ınit	question	option1	option2	option3	option4	answer
		Fuzzy Computing,	Francis Nationalis and	A	Namel Cairner and Canadia	
1	Core of soft Computing is	Neural Computing, Genetic Algorithms	Fuzzy Networks and Artificial Intelligence	Artificial Intelligence and Neural Science	Neural Science and Genetic Science	option1
_	Who initiated the idea of Soft Computing	Charles Darwin	Lofti A Zadeh	Rechenberg	Mc_Culloch	option
				J	_	
				deals with		
				information which is		
				vague, imprecise,		
		mimics human	doesnt deal with 2	uncertain, ambiguous, inexact,		
1	Fuzzy Computing	behaviour	valued logic	or probabilistic	All of the above	option4
	, , ,					'
			information	Both (a) and (b)	None of the above	
1	Neural Computing	mimics human brain	processing paradigm			option3
				are adaptive		
				heuristic search		
				algorithm based on		
			inspired by Darwin's	the evolutionary		
			theory about	ideas of natural		
		Evolutionary		selection and	All of the above	
_1	Genetic Algorithm are a part of	Computing	the fittest"	genetics		option ²
		Improvised and	supervised and	Layered and		
1	What are the 2 types of learning	unimprovised	unsupervised	unlayered	None of the above	option2
		learning with the	learning without	learning with the	learning with computers	
1	Supervised Learning is	help of examples	teacher	help of teacher	as supervisor	option3
4	llanina italihannina ita	learning without	problem based	learning from		
1	Unsupervised learning is	computers	learning	environment	learning from teachers	option3
		Conventional	Conventional Artificial			
		Artificial Intelligence	Intelligence methods			
		deal with prdicate	are limited by symbols			
		logic where as soft	where as soft			
4	Conventional Artificial Intelligence is different from soft	computing deal with	computing is based on	Dath (a) and (b)	None of the above	antion?
	computing in the sense	fuzzy logic	empirical data	Both (a) and (b)	Notice of the above	option3
		classes are not		classes are not		
	In supervised learning	predefined	classes are predefined	required	classification is not done	option2
	ANN is composed of large number of highly interconnected					
	processing elements(neurons) working in unison to solve					ا ا
1	problems	TRUE	FALSE			option1
1	Artificial neural network used for	Pattern Recognition	Classification	Clustering	All of these	option4
		_		IF-The-Else Analysis		
1	A Neural Network can answer	For Loop questions	what-if questions	Questions	None of these	option2
	In artificial Nouval Notwork interconnects -					
1	In artificial Neural Network interconnected processing elements are called	nodes or neurons	weights	axons	Soma	option1
1	Neuron can send signal at a time.	Multiple	One	Two	Three	option2
		<u>'</u>				
			control actions are		algorithm which can easily	
			unambiguous and	Control action is	adapt with the change of	
1	Any soft-computing methodology is characterized with	precise solutions	accurate	formally defined	dynamic environment	option4
	An equivalence between Fuzzy vs. Probability to that of			Probability=Forecasti		
1	Prediction vs. Forecasting is	Fuzzy=Prediction	Fuzzy= Forecasting	ng	None of these	option2
	-					
			Artificial neural	In each, no precise	F	
	Both fuzzy logic and artificial nouval natives of	Poth gives presies	network gives	mathematical model	Fuzzy gives exact result but artificial neural	
1	Both fuzzy logic and artificial neural network are soft computing techniques because	Both gives precise and accurate results.	accurate result, but fuzzy logic does not.	of the problem is required	network does not.	option3
				Date of birth of a		570000
1	Which of the following cannot be stated using fuzzy logic?	Color of an apple	Height of a person	student	Speed of a car	option3
		Supervised training	Supervised training	Unsupervised		
	For the same size of training data as input, the fastest learning technique is	with gradient descent	with stochastic	training without	Unsupervised training	05+1
		error correction	method	error calculation	with Hebbian method.	option1

		Input layer	Hidden layer	Output layer		
1 In case of layer calculation, the r	naximum time involved in	computation.	computation.	computation.	Equal effort in each layer.	optio
				Both input and		
1 In supervised learning, training s	et of data includes	Input	Output	output	None	optio
			A	 		
			Artificial neural	In each, no precise		
			network gives	mathematical model	Fuzzy gives exact result	
Both fuzzy logic and artificial neu	iral network are soft	Both gives precise	accurate result but	of the problem is	but artificial neural	
computing techniques because,		and accurate results.	fuzzy logic does not.	required.	network does not.	optio
		Fuzzy logic in parallel				
		with the Genetic	Fuzzy logic controlled	Genetic algorithm		
Fuzzy – Genetic Hybrid system is		algorithm	Genetic algorithm	controlled Fuzzy logic	None of the above	optio
In which of the following, one ted	chnology calls the other					
technology as subroutine to proc	ess or manipulate	Embedded hybrid	Sequential hybrid	Auxiliary hybrid		
information needed		system	system	system	Parallel hybrid system	optio
		Embedded hybrid	Sequential hybrid	Auxiliary hybrid		
Which of the following is not a h	ybrid system?	system	system	system	Parallel hybrid system	optio
Command to start matlab fuzzy	toolbox is	fis	fuzzy	fuzzybox	fuzzytool	optio
		Supervised learning				
Training Perceptron is based on		technique.	Unsupervised learning	Reinforced learning	Stochastic learning	optio
				_		
A batch mode of training is gener	rally implemented through	Minimization of	Maximization of	Maximization of	Minimization of mean	
	in error calculation	median square error	median square error	mean square error	square error	optio
			,			1
is/are the way/	s to represent uncertainty.	Fuzzy Logic	Probabilty	Entropy	All of the mentioned	optio
is, are the way,	op. coone anoch tunity.	1 221 20810			or are mentioned	John
An artificial neurons receives n ir	inuts x1 x2 vn					
with weights w1,w2,,wn attac						
-	·					
weighted sum is compu	· ·					
non-linear filter ø calledactivation	n function to release the					l
output.		Σwi	Σχί	Σ xi+Σ wi	Σ xi.Σwi	optio
Who invented the Single-Layer P		Frank Rosenblatt	Marvin Minsky	Seymour Papert	None of these	optio
Japanese were the first to utilize	fuzzy logic practically on					
high-speed trains in Sendai.		True	False			optio
			Geographical			
Which AI system provides a diagr	nosis to a specific problem?	Intelligent agent	information system	Data mining system	Expertsystem	optio
				Because they are		
		Because they are the	Because they are the	the only	Because they are the only	
		only class of problems	only mathematical	mathematical	class of problems a	
Why are linearly separable proble	ems of interest to neural	that a network can	functions that are	functions you can	perceptron can solve	
network researchers?		solve sucessfully	continuous	draw	successfully	optio
		When there is an	When there is an OR	In De-Morgan's		
Where is the minimum criterion	used?	AND operation	operation	theorem	None of these	optio
		Error correction	Reinforcement			† <u>'</u>
Perceptron learning, Delta learn	ing and I MS learning are	learning - learning	learning - learning		Competitive learning -	
learning methods which falls und		with a teacher	with a critic	Hebbian learning	learning without a teacher	optio
Generally, AI systems analyze im		a teacher	a critic			Jopin
		Blurred data	Fuzzy logic	Inclusive information	Dirty data	on+i-
information. This information is o		Blurred data	Fuzzy logic	Inclusive information	Dirty data	optio
Which AI system will work for yo	u to linu information on	 	Name No.	Companie Alexandre	[<u> </u>
the internet?		Intelligent agent	Neural Network	Genetic Algorithms	Expertsystem	optio
Which AI system will continue to	analyze a problem until it	1.1.18			<u></u>	
finds the best solution?		Intelligent agent	Neural Network	Genetic Algorithms	Expertsystem	optio
Which Intelligent Agent will mon		[
back to you when there is a prob		Shopping bot	Buyer agent	Information agent	Predictive agent	optio
Which Intelligent Agent can play	an Internet game on your					
behalf?		Information agent	User agent	Predictive agen	Game agent	optio
In terms of computing we have		antecedent	consequent	mapping function	All of the mentioned	optio
			Hand written			
Example of hard computing		Robot movement	character recognition	money allocation	searching problem	optio
1						
Hard computing produce		precise solutions	fuzzy solution	approximate solution	None of these	optio
Hard computing is strictly		Parallel	sequential	Both	None of these	optio
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		T	granitation and the second			1 2000
Principle compunent of soft com	nuting is	Neural Network	Fuzzy Loguc	Genetic Algorithms	All of the mentioned	optio
			. ally logue	Concue Aigoritimis	or the mentioned	Jopin
Which is supervised learning		clustoring	rograssion	association	dimonsionality reduction	024
Which is supervised learning		clustering	regression	association	dimensionality reduction	optio
Example of hybrid system is		Auxillary	Embedde	Neuro Fuzzy	Neuro Gastro	optio
		1	1	allows parallel	1	
		L. n	1.1		la de la compansión de la	
Soft computing is NOT Fuzzy logic is a form of		allows stochasticity Two valued logic	deterministic Many valued logic	computation Crisp set logic	tolerant of imprecision Binary set logic	optio

	T	T	1	I	1
2 Traditional set theory is also known as Crisp set theory.	True	False			option1
2 Traditional set theory is also known as crisp set theory.	Titue	raise	$\lim x \to -\infty \mu(x) = 0$		Орионт
	$\lim x \to -\infty \mu(x) = 1$	$\lim x \to -\infty \mu(x) = \lim$	and $\lim x \to +\infty$ (x) =	$\lim x \to -\infty \mu (x) = \lim x \to$	
2 A fuzzy set A is closed if:	1	$ x \rightarrow +\infty (x) = 0$	1	$+\infty$ (x) = 1	option2
How is Fuzzy Logic different from conventional control	and min x / 1 = (x) =	X / 1 = (x) = 0	1		Optionz
2 methods?	IF and THEN Approach	FOR Approach	WHILE Approach	DO Approach	option1
The height h(A) of a fuzzy set A is defined as h(A) = sup A(x)	ii diid iii Eiv Approdeii	ТОК Арргоасп	WITTEL Approach	DO Approach	Ориона
where x belongs to A. Then the fuzzy set A is called normal					
2 when	h(A)=0	h(A)<0	h(A)=1	h(A)>1	option3
For k>1, which of the following concept can be used to	Concentration and	II(A)<0	(A)-1	(A)>1	Ориона
2 generate other linguistic hedge	Dilation	Dilation	Concentration	None of the above	ontion?
Z generate other linguistic nedge	Dilation	Dilation	Concentration	Notice of the above	option3
2) The manufaction of matical and another annually manual and in	Tabulas Fassa	Coonbinal Famo	NA-+1	Lasiaal Farm	
2 The membership functions are generally represented in	Tabular Form	Graphical Form	Mathematical Form	Logical Form	option2
		Fuzzy Algorithm,			
Three main basic features involved in characterizing	Intution, Inference,	Neural network,	Core, Support ,	Weighted Average, center	l
2 membership function are	Rank Ordering	Genetic Algorithm	Boundary	of Sums, Median	option3
Membership function defines the fuzziness in a fuzzy set					
irrespective of the elements in the set, which are discrete or					
2 continuous.	True	False			option1
Membership function can be thought of as a technique to					1
2 solve empirical problems on the basis of	knowledge	examples	learning	experience	option4
The region of universe that is characterized by complete					
2 membership in the set is called	Core	Support	Boundary	Fuzzy	option1
A fuzzy set whose membership function has at least one			,	·	<u> </u>
element x in the universe whose membership value is unity					
2 is called	sub normal fuzzy sets	normal fuzzy set	convex fuzzy set	concave fuzzy set	option2
2 In a Fuzzy set a prototypical element has a value	1	0	Infinite	Not Defined	option1
A fuzzy set whose membership function has no members	-		THIN ICC	Not Bernied	Ортюпі
2 whose membership value is 1	sub normal fuzzy sets	normal fuzzy set	convex fuzzy set	concave fuzzy set	option1
2 Whose membership value is 1	Sub Horrital Tuzzy Sets	Hormai ruzzy set	CONVEX TUZZY SEL	concave ruzzy set	Орион
values are strictly monotonically increasing or strictly monotonically decreasing or strictly monotonically increasing than strictly monotonically decreasing with					
2 increasing values for elements in the universe	sub normal fuzzy sets	normal fuzzy set	convex fuzzy set	concave fuzzy set	option3
The membership values of the membership function are nor strictly monotonically increasing or decreasing or strictly monoronically increasing than decreasing. The crossover points of a membership function are defined	convex fuzzy set	concave fuzzy set	non convex fuzzy set	non concave fuzzy set	option3
as the elements in the universe for which a particular fuzzy					
2 set has values equal to	infinite	1	lo	0.5	option4
If if x ia A then y is B else y is C . The output of the given	IIIIIIIICE	1		0.5	Орионч
2 fuzzy rule is	a fuzzy set	a crisp set	a fuzzy relation	a membership function	option3
2 The cardinality of the given set A={1,2,3,4,5}	4	5	2	3	+
The cardinality of the given set A-(1,2,5,4,5) The cardinality of the fuzzy sets defined with continuous	4	3	2	3	option2
1	infinit.		1		antion1
2 membership function on any universe is Two fuzzy sets A and B with membership functions µA(x)and	infinity	0	1	-1	option1
μ B(x), respectively defined as below. A = Hot Climate with					
μ A (x) as the MF B = Cold Climate with μ B(x)as the MF		(, , , , , , , , , , , , , , , , , , ,		,	l
2 Pleasant climate is given by	1 – μB(x)	max(μA(x),μB(x))	min(μA(x),μB(x))	1 – μA(x)	option
What is the Bandwidth of fuzzy set A which is given as					
follow A ={ (10, 0.1), (15, 0.2), (20, 0.5), (25, 0.4), (30, 0.4),					
2 (35, 0.5), (40, 0.2), (45, 0.1) }	10	15	20	25	option2
Given that "x is Sweet " with T(x) = 0.8 and" y is Sweet "					
with $T(y) = 0.6$. The fuzzy truth value of "If x is Sweet then y is					
2 Sweet " is:	0.2	0.4	0.6	0.8	option4
2 $(\sim (P \land Q) \Rightarrow R) \land P \land Q$ is equivalent to	(P ∧ Q)	(P ∧ Q)VR	Р	(~ P ∨ Q)	option1
	(A × B) + (B × C)	(A × B) ∪ (A ⁻ × C)	$(A \times B) \to (B \times C)$	(A × C) U (B × C)	option2
2 If if x ia A then y is B else y is C . Then relation is eqivalent to				· AUTOMATIC CONTROL	
2 If if x ia A then y is B else y is C . Then relation is eqivalent to	Wireless services,	Restrict power usage,	Cincolline 1 1 1 1	Automatic control,	
	Wireless services, heat control and	telephone lines and	Simulink, boiler and	decision analysis and data	
 2 If if x ia A then y is B else y is C . Then relation is eqivalent to 2 What are the applications of Fuzzy Inference Systems? 	Wireless services,		Simulink, boiler and CD recording	· ·	option4
2 What are the applications of Fuzzy Inference Systems?	Wireless services, heat control and printers	telephone lines and sort data	CD recording	decision analysis and data classification	option4
2 What are the applications of Fuzzy Inference Systems? Let X = {a, b, c, d} and Y = {1, 2, 3, 4} and A = {(a, 0.0), (b,	Wireless services, heat control and printers	telephone lines and sort data	CD recording 0 0.4 1 0.8	decision analysis and data classification 0 0.4 1 0.8	option4
2 What are the applications of Fuzzy Inference Systems? Let X = {a, b, c, d} and Y = {1, 2, 3, 4} and A = {(a, 0.0), (b, 0.8), (c, 0.6), (d, 1.0)}, B = {(1, 0.2), (2, 1.0), (3, 0.8), (4, 0.0)},	Wireless services, heat control and printers 0 0 0 0 0.2 0.8 0.8 0	telephone lines and sort data 1 1 1 1 0.2 0.8 0.8 0.2	CD recording 0 0.4 1 0.8 0.2 0.8 0.8 0.2	decision analysis and data classification 0 0.4 1 0.8 0 0.2 0.2 0.2	option4
2 What are the applications of Fuzzy Inference Systems? Let X = {a, b, c, d} and Y = {1, 2, 3, 4} and A = {(a, 0.0), (b,	Wireless services, heat control and printers	telephone lines and sort data	CD recording 0 0.4 1 0.8	decision analysis and data classification 0 0.4 1 0.8	option4

2	what are the following sequence of steps taken in designing a fuzzy logic machine?	Fuzzification -> Rule Evaluation> Defuzzification	Rule Evaluation >Fuzzification - >Defuzzification	Defuzzification >Rule Evaluation >Fuzzification	Fuzzy Sets >Defuzzification>Rule Evaluation	option1
		LE TUEN ELCE : L	LE TUEN - L	Both IF-THEN-ELSE	No. of the control of	
2	Fuzzy logic is usually represented as	IF-THEN-ELSE rules	IF-THEN rules	rules & IF-THEN rules	None of the mentioned	option2
2	Which of the following is not true regarding the principles of fuzzy logic?	Fuzzy logic follows the principle of Aristotle and Buddha	Japan is currently the most active users of fuzzy logic	Fuzzy logic is a concept of 'certain degree'	Boolean logic is a subset of fuzzy logic	option1
2	The room temperature is hot. Here the hot (use of linguistic variable is used) can be represented by	Fuzzy Set	Crisp Set	Fuzzy & Crisp Set	None of these	option1
2	Considering a graphical representation of the 'tallness' of people using its appropriate member function, which of the following combinations are true? (I)TALL is usually the fuzzy subset. (II) HEIGHT is usually the fuzzy set. (III) PEOPLE is usually the universe of discourse	1,11,111	I,II	1,111	11,111	option1
	, , , , , , , , , , , , , , , , , , , ,	, ,	,	,	,	-,
ı		A fuzzy sytem can	The conversion of	A continoussytem		
2	What is the Fuzzy Approximation Theorem(FAT) ?	model any continoussytem	fuzzy logic to probability.	can model a fuzzy system	Fuzzy patches covering a series of fuzzy rules	option2
	What is the main difference between probability and fuzzy logic	Fuzzy logic is probability in disguise	Fuzzy logic is the likelihood of an event occuring and probability is the extent of that event	Probability is ADDITIVE, meaning all its values must add up to one	Probability dissipates with decreasing information	option1
	Fuzzy Set theory defines fuzzy operators. Choose the fuzzy	probability in disguise	extent of that event	add up to one	decreasing information	Optioni
2	operators from the following.	AND	OR	NOT	All of the mentioned	option4
2	There are also other operators, more linguistic in nature, called that can be applied to fuzzy set theory.	Hedges	Lingual Variable	Fuzzy Variable	None of the mentioned	option1
	Consider a fuzzy set A defined on the interval X = [0, 10] of	Treages	Elligadi variable	Tuzzy variable	None of the mentioned	Optioni
2	integers by the membership Junction $\mu A(x)=x\ /\ (x+2)$ Then the α cut corresponding to α = 0.5 will be	{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}	{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}	{2, 3, 4, 5, 6, 7, 8, 9, 10}	None of these	option3
	If A and B are two fuzzy sets with membership functions: $\mu a(\chi) = \{0.2,0.5.,0.6,0.1,0.9\}$ $\mu b \; (\chi) = \{0.1,0.5,0.2,0.7,0.8\}$					
2	then the value of μa ∩ μb will be	{0.2,0.5,0.6,0.7,0.9}	{0.2, 0.5,0.2, 0.1,0.8}	{0.1, 0.5, 0.6, 0.1,0.8}	{0.1, 0.5, 0.2, 0.1,0.8}	option4
2	A point of a fuzzy set A is a point $x \in X$ at which $\mu A(x) = 0.5$	Core	Support	Cross-over	None of these	option3
	Given U = {1,2,3,4,5,6,7} A = {(3, 0.7), (5, 1), (6, 0.8)}		{(4, 0.3.): (5, 0), (6.	{(I, 1), (2, 1), (3, 0.3),		
2	then A $^{\sim}$ will be: (where $^{\sim} \rightarrow$ complement) In Lamda-cut method the value of λ can be	{(4, 0.7), (2,1), (1,0.8)} Greater than 10		(4, 1), (6,0.2), (7, 1)}	{(3, 0.3), (6.0.2)}	option3
	Suppose, a fuzzy set Young is defined as follows Young =	Oreater tilali 10	Between 1 and 10	Between 0 and 1	Any value	option3
2	(10, 0.5), (20, 0.8), (30, 0.8), (40, 0.5), (50, 0.3) Then the crisp value of Young using MoM method is	20	25	30	35	option2
	If the fuzzy set has two sub regions, then the centre of	with the meditf	with the most of all			
2	gravity of the sub region can be used to calculate the defuzzified value.	with the median of all the area	with the mean of all the area	with the largest area	with the smallest area	option3
	Sales are delegatived value.	Centre of gravity	Centre of sum	Centre of area	are smallest area	350000
	Which of the following is not a centroid method?	method (CoG)	method (CoS)	method (CoA)	Centre of Mass (CoM)	option4
2	Let A be a fuzzy set. Then 1-cut of A is usually called	support	height	core	alpha-cut	option3
2	Each fuzzy complement has at mostequilibrium.	1	2	3	None of these	option1
	Equilibrium of a fuzzy complement c is a solution of the					.,
2	equation	c(a)-a=1	c(a)-a=2	c(a)=2a	c(a)-a=0	option4
า	Defuzzification is done to obtain	Crisp output	Fuzzy Output	The best rule to	None of those	ontion1
	Defuzzification is done to obtain If Z is a set of elements with a generic element z, i.e. Z = {z}, then this set is called	Crisp output Universe set	Fuzzy Output Universe of discourse	follow Derived set	None of these None of these	option1 option2
	A fuzzy convexity is set			increasing and then		27.0112
2	, , , ,	increasing	decreasing	decreasing	All of the mentioned	option4

