Machine Learning Applications

Energy Forecasting – Electric load forecasting by the example of a machine tool

Prof. Dr.-Ing. M. Weigold, Bastian Dietrich, M.Sc.

Darmstadt | 31.01.2020

Agenda

- 1 The ETA-Factory
- **2** Learning objectives
- 3 Energy forecasting in production Motivation and context
- 4 From raw data to the load forecasting model step by step
- **5** Use case practical demonstration

Agenda

- **1** The ETA-Factory
- 2 Learning objectives
- 3 Energy forecasting in production Motivation and context
- 4 From raw data to the load forecasting model step by step
- 5 Use case practical demonstration

The ETA-factory

https://www.youtube.com/watch?v=agmGWmSSLG4

Research Group ETA

Energy Technologies and Applications in Production

Manufacturing Technology

Prof. Dr.-Ing. M. Weigold

Main Fields of Application

Mechanical Engineering | Automotive | Aerospace | Dental Technology

Production Organization

Prof. Dr.-Ing. J. Metternich

Prof. Dr.-Ing. E. Abele

eta-fabrik.de

The Challenge

Holistic increase of the Energy Efficiency

Today: Isolated optimization of different sub-systems of a factory

Savings < 30 %

Our vision: Holistic factory optimization including all sub-systems

Interaction of:

- Machines
- Building services
- Buildings

Synergies by energy controlling and recovery measures

Fransfer // Education

The interdisciplinary ETA research group

Energy Technologies and Applications in Production

Research Fields: Energy Efficiency // Energy Flexibility // Resource Efficiency in production

Software-oriented

Artificial Intelligence for Energy Systems Autonomous measuring systems

Optimum scheduling **Intelligent Agents**

Energy Assistance Systems

Optimum control

Simulation of Energy Systems

Energy management & monitoring

Prediction Systems

Energy Performance Indicators

Condition & Quality Monitoring

ICT-Infrastructure

Data Acquisition Systems

Energy Recuperation New & existing project planning Cross-sectional Technology Benchmarks

Energy Analyses

Energy-optimized supply systems Cooling // Heating // Compressed Air // Air Conditioning // Ventilation

Energy Recovery, Storage & Networks

Topologies & Dimensioning

Technology Benchmarks

Energy system analyses

Hardware-oriented

Projekt SynErgie

https://www.youtube.com/watch?v=vo8w4sOBv 4

Agenda

- 1 The ETA-Factory
- **2** Learning objectives
- 3 Energy forecasting in production Motivation and context
- 4 From raw data to the load forecasting model step by step
- 5 Use case practical demonstration

Learning objectives

- > General understanding: classification of forecasting in Machine Learning, delimitation of prediction
- Know the peculiarities of time series
- > Know tools and algorithms for time-series-specific data preprocessing and forecasting
- Know metrics for the evaluation of the forecast quality and be able to name advantages and disadvantages in each case
- Be able to name forecasting applications in mechanical engineering and know typical problems and their solutions in implementation

Agenda

- 1 The ETA-Factory
- 2 Learning objectives
- 3 Energy forecasting in production Motivation and context
- 4 From raw data to the load forecasting model step by step
- 5 Use case practical demonstration

Progress of the Energy Transition since Fukushima

2019: 40,4% Renewable Energy (RE)

2011: 19 %

1 Hj.2019:

Contribution of RE to gross domestic electricity consumption: 290 billion kWh

2022: last nuclear power plant shut down

2038: last coal power plant shut down

Challenges of the Energy Transition – Electric Power

Differences in Electric Power Demand and Electric Power Supply

Source: PTW, based on Agora Energiewende 2012

Electricity prices fluctuate due to demand and supply

Agora Energiewende; Stand: 17.01.2018, 09:00

- Usual fluctuation of electricity prices by >20€/MWh/d
- Negative electricity prices

Energy forecasting in industry – why?

- Pricing structures and price fluctuations at the electricity market force the industry to adapt their electric load profile to the electricity supply
- The load profile of the factory is strongly influenced by the load profiles of the production machines inside the factory.
- Knowing the future load profile of the production machines enables us to control the load profile of the factory.

Why use Machine Learning for forecasting?

