Representação da Informação

· O computador armazena e movimenta as informações internamente sob forma eletrônica; está ligado ou desligado.

- · O computador só consegue processar duas informações: a presença ou ausência de energia.
- · Mundo digital Trabalha com dois níveis de sinais elétricos: alto e baixo.

- · Código mais comum => BINÁRIO
- · Por que é utilizado o sistema binário ? Computador trabalha bem com valores binários e é simples
- · Número binário no computador: bit [de "Binary digIT"]
 - A unidade de informação
 - Uma quantidade computacional que pode tomar um de dois valores, tais como verdadeiro e falso ou 1 e 0
- · Um bit pode representar apenas 2 símbolos (0 e 1)
- Necessidade unidade maior, formada por um conjunto de bits, para representar números e outros símbolos, como os caracteres e os sinais de pontuação que usamos nas linguagens escritas.
- · Capacidade de Representação:

Bits	Símbolos
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

Sistema de Numeração

- · Conjunto de símbolos utilizados para representação de quantidades e de regras que definem a forma de representação.
- · Cada sistema de numeração é apenas um método diferente de representar quantidades. As quantidades em si não mudam; mudam apenas os símbolos usados para representálas.
- A quantidade de algarismos disponíveis em um dado sistema de numeração é chamada de base.
- · Representação numérica mais empregada: notação posicional.

Sistema	Base	Algarismos	
Binário	2	0,1	
Ternário	3	0,1,2	
Octal	8	0,1,2,3,4,5,6,7	
Decimal	10	0,1,2,3,4,5,6,7,8,9	
Duodecimal	12	0,1,2,3,4,5,6,7,8,9,A,B	
Hexadecimal	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F	

· Como os números representados em base 2 são muito extensos e, portanto, de difícil manipulação visual, costuma-se representar externamente os valores binários em outras bases de valor mais elevado (octal ou hexadecimal). Isso permite maior compactação de algarismos e melhor visualização dos valores.

Padrões de Representação

- · Número entre parênteses e a base como um índice do número.
 - Sistema Decimal (1234)10 ou 123410

Decimal

- · Sistema mais utilizado.
- · Apareceu naturalmente no aprendizado de contagem (dez dedos).
- · 10 símbolos para representar quantidades.

- · Também chamado de sistema de base 10 é um sistema posicional, no qual o valor de cada dígito depende de sua posição no número: unidade, dezena, (dez unidades), centena (cem unidades), milhar (mil unidades), dezena de milhar, centena de milhar, etc.
- Exemplo: 1234 é composto por 4 unidades, 3 dezenas, 2 centenas e 1 milhar, ou 1000+200+30+4 = 1234;

0123456789

Sistema Binário

· Também chamado de sistema de base 2 é um sistema posicional, no qual o valor de cada dígito é nomeado de bit.

- · Segue as regras do sistema decimal válidos os conceitos de peso e posição. Posições não têm nome específico.
- · Cada algarismo é chamado de bit. Exemplo: 1012
- · Caractere mais à esquerda Most-Significative-Bit "MSB".
- · Caractere mais à direita Least-Significative-Bit "LSB

Sistema Octal

· Também chamado de sistema de base 8 é um sistema posicional;

Exemplo: 5638

Sistema Hexadecimal

- · Também chamado de sistema de base 16 é um sistema posicional.
- · Possui 16 símbolos (algarismos) para representar qualquer quantidade.

0123456789ABCDEF

- · Uso das letras facilidade de manuseio.
- · Exemplo: FA3161

Observações

Ao trabalhar com sistemas de numeração, em qualquer base, deve-se observar o seguinte:

- O número de dígitos usado no sistema é igual à base.
- · O maior dígito é sempre menor que a base.
- · O dígito mais significativo está à esquerda, e o menos significativo à direita.

· Em geral se toma a base decimal como referência

Decimal	Binário	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	/ 10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11/	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Conversão entre Sistemas de Numeração

· Procedimentos básicos: - divisão - polinômio - agrupamento de bits

Divisão (Decimal outro sistema)

- · Divisão inteira (do quociente) sucessiva pela base, até que quociente seja menor do que a base.
- · Valor na base = composição do último quociente (MSB) com restos (primeiro resto é bit menos significativo LSB)
- · Dividir o número por b (base do sistema) e os resultados consecutivas vezes.

Ex.: $(125)_{10} = (?)_2$

 $(538)_{10} = (?)_{16}$

Fazer a conversão:

- 1) 25 para octal
- 2) 54 para binário
- 3) 98 para hexadecimal

Notação Polinomial ou Posicional (qualquer base para base decimal)

$$a_n$$
 = algarismo, b = base do número n = quantidade de algarismo - 1

Notação Polinomial ou Posicional
Ex.:

a)
$$(1111101)_2 = (?)_{10}$$

$$(1111101)_2 = 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 125_{10}$$
b) $(21A)_{16} = (?)_{10}$

$$(21A)_{16} = 2 \times 16^2 + 1 \times 16^1 + 10 \times 16^0 = 538_{10}$$

Converter

- 1) 10111₂ para decimal
- 2) 724₈ para decimal
- 3) ABC10₁₆ para decimal

Sistemas octal e hexa binário (e vice versa)

- · Associando 3 bits ou 4 bits (quando octal ou hexadecimal, respectivamente) e vice-versa.
- Ex.: $(1011110010100111)_2 = (?)_{16} (A79E)_{16} = (?)_2$

Conventer

- 1) AB3₁₆ para binário
- 2) 752₈ para binário
- 3) 10110110₂ para hexadecimal
- 4) 10110110₂ para octal

Conversão octal hexadecimal

Não é realizada diretamente - não há relação de potências entre as bases oito e dezesseis.

Semelhante à conversão entre duas bases quaisquer - base intermediária (base binária)

Conversão em duas etapas:

- 1 número: base octal (hexadecimal) ->binária.
- 2 resultado intermediário: binária ->hexadecimal(octal).

$$(175)_8 = (1111101)_2 = (7D)_{16}$$

Converter

- 1) 25AB₁₆ para octal
- 2) 1457₈ para hexadecimal

OBS: É possível realizar a conversão de decimal para Hexa (octal) através do Binário bem como Hexa (octal) para decimal pelo binário.

Converter

- 1) 25 para octal
- 2) 98 para hexadecimal
- 3) 724₈ para decimal
- 4) ABC10₁₆ para decimal

Qual conversão você acho mais fácil? Através do binário ou utilizando a divisão e o polinômio?

Referência

CALADO PANTALEÃO CAMARA, Rômulo. **Sistema de Numeração e Conversão entre Sistemas.** [S. l.], 2019. http://www.univasf.edu.br/~romulo.camara/novo/wp-content/uploads/2013/07/Aula2_Sistema_numeracao_conversao.pdf.