进程名	进入系统	服务时	开始时	结束时	周转时	平均周转时
	时间	间	间	间	间	间
P1	0	20	0	20	20	245/4=61.25
P2	10	60	20	80	70	
Р3	30	40	90	130	100	
P4	35	10	80	90	55	

RR 调度算法, P1~P4 进程平均周转时间如下(2分)

进程名	进入系统时	服务时	结束时	周转时	平均周转时					
	间		间	间	间					
P1	P1 0		20	20	255/4=63.75					
P2	10	60	130	120						
Р3	30	40	110	80						
P4	35	10	70	35						

(3) SPF 算法在平均周转时间方面比 RR 算法表现更好。RR 算法每个进程可以得到及时响应, SPF 算法会 导致饥饿现象,即进入就绪队列早的进程因服务时间要求长而得到的 CPU 服务被滞后。(2分)

西安邮电大学 2024----2025 学年第 1 学期试题卷 标准答案

课程: _操作系统 A 类型: A 卷 专业、年级: 软件 22 级

题号	_	=	=	四	五	六	七	八	九	总分
得分										

一、单项选择题(共30分,每小题1分,请将每小题的答案填写在下表中)

1	2	3	4	5	6	7	8	9	10
A	В	C	C	D	A	A	D	A	A
11	12	13	14	15	16	17	18	19	20
D	D	D	С	A	С	С	С	D	A
21	22	23	24	25	26	27	28	29	30
В	C	C	C	D	В	A	D	В	A

二、计算及分析题(共20分,每小题10分)

1. 答: SPF:P1-->P2-->P4-->P3 (2分)

RR: (2分)

P1	P2	Р3	P4	P2	Р3	P2	
20) 4() 60) 7() 9	0 1	10 13	30

SPF 算法, P1~P4 进程平均周转时间如下(2分)

处性和	近八氷汎	NK 27 H 1	\ \ \ \ \ \ \ \ \ \ \ \ \	20/KH)) H) 47 H)	120/円代刊
	时间	间	间	间	间	间
P1	0	20	0	20	20	245/4=61.25
P2	10	60	20	80	70	
Р3	30	40	90	130	100	
P4	35	10	80	90	55	

2.答:

(1) 采用 FCFS 处理次序为: 200-20-150-70-90-120 (3分)

磁头总移动时间: 500x1ms=500ms。

采用扫描调度处理次序为: 150-200-120-90-70-20 (3分)

磁头总移动时间: 240x1ms=240ms。

- (2) 因扫描调度算法磁头总移动时间更短为 240ms, 所以磁盘访问延迟会更小, SCAN (扫描, 电梯) 磁盘 调度算法更为高效(2分)
- (3) 内存,磁盘缓冲策略减少磁盘读写延迟的原因: 1) 减少物理磁盘访问的频率, 2) 提高数据访问的局 部性,3) 写操作延迟的缓解4) 缓解磁盘寻址和定位的延迟。回答出一个原因,合理即给分。(2分)

三、简答及分析题(共20分,每小题10分)

1. 答:

- (1) fork(); lib.a 或 fork(){....}; system call()或 ENTRY(system call)或 call SYMBOL NAME; sys fork() (4
- (2) int 0x80, ret from sys call 或 iret (2分)

```
(3) 程序(2分)
#include <stdio.h>
#include <unistd.h>
int main() {
    pid t pid;
    pid = fork();
    if (pid < 0) {
        perror("fork failed");
        return 1:
    \} else if (pid == 0) {
         printf("This is the child process. PID: %d, Parent PID: %d\n", getpid(), getppid());
         printf("This is the parent process. PID: %d, Child PID: %d\n", getpid(), pid);
    return 0;
    操作系统 , 不一样 (2分)
```

