- 为______. (答案请保留三位小数) 二. 将两信息分别编码 A 和 B 传送出去,接收站接收信号时,A 被误收为 B 的概率为 0.04,而 B 被误收为 A 的概率为 0.05.传送信息 A 和 B
- (1) 求接收站接收到信号为 A 的概率;

的比例为 2:1.

- (2) 如果已知接收站接收到信号为 A, 求原发信号是 A 的概率.
- 三. 设离散型随机变量 X,Y 均只取 0,1 这两个值.

P(X=0,Y=0)=0.2, P(X=1,Y=1)=0.3,且随机事件 $\{X=1\}$ 与 $\{X+Y=1\}$ 相互独立.

- (1)求(X,Y)的联合概率函数; (2)分别求X,Y的边缘概率函数;
- (2) 求 $Z = X^2 + Y^2$ 的概率函数和协方差 cov(X, Z).
- 四. 设随机变量 X 与 Y 相互独立且都服从参数为 $\ln 2$ 的指数分布 .记 $U = \max(X,Y), V = \min(X,Y)$.
 - (1) 分别求随机变量U 的概率密度函数和随机变量V 的概率密度函数;
 - (2) 求概率 $P(U \le 1, V \ge 0.5)$.
- 五. 设随机变量(X,Y)的联合密度函数为

$$f(x,y) = \begin{cases} 0.25e^{-0.5x}, 0 < y < x; \\ 0, 其他 \end{cases}$$

- (1) 分别求X,Y的边缘密度函数; (2) 问: X,Y是否相互独立?请说明理由;
- (3) 求条件概率密度函数 $f_{Y|X}(y|x)$,其中 x > 0; (4) 求 E(X), E(Y), cov(X,Y).

六. 小王自主创业,开了一家蛋糕店,店内有 A,B,C 三种蛋糕出售,A,B,C 三种蛋糕的售价分别为 5 元,10 元,12 元. 顾客购买 A,B,C 三种蛋糕的概率分别为 0.2,0.3,0.5 . 假设今天共有 700 位顾客,每位顾客各买了一个蛋糕,且各位顾客的消费是相互独立的. 用中心极限定理求小王今天的营业额在 7000 元至 7140 元之间的概率的近似值.

七.假设总体 X 服从正态分布 $N(\mu,500)$,总体 Y 服从正态分布 $N(\mu,625)$,现从这两个总体中各独立抽取了样本容量为 5 的样本 $X_1,\cdots,X_5,Y_1,\cdots,Y_5$,即合样本 $X_1,\cdots,X_5,Y_1,\cdots,Y_5$,即合样本 $X_1,\cdots,X_5,Y_1,\cdots,Y_5$ 相互独立.

(1)求随机变量 $\overline{X} - \overline{Y}$ 的概率密度函数,其中 $\overline{X}, \overline{Y}$ 分别为两个正态总体的样本均值;

(2)求概率 $P(\overline{X} - \overline{Y} \le 30)$.

八. 设 X_1, X_2, \dots, X_n 是取自总体X 的简单随机样本, $n \ge 2$, X 的概率密度函数为

$$f(x,\theta) = \begin{cases} \frac{\theta}{x^2}, x \ge \theta \\ 0, \mathbb{I} \end{cases}$$
 , 其中 θ 未知, $\theta > 0$.

- (1) 求 θ 的极大似然估计量 $\hat{\theta}$;
- (2) 问: θ 的极大似然估计量 $\hat{\theta}$ 是否为 θ 的无偏估计量? 请说明理由;