21世纪高等学校计算机规划教材

现代密码学

Modern Cryptography

作 者: 何大可 彭代渊 唐小虎 何明星 梅其祥

出版社: 人民邮电出版社

现代密码学

Modern Cryptography

第4章公钥密码体制

孙玉花 中国石油大学 理学院 Sunyuhua_1@163.com 2019年9月

第4章 公钥密码体制

- 4.0 公钥密码数学基础
- 4.1 公钥密码体制概述
- 4.2 RSA公钥密码体制
- 4.3 Rabin公钥密码体制
- 4.4 背包公钥密码体制
- 4.5 离散对数公钥密码体制

4.0 公钥密码数学基础

- 一、同余与模运算
- 二、快速模指数运算
- 三、模乘法逆元问题
- 四、著名的小费马定理和欧拉定理
- 五、本原根与离散对数
- 六、著名的中国剩余定理
- 七、二次剩余
- 八、单向函数

- 两个整数a,b分别被m除,如果所得的余数相同,则称a与b对模m是同余的,记为 $a \equiv b \pmod{m}$,正整数m称为模。 求余运算称为模运算。
- $a \mod m$ 将a映射到0到m-1之间。
- 给定整数m,将{0, 1, ..., m-1}记为Z_{m。}

- 同余具有下面的性质:
- > a = km + b (k)整数),等价于 $a \equiv b \pmod{m}$
- \triangleright 每个整数恰与0,1,...,m-1这m个整数中的某一个对模m同余
- > 同余关系是一种等价关系
- $a \equiv b \pmod{m}$ 当且仅当 $a \mod m = b \mod m$ 。(由定义推出)

- 给定整数m,将 $\{0, 1, ..., m-1\}$ 记为 Z_m ,称为模m的非负最小完全剩余系。
- 将 $\{0, 1, ..., m-1\}$ 中所有与m的公因子为1的整数取出,记为 Z_m^* ,称为模m的既约剩余系,且有 $|Z_m^*| = \varphi(m)$ 。
- 若 $a x \equiv b \pmod{m}$ 满足a,b为整数,m不是a的因子,则称该方程为模m的一次同余方程。若gcd(a,m)=1,该方程有唯一解。

- 模m求余运算称为模运算,下面是模运算的一些性质。
- $(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$
- \triangleright $(a-b) \mod m = ((a \mod m) (b \mod m)) \mod m$
- $(a \times b) \mod m = ((a \mod m) \times (b \mod m)) \mod m$
- $(a \times (b+c)) \mod m = ((a \times b) \mod m)$

 $+ ((a \times c) \mod m)) \mod m$

例如 11 mod 8 = 3; 15 mod 8 = 7,
 那么 (11 mod 8) + (15 mod 8) mod 8 = (3+7) mod 8 = 2
 (11+15) mod 8 = 26 mod 8 = 2

- 在模运算中,加法单位元是0,(0+a) mod $m = a \mod m$
- 乘法单位元是1, $(1 \times a) \mod m = a \mod m$

- $\forall a \in \mathbb{Z}_m$,存在 $b \in \mathbb{Z}_m$,使得 $a+b \equiv 0 \pmod{m}$,则b是a的加法逆元,
- $i \exists b = -a \mod m$.
- 対 $a \in \mathbb{Z}_m$,存在 $b \in \mathbb{Z}_m$,使得 $a \times b \equiv 1 \pmod{m}$,则称b为a的乘法逆元 a^{-1} 。
- 模m加法一定存在逆元,模m乘法不一定存在逆元。若gcd(a, m) =1,a的模m下的乘法逆元一定存在,反之不存在。

- 定理 (乘法消去律)对于 $ab \equiv ac \pmod{m}$ 来说,若 $\gcd(a, m) = 1$ 则 $b \equiv c \pmod{m}$ 。
- 定理4(加法消去律)如果 $a+b \equiv a+c \pmod{m}$,则 $b \equiv c \pmod{m}$
- 加法消去律是没有条件,但乘法消去律的条件是gcd(a, m) = 1,即a和m互素
- 例如 6×3≡6×7≡2 mod 8,但3≡7 mod 8不成立

