LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA PROGRAMA DE PÓS-GRADUAÇÃO DO LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA

CURSO DE MESTRADO EM MODELAGEM COMPUTACIONAL GA018 - MÉTODOS NUMÉRICOS

Trabalho do Módulo II

Discente: Wellington Silva Docente: Marcio Borges

Petrópolis - RJ

Novembro - 2020

Sumário

1	Introdução
2	Método de Newton na Otimização
2.1	Deduzir o método de Newton para o caso bidimensional 6
2.2	Código computacional
2.3	Validação
2.4	Conclusão
3	Sistema Mecânico
3.1	Newton
3.1.1	Resultados do Método de Newton
3.2	Quasi-Newton
3.2.1	Resultado do Método Quasi-Newton
3.3	Conclusão
	REFERÊNCIAS

1 Introdução

As Bibliotecas utilizadas para o trabalhos são relacionadas ao projeto do Sympy¹. O uso da biblioteca relacionado ao Sympy está representada pelo Algoritmo 1 e os métodos para solução linear são implementados pelo Algoritmo 2, tendo por exemplo a Matriz Hessiana, a Matriz Jacobiana e a Eliminação de Gauss (FRANCO, 2006; GOLUB, 2013). Além disso, as classes Log e Error para auxiliar na implementação do métodos numéricos (SPERANDIO; MENDES; SILVA, 2003). O primeiro, empregado para gerar o arquivo de log do algoritmo executado e informação do tempo de execução do método estudado, vide Algoritmo 3. Por fim, usado para o cálculo de erro absoluto, relativo e também do cálculo da norma da matriz, vide o Algoritmo 3. Portanto, o código fonte e os dados gerados pelos métodos estão disponível no Github ².

```
from sympy import lambdify, diff, hessian, jacobi, cos, sin, pprint
from sympy.matrices import Matrix
from sympy.abc import x,y,w,z

from Error import *
from Log import *
```

Listing 1 – Biblioteca Sympy

https://www.sympy.org/

https://github.com/sswellington/GA018

```
def hessiana(function, c):
       ''' Hessian: init and set '''
       h = hessian(function, c)
3
       return (lambdify(c, h))
5
   def hessiana_inverse(function, c):
       ''' Hessian: init and set '''
       h = (hessian(function, c)).inv()
       return (lambdify(c, h))
10
11
12
   def jacobiana(function, c):
13
       ''' Jacobian: init and set '''
14
       j = (Matrix([function]).jacobian(c))
15
       return (lambdify(c, j))
16
17
18
   def jacobian_inversa(function, c):
19
       ''' Jacobian: init and set '''
20
       j = (Matrix(function).jacobian(c)).inv()
21
       return (lambdify(c, j))
22
23
24
   def jacobian_transpose(function, c):
25
       ''' Jacobian: init and set '''
26
       j = (Matrix([function]).jacobian(c)).transpose()
27
       return (lambdify(c, j))
28
29
30
   def gauss_jordan(matrix_a, matrix_b):
31
       ''' Gauss: init and set '''
32
       sol, params = matrix_a.gauss_jordan_solve(matrix_b)
33
       taus_zeroes = { tau:0 for tau in params }
34
       return sol.xreplace(taus_zeroes)
35
```

Listing 2 – Sistema Lineares

```
import csv
2 import sys
  import time
   class Log(object):
       _header = None
       def __init__(self):
           self._list = []
           self._start = time.time()
       def __repr__(self):
           return self._list
10
       def p_time(self):
11
12
           end = time.time()
           end -= self._start
13
           return end
14
       def time(self, path):
15
           end = time.time()
16
           end -= self._start
17
           f = open(path+'.txt', 'a')
18
           f.write(str(end))
19
           f.write('\n')
20
           f.close()
21
           return (end)
22
       def set_header(self, header):
23
            self._header = header
24
       def append(self, value):
25
            self._list.append( value)
26
       def list2file(self, path):
27
           with open(path+'.csv', 'w', newline='') as csvfile:
28
                spamwriter = csv.writer(csvfile,
29
                                         delimiter=',',
30
                                         quotechar='|',
31
                                         quoting=csv.QUOTE_MINIMAL)
32
33
                spamwriter.writerow(self._header)
                for l in (self._list) :
34
                    spamwriter.writerow(1)
35
```

```
from sympy.matrices import Matrix
2
3
   class Error(object):
       _absolute = None
       _relative = None
       _norm = None
       def ___init___(self):
10
           _absolute = -10.987654321
11
12
           _relative = -10.987654321
           _{norm} = -10.987654321
13
14
15
       def absolute(self, current, previous) :
16
           self._absolute = (abs(current - previous))
17
18
           return self._absolute
19
20
21
       def relative(self, current, previous) :
22
           if (current == 0):
23
               return ('Error 16: Current is equal 0.0')
24
               breakpoint
25
           self._relative = abs( 1 - (previous/current))
26
27
           return self._relative
28
29
30
       def matrix_norm(self, a, b) :
31
           self._norm = abs(Matrix(a).norm(1) - Matrix(b).norm(1))
32
33
           return self._norm
34
```

