

Universidad Nacional de Colombia Facultad de Ciencias

Departamento de Estadística

Análisis de Regresión para la predicción del precio de un automóvil

Docente:

Mario Enrique Arrieta Prieto

Grupo 7

Autores:

Andrés Mauricio Rico Parada Estadística
Ander Steven Cristancho Sanchez Estadística
Juan David Carrascal Ibañez Matemáticas
Diciembre 2022

aricop@unal.edu.co acristanchos@unal.edu.co jdcarrascali@unal.edu.co

1. Descripción

Este trabajo, de carácter académico, busca afianzar los conocimientos adquiridos en el curso Análisis de Regresión, aplicando algunas de las temáticas vistas en clase en un caso práctico. Para esta tercera y última entrega, se realizará una selección y comparación de diferentes modelos, teniendo en cuenta criterios de información y enfoque de habilidad predictiva para predecir el precio de un automóvil en el mercado estadounidense. Al final, se construirá un modelo de regresión logística con una nueva base de datos sobre datos clínicos.

2. Fase de selección automática de variables

- a) Inicialmente decidimos utilizar el criterio BIC, pues este critetio penaliza más fuertemente un modelo que tenga muchas variables[1] y consideramos que reducir esta cantidad nos puede permitir trabajar con un modelo más sencillo.
- b) Hicimos la estimación de los modelos usando el set de datos completo, descartando únicamente las variables "CarName" y "Car_ID", pues estas corresponden a etiquetas de cada observación. Para el método del mejor subconjunto decidimos establecer un tamaño máximo de 9 variables para elegir el mejor modelo. Decidimos esto pues haciendo uso de la función "system.time" encontramos que R tarda 532.47 segundos en hacer este proceso. Para tamaños más grandes de subconjuntos, el algoritmo se ejecutó durante un período mucho más largo de tiempo y no logró terminar la orden. Para las estimaciones requeridas del modelo 4 simplemente usamos las funciones AIC y BIC en el script de la entrega 2.

c)

Modelo	Método	Número de variables	R^2 ajust.	AIC	BIC
1	Forward	22	0.9500111	45.70355	-491.7414
2	Backward	21	0.9471112	55.57861	-485.5043
3	Mejor subconjunto	9	0.9294914	103.7312	-490.4341
4	Entrega 2	27	0.9401	3745.693	3842.06

- Según la tabla, nos quedaríamos con el modelo por regresión forward, ya que observamos que el modelo de la entrega 2 tiene muchas más variables y un BIC más alto con respecto a los otros modelos. Además, es el único que tiene incluida una transformación no lineal en alguna de sus variables, lo cuál producía dificultades con su interpretabilidad. En términos del criterio AIC tenemos una situación análoga a lo descrito anteriormente con BIC. Respecto a al R² ajustado, observamos que todos tienen valores semejantes, lo cuál nos da más evidencia para descartar el uso de este valor como bondad de ajuste en los modelos que hemos trabajado.
- Optamos por continuar con el criterio BIC pues AIC produce resultados muy similares y como argumentamos anteriormente, el otro criterio queda completamente descartado.

• Presentamos las estimaciones del mejor "modelo", en nuestro caso, el modelo 1:

(Intercept)	-84363.944290
enginelocation_rear	17278.106766
carlength	-56.139084
carwidth	1261.551408
curbweight	9.975033
enginetype_l	-6555.084514
enginetype_ohcv	622.149230
enginetype_rotor	1197.568597
cylindernumber_five	-1083.063727
cylindernumber_three	12578.089294
fuelsystem_2bbl	-84.252810
compressionratio	-123.628123
highwaympg	-4.358241
Marca_Chevrolet	1988.472676
Marca_Dodge	140.281895
Marca_Isuzu	1583.851927
Marca_Jaguar	2638.213862
Marca_Plymouth	-369.109903
Marca_Porsche	2740.820232
Marca_Saab	39.920175
Marca_Volkswagen	-520.919585
fuelsystem_idi	1269.386612
Marca_Peugeot	0.001212

Estimaciones modelo 1

■ Observamos que en el modelo 1 se incluyen categorías de variables que no se consideraron en el modelo de la entrega 2 como: "carlength", "fuelsystem", "compressionratio". Así como menos categorías de la variable "Marca".

