Abstract Algebra: Homework #4

Joel Savitz

Wednesday 17 June 2020

1 Chapter 9, Exercise A3

Suppose G_1, G_2 , and G_3 are groups and let $f: G_1 \to G_2$ and $g: G_2 \to G_3$ be isomorphisms.

Theorem 1. $g \circ f : G_1 \to G_3$ is an isomorphism $\iff G_1 \cong G_3$

Proof. Suppose $a, b \in G_1$. Then, since f is an isomorphism from G_1 to G_2 , we have f(ab) = f(a)f(b). Then, since g is an isomorphism grom G_2 to G_3 , we have g(f(ab)) = g(f(a))g(f(b)) since $f(ab), f(a), f(b) \in G_2$. Since $g \circ f$ is defined as g(f(x)) for any $x \in G_1$, we have:

$$(g \circ f)(ab) = ((g \circ f)(a))((g \circ f)(b)) \tag{1}$$

Since the composition of two bijective functions is bijective in general, and since f and g are bijections, we have that $(g \circ f)$ is a bijection. This fact, along with the fact that equation 1 holds, is exactly the criteria we need to conclude that $(g \circ f)$ is an isomorphism from G_1 to G_3 , or in other words, $G_1 \cong G_3$. Not only does this prove theorem 1, but this demonstrates the transitivity property of the isomorphism relation in general.

2 Chapter 9, Exercise B3

Suppose that G_1 and G_2 are groups and $f:G_1\to G_2$ is an isomorphism.

Theorem 2. If G_1 is a cyclic group with a generator element $\alpha \in G_1$ then G_2 is a cyclic group with a generator element $f(\alpha) \in G_2$.

Proof. Assume that G_2 is a cyclic group generated by $a \in G_1$. Let $n = |G_1|$. Since G_1 is generated by a, we can write G_1 as:

$$G_1 = \bigcup_{i=1}^n \alpha^i \tag{2}$$

We will show by induction on \mathfrak{i} that $f(\mathfrak{a})$ generates every element in G_2 . First, consider the base case of $\mathfrak{i}=1$. Since $f(\mathfrak{a})^1=f(\mathfrak{a})\in G_2$, we have a subset of G_2 that we can write as follows:

$$\bigcup_{i=1}^{1} f(\alpha)^{i} = \{f(\alpha)\} \subseteq G_{2}$$
 (3)

Now we make the induction hypothesis that:

$$\bigcup_{i=1}^{m} f(\alpha)^{i} \subseteq G_{2} \tag{4}$$

holds for for some natural $m \leq n$.

Then, if we take the union of both sides of proposition 4 with $f(a)^{m+1}$, we have:

$$\bigcup_{i=1}^{m} f(\alpha)^{i} \cup f(\alpha)^{m+1} \subseteq G_{2} \cup f(\alpha)^{m+1}$$

$$(5)$$

(6)

Which simplifies to:

$$\bigcup_{i=1}^{m+1} f(\alpha)^i \subseteq G_2 \tag{7}$$

Since $f(\alpha) \in G_2$ and $\Big(f(\alpha)^m \in G_2 \wedge f(\alpha)^{m+1} = f(\alpha)^m f(\alpha)\Big) \implies f(\alpha)^{m+1} \in G_2$ by the definition of f.

By strong induction on i, we have that proposition 7 holds for any value of $m \le n$ so it must hold for n as well.

Then we have:

$$\bigcup_{i=1}^{n} f(\alpha)^{i} \subseteq G_{2} \tag{8}$$

However, since the set $\bigcup_{i=1}^{n} f(\alpha)^{i}$ has the same cardinality as G_{2} , we must have that any element in G_{2} must be an element of $\bigcup_{i=1}^{n} f(\alpha)^{i}$. Then, by the axiom of extensionality:

$$\left(G_2 \subseteq \bigcup_{i=1}^n f(\alpha)^i\right) \wedge \left(\bigcup_{i=1}^n f(\alpha)^i \subseteq G_2\right) \iff \bigcup_{i=1}^n f(\alpha)^i = G_2 \tag{9}$$

We can rephrase proposition 9 by saying that f(a) generates G_2 .

