CS579: Foundations of Cryptography Spring 2023

Symmetric-Key Encryption

Instructor: Nikos Triandopoulos

Computational security

The big picture

- we formally defined and constructed a perfectly secure cipher
- this encryption has some drawbacks
 - e.g., it employs a very large key
- by Shannon's Theorem, such limitations are unavoidable

Our approach: Relax "perfectness"

Initial model / abstraction

- perfect secrecy / security requires that
 - absolutely no information is leaked about the plaintext
 - to adversaries that unlimited computational power

Refined model / abstraction

- consider a relaxed notion of security, called computational security,
 where an encryption scheme is (for all practical purposes) secure even if
 - a tiny amount of information is leaked about the plaintext (e.g., w/ prob. 2⁻⁶⁰)
 - to adversaries with bounded computational power (e.g., attacker invests 200ys)

Computational security

- to be contrasted against information-theoretic security
- de facto way in which security is modeled in most cryptographic settings
- an integral part of modern cryptography w/ rigorous mathematical proofs
- entails two relaxations
 - security is guaranteed against efficient adversaries
 - if an attacker invests in sufficiently large resources, it may break the scheme's security
 - goal: make required resources larger than those available to any realistic attacker!
 - adversaries can potentially succeed (i.e., security guarantees are probabilistic)
 - with some small probability the scheme is breakable
 - goal: make success probability sufficiently small so that it can be practically ignored!

Towards a rigorous definition of computational security

Concrete approach

- bounds the maximum success probability of any (randomized) adversary running for some specified amount of time or investing a specified amount of resources
- general security result: "A scheme is (t,ε) -secure if any adversary \mathcal{A} , running for time at most t, succeeds in breaking the scheme with probability at most ε "
- need to
 - define what it means for an adversary to "break" a scheme
 - specify precisely the resources (e.g., time in seconds using a particular computer, or CPU cycles in a particular available supercomputer architecture)

Examples

- almost optimal security guarantees
 - key length n, key space size |K| = 2ⁿ
 - Arunning for time t (e.g., CPU cycles) succeeds w/ prob. at most ct/2ⁿ
 - this corresponds to a brute-force type of attack (w/out preprocessing)
- parameter c models advanced computing methods
 - c is typically larger than 1: e.g., parallelism can be used, etc.
- if c = 1, n = 60, security is enough for attackers running a desktop computer
 - ◆ 4 GHz (4x10⁹ cycles/sec), 2⁶⁰ CPU cycles require about 9 years
 - however, "fastest" available computer runs w/ 2x10¹⁶ cycles/sec, i.e., in ~1min!
 - choosing n=80 is better: the supercomputer would still need ~2 years

Today's recommendations

- recommended security parameter is n = 128
- large difference between 2⁸⁰ and 2¹²⁸
 - ◆ #seconds since Big Bang is ~2⁵⁸
- if probability of success (within 1 year of computation) is 1/2⁶⁰
 - it is more likely that Alice and Bob are hit by lighting (and thus don't care much about the breached confidentiality)
 - an event happening once in 100 years corresponds to probability 2⁻³⁰ of happening at a particular second
- limitations of the concrete approach
 - harder to achieve, careful interpretation is needed, what if \mathcal{A} runs for 2t or t/2?

An alternative (less quantitative) approach

- Asymptotic approach
 - again, a security parameter n is used (e.g., key length)
 - efficient (or realistic or feasible) adversaries are equated with probabilistic poly-time (PPT) algorithms that run for time that is a polynomial of n
 - small probability of success is equated with success probabilities that are asymptotically smaller than any inverse polynomial in n
 - general security result: "A scheme is secure if any PPT adversary A succeeds in breaking the scheme with at most negligible probability"

Negligible functions (to capture tiny likelihood)

Typically, they measure the probability of success (of an attacker)

- Intuitively: very small probability
 - negligible, can be ignored, it's more likely to be hit by asteroid...
 - approaches 0 faster than the inverse of any polynomial
 - notation: negl
- Formally
 - A function $\mu : \mathbb{N} \to \mathbb{R}^+$ is negligible if for every positive integer c there exists an integer \mathbb{N} such that for all $n > \mathbb{N}$, it holds that

$$\mu(n) < 1 / n^c$$

Security parameter

- Asymptotic approach
 - general result: "A scheme is secure if any PPT adversary A succeeds in breaking the scheme with at most negligible probability"
 - the terms "negligible" and "polynomial" make sense only if any algorithm (and the adversary \mathcal{A}) takes an additional input $\mathbf{1}^n$
 - this is called the security parameter
 - i.e., we consider an infinite sequence of schemes Π parameterized by n

