Arbeitsblatt – Scheitelpunktform und Normalform

Gib zu den Scheitelpunkten der verschobenen Normalparabeln die Funktionsvorschrift an.

- a) S(-3/0)
- f(x) = _____
- b) S(2/8)
- f(x) = _____
- c) S (4/-4) f(x) = _____

- e) S (0 / -2,5) f(x) = _____

a) Wo liegt der Scheitelpunt der zugehörigen Parabel?

- a) $f(x) = (x-4)^2 + 3$
- S (...... /)
- b) $f(x) = (x + 3)^2 + 2$
- S (...... /)
- b) $f(x) = (x + 3)^2 + 2$ c) $f(x) = 2(x 1.5)^2 + 2$
- S (...... /)
- d) $f(x) = 0.5(x + 2)^2 1$ S(......) e) $f(x) = (x-1)^2 - 1$
- f) $f(x) = -2(x+3)^2$
- S (....... /) S (...... /) S (...... /)
- b) Überprüfe auf welchem Graphen sich der Punkt A (2/7) befindet.

Bestimme die Scheitelpunktkoordinaten und die Funktionsvorschrift der Graphen.

- (1) Beschreibe die Parabel der folgenden Funktionsvorschriften 4)
 - (2) Forme die Scheitelpunktform in die Normalform um.

Binomische Formeln:

- 1. Binom: $(a + b)^2 = a^2 + 2ab + b^2$
- 2. Binom: $(a b)^2 = a^2 2ab + b^2$

a)
$$f(x) = -2(x+3)^2 + 10$$
 b) $f(x) = 3(x-4)^2 - 3$ c) $f(x) = -(x-1.5)^2 + 3$

b)
$$f(x) = 3(x-4)^2 - 3$$

c)
$$f(x) = -(x - 1.5)^2 + 3$$