Listing 4 – Classe Error

2 Método de Newton na Otimização

$$f(x,y) = 1 - e^{\left(-\frac{(x-1)^2}{2*(\frac{3}{4})^2} + \frac{(y-1)^2}{2*(\frac{1}{2})^2}\right)} + \frac{1}{25} * \left((x-1)^2 + (y-2)^2\right)$$
(1)

Neste capítulo será aplicado Método de Newton para encontrar o mínimo da Equação 1.

2.1 Deduzir o método de Newton para o caso bidimensional

O método de Newton é utilizado para encontrar as raízes de uma função através da fórmula iterativas e aproximações. Esse método é útil quando não for possível encontrar as raízes de uma determinada função analiticamente. Para usar o método na função de uma variável, basta encontrar os pontos em que f(x) = 0, através da raiz de uma aproximação linear de F em um dado ponto inicial x_0 . Ou seja, se r é a reta tangente a função no ponto x_0 , então o próximo ponto x_1 do método seria o ponto em que $r(x_1) = 0$ pois é onde a aproximação linear se anula. E esse processo ocorre até se encontrar o melhor ponto para a raiz de F. A reta tangente no ponto $(x_0, f(x_0))$ pode dar uma aproximação linear da função f no ponto x = 0, vide a Equação f0 (RUGGIERO; LOPES, f0)

Seja $F: \mathbb{R}^2 \to \mathbb{R}^2$, $F = (f_1, ..., f_n)$, que possui objetivo de encontrar as soluções aproximadas para F(x,y) = 0 De uma forma equivalente a que foi realizado para funções de uma variável, considere $(x_0,y_0) \in \mathbb{R}^2$ um ponto inicial uma aproximação linear de F em torno de (x_0,y_0) . A partir do momento em que é encontrado (x_1,y_1) , é obtida a aproximação linear de F no ponto (x_1,y_1) . O ponto seguinte (x_2,y_2) será aquele que anula esta aproximação linear, e assim será repetido o processo iterativamente. Portanto, dado $i \in \mathbb{R}$ e um ponto $(x_i,y_i) \in \mathbb{R}^2$ o novo iterando $(x_{i+1},y_{i+1}) \in \mathbb{R}^2$ obtido pelo método de Newton. Sendo J a matriz jacobiana (RUGGIERO; LOPES, 2000).

$$x_{1} = x_{1} - \frac{f(x_{0})}{f'(x_{0})}$$

$$x_{1} = x_{1} - J(x_{0})^{-1}F(x_{0})$$

$$J(x)(x_{1} - x_{0}) = -F(x_{0})$$
(2)

2.2 Código computacional

```
1 \quad MAX = 20
2 PATH = 'log/newton-opt/'
  TOLERANCE = 0.00000001 # 10**(-8)
  F = 1 - (exp(
               - ((((x-1)**2) / (2*(0.75**2)))
5
               + (( (y-2)**2) / (2*(0.5**2))))))
               + ( 0.04 * (((x-1)**2) + ((y-2)**2)))
7
8
9
   if __name__ == "__main__" :
10
       seed = Matrix([[0.0], [0.0]])
11
       for i in range(1):
           n = optimization(F, seed, TOLERANCE, MAX)
13
           t = optimization_inv(F, seed, TOLERANCE, MAX)
14
```

