GEL-4100/7063 COMMANDE INDUSTRIELLE

Examen #1 20 octobre 2014, 8h30 à 11h20

Document permis: une feuille manuscrite recto verso (8.5" x 11")

Justifiez vos calculs et raisonnements

Éric Poulin, Département de génie électrique et de génie informatique

QUESTION 1 (16 points)

Le système étudié est représenté ci-dessous. Il s'agit d'une boucle de rétroaction pour laquelle l'actionneur comporte une saturation.

Les niveaux de saturation minimum et maximum de l'actionneur sont respectivement 0 % et 50 %. Les fonctions de transfert du régulateur et du procédé sont :

$$G_c(s) = \frac{1.4(20s+1)}{20s}$$
 , $G_p(s) = \frac{0.5}{20s+1}$

Vous disposez des informations suivantes :

- le système est initialement au repos;
- à l'instant $t_0 = 0$ s, un échelon de consigne de 40 % est appliqué au système;
- à l'instant $t_1 = 200$ s, la consigne est ramenée à 20 % sous forme d'échelon;

Sachant que $u_c(t_1) = 266 \%$, déterminez à quel instant la commande u_c repassera sous le seuil de saturation de 50 %.

QUESTION 2 (18 points)

Vous devez concevoir un régulateur PI pour un procédé dont les caractéristiques changent en fonction du point d'opération. La figure ci-après montre la valeur de la variable de procédé en fonction de la variable manipulée en régime permanent, c.-à-d. $Y_{RP} = f(U_{RP})$. Le système fonctionne à trois points d'opération qui sont spécifiquement identifiés (A, B et C). Pour effectuer le réglage, un modèle de premier ordre est utilisé :

$$G_p(s) = \frac{K_p e^{-\theta s}}{T_1 s + 1}$$

La valeur du retard et de la constante de temps aux différents points d'opération est donnée au tableau suivant. Donnez la fonction de transfert d'un régulateur permettant d'obtenir une marge de phase de 60° à un des points d'opération et une marge de phase supérieure aux deux autres.

Point d'opération	θ (s)	T_1 (s)
A	4	10
В	10	10
C	15	10

QUESTION 3 (14 points)

La figure suivante montre une structure de commande pour les procédés avec un retard important. Le régulateur $G_c(s)$ est de type PID, $G_p(s)$ est la fonction de transfert du procédé, $G_m(s)$ est le modèle du procédé et $G_m^*(s)$ est le modèle sans retard, c.-à-d. $G_m(s) = G_m^*(s)e^{-6s}$. Démontrez que cette structure de commande est en fait un « prédicteur de Smith » tel que vu dans le cadre du cours (suggestion : procédez par manipulation du diagramme fonctionnel).

QUESTION 4 (16 points)

Dans le cadre du Laboratoire 2, réalisé avec l'automate programmable CompactLogix, vous avez utilisé l'algorithme « Dependent Gains Form » du bloc PIDE. L'algorithme « Independent Gains Form » est également disponible et son équation est donnée par :

$$CV_n = CV_{n-1} + K_p(E_n - E_{n-1}) + \frac{K_I}{60}E_n\Delta t + 60K_D\frac{E_n - 2E_{n-1} + E_{n-2}}{\Delta t}$$

Les différentes variables de l'équation sont définies au tableau ci-dessous. L'indice n correspond au numéro d'échantillon. La forme discrète a été obtenue par la méthode d'Euler en posant $s = (1-z^{-1})/\Delta t$ au niveau de la fonction de transfert dans le domaine de Laplace (z^{-1} peut être interprété comme un retard d'une période d'échantillonnage).

Variable	Description	Unité
CV	Variable manipulée	%
E	Erreur entre la consigne et la variable de procédé	%
Δt	Période d'échantillonnage	S
K_p	Gain proportionnel	sans unité
K_I	Gain de l'action intégrale	min ⁻¹
K_D	Gain de l'action dérivée	min

Vous devez implanter, à l'aide de l'équation précédente, le régulateur dont la fonction de transfert est :

$$G_c(s) = \frac{0.75(12s+1)(7s+1)}{12s(2s+1)}$$

où les constantes de temps sont exprimées en secondes. Effectuez les conversions nécessaires et donnez la valeur des paramètres K_p , K_I et K_D pour que les deux régulateurs se comportent de façon identique (négligez le filtre appliqué à l'action dérivée).

QUESTION 5 (20 points)

Le système considéré est présenté à la figure suivante. Le réservoir est parfaitement cylindrique et possède un volume de 2 000 litres. La description des différentes variables et leur valeur nominale sont données au tableau ci-dessous.

