E. Liczby

Dostępna pamięć: 8 MB

Zaprojektuj i zaimplementuj strukturę, która umożliwi przechowywanie zbioru liczb całkowitych $\mathcal P$ i wykonywanie na nim opisanych poniżej operacji.

- 1. Insert(x). Dodaje liczbę całkowitą x do zbioru \mathcal{P} . Jeśli x już należy do \mathcal{P} , nic się nie dzieje.
- 2. Delete(x). Usuwa liczbę całkowitą x ze zbioru \mathcal{P} .
- 3. Upper(x). Zwraca liczbę $y \in \mathcal{P}$, taką że $y \ge x$ i y jest najmniejszą liczbą o takiej własności.
- 4. Lower(x). Zwraca liczbę $y \in \mathcal{P}$, taką że $y \leqslant x$ i y jest największą liczbą o takiej własności.

Uwaga: W tym zadaniu zabronione jest używanie tych konstrukcji STL-a, których nazwy zawierają: set, map lub hash. Niedozwolone jest wykorzystanie gotowych odpowiedników tych konstrukcji w innych językach programowania.

Specyfikacja danych wejściowych

W pierwszym wierszu danych wejściowych znajduje się liczba naturalna $N \in [1, 10^6]$, oznaczająca liczbę operacji na zbiorze \mathcal{P} . Początkowo zbiór \mathcal{P} jest pusty. W każdym z kolejnych N wierszy znajduje się opis jednej operacji wykonywanej na zbiorze \mathcal{P} . Każdy z wierszy składa się z dużej litery ze zbioru $\{I, D, U, L\}$, pojedynczego odstępu i liczby całkowitej $x \in [-10^{18}, 10^{18}]$. Podana litera jest pierwszą literą operacji zdefiniowanych powyżej. Operacje są tak dobrane, że po każdej z nich rozmiar zbioru wynosi co najwyżej 50 000.

Specyfikacja danych wyjściowych

Twój program powinien wypisać jeden wiersz dla każdej operacji Delete, Upper lub Lower. Zawartość tego wiersza powinna być następująca: dla operacji Delete(x) należy wypisać słowo BRAK, jeśli $x \notin \mathcal{P}$ i OK w przeciwnym przypadku; zaś dla operacji Upper lub Lower należy wypisać znalezioną liczbę, a jeśli taka nie istnieje — słowo BRAK.

Przykład A

Wejście:	Wyjście
4	OK
I 2	BRAK
D 2	BRAK
D 2	
D 2	

Przykład B

Wejście:	Wyjście:
7	BRAK
I -2	-2
I 0	-2
L -4	0
L -2	0
L -1	
L 0	
I. 3	

Przykład C

Wejście: Wyjście: 6 OK
I 2 3
I 2 BRAK
I 3
D 2
U 0
L 0