3 What 3 When 3 What 3 What 4 What 3 Operat 3 What	at Is Fuzzy Inference Systems? at Are The Two Types Of Fuzzy Inference Systems? ere Has Fuzzy Inference Systems Been Implemented? at Is Another Name For Fuzzy Inference Systems?	Used to respond to questions in a humanlike way The process of formulating the mapping from a given input to an output using fuzzy logic Model-Type and System-Type Wireless services, heat control and printers Fuzzy Expert System Control any two combinations of any two products by synthesising a set of linguistic control rules obtained from experienced human operations. Fuzzification of the input variables The input is a single	A new programming language used to program animation The process of formulating the mapping from a given input to an output using fuzzy logic Momfred-Type and Semigi-Type Wireless services, heat control and printers Fuzzy Modelling Control a television and remote combination by synthesising a set of linguistic control rules obtained from experienced human operations. Defuzzification	c) The result of fuzzy thinking Having a larger output than the input Mamdani-Type and Sugeno-Type Simulink, boiler and CD recording Fuzzy Logic Controller Control a steam engine and a boiler combination by synthesising a set of linguistic control rules obtained from experienced human operations Application of the fuzzy operator (AND or OR) in the antecedent	Having a smaller output than the input Mihni-Type and Sujgani-Type Automatic control, decision analysis and data classification All of the mentioned Control a air craft and feul level combination by synthesising a set of linguistic control rules obtained from experienced human operations Aggregation of the consequents across the	option1 option3 option4 option4 option3
3 What 3 When 3 What 3 What 4 What 3 Operat 3 What What 4 What 4 What 4 What 5 Operat 6 What 6 What 7 What 7 What 7 What 8 What 9 What 9 What 1 What 1 What 1 What 1 What	at Is Fuzzy Inference Systems? at Are The Two Types Of Fuzzy Inference Systems? are Has Fuzzy Inference Systems Been Implemented? at Is Another Name For Fuzzy Inference Systems? and Is Another Name For Fuzzy Inference Systems?	The process of formulating the mapping from a given input to an output using fuzzy logic Model-Type and System-Type Wireless services, heat control and printers Fuzzy Expert System Control any two combinations of any two products by synthesising a set of linguistic control rules obtained from experienced human operations. Fuzzification of the input variables	program animation The process of formulating the mapping from a given input to an output using fuzzy logic Momfred-Type and Semigi-Type Wireless services, heat control and printers Fuzzy Modelling Control a television and remote combination by synthesising a set of linguistic control rules obtained from experienced human operations.	thinking Having a larger output than the input Mamdani-Type and Sugeno-Type Simulink, boiler and CD recording Fuzzy Logic Controller Control a steam engine and a boiler combination by synthesising a set of linguistic control rules obtained from experienced human operations Application of the fuzzy operator (AND or OR) in the	one Having a smaller output than the input Mihni-Type and Sujgani-Type Automatic control, decision analysis and data classification All of the mentioned Control a air craft and feul level combination by synthesising a set of linguistic control rules obtained from experienced human operations Aggregation of the consequents across the	option1 option3 option4 option4
3 What 3 When 3 What 3 What 4 What 3 Operat 3 What What 4 What 4 What 4 What 5 Operat 6 What 6 What 7 What 7 What 7 What 8 What 9 What 9 What 1 What 1 What 1 What 1 What	at Is Fuzzy Inference Systems? at Are The Two Types Of Fuzzy Inference Systems? are Has Fuzzy Inference Systems Been Implemented? at Is Another Name For Fuzzy Inference Systems? and Is Another Name For Fuzzy Inference Systems?	The process of formulating the mapping from a given input to an output using fuzzy logic Model-Type and System-Type Wireless services, heat control and printers Fuzzy Expert System Control any two combinations of any two products by synthesising a set of linguistic control rules obtained from experienced human operations. Fuzzification of the input variables	The process of formulating the mapping from a given input to an output using fuzzy logic Momfred-Type and Semigi-Type Wireless services, heat control and printers Fuzzy Modelling Control a television and remote combination by synthesising a set of linguistic control rules obtained from experienced human operations.	Having a larger output than the input Mamdani-Type and Sugeno-Type Simulink, boiler and CD recording Fuzzy Logic Controller Control a steam engine and a boiler combination by synthesising a set of linguistic control rules obtained from experienced human operations Application of the fuzzy operator (AND or OR) in the	Having a smaller output than the input Mihni-Type and Sujgani-Type Automatic control, decision analysis and data classification All of the mentioned Control a air craft and feul level combination by synthesising a set of linguistic control rules obtained from experienced human operations Aggregation of the consequents across the	option1 option3 option4 option4
3 What 3 What 3 What 4 What 3 What 3 What 4 What 4 What 5 Operat 6 What 7 What 8 What 9 What 1 What 1 What 1 What 1 What	at Is Fuzzy Inference Systems? at Are The Two Types Of Fuzzy Inference Systems? are Has Fuzzy Inference Systems Been Implemented? at Is Another Name For Fuzzy Inference Systems? andani's Fuzzy Inference Method Was Designed To mpt What?	formulating the mapping from a given input to an output using fuzzy logic Model-Type and System-Type Wireless services, heat control and printers Fuzzy Expert System Control any two combinations of any two products by synthesising a set of linguistic control rules obtained from experienced human operations. Fuzzification of the input variables	formulating the mapping from a given input to an output using fuzzy logic Momfred-Type and Semigi-Type Wireless services, heat control and printers Fuzzy Modelling Control a television and remote combination by synthesising a set of linguistic control rules obtained from experienced human operations.	output than the input Mamdani-Type and Sugeno-Type Simulink, boiler and CD recording Fuzzy Logic Controller Control a steam engine and a boiler combination by synthesising a set of linguistic control rules obtained from experienced human operations Application of the fuzzy operator (AND or OR) in the	than the input Mihni-Type and Sujgani- Type Automatic control, decision analysis and data classification All of the mentioned Control a air craft and feul level combination by synthesising a set of linguistic control rules obtained from experienced human operations Aggregation of the consequents across the	option4
3 What 3 What 3 What 4 What 3 What 3 What 4 What 4 What 5 Operat 6 What 7 What 8 What 9 What 1 What 1 What 1 What 1 What	at Is Fuzzy Inference Systems? at Are The Two Types Of Fuzzy Inference Systems? are Has Fuzzy Inference Systems Been Implemented? at Is Another Name For Fuzzy Inference Systems? andani's Fuzzy Inference Method Was Designed To mpt What?	formulating the mapping from a given input to an output using fuzzy logic Model-Type and System-Type Wireless services, heat control and printers Fuzzy Expert System Control any two combinations of any two products by synthesising a set of linguistic control rules obtained from experienced human operations. Fuzzification of the input variables	formulating the mapping from a given input to an output using fuzzy logic Momfred-Type and Semigi-Type Wireless services, heat control and printers Fuzzy Modelling Control a television and remote combination by synthesising a set of linguistic control rules obtained from experienced human operations.	output than the input Mamdani-Type and Sugeno-Type Simulink, boiler and CD recording Fuzzy Logic Controller Control a steam engine and a boiler combination by synthesising a set of linguistic control rules obtained from experienced human operations Application of the fuzzy operator (AND or OR) in the	than the input Mihni-Type and Sujgani- Type Automatic control, decision analysis and data classification All of the mentioned Control a air craft and feul level combination by synthesising a set of linguistic control rules obtained from experienced human operations Aggregation of the consequents across the	option4
3 What 3 What 3 What 4 What 3 What 3 What 4 What 4 What 5 Operat 6 What 7 What 8 What 9 What 1 What 1 What 1 What 1 What	at Are The Two Types Of Fuzzy Inference Systems? ere Has Fuzzy Inference Systems Been Implemented? at Is Another Name For Fuzzy Inference Systems? mdani's Fuzzy Inference Method Was Designed To mpt What?	input to an output using fuzzy logic Model-Type and System-Type Wireless services, heat control and printers Fuzzy Expert System Control any two combinations of any two products by synthesising a set of linguistic control rules obtained from experienced human operations. Fuzzification of the input variables	input to an output using fuzzy logic Momfred-Type and Semigi-Type Wireless services, heat control and printers Fuzzy Modelling Control a television and remote combination by synthesising a set of linguistic control rules obtained from experienced human operations.	output than the input Mamdani-Type and Sugeno-Type Simulink, boiler and CD recording Fuzzy Logic Controller Control a steam engine and a boiler combination by synthesising a set of linguistic control rules obtained from experienced human operations Application of the fuzzy operator (AND or OR) in the	than the input Mihni-Type and Sujgani- Type Automatic control, decision analysis and data classification All of the mentioned Control a air craft and feul level combination by synthesising a set of linguistic control rules obtained from experienced human operations Aggregation of the consequents across the	option4
3 What 3 What 3 What 4 What 3 What 3 What 4 What 4 What 5 Operat 6 What 7 What 8 What 9 What 1 What 1 What 1 What 1 What	at Are The Two Types Of Fuzzy Inference Systems? ere Has Fuzzy Inference Systems Been Implemented? at Is Another Name For Fuzzy Inference Systems? mdani's Fuzzy Inference Method Was Designed To mpt What?	using fuzzy logic Model-Type and System-Type Wireless services, heat control and printers Fuzzy Expert System Control any two combinations of any two products by synthesising a set of linguistic control rules obtained from experienced human operations. Fuzzification of the input variables	using fuzzy logic Momfred-Type and Semigi-Type Wireless services, heat control and printers Fuzzy Modelling Control a television and remote combination by synthesising a set of linguistic control rules obtained from experienced human operations.	output than the input Mamdani-Type and Sugeno-Type Simulink, boiler and CD recording Fuzzy Logic Controller Control a steam engine and a boiler combination by synthesising a set of linguistic control rules obtained from experienced human operations Application of the fuzzy operator (AND or OR) in the	than the input Mihni-Type and Sujgani- Type Automatic control, decision analysis and data classification All of the mentioned Control a air craft and feul level combination by synthesising a set of linguistic control rules obtained from experienced human operations Aggregation of the consequents across the	option4
3 What 3 What 3 What 4 What 3 What 3 What 4 What 4 What 5 Operat 6 What 7 What 8 What 9 What 1 What 1 What 1 What 1 What	at Are The Two Types Of Fuzzy Inference Systems? ere Has Fuzzy Inference Systems Been Implemented? at Is Another Name For Fuzzy Inference Systems? mdani's Fuzzy Inference Method Was Designed To mpt What?	Model-Type and System-Type Wireless services, heat control and printers Fuzzy Expert System Control any two combinations of any two products by synthesising a set of linguistic control rules obtained from experienced human operations. Fuzzification of the input variables	Momfred-Type and Semigi-Type Wireless services, heat control and printers Fuzzy Modelling Control a television and remote combination by synthesising a set of linguistic control rules obtained from experienced human operations.	Mamdani-Type and Sugeno-Type Simulink, boiler and CD recording Fuzzy Logic Controller Control a steam engine and a boiler combination by synthesising a set of linguistic control rules obtained from experienced human operations Application of the fuzzy operator (AND or OR) in the	Mihni-Type and Sujgani-Type Automatic control, decision analysis and data classification All of the mentioned Control a air craft and feul level combination by synthesising a set of linguistic control rules obtained from experienced human operations Aggregation of the consequents across the	option4
3 Where 3 What Mamo 3 Attem 3 What I What 3 Operat 3 What	ere Has Fuzzy Inference Systems Been Implemented? at Is Another Name For Fuzzy Inference Systems? mdani's Fuzzy Inference Method Was Designed To mpt What?	System-Type Wireless services, heat control and printers Fuzzy Expert System Control any two combinations of any two products by synthesising a set of linguistic control rules obtained from experienced human operations. Fuzzification of the input variables	Semigi-Type Wireless services, heat control and printers Fuzzy Modelling Control a television and remote combination by synthesising a set of linguistic control rules obtained from experienced human operations.	Sugeno-Type Simulink, boiler and CD recording Fuzzy Logic Controller Control a steam engine and a boiler combination by synthesising a set of linguistic control rules obtained from experienced human operations Application of the fuzzy operator (AND or OR) in the	Type Automatic control, decision analysis and data classification All of the mentioned Control a air craft and feul level combination by synthesising a set of linguistic control rules obtained from experienced human operations Aggregation of the consequents across the	option4
3 Where 3 What Mamo 3 Attem 3 What I What 3 Operat 3 What	ere Has Fuzzy Inference Systems Been Implemented? at Is Another Name For Fuzzy Inference Systems? mdani's Fuzzy Inference Method Was Designed To mpt What?	Wireless services, heat control and printers Fuzzy Expert System Control any two combinations of any two products by synthesising a set of linguistic control rules obtained from experienced human operations. Fuzzification of the input variables	Wireless services, heat control and printers Fuzzy Modelling Control a television and remote combination by synthesising a set of linguistic control rules obtained from experienced human operations.	Simulink, boiler and CD recording Fuzzy Logic Controller Control a steam engine and a boiler combination by synthesising a set of linguistic control rules obtained from experienced human operations Application of the fuzzy operator (AND or OR) in the	Automatic control, decision analysis and data classification All of the mentioned Control a air craft and feul level combination by synthesising a set of linguistic control rules obtained from experienced human operations Aggregation of the consequents across the	option4
Mamo 3 Attem 3 What I What 3 Operat 3 What What	at Is Another Name For Fuzzy Inference Systems? mdani's Fuzzy Inference Method Was Designed To mpt What?	heat control and printers Fuzzy Expert System Control any two combinations of any two products by synthesising a set of linguistic control rules obtained from experienced human operations. Fuzzification of the input variables	control and printers Fuzzy Modelling Control a television and remote combination by synthesising a set of linguistic control rules obtained from experienced human operations.	CD recording Fuzzy Logic Controller Control a steam engine and a boiler combination by synthesising a set of linguistic control rules obtained from experienced human operations Application of the fuzzy operator (AND or OR) in the	decision analysis and data classification All of the mentioned Control a air craft and feul level combination by synthesising a set of linguistic control rules obtained from experienced human operations Aggregation of the consequents across the	option4
Mamo 3 Attem 3 What I What 3 Operat 3 What What	at Is Another Name For Fuzzy Inference Systems? mdani's Fuzzy Inference Method Was Designed To mpt What?	Fuzzy Expert System Control any two combinations of any two products by synthesising a set of linguistic control rules obtained from experienced human operations. Fuzzification of the input variables	control and printers Fuzzy Modelling Control a television and remote combination by synthesising a set of linguistic control rules obtained from experienced human operations.	CD recording Fuzzy Logic Controller Control a steam engine and a boiler combination by synthesising a set of linguistic control rules obtained from experienced human operations Application of the fuzzy operator (AND or OR) in the	classification All of the mentioned Control a air craft and feul level combination by synthesising a set of linguistic control rules obtained from experienced human operations Aggregation of the consequents across the	option4
Mamo 3 Attem 3 What I What 3 Operat 3 What	ndani's Fuzzy Inference Method Was Designed To mpt What?	Control any two combinations of any two products by synthesising a set of linguistic control rules obtained from experienced human operations. Fuzzification of the input variables	Control a television and remote combination by synthesising a set of linguistic control rules obtained from experienced human operations.	Controller Control a steam engine and a boiler combination by synthesising a set of linguistic control rules obtained from experienced human operations Application of the fuzzy operator (AND or OR) in the	Control a air craft and feul level combination by synthesising a set of linguistic control rules obtained from experienced human operations Aggregation of the consequents across the	
Mamo 3 Attem 3 What I What 3 Operat 3 What	ndani's Fuzzy Inference Method Was Designed To mpt What?	Control any two combinations of any two products by synthesising a set of linguistic control rules obtained from experienced human operations. Fuzzification of the input variables	Control a television and remote combination by synthesising a set of linguistic control rules obtained from experienced human operations.	Control a steam engine and a boiler combination by synthesising a set of linguistic control rules obtained from experienced human operations Application of the fuzzy operator (AND or OR) in the	Control a air craft and feul level combination by synthesising a set of linguistic control rules obtained from experienced human operations Aggregation of the consequents across the	
3 What I What 3 Opera: 3 What What What	ndani's Fuzzy Inference Method Was Designed To mpt What?	combinations of any two products by synthesising a set of linguistic control rules obtained from experienced human operations. Fuzzification of the input variables	and remote combination by synthesising a set of linguistic control rules obtained from experienced human operations.	engine and a boiler combination by synthesising a set of linguistic control rules obtained from experienced human operations Application of the fuzzy operator (AND or OR) in the	level combination by synthesising a set of linguistic control rules obtained from experienced human operations Aggregation of the consequents across the	option3
3 What I What 3 Opera: 3 What What What	ndani's Fuzzy Inference Method Was Designed To mpt What?	combinations of any two products by synthesising a set of linguistic control rules obtained from experienced human operations. Fuzzification of the input variables	and remote combination by synthesising a set of linguistic control rules obtained from experienced human operations.	engine and a boiler combination by synthesising a set of linguistic control rules obtained from experienced human operations Application of the fuzzy operator (AND or OR) in the	level combination by synthesising a set of linguistic control rules obtained from experienced human operations Aggregation of the consequents across the	option3
3 What I What 3 Opera: 3 What What What	ndani's Fuzzy Inference Method Was Designed To mpt What?	combinations of any two products by synthesising a set of linguistic control rules obtained from experienced human operations. Fuzzification of the input variables	and remote combination by synthesising a set of linguistic control rules obtained from experienced human operations.	engine and a boiler combination by synthesising a set of linguistic control rules obtained from experienced human operations Application of the fuzzy operator (AND or OR) in the	level combination by synthesising a set of linguistic control rules obtained from experienced human operations Aggregation of the consequents across the	option3
3 What I What 3 Opera: 3 What What What	ndani's Fuzzy Inference Method Was Designed To mpt What?	two products by synthesising a set of linguistic control rules obtained from experienced human operations. Fuzzification of the input variables	combination by synthesising a set of linguistic control rules obtained from experienced human operations.	combination by synthesising a set of linguistic control rules obtained from experienced human operations Application of the fuzzy operator (AND or OR) in the	level combination by synthesising a set of linguistic control rules obtained from experienced human operations Aggregation of the consequents across the	option3
3 What I What 3 Opera: 3 What What What	ndani's Fuzzy Inference Method Was Designed To mpt What?	linguistic control rules obtained from experienced human operations. Fuzzification of the input variables	synthesising a set of linguistic control rules obtained from experienced human operations.	linguistic control rules obtained from experienced human operations Application of the fuzzy operator (AND or OR) in the	synthesising a set of linguistic control rules obtained from experienced human operations Aggregation of the consequents across the	option3
3 What I What 3 Opera: 3 What What What	mpt What?	obtained from experienced human operations. Fuzzification of the input variables	obtained from experienced human operations.	rules obtained from experienced human operations Application of the fuzzy operator (AND or OR) in the	linguistic control rules obtained from experienced human operations Aggregation of the consequents across the	option3
3 What I What 3 Opera: 3 What What What	mpt What?	experienced human operations. Fuzzification of the input variables	experienced human operations.	experienced human operations Application of the fuzzy operator (AND or OR) in the	obtained from experienced human operations Aggregation of the consequents across the	option3
3 What I What 3 Opera: 3 What What What	mpt What?	Fuzzification of the input variables	operations.	Application of the fuzzy operator (AND or OR) in the	human operations Aggregation of the consequents across the	option3
3 What I What 3 Opera 3 What		Fuzzification of the input variables	·	Application of the fuzzy operator (AND or OR) in the	Aggregation of the consequents across the	Options
What 3 Operat 3 What	t Is The First Step Of Fuzzy Logic Toolbox?	input variables	Defuzzification	fuzzy operator (AND or OR) in the	consequents across the	
What 3 Operat 3 What	t Is The First Step Of Fuzzy Logic Toolbox?	input variables	Defuzzification	l '	· .	
What 3 Operat 3 What	t Is The First Step Of Fuzzy Logic Toolbox?		Defuzzification	antecedent	rules	
3 Operation 3 What		The input is a single				option1
3 Operation 3 What		The input is a single	The factor of the control			
3 Operation 3 What		truth value and the	The input is a value greater than one and	The input and	The input has two or more	
3 Operation 3 What	at Is The Input And Output Of Step 2 - Apply Fuzzy	output has two or	the output is a value	l '	values and the output has	
What		more values	less than the input	same values	· '	option4
What		Probor (a,b) = a-b +		Probor (a,b) = a+b -		
1	at Is The Equation For Probabilistic?	ab	Probor (a,b) = ab + ab	ab	Probor (a,b) = a/b x ab	option3
I		Input is a fuzzy set	Input is a whole value			
	at Is The Input And Output Of Step 3 - Apply Implication	but the output is a	but the output can be	Input and output	Input is a smaller value	
		whole value	a fuzzy set	have the same value	'	option2
		To gather all the		To gather all the		
		different fuzzy set outputs and combine	To gather all the possible inputs and	different fuzzy set	To subtract all the output	
		them into a single	use the average to	outputs and average them out to get a	To subtract all the output fuzzy set values from the	
3 What	at Is The Purpose Of Aggregation?	fuzzy set outputs	gain an output	single value	'	option1
	1 55 5	, ,			'	
I	eralizations of ordinary fuzzy sets which involve fuzzy					
I	defined within a universal set whose elements are					
3 ordina	nary fuzzy sets constitute afuzzy set	Level 1	Level 2	Level 3	Level 4	option2
3 Exam	mple of an idempotent t-norm is	Algebraic Product	Bounded Difference	Drastic intersection	Standard intersection	option4
- J LAGITI	o. an idempotent t norm is	bestale i Toudet	Takagi-Sugeno	274300 IIICI3ECUOII	Standard Intersection	Sparin
			approach does not			
		Mamdani approach	require any			
		needs defuzzification	fuzzification module	Takagi-Sugeno		
	difference habitan Manuala 1 and 1 and 1 and 1	module whereas	whereas Mamdani	approach is more		
1	difference between Mamdani approach and Takagi-	Takagi-Sugeno approach does not	approach needs	interpretable but less	All of the mentioned	ontion1
		approach does not	necus	accurate Takagi-Sugeno	All of the mentioned	option1
	eno approach to FLC design is that	Mamdani approach	Searching a rule in	approach consider a		
		i waniaanii appi oacii	_	large number of	Computation of each rule	
- 1		considers a less	Mamdani approach is	1.0.00	1	
3 more e	eno approach to FLC design is that ugi-Sugeno approach to FLC design is computationally		simple and hence less	rules in fuzzy rule	in Takagi-Sugeno approach	
3 "The t	eno approach to FLC design is that	considers a less	1	_	''	option4
	eno approach to FLC design is that ugi-Sugeno approach to FLC design is computationally	considers a less number of rules in fuzzy rule base	simple and hence less	rules in fuzzy rule base	is more time consuming	option4 option1

