Build a boosting classifier from scratch

Requirements:

Evaluate it using MNIST & Fashion MNIST DATASET.

Compare the results with

Bagging; Random Forest; AdaBoost (sklearn version)

Score:

4 points

Project #4

Project #5

Neural Networks for Learning to Count Problem

The **output** is the **number of instance of an object** that appears in that image ->

In this image appears 126 dots

Score:

If the problem is solved with convolutional networks:

Up to 3 points

If the problem is solved with convolutional networks + Smart Data Augmentation:

Up to 4 points

If the problem is solved with complex networks + Smart Data Augmentation + Smart ideas:

Up to 6 points

Neural Networks

Machine Learning | Enginyeria Informàtica

Santi Seguí | 2021-2022

What is a Neural Network

- It is a system biologically inspired that tries to emulate human brain.
- Why

What is a Neural Network

- It is a system biologically inspired that tries to emulate human brain.
- Why is it a good idea to try to emulate the brain when solving a recognition task?

What is a Neural Network

- It is a system biologically inspired that tries to emulate human brain.
- Why is it a good idea to try to emulate the brain when solving a recognition task?

The human brain is the **best system** that we know of!!

What is a neuron?

What is a neuron?

What is a neuron?

- In the human brain, a **typical neuron** collects signals from others through a host of fine structures called **dendrites**.
- The neuron **sends out spikes** of electrical activity through a long, thin stand known as an **axon**, which splits into thousands of branches.
- At the end of each branch, a structure called a **synapse** converts the activity from the axon into electrical effects that inhibit or excite activity in the connected neurons.

How the brain works (with one slide!)

- Each neuron receives inputs from other neurons
 - A few neurons also connects to receptors
 - Cortical neurons use spikes to communicate
- The effect of each input line on the neuron is controlled by a synaptic weight
 - The weights can be positive or negative
- The synaptic weight adapt so that the whole network learns to perform useful computations
 - Recognizing objects, understanding language, making plans, controlling the body.
- You have about 10¹¹ neurons each with about 10⁴ weights.
 - A huge number of weights can affect the computation in a very short time. Much better bandwidth than a workstation.

Perceptron

Perhaps the first AI model

The Book: Perceptrons

1 Layer Neural Net model

Neural Networks

1 Layer Neural Net model

- Linear Neurons
 - These are one of the most simple neurons models computationally limited

$$y = \beta + \sum_{i} X - i\beta_{i}$$

- McCulloch-Pitts (Binary threshold neurons):
 - First compute a weighted sum of the inputs
 - Then send out a fixed size spike of activity if the weighted sum exceeds a threshold.

$$y = \beta_0 + \sum_i x_i \beta_i$$

$$y = \begin{cases} 1, & \text{if } z \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

- Rectified Linear Neurons (ReLu)
 - It computes a linear weights sum of their inputs.
 - The output is a non-linear function of the total input.

$$y = \beta_0 + \sum_i x_i \beta_i$$

$$y = \begin{cases} z, & \text{if } z \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

- Sigmoid neurons
 - These five a real-valued output that is a smooth and bounded function of ther total input. Logistic function is typically used.

$$y = \beta_0 + \sum_i x_i \beta_i$$

$$y = \frac{1}{1 + e^{-z}}$$

Perceptron Multiclasse

Figura 4: Modelo del perceptrón para clasificación múltiple

Exercice

• Suppose we have a 3-dimensional input $x=(x_1,x_2,x_3)$ connected to a neuron with weights $w=(w_1,w_2,w_3)$ where :

$$x_1 = 2$$
 $w_1 = 1$
 $x_2 = -1$ $w_2 = -0.5$
 $x_3 = 1$ $w_3 = 0$
and a bias $b = 0.5$.

- For each of the types of neurons discussed so far, we calculate the output y using the input x, weight w and bias b. If the activation function is:
 - Linear
 - Logistic Sigmoid
 - Binary Threshold
 - Rectified Linear

Types of Neural Networks

- Feed Forward Neural Networks
- Convolutional Neural Networks
- Recurrent Neural Networks

Feed-Forward Neural Network

- These are the commonest type of neural networks in practical applications
 - The first layer is the input and the last layer is the output
 - If there is more than one hidden layer, we call them "deep" neural networks!

- They compute a series of transformations that change the similarities between cases.
 - The activities of the neuros in each layer are non-linear functions of the activites in the layer below.

2 Layers Neural Net model

Let's play a little bit!:)

http://playground.tensorflow.org/

