7장 | MIXED EFFECT MODEL (AND OTHERS)

SAS를 이용한 실험 계획과 분산 분석 (자유아카데미)

고정효과 VS. 임의효과

- 고정효과(fixed effect) : 실험에 사용된 요인의 수준에만 우리의 관심이 있는 경우
- 임의효과(random effect): 실험에 사용된 요인의 수준이 속한 전체 모집단에 우리의 관심이 있는 경우 (즉, 요인의 수준을 큰 모집단에서 임의로 추출된 값이라고 가정할 때)

- (e.g.) 조류독감에 대한 백신의 효능을 조사하고자 하여 drugI=새로운 백신, drug2=placebo 라고 두고 실험을 하였다. fixed effect
- (e.g.) 고도에 따른 운동능력의 차이를 조사하고자 하여, 해발 100미터, 500미터, 1000미터 위치에서 단거리, 중거리, 장거리 기록을 비교하였다.

예제

• 다음 요인 중에서 고정효과와 임의효과를 구분하라.

- 성별 (남,여)
- 온도 (30도, 60도, 90도)
- 승용차 구동시스템 (전륜구동, 후륜구동, 4륜구동)

ONE-WAY RANDOM EFFECT MODEL

모형식

$$y_{ij} = \mu + \tau_i + \epsilon_{ij}$$
 $au_i \sim \text{i.i.d. } N(0, \sigma_{\tau}^2)$
 $\epsilon_{ij} \sim \text{i.i.d. } N(0, \sigma^2)$
 $au_i, \ \epsilon_{ij} \text{ are independent}$

E(MS)

$$E(MStreat) = \sigma^2 + n\sigma_{\tau}^2$$
$$E(MSE) = \sigma^2$$

$$F_0 = \frac{MStreat}{MSE}$$

$$H_0 : \sigma_{\tau}^2 = 0$$

$$H_1 : \sigma_{\tau}^2 \neq 0$$

$$H_1 : \sigma_{\tau}^2 \neq 0$$

TWO-WAY RANDOM EFFECT MODEL

• 모형식

$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$$
 $\alpha_i \sim \text{i.i.d. } N(0, \sigma_{\alpha}^2) \quad \text{A 亞라}$
 $\beta_j \sim \text{i.i.d. } N(0, \sigma_{\beta}^2) \quad \text{B 亞라}$
 $(\alpha\beta)_{ij} \sim \text{i.i.d. } N(0, \sigma_{\alpha\beta}^2) \quad \text{AB 亞라}$
 $\epsilon_{ijk} \sim \text{i.i.d. } N(0, \sigma^2)$
 $\alpha_i, \beta_j, (\alpha\beta)_{ij}, \epsilon_{ijk} \text{ are independent}$

• E(MS)

$$E(MSA) = \sigma^{2} + n\sigma_{\alpha\beta}^{2} + bn\sigma_{\alpha}^{2}$$

$$E(MSB) = \sigma^{2} + n\sigma_{\alpha\beta}^{2} + an\sigma_{\beta}^{2} \qquad H_{0}: \sigma_{\alpha}^{2} = 0$$

$$E(MSAB) = \sigma^{2} + n\sigma_{\alpha\beta}^{2}$$

$$E(MSE) = \sigma^{2}$$

 $\frac{MSA}{MSE}$ or $\frac{MS}{MSE}$

MIXED EFFECT MODEL

$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk},$$
 $i = 1, 2, \dots, a, \quad j = 1, 2, \dots, b$
 $k = 1, 2, \dots, n_{ij}$

$$\sum_{i=1}^{a} \alpha_i = 0$$
 $\beta_j \stackrel{iid}{\sim} N(0, \sigma_\beta^2)$
 $(\alpha\beta)_{ij} \stackrel{iid}{\sim} N(0, \sigma_{\alpha\beta}^2)$
 $\epsilon_{ijk} \stackrel{iid}{\sim} N(0, \sigma^2)$
 $\beta_j, (\alpha\beta)_{ij}, \epsilon_{ijk} \vdash \text{서로 독립이다.}$

Source	d.f.	SS	MS	F_0
A	a-1	SSA	MSA	MSAB MSAB
В	b-1	SSB	MSB	$\frac{\text{MSB}}{\text{MSAB}}$
AB	(a-1)(b-1)	SSAB	MSAB	$\frac{\text{MSAB}}{\text{MSE}}$
Error	ab(n-1)	SSE	MSE	
Total	abn-1	SST	a r I Corlo	

표 7.7: 혼합효과의 이원배치법의 분산분석표

SAS CODE

```
proc glm data=a;

class A B;

model y=A B A*B;

run;
```

Fixed Effect

```
proc glm data=a;

class A B;

model y=A B A*B;

random A B A*B;

run;
```

Random Effect

OTHERS

• 주효과(main effect)가 유의함에도 불구하고, 주효과 검정이 유의 하지 않게 나올 수 있다.

- 이 경우, 주효과(main effect)보다는 조건부 주효과를 해석하는 것이 의미있다.
- 비료I 사용할 때 농약의 효과 / 비료2 사용할 때 농약의 효과
- SAS 의 slice 옵션을 활용

SAS SLICE OPTION


```
proc glm data=a;
class region year;
model y=region year region*year;
lsmeans region*year / slice=year;
run;
```

region*year Effect Sliced by year for Y

year (df	SS	MS	F value	Pr>F	
2007	1	657	657	20.9	0.001	
2008	1	29	29	0.9	0.457	
2009	1	28	28	0.8	0.567	
2010	1	720	720	21.3	0.001	

상호작용 풀링

- 상호작용효과가 유의하지 않을 때 (p-value >0.25)
- 오차항 자유도가 적을 경우 (<20)
- 상호작용이 없을 것이라는 확신이 든다면...

source	d.f.	S.S.	source	d.f.	S.S.	
A	a-I	SSA	Α	a-I	SSA	
В	b-I	SSB	В	b-I	SSB	
AB	(a-I)(b-I)	SSAB	Error	ab(n-1)+(a-	SSE*	
Error	ab(n-1)	SSE		I)(b-I)	33L	
Total	abn- l	SST	Total	abn-I	SST	

Multiple Comparison (TWO-WAY)

• AB 상호작용의 유의성 여부에 따라 다르다.