			T			I
	An expert system differs from a database program in that	contains declarative	contains procedural	features the retrieval	expects users to draw	
- 1	only an expert system:	knowledge	knowledge		their own conclusions	option2
1	is the process of formulating the mapping from a	owicage	- Innovirous	or stored information	then own conductions	Ориона
3 8	given input to an output using Fuzzy logic.	FIZ	FIS	FOZ	None of these	option2
	MILL CH. C.H	+ * · · · · · · · ·	+	6	All Cilia I	
_	Which of the following is a type of Membership function? Which of the following is not a type of Membership	Triangular	Trapezoidal	Sigmoid	All of the above	option ²
- 1	function?	S-shape	Bell shape	Truncated Gaussian	None of these	option4
_	What is the independent variable of fuzzy output?	Maturity	Membership	Generic Element	None of these	option1
_	Gausian MF is specified by parameters	1	2	3	4	option2
3 (Cauchy MF is	Gausian MF	Triangular MF	Generalised Bell MF	Trapezoidal MF	option3
		{(1, 0.2), (2, 0.1),		{(1, 0.5),(2,		
3 ([3, 0.5)}, find AUB	(3, 0.4)}		0.9),(3, 0.6)}	{(x1,0.1),(x2,0.03),(x3,0.20)}	option2
٦,		{(1, 0.2), (2, 0.1),	1	{(1, 0.5),(2,	((4 0.4) (2 0.02) (2 0.20))	
3 ($[3, 0.5]$, find $A \cap B$ = $\{(1, 0.5), (2, 0.1), (3, 0.4)\}$ and = $\{(1, 0.2), (2, 0.3), (2, 0.3), (3, 0.4)\}$	(3, 0.4)} {(1, 0.2), (2, 0.1),	(3, 0.5)} {(1, 0.5), (2, 0.3),	0.9),(3, 0.6)} {(1, 0.5),(2,	{(x1,0.1),(x2,0.03),(x3,0.20)}	option
3 (3, 0.5)}, find A complement	(3, 0.4)}	(3, 0.5)}	0.9),(3, 0.6)}	[(x1,0.1),(x2,0.03),(x3,0.20)]	ontion ²
1	$= \{(1, 0.5), (2, 0.1), (3, 0.4)\}$ and $= \{(1, 0.2), (2, 0.3), (2, 0.3), (3, 0.4)\}$	{(1, 0.2), (2, 0.1),	{(1, 0.5), (2, 0.3),	{(1, 0.5),(2,	((//2/012/)(//2/0100/)(//0/0120/)	Ортон
3 ((3, 0.5)}, find A.B	(3, 0.4)}		0.9),(3, 0.6)}	{(x1,0.1),(x2,0.03),(x3,0.20)}	option4
	Methods of fuzzy approximate reasoning are	Syllogistic	Categorical	Dispositional	All of the mentioned	option4
3 ١	Which fuzzy approximate reasoning uses "usually"	Syllogistic	Categorical	Dispositional	Qualitative	option3
- 1	Like relational databases there does exists fuzzy relational					
3 0	databases	True	False			option1
	n this mode of approximate reasoning, the antecedents,					
- 1	containing no fuzzy quantifiers and fuzzy probabilities	Syllogistic	Categorical	Dispositional	Qualitative	option2
- 1	In this mode of approximate reasoning, the antecedents and					
3 0	consequents have fuzzy linguistic variables	Syllogistic	Categorical	Dispositional	Qualitative	option ²
	In this mode of approximation reasoning, antecedents with					
- 1	fuzzy quantifiers are related to inference rules	Syllogistic	Categorical	Dispositional	Qualitative	option1
기	uzzy quantiners are related to interence rules	Conjuctive system of	DISjuctive system of	Dispositional	Quantative	Ориона
3 1	Method of aggregation of fuzzy rule	rules	rules	Both	None of these	option3
-	Fuzzy Expert system does NOT consist of	Knowledge base	User Interface	Inference Engine	None of these	option4
ľ	f P:Mary is efficient, Q: Ram is efficient, T(P)=0.8, T(Q)=0.6					
_	find value of Mary is not efficient	0.2	0.4	0.6	0.8	option1
- 1	f P:Mary is efficient, Q: Ram is efficient, T(P)=0.8, T(Q)=0.6					
_	find value of Mary is efficient and so is Ram. f P:Mary is efficient, Q: Ram is efficient, T(P)=0.8, T(Q)=0.6	0.2	0.4	0.6	0.8	option3
- 1	, , , , , , , , , , , , , , , , , , , ,	0.2	0.4	0.6	0.8	option4
Ť	,					
l'	f P:Mary is efficient, Q: Ram is efficient, T(P)=0.8, T(Q)=0.6					
3 f	find value of If Mary is efficient then so is Ram.					
		0.2	0.4	0.6	0.8	option3
- 1						
_	Fuzzy Implication is also known as	Fuzzy logic	Fuzzy IF-THEN rule	Fuzzy expert system	None of these	option2
_	Fuzzy Implication is also known as Ways to compute fuzzy rule A-> B is					option2
_		Fuzzy logic A coupled with B	Fuzzy IF-THEN rule	Fuzzy expert system Both	None of these	option2
_		Fuzzy logic A coupled with B Zadeh's Max Product	Fuzzy IF-THEN rule A entails B	Fuzzy expert system Both Zadeh's Max Product	None of these None of these	option2
3 \		Fuzzy logic A coupled with B	Fuzzy IF-THEN rule	Fuzzy expert system Both	None of these	option2
3 \	Ways to compute fuzzy rule A-> B is	Fuzzy logic A coupled with B Zadeh's Max Product rule for If x is A then	Fuzzy IF-THEN rule A entails B Zadeh's Max Min rule	Fuzzy expert system Both Zadeh's Max Product rule for If x is A then	None of these None of these Zadeh's Max Min rule for <i>If</i>	option2
3 N	Ways to compute fuzzy rule A-> B is R=(AXB)U(ÃXY) is System is used foe both MISO and MIMO	Fuzzy logic A coupled with B Zadeh's Max Product rule for If x is A then y is B else y is C	Fuzzy IF-THEN rule A entails B Zadeh's Max Min rule for If x is A then y is B	Fuzzy expert system Both Zadeh's Max Product rule for If x is A then y is B else y is C	None of these None of these Zadeh's Max Min rule for If x is A then y is B	option2
3 \ 3 F 3 S	Ways to compute fuzzy rule A-> B is R=(AXB)U(ÃXY) is System is used foe both MISO and MIMO Which method is good for embedding linear controller	Fuzzy logic A coupled with B Zadeh's Max Product rule for If x is A then y is B else y is C	Fuzzy IF-THEN rule A entails B Zadeh's Max Min rule for If x is A then y is B	Fuzzy expert system Both Zadeh's Max Product rule for If x is A then y is B else y is C	None of these None of these Zadeh's Max Min rule for If x is A then y is B	option2 option3 option4
3 N 3 F 3 S	Ways to compute fuzzy rule A-> B is R=(AXB)U(ÃXY) is System is used foe both MISO and MIMO Which method is good for embedding linear controller Suppose, a fuzzy set Young is defined as follows Young =	Fuzzy logic A coupled with B Zadeh's Max Product rule for If x is A then y is B else y is C Mamdani	Fuzzy IF-THEN rule A entails B Zadeh's Max Min rule for If x is A then y is B Sugeno	Fuzzy expert system Both Zadeh's Max Product rule for If x is A then y is B else y is C Takagi	None of these None of these Zadeh's Max Min rule for If x is A then y is B None of these	option2 option3 option4
3 \ 3 \ 3 \ 3 \ \ ((Ways to compute fuzzy rule A-> B is R=(AXB)U(ÃXY) is System is used foe both MISO and MIMO Which method is good for embedding linear controller Suppose, a fuzzy set Young is defined as follows Young = (10, 0.5), (20, 0.8), (30, 0.8), (40, 0.5), (50, 0.3) Then the crisp	Fuzzy logic A coupled with B Zadeh's Max Product rule for If x is A then y is B else y is C Mamdani Mamdani	Fuzzy IF-THEN rule A entails B Zadeh's Max Min rule for If x is A then y is B Sugeno Sugeno	Fuzzy expert system Both Zadeh's Max Product rule for If x is A then y is B else y is C Takagi Takagi	None of these None of these Zadeh's Max Min rule for If x is A then y is B None of these None of these	option2 option2 option2
3 \ 3 \ 3 \ 3 \ 3 \ ((3 \)	Ways to compute fuzzy rule A-> B is R=(AXB)U(ÃXY) is System is used foe both MISO and MIMO Which method is good for embedding linear controller Suppose, a fuzzy set Young is defined as follows Young = (10, 0.5), (20, 0.8), (30, 0.8), (40, 0.5), (50, 0.3) Then the crisp value of Young using LoM method is	Fuzzy logic A coupled with B Zadeh's Max Product rule for If x is A then y is B else y is C Mamdani	Fuzzy IF-THEN rule A entails B Zadeh's Max Min rule for If x is A then y is B Sugeno	Fuzzy expert system Both Zadeh's Max Product rule for If x is A then y is B else y is C Takagi	None of these None of these Zadeh's Max Min rule for If x is A then y is B None of these	option: option: option: option:
3 F 3 S 3 V	Ways to compute fuzzy rule A-> B is R=(AXB)U(ÃXY) is System is used foe both MISO and MIMO Which method is good for embedding linear controller Suppose, a fuzzy set Young is defined as follows Young = (10, 0.5), (20, 0.8), (30, 0.8), (40, 0.5), (50, 0.3) Then the crisp value of Young using LoM method is Suppose, a fuzzy set Young is defined as follows Young =	Fuzzy logic A coupled with B Zadeh's Max Product rule for If x is A then y is B else y is C Mamdani Mamdani	Fuzzy IF-THEN rule A entails B Zadeh's Max Min rule for If x is A then y is B Sugeno Sugeno	Fuzzy expert system Both Zadeh's Max Product rule for If x is A then y is B else y is C Takagi Takagi	None of these None of these Zadeh's Max Min rule for If x is A then y is B None of these None of these	option2 option2 option2
3 \ \ 3 \ \ 3 \ \ (((Ways to compute fuzzy rule A-> B is R=(AXB)U(ÃXY) is System is used foe both MISO and MIMO Which method is good for embedding linear controller Suppose, a fuzzy set Young is defined as follows Young = (10, 0.5), (20, 0.8), (30, 0.8), (40, 0.5), (50, 0.3) Then the crisp value of Young using LoM method is Suppose, a fuzzy set Young is defined as follows Young = (10, 0.5), (20, 0.8), (30, 0.8), (40, 0.5), (50, 0.3) Then the crisp	Fuzzy logic A coupled with B Zadeh's Max Product rule for If x is A then y is B else y is C Mamdani Mamdani	Fuzzy IF-THEN rule A entails B Zadeh's Max Min rule for If x is A then y is B Sugeno Sugeno	Fuzzy expert system Both Zadeh's Max Product rule for If x is A then y is B else y is C Takagi Takagi	None of these None of these Zadeh's Max Min rule for If x is A then y is B None of these None of these	option: option: option: option: option:
3 V 3 S 3 V ((3 V	Ways to compute fuzzy rule A-> B is R=(AXB)U(ÃXY) is System is used foe both MISO and MIMO Which method is good for embedding linear controller Suppose, a fuzzy set Young is defined as follows Young = (10, 0.5), (20, 0.8), (30, 0.8), (40, 0.5), (50, 0.3) Then the crisp value of Young using LoM method is Suppose, a fuzzy set Young is defined as follows Young =	Fuzzy logic A coupled with B Zadeh's Max Product rule for If x is A then y is B else y is C Mamdani Mamdani	Fuzzy IF-THEN rule A entails B Zadeh's Max Min rule for If x is A then y is B Sugeno Sugeno 25	Fuzzy expert system Both Zadeh's Max Product rule for If x is A then y is B else y is C Takagi Takagi 30	None of these None of these Zadeh's Max Min rule for If x is A then y is B None of these None of these	option: option: option: option: option:
3 V 3 S 3 V ((3 V	Ways to compute fuzzy rule A-> B is R=(AXB)U(ÃXY) is System is used foe both MISO and MIMO Which method is good for embedding linear controller Suppose, a fuzzy set Young is defined as follows Young = (10, 0.5), (20, 0.8), (30, 0.8), (40, 0.5), (50, 0.3) Then the crisp value of Young using LoM method is Suppose, a fuzzy set Young is defined as follows Young = (10, 0.5), (20, 0.8), (30, 0.8), (40, 0.5), (50, 0.3) Then the crisp value of Young using FoM method is	Fuzzy logic A coupled with B Zadeh's Max Product rule for If x is A then y is B else y is C Mamdani Mamdani 20	Fuzzy IF-THEN rule A entails B Zadeh's Max Min rule for If x is A then y is B Sugeno Sugeno 25	Fuzzy expert system Both Zadeh's Max Product rule for If x is A then y is B else y is C Takagi Takagi 30	None of these Zadeh's Max Min rule for If x is A then y is B None of these None of these 35	option: option: option: option: option:
3 V 3 V 3 V 3 V	Ways to compute fuzzy rule A-> B is R=(AXB)U(ÃXY) is System is used foe both MISO and MIMO Which method is good for embedding linear controller Suppose, a fuzzy set Young is defined as follows Young = (10, 0.5), (20, 0.8), (30, 0.8), (40, 0.5), (50, 0.3) Then the crisp value of Young using LoM method is Suppose, a fuzzy set Young is defined as follows Young = (10, 0.5), (20, 0.8), (30, 0.8), (40, 0.5), (50, 0.3) Then the crisp value of Young using FoM method is	Fuzzy logic A coupled with B Zadeh's Max Product rule for If x is A then y is B else y is C Mamdani Mamdani 20 20 CoS Centre of gravity method	Fuzzy IF-THEN rule A entails B Zadeh's Max Min rule for If x is A then y is B Sugeno Sugeno 25 25 CoG	Fuzzy expert system Both Zadeh's Max Product rule for If x is A then y is B else y is C Takagi Takagi 30 CoA	None of these Zadeh's Max Min rule for If x is A then y is B None of these None of these 35	option: option: option: option: option: option: option:
3 N 3 S 3 N ((3 N 3 N	Ways to compute fuzzy rule A-> B is R=(AXB)U(ÃXY) is System is used foe both MISO and MIMO Which method is good for embedding linear controller Suppose, a fuzzy set Young is defined as follows Young = (10, 0.5), (20, 0.8), (30, 0.8), (40, 0.5), (50, 0.3) Then the crisp value of Young using LoM method is Suppose, a fuzzy set Young is defined as follows Young = (10, 0.5), (20, 0.8), (30, 0.8), (40, 0.5), (50, 0.3) Then the crisp value of Young using FoM method is Which method counts overlapping area twice Which is not the diffuzzification metghod	Fuzzy logic A coupled with B Zadeh's Max Product rule for If x is A then y is B else y is C Mamdani Mamdani 20 20 Cos Centre of gravity method Domestic Shower	Fuzzy IF-THEN rule A entails B Zadeh's Max Min rule for If x is A then y is B Sugeno Sugeno 25 CoG Centre of sum method Water purifier	Fuzzy expert system Both Zadeh's Max Product rule for If x is A then y is B else y is C Takagi Takagi 30 CoA Centre of perimeter method Train brake power	None of these None of these Zadeh's Max Min rule for If x is A then y is B None of these None of these 35 LoM Centre of area method	option2 option2 option2 option2 option3
3 N 3 S 3 N (((3 N 3 N 3 N	Ways to compute fuzzy rule A-> B is R=(AXB)U(ÃXY) is System is used foe both MISO and MIMO Which method is good for embedding linear controller Suppose, a fuzzy set Young is defined as follows Young = (10, 0.5), (20, 0.8), (30, 0.8), (40, 0.5), (50, 0.3) Then the crisp value of Young using LoM method is Suppose, a fuzzy set Young is defined as follows Young = (10, 0.5), (20, 0.8), (30, 0.8), (40, 0.5), (50, 0.3) Then the crisp value of Young using FoM method is Which method counts overlapping area twice	Fuzzy logic A coupled with B Zadeh's Max Product rule for If x is A then y is B else y is C Mamdani Mamdani 20 20 CoS Centre of gravity method	Fuzzy IF-THEN rule A entails B Zadeh's Max Min rule for If x is A then y is B Sugeno Sugeno 25 CoG Centre of sum method	Fuzzy expert system Both Zadeh's Max Product rule for If x is A then y is B else y is C Takagi Takagi 30 CoA Centre of perimeter method	None of these Zadeh's Max Min rule for If x is A then y is B None of these None of these 35	option2 option3 option2 option3 option3 option3 option3
3 F 3 S 3 S 3 S 3 S 3 S 3 S 3 S 3 S 3 S	Ways to compute fuzzy rule A-> B is R=(AXB)U(ÃXY) is System is used foe both MISO and MIMO Which method is good for embedding linear controller Suppose, a fuzzy set Young is defined as follows Young = (10, 0.5), (20, 0.8), (30, 0.8), (40, 0.5), (50, 0.3) Then the crisp value of Young using LoM method is Suppose, a fuzzy set Young is defined as follows Young = (10, 0.5), (20, 0.8), (30, 0.8), (40, 0.5), (50, 0.3) Then the crisp value of Young using FoM method is Which method counts overlapping area twice Which is not the diffuzzification metghod Which of this is not a fuzzy controller	Fuzzy logic A coupled with B Zadeh's Max Product rule for If x is A then y is B else y is C Mamdani Mamdani 20 20 CoS Centre of gravity method Domestic Shower Controller	Fuzzy IF-THEN rule A entails B Zadeh's Max Min rule for If x is A then y is B Sugeno Sugeno 25 CoG Centre of sum method Water purifier controller	Fuzzy expert system Both Zadeh's Max Product rule for If x is A then y is B else y is C Takagi Takagi 30 CoA Centre of perimeter method Train brake power controller	None of these None of these Zadeh's Max Min rule for If x is A then y is B None of these None of these 35 LoM Centre of area method Angular JS Controller	option2 option3 option2 option3 option3 option3 option3 option3 option4
3 F F S S S S S S S S S S S S S S S S S	Ways to compute fuzzy rule A-> B is R=(AXB)U(ÃXY) is System is used foe both MISO and MIMO Which method is good for embedding linear controller Suppose, a fuzzy set Young is defined as follows Young = (10, 0.5), (20, 0.8), (30, 0.8), (40, 0.5), (50, 0.3) Then the crisp value of Young using LoM method is Suppose, a fuzzy set Young is defined as follows Young = (10, 0.5), (20, 0.8), (30, 0.8), (40, 0.5), (50, 0.3) Then the crisp value of Young using FoM method is Which method counts overlapping area twice Which is not the diffuzzification metghod	Fuzzy logic A coupled with B Zadeh's Max Product rule for If x is A then y is B else y is C Mamdani Mamdani 20 20 Cos Centre of gravity method Domestic Shower	Fuzzy IF-THEN rule A entails B Zadeh's Max Min rule for If x is A then y is B Sugeno Sugeno 25 CoG Centre of sum method Water purifier	Fuzzy expert system Both Zadeh's Max Product rule for If x is A then y is B else y is C Takagi Takagi 30 CoA Centre of perimeter method Train brake power	None of these None of these Zadeh's Max Min rule for If x is A then y is B None of these None of these 35 LoM Centre of area method	option3 option4 option3 option1 option3 option1 option1 option1 option2

			continuous	combinatorial		1
4	Problem domain of Evolutionary Algorithm is	discrete optimization	optimization	optimization	None of these	option2
	Evolutionary Algorithm solves problem	NP-complete	NP-hard	P	None of these	option2
	, 0	initialization-> selection->mutation- >crossover-	initialization-> selection->crossover-	initialization-> selection->crossover- >mutation-		
4	Sequence of steps in EA	>termination	>termination	>termination	None of these	option3
4	Which of the following MOEA algorithm is based on the concept of "elitism"?	MOGA	NPGA	NSGA	NSGA-II	option4
	Which of the following solution is non-Pareto based a					
4	posteriori technique?	SOEA	MOGA	VEGA	Lexicographic ordering	option3
4	A three-objective optimizations are solved using a MOEA algorithm and a few objective vectors are listed below. (Assume all objectives are to be minimized) [3,5,10], [5,3,10], [3,10,5], [10,5,3], [10,3,5]. Which of the following is true?	All are non- dominating solutions	Solution [3,5,10] dominates all other solution	Solution [10,5,3] dominated by the solution [3,5,10]	Solution [3,10,5] dominates solution [5,3,10]	option1
4	MOOP follows "ranking" followed by "fitness averaging"	MOGA	NPGA	NSGA	NSGA-II	option1
	Which of the following MOEA techniques follows					T .
4	Tournament selection strategy?	MOGA	NPGA	NSGA	NSGA-II	option2
4	Niche counts of two solutions x1 and x2 are 10, 20. This means that	x1 is surrounded by more neighbors than that of X2	x1 is surrounded by less neighbors than that of X2	x1 would be less desirable to provide population diversity .	x1 would be more desirable to provide population diversity .	option2
4	Which of the following statement is not correct?	A set of solutions is called trade-off solutions, which lie on the Pareto optimal front.	A solution is called a trade-off solution, if it is not dominated by any other solution in the solution space	A front is called Pareto-optimal front on which all optimal solutions lie.	A front containing a non- dominated set of solutions obtained over an exhaustive search space is called pareto optimal front	option3
4	In the following, only one statement is correct. Select the correct statement.	Stochastic selection with remainder supports low selection pressure.	Crowding tournament selection scheme supports low population diversity.	There is no selection scheme in NPGA.	In MOGA, Rank based selection can be applied to select parent chromosome for mating pool creation	option4
4	Select the wrong statement	MOGA uses the concept of ranking whereas NSGA uses the concept of niching to assign fitness values to parent chromosomes.	MOGA assigns different fitness values to all solution with the same rank whereas NSGA assigns the same fitness value to all solutions belonging to the same front.	MOGA assigns the same fitness values to all solution with the same rank whereas NSGA assigns different fitness value to all solutions belonging to the same front.	NSGA yields more accurate Pareto front than MOGA.	option3
		Stochastic remainder	Crowding	Roulette wheel		
4	To create mating pool, NSGA follows	selection	Tournament selection	selection	Canonical Selection	option1
	A similarity between NPGA and NSGA is that	Both are based on the concept of ranking.	Both assign fitness values to the parent chromosomes prior to their selection for mating pool.	Both calculates niched count to maintain population diversity.	Both are computationally very expensive.	option3
4	Ifc1 and c2 are two offspring chromosomes, then according to NPGA, c1 will be preferable to be selected for mating pool if	if c1's niche count is higher than that of c2.	if c1's niche count is equal to that of c2.	if c1's niche count is less than that of c2.	None of these	option3
4	A priori high level information that is required in "Lexicographic ordering" is	the scalar weights of each objective function.	the descending ordering of the rank of the importance of objective functions.	independent of objective function.	None of these	option2

3 Source than xi and xi is strictly better and it is strictly better and it is strictly better and it is strictly better and xi is strictly bett	opti
A solution at is said to dominate another solution yi if what was and a six is trictly better and a six is least one objective. A control of East of the said to dominate another solution yi if what xi was also all and a six is least one objective. A compared to Traditional approach EA takes	
A solution of its said to dominate another solution of if than x is said to dominate another solution x if than x is said to dominate another solution x if the transport of Ethan x is not least one objective. Mutation specifies with an x is not a less one objective. Mathematical based properties of the compared to Truditional approach EA sakes	
4. A solution xi is said to dominate another solution xi if Mahmatical based properties Mathematical based properties (Adjustion for EA is properties) (Adjustion for	opti
Motivation for EA is properties of February Algorithm (a compared to Traditional approach EA takes CPU time (but for February Algorithm (but for February Algorithm (considered as movement) (considered as movified as movifi	Topti
4 demonstration for EA is properties Natural selection Gradient properties 4 demonstration in GA is Metabeuristic Sorbestic Obscreate Continuous 5 demonstration in GA is Metabeuristic Sorbestic Obscreate Continuous 6 demonstration in GA is Metabeuristic Sorbestic Obscreate Continuous 7 de in GA individual memory is there Yes No 8 description in GA is Metabeuristic Sorbestic Obscreate Continuous 8 description in GA is Metabeuristic Sorbestic Obscreate Continuous 9 description in GA is Metabeuristic Sorbestic Obscreate Continuous 9 description in GA is Metabeuristic Sorbestic Obscreate Continuous 9 description in GA is Metabeuristic Sorbestic Obscreate Continuous 9 description in GA is Metabeuristic Sorbestic Obscreate Continuous 9 description in GA is Metabeuristic Sorbestic Obscreate Continuous 9 description in GA is Metabeuristic Sorbestic Obscreate Continuous 9 description in GA is Metabeuristic Sorbestic Obscreate Continuous 9 description in GA is Metabeuristic Sorbestic Obscreate Continuous 9 description in GA is Metabeuristic Sorbestic Obscreate Continuous 9 description in GA is Metabeuristic Sorbestic Obscreate Continuous 9 description in GA is Metabeuristic Sorbestic Obscreate Continuous 9 description in GA is Metabeuristic Sorbestic Obscreate Continuous 9 description in GA is Metabeuristic Sorbestic Obscreate Continuous 9 description in GA is Metabeuristic Sorbestic Obscreate Continuous 9 description in GA is Metabeuristic Sorbestic Obscreate Continuous 9 description in Ga is Metabeuristic Sorbestic Obscreate Continuous 9 description in Ga is Metabeuristic Sorbestic Obscreate Continuous 9 description in Ga is Metabeuristic Sorbestic Obscreate Continuous 9 description in Ga is Metabeuristic Sorbestic Obscreate Continuous 9 description in Ga is Metabeurist	
4 Compared to Traditional approach EA takes CPU time 4 Genetic Algorithm is superset of Evolutionary Algorithm 4 Optimization in GA is In GA individual memory is there Verent in GA individual dispersator is In GA individual memory is there Prosible solutions of a problem are considered as individuals in a population problem Fitness function is Possible solutions of a problem are considered as individuals in a population problem Fitness function is Possible solutions of a problem are considered as individuals in a population problem Possible solutions of a problem are considered as individuals in a population or problem Possible solutions of a problem are considered as individuals in a population or problem Possible solutions of a problem are considered as individuals in a population or problem Possible solutions of a problem are considered as individuals in a population or problem Possible solutions of a problem are considered as individuals in a population or problem Possible solutions of a problem are considered as individuals in a population or problem Possible solutions of a problem are considered as individuals in a population or problem Possible solutions of a problem are considered as individuals in a population or problem Possible solutions of a problem are considered as individuals in a population or problem Possible solutions of a problem are considered as individuals in a population or problem Possible solutions of a problem are considered as individuals in a population or problem Possible solutions of a problem are considered as individuals in a population or problem Possible solutions of a problem are considered as individuals in a population or problem Possible solutions of a problem are considered as individuals in a population or problem Possible solutions of a problem are considered as individuals in a population or problem are considered as individuals in a population or problem Possible solutions of a problem are considered as individuals in a population or problem are	opti
A Genetic Algorithm is superset of Evolutionary Algorithm 4 Optimization in GA is In GA Individual amemory is there 4 Encoding is 5 Cossover point 5 Cossover point 6 Cossover point 7 Cossover point 8 Cossover point 9 Cossover point 1 Cossover point 2 Cossover point	- Optim
A political memory is there Yes No No	opti
4 Definition of GA IS 4 In GA Individual memory is there 5 In GA Individual operator is 6 In GA Individual operator is 7 In GA Individual operator is 7 In GA Individual operator is 8 In GA Individual operator is 8 In GA Individual operator is 9 Individual in a problem are considered as individuals in a problem are considered as one operator individuals in a problem are considered as one operator individuals in a problem are considered as one operator individuals in a problem are considered as one operator individuals in a problem are considered as one operator individuals in a problem are considered as one oppulation on a present individuals in a problem are considered as one oppulation on a problem on prob	
4 In GA individual memory is there 4 In GA individual operator is Crossover point Dossible solutions of a problem are considered as individuals in a population Plantage of their organization is A Selection is Crossover is A Mutation is Crossover point Dossible solutions of a problem are considered as individuals in a population Dossible solutions of a problem are considered as individuals in a population Dossible solutions of a problem are considered as individuals in a population Dossible solutions of a problem are considered as individuals in a problem are consider	opti
In GA individual operator is Crossover point Mutation poest poestor defines the way individuals in a problem are considered as individuals in a population poesible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in the number of cities is 10? possible solutions of a problem are considered as individuals in the number of cities is 10? possible solutions of a problem are considered as individuals in the number of cities is 10? possible solutions of a problem are considered as individuals in the number of cities is 10? possible solutions of a problem are considered as individuals in the number of cities is 10? possible solutions of a problem are considered as individuals in the number of cities is 10? possible solutions of a problem are considered as individuals in the number of cities is 10? possible solutions of a problem are considered as individuals in the number of cities is 10? possible solutions of a problem are considered as individuals in the number of cities is 10? possible solutions of a problem are considered as individuals in	opti
possible solutions of a problem are considered as individuals in a population 4 Encoding is En	opti
possible solutions of a problem are considered as individuals in a population 4 Encoding is En	opti
problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population solution of a problem are considered as individuals in a population solution of a problem are considered as individuals in a population solution of a problem are considered as individuals in a population are selected for problem are considered as individuals in a population are selected for problem are considered as individuals in a population are selected for problem are considered as individuals in a population are selected for problem are considered as individuals in a population are selected for problem are considered as individuals in a population are selected for problem are considered as individuals in a problem are selected for problem are considered as individuals in a problem are selected for problem are selected for problem are selected for problem are considered as individuals in a problem are selected for problem are se	
Considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are selected for problem possible solutions of a problem are considered as individuals in a population possible solutions of a problem are selected for problem possible solutions of a problem are considered as individuals in a population possible solutions of a problem are selected for problem possible solutions of a problem are selected for problem possible solutions of a problem possible solutions of a problem possible solutions of a problem possible solution of a problem possible solutions of a problem possible solution of a problem possible so	
Individuals in a population Problem Prob	
4 Fitness function is Population A possible solutions of a problem are considered as individuals in a population is Population is Population of a problem are considered as individuals in a population is Population is Population of a problem are considered as individuals in a population is population is population or a problem are considered as individuals in a population of a problem are considered as individuals in a population or a problem are considered as individuals in a population or a problem are considered as individuals in a population or a problem are considered as individuals in a population or a problem are considered as individuals in a population or a problem are considered as individuals in a population or a problem are considered as individuals in a problem are consi	
possible solutions of a problem are considered as individuals in a population solution is 4 Fitness function is 4 Fitness function is 5 population 4 Selection is 5 Selection is 6 possible solutions of a problem are considered as individuals in a problem are considered as individuals in a problem are considered as individuals in a population 5 Selection is 6 possible solutions of a problem are considered as individuals in a population 5 Selection is 7 Selection is 7 Selection is 8 possible solutions of a problem are considered as individuals in a population 8 possible solutions of a problem are considered as individuals in a population 9 possible solutions of a problem are considered as individuals in a population 9 possible solutions of a problem are considered as individuals in a population 10 possible solutions of a problem are considered as individuals in a population 11 population 12 possible solutions of a problem are considered as individuals in a population 13 possible solutions of a problem are considered as individuals in a population 14 (Crossover is 15 possible solutions of a problem are considered as individuals in a population are problem are considered as individuals in a problem are considered as individuals in a population are problem 16 possible solutions of a problem are considered as individuals in a problem are considered as individuals in a problem are considered as individuals in a population are problem. 18 possible solutions of a problem are considered as individuals in a problem are approached as individuals in a population are selected for are mixed in order to obtain genetic codes of their offspring are mixed in order to obtain genetic codes of their offspring are mixed in order to obtain genetic codes of their offspring are mixed in order to obtain genetic codes of their offspring are mixed in order to obtain genetic codes of their offspring are mixed in order to obtain genetic codes of their offspring are mixed in order to obtain genetic codes of their offspri	opti
Fitness function is possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a population are selected for their offspring operator defines the way individuals in the current population are mixed in order to obtain genetic codes of their offspring operator defines the way individuals in the current population are mixed in order to obtain genetic codes of their offspring operator defines the way individuals in the current population are represents the main requirements of the desired solution of a problem are considered as individuals in a problem are considered as individuals in a population population operator defines the way individuals in the current population of a problem are represents the main requirements of the desired solution of a problem are represents the main requirements of the desired solution of a problem are represents the main requirements of the desired solution of a problem are represents the main requirements of the desired solution of a problem are represents the main requirements of the desired solution of a problem are represents the main requirements of the desired solution of a problem are represents the main requirements of the desired solution of a problem are represents the main requirements of the desired solution of a problem are represents the main requirements of the desired solution of a problem are represents the main requirements of the desired solution of a problem are represents the main requirements of the desired solution of a problem are represents the main requirements of the desired solution of a prob	1
Fitness function is Fitness function is Population	
4 Fitness function is Selection is Selection i	
4 Fitness function is population problem represents the main requirements of the individuals in a problem are considered as individuals in a population population are selected for reproduction of a problem are considered as individuals in a population population are selected for reproduction of a problem are considered as individuals in a population are selected for reproduction of a problem are considered as individuals in a population are selected for reproduction of a problem are considered as individuals in a population are selected for reproduction of a problem are selecte	
possible solutions of a problem are considered as individuals in a population problem are considered as individuals in a problem are considered as individ	
possible solutions of a problem are considered as individuals in a population 4 Selection is possible solutions of a problem problem are considered as individuals in a population 4 Crossover is possible solutions of a problem possible solution of a problem population population	opti
problem are considered as individuals in a population Possible solutions of a problem are considered as individuals in a problem are selected for reproduction Possible solutions of a problem are considered as individuals in a problem are selected for reproduction Possible solutions of a problem are considered as individuals in a problem are selected for reproduction Mutation is How many genes will be used in a chromosome of each 4 individual if the number of cities is 10? How many genes will be in the alphabet of the algorithm? Suppose a genetic algorithm uses chromosomes of the form x = abcdefgh with a fixed length of eight genes. Each gene can be any digit between 0 and 9. Let the fitness of individual x be calculated as: f(x) = (a + b) - (c + d) + (e + f) - (g + h) , and let the initial population consist of four individuals with the following chromosomes: x1 = 65 4 1 3 5 3 2 2 2 2 8 8 7 1 2 6 6 0 1 3 3 2 3 2 1 2 8 5 1 2 6 6 0 1 3 3 2 3 2 1 2 8 5 1 2 6 6 0 1 3 3 2 3 2 1 2 8 5 1 2 6 6 0 1 3 3 2 3 2 1 2 8 5 1 2 6 6 0 1 3 3 2 3 2 1 2 8 5 1 2 6 6 0 1 3 3 3 2 1 2 6 3 2 1 2 8 5 1 2 6 6 0 1 3 3 5 2 1 2 6 6 0 1 3 3 5 2 1 2 6 5 0 1 3 5 3 2 1 2 6 5 0 1 3 5 2 1 2 6 6 0 1 3 3 5 2 1 2 6 6	
considered as individuals in a population Selection is considered as individuals in a population possible solutions of a problem possible solutions of a problem considered as individuals in a problem are considered as individuals in a population 4 Crossover is	
individuals in a population 4 Selection is Selection is Sele	
4 Selection is population problem reproduction their offspring possible solutions of a problem are considered as individuals in a population possible solutions of a problem are requirements of the desired solution of a problem are requirements of the desired solution of a problem are selected for reproduction are mixed in order to obtain genetic codes of their offspring operator defines the way individuals in a remain requirements of the desired solution of a problem are considered as individuals in a population operator defines the way individuals in the current population operator defines the way individuals in the current population operator defines the way individuals in the current population operator defines the way individuals in the current population operator defines the way individuals in the current population operator defines the way individuals in the current population operator defines the way individuals in the current population operator defines the way individuals in the current population operator defines the way individuals in the current population operator defines the way individuals in the current population operator defines the way individuals in the current population operator defines the way individuals in the current population operator defines the way individuals in the current population operator defines the way individuals in the current population on a reselected for reproduction of a problem of the current population operator defines the way individuals in the current population operator defines the way individuals in the current population on a reselected for reproduction on a reselected for	
possible solutions of a problem are considered as individuals in a population 4 Crossover is Tequirements of the way individuals in the current population The current population operator defines how or obtain genetic codes of their obtaint are mixed in order to obtain genetic codes of their obtaint are quirements of the way individuals in the current population operator defines the way individuals in the current population operator defines the way individuals in the current population operator defines the way individuals in the current population operator defines the value in the	
possible solutions of a problem are considered as negretary individuals in a problem are considered as population are selected for reproduction are selected for reproduction are selected for reproduction are selected for reproduction operator defines the way individuals in a problem are selected for reproduction operator defines the way individuals in the current population operator defines the way individuals in the current problem operator defines the way individuals in the current population operator defines the way individuals in the current problem operator defines the way individuals in the current problem operator defines the way individuals in the current problem operator defines the way individuals in the current problem operator defines the way individuals in a requirements of the desired solution of a problem operator defines the way individuals in the current problem operator defines the way individuals in the current problem operator defines the way individuals in the current population operator defines the way individuals in the current problem operator defines the way individuals in the current problem operator defines the way individuals in the current problem operator defines the way individuals in the current problem operator defines the way individuals in the current problem operator defines the way individuals in the current problem operator defines the way individuals in the current problem operator defines the way individuals in the current problem operator defines the way individuals in the current problem operator defines the way individuals in the current problem operator defines the way individuals in the current problem operator defines the way individuals in the current problem operator defines the way individuals in the current problem operator defines the current problem operator defines the way individuals in the current problem operator defines the desired solution of a problem operator defines the current problem operator defines the current problem operator defines the current	opti
problem are considered as individuals in a problem are considered as individuals in a population soft aproblem are considered as individuals in a population soft aproblem are selected for a population are selected for a population are selected for a population operator defines the way individuals in the current population operator defines the way individuals in the current considered as individuals in apopulation operator defines the way individuals in the current population operator creates random desired solution of a problem operator creates random desired solution of a problem operator creates random are selected for reproduction operator creates random desired solution of a problem operator creates random are selected for reproduction	
considered as individuals in a population 4 Crossover is possible solutions of a problem are considered as individuals in a population possible solutions of a problem are considered as individuals in a problem are selected for their offspring Mutation is How many genes will be used in a chromosome of each individual if the number of cities is 10? 4 How many genes will be in the alphabet of the algorithm? Suppose a genetic algorithm uses chromosomes of the form x = abcdefgh with a fixed length of eight genes. Each gene can be any digit between 0 and 9. Let the fitness of individual x be calculated as: f(x) = (a + b) - (c + d) + (e + f) - (g + h), and let the initial population consist of four individuals with the following chromosomes: x1 = 65 41 35 32 x2 × 28 71 26 60 1 x3 = 23 9 2 12 8 5	
individuals in a population problem reproduction their offspring operator creates random changes in genetic codes of their offspring operator creates random changes in genetic codes of their offspring operator defines the way individuals in a problem are considered as individuals in a population population operator defines the way individuals in the current population are selected for reproduction the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic codes of the offspring operator creates random changes in genetic code	
4 Crossover is population problem reproduction their offspring possible solutions of a problem are requirements of the individuals in a population problem requirements of the individuals in a population population are selected for reproduction the offspring operator creates random desired solution of a problem population operator creates random are selected for reproduction the offspring operator creates random desired solution of a problem problem operator creates random are selected for reproduction the offspring operator creates random operator creates random are selected for reproduction the offspring operator creates random on the problem operator creates random op	
possible solutions of a problem are represents the main requirements of the individuals in a population series and ome and a desired solution of a population are selected for reproduction are selected for reproductio	
possible solutions of a problem are considered as individuals in the current population are selected for reproduction the offspring How many genes will be used in a chromosome of each individual if the number of cities is 10? How many genes will be in the alphabet of the algorithm? Suppose a genetic algorithm uses chromosomes of the form x = abcdefgh with a fixed length of eight genes. Each gene can be any digit between 0 and 9. Let the fitness of individual x be calculated as: f(x) = (a + b) - (c + d) + (e + f) - (g + h), and let the initial population consist of four individuals with the following chromosomes: x1 = 65 4 1 3 5 3 2	opti
problem are considered as individuals in a population sequence will be used in a chromosome of each 4 Individual if the number of cities is 10? 4 How many genes will be in the alphabet of the algorithm? 5 10 100 4 4 How many genes will be in the alphabet of the algorithm? Suppose a genetic algorithm uses chromosomes of the form x = abcdefgh with a fixed length of eight genes. Each gene can be any digit between 0 and 9. Let the fitness of individual x be calculated as: f(x) = (a + b) - (c + d) + (e + f) - (g + h), and let the initial population consist of four individuals with the following chromosomes: x1 = 65 4 13 5 3 2	
considered as individuals in a population are selected for reproduction How many genes will be used in a chromosome of each individual if the number of cities is 10? How many genes will be in the alphabet of the algorithm? Suppose a genetic algorithm uses chromosomes of the form x = abcdefgh with a fixed length of eight genes. Each gene can be any digit between 0 and 9. Let the fitness of individual x be calculated as: f(x) = (a + b) - (c + d) + (e + f) - (g + h), and let the initial population ocnsist of four individuals with the following chromosomes: x1 = 65 41 35 32	
individuals in a problem problem reproduction the offspring How many genes will be used in a chromosome of each individual if the number of cities is 10? How many genes will be in the alphabet of the algorithm? Suppose a genetic algorithm uses chromosomes of the form x = abcdefgh with a fixed length of eight genes. Each gene can be any digit between 0 and 9. Let the fitness of individual x be calculated as: f(x) = (a + b) - (c + d) + (e + f) - (g + h), and let the initial population consist of four individuals with the following chromosomes: x1 = 65 41 35 3 2 x2 = 87126601 x3 = 23921285	
4 Mutation is population problem reproduction the offspring How many genes will be used in a chromosome of each individual if the number of cities is 10? How many genes will be in the alphabet of the algorithm? The problem reproduction the offspring of the offspring individual if the number of cities is 10? How many genes will be in the alphabet of the algorithm? The problem reproduction the offspring of the offspring of the offspring of the form individual in the number of cities is 10? The problem reproduction the offspring of the off	
How many genes will be used in a chromosome of each individual if the number of cities is 10? 4 How many genes will be in the alphabet of the algorithm? Suppose a genetic algorithm uses chromosomes of the form x = abcdefgh with a fixed length of eight genes. Each gene can be any digit between 0 and 9. Let the fitness of individual x be calculated as: f(x) = (a + b) - (c + d) + (e + f) - (g + h), and let the initial population consist of four individuals with the following chromosomes: x1 = 65 41 35 3 2 x2 = 87126601 x3 = 23921285	
4 individual if the number of cities is 10? 4 How many genes will be in the alphabet of the algorithm? 5 N*(n-1)/2 N*(n+1)/2 N*(n-2)/2 N*(n+2)/2 Suppose a genetic algorithm uses chromosomes of the form x = abcdefgh with a fixed length of eight genes. Each gene can be any digit between 0 and 9. Let the fitness of individual x be calculated as: f(x) = (a + b) - (c + d) + (e + f) - (g + h), and let the initial population consist of four individuals with the following chromosomes: x1 = 65 4 1 3 5 3 2 x2 = 8 7 1 2 6 6 0 1 x3 = 2 3 9 2 1 2 8 5	opti
How many genes will be in the alphabet of the algorithm? **(n-1)/2 **(n+1)/2 **(n+2)/2 **(n+2)	opti
Suppose a genetic algorithm uses chromosomes of the form x = abcdefgh with a fixed length of eight genes. Each gene can be any digit between 0 and 9. Let the fitness of individual x be calculated as: f(x) = (a + b) - (c + d) + (e + f) - (g + h), and let the initial population consist of four individuals with the following chromosomes: x1 = 6 5 4 1 3 5 3 2 x2 = 8 7 1 2 6 6 0 1 x3 = 2 3 9 2 1 2 8 5	
x = abcdefgh with a fixed length of eight genes. Each gene can be any digit between 0 and 9. Let the fitness of individual x be calculated as: f(x) = (a + b) - (c + d) + (e + f) - (g + h), and let the initial population consist of four individuals with the following chromosomes: x1 = 65 4 1 3 5 3 2 x2 = 8 7 1 2 6 6 0 1 x3 = 2 3 9 2 1 2 8 5	opti
x = abcdefgh with a fixed length of eight genes. Each gene can be any digit between 0 and 9. Let the fitness of individual x be calculated as: f(x) = (a + b) - (c + d) + (e + f) - (g + h), and let the initial population consist of four individuals with the following chromosomes: x1 = 6 5 4 1 3 5 3 2 x2 = 8 7 1 2 6 6 0 1 x3 = 2 3 9 2 1 2 8 5	
can be any digit between 0 and 9. Let the fitness of individual x be calculated as: $f(x) = (a + b) - (c + d) + (e + f) - (g + h) , \text{ and let the initial population consist of four individuals with the following chromosomes: } x1 = 65 4 1 3 5 3 2 $	
individual x be calculated as: $f(x) = (a+b) - (c+d) + (e+f) - (g+h) , \text{ and let the initial}$ population consist of four individuals with the following chromosomes: $x1 = 65413532$ $x2 = 87126601$ $x3 = 23921285$	
f(x) = (a + b) - (c + d) + (e + f) - (g + h), and let the initial population consist of four individuals with the following chromosomes: $x1 = 65413532$ $x2 = 87126601$ $x3 = 23921285$	
population consist of four individuals with the following chromosomes: x1 = 65 4 1 3 5 3 2 x2 = 8 7 1 2 6 6 0 1 x3 = 2 3 9 2 1 2 8 5	
chromosomes: x1 = 65 4 1 3 5 3 2 x2 = 8 7 1 2 6 6 0 1 x3 = 2 3 9 2 1 2 8 5	
x1 = 65 4 1 3 5 3 2 x2 = 8 7 1 2 6 6 0 1 x3 = 2 3 9 2 1 2 8 5	
x2 = 87126601 x3 = 23921285	
x3 = 2 3 9 2 1 2 8 5	
arrange chromosomes in order with the fittest first and the	
4 least fit last. x1,x2,x3,x4 x2,x1,x3,x4 x1,x3,x4,x2 x2,x3,x1,x4	
one–point crossover at the middle point on	onti
x2 = 87126601	opti
4 x1 = 65 4 1 3 5 3 2 will generate	opti
A budget ariline company operates 3 plains and employs 5	optio
cabin crews. Only one crew can operate on any plain on a	
single day, and each crew cannot work for more than two	
days in a row. The company uses all planes every day. A	
Genetic Algorithm is used to work out the best combination	
4 of crews on any particular day. What is alphabet size in it? 3 5 8 15	

