

SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 58, NUMBER 1

SMITHSONIAN PHYSICAL TABLES

FIFTH REVISED EDITION

PREPARED BY

F. E. FOWLE

AID, SMITHSONIAN ASTROPHYSICAL OBSERVATORY

(PUBLICATION 1944)

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
1910

530.8 S664 1910

ADVERTISEMENT.

In connection with the system of meteorological observations established by the Smithsonian Institution about 1850, a series of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and the first edition was published in 1852. Though primarily designed for meteorological observers reporting to the Smithsonian Institution, the tables were so widely used by physicists that it seemed desirable to recast the work entirely. It was decided to publish three sets of tables, each representative of the latest knowledge in its field, and independent of one another, but forming a homogeneous series. The first of the new series, Meteorological Tables, was published in 1893, the second, Geographical Tables, in 1894, and the third, Physical Tables, in 1896. In 1909 yet another volume was added, so that the series now comprises: Smithsonian Meteorological Tables, Smithsonian Geographical Tables, Smithsonian Physical Tables, and Smithsonian Mathematical Tables.

The fourteen years which have elapsed since the publication of the first edition of the Physical Tables, prepared by Professor Thomas Gray, have brought such changes in the material upon which the tables must be based that it became necessary to prepare this almost wholly new set of tables for the present edition.

CHARLES D. WALCOTT,
Secretary, Smithsonian Institution.

June, 1910.

PREFACE.

The present Smithsonian Physical Tables are the outcome of a radical revision of the set of tables compiled by Professor Thomas Gray in 1896. Recent data and many new tables have been added for which the references to the sources have been made more complete; and several mathematical tables have been added, — some of them especially computed for this work. The inclusion of these mathematical tables seems warranted by the demand for them. In order to preserve a uniform change of argument and to facilitate comparison, many of the numbers given in some tables have been obtained by interpolation in the data actually given in the papers quoted.

Our gratitude is expressed for many suggestions and for help in the improvement of the present edition: to the U. S. Bureau of Standards for the revision of the electrical, magnetic, and metrological tables and other suggestions; to the U. S. Coast and Geodetic Survey for the revision of the magnetic and geodetic tables; to the U. S. Geological Survey for various data; to Mr. Van Orstrand for several of the mathematical tables; to Mr. Wead for the data on the musical scales; to Mr. Sosman for the new physical-chemistry data; to Messrs. Abbot, Becker, Lanza, Rosa, and Wood; to the U. S. Bureau of Forestry and to others. We are also under obligation to the authors and publishers of Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen (1905) and B. O. Peirce's Mathematical Tables for the use of certain tables.

It is hardly possible that any series of tables involving so much transcribing, interpolation, and calculation should be entirely free from errors, and the Smithsonian Institution will be grateful, not only for notice of whatever errors may be found, but also for suggestions as to other changes which may seem advisable for later editions.

F. E. FOWLE.

ASTROPHYSICAL OBSERVATORY OF THE SMITHSONIAN INSTITUTION,

** June, 1910

TABLE OF CONTENTS

Turkun	J	1			4			1	PAGE
	duction on units of measurement and				tors	•	•		ΧV
Unit	s of measurement: general discussion	n.	•	•	•	•	•		XV
	ension formulæ for dynamic units .					•	•		xvii
		•		•		•	•	2	xxiii
	of electric and magnetic units:					•	•		XXV
	formulæ in electrostatic system			er - 6	•	•*	*		xxvi
	" " electromagnetic sys			•	•	•	•		xxix
Pract	ical units of electricity, legalization of	of .	•	•	•	•	•	X	xxiii
TABLE	Farmerica for accounting factors (a)	17							
I.	Formulæ for conversion factors: (a)								2
	(0)		rived u						
			Geom						
			Heat						
	Tables for consisting II Consists		I. Ma		c and	elect	ric un	ilts	3
2.	Tables for converting U. S. weights	and	measu	res:					
	(1) Customary to metric .	•	•	٠	•	•		•	5
	(2) Metric to customary .							•	6
3∙	Equivalents of metric and British im								
	(1) Metric to imperial(2) Multiples, metric to impe		•	٠	•	•	•		7
	(2) Multiples, metric to impe	rial	•	•	•	•	•		8
	(3) Imperial to metric .		•	•	•	•	•	•	9
	(4) Multiples, imperial to me							٠	10
	Volume of a glass vessel from weigh								11
5.	Elementary differential coefficients a								
6.	Reciprocals, squares, cubes and squares				iral ni	umbe	rs	•	13
7.	Logarithms, 1000-2000								
8.	Logarithms								
9.	Antilogarithms								
10.	Antilogarithms, .9000-1.0000	•			•	•	•	٠	28
II.	Circular (trigonometric) functions, a	rgum	ent (°	,'.)		•	•	•	30
12.	a a	rgum	ent (ra	adian	s)	•	•	•	35
12a.	Factorials, n!, n = 1 to 100.	•	•	•	. •	•	•	•	38
13.	Values of $\frac{e^x - e^{-x}}{2}$ (hyperbolic sines),	for v	values	of x	from	o to 5	5		39
14.	Logarithms of $\frac{e^x-e^{-x}}{2}$ (hyperbolic si	ines)	, for v	alues	of x	from	o to	5 •	40
15.	Values of $\frac{e^x + e^{-x}}{2}$ (hyperbolic cosines	s), fo	r value	es of	x from	note	5		41

vi CONTENTS.

16.	Logar	ithm	is of $\frac{e}{2}$	hyp (hyp	erboli	c cos	ines)	for v	alues	of a	r from	o to	5	42
17.	Value	s of	ex and e	-x and the	neir lo	garitl	hms f	or x f	rom (o to :	10			43
18.	66		log. ex fo											44
19.	66		ex and e											45
- 9.						8				·	·			73
20.	ii	66	$e^{\frac{\pi}{4}x}$ and	e 4 " "	66	66								46
								·			Ť			7.
21.	66	66	$e^{\frac{\sqrt{\pi}}{4}x}$ and	de^{4}	66	61	6							46
22.	66		e^x and e^x		66	66	\$	for fr	actio	nal v	alues	of x		47
23.	Proba		y of err o		servat	ions:	prol							47
	11000	6	66 66		66		Prot	66	,	"	•			48
24.											•	•	•	40
25.	Value	s of	0.6745	I										48
- 50			145	\n_1			Ť	Ť		Ť				7
-6	66	66	-6	I	_									4.0
26.			0.6745	$\sqrt{n(n-1)}$	<u>()</u>		•	•	•	•	•	•	•	49
				/ T	_									
27.	66	66	0.8453	$\sqrt{n(n-1)}$	7		•			•		•		49
				-										
28.	66	66	0.8453	1										49
	_					D: CC								
29.			probabi		_						•		•	50
30.			s of the										2	52
31.	Value	s for	the first										٠	54
32.	66	66		$4\pi\sqrt{aa^1}$				he ca	lculat	ion c	of the	mutu	al	
	ind	ucta	nce betw	een two	coaxi	al cir	cles	•		•				56
	77 1 .	C	\int_{-2}^{π}	20-:2	\ +1.1×	6	. 1:a.				01	41		
33.	Value	for	$\int_{o}^{\frac{\pi}{2}} (\mathbf{I} - \mathbf{S})$	in esine	›)∸³dΦ	ior	dine	erent	value	S OI	o; al	so ti	1e	
	cori	resni	onding lo	ogarithm	ıs.									57
24			of inertia						ding					58
34.							, 0011							59
35.			muaiu w	ne gaug		mete	TC CC	ction						59
36.	Pitiniii						ers, se	ction	5 •	• '	•	•		
			m wire g	gauge		66		66	•	•				59
	(For I	Brow	n and S	gauge harp gau	ige, se	"e tab	les 40	" and	41)	• ·	*	•		59
37.	(For I	Brow sect	n and Sition and	gaug <mark>e</mark> harp gau weights	ige, se of wir	e tab	les 40	" o and r, iron	41) , bras	ss), I				59 60
37· 38.	(For I	Brow sect	on and Stion and	gauge harp gau weights "	ige, se of wir	ee tab	les 40	and r, iron	• 41) , bra: "	I	netric	units		59 60 62
	(For I	Brow sect	on and S. tion and	gauge harp gau weights "	nge, se of wir " alu	ee tab ees (c	les 40 opper	o and r, iron " re: Br	41) , bras	and:	metric metric	units units		59 60
38.	(For I Cross	Brow sect	on and Sation and "" "" " " " " " " " " " " " " " " " "	gauge harp gau weights " "	nge, se of wir " alu	ee tab ees (c	les 40 opper	o and r, iron " re: Br	41) , bras	and:	metric metric	units units		59 60 62 64
38. 39.	(For I Cross	Brow sect	on and S. tion and	gauge harp gau weights " "	nge, se of wir " alu	ee tab ees (c iminu	les 40 opper	o and r, iron " re: Br	41) , bras	and:	metric metric	units units		59 60 62
38. 39.	(For I Cross " " Size, v gau	Brow sect	on and Sation and "" "" " " " " " " " " " " " " " " " "	gauge harp gau weights " lectrical units	of wir " alu const	ee tab res (c minu ants	opper om wi	o and r, iron " re: Br	41) , bras	and:	metric metric	units units		59 62 64
38. 39. 40.	(For I Cross " Size, " gau Same	Brow sect weig ge: as t	on and S. tion and " " " ht and e common able 40,	gauge harp gau weights " lectrical units but in m	of wir " alu const	ee tab res (c minu rants meass	opper opper im wi of cop	o and r, iron " re: Br	41) , bras	and:	metric metric	units units		59 62 64 66 68
38. 39. 40. 41. 42.	(For It Cross " Size, " gau Same Weigh	Brow sect weig ge: as t	on and S. tion and the tion and the tion and e tion and e tion common	gauge harp gau weights " " electrical units but in mes per sq	of wir " alu const	ee tab res (c minu rants measu metre	opper opper im wi of cop	o and r, iron " re: Br pper v	titish vire,	and : Brow	metric metric	units units		59 62 64 66 68 70
38. 39. 40. 41. 42.	(For I Cross " " Size, " gau Same Weigh "	Brow sect weig ge: as t	on and S. tion and " " tht and e common able 40, gramme various	gauge harp gau weights " " electrical n units but in m es per sq common	" alu const	ee tab res (c minu rants o meass metre	opper opper im wi of cop	o and r, iron " re: Br pper v	titish vire,	and : Brow	metric metric	units units		59 62 64 66 68 70
38. 39. 40. 41. 42.	(For I Cross " " Size, " gau Same Weigh "	Brow sect weig ge: as t	on and S. tion and " " the and e common able 40, gramme	gauge harp gau weights " " electrical a units but in m es per sq common ials: (a)	age, se of wir " alu const netric quare r units metal	ee tab res (c minumants measuremetre of sh	opper opper im wi of cop	o and r, iron " re: Br pper v	titish vire,	and : Brow	metric metric	units units		59 60 62 64 66 68 70 70
38. 39. 40. 41. 42.	(For I Cross " " Size, " gau Same Weigh "	Brow sect weig ge: as t	on and S. tion and " " tht and e common able 40, gramme various	gauge harp gau weights " electrical a units but in m es per sq common ials: (a)	" alu const " units metal stone	ee tab res (c minu rants meass metre rof sh	opper opper im wi of cop	o and r, iron " re: Br pper v	titish vire,	and : Brow	metric metric	units units		59 62 64 66 68 70 71 71
38. 39. 40. 41. 42.	(For I Cross " " Size, " gau Same Weigh "	Brow sect weig ge: as t	on and S. tion and " " tht and e common able 40, gramme various	gauge harp gau weights " dectrical a units but in m es per sq common fals: (a) (b) (c)	" alu const " units metal stone brick	ee tab res (c minutants o measuremetre of sh	opper opper im wi of cop	o and r, iron " re: Br pper v	titish vire,	and : Brow	metric metric	units units		59 66 62 64 66 68 70 71 71 71
38. 39. 40. 41. 42. 43. 44.	(For I Cross " " Size, " gau Same Weigh "	Brow sect weig ge: as t int in "gth o	on and S. tion and " " tht and e common able 40, gramme various	gauge harp gau weights " dectrical a units but in m es per sq common fals: (a) (b) (c) (d)	" alu const " units metal stone brick	ee tab res (c minutants o meass metre of sh ls retes	opper opper im wi of cop	o and r, iron " re: Br pper v	titish vire,	and : Brow	metric metric	units units		59 66 62 64 66 68 70 71 71 71 71
38. 39. 40. 41. 42. 43. 44.	(For I Crosss " " Size, y gau Same Weigh " Streng	Brow sect '' weig ge: as t nt in ''	on and S. iion and '" '" '" '" '" '" '" '" '" '" '" '" '" '	gauge harp gau weights " dectrical a units but in m es per sq common fals: (a) (b) (c) (d)	" alu const . " alu const . " alu its metal stone brick concrete te	ee tab res (c minutants o meass metre of sh ls retes	opper opper im wi of cop	o and r, iron " re: Br pper v	titish vire,	and : Brow	metric metric	units units		59 66 62 64 66 68 79 71 71 71 71 72
38. 39. 40. 41. 42. 43. 44.	(For I Cross " " Size, " gau Same Weigh " Streng	Brow sect weig ge: as t in "	on and S. iion and '" '" '" '" '" '" '" '" '" '" '" '" '" '	gauge harp gau weights " " dectrical nunits but in m es per so common ials: (a) (b) (c) (d) tim	" alu const . " alu const . " alu its metal stone brick concrete te	ee tab res (c minu rants o meass metre of sh ls retes	opper opper im wi of cop	o and r, iron " re: Br pper v	titish vire,	and : Brow	metric metric	units units		59 66 62 64 66 68 70 71 71 71 71

CONTENTS. vii

47a.	Variation	of the m	oduli of r	igidity wi	ith the	temper	rature	•		. 74
48.	Young's m	odulus								- 75
49.	Compressi	bility of	the more	importar	nt solid	eleme	nts .		•	. 76
50.	Hardness		•				•			. 76
51.	Relative h	ardness	of the ele	ments						. 76
52.	Poisson's	ratio .								. 76
53.	Elastic mo	duli of c	rystals, fo	ormulæ					•	. 77
54.	66		-	umerical	results					7 8
55.	Compressi	bility of	O, air, N,	H at dif	ferent p	oressur	es and	tempe	ratures	
56.	٠. د		ethylene	46 ,	"	, 66	66		6	7 9
57-	-66	66	66	66	66	66	46	¢	١ ,	79
58.	66	66	c arbon di	oxide at	66	66	53	6	٠ ,	80
59.	. "	46	gases, val	ues of a						. 80
60.	"	66	air and o	xygen be	tween :	18° and	d 22°C			. 80
61.	Relation b	etween p	ressure, t	emperatu	ire and	volum	e of su	lphur d	lioxide	81
62.	46	66	66	66	6.6	- 66	" an	nmonia		. 81
63.	Compressi	bility of	liquids							. 82
64.	"	"	"				•			. 83
65.	Specific gr	avities co	orrespond	ing to th	e Beau	mé sca	le .			84
66.	Densities									85
67.	66	" various	s woods				• .	•		. 87
68.	а		solids							88
69.	66		alloys .							. 8 9
70.	66	66 66	liquids	2 10						90
71.	<u>-</u>	u 🦿 u	gases							91
72.	66		aqueous	solution	s of sal	lts, bas	es and	acids		92
73.	Density of	water be	etween o°	and 36°	C .					94
74.	Volume of	water at	temperat	ures bet	ween o'	and 3	6° C i	n terms	of its	
	volume	at the te	emperatur	e of max	imum (density				95
75-	Density an	d volume			nt temp	erature	es from			
76.	"	66	" mercu	ry at "		66	66	-ro "	360°C	97
77-	Specific gr	avity of	aqueous e	thyl alco	hol .		. •			98
78.	Density of	aqueous	methyl a	lcohol			•			99
79.	Variation of	of the de	nsity of a	lcohol wi	th the	temper	ature	•		100
80.	Velocity of				•	• •	•	•		101
81.	"	.66 6	' liquids	and gase	s .	• •	•	•		102
82.	Musical so	ales .					•	•		103
83.	" .		. •	•			•			103
84.	Force of g	ravity at	sea level	and diffe	erent la	titudes		•		104
85.	Results of									105
86.	Value of g	ravity at	some of t	he U.S.	C. and	d G. Su	irvey s	tations		106
87.	Length of	seconds	pendulum	for sea	level a	nd diffe	erent la	atitudes	,	107
88.	Determina	tions of t	the length	of the s	econds	pendu	lum	•	•	107
89.	Miscellane							•		108
90.	Terrestrial	magneti				eclinati	ion	•	•	110
91.	. "	66	-	or inclina			•	•		. 112
92.	66	ii		lar chang		ip .	•	•	•	. 112
93.	. "	. "	hori	zontal in	tensity	•	•	•		. 113

viii CONTENTS.

94.	Terrestrial	magnetis	n: secular	change of	of horizont	al intens	ity .		113
95.	66	66	total in	tensity		•			IIZ
96.	66	66	secular	change o	of total int	ensity			114
97•	66	66	agonic	line .					115
98.	Pressure o	f mercury	and water of	columns					116
99.			ter to stand		perature.				117
100.	66	"	66 66	grav	ity, inch a	and metri	ic scale		118
IOI.	66	ee 66	" latitu	ide 45°:	inch scale				119
102.	"	66 66	"	" 1	metric scal	e .			120
103.	Correction	of barome	eter for cap	illarity:	inch and r	netric sca	ale .		121
104.			for wind pr						122
105.	66	66	" the soa	ring of p	lanes .				123
106.	Coefficient	s of frictio	n						124
107.	Viscosity of	of water at	different to	emperatu	res .				125
108.	Coefficient	s of viscos	ity for solu	tions of a	alcohol in	water			126
109.			nineral oils						126
IIO.	66	** ** **	arious oils						126
III.	"	66 66	" liqui	ids .					127
112.	66	66 66	**	temp	erature vai	riation			128
113.	66	" "	solutions: v	ariation	with densit	ty and ter	mperat		
114.	66				centration				133
115.	66	" " {	gases and va	apors .					134
1 16.	66	66 66		" ten	nperature '	variation			135
117.	Diffusion of	f an aque	ous solution	into pui	e water.				136
1 18.	66 (" vapors							137
119.	66 4	" gases an	d vapors			0-			138
119a.	66	" metals i	nto metals						138
120.	Solubility	of inorgan	ic salts in v	vater: te	mperature	variation	ı .		139
121.	46	" a few or	ganic salts	in water	: tempera	ture varia	ation.		140
122.	66	" gases in	water.						140
123.	Absorption	of gases	by liquids						141
124.	Capillarity	and surfa	ce tension:	water a	nd alcohol	in air			142
125.	"	46 66	66	miscella	neous liqui	ds in air			142
126.	66	66 66	"	aqueous	solutions of	of salts			142
127.	Capillarity	and surfa	ce tension:	liquids	in contact	with ai	r, wate	er or	
	mercur	у				•			143
128.	Capillarity	and surfa	ce tension:	liquids a	at solidifyi	ng point			143
129.	66	66 66	"	thicknes	s of soap f	ilms			143
130.	Vapor pres	ssur es .							144
131.	66	" of e	thyl alcoho	1					146
132.	66	46 I	nethyl "						146
133.	" ,	" and	temperatu	res: (a)	carbon di	sulphide			147
				(b)	chloroben	zine			147
				(c)	bromober	zine			147
				(d)	aniline .			•	147
				(e)	methyl sa	licylate .			148
				(f)	bromonap	hthaline			148
				(g)	mercury				148

CONTENTS.	i	X
COLITATION	4.	

134.	Vapor pressures of solutions of salts in water	•		149
135.	Pressure of aqueous vapor at low temperatures			15
136.	" " " o° to 100° C (Broch)			15:
137.	" " " 100° to 230° C (Regnault)		•	153
138.	Weight in grains of aqueous vapor in a cubic foot of saturated	air	•	154
139.	" grammes of " " " metre of "	6.6	•	154
140.	Hygrometry, vapor pressure in the atmosphere	•	•	15
141.	" dew-points		•	150
142.				158
143.	Values of 0.378e in the atmospheric pressure equation $h=B-c$.378e	٠	159
144.	Table for facilitating the calculation of $h/760$		•	160
145.	Logarithms of $h/760$ for values of h between 80 and 800 .	•		160
146.	Values of $t + 0.00367 t$:			
	(a) for values of t between 0° and 10° C, by tenths.		•	162
	(b) " " " " —90° " +1990° C, by tens	•	•	163
	(c) logarithms for t " -49° " $+399^{\circ}$ C, by units	•	•	164
	(d) " " " 400° " 1990° C, by tens.	•	0	160
	Determination of heights by the barometer			167
148.	Barometric pressures corresponding to different temperatures	of the	9	
	boiling-point of water:			
	(a) Common measure	•	a	168
	(b) Metric measure	•	•	169
149.	Standard wave-lengths: Fabry-Buisson's iron arc lines .	•	•	170
150.	" red cadmium line			170
151.	Stronger lines of some of the elements		•	170
152.	Rowland's standard solar wave-lengths (also corrections) .			17
153.	Kayser's standard iron arc lines (also corrections)		٠	17
154.	Wave-lengths of the Fraunhofer lines	•	•	170
155.	Photometric standards	•		17
156.	Sensitiveness of the eye to radiation of different wave-length			
	(threshold) intensities			178
157.	Sensitiveness of the eye: greater intensities		0	178
158.	Sensibility of the eye to small differences of intensity (Fechner)		•	178
159.	Solar energy and its absorption by the earth's atmosphere.	•	•	179
160.	The solar "constant" of radiation and temperature of sun.		•	179
	Distribution of intensity of radiation over solar disk		•	179
	Relative intensities of sunlight and sky-light			179
163.	Indices of refraction of Jena glasses			180
164.		•		180
165.	" " temperature coefficients			180
166.	" " various alums	•		18:
167.	" " metals and metallic oxides:			
	(a) Kundt's experiments			18:
	(b) Du Bois and Rubens' experiments			18:
	(c) Drude's experiments			18:
	Indices of refraction for rock salt			18
169.	" " temperature coefficients.	•		18
T70.	" " sylvine			18

X CONTENTS.

171.	Indices of	refraction	for	fluorite					•			184
172.	66 66	66	6.6	66	temper	atuı	e coe	fficier	its			184
173.		66	66	Iceland								184
174.	66 66	66	66	nitroso-								184
175.	66 66	66	66	quartz								185
176.	66 66	46	66	various								186
177.	66 66	66 -	66		uniaxial					•		187
178.	66 66	66	66		biaxial					•	•	187
	66 66	66	66	solution					•	•	•	107
179.					olutions							188
				` /	66 66				•	•		
				(b)	66		alcoh			•		188
0	66 66	66	66	(c)		••	-			angar	nate .	
180.	66 66			various	_				•	•		189
181.		44	66	gases an	_				•	•		190
182.	Reflection								alues	ot n	• •	191
183.	6.6			ence var				ty	•	•	• •	191
184.	66	66 66	44		u n	=	1.55	•	•	•	• •	191
185.	Reflection						•	•	•	•	• •	192
186.	Transmiss		a gl				•	•	•	•	• •	193
187.	66	66 66		66			•	•	•	•		193
188.	66	66 66	ul	tra-viole	t glasse	S		•			• •	193
189.	66	" alu	m, r	ock salt,	sylvine	, flu	orite,	Icela	nd sp	oar, q	uartz	194
190.	Color scre	ens (Land	lolt)	•								195
191.	66 6	(Woo	d) .		1 .							195
192.		' (Jena	glas	sses)								196
193.	Rotation of	of the plan	e of	polarize	d light	by s	solutio	ns	•			197
194.	66		66	- 66	"	"	sodiu	m chl	orate	and	quartz	197
195.	Colors of								•			198
196.	Thermal o					vs						199
197.	66 .	44		various					•.			200
198.	66	. 66		water a					•			200
199.	66	ee .		organic								200
200.	66	66		gases								200
201.	Heat of co	ombustion							•			201
202.	Heat valu				ous fue	ls:		oals				202
)				(b) pe					202
							(c) lic					202
202.	Chemical	and nhysic	al n	ropertie	s of exp		2.7		4			203
	Heat of co							•				204
	Latent he											206
_	" "	" fusion	ı ızaı	1011 •	• •		•	•	•	•		208
206.					lomonto		•	•	•	•	•	
207.		into 6 6	CIL	"	"		•	•		•	•	209
	Melting-po				nio com	2000	nde	•	•	•		210
209.				s inorga	ine com	pou	uus	•	•	•	•	211
210.	Boiling-po							•	•	•	•	213
211.	Meiting p	oints of va	ariou	s mixtui	es of m	etal	S	•	•	•	•	214
212.	T 1.1						•	•	•	•	•	214
213.	Low-melti	ng-point a	lloys	• 1			9					214

CONTENTS. xi

214.	Densities.	melting-poi	nts, boili	ing-poi	nts of	orga	nie ec	mpoi	ınds:			
		Paraffin ser										215
		Olefine ser		•	•	•	•	•	•	•		215
	1.7	Acetylene s		•	•	•	•	•	•	•		_
		Monatomic		•	•	•	•	•	•	•		216
	· /			•	•	•	•	•	•	•		216
		Alcoholic e			•	•	•		•	•		216
		Ethyl ether			•		•	•	•	•	۰	216
215.		of freezing-p					•	•	0	•	۰	217
216.	_	boiling-poin	nts by sa	lts in s	olutio	n		•	•	•	٠	219
217.	Freezing r			•	•		•	•		•	٠	220
218.		mperatures,							ases	•	٠	22 I
219.	Coefficient	ts of linear e	expansion							•		222
220.	66	66 66	66	" mi	scella	neous	subs	tance	es			223
221.	66	" cubical	66	" cr	ystalli	ne an	d oth	er sol	ids			224
222.	66	66 66	44	" liq	uids							225
223.	66	" therm	al expan	sion of	gases	5 .						226
224.	Mechanica	al equivalent										227
225.	66	66	66 66		ed va			(;				227
226.	66		66 66	conve				•				227
227.	Specific he	eats of the c	hemical									228
228.	-		and me				•					
	66 6		us solids		•	•	•	•	•	•	•	229
229.	66	6 66 66	liquid		•	•	•	•	•	•	•	230
230.			-		•	•	•	•	•	•		230
231.				als and			•	•	•	•		231
232.				and va			•	•	•	•		232
233.		nercury ther					•	•	•	•		233
234.	Compariso	on of hydroge								•		233
235.	**	66 66		9 ¹¹¹	"		o° to			•	•	233
236.	66	66 66		5m and						35° C		233
237.	_	on of air and				eters:				•	•	234
238.	66	46 66 66	59 ^m "		66				o° C.		•	234
239.	"		en and v									235
240.	"	" air and	high ter	nperati	ure (5	9 ^ш) п	nercui	ry the	rmon	eter		235
241.	66	" H., to	luol, alc	ohol, 1	petrol	ether	r, per	itane	ther	mome	<u>-</u>	
	ters .						•					235
242.	Stem corre	ection for the	ermomet	ers								236
243.	66	66 / 66	. "		•							237
244.	66	æ ,										237
245.	Radiation	formulæ and	d constar	nts for	perfe	ct rad	iator					238
246.	66	in calories							rature	25		238
247.	66	distribution										238
		y radiation a	-						•	•		
248.	Cooming by		ma conv	action :					•	•		239
249.	66 6		66	"		rent p			•	•		239
250.						small				• offoot		240
251.		radiation a								enect		
252.	Properties	and constan		turated	stean					•		241
253.	- "		66		**				sure		4	242
O M 4	Datio of th	a alanteanta	tro to the	a alacte	nemar	notic	71mit /	t Ala	ctricit	17		217

xii Contents.

255.	Dielectric strength;	steady potential for spark in air	. 248
256.	"	alternating potential for spark in air	. 248
257.	"	potentials for longer sparks in air	• 249
258.	. "	effect of (air) pressure	• 249
259.	u u	of various materials	. 250
260.		"kerosene	. 250
261.	Electromotive force	of standard cells: absolute current measures	. 251
262.	Data for voltaic cell	s: (a) double fluid cells	. 252
		(b) single fluid cells	• 253
		(c) standard cells	• 253
		(d) secondary (storage) cells	• 253
263.	Contact differences	of potential, solids with liquids and liquids	
	liquids in air .		. 254
264.	Contact differences	of potential, solids with solids in air	. 256
265.		between metals in various salt solutions .	• 257
266.	Thermoelectric pow		. 258
267.			• 259
268.	Peltier effect .		. 260
269.	Various determinati	ons of the ohm	. 261
270.	Specific resistance of		. 262
271.		' metals	. 263
272.	Resistance of metal	s and alloys at low temperatures	. 264
273.		e-metal and miscellaneous alloys	. 266
274.	Conducting power of		. 267
275.	Electric resistance	with alternating currents (straight wires) .	. 269
276.		weights and electrochemical equivalents .	. 270
277.	Conductivity of a fe	w dilute solutions	. 272
278.	Electrochemical equ	nivalents and densities of nearly normal solution	ons . 272
279.	Specific molecular o	onductivity of solutions	• 273
280.	66 66	" " limiting values	• 274
281.	66 66	" " temperature coefficien	ts . 274
282.	_	vity of salts, acids, bases in solution	. 275
283.	66 66	" some additional salts in solution .	• 277
284.	" conduct	ance of the separate ions	. 278
285.		onium acetate: ionization of water	. 278
286.		(specific inductive capacity) of gases	. 279
287.	46 46	" " temper	ature
	coefficient .		• 279
288.	Dielectric constants	(specific inductive capacity) of gases: pressur	re co-
			. 279
289.	Dielectric constants	*	. 280
290.	46	" temperature coefficient	. 282
291.	66 66	liquefied gases	. 282
292.	66 66	standard solutions for calibrations	. 283
293.	Dielectric constants		. 283
294.	**	" crystals	. 284
	_	on of electrical resistance of glass, porcelain.	. 285
206.	Permeability of iron	rings and wire, various inductions	. 286

. 313

297.	Permeabi	lity of	transfe	orm	er iron	:								
	(a)	specin	nen of	We	stingh	ouse :	No.	8 tra	ansfor	mer	•			286
	(b)	46	66		"		66	6	66		•			287
	(c)	66	66		66		66	4	66					287
	(d)	66	66	TI	nomson	-Hou	stor	•	o-wat	t trans	former			287
208.	Magnetic													288
299.	"	66			st iron									288
300.	66	correc			ing spe									288
	Demagne							•	•	•	•			289
302.	"		66		ıddema			اعمدا	•	•	•	•		289
	Composit	ion on							and st	٠ا	•	•		_
	Permeabi										•	•		290
	Magnetic									•	•	•		292
-	magnetic	proper			el at o					•	•	•		292
306.	66	66	66					o C.	•	•	•	•		292
307.	"	"		CO	balt at		C.	•	•	•	•	•		293
308.	"	"			kel "		••		•	•	•	•		293
309.		66			gnetite				•	•	•	•		293
310.	"	66			wmoor				1 •	•	•	•	٠	293
311.	66	"			cker's 1					•	•	•		293
312.					adfield'		_	nese	steel	•	•	•		293
	Saturation						•		•	•	•	•		2 93
	Magnetic									•	•	•		294
	Dissipatio	on of e	nergy :	in c	yclic m									294
316.	66	66	66	66	66		6				sforme			294
317.	66	66		66	66		6				bstance			295
318.											er steel	S		296
	Magneto-						det'	s coi	nstant	•	•	•		297
320.	66	"	66		solids		•		•	•	•	•	٠	298
321.	66	••	66		liquids		•	•			•	•		299
322.	"	"	66	66	solutio						vater	•	٠	301
323.	"	"	66	66	46	66	66		alcoh			•	٠	303
324.	66	66	"	66	66	66	66	**	hydro	ochlor	ic acid	•	٠	303
3 25.	66	"	66	66	gases		•	•	•	•	•	•	٠	304
	Verdet's						•		•	•	•	•	٠	304
	Magnetic								•	•	•	•	٠	305
	Values of				•					•	•	•	٠	305
	Variation			ance							•	•		306
330.	66	66 66	66		" nic			6		**	•	•		306
331.	66	66 66	66						a ma	_	field	•	•	306
	Transvers									fects	•	•	•	307
333 ·	Variation	of the	Hall o	cons	tant wi	th th	e te	mpe	rature	•	•	•		307
	Appendix									rature	s.	•		308
3 35.	4.6				ron to	high	tem	pera	tures	•	•	•	•	308
	66	Defi	nitions	of	units	•	•		•	•		•	•	309

Index . .

INTRODUCTION.

UNITS OF MEASUREMENT AND CONVERSION FORMULÆ.

Units. — The quantitative measure of anything is a number which expresses the ratio of the magnitude of the thing to the magnitude of some other thing of the same kind. In order that the number expressing the measure may be intelligible, the magnitude of the thing used for comparison must be known. This leads to the conventional choice of certain magnitudes as units of measurement, and any other magnitude is then simply expressed by a number which tells how many magnitudes equal to the unit of the same kind of magnitude it contains. For example, the distance between two places may be stated as a certain number of miles or of yards or of feet. In the first case, the mile is assumed as a known distance; in the second, the yard, and in the third, the foot. What is sought for in the statement is to convey an idea of the distance by describing it in terms of distances which are either familiar or easily referred to for comparison. Similarly quantities of matter are referred to as so many tons or pounds or grains and so forth, and intervals of time as a number of hours or minutes or seconds. Generally in ordinary affairs such statements appeal to experience; but, whether this be so or not, the statement must involve some magnitude as a fundamental quantity, and this must be of such a character that, if it is not known, it can be readily referred to. We become familiar with the length of a mile by walking over distances expressed in miles, with the length of a yard or a foot by examining a yard or a foot measure and comparing it with something easily referred to, - say our own height, the length of our foot or step, — and similarly for quantities of other kinds. This leads us to be able to form a mental picture of such magnitudes when the numbers expressing them are stated, and hence to follow intelligently descriptions of the results of scientific work. The possession of copies of the units enables us by proper comparisons to find the magnitude-numbers expressing physical quantities for ourselves. The numbers descriptive of any quantity must depend on the intrinsic magnitude of the unit in terms of which it is described. Thus a mile is 1760 yards, or 5280 feet, and hence when a mile is taken as the unit the magnitude-number for the distance is 1, when a yard is taken as the unit the magnitude-number is 1760, and when a foot is taken it is 5280. Thus, to obtain the magnitude-number for a quantity in terms of a new unit when it is already known in terms of another we have to multiply the old magnitudenumber by the ratio of the intrinsic values of the old and new units; that is, by the number of the new units required to make one of the old.

Fundamental Units of Length and Mass. — It is desirable that as few different kinds of unit quantities as possible should be introduced into our measurements, and since it has been found possible and convenient to express a large number of physical quantities in terms of length or mass or time units and combinations of these they have been very generally adopted as fundamental units. Two systems of such units are used in this country for scientific measurements, namely, the British, and the French or metric, systems. Tables of conversion factors are given in the book for facilitating comparisons between quantities expressed in terms of one system with similar quantities expressed in the other. In the customary system the standard unit of length is the yard and is now defined as 3600/3937 metre. The unit of mass is the avoirdupois pound and is defined as 1/2.20462 kilogramme.

The British yard is defined as the "straight line or distance (at 62° F.) between the transverse lines in the two gold plugs in the bronze bar deposited in the office of the exchequer." The British standard of mass is the pound avoirdupois and is the mass of a piece of platinum marked "P. S. 1844, I lb.," preserved in the exchequer office.

In the metric system the standard of length is defined as the distance between the ends of a certain platinum bar (the mètre des Archives) when the whole bar is at the temperature o° Centigrade. The bar was made by Borda, and is preserved in the national archives of France. A line-standard metre has been constructed by the International Bureau of Weights and Measures, and is known as the International Prototype Metre. A number of standard-metre bars which have been carefully compared with the International Prototype have lately been made by the International Bureau of Weights and Measures and furnished to the various governments who have contributed to the support of that bureau. These copies are called National Prototypes.

Borda, Delambre, Laplace, and others, acting as a committee of the French Academy, recommended that the standard unit of length should be the ten millionth part of the length, from the equator to the pole, of the meridian passing through Paris. In 1795 the French Republic passed a decree making this the legal standard of length, and an arc of the meridian extending from Dunkirk to Barcelona was measured by Delambre and Mechain for the purpose of realizing the standard. From the results of that measurement the metre bar was made by Borda. The metre is not now defined as stated above, but as the length of Borda's rod, and hence subsequent measurements of the length of the meridian have not affected the length of the metre.

The French, or metric, standard of mass, the kilogramme, is the mass of a piece of platinum also made by Borda in accordance with the same decree of the Republic. It was connected with the standard of length by being made as nearly as possible of the same mass as that of a cubic decimetre of distilled water at the temperature of 4° C., or nearly the temperature of maximum density.

As in the case of the metre, the International Bureau of Weights and Measures has made copies of the kilogramme. One of these is taken as a standard, and

is called the International Prototype Kilogramme. The others were distributed in the same manner as the metre standards, and are called National Prototypes.

Comparisons of the French and customary standards are given in tabular form in Table 2; and similarly Table 3, differing slightly, compares the British and French systems. In the metric system the decimal subdivision is used, and thus we have the decimetre, the centimetre, and the millimetre as subdivisions, and the dekametre, hektometre, and kilometre as multiples. The centimetre is most commonly used in scientific work.

Time. — The unit of time in both the systems here referred to is the mean solar second, or the 86,400th part of the mean solar day. The unit of time is thus founded on the average time required for the earth to make one revolution on its axis relatively to the sun as a fixed point of reference.

Derived Units. — Units of quantities depending on powers greater than unity of the fundamental length, mass, and time units, or on combinations of different powers of these units, are called "derived units." Thus, the unit of area and of volume are respectively the area of a square whose side is the unit of length and the volume of a cube whose edge is the unit of length. Suppose that the area of a surface is expressed in terms of the foot as fundamental unit, and we wish to find the area-number when the yard is taken as fundamental unit. The yard is 3 times as long as the foot, and therefore the area of a square whose side is a yard is 3×3 times as great as that whose side is a foot. Thus, the surface will only make one ninth as many units of area when the yard is the unit of length as it will make when the foot is that unit. To transform, then, from the foot as old unit to the yard as new unit, we have to multiply the old area-number by 1/9, or by the ratio of the magnitude of the old to that of the new unit of area. This is the same rule as that given above, but it is usually more convenient to express the transformations in terms of the fundamental units directly. In the above case, since on the method of measurement here adopted an area-number is the product of a length-number by a length-number the ratio of two units is the square of the ratio of the intrinsic values of the two units of length. Hence, if l be the ratio of the magnitude of the old to that of the new unit of length, the ratio of the corresponding units of area is l^2 . Similarly the ratio of two units of volume will be l⁸, and so on for other quantities.

Dimensional Formulæ. — It is convenient to adopt symbols for the ratios of length units, mass units, and time units, and adhere to their use throughout; and in what follows, the small letters, l, m, t, will be used for these ratios. These letters will always represent simple numbers, but the magnitude of the number will depend on the relative magnitudes of the units the ratios of which they represent. When the values of the numbers represented by l, l, l are known, and the powers of l, l, and l involved in any particular unit are also known, the factor for transformation is at once obtained. Thus, in the above example, the value of l was l/3 and the power of l involved in the expression for area is l/2; hence, the factor for transforming from square feet to square yards is l/9. These factors

have been called by Prof. James Thomson "change ratios," which seems an appropriate term. The term "conversion factor" is perhaps more generally known, and has been used throughout this book.

Conversion Factor. — In order to determine the symbolic expression for the conversion factor for any physical quantity, it is sufficient to determine the degree to which the quantities length, mass, and time are involved in the quantity. Thus, a velocity is expressed by the ratio of the number representing a length to that representing an interval of time, or L/T, an acceleration by a velocity-number divided by an interval of time-number, or L/T^2 , and so on, and the corresponding ratios of units must therefore enter to precisely the same degree. The factors would thus be for the above cases, l/t and l/t^2 . Equations of the form above given for velocity and acceleration which show the dimensions of the quantity in terms of the fundamental units are called "dimensional equations." Thus

$$E = ML^2T^{-2}$$

is the dimensional equation for energy, and ML²T⁻² is the dimensional formula for energy.

In general, if we have an equation for a physical quantity

$$Q = CL^aM^bT^c$$

where C is a constant and LMT represents length, mass, and time in terms of one set of units, and we wish to transform to another set of units in terms of which the length, mass, and time are $L_i M_i T_i$, we have to find the value of $\frac{L_i}{L}, \frac{M_i}{M}, \frac{T_i}{T}$, which in accordance with the convention adopted above will be lmt, or the ratios of the magnitudes of the old to those of the new units.

Thus $L_i = Ll$, $M_i = Mm$, $T_i = Tt$, and if Q_i be the new quantity-number

$$\begin{aligned} \mathbf{Q}_{i} &= \mathbf{CL}_{i}^{a} \mathbf{M}_{i}^{b} \mathbf{T}_{i}^{c} \\ &= \mathbf{CL}^{a} t^{a} \mathbf{M}^{b} m^{b} \mathbf{T}^{c} t^{c} = \mathbf{Q}^{f^{a}} m^{b} t^{c}, \end{aligned}$$

or the conversion factor is $l^a m^b t^c$, a quantity of precisely the same form as the dimension formula $L^a M^b T^c$.

We now proceed to form the dimensional and conversion factor formulæ for the more commonly occurring derived units.

r. Area. — The unit of area is the square the side of which is measured by the unit of length. The area of a surface is therefore expressed as

$$S = CL^2$$

where C is a constant depending on the shape of the boundary of the surface and L a linear dimension. For example, if the surface be square and L be the length of a side C is unity. If the boundary be a circle and L be a diameter $C = \pi/4$, and so on. The dimensional formula is thus L², and the conversion factor l^2 .

2. Volume. — The unit of volume is the volume of a cube the edge of which is measured by the unit of length. The volume of a body is therefore expressed as

$$V = CL^3$$
,

where as before C is a constant depending on the shape of the boundary. The dimensional formula is L^8 and the conversion factor l^8 .

3. Density. — The density of a substance is the quantity of matter in the unit of volume. The dimension formula is therefore M/V or ML^{-8} , and conversion factor ml^{-8} .

Example. — The density of a body is 150 in pounds per cubic foot: required the density in grains per cubic inch.

Here m is the number of grains in a pound = 7000, and l is the number of inches in a foot = 12; $ml^{-3} = 7000/12^3 = 4.051$. Hence the density is $150 \times 4.051 = 607.6$ in grains per cubic inch.

NOTE. — The specific gravity of a body is the ratio of its density to the density of a standard substance. The dimension formula and conversion factor are therefore both unity.

4. Velocity. — The velocity of a body at any instant is given by the equation $v = \frac{dL}{dT}$, or velocity is the ratio of a length-number to a time-number. The dimension formula is LT⁻¹, and the conversion factor lt^{-1} .

Example. — A train has a velocity of 60 miles an hour: what is its velocity in feet per second?

Here l = 5280 and t = 3600; $lt^{-1} = \frac{5280}{3600} = \frac{44}{30} = 1.467$. Hence the velocity $= 60 \times 1.467 = 88.0$ in feet per second.

- 5. Angle. An angle is measured by the ratio of the length of an arc to the length of the radius of the arc. The dimension formula and the conversion factor are therefore both unity.
- 6. Angular Velocity. Angular velocity is the ratio of the magnitude of the angle described in an interval of time to the length of the interval. The dimension formula is therefore T^{-1} , and the conversion factor is t^{-1} .
- 7. Linear Acceleration. Acceleration is the rate of change of velocity or $a = \frac{dv}{dt}$. The dimension formula is therefore VT⁻¹ or LT⁻², and the conversion factor is tt^{-2} .

Example:— A body acquires velocity at a uniform rate, and at the end of one minute is moving at the rate of 20 kilometres per hour: what is the acceleration in centimetres per second per second?

Since the velocity gained was 20 kilometres per hour in one minute, the acceleration was 1200 kilometres per hour per hour.

Here l = 100000 and t = 3600; $lt^{-2} = 100000/3600^2 = .00771$, and therefore acceleration = .00771 \times 1200 = 9.26 centimetres per second.

8. Angular Acceleration. — Angular acceleration is rate of change of angu-

lar velocity. The dimensional formula is thus $\frac{\text{angular velocity}}{T}$ or T^{-2} , and the conversion factor t^{-2} .

- 9. Solid Angle. A solid angle is measured by the ratio of the surface of the portion of a sphere enclosed by the conical surface forming the angle to the square of radius of the spherical surface, the centre of the sphere being at the vertex of the cone. The dimensional formula is therefore $\frac{\text{area}}{L^2}$ or 1, and hence the conversion factor is also 1.
- ro. Curvature. Curvature is measured by the rate of change of direction of the curve with reference to distance measured along the curve as independent variable. The dimension formula is therefore $\frac{\text{angle}}{\text{length}}$ or L^{-1} , and the conversion factor is l^{-1} .
- rr. Tortuosity. Tortuosity is measured by the rate of rotation of the tangent plane round the tangent to the curve of reference when length along the curve is independent variable. The dimension formula is therefore $\frac{\text{angle}}{\text{length}}$ or L^{-1} , and the conversion factor is l^{-1} .
- 12. Specific Curvature of a Surface. This was defined by Gauss to be at any point of the surface, the ratio of the solid angle enclosed by a surface formed by moving a normal to the surface round the periphery of a small area containing the point, to the magnitude of the area. The dimensional formula is therefore $\frac{\text{solid angle}}{\text{surface}}$ or L^{-2} , and the conversion factor is thus ℓ^{-2} .
- 13. Momentum. This is quantity of motion in the Newtonian sense, and is, at any instant, measured by the product of the mass-number and the velocity-number for the body.

Thus the dimension formula is MV or MLT⁻¹, and the conversion factor mlt⁻¹.

Example. — A mass of 10 pounds is moving with a velocity of 30 feet per second: what is its momentum when the centimetre, the gramme, and the second are fundamental units?

Here m = 453.59, l = 30.48, and t = 1; $mlt^{-1} = 453.59 \times 30.48 = 13825$. The momentum is thus $13825 \times 10 \times 30 = 4147500$.

- 14. Moment of Momentum. The moment of momentum of a body with reference to a point is the product of its momentum-number and the number expressing the distance of its line of motion from the point. The dimensional formula is thus ML^2T^{-1} , and hence the conversion factor is ml^2t^{-1} .
- 15. Moment of Inertia. The moment of inertia of a body round any axis is expressed by the formula $\sum mr^2$, where m is the mass of any particle of the body

and r its distance from the axis. The dimension formula for the sum is clearly the same as for each element, and hence is ML^2 . The conversion factor is therefore ml^2 .

- 16. Angular Momentum. The angular momentum of a body round any axis is the product of the numbers expressing the moment of inertia and the angular velocity of the body. The dimensional formula and the conversion factor are therefore the same as for moment of momentum given above.
- 17. Force. A force is measured by the rate of change of momentum it is capable of producing. The dimension formulæ for force and "time rate of change of momentum" are therefore the same, and are expressed by the ratio of momentum-number to time-number or MLT⁻². The conversion factor is thus mlt⁻².

NOTE. — When mass is expressed in pounds, length in feet, and time in seconds, the unit force is called the poundal. When grammes, centimetres, and seconds are the corresponding units the unit of force is called the dyne.

Example. Find the number of dynes in 25 poundals.

Here m = 453.59, l = 30.48, and t = 1; $mlt^{-2} = 453.59 \times 30.48 = 13825$ nearly. The number of dynes is thus $13825 \times 25 = 345625$ approximately.

- 18. Moment of a Couple, Torque, or Twisting Motive. These are different names for a quantity which can be expressed as the product of two numbers representing a force and a length. The dimension formula is therefore FL or ML^2T^{-2} , and the conversion factor is ml^2t^{-2} .
- rg. Intensity of a Stress. The intensity of a stress is the ratio of the number expressing the total stress to the number expressing the area over which the stress is distributed. The dimensional formula is thus FL^{-2} or $ML^{-1}T^{-2}$, and the conversion factor is $ml^{-1}t^{-2}$.
- 20. Intensity of Attraction, or "Force at a Point." This is the force of attraction per unit mass on a body placed at the point, and the dimensional formula is therefore FM⁻¹ or LT⁻², the same as acceleration. The conversion factors for acceleration therefore apply.
- 21. Absolute Force of a Centre of Attraction, or "Strength of a Centre."—This is the intensity of force at unit distance from the centre, and is therefore the force per unit mass at any point multiplied by the square of the distance from the centre. The dimensional formula thus becomes FL²M⁻¹ or L⁸T⁻². The conversion factor is therefore l^2t^{-2} .
- 22. Modulus of Elasticity. A modulus of elasticity is the ratio of stress intensity to percentage strain. The dimension of percentage strain is a length divided by a length, and is therefore unity. Hence, the dimensional formula of a modulus of elasticity is the same as that of stress intensity, or $ML^{-1}T^{-2}$, and the conversion factor is thus also $ml^{-1}l^{-2}$.

23. Work and Energy. — When the point of application of a force, acting on a body, moves in the direction of the force, work is done by the force, and the amount is measured by the product of the force and displacement numbers. The dimensional formula is therefore FL or ML²T⁻².

The work done by the force either produces a change in the velocity of the body or a change of shape or configuration of the body, or both. In the first case it produces a change of kinetic energy, in the second a change of potential energy. The dimension formulæ of energy and work, representing quantities of the same kind, are identical, and the conversion factor for both is ml^2t^{-2} .

- 24. Resilience. This is the work done per unit volume of a body in distorting it to the elastic limit or in producing rupture. The dimension formula is therefore $ML^2T^{-2}L^{-8}$ or $ML^{-1}T^{-2}$, and the conversion factor $ml^{-1}t^{-2}$.
- 25. Power, or Activity. Power or, as it is now very commonly called, activity is defined as the time rate of doing work, or if W represent work and P power $P = \frac{dw}{dt}$. The dimensional formula is therefore WT⁻¹ or ML²T⁻³, and the conversion factor ml^2t^{-3} , or for problems in gravitation units more conveniently flt^{-1} , where f stands for the force factor.
- Examples. (a) Find the number of gramme centimetres in one foot pound. Here the units of force are the attraction of the earth on the pound * and the gramme of matter, and the conversion factor is fl, where f is 453.59 and l is 30.48.

Hence the number is $453.59 \times 30.48 = 13825$.

- (b) Find the number of foot poundals in t = 000000 centimetre dynes. Here m = 1/453.59, l = 1/30.48, and t = 1; $ml^2t^{-2} = 1/453.59 \times 30.48^2$, and $10^6ml^2t^{-2} = 10^6/453.59 \times 30.48^2 = 2.373$.
- (c) If gravity produces an acceleration of 32.2 feet per second per second, how many watts are required to make one horse-power?

One horse-power is 550 foot pounds per second, or 550 \times 32.2 = 17710 foot poundals per second. One watt is 10⁷ ergs per second, that is, 10⁷ dyne centimetres per second. The conversion factor is ml^2t^{-8} , where m = 453.59, l = 30.48, and t = 1, and the result has to be divided by 10⁷, the number of dyne centimetres per second in the watt.

Hence,
$$17710 \text{ ml}^2 t^{-8} / 10^7 = 17710 \times 453.59 \times 30.48^2 / 10^7 = 746.3$$
.

(d) How many gramme centimetres per second correspond to 33000 foot pounds per minute?

The conversion factor suitable for this case is flt^{-1} , where f is 453.59, l is 30.48, and t is 60.

Hence, 33000 $lt^{-1} = 33000 \times 453.59 \times 30.48/60 = 7604000$ nearly.

* It is important to remember that in problems like that here given the term "pound" or "gramme" refers to force and not to mass.

HEAT UNITS.

1. If heat be measured in dynamical units its dimensions are the same as those of energy, namely ML^2T^{-2} . The most common measurements, however, are made in thermal units, that is, in terms of the amount of heat required to raise the temperature of unit mass of water one degree of temperature at some stated temperature. This method of measurement involves the unit of mass and some unit of temperature; and hence, if we denote temperature-numbers by Θ and their conversion factors by θ , the dimensional formula and conversion factor for quantity of heat will be $M\Theta$ and $m\theta$ respectively. The relative amount of heat compared with water as standard substance required to raise unit mass of different substances one degree in temperature is called their specific heat, and is a simple number.

Unit volume is sometimes used instead of unit mass in the measurement of heat, the units being then called thermometric units. The dimensional formula is in that case changed by the substitution of volume for mass, and becomes $L^{8}\Theta$, and hence the conversion factor is to be calculated from the formula $l^{8}\theta$.

For other physical quantities involving heat we have: -

- 2. Coefficient of Expansion. The coefficient of expansion of a substance is equal to the ratio of the change of length per unit length (linear), or change of volume per unit volume (voluminal) to the change of temperature. These ratios are simple numbers, and the change of temperature is inversely as the magnitude of the unit of temperature. Hence the dimensional and conversion-factor formulæ are Θ^{-1} and θ^{-1} .
- 3. Conductivity, or Specific Conductance.— This is the quantity of heat transmitted per unit of time per unit of surface per unit of temperature gradient. The equation for conductivity is therefore, with H as quantity of heat,

$$K = \frac{H}{\frac{\Theta}{L}L^2T}$$

and the dimensional formula $\frac{H}{\Theta LT} = \frac{M}{LT}$, which gives $ml^{-1}t^{-1}$ for conversion factor.

In thermometric units the formula becomes L^2T^{-1} , which properly represents diffusivity. In dynamical units H becomes ML^2T^{-2} , and the formula changes to $MLT^{-8}\Theta^{-1}$. The conversion factors obtained from these are l^2t^{-1} and $mlt^{-3}\theta^{-1}$ respectively.

- 4. Thermal Capacity. This is the product of the number for mass and the specific heat, and hence the dimensional formula and conversion factor are simply M and m.
- 5. Latent Heat. Latent heat is the ratio of the number representing the quantity of heat required to change the state of a body to the number representing the quantity of matter in the body. The dimensional formula is therefore $M\Theta/M$ or Θ , and hence the conversion factor is simply the ratio of the temperature units or θ . In dynamical units the factor is $\ell^2 t^{-2}$.*
- 6. Joule's Equivalent. Joule's dynamical equivalent is connected with quantity of heat by the equation

$$ML^2T^{-2} = JH$$
 or $JM\Theta$.

This gives for the dimensional formula of J the expression $L^2T^{-2}\Theta^{-1}$. The conversion factor is thus represented by $l^2t^{-2}\theta^{-1}$. When heat is measured in dynamical units J is a simple number.

7. Entropy. — The entropy of a body is directly proportional to the quantity of heat it contains and inversely proportional to its temperature. The dimensional formula is thus $M\Theta/\Theta$ or M, and the conversion factor is m. When heat is measured in dynamical units the factor is $ml^2t^{-2}\theta^{-1}$.

Examples. (a) Find the relation between the British thermal unit, the calorie, and the therm.

Neglecting the variation of the specific heat of water with temperature, or defining all the units for the same temperature of the standard substance, we have the following definitions. The *British thermal unit* is the quantity of heat required to raise the temperature of one pound of water 1° F. The *calorie* is the quantity of heat required to raise the temperature of one kilogramme of water 1° C. The *therm* is the quantity of heat required to raise the temperature of one gramme of water 1° C. Hence:—

- (1) To find the number of calories in one British thermal unit, we have m = .45399 and $\theta = \frac{5}{9}$; $m\theta = .45399 \times 5/9 = .25199$.
- (2) To find the number of therms in one calorie, m = 1000 and $\theta = 1$; $m\theta = 1000$.

It follows at once that the number of therms in one British thermal unit is $1000 \times .25199 = 251.99$.

(b) What is the relation between the foot grain second Fahrenheit-degree and the centimetre gramme second Centigrade-degree units of conductivity?

The number of the latter units in one of the former is given by the for-

* It will be noticed that when Θ is given the dimension formula L^2T^{-2} the formulæ in thermal and dynamical units are always identical. The thermometric units practically suppress mass.

mula $ml^{-1}t^{-1}\theta^{\circ}$, where m = .064799, l = 30.48, and t = 1, and is therefore = $.064799/30.48 = 2.126 \times 10^{-8}$.

(c) Find the relation between the units stated in (b) for emissivity.

In this case the conversion formula is $ml^{-2}t^{-1}$, where ml and t have the same value as before. Hence the number of the latter units in the former is $0.064799/30.48^2 = 6.975 \times 10^{-6}$.

(d) Find the number of centimetre gramme second units in the inch grain hour unit of emissivity.

Here the formula is $ml^{-2}t^{-1}$, where m = 0.064799, l = 2.54, and t = 3600. Therefore the required number is $0.064799/2.54^2 \times 3600 = 2.790 \times 10^{-6}$.

(e) If Joule's equivalent be 776 foot pounds per pound of water per degree Fahrenheit, what will be its value in gravitation units when the metre, the kilogramme, and the degree Centigrade are units?

The conversion factor in this case is $\frac{l^2t^{-2}\theta^{-1}}{lt^{-2}}$ or $l\theta^{-1}$, where l = .3048 and $\theta^{-1} = 1.8$; $\therefore 776 \times .3048 \times 1.8 = 425.7$.

(f) If Joule's equivalent be 24832 foot poundals when the degree Fahrenheit is unit of temperature, what will be its value when kilogramme metre second and degree-Centigrade units are used?

The conversion factor is $l^2t^{-2}\theta^{-1}$, where l = .3048, t = 1, and $\theta^{-1} = 1.8$; $\therefore 24832 \times l^2t^{-2}\theta^{-1} = 24832 \times .3048^2 \times 1.8 = 4152.5$.

In gravitation units this would give 4152.5/9.81 = 423.3.

ELECTRIC AND MAGNETIC UNITS.

There are two systems of these units, the electrostatic and the electromagnetic systems, which differ from each other because of the different fundamental suppositions on which they are based. In the electrostatic system the repulsive force between two quantities of static electricity is made the basis. This connects force, quantity of electricity, and length by the equation $f = a \frac{qq_1}{r^2}$, where f is force, q a

quantity depending on the units employed and on the nature of the medium, q and q_l quantities of electricity, and l the distance between q and q_l . The magnitude of the force f for any particular values of q, q_l and l depends on a property of the medium across which the force takes place called its inductive capacity. The inductive capacity of air has generally been assumed as unity, and the inductive capacity of other media expressed as a number representing the ratio of the inductive capacity of the medium to that of air. These numbers are known as the specific inductive capacities of the media. According to the ordinary assumption, then, of air as the standard medium, we obtain unit quantity of electricity when in the above equation $q = q_l$, and f, a, and l are each unity. A formal definition is given below.

In the electromagnetic system the repulsion between two magnetic poles or

quantities of magnetism is taken as the basis. In this system the quantities force, quantity of magnetism, and length are connected by an equation of the form

$$f = a \frac{mm_l}{l^2},$$

where m and m_l are in this case quantities of magnetism, and the other symbols have the same meaning as before. In this case it has been usual to assume the magnetic inductive capacity of air to be unity, and to express the magnetic inductive capacity of other media as a simple number representing the ratio of the inductive capacity of the medium to that of air. These numbers, by analogy with specific inductive capacity for electricity, might be called specific inductive capacities for magnetism. They are usually called permeabilities. (*Vide* Thomson, "Papers on Electrostatics and Magnetism," p. 484.) In this case, also, like that for electricity, the unit quantity of magnetism is obtained by making $m = m_l$, and f, g, and g each unity.

In both these cases the intrinsic inductive capacity of the standard medium is suppressed, and hence also that of all other media. Whether this be done or not, direct experiment has to be resorted to for the determination of the absolute values of the units and the relations of the units in the one system to those in the other. The character of this relation can be directly inferred from the dimensional formulæ of the different quantities, but these can give no information as to the relative absolute values of the units in the two systems. Prof. Rücker has suggested (Phil. Mag. vol. 27) the advisability of at least indicating the existence of the suppressed properties by putting symbols for them in the dimensional formulæ. This has the advantage of showing how the magnitudes of the different units would be affected by a change in the standard medium, or by making the standard medium different for the two systems. In accordance with this idea, the symbols K and P have been introduced into the formulæ given below to represent inductive capacity in the electrostatic and the electromagnetic systems respectively. In the conversion formulæ k and p are the ordinary specific inductive capacities and permeabilities of the media when air is taken as the standard, or generally those with reference to the first medium taken as standard. The ordinary formulæ may be obtained by putting K and P equal to unity.

ELECTROSTATIC UNITS.

r. Quantity of Electricity. — The unit quantity of electricity is defined as that quantity which if concentrated at a point and placed at unit distance from an equal and similarly concentrated quantity repels it, or is repelled by it, with unit force. The medium or dielectric is usually taken as air, and the other units in accordance with the centimetre gramme second system.

In this case we have the force of repulsion proportional directly to the square of the quantity of electricity and inversely to the square of the distance between the quantities and to the inductive capacity. The dimensional formula is therefore the same as that for $[\text{force} \times \text{length}^2 \times \text{inductive capacity}]^{\frac{1}{2}}$ or $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{\frac{1}{2}}$, and the conversion factor is $m^{\frac{1}{2}}l^{\frac{1}{2}}l^{-\frac{1}{2}}k^{\frac{1}{2}}$.

- 2. Electric Surface Density and Electric Displacement. The density of an electric distribution at any point on a surface is measured by the quantity per unit of area, and the electric displacement at any point in a dielectric is measured by the quantity displaced per unit of area. These quantities have therefore the same dimensional formula, namely, the ratio of the formulæ for quantity of electricity and for area or $M^{1}L^{-1}T^{-1}K^{1}$, and the conversion factor $m^{1}l^{-1}t^{-1}k^{1}$.
- 3. Electric Force at a Point, or Intensity of Electric Field. This is measured by the ratio of the magnitude of the force on a quantity of electricity at a point to the magnitude of the quantity of electricity. The dimensional formula is therefore the ratio of the formulæ for force and electric quantity, or

$$\frac{MLT^{-2}}{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}} = M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}K^{-\frac{1}{2}},$$

which gives the conversion factor $m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-1}k^{-\frac{1}{2}}$.

4. Electric Potential and Electromotive Force. — Change of potential is proportional to the work done per unit of electricity in producing the change. The dimensional formula is therefore the ratio of the formulæ for work and electric quantity, or

 $\frac{ML^{2}T^{-2}}{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}} = M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{1}{2}},$

which gives the conversion factor $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}k^{-\frac{1}{2}}$.

5. Capacity of a Conductor. — The capacity of an insulated conductor is proportional to the ratio of the numbers representing the quantity of electricity in a charge and the potential of the charge. The dimensional formula is thus the ratio of the two formulæ for electric quantity and potential, or

$$\frac{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}}{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{-\frac{1}{2}}} = LK,$$

which gives *lk* for conversion factor. When K is taken as unity, as in the ordinary units, the capacity of an insulated conductor is simply a length.

- 6. Specific Inductive Capacity. This is the ratio of the inductive capacity of the substance to that of a standard substance, and hence the dimensional formula is K/K or 1.*
- 7. Electric Current. Current is quantity flowing past a point per unit of time. The dimensional formula is thus the ratio of the formulæ for electric quantity and for time, or

$$\frac{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}}{T} = M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}K^{\frac{1}{2}},$$

and the conversion factor $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-2}k^{\frac{1}{2}}$.

* According to the ordinary definition referred to air as standard medium, the specific inductive capacity of a substance is K, or is identical in dimensions with what is here taken as inductive capacity. Hence in that case the conversion factor must be taken as I on the electrostatic and as \(\mathcal{F}^{-2}\ell^2 \) on the electromagnetic system.

8. Conductivity, or Specific * Conductance. — This, like the corresponding term for heat, is quantity per unit area per unit potential gradient per unit of time. The dimensional formula is therefore

$$\frac{M^{i}L^{i}T^{-1}K^{i}}{L^{2}\frac{M^{i}L^{i}T^{-1}K^{-i}}{L}} = T^{-1}K, \text{ or } \frac{\text{electric quantity}}{\text{area} \times \text{potential gradient} \times \text{time}}$$

The conversion factor is $t^{-1}k$.

- 9. Specific * Resistance. This is the reciprocal of conductivity as above defined, and hence the dimensional formula and conversion factor are respectively TK^{-1} and tk^{-1} .
- ro. Conductance. The conductance of any part of an electric circuit, not containing a source of electromotive force, is the ratio of the numbers representing the current flowing through it and the difference of potential between its ends. The dimensional formula is thus the ratio of the formulæ for current and potential, or

$$\frac{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}K^{\frac{1}{2}}}{M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{1}{2}}}\!=\!LT^{-1}K,$$

from which we get the conversion factor lt-1k.

11. Resistance.—This is the reciprocal of conductance, and therefore the dimensional formula and the conversion factor are respectively $L^{-1}TK^{-1}$ and $l^{-1}tk^{-1}$.

EXAMPLES OF CONVERSION IN ELECTROSTATIC UNITS.

- (a) Find the factor for converting quantity of electricity expressed in foot grain second units to the same expressed in c. g. s. units.
- By (1) the formula is $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}k^{\frac{1}{2}}$, in which in this case m = 0.0648, l = 30.48, t = 1, and k = 1; ... the factor is $0.0648^{\frac{1}{2}} \times 30.48^{\frac{1}{2}} = 4.2836$.
- (b) Find the factor required to convert electric potential from millimetre milligramme second units to c. g. s. units.
- By (4) the formula is $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}k^{-\frac{1}{2}}$, and in this case m = 0.001, l = 0.1, t = 1, and k = 1; \therefore the factor $= 0.001^{\frac{1}{2}} \times 0.1^{\frac{1}{2}} = 0.01$.
- (c) Find the factor required to convert from foot grain second and specific inductive capacity 6 units to c. g. s. units.
- By (5) the formula is lk, and in this case l=30.48 and k=6; ... the factor $=30.48 \times 6 = 182.88$.
- * The term "specific," as used here and in 9, refers conductance and resistance to that between the ends of a bar of unit section and unit length, and hence is different from the same term in specific heat, specific inductivity, capacity, etc., which refer to a standard substance.

ELECTROMAGNETIC UNITS.

As stated above, these units bear the same relation to unit quantity of magnetism that the electric units do to quantity of electricity. Thus, when inductive capacity is suppressed, the dimensional formula for magnetic quantity on this system is the same as that for electric quantity on the electrostatic system. All quantities in this system which only differ from corresponding quantities defined above by the substitution of magnetic for electric quantity may have their dimensional formulæ derived from those of the corresponding quantity by substituting P for K.

- r. Magnetic Pole, or Quantity of Magnetism. Two unit quantities of magnetism concentrated at points unit distance apart repel each other with unit force. The dimensional formula is thus the same as for [force \times length² \times inductive capacity] or M³L³T⁻¹P³, and the conversion factor is $m^3l^3t^{-1}P^3$.
- 2. Density of Surface Distribution of Magnetism. This is measured by quantity of magnetism per unit area, and the dimension formula is therefore the ratio of the expressions for magnetic quantity and for area, or $M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{\frac{1}{2}}$, which gives the conversion factor $m^{\frac{1}{2}}l^{-\frac{1}{2}}l^{\frac{1}{2}}$.
- 3. Magnetic Force at a Point, or Intensity of Magnetic Field. The number for this is the ratio of the numbers representing the magnitudes of the force on a magnetic pole placed at the point and the magnitude of the magnetic pole.

The dimensional formula is therefore the ratio of the expressions for force and magnetic quantity, or

 $\frac{MLT^{-2}}{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}P^{\frac{1}{2}}} = M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{-\frac{1}{2}},$

and the conversion factor $m^{\frac{1}{2}}t^{-\frac{1}{2}}t^{-1}p^{-\frac{1}{2}}$.

4. Magnetic Potential. — The magnetic potential at a point is measured by the work which is required to bring unit quantity of positive magnetism from zero potential to the point. The dimensional formula is thus the ratio of the formula for work and magnetic quantity, or

$$\frac{ML^{2}T^{-2}}{M^{i}L^{i}T^{-1}P^{i}} = M^{i}L^{i}T^{-1}P^{-i},$$

which gives the conversion factor $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-\frac{1}{2}}p^{-\frac{1}{2}}$.

- 5. Magnetic Moment. This is the product of the numbers for pole strength and length of a magnet. The dimensional formula is therefore the product of the formulæ for magnetic quantity and length, or $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{\frac{1}{2}}$, and the conversion factor $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}p^{\frac{1}{2}}$.
- 6. Intensity of Magnetization. The intensity of magnetization of any portion of a magnetized body is the ratio of the numbers representing the magni-

tude of the magnetic moment of that portion and its volume. The dimensional formula is therefore the ratio of the formulæ for magnetic moment and volume, or

$$\frac{M^{\frac{1}{2}}L^{\frac{6}{3}}T^{-1}P^{\frac{1}{2}}}{L^{3}} = M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{\frac{1}{2}}.$$

The conversion factor is therefore $m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-1}p^{\frac{1}{2}}$.

- 7. Magnetic Permeability,* or Specific Magnetic Inductive Capacity.

 This is the analogue in magnetism to specific inductive capacity in electricity. It is the ratio of the magnetic induction in the substance to the magnetic induction in the field which produces the magnetization, and therefore its dimensional formula and conversion factor are unity.
- 8. Magnetic Susceptibility. This is the ratio of the numbers which represent the values of the intensity of magnetization produced and the intensity of the magnetic field producing it. The dimensional formula is therefore the ratio of the formulæ for intensity of magnetization and magnetic field or

$$\frac{M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{\frac{1}{2}}}{M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{-\frac{1}{2}}} \text{ or } P.$$

The conversion factor is therefore p, and both the dimensional formula and conversion factor are unity in the ordinary system.

- 9. Current Strength. A current of strength c flowing round a circle of radius r produces a magnetic field at the centre of intensity $2\pi c/r$. The dimensional formula is therefore the product of the formulæ for magnetic field intensity and length, or $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-\frac{1}{2}}$, which gives the conversion factor $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-\frac{1}{2}}$.
- ro. Current Density, or Strength of Current at a Point. This is the ratio of the numbers for current strength and area. The dimensional formula and the conversion factor are therefore $M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{-\frac{1}{2}}$ and $m^{\frac{1}{2}}l^{-\frac{1}{2}}l^{-\frac{1}{2}}$.
- rent and time. The dimensional formula is therefore $M^{i}L^{i}T^{-1}P^{-i} \times T = M^{i}L^{i}P^{-i}$, and the conversion factor $m^{i}l^{i}p^{-i}$.
- 12. Electric Potential, or Electromotive Force. As in the electrostatic system, this is the ratio of the numbers for work and quantity of electricity. The dimensional formula is therefore

$$\frac{ML^{2}T^{-2}}{M^{\frac{1}{2}}L^{\frac{1}{2}}P^{-\frac{1}{2}}} = M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-2}P^{\frac{1}{2}},$$

and the conversion factor $m^{\frac{1}{2}}l^{\frac{3}{2}}t^{-2}p^{\frac{1}{2}}$.

* Permeability, as ordinarily taken with the standard medium as unity, has the same dimension formula and conversion factor as that which is here taken as magnetic inductive capacity. Hence for ordinary transformations the conversion factor should be taken as 1 in the electromagnetic and $I^{-2}\ell^{2}$ in the electrostatic systems.

13. Electrostatic Capacity. — This is the ratio of the numbers for quantity of electricity and difference of potential. The dimensional formula is therefore

$$\frac{M^{\frac{1}{2}}L^{\frac{1}{2}}P^{-\frac{1}{2}}}{M^{\frac{1}{2}}L^{\frac{2}{2}}T^{-2}P^{\frac{1}{2}}} = L^{-1}T^{2}P^{-1},$$

and the conversion factor $t^{-1}t^2p^{-1}$.

14. Resistance of a Conductor. — The resistance of a conductor or electrode is the ratio of the numbers for difference of potential between its ends and the constant current it is capable of producing. The dimensional formula is therefore the ratio of those for potential and current or

$$\frac{M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-2}P^{\frac{1}{2}}}{M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{-\frac{1}{2}}} = LT^{-1}P.$$

The conversion factor thus becomes $lt^{-1}p$, and in the ordinary system resistance has the same conversion factor as velocity.

- 15. Conductance. This is the reciprocal of resistance, and hence the dimensional formula and conversion factor are respectively $L^{-1}TP^{-1}$ and $l^{-1}tp^{-1}$.
- 16. Conductivity, or Specific Conductance. This is quantity of electricity transmitted per unit of area per unit of potential gradient per unit of time. The dimensional formula is therefore derived from those of the quantities mentioned as follows:—

$$\frac{\frac{M^{\frac{1}{2}}L^{\frac{3}{2}}P^{-\frac{1}{2}}}{L^{2}\frac{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}P^{\frac{1}{2}}}}{L}=L^{-2}TP^{-1}.$$

The conversion factor is therefore $l^{-2}tp^{-1}$.

- 17. Specific Resistance. This is the reciprocal of conductivity as defined in 16, and hence the dimensional formula and conversion factor are respectively $L^2T^{-1}P$ and $l^2t^{-1}p$.
- 18. Coefficient of Self-Induction, or Inductance, or Electro-kinetic Inertia. These are for any circuit the electromotive force produced in it by unit rate of variation of the current through it. The dimensional formula is therefore the product of the formulæ for electromotive force and time divided by that for current or

$$\frac{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}P^{\frac{1}{2}}}{M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{-\frac{1}{2}}}\times T=LP.$$

The conversion factor is therefore ψ , and in the ordinary system is the same as that for length.

19. Coefficient of Mutual Induction. — The mutual induction of two circuits is the electromotive force produced in one per unit rate of variation of the current in the other. The dimensional formula and the conversion factor are therefore the same as those for self-induction.

- 20. Electro-kinetic Momentum. The number for this is the product of the numbers for current and for electro-kinetic inertia. The dimensional formula is therefore the product of the formulæ for these quantities, or $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{-\frac{1}{2}} \times LP$ = $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{\frac{1}{2}}$, and the conversion factor is $M^{\frac{1}{2}}l^{\frac{1}{2}}T^{-\frac{1}{2}}P^{\frac{1}{2}}$.
- 21. Electromotive Force at a Point.—The number for this quantity is the ratio of the numbers for electric potential or electromotive force as given in 12, and for length. The dimensional formula is therefore $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-2}P^{\frac{1}{2}}$, and the conversion factor $M^{\frac{1}{2}}l^{\frac{1}{2}}t^{-2}P^{\frac{1}{2}}$.
- 22. Vector Potential. This is time integral of electromotive force at a point, or the electro-kinetic momentum at a point. The dimensional formula may therefore be derived from 21 by multiplying by T, or from 20 by dividing by L. It is therefore $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{\frac{1}{2}}$, and the conversion factor $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}p^{\frac{1}{2}}$.
- 23. Thermoelectric Height. This is measured by the ratio of the numbers for electromotive force and for temperature. The dimensional formula is therefore the ratio of the formulæ for these two quantities, or $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-2}P^{\frac{1}{2}}\Theta^{-1}$, and the conversion factor $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-2}p^{\frac{1}{2}}\theta^{-1}$.
- 24. Specific Heat of Electricity. This quantity is measured in the same way as 23, and hence has the same formulæ.
- 25. Coefficient of Peltier Effect. This is measured by the ratio of the numbers for quantity of heat and for quantity of electricity. The dimensional formula is therefore

$$\frac{M\Theta}{M^{\frac{1}{2}}L^{\frac{1}{2}}P^{-\frac{1}{2}}}=M^{\frac{1}{2}}L^{-\frac{1}{2}}P^{\frac{1}{2}}\Theta,$$

and the conversion factor $m^{\frac{1}{2}}l^{-\frac{1}{2}}p^{\frac{1}{2}}\theta$.

EXAMPLES OF CONVERSION IN ELECTROMAGNETIC UNITS.

- (a) Find the factor required to convert intensity of magnetic field from foot grain minute units to c. g. s. units.
- By (3) the formula is $m^{\frac{1}{2}} l^{-1} p^{-\frac{1}{2}}$, and in this case m = 0.0648, l = 30.48, t = 60, and p = 1; : the factors $= 0.0648^{\frac{1}{2}} \times 30.48^{-\frac{1}{2}} \times 60^{-1} = 0.00076847$.

Similarly to convert from foot grain second units to c. g. s. units the factor is $0.0648^{1} \times 30.48^{-1} = 0.046108$.

- (b) How many c. g. s. units of magnetic moment make one foot grain second unit of the same quantity?
- By (5) the formula is $m^{\frac{1}{2}}l^{\frac{d}{2}}l^{-\frac{d}{2}}p^{\frac{d}{2}}$, and the values for this problem are m = 0.0648, l = 30.48, t = 1, and p = 1; \therefore the number = $0.0648^{\frac{d}{2}} \times 30.48^{\frac{d}{2}} = 1305.6$.
- (c) If the intensity of magnetization of a steel bar be 700 in c. g. s. units, what will it be in millimetre milligramme second units?

- By (6) the formula is $m^{\dagger}l^{\dagger}t^{-1}p^{\dagger}$, and in this case m = 1000, l = 10, t = 1, and p = 1; ... the intensity $= 700 \times 1000^{\dagger} \times 10^{\dagger} = 70000$.
- (d) Find the factor required to convert current strength from c. g. s. units to earth quadrant 10⁻¹¹ gramme and second units.
- By (9) the formula is $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-\frac{1}{2}}p^{-\frac{1}{2}}$, and the values of these quantities are here $m=10^{11}$, $l=10^{-9}$, t=1, and p=1; ... the factor $=10^{\frac{11}{2}}\times 10^{-\frac{9}{2}}=10$.
- (e) Find the factor required to convert resistance expressed in c. g. s. units into the same expressed in earth-quadrant 10⁻¹¹ grammes and second units.
- By (14) the formula is $lt^{-1}p$, and for this case $l = 10^{-9}$, t = 1, and p = 1; \therefore the factor = 10^{-9} .
- (f) Find the factor required to convert electromotive force from earth-quadrant 10⁻¹¹ gramme and second units to c. g. s. units.
- By (12) the formula is $m^{l}l^{l}t^{-2}p^{l}$, and for this case $m = 10^{-11}$, $l = 10^{9}$, t = 1, and p = 1; ... the factor = 10^{8} .

PRACTICAL UNITS.

In practical electrical measurements the units adopted are either multiples or submultiples of the units founded on the centimetre, the gramme, and the second as fundamental units, and air is taken as the standard medium, for which K and P are assumed unity. The following, quoted from the report to the Honorable the Secretary of State, under date of November 6th, 1893, by the delegates representing the United States, gives the ordinary units with their names and values as defined by the International Congress at Chicago in 1893:—

"Resolved, That the several governments represented by the delegates of this International Congress of Electricians be, and they are hereby, recommended to formally adopt as legal units of electrical measure the following: As a unit of resistance, the *international ohm*, which is based upon the ohm equal to 109 units of resistance of the C. G. S. system of electro-magnetic units, and is represented by the resistance offered to an unvarying electric current by a column of mercury at the temperature of melting ice 14.4521 grammes in mass, of a constant cross-sectional area and of the length of 106.3 centimetres.

"As a unit of current, the *international ampère*, which is one tenth of the unit of current of the C. G. S. system of electro-magnetic units, and which is represented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, and in accordance with accompanying specifications,* deposits silver at the rate of o.ooiii8 of a gramme per second.

* "In the following specification the term 'silver voltameter' means the arrangement of apparatus by means of which an electric current is passed through a solution of nitrate of silver in water. The silver voltameter measures the total electrical quantity which has passed during the time of the experiment, and by noting this time the time average of the current, or, if the current has been kept constant, the current itself can be deduced.

"In employing the silver voltameter to measure currents of about one ampère, the following arrangements should be adopted:—

"As a unit of electromotive force, the *international volt*, which is the electromotive force that, steadily applied to a conductor whose resistance is one international ohm, will produce a current of one international ampère, and which is represented sufficiently well for practical use by $\frac{1000}{430}$ of the electromotive force between the poles or electrodes of the voltaic cell known as Clark's cell, at a temperature of 15° C., and prepared in the manner described in the accompanying specification.*

"As a unit of quantity, the *international coulomb*, which is the quantity of electricity transferred by a current of one international ampère in one second.

"As a unit of capacity, the *international farad*, which is the capacity of a condenser charged to a potential of one international volt by one international coulomb of electricity.†

"As a unit of work, the *joule*, which is equal to 10⁷ units of work in the c. g. s. system, and which is represented sufficiently well for practical use by the energy expended in one second by an international ampère in an international ohm.

"As a unit of power, the watt, which is equal to 107 units of power in the c. g. s. system, and which is represented sufficiently well for practical use by the work done at the rate of one joule per second.

"As the unit of induction, the *henry*, which is the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampère per second.

"The Chamber also voted that it was not wise to adopt or recommend a standard of light at the present time."

By an Act of Congress approved July 12th, 1894, the units recommended by the Chicago Congress were adopted in this country with only some unimportant verbal changes in the definitions.

By an Order in Council of date August 23d, 1894, the British Board of Trade adopted the ohm, the ampere, and the volt, substantially as recommended by the Chicago Congress. The other units were not legalized in Great Britain. They are, however, in general use in that country and all over the world.

"The kathode on which the silver is to be deposited should take the form of a platinum bowl not less than 10 centimetres in diameter and from 4 to 5 centimetres in depth.

"The anode should be a plate of pure silver some 30 square centimetres in area and 2 or 3 millimetres in thickness.

"This is supported horizontally in the liquid near the top of the solution by a platinum wire passed through holes in the plate at opposite corners. To prevent the disintegrated silver which is formed on the anode from falling on to the kathode, the anode should be wrapped round with pure filter paper, secured at the back with sealing wax.

"The liquid should consist of a neutral solution of pure silver nitrate, containing about 15 parts by weight of the nitrate to 85 parts of water.

"The resistance of the voltameter changes somewhat as the current passes. To prevent these changes having too great an effect on the current, some resistance besides that of the voltameter should be inserted in the circuit. The total metallic resistance of the circuit should not be less than to ohms."

* A committee, consisting of Messrs. Helmholtz, Ayrton, and Carhart, was appointed to prepare specifications for the Clark's cell, but no report was made, on account of Helmholtz's death.

† The one millionth part of the farad is more commonly used in practical measurements, and is called the microfarad.

PHYSICAL TABLES

FUNDAMENTAL AND DERIVED UNITS.

To change a quantity from one system of units to another: substitute in the corresponding conversion factor from the following table the ratio of the magnitudes of the old units to the new and multiply the old quantity by the resulting number. For example: to reduce velocity in miles per hour to feet per second, the conversion factor is lt^{-1} ; l=5280/I, t=3600/I, therefore the factor=5280/3600=I.467.

(a) FUNDAMENTAL UNITS.

Name of Unit.	Symbol.	Conversion Factor.
Length. Mass. Time. Temperature. Electric Inductive Capacity. Magnetic Inductive Capacity.	L M T @ K P	l m t t t k k

(b) DERIVED UNITS.

I. Geometric and Dynamic Units.

Name of Unit.	Conversion Factor.
Area. Volume. Angle. Solid Angle. Curvature. Tortuosity. Specific curvature of a surface. Angular velocity. Angular acceleration. Linear velocity. Linear acceleration. Density. Moment of inertia. Intensity of attraction, or "force at a point." Absolute force of a centre of attraction, or "strength of a centre." Momentum. Moment of momentum, or angular momentum. Force. Moment of a couple, or torque. Intensity of stress. Modulus of elasticity. Work and energy. Resilience.	Conversion Factor.
Power or activity.	

II. Heat Units.

Name of Unit.	Conversion Factor.
Quantity of heat (thermal units). " " (thermometric units). " " (dynamical units). Coefficient of thermal expansion. Conductivity (thermal units). " (thermometric units), or diffusivity. " (dynamical units). Thermal capacity. Latent heat (thermal units). " " (dynamical units).	$m \theta$ $l^3 \theta$ $m l^2 t^{-2}$ θ^{-1} $m l^{-1} t^{-1}$ $l^2 t^{-1}$ $m l t^{-8} \theta^{-1}$ $m l t^{-2} t^{-2}$ $l^2 t^{-2} \theta$ $m l^2 t^{-2} \theta$

III. Magnetic and Electric Units.

Name of Unit.	Conversion factor for electrostatic system.	Conversion factor for electromag- netic system.
Magnetic pole, or quantity of magnetism. Density of surface distribution of magnetism. Intensity of magnetic field. Magnetic potential. Magnetic moment. Intensity of magnetisation. Magnetic permeability. Magnetic susceptibility and magnetic inductive capacity. Quantity of electricity. Electric surface density and electric displacement. Intensity of electric field. Electric potential and e. m. f. Capacity of a condenser. Inductive capacity. Specific inductive capacity. Electric current.	mi li k-i mi li t-2 ki mi li t-2 ki mi li t-2 ki mi li k-i mi li k-i mi li k-i 1 1-2 t2 k-1 mi li t-1 ki mi l-i t-1 k-i mi li t-1 k-i l k k 1 mi li t-2 ki	m ¹ l ³ t ⁻¹ p ³ m ¹ l ⁻¹ t ⁻¹ p ³ m ¹ l ⁻¹ t ⁻¹ p ⁻¹ m ¹ l ³ t ⁻¹ p ⁻¹ m ¹ l ³ t ⁻¹ p ³ m ¹ l ³ t ⁻¹ p ³ 1 p m ¹ l ³ p ⁻¹ m ¹ l ³ p ⁻¹ m ¹ l ³ t ⁻² p ³ m ¹ l ³ t ⁻² p ³ l ⁻¹ l ² p ⁻¹ l ⁻² t ² p ⁻¹ l ⁻² t ² p ⁻¹ m ¹ l ³ t ⁻¹ p ⁻³

TABLE 1.

FUNDAMENTAL AND DERIVED UNITS.

III.	Magnetic	and	Electric	Units.
------	----------	-----	----------	--------

Name of Unit.	Conversion factor for electrostatic system.	Conversion factor for electromag- netic system.
Conductivity. Specific resistance. Conductance. Resistance. Coefficient of self induction and coefficient of mutual induction. Electrokinetic momentum. Electromotive force at a point. Vector potential. Thermoelectric height and specific heat of electricity. Coefficient of Peltier effect.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	l-2 t p-1 l ² t-1 p l-1 t p-1 l t-1 p l p l p l p l p l p l p l p l p l p l

TABLES FOR CONVERTING U. S. WEICHTS AND MEASURES.*

(1) CUSTOMARY TO METRIC.

			(-)	COST CIVIAL		O MEIN			
		LINE	AR.			CAPACITY.			
	Inches to millimetres.	Feet to metres.	Yards to metres.	Miles to kilometres.		Fluid drams to millilitres or cubic centimetres.	Fluid ounces to millilitres.	Liquid quarts to litres.	Gallons to
1 2 3 4 5 6 7 8	25.4001 50.8001 76.2002 101.6002 127.0003 152.4003 177.8004 203.2004 228.6005	0.304801 0.609601 0.914402 1.219202 1.524003 1.828804 2.133604 2.438405 2.743205	0.914402 1.828804 2.743205 3.657607 4.572009 5.486411 6.400813 7.315215 8.229616	1.60935 3.21869 4.82804 6.43739 8.04674 9.65608 11.26543 12.87478 14.48412	1 2 3 4 5 6 7 8	3-70 7-39 11-09 14-79 18-48 22-18 25-88 29-57 33-27	29.57 59.15 88.72 118.29 147.87 177.44 207.02 236.59 266.16	0.94636 1.89272 2.83908 3.78543 4.73179 5.67815 6.62451 7.57087 8.51723	3.78543 7.57087 11.35630 15.14174 18.92717 22.71261 26.49804 30.28348 34.06891
9		SQUA		1444415	WEIGHT.				34.00091
	Square inches to square centimetres.	Square feet to square decimetres.	Square yards to square metres.	Acres to hectares.		Grains to milli- grammes.	Avoirdu- pois ounces to grammes.	Avoirdu- pois pounds to kilo- grammes.	Troy ounces to grammes.
1 2 3 4 .5	6.452 12.903 19.355 25.807 32.258	9.290 18.581 27.871 37.161 46.452	0.836 1.672 2.508 3.345 4.181	0.4047 0.8094 1.2141 1.6187 2.0234	1 2 3 4 5	64.7989 129.5978 194.3968 259.1957 323.9946	28.3495 56.6991 85.0486 113.3981 141.7476	0.45359 0.90718 1.36078 1.81437 2.26796	31.10348 62.20696 93.31044 124.41392 155.51740
6 7 8 9	38.710 45.161 51.613 58.065	55.742 65.032 74.323 83.613	5.017 5.853 6.689 7.525	2.4281 2.8328 3.2375 3.6422	6 7 8 9	388.7935 453.5924 518.3913 583.1903	170.0972 198.4467 226.7962 255.1457	2.72155 3.17515 3.62874 4.08233	186.62088 217.72437 248.82785 279.93133
	CUBIC.								
	Cubic inches to cubic centimetres.	Cubic feet to cubic metres.	Cubic yards to cubic metres.	Bushels to hectolitres.		Gunter's of sq. statute	e mile = 2	20. 11 68 259.000 1.829	metres. hectares. metres.
1 2 3 4 5	16.387 32.774 49.161 65.549 81.936	0.02832 0.05663 0.08495 0.11327 0.14159	0.765 1.529 2.294 3.058 3.823	0.35239 0.70479 1.05718 1.40957 1.76196		r nautical n r foot r avoir, pou 432.35639 g	= . and = 4	353.25 0.304801 453.5924277 1.000 kil	
6 7 8 9	98.323 114.710 131.097 147.484	0.16990 0.19822 0.22654 0.25485	4.5 ⁸ 7 5.35 ² 6.116 6.881	2.11436 2.46675 2.81914 3.17154					

According to an executive order dated April 15, 1893, the United States yard is defined as 3600/3937 metre, and the avoirdupois pound as 1/2.20462 kilogramme.

The only authorized material standard of customary weight is the Troy pound of the Mint. It is of brass of unknown density, and therefore not suitable for a standard of mass. It was derived from the British standard Troy pound of 17,88 by direct comparison.

The British pushel = 36.3477 litres.

The British bushel = 36.3477 litres.

The length of the nautical mile given above and adopted by the U. S. Coast and Geodetic Survey many years ago, is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spheroid of 1866).

^{*} Quoted from sheets issued by the United States Bureau of Standards.

TABLE 2.

TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES.

(2) METRIC TO CUSTOMARY.

_										
			CAPACITY.							
	Metres to inches,	Metres to feet.	Metres to yards.	Kilometres to miles.		Millilitres or cubic centi- metres to fluid drams.	Centi- litres to fluid ounces.	Litre to quart	litres	litres to
1 2 3 4 5	39.3700 78.7400 118.1100 157.4800 196.8500	3.28083 6.56167 9.84250 13.12333 16.40417	1.093611 2.187222 3.280833 4.374444 5.468056	0.62137 1.24274 1.86411 2.48548 3.10685	1 2 3 4 5	0.27 0.54 0.81 1.08 1.35	0.338 0.676 1.014 1.353 1.691	1.056 2.113 3.170 4.226 5.283	5.28 7.92 7 10.56	34 5.6755 51 8.5132 68 11.3510
6 7 8 9	236.2200 275.5900 314.9600 354.3300	19.68500 22.96583 26.24667 29.52750	6.561667 7.655278 8.748889 9.842500	3.72822 4.34959 4.97096 5.59233	6 7 8 9	1.62 1.89 2.16 2.43	2.029 2.367 2.705 3.043	6.340 7.396 8.453 9.510	8 18.49 35 21.13	19 19.8642 36 22.7019
	SQUARE.					WEIGHT.				
	Square centimetres to square inches.	Square metres to square feet.	Square metres to square yards.	Hectares to acres.		Milli- grammes to grains.	Kild gramm to grain	nes į	Hecto- grammes to ounces voirdupois	Kilo- grammes to pounds avoirdupois.
1 2 3 4 5	0.1550 0.3100 0.4650 0.6200 0.7750	10.764 21.528 32.292 43.055 53.819	1.196 2.392 3.588 4.784 5.980	2.471 4.942 7.413 9.884 12.355	I 0.01543 15432.36 3.5274 2 0.03086 30864.71 7.0548 3 0.04630 46297.07 10.5822 4 0.06173 61729.43 14.1096 5 0.07716 77161.78 17.6370		2.20462 4.40924 6.61387 8.81849 11.02311			
6 7 8 9	0.9300 1.0850 1.2400 1.3950	64.583 75.347 86.111 96.875	7.176 8.372 9.568 10.764	14.826 17.297 19.768 22.239	6 0.09259 92594.14 21.1644 7 0.10803 108026.49 24.6918 8 0.12346 123458.85 28.2192		13.22773 15.43236 17.63698 19.84160			
	CUBIC.						w	EIGH'	т.	
	Cubic centimetres to cubic inches.	Cubic decimetres to cubic inches.	Cubic metres to cubic feet.	Cubic metres to cubic yards.	Quintals to tonnes to pounds to ou		Kilogrammes to ounces Troy.			
1 2 3 4 5	0.0610 0.1220 0.1831 0.2441 0.3051	61.023 122.047 183.070 244.094 305.117	35.314 70.629 105.943 141.258 176.572	1.308 2.616 3.924 5.232 6.540	6 2 440.92 4409.2 4 3 661.39 6613.9 2 4 881.85 8818.5		32.1507 64.3015 96.4522 128.6030 160.7537			
6 7 8 9	0.3661 0.4272 0.4882 0.5492	366.140 427.164 488.187 549.210	211.887 247.201 282.516 317.830	7.848 9.156 10.464 11.771	6 7 8 9	154 176	2.77 3.24 3.70 4.16	154	227.7 132.4 537.0 341.6	192.9045 225.0552 257.2059 289.3567

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Committee, two ingots were cast of pure platinum-iridium in the proportion of 9 parts of the former to 1 of the latter metal. From one of these a certain number of kilogrammes were prepared, from the other a definite number of metre bars. These standards of weight and length were intercompared, without preference, and certain ones were selected as International prototype standards. The others were distributed by lot, in September, 1889, to the different governments, and are called National prototype standards. Those apportioned to the United States were received in 1890, and are kept at the Bureau of Standards in Washington, D. C.

The metric system was legalized in the United States in 1866.

The International Standard Metre is derived from the Mètre des Archives, and its length is defined by the distance between two lines at 0° Centigrade, on a platinum-iridium bar deposited at the International Bureau of Weights and Measures.

distance between two mes at o' Centigrade, on a plantinum-indian our deposited at the same place, and its weight and Measures.

The International Standard Kilogramme is a mass of platinum-iridium deposited at the same place, and its weight in vacuo is the same as that of the Kilogramme des Archives.

The littre is equal to a cubic decimetre, and it is measured by the quantity of distilled water which, at its maximum density, will counterpoise the standard kilogramme in a vacuum, the volume of such a quantity of water being, as nearly as has been ascertained, equal to a cubic decimetre.

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS **AND MEASURES.***

(1) METRIC TO IMPERIAL.

LINEAR MEASURE.

millimetre (mm.)	} =	0.03937	in.
I centimetre (.o. m.)) ´ ==	0.39370	46
I decimetre (.I m.)	_	3.93701	44
I METRE (m.)	.={	39.370113 3.280843 1.093614	ft.
i dekametre }	.=	10.93614	"
I hectometre (100 m.)	.= 1	109.361425	**
I kilometre (1,000 m.) (· ·	.=	0.62137 1	mile.
1 myriametre (10,000 m.) }	.=	6.21372	miles.
I micron	. =	O.OOT mr	n.

SQUARE MEASURE.

```
I sq. centimetre
                               0.1550 sq. in.
1 sq. decimetre
                              15.500 sq. in.
   (100 sq. centm.)
I sq. metre or centi-
                              10.7639 sq. ft.
                               1.1960 sq. yds.
   are (100 sq. dcm.) (
I ARE (100 sq. m.)
                            119.60 sq. yds.
1 hectare (100 ares
                               2.47 II acres.
   or 10,000 sq. m.)
```

CUBIC MEASURE.

```
r cub. centimetre
   (c.c.) (1,000 cubic \ = 0.0610 cub. in.
   millimetres)
I cub. decimetre
   (c.d.) (1,000 cubic = 61.024
   centimetres)
I CUB. METRE
                        = \frac{35.3148 \text{ cub. ft.}}{35.3148 \text{ cub. ft.}}
   or stere
                                 1.307954 cub. yds.
   (1,000 c.d.)
```

MEASURE OF CAPACITY.

```
I millilitre (ml.) (.001 )
                             0.0610 cub. in.
   litre)
                              0.61024 "
I centilitre (.o. litre)
                              0.070 gill.
I decilitre (.I litre) .
                              0.176 pint.
I LITRE (1,000 cub.
   centimetres or I
                              1.75980 pints.
   cub. decimetre)
1 dekalitre (10 litres)
                        . =
                              2.200 gallons.
I hectolitre (100 " )
                       . =
                              2.75 bushels.
1 kilolitre (1,000 " )
                              3.437 quarters.
```

APOTHECARIES' MEASURE.

```
r cubic centimetre (1 gramme w't) = 0.03520 fluid ounce.
0.28157 fluid drachm.
15.43236 grains weight.
                                     0.01693 minim.
r cub. millimetre ==
```

AVOIRDUPOIS WEIGHT.

```
ı milligramme (mgr.) . . = 0.01543 grain.
I centigramme (.01 gram.) = 0.15432
1 decigramme (.1
                      66
                         ) = 1.54324  grains.
I GRAMME
                          . = 15.43236
I dekagramme (10 gram.) = 5.64383 drams.
I hectogramme (100 ") = 3.52739 oz.
                               (2.2046223 lbs.
I KILOGRAMME (1,000") = \{15432.3564
I myriagramme (10 kilog.) = 22.04622 lbs.
I quintal
               (100 "
                         ) = 1.96841 \text{ cwt.}
I millier or tonne
                          = 0.9842 \text{ ton.}
   (1,000 kilog.)
```

TROY WEIGHT.

```
0.03215 oz. Troy.
                   0.64301 pennyweight.
I GRAMME.
                  (15.43236 grains.
```

APOTHECARIES' WEIGHT.

0.25721 drachm. 0.77162 scruple. I GRAMME (15.43236 grains.

Note.—The Metre is the length, at the temperature of o° C., of the platinum-iridium bar deposited at the International Bureau of Weights and Measures at Sevres, near Paris, France.

The present legal equivalent of the metre is 39.370113 inches, as above stated.

The Kilogramme is the mass of a platinum-iridium weight deposited at the same place.

The LITRE contains one kilogramme weight of distilled water at its maximum density (4° C.), the barometer being

^{*}In accordance with the schedule adopted under the Weights and Measures (metric system) Act, 1897.

TABLE 3.

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES.

(2) METRIC TO IMPERIAL.

						IMP ENIAL			
	. LII	NEAR MEA	SURE.			ME.	ASURE OF	CAPACITY	
,	Millimetres to inches.	Metres to feet.	Metres to yards.	Kilo- metres to miles,		Litres to pints.	Dekalitres to gallons.	Hectolitres to bushels.	Kilolitres to quarters.
1 2 3 4 5	0.03937011 0.07874023 0.11811034 0.15748045 0.19685056	3.28084 6.56169 9.84253 13.12337 16.40421	1.09361 2.18723 3.28084 4.37446 5.46807	0.62137 1.24274 1.86412 2.48549 3.10686	1 2 3 4 5	1.75980 3.51961 5.27941 7.03921 8.79902	2.19975 4.39951 6.59926 8.79962 10.99877	2.74969 5.49938 8.24908 10.99877 13.74846	3.43712 6.87423 10.31135 13.74846 17.18558
6 7 8 9	0.23622068 0.27559079 0.31496090 0.35433102	19.68506 22.96590 26.24674 29.52758	6.56169 7.65530 8.74891 9.84253	3.72823 4.34960 4.97097 5.59235	6 7 8 9	10.55882 12.31862 14.07842 15.83823	13.19852 15.39828 17.59803 19.79778	16.49815 19.24785 21.99754 24.74723	20.62269 24.05981 27.49692 30.93404
	SQI	UARE MEA	SURE.		WEIGHT (Avoirdupois).				
	Square centimetres to square inches.	Square metres to square feet.	Square metres to square yards.	Hectares to acres.		Milli- grammes to grains.	Kilogrammes to grains.	Kilo grammes to pounds,	Quintals to hundred- weights.
1 2 3 4 5	0.15500 0.31000 0.46500 0.62000 0.77500	10.76393 21.52786 32.29179 43.05572 53.81965	1.19599 2.39198 3.58798 4.78397 5.97996	2.4711 4.9421 7.4132 9.8842 12.3553	1 2 3 4 5	0.01543 0.03086 0.04630 0.06173 0.07716	15432.356 30864.713 46297.069 61729.426 77161.782	2.20462 4.40924 6.61387 8.81849 11.02311	1.96841 3.93683 5.90524 7.87365 9.84206
6 78 9	0.93000 1.08500 1.24000 1.39501	64.58357 75.34750 86.11143 96.87536	7.17595 8.37194 9.56794 10.76393	14.8263 17.2974 19.7685 22.2395	6 7 8 9	0.09259 0.10803 0.12346 0.13889	92594.138 108026.495 123458.851 138891.208	13.22773 15.43236 17.63698 19.84160	11.81048 13.77889 15.74730 17.71572
	CUBIC	MEASURE	•	APOTHE- CARIES' MEASURE.	AVOIRDUPOIS TROY WEIGHT. CAR		APOTHE- CARIES' WEIGHT.		
	Cubic decimetres to cubic inches,	Cubic metres to cubic feet.	Cubic metres to cubic yards,	Cub. centimetres to fluid drachms.		Milliers or tonnes to tons.	Grammes to ounces Troy,	Grammes to penny- weights.	Grammes to scruples.
1 2 3 4 5	61.02390 122.04781 183.07171 244.09561 305.11952	35.31476 70.62952 105.94428 141.25904 176.57379	1.30795 2.61591 3.92386 ° 5.23182 6.53977	0.28157 0.56314 0.84471 1.12627 1.40784	1 2 3 4 5	0.98421 1.96841 2.95262 3.93683 4.92103	0.03215 0.06430 0.09645 0.12860 0.16075	0.64301 1.28603 1.92904 2.57206 3.21507	0.77162 1.54324 2.31485 3.08647 3.85809
6 7 8 9	366.14342 427.16732 488.19123 549.21513	211.88855 247.20331 282.51807 317.83283	7.84772 9.15568 10.46363 11.77159	1.68941 1.97098 2.25255 2.53412	6 7 8 9	5.90524 6.88944 7.87365 8.85786	0.19290 0.22506 0.25721 0.28936	3.85809 4.50110 5.14412 5.78713	4.62971 5.40132 6.17294 6.94456

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEICHTS AND MEASURES.

(3) IMPERIAL TO METRIC.

LINEAR MEASURE.

- • •	25.400 milli- metres,
I inch	metres.
I foot (12 in.) =	0.30480 metre.
I YARD (3 ft.) ==	0.914399 "
I pole $(5\frac{1}{2} \text{ yd.})$ =	5.0292 metres.
I chain (22 yd. or)	20.1168 "
I furlong (220 yd.) ==	201.168 "
1 mile (1,760 yd.) . =	1.6093 kilo-

SQUARE MEASURE.

bQUAKE MEASUKE.
I square inch = $\begin{cases} 6.4516 \text{ sq. centimetres.} \end{cases}$
1 sq. ft. (144 sq. in.) = { 9.2903 sq. decimetres.
I SQ. YARD (9 sq. ft.) = $\begin{cases} 0.836126 \text{ sq.} \\ \text{metres.} \end{cases}$
1 perch $(30\frac{1}{4} \text{ sq. yd.}) = \begin{cases} 25.293 \text{ sq. metres.} \end{cases}$
I rood (40 perches) = 10.117 ares. I ACRE (4840 sq. yd.) = 0.40468 hectare.
I sq. mile (640 acres) = $\{250.00 \text{ hectares.}\}$

CUBIC MEASURE.

I cub. inch = 16.387 cub. centimetres.

I cub. foot (1728) = {0.028317 cub. metre, or 28.317 cub. decimetres.}

I CUB. VARD (27) = 0.76455 cub. metre, cub. ft.)

APOTHECARIES' MEASURE.

```
| gallon (8 pints or 160 fluid ounces) | = 4.5459631 litres. | 4.5459631 litres. | 4.5459631 litres. | 4.5459631 litres. | 28.4123 cubic centimetres. | 4.5459631 litres. | 28.4123 cubic centimetres. | 4.5459631 litres. | 28.4123 cubic centimetres. | 28.4123 cubic centimetres. | 3.5515 cubic centimetres. | 3.5515 cubic centimetres. | 4.5459631 litres. | 29.4123 cubic centimetres. | 29.4123 cubic cubic centimetres. | 29.4123 cubic centimetres. | 29.4123 cubic cubic centimetres. | 29.4123 cubic cu
```

Note. — The Apothecaries' gallon is of the same capacity as the Imperial gallon.

MEASURE OF CAPACITY.

I gill = I.42 decilitres.
I pint (4 gills) . . . = 0.568 litre.
I quart (2 pints) . = I.136 litres.
I GALLON (4 quarts) = 4.5459631 "
I peck (2 galls.) . . = 9.092 "
I bushel (8 galls.) . = 3.637 dekalitres.
I quarter (8 bushels) = 2.909 hectolitres.

AVOIRDUPOIS WEIGHT.

(64.8 milli-I grain . grammes. 1 dram . 1.772 grammes. 1 ounce (16 dr.). . = 28.350I POUND (16 oz. or) 0.45359243 kilogr. 7,000 grains) I stone (14 lb.) 6.350 1 quarter (28 lb.) 66 12.70 I hundredweight } 50.80 (112 lb.) o.5080 quintal. 1.0160 tonnes or 1016 kilo-I ton (20 cwt.) . == grammes.

TROY WEIGHT.

I Troy OUNCE (480 grains avoir.)
I pennyweight (24 grains) = 1.5552 "

Note. — The Troy grain is of the same weight as the Avoirdupois grain.

APOTHECARIES' WEIGHT.

r ounce (8 drachms) = 31.1035 grammes.
I drachm, 3i (3 scru-) = 3.888 "
ples) = 3.888 "
I scruple, Di (20) = 1.206 "

 $\begin{cases} \text{scruple, } \exists 1.296 \end{cases} = 1.296 \end{cases}$

Note. — The Apothecaries' ounce is of the same weight as the Troy ounce. The Apothecaries' grain is also of the same weight as the Avoirdupois grain.

Note. — The Yard is the length at 62° Fahr., marked on a bronze bar deposited with the Board of Trade.

The Pound is the weight of a piece of platinum weighed in vacuo at the temperature of o° C., and which is also deposited with the Board of Trade.

The Gallon contains 10 lb. weight of distilled water at the temperature of 62° Fahr., the barometer being at 30 inches.

TABLE 3.

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES.

(4) IMPERIAL TO METRIC.

	LI	NEAR ME	ASURE.			MEA	SURE OF	CAPACITY	
	Inches to centimetres.	Feet to metres.	Yards to metres.	Miles to kilo- metres.		Quarts to litres.	Gallons to litres.	Bushels to dekalitres.	Quarters to hectolitres.
1 2 3 4 5	2.539998 5.079996 7.619993 10.159991 12.699989	0.30480 0.60960 0.91440 1.21920 1.52400	0.91440 1.82880 2.74320 3.65760 4.57200	1.60934 3.21869 4.82803 6.43737 8.04671	1 2 3 4 5	1.13649 2.27298 3.40947 4.54596 5.68245	4.54596 9.09193 13.63789 18.18385 22.72982	3.63677 7.27354 10.91031 14.54708 18.18385	2.90942 5.81883 8.72825 11.63767 14.54708
6 7 8 9	15.239987 17.779984 20.319982 22.859980	1.82880 2.13360 2.43840 2.74320	5.48640 6.40080 7.31519 8.22959	9.65606 11.26540 12.87474 14.48408	6 7 8 9	6.81894 7.95544 9.09193 10.22842	27.27578 31.82174 36.36770 40.91367	21.82062 25.45739 29.09416 32.73093	17.45650 20.36591 23.27533 26.18475
	sQ	UARE ME	ASURE.			W:	EIGHT (Avo	rdupois).	
	Square Square inches feet yards to to square centimetres. Square metres.					Grains to milli- grammes.	Ounces to grammes.	Pounds to kilo- grammes.	Hundred- weights to quintals.
1 2 3 4 5	6.45159 12.90318 19.35477 25.80636 32.25794	9.29029 18.58058 27.87086 37.16115 46.45144	0.83613 1.67225 2.50838 3.34450 4.18063	0.40468 0.80937 1.21405 1.61874 2.02342	1 2 3 4 5	64.79892 129.59784 194.39675 259.19567 323.99459	28.34953 56.69905 85.04858 113.39811 141.74763	0.45359 0.90718 1.36078 1.81437 2.26796	0.50802 1.01605 1.52407 2.03209 2.54012
6 7 8 9	38.70953 45.16112 51.61271 58.06430	5 5.74173 65.03201 74.32230 83.61259	5.01676 5.85288 6.68901 7.52513	2.42811 2.83279 3.23748 3.64216	6 7 8 9	388.79351 453.59243 518.39135 583.19026	170.09716 198.44669 226.79621 255.14574	2.72155 3.17515 3.62874 4.08233	3.04814 3.55616 4.06419 4.57221
	CUBIC	MEASURI	Ε.	Apothe- caries' Measure.	A	voirdupois (cont.).	TROY W	BIGHT.	APOTHE- CARIES' WEIGHT.
	Cubic inches to cubic centimetres.	Cubic feet to cubic metres.	Cubic yards to cubic metres	Fluid drachins to cubic centimetres.		Tons to milliers or tonnes.	Ounces to grammes.	Penny- weights to grammes.	Scruples to grammes.
1 2 3 4 5	16.38702 32.77404 49.16106 65.54808 81.93511	0.02832 0.05663 0.08495 0.11327 0.14158	0.76455 1.52911 2.29366 3.05821 3.82276	3.55153 7.10307 10.65460 14.20613 17.75767	1 2 3 4 5	1.01605 2.03209 3.04814 4.06419 5.08024	31.10348 62.20696 93.31044 124.41392 155.51740	1.55517 3.11035 4.66552 6.22070 7.77587	1.29598 2.59196 3.88794 5.18391 6.47989
6 7 8 9	98.32213 114.70915 131.09617 147.48319	0.16990 0.19822 0.22653 0.25485	4.58732 5.35187 6.11642 6.88098	21.30920 24.86074 28.41227 31.96380	6 7 8 9	6.09628 7.11233 8.12838 9.14442	186.62088 217.72437 248.82785 279.93133	9.33104 10.88622 12.44139 13.99657	7.77587 9.07185 10.36783 11.66381

VOLUME OF A CLASS VESSEL FROM THE WEIGHT OF ITS EQUIVALENT VOLUME OF MERCURY OR WATER.

If a glass vessel contains at t° C, P grammes of mercury, weighted with brass weights in air at 760 mm. pressure, then its volume in c. cm.

at the same temperature,
$$t_1: V = PR = P\frac{P}{d}$$
, at another temperature, $t_1: V = PR_1 = Pp/d \{ 1 + \gamma (t_1 - t) \}$

p = the weight, reduced to vacuum, of the mass of mercury or water which, weighed with brass weights, equals I gramme;

d = the density of mercury or water at $t^{\circ}C$,

and $\gamma = 0.000$ 025, is the cubical expansion coefficient of glass.

Temper-		WATER.		MERCURY.					
t	R.	$R_1, t_1 = 10^{\circ}.$	$R_1, t_1 = 20^\circ.$	R.	$R_1, t_1 = 10^\circ$.	$R_1, t_1 = 20^\circ$.			
o°	1.001192	1.001443	1.001693	0.0735499	0.0735683	0.0735867			
I	1133	1358	1609	5633	5798	5982			
2	1092 1068	1292	1542 1493	5766 5900	5914 602 9	6098 6213			
3 4	1060	1243	1493	6033	6144	6328			
5	1068	1193	1443	6167	6259	6443			
6	1.001092	1.001192	1.001442	0.0736301	0.0736374	0.0736558			
7 8	1131	1206	1456	6434	6490	6674			
8	1184	1234	1485	6568	6605	6789			
9	1252	1277	1527	6702	6720	6904			
10	1333	1333	1584	6835	6835	7020			
11	1.001428	1.001403	001653	0.0736969	0.0736951	0.0737135			
12	1536	1486	- 1736	7103	7066	7250			
13	1657	1582	1832	7236	7181	7365			
14	1790	1690	1940	7370	7297	7481			
15	1935	1810	2060	7504	7412	7596			
16	1.002092	1.001942	1.002193	0.0737637	0.0737527	0.0737711			
17	2261	2086	2337	7771	7642	7826			
18	2441	2241	2491	7905	77.57	7941			
19	2633	2407	2658	8039	7872	8057			
20	2835	2584	2835	8172	7988	8172			
21	1.003048	1.002772	1.003023	0.0738306	0.0738103	0.0738288			
22	3271	2970	3220	8440	8218	8403			
23	3504	3178	. 3429	8573	8333	8518			
24	3748	3 396	3647	8707	8449	8633			
25	4001	3624	3875	8841	8564	8748			
26	1.004264	1.003862	1.004113	0.0738974	0.0738679	0.0738864			
27 28	4537 4818	4110	4361	9108	8794	8979			
		4366	4616	9242	8910	9094			
29	5110	4632	4884	9376	9025	9210			
30	5410	4908	5159	9510	9140	9325			

Taken from Landolt, Börnstein, and Meyerhoffer's Physikalisch-Chemische Tabellen.

DIFFERENTIAL COEFFICIENTS.

INTEGRALS.