Listing 5 – Execução do Método Newton para Otimização

```
def optimization_inv(f, xy, tol, nmax) :
1
2
       l = Log()
3
       e = Error()
       h = hessiana_inverse(f)
5
       j = jacobian_transpose(f)
       previous = xy
       for n in range(nmax
10
            hh = (h(float(xy[0]), float(xy[1])))
11
            jj = (j(float(xy[0]), float(xy[1])))
12
13
            xy = xy - (Matrix(hh) * Matrix(jj))
14
15
            e.matrix_norm(xy, previous)
16
17
            l.append([float(xy[0]), float(xy[1]),
18
                       float (previous [0]), float (previous [1]),
19
                       float(e._norm)])
20
21
            if (e._norm < tol) :</pre>
22
                1.set_header(['X axes' , 'Y axes', 'W axes' , 'Z axes',
23
                               'X-1 axes', 'Y-1 axes', 'W-1 axes', 'Z-1 axes',
24
                               'Matrix Norm'])
25
26
                1.list2file((PATH+'main-inversa'))
27
                1.time(PATH+'time-n-opt-inversa')
28
29
                return list(xy)
30
                breakpoint
32
            previous = xy
33
34
       return (xy)
35
```

Listing 6 – Método Newton para Otimização usando a Matriz Inversa

```
def optimization(f, xy, tol, nmax) :
       l = Log()
2
       e = Error()
3
       h = hessiana(f, [x, y])
       j = jacobian_transpose(f,[x,y])
       previous = xy
       for n in range(nmax) :
8
            hh = h(float(xy[0]), float(xy[1]))
            jj = j(float(xy[0]), float(xy[1]))
10
11
            L, U, _ = Matrix(hh).LUdecomposition()
12
13
            gauss = gauss_jordan(Matrix(L), Matrix(-jj))
14
            xy = xy + gauss_jordan(Matrix(U), Matrix(gauss))
15
16
            e.matrix_norm(xy, previous)
            l.append([float(xy[0]), float(xy[1]),
18
                       float (previous [0]), float (previous [1]),
19
                       float(e. norm)])
20
21
            if (e._norm < tol) :</pre>
22
                1.set_header(['X axes', 'Y axes',
                                                       'W axes' , 'Z axes',
23
                               'X-1 axes', 'Y-1 axes', 'W-1 axes', 'Z-1 axes',
24
                               'Matrix Norm'])
25
                1.list2file((PATH+ 'main-inversa'))
26
                1.time(PATH+'time-n-opt-inversa')
27
28
                return xy
29
                breakpoint
30
31
            previous = xy
32
       return False
33
```

Listing 7 – Método Newton para Otimização usando a Decomposição LU

2.3 Validação

O método de Newton utilizado para encontrar o mínimo da Equação 1, tendo o ponto mínimo $\bar{X}=(1,2)$. Então para obter tal resultado foi empregado duas variações do método de Newton (RUGGIERO; LOPES, 2000; QUARTERONI; SACCO; SALERI, 2010). A primeira, calcula a inversa da matriz Hessiana, vide o Algoritmo 6. Já, a segundo utiliza a decomposição LU, disponível no Algoritmo 7 em alternativa da matriz inversa, que possui um alto custo computacional para a realizar o seu cálculo. Portanto, ao analisar os valores do tempo de execução de um método contra o outro é nítida a vantagem da decomposição LU em comparação a Matriz Inversa. O Algoritmo 6 que utiliza a Matriz Inversa 3 possui a média de execução de 5,774522781 segundos e o desvio padrão de 0,4805941876. Finalmente, o resultado do teste aplicado aos algoritmos, em suma o teste é a média e o desvio padrão do tempo de execução dos algoritmos, no qual é repetido 100 vezes para ser obter a média sem viés ou acaso, a fim de obter o melhor método. o Algoritmo 7 que usa a decomposição de LU 4 tem a média de execução de 0,0916364193 segundos e o desvio padrão de 0,04318986438. Logo, o Método de Newton com a decomposição de LU, vide o Algoritmo 7, é o ideal para encontrar o ponto mínimo dessa função.

2.4 Conclusão

O Método de Newton com decomposição LU aplicado a Equação 1, tendo a precisão de 10^{-8} e ponto de partida o ponto $x_0 = (0,0)$ o resultado está disponível na Tabela 1, no qual representa todas iterações do Método de Newton com decomposição LU. A Figura 1 ilustra a evolução do processo iterativo pela Tabela 1. Por fim a Figura 2 é a análise do erro obtido em cada iteração.