Advantages of Machine Learning	Possible drawbacks
Rising data availability through Industry 4.0 → Large data base	Data quality issues, installation of sensors necessary
More and better algorithms and rising computational power	Machine Learning expertise required (selection of algo's, parameters, data preparation)
Less domain expert knowledge required	Less model understanding
Forecasting based on real-time data (Forecasting horizon and sensitivity)	Continuous data acquisition and preparation necessary

Energy forecasting in the Machine Learning ecosystem

Forecasting vs. prediction

Definition of terms

Prediction:

- General term → predict an unknown value from known inputs
- Example: Prediction of the net income of households from house location, house size, number of rooms, ...

Forecasting:

- Time related → forecast the future values of a time series
- Example: Weather forecast of tomorrow from current and past weather conditions, time of year, ...
- Challenge of forecasting in Machine Learning:
 - Feature engineering gets a second dimension: Time
 - 1. Model the exogenous, non-temporal features (the feature model)
 - 2. Model the historical, temporal features (the temporal model)
 - Therefore, the feature set often becomes much larger than in regular Machine Learning problems, which can evoke the "curse of dimensionality"

Agenda

- 1 The ETA-Factory
- 2 Learning objectives
- 3 Energy forecasting in production Motivation and context
- 4 From raw data to the load forecasting model step by step
- 5 Use case practical demonstration

The CRISP-DM model

The CRISP-DM model – Business understanding

Use case: Load forecasting of a production machine

- Business understanding: Volatile energy market leads to need for better understanding of the demand side in industry to enable demand side management.
- **Business objective**: Forecast the active power of the machine tool EMAG VLC 100 GT
- Model requirements:

Forecasting horizon: 15 minutes

Time intervals: 1 second

The model requires minimal user input

The machine tool EMAG VLC 100 Y

Distinguish the different kinds of power in machine tools:

- Installed power Dimensioning of the power connection
- Active power (P) Real, timedependent power input to the machine
- Reactive power (Q)
- Apparent power (S)
- Mechanical power power output to the part (power after losses)

Active power of the machine tool - Data set

Breakdown of machine tool power consumption

Leistungsbedarf

Der Energiebedarf verteilt sich auf die Verbrauchergruppen

- Kühlschmierstoffaufbereitung,
- Drucklufterzeugung,
- elektrisch gespeiste Nebenaggregate
- CNC-Steuerungspaket mit Hauptspindel

und Vorschubantrieben.

Mittlerer Leistungsbedarf für die Fertigung eines Gehäuseteils, oben: Schruppen, unten: Schlichten

Source: Heidenhain

Breakdown of machine tool power consumption, time dimension

Zoom in zoom out

Data Flows and Interfaces in the ETA-Factory

The CRISP-DM model – Data Preparation

Peculiarities of time series

- The values have a strong time dependency (autocorrelation)
 - > Different splitting into training, validation and test data required
 - Test data must always be future values to ensure generalization capability of the model
 - No shuffling to prevent mixing future and past values
 - Preparation for supervised learning needed
 - Target must be time shifted so that the model learns the future behavior from the current/past inputs
 - Different feature engineering required
 - 1. Model the exogenous, non-temporal features (the feature model)
 - 2. Model the historical, temporal features (the temporal model)

The CRISP-DM model – Data Preparation

Splitting into test, validation and training set

- Time series values are strongly dependent on values that are close in time
- Therefore, the test/validation set should always be a set of future values
- No shuffling to prevent mixing future and past values

