

Leveraging Deep Learning For Emotion Recognition & Detection

Scott Hameed

Springboard Capstone 3

Contents:

- Summary (TL;DR)
- Business Problem
- Scope, Approach, Process, and Libraries
- Neural Network & Algorithms Overview
- Code Overview
- Baseline Performance & Comparison
- Optimization & Results
- Key Challenges & Learnings For Future
- Future Enhancements & Optimizations
- Resources (Source Code & Tech Report)
- Appendix (Helpful Links & Other Resources)

Summary (TL;DR)

- This project leverages Deep Learning to recognize and detect human emotions in images
- Human emotions are fundamental to our experience on our planet, as emotions affect everyone around us [1]
- One of the key inspirations for this project came from interacting with people; I realized that my interaction depends heavily on the emotions of the person I am interacting with
- A Convolutional Neural Network (CNN) was trained with multiple parameters to identify emotions in images of humans
- The following parametric tuning was then applied to improve accuracy which resulted in overall accuracy of 63%:
 - Increasing the number of Epochs
 - Decreasing batch sizes
 - Increasing the learning rate
- Future considerations for improving this Neural Network include:
 - Testing Gradient Descent with momentum as the optimizer
 - Testing different Loss functions
 - Updating the convolutional layers with varied parameters
- I am passionate about intelligent systems that can improve the life quality of people
- This project serves as a foundation for an ongoing project to build various computer vision and natural language processing functions that can then be used to create a personal assistant device such as a desktop personal assistant or personal robot
- This desktop assistant/personal robot is meant to be a consumer device to help improve the life quality of its customer

Business Problem

- A key problem in the domain of personal assistant/personal robot is to build a deeper connect with it's customer in a way that it enriches the life of the customer
- Current technology solutions are limited to offering helpful services to their customers but no commercial grade device has emotional support features that are persistent
 - There are however some social companion robots, however, they are focussed only on elder care [1]
- Emotion detection serves as a key component of the intelligence that needs to be persistent within the AI based system to create an emotional connection
- Humans innately use facial emotional expressions to infer emotions of others and this guides them to better interact with others
- Extensive research is being actively performed on the various areas of AI application towards emotion recognition [2]
- This project is a first step in the direction of defining algorithm that can focus on facial expressions to identify emotions

Scope, Approach, Process, and Libraries

Scope:

- Define vision and approach
- Coding of the CNN
- Parametric optimization
- Report and presentation

Approach:

- Understanding existing research on image based emotion recognition and detection
- Determining the appropriate libraries
- Coding framework
- Optimization approach including variable identification and prioritization

Process:

- Setting up the Linux Ubuntu system (GPU drivers), CUDA, and CUDNN
- Installing the key libraries (Seé below)
- Coding and related troubleshooting
- Identifying baseline performance
- Leveraging prioritized parameters to tune performance

Libraries

- Tensorflow: Tensorflow is an end-to-end platform to develop and deploy machine learning algorithms
- Keras: an open source library for training and deploying machine learning algorithms
- Numpy: library for arrays and mathematical functions
- Pandas: library for reading, cleansing and analyzing data
- Sklearn: library for data processing and visualization

Neural Network & Algorithm Overview

- Convolutional Neural Network (CNN) was chosen for this project as it is the preferred neural networks for small scale image classification [1]
- CNN progressively extracts higher level representations of image contents
- CNN do not require pre-processing and instead uses raw pixels to derive features and infer the object
- Rectified Linear Units (ReLU) was the activation function used to introduce non-linearity into the model
- Adam Optimizer was used for the CNN as it has proven to be better in terms of general performance and parameters requires less tuning
- Using the Convolutional Neural Network (CNN), facial expressions were predicted with an accuracy of 61.7 percent

Dataset Overview

- The data used is from the Kaggle FER2013 collection which has approx 35,9K 48x48 grayscale photos
- The faces in the photos are centered and roughly occupy the same amount of space in each image
- Each of the photos from the dataset represents one of the following emotions :
 - Anger
 - Disgust
 - Fear
 - Happy
 - Neutral
 - Sadness
 - Surprise

