MATEMATIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

OKTATÁSI HIVATAL

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas-hatóan** javítsa ki.
- A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott pontszám a mellette levő téglalapba kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy **a hiba jelzése** mellett az egyes **részpontszámokat** is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányjel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha az útmutatóban egy **megjegyzés** zárójelben szerepel, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. **Mértékegység hiánya esetén** csak akkor jár pontlevonás, ha a hiányzó mértékegység válaszban vagy mértékegység-átváltásban szerepel (zárójel nélkül).
- 7. Egy feladatra adott többféle megoldási próbálkozás közül **a vizsgázó által megjelölt változat értékelhető**. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 8. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 9. Egy feladatra vagy részfeladatra adott összpontszám **nem lehet negatív**.
- 10. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 11. A gondolatmenet kifejtése során a zsebszámológép használata további matematikai indoklás nélkül – a következő műveletek elvégzésére fogadható el: összeadás,

kivonás, szorzás, osztás, hatványozás, gyökvonás, n!, $\binom{n}{k}$ kiszámítása, a függvénytáb-

lázatban fellelhető táblázatok helyettesítése (sin, cos, tg, log és ezek inverzei), a π és az e szám közelítő értékének megadása, nullára rendezett másodfokú egyenlet gyökeinek meghatározása. További matematikai indoklás nélkül használhatók a számológépek bizonyos statisztikai mutatók kiszámítására (átlag, szórás) abban az esetben, ha a feladat szövege kifejezetten nem követeli meg az ezzel kapcsolatos részletszámítások bemutatását is. **Egyéb esetekben a géppel elvégzett számítások indoklás nélküli lépéseknek számítanak, azokért nem jár pont.**

- 12. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 13. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 14. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **észszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 15. A vizsgafeladatsor II. B részében kitűzött 3 feladat közül csak 2 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

I.

1.		
$A = \{1; 2; 3; 4\}$	1 pont	
$B = \{1; 2; 5; 6\}$	1 pont	
Összesen:	2 pont	

2.		
A másik befogó hossza $(\sqrt{25^2 - 24^2})$ =)7 cm.	2 pont	
Összesen:	2 pont	

3.		
$(3 \cdot 2 \cdot 1 \cdot 2 =)$ 12 megfelelő szám alkotható.	2 pont	4321, 4231, 3421, 3241, 2431, 2341, 4213, 4123, 2413, 2143, 1423, 1243
Összesen:	2 pont	

4.		
Nem igaz,	1 pont	
mert 2022-ben 1000, 2023-ban pedig 1200 terméket (azaz 1,2-szer annyit) értékesített.	1 pont	
Összesen:	2 pont	

5.		
$a = (4^2 =) 16$	2 pont	
Összesen:	2 pont	

6.		
A sorozat differenciája (6:4 =) 1,5.	1 pont	
A sorozat első tagja $6 - 5 \cdot 1,5 = -1,5$.	1 pont	
A sorozat első 6 tagjának összege $S_6 = \frac{-1,5+6}{2} \cdot 6 =$	1 pont	-1,5 + 0 + 1,5 + 3 + 4,5 + + 6 =
= 13,5.	1 pont	
Összesen:	4 pont	

7.		
A csúcsok száma: 7.	1 pont	
A lapok száma: 7.	1 pont	
Az élek száma 12.	1 pont	
Összesen:	3 pont	

8.		
(Az eredeti szám a 64, log ₂ 128 =) 7	2 pont	
Összesen:	2 pont	

9.		
(10 593:0,55 =) 19 260-an vettek részt a szavazáson.	2 pont	
Összesen:	2 pont	

10.			
f, h, i		1-1 pont	Minden tévesen beírt be- tűjelért 1 pont levonás jár.
	Összesen:	3 pont	

11.		
A jegyek átlaga $\left(\frac{1+5+5+5}{4}\right) = 4$.	1 pont	
A szórás $\left(\sqrt{\frac{3^2+3\cdot 1^2}{4}}\right) = \sqrt{3} \approx 1,73.$	2 pont	
Összesen:	3 pont	

