Работа 3.2.4 Свободные колебания в электрическом контуре

Давыдов Владислав Олегович Б04-005

Цель работы

Исследование свободных колебаний в электрическом контуре.

В работе используются

Генератор импульсов, электронное реле, магазин сопротивлений, магазин емкостей, катушка индуктивности, электронный осциллограф с разделительной панелью, измеритель LCR.

Теория

Свободные колебания

Рассмотрим электрический контур, состоящий из последовательно соединённых конденстора C, катушки индуктивности L и резистора R. Обозначим разность потенциалов на конденсаторе U_C , а ток, текущий в контуре, через I. Второе првило Кирхгофа:

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{I}{C} = 0. ag{1}$$

Вводя обозначения $\gamma = \frac{R}{2L}, \, \omega_0^2 = \frac{1}{LC}, \,$ получим уравнение

$$\ddot{I} + 2\gamma \dot{I} + \omega_0^2 I = 0. \tag{2}$$

Его решение в общем виде:

$$I = -\frac{U_0}{L\kappa} e^{-\gamma t} \operatorname{sh}(\kappa t), \tag{3}$$

где $\kappa = \sqrt{\gamma^2 - \omega_0^2}, \ U_0 = U_C$ – начальное напряжение на конденсаторе.

$$T_0 = \frac{1}{\nu}, \ T = T_0 \frac{x}{nx_0}, \ \nu_0 = \frac{1}{2\pi\sqrt{LC}} = 5 \ kHz,$$
 (4)

$$R_{kr} = 2\sqrt{\frac{L}{C}},\tag{5}$$

$$\theta = \frac{1}{n} ln \frac{U_k}{U_{k+n}},\tag{6}$$

Экспериментальная установка

Установка

Рис. 1: Схема установки

Ход работы

Измерим период в зависимости от емкости конденсатора

T, мс	C , мк Φ
1,2	0,02
1,25	0,10
1,67	0,18
2,00	0,26
2,30	0,34
2,53	0,42
2,80	0,50
3,00	0,58
3,20	0,66
3,40	0,74
3,60	0,82
3,80	0,90

Таблица 1: Период свободных колебаний от емкости конденсатора.

Критическое сопротивление и декремент затухания.

Приняв $L=200~{\rm M}\Gamma$ н, рассчитаем емкость при которой собственная частота контура составляет 5 к Γ ц

$$C = (\frac{1}{2\pi\nu_0})^2 \frac{1}{L} = 5 * 10^{-9} \Phi, R_{kr} = 12650 \text{ Om}.$$

R, кОм	n,	θ
1,3	2	1,3
1,7	2	0,70
2,1	2	0,83
2,5	1	1,10
2,9	1	1,16
3,3	1	1,18
2,1	1	0,85
1,7	1	0,69

Таблица 2: Декремент затухания от сопротивления.

Свободные колебания на фазовой плоскости.

Выставив на осциллографе в канал Y напряжение $U_R \sim I \sim \frac{dU_C}{dt}$, получим следующие осциллограммы:

Далее, измерим параметры катушки, с помощью измерителя LCR:

ν	R, Om	L , м Γ н
1 кГц	24,0	385,2
5 кГц	42,5	387,0
50 Гц	15,3	394,7

Таблица 3: Параметры катушки при разной частоте.

Сопротивление катушки при постоянном токе = 14 Ом.

Обработка результатов.

 T_{teor} будем вычислять по формуле:

$$T_{teor} = 2\pi\sqrt{LC} \tag{7}$$

Рис. 2: Зависимость экспериментально вычисленного периода от теоретического

Их расхождение может значить другое значение индуктивности катушки (в нашем примере мы предполагали индуктивность катушки равную примерно 200мГн).

Вычислим критическое сопротивление по следующей формуле:

$$R_{kr} = 2\pi \sqrt{\Delta Y/\Delta X} \tag{8}$$

Рис. 3: Зависимость Y от X

Получаем значение для $R_{kr}=15,5$ кОм, что приблизительно совпадает с нашим первоначальным результатом ($R_{kr}=12,7$ кОм).

L_{kat} , м Γ н	R_{kr} теор, кОм	R_{kr} график, кОм	<i>R</i> , кОм	Q reop	$Qf(\theta)$
387	12,7	15,5	$\min =$	2,7	6,3
387	12,7	15,5	$\max =$	6,0	16,0

Таблица 4: Результаты.