МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа биологической и медицинской физики

Лабораторная работа по оптике

4.3.3. Исследование разрешающей способности микроскопа методом Аббе

Выполнила студентка группы Б06-103: Фитэль Алена

1 Аннотация

Цель работы: определение дифракционного предела разрешения объектива микроскопа.

В работе используются: лазер; кассета с набором сеток разного периода; щель с микрометрическим винтом; оптический стол с набором рейтеров и крепёжных винтов; экран; линейка.

2 Теоретические сведения

Для иммерсионного микроскопа разрешающая способность объектива при некогерентном освещении

$$\ell_{min} \approx \frac{0.61\lambda}{\sin u},\tag{1}$$

где u — апертурный угол объектива микроскопа (угол между оптической осью и лучом, направленным из центра объекта в край линзы).

Метод Аббе для оценки разрешающей способности состоит в разделении хода лучей на две части: сначала рассматривается картина в задней фокальной плоскости F объектива – она называется первичным изображением. Это первичное изображение рассматривается как источник волн, создающий вторичное изображение в плоскости P_2 , сопряжённой плоскости предмета.

Первичное изображение есть картина дифракции Фраунгофера (на дифракционной решётке), если её период d, то для направления максимальной интенсивности φ_m .

$$d\sin\varphi_m = m\lambda. \tag{2}$$

При этом проходят пучки только с $\varphi_m < u$. Можно условием разрешения считать, что $u > \varphi_1$, иначе говоря:

$$\sin u \ge \lambda/d$$
.

или

$$d \ge \frac{\lambda}{\sin u} \approx \frac{\lambda}{D/2f},\tag{3}$$

где D – диаметр линзы, f – фокусное расстояние.

Сетку можно рассматривать как две перпендикулярные друг другу решетки, для максимумов которых выполняется соотношение

$$d\sin\varphi_x = m_x\lambda, \quad d\sin\varphi_y = m_y\lambda. \tag{4}$$

Рисунок 1: Дифракция Фраунгофера на двумерной решётке (сетке). Максимумы изображены кружками, размеры которых характеризуют интенсивности.

3 Экспериментальная установка

Рисунок 2: Схема установки

Схема установки приведена на Рис. 2. Предметом P_1 служат сетки в кассете C. Линза Π_1 длиннофокусная, а Π_2 короткофокусная. В F устанавливаются диафрагмы D, с помощью сеток с разными d и щелевой диафрагмы можно проверить соотношение (3). Период сеток может быть измерен либо по расстоянию между дифракционными максимумами на экране, либо по увеличенному с помощью микроскопа изображению. Пространственную фильтрацию (получение наклонного изображение решётки) можно получить с помощью подбора угла наклона и ширины вспомогательной щели.

4 Обработка результатов

Запишем данные лабораторной установки:

λ , HM	f_1 , MM	f_2 , MM
532	110	25

4.1 Определение периода решеток по их пространственному спектру

Расстояние от дифракционной решетки до экрана $H=1257\pm3$ мм. Для каждой сетки определим расстояние между вертикальными и горизонтальными максимумами l_v и l_h соответственно, их количество $(n_v \ n_h)$ и посчитаем период вертикальных и горизонтальных сеток d_v и d_h соответственно по формуле (2) с учётом $\varphi=\frac{l}{H}$ период решеток $d=\frac{n\lambda}{l}H$.. Результаты приведены в Таблице 1.

N	l_h , mm	n_h	d_h , mkm	δd_h , mkm	l_v , mm	n_v	d_v , mkm	δd_v , mkm
1	43	3	49.9	1.2	214	4	13,38	0.07
2	89	9	72.4	0.8	230	9	30.00	0.12
3	88	7	56.9	0.6	144	11	54,7	0.4
4	45	3	47.7	1.1	214	4	13,38	0.06
5	73	7	68.6	0.9	200	8	28,62	0.14
6	87	7	57.6	0.7	86	7	58,2	0.7

Таблица 1: Период решеток, определенный методом пространственного спектра.