Variable	Description	Valeur nominale
u_1	Vitesse de la pompe	40 %
u_2	Ouverture de la vanne	40 %
y_1	Débit d'eau à la sortie du réservoir	10 litres/s
y_2	Débit d'eau à l'entrée du réservoir	10 litres/s
<i>y</i> ₃	Niveau d'eau dans le réservoir	60 %

Vous devez mettre en place une stratégie de commande globale permettant de :

- réguler le débit d'entrée et le débit de sortie;
- réguler le niveau du réservoir en modulant le débit d'entrée;
- anticiper les variations de débit de sortie affectant le niveau.

Donnez:

- le diagramme fonctionnel de votre stratégie de commande (identifiez les variables et les unités);
- la fonction de transfert du régulateur d'anticipation;
- le réglage PI pour la boucle de niveau permettant de rencontrer, en boucle fermée, la spécification suivante (supposez la linéarité du système et négligez la dynamique des capteurs, des actionneurs et des boucles de régulation de débit) :

$$H(s) = \frac{(40s+1)}{(20s+1)^2}$$

QUESTION 6 (16 points)

La structure de commande étudiée est la suivante (\tilde{G}_m est la partie inversible du modèle).

À partir de la réponse présentée à la figure ci-après, donnez F(s), le retard du modèle θ ainsi que le gain et le retard du procédé.

Transformées de Laplace et en z, et leurs pôles

Transformets de Laplace et en 2, et leurs poles				
$f(t), t \ge 0$	F(s)	Pôles de $F(s)$	F(z)	Pôles de $F(z)$
$\delta(t)$	1	-	1	:-
1	$\frac{1}{s}$	0	$\frac{z}{z-1}$	1
t	$\frac{1}{s^2}$	0 (double)	$\frac{Tz}{(z-1)^2}$	1 (double)
e^{-at}	$\frac{1}{s+a}$	-a	$\frac{z}{z - e^{-aT}}$	e^{-aT}
$\left \begin{array}{c} \alpha^{t/T} \\ \left(= e^{-at} \right _{a = \frac{-\ln\alpha}{T}} \end{array} \right)$	$\frac{1}{s + \frac{-\ln \alpha}{T}}$	$\frac{\ln \alpha}{T}$	$\frac{z}{z-\alpha}$	$\alpha $ $\left(\alpha = e^{-aT} > 0\right)$
te^{-at}	$\frac{1}{(s+a)^2}$	-a (double)	$\frac{Tze^{-aT}}{(z - e^{-aT})^2}$	e^{-aT} (double)
$1 - e^{-at}$	$\frac{a}{s(s+a)}$	0, -a	$\frac{z(1 - e^{-aT})}{(z - 1)(z - e^{-aT})}$	$1, e^{-aT}$
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$	$\pm j\omega$	$\frac{z(z-\cos\omega T)}{z^2 - 2z\cos\omega T + 1}$	$e^{\pm j\omega T}$
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$	$\pm j\omega$	$\frac{z\sin\omega T}{z^2 - 2z\cos\omega T + 1}$	$e^{\pm j\omega T}$
$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$	$-a \pm j\omega$	$\frac{z^2 - ze^{-aT}\cos\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$	$e^{(-a\pm j\omega)T}$
$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2 + \omega^2}$	$-a \pm j\omega$	$\frac{ze^{-aT}\sin\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$	$e^{(-a\pm j\omega)T}$

