i) \text{ and } x_i = 0 \text{ for } i \notin [1, n].$
- Can reconstruct \boldsymbol{x} from $\mathcal{R}(\boldsymbol{x})$ with
 - $\blacktriangleright \quad \mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}.$

Example ($\ell = 3$)

$$\mathcal{R}(\mathbf{x}) \xrightarrow{\text{1substitution}} \mathcal{R}(\mathbf{x})' = (1, 1, 2, 3, 2, 1, 0, 0)$$

•
$$x_1' = 1, x_2' = 0,$$

- Recall that for any $\mathbf{x} \in \Sigma_2^n$,
 - $ightharpoonup \mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}_{i-\ell+1}^i) \text{ and } x_i = 0 \text{ for } i \notin [1, n].$
- Can reconstruct \boldsymbol{x} from $\mathcal{R}(\boldsymbol{x})$ with
 - $\blacktriangleright \quad \mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}.$

Example ($\ell = 3$)

$$\mathcal{R}(\mathbf{x}) \xrightarrow{\text{1substitution}} \mathcal{R}(\mathbf{x})' = (1, 1, 2, 3, 2, 1, 0, 0)$$

•
$$x_1' = 1, x_2' = 0, x_3' = 1,$$

- Recall that for any $\mathbf{x} \in \Sigma_2^n$,
 - $ightharpoonup \mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}_{i-\ell+1}^i) \text{ and } x_i = 0 \text{ for } i \notin [1, n].$
- Can reconstruct \boldsymbol{x} from $\mathcal{R}(\boldsymbol{x})$ with
 - $\blacktriangleright \quad \mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}.$

Example ($\ell = 3$)

$$\mathcal{R}(\mathbf{x}) \xrightarrow{\text{1substitution}} \mathcal{R}(\mathbf{x})' = (1, 1, 2, \mathbf{3}, 2, 1, 0, 0)$$

•
$$x'_1 = 1, x'_2 = 0, x'_3 = 1, x'_4 = 2 \times$$

- Recall that for any $\boldsymbol{x} \in \Sigma_2^n$,
 - $ightharpoonup \mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}_{i-\ell+1}^i) \text{ and } x_i = 0 \text{ for } i \notin [1, n].$
- Can reconstruct \boldsymbol{x} from $\mathcal{R}(\boldsymbol{x})$ with
 - $\blacktriangleright \quad \mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}.$

Example ($\ell = 3$)

$$\mathcal{R}(\mathbf{x}) \xrightarrow{\text{1substitution}} \mathcal{R}(\mathbf{x})' = (1, 1, 2, 3, 2, 1, 0, 0)$$

- $x'_1 = 1, x'_2 = 0, x'_3 = 1, x'_4 = 2 X$
- Error in $(\mathcal{R}(\mathbf{x})_1, \dots, \mathcal{R}(\mathbf{x})_4)$.

- Recall that for any $\mathbf{x} \in \Sigma_2^n$,
 - $ightharpoonup \mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}_{i-\ell+1}^i) \text{ and } x_i = 0 \text{ for } i \notin [1, n].$
- Can reconstruct \boldsymbol{x} from $\mathcal{R}(\boldsymbol{x})$ with
 - $\blacktriangleright \quad \mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}.$

Example ($\ell = 3$)

$$\mathcal{R}(\mathbf{x}) \xrightarrow{\text{1substitution}} \mathcal{R}(\mathbf{x})' = (1, 1, 2, 3, 2, 1, 0, 0)$$

Left to right reconstruction:

- $x'_1 = 1, x'_2 = 0, x'_3 = 1, x'_4 = 2 X$
- Error in $(\mathcal{R}(\mathbf{x})_1, \dots, \mathcal{R}(\mathbf{x})_4)$.

