Modelo Entidade-Relacionamento

BCD29008 - Engenharia de Telecomunicações

Prof. Emerson Ribeiro de Mello

mello@ifsc.edu.br

Licenciamento

Slides licenciados sob Creative Commons "Atribuição 4.0 Internacional"

Cardinalidade de relacionamentos

Cardinalidade máxima - multiplicidade

Indica quantas vezes uma dada entidade poderá aparecer em um relacionamento

Cardinalidade mínima - participação obrigatória ou opcional

- associação obrigatória de todas entidades do conjunto com pelo uma entidade do outro conjunto
- associação opcional prevê que nem todas entidades de um conjunto deverão participar do relacionamento

Cardinalidade máxima

■ Uma pessoa pode ter mais de um endereço e um endereço está associado a uma única pessoa

■ Uma pessoa pode ter somente um endereço e um endereço está associado a uma única pessoa

Cardinalidade mínima

- Participação parcial associação opcional (0)
- Participação total associação obrigatória (1)
- Toda pessoa deve ter no máximo uma cidade
- Uma cidade pode estar associada a mais de uma pessoa
- Toda pessoa deve obrigatoriamente morar em uma cidade
- Uma cidade pode não estar associada a alguma pessoa

Cardinalidade mínima

- Participação parcial associação opcional (0)
- Participação total associação obrigatória (1)
- Toda pessoa deve ter no máximo uma cidade
- Uma cidade pode estar associada a mais de uma pessoa
- Toda pessoa deve obrigatoriamente morar em uma cidade
- Uma cidade pode não estar associada a alguma pessoa

Cardinalidade máxima e mínima

■ Toda pessoa deve obrigatoriamente morar em uma cidade e no máximo em uma cidade, mas **pode** ter uma cidade onde não tem ninguém cadastrado

Pessoa	Mora	Cidade
Juca	(Juca, São José)	São José
José	(José, São José)	Florianópolis
Hugo	(Hugo, São José)	São Paulo
Anna	(Anna, São Paulo)	Lages

Cardinalidade máxima e mínima

Exercício

A todo funcionário deve ser alocada obrigatoriamente uma mesa, porém nem toda mesa precisará obrigatoriamente estar alocada a algum funcionário

Cardinalidade máxima e mínima

Exercício

A todo funcionário deve ser alocada obrigatoriamente uma mesa, porém nem toda mesa precisará obrigatoriamente estar alocada a algum funcionário

Revisão: relacionamentos

Relacionamento

Associação entre Entidades

Relacionamento: FAZ – subconjunto de *Aluno* × *Curso*

- Uma entidade pode aparecer 0, 1 ou mais vezes no relacionamento
- A combinação de entidades (i.e. João Tele) só pode aparecer uma única vez

Relacionamentos com papéis: autorrelacionamento

■ Relacionamento entre **entidades** de um mesmo **conjunto de entidades**. **Rótulos** são usados para determinar o papel da entidade no relacionamento

Todo aluno possui um orientador e ambos são pessoas

Relacionamentos com papéis: autorrelacionamento

■ Relacionamento entre **entidades** de um mesmo **conjunto de entidades**. **Rótulos** são usados para determinar o papel da entidade no relacionamento

Todo aluno possui um orientador e ambos são pessoas

Exercício

Faça relacionamento com papéis para representar um casamento. Indique a cardinalidade

Revisão: Atributo identificador (chave primária)

■ Chave primária (primary key – pk) é uma chave candidata escolhida como principal meio para identificar unicamente uma entidade

Em alguns casos o **identificador é composto pelos atributos** da própria **entidade** e também pelos **relacionamentos dos quais a entidade participa**

Identificando entidade por meio relacionamento

■ Em alguns casos uma entidade deve ser identificada por meio da combinação de seus atributos identificadores com os atributos identificadores da entidade com quem se relaciona

Identificando entidade por meio relacionamento

■ Em alguns casos uma entidade deve ser identificada por meio da combinação de seus atributos identificadores com os atributos identificadores da entidade com quem se relaciona

Exemplo

Para cada dia de trabalho um funcionário poderá ter uma ocorrência

Identificando entidade por meio relacionamento

■ Em alguns casos uma entidade deve ser identificada por meio da combinação de seus atributos identificadores com os atributos identificadores da entidade com quem se relaciona

Exemplo

Para cada dia de trabalho um funcionário poderá ter uma ocorrência

O modelo acima permite que dois funcionários distintos tenham ocorrências registradas no mesmo dia?

