Human Lassa Case Rate

This code shows the analyses performed on the system of ordinary differential equations that describe the spillover of Lassa virus into humans.

Define model

Define the system of ODEs that describe human infection.

```
\begin{aligned} & \mathsf{dsdt} = \mathsf{b} - \mathsf{ds} - \mathsf{Fs} + \lambda \, \mathsf{r}; \\ & \mathsf{didt} = \mathsf{Fs} - \left(\mathsf{d} + \gamma\right) \, \mathsf{i}; \\ & \mathsf{drdt} = \left(1 - \mu\right) \, \gamma \, \mathsf{i} - \mathsf{dr} - \lambda \, \mathsf{r}; \end{aligned}
```

Derive relationship between seroprevalence and new case rate

Find the equilibrium.

$$\begin{split} &\text{eq = FullSimplify[Solve[\{dsdt == 0, \ didt == 0, \ drdt == 0\}, \ \{s, i, r\}]]} \\ & \{ \left\{ s \rightarrow \frac{b \left(d + \gamma \right) \, \left(d + \lambda \right)}{d \, \left(d + F \right) \, \left(d + \gamma \right) + d \, \left(d + F + \gamma \right) \, \lambda + F \, \gamma \, \lambda \, \mu} \right., \\ & i \rightarrow \frac{b \, F \left(d + \lambda \right)}{d \, \left(d + F \right) \, \left(d + \gamma \right) + d \, \left(d + F + \gamma \right) \, \lambda + F \, \gamma \, \lambda \, \mu} \right\} \right\} \end{split}$$

Find seroprevalence at equilibrium (this is the data we have to work with). Note that this requires calculating the steady state population size in the presence of LASV virulence.

$$\begin{split} & \text{Pop = FullSimplify} \left[\left(\textbf{s + i + r} \right) \, / \cdot \, \textbf{eq} \right] \\ & \left\{ \frac{\textbf{b} \, \left(\textbf{d}^2 + \gamma \, \lambda + \textbf{d} \, \left(\textbf{F} + \gamma + \lambda \right) + \textbf{F} \, \left(\gamma + \lambda - \gamma \, \mu \right) \, \right)}{\textbf{d} \, \left(\textbf{d} + \textbf{F} \right) \, \left(\textbf{d} + \gamma \right) + \textbf{d} \, \left(\textbf{d} + \textbf{F} + \gamma \right) \, \lambda + \textbf{F} \, \gamma \, \lambda \, \mu} \right\} \end{split}$$

Variable [count] refers to the population size in a pixel of the population raster. Solve for the birth rate [b] for a given value of [count].

$$\begin{split} & \textbf{bsolve = Solve[Pop = count, b]} \\ & \Big\{ \Big\{ b \rightarrow \frac{\text{count} \, \left(\text{d}^3 + \text{d}^2 \, \text{F} + \text{d}^2 \, \gamma + \text{d} \, \text{F} \, \gamma + \text{d}^2 \, \lambda + \text{d} \, \text{F} \, \lambda + \text{d} \, \gamma \, \lambda + \text{F} \, \gamma \, \lambda \, \mu \right)}{\text{d}^2 + \text{d} \, \text{F} + \text{d} \, \gamma + \text{F} \, \gamma + \text{d} \, \lambda + \text{F} \, \lambda + \gamma \, \lambda - \text{F} \, \gamma \, \mu} \Big\} \Big\} \end{split}$$

Calculate seroprevalence in terms of model parameters.

Rstar = FullSimplify[r/(Pop) /. eq] // Flatten
$$\left\{-\frac{F \gamma \left(-1+\mu\right)}{d^2+\gamma \, \lambda+d \, \left(F+\gamma+\lambda\right)+F \, \left(\gamma+\lambda-\gamma \, \mu\right)}\right\}$$

Solve for the force of infection, F, in terms of seroprevalence.

$$\begin{split} &\text{foi = FullSimplify[Solve[hsero == Rstar, F]] // Flatten} \\ &\left\{ \mathsf{F} \to -\frac{\mathsf{hsero} \, \left(\mathsf{d} + \gamma \right) \, \left(\mathsf{d} + \lambda \right)}{\mathsf{d} \, \mathsf{hsero} + \mathsf{hsero} \, \lambda + \gamma \, \left(-1 + \mathsf{hsero} + \mu - \mathsf{hsero} \, \mu \right)} \right\} \end{split}$$

Rewrite the solution for [b], defined in [bsolve], with the force of infection terms F replaced with the expression above

$$\begin{split} & \textbf{bsolve = FullSimplify[bsolve /. foi]} \\ & \left\{ \left\{ \textbf{b} \rightarrow -\frac{\texttt{count} \left(\textbf{d} + \textbf{d} \left(-\textbf{1} + \texttt{hsero} \right) \, \mu + \texttt{hsero} \, \lambda \, \mu \right)}{-\textbf{1} + \mu} \right\} \right\} \end{split}$$

The rate of new cases of Lassa is F*s. Calculate this, and rewrite everything in terms of seroprevalence.

NewCaseRate = FullSimplify[(F /. foi) * (s /. eq /. foi) /. bsolve] // Flatten
$$\left\{-\frac{\text{count hsero } (d+\gamma) (d+\lambda)}{\gamma (-1+\mu)}\right\}$$

Compare case rate estimates for virulence vs no virulence

Calculate the ratio of cases with, versus without, virulence.

$$\rho = \text{FullSimplify} \left[\left(\text{NewCaseRate /. eq} \right) / \left(\text{NewCaseRate /. eq /. } \mu \rightarrow 0 \right) \right] \text{ // Flatten} \\ \left\{ \frac{1}{1-\mu} \right\}$$

In words, including virulence increases the estimated rate of LASV cases by $\rho = (1 - \mu)^{-1}$.

$$\rho /. \mu \rightarrow 0.02$$
 {1.02041}

When $\mu = 0.02$ (lower value from McCormick, Webb, 1987), increase is ~1.02, meaning roughly 2% more cases occur.

Compare estimates for reinfection vs no reinfection

Calculate the ratio of cases with, versus without, reinfection.

$$\label{eq:fullSimplify} FullSimplify \left[\left(NewCaseRate \ / . \ eq \ / . \ \lambda \to 0 \right) \ \right] \ / / \ Flatten \\ \left\{ \frac{d + \lambda}{d} \right\}$$

Reinfection multiplies the case rate by $\frac{d+\lambda}{d}$. Calculate the effect of reinfection for a mean lifespan of 50 years, and reinfection rate $\lambda = 0.064 / \text{yr}$ (from McCormick, Webb, 1987).

Pars =
$$\{d \rightarrow 0.02\}$$
;

Ratio of estimates of new cases with (λ = 0.064) and without (λ = 0) seroreversion is

(NewCaseRate /.
$$\lambda \rightarrow$$
 0.064) / (NewCaseRate /. $\lambda \rightarrow$ 0) /. Pars {4.2}

Including reinfection multiplies the case estimates by a factor of 420%; including virulence increases estimates by 2%.