Estimación	Modelo 1	Entrega 2
(Intercept)	-84363.944290	-63434.16
carwidth	1261.551408	1115.80
MarcaJaguar	2638.213862	4486.62
MarcaSaab	39.920175	4132.15
MarcaIsuzu	1583.851927	1827.25
MarcaPorsche	2740.820232	6898.55
MarcaDodge	140.281895	124.00
MarcaPeugeot	0.001212	1437.98
MarcaVolkswagen	-520.919585	-109.74

Comparación estimaciones

■ Las estimaciones de los parámetros difiere bastante entre los dos modelos. Sin embargo, para cada variable, los signos son iguales, entonces la interpretación puede ser similar, pero va a cambiar mucho las unidades de cambio para cada variable.

3. Fase de evaluación de la habilidad predictiva.

- a) El criterio de habilidad predictiva que se eligió es MSE ya que es el criterio de habilidad predictiva con el que más familiaridad se tiene, además, este criterio maximiza los errores grandes, haciendo que si el modelo es muy malo, se vea reflejado en su MSE, y por tanto, permitiendo que sea juzgado de una mejor manera. Se tomará el modelo con menos MSE. Además de esto, se escogió un mecanismo de validación 70-30, una partición de los datos de 70 % para entrenamiento y 30 % para el testeo, debido a que los modelos escogidos tienen hiperparámetros involucrados, por lo tanto, resulta más sencillo realizar su calibración, que se realizó con validación cruzada a 10-etapas con la porción de entrenamiento. Después de calibrar el hiperparámetro, se estimó el modelo con los datos de entrenamiento y se evaluó el error cuadrático medio en la porción de testeo. Sin embargo, cabe resaltar que con este mecanismo la estimación del error en el test puede cambiar de acuerdo a la semilla con la que se realice la partición.
- b) La semilla predeterminada que se utilizará para este punto será la semilla 7, que resultará en la partición usada en los siguientes incisos. La partición es presentada en el código adjunto referente a este punto.
- c) Se estimaron modelos utilizando selección del mejor subconjunto, el modelo de la entrega dos, el modelo con regresión ridge, el modelo con regresión LASSO y el modelo aditivo general, para este último, después de algunas pruebas se tomó el que mejor dio resultados, además, se realizó un modelo lineal generalizado (Bonus).
 - Modelo del mejor subconjunto: Las estimaciones de los parámetros para este modelo, estimados sobre la porción de entrenamiento, son las siguientes:

Best Subset	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-6.402e+04	1.122e+04	-5.707	7.05e-08 ***
horsepower	4.419e+01	8.599e+00	5.139	9.57e-07 ***
carwidth	9.532e + 02	1.964e+02	4.852	3.34e-06 ***
curbweight	3.297e+00	9.764e-01	3.377	0.000959 ***
Marca_Bmw	1.165e + 04	8.864e+02	13.139	< 2e-16 ***
Marca_Buick	8.509e+03	1.782e+03	4.774	4.66e-06 ***
Marca_Jaguar	8.745e + 03	2.283e+03	3.831	0.000196 ***
cylindernumber_eight	5.652e + 03	1.841e + 03	3.071	0.002587 **
enginelocation_rear	2.071e+04	2.305e+03	8.985	2.11e-15 ***

• Modelo Entrega 2: Las estimaciones de los parámetros sobre la porción de entrenamiento son las siguientes:

