

WYKRYWANIE POLSKICH ZNAKÓW DROGOWYCH

Karol Weyna, Przemysław Sulecki - UTP Bydgoszcz 2018/2019

SPIS TREŚCI

Opis projektu	2
Założenia:	2
Wymagania:	2
Instalacja	2
Instalacja CUDA ToolKit:	2
Ustawienie zmiennych środowiskowych	2
Instalacja cuDNN 7.6	3
Aktualizacja sterowników karty graficznej (krok dodatkowy)	3
Instalacja Anacondy (Python 3.6)	3
Instalacja TensorFlow-GPU	3
Sprawdzenie naszej konfiguracji	4
Tworzenie struktury katalogów:	4
Importowanie modelu:	4
Pobranie niezbędnych plików	4
Instalacja niezbędnych modułów	4
Konfiguracja PYTONPATH	4
Kompilacja plików proto	4
Tworzenie zestawu danych	5
Skrypty automatyzujące	5
xml_to_csv.py	5
generate_tfrecord.py	5
pathChecker.py	6
checkClasses.py	6
Konfiguracja	6
Trening modelu	6
Eksportowanie wykresu wnioskowania	7
Uwzględnione znaki drogowe	7
Znaki ostrzegawcze	7
Znaki zakazu	9
Znaki nakazu	10
Znaki informacyjne	10
Przykład działania	12
Na bazie zdjęć	12
Na bazie filmów	13

OPIS PROJEKTU

Projekt zakłada stworzenie sztucznej sieci neuronowej w celu detekcji polskich znaków drogowych, wykorzystując jako dane wejściowe plik wideo, zdjęcie lub obraz w czasie rzeczywistym przy wykorzystaniu framework'a TensorFlow.

ZAŁOŻENIA:

- obliczenia są przeprowadzane na GPU (rdzenie CUDA, konieczna karta graficzna NVIDIA),
- algorytm powinien wykrywać 84 polskie znaki drogowe,
- próg wykrycia obiektu jest ustawiony na minimum 80%,
- wykryty obiekt jest umieszczany w prostokącie wraz z procentowym przewidzeniem wykrycia,
- na jednej klatce może być wykryte wiele obiektów,
- każdy obiekt jest opisany jako kod znaku obowiązujący w Polsce(np. D1 droga z pierwszeństwem).

WYMAGANIA:

- GTX 650 lub nowszy,
- Anaconda z python 3.6,
- CUDA Tool kit v 10.0,
- cuDNN 7.6.

INSTALACJA

INSTALACJA CUDA TOOLKIT:

- -Przechodzimy na stronę https://developer.nvidia.com/cuda-10.0-download-archive.
- -Wybieramy nasz system operacyjny, w naszym przypadku jest to Windows.
- -Po wybraniu systemu operacyjnego należy wybrać architekturę, w naszym przypadku jest to x86_64.
- -Po wybraniu architektury systemu należy wybrać wersję systemu, w naszym przypadku jest to Windows 10.
- -Następnie wybieramy typ instalatora.
- -Po wybraniu Typu instalatora klikamy zielony przycisk Download.
- -Po pobraniu pliku, klikamy na niego 2 razy i dokonujemy jego instalacji w naszym systemie.

USTAWIENIE ZMIENNYCH ŚRODOWISKOWYCH

- -Klikamy klawisz Windows na klawiaturze i w pole szukaj wpisujemy "Edytuj zmienne środowiskowe systemu".
- -Następnie klikamy "Zmienne środowiskowe...", wybieramy z zmiennych systemowych zmienną Path i klikamy edytuj.
- -Naszym oczom powinno się ukazać takie okienko.

-Następnie klikamy "Nowy" i dodajemy po kolei trzy ścieżki:

- C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin
- C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\libnvvp
- C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\extras\CUPTI\libx64
- -Ostatecznie nasza zmienna systemowa Path powinna mieć takie wpisy:

INSTALACJA CUDNN 7.6

- -Przechodzimy pod adres https://developer.nvidia.com/rdp/cudnn-download, (konieczne jest posiadanie konta NVIDIA).
- -Klikamy "I Agree..." i wybieramy "Download cuDNN v7.6.0 (May 20, 2019), for CUDA 10.0".
- -Następnie wybieramy nasz system operacyjny, w naszym wypadku był to Windows 10.
- -Po pobraniu pliku rozpakowywujemy go, a folder "cuda" przenosimy bezpośrednio na dysk C:
- -Dodajemy do zmiennej systemowej Path kolejną ścieżkę:

C:\cuda\bin

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\libnvvp

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\extras\C...