模8运算的例子

模8的加法和乘法运算与普通运算一样,只是将所得的值取 模8后的余数

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

模8的加法逆元和乘法逆元

- 对每一个x都有一个对应的y,使得
 x+y≡ 0 mod 8,则y是x的加法逆元。如对2,有6,使得2+6≡0 mod 8,那么6
 是2的加法逆元
- 如果对x,存在y,使得x×y ≡1 mod 8, 则y为x的乘法逆元。如3×3≡1 mod 8, 因此3的乘法逆元是3。

a	-a	a-l
0	0	_
1	7	1
2	6	
3	5	3
4	4	_
5	3	5
6	2	
7	1	7

快速的模幂运算

- 在非对称密码体制(公钥密码体制)中常常涉及指数模运算, 如计算73³²⁷ mod 37
- 一种方法是利用前面介绍的模运算性质 $(a \times b)$ mod $m = ((a \text{ mod } m) \times (b \text{ mod } m))$ mod m,将指数模运算可以看做是多次重复乘法,并且在计算中间结果时就取模

● 例如: 计算117mod 13, 可以按照下面的思路:

$$11^2=121\equiv 4 \mod 13$$

$$11^4 = (11^2)^2 \equiv 4^2 \mod 13 \equiv 3 \mod 13$$

$$11^7 = 11 \times 11^2 \times 11^4 \equiv 11 \times 4 \times 3 \mod 13 \equiv 132 \mod 13 \equiv 2 \mod 13$$

快速求me mod n算法

```
a \leftarrow e, b \leftarrow m, c \leftarrow 1
while (a>0)
{ if (a是奇数)
              a \leftarrow (a - 1), c \leftarrow (c \times b) \mod n;
   else a \leftarrow (a \div 2), b \leftarrow (b \times b) \mod n;
 c为所求。
```

17

表 2.3 快速计算 30³⁷ mod 77 的过程~

a↔	ხ₽	C42
37₽	30₽	1₽
36₽	与前一次值相同↩	$(30 \times 1) \mod 77 = 30$
18₽	(30×30) mod 77 = 53₽	与前一次值相同₽
9₽	(53×53) mod 77 = 37₽	与前一次值相同₽
8₽	与前一次值相同↩	$(37 \times 30) \mod 77 = 324^{\circ}$
4₽	(37×37) mod 77 = 60₽	与前一次值相同₽
2₽	(60×60) mod 77 = 58₽	与前一次值相同₽
1€	(58×58) mod 77 = 53₽	与前一次值相同₽
0€	与前一次值相同₽	(53×32) mod 77 = 2₽

由最后一行可知, c=2, 即 30³7 mod 77 = 2. ₽

快速求me mod n算法二(平方—乘算法)

```
b \leftarrow m,e = a_k a_{k-1} \dots a_1 a_0(二进制展开);c \leftarrow 1
   for i=0 downto k do
    if (i=0 and a_i=1) then c=m;
    else{ b \leftarrow (b \times b) \mod n;
            If a_i=1 c \leftarrow (c \times b) \mod n;
```

2020/2618

- 在密码学特别是非对称密码体制中,常常需要求模逆元,求模逆元就是求乘法逆元。即寻找一个x,使得 $a \times x \equiv 1 \mod m$ 成立
- 利用扩展欧几里德算法能够计算出模m下a的乘法逆元。

定理(欧几里德算法)给定整数a和b,且b>0,重复使用带余除法,即每次的余数为除数去除上一次的除数,直到余数为0,这样可以得到下面一组方程:

$$a = bq_1 + r_1$$
, $0 < r_1 < b$, $b = r_1q_2 + r_2$, $0 < r_2 < r_1$, $r_1 = r_2q_3 + r_3$, $0 < r_3 < r_2$,

 $r_{j-1} = r_j q_{j+1}$, r_j 就是a和b的最大公因子。

由辗转相除定理还可得到下面结论:

对于不全为零的两个整数a,b存在整数s,t使得gcd(a,b)=sa+tb

例1 求gcd (1970,1066)