Entrega 2	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-7.271e + 04	1.383e+04	-5.257	6.84e-07 ***
I(carwidth)	1.266e+03	2.146e+02	5.900	3.73e-08 ***
Marca_Audi	-6.527e + 02	1.890e + 03	-0.345	0.73040
Marca_Bmw	1.077e + 04	1.116e+03	9.656	< 2e-16 ***
Marca_Buick	8.070e+02	2.785e+03	0.290	0.77253
Marca_Honda	4.230e+02	7.564e + 02	0.559	0.57707
Marca_Mazda	3.786e + 02	9.047e+02	0.419	0.67632
Marca_Mitsubishi	-1.072e+03	8.401e+02	-1.276	0.20446
Marca_Jaguar	3.691e+03	2.691e+03	1.372	0.17277
Marca_Nissan	-4.112e+02	7.200e+02	-0.571	0.56905
Marca_Peugeot	4.166e+01	1.128e+03	0.037	0.97060
Marca_Plymouth	-2.669e+02	9.811e+02	-0.272	0.78605
Marca_Porsche	9.713e+02	3.822e+03	0.254	0.79986
Marca_Saab	3.662e+03	1.106e+03	3.311	0.00124 **
Marca_Subaru	9.454e+01	8.548e + 02	0.111	0.91213
Marca_Dodge	5.085e+01	1.172e+03	0.043	0.96548
Marca_Volkswagen	-6.989e + 02	9.621e+02	-0.726	0.46908
Marca_Volvo	3.498e + 03	1.095e+03	3.196	0.00180 **
I(enginesize ²)	2.325e-01	4.292e-02	5.417	3.37e-07 ***
Marca_Isuzu	1.957e + 03	1.654e + 03	1.183	0.23916
carbody_hatchback	3.173e+02	1.133e+03	0.280	0.78001
carbody_wagon	4.222e+02	1.218e+03	0.347	0.72956
carbody_convertible	4.100e+03	1.930e+03	2.124	0.03582 *
carbody_sedan	6.607e + 02	1.122e+03	0.589	0.55712
cylindernumber_eight	1.700e+03	2.937e+03	0.579	0.56374
cylindernumber_four	-3.816e + 03	1.279e + 03	-2.983	0.00349 **
cylindernumber_six	-2.990e+03	1.637e + 03	-1.826	0.07039 .
enginelocation_rear	1.661e + 04	5.149e+03	3.226	0.00164 **

- Modelo con regresión ridge: Para este modelo, las estimaciones, al ser demasiadas, se prefiere mostrar junto a las del modelo con regresión LASSO, para comodidad del lector.
- Modelo con regresión LASSO: Mismo caso que con regresión ridge, debido a que como estos modelos no se ven afectados por la multicolinealidad, ajusta un modelo sobre todas las 52 variables disponibles.

Ridge	Estimate
(Intercept)	-64798.65
enginetype_dohcv	-9646.31
enginetype_ohcv	-2566.13
Marca_Mitsubishi	-1643.07
Marca_Renault	-1220.46
Marca_Plymouth	-1146.16
enginetype_dohc	-1137.12
Marca_Mercury	-1137.12
Marca_Dodge	-995.72
aspiration_std	-906.50
Marca_Chevrolet	-650.94
Marca_Subaru	-575.23
drivewheel_fwd	-570.92
Marca_Honda	-525.66
Marca_Peugeot	-499.81
carbody_wagon	-373.49
carbody_hatchback	-324.02
cylindernumber_four	-313.68
drivewheel_rwd	-158.71
Marca_Volkswagen	-155.87
carlength	-50.05
enginetype_l	-26.91
peakrpm	1.83
curbweight	3.50
horsepower	21.02
enginesize	44.92
highwaympg	88.77
Marca_Nissan	94.37
carbody_sedan	130.07
wheelbase	144.10
carwidth	652.66
Marca_Volvo	672.92
$enginetype_ohc$	731.18
aspiration_turbo	785.98
Marca_Mazda	990.69
Marca_Isuzu	1008.47
enginetype_ohcf	1348.10
cylindernumber_two	1465.23
cylindernumber_twelve	1480.86
enginetype_rotor	1562.32
Marca_Audi	1977.99
cylindernumber_six	2044.79
carbody_convertible	2865.07
Marca_Saab	2966.97
$cylindernumber_three$	4349.24
Marca_AlfaRomeo	4387.26
Marca_Buick	5800.89
Marca_Porsche	5861.04
Marca_Jaguar	6983.98
enginelocation_rear	7447.14
Marca_Bmw	8353.31
cylindernumber_eight	8960.41
c _j midernamber teight	0000.41

LASSO	Estimate
(Intercept)	-51618.41
enginetype_dohcv	-2502.72
cylindernumber_four	-1195.56
Marca_Mitsubishi	-1027.18
Marca_Renault	-1019.62
aspiration_std	-1015.68
enginetype_ohcv	-641.93
drivewheel_fwd	-340.26
Marca_Plymouth	-266.15
carbody_wagon	-220.30
Marca_Peugeot	-111.58
Marca_Dodge	-31.38
Marca_Nissan	-22.76
Marca_Subaru	-18.76
highwaympg	0.00
carlength	0.00
Marca_Chevrolet	0.00
Marca_Honda	0.00
Marca_Mercury	0.00
Marca_Volkswagen	0.00
carbody_hatchback	0.00
cylindernumber_six	0.00
cylindernumber_twelve	0.00
enginetype_dohc	0.00
enginetype_l	0.00
enginetype_ohc	0.00
enginetype_ohcf	0.00
drivewheel_rwd	0.00
aspiration_turbo	0.00
peakrpm	0.84
curbweight	2.49
horsepower	13.68
wheelbase	35.11
enginesize	44.10
$enginetype_rotor$	142.99
${\rm carbody_sedan}$	283.67
Marca_Mazda	530.33
carwidth	671.68
Marca_Isuzu	703.20
cylindernumber_two	1189.77
Marca_Audi	1253.51
Marca_Volvo	1360.24
Marca_AlfaRomeo	1578.70
Marca_Saab	1914.47
cylindernumber_three	2036.64
carbody_convertible	2713.67
cylindernumber_eight	4763.90
Marca_Porsche	4776.94
Marca_Buick	6275.54
Marca_Jaguar	6426.32
Marca_Bmw	9280.38
enginelocation_rear	10773.21

