AMENDMENTS TO THE CLAIMS

The following listing of claims replaces all prior listings of claims in this application.

1. (Currently Amended) A method of managing deployed trunk circuit capacity, the method comprising the steps of:

monitoring trunk circuits to collect traffic usage data;

analyzing the traffic usage data by computing time-moving averages of traffic usage data over a period of time; and

forecasting trunk circuit capacity requirements based at least in part on the timemoving averages:

wherein the averages are computed for a cluster of switches that is a community of interest with a locality of communication access pattern such that there is less communications traffic across a boundary between the cluster of switches and other switches not in the cluster than communications traffic between switches in the cluster.

2. (Canceled)

- 3. (Currently Amended) The method of claim 21, wherein the cluster comprises at least one switch and trunk circuits to at least two other switches.
- 4. (Original) The method of claim 1, wherein the traffic usage data comprises a metric that is based upon multiples of a base unit of bandwidth.
- 5. (Original) The method of claim 1, wherein the traffic usage data comprises a metric that is based upon a count of a plurality of connections multiplied by a duration of each of the connections.
- 6. (Currently Amended) The method of claim 1, wherein the the-time moving averages are computed at least weekly.

- 7. (Currently Amended) The method of claim 1, wherein the forecasting step-computes a plurality of forecasts using a plurality of models.
- 8. (Currently Amended) The method of claim 1, wherein the forecasting step-allows manual override of at least one model parameter.
- 9. (Currently Amended) The method of claim 8, wherein the forecasting step-uses a graphical user interface (GUI) for entering the manual override of the at least one model parameter.
- 10. (Currently Amended) The method of claim 1, wherein the forecasting step-displays forecast output through a graphical user interface (GUI).
- 11. (Currently Amended) A system that facilitates managing deployed trunk circuit capacity, the system comprising:

logic a data collector configured to monitor trunk circuits to collect traffic usage data;

data analysis logic configured to analyze the traffic usage data by computing timemoving averages of traffic usage data over a period of time; and

<u>forecasting</u> logic configured to forecast trunk circuit capacity requirements based at least in part on the time-moving averages;

wherein the averages are computed for a cluster of switches that is a community of interest with a locality of communication access pattern such that there is less communications traffic across a boundary between the cluster of switches and other switches not in the cluster than communications traffic between switches in the cluster.

12. (Canceled)

13. (Original) The system of claim 12, wherein the cluster comprises at least one switch and trunk circuits to at least two other switches.

- 14. (Original) The system of claim 11, wherein the traffic usage data comprises a metric that is based upon multiples of a base unit of bandwidth.
- 15. (Original) The system of claim 11, wherein the traffic usage data comprises a metric that is based upon a count of a plurality of connections multiplied by a duration of each of the connections.
- 16. (Currently Amended) The system of claim 11, wherein-the the time moving averages are computed at least weekly.
- 17. (Original) The system of claim 11, wherein the logic configured to forecast computes a plurality of forecasts using a plurality of models.
- 18. (Original) The system of claim 11, wherein the logic configured to forecast allows manual override of at least one model parameter.
- 19. (Original) The system of claim 18, wherein the logic configured to forecast uses a graphical user interface (GUI) for entering the manual override of the at least one model parameter.
- 20. (Original) The system of claim 11, wherein the logic configured to forecast displays forecast output through a graphical user interface (GUI).