Financial Economics I: Group Project

November 2022

- Please form groups with three students (absolute maximum is three) in each group. Please try to ensure a gender mix and a mix of domestic and international students in the group. This may not be possible but students should attempt to form groups with at least one mix (either gender or domestic/international). Those who cannot find a group should send me an email at conall.osullivan@ucd.ie.
- Each student in the group should contribute to the Python coding and write up. Each student should include a paragraph of their overall contribution to the project in the project submission. Please include student names and numbers at the beginning of the project.
- The datasets accompanying this project are downloaded from Yahoo Finance and from the Fama-French Data Library.
- I have uploaded code that will get you started with the project. The code downloads single stock price data for the *current* constituents of the S&P 500 index, aligns this data with S&P 500 data and then runs an unconditional test of the CAPM (or the market model) using the *full* dataset. In an unconditional CAPM test a separate time series regression is used for each asset to estimate the market betas of each stock using the full dataset. These are called first pass regressions. In a single second pass regression, we then regress the full sample mean excess returns of the assets (dependent variable) on the asset betas (independent variable) estimated in the first pass regressions.

I have also uploaded an out-of-sample portfolio test code on ETFs. You must take this code and apply it to S&P 100 data as described below.

Requirements

- 1. Run an unconditional test of the Fama-French 3-factor and 5-factor models as carried out in the example code for the CAPM.
 - Comment on your results. (max 1000 words).
- 2. Run a conditional CAPM test using the S&P 500 constituents as the individual assets. To do this estimate the betas using the oldest five years of data denoting this data window as [1,m]. Then regress the mean monthly excess returns of the assets in

month m+1 on the previously estimated vector of betas $\beta_{[1,m]}$. Repeat this exercise for the remaining "out-of-sample" months $m+2, m+3, \cdots, T$. Use a rolling window for beta estimates so that the mean returns of the assets in month $m+\tau$ are regressed on the betas estimated in the window $[\tau, m+\tau-1]$, denoted as $\beta_{[\tau, m+\tau-1]}$, where $\tau=m+1,\ldots,T$. Estimate the mean of the intercepts, slopes, t-statistics and adjusted-R-squared from the T-m out-of-sample second pass regressions. Also report the time series standard error of the estimated risk premia given by the standard deviation over all out-of-sample months divided by the square root of the number of out-of-sample months.

Comment on your results (max 1500 words).

3. Solve the weights on two mean variance portfolios using the the S&P 100 (as opposed to S& P 500) as the assets in the portfolio. Set the oldest five years of data [1,m] as the initial in-sample period. Evaluate returns over the subsequent month m+1 and rebalance the portfolio at the end of month m+1. The first portfolio should be the Global Minimum Variance Portfolio whose weights are given by $w_t^{(GMVP)} = (1/C)\Sigma^{-1}\ell$ where $C = \ell'\Sigma^{-1}\ell$ and where it is assumed Σ is estimated using only information up to time t. Set the second portfolio weights as follows:

$$w_t^{(2)} = a + BE_t [\tilde{\mathbf{r}}_{t+1}]$$
 where $a = \frac{\Sigma^{-1}\ell}{\ell'\Sigma^{-1}\ell},$ and $B = \frac{1-\gamma}{\gamma} \left(\Sigma^{-1} - \frac{\Sigma^{-1}\ell\ell'\Sigma^{-1}}{\ell'\Sigma^{-1}\ell}\right)$

whereas γ denotes the coefficient of relative risk aversion (which you can set to a fixed value of your choice) and where $E_t[\tilde{\mathbf{r}}_{t+1}]$ is the vector of CAPM expected excess returns of the stocks estimated using information up to time t.

The realised scalar out-of-sample return of a portfolio is given by $r_{t+1} = w'_t \times \mathbf{r}_{t+1}$. Plot the out-of-sample cumulative realised returns of the two portfolios. Also include in the plot the cumulative realised returns of an equally weighted portfolio and the S&P 100 market portfolio for comparison purposes.

Use the CAPM model to evaluate the out-of-sample performance of the two portfolios. That is, run an ex-post regression with the excess portfolio returns as the dependent variable and the excess S&P 100 market returns as the independent variable.

Comment on your results (max 1500 words).

• In each comment section you can reference a number of other related papers if you like (2 to 3 papers).

• Download your resulting Jupyter Notebook as an IPYNB file and as a HTML file. Convert the HTML file to a PDF document by right clicking on the HTML file and choosing "Print → Print to PDF". Submit both the IPYNB file and the PDF file to the appropriate link on Brightspace by close of day on Tuesday the 6th December. Try to submit on time to ensure you have some study time but if an extra day or two is needed just let me know.