- 用欧几里德算法的计算过程如下:
- \bullet 1970=1×1066+904; 1066=1×904+162

$$904 = 5 \times 162 + 94;$$
 $162 = 1 \times 94 + 68$

$$94=1\times 68+26;$$
 $68=2\times 26+16$

$$26=1\times16+10;$$
 $16=1\times10+6$

$$10=1\times 6+4;$$
 $6=1\times 4+2$

 $4=2\times2+0$,因此gcd(1970, 1066)=2。

22

● 扩展欧几里德算法可以计算满足前面的组合系数s和t。

```
• r1\leftarrow a; r2\leftarrow b; s1\leftarrow 1; s2\leftarrow 0; t1\leftarrow 0; t2\leftarrow 1;
   while (r2>0)
• \{ q=r1/r2; \}
            r=r1-q\times r2; \quad r1\leftarrow r2; \quad r2\leftarrow r;
           s=s1-q\times s2; s1\leftarrow s2; s2\leftarrow s;
           t=t1-q\times t2; t1\leftarrow t2; t2\leftarrow t;
• gcd(a, b) \leftarrow r1, s \leftarrow s1, t \leftarrow t1;
```

• 满足gcd(a, b)=s×a+t×b

2020/2/18

23

四、著名的小费马定理和欧拉定理

- 费马定理和欧拉定理在公钥密码体制中占非常重要的地位
- 定理2.5 (费马定理Fermat) 若p是素数,且a是正整数,且 $\gcd(a,p)=1$,则: $a^{p-1}\equiv 1\pmod{p}$

四、著名的小费马定理和欧拉定理

- 设 $\varphi(n)$ 为1到n-1之间且与n互素的正整数个数,则称其为欧拉(Euler)函数
- (欧拉定理) 对于任何互素的两个整数a和n,有

$$a^{\varphi(n)} \equiv 1 \mod n$$

欧拉定理推论:对任意正整数a,n是互不相同的素数之积,有 $a^{\varphi(n)+1} \equiv a \bmod n$,

进而,对任意的正整数k,有 $a^{k\varphi(n)+1} \equiv a \mod n$,

此时不要求gcd(a, n) = 1。

四、著名的小费马定理和欧拉定理

欧拉函数 $\varphi(n)$ 的几条性质:

- n为素数, φ(n)=n 1;
- 若p为素数,n为正整数,则 $\varphi(p^n)=(p-1)p^{n-1}$
- gcd(m, n) = 1, $\varphi(mn) = \varphi(m) \times \varphi(n)$

- 本原根
- 假设gcd (a, n) =1,
- 如果m是使 $a^m \equiv 1 \mod n$ 成立的最小正整数,则称它是a对 模n的指数,或者称为a关于模n的乘法阶,记为 Ord_na 。

- 若 $Ord_n a = \varphi(n)$,则称a是模n的本原根(primitive root),也称模n的乘法生成元。
- 定理 当a是模n的本原根,则1,a,..., $a^{\varphi(n)}$ $^{-1}$ 构成模n的 既约剩余系,也即: $Z_n^* = \{1$,a,..., $a^{\varphi(n)}$ $^{-1}\}$ 。

求模7和模15的本原根

• 对于模7而言,满足gcd (a, n) = 1的a是 $\{1,2,3,4,5,6\}$,将它们的指数列表如下

a	1	2	3	4	5	6
Ord ₇ a	1	3	6	3	6	2

• 从上表可以看到,当a是3和5时, $Ord_7a = \varphi(7)$,因此,3和5是模7的本原根。

对于模15而言,满足gcd (*a*, *n*) =1的*a*是 {1,2,4,7,8,11,13,14},

将它们的指数列表如下:

a	1	2	4	7	8	11	13	14
Ord ₇ a	1	4	2	4	4	2	4	2

- 上表中不存在一个a,使 $Ord_{15}a = \varphi(15)$,所以模15没有本原根
- 定理2.8 模m的本原根存在的必要条件是 $m = 2, 4, p^a$,或者2 p^a ,此处p是奇素数

