G12 : Correction succinte de la 2^e session.

Exercice 1. 1. On a, pour tout $\alpha > 0$,

$$\mathbb{E}\left[e^{-\alpha X}\right] = \int_{\mathbf{R}_{+}} e^{-\alpha x} e^{-x} dx = \frac{1}{1+\alpha}.$$

2. Puisque $\mathbb{P}(Y \in \mathbb{N}) = 1$, on a, par convergence monotone,

$$\mathbb{E}\left[e^{-XY}\right] = \mathbb{E}\left[\sum\nolimits_{n \geq 0} e^{-XY} \mathbf{1}_{Y=n}\right] = \mathbb{E}\left[\sum\nolimits_{n \geq 0} e^{-nX} \mathbf{1}_{Y=n}\right] = \sum\nolimits_{n \geq 0} \mathbb{E}\left[e^{-nX} \mathbf{1}_{Y=n}\right],$$

et, par indépendance des variables X et Y,

$$\mathbb{E}\left[e^{-XY}\right] = \sum_{n \ge 0} \mathbb{E}\left[e^{-nX}\right] \mathbb{P}(Y = n) = \sum_{n \ge 0} \frac{1}{n+1} e^{-\lambda} \frac{\lambda^n}{n!} = \frac{1 - e^{-\lambda}}{\lambda}.$$

Exercice 2. 1. (a) $(Y_n)_{n\geq 1}$ converge en loi vers Y; $(Z_n)_{n\geq 1}$ converge presque sûrement, et donc en probabilité, vers la constante c. Le lemme de Slutsky donne la convergence en loi de la suite de terme général (Y_n, Z_n) vers (Y, c).

(b) La fonction $(y, z) \mapsto y/\max(z, c/2)$ est continue de \mathbf{R}^2 dans \mathbf{R} puisque c > 0. Par conséquent $Y_n/\max(Z_n, c/2)$ converge en loi vers $Y/\max(c, c/2) = Y/c$. De plus, $Z_n/\max(Z_n, c/2)$ converge presque sûrement vers 1. On obtient via le lemme de Slutsky la convergence en loi de $(Y_n/\max(Z_n, c/2), Z_n/\max(Z_n, c/2))$ vers (Y/c, 1).

Puisque la fonction $(x,y) \longmapsto xy$ est continue de \mathbf{R}^2 dans \mathbf{R} , la suite $(Y_n/Z_n)_{n\geq 1}$ converge en loi vers Y/c.

2. (a) Pour tout $k \in \mathbf{N}^*$,

$$\mathbb{E}\left[X_1^k\right] = \frac{1}{2} \int_{-1}^1 x^k \, dx = \begin{cases} 0 & \text{si } k \text{ est impair,} \\ \frac{1}{k+1} & \text{sinon.} \end{cases}$$

- (b) Les v.a. $(X_n)_{n\geq 1}$ sont i.i.d les $(X_n^2)_{n\geq 1}$ aussi et X_1 possède des moments de tous les ordres donc, d'après la loi forte des grands nombres, S_n/n et U_n/n converge presque sûrement vers $\mathbb{E}[X_1] = 0$ et $\mathbb{E}[X_1^2] = 1/3$. Par suite, S_n/U_n converge presque sûrement vers 0 $(1/3 \neq 0)$.
- (c) Puisque X_1 est de carré intégrable centrée et les $(X_n)_{n\geq 1}$ sont i.i.d, on peut appliquer le TCL pour obtenir la convergence en loi de S_n/\sqrt{n} vers une variable aléatoire G de loi $\mathcal{N}(0, \mathbb{V}(X_1))$ soit $\mathcal{N}(0, 1/3)$.
 - (d) Écrivons, pour tout n > 1,

$$\sqrt{n} \, \frac{S_n}{U_n} = \frac{S_n/\sqrt{n}}{U_n/n}.$$

 S_n/\sqrt{n} converge en loi vers G et U_n/n presque sûrement vers 1/3 ($\mathbb{P}(U_n > 0) = 1$). D'après la première question, $\sqrt{n}S_n/U_n$ converge en loi vers 3G de loi $\mathcal{N}(0,3)$.