C:\cuda\bin

AKTUALIZACJA STEROWNIKÓW KARTY GRAFICZNEJ (KROK DODATKOWY)

- -Przechodzimy pod adres https://www.nvidia.pl/Download/index.aspx?lang=pl
- -Po przejściu pod wskazany adres wybieramy naszą kartę graficzną oraz system operacyjny, w naszym przypadku był to Geforce 840M z 364 rdzeniami CUDA oraz system Windows 10, następnie klikamy "szukaj", po przeładowaniu strony klikamy "pobierz".
- -Po pobraniu sterowników dokonujemy ich instalacji, następnie wykonujemy restart komputera.

INSTALACJA ANACONDY (PYTHON 3.6)

- -Przechodzimy pod adres https://www.anaconda.com/distribution/#download-section
- -Wybieramy opcję z Python 3.6.
- -Instalujemy pobrany plik.

INSTALACJA TENSORFLOW-GPU

-Uruchamiamy wiersz poleceń - cmd.exe jako administrator.

- -Wpisujemy "conda create -n tensorflow pip python=3.6".
- -Następnie "activate tensorflow".
- -Jeżeli obok ścieżki w wierszu poleceń w nawiasie jest wyświetlone (tensorflow) to oznacza, że wszystko do tego punktu wykonaliśmy poprawnie.
- -Wpisujemy w wierszu poleceń: "pip install --ignore-installed --upgrade tensorflow-gpu".

SPRAWDZENIE NASZEJ KONFIGURACJI

-Tworzymy plik test.py z zawartościa:

import tensorflow as tf

hello = tf.constant('Hello, TensorFlow!')

sess = tf.Session()

print(sess.run(hello))

- -Następnie go uruchamiamy wpisująć w konsole "python test.py".
- -W konsoli powinien się wyświetlić napis "Hello, TensorFlow!" (może to chwilę potrwać).

TWORZENIE STRUKTURY KATALOGÓW:

- -Pobieramy pliki z repozytorium TensorFlow na githubie https://github.com/tensorflow/models
- -Tworzymy na dysku C: katalog tensorflow i do niego rozpakowujemy pobrany plik.
- -Po wejściu do katalogu tensorflow na dysku C: możemy zmienić nazwę z models-master na po prostu "models".

TensorFlow zapewnia kilka modeli wykrywania obiektów (wstępnie wyszkolonych klasyfikatorów o specyficznych architekturach sieci neuronowych). Niektóre modele (takie jak model SSD-MobileNet) mają architekturę, która pozwala na szybsze wykrywanie, ale z mniejszą dokładnością, podczas gdy niektóre modele (takie jak model Faster-RCNN) dają wolniejsze wykrywanie, ale z większą dokładnością. W naszym przypadku wybraliśmy model Faster-RCNN-Inception-V2-COCO

IMPORTOWANIE MODELU:

-Przechodzimy pod adres

http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_v2_coco_2018_01_28.tar.gz_i pobieramy model

-Następnie rozpakowujemy model do katalogu C:/tensorflow/models/research/object_detection

POBRANIE NIEZBEDNYCH PLIKÓW

Pobranie niezbędnych plików do min. generowania TFRecords, plików CSV z XML, a także zliczania liczby klas w wszystkich plikach XML

- $-Przechodzimy\ pod\ adres\ \underline{https://github.com/przsul/Traffic-Sign-Recognition/tree/prepared\ files}\ i\ pobieramy\ pliki\ z\ repozytorium$
- -Następnie wypakowujemy archiwum na C:\tensorflow\models\research\object_detection

INSTALACJA NIEZBĘDNYCH MODUŁÓW

- -Ponownie otwieramy cmd.exe jako administrator i wpisujemy "active tensorflow"
- $Przechodzimy\ w\ konsoli\ do\ katalogu\ C: \ \ tensorflow\ \ models\ \ research\ \ \ object_detection$
- -Wpisujemy w konsoli "conda install -c anaconda protobuf"
- -Następnie wpisujemy w konsoli takie polecenia:
- "pip install pillow",
- "pip install lxml",
- "pip install Cython",
- "pip install jupyter",
- "pip install matplotlib".
- "pip install pandas",
- "pip install opency-python"