DIFFERENTIAL	COEFFICIENTS.	INTEG	RALS.
	$=nx^{n-1}$ $a^{x} \log_{e} a$ e^{x} $\cos x$ $-\sin x$ $\sec^{2} x$ $-\csc^{2} x$ $-\csc^{2} x$ $\frac{\cos^{2} x}{\cos^{2} x}$ $\frac{1}{\sqrt{(1-x^{2})}}$ $\frac{1}{\sqrt{(1-x^{2})}}$ $\frac{1}{1+x^{2}}$ $\frac{1}{x\sqrt{(x^{2}-1)}}$ $\frac{1}{\sqrt{(2x-x^{2})}}$ $\frac{1}{\sqrt{(2x-x^{2})}}$	$\int x^n dx$ $\int a^x dx$ $\int e^x dx$ $\int \cos \cdot ax \cdot dx$ $\int \sin \cdot ax \cdot dx$ $\int \csc^2 ax \cdot dx$ $\int \frac{\sin \cdot x}{\cos^2 x} dx$ $\int \frac{\cos \cdot x}{\sin^2 x} dx$ $\int \frac{dx}{\sqrt{(a^2 - x^2)}}$ $\int \frac{dx}{x\sqrt{(x^2 - a^2)}}$	x^{n+1} $n+1$ a^{x} $\log_{e} a$ e^{x} $\log_{e} a$ $\frac{1}{a}$

Taylor's series:

$$u = f(x+h) = f(x) + f'(x)h + f''(x)\frac{h^2}{2} + f'''(x)\frac{h^3}{1 \cdot 2 \cdot 3} + \cdots$$

The remainder after the first n terms is expressed by

$$\frac{1}{1\cdot 2\cdot 3\cdots n}\int_{0}^{n}f^{n+1}(x+h-z)z^{n}\cdot dz.$$

Maclaurin's series:

$$u=f(x)=f(o)+f'(o)x+f''(o)\frac{x^{3}}{1\cdot 2}+f'''(o)\frac{x^{3}}{1\cdot 2\cdot 3}+\cdots$$

$$\pi=3.14159265359 \qquad \log_{10}\pi=0.49714987269$$

$$\frac{1}{\pi}=0.31830988618 \qquad \log_{10}e=0.43429448190$$

$$\pi^{2}=9.86960440109 \qquad \log_{e}10=2.30258509299$$

$$e=2.71828182846 \qquad \log_{e}(\text{number})=\log_{e}(\text{number})\cdot\log_{e}e$$

$$\sqrt{\pi}=1.77245385091 \qquad =\frac{\log_{e}(\text{number})}{\log_{e}B}$$

TABLE 6.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, OF NATURAL NUMBERS.

n	1000.1	n^2	n^3	\n	n	1000.1	n ²	n ³	122
10	100.000	100	1000	3.1623	65	15.3846	4225	274625	8.0623
11	90.9091	121	1331	3.3166	66	15.1515	4356	287496	8.1240
12	83.3333	144	1728	3.4641	67	14.9254	4489	300763	8.1854
13	76.9231	169	2197	3.6056	68	14.7059	4624	314432	8.2462
14	71.4286	196	2744	3.7417	69	14.4928	4761	328509	8.3066
15	66.6667	225	337 5	3.8730	70	14.2857	4900	343000	8.3666
16	62.5000	256	4096	4.0000	71	14.0845	5041	357911	8.4261
17	58.8235	289	4913	4.1231	72	13.8889	5184	373248	8.4853
18	55.5556	324	5832	4.2426	73	13.6986	5329	389017	8.5440
19	52.6316	361	6859	4.3589	74	13.5135	5476	4052 2 4	8.6023
20	50.0000	400	8000	4.4721	75	13.3333	5625	421875	8.6603
21	47.6190	441	9261	4.5826	76	13.1579	5776	438976	8.7178
22	45.4545	484	10648	4.6904	77	12.9870	5929	456533	8.7750
23	43.4783	529	12167	4.7958	78	12.8205	6084	474552	8.8318
24	41.6667	576	13824	4.8990	79	12.6582	6241	493°39	8.8882
25	40.0000	625	15625	5.0000	80	12.5000	6400	512000	8.9443
26	38.4615	676	17576	5.0990	81	12.3457	6561	531441	9.0000
27	37.0370	729	19683	5.1962	82	12.1951	6724	551368	9.0554
28	35.7143	784	21952	5.2915	83	12.0482	6889	571787	9.1104
29	34.4828	841	24389	5.3852	84	11.9048	7 056	592704	9.1652
30	33·3333	900	27000	5.4772	85	11.7647	7225	614125	9.2195
31	32·2581	961	29 7 91	5.5678	86	11.6279	7396	636056	9.2736
32	31·2500	1024	32768	5.6569	87	11.4943	7569	658503	9.3274
33	30·3030	1089	35937	5.7446	88	11.3636	7744	681472	9.3808
34	29·4118	1156	39304	5.8310	89	11.2360	7921	704969	9.4340
35	28.5714	1225	42875	5.9161	90	11.1111	8100	729000	9.4868
36	27.7778	1296	46656	6.0000	91	10.9890	8281	753571	9.5394
37	27.0270	1369	50653	6.0828	92	10.8696	8464	778688	9.5917
38	26.3158	1444	54872	6.1644	93	10.7527	8649	804357	9.6437
39	25.6410	1521	59319	6.2450	94	10.6383	8836	830584	9.6954
40	25.0000	1600	64000	6.3246	95	10.5263	9025	85737 5	9.7468
41	24.3902	1681	68921	6.4031	96	10.4167	9216	884736	9.7980
42	23.8095	1764	74088	6.4807	97	10.3093	9409	9 12673	9.8489
43	23.2558	1849	79507	6.5574	98	10.2041	9604	941192	9.8995
44	22.7273	1936	85184	6.6332	99	10.1010	9801	970299	9.9499
45	22.2222	2025	91125	6.7082	100	10.0000	10000	1000000	10.0000
46	21.7391	2116	97336	6.7823	101	9.90099	10201	1030301	10.0499
47	21.2766	2209	103823	6.8557	102	9.80392	10404	1061208	10.0995
48	20.8333	2304	110592	6.9282	103	9.70874	10609	1092727	10.1489
49	20.4082	2401	117649	7.0000	104	9.61538	10816	1124864	10.1980
50	20.0000	2500	125000	7.0711	105	9.52381	11025	115 7625	10.2470
51	19.6078	2601	132651	7.1414	106	9.43396	11236	1191016	10.2956
52	19.2308	2704	140608	7.2111	107	9.34579	11449	1225043	10.3441
53	18.8679	2809	148877	7.2801	108	9.25926	11664	1259712	10.3923
54	18.5185	2916	157464	7.3485	109	9.17431	11881	129502 9	10.4403
55	18.1818	3025	166375	7.4162	110	9.09091	12100	1331000	10.4881
56	17.8571	3136	175616	7.4833	111	9.00901	12321	1367631	10.5357
57	17.5439	3249	185193	7.5498	112	8.92857	12544	1404928	10.5830
58	17.2414	3364	195112	7.6158	113	8.84956	12769	1442897	10.6301
59	16.9492	3481	205379	7.6811	114	8.77193	12996	1481544	10.6771
60	16.6667	3600	216000	7.7460	115	8.69565	13225	1520875	10.7238
61	16.3934	3721	226981	7.8102	116	8.62069	13456	1560896	10.7703
62	16.1290	3844	238328	7.8740	117	8.54701	13689	1601613	10.8167
63	15.8730	3969	250047	7.9373	118	8.47458	13924	1643032	10.8628
64	15.6250	4096	262144	8.0000	119	8.40336	14161	1685159	10.9087

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, OF NATURAL NUMBERS.

n	I000.1	n^2	728	Jn.	12	1000.1	n ²	71 ³	J 72
"	1000.ñ			- V"		1000.8	7,-	7,-	- V"
120	8.33333	14400	1728000	10.9545	175	5.71429	30625	5359375	13.2288
121	8.26446	14641	177156 1 1815848	11.0000	176	5.68182	30976	5451776	13.2665
122 123	8.19672	14884	1860867	11.0454	177	5.64972 5.61798	31329 31684	5545233	13.3041
124	8.06452	15376	1906624	11.1355	179	5.58659	32041	5639752 5735339	13.3791
125	8.00000	15625	1953125	11.1803	180	5.55556	32400	5832000	13.4164
126	7.93651	15876	2000376	11.2250	181	5.55556 5.52486	32761	5929741	13.4536
127	7.87402	16129	2048383	11.2694	182	5.49451	33124	6028568	13.4907
128	7.81250	16384	2097152 2146689	11.3137	183	5.46448	33489	6128487	13.5277
129	7.75194	16641			184	.5.43478	33856	6229504	
130	7.69231	16900	2197000 224809 1	11.4018	185	5.40541	34225	6331625	13.6015
131 132	7.63359	17424	2299968	11.4455	187	5.37634 5.34759	34596 34969	6434856 6539203	13.6382 13.6748
133	7.57576 7.51880	17689	2352637	11.5326	188	5.31915	35344	6644672	13.7113
134	7.46269	17956	2406104	11.5758	189	5.29101	35721	6751269	13.7477
135	7.40741	18225	2460375	11.6190	190	5.26316	36100	6859000	13.7840
136	7.35294	18496	2515456	11.6619	191	5.235 60 5.20833	36481	6967871	13.8203
137	7.29927 7.24638	18769	2571353 2628072	11.7047	192 193	5.20833	36864	7077888	13.8564
139	7.19424	19321	2685619	11.7898	193	5.15464	37249 37636	7301384	13.9284
140	7.14286	19600	2744000	11.8322	195	5.12821	38025	7414875	13.9642
141	7.09220	19881	2803221	11.8743	196	5.10204	38416	7529536	14.0000
142	7.04225	20164	2863288	11.9164	197	5.07614	38809	7645373	14.0357
143 144	6.99301	20449 20736	2924207 2985984	11.9583	198	5.05051	39204 39601	7762392	14.0712
	6.94444				199	5.02513		7880599	
145 146	6.89655 6.849 32	21025	3048625 3112136	12.0416	200	5.00000	40000 4040I	8000000	14.1421
147	6.80272	21509	3176523	12.1244	201	4.97512	40804	8242408	14.2127
148	6.75676	21904	3241792		203	4.92611	41209	8365427	14.2478
149	6.71141	22201	3307949	12.1655 12.2066	204	4.90196	41616	8489664	14.2829
150	6.66667	22500	3375000	12.2474	205	4.87805	42025	8615125	14.3178
151	6.62252	22801	3442951 3511808	12.2882	206	4.85437	42436	8741816	14.3527
152	6.57895	23104	3511808	12.3288	207	4.83092	42849 43 2 64	8869743 8998912	14.3875
153 154	6.5359 5 6.493 5 1	23409	3652264	12.4097	209	4.78469	43681	9129329	14.4568
155	6.45161	24025	3723875	12.4499	210	4.76190	44100	9261000	14.4914
156	6.41026	24336	3796416	12.4900	211	4.73934	44521		14.5258
1 57	6.36943	24649	3869893	12.5300	212	4.71698	44944	9393931 9528128	14.5002
158	6.32911	24964	3944312	12.5698	213	4.69484	45369	9663597	14.5945
159	6.28931	25281	4019679	12.6095	214	4.67290	45796	9800344	14.6287
160 161	6.25000	25600	4096000	12.6491 12.6886	215	4.65116	46225	9938375	14.6629
162	6.21118	2592I 26244	417328 1 4251528	12.0000	216 217	4.62963	47089	10077696	14.7309
163	6.13497	26560	4330747	12.7671	218	4.58716	47524	10360232	14.7648
164	6.09756	26896	4410944	12.8062	219	4.56621	47961	10503459	14.7986
165	6.06061	27225	4492125	12.8452	220	4·54545 4·52489	48400	10648000	14.8324
166	5.98802	27556 27889	4574296	12.8841	22I 222	4.52489	48841	10793861	14.8661
167 1 6 8	5.95238	28224	4657463 4741632	12.9228	222	4.50450	49284	10941048	14.0997
169	5.91716	28561	4826809	13.0000	224	4.46429	50176	11239424	14.9666
170	5.88235	28900	4913000	13.0384	225	4.44444	50625	11390625	15.0000
171	5.84795	29241	5000211	13.0767	226	4.42478	51076	11543176	15.0333
172	5.81395	29584	5088448	13.1149	227	4.40529	51529	11697083	
173 174	5.78035	29929 30276	5177717	13.1529	228 229	4.36681	51984	11852352	15.0997
	3./4/-3	302/5	3200024	*3.1909	1 229	4.5001	2-44*	12000909	-33-/

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS, OF NATURAL NUMBERS.

n	1000.1	n^2	728	V 72	n	1000.1	# ²	n ⁸	\n/n
230	4.34783	52900	12167000	15.1658	285	3.50877	81225	23149125	16.8819
231	4.32900	53361	12326391	15.1987	286	3.49650	81796	23393656	16.9115
232	4.31034	53824	12487168	15.2315	287	3.48432	82369	23639903	16.9411
233	4.29185	54289	12649337	15.2643	288	3.47222	82944	23887872	16.9706
234	4.27350	54756	12812904	15.2971	289	3.46021	83521	24137569	17.0000
235	4.25532	55225	12977875	15.3297	290	3.44828	84100	24389000	17.0294
236	4.23729	55696	13144256	15.3623	291	3.43643	84681	24642171	17.0587
237	4.21941	56169	13312053	15.3948	292	3.42466	85264	24897088	17.0880
238	4.20168	56644	13481272	15.4272	293	3.41297	85849	25153757	17.1172
239	4.18410	57121	13651919	15.4596	294	3.40136	86436	25412184	17.1464
240	4.16667	57600	13824000	15.4919	295	3.38983	87025	25672375	17.1756
241	4.14938	58081	13997521	15.5242	296	3.37838	87616	25934336	17.2047
242	4.13223	58564	14172488	15.5563	297	3.36700	88209	26198073	17.2337
243	4.11523	59049	14348907	15.5885	298	3.35570	88804	26463592	17.2627
244	4.09836	59536	14526784	15.6205	299	3.34448	89401	26730899	17.2916
245	4.08163	60025	14706125	15.6525	300	3.33333	90000	27000000	17.3205
246	4.06504	60516	14886936	15.6844	301	3.32226	90601	27270901	17.3494
247	4.04858	61009	15069223	15.7162	302	3.31126	91204	27543608	17.3781
248	4.03226	61504	15252992	15.7480	303	3.30033	91809	27818127	17.4069
249	4.01606	62001	15438249	15.7797	304	3.28947	92416	28094464	17.4356
250	4.00000	62500	15625000	15.8114	305	3.27869	93025	28372625	17.4642
251	3.98406	63001	15813251	15.8430	306	3.26797	93636	28652616	17.4929
252	3.96825	63504	16003008	15.8745	307	3.25733	94249	28934443	17.5214
253	3.95257	64009	16194277	15.9060	308	3.24675	94864	29218112	17.5499
254	3.93701	64516	16387064	15.9374	309	3.23625	95481	29503629	17.5784
255	3.92157	6502 5	16581375	15.9687	310	3.22581	96100	29791000	17.6068
256	3.90625	65536	16777216	16.0000	311	3.21543	96721	30080231	17.63 5 2
257	3.89105	66049	16974593	16.0312	312	3.20513	97344	30371328	17.663 5
258	3.87597	66564	17173512	16.0624	313	3.19489	97969	30664297	17.6918
259	3.86100	67081	17373979	16.0935	314	3.18471	98 5 96	30959144	17.7200
260	3.84615	67600	17576000	16.1245	315	3.17460	99225	31255875	17.7482
261	3.83142	68121	17779581	16.1555	316	3.16456	99856	31554496	17.7764
262	3.81679	68644	17984728	16.1864	317	3.15457	100489	31855013	17.8045
263	3.80228	69169	18191447	16.2173	318	3.14465	101124	32157432	17.8326
264	3.78788	69696	18399744	16.2481	319	3.13480	101761	32461759	17.8606
265	3.77358	70225	18609625	16.2788	320	3.12500	102400	32768000	17.8885
266	3.75940	70756	18821096	16.3095	321	3.11527	103041	33076161	17.9165
267	3.74532	71289	19034163	16.3401	322	3.10559	103684	33386248	17.9444
268	3.73134	71824	19248832	16.3707	323	3.09598	104329	33698267	17.9722
269	3.71747	72361	19465109	16.4012	324	3.08642	104976	34012224	18.0000
270	3.70370	72900	19683000	16.4317	325	3.07692	105625	34328125	18.0278
271	3.69004	73441	19902511	16.4621	326	3.06748	106276	34645976	18.0555
272	3.67647	73984	20123648	16.4924	327	3.05810	106929	34965783	18.0831
273	3.66300	74529	20346417	16.5227	328	3.04878	107584	35287552	18.1108
274	3.64964	75076	20570824	16.5529	329	3.03951	108241	35611289	18.1384
275	3.63636	75625	20796875	16.5831	330	3.03030	108900	35937000	18.1659
276	3.62319	76176	21024576	16.6132	331	3.02115	109561	36264691	18.1934
277	3.61011	76729	21253933	16.6433	332	3.01205	110224	36594368	18.2209
278	3.59712	77284	21484952	16.6733	333	3.00300	110889	36926037	18.2483
279	3.58423	77841	21717639	16.7033	334	2.99401	111556	37259704	18.2757
280	3.57143	78400	21952000	16.7332	335	2.98507	112225	37595375	18.3030
281	3.55872	78961	22188041	16.7631	336	2.97619	112896	37933056	18.3303
282	3.54610	79524	22425768	16.7929	337	2.96736	113569	38272753	18.3576
283	3.53357	80089	22665187	16.8226	338	2.95858	114244	38614472	18.3848
284	3.52113	80656	22906304	16.8523	339	2.94985	114921	38958219	18.4120

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS. OF NATURAL NUMBERS.

n 	1000.1	n2	. 188	· √n	n	1000.1	112	# ³	. Vn
340	2.94118	115600	39304000	18.4391	395	2.53165	156025	61629875	19.8746
341	2.93255	116281	39651821	18.4662	396	2.52525	156816	62099136	19.8997
342	2.92398	116964	40001688	18.4932	397	2.51889	157609	62570773	19.9249
343	2.91545	117649	40353607	18.5203	398	2.51256	158404	63044792	19.9499
344	2.90698	118336	40707584	18.5472	399	2.50627	159201	63521199	19.9750
345	2.89855	119025	41063625	18.5742	400	2.50000	160000	64000000	20.0000
346	2.89017	119716	41421736	18.6011	401		160801	64481201	20.0250
347	2.88184	120409	41781923	18.6279	402	2.49377 2.48756	161604	64964808	20.0499
348	2.87356	121104	42144192	18.6548	403	2.48139	162409	65450827	20.0749
349	2.86533	121801	42508549	18.6815	404	2.47525	163216	65939264	20.0998
350	2.85714	122500	42875000	18.7083	405	2.46914	164025	66430125	20.1246
351	2.84900	123201	4324355I	18.7350	406	2.46305	164836	66923416	20.1494
352	2.84091	123904	43614208	18.7617	407	2.45700	165649	67419143	20.1742
353	2.83286	124609	43986977	18.7883	408	2.45098	166464	67917312	20.1990
354	2.82486	125316	44361864	18.8149	409	2.44499	167281	68417929	20.2237
355	2.81690	126025	44738875	18.8414	410	2.43902	168100	68921000	20.2485
356	2.80899	126736	45118016	18.868 o	411	2.43309	168921	69426531	20.2731
357	2.80112	127449	45499293 45882712	18.8944	412	2.42718	169744	69934528	20.2978
358	2.79330		45882712	18.9209	413	2.42131	170569	70444997	20.3224
359	2.78552	128881	46268279	18.9473	414	2.41546	171396	70957944	20.3470
360	2.77778	129600	46656000	18.9737	415	2.40964	172225	71473375	20.3715
361	2.77008	130321	47045881	19.0000	416	2.40385	173056	71991296	20.3961
362	2.76243	131044	47437928	19.0263	417	2.39808	173889	72511713	20.4206
363	2.75482	131769	47832147	19.0526	418	2.39234	174724	73034632	20.4450
364	2.74725	132496	48228544	19.0788	419	2.38663	175561	73560059	20.4695
365	2.73973	133225	48627125	19.1050	420	2.38095	176400	74088000	20.4939
366	2.73224	133956	49027896	19.1311	421	2.37530		74618461	20.5183
367	2.72480	134689	49430863		422	2.36967	177241	75151448	20.5426
368	2.71739	135424	49836032	19.1572	423	2.36407	178929	75686967	20.5670
369	2.71003	136161	50243409	19.2094	424	2.35849	179776	76225024	20.5913
370	2.70270	136900	5 0653000	19.2354	425	2.35294	180625	76765625	20.6155
371	2.69542	137641	51064811	19.2614	426	2.34742	181476	77308776	20.6398
372	2.68817	138384	51478848	19.2873	427	2.34192	182329	77854483	20.6640
373	2.68097	139129	51895117	19.3132	428	2.33645	183184	78402752	20.6882
374	2.67380	139876	52313624	19.3391	429	2.33100	184041	78953589	20.7123
375	2.66667	140625	52734375	19.3649	430	2.32558	184900	79507000	20.7364
376	2.65957	141376	53157376	19.3907	431	2.32019	185761	80062991	20.7605
377	2.65252	142129	53157376 53582633	19.4165	432	2.31481	186624	80621568	20.7846 20.8087
378	2.64550	142884	54010152	19.4422	433	2.30947	187489	81182737	20.8087
379	2.63852	143641	54439939	19.4679	434	2.30415	188356	81746504	20.8327
380	2.63158	144400	54872000	19.4936	435	2.29885	189225	82312875 82881856	20.8567
381	2.62467	145161	55306341	19.5192	436	2.29358 2.28833	190096		20.8806
382	2.61780	145924	55742968	19.5448	437	2.28833	190969	83453453	20.9045
383	2.61097	146689	56181887	19.5704	438	2.28311	191844	84027672	20.9284
384	2.60417	147456	56623104	19.5959	439	2.27790	192721	84604519	20.9523
385	2.59740	148225	57066625	19.6214	440	2.27273	193600	85184000	20.9762
386	2.59067	148996	57512456	19.6469	441	2.26757	194481	85766121	21.0000
387	2.58398	149769	57960603 58411072	19.6723	442	2.26244	195364	86350888	21.0238
388	2.57732	150544	58411072	19.6977	443	2.25734	196249	86938307 87528384	21.0476
389	2.57069	151321		19.7231	444	2.25225	197136		21.0713
390	2.56410	152100	59319000	19.7484	445	2.24719	198025	88121125	21.0950
391	2.55754	152881	59776471	19.7737	446	2.24215	198916	88716536	21.1187
392	2.55102	153664	60236288	19.7990	447	2.23714	200704	89314623	21.1424
393	2.54453 2.53807	154449	61162984	19.8494	448	2.23214	201601	89915392 90518849	21.1896
394	2.5300/	155236	01102904	29.0494	449	2.22/1/	201001	90310049	21.1090

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

	1	2	9			1		9	
n	1000.1	n ²	#8 	√n	72	1000.1	122	# ⁸	√n
450	2.22222	202500	91125000	21.2132	505	1.98020	255025	128787625	22.4722
451 452	2.21730	203401	91733851	21.2368	506	1.97628	256036 257049	129554216	22.4944
453	2.20751	205209	92959677	21.2838	508	1.96850	258064	131096512	22.5389
454	2.20264	206116	93576664	21.3073	509	1.96464	259081	131872229	22.5610
455	2.19780	207025	94196375	21.3307	510	1.96078	260100 261121	132651000	22.5832
457	2.18818	208849	95443993	21.3776	512	1.95312	262144	134217728	22.6274
458	2.18341	209764	96071912	21.4009	513	1.94932	263169	135005697	22.6495
459 460	2.17865	211600	96702579	21.4243	514 515	1.94553	264196	135796744	22.6716
461	2.17391	212521	97336000	21.44/0	516	1.93798	2652 2 5 2662 5 6	136590875	22.6936 22.7156
462	2.16450	213444	98611128	21.4942	517	1.93424	267289	138188413	22.7376
463 464	2.15983	214369 215296	99252847	21.5174	518	1.93050	268324 26936 1	138991832	22.7596 22.7816
465	2.15054	216225	100544625	21.5639	520	1.92308	270400	140608000	22.8035
466 467	2.14592	217156	101194696	21.5870	521	1.91939	271441 272484	141420761	22.8254
468	2.14133	219024	102503232	21.6333	522 523	1.915/1	273529	143055667	22.8692
469	2.13220	219961	103161709	21.6564	524	1.90840	274576	143877824	22.8910
470	2.12766	220900	103823000	21.6795	525	1.90476	275625	144703125	22.9129
47I 472	2. 12314 2. 11864	221841 222784	104487111	21.7025 21.7256	526 527	1.90114	27 6676 27 7729	145531576 146363183	22.9347
473	2.11416	223729	105823817	21.7486	528	1.89394	278784	147197952	22.9783
474	2.10970	224676	106496424	21.7715	529	1.89036	279841	148035889	23.0000
475	2.10526	225625 226576	107171875	21.7945	530 531	1.88679	280900 281961	148877000	23.0217
477 478	2.09644	227529	108531333	21.8403	532	1.87970	283024	150568768	23.0651
478 479	2.09205	228484 229441	109215352	21.8632 21.8861	533 534	1.87617	284089 285156	151419437 152273304	23.0868
480	2.08333	230400	110592000	21.9089	535	1.86916	286225	153130375	23.1301
481	2.07900	231361	111284641	21.9317	536	1.86567	287296	153990656	23.1517
482 483	2.07469	232324	111980168	21.9545	537 538	1.86220	288369 289444	154854153	23.1733
484	2.06612	234256	113379904	22.0000	539	1.85529	290521	156590819	23.2164
485	2.06186	235225	114084125	22.0227	540	1.85185	291600	157464000	23.2379
486 487	2.05761 2.05339	236196	114791256	22.0454	541 542	1.84843	292681 293764	158340421	23.2594
488	2.04918	238144	116214272	22.0907	543	1.84162	294849	160103007	23.3024
489	2.04499	239121	116930169	22.1133	544	1.83824	295936	160989184	23.3238
490	2.04082 2.03666	240100	117649000	22.1359	545 546	1.83486	297025 298116	161878625 162771336	23.3452
49 I 492	2.03000	242064	119095488	22.1585	547	1.82815	299209	163667323	23.3880
493	2.02840	243049	119823157	22.2036	548	1.82482	300304	164566592	23.4094
494	2.02429	244036	120553784	22.2261	549 550	1.82149	301401	165469149	23.4307
495	2.02020	245025	121287375 122023936	22.2486	551	1.81818	302500	166375000	23.4521
497	2.01207	247009	122763473	22.2935	552	1.81159	304704	168196608	23.4947
498 499	2.00803	248004 249001	123505992	22.3159	553 554	1.80832	305809 306916	169112377	23.5160
500	2.00000	250000	125000000	22.3607	555	1.80180	308025	170953875	23.5584
501	1.99601	251001	125751501	22.3830	556	1.79856	309136	171879616	23.5797
502	1.99203	252004	126506008	22.4054	557 558	1.79533	310249	172808693	23.6008
503	1.98413	253009 254016	12/20352/	22.4277 22.4 4 99	559	1.78891	312481	174676879	23.6432

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

n	$1000.\frac{1}{n}$	<i>n</i> ²	n ⁸	√n	#	1000.1	n ²	728	√n
560	1.78571	313600	175616000	23.6643	615	1.62602	378225	232608375	24.7992
561	1.78253	314721	176558481	23.6854	616	1.62338	379456	233744896	24.8193
562	1.77936	315844	177504328	23.7065	617	1.62075	380689	234885113	24.8395
563	1.77620	316969	178453547	23.7276	618	1.61812	381924	236029032	24.8596
564	1.77305	318096	179406144	23.7487	619	1.61351	383161	237176659	24.8797
565	1.76991	319225	180362125	23.7697	620	1.61290	384400	238328000	24.8998
566	1.76678	320356	181321496	23.7908	621	1.61031	385641	239483061	24.9199
567	1.76367	321489	182284263	23.8118	622	1.60772	386884	240641848	24.9399
568	1.76056	322624	183250432	23.8328	623	1.60514	388129	241804367	24.9600
569	1.75747	323761	184220009	23.8537	624	1.60256	389376	242970624	24.9800
570	1.75439	324900	185193000	23.8747	625	1.60000	390625	244140625	25.0000
57 I	1.75131	326041	186169411	23.8956	626	I.59744	391876	245314376	25.0200
572	1.74825	327184	187149248	23.9165	627	1.59490	393129	246491883	25.0400
573	1.74520	328329	188132517	23.9374 23.9583	628	1.59236	394384	247673152 248858189	25.0599
574	1.74216	329476	189119224		629	0,0	395641		25.0799
575	1.73913	330625	190109375	23.9792	630	1.58730	396900	250047000	25.0998
576	1.73611	331776	191102976	24.0000	631	1.58479	398161	251239591	25.1197
577	1.73310	332929	192100033	24.0208	632	1.58228	399424 400689	252435968	25.1396
578	1.73010	334084	193100552	24.0416 24.0624	633	1.57978	400009	2536361 3 7 254840104	25.1595
579	1.72712	335241	194104539			1.57729			25.1794
580	1.72414	336400	195112000	24.0832	635	1.57480	403225	256047875	25.1992
581	1.72117	337561	196122941	24.1039	636	1.57233	404496	257259456	25.2190
582	1.71821	338724	197137368	24.1247	637	1.56986	405769	258474853	25.2389
583	1.71527	339889	198155287	24.1454	638	1.56740	407044	259694072	25.2587
584	1.71233	341056	199176704	24.1661	639	1.56495	408321	260917119	25.2784
585	1.70940	342225	200201625	24.1868	640	1.56250	409600	262144000	25.2982
586	1.70648	343396	201230056	24.2074 24.2281	641	1.56006	410881	26337472 1 264609288	25.3180
587 588	1.70358	344569	202262003	24.2487	643	1.55763	413449	265847707	25.3377
589	1.69779	345744 346921	203297472 204336469	24.2693	644	1.55521	414736	267089984	25.3574 25.3772
590	1.69492	348100	205379000	24.2899	645	1.55039	416025	268336125	25.3969
591	1.69205	349281	206425071	24.3105	646	I.54799	417316	269586136	25.4165
592	1.68919	350464	207474688	24.3311	647	1.54560	418609	270840023	25.4362
593	1.68634	351649	208527857	24.3516	648	1.54321	419904	272097792	25.4558
594	1.68350	352836	209584584	24.3721	649	1.54083	421201	273359449	25.4755
595	1.68067	354025	210644875	24.3926	650	1.53846	422500	274625000	25.4951
596	1.67785	355216	211708736	24.4131	651	1.53610	423801	275894451	25.5147
597	1.67504	356409	212776173	24.4336	652	1.53374	425104	277167808	25.5343
<u>5</u> 98	1.67224	357604	213847192	24.4540	653	1.53139	426409	278445077	25.5539
599	1.66945	358801	214921799	24.4745	654	1.52905	427716	279726264	25.5734
600	1.66667	360000	216000000	24.4949	655	1.52672	429025	281011375	25.5930
601	1.66389	361201	217081801	24.5153	656	1.52439	430336	282300416	25.6125
602	1.66113	362404	218167208	24.5357	657	1.52207	431649	283593393	25.6320
603	1.65837	363609	219256227	24.5561	658	1.51976	432964	284890312	25.6515
604	1.65563	364816	220348864	24.5764	659	1.51745	434281	286191179	25.6710
605	1.65289	366025	221445125	24.5967	660	1.51515	435600	287496000	25.6905
606	1.65017	367236	222545016	24.6171	661	1.51286	436921	288804781	25.7099
607	1.64745	368449	223648543	24.6374	662	1.51057	438244	290117528	25.7294
608	1.64474	369664	224755712	24.6577	663	1.50830	439569	291434247	25.7488
609	1.64204	370881	225866529	24.6779	664	1.50602	440896	292754944	25.7002
610	1.63934	372100	226981000	24.6982	665	1.50376	442225	294079625	25.7876
611	1.63666	373321	228099131	24.7184	666	1.50150	443556	295408296	25.8070
612	1.63399	374544	229220928	24.7386	667	1.49925	444889	296740963	25.8263
613	1.63132	375769	230346397	24.7588	668	1.49701	446224	298077632	25.8457
614	1.62866	376996	231475544	24.7790	669	1.49477	447561	299418309	25.8650
L									

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

n	1000.1	n^2	n³	122	78	1000.1	n^2	12 ³	√n
670	1.49254	448900	300763000	25.8844	725	1.37931	525625	381078125	26.9258
671	1.49031	450241	302111711	25.9037	726	1.37741	527076	382657176	26.9444
672	1.48810	451584	303464448	25.9230	727	1.37552	528529	384240583	26.9629
673	1.48588	452929	304821217	25.9422	728	1.37363	529984	385828352	26.9815
674	1.48368	454276	306182024	25.9615	729	1.37174	531441	387420489	27.0000
675	1.48148	455625	307546875	25.9808	730	1.36986	532900	389017000	27.0185
676	1.47929	456976	308915776	26.0000	731	1.36799	534361	390617891	27.0370
677	1.47710	458329	310288733	26.0192	732	1.36612	535824	392223168	27.0555
678	1.47493	459684	311665752	26.0384	733	1.36426	537289	393832837	27.0740
679	1.47275	461041	313046839	26.0576	734	1.36240	538756	395446904	27.0924
680	1.47059	462400	314432000	26.0768	735	1.36054	540225	397065375	27.1109
681	1.46843	463761	315821241	26.0960	736	1.35870	541696	398688256	27.1293
682	1.46628	465124	317214568	26.1151	737	1.35685	543169	400315553	27.1477
683	1.46413	466489	318611987	26.1343	738	1.35501	544644	401947272	27.1662
684	1.46199	467856	320013504	26.1534	739	1.35318	546121	403583419	27.1846
685	1.45985	469225	321419125	26.1725	740	1.35135	547600	405224000	27.2029
686	1.45773	470596	322828856	26.1916	741	1.34953	549081	406869021	27.2213
687	1.45560	471969	324242703	26.2107	742	1.34771	550564	408518488	27.2397
688	1.45349	473344	325660672	26.2298	743	1.34590	552049	410172407	27.2580
689	1.45138	474721	327082769	26.2488	744	1.34409	553536	411830784	27.2 7 64
690	1.44928	476100	328509000	26.2679	745 746 747 748 749	1.34228	555025	413493625	27.2947
691	1.44718	477481	329939371	26.2869		1.34048	556516	415160936	27.3130
692	1.44509	478864	331373888	26.3059		1.33869	558009	416832723	27.3313
693	1.44300	480249	332812557	26.3249		1.33690	559504	418508992	27.3496
694	1.44092	481636	334255384	26.3439		1.33511	561001	420189749	27.3679
695	1.43885	483025	3357°2375	26.3629	750 751 752 753 754	I.33333	562500	421875000	27.3861
696	1.43678	484416	337153536	26.3818		I.33156	564001	423564751	27.4044
697	1.43472	485809	338608873	26.4008		I.32979	565504	425259008	27.4226
698	1.43266	487204	340368392	26.4197		I.32802	567009	426957777	27.4408
699	1.43062	488601	341532099	26.4386		I.32626	568516	428661064	27.4591
700	1.42857	490000	343000000	26.45 7 5	755 756 757 758 759	1.32450	570025	430368875	27.4773
701	1.42653	491401	344472101	26.4764		1.32275	571536	432081216	27.4955
702	1.42450	492804	345948408	26.4953		1.32100	573049	433798093	27.5136
703	1.42248	494209	347428927	26.5141		1.31926	574564	435519512	27.5318
704	1.42045	495616	348913664	26.5330		1.31752	576081	437245479	27.5500
705	1.41844	497025	350402625	26.5518	760	1.31 5 79	577600	438976000	27.5681
706	1.41643	498436	351895816	26.5707	761	1.31406	579121	440711081	27.5862
707	1.41443	499849	353393243	26.5895	762	1.31234	580644	442450728	27.6043
708	1.41243	501264	354894912	26.6083	763	1.31062	582169	444194947	27.6225
709	1.41044	502681	356400829	26.6271	764	1.30890	583696	445943744	27.6405
710	1.40845	504100	357911000	26.6458	765 766 767 768 769	1.30719	585225	447697125	27.6586
711	1.40647	505521	359425431	26.6646		1.30548	586756	449455096	27.6767
712	1.40449	506944	360944128	26.6833		1.30378	588289	451217663	27.6948
713	1.40252	508369	362467097	26.7021		1.30208	589824	452984832	27.7128
714	1.40056	509796	363994344	26.7208		1.30039	591361	454756609	27.7308
715	1.39860	511225	365525875	26.7395	770	1.29870	592900	456533000	27.7489
716	1.39665	512656	367061696	26.7582	771	1.29702	594441	458314011	27.7669
717	1.39470	514089	368601813	26.7769	772	1.29534	595984	460099648	27.7849
718	1.39276	515524	370146232	26.7955	773	1.29366	597529	461889917	27.8029
719	1.39082	516961	371694959	26.8142	774	1.29199	599076	463684824	27.8209
720	1.38889	518400	373248000	26.8328	775	1.29032	600625	465484375	27.8388
721	1.38696	519841	374805361	26.8514	776	1.28866	602176	467288576	27.8568
722	1.38504	521284	376367048	26.8701	777	1.28700	603729	469097433	27.8747
723	1.38313	522729	377933067	26.8887	778	1.28535	605284	470910952	27.8927
724	1.38122	524176	379503424	26.9072	779	1.28370	606841	472729139	27.9106

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

72	1000.1	n^2	n^8	√n	n	1000.1	n ²	118	Jn.
780 781 782 783 784	1.28205	608400	474552000	27.9285	835	1.19760	697225	582182875	28.8964
	1.28041	609961	476379541	27.9464	836	1.19617	698896	584277056	28.9137
	1.27877	611524	478211768	27.9643	837	1.19474	700569	586376253	28.9310
	1.27714	613089	480048687	27.9821	838	1.19332	702244	588480472	28.9482
	1.27551	614656	481890304	28.0000	839	1.19190	703921	590589719	28.9655
785 786 787 788 789	1.27389	616225	483736625	28.0179	840	1.19048	705600	592704000	28.9828
	1.27226	617796	485587656	28.0357	841	1.18906	707281	594823321	29.0000
	1.27065	619369	487443403	28.0535	842	1.18765	708964	596947688	29.0172
	1.26904	620944	489303872	28.0713	843	1.18624	710649	599077107	29.0345
	1.26743	622521	491169069	28.0891	844	1.18483	712336	601211584	29.0517
790	1.26582	624100	493039000	28.1069	845	1.18343	714025	603351125	29.0689
791	1.26422	625681	494913671	28.1247	846	1.18203	715716	605495736	29.0861
792	1.26263	627264	496793088	28.1425	847	1.18064	717409	607645423	29.1033
793	1.26103	628849	498677257	28.1603	848	1.17925	719104	609800192	29.1204
794	1.25945	630436	500566184	28.1780	849	1.17786	720801	611960049	29.1376
795	1.25786	632025	502459875	28.1957	850	1.17647	722500	614125000	29.1548
796	1.25628	633616	504358336	28.2135	851	1.17509	724201	616295051	29.1719
797	1.25471	635209	506261573	28.2312	852	1.17371	725904	618470208	29.1890
798	1.25313	636804	508169592	28.2489	853	1.17233	727609	620650477	29.2062
799	1.25156	638401	510082399	28.2666	854	1.17096	729316	622835864	29.2233
800	1.25000	640000	512000000	28.2843	855	1.16959	731025	625026375	29.2404
801	1.24844	641601	513922401	28.3019	856	1.16822	732736	627222016	29.2575
802	1.24688	643204	515849608	28.3196	857	1.16686	734449	629422793	29.2746
803	1.24533	644809	517781627	28.3373	858	1.16550	736164	631628712	29.2916
804	1.24378	646416	519718464	28.3549	859	1.16414	737881	633839779	29.3087
805	1.24224	648025	521660125	28.3725	860	1.16279	739600	636056000	29.3258 . 29.3428 29.3598 29.3769 29.3939
806	1.24069	649636	523606616	28.3901	861	1.16144	741321	638277381	
807	1.23916	651249	525557943	28.4077	862	1.16009	743044	640503928	
808	1.23762	652864	527514112	28.4253	863	1.15875	744769	642735647	
809	1.23609	654481	529475129	28.4429	864	1.15741	746496	644972544	
810	1.23457	656100	531441000	28.4605	865	1.15607	748225	647214625	29.4109
811	1.23305	657721	533411731	28.4781	866	1.15473	749956	649461896	29.4279
812	1.23153	659344	535387328	28.4956	867	1.15340	751689	651714363	29.4449
813	1.23001	660969	537367797	28.5132	868	1.15207	753424	653972032	29.4618
814	1.22850	662596	539353144	28.5307	869	1.15075	755161	656234909	29.4788
815	1.22699	664225	541343375	28.5482	870	1.14943	756900	658503000	29.4958
816	1.22549	665856	543338496	28.5657	871	1.14811	758641	660776311	29.5127
817	1.22399	667489	545338513	28.5832	872	1.14679	760384	663054848	29.5296
818	1.22249	669124	547343432	28.6007	873	1.14548	762129	665338617	29.5466
819	1.22100	670761	549353259	28.6182	874	1.14416	763876	667627624	29.5635
820	1.21951	672400	551368000	28.6356	875	1.14286	765625	669921875	29.5804
821	1.21803	674041	553387661	28.6531	876	1.14155	767376	672221376	29.5973
822	1.21655	675684	555412248	28.6705	877	1.14025	769129	674526133	29.6142
823	1.21507	677329	557441767	28.6880	878	1.13895	770884	676836152	29.6311
824	1.21359	678976	559476224	28.7054	879	1.13766	772641	679151439	29.6479
825	1.21212	680625	561 51 562 5	28.7228	880	1.13636	774400	681472000	29.6648
826	1.21065	682276	563 559 97 6	28.7402	881	1.13507	776161	683797841	29.6816
827	1.20919	683929	565 60 92 83	28.7576	882	1.13379	777924	686128968	29.6985
828	1.20773	685584	567 663 552	28.7750	883	1.13250	779689	688465387	29.7153
829	1.20627	687241	569 7 22 7 8 9	28.7924	884	1.13122	781456	690807104	29.7321
830	I.20482	688900	571787000	28.8097	885	1.12994	783225	693154125	29.7489
831	I.20337	690561	573856191	28.8271	886	1.12867	784996	695506456	29.7658
832	I.20192	692224	575930368	28.8444	887	1.12740	786769	697864103	29.7825
833	I.20048	693889	578009537	28.8617	888	1.12613	788544	700227072	29.7993
834	I.19904	695556	580093704	28.8791	889	1.12486	7 90321	702595369	29.8161

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

n	1000.1	n^2	n ⁸	√n	n	1000.1	n^2	n ³	\n
890	1.12360	792100	704969000	29.8329	945	1.05820	893025	843908625	30.7409
891	1.12233	793881	707347971	29.8496	946	1.05708	894916	846590536	30.7571
892	1.12108	795664	709732288	29.8664	947	1.05597	896809	849278123	30.7734
893	1.11982	797449	712121957	29.8831	948	1.05485	898704	851971392	30.7896
894	1.11857	799236	714516984	29.8998	949	1.05374	900601	854670349	30.8058
895	1.11732	801025	716917375	29.9166	950	1.05263	902500	857375000	30.8221
896	1.11607	802816	719323136	29.9333	951	1.05152	904401	860085351	30.8383
897	1.11483	804609	721734273	29.9500	952	1.05042	906304	862801408	30.8545
898	1.11359	806404	724150792	29.9666	953	1.04932	908209	865523177	30.8707
899	1.11235	808201	726572699	29.9833	954	1.04822	910116	868250664	30.8869
900	1.11111	810000	729000000	30.0000	955	1.04712	912025	870983875	30.9031
901	1.10988	811801	731432701	30.0167	956	1.04603	913936	873722816	30.9192
902	1.10865	813604	733870808	30.0333	957	1.04493	915849	876467493	30.9354
903	1.10742	815409	736314327	30.0500	958	1.04384	917764	879217912	30.9516
904	1.10619	817216	738763264	30.0666	959	1.04275	919681	881974079	30.9677
905	1.10497	819 0 25	741217625	30.0832	960	1.04167	921600	884736000	30.9839
906	1.10375	820836	743677416	30.0998	961	1.04058	923521	887503681	31.0000
907	1.10254	822649	746142643	30.1164	962	1.03950	925444	890277128	31.0161
908	1.10132	824464	748613312	30.1330	963	1.03842	927369	893056347	31.0322
909	1.10011	826281	751089429	30.1496	964	1.03734	929296	895841344	31.0483
910	1.09890	828100	753571000	30.1662	965	1.03627	931225	898632125	31.0644
911	1.09769	829921	756058031	30.1828	966	1.03520	933156	901428696	31.0805
912	1.09649	831744	758550528	30.1993	967	1.03413	935089	904231063	31.0966
913	1.09529	833569	761048497	30.2159	968	1.03306	937024	907039232	31.1127
914	1.09409	835396	763551944	30.2324	969	1.03199	938961	909853209	31.1288
915	1.09290	837225	766060875	30.2490	970	1.03093	940900	912673000	31.1448
916	1.09170	839056	768575296	30.2655	971	1.02987	942841	915498611	31.1609
917	1.09051	840889	771095213	30.2820	972	1.02881	944784	918330048	31.1769
918	1.08932	842724	773620632	30.2985	973	1.02775	946729	921167317	31.1929
919	1.08814	844561	776151559	30.3150	974	1.02669	948676	924010424	31.2090
920	1.08696	846400	778688000	30.3315	975	1.02564	950625	926859375	31.2250
921	1.08578	848241	781229961	30.3480	976	1.02459	952576	929714176	31.2410
922	1.08460	850084	783777448	30.3645	977	1.02354	954529	932574833	31.2570
923	1.08342	851929	786330467	30.3809	978	1.02249	956484	935441352	31.2730
924	1.08225	853776	788889024	30.3974	979	1.02145	958441	938313739	31.2890
925	1.08108	855 625	791453125	30.4138	980	1.02041	960400	941192000	31.3050
926	1.07991	857476	794022776	30.4302	981	1.01937	962361	944076141	31.3209
927	1.07875	859329	796597983	30.4467	982	1.01833	9643 24	946966168	31.3369
928	1.07759	861184	799178752	30.4631	983	1.01729	966289	949862087	31.3528
929	1.07643	863041	801 765 089	30.4795	984	1.01626	968 25 6	952763904	31.3688
930	1.07527	864900	804357000	30.4959	985	1.01523	970 2 25	955671625	31.3847
931	1.07411	866761	806954491	30.5123	986	1.01420	972196	958585256	31.4006
932	1.07296	868624	809557568	30.5287	987	1.01317	9741 6 9	961504803	31.4166
933	1.07181	870489	812166237	30.5450	988	1.01215	976144	964430272	31.4325
934	1.07066	872356	814780 5 04	30.5614	989	1.01112	978121	967361669	31.4484
935	1.06952	87 422 5	817400375	30.5778	990	1.01010	980100	970299000	31.4643
936	1.06838	876096	820025856	30.5941	991	1.00908	982081	973242271	31.4802
937	1.06724	877969	822656953	30.6105	992	1.00806	984064	976191488	31.4960
938	1.06610	879844	825293672	30.6268	993	1.00705	986049	9 7 9146657	31.5119
939	1.06496	881 72 1	827936019	30.6431	994	1.00604	988036	982107784	31.5278
940	1.06383	883600	830584000	30.6594	995	I.00503	990025	985074875	31.5436
941	1.06270	885481	833237621	30.6757	996	I.00402	992016	988047936	31.5595
942	1.06157	887364	835896888	30.6920	997	I.0030I	994009	991026973	31.5753
943	1.06045	889249	838561807	30.7083	998	I.00200	996004	994011992	31.5911
944	1.05932	891136	841232384	30.7246	999	I.00100	998001	997002999	31.6070

TABLE 7.
LOGARITHMS.

N.	0	1	2	3	4	5	6	7	8	9	10
100	0000	0004	0009	0013	0017	0022	0026	0030	0035	0039	0043
101	0043	0048	0052	0056	0060	0065	0069	0073	0077	0082	0086
102	0086	0090	0095	0099	0103	0107	0111	0116	0120	0124	0128
103	0128	0133	0137	0141	0145	0149	0154	0158	0162	0166	0170
104	0170	0175	0179	0183	0187	0191	0195	0199	0204	0208	0212
105	0212	0216	0220	0224	0228	0233	0237	024I	0245	0249	0253
106	0253	0257	0261	0265	0269	0273	0278	0282	0286	0290	0294
107	0294	0298	0302	0306	0310	0314	0318	0322	0326	0330	0334
108	0334	0338	0342	0346	0350	0354	0358	0362	0366	0370	0374
109	0374	0378	0382	0386	0390	0394	0398	0402	0406	0410	0414
110	0414	0418	0422	0426	0430	0434	0438	0441	0445	0449	0453
111	0453	0457	0461	0465	0469	0473	0477	0481	0484	0488	0492
112	0492	0496	0500	0504	0508	0512	0515	0519	0523	0527	0531
113	0531	0535	0538	0542	0546	0550	0554	0558	0561	0565	0569
114	0569	0573	0577	0580	0584	0588	0592	0596	0599	0603	0607
115	0607	0611	0615	0618	0622	0626	0630	0633	0637	0641	0645
116	0645	0648	0652	0656	0660	0663	0667	0671	0674	0678	0682
117	0682	0686	0689	0693	0697	0700	0704	0708	0711	0715	0719
118	0719	0722	0726	0730	0734	0737	0741	0745	0748	0752	0755
119	0755	0759	0763	0766	0 7 70	0774	0777	0781	0785	0788	0792
120	0792	0795	0799	0803	0806	0810	0813	081 7	0821	0824	0828
121	0828	0831	0835	0839	0842	0846	0849	0853	0856	0860	0864
122	0864	0867	0871	0874	0878	0881	0885	0888	0892	0896	0899
123	0899	0903	0906	0910	0913	0917	0920	0924	0927	0931	0934
124	0934	0938	0941	0945	0948	0952	0955	0959	0962	0966	0969
125	0969	0973	0976	0980	0983	0986	0990	0993	0997	1000	1004
126	1004	1007	1011	1014	1017	1021	1024	1028	1031	1035	1038
127	1038	1041	1045	1048	1052	1055	1059	1062	1065	1069	1072
128	1072	1075	1079	1082	1086	1089	1092	1096	1099	1103	1106
129	1106	1109	1113	1116	1119	1123	1126	1129	1133	1136	1139
130	1139	1143	1146	1149	1153	1156	11 5 9	1163	1166	1169	1173
131	1173	1176	1179	1183	1186	1189	1193	1196	1199	1202	1206
132	1206	1209	1212	1216	1219	1222	1225	1229	1232	1235	1239
133	1239	1242	1245	1248	1252	1255	1258	1261	1265	1268	1271
134	1271	1274	1278	1281	1284	1287	1290	1294	1297	1300	1303
135	1303	1307	1310	1313	1316	1319	1323	1326	1329	1332	1335
136	1335	1339	1342	1345	1348	1351	1355	1358	1361	1364	1367
137	1367	1370	1374	1377	1380	1383	1386	1389	1392	1396	1399
138	1399	1402	1405	1408	1411	1414	1418	1421	1424	1427	1430
139	1430	1433	1436	1440	1443	1446	1449	1452	1455	1458	1461
140	1461	1464	1467	1471	1474	1477	1480	1483	1486	1489	1492
141	1492	1495	1498	1501	1504	1508	1511	1514	1517	1520	1523
142	1523	1526	1529	1532	1535	1538	1541	1544	1547	1550	1553
143	1553	1556	1559	1562	1565	1569	1572	1575	1578	1581	1584
144	1584	1587	1590	1593	1596	1599	1602	1605	1608	1611	1614
145	1614	1617	1620	1623	1626	1629	1632	1635	1638	1641	1644
146	1644	1647	1649	1652	1655	1658	1661	1664	1667	1670	1673
147	1673	1676	1679	1682	1685	1688	1691	1694	1697	1700	1703
148	1703	1706	1708	1711	1714	1717	1720	1723	1726	1729	1732
149	1732	1735	1738	1741	1744	1746	1749	1752	1755	1758	1761

LOGARITHMS.

N.	0	1	2	3	4	5	6	7	8	9	10
150	1761	1764	1767	1770	1772	1775	1778	1781	1784	1787	1790
151	1790	1793	1796	1798	1801	1804	1807	1810	1813	1816	1818
152	1818	1821	1824	1827	1830	1833	1836	1838	1841	1844	1847
153	1847	1850	1853	1855	1858	1861	1864	1867	1870	1872	1875
154	1875	1878	1881	1884	1886	1889	1892	1895	1898	1901	1903
155	190 3	1906	1909	1912	1915	1917	1920	1923	1926	1928	1931
156	1931	1934	1937	1940	1942	1945	1948	1951	1953	1956	1959
157	1959	1962	1965	1967	1970	1973	1976	1978	1981	1984	1987
158	1987	1989	1992	1995	1998	2000	2003	2006	2009	2011	2014
159	2014	2017	2019	2022	2025	2028	2030	2033	2036	2038	2041
160	204 I	2044	2047	2049	2052	2055	2057	2060	2063	2066	2068
161	2068	2071	2074	2076	2079	2082	2084	2087	2090	2092	2095
162	2095	2098	2101	2103	2106	2109	2111	2114	2117	2119	2122
163	2122	2125	2127	2130	2133	2135	2138	2140	2143	2146	2148
164	2148	2151	2154	2156	2159	2162	2164	2167	2170	2172	2175
165	2175	2177	2180	2183	2185	2188	2191	2193	2196	2198	2201
166	2201	2204	2206	2209	2212	2214	2217	2219	2222	2225	2227
167	2227	2230	2232	2235	2238	2240	2243	2245	2248	2251	2253
168	2253	2256	2258	2261	2263	2266	2269	2271	2274	2276	2279
169	2279	2281	2284	2287	2289	2292	2294	2297	2299	2302	2304
170	2304	2307	2310	2312	2315	2317	2320	2322	2325	2327	2330
171	2330	2333	2335	2338	2340	2343	2345	2348	2350	2353	2355
172	2355	2358	2360	2363	2365	2368	2370	2373	2375	2378	2380
173	2380	2383	2385	2388	2390	2393	2395	2398	2400	2403	2405
174	2405	2408	2410	2413	2415	2418	2420	2423	2425	2428	2430
175	2430	2433	2435	2438	2440	2443	2445	2448	2450	2453	2455
176	2455	2458	2460	2463	2465	2467	2470	2472	2475	2477	2480
177	2480	2482	2485	2487	2490	2492	2494	2497	2499	2502	2504
178	2504	2507	2509	2512	2514	2516	2519	2521	2524	2526	2529
179	25 29	2531	2533	2536	2538	2541	2543	2545	2548	2550	2553
180	2553	2555	2558	2560	2562	2565	2567	2570	2572	2574	2577
181	2577	2579	2582	2584	2586	2589	2591	2594	2596	2598	2601
182	2601	2603	2605	2608	2610	2613	2615	2617	2620	2622	2625
183	2625	262 7	2629	2632	2634	2636	2639	2641	2643	2646	2648
184	2648	2651	2653	2655	2658	2660	2662	2665	2667	2669	2672
185	2672	2674	2676	2679	2681	2683	2686	2688	2690	2693	2695
186	2695	2697	2700	2702	2704	2707	2709	2711	2714	2716	2718
187	2718	2721	2723	2725	2728	2730	2732	2735	2737	2739	2742
188	2742	2744	2746	2749	2751	2753	2755	2758	2760	2762	2765
189	2765	2767	2769	2772	2774	2776	2778	2781	2783	2785	2 7 88
190	2788	2790	2792	2794	2797	2799	2801	2804	2806	2808	2810
191	2810	2813	2815	2817	2819	2822	2824	2826	2828	2831	2833
192	2833	2835	2838	2840	2842	2844	2847	2849	2851	2853	2856
193	2856	2858	2860	2862	2865	2867	2869	2871	2874	2876	2878
194	2878	2880	2882	2885	2887	2889	2891	2894	2896	2898	2900
195	2900	2903	2905	2907	2909	2911	2914	2916	2918	2920	2923
196	2923	2925	2927	2929	2931	2934	2936	2938	2940	2942	2945
197	2945	2947	2949	2951	2953	2956	2958	2960	2962	2964	2967
198	2967	2969	2971	2973	2975	2978	2980	2982	2984	2986	2989
199	2989	2991	2993	2995	2997	2999	3002	3004	3006	3008	3010

TABLE 8.

										9]	P. P		
N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5
10 11 12 13 14	0000 0414 0792 1139 1461	0043 0453 0828 1173 1492	0086 0492 0864 1206 1523	0128 0531 0899 1239 1553	0170 0569 0934 1271 1584	0212 0607 0969 1303 1614	0253 0645 1004 1335 1644	0294 0682 1038 1367 1673	0334 0719 1072 1399 1703	0374 0755 1106 1430 1732	4 4 3 3 3	8 8 7 6 6	12 11 10 10	17 15 14 13	21 19 17 16 15
15 16 17 18 19	1761 2041 2304 2553 2788	1790 2068 2330 2577 2810	1818 2095 2355 2601 2833	1847 2122 2380 2625 2856	1875 2148 2405 2648 2878	1903 2175 2430 2672 2900	1931 2201 2455 2695 2923	1959 222 7 2480 2718 2945	1987 2253 2504 2742 2967	2014 2270 2529 2765 2989	3 3 2 2 2	6 5 5 4	8 7 7 7	11 10 9 9	14 13 12 12 11
20 21 22 23 24	3010 3222 3424 3617 3802	3032 3243 3444 3636 3820	3054 3263 3464 3655 3838	3075 3284 3483 3674 3856	3096 3304 3502 3692 3874	3118 3324 3522 3711 3892	3139 3345 3541 3729 3909	3160 3365 3560 3747 3927	3181 3385 3579 3766 3945	3201 3404 3598 3784 3962	2 2 2 2	4 4 4 4	6 6 5 5	8 8 8 7 7	11 10 10 9
25 26 27 28 29	3979 4150 4314 4472 4624	3997 4166 4330 4487 4639	4014 4183 4346 4502 4654	4031 4200 4362 4518 4669	4048 4216 4378 4533 4683	4065 4232 4393 4548 4698	4082 4249 4409 4564 4713	4099 4265 4425 4579 4728	4116 4281 4440 4594 47 42	4133 4298 4456 4609 47 5 7	2 2 2 2 1	3 3 3 3	5 5 5 5 4	7 7 6 6 6	9 8 8 8 7
30 31 32 33 34	4771 4914 5051 5185 5315	4786 4928 5065 5198 5328	4800 4942 5079 5211 5340	4814 4955 5092 5224 5353	4829 4969 5105 5237 5366	4843 4983 5119 5250 5378	4857 4997 5132 5263 5391	4871 5011 5145 5276 5493	4886 5024 5159 5289 5416	4900 5038 5172 5302 5428	1 1 1	3 3 3 3	4 4 4 4 4	6 5 5 5	7 7 7 6 6
35 36 37 38 39	5441 5563 5682 5798 5911	5453 5575 5694 5809 5922	5465 5587 5705 5821 5933	5478 5599 5717 5832 5944	5490 5611 5 729 5843 5955	5502 5623 5740 5855 5966	5514 5635 5752 5866 5977	5527 5647 5763 5877 5988	5539 5658 5775 5888 5999	5551 5670 5786 5899 6010	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	4 4 3 3 3	5 5 5 5 4	6 6 6
40 41 42 43 44	6021 6128 6232 6335 6435	6031 6138 6243 6345 6444	6042 6149 6253 6355 6454	6053 6160 6263 6365 6464	6064 6170 6274 6375 6474	607 5 6180 6284 638 5 648 4	6085 6191 6294 6395 6493	6096 6201 6304 6405 6503	6107 6212 6314 6415 6513	6117 6222 6325 6425 6522	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	3 3 3 3 3	4 4 4 4 4	5 5 5 5 5
45 46 47 48 49	6532 6628 6721 6812 6902	6542 6637 6730 6821 6911	6551 6646 6739 6830 6920	6561 6656 6749 6839 6928	6571 6665 6758 6848 6937	6580 6675 6767 6857 6946	6590 6684 6776 6866 6955	6599 6693 6785 6875 6964	6609 6702 6794 6884 6972	6618 6712 6803 6893 6981	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	3 3 3 3	4 4 4 4 4	5 5 4 4
50 51 52 53 54	6990 7076 7160 7243 7324	6998 7084 7168 7251 7332	7007 7093 7177 7259 7340	7016 7101 7185 7267 7348	7024 7110 7193 7275 7356	7033 7118 7202 7284 7364	7042 7126 7210 7292 7 372	7050 7135 7218 7300 7380	7059 7143 7226 7308 7388	7067 7152 7235 7316 7396	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	3 3 2 2 2	3 3 3 3 3	4 4 4 4 4

TABLE 8 (continued).

LOGARITHMS.

	0	7		3	4	5	6	7	8	9		1	P. F		
N.	U	1	2	3	*	5	6				1	2	3	4	5
55 56 57 58 59	7404 7482 7559 7634 7709	7412 7490 7566 7642 7716	7419 7497 7574 7649 7723	7427 7505 7582 7657 7731	7435 7513 7589 7664 7738	7443 7520 7597 7672 7745	7451 7528 7604 7679 7752	7459 7535 7612 7686 7760	7466 7543 7619 7694 7767	7474 7551 7627 7701 7774	I I I I	2 2 1 1	2 2 2 2 2	3 3 3 3	4 4 4 4
60 61 62 63 64	7 7 82 7853 7924 7993 806 2	7789 7860 7931 8000 8069	7796 7868 7938 8007 8075	7803 7875 7945 8014 8082	7810 7882 7952 8021 8089	7818 7889 7959 8028 8096	7825 7896 7966 8035 8102	7832 7903 7973 8041 8109	7839 7910 7980 8048 8116	7846 7917 7987 8055 8122	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	3 3 3 3	4 4 3 3 3 3
65 66 67 68 69	8129 8195 8261 8325 8388	8136 8202 8267 8331 8395	8142 8209 8274 8338 8401	8149 8215 8280 8344 8407	8156 8222 8287 8351 8414	8162 8228 8293 8357 8420	8169 823 5 8299 8363 8426	8176 8241 8306 8370 8432	8182 8248 8312 8376 8439	8189 8254 8319 8382 8445	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I I I I	2 2 2 2	3 3 3 3	3 3 3 3 3
70 71 72 73 74	8451 8513 8573 8633 8692	8457 8519 8579 8639 8698	8463 8525 8585 8645 8704	8470 8531 8591 8651 8710	8476 8537 8597 8657 8716	8482 8543 8603 8663 8722	8488 8549 8609 8669 8727	8494 8555 8615 8675 8733	8500 8561 8621 8681 8739	8506 8567 8627 8686 8745	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I I I I	2 2 2 2	2 2 2 2	3 3 3 3 3
75 76 77 78 79	8751 8808 8865 8921 8976	8756 8814 8871 8927 8982	8762 8820 8876 8932 8987	8768 8825 8882 8938 8993	8774 8831 8887 8943 8998	8779 8837 8893 8949 9004	878 5 8842 8899 8954 9009	8791 8848 8904 8960 9015	879 7 8854 8910 896 5 9020	8802 8859 8915 8971 9025	IIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	2 2 2 2	3 3 3 3 3
80 81 82 83 84	9031 9085 9138 9191 9243	9036 9090 9143 9196 9 248	9042 9096 9149 9201 9253	9047 9101 9154 9206 9258	9053 9106 9159 9212 9263	9058 9112 9165 9217 9269	9063 9117 9170 9222 9274	9069 9122 9175 9227 9279	9074 9128 9180 9232 9284	9079 9133 9186 9238 9289	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	2 2 2 2	3 3 3 3 3
85 86 87 88 89	9294 9345 9395 9445 9494	9299 9350 9400 9450 9499	9304 9355 9405 9455 9504	9309 9360 9410 9460 95 09	9315 9365 9415 9465 9513	9320 9370 9420 9469 9518	9325 9375 9425 9474 9523	9330 9380 9430 9479 95 28	9335 9385 9435 9484 9533	9340 9390 9440 9489 953 8	I 0 0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 1 1 1	2 2 2 2	3 2 2 2
90 91 92 93 94	9542 9590 9638 9685 9731	9547 9595 9643 9689 9736	9552 9600 9647 9694 9741	9557 9605 9652 9699 9745	9562 9609 9657 9703 9750	9566 9614 9661 9708 9754	9571 9619 9666 9713 9759	9576 9624 9671 9717 9763	9581 9628 9675 9722 9768	9586 9633 9680 9727 9773	00000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	2 2 2 2 2
95 96 97 98 99	977 7 98 23 9868 9912 99 5 6	9782 9827 9872 9917 9961	9786 9832 9877 9921 9965	9791 9836 9881 9926 9969	9795 9841 9886 9930 9974	9800 9845 9890 9934 9978	980 5 9850 9894 9939 998 3	9809 9854 9899 9943 9987	9814 9859 9903 9948 9991	9818 9863 9908 9952 9996	00000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	2 2 2 2

TABLE 9.
ANTILOGARITHMS.

		1 2 3										F	. P		
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5
.00 .01 .02 .03	1000 1023 1047 1072 1096	1002 1026 1050 1074 1099	1005 1028 1052 1076 1102	1007 1030 1054 1079 1104	1009 1033 1057 1081 1107	1012 1035 1059 1084 1109	1014 1038 1062 1086	1016 1040 1064 1089	1019 1042 1067 1091	1021 1045 1069 1094 1119	00000	0 0 0 0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I I I I	I
.05 .06 .07 .08	1122 1148 1175 1202 1230	1125 1151 1178 1205 1233	1127 1153 1180 1208 1236	1130 1156 1183 1211 1239	1132 1159 1186 1213 1242	1135 1161 1189 1216 1245	1138 1164 1191 1219	1140 1167 1194 1222 1250	1143 1169 1197 1225 1253	1146 1172 1199 1227 1256	00000	I I I I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I I I I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
.10 .11 .12 .13	1259 1288 1318 1349 1380	1262 1291 1321 1352 1384	1265 1294 1324 1355 1387	1268 1297 1327 1358 1390	1271 1300 1330 1361 1393	1274 1303 1334 1365 1396	1276 1306 1337 1368 1400	1279 1309 1340 1371 1403	1282 1312 1343 1374 1406	1285 1315 1346 1377 1409	00000	I I I I	I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I 2 2 2 2 2
.15 .16 .17 .18	1413 1445 1479 1514 1549	1416 1449 1483 1517 1552	1419 1452 1486 1521 1556	1422 1455 1489 1524 1560	1426 1459 1493 1528 1563	1429 1462 1496 1531 1567	1432 1466 1500 1535 1570	1435 1469 1503 1538 1574	1439 1472 1507 1542 1578	1442 1476 1510 1545 1581	00000	I I I I	I I I I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2
.20 .21 .22 .23 .24	1585 1622 1660 1698 1738	1589 1626 1663 1702 1742	1592 1629 1667 1706 1746	1596 1633 1671 1710 1750	1600 1637 1675 1714 1 754	1603 1641 1679 1718 1758	1607 1644 1683 1722 1762	1611 1648 1687 1726 1766	1614 1652 1690 1730 1770	1618 1656 1694 1734 1774	00000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	III	I 2 2 2 2	2 2 2 2
.25 .26 .27 .28 .29	1778 1820 1862 1905 1950	1782 1824 1866 1910	1786 1828 1871 1914 1959	1791 1832 1875 1919 1963	1795 1837 1879 1923 1968	1799 1841 1884 1928 1972	1803 1845 1888 1932 1977	1807 1849 1892 1936 1982	1811 1854 1897 1941 1986	1816 1858 1901 1945 1991	00000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	2 2 2 2 2
.30 .31 .32 .33 .34	1995 2042 2089 2138 2188	2000 2046 2094 2143 2193	2004 2051 2099 2148 2198	2009 2056 2104 2153 2203	2014 2061 2109 2158 2208	2018 2065 2113 2163 2213	2023 2070 2118 2168 2218	2028 2075 2123 2173 2223	2032 2080 2128 2178 2228	2037 2084 2133 2183 2234	0 0 0 0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I I I I 2	2 2 2 2	2 2 2 3
.35 .36 .37 .38 .39	2291	2244 2296 2350 2404 2460	2249 2301 2355 2410 2466		22 5 9 2312 2366 2421 2477	2265 2317 2371 2427 2483	2270 2323 2377 2432 2489	227 5 2328 2382 2438 2495	2280 2333 2388 2443 2500	2286 2339 2393 2449 2506	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	2 2 2 2	3 3 3 3 3
.40 .41 .42 .43	2570 2630 2692	2518 2576 2636 2698 2761	2642	2649 2710	2535 2594 2655 2716 2780	2541 2600 2661 2723 2786	2547 2606 2667 2729 2793	2553 2612 2673 2735 2799	2559 2618 2679 2742 2805	2564 2624 2685 2748 2812	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	2 2 2 3 3	3 3 3 3 3
.45 .46 .47 .48	2884 2951 3020	2825 2891 2958 3027 3097	2897 2965 3034	2972 3041	2844 2911 2979 3048 3119	2851 2917 2985 3055 3126	2858 2924 2992 3062 3133	2864 2931 2999 3069 3141	2871 2938 3006 3076 3148	2877 2944 3013 3083 3155	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	3 3 3 3	3 3 4 4

ANTILOGARITHMS.

	0	1	2	3 1	4	5	6	7	8	9		J	P. F		
				3 1	*						1	2	3	4	5
.50 .51 .52 .53 .54	3162 3236 3311 3388 3467	3170 3243 3319 3396 3475	3 ¹ 77 3 ² 51 33 ² 7 34 ⁰ 4 34 ⁸ 3	3184 3258 3334 3412 3491	3192 3266 3342 3420 3499	3199 3273 3350 3428 3508	3206 3281 3357 3436 3516	3214 3289 3365 3443 3524	3221 3296 3373 3451 3532	3228 3304 3381 3459 3540	I I I I	I 2 2 2	2 2 2 2	3 3 3 3 3	4 4 4 4 4
.55 .56 .57 .58 .59	3548 3631 3715 3802 3890	3556 3639 3724 3811 3899	3565 3648 3733 3819 3908	3573 3656 3741 3828 3917	3581 3664 3750 3837 3926	3589 3673 3758 3846 3936	3597 3681 3767 3855 3945	3606 3690 3776 3864 3954	3614 3698 3784 3873 3963	3622 3707 3793 3882 3972	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	3 3 3 3	3 3 4 4	4 4 4 5
.60 .61 .62 .63 .64	3981 4074 4169 4266 4365	3990 4083 4178 4276 437 5	3999 4093 4188 4285 4385	4009 4102 4198 4295 4395	4018 4111 4207 4305 4406	4027 4121 4217 4315 4416	4036 4130 4227 4325 4426	4046 4140 4236 4335 4436	4055 4150 4246 4345 4446	4064 4159 4256 4355 4457	1 1 1 1	2 2 2 2	3 3 3 3	4 4 4 4	5 5 5 5 5 5
.65 .66 .67 .68 .69	4467 4571 4677 4786 4898	4477 4581 4688 4797 4909	4487 4592 4699 4808 4920	4498 4603 4710 4819 4932	4508 4613 4721 4831 4943	4519 4624 4732 4842 4955	4529 4634 4742 4853 4966	4539 4645 4753 4864 4977	4550 4656 4764 4875 4989	4560 4667 4775 4887 5000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2	3 3 3 3	4 4 4 5	5 5 5 6 6
.70 .71 .72 .73 .74	5012 5129 5248 5370 5495	5023 5140 5260 5383 5508	5035 5152 5272 5395 5521	5047 5164 5284 5408 5534	5058 5176 5297 5420 5546	5070 5188 5309 5433 5559	5082 5200 5321 5445 5572	5093 5212 5333 5458 5585	5105 5224 5346 5470 5598	5117 5236 5358 5483 5610	I I I	2 2 3 3	4 4 4 4 4	5 5 5 5 5	6 6 6 6
. 75 .76 .77 .78 .79	5623 5754 5888 6026 6166	563 6 5768 5902 6039 6180	5649 5781 5916 6053 6194	5662 5794 5929 6067 6209	5675 5808 5943 6081 6223	5689 5821 5957 6095 6237	5702 5834 5970 6109 6252	5715 5848 5984 6124 6266	5728 5861 5998 6138 6281	5741 5875 6012 6152 6295	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	3 3 3 3	4 4 4 4	5 5 5 6 6	7 7 7 7 7 7
.80 .81 .82 .83 .84	6310 6457 6607 6761 6918	6324 6471 6622 6776 6934	6339 6486 663 7 6792 6950	6353 6501 6653 6808 6966	6368 6516 6668 6823 6982	6383 6531 6683 6839 6998	6397 6546 6699 6855 7015	6412 6561 6714 6871 7031	6427 6577 6730 6887 7 047	6442 6592 6745 6902 7063	I 2 2 2 2 2	3 3 3 3 3	4 5 5 5 5	6 6 6 6	7 8 8 8 8
.85 .86 .87 .88 .89	7079 7244 7413 7586 7762	7096 7261 7430 7603 7780	7112 7278 7447 7621 7798	7129 7295 7464 7638 7816	7145 7311 7482 7656 7834	716 1 7328 7499 7674 7852	7178 7345 7516 7691 7870	7194 7362 7534 7709 7889	7211 7379 7551 7727 7907	7228 7396 7568 7745 7925	2 2 2 2	3 3 4 4	5 5 5 5 5	7 7 7 7 7	8 8 9 9
.90 .91 .92 .93 .94	7943 8128 8318 8511 8710	7962 8147 8337 8531 8730	7980 8166 8356 8551 8750	7998 8185 8375 8570 8770	8017 8204 8395 8590 8790	8035 8222 8414 8610 8810	8054 8241 8433 8630 8831	8072 8260 8453 8650 8851	809 1 8279 8472 8670 8872	8110 8299 8492 8690 8892	2 2 2 2	4 4 4 4 4	6 6 6 6	7 8 8 8	9 9 10 10
.95 .96 .97 .98 .99	891 3 9120 9333 9550 9772	8933 9141 9354 9572 9795	8954 9162 9376 9594 981 7	8974 9183 9397 9616 9840	8995 9204 9419 9638 9863	9016 9226 9441 9661 9886	9036 9247 9462 9683 9908	9057 9268 9484 9705 9931	9078 9290 9506 9727 9954	9099 9311 9528 9750 9977	2 2 2 2	4 4 4 5	6 7 7 7	8 8 9 9	11 11 11 10

Table 10.
ANTILOGARITHMS.

	0	1	2	3	4	5	6	7	8	9	10
.900	7943	7945	7947	7949	7951	7952	7954	7956	7958	7960	7962
.901	7962	7963	7965	7967	7969	7971	7973	7974	7976	7978	7980
.902	7980	7982	7984	7985	7987	7989	7991	7993	7995	7997	7998
.903	7998	8000	8002	8004	8006	8008	8009	8011	8013	8015	8017
.904	8017	8019	8020	8022	8024	8026	8028	8030	8032	8033	8035
.905	8035	8037	8039	8041	8043	8045	8046	8048	8050	8052	8054
.906	8054	8056	8057	8059	8061	8063	8065	8067	8069	8070	8072
.907	8072	8074	8076	8078	8080	8082	8084	8085	8087	8089	8091
.908	8091	8093	8095	8097	8098	8100	8102	8104	8106	8108	8110
.909	8110	8111	8113	8115	8117	8119	8121	8123	8125	8126	8128
.910	8128	8130	8132	8134	8136	8138	8140	8141	8143	8145	8147
.911	8147	8149	8151	8153	8155	8156	8158	8168	8162	8164	8166
.912	8166	8168	8170	8171	8173	8175	8177	8179	8181	8183	8185
.913	8185	8187	8188	8190	8192	8194	8196	8198	8200	8202	8204
.914	8204	8205	8207	8209	8211	8213	8215	8217	8219	8221	8222
.915 .916 .917 .918	8222 8241 8260 8279 8299	8224 8243 8262 8281 8300	8226 8245 8264 8283 8302	8228 8247 8266 8285 8304	8230 8249 8268 8287 8306	8232 8251 8270 8289 8308	8234 8253 8272 8291 8310	8236 8255 8274 8293 8312	8238 8257 8276 8295 8314	8239 8258 8278 8297 8316	8241 8260 8279 8299 8318
.920	8318	8320	8321	8323	8325	8327	8329	8331	8333	8335	8337
.921	8337	8339	8341	8343	8344	8346	8348	8350	8352	8354	8356
.922	8356	8358	8360	8362	8364	8366	8368	8370	8371	8373	8375
.923	8375	8377	8379	8381	8383	8385	8387	8389	8391	8393	8395
.924	8395	8397	8398	8400	8402	8404	8406	8408	8410	8412	8414
.925	8414	8416	8418	8420	8422	8424	8426	8428	8429	8431	8433
.926	8433	8435	8437	8439	8441	8443	8445	8447	8449	8451	8453
.927	8453	8455	8457	8459	8461	8463	8464	8466	8468	8470	8472
.928	8472	8474	8476	8478	8480	8482	8484	8486	8488	8490	8492
.929	8492	8494	8496	8498	8500	8502	8504	8506	8507	8509	8511
.930	8511	8513	8515	8517	8519	8521	8523	8525	8527	8529	8531
.931	8531	8533	8535	8537	8539	8541	8543	8545	8547	8549	8551
.932	8551	8553	8555	8557	8559	8561	8562	8564	8566	8568	8570
.933	8570	8572	8574	8576	8578	8580	8582	8584	8586	8588	8590
.934	8590	8592	8594	8596	8598	8600	8602	8604	8606	8608	8610
.935	8610	8612	8614	8616	8618	8620	8622	8624	8626	8628	8630
.936	8630	8632	8634	8636	8638	8640	8642	8644	8646	8648	8650
.937	8650	8652	8654	8656	8658	8660	8662	8664	8666	8668	8670
.938	8670	8672	8674	8676	8678	8680	8682	8684	8686	8688	8690
.939	8690	8692	8694	8696	8698	8700	8702	8704	8706	8708	8710
.940	8710	8712	8714	8716	8718	8720	8722	8724	8726	8728	8730
.941	8730	8732	8734	8736	8738	8740	8742	8744	8746	8748	8750
.942	8750	8752	8754	8756	8758	8760	8762	8764	8766	8768	8770
.943	8770	8772	8774	8776	8778	8780	8782	8784	8786	8788	8790
.944	8790	8792	8794	8796	8798	8800	8802	8804	8806	8808	8810
.945	8810	8813	8815	8817	8819	8821	8823	8825	8827	8829	8831
.946	8831	8833	8835	8837	8839	8841	8843	8845	8847	8849	8851
.947	8851	8853	8855	8857	8859	8861	8863	8865	8867	8870	8872
.948	8872	8874	8876	8878	8880	8882	8884	8886	8888	8890	8892
.949	8892	8894	8896	8898	8900	8902	8904	8906	8908	8910	8913

ANTILOGARITHMS.

	О	1	2	3	4	5	6	7	8	9	10
.950	8913	8915	8917	8919	8921	8923	8925	8927	8929	8931	8933
.951	8933	8935	8937	8939	8941	8943	8945	8947	8950	8952	8954
.952	8954	8956	8958	8960	8962	8964	8966	8968	8970	8972	8974
.953	8974	8976	8978	8980	8983	8985	8987	8989	8991	8993	8995
.954	8995	8997	8999	9001	9003	9005	9007	9009	9012	9014	9016
.955	9016	9018	9020	9022	9024	9026	9028	9030	9032	9034	9036
.956	9036	9039	9041	9043	9045	9047	9049	9051	9053	9055	9057
.957	9057	9059	9061	9064	9066	9068	9070	9072	9074	9076	9078
.958	9078	9080	9082	9084	9087	9089	9091	9093	9095	9097	9099
.959	9099	9101	9103	9105	9108	9110	9112	9114	9116	9118	9120
.960	9120	9122	9124	9126	9129	9131	9133	9135	9137	9139	9141
.961	9141	9143	9145	9147	9150	9152	9154	9156	9158	9160	9162
.962	9162	9164	9166	9169	9171	9173	9175	9177	9179	9181	9183
.963	9183	9185	9188	9190	9192	9194	9196	9198	9200	9202	9204
.964	9204	9207	9209	9211	9213	9215	9217	9219	9221	9224	9226
.965	9226	9228	9230	9232	9234	9236	9238	9241	9243	9245	9247
.966	9247	9249	9251	9253	9256	9258	9260	9262	9264	9266	9268
.967	9268	9270	9273	9275	9277	9279	9281	9283	9285	9288	9290
.968	9290	9292	9294	9296	9298	9300	9303	9305	9307	9309	9311
.969	9311	9313	9315	9318	9320	9322	9324	9326	9328	9330	9333
.970	9333	9335	9337	9339	9341	9343	9345	9348	9350	93 52	9354
.971	9354	9356	9358	9361	9363	9365	9367	9369	9371	9373	9376
.972	9376	9378	9380	9382	9384	9386	9389	9391	9393	9395	9397
.973	9397	9399	9402	9404	9406	9408	9410	9412	9415	9417	9419
.974	9419	9421	9423	9425	9428	9430	9432	9434	9436	9438	9441
.975	9441	9443	9445	9447	9449	9451	9454	9456	9458	9460	9462
.976	9462	9465	9467	9469	9471	9473	9475	9478	9480	9482	9484
.977	9484	9486	9489	9491	9493	9495	9497	9499	9502	9504	9506
.978	9506	9508	9510	9513	9515	9517	9519	9521	9524	9526	9528
.979	9528	9530	9532	9535	9537	9539	9541	9543	9546	9548	9550
.980	9550	9552	9554	9557	9559	9561	9563	9565	9568	9570	9572
.981	9572	9574	9576	9579	9581	9583	9585	9587	9590	9592	9594
.982	9594	9596	9598	9601	9603	9605	9607	9609	9612	9614	9616
.983	9616	9618	9621	9623	9625	9627	9629	9632	9634	9636	9638
.984	9638	9641	9643	9645	9647	9649	9652	9654	9656	9658	9661
.985 .986 .987 .988	9661 9683 9705 9727 9750	9663 9685 9707 9730 9752	9665 9687 9710 9732 9754	9667 9689 9712 9734 9757	9669 9692 9714 9736 9759	9672 9694 9716 9739 9761	9674 9696 9719 9741 9763	9676 9698 9721 9743 9766	9678 9701 9723 9745 9768	9681 97°3 97°25 9748 977°	9683 97°5 97°27 97°50 977°2
.990	9772	9775	9777	9779	9781	9784	9786	9788	9790	9793	9795
.991	9795	9797	9799	9802	9804	9806	9808	9811	9813	9815	9817
.992	9817	9820	9822	9824	9827	9829	9831	9833	9836	9838	9840
.993	9840	9842	9845	9847	9849	9851	9854	9856	9858	9861	9863
.994	9863	9865	9867	9870	9872	9874	9876	9879	9881	9883	9886
.995	9886	9888	9890	9892	9895	9897	9899	9901	9904	9906	9908
.996	9908	9911	9913	9915	9917	9920	9922	9924	9927	9929	9931
.997	9931	9933	9936	9938	9940	9943	9945	9947	9949	9952	9954
.998	9954	9956	9959	9961	9963	9966	9968	9970	9972	9975	9977
.999	9977	9979	9982	9984	9986	9988	9991	9993	9995	9998	0000

TABLE 11.

CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

(Taken from B. O. Peirce's "Short Table of Integrals," Ginn & Co.)

	1	11									
RADI- ANS.	DE- GREES.	SII	NES.	COSI	INES.	TAN	GENTS.	COTANO	GENTS.		
M M	GL	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.		
0.0000 0.0029 0.0058 0.0087 0.0116 0.0145	0°00′ 10 20 30 40 50	.0000 .0029 .0058 .0087 .0116	∞ 7.4637 .7648 .9408 8.0658 .1627	1.0000 1.0000 1.0000 1.0000 •9999	0.0000	.0000 .0029 .0058 .0087 .0116	∞ 7.4637 .7648 .9409 8.0658 .1627	≈ 343·77 171.89 114.59 85.940 68.750	∞ 2.5363 .2352 .0591 1.9342 .8373	90°00′ 50 40 30 20	1.5708 1.5679 1.5650 1.5621 1.5592 1.5563
0.0175 0.0204 0.0233 0.0262 0.0291 0.0320	1°00′ 10 20 30 40 50	.0175 .0204 .0233 .0262 .0291 .0320	8.2419 .3088 .3668 .4179 .4637 .5050	.9998 .9998 .9997 .9996 .9995	9.9999 •9999 •9999 •9998 •9998	.0175 .0204 .0233 .0262 .0291 .0320	8.2419 .3089 .3669 .4181 .4638 .5053	57.290 49.104 42.964 38.188 34.368 31.242	1.7581 .6911 .6331 .5819 .5362 .4947	89°00′ 50 40 30 20	1.5533 1.5504 1.5475 1.5446 1.5417 1.5388
0.0349 0.0378 0.0407 0.0436 0.0465 0.0495	2°00′ 10 20 30 40 50	.0349 .0378 .0407 .0436 .0465	8.5428 .5776 .6097 .6397 .6677 .6940	.9994 .9993 .9992 .9990 .9989	9.9997 .9997 .9996 .9996 .9995	.0349 .0378 .0407 .0437 .0466	8.5431 •5779 •6101 •6401 •6682 •6945	28.636 26.432 24.542 22.904 21.470 20.206	1.4569 .4221 .3899 .3599 .3318 .3055	88°00′ 50 40 30 20	1.5359 1.5330 1.5301 1.5272 1.5243 1.5213
0.0524 0.0553 0.0582 0.0611 0.0640 0.0669	3°00′ 10 20 30 40 50	.0523 .0552 .0581 .0610 .0640	8.7188 .7423 .7645 .7857 .8059 .8251	.9986 .9985 .9983 .9981 .9980	9.9994 .9993 .9993 .9992 .9991	.0524 .0553 .0582 .0612 .0641	8.7194 •7429 •7652 •7865 •8067 •8261	19.081 18.075 17.169 16.350 15.605 14.924	1.2806 .2571 .2348 .2135 .1933 .1739	87°00′ 50 40 30 20	1.5184 1.5155 1.5126 1.5097 1.5068 1.5039
0.0698 0.0727 0.0756 0.0785 0.0814 0.0844	4°00′ 10 20 30 40 50	.0698 .0727 .0756 .0785 .0814	8.8436 .8613 .8783 .8946 .9104 .9256	.9976 .9974 .9971 .9969 .9967	9.9989 .9989 .9988 .9987 .9986	.0699 .0729 .0758 .0787 .0816	8.8446 .8624 .8795 .8960 .9118 .9272	14.301 13.727 13.197 12.706 12.251 11.826	1.1554 .1376 .1205 .1040 .0882 .0728	86°00′ 50 40 30 20	1.5010 1.4981 1.4952 1.4923 1.4893 1.4864
0.0873 0.0902 0.0931 0.0960 0.0989 0.1018	5°00′ 10 20 30 40 50	·0872 ·0901 ·0929 ·0958 ·0987 .1016	8.9403 .9545 .9682 .9816 .9945 9.0070	.99 62 .9959 .9957 .9954 .9951	9.9983 .9982 .9981 .9980 .9979	.0875 .0904 .0934 .0963 .0992	8.9420 .9563 .9701 .9836 .9966 9.0093	11.430 11.059 10.712 10.385 10.078 9.7882	1.0580 .0437 .0299 .0164 .0034 0.9907	85°00′ 50 40 30 20	I.4835 I.4806 I.4777 I.4748 I.4719 I.4690
0.1047 0.1076 0.1105 0.1134 0.1164 0.1193	6°00 10 20 30 40 50	.1045 .1074 .1103 .1132 .1161	9.0192 .0311 .0426 .0539 .0648	.9945 .9942 .9939 .9936 .9932 .9929	9.9976 •9975 •9973 •9972 •9971 •9969	.1051 .1080 .1110 .1139 .1169	9.0216 .0336 .0453 .0567 .0678 .0786	9.5144 9.2553 9.0098 8.7769 8.5555 8.3450	0.9784 .9664 .9547 .9433 .9322 .9214	84°00′ 50 40 30 20 10	1.4661 1.4632 1.4603 1.4574 1.4544 1.4515
0.1222 0.1251 0.1280 0.1309 0.1338 0.1367	7°00′ 10 20 30 40 50	.1219 .1248 .1276 .1305 .1334 .1363	9.0859 .0961 .1060 .1157 .1252 .1345	.9925 .9922 .9918 .9914 .9911	9.9968 .9966 .9964 .9963 .9961	.1228 .1257 .1287 .1317 .1346 .1376	9.0891 .0995 .1096 .1194 .1291 .1385	8.1443 7.9530 7.7704 7.5958 7.4287 7.2687	0.9109 .9005 .8904 .8806 .8709 .8615	83°00′ 50 40 30 20 10	I.4486 I.4457 I.4428 I.4399 I.4370 I.4341
0.1396 0.1425 0.1454 0.1484 0.1513 0.1542	8°00′ 10 20 30 40 50	.1392 .1421 .1449 .1478 .1507	9.1436 .1525 .1612 .1697 .1781 .1863	.9903 .9899 .9894 .9890 .9886	9.9958 .9956 .9954 .9952 .9950 .9948	.1405 .1435 .1465 .1495 .1524 .1554	9.1478 .1569 .1658 .1745 .1831 .1915	7.1154 6.9682 6.8269 6.6912 6.5606 6.4348	0.8522 .8431 .8342 .8255 .8169 .8085	82°00′ 50 40 30 20 10	1.4312 1.4283 1.4254 1.4224 1.4195 1.4166
0.1571	9°00′	.1564	9:1943	.9877	9.9946		9.1997	6.3138	0.8003	81°00′	1.4137
		Nat.	NES.	Nat. SIN	ES.	Nat. COT GE	Log. TAN- NTS.	Nat. TANGE	Log.	DE- GREES.	RADI- ANS.

CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

RADI- ANS.	DE- GREES.	SIN	VES.	COS	INES.	TANG	GENTS.	COTAN	GENTS.		
RA	GRI	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.		
0.1571 0.1600 0.1629 0.1658 0.1687 0.1716	9°00′ 10 20 30 40 50	.1564 .1593 .1622 .1650 .1679 .1708	9.1943 .2022 .2100 .2176 .2251 .2324	.9877 .9872 .9868 .9863 .9858	9.9946 •9944 •9942 •9940 •9938 •9936	.1584 .1614 .1644 .1673 .1703	9.1997 .2078 .2158 .2236 .2313 .2389	6.3138 6.1970 6.0844 5.9758 5.8708 5.7694	0.8003 .7922 .7842 .7764 .7687	81°00′ 50 40 30 20	I.4137 I.4108 I.4079 I.4050 I.4021 I.3992
0.1745 0.1774 0.1804 0.1833 0.1862 0.1891	10°00′ 10 20 30 40 50	.1736 .1765 .1794 .1822 .1851	9.2397 .2468 .2538 .2606 .2674 .2740	.9848 .9843 .9838 .9833 .9827 .9822	9.9934 .9931 .9929 .9927 .9924 .9922	.1763 .1793 .1823 .1853 .1883	9.2463 .2536 .2609 .2680 .2750 .2819	5.6713 5.5764 5.4845 5.3955 5.3093 5.2257	0.7537 .7464 .7391 .7320 .7250 .7181	80°00′ 50 40 30 20	1.3963 1.3934 1.3904 1.3875 1.3846 1.3817
0.1920 0.1949 0.1978 0.2007 0.2036 0.2065	11°00′ 10 20 30 40 50	.1908 .1937 .1965 .1994 .2022 .2051	9.2806 .2870 .2934 .2997 .3058 .3119	.9816 .9811 .9805 .9799 .9793	9.9919 .9917 .9914 .9912 .9909	.1944 .1974 .2004 .2035 .2065	9.2887 .2953 .3020 .3085 .3149 .3212	5.1446 5.0658 4.9894 4.9152 4.8430 4.7729	0.7113 .7047 .6980 .6915 .6851	79°00′ 50 40 30 20	1.3788 1.3759 1.3730 1.3701 1.3672 1.3643
0.2094 0.2123 0.2153 0.2182 0.2211 0.2240	12°00′ 10 20 30 40 50	.2079 .2108 .2136 .2164 .2193 .2221	9.3179 .3238 .3296 .3353 .3410 .3466	.9781 .9775 .9769 .9763 .9757	9.9904 .9901 .9899 .9896 .9893	.2126 .2156 .2186 .2217 .2247 .2278	9.3275 .3336 .3397 .3458 .3517 .3576	4.7046 4.6382 4.5736 4.5107 4.4494 4.3897	0.6725 .6664 .6603 .6542 .6483	78°00′ 50 40 30 20	1.3614 1.3584 1.3555 1.3526 1.3497 1.3468
0.2269 0.2298 0.2327 0.2356 0.2385 0.2414	13°00′ 10 20 30 40 50	.2250 .2278 .2306 .2334 .2363 .2391	9.3521 ·3575 ·3629 ·3682 ·3734 ·3786	·9744 ·9737 ·9730 ·9724 ·9717 ·9710	9.9887 .9884 .9881 .9878 .9875 .9872	.2309 .2339 .2370 .2401 .2432 .2462	9.3634 .3691 .3748 .3804 .3859 .3914	4.3315 4.2747 4.2193 4.1653 4.1126 4.0611	o.6366 .6309 .6252 .6196 .6141 .6086	77°00′ 50 40 30 20	1.3439 1.3410 1.3381 1.3352 1.3323 1.3294
0.2443 0.2473 0.2502 0.2531 0.2560 0.2589	14°00′ 10 20 30 40 50	.2419 .2447 .2476 .2504 .2532 .2560	9.3837 •3887 •3937 •3986 •4°35 •4°83	.9703 .9696 .9689 .9681 .9674	9.9869 .9866 .9863 .9859 .9856	.2493 .2524 .2555 .2586 .2617 .2648	9.3968 .4021 .4074 .4127 .4178 .4230	4.0108 3.9617 3.9136 3.8667 3.8208 3.7760	0.6032 •5979 •5926 •5873 •5822 •5770	76°00′ 50 40 30 20	1.3265 1.3235 1.3206 1.3177 1.3148 1.3119
0.2618 0.2647 0.2676 0.2705 0.2734 0.2763	15°00′ 10 20 30 40 50	.2588 .2616 .2644 .2672 .2700 .2728	9.4130 .4177 .4223 .4269 .4314 .4359	.9659 .9652 .9644 .9636 .9628	9.9849 .9846 .9843 .9839 .9836	.2679 .2711 .2742 .2773 .2805 .2836	9.4281 •4331 •4381 •4430 •4479 •4527	3.7321 3.6891 3.6470 3.6059 3.5656 3.5261	0.5719 .5669 .5619 .5570 .5521 .5473	75°00′ 50 40 30 20	1.3090 1.3061 1.3032 1.3003 1.2974 1.2945
0.2793 0.2822 0.2851 0.2880 0.2909 0.2938	16°00′ 10 20 30 40 50	.2756 .2784 .2812 .2840 .2868 .2896	9.4403 •4447 •4491 •4533 •4576 •4618	.9613 .9605 .9596 .9588 .9580	9.9828 .9825 .9821 .9817 .9814	.2867 .2899 .2931 .2962 .2994 .3026	9.4575 .4622 .4669 .4716 .4762 .4808	3.4874 3.4495 3.4124 3.3759 3.3402 3.3052	0.5425 ·5378 ·5331 ·5284 ·5238 ·5192	74°00′ 50 40 30 20	1.2915 1.2886 1.2857 1.2828 1.2799 1.2770
0.2967 0.2996 0.3025 0.3054 0.3083 0.3113	17°00′ 10 20 30 40 50	.2924 .2952 .2979 .3007 .3035 .3062	9.4659 .4700 .4741 .4781 .4821 .4861	.9563 .9555 .9546 .9537 .9528 .9520	9.9806 .9802 .9798 .9794 .9790 .9786	.3057 .3089 .3121 .3153 .3185 .3217	9.4853 .4898 .4943 .4987 .5031 .5075	3.2709 3.2371 3.2041 3.1716 3.1397 3.1084	0.5147 .5102 .5057 .5013 .4969 .4925	73°00′ 50 40 30 20 10	1.2741 1.2712 1.2683 1.2654 1.2625 1.2595
0.3142	18°00′	.3090 Nat.	9.4900 Log.	.9511 Nat.	9.9782 Log.	.3249 Nat.	9.5118 Log.	3.0777 Nat.	0.4882 Log.	72°00′	1.2566
			INES.		NES.	CO	I'AN- NTS.		SENTS	DE- GREES.	RADI- ANS.

CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

RADI- ANS.	DE-GREES.	SIN	NES.	cos	INES.	TAN	GENTS.	COTAN	GENTS.		
RA	GE	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.		
0.3142 0.3171 0.3200 0.3229 0.3258 0.3287	18°00′ 10 20 30 40 50	.3090 .3118 .3145 .3173 .3201 .3228	9.4900 •4939 •4977 •5015 •5052 •5090	.9511 .9502 .9492 .9483 .9474	9.9782 •9778 •9774 •9770 •9765	.3249 .3281 .3314 .3346 .3378 .3411	9.5118 .5161 .5203 .5245 .5287 .5329	3.0777 3.0475 3.0178 2.9887 2.9600 2.9319	0.4882 •4839 •4797 •4755 •4713 •4671	72°00′ 50 40 30 20	1.2566 1.2537 1.2508 1.2479 1.2450 1.2421
0.3316 0.3345 0.3374 0.3403 0.3432 0.3462	19°00′ 10 20 30 40 50	.3256 .3283 .3311 .3338 .3365 .3393	9.5126 •5163 •5199 •5235 •5270 •5306	•9455 •9446 •9436 •9426 •9417 •9407	9.9757 .9752 .9748 .9743 .9739	·3443 ·3476 ·3508 ·3541 ·3574 ·3607	9.5370 .5411 .5451 .5491 .5531 .5571	2.9042 2.8770 2.8502 2.8239 2.7980 2.7725	0.4630 .4589 .4549 .4509 .4469	71°00′ 50 40 30 20	1.2392 1.2363 1.2334 1.2305 1.2275 1.2246
0.3491 0.3520 0.3549 0.3578 0.3607 0.3636	20°00′ 10 20 30 40 50	·3420 ·3448 ·3475 ·3502 ·3529 ·3557	9.5341 ·5375 ·5409 ·5443 ·5477 ·5510	·9397 ·9387 ·9377 ·9367 ·9356 ·9346	9.9730 .9725 .9721 .9716 .9711	.3640 .3673 .3706 .3739 .3772 .3805	9.5611 .5650 .5689 .5727 .5766 .5804	2.7475 2.7228 2.6985 2.6746 2.6511 2.6279	0.4389 •4350 •4311 •4273 •4234 •4196	70°00′ 50 40 30 20	1.2217 1.2188 1.2159 1.2130 1.2101 1.2072
0.3665 0.3694 0.3723 0.3752 0.3782 0.3811	21°00′ 10 20 30 40 50	.3584 .3611 .3638 .3665 .3692	9.5543 .5576 .5609 .5641 .5673 .5704	.9336 .9325 .9315 .9304 .9293 .9283	9.9702 .9697 .9692 .9687 .9682	.3839 .3872 .3906 .3939 .3973 .4006	9.5842 .5879 .5917 .5954 .5991 .6028	2.6051 2.5826 2.5605 2.5386 2.5172 2.4960	0.4158 .4121 .4083 .4046 .4009	69°00′ 50 40 30 20	1.2043 1.2014 1.1985 1.1956 1.1926 1.1897
0.3840 0.3869 0.3898 0.3927 0.3956 0.3985	22°00′ 10 20 30 40 50	.3746 .3773 .3800 .3827 .3854 .3881	9.5736 .5767 .5798 .5828 .5859 .5889	.9272 .9261 .9250 .9239 .9228 .9216	9.9672 .9667 .9661 .9656 .9651	.4040 .4074 .4108 .4142 .4176 .4210	9.6064 .6100 .6136 .6172 .6208	2.4751 2.4545 2.4342 2.4142 2.3945 2.3750	0.3936 .3900 .3864 .3828 .3792 .3757	68°00′ 50 40 30 20	1.1868 1.1839 1.1810 1.1781 1.1752 1.1723
0.4014 0.4043 0.4072 0.4102 0.4131 0.4160	23°00′ 10 20 30 40 50	·3907 ·3934 ·3961 ·3987 ·4014 ·4041	9.5919 .5948 .5978 .6007 .6036	.9205 .9194 .9182 .9171 .9159 .9147	9.9640 .9635 .9629 .9624 .9618	.4245 .4279 .4314 .4348 .4383 .4417	9.6279 .6314 .6348 .6383 .6417 .6452	2.3559 2.3369 2.3183 2.2998 2.2817 2.2637	0.3721 .3686 .3652 .3617 .3583 .3548	67°00′ 50 40 30 20	1.1694 1.1665 1.1636 1.1606 1.1577 1.1548
0.4189 0.4218 0.4247 0.4276 0.4305 0.4334	24°00′ 10 20 30 40 50	.4067 .4094 .4120 .4147 .4173 .4200	9.6093 .6121 .6149 .6177 .6205 .6232	.9135 .9124 .9112 .9100 .9088 .9075	9.9607 .9602 .9596 .9590 .9584 .9579	•4452 •4487 •4522 •4557 •4592 •4628	9.6486 .6520 .6553 .6587 .6620	2.2460 2.2286 2.2113 2.1943 2.1775 2.1609	0.3514 •3480 •3447 •3413 •3380 •3346	66°00′ 50 40 30 20	I.1519 I.1490 I.1461 I.1432 I.1403 I.1374
0.4363 0.4392 0.4422 0.4451 0.4480 0.4509	25°00′ 10 20 30 40 50	.4253 .4279 .4305 .4331 .4358	9.6259 .6286 .6313 .6340 .6366 .6392	.9063 .9051 .9038 .9026 .9013	9.9573 .9567 .9561 .9555 .9549 .9543	.4663 .4699 .4734 .4770 .4806 .4841	9.6687 .6720 .6752 .6785 .6817 .6850	2.1445 2.1283 2.1123 2.0965 2.0809 2.0655	0.3313 .3280 .3248 .3215 .3183 .3150	65°00′ 50 40 30 20	I.1345 I.1316 I.1286 I.1257 I.1228 I.1199
0.4538 0.4567 0.4596 0.4625 0.4654 0.4683	26°00′ 10 20 30 40 50	.4410 .4436 .4462 .4488 .4514	9.6418 .6444 .6470 .6495 .6521 .6546	.8988 .8975 .8962 .8949 .8936 .8923	9.9537 .9530 .9524 .9518 .9512 .9505	.4877 .4913 .4950 .4986 .5022 .5059	9.6882 .6914 .6946 .6977 .7009 .7040	2.0503 2.0353 2.0204 2.0057 1.9912 1.9768	0.3118 .3086 .3054 .3023 .2991 .2960	64°00′ 50 40 30 20 10	I.1170 I.1141 I.1112 I.1083 I.1054 I.1025
0.4712	27°00′		9.6570	.8910	9.9499	.5095	9.7072	1.9626	0.2928	63°00′	1.0996
		Nat.	Log. NES.	Nat.	Log.	Nat. COT GEI	Log.	TANG:	Log. ENTS.	DE- GREES,	RADI-

1.	,	SIN	NES.	COS	INES.	TANI	GENTS.	COTAN	CENTE		T
RADI-	DE- GREES.	-							GENTS.		
×		Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.		
0.4712 0.4741 0.4771 0.4800 0.4829 0.4858	27°00′ 10 20 30 40 50	.4540 .4566 .4592 .4617 .4643 .4669	9.6570 .6595 .6620 .6644 .6668 .6692	.8910 .8897 .8884 .8870 .8857 .8843	9.9499 .9492 .9486 .9479 .9473 .9466	.5095 .5132 .5169 .5206 .5243 .5280	9.7072 .7103 .7134 .7165 .7196 .7226	1.9626 1.9486 1.9347 1.9210 1.9074 1.8940	0.2928 .2897 .2866 .2835 .2804 .2774	63°00′ 50 40 30 20	1.0996 1.0966 1.0937 1.0908 1.0879 1.0850
0.4887 0.4916 0.4945 0.4974 0.5003 0.5032	28°00′ 10 20 30 40 50	.4695 .4720 .4746 .4772 .4797 .4823	9.6716 .6740 .6763 .6787 .6810	.8829 .8816 .8802 .8788 .8774 .8760	9.9459 .9453 .9446 .9439 .9432 .9425	.5317 .5354 .5392 .5430 .5467 .5505	9.7257 .7287 .7317 .7348 .7378 .7408	1.8807 1.8676 1.8546 1.8418 1.8291	0.2743 .2713 .2683 .2652 .2622 .2592	62°00′ 50 40 30 20	1.0821 1.0792 1.0763 1.0734 1.0705 1.0676
0.5061 0.5091 0.5120 0.5149 0.5178 0.5207	29°00′ 10 20 30 40 50	.4848 .4874 .4899 .4924 .4950 .4975	9.6856 .6878 .6901 .6923 .6946 .6968	.8746 .8732 .8718 .8704 .8689 .8675	9.9418 .9411 .9404 .9397 .9390 .9383	·5543 ·5581 ·5619 ·5658 ·5696 ·5735	9.7438 .7467 .7497 .7526 .7556 .7585	1.8040 1.7917 1.7796 1.7675 1.7556	0.2562 .2533 .2503 .2474 .2444 .2415	61°00′ 50 40 30 20	1.0647 1.0617 1.0588 1.0559 1.0530
0.5236 0.5265 0.5294 0.5323 0.5352 0.5381	30°00′ 10 20 30 40 50	.5000 .5025 .5050 .5075 .5100	9.6990 .7012 .7033 .7055 .7076 .7097	.8660 .8646 .8631 .8616 .8601 .8587	9.9375 .9368 .9361 .9353 .9346 .9338	·5774 ·5812 ·5851 ·5890 ·5930 ·5969	9.7614 .7644 .7673 .7701 .7730 .7759	I.732I I.7205 I.7090 I.6977 I.6864 I.6753	0.2386 .2356 .2327 .2299 .2270 .2241	60°00′ 50 40 30 20 10	1.0472 1.0443 1.0414 1.0385 1.0356 1.0327
0.5411 0.5440 0.5469 0.5498 0.5527 0.5556	31°00′ 10 20 30 40 50	.5150 .5175 .5200 .5225 .5250 .5275	9.7118 .7139 .7160 .7181 .7201 .7222	.8572 .8557 .8542 .8526 .8511 .8496	9.9331 •9323 •9315 •9308 •9300 •9292	.6009 .6048 .6088 .6128 .6168 .6208	9.7788 .7816 .7845 .7873 .7902 .7930	1.6643 1.6534 1.6426 1.6319 1.6212 1.6107	0.2212 .2184 .2155 .2127 .2098	59°00′ 50 40 30 20	1.0297 1.0268 1.0239 1.0210 1.0181 1.0152
0.5585 0.5614 0.5643 0.5672 0.5701 0.5730	32°00′ 10 20 30 40 50	.5299 .5324 .5348 .5373 .5398 .5422	9.7242 .7262 .7282 .7302 .7322 .7342	.8480 .8465 .8450 .8434 .8418 .8403	9.9284 .9276 .9268 .9260 .9252 .9244	.6249 .6289 .6330 .6371 .6412	9.7958 .7986 .8014 .8042 .8070 .8097	1.6003 1.5900 1.5798 1.5697 1.5597 1.5497	0.2042 .2014 .1986 .1958 .1930	58°00′ 50 40 30 20	1.0123 1.0094 1.0065 1.0036 1.0007 0.9977
0.5760 0.5789 0.5818 0.5847 0.5876 0.5905	33°00′ 10 20 30 40 50	.5446 .5471 .5495 .5519 .5544 .5568	9.7361 .7380 .7400 .7419 .7438 .7457	.8387 .8371 .8355 .8339 .8323 .8307	9.9236 .9228 .9219 .9211 .9203 .9194	.6494 .6536 .6577 .6619 .6661	9.8125 .8153 .8180 .8208 .8235 .8263	1.5399 1.5301 1.5204 1.5108 1.5013 1.4919	0.1875 .1847 .1820 .1792 .1765 .1737	57°00′ 50 40 30 20	0.9948 0.9919 0.9890 0.9861 0.9832 0.9803
0.5934 0.5963 0.5992 0.6021 0.6050 0.6080	34°00′ 10 20 30 40 50	.5616 .5640 .5664 .5688	9.7476 ·7494 ·7513 ·7531 ·7550 ·7568	.8290 .8274 .8258 .8241 .8225 .8208	9.9186 .9177 .9169 .9160 .9151	.6745 .6787 .6830 .6873 .6916	9.8290 .8317 .8344 .8371 .8398 .8425	1.4826 1.4733 1.4641 1.4550 1.4460 1.4370	0.1710 .1683 .1656 .1629 .1602	56°00′ 50 40 30 20	0.9774 0.9745 0.9716 0.9687 0.9657 0.9628
0.6109 0.6138 0.6167 0.6196 0.6225 0.6254	35°00′ 10 20 30 40 50	.5760 .5783 .5807 .5831 .5854	9.7586 .7604 .7622 .7640 .7657 .7675	.8192 .8175 .8158 .8141 .8124 .8107	9.9134 .9125 .9116 .9107 .9098 .9089	.7002 .7046 .7089 .7133 .7177 .7221	9.8452 .8479 .8506 .8533 .8559 .8586 9.8613	1.4281 1.4193 1.4106 1.4019 1.3934 1.3848	0.1548 .1521 .1494 .1467 .1441 .1414	55°00′ 50 40 30 20 10	0.9599 0.9570 0.9541 0.9512 0.9483 0.9454 0.9425
0.6283	36°00′		9.7692		9.9080	.7265	Log.	Nat.	Log.		
		Nat.	NES.	Nat.	Log.	Nat. COT GE	'AN- NTS.	TANG		DE- GREES.	RADI- ANS.

TABLE 11 (continued).

Color Nat. Log. Nat.	1.	, v,	CII	NES.	COS	INES	TANG	TENTE	COTAN	CENTS		
0.6283 36°00' 0.5978 9.7692 8.090 9.9080 7.7265 9.8613 1.7364 0.1387 50 0.9326 0.6391 20 5.995 7.771 8.073 9.070 7.315 8.666 1.3597 1.1361 50 0.9326 0.6370 30 5.948 7.744 8.039 9.052 7.400 8.692 1.3514 1.308 30 0.9336 0.6300 40 5.997 7.761 8.021 9.042 7.445 8.718 1.3432 1.1282 22 20 0.9326 0.6429 50 5.995 7.778 8.004 9.9023 7.7450 8.692 1.3514 1.308 30 0.9338 0.6485 37°00' 6.018 9.7795 7.986 9.9023 7.7536 9.8771 1.3270 0.1229 50 6.6457 30 6.6087 7.868 7.991 9.044 7.751 8.7971 1.3190 1.1203 50 0.9275 0.6516 20 6.605 7.828 7.991 9.044 7.751 8.8771 1.3191 1.1203 50 0.9120 0.6535 30 6.038 7.844 7.934 8.995 7.776 8.802 1.3032 1.150 30 0.9163 0.6537 30 6.0387 7.877 7.789 8.975 7.7706 8.905 1.2034 1.124 20 0.9133 0.6503 50 6.134 7.877 7.789 8.975 7.766 8.905 1.2897 1.129 20 0.9134 0.6603 20 6.022 7.7926 7.844 8.045 7.907 8.805 1.2697 1.029 1.00 0.6603 20 6.022 7.7926 7.844 8.045 7.907 8.800 1.2697 1.029 0.6726 0.6600 20 6.202 7.7926 7.846 8.055 7.974 9.906 1.2497 0.0668 0.6720 0.6627 30 6.022 7.7926 7.846 8.0525 8.002 9.032 1.2497 0.0668 20 6.0678 0.6603 0.6003 0.6	RAD	DE-					-]					
0.6312							-		·			
0.6545	0.6312 0.6341 0.6370 0.6400	10 20 30 40 50	.5901 .5925 .5948 .5972 .5995	.7710 .7727 .7744 .7761	.8073 .8056 .8039 .8021	.9070 .9061 .9052 .9042	.7310 .7355 .7400 .7445	.8639 .8666 .8692 .8718	1.3680 1.3597 1.3514 1.3432	.1361 .1334 .1308 .1282	50 40 30 20 10	0.9425 0.9396 0.9367 0.9338 0.9308
0.666r	0.6487 0.6516 0.6545 0.6574	10 20 30 40	.6041 .6065 .6088 .6111	.7811 .7828 .7844 .7861	.7969 .7951 .7934 .7916	.9014 .9004 .8995 .8985	.7581 .7627 .7673 .7720	.8797 .8824 .8850 .8876	1.3190 1.3111 1.3032 1.2954	.1203 .1176 .1150	50 40 30 20	0.9250 0.9221 0.9192 0.9163 0.9134 0.9105
0.6836	0.6661 0.6690 0.6720 0.6749	10 20 30 40	.6180 .6202 .6225 .6248	.7910 .7926 .7941 .7957	.78 62 .7844 .7826 .7808	.8955 .8945 .8935 .8925	.7860 .7907 .7954 .8002	.8954 .8980 .9006	1.2723 1.2647 1.2572 1.2497	.1046 .1020 .0994 .0968	50 40 30 20	0.9076 0.9047 0.9018 0.8988 0.8959 0.8930
0.7010	0.6836 0.6865 0.6894 0.6923	10 20 30 40	.6316 .6338 .6361 .6383	.8004 .8020 .8035 .8050	·7753 ·7735 ·7716 ·7698	.8895 .8884 .8874 .8864	.8146 .8195 .8243 .8292	.9110 .9135 .9161	1.2276 1.2203 1.2131 1.2059	.0890 .0865 .0839	50 40 30 20 10	0.8901 0.8872 0.8843 0.8814 0.8785 0.8756
0.7185	0.7010 0.7039 0.7069 0.7098	10 20 30 40	.6450 .6472 .6494 .6517	.8096 .8111 .8125 .8140	.7642 .7623 .7604 .7585	.8832 .8821 .8810 .8800	.8441 .8491 .8541 .8591	.9264 .9289 .9315	1.1847 1.1778 1.1708 1.1640	.0736	50 40 30 20	o.8698 o.8668 o.8639 o.8610 o.8581
0.7359	0.7185 0.7214 0.7243 0.7272	10 20 30 40	.6583 .6604 .6626 .6648	.8184 .8198 .8213 .8227	.7528 .7509 .7490 .7470	.8767 .8756 .8745 .8733	.8744 .8796 .8847 .8899	.9417 .9443 .9468 .9494	1.1436 1.1369 1.1303 1.1237	.0583 .0557 .0532 .0506	50 40 30 20	0.8 5 52 0.8523 0.8494 0.8465 0.8436 0.8407
0.7534 10 .6841 .8351 .7294 .8629 .9380 .9722 1.0661 .0278 50 0.8174 0.7563 20 .6862 .8365 .7274 .8618 .9435 .9747 1.0599 .0253 40 .8145 0.7592 30 .6884 .8378 .7254 .8606 .9490 .9772 1.0538 .0228 30 0.8116 0.7651 40 .6905 .8391 .7234 .8594 .9545 .9792 1.0416 .0177 10 0.8058 0.7650 50 .6926 .8405 .7214 .8582 .9601 .9823 1.0416 .0177 10 0.8058 0.7679 44°00' .6947 .9.8418 .7193 .9.8569 .9657 9.9848 1.0355 0.0152 46°00' 0.8029 0.7793 10 .6967 .8431 .7173 .8557 .9773 .9899 1.0235 .0126 50 0.79999 </td <td>0.7359 0.7389 0.7418 0.7447</td> <td>10 20 30 40</td> <td>.6713 .6734 .6756 .6777</td> <td>.8269 .8283 .8297 .8311</td> <td>.7412 .7392 .7373 .7353</td> <td>.8699 .8688 .8676 .8665</td> <td>.9057 .9110 .9163 .9217</td> <td>.9570 .9595 .9621 .9646</td> <td>1.1041 1.0977 1.0913 1.0850</td> <td>.0430 .0405 .0379 .0354</td> <td>50 40 30 20</td> <td>0.8348 0.8319 0.8290 0.8261</td>	0.7359 0.7389 0.7418 0.7447	10 20 30 40	.6713 .6734 .6756 .6777	.8269 .8283 .8297 .8311	.7412 .7392 .7373 .7353	.8699 .8688 .8676 .8665	.9057 .9110 .9163 .9217	.9570 .9595 .9621 .9646	1.1041 1.0977 1.0913 1.0850	.0430 .0405 .0379 .0354	50 40 30 20	0.8348 0.8319 0.8290 0.8261
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.7534 0.7563 0.7592 0.7621	10 20 30 40 50	.6841 .6862 .6884 .6905	.8351 .8365 .8378 .8391	·7294 ·7274 ·7254 ·7234	.8629 .8618 .8606 .8594	.9380 .9435 .9490 .9545	.9722 .9747 .9772 .9798	1.0661 1.0599 1.0538 1.0477	.0278 .0253 .0228 .0202	50 40 30 20	0.8174 0.8145 0.8116 0.8087
	0.7709 0.7738 0.7767 0.7796 0.7825	10 20 30 40 50	.6967 .6988 .7009 .7030	.8431 .8444 .8457 .8469 .8482	.7173 .7153 .7133 .7112 .7092	.8557 .8545 .8532 .8520 .8507	.9713 .9770 .9827 .9884 .9942	.9874 .9899 .9924 .9949 .9975	1.0295 1.0235 1.0176 1.0117 1.0058	.0126 .0101 .0076 .0051	50 40 30 20	0.7999 0.7970 0.7941 0.7912 0.7883
Nat. Log. Nat Log. Nat. Log. Nat. Log.	0.7854	4500										
COSINES. SINES. COTAN-GENTS. AZ Z4											DE- GREES.	RADI-

TABLE 12.

CIRCULAR (TRIGONOMETRIC) FUNCTIONS.*

ANS.	SIN	IES.	COSI	NES.	TANG	ENTS.	COTAN	GENTS.	EES.
RADIANS	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEGREES
0.00 .01 .02 .03	0.00000 .01000 .02000 .03000	— ∞ 7.99999 8.30100 .47706 .60194	1.00000 0.99995 .99980 .99955 .99920	o.ooooo 9.99998 .99991 .99980 .99965	-∞ 0.01000 .02000 .03001 .04002	-∞ 8.00001 .30109 .47725 .60229	.∞ 99.997 49.993 33.3 ² 3 24.987	∞ 1.99999 .69891 .52275 .39771	00°00′ 00 34 J 01 09 01 43 02 18
0.05 .06 .07 .08	0,04998 .05996 .06994 .07991 .08988	8.69879 •77789 •84474 •90263 •95366	0.99875 .99820 .99755 .99680 .99595	9.99946 .99922 .99894 .99861 .99824	0.05004 .06007 .07011 .08017 .09024	8.69933 •77867 •84581 •90402 •95542	19.983 16.647 14.262 12.473 11.081	1.30067 .22133 .15419 .09598 .04458	02°52′ 03 26 04 01 04 35 05 09
0.10 .11 .12 .13	0.09983 .10978 .11971 .12963 .13954	8.99928 9.04052 .07814 .11272 .14471	0.99500 .99396 .99281 .99156 .99022	9.99782 •99737 •99687 •99632 •99573	0.10033 .11045 .12058 .13074 .14092	9.00145 .04315 .08127 .11640 .14898	9.9666 9.0542 8.2933 7.6489 7.0961	0.99855 •95685 •91873 •88360 •85102	05°44′ 06 18 06 53 07 27 08 01
0.15 .16 .17 .18	0.14944 .15932 .16918 .17903 .18886	9.17446 .20227 .22836 .25292 .27614	0.98877 .98723 .98558 .98384 .98200	9.99510 •99442 •99369 •99293 •99211	0.15114 .16138 .17166 .18197 .19232	9.17937 .20785 .23466 .26000 .28402	6.6166 6.1966 5.8256 5.4954 5.1997	0.82063 .79215 .76534 .74000 .71598	08°36′ 09 10 09 44 10 19 10 53
0.20 .21 .22 .23	0.19867 .20846 .21823 .22798 .23770	9.29813 •31902 •33891 •35789 •37603	0.98007 .97803 .97590 .97367 .97134	9.99126 .99035 .98940 .98841 .98737	0.2027I .21314 .22362 .23414 .24472	9.30688 •32867 •34951 •36948 •38866	4.9332 4.6917 4.4719 4.2709 4.0864	0.69312 .67133 .65049 .63052 .61134	11°28′ 12 02 12 36 13 11 13 45
0.25 .26 .27 .28 .29	0.24740 .25708 .26673 .27636 .28595	9.39341 •41007 •42607 •44147 •45629	• 96891 • 96639 • 96377 • 96106 • 95824	9.98628 •98515 •98397 •98275 •98148	0.25534 .26602 .27676 .28755 .29841	9.40712 .42491 .44210 .45872 .47482	3.9163 3.7592 3.6133 3.4776 3.3511	0.59288 •57509 •55790 •54128 •52518	14°19′ 14 54 15 28 16 03 16 37
0.30 .31 .32 .33 .34	0.29552 •30506 •31457 •32404 •33349	9.47059 •48438 •49771 •51060 •52308	0.95534 .95233 .94924 .94604 .94275	9.98016 •97879 •9773 7 •97591 •97440	0.30934 •32033 •33139 •34252 •35374	9.49043 •50559 •52034 •53469 •54868	3.2327 3.1218 3.0176 2.9195 2.8270	0.50957 •49441 •47966 •46531 •45132	17°11' 17 46 18 20 18 54 19 29
0.35 .36 .37 .38 .39	0.34290 ·35227 ·36162 ·37092 ·38019	9.53516 •54688 •55825 •56928 •58000	0.93937 .93590 .93233 .92866 .92491	9.97284 .97123 .96957 .96786 .96610	0.36503 -37640 -38786 -39941 -41105	9.56233 ·57565 ·58868 ·60142 ·61390	2.7395 2.6567 2.5782 2.5037 2.4328	0.43767 ·42435 ·41132 ·39858 ·38610	20°03′ 20 38 21 12 21 46 22 21
0.40 .41 .42 .43 .44	0.38942 .39861 .40776 .41687 .42594	9.59042 .60055 .61041 .62000 .62935	0.92106 .91712 .91309 .90897 .90475	9.96429 .96243 .96051 .95855 .95653	0.42279 .43463 .44657 .45862 .47078	9.62613 .63812 .64989 .66145 .67282	2.3652 2.3008 2.2393 2.1804 2.1241	0.37387 .36188 .35011 .33855 .32718	22°55′ 23 29 24 04 24 38 25 13
0.45 .46 .47 .48 .49	0.43497 -44395 -45289 -46178 -47063	9.63845 .64733 .65599 .66443 .67268	0.90045 .89605 .89157 .88699 .88233	9.95446 ·95233 ·95015 ·94792 ·94563	o.48306 ·49545 ·50797 ·52061 ·53339	9.68400 .69500 .70583 .71651 .72704	2.0702 2.0184 1.9686 1.9208 1.8748	0.31600 .30500 .29417 .28349 .27296	25°47′ 26 21 26 56 27 30 28 04
0 50	0.47943	9.68072	0.87758	9.94329	0.54630	9-73743	1.8305	0.26257	28°39′

70	SIN	IES.	COST	NES.	TANG	ENTS.	COTAN	GENTS.	S. S.
RADIANS									DEGREES
RA]	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEC
0.50	0.4794 3 .4881 8	9.68072 .68858	0.87758	9.94329	0.54630	9.73743	1.8305 .7878	0.26257	28°39′
.51	.49688	.69625	.87274 .86782	.93843	.55936 .57256	.74769 .75782	.7465	.25231	29 13 29 48
•53	-50553	.70375	.86281	.93591	.57256	.70704	.7067	.23216	30 22
.54	.51414		.85771	•93334	•59943	•77774	.6683	.22226	30 56
0.55 .56	.53119	9.71824	0.85252	9.93071 .92801	0.61311	9.78754 .79723	1.6310	.20277	31°31′ 32 05
.57	.53963	.73210	.84190	.92526	.64097	.80684	.5601	.19316	32 40
.58	.54802	.73880 .74536	.83646 .83094	.92245 .91957	.65517	.81635 .82579	.5263 .493 5	.18365	33 14 33 48
0.60	0.56464	9.75177	0.82534	9.91663	0.68414	9.83514	1.4617	0.16486	34°23′
.61 .62	.57287	.75805 .76420	.81965 .81388	.91363	.69892	.84443	.4308	.15557	34 57
.63	.58104	.77022	.80803	.91056 .90743	.71391	.85364 .86280	.4007	.14636	35 31 36 06
.64	.59720	.77612	.80210	.90423	•74454	.87189	.3431	.13720	36 40
0.65 .66	0.60519	9.78189	0.79608	9.90096	0.76020	9.88093 .88992	1.3154	0.11907	37°15′
.67	.61312	.78754 . 7 9308	.78382	.89422	.79225 .80866	.89886	.2622	.10114	37 49 38 23
.68	.62879	.79851	•77757	.89074		.90777	.2366	.09223	38 58
.69	.63654	.86382	.77125	.88719	.82534	.91663	.2116	.08337	39 32
0.70	0.64422	9.80903 .81414	0.76484 .75836	9.88357 .87988	0.84229 -859 53	9.92546 .93426	1.1872 -1634	.06574	40°06′ 40 41
.72	.65183	.81914	.75181	.87611	.87707	.94303	.1402	.05697	41 15
·73	.66687 .67429	.82404 .82885	.7451 7 .7384 7	.87226 .86833	.89492 .91309	.95178	.1174	.04822	41 50
	0.68164	9.83355	0.73169	9.86433	0.93160	9.96923			42°58′
0.75	.68892	.83817	.72484	.86024	.95045	•97793 •98662	.0521	0.03077	43 33
.77 .78	.69614	.84269	.71791	.85607	.96967		.0313	.01338	44 07
.70	.70328 .7103 5	.84713	.71091	.85182	.98926 1.0092	9.99531 0.00400	0.99084	9.99600	44 41 45 16
0.80	0.71736	9.85573	0.69671	9.84305	1.0296	0.01268	0.97121	9.98732	45°50′ 46 28
.81 .82	.72429	.85991	.68950	.83853	.0505	.02138	.95197	.97862	46 28
.83	.73115 ·73793	.86400 .86802	.6822 2 .67488	.83393	.0717 .0934	.03008	.933 0 9	.96992 . 9 6121	46 59
.84	.74464	.87195	.66746	.82443	.1156	.04752	.89635	.95248	47 33 48 08
0.85	0.75128	9.87580	0.65998	9.81953	1.1383 .1616	0.05627	0.87848	9.94373	48°42′
.87	.75784	.87958 .88328	.65244	.81454 .80944	.1853	.06504 .07384	.84365	.93496 .92616	49 16
.88	.77074	.88691	.63715	.80424	.2097	.07384	.82668	.91734	50 25
.89	·7770 7	.89046	.62941	.79894	.2346	.09153	.80998		51 00
0.90	0.78333	9.89394 .89735	0.62161 .61375	9.79352 .78799	1.2602 .2864	0.10043 -10937	0.7 9355 .77738	9.89957	51°34′ 52 08
.92	.79560	.90070	.60582	.78234	.3133	.11835	.76146	.88165	52 43
·93 ·94	.80162 .80756	.90397 .90717	•5978 3 •58979	.77658	.3409	.12739 .13648	•74578 •73034	.87261 .86352	53 17 53 51
	- 0		0.58168	9.76469	1.3984		0.71511		54°26′
0.95 .96	0.81342 .81919	9 .91031	.57352	.75855	.4284	0.14563 .15484	.70010	9.85437 .84516	55 00
.97	.82489	.91639	.56530	.75228	.4592	.16412	.68531	.83588	55 35
.98	.83050 .83603	.91934 .9222 2	.55702 .54869	.74587 •73933	.4910 -5237	.17347	.65631	.82653	56 09 56 43
1.00	0.84147	9.92504	0.54030	9.73264	1.5574	0.19240	0.64209	9.80760	57°18′
		,, 5-4	3,1-3	7,5	33/4				

ANS.	SII	NES.	cos	INES.	TANG	ENTS.	COTAN	GENTS.	EES.
RADIANS	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEGREES
1.00 .01 .02 .03	0.84147 .84683 .85211 .85730 .86240	9.92504 .92780 .93049 .93313 .93571	0.54030 .53186 .52337 .51482 .50622	9.73264 .72580 .71881 .71165 .70434	1.5574 .5922 .6281 .6652 .7036	0.19240 .20200 .21169 .22148 .23137	0.64209 .62806 .61420 .60051 .58699	9.80760 .79800 .78831 .77852 .76863	57°18′ 57 52 58 27 59 01 59 35
1.05 .06 .07 .08	0.86742 .87236 .87720 .88196 .88663	9.93823 .94069 .94310 .94545 .94774	0.49757 .48887 .48012 .47133 .46249	9.69686 .68920 .68135 .67332 .66510	1.7433 .7844 .8270 .8712 .9171	0.24138 .25150 .26175 .27212 .28264	0.57362 .56040 •54734 •53441 .52162	9.75862 .74850 .73825 .72788 .71736	60°10′ 60 44 61 18 61 53 62 27
1.10 .11 .12 .13	0.89121 .89570 .90010 .90441 .90863	9.94998 .95216 .95429 .95637 .95839	0.45360 .44466 .43568 .42666 .41759	9.65667 .64803 .63917 .63008 .62075	1.9648 2.0143 .0660 .1197	0.29331 •30413 •31512 •32628 •33763	0.50897 •49644 •48404 •47175 •45959	9.70669 .69587 .68488 .67372 .66237	63°02′ 63 36 64 10 64 45 65 19
1.15 .16 .17 .18	0.91276 .91680 .92075 .92461	9.96036 .96228 .96414 .96596 .96772	0.40849 •39934 •39015 •38092 •37166	9.61118 .60134 .59123 .58084 .57015	2.2345 .2958 .3600 .4273 .4979	0.34918 ·36093 ·37291 ·38512 ·39757	0.44753 -43558 -42373 -41199 -40034	9.65082 .63907 .62709 .61488 .60243	65°53′ 66 28 67 02 67 37 68 11
1.20 .21 .22 .23 .24	0.93204 .93562 .93910 .94249 .94578	9.96943 .97110 .97271 .97428 .97579	0.36236 -35302 -34365 -33424 -32480	9.55914 •54780 •53611 •52406 •51161	2.5722 .6503 .7328 .8198 .9119	0.41030 .42330 .43660 .45022 .46418	o.38878 ·37731 ·36593 ·35463 ·34341	9.58970 .57670 .56340 .54978 .53582	68°45′ 69 20 69 54 70 28 71 03
1.25 .26 .27 .28 .29	0.94898 .95209 .95510 .95802 .96084	9.97726 .97868 .98005 .98137 .98265	0.31532 .30582 .29628 .28672 .27712	9.49875 .48546 .47170 .45745 .44267	3.0096 .1133 .2236 .3413 .4672	0.47850 .49322 .50835 .52392 .53998	0.33227 .32121 .31021 .29928 .28842	9.52150 .50678 .49165 .47608 .46002	71°37′ 72 12 72 46 73 20 73 55
1.30 .31 .32 .33 .34	0.96356 .96618 .96872 .97115 .97348	9.98388 .98506 .98620 .98729 .98833	0.26750 .25785 .24818 .23848 .22875	9.42732 .41137 .39476 .37744 .35937	3.6021 .7471 .9033 4.0723 .2556	0.55656 •57369 •59144 •60984 •62896	0.27762 .26687 .25619 .24556 .23498	9.44344 .42631 .40856 .39016 .37104	74°29′ 75°03 75°38 76°12 76°47
1.35 .36 .37 .38 .39	0.97572 .97786 .97991 .98185	9.98933 .99028 .99119 .99205 .99286	0.21901 .20924 .19945 .18964 .17981	9.34046 :32064 .29983 .27793 .25482	4.4552 .6734 .9131 5.1774 .4707	o.64887 .66964 .69135 .71411	0.22446 .21398 .20354 .19315 .18279	9.35113 •33036 •30865 •28589 •26196	77°21′ 77 55 78 30 79 04 79 38
1.40 .41 .42 .43 .44	0.98545 .98710 .98865 .99010	9.99363 .99436 .99504 .99568 .99627	0.16997 .16010 .15023 .14033 .13042	9.23036 .20440 .17674 .14716 .11536	5.7979 6.1654 6.5811 7.0555 7.6018	0.76327 .78996 .81830 .84853 .88092	0.17248 .16220 .15195 .14173 .13155	9.23673 .21004 .18170 .15147 .11908	80°13′ 80 47 81 22 81 56 82 30
1.45 .46 .47 .48 .49	0.99271 .99387 .99492 .99588 .99674	9.99682 •99733 •99779 •99821 •99858	0.12050 .11057 .10063 .09067 .08071	9.08100 .04364 .00271 8.95747 .90692	8.2381 8.9886 9.8874 10.983 12.350	0.91583 .95369 .99508 1.04074 .09166	0.12139 .11125 .10114 .09105 .08097	9.08417 .04631 .00492 8.95926 .90834	83°05′ 83 39 84 13 84 48 85 22
1.50	0.99749	9.99891	0.07074	8.84965	14.101	1.14926	0.07091	8.85074	85°57′

TABLES 12 (continued) AND 12A. CIRCULAR FUNCTIONS AND FACTORIALS.

TABLE 12 (continued). - Circular (Trigonometric) Functions.

IANS.	SIN	IES.	COSI	INES.	TANG	ENTS.	COTAN	EES.	
RADI	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEGREES
1.50 .51 .52 .53 .54 1.55 .56 .57 .58 .59	0.99749 .99815 .99871 .99917 .99953 0.99978 0.99994 1.0000 0.99996 0.99982	9.99891 -99920 -99944 -99964 -99979 9.99991 9.99997 0.00000 9.99998 9.999981	0.07074 .06076 .05077 .04079 .03079 0.02079 .01080 .00080 -0.0920 01920	8.84965 .78361 .70565 .61050 .48843 8.31796 8.03327 6.90109 7.96396n 8.28336n 8.46538n	14.101 16.428 19.670 24.498 32.461 48.078 92.621 1255.8 108.65 52.067 34-233	1.14926 .21559 .29379 .38914 .51136 1.68195 1.96671 3.09891 2.03603 1.71656	0.07091 .06087 .05084 .04082 .03081 0.02080 .01080 .00080 00920 01921	8.85074 .78441 .70621 .61086 .48864 8.31805 8.03330 6.90109 7.96397n 8.28344n 8.46556n	85°57′ 86 31 87 05 87 40 88 14 88°49′ 89 23 89 57 90 32 91 06

90°=1.570 7963 radians.

TABLE 12a. - Factorials.

Logarithms of the products 1.2.3....., n, from 1 to 100. See Table 30 for log. Γ (n+1), values of n between 1 and 2.

n.	log.(n!)	18.	log.(n!)	28,	log.(n!)	n.	log.(n!)
1 2 3 4	0.000000 0.301029 0.778151 1.380211	26 27 28 29	26.605619 28.036982 29.484140 30.946538	51 52 53 54	66.190645 67.906648 69.630924 71.363318	76 77 78	111.275425 113.161916 115.054010 116.951637
5	2.079181	30	32,423660	55	73.103680	79 80	118.854727
6 7 8 9	2.857332 3.702430 4.605520 5.559763 6.559763	31 32 33 34 35	33.915021 35.420171 36.938685 38.470164 40.014232	56 57 58 59 60	74.851868 76.607743 78.371171 80.142023 81.920174	81 82 83 84 85	120.763212 122.677026 124.596104 126.520383 128.449802
11 12 13 14 15	7.601155 8.680336 9.794280 10.940408 12.116499	36 37 38 39 40	41.570535 43.138736 44.718520 46.309585 47.911645	61 62 63 64 65	83.705504 85.497896 87.297236 89.103416 90.916330	86 87 88 89 90	130.384301 132.323820 134.268303 136.217693 138.171935
16 17 18 19 20	13.320619 14.551068 15.806341 17.085094 18.386124	41 42 43 44 45	49.524428 51.147678 52.781146 54.424599 56.077811	66 67 68 69 70	92.735874 94.561948 96.394457 98.233306 100.078405	91 92 93 94 95	140.130977 142.094765 144.063247 146.036375 148.014099
21 22 23 24 25	19.708343 21.050766 22.412494 23.792705 25.190645	46 47 48 49 50	57.740569 59.412667 61.093908 62.784104 64.483074	71 72 73 74 75	101.929663 103.786995 105.650318 107.519550 109.394611	96 97 98 99 100	149.996370 151.983142 153.974368 155.970003 157.970003

HYPERBOLIC FUNCTIONS.*

Hyperbolic sines.

Values of $\frac{e^x-e^{-x}}{2}$.

