MATH3075/3975 Financial Derivatives

School of Mathematics and Statistics University of Sydney

Semester 2, 2020

Tutorial sheet 4

Background: Section 2.2 - Single-Period Market Models.

Exercise 1 Consider the elementary market model $\mathcal{M} = (B, S)$ on a sample space $\Omega = \{\omega_1, \omega_2\}$ with $\mathbb{P}(\omega_1) = p \in (0, 1)$. We assume that $S_0 > 0$ and 0 < d < 1 + r < u.

- (a) Find the probability measure $\widehat{\mathbb{P}}$ such that $\mathbb{E}_{\widehat{\mathbb{P}}}(\widehat{B}_T) = \widehat{B}_0$ where the process \widehat{B} is defined by $\widehat{B}_t = B_t/S_t$ for t = 0, 1. Compute the Radon-Nikodym density L of $\widehat{\mathbb{P}}$ with respect to the martingale measure $\widetilde{\mathbb{P}}$ and show directly that $\mathbb{E}_{\widetilde{\mathbb{P}}}(L) = 1$.
- (b) Let $X = g(S_T)$ be any contingent claim. Show that the price $\pi_0(X)$ satisfies

 $\pi_0(X) = S_0 \, \mathbb{E}_{\widehat{\mathbb{P}}} \left(\frac{X}{S_T} \right).$

(c) Consider the put option with the payoff $P_T(K) = (K - S_T)^+$ for some K > 0. Show that the price $P_0(K)$ admits the following representation

$$P_0(K) = K(1+r)^{-1} \widetilde{\mathbb{P}}(S_T < K) - S_0 \widehat{\mathbb{P}}(S_T < K).$$

Find an analogous representation for the price $C_0(K)$ of the call option with strike K.

- (d) Show that the extended model $\mathcal{M}^e = (B, S, P(K))$ is arbitrage-free, in the sense of Definition 2.2.3 from the course notes. Here $P(K) = (P_0(K), P_T(K))$ is the price process of the put option for some fixed strike K > 0.
- (e) Let a strike K such that $S_0d < K < S_0u$ be fixed. Consider the modified market model $\mathcal{N} = (B, P(K))$ where P(K) is now traded at time 0 at the price $P_0(K)$. Does the price of an arbitrary claim X computed in $\mathcal{N} = (B, P(K))$ coincides with its arbitrage price computed in the original model $\mathcal{M} = (B, S)$? In particular, find the arbitrage price at time 0 for the claim $X = S_T$ in the model \mathcal{N} .

Exercise 2 Verify the equality (see Section 2.2)

$$\widehat{V}_t := \frac{V_t}{B_t} = \left(x - \sum_{j=1}^n \phi^j S_0^j\right) + \sum_{j=1}^n \phi^j \widehat{S}_t^j \tag{1}$$

for $t \in \{0, 1\}$ with $B_0 = 1$ and $B_1 = 1 + r$, and derive the equality

$$\widehat{G}_1(x,\phi) = \sum_{j=1}^n \phi^j \Delta \widehat{S}_1^j = \sum_{j=1}^n \phi^j (\widehat{S}_1^j - \widehat{S}_0^j)$$
 (2)

where $\widehat{G}_1(x,\phi) := \widehat{V}_1(x,\phi) - \widehat{V}_0(x,\phi)$.

Exercise 3 Consider the market model $\mathcal{M} = (B, S)$ with k = 3, n = 1, $r = \frac{1}{9}$, $S_0 = 5$ and the random stock price S_1 given by the table

$$\begin{array}{c|cccc} & \omega_1 & \omega_2 & \omega_3 \\ \hline S_1 & \frac{60}{9} & \frac{40}{9} & \frac{30}{9} \end{array}$$

Find the class M of all risk-neutral probability measures for this market model by making use of Definition 2.2.4.

Exercise 4 We consider the market model $\mathcal{M}=(B,S^1,S^2)$ introduced in Example 2.2.1 in the course notes but with k=4 and the stock prices in state ω_4 given by $S_1^1(\omega_4)=\frac{20}{9}$ and $S_1^2(\omega_4)=\frac{120}{9}$. The interest rate equals $r=\frac{1}{9}$. Stock prices at time t=0 are given by $S_0^1=5$ and $S_0^2=10$, respectively, and stock prices at time t=1 are given in the following table

- (a) Compute explicitly the random variables $V_1(x, \phi)$, $G_1(x, \phi)$, $\widehat{V}_1(x, \phi)$ and $\widehat{G}_1(x, \phi)$.
- (b) Does $G_1(x,\phi)$ (or $\widehat{G}_1(x,\phi)$) depend on the initial endowment x?

Exercise 5 (MATH3975) Consider again the market model $\mathcal{M} = (B, S^1, S^2)$ introduced in Exercise 4.

- (a) Give an explicit representation for the linear space $\mathbb{W} \subset \mathbb{R}^4$.
- (b) Find explicitly the linear space $\mathbb{W}^{\perp} \subset \mathbb{R}^4$.
- (c) Is the market model $\mathcal{M} = (B, S^1, S^2)$ arbitrage free?
- (d) Find the class \mathbb{M} of all risk-neutral probability measures for \mathcal{M} using the equality $\mathbb{M} = \mathbb{W}^{\perp} \cap \mathcal{P}^{+}$.

Exercise 6 (MATH3975) Give a proof of Proposition 2.2.1.