KONFIGURACIA PYTONPATH

- -Otwieramy konsole cmd.exe jako administrator
- -Wpisuiemv set

PYTHONPATH=C:\tensorflow\models;C:\tensorflow\models\research;C:\tensorflow\models\research\slim

KOMPILACIA PLIKÓW PROTO

- -Otwieramy konsole cmd.exe jako administrator
- -Przechodzimy do folderu C:\models\research

- -Wpisujemy for /f %f in ('dir /b object_detection\protos*.proto') do protoc object_detection\protos\%f -- python_out=.
- -Następnie wpisujemy python setup.py build oraz python setup.py install

TWORZENIE ZESTAWU DANYCH

Zestaw danych zawiera 80% danych treningowych (/images/train/) oraz 20% danych testowych (/images/test/). W celu stworzenia zestawu danych, zostało wykorzystanych łącznie 967 zdjęć przedstawiających znaki drogowe. Głównym zadaniem było wygenerowanie plików XML zawierających dane m. in:

- współrzędnych obszaru przedstawiających znak do wykrycia,
- etykietę obszaru,
- rozdzielczość zdjęcia wejściowego,
- ścieżkę do zdjęcia wejściowego.

Źródłem danych były materiały prywatne oraz ogólnodostępna baza pytań egzaminacyjnych na prawo jazdy. Narzędzie wykorzystane do generowania plików XML to *labelImg*:

SKRYPTY AUTOMATYZUJĄCE

Wykorzystane skrypty w celu utworzenia zestawu danych potrzebnych do nauczenia modelu.

XML_TO_CSV.PY

Plik ten służy do wygenerowania dwóch plików CSV (test_labels.csv oraz train_labels.csv) na podstawie plików .XML znajdujących się w folderach /images/train i /images/test.

Uruchomienie skryptu:

- -Uruchomienie konsoli cmd.exe jako administrator i wpisanie "active tensorflow"
- -Przejście do ścieżki C:/tensorflow/models/research/object_detection
- -Wpisanie pvthon xml to csv.pv
- -Po wykonaniu skryptu w folderze images powinny utworzyć się dwa pliki z rozszerzeniem .csv

GENERATE_TFRECORD.PY

Plik ten służy do wygenerowanie pliku z rozszerzeniem .tfrecord na podstawie wcześniej utworzonego pliku z rozszerzeniem .csv

Uruchomienie skryptu:

- -Uruchomienie konsoli cmd.exe jako administrator i wpisanie "active tensorflow"
- -Przejście do ścieżki C:/tensorflow/models/research/object_detection
- -Wpisanie python generate_tfrecord.py --csv_input=images \train_labels.csv --image_dir=images \train -- output_path=train.record w konsoli

- -Wpisanie python generate_tfrecord.py --csv_input=images\test_labels.csv --image_dir=images\test -- output_path=test.record konsoli
- -Po wykonanie z każdej tych komend powinien się utworzyć plik z rozszerzeniem .tfrecord w katalogu object_detection(Generowanie pliku .tfrecord może zająć chwile czasu)

PATHCHECKER.PY

Plik ten znajduje się w folderze **train** oraz **test** służy on do naprawienia ścieżek w plikach .XML w przypadku przenoszenia ich między różnymi komputerami

Uruchomienie skryptu:

- -Uruchomienie konsoli cmd.exe jako administrator i wpisanie "active tensorflow"
- -Przejście do ścieżki C:/tensorflow/models/research/object_detection/images/train lub test
- -Wpisanie python pathChecker.py w konsoli,
- -Po wykonaniu skryptu w plikach .XML będą widnieć prawidłowe ścieżki

CHECKCLASSES.PY

Plik ten znajduje się w folderze train, a służy do wypisania i policzenia wszystkich klas znajdujących się w plikach .XML Uruchomienie skryptu:

- -Uruchomienie konsoli cmd.exe jako administrator i wpisanie "active tensorflow"
- -Przejście do ścieżki C:/tensorflow/models/research/object_detection/images/train
- -Wpisanie python checkClasses.py w konsoli,
- -Po wykonaniu skryptu w konsoli otrzymamy informacje o ilości klas, a także ich nazwach

