Abusive Language Detection Using HateBERT LLM

Created By:

Siddhesh Bangar Aditya Satheesan Shivam Bhor Saloni Deshmukh

Table Of Contents

- ❖ Introduction
- Literature Review
- ❖ Objective
- ❖ Abusive & Non-Abusive
- Proposed System
- Dataset Used
- System Requirements
- Technologies Used
- ❖ Results
- Conclusion
- Future Scope
- References

Introduction

The rapid growth of online communication has led to an increase in abusive and harmful content across digital platforms. Identifying and moderating such content is a critical challenge for maintaining healthy online interactions.

This project aims to build a robust **Abusive Language Detection System** using **HateBERT Large Language Models (LLMs)**, specifically **hateBERT**. By fine-tuning the model on a custom dataset, it enhances the accuracy of abusive content classification.

The system is integrated into a **Streamlit** web interface for real-time detection and moderation of harmful language, providing a practical solution for safer online interactions.

Literature Survey

SN	Paper Name	Techniques	Author & Year	Advantages and Disadvantages
	-	-	of Publication	
1.	Abusive Language	Machine Learning:	Muhammad	Advantages:- CNN achieved the best accuracy
	Detection from	NB, SVM, IBK,	Pervez Akhter et	(96.2% Urdu, 91.4% Roman Urdu) One-layer DL
	Social Media	Logistic, JRip Deep	al., 2021	models outperformed two-layer
	Comments Using	Learning: CNN,		
	ML & DL	LSTM, BLSTM,		Disadvantages:- Roman Urdu has challenges due to
	Approaches	CLSTM		lack of standard grammar and dictionary
				Processing Urdu script is complex
2.	Abusive and	Machine Learning:	Mithun Das et	
	Threatening	XGBoost, LightGBM	al., 2021	the best F1 score (0.88 for abusive, 0.54 for
	Language	Transformer-base		threatening content)
	Detection in Urdu	d: mBERT,		
	Using Boosting			Disadvantages- Significant imbalance in dataset
	and BERT Models			for threatening language detection
3.	Abusive Language	NLP techniques:	Kandarpa	Advantages: - dehatebert-mono-arabic achieved
	Detection using	N-gram features,	Venkata	the best F1 score (0.88 for abusive, 0.54 for
	NLP	linguistic features,	Abhiram,	threatening content)
		syntactic features,	Panigrahi	
		and distributional	Srikanth (2022)	Disadvantages:- Significant imbalance in dataset
		semantics		for threatening language detection
		features		- Threatening language detection had low F1 scores

Literature Survey

SN	Paper Name	Techniques	Author & Year of	Advantages and Disadvantages
			Publication	
4.	Deep Learning-based Approaches for Abusive Content Detection [7]	, ,	Simrat Kaur, Sarbjeet Singh, Sakshi Kaushal (2024)	Advantages: - dehatebert-mono-arabic achieved the best F1 score (0.88 for abusive, 0.54 for threatening content). Disadvantage:- Significant imbalance in dataset for threatening language detection - Threatening language detection had low F1 scores
5.	Abusive Words Detection on Reddit Using Machine Learning Algorithms	Machine Learning: SVM, Random Forest, XGBoost, CNN, Gradient Boosting Machine (GBM)	Madhurima Suseelan et al., 2024	Advantages: - Random Forest performed best with 99% accuracy, especially in recognizing abusive content. It does not have performance problems. Disadvantage: - Limited to sentiment analysis (upbeat, neutral, downbeat)

Objectives

Detect abusive language using LLMs

Fine-tune hateBERT on a custom dataset

Real-time detection via Streamlit

Improve accuracy with custom data

Abusive And Non-Abusive

Abusive Language	Non-Abusive Language
Contains insults, threats, or derogatory terms	Respectful and polite communication
Aims to harm or belittle individuals/groups	Supports constructive dialogue
Often includes hate speech or discrimination	Promotes understanding and inclusivity
Can incite violence or provoke strong reactions	Encourages positive interactions and feedback
May lead to emotional distress or psychological harm	Fosters a safe and supportive environment
Examples include slurs, harassment, and bullying	Examples include compliments, support, and advice

Proposed System

The Abusive Language Detection system gathers and preprocesses a diverse dataset of abusive and non-abusive language. The **hateBERT** model is fine-tuned for improved detection accuracy.