20	0	1	2	3	4	5	6	7	8	9
0.0 0.1 0.2 0.3 0.4	0.0000 .1002 .2013 .3045 .4108	0.0100 .1102 .2115 .3150 .4216	0.0200 .1203 .2218 .3255 .4325	0.0300 .1304 .2320 .3360 .4434	0.0400 .1405 .2423 .3466 .4543	.1 506 .2526 .3572	0.0600 .1607 .2629 .3678 .4764	0.0701 .1708 .2733 .3785 .4875	0.0801 .1810 .2837 .3892 .4986	0.0901 .1911 .2941 .4000 .5098
0.5 0.6 0.7 0.8 0.9	0.5211 .6367 .7586 .8881 1.0265	0.5324 .6485 .7712 .9015 1.0409	0.5438 .6605 .7838 .9150	0.5552 .6725 .7966 .9286 I.0700	0.5666 .6846 .8094 .9423 1.0847	0.5782 .6967 .8223 .9561	0.5897 .7090 .8353 .9700 I.II44	0.6014 .7213 .8484 .9840 1.1294	0.6131 .7336 .8615 .9981	0.6248 .7461 .8748 .0122 1.1598
1.0	1.1752	1.1907	1.2063	1.2220	1.2379	1.2539	1.2700	1.2862	1.3025	1.3190
1.1	.3356	·3524	.3693	.3863	.4035	.4208	.4382	.4558	.4735	•4914
1.2	.5095	·5276	.5460	.5645	.5831	.6019	.6209	.6400	.6593	•6788
1.3	.6984	·7182	.7381	.7583	.7786	.7991	.8198	.8406	.8617	•8829
1.4	.9043	·9259	.9477	.9697	.9919	2.0143	2.0369	2.0597	2.0827	2.1059
1.5 1.6 1.7 1.8 1.9	2.1293 .3756 .6456 .9422 3.2682	2.1529 .4015 .6740 .9734 3.3025	2.1768 .4276 .7027 3.0049 ·3372	2.2008 .4540 .7317 3.0367 .3722	2.2251 .4806 .7609 3.0689	2.2496 .5075 .7904 3.1013 .4432	2.2743 .5346 .8202 3.1340 .4792	2.2993 .5620 .8503 3.1671 .5156	2.3245 .5896 .8806 3.2005 .5523	2.3499 .6175 .9112 3.2341 .5894
2.0	3.6269	3.6647	3.7028	3.7414	3.7803	3.8196	3.8593	3.8993	3.9398	3.9806
2.1	4.0219	4.0635	4.1056	4.1480	4.1909	4.2342	4.2779	4.3221	4.3666	4.4117
2.2	4.4571	4.5030	4.5494	4.5962	4.6434	4.6912	4.7394	4.7880	4.8372	4.8868
2.3	4.9370	4.9876	5.0387	5.0903	5.1425	5.1951	5.2483	5.3020	5.3562	5.4109
2.4	5.4662	5.5221	5.5785	5.6354	5.6929	5.7510	5.8097	5.8689	5.9288	5.9892
2.5	6.0502	6.1118	6.1741	6.2369	6.3004	6.3645	6.4293	6.4946	6.5607	6.6274
2.6	6.6947	6.7628	6.8315	6.9009	6.9709	7.0417	7.1132	7.1854	7.2583	7.3319
2.7	7.4063	7.4814	7.5572	7.6338	7.7112	7.7894	7.8683	7.9480	8.0285	8.1098
2.8	8.1919	8.2749	8.3586	8.4432	8.5287	8.6150	8.7021	8.7902	8.8791	8.9689
2.9	9.0596	9.1512	9.2437	9.3371	9.4315	9.5268	9.6231	9.7203	9.8185	9.9177
3.0	10.018	10.119	10.221	10.324	11.429	11.534	11.640	11.748	11.856	11.966
3.1	11.076	11.188	11.301	11.415	11.530	12.647	12.764	12.883	12.003	12.124
3.2	12.246	12.369	12.494	12.620	12.747	12.876	13.006	13.137	13.269	13.403
3.3	13.538	13.674	13.812	13.951	14.092	14.234	14.377	14.522	14.668	14.816
3.4	14.965	15.116	15.268	15.422	15.577	15.734	15.893	16.053	16.214	16.378
3.5	16.543	16.709	16.877	17.047	17.219	17.392	17.567	17.744	17.923	18.103
3.6	18.285	18.470	18.655	18.843	19.033	19.224	19.418	19.613	19.811	20.010
3.7	20.211	20.415	20.620	20.828	21.037	21.249	21.463	21.679	21.897	22.117
3.8	22.339	22.564	22.791	23.020	23.252	23.486	23.722	23.961	24.202	24.445
3.9	24.691	24.939	25.190	25.444	25.700	25.958	26.219	26.483	26.749	27.018
4.0	27.290	27.564	27.842	28.122	28.404	28.690	28.979	29.270	29.564	29.862
4.1	30.162	30.465	30.772	31.081	31.393	31.709	32.028	32.350	32.675	33.004
4.2	33.336	33.671	34.009	34.351	34.697	35.046	35.398	35.754	36.113	36.476
4.3	36.843	37.214	37.588	37.966	38.347	38.733	39.122	39.515	39.913	40.314
4.4	40.719	41.129	41.542	41.960	42.382	42.808	43.238	43.673	44.112	44.555
4.5	45.003	45.455	45.912	46.374	46.840	47.311	47.787	48.267	48.752	49.242
4.6	49.737	50.237	50.742	51.252	51.767	52.288	52.813	53.344	53.880	54.422
4.7	54.969	55.522	56.080	56.643	57.213	57.788	58.369	58.955	59.548	60.147
4.8	60.751	61.362	61.979	62.601	63.231	63.866	64.508	65.157	65.812	66.473
4.9	67.141	67.816	68.498	69.186	69.882	70.584	71.293	72.010	72.734	73.465

^{*} Tables 38-41 are quoted from "Des Ingenieurs Taschenbuch," herausgegeben vom Akademischen Verein (Hütte).

TABLE 14.

HYPERBOLIC FUNCTIONS.

Common logarithms + 10 of the hyperbolic sines.

æ	0	1	2	3	4	5	6	7	8	9
0.0	00	8.0000	3011	4772	6022	6992	7784	8455	9036	9548
o.1	9.0007	0423	0802	1152	1475	1777	2060	2325	2576	2814
o.2	3039	3254	3459	3656	3844	4025	4199	4366	4528	4685
o.3	4836	4983	5125	5264	5398	5529	5656	5781	5902	6020
o.4	9.6136	6249	6359	6468	6574	6678	6780	6880	6978	7074
0.5	9.7169	7262	7354	7444	7533	7620	7707	7791	7875	7958
o.6	8039	8119	8199	8277	8354	8431	8506	8581	8655	8728
o.7	8800	8872	8942	9012	9082	9150	9218	9286	9353	9419
o.8	9485	9550	9614	9678	9742	9805	9868	9930	9992	9053
o.9	10.0114	0174	0234	0294	9353	0412	0470	0529	0586	9644
1.0	10.0701	0758	0815	0871	0927	0982	1038	1093	1148	1203
1.1	1257	1311	1365	1419	1472	1525	1578	1631	1684	1736
1.2	1788	1840	1892	1944	1995	2046	2098	2148	2199	2250
1.3	2300	2351	2401	2451	2501	2551	2600	2650	2699	2748
1.4	2797	2846	2895	2944	2993	3041	3090	3138	3186	3234
1.5	10.3282	3330	3378	3426	3474	3521	3569	3616	3663	3711
1.6	3758	3805	3852	3899	3946	3992	4039	4086	4132	4179
1.7	4225	4272	4318	4364	4411	4457	4503	4549	4595	4641,
1.8	4687	4733	4778	4824	4870	4915	4961	5007	5052	5098
1.9	5143	5188	5234	5279	5324	5370	5415	5460	5505	5550
2.0	10.5595	5640	5685	5730	5775	5820	5865	5910	5955	5999
2.1	6044	6089	6134	6178	6223	6268	6312	6357	6401	6446
2.2	6491	6535	6580	6624	6668	6713	6757	6802	6846	6890
2.3	6935	6979	7023	7067	7112	7156	7200	7244	7289	7333
2.4	7377	7421	7465	7509	7553	7597	7642	7686	7730	7774
2.5	10.7818	7862	7906	7950	7994	8038	8082	8126	8169	8213
2.6	8257	8301	8345	8389	8433	8477	8521	8564	8608	8652
2.7	8696	8740	8784	8827	8871	8915	89 5 9	9003	9046	9090
2.8	9134	9178	9221	9265	9309	9353	9396	9440	9484	9527
2.9	9571	9615	9658	9702	9746	9789	9833	9877	9920	9964
3.0	11.0008	0051	0095	0139	0182	0226	0270	0313	0357	0400
3.1	0444	0488	0531	0575	0618	0662	0706	0749	0793	0836
3.2	0880	0923	0967	1011	1054	1098	1141	1185	1228	1272
3.3	1316	1359	1403	1446	1490	1533	1577	1620	1664	1707
3.4	1751	1794	1838	1881	1925	1968	2012	2056	2099	2143
3.5	11.2186	2230	2273	2317	2360	2404	2447	2491	2534	2578
3.6	2621	2665	2708	2752	2795	2839	2882	2925	2969	3012
3.7	3056	3099	3143	3186	3230	3273	3317	3360	3404	3447
3.8	3491	3534	3578	3621	3665	3708	3752	3795	3838	3882
3.9	3925	3969	4012	4056	4099	4143	4186	4230	4273	4317
4.0	11.4360	4403	4447	4490	4534	4577	4621	4664	4708	47 51
4.1	4795	4838	4881	4925	4968	5012	5055	5099	5142	5186
4.2	5229	5273	5316	5359	5403	5446	5490	5533	5577	5620
4.3	5664	5707	5750	5794	5837	5881	5924	5968	6011	6055
4.4	6098	6141	6185	6228	6272	6315	6359	6402	6446	6489
4.5	11.6532	6576	6619	6663	6706	6750	6793	6836	6880	6923
4.6	6967	7010	7054	7097	7141	7184	7227	7271	7314	7358
4.7	7401	7445	7488	7531	7575	7618	7662	7705	7749	7792
4.8	7836	7879	7922	7966	8009	8053	8096	8140	8183	8226
4.9	8270	8313	8357	8400	8444	8487	8530	8574	8617	8661

TABLE 15. HYPERBOLIC FUNCTIONS.

Hyperbolic cosines. Values of $\frac{e^x+e^{-x}}{2}$.

ac .	0	1	2	3	4	5	6	7	8	9
0.0 0.1 0.2 0.3 0.4	1.0000 .0050 .0201 .0453	1.0001 .0061 .0221 .0484 .0852	1.0002 .0072 .0243 .0516	1.0005 .008 5 .0266 .0549	1.0008 .0098 .0289 .0584 .0984	1.0013 .0113 .0314 .0619	1.0018 .0128 .0340 .0655	1.0025 .0145 .0367 .0692	1.0032 .0162 .0395 .0731 .1174	1.0041 .0181 .0423 .0770 .1225
0.5	1.1276	1.1329	1.1383	1.1438	1.1494	1.1551	1.1609	1.1669	1.1730	1.1792
0.6	.1855	.1919	.1984	.2051	.2119	.2188	.2258	.2330	.2402	.2476
0.7	.2552	.2628	.2706	.2785	.2865	.2947	.3030	.3114	.3199	.3286
0.8	•3374	.3464	·3555	.3647	.3740	.3835	.3932	.4029	.4128	.4229
0.9	•4331	4434	•4539	.4645	.4753	.4862	.4973	.5085	.5199	.5314
1.0 1.1 1.2 1.3 1.4	1.5431 .6685 .8107 .9709 2.1509	1.5549 .6820 .8258 .9880 .1700	1.5669 .6956 .8412 2.0053 .1894	1.5790 .7093 .8568 2.0228	1.5913 .7233 .8725 2.0404 .2288	1.6038 •7374 .8884 2.0583 •2488	.6164 .7517 .9045 2.0764 .2691	1.6292 .7662 .9208 2.0947 .2896	1.6421 .7808 .9373 2.1132 .3103	1.6552 .7956 .9540 2.1320 .3312
1.5	2.3524	2.3738	2.3955	2.4174	2.4395	2.4619	2.4845	2.5073	2.5305	2.5538
1.6	.5775	.6013	.6255	.6499	.6746	.6995	.7247	.7502	.7760	.8020
1.7	.8283	.8549	.8818	.9090	.9364	.9642	.9922	3.0206	3.0492	3.0782
1.8	3.1075	3.1371	3.1669	3.1972	3.2277	3.2585	3.2897	.3212	.3530	.3852
1.9	.4177	.4506	.4838	.5173	.5512	.5855	.6201	.6551	.6904	.7261
2.0	3.7622	3.7987	3.8355	3.8727	3.9103	3.9483	3.9867	4.0255	4.0647	4.1043
2.1	4.1443	4.1847	4.2256	4.2668	4.3085	4.3597	4.3932	4.4362	4.4797	4.5236
2.2	4.5679	4.6127	4.6580	4.7037	4.7499	4.7966	4.8437	4.8914	4.9395	4.9881
2.3	5.0372	5.0868	5.1370	5.1876	5.2388	5.2905	5.3427	5.3954	5.4487	5.5026
2.4	5.5569	5.6119	5.6674	5.7235	5.7801	5.8373	5.8951	5.9535	6.0125	6.0721
2.5	6.1323	6.1931	6.2545	6.3166	6.3793	6.4426	6.5066	6.5712	6.6365	6.7024
2.6	6.7690	6.8363	6.9043	6.9729	7.0423	7.1123	7.1831	7.2546	7.3268	7.3998
2.7	7.4735	7.5479	7.6231	7.6990	7.7758	7.8533	7.9316	8.0106	8.0905	8.1712
2.8	8.2527	8.3351	8.4182	8.5022	8.5871	8.6728	8.7594	8.8469	8.9352	9.0244
2.9	9.1146	9.2056	9.2976	9.3905	9.4844	9.5791	9.6749	9.7716	9.8693	9.9680
3.0	10.068	10.168	10.270	10.373	10.476	10.581	10.687	10.794	10.902	11.011
3.1	11.121	12.233	11.345	11.459	11.574	11.689	11.806	11.925	12.044	12.165
3.2	12.287	12.410	12.534	12.660	12.786	12.915	13.044	13.175	13.307	13.440
3.3	13.575	13.711	13.848	13.987	14.127	14.269	14.412	14.556	14.702	14.850
3.4	14.999	15.149	15.301	15.455	15.610	15.766	15.924	16.084	16.245	16.408
3.5	16.573	16.739	16.907	17.077	17.248	17.421	17.596	17.772	17.951	18.131
3.6	18.313	18.497	18.682	18.870	19.059	19.250	19.444	19.639	19.836	20.035
3.7	20.236	20.439	20.644	20.852	21.061	21.272	21.486	21.702	21.919	22.139
3.8	22.362	22.586	22.813	23.042	23.273	23.507	23.743	23.982	24.222	24.466
3.9	24.711	24.959	25.210	25.463	25.719	25.977	26.238	26.502	26.768	27.037
4.0	27.308	27.582	27.860	28.139	28.422	28.707	28.996	29.287	29.581	29.878
4.1	30.178	30.482	30.788	31.097	31.409	31.725	32.044	32.365	32.691	33.019
4.2	33.351	33.686	34.024	34.366	34.711	35.060	35.412	35.768	36.127	36.490
4.3	36.857	37.227	37.601	37.979	38.360	38.746	39.135	39.528	39.925	40.326
4.4	40.732	41.141	41.554	41.972	42.393	42.819	43.250	43.684	44.123	44.566
4.5	45.014	45.466	45.923	46.385	46.851	47.321	47·797	48.277	48.762	49.252
4.6	49.747	50.247	50.752	51.262	51.777	52.297	52.823	53.354	53.890	54.431
4.7	54.978	55.531	56.089	56.652	57.221	57.796	58·377	58.964	59.556	60.155
4.8	60.759	61.370	61.987	62.609	63.239	63.874	64·516	65.164	65.819	66.481
4.9	67.149	67.823	68.505	69.193	69.889	70.591	71·300	72.017	72.741	73.472

TABLE 16.

HYPERBOLIC FUNCTIONS.

Common logarithms of the hyperbolic cosines.

æ	0	1	2	3	4	5	6	7	8	9
0.0	0.0000	0000	0001	0002	0003	0005	0008	0011	0014	0018
0.1	0022	0026	0031	0037	0042	0049	0055	0062	0070	0078
0.2	0086	0095	0104	0114	0124	0134	0145	0156	0168	0180
0.3	0193	0205	0219	0232	0246	0261	0276	0291	0306	0322
0.4	0339	0355	0372	0390	0407	0426	0444	0463	0482	0502
0.5	0.0522	0542	0562	0583	0605	0626	0648	0670	0693	0716
0.6	0739	0762	0786	0810	0835	0859	0884	0910	0935	0961
0.7	0987	1013	1040	1067	1094	1122	1149	1177	1206	1234
0.8	1263	1292	1321	1350	1380	1410	1440	1470	1501	1532
0.9	1563	1594	1625	1657	1689	1721	1753	178 5	1818	1851
1.0	0.1884	1917	1950	1984	2018	2051	2086	2120	2154	2189
I.I	2223	2258	2293	2328	2364	2399	2435	2470	2506	2542
I.2	2578	2615	2651	2688	2724	2761	2798	2835	2872	2909
I.3	2947	2984	3022	3059	3097	3135	3173	3211	3249	3288
I.4	3326	3365	3403	3442	3481	3520	3559	3598	3637	3676
1.5	0.3715	3754	3794	3833	3873	3913	3952	3992	4032	4072
1.6	4112	4152	4192	4232	4273	4313	4353	4394	4434	4475
1.7	4515	4556	4597	4637	4678	4719	4760	4801	4842	4883
1.8	4924	4965	5006	5048	5089	5130	5172	5213	5254	5296
1.9	5337	5379	5421	5462	5504	5545	5587	5629	5671	5713
2.0	0.5754	5796	5838	5880	5922	5964	6006	6048	6090	6132
2.1	6175	6217	6259	6301	6343	6386	6428	6470	6512	6555
2.2	6597	6640	6682	6724	6767	6809	6852	6894	6937	6979
2.3	7022	7064	7107	7150	7 192	7235	7278	7320	7363	7406
2.4	7448	7491	7534	7577	7619	7662	7705	7748	7791	7833
2.5	0.7876	7919	7962	8005	8048	8091	8134	8176	8219	8262
2.6	8305	8348	8391	8434	8477	8520	8563	8606	8649	8692
2.7	8735	8778	8821	8864	8907	8951	8994	9037	9080	9123
2.8	9166	9209	9252	9295	9338	9382	9425	9468	9511	9554
2.9	9597	9641	9684	9727	9770	9813	9856	9900	9943	9986
3.0	1.0029	0073	0116	0159	0202	0245	0289	0332	0375	0418
3.1	0462	0505	0548	0591	0635	0678	0721	0764	0808	0851
3.2	0894	0938	0981	1024	1067	1111	1154	1197	1241	1284
3.3	1327	1371	1414	1457	1501	1544	1587	1631	1674	1717
3.4	1761	1804	1847	1891	1934	1977	2021	2064	2107	2151
3.5	1.2194	2237	2281	2324	2367	2411	2454	2497	2541	2584
3.6	2628	2671	2714	2758	2801	2844	2888	293 I	2974	3018
3.7	3061	3105	3148	3191	3235	3278	3322	336 5	3408	3452
3.8	3495	3538	3582	3625	3669	3712	3755	3799	3842	3886
3.9	3929	3972	4016	4059	4103	4146	4189	4233	4278	4320
4.0	1.4363	4406	4450	4493	4537	4580	4623	4667	4710	4754
4.1	4797	4840	4884	4927	4971	5014	5057	5101	5144	5188
4.2	5231	5274	5318	5361	5405	5448	5492	5535	5578	5622
4.3	5665	5709	5752	5795	5839	5882	5926	5969	6012	6056
4.4	6099	6143	6186	6230	6273	6316	6360	6403	6447	6490
4.5	1.6533	6577	6620	6664	6707	6751	6794	6837	6881	6924
4.6	6968	7011	7055	7098	7141	7185	7228	7272	7315	7358
4.7	7402	7445	7489	7532	7576	7619	7662	7706	7749	7793
4.8	7836	7880	7923	7966	8010	8053	8097	8140	8184	8227
4.9	8270	8314	8357	8401	8444	8487	8531	8574	8618	8661

EXPONENTIAL FUNCTIONS.

Values of e^z and e^{-z} intermediate to those here given may be found by adding or subtracting the values of the hyperbolic cosine and sine given in Tables 15 and 13.

			per botte costi		-		-5-
x	log ₁₀ (e*)	e ^z	e-2	x	log ₁₀ (e ^a)	e ^z	e-2
0.0 .I .2 .3 .4	0.00000 .04343 .08686 .13029 .17372	1.0000 .1052 .2214 .3499 .4918	1.000000 0.904837 .818731 .740818 .670320	5.0 .1 .2 .3 .4	2.17147 .21490 .25833 .30176 .34519	148.41 164.02 181.27 200.34 221.41	0.006738 .006097 .005517 .004992 .004517
0.5 .6 .7 .8	0.21715 .26058 .30401 .34744 .39087	1.6487 .8221 2.0138 .2255 .4596	0.606531 .548812 .496585 .449329 .406570	5.5 .6 .7 .8 .9	2.38862 .43205 .47548 .51891 .56234	244.69 270.43 298.87 330.30 365.04	0.004087 .003698 .003346 .003028 .002739
1.0 .I .2 .3 .4	0.43429 •47772 •52115 •56458 •60801	2.7183 3.0042 .3201 .6693 4.0552	0.367879 .332871 .301194 .272532 .246597	6.0 .1 .2 .3 .4	2.60577 .64920 .69263 .73606 .77948	403.43 445.86 492.75 544.57 601.85	0.002479 .002243 .002029 .001836 .001662
1.5 .6 .7 .8 .9	0.65144 .69487 .73830 .78173 .82516	4.4817 .9530 5.4739 6.0496 6.6859	0.223130 .201897 .182684 .165299 .149569	6.5 .6 .7 .8 .9	2.82291 .86634 .90977 .95320 .99663	665.14 735.10 812.41 897.85 992.27	0.001503 .001360 .001231 .001114 .001008
2.0 .I .2 .3 .4	0.86859 .91202 •95545 .99888 1.04231	7.3891 8.1662 9.0250 9.9742 11.023	0.135335 .122456 .110803 .100259 .090718	7.0 .1 .2 .3 .4	3.04006 .08349 .12692 .17035 .21378	1096.6 1212.0 1339.4 1480.3 1636.0	0.000912 .000825 .000747 .000676
2.5 .6 .7 .8	1.08574 .12917 .17260 .21602	12.182 13.464 14.880 16.445 18.174	0.082085 .074274 .067206 .060810 .055023	7.5 .6 .7 .8 .9	3.25721 .30064 .34407 .38750 .43093	1808.0 1998.2 2208.3 2440.6 2697.3	0.000553 .000500 .000453 .000410
3.0 .1 .2 .3 .4	1.30288 .34631 .38974 .43317 .47660	20.086 22.198 24.533 27.113 29.964	0.049787 .045049 .040762 .036883 .033373	8.0 .1 .2 .3 .4	3.47436 .51779 .56121 .60464 .64807	2981.0 3294.5 3641.0 4023.9 4 447. 1	0.000335 .000304 .000275 .000249
3.5 .6 .7 .8 .9	1.52003 .56346 .60689 .65032 .69375	33.115 36.598 40.447 44.701 49.402	0.030197 .027324 .024724 .022371 .020242	8.5 .6 .7 .8	3.69150 •73493 •77836 •82179 •86522	4914.8 5431.7 6002.9 6634.2 7332.0	0.000203 .000184 .000167 .000151 .000136
4.0 .I .2 .3 .4	1.73718 .78061 .82404 .86747 .91090	54.598 60.340 66.686 73.700 81.451	0.018316 .016573 .014996 .013569 .012277	9.0 .1 .2 .3 .4	3.90865 .95208 .99551 4.03894 .08237	8103.1 8955.3 9897.1 10938, 12088.	0.000123 .000112 .000101 .000091 .000083
4.5 .6 .7 .8 .9	1.95433 .99775 2.04118 .08461 .12804	90.017 99.484 109.95 121.51 134.29	0.011109 .010052 .009095 .008230	9.5 .6 .7 .8 .9	4.12580 .16923 .21266 .25609 .29952	13360. 14765. 16318. 18034. 19930.	0.00007 5 .000068 .000061 .000055
5.0	2.17147	148.41	0.006738	10.0	4.34294	22026.	0.000045

Taken from Glaisher's 'Tables of the Exponential Function,' Trans. Cambridge Phil. Soc. vol. xiii. 1883. This volume also contains a 'Table of the Descending Exponential to Twelve or Fourteen Places of Decimals,' by F. W. Newman.

Table 18. EXPONENTIAL FUNCTIONS, LOG e^x .

x	log ₁₀ (e ^x)	x	log10(e*)	x	log10(e*)	x	log10(e*)
10.0 .1 .2 .3 .4	4.34294 .38637 .42980 .47323 .51666	15.0 .1 .2 .3 .4	6.51442 •55785 .60128 .64471 .68814	20.0 .I .2 .3 .4	8.68589 •72932 •77275 •81618 •85961	25.0 .1 .2 .3 .4	10.85736 .90079 .94422 .98765 11.03108
10.5 .6 .7 .8 .9	4.56009 .60352 .64695 .69038 .73381	15.5 .6 .7 .8 .9	6.73156 .77499 .81842 .86185 .90528	20.5 .6 .7 .8 .9	8.90304 .94647 .98990 9.03333 .07675	25.5 .6 .7 .8 .9	11.07451 .11794 .16137 .20480
.1 .2 .3 .4	4.77724 .82067 .86410 .90753 .95096	16.0 .1 .2 .3 .4	6.94871 .99214 7.03557 .07900 .12243	21.0 .1 .2 .3 .4	9.12018 .16361 .20704 .25047 .29390	26.0 .I .2 .3 .4	11.29166 .33509 .37852 .42194 .46537
.6 .7 .8 .9	4.99439 5.03782 .08125 .12467 .16810	16.5 .6 .7 .8	7.16586 .20929 .25272 .29615 .33958	21.5 .6 .7 .8	9.33733 .38076 .42419 .46762 .51105	26.5 .6 .7 .8 .9	.55223 .59566 .63909 .68252
12.0 .1 .2 .3 .4	5.21153 .25496 .29839 .34182 .38525	17.0 .1 .2 .3 .4	7.38301 .42644 .46987 .51329 .55672	22.0 .I .2 .3	9.55448 .59791 .64134 .68477 .72820	27.0 .I .2 .3 .4	11.72595 .76938 .81281 .85624 .89967
12.5 .6 .7 .8 .9	5.42868 .47211 .51554 .55897 .60240	17.5 .6 .7 .8	7.60015 .64358 .68701 .73044 .77387	22.5 .6 .7 .8	9.77163 .81506 .85848 .90191	27.5 .6 .7 .8	.98653 12.02996 .07339
13.0 .1 .2 .3 .4	5.64583 .68926 .73269 .77612 .81955	18.0 .1 .2 .3 .4	7.81730 .86073 .90416 .94759 .99102	23.0 .I .2 .3 .4	9.98877 10.03220 .07563 .11906 .16249	28.0 .1 .2 .3 .4	.20367 .24710 .29053 .33396
13.5 .6 .7 .8 .9	5.86298 .90640 .94983 5.99326 6.03669	18.5 .6 .7 .8	8.03445 .07788 .12131 .16474 .20817	23.5 .6 .7 .8 .9	.24935 .24935 .29278 .33621 .37964	28.5 .6 .7 .8	12.37739 .42082 .46425 .50768
14.0 .1 .2 .3 .4	6.08012 .12355 .16698 .21041 .25384	19.0 .1 .2 .3 .4	8.25160 .29502 .33845 .38188 .42531	24.0 .1 .2 .3 .4	.46650 .50993 .55336 .59679	29.0 .I .2 .3 .4	.63797 .68140 .72483 .76826
14.5 .6 .7 .8	6.29727 .34070 .38413 .42756 .47099	19.5 .6 .7 .8	8.46874 .51217 .55560 .59903 .64246	24.5 .6 .7 .8	10.6402 1 .68364 .72707 .77050 .81393	29.5 .6 .7 .8 .9	.85512 .85512 .89855 .94198 .98541
15.0	6.51442	20.0	8.68589	25.0	10.85736	30.0	13.02883

TABLE 19. EXPONENTIAL FUNCTIONS.

Value of e^{x^2} and e^{-x^2} and their logarithms.

The equation to the probability curve is $y=e^{-x^2}$, where x may have any value, positive or negative, between zero and infinity.

æ	ex ³	log ex²	·e-x2	log e-x2
0.1	1.0101	0.00434	0.99005	ī.99566
2	1.0408	01737	96079	98263
3	1.0904	03909	91393	96091
4	1.1735	06949	85214	93051
5	1.2840	10857	77880	89143
0.6 7 8 9	1.4333 1.6323 1.8965 2.2479 2.7183	0.15635 21280 27795 35178 43429	0.69768 61263 52729 44486 36788	7.84365 78720 72205 64822 56571
1.1	3·3535	0.52550	0.29820	7.47450
2	4·2207	62538	23693	37462
3	5·4195	73396	18452	26604
4	7·0993	85122	14086	14878
5	9·4877	97716	10540	02284
1.6	1.2936 × 10	1.11179	0.77306 × 10 ⁻¹	7.88821
7	1.7993 "	25511	55576 "	74489
8	2.5534 "	40711	39164 "	59289
9	3.6996 "	56780	27052 "	43220
2.0	5.4598 "	73718	18316 "	26282
2.1	8.2269 "	1.91524	0.12155 " 79070 × 10 ⁻² 50418 " 31511 " 19304 "	2.08476
2	1.2647 × 10 ²	2.10199		3.89801
3	1.9834 "	29742		70258
4	3.1735 "	50154		49846
5	5.1802 "	71434		28566
2.6	8.6264 "	2.93583	0.11592 " 68233 × 10 ⁻⁸ 39367 " 22263 " 12341 "	3.06417
7	1.4656 × 10 ⁸	3.16601		4.83400
8	2.5402 "	40487		59513
9	4.4918 "	65242		34758
3.0	8.1031 "	90865		09135
3.1 2 3 4 5	1.4913×10^4 2.8001 " 5.3638 " 1.0482×10^5 2.0898 "	4.17357 44718 72947 5.02044 32011	0.67055×10^{-4} $357^{1}3$ " 18644 " 95402×10^{-5} 47851 "	5.82643 55283 27053 6.97956 67989
3.6	4.2507 " 8.8205 " 1.8673×10^{6} 4.0329 " 8.8861 "	5.62846	0.23526 "	6.37154
7		94549	11337 "	05451
8		6.27121	53554 × 10 ⁻⁶	7.72879
9		60562	24796 "	39438
4.0		94871	11254 "	05129
4.1 2 3 4 5	1.9976×10^{7} 4.5809 1.0718×10^{8} 2.5583 6.2297	7.30049 66095 8.03011 40796 79447	0.50062 × 10 ⁻⁷ 21829 " 93303 × 10 ⁻⁸ 39088 " 16052 "	8.69951 33905 9.96989 59204 20553
4.6 7 8 9 5.0	1.5476 × 10 ⁹ 3.9228 " 1.0143 × 10 ¹⁰ 2.6755 " 7.2005 "	9.18967 59357 10.00615 42741 85736	0.64614 × 10 ⁻⁹ 25494 " 98595 × 10 ⁻¹⁰ 37376 " 13888 "	70.81033 40643 711.99385 57259 14264

EXPONENTIAL FUNCTIONS.

Values of $e^{\frac{\pi}{4}\epsilon}$ and $e^{-\frac{\pi}{4}\epsilon}$ and their logarithms.

ae	$e^{\frac{\pi}{4}x}$	$\log e^{\frac{\pi}{4}x}$	e-#	$\log e^{-\frac{\pi}{4}x}$
1 2 3 4 5	2.1933 4.8105 1.0551 × 10 2.3141 " 5.0754 "	0.34109 .68219 1.02328 .36438	0.45594 .20788 .94780 × 10 ⁻¹ .43214 " .19703 "	ī.65891 31781 2.97672 .63562 .29453
6 7 8 9	1.1132 × 10 ² 2.4415 " 5.3549 " 1.1745 × 10 ⁸ 2.5760 "	2.04656 .38766 .72875 3.06985 .41094	0.89833 × 10 ⁻² .40958 " .18674 " .85144 × 10 ⁻³ .38820 "	3.95344 .61234 .27125 4.93015 .58906
11 12 13 14 15	5.6498 " 1.2392×10^4 2.7168 " 5.9610 " 1.3074×10^5	3.75204 4.09313 •43422 •77532 5.11641	0.17700 " .80699 × 10 ⁻⁴ .36794 " .16776 " .76487 × 10 ⁻⁵	4.24796 5.90687 .56578 .22468 6.88359
16 17 18 19 20	2.8675 " 6.2893 " 1.3794 × 10 ⁶ 3.0254 " 6.6356 "	5.45751 .79860 6.13969 .48079 .82189	0.34873 " .15900 " .72495 × 10 ⁻⁶ .33°53 " .15070 "	6.54249 .20140 7.86031 .51921 .17812

TABLE 21.

EXPONENTIAL FUNCTIONS.

Values of $\ell^{\frac{\sqrt{\pi}}{4}x}$ and $\ell^{-\frac{\sqrt{\pi}}{4}x}$ and their logarithms.

æ	$e^{\frac{\sqrt{\pi}}{4}x}$	$\log e^{\frac{\sqrt{\pi}}{4}x}$	$e^{-rac{\sqrt{\pi}}{4}x}$	$\log e^{-\frac{\sqrt{\pi}}{4}x}$
1 2 3 4 5	1.5576 2.4260 3.7786 5.8853 9.1666	0.19244 .38488 .57733 .76977 .96221	0.64203 .41221 .26465 .16992	1.80756 .61512 .42267 .23023 .03779
6	14.277	1.15465	0.070041	2.84535
7	22.238	•34709	.044968	.65291
8	34.636	•53953	.028871	.46047
9	53.948	•73198	.018536	.26802
10	84.027	•92442	.011901	.07558
11	130.87	2.11686	0.0076408	3.88314
12	203.85	.30930	.0049057	.69070
13	317.50	.50174	.0031496	.49826
14	494.52	.69418	.0020222	.30582
15	770.24	.88663	.0012983	.11337
16	1199.7	3.07907	0.00083355	4.92093
17	1868.5	.27151	.00053517	.72849
18	2910.4	.46395	.00034360	.53605
19	4533.1	.65639	.00022060	.34361
20	7060.5	.84883	.00014163	.15117

TABLES 22 AND 23. EXPONENTIAL FUNCTIONS AND LEAST SQUARES. 47

TABLE 22. - Exponential Functions.

Value of e* and e-* and their logarithms.

x	€ ^a	log e*	c-*	x	e ^{ss}	log ez	€-*
1/64 1/32 1/16 1/10 1/9 1/8 1/7 1/6 1/5 1/4	1.0157 .0317 .0645 .1052 .1175 1.1331 .1536 .1814 .2214	0.00679 .01357 .02714 .04343 .04825 0.05429 .06204 .07238 .08686 .10857	0.98450 .96923 .93941 .90484 .89484 0.88250 .86688 .84648 .81873 .77880	1/3 1/2 3/4 1 5/4 3/2 7/4 2 9/4 5/2	1.3956 .6487 2.1170 .7183 3.49°3 4.4817 5.7546 7.3891 9.4877 12.1825	0.14476 .21715 .32572 .43429 .54287 0.65144 .76002 .86859 .97716 1.08574	0.71653 .60653 .47237 .36788 .28650 0.22313 .17377 .13535 .10540 .08208

TABLE 23. — Least Squares.

Values of P =
$$\frac{2}{\sqrt{\pi}} \int_0^{hx} e^{-(hx)^2} d(hx)$$
.

This table gives the value of P, the probability of an observational error having a value positive or negative equal to or less than x when h is the measure of precision, $P = \frac{2}{\sqrt{\pi}} \int_0^{hx} e^{-(hx)^2} d(hx)$. For values of the inverse function see the table on Diffusion.

hx	1	2	3	4	5	6	7	8	9	10
0.0	.01128	.02256	.03384	.04511	.05637	.06762	.07886	.09008	.10128	.11246
I.	.12362	.13476	.14587	.1 5695	.16800	.17901	.18999	.20094	.21184	.22270
.2	.23352	.24430	.25502	.26570	.27633	.28690	.29742	.30788	.31828	.32863
.4	•43797	•44747	.45689	.46623	.47548	.48466	•49375	.50275	.51167	.52050
0.5	.52924	.53790	.54646	.55494	.56332	.57162	.57982	.58792	.59594	.60386
.6	.61168	.61941	.62705	.634 5 9	.64203	.64938	.65663	.66378	.67084	.67780
·7 .8	.68467	.69143	.69810	.70468	.71116	.71754	.72382	.73001	.73610	.74210
.9	.80188	.80677	.81156	.81627	.82089	.82542	.82987	.83423	.83851	.84270
1.0	.84681	.85084	.85478	.85865	.86244	.86614	.86977	.87333	.87680	.88021
.I	.88353	.88679	.88997	.89308	.89612	.89910	.90200	.90484	.90761	.91031
.2	.91296	.91553 .93807	.91805	.92051 .94191	.92290	.92524	.92751	.92973	.93190	.93401
•3	.95385	.95538	.95686	.95830	.95970	.96105	.96237	.96365	.96490	.96611
1.5	.96728	.96841	.96952	.97059	.97162	.97263	.97360	-97455	.97546	.97635
.6	.97721	.97804	.97884	.97962	.98038	.98110	.98181	.98249	.98315	.98379
.7 .8	.98441	.98500	.98558	.98613	.98667	.98719	.98769	.98817	.98864 .99248	.98909
.9	.99309	.99338	.99366	199392	.99418	.99443	.99466	.99489	.99511	.99532
2.0	.99552	.99572	.99591	.99609	.99626	.99642	.99658	.99673	.99688	.99702
ı.	.99715	.99728	.99741	.99753	.99764	.99775	.99785	.99795	.99805	.99814
.2	.99822	.99831	.99839	.99846 .99906	.99854	.99861	.99867	.99874	.99880	.99886
•3	.99935	.99938	.99902	•99944	•99911	.99950	.99952	-99955	•99957	.99959
2.5	.99961	.99963	.99965	.99967	.99969	.99971	.99972	.99974	•99975	.99976
.6	.99978	-99979	.99980	.99981	.99982	.99983	.99984	.99985	.99986	.99987
.7 .8	.99987	.99988	.99989	.99989	.99990	.99991	.99991	199992	.99992	.99996
.9	.99993	.99993	•99994 •99997	·99994 ·99997	•99994 •99997	·99995 ·99997	•99995 •99997	•99995 •99997	.99998	.99998
3.0	•99999	.99999	1.00000	,,,,,,,	,,,,,,	,,,,,,	,,,,,,	,,,,,,		
	77777	77777					1			<u></u>

Taken from a paper by Dr. James Burgess 'on the Definite Integral $\frac{2}{\sqrt{\pi}} \int_{0}^{t} e^{-t^2} dt$, with Extended Tables of Values.' Trans. Roy. Soc. of Edinburgh, vol. xxxix, 1900, p. 257.

TABLE 24.

LEAST SQUARES.

This table gives the values of the probability P, as defined in last table, corresponding to different values of x/r where r is the "probable error." The probable error r is equal to 0.47694/ \hbar .

					1	1				
$\frac{x}{r}$	0	1	2	3	4	5	6	7	8	9
0.0	.00000	.00538	.01076	.01614	.02152	.02690	.03228	.03766	.04303	.04840
0.I 0.2	.05378	.05914	.06451	.06987	.07523	.08059	.08594	.09129	.09663	.10197
0.3	.16035	.16562	.17088	.17614	.18138	.18662	19185	.19707	.20229	.15508
0.4	.21268	.21787	.22304	.22821	.23336	.23851	.24364	.24876	.25388	.25898
0.5 0.6	.26407	.26915	.27421	.27927	.28431	.28934	.29436	.29936	.30435	.30933
0.7	.31430	.31925	.32419	.32911	.33402	.33892	.34380	.34866	.35352 .40118	.35835 .40586
0.8	.41052	.41517	.41979	.42440	.42899	.43357	.43813	.44267	.44719	.45169
0.9	.45618	.46064	.46509	.46952	•47393	.47832	.48270	48605	.49139	.49570
1.0	.50000	.50428	.50853	.51277	.51699	.52119	·52537 ·56602	.52952	.53366 .57391	.53778
1.2	.58171	.58558	.58942	-59325	.59705	.60083	.60460	.60833	.61205	.61575
I.3 I.4	.61942	.62308 .65841	.62671	.63032 .66521	.63391	.63747	.64102	.64554	.64804	.65152
1.5	.68833	.69155	.69474	.69791	.70106	.70419	.70729	.71038	.71344	.71648
1.6	.71949	.72249	.72546	.72841	.73134	-73425	.73714	.74000	.74285	.74567
1.7	.74847	.75124	.75400	.75674	·75945 ·78542	.76214	.76481	.76746	.77009 .79522	.77270 .79761
1.9	.79999	.80235	.80469	.80700	.80930	.81158	.81383	.81607	.81828	.82048
2.0	.82266	.82481	.82695	.82907	.83117	.83324	.83530	.83734	.83936	.84137
2.1	.84335	.84531	.84726	.84919	.85109	.85298	.85486	.85671	.85854	.86036
2.2	.86216	.86394	.86570	.86745 .88395	.86917	.87088 .88705	.88857	.87425	.87591	.87755 .89304
2.4	.89450	.89595	.89738	.89879	.90019	.90157	.90293	.90428	.90562	.90694
2.5	.90825	.90954	.91082	.91208	.91332	.91456	.91578	.91698	.91817	.91935
2.6	.92051	.92166	.92280	·92392	.92503	.92613	.92721 .93734	.92828	.92934	.93038
2.8	.94105	.94195	.94284	·94371	.94458	.94543	.94627	.94711	.94793	.94874
2.9	•94954	.95033	.95111	.95187	.95263	·95338	.95412	.95484	-95557	.95628
	0	1	2	3	4	5	6	7	8	9
3	.95698	.96346	.96910	-97397	.97817	.98176	.98482	.98743	.98962	-99147
4 5	.99302	.9943I .99943	·99539 ·99956	99627 •99966	.99700	.99760	.99808	.99848	.99879	.99905
3	199920	177743	*77930	.,,,,,,,	-33374	.,,,,,,	. , , , , , ,	.,,,,,,,,	-7777-	77333

TABLE 25. LEAST SQUARES.

Values of the factor 0.6745 $\sqrt{\frac{1}{n-1}}$.

This factor occurs in the equation $e_a = 0.6745 \sqrt{\frac{\Sigma y^2}{n-1}}$ for the probable error of a single observation, and other similar equations.

n	=	1	2	3	4	5	6	7	8	9
00 10 20 30 40 50 60 70 80	0.2248 .1547 .1252 .1080 0.0964 .0878 .0812	0.2133 .1508 .1231 .1066 0.0954 .0871 .0806	0.6745 .2029 .1472 .1211 .1053 0.0944 .0864 .0800	0.4769 .1947 .1438 .1192 .1041 0.0935 .0857 .0795	0.3894 .1871 .1406 .1174 .1029 0.0926 .0850 .0789	0.3372 .1803 .1377 .1157 .1017 0.0918 .0843 .0784	0.3016 .1742 .1349 .1140 .1005 0.0909 .0837 .0778	0.2754 .1686 .1323 .1124 .0994 0.0901 .0830 .0773	0.2549 .1636 .1298 .1109 .0984 0.0893 .0824 .0768	0.2385 .1590 .1275 .1094 .0974 0.0886 .0818 .0763
90	.0715	.0711	.0707	.0703	.0699	.0696	.0692	.0688	.0685	.0681

TABLE 26. LEAST SQUARES.

Values of the factor 0.6745 $\sqrt{\frac{1}{n(n-1)}}$.

This factor occurs in the equation $e_m = 0.6745 \sqrt{\frac{\Xi y^2}{n(n-1)}}$ for the probable error of the arithmetic mean.

n		1	2	3	4	5	6	7	8	9
00 10 20	0.0711	0.0643 .0329	0.4769 .0587 .0314	0.2754 .0540 .0300	0.1947 .0500 .0287	0.1508 .0465 .0275	0.123 1 .0435 .0265	0.1041 .0409 .0255	0.0901 .0386 .0245	0.0795 .0365 .0237
30 40 50	0.0229 .0171 .0136	0.0221 .0167 .0134	0.0214 .0163 .0131	0.0208 .0159 .0128	0.0201 .0155 .0126	0.0196 .0152 .0124	0.0190 .0148 .0122	0.0185 .0145 .0119	0.0180 .0142 .0117	0.0175 .0139 .0115

TABLE 27. LEAST SOUARES.

Values of the factor 0.8453 $\sqrt{\frac{1}{n(n-1)}}$.

This factor occurs in the equation $\epsilon_s = 0.8453 \frac{\Sigma_y}{\sqrt{n(n-1)}}$ for the probable error of a single observation.

	n	=	1	2	3	4	5	6	7	8	9
I	0	0.0891 .0434	0.0806	0.5978 .0736 .0393	0.3451 .0677 .0376	0.2440 .0627 .0360	0.1890 .0583 .0345	0.1543 .0546 .0332	0.1304 .0513 .0319	0.1130 .0483 .0307	0.0996 .0457 .0297
4	O O O	0.0287 .0214 .0171	0.0277 .0209 .0167	0.0268 .0204 .0164	0.0260 .0199 .0161	0.0252 .0194 .0158	0.0245 .0190 .0155	0.0238 .0186 .0152	0.0232 .0182 .0150	0.0225 .0178 .0147	0.0220 .0174 .0145

TABLE 28. LEAST SQUARES.

Values of $0.8453\frac{1}{n\sqrt{n-1}}$.

This table gives the average error of the arithmetic mean when the probable error is one.

n	=	1	2	3	4	5	6	7	8	9
00 10 20	0.0282	0.0243	0.4227 .0212 .0084	0.1993 .0188 .0078	0.1220 .0167 .0073	0.0845 .0151 .0069	0.0630 .0136 .0065	0.0493 .0124 .0061	0.0399 .0114 .0058	0.0332 .0105 .0055
30 40 50	0.0052 .0034 .0024	0.0050	0.0047 .0031 .0023	0.0045	0.0043 .0029 .0022	0.004I .0028 .0021	0.0040 .0027 .0020	0.0038 .0027 .0020	0.0037 .0026 .0019	0.0035

TABLE 29.

Inverse* values of $v/c = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{q} e^{-qt} dq$. $\log x = \log (2q) + \log \sqrt{kt}$. t expressed in seconds. $= \log \delta + \log \sqrt{kt}$. t expressed in days. $= \log \gamma + \log \sqrt{kt}$. " years.

 $k = \text{coefficient of diffusion.} \dagger$

c = initial concentration.

v =concentration at distance x, time t.

v/c	log 2q	29	log δ	å	log y	γ
0.00	+∞	+ ∞	+∞	+∞	∞	∞
.01	0.56143	3.6428	3.02970	1070.78	4.31098	20463.
.02	•51719	3.2900	2.98545	967.04	.26674	18481.
.03	•48699	3.0690	•95525	902.90	.23654	17240.
.04	•46306	2.9044	•93132	853.73	.21261	16316.
0.05 .06 .07 .08	0.44276 .42486 .40865 .39372 .37979	2.7718 2.6598 2.5624 2.4758 2.3977	2.91102 .89311 .87691 .86198 .84804	814.74 781.83 753.20 727. 7 5 704.76	4.19231 .17440 .15820 .14327 .12933	15571. 14942. 14395. 13908. 13469.
0.10	0.36664	2.3262	2.83490	683.75	4.11619	13067.
.11	.35414	2.2602	.82240	664.36	.10369	12697.
.12	.34218	2.1988	.81044	646.31	.09173	12352.
.13	.33067	2.1413	.79893	629.40	.08022	12029.
.14	.31954	2.0871	.78780	613.47	.06909	11724.
0.15 .16 .17 .18	0.30874 .29821 .28793 .27786 .26798	2.0358 1.9871 1.9406 1.8961 1.8534	2.77699 .76647 .75619 .74612 .73624	598.40 584.08 570.41 557.34 544.80	4.05828 .04776 .03748 .02741 .01753	11436. 11162. 10901. 10652. 10412.
0.20 .21 .22 .23 .24	0.25825 .24866 .23919 .22983 .22055	1.8124 1.7728 1.7346 1.6976 1.6617	2.72651 .71692 .70745 .69808 .68880	532.73 521.10 509.86 498.98 488.43	4.00780 3.99821 .98874 .97937 .97010	9958.9 9744.1 9536.2 9334.6
0.25	0.21134	1.6268	2.67960	478.19	3.96089	9138.9
.26	.20220	1.5930	.67046	468.23	.95175	8948.5
.27	.19312	1.5600	.66137	458.53	.94266	8763.2
.28	.18407	1.5278	.65232	449.08	.93361	858 2. 5
.29	.17505	1.4964	.64331	439.85	.92460	8406.2
0.30 .31 .32 .33 .34	0.16606 .15708 .14810 .13912 .13014	1.4657 1.4357 1.4064 1.3776 1.3494	2.63431 .62533 .61636 .60738	430.84 422.02 413.39 404.93 396.64	3.91 560 .90662 .89765 .88867 .87969	8233.9 8065.4 7900.4 7738.8 7580.3
0.35	0.12114	1.3217	2.58939	388.50	3.87068	7424.8
.36	.11211	1.2945	.58037	380.51	.86166	7272.0
.37	.10305	1.2678	.57131	372.66	.85260	7122.0
.38	.09396	1.2415	.56222	364.93	.84351	6974.4
.39	.08482	1.2157	.55308	357.34	.83437	6829.2
0.40	0.07563	1.1902	2.54389	349.86	3.82518	6686.2
.41	.06639	1.1652	•53464	342.49	.81593	6545.4
.42	.05708	1.1405	•52533	335.22	.80662	6406.6
.43	.04770	1.1161	•51595	328.06	.79724	6269.7
.44	.03824	1.0920	•50650	320.99	.78779	6134.6
0.45	0.02870	1.0683	2.49696	314.02	3.77825	6001.3
.46	.01907	1.0449	•48733	307.13	.76862	5869.7
.47	.00934	1.0217	•47760	300.33	.75889	5739.7
.48	9.99951	0.99886	•46776	293.60	.74905	5611.2
.49	.98956	0.97624	•45782	286.96	.73911	5484.1
0.50	9.97949	0.95387	2.44775	280.38	3.72904	5358.4

^{*}Kelvin, Mathematical and Physical Papers, vol. III. p. 428; Becker, Am. Jour. of Sci. vol. III. 1897, p. 280. † For direct values see table 23.

Taken from unpublished manuscript of C. E. Van Orstrand.

v/c	log 2q	29	log å	δ .	log y	γ
0.50	9.9 7949	0.95387	2.44775	280.38	3.72904	5358.4
·51	.96929	.93174	•43755	273.87	.71884	5234.1
·52	.95896	.90983	•42722	267.43	.70851	5111.0
·53	.94848	.88813	•41674	261.06	.69803	4989.1
·54	.93784	.86665	•40610	254.74	.68739	4868.4
0.55	9.92704	0.84536	2.39530	248.48	3.67659	4748.9
.56	.91607	.82426	.38432	242.28	.66561	4630.3
.57	.90490	.80335	.37316	236.13	.65445	4512.8
.58	.89354	.78260	.36180	230.04	.64309	4396.3
.59	.88197	.76203	.35023	223.99	.63152	4280.7
0.60	9.87018	0.74161	2.33843	217.99	3.61973	4166.1
.61	.85815	.72135	.32640	212.03	.60770	4052.2
.62	.84587	.70124	.31412	206.12	.59541	3939.2
.63	.83332	.68126	.30157	200.25	.58286	3827.0
.64	.82048	.66143	.28874	194.42	.57003	3715.6
0.65	9.80734	0.64172	2.27560	188.63	3.55689	3604.9
.66	.79388	.62213	.26214	182.87	•54343	3494.9
.67	.78008	.60266	.24833	177.15	•52962	3385.4
.68	.76590	.58331	.23416	171.46	•51545	3276.8
.69	.75133	.56407	.21959	165.80	•50088	3168.7
0.70	9.73634	0.54493	2.20459	160.17	3.48588	3061. 1
•71	.72089	.52588	.18915	154.58	.47044	2954.2
•72	.70495	.50694	.17321	149.01	.45450	2847.7
•73	.68849	.48808	.15675	143.47	.43804	2741.8
•74	.67146	.46931	.13972	137.95	.42101	26 36.4
0.75	9.65381	0.45062	2.12207	132.46	3.40336	2531.4
.76	.63550	.43202	.10376	126.99	•38505	2426.9
.77	.61646	.41348	.08471	121.54	•36600	2322.7
.78	.59662	.39502	.06487	116.11	•34616	2219.0
.79	.57590	.37662	.04416	110.70	•32545	2115.7
0.80	9.55423	o.35829	2.02249	105.31	3.30378	2012.7
.81	.53150	•34001	1.99975	99.943	.28104	1910.0
.82	.50758	•32180	.975 ⁸ 4	94.589	.25713	1807.7
.83	.48235	•30363	.95061	89.250	.23190	1705.7
.84	.45564	•28552	.92389	83.926	.20518	1603.9
0.85	9.42725	0.26745	1.89551	78.615	3.17680	1502.4
.86	•39695	.24943	.86521	73.317	.14650	1401.2
.87	•36445	.23145	.83271	68.032	.11400	1300.2
.88	•32940	.21350	.79766	62.757	.07895	1199.4
.89	•29135	.19559	.75961	57.492	3.04090	1098.7
0.90	9.24972	0.17771	1.71797	52.236	2.99926	998.31
.91	.20374	.15986	.67200	46.989	•95329	898.03
.92	.15239	.14203	.62065	41.750	•90194	797.89
.93	.09423	.12423	.56249	36.516	•84378	697.88
.94	9.02714	.10645	•49539	31.289	•77668	597.98
0.95 .96 .97 .98 .99	8.94783 .85082 .72580 .54965 .24859	o.o8868 .o7093 .o5319 .o3545	1.41609 •31907 •19406 •01791 9.71684	26.067 20.848 15.633 10.421 5.21007	2.69738 .60036 .47535 .29920 1.99813	498.17 398.44 298.78 199.16 99.571
1.00	-∞	0.00000	-∞	0.00000	∞	0.000

TABLE 30.

CAMMA FUNCTION.*

Value of
$$\log \int_0^\infty e^{-s} x^{n-1} dx + 10$$
.

Values of the logarithms + 10 of the "Second Eulerian Integral" (Gamma function) $\int_{0}^{\infty} e^{-x}x^{n-1}dx \text{ or log } \Gamma(n)+10$ for values of n between 1 and 2. When n has values not lying between 1 and 2 the value of the function can be readily calculated from the equation $\Gamma(n+1) = n\Gamma(n) = n(n-1) \dots (n-r)\Gamma(n-r)$.

n	0	1	2	3	4	5	6	7	8	9
1.00	9.99 	97497	95001	92512	90030	87555	85087	82627	80173	77727
I.01		72855	70430	68011	65600	63196	60799	58408	56025	53648
I.02		48916	46561	44212	41870	39535	37207	34886	32572	30265
I.03		25671	23384	21104	18831	16564	14305	12052	09806	07567
I.04		03108	00889	98677	96471	94273	92080	89895	87716	85544
1.05	9.9883379	81220	79068	76922	74783	72651	70525	68406	66294	64188
1.06	62089	59996	57910	55830	53757	51690	49630	47577	45530	43489
1.07	41469	39428	37407	35392	33384	31382	29387	27398	25415	23449
1.08	21469	19506	17549	15599	13655	11717	09785	07860	05941	04029
1.09	02123	00223	98329	96442	94561	92686	90818	89856	87100	85250
1.10 1.11 1.12 1.13 1.14	9.9783407 65313 47834 30962 14689	81570 63538 46120 29308 13094	79738 61768 44411 27659	77914 60005 42709 26017 09922	76095 58248 41013 24381 08345	74283 56497 39323 22751 06774	72476 54753 37638 21126 05209	70676 53014 35960 19508 03650	68882 51281 34 2 88 17896 02096	67095 49555 32622 16289 00549
1.15	9.9699007	97471	95941	94417	92898	91386	89879	88378	86883	85393
1.16	83910	82432	80960	79493	78033	76578	75129	73686	72248	70816
1.17	69390	67969	66554	65145	63742	62344	60952	59566	58185	56810
1.18	55440	54076	52718	51366	50019	48677	47341	46011	44687	43368
1.19	42054	40746	39444	38147	368 5 6	35570	34290	33016	31747	30483
1.20	9.9629225	27973	26725	25484	24248	23017	21792	20573	19358	18150
1.21	16946	15748	14556	13369	12188	11011	09841	08675	07515	06361
1.22	05212	04068	02930	01796	00669	99546	98430	97318	96212	95111
1.23	594015	92925	91840	90760	89685	88616	87553	86494	85441	84393
1.24	83350	82313	81280	80253	79232	78215	77204	76198	75197	74201
1.25	9.9573211	72226	71246	70271	69301	68337	67377	66423	65474	64530
1.26	63592	62658	61730	60806	59888	58975	58067	57165	56267	55374
1.27	54487	53604	52727	51855	50988	50126	49268	48416	47570	46728
1.28	45891	45059	44232	43410	42593	41782	40975	40173	39376	38585
1.29	37798	37016	36239	35467	34700	33938	33181	32439	31682	30940
1.30	9.9530203	29470	28743	28021	27303	26590	25883	25180	24482	23789
1.31	23100	22417	21739	21065	20396	19732	19073	18419	17770	17125
1.32	16485	15850	15220	14595	13975	13359	12748	12142	11540	10944
1.33	10353	09766	09184	08606	08034	07466	06903	06344	05791	05242
1.34	04698	04158	03624	03094	02568	02048	01532	01021	00514	00012
1.35	9.9499515	99023	98535	98052	97573	97100	96630	96166	95706	95251
1.36	94800	94355	93913	93477	93044	92617	92194	91776	91362	90953
1.37	90549	.90149	89754	89363	88977	88595	88218	87846	87478	87115
1.38	86756	86402	86052	85707	85366	85030	84698	84371	84049	83731
1.39	83417	83108	82803	82503	82208	81916	81630	81348	81070	80797
1.40	9.9480528	80263	80003	79748	79497	792 5 0	79008	78770	78537	78308
1.41	78084	77864	77648	77437	77230	77027	76829	76636	76446	76261
1.42	76081	75905	75733	75565	75402	75243	75089	74939	74793	74652
1.43	74515	74382	74254	74130	74010	73894	73783	73676	73574	73746
1.44	73382	73292	73207	73125	73049	72976	72908	72844	72784	72728

^{*} Quoted from Carr's "Synopsis of Mathematics," and is there quoted from Legendre's "Exercises de Calcul Intégral," tome ii.

n	0 .	1	2	3	4	5	6	7	8	9
1.45	9.9472677	72630	72587	72549	72514	72484	72459	72437	72419	72406
1.46	72397	72393	72392	72396	72404	72416	72432	72452	72477	72506
1.47	72539	72576	72617	72662	72712	72766	72824	72886	72952	73022
1.48	73097	73175	73258	73345	73436	73531	73630	73734	73841	73953
1.49	74068	74188	74312	74440	74572	74708	74848	74992	75141	75293
1.50	9-9475449	75610	75774	75943	76116	76292	76473	76658	76847	77040
1.51	77237	77438	77642	77851	78064	78281	78502	78727	78956	79189
1.52	79426	79667	79912	80161	80414	80671	80932	81196	81465	81738
1.53	82015	82295	82580	82868	83161	83457	83758	84062	84370	84682
1.54	84998	85318	85642	85970	86302	86638	86977	87321	87668	88019
1.55	9.9488374	88733	89096	89463	89834	90208	90587	90969	91355	91745
1.56	92139	92537	92938	93344	93753	94166	94583	95004	95429	95857
1.57	96289	96725	97165	97609	98056	98508	98963	99422	99885	00351
1.58	500822	01296	01774	02255	02741	03230	03723	04220	04720	05225
1.59	05733	06245	06760	07280	07803	08330	08860	09395	09933	10475
1.60	9.9511020	11569	12122	12679	13240	13804	14372	14943	15519	16098
1.61	16680	17267	17857	18451	19048	19650	20254	20862	21475	22091
1.62	22710	23333	23960	24591	25225	25863	26504	27149	27798	28451
1.63	29107	29767	30430	31097	31767	32442	33120	33801	34486	35175
1.64	35867	36563	37263	37966	38673	39383	40097	40815	41536	42260
1.65	9.9542989	43721	44456	45195	45938	46684	47434	48187	48944	49704
1.66	50468	51236	52007	52782	53560	54342	55127	55916	56708	57504
1.67	58303	59106	59913	60723	61536	62353	63174	63998	64826	65656
1.68	66491	67329	68170	69015	69864	70716	71571	72430	73293	74159
1.69	75028	7 5901	76777	77657	78540	79427	80317	81211	82108	83008
1.70	9.9583912	84820	85731	86645	87536	88484	89409	90337	91268	92203
1.71	93141	94083	95028	95977	96929	97884	98843	99805	00771	01740
1.72	602712	03688	04667	05650	06636	07625	08618	09614	10613	11616
1.73	12622	13632	14645	15661	16681	17704	18730	19760	20793	21830
1.74	22869	23912	24959	26009	27062	28118	29178	30241	31308	32377
1.75	9.9633451	34527	35607	36690	37776	38866	39959	41055	42155	43258
1.76	44364	45473	46586	47702	48821	49944	51070	52200	53331	54467
1.77	55606	56749	57894	59043	60195	61350	62509	63671	64836	66004
1.78	67176	68351	69529	70710	71895	73082	74274	75468	76665	77866
1.79	79070	80277	81488	82701	83198	85138	86361	87588	88818	90051
1.80	9.9691287	92526	93768	95014	96263	97515	98770	00029	01291	02555
1.81	703823	05095	06369	07646	08927	10211	11498	12788	14082	15378
1.82	16678	17981	19287	20596	21908	23224	24542	25864	27189	28517
1.83	29848	31182	32520	33860	35204	36551	37900	39254	40610	41969
1.84	43331	44697	46065	47437	48812	50190	51571	52955	54342	55733
1.85	9.9757126	58522	59922	61325	62730	64140	65551	66966	68384	69805
1.86	71230	72657	74087	75521	76957	78397	79839	81285	82734	84186
1.87	85640	87098	88559	90023	91490	92960	94433	95910	97389	98871
1.88	800356	01844	03335	04830	06327	07827	09331	10837	12346	13859
1.89	15374	16893	18414	19939	21466	22996	24530	26066	27606	29148
1.90	9.9830693	32242	33793	35348	36905	38465	40028	41 595	43164	44736
1.91	46311	47890	49471	51055	52642	54232	55825	57421	59020	60622
1.92	62226	63834	65445	67058	68675	70294	71917	73542	75170	76802
1.93	78436	80073	81713	83356	85002	86651	88302	89957	91614	93275
1.94	94938	96605	98274	99946	01621	03299	04980	06663	08350	10039
1.95	9.9911732	13427	15125	16826	18530	20237	21947	23659	25375	27093
1.96	28815	30539	32266	33995	35728	37464	39202	40943	42688	44435
1.97	46185	47937	49693	51451	53213	54977	56744	58513	60286	62062
1.98	63840	65621	67405	69192	70982	72774	74570	76368	78169	79972
1.99	81779	83 5 88	85401	87216	89034	90854	92678	94504	96333	98165

TABLE 31.
ZONAL HARMONICS.*

The values of the first seven zonal harmonics are here given for every degree between $\theta = 0^{\circ}$ and $\theta = 90^{\circ}$.

		1					
θ	\mathbf{z}_1	\mathbf{z}_2	Z 3	Z 4	Z 5	Z 6	Z ₇
0°	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000
1° 2 3 4 5	0.9998 •9994 •9986 •9976 •9962	0.9995 .9982 •9959 •9927 .9886	0.9991 .9963 .9918 .9854 .9773	0.9985 .9939 .9863 .9758 .9623	0.9977 .9909 .9795 .9638 .9437	0.9967 .9872 .9713 .9495 .9216	0.9955 .9829 .9617 .9329 .8961
6° 7 8 9 10	•9945 •9925 •9903 •9877 •9848	.9836 •9777 •9709 •9633 •9548	.9674 •9557 •9423 •9273 •9106	.9459 .9267 .9048 .8803 .8532	.9194 .8911 .8589 .8232	.8881 .8476 .8053 .7571 .7045	.8522 .7986 .7448 .6831 .6164
11° 12 13 14 15	.9816 .9781 .9744 .9703 .9659	•9454 •9352 •9241 •9122 •8995	.8923 .8724 .8511 .8283 .8042	.8238 .7920 .7582 .7224 .6847	.7417 .6966 .6489 .5990	.6483 •5892 •5273 •4635 •3982	.5461 .4732 .3940 .3219 .2454
16° 17 18 19	.9613 .9563 .9511 .9455 .9397	.8860 .8718 .8568 .8410 .8245	•77 ⁸ 7 •7519 •7240 •6950 •6649	.6454 .6046 .5624 .5192 .4750	.4937 .4391 .3836 .3276 .2715	.3322 .2660 .2002 .1347	.1699 .0961 .0289 —.0443 —.1072
21° 22 23 24 25	.9336 .9272 .9205 .9135 .9063	.8074 •7895 •7710 •7518 •7321	.6338 .6019 .5692 .5357 .5016	.4300 .3845 .3386 .2926 .2465	.2156 .1602 .1057 .0525	.0107 0481 1038 1559 2053	1662 2201 2681 3095 3463
26° 27 28 29 30	.8988 .8910 .8829 .8746 .8660	.7117 .6908 .6694 .6474 .6250	.4670 .4319 .3964 .3607 .3248	.2007 .1553 .1105 .0665	0489 0964 1415 1839 2233	2478 2869 3211 3503 3740	3717 3921 4052 4114 4101
31° 32 33 34 35	.8572 .8480 .8387 .8290 .8192	.6021 •5788 •5551 •5310 •5065	.2887 .2527 .2167 .1809 .1454	0185 0591 0982 1357 1714	2595 2923 3216 3473 3691	3924 4052 4126 4148 4115	4022 3876 3670 3409 3096
36° 37 38 39 40	.8090 .7986 .7880 .7771 .7660	.4818 .4567 .4314 .4059 .3802	.1102 .0755 .0413 .0077 —.02 5 2	2052 2370 2666 2940 3190	3871 4011 4112 4174 4197	4031 3898 3719 3497 3234	—.2738 —.2343 —.1918 —.1469 —.1003
41° 42 43 44 45	•7547 •7431 •7314 •7193 •7071	•3544 •3284 •3023 •2762 •2500	0574 0887 1191 1485 1768	3416 3616 3791 3940 4062	4181 4128 4038 3914 3757	2938 2611 2255 1878 1485	0534 0065 .0395 .0846

^{*} Calculated by Prof. Perry (Phil. Mag. Dec. 1891). See also A. Gray, "Absolute Measurements in Electricity and Magnetism," vol. ii., part 2.

ZONAL HARMONICS.

θ	\mathbf{z}_1	\mathbf{z}_2	z ₃	Z ₄	Z ₅	z ₆	Z ₇
46° 47 48 49 50	0.6947 .6820 .6691 .6561 .6428	0.2238 .1977 .1716 .1456	2040 2300 2547 2781 3002	4158 4252 4270 4286 4275	3568 3350 3105 2836 2545	1079 0645 0251 .0161 .0563	0.1666 .2054 .2349 .2627 .2854
51° 52 53 54 55	.6293 .6157 .6018 .5878 .5736	.0941 .0686 .0433 .0182 —.0065	3209 3401 3578 3740 3886	4239 4178 4093 3984 3852	2235 1910 1571 1223 0868	.0954 .1326 .1677 .2002	.3031 .3153 .3221 .3234 .3191
56° 57 58 59 60	•5592 •5446 •5299 •5150 •5000	0310 0551 0788 1021 1250	4016 4131 4229 4310 4375	3698 3524 3331 3119 2891	0510 0150 .0206 .0557 .0898	.2559 .2787 .2976 .3125 .3232	.3095 .2949 .2752 .2511 .2231
61° 62 63 64 65	.4848 .469 5 .4540 .4384 .4226	1474 1694 1908 2117 2321	4423 4455 4471 4470 4452	2647 2390 2121 1841 1552	.1229 .1545 .1844 .2123 .2381	.3298 .3321 .3302 .3240 .3138	.1916 .1571 .1203 .0818
66° 67 68 69 7°	.4067 .3907 .3746 .3584 .3420	—.2518 —.2710 —.2896 —.3074 —.3245	4419 4370 4305 4225 4130	1256 0955 0650 0344 0038	.2615 .2824 .3005 .3158 .3281	.2996 .2819 .2605 .2361 .2089	.0021 0375 0763 1135 1485
71° 72 73 74 75	.3256 .3090 .2924 .2756 .2588	—.3410 —.3568 —.3718 —.3860 —.3995	—.4021 —.3898 —.3761 —.3611 —.3449	.0267 .0568 .0864 .1153 .1434	•3373 •3434 •3463 •3461 •3427	.1786 .1472 .1144 .0795 .0431	1811 2099 2347 2559 2730
76° 77 78 79 80	.2419 .2250 .2079 .1908 .1736	4112 4241 4352 4454 4548		.1705 .1964 .2211 .2443 .2659	.3362 .3267 .3143 .2990 .2810	.0076 0284 0644 0989 1321	2848 2919 2943 2913 2835
81° 82 83 84 85	.1 564 .1392 .1219 .1045 .0872	4633 4709 4777 4836 4886	2251 2020 1783 1539 1291	.2859 .3040 .3203 .3345 .3468	.2606 .2378 .2129 .1861 .1577	1635 1926 2193 2431 2638	—.2709 —.2536 —.2321 —.2067 —.1779
86° 87 88 89 90	.0698 .0523 .0349 .0175 .0000	4927 4959 4982 4995 5000	1038 0781 0522 0262 0000	•3569 •3648 •3704 •3739 •3750	.1278 .0969 .0651 .0327 .0000	2811 2947 3045 3105 3125	1460 1117 073 5 0381 0000

TABLE 32.

MUTUAL INDUCTANCE.*

Values of $\log \frac{M}{4\pi \sqrt{aa'}}$.

Table of values of $\log \frac{M}{4\pi \sqrt{aa'}}$ for facilitating the calculation of the mutual inductance M of two coaxial circles of radii a, a', at distance apart b. The table is calculated for intervals of b' in the value of $\cos^{-1}\left\{\frac{(a-a')^2+b^2}{(a-a')^2+b^2}\right\}^{\frac{1}{2}}$ from b' from b' oo oo.

	0′	6′	12′	18′	24′	30′	36′	42′	48′	54′
60°	ī.4994783	5022651	5050505	5078345	5106173	5133989	5161791	5189582	5217361	5245128
61										5522209
62										5798394
63		5853546								
64	6101472	6128998	61 56 522	6184042	6211560	6239076	6266589	6294101	6321612	6349121
65°	1.6376629	6404137	6431645	6459153	6486660	6514169	6541678	6569189	6596701	6624215
66		6679250								
67		6954642								
68		7230640								
69	7479848	7507597	7535361	7563138	7590929	7618735	7646556	7674392	7702245	7730114
70°	T.77 58000	7785003	7813823	7841762	7869720	7897696	7925692	7953709	7981745	8000803
71		8065983								
72		8348316								
73	8604785	8633440	8662129	8690852	8719611	8748406	877723 7	8806106	8835013	8863958
74	8892943	8921969	8951036	8980144	9009295	9038489	9067728	9097012	9126341	9155717
75°	1.9185141	9214613	9244135	927 3707	9303330	9333005	9362733	9392515	9422352	9452246
76		9512205								
77	9785079	9815731	9846454	9877249	9908118	9939062	9970082	0001181	0032359	0063618
78	0.0094959	0126385	01 57896	0189494	0221181	0252959	0284830	0316794	0348855	0381014
79	0413273	0445633	0478098	0510668	0543347	0576136	0609037	0642054	0675187	0708441
80°	0.0741816	0775316	0808944	0842702	0876592	0910619	0944784	0979091	1013542	1048142
81		1117799								
82		1476207								
83	1815890	1854815	1894001	1933455	1973184	2013197	2053502	2094108	2135026	2176259
84		2259728								
85°	0.26541 52	27001 56	2746655	2793670	2841221	2889329	2938018	2987312	3037238	3087823
86		3191092								
87		37 59777								
88		4465341								
89	5360007	5490969	5632886	5788406	5961320	61 57 370	6385907	6663883	7027765	7586941

^{*} Quoted from Gray's "Absolute Measurements in Electricity and Magnetism," vol. ii., p. 852.

ELLIPTIC INTEGRALS.

Values of $\int_0^{\frac{\pi}{2}} (1-\sin^2\theta\sin^2\phi)^{\frac{1}{2}} d\phi.$

This table gives the values of the integrals between o and $\pi/2$ of the function $(i-\sin^2\theta\sin^2\phi)^{\frac{1}{4}}$ $d\phi$ for different values of the modulus corresponding to each degree of θ between o and 90.

	ues of the modulus corresponding to each degree of θ between o and 90.											
θ	$\int_0^{\frac{\pi}{2}} \frac{1}{(1-t)^{\frac{1}{2}}}$	$\frac{\mathrm{d}\phi}{\sin^2\theta\sin^2\phi)^{\frac{1}{2}}}$	$\int_0^{\pi} (1-s)^{\frac{\pi}{2}}$	$\ln^2 \theta \sin^2 \phi)^{\frac{1}{2}} d\phi$	θ	$\int_0^{\frac{\pi}{2}} \overline{(z-z)} dz$	$\frac{d\phi}{\sin^2\theta\sin^2\phi)^{\frac{1}{2}}}$	$\int_0^{\pi} (1-t)^{-\frac{1}{2}}$	$\sin^2\! heta \sin^2\!\phi)^{rac{1}{2}}d\phi$			
	Number.	Log.	Number.	Log.		Number.	Log.	Number.	Log.			
00	1.5708	0.196120	1.5708	0.196120	45°	1.8541	0.268127	1.3506	0.130541			
I	5709	196153	5707	196087	6	8691	271644	3418	127690			
2	5713	196252	5703	195988	7 8	8848	275267	3329	124788			
3 4	5719 5727	196418 196649	5697 5689	195822	9	9011	279001 282848	3238 3147	121836 118836			
5°	1.5738	0.196947	1.5678	0.195293	50°	7.0256	0.286811					
6	575I	197312	5665	194930	J0	1.9356 9539	290895	2963	0.115790			
	5751 5767		5649	194500	2	9729	295101	2870	109563			
7 8	5785	197743 198241	5632	194004	3	9927	2 99435 .	2776	106386			
9	5785 5805	198806	5611	193442	4	2.0133	303901	2681	103169			
10°	1.5828	0.199438	1.5589	0.192815	55°	2.0347	0.308504	1.2587	0.099915			
I	5854 5882	200137	5564	192121	6	0571	313247	2492	096626			
2		200904	5537	191362	7 8	0804	318138	2397	093303			
3	5913	201740	5507	190537		1047	323182	2301	089950			
4	5946	202643	5476	189646	9	1300	328384	2206	086569			
15°	1.5981	0.203615	1.5442	0.188690	60°	2.1565	0.333753	1.2111	0.083164			
6	6020	204657	5405	187668	I	1842	339295	2015	079738			
7 8	6061	205768	5367	186581	2	2132	345020	1920	076293			
8	6105	206948	5326	185428	3	2435	350936	1826	072834			
9	6151	208200	5283	184210	4	2754	357053	1732	069364			
20°	1.6200	0.209522	1.5238	0.182928	65°	2.3088	0.363384	1.1638	0.065889			
I	6252	210916	5191	181580	6	3439	369940	1545	062412			
2	6307	212382	5141	180168	7 8	3809	376736	1453	058937			
3	6365	213921	5090	178691	1	4198	383787	1362	055472			
4	6426	215533	5037	177150	9	4010	391112		052020			
25°	1.6490	0.217219	1.4981	0.175545	70°	2.5046	0.398730	1.1184	0.048589			
6	6557	218981	4924	173876	I	5507 5998 6521	406665	1096	045183			
7 8		220818	4864	172144	2	5998	414943	IOII	041812			
	6701	222732	4803	170348	3	7081	423596	0927	038481			
9	6777	224723	4740	168489	4	1	432660	0844	035200			
30°	1.6858	0.226793	1.4675 4608	0.166567	75°	2.7681	0.442176	1.0764	0.031976			
I	6941	228943	4608	164583	6	8327	452196	0686	028819			
2	7028	231173	4539	162537	7 8	9026	462782	0611	025740			
3	7119	233485	4469	160429		9786	474008	0538	022749			
4	7214	235880	4397	158261	9	3.0617	485967	0468	019858			
35°	1.7312	0.238359	1.4323	0.156031	80°	3.1534	0.498777	1.0401	0.017081			
6	7415	240923		153742	I	2553	512591	0338	014432			
7 8	7522	243575	4171	151393	2	3699	527613	0278	011927			
_	7633	246315	4092	148985	3	5004	544120	0223	009584			
9	7748	249146	4013	146519	4	6519	562514	0172	007422			
40°	1.7868	0.252068	1.3931	0.143995	85°	3.8317	0.583396	1.0127	0.005465			
I	7992 8122	255085	3849	141414	6	4.0528	607751	0086	003740			
2		258197	3765	138778	7 8	3387	637355	0053	002278			
3	8256	261406	3680	136086	1	7427	676027	0026	001121			
4	8396	264716	3594	133340	9	5.4349	735192	0008	000326			
45°	1.8541	0.268127	1.3506	0.130541	90°	00	00	1.0000				
l	1											

MOMENTS OF INERTIA, RADII OF GYRATION, AND WEIGHTS.

In each case the axis is supposed to traverse the centre of gravity of the body. The axis is one of symmetry. The mass of a unit of volume is w.

Body.	Axis.	Weight.	Moment of Inertia Io.	Square of Radius of Gyration ρ_0^2 .
Sphere of radius r	Diameter	$\frac{4\pi wr^8}{3}$	<u>8πτων⁵</u> 15	$\frac{2r^2}{5}$
Spheroid of revolution, polar axis 2a, equatorial diameter 2r	Polar axis	<u>4πwar²</u> 3	8#war4	$\frac{2r^2}{5}$
Ellipsoid, axes 2a, 2b, 2c	Axis 2a	<u>4πwabc</u>	4#wabc(b2+c2)	$\frac{b^2+c^2}{5}$
Spherical shell, external radius r, internal r'	Diameter	$\frac{4\pi \pi v(r^8-r'^8)}{3}$	8πw(r ⁵ —r' ⁵) 15	$\frac{2(r^5-r'^5)}{5(r^8-r'^8)}$
Ditto, insensibly thin, radius r, thickness dr	Diameter	4πwr²dr	$\frac{8\pi w r^4 dr}{3}$	$\frac{2r^2}{3}$
Circular cylinder, length 2a, radius r	Longitudinal axis 2a	$2\pi war^2$	πwar⁴	$\frac{r^2}{2}$
Elliptic cylinder, length 2a, transverse axes 2b, 2c	Longitudinal axis 2a	2πwabc	$\frac{\pi wabc(b^2+c^2)}{2}$	$\frac{b^2+c^2}{4}$
Hollow circular cylinder, length 2a, external ra- dius r, internal r'	Longitudinal axis 2a	2πwa(r²—r'²)	πwa(r⁴r'⁴)	r2+r'2 2
Ditto, insensibly thin, thickness dr	Longitudinal axis 2a	4πwardr	4πwar ⁸ dr	y 2
Circular cylinder, length 2a, radius r	Transverse diameter	2πwar²	$\frac{\pi \pi var^2(3r^2+4a^2)}{6}$	$\frac{r^2}{4} + \frac{a^2}{3}$
Elliptic cylinder, length 2a, transverse axes 2a, 2b	Transverse axis 2b	2 n wabc	$\frac{\pi wabc(3c^2+4a^2)}{6}$	$\frac{c^2}{4} + \frac{a^2}{3}$
Hollow circular cylinder, length 2a, external radius r, internal r'	Transverse diameter	$2\pi w a (r^2 - r'^2)$	$\frac{\pi wa}{6} \left\{ \begin{array}{l} 3(r^4 - r'^4) \\ +4a^2(r^2 - r'^2) \end{array} \right\}$	$\frac{r^2+r'^2}{4}+\frac{a^2}{3}$
Ditto, insensibly thin, thickness dr	Transverse diameter	4mwardr	$\pi wa(2r^3 + \frac{4}{3}a^2r)dr$	$\frac{r^2}{2} + \frac{a^2}{3}$
Rectangular prism, dimensions 2a, 2b, 2c	Axis 2a	8wabc	$\frac{8wabc(b^2+c^2)}{3}$	$\frac{b^2+c^2}{3}$
Rhombic prism, length 2a, diagonals 2b, 2c	Axis 2a	4wabc	$\frac{2wabc(b^2+c^2)}{3}$	$\frac{b^2+c^2}{6}$
Ditto	Diagonal 2b	4wabc	$\frac{2wabc(c^2+2a^2)}{3}$	$\frac{c^2}{6} + \frac{a^2}{3}$

(Taken from Rankine.)

BRITISH GAUGE NUMBERS AND SIZES OF WIRES.

For Brown & Sharp American Gauge and Electrical Constants see Tables 40 and 41.

TABLE 35. - British Standard Wire Gauge.

TABLE 36. - Birmingham Wire Gauge.

Gauge Number	Diameter in Inches.	Section in Sq. Inches.	Diameter in Centi- metres.	Section in Sq. Cms.
7-0 6-0	0.500	0.1963	1.2700 .1786	1.267 .091
5-0	0.432	0.1466	1.0973	0.9456
4-0	.400	.1257	.0160	.8107
3-0	.372	.1087	.8839	.7012 .6136
0	.324	.0825	.8230	.5319
1	0.300	0.07069	0.7620	0.4560
2	.276	.05983	.7010	.3858
3 4	.252	.04988	.5893	.3218
5	.212	.03530	.5385	.2277
6	0.192	0.02895	0.4877	0.18679
7 8	.176	.02433	-4470	.15696
	.160	.02010	.4064	.12973
9	.144	.01629	.3658	.08302
11	0.116	0.010568	0.2946	0.06818
12	.104	.008495	.2642	.05480
13	.092	.006648	.2337	.04289
14	.072	.005027	.2032	.03243
16	0.064	0.003217	0.16256	0.020755
17	.056	.002463	.14224	.015890
	.048	.001810	.12192	.011675
19	.040 .036	.001257	.00160	.008107
21	0.032	0.0008042	0.08128	0.005189
22	.028	.0006158	.07112	.003973
23	.024	.0004524	.06096	.002922
24 25	.022	.0003801	.05588	.002452
26	0.0180	0.0002545	0.04572	0.0016417
27	.0164	.0002112	.04166	.0013628
28	.0148	.0001728	.03759	.0011099
30	.0136	.0001453	.03454	.0009363
31	0.0116	0.00010568	0.02946	0.0006818
32	.0108	.00009161	.02743	.0005910
33	.0100	.00007854	.02540	.0005067
34	.0092	.00005542	.02337	.0004289
36	0.0076	0.00004536	0.01930	0.0002927
37 38	.0068	.00003632	.01727	.0002343
38	.0060	.00002827	.01524	
39	.0052	.00002124	.01321	.0001370
41	0.0044		0.01118	0.0000982
42	.0040	.00001257	.01016	1180000.
43	.0036	.000001018	.00914	.0000656
44	.0032	.00000616	.00711	.0000319
46	0.0024	0.00000452	0.00610	0.0000292
47 48	.0020	.00000314	.00508	.0000203
	.0016	.00000201	.00406	.0000129
49	.0012	.0000079	.00305	.0000051

Gauge Number.	ter in			
	Diameter Inches.	Sections in Sq. Inches.	Diameter in Centi- metres.	Section in Sq. Cms.
0000	0.454 •425 •380 •340	0.16188 .14186 .11341 .09079	1.1532 .0795 0.9652 .8636	1.0444 .91 52 .731 7 .5858
1 2 3 4 5	0.300 .284 .259 .238 .220	0.07069 .06335 .05269 .04449 .03801	0.7620 .7214 .6579 .6045	0.4560 .4087 .3399 .2870 .2452
6 7 8 9	0.203 .180 .165 .148 .134	0.0323 7 .02545 .02138 .01720	0.51 5 6 •45 7 2 •4191 •3759 •3404	0.2088 1 .1641 7 .13795 .11099
11 12 13 14 15	0.120 .109 .095 .083	-0.011310 .009331 .007088 .005411	0.3048 .2769 .2413 .2108	0.07297 .06160 .04573 .03491
16 17 18 19 20	0.065 .058 .049 .042 .035	0.0033183 .0026421 .0018857 .0013854 .0009621	0.16510 .14732 .12446 .10668 .08890	0.021409 .017046 .012166 .008938 .006207
21 22 23 24 25	0.032 .028 .025 .022	0.0008042 ,0006158 .0004909 .0003801 .0003142	0.08128 .07112 .06350 .05588 .05080	0.005189 .003973 .003167 .002452
26 27 28 29 30	0.018 .016 .014 .013	0.0002545 .0002011 .0001539 .0001327 .0001181	0.04572 .04064 .03556 .03302 .03048	0.0016417 .0012972 .0009932 .0008563 .0007297
31 32 33 34 35	0.010 .009 .008 .007	0.00007854 .00006362 .00005027 .00003848 .00001963	0.02540 .02286 .02032 .01778 .01270	0.0005067 .0004104 .0003243 .0002483 .0001267
36	0.004	0.00001257	0.01016	0.0000811

TABLE 37.

BRITISH UNITS.

000

Cross sections and weights of wires.

This table gives the cross section and weights in British units of copper, iron, and brass wires of the diameters given in the first column. For one tenth the diameter divide section and weights by 100. For ten times the diameter multiply by 100, and so on.

Cian	diameter multiply by 100, and so on.									
n	Area of cross	Coppe	r — Densit	y 8.90.	Iron -	- Density	7.80.	Brass	— Density	8.56.
Diam. i Mils.	section in Sq. Mils.	Pounds per Foot.	Log.	Feet per Pound.	Pounds per Foot.	Log.	Feet per Pound.	Pounds per Foot.	Log.	Feet per Pound.
10	78.54	.000303	4 .48150 .56429	3300. 2727.	.0002656	4.42420	3765. 3112.	.0002915	4.46458	3431. 2836.
12	95.03	0367 0436	.63986	2291.	03825	.58257	2615.	03527	54735	2383.
13	132.73	0512	.70939	1953.	04488		2228.	04926	69246	2030.
14	153.94	0594	.77376	1683.	o 5206	.71646	1921.	05713	75684	1750.
15 16	176.71 201.06	.000682 0776	4.83368 .88974	1467.	.000 5976	.83244	1674.	07461	4.81675 .87282	1525.
17	226.98	0876	.94240	1142.	07675	.88510	1303.	08423	.92548	1340.
18	254.47	0982	99205	1018.	0 8605	•93475	1162.	09443	97513	1059.
19	283.53	1094	3.03902	914.	09588	.98171	1043.	.0010522	3.02209	950.
20 2I	314.16	.001212	3.08357	825.1	.001062	3.02626	941.4	.001166	3.06664	857.7 778.0
22	346.36	1336	.12594	748.3 681.8	1171	.10904	853.8 777.8	1411	.14942	708.9
23	415.48	1603	.20496	623.8	1405	14766	711.7	1542	.18804	648.6
24	452.39	1746	.24192	572.9	1530	.18463	653.7	1679	.22500	595.7
25	490.87	.001894	3.27738	528.0	.001660	3.22008	602.4	.001822	3.26046	549.0
26	530.93 572.56	2046	·31146 ·34423	488.1 452.6	179 5 1936	.25415	557.0 516.5	1970 2125	.29453	507.5 470.6
27 28	615.75	2376	.37583	420.9	2082	.31852	480.3	2285	.32731	437.6
29	660.52	2549	.40630	392.4	2234	.34900	447.7	2451	.38938	408.0
30	706.86	.002727	3.43575	366.7	.002390	3.37845	418.4	.002623	3.41882	381.2
31 32	7 54·77 804·25	2912 3103	.46424 .49181	343·4 322.2	2552 2720	.40693	391.8 367.7	280I 2985	.44731 .47488	357.0 335.1
33	855.30	3300	.51854	303.0	2892	.46123	345.8	3174	.50161	315.1
34	907.92	3503	-54446	285.4	3070	.48716	325-7	3369	•52754	296.8
35	962.11	.003712	3.56964	269.4	.003253	3.51233	307.4	.003570	3.55271	280.1
36	1017.88	3927 4149	.59412	254.6 241.0	3442 3636	.53691 .56061	290.5 275.0	3777 3990	.60098	264.7 250.6
37 38	1134.11	4376	.64108	228.5	3844	.58476	260.2	4218	.62514	237.1
39	1194.59	4609	.66364	216.9	4040	.60633	247.6	4433	.64671	225.6
40	1256.64	.004849	3.68563	206.2	.004249	3.62833	235.3	.004664	3.66871	214.4
4I 42	1320.25	5094 5346	.70708	196.3 187.1	4465 4685	.64977	224.0	4900 5141	.69015	204.1
43	1452.20	5603	.74845	178.5	4911	.69114	203.6	5389	.73152	185.6
44	1 520.53	5867	.76842	170.4	5142	.71111	194.5	5643	.75149	177.2
45	1590.43	.006137	3.78793	162.9	.005378	3.73063	185.9	.005902	3.77101	169.4
46 47	1661.90	6412 6694	.80703 .82569	155.9	5620 5867	.74972 .76840	177.9	6167 6438	.79010	162.1
47 48	1734.94 1809.56	6982	.84399	143.2	6119	.78669	163.4	6715	.82706	155.3
49	1885.74	7276	.86189	137.4	6377	.80459	1 56.8	6998	.84497	142.9
50	1963.50	.007576 7882	3.87945	132.0	006640	3.82214	150.6	.007287	3.86252	137.2
51 52	2042.82	7882 8194	.89664	126.9	6908 7181	.83934 .85621	144.8	7581 7881	.87972	131.9
53	2206.18	8512	.93005	117.5	7460	.87275	134.0	8187	.91313	122.1
54	2290.22	8837	.94630	113.2	7744	.88899	129.1	8499	·92937	117.7
55	2375.83	.009167	3.96223	109.1	.008034	3.90493	124.5	.008817	3.94531	113.4
						- 1				

TABLE 37 (continued).

BRITISH UNITS.

Cross sections and weights of wires.

"E.	Area of cross	Coppe	r — Densit	y 8.90.	Iron -	— Density	7.80.	Brass	— Density	8.56.
Diam. i Mils.	section in Sq. Mils.	Pounds per Foot.	Log.	Feet per Pound.	Pounds per Foot.	Log.	Feet per Pound.	Pounds per Foot.	Log.	Feet per Pound.
55	2375.83	.009167	3.96223	109.1	.008034	3.90493	124.5	.008817	3.94531	113.4
56	2463.01	09504	.97789	105.2	08329	.92058	120.1	09140	.96096	109.4
57	2551.76	09846	.99325	101.6	08629	.93595	115.9	09470	.97633	105.6
58	2642.08	10195	2.00837	98.1	08934	.95106	111.9	09805	.99144	102.0
59	2733.97	10549	.02320	94.8	09245	.96591	108.2	10146	2.00629	98.6
60	2827.43	.01091	2.03782	91.66	.00956	3.98050	104.59	.01049	2.02088	95.30
61	2922.47	1128	.05216	88.68	0988	.99486	101.19	1085	.03524	92.21
62	3019.07	1165	.06628	85.84	1021	2.00898	97.95	1120	.04936	89.25
63	3117.25	1203	.08019	83.14	1054	.02288	94.87	1157	.06326	86.45
64	3216.99	1241	.09386	80.56	1088	.03656	91.83	1194	.07694	83.77
65	3318.31	.01280	2.10732	78.11	.01122	2.05003	89.12	.01231	2.09041	81.21
66	3421.19	1320	.12061	75.76	1157	.06329	86.44	1270	.10367	78.76
67	3525.65	1360	.13367	73.51	1192	.07635	83.88	1308	.11673	76.43
68	3631.68	1401	.14655	71.36	1228	.08922	81.42	1348	.12960	74.20
69	3739.28	1443	.15924	69.30	1264	.10190	79.09	1388	.14228	72.06
70	3848.45	.01485	2.17174	67.34	.01302	2.11451	76.82	.01429	2.15489	70.00
71	3959.19	1528	.18404	65.46	1339	.12672	74.69	1469	.16710	68.06
72	4071.50	1571	.19618	63.65	1377	.13887	72.63	1511	.17925	66.19
73	4185.39	1615	.20817	61.92	1415	.15085	70.66	1553	.19123	64.38
74	4300.84	1660	.22000	60.26	1454	.16267	68.76	1596	.20304	62.66
75	4417.86	.01705	2.23165	58.66	.01494	2.17432	66.95	.01639	2.21460	61.01
76	4536.46	1751	.24317	57.13	1534	.18583	65.19	1684	.22621	59.40
77	4656.63	1797	.25453	55.65	1575	.19718	63.50	1728	.23756	57.87
78	4778.36	1844	.26574	54.23	1616	.20839	61.89	1773	.24877	56.39
79	4901.67	1892	.27681	52.87	1658	.21946	60.33	1819	.25974	54.99
80	5026.55	.01939	2.28769	51.56	.01700	2.23038	58.83	.01865	2.27076	53.61
81	5153.00	1988	.29848	50.29	1743	.24117	57.39	1912	.28155	52.29
82	5281.02	2038	.30914	49.07	1786	.25183	56.00	1960	.29221	51.03
83	5410.61	2088	.31966	47.90	1830	.26236	54.66	2008	.30274	49.80
84	5541.77	2138	.33006	46.77	1874	.27276	53.36	2057	.31314	48.63
85	5674.50	.02189	2.34034	45.67	.01919	2.28304	52.11	.02106	2.32342	47.49
86	5808.80	2241	.35050	44.62	1964	.29320	50.91	2156	·33358	46.39
87	5944.68	2294	.36054	43.60	2010	.30324	49.75	2206	·34362	45.33
88	6082.12	2347	.37047	42.61	2057	.31317	48.62	2257	·35355	44.30
89	6221.14	2400	.38028	41.66	2104	.32298	47.54	2309	·36336	43.31
90	6361.73	.02455	2.38999	40.74	.02151	2.33269	46.49	.02360	2.37297	42.37
91	6503.88	2509	•39958	39.85	2199	.34228	45.47	2414	.38266	41.43
92	6647.61	2565	•40908	38.99	2248	.35178	44.49	2467	.39216	40.54
93	6792.91	2621	•41847	38.15	2297	.36116	43.54	2521	.40154	39.67
94	6939.78	2678	•42775	37.35	2347	.37046	42.61	2575	.41084	38.83
95	7088.22	.02735	2.43694	36.56	.02397	2.37965	41.72	.02630	2.42003	38.02
96	7238.23	2793	•44604	35.81	2448	•38874	40.86	2686	.42912	37.23
97	7389.81	2851	•45504	35.07	2499	•39775	40.02	2742	.43812	36.46
98	7542.96	2910	•46395	34.36	2551	•40665	39.20	2799	.44703	35.72
99	7697.69	2970	•47277	33.67	2603	•41547	38.42	2857	.45585	35.01
100	7853.98	.03030	2 .48150	33.00	.02656	2.42420	37.65	.02915	2,46458	34.31

TABLE 38.

METRIC UNITS.

Cross sections and weights of wires.

This table gives the cross section and the weight in metric units of copper, iron, and brass wires of the diameters given in the first column. For one tenth the diameter divide sections and weights by 100. For ten times the diameter multiply by 100, and so on.

diameter multiply by 100, and so on.										
in thou-	0.58 0.0 0.0 0.0	Coppe	r — Density	y 8.90.	Iron	— Density	7.80.	Brass	s — Density	8.56.
Diam, in thou	Area of cross	Grammes per Metre.	Log.	Metres per Gramme.	Grammes per Metre.	Log.	Metres per Gramme.	Grammes per Metre.	Log.	Metres per Gramme.
10 11 12 13 14	78.54 95.03 113.10 132.73 153.94	0.06990 .08458 .10065 .11813 .13701	2.84448 .92725 1.00285 .07236 .13674	14.306 11.823 9.935 8.465 7.299	0.06126 .07412 .08822 .10353 .12008	2.78718 .86996 .94556 T.01506	16.324 13.492 11.335 9.659 8.328	0.06723 .08135 .09681 .11362 .13177	2.82756 .91034 .98594 1.05544 .11983	14.874 12.293 10.330 8.801 7.589
15 16 17 18 19	176.71 201.06 226.98 254.47 283.53	0.1573 .1789 .2020 .2265 .2523	7.19665 .25272 .30538 .35503 .40199	6.358 5.588 4.951 4.415 3.963	0.1378 .1568 .1770 .1985	ī.13936 .19542 .24808 .29773 .34469	7.255 6.376 5.648 5.038 4.522	0.1513 .1721 .1943 .2178	ī.17974 .23580 .28846 .33811 .38507	6.611 5.810 5.147 4.591 4.120
20 21 22 23 24	314.16 346.36 380.13 415.48 452.39	o.27 96 •3083 •3383 •3698 •4026	ī.44654 .48892 .52932 .56794 .60490	3.577 .244 2.956 .704 .484	0.2450 .2702 .2965 .3241 .3529	1.38925 .43162 .47203 .51064 .54761	4.081 3.701 ·373 .086 2.834	0.2689 .2965 .3254 .3557 .3872	ī.42963 •47200 •51241 •55103 •50799	3.719 ·373 .073 2.812 .582
25 26 27 28 29	490.87 530.93 572.56 615.75 660.52	0.4369 .4725 .5096 .5480 .5879	ī.64036 .67443 .70721 .73880 .76928	2.289 .116 1.962 .825 .701	0.3829 .4141 .4466 .4803 .5152	ī.58306 .61713 .64992 .68150 .71198	2.612 .415 .239 .082 1.941	0.4202 •4545 •4901 •5271 •5654	7.62344 .65751 .69030 .72188 .75236	2.380 .200 .040 1.897 .769
30 31 32 33 34	706.86 754.77 804.25 855.30 907.92	0.6291 .6717 .7158 .7612 .8081	ī.79872 .82721 .85478 .88151	1.590 .489 .397 .314 .238	0.5514 .5887 .6273 .6671 .7082	7,74143 .76991 .79749 .82421 .85014	1.814 .699 .594 .499 .412	0.6051 .6461 .6884 .7321 .7772	7.78181 .81029 .83787 .86459 .89052	1.653 .548 .453 .366 .287
35 36 37 38 39	962.11 1017.88 1075.21 1134.11 1194.59	0.856 .906 .957 1.012 .063	7.93261 •95709 •98088 0.00504 •02661	1.168 .104 .045 0.988 .941	0.7504 •7939 •8387 •8866 •9318	7.87531 .89979 .92359 .94775 .96931	1.333 .260 .192 .128	0.8236 .8713 .9204 .9730 1.0230	7.91570 .94017 .96397 .98813 0.00969	1.214 .148 .087 .028 0.978
40 41 42 43 44	1256.64 1320.25 1385.44 1452.20 1520.53	1.118 .175 .233 .292 ·353	0.04861 .07005 .09098 .11142 .13139	0.8941 .8511 .8110 .7738 .7389	0.980 1.030 .081 .133 .186	7.99131 0.01275 .03368 .05412	1.0200 0.9711 .9254 .8828 .8432	1.076 .130 .186 .243 .302	0.03169 .05313 .07406 .09450 .11447	0.9296 .8849 .8432 .8044 .7683
45 46 47 48 49	1590.43 1661.90 1734.94 1809.56 1885.74	1.415 •479 •544 .611 .678	0.15091 .17000 .18868 .20696 .22487	0.7065 .6761 .6476 .6209 .5958	.241 .296 .353 .411 .471	0.09361 .11270 .13138 .14967 .16758	0.8061 •7714 •7389 •7085 •6799	1.361 .423 .485 .549 .614	0.13399 .15308 .17176 .19005 .20796	0.7345 .7029 .6734 .6456 .6195
50 51 52 53 54	1963.50 2042.82 2123.72 2206.18 2290.22	1.748 .818 .890 .964 2.038	0.24242 .25962 .27649 .29303 .30927	0.5722 .5500 .5291 .5093 .4906	1.532 .593 .657 .721 .786	0.18513 .20232 .21919 .23574 .25197	0.6530 .6276 .6037 .5811 .5598	1.681 •753 •818 •888 •960	0.22551 .24371 .25957 .27612 .29235	0.5950 .5705 .5501 .5295 .5101
55	2375.83	2.114	0.32521	0.4729	1.853	0.26791	0.5396	2.034	0.30829	0.4917

TABLE 38 (continued). METRIC UNITS.

Cross sections and weights of wires.

-					1					
in thou-	000 m	Copper - Copper - Sal		r — Density 8.90.		— Density	7.80.	Brass — Density 8.56.		
Diam, in thosandths of a	Area of cr section (100	Grammes per Metre.	Log.	Metres per Gramme.	Grammes per Metre.	Log.	Metres per Gramme.	Grammes per Metre.	Log.	Metres per Gramme.
55 56 57 58 59	2375.83 2463.01 2551.76 2642.08 2733.97	2.114 .192 .271 .351 .433	0.32521 •34086 •35623 •37134 •38618	.4729 .4562 .4403 .4253 .4112	1.853 .921 .990 2.061	0.26791 .28356 .29893 .31404 .32889	.5396 .5205 .5024 .4852 .4689	2.034 .108 .184 .262	0.30829 •32394 •33931 •35442 •36927	.4917 .4743 .4578 .4422 .4273
60 61 62 63 64	2827.43 2922.47 3019.07 3117.25 3216.99	2.516 .601 .687 .774 .863	0.40078 .41514 .42926 .44316 .45684	·3974 ·3845 ·3722 ·3604 ·3493	2.205 .280 .355 .431 .509	0.34349 •35784 •37196 •38587 •39954	•4534 •4387 •4246 •4113 •3985	2.420 .502 .584 .668	0.38387 .39823 .41235 .42625 .44092	.4132 ·3997 ·3869 ·3748 ·3623
65 66 67 68 69	3318.31 3421.19 3525.65 3631.68 3739.28	2.953 3.045 .138 .232 .328	0.47031 .48357 .49663 .50950 .52218	.3386 .3284 .3187 .3094 .3005	2.588 .669 .750 .833 .917	0.41301 .42627 .43933 .45220 .46488	•3864 •3747 •3636 •3530 •3429	2.840 .929 3.018 .109	0.45339 .46665 .47971 .49258 .50526	.3521 .3415 .3313 .3217 .3124
70 71 72 73 74	3848.45 3959.19 4071.50 4185.39 4300.84	3.426 .524 .624 .725 .828	0.53479 .54700 .55915 .57113 .58294	.2919 .2838 .2759 .2685	3.003 .088 .176 .265	0.47749 .48970 .50185 .51383 .52565	•3330 •3238 •3149 •3063 •2981	3.295 .389 .485 .583 .682	0.51787 .53008 .54223 .55421 .56603	.3035 .2951 .2869 .2791 .2716
75 76 77 78 79	4417.86 4536.46 4656.63 4778.36 4901.67	3.932 4.037 .144 .253 .362	0.59460 .60611 .61746 .62867 .63974	.2543 .2477 .2413 .2351 .2292	3.446 .538 .632 .727 .823	0.53731 .54881 .56017 .57137 .58244	.2902 .2826 .2753 .2683 .2615	3.782 .883 .986 4.090	0.57769 .58919 .60056 .61175 .62283	.2644 .2575 .2509 .2445 .2394
80 81 82 83 84	5026.55 5153.00 5281.02 5410.61 5541.77	4.474 .586 .700 .815 .932	0.65066 .66145 .67211 .68264 .69304	.2235 .2180 .2128 .2077 .2027	3.921 4.019 .119 .220	0.59336 .60415 .61481 .62534 .63574	.2550 .2488 .2428 .2369 .2313	4.303 .411 .521 .631 .744	0.63375 .64454 .65519 .66572 .67612	.2324 .2267 .2212 .2159 .2108
85 86 87 88 89	5674.50 5808.80 5944.68 6082.12 6221.14	5.050 .170 .291 .413 .537	0.70332 .71348 .72352 .73345 .74326	.1980 .1934 .1890 .1847 .1806	4.426 .531 .637 .744 .852	0.64602 .65618 .66622 .67615 .68596	.2259 .2207 .2157 .2108 .2061	4.857 .972 5.089 .206 .325	0.68640 .69656 .70660 .71653 .72634	.2059 .2011 .1965 .1921 .1878
90 91 92 93 94	6361.73 6503.88 6647.61 6792.91 6939.78	5.662 •788 •916 6.046 •176	0.75297 .76256 .77206 . 7 8144 .79074	.1766 .1728 .1690 .1654 .1619	4.962 5.073 .185 .298 .413	0.69567 .70527 .71476 .72414 .73344	.2015 .1971 .1929 .1887 .1847	5.446 •567 .690 .815 •940	0.73605 .74565 .75514 .76452 .77382	.1836 .1796 .1757 .1720 .1683
95 96 97 98 99	7088.22 7238.23 7389.81 7542.96 7697.69	6.309 •442 •577 •713 •851	0.79993 .80902 .81802 .82693 .83575	.1585 .1552 .1520 .1490 .1460	5.529 .646 .764 .884 6.004	0.74263 .75173 .76073 .76964 .77846	.1809 .1771 .1735 .1670 .1665	6.068 .196 .326 .457 .589	0.78301 .79211 .80111 .81002 .81884	.1648 .1614 .1581 .1549 .1518
100	7853.98	6.990	0.84448	.1431	6.126	0.78718	.1632	6.723	0.82756	.1487

TABLE 39.

BRITISH AND METRIC UNITS.

Cross sections and weights of wires.

The cross section and the weight, in different units, of Aluminium wire of the diameters given in the first column.

For one tenth the diameter divide sections and weights by 100.

For ten times the diameter multiply by 100, and so on.

*				A	Muminium	— Density	2.67.			
Diameter.*	Area of cross section.*	Pounds per Foot.	Log.	Feet per Pound.	Ounces per Foot.	Log.	Feet per Ounce.	Grammes per Metre.*	Log.	Metres per Gramme.
10	78.54	.0000909	5.95862	11000.	.001455	3.16274	687.5	.02097	2.32160	47.69
11	95.03	01100	4.04139	9091.	01760	.24551	602.4	.02537	.40437	39.41
12	113.10	01309	.11699	7638.	02095	.32111	477.4	.03020	.47997	33.11
13	132.73	01536	.18650	6509.	02458	.39062	406.8	.03544	.54948	28.22
14	153.94	01782	.25088	5612.	02851	.45500	350.8	.04110	.61386	24.33
15	176.71	.0002045	4.31079	4889.	.003273	3.51491	305.6	.04718	2.67377	21.19
16	201.06	02327	.36685	4297.	03724	.57097	268.5	.05368	.72984	18.63
17	226.98	02627	.41952	3876.	04204	.62364	237.9	.06060	.78250	16.50
18	254.47	02946	.46917	3395.	04713	.67329	212.2	.06794	.83215	14.72
19	283.53	03282	.51613	3047.	05251	.72025	190.4	.07570	.87911	13.21
20	314.16	.0003636	4.56068	2750.	.005818	3.76480	171.9	.08388	2.92366	11.922
21	346.36	04009	.60306	2494.	06415	.80718	155.9	.09248	.96604	10.813
22	380.13	04400	.64346	2273.	07040	.84758	142.0	.10149	1.00644	9.853
23	415.48	04809	.68208	2079.	07697	.88630	129.9	.11093	.04506	9.014
24	452.39	05237	.71904	1910.	08378	.92316	119.4	.12079	.08202	8.279
25	490.87	.0005682	4.75450	1760.	.00909	3.95862	110.00	.1311	ī.11748	7.630
26	530.93	06147	.78867	1627.	0983	.99269	101.70	.1418	.15155	7.054
27	572.56	06628	.82135	1509.	1060	2.02547	94.30	.1529	.18433	6.541
28	615.75	07127	.85293	1403.	1140	.05705	87.69	.1644	.21592	6.083
29	660.52	07646	.88341	1308.	1223	.08753	81.75	.1764	.24640	5 .670
30	706.86	.0008182	4.91286	1222.	.01309	2.11698	76.39	.1887	7.27584	5.299
31	754.77	08737	.94134	1145.	1398	.14546	71.54	.2015	·30433	4.962
32	804.25	09309	.96892	1074.	1489	.17304	66.89	.2147	·33190	.657
33	855.30	09900	.99565	1010.	1584	.19977	63.13	.2284	·35863	•379
34	907.92	10509	3.02158	952.	1681	.22570	59.47	.2424	·38456	.125
35	962.11	.001114	3.04675	897.9	.01782	2.25087	56.12	.2569	1.40973	3.893
36	1017.88	1178	.07123	848.8	1885	.27535	53.05	.2718	.43421	.680
37	1075.21	1245	.09502	803.5	1991	.29914	50.22	.2871	.45800	.483
38	1134.11	1316	.11918	760.0	2105	.32329	47.50	.3035	.48216	.295
39	1194.59	1383	.14075	723.2	2212	.34487	45.20	.3190	.50373	.135
40	1256.64	.001455	3.16275	687.5	.02327	2.36687	42.97	•3355	1.52573	2.980
41	1320.25	1528	.18419	654.4	2445	.38831	40.90	•3525	.54717	.837
42	1385.44	1604	.20512	623.6	2566	.40924	38.97	•3699	.56810	.704
43	1452.20	1681	.22556	594.9	2690	.42968	37.18	•3877	.58854	.579
44	1520.53	1760	.24552	568.2	2816	.44964	35.51	•4060	.60851	.463
45	1590.43	.001841	3.26504	543.2	.02946	2.46916	33.95	.4246	7.62803	2.355
46	1661.90	1924	.28413	519.8	3078	.48825	32.49	.4437	.64712	.254
47	1734.94	2008	.30281	498.0	3213	.50693	31.12	.4632	.66580	.159
48	1809.56	2095	.32110	477.4	3351	.52522	29.84	.4832	.68408	.070
49	1885.74	2183	.33901	458.1	3492	.54313	28.63	.5035	.70199	1.986
50	1963.50	.002273	3.35656	440.0	.03636	2.56068	27.50	.5243	7.71954	1.907
51	2042.82	2365	.37376	422.9	3783	.57788	26.43	.5454	-73674	.833
52	2123.72	2458	.39063	406.8	3933	.59475	25.42	.5670	-75361	.764
53	2206.18	2554	.40717	394.2	4086	.61129	24.47	.5891	-77015	.698
54	2290.22	2651	.42341	377.2	4242	.62753	23.57	.6115	-78639	.635
55	237 5.83	.002750	3.43934	363.6	.04400	2.64346	22.73	.6343	7.80233	1.576

^{*} Columns 3-8, in thousandths of an inch; 9-12, thousandths of a centimetre.

- BRITISH AND METRIC UNITS.

Cross sections and weights of wires.

		Aluminium — Density 2.67.									
Diameter.	Area of cross section.*	Pounds per Foot.	Log.	Feet per Pound.	Ounces per Foot.	Log.	Feet per Ounce.	Grammes per Metre.*	Log.	Metres per Gramme.	
55 56 57 58 59	2375.83 2463.01 2551.76 2642.08 2733.97	.002750 2851 2954 3058 3165	3.43934 .45500 .47037 .48547 .50032	363.6 350.8 338.6 327.0 316.0	.04400 .04562 .04726 .04893 .05063	2.64346 .65912 .67449 .68959	22.73 21.92 21.16 20.44 19.75	0.6343 .6576 .6813 .7054 .7300	7.80233 .81798 .83335 .84846 .86331	1.576 .521 .468 .418 .370	
60	2827.43	.003273	3.51492	305.5	.05236	2.71904	19.10	0.7549	ī.87790	1.325	
61	2922.47	3383	.52928	295.6	.05413	·73340	18.48	.7803	.89226	.282	
62	3019.07	3495	.54340	286.2	.05591	·74752	17.88	.8061	.90638	.241	
63	3117.25	3608	.55730	277.1	.05773	·76142	17.32	.8323	.92028	.201	
64	3216.99	3724	.57098	268.5	.05958	·77510	16.78	8589	.93396	.164	
65 66 67 68 69	3318.31 3421.19 3525.65 3631.68 3739.28	.003841 3960 4081 4204 4328	3.58445 .59771 .61077 .62364 .63632	260.3 252.5 245.0 237.9 231.0	.06146 .06336 .06530 .06726 .06925	2.78857 .80183 .81489 .82777 .84044	16.27 15.78 15.31 14.87 14.44	0.8860 .9135 .9413 .9697 .9984	7.94743 .96069 .97375 .98662 .99930	.095 .062 .031 .002	
70	3848.45	.004456	3.64893	224.4	.07129	2.85305	14.03	1.028	0.01191	0.9730	
71	3959.19	4583	.66114	218.2	.07333	.86526	13.64	.057	.02412	.9460	
72	4071.50	4713	.67328	212.2	.07541	.87740	13.26	.087	.03627	.9199	
73	4185.39	4845	.68526	206.4	.07751	.88938	12.90	.117	.04825	.8949	
74	4300.84	4978	.69708	200.9	.07965	.90120	12.55	.148	.06006	.8708	
75	4417.86	.005114	3.70874	195.5	.08182	2.91286	12.22	1.180	0.07172	0.8477	
76	4536.46	5251	3.72025	190.4	.08402	.92437	11.90	.211	.08323	.8256	
77	4656.63	5390	.73160	185.5	.08624	.93572	11.60	.243	.09458	.8043	
78	4778.36	5531	.74281	180.8	.08850	.94693	11.30	.276	.10579	.7838	
79	4901.67	5674	.75387	176.2	.09078	.95799	11.02	.309	.11686	.7641	
80	5026.55	.005818	3.76480	171.9	.09309	2.96892	10.742	1.342	0.12778	0.7451	
81	5153.00	5965	-77559	167.6	.09544	.97971	10.479	.376	.13857	.7268	
82	5281.02	6113	-78625	163.6	.09781	.99037	10.224	.410	.14923	.7092	
83	5410.61	6263	-79678	159.7	.10021	T.00090	9.979	.445	.15976	.6922	
84	5541.77	6415	-80718	155.9	.10264	.01130	9.743	.480	.17016	.6757	
85	5674.50	.006568	3.81746	152.2	.1051	7.02158	9.515	1.515	0.18044	0.6600	
86	5808.80	6724	1.82762	148.7	.1076	.03174	9.295	.551	.19060	.6448	
87	5944.68	6881	1.83766	145.3	.1101	.04178	9.082	.587	.20064	.6300	
88	6082.12	7040	1.84758	142.0	.1126	.05170	8.878	.624	.21057	.6158	
89	6221.14	7201	1.85740	138.9	.1152	.06152	8.679	.661	.22038	.6020	
90	6361.73	.007364	3.86710	135.8	.1178	7.07122	8.488	1.699	0.23009	0.5887	
91	6503.88	7528	.87670	132.8	.1205	.08082	8.302	•737	.23968	•5759	
92	6647.61	7695	.88619	130.0	.1231	.09031	8.122	•775	.24918	•5634	
93	6792.91	7863	.89558	127.2	.1258	.09970	7.949	•814	.25856	•5514	
94	6939.78	8033	.90487	124.5	.1285	.10899	7.780	•853	.26786	•5397	
95	7088.22	.008205	3.91407	121.9	.1313	7.11819	7.617	1.893	0.27705	0.5284	
96	7238.23	8378	.92316	119.4	.1341	.12728	7.459	·933	.28614	.5174	
97	7389.81	8554	.93216	116.9	.1369	.13628	7.307	·973	.29514	.5068	
98	7542.96	8731	.94107	114.5	.1397	.14519	7.158	2.014	.30405	.4965	
99	7697.69	8910	.94989	112.2	.1426	.15401	7.015	·055	.31287	.4865	
100	7853.98	.009091	3.95862	110.0	.1455	ī.16274	6.875	2.097	0.32160	0.4769	

^{*} Columns 3-8, in thousandths of an inch; 9-12, thousandths of a centimetre.

SIZE, WEIGHT, AND ELECTRICAL

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Size and Weight.

Gauge Number.	Diameter in Inches.	Square of Diameter (Circular Inches).	Section in Sq. Inches.	Pounds per Foot.	Log.	Feet per Pound.
0000 000 00	0.4600 .4096 .3648 .3249	0.2116 .1678 .1331 .1055	0.1662 .1318 .1045 .0829	0.6412 .5085 .4033 .3198	7.80701 .70631 .60560 .50489	1.560 1.967 2.480 3.127
1 2 3 4 5	0.2893 .2576 .2294 .2043 .1819	0.08369 .06637 .05263 .04174 .03310	0.06573 .05213 .04134 .03278 .02600	0.2536 .2011 .1595 .1265 .1003	1.40419 .30348 .20277 .10206 .00136	3.943 4.972 6.270 7.905 9.969
6 7 8 9	0.1620 .1443 .1285 .1144 .1019	0.02625 .02082 .01651 .01309 .01038	0.02062 .01635 .01297 .01028 .00815	0.07955 .06309 .05003 .03968 .03146	2.90065 •79994 •69924 •59853 •49782	12.57 15.85 19.99 25.20 31.78
11 12 13 14 15	0.09074 .08081 .07196 .06408 .05707	0.008234 .006530 .005178 .004107	0.006467 .005129 .004067 .003225 .002558	0.02495 .01979 .01569 .01244 .00987	2.39711 .29641 .19570 09499 3.9942 9	40.08 50.54 63.72 80.35 101.32
16 17 18 19 20	0.0508 2 .04526 .04030 .03589	0.002583 .002048 .001624 .001288 .001021	0.002028 .001609 .001276 .001012 .000802	0.007827 .006207 .004922 .003904 .003096	3.89358 .79287 .69217 .59146 .49075	127.8 161.1 203.2 256.2 323.1
21 22 23 24 25	0.02846 .02535 .02257 .02010 .01790	0.0008101 .0006424 .0005095 .0004040	0.0006363 .0005046 .0004001 .0003173 .0002517	0.002455 .001947 .001544 .001224 .000971	3.39004 .28934 .18863 .08792 4.98722	408.2 513.6 647.7 816.7 1029.9
26 27 28 29 30	0.01594 .01419 .01264 .01126	0.0002541 .0002015 .0001598 .0001267 .0001005	0.0001996 .0001583 .0001255 .000995 .0000789	0.0007700 .0006107 .0004843 .0003841 .0003046	4.88651 • .78580 • .68510 • .58439 • .48368	1298. 1638. 2065. 2604. 3283.
31 32 33 34 35	0.008928 .007950 .007080 .006304 .005614	0.00007970 .00006321 .00005013 .00003975 .00003152	0.00006260 .00004964 .00003937 .00003122 .00002476	0.0002415 .0001915 .0001519 .0001205 .0000955	4.38297 28227 18156 08085 5.98015	4140. 5221. 6583. 8301. 10468.
36 37 38 39 40	0.005000 .004453 .003965 .003531 .003145	0.00002500 .00001983 .00001372 .00001247 .00000989	0.00001963 .00001557 .00001235 .00000979	0.00007 576 .00006008 .00004765 .00003778 .00002996	5.87944 .77873 .67802 .57732 .47661	13200. 16644. 20988. 26465. 33372.

CONSTANTS OF COPPER WIRE.

according to the American Brown and Sharp Gauge. Common Measure. Temperature 32°F. Density 8.90.

Electrical Constants.

Resistance and Conductivity.							
Ohms per Foot.	Log.	Feet per Ohm.	Ohms per Pound.	Pounds per Ohm.	Gauge Number.		
0.00004629	5.66551	21601.	0.00007219	13852.	0000		
.00005837	.76622	17131.	.00011479	8712.			
.00007361	.86693	13586,	.00018253	5479.			
.00009282	.96764	10774.	.00029023	3445.			
0.0001170	4.06834	8544.	0.0004615	2166.8	1		
.0001476	.16905	6775.	.0007338	1362.8	2		
.0001861	.26976	5373.	.0011668	857.0	3		
.000234 7	.37046	4261.	.0018552	539.0	4		
.0002959	.47117	3379.	.0029499	339.0	5		
0.0003731 .0004705 .0005933 .0007482 .0009434	4.57188 .67259 .77329 .87400 .97471	2680, 2125, 1685, 1337, 1060.	0.004690 .007458 .011859 .018857 .029984	213.22 134.08 84.32 53.03 33.35	6 7 8 9		
0.001190	3.07541	840.6	0.04768	20.973	11		
.001500	.17612	666.6	.07581	13.191	12		
.001892	.27683	528.7	.12054	8.296	13		
.002385	.37753	419.2	.19166	5.218	14		
.003008	.47824	332.5	.30476	3.281	15		
0.003793	3.57895	263.7	0,4846	2.0636	16		
.004783	.67966	209.1	•7705	1.2979	17		
.006031	.78036	165.8	1.2252	0.8162	18		
.007604	.88107	131.5	1.9481	•5133	19		
.009589	.98178	104.3	3.0976	•3228	20		
0.01209	2.08248	82.70	4.925	0.20305	21		
.01525	.18319	65.59	7.832	.12768	22		
.01923	.28390	52.01	12.453	.08030	23		
.02424	.38461	41.25	19.801	.05051	24		
.03057	.48531	32.71	31.484	.03176	25		
0.03855	2.58602	25.94	50.06	0.019976	26		
.04861	.68673	20.57	79.60	.012563	27		
.06130	.78743	16.31	126.57	.007901	28		
.07729	.88814	12.94	201.26	.004969	29		
.09746	.98885	10.26	320.01	.00312 5	30		
0.1229	7.08955	8.137	508.8	0.0019654	31		
.1550	.19926	6.452	809.1	.0012359	32		
.1954	.29097	5.117	1286.5	.0007773	33		
.2464	.39168	4.058	2045.6	.0004889	34		
.3107	.49238	3.218	3252.6	.0003074	35		
0.3918	7.59309	2.552	\$172.	0.0001934	36		
.4941	.69380	2.024	\$224.	.0001216	37		
.6230	.79450	1.605	13076.	.0000765	38		
.7856	.89521	1.273	20792.	.0000481	39		
.9906	.99592	1.009	33060.	.0000303	40		

TABLE 41.

SIZE, WEIGHT, AND ELECTRICAL

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Size and Weight.

Gauge Number.	Diameter in . Centimetres.	Square of Diameter (Circular Cms.).	Section in Sq. Cms.	Grammes per Metre.	Log.	Metres per Gramme.
0000	1.1684 .0405 0.9266 .8251	1.3652 .0826 0.8586 .6809	1.0722 0.8503 .6743 .5348	954-3 756.8 600.1 475-9	2.97966 .87896 .77825 .67754	0.001048 .001322 .001666
1 2 3 4 5	0.7348 .6544 .5827 .5189 .4621	0.5400 .4282 .3396 .2693 .2136	0.4241 .3363 .2667 .2115 .1677	377-4 299-3 237-4 188-2 149-3	2.57684 .47613 .37542 .27472 .17401	0.002649 .003341 .004213 .005312 .006699
6 7 8 9	0.4115 .3665 .3264 .2906 .2588	0.16936 .13431 .10651 .08447 .06699	0.13302 .10549 .08366 .06634 .05261	93.88 74.45 59.04 46.82	2.07330 1.97259 .87189 .77118 .67047	0.00845 .01065 .01343 .01694 .02136
11 12 13 14 15	0.2305 .2053 .1828 .1628	0.05312 .04213 .03341 .02649	0.04172 .03309 .02624 .02081 .01650	37.13 29.45 23.35 18.52 14.69	1.56977 .46906 .36835 .26764	0. 02693 .03396 .04282 .05400 .06809
16 17 18 19 20	0.12908 .11495 .10237 .09116	0.016663 .013214 .010479 .008330 .006591	0.013087 .010378 .008231 .006527	11.648 9.237 7.325 5.809 4.607	1.06623 0.96552 .86482 .76411	0.0859 .1083 .1365 .1721 .2171
21 22 23 24 25	0.07229 .06438 .05733 .05106	0.005227 .004145 .003287 .002607 .002067	0.004105 .003255 .002582 .002047	3.653 2.898 2.298 1.822	0.56270 .46199 .36128 .26057 .15987	0.2737 .3450 .4352 .5488 .6920
26 27 28 29 30	0.04049 .03606 .03211 .02859	0.0016394 .0013001 .0010310 .0008176 .0006484	0.0012876 .0010211 .0008098 .0006422 .0005093	1.1459 .9088 .7207 .5715 .4532	0.05916 1.95845 -85775 -75704 -65633	0.873 1.100 1.388 1.750 2.206
31 32 33 34 35	0.02268 .02019 .01798 .01601 .01426	0.0005142 .0004078 .0003234 .0002565 .0002034	0.0004039 .0003203 .0002540 .0002014 .0001597	0.3594 .2850 .2261 .1793	1.55562 ·45492 ·35421 ·25350 ·15280	2.782 3.508 4.424 5.578 7.034
36 37 38 39 40	0.01270 .01131 .0100 7 .00897 .00799	0.0001613 .0001279 .0001014 .0000804 .0000638	0.0001267 .0001005 .0000797 .0000632 .0000501	0.1127 .0894 .0709 .0562 .0446	1.05209 2.95138 .85068 .74997 .64926	8.87 11.18 14.10 17.78 22.43

CONSTANTS OF COPPER WIRE.

according to the American Brown and Sharp Gauge. Metric Measure. Temperature o° C. Density 8.90. Electrical Constants.