- (1) VA=0A2EH, 页大小 4KB, 页内偏移地址 12 位, VA=0A2EH 对应得页号位 0, 查页表命中, 物理块号 为 7C,对应的 PA=7CA2EH(4分)
- (2) 不在,因为345CH的页号是3,查页表未命中,会产生缺页中断,系统根据页表中3号页的外存地址 7,将页在磁盘的备份读入到内存中,当前系统分配给该进程的块(2块)已存有页数据(满),因此系统 根据 LRU 算法,选择 1 号页被置换出去, 1 号页修改位为 1, 所以需要将 1 号页回写至磁盘, 同步修改页表 内容。(2分)
- (3) 可以,因为 2GB 程序开始运行时只需要将很少一部分载入内存就可运行,后续其它部分程序可通过缺 页中断方式从磁盘调入内存运行。(2分)
- (4) 2 级,因为虚拟内存空间为 2^{32} B,页大小为 4KB,那么最大程序需要的页表为 1M 个页表项,因此页 表很大,多个程序都需要这么大的页表,使得内存需要连续多个 1M 个页表项空间,导致内存利用率不高。 2级页表只需将部分页表载入内存即可,需要时再从外存调入,节省了内存空间。(2分)

四、综合分析题(每小题10分,共30分)

1. 答:

- (1) plate 表示盘子为空状态, apple 表示盘子里苹果的个数。其初值分别为多少 1, 0 (2 分)
- (2) 3 (plate 为 0 和 apple 为 0) 11 (plate 为 0 和 apple 为 1) 4 (plate 为 0 和 apple 为 1) 5 (plate 为 0 和 apple 为 0) 12 (plate 为 0 和 apple 为 0) 13 (plate 为 1 和 apple 为 0) (2 分)

运行,阻塞(2分)

(3) (4分)

1.	void *mother(void *p){	9.	void *son(void *p){
2.	while(1){	10.	while(1){
3.	sem_wait(&plate);	11.	sem_wait(&orange);
4.	Mother puts orange	12.	Son gets orang
5.	sem_post(&orange);	13.	post(&plate);
6.	}	14.	}
7.	return NULL;	15.	return NULL;
8.	}	16.	}

2.答:

(1) (2分)

进程	最大需求量 (Max) A B C			(Max) (Allocation)				A	需求量 (Need) B	С	乘 (A A	l余资源量 vailable B	e) C
P1	3	2	2	1	0	0	2	2	2	1	1	2	
P2	6	1	3	5	1	1	1	0	2				
Р3	3	1	4	2	1	1	1	0	3				
P4	4	2	2	0	0	2	4	2	0				

(2) (4分)

进程	Uverk C C C C C C C C C C C C C C C C C C C					A	W+A B	С				
P2	1	1	2	5	1	1	1	0	2	6	2	3
P1	6	2	3	1	0	0	2	2	2	7	2	3
Р3	7	2	3	2	1	1	1	0	3	9	3	4
P4	9	3	4	0	0	2	4	2	0	9	3	6

通过以上算法测试,可以找到<P2, P1, P3, P4>安全序列, T0 时刻是否是安全。

- (3) P1 在 T1 时刻提出资源申请 Request(1,1,2), Request(1,1,2)<=Available(1,1,2), 假设分配,系统剩余资源为(0,0,0),无法满足其它任何一个进程需要,不安全,资源不能分配给 P1。(2分)
- (4)银行家算法策略的优势为可以动态申请资源。(2分)

3. 答:

- (1) 虚拟地址 (2分)
- (2) 文件系统(2分)
- (3) fd 文件描述符是一个整数,内核通过这个整数关联了进程所打开文件的 file {}结构,该结构里存储了文件的各种属性信息,包括 inode 指针,后续对文件的各种操作通过 fd 就可以访问文件的各种属性信息,从而支持文件的各种操作。(2分)
- (4) 用户态缓冲(2分)
- (5) 在用户空间标记文件描述符为不可用,在内核中减少文件描述符的引用计数。如果文件不再被其他进程使用,清理文件相关的内核数据结构。同步和写入文件数据到磁盘,更新文件元数据。释放文件、套接字、管道等资源,并清理内存和文件缓存。释放文件描述符,并将其标记为可供后续使用。回答 2 点即可给分。(2 分)