本原根的测试

- 通常找出一个本原根不是一件容易的问题。
- \bullet 对一个素数p,如果知道p-1的因子,该问题就变得容易。
- 测试方法:令 $q_1,q_2,...,q_n$ 是p-1的素因子,对于所有的 $q_1,q_2,...,q_n$,计算 $a^{(p-1)/q}$ (mod p),如果对某个素因子q,其结果为1,那么a 不是一个本原根。如果对所有素因子q,其结果都不为1,那么a 是一个本原根。

● 例 假设p=11, 检验2和3是否是一个本原根。

解: 当p=11时,p-1=10,p-1有两个素因子2和5,现测试2是否是一个本原根。

$$2^{(11-1)/5} \pmod{11} = 4$$
; $2^{(11-1)/2} \pmod{11} = 10$

计算结果没有1,所以2是本原根。

测试3是否是本原根

$$3^{(11-1)/5} \pmod{11} = 9$$
; $3^{(11-1)/2} \pmod{11} = 1$

所以3不是本原根。

- 模运算用于指数计算可以表示为a^x mod n, 我们称为模指 数运算
- 模指数运算的逆问题就是找出一个数的离散对数,即求解x,使得 $a^x \equiv b \mod n$
- 对于一个整数b和素数n的一个本原根a,可以找到唯一的指数x,使得 $b \equiv a^x \mod n$,其中 $0 \le x \le n-1$,指数x称为b的以a为基数的模n的离散对数
- 离散对数是许多公钥算法的基础。

六、著名的中国剩余定理(孙子定理)

中国古代著名算题。原载《孙子算经》卷下第二十六题: "今有物不知其数,三三数之剩二;五五数之剩三;七七数之剩二。问物几何?"当时虽已有了答案23,但它的系统解法是秦九韶在《数书九章·大衍求一术》中给出的。大衍求一术(也称作"中国剩余定理")是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题。

六、著名的中国剩余定理(孙子定理)

这个定理的最初形式是由一世纪的中国数学家孙子发现的。

(1) 中国剩余定理: 设 $m_1, m_2, \cdots m_k$ 是k个两两互素的正整数,设 $m = m_1 m_2 \cdots m_k, m = m_i M_i \ (i = 1, \cdots, k)$,则同余式 $(x \mod m_i) = a_i, i = 1, 2, \cdots k$

有唯一解,

 $x \equiv M_1 M_1 a_1 + M_2 M_2 a_2 + \dots + M_k M_k a_k \pmod{m}$, 其中 $M_i M_i \equiv 1 \pmod{m_i} (i = 1, 2, \dots, k)$, 在此,x小于m,换句话说,一个数(小于一些素数之积)被它的余数模这些素数唯一确定。

(2) 中国剩余定理的一个推论可用于求出一个简化的问题的解: 如果 p 和 q 都是素数,p 小于 q,那么存在一个唯一的 x 小于 $p \times q$, 使得 $x \equiv a \pmod{p}$ 且 $x \equiv b \pmod{q}$.

七、二次剩余

如果 p 是素数,且 a 小于 p , 如果方程 $x^2 \equiv a \pmod{p}$

有解,就称 a 是对模 p 的二次剩余。 当p时素数时,该方程至多有两个解。

例如p=7时,有

 $1^2 = 1 \equiv 1 \pmod{7}$

 $6^2 = 36 \equiv 1 \pmod{7}$

 $2^2 = 4 \equiv 4 \pmod{7}$

 $5^2 = 25 \equiv 4 \pmod{7}$

 $3^2 = 9 \equiv 2 \pmod{7}$

 $4^2 = 16 \equiv 2 \pmod{7}$

- 单向和陷门单向函数是公钥密码学的核心,可以说公钥密码体制的设计就是陷门单向函数的设计
- 定义 (单向函数) 一个可逆函数 $f: A \rightarrow B$,若它满足:
 - (1) 对所有 $x \in A$,易于计算f(x)。
 - (2) 对几乎所有 $x \in A$,由f(x)求x极为困难,以至于实际上不可能做到,则称f为单向函数(One-way Function)

