1. What is so 'normal' about the Gaussian distribution?

2. Is geology 'normal'?

Pieter Vermeesch p.vermeesch@ucl.ac.uk

The binomial distribution

$$P(2 \times H \cap 1 \times T) = \frac{\{THH\}\{HTH\}\{HHT\}}{\{HHH\}\{HHH\}\{HHT\}\{TTH\}\{TTT\}\{HTT\}\{TTT\}} = \frac{3}{8}$$

The Poisson distribution

the Gaussian distribution the **normal** distribution

$$f(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

$$f(x,y|\mu_{x},\mu_{y},\sigma_{x},\sigma_{y},\sigma_{x,y}) = \frac{\exp\left(-\left[(x-\mu_{x})\quad (y-\mu_{y})\right] \begin{bmatrix}\sigma_{x}^{2}\sigma_{x,y} \\ \sigma_{x,y}\sigma_{y}^{2}\end{bmatrix}^{-1} \begin{bmatrix}x-\mu_{x} \\ y-\mu_{y}\end{bmatrix} \Big/2\right)}{2\pi\sqrt{\begin{vmatrix}\sigma_{x}^{2}\sigma_{x,y} \\ \sigma_{x,y}\sigma_{y}^{2}\end{vmatrix}}}$$

$$\frac{2\pi\sqrt{\begin{vmatrix}\sigma_{x}^{2}\sigma_{x,y} \\ \sigma_{x,y}\sigma_{y}^{2}\end{vmatrix}}}{2\pi\sqrt{\begin{vmatrix}\sigma_{x}^{2}\sigma_{x,y} \\ \sigma_{x,y}\sigma_{y}^{2}\end{vmatrix}}}$$

40

40

50

 X_4

45

55

600.00

0.04

Density

0.08

$$f(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

$$\mathcal{L}(\mu, \sigma | x_1, x_2, \dots, x_n) = \prod_{i=1}^n f(x_i | \mu, \sigma)$$

$$\mathcal{LL}(\mu, \sigma | x_1, x_2, \dots, x_n) = \sum_{i=1}^n \ln \left[f(x_i | \mu, \sigma) \right]$$
$$= \sum_{i=1}^n -\ln[\sigma] - \frac{1}{2} \ln[2\pi] - \frac{(x_i - \mu)^2}{2\sigma^2}$$

$$\frac{\partial \mathcal{L}\mathcal{L}}{\partial \mu} = -\sum_{i=1}^{n} \frac{x_i - \mu}{\sigma^2} = 0$$

$$\Rightarrow n\mu - \sum_{i=1}^{n} x_i = 0$$

$$\Rightarrow \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\frac{\partial \mathcal{L}\mathcal{L}}{\partial \sigma} = \sum_{i=1}^{n} -\frac{1}{\sigma} + \frac{(x_i - \mu)^2}{\sigma^3} = 0$$

$$\Rightarrow \sum_{i=1}^{n} \frac{(x_i - \mu)^2}{\sigma^3} = \frac{n}{\sigma}$$

$$\Rightarrow \hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2}$$

$$ss \equiv \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (\beta_0 + \beta_1 x_i - y_i)^2$$

$$y_i = \beta_0 + \beta_1 \ x_i + \epsilon_i$$

$$f(\epsilon_i|\beta_0,\beta_1,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{\epsilon_i^2}{2\sigma^2}\right], \text{ where } \epsilon_i = \beta_0 + \beta_1 x_i - y_i$$

$$\mathcal{L}(\beta_0, \beta_1, \sigma | \epsilon_1, \dots, \epsilon_n) = \prod_{i=1}^n \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{\epsilon_i^2}{2\sigma^2}\right], \text{ where } \epsilon_i = \beta_0 + \beta_1 x_i - y_i$$

$$\max_{\beta_0,\beta_1} \left[\prod_{i=1}^n \mathcal{L} \right] = \max_{\beta_0,\beta_1} \left[\sum_{i=1}^n \ln \mathcal{L} \right] = \max_{\beta_0,\beta_1} \left[\ln \left(\frac{1}{\sigma \sqrt{2\pi}} \right) - \sum_{i=1}^n \left(\frac{\epsilon_i^2}{2\sigma^2} \right) \right]$$
$$= \max_{\beta_0,\beta_1} \left[-\sum_{i=1}^n \epsilon_i^2 \right] = \min_{\beta_0,\beta_1} \left[\sum_{i=1}^n \epsilon_i^2 \right] = \min_{\beta_0,\beta_1} (ss)$$

$$f(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

	1	2	3	4	5	6	7	8	9	10
\overline{A}	0.27	0.37	0.57	0.91	0.20	0.90	0.94	0.66	0.63	0.062
B	0.21	0.18	0.69	0.38	0.77	0.50	0.72	0.99	0.38	0.780

	1									
\overline{A}	0.27	0.37	0.57	0.91	0.20	0.90	0.94	0.66	0.63	0.062
\overline{B}	0.21	0.18	0.69	0.38	0.77	0.50	0.72	0.99	0.38	0.780
	1	2	3	4	5	6	7	8	9	10
										10 0.079

