fit()

VS

fit_transform()

VS

fit_predict()

1. fit() — Just Learn =

What it does:

- Fits the model or transformer to the data
- Learns parameters (e.g., mean and std in scalers, weights in models)
- Doesn't return transformed data

Sample Python code

from sklearn.preprocessing import StandardScaler import numpy as np

```
X = np.array([[1], [2], [3]])
```

```
scaler = StandardScaler()
```

scaler.fit(X) # Calculates mean and std

```
print(scaler.fit(X))
```

print("Mean:", scaler.mean_)

```
print("Var:", scaler.var_)
```

print("Std :", np.sqrt(scaler.var_))

Output:

StandardScaler()

Mean: [2.]

Var : [0.66666667]

Std: [0.81649658]

2. fit_transform() — Learn & Apply 🛠

- **What it does:**
 - Fits the data (learns parameters)
 - Transforms the data (applies the operation)
 - One-liner for fit() + transform()

Sample Python code

scaler = StandardScaler()
scaled = scaler.fit_transform([[1], [2], [3]])
print(scaled)

Output:

[[-1.22], [0.], [1.22]]

3. fit_predict() — Learn & Guess &

- **What it does:**
 - Fits the model to the data
 - Predicts labels from unsupervised models (like clustering)
 - Common in algorithms like *KMeans*, *DBSCAN*

Sample Python code

from sklearn.cluster import KMeans X = [[1], [2], [10], [12]]

kmeans = KMeans(n_clusters=2)
labels = kmeans.fit_predict(X)
print(labels)

[1 100]

Quick Summary:

Method	Learns	Transforms	Predicts
fit()		X	X
fit_transform()			X
fit_predict()		X	

When to Use What:

Situation	Method
You only want to learn parameters	fit()
You want to transform data after learning	fit_transform()
You want to cluster or label data without supervision	fit_predict()