$$x_6'=0$$

- Recall that for any $\mathbf{x} \in \Sigma_2^n$,
 - $ightharpoonup \mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}_{i-\ell+1}^i) \text{ and } x_i = 0 \text{ for } i \notin [1, n].$
- Can reconstruct \boldsymbol{x} from $\mathcal{R}(\boldsymbol{x})$ with
 - $\blacktriangleright \quad \mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}.$

Example ($\ell = 3$)

$$\mathcal{R}(\mathbf{x}) \xrightarrow{\text{1substitution}} \mathcal{R}(\mathbf{x})' = (1, 1, 2, 3, 2, 1, \mathbf{0}, 0)$$

Left to right reconstruction:

Right to left reconstruction:

- $x'_1 = 1, x'_2 = 0, x'_3 = 1, x'_4 = 2 X$
- Error in $(\mathcal{R}(\mathbf{x})_1, \dots, \mathcal{R}(\mathbf{x})_4)$.

$$x_5' = 0, x_6' = 0$$

Yonatan Yehezkeally 11

- Recall that for any $\mathbf{x} \in \Sigma_2^n$,
 - $ightharpoonup \mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}_{i-\ell+1}^i) \text{ and } x_i = 0 \text{ for } i \notin [1, n].$
- Can reconstruct \boldsymbol{x} from $\mathcal{R}(\boldsymbol{x})$ with
 - $\blacktriangleright \quad \mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}.$

Example ($\ell = 3$)

$$\mathcal{R}(\mathbf{x}) \xrightarrow{\text{1substitution}} \mathcal{R}(\mathbf{x})' = (1, 1, 2, 3, 2, 1, 0, 0)$$

Left to right reconstruction:

Right to left reconstruction:

- $x'_1 = 1, x'_2 = 0, x'_3 = 1, x'_4 = 2 X$
- Error in $(\mathcal{R}(\mathbf{x})_1, \dots, \mathcal{R}(\mathbf{x})_4)$.

$$x_4'=1, x_5'=0, x_6'=0$$

Yonatan Yehezkeally 11

- Recall that for any $\mathbf{x} \in \Sigma_2^n$.
 - $ightharpoonup \mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}^i_{i-\ell+1})$ and $x_i = 0$ for $i \notin [1, n]$.
- Can reconstruct \mathbf{x} from $\mathcal{R}(\mathbf{x})$ with
 - $\triangleright \mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}.$

Example ($\ell = 3$)

$$\mathcal{R}(\mathbf{x}) \xrightarrow{\text{1substitution}} \mathcal{R}(\mathbf{x})' = (1, 1, 2, 3, 2, 1, 0, 0)$$

Left to right reconstruction:

•
$$x'_1 = 1, x'_2 = 0, x'_3 = 1, x'_4 = 2 X$$

$$x_3' = 1, x_4' = 1, x_5' = 0, x_6' = 0$$

• Error in
$$(\mathcal{R}(\mathbf{x})_1, \dots, \mathcal{R}(\mathbf{x})_4)$$
.

$$x_3' = 1, x_4' = 1, x_5' = 0, x_6' = 0$$

- Recall that for any $\mathbf{x} \in \Sigma_2^n$.
 - $ightharpoonup \mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}^i_{i-\ell+1})$ and $x_i = 0$ for $i \notin [1, n]$.
- Can reconstruct \mathbf{x} from $\mathcal{R}(\mathbf{x})$ with
 - $\triangleright \mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}$

Example ($\ell = 3$)

$$\mathcal{R}(\mathbf{x}) \xrightarrow{\text{1substitution}} \mathcal{R}(\mathbf{x})' = (1, 1, 2, \mathbf{3}, 2, 1, 0, 0)$$

Left to right reconstruction:

•
$$x'_1 = 1, x'_2 = 0, x'_3 = 1, x'_4 = 2 X$$

$$x_2' = 1, x_3' = 1, x_4' = 1, x_5' = 0, x_6' = 0$$

• Error in
$$(\mathcal{R}(\mathbf{x})_1, \dots, \mathcal{R}(\mathbf{x})_4)$$
.