CNN & Algorithm Performance Summary (1 of 2)

- The baseline CNN using Adam optimizer performance is 56.9%
- The CNN using SGD optimizer performance is 33.5%
- Due to decreased SGD performance, the Adam Optimizer was selected and then further optimized using parametric tuning
- The Adam Optimizer CNN with highest achieved accuracy is 61,7% which is a 8.4% improvement compared to baseline of 56.9%
- The highest performing CNN has the following key parameters:
 - Batch Size = 16
 - Epoch = 60
 - Learning Rate = 0.002

Optimization process key insights

- Increasing Epochs from 30 to 75 resulted in accuracy improvements, however, 60 is the max Epoch at which loss rates do not improve
- o Decreasing batch sizes resulted in accuracy improvements; we began with 64 and determined 16 is optimal
- Adam Learning Rate accuracy is optimal when increased from 0.0001 to 0.0002. However, increasing further results in degradation

CNN & Algorithm Performance Summary (2 of 2)

64

Base Adam Model Performance Epochs:30, Batches:64. LR: 0.0001. Accuracy: 56.0%

	.,			,
	precision	recall	f1-score	support
0	0.469	0.463	0.466	501
1	0.000	0.000	0.000	45
2	0.336	0.075	0.123	477
3	0.754	0.872	0.809	921
4	0.405	0.582	0.477	617
5	0.791	0.586	0.673	406
6	0.510	0.601	0.552	622
accuracy			0.569	3589
macro avg	0.466	0.454	0.443	3589
weighted avg	0.551	0.569	0.543	3589

Optimization: Epochs Increased From 30-75

Accuracy: 60.7%

	precision	recall	f1-score	support	
0 1 2 3 4 5	0.524 0.000 0.462 0.818 0.460	0.499 0.000 0.191 0.878 0.478	0.511 0.000 0.270 0.847 0.469	501 45 477 921 617	
6 accuracy	0.762 0.496	0.677 0.736	0.717 0.593 0.607	406 622 3589	
macro avg weighted avg	0.503 0.596	0.494 0.607	0.487 0.589	3589 3589	

Optimization: Batches Decreased From

To 16. Accuracy: 61.1%

10 10.	Accuracy.	01.170			
	precision	recall	f1-score	support	
0 1 2 3 4 5 6	0.667 0.471 0.817 0.501 0.634	0.491 0.044 0.241 0.848 0.464 0.798 0.707	0.516 0.083 0.319 0.832 0.481 0.707 0.597	501 45 477 921 617 406 622	
accuracy macro avg weighted avg	0.593	0.513 0.611	0.611 0.505 0.595	3589 3589 3589	

Optimization: LR Increased From

0.0001 to 0.0002. Accuracy: 61.7%

0.0001 10 0	.0002.	Accura	Cy. 01.1	70
	precision	recall	f1-score	support
0 1 2 3 4 5	0.542 0.500 0.472 0.842 0.465 0.719 0.520	0.507 0.022 0.210 0.860 0.499 0.744 0.738	0.524 0.043 0.290 0.851 0.482 0.731	501 45 477 921 617 406 622
accuracy macro avg weighted avg	0.580 0.612	0.511 0.617	0.617 0.504 0.602	3589 3589 3589

Code Overview

- Code has 859 lines in a single Python File and also an associated Jupyter notebook
- Code has five main sections::
 - 1. Libraries
 - 2. Data Processing & Setup
 - 3. CNN Model Setup
 - 4. Model Performance, Benchmarking, and Optimization
- The explanation for each of the four code sections is shared in the next slides

Code Overview: 1. Libraries

- **Tensorflow:** Tensorflow is an end-to-end platform to develop and deploy machine learning algorithms
- Keras: an open source library for training and deploying machine learning algorithms
- Numpy: library for arrays and mathematical functions
- Pandas: library for reading, cleansing and analyzing data
- **Sklearn:** library for data processing and visualization