Training Set	Test Set			
Time				

The CRISP-DM model – Data Preparation

Time shift method for forecasting target preparation

The CRISP-DM model – Data preparation

Example of target time shift

The CRISP-DM model – Data Preparation

Feature engineering for the temporal feature set

Temporal features

	Time	Param 1	Engineered feature 1 (time lag 1 step)	Param 2	Engineered feature 2 (moving average)	Target
now	t-0	$x_1^{(0)}$	$x_{e1}^{(0)} = x_1^{(1)}$	$x_2^{(0)}$	$x_{e2}^{(0)} = \frac{1}{2}(x_2^{(0)} + x_2^{(1)})$	$y^{(0)}$
	t-1	$x_1^{(1)}$	$x_{e1}^{(1)} = x_1^{(2)}$	$x_2^{(1)}$	$x_{e2}^{(1)} = \frac{1}{2}(x_2^{(1)} + x_2^{(2)})$	y ⁽¹⁾
past	t-2	$x_1^{(2)}$	$x_{e1}^{(2)} = x_1^{(3)}$	$x_2^{(2)}$	$- x_{e2}^{(2)} = \frac{1}{2}(x_2^{(2)} + x_2^{(3)})$	y ⁽²⁾
	t-3	$x_1^{(3)}$	$x_{e1}^{(3)} = x_1^{(4)}$	$x_2^{(3)}$	$-x_{e2}^{(3)} = \frac{1}{2}(x_2^{(3)} + x_2^{(4)})$	y ⁽³⁾
•	t-4	$x_1^{(4)}$	$x_{e1}^{(4)} = x_1^{(5)}$	$x_2^{(4)}$	$x_{e2}^{(4)} = \frac{1}{2}(x_2^{(4)} + x_2^{(5)})$	y ⁽⁴⁾
	t-n	$x_1^{(n)}$	X	$\chi_2^{(n)}$	X	

Training example

The CRISP-DM model – Data Preparation

Feature engineering for the temporal feature set

Which time step(s) are significant?

Time	Param 1	Engineered feature 1 (time lag ?? steps)	
t-0	$x_1^{(0)}$	$x_{e1}^{(0)} = x_1^{(??)}$	
t-1	$x_1^{(1)}$	$x_{e1}^{(1)} = x_1^{(??)}$	
t-2	$x_1^{(2)}$	$x_{e1}^{(2)} = x_1^{(??)}$	
t-3	$x_1^{(3)}$	$x_{e1}^{(3)} = x_1^{(??)}$	
t-4	$x_1^{(4)}$	$x_{e1}^{(4)} = x_1^{(??)}$	

The autocorrelation function (ACF)

Goal: Identify promising time lags for Feature Engineering

The CRISP-DM model – Modeling

The CRISP-DM model – Modeling

Suited algorithms for time series forecasting

Statistical models:

- Time series analysis (e.g. ARIMA),
- Linear Regression,
- ..

Machine Learning models for supervised learning:

- K Nearest Neighbors,
- Decision Tree,
- Random Forest,
- Support Vector Machine,
- Artificial Neural Networks,
- ...

ARIMA = Auto Regressive Integrated Moving Average

→ Linear model of past values and moving average

Evaluate the forecasting accuracy

Goal: Is the achieved forecasting accurary sufficient for the business objective or is re-work required?

Guidelines to choose error metrics for the forecasting accuracy:

- Scale dependent: MAE, MdAE, RMSE
- Scale independant: nRMSE, R²-score
- Always consider several different metrics in order to level out the weaknesses of the single metrics
- Decide how to measure the forecasting quality before training the model
- Decide what is an acceptable forecasting quality before training the model

Error Metrics

Group	Metric	Derivation	Advantage	Disadvantage
ndant	Root Mean Squared Error (RMSE)	$RMSE = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2}$	+ Recommended for forecasting + High weight on large errors	- Sensitive to outliers
Scale-dependant	Mean Absolute Error (MAE)	$MAE = \frac{1}{m} \sum_{i=1}^{m} y_i - \widehat{y_i} $	+ Less sensitive to outliers thanRMSE+ Good to interpret	- Sensitive to outliers (less than RMSE)
	Median Absolute Error (MdAE)	$MdAE = \underset{i=1m}{\text{median}}(y_i - \widehat{y}_i)$	+ Not very outlier-sensitive	- Harder to interpret than MAE and RMSE
Scale-independant	R ² -score	$R^{2} = 1 - \frac{\sum_{i=1}^{m} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{m} (y_{i} - \bar{y})^{2}}$	+ Standard metric in scikit-learn + Well-suited to estimate the generalization error + Normalized scale	- Sensitive to outliers
Scale-in	Normalized RMSE (nRMSE)	$nRMSE = \frac{1}{n}RMSE$ with n = scaling factor	+ Normalized scale	Sensitive to outliersScaling factor n has significant influence on the error metric

Results of the use case — Load forecasting of the machine tool EMAG VLC 100 GT

Target and predictions, zoom to seven production cycles:

Result understanding:

- Periodic elements are captured well
- Aperiodic components (different cycle time) disturb the model → Improvement potential

Quelle: Walther, J.; Generic Machine Learning Approach for very short term Load Forecasting of production machines (2019)

Forecasting accurary of different forecasting horizons

Use case machine tool: Result of the hyperparameter optimization

Solution space, selected solutions marked in grey. Selection process was iterative with hyperparameter optimization in each step.