12. első megoldás		
Három kockával $6^3 = 216$ -félét dobhatunk (összes eset száma).	1 pont	
(A piros kockával 6-féle, a feketével 5-féle, a fehérrel 4-féle számot dobhatunk úgy, hogy ne legyen ismétlődés a dobott számok között.) A kedvező lehetőségek száma $6 \cdot 5 \cdot 4 = 120$.	1 pont	
A keresett valószínűség $\frac{120}{216} = \frac{5}{9} \approx 0,556.$	1 pont	
Összesen:	3 pont	

12. második megoldás		
Például a piros kockával bármit dobhatunk. Annak a valószínűsége, hogy ekkor a fekete kockával mást dobunk, mint a pirossal: $\frac{5}{6}$.	1 pont	
Annak a valószínűsége, hogy a fehér kockával mást dobunk, mint a másik kettővel: $\frac{4}{6}$.	1 pont	
A keresett valószínűség $1 \cdot \frac{5}{6} \cdot \frac{4}{6} \approx 0,556$.	1 pont	
Összesen:	3 pont	

II. A

13. a)		
A zárójeleket felbontva:	1 pont	
126x + 1728 + 95x - 1064 = 1990.	1	
Az egyenletet rendezve: $221x = 1326$.	1 pont	
x = 6	1 pont	
Ellenőrzés behelyettesítéssel vagy ekvivalens	1 pont	
átalakításokra hivatkozással.	- Point	
Összesen:	4 pont	

13. b)			
$1896 = 2^3 \cdot 3 \cdot 79$		1 pont	
$1956 = 2^2 \cdot 3 \cdot 163$		1 pont	
A két szám közös osztói: 1, 2, 3, $(2^2 =)$ 4, $(2 \cdot 3 =)$ 6, $(2^2 \cdot 3 =)$ 12.		3 pont	Egy hiba (kihagyott vagy hibás osztó) esetén 2 pont, két vagy három hiba ese- tén 1 pont, háromnál több hiba esetén 0 pont jár.
	Összesen:	5 pont	

14. a) első megoldás		
A tízszög belső szögeinek összege 8 · 180° = 1440°.	2 pont	
(A szabályos tízszög szögei egyenlők, így) egy belső szöge (1440°: 10 =) 144° valóban.	1 pont	
Összesen:	3 pont	

14. a) második megoldás		
A tízszög külső szögeinek összege 360°.	1 pont	
(A szabályos tízszög külső szögei egyenlők, így) egy külső szöge (360°: 10 =) 36°,	1 pont	
egy belső szöge pedig $(180^{\circ} - 36^{\circ} =) 144^{\circ}$ valóban.	1 pont	
Összesen:	3 pont	

14. a) harmadik megoldás		
A tízszöget a főátlói tíz egybevágó egyenlőszárú		
háromszögre bontják.	1 pont	
A háromszögek szárszöge (360°:10 =) 36°.		
A háromszögek alapon fekvő szögei	1	
$((180^{\circ}-36^{\circ}):2=)72^{\circ}$ -osak,	1 pont	
így a tízszög egy belső szöge (2·72° =) 144° valóban.	1 pont	
Összesen:	3 pont	

14. b)		
A szabályos tízszög felbontható tíz olyan egyenlőszárú háromszögre, melynek alapja 10 cm, az alapon fekvő szögei pedig (144:2 =) 72°-osak.	1 pont	A szárszög 36°.
Egy ilyen háromszög alaphoz tartozó magasságát		A háromszögek szárainak
m -mel jelölve: $tg 72^\circ = \frac{m}{5}$,	1 pont	hossza: $\frac{5}{\sin 18^{\circ}} \approx$
amiből $m \approx 15,4$ cm.	1 pont	\approx 16,2 cm.
Egy háromszög területe $\frac{10 \cdot 15,4}{2} = 77 \text{ cm}^2$,	1 pont	$\frac{16,2^2 \cdot \sin 36^\circ}{2} \approx 77 \text{ cm}^2$
azaz a tízszög területe 770 cm ² .	1 pont	
Összesen:	5 pont	

Megjegyzés: Ha a vizsgázó a szabályos n-szög területére vonatkozó képletet jól alkalmazza, és az alapján helyes választ ad, akkor a teljes pontszám jár.