Finally, since G_2 is generated by a single element f(a), we have that G_2 is a cyclic group generated by f(a). This proves theorem 2.

3 Chapter 9, Exercise E1

Suppose $E = \{x \in \mathbb{Z} \mid \exists k \in \mathbb{Z} \ni x = 2k\}.$

Theorem 3. $\mathbb{Z} \cong \mathsf{E}$ with respect to addition.

Proof. Let $f: \mathbb{Z} \to E$ such that f(x) = 2x. Let $a, b \in \mathbb{Z}$. We then have f(a) = 2a and f(b) = 2b. Notice that:

$$2(a+b) = 2a + 2b \tag{10}$$

$$f(a+b) = f(a) + f(b) \tag{11}$$

Suppose that we have some $c \in \mathbb{Z}$ where f(c) = f(a). Then, $2c = 2a \iff c = a$. Thus f is an injection from \mathbb{Z} to E.

Suppose we have some $d \in E$. Then, by the definition of E there exists some integral p where d = 2p, so we have f(p) = 2p = d. Thus f is a surjection from \mathbb{Z} to E.

Then, since f is an injection and a surjection, we have that f is a bijection. Since f is a bijection from \mathbb{Z} to E where equation 11 holds, we have that f is an isomorphism from \mathbb{Z} to E with respect to addition.

Then since there exists an isomorphism from \mathbb{Z} to E with respect to addition, we have that \mathbb{Z} is isomorphic to E with respect to addition, i.e. $\mathbb{Z} \cong \mathsf{E}$. This proves theorem 3.

4 Chapter 9, Exercise F2

Suppose $G = S_3$ and $G' = \{e, a, b, ab, aba, abab\}$ where * is an operation on G' and we have $a^2 = e \wedge b^2 = e \wedge bab = aba$.

For the group S_3 , denote the rotations by r_1, r_2, r_3 for a rotation r_n of $\frac{2n\pi}{3}$ radians, and denote the flips about each axis of symmetry by f_1 , f_2 , f_3 .

More precisely, denote the above permutations as follows:

$$r_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$
 $r_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ $r_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ (12)

$$r_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad r_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \qquad r_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad (12)$$

$$f_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \qquad f_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \qquad f_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad (13)$$

Then, table 1 describes the behavior of G under function composition.

Table 1: Operation table for G under \circ

By the above defining equations, table 2 is the operation table for the group G' with respect to *:

*	e	α	b	ab	aba	abab
e	e	a	b	ab	aba	abab
a		e	ab	b	abab	aba
b	ь	abab	e	aba	ab	α
ab	ab	aba	a	abab	b	e
aba	aba	ab	abab	α	e	b
abab	abab	b	aba	e	a	ab

Table 2: Operation table for G' under *

Now, define the bijection $\phi: G \to G'$ as follows:

$$r_3 \mapsto e$$
 $r_1 \mapsto ab$
 $r_2 \mapsto abab$
 $f_1 \mapsto b$
 $f_2 \mapsto aba$
 $f_3 \mapsto a$

Then, ϕ is a one-to-one correspondence from elements of G that satisfy the defining equations of G' to the elements of G' that satisfy themselves satisfy those equations:

$$\begin{split} \varphi(\alpha^2) &= \varphi(e) = r_3 = f_1 \circ f_1 \\ \varphi(b^2) &= \varphi(e) = r_3 = f_3 \circ f_3 \\ \varphi(aba) &= \varphi(bab) = \varphi(a)\varphi(b)\varphi(a) = \varphi(b)\varphi(a)\varphi(b) \\ &= f_1 \circ f_3 \circ f_1 = f_3 \circ f_1 \circ f_3 = f_2 \end{split}$$

Since we have a bijection between G and G' where corresponding elements satisfy the same defining equations, tables 1 and 2 are actually redudant and we can immediately conclude that $G \cong G'$

5 Chapter 9, Exercise I3

Suppose G is a group and $a \in G$

Theorem 4. $f:G\to G$ such that $f(x)=\alpha x\alpha^{-1}$ is an automorphism of G.

