(II) Tooks to study cohomological Hall algebras

Tanishing azele sheaf functor: definition and first properties -> one of the most important object in Donaldson-Thomas theory.

X complex algebraic variety

 $f: X \longrightarrow A'$ regular function

ALO := { 3 € C | le(3) €0}

 $\chi_0 = \int_{-1}^{-1} (0)$

X 40 = { - (A40)

X>0 = X / X60

nearly cycle functor: Y_f , Q_f : $D^b(X) \rightarrow D^b(X_0) \leftarrow \text{all sheaves of } d$ - vspaces, $Y_f = (X_o \hookrightarrow X)^* (X_{>o} \hookrightarrow X)_* (X_{>o} \hookrightarrow X)^* [-1]$ not necessarily constructible ones. $\Phi_{\ell} = \left(\chi_{o} \hookrightarrow \chi_{\leq o} \right)^{*} \left(\chi_{\leq o} \hookrightarrow \chi \right)$

distinguished triangle
$$\mathcal{P}_{\ell} \rightarrow (\chi_0 \hookrightarrow \chi)^* \rightarrow \mathcal{T}_{\ell} [1] \rightarrow$$

* Ge, 4 preserve constructible complexes [non obvious since constructed using non-absolution maps] * commute co/ Verdier duality

properhies

* functorialities w.r.t. proper morphisms

F gogx → gox o fog, iso if g is frozer

go off - offeg og*, iso if g is smooth.

* If X is smooth, supp of (Qx) C crit(f)

* Thom-Sebastiani: f: X -> A'; f': X' -> A' ~~ f \(\text{#} f': X \times X' -> A' \) (x, x') > f(x)+f(x').

 $\mathcal{L}(\mathcal{F}) \boxtimes \mathcal{L}(\mathcal{L}) \cong \mathcal{L}(\mathcal{F}) \boxtimes \mathcal{L}(\mathcal{L}) \cong \mathcal{L}(\mathcal{F})$

$$f = 0 = 0$$
 $f \simeq id$.

1) Dimensional reduction

Kontserich-Soibelman, Davison, Kinjo Deformed version: Davison-Padurariu

X smooth algebraic variety

T | vector bundle s (TT dual vector bundle X with section S.

 $E \xrightarrow{f} A'$ regular function given by

 $E \circ E \times X \longrightarrow E \times E^{\vee} \xrightarrow{\text{ev}} A^{\uparrow}$

Define: $Z = s^{-1}(0) \subset X$ $\overline{Z} = \pi^{-1}(Z) \subset E$ $E_0 = f^{-1}(0) \subset E$ Note that $\overline{Z} \subseteq E_0$

1' -ī=101': 2 → E

Other: $\pi! \operatorname{lf}(\operatorname{id} \to \overline{\iota}_{\star} \overline{\iota}^{\star}) \pi^{\star}$ do an isomorphism of functors

Verdier duality: $\pi_{\star} \operatorname{P}\left(\bar{z}_{1}\bar{z}^{!} \to id\right)\pi^{!}$ is an iso of Jundons

Because $f|_{\overline{Z}} = 0$, $q_{\overline{L}|\overline{L}}! = \overline{L}!\overline{L}!$ and so

 $\pi_{\chi} \, \bar{\iota}_{\chi} \bar{\iota}^! \simeq \pi_{\chi} \, q_{\xi} \pi^!$ Apply this to $Q_{\chi} \cong Q_{\chi} \, [2 \dim \chi]$

 $T_{+}T_{+}T' DQ_{x} \cong_{T_{+}}DQ_{\overline{Z}}$ $\cong DQ_{Z} [2rank E]$

and

77 x Pg Tr. DQ = 77 Pg DUE

Tx Pg QE [2din X + 2rank E]

2 Quivers with potential Q quiver W E C[0] linear combination of cyclic path = "potential" partial derivatives : e E Q1 arrow $\frac{\partial}{\partial e} \left(\alpha_{1} \dots \alpha_{r} \right) = \sum_{\alpha_{i} = e} \alpha_{i+1} \dots \alpha_{r} \alpha_{1} \dots \alpha_{i-1}$ linearly extended to any cyclic word. Jacobi algebra: Jac (Q,W):= C[Q]/<u>2W</u>: e E Q₁)

