DAC-ADC AD5764-AD7734/How to Communicate with the DAC-ADC

From Young Lab Wiki

(The information below is subject to change)

In this page I will explain the syntax to communicate with the DAC-ADC.

Every command sent to the DAC-ADC should be a string. Every string should start with the operation to execute and end with the character that determines the end of the string, in this case '\r'.

Main Syntax:

OPERATION (COMMA) DATA (VARIES WITH THE OPERATION) (END OF STRING)

The DAC-ADC AD5764-AD7734 can execute eight operations: "*IDN?", "*RDY?", "SET", "GET_ADC", "RAMP1", "RAMP2", "BUFFER_RAMP", "CONVERT_TIME". When the DAC-ADC does not recognized the operation, it return the string "NOP", which stands for "No Operation". Below I will explain each operation:

Contents

- 1 *IDN? and *RDY?
- 2 SET
- 3 GET_ADC
- 4 RAMP1
- 5 RAMP2
- 6 BUFFER RAMP
- 7 CONVERT TIME

*IDN? and *RDY?

IDN? returns the string "DAC-ADC AD5764-AD7734".

OPERATION STRING	(END OF STRING)
"*IDN?	\r"

RDY? returns the string "READY" when the DAC-ADC is ready for a new operation.

OPERATION STRING	(END OF STRING)
"*RDY?	\r"

SET

SET sets a voltage to a channel and returns the channel and the voltage it set.

Example:

OPERATION	,	CHANNEL	,	VOLTAGE	(END OF STRING)
"SET	,	5	,	3.6	\r"

■ The string above sets the channel 5 to 3.6 volts.

GET ADC

GET_ADC returns the voltage read by an input channel. Do not confuse with GET_DAC; GET_DAC has not been implemented yet.

OPERATION	,	CHANNEL	(END OF STRING)
"GET_ADC	,	5	\r"

RAMP1

RAMP1 ramps one channel from an initial voltage to a final voltage within an specified number steps and a delay (microseconds) between steps. When the execution finishes, it returns "RAMP_FINISHED".

OPERATION	, CF	HANNEL , INITIAL VOL	TAGE , FINAL VO	LTAGE , # OF STEPS	S, DELAY (MI	CROSECONDS) (END OF STRING)
"RAMP1	, 2	, -8.5	, 4.8	, 1000	, 30	\r"

RAMP2

RAMP2 is the same as RAMP1 with the difference that RAMP2 ramps two channels. The # of steps is the total number of steps, not the number of steps per channel. Example:

OPERATION	, CHANNEL 1	, CHANNEL 2	, INITIAL VOLTAGE 1	, INITIAL VOLTAGE 2	FINAL VOLTAGE	, FINAL VOLTAGE 2	, # OF STEPS	, DELAY (MICROSECONDS)	(END OF STRING)
"RAMP2	, 2	, 3	, -8.5	, -5.2	, 4.8	, 7.6	, 1000	, 30	\r"

Timeline of the example above:

	STEP 1	DELAY		STEP 2	DELAY	. ST	EP 1000
UPDATES OUTPUT CHANNEL 2	UPDATES OUTPUT CHANNEL 3		UPDATES OUTPUT CHANNEL 2	UPDATES OUTPUT CHANNEL 3		UPDATES OUTPUT CHANNEL 2	UPDATES OUTPUT CHANNEL 3

BUFFER RAMP

BUFFER_RAMP ramps the specified output channels from the initial voltages to the final voltages and reads the specified input channels in a synchronized manner. It does it within an specified number steps and a delay (microseconds) between the update of the last output channel and the reading of the first input channel.

Examples 1:

OPERATION ,	, DAC CHANNELS	, ADC CHANNELS	INITIAL VOLTAGES	, FINAL VOLTAGES	, # OF STEPS	, DELAY (MICROSECONDS)	(END OF STRING)
"BUFFER_RAMP ,	, 023	, 01	-9.2,-5.2,2.2	, 4.8,7.6,8.5	, 1000	, 30	\r"

Timeline of the example above:

	STEP 1		DELAY	STI	EP 1		STEP 2		DELAY	STI	EP 2		STEP 1000		DELAY	STEP	P 1000
UPDATES	UPDATES	UPDATES		READS	READS	UPDATES	UPDATES	UPDATES		READS	READS	UPDATES	UPDATES	UPDATES		READS	READS
OUTPUT	OUTPUT	OUTPUT		INPUT	INPUT	OUTPUT	OUTPUT	OUTPUT		INPUT	INPUT	OUTPUT	OUTPUT	OUTPUT		INPUT	INPUT
CHANNE	L CHANNEL	CHANNEL		CHANNEL	CHANNEL	CHANNEL	CHANNEL	CHANNEL		CHANNEL	CHANNEL	CHANNEL	CHANNEL	CHANNEL		CHANNEL	CHANNEL
0	2	3		0	1	0	2	3		0	1	0	2	3		0	1

Example 2:

OPERATION	, DAC CHANNELS	, ADC CHANNELS	, INITIAL VOLTAGES	, FINAL VOLTAGES	, # OF STEPS	, DELAY (MICROSECONDS)	(END OF STRING)
"BUFFER_RAMP	, 12	, 123	, -4.2,6.6	, 2.3,7.5	, 100	, 50	\r"

Timeline of the example above:

S	EP 1	DELAY		STEP 1		STI	EP 2	DELAY		STEP 2		 STE	P 100	DELAY		STEP 100	
UPDATES	UPDATES		READS	READS	READS	UPDATES	UPDATES		READS	READS	READS	UPDATES	UPDATES		READS	READS	READS
OUTPUT	OUTPUT		INPUT	INPUT	INPUT	OUTPUT	OUTPUT		INPUT	INPUT	INPUT	OUTPUT	OUTPUT		INPUT	INPUT	INPUT
CHANNE	CHANNEL		CHANNEL	CHANNEL	CHANNEL	CHANNEL	CHANNEL		CHANNEL	CHANNEL	CHANNEL	CHANNEL	CHANNEL		CHANNEL	CHANNEL	CHANNEL
1	2		1	2	3	1	2		1	2	3	1	2		1	2	3

Do not write commas between channels.

CONVERT_TIME

CONVERT_TIME sets the conversion time for the ADC. The conversion time is the time the ADC takes to convert the analog signal to a digital signal. Keep in mind that the smaller the conversion time, the more noise your measurements will have. Maximum conversion time: 2686 microseconds. Minimum conversion time: 82 microseconds.

OPERATION	,	CONVERSION TIME (MICROSECONDS)	(END OF STRING)
"CONVERT_TIME	,	500	\r''

Retrieved from "http://afylab.com/wiki/index.php?title=DAC-ADC_AD5764-AD7734/How_to_Communicate_with_the_DAC-ADC&oldid=91"

- This page was last modified on 1 October 2015, at 14:12.
- This page has been accessed 6 times.