Proof. Let $x,y \in G$. Then, $f(x) = \alpha x \alpha^{-1}$ and $f(y) = \alpha y \alpha^{-1}$. Furthermore, $f(xy) = \alpha x y \alpha^{-1}$ and $f(x)f(y) = \alpha x \alpha^{-1} \alpha y \alpha^{-1}$. Since $\alpha x \alpha^{-1} \alpha y \alpha^{-1} = \alpha x y \alpha^{-1} = \alpha x y \alpha^{-1}$, we have:

$$f(xy) = f(x)f(y) \tag{14}$$

Now suppose that there exists some $z \in G$ where $f(z) = f(x) = \alpha x \alpha^{-1}$. We also must have, $f(z) = \alpha z \alpha^{-1}$ by the definition of f, so we have $\alpha z \alpha^{-1} = \alpha z \alpha^{-1}$

 axa^{-1} . Multiplying both sides of that on the right by a gives us az = ax, and multiplying both sides of that on the left by a^{-1} gives us z = x. Therefore, f is injective.

Let d be some element of G and let $p = a^{-1}da$. Notice that $f(p) = aa^{-1}daa^{-1} = ede = d$, therefore g is surjective.

Since f is injective and surjective, it is bijective, and since f is a bijection that satisfies equation 14, we have that f is an isomorphism from G to itself, or in other words, f is an automorphism of G. This proves theorem 4. \Box

6 Chapter 10, Exercise B2

Let $10 \in \mathbb{Z}_{25}$

Consider the following equation:

$$\sum_{i=1}^{n} 10 = 0 \tag{15}$$

Since the first natural number that satisfies equation 15 is 25, we have that ord(10) = 25.

7 Chapter 10, Exercise B3

Let $6 \in \mathbb{Z}_{16}$

Consider the following equation:

$$\sum_{i=1}^{n} 6 = 0 \tag{16}$$

Since the first natural number that satisfies equation 16 is 24, we have that ord(6) = 24.

8 Chapter 10, Exercise C4

Suppose G is a group with operator * and $a, b \in G$

Theorem 5. $\operatorname{ord}(a) = \operatorname{ord}(bab^{-1})$

Proof. Let $n = \operatorname{ord}(a)$. Then, $a^n = e$. Consider the product:

$$\prod_{i=1}^{n} bab^{-1} = \underbrace{bab^{-1}bab^{-1}...bab^{-1}}_{n \text{ times}}$$
(17)

Since each $b^{-1}b$ in equation 17 can be replaced with e, we can rewrite it like so:

$$\prod_{i=1}^{n} bab^{-1} = b \underbrace{aa..a}_{n \text{ times}} b^{-1} = ba^{n}b^{-1}$$
 (18)

Then, since $a^n = e$, we have:

$$\prod_{i=1}^{n} bab^{-1} = e \tag{19}$$

Now suppose there exists some $m \leq n$ where:

$$\prod_{i=1}^{m} bab^{-1} = e \tag{20}$$

Then:

$$\prod_{i=1}^{m} bab^{-1} = b \underbrace{aa..a}_{m \text{ times}} b^{-1} = e$$
(21)

$$ba^{m}b^{-1} = e \tag{22}$$

$$ba^{m} = e \tag{23}$$

$$a^{m} = e \iff m = n \tag{24}$$

Thus n is the smallest integer such that $(bab^{-1})^n = e$ so $\operatorname{ord}(bab^{-1}) = n$ and finally $\operatorname{ord}(a) = \operatorname{ord}(bab^{-1})$. This proves theorem 5.

