COMP 302 - Classtest 3 Problem Set

Capture-Avoiding Substitutions

For each expression, identify the bound variables and the free variables. What does the expression evaluate to? These are also implemented in the OCaml file.

(a)

```
[1/y, 5/b, 3/a, (a+b)/x] let x = y in let y = x in x + y
```

The only free variable is highlighted in red, the rest are bound variables.

$$[1/y, 5/b, 3/a, (a+b)/x]$$
 let $x = y$ in let $y = x$ in $x + y$

Substituting properly, we obtain:

$$let x = 1 in let y = x in x + y$$
$$let y = 1 in 1 + y$$
$$1 + 1$$
$$2$$

(b)

```
[z/x] let x = 1 in let x = 2 in let x = 3 in x + x
```

Here, the x is bound everywhere and there are no free variables. Evaluating goes as follows:

$$let \ x = 1 \ in \ let \ x = 2 \ in \ let \ x = 3 \ in \ x + x$$

$$let \ x = 2 \ in \ let \ x = 3 \ in \ x + x$$

$$let \ x = 3 \ in \ x + x$$

$$3 + 3$$

$$6$$

(c)

```
[0/x] let y = x in if y < x then x else y
```

The free variable is highlighted in red:

$$[0/x]$$
 let $y = x$ in if $y < x$ then x else y

Substituting goes as follows:

let
$$y = 0$$
 in if $y < 0$ then 0 else y
if $0 < 0$ then 0 else 0
if false then 0 else 0

(d)

```
[7/y, 2/z, 3/x] let x = y in let y = x in let z = x + (x + y) + z in z
```

The free variables are highlighted in red:

$$[7/y, 2/z, 3/x]$$
 let $x = y$ in let $y = x$ in let $z = x + (x + y) + z$ in z

Substituting goes as follows:

[7/y] let
$$x = y$$
 in let $y = x$ in let $z = x + (x + y) + 2$ in z
let $x = 7$ in let $y = x$ in let $z = x + (x + y) + 2$ in z
let $y = 7$ in let $z = 7 + (7 + y) + 2$ in z
let $z = 7 + (7 + 7) + 2$ in z
let $z = 23$ in z

Subtyping

1. $\label{eq:interpolation} \operatorname{int} \leq \operatorname{float} \quad \operatorname{by} \, S\text{-Base}$

2. $\frac{\text{int} \leq \text{float} \quad \text{int} \leq \text{float}}{\text{int} \times \text{int} \leq \text{float} \times \text{float}} \quad \text{by S-Prod}$

3. $\frac{\text{int} \leq \text{float} \quad \text{int} \leq \text{float}}{\text{float} \rightarrow \text{int} \leq \text{int} \rightarrow \text{float}} \quad \text{by S-Fun} \quad \text{(contravariant input, covariant output)}$

4. $\frac{\inf \leq \inf \quad \inf \not \leq \operatorname{even}}{\inf \times \inf \times \inf \not \leq \operatorname{even} \times \inf} \quad \inf \leq \operatorname{float}}{(\operatorname{even} \times \operatorname{int}) \to \operatorname{int} \not \leq (\operatorname{int} \times \operatorname{int}) \to \operatorname{float}} \quad \text{by S-Fun}$

5. $\frac{\inf \leq \text{float} \quad \text{int} \leq \text{int}}{\text{float} \rightarrow \text{int} \leq \text{int} \rightarrow \text{int}} \quad \text{bool} \leq \text{bool}}{(\text{int} \rightarrow \text{int}) \rightarrow \text{bool} \leq (\text{float} \rightarrow \text{int}) \rightarrow \text{bool}} \quad \text{by S-Fun}$

6. int ref ≤ float ref by invariance of references (S-Ref requires equality)

7. $\frac{\inf \leq \text{int bool} \leq \text{bool}}{\inf \rightarrow \text{bool} \leq \text{int} \rightarrow \text{bool}} \quad \text{even} \leq \text{int}}{(\text{int} \rightarrow \text{bool}) \times \text{even} \leq (\text{int} \rightarrow \text{bool}) \times \text{int}} \quad \text{by S-Prod}$