		.		T	
In individuals are represented as a Finite State 4 Machine	EP	ES	GA	PSO	option1
4 In individuals are represented as a Real valued vector	EP	ES	GA	PSO	option2
4 In individuals are represented as a binary string	EP	ES	GA	PSO	option3
4 Parent selection in is stochastic using tournament	EP	ES	GA	PSO	option1
4 Parent selection in is deterministic	EP	ES	GA	PSO	option2
4 Parent selection in is either stochastic or deterministic	EP	ES	GA	PSO	option3
4does not use recombination to produce offspring.	EP	ES	GA	PSO	option1
4 uses crossover to produce offspring.	EP	ES	GA	PSO	option2
4 uses various recombination operators.	EP	ES	GA	PSO	option3
Is it advisable to apply genetic algorithm for all kinds of					
4 optimization problem Ineach individual survives for exactly one	Yes	No			option2
4 generation	Generation Model	Steady state Model	Population Model	Tournament Model	option1
4 Category of EP based on scaling function	Non adaptive	Non Dynamic	Non self-adaptive	Adaptive	option1
Evolutionary algorithm differes from genetic algorithm as it	Non adaptive	TVOIT Dynamic	ivon sen adaptive	Λααρτίνο	Ориона
4 does not have	Crossover	mutation	Selection	Reproduction	option1
	Evolutionary				
4 Evolutionary algorithms classified as	Programming	Evolutionary Strategies	Genetic Algorithms	All of the mentioned	option4
In the choice phase of problem solving, normative models	_				
5 involve selecting an optimal or best outcome Analytical techniques for problem solving are best for	True	False			option1
5 unstructured rather than structured problems.	True	False			option2
Heuristic approaches are typically used to solve more					
5 complex problems.	True	False			option1
Genetic algorithms are heuristic methods that do not	T	Falsa			
5 guarantee an optimal solution to a problem A "what-if" model is most typically used for the most	True	False			option1
5 structured problems	True	False			option2
The use of simulation models is desirable because they can					
usually be solved in one pass, without incurring the time and					
5 cost of iterations	True	False			option2
An advantage of simulation is that it allows model builders					
to solve problems with minimal interaction with users or	_				
5 managers Time compression in a simulation allows managers to test	True	False			option2
5 certain strategies with less risk.	True	False			option1
Simulation solutions cannot easily be transferred from one	Truc	Tuise			Орионт
5 problem domain to another	True	False			option1
Determining the duration of the simulation occurs before	_				
5 the model is validated and teste	True	False			option2
Which of the following(s) is/are the pre-requisite(s) when					
Genetic Algorithms are applied to solve					
problems?					
(i) Encoding of solutions.					
(ii) Well-understood search space.					
(iii) Method of evaluating the suitability of the solutions. 5 (iv) Contain only one optimal solution.	i and ii only	i and iii only	ii and iii only	All of the mentioned	option2
Spirit contain only one optimal solution.	, and it offity	r and in only	Reproduction to	, iii or the mentioned	OPTIONZ
	Initial population	Selection of sub-	produce next		
5 Which GA operation is computationally most expensive?	creation	1	generation	Convergence testing	option3
		Ţ.	If an optimization	_	
			problem has more		
		It is guaranteed to	than one solution,	It is an iterative process	
T Militar afaba fallanda a a a a a a a a a a a a a a a a a a	It is a probabilistic	give global optimum	then it will return all	suitable for parallel	
5 Which of the following is not true for Genetic algorithms? Which one of the following is not necessarily be considered.	search algorithm	solutions the obtainable	the solutions	programming	option2
Which one of the following is not necessarily be considered 5 as GA parameters?	the population size.	accuracy	the mutation probability	the average fitness score	option4
	paracion size.	,			
Which of the following optimization problem(s) can be		Travelling salesman	Job shop scheduling	Optimal binary search tree	
5 better solved with Order GA?	0-1 Knapsack problem		problem	construction problem	option2
5 Optimal binary search tree construction problem	13572468	ABDECFHG	10011001	14.6 -23.4 177.23	option3
	Fitness values are	Fitness values are non-uniformly	Needs low selection	Needs high population	
5 Roulette wheel selection scheme is preferable when	uniformly distributed	distributed	pressure	diversity	option1
Spromette wheel selection scheme is preferable when	Januarining distributed	מוטנו וטענכע	hi cooni c	urversity	Ιοριισιιτ

	What GA encoding scheme suffers from Hamming cliff					
5	problem?	Binary coded GA	Real coded GA	Order GA	Tree coded GA	option1
	Which selection strategy is susceptible to a high selection	Roulette-wheel		Tournament		
5	pressure and low population diversity?	selection.	Rank based selection.	selection.	All of the mentioned	option1
	Which of the following is not a mutation operation in real			Polynomial	All are mutation operation	
5	coded GA?	Flipping	Random mutation.	mutation.	in real coded GA	option1
	Two parent chromosomes in Order GA encoding scheme is					
	given as follows:					
	*					
	12345678910					
	10987654321					
	A k-th point is selected at 4th location according to single					
	point crossover technique. Which					
5	of the following off-spring is not possible?	12341098765	78910654321	10987123456	5 6 7 8 9 10 1 2 3 4	option4
		To check whether all				
		individual satisfies the constraints given in	To decide the	To select the	To identify the individual	
5	The purpose of the fitness evaluation operation is	the problem	termination point.	bestindividuals	To identify the individual with worst costfunction	option3
	The purpose of the fitness evaluation operation is	the problem	termination point.	Destillarviduais	With Worst Costiunction	ориона
	If crossover between chromosomes in search space does					
	not produce significantly different offspring, what does it					
	imply? (if offspring consist of one half of each parent)					
	(i) The crossover operation is not successful.					
	(ii) Solution is about to be reached.					
	(iii) Diversity is so poor that the parents involved in the					
	crossover operation are similar.					
5	(iv) The search space of the problem is not ideal for GAs to operate	ii, iii & iv only	ii, iii only	i, iii & iv only	All of the mentioned	option2
	operate	ii, iii Q iV oiiiy	ii, iii oiiiy	i, iii & iv oiiiy	7 th of the mentioned	Орстопа
		The % area to be	Two or more			
		occupied by an	individuals with the	Individuals are	The proportionate based	
		individual , is given by	same fitness values	arranged in a	selection scheme is	
	In Rank-based selection scheme, which of the following is	average of sumation	should have the same	descending order of	followed based on the	
5	not correct	of elements	rank.	their fitness values.	assigned rank.	option3
		Low population	High population	NA		
		diversity and moderate selection	diversity and Moderate selection	Moderate population diversity and high	High population diversity	
5	Tournament Selection has	pressure	pressure	selection pressure	and low selection pressure	option3
	Tournament delection has	The search focuses	p. 6354. 6	pressure	and low selection pressure	ориона
		only on good			Leads to pre-mature	
		individuals (in terms			convergence of the	
		of fitness) at the	It loses the	Lower rate of	solution to a sub-optimal	
5	If selection pressure is HIGH, which one is FALSE	moment	population diversity.	convergence.	solution.	option3
		In the event of		The qualities of		
		restricted accessto information, GAs win		The qualities of solutions offered by		
		out in that they		GAs for any	GAs could be applied to	
		require much	Under any	problems are always	any problem, whereas	
		fewer information to	circumstances, GAs	better than	certain algorithms are	
		operate than other	always outperform	those provided by	applicable to	
_	Which of the following comparison is true?	search.	other algorithms.	other search	limited domains.	option1
5	Which of the following is a fitness scaling approach?	Linear scaling	Sigma scaling	Power law scaling	All of the mentioned	option ²
		Definition of chicative	Implementation of	Implementation of		
5	Important aspect of GA	Definition of objective function	genetic representation	genetic operators	All of the mentioned	option4
,	portaine appear or ort	. and on	periode representation	Dericale operators	Number of coded design	570012
5	Term in GA for chromosome	coded design vector	coded design variable	every bit	variable	option1
					Number of coded design	
5	Term in GA for substring	coded design vector	coded design variable	every bit	variable	option2
					Number of coded design	
5	Term in GA for gene	coded design vector	coded design variable	every bit	variable	option:
_	Torm in CA for nonulation	and add design	and add destant to the	ayanı bi+	Number of coded design	0.54
5	Term in GA for population	coded design vector	coded design variable	every bit population of design	variable	option
Ť		1		vector after 1	Number of coded design	
		1				i
	Term in GA for generation	coded design vector	coded design variable		_	option?
	Term in GA for generation	coded design vector evolutionary	coded design variable	iteration	variable	option
5	Term in GA for generation Which of these are adaptive heuristic search algorithms		coded design variable		_	option3

selection	termination	recombination	initialization	optio
deterministic	probabilistic	both	None of these	option
Yes	No			option
103	110			Optio
Provide optimization	Provide optimization	They break on slight		
•	· '	, ,	None of these	optio
over small space area	over large space area	change in input	TVOIC OF THESE	Орио
10111001	01010110	10111000	01010101	ontio
10111001	01010110	10111000	01010101	optio
			N Cul	
Crossover point	Crossover rate	Cross-over population	None of these	optio
123456789		 		optio
Generational	Centralized	Distributed	None of these	optio
Generational	Steady state	Distributed	None of these	optio
Generation limit	No change in fitness	Elapsed time	All of the mentioned	optio
	Divide n conquer			
Pittsburg Approach	approach	Michi Approach	None of these	optio
Parallel Genetic	Proportional Genetic	Perceptron based		
Algorithm	Algorithm	Genetic Algorithm	None of these	optio
		Termination		optio
1	2	3	4	optic
		-		- Spene
	Darticle Course	Ant Colonia		
C			All -f +h+:	
Genetic Algorithms	Optimization	Optimization	All of the mentioned	optic
ı				
of decentralized, self-				
organized systems,				
natural or artificial	fuzzy logic system	crisp logic concept	None of these	optic
Gerardo Beni and	Gerardo Beni and	George M and Jing		
Jing Wang	James Gosling	Wang	None of these	optic
	Ŭ	ŭ		
swarm robotics	swarm behaviour	robotics	None of these	optic
		1000000	Trone or these	Optio
	l '	Doth	None of these	antia
<u>'</u>	'	1 1		optio
				l
	· ·	 	Optimization	optic
Analytical Colony	Ant Colony	Ant Coding		
Optimization	Optimization	optimization	None of these	optic
pbest	gbest	Both pbest, gbest	None of these	optic
personal best	personal based	proper based	proper best	optic
global best	general best	global based	general based	optic
progress	loops	iteration	None of these	optio
	<u> </u>	 		optic
neness value	velocity	poest	7 in or the mentioned	Optio
1	2		Many	ontic
<u>1</u>	2	3	Ivially	optio
velocity	gbest	Both velocity ,gbest	None of these	optio
		L	l	
Vi(t+1)=w*Vi -	Vi(t+1)=w*Vi	Vi(t+1)=w*Vi	Vi(t+1)=w*Vi	
a1*rand*/nhast vi);	+c1*rand*(pbest-xi)-	+c1*rand*(gbest-xi)+	+c1*rand*(pbest-xi)+	
c1*rand*(pbest-xi)+			c2*rand*(gbest-xi)	lantic
c2*rand*(gbest-xi)	c2*rand*(gbest-xi)	c2*rand*(pbest-xi)		Optic
	c2*rand*(gbest-xi)	c2*rand*(pbest-xi)		Орис
	c2*rand*(gbest-xi)	c2*rand*(pbest-xi) Vi(t+1)=w*Vi	Vi(t+1)=w*Vi	Орис
	c2*rand*(gbest-xi)	Vi(t+1)=w*Vi	` '	Орис
c2*rand*(gbest-xi)		Vi(t+1)=w*Vi +c1*rand*(pbest-xi)+	+c1*rand*(pbest-xi)-	
c2*rand*(gbest-xi) Xi(t+1)=Xit+Vi(t+1)	c2*rand*(gbest-xi) Xi(t+1)=Xit-Vi(t+1)	Vi(t+1)=w*Vi	` '	
c2*rand*(gbest-xi) Xi(t+1)=Xit+Vi(t+1) Acceleration	Xi(t+1)=Xit-Vi(t+1)	Vi(t+1)=w*Vi +c1*rand*(pbest-xi)+ c2*rand*(gbest-xi)	+c1*rand*(pbest-xi)- c2*rand*(gbest-xi)	optic
c2*rand*(gbest-xi) Xi(t+1)=Xit+Vi(t+1)		Vi(t+1)=w*Vi +c1*rand*(pbest-xi)+	+c1*rand*(pbest-xi)-	optic
c2*rand*(gbest-xi) Xi(t+1)=Xit+Vi(t+1) Acceleration Coeficient	Xi(t+1)=Xit-Vi(t+1)	Vi(t+1)=w*Vi +c1*rand*(pbest-xi)+ c2*rand*(gbest-xi)	+c1*rand*(pbest-xi)- c2*rand*(gbest-xi)	optio
c2*rand*(gbest-xi) Xi(t+1)=Xit+Vi(t+1) Acceleration Coeficient c1*rand*(pbest-xi)+	Xi(t+1)=Xit-Vi(t+1) Cognitive Component	Vi(t+1)=w*Vi +c1*rand*(pbest-xi)+ c2*rand*(gbest-xi) Social Component	+c1*rand*(pbest-xi)- c2*rand*(gbest-xi)	optio
c2*rand*(gbest-xi) Xi(t+1)=Xit+Vi(t+1) Acceleration Coeficient	Xi(t+1)=Xit-Vi(t+1)	Vi(t+1)=w*Vi +c1*rand*(pbest-xi)+ c2*rand*(gbest-xi)	+c1*rand*(pbest-xi)- c2*rand*(gbest-xi)	optio
c2*rand*(gbest-xi) Xi(t+1)=Xit+Vi(t+1) Acceleration Coeficient c1*rand*(pbest-xi)+	Xi(t+1)=Xit-Vi(t+1) Cognitive Component	Vi(t+1)=w*Vi +c1*rand*(pbest-xi)+ c2*rand*(gbest-xi) Social Component	+c1*rand*(pbest-xi)- c2*rand*(gbest-xi)	optio
c2*rand*(gbest-xi) Xi(t+1)=Xit+Vi(t+1) Acceleration Coeficient c1*rand*(pbest-xi)+	Xi(t+1)=Xit-Vi(t+1) Cognitive Component	Vi(t+1)=w*Vi +c1*rand*(pbest-xi)+ c2*rand*(gbest-xi) Social Component	+c1*rand*(pbest-xi)- c2*rand*(gbest-xi)	optio
c2*rand*(gbest-xi) Xi(t+1)=Xit+Vi(t+1) Acceleration Coeficient c1*rand*(pbest-xi)+ c2*rand*(gbest-xi)	Xi(t+1)=Xit-Vi(t+1) Cognitive Component	Vi(t+1)=w*Vi +c1*rand*(pbest-xi)+ c2*rand*(gbest-xi) Social Component	+c1*rand*(pbest-xi)- c2*rand*(gbest-xi)	optic optic
c2*rand*(gbest-xi) Xi(t+1)=Xit+Vi(t+1) Acceleration Coeficient c1*rand*(pbest-xi)+ c2*rand*(gbest-xi)+	Xi(t+1)=Xit-Vi(t+1) Cognitive Component c1*rand*(pbest-xi)	Vi(t+1)=w*Vi +c1*rand*(pbest-xi)+ c2*rand*(gbest-xi) Social Component c2*rand*(gbest-xi)	+c1*rand*(pbest-xi)- c2*rand*(gbest-xi) Inertia term None of these	optic optic optic
c2*rand*(gbest-xi) Xi(t+1)=Xit+Vi(t+1) Acceleration Coeficient c1*rand*(pbest-xi)+ c2*rand*(gbest-xi)+ c2*rand*(gbest-xi)+	Xi(t+1)=Xit-Vi(t+1) Cognitive Component c1*rand*(pbest-xi)	Vi(t+1)=w*Vi +c1*rand*(pbest-xi)+ c2*rand*(gbest-xi) Social Component c2*rand*(gbest-xi)	+c1*rand*(pbest-xi)- c2*rand*(gbest-xi) Inertia term None of these	optic optic
c2*rand*(gbest-xi) Xi(t+1)=Xit+Vi(t+1) Acceleration Coeficient c1*rand*(pbest-xi)+ c2*rand*(gbest-xi)+ c2*rand*(gbest-xi)+ c2*rand*(gbest-xi)+ c1*rand*(pbest-xi)+	Xi(t+1)=Xit-Vi(t+1) Cognitive Component c1*rand*(pbest-xi) c1*rand*(pbest-xi)	Vi(t+1)=w*Vi +c1*rand*(pbest-xi)+ c2*rand*(gbest-xi) Social Component c2*rand*(gbest-xi)	+c1*rand*(pbest-xi)- c2*rand*(gbest-xi) Inertia term None of these	optic optic
c2*rand*(gbest-xi) Xi(t+1)=Xit+Vi(t+1) Acceleration Coeficient c1*rand*(pbest-xi)+ c2*rand*(gbest-xi)+ c2*rand*(gbest-xi)+	Xi(t+1)=Xit-Vi(t+1) Cognitive Component c1*rand*(pbest-xi)	Vi(t+1)=w*Vi +c1*rand*(pbest-xi)+ c2*rand*(gbest-xi) Social Component	+c1*rand*(pbest-xi)- c2*rand*(gbest-xi) Inertia term None of these	optic optic
	deterministic Yes Provide optimization over small space area 1 0 1 1 1 0 0 1 Crossover point 1 2 3 4 5 6 7 8 9 Generational Generational Generation limit Pittsburg Approach Parallel Genetic Algorithm Analysis 1 Genetic Algorithms collective behavior of decentralized, selforganized systems, natural or artificial Gerardo Beni and Jing Wang swarm robotics Particle swarm optimization Particle Swarm Optimization Particle Swarm Optimization Analytical Colony Optimization phest personal best global best progress fitness value 1 velocity Vi(t+1)=w*Vi -	deterministic Yes No Provide optimization over small space area 1 0 1 1 1 0 0 1 Crossover point Crossover rate 1 2 3 4 5 6 7 8 9 Generational Generational Generation limit No change in fitness Divide n conquer approach Parallel Genetic Algorithm Analysis Computation 1 2 Particle Swarm Optimization Gerardo Beni and Jing Wang Swarm robotics Particle Swarm Optimization Optimization Analytical Colony Optimization Optimization Optimization Dest personal best personal best global best progress loops fitness value Vi(t+1)=w*Vi Vi(t+1)=w*Vi	deterministic probabilistic both Yes No Provide optimization over large space area over large space area over large space area over large space area over large in input 10111001 0101110 10111000 Crossover point Crossover rate Cross-over population 123456789 153426789 154326789 Generational Centralized Distributed Distributed Divide neonquer approach Michi Approach Parallel Genetic Algorithm Analysis Computation Termination 1 2 2 3 4 5 6 7 8 9 15 4 3 2 6 7 8 9 15 4 3 2 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	deterministic Probabilistic both None of these No No Provide optimization over small space area or large s