9 Chapter 10, Exercise C5

Suppose G is a group with operator * and $a \in G$

Theorem 6. $\operatorname{ord}(\mathfrak{a}) = \operatorname{ord}(\mathfrak{a}^{-1})$

Proof. Let $\mathfrak{n}=\operatorname{ord}(\mathfrak{a})$. Then, we have $\mathfrak{a}^{\mathfrak{n}}=\underbrace{\mathfrak{aa..a}}_{\mathfrak{n} \text{ times}}=e$. Now consider exponentiation of \mathfrak{a}^{-1} . We have in general that $(\mathfrak{a}^{-1})^{\mathfrak{m}}=(\mathfrak{a}^{\mathfrak{m}})^{-1}$ for some integer \mathfrak{m} . Therefore, $(\mathfrak{a}^{-1})^{\mathfrak{n}}=(\mathfrak{a}^{\mathfrak{n}})^{-1}=e^{-1}=e$. There is no other smaller positive integer that satisfies $\mathfrak{a}^{\mathfrak{n}}=e$ by the definition of the order of an element of a group, therefore $\operatorname{ord}(\mathfrak{a}^{-1})=\mathfrak{n}$ and $\operatorname{ord}(\mathfrak{a})=\operatorname{ord}(\mathfrak{a}^{-1})$. This proves theorem 6.

10 Chapter 10, Exercise D5

Supose G is a group with an element $\mathfrak a$ that has finite order. Let $\mathfrak n, \mathfrak r, \mathfrak s$ be some integers.

Theorem 7. $\operatorname{ord}(\mathfrak{a}) = \mathfrak{n} \wedge \mathfrak{a}^r = \mathfrak{a}^s \implies \exists k \in \mathbb{Z} \ni \mathfrak{n}k = r - s \text{ i.e. } \mathfrak{n} \text{ is a factor of } r - s.$

Proof. First we note that n > 0 must hold since $\operatorname{ord}(\mathfrak{a}) = \mathfrak{n}$ only holds when \mathfrak{n} is positive. Since $\mathfrak{r}, \mathfrak{s}, \mathfrak{n} \in \mathbb{Z} \wedge \mathfrak{n} > 0$, we can apply the division algorithm. Let $\mathfrak{p}, \mathfrak{q}$ be the unique integers such that $\mathfrak{r} = \mathfrak{n}\mathfrak{p} + \mathfrak{q}$ and $0 \le \mathfrak{q} < \mathfrak{n}$ and let $\mathfrak{x}, \mathfrak{y}$ be the unique integers such that $\mathfrak{s} = \mathfrak{n}\mathfrak{x} + \mathfrak{y}$ and $0 \le \mathfrak{y} < \mathfrak{n}$. Then:

$$r - s = (np + q) - (nx + y) = n(p - x) + (q - y)$$
 (25)

So we have:

$$a^{r} = a^{s}$$

$$a^{np+q} = a^{nx+y}$$

$$a^{np} a^{q} = a^{nx} a^{y}$$

$$(a^{n})^{p} a^{q} = (a^{n})^{x} a^{y}$$

$$e^{p} a^{q} = e^{x} a^{y}$$

$$a^{q} = a^{y}$$

Since $0 \le q < n \land 0 \le y < n$, we must have that q = y and then we can simply equation 25:

$$\mathbf{r} - \mathbf{s} = \mathbf{n}(\mathbf{p} - \mathbf{x}) \tag{26}$$

Since $(p-x) \in \mathbb{Z}$, we have some integer z = p-x such that nz = r-q, or in other words, n is a factor of r-s. This proves theorem 7.

11 Isomorphism involving some matricies

Suppose we have the following matrices:

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} B = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
(27)

$$C = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} D = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} E = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 (28)

Define the set $G = \{I, A, B, C, D, E\}$. Define the operation * on G as A*B=BA

Then, table 3 is the operation table for G.

Table 3: Operation table for G under *

Then, utilizing the notation defined by equations 12 and 13 in section 4 and considering table 1, define the bijection $\psi: S_3 \to G$ as follows:

$$\begin{aligned} r_3 &\mapsto I \\ r_1 &\mapsto D \\ r_2 &\mapsto E \\ f_1 &\mapsto A \\ f_2 &\mapsto B \\ f_3 &\mapsto C \end{aligned}$$

We can see by inspection of tables 1 and 3 that ψ is an isomorphism from S_3 to G, therefore $S_3 \cong G$.

