Lista 7 - Álgebra Linear

Mudança de base e transformação inversa

2° quadrimestre de 2013 -3° quadrimestre de 2014 - Professores Maurício Richartz e Vladislav Kupriyanov

Leitura recomendada: seções 3.9, 4.7 e 5.4 do Boldrini e seções 2.6, 2.10, 2.11 e 2.19 do Apostol.

 $\begin{array}{ll} \mathbf{1} & \longrightarrow & \mathrm{Sejam} \ \beta_1 = \{(1,0),(0,2)\}, \beta_2 = \{(-1,0),(1,1)\} \ \mathrm{e} \ \beta_3 = \{(-1,-1),(0,-1)\} \ \mathrm{tr\hat{e}s} \ \mathrm{bases} \ \mathrm{ordenadas} \\ \mathrm{de} \ \mathbb{R}^2. \ \mathrm{a}) \ \mathrm{Determine} \ \mathrm{as} \ \mathrm{seguintes} \ \mathrm{matrizes} \ \mathrm{mudança} \ \mathrm{de} \ \mathrm{base}: \ [\mathrm{I}]_{\beta_2}^{\beta_1}, \ [\mathrm{I}]_{\beta_3}^{\beta_2} \ \mathrm{e} \ [\mathrm{I}]_{\beta_3}^{\beta_1}. \ \mathrm{Verifique} \ \mathrm{que} \ [\mathrm{I}]_{\beta_3}^{\beta_1} = [\mathrm{I}]_{\beta_3}^{\beta_2} \cdot [\mathrm{I}]_{\beta_3}^{\beta_2}. \ \mathrm{b}) \ \mathrm{Calcule} \ \mathrm{a} \ \mathrm{inversa} \ \mathrm{das} \ \mathrm{matrizes} \ \mathrm{encontradas} \ \mathrm{em} \ \mathrm{a}). \ \mathrm{As} \ \mathrm{matrizes} \ \mathrm{obtidas} \ \mathrm{representam} \ \mathrm{quais} \ \mathrm{mudanças} \ \mathrm{de} \ \mathrm{base}? \end{aligned}$

- **2** Considere as bases $\beta_1 = \{6 + 3x, 1 2x, x^2 + 2x 2\}$ e $\beta_2 = \{2, 3 + 2x, 5 2x x^2\}$ de \mathcal{P}_2 .
 - a) Encontre a matriz de mudança da base β_2 para a base β_1 .
 - b) Calcule a inversa da matriz obtida em a) para obter a matriz mudança de base de β_1 para β_2 .
 - c) Encontre as coordenadas de $\mathbf{v}=1-2x$ na base β_1 . Use a matriz mudança de base para encontrar as coordenadas de \mathbf{v} na base β_2 .

3 — A matriz mudança de base em \mathbb{R}^2 , da base β para a base $\alpha=\{(1,1),(1,2)\}$ é dada por $\begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$. Determine a base β .

 $\mathbf{4}$ — Seja V um espaço vetorial real e seja $\mathcal B$ uma base ordenada de V. Qual a matriz de mudança da base $\mathcal B$ para a base $\mathcal B$?

 ${f 5}$ — Seja V o espaço vetorial das matrizes $2{\bf x}2$ triangulares superiores. Sejam

$$\beta_1 = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\}$$

е

$$\beta_2 = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \right\}$$

duas bases de V. Encontre a matriz mudança de base de β_2 para β_1 e a matriz mudança de base de β_1 para β_2 .

6 — Seja $T : \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x,y,z) = (2x+3y-5z, x-y-z, 2x+y+z). Sejam β_1 a base canônica de \mathbb{R}^3 e $\beta_2 = \{(1,2,3), (3,2,1), (1,1,0)\}$ outra base de \mathbb{R}^3 .

- a) Determine a matriz $[T]_{\beta_1}^{\beta_1}$.
- b) Determine a matriz mudança de base de β_2 para β_1 .
- c) Usando as matrizes encontradas acima, determine $[T]_{\beta_2}^{\beta_2}$
- d) A transformação T é inversível? Caso seja, determine $[T^{-1}]_{\beta_1}^{\beta_1}$ e $[T^{-1}]_{\beta_2}^{\beta_2}$
- 7 Seja $T \in \mathcal{L}(\mathcal{P}_3, \mathcal{P}_2)$ dada por T(p) = p'.
 - a) Encontre a matriz de T com relação às bases canônicas de \mathcal{P}_3 e \mathcal{P}_2 .
 - b) Sejam $\alpha = \{1-x, 1+x, x^2-x^3, x^2+x^3\}$ e $\beta = \{1-x, 1+x, x^2\}$ bases de \mathcal{P}_3 e \mathcal{P}_2 , respectivamente. Determine a matriz mudança de base em \mathcal{P}_3 , da base α para a base canônica. Determine a matriz mudança de base em \mathcal{P}_2 , da base canônica para a base β .
 - c) Usando as matrizes encontradas acima, determine $[T]^{\alpha}_{\beta}$.
 - d) A transformação derivada é inversível? Se sim, determine $[T^{-1}]^{\beta}_{\alpha}$.
- 8 Seja $T \in \mathcal{L}(\mathcal{P}_2, \mathbb{R})$ dada por $T(\mathfrak{p}) = \int_0^1 \mathfrak{p}(x) dx$.
 - a) Encontre a matriz de T com relação às bases canônicas de \mathcal{P}_2 e \mathbb{R} .
 - b) Sejam $\alpha = \{1 x, 1 + x, x^2\}$ e $\beta = \{-3\}$ bases de \mathcal{P}_2 e \mathbb{R} , respectivamente. Determine a matriz mudança de base em \mathcal{P}_2 , da base α para a base canônica. Determine a matriz mudança de base em \mathbb{R} , da base canônica para a base β .
 - c) Usando as matrizes encontradas acima, determine $[T]^{\alpha}_{\beta}$.
 - d) A transformação integral é inversível? Se sim, determine $[T^{-1}]_{\alpha}^{\beta}.$