■ Regresión GAM: Después de calibrar con varios for los grados de libertad para las variables del modelo del mejor subconjunto para habilidad predictiva, y agregando la variable Marca_Volvo ya que nos dio buenos resultados, el modelo GAM que mejor MSE dió fue el siguiente.

GAM	Estimate
(Intercept)	3429.85
ns(curbweight, 2)1	12014.49
ns(curbweight, 2)2	8152.67
ns(carwidth, 2)1	7785.75
ns(carwidth, 2)2	9721.77
ns(horsepower, 13)1	814.37
ns(horsepower, 13)2	1808.99
ns(horsepower, 13)3	3201.81
ns(horsepower, 13)4	-2641.17
ns(horsepower, 13)5	2189.42
ns(horsepower, 13)6	-3190.82
ns(horsepower, 13)7	6848.10
ns(horsepower, 13)8	-931.76
ns(horsepower, 13)9	6631.81
ns(horsepower, 13)10	53.37
ns(horsepower, 13)11	14168.30
ns(horsepower, 13)12	8117.32
ns(horsepower, 13)13	653.38
Marca_Bmw	9729.25
Marca_Buick	3175.23
Marca_Jaguar	5254.90
Marca_Volvo	1428.00
cylindernumber_eight	8649.96
enginelocation_rear	17401.82

d)

Modelo	Método	N. de variables	R^2 ajust.	AIC	BIC	MSE
1	Mejor subconjunto	8	0.9297432	25.75642	-343.3772	5356094
2	Entrega 2	27	0.9287	2219.014	2712.753	6298335
3	Ridge	51	0.9606541	-12507370325	-12507370155	1634678
4	LASSO	51	0.9530696	-12408622048	-12408621925	2113738
5	GAM	9	0.9499116*	2573.32	2647.391	6175728
6	Bonus1	9	0.9244404*	2536.005	2568.597	5305869
7	Bonus2	9	0.9259998*	2533.014	2565.605	260636298

Se puede ver que el modelo de la entrega 2 no es tan bueno en habilidad predictiva que tiene de los MSE más altos y en término de los otros criterios tampoco sobresale respecto a los otros modelos, es preferible usar otro modelo. Los mejores en habilidad predictiva son la regresión Ridge y Lasso, que solucionan los problemas multicolinealidad, y con lambdas óptimos, permiten que aunque sean sesgados los estimadores, sean mejores en términos de MSE que los de una regresión lineal simple. También, se puede observar que el GLM con función de enlace identidad supera en términos de habilidad predictiva a la mayoría de los otros modelos, menos los métodos de regularización Ridge y Lasso.

El modelo lineal generalizado con función de enlace log es mejor en los criterios de información que la función de enlace identidad, pero sorpresivamente, en MSE este modelo es el más alto de todos.

Se puso en asterisco el \mathbb{R}^2 ajustado de los modelos GAM, Bonus 1 y Bonus 2, debido a que para estos, sólo se pudo calcular el Pseudo- \mathbb{R}^2 ajustado.

BONUS: Modelo lineal generalizado: La variable precio es continua, mayor a cero y tiene sesgo a la derecha, por lo tanto, se hará uso de la familia Gamma para el modelo lineal generalizado. Se estimarán dos modelos con las funciones de enlace identidad y logaritmo. Las variables seleccionadas para estos modelos serán las seleccionadas en el modelo mejor subconjunto para habilidad predictiva, y agregando la variable Marca_Volvo pues dio buenos resultados al hacer pruebas.