4.2 Определение периода решеток по изображению, увеличенному с помощью микроскопа

Запишем параметры настроенного микроскопа:

a_1 , MM	$b_1 + a_2$, MM	b_2 , MM
130 ± 5	1195 ± 5	250 ± 5

Приняв $a_2=f_2=25$ мм найдем: $b_1=380\pm 5$ мм. Увеличение получившейся системы:

$$\Gamma = \frac{b_1 b_2}{a_1 a_2} = 92 \pm 4$$

Запишем количество периодов сетки и расстояние между ними, а так же посчитаем период по формуле $d = l/(n\Gamma)$. Результаты измерений и расчетов приведены в Таблице 2.

N	l_v , mm	n_v	d_v , mkm	δd_h , mkm
1	10	10	10.9	1.2
2	10	5	22	2
3	10	2	54	6
4	10	3	36	4
5	10	5	22	2
6	10	13	8.4	0.9

Таблица 2: Период вертикальной решетки, определенный микроскопом.

4.3 Определение периодов решеток по оценке разрешающей способности микроскопа

Если поместить в фокальную плоскость линзы Π_1 щелевую диафрагму, то при минимальном раскрытии, при котором будет видна решетка, ее период будет определяться: $d = \frac{2\lambda f_1}{D}$. Запишем результаты проведеных измерений и расчетов в Таблицу 3.

N	D, mm	d, mkm	1/D, $1/mm$	δD , mm	δd , mkm	$\delta(1/D),1/{ m mm}$
1	-	-	-	-	-	-
2	2,34	50,0	0,43	0,01	0,2	0,002
3	1,35	86,7	0,74	0,01	0,6	0,005
4	-	-	-	-	-	-
5	2,46	47,6	0,41	0,01	0,2	0,002
6	1,78	65,8	0,56	0,01	0,4	0,003

Таблица 3: Периоды решеток по измерению размера диафрагмы.

Проверим справедливость этой формулы построив график d=f(1/D). Угловой коэффициент прямой из МНК $k=(117\pm3)\cdot 10^{-9}~{\rm m}^2$, в пределах погрешности он совпадает с теоретическим $2\lambda F_1=117\cdot 10^{-9}~{\rm m}^2$. Таким образом, теория Аббе подтвердилась.

4.4 Пространственная фильтрация и мультиплицирование

1. Для наблюдения пространственной фильтрации откроем щель так, чтобы она пропускала только максимум нулевого порядка и, поворачивая щель, наблюдаем за изменением картины. Полученные фото представлены на Рис 3.

Рисунок 3: Слева направо: вертикальная щель $(m_x, 0)$, горизонатальная щель $(0, m_y)$.

- 2. Поворачивая щель относительно оси, добьёмся того, чтобы щель занимала наклонное положение под 45° . Тогда будет осуществляться пространственная фильтрация, то есть выделение из спектра максимумов $m_x = m_y$ (диагональных максимумов).Полученные полосы располагаются под углом 45° .
- 3. Пронаблюдаем мультиплицирование, то есть рассечение фурье-образа щели сеткой. Такой эффект создаётся, если в нашей установке поменять местами сетку и щель. Результат представлен на Рисунке 4.

Рисунок 4: Явление мультипликации.

5 Вывод

В ходе данной лабораторной работы были определены периоды дифракционных решёток различными способами. Полученные результаты отличаются друг от друга существенно, хотя имеют одинаковый порядок величины. Способ измерения с помощью дифракционной картины более точен, чем метод с моделью микроскопа, что связано с большой погрешностью расчёта расстояний между линзами и изображениями. Расхождение результатов в разных способах может быть связано с приближенным характером используемой теории, неточностью определения величин a_2 и b_1 . Построив график d = f(1/D) мы убедились в справедливости формулы(), то есть проверка теории Аббе оказалась положительной. Качественно были рассмотрены явления фильтрации и мультиплицирования.