It features a user-friendly **Streamlit** frontend for real-time analysis and feedback on text classification, with performance evaluated through metrics like accuracy and F1-score.

Dataset Used

text	label
Why would you say something like that at a graduation? you are there to influence. Mistakes happen wit	0
Whatever!!! The pizza guy should have given their change back and let them give him a tip. He just	1
Everybody giving hate in the comments to someone who dedicated their life to improve women's rigi	ď
1:07 when ur girl sees your dick	1
Well fuck Religion	1
Yeah maybe don't do that to your judge	0
Dawkins mentioned the marvelous gift of life, the gift of understanding My question is where did	t O
Lol suck one black guy and lady hahaha	1
Cry Cry. Cry some more and then grow the fuck up one day	1
lol she's like one of them rats in new york	0

0 = Non-Abusive Text

1 = Abusive Text

System Requirements

SOFTWARE:

Windows 10 OS Python 3.10.8 VS Code

HARDWARE:

8GB RAM 4GB GPU RTX 256GB SSD i5 10th Gen Processor

Technologies Used

Transformers

Pandas

Scikit-learn

Torch

Streamlit

Result

Abusive Language Detection using HateBERT LLM

Enter a sentence or paragraph to analyze:

Detect Abusive Content

This app uses a fine-tuned HateBERT model for detecting abusive language in text.

Abusive Text

Abusive Language Detection using HateBERT LLM

Enter a sentence or paragraph to analyze:

Why don't you go and die, you ugly freak!

Detect Abusive Content

Abusive content detected!

This app uses a fine-tuned HateBERT model for detecting abusive language in text.

Non-Abusive Text

Abusive Language Detection using HateBERT LLM

Enter a sentence or paragraph to analyze:

All blacks are criminals.

Detect Abusive Content

Non-abusive content.

This app uses a fine-tuned HateBERT model for detecting abusive language in text.

Accuracy of Model

[348			[348/348 0	348/348 02:22, Epoch 3/3]		
Epoch	Training Loss	Validation Loss	Accuracy	Precision	Recall	
1	No log	0.246574	0.913420	0.954338	0.874477	
2	No log	0.248980	0.924242	0.963636	0.887029	
3	No log	0.253921	0.928571	0.932773	0.928870	
{'train 'train_	_runtime': 147	ep=348, training_ .301, 'train_samp nd': 2.363, 'total 'epoch': 3.0})	les_per_se	cond': 37.5	76,	

Future Scope

Multi-language Support: Expand the system to handle abusive language in multiple languages.

Integration with Social Platforms:

Deploy as a plugin for real-time moderation on social media and forums.

Conclusion

The Abusive Language Detection system using fine-tuned hateBERT effectively identifies harmful content, providing a practical solution for real-time moderation. It promotes safer online interactions and serves as a strong foundation for future enhancements like multi-language support and context-aware detection.

- 1. Akhter, M. P., Jiangbin, Z., Naqvi, S. I. R., AbdelMajeed, M., & Zia, T. (2021). Abusive language detection from social media comments using conventional machine learning and deep learning approaches. Multimedia Systems.
- 2. Das, M., Banerjee, S., & Saha, P. (2021). Abusive and Threatening Language Detection in Urdu using Boosting based and BERT based models: A Comparative Approach. FIRE 2021: Forum for Information Retrieval Evaluation
- 3. Kandarpa Venkata Abhiram, Panigrahi Srikanth (2022). "Abusive Language Detection Using NLP." *International Journal of Creative Research Thoughts (IJCRT)*, Volume 10, Issue 11. https://doi.org/IJCRT2211063
- 4. Suseelan, M., Boppuru, P. R., Ajith, K. A., & Swathy, V. S. (2024). Abusive Words Detection on Reddit Comments Using Machine Learning Algorithms. 2nd International Conference on Device Intelligence, Computing and Communication Technologies.

Thank You!

