1. Mô hình mạng tế bào và vai trò của trạm thu phát gốc (BS)

• **Mô hình mạng tế bào** chia vùng phủ sóng thành các tế bào (cell), mỗi tế bào có một trạm thu phát gốc (Base Station - BS) để liên lạc với các thiết bị di động. Các tế bào có thể chồng lấn để đảm bảo liên lạc liên tục.

Vai trò của BS:

- o Điều khiển và quản lý kết nối giữa thuê bao di động và mạng lõi.
- Quản lý tài nguyên vô tuyến (phân bổ kênh tần số, điều khiển công suất).
- Hỗ trợ chuyển giao cuộc gọi (handover) giữa các cell.
- o Kết nối với mạng lõi thông qua các thành phần như BSC, MSC.

2. Tại sao mạng tế bào được thiết kế theo mô hình lục giác thay vì hình tròn hoặc hình vuông?

- Hình lục giác tối ưu hóa việc phủ sóng vì nó bao phủ vùng rộng nhất mà không có khoảng trống giữa các cell.
- Hình tròn tạo ra khoảng trống giữa các cell, gây lãng phí tài nguyên.
- Hình vuông có vùng chồng lấn không tối ưu do góc vuông tạo ra nhiễu và mất cân đối trong phân bổ công suất.

3. Ưu điểm của mạng tế bào so với hệ thống vô tuyến truyền thống

- Hiệu quả sử dụng tần số cao hơn nhờ tái sử dụng tần số.
- Hỗ trợ số lượng thuê bao lớn trong cùng một khu vực.
- Tăng vùng phủ sóng bằng cách bổ sung trạm thu phát gốc khi cần.
- Hỗ trợ chuyển giao cuộc gọi (handover) giúp cuộc gọi không bị gián đoạn khi di chuyển.

4. Thành phần của hệ thống mạng tế bào

Thành phần	Chức năng
Mobile Station (MS)	Thiết bị di động (điện thoại, máy tính bảng, v.v.).
Base Station (BS)	Trạm thu phát gốc, cung cấp kết nối vô tuyến.
Base Station Controller (BSC)	Điều khiển nhiều BS, quản lý tài nguyên vô tuyến.
Mobile Switching Center (MSC)	Điều khiển cuộc gọi, kết nối mạng PSTN.
Home Location Register (HLR)	Lưu trữ thông tin thuê bao đăng ký.
Visitor Location Register (VLR)	Lưu thông tin thuê bao đang di chuyển.

5. Phân biệt macrocell, microcell, picocell, femtocell

Loại cell	Phạm vi phủ sóng	Ứng dụng
Macrocell	>1 km	Mạng di động ngoài trời, vùng rộng.
Microcell	200m - 1 km	Thành phố, khu dân cư đông đúc.
Picocell	10m - 200m	Văn phòng, trung tâm thương mại.
Femtocell	<10m	Nhà riêng, văn phòng nhỏ.

6. Sự khác nhau giữa MSC và BSC

• MSC (Mobile Switching Center): Điều khiển cuộc gọi, kết nối mạng lõi (PSTN, Internet), quản lý roaming.

• **BSC** (**Base Station Controller**): Điều khiển các BS, phân bổ tần số, hỗ trợ handover trong khu vực quản lý.

7. Cụm tế bào (cell cluster) và vai trò trong quản lý tần số

- Cell cluster là một nhóm tế bào sử dụng toàn bộ tập hợp kênh tần số mà không có cell nào lặp lại kênh trong cụm đó.
- Vai trò: Giúp quản lý tài nguyên tần số, tránh nhiễu đồng kênh, tối ưu hóa hiệu suất mạng.

8. Hệ số tái sử dụng tần số K

- Hệ số tái sử dụng tần số K là số lượng cell trong một cụm mà mỗi cell có bộ tần số riêng biệt.
- Công thức xác định K:

$$K=i2+ij+j2K = i^2 + ij + j^2K=i2+ij+j2$$

Trong đó: i,ji, ji,j là các bước di chuyển trên lưới tổ ong.

9. Ảnh hưởng của hệ số K đến chất lượng mạng

- Tăng K → Giảm nhiễu đồng kênh nhưng giảm số lượng kênh khả dụng trong mỗi cell.
- Khoảng cách giữa các cell đồng kênh:

$$D=R3KD=R \setminus sqrt\{3K\}D=R3K$$

Trong đó:

- DDD: Khoảng cách giữa hai cell dùng chung tần số.
- o RRR: Bán kính cell.

10. Nếu mạng GSM có T=490T=490T=490 kênh và K=7K=7K=7, mỗi cell có bao nhiều kênh?

• Số kênh mỗi cell có:

$$N=TK=4907=70N = \frac{T}{K} = \frac{490}{7} = 70N=KT=7490=70$$

Mỗi cell có 70 kênh khả dụng.

11. Chuyển giao cuộc gọi (handover)

- Handover: Quá trình chuyển cuộc gọi từ cell này sang cell khác khi người dùng di chuyển.
- Loại handover trong GSM:
 - Hard handover: Ngắt kết nối cũ rồi mới thiết lập kết nối mới (2G, 3G).
 - o Soft handover: Kết nối với cell mới trước khi rời cell cũ (3G, 4G).

12. Nhiễu đồng kênh (Co-channel interference - CCI)

• Nhiễu đồng kênh xảy ra khi nhiều cell sử dụng cùng một tần số, gây suy giảm chất lượng tín hiệu.

