

[SWE2015-41] Introduction to Data Structures (자료구조개론)

Segment Tree

Department of Computer Science and Engineering

Instructor: Hankook Lee (이한국)

What is Segment Tree?

- Segment Tree is a binary tree that supports efficient segment operations
 - A segment is a collection of consecutive elements in an array
 - Examples of segment operations: sum/max/min/... of all elements in a segment

What is Segment Tree?

- Segment Tree is a binary tree that supports efficient segment operations
 - A segment is a collection of consecutive elements in an array
 - Examples of segment operations: sum/max/min/... of all elements in a segment

• This tree can compute such statistics efficiently even after an element is updated

What is Segment Tree?

- Segment Tree is a binary tree that supports efficient segment operations
 - A segment is a collection of consecutive elements in an array
 - Examples of segment operations: sum/max/min/... of all elements in a segment

- This tree can compute such statistics efficiently even after an element is updated
 - Each update for an element requires $O(\log N)$ time complexity
 - Each segment operation also requires $O(\log N)$ time complexity

- Given an array, how to construct its segment tree?
 - If your goal is to compute the **maximum** of elements in a segment, ...

- Given an array, how to construct its segment tree?
 - If your goal is to compute the maximum of elements in a segment,

- Given an array, how to construct its segment tree?
 - If your goal is to compute the maximum of elements in a segment,

- Given an array, how to construct its segment tree?
 - If your goal is to compute the maximum of elements in a segment,

- Given an array, how to construct its segment tree?
 - If your goal is to compute the maximum of elements in a segment,

- Given an array, how to construct its segment tree?
 - If your goal is to compute the maximum of elements in a segment,

- Given an array, how to construct its segment tree?
 - If your goal is to compute the maximum of elements in a segment,

- Given an array, how to construct its segment tree?
 - If your goal is to compute the maximum of elements in a segment,

- Given an array, how to construct its segment tree?
 - If your goal is to compute the maximum of elements in a segment,

- Given an array, how to construct its segment tree?
 - If your goal is to compute the maximum of elements in a segment,

- Given an array, how to construct its segment tree?
 - If your goal is to compute the maximum of elements in a segment,

- Given an array, how to construct its segment tree?
 - If your goal is to compute the maximum of elements in a segment,

- Given an array, how to construct its segment tree?
 - If your goal is to compute the maximum of elements in a segment,

- Given an array, how to construct its segment tree?
 - If your goal is to compute the maximum of elements in a segment,

- Given an array, how to construct its segment tree?
 - If your goal is to compute the maximum of elements in a segment,

- Given an array, how to construct its segment tree?
 - If your goal is to compute the maximum of elements in a segment,

- Given an array, how to construct its segment tree?
 - If your goal is to compute the maximum of elements in a segment,

- Given an array, how to construct its segment tree?
 - If your goal is to compute the maximum of elements in a segment,

- Given an array, how to construct its segment tree?
 - If your goal is to compute the maximum of elements in a segment,

- Given an array, how to construct its segment tree?
 - If your goal is to compute the maximum of elements in a segment,

- Given an array, how to construct its segment tree?
 - If your goal is to compute the maximum of elements in a segment,

- Given an array, how to construct its segment tree?
 - (Step 1) Treat the array elements as leaf nodes in a full binary tree
 - (Step 2) Compute the maximum of children from bottom to top

Properties: (where *N* is the number of array elements)

- Any segment can be represented by at most $O(\log N)$ nodes
- The maximum of elements in any segment can be computed in $O(\log N)$
 - using the representative nodes
- The construction time = $N + N/2 + N/4 + N/8 + \cdots = 2N = O(N)$

- How to update an element?
 - If the 3rd element is replaced by **9**, which nodes should be updated?

- How to update an element?
 - If the 3rd element is replaced by 9, which nodes should be updated?

- How to update an element?
 - If the 3rd element is replaced by 9, which nodes should be updated?

- How to update an element?
 - If the 3rd element is replaced by 9, which nodes should be updated?

- How to update an element?
 - If the 3rd element is replaced by 9, which nodes should be updated?

- How to update an element?
 - If the 3rd element is replaced by 9, which nodes should be updated?

