Matching, conjunto independiente y recubrimientos

Algoritmos y Estructuras de Datos III

Definiciones: Dado un grafo G = (V, X)

▶ Un **matching o correspondencia** entre los nodos de G, es un conjunto $M \subseteq X$ de aristas de G tal que para todo $v \in V$, v es incidente a lo sumo a una arista $e \in M$.

Definiciones: Dado un grafo G = (V, X)

- ▶ Un **matching o correspondencia** entre los nodos de G, es un conjunto $M \subseteq X$ de aristas de G tal que para todo $v \in V$, v es incidente a lo sumo a una arista $e \in M$.
- ▶ Un **conjunto independiente** de nodos de G, es un conjunto de nodos $I \in V$ tal que para toda arista $e \in X$, e es incidente a lo sumo a un nodo $v \in I$.

Definiciones: Dado un grafo G = (V, X)

- ▶ Un **matching o correspondencia** entre los nodos de G, es un conjunto $M \subseteq X$ de aristas de G tal que para todo $v \in V$, v es incidente a lo sumo a una arista $e \in M$.
- ▶ Un **conjunto independiente** de nodos de G, es un conjunto de nodos $I \in V$ tal que para toda arista $e \in X$, e es incidente a lo sumo a un nodo $v \in I$.
- ▶ Un **recubrimiento de las aristas** de G, es un conjunto R_n de nodos tal que para todo $e \in X$, e es incidente al menos a un nodo $v \in R_n$.

Definiciones: Dado un grafo G = (V, X)

- ▶ Un matching o correspondencia entre los nodos de G, es un conjunto $M \subseteq X$ de aristas de G tal que para todo $v \in V$, v es incidente a lo sumo a una arista $e \in M$.
- ▶ Un **conjunto independiente** de nodos de G, es un conjunto de nodos $I \in V$ tal que para toda arista $e \in X$, e es incidente a lo sumo a un nodo $v \in I$.
- ▶ Un **recubrimiento de las aristas** de G, es un conjunto R_n de nodos tal que para todo $e \in X$, e es incidente al menos a un nodo $v \in R_n$.
- ▶ Un **recubrimiento de los nodos** de G, es un conjunto R_e de aristas tal que para todo $v \in V$, v es incidente al menos a una arista $e \in R_e$.

Lema: $S \subseteq V$ es un conjunto independiente $\iff V \setminus S$ es un recubrimiento de aristas.

Lema: $S \subseteq V$ es un conjunto independiente $\iff V \setminus S$ es un recubrimiento de aristas.

Esta relación no se mantiene entre matchings y recubrimientos de vértices, como lo muestra este ejemplo:

$$M = \{e_3, e_4\}$$

$$X\setminus M=\{e_1,e_2,e_5\}$$

$$R = \{e_1, e_3, e_4\}$$

$$X \setminus R = \{e_2, e_5\}$$

Matching máximo

Definiciones:

- ▶ Un nodo v se dice **saturado** por un matching M si hay una arista de M incidente a v.
- ▶ Dado un matching *M* en *G*, un **camino alternado** en *G* con respecto a *M*, es un camino simple donde se alternan aristas que están en *M* con aristas que no están en *M*.
- ▶ Dado un matching M en G, un camino de aumento en G con respecto a M, es un camino alternado entre nodos no saturados por M.

Matching máximo

Lema: Sean M_0 y M_1 dos matching en G y sea G' = (V, X') con $X' = (M_0 - M_1) \cup (M_1 - M_0)$. Entonces las componentes conexas de G' son de alguno de los siguientes tipos:

- nodo aislado
- ightharpoonup circuito simple con aristas alternadamente en M_0 y M_1
- ightharpoonup camino simple con aristas alternadamente en M_0 y M_1 .

Matching máximo

Lema: Sean M_0 y M_1 dos matching en G y sea G' = (V, X') con $X' = (M_0 - M_1) \cup (M_1 - M_0)$. Entonces las componentes conexas de G' son de alguno de los siguientes tipos:

- nodo aislado
- ightharpoonup circuito simple con aristas alternadamente en M_0 y M_1
- ightharpoonup camino simple con aristas alternadamente en M_0 y M_1 .

Teorema: M es un matching máximo de G si y sólo si no existe un camino de aumento en G con respecto a M.

Teorema: Dado un grafo G sin nodos aislados, si M es un matching máximo de G y R_e un recubrimiento mínimo de los nodos de G, entonces $|M| + |R_e| = n$.

Teorema: Dado un grafo G sin nodos aislados, si M es un matching máximo de G y R_e un recubrimiento mínimo de los nodos de G, entonces $|M| + |R_e| = n$.

Teorema: Dado un grafo G, si I es un conjunto independiente máximo de G y R_n un recubrimiento mínimo de las aristas de G, entonces $|I| + |R_n| = n$.