- e.g., security parameter n equals the key length (i.e., $\{0,1\}^n \rightarrow k$)
 - \mathcal{A} can always guess k with probability 2^{-n} a negligible function of n
 - \mathcal{A} can also enumerate all possible keys k in time 2^n an exponential time in n

Asymptotic approach: Pros & cons

- Pros
 - all types of Turing Machines are "equivalent" up to a "polynomial reduction"
 - no need to specify the details of the computational model
 - in analyzing a scheme, the involved formulas get much simpler
- Cons
 - asymptotic results don't tell us anything about security of the concrete systems
- In practice
 - we prove formally an asymptotic result; and then
 - argue informally that "the constants are reasonable" (or calculate them if it is needed)

Negligible functions

Recall: Defining security relaxations

- Concrete approach
 - general result: "A scheme is (t, ε) -secure if any adversary \mathcal{A} , running for time at most t, succeeds in breaking the scheme with probability at most ε "
- Asymptotic approach
 - general result: "A scheme is secure if any PPT adversary A succeeds in breaking the scheme with at most negligible probability"
 - PPT algorithm: probabilistic algorithm that runs in time O(n^c) for some c
 - notation: poly

Negligible functions

Typically, they measure the probability of success (of an attacker)

- Intuitively: very small probability
 - negligible, can be ignored, it's more likely to be hit by asteroid...
 - approaches 0 faster than the inverse of any polynomial
 - notation: negl
- Formally
 - A function μ: N → R⁺ is negligible if for every positive integer c there exists an integer N such that for all n > N, it holds that

$$\mu(n) < 1 / n^{c}$$

Example of negligible functions

$$f(n) =$$

- $1/n^2 \rightarrow No$
- 2⁻ⁿ → Yes
 - E.g., for n > 23, $f(n) < n^{-5}$
- ◆ 2^{-sqrt(n)} → Yes
 - E.g., for n > 3500, $f(n) < n^{-5}$
- n^{-logn}
 → Yes
 - E.g., for n > 33, $f(n) < n^{-5}$
- $1/n^{10000} \rightarrow No$

Properties of poly and negl functions

A sum of two polynomials is a polynomial

A product of two polynomials is a polynomial:

A sum of two negligible functions is a negligible function:

Moreover:

A negligible function multiplied by a polynomial is negligible

Computational secrecy

Recall: Approach in modern cryptography

Formal treatment

• fundamental notions underlying the design & evaluation of crypto primitives

Systematic process

(A) formal definitions (what it means for a crypto primitive to be "secure"?)

◆ (B) precise assumptions (which forms of attacks are allowed – and which aren't?)

(C) provable security (why a candidate instantiation is indeed secure – or not)?

Example: Precise assumptions (1)

adversary

- type of attacks a.k.a. threat model
- eavesdropping
- capabilities (e.g., a priori knowledge, access to information, party corruptions)
- limitations (e.g., bounded memory, passive Vs. active)

Eve may know the a priori distribution of messages sent by Alice

Eve doesn't know/learn the secret k (shared by Alice and Bob)

Example: Possible eavesdropping attacks (1.I)

- (a) collection of ciphertexts
 - ciphertext only attack
 - this will be the default attack type when we will next define the concept of perfect security

Example: Possible eavesdropping attacks (1.II)

- (a) collection of ciphertexts
 - ciphertext only attack
- (b) collection of plaintext/ciphertext pairs
 - known plaintext attack

Example: Possible eavesdropping attacks (1.III)

- (a) collection of ciphertexts
 - ciphertext only attack
- (b) collection of plaintext/ciphertext pairs
 - known plaintext attack
- (c) collection of plaintext/ciphertext pairs for plaintexts selected by the attacker
 - chosen plaintext attack

Example: Possible eavesdropping attacks (1.IV)

- (a) collection of ciphertexts
 - ciphertext only attack
- (b) collection of plaintext/ciphertext pairs
 - known plaintext attack
- (c) collection of plaintext/ciphertext pairs for plaintexts selected by the attacker
 - chosen plaintext attack
- (d) collection of plaintext/ciphertext pairs for (plaintexts and) ciphertexts selected by the attacker
 - chosen ciphertext attack

Recall: Possible eavesdropping attacks

- (a) collection of ciphertexts
 - ciphertext only attack
 - ◆ EAV-attack
- (c) collection of plaintext/ciphertext pairs for plaintexts selected by the attacker
 - chosen plaintext attack
 - CPA-attack