14. c)		
Egy <i>n</i> -oldalú szabályos sokszög átlóinak a száma		
$\frac{n(n-3)}{2}$, így a megoldandó egyenlet $\frac{n(n-3)}{2} = 2015$.	1 pont	
Az egyenletet nullára rendezve: $n^2 - 3n - 4030 = 0$.	1 pont	
Az egyenlet gyökei 65 és –62.	2 pont	
A sokszög 65 oldalú (ami megfelel a feladat	1 pont	
feltételeinek).	1 point	
Összesen:	5 pont	

15. a) első megoldás		
Jelölje az almalé deciliterenkénti egységárát forintban a , a baracklé egységárát pedig b . Ekkor a feladat szövege alapján: $ \begin{cases} 3a + 5b = 1010 \\ 5a + 3b = 990. \end{cases} $	1 pont	
Az első egyenletből $b = \frac{1010 - 3a}{5}$.	1 pont	Az első egyenletet 5-tel, a másodikat 3-mal szo- rozva,
Ezt a második egyenletbe helyettesítve, és az egyenlet mindkét oldalát 5-tel szorozva: $25a + 3030 - 9a = 4950$.	1 pont	és a kapott egyenleteket egymásból kivonva: 16b = 2080.
Innen $a = 120$ (1 dl almalé ára 120 Ft),	1 pont	
$b = \left(\frac{1010 - 3.120}{5}\right) = 130 \text{ (1 dl baracklé ára 130 Ft)}.$	1 pont	
Ellenőrzés a szövegbe helyettesítéssel: $3 \cdot 120 + 5 \cdot 130 = 1010$ és $5 \cdot 120 + 3 \cdot 130 = 990$.	1 pont	
Összesen:	6 pont	

15. a) második megoldás		
A szöveg alapján 8 dl almalé és 8 dl baracklé	1 mant	
összesen $1010 + 990 = 2000$ Ft-ba kerül,	1 pont	
tehát 1 dl almalé és 1 dl baracklé ára összesen 250 Ft.	1 pont	
Ha 1 dl almalé ára <i>a</i> Ft, akkor $3a + 5(250 - a) = 1010$.	1 pont*	
Innen $a = 120$ (1 dl almalé ára 120 Ft),	1 pont*	
és $250 - 120 = 130$ (Ft) 1 dl baracklé ára.	1 pont*	
Ellenőrzés a szövegbe helyettesítéssel:	1	
$3 \cdot 120 + 5 \cdot 130 = 1010 \text{ és } 5 \cdot 120 + 3 \cdot 130 = 990.$	1 pont*	
Összesen:	6 pont	

Megjegyzés: A *-gal jelölt 4 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó.

Ezért 3 dl almalé és 3 dl baracklé ára összesen 750 Ft.	1 pont	
Vagyis 2 dl baracklé ára 1010 – 750 = 260 Ft,	1 pont	
azaz 1 dl baracklé ára 130 (Ft).	1 pont	
1 dl almalé ára pedig $250 - 130 = 120$ (Ft).	1 pont	

15. a) harmadik megoldás		
3 dl almalé és 5 dl baracklé 20 Ft-tal többe kerül,	1 pont	
mint 5 dl almalé és 3 dl baracklé,	т роп	
azaz 2 dl baracklé 20 Ft-tal kerül többe, mint 2 dl almalé.	1 pont	
Tehát 1 dl baracklé 10 Ft-tal kerül többe, mint 1 dl almalé,	1 pont	
így 8 dl almalé ára $990 - 30 = 960$ Ft.	1 pont	
Ebből 1 dl almalé ára 120 (Ft),	1 pont	
és 120 + 10 = 130 (Ft) 1 dl baracklé ára.	1 pont	
Összesen:	6 pont	

