Homework 2

Michael Nelson

Problem 1

Exercise 1. Prove the following statement: let \prec be an irreflexive, transitive, and connected binary relation on \mathbb{R}^n is negatively transitive.

Solution 1. Suppose $x \not\prec y$ and $y \not\prec z$. In order to show \prec is negatively transitive, we need to show that $x \not\prec z$ Since $x \not\prec y$ and $y \not\prec z$ and since \prec is connected, we see that $z \prec y$ and $y \prec x$, and since \prec is transitive, we see that $z \prec x$. It follows that $x \not\prec z$ since \prec is irreflexive.

Problem 2

Exercise 2. Let $n \ge 2$ and define a binary relation on \mathbb{R}^n by

$$x \leq y$$
 if and only if $\sum_{i=1}^{n} x_i \leq \sum_{i=1}^{n} y_i$

for all $x, y \in \mathbb{R}^n$. Prove or disprive that this binary relation is:

- 1. A weak order on \mathbb{R}^n .
- 2. A total order on \mathbb{R}^n .

Solution 2. 1. Yes. It is transitive because \leq is transitive on \mathbb{R} and it is strongly connected because \leq is strongly connected on \mathbb{R}^n .

2. No because it is not antisymmetric. Indeed consider the standard unit vectors $e_1 = (1,0,0,\ldots,0)$ and $e_2 = (0,1,0,\ldots,0)$. We have $e_1 \leq e_2$ and $e_2 \leq e_1$, however clearly $e_1 \neq e_2$.

Problem 3

Exercise 3. Let $n \ge 2$. The binary relation defined on \mathbb{R}^n by

$$x \prec y$$
 if and only if $0 < y - x$

is referred to as the strict Pareto-min preference. Note that 0 < y - x means $x_i < y_i$ for all $1 \le i \le n$.

- 1. Prove or disprove that this preference is a strict partial order on \mathbb{R}^n .
- 2. Let the related indifference preference \sim be defined as

$$x \sim y$$
 if and only if $x = y$.

1

Derive the set $\{ \prec \}$, $\{ \sim \}$, $\{ \succ \}$, and $\{ ? \}$.

3. Derive the corresponding sets P, D, I, and U. Graph these sets or n = 2.

Solution 3. 1. First note that it is strict since > is strict on \mathbb{R}^n . To see that it is asymmetric, note that if $y \succ x$, then y-x>0. In particular, $x\not\succ y$ since x-y<0. To see that it is transitive, suppose $z\succ y$ and $y\succ x$. Thus z-y>0 and y-x>0. It follows that z-x=(z-y)+(y-z)>0.

2. We have

$$\{ \prec \} = \{ x \in \mathbb{R}^{2n} \mid x_i < x_{i+n} \text{ for all } 1 \le i \le n \}.$$

$$\{ \sim \} = \{ x \in \mathbb{R}^{2n} \mid x_i = x_{i+n} \text{ for all } 1 \le i \le n \}.$$

$$\{ \succ \} = \{ x \in \mathbb{R}^{2n} \mid x_i > x_{i+n} \text{ for all } 1 \le i \le n \}.$$

$$\{ ? \} = \{ x \in \mathbb{R}^{2n} \mid x_i < x_{i+n} \text{ for all } 1 \le i \le n \}.$$

Problem 4

Exercise 4. Let $n \ge 2$. The binary relation defined on \mathbb{R}^n by $x \prec y$ if and only if there exists $1 \le k \le n$ such that $x_i = y_i$ for all i < k and $x_k < y_k$ is referred to as the strict lexicographical-min preference.

- 1. Prove or disprove that this preference is a strict partial order on \mathbb{R}^n .
- 2. Let the related indifference preference \sim be defined as

$$x \sim y$$
 if and only if $x = y$.

Derive the set $\{ \prec \}$, $\{ \sim \}$, $\{ \succ \}$, and $\{ ? \}$.

3. Derive the corresponding sets P, D, I, and U. Graph these sets or n = 2.

Solution 4. 1. First note that it is strict and asymmetric since > is strict and asymmetric on \mathbb{R}^n . To see that it is transitive, suppose $x \prec y$ and $y \prec z$. Choose k and m such that $x_i = y_i$ for all i < k and $x_k = y_k$, and $y_j = z_j$ for all j < m and $y_m = z_m$. Necessarily then we have $k \leq m$. It follows that x < z and hence \prec is transitive.

2. We have

$$\{ \prec \} = \bigcup_{1 \leq i \leq n} \{ x \in \mathbb{R}^{2n} \mid x_1 = x_{1+n}, \dots, x_{i-1} = x_{i-1+n}, x_i < x_{i+n} \}$$

$$\{ \sim \} = \{ x \in \mathbb{R}^{2n} \mid x_i = x_{i+n} \text{ for all } 1 \leq i \leq n \}$$

$$\{ \succ \} = \bigcup_{1 \leq i \leq n} \{ x \in \mathbb{R}^{2n} \mid x_1 = x_{1+n}, \dots, x_{i-1} = x_{i-1+n}, x_i > x_{i+n} \}$$

$$\{ ? \} = \mathbb{R}^{2n} \setminus (\{ \prec \} \cup \{ \sim \} \cup \{ \succ \})$$

Problem 5

- **5.** Fill the following tables (among others, use your results from questions 3 and 4 above):
- a) (10 points) For each preference, that is defined by an appropriate binary relation, indicate whether or not this relation is reflexive, irreflexive, symmetric, antisymmetric, or transitive.

Preference (minimization)	Binary relation					
	reflexive	irreflexive	symmetric	antisymmetric	transitive	
strict Pareto	00	yes	no	yes	ues	
Pareto	M	yes	20	ues	yes	
weak Pareto	465	NO	NO	ues	ues	
strict lexicographic	no	yes	no	yes	yes	
lexicographic	yes	~0	no	yes	425	

b) (10 points) For each preference, in the column labeled "figure" draw the associated domination cone in R², and in the other columns indicate whether or not this cone is closed, open, pointed, or convex.

Preference	Cone					
(minimization)	figure	closed	open	pointed	convex	
strict Pareto	:///.	no	ges	yes	yes	
Pareto	1/1/1	no	no	yer	yes	
weak Pareto	V////	yes	no	yes	yes	
strict lexicographic	١///١	NO	~0	~	ges	
lexicographic	////	M 0	no	no	yes	