Points and Lines in $m{\mathcal{P}}^2$

- Points represented by: $\mathbf{x} = [x \ y \ 1]^T$.
- Consider the line equation: ax + by + c = 0.
- $[a \ b \ c][x \ y \ 1]^T = \mathbf{l}.\mathbf{x} = \mathbf{l}^T \ \mathbf{x} = 0$, where $\mathbf{l} = [a \ b \ c]^T$.
- Lines are represented by 3-vectors, just like points.
 Overall scale is unimportant.
- What does $I^T x = 0$ describe?

Points/Line at Infinity

- $x = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$ represents $\begin{bmatrix} x_1/x_3 & x_2/x_3 \end{bmatrix}$
- What happens when $x_3 \rightarrow 0$?
- Becomes point at infinity, or vanishing point or ideal point in the direction (x_1, x_2) .
- Points at infinity can be handled like any other point in projective geometry
- $[x \quad y \quad 0]^{\mathrm{T}}$ are all points at infinity on the plane.
- What do they form together?
- What is the representation of L_∞?

$$l_{\infty} = [0 \ 0 \ 1]^{\mathrm{T}}$$

Line joining 2 points

- Let p and q be points. We have: I^Tp = I¹q = 0.
- Equation of 1: $y = y_1 + \frac{(y_2 y_1)}{(x_2 x_1)}(x x_1)$

on
$$(y_2 - y_1)x - (x_2 - x_1)y + (x_2y_1 - x_1y_2) = 0$$

on $1 = [(y_2 - y_1) - (x_2 - x_1) - (x_2y_1 - x_1y_2)]^T$

- Considering them as vectors in 3-space, we want to find a vector I orthogonal to both p and q.
- The cross-product $\mathbf{x} \times \mathbf{y}$ is a solution. Thus, $\mathbf{1} = \mathbf{p} \times \mathbf{q}$.

*
$$\mathbf{p} \times \mathbf{q} = [(y_2 - y_1) - (x_2 - x_1) - (x_2 y_1 - x_1 y_2)]^T$$

Point of Intersection of 2 lines

- Lines I, m intersect at a point x with $I^Tx = m^Tx = 0$.
- $x = l \times m$.
- 1: $a_1 x + b_1 y + c_1 = 0$; and \mathbf{m} : $a_2 x + b_2 y + c_2 = 0$.
- $x = (b_2c_1 b_1c_2)/(a_2b_1 a_1b_2).$
- $y = (a_1c_2 a_2c_1)/(a_2b_1 a_1b_2).$
- $\mathbf{x} = [(b_2c_1 b_1c_2) (a_1c_2 a_2c_1) (a_2b_1 a_1b_2)]^T = \mathbf{1} \times \mathbf{m}.$
- Duality at work: points and lines are interchangeable.

Conics: 2nd order Entities

General quadratic entity:

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

Rewrite using homogeneous coordinates as:

$$ax^2 + bxy + cy^2 + dxw + eyw + fw^2 = 0.$$

Rewrite as:

$$\begin{bmatrix} x & y & w \end{bmatrix} \begin{bmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} = 0$$

- A symmetric C represents a conic: $\mathbf{x}^T \mathbf{C} \mathbf{x} = \mathbf{0}$. Covers circle, ellipse, parabola, hyperbola, etc.
- Degenerate conics include a line (a = b = c = 0) and two lines when $\mathbf{C} = \mathbf{Im}^{\mathrm{T}} + \mathbf{ml}^{\mathrm{T}}$.

Properties of Conics

- I = Cx gives the tangent line to the conic at x.
 - o A point \mathbf{x} on the conic is on line $\mathbf{l} = \mathbf{C}\mathbf{x}$ as \mathbf{x}^T ($\mathbf{C}\mathbf{x}$) = 0.
 - o If ${f l}$ intersects the conic in another point ${f y}$;
 - y^TCy = 0 as y is on the conic; and
 - $(Cx)^Ty = x^TCy = 0$ as y is on the line.
 - Thus, Cy is a line jaining x and y.
 - That is Cy = Cx or x = y.
- Dual Conic: Conic defined by its tangent lines.
 - o $I^TC*I = 0$ or $I^TC^{-1}I = 0$ gives the set of lines tangential to C.

CSE578: Computer Vision

Spring'19 Image Rectification: Recovering Structure from Single Image

Anoop M. Namboodiri

Center for Visual Information Technology

IIIT Hyderabad, INDIA

• Translation (2)
$$\longrightarrow$$
 $\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{bmatrix}$
• Euclidean (3) or Rigid Body
• Similarity (4) \longrightarrow $\begin{bmatrix} 1+a & -b & t_x \\ b & 1+a & t_y \end{bmatrix}$

• Translation (2)
$$\rightarrow$$

$$\begin{bmatrix}
1 & 0 & t_x \\
0 & 1 & t_y
\end{bmatrix}$$
• Euclidean (3) or Rigid Body
• Similarity (4) \rightarrow

$$\begin{bmatrix}
1+a & -b & t_x \\
b & 1+a & t_y
\end{bmatrix}$$

$$\begin{bmatrix}
1+a & b & t_x \\
c & 1+d & t_y
\end{bmatrix}$$
• Affine (6)
• Projective (8) \rightarrow

$$\begin{bmatrix}
1+h_{00} & h_{01} & h_{02} \\
h_{10} & 1+h_{11} & h_{12} \\
h_{20} & h_{21} & 1
\end{bmatrix}$$