15. b) első megoldás		
A pincér az italokat (3! =) 6-féleképpen oszthatja ki (összes eset száma).	1 pont	
Ezek közül 2 esetben fordul elő, hogy senki sem a saját maga által rendelt italt kapja: A-b, B-c és C-a vagy A-c, B-a és C-b.	2 pont	
A kérdezett valószínűség tehát $\frac{2}{6} = \frac{1}{3}$.	1 pont	
Összesen:	4 pont	

15. b) második megoldás		
Ha a pincér először Annának szolgálja fel az italt, akkor annak a valószínűsége, hogy ő nem azt kapja, amit rendelt $\frac{2}{3}$.	1 pont	
Ezután – akár az almalé és a baracklé, akár az almalé és a citromos tea a megmaradt két ital – annak a valószínűsége $\frac{1}{2}$, hogy sem Bella, sem Cili nem a saját italát kapja. (A két lehetséges kiosztás közül mindig az egyik kedvező. Pl. A-b esetén a B-c/C-a kiosztás kedvező, a B-a/C-c kiosztás nem.)	2 pont	
A kérdezett valószínűség tehát $\frac{2}{3} \cdot \frac{1}{2} = \frac{1}{3}$.	1 pont	
Összesen:	4 pont	

15. c)					
	Igaz	Hamis	Nem lehet eldönteni		
Az adatok terjedelme 7000 Ft.		X			
A kifizetett összegek átlaga 3500 Ft.			X	1-1 pont	
A kifizetett összegek kb. 25%-a legalább 4000 Ft volt.	X				
Volt olyan asztal, ahol 2500 Ftot fizettek.			X		
			Összesen:	4 pont	

II. B

16. a) első megoldás		
Kettő, három vagy négy függvényt választhat ki Péter a négyből.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Kettőt $\binom{4}{2}$ = 6-féleképpen,	1 pont	1-2, 1-3, 1-4, 2-3, 2-4, 3-4
hármat 4-féleképpen,	1 pont	1-2-3, 1-2-4, 1-3-4, 2-3-4
négyet 1-féleképpen választhat ki.	1 pont	1-2-3-4
Összesen tehát $6 + 4 + 1 = 11$ -féleképpen választhat ki Péter legalább 2 függvényt.	1 pont	
Összesen:	5 pont	

16. a) második megoldás		
Komplementer módszerrel: az összes lehetséges		Ez a pont akkor is jár, ha
esetből azoknak az eseteknek a számát kell kivonni,	1 pont	ez a gondolat csak a meg-
amelyekben legfeljebb egy függvényt választ ki.		oldásból derül ki.
Minden függvény esetében eldöntheti Péter, hogy		
kiválasztja-e az adott függvényt vagy sem, tehát	1 pont	
összesen 2 ⁴ = 16 választási lehetősége van.		
Pontosan egy függvényt 4-féleképpen,	1 pont	
egyet sem 1-féleképpen választhat ki.	1 pont	
Összesen tehát $16 - 5 = 11$ -féleképpen választhat ki	1	
Péter legalább 2 függvényt.	1 pont	
Összesen:	5 pont	

16. b) első megoldás		
(A lineáris függvény grafikonja egyenes.)		
Az egyenes meredeksége $m = \left(\frac{9-7}{13-12}\right) = 2$.	2 pont	
Így $7 = 2 \cdot 12 + b$, ahonnan $b = -17$.	1 pont	$x \mapsto 2(x-12)+7$
A függvény hozzárendelési szabálya $x \mapsto 2x - 17$.	1 pont	
Összesen:	4 pont	