12 Find the order

Suppose $1 \in \mathbb{R}^*$

Then, $1^1 = e$ since 1 = e, therefore ord(1) = 1 with respect to multiplication.

Now suppose $1 \in \mathbb{R}$.

Consider the following equation:

$$\sum_{i=1}^{n} 1 = 0 \tag{29}$$

There is no value of n that will satisfy this equation, therefore ord(1) = ∞ , i.e. 1 has infinite order with respect to addition.

Find the order again 13

Suppose $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in GL_2(\mathbb{R})$.

Consider the following equation:

$$\prod_{i=1}^{n} A = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \tag{30}$$

Since n never has the value 0, there does not exist a positive value of nsuch that the right hand side of equation 30 is $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Therefore, $\operatorname{ord}(A) = \infty$, i.e. A has infinite order.

Find the order yet again 14

Suppose $f(x) = \frac{1}{1-x} \in S_A$ where $A = \mathbb{R} - \{0, 1\}$ We want to find $\operatorname{ord}(f)$, i.e the smallest positive integer such that $f^n(x) =$ e, — where e is the identity function — or infinity if such a numer does not exist.

First, we find $f^2(x)$:

$$\frac{1}{1 - \frac{1}{1-x}}$$

$$\frac{1}{\frac{1-x-1}{1-x}}$$

$$\frac{1}{\frac{-x}{1-x}}$$

$$\frac{1-x}{-x}$$

$$\frac{x-1}{x}$$

$$(31)$$

$$(32)$$

$$(33)$$

$$(34)$$

$$(35)$$

$$(35)$$

$$\frac{1}{\frac{1-x-1}{1-x}}\tag{32}$$

$$\frac{1}{\frac{-x}{1-x}}\tag{33}$$

$$\frac{1-x}{-x} \tag{34}$$

$$\frac{x-1}{x} \tag{35}$$

$$1 - \frac{1}{x} \tag{36}$$

Then, we plug out simplified $f^2(x)$ back into f and simplify to find $f^3(x)$:

$$\frac{1}{1 - (1 - \frac{1}{x})} \tag{37}$$

$$\frac{1}{\frac{1}{x}} \tag{38}$$

$$\frac{1}{\frac{1}{x}} \tag{38}$$

$$\mathbf{x} \tag{39}$$

Therefore $f^3(x) = x$ and then by inspection, we have $\operatorname{ord}(f) = 3$.

Subgroup problems **15**

This problem contains three subproblems. I have divided these among the following three subsections.

15.1 **Permutations**

Suppose $G_1 = \{f \in S_\mathbb{R} \mid f(x) = \alpha x + b \ni \alpha \neq 0 \land \alpha, b \in \mathbb{R} \}$

Theorem 8. G_1 is a subgroup of $S_{\mathbb{R}}$ with respect to function composition.

Proof. Let $f, g \in G_1$ such that f(x) = ax + b for some nonzero real a and some real b and g(x) = cx + d for some nonzero real c and some real d. Then, we have $(g \circ f)(x) = g(f(x)) = c(ax + b) + d = cax + (cb + d)$. Since $c \neq 0 \neq a \implies ca \neq 0$ and $ca \in \mathbb{R}$ as well as $(cb + d) \in \mathbb{R}$, we have that $(g \circ f)(x) \in G_1$, therefore G_1 is closed under o.

Let $h(x) = a^{-1}x + (-ba^{-1})$. a^{-1} is defined since $a \neq 0$ and $a^{-1} \in \mathbb{R} \wedge -ba^{-1} \in \mathbb{R} \implies h(x) \in G$. Then, we see that:

$$(h \circ f)(x) = a^{-1}(ax + b) + -ba^{-1}$$

$$= x + ba^{-1} - ba^{-1}$$

$$= x$$

$$(f \circ g)(x) = a(a^{-1}x + -ba^{-1}) + b$$

$$= x + -b + b$$

$$= x$$

Since $(f \circ h)(x) = (h \circ f)(x) = x \in G_1$ is the identity function, we have that the identity of $S_{\mathbb{R}}$ is in G_1 and also that $h(x) = f^{-1}(x)$, so it follows that every element in G_1 has its inverse in G_1 .

