Chapitre 11 : Évolution spontanée et équilibre d'un système chimique - Exercices

Exercice 1:

Le sulfate de baryum $BaSO_4$, opaque aux rayons X, est utilisé en radiologie. À 25 °C, on prépare une solution de volume V = 2,0 L en introduisant une masse m = 5,0 g de $BaSO_4$ (s) dans de l'eau.

La dissolution du sulfate de baryum dans l'eau a pour équation : $BaSO_4(s) \rightleftharpoons Ba^{2+}(aq) + SO_4^{2-}(aq)$

- 1. Montrer, qu'à 25 °C, du sulfate de baryum $BaSO_4(s)$ se dissout.
- 2. À l'état final, $[Ba^{2+}]_f = 1,1 \times 10^{-5} \text{ mol} \cdot L^{-1}$. En déduire que la transformation n'est pas totale.

Données : Constante d'équilibre à 25 °C : $K = 10^{-9.9}$; $M(BaSO_4) = 233.4$ g·mol⁻¹

Exercice 2:

À un volume V = 20 mL d'une solution de nitrate de plomb (II) telle que $[Pb^{2+}] = 1,0 \times 10^{-2} \text{ mol} \cdot L^{-1}$ est ajouté, sans variation de volume, à 25 °C, 200 mg de poudre d'étain Sn (s).

À l'état final, [Sn²+]f = 2,5 × 10⁻³ mol·L⁻¹. À 25 °C, la constante d'équilibre K associée à l'équation de la réaction est égale à 0,33.

- 1. Écrire l'équation de la réaction modélisant la transformation.
- 2. Calculer la valeur du quotient de réaction à l'état initial du système considéré.
- 3. En déduire le sens d'évolution spontanée du système.
- 4. Calculer la valeur du quotient de réaction à l'état final du système. Conclure.

Données: Couples: Pb^{2+} (aq) / Pb (s); Sn^{2+} (aq) / Sn (s). $M(Sn) = 118.7 \text{ g} \cdot \text{mol}^{-1}$

Exercice 3:

Le recyclage des piles est difficile. L'utilisation de piles « rechargeables » semble une alternative plus écologique.

La pile nickel–cadmium, « rechargeable », est constituée de deux demi-piles reliées par un pont salin et mettant en jeu les couples oxydant / réducteur Ni²⁺ (aq) / Ni (s) et Cd²⁺ (aq) / Cd (s).

La première demi-pile contient 20,0 mL de solution gélifiée de sulfate de nickel telle que [Ni²⁺]_i = 1,0 × 10⁻¹ mol·L⁻¹.

L'autre demi-pile contient une solution gélifiée de sulfate de cadmium telle que $[Cd^{2+}]_i = [Ni^{2+}]_i$. Chacune des deux électrodes a une masse initiale m de 2.0 α .

En branchant la borne COM d'un voltmètre à l'électrode de cadmium Cd, la tension mesurée est U = + 0,15 V.

- 1. Écrire l'équation de la réaction de fonctionnement de la pile.
- 2. Donner l'expression du quotient de réaction Qr,i à l'état initial, puis le calculer numériquement.
- 3. Sachant qu'à 25 °C, la constante d'équilibre associée à l'équation de la réaction est K = 4,5 × 10⁶, prévoir le sens d'évolution spontanée du système chimique constituant la pile.
- 4. Faire un schéma de la pile et indiquer le sens de circulation des électrons. Le transfert spontané d'électrons est-il direct ou indirect ?
- 5. Indiquer le rôle du pont salin et justifier la nécessité de séparer les réactifs dans deux demi-piles.
- Calculer la capacité électrique Q_{max} de la pile Ni-Cd.
- 7. La plupart des équipements électroniques nomades actuels sont équipés de batteries rechargeables lithium-ion.
 - a. Le dioxygène gazeux intervient dans la pile. Cette espèce est-elle réductrice ou oxydante?
 - b. La configuration électronique d'un atome de lithium est 1s²2s¹. Justifier le caractère réducteur du métal lithium.
- 8. La capacité d'une pile de téléphone portable est de 4 320 C. Sachant que le lithium est le réactif limitant, déterminer la masse de lithium contenu dans une pile lithium-ion.

Données: Couple oxydant/réducteur : Li⁺/Li. $N_A = 6,02 \times 10^{23} \text{ mol}^{-1}$ et e = 1,6 × 10⁻¹⁹ C. $M(Ni) = 58,7 \text{ g} \cdot \text{mol}^{-1}$; $M(Cd) = 112,4 \text{ g} \cdot \text{mol}^{-1}$; $M(Li) = 6,9 \text{ g} \cdot \text{mol}^{-1}$