	<u> </u>	1	T	1	ı
	Once PSO traps in	Once PSO traps in	Once PSO traps in		
	global optimum, it is	local optimum, it is	local optimum, it is	Once PSO traps in global	
	dificult to jump out of	dificult to jump out of	dificult to jump out	optimum, it is dificult to	
6 Premature convergence of PSO is	global optimum	local optimum	of global optimum	jump out of local optimum	option
6 PSO topology	Star	Ring	Adaptive random	All of the mentioned	option
6 In binary PSO, solution in is binary string	Population	chromosome	swarm	velocity	option
6 Chemical substance release by ants is	pheromone	perchloric	Both	None of these	optio
6 ACO is typically used to solve based problem	searching	graph	database	None of these	optio
6 ACO inspired by	ant colony foraging	bird flocking	both	None of these	optio
6 PSO inspired by	ant colony foraging	bird flocking	both	None of these	optio
6 ACO is best at finding solution	discreate	continuous	both	None of these	optio
6 PSO is best at finding solution	discreate	continuous	both	None of these	optio
o F3O is best at illiding solution	Cost matrix,	Cost Matrix, Velocity	Velocity Matrix,	Velocity Matrix,	οριιο
Clar ACO there evict two metric	Pheromone Matrix	Matrix	Pheromone Matrix	Pheromone Matrix	antia
6 In ACO there exist two matrix	Pheromone Matrix	IVIALITIX	Prieromone Matrix	Prieromone Matrix	optio
6 Ants are that move along between nodes in a graph.	Participants	Population	Agents	None of these	option
6 ACO is optimization	Heuristic	Metaheuristic	Probabilistic	None of these	optio
6 Ants uses communication via pheromone trails	Direct	Stigmergic	eulogic	None of these	optio
			Condition occur at		
		Negative feedback	termination of	Allows ants to explore less	
6 Autocatalysis is	Positive feedback loop		algorithm	promising areas	optio
	Autocatalytic		Autocatalytic		<u> </u>
	negative feedback	Autocatalytic positive	forward feedback	Autocatalytic backward	
6 ACO algorithms also called as	algorithm	feedback algorithm	algorithm	feedback algorithm	optio
6 Ant System first introduced by	James Kennedy	Russell E.	Marco Dorigo	L. A. Zadeh	optio
6 Application of Ant systems	Scheduling Problem	Assignment Problem	Set Problem	All of the mentioned	optio
			Clobal phoromono		
6			Global pheromone	Too a siti a a mula	
avoids premature convergence in ACO	distributed computing	pneromone	update	Transition rule	optio
ACO performed poorly for TSP problems larger than	50	65	70		
6 cities	60	65	70	75	optio
In ACO search is extreamly important to obtain good					l
6 result	local	global	distributed	None of these	optio
6 Optimization in PSO is	Metaheuristic	Stochastic	Discreate	Continuous	optio
		reach target with	find local finest		
6 PSO	find shortest path	minimal duration	solution	find best among others	optio
6 Quadratic Assignment problem can be solved by	ES	GA	PSO	ACO	optio
6 Vehicle routing can be solved by	ES	GA	PSO	ACO	optio
6 Automatic programming uses	ES	GA	PSO	ACO	optio
6 Economic models uses	ES	GA	PSO	ACO	optio
6 Heating system planning problem uses	ES	GA	PSO	ACO	optic
	1/length_of_tour, if	1/length_of_tour, if	length_of_tour, if	length_of_tour, if path is	
6 Amount of pheromone deposited	path is not used	path is used	path is not used	used	optio
When all ants have completed a solution, the trails are			Txy=(1-p)*		
6 updated with	Txy=(1-p)* Txy-∑ΔTxy	Txy=(1-p)+ΣΔTxy	Τχγ+ΣΔΤχγ	Txy=(1-p)* Txy-Txy	optio

SCOA Unit I MCQ netion defines the fuzziness in a fuzzy set irrespective of the ele

1.	Membership function defines the fuzziness in a fuzzy set irrespective of the elemen in the set, which are discrete or continuous.
	A.True
	B. False
2.	The membership functions are generally represented in
	A.Tabular Form
	B.Graphical Form
	C.Mathematical Form
	D. Logical Form
3.	Membership function can be thought of as a technique to solve empirical problems on the basis of
	A.knowledge
	B. examples
	C.learning
	D. experience
4.	Three main basic features involved in characterizing membership function are
	A.Intution, Inference, Rank Ordering
	B.Fuzzy Algorithm, Neural network, Genetic Algorithm

	C.Core, Support, Boundary		
D.Weighted Average, center of Sums, Median			
5. The region of universe that is characterized by complete members the set is called		ership in	
	A.Core		
	B. Support		
	C.Boundary		
	D. Fuzzy		
6. A fuzzy set whose membership function has at least one element x in the uni whose membership value is unity is called			
	A.sub normal fuzzy sets		
	B. normal fuzzy set		
	C.convex fuzzy set		
	D. concave fuzzy set		
7.	In a Fuzzy set a prototypical element has a value		
	A.1		
	B. 0		
	C.infinite		

D.Not defined

8.	A fuzzy set wherein no membership function has its value equal to 1 is called		
	A.normal fuzzy set		
	B.Subnormal fuzzy set.		
	C.convex fuzzy set		
	D. concave fuzzy set		
9.	A fuzzy set has a membership function whose membership values are strictly monotonically increasing or strictly monotonically decreasing or strictly monotonically increasing than strictly monotonically decreasing with increasing values for elements in the universe		
	A.convex fuzzy set		
	B. concave fuzzy set		
	C.Non concave Fuzzy set		
	D. Non Convex Fuzzy set		
10.	10. The membership values of the membership function are nor strictly monotonically increasing or decreasing or strictly monoronically increasing than decreasing.		
	A.Convex Fuzzy Set		
	B. Non convex fuzzy set		
	C.Normal Fuzzy set		
	D. Sub normal fuzzy set		
11.	11. The crossover points of a membership function are defined as the elements in the universe for which a particular fuzzy set has values equal to		

A. infinite			
B. 1			
C. 0			
D. 0.5			
12. Fuzzy Computing			
A.doesnt deal with 2 valued logic			
B. mimics human behaviour			
C.deals with information which is vague, imprecise, uncertain, ambiguous, inexact, or probabilistic			
D. All of the above			
13. ANN is composed of large number of highly interconnected processing elements(neurons) working in unison to solve problems.			
A.True			
B. False			
14. Artificial neural network used for			
A.Pattern Recognition			
B. Classification			
C.Clustering			
D. All of these			

15. A Neural Network can answer

A. For Loop questions
B.what-if questions
C.IF-The-Else Analysis Questions
D. None of these
16. Ability to learn how to do tasks based on the data given for training or initial experience
A.Self Organization
B. Adaptive Learning
C.Fault tolerance
D. Robustness
17. Feature of ANN in which ANN creates its own organization or representation o information it receives during learning time is
A.Adaptive Learning
B.Self Organization
C.What-If Analysis
D. Supervised Learniing
18. In artificial Neural Network interconnected processing elements are called
A.nodes or neurons

	B.weights
	C.axons
	D. Soma
19.	Each connection link in ANN is associated with which has information about the input signal.
	A.neurons
	B. weights
	C.bias
	D. activation function
20.	Neurons or artificial neurons have the capability to model networks of original neurons as found in brain
	A.True
	B. False
21.	Internal state of neuron is called, is the function of the inputs the neurons receives
	A. Weight
	B. activation or activity level of neuron
	C.Bias
	D. None of these

22.	Neuron can send	signal at a time.
	A.multiple	
	B.one	
	C.none	
	D. any number of	
23.	. Artificial intelligence is	
A	A.It uses machine-learning tech adapt themselves to new situa	niques. Here program can learn From past experience and ations
B	3.Computational procedure that output.	t takes some value as input and produces some value as
(C.Science of making machines performed by humans	performs tasks that would require intelligence when
Γ	•None of these	
	24. Expert systems	
	A.Combining different	types of method or information
	B. Approach to the design the theory of evolution	gn of learning algorithms that is structured along the lines of
	C.an information base f	illed with the knowledge of an expert formulated in terms

of if-then rules

D.None of these

25. Falsification is

- **A.**Modular design of a software application that facilitates the integration of new modules
- **B.**Showing a universal law or rule to be invalid by providing a counter example
- **C.**A set of attributes in a database table that refers to data in another table
- **D.**None of these

26. Evolutionary computation is

- **A.**Combining different types of method or information
- **B.**Approach to the design of learning algorithms that is structured along the lines of the theory of evolution.
- **C.**Decision support systems that contain an information base filled with the knowledge of an expert formulated in terms of if-then rules.
- **D.**None of these

27. Extendible architecture is

- **A.**Modular design of a software application that facilitates the integration of new modules
- **B.**Showing a universal law or rule to be invalid by providing a counter example
- C.A set of attributes in a database table that refers to data in another table

D.None of these

28. Massively parallel machine is

- A.A programming language based on logic
- **B.**A computer where each processor has its own operating system, its own memory, and its own hard disk
- **C.**Describes the structure of the contents of a database.
- **D.**None of these

29. Search space

- **A.**The large set of candidate solutions possible for a problem
- **B.** The information stored in a database that can be, retrieved with a single query.
- **C.**Worth of the output of a machine learning program that makes it understandable for humans
- **D.**None of these

30. n(log n) is referred to

- **A.**A measure of the desired maximal complexity of data mining algorithms
- **B.** A database containing volatile data used for the daily operation of an organization
- C.Relational database management system
- **D.**None of these

31. Perceptron is

A.General class of approaches to a problem. **B.**Performing several computations simultaneously **C.**Structures in a database those are statistically relevant **D.**Simple forerunner of modern neural networks, without hidden layers 32. Prolog is **A.**A programming language based on logic **B.** A computer where each processor has its own operating system, its own memory, and its own hard disk **C.**Describes the structure of the contents of a database **D.**None of these 33. Shallow knowledge **A.**The large set of candidate solutions possible for a problem **B.** The information stored in a database that can be, retrieved with a single query **C.**Worth of the output of a machine learning program that makes it understandable for humans

34. Quantitative attributes are

D.None of these

A.A reference to the speed of an algorithm, which is quadratically dependent on the size of

the data

B. Attributes of a database table that can take only numerical values				
C. Tools designed to query a database				
D. None of these				
35. Subject orientation				
A. The science of collecting, organizing, and applying numerical facts				
B. Measure of the probability that a certain hypothesis is incorrect given certain observations.				
C. One of the defining aspects of a data warehouse, which is specially built around all the existing applications of the operational data				
D. None of these				
36. Vector				
A. It do not need the control of the human operator during their execution				
B. An arrow in a multi-dimensional space. It is a quantity usually characterized by an ordered set of scalars				
C. The validation of a theory on the basis of a finite number of examples				
D. None of these				

37. Transparency

- **A.**The large set of candidate solutions possible for a problem
- **B.** The information stored in a database that can be retrieved with a single query
- **C.**Worth of the output of a machine learning program that makes it understandable for humans
- **D.**None of these

38. Core of soft Computing is

- A.Fuzzy Computing, Neural Computing, Genetic Algorithms
- **B.**Fuzzy Networks and Artificial Intelligence
- C.Artificial Intelligence and Neural Science
- **D.**Neural Science and Genetic Science
- 39. Who initiated the idea of Soft Computing
- A.Charles Darwin
- **B.**Lofti A Zadeh
- C.Rechenberg
- **D.**Mc_Culloch

40. Fuzzy Computing

- A.mimics human behaviour
- **B.**doesnt deal with 2 valued logic
- **C.**deals with information which is vague, imprecise, uncertain, ambiguous, inexact, or probabilistic
- **D.**All of the above

41. Neural Computing

- A.mimics human brain
- **B.**information processing paradigm
- C.Both (a) and (b)
- **D.**None of the above

42. Genetic Algorithm are a part of

- **A.**Evolutionary Computing
- **B.**inspired by Darwin's theory about evolution "survival of the fittest"
- **C.** are adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and genetics
- **D.**All of the above

43. What are the 2 types of learning

- A.Improvised and unimprovised
- **B.** supervised and unsupervised
- **C.**Layered and unlayered
- **D.**None of the above

44. Supervised Learning is

- **A.**learning with the help of examples
- **B.**learning without teacher
- **C.**learning with the help of teacher
- **D.**learning with computers as supervisor

45. Unsupervised learning is

- A.learning without computers
- **B.**problem based learning

C.learning from environment

D.learning from teachers

46. Conventional Artificial Intelligence is different from soft computing in the sense

- **A.**Conventional Artificial Intelligence deal with prdicate logic where as soft computing deal with fuzzy logic
- **B.**Conventional Artificial Intelligence methods are limited by symbols where as soft computing is based on empirical data

C.Both (a) and (b)

47. In supervised learning

A.classes are not predefined

B.classes are predefined

C.classes are not required

D. classification is not done

Question No	Question	Answer Key
1.	Membership function defines the fuzziness in a fuzzy set irrespective of the elements in the set, which are discrete or continuous.	A
	A.True B.False	
2.	The membership functions are generally represented in	В
	<u>A.</u> Tabular Form	
	B. Graphical Form	
	<u>C.</u> Mathematical Form	
	<u>D.</u> Logical Form	
3.	Membership function can be thought of as a technique to solve empirical problems on the basis of	D
	<u>A.</u> knowledge	
	<u>B.</u> examples	
	<u>C.</u> learning	

	<u>D.</u> experience	
4.	Three main basic features involved in characterizing membership function are <u>A.</u> Intution, Inference, Rank Ordering	С
	 <u>B.</u>Fuzzy Algorithm, Neural network, Genetic Algorithm <u>C.</u>Core, Support, Boundary <u>D.</u>Weighted Average, center of Sums, Median 	
5.	The region of universe that is characterized by complete membership in the set is called A.Core B.Support C.Boundary D.Fuzzy	A
6.	A fuzzy set whose membership function has at least one element x in the universe whose membership value is unity is called A.sub normal fuzzy sets	В

	<u>B.</u> normal fuzzy set	
	C.convex fuzzy set	
	<u>D.</u> concave fuzzy set	
7.	In a Fuzzy set a prototypical element has a value	A
	<u>A.</u> 1	
	<u>B.</u> 0	
	<u>C.</u> infinite	
	<u>D.</u> Not defined	
8.	A fuzzy set wherein no membership function has its value equal to 1 is called	В
	A.normal fuzzy set	
	B. subnormal fuzzy set.	
	C.convex fuzzy set	
	<u>D.</u> concave fuzzy set	
9.	A fuzzy set has a membership function whose membership values	A

	are strictly monotonically increasing or strictly monotonically decreasing or strictly monotonically increasing than strictly monotonically decreasing with increasing values for elements in the universe A.convex fuzzy set B.concave fuzzy set C.Non concave Fuzzy set D.Non Convex Fuzzy set	
10.	The membership values of the membership function are nor strictly monotonically increasing or decreasing or strictly monoronically increasing than decreasing.	В
	A.Convex Fuzzy Set	
	B. Non convex fuzzy set	
	<u>C.</u> Normal Fuzzy set	
	<u>D.</u> Sub normal fuzzy set	
11.	Fuzzy Computing	D
	A.doesnt deal with 2 valued logic	

	B. mimics human behaviour	
	C. deals with information which is vague, imprecise, uncertain, ambiguous, inexact, or probabilistic	
	<u>D.</u> All of the above	
12.	Defuzzification is done to obtain	a
	a) Crisp output	
	b) The best rule to follow	
	c) Precise fuzzy value	
	d) None of the above	
13.	"The train is running fast". Here 'fast' can be represented by	a
	a) Fuzzy Set	
	b) Crisp Set	
	c) Fuzzy and Crisp Set	
	d) None of the mentioned	
14.	Suppose, a fuzzy set Young is defined as follows:	a
	Young = $(10, 0.5), (20, 0.8), (30, 0.8), (40, 0.5), (50, 0.3)$	
	Then the crisp value of Young using MoM method is	
	a) 25	
	b) 20	
	c) 35	
	d) 50	
15.	f the fuzzy set has two sub regions, then the centre of gravity of the sub	С
	region can be used to calculate the defuzzified	
	value.	
	a) with the median of all the area	

	b) with the mean of all the area	
	c) with the largest area	
	d) with the smallest area	
16.	Which of the following is not a centroid method?	d
	a) Centre of gravity method (CoG)	
	b) Centre of sum method (CoS)	
	c) Centre of area method (CoA)	
	d) Centre of Mass (CoM)	
17.	What are the following sequence of steps taken in designing a fuzzy	a
	logic machine?	
	(a) Fuzzification->Rule evaluation->Defuzzification	
	(b) Rule evaluation->Fuzzification->Defuzzification	
	(c) Fuzzy Sets->Defuzzification->Rule evaluation	
	(d) Defuzzification->Rule evaluation->Fuzzification	
18.	If A is a fuzzy set, then (A λ)complement \neq ———(A λ)complement	a
	(a) except for value of λ =0.5	
	(b) except for value of $\lambda=1$	
	(c) except for value of $\lambda=0$	
	(d) for all values of λ	
19.	The cardinality of the given set $A = \{1, 2, 3, 4, 5\}$	В
	a) 2	
	b) 5	
	c) 4	
	d) 1	
20.	If x is A then y is B else y is c then the relation R is equivalent to	b
	a) $(A \times B) + (B \times C)$	
	b) $A \times B$) \cup $(A \times C)$	

	c) $(A \times B) \rightarrow (B \times C)$	
	$(A \times C) \cup (B \times C)$	
21.	What are the applications of Fuzzy Inference Systems?	d
	a) Wireless services, heat control and printers	
	b) Restrict power usage, telephone lines and sort data	
	c) Simulink, boiler and CD recording	
	d) Automatic control, decision analysis and data classification	
22.	Fuzzy logic is a form of:	С
	a) Two valued logic	
	b) Crisp set logic	
	c) Many valued logic	
	d) Binary set logic	
23.	The main objective of fuzzy AHP is:	d
	a) To increase the ambiguity of human judgement	
	b) Eliminate the ambiguous and vagueness of the human judgement	
	c) Control human biasness	
	d) B and C	
24.	In triangular fuzzy number (l, m, u), what does 'm' represents:	C
	a) Smallest likely value	
	b) Most probable value	
	c) Largest possible value	
	d) None of the above	
25.	Which type of normalization method is used to eliminate the units of	b
	criteria in case of VIKOR analysis?	
	a) Vector normalization	
	b) Linear normalization	
	c) Both A and B	

	d) None of the above	
26.	Fuzzy logic is a form of a) Two-valued logic b) Crisp set logic c) Many-valued logic d) Binary set logic	Answer: c Explanation: With fuzzy logic set membership is defined by certain value. Hence it could have many values to be in the set.
27.	Traditional set theory is also known as Crisp Set theory. a) True b) False	Answer: a Explanation: Traditional set theory set membership is fixed or exact either the member is in the set or not. There is only two crisp values true or false. In case of fuzzy logic there are many values. With weight say x the member is in the set. 3. The truth values of traditional set theory is and that of fuzzy set is
28.	The truth values of traditional set theory is and that of fuzzy set is	Answer: a Explanation: Refer the

	a) Either 0 or 1, between 0 & 1 b) Between 0 & 1, either 0 or 1 c) Between 0 & 1, between 0 & 1 d) Either 0 or 1, either 0 or 1	definition of Fuzzy set and Crisp set.
29.	How many types of random variables are available? a) 1 b) 2 c) 3 d) 4	Answer: c Explanation: The three types of random variables are Boolean, discrete and continuous.
30.	The room temperature is hot. Here the hot (use of linguistic variable is used) can be represented by a) Fuzzy Set b) Crisp Set	Answer: a Explanation: Fuzzy logic deals with linguistic variables.
31.	The values of the set membership is represented by a) Discrete Set b) Degree of truth c) Probabilities d) Both b & c	Answer: b Explanation: Both Probabilities and degree of truth ranges between 0 – 1.
32.	What is meant by probability density function?	d

	 a) Probability distributions b) Continuous variable c) Discrete variable d) Probability distributions for Continuous variables 	
33.	Which of the following is used for probability theory sentences? a) Conditional logic b) Logic c) Extension of propositional logic d) None of the mentioned	Answer: c Explanation: The version of probability theory we present uses an extension of propositional logic for its sentences.
34.	Fuzzy Set theory defines fuzzy operators. Choose the fuzzy operators from the following. a) AND b) OR c) NOT d) EX-OR	Answer: a, b, c Explanation: The AND, OR, and NOT operators of Boolean logic exist in fuzzy logic, usually defined as the minimum, maximum, and complement;
35.	Fuzzy logic is usually represented as a) IF-THEN-ELSE rules b) IF-THEN rules c) Both a & b d) None of the mentioned	Answer: b Explanation: Fuzzy set theory defines fuzzy operators on fuzzy sets. The problem in applying this is that the appropriate fuzzy

SCOA UNIT 2 MCQs

		operator may not be known. For this reason, fuzzy logic usually uses IF-THEN rules, or constructs that are equivalent, such as fuzzy
		associative matrices. Rules are usually expressed in the form: IF variable IS property THEN action
36.	a) Fuzzy Logic b) Probability c) Entropy d) All of the mentioned	Answer: d Explanation: Entropy is amount of uncertainty involved in data. Represented by H(data).
37.	are algorithms that learn from their more complex environments (hence eco) to generalize, approximate and simplify solution logic. a) Fuzzy Relational DB b) Ecorithms c) Fuzzy Set d) None of the mentioned	Answer: c Explanation: Local structure is usually associated with linear rather than exponential growth in complexity