Finally, since G_1 is a closed with respect to \circ and since every element in G_1 has its inverse in G_1 , we have that G_1 is a subgroup of $S_{\mathbb{R}}$. This proves theorem 8.

15.2 The General Linear Group

Suppose
$$G_2 = \left\{ \begin{bmatrix} \alpha & b \\ 0 & 1 \end{bmatrix} \in GL_2(\mathbb{R}) \mid \alpha \neq 0 \right\}$$

Theorem 9. G_2 is a subgroup of $GL_2(\mathbb{R})$ with respect to matrix multiplication.

 $\textit{Proof.} \ \, \mathrm{Let} \,\, A = \begin{bmatrix} \alpha & b \\ 0 & 1 \end{bmatrix} \,\, \mathrm{and} \,\, B = \begin{bmatrix} c & d \\ 0 & 1 \end{bmatrix} \,\, \mathrm{be} \,\, \mathrm{two} \,\, \mathrm{elements} \,\, \mathrm{of} \,\, G_2.$

Then, we see that $AB = \begin{bmatrix} ac & ad + b \\ 0 & 1 \end{bmatrix}$. Since $a \neq 0 \neq c \implies ac \neq 0$ and since $ad \in \mathbb{R} \land ad + b \in reals$, we must have that $AB \in G_2$ by its definition. Therefore, G_2 is closed under matrix multiplication.

Let $C=\frac{1}{\alpha 1-b0}\begin{bmatrix}1&-b\\-0&\alpha\end{bmatrix}=\begin{bmatrix}\alpha^{-1}&-b\alpha^{-1}\\0&1\end{bmatrix}$, then, we can see by inspection that $C\in G_2$. We then have $CA=AC=\begin{bmatrix}1&0\\0&1\end{bmatrix}=I\in G_2$, so we also have that $C=A^{-1}$ and that e=I, the identity of $GL_2(\mathbb{R})$, is in G_2 .

Finally, since G_2 is a closed with respect to matrix multiplication and since every element in G_2 has its inverse in G_2 , we have that G_2 is a subgroup of $GL_2(\mathbb{R})$. This proves theorem 9.

15.3 Isomorphism

Define the function $T: G_1 \to G_2$ as $T(f) = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$ where G_1 and G_2 denote the same groups as in subsections 15.1 and 15.2 and $f \in G_1$ is some f(x) = ax + b for some nonzero real a and some real b.

Theorem 10. $G_1 \cong G_2$

Proof. Let $f, g \in G_1$ be such that f(x) = ax + b and g(x) = cx + d where $a, b, c, d \in \mathbb{R} \land a \neq 0 \neq c$.

Then, $T(f) = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \wedge T(g) = \begin{bmatrix} c & d \\ 0 & 1 \end{bmatrix}$. We see that $T(f)T(g) = \begin{bmatrix} ac & ad+b \\ 0 & 1 \end{bmatrix}$, and also that $T(f \circ g) = T((ac)x + (ad+b)) = \begin{bmatrix} ac & ad+b \\ 0 & 1 \end{bmatrix}$, therefore:

$$T(f \circ g) = T(f)T(g) \tag{40}$$

Let $h \in G_1$ be defined as h(x) = px + q for some $a, b \in \mathbb{R} \ni a \neq 0$ such that T(h) = T(f). Then, we must have:

$$\begin{bmatrix} p & q \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \iff p = a \land q = b \tag{41}$$

Therefore h = f and T is injective.

Let $Q = \begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$ for some nonzero real y and some real z. We can see by inspection that $Q \in G_2$, and we can construct a $\varphi \in G_1$ where $\varphi(x) = yx + z$ and it is readily apparent that $T(\varphi) = Q$. Therefore T is surjective.

Since T is injective and surjective, it is bijective. Then, since T is a bijection that satisfies equation 40, T is an isomorphism from G_1 to G_2 . Finally, since there exists some isomorphism from G_1 to G_1 , we have that G_1 is isomorphic to G_2 , or $G_1 \cong G_2$. This proves theorem 10.