3 equivalent definitions of perfect EAV-security

1) a posteriori = a priori

For every $\mathcal{D}_{\mathcal{M}}$, $m \in \mathcal{M}$ and $c \in \mathcal{C}$, for which Pr[C = c] > 0, it holds that

$$Pr[M = m \mid C = c] = Pr[M = m]$$

3) indistinguishability

For every \mathcal{A} , it holds that

$$Pr[b' = b] = 1/2$$

2) C is independent of M

For every m, m' $\in \mathcal{M}$ and $c \in C$, it holds that

$$Pr[Enc_K(m) = c] = Pr[Enc_K(m') = c]$$

From perfect to computational EAV-security

- perfect security: M, $Enc_{\kappa}(M)$ are independent
 - absolutely no information is leaked about the plaintext
 - to adversaries that unlimited computational power
- computational security: for all practical purposes, M, Enc_k(M) are independent
 - a tiny amount of information is leaked about the plaintext (e.g., w/ prob. 2-60)
 - to adversaries with bounded computational power (e.g., attacker invests 200ys)
- attacker's best strategy remains ineffective
 - random guess on secret key; or
 - exhaustive search over key space (brute force attack)

A formal, mathematic view of symmetric encryption

A symmetric-key encryption scheme is defined by

- a message space \mathcal{M} , $|\mathcal{M}| > 1$, and a triple (Gen, Enc, Dec)
- ullet Gen: probabilistic key-generation algorithm, defines key space ${\mathcal K}$
 - $Gen(1^n) \rightarrow k \in \mathcal{K}$ (security parameter n)
- Enc: probabilistic encryption algorithm, defines ciphertext space C
 - Enc: $\mathcal{K} \times \mathcal{M} \to C$, Enc(k, m) = Enc_k(m) \to c $\in C$
- **Dec**: <u>deterministic</u> encryption algorithm
 - ullet Dec: $\mathcal{K} \times C \to \mathcal{M}$, Dec(k, c) = Dec_k(c) := m $\in \mathcal{M}$ or \bot

Relaxing indistinguishability

Relax the definition of perfect secrecy – that is based on indistinguishability

- require that m₀, m₁ are chosen by a PPT adversary
- require that no PPT adversary can distinguish Enc_k(m₀) from Enc_k(m₁)

Game-based definition of computational EAV-security

encryption scheme $\Pi = \{\mathcal{M}, (Gen, Enc, Dec)\}$

We say that (Enc,Dec) is **EAV-secure** if any PPT adversary \mathcal{A} guesses b correctly with probability at most 0.5 + ε (n), where ε is a negligible function

I.e., no PPT ${\mathcal A}$ computes b correctly non-negligibly better than randomly guessing

Similarly: CPA-security

encryption scheme $\Pi = \{\mathcal{M}, (Gen, Enc, Dec)\}$

We say that (Enc,Dec) is **CPA-secure** if any PPT adversary \mathcal{A} guesses b correctly with probability at most 0.5 + ε (n), where ε is a negligible function

I.e., no PPT $\mathcal A$ computes b correctly non-negligibly better than randomly guessing, even when it learns the encryptions of messages of its choice

On CPA security

Facts

- Any encryption scheme that is CPA-secure is also CPA-secure for multiple encryptions
- CPA security implies probabilistic encryption can you see why?
- EAV-security for multiple messages implies probabilistic encryption

Recall: EAV-security for secrecy

Security definition

We say that Π = (Enc,Dec) is **EAV-secure**, if \forall PPT adversaries \mathcal{A} , \exists a negligible function ε (n) such that it holds that

$$Pr[PrivK-EAV_{A,\Pi}(n)=1] \le \frac{1}{2} + \epsilon(n)$$

I.e., no PPT ${\mathcal A}$ computes b correctly non-negligibly better than randomly guessing

Recall: CPA-security for secrecy

Security definition

We say that Π = (Enc,Dec) is **CPA-secure**, if \forall PPT adversaries \mathcal{A} , \exists a negligible function ε (n) such that it holds that

$$Pr[PrivK-CPA_{A,\Pi}(n)=1] \le \frac{1}{2} + \varepsilon(n)$$

I.e., no PPT ${\mathcal A}$ computes b correctly non-negligibly better than randomly guessing, even when it learns the encryptions of messages of its choice

CPA-security for secrecy for multiple messages

Security definition

We say that Π = (Enc,Dec) is **CPA-secure for multiple encryptions**, if \forall PPT adversaries \mathcal{A} , \exists a negligible function ε (n) such that it holds that

$$Pr[PrivK-MCPA_{A,\Pi}(n)=1] \le \frac{1}{2} + \epsilon(n)$$

I.e., no PPT $\mathcal A$ computes **b** for many challenge ciphertexts correctly non-negligibly better than randomly guessing, even when it learns the encryptions of messages of its choice