$$x'_2 = 1, x'_3 = 1, x'_4 = 1, x'_5 = 0, x'_6 = 0$$

- Recall that for any $\mathbf{x} \in \Sigma_2^n$,
 - $ightharpoonup \mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}_{i-\ell+1}^i) \text{ and } x_i = 0 \text{ for } i \notin [1, n].$
- Can reconstruct \mathbf{x} from $\mathcal{R}(\mathbf{x})$ with
 - $\blacktriangleright \quad \mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}.$

Example ($\ell = 3$)

$$\mathcal{R}(\mathbf{x}) \xrightarrow{\text{1substitution}} \mathcal{R}(\mathbf{x})' = (1, 1, 2, 3, 2, 1, 0, 0)$$

Left to right reconstruction:

- $x'_1 = 1, x'_2 = 0, x'_3 = 1, x'_4 = 2 X$
- Error in $(\mathcal{R}(\mathbf{x})_1, \dots, \mathcal{R}(\mathbf{x})_4)$.

•
$$x'_1 = 0, x'_2 = 1, x'_3 = 1, x'_4 = 1, x'_5 = 0, x'_6 = 0$$

- Recall that for any $\mathbf{x} \in \Sigma_2^n$,
 - $ightharpoonup \mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}_{i-\ell+1}^i) \text{ and } x_i = 0 \text{ for } i \notin [1, n].$
- Can reconstruct \mathbf{x} from $\mathcal{R}(\mathbf{x})$ with
 - $\blacktriangleright \mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}.$

Example ($\ell = 3$)

$$\mathcal{R}(\mathbf{x}) \xrightarrow{\text{1substitution}} \mathcal{R}(\mathbf{x})' = (1, 1, 2, 3, 2, 1, 0, 0)$$

Left to right reconstruction:

- $x'_1 = 1, x'_2 = 0, x'_3 = 1, x'_4 = 2 X$
- Error in $(\mathcal{R}(\mathbf{x})_1, \dots, \mathcal{R}(\mathbf{x})_4)$.

- $x'_1 = 0, x'_2 = 1, x'_3 = 1, x'_4 = 1, x'_5 = 0, x'_6 = 0$
- No inconsistency, error in $(\mathcal{R}(\boldsymbol{x})_1,\ldots,\mathcal{R}(\boldsymbol{x})_8)$.

- Recall that for any $\mathbf{x} \in \Sigma_2^n$,
 - $ightharpoonup \mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}_{i-\ell+1}^i) \text{ and } x_i = 0 \text{ for } i \notin [1, n].$
- Can reconstruct \mathbf{x} from $\mathcal{R}(\mathbf{x})$ with
 - $\blacktriangleright \quad \mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}.$

Example ($\ell = 3$)

$$\mathcal{R}(\mathbf{x}) \xrightarrow{\text{1substitution}} \mathcal{R}(\mathbf{x})' = (1, 1, 2, 3, 2, 1, 0, 0)$$

Left to right reconstruction:

- $x'_1 = 1, x'_2 = 0, x'_3 = 1, x'_4 = 2 X$
- Error in $(\mathcal{R}(\mathbf{x})_1, \dots, \mathcal{R}(\mathbf{x})_4)$.

- $x'_1 = 0$, $x'_2 = 1$, $x'_3 = 1$, $x'_4 = 1$, $x'_5 = 0$, $x'_6 = 0$
- No inconsistency, error in $(\mathcal{R}(\mathbf{x})_1, \dots, \mathcal{R}(\mathbf{x})_8)$.

Error in
$$(\mathcal{R}(\mathbf{x})_1, \dots, \mathcal{R}(\mathbf{x})_4)$$
.

- Recall that
 - $ightharpoonup \sum_{i} \mathcal{R}(\mathbf{x})_{i} \bmod \ell = 0$
 - ▶ Only ± 1 errors are non-trivial to correct.

