θε/υα 3°: ~~in -2x1 - 4x2+x3 2X1 - X92 + 9x4 +x5 = 10 XL + 4X2 +X3 +9X4 +X6 = 4 xi^{7} , $o_{j}(i=1,...,6)$ BE) tister zasikn Soupépien B=[5,1], N=[9,634] $AB = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \quad B^{-1} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \quad XB = B^{-1}b = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 \end{bmatrix}$ $WT = [C_B]^T \cdot B^{-1} = [O - 2][1 - 2]$ $WT = [C_B]^T \cdot B^{-1} = [O - 2][1 - 2]$

(2:
$$C_{9} - S_{9} = -4 - 4 = -8$$

(3: $C_{3} - S_{3} = 1 - 3 = -9$
(4: $C_{4} - S_{4} = 0 - 4 = -4$
(6: $C_{6} - S_{6} = 0 - 9 = -9$
(1: $C_{4} - S_{4} = 0 - 9 = -9$
(1: $C_{4} - S_{5} = 0 - 9 = -9$
(3: $C_{5} - S_{6} = 0 - 9 = -9$
(4: $C_{4} - S_{6} = 0 - 9 = -9$
(6: $C_{6} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(2) $C_{5} - S_{6} = 0 - 9 = -9$
(3) $C_{6} - S_{6} = 0 - 9 = -9$
(4) $C_{4} - S_{6} = 0 - 9 = -9$
(4) $C_{4} - S_{6} = 0 - 9 = -9$
(5) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(1) $C_{4} - S_{6} = 0 - 9 = -9$
(2) $C_{4} - S_{6} = 0 - 9 = -9$
(3) $C_{4} - S_{6} = 0 - 9 = -9$
(4) $C_{4} - S_{6} = 0 - 9 = -9$
(5) $C_{4} - S_{6} = 0 - 9 = -9$
(6) $C_{4} - S_{6} = 0 - 9 = -9$
(7) $C_{4} - S_{6} = 0 - 9$
(8) $C_{4} - S_{6} = 0 - 9$
(9) $C_{4} - S_{6} = 0 - 9$
(1) $C_{4} - S_{6} = 0 - 9$
(1) $C_{4} - S_{6} = 0 - 9$
(1) $C_{4} - S_{6} = 0 - 9$
(2) $C_{4} - S_{6} = 0 - 9$
(3) $C_{4} - S_{6} = 0 - 9$
(4) $C_{4} - S_{6} = 0 - 9$
(5) $C_{4} - S_{6} = 0 - 9$
(6) $C_{4} - S_{6} = 0 - 9$
(7) $C_{4} - S_{6} = 0 - 9$
(8) $C_{4} - S_{6} = 0 - 9$
(9) $C_{4} - S_{6} = 0 - 9$
(1) $C_{4} - S_{6} = 0 - 9$
(1) $C_{4} - S_{6} = 0 - 9$
(1) $C_{4} - S_{$

(5:
$$V = L$$
) $H_{1,V} = B_{1}$. $AN = \begin{bmatrix} 1 - 4 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 & 2 \\ -1 & 1 & 0 & 2 \end{bmatrix}$

$$= \begin{bmatrix} -q & -2 & -9 & -9 \end{bmatrix}$$

$$a_{5} = \max \left(\frac{4}{-q} , \frac{9}{-2}, \frac{3}{-2}, \frac{1}{-q} \right) = -\frac{1}{q}$$

$$b_{5} = \min \left(\frac{1}{2}, \frac{1}{2$$

$$b9: i=2$$

$$AB = \begin{bmatrix} 9 \\ 4 \end{bmatrix}$$

$$b2: i=2$$

$$b2+1=2$$

$$b$$

 $\frac{9}{5.4} - 9x1 + 94x9 + 4x3 + 3x4$ 5.4 - xL + 3x9 + x3 - x5 = 0 -x1 + 4x9 + x4 - x6 = 1 $x_{3} = x_{0} (j = 1, ..., 6)$

i)
$$B = \begin{bmatrix} 5 & 4 \end{bmatrix}$$
 $N = \begin{bmatrix} 1936 \end{bmatrix}$
 $AB = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ $AB = \begin{bmatrix}$

ETTEIS ~ SNZO n BOUSIKN SLUPEPLEN ELVOY BE) CLECN.

11) 2 mes 2500-25	CT (£ C	3 (<u> </u>	<u>S</u> C	<u>6</u> <u>6</u>	1 69		
A.A	-3 1	2/		2	-41	3/	-00	~ ~~~	
A. A	OD \	<i>□</i> 6 \ c	00	6	1	00	-		
ZKIEPNTIFN			\	_	\	- 1	0	-5-	
EDZELYDOK 6 SCOS	1	12	4	0	D	3	_	_	

(1:
$$[(j-S)j+00)=[-3,+00)$$

(2: $[12,+00)$
(3: $[0,+00)$
(6: $[-3,+00)$
(4: $v=2$, $H_{2N}=B_{2}$. $AN=[01][-13|0]$
 $=[-1 40-1]$
 $ay=max(12)=3$
 $ay=max(12)=3$
 $ay=max(12)=3$
 $ay=max(12)=3$

(S:
$$V = L$$
) $HW = [-10][-L_{3}^{3}]_{0}^{0}] = [-3-L_{0}]$
 $QS = mox (12 - 2) = [-13]_{0}^{3} = [-13]_{0}^{$

$$b2: i=1$$
 $XB = [0]$
 $B_{2}^{-1} = [0]$
 $b2 + b2$
 $b2 + b2$

DEfra 3 B=[16], N=[3254] min - XI + 2 X2 - UX3 + 2 X4 X1 + 2 X9 + 6 X3 + 2 X4 + X5 2 XI - X2 - X3 + 4X4 + X6 =12 $x_{j} = 0$ $(j=1_{j} = -6)$ $AB = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}, W = \begin{bmatrix} -1 & 0 \\ -2 & 1 \end{bmatrix}$ $W = \begin{bmatrix} -1 & 0 \\ -2 & 1 \end{bmatrix}$ $W = \begin{bmatrix} -1 & 0 \\ -2 & 1 \end{bmatrix}$ SN = (CN)T-WTAN= [-4 202] - [-10] [6 2 1 2] SN= [-4202] -[-6-2-1-2]

$$\frac{1}{1}$$
 $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$

$$(9:[-2,+00)$$
 $(3:[-2,+00)$
 $(4:[-2,+00)$
 $(5:[-1,+00)$