Important example
$$Q = (Q_0, Q_1)$$
 quiver $\overline{Q} = (Q_0, \overline{Q}_1)$ double quiver $\overline{Q} = (Q_0, \overline{Q}_1)$ triple quiver $\overline{Q} = \overline{Q}_1 \cup \overline{Q}_1 \cup \overline{Q}_2 \cup \overline{Q}_1 \cup \overline{Q}_2 \cup \overline{Q}$

cubic prtential for the triple quiver:
$$W = \left(\sum_{\alpha \in \mathcal{Q}_1} [\alpha, \alpha^*] \right) \left(\sum_{i \in \mathcal{Q}_0} \omega_i \right)$$

example:
$$Q = \mathcal{R}$$
 Jordan quiver
$$\overline{Q} = \mathcal{R}$$

$$\overline{Q} = \mathcal{R}^{x}$$

$$W = [x,y]_{3} = xy_{3} - yx_{3}$$

$$\frac{\partial W}{\partial x} = y_{3} - 3y ; \frac{\partial W}{\partial y} = 3x - x_{3}; \frac{\partial W}{\partial x} = xy - yx$$

 $\overline{Jac}(\widetilde{Q}_rW) = \frac{C(x,y,3)}{commutatory}$ $\simeq C[x,y,3]$

In general, we have the following exercise $\operatorname{Jac}\left(\stackrel{\sim}{\alpha},W\right)\cong\operatorname{Ta}\left[\omega\right]\;.$

Dimensional reduction: $H^*(\mathcal{R}_{\widetilde{a}}, \mathcal{L}_{\mathsf{TrW}}, \mathcal{L}_{\mathsf{M}_{\widetilde{a}}}) \cong H^{\mathsf{BM}}_{\mathsf{X}}(\mathcal{R}_{\mathsf{Tra}}, \mathcal{L}_{\mathsf{M}_{\mathsf{Tra}}}^{\mathsf{vir}})$ More precisely, $\mathcal{R}_{\mathsf{X},\mathsf{J}} \xrightarrow{\mathcal{T}} \mathcal{R}_{\mathsf{a},\mathsf{J}}$ morphism forgetting the loops. Then, $\mathcal{T}_{\mathsf{X}} \mathcal{L}_{\mathsf{TrW}} \mathcal{R}_{\mathsf{N}_{\mathsf{X}}} \cong \mathcal{D} \mathcal{R}_{\mathsf{N}_{\mathsf{Tra}},\mathsf{J}}^{\mathsf{vir}}$ $\cong \mathcal{D} \mathcal{R}_{\mathsf{N}_{\mathsf{Tra}},\mathsf{J}}^{\mathsf{vir}}$

Consequere: study MC_{TQ} by using (\tilde{Q},W) .

Upshot: * the most proverful constructions take place at the level of (Q, W) [3C7 level]

* the calculations more manageable at the level of TQ. [2C4 level]

3) Perverse t-structures and perverse fittration X C-alzebraic variety Vc (X) constructible derived category of X. Natural t-structure: D: (X) = 27 ED. (X) [Hi (7) = 0 for i >0) $\mathcal{J}^{>0}(X) = \mathcal{F} \in \mathcal{D}_{c}(X) \mid \mathcal{H}^{2}(\mathcal{F}) = 0 \text{ for } 1^{2} < 0$ Heart: $Sh_c(X) = \mathcal{D}_c^{\leq 0}(X) \cap \mathcal{D}_c^{\geq 0}(X)$ category of constructible sheaves More interesting: the pervense t-structure: [BBDG] It has the ferverse t-structure $(PD_c^{\leq 0}(X), PD_c^{\geq 0}(X))$ whose hearl Per $(X) = \mathcal{D}_{c}^{(5)}(X) \cap \mathcal{D}_{c}^{(8)}(X)$ is the abelian category of ferverse sheaves. PD (X) is the full subcategory of De (X) of complexes of such that: ① $\forall i \in \mathbb{Z}$, $\dim \mathcal{Z}_{y} \in \mathcal{Y} \mid \mathcal{H}^{i}(\mathcal{Z}) \mid_{\mathcal{Y}} \neq 0$ $\mathcal{J} \leq -i$ [support condition] 12 = 0 (X) is the full subcategory of Dr (X) of complexes 7 s.t. [cosuport condition] 1 The complex DF settisfies 1 Per $(X) := \bigcup_{c}^{\infty} (X) \cap \bigcup_{c}^{\infty} (X) \quad [\text{support} + \text{comport}].$

Perverse truncations and perverse cohomologies
PZ (i, PZ > i, PHi

Semisimple complexes $f \in \mathcal{D}_c^+(\hat{x})$ is called semisimple if there exists an isomorphism

P = A PHi(P)[-i]

and each perverse sheaf PHi(F) is semisimple.

The main theorem in the theory of ferverse sheaves is the following:

Decomposition theorem [BBDG]

Let $p: X \to Y$ be a projective morphism between complex absolution varieties and F = JE(X). Then, $p_X \neq E$ $\mathcal{O}_C(Y)$ is a semisimple complex.