16. b) második megoldás		
(A két megadott pont illeszkedik az $y = mx + b$ egyen-		
letű egyenesre, így) $\begin{cases} 7 = m \cdot 12 + b \\ 9 = m \cdot 13 + b. \end{cases}$	1 pont	
Innen $m = 2$,	1 pont	
majd $7 = 2 \cdot 12 + b$ miatt $b = -17$.	1 pont	
A függvény hozzárendelési szabálya $x \mapsto 2x - 17$.	1 pont	
Összesen:	4 pont	

16. c)		
A kör egyenlete $(x - 12)^2 + (y - 7)^2 = 225$.	2 pont	
Az y tengelyen lévő pontok első koordinátája $x = 0$.	1 pont*	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Megoldandó a 144 + $(y - 7)^2$ = 225 egyenlet.	1 pont*	
Rendezve: $y^2 - 14y - 32 = 0$.	1 pont	$\left(y-7\right)^2 = 81$
Az egyenlet megoldásai: $y = -2$ és $y = 16$.	2 pont	$y-7 = -9 \ vagy \ y-7 = 9,$ $igy \ y = -2 \ vagy \ y = 16.$
A kör a $(0; -2)$ és a $(0; 16)$ pontokban metszi az y tengelyt.	1 pont	
Összesen:	8 pont	

Megjegyzés: A *-gal jelölt 2 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó.

Keressük az y tengelyen azokat a $P(0; y)$ pontokat, melyek a (12; 7) ponttól 15 egység távolságra vannak.	1 pont	
Felírva a két pont távolságát, megoldandó a		
$\sqrt{(12-0)^2+(7-y)^2} = 15$ egyenlet.	1 pont	

17. a)		
A két tésztalap alapkörének sugara $r = 3$ cm,	1 pont	
térfogata $2 \cdot 3^2 \cdot \pi \cdot 0.5 \approx$	1 pont	
$\approx 28.3 \text{ (cm}^3\text{)}.$	1 pont	
Összesen:	3 pont	

17. b)		
A habos rész magassága $(5 - 2 \cdot 0.5) = 0.05$	1 pont	
térfogata 90 cm ³ .	1 pont	
A habos részt alkotó henger alapkörének sugara legyen r cm, ekkor $r^2 \cdot \pi \cdot 4 = 90$.	1 pont	
Ebből $r \approx 2.7$ cm.	1 pont	
Az átmérő 5,4 (cm).	1 pont	
Összesen:	5 pont	

17. c)		
Annak a valószínűsége, hogy egy isleren nem reped meg a csokimáz 0,97.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A kérdéses valószínűség $0.97^{30} \approx 0.401$.	2 pont	
Összesen:	3 pont	

17. d) első megoldás		
20-2=18 rendelésben szerepelt valamelyik sütemény.	1 pont	I Zs
Csak isler és zserbó $(3-1)$ 2, csak isler és krémes $(6-1)$ 5, csak krémes és zserbó $(5-1)$ 4 rendelésben szerepelt.	1 pont	$ \begin{array}{c c} & 2 & 2 \\ \hline & 1 & 4 \end{array} $
Csak zserbó (9 – 7 =) 2 rendelésben szerepelt.	1 pont	K 2
Legyen k azon rendelések száma, amelyekben csak a krémes szerepelt. Ekkor (mivel ugyanannyi rendelésben szerepelt krémes, mint isler) azok száma, amelyekben csak isler szerepelt, $k+2$.	1 pont*	Azon rendelések száma, amelyekben csak isler szerepelt: 18 - (14 + k) = 4 - k.
A feladat szövege alapján ekkor $k + k + 2 + 14 = 18$.	1 pont*	4 - k + 8 = k + 10
Ebből $k = 1$, azaz 1 olyan rendelés volt, amelyben csak a krémes szerepelt (és ez megfelel a feladat feltételeinek).	1 pont*	
Osszesen:	6 pont	

Megjegyzés: A *-gal jelölt 3 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó.