	1	2	3	4	5	6	7	8	9	10
\overline{A}	0.27	0.37	0.57	0.91	0.20	0.90	0.94	0.66	0.63	0.062
B	0.21	0.18	0.69	0.38	0.77	0.50	0.72	0.99	0.38	0.780
	1	2	3	4	5	6	7	8	9	10
A/B	1.30	2.10	0.83	2.40	0.26	1.80	1.30	0.67	1.70	0.079
B/A	0.78	0.47	1.20	0.42	3.80	0.55	0.76	1.50	0.60	13.0
1/(A/B)	0.78	0.47	1.20	0.42	3.80	0.55	0.76	1.50	0.60	13.0

$$\frac{1}{\overline{A/B}} = \frac{1}{1.20} = 0.81 \neq 2.30 = \overline{B/A}$$
 and
$$\frac{1}{\overline{B/A}} = \frac{1}{2.30} = 0.44 \neq 1.20 = \overline{A/B}$$

	1	2	3	4	5	6	7	8	9	10	
\overline{A}	0.27	0.37	0.57	0.91	0.20	0.90	0.94	0.66	0.63	0.062	
B	0.21	0.18	0.69	0.38	0.77	0.50	0.72	0.99	0.38	0.780	
	1	2	3	4	5	6	7	8	9	10	mean
$\overline{\ln[A/B]}$	0.25	0.75	-0.18	0.86	-1.30	0.59	0.27	-0.41	0.50	-2.50	-0.12
$\ln[B/A]$	-0.25	-0.75	0.18	-0.86	1.30	-0.59	-0.27	0.41	-0.50	2.50	0.12

	mean	$\exp[\text{mean}]$
$\ln[A/B]$	-0.12	0.88
$\ln[B/A]$	0.12	1.13

$$\begin{array}{c|cccc} & \text{mean} & \exp[\text{mean}] \\ \hline \ln[A/B] & -0.12 & 0.88 \\ \ln[B/A] & 0.12 & 1.13 \\ \end{array}$$

$$\frac{1}{g(A/B)} = \frac{1}{0.88} = 1.13 = g(B/A)$$
 and
$$\frac{1}{g(B/A)} = \frac{1}{1.13} = 0.88 = g(A/B)$$

$$\overline{\text{Al}_2\text{O}_3} = \sum_{i=1}^{20} (\text{Al}_2\text{O}_3)_i / 20 = 0.763$$

$$\overline{\text{CaO} + \text{Na}_2\text{O}} = \sum_{i=1}^{20} (\text{CaO}_2 + \text{Na}_2\text{O})_i / 20 = 0.141$$
Al₂O₃

$$\overline{\mathrm{K}_2\mathrm{O}} = \sum_{i=1}^{20} (\mathrm{K}_2\mathrm{O})_i/20 = 0.096$$

CaO+Na₂O

$$s[Al_2O_3] = \sqrt{\sum_{i=1}^{20} \frac{((Al_2O_3)_i - 0.763)^2}{19}} = 0.0975$$

$$s[\text{CaO} + \text{Na}_2\text{O}] = \sqrt{\sum_{i=1}^{20} \frac{((\text{CaO}_2 + \text{Na}_2\text{O})_i - 0.141)^2}{19}} = 0.142$$

$$s[K_2O] = \sqrt{\sum_{i=1}^{20} \frac{((K_2O)_i - 0.096)^2}{19}} = 0.0926$$

 $Al_2O_3:0.763\pm0.195$

 $CaO + Na_2O : 0.141 \pm 0.284$

 $K_2O: 0.096 \pm 0.185$

$$v = \ln\left[\frac{x}{z}\right], \ w = \ln\left[\frac{y}{z}\right]$$

$$x = \frac{\exp[v]}{\exp[v] + \exp[w] + 1}, \ y = \frac{\exp[w]}{\exp[v] + \exp[w] + 1}, \ z = \frac{1}{\exp[v] + \exp[w] + 1}$$

- 1. mtcars is one of R's built-in datasets. It contains a table with the fuel consumption and 10 aspects of automobile design and performance for 32 automobiles features in a 1974 edition of 'Motor Trend' magazine.
 - (a) Calculate the average fuel consumption of these 32 vehicles —which are listed in miles per gallon— using the arithmetic mean.
 - (b) Convert the data to European units, namely litres per 100km. To convert from mpg to litre/100km, use the following formula:

$$1 \text{ litre/100km} = \frac{235.21}{1 \text{ mpg}}$$

- (c) Calculate the arithmetic mean fuel consumption in litre/100km.
- (d) Convert the arithmetic mean number of miles per gallon (from step 1a) to units of litre/100km. How does the resulting value compare with that obtained from step 1c.
- (e) Compute the geometric mean fuel consumption in mpg and litre/100km. Then convert the units of these mean values and compare with the result observed under step 1d.