		Resistance a	and Conductivity.		
Ohms per Metre.	Log.	Metres per Ohm.	Ohms per Gramme.	Grammes per Ohm.	Gauge Number.
0.0001519 .0001915 .0002415 .0003045	4.18150 .28221 .38191 .48362	6584. 5221. 4141. 3284.	0.0000001592 .0000002531 .000004024 .0000006398	6283000. 3951000. 2485000. 1563000.	0000 000 00
0.0003840	4.58433	2604.	0.000001017	982900.	1
.0004842	.68503	2065.	.000001618	618200.	2
.0006106	.78574	1638.	.000002572	388800.	3
.0007699	.88645	1299.	.000004090	244500.	4
.0009709	.98715	1030.	.000006504	153800.	5
0.001224	3.08786	816.9	0.00001034	96700.	6
.001544	.18857	647.8	.00001644	60820.	7
.001947	.28928	513.7	.00002615	38250.	8
.002455	.38998	407.4	.00004157	24050.	9
.003095	.49069	323.1	.00006610	15130.	10
0.003903	3.59140	256.2	0.00010511	9514.	11
.004922	.69210	203.2	.00016712	5984.	12
.006206	.79281	161.1	.00026574	3763.	13
.007826	.89352	127.8	.00042254	2367.	14
.009868	•99423	101.3	.00067187	1488.	13
0.01244	2.09493	80.37	0.0010683	936.1	16
.01569	.19564	63.73	.0016987	588.7	17
.01979	.29635	50.54	.0027010	370.2	18
.02495	.39705	40.08	.0042948	232.8	19
.03146	.49776	31.79	.0068290	146.4	20
0.03967	2.59847	25.21	0.010859	92.09	21
.05002	.69917	19.99	.017266	57.92	22
.06308	.79988	15.85	.027454	36.42	23
.07954	.90059	12.57	.043653	22.91	24
.10030	T.00130	9.97	.069411	11.88	25
0.12647	7.10200	7.907	0.11037	9.060	26
.15948	.20271	6.270	•17549	5.698	27
.20110	.30342	4.973	•27904	3.584	28
.25358	.40412	3.943	•44369	2.254	29
.31976	.50483	3.127	•70550	1.417	30
0.4032 .5084 .6411 .8085	7.60554 .70624 .80695 .90766 0.00837	2.480 1.967 1.560 1.237 0.981	1.1218 1.7837 2.8362 4.5097 7.1708	0.8914 •5606 •3526 •2217 •1394	31 32 33 34 35
1.2855 1.6210 2.0440 2.5775 3.2501	0.10907 .20978 .31049 .41119	0.7779 .6169 .4892 .3880 .3076	11.376 18.130 28.828 45.838 72.885	0.08790 .05516 .03469 .02182 .01372	36 37 38 39 40

TABLES 42-43.

WEIGHT OF SHEET METAL.

TABLE 42. - Weight of Sheet Metal. (Metric Measure.)

This table gives the weight in grammes of a plate one metre square and of the thickness stated in the first column.

Thickness in thou- sandths of a cm.	Iron.	Copper.	Brass.	Aluminum.	Platinum.	Gold.	Silver.
1	78.0	89.0	85.6	26.7	215.0	193.0	105.0
2	156.0	178.0	171.2	53.4	430.0	386.0	210.0
3	234.0	267.0	256.8	80.1	645.0	579.0	315.0
4	312.0	356.0	342.4	106.8	860.0	772.0	420.0
5	390.0	445.0	428.0	133.5	1075.0	965.0	525.0
6	468.0	534.0	513.6	160.2	1290.0	1158.0	630.0
7	546.0	623.0	599.2	186.9	1505.0	1351.0	735.0
8	624.0	712.0	684.8	213.6	1720.0	1544.0	840.0
9	702.0	801.0	770.4	240.3	1935.0	1737.0	945.0
10	780.0	890.0	856.0	267.0	2150.0	1930.0	1050.0

TABLE 43. - Weight of Sheet Metal. (British Measure.)

Thickness	Iron.	Copper.	Brass.	Alum	inum.	Plati	num.
in Mils.	Pounds per	Pounds per	Pounds per	Pounds per	Ounces per	Pounds per	Ounces per
	Sq. Foot.	Sq. Foot.	Sq. Foot.	Sq. Foot.	Sq. Foot.	Sq. Foot.	Sq. Foot.
1 2 3 4 5	.04058 .08116 .12173 .16231 .20289	.04630 .09260 .13890 .18520 .23150	.04454 .08908 .13363 .17817 .22271	.01389 .02778 .04167 .05556 .06945	.2222 .4445 .6667 .8890	.1119 .2237 .3356 .4474 .5593	1.790 3.579 5.369 7.158 8.948
6	.24347	.27780	.26725	.08334	1.3335	.6711	10.738
7	.28405	.32411	.31179	.09723	1.5557	.7830	12.527
8	.32463	.37041	.35634	.11112	1.7780	.8948	14.317
9	.36520	.41671	.40088	.12501	2.0002	1.0067	16.106
10	.40578	.46301	-44542	.13890	2.2224	1.1185	17.896

	Go	old.	Silver.			
Thickness in Mils.	Troy Ounces per Sq. Foot.	Grains per Sq. Foot.	Troy Ounces per Sq. Foot.	Grains per Sq. Foot.		
1 2 3 4	1.4642 2.9285 4.3927 5.8570	702.8 1405.7 2108.5 2811.3	0.7967 1.5933 2.3900 3.1867	382.4 764.8 1147.2 1529.6		
5	7.3212 8.7854 10.2497	3514.2 4217.0 4919.8	3.9833 4.7800 5.5767	1912.0 2294.4 2676.8		
7 8 9 10	11.7139 13.1782 14.6424	5622.7 6325.5 7028.3	6.3734 7.1700 7.9667	3059.2 3441.6 3824.0		

STRENGTH OF MATERIALS.

The strength of most materials varies so that the following figures serve only as a rough indication of the strength of a particular sample,

TABLE 44(a). - Metals.

Tensile strength in Name of Metal. pounds per sq. in. Aluminum wire 30000-40000 Brass wire 50000-150000 Bronze wire, phosphor, hard-110000-140000 Bronze wire, silicon, harddrawn 95000-115000 Bronze: Cu, 58.54 parts; Zn, 38.70; Al, 0.21; with 2.55 parts of the alloy, Sn, 29.03, wrought iron, 58.06, ferromanganese, 12.91 60000-75000 Copper wire, hard-drawn 60000-70000 Gold wire 20000 Iron, cast 13000-33000 wire, hard-drawn 80000-120000 annealed 50000-60000 Lead, cast or drawn 2600-3300 Palladium * 39000 Platinum * wire 50000 42000 80000-330000 Silver * wire Steel wire, maximum 460000 " Specially treated nickelsteel, approx. comp. 0.40 C; 3.25 Ni; treatment secret 250000 " piano wire, 0.033 in. diam. 357000-390000 " piano wire, 0.051 in. diam. 325000-337000 Tin, cast or drawn 4000-5000 7000-13000 Zinc, cast " drawn 22000-30000

According to Boys, quartz fibres have a tensile strength of between 116000 and 167000 pounds per square inch.

TABLE 44 (b). - Stones.*

Material.	Size of test piece.	Resistance to crushing in pds. per sq. in.
Marble Tufa Brownstone Sandstone Granite Limestone	4 in. cubes 2 " " 4 in. cubes 4 " " 4 " "	7600-20700 7700-11600 7300-23600 2400-29300 9700-34000 6000-25000

^{*} Data furnished by the U. S. Geological Survey.

TABLE 44(c). - Brick.*

Kind of Brick.	Resistance to crushing in pds. per sq. in.				
Kind of Drick.	Tested flatwise.	Tested on edge.			
Soft burned Medium burned Hard burned Vitrified Sand-lime	1800-4000 4000-6000 6000-8500 8500-25000 1800-4000	1600-3000 3000-4500 4500-6500 6500-20000			

Brick piers laid up in 1 part Portland cement, 3 of sand, have from 20 to 40 per cent the crushing strength of the brick.

TABLE 44 (d). -- Concretes.*

Coarse material. "Aggregate."	Proportions by volume. Cement: sand: aggregate.	Size of test piece.	Resistance to crushing in pds. per sq. in.
Sandstone Cinders Limestone Conglomerate Trap	I:5:14 to I:1:5 I:3:6 " I:1:3 I:4:8 " I:2:4 I:6:12 " I:2:4 I:2:9 " I:2:4	12 in. cube 12 " " 12 " " 12 " "	1550-3860 790-2050 1200-2840 1080-3830 820-2960

^{*} Data furnished by the U. S. Geological Survey.

^{*} Authority of Wertheim.

^{*} Data furnished by the U. S. Geological Survey.

STRENGTH OF MATERIALS.

Average Results of Timber Tests.

The test pieces were SMALL and SELECTED. Endwise compression tests of

some of the first lot, made when green and containing over 40 per cent moisture, showed a diminishing in strength of 50 to 75 per cent.

See also Table 46. A particular sample may vary greatly from these data, which can indicate only in a general way the relative values of a kind of timber. Note that the data below are from selected samples and therefore probably high.

The upper lot are from the U. S. Forestry circular No. 15; the lower from the tests made for the 10th U. S. Census.

		SVERSE STS.	COMPRI	ESSION.	SHEAR- ING.
NAME OF SPECIES.	Modulus of rupture. lb./sq. in.	Modulus of elasticity. lbs./sq. in.	to grain. bs./sq. in.	1 to grain. lbs./sq. in.	Along the grain. lbs./sq. in.
Long-leaf pine	12,600	2,070,000	8,000	1260	835
Cuban pine	13,600	2,370,000	8,700	1200	770
Short-leaf pine	10,100	1,680,000	6,500	1050	770 800
Loblolly pine	11,300	2,050,000	7,400	1150	800
White pine	7,900	1,390,000	5,400	700	400
Red pine	9,100	1,620,000	6,700	1000	500
Spruce pine	10,000	1,640,000	7,300	1200	800
Bald cypress	7,900	1,290,000	6,000	800	500
White cedar	6,300	910,000	5,200	700	400
Douglass spruce White oak	7,900	1,680,000	5,700	800	500
Overcup oak	13,100	2,090,000	8,500	2200	1000
Post oak	11,300	1,620,000 2,030,000	7,300	3000	1100
Cow oak	11,500	1,610,000	7,400	1900	900
Red oak	11,400	1,970,000		2300	1100
Texan oak	13,100	1,860,000	7,200	2000	900
Yellow oak	10,800	1,740,000	7,300	1800	1100
Water oak	12,400	2,000,000	7,800	2000	1100
Willow oak	10,400	1,750,000	7,200	1600	900
Spanish oak	12,000	1,930,000	7,700	1800	900
Shagbark hickory	16,000	2,390,000	9,500	2700	1100
Mockernut hickory	15,200	2,320,000	10,100	3100	1100
Water hickory	12,500	2,080,000	8,400	2400	1000
Bitternut hickory	15,000	2,280,000	9,600	2200	1000
Nutmeg hickory	12,500	1,940,000	8,800	2700	1100
Pecan hickory	15,300	2,530,000	9,100	2800	1200
Pignut hickory	18,700	2,730,000	10,900	3200	1200
White elm	10,300	1,540,000	6,500	1200	800
Cedar elm	13,500	1,700,000	8,000	2100	1300
White ash	10,800	1,640,000	7,200	1900	1100
Green ash	11,600	2,050,000	8,000	1700	1000
Sweet gum	9,500	1,700,000	7,100	1400	800
Poplar	9,400	1,330,000	5,000	1120	
Basswood	8,340	1,172,000	5,190	880	
Ironwood	7,540	1,158,000		2000	
Sugar maple	16,500	2,250,000	5,275 8,800	3600	
White maple	14,640	1,800,000	6,850	2580	
Box elder	7,580	873,000	4,580	1580	
Black walnut	11,900	1,560,000	8,000	2680	
Sycamore	7,000	790,000	6,400	2700	
Hemlock	9,480	1,138,000	5,400	1100	
Red fir	13,270	1,870,000	7,780	1750	
Tamarack	13,150	1,917,000	7,400	1480	
Red cedar	11,800	938,000	6,300	2000	
Cottonwood Beech	16,200	1,450,000	5,000	2840	
Deecn	10,200	1,730,000	6,770	2040	
		1			1

UNIT STRESSES FOR STRUCTURAL TIMBER EXPRESSED IN POUNDS PER SQUARE INCH.

Recommended by the Committee on Wooden Bridges and Trestles, American Railway Engineering Association, 1909.

		RE	NDII	V.C.				CHEV	RING.		
KIND OF TIMBER.		eme fibr		M	odulus of lasticity.	Paral	llel t	to grain.	udinal beams.		
	Averag	e Sar e. stre		A	Average.		ige ite.	Safe stress.	Average ultimate.	Safe stress.	
Douglass fir Long-leaf pine Short-leaf pine White pine Spruce Norway pine Tamarack Western hemlock Redwood Bald cypress Red cedar White oak	6100 6500 5600 4400 4800 4200 5800 5000 4800 4200 5700	130 110 90 100 80 90 110	1200 1300 1100 900 1000 800 900 1100 900 900 800 1100		510,000 610,000 480,000 130,000 310,000 220,000 480,000 600,000 150,000 150,000	690 720 710 400 600 590 670 630 300 500		170 180 170 100 150 130 170 160 80 120	270 300 330 180 170 250 260 270* - - - 270	110 120 130 70 70 100 100 100	
		COMPRESSION.									
KIND OF TIMBER.		dicular rain.		rarallel to grain.		For columns inder 15 diams. Safe stress.	Formulas for safe stress in long columns over 15 diameters.†		Ratio of length of stringer to depth.		
Douglass fir Long-leaf pine Short-leaf pine White pine Spruce Norway pine Tamarack Western hemlock Redwood Bald cypress Red cedar White oak	630 520 340 290 370 - - 440 400 340 470 920	310 260 170 150 180 150 220 220 170 230 450	360 380 344 300 320 260	00 00 00 00 00 00 00 00* 00* 00 00	1200 1300 1100 1000 1100 1000 1200 900 1100 900 1300	900 980 830 600 750 900 680 830 680 980	13 11 10 11 8 10 12	200(1-L 300(1-L 100(1-L 100(1-L 100(1-L 100(1-L 100(1-L 100(1-L 100(1-L 100(1-L 100(1-L 100(1-L	//60.D //60.D //60.D //60.D //60.D //60.D //60.D //60.D //60.D) 10) 10) 10) 10) -) -) -	

These unit stresses are for a green condition of the timber and are to be used without increasing the live-load stresses for impact.

^{*} Partially air-dry.
† L=length in inches. D=least side in inches.

ELASTIC MODULI.

TABLE 47. - Rigidity Modulus.

If to the four consecutive faces of a cube a tangential stress is applied, opposite in direction on adjacent sides, the modulus of rigidity is obtained by dividing the numerical value of the tangential stress per unit area (kg. per sq. mm.) by the number representing the change of angles on the non-stressed faces, measured in radians.

Substance.	Rigidity Modulus.	Refer- ence.	Substance.	Rigidity Modulus.	Reference.
Aluminum " cast Brass " cast, 60 Cu + 12 Sn Bismuth, slowly cooled Bronze, cast, 88 Cu + 12 Sn Cadmium, cast Copper, cast " " " Gold " " " " " " " " " " " " " " " " " " "	3350 2580 3550 3715 3700 4060 2450 4780 4213 4450 4604 2850 3950 5210 6706 7975 6940 8108 8108 1710 7820 4359	14 55 10 11 55 55 55 18 10 19 51 14 55 10 17 16 14 55 55 51 10 11 11 10 11 10 11 11 11 11 11 11 11	Quartz fibre "" "" " hard-drawn Steel " cast " cast, coarse gr. " silver- Tin, cast " Zinc " Clay rock Granite Marble Slate	2888 2380 2960 2556 2816 8290 7458 8070 7872 1730 1543 3880 3820 6630 6620 2350 2730 1770 1280 1190 2290	20 21 5 10 16 11 16 15 19 16 22 23 23 23 23

References 1-16, see Table 48. 17 Grätz, Wied. Ann. 28, 1886. 18 Savart, Pogg. Ann. 16, 1829.

- 19 Kiewiet, Diss. Göttingen, 1886. 20 Threlfall, Philos. Mag. (5) 30, 1890.
- 21 Boys, Philos. Mag. (5) 30, 1890.
- 22 Thomson, Lord Kelvin. 23 Gray and Milne.
- 24 Adams-Coker, Carnegie Publ. No. 46, 1906.

TABLE 47a. - Variation of the Rigidity Modulus with the Temperature.

 $n_t = n_0 (1 - at - \beta t^2 - \gamma t^3)$, where t = temperature Centigrade.

					_			_	
Substanc	ce.	no	a10 ⁶	β108	γ10 ¹⁰	Authority.			
Copper		2652 3200 3972 3900 8108 6940 6632 2566 8290	2158 455 2716 572 206 483 111 387 187	48 36 -23 28 19 12 50 38 59	32 47 		loc. cit. loc. cit. cit.		
	$n_t^* = n_{15} [1 - \alpha (t - 15)];$ Horton, Philos. Trans. 204 A, 1905.								
Copper Copper (com- mercial) Iron Steel		.00039 .00038 .00029 .00026	Gold Silve Alun	er	6.46* 2.45 2.67 2.55	.00048	Tin Lead Cadmium Quartz	1.50* 0.80 2.31 3.00	0.

^{*} Modulus of rigidity in 1011 dynes per sq. cm.

TABLE 48. ELASTIC MODULI.

Young's Modulus.

Young's Modulus = Intensity of longitudinal stress (kg. per sq. mm.). Elongation per unit length

Aluminum								
Lead, drawn	Substance.	Temp.	Young's Modulus.	Refer- ence.	Substance.	Temp.	Young's Modulus.	Refer- ence.
" hard drawn 22790 12 Basic intrusives 8985 24 Rocks: See Nagaoka, Philos. Mag. 1900.	Lead, drawn	12.3 15 15 15 15 15 15 15 15 15 15 15 10 20 19.5 15 10 20 19.5	7,462 1803 1727 9194 7070 11697 20869 20794 20310 21740 11713 15750 19385 20500 8131 5585 8630 12450 10520 12120 12550 13220 8543 9810 10220 9930 10450 11204 11550 11209 1120	2 3 3 3 4 5 6 3 3 7 7 8 4 9 1 1 1 0 9 3 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Palladium, annealed Phosphor-bronze Platinum, drawn "annealed ""drawn Silver, drawn "annealed Steel wire, drawn "annealed Steel, cast, drawn "annealed "Bessemer "puddle "mild "very soft "half soft "hard Bismuth Zinc, drawn "cast Glass "Carbon "Marbles Granites "Basic intrusives "Rocks: See Nagaoka,	15 13,2 10 15 15 15 15 15 15 15 15 15	18600 9709 12010 17044 15518 16020 15989 7357 7140 18810 17280 19560 21136 21112 21700 20000 3190 8734 4148 1700 (6000 10 8000 1500	13 3 11 3 3 2 1 3 3 3 3 3 3 3 3 3 3 1 3 3 3 1 1 3

- I Slotte, Acta Soc. Fenn. 26, 1899; 29, 1906.

 Meyer, Wied. Ann. 59, 1896.

 Wertheim, Ann. chim. phys. (3) 12, 1844.

 Pscheidl, Wien. Ber. II, 79, 1879.

 Voigt, Wied. Ann. 48, 1893.

 Amagat, C. R. 108, 1889.

 Kohlrausch, Loomis, Pogg. Ann. 141, 1871.

 Thomas, Drude Ann. 1, 1900.

 Gray, etc., Proc. Roy. Soc. 67, 1900.

- 10 Baumeister, Wied. Ann. 18, 1883. 11 Searle, Philos. Mag. (5) 49, 1900. 12 Cantone, Wied. Beibl. 14, 1890.

- 13 Mercadier, C. R. 113, 1891. 14 Katzenelsohn, Diss. Berlin, 1887.

- 15 Wertheim, Pogg. Ann. 78, 1849. 16 Pisati, Nuovo Cimento, 5, 34, 1879.
- References 17-19, see Table 47.

Compiled partly from Landolt-Börnstein's Physikalisch-Chemische Tabellen.

COMPRESSIBILITY, HARDNESS, CONTRACTION OF ELEMENTS.

TABLE 49. — Compressibility of the More Important Solid Elements.

Arranged in order of the increasing atomic weights. The numbers give the mean elastic change of volume for one megabar (0.987 atm.) between 100 and 500 megabars, multiplied by 105.

Lithium Carbon Sodium Magnesium Aluminum Silicon Red phosphorus Sulphur Chlorine	8.8 0.5 15.4 2.7 1.3 0.16 9.0 12.5	Potassium Calcium Chromium Manganese Iron Nickel Copper Zinc Arsenic	31.5 5.5 0.7 0.7 0.40 0.27 0.54 1.5 4.3	Selenium Bromine Rubidium Molybdium Palladium Silver Cadmium Tin Antimony	11.8 51.8 40. 0.26 0.38 0.84 1 9 1.6 2.2	Iodine Cæsium Platinum Gold Mercury Thallium Lead Bismuth	13. 61. 0.21 0.47 3.71 2.6 2.2 2.8
--	---	--	---	---	--	---	---

Stull, Zeitschr. Phys. Chem. 61, 1907.

TABLE 50 .- Hardness.

Agate 7. Alabaster 1.7 Alum 2-2.5 Aluminum 2-2.5 Andalusite 7.5 Anthracite 2.2 Antimony 3.3 Apatite 5. Aragonite 3.5 Arsenic 3.5 Asbestos 5. Asphalt 1-2. Augite 6. Barite 3.3 Beryl 7.8 Bell-metal 4. Bismuth 2.5 Boric acid 3.	Brass 3-4- Calimine 5. Calcite 3. Copper 2.5-3. Corundum 9. Diamond 10. Dolomite 3.5-4. Feldspar 6. Flint 7. Fluorite 4. Galena 2.5 Garnet 7. Glass 4.5-6.5 Gold 2.5-3. Graphite 0.5-1. Gypsum 1.6-2. Hematite 6. Hornblende 5.5 Iridium 6.	Iridosmium 7. Iron 4-5. Kaolin I. Loess (0°) 0.3 Magnetite 6. Marble 3-4. Meerschaum 2-3. Mica 2.8 Opal 4-6. Orthoclase 6. Palladium 4.3 Platinum 4.3 Platinum 4.3 Platinium 6.5 Pyrite 6.3 Quartz 7. Rock-salt Ross' metal 2.5-3.0 Silver chloride Silver chloride 1.3 Constant Constant	Sulphur I.5-2.5 Stibnite 2. Serpentine 3-4. Silver 2.5-3. Steel 5-8.5 Talc I. Tin I.5 Topaz 7.3 Wax (0°) 0.2 Wood's metal 3.
--	---	--	--

From Landolt-Börnstein-Meyerhoffer Tables: Auerbachs, Winklemann, Handb. der Phys. 1891.

TABLE 51.—Relative Hardness of the Elements.

C B Cr Os Si Ir	10.0 9.5 9.0 7.0 7.0 6.5	Ru Mn Pd Fe Pt As	6.5 5.0 4.8 4.5 4.3 3.5	Cu Sb Al Ag Bi Zn	3.0 3.0 2.9 2.7 2.5 2.5	Au Te Cd S Se Mg	2.5 2.3 2.0 2.0 2.0 2.0	Sn Sr Ca Ga Pb In	1.8 1.8 1.5 1.5 1.5	Li P K Na Rb Cs	0.6 0.5 0.5 0.4 0.3 0.2
-----------------	---	----------------------------------	--	----------------------------------	--	---------------------------------	--	----------------------------------	---------------------------------	--------------------------------	--

Rydberg, Zeitschr. Phys. Chem. 33, 1900.

TABLE 52.—Ratio, ρ , of Transverse Contraction to Longitudinal Extension under Tensile Stress. (Poisson's Ratio.)

Metal	Pb	Au	Pd	Pt	Ag	Cu	Al	Bi	Sn	Ni	Cd	Fe
ρ	0.45	0.42	0.39	0.39	0.38	0.35	0.34	0.33	0.33	0.31	0.30	0.28

From data from Physikalisch-Technischen Reichsanstalt, 1907.

ρ for: marbles, 0.27; granites, 0.24; basic-intrusives, 0.26; glass, 0.23. Adams-Coker, 1906.

ELASTICITY OF CRYSTALS.*

The formulæ were deduced from experiments made on rectangular prismatic bars cut from the crystal. These bars were subjected to cross bending and twisting and the corresponding Elastic Moduli deduced. The symbols $\alpha \beta \gamma$, $\alpha_1 \beta_1 \gamma_1$ and $\alpha_2 \beta_2 \gamma_2$ represent the direction cosines of the length, the greater and the less transverse dimensions of the prism with reference to the principal axis of the crystal. E is the modulus for extension or compression, and T is the modulus for torsional rigidity. The moduli are in grammes per square centimetre.

Barite.
$$\frac{10^{10}}{E} = 16.13a^4 + 18.51\beta^4 + 10.42\gamma^4 + 2(38.79\beta^2\gamma^2 + 15.21\gamma^2\alpha^2 + 8.88\alpha^2\beta^2)$$

$$\frac{10^{10}}{T} = 69.52\alpha^4 + 117.66\beta^4 + 116.46\gamma^4 + 2(20.16\beta^2\gamma^2 + 85.29\gamma^2\alpha^2 + 127.35\alpha^2\beta^2)$$
Beryl (Emerald).
$$\frac{10^{10}}{E} = 4.325 \sin^4\phi + 4.619 \cos^4\phi + 13.328 \sin^2\phi \cos^2\phi$$

$$\frac{10^{10}}{T} = 15.00 - 3.675 \cos^4\phi_2 - 17.536 \cos^2\phi \cos^2\phi_1$$
Where $\phi \phi_1 \phi_2$ are the angles which the length, breadth, and thickness of the specimen make with the principal axis of the crystal.

Fluor spar.
$$\frac{10^{10}}{E} = 13.05 - 6.26 (\alpha^4 + \beta^4 + \gamma^4)$$

$$\frac{10^{10}}{T} = 58.04 - 50.08 (\beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2)$$
Pyrites.
$$\frac{10^{10}}{E} = 5.08 - 2.24 (\alpha^4 + \beta^4 + \gamma^4)$$

$$\frac{10^{10}}{T} = 18.60 - 17.95 (\beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2)$$
Rock salt.
$$\frac{10^{10}}{E} = 33.48 - 9.66 (\alpha^4 + \beta^4 + \gamma^4)$$

$$\frac{10^{10}}{T} = 154.58 - 77.28 (\beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2)$$
Sylvine.
$$\frac{10^{10}}{T} = 306.0 - 192.8 (\beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2)$$
Topax.
$$\frac{10^{10}}{T} = 306.0 - 192.8 (\beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2)$$
Quartz.
$$\frac{10^{10}}{T} = 14.88\alpha^4 + 16.54\beta^4 + 16.45\gamma^4 + 30.89\beta^2\gamma^2 + 40.89\gamma^2\alpha^2 + 43.51\alpha^2\beta^2$$
Quartz.
$$\frac{10^{10}}{T} = 19.665 + 9.060\gamma^2^2 + 22.984\gamma^2\gamma^2 - 16.920 [(\gamma\beta_1 + \beta\gamma_1) (3\alpha\alpha_1 - \beta\beta_1) - \beta_2\gamma_2)]$$

^{*} These formulæ are taken from Voigt's papers (Wied. Ann. vols. 31, 34, and 35).

ELASTICITY OF CRYSTALS.

Some particular values of the Elastic Moduli are here given. Under E are given moduli for extension or compression in the directions indicated by the subscripts and explained in the notes, and under T the moduli for torsional rigidities round the axes similarly indicated.

Substance.	\mathbf{E}_{a}	_			
		\mathbf{E}_{b}	\mathbf{E}_{e}	T_a	Authority.
	1473 × 10 ⁶ 3530 × 10 ⁶ 419 × 10 ⁶ 403 × 10 ⁶ 401 × 10 ⁶ 372 × 10 ⁶ 405 × 10 ⁶ 181 × 10 ⁶ 161 × 10 ⁶ 186 × 10 ⁶	1008 × 10 ⁶ 2530 × 10 ⁶ 349 × 10 ⁶ 339 × 10 ⁶ 209 × 10 ⁶ 196 × 10 ⁶ 319 × 10 ⁶ 199 × 10 ⁶ 177 × 10 ⁶	910 × 10 ⁶ 2310 × 10 ⁶ 303 × 10 ⁶	345 × 10 ⁶ 1075 × 10 ⁶ 129 × 10 ⁶ — 655 × 10 ⁶ —	Voigt.† "" Koch.‡ Voigt. Koch. Beckenkamp.\$

(b) RHOMBIC SYSTEM.

l	Substance.	E ₁	E ₂	\mathbf{E}_{3}	E4	\mathbf{E}_{δ}	E ₆		Authority.
	Barite . Topaz .	620 × 10 ⁶ 2304 × 10 ⁶	540 × 10 2890 × 10	$\begin{array}{c c} & 959 \times 10^6 \\ & 2652 \times 10^6 \end{array}$	376 × 10 ⁶ 2670 × 10 ⁶	702×10^{6} 2893×10^{6}	740 × 1 3180 × 1	106	Voigt.
١	S	Substance,		T ₁₂ =T ₂₁	$T_{13} = T_3$	T ₂₈ =	= T _{3 2}	A	uthority.

 293×10^{6} 1353×10^{6}

 121×10^{6}

 1104×10^{6}

Voigt.

 1336×10^{6} In the Monoclinic System, Coromilas (Zeit. für Kryst. vol. 1) gives

 283×10^{6}

$$\begin{aligned} & \text{Gypsum} \left\{ \begin{aligned} & E_{\text{max}} = 887 \times \text{10}^6 \text{ at 21.9}^\circ \text{ to the principal axis.} \\ & E_{\text{min}} = 313 \times \text{10}^6 \text{ at 75.4}^\circ & \text{" " " "} \end{aligned} \right. \\ & \text{Mica} \quad \left\{ \begin{aligned} & E_{\text{max}} = 2213 \times \text{10}^6 \text{ in the principal axis.} \\ & E_{\text{min}} = 1554 \times \text{10}^6 \text{ at 45}^\circ \text{ to the principal axis.} \end{aligned} \right. \end{aligned}$$

In the HEXAGONAL SYSTEM, Voigt gives measurements on a beryl crystal (emerald). The subscripts indicate inclination in degrees of the axis of stress to the principal axis of the crystal.

$$E_0 = 2165 \times 10^6$$
, $E_{45} = 1796 \times 10^6$, $E_{90} = 2312 \times 10^6$,

 $E_0 = 2165 \times 10^6$, $E_{45} = 1796 \times 10^6$, $E_{90} = 2312 \times 10^6$, $T_0 = 667 \times 10^6$, $T_{90} = 883 \times 10^6$. The smallest cross dimension of the prism experimented on (see Table 82), was in the principal axis for this last case.

In the RHOMBOHEDRIC SYSTEM, Voigt has measured quartz. The subscripts have the same meaning as in the hexagonal system.

$$E_0 = 1030 \times 10^6$$
, $E_{-45} = 1305 \times 10^6$, $E_{+45} = 850 \times 10^6$, $E_{90} = 785 \times 10^6$,

 $T_0 = 508 \times 10^6$, $T_{90} = 348 \times 10^6$.

Baumgarten ¶ gives for calcspar

$$E_0 = 501 \times 10^6$$
, $E_{-45} = 441 \times 10^6$, $E_{+45} = 772 \times 10^6$, $E_{90} = 790 \times 10^6$.

Barite

Topaz

^{*} In this system the subscript a indicates that compression or extension takes place along the crystalline axis, and distortion round the axis. The subscripts b and c correspond to directions equally inclined to two and normal to the third and equally inclined to all three axes respectively.

† Voigt, "Wied. Ann." vol. 31, 34-35; 36, 642.

‡ Koch, "Wied. Ann." vol. 18.

§ Beckenkamp, "Zeit. für Kryst." vol. 10.

|| The subscripts 1, 2, 3 indicate that the three principal axes are the axes of stress; 4, 5, 6 that the axes of stress are in the three principal planes at angles of 45° to the corresponding axes.

¶ Baumgarten, "Pogg. Ann." vol. 152.

COMPRESSIBILITY OF CASES.

TABLE 55. — Relative Volumes at Various Pressures and Temperatures, the volume at 0° C and at 1 atmosphere being taken as 1 000 000.

		Oxygen.			Air.			Nitrogen	•	I	Tydroger	1.
Atm.	oo	99°-5	1990.5	oo	99 ⁰ -4	2000.4	o o	99 ⁰ .5	199 ⁰ .6	00	99 ⁰ ·3	200°.5
100 200 300 400 500 600 700 800 900 1000	9265 4570 3208 2629 2312 2115 1979 1879 1800 1735	7000 4843 3830 3244 2867 2610 2417 2268 2151	9095 6283 4900 4100 3570 3202 2929 2718	9730 5050 3658 3036 2680 2450 2288 2168 2070 1992	7360 5170 4170 3565 3180 2904 2699 2544 2415	9430 6622 5240 4422 3883 3502 3219 3000 2828	9910 5195 3786 3142 2780 2543 2374 2240 2149 2068	7445 5301 4265 3655 3258 2980 2775 2616	9532 6715 5331 4515 3973 3589 3300 3085	5690 4030 3207 2713 2387 2149 1972 1832 1720	7567 5286 4147 3462 3006 2680 2444 2244 2093	9420 6520 5075 4210 3627 3212 2900 2657

Amagat: C. R. 111, 1890; Ann. chim. phys. (6) 29, 1893.

TABLE 56. - Ethylene,

pv at oo C and I atm. = I.

Atm.	oo	10 ⁰	200	30°	40 ⁰	60 ⁰	80°	1000	137°.5	1980.5
4 6 48	-	0.562 0.508	0.684	-	-	-	-	-	_	_
50	0.176	0.420	0.629	0.731	0.814	0.954	1.077	1.192	1.374	1.652
52		0.240	0.598	_	_ `	-	- '		-	~
54 56	-	0.229	0.561	-	-	-	-	-	- 1	
56	-	0.227	0.524	-	-	-		-	_	-
100	0.310	0.331	0.360	0.403	0.471	0.668	0.847	1.005	1.247	1.580
150	0.441	0.459	0.485	0.515	0.551	0.649	0.776	0.924	1.178	1.540
200	0.565	0.585	0.610	0.638	0.669	0.744	0.838	0.946	1.174	1.537
300	0.806	0.827	0.852	0.878	0.908	0.972	1.048	1.133	1.310	1.628
500	1.256	1.280	1.308	1.337	1.367	1.431	1.500	1.578	1.721	1.985
1000	2.289	2.321	2.354	2.387	2.422	2.493	2.566	2.643	2.798	-

Amagat, C. R. 111, 1890; 116, 1893.

TABLE 57. — Ethylene.

Pressure in				Rel	ative value	es of pv at	_			
metres of mercury.	160.3	20°.3	300.1	40 ⁰ .0	50°.0	60°.0	70 ⁰ .0	7 9 ⁰ •9	890.9	1000.
30 60 90 120 150 180 210 240 270 300	1950 810 1065 1325 1590 1855 2110 2360 2610 2860 3035	2055 900 1115 1370 1625 1890 2145 2395 2640 2890 3065	2220 1190 1195 1440 1690 1945 2200 2450 2710 2960 3125	2410 1535 1325 1540 1785 2035 2285 2540 2790 3040 3200	2580 1875 1510 1660 1880 2130 2375 2625 2875 3125 3125 3285	2715 2100 1710 1780 1990 2225 2470 2720 2965 3215 3375	2865 2310 1930 1950 2125 2340 2565 2810 3060 3300 3470	2970 2500 2160 2115 2250 2450 2680 2910 3150 3380 3545	3090 2680 2375 2305 2390 2565 2790 3015 3240 3470 3625	3225 2860 2565 2470 2540 2700 2910 3125 3345 3560 3710

Amagat, Ann. chim. phys. (6) 22, 1881.

TABLES 58-60. COMPRESSIBILITY OF GASES.

TABLE 58. - Carbon Dioxide.

Pressure in					Relativ	e values o	of pv at —				
metres of mercury.	180.2	35°	.1 4	00.2	50 ⁰ .0	60°.0	700.0	809	0.0	90°.0	0.0001
30 50 80 110 140 170 200 230 260 290 320	liquid - 625 825 1020 1210 1405 1590 1770 1950 2135	17:	25 1 50 30 20 1 10 1 00 1 70 1 60 2	900 825 980 175 360 550 730 920 100 280	2590 2145 1200 1090 1250 1430 1615 1800 1985 2170 2360	2730 2330 1650 1275 1360 1520 1705 1890 2070 2260 2440	2876 252 197 1556 152 164 1816 1996 2166 2346 252	5 26 5 22 5 18 5 17 17 19 20 20 22 24	85 25 25 25 25 25 25 25 25 25 25 25 25 25	31 20 2845 2440 2105 1950 1975 2275 2375 2550 2725	3225 2980 2635 2325 2160 2135 2215 2340 2490 2655 2830
A			R	elativ e v a	lues of pr	r; φυ at o	°C. and	ı atm. =	r.		
Atm.	00	100	200	300	40°	60°	800	100°	1370	1980	258°
50 100 150 300 500 1000	0.105 0.202 0.295 0.559 0.891 1.656	0.114 0.213 0.309 0.578 0.913 1.685	0.680 0.229 0.326 0.599 0.938 1.716	0.775 0.255 0.346 0.623 0.963 1.748	0.750 0.309 0.377 0.649 0.990 1.780	0.984 0.661 0.485 0.710 1.054 1.848	1.096 0.873 0.681 0.790 1.124 1.921	1.206 1.030 0.878 0.890 1.201 1.999	1.380 1.259 1.159 1.108 1.362	1.582 1.530 1.493 1.678	- 1.847 1.818 1.820

Amagat, C. R. 111, 1890; Ann chim. phys. (6) 29, 1893; 22, 1881.

TABLE 59. — Compressibility of Gases.

Gas.	p.v. (½ atm.). povo (1 atm.).	$ \frac{1}{p.v.} \frac{d(p.v.)}{dp} = a. $	t	t = 0	Density. 0 = 32,0°C. P = 76°m	Density. Very small pressure.
$\begin{array}{c} O_2\\ H_2\\ N_2\\ CO\\ CO_2\\ N_2O\\ Air\\ NH_3 \end{array}$	1.00038 0.99974 1.00015 1.00026 1.00279 1.00327 1.00026 1.00632	00076 + .00052 00030 00052 00558 00654 00046	11.2° 10.7 14.9 13.8 15.0 11.0	00094 +00053 00056 00681 00668 00747	32. 2.015 (16°) 28.005 28.000 44.268 44.285	32. 2.0173 28.016 28.003 44.014 43.996

Rayleigh, Zeitschr. Phys. Chem. 52, 1905.

TABLE 60. - Compressibility of Air and Oxygen between 18° and 22° C.

Pressures in metres of mercury, pv, relative.

Air	pv pv	24.07 26968	34.90 26908	45.24 26791	55.30 26789	64.00 26778	72.16 26792	84.22 26840	101.47 27041	214.54	304.04 3 2 488
O_2	p	24.07 26843	34.89 26614	-	55.50 26185	64.07 26050	72.15 25858	84.19 25745	101.06 25639	214.52 26536	303.03 28756

Amagat, C. R. 1879.

RELATION BETWEEN PRESSURE, TEMPERATURE AND VOLUME OF SULPHUR DIOXIDE AND AMMONIA.*

TABLE 61. - Sulphur Dioxide.

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	essure in Atmos.	Correspon	ding Volunts at Tempe	ne for Ex-	Volume.	Pressure Experime	in Atmosphents at Temp	heres for perature —
12 6360 7800 - 10000 - 9.60 - 14 4040 6420 - 9000 9.60 10.35 - 18 - 4405 - 8000 10.40 11.85 - 20 - 4030 - 7000 11.55 13.05 - 24 - 3345 - 6000 12.30 14.70 - 28 - 2780 3180 5000 13.15 16.70 - 36 - 1935 2260 4000 14.00 20.15 - 40 - 1450 2040 3500 14.40 23.00 - 50 - - 1640 3000 - 26.40 29.10 70 - - 1130 2500 - 30.15 33.25 80 - - 930 2000 - 35.20 40.95	Pressure	58°.0	99°.6	1830.2	Volume.	58°.0	990.6	183°.2
36	12 14 16 18 20 24	6360	7800 6420 5310 4405 4030 3345	- - - - - - - 3180	9000 8000 7000 6000	10.40 11.55 12.30	10.35 11.85 13.05 14.70	-
120 545 1000 76.00 140 430 500 117.20	36 40 50 60 70 80 90 100	-	1935	2260 2040 1640 1375 1130 930 790 680 545	4000 3500 3000 2500 2000 1500	14.00	20.15 23.00 26.40 30.15 35.20	33.25 40.95 55.20 76.00

TABLE 62. - Ammonia.

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

ure in	Corresponding Volume for Experiments at Temperature— Pressure in Atmospheres for Experiments at Temperature— The state of the state o						eriments	
Pressure Atmos.	46°.6	99°.6	183°.6	Volume.	30°.2	46°.6	99°.6	183°.0
10 12.5 15 20 25 30 35 40 45 50 55 60	9500 7245 5880 - - - - - -	7635 6305 4645 3560 2875 2440 2080 1795 1490 1250	- - 4875 3835 3185 2680 2345 2035 1775 1590	10000 9000 8000 7000 6000 5000 4000 3500 3000	8.85 9.60 10.40 11.05 11.80 12.00	9.50 10.45 11.50 13.00 14.75 16.60 18.35 18.30	12,00 13.60 15.55 18.60 22.70 25.40 29.20	19.50 24.00 27.20 31.50
60 70 80 90 100		975 - - - -	1450 1245 1125 1035 950	2500 2000 1500 1000		- - -	34.25 41.45 49.70 59.65	37·35 45·50 58.00 93.60

^{*} From the experiments of Roth, "Wied. Ann." vol. 12, 1880.

COMPRESSIBILITY OF LIQUIDS.

If V_1 is the volume under pressure p_1 atmospheres at $t^{\circ}C$, and V_2 is volume at pressure p_2 and the same temperature, then the compressibility coefficient may be defined at that temperature as

$$\beta_t = \frac{1}{V_1} \cdot \frac{V_1 - V_2}{p_1 - p_2}$$

In absolute units (referred to megadynes) the coefficient is $\frac{1}{1.0137}$.

Acetone	0.00 1-500						β. 108	Refer-
Benzole "" "" "" "" "" "" "" "" "" "" "" "" "	0.	276 833 833 92 87 1666 533 431 101 128 162 204 211 206 81 110 100 168 132 320 245 4200 1530 96 112 125 85 73 78 87 78 87 78 87 78 87 78 87 78 87 78 87 87	1	Methyl alcohol "" Nitric acid Olis: Almond Olive Paraffin Petroleum Rock Rape-seed Turpentin Toluene "Xylene Paraffins: C ₆ H ₁₄ C ₇ H ₁₆ C ₈ H ₁₈ C ₉ H ₂₀ C ₁₀ H ₂₂ C ₁₂ H ₂₆ C ₁₄ H ₃₀ C ₁₆ H ₃₄ Water "" "" "" "" "" "" "" "" "" "" "" ""	0 100. 18.10 20.3 17. 20.55 14.8 16.5 19.4 20.3 19.7 10. 100. 100. 100. 100. 100. 100. 100	8.68-37.3 8 I-32	221 120 338 555 63 70 75 60 79 79 150 74 132 113 105 5525 500 491 511 483 448 449 448 449 441 442 448 445 446 446 446 446 446 447 446 446 446 447 446 446	3 3 2 11 8 8 "" 6 12 8 8 "" "" "" "" "" "" "" "" "" "" "" ""

For references see page 83.

COMPRESSIBILITY AND BULK MODULI OF SOLIDS.

Salid	Solid-					Compression per unit	Authority.	Calculated values of bulk modulus in —		
Done.				volume per atmo. × 10 ⁶ .	Atmority.	Grammes per sq. cm.	Pounds per sq. in.			
Crystals: Barite	• •					1.93 0.747 1.20 1.14 2.67 4.20* 7.45* 0.61 0.113 0.95 0.86 1.02 2.76 0.68 2.2-2.9	Voigt " " " " " " Amagat Buchanan Amagat	535×10 ⁶ 1384 860 " 906 " 387 " 246 " 138 " 1694 " 9140 " 1090 " 1202 " 1012 " 374 " 1518 " 405 "	7.61×10 ⁸ 19.68 " 12.24 " 12.89 " 5.50 " 3.50 " 1.97 " 24.11 " 130.10 " 15.48 " 17.10 " 14.41 " 5.32 " 21.61 " 5.76 "	

Note: Winklemann, Schott, and Straulel (Wied Ann. 61, 63, 1897; 68, 1899) give the following coefficients (among others) for various Jena glasses in terms of the volume decrease divided by the increase of pressure expressed in kilogrammes per square millimetre:

No.	Glass.	Compressibility.	No.	Glass.	Compressibility.
665 1299 16 278	Barytborosilicat	7520 5800 4530 3700	2154 S 208 500 S 196	Kalibleisilicat	3660 3550 3510 3470

^{*} Röntgen and Schneider by piezometric experiments obtained 5.0 × 10⁻⁶ for rock salt, and 5.6 × 10⁻⁶ for sylvine (Wied, Ann., vol. 31).

References to Tables 63 and 64.

Liquids (Table 63):

- 1 Amagat, Ann. chim. phys. (6) 29, 1893.
- 2 Röntgen, Wied. Ann. 44, 1891.
- 3 Amagat, C. R. 68, 1869; (5) 28, 1883.
- 4 Pagliani-Palazzo, Mem. Acad. Lin. (3) 19, 1883.
- 5 Grimaldi, Zeitschr. Phys. Chem. 1, 1887.
- 6 de Metz, Wied. Ann. 41, 1890; 47, 1892.

Solids (Table 64):

Amagat, C. R. 108, 1889; J. de Phys. (2) 8, 1889.

- 7 Barus, Sill. Journ. 39, 1890; 41, 1891; Bull. U. S. Geol. Surv. 1892.
- 8 Quincke, Wied. Ann. 19, 1893.
- 9 Amagat, Ann. chim. phys. (6) 22, 1891.
- 10 Aimé, Ann. chim. phys. (3) 8, 1843.
- 11 Colladon-Sturm, Pogg. Ann. 12, 1828.
- 12 Martini.
- 13 de Heen, Bull. Acad. Roy. Belg. (3) 9, 1895.
- 14 Batelli, Phys. Zeitschr. 28, 29, 1896.

Buchanan, Proc. Roy. Soc. Edinb. 10, 1880. Voigt, Wied. Ann. 31, 1887; 34, 1888; 36, 1888.

SPECIFIC GRAVITIES CORRESPONDING TO THE BEAUMÉ SCALE.

The specific gravities are for 15.56°C (60°F) referred to water at the same temperature as unity. For specific gravities less than unity the values are calculated from the formula:

For specific gravities greater than unity from:

Degrees Beaumé =
$$\frac{140}{\text{Specific Gravity}}$$
-130.

			Sp	ecific Gr	avities le	ss than I						
Specific	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09		
Gravity.		Degrees Beaumé,										
0.60 .70 .80 .90	103.33 70.00 45.00 25.56 10.00	99.51 67.18 42.84 23.85	95.81 64.44 40.73 22.17	92.22 61.78 38.68 20.54	88.75 59.19 36.67 18.94	85.38 56.67 34.71 17.37	82.12 54.21 32.79 15.83	78.95 51.82 30.92 14.33	75.88 49.49 29.09 12.86	72.90 47.22 27.30 11.41		
	Specific Gravities greater than 1.											
Specific	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09		
Gravity.					Degrees I	Beaumé.						
1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80	0.00 13.18 24.17 33.46 41.43 48.33 54.38 59.71 64.44	1.44 14.37 25.16 34.31 42.16 48.97 54.94 60.20 64.89	2.84 15.54 26.15 35.15 42.89 49.60 55.49 60.70 65.33	4.22 16.68 27.11 35.98 43.60 50.23 56.04 61.18 65.76	5.58 17.81 28.06 36.79 44.31 50.84 56.58 61.67	6.91 18.91 29.00 37.59 45.00 51.45 57.12 62.14 66.62	8.21 20.00 29.92 38.38 45.68 52.05 57.65 62.61	9.49 21.07 30.83 39.16 46.36 52.64 58.17 63.08	10.74 22.12 31.72 39.93 47.03 53.23 58.69 63.54	11.97 23.15 32.60 40.68 47.68 53.80 59.20 63.99		

DENSITY OR MASS IN GRAMMES PER CUBIC CENTIMETRE AND POUNDS PER CUBIC FOOT OF THE ELEMENTS, LIQUID OR SOLID.

Element.	Physical State.	Grammes per	Pounds per cu. foot.	Tempera- ture.*	Authority.
Aluminum	cast	2.56-2.58	160-161		
66	wrought	2.65-2.80	165-175		
66	pure	2.58	161	4	Mallet, 1882.
Antimony	vacuo-distilled	6.618	413.2	20	Kahlbaum, 1902.
46	ditto-compressed amorphous	6.691	417.7 388	20	Hérard.
Argon	liquid	6.22 1.3845	86.43	-183	Baly-Donnan.
"	"	1.4233	88.86	-189	66 66
Arsenic	crystallized	5.73	358	14	
66	amorph. brblack	3.70	231		Geuther
Barium	yellow	3.88	242		Linck
Bervllium		3.75	234 108-133		
Bismuth	solid	9.70-9.90	605-618		
66	electrolytic	9.747	608.5		Classen, 1890.
46	vacuo-distilled	9.781	610.6	20	Kahlbaum, 1902.
66	liquid	10.00	624	27 I	Vincentini-Omodei.
	solid	9.67	604	27 I	
Boron	crystal amorph, pure	2.5-2.6	156-162		Moissan
Bromine	liquid	2.45 3.15	153		WOISSall
Cadmium	cast	8.54-8.57	5-33-5-35		
66	wrought	8.67	541		
66	vacuo-distilled	8.648	539-9	20	Kahlbaum, 1902.
"	solid	8.37	522	318	Vincentini-Omodei.
Cæsium	liquid	7.99 1.88	498 117	318	
Calcium		1.52	95		Arndt, Ch. Ber. 1904.
Carbon	diamond	3.47-3.56	216-222		Liversidge.
66	graphite	2.10-2.32	131-145		
Cerium	electrolytic -	6.79	424		Muthmann-Weiss
Chlorine	pure	7.02	438	226	Drugman-Ramsay
Chromium	liquid	1.507 6.52–6.73	94.I 407-420	-33.6	Drugillali-Kallisay
"	pure	6.92	432	20	Moissan.
Cobalt	F	8.71	544	21	Tilden, Ch. C. 1898.
Columbium	liquid	7.1-7.4	440-460		
Copper	cast	8.80-8.95	549-558		
66	drawn wrought	8.93-8.95	557-558		
	electrolytic	8.85-8.95 8.88-8.95	552-558 554-558		
66	vacuo-distilled	8.9326	557.7	20	Kahlbaum, 1902.
66	ditto-compressed	8.9376	558.0	20	" "
"	liquid	8.217	513		Roberts-Wrightson.
Erbium	1:: 3	4.77	298		St. Meyer, Z. Ph. Ch. 37. Moissan-Dewar.
Fluorine Gallium	liquid	1.14	71	—200 23	de Boisbaudran.
Germanium		5.93 5.46	370 34 I	23	Wimkler.
Glucinium		1.86-2.06	116-127		
Gold	cast	19.3	1200		
66	wrought	19.33	1207		77 1 11
66	vacuo-distilled		1178	20	Kahlbaum, 1902.
Hydrogen	ditto-compressed liquid	0.070	1202	20 —252	Dewar, Ch. News, 1904.
Indium	nguid	7.12-7.42	4.3 444–463	~5~	201141, 0211 210113, 1934.
		, ,.42	777 7-3		

^{*} Where the temperature is not given, ordinary atmospheric temperature is understood.

Compiled from Clarke's Constants of Nature, Landolt-Börnstein-Meyerhoffer's Tables, and other sources. Where no authority is stated, the values are mostly means from various sources.

DENSITY OR MASS IN GRAMMES PER CUBIC CENTIMETRE AND POUNDS PER CUBIC FOOT OF THE ELEMENTS, LIQUID OR SOLID.

Element.	Physical State.	Grammes per cu. cm.	Pounds per cu. foot.	Temper- ature.*	Authority.
Iridium Iodine Iron	pure	22.42 4.7–4.9 7.85–7.88	1399 293-306 490-492	17	Deville-Debray
66 66 66	gray cast white cast wrought	7.03-7.13 7.58-7.73 7.80-7.90 6.88	439-445 473-482 487-492		Roberts-Austen
" Lanthanum	liquid steel	7.60-7.80 6.15	429 474-487 384		Muthmann-Weiss
Lead "	cast wrought solid	11.37 11.36 11.005	710 709 686	24 24 3 ² 5	Reich "Vincentini-Omodei
46 46 66	liquid vacuo-distilled ditto-compressed	10.645 11.342 11.347	664 708. 1 708.4	3 ² 5 20 20	Kahlbaum, 1902
Lithium Magnesium Manganese		0.534 1.69-1.75 7.4	33·3 105–109 460	20	Richards-Brink, '07
Mercury	liquid	13.596 13.546 13.690	848.8 845.7 854.7	20 -38.8	Regnault, Volkmann Vincentini-Omodei
Molybdenum	solid	14.193 14.383 8.4-8.6	886.1 897.9 520-540	-38.8 -188	Mallet Dewar, 1902
Nickel Niobium Nitrogen	liqu id	8.60-8.90 7.2 0.810	540-550 450 50.5	-195	Baly-Donnan, 1902
Osmium Oxygen	liquid	0.854 22.5 1.14 11.4	53·3 1400 71	—205 184	
Palladium Phosphorus	white red metallic	1.83 2.20 2.34	711	T. 17	Hittorf
Platinum Potassium	solid	21.2-21.7 0.86-0.88 0.851	146 1320–1350 54–55	62.1	Vincentini-Omodei
" Præsodymium Rhodium	liquid	0.830 6.475 11.0-12.1	53.7 53.8 404 686-755	62.1	Muthmann-Weiss
Rubidium Ruthenium Samarium		1.532 12.3 7.7-7.8	95.6 768 480-490	20	Richards-Brink, '07 Muthmann-Weiss
Selenium Silicon Silver	cast	4.3-4.8 2.0-2.4 10.42-10.53	270-300 120-150 650-657		112 112 112 112 112 112 112 112 112 112
66 66 46	wrought vacuo-distilled ditto-compressed	10.6 10.492 10.503	661 655.0 655.7	20	Kahlbaum, 1902
Sodium	liquid solid	9.51 0.9712 0.9519	593 60.63 59.4	20 97.6	Roberts-Austen Richards-Brink, '07 Vincentini-Omodei
u « Strontium	liquid	0.9287 1.0066 2.50-2.58	58.0 62.84 156–161	97.6 — 188	Dewar Matthiessen
Sulphur	liquid	1.811	120–130	113	Vincentini-Omodei

^{*} Where the temperature is not given, ordinary atmospheric temperature is understood.

TABLE 66 (continued). — Density or Mass in grammes per cubic centimetre and pounds per cubic foot of the elements, liquid or solid.

Element.	Physical State.	Grammes per	Pounds per cu. foot.	Tempera- ture.*	Authority.
Tantalum Tellurium "Thallium Thorium Tin	crystallized amorphous	10.4-12.8 6.25 6.02 11.8-11.9 11.0 7.29	650–800 390 376 736–742 690 455	20	Beljankin. Nilson. Matthiessen.
" " " Titanium	" wrought " crystallized " solid " liquid gray	7.30 6.97-7.18 7.184 6.99 5.8 3.5	455	226	Vincentini-Omodei.
Tungsten Uranium Vanadium Xenon Yttrium Zinc	liquid	18.6-19.1 18.7 5.5 3.52 3.8 7.04-7.16	1160-1190 1170 340 220 240	13	Zimmermann, Roscoe. Ramsay-Travers, St. Meyer.
" " " Zirconium	wrought vacuo-distilled ditto-compressed liquid	7.19 6.92 7.13 6.48 4.14	439-447 449 432 445 404 258	20 20	Kahlbaum, 1902. " Roberts-Wrightson. Froost.

TABLE 67 — Mass in grammes per cubic centimetre and in pounds per cubic foot of different kinds of wood.

The wood is supposed to be seasoned and of average dryness.

Wood.	Grammes per cubic centimetre.	Pounds per cubic foot.	Wood.	Grammes per cubic centimetres	Pounds per cubic foot.
Alder Apple Ash Bamboo Basswood. See Linden. Beech Blue gum Birch Box Bullet-tree Butternut Cedar Cherry Cork Dogwood Ebony Elm Fir or Pine, American White Larch Pitch Red Scotch Spruce Yellow Greenheart	0.42-0.68 0.66-0.84 0.65-0.85 0.31-0.40 0.70-0.90 1.00 0.51-0.77 0.95-1.16 1.05 0.38 0.49-0.57 0.70-0.90 0.22-0.26 0.76 1.11-1.33 0.54-0.60 0.35-0.50 0.50-0.56 0.83-0.85 0.48-0.70 0.43-0.53 0.48-0.70 0.37-0.60 0.93-1.04	26-42 41-52 40-53 19-25 43-56 52 32-48 59-72 65 24 30-35 43-56 14-16 47 69-83 34-37 22-31 31-35 52-53 30-44 27-33 30-44 23-37 58-65	Hazel Hickory Holly Iron-bark Juniper Laburnum Lancewood Lignum vitæ Linden or Lime-tree Locust Logwood Mahogany, Honduras "Spanish Maple Oak Pear-tree Plum-tree Plum-tree Poplar Satinwood Sycamore Teak, Indian "African Walnut Water gum Willow	0.60-0.80 0.60-0.93 0.76 1.03 0.56 1.092 0.68-1.00 1.17-1.33 0.32-0.59 0.67-0.71 0.91 0.66 0.85 0.62-0.75 0.60-0.90 0.61-0.73 0.35-0.5 0.95 0.40-0.60 0.66-0.88 0.98 0.98 0.64-0.70 1.00 0.40-0.60	37-49 37-58 47 64 35 57 42-62 73-83 20-37 42-44 57 35 53 39-47 37-56 38-45 41-49 22-31 59 24-37 41-55 61 40-43 62 24-37

^{*} Where the temperature is not given, ordinary atmospheric temperature is understood.

DENSITY OR MASS IN CRAMMES PER CUBIC CENTIMETRE AND POUNDS PER CUBIC FOOT OF VARIOUS SOLIDS.*

			F VARIOUS SOLII			
Substance.	Grammes per cubic centimetre.	Pounds per cubic foot.	Substance.		Grammes per cubic centimetre.	Pounds per cubic foot.
Agate Alabaster:	2.5-2.7	156–168	Garnet		3.6 -3.8 1.88	230-335
Carbonate Sulphate	2.69-2.78	168-173 141-145	Glass: Common .		2.4-2.8	150-175
Alum, potash	1.75	109	Flint	.	2.9-5.9	180-370
Amber	1.06-1.11	66–69 87–112	Glauber's salt .		1.4-1.5	87 -93
Apatite	3.16-3.22	197-201	Gneiss		2.4-3.2	150-200
Aragonite	3.0 5.7-5.72	187 356–358	Granite Graphite		2.0-3.0	125-187
Asbestos	2.0-2.8	125-175	Gravel		1.9-2.3	94-112
Asphaltum	1.1-1.5	69-94	Gray copper ore Green stone	٠	4.4-5.4	275-335 180-185
Basalt	4·5 2·4-3·I	150-193	Gum arabic .		2.9-3.0 1.3-1.4	80-85
Beeswax	0.96-0.97	60-61	Gunpowder:			
Bole	2.2-2.5 1.7-2.0	137-156	Loose Tamped	:	0.9 1.75	56 109
Boracite	2.9-3.0	181-187	Gypsum, burnt .		1.81	113
Borax	1.7-1.8	106-112 162	Hornblende .	•	3.0 0.88 -0.91	187 55-57
Boron	2.45-2.69	153-168	Iodine		4.67	291
Brick	1.4-2.2	87-137	Ivory Kaolin	٠	1.83-1.92	114-120
Butter	0.86-0.87 4.1-4.5	53-54 255-280	Lava:		2.2	137
Calcspar	2.6-2.8	162-175	Basaltic	٠	2.8-3.0	175-185
Carbon. See Graphite, etc.			Trachytic . Lead acetate .		2.0-2.7 2.4	125-168 150
Caoutchouc . ,	0.92-0.99	57-62	Leather:			
Celestine	3.9	243	Dry Greased	•	0.86	54 64
Pulverized loose .	1.15-1.7	72-105	Lime:	٠		04
Pressed	1.85	115 168–187	Mortar Slaked	٠	1.65-1.78	103-111 81 - 87
Set	2.7-3.0 0.88-0.94	55-50	Lime		1.3-1.4 2.3-3.2	144-200
Chalk	1.9-2.8	55-59 118-17 5	Limestone	٠	2.0-3.1	125-190
Charcoal: Oak	0.57	35	Litharge: Artificial		9.3-9.4	580-585
Pine	0.28-0.44	17.5-27.5	Natural	.	7.8-8.0	489-492
Chrome yellow Cinnabar	6.00 8.12	374 507	Magnesia		3.2 3.0	200 187
Clay	1.8-2.6	122-162	Magnetite		4.9-5.2	306-324
Clayslate Coal, soft	2.8-2.9 1.2-1.5	175-180	Malachite Manganese:	٠	3.7-4.I	231-256
Cobaltite	6.4-7.3	75-94 400-455	Red ore		3.46	216
Cocoa butter	0.89-0.91	5657	Black ore .		3.9-4.I	243-256
Coke	I.0-I.7 I.04-I.I4	62–105 65–71	Marble	:	2.5-2.8 1.6-2.5	157-177
Corundum	3.9-4.0	245-250	Masonry		1.85-2.3	116-144
Diamond	3.5-3.6 1.66	220-225 104	Meerschaum	•	.99-1.28 2.6	61.8–79.9
Carbonado	3.01-3.25	188-203	Mica		2.6-3.2	165-200
Diorite Dolomite	2.8-3.1	175-193	Mortar	٠	1.75	109
Earth, dry	2.4 - 2.9 1.6 - 1.9	150-181	Mud		1.6	99
Ebonite	1.15	72	Ochre		3.5	218
Emery Epsom salts:	4.0	250	Opal Orpiment		2.2 3.4-3.5	137
Crystalline	1.7-1.8	106-112	Paper		0.7-1.15	44-72
Anhydrous Feldspar	2.6 2.53-2.58	162 158–161	Paraffin Peat	•	0.87-0.91	54-57 52
Flint.	2.63	164	Phosphorus, white		1.82	114
Fluor spar	3.14-3.18	196-198	Pitch	٠	1.07	67 143–156
Gabronite	2.9-3.0 1.2	181–1 8 7 75	Porcelain Porphyry		2.3-2.5 2.6-2.9	162-181
Galena	7.3~7.6	460-470	Potash		2.26	141

TABLE 68 (continued). - Density of Various Solids.

Substance.	Grammes per cubic centimetre.	Pounds per cubic foot.	Substance.	Grammes per cubic centimetre.	Pounds per cubic foot.
Pyrites	4.9-5.2 3.7-4.6 0.37-0.9	306-324 231-287 23-56	Snow, loose . Soapstone, Steatite Soda:	0.125	7.8 162-175
Quartz	2.65	165	Roasted	1.45	156 90
Rock crystal Rock salt	2.6	162	Spathic iron ore	3.7-3.9	231-243
Sal ammoniac	2.28-2.41 1.5-1.6	142-150 94-100	Starch Stibnite	4.6–4.7	95 287 –2 93
Saltpetre	1.95-2.08	122-130	Strontianite . Syenite	3.7	231 130-190
Dry. Damp	1.40-1.65	87-103	Sugar	1.61	168
Sandstone	2.0-3.2	124-200	Tallow	0.91-0.97	570-605
Serpentine	4.2 - 4.8 2.43 - 2.66	262-300 152-166	Tellurium .	1.4-2.3	398–401 87–143
Shale	2.6	162	Tinstone	6.4-7.0 3.5-3.6	399-437
Siliceous earth Slag, furnace	2.66	166	Tourmaline	2.94-3.24	183-202 168-175
Slate	2.6-3.3	162-205	Trap	2.6-2.7	162-170

TABLE 69. — Density or Mass in Grammes per Cubic Centimetre and Pounds per Cubic Foot of Various Alloys (Brasses and Bronzes).

TABLE 70.

DENSITY OF LIQUIDS.

Density or mass in grammes per cubic centimetre and in pounds per cubic foot of various liquids.

DENSITY OF GASES.

The following table gives the density of the gases at 0° C, 76 cm. pressure, at sea-level and latitude 45° relative to air as unity and under the same conditions; also the weight of one litre in grammes and one cubic foot in pounds.

Gas.	Specific Gravity.	Grammes per litre.	Pounds per cubic foot.	. Reference.
Air Acetylene Ammonia Argon Bromine Butane Carbon dioxide "monoxide Chlorine Coal gas { from to	I.000 0.92 0.597 1.379 5.524 2.01 1.5291 0.9672 2.491 0.320 0.740 1.806 1.075 1.26 1.368 0.7126 2.71 1.2692 0.0696 1.1895 2.818 0.5576 0.674 0.9673 1.0387 1.5301 1.053 2.2639 0.469 4.422	1.2928 1.1620 0.7621 1.782 7.1426 2.594 1.9652 1.2506 0.414 0.957 2.3261 1.3421 1.697 0.1787 0.894 3.6163 1.6283 0.09004 1.5230 3.654 0.7160 0.893 1.2542 1.3417 1.9688 1.4292 2.8611 0.581 5.717	.08071 .07254 .04758 .1112 .4459 .16194 .12269 .07807 .19769 .02583 .05973 .14522 .08379 .1059 .01116 .05581 .2258 .10165 .005621 .09508 .2281 .04470 .0558 .07829 .08376 .12291 .08922 .17862 .0363 .3569	Rayleigh; Leduc. Berthelot, 1860. Leduc, C. R. 125, 1897. Ramsey-Travers, Proc. R. Soc. 67, 1900. Jahn, 1882. Frankland, Ann. Ch. Pharm. 71. Rayleigh, Proc. R. Soc. 62, 1897. " " " " " Leduc, C. R. 125, 1897. Gay-Lussac. Kolbe, Ann. Chem. Pharm. 65. Moissan, C. R. 109. Ramsey-Travers, Proc. R. Soc. 67, 1900. Thorpe-Hambley, J. Chem. Soc. 53. Löwig, Gmelin-Kraut, Org. Chem. Leduc, C. R. 125, 1897. Rayleigh, Proc. R. Soc. 53, 1893. Leduc, C. R. 125, 1897. Ramsey-Travers, Proc. R. Soc. 67, 1900. Thomson. Ramsey-Travers, Proc. R. Soc. 67, 1900. Rayleigh, Proc. R. Soc. 62, 1897. Leduc, C. R. 116, 1893. " C. R. 125, 1897. Rayleigh, Proc. R. Soc. 62, 1897. Leduc, C. R. 117, 1893. Ramsey-Travers, Proc. R. Soc. 67, 1900.

Compiled partly from Landolt-Börnstein-Meyerhoffer's Physikalisch-Chemische Tabellen.

TABLE 72.

DENSITY OF AQUEOUS SOLUTIONS.*

The following table gives the density of solutions of various salts in water. The numbers give the weight in grammes per cubic centimetre. For brevity the substance is indicated by formula only.

Colorado	w	eight of	the diss	solved s	ubstance e solution	e in 100	parts by	y weight	of	°C	
Substance.	5	10	15	20	25	30	40	50	60	Temp.	Authority.
K ₂ O	1.047 1.040 1.073 1.058 0.978	1.098 1.082 1.144 1.114 0.9 5 9	1.153 1.027 1.218 1.169 0.940	1.214 1.076 1.284 1.224 0.924	1.284 1.229 1.354 1.279 0.909	1.286 1.421 1.331	1.503 1.410 1.557 1.436	1.659 1.538 1.689 1.539	1.809 1.666 1.829 1.642	15. 15. 15. 15.	Schiff. " " Carius.
NH ₄ Cl KCl NaCl LiCl CaCl ₂	1.015 1.031 1.035 1.029 1.041	1.030 1.065 1.072 1.057 1.086	1.099	1.058 1.135 1.150 1.116 1.181	1.072 - 1.191 1.147 1.232	- - 1.181 1.286	- - 1.255 1.402			15. 15. 15. 15.	Gerlach.
CaCl ₂ + 6H ₂ O AlCl ₈ MgCl ₂ MgCl ₂ +6H ₂ O ZnCl ₂	1.019 1.035 1.041 1.014 1.043	1.040 1.072 1.085 1.032 1.089	1.061 1.111 1.130 1.049 1.135	1.083 1.153 1.177 1.067 1.184	1.105 1.196 1.226 1.085 1.236	1.241	1.176 1.340 - 1.141 1.417	-	1.276 - - 1.222 1.737	18. 15. 15. 24. 19.5	Schiff. Gerlach. " Schiff. Kremers.
$\begin{array}{c} CdCl_2 & \cdot & \cdot \\ SrCl_2 & \cdot & \cdot \\ SrCl_2 + 6H_2O \\ BaCl_2 & \cdot & \cdot \\ BaCl_2 + 2H_2O \end{array}$	1.043 1.044 1.027 1.045 1.035	1.087 1.092 1.053 1.094 1.075	1.138 1.143 1.082 1.147 1.119	1.193 1.198 1.111 1.205 1.166	1.269	1.319 1.321 1.174 - 1.273	1.469 1.242 -	1.653	1.887 - - - -	19. 5 15. 15. 15.	Gerlach. " " Schiff.
$\begin{array}{c} \operatorname{CuCl_2} & \dots & \dots \\ \operatorname{NCl_2} & \dots & \dots \\ \operatorname{HgCl_2} & \dots & \dots \\ \operatorname{Fe_2Cl_6} & \dots & \dots \\ \operatorname{PtCl_4} & \dots & \dots \end{array}$	1.044 1.048 1.041 1.041 1.046	1.091 1.098 1.092 1.086 1.097	1.155 1.157 - 1.130 1.153	1.221 1.223 - 1.179 1.214	1.299	1.360 - - 1.290 1.362	1.527 - - 1.413 1.546	- - 1.545 1.785	1.668	17.5 17.5 20. 17.5	Franz. Mendelejeff. Hager. Precht.
SnCl ₂ + 2H ₂ O SnCl ₄ + 5H ₂ O LiBr KBr NaBr	1.032 1.029 1.033 1.035 1.038	1.058	1.104 1.089 1.111 1.114 1.123	I.122 I.154 I.157		1.193	1.329 1.274 1.366 1.364 1.408	1.365	1.580 1.467 - -	15. 15. 19.5 19.5	Gerlach. "Kremers. "
$\begin{array}{c} MgBr_2 & \dots \\ ZnBr_2 & \dots \\ CdBr_2 & \dots \\ CaBr_2 & \dots \\ BaBr_2 & \dots \end{array}$	1.041 1.043 1.041 1.042 1.043	1.085 1.091 1.088 1.087 1.090	1.135 1.194 1.139 1.137 1.142	1.192	1.263	1.308 1.328 1.324 1.313 1.327	1.449 1.473 1.479 1.459 1.483	1.623 1.648 1.678 1.639 1.683	1.8 ₇₃	19.5 19.5 19.5 19.5	66 66 66 66
SrBr ₂	1.043 1.036 1.036 1.038 1.043	1.089 1.076 1.077 1.080	1.122	I.164 I.170 I.177	1.260 1.216 1.222 1.232 1.253	1.278 1.292	1.489 1.394 1.412 1.430 1.418	I.544 I.573	1.953 1.732 1.775 1.808 1.873	19.5 19.5 19.5 19.5	66 66 66 66
$\begin{array}{c} \operatorname{CdI}_2 & \dots & \dots \\ \operatorname{MgI}_2 & \dots & \dots \\ \operatorname{CaI}_2 & \dots & \dots \\ \operatorname{SrI}_2 & \dots & \dots \\ \operatorname{BaI}_2 & \dots & \dots \end{array}$	1.042 1.041 1.042 1.043	1.086 1.086 1.088 1.089	1.136 1.137 1.138 1.140 1.141	1.196	1.251 1.252 1.258 1.260 1.263	1.317 1.318 1.319 1.328 1.331	1.474 1.472 1.475 1.489 1.493	1.678 1.666 1.663 1.693 1.702	- 1.913 1.908 1.953 1.968	19.5 19.5 19.5 19.5	66 66 66 66 66
NaClO ₈ NaBrO ₈ KNO ₈ NaNO ₈ AgNO ₈	1.035 1.039 1.031 1.031 1.044	1.068 1.081 1.064 1.065 1.090	1.127	1.145 1.176 1.135 1.140 1.195	1.229	1.222	1.329 - 1.313 1.479	1.416 1.675	1.918	19.5 19.5 15. 20.2 15.	" Gerlach. Schiff. Kohlrausch.

^{*} Compiled from two papers on the subject by Gerlach in the "Zeit. für Anal. Chim.," vols. 8 and 27.

SMITHSONIAN TABLES.

DENSITY OF AQUEOUS SOLUTIONS.

Substance.	w	eight of	the dis		ubstancie soluti		parts b	y weigh	t of	, C.	Authority.
Substance.	5	10	15	20	25	30	40	50	60	Temp.	Authority.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.020	I.041 I.095 I.054			1.107		1.456	1.597	-	17.5	Gerlach. Franz. Oudemans.
$Ca(NO_3)_2 \dots Cu(NO_8)_2 \dots$	1.037	1.075	1.118		1 -	1.260	1.367			4	Gerlach. Franz.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.039 1.043 1.052 1.045	1.083 1.091 1.097 1.090	1.129 1.143 1.150 1.137 1.137	1.179 1.199 1.212 1.192 1.192	1.262 1.283 1.252 1.252	1.355	1.536 1.465 1.465	1.759		19.5 17.5 17.5 17.5 17.5	Kremers. Gerlach. Franz.
$\begin{array}{c} \text{Fe}_2(\text{NO}_3)_6 \dots \\ \text{Mg}(\text{NO}_3)_2 + 6\text{H}_2\text{O} \\ \text{Mn}(\text{NO}_3)_2 + 6\text{H}_2\text{O} \\ \text{K}_2\text{CO}_3 \dots \\ \text{K}_2\text{CO}_3 + 2\text{H}_2\text{O} \end{array}$	I.039 I.018 I.025 I.044 I.037	1.076 1.038 1.052 1.092	1.060	1.160 1.082 1.108 1.192 1.150	1.210 1.105 1.138 1.245 1.191	1.129 1.169 1.300	1.373 1.179 1.235 1.417 1.320	1.543	1.657	17.5 21 8 15	Schiff. Oudemans. Gerlach.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.038 1.055 1.096 1.053	1.057 1.084 1.150 1.081 1.161	I.077 I.113 I.207 I.111 I.221	1.098 1.142 1.270 1.141 1.284	1.118 1.170 1.336	-	1.287 - - -	-	15. 19. 18. 17.2	Schiff. Hager. Schiff. Gerlach.
$\begin{array}{c} MgSO + 7H_2O \ . \\ Na_2So_4 + 10H_2O \ . \\ CuSO_4 + 5H_2O \ . \\ MnSO_4 + 4H_2O \ . \\ ZnSO_4 + 7H_2O \ . \end{array}$	1.025 1.019 1.031 1.031 1.027	1.050 1.039 1.064 1.064	1.075 1.059 1.098 1.099	1.101 1.081 1.134 1.135 1.122	1.102 1.173 1.174	1.124 1.213 1.214	1.215 - 1.303 1.269	1.278 - 1.398 1.351	- - - 1.443	15. 15. 18. 15.	" Schiff. Gerlach. Schiff.
Fe ₂ (SO) ₃ +K ₂ SO ₄ +24H ₂ O Cr ₂ (SO) ₃ +K ₂ SO ₄	1.026	1.045	1.066	1.088	1.112	1.141	-	-	-	17.5	Franz.
$+24H_2O$ $MgSO_4 + K_2SO_4 + 6H_2O$	1.016	1.033	1.051	1.073	1.099	1.126	1.188	1.287	1.454	17.5	Schiff.
(NH ₄) ₂ SO ₄ + FeSO ₄ + 6H ₂ O K ₂ CrO ₄	1.032 1.028 1.039	1.066 1.058 1.082	I.10I I.090 I.127	1.138 1.122 1.174	1.154	1.191	- 1.397	-		15. 19. 19.5	« «
K ₂ Cr ₂ O ₇ Fe(Cy) ₆ K ₄ Fe(Cy) ₆ K ₈	1.035 1.028 1.025	1.071 1.059 1.053	1.108 1.092 1.145	1.126 1.179	- -	- - -	-		1 1 1	19.5 15. 13	Kremers. Schiff.
$\begin{array}{c} Pb(C_{2}H_{3}O_{2})_{2} + \\ 3H_{2}O \cdot \cdot \cdot \\ 2NaOH + As_{2}O_{5} \end{array}$	1.031	1.064	1.100	1.137	1.177	1.220	1.315	1.426	-	15.	Gerlach.
+ 24H ₂ O	1.020	1.042	1.066	1.089	1.114	1.140	1.194			14.	Schiff.
	5	10	15	20	30	40	60	8o	100		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.040 1.013 1.033 1.021 1.018	1.084 1.028 1.069 1.047 1.038	1.132 1.045 1.104 1.070 1.058	1.179 1.063 1.141 1.096 1.079	1.277 - 1.217 1.150 1.123	1.389 1.294 1.207 1.170	1.564 - 1.422 - 1.273	1.840		15. 4. 15. 15.	Brineau. Schiff. Kolb. Gerlach.
Cane sugar		1.039 1.050 1.073 1.077	1.060 1.075 1.114 1.118	1.082	1.129 1.151 1.257 1.271	1.178 1.200 1.376 1.400 1.307		1.732	- - - 1.838	17.5 15. 14. 13. 15.	Kolb. Topsöe. Kolb.
H_2SiFl_6	1.040 1.035 1.027 1.028	1.082	1.127 1.119 1.086 1.088	1.174 1.167 1.119	1.273 1.271 1.188 1.184	1.385 1.264 1.250	1.676 1.438 1.373 1.068	- - 1.459	- - 1.528 1.055	17.5 17.5 15.	Stolba. Hager. Schiff. Kolb. Oudemans.

DENSITY OF WATER AT DIFFERENT TEMPERATURES BETWEEN 0° AND 36°C.

The temperatures are for the hydrogen thermometer.

Temp. C.	.0	.1	.2	.3	.4	.5	•6	.7	.8	.9	
0 1 2 3 4	0.999 868 927 968 992 1.000 000	874 932 971 994 000	881 936 974 995 000	887 941 977 996 999*	893 945 980 997 999*	899 950 982 998 998*	905 954 985 999 997*	911 957 987 999 996*	916 961 989 000 995*	922 965 991 000 993*	
5 6 7 8 9	0,999 992 968 929 876 808	990 965 925 870 801	988 962 920 864 793	986 958 915 857 785	984 954 910 851 778	982 951 904 844 769	979 947 899 837 761	977 943 893 830 753	974 938 888 823 744	971 934 882 816 736	
10 11 12 13 14	727 632 525 404 271	718 622 513 391 257	709 612 502 379 243	700 601 490 366 2 29	691 591 478 353 215	681 580 466 339 200	672 569 454 326 186	662 558 442 312 171	652 547 429 299 156	642 536 417 285 141	
15 16 17 18 19	0.998 970 801 622 432	953 784 603 412	096 937 766 585 392	081 920 749 566 372	065 904 731 547 352	050 887 713 528 332	034 870 695 509 312	018 853 677 490 292	002 836 659 471 271	986* 819 640 451 251	
20 21 22 23 24	230 019 0.997 797 565 323	210 997* 774 541 298	189 975* 7 51 517 273	168 953* 728 493 248	147 931* 705 469 223	126 909* 682 445 198	105 887* 659 421 173	083 864* 635 396	062 842* 612 372 122	040 819* 588 347 096	
25 26 27 28 29	0.996 810 539 259 0.995 971	045 783 512 231 941	019 756 484 202 912	994* 730 456 174 882	968* 7°3 428 145 853	941* 676 400 116 823	91 5* 648 372 087 793	889* 621 344 058 763	863* 594 316 029 733	836* 567 288 000 703	
30 31 32 33 34	673 367 052 0.994 729 398	643 336 020 696 364	613 305 988* 663 330	582 273 956* 630 296	552 242 924* 597 263	521 211 892* 564 229	491 179 859* 531 195	460 148 827* 498 161	429 116 794* 464 126	398 084 762* 431 092	
35	058	023	989	954	920	885	850	815	780	745	
	If we put D't for the density of water containing air and Dt for the density of water free from air, we get the following, due to Marek:										
t= 10 ⁷ (Dt-	$\begin{array}{c} 0 \\ -\mathbf{D}'_{\mathbf{t}}) = 25 \end{array}$	1 2 27 2	2 3 9 31	4 32	5 33	6 33		3 9 4 33			

From the observations of Thiesen, Scheel, and Diesselhorst, Wiss. Abh. Phys. Techn. Reichs. 3, 68; 1900.

VOLUME IN CUBIC CENTIMETRES AT VARIOUS TEMPERA-TURES OF A CUBIC CENTIMETRE OF WATER AT THE TEMPERATURE OF MAXIMUM DENSITY.

The water in this case is supposed to be free from air. The temperatures are by the hydrogen thermometer.

Temp.C.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
0 1 2 3 4	1.000 132 073 032 008 000	126 069 029 006 000	119 064 026 005 000	059 023 004 001	107 055 020 003 001	101 051 018 002 002	095 047 016 001 003	089 043 013 001 004	084 039 011 000 005	079 035 009 000 007
5	008	010	012	014	016	018	021	023	026	029
6	032	035	039	042	046	050	054	058	062	066
7	071	075	080	085	090	096	101	107	112	118
8	124	130	137	143	149	156	163	170	177	184
9	192	199	207	215	223	231	239	247	256	264
10	273	282	291	300	309	319	328	338	348	358
11	368	378	388	399	409	420	431	442	453	464
12	476	487	499	511	522	534	547	559	571	584
13	596	609	622	635	648	661	675	688	702	715
14	729	743	757	772	786	800	815	830	844	859
15	874	890	905	920	936	951	967	983	999	015*
16	1.001 031	048	064	081	098	114	131	148	165	183
17	200	218	235	253	271	289	307	325	343	361
18	380	399	417	436	455	474	493	513	532	551
19	571	591	610	630	650	671	691	711	732	752
20	773	794	815	836	857	878	899	921	942	964
21	985	007*	029*	051*	073*	096*	118*	140*	163*	186*
22	1.002 208	231	254	277	300	324	347	370	394	418
23	441	465	489	513	538	562	586	611	635	660
24	685	710	735	760	785	810	835	861	886	912
25 26 27 28 29	938 1.003 201 473 755 1.004 046	964 227 501 783 075	990 254 529 812 105	016* 281 556 841 135	042* 308 585 870 165	o68* 336 613 899 194	094* 363 641 928 225	390 669 957 255	147* 418 698 987 285	174* 445 726 016* 315
30	346	376	407	437	468	499	530	561	592	623
31	655	686	717	749	781	812	844	876	908	940
32	972	005**	037*	070*	102*	135*	167*	200*	233*	266*
33	1.005 299	332	365	399	432	465	499	533	566	600
34	634	668	702	736	771	805	839	874	908	943
35	978	013*	047*	082*	118*	153*	188*	223*	259*	294*

From the observations of Thiesen, Scheel, and Diesselhorst, Wiss. Abh. Phys.-Techn. Reichs. 3, 68; 1900.

TABLE 75.

DENSITY AND VOLUME OF WATER.

The mass of one cubic centimetre at 4° C. is taken as unity.

Temp. C.	Density.	Volume.	Temp. C.	Density.	Volume.
-10° -9 -8 -7 -6	0.99815 843 869 892 912	1.00186 157 131 108 088	+35° 36 37 38 39	0.99406 371 336 299 262	1.00598 633 669 706 743
-5	0.99930	1.00070	40	0.99224	1.00782
-4	945	055	41	186	821
-3	958	042	42	147	861
-2	970	031	43	107	901
-1	979	021	44	066	943
+0	0.99987	1.00013	45	0.99025	1.00985
1	993	007	46	0.98982	1.01028
2	997	003	47	940	072
3	999	001	48	896	116
4	1.00000	1.00000	49	852	162
5 6 7 8 9	0.99999	1.00001	50	0.98807	1.01207
	997	003	51	762	254
	993	007	52	715	301
	988	012	53	669	349
	981	019	54	621	398
10 11 12 13 14	0.99973 963 952 940 927	037 048 060 073	55 60 65 70 75	0.98 573 3 ²⁴ 059 0.97781 489	1.01448 705 979 1.02270 576
15	0.99913	1.00087	80	0.97183	1.02899
16	897	103	85	0.96865	1.03237
17	880	120	90	534	590
18	862	138	95	192	959
19	843	157	100	0.95838	1.04343
20	0.99823	1.00177	110	0.9510	1.0515
21	802	198	120	•9434	1.0601
22	780	221	130	•9352	1.0693
23	756	244	140	•9264	1.0794
24	732	268	150	•9173	1.0902
25	0.99707	1.00294	160	0.9075	1.1019
26	681	320	170	.8973	1.1145
27	654	347	180	.8866	1.1279
28	626	375	190	.8750	1.1429
29	597	405	200	.8628	1.1590
30	0.99567	1.00435	210	0.850	1.177
31	537	466	220	.837	1.195
32	505	497	230	.823	1.215
33	473	530	240	.809	1.236
34	440	563	250	.794	1.259

^{*}From $-x0^\circ$ to 0° the values are due to means from Pierre, Weidner, and Rosetti; from 0° to 35° , to Thiesen, Scheel, and Diesselhorst; 31° to 100° , to Thiesen; 110° to 100° , to means from the works of Ramsey, Young, Waterston, and Hirn.

DENSITY OF MERCURY.

Density or mass in grammes per cubic centimetre, and the volume in cubic centimetres of one gramme of mercury. The density at 0° is taken as 13.59545,* and the volume at temperature t is $V_s = V_o(1 + .000181792t + 175 \times 10^{-12}t^2 + 35116 \times 10^{-15}t^3)$.†

Temp. C.	Mass in grammes per cu. cm.	Volume of r gramme in cu. cms.	Temp. C.	Mass in grammes per cu. cm.	Volume of r gramme in cu. cms.
-10°	13.6202	0.0734205	30°	13.5217	0.0739552
-9	6177	4338	31	5193	9686
-8	6152	4472	32	5168	9820
-7	6128	4606	33	5144	9953
-6	6103	4739	34	5119	40087
5	13.6078	0.0734873	35	13.5095	0.0740221
4	6053	5006	36	5070	0354
3	6029	5140	37	5046	0488
2	6004	5273	38	5021	0622
1	5 979	5407	39	4997	0756
0	13.5955	0.0735540	40	13.4973	0.0740891
1	5930	5674	50	4729	2229
2	5906	5808	60	4486	3569
3	5881	5941	70	4244	4910
4	5856	6075	80	4003	6252
5 6 7 8 9	13.5832	0.0736209	90	13.3762	0.0747594
	5807	6342	100	3522	8939
	5782	6476	110	3283	50285
	5758	6610	120	3044	1633
	5733	6744	130	2805	2982
10	13.5708	0.0736877	140	13.2567	0.0754334
11	5684	7011	150	2330	5688
12	5659	7145	160	2093	7044
13	5634	7278	170	1856	8402
14	5610	7412	180	1620	9764
15	13.5585	0.0737546	190	13.1384	0.0761128
16	5561	7680	200	1148	2495
17	5536	7813	210	0913	3865
18	5512	7947	220	0678	5239
19	5487	8081	230	0443	6616
20	13.5462	0.0738215	240	13.0209	0.0767996
21	5438	8348	250	12.9975	9381
22	5413	8482	260	9741	70769
23	5389	8616	270	9507	2161
24	5364	8750	280	9273	3558
25	13.5340	0.0738883	290	12.9039	0.0774958
26	5315	9017	300	8806	6364
27	5291	9151	310	8572	7774
28	5266	9285	320	8339	9189
29	5242	9419	330	8105	80609
30	13.5217	0.0739552	340 350 360	12.7872 7638 7405	0.0782033 3464 4900

^{*} Thiesen und Scheel, Thätigkeitsbericht der Phys. Reichsanstalt, 1897-1898. † Broch, I. c.

SPECIFIC CRAVITY OF AQUEOUS ETHYL ALCOHOL.

ture,	numbers he of water co temperatur	ntaining th	ed are the	e specific grages by w	gravities a eight of al	t 60° F., i	in terms o	of water a vity .7938	t the san with refe	ne tempera- rence to the		
otage ohol ight.	0	1	2	3	4	5	6	7	8	9		
Percentage of alcohol by weight,		Spec	ific gravity	7 at 15°.56	C. in term	ns of wate	r at the sa	me tempe	rature.			
0 10 20 30	1.0000 .9841 .9716 .9578	.9981 .9828 .9703 .9560	.9965 .9815 .9691	.9947 .9802 .9678 .9528	.9930 .9789 .9665	.99 14 .9778 .9652 .9490	.9898 .9766 .9638	.9884 .9753 .9623	.9741	9728		
50 60 70	.9396 0.9184 .8956 .8721	.9376 .9160 .8932 .8696	.9356 .9135 .8908 .8672	.9335 .9113 .8886 .8649	.9314 .9090 .8863 .8625	.9292 .9069 .8840 .8603	.9270 .9047 .8816 .8581	.9249 .9025 .8793 .8557	.9001	.8979		
80 90	.8483	.8459	.8434	.8408	.8382	.8357	.8331 .8061	.8303	.8279	8254		
at 15	(b) The following are the values adopted by the "Kaiserlichen Normal-Aichungs Kommission." They are based on Mendelejeff's formula, 1 and are for alcohol of specific gravity .79425, at 15° C., in terms of water at 15° C.; temperatures measured by the hydrogen thermometer.											
ercentage f alcohol y weight.	0	1	2	3	4	5	6	7	8	9		
Percents of alcoh by weigh		Specific gravity at 15° C. in terms of water at the same temperature.										
0 10 20 30 40	1.00000 .98393 .97164 .95770 .93973	.99812 .98262 .97040 .95608	.99630 .98135 .96913 .95443	.99454 .98010 .96783 .95273 .93365	.99284 .97888 .96650 .95099	.99120 .97768 .96513 .94920	.98963 .97648 .96373 .94738	.98812 .97528 .96228 .94552	.98667 .97408 .96080 .94363 .92303	.98528 .97287 .95927 .94169 .92085		
50 60 70 80 90	0.91865 89604 87265 84852 82304	.91644 .89373 .87028 .84606 .82036	.91421 .89141 .86789 .84358 .81763	.91197 .88909 .86550 .84108	.90972 .88676 .86310 .83857	.90746 .88443 .86070 .83604 .80923	.90519 .88208 .85828 .83349 .80634	.90292 .87974 .85586 .83091 .80339	.90063 .87738 .85342 .82832 .80040	.89834 .87502 .85098 .82569 .79735		
(c) The instead	following vad of by wei	alues have ght, and the	the same he temper lute alcoho	authority ature 15°.	as the las 56 C. on t	t; the per he mercur	centage of	alcohol b	eing giver	by volume		
ntage ohol lume.	0	1	2	3	4	5	6	7	8	9		
Percentage of alcohol by volume.		Sp	ecific grav	rity at 15°.	.56 C. in t	erms of wa	ater at san	ne tempera	ature.			
0 10 20 30 40	1.00000 .98657 .97608 .96541 .95185	.99847 .98543 .97507 .96421 .95029	.99699 .98432 .97406 .96298 .94868	.99555 .98324 .97304 .96172 .94704	.99415 .98218 .97201 .96043 .94536	.99279 .98114 .97097 .95910 .94364	.99147 .98011 .96991 .95773 .94188	.90019 .97909 .96883 .95632 .94008	.98895 .97808 .96772 .95487 .93824	.98774 .97708 .96658 .95338 .93636		
50 60 70 80 90	0.93445 .91358 .89010 .86395 .83400	.93250 .91134 .88762 .86116 .83065	.93052 .90907 .88511 .85833 .82721	.92850 .90678 .88257 .85547 .82365	.92646 .90447 .88000 .85256 .81997	.92439 .90214 .87740 .84961 .81616	.92229 .89978 .87477 .84660 .81217	.92015 .89740 .87211 .84355 .80800	.91799 .89499 .86943 .84044 .80359	.91580 .89256 .86670 .83726 .79891		

^{*} Fownes, "Phil. Trans. Roy. Soc." 1847. † "Pogg. Ann." vol. 138, 1869.

DENSITY OF AQUEOUS METHYL ALCOHOL.*

Densities of aqueous methyl alcohol at 0° and 15.56 C., water at 4° C. being taken as 100000. The numbers in the columns a and b are the coefficients in the equation $\rho_t = \rho_0 - at - bt^2$ where ρ_t is the density at temperature t. This equation may be taken to hold between 0° and 20° C.

Percent- age of CH ₄ O.	Density at o° C.	Density at 15°.56 C.	а	8	Percent- age of CH ₄ O.	Density at o° C.	Density at 15°.56 C.	a
0 1 2 3 4	99987 99806 99631 99462 99299	99907 99729 99554 99382 99214	-6.0 -5.4 -4.8 -3.9 -3.0	0.705 .694 .681 .670 .659	50 51 52 53 54	928 73 92691 92507 92320 92130	91855 91661 91465 91267 91066	65.41 66.19 66.95 67.68 68.39
5 6 7 8 9	99142 98990 98843 98701 98563	99048 98893 98726 98569 98414	- 2.2 - 1.2 - 0.2 + 0.9 2.1	0.648 .634 .621 .609	55 56 57 58 59	91938 91742 91544 91343 91139	90863 90657 90450 90239 90026	69. 07 69.72 70.35 70.96 71.54
10 11 12 13 14	98429 98299 98171 98048 97926	98262 98111 97962 97814 97668	3·3 4·8 6·2 7·8 9·5	0.581 .569 .552 .536 .519	60 61 62 63 64	90917 90706 90492 90276 90056	89798 89580 89358 89133 88905	71.96 72.37 72.91 73.45 73.98
15 16 17 18 19	97806 97689 97573 97459 97346	97523 97379 97235 97093 96950	11.0 12.5 14.5 16.2 18.3	0.500 .480 .461 .440 .420	65 66 67 68 69	89835 89611 89384 89154 88922	88676 88443 88208 87970 87714	74.51 75.05 75.57 76.10 76.62
20 21 22 23 24	97233 97120 97007 96894 96780	96808 96666 96524 96381 96238	20.0 22.2 24.3 26.4 29.0	0.398 •373 •350 •321 •291	70 71 72 73 74	88687 88470 88237 88003 87767	87487 87262 87021 86779 86535	77.14 77.66 78.18 78.69 79.20
25 26 27 28 29	96665 96549 96430 96310 96187	96093 95949 95802 95655 95506	31.3 33.8 36.0 38.8 41.1	0.261 .230 .191 .151 .106	75 76 77 78 79	87530 87290 87049 86806 86561	86290 86042 85793 85542 85290	79.71 80.22 80.72 81.23 81.73
	Equation	$\rho_t = \rho_0 - a$	ut		80 81	86314	85035	82.22
30 31 32 33	96057 95921 95783 95643	95367 95211 95053 94894	44.36 45.66 46.93 48.17		82 83 84	86066 85816 85564 85310	84779 84521 84262 84001	82.72 83.21 83.70 84.19
34 35 36 37 38	95500 95354 95204 95051	9473 ² 94567 94399 94228	49·39 50.58 51.75 52.89	jble.	85 86 87 88 89	85055 84798 84539 84278 84015	83738 83473 83207 82938 82668	84.67 85.16 85.64 86.12 86.59
39 40 41	94895 94734 94571 94400	94055 93877 93697 93510	54.01 55.10 56.16 57.20 58.22	n <i>bt</i> ² negligible.	90 91 92 93 94	837 5 1 8348 5 83218 82948 82677	82396 82123 81849 81572 81293	87.07 87.54 88.01 88.48 88.94
42 43 44 45	94239 94076 93911 93744	93335 93155 92975	59.20 59.20 60.17	Term	95	82404 82129 81853	81013 80731 80448	89.40 89.86 90.32
46 47 48 49	93575 93403 93229 93052	92610 92424 92237 92047	62.01 62.90 63.76 64.60		97 98 99 100	81 57 6 81 29 5 8101 5	80164 79872 79589	90.78 91.23 91.68
		ļ						

^{*} Quoted from the results of Dittmar & Fawsitt, "Trans. Roy. Soc. Edin." vol. 33.

VARIATION OF THE DENSITY OF ALCOHOL WITH TEMPERATURE.

(a) The density of alcohol at t° in terms of water at 4° is given * by the following equation: $d_t \stackrel{\cdot}{=} \circ, 80025 - \circ, 0008340t - \circ 0000020t^2.$

From this formula the following table has been calculated.

P. C.		Density or Mass in grammes per cubic centimetre.											
Temp.	0	1	2	3	4	5	6	7	8	9			
0 10 20 30	.80625 .79788 .78945 .78097	.80541 .79704 .78860 .78012	.80457 .79620 .78775 .77927	.80374 ·79535 ·78691 ·77841	.80290 .79451 .78606 .77756	.80207 .79367 .78522 .77671	.80123 .79283 .78437 .77585	.80039 .79198 .78352 .77500	.79956 .79114 .78267 .77414	.79872 .79029 .78182 .77329			

(b) Variations with temperature of the density of water containing different percentages of alcohol. Water at 4° C. is taken as unity.†

Percent-		Density a	t temp. C.		Percent- age of	Density at temp. C.					
alcohol by weight.	00	00 100 200		30°	alcohol by weight.	o°	100	200	300		
0 5 10 15 20	0.99988 .99135 .98493 .97995 .97566	0.99975 .99113 .98409 .97816	0.99831 .9894 5 .981 9 5 .97527 .96877	0.99579 .98680 .97892 .97142 .96413	50 55 60 65 70	0.92940 .91848 .90742 .89595 .88420	0.92182 .91074 .89944 .88790 .87613	0.91400 .90275 .89129 .97961	0.90577 .89456 .88304 .87125		
25 30 35 40 45 50	0.97115 .96540 .95784 .94939 .93977	0.96672 .95998 .95174 .94255 .93254 0.92182	0.96185 •95403 •94514 •93511 •92493 0.91400	0.95628 •94751 •93813 •92787 •91710	75 80 85 90 95	0.87245 .86035 .84789 .83482 .82119	0.86427 .85215 .83967 .82665 .81291	0.85580 .84366 .83115 .81801 .80433	0.84719 .83483 .82232 .80918 .79553 0.78096		

^{*} Mendelejeff, "Pogg. Ann." vol. 138.

[†] Quoted from Landolt and Börnstein, "Phys. Chem. Tab." p. 359.

VELOCITY OF SOUND IN SOLIDS.

The numbers given in this table refer to the velocity of sound along a bar of the substance, and hence depend on the Young's Modulus of elasticity of the material. The elastic constants of most of the materials given in this table vary through a somewhat wide range, and hence the numbers can only be taken as rough approximations to the velocity which may be obtained in any particular case. When temperatures are not marked, between 10° and 20° is to be understood.

Substance.	Temp. C.	Velocity in metres per second.	Velocity in feet per second.	Authority.
Metals: Aluminum	0	5104	16740	Masson.
Brass	-	3500	11480	Various.
Cadmium	-	2307	7570	Masson.
Cobalt	-	4724	15500	46
Copper	20	3560	11670	Wertheim.
66	200	3290	9690	"
Gold (soft)	200	2950 1743	5717	66
" (hard)	_	2100	6890	Various.
Iron and soft steel	-	5000	16410	- 46
Iron	20	5130	16820	Wertheim.
66	100	5300	17390	66
" cast steel	200	4720	15480	66
cast steet	200	4990 4790	16360	66
Lead	20	1227	4026	66
Magnesium	-	4602	15100	Melde.
Nickel	-	4973	16320	Masson.
Palladium	-	3150	10340	Various.
Platinum	20 I00	2690 2570	8815 8437	Wertheim.
66	200	2460	8079	66
Silver	20	2610		66
66	100	2640	8553 8658	66
Tin		2500	8200	Various.
Zinc	-	3700	12140	GIL 1 !
Various: Brick		3652	11980	Chladni. Gray & Miln e.
Clay rock		3480 500	1640	Stefan.
Granite	-	3950	12960	Gray & Milne.
Marble	-	3810	12500	46
Paraffin	15	1304	4280	Warburg.
Slate		4510	14800	Gray & Milne.
Tallow	16	390	1280	Warburg. Gray & Milne.
Tuff	_	2850 5000	9350 16410	Various.
Glass }	_	6000	19690	II
Ivory	***	3013	9886	Ciccone & Campanile.
Vulcanized rubber	0	54	177	Exner.
(black) {	50	31	102	46 68
" (red) .	70	69	226	. 66
Wax	17	34 880	2890	Stefan.
66	28	441	1450	46
Woods: Ash, along the fibre	-	4670	15310	Wertheim.
" across the rings .	-	1390	4570	66
" along the rings	_	1260	4140	66
Beech, along the fibre	_	3340 1840	10960 6030	66
" along the rings .	_	1415	4640	46
Elm, along the fibre .	-	4120	13516	66
" across the rings .	-	1420	4665	66
along the rings .	-	1013	3324	66
Fir, along the fibre	-	4640	15220	"
Maple " Oak "		4110 3850	13470 12620	66
Pine "	_	3320	10900	"
Poplar "		4280	14050	46
Sycamore "	-	4460	14640	66

TABLE 81.
VELOCITY OF SOUND IN LIQUIDS AND GASES.

Substance.	Temp. C.	Velocity in metres per second.	Velocity in feet per second.	Authority.
Liquids: Alcohol, 95%	0	7047	4070	Dorsing, 1908.
66	12.5	1241.	4072. 3980.	Dorsing, 1900.
Ammonia, conc.	20.5	1213. 1663.		
Benzine	1	1166.	5456.	66
Carbon bisulphide .	17.	1161.	3826. 3809.	46
Chloroform	15.	983.	3225.	66
T-thou	15.	1032.	3386.	66
NaCl, 10% sol.	15.	1470.	4823.	66
15% "	15.	1530.	5020.	66
" 20% " ·	15.	1650.	5414.	66
Turpentine oil	15.	1326.	4351.	66
Water, air-free	13.	1441.	4728.	66
66 66 66	19.	1461.	4794	66
a a a	31.	1505.	4938.	46
" Lake Geneva	9.	1435.	4708.	Colladon-Sturm.
" Seine river .	15.	1437.	4714.	Wertheim.
" " "	30.	1528.	5013.	66
" " "	60.	1724.	5657.	46
Gases: Air, dry, CO ₂ -free	O.	331.78	1088.5	Rowland.
" "	0.	331.36	1087.1	Violle, 1900.
" " CO2-free	0.	331.92	1089.0	Thiesen, 1908.
" I atmosphere .	0.	331.7	1088.	Mean,
" 25 "	0.	332.0	1089.	" (Witkowski).
" 50 "	0.	334.7	1098.	" "
" 100 "	0.	350.6	1150.	66 66
"	20.	344.	1129.	
66	100.	386.	1266.	Stevens.
"	500.	553-	1814.	"
"	1000.	700.	2297.	п
Ammonia	0.	415.	1361.	Masson.
Carbon monoxide	0.	337.1	1106.	Wullner.
66 64	0.	337-4	1107.	Dulong.
" dioxide	0.	258.0	846.	Brockendahl, 1906.
" disulphide	Ο,	189.	606.	Masson.
Chlorine	0.	206.4	677.	Martini.
_ "	0,	205.3	674.	Strecker.
Ethylene	0.	314.	1030.	Dulong.
Hydrogen	0.	1269.5	4165.	
***	0.	1286.4	4221.	Zoch.
Illuminating gas	0.	490.4	1609.	
Methane	0.	432.	1417.	Masson.
Nitric oxide	0.	325.	1066.	
Nitrous oxide	0.	261.8	859.	Dulong.
Oxygen	0.	317.2	1041.	Masson.
Vapors: Alcohol	0.	230.6	756. 588.	Wasson.
317-4	0.	179.2		66
11	100.	401.	1315.	Treitz, 1903.
"	130.	424.4	1320.	"
	130.	424.4	1392.	

TABLES 82-83.

MUSICAL SCALES.

The pitch relations between two notes may be expressed precisely (x) by the ratio of their vibration frequencies; (2) by the number of equally-tempered semitones between them (E. S.); also, less conveniently, (3) by the common logarithm of the ratio in (x); (4) by the lengths of the two portions of the tense string which will furnish the notes; and (5) in terms of the octave as unity. The ratio in (4) is the reciprocal of that in (1); the number for (5) is 1/12 of that for (2); the number for (2) is nearly 40 times that for (3).

Table 82 gives data for the middle octave, including vibration frequencies for three standards of pitch; a = 435 double vibrations per second, is the international standard and was adopted by the American Piano Manufacturers' Association. The "just-diatonic scale" of C-major is usually deduced, following Chladni, from the ratios of the three perfect major triads reduced to one octave, thus:

major triads reduced to one octave, thus:

Other equivalent ratios and their values in E. S. are given in Table 83. By transferring D to the left and using the ratio 10:12:15 the scale of A-minor is obtained, which agrees with that of C-major except that D = 26 z/3. Nearly the same ratios are obtained from a series of harmonics beginning with the eighth; also by taking 12 successive perfect or Pythagorean fifths or fourths and reducing to one octave. Such calculations are most easily made by adding and subtracting intervals expressed in E. S. The notes needed to furnish a just major scale in other keys may be found by successive transpositions by fifths or fourths as shown in Table 83. Disregarding the usually negligible difference of 0.02 E. S., the table gives the 24 notes to the octave required in the simplest enharmonic organ; the notes fall into pairs that differ by a comma, 0.22 E. S. The line "mean tone" is based on Dom Bedos' rule for tuning the organ (1746). The tables have been checked by the data in Ellis' Helmholtz's "Sensations of Tone."

TABLE 82.

	Interval.		Ratios.		Logar	ithms.	Number of Vibrations per second.				Beats
Note.	Tem- pered.	Just.	Tem- pered,	Just.	Tem- pered.	Just,	Just.	Just.	Just.	Tem- pered.	for o. 1 E. S.
	E. S.	E. S.									
c'	0	0.	1.00	1.00000	0.0000	0.00000	256	264	258.7	258.7	1.50
	1			1.05926		.02509	00			274.0	- 60
ď	2	2.04	1.125	1.12246	.05115	.05017	288	297	291.0	290.3	1.68
0'	3	3.86	1.25	1.18921	.09691	.07526	320	330	323.4	307.6	1.89
e' f'	4 5	4.98	1.33	1.33484	.12494	.12543	341.3	352	344.9	345.3	2.00
	6	4.90	55	1.41421		.15051	34.3	25-		365.8	
g'	7	7.02	1.50	1.49831	.17609	.17560	384	396	388	387.5	2.25
	8	0.0		1.58740		.20069				410.6	
a'	9	8.84	1.67	1.68179	.22185	.22577	426.7	440	431.1	<i>435.0</i> 460.9	2.52
b'	II	10.88	1.875	1.88775	.27300	.25086 -27594	480	495	485.0	488.3	2.83
c"	12	12.00	2.00	2.00000	.30103	.30103	512	528	517.3	517.3	3.00
					3,2-3	33	3	3	3,3	,,,	

TABLE 83.

Key	y of	C		D		Е	F		G		A		В	С
7 #s 6 " 5 " 4 " 3 " 1 # 1 b b s 3 " 4 " 7 "	C# F# B E A DGC F Bb A Db A Db C C	0.00 0.00 0.00 0.00 22 22 22	1.14 0.92 1.14 0.92 1.14 0.92 0.70 0.92 0.70 0.92	2.04 1.82 2.04 2.04 2.04 1.82 1.82	3.18 2.96 2.96 2.74 2.96 2.74 2.96 2.74 2.94 2.94 2.94 2.94 2.72 2.72	4.08 3.86 4.08 3.86 4.08 3.86 4.08 3.86 3.86 3.86	5.00 4.78 5.00 4.78 4.98 4.98 4.98 4.98 4.76 4.76 4.76	6.12 5.90 6.12 5.90 6.12 5.90 5.90 5.68 5.90 5.68 5.90 5.88 5.88	7.02 7.02 7.02 7.02 6.80 6.80 6.80	8.16 7.94 8.16 7.94 7.72 7.94 7.72 7.94 7.72 7.92 7.92 7.92 7.92 7.92	9.06 8.84 9.06 8.84 9.06 9.06 8.84 8.84 8.84	9.98 9.76 9.98 9.76 9.98 9.76 9.96 9.96 9.96 9.96 9.74 9.74	11.10 10.88 11.10 10.88 11.10 10.88 11.10 10.88 10.88 10.88 10.88	12.00 12.00 12.00 12.00 12.00 11.78 11.78
Harmon Cycle of Cycle of Mean to Equal 7	fourths ne	8 0.0 0.0 0.0 0.0	(1.71) 1.05) 1.14 0.90 0.76	9 2.04 2.04 1.80 1.93 1.71	(2.98) 3.18 2.94 3.11 3.43	3.86 4.08 3.84 3.86	(21 (4.70) 5.22 4.98 5.03 5.14	5.51 6.12 5.88 5.79	7.02 7.02 6.78 6.97 6.86	(25 7.73) 8.16 7.92 7.72	9.06 8.82 8.90 8.57	14 9.69 10.20 9.96 10.07 10.29	15 10.88 11.10 10.86 10.83	16 12.00 12.24 11.76 12.00 12.00

TABLE 84. ACCELERATION OF GRAVITY.

For Sea Level and Different Latitudes.

This table has been calculated from the formula $g_{\phi} = g_{45} \left[1 - .002662 \cos 2\phi \right]$,* where ϕ is the latitude.

			σ			
Lati- tude φ.	in cms. per sec.	Log.	in inches per sec. per sec.	Log.	in feet per sec.	Log.
0° 5 10 15 20	97 7 .989 8.029 .147 .339	2.990334 0352 0404 0490 0605	385.034 .050 .096 .173	2.585498 5517 5570 5655 5771	32.0862 .0875 .0916 .0977	1.506318 6336 6388 6474 6590
25	978.922	2.990748	385.402	2.585914	32.1168	1.506732
30	9.295	0913	.548	6079	.1290	6898
31	•374	0949	.580	6114	.1316	6933
32	•456	0985	.612	6150	.1343	6969
33	•538	1021	.644	6187	.1370	7005
34	979.622	2.991059	385.677	2.586224	32.1398	1.507043
35	•707	1096	.711	6262	.1425	7080
36	•793	1135	.745	6300	.1454	7119
37	•880	1173	.779	6339	.1490	7167
38	•968	1212	.813	6377	.1511	7196
39	980.057	2.991251	385.849	2.586417	32.1540	1.507236
40	.147	1291	.884	6457	.1570	7275
41	.237	1331	.919	6496	:1607	7325
42	.327	1372	.955	6537	.1630	7356
43	.418	1411	.990	6577	.1659	7395
44	980.509	2.991452	386.026	2.586617	32.1688	1.507436
45	.600	1492	.062	6657	.1719	7476
46	.691	1532	.098	6698	.1748	7516
47	.782	1573	.134	6738	.1778	7557
48	.873	1613	.170	6778	.1808	7597
49	980.963	2.991653	386.205	2.586818	32.1838	1.507637
50	1.053	1693	.241	6858	.1867	7677
51	.143	1732	.276	6898	.1896	7716
52	.231	1772	.311	6937	.1924	7756
53	.318	1810	.345	6975	.1954	7794
54	981.407	2.991849	386.380	2.587014	32.1983	1.507833
55	•493	1887	•414	7053	.2011	7871
56	•578	1925	•447	7090	.2039	7909
57	•662	1962	•480	7127	.2067	7946
58	•744	1998	•513	7164	.2094	7983
59	981.825	2.992034	386.545	2.587200	32.2121	1.508018
60	.905	2070	.576	7235	.2147	8054
65	2.278	2234	.723	7400	.2276	8229
70	.600	2377	.849	7542	.2375	8361
75	.861	2492	.952	7657	.2460	8476
80	983.053	2.99 25 77	387.028	2.587742	32.2523	1.508561
85	.171	2629	.074	7794	.2562	8613
90	.210	2 646	.090	7812	.2575	8631

The constant .002662 is based on Harkness' data (Solar Parallax and Related Constants, Washington, 1891). The acceleration of gravity for any latitude ϕ and elevation above sea level k is very nearly expressed by the equation $\mathcal{E}_{\phi} = \mathcal{E}_{4\delta} \left(1 - 0.002662 \cos 2\phi \right) \left[1 - \frac{2^k}{R} \left(1 - \frac{3^k}{4\Delta} \right) \right],$ where R is the earth's radius, δ the density of the surface strata, and Δ the mean density of the earth. When $\delta = 0$

where R is the earth's radius, δ the density of the surface strata, and Δ the mean density of the earth. When $\delta = 0$ we get the formula for elevation in air. For ordinary elevations on land $\frac{\delta}{\Delta}$ is nearly $\frac{1}{2}$, which gives for the correction at latitude 40° for elevated portions of the earth's surface.

at latitude 45° for elevated portions of the earth's surface
$$\mathcal{E}_{4b}^{5} = \frac{5h}{4R} = 980.6 \times \frac{5h}{4R} = 1225.75 \frac{h}{R} \text{ cm. per sec. per sec.}$$

$$= 386.062 \times \frac{5h}{4R} = 482.562 \frac{h}{R} \text{ in. per sec. per sec.}$$

$$= 32.1719 \times \frac{5h}{4R} = 40.2149 \frac{h}{R} \text{ feet per sec. per sec.}$$

This gives per 100 feet elevation a correction of

.00588 cm. per sec. per sec. .00232 in. per sec. per sec. .000193 feet per sec. per sec. In this table the results of a number of the more recent gravity determinations are brought together. They serve to show the degree of accuracy which may be assumed for the numbers in Table 112. In general, gravity is a little lower than the calculated value for stations far inland and slightly higher on the coast line.

lower than the calculated value for stations i	mand and six	girtry inglier	on the coast m		
Place.	Latitude.	Elevation	Gravity	7, cm. sec²	Refer-
	N. +, S	in metres.	Observed.	Reduced to sea level.	ence.
Singapore	1° 17′	14	978.08	978.08	I
Georgetown, Ascension	-7 56	5	978.25	978.25	2
Green Mountain, Ascension	-7 57 -8 49	686	978.10	978.23	2
Loanda, Angola		46	978.15	978.16	2
Caroline Islands	- 10 00	18	978.37	978.37	3
	13 04	10	978.18	978.18	2 2
Longwood, "	- 15 55 - 15 57	533	978.67 978.53	978.6 7 978.59	2 2
Pakaoao, Sandwich Islands	20 43	3001	978.28	978.85	3
Lahaina, " "	20 52	3	978.86	978.86	3
Haiki, " "	20 56	117	978.91	978.93	3 3
Honolulu, " "	21 18	3	978.97	978.97	3
St. Georges, Bermuda	32 23	2	979-77	979-77	2
Sidney, Australia	- 33 52	43	979.68	979.69	I
Cape Town	- 33 56	II	979.62	979.62	2
Tokio, Japan	35 41	6	979.95	979.95	I
Mount Hamilton, Cal. (Lick Obs.)	- 36 52 37 20	43 1282	979.68	979.69	1 4
66 66 66 66 66 66	37 20 37 20	1282	979.66 979.68	979.91 979.92	5
San Francisco, Cal	37 47	114	979.96	979.98	3
" " "	37 47	114	980.02	980.04	4 5 4 5 6
Washington, D. C.*	38 53	10	980.11	980.11	4
Denver, Colo	39 54	1645	979.68	979.98	5
York, Pa.	39 54 39 58	122	980.12	980.14	6
Ebensburgh, Pa	40 27	651	980.08	980.20	6
Allegheny, Pa.	40 28	348	980.09	980.15	6
Hoboken, N. J	40 44	11	989.27 979.82	980.27	4
Chicago, Ill.	40 46 41 49	165	980.34	980. 05 980.37	5
Pampaluna, Spain	42 49	450	980.34	980.37	7
Montreal, Canada	45 31	100	980.73	980.75	5
Geneva, Switzerland	46 12	405	980.58	980.64	4 5 7 5 8
66 66	46 12	405	980.60	980.66	9
Berne, "	46 57	572	980.61	980.69	9 9 9 8
Zurich, "	47 23	466	980.67	980.74	9
Paris, France	48 50	67	980.96	980.97	8
Kew, England	51 28	7	981.20	981.20	8
Berlin, Germany	52 30	49	981.26 981.46	981.2 7 981.46	4
Port Simpson, B. C	54 34	0	981.40 981.5 1	981.51	4 4
Burroughs Bay, Alaska	55 59 56 28		981.60	981.60	4
Sitka. "	57 03	7 8	981.69	981.69	4
St. Paul's Island, "		12	981.67	981.67	4
Juneau, "	57 °7 58 18	5	981.74	981.74	4
Pyramid Harbor, "	59 10	5	981.82	981.82	4
Yakutat Bay, "	59 32	4	981.83	981.83	4

- 1 Smith: "United States Coast and Geodetic Survey Report for 1884," App. 14.
 2 Preston: "United States Coast and Geodetic Survey Report for 1890," App. 12.
- 3 Preston: Ibid. 1888, App. 14.

- Feston: Ibid. 1803, App. 14.
 Mendenhall: Ibid. 1891, App. 15.
 Defforges: "Comptes Rendus," vol. 118, p. 231.
 Pierce: "U. S. C. and G. S. Rep. 1883," App. 19.
 Cebrian and Los Arcos: "Comptes Rendus des Séances de la Commission Permanente de l'Association Géodesique International," 1893.
 Pierce: "U. S. C. and G. S. Report 1876, App. 15, and 1881, App. 17."
 Messerschmidt: Same reference as 7.

For references 1-4, values are derived by comparative experiments with invariable pendulums, the value for Washington taken as 980.111. For the latter see Appendix 5 of the Coast and Geodetic Survey Report for 1901. SMITHSONIAN TABLES.

106 TABLE 86.

SUMMARY OF RESULTS OF THE VALUE OF GRAVITY (g) AT STATIONS IN THE UNITED STATES AND ALASKA.*

Station.	Latitude,	Longitude.	Elevation.	g observed.
	0 1 11	0 1 11	Metres.	cm./sec.3
Calais, Me	45 11 11	67 16 54	38	980.630
70 . 75		71 03 50	22	980.395
	42 21 33			980.395
777	42 22 48	71 07 45 71 48 28	14	980.323
Now Vorle N. V			170	980.266
Princeton, N. J.	40 48 27	73 57 43	38	
Dhiladalphia Da	40 20 57	74 39 28	64 16	980.177
T41	39 57 06	75 11 40)	980.195
	42 27 04	76 29 00	247	980.299
Baltimore, Md.	39 17 50	76 37 30	30	980.096
Washington, C. & G. S	38 53 13	77 00 32	14	980.111
Washington, Smithsonian	38 53 20	77 OI 32	10	980.113
Charlottesville, Va	38 02 01	78 30 16	166	979.937
Deer Park, Md	39 25 02	79 19 50	770	979-934
Charleston, S. C	32 47 14	79 56 03	6	979.545
Cleveland, Ohio	41 30 22	81 36 38	210	980.240
Key West, Fla	24 33 33	81 48 25	I	978.969
Atlanta, Ga.	33 44 58	84 23 18	324	979.523
Cincinnati, Ohio	39 08 20	84 25 20	245	980.003
Terre Haute, Ind.	39 28 42	87 23 49	151	980.071
Chicago, Ill.	41 47 25	87 36 03	182	980.277
Madison, Wis. (Univ. of Wis.)	43 04 35	89 24 00	270	980.364
New Orleans, La	29 56 58	90 04 14	2	979.323
St. Louis, Mo	38 38 03	90 12 13	154	980.000
Little Rock, Ark.	34 44 57	92 16 24	89	979.720
Kansas City, Mo	39 05 50	94 35 21	278	979.989
Galveston, Tex	29 18 12	94 47 29	_3	979.271
Austin, Texas (University)	30 17 11	97 44 14	189	979.282
Austin, Texas (Capitol)	30 16 30	97 44 16	170	979.287
Ellsworth, Kan	38 43 43	98 13 32	469	979.925
Laredo, Tex	27 30 29	99 31 12	129	979.081
Wallace, Kan	38 54 44	101 35 26	1005	979.754
Colorado Springs, Col	38 50 44	104 49 02	1841	979.489
Denver, Col	39 40 36	104 56 55	1638	979.608
Pike's Peak, Col	38 50 20	105 02 02	4293	978.953
Gunnison, Col	38 32 33	106 56 02	2340	979.341
Grand Junction, Col	39 04 09	108 33 56	1398	979.632
Green River, Utah	38 59 23	110 09 56	1243	979.635
Grand Canyon, Wyo	44 43 16	110 29 44	2386	979.898
Norris Geyser Basin, Wyo	44 44 09	110 42 02	2276	979.949
Lower Geyser Basin, Wyo	44 33 21	110 48 08	2200	979.931
Pleasant Valley Jct., Utah	39 50 47	111 00 46	2191	979.511
Salt Lake City, Utah	40 46 04	111 53 46	1322	979.802
Ft. Egbert, Eagle, Alaska	64 47 22	141 12 24	174	982.182
	77 77	,	-,, -,	

[•] All the values in this table depend on relative determination of gravity and an adopted value for gravity at Washington (Coast and Geodetic Survey Office) of 980.111. This adopted value was the result of the determination in 1900 of the relative value of gravity at Potsdam and at Washington. See footnote on previous page.

LENGTH OF THE SECONDS PENDULUM.

TABLE 87. - Length of Seconds Pendulum at Sea Level for Different Latitudes.*

Lati- tude.	Length in centi- metres.	Log.	Length in inches.	Log.	Lati- tude.	Length in centi- metres.	Log.	Length in inches.	Log.
0 5 10 15 20	99.0910 .0950 .1079 .1265	1.996034 6052 6104 6190 6306	39.0121 .0137 .0184 .0261	1.591200 1217 1270 1356 1471	50 55 60 65 70	99.4014 •4459 •4876 •5255 •5581	1.997393 75 ⁸ 7 7770 7935 8077	39.1344 .1520 .1683 .1832 .1960	2753 2753 2935 3100 3242
25 30 35 40 45	99.1855 .2234 .2651 .3096	1.996448 6614 6796 6991 7 192	39.0493 .0642 .0806 .0982 .1163	1.591614 1779 1962 2157 2357	75 80 85 90	99.5845 .6040 .6160 .6200	1.998192 8277 8329 8347	39.2065 .2141 .2188 .2204	1.593358 3442 3494 3512

^{*} Calculated from force of gravity table by the formula $l=g/\pi^2$. For each 100 feet of elevation subtract 0.000596 centimetres, or 0.000235 inches, or 0.000196 feet.

TABLE 88. - Length of the Seconds Pendulum.*

c						
	Date of determination.	Number of obser- vation stations.		Length of pendulum in metres for latitude φ.	Correspond- ing length of pendulum for lat. 45°	Reference.
	1799 1816 1821 1825 1827 1829 1830 1833 1869 1876 1884	15 31 8 25 41 5 49 - 51 73 123	From +67°05' to -33° 56' " +74° 53' " -51° 21' " +38° 40' " -60° 45' " +79° 50' " -12° 59' " +79° 50' " -51° 35' " 0° 0' " +67° 04' " +79° 51' " -51° 35' " +79° 50' " -62° 56' " +79° 50' " -62° 56'	0.990631+.005637 sin² φ 0.990743+.005466sin² φ 0.990880+.005340 sin² φ 0.990977+.005142 sin² φ 0.990555+.005679 sin² φ 0.990517+.005087 sin² φ 0.990941+.005142 sin² φ 0.990911+.005105 sin² φ 0.990918+.005262 sin² φ	0.993450 0.993976 0.993550 0.993562 0.993362 0.993365 0.993560 0.993572 0.993554† 0.993563 0.993549	1 2 3 4 5 6 7 8 9 10
	Combi	ining the	above results	0.990910+.005290sin²φ	0.993555	12

- I Laplace: "Traité de Mécanique Céleste," T. 2, livre 3, chap. 5, sect. 42.
 2 Mathieu: "Sur les expériences du pendule;" in "Connaissance des Temps 1816."
- Additions, pp. 314-341, p. 332.

 3 Biot et Arago: "Recueil d'Observations géodésiques, etc." Paris, 1821, p. 575.

 4 Sabine: "An Account of Experiments to determine the Figure of the Earth, etc., by Sir Edward Sabine." London, 1825, p. 352.

 ("Grandian de Cherwations du pendule à diverses latitudes: faites par
- Sir Edward Sabine." London, 1825, p. 352.