13. Giải pháp giảm nhiễu đồng kênh

- Tăng hệ số tái sử dụng tần số K để tăng khoảng cách giữa các cell đồng kênh.
- Điều chỉnh công suất truyền dẫn để giảm chồng lấn tín hiệu.
- Dùng các kỹ thuật anten định hướng để giới hạn vùng phủ sóng và giảm nhiễu.

Bài tập tính toán:

Bài tập 1: Hệ thống GSM có tổng số T=600T = 600T=600 kênh tần số, với K=7K=7K=7

(a) Số kênh tần số mỗi cell có thể sử dụng

Số kênh tần số mỗi cell có:

$$N=rac{T}{K}=rac{600}{7}pprox 85.7$$

Làm tròn xuống, mỗi cell có khoảng 85 kênh (vì không thể có kênh lẻ).

(b) Tổng dung lượng hệ thống với M=10M = 10M=10 cụm cell

Tổng số cell trong hệ thống:

Tổng số cell =
$$M \times K = 10 \times 7 = 70$$

Dung lượng hệ thống (tổng số kênh trong toàn bộ mạng):

Dung lượng = Tổng số cell x $N = 70 \times 85 = 5950$ (kênh)

Kết luận: Hệ thống có 5950 kênh phục vụ người dùng.

Bài tập 2: Tính khoảng cách tối thiểu DDD giữa các cell đồng kênh

Dữ kiện:

- Hệ số tái sử dụng K=12K = 12K=12
- Bán kính cell R=2R=2R=2 km
- Công thức khoảng cách đồng kênh:

$$D=R\sqrt{3K}$$

Tính toán:

$$D = 2 \times \sqrt{3 \times 12} = 2 \times 6 = 12 \text{ (km)}$$

Kết luận: Khoảng cách giữa hai cell đồng kênh tối thiểu là 12 km.

Bài tập 3: Tính khoảng cách tối thiểu giữa hai cell đồng kênh

Dữ kiện:

- Hệ số tái sử dụng K=19K = 19K=19
- Bán kính cell R=1.5R=1.5R=1.5 km
- Công thức:

$$D = R\sqrt{3K}$$

Tính toán:

$$D = 1.5 \text{ x } \sqrt{3 \times 19} = 1.5 \text{ x } 7.55 = 11.33 \text{ (km)}$$

Kết luận: Khoảng cách tối thiểu giữa hai cell đồng kênh là 11.33 km.

Bài tập 4: Hệ thống có 106 thuê bao hoạt động đồng thời

Dữ kiện:

- Mỗi cuộc gọi chiếm 2 kênh.
- Tổng số kênh trong hệ thống T=5000T=5000T=5000.
- Hệ số tái sử dụng K=7K=7K=7.
- (a) Số cụm cell cần thiết

Số cell trong mỗi cụm:

$$N = \frac{t}{k} = 714$$

Số cụm cần thiết để phục vụ toàn bộ hệ thống:

Số cụm = Số thuê bao x 2 / Số kênh mỗi cell = $106 \times 2 / 714 = 0.3$

Làm tròn lên, hệ thống cần ít nhất 1 cụm cell.

(b) Tổng dung lượng của hệ thống

Tổng số cuộc gọi đồng thời hệ thống có thể hỗ trợ:

$$\frac{5000}{2}$$
 = 2500

Kết luận: Hệ thống có thể hỗ trợ 2500 cuộc gọi đồng thời.

Bài tập (tình huống thực tế)

1. Quy hoạch mạng di động

- 1. Chọn hệ số K=7,10K=7,10K=7,10 hay 121212?
 - Nếu ưu tiên giảm nhiễu đồng kênh, chọn K=12K=12K=12.
 - Nếu cân bằng giữa dung lượng và nhiễu, chọn K=10K=10K=10.
 - Nếu cần nhiều kênh hơn trong mỗi cell, chọn K=7K=7K=7.
- 2. Các yếu tố ảnh hưởng đến lựa chọn K
 - Mật độ người dùng: Nếu mật độ cao, chọn KKK nhỏ hơn để có nhiều kênh.
 - Yêu cầu về nhiễu: Nếu khu vực có nhiều nhiễu, chọn KKK lớn hơn.
 - Quy mô vùng phủ sóng: Vùng rộng lớn thường chọn KKK lớn để tối ưu hóa phổ tần.

2. Bài tập về nhiễu đồng kênh

Giải pháp giảm nhiễu đồng kênh

- 1. Tăng hệ số tái sử dụng KKK để tăng khoảng cách giữa các cell đồng kênh.
- 2. Sử dụng anten định hướng để giảm vùng chồng lấn tín hiệu.
- 3. Điều chỉnh công suất truyền dẫn để hạn chế nhiễu lân cận.

3. Mạng LTE ở vùng nông thôn

Hệ số K=3K=3K=3 có phù hợp không?

- Ưu điểm: Hệ số K=3K = 3K=3 cho phép sử dụng nhiều kênh hơn trong mỗi cell, phù hợp với vùng có mật độ dân cư thấp.
- Nhược điểm: Nhiễu đồng kênh sẽ cao hơn, ảnh hưởng đến chất lượng mạng.
- Kết luận: Nếu mật độ thuê bao thấp và kênh tần số hạn chế, K=3K = 3K=3 là phù hợp. Nếu nhiễu cao, nên chọn KKK lớn hơn (như 7 hoặc 12).