TT 1 1 1 1 1 1 1 1	N.T . 1	' ~ TIT I 1 ~	1
Tabela 1 – Método de	Newton com decom	mosicao I II - Hvoliica	a do processo iterativo
	THE WILDER COILE DECEDIE	posição Lo - Livoração	J do processo neranyo

Iteração	Eixo X	Eixo Y	Eixo X-1	Eixo Y-1	Norma da matriz
1	1,061376269	2,275142385	0	0	3,336518654
2	0,9741326823	1,880732943	1,061376269	2,275142385	0,4816530295
3	1,001522677	2,007197686	0,9741326823	1,880732943	0,1538547379
4	0,999999692	1,999998508	1,001522677	2,007197686	0,0087221625
5	1	2	0,999999692	1,999998508	0,000001799718643
6	1	2	1	2	0

https://github.com/sswellington/GA018/blob/main/log/newton-opt/time-n-sys-inversa.txt

⁴ https://github.com/sswellington/GA018/blob/main/log/newton-opt/time-n-opt-lu.txt

Figura 1 – Método de Newton com decomposição LU - Evolução do processo iterativo

Figura 2 – Método de Newton com decomposição LU - Taxa de convergência obtido em cada iteração

3 Sistema Mecânico

Um sistema mecânico é constituído de quatro segmentos, todos com comprimento L, unidos entre si e a uma parede por articulações, vide a Figura 3. O momento em cada articulação é proporcional à deflexão com constante de proporcionalidade κ . Os segmentos são feitos de material homogêneo de peso P. A condição de equilíbrio pode ser expressa em termos dos ângulos θ_1 , θ_2 , θ_3 , θ_4 conforme à Equação 3.

$$\kappa(\theta_1) = \frac{7PL}{2}\cos(\theta_1) + \kappa(\theta_2 - \theta_1),$$

$$\kappa(\theta_2 - \theta_1) = \frac{5PL}{2}\cos(\theta_2) + \kappa(\theta_3 - \theta_2),$$

$$\kappa(\theta_3 - \theta_2) = \frac{3PL}{2}\cos(\theta_3) + \kappa(\theta_4 - \theta_3),$$

$$\kappa(\theta_4 - \theta_3) = \frac{1PL}{2}\cos(\theta_4)$$
(3)

Onde, P = 15N, $L = 1m \text{ e } \kappa = 100Nm/rad$.

Figura 3 – Sistema mecânico

3.1 Newton

Código computacional para aproximar $\theta_1, \theta_2, \theta_3, \theta_4$ usando o Método de Newton.

```
def newton(fn, point, tol, nmax) :
        l = Log()
2
        e = Error()
3
        j = jacobiana(fn,[x,y,w,z])
        f = lambdify([x,y,w,z], fn)
        previous = point
        for n in range(nmax) :
8
            jj = j(float(point[0]), float(point[1]),
9
                    float (point [2]), float (point [3]))
10
            ff = f(float(point[0]), float(point[1]),
11
                    float (point [2]), float (point [3]))
12
            L, U, _ = Matrix(jj).LUdecomposition()
13
            g = gauss_jordan(Matrix(L), Matrix(-ff))
14
            point = point + gauss_jordan(Matrix(U), Matrix(g))
15
            e.matrix_norm(point, previous)
16
            l.append([float(point[0]), float(point[1]),
18
                       float(point[2]), float(point[3]),
19
                       float (previous [0]), float (previous [1]),
20
                       float (previous [2]), float (previous [3]),
21
                       float(e._norm)])
22
23
            if (e._norm < tol) :</pre>
24
                1.set_header(['X axes' , 'Y axes', 'W axes' , 'Z axes',
25
                                'X-1 axes', 'Y-1 axes', 'W-1 axes', 'Z-1 axes',
26
                                'Matrix Norm'])
27
                1.list2file((PATH_N+'main-lu-pr'))
28
                l.time(PATH_N+'time-n-sys-lu-pr')
29
                return point
30
                breakpoint
31
            previous = point
32
        return False
33
```

Listing 8 – Método Newton usando Decomposição LU

3.1.1 Resultados do Método de Newton

O Método de Newton aplicado a Equação 3, tendo a precisão de 10^{-8} e ponto de partida o ponto $x_0 = (1,1,1,1)$ o resultado está disponível na Tabela 2, no qual representa todas as iterações do Método Newton até a convergência do método.