 5 Saigey: "Comparaison des Observations du pendule à diverses latitudes; faites par MM. Biot, Kater, Sabine, de Freycinet, et Duperry;" in "Bulletin des Sciences Mathématiques, etc.," T. 1, pp. 31-43, and 171-184. Paris, 1827.

 6 Pontécoulant: "Théorie analytique du Système du monde," Paris, 1829, T. 2, p. 466.

 7 Airy: "Figure of the Earth;" in "Encyc. Met." 2d Div. vol. 3, p. 230.

 8 Poisson: "Traité de Mécanique," T. 1, p. 377; "Connaissance des Temps," 1834, pp. 32-33; and Puissant: "Traité de géodésie," T. 2, p. 464.

 9 Unferdinger: "Das Pendel als geodàtisches Instrument;" in Grunert's "Archiv," 1869,
- p. 316.
- 10 Fischer: "Die Gestalt der Erde und die Pendelmessungen;" in "Ast. Nach." 1876,
- 11 Helmert: "Die mathematischen und physikalischen Theorieen der höheren Geodäsie, von Dr. F. R. Helmert," II. Theil. Leipzig, 1884, p. 241.

 12 Harkness.

^{*} The data here given with regard to the different determinations which have been made of the length of the seconds pendulum are quoted from Harkness (Solar Parallax and its Related Constants, Washington, 1891).
† Calculated from a logarithmic expression given by Unferdinger.

MISCELLANEOUS DATA WITH REGARD TO THE EARTH AND PLANETS.*

Length of the seconds pendulum at sea level = $l=39.012540+0.208268 \sin^2 \phi$ inches. =3.251045+0.017356 $\sin^2 \phi$ feet. =0.9909910+0.005290 $\sin^2 \phi$ metres.

Acceleration produced by gravity per second per second mean solar time . . = $g=32.086528+0.171293 \sin^2 \phi$ feet. = $977.9886+5.2210 \sin^2 \phi$ centimetres.

Equatorial radius =a=6378206 metres; 3963.225 miles. Polar semi-diameter =b=6356584 metres; 3949.790 miles. Reciprocal of flattening $=\frac{a}{a-b}=295.0$ Square of eccentricity $=e^2=\frac{a^2-b^2}{a^2}=0.006768658$ $=\frac{6378388\pm18}{3949.992}$ miles. $=\frac{3963.339}{3949.992}$ miles. $=\frac{3949.992}{397.0\pm0.5}$ $=\frac{297.0\pm0.5}{3949.992}$ $=\frac{3949.992}{3949.992}$ $=\frac{3949.$

Difference between geographical and geocentric latitude= $\phi - \phi' = 688.2242'' \sin 2 \phi - 1.1482'' \sin 4 \phi + 0.0026'' \sin 6 \phi$.

Mean density of the Earth=5.5247±0.0013 (Burgess Phys. Rev. 1902).

Continental surface density of the Earth=2.67 Mean density outer ten miles of earth's crust=2.40 Harkness.

Moments of inertia of the Earth; the principal moments being taken as A, B, and C, and C the greater:

 $\frac{C-A}{C} = 0.00326521 = \frac{1}{306.259};$ $C-A = 0.001064767 Ea^{2};$ $A = B = 0.325029 Ea^{2};$ $C = 0.326094 Ea^{2};$

where E is the mass of the Earth and a its equatorial semidiameter.

Length of sidereal year=365.2563578 mean solar days; =365 days 6 hours 9 minutes 9.314 seconds.

Length of tropical year= $365.242199870-0.0000062124 \frac{t-1850}{100}$ mean solar days; =365 days 5 hours 48 minutes $\left(46.069-0.53675 \frac{t-1850}{100}\right)$ seconds.

Length of sidereal month

=27.321661162-0.00000026240 $\frac{t-1800}{100}$ days; =27 days 7 hours 43 minutes $\left(11.524-0.022671\frac{t-1800}{100}\right)$ seconds.

Length of synodical month

$$= 29.530588435 - 0.00000030696 \frac{t - 1800}{100} \text{days};$$

=29 days 12 hours 44 minutes
$$\left(2.841 - 0.026522 \frac{t - 1800}{100}\right)$$
 seconds.

Length of sidereal day = 86164.09965 mean solar seconds.

N. B.—The factor containing t in the above equations (the epoch at which the values of the quantities are required) may in all ordinary cases be neglected.

MISCELLANEOUS DATA WITH REGARD TO THE EARTH AND PLANETS.

Masses of the Planets.

Reciprocals of the masses of the planets relative to the sun and the mass of the moon relative to the Earth.

Mercury = 6000000
Venus = 408000
Earth * = 329390
Mars = 3093500
Jupiter = 1047.35
Saturn = 3501.6
Uranus = 22869
Neptune = 19700
Moon = 81.45

Mean distance from earth to sun = 929000000 miles = 1495000000 kilometres.

Eccentricity of the earth's orbit = e =

0.01675104 — 0.0000004180 (
$$t$$
 — 1900) — 0.000000126 $\left(\frac{t-1900}{100}\right)^2$.
Solar parallax = 8.7997" \pm 0.003 (Weinberg, A. N. 165, 1904);

8.807 ± 0.0027 (Hinks, Eros, 7);
8.799 (Samson, Jupiter satellites; Harvard observations).

Lunar parallax = 3422.68".

Mean distance from earth to moon = 60.2669 terrestrial radii;

= 238854 miles; = 384393 kilometres.

Lunar inequality of the earth = L = 6.454''.

Parallactic inequality of the moon = Q = 124.80".

Mean motion of moon's node in 365.25 days = $\mu = -19^{\circ}$ 21' 19.6191" + 0.14136" $\left(\frac{t - 1800}{100}\right)$

Eccentricity and inclination of the moon's orbit $= e_2 = 0.05490807$.

Delaunay's $\gamma = \sin \frac{1}{2} I = 0.044886793$. $I = 5^{\circ} 08' 43.3546''$.

Constant of nutation = 9.2'.

Constant of aberration = 20.4962 + 0.006 (Weinberg, l. c.).†

Time taken by light to traverse the mean radius of the earth's orbit

= 498.82 ± 0.1 seconds (Weinberg); = 498.64 (Samson).

Velocity of light = 186330 miles per second (Weinberg);

= 299870 ± 0.03 kilometres per second. General precession = 50.2564'' + 0.000222 (t - 1900).

Obliquity of the ecliptic = 23° 27′ 8.26″ — 0.4684 (t — 1900).

Gravitation constant = 666.07×10^{-10} cm³/gr. sec² \pm 0.16 \times 10⁻¹⁰.

^{*} Earth + moon.

[†] Recent work of Doolittle's and others indicates a value not less than 20.51.

TABLE 90.

TERRESTRIAL MAGNETISM.

Secular Change of Declination.

Changes in the magnetic declination between 1810, the date of the earliest available observations, and 1910, for one or more places in each state and territory.

r -		1				1						
State.	Station.	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900	1910
		0	0	0	٥	0	0	0	0	0	0	0
Ala.	Montgomery	5.6E	5.8E	5.8E	5.6E	5.4E	5.0E	4.5E	3.9E	3.2E	2.8E	2.9E
Alas.	Sitka	-	-	-	-	and .	28.7E	29.0E	29.3E	29.5E	29.7E	30.2E
	Kodiak	-	-	-	_	-	26.1E	25.6E	25.1E	24.7E	24.4E	24.1E
	Unalaska	_	-	-	-	-	20.4E	20.1E	19.6E	19.0E	18.3E	17.5E
	St. Michael	-	-	-	-	-	-	-	24.7E	23.1E	22.1E	21.4E
Ariz.	Holbrook	-	-	-	-	13.6E	13.7E	13.8E	13.7E	13.4E	13.5E	13.9E
	Prescott	-	-	-	-	13.3E	13.5E	13.7E	13.6E	13.5E	13.7E	14.3E
Ark.	Little Rock	8.6E	8.8E	9.0E	9.0E	8.8E	8.6E	8.2E	7.6E	7.0E	6.6E.	6.9E
Cal.	Los Angeles	12.1E	12.6E	13.2E	13.6E	14.0E	14.2E	14.4E	14.6E	14.6E	14.9E	15.5E
	San José	15.0E	15.5E	16.0E	16.4E	16.8E	17.1E	17.3E	17.5E	17.5E	17.8E	18.5E
Cal.	Redding	15.6E	16.1E	16.6E	17.0E	17.4E	17.8E	18.1E	18.2E	18.3E	18.6E	19.3E
Colo.	Pueblo	_	-	-	-	13.8E	13.8E	13.8E	13.5E	13.0E	12.9E	13.3E
	Glenwood Sp.	-	-	-	-	16.1E	16.2E	16.3E	16.1E	15.7E	15.6E	16.1E
Conn.	Hartford	5.IW	5.6W	6.1W	6.8W	7.5W	8.2W	8.7W	9.4W	9.8W	10.4W	II.oW
Del.	Dover	1.6W	1.9W	2.3W	2.8W	3.4W	4.0W	4.7W	5.3W	5.9W	6.4W	7.0W
D. C.	Washington	0.5E	0.3E	0.0	0.5W	I.oW	1.7W	2.4W	3.0W	3.6W	4.2W	4.7W
Fla.	Jacksonville	5.1E	5.1E	4.9E	4.6E	4.2E	3.7E	3.1E	2.4E	1.8E	1.3E	1.2E
	Pensacola	7.7E	7.8E	7.7E	7.5E	7.2E	6.8E	6.2E	5.6E	5.0E	4.5E	4.4E
	Tampa	6.4E	6.2E	5.9E	5.5E	5.0E	4.5E	3.9E	3.3E	2.8E	2.3E	2.0E
Ga.	Macon	5.9E	5.9E	5.7E	5.4E	5.0E	4.5E	3.9E	3.2E	2.6E	2.1E	2.0E
Haw.	Honolulu	_	_	_	-	9.4E	9.4E	9.5E	9.8E	10.1E	10.4E	10.6E
Idaho	Pocatello		_		-	17.4E	17.7E	17.8E	17.9E	17.7E	17.8E	18.4E
	Boise	_	_	_	-	18.0E	18.4E	18.6E	18.7E	18.6E	18.8E	19.4E
III.	Bloomington	6.3E	6.5E	6.6E	6.5E	6.3E	5.9E	5.4E	4.7E	4.1E	3.6E	3.4E
Ind.	Indianapolis	5.0E	5.1E	5.0E	4.7E	4-4E	3.8E	3.2E	2.6E	2.0E	1.4E	1.1E
Ia.	Des Moines	-	10.2E	10.4E	10.5E	10.4E	10.2E	9.7E	9.1E	8.4E	7.9E	8.1E
Kans.	Emporia	-	-	-	-	11.6E	11.5E	11.2E	10.7E	10.1E	9.8E	10.1E
	Ness City		- '	-	-	12.4E	12.4E	12.2E	11.9E	11.4E	11.1E	11.4E
Ky.	Lexington	4.5E	4.5E	4.4E	4.1E	3.6E	3.1E	2.5E	1.9E	1.2E	0.7E	0.5E
	Princeton	6.8E	7.0E	7.0E	6.8E	6.5E	6.1E	5.6E	5.0E	4.3E	3.8E	3.7E
La.	Alexandria	8.4E	8.7E	8.8E	8.8E	8.7E	8.4E	8.oE	7.4E	6.9E	6.6E	6.8E
Me.	Eastport	13.6W	14.4W	15.2W	16.0W	17.0W	17.7W	18.2W	18.6W	18.7W	19.0W	19.4W
	Portland	9.0W	9.6W	10.3W	II.oW	11.6W	12.3W	12.8W	13.4W	13.9W	14.4W	14.8W
Md.	Baltimore	0.9W	I.IW	1.4W	1.9W	2.4W	3.1W	3.8W	4.4W	5.oW	5.6W	6.1W
Mass.	Boston	7.3W	7.8W	8.4W	9.1W	9.8W	10.5W	II.oW	11.5W	12.0W	12.6W	13.IW
Mass.	Pittsfield	5.7W	6.1W	6.7W	7.4W	8.1W	8.7W	9.3W	10.0W	10.4W	11.0W	11.5W
Mich.	Marquette	Sian	6.7E	6.7E	6.5E	6.0E	5.4E	4.6E	3.8E	3.0E	2.3E	2.0E
	Lansing	-	4.2E	4.1E	3.8E	3.3E	2.8E	2.1E	1.3E	0.5E	o.oE	0.4E
Minn.	Northome '	-	10.4E	10.7E	10.8E	10.7E	10.4E	10.0E	9.3E	8.6E	8.oE	8.1E
	Mankato		11.3E	11.6E	11.7E	11.6E	11.3E	10.9E	10.4E	9.5E	9.0E	9.1E
				1		1	1					

^{*} Tables have been compiled from United States Magnetic Tables and Magnetic Charts for 1905, published by the Coast and Geodetic Survey in 1908.

TABLE 90 (continued).

TERRESTRIAL MAGNETISM (continued).

Secular Change of Declination (continued).

State.	Station.	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900	1910
		0	0	0	0	0	0	0	0	0	0	0
Miss.	Jackson	8.2E	8.4E	8.5E	8.4E	8.2E	7.9E	7.5E	6.9E	6.4E	6.0E	6.2E
Mo.	Sedalia	-	10.0E	10.2E	10.2E	10.1E	9.8E	9.4E	8.7E	8.0E	7.6E	7.9E
Mont.	Forsyth Helena	_		_	18.2E 18.9E	18.5E 19.3E	18.6E 19.6E	18.6E 19.8E	18.4E 19.6E	17.9E 19.4E	17.8E 19.5E	18.3E 20.0E
Nebr.	Hastings	-	11.6E	12.0E	12.1E		12.0E		11.2E	19.4E 10.5E		10.5E
Nebr.	Alliance	-	_	-		15.4E	15.4E	15.3E	14.8E	14.3E	14.2E	14.5E
Nev.	Elko	+	-	-	-		17.6E	17.7E	17.7E	17.6E	17.8E	18.3E
	Hawthorne	-	-	-	-		16.6E	16.9E	17.0E	17.0E	17.3E	17.8E
N. H.	Hanover	7.1W	7.5W	8.2W	8.9W		10.5W	11.1W	11.6W	12.0W	12.5W	13.0W
N. J.	Trenton	2.8W	3.1W	3.5W	4.IW	4.7W	5.4W	6.oW	6.7W	7.2W	7.8W	8.4W
N. M.	Santa Rosa	-	-	-	_	12.7E	12.8E	12.7E	12.5E	12.1E	12.0E	12.4E
	Laguna		-			13.4E	13.6E	13.6E	13.4E	13.0E	13.0E	13.5E
N. Y.	Albany	5.6W	5.8W	6.3W	6.9W	7.6W	8.4W	9.1W	9.8W	10.2W	io.8W	11.4W
	Elmira	2.2W	2.4W	2.8W	3.3W	4.0W	4.8W	5.4W	6.3W	7.0W	7.6W	8.1W
N. C.	Newbern	1.7E	1.6E	1.3E	0.8E	0.3E	0.3W	Wol	1.6W	2.2W	2.8W	3.3W
N. C.	Salisbury	3.9E	3.8E	3.6E	3.2E	2.7E	2.1E	1.5E	0.8E	0.2E	0.4W	0.7W
N. Dak.	Jamestown	-	-	-			14.3E	14.0E	13.5E	12.7E	12.4E	12.8E
	Dickinson	- min	-	-		17.6E	17.6E	17.4E	17.0E	16.4E	16.2E	16.6E
Ohio	Columbus	3.4E	3.4E	3.2E	2.9E	2.4E	1.8E	1.2E	0.6E	0.0	0.7W	I.IW
Okla.	Okmulgee	-		_	-	10.2E	10.1E	9.8E	9.4E	8.8E	8.5E	8.9E
Okla.	Enid	_	-	-	-	11.2E	11.1E	10.9E	10.5E	9.9E	9.7E	10.1E
Oreg.	Sumpter	- 1		win	_	19.3E	19.7E	20.0E	20.2E	20.2E	20.4E	21.0E
	Detroit	16.7E	17.4E	18.0E	18.6E	19.2E	19.7E	20.1E	20.4E	20.5E	20.8E	21.5E
Pa.	Philadelphia	2.2W	2.4W	2.8W	3.4W	4.1W	4.8W	5.5W	6.3W	6.8W	7.4W	8.oW
	Altoona	0.5W	o.6W	0.9W	1.3W	1.8W	2.4W	3.1W	3.8W	4.5W	5.IW	5.6W
P. R.	San Juan	-				-	_	-		-	I.oW	2.0W
R. I.	Newport	6.6W	7.IW	7.7W	8.4W	9.1W	9.8W	10.3W	10.8W	11.3W	11.9W	12.4W
S. C.	Columbia	4.4E	4.3E	4.1E	3.7E	3.2E	2.7E	2.1E	1.4E	0.8E	0.2E	VI.0
S. D.	Huron	-	-,	_	13.1E	13.1E	12.9E	12.6E	12.1E	11.4E	11.1E	11.4E
	Rapid City	_	_	-	-	16.4E	16.4E	16.3E	15.8E	15.3E	15.1E	15.4E
Tenn.	Chattanooga	5.3E	5.3E	5.1E	4.8E	4.4E	3.9E	3.3E	2.6E	2.0E	1.5E	1.3E
	Huntington		7.4E	7.4E	7.3E	7.0E	6.6E	6.1E	5.5E	4.9E	4.4E	4.3E
Tex.	Houston	-	8.9E	9.2E	9.3E	9.3E	9.2E	8.9E	8.5E	7.9E	7.7E	8.1E
	San Antonio	-	-	9.6E	9.8E	9.9E	9.8E	9.6E	9.3E	8.9E	8.7E	9.1E
	Pecos	-	-	10.8E	11.0E	11.1E	II.IE	11.0E	10.8E	10.4E	10.3E	10.7E
Tex.	Floydada	_	-	_	-	11.3E	11.3E	11.2E	10.9E	10.4E	10.3E	10.7E
Utah	Salt Lake	-	-	-		16.4E	16.6E	16.7E	16.5E	16.3E	16.5E	17.0E
Vt.	Rutland	6.8W	7.2W	7.8W	8.5W	9.2W	10.0W	10.6W	11.2W	1	12.IW	
Va.	Richmond	0.8E	0.6E	0.3W	o.iW	2	I.2W	r.8W	2.5W		3.7W	
	Lynchburg	1.9E	1.8E	1.6E	1.2E	0.8E	0.2E	0.5W	I.2W	1.8W	2.4W	2.8W
Wash.	Wilson Creek					21.3E	21.6E	21.9E	21.9E	22.1E	22.4E	22.9E
	Seattle	19.1E	19.7E	20.3E	20.8E	21.3E	21.8E	22.1E	22.3E	22.6E	23.0E	
W. Va.	Charleston	2.3E	2.2E	2.0E	1.6E	I.IE	0.5E	0.2W	1	_		
Wis.	Madison	-	8.6E	8.7E	8.6E	8.3E	7.8E	7.2E	6.4E	5.6E	5.0E	4.9E
Wyo.	Douglas Green River	-	-	-	-	15.8E 16.8E	16.0E	16.0E	15.8E 16.9E	15.4E 16.6E	15.3E 16.6E	15.7E

TABLES 91-92.

TERRESTRIAL MAGNETISM (continued).

TABLE 91. - Dip or Inclination.

This table gives for the epoch January 1, 1905, the values of the magnetic dip, I, corresponding to the longitudes west of Greenwich in the heading and the north latitudes in the first column.

	65°	70°	75°	80°	85°	90°	95°	1000	1050	1100	1150	1200	1250
0	0	0	0	۰	0	0	0	0	0	0	0	0	0
19 21 23 25 27	-		48.8 51.0 53.7 56.3 58.9	49.1 51.1 53.0 56.0 58.1	47.5 50.0 52.4 55.0 57.6	46.3 49.3 51.8 54.5 56.8	44.8 48.2 50.7 53.2 55.6	44.2 47.0 49.6 52.4 54.7	43.9 46.5 48.8 51.5 53.9	- 48.2 50.6 53.1	- - 49.8 52.6	- - 48.3 51.0	
29 31 33 35 37		60.7 63.0 65.0 67.0 68.6	61.0 63.1 65.0 66.9 68.9	60.2 62.6 64.6 66.5 68.6	59.8 62.0 64.0 66.0 68.2	58.9 61.3 63.5 65.6 67.7	58.2 60.6 62.7 64.9 66.9	57.2 59.6 62.0 63.7 66.2	56.2 58.7 61.0 62.7 65.1	55.5 57.7 59.8 62.3 64.6	54.8 56.7 58.9 61.0 62.9	53.7 56.0 58.1 60.2 62.2	
39 41 43 45 47	74·4 75·7	70.3 71.8 73.5 74.8 76.2	70.6 72.2 73.9 75.6 76.9	70.4 72.2 74.1 75.5 76.8	70.2 71.9 73.8 75.4 76.9	69. 7 71.4 73.3 75.0 76.8	68.8 70.8 72.6 74.3 76.0	68.1 69.8 71.6 73.6 75.2	67.2 68.9 70.7 72.4 74.2	66.1 67.8 69.6 71.5 73.0	65.0 66.8 68.6 70.3 71.8	64.0 65.6 67.5 69.2 70.8	62.8 64.7 66.3 68.1 69.9
49	76.8	78.1	78.2	78.3	78.7	78.1	77.5	76.8	75.8	74.5	73.5	72.3	71.4

TABLE 92. - Secular Change of Dip.

Values of magnetic dip for places designated by the north latitudes and longitudes west of Greenwich in the first two columns for January 1st of the years in the heading. The degrees are given in the third column and minutes in the succeeding columns.

	ati- de.	Longi- tude.		1855	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910
	0	0	0	,	,	,	,	,	,	,	,	,	,	,	,
3 3	5 5000	80 110 83 100 115	55+ 49+ 60+ 57+ 54+	49 08 66 44 53	49 20 70 49 62	48 30 73 58 69	46 39 74 67 71	43 46 73 70 70	40 55 67 65 72	35 61 57 60 75	35 68 51 61 79	39 76 53 68 85	48 86 63 77 91	60 96 78 90 96	77 106 96 105 101
3 3 3	5 5 5	80 90 105 120 75	66+ 65+ 62+ 60+ 71+	57 65 - 03 82	58 59 - 06 82	57 51 - 08 78	54 44 32 08 73	45 37 30 97 65	35 32 24 06 55	26 26 24 08 43	21 25 24 11 33	20 25 28 13 27	22 27 34 14 24	30 36 42 12 24	38 48 50 08 24
4	0 0 5 5	90 105 120 65 75	70+ 67+ 64+ 74+ 75+	30 - 116 103	31 - 48 110 99	34 46 101 95	37 56 44 92 90	36 53 44 80 85	32 51 44 68 73	29 51 44 57 62	26 51 44 46 53	25 52 45 35 43	26 56 45 28 38	30 60 48 24 36	36 65 48 20 34
4 4 4	.5 .5 .5 .9	90 105 122.5 92 120	74+ 72+ 68+ 78+ 72+	81 - 35 26 -	81 - 34 25 26	81 - 37 24 24	79 - 40 22 22	77 - 40 20 22	75 22 39 20 19	68 20 37 15 20	63 20 34 12 19	61 21 30 11 19	59 22 26 09 19	60 24 24 06 18	60 27 20 04 16

TERRESTRIAL MAGNETISM (continued).

TABLE 93. - Horizontal Intensity.

This table gives for the epoch January 1, 1905, the horizontal intensity, H, expressed in C.G.S. units, corresponding to the longitudes in the heading and the latitudes in the first column.

	65°	70°	75°	80°	85°	90°	95°	1000	105°	1100	115°	1200	1250
0 19 21 23 25 27	1111		.307 .301 .293 .284	.314 .309 .303 .292 .280	.319 .314 .305 .295	.322 .316 .309 .299	.328 .320 .312 .304	.332 .324 .315 .307	.331 .324 .317 .308 .300	.320 .309 .303	.312	.304	
29 31 33 35 37	11111	.257 .246 .233 .220	.262 .251 .239 .225	.269 .256 .245 .232 .218	.276 .263 .251 .240	.281 .269 .257 .242 .226	.286 .274 .262 .248 .232	.289 .277 .266 .253 .238	.292 .282 .270 .256	.294 .284 .273 .259 .246	.297 .285 .274 .262	.291 .282 .274 .265	
39 41 43 45 47 49	.161	.197 .184 .170 .157 .144	.198 .185 .170 .155 .140	.203 .186 .169 .156 .142 .126	.206 .192 .175 .157 .142	.212 .196 .178 .162 .150	.217 .202 .187 .169 .152 .138	.224 .207 .194 .177 .161	.229 .216 .201 .190 .170	.237 .223 .210 .192 .180	.240 .228 .215 .199 .188	.242 .240 .222 .208 .196 .182	.245 .236 .226 .215 .201 .187

TABLE 94. - Secular Change of Horizontal Intensity.

Values of horizontal intensity in C. G. S. units for places designated by the latitude and longitude in the first two columns for January 1 of the years in the heading.

Latitude.	Longi.	1855	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1010
0 25 25 30 30 30	80 110 83 100 115	.3099 .3229 .2803 -	.3086 .3218 .2795 -	.3073 .3204 .2788 .2961 .3011	.3057 .3189 .2780 .2942 .2996	.3042 .3170 .2772 .2924 .2979	.3025 .3155 .2763 .2907 .2964	.3008 .3143 .2752 .2891 .2952	.2990 .3130 .2740 .2877 .2940	.2970 .3117 .2725 .2865	.2949 .3104 .2706 .2850 .2920	.2920 .3090 .2680 .2830 .2910	.2890 .3075 .2644 .2804 .2898
35 35 35 35 40	80 90 105 120 75	.2384	.2379	.2374	.2369 .2462 - .2720 .1902	.2367 .2462 .2620 .2707	.2363 .2461 .2608 .2695	.2359 .2458 .2599 .2683 .1925	.2352 .2455 .2590 .2672 .1930	.2347 .2447 .2583 .2663 .1931	.2337 .2437 .2573 .2656 .1928	.2320 .2430 .2560 .2650 .1920	.2296 .2399 .2544 .2644 .1909
40 40 40 45 45	90 105 120 65 75	- - .1504 .1483	.2086	.2082 - - .1525 .1488	.2079 .2272 .2429 .1537 .1495	.2076 .2266 .2420 .1553 .1506	.2075 .2261 .2412 .1567 .1516	.2074 .2257 .2406 .1578 .1527	.2072 .2253 .2399 .1589 .1538	.2068 .2248 .2392 .1600 .1546	.2060 .2240 .2386 .1608 .1550	.2050 .2230 .2380 .1610 .1550	.2036 .2217 .2379 .1610 .1554
45 45 45 49 49	90 105 122.5 92 120	- .2175 .1332 .1841	.1635 -2170 .1330 .1841	.1633 .2162 .1328 .1840	.1631 .1920 .2153 .1324 .1839	.1628 .1919 .2145 .1321 .1836	.1626 .1918 .2135 .1319 .1831	.1624 .1916 .2127 .1318 .1826	.1623 .1913 .2121 .1318 .1821	.1624 .1910 .2117 .1321 .1819	.1623 .1906 .2115 .1324 .1820	.1620 .1900 .2115 .1330 .1820	.1616 .1892 .2115 .1335 .1824

TABLES 95-96.

TERRESTRIAL MAGNETISM (continued).

TABLE 95. - Total Intensity.

This table gives for the epoch January 1, 1905, the values of total intensity, F, expressed in C. G. S. units corresponding to the longitudes in the heading and the latitudes in the first column.

	65°	70°	75°	80°	85°	90°	95°	100°	105°	110°	115°	120°	125°
0 19 21 23 25 27			.466 .478 .495 .512	.480 .492 .504 .522 .530	.472 .489 .500 .514 .534	.466 .485 .500 .515 .528	.462 .480 .493 .507	.463 .475 .486 .503 .516	•459 •471 •481 •495 •509	- .480 .487 .505	- - .483 .504	- - - -457 •474	1111
29 31 33 35 37	-	.525 .542 .551 .563 .570	.540 .55 5 .566 .574 .581	.541 .556 .571 .582 .598	•549 •560 •572 •590 •598	.544 .560 .576 .586 .596	.543 .558 .571 .584 .591	·534 ·547 ·567 ·571 ·590	.525 .543 .557 .558 .582	.519 .531 .543 .557 .573	.515 .519 .530 .540 .553	.492 .504 .518 .533 .538	11111
39 41 43 45 47 49	- - - 599 .587 .574	.584 .589 .599 .599 .604 .626	.596 .605 .613 .623 .618	.605 .608 .617 .623 .622	.608 .618 .627 .623 .626	.611 .614 .619 .626 .657	.600 .614 .625 .624 .628	.600 .600 .614 .627 .630	.591 .600 .608 .628 .624 .624	.585 .590 .602 .605 .616	.568 .579 .589 .590 .602	.552 .581 .580 .586 .596	.536 .552 .562 .576 .585

TABLE 96. - Secular Change of Total Intensity.

Values of total intensity in C. G. S. units for places designated by the latitudes and longitudes in the first two columns for January 1 of the years in the heading. (Computed from Tables 92 and 94.)

Lati- tude.	Longi- tude.	1855	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910
0 25 25 30 30 30	80 110 83 100 115	.5516 .4935 .5800 - .5285	·5493 ·4938 ·5796 	.5467 .4933 .5790 .5583 .5269	·5434 ·4925 ·5777 ·5570 ·5247	.5400 .4908 .5757 .5544 .5215	.5364 .4902 .5720 .5499 .5194	.5322 .4891 .5668 .5456 .5179	.5290 .4883 .5625 .5432 .5167	.5264 .4876 .5600 .5427 .5160	.5247 .4873 .5590 .5421 .5158	.5222 .4868 .5581 .5416	.5206 .4860 .5559 .5405 .5140
35 35 35 35 40	80 90 105 120 75	.6089	.6080 - - - .6216	.6063	.6038 .5991 - .5462 .6227	.5996 .5964 .5674 .5433 .6212	.5946 .5942 .5629 .5406 .6182	.5900 .5912 .5610 .5388 .6136	.5863 .5901 .5590 .5374 .6098	.5874 .5882 .5588 .5361 .6070	.5830 .5865 .5585 .5350 .6045	.5818 .5858 .5582 .5332 .6019	•5789 •5852 •5572 •5309 • 5 985
40 40 40 45 45	90 105 120 65 75	- .6188 .6454	.6254 - .6186 .6431	.6258 - .6167 .6413	.6264 .6048 .5691 .6152 .6404	.6250 .6019 .5670 .6134 .6412	.6226 .5997 .5651 .6107 .6363	.6208 .5986 .5637 .6077 .6327	.6187 .5976 .5620 .6048 .6306	.6170 .5967 .5608 .6019 .6266	.6151 .5963 .5593 .6005 .6247	.6141 •5953 •5590 •5987 •6233	.6135 .5940 .5591 .5962 .6235
45 45 45 49 49	90 105 122.5 92 120	- .5956 .6643	.6465 -5938 .6624 .6100	.6457 .5930 .6604 .6085	.6434 .5918 .6566 .6071	.6408 - .5896 .6533 .6061	.6386 .6332 .5864 .6523 .6028	.6330 .6314 .5834 .6472 .6017	.6291 .6303 .5804 .6445 •5995	.6382 .6299 .5776 .6451 .5988	.6264 .6392 ·5754 .6447 ·5992	.6259 .6284 .5745 .6450 .5986	.6244 .6275 .5728 .6456 .5988

TABLE 97.

The line of no declination appears to be still moving westward in the United States, but the line of no annual change is only a short distance to the west of it, so that it is probable that the extreme westerly position will soon be reached.

Lat.	Long	itudes of th	ne agonic li	ne for the	years —
N.	1800	1850	1875	1890	1905
25 30	0 1 1	0 1 1	0 -	75.5 78.6	76.1 79.7
35 6 7 8 9	75.2 76.3 76.7 76.9	76.7 77.3 77.7 78.3 78.7	79.0 79.7 80.6 81.3 81.6	79.9 80.5 82.2 82.6 82.2	81.7 82.8 83.5 83.6 83.6
40 1 2 3 4	77.0 77.9 79.1 79.4 79.8	79·3 80.4 81.0 81.2	81.6 81.8 82.6 83.1 83.3	82.7 82.8 83.7 84.3 84.9	84.0 84.6 84.8 85.0 85.5
45 6 7 8	11111	11111	83.6 84.2 85.1 86.0 86.5	85.2 84.8 85.4 85.9 86.3	86.0 86.4 86.4 86.5 87.2

PRESSURE OF COLUMNS OF MERCURY AND WATER.

British and metric measures. Correct at o° C. for mercury and at 4° C. for water.

	METRIC MEAS	URE.		British Meas	URE.
Cms. of Hg.	Pressure in grammes per sq. cm.	Pressure in pounds per sq. inch.	Inches of Hg.	Pressure in grammes per sq. cm.	Pressure in pounds per sq. inch.
1	13.5956	0.193376	1	34.533	0.491174
2	27.1912	0.386752	2	69.066	0.982348
3	40.7868	0.580128	3	103.598	1.473522
4	54.3824	0.773504	4	138.131	1.964696
5	67.9780	0.966880	5	172.664	2.455870
6	81.5736	1.160256	6	207.197	2.947044
7	95.1692	1.353632	7	241.730	3.438218
8	108.7648	1.547008	8	276.262	3.929392
9	122.3604	1.740384	9	310.795	4.420566
10	135.9560	1.933760	10	345-328	4.911740
Cms. of H ₂ O.	Pressure in grammes per sq. cm.	Pressure in pounds per sq. inch.	Inches of H ₂ O.	Pressure in grammes per sq. cm.	Pressure in pounds per sq. inch.
1	I	0.0142234	1	2.54	0.036127
2	2	0.0284468	2	5.08	0.072255
3	3	0.0426702	3	7.62	0.108382
4	4	0. 0568936	4	10.16	0.144510
5	5	0.0711170	5	12.70	0.180637
6	6	0.0853404	6	15.24	0.216764
7	7	o.o9956 3 8	7	17.78	0.252892
8	8	0.1137872	8	20.32	0.289019
9	9	0.1280106	9	22.86	0.325147
10	10	0.1422340	10	25.40	0.361274

REDUCTION OF BAROMETRIC HEIGHT TO STANDARD TEMPERATURE.

Height of barometer in inches for inches. Height of barometer in mm. harometer in man harometer in man harometer in mm. harometer in mm. harometer in mm. harometer in mm. harometer in man harometer in mm. harometer in man harometer in mm. harometer in man harometer in m		or brass scale and n measure.		r brass scale and measure.		r glass scale and measure.
16.0	barometer in	in inches for	barometer in	in mm. for	barometer in	in mm. for
17.0			400		50	0.0086
17.5		.00145	410		100	.0172
18.6						.0258
18.5	17.5				1	
19.6						
19.5		,				
20.0 0.00181 490 .0797 450 .0755 20.5 .00185 490 .0797 450 .0775 20.5 .00190 500 0.0813 520 .0861 21.0 .00194 510 .0830 540 .0934 22.0 .00199 520 .0846 560 .0971 22.0 .00208 530 .0862 580 .1007 23.0 .00208 540 .0878 600 .0971 23.0 .00208 550 .0894 600 .1034 23.5 .00212 550 .0894 600 .1034 24.5 .00221 580 .0943 630 .1085 24.5 .00221 580 .0943 630 .1085 25.5 .00236 600 .0.0975 660 .11137 26.5 .00245 620 .1086 670 .11154 27.5 .00249					350	.0003
20.0 0.00181 490 .0797 450 .0775 20.5 .00185 500 .0813 520 .0861 21.5 .00194 510 .0830 540 .0934 22.0 .00199 520 .0846 560 .0971 22.5 .00203 530 .08662 580 .1007 23.0 .00208 540 .0878 .091 610 .1051 23.5 .00212 550 .0894 600 0.1034 24.5 .00221 580 .0911 610 .1051 24.5 .00221 580 .0943 630 .1085 25.0 .00226 590 .0959 640 .1103 26.5 .00236 600 0.0975 660 .11120 26.5 .00240 610 .0992 660 .11137 28.0 .00245 620 .1008 670 .1154 27.5 </td <th>19.3</th> <td>.00170</td> <td>480</td> <td></td> <td>400</td> <td>0.0680</td>	19.3	.00170	480		400	0.0680
20.5	20.0	0.00181				
21.0			77-	10/5/		
21.5		2	500	0.0813		
22.0	21.5	.00194			540	
23.0		.00199	520		560	
23.5 .00212			530		580	.1007
24.0 0.00217 560 .0911 610 .1051 24.5 .00221 570 .0927 620 .1068 25.0 .00226 590 .0943 630 .1085 25.5 .00231 590 .0959 640 .1103 26.5 .00236 600 0.0975 660 .1137 26.5 .00249 610 .0992 660 .1137 27.0 .00245 620 .1008 670 0.1154 27.5 .00249 630 .1024 680 .1172 28.0 0.00254 650 .1056 700 .1120 28.5 .00258 660 .1073 710 .1223 29.0 .00263 670 .1089 720 .1240 29.2 .00265 680 .1105 730 .1258 29.4 .00267 690 .1121 740 0.1275 29.8 .00270<						
24.0 0.00217 570 .0927 620 .1068 24.5 .00226 580 .0943 630 .1085 25.0 .00226 590 .0959 640 .1103 25.5 .00231 660 .0959 660 .1120 26.5 .00240 610 .0992 660 .1137 26.5 .00245 620 .1088 670 0.1154 27.5 .00249 630 .1024 680 .1172 28.0 .00249 650 .1040 690 .1189 28.5 .00258 660 .1073 710 .1223 29.0 .00263 670 .1089 720 .1240 29.2 .00265 680 .1105 730 .1258 29.4 .00267 690 .1121 740 0.1275 29.8 .00270 710 .1154 760 .1309 30.0 .00272 <th>23.5</th> <th>.00212</th> <th></th> <th></th> <th></th> <th></th>	23.5	.00212				
24.5 .00221 580 .0943 630 .1085 25.0 .00236 590 .0959 640 .1103 25.5 .00231 600 0.0975 660 .1120 26.5 .00240 610 .0992 660 .1137 26.5 .00249 620 .1008 670 0.1154 27.5 .00249 630 .1024 680 .1172 640 .1040 690 .1189 .1206 28.5 .00258 660 .1073 710 .1223 29.0 .00253 670 .1089 720 .1240 29.2 .00265 680 .1105 730 .1258 29.4 .00267 690 .1121 740 0.1275 29.8 .00270 700 0.1137 750 .1292 29.8 .00272 710 .1154 760 .1327 30.0 .00272 710 <th>24.0</th> <td>0.00077</td> <td></td> <td></td> <td></td> <td></td>	24.0	0.00077				
25.0 .00226		,		, ,		
25.5						
26.0 .00236 600 0.0975 660 .1137 26.5 .00249 610 .0992 670 0.1154 27.0 .00245 620 .1008 670 0.1154 27.5 .00249 630 .1024 680 .1172 28.0 0.00254 650 .1056 700 .1206 28.5 .00258 660 .1073 710 .1223 29.0 .00263 670 .1089 720 .1240 29.2 .00265 680 .1105 730 .1258 29.4 .00267 690 .1121 740 0.1275 29.8 .00270 700 0.1137 750 .1292 30.0 .00272 710 .1154 760 .1309 30.2 0.00274 730 .1186 780 .1344 30.4 .00276 740 .1202 790 .1361 30.8 .0027			390	.0939		
26.5	26.0		600	0.0075	660	
27.5 .00249 630 .1024 680 .1172 28.0 0.00254 650 .1040 690 .1189 28.5 .00258 660 .1056 700 .1206 29.0 .00263 670 .1089 720 .1240 29.2 .00265 680 .1105 730 .1258 29.4 .00267 690 .1121 740 0.1275 29.8 .00270 700 0.1137 750 .1292 30.0 .00272 710 .1154 760 .1309 720 .1170 770 .1327 .1361 30.4 .00274 730 .1186 780 .1344 30.4 .00276 740 .1202 790 .1361 30.8 .00277 750 .1218 800 .1378 30.8 .00279 760 .1235 850 .01464 31.2 .00283 780 <th></th> <td></td> <td>610</td> <td></td> <td></td> <td>12137</td>			610			12137
28.0 0.00254 640 .1040 690 .1189 28.5 .00258 650 .1056 700 .1206 29.0 .00263 670 .1089 720 .1240 29.2 .00265 680 .1105 730 .1258 29.4 .00267 690 .1121 740 0.1275 29.8 .00270 700 0.1137 750 .1292 30.0 .00272 710 .1154 760 .1309 720 .1170 770 .1327 30.4 .00276 740 .1186 780 .1344 30.4 .00276 740 .1202 790 .1361 30.8 .00277 750 .1218 800 .1378 30.8 .00279 760 .1235 850 0.1464 31.2 .00281 770 .1251 900 .1551 31.4 .00285 790 .1283 <th></th> <td>.00245</td> <td>620</td> <td></td> <td>670</td> <td>0.1154</td>		.00245	620		670	0.1154
28.0 0.00254 650 .1056 700 .1206 28.5 .00258 660 .1073 710 .1223 29.0 .00263 670 .1089 720 .1240 29.2 .00265 680 .1105 730 .1258 29.4 .00267 690 .1121 740 0.1275 29.8 .00270 700 0.1137 750 .1292 30.0 .00272 710 .1154 760 .1309 720 .1170 770 .1327 .1327 30.4 .00274 730 .1186 780 .1344 30.6 .00277 750 .1218 800 .1378 30.8 .00279 760 .1235 850 .1464 31.2 .00281 770 .1251 900 .1551 31.4 .00285 790 .1283 950 .1639	27.5	.00249		.1024		.1172
28.5 .00258 660 .1073 710 .1223 29.0 .00263 670 .1089 720 .1240 29.2 .00265 680 .1105 730 .1258 29.4 .00267 690 .1121 740 .01275 29.8 .00270 710 .1154 760 .1292 30.0 .00272 710 .1154 760 .1309 720 .1170 770 .1327 770 .1327 30.4 .00276 740 .1202 790 .1361 30.6 .00277 750 .1218 800 .1378 30.8 .00279 760 .1235 800 .1378 31.0 .00281 770 .1251 850 0.1464 31.2 .00283 780 .1267 900 .1551 31.4 .00285 790 .1283 950 .1639						
29.0						
29.4 .00267 690 .I121 740 0.1275 29.8 .00270 700 0.I137 750 .1292 30.0 .00272 710 .I154 760 .1309 720 .I170 770 .1327 30.2 0.00274 730 .1186 780 .1344 30.4 .00276 740 .1202 790 .1361 30.8 .00277 750 .1218 800 .1378 30.8 .00279 760 .1235 850 .1464 31.2 .00281 770 .1251 850 0.1464 31.4 .00285 790 .1283 950 .1639				.1073		
29.4 .00267 690 .I121 740 0.1275 29.8 .00270 700 0.I137 750 .1292 30.0 .00272 710 .I154 760 .1309 720 .I170 770 .1327 30.2 0.00274 730 .1186 780 .1344 30.4 .00276 740 .1202 790 .1361 30.8 .00277 750 .1218 800 .1378 30.8 .00279 760 .1235 850 .1464 31.2 .00281 770 .1251 850 0.1464 31.4 .00285 790 .1283 950 .1639			680			
29.6 .00268 700 0.1137 750 .1292 30.0 .00272 710 .1154 760 .1309 720 .1186 780 .1344 30.4 .00276 740 .1202 790 .1361 30.6 .00277 750 .1218 800 .1378 30.8 .00279 760 .1235 31.0 .00281 770 .1251 31.2 .00283 780 .1267 31.4 .00285 790 .1283 950 .1639					/30	.1250
29.8 .00270 700 0.1137 750 .1292 30.0 .00272 710 .1154 760 .1309 720 .1170 770 .1327 730.2 .1186 780 .1344 30.4 .00276 740 .1202 790 .1361 30.6 .00277 750 .1218 800 .1378 30.8 .00279 760 .1235 800 .1378 31.0 .00281 770 .1251 850 0.1464 31.2 .00283 780 .1267 900 .1551 31.4 .00285 790 .1283 950 .1639			090	*****	740	0.1275
30.0 .00272 710 .1154 760 .1309 30.2 0.00274 730 .1186 780 .1327 30.4 .00276 740 .1202 790 .1361 30.6 .00277 750 .1218 800 .1378 30.8 .00279 760 .1235 800 .1378 31.0 .00281 770 .1251 850 0.1464 31.2 .00283 780 .1267 900 .1551 31.4 .00285 790 .1283 950 .1639			700	0.1137		
30.2 0.00274 720 .1170 770 .1327 30.4 .00276 740 .1202 790 .1361 30.6 .00277 750 .1218 800 .1378 30.8 .00279 760 .1235 850 .1464 31.0 .00281 770 .1251 850 0.1464 31.2 .00283 780 .1267 900 .1551 31.4 .00285 790 .1283 950 .1639						-
30.2 0.00274 730 .1186 780 .1344 30.4 .00276 740 .1202 790 .1361 30.6 .00277 750 .1218 800 .1378 30.8 .00279 760 .1235 850 0.1464 31.0 .00281 770 .1251 850 0.1464 31.2 .00283 780 .1267 900 .1551 31.4 .00285 790 .1283 950 .1639			720		770	
30.8 .00279 760 .1235 850 0.1464 31.2 .00283 780 .1267 900 .1551 31.4 .00285 790 .1283 950 .1639						.1344
30.8 .00279 760 .1235 850 0.1464 31.2 .00283 780 .1267 900 .1551 31.4 .00285 790 .1283 950 .1639	30.4				790	
31.0 .00281 770 .1251 850 0.1464 31.2 .00283 780 .1267 900 .1551 31.4 .00285 790 .1283 950 .1639					800	.1378
31.2 .00283 780 .1267 900 .1551 31.4 .00285 790 .1283 950 .1639			,		950	07.61
31.4 .00285 790 .1283 9501639			770			
1 31.0 100207 000 1200 1000 1722	31.6	.00287	800 l	.1299	1000	.1723
1277 2000 1279	3	,				-7-3

^{*}The height of the barometer is affected by the relative thermal expansion of the mercury and the glass, in the case of instruments graduated on the glass tube, and by the relative expansion of the mercury and the metallic inclosing case, usually of brass, in the case of instruments graduated on the brass case. This relative expansion is practically proportional to the first power of the temperature. The above tables of values of the coefficient of relative expansion will be found to give corrections almost identical with those given in the International Meteorological Tables. The numbers tabulated under a are the values of a in the equation $H_I = H_I' - \alpha(I' - I)$ where H_I is the height at the standard temperature, H_I' the observed height at the temperature I', and $\alpha(I' - I)$ the correction for temperature. The standard temperature is 0° C. for the metric system and 20° , 5° , 1° , for the English system. The English barometer is correct for the temperature of melting ice at a temperature of approximately 20° , 5° , 1° , because of the fact that the brass scale is graduated so as to be standard at 62° 1° , while mercury has the standard density at 32° 1° . Example.—A barometer having a brass scale gave 1° 1° 0 m. at 25° 0 C.; required, the corresponding reading at 0° 0. Here the value of α is the mean of .1235 and .1251, or .1243; . . . $\alpha(1^\circ - I)$ = .1243 \times 25 = 3.11. Hence 1° 0 = .765. 3.11 = .761.89.

N. B.—Although α is here given to three and sometimes to four significant figures, it is seldom worth while to use more than the nearest two-figure number. In fact, all barometers have not the same values for α , and when great accuracy is wanted the proper coefficients have to be determined by experiment.

mined by experiment.

CORRECTION OF BAROMETER TO STANDARD CRAVITY.

Height	above sea level in												
level in metres.	400	450	500	550	600	650	700	750	800				
100 200 300 400 500 600 700 800 900 1000	tres sea and	for ele level in	in mil vation : first co of baron	above dumn meter	.118	.064 .077 .090 .103 .115	.014 .028 .041 .055 .068 .082 .096 .109	.015 .030 .044 .059 .073 .088 .102 .117 .131	.016 .032 .047 .063 .078				
1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500	.195	.176 .185 .194 .203 .212 .220	.147 .157 .167 .177 .187 .196 .216 .226 .236	.118 .129 .140 .151 .162 .172 .183 .194 .204 .215 .226 .237 .248 .259 .270	.130 .142 .153 .165 .176 .188 .200 .212 .224 .235 .247 .259 .271 .283 .295	.141 .154 .166 .179 .191 .204 .217 .230 .242 .255	1.345 1.291 1.237	1.340 1.292 1.244 1.196 1.149	I.245 I.203 I.162 I.120 I.088 I.046 I.004	15000 14500 14000 13500 13500 12500 12000 11500			
2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000	2700 '211 .238 .265 1.255 1.130 1.055 .879 2800 .219 .247 .275 1.255 1.136 1.076 .957 .837 2900 .227 .225 .285 1.050 1.136 1.022 .909 .795 3000 .243 .274 2.24 384 1.076 .969 .861 .753 3200 .251 .283 3.853 .957 .861 .765 3400 .267 .201 1.077 .787 .897 .807 .807 3500 .275 .309 .934 .655 .777 .700 3600 .283 .309 .862 .789 .718 .700 3800 .291 .779 .718 .658 .598 .700 3800 .299 .701 .646 .502 .598 .700												
.503 .461 .395 .395 .311 .287 .287 .269 .251 .233 .215 .096 .090 .084 .078													
32	30	28	26	24	22	20	18	16	14	Height above sea level in			
		0	bserved	height of	baromete	er in inch	es.			feet.			

REDUCTION OF BAROMETER TO STANDARD CRAVITY.

Reduction to Latitude 45°. - English Scale.

N. B. From latitude oo to 44° the correction is to be subtracted. From latitude 90° to 46° the correction is to be added.

			Height of the barometer in inches.													
Latitu	ide.	19	20	21	22	23	24	25	26	27	28	29	30			
0°	90°	Inch. 0.051	Inch. 0.053	Inch. 0.056	Inch. 0.059	Inch. 0.061	Inch. 0.064	Inch. 0.067	Inch. 0.069	Inch. 0.072	Inch. 0.074	Inch. 0.077	Inch. 0.080			
5 6 7 8 9	85 84 83 82 81	0.050 .049 .049 .049	0.052 .052 .052 .051	0.055 .055 .054 .054 .053	0.058 .057 .057 .056	o.o6o .o6o .o59 .o59	0.063 .062 .062 .061	0.066 .065 .065 .064	0.068 .068 .067 .067	0.071 .070 .070 .069	0.073 .073 .072 .072 .071	0.076 .076 .075 .074	0.079 .078 .077 .077 .076			
10 11 12 13 14	80 79 78 77 76	0.048 .047 .046 .045	0.050 .049 .049 .048	0.053 .052 .051 .050	0.055 .054 .054 .053 .052	0.058 .057 .056 .055	0.060 .059 .058 .057 .056	0.063 .062 .061 .060	0.065 .064 .063 .062 .061	o.o68 .o67 .o66 .o65	0.070 .069 .068 .067	0.073 .072 .071 .069	0.075 .074 .073 .072 .071			
15 16 17 18 19	75 74 73 72 71	0.044 .043 .042 .041	0.046 .045 .044 .043	0.048 .047 .046 .045	0.051 .050 .049 .047 .046	0.053 .052 .051 .050	0.055 .054 .053 .052 .050	0.058 .056 .055 .054 .052	0.060 .059 .057 .056	0.062 .061 .060 .058	0.065 .063 .062 .060	0.067 .065 .064 .062	0.069 .068 .066 .065			
20 21 22 23 24	70 69 68 67 66	0.039 .038 .036 .035 .034	0.041 .040 .038 .037 .036	0.043 .042 .040 .039 .037	0.045 .044 .042 .041 .039	0.047 .045 .044 .043	0.049 .047 .046 .044	0.051 .049 .048 .046	0.053 .051 .050 .048 .046	0.055 .053 .052 .050 .048	0.057 .055 .054 .052 .050	0.059 .057 .056 .054 .052	0.061 .059 .057 .055 .053			
25 26 27 28 29	65 64 63 62 61	0.033 .031 .030 .028	0.034 .033 .031 .030	0.036 .034 .033 .031 .030	0.038 .036 .034 .033	0,039 .038 .036 .034 .032	0.041 .039 .038 .036	0.043 .041 .039 .037 .035	0.044 .043 .041 .039 .037	0.046 .044 .042 .040 .038	0.048 .046 .044 .042	0.050 .048 .045 .043 .041	0.051 .049 .047 .045 .042			
30 31 32 33 34	59 58 57 56	0.025 .024 .022 .021	0.027 .025 .023 .022	0.028 .026 .025 .023	0.029 .027 .026 .024	0.031 .029 .027 .025	0.032 .030 .028 .026	0.033 .031 .029 .027	0.035 .032 .030 .028	0.036 .034 .032 .029	0.037 .035 .033 .030 .028	0.039 .036 .034 .031	0.040 .037 .035 .032 .030			
35 36 37 38 39	55 54 53 52 51	0.017 .016 .014 .012	0.018 .016 .015 .013	0.019 .017 .015 .014	0.020 .018 .016 .014	0.021 .019 .017 .015	0.022 .020 .018 .015	0.023 .021 .018 .016	0.024 .021 .019 .017	0.025 .022 .020 .017	0.025 .023 .021 .018	0.026 .024 .021 .019	0.027 .025 .022 .019 .017			
40 41 42 43 44	50 49 48 47 46	0.009 .007 .005 .004 .002	0.009 .007 .006 .004 .002	0.010 .008 .006 .004 .002	0.010 .008 .006 .004 .002	0.011 .009 .006 .004	0.011 .009 .007 .004 .002	0.012 .009 .007 .005	0.012 .010 .007 .005	0.012 .010 .008 .005	0.013 .010 .008 .005	0.013 .011 .008 .005	0.014 .011 .008 .006 .003			

^{* &}quot;Smithsonian Meteorological Tables," p. 58.

REDUCTION OF BAROMETER TO STANDARD CRAVITY.*

Reduction to Latitude 45°. - Metric Scale.

N. B. — From latitude 0° to 44° the correction is to be subtracted. From latitude 90° to 46° the correction is to be added.

					H	eight of	the bard	ometer i	n millim	etres.			
Lati	tude.	520	560	600	620	640	660	68o	700	720	740	760	780
0°	90°	mm.	mm.	mm.	mm.	mm.	mm. 1.76	mm,	mm.	mm.	mm.	mm.	mm. 2.08
5 6 7 8 9	85 84 83 82 81	1.36 1.35 1.34 1.33 1.32	1.47 1.46 1.45 1.43 1.42	1.57 1.56 1.55 1.54 1.52	1.63 1.61 1.60 1.59 1.57	1.68 1.67 1.65 1.64 1.62	1.73 1.72 1.70 1.69 1.67	1.81 1.78 1.77 1.76 1.74	1.84 1.82 1.81 1.79 1.77	1.89 1.87 1.86 1.84 1.82	1.94 1.93 1.91 1.89 1.87	1.99 1.98 1.96 1.94 1.92	2.04 2.03 2.01 2.00 1.97
10 11 12 13 14	80 79 78 77 76	1.30 1.28 1.26 1.24 1.22	1.40 1.38 1.36 1.34 1.32	1.50 1.48 1.46 1.44 1.41	1.55 1.53 1.51 1.48 1.46	1.60 1.58 1.56 1.53 1.50	1.65 1.63 1.60 1.58 1.55	1.70 1.68 1.65 1.63 1.60	1.75 1.73 1.70 1.67 1.65	1.80 1.78 1.75 1.72 1.69	1.85 1.83 1.80 1.77 1.74	1.90 1.88 1.85 1.82 1.79	1.95 1.93 1.90 1.87 1.83
15 16 17 18 19	75 74 73 72 71	1.20 1.17 1.15 1.12 1.09	1.29 1.26 1.24 1.21 1.17	1.38 1.35 1.32 1.29 1.26	1.43 1.40 1.37 1.34 1.30	1.48 1.44 1.41 1.38 1.34	1.52 1.49 1.45 1.42 1.38	1.57 1.54 1.50 1.46 1.43	1.61 1.58 1.54 1.51 1.47	1.66 1.63 1.59 1.55 1.51	1.71 1.67 1.63 1.59	1.75 1.72 1.68 1.64 1.59	1.80 1.76 1.72 1.68 1.64
20 21 22 23 24	70 69 68 67 66	1.06 1.03 1.00 0.96 •93	1.14 1.11 1.07 1.04 1.00	1.22 1.19 1.15 1.11 1.07	1.26 1.23 1.19 1.15 1.10	1.31 1.27 1.23 1.18 1.14	1.35 1.31 1.26 1.22 1.18	1.39 1.35 1.30 1.26 1.21	1.43 1.38 1.34 1.29 1.25	1.47 1.42 1.38 1.33 1.28	1.51 1.46 1.42 1.37 1.32	1.55 1.50 1.46 1.41 1.35	1.59 1.54 1.49 1.44 1.39
25 26 27 28 29	65 64 63 62 61	0.89 .85 .81 .77 .73	0.96 .92 .88 .83 .79	1.03 0.98 •94 •89 •85	1.06 1.02 0.97 .92 .87	1.10 1.05 1.00 0.95	1.13 1.08 1.03 0.98	1.16 1.11 1.06 1.01 0.96	1.20 1.15 1.10 1.04 0.99	I.23 I.18 I.13 I.07 I.02	1.27 1.21 1.16 1.10 1.04	1.30 1.25 1.19 1.13 1.07	1.33 1.28 1.22 1.16 1.10
30 31 32 33 34	59 58 57 56	0.69 .65 .61 .56	0.75 .70 .65 .61	0.80 .75 .70 .65	0.83 .77 .72 .67 .62	0.85 .80 .75 .69	0.88 .82 .77 .71 .66	0.91 .85 .79 .74 .68	0.94 .87 .82 .76	0.96 .90 .84 .78	0.98 .92 .86 .80	1.01 0.95 .89 .82	1.04 0.97 .91 .84 .78
35 36 37 38 39	55 54 53 52 51	0.47 •43 •38 •33 •29	0.51 .46 .41 .36 .31	0.55 .49 .44 .39 .33	0.56 .51 .45 .40 .34	0.58 ·53 ·47 ·41 ·35	o.60 •54 •48 •43 •37	0.62 •56 •50 •44 •38	0.64 .58 .51 .45	0.66 •59 •53 •46 •40	0.67 .61 .54 .48	0.69 .63 .56 .49	0.71 .64 ·57 ·50 ·43
40 41 42 43 44	50 49 48 47 46	0.24 .19 .14 .10	0,26 .21 .16 .10	0.28 .22 .17 .11	0.29 .23 .17 .12	0.30 .24 .18 .12 .06	0.31 .24 .18 .12 .06	0.31 .25 .19 .13	0.32 .26 .19 .13	0.33 .27 .20 .13	0.34 .27 .21 .14	0.35 .28 .21 .14 .07	0.36 .29 .22 .14

^{* &}quot;Smithsonian Meteorological Tables," p. 59.

CORRECTION OF THE BAROMETER FOR CAPILLARITY.*

			ı. Me	TRIC MEA	SURE.								
			Нвібн	r of Menis	CUS IN MIL	LIMETRES.							
Diameter of tube in mm.	0.4	0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8											
		Correction to be added in millimetres.											
4 5 6 7 8 9 10 11 12 13	0.83 •47 •27 •18 	1.22 0.65 .41 .28 .20 .15	1.54 0.86 .56 .40 .29 .21 .15 .10	1.98 1.19 0.78 -53 -38 -28 -20 -14 -10	2.37 1.45 0.98 .67 .46 .33 .25 .18	1.80 1.21 0.82 .56 .40 .29 .21	- 1.43 0.97 .65 .46 .33 .24 .18	- - 1.13 0.77 .52 .37 .27 .19					
			2. Bri	TISH MEA	SURE.								
			Нег	GHT OF ME	niscus in I	NCHES.							
Diameter of tube in inches.	.01	.02	.03	.04	.05	.06	.07	.08					
			Correction	to be added	in hundredth	s of an inch.		-					
.15 .20 .25 .30 .35 .40 .45 .50	2.36 1.10 0.55 .36	4.70 2.20 1.20 0.79 .51 .40	6.86 3.28 1.92 1.26 0.82 .61 .32 .20	9.23 4.54 2.76 1.77 1.15 0.81 .51 .35	11.56 5.94 3.68 2.30 1.49 1.02 0.68 .47	7.85 4.72 2.88 1.85 1.22 0.83 •56 •40	5.88 3.48 2.24 1.42 0.96 .64	- 4.20 2.65 1.62 1.15 0.71					

^{*} The first table is from Kohlrausch (Experimental Physics), and is based on the experiments of Mendelejeff and Gutkowski (Jour. de Phys. Chem. Geo. Petersburg, 1877, or Wied. Beib. 1867). The second table has been calculated from the same data by conversion into inches and graphic interpolation.

A number of tables, mostly based on theoretical formulæ and the capillary constants of mercury in glass tubes in air and vacuum, were given in the fourth edition of Guyot's Tables, and may be there referred to. They are not repeated here, as the above is probably more accurate, and historical matter is excluded for convenience in the use of the book.

AERODYNAMICS.

The pressure on a plane surface normal to the wind is for ordinary wind velocities expressed by $P = kwav^2$

where k is a constant depending on the units employed, w the mass of unit volume of the air, a the area of the surface and v the velocity of the wind.* Engineers generally use the table of values of P given by Smeaton in 1759. This table was calculated from the formula

$$P = .00492 v^2$$

and gives the pressure in pounds per square foot when v is expressed in miles per hour. The corresponding formula when v is expressed in feet per second is

$$P = .00228 v^2$$
.

Later determinations do not agree well together, but give on the average somewhat lower values for the coefficient. The value of w depends, of course, on the temperature and the barometric pressure. Langley's experiments give kw = .00166 at ordinary barometric pressure and 10° C. temperature.

For planes inclined at an angle α less than 90° to the direction of the wind the pressure may be expressed as $P_{\alpha} = F_{\alpha} P_{30}$.

Table 104, founded on the experiments of Langley, gives the value of F_{α} for different values of α . The word aspect, in the headings, is used by him to define the position of the plane relative to the direction of motion. The numerical value of the aspect is the ratio of the linear dimension transverse to the direction of motion to the linear dimension, a vertical plane through which is parallel to the direction of motion.

TABLE 104. — Values of P_a in Equation $P_a = P_a P_{00}$.

	in. × 4.8 in. 6 (nearly).		in. X 12 in. pect 1.		n. × 24 in. ect ½.
α	F_a	α	F_{α}	a	F_a
0° 5 10 15 20 25 30 35 40 45 50	0.00 0.28 0.44 0.55 0.62 0.66 0.69 0.72 0.74 0.76	0° 5 10 15 20 25 30 35 40 45	0.00 0.15 0.30 0.44 0.57 0.69 0.78 0.84 0.88	0° 5 10 15 20 25 3°	0.00 0.07 0.17 0.29 0.43 0.58 0.71

* The following pressures in pounds per square inch show roughly the influence of the shape and size of	the resist-
* The following pressures in pounds per square inch show roughly the influence of the shape and size of ing surface (Dines' results). The wind velocity was 20.9 miles per hour. The flat plates were § in. thick.	
District the second sec	

Tree ourrance (Transco	a on or a con	r b	-	٠.	7 444 64	•	010	-	, .	1 602		The part was a second production of the second
Square, sides 4 in.												
Circle, same area				۰							1.51	Same, cone in front
Rectangle, 16 in. b	yr .					0	0				1.70	" sharp 30° cone at back 1.54
Square, 12 in. sides	3	٠,		0.	٠		4	٠		٠	1.57	" cone in front
Circle, same area						à					x.55	5 in. Robinson cup on 8½ in. of ½ in. rod 1.68
Rectangle, 24 in. b	уб										1.59	Same, with back to wind 0.73
Square, sides 16 in				۰		9			0		1.52	9 in. cup on 61 in. of 8 in. rod
Plate, 6 in. diam.	# thick			٠							1.45	Same, with back to wind
Ditto, curved side	to wind		6		0		0	٠			0.92	21 in. cup on 92 in. of 1 in. rod 2.60
Sphere, 6 in. diam.			0	٠	4	4	0		4		0.67	Same, with back to wind 1.04

AERODYNAMICS.

On the basis of the results given in Table 104 Langley states the following condition for the soaring of an aeroplane 76.2 centimetres long and 12.2 centimetres broad, weighing 500 grammes,—that is, a plane one square foot in area, weighing 1.1 pounds. It is supposed to soar in a horizontal direction, with aspect 6.

TABLE 105. — Data for the Scaring of Planes 76.2 × 12.2 cms. weighing 500 Grammes, Aspect 6.

Inclination to the horizontal α .	Soaring s	peed v.		ded per minute ivity).	at speed v	anes of like le of soaring with the ex- f one horse
	Metres per sec.	Feet per sec.	Kilogramme metres.	Foot pounds.	Kilogrammes.	Pounds.
2° 5 10 15 30 45	20.0 15.2 12.4 11.2 10.6 11.2	66 50 41 37 35 35	24 41 65 86 175 336	174 297 474 623 1268 2434	95.0 55.5 34.8 26.5 13.0 6.8	209 122 77 58 29

In general, if
$$\rho = \frac{\text{weight}}{\text{area}}$$
Soaring speed $v = \sqrt{\frac{\rho}{k} \cdot \frac{1}{F_a \cos a}}$
Activity per unit of weight $= v \tan a$

The following data for curved surfaces are due to Wellner (Zeits. für Luftschifffahrt, x., Oct. 1803).

Let the surface be so curved that its intersection with a vertical plane parallel to the line of motion is a parabola whose height is about $\frac{1}{12}$ the subtending chord, and let the surface be bounded by an elliptic outline symmetrical with the line of motion. Also, let the angle of inclination of the chord of the surface be α , and the angle between the direction of resultant air pressure and the normal to the direction of motion be β . Then $\beta < \alpha$, and the soaring speed is

$$v = \sqrt{\frac{\rho}{k} \cdot \frac{1}{F_{\alpha} \cos \beta}}$$
, while the activity per unit of weight $= v \tan \beta$.

The following series of values were obtained from experiments on moving trains and in the wind.

Angle of inclination
$$\alpha = -3^{\circ}$$
 0° $+3^{\circ}$ 6° 9° 12°
Inclination factor $F_{\alpha} = 0.20$ 0.50 0.75 0.90 1.00 1.05
 $\tan \beta = 0.01$ 0.02 0.03 0.04 0.10 0.17

Thus a curved surface shows finite soaring speeds when the angle of inclination α is zero or even slightly negative. Above $\alpha = 12^{\circ}$ curved surfaces rapidly lose any advantage they may have for small inclinations.

FRICTION.

The following table of coefficients of friction f and its reciprocal ι/f , together with the angle of friction or angle of repose ϕ , is quoted from Rankine's "Applied Mechanics." It was compiled by Rankine from the results of General Morin and other authorities, and is sufficient for all ordinary purposes.

Material.	f	1/f	φ
Wood on wood, dry """ soapy Metals on oak, dry """ wet """ elm, dry Hemp on oak, dry """ wet Leather on oak """ metals, dry """ wet """ greasy """ oily Metals on metals, dry """ wet Smooth surfaces, occasionally greased """ best results Steel on agate, dry """ oiled * Iron on stone Wood on stone Masony and brick work, dry	f .2550 .20 .5060 .2426 .20 .2025 .53 .33 .2738 .56 .36 .23 .15 .1520 .3 .0708 .05 .03036 .20 .107 .3070 About .40 .6070	1/f 4.00-2.00 5.00 2.00-1.67 4.17-3.85 5.00 5.00-4.00 1.89 3.00 3.70-2.86 1.79 2.78 4.35 6.67 6.67-5.00 3.33 14.3-12.50 20.00 33.3-27.6 5.00 9.35 3.33-1.43 2.50 1.67-1.43	φ 14.0-26.5 11.5 26.5-31.0 13.5-14.5 11.5-14.0 28.0 18.5 15.0-19.5 29.5 20.0 13.0 8.5 8.5-11.5 16.5 4.0-4.5 3.0 1.75-2.0 11.5 6.1 16.7-35.0 22.0 33.0-35.0
" " " damp mortar " on dry clay " " moist clay Earth on earth " " dry sand, clay, and mixed earth " " damp clay " " wet clay " " shingle and gravel	.74 .51 .33 .25-1.00 .3875 1.00 .31 .81-1.11	1.35 1.96 3.00 4.00–1.00 2.63–1.33 1.00 3.23 1.23–0.9	36.5 27.0 18.25 14.0–45.0 21.0–37.0 45.0 17.0 39.0–48.0

^{*} Quoted from a paper by Jenkin and Ewing, "Phil. Trans. R. S." vol. z67. In this paper it is shown that in cases where "static friction" exceeds "kinetic friction" there is a gradual increase of the coefficient of friction as the speed is reduced towards zero.

* TABLE 107. VISCOSITY.

The coefficient of viscosity is the tangential force per unit area of one face of a plate of the fluid which is required to keep up unit distortion between the faces. Viscosity is thus measured in terms of the temporary rigidity which it gives to the fluid. Solids may be included in this definition when only that part of the rigidity which is due to varying distortion is considered. One of the most satisfactory methods of measuring the viscosity of fluids is by the observation of the rate of flow of the fluid through a capillary tube, the length of which is great in comparison with its diameter. Poiseuille* gave the following formula for calculating the viscosity coefficient

in this case: $\mu = \frac{\pi h r^4 s}{8vl}$, where h is the pressure height, r the radius of the tube, s the density of the fluid, v the quantity flowing per unit time, and l the length of the capillary part of the tube. The liquid is supposed to flow from an upper to a lower reservoir joined by the tube, hence h and l are different. The product hs is the pressure under which the flow takes place. Hagen bach t pointed out that this formula is in error if the velocity of flow is sensible, and suggested a correction which was used in the calculation of his results. The amount to be subtracted from

bach † pointed out that this formula is in error if the velocity of flow is sensible, and suggested a correction which was used in the calculation of his results. The amount to be subtracted from h, according to Hagenbach, is $\frac{v^2}{\sqrt{2} \cdot g}$, where g is the acceleration due to gravity. Gartenmeister ‡ points out an error in this to which his attention had been called by Finkener, and states that the quantity to be subtracted from h should be simply $\frac{v^2}{g}$; and this formula is used in the reduction of his observations. Gartenmeister's formula is the most accurate, but all of them nearly agree if the tube be long enough to make the rate of flow very small. None of the formulæ take into account irregularities in the distortion of the fluid near the ends of the tube, but this is probably negligible in all cases here quoted from, although it probably renders the results obtained by the

"viscosimeter" commonly used for testing oils useless for our purpose.

The term "specific viscosity" is sometimes used in the headings of the tables; it means the ratio of the viscosity of the fluid under consideration to the viscosity of water at a specified tem-

perature.

The friction of a fluid is proportional to the size of the rubbing surface, to $\frac{dv}{dx}$, where v is the velocity of motion in a direction perpendicular to the rubbing surface, and to a constant known as the viscosity.

Variation of Viscosity of Water, with Temperature. Dynes per sq. cm.

Temp. C.	Poiseville. 1846.	Sprung. 1876.	Slotte. 1883.	Thorpe-Rogers. 1894.§	Specific viscosity.	Temp. C.	Slotte. 1883.	Thorpe-Rogers.	Specific Viscosity.
0° 5 10 15 20 25 30 35 40 45 50	0.01716 .01515 .01309 .01146 .01008 .00897 .00803 .00721 .00653	0.01778 .01510 .01301 .01135 .01003 .00896 .00802 .00723 .00657 .00602	0.01808 .01524 .01314 .01144 .01008 .00896 .00803 .00724 .00657 .00602	0.01778 .01510 .01303 .01134 .01002 .00891 .00798 .00720 .00654 .00597	1.000 .849 .733 .638 .564 .501 .449 .405 .368 .336	55° 60 65 70 75 80 85 90 95	0.00510 .00472 .00438 .00408 .00382 .00358 .00337 .00318 .00301	0.00506 .00468 .00436 .00406 .00380 .00356 .00335 .00316 .00299	.285 .263 .245 .228 .214 .200 .188 .178 .168

^{* &}quot;Comptes rendus," vol. 15, 1842; "Mém. Serv. Étr." 1846.

^{† &}quot;Pogg. Ann." vol. 109, 1860.

^{‡ &}quot;Zeitschr. Phys. Chem." vol. 6, 1890.

[§] Thorpe and Rogers, "Philos. Trans." 185A, 1894; "Proc. Roy. Soc." 55, 1894.

VISCOSITY.

TABLE 108. - Solution of Alcohol in Water.*

Coefficients of viscosity, in C. G. S. units, for solution of alcohol in water.

Temp.		Percentage by weight of alcohol in the mixture.												
c.*	0	8.21	16.60	34-58	43-99	53.36	75-75	87.45	99.72					
0° 5 10 15 20	0.0181 .0152 .0131 .0114	0.0287 .0234 .0195 .0165	0.0453 .0351 .0281 .0230 .0193	0.0732 .0558 .0435 .0347 .0283	0.0707 .0552 .0438 .0353 .0286	0.0632 .0502 .0405 .0332 .0276	0.0407 .0344 .0292 .0250	0.0294 .0256 .0223 .0195 .0172	0.0180 .0163 .0148 .0134 .0122					
25 30 35 40 45 50 55 60	0.0090 .0081 .0073 .0067 .0061 0.0056 .0052 .0048	0.0123 .0108 .0096 .0086 .0077 0.0070 .0063 .0058	0.0163 .0141 .0122 .0108 .0095 0.0085 .0076 .0069	0.0234 .0196 .0167 .0143 .0125 0.0109 .0096 .0086	0.024I .0204 .0174 .0150 .013I 0.0115 .0102 .0091	0.0232 .0198 .0171 .0149 .0130 0.0115 .0102 .0092	0.0187 .0163 .0144 .0127 .0113 0.0102 .0091 .0083	0.0152 .0135 .0120 .0107 .0097 0.0088 .0086	0.0110 .0100 .0092 .0084 .0077 0.0070 .0065					

The following tables (152-153) contain the results of a number of experiments in the viscosity of mineral oils derived from petroleum residues and used for lubricating purposes.

TABLE 109. - Mineral Oils. ‡

sity.	Flashing point.	Burning point.	Sp. viscosity. Water at 20° C. = 1.						
Density	° C.	° C.	20° C.	50° C.	100° C.				
.931 .921 .906	243 216 189	274 246 208	- - -	7.31 3.45	2.9 2.5 1.5				
.92 1 .917	163 132	190 168	<u>-</u>	27.80	2.8 2.6				
.904 .891 .878 .855	170 151 108 42	207 182 148 45	8.65 4.77 2.94 1.65	2.65 1.86 1.48	1.7				
.905 .894 .866	165 139 90	202 270 224	7.60 2.50	3.10 3.60 1.50	1.5				

TABLE 110. - Oils.

Oil.	Density.	o Flashing O point.	o Burning O point.	Viscosity at 19°C., water at 19°C.=1.
Cylinder oil Machine oil Wagon oil	.917 .914 .914 .911	227 213 148 157 134	274 260 182 187 162	191 102 80 70 55
Oleo-naphtha . " " . Oleonid " best quality	.910 .904 .894 .884	219 201 184 185	257 242 222 217	121 66 26 28
Olive oil Whale oil	.916 .879 .875			22 9 8

^{*} This table was calculated from the table of fluidities given by Noack (Wied. Ann. vol. 27, p. 217), and shows a maximum for a solution containing about 40 per cent of alcohol. A similar result was obtained for solutions of acetic

acid.

† Table 152 is from a paper by Engler in Dingler's "Poly. Jour." vol. 268, p. 76, and Table 153 is from a paper by Lamansky in the same journal, vol. 248, p. 29. The very mixed composition of these oils renders the viscosity a very uncertain quantity, neither the density nor the flashing point being a good guide to viscosity.

‡ The different groups in this table are from different residues.

VISCOSITY.

This table gives some miscellaneous data as to the viscosity of liquids, mostly referring to oils and paraffins. The viscosities are in C. G. S. units.

Liquid.			G. %	Coefficient of viscosity.	Temp. Cent. °	Authority.
Ammonia				0.0160 0.0149	11.9	Poiseuille.
Anisol				0.0111	20.0	Gartenmeister.
Glycerine	• •	•		42.20 25.18 13.87 8.30 4.94	2.8 8.1 14.3 20.3 26.5	Schottner. " " " " "
Glycerine and water			94.46 80.31 64.05 49.79	7.437 1.021 0.222 0.092	8.5 8.5 8.5 8.5	66 66 66
Glycol				0.0219	0.0	Arrhenius.
Mercury* " " " " Meta-cresol Olive oil Paraffins: Decane	· · · · · · · · · · · · · · · · · · ·			0.0184 0.0170 0.0157 0.0122 0.0102 0.0093 0.1878 0.9890	20.0 20.0 100.0 200.0 300.0 20.0 215.0 22.3 23.3 24.0	Koch. " " " Gartenmeister. Brodmann. Bartolli & Stracciati. " " " "
Heptane Hexadec Hexane Nonane Octane Pentane Pentadec Tetradec Tridecan Undecan	cane cane cane			0.0045 0.0359 0.0033 0.0062 0.0053 0.0026 0.0281 0.0213 0.0155 0.0095	22.2 23.7 22.3 22.2 21.0 22.0 21.9 23.3 22.7	66 66 66 66 66 66 66 66 66 66
Petroleum (Caucasi	an) .	٠		0.0190	17.5	Petroff.
Rape oil	• •	•		25.3 3.85 1.63 0.96	0.0 10.0 20.0 30.0	O. E. Meyer. " "

^{*} Calculated from the formula $\mu = .017 - .000066t + 00000021t^2 - .00000000025t^3$ (vide Koch, Wied. Ann. vol. 14. p. 1).

TABLE 112.

VISCOSITY.

This table gives the viscosity of a number of liquids together with their temperature variation.

The headings are temperatures in Centigrade degrees, and the numbers under them the coefficients of viscosity in C. G. S. units.*

					<i>a</i>				ندا
Liquid.			Te	mperature	e Centigra	ıde.			rence
anguno	00	100	200	30 ⁰	400	500	700	900	Reference.
Acetates: Methyl	~	.0046	.0041	.0036	.0032	.0030	-	_	I
Ethyl	-	.0051	.0044	,0040	.0035	.0032	-	-	I
Propyl Allyl	_	.0066	.0059	.0052	.0044	.0039	_	-	I
Amyl	_	.0106	.0089	.0077	.0065	.0044			I
Acids: Formic	-	.02262	.01804	.01465		.01025	-	-	2
Acetic	-	.0150	.0126	.0109	.0094	.0082	-	-	I
Propionic	_	.0125	.0107	.0092	1800.	.0073	_	-	3
Butyric	_	.0139	.0163	.0136	.0118	.0102		_	2
Valeric Valeric		.0271	.0220	.0183	.0155	.0127	-	_	3
Salicylic	_	.0320	.0271	.0222	.0181	.0150	-	-	3
Alcohol : Methyl Ethyl	.00813	.00686		.00515	.00450	.00396	_	-	4
Propyl	.01770	.01449	.01192	.00990	.00828	.00698	.00504	.00526	4
Butyric	.05185	.03872	.02947	.02266	.01780	.01409	.00926	.00520	4
Allýl	.02144	.01703	.01361	.01165	.00911	.00760	.00548	.00407	4
Isopropyl	.04564	.03245	.02369	.01755	.01329	.01026	.00642	_	4
Isobutyl Amyl (opinac.)	.08038	.05547	.03906	.02863	.02121	.01609	.00973	.00633	4
Aldehyde	.00267	.00244	.00222		-	-01049	.0114/	.00/50	4
Aniline	- 1	- "	.0440	.0319	.0241	.0189	_	-	3 5 4
Benzole	.00902	.00759	.00649	.00562	.00492	.00437	.00351	-	
Bromides: Ethyl Propyl	.00478	.00432	.00392	.00357	00435	-	- 20228	_	4
Allyl	.00619	.00575	.00517	.00467	.00425	.00388	.00328	_	4
Ethylene	.02435	.02035	.01716	.01470	.01280	.01124	.00895	.00733	4
Carbon bisulphide	.00429	.00396	.00367	.00342	.00319	-		-	4
Carbon dioxide (liq.) Chlorides: Propyl	.00099	.00085	.00071	-	-	-	_		
Allyl	.00436	.00390	.00352	.00319	.00291	_	_	_	4
Ethylene	.01128	.00961	.00833	.00730	.00646	.00576	.00470	_	4
Chloroform	.00700	.00626	.00564	.00511	.00466	.00390		-	4
Ether	-	.0026	.0023	.002I		-		-	I
Ethylbenzole Ethylsulphide	.00874	.007 58	.00666	.00592	.00529	.00477	.00394	.00330	4 4
Iodides: Methyl	.00594	.00536	.00487	.00446	.00409	-		-1	4
Ethyl	.00719	.00645	.00583	.00530	.00484	.00444	.00378	-	1
Propyl	.00938	.00827	.00737	.00662	.00598	.00544	.00456	-00387	4
Allyl Metaxylol	.00930	.00819 .00698	.00726	.00652	.00588	.00534	.00448	.00381	4
Nitrobenzene	.00002	-	.0203	.0170	.0144	.0124	.00309	.00313	4
Paraffines: Pentane	.00283	.00256	.00232	.00212	-		-	-	4
Hexane	.00396	.00355	.00320	.00290	.00264	.00241	.00221	-	4
Heptane Octane	.00519	.00460	.00410	.00369	.00334	.00303	.00253	.00214	4
Isopentane	.00703	.00246	.00530	.00204	-00420	.00386	.00318	.00200	4 4
Isohexane	.00371	.00332	.00300	.00272	.00247	.00226	_	-	4
Isoheptane	.00477	.00423	.00379	.00342	.00309	.00282	.00235	.00200	4
Propyl aldehyde	00769	.0047	.0041	.0036	.0033	-	-	-	I
Toluene	.00768	.00008	.00586	.00520	.00466	.00420	.00348	.00292	4
		-							

¹ Pribram-Handl, Wien. Ber. 78, 1878, 80, 1879, 84,

^{1881.} 2 Gartenmeister, Zeitschr. Phys. Chem. 6, 1890. 3 Rellstab, Diss. Bonn, 1868. 4 Thorpe-Roger, Philos. Trans. 185 A, 1894, 189 A,

^{1897;} Proc. Roy. Soc. 55, 1894, 60, 1896; Jour. Chem. Soc. 71, 1897; Chem. News, 75, 1897. 5 Wijkander, Wied. Beibl. 3, 1879. 6 Warburg-Babo, Wied. Ann. 17, 1882.

^{*} Calculated from the specific viscosities given in Landolt & Börnstein's Phys. Chem. Tab. For inorganic acids, see Solutions.

This table is intended to show the effect of change of concentration and change of temperature on the viscosity of solutions of salts in water. The specific viscosity × 100 is given for two or more densities and for several temperatures in the case of each solution. μ stands for specific viscosity, and t for temperature Centigrade.

-											
Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	ŧ	μ	ż	μ	t	Authority.
BaCl ₂	7.60 15.40 24.34	-	77.9 86.4 100.7	10 "	44.0 56.0 66.2	30	35.2 39.6 47.7	50 "		1 1 1	Sprung.
Ba(NO ₃) ₂	2.98 5.24	1.027	62.0 68.1	15	51.1 54.2	25	42.4 44.I	3,5	34.8 36.9	4,5	Wagner.
CaCl ₂ " "	15.17 31.60 39.75 44.09	- - -	110.9 272.5 670.0	10 " "	71.3 177.0 379.0 593.1	30 "	50.3 124.0 245.5 363.2	50 " "		1 1 1 1	Sprung.
Ca(NO ₈) ₂	17.55 30.10 40.13	1.171 1.274 1.386	93.8 144.1 242.6	15	74.6 112.7 217.1	25 "	60.0 90.7 156.5	3.5 "	49.9 75.1 128.1	45	Wagner.
CdCl ₂	11.09 16.30 24.79	1.109 1.181 1.320	77·5 88.9 104.0	15	60.5 70.5 80.4	25 "	49.1 57.5 64.6	35 "	40.7 47.2 53.6	45	66 66
Cd(NO ₃) ₂ "	7.81 15.71 22.36	1.074 1.159 1.241	61.9 71.8 85.1	15	50.1 58.7 69.0	25 "	41.1 48.8 57·3	3.5 "	34.0 41.3 47.5	45	66 66
CdSO ₄	7.14 14.66 22.01	1.068 1.159 1.268	78.9 96.2 120.8	15	61.8 72.4 91.8	25 "	49.9 58.1 73.5	3.5 "	41.3 48.8 60.1	45	« «
CoCl ₂	7.97 14.86 22.27	1.081 1.161 1.264	83.0 111.6 161.6	15	65.1 85.1 126.6	25 "	53.6 73.7 101.6	35	44.9 58.8 85.6	45	66 66
Co(NO ₈) ₂	8.28 15.96 24.53	1.073 1.144 1.229	74·7 87.0 110.4	15	57·9 69.2 88.0	25 "	48.7 55.4 71.5	3.5 "	39.8 44.9 59.1	45 "	66
CoSO ₄	7.24 14.16 21.17	1.086 1.159 1.240	86.7 117.8 193.6	15 "	68.7 95.5 146.2	25 "	55.0 76.0 113.0	3.5 "	45.1 61.7 89.9	45	66 66
CuCl ₂	12.01 21.35 33.03	1.104 1.215 1.331	87.2 121.5 178.4	15	67.8 95.8 137.2	25 "	55.1 77.0 107.6	3.5	45.6 63.2 87.1	45	66 66
Cu(NO ₃) ₂	18.99 26.68 46.71	1.177 1.264 1.536	97·3 126.2 382.9	15	76.0 98.8 283.8	25 "	61.5 80.9 215.3	35	51.3 68.6 172.2	45	66 66 66
CuSO ₄ "	6.79 12.57 17.49	1.055 1.115 1.163	79.6 98.2 124.5	15 "	61.8 74.0 96.8	25 "	49.8 59.7 75.9	35	41.4 52.0 61.8	45	66 66
HCl "	8.14 16.12 23.04	1.037 1.084 1.114	71.0 80.0 91.8	15	57.9 66.5 79.9	25	48.3 56.4 65.9	35	40.1 48.1 56.4	45	66 66
HgCl ₂	0.23 3·55	1.023	76.75	10	58.5 59.2	20 "	46.8 46.6	30	38.3 38.3	40	66

Salt.	Percentage by weight of salt in solution.	Density.	μ	ž	μ	ŧ	μ	ŧ	μ	t	Authority.
HNO ₈	8.37 12.20 28.31	1.067 1.116 1.178	66.4 69.5 80.3	15	54.8 57.3 65.5	25	45·4 47·9 54·9	35	37.6 40.7 46.2	45	Wagner.
H ₂ SO ₄	7.87 15.50 23.43	1.065 1.130 1.200	77.8 95.1 122.7	15	61.0 75.0 95.5	25	50.0 60.5 77.5	35	41.7 49.8 64.3	45	66 66
KC1	10.23	_	70.0 70.0	10	4 6.1 48.6	30	33.1 36.4	50	-	_	Sprung.
KBr "	14.02 23.16 34.64	- - -	67.6 66.2 66.6	10	44.8 44.7 47.0	30	32.1 33.2 35.7	50	-	-	66 66
KI " "	8.42 17.01 33.03 45.98 54.00	-	69.5 65.3 61.8 63.0 68.8	10 " "	44.0 42.9 42.9 45.2 48.5	30 "	31.3 31.4 32.4 35.3 37.6	50 ""			66 66 66 66
KClO ₈	3.51 5.69	-	71.7	10	44.7 45.0	30	31.5 31.4	50	_	-	66
KNO ₈	6.32 12.19 17.60	-	70.8 68.7 68.8	10 "	44.6 44.8 46.0	30	31.8 32.3 33.4	50 "			66 66
K ₂ SO ₄	5.17 9.77	-	77·4 81.0	10	48.6 52.0	30	34·3 36.9	50	_	<u>-</u>	46
K ₂ CrO ₄ " "	11.93 19.61 24.26 32.78	1.233	75.8 85.3 97.8 109.5	10 66 66	62.5 68.7 74.5 88.9	30	41.0 47.9 54.5 62.6	40 66 66	1 1 1 1	1 1 1 1	" Slotte. Sprung.
K ₂ Cr ₂ O ₇	4.71 6.97	1.032 1.049	72.6 73.1	10	55·9 56·4	20	45·3 45·5	30	37·5 37·7	40	Slotte.
LiCl "	7.76 13.91 26.93	-	96.1 121.3 229.4	10 "	59.7 75.9 142.1	30 "	41.2 52.6 98.0	50	-		Sprung.
Mg(NO ₃) ₂	18.62 34.19 39.77	1.102 1.200 1.430	99.8 213.3 317.0	15	81.3 164.4 250.0	25 "	66.5 132.4 191.4	35	56.2 109.9 158.1	45 "	Wagner.
MgSO ₄	4.98 9.50 19.32	-	96.2 1 30.9 302.2	10 "	59.0 77.7 166.4	30 "	40.9 53.0 106.0	50 "		-	Sprung.
MgCrO ₄	12.31 21.86 27.71	1.089 1.164 1.217	111.3 167.1 232.2	10 "	84.8 125.3 172.6	20	67.4 99.0 133.9	30 "	55.0 79.4 106.6	40	Slotte.
MnCl ₂	8.01 15.65 30.33 40.13	1.096 1.196 1.337 1.453	92.8 130.9 256.3 537·3	15 "	71.1 104.2 193.2 393.4	25	57·5 84.0 155.0 300.4	35 "	48.1 68.7 123.7 246.5	45	Wagner.
Parinte Carlos Ta						_		_		-	

Salt.	Percentage by weight of salt in solution.	Density.	μ	ŧ	μ	ŧ	μ	ż	μ	t	Authority.
Mn(NO ₈) ₂	18.31 29.60 49.31	1.148 1.323 1.506	96.0 167.5 396.8	15	76.4 126.0 301.1	25	64.5 104.6 221.0	35	5 5.6 88.6 188.8	45	Wagner.
MnSO ₄	11.45 18.80 22.08	1.147 1.251 1.306	129.4 228.6 661.8	15 "	98.6 172.2 474.3	25	78.3 137.1 347.9	3.5	63.4 107.4 266.8	45	66 66
NaCl "	7.95 14.31 23.22		82.4 94.8 128.3	10 "	52.0 60.1 79.4	30	31.8 36.9 47.4	50	1 1 1		Sprung.
NaBr "	9.77 18.58 27.27		75.6 82.6 95.9	10 "	48.7 53.5 61.7	30	34·4 38·2 43.8	50			66 66
NaI "	8.83 17.15 35.69 55.47	- - -	73.1 73.8 86.0 157.2	10	46.0 47.4 55.7 96.4	30	32.4 33.7 40.6 66.9	50 "		1 1 1	66 66 66
NaClO ₈	11.50 20.59 33.54	1 1 1	78.7 88.9 121.0	10 "	50.0 56.8 75.7	30	35·3 40·4 53·0	50	-	- 1 - 1	66 62 66
NaNO ₃ "	7.25 12.35 18.20 31.55	- - -	75.6 81.2 87.0 121.2	10 "	47.9 51.0 55.9 76.2	30 " "	33.8 36.1 39.3 53.4	50 "		1 1 1 1	66 66 66
Na ₂ SO ₄ " "	4.98 9.50 14.03 19.32		96.2 130.9 187.9 302.2	10 " "	59.0 77.7 107.4 166.4	30 "	40.9 53.0 71.1 106.0	50 ""	-	1 1 1 1	66 66 66
Na ₂ CrO ₄ "	5.76 10.62 14.81	1.058 1.112 1.164	85.8 103.3 127.5	10 "	66.6 79.3 97.1	20 "	53.4 63.5 77.3	30 %	43.8 52.3 63.0	40 "	Slotte.
NH ₄ Cl " "	3.67 8.67 15.68 23.37		71.5 69.1 67.3 67.4	""	45.0 45.3 46.2 47.7	30 "	31.9 32.6 34.0 36.1	50 "	-	1 1 1 1	Sprung.
NH ₄ Br "	15.97 25.33 36.88	-	65.2 62.6 62.4	10 "	43.2 43.3 44.6	30 "	31.5 32.2 34·3	50 "			66 66
NH ₄ NO ₃ " " "	5.97 12.19 27.08 37.22 49.83	-	69.6 66.8 67.0 71.7 81.1	10 " "	44·3 44·3 47·7 51·2 63·3	30 "	31.6 31.9 34.9 38.8 48.9	50 " " " " " " "	-	1 1 1 1	66 66 66
(NH ₄) ₂ SO ₄ "	8.10 15.94 25.51	-	107.9 120.2 148.4	10 "	52.3 60.4 74.8	30 "	37.0 43.2 54.1	50 "	-		66 66 66

Salt.	Percentage by weight of salt in solution.	Density.	μ	ź	μ	ż	μ	t	μ	ż	Authority.
(NH ₄) ₂ CrO ₄	10.52 19.75 28.04	1.063 1.120 1.173	79·3 88.2 101.1	10	62.4 70.0 80.7	20	57.8 60.8	30	42.4 48.4 56.4	40 - -	Slotte.
(NH ₄) ₂ Cr ₂ O ₇	6.85 13.00 19.93	1.039 1.078 1.126	72.5 72.6 77.6	10 "	56.3 57.2 58.8	20 "	45.8 46.8 48.7	30 "	38.0 39.1 40.9	40 "	66 66
NiCl ₂	11.45 22.69 30.40	1.109 1.226 1.337	90.4 140.2 2 29.5	15	70.0 109.7 171.8	25	57.5 87.8 139.2	3 . 5	48.2 72.7 111.9	45	Wagner.
Ni(NO ₃) ₂	16.49 30.01 40.95	1.136 1.278 1.388	90.7 135.6 222.6	15 "	70.1 105.9 169.7	25 "	57·4 85·5 128.2	3.5 "	48.9 70.7 152.4	45	66 66
NiSO ₄	10.62 18.19 25.35	1.092 1.198 1.314	94.6 154.9 298.5	15 "	73·5 119.9 224.9	25 "	60.1 99.5 173.0	35 "	49.8 75.7 152.4	45	66 66
Pb(NO ₈) ₂	17.93 32.22	1.179 1.362	74.0 91.8	15	59.1 72.5	25	48.5 59.6	3,5	40.3 50.6	45	66
Sr(NO ₃) ₂	10.29 21.19 32.61	1.088 1.124 1.307	69.3 87.3 116.9	15 "	56.0 69.2 93.3	25 "	45.9 57.8 76.7	35	39.1 48.1 62.3	45 "	66 66
ZnCl ₂	15.33 23.49 33.78	1.146 1.229 1.343	93.6 111.5 151.7	15	72.7 86.6 117.9	25	57.8 69.8 90.0	35	48.2 57.5 72.6	45	66
Zn(NO ₃) ₂ "	15.95 30.23 44.50	1.115 1.229 1.437	80.7 104.7 167.9	15	64.3 85.7 130.6	25	52.6 69.5 105.4	35	43.8 57.7 87.9	45 "	66
ZnSO ₄	7.12 16.64 23.09	1.106 1.195 1.281	97.1 156.0 232.8	15	79.3 118.6 177.4	25	62.7 94.2 135.2	35	51.5 73.5 108.1	45	66

SPECIFIC VISCOSITY.*

	Normal :	solution.	½ nor	mal.	l nor	mal.	l nor	mal.	
Dissolved salt.	Density.	Specific viscosity.	Density.	Specific viscosity.	Density.	Specifie viscosity.	Density.	Specific viscosity.	Authority.
$\begin{array}{cccc} \text{Acids}: \text{Cl}_2\text{O}_3 & . & . \\ & \text{HCl} & . & . \\ & \text{HClO}_3 & . & . \\ & \text{HNO}_3 & . & . \\ & \text{H}_2\text{SO}_4 & . & . \end{array}$	1.0562 1.0177 1.0485 1.0332 1.0303	1.012 1.067 1.052 1.027 1.090	1.0283 1.0092 1.0244 1.0168 1.0154	1.003 1.034 1.025 1.011 1.043	1.0143 1.0045 1.0126 1.0086 1.0074	1.000 1.017 1.014 1.005 1.022	1.0074 1.0025 1.0064 1.0044 1.0035	0.999 1.009 1.006 1.003 1.008	Reyher. " " Wagner.
Aluminium sulphate Barium chloride " nitrate Calcium chloride . " nitrate	1.0550 1.0884 - 1.0446 1.0596	1.406 1.123 - 1.156 1.117	1.0278 1.0441 1.0518 1.0218 1.0300	1.178 1.057 1.044 1.076 1.053	1.0138 1.0226 1.0259 1.0105 1.0151	1.082 1.026 1.021 1.036 1.022	1.0068 1.0114 1.0130 1.0050 1.0076	1.038 1.013 1.008 1.017 1.008	66 66 66
Cadmium chloride . " nitrate . " sulphate . Cobalt chloride . " nitrate . " sulphate .	1.0779 1.0954 1.0973 1.0571 1.0728 1.0750	1.134 1.165 1.348 1.204 1.166 2.354	1.0394 1.0479 1.0487 1.0286 1.0369 1.0383	1.063 1.074 1.157 1.097 1.075	1.0197 1.0249 1.0244 1.0144 1.0184 1.0193	1.031 1.038 1.078 1.048 1.032	1.0098 1.0119 1.0120 1.0058 1.0094 1.0110	1.020 1.018 1.033 1.023 1.018	66 66 66 66
Copper chloride	1.0624 1.0755 1.0790 1.1380 1.0243 1.0453	1.205 1.179 1.358 1.101 1.142 1.290	1.0313 1.0372 1.0402 0.0699 1.0129 1.0234	1.098 1.080 1.160 1.042 1.066 1.137	1.0158 1.0185 1.0205 1.0351 1.0062	1.047 1.040 1.080 1.017 1.031 1.065	1.0077 1.0092 1.0103 1.0175 1.0030 1.0057	1.027 1.018 1.038 1.007 1.012 1.032	66 66 66 66 66
Magnesium chloride " nitrate . " sulphate Manganese chloride " nitrate . " sulphate	1.1375 1.0512 1.0584 1.0513 1.0690 1.0728	1.201 1.171 1.367 1.209 1.183 1.364	1.0188 1.0259 1.0297 1.0259 1.0349 1.0365	1.094 1.082 1.164 1.098 1.087 1.169	1.0091 1.0130 1.0152 1.0125 1.0174 1.0179	I.044 I.040 I.078 I.048 I.043 I.076	1.0043 1.0066 1.0076 1.0063 1.0093	1.021 1.020 1.032 1.023 1.023	66 66 66 66
Nickel chloride " nitrate " sulphate Potassium chloride . " chromate . " nitrate . " sulphate	1.0591 1.0755 1.0773 1.0466 1.0935 1.0605	1.205 1.180 1.361 0.987 1.113 0.975 1.105	1.0308 1.0381 1.0391 1.0235 1.0475 1.0305 1.0338	1.097 1.084 1.161 0.987 1.053 0.982 1.049	1.0144 1.0192 1.0198 1.0117 1.0241 1.0161	1.044 1.042 1.075 0.990 1.022 0.987 1.021	1.0067 1.0096 1.0017 1.0059 1.0121 1.0075 1.0084	1.021 1.019 1.032 0.993 1.012 0.992 1.008	66 66 66 66 66
Sodium chloride	1.0401 1.0786 1.0710 1.0554 1.1386	1.097 1.064 1.090 1.065 1.058	1.0208 1.0396 1.0359 1.0281 1.0692	1.047 1.030 1.042 1.026 1:020	1.0107 1.0190 1.0180 1.0141 1.0348	1.024 1.015 1.022 1.012 1.006	1.0056 1.0100 1.0092 1.0071 1.0173	1.013 1.008 1.012 1.007 1.000	Reyher. " " Wagner.
Strontium chloride . " nitrate . Zinc chloride " nitrate " sulphate	1.0676 1.0822 1.0590 1.0758 1.0792	1.141 1.115 1.189 1.164 1.367	1.0336 1.0419 1.0302 1.0404 1.0402	1.067 1.049 1.096 1.086 1.173	1.0171 1.0208 1.0152 1.0191 1.0198	1.034 1.024 1.053 1.039 1.082	1.0084 1.0104 1.0077 1.0096 1.0094	1.014 1.011 1.024 1.019 1.036	66 66 66 66

^{*} In the case of solutions of salts it has been found (vide Arrhennius, Zeits. für Phys. Chem. vol. 1, p. 285) that the specific viscosity can, in many cases, be nearly expressed by the equation $\mu = \mu_1^n$, where μ_1 is the specific viscosity for a normal solution referred to the solvent at the same temperature, and n the number of gramme molecules in the solution under consideration. The same rule may of course be applied to solutions stated in percentages instead of gramme molecules. The table here given has been compiled from the results of Reyher (Zeits. für Phys. Chem. vol. 2, p. 749) and of Wagner (Zeits. für Phys. Chem. vol. 5, p. 31) and illustrates this rule. The numbers are all for 25° C.

VISCOSITY OF GASES AND VAPORS.

The values of μ given in the table are 10⁶ times the coefficients of viscosity in C. G. S. units.

Substance.	Temp.	μ.	Refer- ence.	Substance.	Temp.	μ.	Refer- ence.
Acetone Air " " " " " " " Alcohol: Methyl " Ethyl " Propyl, norm. " Isopropyl " Butyl, norm. " Isobutyl " Tert. butyl Ammonia " " " " " Benzole " Carbon bisulphide " dioxide	18.0 -21.4 0.0 15.0 99.1 182.4 302.0 66.8 78.4 82.8 116.9 108.4 82.9 0.0 20.0 14.7 17.9 99.7 18.7 19.0 100.0 16.9 -20.7	78. 163.9 173.3 180.7 220.3 255.9 299.3 135. 142. 162. 143. 160. 96. 108. 210.4 220.8 224.1 273.3 322.1 79. 118. 92.4	ence.	Chloroform "" Ether "" Ethyl iodide Helium "" "" Hydrogen "" "" Mercury "" "" Methane "" Methyl iodide "" Chloride "" "" "" Methyl iodide "" "" "" "" "" "" "" "" "" "" "" "" ""	Temp. ° C. 0.0 17.4 61.2 0.0 16.1 36.5 72.3 0.0 15.3 60.6 184.6 -20.6 182.4 302.0 270.0 300.0 330.0 330.0 340.0 20.0 44.0 302.0	95-9 102.9 189.0 68.9 73.2 216.0 189.1 196.9 234.8 269.9 81.9 81.9 105.9 121.5 139.2 489.* 582.* 627.* 120.1 232. 105.2 213.9	3 1 " " 3 5 " " " " " " " " " " " " " " " "
66 66 66 66 66 66 66 66 66 66 66 66 66	15.0 99.1 182.4 302.0	145.7 186.1 222.1 268.2	66 66	Nitrogen	-21.5 10.9 53.5 15.4	156.3 170.7 189.4 195.7	7 "
" monoxide	0.0 20.0 0.0 20.0	163.0 184.0 128.7 147.0	4 66 66	Water vapor .	53.5 0.0 16.7	90.4 96.7 132.0	" " 9

Puluj, Wien. Ber. 69, (2), 1874.
 Breitenbach, Ann. Phys. 5, 1901.
 Steudel, Wied. Ann. 16, 1882.
 Graham, Philos. Trans. Lond. 1846, III.
 Schultze, Ann. Phys. (4), 5, 6, 1901.

⁶ Schumann, Wied. Ann. 23, 1884.
7 Obermayer, Wien. Ber. 71, (2a), 1875.
8 Koch, Wied. Ann. 14, 1881, 19, 1883.
9 Meyer-Schumann, Wied. Ann. 13, 1881.

^{*} The values here given were calculated from Koch's table (Wied. Ann. vol. 19, p. 869) by the formula $\mu=489$ [1+ 746 (t-270)].

COEFFICIENT OF VISCOSITY OF GASES.

Temperature Coefficients.

If μ_t =the viscosity at t^o C., μ_o =the vicosity at 0^o , α = the coefficient of expansion, β , γ , and α = coefficients independent of t, then

- (I) $\mu_t = \mu_o(1 + \alpha t)^n$. (Meyer, Obermayer, Puluj, Breitenbach.)
- $=\mu_0(1+\beta t)$. (Meyer, Obermayer.)
- (III) $=\mu_o(1+\alpha t)^{\frac{3}{2}}(1+\gamma t)^2$. (Schumann.)

(IV)
$$= \mu_0 \frac{1 + \frac{C}{273}}{1 + \frac{C}{T}} \sqrt{1 + \frac{t}{273}}.$$
 (Sutherland.)

Gas.	μο107.	α,	Constants.	Range ° C.	Refer- ence.
Air	1733.1 1811. 2208. - 2208. 2733. 698.4 1387.9 1497.2 1382.1 1625.2 689. 961.3 922.2 889.03 - 1969. 2348. 87.4 - 1620. 1658.6 1353.3	0.003665 .003665 	n=0.77 $C=119.4$ $n=0.7675$ $n=0.7544$ $n=0.7544$ $n=0.754$; $C=111.3$ $n=0.815$; $C=150.2$ $n=0.827$; $C=169.9$ $n=0.8119$ $n=0.819$	0-100 15.0-99.7 99.7-182.9 15-100 14.7-99.7 99.7-183.7 18.7-100 -21.5-53.5 15.6-157.3 0-15.0 15.3-99.6 99.6-184.6 -273-380 -21.5-53.5 -21.5-53.5 -21.5-53.5	1 2 3 4 4 4 3 3 5 6 5 7 7 8 6 7 7 8 4 3 3 2 4 10 7 7 4 4

- Holman, Proc. Amer. Acad. 12, 1876; 21, 1885; Philos. Mag. (5) 3, 1877; 21, 1886.
 Breitenbach, Wied. Ann. 5, 1901.
 Schultze, Ann. Phys. (4) 5, 1901.
 Rayleigh, Proc. Roy. Soc. 62, 1897; 66,

- 1900; 67, 1900.
- 5 Schumann, Wied. Ann. 23, 1884.
 6 Breitenbach, Ann. Phys. 5, 1901.
 7 Obermayer, Wien. Ber. 73 (2A), 1876.
 8 Puluj, Wien. Ber. 78 (2), 1878.
 9 Schultze, Ann. Phys. (4) 6, 1901.
 10 Koch, Wied. Ann. 19, 1883.

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

DIFFUSION OF AN AQUEOUS SOLUTION INTO PURE WATER.

If k is the coefficient of diffusion, dS the amount of the substance which passes in the time dt_0 at the place x, through q sq. cm. of a diffusion cylinder under the influence of a drop of concentration dc/dx, then

 $dS = -kq \frac{dc}{dx} dt.$

k depends on the temperature and the concentration. c gives the gram-molecules per litre. The unit of time is a day.

Substance.	С	‡0	k	Refer- ence	Substance.	С	t°	k	Refer- ence.
Bromine	O.I 66 66 66 66 66 66 66 66 66 66 66 66	12. 12. 17. 10.14 19.2 12. 19.5 17.5 13.5 12. 15.0 14.8 13.5 8. 10.1 12. 15.0 14.2	0.8 1.22 0.39 0.357 2.21 (0.5) 1.72 0.985 0.94 0.97 0.77 0.66 3.55 0.67 0.94 0.969	Refer-	Calcium chloride """ "Copper sulphate """ Glycerine "" "" Hydrochloric acid "" "" "" Magnesium sulphate	0.864 1.22 0.060 0.047 1.95 0.95 0.30 0.005 2/8 6/8 14/8 4.52 3.16 0.945 0.387 0.250 2.18	8.5 9. 9. 9. 17. 17. 10.14 10.14 10.14 11.5 11. 11. 5.5 5.5	0.70 0.72 0.64 0.68 0.23 0.47 0.354 0.345 0.329 0.300 2.93 2.67 2.112 2.02 1.84 0.28 0.32	4 " " " " " " " " " " " " " " " " " " "
Acetic acid Ammonia Formic acid Glycerine Hydrochloric acid Magnesium sulphate Potassium bromide "hydrate Sodium chloride "indide Sugar Sulphuric acid Zinc sulphate Acetic acid Calcium chloride Cadmium sulphate Hydrochloric acid Sodium iodide Sulphuric acid Zinc acetate "Acetic acid Fotassium carbonate "hydrate Acetic acid Potassium chloride Acetic acid Potassium chloride	1.0 es	12. 15.23 12. 10.14 12. 15.0 14.3 12. 10. 12. 12. 14.8 12. 10. 19.04 12. 10. 12. 10. 11. 10. 11. 10. 11. 10. 11. 10. 11. 10. 10	0.74 1.54 0.97 0.339 2.09 0.30 1.12 0.94 0.964 1.11 0.80 0.254 1.12 0.236 0.68 0.246 2.21 0.90 1.16 0.210 0.120 0.68 0.69 0.68 0.69 0.120 0.68	7 7 3 6 4 8 6 2 3 2 2 8 6 6 9 6 8 9 6 8 6 9 9 1 8 6 6 8	Potassium hydrate """ """ """ """ """ """ """ """ """	0.54I 3.23 0.402 0.75 0.49 0.375 3.9 1.4 0.3 0.02 0.95 0.02 2/8 4/8 6/8 10/8 14/8 10/8 14/8 10/8 14/8 10/		0.32 0.27 0.34 1.72 1.70 1.70 0.89 1.10 1.26 1.26 0.97 1.01 0.535 0.88 1.035 1.013 0.996 0.980 0.948 0.917 2.36 1.90 1.60 1.32	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

¹ Euler, Wied. Ann. 63, 1897.

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

² Thovert, C. R. 133, 1901; 134, 1902. 3 Heimbrodt, Diss. Leipzig, 1903. 4 Scheffer, Chem. Ber. 15, 1882; 16, 1883; Zeitschr. Phys. Chem. 2, 1888.

⁵ Kawalki, Wied. Ann. 52, 1894; 59, 1896.
6 Arrhenius, Zeitschr. Phys. Chem. 10, 1892.
7 Abegg, Zeitschr. Phys. Chem. 11, 1893.
8 Schuhmeister, Wien. Ber. 79 (2), 1879.
9 Seitz, Wied. Ann. 64, 1898.

DIFFUSION OF VAPORS.

Coefficients of diffusion of vapors in C. G. S. units. The coefficients are for the temperatures given in the table and a pressure of 76 centimetres of mercury.*

Vapor.		Temp. C.	kt for vapor diffusing into hydrogen.	kt for vapor diffusing into air.	kt for vapor diffusing into carbon dioxide.
Acids: Formic		0.0	0.5131	0.1315	0.0879
66		65.4	0.7873	0.2035	0.1343
66		84.9	0.8830	0.2244	0.1519
Acetic		0.0	0.4040	0.1061	0.0713
66 0 0		65.5	0.6211	0.1578	0.1048
		98.5	0.7481	0.1965	0.1321
Isovaleric		0.0	0.2118	0.0555	0.0375
		98.0	0.3934	0.1031	0.0696
Alcohols: Methyl		0.0	0 5001	0.1225	0.0880
d -		25.6	0.5001 0.6015	0.1325 0.1620	0.1046
66		49.6	0.6738	0.1809	0.1234
Ethyl .		0.0	0.3806	0.0994	0.0693
66		40.4	0.5030	0.1372	0.0898
66		66.9	0.5430	0.1475	0.1026
Propyl		0.0	0.3153	0.0803	0.0577
"		66.9	0.4832	0.1237	0.0901
"		83.5	0.5434	0.1379	0.0976
Butyl		0.0	0.2716	0.0681	0.0476
,", • •	• •	99.0	0.5045	0.1265	0.0884
Amyl		0.0	0.2351	0.0589	0.0422
	• •	99.1	0.4362	0.1094	0.0784
Hexyl	• •	0.0	0.1998	0.0499	0.0351
• •	• •	99.0	0.3712	0.0927	0.0651
Benzene		0.0	0.2940	0.0751	0.0527
G -		19.9	0.3409	0.0877	0.0609
a .		45.0	0.3993	0.1011	0.0715
		13.	3,7,5		, ,
Carbon disulphide		0.0	0.3690	0.0883	0.0629
" "		19.9	0.4255	0.1015	0.0726
" "		32.8	0.4626	0.1120	0.0789
Fetame Mathalassists			0.0000	0.0810	0.0555
Esters: Methyl acetate .		0.0	0.3277	0.0840 0.1013	0.0557
Ethyl "	• •	20.3	0.3928	0.1013	0.0079
Ethyl		46.I	0.2373	0.0030	0.0450
Methyl butyrate.		0.0	0.2422	0.0640	0.0438
" " "		92.1	0.4308	0.1139	0.0809
Ethyl . "		0.0	0.2238	0.0573	0.0406
" "	, ,	96.5	0.4112	0.1064	0.0756
" valerate .		0.0	0.2050	0.0505	0.0366
66 66 0		97.6	0.3784	0.0932	0.0676
7.					
Ether		0.0	0.2960	0.0775	0.0552
	•	19.9	0.3410	0.0893	0.0636
3X70+0*		0.0	0.6870	0.1980	0.1310
Water		49.5	1.0000	0.1980	0.1310
"		92.4	1.1794	0.3451	0.2384

^{*} Taken from Winkelmann's papers (Wied. Ann. vols. 22, 23, and 26). The coefficients for 0° were calculated by Winkelmann on the assumption that the rate of diffusion is proportional to the absolute temperature. According to the investigations of Loschmidt and of Obermeyer the coefficient of diffusion of a gas, or vapor, at 0° C. and a pressure of 76 centimetres of mercury may be calculated from the observed coefficient at another temperature and pressure by the formula $k_0 = k_T \left(\frac{T_0}{T}\right)^n \frac{\gamma_0}{\rho}$, where T is temperature absolute and ρ the pressure of the gas. The exponent n is found to be about 1.75 for the permanent gases and about 2 for condensible gases. The following are examples: Air—CO₂, n=1.968; CO₂—N₂O, n=2.05; CO₂—H, n=1.742; CO—O, n=1.78; H—O, n=1.755; O—N, n=1.792. Winkelmann's results, as given in the above table, seem to give about 2 for vapors diffusing into air, hydrogen or carbon dioxide.

DIFFUSION OF GASES, VAPORS, AND METALS.

TABLE 119. — Coefficients of Diffusion for Various Gases and Vapors.*

	emp. Coefficient of Diffusion.	Authority.
Carbon dioxide "" " Carbon monoxide "" " Hydrogen Methane "" " Methane "" " Nitrous oxide Oxygen Air "" " Air Carbon dioxide "" " Carbon dioxide Ethylene Hydrogen Oxygen Air "" Oxygen Air Carbon dioxide Ethylene Hydrogen Oxygen Air Carbon dioxide Ethylene Hydrogen Oxygen Air Ether Hydrogen Air Carbon dioxide "" Ether Hydrogen Oxygen Air Carbon dioxide "" monoxide Ethylene "" Methane Nitrous oxide Oxygen Nitrogen Oxygen Oxygen Oxygen Nitrogen Oxygen Nitrogen Oxygen Nitrogen Oxygen Nitrogen Nitrogen	O. of Diffusion. O.661 O.1775 O.1423 O.1360 O.1405 O.1314 O.5437 O.1465 O.0983 O.1802 O.0995 O.1314 O.101 O.6422 O.1802 O.1872 O.0827 O.3054 O.6488 O.4593 O.4588 O.4593 O.4863 O.6254 O.5384 O.6488 O.4593 O.4863 O.6254 O.5387 O.7217 O.1357 O.7217 O.1710 O.4828 O.2390 O.4828 O.2390 O.2475	Schulze. Obermayer. Loschmidt. Waitz. Loschmidt. Obermayer. " Loschmidt. " Stefan. Obermayer. " Cobermayer. " " " " " " " " " " " " " " " " " " "

^{*} Compiled for the most part from a similar table in Landolt & Börnstein's Phys. Chem. Tab.

TABLE 119 A. - Diffusion of Metals into Metals.

 $\frac{dv}{dt} = k \frac{d^2v}{dx^2};$ where x is the distance in direction of diffusion; v, the degree of concentration of the diffusing metal; t, the time; k, the diffusion constant = the quantity of metal in grammes diffusing through a sq. cm. in a day when unit difference of concentration (gr. per cu. cm.) is maintained between two sides of a layer one cm. thick.

Diffusing Metal.	Dissolving Metal.	Tempera- ture ° C.	k.	Diffusing Metal.	Dissolving Metal.	Tempera- ture ° C.	k.
Gold	Lead . " " " " Bismuth Tin	555 492 251 200 165 100 555 555 555	3.19 3.00 0.03 0.008 0.004 0.00002 4.52 4.65 4.14	Platinum . Lead Rhodium . Tin . Lead Zinc Sodium . Potassium Gold	Lead . Tin Lead . Mercury	492 555 550 15 15 15 15	1.69 3.18 3.04 1.22* 1.0* 1.0* 0.45* 0.40* 0.72*

From Roberts-Austen, Philosophical Transactions, 1896 A.

* These values are from Guthrie.

SOLUBILITY OF INORGANIC SALTS IN WATER; VARIATION WITH THE TEMPERATURE.

The numbers give the number of grammes of the anhydrous salt soluble in 1000 grammes of water at the given temperatures.

					Tempe	rature Co	entigrade				
Salt.	o°	100	20°	30°	40 ⁰	500	60°	70°	80°	90°	100°
Salt. AgNO ₃	0° 1150 313 30 26 11 316 50 595 405 1671 818 149 744 156 43 540 1050 285 333 589 50 225 1279 133 970 7 74 127 528 260 408 297 119 1183 706	1600 335 - 45 15 333 70 650 450 1747 149 1731 - 819 208 66 - 312 50 609 85 27 71 361 209 1030 92 127 535 309 127 535 309 127 535 309 127 535 70 70 70 70 70 70 70 70 70 70 70 70 70	2150 362 	30° 2700 404 84 91 - 382 116 1010 565 1973 339 1841 - 255 - 330 84 - 1140 373 101 650 - 390 1523 458 1260 149 453 414 270 2418 780	3350 457 124 408 1153 650 2080 472 1899 1598 295 - 402 96 6760 1170 401 145 670 292 453 1600 639 1360 138 148 130 575 456 - 458 - 297 810	4000 521 - 159 - 436 171 - 935 2185 644 1949 - 336 820 3151 486 113 - 1210 429 197 690 - 522 1680 855 1400 22 165 133 - 504 504 504 504 504 504 504 504	60° 4700 591 248 211 62 464 203 1368 940 2290 838 1999 1791 390 550 139 860 1270 455 260 710 505 600 1760 1099 1460 26 182 138 610 - 550 552 - 4300? 880	70° 5500 662 - 270 - 494 236 1417 950 2395 1070 2050 - 457 - 560 173 - 1330 483 325 730 - 1840 1380 1510 32 198 144 - 596 602 - 5130? 916	6500 731 - 352 95 524 270 1470 960 2500 1340 2103 2078 535 1040 5258 506 243 955 1400 510 396 751 730 - 1920 1590 1590 1590 1590 - 642 656 - 58000 - 5800 - 5800 - 5800 - 5800 - 5800 - 5800 - 58000 - 5800 - 5800 - 5800 - 5800 - 5800 - 5800 - 580000 - 58000 - 58000 - 58000 - 58000 -	90° 7600 808 556 306 1527 - 2601 1630 2149 - 627 1050 - 430 371 - 1470 538 475 771 - 2010 2040 1680 455 228 - 689 713 - 7400 992	9100 891 1540 - 157 588 342 1590 2705 1970 2203 - 735 1060 5357 - 540 1050 1050 1050 1050 1780 2460 1780 2460 1780 52 241 175 739 - 738 773 - 738 773 - 738 773
NaBr	795 71	845 16 126	903	39 409	1058	1160	1170 200	- 244 -	1185 314	408	523 -
NaCl	204 356 820 317 1630 69 25 1590 730	263 357 890 502 1700 82 39 1690 805	335 358 990 900 1800 96 93 1790 880	435 360 - 1970 111 241 1900 962	(1aq) 363 1235 960 2200 127 639 2050 1049	475 367 - 1050 2480 145 - 2280 1140	464 371 1470 1150 2830 164 - 2570 1246	458 375 - 3230 - 949 - 1360	452 380 1750 1240 3860 - - 2950 1480	452 385 - - - - - 1610	452 391 2040 1260 4330 - 988 3020 1755

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

SOLUBILITY OF SALTS AND GASES IN WATER.

TABLE 120 (continued). - Solubility of Inorganic Salts in Water; Variation with the Temperature.

The numbers give the number of grammes of the anhydrous salt soluble in 1000 grammes of water at the given temperatures.

				2	Cempera	ture Ce	ntigrade	3.			
Salt.	o°	100	20 ⁰	30 ⁰	40 ⁰	50°	60°	700	800	900	100°
NaOH Na4P2O7. Na2SO3 Na2SO4 (10aq) " (7aq) NiCl2 NiSO4. PbBr2 Pb(NO3)2 RbCl RbNO3 Rb2SO4 SrCl2 SnI2 Sr(NO3)2 Th(SO4)2 (9aq) " (4aq) TICl TINO3 Tl2SO4 Yb2(SO4)3 Zn(NO3)2 ZnSO4	420 3 ² 141 50 196 525 - 272 5 365 770 195 364 442 - 395 7 - 27 442 948	515 39 -9 0 305 610 600 -6 444 844 330 -426 483 -2 2 62 37	1090 62 287 194 447 700 640 8 523 911 533 482 10 708 14 -	11190	1290 135 495 1482 1026 720 - 15 694 1035 1167 585 667 14 913 30 40 6 209 76 - 2069 700	1450 174 - 468 1697 760 502 200 787 1093 1556 631 744 17926 51 255 8 8 304 92 - 768	1740 220 455 2067 810 548 24 880 1155 2000 674 831 21 940 - 16 10 462 109 104	255 - 445 - 594 - 28 977 1214 2510 - 714 896 25 956 - 11 13 695 127 72 890	3130 300 - 437 2488 - 632 33 1076 1272 309 972 - 16 1110 146 69 - 860	429 2542 688 1174 1331 3750 787 962 34 990 200 165 58	- - 330 427 2660 - 776 48 1270 1389 5420 818 1019 40 1011 - - 4140 - 47 - 785

TABLE 121. - Solubility of a Few Organic Salts in Water; Variation with the Temperature.

Salt.	00	100	20°	30°	400	50°	60°	70°	80°	900	1000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36 28 1150 92 2900 3	53 45 1260 140 - 4	102 69 1390 206 3350 6	159 106 1560 291 -	228 162 1760 433 3810 13	321 244 1950 595	445 358 2180 783 4550 24	635 511 2440 999 - 32	978 708 2730 1250 5750 45	1200 - 3070 1530 - 57	- 1209 3430 1850 7900 69

TABLE 122. - Solubility of Gases in Water; Variation with the Temperature.

The table gives the weight in grammes of the gas which will be absorbed in 1000 grammes of water when the partial pressure of the gas plus the vapor pressure of the liquid at the given temperature equals 760 mm.

Gas.	00	100	200	30°	40 ⁰	50°	60°	70 ⁰	80°
$\begin{array}{c} O_2 \\ H_2 \\ N_2 \\ Br_2 \\ Cl_2 \\ CO_2 \\ H_2S \\ NIH_3 \\ SO_2 \end{array}$.0705 .00192 .0293 431. - 3.35 7.10 987. 228.	.0551 .00174 .0230 248. 9.97 2.32 5.30 689. 162.	.0443 .00160 .0189 148. 7.29 1.69 3.98 535- 113.	.0368 .00147 .0161 94. 5.72 1.26 422. 78.	.0311 .00138 .0139 62. 4.59 0.97	.0263 .00129 .0121 40. 3.93 0.76	.0221 .00118 .0105 28. 3.30 0.58	.0181 .00102 .0089 18. 2.79	.0135 .00079 .0069 II. - 2.23

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

ABSORPTION OF CASES BY LIQUIDS.*

Temperature Centigrade.			ABSOI	RPTION COBFF	icients, a _t ,	FOR GASE	S IN	WATE	:R•		
t	Car diox Co	ide.	Carbon monoxide. CO	Hydrogen. H	Nitrogen. N	Nitr oxic N	le.	03	trous kide. V ₂ O	Oxyg O	en.
0	1.7		0.0354	0.02110	0.02399	0.07			048	0.049	
5		85	.0315	.02022	.02134	.06			3778	.043	
15		002	.0254	.01944	.01910	.057			7377	.038 .034	
20	0.0		.0232	.018/3	.01599	.04			5443	.031	
25		72	.0214	.01745	.01481	.04		0.	~	.028	
30	",		,0200	.01690	.01370	.040	-			.026	
40	0.1	606	.0177	.01644	.01195	.03			-	.023	16
50			.0161	.01608	.01074		.0315		-	.020	
100	0.2	44	.0141	.01600	.01011	.020	.0263		-		90
Temperature Centigrade.	Ai	r.	Ammonia. NH ₃	Chlorine. Cl	Ethylene. C ₂ H ₄	Metha CH		sulp	rogen bhide. I ₂ S	Sulpi dioxi SO	de.
0 5 10 15 20 25	0.02 .02 .01 .01	953 795	1174.6 971.5 840.2 756.0 683.1 610.8	3.036 2.808 2.585 2.388 2.156 1.950	.2153 .6 .1837 .6 .1615 .6		73 89 67 03 99	3· 3· 2·	371 965 586 -233 905 604	79.7 6 7.4 5 6.6 47.2 39.3 32.7	18 55 28 37
		Ar	SORPTION	Coefficients,	a, for GA	ASES IN A	LCOHO	L, C ₃	H₅OH.	·	
Temperature Centigrade.	Carbon dioxide. CO ₂	Ethyle C ₂ H	Methar CH ₄	Hydrogen.	Nitrogen.	Nitric oxide. NO	oxi	rous de. 20	Hydrog sulphid H ₂ S	e. dio:	phur xide. O ₂
0 5 10	4.329 3.891 3.514 3.199	3.59 3.32 3.08 2.88	3 .508 6 .495 2 .482	6 .0685 3 .0679 3 .0673	0.1263 .1241 .1228 .1214	0.3161 .2998 .2861 .2748	3.5 3.5 3.2	90 338 525	17.86 14.78 11.99	25 19 14	8.6 31.7 10.3 14.5
20 25	2.946 2.756	2.71			.1196	.2659		319	7.41 5.62		4.5 9.8

^{*} This table contains the volumes of different gases, supposed measured at o° C. and 76 centimetres' pressure, which unit volume of the liquid named will absorb at atmospheric pressure and the temperature stated in the first column. The numbers tabulated are commonly called the absorption coefficients for the gases in water, or in alcohol, at the temperature t and under one atmosphere of pressure. The table has been compiled from data published by Bohr & Bock, Bunsen, Carius, Dittmar, Hamberg, Henrick, Pagliano & Emo, Raoult, Schönfeld, Setschenow, and Winkler. The numbers are in many cases averages from several of these authorities.