- How to update an element?
 - It is only required to update the corresponding leaf node and its ancestors
 - It takes $O(\log N)$ time since the height of the segment tree is $O(\log N)$

Segment Tree - Segment Operations

- How to compute a cumulative statistic for a segment?
 - If you are interested in the **segment** from the **2**nd **element** to the **8**th **one**,

Segment Tree - Segment Operations

- How to compute a cumulative statistic for a segment?
 - If you are interested in the **segment** from the **2**nd **element** to the **8**th **one**,

(Left side) (Right side) ← Start from bottom

Segment Tree - Segment Operations

- How to compute a cumulative statistic for a segment?
 - If you are interested in the **segment** from the **2**nd **element** to the **8**th **one**,

- How to compute a cumulative statistic for a segment?
 - If you are interested in the **segment** from the **2**nd **element** to the **8**th **one**,

- How to compute a cumulative statistic for a segment?
 - If you are interested in the **segment** from the **2**nd **element** to the **8**th **one**,

(Left side) (Right side)

- How to compute a cumulative statistic for a segment?
 - If you are interested in the **segment** from the **2**nd **element** to the **8**th **one**,

- How to compute a cumulative statistic for a segment?
 - If you are interested in the **segment** from the **2**nd **element** to the **8**th **one**,

- How to compute a cumulative statistic for a segment?
 - If you are interested in the **segment** from the **2**nd **element** to the **8**th **one**,

(Left side) (Right side)

- How to compute a cumulative statistic for a segment?
 - If you are interested in the **segment** from the **2**nd **element** to the **8**th **one**,

- How to compute a cumulative statistic for a segment?
 - If you are interested in the **segment** from the **2**nd **element** to the **8**th **one**,

- How to compute a cumulative statistic for a segment?
 - If you are interested in the **segment** from the **2**nd **element** to the **7**th **one**,

- How to compute a cumulative statistic for a segment?
 - If you are interested in the **segment** from the **2**nd **element** to the **7**th **one**,

- How to compute a cumulative statistic for a segment?
 - If you are interested in the **segment** from the **2**nd **element** to the **7**th **one**,

- How to compute a cumulative statistic for a segment?
 - If you are interested in the **segment** from the **2**nd **element** to the **7**th **one**,

- How to compute a cumulative statistic for a segment?
 - The representative nodes for the segment can be found in $O(\log N)$ time
 - The cumulative statistic (e.g., sum, max) can be also computed in $O(\log N)$ time

Segment Tree - Implementation

- Main components for the segment tree structure
 - Construct a segment tree from an array of n elements
 - **Update** an element in the segment tree
 - Compute the maximum value for a segment

```
typedef struct _SegmentTree {
    int nodes[2*MAX_SIZE+1];
    int size;
} SegmentTree;

void construct(int items[], int n, SegmentTree *tree);
void update(SegmentTree *tree, int item, int index);
int computeMax(SegmentTree *tree, int left, int right);
```


- The previous case is for ...
 - Updating the value for a single element $O(\log N)$
 - Compute the cumulative value for a segment $O(\log N)$
- One can use segment tree for ...
 - Updating values of all elements in a segment $O(\log N)$
 - Computing the value of a single element $O(\log N)$

- How to implement the use case?
 - The value of an element is cumulation from its leaf node to the root node

- How to implement the use case?
 - The value of an element is cumulation from its leaf node to the root node

- How to implement the use case?
 - The value of an element is cumulation from its leaf node to the root node

- How to implement the use case?
 - Update elements in a **segment** using **representative nodes**

ADD 3

- How to implement the use case?
 - Update elements in a **segment** using **representative nodes**

- How to implement the use case?
 - The value of an element is cumulation from its leaf node to the root node

- How to implement the use case?
 - The value of an element is cumulation from its leaf node to the root node

- How to implement the use case?
 - The value of an element is cumulation from its leaf node to the root node

Summary

- Segment Tree is an efficient and easily-implemented structure
 - But, if the number of elements is frequently changed, it might be not useful
 - Some operations might be not supported
 - E.g., average, cross-product, ...
 - For segment tree, the associative property should be satisfied, i.e., f(A, f(B, C)) = f(f(A, B), C)
 - You must check if the segment tree is suitable for the problem you are considering

Any Questions?

