Dernière mise à jour	MECA 2	Denis DEFAUCHY
10/12/2022	Dynamique	TD4 - Sujet

Mécanique MECA2 - Dynamique

TD4

Equilibrage

	Programme PSI/MP 2022 (<u>LIEN</u>)		
Id	Compétence développée	Connaissances associées	
	Déterminer les caractéristiques	Solide indéformable : – définition ; – repère ; –	
B2-10	d'un solide ou d'un ensemble de	équivalence solide/repère ; – volume et masse ; –	
	solides indéformables.	centre d'inertie ; – matrice d'inertie.	
	Proposer une démarche	Graphe de structure. Choix des isolements.	
	permettant la détermination	Choix des équations à écrire pour appliquer le	
C1-05	d'une action mécanique	principe fondamental de la statique ou le principe	
	inconnue ou d'une loi de	fondamental de la dynamique dans un référentiel	
	mouvement.	galiléen. Théorème de l'énergie cinétique.	
	Déterminer les actions	Torseurs cinétique et dynamique d'un solide ou d'un	
C2-08	mécaniques en dynamique dans	ensemble de solides, par rapport à un référentiel	
62 00	le cas où le mouvement est	galiléen. Principe fondamental de la dynamique en	
	imposé.	référentiel galiléen. Énergie cinétique. Inertie et	
		masse équivalentes. Puissance d'une action	
C2-09	Déterminer la loi de mouvement dans le cas où les efforts extérieurs sont connus.	mécanique extérieure à un solide ou à un ensemble	
		de solides, dans son mouvement par rapport au	
		repère galiléen. Puissance intérieure à un ensemble	
		de solides. Théorème de l'énergie cinétique.	
		Rendement en régime permanent.	

Dernière mise à jour	MECA 2	Denis DEFAUCHY
10/12/2022	Dynamique	TD4 - Sujet

Equilibrage d'une roue de voiture

L'étude dynamique des systèmes va nous permettre de mettre en évidence des phénomènes vibratoires indésirables rencontrés lorsque des solides en rotation (rotors) ne sont pas équilibrés. Prenons l'exemple des voitures. Lorsqu'une roue est déséquilibrée, c'est-à-dire que sa répartition de masse ne respecte pas certains critères, sa mise en rotation va induire l'apparition d'efforts sinusoïdaux dans son guidage et va faire apparaître des vibrations dans l'habitacle.

Dans ce cas, un rendez-vous chez un garagiste permet de faire ajouter des masselottes aux endroits nécessaires, permettant de rééquilibrer la roue.

La machine d'équilibrage permettant de déterminer la position exacte des masselottes est présentée ci-dessous.

Derrière ce lien, un exemple d'utilisation d'une machine équivalente : LIEN

On se propose donc de comprendre comment l'ajout de masselotte(s) permet ou non de réaliser l'équilibrage d'une roue de véhicule.

Dernière mise à jour	MECA 2	Denis DEFAUCHY
10/12/2022	Dynamique	TD4 - Sujet

Une roue S_3 de masse M_3 dont la symétrie de révolution n'est plus respectée (déformations dues à un choc par exemple) est présentée ci-dessous.

Le centre de masse n'est plus confondu avec O_3 et l'opérateur d'inertie de la roue en O_3 est général. Nous noterons :

$$\overrightarrow{O_3G_3} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}^{B_3}$$
 avec a, b, c des constantes

$$I(O_3, S_3) = \begin{bmatrix} A_3 & -F_3 & -E_3 \\ -F_3 & B_3 & -D_3 \\ -E_3 & -D_3 & C_3 \end{bmatrix}^{B_3}$$

$$\vec{\Omega}(S_3/0) = \begin{bmatrix} 0 \\ 0 \\ \dot{\rho} \end{bmatrix}^{B_3}$$

La base 0, non représentée, est la base liée à la machine mettant en rotation le pneu telle que le poids s'applique suivant $-\overrightarrow{y_0}$. Le paramètre θ correspond à l'angle $(\overrightarrow{x_0}, \overrightarrow{x_3})$.

Le système d'équilibrage est équipé d'un moteur agissant sur la roue afin de la mettre en rotation. Le torseur associé à cette action est le suivant :

$$\begin{cases}
 0 & 0 \\
 0 & 0 \\
 0 & C_m
 \end{cases}^{B_0}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
10/12/2022	Dynamique	TD4 - Sujet

Conditions d'équilibrage d'une roue

Question 1: Déterminer le torseur cinétique $\{C(S_3/0)\}$ en O_3 . Question 2: Déterminer le torseur dynamique $\{D(S_3/0)\}$ en O_3 .