Tableau I. Identification et réglage PI ou PI+Filtre

Dánansa à l'ághalan	Madàla	Modèle Povemètres Rég		lage		
Réponse à l'échelon	Modèle	Paramètres	K_c	T_i	T_f	T_{sp}
$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$	$\frac{K_p}{1+T_1s}$	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = t_{63\%}$	$\frac{1}{K_p}$	T_1	0	0
$ \begin{array}{c c} \bullet & & & & & \\ \hline & & & &$	$\frac{K_p e^{-\theta s}}{1 + T_1 s}$	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = t_{63\%}$	$\frac{1}{K_p} \cdot \frac{T_1}{T_1 + \theta}$	T_1	0	0
$\begin{array}{c c} & & & \Delta y \\ \hline & & & \Delta u \\ \hline & & & \\ \hline \end{array}$	$\frac{K_p}{\left(1+T_1s\right)^2}$	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = \frac{t_{73\%}}{2.6}$	$\frac{1}{K_p}$	1.5T ₁	0	0
$ \begin{array}{c c} \bullet & & \Delta y \\ \hline \vdots & & \Delta u \\ \hline \vdots & & \vdots \\ \hline t_{73\%} \end{array} $	$\frac{K_p e^{-\theta s}}{\left(1 + T_1 s\right)^2}$	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = \frac{t_{73\%}}{2.6}$	$\frac{1}{K_p} \cdot \frac{T_1}{T_1 + \theta}$	$1.5T_1$	0	0
Δy Δy Δy t_{min}	$\frac{K_p(1-T_{0i}s)}{(1+T_1s)^2}$	$K_p = \frac{\Delta y}{\Delta u}$ Tableau II	$\frac{1}{K_p} \cdot \frac{T_1}{T_1 + T_{0i}}$	1.5 <i>T</i> ₁	0	0
$ \begin{array}{c} $	$\frac{K_{p}(1-T_{0i}s)e^{-\theta s}}{(1+T_{1}s)^{2}}$	$K_p = \frac{\Delta y}{\Delta u}$ Tableau II	$\frac{1}{K_p} \cdot \frac{T_1}{T_1 + \theta + T_{0i}}$	$1.5T_{1}$	0	0
$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$	$\frac{K_p \left(1 + T_{0s} s\right)}{\left(1 + T_1 s\right)^2}$	$K_p = \frac{\Delta y}{\Delta u}$ Tableau III	$\frac{1}{K_p}$	$1.5T_{1}$	T_{0s}	0
$ \begin{array}{c c} & & & & & & & & & & & & & \\ \hline & \theta & & & \Delta y_{max} & \Delta u & & \Delta y \\ & & & & & & & & \\ & t_{max} & & & & & & \\ \end{array} $	$\frac{K_p(1+T_{0s}s)e^{-\theta s}}{(1+T_1s)^2}$	$K_p = \frac{\Delta y}{\Delta u}$ Tableau III	$\frac{1}{K_p} \cdot \frac{T_1}{T_1 + \theta}$	1.5T ₁	T_{0s}	0
Δy Δt Δu	$\frac{K_p}{s}$	$K_p = \frac{\Delta y}{\Delta t \Delta u}$	$\frac{2}{K_p T_H}$	$2T_{\scriptscriptstyle H}$	0	$2T_H$

Tableau II. Calcul de T_1 et T_{0i} pour un procédé de deuxième ordre avec un zéro instable

$-\Delta y_{min}/\Delta y$	t_{min} / T_1	T_{0i}/T_1
0.01	0.14	0.16
0.02	0.19	0.23
0.03	0.22	0.29
0.04	0.25	0.34
0.05	0.28	0.39
0.06	0.31	0.44
0.07	0.32	0.48
0.08	0.34	0.52
0.09	0.36	0.56
0.10	0.38	0.60
0.20	0.49	0.96
0.30	0.56	1.28
0.40	0.61	1.58
0.50	0.65	1.88
0.60	0.68	2.17
0.70	0.71	2.46
0.80	0.73	2.75
0.90	0.75	3.03
1.00	0.77	3.32
1.10	0.78	3.60
1.20	0.79	3.87
1.30	0.81	4.15
1.40	0.82	4.43
1.50	0.82	4.70
1.60	0.83	4.98
1.70	0.84	5.26
1.80	0.85	5.53
1.90	0.85	5.81
2.00	0.86	6.09
2.20	0.87	6.63
2.40	0.88	7.18
2.60	0.89	7.72
2.80	0.89	8.27
3.00	0.90	8.82
3.20	0.90	9.37
3.40	0.91	9.91
3.60	0.91	10.46
3.80	0.92	11.28
4.00	0.92	11.56
4.50	0.93	12.91
5.00	0.93	14.28

Tableau III. Calcul de T_1 et T_{0s} pour un procédé de deuxième ordre avec un zéro stable

$\Delta y_{max} / \Delta y$	t_{max}/T_1	T_{0s}/T_1
1.02	3.13	1.47
1.04	2.69	1.59
1.06	2.45	1.69
1.08	2.28	1.78
1.10	2.16	1.86
1.15	1.95	2.05
1.20	1.81	2.23
1.25	1.72	2.39
1.30	1.65	2.55
1.35	1.58	2.71
1.40	1.54	2.86
1.45	1.50	3.01
1.50	1.46	3.16
1.55	1.43	3.31
1.60	1.41	3.45
1.65	1.38	3.60
1.70	1.36	3.74
1.75	1.35	3.88
1.80	1.33	4.03
1.85	1.32	4.17
1.90	1.30	4.31
1.95	1.29	4.45
2.00	1.28	4.60
2.10	1.26	4.87
2.20	1.24	5.16
2.30	1.23	5.43
2.40	1.21	5.71
2.50	1.20	5.98
2.60	1.19	6.26
2.70	1.18	6.54
2.80	1.17	6.81
2.90	1.16	7.09
3.00	1.16	7.36
3.50	1.13	8.73
4.00	1.11	10.10
4.50	1.10	11.47
5.00	1.08	12.84
6.00	1.07	15.56
7.00	1.06	18.28
8.00	1.05	21.00
9.00	1.04	23.72
10.00	1.04	26.44