تکلیف معماری کامپیوتر سری ۲

پرهام الوانی ۵ اسفند ۱۳۹۳

فهرست مطالب

۲ مساله ۱ ۳ مساله ۲ ۴ مساله ۳

۱ مساله ۱

operand memory no with Instruction:

$$= 1 \circ + (1 - \circ / 1) * (7 \circ \circ + (1 - \circ / 1) * 7 \Delta \circ)$$

$$= 1 \circ + \circ / 1 * (7 \circ \circ + \circ / \circ 1 * f \Delta \circ)$$

$$= 1 \circ + 7 \circ + \circ / f \Delta$$

$$= \mathtt{T} \circ / \mathtt{F} \Delta n s$$

operand memory one with Instruction:

$$= r \circ / f \Delta + r \circ + (1 - \circ / \Lambda \Delta) * (r \circ \circ + (1 - \circ / f f) * f \Delta \circ)$$

$$= r \circ / r \Delta + r \circ + \circ / 1 \Delta * (r \circ \circ + r / \Delta)$$

$$= \Upsilon \circ / \Upsilon \Delta + \Upsilon \circ + \Upsilon \circ + \circ / \mathcal{F} \Upsilon \Delta$$

$$= \lambda \circ / \Delta + \circ / 2 V \Delta$$

$$= \lambda 1/17 \Delta ns$$

operand memory two with Instruction:

$$= \Upsilon \circ / \Upsilon \Delta + \Upsilon * (\Upsilon \circ + \Upsilon \circ + \circ / \mathcal{F} \Upsilon \Delta)$$

$$= r \circ / f \Delta + 1 \circ \circ + 1 / r \Delta$$

$$= 170/\Lambda ns$$

AMAT finally and:

$$= \text{\texttt{T}} \circ / \text{\texttt{F}} \Delta * \circ / \Delta + \text{\texttt{A}} 1 / 1 \text{\texttt{T}} \Delta * \circ / \text{\texttt{T}} \Delta + 1 \text{\texttt{T}} \circ / \text{\texttt{A}} * \circ / 1 \Delta$$

$$= 10/77 + 71/797 + 19/87$$

$$=$$
 $97/777ns$

۲ مساله ۲

$\circ \rightarrow$	0 0 0 0 0 0 0
$r \cdot \rightarrow$	00010101
au au o	00010111
$\texttt{YA} \rightarrow$	00100011
$YF\to$	01001100
ightarrow	。。。。。。。)
${\it FF} ightarrow$	01000010
${\tt \Lambda} \circ \to $	01010000
${\tt \Delta f} \to$	00110110
au ho ightarrow	00100100
au f $ o$))
au au o	00010111
$V \Delta \to$	01001011
$r \rightarrow$	00000010

# ٣	# Y	#1	address
hit	hit	miss	0
hit	hit	miss	71
hit	hit	hit	74
hit	hit	miss	٣۵
hit	hit	miss	49
hit	hit	hit	١
hit	hit	hit	99
hit	hit	miss	٨٠
hit	hit	miss	٥۴
hit	hit	hit	45
hit	hit	hit	74
hit	hit	hit	74
hit	hit	hit	٧۵
hit	hit	hit	٢

rate miss =
$$= \frac{V}{V * V} = \frac{V}{S}$$

٣ مساله ٣

بله با افزایش k همواره مقدار ratio hit افزایش میابد. این موضوع را میتوان اینگونه توصیف کرد که با افزایش k رعایت همجواری های زمانی بیشتر میشود که این موضوع در کنار رعایت همجواری مکانی در blocking باعث افزایش ratio hit میشود.

۴ مساله ۴