Tabela 2 – Método de Newton para aproximação dos ângulos $\theta_1,\ \theta_2,\ \theta_3,\ \theta_4$

K	$\hat{\mathbf{A}}$ ngulo θ_1	Ângulo θ_2	Ângulo θ_3	$\mathbf{\hat{A}}$ ngulo $\mathbf{\theta}_4$	Norma da Matriz
1	1	1	1	1	0,09247623274
2	0,7203879844	1,033592424	1,154783643	1,183712181	0,027472394
3	0,7123207365	1,027283876	1,14831363	1,177085596	0,00003998152952
4	0,7123108904	1,027273674	1,148303632	1,177075661	0

3.2 Quasi-Newton

Código computacional para aproximar θ_1 , θ_2 , θ_3 , θ_4 Métodos Quasi-Newton. Existem diversos Métodos Quasi-Newton, neste trabalho será utilizado o Método Quasi-Newton Broyden.

```
def quasi_newton(fn, point, tol, nmax) :
2
        l = Loq()
        e = Error()
3
        j = jacobiana(fn,[x,y,w,z])
        f = lambdify([x,y,w,z], fn)
        previous = point
        jj = j(float(point[0]), float(point[1]),
              float(point[2]), float(point[3]))
        L, U, _ = Matrix(jj).LUdecomposition()
10
11
        for n in range(nmax) :
12
            ff = f(float(point[0]), float(point[1]),
13
                  float (point [2]), float (point [3]))
14
            g = gauss_jordan(Matrix(L), Matrix(-ff))
15
            point = point + gauss_jordan(Matrix(U), Matrix(g))
16
            e.matrix_norm(point, previous)
17
18
            l.append([float(point[0]), float(point[1]),
19
                       float(point[2]), float(point[3]),
20
                       float (previous [0]), float (previous [1]),
2.1
                       float (previous [2]), float (previous [3]),
22
                       float(e._norm)])
23
24
            if (e._norm < tol) :</pre>
25
                1.set_header(['X axes' , 'Y axes', 'W axes' , 'Z axes',
26
                                'X-1 axes', 'Y-1 axes', 'W-1 axes', 'Z-1 axes',
27
                                'Matrix Norm'])
28
                1.list2file((PATH_Q+'main-jab-pr'))
29
                1.time(PATH_Q+'time-qn-sys_pr')
30
                return point
31
                breakpoint
32
            previous = point
33
        pprint(point)
34
        return False
35
```

Listing 9 – Método Quasi-Newton Broyden

```
1 \text{ MAX} = 200
2 PATH_N = 'log/newton-sys/'
3 PATH_Q = 'log/quasi-newton/'
   TOLERANCE = 0.0000001 # 10**(-8)
  PL = 15
                # weight * lenght
   K = 100
               # proportionality
7
8
   M = Matrix([[K * (x ) - ((7 * PL) / 2 ) * cos(x) - K * (y - x)],
9
                [K * (y - x) - ((5 * PL) / 2) * cos(y) - K * (w - y)],
10
                [K * (w - y) - ((3 * PL) / 2) * cos(w) - K * (z - w)],
11
                [K * (z - w) - (( PL) / 2 ) * cos(z)]])
12
13
14
   if __name__ == "__main__" :
15
16
17
       seed_pr = Matrix([[1],[1],
                          [1],[1]])
18
19
       seed = Matrix
                        ([[1],[2],
20
                          [3],[4]])
21
22
23
       for i in range (101):
           q = quasi_newton(M, seed_pr, TOLERANCE, MAX)
24
           n = newton(M, seed_pr, TOLERANCE, MAX)
25
26
           q = quasi_newton(M, seed, TOLERANCE, MAX)
27
           n = newton(M, seed, TOLERANCE, MAX)
28
```

Listing 10 – Execução do Método Newton e Quasi-Newton Broyden

3.2.1 Resultado do Método Quasi-Newton

O Método Quasi-Newton aplicado a Equação 3, tendo a precisão de 10^{-8} e ponto de partida o ponto $x_0 = (1,1,1,1)$ o resultado está disponível na Tabela 3, no qual representa todas iterações do Método.

K	$\hat{\mathbf{A}}$ ngulo $\mathbf{\theta}_1$	Ângulo θ_2	Ângulo θ_3	${f \hat{A}}$ ngulo ${f heta}_4$	Norma da Matriz
1	1	1	1	1	0,09247623274
2	0,7203879844	1,033592424	1,154783643	1,183712181	0,02700406424
3	0,712694052	1,027425471	1,148309993	1,177042652	0,000453052468
4	0,7123318101	1,02728699	1,148314367	1,17708595	0,00005325202152
5	0,7123119537	1,027274207	1,148303874	1,177075829	0,000001875314228
6	0,7123109468	1,027273707	1,148303654	1,177075681	0,0000001255222459
7	0,7123108933	1,027273676	1,148303632	1,177075661	0,000000005706309203

Tabela 3 – Método Quasi-Newton para aproximação dos ângulos $\theta_1,\ \theta_2,\ \theta_3,\ \theta_4$