Exercice 3. 1. (a) Pour tout réel r, on a

$$\mathbb{E}[|X_1|^r] = 2 \int_{x \ge 1} \frac{dx}{x^{3-r}} = \begin{cases} +\infty & \text{si } 3 - r \le 1, \\ \frac{2}{2-r} & \text{si } 3 - r > 1 \end{cases};$$

 $|X_1|^r$ est intégrable si et seulement si r < 2.

- (b) Comme les v.a. $(X_n)_{n\geq 1}$ sont i.i.d. et intégrables, S_n/n converge presque sûrement vers $\mathbb{E}[X_1] = 0$ d'après la loi forte des grands nombres.
 - (c) On ne peut pas appliquer le TCL car X_1 n'est pas de carré intégrable.
- 2. (a) Remarquons tout d'abord que Y_n est bornée par $n^{1/p}$. De plus, comme g est paire, Y_n est centrée i.e. $\mathbb{E}[Y_n] = 0$. Enfin,

$$\mathbb{V}(Y_n) = \mathbb{E}\left[Y_n^2\right] = \mathbb{E}\left[X_1^2 \mathbf{1}_{|X_1| \le n^{1/p}}\right] = 2 \int_1^{n^{1/p}} \frac{x^2}{x^3} \, dx = 2 \ln n^{1/p} = \frac{2}{p} \ln n.$$

(b) Les variables aléatoires $n^{-1/p}Y_n$ sont indépendantes et centrées. De plus,

$$\sum_{n\geq 1} \mathbb{V}\left(n^{-1/p} Y_n\right) = \sum_{n\geq 1} n^{-2/p} \mathbb{V}(Y_n) = \frac{2}{p} \sum_{n\geq 1} n^{-2/p} \ln n < +\infty$$

puisque 2/p > 1. D'après le théorème « des séries de v.a. indépendantes et centrées », la série $\sum_{n\geq 1} n^{-1/p} Y_n$ converge presque sûrement et dans L² vers une variable aléatoire réelle de carré intégrable.

- (c) Le lemme de Kronecker implique la convergence presque sûre de $n^{-1/p}T_n$ vers 0.
- 3. (a) Par définition $\mathbb{P}(X_n \neq Y_n) = \mathbb{P}(|X_n|^p > n)$. Comme les variables $(X_n)_{n\geq 1}$ sont identiquement distribuées, on a $\sum_{n\geq 1} \mathbb{P}(X_n \neq Y_n) = \sum_{n\geq 1} \mathbb{P}(|X_1|^p > n)$. Cette dernière somme est finie puisque $|X_1|^p$ est intégrable.

Le lemme de Borel-Cantelli donne $\mathbb{P}(\limsup\{X_n \neq Y_n\}) = 0$ soit encore, par passage au complémentaire, $\mathbb{P}(\liminf\{X_n = Y_n\}) = 1$.

(b) Montrons que la suite $((S_n - T_n)/n^{1/p})_{n \geq 1}$ converge presque sûrement vers 0. Soit $\omega \in \liminf\{X_n = Y_n\}$; il existe un entier n_ω tel que, pour tout $k \geq n_\omega$, $X_k(\omega) = Y_k(\omega)$. Si $n \geq n_\omega$, on a

$$\frac{(S_n - T_n)(\omega)}{n^{1/p}} = \frac{1}{n^{1/p}} \sum_{k=1}^n (X_k - Y_k)(\omega) = \frac{1}{n^{1/p}} \sum_{k=1}^{n_\omega - 1} (X_k - Y_k)(\omega) ;$$

cette quantité tend vers 0 si $n \to +\infty$ puisqu'il s'agit d'une constante – à ω fixé la somme ne dépend pas de n – divisée par $n^{1/p}$. Comme $\mathbb{P}(\liminf\{X_n=Y_n\})=1$, $(S_n-T_n)/n^{1/p}$ converge presque sûrement vers 0.

On obtient la convergence presque sûre de $S_n/n^{1/p}$ vers 0 via la décomposition

$$\frac{S_n}{n^{1/p}} = \frac{T_n}{n^{1/p}} + \frac{S_n - T_n}{n^{1/p}}$$

puisque chacun des deux termes de cette somme converge presque sûrement vers 0.