KONFIGURACJA

-Na początku w katalogu C:/tensorflow/models/research/object_detection/training należy utworzyć plik labelmap.pbtxt, który będzie zawierał nazwy klas oraz ich id

Plik dostępny pod adresem: https://github.com/przsul/Traffic-Sign-

Recognition/blob/prepared files/training/labelmap.pbtxt

-Z ścieżki C:/tensorflow/models/research/object_detection/samples/configs kopiujemy plik

faster_rcnn_inception_v2_pets.config do folderu C:/tensorflow/models/research/object_detection/training oraz go otwieramy

Plik dostępny pod adresem:

https://github.com/przsul/Traffic-Sign-Recognition/blob/prepared_files/training/faster_rcnn_inception_v2_pets.config

- -Następnie zmieniamy parametr **num_classes**, w naszym przypadku ustawiamy 84
- -Należy także skonfigurować ścieżki do modeli, w naszym przypadku ścieżka do modelu wygląda w następujący sposób:
- C:/tensorflow/models/research/object_detection/faster_rcnn_inception_v2_coco_2018_01_28/model.ckpt
- -Kolejną rzeczą jaką należy wykonać jest ustawienie ścieżek do plików .tfrecord, w naszym przypadku wyglądają one w następujący sposób:
- C:/tensorflow/models/research/object_detection/train.record
- C:/tensorflow/models/research/object_detection/test.record
- -Ostatnią rzeczą jest ustawienie ścieżki do pliku .pbtxt zawierającego wszystkie nasze klasy wraz z id , w naszym przypadku wygląda ona w następujący sposób:
- C:/tensorflow/models/research/object_detection/training/labelmap.pbtxt

TRENING MODELU

Po skonfigurowanie wszystkich wymaganych ścieżek w pliku .config należy uruchomić trenowanie modelu.

- -Uruchomić konsolę cmd.exe jako administrator, musimy znajdować się w katalogu
- C:/tensorflow/models/research/object_detection
- -Wpisać "active tensorflow"
- -Uruchomić skrypt poprzez wpisanie **python train.py --logtostderr --train_dir=training/ -- pipeline_config_path=training/faster_rcnn_inception_v2_pets.config**

tor: Wiersz polecenia - python train.py --logtostderr --train_dir=training/ --pipeline_config_path=

```
low:global step 120559: loss = 0.0039 (1.300 sec/step)
low:global step 120560: loss = 0.0152 (1.306 sec/step)
low:global step 120560: loss = 0.0152 (1.306 sec/step)
low:global step 120561: loss = 0.0120 (1.304 sec/step)
low:global step 120561: loss = 0.0120 (1.304 sec/step)
low:global step 120562: loss = 0.0260 (1.313 sec/step)
low:global step 120562: loss = 0.0260 (1.313 sec/step)
low:global step 120563: loss = 0.0241 (1.312 sec/step)
low:global step 120563: loss = 0.0241 (1.312 sec/step)
```

Szkolenie algorytmu w naszym przykładzie zajęło 50 godzin. Czas tego szkolenia jest zależny od szybkości naszego GPU, wielkości VRAM, ilości rdzeni CUDA, wielkości dataset'u, a także użytego modelu.

EKSPORTOWANIE WYKRESU WNIOSKOWANIA

- -Uruchomić konsolę cmd.exe jako administrator
- -Wpisać "active tensorflow"
- -Wpisać polecenie python export_inference_graph.py --input_type image_tensor --pipeline_config_path training/faster_rcnn_inception_v2_pets.config --trained_checkpoint_prefix training/model.ckpt-XXXX -- output_directory inference_graph

W miejsce XXXX - należy podać największą wartość (ostatni step)

Wyeksportowany wykres wnioskowania powinien znajdować się w folderze

C:/tensorflow/models/research/object_detection/interence_graph pod nazwa frozen_interence_graph.pb