Note. — The effect of increase of pressure is generally to increase the absorption coefficient. The following is approximately the magnitude of the effect in the case of ammonia in alcohol at a temperature of 23° C.:

 $\begin{cases} P = 45 \text{ cms.} & 50 \text{ cms.} & 55 \text{ cms.} & 60 \text{ cms.} & 65 \text{ cms.} \\ a_{23} = 69 & 74 & 79 & 84 & 88 \end{cases}$

According to Setschenow the effect of varying the pressure from 45 to 85 centimetres in the case of carbonic acid in water is very small.

CAPILLARITY. - SURFACE TENSION OF LIQUIDS.*

TABLE 124. - Water and Alcohol in Contact with Air.

TABLE 126. — Solutions of Salts in Water. †

Temp.	in dy	e tension nes per netre.	Temp.	in dy	e tension ones per netre.	Temp.	Surface tension in dynes per cen- timetre.
C.	Water.	Ethyl alcohol.	С.	Water.	Ethyl alcohol.	С.	Water.
0° 5 10 15 20 25 30 35	75.6 74.9 74.2 73.5 72.8 72.1 71.4 70.7	23.5 23.1 22.6 22.2 21.7 21.3 20.8 20.4	40° 45 50 55 60 65 70 75	70.0 69.3 68.6 67.8 67.1 66.4 65.7 65.0	20.0 19.5 19.1 18.6 18.2 17.8 17.3 16.9	80° 85 90 95 100 -	64.3 63.6 62.9 62.2 61.5

Salt in solution.	Density.	Temp. C.°	Tension in dynes per cm.
BaCl ₂ (CaCl ₂ HCl " KCl " KCl " NagCl ₂ " NaCl " K ₂ CO ₃ " K ₂ CO ₃ " KNO ₃ NaNO ₃ CuSO ₄ " K ₂ SO ₄ " K ₂ SO ₄ " MgSO ₄ " Mn ₂ SO ₄ " ZnSO ₄ "	1.2820 1.0497 1.3511 1.2773 1.1190 1.0887 1.0242 1.1699 1.1011 1.0463 1.2338 1.1694 1.0360 1.0758 1.0535 1.1074 1.1204 1.0567 1.0281 1.3114 1.1204 1.0567 1.3575 1.1576 1.0400 1.1329 1.1074 1.1263 1.1775 1.1263 1.1775 1.0263 1.1263 1.1273 1.0466 1.3022 1.1311 1.1775 1.0276 1.8278 1.4453 1.12636 1.0744 1.0360 1.12744 1.0360 1.1119 1.0329 1.3981 1.0329	15-16 15-16 19 19 20 20 20 15-16	81.8 77.5 95.0 90.2 73.6 74.5 75.3 82.8 80.1 78.2 90.1 78.2 90.1 78.0 85.8 77.6 84.3 81.7 78.8 85.6 79.4 77.8 85.6 79.9 90.9 81.8 77.5 78.0 83.5 77.6 83.5 80.0 77.6 83.6 79.7 79.8 80.8 80.9
	1.1039	15-16	77.8

TABLE 125. - Wiscellaneous Liquids in Contact with Air.

TABLE 120 MISCOLAROUS LIQUIUS IN CORESCE WITH AIR.											
Liquid	Temp.	Surface tension in dynes per cen- timetre.	Authority.								
Aceton	16.8 17.0 15.0 15.0 20.0 20.0 20.0 17.0 0.0 68.0 18.0 15.0 20.0 20.0 20.0 15.0 20.0 15.0 20.0 20.0	23·3 30·2 24·8 28·8 28·7 30·5 28·3 18·4 63·14 21·2 14·2 24·7 34·7 25·9 18·0 29·1 11·8·9 28·5	Ramsay-Shields. Average of various. " Quincke. Average of various. Hall. Schiff. " Average of various. " Magie. Schiff. " " Average of various.								

* This determination of the capillary constants of liquids has been the subject of many careful experiments, but the results of the different experimenters, and even of the same observer when the method of measurement is changed, do not agree well together. The values here quoted can only be taken as approximations to the actual values for the liquids in a state of purity in contact with pure air. In the case of water the values given by Lord Rayleigh from the wave length of ripples (Phil. Mag. 1890) and by Hall from direct measurement of the tension of a flat film (Phil. Mag. 1893) have been preferred, and the temperature correction has been taken as 0.141 dyne per degree centigrade. The values for alcohol were derived from the experiments of Hall above referred to and the experiments on the effect of temperature made by Timberg (Wied. Ann. vol. 30).

The authority for a few of the other values given is quoted, but they are for the most part average values derived from a large number of results published by different experimenters.

† From Volkmann (Wied. Ann. vol. 17, p. 353).

TENSION OF LIQUIDS.

TABLE 127. - Surface Tension of Liquids.*

	Liqu	id.			Specific		nsion in dyn iquid in con			
					gravity.	Air.	Water.	Mercury.		
Water							1.0	75.0	0.0	(392)
Mercury						.	13.543	513.0	392.0	0
Bisulphide of carbo	on .						1.2687	30.5	41.7	(387)
Chloroform						- 1	1.4878	(31.8)	26.8	(415)
Ethyl alcohol .							0.7906	(24.1)	_	364
Olive oil							0.9136	34.6	18.6	317
Turpentine						.	0.8867	28.8	11.5	241
Petroleum							9.7977	29.7	(28.9)	271
Hydrochloric acid						.	1.10	(72.9)	\ - ''	(392)
Hyposulphite of so	oda sol	lution	•	•	•		1.1248	69.9	***	429

TABLE 128. - Surface Tension of Liquids at Solidifying Point,†

Subst	Substance.				Surface tension in dynes per centimetre.	Substance.	Tempera- ture of solidifi- cation, Cent.°	Surface tension in dynes per centimetre.
Platinum				2000	1691	Antimony	432	249
Gold .				I 200	1003	Borax	. 1000	216
Zinc .				360	877	Carbonate of soda	. 1000	210
Tin .				230	599	Chloride of sodium	. -	116
Mercury	٠			-40	599 588	Water	. 0	87.9‡
Lead .				330	457	Selenium	. 217	71.8
Silver .				1000	427	Sulphur	. 111	42.I
Bismuth				265	1390	Phosphorus	43	42.0
Potassium				58	371	Wax	. 68	34.1
Sodium	de-			90	258	e e		

TABLE 129. - Tension of Soap Films.

Elaborate measurements of the thickness of soap films have been made by Reinold and Rucker. They find that a film of cleate of soda solution containing 1 of soap to 70 of water, and having 3 per cent of KNO3 added to increase electrical conductivity, breaks at a thickness varying between 7.2 and 14.5 micro-millimetres, the average being 12.1 micromillimetres. The film becomes black and apparently of nearly uniform thickness round the point where fracture begins. Outside the black patch there is the usual display of colors, and the thickness at these parts may be estimated from the colors of thin plates and the refractive index of the solution (vide Newton's rings, Table 146).

When the percentage of KNO₃ is diminished, the thickness of the black patch increases. KNO₈ For example, == 3 I 0.5 0.0

Thickness = 12.4 13.5 14.5 22.1 micro-mm.

A similar variation was found in the other soaps.

It was also found that diminishing the proportion of soap in the solution, there being no KNO₃ dissolved, increased the thickness of the film.

- I part soap to 30 of water gave thickness 21.6 micro-mm.
- I part soap to 40 of water gave thickness 22.1 micro-mm.
- I part soap to 60 of water gave thickness 27.7 micro-mm.
- I part soap to 80 of water gave thickness 29.3 micro-mm.

adout 20° C.

† Quincke, "Pogg. Ann." vol. 135, p. 661.

‡ It will be observed that the value here given on the authority of Quincke is much higher than his subsequent measurements, as quoted above, give.

| "Proc. Roy. Soc." 1877, and "Phil. Trans. Roy. Soc." 1881, 1883, and 1893.

Note. — Quincke points out that substances may be divided into groups in each of which the ratio of the surface tension to the density is nearly constant. Thus, if this ratio for mercury be taken as unit, the ratio for the bromides and iodides is about a half: that of the nitrates, chlorides, sugars, and fats, as well as the metals, lead, bismuth, and antimony, about 1; that of water, the carbonates, sulphates, and probably phosphates, and the metals platinum, gold, silver, cadmium, tin, and copper, 2; that of zinc, iron, and palladium, 3; and that of sodium, 6.

^{*} This table of tensions at the surface separating the liquid named in the first column and air, water or mercury as stated at the head of the last three columns, is from Quincke's experiments (Pogg. Ann. vol. 130, and Phil. Mag. 1871). The numbers given are the equivalent in dynes per centimetre of those obtained by Worthington from Quincke's results (Phil. Mag. vol. 20, 1885) with the exception of those in brackets, which were not corrected by Worthington; they are probably somewhat too high, for the reason stated by Worthington. The temperature was about 20° C.

VAPOR PRESSURES.

The vapor pressures here tabulated have been taken, with one exception, from Regnault's results. The vapor pressure of Pictet's fluid is given on his own authority. The pressures are in centimetres of mercury.

Temperature Cent.	Acetone. C ₈ H ₆ O	Benzol. C ₆ H ₆	Carbon bisul- phide. CS ₂	Carbon tetra- chloride, CCl ₄	Chloro- form. CHCl ₈	Ethyl alcohol. C ₂ H ₆ O	Ethyl ether. C ₄ H ₁₀ O	Ethyl bromide. C ₂ H ₅ Br	Methyl alcohol. CH ₄ O	Turpentine. C ₁₀ H ₆
-25° -20 -15 -10 -5	1 1 1 1	- .58 .88 1.29 1.83	- 4.73 6.16 7.94 10.13	-98 1.35 1.85 2.48	1111	·33 ·51 ·65	6.89 8.93 11.47 14.61	4.41 5.92 7.81 10.15 13.06	.41 .63 .93 1.35	-
0 5 10 15 20	17.96	2.53 3.42 4.52 5.89 7.56	12.79 16.00 19.85 24.41 29.80	3.29 4.32 5.60 7.17 9.10	5.97 10.05	1.27 1.76 2.42 3.30 4.45	18.44 23.09 28.68 35.36 43.28	16.56 20.72 25.74 31.69 38.70	2.68 3.69 5.01 6.71 8.87	.212944
25 30 35 40 45	22.63 28.10 34.52 42.01 50.75	9.59 12.02 14.93 18.36 22.41	36.11 43.46 51.97 61.75 72.95	11.43 14.23 17.55 21.48 26.08	20.02 24.75 30.35 36.93 44.60	5.94 7.85 10.29 13.37 17.22	52.59 63.48 76.12 90.70 107.42	46.91 56.45 67.49 80.19 94.73	11.60 15.00 19.20 24.35 30.61	.69 - 1.08
50 55 60 65 70	62.29 72.59 86.05 101.43 118.94	27.14 32.64 39.01 46.34 54.74	85.71 100.16 116.45 134.75 155.21	31.44 37.63 44.74 52.87 62.11	53.50 63.77 75.54 88.97 104.21	21.99 27.86 35.02 43.69 54.11	126.48 148.11 172.50 199.89 230.49	111.28 130.03 151.19 174.95 201.51	38.17 47.22 57.99 70.73 85.71	1.70 - 2.65 - 4.06
75 80 85 90 95	138.76 161.10 186.18 214.17 245.28	64.32 75.19 87.46 101.27 116.75	177.99 203.25 231.17 261.91 296.63	72.57 84.33 97.51 112.23 128.69	121.42 140.76 162.41 186.52 213.28	66.55 81.29 98.64 118.93 142.51	264.54 302.28 343.95 389.83 440.18	231.07 263.86 300.06 339.89 383.55	103.21 123.85 147.09 174.17 205.17	6.13 - 9.06 -
100 105 110 115 120	279.73 317.70 359.40 405.00 454.69	134.01 153.18 174.44 197.82 223.54	332.51 372.72 416.41 463.74 514.88	146.71 166.72 188.74 212.91 239.37	242.85 275.40 311.10 350.10 392.57	169.75 201.04 236.76 277.34 323.17	495·33 555.62 621·46 693·33 771·92	431.23 483.12 539.40 600.24 665.80	240.51 280.63 325.96 376.98 434.18	13.11 - 18.60 - 25.70
125 130 135 140 145	508.62 566.97 629.87 697.44	251.71 282.43 315.85 352.07 391.21	569.97 629.16 692.59 760.40 832.69	268.24 299.69 333.86 370.90 411.00	438.66 488.51 542.25 600.02 661.92	374.69 432.30 496.42 567.46 645.80	1 1 1 1	736.22 811.65 892.19 977.96	498.05 569.13 647.93 733.71 830.89	- 34.90 - 46.40 -
150 155 160 165 170	-	433·37 478.65 527·14 568.30 634.07	909.59	454.31 501.02 551.31 605.38 663.44	728.06 798.53 873.42 952.78	731.84 825.92 - -	1 1 1 1 1	1 - 1 -	936.13	60.50 68.60 77.50 -

VAPOR PRESSURES.

Temperature, Centigrade.	Ammonia. NH ₃	Carbon dioxide. CO ₂	Ethyl chloride. C ₂ H ₅ Cl	Ethyl iodide. C ₂ H ₅ I	Methyl chloride. CH ₈ Cl	Methylic ether. C ₂ H ₆ O	Nitrous oxide. N ₂ O	Pictet's fluid. 64SO ₂ + 44CO ₂ by weight	Sulphur dioxide. SO ₂	Hydrogen sulphide. H ₂ S
-30°	86.61	-	11.02	-	57.90	57.65	_	58.52	28.75	
-25 -20 -15 -10 -5	110.43 139.21 173.65 214.46 264.42	1300.70 1514.24 1758.25 2034.02 2344.13	14.50 18.75 23.96 30.21 37.67	- - - -	71.78 88.32 107.92 130.96 157.87	71.61 88.20 107.77 130.66 157.25	1569.49 1758.66 1968.43 2200.80 2457.92	67.64 74.48 89.68 101.84 121.60	37·38 47·95 60·79 76.25 94.69	374-93 443.85 519.65 608.46 706.60
0 5 10 15 20	318.33 383.03 457.40 543.34 638.78	2690.66 3075.38 3499.86 3964.69 4471.66	46.52 56.93 61.11 83.26 99.62	4.19 5.41 6.92 8.76 11.00	189.10 225.11 266.38 313.41 366.69	187.90 222.90 262.90 307.98 358.60	2742.10 3055.86 3401.91 3783.17 4202.79	139.08 167.20 193.80 226.48 258.40	116.51 142.11 171.95 206.49 246.20	820.63 949.08 1089.63 1244.79 1415.15
25 30 35 40 45	747.70 870.10 1007.02 1159.53 1328.73	5020.73 5611.90 6244.73 6918.44 7631.46	118.42 139.90 164.32 191.96 223.07	13.69 16.91 20.71 25.17 30.38	426.74 494.05 569.11	415.10 477.80 - - -	4664.14 5170.85 6335.98	297.92 338.20 383.80 434.72 478.80	291.60 343.18 401.48 467.02 540.35	1601.24 1803.53 2002.43 2258.25 2495.43
50 55 60 65 70	1515.83 1721.98 1948.21 2196.51 2467.55	- - - -	257.94 266.84 340.05 387.85 440.50	36.40 43.32 51.22		1111		521.36 - - - - -	622.00 712.50 812.38 922.14	2781.48 3069.07 3374.02 3696.15 4035.32
75 80 85 90 95	2763.00 3084.31 3433.09 3810.92 4 219. 5 7	-	498.27 561.41 630.16 704.75 785.39	1111	1111	-	-	1111	-	
100	4660.82	-	872.28		-	-	-	-	-	_

VAPOR PRESSURE.

TABLE 131. - Vapor Pressure of Ethyl Alcohol.*

Ü	0°	1°	2 °	3 °	40	5 °	6°	7 °	8°	9°	
Temp.			Va	por pressur	e in millim	etres of me	ercury at o	° C.			
0° 10 20 30	12.24 23.78 44.00 78.06	13.18 25.31 46.66 82.50	14.15 27.94 49.47 87.17	15.16 28.67 52.44 92.07	16.21 30.50 55.56 97.21	17.31 32.44 58.86 102.60	18.46 34.49 62.33 108.24	19.68 36.67 65.97 114.15	20.98 38.97 69.80 120.35	22.34 41.40 73.83 126.86	
40 50 60 70	133.70 220.00 350.30 541.20	140.75 230.80 366.40 564.35	148.10 242.50 383.10 588.35	155.80 253.80 400.40 613.20	163.80 265.90 418.35 638.95	172.20 278.60 437.00 665.55	181.00 291.85 456.35 693.10	190.10 305.65 476.45 721.55	199.65 319.95 497.25 751.00	209.60 334.85 518.8 5 781.45	
From	n the form	nula log į	b=a+a	$ba^t + c\beta^t$	Ramsay	and You	ing obtai	n the foll	owing nu	mbers.†	
ن	0°	10°	2 0°	30°	40 °	50°	60°	70°	80°	80°	
Temp.		Vapor pressure in millimetres of mercury at o° C.									
0° 100 200	12.24 1692.3 22182.	23.73 2359.8 26825.	43.97 3223.0 32196.	78.11 4318.7 38389.	133.42 5686.6 45519.	219.82 7368.7		540.91 11858.	811.81 14764.	1186.5 18185.	

TABLE 132. - Vapor Pressure of Methyl Alcohol. ‡

. c.	0 °	10	2 °	3 °	4 °	5 °	6°	7°	80	9°		
Temp.	Vapor pressure in millimetres of mercury at o° C.											
0° 10 20	29.97 53.8 94.0	31.6 57.0 99.2	33.6 60.3 104.7	35.6 63.8 110.4	37.8 67.5 116.5	40.2 71.4 122.7	42.6 75.5 129.3	45.2 79.8 136.2	47.9 84.3 143.4	50.8 89.0 151.0		
30 40 50 60	1 58.9 259.4 409.4 624.3	167.1 271.9 427.7 650.0	175.7 285.0 446.6 676.5	184.7 298.5 466.3 703.8	194.1 312.6 486.6 732.0	203.9 327.3 507.7 761.1	214.1 342.5 529.5 791.1	224.7 358.3 552.0 822.0	235.8 374.7 575.3	247.4 391.7 599.4		

^{*} This table has been compiled from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47, and Phil. Trans. Roy. Soc., 1886).

[†] In this formula a = 5.0720301; $\log b = \overline{2}.6406131$; $\log c = 0.6050854$; $\log a = 0.003377538$; $\log \beta = \overline{1.99682424}$ (c is negative).

[‡] Taken from a paper by Dittmar and Fawsitt (Trans. Roy. Soc. Edin. vol. 33).

8mithsonian Tables.

VAPOR PRESSURE.*

Carbon Disulphide, Chlorobenzene, Bromobenzene, and Aniline.

Temp.	0°	1°	2 °	3°	4 °	5 °	6 °	7 °	8°	9°
				(a) CAR	BON DI	SULPHID	E.			
0° 10 20 30 40	127.90 198.45 298.05 434.60 617.50	133.85 207.00 309.90 450.65 638.70	140.05 215.80 322.10 467.15 660.50	146.45 224.95 334.70 484.15 682.90	153.10 234.40 347.70 501.65 705.90	160.00 244.15 361.10 519.65 729.50	167.15 254.25 374.95 538.15 753.75	174.60 264.65 389.20 557.15 778.60	182.25 275.40 403.90 576.75 804.10	190.20 286.55 419.00 596.85 830.25
				(b) C	HLOROB	ENZENE.			,	
20° 3° 4°	8.65 14.95 25.10	9.14 15.77 26.38	9.66 16.63 27.72	10.21 17.53 29.12	10.79 18.47 30.58	11.40 19.45 32.10	12.04 20.48 33.69	12.71 21.56 35.35	13.42 22.69 37.08	14.17 23.87 38.88
50 60 70 80 90	40.75 64.20 97.90 144.80 208.35	42.69 67.06 101.95 150.30 215.80	44.72 70.03 106.10 156.05 223.45	46.84 73.11 110.41 161.95 231.30	49.05 76.30 114.85 168.00 239.35	51.35 79.60 119.45 174.25 247.70	53.74 83.02 124.20 181.70 256.20	56.22 86.56 129.10 187.30 265.00	58.79 90.22 134.15 194.10 274.00	61.45 94.00 139.40 201.15 283.25
100 110 120 130	292.75 402.55 542.80 718.95	302.50 415.10 558.70 738.65	312.50 427.95 575.05 758.80	322.80 441.15 591.70	333·35 454·65 608·75	344.15 468.50 626.15	355.25 482.65 643.95	366.65 497.20 662.15	378.30 512.05 680.75	390.25 527.25 699.65
				(c) I	Вкомові	ENZENE.				
40°	-	_	-	_	_	12.40	13.06	13.75	14.47	15.22
50 60 70 80 90	16.00 26.10 41.40 63.90 96.00	16.82 27.36 43.28 66.64 99.84	17.68 28.68 45.24 69.48 103.80	18.58 30.06 47.28 72.42 107.88	19.52 31.50 49.40 75.46 112.08	20.50 33.00 51.60 78.60 116.40	21.52 34.56 53.88 81.84 120.86	22.59 36.18 56.25 85.20 125.46	23.71 37.86 58.71 88.68 130.20	24.88 39.60 61.26 92.28 135.08
100 110 120 130 140	140.10 198.70 274.90 372.65 495.80	145.26 205.48 283.65 383.75 509.70	150.57 212.44 292.60 395.10 523.90	156.03 219.58 301.75 406.70 538.40	161.64 226.90 311.15 418.60 553.20	167.40 234.40 320.80 430.75 568.35	173.32 242.10 330.70 443.20 583.85	179.41 250.00 340.80 455.90 599.65	185.67 258.10 351.15 468.90 615.75	192.10 266.40 361.80 482.20 632.25
150	649.05	666.25	683.80	701.65	719.95	738.55	757.55	776.95	796.70	816.90
				(4	ANIL	INE.				
80 °	18.80	19.78	20.79 32.83	21.83 34.27	22.90 35.76	24.00 37·30	25.14 38.90	26.32 40.56	27.54 42.28	28.80 44.06
100 110 120 130 140	45.90 68.50 100.40 144.70 204.60	47.80 71.22 104.22 149.94 211.58	49.78 74.04 108.17 155.34 218.76	51.84 76.96 112.25 160.90 226.14	53.98 79.98 116.46 166.62 233.72	56.20 83.10 120.80 172.50 241.50	58.50 86.32 125.28 178.56 249.50	60.88 89.66 129.91 184.80 257.72	63.34 93.12 134.69 191.22 266.16	65.88 96.70 139.62 197.82 274.82
150 160 170 180	283.70 386.00 515.60 677.15	292.80 397.65 530.20 695.30	302.15 409.60 545.20 713.75	311.75 421.80 560.45 732.65	321.60 434.30 576.10 751.90	331.70 447.10 592.05 771.50	342.05 460.20 608.35	352.65 473.60 625.05	363.50 487.25 642.05	374.60 501.25 659.4 5

^{*} These tables of vapor pressures are quoted from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47). The tables are intended to give a series suitable for hot-jacket purposes.

TABLE 133 (continued).

VAPOR PRESSURE.

Methyl Salicylate, Bromonaphthaline, and Mercury.

Temp. C.	0°	1°	2°	3°	4°	5°	6°	7°	8°	9°
				(e) ME	THYL SA	LICYLAT	E.			
70 °	2.40	2.58	2.77	2.97	3.18	3.40	3.62	3.85	4.09	4·34
80	4.60	4.87	5.15	5.44	5.74	6.05	6.37	6.70	7.05	7·42
90	7.80	8.20	8.62	9.06	9.52	9.95	10.44	10.95	11.48	12.03
100	12.60	13.20	13.82	14.47	15.15	15.85	16.58	17.34	18.13	18.95
110	19.80	20.68	21.60	22.55	23.53	24.55	25.61	26.71	27.85	29.03
120	30.25	31.52	32.84	34.21	35.63	37.10	38.67	40.24	41.84	43.54
130	45.30	47.12	49.01	50.96	52.97	55.05	57.20	59.43	61.73	64.10
140	66.55	69.08	71.69	74.38	77.15	80.00	82.94	85.97	89.09	92.30
150	95.60	99.00	102.50	106.10	109.80	113.60	117.51	121.53	125.66	129.90
160	134.25	138.72	143.31	148.03	152.88	157.85	162.95	168.19	173.56	179.06
170	184.70	190.48	196.41	202.49	208.72	215.10	221.65	228.30	235.15	242.15
180	249.35	256.70	264.20	271.90	279.75	287.80	296.00	304.48	313.05	321.85
190	330.85	340.05	349.45	359.05	368.85	378.90	389.15	399.60	410.30	421.20
200 210 220	432.35 557.50 710.10	443.75 571.45 727.05	455·35 585.70 744·35	467.25 600.25 761.90	479.35 615.05 779.85	491.70 630.15 798.10	504.35 645.55	517.25 661.25	530.40 677.25	543.80 693.60
				(f) Bro	MONAPH	THALINE	Σ.			
110°	3.60	3.74	3.89	4.05	4.22	4.40	4·59	4.79	5.00	5.22
120	5.45	5.70	5.96	6.23	6.51	6.80	7·10	7.42	7.76	8.12
130	8.50	8.89	9.29	9.71	10.15	10.60	11.07	11.56	12.07	12.60
140	13.15	13.72	14.31	14.92	15.55	16.20	16.87	17.56	18.28	19.03
150	19.80	20.59	21.41	22.25	23.11	24.00	24.92	25.86	26.83	27.83
160	28.85	29.90	30.98	32.09	33.23	34.40	35.60	36.83	38.10	39.41
170	40.75	42.12	43.53	44.99	46.50	48.05	49.64	51.28	52.96	54.68
180	56.45	58.27	60.14	62.04	64.06	66.10	68.19	70.34	72.55	74.82
190	77.15	79.54	81.99	84. 5 I	87.10	89.75	92.47	95.26	98.12	101.05
200	104.05	107.12	110.27	113.50	116.81	120.20	123.67	127.22	130.86	134.59
210	138.40	142.30	146.29	150.38	154.57	158.85	163.25	167.70	172.30	176.95
220	181.75	186.65	191.65	196.75	202.00	207.35	212.80	218.40	224.15	230.00
230	235.95	242.05	248.30	254.65	261.20	267.85	274.65	281.60	288.70	295.95
240	3°3.35	310.90	318.65	326.50	334.55	342.75	351.10	359.65	368.40	377.30
250	386.35	39 5 .60	405.05	414.65	424.45	434.45	444.65	455.00	465.60	476.35
260	487.35	498.55	509.90	521.50	533.35	545.35	557.60	570.05	582.70	595.60
270	608.75	622.10	635. 7 0	649.50	663.55	677.85	692.40	707.15	722.15	737.45
				(g) Mercu	JRY.				
270°	123.92	126.97	130.08	133.26	136.50	139.81	143.18	146.61	150.12	153.70
280	157.35	161.07	164.86	168.73	172.67	176.79	180.88	185.05	189.30	193.63
290	198.04	202.53	207.10	211.76	216.50	221.33	226.25	231.25	236.34	241.53
300	246.81	252.18	257.65	263.21	268.87	274.63	280.48	286.43	292.49	298.66
310	3°4.93	311.30	317.78	3 ² 4.37	331.08	337.89	344.81	351.85	359.00	366.28
320	373.67	381.18	388.81	396.56	404.43	412.44	420.58	428.83	437.22	445.75
330	454.41	463.20	472.12	481.19	490.40	499.74	509.22	518.85	528.63	538.56
340	548.64	558.87	569.25	579.78	590.48	601.33	612.34	623.51	634.85	646.36
350 360	658.03 784.31	669.86	681.86	694.04	706.40	718.94	731.65	744-54	757.61	770.87

VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.*

The first column gives the chemical formula of the salt. The headings of the other columns give the number of gramme-molecules of the salt in a litre of water. The numbers in these columns give the lowering of the vapor pressure produced by the salt at the temperature of boiling water under 76 centimetres barometric pressure.

Sub	stance.		0.5	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
$\begin{array}{c} \operatorname{Al_2(SO_4)_3} \\ \operatorname{AlCl_3} \\ \operatorname{Ba(SO_3)_2} \\ \operatorname{Ba(OH)_2} \\ \operatorname{Ba(NO_3)_2} \end{array}$	•			36.5 61.0 15.4 22.5 27.0	179.0 34.4 39.0	318.0					
$\begin{array}{c} \text{Ba}(\text{ClO}_3)_2 \\ \text{Ba}\text{Cl}_2 \\ \text{Ba}\text{Br}_2 \\ \text{Ca}(\text{SO}_3)_2 \\ \text{Ca}(\text{NO}_3)_2 \end{array}$		• •	1 60	33·3 36.7 38.8 23.0 34.8	70.5 77.6 91.4 56.0 74.6	150.0 106.0 139.3	204.7 161.7	205.4			
$\begin{array}{c} CaCl_2 \ . \\ CaBr_2 \ . \\ CdSO_4 \\ CdI_2 \ . \\ CdBr_2 \ . \end{array}$	•		17.7	39.8 44.2 8.9 14.8 17.8	95.3 105.8 18.1 33.5 36.7	166.6 191.0 52.7 55.7	241.5 283.3 80.0	319.5 368.5			
$CdCl_2$. $Cd(NO_3)_2$ $Cd(ClO_3)_2$ $CoSO_4$	•		1 -	18.8 36.1	36.7 78.0	57.0 122.2 45.5	77.3	99.0			
$CoCl_2$. $Co(NO_3)_2$			15.0	34.8	83.0	136.0	186.4	282.0	332.0		
FeSO ₄ H ₃ BO ₃ H ₃ PO ₄ H ₃ AsO ₄	•	• •	5.8	10.7 12.3 14.0 15.0	24.0 25.1 28.6 30.2	42.4 38.0 45.2 46.4	51.0 62.0 64.9	81.5	103.0	146.9	189.5
H ₂ SO ₄ KH ₂ PO ₄ KNO ₃ . KClO ₃ KBrO ₃	•		10.2	26.5 19.5 21.1 21.6 22.4	62.8 33·3 40.1 42.8 45.0	104.0 47.8 57.6 62.1	148.0 60.5 74.5 80.0	198.4 73.1 88.2	247.0 85.2 102.1	343.2	148.0
KHSO ₄ KNO ₂ KClO ₄	:		10.9 11.1 11.5	21.9 22.8 22.3	43·3 44.8	65.3 67.0	85.5 90.0	107.8	129.2	170.0 167.0	198.8
KCl . KHCO ₂			12.2	24.4	48.8 59.0	74.I 77.6	100.9	128.5	152.2 160.0	210.0	255.0
KI K ₂ C ₂ O ₄ K ₂ WO ₄ K ₂ CO ₈ KOH	•	• •	12.5 13.9 13.9 14.4 15.0	25.3 28.3 33.0 31.0 29.5	52.2 59.8 75.0 68.3 64.0	82.6 94.2 123.8 105.5 99.2	112.2 131.0 175.4 152.0 140.0	226.4 209.0 181.8	258.5 223.0	225.5 35 0 .0 309.5	387.8
K_2CrO_4 $LiNO_3$ $LiCl$ $LiBr$ Li_2SO_4	•		16.2 12.2 12.1 12.2 13.3	29.5 25.9 25.5 26.2 28.1	60.0 55.7 57.1 60.0 56.8	88.9 95.0 97.0 89.0	122.2 132.5 140.0	155.1 175.5 186.3	188.0 219.5 241.5	253.4 311.5 341.5	30 9. 2 393.5 438.0
LiHSO ₄ LiI . Li ₂ SiFl ₆ LiOH . Li ₂ CrO ₄	•	• •	12.8 13.6 15.4 15. 9 16.4	27.0 28.6 34.0 37.4 32.6	57.0 64.7 70.0 78.1 74.0	93.0 105.2 106.0	130.0 154.5	168.0 206.0	264.0	357.0	445.0
20104	•		10.4	32.0	74.0	120.0	1/1.0				

^{*} Compiled from a table by Tammann, "Mém. Ac. St. Petersb." 35, No. 9, 1887. See also Referate, "Zeit. f. Phys." ch. 2, 42, 1886.

VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.

Substance.	0.5	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
MgSO ₄	6.5 16.8 17.6 17.9 18.3	12.0 39.0 42.0 44.0 46.0	24.5 100.5 101.0 115.8 116.0	47.5 183.3 174.8 205.3	277.0 298.5	377.0			
$\begin{array}{ccccc} MnSO_4 & & & & \\ MnCl_2 & & & & \\ NaH_2PO_4 & & & & \\ NaHSO_4 & & & & \\ NaNO_3 & & & & \\ \end{array}$	6.0 15.0 10.5 10.9 10.6	10.5 34.0 20.0 22.1 22.5	21.0 76.0 36.5 47.3 46.2	122.3 51.7 75.0 68.1	167.0 66.8 100.2 90.3	209.0 82.0 126.1 111.5	96.5 148.5 131.7	126.7 189.7 167.8	157.1 231.4 198.8
$NaClO_8$ (NaPO ₈) ₆	10.5	23.0	48.4	73.5	98.5	123.3	147.5	196.5	223.5
NaOH	11.8	22.8 24.4 23.5	48.2 50.0 43.0	77·3 75.0 60.0	107. 5 98.2 78.7	139.1 122.5 99.8	172.5 146.5 122.1	243.3 189.0	314.0 226.2
NaHCO ₂	12.9	24.I 25.0	48.2 48.9	77.6	102.2	127.8	152.0	198.0	239.4
NaCl	12.3 12.1 12.6	25.0 25.2 25.0 25.9	52.1 54.1 57.0	74.2 80.0 81.3 89.2	111.0 108.8 124.2	143.0 136.0 159.5	176.5	268.0	
NaI	12.1	25.6	60.2	99.5	136.7	177.5	221.0	301.5	370.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.2 14.3 14.5 14.8	22.0 27.3 30.0 33.6	53.5 65.8 71.6	80.2 105.8 115.7	111.0 146.0 162.6				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.5 17.1 12.8 11.5 12.0	30.0 36.5 22.0 25.0 23.7	52.5 42.1 44.5 45.1	62. ₇ 69. ₃	82.9	103.8	121.0	152.2	180.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.5 11.0 11.9 12.9 5.0	22.0 24.0 23.9 25.1 10.2	46.8 46.5 48.8 49.8 21.5	71.0 69.5 74.1 78.5	94.5 93.0 99.4 104.5	118. 117.0 121.5 132.3	139.0 141.8 145.5 156.0	181.2 190.2 200.0	218.0 228.5 243.5
NiCl ₂	16.1 16.1 12.3 7.2 15.8	37.0 37.3 23.5 20.3 31.0	86.7 91.3 45.0 47.0 64.0	147.0 156.2 63.0	212.8 235.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.8 17.8 4.9 9.2 16.6	38.8 42.0 10.4 18.7 39.0	91.4 101.1 21.5 46.2 93.5	156.8 179.0 42.1 75.0 157.5	223.3 267.0 66.2 107.0 223.8	281.5	195.0		

PRESSURE OF AQUEOUS VAPOR AT LOW TEMPERATURE.*

Pressures are given in inches and millimetres of mercury, temperatures in degrees Fahrenheit and degrees Centigrade.

	((a) Pressur	es in inche	s of mercu	ry; temper	atures in d	egrees Fal	nrenheit.		
Temp. F.	0°.0	1°.0	2°.0	3°.0	4 °.0	5°.0	6°.0	7°.0	8°.0	9°.0
—50°	0.0021	0.0019	0.0018	0.0017	0.0016	0.0015	0.0013	0.0013	0.0012	0.0011
-40	.0039	.0037	.0035	.0033	.0031	.0029	.0027	.0026	.0024	.0022
-30	.0069	.0065	.006I	.0057	.0054	.0051	.0048	.0046	-0044	.0041
—20 —10	.0126	.0119	.0112	.0106	.0100	.0094 .0168	.0089	.0083	.0078	.0074
0	0.0383	0.0263	0.0244	0.0225	0.0307	0.0291	0.0275	0.0260	0.0247	0.0234
+0	.0383	.0403	.0423	.0444	.0467	.0491	.0515	.0542	.0570	.0600
10	.0631	.0665	.0699	.0735	.0772	.0810		.0891	.0933	.0979
20	.1026	.1077	.1130	.1185	.1242	.1302	.1365	.1430	.1497	.1 568
30	.1641	.1718	.1798							
	(b)	Pressures	in millimet	res of merc	cury; temp	eratures in	degrees F	'ahrenheit		
Temp. F.	0°.0	1°.0	2 °.0	3°.0	4 °.0	5°.0	6°.0	7 °.0	8 °.0	9°.0
_50°	0.053	0.049	0.046	0.043	0.040	0.037	0.034	0.032	0.030	0.028
40	.100	.094	.089	.084	.079	.074	.069	.065	.oĞı	.057
30	.176	.165	.155	.146	.138	.130	.123	.117	III.	.105
-20	.319	.301	.284	.268	.253	.239	.225	.212	.199	.187
-10	.564	•534	.505	.478	.452	.427	.403	.384	.358	.338
—0°	0.972	0.922	0.873	0.826	0.781	0.738	0,698	0.661	0.627	0.595
+0	.972 1.603	1.023	1.075	1.129	1.186	1.246 2.058	1.309 2.158	2.262	1.447	2.486
20	2.607	2.735	2.869	3.009	3.155	3.307	3.466	3.631	2.37 I 3.803	3.982
30	4.169	4.364	4.568	3.009	333	3-3-7	3.400	3,03-	3.003	3.902
•	(o) Pressur	es in inche	s of mercu	ry; temper	atures in d	egrees Cer	ntigrade.		
Temp. C.	0 °.0	1°.0	2 °.0	3°.0	4 °.0	5°.0	6°.0	7°.0	8°.0	9°.0
0°	0.1798	0.1655	0.1524	0.1395	0.1290	0.1185	0.1091	0.0998	0.0916	0.0842
-10	.0772	.0706	.0645	0.1395	.0537	.0491	.0449	.0411	.0375	.0341
20	.0307	.0278	.0252	.0229	.0208	.0188	.0171	.0153	.0138	.0124
<u>-30</u>	.0112	.0036	.0032	.0082	.0073	.0065	.0059	.0053	.0048	.0044
-40	.0040	.0030	.0032	.0029	.0025	.0022	.0020	.001/	.0015	.0013
	(d)	Pressures	in millime	tres of mer	cury; tem	peratures in	n degrees (Centigrade	·	
Temp. C.	0°.0	1°.0	2 °.0	3°.0	4 °.0	5°.0	6°.0	7 °.0	8°.0	9°.0
_0°	4.568	4.208	3.875	3.565	3.277	3.009	2.767	2.534	2.327	2.138
—ro	1.961	1.794	1.637	1.493	1.363	1.246	1.140	1.044	0.952	0.864
-20	0.781	0.706	0.641	0.583	0.528	0.478	0.432	0.389	0.350	0.315
30	0.284	0.256	0.231	0.207	0.185	0.165	0.148	0.133	0.121	0.110
40	0.100	0.090	0.081	0.072	0.064	0.057	0.050	0.044	0.039	0.034
							,			

^{*} Marvin's results (Ann. Rept. U. S. Chief Signal Officer, 1891, App. 10).

TABLE 136. PRESSURE OF AQUEOUS VAPOR, 0° C TO 100° C.

According to Broch.*

Temp. °C.	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
+0	4·57	4.64	4.70	4.77	4.84	4.91	4.98	5.05	5.12 5.90 6.78 7.78 8.90	5.20
2	5·27	5.35	5.42	5.50	5.58	5.66	5.74	5.82		5.99
4	6·07	6.15	6.24	6.33	6.42	6.51	6.60	6.69		6.88
6	6·97	7.07	7.17	7.26	7.36	7.47	7.57	7.67		7.88
8	7·99	8.10	8.21	8.32	8.43	8.55	8.66	8.78		9.02
10	9.14	9.26	9.39	9.51	9.64	9.77	9.90	10.03	10.16	10.30
12	10.43	10.57	10.71	20.85	10.99	11.14	11.28	11.43	11.58	11.73
14	11.88	12.04	12.19	12.35	12.51	12.67	12.84	13.00	13.17	13.34
16	13.51	13.68	13.86	14.04	14.21	14.40	14.58	14.76	14.95	15.14
18	15.33	15.52	15.72	15.92	16.12	16.32	16.52	16.73	16.94	17.15
20	17.36	17.58	17.80	18.02	18.24	18.47	18.69	18.92	19.16	19.39
22	19.63	19.87	20.11	20.36	20.61	20.86	21.11	21.37	21.63	21.89
24	22.15	22.42	22.69	22.96	23.24	23.52	23.80	24.08	24.37	24.66
26	24.96	25.25	25.55	25.86	26.16	26.47	26.78	27.10	27.42	27.74
28	28.07	28.39	28.73	29.06	29.40	29.74	30.09	30.44	30.79	31.15
30	31.51	31.87	32.24	32.61	32.99	33·37	33.75	34.14	34·53	34.92
3 ²	35.32	35.72	36.13	36.54	36.95	37·37	37.79	38.22	38·65	39.08
34	39.52	39.97	40.41	40.87	41.32	41·78	42.25	42.72	43·19	43.67
36	44.16	44.65	45.14	45.64	46.14	46.65	47.16	47.68	48·20	48.73
38	49.26	49.80	50.34	50.89	51.44	52.00	52.56	53.13	53·70	54.28
40	54.87	55.46	56.05	56.65	57.26	57.87	58.49	59.11	59.74	60.38
42	61.02	61.66	62.32	62.98	63.64	64.31	64.99	65.67	66.36	67.05
44	67.76	68.47	69.18	69.90	70.63	71.36	72.10	72.85	73.60	74.36
46	75.13	75.91	76.69	77.47	78.27	79.07	7 9.88	80.70	81.52	82.35
48	83.19	84.03	84.89	85.75	86.61	87.49	88.37	89.26	90.16	91.06
50	91.98	92.90	93.83	94·77	95.71	96.66	97.63	98.60	99.57	100.56
52	101.55	102.56	103.57	104·59	105.62	106.65	107.70	108.76	109.82	110.89
54	111.97	113.06	114.16	115·27	116.39	117.52	118.65	119.80	120.95	122.12
56	123.29	124.48	125.67	126·87	128.09	129.31	130.54	131.79	133.04	134.30
58	135.58	136.86	138.15	139·46	140.77	142.10	143.43	144.78	146.14	147.51
60	148.88	150.27	151.68	153.09	154.51	155.95	157.39	158.85	160.32	161.80
62	163.29	164.79	166.31	167.83	169.37	170.92	172.49	174.06	175.65	177.25
64	178.86	180.48	182.12	183.77	185.43	187.10	188.79	190.49	192.20	193.93
66	195.67	197.42	199.18	200.96	202.75	204.56	206.38	208.21	210.06	211.92
68	213.79	215.68	217.58	219.50	221.43	223.37	225.33	227.30	229.29	231.29
70	233.31	235.34	237.39	239.45	241.52	243.62	245.72	247.85	249.98	252.14
72	254.30	256.49	258.69	260.91	263.14	265.38	267.65	269.93	272.23	274.54
74	276.87	279.21	281.58	283.95	286.35	288.76	291.19	293.64	296.11	298.59
76	301.09	303.60	306.14	308.69	311.26	313.85	316.45	319.07	321.72	324.38
78	327.05	329.75	332.47	335.20	337.95	340.73	343.52	346.33	349.16	352.01
80	354.87	357.76	360.67	363.59	366.54	369.51	372.49	375.50	378.53	381.58
82	384.64	387.73	390.84	393.97	397.12	400.29	403.49	406.70	409.94	413.19
84	416.47	419.77	423.09	426.44	429.81	433.19	436.60	440.04	443.49	446.97
86	450.47	454.00	457.54	461.11	464.71	468.32	471.96	475.63	479.32	483.03
88	486.76	490.52	494.31	498.12	501.95	505.81	509.69	513.60	517.53	521.48
90	525.47	529.48	533.51	537·57	541.65	545.77	549.90	554.07	558.26	562.47
92	566.71	570.98	575.28	579.61	583.96	588.33	592.74	597.17	601.64	606.13
94	610.64	615.19	619.76	624.37	629.00	633.66	638.35	643.06	647.81	652.59
96	657.40	662.23	667.10	672.00	676.92	681.88	686.87	691.89	696.93	702.02
98	707.13	712.27	717.44	722.65	7 27.89	733.16	738.46	743.80	749.17	754.57
100	760.00	765.47	770.97	776.50	782.07	787.67	-	-	-	-

^{*} This table is based on Regnault's experiments, the numbers being taken from Broch's reduction of the observations (Trav. et Mém. du Bur. Int. des Poids et Més. tom. 1).

TABLE 137.

PRESSURE OF AQUEOUS VAPOR, 100° C. TO 230° C. According to Regnault.

						ruing a				_			
Temp. O Cent.	Pressure: mm. of mercury.	Grammes per sq. centimetre,	Pounds per sq.	Pressure: inches of mercury.	Pressure: atmospheres.	Temp. O Fahr.	Temp. ° Cent.	Pressure: mm. of mercury.	Grammes per sq. centimetre,	Pounds per sq. inch.	Pressure: inches of mercury.	Pressure: atmospheres.	Temp. O Fahr.
100 101 102 103 104	787.59 816.01 845.28	1033.26 1070.78 1109.41 1149.21 1190.17	15.23 15.79 16.35	29.92 31.01 32.13 33.28 34.46	.074 .112	212.0 213.8 215.6 217.4 219.2	150 151 152 153 154	3581.2 3678.4 3777.7 3879.2 3982.8	4868.9 5001.1 5136.1 5275.0 5414.8	69.26 71.14 73.06 75.02 77.03	144.8 148.7 152.7	.840 .971 5.104	302.0 303.8 305.6 307.4 309.2
105 106 107 108 109	971.14	1232.32 1275.69 1320.32 1366.24 1413.47	18.78	35.69 36.94 38.23 39.56 40.93	.278	221.0 222.8 224.6 226.4 228.2	155 156 157 158 159	4088.6 4196.6 4306.9 4419.5 4534.4	5558.6 57°5.5 5855.5 6008.5 6164.7	79.07 81.22 83.29 85.47 87.69	165.2 169.6 174.0	.522 .667 .815	311.0 312.8 314.6 316.4 318.2
110 111 112 113 114	1112.09	1462.03 1511.97 1563.26 1615.99 1670.18	21.51 22.24 22.99	42.34 43.78 45.25 46.80 48.37	.513 .564	230.0 231.8 233.6 235.4 237.2	160 161 162 163 164	4651.6 4771.3 4893.4 5017.9 5145.0	6324.2 6486.8 6652.8 6822.2 6994.9	89.96 92.27 94.63 97.04 99.50	187.9	.278 .439 .603	320.0 321.8 323.6 325.4 327.2
115 116 117 118 119	1311.47 1354.66 1399.02	1725.84 1783.02 1841.74 1902.05 1963.95	25.37 26.20 27.06	49.98 51.63 53.34 55.08 56.87	.782	239.0 240.8 242.6 244.4 246.2	165 166 167 168 169	5274.5 5406.7 5541.4 5678.8 5818.9		109.84	212.9 218.2 223.6	6.940 7.114 .291 .472 .656	329.0 330.8 332.6 334.4 336.2
120 121 122 123 124	1 539.25 1 588.47 1 638.96	2027.48 2092.70 2159.62 2228.26 2298.69	29.78 30.73 31.70	58.71 60.61 62.54 64.53 66.56	2.025 .091 .157	248.0 249.8 251.6 253.4 255.2	170 171 172 173 174	5961.7 6107.2 6255.5 6406.6 6560.6	8504.7 8710.2	115.29 118.11 120.98 123.90 126.87	240.4 246.3 252.2	7.844 8.036 .231 .430 .632	341.6 343.4
125 126 127 128 129	1798.35 1854.20 1911.47	2370.91 2444.96 2520.89 2598.76 2678.54	34.78 35.86 36.97	68.66 70.80 73.00 75.25 77.57	.366 .430	257.0 258.8 260.6 262.4 264.2		6717.4 6877.2 7040.0 7205.7 7374.5	9350.0 9571.3	129.91 133.00 136.15 139.35 142.62	270.8 277.2 283.7	.263	347.0 348.8 350.6 352.4 354.2
130 131 132 133 134	2091.94 2155.03 2219.69	2760.29 2844.12 2929.89 3017.80 3107.85	40.47 41.68 42.93	79.93 82.36 84.84 87.39 89.99	2.671 .753 .836 .921 3.008	266.0 267.8 269.6 271.4 273.2	180 181 182 183 184	7721.4 7899.5 8080.8	10259.7 10497.7 10739.9 10986.4 11237.3	149.32 152.77 156.32	304.0 311.0 318.1	10.150	359.0
135 136 137 138 139	2423.16	3200.04 3294.43 3391.06 3489.99 3591.29	46.87 48.24 49.65	92.67 95.39 98.19 101.06 103.99	3.097 .188 .282 .378 .476	275.0 276.8 278.6 280.4 282.2	185 186 187 188 189	8644.4 8838.8 9036.7	11490.0 11752.5 12016.9 12285.9 12559.6	167.17 170.94 174.76	340.3 348.0 355.8	.630	366.8 368.6 370.4
	2795.57		54.07 55.60 57.16	110.06 113.20 116.41	.678 .783 .890	285.8 287.6 289.4	191 192 193	9442.7 9650.9 9862.7 10078.0	13701.7	186.63 190.72 194.88	380.0 388.3 396.8	12.099	375.8 377.6 379.4
146 147 148	3125.55 3212.74 3301.87 3392.98 348 6. 09	4367.91 4489.09 4612.96	62.13 63.86 65.62	126.48 129.99 133.58	.227 .344 .464	293.0 294.8 296.6 298.4 300.2	196 197 198	10519.6 10746.0 10975.0 11209.8 11447.5	14009.8	207.81 212.25 216.77	423.1 432.1 441.3	14.139	386.6

PRESSURE AND WEIGHT OF AQUEOUS VAPOR.

TABLE 137 (continued).—Pressure of Aqueous Vapor, 100° 0–230° 0. According to Regnault.

Temp. ° Cent.	Pressure: mm. of mercury.	Grammes per sq. centimetre.	Pounds per sq. inch.	Pressure: inches of mercury.	Pressure: atmospheres.	Temp. O Fahr.	Temp. O Cent.	Pressure: mm. of mercury.	Grammes per sq. centimetre.	Pounds per sq.	Pressure: inches of mercury.	Pressure:	Temp. O Fahr.
201 11 202 12 203 12 204 12 205 12 206 13 207 13 208 13 209 12 210 12 211 12 212 14 213 13	1934.4 2183.7 2437.0 2694.3 2955.7 3221.1 3490.8 3764.5 4042.5 4324.8 4611.3 4902.2 5197.5	16908.8 17257.3 17614.0 17974.9 18341.5 18713.7 19091.6	230.79 235.61 240.54 245.49 250.53 255.67 260.88 266.18 271.55 277.01 282.58 288.21 293.92	469.8 479.7 489.6 499.8 510.1 520.5 531.2 541.9 552.9 564.1 575.3	15.703 16.031 16.364 16.703 17.047 17.396 17.751 18.477 18.848 19.226 19.608	393.8 395.6 397.4 399.2 401.0 402.8 404.6 406.4 408.2	216 217 218 219 220 221 222 223 224 225 226 227 228	18746.1 19097.0 19452.9	21902.4 22328.3 22760.3 23198.6 23643.2 24094.3 24551.8 25015.8 25486.4 25963.5 26447.4 26938.0 27435.4	311.57 317.62 323.78 330.01 336.30 342.70 349.21 355.81 362.50 369.29 376.17 383.15 390.22	634.2 646.6 659.1 671.8 684.7 697.7 711.0 724.4 738.0 751.9 765.8 780.9	21.197 21.690 22.027 22.452 22.882 23.319 23.761 24.210 24.666 25.128 25.596 26.071 26.552	420.8 422.6 424.4 426.2 428.0 429.8 431.6 433.4 435.2 437.0 438.8 440.6 442.4

TABLE 138. — Weight in Grains of the Aqueous Vapor contained in a Cubic Foot of Saturated Air.*

Temp.	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
_10 o	0.285	0.270	0.257	0.243	0.231	0.218	0.207	0.196	0.184	0.174
+0 10 20 30 40	0.481 0.776 1.235 1.935 2.849	0.505 0.816 1.294 2.022 2.955	0.529 0.856 1.355 2.113 3.064	0.554 0.898 1.418 2.194 3.177	0.582 0.941 1.483 2.279 3.294	0.610 0.985 1.551 2.366 3.414	0.639 1.032 1.623 2.457 3.539	0.671 1.079 1.697 2.550 3.667	0.704 1.128 1.773 2.646 3.800	0.739 1.181 1.853 2.746 3.936
50 60 70 80 90	4.076 5.745 7.980 10.934 14.790	4.222 5.941 8.240 11.275 15.234	4.37 2 6.142 8.508 11.626 15.689	4.526 6.349 8.782 11.987 16.155	4.685 6.563 9.066 12.356 16.634	4.849 6.782 9.356 12.736 17.124	5.018 7.009 9.655 13.127 17.626	5.191 7.241 9.962 13.526 18.142	5.370 7.480 10.277 13.937 18.671	5.555 7.726 10.601 14.359 19.212
100 110	19.7 6 6 26.112	20.335 26.832	20.917	21.514 28.325	22. 125 29.096	22.7 50 29.887	23.392	24.048	24.720	25.408

^{*} See "Smithsonian Meteorological Tables," pp. 132-133.

TABLE 139. — Weight in Grammes of the Aqueous Vapor contained in a Cubic Metre of Saturated Air.

Temp.	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
-20	0.892	0.810	0.737	0.673	0.613	0.557	0.505	0.457	0.413	0.373
-10	2.154	1.978	1.811	1.658	1.519	1.395	1.282	1.177	1.079	0.982
-0	4.835	4.468	4.130	3.813	3.518	3.244	2.988	2.752	2.537	2.340
+0	4.835	5.176	5.538	5.922	6.330	6.761	7.219	7.703	8.215	8.757
10	9.330	9.935	10.574	11.249	11.961	12.712	13.505	14.339	15.218	16.144
20	17.118	18.143	19.222	20.355	21.546	22.796	24.109	25.487	26.933	28.450
30	30.039	31.704	33.449	35.275	37.187	39.187	41.279	43.465	45.751	48.138

PRESSURE OF AQUEOUS VAPOR IN THE ATMOSPHERE.

This table gives the vapor pressure corresponding to various values of the difference $t-t_1$ between the readings of dry and wet bulb thermometers and the temperature t_1 of the wet bulb thermometer. The differences $t-t_1$ are given by two-degree steps in the top line, and t_1 by degrees in the first column. Temperatures in Centigrade degrees and Regnault's vapor pressures in millimetres of mercury are used throughout the table. The table was calculated for barometric pressure B equal to 76 centimetres, and a correction is given for each centimetre at the top of the columns.* top of the columns.*

t_1	$ \begin{array}{c} t-t_1\\ =0 \end{array} $	2	4	6	8	10	12	14	16	18	20	nce per	
Correcti B per metre	r centi-	.013	.026	•040	.053	.066	.079	.092	.106	•119	.132	Difference 1 to of t-t,	
-10 -9 -8 -7 -6 -5	1.96 2.14 2.33 2.53 2.76	0.96 1.14 1.33 1.53 1.76	0.14 0.33 0.53 0.76			•		Exan		$-t_1 = t_1 = t_2$		0.100 0.100 0.100 0.100	
-4 -3 -2 -1	3.01 3.28 3.57 3.88 4.22	2.01 2.28 2.57 2.88 3.22	1.00 1.27 1.56 1.87 2.21	0.27 0.56 0.87 1.21	0.21	Tab Co	0.100 0.100 0.100 0.100						
1 2 3 4	4.60 4.94 5.30 5.69 6.10	3.60 3.93 4.29 4.68 5.09 5.52	2.59 2.92 3.29 3.68 4.09	1.59 1.92 2.28 2.67 3.08	0.59 0.92 1.28 1.66 2.07	0.27 0.66 1.06	0.05					0.100 0.100 0.101 0.101	
6 7 8 9	7.00 7.49 8.02 8.57	5.52 5.99 6.48 7.01 7.56	4.51 4.98 5.47 5.99 6.54	3.50 3.97 4.45 4.98 5.53 6.12	2.49 2.96 3.44 3.97 4.51 5.11	1.46 1.95 2.43 2.96 3.50	0.48 0.94 1.42 1.94 2.49	0.41 0.93 1.48	0.46	0.05		0.101 0.101 0.101 0.101 0.101	
11 12 13 14	9.79 10.46 11.16 11.91	8.77 9.44 10.14 10.89	7.76 8.43 9.12 9.87	6.74 7.41 8.10 8.85 9.64	5.73 6.39 7.09 7.83 8.62	4.71 5.37 6.07 6.81	3.69 4.36 5.05 5.79 6.58	2.68 3.34 4.03 4.77 5.56	1.66 2.32 3.01 3.71 4.54	0.64 1.30 1.99 2.69	0.28 0.97 1.67	0.101 0.102 0.102 0.102 0.102	
16 17 18 19	13.54 14.42 15.36 16.35	12.52 13.40 14.34 15.33	11.50 12.37 13.31 14.30	10.47 11.35 12.29 13.27	9.45 10.33 11.26 12.25	8.43 9.31 10.24 11:22	7.41 8.28 9.21 10.20	6.39 7.26 8.19 9.17	5·37 6·24 7·17 8·15	4·35 5·22 6·15 7·13	2.50 3.33 4.20 5.13 6.11	0.102 0.102 0.102 0.102	
21 22 23 24	17.39 18.50 19.66 20.89 22.18	16.37 17.47 18.63 19.86 21.15	15.34 16.45 17.60 18.83 20.12	14.31 15.42 16.57 17.80 19.09	13.28 14.39 15.54 16.77 18.05	12.26 13.36 14.51 15.74 17.02	11.23 12.33 13.48 14.71 15.99	10.21 11.31 12.46 13.68 14.96	10.28 11.43 12.66 13.94	8.15 9.25 10.40 11.63 12.91	7.12 8.22 9.37 10.60 11.88	0.103 0.103 0.103 0.103	
25 26 27 28 29	23.55 24.99 26.51 28.10 29.78	22.52 23.96 25.48 27.07 28.75	21.49 22.92 24.44 26.03 27.71	20.45 21.89 23.40 24.99 26.67	19.43 20.86 22.37 23.96 25.63	18.39 19.82 21.34 22.92 24.59	17.36 18.79 20.30 21.89 23.56	16.33 17.76 19.27 20.85 22.52	15.30 16.73 18.24 19.82 21.49	14.27 15.70 17.21 18.79 20.46	13.24 14.67 16.18 17.76 19.43	0.103 0.103 0.103 0.103 0.103	
30 31 32 33 34	31.55 33.41 35.36 37.41 39.57	30.51 32.37 34.32 36.37 38.53	29.47 31.33 33.28 35.33 37.48	28.43 30.29 32.24 34.29 36.44	27.40 29.25 31.21 33.25 35.40	28.22 27.18 26.14 25.10 24.07 23.03 30.17 29.13 28.09 27.05 26.01 24.97 32.22 31.18 30.14 29.10 28.06 27.02 34.36 33.32 32.28 31.24 30.20 29.16							
35 36 37 38 39	41.83 44.20 46.69 49.30 52.04	40.79 43.16 45.65 48.26 51.00	39·74 42.11 44.60 47·21 49·95	38.70 41.07 43.56 46.17 48.91	37.66 40.03 42.52 45.13 47.86	36.62 38.99 41.48 44.08 46.82	35.68 37.95 40.44 43.04 45.77	34.64 36.90 39.39 41.99 44.73	33.60 35.86 38.35 40.95 43.78	32.56 34.82 37.31 39.91 42.74	31.52 33.78 36.27 38.87 41.69	0.104 0.104 0.104 0.104 0.105	

^{*} The table was calculated from the formula $p = p_1 - 0.00066 B(t-t_1) (1 + 0.00115 t_1)$ (Ferrel, Annual Report U. S. Chief Signal Officer, 1886, App. 24).

† When B is less than 76 the correction is to be added, and when B is greater than 76 it is to be subtracted.

The first column of this table gives the temperatures of the wet-bulb thermometer, and the top line the difference the table. The dew-points were computed for a barometric pressure of 76 centimetres. When the barometer differs and the resulting number added to or subtracted from the tabular number according as the barometer is below or

POINTS.

between the dry and the wet bulb, when the dew-point has the values given at corresponding points in the body of from 76 centimetres the corresponding numbers in the lines marked $\delta T/\delta B$ are to be multiplied by the difference, or above 76. See examples.

	see examples.						
t ₁	$t-t_1=9$	10	11	12	13	14	15
1	Dew-points	corresponding wet-b	to the differe	nce of temper ter reading giv	ature given in en in first colu	the above limn.	ne and the
			Then Also Co Heno (2) Giver Then \$T/8	In $B=72$, $t_1=1$ tabular numb $76-72=4$ ar orrection = 0.c. the dew-point $B=71.5$, $t_1=1$, as above, tal $B=\frac{18+12}{2}$ ection = 0.15 × point =	per for $t_1 = 10$ and $\delta T / \delta B = .0$ so $6 \times 4 = .0$ nt is	and $t-t_1=5$:	-24
δ T/δB = 0 1 2 3	- 20.0 15.8	.67					
δ T/δB = 5	12.4 .23 — 19.8	16.8 .29	- 17.7	-44	-54	.66	.72
$ \begin{array}{c} 6 \\ 7 \\ 8 \\ 9 \\ 8 \\ 7 \\ 8 \end{array} $ $ \begin{array}{c} 8 \\ 7 \\ 8 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 8 \\ 7 \\ 16 \\ 17 \\ 18 \\ 19 \\ 8 \\ 7 \\ 7 \\ 8 \\ 8 \\ 20 \\ 21 \\ 21 \\ 21 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 \\ 6 \\ 3 \\ 7 \\ 7 \\ 8 \\ 8 \\ 9 \\ 20 \\ 21 \\ 21 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 6 \\ 7 \\ 7 \\ 8 \\ 8 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9$	7.4 5.3 3.3 1.6 .14 0.0 + 1.8 3.5 5.1 6.7 .09 8.2 9.6 11.0 12.4 13.8	10.1 7.6 5.2 3.2 .17 — 1.3 + 0.3 2.2 3.9 5.6 .11 7.2 8.7 10.2 11.7 13.1 .07 14.5 15.8	13.4 10.1 7.4 5.1 .20 -3.0 1.0 + 0.8 2.7 4.5 .12 6.2 7.8 9.4 10.9 12.4 .08 13.8 15.2	- 18.1 13.5 10.1 7.2 .22 - 4.7 2.6 0.6 + 1.3 3.3 .14 5.1 6.8 8.5 10.1 11.6 .09 13.1 14.5	- 18.3 13.5 9.9 .25 - 6.8 4.3 2.1 0.1 + 1.9 .16 3.9 5.8 7.5 9.2 10.8 .10	- 18.3 13.1 .29 - 9.4 6.3 3.7 1.6 + 0.5 .18 2.7 4.7 6.5 8.3 10.0 .11 11.6 13.2	- 17.2 .36 - 12.5 8.8 5.7 3.1 0.9 .20 + 1.3 3.5 5.5 7.4 9.1 .13 10.8 12.5
$egin{array}{c} 22 \\ 23 \\ 24 \\ \delta T/\delta B = \\ \textbf{25} \\ 26 \\ 27 \\ 28 \\ 29 \\ \delta T/\delta B = \\ \textbf{30} \\ 31 \\ \end{array}$	17.6 18.9 20.1 .045 21.4 22.6 23.7 24.9 26.1 .031 27.2 28.4	17.1 18.4 19.6 .o5 20.9 22.1 23.4 24.5 25.7 .o35 26.9 28.1	16.5 17.9 19.2 .o6 20.4 21.7 22.9 24.2 25.4 .o41 26.6 27.8	15.9 17.3 18.7 .o6 20.0 21.3 22.5 23.8 25.0 .047 26.2	15.3 16.8 18.1 .07 19.5 20.8 22.1 23.4 24.6 .053 25.9	14-7 16.2 17.6 .08 19.0 20.3 21.7 23.0 24.2 .06 25.5 26.8	14-0 15-7 17-0 .og 18-5 19-9 21-2 22-6 23-9 .o7 25-2 26-4
32 33 34 δ7/δB == 35 36 37 38 39	29.5 30.7 31.8 .024 32.9 34.0 35.1 36.2 37.3	29.2 30.4 31.5 .027 32.6 33.7 34.9 35.9 37.1	28.9 30.1 31.2 .029 32.4 33.5 34.6 35.7 36.8	28.6 29.8 30.9 .032 32.1 33.3 34.4 35.5 36.6	28.3 29.5 30.7 .037 31.8 33.0 34.2 35.3 36.4	28.0 29.2 30.4 .037 31.6 32.8 33.9 35.1 36.2	27.7 28.9 30.1 .04 31.4 32.5 33.7 34.8 36.0

RELATIVE HUMIDITY,*

This table gives the humidity of the air, for temperature t and dew-point d in Centigrade degrees, expressed in percentages of the saturation value for the temperature t.

Depression of		Dev	w-point	(d).		Depression of		Dev	w-point	(d).	
the dew-point. $t-d$	— 10	0	+10	+20	+30	the dew-point. $t-d$	10	0	+10	+ 20	+30
C. O°.O 0.2 0.4 0.6 0.8	100 98 97 95 94	100 99 97 96 94	99 97 96 95	100 99 98 96 95	100 99 98 97 96	C. 8°.0 8.2 8.4 8.6 8.8	54 54 53 52 51	57 56 56 55 54	60 59 58 57 57	62 61 60 60 59	64 63 63 62 61
1.0 1.2 1.4 1.6 1.8	92 91 90 88 87	93 92 90 89 88	94 92 91 90 89	94 93 92 91	94 93 92 91 90	9.0 9.2 9.4 9.6 9.8	51 50 49 48 48	53 53 52 51 51	56 55 55 54 53	58 58 57 56 56	61 60 59 59 58
2.0 2.2 2.4 2.6 2.8	86 84 83 82 80	87 85 84 83 82	88 86 85 84 83	88 87 86 85 84	89 88 87 86 85	10.0 10.5 11.0 11.5 12.0	47 45 44 42 41	50 48 47 45 44	53 51 49 48 47	55 54 52 51 49	57
3.0 3.2 3.4 3.6 3.8	79 78 77 76 75	81 80 79 77 76	82 81 80 79 78	83 82 81 80 79	84 83 82 82 81	12.0 13.0 13.5 14.0 14.5	39 38 37 35 34	42 41 40 38 37	45 44 43 41 40	48 46 45 44 43	
4.0 4.2 4.4 4.6 4.8	73 72 71 70 69	75 74 73 72 71	77 76 75 74 73	78 77 77 76 75	80 79 78 77 76	15.0 15.5 16.0 16.5 17.0	33 32 31 30 29	36 35 34 33 32	39 38 37 36 35	42 40 39 38 37	
5.0 5.2 5.4 5.6 5.8	68 67 66 65 64	70 69 68 67 66	72 71 70 69 69	74 73 72 71 70	75 75 74 73 72	17.5 18.0 18.5 19.0	28 27 26 25 24	31 30 29 28 27	34 33 32 31 30	36 35 34 33 33	
6.0 6.2 6.4 6.6 6.8	63 62 61 60 60	66 65 64 63 62	68 67 66 65 64	70 69 68 67 66	71 71 70 69 68	20.0 21.0 22.0 23.0 24.0	24 22 21 19 18	26 25 23 22 21	29 27 26 24 23	32	
7.0 7.2 7.4 7.6 7.8	59 58 57 56 55	61 60 60 59 58	63 63 62 61 60	66 65 64 63 63	68 67 66 65 65	25.0 26.0 27.0 28.0 29.0	17 16 15 14	19 18 17 16	22 21 20 19 18		
8.0	54	57	60	62	64	30.0	12	14	17		

^{*} Abridged from Table 45 of "Smithsonian Meteorological Tables."

VALUES OF 0.378e.*

This table gives the humidity term 0.378e, which occurs in the equation $\delta = \delta_0 \frac{\hbar}{760} = \delta_0 \frac{B - 0.378e}{760}$ for the calculation of the density of the dry air in a sample containing aqueous vapor at pressure e; δ_0 is the density at normal barometric pressure, B the observed barometric pressure, and \hbar the pressure corrected for humidity. For values of $\frac{\hbar}{760}$ see Table 144. Temperatures are in degrees Centigrade, and pressures in millimetres of mercury.

Dew Point. °C.	Vapor Pressure (ice).	0.378€,	Dew Point. °C.	Vapor Pressure (water).	0.378e.	Dew Point, °C.	Vapor Pressure (water).	0.378e.
—50 45 40 35 30.	0.034 .061 .105 .173	0.01 .02 .04 .07	0 +1 2 3 4	4.579 4.921 5.286 5.675 6.088	1.73 1.86 2.00 2.15 2.30	+30 31 32 33 34	31.555 33.416 35.372 37.427 39.586	11.93 12.63 13.37 14.15 14.96
-25 24 23 22 21	0.484 •534 •589 •648 •714	0.18 .20 .22 .24 .27	5 6 7 8 9	6.528 6.997 7.494 8.023 8.584	2.47 2.65 2.83 3.03 3.24	35 36 37 38 39	41.853 44.23 46.73 49.35 52.09	15.82 16.72 17.66 18.65 19.69
-20 19 18 17 16	0.787 .868 .955 1.048 1.148	0.30 ·33 ·36 ·40 ·44	10 11 12 13	9.179 9.810 10.479 11.187 11.936	3.47 3.71 3.96 4.23 4.51	40 41 42 43 44	54.97 57.98 61.13 64.43 67.89	20.78 21.92 23.12 24.35 25.66
-15 14 13 12	1.257 1.375 1.506 1.650 1.806	0.48 •52 •57 .62 .68	15 16 17 18	12.728 13.565 14.450 15.383 16.367	4.81 5.13 5.46 5.82 6.19	45 46 47 48 49	71.50 75.28 79.23 83.36 87.67	27.02 28.46 29.95 31.51 33.14
—10 9 8 7 6	1.974 2.154 2.347 2.557 2.785	0.75 .81 .89 .97 1.05	20 21 22 23 24	17.406 18.503 19.661 20.883 22.178	6.58 6.99 7.43 7.90 8.38	50 51 52 53 54	92.17 96.87 101.77 106.88 112.21	34.84 36.62 38.47 40.40 42.42
—5 4 3 2 1	3.032 3.299 3.586 3.894 4.223	1.15 1.25 1.36 1.47 1.60	25 26 27 28 29	23.546 24.987 26.505 28.103 29.785	8.90 9.45 10.02 10.62 11.26	55 56 57 58 59	117.77 123.56 129.59 135.87 142.41	44.52 46.71 48.98 51.36 53.83
0	4-579	1.73	30	31.555	11.93	60	149.21	56.40

^{*} This table is quoted from "Smithsonian Meteorological Tables," p. 225.

DENSITY OF AIR FOR DIFFERENT PRESSURES AND HUMIDITIES.

TABLE 144. — Values of $\frac{h}{760}$, from h=1 to h=9, for the Computation of Different Values of the Ratio of Actual to Normal Barometric Pressure.

This gives the density of air at pressure k in terms of the density at normal atmosphere pressure. When the air contains moisture, as is usually the case with the atmosphere, we have the following equation for the dry air pressure: $k = B - 0.378\varepsilon$, where ε is the vapor pressure, and B the observed barometric pressure corrected for temperature. When the necessary observations are made the value of ε may be taken from Table 170, and then 0.378 ε from Table 172, or the dew-point may be found and the value of 0.378 ε taken from Table 172.

ħ	h 760
1	0.0013158
2	.0026316
3	.0039474
4 56	0.0052632 .0065789 .0078947
7	0.0092105
8	.0105263
9	.0118421

Examples of Use of the Table.

To find the value of
$$\frac{h}{760}$$
 when $h = 754.3$
 $h = 700$ gives $.92105$
 $.065789$
 $.003263$
 $.3$
 $.003095$
 $.754.3$
 $.9992497$

To find the value of
$$\frac{k}{760}$$
 when $k = 5.73$
 $k = 5$ gives .005/395
.000/395
.000/395
.007/4079

TABLE 145. — Values of the logarithms of $\frac{h}{760}$ for values of h between 80 and 340.

Values from 8 to 80 may be got by subtracting 1 from the characteristic, and from 0.8 to 8 by subtracting 2 from the characteristic, and so on.

h					Values of	$f \log \frac{h}{760}$				
	0	0 1 2		3 4 5		6	7	8	9	
80 90	ī.02228 .07343	ī.02767 .07823	ī.03300 .08297	ī.03826 .08767	ī.04347 .09231	ī.04861 .09691	ī.05368 .10146	ī.05871 .10596	ī.0636 7	ī.06858 .11482
100 110 120 130 140 150 160 170 180 190 200 210 220 230	7.11919 .16058 .19837 .23313 .26531 7.29528 .32331 .34964 .37446 .39794 7.42022 .44141 .46161 .48091	T.12351 .16451 .20197 .23646 .26841 T.29816 .32601 .35218 .37686 .40022 T.42238 .44347 .46358 .48280	T.12779 .16840 .20555 .23976 .27147 T.30103 .32870 .35471 .37926 .40249 T.42454 .44552 .40554 .48467	T.13202 .17262 .20909 .24304 .27452 T.30388 .33137 .35723 .38164 .40474 T.42668 .44757 .46749 .48654	T.13622 .17609 .21261 .24629 .27755 T.30671 .33403 .35974 .38400 .40699 T.42882 .44960 .46943 .48340	T.14038 .17988 .21611 .24952 .28055 T.30952 .33667 .36222 .38636 .40922 T.43094 .45162 .47137 .49025	T.14449 .18364 .21956 .25273 .28354 T.31231 .33929 .36470 .38870 .41144 T.43305 .45364 .47329 .49210	ī.14857 .18737 .22299 .28550 ī.31509 .36716 .39128 .41365 ī.43516 .4556 .47521 .49393	T.15261 1.1910 22640 228945 T.31784 34450 36961 39334 41585 T.43725 45764 47712 49576	T.15661 .19473 .22978 .26220 .29237 T.32058 .34707 .37204 .39565 .41804 T.43933 .45963 .47902 .497.58
240 250 260 270 280 290 310 320 330 340	-49940 -49940 -53416 -55055 -56634 -58158 -61055 -62434 -63770 -65067	.50120 T.51886 .53583 .55216 .56789 .58308 T.59775 .61195 .62569 .63901 .65194	7.52059 -53749 -55376 -56944 -58457 7.59919 -61334 -62704 -64032 -65321	7.52231 -53914 -53535 -57097 -58605 -60063 -61473 -62839 -64163 -65448	.50658 T.52402 .54079 .55694 .57250 .58753 T.60206 .61611 .62973 .64293 .65574	7.52573 -54243 -55852 -57403 -58901 7.60349 -61750 -63107 -64423 -65701	7.52743 -54407 -56010 -57555 -59048 7.60491 -61887 -63240 -64553 -65826	7.52912 54570 .56167 .57707 .59194 7.60632 .62025 .63373 .64682 .65952	7.5364 7.53081 .54732 .56323 .57858 .59340 7.60774 .62161 .63506 .64810 .66077	T.53249 .54894 .56479 .58008 .59486 T.60914 .62298 .63638 .64939 .66201

DENSITY OF AIR.

Values of logarithms of $\frac{\hbar}{760}$ for values of \hbar between 350 and 800.

					Values o	f log k				
h					Values o	760				
	0	1	2	3	4	5	6	7	8	9
350 360 370 380 390	ī.66325 .67549 .68739 .69897 .71025	ī.66449 .67669 .68856 .70011 .71136	ī.66573 .67790 .68973 .70125	ī.66696 .67909 .69090 .70239 .71358	ī.66819 .68029 .69206 .70352 .71468	1.66941 .68148 .69322 .70465 .71578	1.67064 .68267 .69437 .70577 .71688	1.67185 .68385 .69553 .70690 .71798	ī.67307 .68503 .69668 .70802	ī.67428 .68621 .69783 .70914 .72016
400 410 420 430 440	73197 .74244 .75265 .76264	7.72233 -733°3 -74347 -75366 -76362	7.72341 -73408 -74450 -75467 -76461	7.72449 •73514 •74553 •75567 •76559	ī.72557 .73619 .74655 .75668 .76657	ī.72664 •73723 •74758 •75768 •76755	7.72771 .73828 .74860 .75867 .76852	ī.72878 •73932 •74961 •75967 •76949	7.72985 .74036 .75063 .76066 .77046	7.73091 .74140 .75164 .76165 .77143
450	7.77240	7.77336	7.77432	7.77528	ī.77624	ī.77720	ī.77815	ī.77910	7.78005	7.78100
460	.78194	.78289	.78383	•78477	•78570	.78664	•78757	.78850	•78943	.79036
470	.79128	.79221	.79313	•79405	•79496	.79588	•79679	.79770	•79861	.79952
480	.80043	.80133	.80223	•80313	•80403	.80493	•80582	.80672	•80761	.80850
490	.80938	.81027	.81115	•81203	•81291	.81379	•81467	.81554	•81 6 42	.81729
500	7.81816	7.81902	7.81989	7.82075	ī.82162	7.82248	ī.82334	7.82419	7.82505	7.82590
510	.82676	.82761	.82846	.82930	.83015	.83099	.83184	.83268	.83352	.83435
520	.83519	.83602	.83686	.83769	.83852	.83935	.84017	.84100	.84182	.84264
530	.84346	.84428	.84510	.84591	.84673	.84754	.84835	.84916	.84997	.85076
540	.85158	.85238	.85319	.85399	.85479	.85558	.85638	.85717	.85797	.85876
550	ī.85955	7.86034	7.86113	7.86191	7.86270	7.86348	7.86426	7.86504	7.86582	7.86660
560	.86737	.86815	.86892	.86969	.87047	.87123	.87200	.87277	.87353	.87430
570	.87506	.87282	.87658	.87734	.87810	.87885	.87961	.88036	.88111	.88186
580	.88261	.88336	.88411	.88486	.88560	.88634	.88708	.88782	.88856	.88930
590	.89004	.89077	.89151	.89224	.89297	.89370	.89443	.89 5 16	.89589	.89661
600 610 620 630 640	ī.89734 .90452 .91158 .91853 .92537	ī.89806 .90523 .91228 .91922 .92604	ī.89878 .90594 .91298 .91990 .92672	1.89950 .90665 .91367 .92059 .92740	1.90022 .90735 .91437 .92128 .92807	ī.90094 .90806 .91507 .92196 .92875	1.90166 .90877 .91576 .92264 .92942	7.90238 .90947 .91645 .92333 .93009	7.90309 .91017 .91715 .92401 .93076	1.90380 .91088 .91784 .92469
650	1.93210	7.93277	ī.93343	1.93410	1.93476	ī.93543	ī.936 09	ī.9367 5 •94331 •94978 •95614 •96242	7.93741	ī.93807
660	.93873	.93939	.94004	.94070	.94135	.94201	.94266		.94396	.94461
670	.94526	.94591	.94656	.94720	.94785	.94849	.94913		.95042	.95106
680	.95170	.95233	.95297	.95361	.95424	.95488	.95551		.95677	.95741
690	.95804	.95866	.95929	.95992	.96055	.96117	.96180		.96304	.96366
700	7.96428	7.96490	7.96552	7.96614	7.96676	7.96738	7.96799	1.96861	7.96922	7.96983
710	.97044	.97106	.97167	.97228	.97288	•97349	.97410	.97471	.97531	.97592
720	.97652	.97712	.97772	.97832	.97892	•97951	.98012	.98072	.98132	.98191
730	.98251	.98310	.98370	.98429	.98488	•98547	• .98606	.98665	.98724	.98783
740	.98842	.98900	.98959	.99018	.99076	•99134	.99193	.99251	.99309	.99367
750	ī.99425	7.99483	7.99540	ī.99598	ī.99656	ī.99713	7.99771	ī.99828	ī.99886	ī.99942
760	0.00000	0.00057	0.00114	0.00171	0.00228	0.00285	0.00342	0.00398	0.00455	0.00511
770	.00568	.00624	.00680	.00737	.00793	.00849	.00905	.00961	.01017	.01072
780	.01128	.01184	.01239	.01295	.01350	.01406	.01461	.01516	.01571	.01626
790	.01681	.01736	.01791	.01846	.01901	.01955	.02010	.02064	.02119	.02173

TABLE 146.

VOLUME OF PERFECT CASES.

Values of 1+.00367t.

The quantity i + .00367t gives for a perfect gas the volume at t^o when the pressure is kept constant, or the pressure at t^o when the volume is kept constant, in terms of the volume or the pressure at o^o .

- (a) This part of the table gives the values of x + .00367t for values of t between oo and roo C. by tenths of a degree.
- (b) This part gives the values of 1+.00367 t for values of t between -90° and +1990° C. by 10° steps.
- These two parts serve to give any intermediate value to one tenth of a degree by a simple computation as follows:—In the (b) table find the number corresponding to the nearest lower temperature, and to this number add the decimal part of the number in the (a) table which corresponds to the difference between the nearest temperature in the (b) table and the actual temperature. For example, let the temperature be $682^{\circ}.2:$

- (e) This part gives the logarithms of x+.00367t for values of t between -49° and $+399^{\circ}$ C. by degrees.
- (d) This part gives the logarithms of r + .00367 t for values of t between 400° and 1990°.
 C. by 10° steps.

(a) Values of $1+.00367\,t$ for Values of t between 0° and 10° 0. by Tenths of a Degree.

t	0.0	0.1	0.2	0.3	0.4
Q	1.00000	1.00037	1.00073	1.00110	1.00147
I	.00367	.00404	.00440	.00477	.00514
2	.00734	.00771	.00807	.00844	.00881
3 4	.01101	.01138	.01174	.01211	.01248
4	.01400	.01505	.01541	.01578	.01615
5	1.01835	1.01872	1.01908	1.01945	1.01982
6	.02202	.02239	.02275	.02312	.02349
7 8	.02569	.02606	.02642	.02679	.02716
	.02936	.02973	.03009	.03046	.03083
9	.03303	.03340	.03376	.03413	.03450
t	0.5	0.6	0.7	0.8	0.9
0	1.00184	1,00220	1.00257	1.00294	1.00330
ī	.00550	.00587	.00624	.00661	.00697
2	.00918	.00954	.00991	.01028	.01064
3	.01284	.01321	.01358	.01395	.01431
4	.01652	.01688	.01725	.01762	.01798
5	1.02018	1.02055	1.02092	1.02129	1.02165
6	.02386	.02422	.02459	.02496	.02532
4	.02752	.02789	.02826	.02863	.02899
7					
7 8 9	.03120	.03156	.03193 .03560	.03290 .03597	.03266

VOLUME OF PERFECT CASES.

(b) Values of 1+.00367 t for Values of t between -90° and $+1990^{\circ}$ 0. by 10 $^{\circ}$ Steps.

t	00	10	20	30	40
000	1.00000	0.96330	0.92660	0.88990	0.85320
+000	1.00000	1.03670	1.07340	1.11010	1.14680
100	1.36700	1.40370	1.44040	1.47710	1.51380
200	1.73400	1.77070	1.80740	1.84410	1.88080
300	2.10100	2.13770	2.17440	2.21110	2.24780
400	2.46800	2.50470	2.54140	2.57810	2.61480
500	2.83500	2.87170	2.90840	2.94510	2.98180
600	3.20200	3.23870	3.27540	3.31210	3.34880
700	3.56900	3.60570	3.64240	3.67910	3.71580
800	3.93600	3.97270	4.00940	4.04610	4.08280
900	4.30300	4.33970	4.37640	4.41310	4.44980
1000	4.67000	4.70670	4.74340	4.78010	4.81680
1100	5.03700	5.07370	5.11040	5.14710	5.18380
1200	5.40400	5.44070	5.47740	5.51410	5.55080
1300	5.77100 6.13800	5.80770 6.17470	5.84440 6.21140	6.24810	5.91780 6.28480
1500	6.50500	6.54170	6.57840	6.61510	6.65180
1600	6.87200	6.90870	6.94540	6.98210	7.01880
1700	7.23900	7.27570	7.31240	7.34910	7.38580
1900	7.60600	7.64270 8.00970	7.67940 8.04640	7.71610 8.08310	7.75280 8.11980
	7.97300				1
2000	8.34000	8.37670	8.41340	8.45010	8.48680
t	50	60	70	80	90
-000	50 0.81650	60 0.77980	0.74310	80 0.70640	90 0.66970
-000	0.81650	0.77980	0.74310	0.70640	0.66970
	0.81650 1.18350	0.77980	0.74310		0.66970
-000 +000	0.81650 1.18350 1.55050 1.91750	0.77980 1.22020 1.58720	0.74310 1.25690 1.62390	0.70640 1.29360 1.66060	0.66970 1.33030 1.69730
-000 +000	0.81650 1.18350 1.55050 1.91750	0.77980 1.22020 1.58720 1.95420 2.32120	0.74310	0.70640 1.29360 1.66060 2.02760 2.39460	0.66970 1.33030 1.69730 2.06430 2.43130
-000 +000 100 200	0.81650 1.18350 1.55050	0.77980 1.22020 1.58720 1.95420	0.74310 1.25690 1.62390 1.99090	0.70640 1.29360 1.66060 2.02760	0.66970 1.33030 1.69730 2.06430
-000 +000 100 200 300	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830
-000 +000 100 200 300 400	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830
-000 +000 100 200 300 400 500 600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930
-000 +000 100 200 300 400 500 600 700 800	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.78550 3.78550 3.75250 4.11950	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630
-000 +000 100 200 300 400 500 600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930
-000 +000 100 200 300 400 500 600 700 800	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.78550 3.75250 4.11950 4.48650	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15020 4.52320	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.80260 4.22960 4.95360	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030
-000 +000 100 200 300 400 500 600 700 800 900 1000 1100	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.55990 4.92690 5.29390	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.59660	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.92690 5.29390 5.66090	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.59660	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.558750 5.95450	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15020 4.52320 4.89020 5.25720 5.62420 5.99120	0.74310 1.25690 1.62390 1.99990 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.92690 5.203390 5.66090 6.02790	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.32150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.19290 4.55990 4.92690 5.20390 5.66090 6.02790 6.39490	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.32150 6.68850	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.92690 5.29390 5.66090 6.02790 6.39490 6.76190	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160	0.66970 1.33030 1.09730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.528750 6.32150 6.68850 7.05550	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.555990 4.92690 5.29390 5.66090 6.02790 6.39490 6.76190 7.12890	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.2960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.70860 7.16560	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 6.32150 6.68850 7.05550 7.42250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220 7.45920	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.55990 4.92690 5.20390 6.02790 6.39490 6.76190 7.12890 7.49590	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.79860 7.16560 7.15260	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230 7.56930
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.85350 5.22050 5.58750 5.95450 6.32150 6.68850 7.42250 7.78950	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220 7.489020 7.82620	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.20390 6.22790 6.39490 6.76190 7.12890 7.49590 7.86290	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.2960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.70860 7.16560	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230 7.56930 7.93630
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700 1800	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 6.32150 6.68850 7.05550 7.42250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220 7.45920	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.55990 4.92690 5.20390 6.02790 6.39490 6.76190 7.12890 7.49590	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.79860 7.16360 7.53260 7.89960	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230 7.56930

VOLUME OF

(c) Logarithms of 1+.00367 t for Values

				1		
t	0	1	2	3	4	Mean diff. per degree.
-40	1.931051	1.929179	ī.927299	7.925410	ī.923513	1884
-30	.949341	.947546	·945744	•943934	.942117	1805
-20	.966892	.965169	·963438	•961701	.959957	1733
-10	.983762	.982104	·980440	•978769	.977092	1667
-0	0.000000	.998403	·996801	•995192	.993577	1605
+0	0.000000	0.001591	0.003176	0.004755	0.006329	1582
10	.015653	.017188	.018717	.020241	.021760	1526
20	.030762	.032244	.033721	.035193	.036661	1474
30	.045362	.046796	.048224	.049648	.051068	1426
40	.059488	.060875	.062259	.063637	.065012	1381
50	0.073168	0.074513	0.075853	0.077190	0.078 522	1335
60	.086431	.087735	.089036	.090332	.09162 4	1299
70	.099301	.100567	.101829	.103088	.104344	1259
80	.111800	.113030	.114257	.115481	.116701	1226
90	.123950	.125146	.126339	.127529	.128716	1191
100	0.135768	0.136933	0.138094	0.139252	0.140408	1158
110	.147274	.248408	.149539	.150667	.151793	1129
120	.158483	.159588	.160691	.161790	.162887	1101
130	.169410	.170488	.171563	.172635	.173705	1074
140	.180068	.181120	.182169	.183216	.184260	1048
150 160 170 180 190	0.190472 .200632 .210559 .220265	0.191498 .201635 .211540 .221224 .230697	0.192523 .202635 .212518 .222180 .231633	0.193545 .203634 .213494 .223135 .232567	0.194564 .204630 .214468 .224087 .233499	1023 1000 976 956 935
200	0.239049	0.239967	0.240884	0.241798	0.242710	916
210	•248145	.249044	.249942	.250837	.251731	897
220	•257054	.257935	.258814	.259692	.260567	878
230	•265784	.266648	.267510	.268370	.269228	861
240	•274343	.275189	.276034	.276877	.277719	844
250	0.282735	0.283566	0.284395	0.285222	0.286048	828
260	.290969	.291784	.292597	.293409	.294219	813
270	.299049	.299849	.300648	.301445	.302240	798
280	.306982	.307768	.308552	.309334	.310115	784
290	.314773	.315544	.316314	.317083	.317850	769
300	0.322426	0.323184	0.323941	0.324696	0.325450	756
310	•329947	.330692	•331435	.332178	•332919	743
320	•337339	.338072	•338803	.339533	•340262	730
330	•344608	.345329	•345048	.346766	•347482	719
340	•351758	.352466	•353174	.353880	•354585	707
350	0.358791	0.359488	0.360184	0.360879	0.361573	696
360	.365713	.366399	.367084	.367768	.368451	684
370	.372525	.373201	.373875	.374549	.375221	674
380	.379233	.379898	.380562	.381225	.381887	664
390	.385439	.386494	.387148	.387801	.388453	654

PERFECT CASES.

of t between -49° and $+399^{\circ}$ C. by Degrees.

t	5	6	7	8	9	Mean diff. per degree.
-40 -30 -20 -10	1.921608 .940292 .958205 .975409 .991957	7.919695 .938460 .956447 .973719 .990330	1.917773 .936619 .954681 .972022 .988697	7.915843 .934771 .952909 .970319 .987058	1.913904 -932915 -951129 -968609 -985413	1926 1845 1771 1699 1636
+0	0.007897	0.0094 59	0.011016	0.012567	0.014113	1554
10	.023273	.024781	.026284	.027782	.029274	1500
20	.038123	.039581	.041034	.042481	.043924	1450
30	.052482	.053893	.055298	.056699	.058096	1402
40	.066382	.067748	.069109	.070466	.071819	1359
50	0.079847	0.081174	0.082495	0.083811	0.085123	1315
60	.092914	.094198	.095486	.096765	.098031	1281
70	.105595	.106843	.108088	.109329	.110566	1243
80	.117917	.119130	.120340	.121547	.122750	1210
90	.129899	.131079	.132256	.133430	.134601	1175
100	0.141559	0.142708	0.143854	0.144997	0.146137	1144
110	.152915	.154034	.155151	.156264	.157375	1115
120	.163981	.164072	.166161	.167246	.168330	1087
130	.174772	.175836	.176898	.177958	.179014	1060
140	.185301	.186340	.187377	.188411	.189443	1035
150 160 170 180 190	0.195581 .205624 .215439 .225038 .234429	0.196596 .206615 .216409 .225986 .235357	0.197608 .207605 .217376 .226932 .236283	0.198619 .208592 .218341 .227876 .237207	0.199626 .209577 .219304 .228819 .238129	988 966 946 925
200	0.243621	0.244529	0.245436	0.246341	0.247244	906
210	.252623	.253512	.254400	.255287	.256172	887
220	.261441	.262313	.263184	.264052	.264919	870
230	.270085	.270940	.271793	.272644	.273494	853
240	.278559	.279398	.280234	.281070	.281903	836
250	0.286872	0.287694	0.288515	0.289326	0.290153	820
260	.295028	•295835	.296640	-297445	.298248	805
270	.303034	•303827	.304618	-305407	.306196	790
280	.310895	•311673	.312450	-313226	.314000	776
290	.318616	•319381	.320144	-320906	.321667	763
300	0.326203	0.326954	0.327704	0.328453	0.329201	750
310	•333659	•334397	•335 ¹ 35	•335871	•336606	737
320	•340989	•341715	•34244 ¹	•343164	•343887	724
330	•348198	•348912	•349624	•350337	•351048	713
340	•355289	•355991	•356693	•357394	•358093	701
350	0.362266	0.362957	0.363648	0.364337	0.365025	690
360	.369132	.369813	.370493	.371171	•371849	678
370	.375892	.376562	.377232	.377900	•378567	668
380	.382548	.383208	.383868	.384525	•385183	658
390	.389104	.389754	.390403	.391052	•391699	648

VOLUME OF PERFECT CASES.

(d) Logarithms of 1+.00367t for Values of t between 400° and 1990° C. by 10° Steps.

t	00	10	20	30	40
400	0.392345	0.398756	0.405073	0.411300	0.417439
500	0.452553	0.458139	0.463654	0.469100	0.474479
600	.505421	.510371	.51 5264	.520103	.524889
700	.552547	.556990	.561388	.565742	.570052
800	·595°55	.599086	.603079	.607037	.610958
900	.633771	.637460	.641117	.644744	.648341
1000	0.669317	0.672717	0.676090	0.679437	0.682759
1100	.702172	.705325	.708455	.711563	.714648
I 200	.732715	.735655	·73 ⁸ 5 75	·7414 7 5	.744356
1300	.761251	•764004	766740	.769459	.772160
1400	.788027	.790616	•793190	.795748	.798292
1500	0.813247	0.815691	0.818120	0.820536	0.822939
1600	.837083	.839396	.841697	.843986	846263
1700	.859679	.861875	.864060	.866234	.868398
1800	.881156	.883247	.885327	.887398	.889459
1900	.901622	.903616	1905602	.907578	-909545
t	50	60	70	80	90
t 400	50	60 0.429462	70	80 0.441161	90 0 .446894
400	0.423492	0.429462	0.435351	0.441161	o .446894
	0.423492	0.429462 0.485040	0.435351	0.495350	0. 446894
400 500	0.423492	0.429462 0.485040 -534305 -578548	0.435351 0.490225 .538938	0.441161 0.495350 •543522 •86880	0.446894 0.500415 .548058
400 500 600 700 800	0.423492 0.479791 .529623 .574321 .614845	0.429462 0.485040 -5343°5 -578548 -618696	0.435351 0.490225 -538938 -582734 -622515	0.441161 0.495350 •543522 •586880 •626299	0.446894 0.500415 -548058 -590987 -630051
400 500 600 700	0.423492 0.479791 .529623 .574321	0.429462 0.485040 -534305 -578548	0.435351 0.490225 -538938 -582734	0.441161 0.495350 •543522 •86880	0.446894 0.500415 -548058 -590987
400 500 600 700 800	0.423492 0.479791 .529623 .574321 .614845 .651908	0.429462 0.485040 .534305 .578548 .618696 .655446	0.435351 0.490225 .538938 .582734 .622515 .658955	0.441161 0.495350 .543522 .586880 .626299 .662437	0.446894 0.500415 .548058 .590987 .630051 .665890
400 500 600 700 800 900	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055	0.429462 0.485040 -534305 -578548 .618696 .655446	0.435351 0.490225 -538938 -582734 .622515 -658955	0.441161 0.495350 -543522 -586880 .626299 .662437	0.446894 0.500415 .548058 .590987 .630051 .665890 0.698096
400 500 600 700 800 900	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218	0.429462 0.485040 .534305 .578548 .618696 .655446	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886	0.441161 0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692	0.446894 0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .78480
400 500 600 700 800 900 1000 1100 1200 1300	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845	0.429462 0.485040 -534305 -578548 .618696 .655446 0.689327 -720755 -750061 -777514	0.435351 0.490225 -538938 -582734 -622515 -658955 0.692574 -723776 -752886 -780166	0.441161 0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692 .782802	0.446894 0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .758480 .785422
400 500 600 700 800 900 1000 1100 1200	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218	0.429462 0.485040 .5343°5 .578548 .618696 .655446 0.689327 .720755 .750061	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886	0.441161 0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692	0.446894 0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .78480
400 500 600 700 800 900 1000 1100 1200 1300	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820 0.825329	0.429462 0.485040 .534305 .578548 .618696 .655446 0.689327 .720755 .750061 .777514 .803334	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886 .780166 .805834	0.441161 0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692 .782802 .808319	0.446894 0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .758480 .785422 .810790
400 500 600 700 800 900 1000 1100 1200 1300 1400	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820 0.825329 .848528	0.429462 0.485040 -534305 -578548 .618696 .655446 0.689327 -720755 -750061 -777514 .803334 0.827705 .850781	0.435351 0.490225 -538938 -582734 -622515 -658955 0.692574 -723776 -752886 -780166 -805834 0.830069 -853023	0.441161 0.495350 -543522 -586880 .626299 .662437 0.695797 -726776 -755692 -782802 .808319 0.832420 .855253	0.446894 0.500415 .548058 .590987 .630051 .665890 0.698096 .729756 .758480 .785422 .810790 0.834758
400 500 600 700 800 900 1100 1100 1200 1300 1400 1500 1600 1700	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820 0.825329 .848528 .870550	0.429462 0.485040 .534305 .578548 .618696 .655446 0.689327 .720755 .750061 .777514 .803334 0.827705 .850781 .872692	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886 .780166 .805834 0.830069 .853023 .874824	0.441161 0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692 .782802 .808319 0.832420 .855253 .876945	0.446894 0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .758480 .785422 .810790 0.834758 .857471 .879056
400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700 1800	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820 0.825329 .848528 .870550 .891510	0.429462 0.485040 -534305 -578548 -618696 -655446 0.689327 -720755 -750061 -777514 -803334 0.827705 -850781 -872692 -893551	0.435351 0.490225 -538938 -582734 -622515 -658955 0.692574 -723776 -752886 -780166 -805834 0.830069 -853023 -874824 -895583	0.441161 0.495350 -543522 -586880 .626299 .662437 0.695797 -726776 -755692 -782802 .808319 0.832420 .855253 .876945 .897605	0.446894 0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .758480 .785422 .810790 0.834758 .857471 .879056 .899618
400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820 0.825329 .848528 .870550	0.429462 0.485040 .534305 .578548 .618696 .655446 0.689327 .720755 .750061 .777514 .803334 0.827705 .850781 .872692	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886 .780166 .805834 0.830069 .853023 .874824	0.441161 0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692 .782802 .808319 0.832420 .855253 .876945	0.446894 0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .758480 .785422 .810790 0.834758 .857471 .879056

DETERMINATION OF HEIGHTS BY THE BAROMETER.

Formula of Babinet:
$$Z=C\frac{B_0-B}{B_0+B}$$
.
 C (in feet) = 52494 $\left[z+\frac{t_0+t-64}{900}\right]$ English measures.
 C (in metres) = 16000 $\left[z+\frac{2(t_0+t)}{1000}\right]$ metric measures.

In which Z = difference of height of two stations in feet or metres. B_0 , B = barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.

 t_0 , t = air temperatures at the lower and upper stations respectively.

Values of C.

Eng	LISH MEAS	ures.	ME	TRIC MEAS	URES.
$\frac{1}{2}(t_0+t).$	С	Log C	$\frac{1}{2}(t_0+t).$	С	Log C
Fahr. 10° 15 20 25	Feet. 49928 50511 51094 51677	4.69834 •70339 4.70837 •71330	Cent10° -8 -6 -4 -2	Metres. 15360 15488 15616 15744 15872	4.18639 .19000 .19357 .19712 .20063
30 35 40 45	52261 52844 53428 54011	4.71818 .72300 4.72777 .73248	+ 2 + 4 6 8	16000 16128 16256 16384 16512	4.20412 .20758 .21101 .21442 .21780
50 55 60	54595 55178 55761	4.73715 .74177 4.74633	10 12 14 16 18	1 6 640 16768 16896 17024	4.22115 .22448 .22778 .23106
65 70 75 80 85	56344 56927 57511 58094 58677	.75085 4.75532 .75975 4.76413 .76847	20 22 24 26 28	17152 17280 17408 17536 17664 17792	.23431 4.23754 .24075 .24393 .24709 .25022
90 95 100	59260 59844 60427	4.77276 .77702 4.78123	30 32 34 36	177920 18048 18176 18304	4.25334 .25643 .25950 .26255

BAROMETRIC

Barometric pressures corresponding to different This table is useful when a boiling-point apparatus is used

(a) Common Measure.*

Temp. ° F.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
185 186	17.06 17.42	17.09	17.13	17.17	17.20 17.58	17.24	17.28 17.66	17.32	17.35	17.39
187 188	17.81	17.85 18.24	17.89 18.28	17.93 18.32	17.97 18.36	18.01 18.40	18.05 18.44	18.08 18.48	18.12 18.52	18.16 18.56
189	18.60 19.00	18.64 19.04	18.68 19.08	18.72 19.12	18.76 19.16	18.80 19.21	18.84	18.88 19.29	18.92 19.33	18.96 19.37
191 192	19.41	19.45	19.49 19.91	19.54 19.96	19.58	19.62 20.04	19.66 20.08	19.70	19.75	19.79
193	20.26 20.68	20. 30 20.73	20.34	20.38 20.82	20.43	20.47 20.91	20.51	20.56	20.60 21.04	20.64 21.08
195 196	21.13	21.17	21.22 21.67	21.26 21.71	21.31	21.35	21.40	21.44	21.48 21.94	21.53
197 198	22.03	22.08	22.13	22.17 22. 64	22.22	22.27	22.31 22.78	22.36 22.83	22.4I 22.88	22.45 22.92
199 200	22.97 23.45	23.02 23.50	23.07 23.55	23.12 23.60	23.16 23.65	23.2I 23.70	23.26 23.75	23.31 23.79	23.36 23.84	23.40 23.89
201 202	2 3.94 24.44	2 3.99 24.49	24.04 24.54	24.09 24.59	24.14 24.64	24.19 24 .69	24.24 24.74	24.29 24.79	24.34 24.85	24.39 24.90
203 204	24.95 25.46	25.00 25.52	25.05 25.57	25.10 25.62	25. 1 5 25.67	25.20 25.72	25.26 25.78	25.31 25.83	25.36 25.88	25.41 25.94
205 206	25.99 26.52	26.04 26.58	26.09 26.63	26.15 26.68	26.20 26.74	26.25 26.79	26.31 26.85	26.36 26.90	26.41 26.96	26.47 27.01
207 208	27.06 27.62	27.12 27.67	27.17 27.73	27.23 27.78	27.28 27.84	27•34 27.90	27.39 27.95	27.45 28.01	27.51 28.07	27.56 28.12
209 210	28.18 28.75	28.24 28.81	28.29 28.87	28.35 28.92	28.41 28.98	28.46 29.04	28. 52 29.10	28.58 29.16	28.63	28.69 29.27
211 212	29.33 29.92	2 9.39 29.98	29.45 30.04	29 .51 30.10	29.57 30.16	29.63 30.22	29.68 30.28	29.74 30.34	29.80 30.40	29.86 30.46

^{*} Pressures in inches of mercury.

PRESSURES.

temperatures of the boiling-point of water. in place of the barometer for the determination of heights.

(b) Metric Measure.*

Temp. ° C.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9	
80°	354.9	356.3	357.8	359.2	360.7	362.1	363.6	365.1	366.5	368.0	
81	369.5	371.0	372.5	374.0	375.5	377.0	378.5	380.0	381.6	383.1	
82	384.6	386.2	387.7	389.3	390.8	392.4	394.0	395.5	397.1	398.7	
83	400.3	401.9	403.5	405.1	406.7	408.3	409.9	411.6	413.2	414.8	
84	416.5	418.1	419.8	421.4	423.1	424.8	426.4	428.1	429.8	431.5	
85	433.2	434-9	436.6	438.3	440.0	441.8	443.5	445.2	447.0	448.7	
86	450.5	452.2	454.0	455.8	457-5	459-3	461.1	462.9	464.7	466.5	
87	468.3	470.1	472.0	473.8	475.6	477.5	479.3	481.2	483.0	484.9	
88	486.8	488.6	490.5	492.4	494-3	496.2	498.1	500.0	501.9	503.9	
89	505.8	507.7	509.7	511.6	513.6	515.6	517.5	519.4	521.5	523.5	
90	525.5	527.5	529.5	531.5	533-5	535-5	537.6	539.6	541.6	543.7	
91	545.8	547.8	549.9	552.0	554.1	556.2	558.3	560.4	562.5	564.6	
92	566.7	568.8	571.0	573.1	575-3	577-4	579.6	581.8	584.0	586.1	
93	588.3	590.5	592.7	595.0	597.2	599-4	601.6	603.9	606.1	608.4	
94	610.6	612.9	615.2	617.5	619.8	622.1	624.4	626.7	629.0	631.3	
95	633.7	636.0	638.4	640.7	643.1	645.4	647.8	650.2	652.6	655.0	
96	657.4	659.8	662.3	664.7	667.1	669.5	672.0	674.5	676.9	679.4	
97	681.9	684.4	686.9	689.4	691.9	694.5	696.9	699.5	702.0	704.6	
98	707.1	709.7	712.3	714.9	717.4	720.0	722.7	725.3	727.9	730.5	
99.	733.2	735.8	738.5	741.1	743.8	746.5	749.2	751.9	754.6	757-3	
100	760.0	762.7	765.5	768.2	771.0	773.7	776.5	779-3	782.1	784.9	

^{*} Pressures in millimetres of mercury.

TABLES 149-151.

STANDARD WAVE-LENGTHS.

TABLE 149. - Standard Iron Lines. Fabry-Buisson Values.

Referred to the Cd line, $\lambda = 6438.4722$.

Source: electric arc; current: 3-5 amperes; voltage: generally 110 volts.

Wave-length.	*	Wave-length.	*	Wave-length.	*	Wave-length.	*
237 3-737 2413-310 2435-159 Si 2506.904 Si 2528.516 2562-541 2588.016 2028.296 2679.065 2714.419 2739-550 2778.225 2813.290 2851.800 2874-176 2912.157 2041.347 2987.293 3030.152 3075-725 3125.661 3175-447 3225-790 3271.003 3323-739 3370-789 3399-337 3445-155 3485-344		3513.820 3556.879 3606.681 3640.391 3677.628 3724.379 3753.615 3805.346 3843.261 3865.526 3906.481 3937.745 4021.872 4076.641 4118.552 4134.685 4147.677 4191.441 4233.615 4282.407 4315.089 4352.741 437.5935 4427.314 4466.554 4494.572 4531.155 4547.854	145157157144136147119140143147146146151156155155157158173167172168172166172170	4592.658 4602.944 4647.437 4678.855 4707.287 4736.785 4754.046 Mn 4789.657 4823.521 Mn 4859.756 4903.324 4919.006 4966.104 5001.880 5012.072 5049.827 5083.343 5110.445 5127.364 5167.492 5192.362 5232.948 5266.568 5302.316 5324.196 5371.498 5405.780 5434.530	182182180172170178179192176172181178168164180180164180169164177236209210	5455-616 5497-521 5506-783 5535-418 5569-632 5586-770 5615-658 5658-835 5709-396 5760-843 Ni 5857-760 Ni 5857-760 Ni 5892-882 Ni 5934-683 5952-739 6003-039 6027-059 6049-93 6137-700 6191-569 6230-732 6265-147 6318-029 6335-343 6393-612 6430-859 6494-994	218214217226216221217205209205230216215216215216215210211201211201211208207219

Taken from Fabry and Buisson, Astrophysical Journal, 28, 1908.

TABLE 150. - Absolute Wave-length of Red Cadmium Line in Air, 760 mm. Pressure, 15° C.

6438.4722......Michelsen. 6438.4696......Fabry and Perot.

For arc and spark lines of titanium, manganese, and vanadium (on above system of wave-lengths), see Kilby, Astrophysical Journal, 30, 1909.

TABLE 151. - Some of the Stronger Lines of Some of the Elements.

^{*} These columns give the differences: Fabry-Buisson minus the corresponding iron line in Rowland's Preliminary Table of Solar Spectrum Wave-lengths,

STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-lengths are in Angström units (10-7 mm.), in air at 20° C and 76 cm. of mercury pressure. The intensities run from I, just clearly visible on the map, to 1000 for the H and K lines; below I in order of faintness to 0000 as the lines are more and more difficult to see. This table contains only the lines above 5.

N indicates a line not clearly defined, probably an undissolved multiple line; s, a faded appearing line; d, a double. In the "substance" column, where two or more elements are given, the line is compound; the order in which they are given indicates the portion of the line due to each element; when the solar line is too strong to be due wholly to the element given, it is represented, -Fe, for example; when commas separate the elements instead of a dash, the metallic lines coincide with the same part of the solar line, Fe, Cr, for example.

Capital letters next the wave-length numbers are the ordinary designations of the lines. A indi-

cates atmospheric lines, (wv), due to water vapor, (O), due to Oxygen.

Corrections to reduce Rowland's wave-lengths to Fabry and Buisson's system (the accepted standard, 1908). Tem-

perature 15° C. pressure 760 mm.

The differences "(Fabry-Buisson-arc-iron)—(Rowland-solar-iron)" lines were plotted, a smooth curve drawn, and the following values obtained:

Wave-length 3000, 3100, 3200, 3300, 3400, 3500, -,106 -,115 -,124 -,137 -,148 -,154 3600, 3700, -.155 -.140

H. A. Rowland, "A preliminary table of solar-spectrum wave-lengths," Astrophysical Journal, 1-6, 1895-1897. SMITHSONIAN TABLES.

STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-length.	Substance.	Inten-	Wave-length.	Substance.	Inten- sity.	Wave-length.	Substance.	Inten- sity.
3647.988s 3651.247 3651.614 3676.457 3680.069s 3684.258s 3685.339 3686.141 3687.610s 3689.6114 3701.234 3705.708s 3706.175 3709.389s 3716.591s 3720.084s 3722.692s 3724.526 3732.545s 3733.469s 3745.717s 3746.058s 3744.717s 3746.058s 3749.631s 3758.3758 3749.631s 3758.3758 3765.689 3767.3418 3765.689 3767.3418 3765.689 3767.3418 37757.717 3783.6748 3788.046s 3795.1478 3798.6558 3799.6938 3805.4866 3805.4866 3805.4866 3805.4868	Fe Fe, Fe		826.0278 3827.980 3829.5018 3831.837 3832.4508 3834.364 3838.4358 3840.5808 3841.195 3845.606 3850.118 3856.5248 3857.805 3865.674 3872.639 3872.639 3878.152 3860.0558 3864.211 3895.803 3899.850 3903.090 3904.023 3905.6608	Fe Fe Mg Ni Mg Fe Mg-C Fe-C Fe-C Fe-C Fe	Intensity. 20 80 10 6 15 10 8d? 10 8d? 7 8d 7 8d 7 8d 7 8d 7 8d 10 8d 12 10 12d? 8 8N 1000 8N 15 6 7d? 20 6N 10 6d? 7 10d? 8 8d? 6 7d? 7 10d? 8 6d? 7 10d? 8 6d?	Wave-length. 4045.9758 4055.7018 4057.668 4053.7598 4068.137 4071.9088 4077.8858 4102.000H8 4121.4778 4128.251 4132.235 4137.156 4144.0.089 4144.0.089 4144.038 4167.438 4167.438 4187.204 4191.595 4202.1988 4226.90458 4233.772 4230.112 4250.2878 4250.9458 4254.5058 4260.6408 4271.9348 4274.9588 4308.081sG 4325.9398 4340.634Hy 4376.1078 4383.7208 4404.9278 4474.8928 4494.7388 4534.139 4549.808 4554.211s 4572.1568 4603.126 4629.5218 4679.0278 4714.5998 4736.963 4754.2258 4783.6138	Fe Mn Fe Fe-Mn Fe Fe-Mn Fe F	

Corrections to reduce Rowland's wave-lengths to Fabry and Buisson's system (the accepted standard, 1908). Temperature 15° C, pressure 760 mm.

Wave-length 3600, 3700, 3800, 3900, 4000, 4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, Correction -.155 -.140 -.141 -.144 -.148 -.152 -.156 -.161 -.167 -.172 -.176 -.179 -.179,

STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-length.	Substance.	Inten- sity.	Wave-length.	Substance.	Inten- sity.	Wave-length.	Sub- stance.	Inten- sity.
4861.527sF 4890.948s 4891.683 4991.748 4920.685 4957.785s 5050.008s 5167.497sb4 5171.778s 5172.8568b2 5163.791sb1 5233.1228 5260.7238 5260.7238 5260.7238 5260.7238 5324.3738 5328.236 5340.121 5341.213 5367.669s 5370.166s 5383.578s 5397.3448 5405.989s 5424.2908 5424.991 5447.130s 5528.641s 5569.848 5573.975 5586.991 5588.985s 5615.8778 5688.436s 5711.3138 5763.218s 5857.6748 5862.582s 5890.1868D2 5896.155 D1 5901.682s 5919.860s 5919.860s	H Fe Fe Fe Fe Fe Fe Mg Fe	30 6 8 6 10 8 6 10 8 6 20 30 7 6 8d? 6 7 6 6 6 6 7 6 6 7 6 6 7 6 6 7 6 7 6 7 6	5948.765s 5985.04os 6003.239s 6008.785s 6013.715s 6016.861s 6022.016s 6022.016s 6022.037s 6102.392s 6102.937s 6102.392s 6102.937s 6102.392s 6102.937s 6102.937s 6122.434s 6136.829s 6141.938s 6152.350 6169.249s 6169.249s 6170.730 6191.393s 6191.779s 6200.527s 6200.527s 6200.947s 6200.947s 6213.644s 6219.494	Si Fe Fe Fe Mn Mn Fe Fe Ca Ca Ca Fe-Ni Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe	6666666677696087775676696668876767877866886	6563.045sC 6593.161s 6867.457sB 6868.336 }s 6868.478 } 6869.142s 6869.353s 6870.116 }s 6870.249 }s 6871.180s 6871.532s 6872.486s 6873.080s 6874.899s 6875.830s 6874.899s 6875.830s 6876.958s 6877.882s 6879.288s 6880.172s 6884.076s 6886.090s 6886.990s 6889.151s 6890.151s 6890.151s 6890.151s 6890.151s 690.151s	## Fe A(O) A(O) A(O) A(O) A(O) A(O) A(O) A(O)	## 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 16 16 17 17 17 17 17 17

Corrections to reduce Rowland's wave-lengths to Fabry and Buisson's system (the accepted standard, 1908); temperature 15°C, pressure 760 mm.:

Wave-length Correction	4800. — ,179	4900.	5000.	5100.	5200. — .166	5300. — .172	5400.	5500.	5600. 218	5700. 213	
Wave-length Correction	5800°	5900.	6000.	6100.	62000	6300.	6400,	6500.	6600.	6700.	6800.

TABLE 153.

STANDARD WAVE-LENGTHS. KAYSER'S IRON (ARC) LINES.

r =easily reversible.

Wave-	Inten-	Correc-	Wave-	Inten-	Correc-	Wave-	Inten-	Correc-	Wave-	Inten-	Correc-
length.	sity.	tion.*	length.	sity.	tion.*	length.	sity.	tion.*	length.	sity.	tion.*
2327.468 31.384 32.869 38.073 43.567 48.196 48.380 54.969 59.187 60.079	3 3 3 1 3 2 2 2 3 2		2518.198 22.950 23.754 27.525 29.223 33.911 35.699 37.263 41.064 44.016	8r 20r 4r 10r 8r 4 6r 4r 8r 4r		2742.506 44.163 44.624 45.177 46.580 47.080 50.238 55.834 56.412 57.413	10r 8r 4r 5r 4r 5r 10r 5r 4r		2973.254 73.366 81.565 83.690 87.410 90.511 94.554 2999.630 3001.068 07.262	8r 5r 7r 10r 4 10r 8r 10r	117
60.373 64.904 66.678 68.670 70.588 73.813 75.273 80.840 82.114	2 2 2 2 2 3 3 4 7	076	46.072 49.708 56.404 56.963 62.619 67.001 75.445 78.012 84.623	1 or 8 r 2 2 5 4 3 3 5 r	— :078	61.883 62.125 68.621 72.205 78.327 78.946 81.936 88.207 91.989	5r 5r 5r 8r 6r 2 3 10r	102	07.409 08.254 09.690 16.043 16.305 17.747 20.619 20.764 21.194	2r 8r 4r 3 3 8r 4r 1or	
84.473 88.711 91.563 95.709 2399.322 2404.519 04.969 06.742 10.601	3 2 5r 5r 3 5r 5r		85.964 88.102 98.456 99.483 2599.663 2606.920 07.155 11.963 13.914	3 5r 5r 5r 4r 3r 5r 4r	—. 086	2797.877 2804.622 07.088 13.391 17.612 23.382 25.660 25.803 3 ² ·543	2 5r 5r 8r 3 5r 6r 4r 8r	—.1 01	25.960 31.332 31.753 37.505 41.753 41.860 47.719 51.179 57.562	8r 4 4r 10r 3 3 10r 3 8r	
11.152 13.393 24.231 31.126 35.234 39.834 40.201 42.658 47.808	4r 4r 3 2 (Si) 4r 4r 4r 4r	083 075	17.706 18.108 23.627 25.754 28.383 31.139 35.899 44.085 47.649	4r 2r 5r 5r 5r 5r 3r 3r	—.o8 ₇	35.562 38.231 43.742 44.083 51.910 59.007 63.973 67.679 69.418	4r 3r 3r 8r 5r 3	110	59.202 67.363 68.286 75.850 80.110 83.853 91.687 95.013 3095.384	3 6r 2 5r 3 2 2	125
53.568 57.686 62.279 62.740 65.244 68.974 72.436 72.976 74.906	2 5r 4r 10r 5r 4r 4r 10r 4r		51.800 56.232 66.897 73.315 79.148 80.544 89.302 90.153 92.710	2 3 3r 2 8r 3 8r 2	083	74.284 77.414 83.840 90.000 94.617 2899.531 2901.496 07.630 12.273	5r 3 3r 3 3 3 3 3 8r	—.116	3100.057 00.418 00.778 12.183 16.747 25.770 32.627 40.503 44.096	4r 4r 2 3 5r 3u 3u	1009
78.657 79.872 83.361 83.618 84.280 88.232 89.844 90.737 91.249	Ior 2or 3r 8r Ior 8r Ior		2699.193 2706.672 08.663 14.503 18.530 19.121 20.997 23.671 25.024	3 4r 2 5 4r 10r 10r 8r 4r	—. 084	18.144 23.409 25.479 29.119 37.030 41.462 44.519 47.996 48.557	3 5 3 8r 10r 8r 3 9r 4	115	51.460 57.157 60.764 65.129 71.473 75.556 78.122 80.339 85.015	3u 4 3 3 7 5 7	109
93.331 2496.625 2501.228 07.991 2510.927	7r 4r 8r 4r 8r		33.978 35.566 37.407 39.639 2742.349	8r 8r 10r 8r 5r	089	54.061 57.484 65.379 67.019 2970.227	9r 9r 7r 10r 10r		88.947 91.778 92.921 93.423 3199.638	355887	

Taken from Kayser's Handbuch der Spectroscopie.

^{*} For reducing to Fabry and Buisson's system of wave-lengths see Table 149 (the accepted standard, 1908); temperature 15° C, pressure 760 mm.

STANDARD WAVE-LENGTHS. KAYSER'S IRON (ARC) LINES.

r =easily reversible.

		1				1			11		
Wave- length.	Inten- sity.	Correc- tion.*	Wave- length.	Inten- sity.	Correc- tion.*	Wave- length.	Inten- sity.	Correc- tion.*	Wave- length.	Intensity.	Correc- tion.*
3200.595 05.515 10.953 14.158 19.701 19.935 22.187	7 8 5 10 5 10r		3490.721 3497.989 3506.650 08.627 08.663 13.974 21.415	6r 5r 3 2 2 5r 5r	154	3790.242 95.149 3798.658 3801.822 06.847 13.202 15.987	5 8r 6r 6r 3u 5		4107.646 14.608 18.709 37.156 44.033 54.662 71.069	5 4 8 6 10u 4	—.1 57
25.905 31.091 34.745 39.564 44.308 48.333 51.357	10r 8 8 8 5 5	115	26.196 26.822 29.960 40.287 58.672 65.535 70.257	4r 4 3 2 5r 8r 8r		20.573 24.591 26.028 27.967 34.370 40.586 41.194	9r 6r 8r 7r 8r 7r 8r		75.799 81.918 87.221 91.611 4199.256 4202.195 10.521	5 5 8 8 6 8	170
57.724 62.413 65.746 71.129 80.386 84.720 86.884	8 5 5 7	126	81.348 85.478 87.137 94.767 3599.781 3605.619 06.836	7r 4r 4r 4u 2 4	— .155	50.114 56.515 60.054 65.670 72.640 78.166 78.722	8r 6r 10r 6ru 4r 6r	144	19.523 22.387 27.606 33.771 36.118 45.423 47.604	5556 78 558	—. 146
3292.721 3306.106 06.479 14.868 17.251 28.992 37.793 42.034 48.056 55.355 66.917	5 7 7 5 2 5 4 3 4		12.242 17.934 18.918 22.158 30.506 31.617 32.195 40.541 47.997 50.429	5 5 3 6r 5 7r 3	150	86.426 87.193 95.801 3899.853 3903.097 06.624 09.980 13.784 20.404 28.073	6r 5r 5r 5r 6r 6 3 6r 5r	143	50.299 50.948 60.656 71.333 71.933 82.567 85.614 91.631 94.290 4299.420	8 9 7 10 7 4 3 6r 6r	160
66.917 67.675 78.814 80.242 84.113 89.882 94.721 3397.117	3 5 5r 4 4 2		51.615 55.625 59.673 69.674 76.461 80.062 83.205 87.609	5 3 5 5 3 4r 3		41.032 45.269 48.927 56.610 56.823 66.219 69.411 77.892	4 2 4 3 5 6r 6	147	4308.072 09.542 15.255 25.941 37.219 46.739 52.910 58.689	7r 4 6 8 6 3 5	—. 166
3402.392 06.578 06.938 13.275 24.430 27.263 40.762	4 5 5r 4 9r		3695.202 3702.180 05.714 09.395 20.083 22.710 27.769	3 2 4r 5r 10r 6r 5r		84.112 86.330 96.147 3998.211 4007.429 17.303 22.029	4 4 3 3 3 2 5	157	67.759 69.954 76.104 83.724 4391.137 4404.929 15.301	5 3 5 5 6 8r 48 8 6	
41.138 44.025 45.301 50.484 58.454 60.067	8r 7r 5 4	—.146	33.470 35.016 37.278 43.510 45.710 48.409	5r 9r 8r 6r 7r 7r		30.670 32.796 44.776 45.978 55.706 62.605	5 3 2 2 10r 3 5		27.490 30.801 42.522 47.907 54.572 61.838	6 5 6 6 4 5 6	—.176 —.183
66.006 71.413 71.497 75.600 76.850 83.159 3485.490	5r 3 3 6r 6r 3 3	14 6	49.634 58.381 63.940 67.339 76.606 78.670 3788.031	8r 8r 7r 3 2		63.755 68.138 71.901 79.999 84.666 96.135 4098.346	5 8r 3 5 5		66.737 69.566 76.207 84.420 89.929 4494.755	6 6 5 4 6	 183

Taken from Kayser's Handbuch der Spectroscopie.

^{*} For reducing to Fabry and Buisson's system of wave-lengths see Table 149 (the accepted standard, 1908); temperature 15° C, pressure 760 mm.

WAVE-LENGTHS OF FRAUNHOFER LINES.

For convenience of reference the values of the wave-lengths corresponding to the Fraunhofer lines usually designated by the letters in the column headed "index letters," are here tabulated separately. The values are in ten millionths of a millimetre, on the supposition that the D line value is 5896.155. The table is for the most part taken from Rowland's table of standard wave-lengths. lengths.

