1. Let
$$\beta = \{1, x, x^2\}$$
 be the standard basis for $\mathbb{P}_2(\mathbb{R})$ and let $\gamma = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ be the standard basis for \mathbb{R}^2 . Consider the linear transformation $T : \mathbb{P}_2(\mathbb{R}) \to \mathbb{R}^2$ given by $T(p) = \begin{pmatrix} p(1) \\ p(2) \end{pmatrix}$.

Find $[T]^{\gamma}_{\beta}$. How do you find [T] ? Apply I's vectors and read it with respect to I's rectors.

Find
$$[T]_{\beta}^{\gamma}$$
.

How do you find $[T]_{\beta}^{\gamma}$? Apply $[S'S]_{\gamma}^{\gamma}$ we done and read it with respect to $S'S$ vectors.

of $[T]_{\beta}^{\gamma} = \left([T(V_{1})]_{\gamma}^{\gamma} - \cdots [T(V_{N})]_{\gamma}^{\gamma} \right)$ where $[S=\{V_{1}, \cdots, V_{N}\}]_{\gamma}^{\gamma}$.

the problem of $[T]_{\beta}^{\gamma} = \left([V_{1}, V_{1}]_{\gamma}^{\gamma} - \cdots [T(V_{N})]_{\gamma}^{\gamma} \right)$ where $[S=\{V_{1}, \cdots, V_{N}\}]_{\gamma}^{\gamma}$.

$$= \left([V_{1}, V_{1}]_{\gamma}^{\gamma} - \cdots [T(V_{N})]_{\gamma}^{\gamma} \right)$$

$$= \left([V_$$

$$= 2 \times 3$$

$$1 \times 4$$

$$2 \times 3$$

$$1 \times 4$$

$$2 \times 3$$

$$1 \times 4$$

$$2 \times 3$$

$$2 \times 3$$

$$2 \times 3$$

$$3 \times 4$$

$$3 \times 4$$

$$3 \times 4$$

$$3 \times 4$$

$$4 \times 5$$

$$6 \times 7$$

$$7 \times 8$$

$$8 \times 8$$

$$8 \times 8$$

$$1 \times 9$$

$$1$$

2. Let
$$\beta = \{v_1, v_2, v_3\}$$
 and let $\gamma = \{w_1, w_2\}$ be bases for vector spaces V and W , respectively, over a field F . Suppose that $T \in \mathcal{L}(V)$ is given by the matrix $T \in \mathcal{L}(V)$. Find a nonzero vector in $\ker(T)$.

if veter
$$T$$
, = then $A \cdot X$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 - 2 & 3 \\ 0 & 1 - 1 \end{pmatrix} \cdot \begin{pmatrix} y \\ y \\ z \end{pmatrix}$$
r.r. a.m.
$$y = z = -\chi$$

x. free, Y= ==-2

just let 2=1. Then, $[v]_8=(-1,)$ will nork. 7= V, -22 - V3 notes

0= 0, V1 + 0, V2 + G3 V2 find ananas

heck T(-V1+12+13) = 0,

consider (VI, V2, V3): a basis

" $Q_{1}T(V_{1}) + Q_{2}T(V_{2}) + Q_{3}T(V_{3}) = 0$ " ~ find a lin. relation both three alums. $Q_{1}\left(\begin{array}{c} 1 \\ 0 \end{array}\right) + Q\left(\begin{array}{c} 2 \\ 1 \end{array}\right) + Q\left(\begin{array}{c} 3 \\ -1 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$

 $(\alpha_1,\alpha_2,\alpha_3)=(-1,1,1)$ So. (probably) - V1+ V2+V3 works

and
$$S \circ T$$
 separately with respect to the basis $\beta = \{1, x, x^2\}$ and verify that $[S \circ T]_{\beta}^{\beta} = [S]_{\beta}^{\beta} [T]_{\beta}^{\beta}$ in this example. Here p' denotes the derivative of p and all polynomials are in the variable x .

Composition of functions: $f(x) = X^2$, $g(x) = X+2$ (fog(x)) = $f(x+2)$ = f

What is
$$(S \circ T)(P) = ?$$

$$(S \circ T)(P) = S(T(P)) = S(P') = \chi \cdot (P') = \chi \cdot P''$$

$$(S \circ T)(P) = S(T(P)) = S(P') = \chi \cdot (P') = \chi \cdot P''$$

$$(S \circ T)(P) = S(T(P)) = S(P') = \chi \cdot (P') = \chi \cdot P''$$

$$(S \circ T)(P) = S(T(P)) = S(P') = \chi \cdot (P') = \chi \cdot P''$$

$$(S \circ T)(P) = S(T(P)) = S(P') = \chi \cdot (P') = \chi \cdot P''$$

$$(S \circ T)(P) = S(T(P)) = S(P') = \chi \cdot P'$$

$$(S \circ T)(P) = S(T(P)) = \chi \cdot (P') = \chi \cdot P''$$

$$(S \circ T)(P) = S(T(P)) = \chi \cdot (P') = \chi \cdot P''$$

$$(S \circ T)(P) = S(T(P)) = \chi \cdot (P') = \chi \cdot P''$$

$$(S \circ T)(P) = S(T(P)) = \chi \cdot (P') = \chi \cdot P''$$

$$(S \circ T)(P) = S(T(P)) = \chi \cdot (P') = \chi \cdot P''$$

$$(S \circ T)(P) = S(T(P)) = \chi \cdot (P') = \chi \cdot P''$$

$$(S \circ T)(P) = \chi \cdot P''$$

$$(S \circ T$$

1. Define $T, S \in \mathcal{L}(\mathbb{P}_2(\mathbb{R}), \mathbb{P}_2(\mathbb{R}))$ by T(p) = p' and S(p) = xp'. Compute the matrices of T and S

$$[S]_{c}^{c} = (S(i)_{p} [S(i)_{p}]_{p} [S(i)_{p}]_{p}) = (i i i o)$$

$$[S(i)_{p} = (i i o)_{p} [S(i)_{p}]_{p} = (i i o)_{p} (i o)_{p} (i$$

1. (True/False Jeopardy) Supply convincing reasoning for your answer. (a) T F Let V be a vector space of dimension 2 and let $T \in \mathcal{L}(V, V)$. If $[T]_{\beta}^{\beta} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

for some basis β of V, then $[T]_{\beta}^{\beta} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ for every basis β of V.

(b) T F Let A, B, C be $n \times n$ matrices over F such that AB = BA and BC = CB. Then AC = CA. (c) T F If $A, B \in M_{n \times n}(F)$, then $(A+B)^2 = A^2 + 2AB + B^2$.

(a) Compare with the previous problem. (b) Be LAZY: In general, it should be But, here the true:

let p=1/1,/27, then $T(V_1) = 2 \cdot V_1 + 0 \cdot V_2 = 2V_1$ $T(V_2) = 0.V_1 + 2.V_2 = 2V_2$ $\Rightarrow T(v) = 2v \quad \forall v \in \backslash /$ (But, this is the only case bastcally) Make this to restring! R = 0.

(c) Moke use of (b). $(A+B)^2 = (A+B)\cdot (A+B)$ = (A+B).A+ (A+B).B

Notation.

"tech-practice" middenn on Sunday

6pm-9pm. Check

out the Webank

tab on bCourses.

 $=A^2+BA+AB+B^2.$ be saw that BA to not recossarily the same as AB $(ex: (\circ))(\circ \circ) \neq (\circ \circ)(\circ \circ)$