Identificando entidade por meio relacionamento

■ Em alguns casos uma entidade deve ser identificada por meio da combinação de seus atributos identificadores com os atributos identificadores da entidade com quem se relaciona

Exemplo

Para cada dia de trabalho um funcionário poderá ter uma ocorrência

■ O modelo acima permite que dois funcionários distintos tenham ocorrências registradas no mesmo dia? **Não!**

Só é possível quando for relacionamento um-para-muitos

Relacionamento identificador traz facilidades ao realizar consultas na base de dados

Só é possível quando for relacionamento um-para-muitos

Relacionamento identificador traz facilidades ao realizar consultas na base de dados

Só é possível quando for relacionamento um-para-muitos

- Um **departamento** é identificado por seu código único e pelo **campus** ao qual está relacionado
- Um curso é identificado por seu código único, pelo departamento ao qual está relacionado e pelo campus ao qual seu departamento está relacionado

123, 456, 789, Engenharia de Telecomunicações

Grau de um relacionamento

Número de ocorrências de entidades que participa de cada ocorrência do relacionamento

- Relacionamento binário envolve dois conjuntos de entidades
- Cada ocorrência do relacionamento associa duas ocorrências de entidade


```
(Professor1, Aluno1)
(Professor1, Aluno2)
(Professor2, Aluno3)
(Professor3, Aluno4)
```

Cardinalidade em relacionamento binário

Em um relacionamento binário R entre duas entidades A e B

A cardinalidade máxima de A em R indica quantas ocorrências de B podem estar associadas a cada ocorrência de A

Cardinalidade em relacionamento binário

Em um relacionamento binário R entre duas entidades A e B

■ A cardinalidade máxima de A em R indica quantas ocorrências de B podem estar associadas a cada ocorrência de A

- Ocorrências válidas do relacionamento Orientador
 - **■** (P1,A1)
 - **■** (P1,A2)
 - (P2,A1)

Cardinalidade em relacionamento binário

Em um relacionamento binário R entre duas entidades A e B

■ A cardinalidade máxima de A em R indica quantas ocorrências de B podem estar associadas a cada ocorrência de A

- Ocorrências válidas do relacionamento Orientador
 - **■** (P1,A1)
 - **■** (P1,A2)
 - **■** (P2,A1)

Grau de um relacionamento

Relacionamento ternário

Relacionamento ternário envolve três conjuntos de entidades

Cada ocorrência do relacionamento associa três ocorrências de entidade


```
(SJE, Distribuidor 1, Caneta)
(SJE, Distribuidor 1, Lápis)
(FLN, Distribuidor 2, Caneta)
```

Cardinalidade em relacionamento ternários

Em um relacionamento R entre três entidades A, B e C

■ A cardinalidade máxima de A e B em R indica o número de ocorrências de C que podem estar associadas a um par de ocorrências de A e B

■ Para cada par de ocorrência (*cidade*, *produto*) está associado no máximo um distribuidor. Ou seja, um distribuidor possui exclusividade para distribuir um produto em uma cidade.

Cardinalidade em relacionamento ternários

Cardinalidade refere-se a pares de entidades

- Cada par (professor, aluno) está associado a no máximo 1 projeto
- A um par (professor, projeto) podem estar associados muitos alunos
- A um par (aluno, projeto) podem estar associados muitos professores

- \blacksquare (prof 1, a1) \rightarrow P1
- \blacksquare $(prof 1, P1) \rightarrow a1$
- \blacksquare (prof 1, P1) \rightarrow a2
- \blacksquare (a1, P1) \rightarrow prof1
- \blacksquare (a2, P1) \rightarrow prof2

Em relacionamentos ternários ou maiores limita-se a no **máximo uma restrição** a fim de evitar ambiguidade

Ambas afirmações são válidas

- Cada par (*professor*, *aluno*) está associado a no máximo 1 projeto e cada par (*professor*, *projeto*) está associado a no máximo 1 aluno; ou
- Professor está associado a no máximo com uma entidade aluno e uma entidade projeto

Generalização / especialização

especialização disjuntiva

- especialização com superposição
- **Disjuntiva** entidade pode pertencer a **no máximo um conjunto** de entidades especializadas
 - Um cliente poderá ser PF ou PJ
- Superposição entidade pode pertencer a vários conjuntos de entidades especializadas
 - Um funcionário de uma universidade também poderá ser aluno

Generalização / especialização

- **Disjuntiva** entidade pode pertencer a **no máximo um conjunto** de entidades especializadas
 - Um cliente poderá ser PF ou PJ
- Superposição entidade pode pertencer a vários conjuntos de entidades especializadas
 - Um funcionário de uma universidade também poderá ser aluno