Index Letter.	Line due to —	Wave-length in centimetres × 108.	Index Letter.	Line due to-	Wave-length in centimetres × 108.
A	50	7621.28*	G	∫ Fe	4308.081
	(0	7594.06*		(Ca	4 307.90 7
a	-	7164.725	g	Ca	4226.904
В	0	6870.182†	h or H _δ	H	4102.000
C or H _a	Н	6563.045	н	Ca	3968.625
α	0	6278.303‡	K	Ca	3933.825
D_1	Na	5896.155	L	Fe	3 820.586
D_2	Na	5890.186	M	Fe	3727.778
\mathbb{D}_8	He	5875.985	N	Fe	3581.349
10	(Fe	5270.558	0	Fe	3441.155
E ₁	(Ca	5270.438	P	Fe	3361.327
\mathbb{E}_2	Fe	5269.723	Q	Fe	3286.898
b ₁	Mg	5183.791	R	(Ca	3181.387
b ₂	Mg	5172.856	7.	(Ca	3179.453
b ₈	(Fe	5169.220	6.	{ Fe	3100.787
D8	(Fe	5169. 069	S_1 S_2	Fe	3100.430
1.	(Fe	5167.678	52)	Fe	3100.046
b ₄	(Mg	5167.497	s	Fe	3047.725
F or H _β	н	4861.527	Т	Fe	3020.76
d	Fe	4383.721	t	Fe	2994.53
G' or H _y	н	4340.634	U	Fe	2947.99
f	Fe	4325.939			

^{*} The two lines here given for A are stated by Rowland to be: the first, a line "beginning at the head of A, outside edge;" the second, a "single line beginning at the tail of A."
† The principal line in the head of B.
‡ Chief line in the a group.
See Table 152, Rowland's Solar Wave-lengths (foot of page) for correction to reduce these values to Fabry-Buisson system of wave-lengths.

PHOTOMETRIC STANDARDS

No primary photometric standard has been generally adopted by the various governments. In Germany the Herner lamp is most used; in England the Pentane lamp and sperm candles are used; in France the Carcel lamp is preferred; in America the Pentane and Hefner lamps are used to some extent, but candles are more largely employed in gas photometry. For the photometry of electric lamps, and generally in accurate photometric work, electric lamps, standardized at a national standardizing institution, are commonly employed.

The "International candle" is the name recently employed to designate the value of the candle as maintained by coöperative effort between the national laboratories of England, France, and America; and the value of various photometric units in terms of this international candle is given in the following table (taken from Circular No. 15 of the Bureau of Standards).

- I International Candle = I Pentane Candle.
- I International Candle = I Bougie Decimale.
- I International Candle = I American Candle.
- I International Candle = 1.11 Hefner Unit.
- I International Candle = 0.104 Carcel Unit.

Therefore I Hefner Unit = 0.90 International Candle.

The values of the flame standards most commonly used are as follows:

- I. Standard Pentane Lamp, burning pentane 10.0 candles.
- 2. Standard Hefner Lamp, burning amyl acetate, 0.9 candles.
- 3. Standard Carcel Lamp, burning colza oil 9.6 candles.
- 4. Standard English Sperm Candle, approximately 1.0 candles

Slight differences in candle power are found in different lamps, even when made as accurately as possible to the same specifications. Hence these so-called primary standards should be themselves standardized.

SENSITIVENESS OF THE EYE TO RADIATION.

(Compiled from Nutting, Bulletin of the Bureau of Standards.)

Radiation is easily visible to most eyes from 0.330 μ in the violet to 0.770 μ in the red. At low intensities approaching threshold values (red vision) the maximum of spectral sensibility lies in the green at about 0.510 μ for 90% of all persons. At higher intensities with the establishment of cone vision the maximum shifts towards the yellow at least as far as 0.560 μ .

TABLE 158. — Variation of the Sensitiveness of the Eye with the Wave-length at Low Intensities (near Threshold Values). König.

λ	.410	.430	-450	.470	.490	~510	-530	.550	.570	-590	.610
Mean sensitiveness	0.02	0.06	0.23	0.49	0.81	1.00	0.81	0.49	0.22	0.077	0.026

TABLE 157. - Variation of Sensitiveness to Radiation of Greater Intensities.

The sensibility is approximately proportional to the intensity over a wide range. The ratio of optical- to radiation-intensity increases more rapidly for the red than for the blue or green (Purkinje phenomenon).

The intensity is given for the spectrum at 0.535µ (green).

Intensity (metre-candles) = Ratio to preceding step =	.00024	.00225 9.38	.0360 16	•575 16	2.30	9.22	36.9 4	147.6	590.4
Wave-length, λ.			t ·	Se	nsitivenes	is.			
0.430µ	.081	.093	.127	.128	.114	.114	-	-	
.450	.33	.30	.29	.31	.23	.175	.16	-	- 1
.470	.63	•59	•54	.58	.51	.29	.26	.23 .38	-
.490	.96	(.89)	(.76)	(.89)	(.83)	.50	-45		-35
.505	1.00	1.00	1.00	1.00	.99	(.76)	.66	.61	·54 .82
.520	.88	.86	.86	-94	.99	(.85)	.85	.85	
•535	.61	.62	.63	.72	.91	(.98)	.98	.99	.98
-555	.26	.30	-34	.41	.62	.84	-93	-97	.98
•575	.074	.102	.122	.168	(.39)	(.63)	(.76)	(.82)	(.84)
.590	.025	.034	.054	.091	.27	.49	.61	.68	.69
.605	.008	.012	.024	.056	.173	•35	(.45)	-54	-55
.625	.004	.004	.011	.027	.098	,20	.27	•35	.35
,650	.000	.000	.003	.007	.025	.060	.085	.122	.133
.670	.000	.000	.001	.002	.007	.017	.025	.030	.030
λ, maximum sensitiveness	.503	.504	.504	.508	.513	.530	.541	.543	.544

TABLE 158. — Sensibility to Small Differences in Intensity measured as a Fraction of the Whole.

I_0 in m. c. \equiv	.670 0.06 0	.605 0.0056	·575 o.oo29	.505	.470 0.00012		White 0.00072
I	δΙ::	Köni	g's dat	a, meas	ures fro	m one r	normal
1,000,000	-	-	100	_	-	-	.036
200,000		.042	-	-	-	100	.027
100,000	-	.024	.032	-		-	.019
50,000	.021	+025	.026	-	-	-	.017
20,000	.016	810.	.020	.019	-	par .	.017
10,000	.016	•016	810.	810,		240	,018
5,000	810.	•016	.017	.016	-	aun .	.018
2,000	.016	.018	-018	.017	.018	t-	.018
1,000	.017	+020	-018	.018	.017	.018	.018
500	.020	•02 I	810·	.019	.018	.021	.019
200	.022	•022	+022	.022	,021	.024	.022
100	.029	•028	-027	.024	.022	.025	.030
50	.038	.038	-032	.025	.025	.027	.032
10	.065	,061	.058	.036	.037	.040	.048
5	.092	.103	.089	۰049	,046	.049	.059
X	.258	.212	.170	,080	.088	.074	.123
0.5	.376	. 276	.21	.091	.096	1097	.188
0.10	-	-	.40	.133	.138	.137	-377
0.05	-	-	-	.183	.185	.154	.484
10.0	-	-		.271	.289	.249	
0.005	-	-		.325	.300	.312	

The sensibility to small differences in intensity is independent of the intensity (Fechner's law). About 0.016 for moderate intensities. Greater for extreme values.

It is independent of wave-length, extremes

excepted (König's law).

Sensibility to slight differences in wavelength has two pronounced maxima (one in the yellow, one in the green) and two slight maxima (extreme blue, extreme red).

The visual sensation as a function of the time approaches a constant value with the lapse of time. With blue light there seems to be a pronounced maximum at 0.07 sec., with red a slight one at 0.12 seconds, with green the sensation rises steadily to its final value. For lower intensities these max. occur later.

An intensity of 500 metre-candles is about that on a horizontal plane on a cloudy day,

TABLE 159. - Solar Energy and its Absorption by the Earth's Atmosphere.

The following values depend upon the formula $e_m = e_{\phi}a^m$, where e_m is the observed value of the solar energy after transmission through a mass of air, m; m = unity when the sun is in the zenith, and approximately = sec. zenith distance for other positions of the sun. e_{ϕ} = the energy which would have been observed had there been no absorbing atmosphere; a is the amount transmitted when the sun is in the zenith or when m = 1.

þ.	Trans	mission co	efficient	, a.				Inte	ensity o	of Solar	Ener	gy.			
Wave-length.	Mash- Mont ington. Wilson. Wilson. Wash- Earth.		e mile r Earth.		Mt Whit- ney.	1	Mount	Wilson			Wa	ashingt	on.		
M			Mount	One	m=0	m=1	m=1	2	4	6	m=1	2	3	4	6
0.30 .32 .34 .36 .40 .46 .50 .60 .70 .80 I.00	- (.360) .542 .653 .704 .762 .838 .867 .901	(.485) (.562) .626 .676 .713 .746 .816 .850 .884 .937 .955 .968	.522 .615 .687 .745 .788 .821 .879 .902 .942 .966 .981 .991 .956	- .505 .725 .800 .829 .862 .894 .909 .930 .950	95 195 305 420 501 580 730 685 590 454 342 190 82 30	50 120 210 313 394 476 642 618 556 439 336 188 78 28	46 110 191 284 357 433 596 582 522 425 327 184 80* 29*	22 62 120 192 255 323 486 495 461 399 312 178 78**		1.2 6.2 18 40 66 100 215 258 281 307 260 156 71* 25*		65 171 311 340 343 319 257 154 70 25	23 92 203 239 261 267 223 139 64 23	8 50 133 169 199 224 193 125 60 20	- I.I 15 57 84 116 157 145 102 51 17

^{*} These may be too high because of the usual increased humidity towards noon at Mount Wilson.

TABLE 160. - Solar Constant.

Solar constant (amount of energy falling at normal incidence on one square centimetre per minute on body at earth's mean distance) = 1.92 small calories. Mount Wilson and Mount Whitney observations.

Computed effective temperature of the sun: Goldhammer's method (Ann. der Phys. (4) 25, 905, 1908), 6200° Absolute; from form of black body curves, 6000 to 7000°; from λ max. = 2930, 6370°; from Total Radiation, $J = 76.8 \times 10^{-12}$, 5830°.

TABLE 161. — Distribution of Brightness (Radiation) over the Solar Disk. (These observations extend over only a small portion of a sun-spot cycle.)

Wave-length	μ	μ	μ	μ	μ	μ	μ	μ	μ	μ	μ	μ	μ	μ	μ
	0.3 23	0.386	0.433	0.456	0.481	0.501	0.534	0.604	0.670	0.699	0.866	1.031	1.225	1.655	2.097
Eraction Radius, 0.00 0.40 0.555 0.65 0.75 0.825 0.92 0.92	144 128 120 112 99 86 76 64 49	338 312 289 267 240 214 188 163 141	456 423 395 368 333 296 266 233 205	515 486 455 428 390 351 317 277 242	511 483 456 430 394 358 324 290 255	489 463 437 414 380 347 323 286 254	463 440 417 396 366 337 312 281 254	399 382 365 348 326 304 284 259 237	333 320 308 295 281 262 247 227 210	307 295 284 273 258 243 229 212 195	174 169 163 159 152 145 138 130	111 108 105.5 103 99 94.5 90.5 86 81	77.6 75.7 73.8 72.2 69.8 67.1 64.7 61.6 58.7	39.5 38.9 38.2 37.6 36.7 35.7 34.7 33.6 32.3	14.0 13.8 13.6 13.4 13.1 12.8 12.5 12.2

TABLE 162.—Relative Distribution in Normal Spectrum of Sun and Sky-light at Mount Wilson.

Zenith distance about 50°.

	μ	μ	μ	μ	μ	μ	С	D	b	F
Place in Spectrum Intensity Sunlight Intensity Sky-light Ratio at Mount Wilson Ratio computed by Rayleigh Ratio observed by Rayleigh	0.422 186 1194 642	0.457 232 986 425	0.491 227 701 309 -	0.566 211 395 187	0.614 191 231 121	0.660 166 174 105	25 25 25	35 40 41	60 63 71	77 80 90

Derived from vol. II and unpublished data of the Astrophysical Observatory of the Smithsonian Institution, Abbot and Fowle, Astrophysical Journal, 29, 1909, and Schwartzchild and Villiger, same Journal, 23, 1906.

TABLE 163. - Glasses Made by Schott and Gen, Jena.

The following constants are for glasses made by Schott and Gen, Jena: n_A , n_0 , n_D , n_R , n_0 , are the indices of refraction in air for $A=0.7682\mu$, $C=0.6563\mu$, D=0.5893, F=0.4861, G'=0.4341. $v=(n_D-1)/(n_F-n_0)$. Ultra-violet indices: Simon, Wied. Ann. 53, 1894. Infra-red: Rubens, Wied. Ann. 45, 1892. Table is revised from Landolt, Börnstein and Meyerhoffer, Kayser, Handbuch der Spectroscopie, and Schott and Gen's list No. 751, 1909. See also Hovestadt's "Jena

Catalogue Type = Designation = Melting Number= v =	O 546 Zinc-Crown. 1092 60.7	O 381 Higher Dispersion Crown. 1151 51.8	O 184 Light Silicate Flint. 451 41.1	O 102 Heavy Silicate Flint. 469 33.7	O 165 Heavy Silicate Flint. 500 27.6	S 57 Heaviest Silicate Flint. 163 22.2
The state of the s	1.56759 1.56372 1.55723 1.54369 1.53897 1.52899 1.5168 1.52299 1.5168 1.51446 1.51143 1.503 1.5048	1.57093 1.55262 1.54664 1.53312 1.52715 1.52022 1.51712 1.51368 1.5131 1.5069 1.5024 1.4973	1.65397 1.63320 1.61388 1.50355 1.58515 1.57524 1.57719 1.56669 1.5559 1.5585 1.5487	1.71968 1.70536 1.67561 1.66367 1.64985 1.64440 1.63820 1.6373 1.6277 1.6217 1.6171	1.85487 1.83263 1.78800 1.77091 1.75130 1.74368 1.73530 1.7315 1.7151 1.7151	1.94493 1.91890 1.88995 1.87893 1.86702 1.8850 1.8481 1.8396 1.8316 1.83286

Percentage composition of the above glasses:

- O 546, SiO2, 65.4; K2O, 15.0; Na2O, 5.0; BaO, 9.6; ZnO, 2.0; Mn2O8, 0.1; As2O8, 0.4; $\begin{array}{l} S_2Q_3,\ SiO_2,\ A_2Q_5,\ SiO_2,\ SiO_2$

TABLE 164. - Jona Glasses.

No. and Type of Jena Glass.	n _D for D	$n_{\rm F}-n_{\rm C}$	$v = \frac{n_{\rm D} - 1}{n_{\rm F} - n_{\rm C}}$	$n_{\mathrm{D}}-n_{\mathrm{A}}$	$n_{\rm F}-n_{\rm D}$	$n_{\rm G}, -n_{\rm F}$	Specific Weight.
O 225 Light phosphate crown	1.5159	.00737	70.0	.00485	.00515	.00407	2.58
O 802 Boro-silicate crown	1.4967	0765	64.9	0504	9534	0423	2.38
UV 3199 Ultra-violet crown	1.5035	0781	64.4	0514	0546	0432	2.41
O 227 Barium-silicate crown	1.5399	0909	59.4	0582	0630	0514	2.73
O 114 Soft-silicate crown	1.5151	0910	56.6	0577	0642	0521	2.55
O 608 High-dispersion crown	1.5149	0943	54.6	0595	0666	0543	2.60
UV 3248 Ultra-violet flint	1.5332	0964	55-4	0611	o68o	0553	2.75
O 381 High-dispersion crown	1.5262	1026	51.3	0644	0727	0596	2.70
O 602 Baryt light flint	1.5676	1072	53.0	0675	0759	0618	3.12
S 389 Borate flint	1.5686	1102	51.6	0712	0775	0629	2.83
O 726 Extra light flint	1.5398	1142	47.3	0711	0810	0669	2.87
O 154 Ordinary light flint	1.5710	1327	43.0	0819	0943	0791	3.16
0 184 " " "	1.5900	1438	41-1	0882	1022	0861	3.28
O 748 Baryt flint	1.6235	1599	39.1	9965	1142	0965	3.67
O 102 Heavy flint	1.6489	1919	33.8	1152	1372	1180	3.87
O41 " "	1.7174	2434	29.5	1439	1749	1521	4.49
O 165 " "	1.7541	2743	27-5	1607	1974	1730	4.78
S 386 Heavy flint	1,9170	4289	21.4	2451	3109	2808	6.01
S 57 Heaviest flint	1.9626	4882	19.7	2767	3547	3252	6.33

TABLE 165. - Change of Indices of Refraction for 1° C in Units of the Fifth Decimal Place.

No. and Designation.	Mean Temp.	С	D	F	G/	<u>-Δπ</u> 100
S 57 Heavy silicate flint O 154 Light silicate flint O 327 Baryt flint light O 225 Light phosphate crown .	58.8°	1.204	1.447	2.090	2.810	0.0166
	58.4	0.225	0.261	0.334	0.407	0.0078
	58.3	0.008	0.014	0.080	0.137	0.0079
	58.1	0.202	0.190	—0.168	0.142	0.0049

Pulfrich, Wied. Ann. 45, p. 609, 1892.

INDEX OF REFRACTION.

Indices of Refraction for the various Alums.*

R	ity.	o. C.º		I	ndex of rei	fraction for	the Fraun	hofer lines	•	
A	Density.	Temp.	a	В	c	מ	E	b	P	G
			Alu	minium Al	ums. RAl	(SO ₄) ₂ +12	H ₂ O.†			
Na NH ₃ (CH ₃) K Rb Cs NH ₄	1.667 1.568 1.735 1.852 1.961 1.631 2.329	17-28 7-17 14-15 7-21 15-25 15-20 10-23	1.43492 .45013 .45226 .45232 .45437 .45509 .49226	1.43563 .45062 .45303 .45328 .45517 .45599 .49317	1.43653 .45177 .45398 .45417 .45618 .45693 .49443	1.43884 .45410 .45645 .45660 .45856 .45939 .49748	1.44185 .45691 .45934 .45955 .46141 .46234 .50128	1.44231 .45749 .45996 .45999 .46203 .46288	1.44412 .45941 .46181 .46192 .46386 .46481 .50463	1.44804 .46363 .46609 .46618 .46821 .46923
			In	dium Alun	ns. RIn(S	6O ₄) ₂ +12H	₂ O.†			
Rb Cs NH ₄	2.065 2.241 2.011	3-13 17-22 17-21	1. 4 5942 .46091 .46193	1.46024 .46170 .46259	1.46126 .46283 .46352	1.46381 .46522 .46636	1.46694 .46842 .46953	1.46751 .46897 .47015	1.4695 5 .47105 .472 3 4	1.47402 .47562 .47750
			Ga	llium Alun	ns. RGa(SO ₄) ₂ +12F	I ₂ O.†			
Cs K Rb NH ₄ Tl	2.113 1.895 1.962 1.777 2.477	17-22 19-25 13-15 15-21 18-20	1.46047 .46118 .46152 .46390 .50112	1.46146 .46195 .46238 .46485 .50228	1.46243 .46296 .46332 .46575 .50349	1.46495 .46528 .46579 .46835 .50665	1.46785 .46842 .46890 .47146 .51057	1.46841 .46904 .46930 .47204 .51131	1.47034 .47093 .47126 .47412 .51387	1.47481 .47548 .47581 .47864 .52007
			Ch	rome Alun	ns. RCr(S	5O ₄) ₂ +12H	I ₂ O.†			
Cs K Rb NH ₄ Tl	2.043 1.817 1.946 1.719 2.386	6-12 6-17 12-17 7-18 9-25	1.47627 .47642 .47660 .47911 .51692	1.47732 .47738 .47756 .48014 .51798	1.47836 .47865 .47868 .48125 .51923	1.48100 .48137 .48151 .48418 .52280	1.48434 .48459 .48486 .48744 .52704	1.48491 .48513 .48522 .48794 .52787	1.48723 .48753 .48775 .49040 .53082	1.49280 .49309 .49323 .49594 .53808
Iron Alums. RFe(SO ₄) ₂ +12H ₂ O.†										
K Rb Cs NH ₄ Tl	1.806 1.916 2.061 1.713 2.385	7-11 7-20 20-24 7-20 15-17	1.47639 .47700 .47825 .47927 .51674	1.47706 .47770 .47921 .48029 .51790	1.47837 .47894 .48042 .48150 .51943	1.48169 .48234 .48378 .48482 .52365	1.48580 .48654 .48797 .48921 .52859	1.48670 .48712 .48867 .48993 .52946	1.48939 .49003 .49136 .49286 .53284	1.49605 .49700 .49838 .49980 .54112

^{*} According to the experiments of Soret (Arch. d. Sc. Phys. Nat. Genève, 1884, 1888, and Comptes Rendus, 1885). † R stands for the different bases given in the first column.

TABLE 167.

INDEX OF REFRACTION.

Index of Refraction of Metals and Metallic Oxides.

(a) Experiments of Kundt * by transmission of light through metallic prisms of small angle.

								Index of refraction for					
	N	ame o	f sub	stance.				Red.	White.	Blue.			
Silver Gold Copper Platinum Iron Nickel Bismuth Gold and			•	•	•	•	•	- 0.38 0.45 1.76 1.81 2.17 2.61	0.27 0.58 0.65 1.64 1.73 2.01 2.26	1.00 0.95 1.44 1.52 1.85 2.13			
Bismuth of Iron oxide Nickel ox Copper or Platinum	oxide e ide xide	66	†		•	•		1.04 0.89 - 1.78 2.18 2.63 3.31 4.99	0.99 2.03 1.91 2.11 2.23 2.84 3.29 4.82	1.25 1.33 - 2.36 2.39 3.18 2.90 4.40			

(b) Experiments of Du Bois and Rubens by transmission of light through prisms of small angle.

The experiments were similar to those of Kundt, and were made with the same spectrometer. Somewhat greater accuracy is claimed for these results on account of some improvements introduced, mainly by Prof. Kundt, into the method of experiment. There still remains, however, a somewhat large chance of error.

	Index of refraction for light of the following color and wave-length.											
Name of metal.	Red (Li _{α}). $\lambda = 67.1$	"Red." \$\lambda = 64.4	Yellow (D). λ = 58.9	Blue (F). λ=48.6	Violet (G). λ = 43.1‡							
Nickel Iron Cobalt	2.04 3.12 3.22	1.93 3.06 3.10	1.84 2.72 2.76	1.71 2.43 2.39	1.54 2.05 2.10							

(c) Experiments of Drude.

The following table gives the results of some of Drude's experiments.§ The index of refraction is derived in this case from the constants of elliptic polarization by reflection, and are for sodium light.

· Metal.			Index of refraction.	Me	Index of refraction.				
Bismuth	•			1.44 3.04 1.90 1.13 0.641 0.366 2.36 2.01	Mercury Nickel Platinum Silver Steel Tin, solid "fluid Zinc				1.73 1.79 2.06 0.181 2.41 1.48 2.10 2.12

^{* &}quot;Wied. Ann." vol. 34, and "Phil. Mag." (5) vol. 26, ‡ Wave-lengths λ are in millionths of a centimetre.

[†] Nearly pure oxide. § "Wied. Ann." vol. 39.

TABLE 168. - Index of Refraction of Rock Salt in Air.

λ(μ).	n.	Observer.	λ(μ).	n.	Obser- ver.	λ(μ).	n.	Obser- ver.
0.185409 .204470 .291368 .358702 .441587 .48614958902 .58932 .656304706548 .766529 .76824 .78576 .88396	1.89348 1.76964 1.61325 1.57932 1.55962 1.55338 1.553406 1.553399 1.544313 1.540672 1.540672 1.538633 1.536712 1.53666 1.536138	M " " " L P L P P L P P P P P	0.88396 .972298 .98220 1.036758 1.1786 1.555137 1.7680 2.073516 2.35728 2.9466 3.5359 4.1252 5.0092	1.534011 1.532532 1.532435 1.531762 1.530372 1.528211 1.527440 1.526554 1.525863 1.525863 1.524534 1.524534 1.524534 1.521648 1.521648 1.521625 1.518978	L P L P L P L P L P	5.8932 6.4825 "7.0718 7.6611 7.9558 8.8398 10.0184 11.7864 12.9650 14.1436 14.7330 15.3223 15.9116 20.57 22.3	1.516014 1.515553 1.513628 1.513467 1.511062 1.508318 1.506804 1.502035 1.494722 1.481816 1.471720 1.460547 1.454404 1.447494 1.441032 1.3735 1.340	P L P " " " " " " " " " " "

TABLE 169.— Change of Index of Refraction for 1° C in Units of the 5th Decimal Place.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
--	---

Annals of the Astrophysical Observatory of the Smithsonian Institution, Vol. I, 1900.

M Martens, Ann. d. Phys. 6, 1901, 8, 1902.

Mi Micheli, Ann. d. Phys. 7, 1902.

TABLE 170. - Index of Refraction of Silvine (Potassium Chloride) in Air.

λ(μ).	n	Obser- ver.	λ(μ).	n.	Obser- ver.	λ(μ).	n.	Obser- ver.
0.185409 .200090 .21946 .257317 .281640 .308227 .358702 .394415 .467832 .508606 .58932 .67082 .78576 .88398 .98220	1.82710 1.71870 1.64745 1.58125 1.55836 1.54136 1.52115 1.51219 1.50044 1.49620 1.490443 1.48669 1.483282 1.481422 1.480084	M	1.1786 1.7680 2.35728 2.9466 3.5359 4.7146 5.3039 5.8932	1.478311 1.47824 1.475890 1.47589 1.474751 1.473834 1.47394 1.47304 1.471122 1.47001 1.47001 1.468804 1.46880	P W P W P W P W P W	8.2505 8.8398 10.0184 11.786 12.965 14.144 15.912 17.680 20.60 22.5	1.462726 1.46276 1.460858 1.46092 1.45672 1.45673 1.44941 1.44346 1.44345 1.43722 1.42617 1.41403 1.3882 1.369	P W P W P W P W P W P W RN

W Weller, see Paschen's article. Other references as under Table 169, above.

TABLES 171-174. INDEX OF REFRACTION.

TABLE 171. - Index of Refraction of Fluorite in Air.

λ (μ)	72	Obser- ver	λ (μ)	n	Obser- ver	λ (μ)	72	Obser- ver.
0.1856 .19881 .21441 .22645 .25713 .32525 .34555 .39681 .48607 .58930 .65618 .68671 .71836 .76040 .8840 1.1786	1.50940 1.49629 1.48462 1.47762 1.46476 1.44987 1.44214 1.43713 1.43393 1.43257 1.43200 1.43157 1.43101 1.42982 1.42787 1.42690 1.42641	S	1.4733 1.5715 1.6206 1.7680 1.9153 1.9644 2.0626 2.1608 2.2100 2.3573 2.5537 2.6519 2.7502 2.9466 3.1430 3.2413 3.5359 3.8306	1.42641 1.42596 1.42582 1.42507 1.42437 1.42413 1.42359 1.42308 1.42288 1.42199 1.42086 1.41971 1.41826 1.41707 1.41612 1.41707	P 46 46 46 46 46 46 46 46 46 46 46 46 46	4.1252 4.4199 4.7146 5.0092 5.3036 5.5985 5.8932 6.4825 7.0718 7.6612 8.2505 8.8398 9.4291 51.2 61.1	1.40855 1.40559 1.40238 1.39898 1.39529 1.30142 1.37819 1.37819 1.36805 1.34680 1.34444 1.33079 1.31612 3.47 2.66 2.63	P

$$n^{2} = a^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} - \epsilon \lambda^{2} - f \lambda^{4} \text{ or } = b^{2} + \frac{M_{2}}{\lambda^{2} - \lambda_{r}^{2}} + \frac{M_{3}}{\lambda^{2} - \lambda_{r}^{2}}$$
where $a^{2} = 2.03882$ $f = 0.00002916$ $M_{3} = 5114.65$
 $M_{1} = 0.0062183$ $b^{2} = 6.09651$ $\lambda_{r}^{2} = 1260.56$
 $\lambda_{1}^{2} = 0.007706$ $M_{2} = 0.0061386$ $\lambda_{v} = 0.0940\mu$
 $\epsilon = 0.0031999$ $\lambda_{r}^{2} = 0.00884$ $\lambda_{r} = 35.5\mu$ (P)

TABLE 172. - Change of Index of Refraction for 1°C in Units of the 5th Decimal Place. C line, -1.220; D, -1.206; F, -1.170; G, -1.142. (Pl)

TABLE 173. - Index of Refraction of Iceland Spar (CaCO₃) in Air.

λ (μ)	n _o	n _e	Observer.	λ (μ)	20	226	Observer.	λ (μ)	no	no	Observer.
0.198 .200 .208 .226 .298 .340 .361 .410 .434 .486	1.9028 1.8673 1.8130 1.7230 1.7008 1.6932 1.6802 1.6755 1.6678	1.5780 1.5765 1.5664 1.5492 1.5151 1.5056 1.5022 1.4964 1.4943 1.4907	M " " C M C - M " "	0.508 •533 •589 •643 •656 •670 •760 •768 •801	1.6653 1.6628 1.6584 1.6550 1.6544 1.6537 1.6500 1.6497 1.6487	1.4896 1.4884 1.4864 1.4849 1.4846 1.4843 1.4826 1.4826 1.4822	M	0.991 1.229 1.307 1.497 1.682 1.749 1.849 1.908 2.172 2.324	1.6438 1.6393 1.6379 1.6346 1.6313 - 1.6280	1.4802 1.4787 1.4783 1.4774 1.4764 - 1.4757	C 66 66 66 66 66 66 66 66 66 66 66 66 66

C Carvallo, J. de Phys. (3), 9, 1900. M Martens, Ann. der Phys. (4) 6, 1901, 8, 1902. P Paschen, Wied. Ann. 56, 1895.

Pl Pulfrich, Wied. Ann 45, 1892. RA Rubens-Aschkinass, Wied. Ann. 67, 1899. S Starke, Wied. Ann. 60, 1897.

TABLE 174. - Index of Refraction of Nitroso-dimethyl-aniline. (Wood.)

λ	n	λ	71	λ	11	λ	n	λ	78
.500 .506 .508	2.140 2.114 2.074 2.025 1.985	•.525 •536 •546 •557 •569	1.945 1.909 1.879 1.857 1.834	0.584 .602 .611 .620 .627	1.815 1.796 1.783 1.778 1.769	o .636 .647 .659 .669	1.647 1.758 1.750 1.743 1.723	0.713 .730 .749 .763	1.718 1.713 1.709 1.697

Nitroso-dimethyl-aniline has enormous dispersion in yellow and green, metallic absorption in violet. See Wood,
Phil. Mag. 1903.

TABLE 175.

INDEX OF REFRACTION.

Index of Refraction of Quartz (SiO2).

Wave- length.	Index Ordinary Ray.	Index Extraordinary Ray.	Tempera- ture ° C.	Wave- length.	Index Ordinary Ray.	Index Extraordinary Ray.	Temperature ° C.
0.185 .193 .198 .206 .214 .219 .231 .257 .274 .340 .396 .410 .486 0.598	1.67582 .65997 .65090 .64038 .63041 .62494 .61399 .59622 .58752 .56748 .55815 .55650 .54968 1.54424	1.68999 .67343 .66397 .65300 .64264 .63698 .62560 .60712 .59811 .57738 .56771 .56600 .55896	18 46 46 46 46 46 46 46 46 46 46 46 46 46	0.656 .686 .760 1.160 .969 2.327 .84 3.18 .63 .96 4.20 5.0 6.45 7.0	1.54189 .54099 .53917 .5329 .5216 .5156 .5039 .4944 .4799 .4679 .4569 .417 .274 1.167	1.55091 .54998 .54811 Rubens.	18 " " - - - - - -

Except Rubens' values, - means from various authorities.

TABLE 176.

INDEX OF REFRACTION.

Various Monorefringent or Optically Isotropic Solids.

			-				
Substance	e.				Line of Spectrum.	Index of Refraction.	Authority.
A mate (limbt selen)					box		De Consument
Agate (light color)	•	•		•	red D	1.5374	De Senarmont.
Ammonium chloride.	•	•	•	•	D	1.6422	Grailich.
Arsenite		4	٠			1.755	DesCloiseaux.
Barium nitrate	۰	•		•	D	1.5716	Fock.
Bell metal	•	•	•	•	D	1.0052	Beer.
701 7					(Li	2.34165)	20
Blende		4		•	Na	2.36923 }	Ramsay.
					(Tl	2.40069	
					(C	1.40245	
Boric acid		•			}	1.46303	
					(F	1.47024	Bedson and
					(C	1.51222	Carleton Williams.
Borax (vitrified) .					{ D	1.51484	
					(F	1.52068	
Camphor					D	1.532	Kohlrausch.
Campioi	•	*	•	•		1.5462	Mulheims.
Diamond (solowless)					∫ red	2.414	DesCloiseaux.
Diamond (colorless).		•	•		green	2.428	Descroiseaux.
					B	2.46062)	
Diamond (brown) .					₹D	2.46986 }	Schrauf.
(333,000)					/E	2.47902	
Ebonite					D T	1.6	Ayrton & Perry.
			_		ſ A	2.03	,
					B	2.19	
Fuchsin				1	l ₹c̃	2.33	Means.
2 donone	•	•	•	•	Ğ	1.97	212041136
					H	1.32	
						1.74 to }	
Garnet (different varieti	es)				D		Various.
Gum arabic					red	1.480	Jamin.
Guin arabic			•	•	"		Wollaston.
Hansma	•	•	•	•	D	1.514	Tschichatscheff.
Hanyne		•		•	ď	1.4961	
Tiervine	•	•	•	•	D	1.739 {1.482 to }	Levy & Lecroix.
Obsidian					D		Various.
						1.496	
Opal					D	{ 1.406 }	66
-				·		1.450	Wollaston.
Pitch	•	•	•		red	1.531	wollaston.
Potassium bromide .		•	•	•	D "	1.5593	Topsöe and
" chlorstannate				0	. "	1.6574	Christiansen.
Tourde .					66	1.6666	
Phosphorus		•		0		2.1442	Gladstone & Dale.
Resins: Aloes		•		•	red	1.619	Jamin. Wollaston.
Canada balsam		•			66	1.528	
Colophony .					66	1.548	Jamin.
Copal					46	1.528	**
Mastic					"	1.535	Wollaston.
Peru balsam					D	1.593	Baden Powell.
					(A	2.612	
Coloniumitus					B	2.680	Wood
Selenium, vitreous .		•	•	•	1 C	2.729	Wood.
					D	2.93	
(bromide .					D	2.253	
Silver \ chloride					66	2.061	Wernicke.
iodide					"	2.182	
					66	1.4827	10
Sodalite blue clear like wat	er				66	1.4833	Feusner.
Sodium chlorate .					46	1.5150	Dussaud.
Spinel					- 44	1.7155	DesCloiseaux.
Strontium nitrate					- 66	1.5667	Fock.
Direction in the contract of						21,500/	

TABLES 177, 178.

INDEX OF REFRACTION.

TABLE 177. — Uniaxial Crystals.

Substance.	Line of	Index of 1	refraction.	Authority.
Subtaile,	trum.	Ordinary ray.	Extraordi- nary ray.	Authority.
Alunite (alum stone) Ammonium arseniate Anatase Apatite Benzil Beryl Brucite Calomel Cinnabar Corundum (ruby, sapphire, etc.) Dioptase Emerald (pure) Ice at — 8° C. Idocrase Ivory Magnesite Potassium arseniate	D red D D D C C C C C C C C C C C C C C C C			Levy & Lacroix. De Senarmont. Schrauf. "DesCloiseaux. Various. Kohlrausch. De Senarmont. DesCloiseaux. "" Meyer. DesCloiseaux. Kohlrausch. Mallard. DesCloiseaux. De Sernamont.
Silver (red ore) Sodium arseniate " nitrate " phosphate Strychnine sulphate Tin stone Tourmaline (colorless) " (different colors) Zircon (hyacinth) " "	red D D D D D T Fed D	3.084 1.459 1.587 1.446 1.614 1.997 1.633 to 1.650 1.92 1.924	2.881 1.467 1.336 2.452 1.519 2.093 1.619 1.616 to 1.625 1.97	Fizeau, Baker. Schrauf. Dufet. Martin. Grubenman. Heusser. Jeroféjew. De Senarmont. Sanger.

TABLE 178. — Biaxial Crystals.

	Line of	Inc	lex of refracti	on.	Authority.
Substance.	spec- trum.	Minimum.	Interme- diate.	Maximum.	Aumonty.
Anglesite	D D D D D D D D D D D D D D D D D D D	1.8771 1.5693 1.5101 1.5301 1.6720 1.636 1.4467 1.5140 1.5208 1.5601 1.661 1.5190 1.7202 1.3346 1.4932 1.5397 1.9505 1.6294 1.630 to	1.8823 1.5752 1.6812 1.6816 1.6779 1.4694 1.5368 1.5228 1.5936 1.5237 1.7380 1.5056 1.4946 1.5667 2.0383 1.6308	1.8936 1.6130 1.6858 1.6859 1.6810 1.648 1.4724 1.5238 1.5298 1.5977 1.5260 1.8197 1.5260 1.8197 1.5260 1.8197 1.5260 1.6375 1.6375 1.6375	Arzruni. Mülheims. Glazebrook. Rudberg. DesCloiseaux. Various. Dufet. Kohlrausch. Mülheims. Pulfrich. DesCloiseaux. Dufet. Schrauf. Topsöe & Christiansen. Calderon. Schrauf. Mülheims.
Topaz (different kinds) Zinc sulphate	D {	1.613 1.4568	1.616 1.4801	1.623 1.4836	Topsöe & Christiansen.

INDEX OF REFRACTION.

Indices of Refraction relative to Air for Solutions of Salts and Acids.

			Indi	ces of refr	action for	spectrum	lines.	
Substance.	Density.	Temp. C.		D	F	Нγ	н	Authority.
		(a) S	SOLUTIONS	IN WAT	ER.			
Ammonium chloride "Calcium chloride """	1.067 .025 .398 .215	27°.05 29.75 25.65 22.9 25.8	1.37703 .34850 .44000 .39411 .37152	.35050	.44938 .40206		1.39336 .36243 .46001 .41078 .38666	Willigen.
Hydrochloric acid Nitric acid Potash (caustic) . Potassium chloride " " "	double	20.75 18.75 11.0 solution normal	1.40817 .39893 .40052 .34087 .34982 .35831	1.41109 .40181 .40281 .34278 .35179 .36029	.40857 .40808 .34719 .35645	- 1.35049 ·35994	1.42816 .41961 .41637 - - -	Fraunhofer. Bender.
Soda (caustic) . Sodium chloride . " "	. 1.376 .189 .109 .035	21.6 18.07 18.07 18.07	1.41071 .37562 .35751 .34000		.38322	1.38746 .36823	1.42872 - - -	Willigen. Schutt.
Sodium nitrate . Sulphuric acid . " " " " " "	. 1.358 .811 .632 .221 .028	22.8 18.3 18.3 18.3 18.3	1.38283 •43444 •42227 •36793 •33663	1.38535 .43669 .42466 .37009 .33862	.37468	11111	1.40121 .44883 .43694 .38158 .34938	Willigen.
Zinc chloride	1.359	26.6 26.4	1.39977 .37292	1.40222	1.40797 .38026	-	1.41738 .38845	66
		(b) Solu	rions in	ETHYL A	LCOHOL.			
Ethyl alcohol	0.789	25.5 27.6	1.35791 ·3537 ²	1.35971 .35556	1.36395	_	1.37094 .36662	Willigen.
Fuchsin (nearly sat urated) Cyanin (saturated)	_	16.0 16.0	.3918	.398	.361 .3705	-	·3759 ·3821	Kundt.
Note. — Cyanin a 4.5 per cent. solu For a 9.9 per cent.	tion $\mu_A =$	= 1.4593, p	$\iota_B = 1.46$	95, μ _F (g	reen) =	1.4514,	ua (blue) = 1.4554.
	c) Solutio	NS OF POT	ASSIUM I	ermang/	NATE IN	WATER.*		
Wave- length in cms. × 106. Spec- trum line. Index for 1 % so	Index for 2 % sol.	Index for 3 % sol.	index	ength	rum 1	or f	or f	dex Index for sol. 4 % sol.
68.7 B 1.3328 65.6 C .3333 61.7334 59.43354 58.9 D .3355 56.83366 55.33366 52.7 E .3365 52.23366	•3348 •3365 •3373 •3372 •3387 •3395	1.3365 .3381 .3393 -3412 .3417 -3388	1.3382 .3391 .3410 .3426 .3426 .3445 .3438	51.6 50.0 48.6 48.0 46.4 44.7 43.4 42.3	F	374 ·3 377 381 ·3 397 ·3 407 ·3	395 ·3 402 ·3 421 ·3	386 1.3404 3408 398 .3413 414 .3423 426 .3439 3452 457 .3468

^{*} According to Christiansen.

TABLE 180.

INDEX OF REFRACTION.

Indices of Refraction of Liquids relative to Air.

Substance.	Temp.	Inc	dex of refra	ection for s	pectrum lin	ies.	Authority.
Substance.	C.*	O	D	P	Ηγ	Н	
Acetone Almond oil Analin * Aniseed oil	10° 0 20 21.4 15.1	1.3626 ·4755 ·5993 ·5410 ·5508	1.3646 .4782 .5863 .5475 .5572	1.3694 .4847 .6041 .5647	1.3732 .6204 -	- - - 1.6084	Korten. Olds. Weegmann. Willigen. Baden Powell.
Benzene†	10 21.5 20 20	1.4983 ·4934 ·5391 ·6495	1.5029 •4979 - .6582	1.5148 .5095 .5623 .6819	- - • 5 775 • 7 041	1.5355 ·5304 - .7289	Gladstone. " Landolt. Walter.
Carbon disulphide ‡ " " " Cassia oil	0 20 10 19 10 22.5	1.6336 .6182 .6250 .6189 .6007	1.6433 .6276 .6344 .6284 .6104	1.6688 .6523 .6592 .6352 .6389	1.6920 .6748 - - -	1.7175 .6994 .7078 .7010 .7039 .6985	Ketteler. Gladstone. ' Dufet. Baden Powell. "
Chinolin Chloroform	20 10 30 20 23.5	1.6094 .4466 - .4437 .6077	1.6171 .4490 .4397 .4462 .6188	1.6361 ·4555 - ·4525 .6508	1.6497 - - - -	.4661 .4561 - -	Gladstone. Gladstone & Dale. " Lorenz. Willigen.
Ethyl alcohol	15 15 0 10 20 15	1.3554 ·3573 ·3677 ·3636 ·3596 ·3621	1.3566 ·3594 ·3695 ·3654 ·3614 ·3638	1.3606 .3641 .3739 .3698 .3657 .3683	- -3773 -3732 -3690	1.3683 ·3713 - - - ·3751	Gladstone & Dale. Kundt. Korten. " " Gladstone & Dale.
Glycerine Methyl alcohol Olive oil Rock oil	20 15 0	1.4706 .3308 .4738 .4345	1.3326 .4763 .4573	1.4784 .3362 .4825 .4644	1.4828 - - -	- .3421 -	Landolt. Baden Powell. Olds.
Turpentine oil " " Toluene Water §	10.6 20.7 20 20	1.4715 .4692 .4911 .3312	1.4744 .4721 ·4955 ·333°	1.4817 •4793 •5070 •3372	- .5170 .3404	1.4939 .4913 - .3435	Fraunhofer. Willigen. Bruhl. Means.

^{*} Weegmann gives $\mu_D = 1.59668 - .000518 t$. Knops gives $\mu_F = 1.61500 - .00056 t$.

[†] Weegmann gives $\mu_D = 1.51474 - .000665t$. Knops gives $\mu_D = 1.51399 - .000644t$.

[‡] Wüllner gives $\mu_C = 1.63407 - .00078 t$; $\mu_F = 1.66908 - .00082 t$; $\mu_h = 1.69215 - .00085 t$.

[§] Dufet gives $\mu_D = 1.33397 - 10^{-7} (125 t + 20.6 t^2 - .000435 t^3 - .00115 t^4)$ between 0° and 50°; and nearly the same variation with temperature was found by Ruhlmann, namely, $\mu_D = 1.33373 - 10^{-7} (20.14 t^2 + .000494 t^4)$.

INDEX OF REFRACTION.

Indices of Refraction of Gases and Vapors.

A formula was given by Biot and Arago expressing the dependence of the index of refraction of a gas on pressure and temperature. More recent experiments confirm their conclusions. The formula is $n_t - \mathbf{i} = \frac{n_0 - \mathbf{i}}{1 + \alpha t/90}$, where n_t is the index of refraction for temperature t, n_0 for temperature zero, α the coefficient of expansion of the gas with temperature, and p the pressure of the gas in millimetres of mercury. Taking the mean value, for air and white light, of $n_0 - \mathbf{i}$ as 0.0002936 and α as 0.00367 the formula becomes

$$n_t - \mathbf{i} = \frac{.0002936}{\mathbf{i} + .00367 \, t} \cdot \frac{P}{\mathbf{i} . 0136 \times 10^6} = \frac{.0002895}{\mathbf{i} + .00367 \, \frac{P}{106^9}}$$

where P is the pressure in dynes per square centimetre, and t the temperature in degrees Centigrade.

(a) The following table gives some of the values obtained for the different Fraunhofer lines for air.

Spectrum	Index	of refraction according	ng to—	Spectrum	Index of refraction according to
line.	Ketteler.	Lorenz.	Kayser & Runge.	line.	Kayser & Runge.
A B C D E F G H K L	1.0002929 2935 2938 2947 2958 1.0002968 2987 3003 -	1.0002893 2899 2902 2911 2922 1.0002931 2949 2963	1.0002905 2911 2914 2922 2933 1.0002943 2962 2978 2980 2987	M N O P Q R S T U	1.0002993 3003 3015 1.0003023 3031 3043 1.0003053 3064 3075

(b) The following are compiled mostly from a table published by Brühl (Zeits. für Phys. Chem. vol. 7, pp. 25-27). The numbers are from the results of experiments by Biot and Arago, Dulong, Jamin, Ketteler, Lorenz, Mascart, Chappius, Rayleigh, and Rivière and Prytz. When the number given rests on the authority of one observer the name of that observer is given. The values are for 0° Centigrade and 760 mm. pressure.

Substance.	Kind of light.	Indices of refraction and authority.	Substance.	Kind of light.	Indices of refraction and authority.
Acetone Ammonia	D white D D	1.001079-1.001100 1.000381-1.000385 1.000373-1.000379 1.000281 Rayleigh. 1.001700-1.001823	Hydrogen	white D D D white	1.000138-1.000143 1.000132 Burton. 1.000644 Dulong. 1.000623 Mascart. 1.000443 Dulong.
Bromine Carbon dioxide "Carbon disulphide }	D white D white D	1.001132 Mascart. 1.000449–1.000450 1.000448–1.000454 1.001500 Dulong. 1.001478–1.001485	Methyl alcohol. Methyl ether Nitric oxide.	D D D white D	I.000444 Mascart. I.000549-I.000623 I.00089I Mascart. I.000303 Dulong. I.000297 Mascart.
Carbon mon- oxide { Chlorine Chloroform	white white white D	1.000340 Dulong. 1.000335 Mascart. 1.000772 Dulong. 1.000773 Mascart. 1.001436–1.001464	Nitrogen Nitrous oxide . "Oxygen	white D white D white	1.000295-1.000300 1.000296-1.000298 1.000503-1.000507 1.000516 Mascart. 1.000272-1.000280
Cyanogen	white D D D D D	1.000834 Dulong. 1.000784-1.000825 1.000871-1.000885 1.001521-1.001544 1.000036 Ramsay.	Pentane Sulphur dioxide " Water	D D white D white	I.000271-I.000272 I.001711 Mascart. I.000665 Dulong. I.000686 Ketteler. I.000261 Jamin.
Hydrochloric { acid }	white D	1.000449 Mascart. 1.000447	66	D	1.000249-1.000259

According to Fresnel the amount of light reflected by the surface of a transparent medium $= \frac{1}{2} (A+B) = \frac{1}{2} \left\{ \frac{\sin^2(i-r)}{\sin^2(i+r)} + \frac{\tan^2(i-r)}{\tan^2(i+r)} \right\}; A \text{ is the amount polarized in the plane of inci$ dence; B is that polarized perpendicular to this; i and r are the angles of incidence and refraction.

TABLE 182. — Light reflected when $i=0^{\circ}$ or Incident Light is Normal to Surface.

n.	$\frac{1}{2}(A+B).$	n.	$\frac{1}{2}(A+B).$	n.	$\frac{1}{2}(A+B).$	n.	$\frac{1}{2}(A+B)$.
1.00 1.02 1.05 1.1 1.2 1.3	0.00 0.01 0.06 0.23 0.83 1.70	1.4 1.5 1.6 1.7 1.8 1.9	2.78 4.00 5.33 6.72 8.16 9.63	2.0 2.25 2.5 2.75 3. 4.	11.11 14.06 18.37 22.89 25.00 36.00	5. 5.83 10. 100.	44.44 50.00 66.67 96.08 100.00

TABLE 183. — Light reflected when n is near Unity or equals 1+dn.

i.	А.	В,	$\frac{1}{2}(A+B).$	$\frac{A-B}{A+B}$ *
0° 5 10 15 20 25 30 35 40 45 50 65 70 75 80 85 90	1.000 1.015 1.063 1.149 1.282 1.482 1.778 2.221 2.904 4.000 5.857 9.239 16.000 31.346 73.079 222.85 1099.85 17330.64	1.000 .985 .939 .862 .752 .612 .444 .260 .088 .000 .176 1.081 4.000 12.952 42.884 167.16 971.21 16808.08	1.000 1.000 1.001 1.005 1.017 1.047 1.111 1.240 1.496 2.000 3.016 5.160 10.000 22.149 57.981 195.00 1035.53	0.0 1.5 6.2 14.3 26.0 41.5 60.0 79.1 94.5 100.0 94.5 79.1 60.0 41.5 26.0 14.3 6.2 1.5 0.0

TABLE 184. — Light reflected when n = 1.55.

		HDDE TOTA	2018111 101				
i.	r.	А.	В.	dA.t	dB.†	$\frac{1}{2}(A+B)$.	$\frac{A-B}{A+B}$ *
0 /	0,						
0	0 0.0	4.65	4.65	0.130	0.130	4.65	0.0
5	3 13.4	4.70	4.61	.131	.129	4.65	1.0
10	6 25.9	4.84	4.47	.135	•126	4.66	4.0
15	9 36.7	5.00	4.24	.141	121	4.66	9.1
20	12 44.8	5.45	3.92	.150	,114	4.68	16.4
25	15 49-3	5.95	3.50	.161	.105	4.73	25.9
30	18 49.1	6.64	3.00	.175	•094	4.82	37.8
35	21 43.1	7.55	2.40	.191	180.	4.98	51.7
40	24 30.0	8.77	1.75	,210	•066	5.26	66.7
45	27 8.5	10.38	1.08	.233	,049	5.73	81.2
50	29 37.1	12.54	0.46	.263	.027	6.50	92.9
55	31 54.2	15.43	0.05	•303	.007	7.74	99.3
60	33 58.1	19.35	0.12	.342	013	9.73	98.8
65	35 47.0	24.69	1, 13	•375	032	12.91	91.2
70	37 19.1	31.99	4,00	·400	−. 050	18.00	77.7
75	38 32.9	42.00	10.38	.410	060	26.19	61.8
80	39 26.8	55.74	23.34	.370	069	39 54	41.0
82 30	39 45-9	64.41	34.04	.320	067	49.22	30.8
85 0	39 59.6	74.52	49.03	.250	o61	61.77	20.6
86 o	40 3.6	79.02	56.62	.209	055	67.82	16.5
87 o	40 6.7	83.80	65.32	•163	046	74.56	12.4
88 o	40 8.9	88.88	75.31	811.	036	82.10	8.3
89 o	40 10.2	94.28	86.79	.063	022	90.54	4.1
90 0	40 10.7	100.00	100.00	•000	000	100.00	0.0
					1		

Angle of total polarization = 57° 10'.3, A = 16.99.

^{*} This column gives the degree of polarization.

† Columns 5 and 6 furnish a means of determining A and B for other values of n. They represent the change in these quantities for a change of n of o.or. Taken from E. C. Pickering's "Applications of Fresnel's Formula for the Reflection of Light."

SMITHSONIAN TABLES.

TABLE 185.

REFLECTION OF METALS.

Perpendicular Incidence and Reflection.

The numbers give the per cents of the incident radiation reflected.

Wave-length, µ,	Silver-backed Glass,	Mercury-backed Glass.	Mach's Magnalium. 69Al+31Mg.	Brandes-Schünemann Alloy. $32Cu + 34Sn + 29Ni + 5Fe$.	Ross' Speculum Metal, 68.2Cu+31.8Su,	Nickel, Electrolytically Deposited,	Copper. Electrolytically Deposited.	Steel, Untempered,	Copper. Commercially Pure,	Platinum. Electrolytically Deposited,	Gold, Electrolytically Deposited.	Brass. (Trowbridge),	Silver. Chemically Deposited,
.251 .288 .305 .316 .326 .338 .357 .385		-	67.0 70.6 72.2 - 75.5 81.2 83.9	35.8 37.1 37.2 39.3 43.3 44.3	29.9 37.7 41.7 - - 51.0 53.1	37.8 42.7 44.2 - 45.2 46.5 48.8 49.6	-	32.9 35.0 37.2 - 40.3 - 45.0 47.8	25.9 24.3 25.3 - 24.9 - 27.3 28.6	33.8 38.8 39.8 - 41.4 - 43.4 45.4	38.8 34.0 31.8 - 28.6 - 27.9 27.1	1111111	34.1 21.2 9.1 4.2 14.6 55.5 74.5 81.4
.420 .450 .500 .550 .600 .650	85.7 86.6 88.2 88.1 89.1 89.6	72.8 70.9 71.2 69.9 71.5 72.8	83.3 83.4 83.3 82.7 83.0 82.7 83.3	47.2 49.2 49.3 48.3 47.5 51.5 54.9	56.4 60.0 63.2 64.0 64.3 65.4 66.8	56.6 59.4 60.8 62.6 64.9 66.6 68.8	48.8 53.3 59.5 83.5 89.0 90.7	51.9 54.4 54.8 54.9 55.4 56.4 57.6	32.7 37.0 43.7 47.7 71.8 80.0 83.1	51.8 54.7 58.4 61.1 64.2 66.5 69.0	29.3 33.1 47.0 74.0 84.4 88.9 92.3	-	86.6 90.5 91.3 92.7 92.6 94.7 95.4
.800 1.0 1.5 2.0 3.0 4.0 5.0 7.0 9.0 11.0 14.0	1111111111	-	84.3 84.1 85.1 86.7 87.4 88.7 89.0 90.0 90.6 90.7 92.2	63.1 69.8 79.1 82.3 85.4 87.1 87.3 88.6 90.3 90.2 90.3	70.5 75.0 80.4 86.2 88.5 89.1 90.1 92.2 92.9 93.6	69.6 72.0 78.6 83.5 88.7 91.1 94.4 94.3 95.6 95.9 97.2		58.0 63.1 70.8 76.7 83.0 87.8 89.0 92.9 92.9 94.0 96.0	88.6 90.1 93.8 95.5 97.1 97.3 97.9 98.3 98.4 98.4	70.3 72.9 77.7 80.6 88.8 91.5 93.5 95.5 95.4 95.6 96.4	94.9 - 97.3 96.8 - 96.9 97.0 98.3 98.0 98.3 97.9	91.0 93.7 95.7 95.9 97.0 97.8 96.6	96.8 97.0 98.2 97.8 98.1 98.5 98.1 98.5 98.7 98.8 98.3

Based upon the work of Hagen and Rubens, Ann. der Phys. (1) 352, 1000; (8) 1, 1002; (11) 873, 1003. Taken partly from Landolt-Börnstein-Meyerhofter's Physikalisch-chemische Tabellen. Further references:

Conroy, Proc. Roy. Soc. 35, 26, 1883.

De la Provastaye and P. Desains, Ann. Chim. Phys. (3) 30, 276, 1850.

Langley, Phil. Mag. (5) 27, 10, 1889.

Mach and Schumann, Wien. Ber. 108, 135, 1899.

TRANSMISSIBILITY FOR RADIATION OF JENA GLASSES.

TABLE 186.

Coefficients, a, in the formula $I_t = I_0 a^t$, where I_0 is the Intensity before, and I_0 after, transmission through the thickness t, expressed in centimetres. Deduced from observations by Müller, Vogel, and Rubens as quoted in Hovestadt's Jena Glass (English translation).

Two of Class					Coeffici	ent of ti	ransmiss	ion, a.			
Type of Glass. $\lambda =$	·375 #	390 µ	,400	μ ο	-434 μ	.436 μ	.455 µ	.477 µ	.503 μ	.580 µ	.677 μ
O 340, Ord. light flint O 102, H'vy silicate flint O 93, Ord. "" O 203, "" crown O 598, (Crown)	.388 - - .583	.456 .025 - .583	.60	53	.569	.680 .566 .714 .806 .797	.834 .663 .807 .822 .770	.880 .700 .899 .860	.880 .782 .871 .872 .776	.878 .828 .903 .872 .818	.939 .794 .943 .903 .860
λ=	0.7 H	0.95 µ	ι. τ μ	1.41	μ [ε.7 μ	2.0 µ	2.3 μ	2.5 μ	2.7 μ	2.9 μ	3.1 μ
S 204, Borate crown S 179, Med. phosp. cr. O 1143, Dense, bor. sil. cr. O 1092, Crown O 1151, " O 451, Light flint O 469, Heavy " O 500, " " S 163, " "	I.0 - - .9I .82 I.0 I.0 I.0	.90 .82 - .67 - -	•55 •61 •74 •61 •91 •91 •82 1.0	·37 ·37 ·90 ·90	.17	.12 .018 .50 .41 .55 .61 .82	.025 .08 .33 .14 .33 .45 .82 1.0	.02 .25 .18 .033 .10 .17 .74 .90	.04 .05 .034 .006 .055 .083 .33 .45	.03 .06 .07 .04 .002 .017 .050	.021 .043 .010 .019 .010 .019

TABLE 187.

Note: With the following data, t must be expressed in millimetres; i. e. the figures as given give the transmissions for thickness of 1 mm.

	Ī					337	1	-					
						wave	-length	1 111 μ.					
No. and Type of Glass.			Visib	e Spec	trum.				Ultr	a-viole	t Speci	rum.	
	.644 µ	.578 µ	.546 µ	.509 μ	.480 µ	.436 µ	.405 µ	.384 µ	.361 µ	.340 µ	.332 µ	.309 µ	.280 µ
F 3815 Dark neutral F 4512 Red filter	·35	·35	•37	-35	•34	.30	.15	.06					
F 2745 Copper ruby F 4313 Dark yellow	.72	·39 ·97	·47 ·93	.47 .83	.45	·43	·43						
F 4351 Yellow F 4937 Bright yellow F 4930 Green filter	.98	.97 I.O	.96	.93 .99	·44 ·74	.15	.31	.28	.22	.18	.14	.06	
F 3873 Blue filter F 3654 Cobalt glass,	•17	-50	.64	.18	•44 •50	•73	.69	•59	.36	.10			
transparent for outer	-		-	.15	.44			i	1.0	1.0	1.0	.58	-0
F 3653 Blue, ultraviolet F 3728 Didymium, str'g	~	tiens	-	_	.II		1.0	1.0	1.0	1.0	1.0		.18
bands	•99	.72	•99	.96	-95	.96	•99	.99	.89	.89	•77	•54	

This and the following table are taken from Jenaer Glas für die Optik, Liste 751, 1909

TABLE 188. - Transmissibility of Jena Ultra-violet Glasses.

No. and Type of Glass.	Thickness.	0.397 H	0.383 µ	0.361 µ	0.346 µ	0.325 μ	0.309 μ	0.280 μ
UV 3199 Ultra-violet " " " " " " " " " " " " " " " " " " "	1 mm. 2 mm. 1 dm. 1 mm. 2 mm. 1 dm.	1.00 0.99 0.95 1.00 0.98 0.96	1.00 0.99 0.95 1.00 0.98 0.87	1.00 0.99 0.89 1.00 0.98 0.79	1.00 0.97 0.70 1.00 0.92 0.45	1.00 0.90 0.36 0.98 0.78 0.08	0.95 0.57 0.91 0.38	o.56 o.35

TABLE 189.

TRANSMISSIBILITY FOR RADIATION.

Transmissibility of the Various Substances of Tables 166 to 175.

Alum: Ordinary alum (crystal) absorbs the infra-red.

Metallic reflection at 9.05 \mu and 30 to 40 \mu.

Rock-salt: Rubens and Trowbridge (Wied. Ann. 65, 1898) give the following transparencies for a r cm. thick plate in %:

	λ	9	10	12	13	14	15	16	17	18	19	20.7	23.7µ
ı	%	99.5	99.5	99.3	97.6	93.1	84.6	66.1	51.6	27.5	9.6	0.6	0.

Pflüger (Phys. Zt. 5. 1904) gives the following for the ultra-violet, same thickness: 280μμ, 95.5%; 231, 86%; 210, 77%; 186, 70%.

Metallic reflection at 0.110µ, 0.156, 51.2, and 87µ.

Sylvine: Transparency of a 1 cm. thick plate (Trowbridge, Wied. Ann. 60, 1897).

Γ	λ	9	10	11	12	13	14	15	16	17	18	19	20.7	23.7μ
	%	100.	98.8	99.0	99.5	99.5	97.5	95-4	93.6	92.	86.	76.	58.	15.

Metallic reflection at 0.1144, 0.161, 61.1, 100.

Fluorite: Very transparent for the ultra-violet nearly to 0.1 µ.

Rubens and Trowbridge give the following for a 1 cm. plate (Wied. Ann. 60, 1897):

Į	λ	8μ	9	10	11	12μ
ı	%	84.4	54.3	16.4	1.0	0

Metallic reflection at 24 µ, 31.6, 40 µ.

Iceland Spar: Merritt (Wied. Ann. 55, 1895) gives the following values of k in the formula $i = i_o e^{-kd}$ (d in cm.):

For the ordinary ray:

λ	1.02	1.45	1.72	2.07	2.11	2.30	2.44	2.53	2.60	2.65	2.74μ
k	0.0	0.0	0.03	0.13	0.74	1.92	3.00	1.92	1.21	1.74	2.36

λ	2.83	2.90	2.95	3.04	3.30	3.47	3.62	3.80	3.98	4.35	4.52	4.83µ
k	1.32	0.70	1.80	4.71	22.7	19.4	9.6	18.6	∞	6.6	14.3	6.1

For the extraordinary ray:

I	λ	2.49	2.87	3.00	3.28	3.38	3.59	3.76	3.90	4.02	4.41	4.67µ	
	k	0.14	0.08	0.43	1.32	0.89	1.79	2.04	1.17	0.89	1.07	2.40	

λ	4.91	5.04	5-34	5.50μ
k	1.25	2.13	4.41	12.8

Quartz: Very transparent to the ultra-violet; Pflüger gets the following transmission values for a plate 1 cm. thick: at 0.222 \mu, 94.2\%; 0.214, 92; 0.203, 83.6; 0.186, 67.2\%.

Merritt (Wied. Ann. 55, 1895) gives the following values for k (see formula under Iceland Spar): For the ordinary ray:

λ	2.72	2.83	2.95	3.07	3.17	3.38	3.67	3.82	3.96	4.12	4.50µ
k	0.20	0.47	0.57	0.31	0.20	0.15	1.26	1.61	2.04	3.41	7.30

For the extraordinary ray:

λ	2.74	2.89	3.00	3.08	3.26	3-43	3-52	3.59	3.64	3.74	3.91	4.19	4.36µ
k	0.0	0.11	0.33	0.26	0.11	0.51	0.76	1.88	1.83	1.62	2.22	3.35	8.0

For $\lambda > 7 \mu$, becomes opaque, metallic reflection at 8.50 μ , 9.02, 20.75-24.4 μ , then transparent again.

The above are taken from Kayser's "Handbuch der Spectroscopie," vol. iii.

TRANSMISSIBILITY FOR RADIATION.

TABLE 190. - Color Screens.

The following light-filters are quoted from Landolt's "Das optische Drehungsvermögen, etc." 1898. Although only the potassium salt does not keep well it is perhaps safer to use freshly prepared solutions.

Color.	Thick- ness. mm.	Water solutions of	Grammes of substance in 100 c.cm.	Optical centre of band.	Transmission.
Red "Yellow "Green "Bright §	20 20 20 15 15 20 20	Crystal-violet, 5BO Potassium monochromate Nickel-sulphate, NiSO ₄ ,7aq. Potassium monochromate Potassium permanganate Copper chloride, CuCl ₂ .2aq. Potassium monochromate Double-green, SF	0.005 10. 30. 10. 0.025 60. 10.	0.6659 0.5919 0.5330 0.4885	begins about 0.718μ. ends sharp at 0.639μ. 0.614-0.574μ, 0.540-0.505μ 0.526-0.494 and 0.494-0.458μ
Dark { blue }	20 20 20	Copper-sulphate, CuSO ₄ .5aq. Crystal-violet, 5BO Copper sulphate, CuSO ₄ .5aq.	15. 0.005 15.	0.4482	0.478-0.410µ

TABLE 191. - Color Screens.

The following list is condensed from Wood's Physical Optics, 2nd edition:

Methyl violet, 4R (Berlin Anilin Fabrik) very dilute, and nitroso-dimethyl-aniline transmits 0.36 ζμ. Methyl violet + chinin-sulphate (separate solutions), the violet solution made strong enough to blot out 0.4359µ, transmits 0.4047 and 0.4048, also faintly 0.3984.

Cobalt glass + aesculin solution transmits 0.4359µ.

Guinea green B extra (Berlin) + chinin sulphate transmits 0.4916μ.

Neptune green (Bayer, Elberfeld) + chrysoidine. Dilute the latter enough to just transmit 0.5790 and 0.5461; then add the Neptune green until the yellow lines disappear.

Chrysoidine + cosine transmits 0.5790μ. The former should be dilute and the cosine added until

the green line disappears.

Silver chemically deposited on a quartz plate is practically opaque except to the ultra-violet region 0.3160-0.3260 where 90% of the energy passes through. The film should be of such thickness that a window backed by a brilliantly lighted sky is barely visible.

In the following those marked with a * are transparent to a more or less degree to the ultra-violet:

* Cobalt chloride: solution in water, — absorbs 0.50-.53\mu; addition of CaCl2 widens the band to
0.47-.50. It is exceedingly transparent to the ultra-violet down to 0.20. If dissolved in methyl
alcohol + water, absorbs 0.50-.53 and everything below 0.35. In methyl alcohol alone 0.485-0.555 and below 0.40µ.

Copper chloride: in ethyl alcohol absorbs above 0.585 and below 0.535; in alcohol + 50% water,

above 0.595 and below 0.37 µ.

Neodymium salts are useful combined with other media, sharpening the edges of the absorption bands. In solution with bichromate of potash, transmits 0.535-.565 and above 0.60µ, the bands very sharp (a useful screen for photographing with a visually corrected objective).

Praesodymium salts: three strong bands at 0.482, .468, .444. In strong solutions they fuse into a

sharp band at 0.435-.485 μ . Absorption below 0.34. Picric acid absorbs 0.36-.42 μ , depending on the concentration.

Potassium chromate absorbs 0.40-.35, 0.30-.24, transmits 0.23µ.

* Potassium permanganate: absorbs 0.555-.50, transmits all the ultra-violet. Chromium chloride: absorbs above 0.57, between 0.50 and .39, and below 0.33\mu. These limits vary with the concentration.

Aesculin: absorbs below 0.363 μ , very useful for removing the ultra-violet.

* Nitroso-dimethyl-aniline: very dilute aqueous solution absorbs 0.49-.37 and transmits all the ultra-violet.

Very dense cobalt glass + dense ruby glass or a strong potassium bichromate solution cuts off everything below 0.70 and transmits freely the red.

Iodine: saturated solution in CS₂ is opaque to the visible and transparent to the infra-red.

TRANSMISSIBILITY FOR RADIATION.

Color Screens. Jena Glasses.

	Kind of Glass.	Maker's No.	Color.	Region Transmitted.	Thick- ness. mm.
1 1a 2 2a 3 4	Copper-ruby	459 ^{III} 454 ^{III} 455 ^{III} 440 ^{III} 414 ^{III}		Only red to 0.6µ	1.7 16.
4a 4b 56 78 10 11 " 12 13 14 15 16	Green copper . Chromium . Copper chromium Green-filter . " Copper . Blue-violet . " Cobalt . Nickel . Violet . Gray . "	437 ^{III} 438 ^{III} 2742 447 ^{III}	Green. Yellow-green Grass-green Dark green " Blue, as CuSO4 Blue, as cobalt glass " " Blue . Dark violet .	Red, green; from 0.65-50µ Green, yellow, some red and blue. Yellowish-green, some red Green	5. 2-3 2.5 5. 5. 5-12 5. 2-5 4-5 6. 7. 0.1-8

See "Über Farbgläser für wissenschaftliche und technische Zwecke," by Zsigmondy, Z. für Instrumentenkunde, 21, 1901 (from which the above table is taken), and "Über Jenenser Lichtfilter," by Grebe, same volume.

(The following notes are quoted from Everett's translation of the above in the English edition of Hovestadt's "Jena Glass.")

Division of the spectrum into complementary colors:

1st by 2728 (deep red) and 2742 (blue, like copper sulphate).
2nd by 454^{III} (bright yellow) and 447^{III} (blue, like cobalt glass).
3rd by 433^{III} (greenish-yellow) and 424^{III} (blue).
Thicknesses necessary in above: 2728, 1.6–1.7 mm.; 2742, 5; 454^{III}, 16; 447^{III}, 1.5–2.0; 433^{III},

Three-fold division into red, green and blue (with violet):

2728, 1.7 mm.; 414^{III}, 10 mm.; 447^{III}, 1.5 mm., or by

2728, 1.7 mm.; 436^{III}, 2.6 mm.; 447^{III}, 1.8 mm.

Grebe found the three following glasses specially suited for the additive methods of three-color projection:

2745, red; 438^{III}, green; 447^{III}, blue violet; corresponding closely to Young's three elementary color sensations.

Most of the Jena glasses can be supplied to order, but the absorption bands vary somewhat in different meltings.

See also "Atlas of Absorption Spectra," Uhler and Wood, Carnegie Institution Publications, 1907.

TABLES 193, 194. ROTATION OF PLANE OF POLARIZED LIGHT. 197

TABLE 193. - Tartario Acid; Camphor; Santonin; Santonic Acid; Cane Sugar.

A few examples are here given showing the effect of wave-length on the rotation of the plane of polarization. The rotations are for a thickness of one decimetre of the solution. The examples are quoted from Landolt & Börnstein's "Phys. Chem. Tab." The following symbols are used:—

solvent 66 q =" cubic centimetre "

Right-handed rotation is marked +, left-handed -.

Line of spectrum.	Wave-length according to Angström in cms. × 106.	Tartaric acid,* CuH_6O_6 , dissolved in water. q = 50 to 95, temp. = 24° C.	Camphor,* $C_{10}H_{16}O$, dissolved in alcohol. $q = 50 \text{ to } 95$, temp. $= 22.9^{\circ}$ C.	Santonin,† $C_{15}H_{18}O_{3}$, dissolved in chloroform. q = 75 to 96.5, temp. = 20° C.								
B C D E b ₁ b ₂ F	68.67 65.62 58.92 52.69 51.83 51.72 48.61 43.83	$\begin{array}{c} + 2^{\circ}.748 + 0.09446 \ q \\ + 1.950 + 0.13030 \ q \\ + 0.153 + 0.17514 \ q \\ - 0.832 + 0.19147 \ q \\ - 3.598 + 0.23977 \ q \\ - 9.657 + 0.31437 \ q \end{array}$	38°.549 — 0.0852 q 51.945 — 0.0904 q 74.331 — 0.1343 q 79.348 — 0.1451 q 99.601 — 0.1912 q 149.696 — 0.2346 q	$\begin{array}{c} -140^{\circ}.1 + 0.2085 q \\ -149.3 + 0.1555 q \\ -202.7 + 0.3086 q \\ -285.6 + 0.5820 q \\ -302.38 + 0.6557 q \\ -365.55 + 0.8284 q \\ -534.98 + 1.5240 q \end{array}$								
		Santonin,† $C_{15}H_{18}O_3$, * dissolved in alcohol. $c=1.782$. temp. = 20° C.	Santonin,† $C_{15}H_{18}O_3$, dissolved in alcohol. $c = 4.046$. temp. = 20° C. dissolved in chloroform temp. = 3.1-30.5 temp. = 20° C.	chloroform, dissolved in								
B C D E b ₁ b ₂ F e G g	68.67 65.62 58.92 52.69 51.83 51.72 48.61 43.83 43.97 42.26	— 110.4° — 118.8 — 161.0 — 222.6 — 237.1 — 261.7 — 380.0 —	442° 484° 504 549 693 754 991 1088 1053 1148 									
	* Arndtsen, "Ann. Chim. Phys." (3) 54, 1858. † Narini. "R. Acc. dei Lincei." (3) 13, 1882.											

- ‡ Stefan, "Sitzb. d. Wien. Akad." 52, 1865.

TABLE 194. - Sodium Chlorate; Quartz.

Sodium	chlorate (G	uye, C. R.	108, 1889).	Quartz	(Soret & S	arasin, Arch.	de Gen.	1882, or C. R	. 95, 1882).*
Spec- trum line.	Wave- length.	Temp, C.	Rotation per mm.	Spec- trum line.	Wave- length.	Rotation per mm.	Spec- trum line.	Wave- length.	Rotation per mm.
B C D E F G G H L M N P Q R T Cd ₁₇ Cd ₁₈	71.769 67.889 65.073 59.085 53.233 48.912 45.532 42.834 40.714 38.412 37.352 35.818 33.931 32.341 30.645 29.918 28.270 25.038	15°.0 17.4 20.6 18.3 16.0 11.9 10.1 14.5 13.3 14.0 10.7 12.9 12.1 11.9 13.1 12.2 11.6	2°.068 2.318 2.599 3.104 3.841 4.587 5.331 6.005 6.754 7.654 8.100 8.861 9.801 10.787 11.921 12.424 13.426 14.965	A a B C D ₁ D ₂ E F G h H K	76.04 71.836 68.671 65.621 58.951 58.891 52.691 48.607 43.072 41.012 39.681 39.333 38.196 37.262	12°.668 14.3°4 15.746 17.318 21.684 21.727 27.543 32.773 42.604 47.481 51.193 52.155 55.625 58.894	Cd ₉ N Cd ₁₀ O Cd ₁₁ P Q Cd ₁₂ R Cd ₁₇ Cd ₁₈ Cd ₂₈ Cd ₂₅ Cd ₂₆	36.090 35.818 34.655 34.406 34.015 33.600 32.858 32.470 31.798 27.467 25.713 23.125 22.645 21.935 21.431	63°.628 64.459 69.454 70.587 72.448 74.571 78.579 80.459 84.972 121.052 143.266 190.426 201.824 220.731 235.972

^{*} The paper is quoted from a paper by Ketteler in "Wied. Ann." vol. 21, p. 444. The wave-lengths are for the Fraunhofer lines, Angström's values for the ultra violet sun, and Cornu's values for the cadmium lines.

TABLE 195. NEWTON'S RINGS.

Newton's Table of Colors.

The following table gives the thickness in millionths of an inch, according to Newton, of a plate of air, water, and glass corresponding to the different colors in successive rings commonly called colors of the first, second, third, etc., orders.

Order.	Color for re- flected light.	Color for transmitted	mill	nickness ionths o nch for -	f an	Orđer.	Color for re-	Color for trans- mitted	milli	ickness onths o	f an
ľ	nected right.	light.	Air.	Water.	Glass.	O	meeted fight.	light.	Air.	Water.	Glass.
11.	Very black Black . Beginning of black . Blue White Yellow . Orange . Red Violet . Indigo . Blue Green . Yellow . Orange . Bright red Scarlet Purple . Indigo . Blue	White	0.5 1.0 2.0 2.4 5.2 7.1 8.0 9.0 11.2 12.8 14.0 15.1 16.3 19.7 21.0 21.1 23.2 25.2	0.4 0.75 1.5 1.8 3.9 5.3 6.0 6.7 3.4 9.6 10.5 11.3 12.2 13.0 13.7 14.7	0.2 0.9 1.3 1.5 3.4 4.6 4.2 5.8 7.2 8.4 9.0 9.7 10.4 11.3 12.7	v. VI. VII.	Yellow Red Bluish red Bluish green . Green . Yellowish green . Red Greenish blue . Red Greenish blue . Red Greenish blue . Red	Bluish green Red . Bluish green Red .	27.1 29.0 32.0 24.0 35.3 36.0 40.3 46.0 52.5 58.7 65.0 71.0	20.3 21.7 24.0 25.5 26.5 27.0 30.2 34.5 39.4 46 48.7 53.2	17.5 18.7 20.7 22.0 22.7 23.2 26.0 39.7 34.0 45.8 49.4
									, 1.0	3/1/	77'4

The above table has been several times revised both as to the colors and the numerical values. Professors Reinold and Rucker, in their investigations on the measurement of the thickness of soap films, found it necessary to make new determinations. They give a shorter series of colors, as they found difficulty in distinguishing slight differences of shade, but divide each color into ten parts and tabulate the variation of thickness in terms of the tenth of a color band. The position in the band at which the thickness is given and the order of color are indicated by numerical subscripts. For example: R_{1.5} indicates the red of the first order and the fifth tenth from the edge furthest from the red edge of the spectrum. The thicknesses are in millionths of a centimetre.

Order.	Posi-	Thick- ness.	Order.	Color.	Posi-	Thick- ness.	Order.	Color.	Posi-	Thick- ness.
II. Violet Blue. Green Yellow Orange Red. III. Purple Blue. Blue.	B2 5 G2 5 Y2 5 P3 5 B3 0 B3 5 G3 5	28.4 30.5 35.3 40.9 45.4 49.1 52.2 55.9 57.7 60.3 65.6 71.0	IV.	Red * . Bluish red * . Green	R _{8 5} BR _{8 5} G _{4 0} G _{4 5} YG _{4 5} R _{4 5} G _{5 0} G _{5 5} R _{5 0} R _{5 5}	76.5 81.5 84.1 89.3 96.4 105.2 111.9 118.8 126.0 133.5	VII.	Green . Green* Red . Green . Green . Green . Green . Red . Red . Red .	R _{7 0} R _{7 5} G _{8 0}	141.0 147.9 154.8 162.7 170.5 178.7 186.9 193.6 200.4 211.5

^{*} The colors marked are the same as the corresponding colors in Newton's table.

CONDUCTIVITY FOR HEAT.

The coefficient k is the quantity of heat in small calories which is transmitted per second through a plate one centimetre thick per square centimetre of its surface when the difference of temperature between the two faces of the plate is one degree Centigrade. The coefficient k is found to vary with the absolute temperature of the plate, and is expressed approximately by the equation $k_t = k_o (1 + \alpha t)$. In the table k_o is the value of k_t for 0° C., t the temperature Centigrade, and α a constant.

Substance.	ŧ	ks	a	Authority.	Substance.	t	k ₀	Authority.
Aluminum	0 100 0 100 0 100 0 100 0 100 0 100 0 18 18 18 18 100 - 100 0 100 - 18	0.3435 } .3619 } .0442 } .0396 } .0177 } .0164 } .2041 } .2540 } .22460 } .2827 } .2200 } .7226 } .7189 } .7226 } .0700 } .0887 } .1665 } .1665 } .1665 } .1667 } .0836 } .0764 } .0148 } .0189 } .3760 .5186 .6310 .1420 .1683 .1664 .1733 .0620 .1192 .1193 .0199 .2653	.0005356001041000735 .002445 .001492000705000051 .002670000228000000	I I I I I I I I I I I I I I I I I I I	Carborundum Slate Soil dry "wet Diatomic earth Fire-brick Fire-brick Lime Lime Lime Stone, calcite, compact dolomite Marbles, limestone, calcite, compact dolomite Micaceous flagstone: along cleavage Paraffine Pasteboard Plaster of Paris "" powder Quartz Sand (white dry) Sandstone and hard grit (dry) Sandstone and from to Sorpentine (Cornwall red) Slate: along cleav- from age Strawboard Vulcanite	0 100	.00050 .0036 .00033 .0016 .00013 .00029 .00016 .00045 .00046 .00045 .00046 .00046 .00046 .00046 .00046 .00046 .00046 .00046 .00056 .00056 .00036 .00056	11 11 12 12 16 6 6 6 8 8 9 9 8 8 11 11 12 6 6 6 6 8 8 6 6 6 6 8 8 8 10 6 6 6 8 8 8 8 8 8 8
		Weber. ausch.	6 H. L. & 7 Hjeltstr		9 R. Weber. I		fan. es-Cho itton-B	

^{*} A repetition of Forbes's experiments by Mitchell, under the direction of Tait, shows the conductivity to increase with rise of temperature. (Trans. R. S. E. vol. 33, 1887.)
† Jaeger and Diesselhorst. ‡ Herschel, Lebour, and Dunn (British Association Committee).

CONDUCTIVITY FOR HEAT.

TABLE 197. - Various Substances.

Substance. f Number Authorative
Blotting paper .
Ice

³ Various.

TABLE 198. - Water and Salt Solutions.

Substance.	Density.	<i>t</i> 0	kı	Au- thor- ity.
Water	1 1 1 1 1	- 0 9-15 4 30 18	.002 .00120 .00136 .00129 .00157	1 2 2 3 4 5
Solutions in water. CuSO4 , KCl , NaCl	1.160 1.026 33 ¹ / ₈ / ₉ 1.054 1.100 1.180 1.134 1.136	4.4 13 10–18 20.5 20.5 21 4.5 4.5	.00118 .00116 .00267 .00126 .00128 .00130 .00118	2 46 5 5 5 2 2

Bottomley.H. F. Weber.Wachsmuth.

5 Chree. 6 Winkelmann.

TABLE 199. — Organic Liquids.

Substance.	<i>t</i>	kt ×1000	a	Authority.
Acetic acid Alcohols: amyl	9-15 9-15 9-15 9-15 9-15 9-15 9-15 9-15	·423 ·495 ·333 ·343 ·288		1 1 1 1 1 2 3 3 2 2 4
1 H. F. Weber. 2 Graetz.		Wacl Lees.	nsmuth.	

TABLE 200. — Gases.

Substance.	t o	<i>k_t</i> ×10000	α	Authority.
Air	0 0 0 0	.568 .389 .458 .499 .307	.00190 .00260 .00548	1 2 1 1
Ethylene	o o o 7-8	•395 3·39 3·27 •647	.00445	I 2 I I
Nitrogen Nitrous oxide . Oxygen	7-8 7-8 7-8	.524 .350 .563	.00446	I I I
	inkeln awarze			

^{*} Herschel, Lebour, and Dunn (British Association Committee).

⁴ Graetz.

TABLE 201.

HEAT OF COMBUSTION.

Heat of combustion of some common organic compounds. Products of combustion, CO_2 or SO_2 and water, which is assumed to be in a state of vapor.

Substance.	Small calories per gramme of substance.	Authority.
Acetylene	11923	Thomsen.
Alcohols: Amyl	8958	Favre and Silbermann.
Ethyl	7183	66 66 66
Methyl	5307	66 66 66
Benzene	9977	Stohmann, Kleber, and Langbein.
Coals: Bituminous	7400-8500	Various.
Anthracite	7800	Average of various.
Lignite	6900	66 66 66
Coke	7000	66 66 66
Carbon disulphide	3244	Berthelot.
Dynamite, 75%	1290	Roux and Sarran.
Gas: Coal gas	5800-11000	Mahler.
Illuminating	5200-5500	Various.
Methane	13063	Favre and Silbermann.
Naphthalene	9618-9793	Various.
Gunpowder	720-750	46
Oils: Lard	9200-9400	66
Olive	9328-9442	Stohmann.
Petroleum, Am. crude .	11094	Mahler.
" " refined .	11045	¢¢ .
" Russian	10800	66
Woods: Beech with 12.9% H ₂ O	4168	Gottlieb.
Birch " 11.83 "	4207	66
Oak " 13.3 "	3990	48
Pine " 12.17 "	4422	46

TABLE 202.

HEAT VALUES AND ANALYSES OF VARIOUS TYPES OF FUEL.

(a) Coals.

Coal.	Moisture.	Volatile Matter.	Fixed Carbon.	Ash.	Sulphur.	Hydrogen.	Carbon.	Nitrogen.	Oxygen.	Calories per gramme.	B. T. U.'s per pound.
Lignite { Low grade . High grade . Sub-bitu- { Low grade . minous } High grade . Bituminous { High grade . High grade . High grade . minous } High grade . Semi-anthracite Anthracite { Low grade . High grade . High grade . High grade . High grade .	38.81 33.38 22.71 15.54 11.44 3.42 2.7 3.26 2.07 2.76 3.33	25.48 27.44 34.78 33.03 34.36 14.5 14.57 9.81 2.48 3.27	27.29 29.62 36.60 46.06 43.92 58.83 75.5 78.20 78.82 82.07 84.28	8.42 9.56 5.91 5.37 10.71 3.39 7.3 3.97 9.30 12.69 9.12	.97 .94 .29 .58 4.94 .58 .99 .54 1.74 .60	7.09 6.77 6.14 5.89 5.39 5.25 4.58 4.76 3.62 2.23 3.08	60.08 60.06 77.98 80.65 84.62 80.28	.50 .67 I.03 I.05 I.02 I.29 I.82 I.02 I.47 .68	45.57 40.75 34.09 27.03 17.88 11.51 4.66 5.09 3.59 4.64 5.06	3526 3994 5115 5865 6088 7852 7845 8166 7612 6987 7417	6347 7189 9207 10557 10958 14134 14121 14699 13702 12577 13351

(b) Peats (air dried).

From	Vol. Hydro- Carbon.	Fixed Carbon.	Ash.	Sul- phur.	Hydro- gen.	Carbon.	Nitro- gen.	O xy gen.	Calories per gramme.	B. T.U.'s per pound.
Franklin Co., N. Y. Sawyer Co., Wis.	67.10 56.54	28.99 27.92	3.91 15.54	.15	5.93 4.71	57.17 51.00	1.48	31.36 26.54	5726 4867	10307 8761

(c) Liquid Puels.

Fuel.	Specific Gravity at 15° C	Calories per gramme.	British Thermal Units per pound.
Petroleum ether	.684694 .710730 .790800	12210-12220 11100-11400 11000-11200	21978–21996 19980–20520 19800–20160
Fuel oils, heavy petroleum or refinery residue	.960970	10200-10500	18360-18900
with 7–9 per cent water and denaturing material	.8196820 2	6440-6470	11592-11646

Table compiled by U. S. Geological Survey.

CHEMICAL AND PHYSICAL PROPERTIES OF FIVE DIFFERENT CLASSES OF EXPLOSIVES.

Explosive.	Specific gravity.	Number of large calories developed by 1 kilogramme of the explosive.	Pressure developed in own volume after elimination of surface influence.	Unit disruptive charge by ballistic pendulum.	Rate of detonation. Cartridges 1½ in. diam.	Duration of flame from 100 grammes of explosive.	Length of flame from 100 grammes.	Cartridge 14 in, transmitted explosion at a distance of	Products of combustion from 200 grammes; gaseous, solid, and liquid, respectively.	Ignition occurred in 4% fire damp & coal dust mixture with		
			Kg. per sq. cm.	Grammes.	Metres per second.	Millisec- onds.	Inches.	Inches.	Grammes.	Grammes.		
(A) Forty-per-cent nitro- glycerin dynamite	1.22	1221.4	8235	227*	4688	.358	24.63	12	88.4 79.7 14.5	25		
(B) FFF black blasting powder	1.25	789.4	4817	374 [†] 458*	469.4‡	.925	54.32	-	154.4 126.9 4.1	25		
(C) Permissible explosive; nitroglycerin class	1.10	760.5	5912	301*	3008	.471	27.79	4	103.9 65.1 15.4	1000		
(D) Permissible explosive; ammonium nitrate class	0.97	992.8	7300	279*	3438§	.483	25.68	I	89.8 27.5 75.5	800		
(E) Permissible explo- sive; hydrated class	1.54	610.6	6597	434*	2479	.338	17.49	3	86.1 56.0 33.0	Over 1000		
			Chemical	Analyse	s.							
Chemical Analyses. Chemical Analyses.												

[‡] Rate of burning.

^{*} One pound of clay tamping used. † Two pounds of clay tamping used. ‡ Rate of burning \$ Cartridges 13 in. diam. | For 300 grammes.

Compiled from U. S. Geological Survey Results, — "Investigation of Explosives for use in Coal Mines, 1909."

Heat of combination of elements and compounds expressed in units, such that when unit mass of the substance is units, which will be raised in temperature

	Substance.	Combined with oxygen forms—	Heat units.	Combined with chlorine forms —	Heat units.	Combined with sulphur forms—	Heat units.	Author-
	Calcium Carbon — Diamond " — Graphite Chlorine Copper " Hydrogen* " Iron " Iodine Lead Magnesium Manganese Mercury " " (yellow) " " (yellow) " " Todissium Silver Sodium Sulphur " " " Zinc " " " " " " Zinc " " " " " " " " " " " " " " " " " "	CaO CO2 CO2 CO2 CO3 CO2 CU2O CU2O CU2O CU2O M9 FeO - I2O5 PbO M9O MNOH2O H92O H92O NO NO2 P2O5 " " K2O A820 NA2O SO2 " SnO - ZnO "	3284 7859 2141 7796 — 254 3211 585 593 34154 34800 34417 1353 — 177 243 6077 1721 105 153 — 1541 — 143 5272 5747 5964 1745 27 3293 2241 2165 573 — 1185	CaCl ₂ CuCl CuCl ₃ HCl FeCl ₂ FeCl ₂ MgCl ₂ MgCl ₂ MgCl ₂ MnCl ₂ LHgCl HgCl LAgCl NaCl SnCl ₂ SnCl ₄ ZnCl ₂	4255	CaS	2300	1 2 3 3 1 1 1 4 3 5 5 6 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Substance.	Combined with S+O4 to form—	Heat units.	Combined with N+Os to form-	Heat units.	Combined with C+O ₃ to form-	Heat units.	Author- ity.
	Calcium	CaSO ₄ CuSO ₄ H ₂ SO ₄ FeSO ₄ PbSO ₄ MgSO ₄ - K ₂ SO ₄ Ag ₂ SO ₄ Na ₂ SO ₄ ZnSO ₄	7997 2887 96450 4208 1047 12596 4416 776 7119 3538	Ca(NO ₈) ₂ Cu(NO ₈) ₂ HNO ₈ Fe(NO ₃) ₂ Pb(NO ₈) ₂ - KNO ₈ AgNO ₈ NaNO ₃	5080 1304 41500 2134 512 - 3061 266 4834	CaCO ₈ PbCO ₈ K ₂ CO ₈ Ag ₂ CO ₈ Na ₂ CO ₈	6730 - 814 - 3583 561 5841	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1		Δ.	TITHORI	TIPE				

AUTHORITIES.

3 Favre and Silbermann. 4 Joule. I Thomsen. 2 Berthelot.

5 Hess.6 Average of seven different.

7 Andrews. 8 Woods.

^{*} Combustion at constant pressure.

COMBINATION.

caused to combine with oxygen or the negative radical, the numbers indicate the amount of water, in the same from o° to r° C. by the addition of that heat.

	In dilute solutions.						IOT-
Substance.	Forms —	Heat units.	Forms—	Heat units.	Forms —	Heat units.	Author-ity.
Calcium	CaOH ₂ O	3734	CaCl ₂ H ₂ O	4690	CaS + H ₂ O	2457	I 2
66 66	~	-		-	-	_	3
" - Graphite .	-	-	-	_	-	-	3
Chlorine	-	-	-	-	-	_	
Copper					_		I
"	_	_	_	_			4
Hydrogen	-	-	-	_		_	
"	-	-	-	-	-		3 56
			F C1 TT C		-	-	
Iron	$FeO + H_2O$	1220*	FeCl ₂ + H ₂ O FeCl ₃	1785	-	-	3
Iodine	_	_	recig	2280	_	_	3 I
Lead		-	PbCl ₂	368	-	_	Î
Magnesium	MgO ₂ H ₂	9050+	MgCl ₂	7779	MgS	4784	1
Manganese	_	-	MnCl ₂	2327	_	-	I
Mercury	-	-			-	-	I
Nitrogen :	~	_	HgCl ₂	299	_	_	I
""			_	_	_		I
46	_	_	_	_	-		ī
Phosphorus (red) .	-	_	-	-	_		I
(yellow).	-	_	-	-	_	-	7
*	V O	-	- V.C1	_	TZ C		8
Potassium	K_2O	2110*	KCl -	2592	K_2S	1451	I
Sodium	Na ₂ O	337.5	NaCl	4190	Na ₂ S	2260	8
Sulphur	***	-	-	-	-	_	I
76	-	-	_	-	-	_	2
Tin	-	-	SnCl ₂	691	-	_	7
Zinc		_	SnCl ₄	1344	_		7
"		_	ZnCl ₂	1735	_	_	4
			In dilute solution	ns.			Author-ity.
Substance.	Forms -	Heat units.	Forms —	Heat units.	Forms —	Heat units.	Aut
Calcium		_	$Ca(NO_8)_2$	5175	-	-	I
Copper	CuSO ₄	3150	Cu(NO ₈) ₂	1310	-	-	I
Hydrogen	H ₂ SO ₄	105300	HNO ₃	24550	_	_	1
Iron	FeSO ₄	-	$Fe(NO_3)_3$ $Pb(NO_3)_2$	475	_	_	I
Magnesium	MgSO ₄	13420	$Mg(NO_3)_2$	8595	_	_	I
Mercury	-	_	$Hg(NO_8)_2$	335	-	- 1	1
Potassium	K_2SO_4	4324	$\overline{\mathrm{KNO_{3}}}$	2860	-	-	1
Silver	Ag ₂ SO ₄	753	AgNO ₃	216	N- CO	-	I
Sodium	Na ₂ SO ₄	7160	NaNO ₈	4620	Na ₂ CO ₈	5995	I
Zinc	ZnSO ₄	3820	Zn(NO ₈) ₂	2035			
		Аитн	ORITIES.				
Thomsen. 2 Favre and Silbermann. 5 Hess. 7 Andrews.							
1 Thomsen. 3 Favre and Silbermann. 5 Hess. 7 Andrews. 2 Berthelot. 4 Joule. 6 Average of seven different. 8 Woods.							

^{*} Thomsen.

[†] Total heat from elements.

LATENT HEAT OF VAPORIZATION.

The temperature of vaporization in degrees Centigrade is indicated by T; the latent heat in large calories per kilogrammie or in small calories or therms per gramme by H; the total heat from \circ° C, in the same units by H. The pressure is that due to the vapor at the temperature T.

pressure is that due to the vapor at the temperature 7.							
Substance.	Formula.	T	<i>H</i>	H'	Authority.		
Acetic acid	$C_2H_4O_2$	1180	84.9	-	Ogier.		
Air	- :	-	50.97	-	Fenner-Richtmyer.		
Alcohol: Amyl	C ₅ H ₁₂ O	131	120	-	Schall.		
Ethyl	C ₂ H ₆ O	78.1 o	205 236	255 236	Wirtz. Regnault.		
66	46 66	50	-	264 267	. 66		
66	66	150	-	285	п		
Methyl	CH ₄ O	64.5	2.67	307 289	Wirtz. Ramsay and Young.		
66	66	50	289	274	Kanisay and Toding.		
"	66	100 150	-	246 206	cc cc cc		
66	66	200	_	152 44.2	81 88 88 80 88		
Ammonia	$ m NH_8$	7.8	294.2	_	Regnault.		
66	66	11 16	291.3	_	66		
66	66	17	297.4 296 .5	-	"		
Benzene	C ₆ H ₆	80.1	92.9	127.9	Wirtz.		
Bromine	Br	61	45.6	-	Andrews.		
Carbon dioxide, solid	CO ₂	-25	72.23	138.7	Favre. Cailletet and Mathias.		
« « « «	66	0	57.48		66 66 64		
	46	12.35 22.04	44.97 31.8	_	Mathias.		
66 66 66	66	29.85 30.82	14.4 3.72	_	66 66		
" disulphide	CSg	46.1	83.8	94.8	Wirtz.		
cc cc	46	100	90	90	Regnault.		
66 66 p	44	140	-	102.4	46		
Chloroform	CHCl ₈	60.9	58.5	72.8	Wirtz.		
Ether .	C ₄ H ₁₀ O	34·5 34·9	88.4 90.5	107	" Andrews.		
"	66	0	94	94	Regnault.		
66	"	50 120	_	115.1	66		
Iodine	I	-	23.95	-	Favre and Silbermann.		
Mercury	Hg	357	65	-	Mean.		
Nitrogen	N	— 195.6	47.65	-	Alt.		
Oxygen	0	- 182.9	50.97	-	"		
Sulphur dioxide	SO ₂	0	91.2 80.5	_	Cailletet and Mathias.		
66 66	66	30 65	68.4	-	66 66 66		
Turpentine	C ₁₀ H ₁₀	159.3	74.04	-	Brix.		
Water	H ₂ O	100	535.9	637	Andrews. Regnault.		
		100		03/	Acguaum.		

LATENT HEAT OF VAPORIZATION.*

Substance, formula, and temperature.	$l =$ total heat from fluid at 0° to vapor at t° . $r =$ latent heat at t° .	Authority.
Acetone, C_3H_6O , -3° to 147°.	$l = 140.5 + 0.36644 t - 0.000516 t^{2}$ $l = 139.9 + 0.23356 t + 0.00055358 t^{2}$ $r = 139.9 - 0.27287 t + 0.0001571 t^{2}$	Regnault. Winkelmann.
Benzene, C ₆ H ₆ , 7° to 215°.	$l = 109.0 + 0.24429 t - 0.0001315 t^2$	Regnault.
Carbon dioxide, CO ₂ , — 25° to 31°,	$r^2 = 118.485 (31 - t) - 0.4707 (31 - t^2)$	Cailletet and Mathias.
Carbon disulphide, CS ₂ , —6° to 143°.	$l = 90.0 + 0.14601 t - 0.000412 t^{2}$ $l = 89.5 + 0.16993 t - 0.0010161 t^{2} + 0.00003424 t^{8}$ $r = 89.5 - 0.06530 t - 0.0010976 t^{2} + 0.00003424 t^{8}$	Regnault. Winkelmann.
Carbon tetrachloride, CCl ₄ , 8° to 163°.	$l = 52.0 + 0.14625 t - 0.000172 t^{2}$ $l = 51.9 + 0.17867 t - 0.0009599 t^{2} + 0.00003733 t^{8}$ $r = 51.9 - 0.01931 t - 0.0010505 t^{2} + 0.00003733 t^{8}$	Regnault, Winkelmann.
Chloroform, CHCl ₃ , — 5° to 159°.	$l = 67.0 + 0.1375 t$ $l = 67.0 + 0.14716 t - 0.0000937 t^{2}$ $r = 67.0 - 0.08519 t - 0.0001444 t^{2}$	Regnault. Winkelmann.
Nitrous oxide, N_2O , -20° to 36° .	$r^2 = 131.75 (36.4 - t) - 0.928 (36.4 - t)^2$	Cailletet and Mathias.
Sulphur dioxide, SO ₂ , o° to 60°.	$r = 91.87 - 0.3842 t - 0.000340 t^2$	Mathias.

^{*} Quoted from Landolt and Boernstein's "Phys. Chem. Tab." p. 350.

LATENT HEAT OF FUSION.

This table contains the latent heat of fusion of a number of solid substances in large calories per kilogramme or small calories or therms per gramme. It has been compiled principally from Landolt and Börnstein's tables. C indicates the composition, T the temperature Centigrade, and H the latent heat.

Substance.	C	T	Н	Authority.
Substance. Substance. Alloys: 30.5Pb + 69.5Sn	PbSn ₄ PbSn ₅ PbSn PbSn PbSn PbSn PbSn PbSn Pbsn Pbsn Pb ₂ Sn - - Al NH ₈ C ₆ H ₆ Br Bi Cd Cd Cu - - - I H ₂ O 4 {H ₂ O + 3.535} of solids Pb Hg C ₁₀ H ₈ Ni Pd P Pt K KNO ₈ C ₆ H ₆ O - Ag Na NaNO ₈ Na ₂ HPO ₄ + 12H ₂ O S S n - Zn	183 179 177.5 176.5 236 98.8 75.5 658.	17. 15.5 11.6 9.54 28.0* 6.85 8.40 76.8 13.66 16.2 12.64 13.66 40.7 42. 23. 33. 50. 11.71 79.24 80.02 54.0 5.86 2.82 35.62 4.64 36.3 4.97 27.2 15.7 64.87 66.8 36.98 9.37 14.0 31.7 64.87 66.8	Authority. Spring. " " Ledebur. Mazzotto. " Glaser. Massol. Mean. Regnault. Person. " Mean. Gruner. " Favre and Silbermann. Regnault. Bunsen. Petterson. Rudberg. Person. Pickering. Pionchon. Violle. Petterson. Joannis. Person. Petterson. Batelli. Person. Joannis. " " Batelli. Person. Mean. " " Batelli. Person. Mean. " "

^{*} Total heat from oo C.

MELTING-POINTS OF THE CHEMICAL ELEMENTS.

The metals in heavier type are often used as standards.

The melting-points are reduced as far as possible to a common temperature scale which is the one used by the United States Bureau of Standards in certifying pyrometers. This scale is defined in terms of Wien's law with C taken as 14000, and on which the melting-point of platinum is 1755° C (Nernst and Wartenburg, 1751; Waidner and Burgess, 1753; Holborn and Valentiner, 1770; see C. R. 148, p. 1177, 1909). Above 1100° C, the temperatures are expressed to the nearest 5° C. Temperatures above the platinum point may be uncertain by over 50° C.

Element.	Melting- point.	, Remarks.	Element.	Melting- point.	Remarks.
Aluminum	658±1	Most samples give 657 or less	Manganese Mercury	1225 — 39	Adjusted.
Antimony	630±1	(Burgess). "Kahlbaum" pu-	Molybdenum	> 2000 840 - 252	Probably. (Muthmann-Weiss.)
	— 188 >Sb, <ag< td=""><td>Ramsay-Travers. Under pressure.</td><td>Nickel</td><td>1450</td><td>Adjusted (Day-Sos- man = 1452).</td></ag<>	Ramsay-Travers. Under pressure.	Nickel	1450	Adjusted (Day-Sos- man = 1452).
Barium Beryllium Bismuth	850 < Ag.	(Guntz.) Adjusted.	Niobium Nitrogen Osmium	1950 — 211 About 2700	v. Bolton. (Fischer-Alt.) (Waidner - Burgess,
Boron	{ >2000 } { <2500 }	Weintraub.	Oxygen	— 230 ?	unpublished.)
Bromine Cadmium	-7·3	Range: 320.7-	Palladium	1545 土 15	(Waidner-Burgess, Nernst-Warten- burg.)
Cæsium	26 805	Range: 26.37- 25.3 Adjusted.	Phosphorus Platinum Potassium	1755 ± 20	See Note.
Chlorine	-102 (>3500) 623	(Olszewski.) Sublimes. (Muthmann-	Præsodymium Rhodium	62.5 940 1910	(Muthmann-Weiss.) (Mendenhall-Inger- soll.)
Chromium	1505	Weiss.) Adjusted.	Rubidium Ruthenium	38.5	
Cobalt Copper	1490 1083 ± 3	Day-Sosman. Mean, Holborn- Day, Day-	Samarium Silicon Silver	1300-1400 1420 961 ± 1	(Muthmann-Weiss.) Adjusted. Adjusted.
Erbium Fluorine	-223	Clement. (Moissan - De-	Sodium Strontium Sulphur	97 113.5–119.5	Between Ca and Ba? Various forms. See
Gallium	30.1	war.)	Tantalum	2800	Landolt-Börnstein. Adjusted from Waid-
Germanium Gold Hydrogen	< Ag 1063 ± 3 -259	Adjusted.	Tellurium Thallium	45I 30I	ner-Burgess=2910. Adjusted.
Indium Iodine	155	(Thiel.) Range: 112-115.	Thorium Tin	>1700 <pt 231.9 ± .2</pt 	v. Wartenburg.
Iridium }	{ >2250 } { <2300 } 1520	Adjusted. Adjusted.	Titanium Tungsten	2950	Above 2000? Mean, Waidner-Bur- gess and Warten-
Krypton Lanthanum	— 169 810	(Ramsay.) (Muthmann- Weiss.)	Uranium Vanadium	Near Mo	burg. Moissan. Vogel-Tammann.
Lithium	327 <u>+</u> 0.5	(Kahlbaum.)	Xenon Zinc	—140 419±0.5	Ramsay.
Magnesium	651	(Grube) in clay crucibles, 635.	Zirconium	> Si	Troost.

TABLE 208.

BOILING-POINTS OF THE CHEMICAL ELEMENTS.

Element.	Range.	Boiling-	Observer; Remarks.
Element.	Trange.	point.	Observer, accumulation
	0	0	
Aluminum		1800.	Greenwood, Ch. News, 100, 1909.
Antimony	_	1440.	66 66 66 66 66
Argon	-	186. 1	Ramsay-Travers, Z. Phys. Ch. 38, 1901.
Arsenic	449-450	-	Gray, sublimes, Conechy.
- 66	~	>360.	Black, sublimes, Engel, C. R. 96, 1883.
66	280-310		Yellow, sublimes.
Barium	~		Boils in vacuo, Guntz, 1903.
Bismuth Boron	1420-1435	1430.	Barus, 1894; Greenwood, I. c. Volatilizes without melting in electric arc.
Bromine	59-63	61.1	Thorpe, 1880; van der Plaats, 1886.
Cæsium	39-03	670.	Ruff-Johannsen.
Carbon		3600.	Computed, Violle, C. R. 120, 1895.
"	-	_	Volatilizes without melting in electric oven, Moisson.
Cadmium	760-782	770.	
Chlorine		-33.6	Regnault, 1863.
Chromium	-	2200.	Greenwood, Ch. News, 100, 1909.
Copper	2100-2310	2310.	" 1. c.
Fluorine	-	<u>—187.</u>	Moisson-Dewar, C. R. 136, 1903.
Helium		— 267.	Computed, Tracers, Ch. News, 86, 1902.
Hydrogen Iodine	-252.5-252.8	-252.6 >200.	Mean.
Iron	-	2450.	Greenwood, 1. c.
Krypton	_	—I 51.7	Ramsay, Ch. News, 87, 1903.
Lead	_	1525.	Greenwood, l. c.
Lithium	-	1400.	Ruff-Johannsen, Ch. Ber. 38, 1905.
Magnesium	-	1120.	Greenwood, l. c.
Manganese	-	1900.	66 66
Mercury	-	357-	Crafts; Regnault.
Nitrogen	-195.7-194.4	— 195.	Mean.
Oxygen	-182.5-182.9	— 182.7	Troost, C. R. 126, 1898.
Ozone Phosphorus	287-290	-119. 288.	1100st, C. K. 120, 1090.
Potassium	667-757	712.	Perman; Ruff-Johannsen.
Rubidium		696.	Ruff-Johannsen.
Selenium	664-694	690.	
Silver	- ′	1955.	Greenwood, l. c.
Sodium	742-757	750.	Perman; Ruff-Johannsen.
Sulphur	444-7-445	444.7	Mean.
Tellurium	-	1390.	Deville-Troost, C. R. 91, 1880.
Thallium Tin	1600-1800	1700.	Greenwood, l. c.
Xenon		2270. —100.1	Ramsay, Z. Phys. Ch. 44, 1903.
Zinc	916–942	930.	Tamsay, 2. 1 1135. On. 44, 1903.
2)IIIC	910 942	930.	
	1		

TABLE 209.

MELTING-POINTS OF VARIOUS INORGANIC COMPOUNDS.*

		1	felting-poi	nt.	ty.				
Substance.	Chemical Formula.	Min.	Max.	Particular or Average Value.	Authority	Date of Publication.			
Aluminum chloride " nitrate Ammonia Ammonium nitrate " sulphate " phosphite . Antimonietted hydrogen . Antimony trichloride . Arsenic trichloride . Arsenic trichloride . Arsenietted hydrogen . Barium chlorate " nitrate " perchlorate . Bismuth trichloride . Boric acid " anhydride Borax (sodium borate) . Cadmium chloride Cadmium chloride " nitrate Cadmium chloride	AlCl ₈ Al(NO ₃) ₃ +9H ₂ O NH ₈ (NH ₄ NO ₃ (NH ₄) ₂ SO ₄ NH ₄ H ₂ PO ₈ SbH ₃ SbCl ₃ SbCl ₅ AsCl ₃ AsH ₃ Ba(ClO ₃) ₂ Ba(NO ₃) ₂ Ba(NO ₃) ₂ Ba(ClO ₄) ₂ BiCl ₃ H ₃ BO ₃ B ₂ O ₃ Na ₂ B ₄ O ₇ CdCl ₂ CdCl ₂ CaCl ₃ CaCl ₄	72. 	73.2 	190. 72.8 -75. 156. 140. 12391.5 72.8 -618113.5 414. 593. 505. 227.5 185. 577. 561. 541.	1 2 3 - 4 5 6 6 9 9 10 11 9 9 9 9 2 -	1888 1859 1875 			
" nitrate	CaCl ₂ + 6H ₂ O Ca(NO ₈) ₂ Ca(NO ₈) ₂ Ca(NO ₈) ₂ + 4H ₂ O CCl ₄ C ₂ Cl ₅ CO CO ₂ CS ₂ HClO ₄ + H ₂ O ClO ₂ KCr(SO ₄) ₂ + 12H ₂ O CoSO ₄ CuCl ₂ Cu ₂ Cl ₂ Cu(NO ₈) ₂ + 3H ₂ O HBr HCl HFl HI H ₂ O ₂ PH ₃ H ₂ S FeCl ₃ Fe(NO ₃) ₈ + 9H ₂ O FeSO ₄ + 7H ₂ O PbCl ₂ Pb(PO ₃) ₂ MgCl ₂ Mg(NO ₈) ₂ + 5H ₂ O Mn(NO ₈) ₂ + 6H ₂ O	499. 	187. — 207. — 57.5 — 98. — — — — — — — — — — — — — — — — — — —	29.6 561. 4424.7 184.5 20357112.8 5076. 89. 37. 97. 498. 434. 114.5 -86.7 -111.3 -92.3 51.3 -2132.5 -85.6 303. 47.2 64. 506. 800. 708. 90. 54. 87.5 25.8 54. 290.	- 9 2 12 - 3 14 15 3 16 9 9 2 3 17 6 3 - 2 16 - 9 9 2 16 19 2 2 16 - 9 9 2 16	- 1878 1859 1863 1845 1903 1861 1845 1845 1859 1884 1878 1878 1859 1845 1900 - 1886 1900 - 1886 1878 1878 1878 1879 1884 - 1878 1878 1878 1878 1878 1878 1878			
I Friedel & Crafts. 5 Amat. 9 Carnelley, 13 Wroblewski & 16 Tilden, 2 Ordway. 6 Olszewski, 10 Carnelley & O'Shea. Olszewski, 17 Ladenburg, 3 Faraday, 7 Kammerer, 12 Regnault, 14 Holborn & Wien. 18 Staedel, 4 Marchand. 8 Baskerville, 11 Muir. 15 Roscoe, 19 Clarke, "Const. of Nat."									

^{*}For more extensive tables on this subject, see Carnelley's "Melting and Boiling-point Tables," or Landolt and Börnstein's "Phys. Chem. Tab."

MELTING-POINTS OF VARIOUS INORGANIC COMPOUNDS.

		IV.	felting-poin	t.					
Substance.	Chemical Formula.	Min.	Max.	Particular or Probable Value.	Authority	Date of Publication.			
Nickel carbonyl	NiCO ₄ Ni(NO ₈) ₂ + 6H ₂ O NiSO ₄ + 7H ₂ O HNO ₈ N ₂ O ₅ NO N ₂ O ₄ N ₂ O ₃ N ₂ O H ₃ PO ₄ H ₃ PO ₈ PCl ₈ POCl ₈ P ₂ S ₅ P ₄ S ₈ P ₂ S ₅ P ₄ S ₈ P ₂ S ₈ K ₂ CO ₃ KClO ₄ KClO ₄ KCl KNO ₈ KClO ₄ KCl KNO ₈ KH ₂ PO ₄ KHSO ₄ AgCl AgNO ₈ AgN ₈ AgSO ₄ AgSO ₈ AgSO ₄ NaCl NaOH NaOH NaOH NaOH NaOH Na2CO ₈ Na ₂ CO ₈ + 10H ₂ O Na ₂ PO ₄ NaPO ₈ NaPO ₈ NaPO ₈ Na ₂ CO ₈ + 10H ₂ O NaPO ₈	98 150 9 38.6 70.1 - 296. 274. 142 834. 334 740. 327 450. 198 654. 772 308. 248 814 35 888.		Value. -25. 56.7 9947. 3910.6 -82102.3 40.3 72. 111.8 -1.5 297. 275. 158290. 840. 360. 610. 360. 455. 214. 250. 484. 482. 665. 795. 60. 315. 795. 60. 315. 275. 482. 852. 34. 354.	1 2 3 4 5 6 - 7 8 10 11 12 13 - 14 15 15 19 - 18 15 15 - 19 - 18 15 15 - 19 - 18 15 15 15 - 19 15	1890 1859 1884 1878 1872 1885 1889 1893 1883 1871 1879 1880 1884 1840 1890 1884 1878 1878 1884 1884 1884 1884 1884 1884 1884			
" pyrophosphate " phosphite	$\begin{array}{c} Na_4P_2O_7\\ (H_2NaPO_3)_2 + 5H_2O\\ Na_2SO_4\\ Na_2SO_4 + 10H_2O\\ Na_2S_2O_3 + 5H_2O\\ SO_2\\ H_2SO_4\\ 12H_2SO_4 + H_2O \end{array}$	861. - 45. 73. 10.1	970. 	938. 42. 863. 34. 47. 76. 10.4	20 15 3 - 21 22	1888 1878 1884 - 1884 1853			
" " (pyro) Sulphur trioxide Tin, stannic chloride " stannous " Zinc chloride " " " " nitrate " sulphate	$\begin{array}{c} H_2SO_4 + H_2O \\ H_2S_2O_7 \\ SO_3 \\ SnCl_4 \\ SnCl_2 \\ ZnCl_2 \\ ZnCl_2 + 3H_2O \\ Zn(NO_8)_2 + 6H_2O \\ ZnSO_4 + 7H_2O \end{array}$	7·5 14.8 - - - - -	8.5 	8. 35. 14.9 -33. 250. 262. 6.5 36.4 50.	22 5 23 24 25 26 3	1853 1876–1886 1889 - 1875 1904 1884 1884			
1 Mond, Langer 5 R. Weber, 10 Wroblewski & 13 V. & C. Meyer. 18 Carnelley & 22 Marignac. & Quincke. 6 Olszewski, Olszewski. 14 Lemoine. O'Shea. 23 Besson. 2 Ordway. 7 Birhaus. 11 Genther & Mi- 15 Carnelley. 19 Cripps. 24 Clarke, "Const. of Nat." 3 Tilden, 8 Ramsay. chaelis. 16 Mitscherlich. 20 Amat. 25 Braun. 4 Berthelot. 9 Wills. 12 Ramme. 17 Curtius. 21 Mendelejeff. 26 Mylius.									
SMITHSONIAN TABLES.	* Under pressure 138 mm, mercury,								

BOILING-POINTS OF INORGANIC COMPOUNDS.*

		I	Boiling-poin	it.					
Substance.	Chemical Formula.	Min.	Max	Particular or Aver- age Values.	Authority	Date of Publication.			
Air †		102. 216. 427. 861. - -78.2 46. 190. 115.9	103. 223.5 447. 954. — — — — — — — — — — — — — — — — — — —	age Values. —192.2 —191.4 207.5 134. —38.5 —18. — 220. 435. 908. 132. 132. —79.1 46.1 —191.5 117. 125.5 170. 993. —68.1 —83.1 —36.7	1 2 3 4 4 5 2 6 6 - 5,78 8 4 4 4 2,1 4 4 8 9 9 9 9	1884 1884 1888 1859 1863 1886 1889 - - 1880 1859 1863–1884 - 1859 1859 1859 1859 1859			
Hydroiodic acid Iron nitrate Magnesium nitrate Manganese chloride " nitrate Mercuric chloride " nitrate Nitric acid " anhydride " oxide " oxide " oxide " hosphorus trichloride " sesquisulphide " trisulphide " trisulphide " trioxide " pentasulphide " trioxide " dioxide " chloride Sulphur trioxide " dioxide " chloride " stannic " stannic " zinc chloride " nitrate	HI Fe(NO ₃) ₃ +9H ₂ O Mg(NO ₃) ₂ +6H ₂ O MnCl ₂ +4H ₂ O Mn(NO ₃) ₂ +6H ₂ O HgCl ₂ Ni(NO ₃) ₂ +6H ₂ O HNO ₃ N ₂ O ₅ NO N ₂ O ₅ NO N ₂ O ₃ N ₂ O ₅ PCl ₃ P ₄ S ₃ P ₂ S ₃ P ₂ S ₅ P ₂ O ₃ SiCl ₄ 12H ₂ SO ₄ +H ₂ O SO ₂ SO ₂ S ₂ Cl ₂ SnCl ₂ SnCl ₄ Zn(NO ₃) ₂ +6H ₂ O	302. 	307. 50. - 3.5 89.8 76. - 530. - 59. - 47. -10.5 144. 628. - 730.		10 4 4 11 4 12 13 2 - 14 14 15 - 16 - 17 - 4	1870 1870 1859 1859 1859 1859 1830 1849 1885 - - 1890 - 1853 - 1876 - 1859			
I Wroblewski.7 Pictet.13 Deville.2 Olszewski.8 Carnelley and Carleton-Williams.14 Isambert.3 Friedel and Crafts.9 Ladenburg and Krügel.15 Thorpe and Tutton.4 Ordway.10 Topsöe.16 Marignac.5 Regnault.11 Clarke, "Const. of Nature."17 Thorpe.6 Anschütz and Evans.12 Mitscherlich.									

^{*} For a more complete table, see Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.
† Pressure 76 cm. ‡ Pressure 2.64 atmos. § Pressure 68 mm. ¶ Pressure 75.5 cm.

TABLE 211. - Melting-point of Mixtures.

					Meltin	g-point	s, C°.					e e
Metals.			Pe	ercentag	e of me	tal in s	econd c	olumn.				Reference
	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	Ref
Pb. Sn.	326	290	270	250	230	215	200	180	190	210	232	1
Bi.	322	290		00-	179	145	126	168	205	-	268 446	7 8
Te.	322	710	790	880.	917 620	760 650	600 705	480	410 840	425 905	959	
Ag.	328	460 360	545	590 400	370	330	290	775 250	200	130	96	9
Na. Cu.	326	930	420 953	953	953	953	953	975	1010	1045	1081	2
Sb.	326	250	275	330	395	440	490	525	560	600	632	16
Al. Sb.	650	750	840	925	945	950	970	1000	1040	1010	632	17
Cu.	650	630	600	560	540	580	610	755	930	1055	1084	18
Au.	655	675	740	800	855	915	970	1025	1055	675	1062	10
Ag.	650	625	615	600	590	580	575	570	650	750	954	17
Zn.	654	640	620	600	580	560	530	510	475	425	419	II
Fe.	654	635	630	1125	1170	1200	1350	1450	1520	1570	1600	3
Sn.	650	645	635	625	620	605	590	570	560	540	232	17
Sb. Bi.	632	610	590	575	555	540	520	470	405	330	268	16
Ag.	630	595	570	545	520	500	505	545	680	850	959	9
Sn.	622	600	570	525	480	430	395	350	310	255	232	19
Zn.	632	555	510	540	570	565	540	525	510	470	419	17
Ni. Sn.	1455	1380	1290	1200	1235	1290	1305	1230	1060	800	232 268	17
Na. Bi.	96	425	520	590	645	690	720	730	715 360	570 390	322	13
Cd.	96	125	185	245 610	285 700	325 760	330 805	340 850	895	940	954	13 17
Cd. Ag.	322	420	520 285		262	258	245	230	210	235	302	14
Tl.	321	300 280	205	270 295	313	327	340	355	370	390	410	II
Zn.	322 1063	940	910	925	943	968	993	1018	1040	1060	1083	4
Au. Cu.	1064	1062	1061	1058	1054	1049	1039	1025	1006	082	963	5
Pt.	1075	1125	1190	1250	1320	1380	1455	1530	1610	1685	1775	20
K. Na.	62	17.5	-10	3.5	5	II	26	41	58	77	97.5	15
Hg.	-	-7.5	_			90	IIO	135	162	265	-	13
Tl.	62.5	133	165	188	205	215	220	240	280	305	301	14
Cu. Ñi.	1080	1180	1240	1290	1320	1335	1380	1410	1430	1440	1455	17
Ag.	1082	1035	990	945	910	870	830	788	814	875	960	ģ
Sn.	1084	1005	890	755	725	680	630	580	530	440	232	12
Zn.	1084	1055	1000	945	890	870	840	785	700	570	419	6
Ag. Zn.	959	850	755	705	690	660	630	610	570	505	419	II
Sn.	959	870	750	630	550	495	450	420	375	300	232	9
Na. Hg.	96.5	90	80	70	60	45	22	55	95	215		13

- 1 Roberts-Austen, Engineering, 63, 223, 1897.
 2 " Rap. Cong. Phys. Paris, 1900.
 3 " Engineering, 50, 744, 1805 Engineering, 59, 744, 1895. Proc. Roy. Soc. 67, 105, 1900. Chem. News, 87, 2, 1903. Engineering, 12/2, 221, 1897. 3 4 56
- Kapp, Diss., Königsberg, 1901. Fay and Gilson, Trans. Am. Inst. Min. Eng. Nov.
- 9 Heycock and Neville, Phil. Trans. 189A, 1897. 194A, 201, 1900.
- 11 Heycock and Neville, J. Chem. Soc. 71, 1897.

 12 Phil. Trans. 202A, 1, 1903.

 13 Kurnakow, Z. Anorg. Chem. 23, 439, 1900.

 14 " " 30, 86, 1902.

- 18 Le Chateler, 1895. 19 Reinders, Z. Anorg. Chem. 25, 113, 1896. 20 Erhard and Schertel, Jahrb. Berg -u. Hüttenw. Sachsen. 1879, 17.

TABLE 212. - Alloy of Lead, Tin, and Bismuth.

		Per cent.								
Lead Tin Bismuth	32.0 15.5 52.5	25.8 19.8 54.4	25.0 15.0 60.0	43.0 14.0 43.0	33.3 33.3 33.3	10.7 23.1 66.2	50.0 33.0 17.0	35.8 52.1 12.1	20.0 60.0 20.0	70.9 9.I 20.0
Solidification at	96°	101°	125°	128°	145°	148°	161°	181°	182°	234°

Charpy, Soc. d'Encours, Paris, 1901.

TABLE 213. - Low Melting-point Alloy.

	Per cent.									
Cadmium Tin Lead Bismuth	10.8 14.2 24.9 50.1	10.2 14.3 25.1 50.4	14.8 7.0 26.0 52.2	13.1 13.8 24.3 48.8	6.2 9.4 34.4 50.0	7.I - 39.7 53.2	6.7 43.4 49.9			
Solidification at	65.5°	67.5°	68.5°	68.5°	76.5°	89.5°	95°			

Drewitz, Diss. Rostock, 1902.

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

N.B. — The data in this table refer only to normal compounds.

Substance.	Formula	Temp.	Den- sity.	Melting- point	Boiling-point.	Authority.
		(a) Para	ffin Series	$S: C_nH_{2n+2}$	
Methane* Ethane† Propane Butane Pentane Hexane Heptane Octane Nonane Dodecane Undecane Tridecane Hexadecane Heptadecane Heptadecane Hexadecane Hexadecane Heptadecane Heptadecane Hootadecane Nonadecane Eicosane Heneicosane Tricosane Tricosane	CH4 C2H6 C3H8 C4H10 C5H12 C6H14 C7H16 C8H18 C9H20 C10H22 C11H24 C12H26 C13H28 C14H30 C15H32 C16H34 C17H36 C18H34 C19H40 C20H44 C21H44 C22H44 C22H44 C22H44 C22H44 C22H44	-164. 0 0 0 17. 0 0 0 0 18. 22. 28. 32. 37. 40. 44.	0.415 .446 .536 .60 .647 .663 .701 .719 .733 .745 .775 .777 .777 .777 .777 .778 .778 .77	-171.4 -171.4 -1-171.4 -171.4		Olszewski, Young. Ladenburg, " Young, Hainlen. Butlerow, Young. Thorpe, Young. Schorlemmer. Thorpe, Young. " " " " " " " " " " " " " " " " " " "
Tetracosane Heptacosane Pentriacontane . Dicetyl Penta-tria-contane	C ₂₄ H ₅₀ C ₂₇ H ₅₆ C ₃₁ H ₆₄ C ₈₂ H ₆₆ C ₃₅ H ₇₂	51. 60. 68. 70.	.779 .780 .781 .781	51. 60. 68. 70. 75.	243.‡ 172.§ 199.§ 205.§ 331.‡	66 66 66
	(b) (Olefines,	, or the	Ethylen	e Series: C _n F	I ass.
Ethylene Propylene Butylene Amylone Hexylene Heptylene Octylene Dodcylene Dodcylene Tridecylene Tetradecylene Hexadecylene Hexadecylene Hexadecylene Eicosylene Cerotene Melene Muylene Melene	C2H4 C3H6 C4H8 C5H10 C6H12 C7H14 C8H16 C9H18 C10H20 C11H22 C12H24 C18H26 C14H28 C16H30 C16H30 C16H35 C20H40 C27H54 C30H60		0.610 -635 -76 .703 .722 .767 -773 .795 .774 .794 .814 .792 .791 .871			Wroblewski or Olszewski. Ladenburg, Krügel. Sieben. Wagner or Saytzeff. Wreden or Znatowicz. Morgan or Schorlemmer. Möslinger. Beilstein, "Org. Chem." """" """" Bernthsen. Krafft. Bernthsen. Krafft, Mendelejeff, etc. Krafft. Beilstein, "Org. Chem." Bernthsen.