- · Recall that
 - $ightharpoonup \sum_{i} \mathcal{R}(\mathbf{x})_{i} \bmod \ell = 0$
 - ▶ Only ± 1 errors are non-trivial to correct.
- Thus 1 substitution is detectable

- · Recall that
 - $ightharpoonup \sum_{i} \mathcal{R}(\mathbf{x})_{i} \bmod \ell = 0$
 - ▶ Only ± 1 errors are non-trivial to correct.
- Thus 1 substitution is detectable & localizable!

- · Recall that
 - $ightharpoonup \sum_{i} \mathcal{R}(\mathbf{x})_{i} \bmod \ell = 0$
 - ▶ Only ± 1 errors are non-trivial to correct.
- Thus 1 substitution is detectable & localizable!
 - ► But not under multiple substitutions!

- · Recall that
 - $ightharpoonup \sum_{i} \mathcal{R}(\mathbf{x})_{i} \bmod \ell = 0$
 - ightharpoonup Only ± 1 errors are non-trivial to correct.
- Thus 1 substitution is detectable & localizable!
 - ► But not under multiple substitutions!

Example ($\ell = 3$)

$$\mathbf{x} = (1, 0, 1, 1, 0, 0), \ \mathcal{R}(\mathbf{x}) = (1, 1, 2, 2, 2, 1, 0, 0)$$

 $\mathbf{y} = (0, 1, 1, 0, 1, 0), \ \mathcal{R}(\mathbf{y}) = (0, 1, 2, 2, 2, 1, 1, 0)$
 $d_{H}(\mathcal{R}(\mathbf{x}), \mathcal{R}(\mathbf{y})) = 2$

Yonatan Yehezkeally 12

- · Recall that
 - $\triangleright \sum_{i} \mathcal{R}(\mathbf{x})_{i} \mod \ell = 0$
 - ▶ Only ± 1 errors are non-trivial to correct.
- Thus 1 substitution is detectable & localizable!
 - ► But not under multiple substitutions!

Example ($\ell = 3$)

$$\mathbf{x} = (\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{0}), \ \mathcal{R}(\mathbf{x}) = (\mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{2}, \mathbf{1}, \mathbf{0}, \mathbf{0})$$

$$y = (0, 1, 1, 0, 1, 0), \mathcal{R}(y) = (0, 1, 2, 2, 2, 1, 1, 0)$$

 $d_H(\mathcal{R}(x), \mathcal{R}(y)) = 2$

Yonatan Yehezkeally

- · Recall that
 - $ightharpoonup \sum_{i} \mathcal{R}(\mathbf{x})_{i} \bmod \ell = 0$
 - ▶ Only ± 1 errors are non-trivial to correct.
- Thus 1 substitution is detectable & localizable!
 - ► But not under multiple substitutions!

Example ($\ell = 3$)

$$m{x} = (\ 1\ ,\ 0\ ,\ 1\ ,\ 1\ ,\ 0\ ,\ 0\), \ \ \mathcal{R}(m{x}) = (\ 1\ ,\ 1\ ,\ 2\ ,\ 2\ ,\ 1\ ,\ 0\ ,\ 0\)$$

$$m{y} = (\ 0\ ,\ 1\ ,\ 1\ ,\ 0\ ,\ 1\ ,\ 0\), \ \ \mathcal{R}(m{y}) = (\ 0\ ,\ 1\ ,\ 2\ ,\ 2\ ,\ 1\ ,\ 1\ ,\ 0\)$$

$$d_H(\mathcal{R}(m{x}),\mathcal{R}(m{y})) = 2$$

2 substitutions can lead to a valid ℓ-read vector

- · Recall that
 - $ightharpoonup \sum_{i} \mathcal{R}(\mathbf{x})_{i} \bmod \ell = 0$
 - ▶ Only ± 1 errors are non-trivial to correct.
- Thus 1 substitution is detectable & localizable!
 - ► But not under multiple substitutions!

