Example problems

Problem 1: Consider the infinite series

$$2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(n\varepsilon)$$

This is a Fourier series and converges to ε whenever $\varepsilon \in [0, \pi)$. Let

$$S_k = 2\sum_{n=1}^k \frac{(-1)^{n+1}}{n} \sin(n\varepsilon)$$

denote the k'th partial sum. Investigate how large k must be to ensure that $|S_{k-1} - \varepsilon| \le 10^{-3}$ and $|S_k - \varepsilon| \le 10^{-3}$. That is, the partial sum is within 10^{-3} of ε for two consecutive terms.

Denote the resulting value of k by k_{ε}^{\star} . Determine k_{ε}^{\star} for $\varepsilon = .05, .1, .15, ..., 1$, and plot k_{ε}^{\star} vs. ε . (Note $k_{0}^{\star} = 2$).

Problem 2a: The Laplace distribution with parameter $\theta > 0$ has density

$$p(x) = \frac{\theta e^{-\theta|x|}}{2}$$

We are interested in estimation of θ . Write a program to generate from this distribution, given θ and the sample size. Use this program to estimate

$$E\left(|X - \text{median}(X)|\right)$$

as a function of θ , where X has the Laplace distribution with parameter θ . Plot this expectation for $\theta = .5, .6, .7, ..., 10$. On the same axis plot the function $f(\theta) = 1/\theta$, and **deduce an estimator of** θ . Use a sample size of 1000 in each simulation.

Hint: If V is Exponential(θ), and B = -1, 1 each with probability 1/2, then $V \cdot B$ has the a double exponential density with parameter θ .

Problem 2b: Now consider Bayesian estimation of θ . Let θ have a prior distribution that is gamma with $\alpha = 50$, and $\beta = 10$. That is,

$$p(\theta) \propto \theta^{49} e^{-10\theta}$$

Derive an expression proportional to the posterior density, and estimate the posterior mean

$$\int \theta p(\theta|x_1, x_2, ..., x_n) d\theta$$

where $x_1, ..., x_n$ is the observed data. Use importance sampling with N = 100000 monte carlo samples to estimate the above expectation using a trial density that is the exponential distribution with rate equal to to E(|X - median(X)|).

Note: To do this problem you only need the point estimate of $E(\theta|x_1,...,x_n)$. The ESS for this trial density should be small enough and I am asking you to use a monte carlo sample size large enough so that the error should be negligible, so you need not estimate the standard error (unless you want to!).

Problem 2c: When does the Bayesian estimator outperform the estimator from part a? To investigate this:

- 1. Specify a value of θ
- 2. For each value of generate k data sets of sample size n and calculate the estimator from part a, $\hat{\theta}_a$, and the estimator from part b, $\hat{\theta}_b$, for each data set.
- 3. Calculate the the value $\hat{\theta}_a$ and $\hat{\theta}_b$ for each of the k data sets
- 4. Save the sample mean from each of the quantities calculated in 3

Intuitively when the true value of θ is closer to the mean of the prior, the bayesian estimator does better. When I ran this simulation I found that for k = 200, n = 50, when $\theta = 2$

- $E(\hat{\theta}_a) \approx 2.09$
- $E(\hat{\theta}_b) \approx 2.92$

When I ran this simulation I found that for k = 200, n = 50, when $\theta = 5$

- $E(\hat{\theta}_a) \approx 5.22$
- $E(\hat{\theta}_b) \approx 5.06$

When I ran this simulation I found that for k = 200, n = 50, when $\theta = 8$

- $E(\hat{\theta}_a) \approx 8.31$
- $E(\hat{\theta}_b) \approx 6.99$

So it appears that the when $\theta = 5$, the bayesian estimator performs better, and is worse when θ is far from 5, which is no surprise. When θ is not 5, the bayes estimator shrinks the estimate toward 5.

How does the amount of shrinkage toward 5 change when you change n?