

Unidade Curricular: Inteligência Artificial Maria Barros (up201608444) e Miguel Ferreira (up201606158)

Definição do problema

Antes da definição do problema, é necessário primeiro conhecer o dataset. Para este trabalho, o dataset com que vamos trabalhar possui informação sobre **19 diferentes países**, com informações diárias durante **43 dias**, sobre diferentes informações:

Tendências de mobilidade a locais como supermercados, farmácias...

Tendências de mobilidade a locais como restaurantes, shoppings...

Tendências de mobilidade a locais de trabalho

Tendências de mobilidade a locais como parques, jardins, marinas...

Tendências de mobilidade a transportes públicos

Tendências de mobilidade a **locais de residência**

Número total de casos

Número total de mortes

Como primeiro problema, decidimos então focar-nos na previsão do número total de casos, utilizando como features todas as tendências de mobilidade, e ainda o número de casos do dia anterior

Ferramentas a utilizar

A primeira parte do trabalho consistiu então numa primeira avaliação do dataset

Nº Casos

N° Casos do dia anterior

O primeiro passos consistiu então na criação de uma nova coluna, em que cada entrada corresponde ao número de **casos no dia anterior**. Desta vez, para prever o número de casos para cada dia, este valor pode ser utilizado como característica, e ajudar nessa previsão

De forma a dificultar a previsão, considerámos, noutra abordagem, não **o número de casos do dia anterior** (dado que facilita bastante a tarefa da previsão), mas sim o número de casos conhecidos **na semana anterior**

Ferramentas a utilizar

De seguida, e de forma a conseguir averiguar quais os algoritmos que produziriam melhores resultados para o dataset, traçaram-se as **curvas de aprendizagem** para diferentes algoritmos. Os algoritmos testados foram **Regressão Linear, KNN, Naïve Bayes, SGD, SVC, MLP, Decicion Tree** e **Random Forest**, estando os resultados da linha de aprendizagem apresentados a seguir. Várias métricas foram utilizadas para avaliar os resultados

Negative Mean Squared Error

Max Error

Negative Mean Absolute Error

 \mathbb{R}^2

Resultados

R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s
0,99878	0,99676	1310552,8	0,00002	18265,814	0,05078	245,7842	0,00194

R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s
02476	0.00152	16/025610	0.00246	E/100 2/2	0 10756	1692 04406	0.01124

R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s
0,99378	0,98378	8064909,04	0,0002	38179,576	0,1099	802,24696	0,0054

R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s
-4,77152	0,52556	440367201	0,02088	77400,364	0,42828	7120,1995	0,07456

R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s
0,97032	0,92196	36840099,2	0,00098	88155,719	0,2017	1687,35336	0,01384

R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s
-3,82542	-0,0736	446198936	0,03566	80631,1427	0,73512	6296,10446	0,09896

TREINO

TESTE

TREINO

TESTE

TREINO

TESTE

PREVISÃO DO NÚMERO DE CASOS A PARTIR DO NÚMERO DE CASOS DO DIA ANTERIOR

Resultados muito satisfatórios tanto no **set de treino** e no **set de teste**

PREVISÃO DO NÚMERO DE CASOS A PARTIR DO NÚMERO DE CASOS DA SEMANA ANTERIOR

Resultados muito satisfatórios tanto no **set de treino** mas muito mais no **set de teste**

TUNNING DOS HYPERPARÂMETROS DO MODELO ANTERIOR

Melhoramento dos resultados, mas ainda existe bastante **overfitting**

Trabalho futuro

De forma a tentar reduzir o overfitting dos modelos

Utilizar técnicas de **feature selection** (como **PCA**, por exemplo) Testar outras problemáticas com o dataset disponível

Tentar prever o número de fatalidades