SCOA UNIT 2 MCQs

	This sheet is for 1 Mark questions						
S.r No	Question	Image	a	b	С	d	Correct Answer
	Write down question	img.jpg	Option a	Option b	Option c	Option d	a/b/c/d
	When we say that the boundary is crisp		Distinguish two regio		Collection of ordere		а
	In computing the output is called as		Consequent	Outfeed	Anticedents	Premise	a
	Fuzzy logic is a form of		two valued logic	crisp set logic	many value logic	binary set logic	С
	Control actions while computing should be		Ambiguous	Unambioguos	Inaccurate	None of these	b
	Core of soft computing is		Fuzzy computing,neu			Genetic Science	a
	Hard computing perfforms what type of computation		Sequential	Parallel	approxiamate	both a and b	a
	Who iniated idea of sofft computing		charles darwin	rich and berg	mc culloch	lofti a zadeh	d
	Soft computing is based on		fuzzy logic	neural science	crisp software	binary logic	a
	In soft computing the problems,algorithms can be		non adaptive	adaptive	static	all of the above	b
_	Fuzzy Computing		mimics human behav			both a and b	d
	Hard computing is also called as					probablistic computing	b
	Which computing produces accurate results		soft computing	hard computing		none of the above	b
-	Neural network computing		mimics human behav			none of the above	С
	Artificial neural network is used for		pattern recognition		clustering	all of the above	d
-	How does blind search differ from optimization		Blind search represer			H	В
	In modeling,an optimal solution is understood to be					a solution that require	С
	When is a complete enumeration of solution used?					When there are an infi	В
18	All of the follwing are true about heuristics EXCEPT		heuristics are used w	heuristics are use	heuristics are used v	heuristics are rules of g	С
19	Which approach is most suited to structured problem with little uncert	tainity	Simuation	human intuition	Optimization	genetic algorithm	С
20	Genetic algorithm belong to the family of method in the		artifical intelligence a	optimization area	complete enumerat	Non computer based is	Α
21	What does the 0 membership value means in the set		the object is fully insi	the object is not in	the object is partiall	none of the above	b
22	The union of two fuzzy sets is theof each element from two se	ets	maximum	minimum	equal to	not equal to	а
23	The process of fuzzy interference system involes		membership function	fuzzy logic operat	if-then rules	all the above	d
24	What does a fuzzifier do		coverts crisp input to	coverts crisp oupu	coverts fuzzy input t	coverts fuzzy output to	а
25	Which of the folloowing is not defuzzifier method		centroid of area	mean of maximur	largest of maximum	hypotenuse of triangle	d
26	Which of the following is/are type of fuzzy interference method		mamdani	sugeno	rivest	only a and b	d
27	A Fuzzy rule can have		multiple part of ante	only single part of	multiple part of ant	only single part of ante	С
28	The α cut of a fuzzy set A is a crisp set defined by :-		$\{x _{U}a(x)>\alpha\}$	$\{x \mid_{U} a(x) >= \alpha\}$	{x _U a(x)<α}	$\{x _{U}a(x) <= \alpha\}$	b
29	The bandwidth(A) in a fuzzy set is given by		(A)= x1*x2	(A)= x1+x2	(A)= x1-x2	(A)= x1/x2	С
	The intersection of two fuzzy sets is the of each element from	two sets	maximum	minimum	egual to	not equal to	b
	A={1/a,0.3/b,0.2/c,0.8/d,0/e} B={0.6/a,0.9/b,0.1/c,0.3/d,0.2/e} Wh			-			a
	A={1/a,0.3/b,0.2/c,0.8/d,0/e} B={0.6/a,0.9/b,0.1/c,0.3/d,0.2/e} Wh						C
	A={1/a,0.3/b,0.2/c,0.8/d,0/e} B={0.6/a,0.9/b,0.1/c,0.3/d,0.2/e} Wh						a
	What denotes the support(A) in a fuzzy set?	at will be the file	$\{x _{U}a(x)>0\}$	$\{x _{U}a(x)<0\}$	{x _U a(x)<=0}	{x _U a(x)<0.5}	a
	What denotes the core(A) in a fuzzy set?		{x ∪a(x)>0}	{x _∪ a(x)=1}		{x _U a(x)>0.8}	b
	Fuzzy logic deals with which of the following		fuzzy set	fuzzy algebra	both a and b	none of the above	С
	which of the following is a sequence of steps taken in designning a fuz	y logic machine				rule evaluation->defuz	a
	can a crisp set be a fuzzy set?		no	yes	depends	all of the above	b
	Genetic algorithm belong to the family of method in the		 	•	· ·	Non computer based is	Α
	All of the follwing are suitable problem for genetic algorithm EXCEPT		·		 	dynamic process contr	С
41	Tabu search is an example of ?		heuristic	Evolutionary algor	ACO	PSO	a

42	Genetic algorithms are example of		heuristic	Evolutionary algor	۸۲۸	PSO	b
43	mutation is applied on candidates.		one	two	more than two	noneof these	a
44	recombination is applied oncandidates.		one	two	more than two	noneof these	b
45	LCS belongs to based methods?		rule based learning		both a and b	noneof these	a
46	Survival is approach.		deteministic	0 0	semi deterministic		a
47							-
	Evolutionary algorithms are a based approach		heuristic		both a and b	noneof these PSO	a
48	Tabu search is an example of ?		heuristic	Evolutionary algor			a
49	Genetic algorithms are example of		heuristic	Evolutionary algor		PSO	b
50	Idea of genetic algorithm came from		machines		ACO	genetics	d
51	Chromosomes are actually ?		line representation		Circular representat		b
52	what are the parameters that affect GA are/is		selection process	initial population		none of these	C
	Evolutionary programming was developef by		Fredrik	0 -	Frank	Flin	b
	Evolution Strategies is developed with		selection		a population of size		d
55	Evolution Strategies typically uses		real-valued vector re	vector representa	time based represer	none of these	a
56	in ES survival is		indeterministic	deterministic	both a and b	none of these	d
57	What is the first step in Evolutionary algorithm		Termination	selection	Recombination	Initialization	d
58	Elements of ES are/is		Parent population siz	Survival populatio	both a and b	none of these	С
59	What are different types of crossover		discrete and interme	discrete and conti	continuous and inte	none of these	a
60	Determining the duration of the simulation occurs before the model is	validated and tes	TRUE	FALSE			В
61	cannot easily be transferred from one problem domain to a	nother	optimal solution	analytical solution	simulation solutuon	none of these	С
62	Discrete events and agent-based models are usuallly used for	·	middle or low level o	high level of abstr	very high level of ab	none of these	Α
63	doesnot usually allow decision makers to see how a solution to a					Genetics, Easy problem	Α
64	EC stands for?		Evolutionary Comput	Evolutionary comp	Electronic computat	noneof these	а
65	GA stands for		genetic algorithm	genetic asssuranc	genese alforithm	noneof these	a
66	LCS stands for		learning classes syste	learning classifier	learned class system	noneof these	b
67	GBML stands for		Genese based Machi	Genes based mob	Genetic bsed machi	noneof these	С
68	EV is dominantly used for solving .		optimization problem	NP problem	simple problems	noneof these	a
69	EV is considered as?		adaptive		both a and b	noneof these	С
70	Idea of genetic algorithm came from		machines		ACO	genetics	d
71	Chromosomes are actually ?		line representation	String representat	Circular representat		b
<u> </u>	Parameters that affect GA		initial population	selection process		all of these	d
73	Fitness function should be		maximum		intermediate	noneof these	b
74	Evolutionary algorithms are a based approach		heuristic		both a and b	noneof these	a
75	Tabu search is an example of ?		heuristic	Evolutionary algor		PSO	a
76	Genetic algorithms are example of		heuristic	Evolutionary algor		PSO	b
77	mutation is applied on candidates.		one	, -	more than two	noneof these	a
78	recombination is applied oncandidates.		one	two	more than two	noneof these	a
79	Applying recombination and mutation leads to a set of new candidates		sub parents	parents	offsprings	grand child	C
13	decides who becomes parents and how many children the	, caneu as :	ann hai ciits	parents	onspings	granu ciniu	b
80	parents have.		narent combination	Parent selection	Parent mutation	Parent replace	υ
\vdash	parento nave.		parent combination	Survival	raient mutation	Parent replace	C
81			Parent Selection	Selection			L
01	Basic elements of EA are ?		methods	methods	both a and b	noneof these	
82	LCS belongs to based methods?		rule based learning			noneof these	a
OZ	res neignigs in nasen mermons;		i uie baseu leattiiilg	Benetic learning	טטנוו מ מווע ט	ווטוופטו נוופגפ	а

83	Survival is approach.	deteministic	non deterministic	semi deterministic	noneof these	a
0.4	There are also other operators, more linguistic in nature, called				None of the	
84	that can be applied to fuzzy set theory.	Hedges	Lingual Variable	Fuzz Variable	mentioned	a
	A fuzzy set has a membership function whose membership values					
	are strictly monotonically increasing or strictly monotonically					
85	decreasing or strictly monotonically increasing than strictly					
	monotonically decreasing with increasing values for elements in the			Non concave Fuzzy		
	universe	convex fuzzy set	concave fuzzy set	set	Non Convex Fuzzy set	a
	Which of the following neural networks uses supervised learning? (A) Multilayer perceptron (B) Self organizing feature map (C) Hopfield network	(A) only	(B) only	(A) and (B) only	(A) and (C) only	a
			distributive			
87	What is the feature of ANNs due to which they can deal with noisy,	associative nature of	nature of	both associative &	none of the	
	fuzzy, inconsistent data?	networks	networks	distributive	mentioned	С
88	Feature of ANN in which ANN creates its own organization or representation of information it receives during learning time is	Adaptive Learning	Self Organization	What-If Analysis	Supervised Learning	b
89	Any soft-computing methodology is characterised by		control actions are unambiguous and accurate	control actions is formally defined	algorithm which can easily adapt with the change of dynamic environment	d
90					none of the	
	For what purpose Feedback neural networks are primarily used?	classification	feature mapping	pattern mapping	mentioned	d
91	Operations in the neural networks can perform what kind of				none of the	
	operations?	serial	parallel	serial or parallel	mentioned	С
92	What is ART in neural networks?	automatic resonance theory	artificial resonance theory	adaptive resonance theory	none of the mentioned	С
02						
93		D:			Both Degree of truth	
	The values of the set membership is represented by	Discrete Set	Degree of truth	Probabilities	& Probabilities	C
	Given U = {1,2,3,4,5,6,7}					
94	A = {(3, 0.7), (5, 1), (6, 0.8)}					
	then A will be: (where ~ → complement)	{(4, 0.7), (2,1), (1,0.8)	{(4, 0.3.): (5, 0), (6	{(I, 1), (2, 1), (3, 0.3	{(3, 0.3), (6.0.2)}	с
95	What are the following sequence of steps taken in designing a fuzzy					
,,,	logic machine ?	Fuzzification → Rule	e Vazzifticanio)n De fO	eßidileidéiant ioant i o n R o ld	uzuzitiu antiidu matio Defu Dzif	i cætiföc ation → Fuzzification

	If A and D are to a form a set with an early and in formation	ı		ī	I	I
	If A and B are two fuzzy sets with membership functions					
96	$\mu A(x) = \{0.6, 0.5, 0.1, 0.7, 0.8\}$					
	μ B(x) = {0.9, 0.2, 0.6, 0.8, 0.5}					
	Then the value of $\mu(A \cup B)'(x)$ will be	(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	(0.6.0.2.0.1.0.7	(0.1.05.04.03.0	{0.1, 0.5, 0.4, 0.2, 0.3}	
	Their the value of μ(AOB) (x) will be	{0.9, 0.5, 0.6, 0.8, 0.8	{0.6, 0.2, 0.1, 0.7,	{0.1, 0.3, 0.4, 0.2, 0.	{0.1, 0.5, 0.4, 0.2, 0.5}	C
	Compute the value of adding the following two fuzzy integers:					
	compute the value of adding the following two fuzzy integers.					
	A = {(0.3,1), (0.6,2), (1,3), (0.7,4), (0.2,5)}					
	B = {(0.5,11), (1,12), (0.5,13)}					
97	(((((((((((((((((((((((((((((((((((((((
	Where fuzzy addition is defined as					
	$\mu A+B(z) = \max x+y=z \left(\min(\mu A(x), \mu B(x))\right)$					
	Then, f(A+B) is equal to	{(0.5,12), (0.6,13), (1,	{(0.5,12), (0.6,13)	{(0.3,12), (0.5,13), ({(0.3,12), (0.5,13), (0.6	d
98	A U (B U C) =			(A ∪ B) ∩ (A ∪ C)	B∩A∪C	b
	Consider a fuzzy set A defined on the interval X = [0, 10] of integers					
99	by the membership Junction					
99	$\mu A(x) = x / (x+2)$					
	Then the α cut corresponding to α = 0.5 will be	{0, 1, 2, 3, 4, 5, 6, 7, 8	{1, 2, 3, 4, 5, 6, 7,	{2, 3, 4, 5, 6, 7, 8, 9,	None of the above	С
100	The fuzzy proposition "IF X is E then Y is F" is a	conditional unqualifie	unconditional und	conditional qualifie	unconditional qualified	а
	Choose the correct statement					
	1. A fuzzy set is a crisp set but the reverse is not true					
	2. If A,B and C are three fuzzy sets defined over the same universe of					
101	discourse such that $A \le B$ and $B \le C$ and $A \le C$					
	3. Membership function defines the fuzziness in a fuzzy set					
	irrespecive of the elements in the set, which are discrete or					
	continuous	1 only	2 and 3	1,2 and 3	None of these	b
102	An equivalence between Fuzzy vs Probability to that of Prediction vs					
	Forecasting is	Fuzzy ≈ Prediction	Fuzzy ≈ Forecastir	Probability ≈ Foreca	None of these	b
103	Both fuzzy logic and artificial neural network are soft computing		l]		
	techniques because	Both gives precise an	ANN gives accura	In each, no precise	Fuzzy gives exact resul	1 ^C
104	A fuzzy set whose membership function has at least one element x in	cub named for-				
104	the universe whose membership value	sub normal fuzzy	normal for	sanyay fu	concove fur	 -
-	is unity is called	sets	normal fuzzy set	convex ruzzy set	concave fuzzy set	b
105	defines logic funtion of two prepositions	prepositions	Lingustic hedges	truth tables	inference rules	
	defines logic function of two prepositions	prepositions	Lingustic neages	נו ענוו נמטופג	interence rules	С
106	In fuzzy propositions, gives an approximate idea of the number of	Fuzzy predicate and				
100	elements of a subset fulfilling certain conditions		Fuzzy quantifiers	Fuzzy qualifiers	All of the above	b
	Commence of a subsect familing ecrean conditions	predicate modifiers	r azzy quantiners	r azzy quamicis	, iii oi tile above	~
107	Multiple conjuctives antecedents is method of in FLC	decomposition rule	formation of rule	truth tables	All of the above	la
4.00						-
108	Multiple disjuctives antecedents is method of in FLC	decomposition rule	formation of rule	truth tables	All of the above	a
ь	, .	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

		rule in zero order	rule in first order		I	
109	UE v. in A and v. in D than and /a in constant) in			both a and b		
	IF x is A and y is B then z=c (c is constant), is			both a and b	neither a nor b	a
110	A fuzzy set wherein no membership function has its value equal to 1		subnormal fuzzy			
	is called	normal fuzzy set	set.	convex fuzzy set	concave fuzzy set	b
			Control any two			
			combinations of			
		•	any two products			
111		•		_	Control a air craft and	
***			_	combination by	fuel level combination	
		synthesising a set of			by synthesising a set	
		linguistic control	obtained from	of linguistic control	of linguistic control	
		rules obtained from	experienced	rules obtained	rules obtained from	
		experienced human	human	from experienced	experienced human	
	Mamdani's Fuzzy Inference Method Was Designed To Attempt What?	operations.	operations.	human operations.	operations.	С
112		Model-Type and	Momfred-type	Mamdani-type and	Mihni-type and	
	What Are The Two Types Of Fuzzy Inference Systems?	System-Type	and Semigi-type	Sugeno-type	Sujgani-type	С
112				Fuzzy Logic		
113	What Is Another Name For Fuzzy Inference Systems?	Fuzzy Expert system	Fuzzy Modelling	Controller	All of the above	d
	·					
			(μ, λ)- selection			
l			based on the			
114			children only			
			(μ+λ)- selection			
			based on both			
			the set of parent	Children renlace		
	In Evolutionary programming, survival selection is		•	the parent	All the mentioned	a
	in Evolutionary programming, survival selection is	3010011	and cimaren	the parent	/ the mentioned	<u>u</u>
			(μ, λ)- selection			
			based on the			
115			children only			
			(μ+λ)- selection			
			., .			
			based on both	Children namber		
	In Franksian and short and a lastice in		the set of parent		All also as such as a distance di	
	In Evolutionary strategy, survival selection is	selection	and children	the parent	All the mentioned	b

			1			
116	In Evolutionary programming, recombination is	doesnot use recombination to produce offspring. It only uses mutation	uses recombination such as cross over to produce offspring	uses various recombination operators	none of the mentioned	a
117	In Evolutionary strategy, recombination is	doesnot use recombination to produce offspring. It only uses mutation	uses recombination such as cross over to produce offspring	uses various recombination operators	none of the mentioned	b
118	Step size in non-adaptive EP :	deviation in step sizes remain static	deviation in step sizes change over time using some deterministic function	deviation in step size change dynamically	size=1	a
119	Step size in dynamic EP :	deviation in step sizes remain static	deviation in step sizes change over time using some deterministic function	deviation in step size change dynamically	size=1	b
120	Step size in self-adaptive EP :	deviation in step sizes remain static	deviation in step sizes change over time using some deterministic function	deviation in step size change dynamically	size=1	С
121	What are normally the two best measurement units for an evolutionary algorithm? 1. Number of evaluations 2. Elapsed time 3. CPU Time 4. Number of generations	1 and 2	2 and 3	3 and 4	1 and 4	d
122	Evolutionary Strategies (ES)	(μ,λ): Select survivors among parents and offspring	(μ+λ): Select survivors among parents and offspring	(μ-λ): Select survivors among offspring only	(μ:λ): Select survivors among offspring only	b

123
123 Individuals are represented as a represented as a represented as a valued vector Machine Individual solution is Individual solution
represented by real-finite State valued vector Machine binary string mentioned binary string binary string mentioned a binary string mentioned binary string mentioned binary string bin
In Evolutionary programming, Valued vector Machine Individuals solution is represented by real-valued vector Machine Individuals are represented as a represented by real-valued vector Machine Individuals are represented as a represented by real-valued vector Machine Individuals are represented as a represented as a represented as a parent if offspring becomes Machine Individuals are represented as a represented as a parent if offspring's fitness is as good as parent of next generation Machine Individuals are represented as a parent if offspring's fitness is as good as parent of next generated parent by default Individuals are represented as a parent if offspring's fitness is as good as parent of next generated parent Individuals are represented as a parent if offspring's fitness is as good as parent of next generated Individuals are represented as a parent if offspring becomes Individuals are represented as a parent parent Individuals are represented as parent parent parent Individuals are represented as parent parent Individuals are represented parent parent Individuals are represented parent parent Individuals are represented parent parent parent parent Individuals are represented parent parent parent parent parent Individuals are represented parent paren
Individuals are represented by real-finite State valued vector Individuals are represented by real-finite State valued vector Individuals are represented by real-finite State valued vector Individuals are represented as binary string Individuals are represented to perpendent as a parent of offsp
124 In Evolutionary Strategy, In Evolutionary Strat
Individuals are represented by real-line State valued vector In Evolutionary Strategy, Individuals are represented by real-line State valued vector Machine In Evolutionary Strategy, Individuals are represented as a parent if offspring becomes parent if offspring's fitness is as good as parent of next generation Individuals are represented as a lindividuals are represented as binary string mentioned and a lindividuals are represented as binary string mentioned and a lindividuals are represented as binary string mentioned and a lindividuals are represented as binary string mentioned and a lindividuals are represented as binary string mentioned and a lindividuals are represented as binary string mentioned and a lindividuals are represented as binary string mentioned and a lindividuals are represented as binary string mentioned and a lindividuals are represented as binary string mentioned and a lindividuals are represented as binary string mentioned and a lindividuals are represented as binary string mentioned and a lindividuals are represented as binary string mentioned and a lindividuals are represented as binary string mentioned and a lindividuals are represented
represented by real- Finite State valued vector Machine binary string mentioned a offspring becomes parent if offspring's fitness is as good as parent of next generation parent by default (1+1) ES 126 (1+1) ES 127 128 Which of the following operator is simplest selection operator? represented by real- Finite State walued vector Machine binary string merepresented as binary string mentioned a
represented by real- Finite State valued vector Machine binary string mentioned a offspring becomes parent if offspring's fitness is as good as parent of next generation parent by default (1+1) ES 126 (1+1) ES 127 128 Which of the following operator is simplest selection operator? represented by real- Finite State walued vector Machine binary string mentioned a mentioned a finite state binary string mentioned offspring become offspring never generated offspring never parent by default becomes parent mentioned a mentioned a substitution offspring never generated from one one mutant is generated generated generated generated a substitution of strings and substitution of strings and substitution of strings and substitution of strings and substitution of selection one delection selection one a substitution of selection one of the mentioned and substitution offspring never generate becomes parent one of the mentioned and substitution offspring never generated becomes parent one of the mentioned and substitution offspring never generated becomes parent one offspring never generated parent by default becomes parent one offspring selection one
In Evolutionary Strategy, Valued vector Machine binary string mentioned a
offspring becomes parent if offspring's fitness is as good as parent of next generated from one parent by default (1+1) ES 126 (1+λ) ES 127 Termination condition for EA Which of the following operator is simplest selection operator? Offspring become offspring never parent of next generated offspring never parent by default becomes parent mentioned a mone of the mentioned a mone of the mentioned a maximal selection offspring never parent by default becomes parent mentioned a maximal selection offspring never parent parent by default becomes parent mentioned a maximal selection offspring never parent parent by default becomes parent mentioned a none mutant is generated generated generated a mone of the mentioned a maximal selection one mutant is generated generated generated and interest population diversty drops under a given threshold all the mentioned domain threshold selection one a maximal selection selection one a maximal selection one and interest parent parent parent by default becomes parent mentioned and mentioned and mentioned and mentioned and mentioned and mentioned domain threshold selection one and mentioned do
parent if offspring's fitness is as good as parent of next generation parent by default becomes parent parent becomes parent becomes parent becomes parent parent segment generated generated generated generated and becomes parent becomes parent parent becomes parent parent parent becomes parent parent parent generated generated generated generated generated and becomes parent becomes parent parent parent parent parent parent generated generated generated generated generated and population diveristy drops under a given population diveristy drops under a given threshold All the mentioned decomes parent parent parent parent generated generated generated generated generated generated generated generated and population diveristy drops under a given threshold All the mentioned decomes parent parent parent parent generated g
parent if offspring's fitness is as good as parent of next generation parent by default becomes parent parent becomes parent becomes parent becomes parent parent segment generated generated generated generated and becomes parent becomes parent parent becomes parent parent parent becomes parent parent parent generated generated generated generated generated and becomes parent becomes parent parent parent parent parent parent generated generated generated generated generated and population diveristy drops under a given population diveristy drops under a given threshold All the mentioned decomes parent parent parent parent generated generated generated generated generated generated generated generated and population diveristy drops under a given threshold All the mentioned decomes parent parent parent parent generated g
fitness is as good as parent of next generation parent by default becomes parent mentioned a 126 (1+1) ES 126 (1+λ) ES 127 Termination condition for EA 128 Which of the following operator is simplest selection operator? Indicates the generator of next generation parent by default becomes parent mentioned a A mutants can be generated from one one mutant is generated generated generated a 128 Which of the following operator is simplest selection operator? Indicates a good as parent of next generate becomes parent mentioned a 128 Which of the following operator is simplest selection operator? Indicates a good as parent of next generate becomes parent mentioned a 128 Which of the following operator is simplest selection operator? Indicates a good as parent of next generated becomes parent mentioned a 128 Which of the following operator is simplest selection operator? Indicates a good as parent of next generated becomes parent mentioned a 128 Indicates a good as offspring become offspring never becomes parent mentioned a 128 Indicates a good as parent by default becomes parent mentioned a 128 Indicates a good as parent by default becomes parent mentioned a 128 Indicates a good as parent by default becomes parent mentioned a 128 Indicates a good as parent by default becomes parent mentioned a 128 Indicates a good as parent by default becomes parent mentioned a 128 Indicates a good as parent by default becomes parent mentioned a 128 Indicates a good as parent by default becomes parent mentioned a 128 Indicates a good as parent by default becomes parent mentioned a 128 Indicates a good as parent by default becomes parent mentioned a 128 Indicates a good as parent by default becomes parent mentioned a Indicates a good as parent by default becomes parent mentioned a Indicates a good as a good as parent mentioned a Indicates a good as parent becomes parent mentioned a Indicates a good as parent becomes parent mentioned a Indicates a good as parent becomes parent becomes pa
parent of next generation parent by default becomes parent an one of the mentioned an
126 generation parent by default becomes parent mentioned a
126
126 generated from one parent generated gen
(1+λ) ES parent generated generated generated generated a
total number of fitness population diveristy drops reaches a given under a given threshold All the mentioned d Termination condition for EA 128 Which of the following operator is simplest selection operator? Random selection total number of fitness population diveristy drops under a given threshold All the mentioned d Proportional tournament selection selection none a
127 Termination condition for EA 128 Which of the following operator is simplest selection operator? Termination condition for EA Termination condition f
127
Termination condition for EA CPU time is elapsed CPU time is elapsed Proportional selection Random selection Mazimally allowed creaches a given threshold with threshold and threshold tournament selection Random selection CPU time is elapsed Proportional selection None a
Termination condition for EA 128 Which of the following operator is simplest selection operator? Random selection CPU time is elapsed limit threshold All the mentioned d Proportional selection selection none a
Which of the following operator is simplest selection operator? Random selection Proportional selection selection none a
Which of the following operator is simplest selection operator? Random selection selection none a
Which of the following operator is simplest selection operator? Random selection selection none a
evolutionary
programming doesnot programming doesnot
Single point two point use crossover
Which crossover operators are used in evolutionary programming? crossover crossover Uniform crossover operators d Operates on
(1+1) ES two of one zero populantion size of λ a
131 Evolutionary Genetic
Which of these emphasize of development of behavioral models? programming programming Genetic algorithm All the mentioned a
variation through
application of none of the
EP applies which evolutionary operators? mutation operators selection both a and b mentioned c
Stochastic Stochastic
Roulette wheel universal tournament
Which selection strategy works with negative fitness value? selection sampling selection Rank selection d

Unit II --SCOA MCQ on Fuzzy Logic

1. What is Fuzzy Logic?

- A. a method of reasoning that resembles human reasoning
- B. a method of question that resembles human answer
- C. a method of giving answer that resembles human answer.
- D. None of the Above

View Answer

Ans: A

Explanation: Fuzzy Logic (FL) is a method of reasoning that resembles human reasoning.

2. How many output Fuzzy Logic produce?

- A. 2
- B. 3
- C. 4
- D. 5

View Answer

Ans: A

Explanation: The conventional logic block that a computer can understand takes precise input and produces a definite output as TRUE or FALSE, which is equivalent to human's YES or NO.

3. Fuzzy Logic can be implemented in?

- A. Hardware
- B. software
- C. Both A and B
- D. None of the Above

View Answer

Ans: C

Explanation: It can be implemented in hardware, software, or a combination of both.

4. The truth values of traditional set theory isfuzzy set is	_ and that of
A. Either 0 or 1, between 0 & 1 B. Between 0 & 1, either 0 or 1 C. Between 0 & 1, between 0 & 1 D. Either 0 or 1, either 0 or 1 View Answer Ans: A	
Explanation: Refer the definition of Fuzzy set and Crisp set.	
5. How many main parts are there in Fuzzy Logic Syste	ms Architecture?
A. 3 B. 4 C. 5 D. 6 View Answer Ans : B	
Explanation: It has four main parts.	
6. Each element of X is mapped to a value between 0 and ———————————————————————————————————	nd 1. It is called
Explanation: each element of X is mapped to a value between 0 and membership value or degree of membership.	1. It is called

7. How many level of fuzzifier is there?
A. 4 B. 5 C. 6 D. 7 View Answer Ans : B
Explanation: There is 5 level to fuzzifier
8. Fuzzy Set theory defines fuzzy operators. Choose the fuzzy operators from the following.
A. AND B. OR C. NOT D. All of the above View Answer Ans: D
Explanation: The AND, OR, and NOT operators of Boolean logic exist in fuzzy logic, usually defined as the minimum, maximum, and complement;
9. The room temperature is hot. Here the hot (use of linguistic variable is used) can be represented by
A. Fuzzy Set B. Crisp Set C. Both A and B D. None of the Above View Answer Ans: A
Explanation: Fuzzy logic deals with linguistic variables.

