REAL ANALYSIS: LECTURE 9

OCTOBER 5TH, 2023

1. REAL REAL ANALYSIS THEOREM

Last time, we were in the process of proving the following:

Theorem 1. $\exists \alpha \in \mathbb{R} \text{ s.t. } \alpha^2 = 2$

Proof. Let

$$A := \{x \in \mathbb{R} : x^2 < 2\}$$

and set $\alpha := \sup A \in \mathbb{R}$, since its existence is guaranteed by the fact that $1 \in A$ and 27 is an upper bound on A. Here's a lemma:

Lemma 1. If $\alpha^2 > 2$, then $\exists \epsilon > 0$ s.t. $(\alpha - \epsilon)^2 > 2$.

Before proving this lemma, let's deduce $\alpha^2 \not \ge 2$ from assuming this claim. If $\alpha^2 > 2$, then by the above lemma $\exists \epsilon > 0$ s.t. $\alpha - \epsilon$ would be an upper bound on A, which contradict that $\alpha - \epsilon < \alpha$ is the *least* upper bound. Thus, $\alpha^2 \not \ge 2$ as long as we can prove this lemma, which we'll do now:

Proof. Suppose $\alpha^2 > 2$. By the Archimedian Property, $\exists n \in \mathbb{Z}_{pos}$ s.t. $n > \frac{2\alpha}{\alpha^2 - 2}$, which implies

$$\frac{1}{n} < \frac{\alpha^2 - 2}{2\alpha} < \frac{\alpha^2 - 2}{2\alpha - 1/n}$$
$$\frac{2\alpha}{n} - \frac{1}{n^2} < \alpha^2 - 2$$
$$\alpha^2 - \frac{2\alpha}{n} + \frac{1}{n^2} > 2$$
$$\left(\alpha - \frac{1}{n}\right)^2 > 2.$$

We can use an analogous idea on the other side:

Lemma 2. If
$$\alpha^2 < 2$$
, then $\exists \epsilon > 0$ s.t. $(\alpha + \epsilon)^2 < 2$.

After some scratchwork, a couple of proof attempts, and some work by Edith, Lexi, Emily, Sean, Aidan, Miles, Jon, Forrest, and more, we get the following:

Proof. Suppose $\alpha^2 < 2$. By Archimedian Property, pick $n \in \mathbb{Z}_{pos}$ s.t. $\frac{1}{n} < \frac{2-\alpha^2}{3\alpha}$. Recall $\alpha = \sup A$ and that $1 \in A$, which implies $\alpha \geq 1$. Thus, $\alpha \geq 1 \geq \frac{1}{m} \ \forall m \in \mathbb{Z}_{pos}$ (the fact that we are using this inequality means that we probably could have just used $2\alpha + 1$ in the denominator, but who cares??). Using this inequality we get

$$1/n < \frac{2 - \alpha^2}{3\alpha} = \frac{2 - \alpha^2}{2\alpha + \alpha}$$
$$1/n < \frac{2 - \alpha^2}{2\alpha + 1/n}.$$

Thus, we get

$$\frac{2\alpha}{n} + \frac{1}{n^2} < 2 - \alpha^2$$
$$\left(\alpha + \frac{1}{n}\right)^2 < 2.$$

Fixing $\epsilon = \frac{1}{n}$ we have found some ϵ s.t. $(\alpha + \epsilon) < 2$.

Given the above lemma, we are essentially done. Assume $\alpha^2 < 2$. By choosing ϵ as above, we get that $\alpha + \epsilon \in A$, which means that $\alpha + \epsilon > \alpha$ is *not* an upper bound. This contradicts α being the least *upper bound*. This is a contradiction that tells us $\alpha^2 \not< 2$. By trichotomy, it must be that $\alpha^2 = 2$, and we are done!

Here's a good thing to remember about inequalities: If you know a < b and a < c, you have no idea about b vs. c! In particular, if you claim a < b and also know c < b, you cannot claim anything about the relative size of a and c.

Here's a generalization- Theorem 7.5 in the book:

Theorem 2. $\forall n, k \in \mathbb{Z}_{pos}, \exists \sqrt[n]{k} \in \mathbb{R}$. In other words, nth roots exist.

Remark. Leo will have his own take on a proof of this, which he'll post on the website soon. This is a more complicated proof, but it's essentially the same ideas.

2. RATIONALS BETWEEN REALS

Q: Given $\alpha, \beta \in \mathbb{R}$ with $\alpha < \beta$. We know there's a real number between them, but does there exist $q \in \mathbb{Q}$ s.t.

$$\alpha < q < \beta$$
.

Notice you cannot simply average $\frac{\alpha+\beta}{2}$, since α,β might not be "nice".

Proposition 1. For any nonempty interval $(\alpha, \beta) \subseteq \mathbb{R}$ (i.e. pick $\alpha, \beta \in \mathbb{R}$ s.t. $\alpha < \beta$). Then

$$\mathbb{Q}\cap(\alpha,\beta)\neq\emptyset,$$

i.e. there is a rational number between them.

Scratchwork 1. *Let's look at a picture.*

Annie noted that if $\alpha, \beta \in \mathbb{Q}$ this is easy! We can just take the midpoint, argue it's between, and argue it's a fraction. Lexi noted that if $\beta - \alpha > 1$, there should be some integer in (α, β) . So, if there's a "long interval" we should be good.

Alex had the following idea: suppose $\beta - \alpha < 1$

$$\begin{array}{ccc} & & + & + \\ \hline & \alpha & \beta \end{array}$$

Then multiply by some large n (Archimedian Property!):

$$n\alpha$$
 $n\beta$

Now $n\beta - n\alpha > 1$, which means there should be some integer m in between $n\alpha$ and $n\beta$, which means that

$$n\alpha < m < n\beta \tag{2.1}$$

$$\alpha < \frac{m}{n} < \beta, \tag{2.2}$$

and we've found our rational number!

But this assume we can find an integer m. How can we do this? Well we know that

$$n\alpha$$
 $1+n\alpha$ $n\beta$

Using this idea and the trick of using floor functions (to turn a real into an integer), we'll be able to work this out. Let's see a formal proof.

Proof. Given $\alpha, \beta \in \mathbb{R}$ s.t. $\alpha < \beta$. By the Archimedian Property, $\exists n \in \mathbb{Z}_{pos}$ s.t. $n > \frac{1}{\beta - \alpha}$. Thus,

$$n(\beta - \alpha) > 1 \implies n\beta > 1 + n\alpha$$
.

Consider $|1 + n\alpha| \in \mathbb{Z}$. We know

$$|1 + n\alpha| \le 1 + n\alpha < |1 + n\alpha| + 1.$$

This works for arbitrary n, α . Notice that taking the right inequality and subtracting 1 gets us

$$n\alpha < |1 + n\alpha|$$
.

This, combined with the left inequality, tells us that

$$n\alpha < |1 + n\alpha| \le 1 + n\alpha$$
.

Finally, $1 + n\alpha < n\beta$ (the interval is greater than 1). All together we get

$$n\alpha < |1 + n\alpha| \le 1 + n\alpha < n\beta$$
,

which means that $|1 + n\alpha|$ is in between $n\alpha$ and $n\beta$. Overall, we get

$$\frac{\lfloor 1 + n\alpha \rfloor}{n} \in (\alpha, \beta) \cap \mathbb{Q}.$$