UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA MECÁNICA

INFORME DE LABORATORIO LABORATORIO DE CIRCUITOS ELÉCTRICOS

RELACIONES ESCALARES Y COMPLEJAS EN CIRCUITOS ELÉCTRICOS LINEALES AC

LIMA - PERÚ NOVIEMBRE 2019

RELACIONES ESCALARES Y COMPLEJAS EN CIRCUITOS ELÉCTRICOS LINEALES AC

ENTREGADO: 06 NOVIEMBRE

ALUMNO:		
	Huaroto Villavicencio Josué, 20174070I	
PROFESOR:		
	ING. SINCHI YUPANQUI, FRANCISCO	_

Índice general

1.	Objetivos	1	
2. Circuito RLC en corriente alterna		2	
	2.1. Circuito R en corriente alterna	2	
	2.2. Circuito C en corriente alterna	3	
	2.3. Circuito L en corriente alterna	4	
	2.4. Circuito RLC en corriente alterna	4	
3.	Circuitos transitorios de segundo orden RLC serie	5	
Bi	Bibliografía		

Capítulo 1

Objetivos

- 1. Determinar experimentalmente la variación de la intensidad y el voltaje a través de los elementos R-L-C, al aplicarles un voltaje alterno sinusoidal.
- 2. Observar como afecta la variación de un elemento del circuito $(R \circ C)$, al valor de la intensidad de la corriente para diferentes circuitos.
- 3. Verificar el cumplimiento de la segunda ley de Kirchoff en cada uno de los circuitos empleados.

Capítulo 2

Circuito RLC en corriente alterna

Son circuitos básicos, formados por resistencias, condensadores y bobinas, cuando se alimentan por una fuente de tensión alterna senoidal. En corriente alterna aparecen dos nuevos conceptos relacionados con la oposición al paso de la corriente eléctrica. Se trata de la reactancia y la impedancia. Un circuito presentará reactancia si incluye condensadores y/o bobinas. La naturaleza de la reactancia es diferente a la de la resistencia eléctrica. En cuanto a la impedancia decir que es un concepto totalizador de los de resistencia y reactancia, ya que es la suma de ambos. Es por tanto un concepto más general que la simple resistencia o reactancia.

2.1. Circuito R en corriente alterna

El circuito formado por una resistencia alimentada por una fuente de tensión alterna senoidal:

La tensión V_g tendrá un valor instantáneo que vendrá dado en todo momento por:

$$V_g = V_0 \operatorname{sen}(2\pi f t)$$

En corriente alterna la oposición al paso de la corriente eléctrica tiene dos componentes, una real y otra imaginaria. Dicha oposición ya no se llama resistencia sino impedancia, Z. La

impedancia se expresa mediante un número complejo, por ejemplo de la forma a + jb, siendo a la parte real del número complejo y b su parte imaginaria. Pues bien, una resistencia presenta una impedancia que solo tiene componente real, ya que su componente imaginaria es de valor cero. Tendremos entonces que en el caso que nos ocupa la impedancia total del circuito será igual al valor que presenta la resistencia R, ya que no existe ningún otro elemento en el circuito. Así pues:

$$Z = R + i0$$

2.2. Circuito C en corriente alterna

Este tipo de oposición al paso de la corriente eléctrica es de carácter reactivo, entendiendo tal cosa como una "reacción" que introduce el condensador cuando la tensión que se le aplica tiende a variar lentamente o nada.

Cuando el condensador está totalmente descargado se comporta como un cortocircuito. Cuando está totalmente cargado como una resistencia de valor infinito. Para valores intermedios de carga se comportará como una resistencia de valor intermedio, limitando la corriente a un determinado valor. Como en corriente alterna el condensador está continuamente cargándose y descargándose, mientras más lentamente varíe la tensión (frecuencia baja) más tiempo estará el condensador en estado de casi carga que en estado de casi descarga, con lo que presentará de media una oposición alta al paso de la corriente. Para variaciones rápidas de la tensión (frecuencias altas) el efecto será el contrario y por tanto presentará una oposición baja al paso de la corriente. Podemos decir, por tanto, que la naturaleza de este tipo de oposición es de carácter electrostático: la carga almacenada en el condensador se opone a que éste siga cargándose y esta oposición será mayor cuanto más carga acumule el condensador.

$$Z = 0 - jX_C$$

Donde X_C es la reactancia capacitiva que se calcula así:

$$X_C = \frac{1}{2\pi f C}$$

Como puede apreciarse, la impedancia que presenta un condensador solo tiene componente imaginaria reactiva.

2.3. Circuito L en corriente alterna

La bobina presentará oposición al paso de la corriente eléctrica y ésta será reactiva, de manera similar al caso capacitivo.

Sin embargo, la naturaleza de la reactancia inductiva no es de carácter electrostático, sino de carácter electromagnético. Una bobina inducirá en sus extremos (debido a su autoinducción) una tensión que se opondrá a la tensión que se le aplique, al menos durante unos instantes. Ello provoca que no pueda circular corriente libremente. Cuanto mayor sea la velocidad de variación de la tensión aplicada mayor valor tendrá la tensión inducida en la bobina y, consecuentemente, menor corriente podrá circular por ella. Así, a mayor frecuencia de la tensión aplicada mayor será la reactancia de la bobina y a menor frecuencia de la tensión aplicada menor será la reactancia de la bobina.

$$Z = 0 + iX_L$$

$$X_L = 2\pi f L$$

2.4. Circuito RLC en corriente alterna

$$Z = \frac{1}{\frac{1}{R} - \frac{1}{jX_C} + \frac{1}{jX_L}}$$

Reemplazando X_C y X_L :

$$Z = \frac{\mathrm{j}\omega LR}{\mathrm{j}\omega L - \omega^2 RLC + R}$$

Capítulo 3

Recomendaciones

- 1. Tener cuidado con las mediciones del multímetro debido a que habrán casos en el que la corriente sea mayor a 5 amperios y esto puede hacer que queme el fusible en el amperímetro si no se ha colocado en la escala adecuada.
- 2. Se aconseja usar la pinza amperimétrica para una mejor medición y no tener problemas con la escala.
- 3. Regular muy bien el autotransformador debido a que este voltaje es muy importante en los cálculos.
- 4. Ser bastante cuidado con la resistencia variable porque no se encuentra en buen estado y generalmente oscila su valor.
- 5. Cerciorarse del buen funcionamiento de la inductancia.
- 6. No olvidar agregar en sus cálculos el valor de la resistencia interna de la bobina.

Bibliografía

- [1] Boylestad, Robert M. "Introducción al análisis de circuitos". Pearson
- $[2]\,$ Sadiku, Matthew N. "Fundamemtos de circuitos eléctricos". M
c $Graw\ Hill$