Identity	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	-4.350e+04	8.905e+03	-4.884	2.93e-06 ***
horsepower	3.765e+01	8.139e+00	4.626	8.74e-06 ***
carwidth	4.007e+00	7.444e-01	5.383	3.21e-07 ***
curbweight	6.216e + 02	1.536e + 02	4.046	8.78e-05 ***
Marca_Bmw	1.090e+04	1.500e+03	7.264	2.84e-11 ***
Marca_Buick	-7.985e+03	3.402e+03	2.347	0.02040 *
Marca_Jaguar	9.564e + 03	4.936e+03	1.938	0.05478 .
Marca_Volvo	2.425e+03	1.181e+03	2.054	0.04191 *
cylindernumber_eight	7.718e + 03	3.650e + 03	2.115	0.03631 *
enginelocation_rear	2.111e+04	5.669e + 03	3.723	0.00029 ***

Log	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	4.4782651	0.7929609	5.648	9.45e-08 ***
horsepower	0.0028551	0.0006076	4.699	6.44e-06 ***
carwidth	0.0004278	0.0000698	6.129	9.38e-09 ***
curbweight	0.0521339	0.0138804	3.756	0.000257 ***
Marca_Bmw	0.5266401	0.0632357	8.328	8.81e-14 ***
Marca_Buick	0.2725324	0.1263575	2.157	0.032817 *
Marca_Jaguar	0.0325696	0.1625323	0.200	0.841483
Marca_Volvo	0.1156395	0.0664632	1.740	0.084189 .
cylindernumber_eight	-0.0329829	0.1302755	-0.253	0.800521
enginelocation_rear	0.8636211	0.1629968	5.298	4.72e-07

e) El mejor modelo en términos de MSE resulto ser el modelo que utiliza regresión ridge, por lo que se estimó sobre todo el dataset, las estimaciones son las siguientes:

illo sobie todo el dat	ascu, ras csur
\mathbf{Ridge}	Estimate
(Intercept)	-64798.65
enginesize	44.92
wheelbase	144.10
horsepower	21.02
carwidth	652.66
curbweight	3.50
highwaympg	88.77
peakrpm	1.83
carlength	-50.05
Marca_AlfaRomeo	4387.26
Marca_Audi	1977.99
Marca_Bmw	8353.31
Marca_Buick	5800.89
Marca_Chevrolet	-650.94
Marca_Dodge	-995.72
Marca_Honda	-525.66
Marca_Isuzu	1008.47
Marca_Jaguar	6983.98
Marca_Mazda	990.69
Marca_Mercury	-1087.49
Marca_Mitsubishi	-1643.07
Marca_Nissan	94.37
Marca_Peugeot	-499.81
Marca_Plymouth	-1146.16
Marca_Porsche	5861.04
Marca_Renault	-1220.46

aciones son ias signientes	
${f Ridge}$	Estimate
Marca_Saab	2966.97
Marca_Subaru	-575.23
Marca_Volkswagen	-155.87
Marca_Volvo	672.92
carbody_convertible	2865.07
carbody_hatchback	-324.02
carbody_sedan	130.07
carbody_wagon	-373.49
cylindernumber_eight	8960.41
cylindernumber_four	-313.68
cylindernumber_six	2044.79
cylindernumber_three	4349.24
cylindernumber_twelve	1480.86
cylindernumber_two	1465.23
aspiration_std	-906.50
aspiration_turbo	785.98
enginetype_dohc	-1137.12
enginetype_dohcv	-9646.31
enginetype_l	-26.91
enginetype_ohc	731.18
enginetype_ohcf	1348.10
enginetype_ohcv	-2566.13
enginetype_rotor	1562.32
drivewheel_fwd	-570.92
drivewheel_rwd	-158.71
enginelocation_rear	7447.14

Entrega2	Estimate
(Intercept)	-63434.16
I(carwidth)	1115.80
Marca_Audi	1801.26
Marca_Bmw	10181.33
Marca_Buick	6777.28
Marca_Honda	379.05
Marca_Mazda	745.85
Marca_Mitsubishi	-394.80
Marca_Jaguar	4486.62
Marca_Nissan	-596.06
Marca_Peugeot	1437.98
Marca_Plymouth	-56.82
Marca_Porsche	6898.55
Marca_Saab	4132.15
Marca_Subaru	-219.14
Marca_Dodge	124.00
Marca_Volkswagen	-109.74
Marca_Volvo	3690.80
I(enginesize 2)	0.19
Marca_Isuzu	1827.25
carbody_hatchback	-367.26
carbody_wagon	-271.41
carbody_convertible	4594.69
carbody_sedan	-130.02
cylindernumber_eight	199.66
cylindernumber_four	-2264.92
cylindernumber_six	265.87
enginelocation_rear	9443.70