Invariants of Transformations

Property	Euclidean	Similarity	Affine	Projective
Length	Yes	No	No	No
Angle	Yes	Yes	No	No
Length Ratio	Yes	Yes	No	No
Area Ratio	Yes	Yes	Yes	No
Parallelism	Yes	Yes	Yes	No
Centroid	Yes	Yes	Yes	No
Ratio of len. ratio	Yes	Yes	Yes	Yes
Collinearity	Yes	Yes	Yes	Yes

• Translation (2)
$$\rightarrow$$
 $\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{bmatrix}$
• Euclidean (3) or Rigid Body \longrightarrow $\begin{bmatrix} 1+a & -b & t_x \\ b & 1+a & t_y \end{bmatrix}$
• Similarity (4) \longrightarrow $\begin{bmatrix} 1+a & b & t_x \\ c & 1+d & t_y \end{bmatrix}$
• Affine (6) \longrightarrow $\begin{bmatrix} 1+h_{00} & h_{01} & h_{02} \\ h_{10} & 1+h_{11} & h_{12} \\ h_{20} & h_{21} & 1 \end{bmatrix}$

Circular Points

- Affinity maps I_∞ to itself. Conversely, any transformation that does that is an affine one
- General projectivity can map I_∞ to a finite line and vice versa
- A circle intersects I_w at circular points. Canonical (Euclidean) circle is: x² + y² + dxw + eyw + fw² = 0.
- Points on I_{∞} have w = 0. Thus, $x^2 + y^2 = 0$.
- Circular points are given canonically by:

$$I = \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} \quad \text{and} \quad J = \begin{bmatrix} 1 \\ -i \\ 0 \end{bmatrix}$$

Finding Line at Infinity

 Line at infinity can be found in the image from 2 sets of parallel lines.

Affine Structure from Images

- Affine structure gives parallelism, ratio of areas, centroid, etc., and can be the basis of many decisions.
- Find I_m in image using parallel lines.
- Apply a transformation H that maps the line to [0 0 1]^T

Circular Points to Similarity

Circular points are fixed under similarity

$$\begin{bmatrix} s\mathbf{R} & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -i \\ 0 \end{bmatrix} = s(cos\theta + isin\theta) \begin{bmatrix} 1 \\ -i \\ 0 \end{bmatrix}$$

- Conversely, any transformation that fixes circular points is a similarity.
- Thus, a transformation H that sends the circular points to their canonical form I and J leaves only a similarity transformation.

Dual Conic to Circular Points

- C_∞^{*} = IJ^T + JI^T is a dual conic defined by the circular points, It is also fixed under similarity.
- In canonical or Euclidean frame, $C_{\infty} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
- We can see that

$$\begin{bmatrix} s\mathbf{R}^T & \mathbf{0} \\ t^T & 1 \end{bmatrix} C_{\infty}^* \begin{bmatrix} s\mathbf{R} & t \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} s^2 & 0 & 0 \\ 0 & s^2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \equiv C_{\infty}^*$$

Dual Conic to Circular Points

- C_∞^{*} = IJ^T + JI^T is a dual conic defined by the circular points. It is also fixed under similarity.
- In canonical or Euclidean frame, $C_{\infty}^* = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
- We can see that

$$\begin{bmatrix} s\mathbf{R}^T & \mathbf{0} \\ t^T & 1 \end{bmatrix} C_{\infty}^* \begin{bmatrix} s\mathbf{R} & t \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} s^2 & 0 & 0 \\ 0 & s^2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \equiv C_{\infty}^*$$

Metric Structure from Images

- Identify circular points in the image. This can be done by finding a world circle in the image as a conic, finding the I_m in the image and finding their intersection
- Map one circular point to I and the other to J. The transformation H that does it metric rectifies the image.
- I., gives affine structure, the circle gives metric structure.
- Can be done using 2 non-parallel orthogonal line pairs instead of a circle or 5 orthogonal line pairs from projective!

Metric Rectification

Resulting image is a scale away from actual image

3D Reconstruction: Recovering Structure from Single/Multiple Images

Anoop M. Namboodiri
Center for Visual Information Technology
IIIT Hyderabad, INDIA

Xbox Kinect

IR-based range sensor for Xbox

- Aligned depth and RGB images at 640 × 480
- Original goal: Interact with games in full 3D
- Computer vision happy with realtime depth and image
 - o Games, HCI, etc
 - Action recognition
 - Image based modelling of dynamic scenes
- Fastest selling electronic appliance ever!!
- Other products that use PrimeSense sensor

Visual Hull

- Object silhouette represents a generalized cone with the camera centre as the apex
- Intersect these cones for multiple views in the 3D space
- Visual Hull, like convex hull
- Cannot get fine details like concavities
- Gives a very good, approximate shape, without scene modification!

Space Carving

- Reason directly in a volumetric voxel space
- If a voxel is filled, it projects to similar colours in all cameras
- If a voxel is empty, its projections will have different appearances
- Colour consistency: filled or empty?
- Assume all filled initially; carve out empty ones by going over the images, guessing visibility, etc.