Problem		Solutions						
Forecasting horizon	10 seconds		100 second	s 900	900 seconds			
Learning algorithm	Linear Regression	KNN	Decision Tree	Random Forest	ANN			
Imputation	Mean			Median				
Outlier treatment	Media	n and MAI)	None				
Scaling	RobustScaler		StandardScaler		MinMaxScaler			
Feature engineering	Univaria	Univariate		Cor	Combination			
Feature selection	By variance	Ву	VIF Re	ecursive (Combination			

Conclusions

- > Energy forecasting is an important tool for demand side management in industry
- Forecasting can be framed as a supervised learning problem and can be solved with known supervised learning algorithms
- > Time series forecasting has some peculiar data preprocessing steps:
 - Split into training and test data
 - Target preparation: Time shift
 - Feature Engineering: Time lag and moving average
- > Data understanding is very important for result interpretation and model evaluation

Agenda

- 1 The ETA-Factory
- 2 Learning objectives
- 3 Energy forecasting in production Motivation and context
- 4 From raw data to the load forecasting model step by step
- **5** Use case practical demonstration

Demo

Demo:

- Data understanding
- Target preparation
- Feature Engineering

Ausblick weitere Forschung

Energy Forecasting

Ausschreibungen:

- https://eta-fabrik.de/aktuell/studentische-arbeiten/
- RNN: https://eta-fabrik.de/aktuell/studentische-arbeit/entwicklung-von-lastprognosemodellen-fuer-werkzeugmaschinen-basierend-auf-recurrent-neural-networks/
- Zeitserien-Analyse: https://eta-fabrik.de/aktuell/studentische-arbeit/datenvorbereitung-und-bewertung-von-machine-learning-basierten-lastprognosemodellen/
- Wärmebedarfsprognose: https://eta-fabrik.de/aktuell/studentische-arbeit/entwicklung-einer-anlagenspezifischen-modellierungsstrategie-fuer-ki-basierte-waermebedarfsprognosen-in-der-eta-fabrik/
- U.v.m.

Lehrveranstaltungen der ETA-Fabrik:

- Master-Vorlesung und Tutorium
- https://eta-fabrik.de/bildung/lehrveranstaltungen/

Literature and Links

Basics of Machine Learning application:

Géron, Aurélien (2017): Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems: O'Reilly Media, Inc.

Further information on different Machine Learning problems and how-to's:

https://machinelearningmastery.com/

Ausschreibungen:

https://eta-fabrik.de/aktuell/studentische-arbeiten/

https://eta-fabrik.de/aktuell/stellenangebote/

ETA-Fabrik:

https://eta-fabrik.de/

https://www.youtube.com/watch?v=eY2kjUZB1oM (ETA-Video)

https://www.youtube.com/watch?v=vo8w4sOBv 4 (SynErgie Kurzfilm)

Thank you for your interest!

For further questions we are happy to be at your disposal.

Bastian Dietrich, M.Sc.

b.dietrich@ptw.tu-darmstadt.de

+49 6151 / 16 22 0 98

Prof. Dr.-Ing. Eberhard Abele

Prof. Dr.-Ing. Joachim Metternich

Prof. Dr.-Ing. Matthias Weigold

Institute for Production Management, Technology and Machine Tools

Technische Universität Darmstadt

Otto-Berndt-Straße 2 64287 Darmstadt

+49 61 51 | 16 2 00 80 Tel.: Fax: +49 61 51 | 16 2 00 87 E-Mail: info@ptw.tu-darmstadt.de Internet: www.ptw.tu-darmstadt.de

excellent Research

learning **Networks**

profound Consulting