Elosztott rendszerek: Alapelvek és paradigmák Distributed Systems: Principles and Paradigms

Maarten van Steen¹ Kitlei Róbert ²

¹VU Amsterdam, Dept. Computer Science ²ELTE Informatikai Kar

12. rész: Elosztott webalapú rendszerek

2015. május 24.

Tartalomjegyzék

Fejezet
01: Bevezetés
02: Architektúrák
03: Folyamatok
04: Kommunikáció
05: Elnevezési rendszerek
06: Szinkronizáció
07: Konzisztencia & replikáció
08: Hibatűrés
10: Objektumalapú elosztott rendszerek
11: Elosztott fájlrendszerek
12: Elosztott webalapú rendszerek

Elosztott webalapú rendszerek

A WWW (világháló, World Wide Web) olyan szerverek összessége, amelyek HTTP protokollon keresztül különféle tartalmakat szolgálnak ki. A dokumentumokat hiperhivatkozások kapcsolják össze.

- Sok dokumentum szövegalapú: szövegfájl, HTML, XML
- Egyéb fajták: képek, audio, videó, dokumentum (PDF, PS)
- A tartalmak lehetnek a kliensoldalon végrehajthatóak (Javascript)

Jelenleg kb. 1 milliárd weboldal létezik, amelyek közül kevesebb mint 200 millió aktív; regy felmérés szerint a szerverek népszerűsége: Apache (40%), IIS (29%), nginx (15%), egyéb (16%).

Többrétegű architektúrák

Már a kezdeti kiszolgálók is gyakran három rétegbe tagozódtak.

Webszolgáltatások

Felmerült az is, hogy a felhasználó \leftrightarrow weboldal interakció mellett az oldalak is igénybe vehetnek szolgáltatásokat más oldalakról ⇒ fontos, hogy a szolgáltatások szabványosak legyenek.

Webszerverek

A szerver szerkezetét a tartalmak kiszolgálásának menete szabja meg. A szerverekbe beépülő modulok telepíthetők, amelyek a kiszolgálás egyes fázisaiban aktivizálódnak.

Szerverfürtök

A teljesítmény és a rendelkezésre állás növelésének érdekében a szerverek sokszor (a felhasználó számára átlátszó módon) többszörözve vannak.

A kapcsolattartó (front end) szűk keresztmetszetté válhat, ennek elkerülésére több lehetőség van.

- TCP átadás: Valamilyen metrika alapján kiválasztunk egy szervert, és a kliens kiszolgálását az a szerver folytatja.
- Tartalomérzékeny kéréselosztás (content aware distribution): Lásd következő oldal.

Szerverfürtök

Tartalomérzékeny kéréselosztás (content aware distribution): A HTTP kérés tartalmát is figyelembe vesszük a szerver kiválasztásánál. Ez megnöveli a kapcsolattartó terhelését, de sok előnye van: segítségével hatékonyabb lehet a szerveroldali cache-elés, és lehetnek bizonyos feladatokra dedikált szervereink.

Webhelyettes

A kimenő kapcsolatok kezelésére webhelyetteseket (web proxy) telepíthetünk. Ezek cache-elik a kiszolgált tartalmakat; csak akkor fordulnak a szerverekhez, ha sem náluk, sem a többi helyettesnél nincsen meg a kért tartalom.

Replikáció webkiszolgálókban

A replikáció célja a teljesítmény növelése. A rendszer paraméterei (hová célszerű a replikátumokat elhelyezni, konzisztencia megkövetelt erőssége, kérések útvonalválasztása) változóak lehetnek, ezeket célszerű önszabályozással beállítani.

Hirtelen terhelés

A terhelés néha ugrásszerűen megemelkedik (flash crowd, flash mob), ezt még akkor sem könnyű kezelni, ha az erőforráskezelés dinamikus.

Szerveroldali replikáció

A tartalomkézbesítő hálózatok (Content Delivery Network, CDN) nagy teljesítményű és rendelkezésre állású elosztott rendszerek, amelyeknek célja dokumentumok hatékony kiszolgálása.

Replikáció webalkalmazásokban

Ha a CDN tárolt adataiban változás következik be, ez először az eredetszerveren jelenik meg. A változásokat el kell juttatni a CDN szerverekhez; ennek a célszerű módja a rendszer jellegétől függ.

- Teljes replikáció: sok olvasás, kevés írás, összetett lekérdezések
- Részleges replikáció: sok olv., kevés írás, egyszerű lekérdezések
- Tartalom szerinti gyorsítótárazás: Az adatbázist az edge szerver módosított, a lekérdezésekhez illeszkedő alakban tárolja helyben, és feliratkozik a szerveren a frissítésekre. Jól működik intervallumokra vonatkozó, összetett lekérdezésekre.
- Eredmények gyorsítótárazása: Az edge szerver a korábbi lekérdezések eredményeit tárolja el. Jól működik egyszerű lekérdezésekre, amelyek egyedi adatokra (nem intervallumokra) vonatkoznak.

Ha az írások számaránya megnő, akkor a replikáció akár ronthatja is a rendszer teljesítményét.

Replikáció webalkalmazásokban: nincsen replikáció

Webalk. replikációja: részleges/teljes replikáció

Webalk. replikációja: tartalom szerinti gyorsítótárazás

Webalk. replikációja: eredmények gyorsítótárazása