Las diferencias más notorias entre el modelo con regresión ridge y el modelo de la entrega 2, es la cantidad de variables, pues el modelo con regresión ridge, al no sufrir de problemas de multicolinealidad, estima sobre todas las variables. Por otra parte, en la entrega dos esto no fue posible, ya que el dataset tenía serios problemas de multicolinealidad, haciendo que uno de los mejores modelos que se pudieron hallar tenga 28 variables y no las 52. Cabe resaltar que en el caso de la regresión Ridge, no hay ninguna transformación en alguna variable, cosa que sí pasa en el modelo de la entrega 2, donde engine size está al cuadrado, lo que simplifica nuestro modelo.

Además de esto, no perdemos mucha interpretación, pero las estimaciones si cambian notoriamente en algunos casos, por ejemplo, en el caso de la estimación relacionada a cylindernumber_eight, que pasó de ser de 199,66 a 8960,41. Esto se da en varias variables, por lo que las estimaciones cambian notoriamente, lo cual es lógico por lo dicho anteriormente, pues la regresión toma en cuenta más variables.

4. Fase de construcción de un modelo con respuesta binaria

a) Para esta fase decidimos trabajar con una base de datos diferente a la propuesta originalmente. pues debido a su alta cantidad de variables y la información contenida en ellas, los modelos que estimamos presentaban bastantes problemas.

El nuevo data set contiene información sobre datos clínicos recolectada por el Instituto de diabetes y enfermedades digestivas y renales de pacientes en la India. Todos los pacientes son mujeres de al menos 21 años de edad. Las variables encontradas en este data set son las siguientes:

- Pregnancies: Número de embarazos del paciente. Cuantitativa.
- Glucose: Concentración de glucosa en la sangre después de dos horas de someterse a un test para

medir esta variable. Cuantitativa.

- BloodPressure: Presión diastolica medida en (mm Hg). Cuantitativa.
- SkinThickness: Grosor del pliegue cutáneo del tríceps. Cuantitativa.
- Insulin: Insulina en sangre medida cada dos horas. Cuantitativa.
- BMI: Indice de masa corporal. Cuantitativa.
- DiabetesPedigreeFunction: Valor númerico que mide el riesgo de contraer diabetes basado en la historia familiar del paciente. Cuantitativa.
- Age: Edad del paciente. Cuantitativa.
- Outcome: Variable binaria que determina si un paciente tiene diabetes (1) o no (0). Cualitativa

Elejimos la variable **Outcome**, pues en este caso nos interesa predecir si un paciente de este grupo poblacional padece diabetes o no, claramente esta variable codifca esta respuesta.

b)Después de estimar un modelo de respuesta Bernoulli, usando todo el set de datos y posteriormente usando un método de selección automática (backward). Obtenemos un modelo con la siguiente estructura:

$$\begin{cases} Y_k \sim Ber(\pi_k); \pi_k \in (0,1) \\ g(\pi_k) = \beta_0 + \beta_1 x_{k1} + \beta_2 x_{k2} + \beta_3 x_{k3} + \dots + \beta_7 x_{k7} \\ Y_1, Y_2, \dots, Y_n inid \end{cases}$$

Donde únicamente descartamos la variable **Skinthickness** de las que se encontraban originalmente en el set de datos.

c)

Modelo	Método	$P-R^2$ ajust.	AIC	BIC
1	Logit	0.26	741.45	783.24
2	Probit	0.27	739.45	776.60
3	Cloglog	0.25	751.77	788.92

d) Debido a que obtuvo un mejor desempeño en todos los criterios de información, optamos por el modelo con función de enlace "probit". Las estimaciones de sus paramétros son las siguientes:

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	-6.1117	0.4864	-12.57	0.0000
Pregnancies	0.0832	0.0216	3.85	0.0001
Glucose	0.0243	0.0024	10.30	0.0000
BloodPressure	-0.0107	0.0035	-3.07	0.0021
Insulin	-0.0008	0.0005	-1.50	0.1337
BMI	0.0654	0.0100	6.55	0.0000
DiabetesPedigreeFunction	0.3310	0.1928	1.72	0.0860
Age	0.0091	0.0066	1.38	0.1679

Procedemos a interpretar 5 de sus paramétros:

- $\hat{\beta}_1(\text{Pregnacies}) = 0.0832$: Por cada embarazo que experimente el paciente la probabilidad de padecer de diabetes aumenta .
- $\hat{\beta}_2(\text{Glucose})=0.0243$: Por un aumento de 1 g/L (gramo por litro) en la concentración de glucosa medida en el test, la probabilidad de padecer de diabetes aumenta.

