

Functional Dependencies - Part 1

Introduction

Database Design Quality

A fundamental question in database design:

What constitutes a "well-designed" database schema?

- We have learnt that:
 - A database design often starts with building an EER model.
 - An EER model can then be translated to a relational database schema.
- However, such an EER model may not be "perfect". Instead, it is common to have many different EER models for the same application.

Database Design Quality - Examples 1

Previous COMP2400/6240 students' solutions for an EER modelling question

Database Design Quality

- Some desirable properties of a "well-designed" database schema
 - Completeness

Has all relevant information been captured?

Redundancy freeness

Has the doubling of relevant information been avoided (if possible)?

Consistent understanding

Is the meaning of all relevant information consistent? Is the meaning of NULL clear?

- Does not apply
- Unknown
- Known but absent
- Performance

Can the database schema lead to the good performance for given tasks?

Motivating Example

- Suppose that we want to store the enrolment information (i.e., course no, semester and unit) of students (i.e., name, student id and date of birth) in a relational database.
- Is the design of the relation ENROLMENT good?

	ENROLMENT					
Name	StudentID	DoB	<u>CourseNo</u>	Semester	Unit	
Tom	123456	25/01/1988	COMP2400	2010 S2	6	
Tom	123456	25/01/1989	COMP8740	2011 S2	12	
Michael	123458	21/04/1985	COMP2400	2009 S2	6	
Michael	123458	21/04/1985	COMP8740	2011 S2	12	
Fran	123456	11/09/1987	COMP2400	2009 S2	8	

Motivating Example – Data Inconsistency

Any inconsistency problems with these tuples?

	Tom	123456	25/01/1988	COMP2400	2010 S2	6
•	Tom	123456	25/01/1989	COMP8740	2011 S2	12

The same student has different DoBs. This seems unreasonable.

	Michael	123458	21/04/1985	COMP2400	2009 S2	6	
•	Fran	123456	11/09/1987	COMP2400	2009 S2	8	

There are different units for the same course in the same semester. *That should not happen.*

			COMP8740		
Fran	123456	11/09/1987	COMP2400	2009 S2	8

The different students have the same ID. This is unacceptable.

Motivating Example – Data Redundancy

Any redundancy problems with these tuples?

Michael	123458	21/04/1985	COMP2400	2009 S2	6
Michael	123458	21/04/1985	COMP8740	2011 S2	12

There exists redundant information about students.

	Tom	123456	25/01/1989	COMP8740	2011 S2	12
٠,	Michael	123458	21/04/1985	COMP8740	2011 S2	12

There exists redundant information about courses.

Motivating Example – Update Anomalies

• What could happen to update operations (e.g., insert, delete and update)?

	ENROLMENT					
Name	StudentID	DoB	<u>CourseNo</u>	Semester	Unit	
Tom	123456	25/01/1988	COMP2400	2010 S2	6	
Tom	123456	25/01/1988	COMP8740	2011 S2	12	
Michael	123458	21/04/1985	COMP2400	2009 S2	6	
Michael	123458	21/04/1985	COMP8740	2011 S2	12	
Fran	123456	11/09/1987	COMP2400	2009 S2	6	

- Modification anomalies: If changing the DoB of Michael, then ...
- Insertion anomalies: If inserting a new course COMP3000, then ...
- Deletion anomalies: If deleting the enrolled course COMP2400 of Fran. then ...

Database Design Issues

- We have seen the following database design issues so far:
 - Data inconsistency
 - Data redundancy
 - Update anomalies

	ENROLMENT					
Name	StudentID	DoB	<u>CourseNo</u>	Semester	Unit	
Tom	123456	25/01/1988	COMP2400	2010 S2	6	
Tom	123456	25/01/1989	COMP8740	2011 S2	12	
Michael	123458	21/04/1985	COMP2400	2009 S2	6	
Michael	123458	21/04/1985	COMP8740	2011 S2	12	
Fran	123456	11/09/1987	COMP2400	2009 S2	8	

Can we avoid these issues when designing a database?

Database Design Issues - Motivating Example

 We may fix those database design issues through breaking a relation into smaller relations.

	ENROLMENT					
Name	StudentID	DoB	<u>CourseNo</u>	<u>Semester</u>	Unit	
Tom	123456	25/01/1988	COMP2400	2010 S2	6	
Tom	123456	25/01/1988	COMP8740	2011 S2	12	
Michael	123458	21/04/1985	COMP2400	2009 S2	6	
Michael	123458	21/04/1985	COMP8740	2011 S2	12	
Fran	123457	11/09/1987	COMP2400	2009 S2	6	

- For example, each tuple in ENROLMENT represents three different facts:
 - Information about students
 - Information about courses
 - Course enrolment of students

Database Design Issues - Motivating Example

	ENROLMENT					
Name	StudentID	DoB	<u>CourseNo</u>	Semester	Unit	
Tom	123456	25/01/1988	COMP2400	2010 S2	6	
Tom	123456	25/01/1988	COMP8740	2011 S2	12	
Michael	123458	21/04/1985	COMP2400	2009 S2	6	
Michael	123458	21/04/1985	COMP8740	2011 S2	12	
Fran	123457	11/09/1987	COMP2400	2009 S2	6	

	STUDENT					
Name	<u>StudentID</u>	DoB				
Tom	123456	25/01/1988				
Michael	123458	21/04/1985				
Fran	123457	11/09/1987				

Course				
<u>CourseNo</u>	Unit			
COMP2400	6			
COMP8740	12			

Enrol		
StudentID	<u>CourseNo</u>	Semester
123456	COMP2400	2010 S2
123456	COMP8740	2011 S2
123458	COMP2400	2009 S2
123458	COMP8740	2011 S2
123457	COMP2400	2009 S2