So
$$\boxed{1}$$
 $\boxed{2}$ \times $2\times$ $\boxed{1}$ > 0 $\forall = -2\omega s \left(\frac{\Pi}{m_{i,in}}\right)$ $\leq -2\omega s \left(\frac{\Pi}{3}\right) = -1$

Sum of entire.

 $2n+(2n+things \leq -1) \leq 0$.

4. If T has an edge
$$73$$
, it is a straight line if not, have an induced. The d(Γ)=2d(D_{n-1})-4 ω 2 Ξ 3 d(D_{n-2})
$$= 8-16 \omega$$
5 Ξ 60

5. Then at most one branching point

If not, how an induced 7 $d(T) = 2d(D_{n-1}) - d(D_{n-2} \times A_1) = 2.4 - 4.2 = 0.7$

6. Then no branching point with 74 branches
Otherwise, have an induced X and d(X)=2d(X)-d(:.)=2.4-2.2.2=0

So T is either
$$\frac{1}{9} = \frac{1}{2} \frac{1$$

Check: $d(\frac{>b}{>})$, $d(\frac{s}{>})$, $d(\frac{s}{>})$, $d(\frac{4}{>}) \le 0$ If $\frac{>}{>}$ then If 5 then H₃ or H₄ If 4 then $I_2(m)$ Bn or F4

a