

B. Tech. Degree III Semester Examination November 2017

CS/IT 15-1303 DISCRETE COMPUTATIONAL STRUCTURES

(2015 Scheme)

Time: 3 Hours

Maximum Marks: 60

PART A

(Answer ALL questions)

 $(10 \times 2 = 20)$

- I. (a) Define tautology, contradiction and contingency with example.
 - (b) Prove that $p \leftrightarrow q \equiv (p \land q) \lor (\sim p \land \sim q)$.
 - (c) How many of the numbers will have the same remainder when divided by 7 if any eight positive integers are chosen?
 - (d) Solve $a_r 4a_{r-1} + 4a_{r-2} = 0$ with $a_0 = 1$ and $a_1 = 6$.
 - (e) Give an example of a graph that has an Euler circuit which is also Hamiltonian.
 - (f) Define complete binary tree. What is the depth of complete binary tree if 'n' nodes are there in the tree?
 - (g) Define abelian group. Show that an algebraic system (G,*) where G is the set of all non-zero reals and * is a binary operation defined by a*b=(ab)/4 is abelian.
 - (h) Define bounded lattice and complemented lattices.
 - (i) Determine whether the relation $S = \{(a,b) : a \ge b\}$ on set R of real numbers is an equivalence relation.
 - (j) Consider the functions f, g, h on integers defined by $f(n) = n^2$, g(n) = n+1, h(n) = n-1. Find hofog and fogoh.

PART B

 $(4 \times 10 = 40)$

- II. (a) Prove by induction (i) $11^{n+2}+12^{2n+1}$ is divisible by 133.
 - (b) Sum of cubes of three consecutive integers is divisible by 9.

OR

- III. (a) Among the first 500 positive integers how many are not divisible by 2 nor 3 nor 5. Also determine the number of integers that are exactly divisible by one of them.
 - (b) If R&S are equivalence relations prove $R \cap S$ and $R \cup S$ are equivalence relations.
- IV. (a) Solve $a_r + a_{r-1} + a_{r-2} = 0$ with initial condition $a_0 = 1$ and $a_1 = 1$.
 - (b) If 9 colors are used to paint 100 houses how many houses will have the same color.

- V. (a) What are the characteristics of algorithm?
 - (b) Define Best case time, worst case time, average case time, θ notation, O notation.
- VI. (a) Given the inorder and preorder of binary tree.

Inorder: 3 * a+b * b * c+d

Preorder: * * * 3 a b + * b c d. Draw the tree.

(b) Find the minimum spanning tree by Kruskal's algorithm.

OR

- VII. (a) Give example for a graph which is neither Euler circuit nor Hamiltonian circuit.
 - (b) Find the shortest path from vertex 1 to vertex 4 using Dijikstra's algorithm

- VIII. (a) Define Poset and Lattice.
 - (b) Determine all sub lattices of D_{30} that contain at least four elements.

OR

- IX. (a) Define field and ring.
 - (b) Let S is $\{0,1,2,3,4\}$ and addition modulo 5 and multiplication modulo 5, Check whether (S,+,*) form a field.