10. What action to take when IF (temperature=Warm) AND (target=Warm) THEN?

- A. Heat
- B. No_Change
- C. Cool
- D. None of the Above

View Answer

Ans: B

Explanation: IF (temperature=Warm) AND (target=Warm) THEN No_change

11. What is the form of Fuzzy logic?

- A. Two-valued logic
- B. Crisp set logic
- C. Many-valued logic
- D. Binary set logic

View Answer

Ans: C

Explanation: With fuzzy logic set membership is defined by certain value. Hence it could have many values to be in the set.

12. Who was the inventor of Fuzzy Logic?

- A. doug cutting
- B. John McCarthy
- C. Lotfi Zadeh
- D. John cutting

View Answer

Ans: C

Explanation: The inventor of fuzzy logic, Lotfi Zadeh

- 13. Traditional set theory is also known as Crisp Set theory.
 - A. TRUE
 - B. FALSE
 - C. Traditional set theory is not there.
 - D. None of the Above

Ans: A

Explanation: Traditional set theory set membership is fixed or exact either the member is in the set or not. There is only two crisp values true or false.

- 14. Fuzzy logic is useful for both commercial and practical purposes.
 - A. True, False
 - B. True, True
 - C. False, False
 - D. False, True

View Answer

Ans : B

Explanation: Fuzzy logic is useful for commercial and practical purposes.

- 15. Which of the following is not a part of fuzzy logic Systems Architecture?
 - A. Fuzzification Module
 - B. Knowledge Base
 - C. Defuzzification Module
 - D. Interference base

View Answer

Ans: D

Explanation: Interference base is not a part of fuzzy logic Systems Architecture.

16. In Membership function graph x-axis represent?
A. universe of discourse. B. degrees of membership in the [0, 1] interval C. degrees of discourse D. Universe of membership View Answer Ans: A
Explanation: x axis represents the universe of discourse.
17. Fuzzy logic is usually represented as
A. IF-THEN-ELSE rules B. IF-THEN rules C. Both IF-THEN-ELSE rules & IF-THEN rules D. None of the Above View Answer Ans: C
Explanation: Fuzzy logic is usually represented as Both IF-THEN-ELSE rules & IF-THEN rules
18. The values of the set membership is represented by
A. Discrete Set B. Degree of truth C. Probabilities D. Both Degree of truth & Probabilities View Answer Ans: D

Explanation: Both Probabilities and degree of truth ranges between 0 to 1.

- 19. What action to take when IF temperature=(Hot OR Very_Hot) AND target=Warm THEN?
 - A. Heat
 - B. No_Change
 - C. Cool
 - D. None of the Above

Ans: C

Explanation: IF temperature=(Hot OR Very_Hot) AND target=Warm THEN Cool

- 20. Which of the following is not Application Areas of Fuzzy Logic?
 - A. Automotive Systems
 - B. Domestic Goods
 - C. Domestic Control
 - D. Environment Control

View Answer

Ans: C

Explanation: Domestic Controlis not Application Areas of Fuzzy Logic

Membership Functions

- 21. Membership function defines the fuzziness in a fuzzy set irrespective of the elements in the set, which are discrete or continuous.
 - A.True
 - **B.**False
- 22. The membership functions are generally represented in
 - A.Tabular Form

B.Graphical Form
C.Mathematical Form
D.Logical Form
23. Membership function can be thought of as a technique to solve empirical problems on the basis of
A. Knowledge
B. Example
c. Learning
D. Experince
24. Three main basis factures involved in observatorizing membership function are
24. Three main basic features involved in characterizing membership function are A.Intution, Inference, Rank Ordering
B.Fuzzy Algorithm, Neural network, Genetic Algorithm
C.Core, Support , Boundary
D.Weighted Average, center of Sums, Median
D. Weighted Average, center of Sums, Wedian
25. The region of universe that is characterized by complete membership in the set called
A.Core
B. Support
C.Boundary
D. Fuzzy
26. A fuzzy set whose membership function has at least one element x in the universe whose membership value is unity is called
A.sub normal fuzzy sets
B.normal fuzzy set

C.convex fuzzy set
D.concave fuzzy set
27. In a Fuzzy set a prototypical element has a value
A.1
B. 0
C.infinite
D.Not defined
28. A fuzzy set wherein no membership function has its value equal to 1 is called
A.normal fuzzy set
B.Subnormal fuzzy set.
C.convex fuzzy set
D.concave fuzzy set
29. A fuzzy set has a membership function whose membership values are strictly monotonically increasing or strictly monotonically decreasing or strictly monotonically increasing than strictly monotonically decreasing with increasing values for elements in the universe
A.convex fuzzy set
B.concave fuzzy set
C.Non concave Fuzzy set
D.Non Convex Fuzzy set

The membership values of the membership function are nor strictly monotonically reasing or decreasing or strictly monoronically increasing than decreasing.
A.Convex Fuzzy Set
B.Non convex fuzzy set
C.Normal Fuzzy set
D. Sub normal fuzzy set
The crossover points of a membership function are defined as the elements in the verse for which a particular fuzzy set has values equal to
A. infinite
B.1
C .0
D.0.5
32. Fuzzy Computing
A.doesnt deal with 2 valued logic
B.mimics human behaviour
C.deals with information which is vague, imprecise, uncertain, ambiguous, inexact, or probabilistic
D.All of the above

Unit IV

1. Artificial intelligence is

- **A.**It uses machine-learning techniques. Here program can learn From past experience and adapt themselves to new situations
- **B.**Computational procedure that takes some value as input and produces some value as output.
- C.Science of making machines performs tasks that would require intelligence when performed by humans
- **D.**None of these

2. Expert systems

- **A.**Combining different types of method or information
- **B.**Approach to the design of learning algorithms that is structured along the lines of the theory of evolution
- C.an information base filled with the knowledge of an expert formulated in terms of if-then rules
- **D**.None of these

3. Falsification is

- **A.**Modular design of a software application that facilitates the integration of new modules
- B.Showing a universal law or rule to be invalid by providing a counter example
- **C.**A set of attributes in a database table that refers to data in another table
- **D.**None of these

4. Evolutionary computation is

- **A.**Combining different types of method or information
- B.Approach to the design of learning algorithms that is structured along the lines of the theory of evolution.
- **C.**Decision support systems that contain an information base filled with the knowledge of an expert formulated in terms of if-then rules.
- **D.**None of these

5. Genetic Algorithm are a part of

- **A.**Evolutionary Computing
- **B.**inspired by Darwin's theory about evolution "survival of the fittest"
- **C.** are adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and genetics
- D All of the above

.

6. What are the 2 types of learning

- A.Improvised and unimprovised
- **B.**supervised and unsupervised
- **C.**Layered and unlayered
- **D.**None of the above

7. Supervised Learning is

- **A.**learning with the help of examples
- **B.**learning without teacher
- C.learning with the help of teacher
- **D.**learning with computers as supervisor

8. Unsupervised learning is

A.	learning without computers
В.	problem based learning
C.	
D.	learning from teachers

9. Conventional Artificial Intelligence is different from soft computing in the sense

- **A.**Conventional Artificial Intelligence deal with prdicate logic where as soft computing deal with fuzzy logic
- **B.**Conventional Artificial Intelligence methods are limited by symbols where as soft computing is based on empirical data
- C.Both (a) and (b)
- **D.**None of the above

10. In supervised learning

- A. classes are not predefined
- B. classes are predefined
- C. classes are not required
- D. classification is not done

11.Shallow knowledge

- **A.**The large set of candidate solutions possible for a problem
- B.The information stored in a database that can be, retrieved with a single query
- **C.**Worth of the output of a machine learning program that makes it understandable for humans
- D.None of these

12. Quantitative attributes are

- **A.**A reference to the speed of an algorithm, which is quadratically dependent on the size of the data
- B.Attributes of a database table that can take only numerical values
- C.Tools designed to query a database
- **D.**None of these

13: Subject orientation

- **A.**The science of collecting, organizing, and applying numerical facts
- **B.**Measure of the probability that a certain hypothesis is incorrect given certain observations.
- C.One of the defining aspects of a data warehouse, which is specially built around all the existing applications of the operational data
- **D.**None of these

Vector

- **A.**It do not need the control of the human operator during their execution
- B.An arrow in a multi-dimensional space. It is a quantity usually characterized by an ordered set of scalars
- **C.**The validation of a theory on the basis of a finite number of examples
- **D**. None of these

15. Transparency

- **A.**The large set of candidate solutions possible for a problem
- **B.**The information stored in a database that can be retrieved with a single query
- C.Worth of the output of a machine learning program that makes it understandable for humans
- D.None of these

16. Core of soft Computing is

- A.Fuzzy Computing, Neural Computing, Genetic Algorithms
- <u>B.</u>Fuzzy Networks and Artificial Intelligence
- <u>C.</u>Artificial Intelligence and Neural Science
- D. Neural Science and Genetic Science

17. Who initiated the idea of Soft Computing

- A.Charles Darwin
- B.Lofti A Zadeh
- **C.**Rechenberg
- **D.**Mc_Culloch

18. Fuzzy Computing

- A.mimics human behaviour
- B. doesnt deal with 2 valued logic
- <u>C.</u>deals with information which is vague, imprecise, uncertain, ambiguous, inexact, or probabilistic
- D.All of the above

19. Neural Computing

- **A.**mimics human brain
- **B.**information processing paradigm
- **C.**Both (a) and (b)
- **D.**None of the above

20. Genetic Algorithm are a part of

- **A.**Evolutionary Computing
- B.inspired by Darwin's theory about evolution "survival of the fittest"
- $\underline{\mathbf{C}}$ are adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and genetics
- D.All of the above

21. What are the 2 types of learning

A.Improvised and unimprovised

B.supervised and unsupervised

C.Layered and unlayered

D.None of the above

22. Supervised Learning is

A.learning with the help of examples

B.learning without teacher

C.learning with the help of teacher

D.learning with computers as supervisor

23. Unsupervised learning is

A.	learning without computers
B.	problem based learning
C.	learning from environment
D.	learning from teachers

24. Conventional Artificial Intelligence is different from soft computing in the sense

A.Conventional A	rtificial Inte	elligence	deal w	ith prdic	cate lo	ogic w	here	as:	soft
computing deal	with fuzzy	/ logic							

<u>B.</u>Conventional Artificial Intelligence methods are limited by symbols where as soft computing is based on empirical data

C.Both (a) and (b)

D. None of the above

25. In supervised learning

<u>A.</u>	classes are not predefined
<u>B.</u>	classes are predefined
<u>C.</u>	classes are not required
<u>D.</u>	classification is not done

26. Massively parallel machine is

- A.A programming language based on logic
- B.A computer where each processor has its own operating system, its own memory, and its own hard disk
- <u>C.</u>Describes the structure of the contents of a database.
- D.None of these

27. Search space

- <u>A.</u>The large set of candidate solutions possible for a problem
- **B.** The information stored in a database that can be, retrieved with a single query.
- C. Worth of the output of a machine learning program that makes it understandable for humans
- **D.**None of these

28. n(log n) is referred to

- A.A measure of the desired maximal complexity of data mining algorithms
- **B.**A database containing volatile data used for the daily operation of an organization
- <u>C.</u>Relational database management system
- D. None of these

29. Perceptron is

- <u>A.</u>General class of approaches to a problem.
- <u>B.</u>Performing several computations simultaneously
- <u>C.</u>Structures in a database those are statistically relevant
- <u>D.</u>Simple forerunner of modern neural networks, without hidden layers

30. Prolog is

A.A programming language based on logic

- $\underline{\mathbf{B.}}$ A computer where each processor has its own operating system, its own memory, and its own hard disk
- **C.**Describes the structure of the contents of a database
- **D.**None of these

31.

Artificial Intelligence Questions and Answers – Fuzzy Logic – 1

This set of Artificial Intelligence MCQs focuses on "Fuzzy Logic -1".

 Fuzzy logic is a form of a) Two-valued logic b) Crisp set logic c) Many-valued logic d) Binary set logic View Answer
Answer: c Explanation: With fuzzy logic set membership is defined by certain value. Hence it could have many values to be in the set.
2. Traditional set theory is also known as Crisp Set theory.a) Trueb) FalseView Answer
Answer: a Explanation: Traditional set theory set membership is fixed or exact either the member is in the set or not. There is only two crisp values true or false. In case of fuzzy logic there are many values. With weight say x the member is in the set
3. The truth values of traditional set theory is and that of fuzzy set is
a) Either 0 or 1, between 0 & 1 b) Between 0 & 1, either 0 or 1 c) Between 0 & 1, between 0 & 1 d) Either 0 or 1, either 0 or 1 View Answer
Answer: a Explanation: Refer the definition of Fuzzy set and Crisp set.
4. Fuzzy logic is extension of Crisp set with an extension of handling the concept of Partial Truth.a) Trueb) FalseView Answer
Answer: a Explanation: None. advertisements
wa , or about of the

5. How many types of random variables are available? a) 1 b) 2 c) 3 d) 4 View Answer Answer: c Explanation: The three types of random variables are Boolean, discrete and continuous.
6. The room temperature is hot. Here the hot (use of linguistic variable is used) can be represented by a) Fuzzy Set b) Crisp Set View Answer
Answer: a Explanation: Fuzzy logic deals with linguistic variables.
7. The values of the set membership is represented by a) Discrete Set b) Degree of truth c) Probabilities d) Both b & c View Answer
Answer: b Explanation: Both Probabilities and degree of truth ranges between $0-1$.
 8. What is meant by probability density function? a) Probability distributions b) Continuous variable c) Discrete variable d) Probability distributions for Continuous variables View Answer
Answer: d Explanation: None. advertisements
9. Japanese were the first to utilize fuzzy logic practically on high-speed trains in Sendai. a) True b) False View Answer Answer: a Explanation: None.
10. Which of the following is used for probability theory sentences?a) Conditional logic

- b) Logic
- c) Extension of propositional logic
- d) None of the mentioned

Answer: c

Explanation: The version of probability theory we present uses an extension of propositional logic for its sentences.

Artificial Intelligence Questions and Answers – Fuzzy Logic – 2

This set of Artificial Intelligence MCQs focuses on "Fuzzy Logic -2".

- 1. Fuzzy Set theory defines fuzzy operators. Choose the fuzzy operators from the following.
- a) AND
- b) OR
- c) NOT
- d) EX-OR

View Answer

Answer:	a,	b,	c

Explanation: The AND, OR, and NOT operators of Boolean logic exist in fuzzy logic, usually defined as the minimum, maximum, and complement;

- 2. There are also other operators, more linguistic in nature, called _____ that can be applied to fuzzy set theory.
- a) Hedges
- b) Lingual Variable
- c) Fuzz Variable
- d) None of the mentioned

View Answer

Answer: a

Explanation: None.

- 3. Where does the Bayes rule can be used?
- a) Solving queries
- b) Increasing complexity
- c) Decreasing complexity
- d) Answering probabilistic query

View Answer

Answer: d

Explanation: Bayes rule can be used to answer the probabilistic queries conditioned on one piece of evidence.

- 4. What does the Bayesian network provides?
- a) Complete description of the domain
- b) Partial description of the domain
- c) Complete description of the problem
- d) None of the mentioned

Answer: a

Explanation: A Bayesian network provides a complete description of the domain. advertisements

- 5. Fuzzy logic is usually represented as
- a) IF-THEN-ELSE rules
- b) IF-THEN rules
- c) Both a & b
- d) None of the mentioned

View Answer

Answer: b

Explanation: Fuzzy set theory defines fuzzy operators on fuzzy sets. The problem in applying this is that the appropriate fuzzy operator may not be known. For this reason, fuzzy logic usually uses IF-THEN rules, or constructs that are equivalent, such as fuzzy associative matrices.

Rules are usually expressed in the form:

IF variable IS property THEN action

- 6. Like relational databases there does exists fuzzy relational databases.
- a) True
- b) False

View Answer

Answer: a

Explanation: Once fuzzy relations are defined, it is possible to develop fuzzy relational databases. The first fuzzy relational database, FRDB, appeared in Maria Zemankova's dissertation.

7	is/are the way/s to represent uncertainty.
a) Fuzzy Logic	
b) Probability	
c) Entropy	
d) All of the mention	ned
View Answer	

Answer: d

Explanation: Entropy is amount of uncertainty involved in data. Represented by H(data).

- 8. _____ are algorithms that learn from their more complex environments (hence eco) to generalize, approximate and simplify solution logic.
- a) Fuzzy Relational DB
- b) Ecorithms

- c) Fuzzy Set
- d) None of the mentioned

Answer: c

Explanation: Local structure is usually associated with linear rather than exponential growth in complexity.

advertisements

- 9. Which condition is used to influence a variable directly by all the others?
- a) Partially connected
- b) Fully connected
- c) Local connected
- d) None of the mentioned

View Answer Answer: b

Explanation: None.

- 10. What is the consequence between a node and its predecessors while creating Bayesian network?
- a) Conditionally dependent
- b) Dependent
- c) Conditionally independent
- d) Both a & b

View Answer

Answer: c

Explanation: The semantics to derive a method for constructing Bayesian networks were led to the consequence that a node can be conditionally independent of its predecessors

Artificial Intelligence Questions and Answers – Neural Networks – 1

This set of Artificial Intelligence MCQs focuses on "Neural Networks – 1".
1. A 3-input neuron is trained to output a zero when the input is 110 and a one when the input is 111. After generalization, the output will be zero when and only when the input is:
a) 000 or 110 or 011 or 101
b) 010 or 100 or 110 or 101
c) 000 or 010 or 110 or 100
d) 100 or 111 or 101 or 001
View Answer
Answer: c
Explanation: The truth table before generalization is:
Inputs Output
000 \$
001 \$
010 \$
011 \$
100 \$
101 \$
110 0
111 1
where \$ represents don't know cases and the output is random.
After generalization, the truth table becomes:
Inputs Output
000 0
001 1
010 0
011 1
100 0
101 1
110 0
111 1

- 2. A perceptron is:
- a) a single layer feed-forward neural network with pre-processing
- b) an auto-associative neural network
- c) a double layer auto-associative neural network
- d) a neural network that contains feedback

View Answer

Answer: a

Explanation: The perceptron is a single layer feed-forward neural network. It is not an

auto-associative network because it has no feedback and is not a multiple layer neural network because the pre-processing stage is not made of neurons.

- 3. An auto-associative network is:
- a) a neural network that contains no loops
- b) a neural network that contains feedback
- c) a neural network that has only one loop
- d) a single layer feed-forward neural network with pre-processing View Answer

Answer: b

Explanation: An auto-associative network is equivalent to a neural network that contains feedback. The number of feedback paths(loops) does not have to be one.

- 4. A 4-input neuron has weights 1, 2, 3 and 4. The transfer function is linear with the constant of proportionality being equal to 2. The inputs are 4, 10, 5 and 20 respectively. The output will be:
- a) 238
- b) 76
- c) 119
- d) 123

View Answer

Answer: a

Explanation: The output is found by multiplying the weights with their respective inputs, summing the results and multiplying with the transfer function. Therefore: Output = 2 * (1*4 + 2*10 + 3*5 + 4*20) = 238.

advertisements

- 5. Which of the following is true?
- (i) On average, neural networks have higher computational rates than conventional computers.
- (ii) Neural networks learn by example.
- (iii) Neural networks mimic the way the human brain works.
- a) All of the mentioned are true
- b) (ii) and (iii) are true
- c) (i), (ii) and (iii) are true
- d) None of the mentioned

View Answer

Answer: a

Explanation: Neural networks have higher computational rates than conventional computers because a lot of the operation is done in parallel. That is not the case when the neural network is simulated on a computer. The idea behind neural nets is based on the way the human brain works. Neural nets cannot be programmed, they cam only learn by examples.

- 6. Which of the following is true for neural networks?
- (i) The training time depends on the size of the network.
- (ii) Neural networks can be simulated on a conventional computer.
- (iii) Artificial neurons are identical in operation to biological ones.

- a) All of the mentioned
- b) (ii) is true
- c) (i) and (ii) are true
- d) None of the mentioned

Answer: c

Explanation: The training time depends on the size of the network; the number of neuron is greater and therefore the number of possible 'states' is increased. Neural networks can be simulated on a conventional computer but the main advantage of neural networks – parallel execution – is lost. Artificial neurons are not identical in operation to the biological ones.

- 7. What are the advantages of neural networks over conventional computers?
- (i) They have the ability to learn by example
- (ii) They are more fault tolerant
- (iii)They are more suited for real time operation due to their high 'computational' rates
- a) (i) and (ii) are true
- b) (i) and (iii) are true
- c) Only (i)
- d) All of the mentioned

View Answer

Answer: d

Explanation: Neural networks learn by example. They are more fault tolerant because they are always able to respond and small changes in input do not normally cause a change in output. Because of their parallel architecture, high computational rates are achieved.

8. Which of the following is true?

Single layer associative neural networks do not have the ability to:

- (i) perform pattern recognition
- (ii) find the parity of a picture
- (iii)determine whether two or more shapes in a picture are connected or not
- a) (ii) and (iii) are true
- b) (ii) is true
- c) All of the mentioned
- d) None of the mentioned

View Answer

Answer: a

Explanation: Pattern recognition is what single layer neural networks are best at but they don't have the ability to find the parity of a picture or to determine whether two shapes are connected or not.

advertisements

- 9. Which is true for neural networks?
- a) It has set of nodes and connections
- b) Each node computes it's weighted input

c) Node could be in excited state or non-excited state

d) All of the mentioned

View Answer Answer: d

Explanation: All mentioned are the characteristics of neural network.

- 10. Neuro software is:
- a) A software used to analyze neurons
- b) It is powerful and easy neural network
- c) Designed to aid experts in real world
- d) It is software used by Neuro surgeon

View Answer

Answer: b

Explanation: None.

Artificial Intelligence Questions and Answers – Neural Networks – 2

This set of Artificial Intelligence MCQs focuses on "Neural Networks -2".

- 1. Why is the XOR problem exceptionally interesting to neural network researchers?
- a) Because it can be expressed in a way that allows you to use a neural network
- b) Because it is complex binary operation that cannot be solved using neural networks
- c) Because it can be solved by a single layer perceptron
- d) Because it is the simplest linearly inseparable problem that exists.

View Answer

Answer: d

Explanation: None.

- 2. What is back propagation?
- a) It is another name given to the curvy function in the perceptron
- b) It is the transmission of error back through the network to adjust the inputs
- c) It is the transmission of error back through the network to allow weights to be adjusted so that the network can learn.
- d) None of the mentioned

View Answer

Answer: c

Explanation: Back propagation is the transmission of error back through the network to allow weights to be adjusted so that the network can learn.

- 3. Why are linearly separable problems of interest of neural network researchers?
- a) Because they are the only class of problem that network can solve successfully
- b) Because they are the only class of problem that Perceptron can solve successfully

- c) Because they are the only mathematical functions that are continue
- d) Because they are the only mathematical functions you can draw View Answer

Answer: b

Explanation: Linearly separable problems of interest of neural network researchers because they are the only class of problem that Perceptron can solve successfully

- 4. Which of the following is not the promise of artificial neural network?
- a) It can explain result
- b) It can survive the failure of some nodes
- c) It has inherent parallelism
- d) It can handle noise

View Answer

Answer: a

Explanation: The artificial Neural Network (ANN) cannot explain result. advertisements

- 5. Neural Networks are complex _____ with many parameters.
- a) Linear Functions
- b) Nonlinear Functions
- c) Discrete Functions
- d) Exponential Functions

View Answer

Answer: a

Explanation: Neural networks are complex linear functions with many parameters.

- 6. A perceptron adds up all the weighted inputs it receives, and if it exceeds a certain value, it outputs a 1, otherwise it just outputs a 0.
- a) True
- b) False
- c) Sometimes it can also output intermediate values as well
- d) Can't say

View Answer

- 7. The name for the function in question 16 is
- a) Step function
- b) Heaviside function
- c) Logistic function
- d) Perceptron function

View Answer

Answer: b

Explanation: Also known as the step function – so answer 1 is also right. It is a hard thresholding function, either on or off with no in-between.

8. Having multiple perceptrons can actually solve the XOR problem satisfactorily: this is because each perceptron can partition off a linear part of the space itself, and they can then combine their results.

- a) True this works always, and these multiple perceptrons learn to classify even complex problems.
- b) False perceptrons are mathematically incapable of solving linearly inseparable functions, no matter what you do
- c) True perceptrons can do this but are unable to learn to do it they have to be explicitly hand-coded
- d) False just having a single perceptron is enough

Answer:	C
I IIIS W CI.	•

Explanation: None.

advertisements

- 9. The network that involves backward links from output to the input and hidden layers is called as
- a) Self organizing maps
- b) Perceptrons
- c) Recurrent neural network
- d) Multi layered perceptron

View Answer

Answer: c

Explanation: RNN (Recurrent neural network) topology involves backward links from output to the input and hidden layers.

- 10. Which of the following is an application of NN (Neural Network)?
- a) Sales forecasting
- b) Data validation
- c) Risk management
- d) All of the mentioned

View Answer

Answer: d

Explanation: All mentioned options are applications of Neural Network

Artificial Intelligence Questions and Answers – Learning – 3

This set of Artificial Intelligence MCQs focuses on "Learning – 3".

- 1. Which is not a desirable property of a logical rule-based system?
- a) Locality
- b) Attachment
- c) Detachment
- d) Truth-Functionality

e) Global attribute

View Answer

Answer: b

Explanation: Locality: In logical systems, whenever we have a rule of the form A => B, we can conclude B, given evidence A, without worrying about any other rules. Detachment: Once a logical proof is found for a proposition B, the proposition can be used regardless of how it was derived .That is, it can be detachment from its justification. Truth-functionality: In logic, the truth of complex sentences can be computed from the truth of the components. However, there are no Attachment properties lies in a Rule-based system. Global attribute defines a particular problem space as user specific and changes according to user's plan to problem.

- 2. How is Fuzzy Logic different from conventional control methods?
- a) IF and THEN Approach
- b) FOR Approach
- c) WHILE Approach
- d) DO Approach
- e) Else If approach

View Answer

Answer: a

Explanation: FL incorporates a simple, rule-based IF X AND Y THEN Z approach to a solving control problem rather than attempting to model a system mathematically.