Example ($\ell = 3$)

$$m{x} = (\ 1\ ,\ 0\ ,\ 1\ ,\ 1\ ,\ 0\ ,\ 0\), \ \ \mathcal{R}(m{x}) = (\ 1\ ,\ 1\ ,\ 2\ ,\ 2\ ,\ 1\ ,\ 0\ ,\ 0\)$$

$$m{y} = (\ 0\ ,\ 1\ ,\ 1\ ,\ 0\ ,\ 1\ ,\ 0\), \ \ \mathcal{R}(m{y}) = (\ 0\ ,\ 1\ ,\ 2\ ,\ 2\ ,\ 1\ ,\ 1\ ,\ 0\)$$

$$d_H(\mathcal{R}(m{x}),\mathcal{R}(m{y})) = 2$$

2 substitutions can lead to a valid ℓ-read vector ⇒ can't localize!

Definition (Read vector)

The ℓ -read vector of any $\mathbf{x} \in \Sigma_2^n$ is of length $n+\ell-1$ and denoted by

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n)).$$

Here
$$\mathcal{R}(\boldsymbol{x})_i = \operatorname{wt}(\boldsymbol{x}_{i-\ell+1}^i)$$
 where for $j \notin [n]$, let $x_j = 0$.

Definition (Read vector)

The ℓ -read vector of any $\mathbf{x} \in \Sigma_2^n$ is of length $n + \ell - 1$ and denoted by

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n)).$$

•
$$\mathcal{R}(\mathbf{x})_i - \mathcal{R}(\mathbf{x})_{i-1} = x_i - x_{i-\ell}$$
.

Definition (Read vector)

The ℓ -read vector of any $\mathbf{x} \in \Sigma_2^n$ is of length $n + \ell - 1$ and denoted by

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n)).$$

- $\mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}$.
- x uniquely determined from n-prefix of $\mathcal{R}(x)$.

Definition (Read vector)

The ℓ -read vector of any $\mathbf{x} \in \Sigma_2^n$ is of length $n + \ell - 1$ and denoted by

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n)).$$

- $\mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}$.
- x uniquely determined from n-prefix of $\mathcal{R}(x)$ mod 2

Definition (Read vector)

The ℓ -read vector of any $\mathbf{x} \in \Sigma_2^n$ is of length $n + \ell - 1$ and denoted by

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n)).$$

- $\mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}$.
- x uniquely determined from n-prefix of $\mathcal{R}(x)$ mod $2 \leftarrow$ Use any t-substitution-correcting code!

Definition (Read vector)

The ℓ -read vector of any $\mathbf{x} \in \Sigma_2^n$ is of length $n + \ell - 1$ and denoted by

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n)).$$

Here $\mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}_{i-\ell+1}^i)$ where for $j \notin [n]$, let $x_i = 0$.

- $\mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}$.
- x uniquely determined from n-prefix of $\mathcal{R}(x)$ mod 2 \leftarrow Use any t-substitution-correcting code!

Construction (*t*-substitution-*ℓ*-read code)

$$\{\boldsymbol{x} \in \Sigma_2^n : (\mathcal{R}(\boldsymbol{x})_1, \dots, \mathcal{R}(\boldsymbol{x})_n) \text{ mod } 2 \in \mathcal{C}(n, t)\},\$$

where $C(n, t) \subset \Sigma_2^n$ is a *t*-substitution-correcting code.

Definition (Read vector)

The ℓ -read vector of any $\mathbf{x} \in \Sigma_2^n$ is of length $n + \ell - 1$ and denoted by

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n)).$$

Here $\mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}_{i-\ell+1}^i)$ where for $j \notin [n]$, let $x_j = 0$.

- $\mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}$.
- x uniquely determined from n-prefix of $\mathcal{R}(x)$ mod 2 \leftarrow Use any t-substitution-correcting code!