3.3 Conclusão

A comparação entre o Método de Newton e o Método Quasi-Newton envolve diversos fatores. Em geral, o Método Quasi-Newton exige menor custo computacional em relação ao Método de Newton, em visto que o Quasi-Newton Boyde não utiliza derivada para obter a aproximação. Entretanto, o Método Quasi-Newton possui mais iterações, além de ser mais dependente do ponto inicial que o Método de Newton, podendo assim demorar mais ou mesmo não convergir. Ao realizar os teste para o ponto mais distante da raiz o Método Quasi-Newton realiza mais que o dobro de iterações que o Método de Newton vide a Tabela 4 em comparação a Tabela 5

Tabela 4 – Método de Newton para aproximação dos ângulos θ_1 , θ_2 , θ_3 , θ_4 , tendo ponto inicial = (1,2,3,4)

K	$\hat{\mathbf{A}}$ ngulo $\mathbf{\theta}_1$	Ângulo θ_2	Ângulo θ_3	$\hat{\mathbf{A}}$ ngulo θ_4	Norma da Matriz
1	1	2	3	4	8,800845906
2	0,4743766868	0,4328888603	0,01309229993	-0,2787962474	4,716893296
3	0,8899125749	1,41244724	1,748667692	1,865019884	1,825360327
4	0,7181529221	1,035762302	1,154749038	1,182022803	0,02568589428
5	0,7123182123	1,02728409	1,148313579	1,177085289	0,00003731266287
6	0,7123108904	1,027273674	1,148303632	1,177075661	0
7	0,7123108933	1,027273676	1,148303632	1,177075661	0,000000005706309203

Tabela 5 – Método Quasi-Newton para aproximação dos ângulos θ_1 , θ_2 , θ_3 , θ_4 , tendo ponto inicial = (1,2,3,4)

K	$\hat{\mathbf{A}}$ ngulo $\mathbf{\theta}_1$	Ângulo θ_2	Ângulo θ_3	$\hat{\mathbf{A}}$ ngulo θ_4	Norma da Matriz
1	1	2	3	4	8,800845906
2	0,4743766868	0,4328888603	0,01309229993	-0,2787962474	4,123504199
3	0,773266324	1,211545553	1,574927102	1,762919314	2,312279199
4	0,6407698264	0,8472990284	0,7977852189	0,7245250207	1,743217113
5	0,7556849842	1,141277512	1,378859023	1,477774688	1,229316534
6	0,6762538242	0,9353211357	0,9679975809	0,9447071324	0,9192274459
7	0,7366821104	1,090600278	1,274881539	1,341343192	0,6689558152
			•	•	
		•	•	•	
		•	•	•	
68	0,7123108901	1,027273674	1,14830363	1,177075659	0,000000008481138458

Portanto, neste caso o Método de Newton demandou menos recurso computacional que o O Método Quasi-Newton. Tal hipótese se confirma ao analisar o tempo de execução de cada método, o Método Quasi-Newton obteve a média 0,7413711548 segundos e o desvio padrão 0,08539475997. Já, o Método de Newton obteve a média 0,1109697819 segundos e o desvio padrão 0,03354966481. Além disso, com o ponto inicial (1,1,1,1) o Método de Newton foi superior ao Método Quasi-Newto, obtendo à média 0,08055830002 segundos e o desvio padrão 0,03348963636 contra a média 0,09879040718 segundos e o 0,03627166764 desvio padrão.

Logo, confirma que neste caso o método de Newton se destacou em relação ao Método Quasi-Newton Broyden, sendo desvantagem do Método Quasi-Newton Broyden realizar aproximação por apenas um lado da reta em vista que a mantém a matriz Jacobina Fixa desda primeira iteração, de forma a iterar apenas a Função (RUGGIERO; LOPES, 2000).

Referências

FRANCO, N. B. Cálculo numérico. [S.1.]: Pearson, 2006.

GOLUB, C. F. V. L. G. H. *Matrix Computations*. [S.l.]: The Johns Hopkins University Press, 2013.

QUARTERONI, A.; SACCO, R.; SALERI, F. *Numerical mathematics*. [S.l.]: Springer Science & Business Media, 2010. v. 37.

RUGGIERO, M. A. G.; LOPES, V. L. d. R. Cálculo numérico: aspectos teóricos e computacionais. [S.l.]: Pearson, 2000.

SPERANDIO, D.; MENDES, J. T.; SILVA, L. H. M. e. Cálculo numérico: características matemáticas e computacionais dos métodos numéricos. [S.l.]: Prentice Hall, 2003.