Generalização / especialização - Completude

- Total Toda entidade no nível superior precisa pertencer a um conjunto de entidades do nível inferior
 - Um cliente deverá ser obrigatoriamente PF ou PI
- Parcial Algumas entidades do nível superior podem não pertencer a um conjunto de entidades do nível inferior
 - Nem todo Funcionário é Motorista ou Engenheiro

Generalização / especialização - Completude

- **Total** Toda entidade no nível superior precisa pertencer a um conjunto de entidades do nível inferior
 - Um cliente deverá ser obrigatoriamente PF ou PJ
- Parcial Algumas entidades do nível superior podem não pertencer a um conjunto de entidades do nível inferior
 - Nem todo Funcionário é Motorista ou Engenheiro

Exercícios

Seção 2.8 (página 64)

■ Exercícios: 4, 7, 10, 17, 27 e 31

Henry F.; Sudarshan Silberschatz, Abraham; Korth.
 Sistemas de banco de dados.
 6a. Edição - Editora Campus, 2012

Capítulo 7 (página 193)

■ Exercícios: 7.2 e 7.15

Modelo ER para registrar os produtos comprados por cada cliente

A modelagem acima atenderia os casos abaixo?

- João gostaria de comprar um salgado
- João gostaria de comprar outra água

Modelo ER para registrar os produtos comprados por cada cliente

A modelagem acima atenderia os casos abaixo? Não!

- João gostaria de comprar um salgado
- João gostaria de comprar outra água

Modelo ER para registrar os produtos comprados por cada cliente

- João gostaria de comprar um salgado
- João gostaria de comprar outra água

pessoa	produto	<u>dataHora</u>
João	Água	2017-07-14 08:10
Ana	Água	2017-07-14 08:11
Pedro	Salgado	2017-07-14 08:15
João	Água	2017-07-14 12:00
João	Salgado	2017-07-15 12:00

Modelo ER para registrar os produtos comprados por cada cliente

- João gostaria de comprar um salgado
- João gostaria de comprar outra água

pessoa	produto	<u>dataHora</u>
João	Água	2017-07-14 08:10
Ana	Água	2017-07-14 08:11
Pedro	Salgado	2017-07-14 08:15
João	Água	2017-07-14 12:00
João	Salgado	2017-07-15 12:00

Nota

Algumas abordagens ER excluem o uso de relacionamentos **n:n**, outras excluem apenas relacionamentos **n:n** com atributos

Diferentes modelos ER podem gerar o mesmo esquema

Todo relacionamento muitos-para-muitos (n:n) pode ser transformado em entidade

■ Uma ou mais compras por par (pessoa, produto)

id	pessoa	produto	dataHora
1	iDJoão	iDÁgua	2017-07-14 08:00
2	iDJoão	iDÁgua	2017-07-14 09:00
3	iDJoão	iDSalgado	2017-07-14 09:00
4	iDPedro	iDSalgado	2017-07-14 09:10

Diferentes modelos ER podem gerar o mesmo esquema

Todo relacionamento muitos-para-muitos (n:n) pode ser transformado em entidade

Modelagem: atributo versus entidade relacionada

- Se não houver qualquer objeto relacionado com a **Cor**, então essa poderia ser modelada como **atributo**
- Se fosse necessário registrar o fabricante da tinta da referida cor, datas de início e fim de uso da cor, etc. então optaria por modelar como **entidade**

Modelagem: atributo versus entidade relacionada

- Se não houver qualquer objeto relacionado com a **Cor**, então essa poderia ser modelada como **atributo**
- Se fosse necessário registrar o fabricante da tinta da referida cor, datas de início e fim de uso da cor, etc. então optaria por modelar como **entidade**

Deseja-se armazenar os telefones dos alunos. Qual abordagem usar?

- 1 Telefone como atributo de Aluno
- 2 Telefone como uma entidade

Modelagem: atributo versus especialização

 A especialização deve ser usada quando sabe-se que os objetos possuem propriedades particulares

Modelagem: atributo versus especialização

■ A especialização deve ser usada quando sabe-se que os objetos possuem propriedades particulares

É necessário representar o fato que os funcionários são divididos entre homens e mulheres. Qual abordagem usar?

Leitura recomendada

Projeto de banco de dados 6a. Edição - Editora Bookman, 2009

Capítulo 3 (página 72)

■ Ler seções 3.1, 3.2 e 3.3

Aulas baseadas em

Henry F.; Sudarshan Silberschatz, Abraham; Korth. Sistemas de banco de dados.

6a. Edição - Editora Campus, 2012

Heuser, C. A.
 Projeto de banco de dados
 6a. Edição - Editora Bookman, 2009

Sullivan, D. G.

Computer Science – Harvard University