Remarque : si vous pensez au PFD, vous pourrez vérifier ce que l'on a dit en cours. Lors de la rotation de 3 autour de $(0_3, \overrightarrow{z_3})$, D et E génèrent chacun des moments autour des axes $(0_3, \overrightarrow{x_3})$ et $(0_3, \overrightarrow{y_3})$

On suppose pour le moment qu'il n'y a qu'une liaison pivot qui guide la roue par rapport au bâti en O_3 .

Question 3: En déduire les actions exercées par la roue sur le bâti en O_3 dans la liaison pivot d'axe O_3 , $\overrightarrow{z_3}$ dans la base 0.

On donne:

$$\begin{cases} X_{03} = M_3 \left(-b\ddot{\theta} - a\dot{\theta}^2 \right) \cos\theta - \sin\theta \, M_3 \left(a\ddot{\theta} - b\dot{\theta}^2 \right) \\ Y_{03} = M_3 g + M_3 \left(-b\ddot{\theta} - a\dot{\theta}^2 \right) \sin\theta + \cos\theta \, M_3 \left(a\ddot{\theta} - b\dot{\theta}^2 \right) \\ Z_{03} = 0 \\ L_{03} = -cM_3 g + \left(-E_3\ddot{\theta} + D_3\dot{\theta}^2 \right) \cos\theta - \left(-D_3\ddot{\theta} - E_3\dot{\theta}^2 \right) \sin\theta \\ M_{03} = \left(-E_3\ddot{\theta} + D_3\dot{\theta}^2 \right) \sin\theta + \left(-D_3\ddot{\theta} - E_3\dot{\theta}^2 \right) \cos\theta \end{cases}$$

Condition d'équilibrage d'un rotor : Un rotor est équilibré dynamiquement si les actions mécaniques dans les liaisons entre le rotor et le bâti sont indépendantes du temps pendant la rotation

Question 4: A quelles conditions sur a, b, c, A_3 , B_3 , C_3 , D_3 , E_3 et F_3 l'équilibrage dynamique est-il réalisé ?

Nous appellerons « Condition 1 » la condition sur la position de G_3 et « Condition 2 » la condition sur la forme de la matrice d'inertie $I(O_3, S_3)$.

Question 5: Proposer un énoncé de ces deux conditions

Question 6: Montrer que si la condition 1 est vérifiée, alors si la condition 2 est vérifiée en un point de l'axe, elle l'est en tout point de l'axe

On pourra donc, après vérification de la condition 1, vérifier la condition 2 en n'importe quel point de l'axe.

Pour répondre à ces deux conditions, on se propose de modifier le solide S_3 en y ajoutant une ou plusieurs masselottes (masses positives).

Question 7: Comment pourrait-on équilibrer un objet avec des masses négatives ? Quel intérêt cela présente-t-il ? Quels en sont les inconvénients ?

La géométrie d'un pneu étant particulière, les masselottes ne peuvent être placées que sur les deux cercles de rayon r sur les deux plans latéraux de la jante $z=\pm h$.

Dernière mise à jour	MECA 2	Denis DEFAUCHY
10/12/2022	Dynamique	TD4 - Sujet

Fonctionnement de la machine d'équilibrage

La liaison pivot entre l'arbre auquel la roue est fixée et le bâti est réalisée à l'aide de deux paliers à roulements fixés par l'intermédiaire de capteurs d'efforts. La roue est mise en rotation uniforme $(\dot{\theta}=cste)$. Lors de cette étape, la mesure des efforts pour différentes positions angulaires de l'arbre $(\theta$ est mesuré) permet de mettre en place un système d'équations dont les inconnues sont les paramètres a, b, D_3 , E_3 et M_3 (M_3 sera nécessaire dans la suite, à ce stade on ne l'a pas montré). La machine d'équilibrage doit déterminer ces inconnues pour proposer ensuite d'équilibrer la roue montée sur le dispositif.

On suppose que l'arbre est parfaitement équilibré et on appelle g l'accélération de la pesanteur qui sera prise en compte.