Azon rendelések számát, amelyekben szerepelt a krémes (illetve amelyekben szerepelt az isler), jelölje x . Ekkor az islert vagy krémest tartalmazó rendelések száma $x + x - 6$, így a szöveg alapján: $2x - 6 + 2 = 18$,	1 pont	
amiből $x = 11$.	1 pont	
Ebből $11 - (5 + 1 + 4) = 1$ olyan rendelés volt, amelyben csak a krémes szerepelt (és ez megfelel a feladat feltételeinek).	1 pont	

17. d) második megoldás		
20-2=18 rendelésben szerepelt valamelyik sütemény.	1 pont	
Azon rendelések számát, amelyekben szerepelt a krémes (illetve amelyekben szerepelt az isler), jelölje x . Ekkor a logikai szita formula alapján $x + x + 9 - (5 + 3 + 6) + 1 = 18$.	2 pont	
Az egyenlet megoldása $x = 11$.	2 pont	
Így $11-6-5+1=1$ olyan rendelés volt, amelyben csak a krémes szerepelt (és ez megfelel a feladat feltételeinek).	1 pont	
Összesen:	6 pont	

18. a)		
A csúcsok fokszámának összege (6·2 =) 12.	1 pont	
A megadott fokszámok összege 11, tehát a hatodik csúcs fokszáma 1.	1 pont	
Egy megfelelő gráf, például:	2 pont	
Összesen:	4 pont	

Megjegyzés: Ha a vizsgázó egy megfelelő gráf alapján helyesen adja meg a hatodik csúcs fokszámát, akkor a teljes pontszám jár.

18. b)		
A modell szerint az átlagos hatótávolságok évről évre (kilométerben számolva) egy olyan számtani sorozat egymást követő tagjai, melynek első tagja 95, tizenharmadik tagja pedig 425.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A sorozat differenciáját – az évenkénti növekményt – <i>d</i> -vel jelölve 425 = 95 + 12 <i>d</i> ,	1 pont	
amiből $d = 27,5$.	1 pont	
Megoldandó a következő egyenlet: $95 + (n-1) \cdot 27,5 = 1000.$	1 pont	A 2023 után eltelt évek számát m-mel jelölve $425 + m \cdot 27,5 = 1000.$
Ebből $n \approx 33.9$, azaz először a sorozat 34. tagja lesz nagyobb, mint 1000 (a 33. tag 975, a 34. tag 1002,5).	1 pont	$m\approx 20.9$
Ezzel a modellel számolva tehát 2044-ben érné el az 1000 km-t az elektromos autók átlagos hatótávolsága.	1 pont	
Összesen:	6 pont	

18. c)		
A modell szerint az átlagos hatótávolságok évről évre (kilométerben számolva) egy olyan mértani sorozat egymást követő tagjai, melynek első tagja 95, tizenharmadik tagja pedig 425.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A sorozat kvóciensét – az évenkénti növekedési arányt – q -val jelölve $425 = 95q^{12}$,	1 pont	
amiből $q \approx 1,133$.	1 pont	
Megoldandó a következő egyenlet: $95 \cdot 1,133^{n-1} = 1000.$	1 pont	A 2023 után eltelt évek számát m-mel jelölve $425 \cdot 1,133^m = 1000.$
$n - 1 = \log_{1,133} \frac{1000}{95}$	1 pont	$m = \log_{1,133} \frac{1000}{425}$
Ebből $n \approx 19,85$, azaz először a sorozat 20. tagja lesz nagyobb, mint 1000 (a 19. tag 899, a 20. tag 1019).	1 pont	$m \approx 6.85$
Tehát ezzel a modellel számolva 2030-ban érné el az 1000 km-t az elektromos autók átlagos hatótávolsága.	1 pont	
Összesen:	7 pont	

Megjegyzés: Ha a vizsgázó egyenlet helyett egyenlőtlenséggel dolgozik, a megfelelő pontok járnak.