Code Overview: 2. Data Processing & Setup

- The data used is from the <u>Kaggle FER2013 collection</u> which has 35887 48x48 grayscale labeled emotion photos
- Below is the chart showing the data distribution by label:

- The data was split into approximately following subsets:
 - Training: ~80%
 - Test: ~10%
 - Validation: ~10%
- (29068, 48, 48, 1)
- (3589, 48, 48, 1)
- (3230, 48, 48, 1)

Code Overview: 3. CNN Model Setup

• The Emotion Recognition and Detection CNN is composed of the following types of layers including their counts:

Layer Type	Overview	
Convolutional 2D layer	Performs convolution through scalar multiplication of inputs and weights	6
Batch Normalization	Layer to normalize data between layers using mini batches to speed up training	7
Max Pooling Layer	Takes the max values from batch input and summarizes into a feature map	5
Dropout	Masking layer that nullifies the contribution of some neurons towards the next layer to prevent overfitting	7
Dense	It is the network layer that takes input from all neurons in preceding layer and passing it as input to the next layer	3
Flatten	This layer takes the multiple pooled feature maps and and flattens it into a long vector	1

• Below is the parameter summary for the baseline Convolutional Neural Network (CNN)

Total params: 5,810,183
Trainable params: 5,805,191
Non-trainable params: 4,992

Code Overview: 4. Model Performance, Benchmarking, and Optimization

- Code runs the CNN Adam model and computes the training and validation accuracy, loss, and confusion matrix
- We then build a Stochastic Gradient Descent Optimization model leveraging the same parameters as the CNN
- Code runs the SGD Model and computes the training and validation accuracy and loss
- We then apply parametric based changes to further optimize the Adam based CNN. Below is the list:
 - Increasing Epochs from 30 to 50
 - Increasing Epochs from 50 to 75
 - Decreasing Batch Size from 64 to 32
 - Decreasing Batch Size from 32 to 16
 - Decreasing Batch Size from 16 to 8
 - Increasing Adam Learning Rate from 0.0001 to 0.0002
 - Increasing Adam Learning Rate from 0.0001 to 0.0009
 - Increasing Adam Learning Rate from 0.0001 to 0.001
 - Increasing Adam Learning Rate from 0.0001 to 0.002

Key Challenges & Learnings For Future

Key Challenges:

- GPU based acceleration ran into several issues:
 - o GPU identification by Ubuntu ran into issues due to driver incompatibilities and lack of clear documentation
 - Tensorflow GPU installation using both Nvidia and Tensorflow installations had gaps and resulted in failure to correctly install
 - Even after resolution of Tensorflow-GPU issues using Conda install, Tensorflow caused severe issues resulting in extremely low accuracy of the neural network (~20%)
- The workaround for Tensorflow-GPU issues was to choose the Non-GPU version of Tensorflow, however, due to significant other issues around Ubuntu/Tensorflow, the recommended approach was to use a new system
- Macbook M1 (ARM) was then used to replace the Ubuntu Desktop
- Despite the relatively new nature of Tensroflow on M1 (ARM), it performed well on the Mac but the CNN training time significantly increased

Key Learnings For Future:

- It's critical to not continue investing time into a systems problem that continues to worsen over time (cut losses)
- Always be willing to change an OS/system in sticky situations including using online compute (Colab et al)
- The Ubuntu system is being replaced as it has caused many issues and there is a high probability that these would continue despite clean installs

Future Enhancements & Optimizations

DATA SCIENCE ARTIST

- Implement video camera frame capture to test and validate emotions
- Leverage Gradient Descent with Momentum for Optimization
- Experiment with other Loss Functions especially Dice Coefficient
- Update parameters for the Convolution layers
- Leverage other larger datasets for emotions

Resources

Project Resource Links

DATA SCIENCE ARTIST

- Github repository homepage (Link)
- Jupyter Notebook (<u>Link</u>)
- Python code file (<u>Link</u>)
- Project report (<u>Link</u>)

Appendix

CNN Visualized (1 of 2)

CNN Visualized (2 of 2)

