1

1, 11

1, 11, 111

1, 11, 111, 1111

1, 11, 111, 1111, 11111

1, 11, 111, 1111, 11111, ...

Le répunit 11 111 Son écriture « développée » 11 111

$\begin{tabular}{ll} Le répunit $11\,111$ \\ Son écriture « développée » \\ \end{tabular}$

11 111

Son écriture « développée »

11 111

=

 $1 \times 10\,000$

Son écriture « développée »

 $11\,111\\ =\\ 1\times 10\,000\\ +$

Son écriture « développée »

 $11\,111$ = $1 \times 10\,000$ + 1×1000

Son écriture « développée »

 $11\,111 = 1 \times 10\,000 + 1 \times 1000 + 1 \times 1000$

Son écriture « développée »

 $11\,111 = 1 \times 10\,000 + 1 \times 1000 + 1 \times 1000$

```
11\,111 = 1 \times 10\,000 + 1 \times 1000 + 1 \times 10000 + 1 \times 1000 + 1 \times 1000
```

```
11\,111 = 1 \times 10\,000 + 1 \times 1000 + 1 \times 1000 + 1 \times 100 + 1 \times 100
```

```
11111
1 \times 10000
 1 \times 1000
 1 \times 100
  1 \times 10
```

```
11111
     10^{4}
1 \times 1000
1 \times 100
 1 \times 10
```

```
11 111
    10^{4}
    10^{3}
1 \times 100
1 \times 10
```

```
11 111
   10^{4}
   10^{3}
   10^{2}
1 \times 10
```

```
11 111
   10^{4}
   10^{3}
   10^{2}
   10
```

$$11\,111 = 1 + 10 + 10^2 + 10^3 + 10^4$$

Un répunit $1 \cdots 1$ avec (n+1) chiffres admet pour écriture « développée »

$$\underbrace{1\cdots 1}_{(n+1) \text{ chiffres}} = 1 + 10 + 10^2 + \cdots + 10^n$$

Une autre écriture?

Le répunit 11 111 Avec d'autres chiffres égaux

Avec d'autres chiffres égaux

22 222

33 333

44 444

55 555

66 666

77 777

88888

99999

Le répunit 11 111 Avec d'autres chiffres égaux

$$99\,999+1=100\,000$$

Le répunit 11 111 Avec d'autres chiffres égaux

$$9 \times 111111 + 1 = 10^5$$

Le répunit 11 111 Avec d'autres chiffres égaux

$$9\times 11\,111=10^5-1$$

Avec d'autres chiffres égaux

$$11\,111=\frac{10^5-1}{9}$$

Un répunit $1 \cdots 1$ avec (n+1) chiffres admet pour écriture « courte »

$$\underbrace{1\cdots 1}_{(n+1) \text{ chiffres}} = \frac{10^{n+1} - 1}{9}$$

Une jolie formule apparaît.

$$1 + 10 + 10^2 + \dots + 10^n = \frac{10^{n+1} - 1}{9}$$

Une jolie formule apparaît.

$$1 + 10 + 10^2 + \dots + 10^n = \frac{10^{n+1} - 1}{10 - 1}$$

Le moment clé du raisonnement précédent :

$$9(1+10+10^2+\cdots+10^n)+1=10^{n+1}$$

$$1+4+4^2+\cdots+4^n$$

$$3(1+4+4^2+\cdots+4^n)$$

$$3(1+4+4^2+\cdots+4^n)+1$$

$$3(4^n + \cdots + 4^2 + 4 + 1) + 1$$

$$3 \times 4^{n} + \cdots + 3 \times 4^{2} + 3 \times 4 + 3 + 1$$

$$3 \times 4^{n} + \cdots + 3 \times 4^{2} + 3 \times 4 + 4$$

$$3 \times 4^n + \cdots + 3 \times 4^2 + 4 \times 4$$

$$3 \times 4^n + \cdots + 3 \times 4^2 + 4^2$$

$$3 \times 4^n + \cdots + 4^3$$

$$3 \times 4^{n} + 4^{n}$$

 4^{n+1}

Avec des puissances de 4, on a obtenu :

$$3(1+4+4^2+\cdots+4^n)+1=4^{n+1}$$

Plus généralement pour $k \in \mathbb{N}_{\geqslant 2}$, on a :

$$(k-1)(1+k+k^2+\cdots+k^n)+1=k^{n+1}$$

Plus généralement pour $k \in \mathbb{N}_{\geqslant 2}$, on a :

$$(k-1)(1+k+k^2+\cdots+k^n)=k^{n+1}-1$$

En fait on a même pour $q \in \mathbb{R}$:

$$(q-1)(1+q+q^2+\cdots+q^n)=q^{n+1}-1$$