Question 8: Déterminer le torseur des actions des deux roulements en ${\it O}_{3}$. Question 9: En déduire le système d'équations simplifié du problème où l'on appellera ω la vitesse de rotation imposée

On donne:

$$\begin{cases} X_A + X_B = M_3 \omega^2 (-a \cos \theta + b \sin \theta) \\ Y_A + Y_B = M_3 g - M_3 \omega^2 (a \sin \theta + b \cos \theta) \\ Z_A = 0 \\ LY_A + (L - l)Y_B = -cM_3 g + \omega^2 (D_3 \cos \theta + E_3 \sin \theta) \\ -LX_A - (L - l)X_B = \omega^2 (D_3 \sin \theta - E_3 \cos \theta) \end{cases}$$

Pour équilibrer la roue, nous aurons besoin de connaître a, b, D_3 et E_3 afin de connaître les raisons de son déséquilibre, mais aussi M_3 pour savoir déterminer le centre de gravité et la matrice d'inertie de l'ensemble roue + masselotte.

Question 10: Montrer qu'il suffit de mettre un capteur d'effort dans une seule direction pour chaque roulement afin de déterminer M_3 , a, b, D_3 et E_3 .

Lorsque ces paramètres sont déterminés, la résolution d'un nouveau système intégrant l'ajout de masselottes (nombre à déterminer par la suite) permet de déterminer leur(s) masse(s) et où celle(s)-ci doit/doivent être ajoutée(s).

Dernière mise à jour	MECA 2	Denis DEFAUCHY
10/12/2022	Dynamique	TD4 - Sujet

Ajout de masselottes pour l'équilibrage

Dans un premier temps, on se propose d'ajouter une masselotte 1 de masse M_1 dans les conditions précisées plus haut dans le sujet. Cette masselotte est localisée par l'angle φ_1 .

$$\overrightarrow{O_3G_1} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}^{B_3}$$

Compte tenu des dimensions des masselottes, on les modélisera par des masses ponctuelles. On impose évidemment une masse positive M_1 .

Question 11: Exprimer $\overrightarrow{O_3G_1}$ en fonction de r, φ_1 et z_1

Dans la suite, on utilisera les coordonnées r, φ et z.

Question 12: Déterminer la/les relation(s) permettant de respecter la condition 1. Question 13: Déterminer la/les relation(s) permettant de respecter la condition 2.

On rappelle que z_1 n'est pas une inconnue, on a seulement la possibilité de choisir $z_1=\pm h$

Question 14: Récapituler les conditions à respecter pour que la roue soit équilibrée Question 15: Montrer que ce système d'équations impose la valeur de z_1 en fonction des paramètres de la roue initiale $a,\ b,\ D_3$ et E_3 ainsi qu'une condition liant ces paramètres

Question 16: Conclure quant à la capacité d'une masselotte à équilibrer une roue.

Dans un second temps, on ajoute une seconde masselotte 2 de masse M_2 dans les mêmes conditions que la première masselotte. Cette masselotte est localisée par l'angle φ_2 .

$$\overrightarrow{O_3G_2} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}^{B_3}$$

Question 17: Déterminer les nouvelles conditions à respecter pour réaliser l'équilibrage dynamique de la roue.

Dernière mise à jour	MECA 2	Denis DEFAUCHY
10/12/2022	Dynamique	TD4 - Sujet

On donne:

$$\begin{cases} M_1 r \cos \varphi_1 + M_2 r \cos \varphi_2 = -M_3 a \\ M_1 r \sin \varphi_1 + M_2 r \sin \varphi_2 = -M_3 b \\ M_1 r \sin \varphi_1 z_1 + M_2 r \sin \varphi_2 z_2 = -D_3 \\ M_1 r \cos \varphi_1 z_1 + M_2 r \cos \varphi_2 z_2 = -E_3 \end{cases}$$

Question 18: Que se passe-t-il si $z_1 = z_2$?

On suppose donc que $z_1 \neq z_2$.

Question 19: L'ajout de deux masselottes de part et d'autre de la roue permet-il de l'équilibrer ?

Question 20: Quelles conditions doivent finalement respecter M_1 , M_2 , φ_1 et φ_2 pour que la roue soit équilibrée ?

Question 21: Déterminer les expressions de M_1 , M_2 , φ_1 et φ_2 permettant d'équilibrer la roue par ajout de masselottes

Vous devriez montrer que la solution doit respecter :

$$\begin{cases} M_1 = -\frac{M_3ah + E_3}{2rh\cos\varphi_1} > 0 \\ \\ \varphi_1 = \tan^{-1}\left[\frac{M_3bh + D_3}{M_3ah + E_3}\right] + k\pi \\ \\ \varphi_2 = \tan^{-1}\left[\frac{D_3 - M_3bh}{E_3 - M_3ah}\right] + k\pi \\ \\ M_2 = \frac{E_3 - M_3ah}{2rh\cos\varphi_2} > 0 \end{cases}$$