Construction (t-substitution- ℓ -read code)

$$\{\boldsymbol{x} \in \Sigma_2^n : (\mathcal{R}(\boldsymbol{x})_1, \dots, \mathcal{R}(\boldsymbol{x})_n) \text{ mod } 2 \in \mathcal{C}(n, t)\},$$

where $C(n, t) \subset \Sigma_2^n$ is a *t*-substitution-correcting code.

Introduction

Channel Mode

Minimum Redundancy

Conclusion

Summary

Results

For a simplified model of nanopore sequencing, we show

- $t \log n O(1)$ min redundancy needed to correct $t \ge 2$ substitutions.
- Naive construction, optimal up to additive constant.

Summary

Results

For a simplified model of nanopore sequencing, we show

- $t \log n O(1)$ min redundancy needed to correct $t \ge 2$ substitutions.
- Naive construction, optimal up to additive constant.

Future work

- Multiple deletions & combination with substitutions.
- Weighted read vectors

Summary

Results

For a simplified model of nanopore sequencing, we show

- $t \log n O(1)$ min redundancy needed to correct $t \ge 2$ substitutions.
- Naive construction, optimal up to additive constant.

Future work

- Multiple deletions & combination with substitutions.
- Weighted read vectors

Thank you!

References I

- [1] R. Heckel, G. Mikutis, and R. N. Grass, "A characterization of the DNA data storage channel," *Scientific Reports*, vol. 9, no. 9663, Jul. 2019.
- [2] D. Deamer, M. Akeson, and D. Branton, "Three decades of nanopore sequencing," *Nat. Biotech.*, vol. 34, no. 5, pp. 518–524, May 2016.
- [3] A. H. Laszlo *et al.*, "Decoding long nanopore sequencing reads of natural DNA," *Nat. Biotech.*, vol. 32, no. 8, pp. 829–833, Aug. 2014.
- [4] W. Mao, S. N. Diggavi, and S. Kannan, "Models and information-theoretic bounds for nanopore sequencing," *TIT*, vol. 64, no. 4, pp. 3216–3236, Apr. 2018.
- [5] R. Hulett, S. Chandak, and M. Wootters, "On coding for an abstracted nanopore channel for DNA storage," in ISIT, Jul. 2021, pp. 2465–2470.
- [6] B. McBain, E. Viterbo, and J. Saunderson, "Finite-state semi-markov channels for nanopore sequencing," in ISIT, Jun. 2022, pp. 216–221.

Yonatan Yehezkeally 14

References II

- [7] A. Rameshwar and N. Weinberger, "On achievable rates over noisy nanopore channels," in ISIT, 2025, (arXiv preprint arXiv:2501.02917).
- [8] Y. M. Chee, A. Vardy, V. K. Vu, and E. Yaakobi, "Coding for transverse-reads in domain wall memories," in *ISIT*, Jul. 2021, pp. 2924–2929.
- [9] A. Banerjee, Y. Yehezkeally, A. Wachter-Zeh, and E. Yaakobi, "Error-correcting codes for nanopore sequencing," *TIT*, 2024.
- [10] A. Banerjee, Y. Yehezkeally, A. Wachter-Zeh, and E. Yaakobi, "Correcting a single deletion in reads from a nanopore sequencer," in *ISIT*, Jul. 2024, pp. 103–108.
- [11] Y. M. Chee, K. A. Schouhamer Immink, and V. K. Vu, "Coding scheme for noisy nanopore sequencing with backtracking and skipping errors," in *ISIT*, 2024.
- [12] Y. Sun and G. Ge, "Bounds and constructions of ℓ -read codes under the hamming metric," T/T, pp. 1–1, 2025.
- [13] W. Yu, Z. Ye, and M. Schwartz, "On the asymptotic rate of optimal codes that correct tandem duplications for nanopore sequencing," *TIT*, vol. 71, no. 5, pp. 3569–3581, May 2025.

Yonatan Yehezkeally 14

References III

[14] O. Yerushalmi, T. Etzion, and E. Yaakobi, "The capacity of the weighted read channel," in *ISIT*, 2024, (arXiv preprint arXiv:2401.15368).