- 定义 (单向陷门函数)
 - 一个"可逆"函数F若满足下列二条件,则称F为单向陷门函数 (One-way Trapdoor Function):
- \rightarrow 对于所有属于F中定义域的任一x,容易计算F(x)=y;
- 》对于几乎所有属于F中值域的任一y,除非获得陷门信息 (trapdoor),则求出x,使得 $x = F^{-1}(y)$ 在计算上不可行, F^{-1} 为 F的逆函数
- 单向函数是求逆困难的函数,而单向陷门函数是在不知陷门信息下求逆困难的函数,当知道陷门信息后,求逆是易于实现的。

- 目前,还不能从理论上证明单向函数是存在的。
- 现实中却存在几个候选单向函数.说他们是"候选",是因为他们表现出了单向函数的性质,但还没有办法从理论上证明它们一定是单向函数
- 常见的候选单向函数:
 - --因数分解问题
 - --背包问题
 - --离散对数

单向函数举例

背包问题。已知向量

$$A=(a_1, a_2, ..., a_N)$$
, a_i 为正整数,

称其为背包向量, 称每个ai为物品重量。给定向量

$$x=(x_1, x_2,..., x_N), x_i \in \{0, 1\},$$

求和式 (称为背包重量)

$$S = a_1 x_1 + a_2 x_2 + \dots + a_N x_N$$

容易,只需要不超过N-1次加法。但已知A和S,求x则非常困难,称其为背包问题,又称作子集和(Subset-Sum)问题。一般只能用穷举搜索法,有 2^N 种可能。N大时,相当困难。

单向函数举例

背包问题的特例:超递增背包问题。将物品重量从小到大排列:

 a_1 , a_2 , a_3 , ..., a_N 。 称该背包问题为<u>超递增背包问题</u>,如果:

$$a_1 < a_2;$$
 $a_1 + a_2 < a_3;$
 $a_1 + a_2 + a_3 < a_4;$
...
 $a_1 + a_2 + a_3 + ... + a_{N-1} < a_{N^{\circ}}$

(超递增背包问题是容易解决的。)

单向函数举例

定理 设超递增背包重量为S。如果k满足 a_k <S< a_{k+1} ,则 a_k 是背包中的最大物品重量。

定理的证明

首先,背包中没有大于а,的物品重量。

其次,背包中确有等于a_k的物品重量。

证明完毕。

注意到,寻找k满足 $a_k < S < a_{k+1}$ 只需要对比N次。

单向函数举例

超递增背包问题的解决方法

解决方法是可行的。设背包重量S, 步骤如下。

- (1) 穷举:找k满足 a_k <S< a_{k+1} 。(这说明背包中的最大物品重量是 a_k)
- (2) 记忆: 存储这个k。
- (3) 卸载: 如果S>0, 则令 $S:=S-a_k$, 返回 (1) 。如果w=0, 则到 (4) 。
- (4) 输出前面存储的所有的k,停止。

单向函数举例

离散对数DL。给定一大素数p(比如,p在 2^{1024} 数量级), $\pi \log_2 p$ 为素数p的长度。

 $\{1, 2, ..., p-1\}$ 关于modp乘法构成了一乘群 Z_p^* ,它是一个p-1阶循环群。该循环群的生成元一共有 $\varphi(p-1)$ 个。

- 设一个生成元为整数g, 1<g<p 1。
- ●设一个整数x, 1<x<p 1。
- •设 $y满足y=g^x \bmod p$ 。

单向函数举例

已知x, g, p, 求 $y=g^x \text{mod}p$ 容易。

这是因为,采用折半相乘,只需要不超过2log_p次的modp乘法运算。

(实际上只需要不超过 $2\log_2 x$ 次的modp乘法运算。如

$$x=15=1111_2$$
,

 $g^{15} \mod p = (((g)^2 g)^2 g)^2 g \mod p$,

要用6次modp乘法)

单向函数举例

若已知y, g, p, 求x满足 $y=g^x \text{mod} p$, 称为求解离散对数问题。记为 $x=\log_g y \mod p$ 。

求解离散对数问题的"最笨的方法"当然就是穷举,对每一个 $x \in \{0, 1, 2, ..., p-1\}$ 检验是否 $y=g^x \bmod p$ 。穷举求解法的运算次数约为(p-1)/2。许多求解离散对数问题的算法比穷举快得多,比如Shanks算法,Pohlig-Hellman算法等。