- 3. In an Unsupervised learning
- a) Specific output values are given
- b) Specific output values are not given
- c) No specific Inputs are given
- d) Both inputs and outputs are given
- e) Neither inputs nor outputs are given

View Answer

Answer: b

Explanation: The problem of unsupervised learning involves learning patterns in the input when no specific output values are supplied. We cannot expect the specific output to test your result. Here the agent does not know what to do, as he is not aware of the fact what propose system will come out. We can say an ambiguous un-proposed situation.

- 4. Inductive learning involves finding a
- a) Consistent Hypothesis
- b) Inconsistent Hypothesis
- c) Regular Hypothesis
- d) Irregular Hypothesis
- e) Estimated Hypothesis

Answer: a

Explanation: Inductive learning involves finding a consistent hypothesis that agrees with examples. The difficulty of the task depends on the chosen representation.

advertisements

- 5. Computational learning theory analyzes the sample complexity and computational complexity of
- a) Unsupervised Learning
- b) Inductive learning
- c) Forced based learning
- d) Weak learning
- e) Knowledge based learning

View Answer

Answer: b

Explanation: Computational learning theory analyzes the sample complexity and computational complexity of inductive learning. There is a tradeoff between the expressiveness of the hypothesis language and the ease of learning.

- 6. If a hypothesis says it should be positive, but in fact, it is negative, we call it
- a) A consistent hypothesis
- b) A false negative hypothesis
- c) A false positive hypothesis
- d) A specialized hypothesis
- e) A true positive hypothesis

View Answer

Answer: c

Explanation: Consistent hypothesis go with examples, If the hypothesis says it should be negative but infect it is positive, it is false negative. If a hypothesis says it should be positive, but in fact, it is negative, it is false positive. In a specialized hypothesis we need to have certain restrict or special conditions.

7. Neural Networks are complex ————	-with man	y parameters.
-------------------------------------	-----------	---------------

- a) Linear Functions
- b) Nonlinear Functions
- c) Discrete Functions
- d) Exponential Functions
- e) Power Functions

View Answer

Answer: b

Explanation: Neural networks parameters can be learned from noisy data and they have been used for thousands of applications, so it varies from problem to problem and thus use nonlinear functions.

\sim			•	
v	Λ	perceptron	10	0
\circ	$\overline{}$	Dercention	15	4

- a) Feed-forward neural network
- b) Back-propagation algorithm
- c) Back-tracking algorithm
- d) Feed Forward-backward algorithm

e) Optimal algorithm with Dynamic programming View Answer

Answer: a

Explanation: A perceptron is a Feed-forward neural network with no hidden units that can be representing only linear separable functions. If the data are linearly separable, a simple weight updated rule can be used to fit the data exactly.

advertisements

- 9. Which of the following statement is true?
- a) Not all formal languages are context-free
- b) All formal languages are Context free
- c) All formal languages are like natural language
- d) Natural languages are context-oriented free
- e) Natural language is formal

View Answer

Answer: a

Explanation: Not all formal languages are context-free.

- 10. Which of the following statement is not true?
- a) The union and concatenation of two context-free languages is context-free
- b) The reverse of a context-free language is context-free, but the complement need not be
- c) Every regular language is context-free because it can be described by a regular grammar
- d) The intersection of a context-free language and a regular language is always context-free
- e) The intersection two context-free languages is context-free View Answer

Answer: e

Explanation: The union and concatenation of two context-free languages is context-free; but intersection need not be.

Artificial Intelligence Questions and Answers – Learning – 2

This set of Artificial Intelligence MCQs focuses on "Learning – 2".

- 1. Factors which affect the performance of learner system does not include
- a) Representation scheme used
- b) Training scenario
- c) Type of feedback
- d) Good data structures

Answer: d

Explanation: Factors which affect the performance of learner system does not include good data structures.

- 2. Different learning method does not include:
- a) Memorization
- b) Analogy
- c) Deduction
- d) Introduction

View Answer

Answer: d

Explanation: Different learning methods include memorization, analogy and deduction.

- 3. Which of the following is the model used for learning?
- a) Decision trees
- b) Neural networks
- c) Propositional and FOL rules
- d) All of the mentioned

View Answer

Answer: d

Explanation: Decision trees, Neural networks, Propositional rules and FOL rules all are the models of learning.

- 4. Automated vehicle is an example of _____.
- a) Supervised learning
- b) Unsupervised learning
- c) Active learning
- d) Reinforcement learning

View Answer

Answer: a

Explanation: In automatic vehicle set of vision inputs and corresponding actions are available to learner hence it's an example of supervised learning.

advertisements

- 5. Following is an example of active learning:
- a) News Recommender system
- b) Dust cleaning machine
- c) Automated vehicle
- d) None of the mentioned

View Answer

Answer: a

Explanation: In active learning, not only the teacher is available but the learner can ask suitable perception-action pair example to improve performance.

6. In which of the following learning the teacher returns reward and punishment to learner?

- a) Active learning
- b) Reinforcement learning
- c) Supervised learning
- d) Unsupervised learning

Answer: b

Explanation: Reinforcement learning is the type of learning in which teacher returns award or punishment to learner.

- 7. Decision trees are appropriate for the problems where:
- a) Attributes are both numeric and nominal
- b) Target function takes on a discrete number of values.
- c) Data may have errors
- d) All of the mentioned

View Answer

Answer: d

Explanation: Decision trees can be used in all the conditions stated.

- 8. Which of the following is not an application of learning?
- a) Data mining
- b) WWW
- c) Speech recognition
- d) None of the mentioned

View Answer

Answer: d

Explanation: All mentioned options are applications of learning.

advertisements

- 9. Which of the following is the component of learning system?
- a) Goal
- b) Model
- c) Learning rules
- d) All of the mentioned

View Answer

Answer: d

Explanation: Goal, model, learning rules and experience are the components of learning system.

- 10. Following is also called as exploratory learning:
- a) Supervised learning
- b) Active learning
- c) Unsupervised learning
- d) Reinforcement learning

Answer: c

Explanation: In unsupervised learning no teacher is available hence it is also called unsupervised learning.

Artificial Intelligence Questions and Answers – Learning – 1

This set of Artificial Intelligence MCQs focuses on "Learning – 1".

- 1. What will take place as the agent observes its interactions with the world?
- a) Learning
- b) Hearing
- c) Perceiving
- d) Speech

View Answer

Answer: a

Explanation: Learning will take place as the agent observes its interactions with the world and its own decision making process.

- 2. Which modifies the performance element so that it makes better decision?
- a) Performance element
- b) Changing element
- c) Learning element
- d) None of the mentioned

View Answer

Answer: c

Explanation: A learning element modifies the performance element so that it can make better decision.

- 3. How many things are concerned in design of a learning element?
- a) 1
- b) 2
- c) 3
- d) 4

View Answer

Answer: c

Explanation: The three main issues are affected in design of a learning element are components, feedback and representation.

- 4. What is used in determining the nature of the learning problem?
- a) Environment
- b) Feedback
- c) Problem
- d) All of the mentioned

Answer: b

Explanation: The type of feedback is used in determining the nature of the learning problem that the agent faces.

advertisements

- 5. How many types are available in machine learning?
- a) 1
- b) 2
- c) 3
- d) 4

View Answer

Answer: c

Explanation: The three types of machine learning are supervised, unsupervised and reinforcement.

- 6. Which is used for utility functions in game playing algorithm?
- a) Linear polynomial
- b) Weighted polynomial
- c) Polynomial
- d) Linear weighted polynomial

View Answer

Answer: d

Explanation: Linear weighted polynomial is used for learning element in the game playing programs.

- 7. Which is used to choose among multiple consistent hypotheses?
- a) Razor
- b) Ockham razor
- c) Learning element
- d) None of the mentioned

View Answer

Answer: b

Explanation: Ockham razor prefers the simplest hypothesis consistent with the data intuitively.

- 8. What will happen if the hypothesis space contains the true function?
- a) Realizable
- b) Unrealizable
- c) Both a & b
- d) None of the mentioned

View Answer

Answer: b

Explanation: A learning problem is realizable if the hypothesis space contains the true function.

advertisements

- 9. What takes input as an object described by a set of attributes?
- a) Tree

- b) Graph
- c) Decision graph
- d) Decision tree

Answer: d

Explanation: Decision tree takes input as an object described by a set of attributes and returns a decision.

- 10. How the decision tree reaches its decision?
- a) Single test
- b) Two test
- c) Sequence of test
- d) No test

View Answer

Answer: c

Explanation: A decision tree reaches its decision by performing a sequence of tests

1:		I is composed of large number of highly interconnected processing ents(neurons) working in unison to solve problems.
	<u>A.</u>	True
	<u>B.</u>	False
	<u>C.</u>	
	<u>D.</u>	
	Ansv	ver Report Discuss
	Optio	on: A
	Expl	anation:
2:	Artif	icial neural network used for
	<u>A.</u>	Pattern Recognition
	<u>B.</u>	Classification
	<u>C.</u>	Clustering
	<u>D.</u>	All of these
	Answ	ver Report Discuss

		on: D			
	Expl	lanation :			
3:	A Neural Network can answer				
	<u>A.</u>	For Loop questions			
	<u>B.</u>	what-if questions			
	<u>C.</u>	IF-The-Else Analysis Questions			
	<u>D.</u>	None of these			
	Answ	wer Report Discuss			
	Optio	on: B			
	Expl	lanation:			
4:	Abili	ity to learn how to do tasks based on the data given for training or initial rience			
	<u>A.</u>	Self Organization			
	<u>B.</u>	Adaptive Learning			

	<u>C.</u>	Fault tolerance
	<u>D.</u>	Robustness
	Ansv	wer Report Discuss
	Opti	on: B
	Exp	lanation:
5:	Feat	ure of ANN in which ANN creates its own organization or representation of rmation it receives during learning time is
	<u>A.</u>	Adaptive Learning
	<u>B.</u>	Self Organization
	<u>C.</u>	What-If Analysis
	<u>D.</u>	Supervised Learning
	Ansv	wer Report Discuss
	Opti	on: B
	Exp	lanation :

comp	more: http://www.avatto.com/computer-science/test/mcqs/soft- outing/ann/514/1.html#ixzz46VE8CQAp
6: In	artificial Neural Network interconnected processing elements are called
<u>A.</u>	nodes or neurons
<u>B.</u>	weights
<u>C.</u>	axons
<u>D.</u>	Soma
<u>A1</u>	nswer Report Discuss
Op	ption: A
Ex	xplanation :
	ach connection link in ANN is associated with which has information out the input signal.
<u>A.</u>	neurons
<u>B.</u>	weights

	<u>C.</u> bias
	D. activation function
	Answer Report Discuss
	Option: B
	Explanation:
8:	Neurons or artificial neurons have the capability to model networks of original neurons as found in brain
	A. True
	B. False
	<u>C.</u>
	<u>D.</u>
	Answer Report Discuss
	Option: A
	Explanation:
9:	Internal state of neuron is called, is the function of the inputs the neurons receives
	A. Weight

<u>B.</u>	activation or activity level of neuron
<u>C.</u>	Bias
<u>D.</u>	None of these
Ansv	wer Report Discuss
Optio	on: B
Expl	lanation :
10: Net	uron can send signal at a time.
<u>A.</u>	multiple
<u>B.</u>	one
<u>C.</u>	none
<u>D.</u>	any number of

Option: B
Explanation:
Read more: http://www.avatto.com/computer-science/test/mcqs/soft-computing/ann/514/2.html#ixzz46VEVzf3a
1: Artificial intelligence is
A It uses machine-learning techniques. Here program can learn From past experience and adapt themselves to new situations
B. Computational procedure that takes some value as input and produces some value as output.
C. Science of making machines performs tasks that would require intelligence when performed by humans
D. None of these
Answer Report Discuss
Option: C
Explanation:
2: Expert systems
A Combining different types of method or information

Answer Report Discuss

	B. Approach to the design of learning algorithms that is structured along the lines of the theory of evolution
	C. an information base filled with the knowledge of an expert formulated in terms of if-then rules
	D. None of these
	Answer Report Discuss
	Option: C
	Explanation:
3:	
3:	
3:	Falsification is A. Modular design of a software application that facilitates the integration of new

	D. None of these
	Answer Report Discuss
	Option: B
	Explanation:
4:	Evolutionary computation is
	A Combining different types of method or information
	B. Approach to the design of learning algorithms that is structured along the lines of the theory of evolution.
	C. Decision support systems that contain an information base filled with the knowledge of an expert formulated in terms of if-then rules.
	D. None of these
	Answer Report Discuss
	Option: B
	Explanation:
5:	Extendible architecture is

	<u>B.</u>	he information stored in a database that can be, retrieved with a single query	
		Forth of the output of a machine learning program that makes it inderstandable for humans	
	<u>D</u>	one of these	
	Ans	wer Report Discuss	
	Option: B		
	Exp	lanation :	
12:	Qua	ntitative attributes are	
	<u>A.</u>	A reference to the speed of an algorithm, which is quadratically dependent on the size of the data	
	<u>B.</u>	Attributes of a database table that can take only numerical values	
	<u>C.</u>	Tools designed to query a database	
	<u>D.</u>	None of these	

	Answer Report Discuss
	Option: B
	Explanation:
13:	Subject orientation
	$\frac{\mathbf{A}}{\mathbf{A}}$. The science of collecting, organizing, and applying numerical facts
	B. Measure of the probability that a certain hypothesis is incorrect given certain observations.
	C. One of the defining aspects of a data warehouse, which is specially built around all the existing applications of the operational data
	D. None of these
	Answer Report Discuss
	Option: C
	Explanation:
14:	Vector
	A. It do not need the control of the human operator during their execution

An arrow in a multi-dimensional space. It is a quantity usually characterized by an ordered set of scalars
C. The validation of a theory on the basis of a finite number of examples
D. None of these
Answer Report Discuss
Option: B
Explanation:
15: Transparency
A The large set of candidate solutions possible for a problem
B. The information stored in a database that can be retrieved with a single query
 C. Worth of the output of a machine learning program that makes it understandable for humans
D. None of these
Answer Report Discuss

Option: C		
Explanation :		
Read more: http://www.avatto.com/computer-science/test/mcqs/soft-computing/questions/192/3.html#ixzz46VFK5DKd		
1: Core of soft Computing is		
A. Fuzzy Computing, Neural Computing, Genetic Algorithms		
B. Fuzzy Networks and Artificial Intelligence		
C. Artificial Intelligence and Neural Science		
D. Neural Science and Genetic Science		
Answer Report Discuss		
Option: A		
Explanation:		
2: Who initiated the idea of Soft Computing		
A. Charles Darwin		
B. Lofti A Zadeh		

D All of the above		
Answer Report Discuss		
Option: D		
Explanation		
Read more: http://www.avatto.com/computer-science/test/mcqs/soft-computing/introduction/512/1.html#ixzz46VFZ9z1x		
What are the 2 types of learning		
A. Improvised and unimprovised		
B. supervised and unsupervised		
C. Layered and unlayered		
D. None of the above		
Answer Report Discuss		
Option: B		
Explanation:		

Supervised Learning is

	Option: C	
	Expl	anation :
9:	: Conventional Artificial Intelligence is different from soft computing in the sense	
	<u>A.</u>	Conventional Artificial Intelligence deal with prdicate logic where as soft computing deal with fuzzy logic
	<u>B.</u>	Conventional Artificial Intelligence methods are limited by symbols where as soft computing is based on empirical data
	<u>C.</u>	Both (a) and (b)
	<u>D.</u>	None of the above
	Ansv	ver Report Discuss
	Optio	on: C
	Explanation:	
10	10: In supervised learning	
	<u>A.</u>	classes are not predefined

Answer Report Discuss

<u>B.</u>	classes are predefined
<u>C.</u>	classes are not required
<u>D.</u>	classification is not done
Ans	wer Report Discuss
Opt	ion: B
Exp	olanation:
computi 1: Mem	bership function defines the fuzziness in a fuzzy set irrespective of the ents in the set, which are discrete or continuous.
<u>A.</u>	True
<u>B.</u>	False
<u>C.</u>	
<u>D.</u>	
Ansv	ver Report Discuss
Optio	on: A
Expl	anation:

2:	The membership functions are generally represented in		
	<u>A.</u>	Tabular Form	
	<u>B.</u>	Graphical Form	
	<u>C.</u>	Mathematical Form	
	<u>D.</u>	Logical Form	
	Answ	ver Report Discuss	
	Option: B		
	Expl	anation :	
3:	Membership function can be thought of as a technique to solve empirical problems on the basis of		
	<u>A.</u>	knowledge	
	<u>B.</u>	examples	
	<u>C.</u>	learning	

Answer Report Discuss

	<u>D.</u>	concave fuzzy set				
	Ansv	Answer Report Discuss				
	Option: B					
	Explanation:					
9:	A fuzzy set has a membership function whose membership values are strictly monotonically increasing or strictly monotonically decreasing or strictly monotonically increasing than strictly monotonically decreasing with increasing values for elements in the universe					
	<u>A.</u>	convex fuzzy set				
	<u>B.</u>	concave fuzzy set				
	<u>C.</u>	Non concave Fuzzy set				
	<u>D.</u>	Non Convex Fuzzy set				
	Ansv	wer Report Discuss				
	Option: A					
	Expl	lanation:				

10:

The membership values of the membership function are nor strictly monotonically increasing or decreasing or strictly monoronically increasing than decreasing.

<u>A.</u>

Convex Fuzzy Set

<u>B.</u>

Non convex fuzzy set

<u>C.</u>

Normal Fuzzy set

<u>D.</u>

Sub normal fuzzy set

Answer Report Discuss

Option: B

Explanation:

 $\underline{Read\ more:\ http://www.avatto.com/computer-science/test/mcqs/soft-computing/questions/369/2.html\#ixzz46VGHJtYr}$

11:

Match the Column

List II

- 1 Subnormal Fuzzy Set
- 2 Normal Fuzzy Set
- 3 Non Convex Normal Fuzzy Set
- 4 Convex Normal Fuzzy Set

<u>A.</u>

a b c d

```
2 1 4 3
    <u>B.</u>
         a b c d
          1 2 3 4
    <u>C.</u>
         a b c d
         4 3 2 1
    <u>D.</u>
         a b c d
         3 2 1 4
    Answer Report Discuss
    Option: A
    Explanation:
12: The crossover points of a membership function are defined as the elements in the
    universe for which a particular fuzzy set has values equal to
    <u>A.</u>
         infinite
    <u>B.</u>
          1
```

<u>C.</u>

0

<u>D.</u>

0.5

Answer Report Discuss

Option: D

Explanation:

 $Read\ more: \ \underline{http://www.avatto.com/computer-science/test/mcqs/soft-computing/questions/369/3.html\#ixzz46VGTKXoG}$

Questions

1. Which of the following(s) is/are found in Genetic Algorithms?

(i)

evolution

(ii)

selection

(iii)

reproduction

(iv)

mutation

: Your <u>answer</u> is

(a)

i & ii only

(b)

i, ii & iii only

(c)

ii, iii & iv only

all of the above

2. Matching between terminologies of Genetic Algorithms and Genetics:

Gen	etic Algorithms		Genetics (biology)
(a)		(i)	
	representation structures		external disturbance, such as cosmic radiation
(b)		(ii)	
	crossover		chromosomes
(c)		(iii)	
	mutation		survivability
(d)		(iv)	
	selection		sexual reproduction

: Your <u>answer</u> is .3

4. (a)

5.		
6	<u>/h\</u>	

6. (b) 7. ____

8. (c)

9. 10.(d)

11.____

12. Where are Genetic Algorithms applicable?

(i)

real time application

(ii)

biology

(iii)

Artificial Life

```
(iv)
   economics
        : Your <u>answer</u> is
               (a)
   i, ii & iii only
   (b)
   ii, iii & iv only
   (c)
   i, iii & iv only
   (d)
   all of the above
13. Which of the following(s) is/are the pre-requisite(s) when Genetic
   Algorithms are applied to solve problems?
   (i)
   encoding of solutions
   (ii)
   well-understood search space
   (iii)
   method of evaluating the suitability of the solutions
   (iv)
   contain only one optimal solution
         : Your <u>answer</u> is
               (a)
   i & ii only
   (b)
   ii & iii only
   (c)
   i & iii only
```

(d) iii & iv only 14. Which of the following statement(s) is/are true? (i) Genetic Algorithm is a randomised parallel search algorithm, based on the principles of natural selection, the process of evolution. (ii) GAs are exhaustive, giving out all the optimal solutions to a given problem. (iii) GAs are used for solving optimization problems and modeling evolutionary phenomena in the natural world. (iv) Despite their utility, GAs remain a poorly understood topic. : Your <u>answer</u> is (a) i, ii & iii only (b) ii, iii & iv only (c) i, iii & iv only (d) all of the above 15. If crossover between chromosome in search space does not produce significantly different offsprings, what does it imply? (if offspring consist of one half of each parent) (i) The crossover operation is not succesful. (ii) Solution is about to be reached.

(iii)

Diversity is so poor that the parents involved in the crossover operation are similar.

(iv)

The search space of the problem is not ideal for GAs to operate.

: Your <u>answer</u> is

(a)

ii, iii & iv only

(b)

ii & iii only

(c)

i, iii & iv only

(d)

all of the above

16. Which of the following comparison is true?

: Your <u>answer</u> is

(a)

In the event of restricted acess to information, GAs win out in that they require much fewer information to operate than other search.

(b)

Under any circumstances, GAs always outperform other algorithms.

(c)

The qualities of solutions offered by GAs for any problems are always better than those provided by other search.

(d)

GAs could be applied to any problem, whereas certain algorithms are applicable to limited domains.

17. Which of the following statement(s) is/are true?

(i)

Artificial Life is analytic, trying to break down complex phenomena into their basic components.

(ii)

Alife is a kind of Artificial Intelligence (AI).

(iii)

Alife pursues a two-fold goal: increasing our understanding of nature and enhancing our insight into artificial models, thereby providing us with the ability to improve their performance.

(iv)

Alife extends our studies of biology, life-as-we-know-it, to the larger domain of possible life, life-as-it-could-be.

iii & iv only

(c)

i, ii & iii only

(d)

all of the above

18. Where is Artificial Life applicable?

(i)

film (movie, video) production

(ii)

biology

(iii)

robotics

(iv)

air traffic control

all of the above

Q1.

Which of the following(s) is/are found in Genetic Algorithms? The correct answer is (d).

An initial population <u>evolves</u> to some optimal solutions. <u>Selection</u> biases for better individuals, judged by their fitness values; two individuals are chosen for <u>reproducing</u> offspring. By combining portions of good individuals, this <u>process</u> is likely to <u>create even better individuals</u>

Q2.

Matching between terminologies of Genetic Algorithms and Genetics:

The correct answer is:

- (a)
- (ii)
- (b)
- (iv)
- (c)
- (i)
- (d)
- (iii)

Q3.

Where are Genetic Algorithms applicable?

The correct answer is (b).

Genetic Algorithms can be used to evolve strategies for interaction in the Prisoner's Dilemma in economics. GAs are used as a computational method in

Alife - simulation of living systems starting with single cells and evolving to organisms, societies or even whole economic systems. These features compete for the limited resources in this virtual world. In biology, GAs are used in protein structure prediction, protein folding, stability of DNA hairpins and modeling of immune system

DNA structures

Protein Structures

It cannot be applied in real time systems. The response time is critical. However, GAs cannot guarantee to find a solution. The time spent in evaluation of fitness function and other genetic operations is substantially large, especially in a poorly- understood, complex search space

Q4.

Which of the following(s) is/are the requirement(s) when Genetic Algorithms are applied to solve problems?

The correct answer is (c).

The problem is mapped into a set of strings with each string representing a potential solution (i.e. chromosomes). A fitness function is required to compare and tell which solution is better. GA performance is heavily .dependent on the representation chosen

GAs are designed to efficiently search large, non-linear, poorly understood search space where expert knowledge is scarce or difficult to encode and where traditional techniques fail. However, domain knowledge guides GAs to obtain the optimal solutions. Moreover, GAs are powerful enough to solve for .a set of (nearly) optimal solutions

Q5.

Which of the following statement(s) is/are true?

The correct answer is (c).

The search space is too complex for exhaustive search such that GAs successfully find robust solutions after evaluating only a few percent of the .full parameter space

It can never be guaranteed that GAs will find an optimal solution or even any solution at all

Their probabilistic nature and reliance on frequent interactions of members of a large population make a complete analytic understanding of GAs extremely .difficult

Q6.

If crossover between chromosome in search space does not produce significantly different offspring, what does it imply? (if offspring consist of one half of each parent)

The correct answer is (b).

When <u>crossover</u> operation does not produce siginificantly different offsprings, it shows that the parents involved are almost identical. Hence, it means that solution is about to be reached. However, this solution derived is not necessarily the optimal solution. From here, we could see that mutation is necessary to maintain the diversity of the population so that GAs would not be trapped in partial solutions

Q7.

Which of the following comparison is true?

The correct answer is (a).

- This is true since GAs require only information that would evaluate the fitness function for the possible soulutions (individuals in search space). But for other searches which generally require more information, like differentiability of problem function, might find it hard to find them.
- This holds true in most circumstances. However, if the search space is small enough, other search like <u>hill-climbing or</u> <u>heuristic</u>, which are very effective in explorating small space, would just perform as good.
- GAs have only been developed for a couple of decades while traditional searches have been investigated for a longer time. Thus GAs do not necessarily produce a better quality solution.
- Evidently certain algorithms are only applicable to limited domains. However, certain difficulties, like encoding of problems, might hinder the use of GAs.

Q8.

Which of the following statement(s) is/are true?

The correct answer is (b).

Alife is characterised by a bottom-up synthesis approach, so that the robotics work tends to aim for insect-like capability rather than human, and complex hebaviours are developed by putting together more simple ones. Artificial forms of evolution such as Genetic Algorithms and Genetic Programming are widely used to evolve solutions or behaviours rather than designing them in a .top-down fashion in Artificial Intelligence

Q9.

Where is Artificial Life applicable?

The correct answer is (d).

Alife is <u>applicable</u> in many fields, such as a walking <u>robot</u> shown on the right

Q10.

Who can be benefited from Alife?

The correct answer is (d).

Children can use various computational tools (including and Electronic Bricks) to build artificial creatures, exploring

.some of the central ideas of Alife

GAs can be applied to the design of <u>laminated composite structures</u>, <u>circuit</u> <u>designs</u> and <u>the improvement of Pareto optimal designs</u>. Genetic programming can help artists to create many <u>pictures</u>. Medical problems can also be .detected: <u>Medibrains</u>