- $\hat{\beta}_3$ (BloodPressure)=-0.0107: Por una aumento de 1 mm Hg (milímetro de mercurio) en la concentración de glucosa medida en el test, la probabilidad de padecer de diabetes disminuye..
- $\hat{\beta}_4$ (Insulin)=-0.0008:Por un aumento de una microunidad por mililitro ($\mu U/ml$) de insulina en sangre, la probabilidad de padecer de diabetes disminuye.
- $\hat{\beta}_6$ (DiabetesPedigreeFunction)=0.3310: Por un aumento de una unidad de riesgo en el puntaje dado por la función "DiabetesPedigreeFunction", la probabilidad de padecer de diabetes aumenta.
- e) Únicamente haremos uso de los criterios "precisión" y "exhaustividad". No usaremos la tasa de error aparente pues algunas categorías tienen frecuencias desbalanceadas. Para $\tau=0,2$:

	y = 0	y = 1
	(fracaso)	(éxito)
$\hat{\pi}_k \leq \tau$	279	28
$\hat{\pi}_k > \tau$	221	240

Matriz de confusión $\tau=0,2$

Precisión	0,52
Exhaustividad	0,896

Indicadores bondad de ajuste

Para $\tau = 0, 5$:

	y = 0	y = 1
	(fracaso)	(éxito)
$\hat{\pi}_k \le \tau$	445	111
$\hat{\pi}_k > \tau$	55	157

Matriz de confusión $\tau = 0, 5$

Precisión	0,74
Exhaustividad	0,59

Indicadores bondad de ajuste

Para $\tau = 0.7$:

	y = 0	y = 1
	(fracaso)	(éxito)
$\hat{\pi}_k \le \tau$	478	168
$\hat{\pi}_k > \tau$	22	100

Matriz de confusión $\tau = 0,7$

Precisión	0,81
Exhaustividad	0,37

Indicadores bondad de ajuste

Si elegimos el indicador "precisión" el valor óptimo de τ será $\tau=0,7$. En caso de elegir "exhaustividad" será $\tau=0,2$.

Bonus

a) Observamos que 500 observaciones tienen outcome 0, es decir, 65,1% de los pacientes de la muestra no

padecen de diabetes. De esta forma, consideramos que la muestra no parece estar balanceada. Por ello, obtamos por implementar una técnica de muestreo estratificado para mitigar este desbalance. Además, hacemos la partición del set de datos tomando un $70\,\%$ para datos de entrenamiento y el otro $30\,\%$ para el testeo.

b) Obtenemos los siguientes resultados al estimar el modelo obtenido en c) con los datos de entrenamiento.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-0.9408	0.1029	-9.14	0.0000
Pregnancies	0.0195	0.0060	3.27	0.0012
Glucose	0.0053	0.0006	8.79	0.0000
BloodPressure	-0.0022	0.0010	-2.24	0.0257
Insulin	-0.0001	0.0002	-0.74	0.4575
BMI	0.0140	0.0023	6.05	0.0000
DiabetesPedigreeFunction	0.2266	0.0536	4.23	0.0000
Age	0.0055	0.0018	3.05	0.0024

c)Obtenemos la siguiente tabla para las estimaciones de la sucesión propuesta.

tau	AER	precision	recall	F1
0.00	0.55	0.39	1.00	0.56
0.10	0.47	0.42	0.98	0.59
0.20	0.38	0.48	0.93	0.63
0.30	0.31	0.54	0.84	0.66
0.40	0.26	0.61	0.73	0.67
0.50	0.24	0.69	0.56	0.62
0.60	0.26	0.74	0.42	0.54
0.70	0.29	0.76	0.23	0.36
0.80	0.33	0.64	0.11	0.19
0.90	0.34	0.67	0.07	0.13
1.00	0.35	0.50	0.04	0.07

De donde, el valor obtenido de τ con mayor F1: $\tau = 0, 4$ con F1=0.67