UWZGLĘDNIONE ZNAKI DROGOWE

ZNAKI OSTRZEGAWCZE

Etykieta/kod znaku	Nazwa	Zdjęcie
A-1	Niebezpieczny zakręt w prawo	
A-2	Niebezpieczny zakręt w lewo	<u>^</u>
A-3	Niebezpieczne zakręty, pierwszy w prawo	~
A-4	Niebezpieczne zakręty, pierwszy w lewo	4
A-5	Skrzyżowanie dróg	×
A-6a	Skrzyżowanie z drogą podporządkowaną występującą po obu stronach	
A-6b	Skrzyżowanie z drogą podporządkowaną występującą po prawej stronie	
А-6с	Skrzyżowanie z drogą podporządkowaną występującą po lewej stronie	4
A-6d	Wlot drogi jednokierunkowej z prawej strony	
A-6e	Wlot drogi jednokierunkowej z lewej strony	
A-7	Ustąp pierwszeństwa	

A-9	Przejazd kolejowy z zaporami	
A-11	Nierówna droga	
A-11a	Próg zwalniający	
A-12a	Zwężenie jezdni obustronne	
A-12b	Zwężenie jezdni prawostronne	<u> IS</u>
A-14	Roboty drogowe	R
A-15	Śliska jezdnia	
A-16	Przejście dla pieszych	
A-17	Dzieci	液
A-18b	Zwierzęta dzikie	N. C.
A-20	Odcinek jezdni o ruchu dwukierunkowym	11
A-21	Tramwaj	
A-23	Stromy podjazd	
A-28	Sypki żwir	
A-29	Sygnały świetlne	
A-30	Inne niebezpieczeństwo	<u>!</u>

A-32

Oszronienie jezdni

ZNAKI ZAKAZU

B-1	Zakaz ruchu w obu kierunkach	0
B-2	Zakaz wjazdu	
B-5	Zakaz wjazdu samochodów ciężarowych	
B-16	Zakaz wjazdu pojazdów o wysokości ponad m	3,5m
B-20	STOP	STOP
B-21	Zakaz skrętu w lewo	9
B-22	Zakaz skrętu w prawo	E
B-23	Zakaz zawracania	R
B-25	Zakaz wyprzedzania	
B-31	Pierwszeństwo dla nadjeżdżających z przeciwka	(I)
B-33	Ograniczenie prędkości	50
B-35	Zakaz postoju	
B-36	Zakaz zatrzymywania się	
B-41	Zakaz ruchu pieszych	1

B-42	Koniec zakazów	
B-43	Strefa ograniczonej prędkości	30

ZNAKI NAKAZU

C-2	Nakaz jazdy w prawo za znakiem	
C-4	Nakaz jazdy w lewo za znakiem	•
C-5	Nakaz jazdy prosto	•
C-6	Nakaz jazdy prosto lub w prawo	
C-7	Nakaz jazdy prosto lub w lewo	4
C-8	Nakaz jazdy w prawo lub w lewo	•
C-9	Nakaz jazdy z prawej strony znaku	S
C-10	Nakaz jazdy z lewej strony znaku	
C-12	Ruch okrężny	

ZNAKI INFORMACYJNE

D-1	Droga z pierwszeństwem	
D-2	Koniec drogi z pierwszeństwem	
D-3	Droga jednokierunkowa	

D-4a	Droga bez przejazdu	
D-5	Pierwszeństwo na zwężonym odcinku jezdni	₽ ↑
D-6	Przejście dla pieszych	
D-6b	Przejście dla pieszych i przejazd dla rowerzystów	
D-7	Droga ekspresowa	
D-8	Koniec drogi ekspresowej	F 4
D-9	Autostrada	
D-10	Koniec autostrady	
D-18	Parking	□
D-40	Strefa zamieszkania	Å
D-41	Koniec strefy zamieszkania	★ • • • • • • • • • • • • • • • • • • •
D-42	Obszar zabudowany	
D-43	Koniec obszaru zabudowanego	
D-51	Automatyczna kontrola prędkości	Kontrola prędkości O ())))) Fotoradar

PRZYKŁAD DZIAŁANIA

NA BAZIE ZDJĘĆ

Przed:

Przed:

Przed:

NA BAZIE FILMÓW

Film w serwisie YouTube prezentujący działanie w ciągu dnia:

https://youtu.be/Ly NLAvLdu0

Film w serwisie YouTube prezentujący działanie w różnych warunkach oświetleniowych:

https://youtu.be/A-vrJHdpYkk