Perverse filtration $f: X \to Y$ morphism between complex algebraic varieties

We obtain a filtration of the singular cohomology $H^*(X, \mathbb{Q})$ as follows: $f \subset \{i\} \in \mathbb{Q}_X \longrightarrow f_* \in \mathbb{Q}_X$ adjunction morphism $f : H^*(X, \mathbb{Q}) := \text{Image} \left(H^*(Y, f \subset \{i\} \notin \mathbb{Q}_X) \xrightarrow{f_i} H^*(Y, f \in \mathbb{Q}_X) \right)$ increasing filtration.

If $f_*Q_X \in \mathcal{Q}_c^*(Y)$ is semisimple, the filtration is split and the L_1 e.g. if X is smooth and f is proper.

Oi are injective.

The BPS lie algebra and the BPS algebra

We define the BPS hie algebra for $(\tilde{\alpha}, W)$ /To

Recall $M_{\tilde{\alpha}} = \coprod_{d \in \mathbb{N}} M_{\tilde{\alpha}, d}$; $M_{\tilde{\alpha}, d} = X_{\tilde{\alpha}, d}/G_{d, d}$ is the stack of d-dimensional representations of $\tilde{\alpha}$. $M_{\tilde{\alpha}} = \coprod_{d \in \mathbb{N}} M_{\tilde{\alpha}, d}$; $M_{\tilde{\alpha}, d} = X_{\tilde{\alpha}, d}/G_{d, d} = \operatorname{Spec} \mathbb{C}[X_{\tilde{\alpha}, d}]^{G_{d, d}}$ is the affine GIT quotient.

Th: $M_{\tilde{\alpha}} \to M_{\tilde{\alpha}}$ is the natural morphism.

Proposition: JH* QNZ & Dc (Ma) is a remissimple complex
Proof: Approximation by proper maps of the morphism NZ -> Ma from
the stack to the good moduli space.

Smallness Let a be a symmetric quiver. Then, there exists a brally closed stratification $(S_g)_{g \in E}$ of Ma st. $p_g: S_g = p^{-1}(S_g) \rightarrow f_g$ satisfy:

(i) p_g is an étale brally trivial fibration

(ii) $\forall S_g \in S_g$,

 $\dim S_{\xi} + 2 \dim p^{-1}(S_{\xi}) \leq \dim V/G$ with equality iff S_{ξ} is an open stratum and S_{ξ} has finite stabilizers -

Consequence: $JH_{*}Q_{NT_{a}}^{vir} \in {}^{p}\mathcal{D}^{\geq 1}(\mathcal{M}_{a})$. [exercise]

Apply $\mathcal{L}_{TrW}: JH_{*}\mathcal{L}_{TrW}^{vir} \in {}^{p}\mathcal{D}^{\geq 1}(\mathcal{M}_{a})$ soince vanishing cyclo is prevene t- exact.

Define $\mathcal{BPJ}_{a,w}:={}^{p}\mathcal{H}^{1}(JH_{*}\mathcal{L}_{TrW})\in \text{Rev}^{-}(\mathcal{M}_{a})$ BPS Lie algebra sheaf.

Support lemma $M_{\overline{Q}} \times A^{1} \stackrel{2}{\longrightarrow} M_{\overline{Q}}$.

support lemma $M_{\overline{Q}} \times A^{1} \stackrel{2}{\longrightarrow} M_{\overline{Q}}$.

support lemma $M_{\overline{Q}} \times A^{1} \stackrel{2}{\longrightarrow} M_{\overline{Q}}$.

+ BPJ(\widetilde{Q}, W) is A^{1} - equivariant.

=) BPJ(\widetilde{Q}, W) \cong BPJ(\widetilde{Q}, W) \boxtimes $\mathbb{Q}_{A^{1}}$ [1].

"dimensionally reduced BPS sheaf"

BPS(a, w) is reported on Moto C No.

5 The PBW theorem

Thm (Davison) There are isomorphisms in Do (Mo, D)

JH* 9 Tr w Rmg & Sym (BPJa, w)[-1] & H** (pt)

 $\text{JH}_{\star} \mathbb{DQ}_{m_{T_0}}^{\text{vir}} \cong \text{Sym} \left(\mathcal{BPJ}_{(\!g,w)}^{\text{red}} \otimes H_{\mathbb{C}^{\star}}^{\star} \left(\text{pt} \right) \right)$

Consequences: Che perverse filtration on JH* DR 92 mg stants in Legree O.

Chim (Davison) PH° (JHx DQnt) & Perv (Morro) has an induced algebra structure. "BPSAlg

PH° (JH* DQ mir) = U(BPy red) algebras

Questions: Is it possible to describe the structure of the Lie algebra object $\mathcal{B}P\mathcal{S}_{(3,w)}^{red} \in Perw(\mathcal{M}_{T_0})$ (and so obtain the structure of the Lie algebra $\mathcal{B}P\mathcal{S}_{(3,w)}^{red} := H^*(\mathcal{M}_{T_0}, \mathcal{B}P\mathcal{S}_{(3,w)})$)?