假设检验

一、作业 (提交时间: Dec. 25, 2023 不交 - 习题课直接讲解)

1.[218-1] 设总体 X 服从正态分布 $\mathcal{N}(\mu,1)$, 其中 μ 为未知参数, (X_1, X_2, \dots, X_n) 是取自总体的一个样本, 对于检验问题 $H_0: \mu = 0$ vs $H_1: \mu > 0$. 求在显著性水平 $\alpha = 0.1$ 时的拒绝域.

- 2.[218-3] 在正态分布 $\mathcal{N}(\mu, 1)$ 中抽取了 100 个样本, 计算得样本均值为 $\bar{x} = 5.2$.
 - (1) 检验问题 $H_0: \mu = 5$ vs $H_1: \mu < 5.$ (显著性水平 $\alpha = 0.01$)
 - (2) 计算上述检验在 $\mu = 4.8$ 时犯第二类错误得概率.

3.[219-5] 设某次考试的成绩服从正态分布 $\mathcal{N}(\mu, \sigma^2)$, 从中随机抽取 36 位考生的成绩. 算出样本均值和样本标准 差为 $\bar{x}=66.5, s=15$, 在显著性水平 $\alpha=0.05$ 下分别检验:

- (1) $H_0: \mu = 70$ vs $H_1: \mu \neq 70$.
- (2) $H_0: \sigma = 18$ vs $H_1: \sigma \neq 18$.
- 4.[221-8] 某研究所为了研究某种化肥对农作物的效力, 在若干小区进行试验, 得到单位面积农作物的产量为:

施肥	34	35	39	32	33	34
未施肥	29	27	32	33	28	31

设施肥和未施肥时单位面积农作物的产量分别服从正态分布 $\mathcal{N}(\mu_1, \sigma^2)$, $\mathcal{N}(\mu_2, \sigma^2)$, 试在显著性水平 $\alpha = 0.05$ 下检验化肥对农作物是否有效力.

5.[222-1] 某农场 10 年前在鱼塘按比例 20:15:40:25 投放了 4 种鱼: 鲑鱼、鲈鱼、多宝鱼和鲢鱼的鱼苗, 现在鱼塘里获得样本数据如下, 在显著性水平 $\alpha = 0.05$ 下检验各类鱼的数量比例较 10 年前有无显著改变.

种类	鲑鱼	鲈鱼	多宝鱼	鲢鱼	
数量(条)	132	100	200	168	

6. 222-3] 为了确定维修工人的人数, 某小区物业要了解一天内接收到的维修次数, 该小区共有住户 1000 户, 假设每户至多一天维修一次, 现随机抽取 50 天的维修次数记录 (单位: 次) 如下表, 试求在显著性水平 $\alpha=0.05$ 下能 否认为维修次数服从二项分布?

1	2	2	2	2	1	1	0	1	0
2	0	2	4	1	5	5	3	4	3
2	5	3	5	3	0	2	5	0	1
1	1	2	3	3	4	3	2	3	3
4	1	1	2	0	2	2	1	2	3

二、练习

1.[218-1] 设总体 X 服从正态分布 $\mathcal{N}(\mu,\sigma^2)$, (X_1,X_2,\cdots,X_n) 是取自总体的一个样本, 经观测得样本观测值为 10,30,40,48,49,50,51,52,70,90. 对于检验问题 $H_0:\mu=52$ vs $H_1:\mu>52$. 显著性水平 $\alpha=0.05$, 分别 在下列两种情况下检验是否能拒绝原假设 H_0 :

- (1) 已知 $\sigma^2 = 100$.
- (2) $\sigma^2 > 0$ 未知.

2.[219-4] 某灯泡厂对某批灯泡的使用寿命进行抽样测定, 假定灯泡的使用寿命服从正态分布, 现共抽取了 81 个灯泡, 其平均使用寿命为 2990 小时, 标准差为 54 小时. 假定该灯泡厂商声称其生产的灯泡平均使用寿命至少为 3000 小时. 试检验该厂商的声称是否合理 (显著性水平 $\alpha=0.05$).

3.[220-6] 某钢筋的抗拉强度 $X \sim \mathcal{N}(\mu, \sigma^2)$, 且 μ, σ^2 未知, 现从一批钢筋中随机抽取 10 根, 测得样本均值和样本标准差为 $\bar{x}=140, s=30$, 按标准当抗拉强度 ≥120 时为合格, 在显著性水平 $\alpha=0.05$ 下检验该批钢筋是否合格.

4.[221-9] 设随机变量 X 与 Y 相互独立且都服从正态分布, $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$, $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$, $\mu_1, \sigma_1^2, \mu_2, \sigma_2^2$ 未知, 从总体 X 与 Y 中抽取容量为 $n_1 = 16$, $n_2 = 10$ 的样本,经计算后有 $\sum_{i=1}^{16} x_i = 84$, $\sum_{i=1}^{10} y_i = 18$, $\sum_{i=1}^{16} x_i^2 = 563$, $\sum_{i=1}^{10} y_i^2 = 72$. 在显著性水平 $\alpha = 0.05$ 下检验 $H_0: \sigma_1^2 = \sigma_2^2$ vs $H_1: \sigma_1^2 \neq \sigma_2^2$.