^{*} Liquid at—11,0 C. and 180 atmospheres' pressure (Cailletet),

† "" + 4,0 "" 46

Boiling-point under 15 mm. pressure,

§ In vacuo.

DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

Substance.	Chemical formula.	Temp.	Specific gravity.	Melting- point.	Boiling- point.	Authority.
	(c) A	cetylene	Series:	C_nH_{2n}	-2.	
Acetylene	C ₂ H ₂	_	-	-81.	— 85.	Villard.
Allylene	C ₈ H ₄	-	-	-		D 1 37 (1
Ethylacetylene	C ₄ H ₆	_	_	-	+ 18.	Bruylants, Kutscheroff, and others.
Propylacetylene	C ₅ H ₈	-	-		4850.	Bruylants, Taworski.
Butylacetylene Oenanthylidene	C ₆ H ₁₀	_	_		6870.	Taworski.
Cenantifyndesie	C ₇ H ₁₂				100101.	Beilstein, and others.
Caprylidene	C ₈ H ₁₄	0.	0.771	-	133134.	Behal.
Undecylidene Dodecylidene	$\begin{array}{c c} C_{11}H_{20} \\ C_{12}H_{22} \end{array}$	9.	.810	9.	210215.	Bruylants. Krafft.
Tetradecylidene	C ₁₄ H ₂₆	+6.5	.806	+ 6.5	134.*	66
Hexadecylidene Octadecylidene	C ₁₆ H ₈₀ C ₁₈ H ₈₄	20. 30.	.804	20.	160.* 184.*	66
- Collade y i i				30.		
	(d) Monat	tomic al	1	C_nH_{2n}	OH.	
Methyl alcohol	CH ₈ OH	0.	0.812	-	66.	
Ethyl alcohol Propyl alcohol	C_2H_5OH C_8H_7OH	0.	.806	—130. †	78. 97.	From Zander, "Lieb.
Butyl alcohol	C ₄ H ₉ OH	0.	.823	-	117.	Ann." vol. 224, p. 85, and Krafft, "Ber."
Amyl alcohol	C ₅ H ₁₁ OH	0.	.829	-	138.	and Krafft, "Ber."
Hexyl alcohol Heptyl alcohol	$C_6H_{18}OH$ $C_7H_{15}OH$	0,	.833	-	157.	vol. 16, 1714, " 19, 2221,
Octyl alcohol	C ₈ H ₁₇ OH	0.	.839	-	195.	" 23, 2360, and also Wroblew-
Nonyl alcohol	C ₉ H ₁₉ OH C ₁₀ H ₂₁ OH) 十7·	.842	十7.	213.	and also Wroblew- ski and Olszewski.
Dodecyl alcohol	$C_{12}H_{25}OH$	24.	.831	24.	143.*	"Monatshefte,"
Tetradecyl alcohol	$C_{14}H_{29}OH$	38.	.824	38.	167.*	vol. 4, p. 338.
Hexadecyl alcohol Octadecyl alcohol	$C_{16}H_{88}OH \\ C_{18}H_{87}OH$	50. 59.	.818	50. 59.	190.*	
	<u> </u>			C_nH_{2n+}	1	1
		l l	1	n-2n+	1	
Dimethyl ether	C ₂ H ₆ O	-	-	-	- 23.6	Erlenmeyer, Kreich- baumer.
Diethyl ether.	C ₄ H ₁₀ O	4.	0.731	- 117	+ 34.6	Regnault, Olszewski. Zander and others.
Dipropyl ether Di-iso-propyl ether	C ₆ H ₁₄ O C ₆ H ₁₄ O	0.	743	_	90.7 69.	Zander and Others.
Di-n-butyl ether	C ₈ H ₁₈ O	0.	.784	-	141.	Lieben, Rossi, and others.
Di-sec-butyl ether	C ₈ H ₁₈ O	21.	.756		121.	Kessel.
Di-iso-butyl " Di-iso-amyl "	$C_8H_{18}O \\ C_{10}H_{22}O$	15.	.762 .799	-	122. 170175.	Reboul. Wurtz.
Di-sec-hexyl "	$C_{12}H_{26}O$	7	-/99	-	203.–208.	Erlenmeyer and
Di-norm-octyl "	C ₁₆ H ₈₄ O	17-	.805		280.–282.	Wanklyn. Moslinger.
	(f) E	thyl eth	ers: C _n	$H_{2n+2}C$		
Ethyl-methyl ether	C ₃ H ₈ O	0.	0.725	-	11.	Wurtz, Williamson.
" propyl "	$C_5H_{12}O$	20.	0.739	-	6364.	Chancel, Brühl. Markownikow.
" iso-propyl ether . " norm-butyl ether	$C_5H_{12}O \\ C_6H_{14}O$	0.	.745	_	54· 92.	Lieben, Rossi.
" iso-butyl ether .	C ₆ H ₁₄ O	-	.751 .764	-	78.–80.	Wurtz.
" iso-amyl ether .	C ₇ H ₁₆ O	18.	.764	_	112.	Williamson and others.
" norm-hexyl ether	C ₈ H ₁₈ O	-			134137.	Lieben, Janeczek.
" norm-heptyl ether	C ₉ H ₂₀ O	16. 17.	.790		165. 182.–184.	Cross. Moslinger.
" norm-octyl ether	C ₁₀ H ₂₂ O	1/-	•794		102104.	mosninger.

^{*} Boiling-point under 15 mm. pressure. † Liquid at —11.0° C. and 180 atmospheres' pressure (Cailletet).

LOWERING OF FREEZING-POINTS BY SALTS IN SOLUTION.

In the first column is given the number of gramme-molecules (anhydrous) dissolved in roco grammes of water; the second contains the molecular lowering of the freezing-point; the freezing-point is therefore the product of these two columns. After the chemical formula is given the molecular weight, then a reference number.

the molecular v	veignt,	then a reference i	number	•			
g. mol. 1000 g. H ₃ O	Molecular Lowering.	g. mol,	Molecular Lowering.	g. mol. 2000 g. H ₂ O	Molecular Lowering.	_g. mol rooo g. H ₂ O	Molecular Lowering.
Pb(NO ₃) ₂ , 331.0:	1, 2.	0.0500	3.47°	0. 4978	2.02°	MgCl ₂ , 95.26: 6,	14.
0.000362	5·5°	.1000	3.42	.8112	2.01	0.0100	5.1°
.001204	5.30	.2000	3.32	1.5233	2.28	.0500	4.98
.002805	5.17	.500	3.26	BaCl2, 208.3: 3, 6,	. 12.	.1500	4.96
.005570	4.97	1.000	3.14	0.00200	5.5°	.3000	5.186
.01737	4.69	LiNO3, 69.07: 9.		.00498	5.2	.6099 ,	5.69
.5015	2.99	0.0398	3.4°	.0100	5.0	KC1, 74.60: 9, 17	1
Ba(NO ₃) ₂ , 261.5:	-	.1671	3.35	.0200	4.95	0.02910	3.54°
0.000383	5.6°	.4728	3.35	.04805	4.80	.05845	3.34
.001259	5.28	1.0164	3.49	.100	4.69	.112	3.46
.002681	5.23	Al ₂ (SO ₄) ₈ , 342.4:		.200			3.43
.005422		0.0131	5.6°		4.66	.3139	3.41
.008352	5.13	.0261		.500	4.82	.476	3.37
	5.04		4.9	.586	5.03	1,000	3.286
Cd(NO ₈) ₂ , 236.5: 0.00298	3.	.0543	4-5	.750	5.21	1.989	3.25
		.1086	4.03	CdCl2, 183.3: 3, 14		3.269	3.25
.00689	5.25	.217	3.83	0.00299	5.00	NaCl, 58.50: 3, 20	0, 12, 16,
.01997	5.18	CdSO ₄ , 208.5: 1, 1	I.	.00690	4.8	0.00399	3.7°
.04873	5.15	0.000704	3.35°	.0200	4.64	.01000	3.67
AgNO ₃ , 167.0: 4,	ε.	.002685	3.05	.0541	4.11	.0221	3.55
0.1506	3.32°	.01151	2.69	.0818	3.93	.04949	3.51
.5001	2.96	.03120	2.42	.214		.1081	3.48
.8645	2.87	.1473	2.13		3.39	ł	
1.749	2.27	.4129	1.80	.429	3.03	.2325	3.42
2.953	1.85	.7501	1.76	.858	2.71	•4293	3.37
3.856	1.64	1.253	1.86	1.072	2.75	.700	3.43
0.0560	3.82			CuCl ₂ , 134.5: 9.		NH4Cl, 53.52: 6,	15.
.1401	3.58	K ₂ SO ₄ , 174.4: 3, 5, 6	5.40	0.0350	4.9°	0.0100	3.6°
	3.50	0.00200		.1337	4.81	.0200	3.56
.3490	3.28	.00398	5.3	.3380	4.92	.0350	3.50
KNO ₃ , ror.9: 6, 7.		.00865	4.9	.7149	5.32	.1000	3.43
0.0100	3.5	.0200	4.76		33	,2000	3.396
.0200	3.5	.0500	4.60	CoCl ₂ , 129.9: 9.	5.0°	.4000	3.393
.0500	3.41	.1000	4.32	0.0276		•7000	3.41
.100	3.31	.200	4.07	.1094	4.9	,	
.200	3.19	·454	3.87	.2369	5.03	LiCl, 42.48: 9, 15	0
.250	3.08	CuSO ₄ , 159.7: 1, 4	, II.	•4399	5.30	0.00992	3.7°
.500	2.94	0.000286	3.3°	.538	5.5	.0455	3.5
.750	2.81	,000843	3.15	CaCl ₂ , 111.0: 5, 13	-16.	.09952	3.53
1.000	2.66	.002279	3.03	0.0100	5.10	-2474	3.50
NaNO3, 85.09: 2,	6. 7.	.006670	2.79	.05028	4.85	.5012	3.61
0.0100	3.60	.01463	2.59	.1006	4.79	• 7 939	3.71
.0250	3.46	.1051	2.28	.5077	5.33	BaBr2, 297.3: 14.	
.0500	3.44	.2074	1.95	.946		0.100	5.1°
.2000	3.345	.4043	1.84	2.432	5.3 8.2	.150	4.9
		.8898	1.76	3.469		.200	5.00
.500	3.24		- 1	3.829	11.5	.500	5.18
.5015	3.30	MgSO ₄ , 120.4: 1, 4			14.4	_	5
1.000	3.15	0.000675	3.29	0.0478	5.2	AlBr ₃ , 267.0: 9.	* 40
1.0030	3.03	,002381	3.10	.153	4.91	0.0078	1.40
NH ₄ NO ₃ , 80.11: 6	, 8.	.01263	2.72	.331 .612	5.15	.0559	1.2
0.0100	3.6°	.0580	2,65		5.47	.1971	1.07
.0250	3.50	.2104	2.23	.998	6.34	·435 5	1.07
1 Hausrath, Ann. F 2 Leblanc-Noyes, Z 3 Jones, Z. Phys. C 4 Raoult, Z. Phys. 5 Arrhenius, Z. Ph 6 Loomis, Wied. Ar 7 Jones, Am. Chem 8 Jones-Caldwell, A 9 Biltz, Z. Phys. C 10 Jones-Mackay, A Com	Phys. 9, 1 7. Phys. 0 7. Phys. 0 7. 18 7. Ch. 2, 18 7. Ch. 2, 1. J. 27, 18 7. J. 27, 18	902. Ch. 6, 1890. 93. 88. 8, 1888. 96. 1902. 1. J. 5, 1901.		11 Kahlenberg, J. 12 Abegg, Z. Phy 13 Jones-Cetman, 14 Jones-Chamber 15 Loomis, Wied. 16 Roozeboom, Z. 17 Raoult, Z. Phy 18 Roloff, Z. Phy	Phys. Co. Am. Ch. Am. Ch. Ann. 60 Phys. Co. Ch. 25 S. Ch. 18	ch. 5, 1901. 1, 1896. 1, 27, 1902. Ch. J. 23, 1900. 1, 1897. 1, 1898. 1, 1895. 1, 1895.	
9 Biltz, Z. Phys. Ch	1. 40, 190	2. T. 70. 780%		20 Loomis, Wied	Ann. r	. 1894.	
to Jones-Mackay, A	m. Chem	m Landolt-Börnstein	-Meyerh	offer's Physikalisch-c	chemisch	e Tabellen.	
SMITHSONIAN TABL	ES.						

LOWERING OF FREEZING-POINTS BY SALTS IN SOLUTION (continued).

g. mol.	Molecular Lowering.	g. mol. 1000 g. H ₂ O	Molecular Lowering.	g. mol.	Molecular Lowering.	g. mol.	Molecular Lowering.
CdBr ₂ , 272.3: 3, 14. 0.00324 5	5.10	KOH, 56.16: 1, 19	3.60°	Na ₂ SiO ₃ , 122.5: 1 0.01052	6.4	0.472 •944	2.20° 2.27
.03627 3	1. 6 3.84	.00770	3·59 3·44	.05239	5.86 5.28	1.620 (COOH) ₂ , 90.02:	2.60 4, 15.
.0719 3	3.18	.05006 .1001	3.43 3.42	.2099 ·5 ² 33	3. 99	(COOH) ₂ , 90.02: 0.01002 .02005	3.3° 3.19
.220 2	2.96 2.76	.2003	3.424 3.50	HCl, 36.46:	18, 22.	.05019 .1006	3.03 2.83
	2.59	.465 CH ₂ OH, 32.03: 2	3.57	0.00305	3.68° 3.66	.2022 .366	2.64 2.56
0.0242 5	.1°	CH ₃ OH, 32.03: 2. 0.0100 .0301	1.80	.0100	3.6 3.59	.648	2.3
.2255 5	5.27	.2018 1.046	1.811 1.86	.0500	3.59 3.56	C ₃ H ₅ (OH) ₃ , 92.06 0.0200	1.86
CaBr., 200.0: 14.	5.89	3.4I 6.200	1.88	.2000	3.57 3.612	.1008	1.86 1.85
.1742 5	81.5	C2H5OH, 46.04:	1.944	.464 .516	3.68 3.79	·535 2.40	1.91 1.98
	.30 .64	0.000402	1.67°	1.003	3.95	5.24 (C ₂ H ₅) ₂ O, 74.08:	2.13
MgBr ₂ , 184.28: 14. 0.0517 5	5.4°	.004993	1.67 1.81	1.032	4.42	0.0100	1.6°
.103 5	.16	.0289 2 .0705	1.707	2.000	4.97	.1011	I.72 I.702
.517 5	5.85	.1292 . 2 024	1.829	3.000 3.053	6.03 4.90	Dextrose, 180.1:	24, 30.
KBr, 119.1: 9, 21.	3.61°	.525 2 1.0891	1.834	4.065 4.657	5.67 6.19	.0470	1.84° 1.85
.6801 3	3.49	1.760 3.901	1.83	HNO ₃ , 63.05: 3, 1 0.02004	3.55°	.1326 .4076	1.87 1.894
.250 3 .500 3	3.78	7.91 11.11	2.02 2.12	.05015	3.50 3.71	I.102 Levulose, 180.1:	1.921 24, 25.
CdI ₂ , 366.1: 3, 5, 22.	.5°	18.76	1.81	.1004	3.48 3.53	0.020I .2050	1.87° 1.871
	1.0 3.52	0.0173 .0778 K ₂ CO ₃ , 138.30: 6.	1.79	.2015	3.45 3.50	·554 1.384	2.01 2.32
.04857 2	2.70	0.0100	5.1° 4.93	•500 1.000	3.62 3.80	2.77	3.04
•333 2	2.13	.0500	4.71 4.54	2.000	4.17	CHO, 342.2: 1, 2. 0.000332 .001410	1.90° 1.87
	.51	.200	4.39	H ₃ PO ₂ , 66.0: 29. 0.1260	2.90°	.009978	1.86 1.88
0.0651 3	3.5° 3.50	Na ₂ CO ₃ , 106.10: 6	5.1°	.2542	2.75 2.59	.1305	1.88
.6030 3	3.42	.0200	4.93 4.64	1.071	2.45	H ₂ SO ₄ , 98.08:	4.8°
Srl., 241.2: 22.	5.10	.1000 .2000	4.42 4.17	HPO, 82 0: 4, 5. 0.0745	3.0° 2.8	.0100	4.49
.108 5	5.2	Na ₂ SO ₃ , 126.2: 28 0.1044	4.51°	.1241	2.6	.0200 .0461	4.32
•327 5	.35	·3397 ·7080	3.74 3.38	1.00 H ₃ PO ₄ , 98.0: 6, 2	2.39 2. 2.8°	.100	3.85
	3.45°	Na ₂ HPO ₄ , 142.1: 0.01001	5.0°	.0200	2.68	.400 1.000	3.9 8 4.1 9
.1001 3	3.45 3.41	.02003	4.84	.0500	2. 49 2. 36	2.000	4 .96 5 .65
.2000 3	3.407	.1002	4.34	.2000	2.25	2.500	6,53

¹⁻²⁰ See page 217. 21 Sherrill, Z. Phys. Ch. 43, 1903. 22 Chambers-Frazer, Am. Ch. J. 23, 1900. 23 Noyes-Whitney, Z. Phys. Ch. 15, 1894. 24 Loomis, Z. Phys. Ch. 22, 1900. 25 Abegg, Z. Phys. Ch. 15, 1894. 26 Nernst-Abegg, Z. Phys. Ch. 15, 1894.

SMITHSONIAN TABLES.

²⁷ Pictet-Altschul, Z. Phys. Ch. 16, 1895.
28 Barth, Z. Phys. Ch. 17, 1892.
29 Petersen, Z. Phys. Ch. 17, 1893.
30 Roth, Z. Phys. Ch. 18, 1893.
31 Wildermann, Z. Phys. Ch. 15, 1894.
32 Jones-Carroll, Am. Ch. J. 28, 1902.
33 Jones-Murray, Am. Ch. J. 30, 1903.

RISE OF BOILING-POINT PRODUCED BY SALTS DISSOLVED IN WATER.*

This table gives the number of grammes of the salt which, when dissolved in 100 grammes of water, will raise the boiling-point by the amount stated in the headings of the different columns. The pressure is supposed to be 76 centimetres.

Salt.	1 ° C.	2°	3°	4 °	5 °	7°	10°	15°	20 °	25 °
BaCl ₂ + 2H ₂ O . CaCl ₂ Ca(NO ₃) ₂ + 2H ₂ O KOH . KC ₂ H ₃ O ₂	. 15.0 . 6.0 . 12.0 . 4.7 . 6.0	31.1 11.5 25.5 9.3 12.0	47·3 16.5 39·5 13.6 18.0	63.5 21.0 53.5 17.4 24.5	(71.6 g 25.0 68.5 20.5 31.0		.5 rise 41.5 152.5 34.5 63.5	of temp 55.5 240.0 47.0 98.0	69.0 331.5 57.5 134.0	84.5 443.5 67.3 171.5
KCl	. 9.2 . 11.5 . 13.2 . 15.0	16.7 22.5 27.8 30.0	23.4 32.0 44.6 45.0	29.9 40.0 62.2 60.0	36.2 47·5	48.4 60.5	(57.4 78.5 134. 188.5	103.5		9°.5) 152.5 res 18°.5)
$\begin{array}{c} \text{KNO}_8 \\ \text{K}_2\text{C}_4\text{H}_4\text{O}_6 + \frac{1}{2}\text{H}_2\text{O} \\ \text{KNaC}_4\text{H}_4\text{O}_6 \\ \text{KNaC}_4\text{H}_4\text{O}_6 + 4\text{H}_2 \\ \text{LiCl} \\ \text{LiCl} + 2\text{H}_2\text{O} \end{array}$. 15.2 . 18.0 . 17.3 O 25.0 . 3.5 . 6.5	36.0 34.5 53.5 7.0 13.0	54.0 51.3 84.0 10.0	72.0 68.1 118.0 12.5 26.0	90.0 84.8 157.0 15.0 32.0	126.5 119.0 266.0 20.0 44.0	182.0 171.0 554.0 26.0 62.0	33 ⁸ ·5 284·0 272·5 5510.0 35·0 92·0	390.0 42.5 123.0	510.0 50.0 160.5
$\begin{array}{c} \text{MgCl}_2 + 6\text{H}_2\text{O} \\ \text{MgSO}_4 + 7\text{H}_2\text{O} \\ \text{NaOH} \\ \text{NaCl} \end{array}.$. 11.0 . 41.5 . 4.3 . 6.6	22.0 87.5 8.0 12.4	33.0 138.0 11.3 17.2 28.0	44.0 196.0 14.3 21.5	55.0 262.0 17.0 25.5 48.0	77.0 22.4 33.5 68.0	30.0 (40.7	170.0 41.0 gives 8°	241.0 51.0 .8 rise)	334·5 60.1
$\begin{array}{c} \text{NaNO}_{3} & \cdot & \cdot \\ \text{NaC}_{2}\text{H}_{3}\text{O}_{2} + 3\text{H}_{2}\text{O} \\ \text{Na}_{2}\text{S}_{2}\text{O}_{3} & \cdot & \cdot \\ \text{Na}_{2}\text{HPO}_{4} & \cdot & \cdot \\ \text{Na}_{2}\text{C}_{4}\text{H}_{4}\text{O}_{6} + 2\text{H}_{2}\text{O} \\ \text{Na}_{2}\text{S}_{2}\text{O}_{3} + 5\text{H}_{2}\text{O} \end{array}$. 9.0 . 14.9 . 14.0 . 17.2 . 21.4 . 23.8	30.0 27.0 34.4 44.4 50.0	46.1 39.0 51.4 68.2 78.6	38.0 62.5 49.5 68.4 93.9 108.1	79.7 59.0 85.3 121.3	118.1 77.0 183.0 216.0		480.0 152.0 gives 8	6250.0 214.5 °.4 rise)	311.0
Na ₂ CO ₃ + 10H ₂ O Na ₂ B ₄ O ₇ + 10H ₂ O NH ₄ Cl . NH ₄ NO ₃ . NH ₄ SO ₄ .	. 34.1 . 39. . 6.5 . 10.0 . 15.4	86.7 93.2 12.8 20.0 30.1	177.6 254.2 19.0 30.0 44.2	369.4 898.5 24.7 41.0 58.0	1052.9 (5555.5 29.7 52.0 71.8	39.6	56.2		248.0 108.2)	337.0
$\begin{array}{c} \text{Sr(NO}_3)_2 \\ \text{C}_4\text{H}_6\text{O}_6 \\ \text{C}_2\text{H}_2\text{O}_4 + 2\text{H}_2\text{O} \\ \text{C}_6\text{H}_8\text{O}_7 + \text{H}_2\text{O} \\ \end{array}$. 24.0 . 17.0 . 19.0 . 29.0	45.0 34· 4 40.0 58.0	63.6 52.0 62.0 87.0	81.4 70.0 86.0 116.0	97.6 87.0 112.0 145.0	123.0 169.0 208.0	177.0 262.0 320.0	272. 0 540.0 553.0	374.0 1316.0 952.0	484.0
. Salt.	40 ° 6	0°	80°	100°	120°	140°	160	180	200	240°
KOH	92.5 I 93.5 I 82.0 I3	22.0 21.7 50.8 70.0 74.0		185.0 345.0 4099.0 y gives	526.3 8547.0	800.0				

^{*} Compiled from a paper by Gerlach, "Zeit. f. Anal. Chem." vol. 26.

FREEZING MIXTURES.*

Column I gives the name of the principal refrigerating substance, A the proportion of that substance, B the proportion of a second substance named in the column, C the proportion of a third substance, D the temperature of the substances before mixture, E the temperature of the mixture, F the lowering of temperature, G the temperature when all snow is melted, when snow is used, and H the amount of heat absorbed in heat units (small calories when A is grammes). Temperatures are in Centigrade degrees.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Substance.	A	В	С	D	E	F	G	Н
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NaC ₂ H ₃ O ₂ (cryst.) NH ₄ Cl NaNO ₃ Na ₂ S ₂ O ₃ (cryst.) KI CaCl ₂ (cryst.) NH ₄ NO ₃ . (NH ₄)SO ₄ . NH ₄ Cl CaCl ₂ . KNO ₃ Na ₂ SO ₄ . Na ₂ CO ₃ (cryst.) KNO ₃ . CaCl ₂ . KNO ₃ Na ₂ CO ₃ (cryst.) KNO ₃ . CaCl ₂ . NH ₄ Cl NH ₄ NO ₃ . NaCl H ₂ SO ₄ + H ₂ O (66.1 % H ₂ SO ₄) CaCl ₂ + 6H ₂ O Alcohol at 4° Chloroform . Ether . Liquid SO ₂	85 30 75 110 140 250 60 25 25 25 25 25 25 10 20 13 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H ₂ O-100 """ """ """ """ """ """ """	NH4NO3-25	IO.7 I3.3 I3.2 IO.7 I3.3 I3.2 IO.7 IO.8 IO.8	- 4.7 - 5.1 - 5.3 - 8.3 - 11.7 - 12.4 - 13.6	15.4 18.4 18.5 18.7 22.5 23.2 27.2 26.0 20.0 19.0 17.0 0.9 1.0 1.85 9.9 14.4 15.75 20.3 36.0 34.0 29.0 24.0 15.0	-37.0 -37.0 -30.2 -25.0 -12.4 -7.0 -31.1 -2.1 -9.0 -54.9† -40.3 -21.5 -9.0	

^{*} Compiled from the results of Cailletet and Colardeau, Hammerl, Hanamann, Moritz, Pfanndler, Rudorf, and Tollinger.
† Lowest temperature obtained.

CRITICAL TEMPERATURES, PRESSURES, VOLUMES, AND DENSITIES OF GASES.*

 θ = Critical temperature.

P = Pressure in atmospheres.

 $\phi =$ Volume referred to air at 0° and 76 centimetres pressure.

d = Density in grammes per cubic centimetre.

Substance.	θ	P	φ	d	Observer.
Air Alcohol (C ₂ H ₆ O) " (CH ₄ O) Ammonia Argon Benzol Bromine Carbon dioxide " monoxide " disulphide Chloroform Chlorine " Ether " Ether " Ethune Ethylene " Helium Hydrogen " chloride " " " " sulphide Krypton Methane " Neon. Nitric oxide (NO)	-140.0 243.6 237.9 239.95 130.0 -121.0 288.5 302.2 30.92 -141.1 277.7 200.0 141.0 146.0 197.0 194.4 35.0 9.2 13.0 <-264.0 -234.5 51.25 52.3 100.0 -62.5 -81.8 -99.5 <-205.0	39.0 62.76 - 78.5 115.0 50.6 47.9 - 77 35.9 78.1 54.9 83.9 - 35.77 35.61 45.2 58.0 - 20.0 86.0 86.0 88.7 54.9 54.9 54.9 55.0 56.0	0.00713 	0.288	Olszewski. Ramsay-Young. Mean of ten. Young. Dewar. Olszewski. Young. Nadejdine. Andrews. Wroblewski. Hannay. Sajotschewsky. Dewar. Knietsch. Battelli. Young. Dewar. Van der Waals. Cailletet. Dewar. Ansdell. Dewar. Ansdell. Dewar. Olszewski. Ramsey-Travers. Olszewski. Dewar. Ramsey-Travers.
Nitrogen	—93.5 —146.0 35.4 —118.0 155.4 358.1 364.3	35.0 75.0 50.0 78.9 -	- 0.0048 - 0.00587 0.001874 0.00386	0.44 0.41 0.6044 0.49 0.429	Dewar, Cailletet.

Andrews, Trans. Roy. Soc. 166, 1876. Ansdell, Chem. News, 41, 1880. Batelli, Mem. Torino (2), 41, 1890. Cailletet, C. R. 85, 1877; C. R. 94, 1882. Dewar, Phil. Mag. 18, 1884; Ch. News, 84, 1901. Hannay, Pr. Roy. Soc. 32, 1882. Knietsch, Lieb. Ann. 259, 1890. Nadejdine, Beibl. 9, 1885. Olszewski, C. R. 98, 1884; 99, 1884; 100, 1885; Beibl. 14, 1890; Z. Phys. Ch. 16, 1893. Ramsay-Young, Tr. Roy. Soc. 177, 1886. Sajotschewsky, Beibl. 3, 1879. Van der Waals, Beibl. 4, 1880. Wroblewski, Wied. Ann. 20, 1883; Stz. Wien. Ak. 91, 1885. Young, Phil. Mag. 1900.

^{*} Abridged for the most part from Landolt and Börnstein's "Phys. Chem. Tab."

TABLE 219.

COEFFICIENTS OF THERMAL EXPANSION.

Coefficients of Linear Expansion of the Chemical Elements.

In the heading of the columns T is the temperature or range of temperature; C is the coefficient of linear expansion; A_1 is the authority for C; M is the mean coefficient of expansion between 0° and 100° C.; α and β are the coefficients in the equation $l_t = l_0$ ($1 + \alpha t + \beta t^2$), where l_0 is the length at 0° C. and l_t the length at t0° C.; A_2 is the authority for α , β , and m.

Substance.	T	C × 10 ⁴	A 1	M× 104	a × 104	β× 10 ⁶	A 2
Aluminum	40	0.2313	I	0.2220	-	-	2
66	600 -191 to +16	.3150	3 4	-	.23536	.00707	5
Antimony: Parallel to cryst. axis	40	.1692	I				
Perp. to axis	40 40	.0882	I	.1056	.0923	.0132	6
Arsenic	40	.0559	I				
Parallel to axis	40 40	.1621	I				
Mean	40 [*]	.1346 .3069	I	.1316 .3159	.1167	.0149 .0466	6
Carbon: Diamond				•3•39	.2093	.0400	
Gas carbon	40 40	.0118	I				
Graphite	40 40	.0786 .2078	I				
Cobalt	40 40	.1236	I	.1666	.1481	.0185	6
76	—191 to +16	.1409	4	-	.16070	.00403	5
Indium	40 40	.1443 .4170	I	.1470	.1358	.0112	
Iron: Soft	40	.1210	I				
Cast	40 —191 to +16	.1061	I 4				
Wrought	—18 to 100	.1140	7	_	.11705	.005254	8
" annealed	40 40	.1322	I	.1089	.09173	.0052	96
Lead	40 40	.2924	I	.2709	.0273	.0074	
Nickel	40 —191 to +16	.1279	I 4	-	.13460	.003315	8
Osmium	40 40	.0657	I	_	.11670	.002187	8
Phosphorus	0-40	1.2530	IO		.08868		8
Platinum	40 0–50	0.0899	II	_	.00000	.001324	°
Rhodium	40 40	.0850	I				
Selenium	40 40	.3680	I	.6604	-	-	12
Silver	40 —191 to +16	.1921	I 4	-	.18270	.004793	8
Sulphur:				1.180			
Cryst. mean	40 40	.6413	I	.3687	-	_	12 12
Thallium	40	.3021	I	.2296	.2033	.0263	6
Zinc	40	.2918	1	.2976	.2741	.0234	6

I Fizeau. 2 Calvert, Johnson and Lowe.

Andrews. 8 Holborn-Day.

¹⁰ Pisati and De Franchis. 11 Hagen.

³ Chatelier.

⁴ Henning. 5 Dittenberger. 6 Matthiessen.

⁹ Benoit.

¹² Spring.

The above table has been partly compiled from the results published by Fizeau, "Comptes Rendus," vol. 68, and Matthiessen, "Proc. Roy. Soc.," vol. 15.

The Holborn-Day data are for temperatures from 20° to 1000° C. The Dittenberger, 0° to 600° C.

SMITHSONIAN TABLES.

COEFFICIENTS OF THERMAL EXPANSION.

Coefficients of Linear Expansion for Miscellaneous Substances.

The coefficient of cubical expansion may be taken as three times the linear coefficient. T is the temperature or range of temperature, C the coefficient of expansion, and A the authority.

			_	0			
Substance.	<i>T</i> ° C.	C×104	Α.	Substance.	T°C.	C × 104	A.
Brass:				Platinum-silver:			
Cast	0-100	0.1875	I	1Pt+2Ag	0-100	0.7500	
Wire	0-100 "	0.1930	I	Porcelain	20-790	0.1523	
	66	.1783193		" Bayeux .	1000-1400		
21.5Cu+27.7Zn+		.1703 .193		Quartz:	1000-1400	0.0553	20
71.5Cu+27.7Zn+ 0.3Sn+0.5Pb	40	0.1859	2	Parallel to axis	0-80	0.0797	6
71Cu+29Zn .	0-100	0.1039	3	14 44 44	-190 to +16	0.1070	21
Bronze:	0 100	0.1900	4	Perpend." "	0-80	0.1337	6
3Cu+1Sn	16.6-100	0.1844	5	Quartz glass	-190 to +16	0026	
" "	16.6-350	0.2116	5	Rock salt	40	0.4040	
46 46	16.6-957	0.1737	5	Speculum metal .	0-100	0.1933	
86.3Cu+9.7Sn+	2010 951	-1-737	3	Topaz:		41-933	
4Zn	40	0.1782	3	Parallel to lesser			
97.6Cu+ (hard				horizontal axis	44	0.0832	8
a aCall Mara	0–80	0.1713	6	Parallel to greater			
2.25n+ { soft		0.1708	6	horizontal axis	66	0.0836	8
Caoutchouc	-	.657686	2	Parallel to verti-		J-	
46	16.7-25.3	0.770	7	cal axis	66	0.0472	8
Constantine	4-29	0.4570		Tourmaline:			
Ebonite	25.3-35.4	0.842	7 8	Parallel to longi-			
Fluor spar: CaF ₂ .	0-100	0.1950		tudinal axis	46	0.0937	8
German silver .	66	0.1836	8	Parallel to hori-			
Gold-platinum:				zontal axis	"	0.0773	8
2Au+1Pt	66	0.1523	4	Type metal	16.6-254	0.1952	5
Gold-copper:				Vulcanite	o-18	0.6360	
2Au+1Cu	66	0.1552	4	Wedgwood ware .	0-100	0.0890	5
Glass:	66			Wood:			
Tube	66	0.0833	I	Parallel to fibre:	,,		
	"	0.0828	9	Ash	66	0.0951	23
Plate	66	0.0891	10	Beech	2 –34	0.0257	24
Crown (mean) .	,	0.0897	10	Chestnut	46	0.0649	24
What	50-60	0.0954	II	Elm	"	0.0565	
Flint .		0.0788	II	Mahogany .	66	0.0361	
Jena ther- mometer normal	0-100	0.081	12	Maple Oak	"	0.0638	
monteter normal y	66	0.058	12	Pine	66	0.0492	
66 66	—191 to +16	0.424	13	Walnut .	66	0.0658	
Gutta percha	20	1.983	14	Across the fibre:		0.0030	~4
Ice	-20 to -1	0.51	15	Beech	66	0.614	24
Iceland spar:	20.00 1	7.5-	- 5	Chestnut .	66		24
Parallel to axis .	0-80	0.2631	6	Elm	66		24
Perpendicular to				Mahogany .	68		24
axis	66	0.0544	6	Maple	66		24
Lead-tin (solder)		J		Oak	66		24
2Pb+ISn	0-100	0.2508	I	Pine	66		24
Magnalium	12-39	0.238	16	Walnut	66		24
Marble	15-100	0.117	17	Wax: White, .	10-26	2.300	25
Paraffin	0-16	1.0662	17 18	"	26-31	3.120	25
"	16-38	1.3030	18	"	31-43	4.860	25
"	38-49	4.7707	18	"	43-57	15.227	25
Platinum-iridium							
10Pt+1Ir	40	0.0884	3				
I Smeaton.	8 Pfaff.			14 Russner.	20 Deville an	d Troos	st.
2 Various.	9 Deluc.				21 Scheel.		
	10 Lavoisier	and Lapla	ce.	16 Stadthagen.	22 Mayer.		
4 Matthiessen.	II Pulfrich.			17 Fröhlich.	23 Glatzel.		
5 Daniell.	12 Schott.			18 Rodwell.	24 Villari.		
6 Benoit.	13 Henning.			19 Braun.	25 Kopp.		
7 Kohlrausch.							
MITHSONIAN TABLES.							

COEFFICIENTS OF THERMAL EXPANSION.

Coefficients of Cubical Expansion of some Crystalline and other Solids.*

T = temperature or range of temperature, C = coefficient of cubical expansion, A = authority.

Substance.		Т	C × 10 ⁴	A
Antimony	٠	0-100	0.3167	Matthieson.
Beryl	•	001-0	0.0105	Pfaff.
Bismuth		-	0.4000	Kopp.
Diamond		40	0.0354	Fizeau.
Emerald	•	40	0.0168	и
Fluor spar		14-47	0.6235	Kopp.
Garnet		0-100	0.2543	Pfaff.
Glass, white tube .		0-100	0.2648	Regnault.
" green tube .		0-100	0.2299	66
" Swedish tube .		0-100	0.2363	
" hard French tube		0-100	0.2142	"
" crystal tube .	٠	0-100	0.2101	66
" common tube .	٠	0-1	0.2579	66
" Jena		0-100	0.2533	Reichsanstalt.
Ice		-20 to -1	1.1250	Brunner.
Iceland spar		5060	0.1447	Pulfrich.
Idocrase		0-100	0.2700	Pfaff.
Iron		0-100	0.3550	Dulong and Petit.
м		0-300	0.4410	66 66 66
Magnetite, Fe ₈ O ₄ .		0-100	0.2862	Pfaff.
Manganic oxide, Mn ₂ O ₈		0-100	0.522	Playfair and Joule.
Orthoclase (adularia)		0-100	0.1794	Pfaff.
Porcelain	٠	0-100	0.1080	Deville and Troost.
Quartz		50-60	0.3530	Pulfrich.
Rock salt		50-60	1.2120	66
Spinel ruby		40	0.1787	Fizeau.
Sulphur, rhombic .		0-100	2.2373	Kopp.
Topaz		0-100	0.2137	Pfaff.
Tourmaline		0-100	0.2181	
Zincite, ZnO		40	0.0279	Fizeau.
Zircon		0-100	0.2835	Pfaff.

^{*} For more complete tables of cubical expansion, see Clarke's "Constants of Nature," (Smithsonian Collections), published in 1876.

SMITHSONIAN TABLES.

COEFFICIENTS OF THERMAL EXPANSION.

Coefficients of Cubical Expansion of Liquids.

This table contains the coefficients of expansion of some liquids and solutions of salts. When not otherwise stated atmospheric pressure is to be understood. T gives the temperature range, C the mean coefficient of expansion for range T in degrees C, and A_1 the authority for C. α , β , and γ are the coefficients in the volume equation $v_t = v_0$ ($t + \alpha t + \beta t^2 + \gamma t^3$), and m the mean coefficient for range of 100° C, and A_2 is the authority for these.

Liquid.	T	C × 1000	A 1	m × 100	a X 1000	β×10 ⁶	γ × 10 ⁸	A 2
Acetic acid	16°-107° 0-54	- 1	-	.1433 .1616	1.0630 1.3240	o.1264 3.8090	1.087 6 0.8798	3 3
Amyl	-15 to +80 0-80 0-39	-	- - -	- - -	0.8900 1.0414 0.7450	0.6573 0.7836 1.850	1.1846 1.7168 0.730 11.87	4 5 6
" 500 atmo. press. " 3000 " "	18–39 0–40 0–40	.866 ·524	I	-	0.2928	17.900	_	6
Methyl	-38 to +70 11-81 -7 to +60	-		.1433 .1385 .1168	1.1856 1.1763 1.0382	1.5649 1.2775 1.7114	0.9111 0.8065 0.5447	4 5 4
CaCl ₂ , 5.8 % solution CaCl ₂ , 40.9 % " . Carbon disulphide	18-25 17-24 -34 to +60	-	-	.0506 .0510 .1468	0.0788 0.4238 1.1398	4.2742 0.8571 1.3706	- 1.9122	7 7 4
500 atmos. pressure. 3000 " ". Chloroform	0-50 0-50 0-63	.940 .581 -	I I -	.1399	- - 1.1071	4.6647	- - 1.7433	- - 4
Ether	-15 to +38	_	_	.0534	0.4853	2.3592 0.4895	4.0051	8
$\begin{array}{c c} HCl + 6.25H_2O \\ HCl + 50H_2O \\ Mercury \\ Olive oil \end{array}$	0-30 0-30 24-299	1 1 1		.0489	0.4460 0.0625 0.18182 0.6821	0.430 8.710 0.00078 1.1405	539	9 15 11
Potassium chloride: KCl, 2.5 % solution KCl, 24.3 % "		-	_	.0572	-			7
Potassium nitrate: KNO ₈ , 5.3 % sol'n KNO ₈ , 21.9 % "		- -	_	.0539 .0577 .0899	-	-	-	12
Phenol, C ₆ H ₆ O Petroleum	36-157 7-38 24-120	-992 -	2 -	.0099	o.8340 - o.8994	0.1073 - 1.396	0.4446 - -	13 14
NaCl, 1.6 % solution. Sodium sulphate:	-	-	-	.1067	0.0213	10.462	-	9
Na ₂ SO ₄ , 24 % sol'n . Sodium nitrate: NaNO ₃ , 36.2 % sol'n .	10-40 20-78	-	_	.0611	0.3599	2.516	_	9
Sulphuric acid:	0-30	-	_	.0489	0.5758	0.864	-	9
$H_2SO_4 + 50H_2O$. Turpentine Water	0-30 0-33	-	~~	.0799	o.2835 o.9003 —.0643	5.160 1.959 8.505	6.790	9 5 15
		AUTH					Dinette	
1 Amagat. 4 Pi 2 Barrett. 5 Ko 3 Zander. 6 Ro	erre. opp. ecknagel.	7 Dec 8 Em 9 Ma	٥.		10 Broch. 11 Spring 12 Nicol.	. 14	Pinette. Frankenhei Scheel.	m.

TABLE 223.

COEFFICIENTS OF THERMAL EXPANSION.

Coefficients of Expansion of Gases.

Pressures are given in centimetres of mercury.

Coefficient a	t Constant Volu	ume.		Coefficient a	t Constant Pres	ssure.	
Substance.	Pressure cm.	Coefficient × 100.	Reference.	Substance.	Pressure cm.	Coefficient X	Reference.
Air " " " " " " " " " " " " " " " " " "	.6 I.3 IO.0 25.4 75.2 IOO.1 76.0 2000. IOOOO. INOOO. I.8 5.6 74.9 51.8 51.8 51.8 99.8 99.8 IOO.0 76. 56.7 .0077 .025 .47 .93 II.2 76.4	.37666 .37172 .36630 .36580 .36580 .36560 .36903 .38860 .4100 .3668 .36856 .36753 .3641 .37264 .36985 .36985 .37248 .36975 .37248 .3665 .37248 .3656 .37248 .3656 .37248 .3656 .37248 .3656 .37248 .3656 .37248 .3656 .37248	1	Air ""0°-100° "Hydrogen 0°-100° "" "" Carbon dioxide ""0°-20° ""0°-100	76. 257. 100.1 100.0 200 Atm., 400 " 800 " 76. 51.8 51.8 99.8 99.8 137.7 137.7 2621. 76. 76. 76. 76. 76. 76. 76. 76. 76.	.3671 .3693 .36728 .36600 .332 .295 .261 .242 .3710 .37128 .37100 .37073 .37602 .37410 .37972 .37703 .1097 .6574 .3669 .3719 .3980 .4187 .4189 .4071 .3938 .3938	3 2
" 0°-100° Nitrogen 13°-132° " 9°-133° " 0°-20° " 0°-100° " 0°-132° " 11°-132° " 11°-132° " 11°-132° " Sulph'r dioxide SO ₂	100.0 .06 .53 100.2 100.2 76007 .25 .51 1.9 18.5 75.9 76. 76.	.36626 .3021 .3290 .36754 .36744 .36682 .4161 .3984 .3831 .36683 .36680 .36681 .3676	2 6 " 7 6 " " 8 " " " 3 " "	Oxygen, $E = 1$ Nitrogen, $E = 1$	he calculation of and 100° (calculation) and 100° (calculation) (calculation) and 100° (cal	on of the C. Expanded Expanded V/v of V/v of V/v of V/v density of V/v of	of the

Meleander, Wied. Beibl. 14, 1890; Wied. Ann. 47, 1892.
 Chappuis, Trav. Mem. Bur. Intern. Wts.

Meas. 13, 1903.
3 Regnault, Ann. chim. phys. (3) 5, 1842.
4 Keunen-Randall, Proc. R. Soc. 59, 1896.

⁵ Chappuis, Arch. sc. phys. (3), 18, 1892.
6 Baly-Ramsay, Phil. Mag. (5), 38, 1894.
7 Andrews, Proc. Roy. Soc. 24, 1876.
8 Meleander, Acta Soc. Fenn. 19, 1891.
9 Amagat, C. R. 111, 1890.
10 Hirn, Théorie méc. chaleur, 1862.

TABLES 224-226. MECHANICAL EQUIVALENT OF HEAT.

TABLE 224. - Summary.

Taken from J. S. Ames, L'équivalent mécanique de la chaleur, Rapports présentés au congrès international du physique, Paris, 1900.

Name.	Method.	Scale. Result. T	emp. °C.
Joule Rowland	Mechanical . Mechanical .	• • • • • • • • 4.173 • • • • • • • 4.185 4.187 4.181	16.5 10. 15. 20.
Reynolds-Morby.	Mechanical .		25. Mean- calory.
Griffiths	Electrical .	(Latimer-Clark = 1.4342v at 15° C. 4.198 4.192	15.
	$rac{\mathrm{E}^2\mathbf{t}}{\mathrm{R}}$	International Ohm 4.187	25.
Schuster-Gannon	Electrical Eit.	Latimer-Clark = 1.4340v. at 15° C., Elec. Chem. Equiv. Silver 4.1905 = 0.001118g	19.1
Callendar-Barnes	Electrical Eit.	Latimer-Clark = 1.4342v. at 15° C. 4.179	40.

TABLE 225. — Reduced to Gramme-calory at 20° C. (Nitrogen thermometer).

Joule Rowland Griffiths Schuster-Gannon . Callendar-Barnes .	** 4,169 × 10 ⁷ ergs
--	---------------------------------

^{*} Admitting an error of 1 part per 1000 in the electrical scale.

The mean of the last four then gives 1 small (20° C.) calory = 4.181×10^7 ergs.

TABLE 226. - Conversion Factors for Units of Work.

	Joules Watts per sec. Volt-amp. per sec.	Small 20 ⁰ Calories,	Ergs.	Kilo- gramme- metres.	Foot-poundals.	Foot-pounds.
r joule = r watt per second r small 20° cal-	1 4.181	0.2392	10 ⁷ 4.181 × 10 ⁷	<u>r</u> g 4.181	23.73	23.73 g 99.22
ory =	10-7	0.2392 × 10 ⁻⁷	I	g 10-7 g	23.73 × 10 ⁻⁷	5
I kilogmetre =	g	0.2392g	g × 10 ⁷	I	2 3.73g	23.73
r foot-poundal ==	.04214	.01008	421400.	.04214 g	I	g
I foot-pound =	.04214g	.01008g	421400g	.04214	g	I

TABLE 227.
SPECIFIC HEAT OF THE CHEMICAL ELEMENTS.

Element.	Range * of Temperature, ° C.	Specific heat.	Refer- ence.	Element.	Range * of Temperature, ° C.	Specific heat.	Refer- ence.
Aluminum """ Antimony. """ Arsenic, gray "" black Barium Bismuth """ "fluid Boron Bromine, solid "fluid Cadmium "" Casium Calcium "" Carbon, graphite "" "" Carbon, graphite "" "" Carbon, graphite "" "" Coarbon, graphite "" "" "" Coarbon, graphite """ "" Coarbon, graphite """ "" "" Coarbon, graphite """ "" "" "" "" "" "" "" ""	-250 0 100 250 500 16-100 15 100 200 0-100 0-100 -185-+20 -186 0 75 20-100 280-380 0-100 -7820 13-45 21 100 200 300 0-26 -185-+20 0-181 -50 +11 985 0-100 0-24 -200 0 100 600 -185-+20 500 17 100 15-238 900 -181-+13 23-100 to 113 12-23 0-100 -185-+20 0-100 0-185-+20 0-100 -185-+20 500 0-181 -50 -111 985 0-100 0-24 -200 0-185-+20 0-100 -185-+20 0-100 -185-+20 0-100 -185-+20 0-100 -185-+20 0-100 -185-+20 0-100 -185-+20 0-100 -185-+20 0-100 -185-+20 0-100 -185-+20 0-100	0.1428 .2089 .2226 .2382 .2739 .2122 .0489 .0503 .0520 .0822 .0861 .0301 .0309 .0302 .0363 .307 .0843 .107 .0551 .0570 .0594 .0617 .0482 .157 .170 .114 .160 .467 .0635 .113 .459 .0448 .2262 .0666 .1039 .1121 .1872 .086 .1452 .204 .0822 .1030 .0924 .0942 .09510 .1259 .0868 .0940 .0880 .079 .0737 .033 .0316 .0570	1 " " " 43 2 2 " " " 15 16 17 " " " 43 14 " " " " 43 14 " " " " 43 14 " " " " " 43 20 21 " " 22 22 23 4 24 13	Iodine Iridium "" "" "" "" "" "" "" "" "" "" "" "" "	9-98186-+18 18-100 20-100 15-100 1000-1200 500 0-18 20-100185-+20 0-100 15-100 16-256100 100 16-256100 60 325 625 20-100 60 325 20-100185-+20 60 475 20-100185-+20 100 100 100 100185-+20 100 100 100 100185-+20 100 100 100185-+20 100 100185-+20 100 100185-+20 100 100185-+20 100 100185-+20 100 100185-+20 100 100185-+20 100 100185-+20 100 100185-+20 100 100	0.0541 .0282 .0323 .1189 .176 .0986 .0146 .0958 .0410 .03096 .03191 .5997 .0410 .03096 .03191 .5997 .10407 .7951 .9063 1.0407 .7951 .9063 1.0407 .13745 .0222 .2492 .1211 .1783 .1211 .0979 .1072 .1211 .1783 .03284 .03284 .03284 .03212 .0627 .0647 .0999 .1608 .0311 .0999 .1608 .0311 .0999 .1608 .0311 .0999 .1608 .0311 .0999 .1608 .0311 .0999 .1608 .0311 .0999 .1608 .0311 .0999 .1608 .0311 .0999 .1608 .0311 .0999 .1608 .0311 .0999 .1608 .0311 .0999 .1608 .0311 .0999 .1608 .0311 .0999 .1608 .1299 .1609	25 26 " 27 28 " " 4 15 2 " " 4 32 " " 4 4 32 " " 4 4 7 7 " " " 4 4 18 " " 4 4

See opposite page for References.

^{*} Where one temperature alone is given, the "true" specific heat is given; otherwise, the "mean" specific heat.

[†] See Appendix. Tables 334-335.

SPECIFIC HEAT.

TABLE 227. - Specific Heat of the Chemical Elements (continued).

Platinum -186-+18 0.0293 26 Sulphur -188-+18 0.137 36 " 0-100 .0323 24 "rhombic 0-54 .1728 33 " 500 .0356 35 "ilquid .19-147 .235 2 " 700 .0368 "Iquid .19-147 .235 2 " 900 .0380 "Tantalum -185-+20 .033 4 " 1500 .0340 "Crys. 15-100 .043 37 " 1100 .0358 "Thallum -185-+20 .038 4 " 1500 .0358 "Thallum -10670 .0326 27 " 1500 .0368 "Thorium 0-100 .0276 38 " 1500 .0368 "Thorium 0-100 .0276 38 " 1500 .0368 "Thorium 0-100 .0276 38 " 1500 <th>Element.</th> <th>Range * of Temperature, °C.</th> <th>Specific Heat.</th> <th>Refer- ence.</th> <th>Element.</th> <th>Range * of Temperature, °C.</th> <th>Specific Heat.</th> <th>Reference.</th>	Element.	Range * of Temperature, °C.	Specific Heat.	Refer- ence.	Element.	Range * of Temperature, °C.	Specific Heat.	Reference.
" +57.1	Potassium Rhodium Ruthenium Selenium Silicon	-186-+18 0-100 100 500 700 900 1100 1500 1500 -185-+20 10-97 0-100 -188-+18 -185-+20 -198-+18 -185-+20 -79-+18 0-100 23 100 500 17-507 800	0.0293 .0323 .0275 .0356 .0368 .0380 .0407 .0358 .0368 .170 .0580 .0611 .068 .123 .1360 .1433 .2029 .0496 .0544 .0559 .05498 .0563 .0581 .05987	26 24 34 35 4 25 13 36 4 14 26 34 433	" rhombic " monoclin. " liquid Tantalum Tellurium Crys. Thallium Thorium Tin " cast " fluid Titanium Tungsten Uranium Vanadium Zinc. " "	-188-+18 0-54 0-52 119-147 -185-+20 -188-+18 15-100 -185-+20 0-100 -19679 -76-+18 21-109 250 1100 -185-+20 0-100 -185-+20 0-100 -185-+20 0-100 -192-+20 20-100 -192-+20 20-100 100 300	0.137 .1728 .1809 .235 .033 .047 .0483 .0326 .0276 .0486 .0518 .0551 .05799 .0758 .082 .1125 .036 .036 .038 .0396	36 333 4 36 37 4 27 38 26 30 18 4 40 41 40 41 40 27 41 40 41 40 41 40 41 41 40 41 41 41 41 41 41 41 41 41 41 41 41 41

- r Bontschew

- 1 Nordmeyer-Bernouli, Verh. d. phys. Ges. 9, 1907; 10, 100 Nordmeyer-Bernouli, Verh. d. phys. Ges. 9, 1907; 10,

- 1908.
 5 Giebe, Verh. d. phys. Ges. 5, 1903.
 6 Lorenz, Wied. Ann. 13, 1881.
 7 Stücker, Wien. Ber. 114, 1905.
 8 Person, C. R. 23, 1846; Ann. d. chim. (3) 21, 1847;
 24, 1848.
 9 Moisson-Gautier, Ann. chim. phys. (7) 17, 1896.
 10 Regnault, Ann. d. chim. (3) 26, 1849; 63, 1861.
 11 Andrews, Pog. Ann. 75, 1848.
 12 Eckardt-Graefe, Z. Anorg. Ch. 23, 1900.
 13 Bunsen, Pogg. Ann. 141, 1870; Wied. Ann. 31, 1887.
 14 Weber, Phil. Mag. (4) 49, 1875.
 15 Hillebrand, Pog. Ann. 158, 1876.
 16 Knietsch.

- 16 Knietsch.

- 17 Adler, Beibl. 27, 1903. 18 Pionchon, C. R. 102-103, 1886. 19 Tilden, Phil. Trans. (A) 201, 1903. 20 Richards, Ch. News, 68, 1893.
- 21 Trowbridge, Science, 8, 1898.

- 22 Berthelot, Ann. d. chim. (5) 15, 1878.
 23 Pettersson-Hedellius, J. Pract. Ch. 24, 1881.
 24 Violle, C. R. 85, 1877; 87, 1878.
 25 Regnault, Ann. d. chim. (2) 73, 1840; (3) 63, 1861.
 26 Behs, Wied, Ann. 66, 1898; Ann. d. Phys. (4) 1, 1900.
 27 Schmitz, Pr. Roy. Soc. 72, 1903.
 28 Nichol, Phil. Mag. (5) 12, 1881.
 29 Hill, Verh. d. phys. Ges. 3, 1901.
 30 Spring, Bull. de Belg. (3) 11, 1886; 29, 1895.
 31 Laemmel, Ann. d. Phys. (4) 16, 1905.
 32 Barnes-Cooke, Phys. Rev. 16, 1903.
 33 Wiegand, Fort. d. Phys. 1906.
 34 Tilden, Pr. Roy. Soc. 66, 1900, 71, 1903; Phil. Trans.
 (A) 194, 1900; 201, 1903.

- 34 Tilden, Pr. Roy. Soc. 66, 1900, 71, 1903;
 (A) 194, 1900; 201, 1903.
 35 White, Phys. Rev. 28, 1909.
 36 Dewar, Ch. News, 92, 1905.
 37 Kopp, Phil. Trans. London, 155, 1865.
 38 Nilson, C. R. 96, 1833.
 39 Nilson-Pettersson, Zt. phys. Ch. 1, 1887.
 40 Mache, Wien. Ber. 106, 1897.
 41 Blümcke, Wied. Ann. 24, 1885.
 42 Mixter-Dana, Lieb. Ann. 169, 1873.
 43 Magnus, Ann. 4 Phys. 32, 1919.

- 43 Magnus, Ann. d. Phys. 31, 1910.
- * When one temperature alone is given, the "true" specific heat is given; otherwise, the "mean" specific heat. Compiled in part from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TABLE 228. - Specific Heat of Water and of Mercury.

Specific Heat of Water.								Specific Heat of Mercury.			
Temper- ature, °C.	Barnes.	Rowland.	Barnes- Regnault.	Temper- ature, °C.	Barnes.	Barnes- Regnault.	Temper- ature, °C.	Specific Heat.	Temper- ature, °C.	Specific Heat.	
-5	1.0155	-	_	60	0.9988	0.9994	0	0.03346	90	0.03277	
0	1.0091	-	1.0094	65	.9994	1.0004	5	.03340	100	.03269	
+5	1.0050	1.0054	1.0053	70	1.0001	1.0015	10	.03335	110	.03262	
10	1.0020	1.0019	1.0023	80	1.0014	1.0042	15	.03330	120	.03255	
15	1.0000	1.0000	1.0003	90	1.0028	1.0070	20	.03325	130	.03248	
20	0.9987	0.9979	0.9990	100	1.0043	1.0101	25	.03320	140	.03241	
25	.9978	.9972	.9981	120	-	1.0162	30	.03316	150	.0324	
30	.9973	.9969	.9976	140		1.0223	35	.03312	170	.0322	
35	.9971	.9981	.9974	160	_	1.0285	40	.03308	190	.0320	
40	.997I	-	.9974	180	-	1.0348	50	.03300	210	.0319	
45	.9973	-	.9976	200	_	1.0410	60	.03294	-	-	
50	-9977	-	.9980	220		1.0476	70	.03289		-	
55	.9982	-	.9985		_		80	.03284	-	-	

Barnes's results: Phil. Trans. (A) 199, 1902; Phys. Rev. 15, 1902; 16, 1903. (H thermometer.)

Rowland's as revised by Pernet. (H thermometer.)

Barnes-Regnault's as revised by Peabody; Steam Tables. The mercury data from o° C to 80, Barnes-Cooke (H thermometer); from 90° to 140, mean of Winklemann, Nac-cari and Milthaler (air thermometer); above 140°, mean of Naccari and Milthaler.

TABLE 229. - Specific Heat of Various Solids.*

TABLE 230. - Specific Heat of Various Liquids.*

Liquid.		Temper- ature °C.		Author-	Liquid.	Temper- ature °C.		Author- ity.†
Alcohol, ethyl " " " " " " " " " " " " " " " " " "	11N	-20 0 40 5-10 15-20 15 30 50 40 65 53 65 0 15-50 14	0.5053 .548 .648 .590 .601 .514 .520 .340 .423 .482 .464 .482 .529 .576 .350	R " " " G " " " " H-D " " B " R E A	Nitrobenzole Napthalene, C ₁₀ H ₈ " Oils: castor citron olive sesame turpentine Petroleum Toluol, C ₆ H ₈ " CaCl ₂ , sp. gr. I.14 " " " " " " " " " " " " " " " " " "	28 80-85 90-95 - 5.4 6.6 - 0 21-58 10 65 85 -15 0 +20 -20	0.362 -396 -409 -434 -438 -471 -387 -411 -364 -490 -534 -775 -787 -695	A B " W H W R Pa H-D " " DMG " "

^{*} These specific heat tables are compiled partly from more extended tables in Landolt-Börnstein-Meyerhoffer's Tables.
† For references see Table 230, page 231.
SMITHSONIAN TABLES.

TABLE 230. - Specific Heat of Various Liquids.

Liquid.	Tempera- ture °C.		Author- ity.	Liquid.	Tempera- ture ^o C.		Author- ity.
CaCl ₂ , sp. gr. 1.20 . """" """. """. CuSo ₄ +50 H ₂ O "+200" "+400" ZnSO ₄ +50 H ₂ O . "+200"	0 +20 -20 0 +20 12-15 12-14 13-17 20-52 20-52	0.712 ·725 .651 .663 .676 .848 .951 .975 .842 .952	DMG	KOH + 30 H ₂ O	17.5	0.876 -975 -942 -983 -791 -978 -980 -938 -993	TH 66 66 66 66 66 66 66 66 66 66 66
AM, A. M. Mayer. B, Batelli. D, Dewar. E, Emo. G, Griffiths. H-D, de Heen and HM, H. Meyer. L, Lorenz. Ln, Luginen. M, Mazotto.				P, Person.	T, Ton S, Schi Th, Th W, Wa Wn, W	iz. omsen. ichsmut inkelm	h.

TABLE 231. - Specific Heat of Minerals and Rocks.

Substance.	Tempera- ture ° C.	Specific Heat.	Refer-	Substance.	Tempera-	Specific Heat.	
	ture C.	rieat.	ence.		ture C.	Heat.	ence.
Andalusite	0-100	0.1684	ı	Rock-salt	13-45	0.210	6
Anhydrite, CaSO ₄	0-100	.1753	ī	Serpentine	16-98	.2586	2
Apatite	15-99	.1903	2	Siderite	9-98	.1934	4
Asbestos	20-98	.195	3	Spinel	15-47	.1934	6
Augite	20-98	.1931	3	Talc	20-98	.2002	
Barite, BaSO4	10-98	.1128	4	Topaz	0-100	.2007	3
Bervl	15-99	.1979	2	Wollastonite .	19-51	.178	6
Borax, Na ₂ B ₄ O ₇ fused	16-98	.2382	4	Zinc blende, ZnS.		.1146	1
Calcspar, CaCO ₈	0-50	.1877	I	Zircon	21-51	.132	6
	0-100	.2005	I	Rocks:			
" "	0-300	.2204	I	Basalt, fine, black	12-100	.1996	6
Casiderite, SnO ₈	16–98	.0933	4	66 66 66	20-470	.199	9
Corundum	9-98	.1976	4		470-750	.243	9
Cryolite, Al ₂ Fl ₆ .6NaF	16-99	.2522	2	66 66 66	750-880	.626	9
Fluorite, CaF ₂	15-99	.2154	4		880-1190	.323	9
Galena, PbS	0-100	.0466	5	Dolomite	20–98	.222	3
Garnet	16-100	.1758	2	Gneiss	17-99	.196	10
Hematite, Fe ₂ O ₃	15-99	.1645	2		17-213	.214	IO
Hornblende	20-98	.1952	3	Granite	12-100	.192	7
Hypersthene	20-98	.1914	3	Kaolin	20–98	.224	3
Labradorite	20-98	.1949	3 6	Lava, Aetna .	23-100	.201	II
Magnetite	18-45	.156		" Kilauea	31-776	.259	II
Malachite, Cu ₂ CO ₄ .H ₂ O	15-99	.1763	2	* * .	25-100	.197	II I2
Mica (Mg)	20–98 20–98	.2080	3	Limestone	0-100	.216	12
Oligoclase	20-98	.2048	3	Ouartz sand .	20-98		1 1
Orthoclase	15-99	.1877	3	Sandstone .	20-90	.191	3
Pyrites, copper	15-99 15-99	.1291	2	Danusione		.22	
Pyrolusite, MnO ₂ .	17-48	.159	6	T 1 1 C T		- D4-1	12
Ouartz, SiO ₂	12-100	.188			- F F	1 Bartol 2 Morai	
" "	0	.1737	7 8		onchon.	z worai	10.
"	350	.2786	8		oncnon. oberts-Aus	ten Riio	ker
"	400-1200	.305	8		. Weber.	ten, Ruc	rci.
				5 Trideit. 10 K.	. 11 61/61.		

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TABLE 232.

SPECIFIC HEATS OF GASES AND VAPORS.

Substance.	Range of Temp. °C.	Sp. Ht. Constant Pressure.	Authority.	Range of Temp. ° C.	Mean Ratio of Specific Heats. C _P /C _T .	Authority.
Acetone, C ₂ H ₆ O	26-110 27-179 129-233 -30-+10 0-100 0-200 20-440 20-630	0.3468 0.3740 0.4125 0.2377 0.2374 0.2375 0.2366 0.2429	Wiedemann. Regnault. " " Holborn and Austin.	5-14	1.4025	Lummer and Pringsheim.
" C ₂ H ₅ OH . " C ₂ H ₅ OH . " C ₂ H ₈ OH . Ammonia	20-800 108-220 - 101-223 23-100 27-200	0.2430 0.4534 - 0.4580 0.5202 0.5356	Regnault. Regnault. Wiedemann.	53 100 100 0	1.133 1.134 1.256 1.3172 1.2770	Jaeger. Stevens, " Wüllner.
Argon	24-216 20-90 34-115 35-180 116-218 83-228 19-388	0.5125 0.1233 0.2990 0.3325 0.3754 0.0555 0.0553	Regnault. Dittenberger. Wiedemann. Regnault. Strecker.	0 20 60 99-7 20-388	1.667 1.403 1.403 1.105 1.293	Niemeyer. Pagliani. " Stevens Strecker.
Carbon dioxide, CO ₂ . "" "" " "" "" " monoxide, CO . "" ""	-28-+7 15-100 11-214 23-99 26-198	0.1843 0.2025 0.2169 0.2425 0.2426	Regnault. " Wiedemann.	4-II 0 100	1.2995 1.403 1.395	Lummer and Pringsheim. Wüllner.
" disulphide, CS ₂ Chlorine	86-190 13-202 16-343 27-118 28-189	0.1596 0.1241 0.1125 0.1441 0.1489	Regnault. "Strecker. Wiedemann.	3-67 20-340 0 22-78 99.8	1.205 1.323 1.336 1.102 1.150	Beyme. Strecker. Martini. Beyme. Stevens.
Ether, C ₄ H ₁₀ O	69-224 27-189 25-111 13-100 22-214	0.4797 0.4618 0.4280 0.1940 0.1867	Regnault. Wiedemann. " Strecker. Regnault.	3-46 42-45 12-20 20 100	1.025 1.029 1.024 1.389	Beyme. Müller. Low. Strecker.
Hydrogen " " sulphide,H ₂ S Methane, CH ₄	-28-+9 12-198 21-100 20-206 18-208	3.3996 3.4090 3.4100 0.2451 0.5929	Wiedemann. Regnault.	4-16 10-40 11-30	1.4080 1.276 1.316	Lummer and Pringsheim. Müller.
Nitrogen Nitric oxide, NO	0-200 20-440 20-630 20-800 13-172	0.2438 0.2419 0.2464 0.2497 0.2317	Holborn and Austin. Regnault.	_	1.41	Cazin.
Nitrogen tetroxide, NO ₂ "" "" Nitrous oxide, N ₂ O "" ""	27-67 27-150 27-280 16-207 26-103	1.625 1.115 0.65 0.2262 0.2126	Berthelot and Olger. Regnault. Wiedemann.	0 100	1.31 1.311 1.272	Wüllner.
Oxygen	27-206 13-207 20-440 20-630 16-202	0.2241 0.2175 0.2240 0.2300 0.1544	Regnault. Holborn and Austin. Regnault.	5-14	1.3977	Lummer and Pringsheim. Müller.
Water vapor, H ₂ O	180	0.4655 0.421 0.51	Thiesen.	78 94	I.274 I.33	Beyme. Jaeger.

THERMOMETERS.

TABLE 233. - Gas and Mercury Thermometers.

If $t_{\rm H}$, $t_{\rm N}$, $t_{\rm cos}$, $t_{\rm 16}$, $t_{\rm 59}$, $t_{\rm T}$, are temperatures measured with the hydrogen, nitrogen, carbonic acid, $16^{\rm III}$, $59^{\rm III}$, and "verre dur" (Tonnelot), respectively, then

verre dur" (Tonnelot), respectively, then
$$t_{\rm H} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[-0.61859 + 0.0047351.t - 0.000011577.t^2 \right] *$$

$$t_{\rm N} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[-0.55541 + 0.0048240.t - 0.000024807.t^2 \right] *$$

$$t_{002} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[-0.33386 + 0.0039910.t - 0.000016678.t^2 \right] *$$

$$t_{\rm H} - t_{16} = \frac{(100 - t)t}{100^2} \left[-0.67039 + 0.0047351.t - 0.000011577.t^2 \right] t$$

$$t_{\rm H} - t_{59} = \frac{(100 - t)t}{100^2} \left[-0.31089 + 0.0047351.t - 0.000011577.t^2 \right] t$$

TABLE 234. $t_H - t_{16}$ (Hydrogen - 16^{III}).

	00	10	20	3°	4°	5°	6°	7°	80	90
0° 10 20 30 40 50 60 70 80 90	.000°056093113120116103083058030	007°061096114120115101081056027	013°0650981151120114099078053024		025°073103117119111096074048018	031°077105118119110094071045015	036°080107119118109092069042012	042°084109119118107090066039009	047°087110119117106087064036006	090 112 120 116 104

TABLE 235. $t_H - t_{59}$ (Hydrogen - 59^{III}).

	oo	10	20	30	40	5°	60	70	80	90
0° 10 20 30 40 50 60 70 80 90 100	.000°024035038034026016008001 +.002	003°025036037033025015007001 +.002	006°027036037032024015006 .000 +.002	009°028037037032023014005 .000 +.002	011°030037037031022013005 +.001 +.002	014°031037036030021012004 +.001 +.002	016°032038036029020011003 +.001	033	020°034038035028018009002 +.002	022°035038034027017008001 +.002

TABLE 236. (Hydrogen - 16^{III}), (Hydrogen - 59^{III}).

	—5°	-100	—15°	— 20°	-25°	-30°	-35°
t _H — t ₁₆	+0.04°	+0.08°	+0.13°	+0.10°	+0.25°	+0.32°	+0.40°
t _H — t ₅₉	+0.02°	+0.04°	+0.07°		+0.14°	+0.18°	+0.23°

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

^{*} Chappuis; Trav. et Mém. du Bur. internat. des Poids et Mes. 6, 1888.
† Thiesen, Scheel, Sell; Wiss. Abh. d. Phys. Techn. Reichanstalt, 2, 1895; Scheel; Wied. Ann. 58, 1896; D. Mech. Ztg. 1897.

AIR AND MERCURY THERMOMETERS.

TABLE 237. t_{AIR}-t₁₆. (Air-16^{III}.)

°C.	o°	ı°	20	3°	40	5°	60	7°	80	90
0 10 20 30 40 50 60 70 80 90	.000 049 083 103 110 107 096 078 054 028	006 053 086 104 110 107 095 076 052 025	012 057 089 105 111 106 093 074 049 023	017 061 091 106 111 105 092 072 047 020	022 065 093 107 110 104 090 070 044 017	027 068 095 108 110 103 088 067 041	032 071 097 109 110 086 065 039 011	037 074 099 110 101 084 062 036 009	04I 077 10I 110 109 100 082 060 034 006	045 080 102 110 108 098 080 057 031
100 110 120 130 140 150 160 170 180	.000 +.028 +.053 +.074 +.090 +.098 +.097 +.084 +.059 +.019	+.003 +.030 +.055 +.076 +.091 +.098 +.096 +.082 +.055 +.014	+.006 +.033 +.057 +.078 +.092 +.098 +.095 +.080 +.052 +.009	+.008 +.035 +.060 +.080 +.093 +.099 +.078 +.048 +.004	+.011 +.038 +.062 +.081 +.094 +.099 +.093 +.076 +.045 001	+.014 +.041 +.064 +.083 +.095 +.099 +.092 +.073 +.041 007	+.017 +.043 +.066 +.084 +.096 +.098 +.090 +.071 +.037 013	+.019 +.046 +.068 +.086 +.096 +.098 +.068 +.068 +.033 019	+.022 +.048 +.070 +.087 +.097 +.098 +.088 +.065 +.028	+.025 +.050 +.072 +.089 +.097 +.097 +.086 +.062 +.023 031
200 210 220 230 240 250 260 270 280 290 300	038 113 208 325 466 632 825 -1.048 -1.301 -1.588 -1.908	045 122 219 338 481 650 846 -1.072 -1.328 -1.618	051130230351497668867 -1.096 -1.356 -1.649	058139241365513687889 -1.121 -1.384 -1.680	066148252378529706911 -1.146 -1.412 -1.711	0731582643925467259331.1711.4401.743	080168275407562745955 -1.196 -1.469 -1.776	088177287765765978 -1.222 -1.4981.808	0961873004365977851.0011.2481.5281.841	105 198 312 450 614 805 -1.025 -1.274 -1.558 -1.874

TABLE 238. tain-tsp. (Air-5911.)

°C.	00	10	2 0	3°	40	5°	60	7 °	80	90
100	.000	.000	.000	.000	.000	.000	.000	•000	.000	.000
IIO	.000	.000	.000	001	001	001	oo1	001	002	002
120	002	002	002	002	002	003	003	003	004	004
130	004	004	005	005	006	006	006	007	007	008
140	008	008	009	009	010	010	011	011	012	012
150	013	013	014	015	016	016	016	017	018	019
160	019	020	021	021	022	023	024	025	026	027
170	028	029	030	031	032	033	034	035	037	038
180	039	040	041	043	044	045	046	048	049	051
190	052	053	055	056	057	059	060	062	064	066
200	067									
L	l									

GAS, MERCURY, ALCOHOL, TOLUOL, PETROLETHER, PENTANE, AND PLATINUM-RESISTANCE THERMOMETERS.

TABLE 239. tH-tm (Hydrogen-Mercury).

Temper- ature, C.	Thuringer Glass.*	Verre dur. Tonnelot.†	Resistance Glass.*	English Crystal Glass.*	Choisy-le- Roi.*	122 ^{III} .*	Nitrogen Thermometer. T _H —T _N .†	CO ₂ Thermometer. TH—T _{CO₂} .†
0	0	0	0	0	0	0	0	0
0	.000	.000	,000	.000	.000	.000	.000	.000
10	075	052	066	008	007	005	006	025
20	125	0 85	108	00I	004	 .006	010	043
30	 156	102	131	十.017	+.004	002	011	054
40	168	107	140	十.037	+.014	+.001	orr	059
50 60	166	103	135	+.057	+.025	+.004	009	059
60	150	090	119	+.073	+.033	+.008	005	053
70	124	072	095	+.079	+.037	+.009	001	044
80	088	050	068	+.070	+.032	+.007	+.002	031
90	047	026	034	+.046	+.022	+.006	+.003	016
100	.000	.000	.000	.000	.000	•000	.000	.000

^{*} Schlösser, Zt. Instrkde. 21, 1901.

TABLE 240. — Comparison of Air and High Temperature Mercury Thermometers.

Comparison of the air thermometer with the high temperature mercury thermometer, filled under pressure and made of 50^{11} glass.

Air.	59 ^{III} •	Air.	59 ^{III} .
0	0	0	0
0	0.	375 400	385.4 412.3
100	100.	400	412.3
200	200.4	425	440.7
300	304.1	450	469.1
325	330.9	475	498.0
350	330.9 358.1	500	527.8

Mahlke, Wied. Ann. 1894.

TABLE 241. - Comparison of Hydrogen and Other Thermometers.

Comparison of the hydrogen thermometer with the toluol, alcohol, petrolether, and pentane thermometers (verre dur).

Hydrogen.	Toluol.*	Alcohol I.*	Alcohol II.*	Petrolether.†	Pentane.‡
0 -10 -20 -30 -40 -50 -60 -70 -100 -150	0.00 -8.54 -16.90 -25.10 -33.15 -41.08 -48.90 -56.63	0.00 -9.31 -18.45 -27.44 -36.30 -45.05 -53.71 -62.31	0.00 -9.44 -18.71 -27.84 -36.84 -45.74 -54.55 -63.31		0.00 -9.03 -17.87 -26.55 -35.04 -43.36 -51.50 -59.46 -82.28 -116.87 -146.84

^{*} Chappuis, Arch. sc. phys. (3) 18, 1892. † Holborn, Ann. d. Phys. (4) 6, 1901. ‡ Rothe, unpublished.
All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

[†] Chappuis, Trav. et mém. du Bur. Intern. des Poids et Mes. 6, 1888.

CORRECTION FOR TEMPERATURE OF MERCURY IN THERMOMETER STEM.

The Stem Correction is proportional to $n\beta(T-t)$: where n is the number of degrees in the exposed stem; β is the apparent coefficient of expansion of mercury in the glass; T is the measured temperature; and t is the mean temperature of the exposed stem determined by another thermometer, exposed some 10 cm. from, and at about half the height of, the exposed stem of the first.

For temperatures up to 100°C, the value of β is for:

Jena glass XVI^{III} or Greiner and Friedrich resistance glass, $\frac{1}{6300}$ or 0.000159;

Jena glass 59¹¹¹, $\frac{1}{6100}$ or 0.000164.

At 100° the correction is in round numbers 0.01° for each degree of the exposed stem; at 200° 0.02°; and for higher temperatures proportionately greater. At 500° it may amount to 0.07° for each exposed degree,

Tables 242-244 are taken from Rimbach, Zeitschrift für Instrumentenkunde, 10, 153, 1890, and apply to thermometers of Jena or of resistance glass.

TABLE 242. - Stem Correction for Thermometer of Jena Glass (0°-360° C.).

Degree length 0.9 to 1.1 mm; t = the observed temperature; t' = that of the surrounding air 1 dm. away; n = the length of the exposed thread.

Correction to be added to the Reading $m{t}$.										
tv										
70 °	80°	90°	100°	120°	140°	160°	180°	200°	220°	
0.01	0.01	0.03	0.04	0.07	0.10	0.13	0.17	0.19	0.21	
0.25 0.30 0.41	0.35 0.46	0.4I 0.52	0.30 0.48 0.59	0.42	0.48 0.6 7 0.89	0.54 0.77 0.98	0.92	1.08 1.38	0.87 1.20 1.53	
0.63	0.74	0.85	0.98	1.20	1.11 1.32 1.53	1.23 1.45 1.70	1.70	1.99	1.87 2.21 2.54	
0.8 7 0.98	0.99	1.13	1.28 1.47	1.62 1.82	2.03	1.94 2.20	1.25 2.55	2.60 2.92	2.89 3.24 3.96	
-	-	-	-	2.75	2.97	3.22 3.80	3·75 4·35	4.24	4.69 5.45	
-	-		_	-	-	4.37	4.99 5.68	5.03 6.34 7.05	6.22 6.98 7.82	
	0.01 0.08 0.25 0.30 0.41 0.52 0.63 0.75 0.87	0.01 0.01 0.08 0.12 0.25 0.28 0.30 0.35 0.41 0.46 0.52 0.60 0.63 0.74 0.75 0.87 0.87 0.99 0.98 1.12	70° 80° 90° 0.01 0.01 0.03 0.08 0.12 0.14 0.25 0.28 0.32 0.30 0.35 0.41 0.41 0.46 0.52 0.52 0.60 0.68 0.63 0.74 0.85 0.75 0.87 1.01 0.87 0.99 1.13 0.98 1.12 1.29	70° 80° 90° 100° 0.01 0.01 0.03 0.04 0.08 0.12 0.14 0.19 0.25 0.28 0.32 0.36 0.30 0.35 0.41 0.48 0.41 0.46 0.52 0.59 0.52 0.60 0.68 0.79 0.63 0.74 0.85 0.98 0.75 0.87 1.01 1.15 0.87 0.99 1.13 1.28 0.98 1.12 1.29 1.47 - - - - - - - -	70° 80° 90° 100° 120° 0.01 0.01 0.03 0.04 0.07 0.08 0.12 0.14 0.19 0.25 0.25 0.28 0.32 0.36 0.42 0.30 0.35 0.41 0.48 0.60 0.41 0.46 0.52 0.59 0.79 0.52 0.60 0.68 0.79 0.99 0.63 0.74 0.85 0.98 1.20 0.75 0.87 1.01 1.15 1.38 0.87 0.99 1.13 1.28 1.62 0.98 1.12 1.29 1.47 1.82 - - - 1.88 2.28 - - - 2.75	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

CORRECTION FOR TEMPERATURE OF MERCURY IN THERMOMETER STEM (continued).

TABLE 243. - Stem Correction for Thermometer of Jena Glass (0°-360° C).

Degree length 1 to 1.6 mm.; t = the observed temperature; t' = that of the surrounding air one dm. away; n = the length of the exposed thread.

		Co	RRECTIO	N TO BE	ADDED T	о Тнекм	OMETER	Reading	.*		
					t-	- t'					
n	70 °	80°	90°	100°	120°	140°	160°	180°	200°	220°	n
10° 20 30 40	0.02 0.13 0.24 0.35	0.03 0.15 0.28 0.41	0.05 0.18 0.33 0.48	0.07 0.22 0.39 0.56	0.11 0.29 0.48 0.68	0.17 0.38 0.59 0.82	0.21 0.46 0.70 0.94	0.27 0.53 0.78 1.04	0.33 0.61 0.88 1.16	0.38 0.67 0.97 1.28	10° 20 30 40
50 60 70 80	0.47 0.57 0.69 0.80	0.53 0.66 0.79 0.91	0.62 0.77 0.92 1.05	0.72 0.89 1.06 1.21	0.88 1.09 1.30 1.52	1.03 1.25 1.47 1.71	1.17 1.42 1.67 1.94	1.31 1.58 1.86 2.15	I.44 I.74 2.04 2.33	1.59 1.90 2.23 2.55	50 60 70 80
90 100 110 120	0.91 1.02 - -	1.04 1.18 - -	1.19	1.38 1.56 1.78 1.98	1.73 1.97 2.19 2.43	1.96 2.18 2.43 2.69	2.20 2.45 2.70 2.95	2.42 2.70 2.98 3.26	2.64 2.94 3.26 3.58	2.89 3.23 3.57 3.92	90 100 110 120
130 140 150 160	-	- - -	-	-	2.68 2.92 - -	2.94 3.22 -	3.20 3.47 3.74 4.00	3.56 3.86 4.15 4.46	3.89 4.22 4.56 4.90	4.28 4.64 5.01 5.39	130 140 150 160
170 180 190 200	-	-	-	-	- - -	-	4.27 4.54 -	4.76 5.07 5.38 5.70	5.24 5.59 5.95 6.30	5.77 6.15 6.54 6.94	170 180 190 200
210 220	-	-	-	-	-	-	-	-	6.68 7.04	7·35 7·75	210 220

^{*} See Hovestadt's "Jena Glass" (translated by J. D. and A. Everett) for data on changes of thermometer zeros.

TABLE 244.—Stem Correction for a so-called Normal Thermometer of Jena Glass (0°-100° 0).

Divided into tenth degrees; degree length about 4 mm.

	Correction to be added to the Reading $oldsymbol{t}$.												
	t-t'												
n	30° 35° 40° 45° 50° 55° 60° 65° 70° 75° 80° 85°												
10 20 30 40 50 60 70 80 90	0.04 0.12 0.21 0.28 0.36 0.45	0.04 0.12 0.22 0.29 0.38 0.48	0.05 0.13 0.23 0.31 0.40 0.51	0.05 0.14 0.24 0.33 0.42 0.53	0.05 0.15 0.25 0.35 0.44 0.55	0.06 0.16 0.25 0.37 0.46 0.57 0.66	0.06 0.17 0.27 0.39 0.48 0.60 0.69 0.76	0.07 0.18 0.29 0.41 0.50 0.63 0.71 0.81	0.08 0.19 0.31 0.43 0.53 0.66 0.75 0.87 0.99	0.09 0.20 0.33 0.45 0.57 0.69 0.81 0.93 1.06	0.10 0.22 0.35 0.48 0.61 0.73 0.87 1.00 1.13	0.10 0.23 0.37 0.51 0.65 0.78 0.92 1.06 1.20	

RADIATION CONSTANTS.

TABLE 245. - Radiation Formulæ and Constants for Perfect Radiator.

The radiation per sq. cm. from a "black body" (exclusive of convection losses) at the temperature T° (absolute, C) to one at ℓ° is equal to

$$J=\sigma$$
 (T^4-t^4) (Stefan-Boltzmann);
where $\sigma=1.277\times 10^{-12}$ gramme-calories per second per sq. centimetre.
= 7.66×10^{-11} " " minute " "

= 5.32×10^{-12} watts per sq. centimetre.

The distribution of this energy in the spectrum is represented by Planck's formula:

$$J_{\lambda} = C_1 \lambda^{-5} \left[e^{\frac{C_2}{\lambda T}} - \mathbf{I} \right]^{-1}$$

where f_{λ} is the intensity of the energy at the wave-length λ (λ expressed in microns, μ) and e is the base of the Napierian logarithms. From Kurlbaum's value of the difference of the total energy radiated from black bodies at 100° C and 0° C, $f_{100} - f_0 = 0.0731$ watts per square centimetre (whence the above value of σ) and $\lambda_{\max} T = 2930$ (the mean of Paschen's and Lummer's values), the following constants have been calculated (see Planck, Ann. d. Phys. 4, p. 562, 1901):

$$C_1 = 8.813 \times 10^8 \text{ for } J \text{ in } \frac{gram. \ cal.}{sec. \ cm.^2} = 3.688 \times 10^4 \text{ for } J \text{ in } \frac{watts}{cm.^2}$$
 $C_2 = 14550 \text{ for } \lambda \text{ in microns } (\mu)$
 $J_{\text{max}} = 2.869 \times 10^{-16} \ T^5 \text{ for } J \text{ in } \frac{gram. \ cal.}{sec. \ cm.^2} = 1.200 \times 10^{-15} T^5 \text{ for } J \text{ in } \frac{watts}{cm.^2}$
 $\lambda_{\text{max}} T = 2930 \text{ for } \lambda \text{ in microns } (\mu)$.

TABLE 246. — Radiation in Gramme-Calories per 24 Hours from a Perfect Radiator at t° C to an absolutely Cold Space (-273° C).

Computed from the Stefan-Boltzmann formula (Ekholm, Met. Z 1902).

f° C	60	60 78 99 124 153 187 227	•° C -10 -8 -6 -4 -2 0 +2	528 544 561 578 595 613 631	+12 +14 +16 +18 +20 +22 +24	728 748 769 791 813 836 859	+34 +36 +38 +40 +42 +44 +46	980 1006 1032 1059 1086 1114 1142	+56 +58 +60 +70 +80 +90 +100	1530 1713 1916 2134
	—60 —50 —40 —30				11 : :	859 882 906 930 955		1142 1171 1201		

TABLE 247. — Values of J_{λ} for Various Temperatures Centigrade.

Ekholm, Met. Z. 1902, used $C_1 = 8346 \times 10$ and $C_2 = 14349$, and for the unit of time the day. For 10°, the values for J_A have been multiplied by 10, for the other temperatures by 100.

λ	T= 100° C	30° C	15° C	°° C	-30° C	80° C	λ	100° C	30° C	15° C	•° C	-30° C	—80° C
2 3 4 56 7 8 9 10 11 12 13 14 15 16	1 80 469 1047 1526 1768 1810 1724 1573 1398 1225 1063 918 792 683 590	0 41 508 1777 3464 4954 5928 6382 6386 6127 5712 5222 4713 4220 3759 3340	0 18 272 1085 2296 3481 4352 4834 4979 4833 4633 4300 3930 3556 3198 2862	0 7 138 628 1454 2353 3088 3646 3781 3798 3676 3467 3215 2944 2417	0 1 27 172 493 931 1372 1730 1971 2098 2114 2090 2004 1889 1760 1626	0 0 1 8 39 105 203 316 426 520 592 649 666 673 663 649	18 19 20 21 22 23 24 25 26 28 30 40 50 60 80 100	511 443 386 337 295 259 228 202 179 142 114 44 20 10	2961 2626 2329 2068 1840 1639 1462 1307 1170 947 771 311 146 77	2557 2281 2034 1816 1622 1448 1165 1047 850 696 285 135 725 11	2175 1954 1754 1574 1413 1270 1141 1028 926 757 623 259 124 66 24	1491 1363 1242 1129 1026 931 846 768 698 579 482 209 102 555 20	623 594 561 527 494 460 428 398 369 317 272 130 67 38 14 7

COOLING BY RADIATION AND CONVECTION.

TABLE 248. - At Ordinary Pressures.

According to McFarlane* the rate of loss of heat by a sphere placed in the centre of a spherical enclosure which has a blackened surface, and is kept at a constant temperature of about 14° C, can be expressed by the equations

$$e = .000238 + 3.06 \times 10^{-6}t - 2.6 \times 10^{-8}t^{2}$$

when the surface of the sphere is blackened, or

when the surface is that of polished copper. In these equations, e is the amount of heat lost in c. g. s. units, that is, the quantity of heat, small calories, radiated per second per square centimetre of surface of the sphere, per degree difference of temperature t, and t is the difference of temperature between the sphere and the enclosure. The medium through which the heat passed was moist air. The following table gives the results.

Differ- ence of	Valu	e of e.	Ratio.
tempera- ture	Polished surface.	Blackened surface.	Katio.
5	.000178	.000252	.707
10	.000186	.000266	.699
15	.000193	.000279	.692
20	.000201	.000289	.695
25	.000207	.000298	.694
30	.000212	.000306	.693
35	.000217	.000313	.693
40	.000220	.000319	.693
45	.000223	.000323	.690
50	.000225	₊00 0326	.690
55	.000226	.000328	.690
60	.000226	.000328	.690

TABLE 249. - At Different Pressures.

Experiments made by J. P. Nicol in Tait's Laboratory show the effect of pressure of the enclosed air on the rate of loss of heat. In this case the air was dry and the enclosure kept atabout 80 C.

Polishe	ed surface.	Blacken	ed surface.							
ŧ	et	t	et							
Pressure 76 cms. of Mercury.										
63.8 57.1 50.5 44.8 40.5 34.2 29.6 23.3 18.6	.00987 .00862 .00736 .00628 .00562 .00438 .00378 .00210	61.2 50.2 41.6 34.4 27.3 20.5	.01746 .01360 .01078 .00860 .00640 .00455							
Pres	SURE 10.2 CA	s. of Me	RCURY.							
67.8 61.1 55 49.7 44.9 40.8	.00492 .00433 .00383 .00340 .00302 .00268	62.5 57.5 53.2 47.5 43.0 28.5	.01298 .01158 .01048 .00898 .00791							
PR	ESSURE 1 CM	. of Merc	CURY.							
65 60 50 40 30 23.5	.00388 .00355 .00286 .00219 .00157 .00124	62.5 57.5 54.2 41.7 37.5 34.0 27.5 24.2	.01182 .01074 .01003 .00726 .00639 .00569 .00446							

^{* &}quot;Prec. Roy. Soc." 1872. † "Prec. Roy. Soc." Edinb. 1869. See also Compan, Annal. de chi. et phys. 26, p. 526.

COOLING BY RADIATION AND CONVECTION.

TABLE 250. - Cooling of Platinum Wire in Copper Envelope.

Bottomley gives for the radiation of a bright platinum wire to a copper envelope when the space between is at the highest vacuum attainable the following numbers:—

$$t=408^{\circ}$$
 C., $et=378.8 \times 10^{-4}$, temperature of enclosure 16° C. $t=505^{\circ}$ C., $et=726.1 \times 10^{-4}$, " 17° C.

It was found at this degree of exhaustion that considerable relative change of the vacuum produced very small change of the radiating power. The curve of relation between degree of vacuum and radiation becomes asymptotic for high exhaustions. The following table illustrates the variation of radiation with pressure of air in enclosure.

Temp. of enclosu	re 16° C., £= 408° C.	Temp. of enclosure 17° C., t=505° C.					
Pressure in mm.	· et	Pressure in mm.	et				
740. 440. 140. 42. 4. 0.444 .070 .034 .012 .0051	8137.0 × 10 ⁻⁴ 7971.0 " 7875.0 " 7591.0 " 6036.0 " 2683.0 " 1045.0 " 727.3 " 539.2 " 436.4 " 378.8 "	0.094 0.053 0.034 0.013 0.0046 0.0052 0.0019 Lowest reached but not measured }	1688.0 × 10 ⁻⁴ 1255.0 " 1126.0 " 920.4 " 831.4 " 767.4 " 746.4 "				

TABLE 251. - Effect of Pressure on Loss of Heat at Different Temperatures.

The temperature of the enclosure was about 15° C. The numbers give the total radiation in therms per square centimetre per second.

Temp. of		Pressure in mm.							
wire in C°.	10.0	1.0	0.25	0.025	About o.1 M.				
100° 200 300 400 500 600 700 800 900	0.14 .31 .50 .75 - - -	0.11 .24 .38 .53 .69 .85	0.05 .11 .18 .25 .33 .45 -	0.01 .02 .04 .07 .13 .23 .37	0.005 .0055 .0105 .025 .055 .13 .24 .40				

Note. — An interesting example (because of its practical importance in electric lighting) of the effect of difference of surface condition on the radiation of heat is given on the authority of Mr. Evans and himself in Bottomley's paper. The energy required to keep up a certain degree of incandescence in a lamp when the filament is dull black and when it is "flashed" with coating of hard bright carbon, was found to be as follows:—

Dull black filament, 57.9 watts. Bright " " 39.8 watts.

PROPERTIES OF STEAM.

Metric Measure.

The temperature Centigrade and the absolute temperature in degrees Centigrade, together with other data for steam or water vapor stated in the headings of the columns, are here given. The quantities of heat are in therms or calories according as the gramme or the kilogramme is taken as the unit of mass.

Temp. C.	Absolute temp.	Pressure in mm. of mercury.	Pressure in grammes per sq. centimetre == \$\theta\$.	Pressure in atmospheres.	Total heat of evaporation from o° at $t^{\circ} = H$.	Heat of liquid = \hat{h}.	Heat of evaporation $= H - h$.	Outer latent or external-work heat $= A \rho v$.*	Total heat of steam $=H-A p v$.	Inner latent or internal-work heat $=H-(h+Apv)$.	Litres per gramme, or cubic metres per kilog. == v.	Ratio of inner latent heat to volume of steam.
0° 5 10 15 20	273 278 283 288 293	4.60 6.53 9.17 12.70 17.39	6.25 8.88 12.47 17.27 23.64	0.006 .009 .012 .017	606.5 608.0 609.5 611.1 612.6	0.00 5.00 10.00 15.00 20.01	606.5 603.0 599.5 596.0 592.6	31.07 31.47 31.89 32.32 32.75	575.4 576.5 577.7 578.8 579.8	575.4 571.5 567.7 563.7 559.8	210.66 150.23 108.51 79.35 78.72	2.732 3.805 5.231 7.104 9.532
25 30 35 40 45	298 303 308 313 318	23.55 31.55 41.83 54.91 71.39	32.02 42.89 56.87 74.65 97.06	0.031 .042 .055 .072 .094	614.1 615.6 617.2 618.7 620.2	25.02 30.03 35.04 40.05 45.07	589.1 585.6 582.1 587.6 575.1	33.20 33.66 34.12 34.59 35.06	580.9 582.0 583.1 584.1 585.2	555.9 552.0 548.2 544.1 540.1	43.96 33.27 25.44 19.64 15.31	12.64 16.59 21.54 27.70 35.26
55 60 65 70	323 328 333 338 343	91.98 117.47 148.79 186.94 233.08	125.0 159.7 202.3 254.2 316.9	0.121 .155 .196 .246 .306	621.7 623.3 624.8 626.3 627.8	50.09 55.11 60.13 65.17 70.20	571.7 568.2 564.7 561.1 557.6	35.54 36.02 36.51 37.00 37.48	586.2 587.2 588.3 589.3 590.4	536.1 532.1 528.1 524.2 520.2	12.049 9.561 7.653 6.171 5.014	44.49 55.65 69.02 84.94 103.75
75 80 85 90 95	348 353 358 363 368	288.50 354.62 433.00 525.39 633.69	392.3 482.1 588.7 714.4 861.7	0.380 .446 .570 .691 .834	629.4 630.9 632.4 633.9 635.5	75.24 80.28 85.33 90.38 95.44	554.1 550.6 547.1 543.6 540.0	37.96 38.42 38.88 39.33 39.76	591.4 592.5 593.5 594.6 595.7	516.2 512.2 508.2 504.2 500.3	4.102 3.379 2.800 2.334 1.957	125.8 151.6 181. 5 216.0 255.7
100 105 110 115 120	373 378 383 388 393	760.00 906.41 1075.4 1269.4 1491.3	1033. 1232. 1462. 1726. 2027.	1.000 .193 .415 .670 .962	637.0 638.5 640.0 641.6 643.1	105.6 110.6	536.5 533.0 529.4 525.8 522.3	40.20 40.63 41.05 41.46 41.86	596.8 597.9 599.0 600.1 601.2	496.3 492.3 488.4 484.4 480.4	1.6496 1.3978 1.1903 1.0184 0.8752	300.8 352.2 410.3 475.6 549.0
125 130 135 140 145	398 403 408 413 418	1743.9 2030.3 2353.7 2717.6 3125.6	2371. 2760. 3200. 3695. 4249.	2.295 2.671 3.097 3.576 4.113	644.6 646.1 647.7 649.2 650.7	125.9 131.0 136.1 141.2 146.3	518.7 515.1 511.6 508.0 504.4	42.25 42.63 43.01 43.38 43.73	602.4 603.5 604.7 605.8 607.0	476.5 472.5 468.6 464.6 460.7	0.7555 0.6548 0.5698 0.4977 0.4363	630.7 721.6 822.3 933.5 1055.7
150 155 160 165 170	423 428 433 438 443	3581.2 4088.6 4651.6 5274.5 5961.7	4869. 5589. 6324. 7171. 8105.	4.712 5.380 6.120 6.940 7.844	652.2 653.8 655.3 656.8 658.3	151.5 156.5 161.7 166.9 172.0	500.8 497.2 493.5 489.9 486.3	44.09 44.43 44.76 45.09 45.40	608.2 609.3 610.5 611.7 612. 9	456.7 452.8 448.8 444.8 440.9	0.3839 0.3388 0.3001 0.2665 0.2375	1190. 1336. 1496. 1669. 1856.
175 180 185 190 195	448 453 458 463 468	6717.4 7546.4 8453.2 9442.7 10520.	9133. 10260. 11490. 12838. 14303.	8.839 9.929 11.123 12.425 13.842	659.9 661.4 662.9 664.4 666.0	177.2 182.4 187.6 192.8 198.0	482.7 479.0 475.3 471.7 468.0	45.71 46.01 46.30 46.59 46.86	614.2 615.4 616.6 617.9 619.1	436.9 433.0 429.0 425.0 421.1	0.2122 0.1901 0.1708 0.1538 0.1389	2059. 2277. 2512. 2763. 3031.
200	473	11689.	1 5892.	15.380	667.5	203.2	464.3	47.13	620.4	417.1	0.1257	3318.

^{*} Where A is the reciprocal of the mechanical equivalent of the thermal unit. $\uparrow \underbrace{\frac{H - (k + Apv)}{v}}_{\text{mechanical equivalent of heat}}.$ Where v is taken in litres the pressure is given per square decimetre, and where v is taken in cubic metres the pressure is given per square metre,—the mechanical equivalent being that of the therm and the kilogramme-degree or calorie respectively.

TABLE 253.

PROPERTIES OF STEAM.

British Measure.

The quantities given in the different columns of this table are sufficiently explained by the headings. The abbreviation B. T. U. stands for British thermal units. With the exception of column 3, which was calculated for this table, the data are taken from a table given by Dwelshauvers-Dery (Trans. Am. Soc. Mech. Eng. vol. xi.).

						1				
Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds,	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
1 3 4 5	144 288 432 576 720	0.068 .136 .204 .272 .340	102.0 126.3 141.6 153.1 162.3	334.23 173.23 117.98 89.80 72.50	0.0030 .0058 .0085 .0111	70.1 94.4 109.9 121.4 130.7	980.6 961.4 949.2 940.2 932.8	62.34 64.62 66.58 67.06 67.89	1043. 1026. 1011. 1007. 1001.	1113.0 1120.4 1127.0 1128.6 1131.4
6	864	0.408	170.1	61.10	0.0163	138.6	926.7	68.58	995.2	1133.8
7	1008	.476	176.9	53.00	.0189	145.4	921.3	69.18	990.5	1135.9
8	1152	.544	182.9	46.60	.0214	151.5	916.5	69.71	986.2	1137.7
9	1296	.612	188.3	41.82	.0239	156.9	912.2	70.18	982.4	1139.4
10	1440	.680	193.2	37.80	.0264	161.9	908.3	70.61	979.0	1140.9
11	1584	0.748	197.8	34.61	0.0289	166.5	904.8	70.99	975.8	1142.3
12	1728	.816	202.0	31.90	.0314	170.7	901.5	71.34	972.8	1143.5
13	1872	.884	205.9	29.58	.0338	174.7	898.4	71.68	970.0	1144.7
14	2016	.952	209.5	27.59	.0362	178.4	895.4	72.00	967.4	1145.9
15	2160	I.020	213.0	25.87	.0387	181.9	892.7	72.29	96 5 .0	1146.9
16 17 18 19 20	2304 2448 2592 2736 2880	1.088 .156 .224 .292 .360	216.3 219.4 222.4 225.2 227.9	24.33 22.98 21.78 20.70 19.72	0.0411 .0435 .0459 .0483	185.2 188.4 191.4 194.3 197.0	890.1 887.6 885.3 883.1 880.9	72.57 72.82 73.07 73.30 73.53	962.7 960.4 958.3 956.3 954.4	1147.9 1148.9 1149.8 1150.6 1151.4
21	3024	.429	230.5	18.84	0.0531	199.7	878.8	73·74	952.6	1152.2
22	3168	.497	233.0	18.03	.0554	202.2	876.8	73·94	950.8	1153.0
23	3312	.565	235.4	17.30	.0578	204.7	874.9	74·13	949.1	1153.7
24	3456	.633	237.7	16.62	.0602	207.0	873.1	74·3 ²	947.4	1154.4
25	3600	.701	240.0	15.99	.0625	209.3	871.3	74·51	945.8	1155.1
26 27 28 29 30	3744 3888 4032 4176 4320	1.769 .837 .905 .973 2.041	242.2 244.3 246.3 248.3 250.2	15.42 14.88 14.38 13.91 13.48	0.0649 .0672 .0695 .0619	211.5 213.7 215.7 217.8 219.7	869.6 867.9 866.3 864.7 863.2	74.69 74.85 75.01 75.17 75.33	944·3 942·8 941·3 939·9 938·5	1155.8 1156.4 1157.1 1157.7 1158.3
31	4464	2.109	252.1	13.07	0.0765	221.6	861.7	75.47	937·2	1158.8
32	4608	.177	253.9	12.68	.0788	223.5	860.3	75.61	935·9	1159.4
33	4752	.245	255.7	12.32	.0811	225.3	858.9	75.76	934·6	1159.9
34	4896	.313	257.5	11.98	.0835	227.1	857.5	75.89	933·4	1160.5
35	5040	.381	259.2	11.66	.0858	228.8	856.1	76.02	932·1	1161.0
36	5184	2.449	260.8	11.36	0.0881	230.5	854.8	76.16	931.0	1161.5
37	5328	.517	262.5	11.07	.0903	232.2	853.5	76.28	929.8	1162.0
38	5472	.585	264.0	10.79	.0926	233.8	852.3	76.40	928.7	1162.5
39	5616	.653	265.6	10.53	.0949	235.4	851.0	76.52	927.6	1162.9
40	5760	.722	267.1	10.29	.0972	236.9	849.8	76.63	926.5	1163.4
41 42 43 44 45	5904 6048 6192 6336 6480	2.789 .857 .925 .993 3.061	268.6 270.1 271.5 272.9 274.3	9.83 9.61 9.41 9.21	0.0995 .1018 .1040 .1063 .1086	238.5 239.9 241.4 242.9 244.3	848.7 847.5 846.4 845.2 844.1	76.75 76.86 76.97 77.07 77.18	925.4 924.4 923.3 922.3 921.3	1163.9 1164.3 1164.7 1165.2 1165.6
46	6624	3.129	275.6	9.02	0.1108	245.6	843.1	77.29	920.4	1166.0
47	6768	.197	277.0	8.84	.1131	247.0	842.0	77.39	919.4	1166.4
48	6912	.265	278.3	8.67	.1153	248.3	841.0	77.49	918.5	1166.8
49	7 056	·333	279.6	8.50	.1176	249.7	840.0	77.58	917.5	1167.2

PROPERTIES OF STEAM.

British Measure.

Pressure in pounds per square inch.	· Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam m B. T. U.
50	7200	3.401	280.8	8.34	0.1198	251.0	839.0	77.67	916.6	1167.6
51	7344	•469	282.1	8.19	.1221	252.2	838.0	77.76	915.7	1168.0
52	7488	•537	283.3	8.04	.1243	253.5	837.0	77.85	914.9	1168.3
53	7632	•605	284.5	7.90	.1266	254.7	836.0	77.94	914.0	1168.7
54	7776	•673	285.7	7.76	.1288	256.0	835.1	78.03	913.1	1169.1
55	7920	3.741	286.9	7.63	0.1310	257.I	834.2	78.12	912.3	1169.4
56	8064	.801	288.1	7.50	.1333	258.3	833.2	78.21	911.5	1169.8
57	8208	.878	289.2	7.38	.1355	259.5	832.3	78.29	910.6	1170.1
58	8352	.946	290.3	7.26	.1377	260.7	831.5	78.37	909.8	1170.5
59	8496	4.014	291.4	7.14	.1400	261.8	830.6	78.45	909.0	1170.8
60	8640	4.082	292.5	7.03	0.1422	262.9	829.7	78.53	908.2	1171.2
61	8784	.150	293.6	6.92	.1444	264.0	828.9	78.61	907.5	1171.5
62	8928	.218	294.7	6.82	.1466	265.1	828.0	78.68	906.7	1171.8
63	9072	.286	295.7	6.72	.1488	266.1	827.2	78.76	905.9	1172.1
64	9216	.354	296.7	6.62	.1511	267.2	826.4	7 8.83	905.2	1172.4
65	9360	4.422	297.8	6.52	0.1533	268.3	825.6	78.90	904.5	1172.8
66	9504	.490	298.8	6.43	.1555	269.3	824.8	78.97	903.7	1173.1
67	9648	.558	299.8	6.34	.1577	270.4	824.0	79.04	903.1	1173.4
68	9792	.626	300.1	6.25	.1599	271.4	823.2	79.11	902.3	1173.7
69	9936	.694	301.8	6.17	.1621	272.4	822.4	79.18	901.6	1174.0
70	10080	4.762	302.7	6.09	0.1643	273.4	821.6	79.25	900.9	1174.3
71	10224	.830	303.7	6.00	.1665	274.3	820.9	79.32	900.2	1174.6
72	10368	.898	304.6	5.93	.1687	275.3	820.1	79.39	899.5	1174.9
73	10512	.966	305.5	5.85	.1709	276.3	819.4	79.46	898.8	1175.1
74	10656	5.034	306.5	5.78	.1731	277.2	818.7	79.53	898.1	117 5 .4
75	10800	5.102	307.4	5.70	0.1753	278.2	817.9	79.59	897.5	1175.7
76	10944	.170	308.3	5.63	.1775	279.1	817.2	79.65	896.9	1176.0
77	11088	.238	309.2	5.57	.1797	280.0	816.5	7 9.71	896.2	1176.2
78	11232	.306	310.1	5.50	.1818	280.9	815.8	79.7 7	895.6	1176.5
79	11376	.374	310.9	5.43	.1840	281.8	815.1	79.83	895.0	1176.8
80	11520	5.442	311.8	5.37	0.1862	282.7	814.4	79.89	894.3	1177.0
81	11664	.510	312.7	5.31	.1884	283.6	813.8	79.95	893.7	1177.3
82	11808	.578	313.5	5.25	.1906	284.5	813.0	80.01	893.1	1177.6
83	11952	.646	314.4	5.19	.1928	285.3	812.4	80.07	892.5	1177.8
84	12096	.714	315.2	5.13	.1949	286.2	811.7	80.13	891.9	1178.0
80 81 82 83 84 85 86 87 88 89	12240 11384 12528 12672 12816	5.782 .850 .918 .986 6.054	316.0 316.8 317.6 318.4 319.2	5.07 5.02 4.96 4.91 4.86	0.1971 .1993 .2015 .2036 .2058	287.0 287.9 288.7 289.5 290.4	811.1 810.4 809.8 809.2 808.5	80.19 80.25 80.30 80.35 80.40	891.3 890.7 890.1 889.5 888.9	1178.3 1178.6 1178.9 1179.0 1179.3
90	12960	6.122	320.0	4.81	0.2080	291.2	807.9	80.45	888.4	1179.5
91	13104	.190	320.8	4.76	.2102	292.0	807.3	80.50	887.8	1179.8
92	13248	.258	321.6	4.71	.2123	292.8	806.7	80.56	887.2	1180.0
93	13392	.327	322.4	4.66	.2145	293.6	806.1	80.61	886.7	1180.3
94	13536	.396	323.1	4.62	.2166	294.3	805.5	80.66	886.1	1180.5
95	13680	6.463	323.9	4·57	0.2188	295.1	804.9	80.71	885.6	1180.7
96	13824	.531	324.6	4·53	.2209	295.9	804.3	80.76	885.0	1180.9
97	13968	.599	325.4	4·48	.2231	296.7	803.7	80.81	884.5	1181.2
98	14112	.667	326.1	4·44	.2252	297.4	803.1	80.86	884.0	1181.4
99	14256	.735	326.8	4·40	.2274	298.2	802.5	80.91	883.4	1181.6

TABLE 253 (continued).

PROPERTIES OF STEAM.

British Measure.

Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
100	14400	6.803	327.6	4.356	0.2295	298.9	802.0	80.95	882.9	1181.8
101	14544	.871	328.3	.316	.2317	299.7	801.4	81.00	882.4	1182.1
102	14688	.939	329.0	.276	.2338	300.4	800.8	81.05	881.9	1182.3
103	14832	7.007	329.7	.237	.2360	301.1	800.3	81.10	881.4	1182.5
104	14976	.075	330.4	.199	.2381	301.9	799.7	81.14	880.8	1182.7
105	15120	7.143	331.1	4.161	0.2403	302.6	799.2	81.18	880.3	1182.9
106	15264	.211	331.8	.125	.2424	303.3	798.6	81.23	879.8	1183.1
107	15408	.279	332.5	.088	.2446	304.0	798.1	81.27	879.3	1183.4
108	15552	.347	333.2	.053	.2467	304.7	797.5	81.31	878.8	1183.6
109	15696	.415	333.8	.018	.2489	305.4	797.0	81.36	878.3	1183.8
110	15840	7.483	334·5	3.984	0.2510	306.1	796.5	81.41	877.9	1184.0
111	15984	.551	335·2	.950	.2531	306.8	795.9	81.45	877.4	1184.2
112	16128	.619	335·8	.917	.2553	307.5	795.4	81.50	876.9	1184.4
113	16272	.687	336·5	.885	.2574	308.2	794.9	81.54	876.4	1184.6
114	16416	.757	337·2	.853	.2596	308.8	794.4	81.54	875.9	1184.8
115	16560	7.823	337.8	3.821	0.2617	309.5	793.8	81.62	875.5	1185.0
116	16704	.891	338.5	.790	.2638	310.2	793.3	81.66	875.0	1185.2
117	16848	.959	339.1	.760	.2660	310.8	792.8	81.70	874.5	1185.4
118	16992	8.027	339.7	.730	.2681	311.5	792.3	81.74	874.1	1185.6
119	17136	.095	340.4	.700	.2702	312.1	791.8	81.78	873.6	1185.7
120	17280	8.163	341.0	3.671	0.2724	312.8	791.3	81.82	873.2	1185.9
121	17424	.231	341.6	.643	.2745	313.4	790.8	81.86	872.7	1186.1
122	17568	.299	342.2	.615	.2766	314.1	790.3	81.90	872.2	1186.3
123	17712	.367	342.8	.587	.2787	314.7	789.9	81.94	871.8	1186.5
124	17856	.435	343.5	.560	.2809	315.3	789.4	81.98	871.4	1186.7
125	18000	8.503	344.1	3·534	0.2830	316.0	788.9	82.02	870.9	1186.9
126	18144	.571	344.7	·507	.2851	316.6	788.4	82.06	870.5	1187.1
127	18288	.639	345.3	·481	.2872	317.2	787.9	82.09	870.0	1187.2
128	18432	.708	345.9	·456	.2893	317.8	787.5	82.13	869.6	1187.4
129	18576	.776	346.5	·431	.2915	318.4	787.0	82.17	869.2	1187.6
130 131 132 133 134	18720 18864 19008 19152 19296	8.844 .912 .980 9.048	347.1 347.6 348.2 348.8 349.4	3.406 .382 .358 .334 .310	0.2936 .2957 .2978 .2999 .3021	319.0 319.7 320.3 320.9 321.5	786.5 786.1 785.6 785.1 784.7	82.21 82.25 82.28 82.32 82.35	868.7 868.3 867.9 867.5 867.0	1187.8 1188.0 1188.1 1188.3 1188.5
135	19440	9.184	349·9	3.287	0.3042	322.I	784.2	82.38	866.6	1188.7
136	19584	•252	350·5	.265	.3063	322.6	783.8	82.42	866.2	1188.8
137	19728	•320	351·1	.424	.3084	323.2	783.3	82.45	865.8	1189.0
138	19872	•388	351·6	.220	.3105	323.8	782.9	82.49	865.4	1189.2
139	2 0016	•456	352·2	.199	.3126	324.4	782.4	82.52	865.0	1189.4
140 141 142 143 144	20160 20304 20448 20592 20736	9.524 .592 .660 .728 .796	352.8 353.3 353.9 354.4 355.0	3.177 .156 .135 .115	0.3147 .3168 .3190 .3211 .3232	325.0 325.5 326.1 326.7 327.2	782.0 781.6 781.1 780.7 780.3	82.56 82.59 82.63 82.66 82.69	864.6 864.2 863.8 863.4 863.0	1189.5 1189.7 1189.9 1190.0
145 146 147 148 149	20880 21024 21168 21312 21456	9.864 .932 10.000 .068 .136	355.5 356.0 356.6 357.1 357.6	3.074 .054 .035 .016 .997	0.3253 •3274 •3295 •3316 •3337	327.8 328.4 328.9 329.5 330.0	779.8 779.4 779.0 778.6 778.1	82.72 82.75 82.79 82.82 82.86	862.6 862.2 861.8 861.4 861.0	1190.4 1190.5 1190.7 1190.9

TABLE 253 (continued).

PROPERTIES OF STEAM.

British Measure.

Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of storm in B. T. U.
150 151 152 153 154	21600 21744 21888 22032 22176	10.204 .272 .340 .408 .476	358.2 358.7 359.2 359.7 360.2	2.978 .960 .941 .923 .906	0.3358 .3379 .3400 .3421 .3442	330.6 331.1 331.6 332.2 332.7	777.7 777.3 776.9 776.5 776.1	82.89 82.92 82.95 82.98 83.01	860.6 860.2 859.9 859.5 859.1	1191.2 1191.3 1191.5 1191.7 1191.8
155 156 157 158 159	22320 22464 22608 22752 22896	.612 .680 .748 .816	360.7 361.3 361.8 362.3 362.8	2.888 .871 .854 .837 .820	0.3462 .3483 .3504 .3525 .3546	333.2 333.8 334.3 334.8 33 5 .3	775.7 775.3 774.9 774.5 774.1	83.04 83.07 83.10 83.13 83.16	858.7 858.3 858.0 857.6 857.2	1192.0 1192.1 1192.3 1192.4 1192.6
160 161 162 163 164	23040 23184 23328 23472 23616	10.884 .952 11.020 .088	363.3 363.8 364.3 364.8 365.3	2.803 .787 .771 .755 .739	0.3567 .3588 .3609 .3630 .3650	335.9 336.4 336.9 337.4 337.9	773.7 773.3 772.9 772.5 772.1	83.19 83.22 83.25 83.28 83.31	856.9 856.5 856.1 855.8 855.4	1192.7 1192.9 1193.0 1193.2 1193.3
165 166 167 168 169	23760 23904 24048 24192 24336	.293 .361 .429 .497	365.7 366.2 366.7 367.2 367.7	2.724 .708 .693 .678 .663	0.3671 .3692 .3713 .3734 .3754	338.4 338.9 339.4 339.9 340.4	771.7 771.3 771.0 770.6 770.2	83.34 83.37 83.39 83.42 83.45	855.1 854.7 854.3 854.0 853.6	1193.5 1193.6 1193.8 1193.9 1194.1
170 171 172 173 174	24480 24624 24768 24912 25056	.633 .701 .769 .837	368.2 368.6 369.1 369.6 370.0	2.649 .634 .620 .606 .592	0.3775 .3796 .3817 .3838 .3858	340.9 341.4 341.9 342.4 342.9	769.8 769.4 769.1 768.7 768.3	83.48 83.51 83.54 83.56 83.59	853.3 852.9 852.6 852.2 851.9	1194.2 1194.4 1194.5 1194.7 1194.8
175 176 177 178 179	25200 25344 25488 25632 25776	11.905 •973 12.041 •109 •177	370.5 371.0 371.4 371.9 372.4	2.578 .564 .550 .537 524	0.3879 .3900 .3921 .3942 .3962	343.4 343.9 344.3 344.8 345.3	767.9 767.6 767.2 766.8 766.5	83.62 83.64 83.67 83.70 83.73	851.6 851.2 850.9 850.5 850.2	1194.9 1195.1 1195.2 1195.4 1195.5
180 181 182 183 184	25920 26064 26208 26352 26496	.313 .381 .449 .517	372.8 373.3 373.7 374.2 374.6	2.510 ·497 ·485 ·472 ·459	0.3983 .4004 .4025 .4046 .4066	345.8 346.3 346.7 347.2 347.7	766.1 765.8 765.4 765.0 764.7	83.75 83.77 83.80 83.83 83.86	849.9 849.5 849.2 848.9 848.5	1195.6 1195.8 1195.9 1196.1 1196.2
185 186 187 188 189	26640 26784 26928 27072 27216	.653 .721 .789 .857	375.1 375.5 376.0 376.4 376.8	2.447 .434 .422 .410 .398	0.4087 .4108 .4129 .4150 .4170	348.1 348.6 349.1 349.5 350.0	764.3 764.0 763.6 763.3 762.9	83.88 83.90 83.92 83.95 83.97	848.2 847.9 847.5 847.2 846.9	1196.3 1196.5 1196.6 1196.7 1196.9
190 191 192 193 194	27360 27504 27648 27792 27936	12.925 .993 13.061 .129 .197	377·3 377·7 378.2 378.6 379.0	2.386 ·374 ·362 ·351 ·339	0.4191 .4212 .4233 .4254 .4275	350.4 350.9 351.3 351.8 352.2	762.6 762.2 761.9 761.6 761.2	83.99 84.02 84.04 84.06 84.08	846.6 846.3 845.9 845.6 845.3	1197.0 1197.1 1197.3 1197.4 1197.5
195 196 197 198 199	28080 28224 28368 28512 28656	13.265 •333 •401 •469 •537	379.4 379.9 380.3 380.7 381.1	2.328 .317 .306 .295 .284	0.4296 .4316 .4337 .4358 .4379	352.7 353.1 353.6 354.0 354.4	760.9 760.5 760.2 759.9 75 9.5	84.10 84.13 84.16 84.19 84.21	845.0 844.7 844.4 844.0 843.7	1197.7 1197.8 1197.9 1198.1 1198.2

PROPERTIES OF STEAM.

British Measure.

Præssure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
200	28800	13.605	381.6	2.273	0.4399	354.9	759.2	84.23	843.4	1198.3
201	28944	13.673	382.0	.262	.4420	355.3	758.9	84.26	843.1	1198.4
202	29088	13.742	382.4	.252	.4441	355.8	758.5	84.28	842.8	1198.6
203	29232	13.810	382.8	.241	.4461	356.2	758.2	84.30	842.5	1198.7
204	29376	13.878	383.2	.231	.4482	356.6	757.9	84.33	842.2	1198.8
205 206 207 208 209	29520 29664 29808 29952 30096	13.946 14.014 14.082 14.150 14.218	383.7 384.1 384.5 384.9 385.3	2.221 .211 .201 .191	0.4503 ·4523 ·4544 ·4564 ·4585	357.1 357.5 357.9 358.3 358.8	757.5 757.2 756.9 756.6 756.2	84.35 84.37 84.40 84.42 84.44	841.9 841.6 841.3 841.0 840.7	1199.0 1199.1 1199.2 1199.3 1199.4
210	30240	14.386	385.7	2.171	0.4605	359.2	755.9	84.46	840.4	1199.6
211	30384	14.454	386.1	.162	.4626	359.6	755.6	84.48	840.1	1199.7
212	30528	14.522	386.5	.152	.4646	360.0	755.3	84.51	839.8	1199.8
213	30672	14.590	386.9	.143	.4666	360.4	755.0	84.53	839.5	1199.9
214	30816	14.658	387.3	.134	.4687	360.9	754.7	84.55	839.2	1200.1
215	30960	14.726	387.7	2.124	0.4707	361.3	754·3	84.57	838.9	1200.2
216	31104	14.794	388.1	.115	•4727	361.7	754·0	84.60	838.6	1200.3
217	31248	14.862	388.5	.106	•4748	362.1	753·7	84.62	838.3	1200.4
218	31392	14.930	388.9	.097	•4768	362.5	753·4	84.64	838.0	1200.5
219	31536	14.998	389.3	.088	•4788	362.9	753·1	84.66	837.7	1200.7

RATIO OF THE ELECTROSTATIC TO THE ELECTROMAGNETIC UNIT OF ELECTRICITY = V.

Date.	Cm. per sec. Mean.		Determined by	Reference.		
1856 1868 1869 1874 1879 1879 1879 1880 1881 1882 1883 1884 " 1886 1886–8 " 1888 1889 1890 1891 1892 1896 1898 1898 1899	2.75-2.92 × 10 ¹⁰ 2.71-2.88 2.86-3.00 2.950-3.018 2.98-3.00 - 3.001-3.029 3.016-3.031 - 2.999-3.009 3.003-3.008 3.005-3.015 - 2.995-3.010 - 2.990-2.995 2.990-2.995	3.11×10 ¹⁰ 2.84 2.81 2.90 2.981 2.96 2.967 2.955 2.99 2.87 2.963 3.019 3.015 3.009 2.992 3.000 2.996 3.009 2.991 3.001 2.9973 3.026 3.009 2.9971	R. Kohlrausch and W. Weber. Maxwell. Thomson and King. McKichan. Rowland. Ayrton and Perry. Hockin. Shida. Stoletow. Exner. J. J. Thomson. Klemenčič. Colley. Himstedt. Thomson, Ayrton and Perry. Rosa. J. J. Thomson and Searle. Pellat. Abraham. Hurmuzescu. Perot and Fabry. Webster. Lodge and Glazebrook. Rosa and Dorsey.	Pogg. Ann. 99; 1856. Phil. Trans.; 1868. B. A. Report; 1869. Phil. Mag. 47; 1874. Phil. Mag. 28; 1889. Phil. Mag. 7; 1879. B. A. Report; 1879. Phil. Mag. 10; 1880. Jour. de Phys.; 1881. Wien. Ber.; 1882. Phil. Trans.; 1883. Wien. Ber. 83, 89, 93; 1881-6. Wied. Ann. 28; 1886. Wied. Ann. 29, 33, 35; 1887-8. Electr. Rev. 23; 1888-9. Phil. Trans.; 1890. Jour. de Phys. 10; 1891. Ann. Chim. et Phys. 10; 1897. Ann. Chim. et Phys. 10; 1897. Ann. Chim. et Phys. 13; 1898. Phys. Rev. 6; 1898. Cam. Phil. Soc. 18; 1899. Bull. Bur. Standards 3; 1907.		

The last of the above determinations is the result of an extended series of measurements upon various forms of condensers, and is believed to be correct within 1/100 per cent. This, however, assumes that the International Ohm is 10^9 c.g.s. units. The value of V is therefore subject to one-half the error of the International Ohm.

TABLES 255, 256. DIELECTRIC STRENGTH.

TABLE 255. - Steady Potential Difference in Volts required to produce a Spark in Air with Ball Electrodes.

Spark length.	R = o. Points.	R = 0.25 cm.	R = 0.5 cm.	R=1 cm.	R=2 cm.	R = 3 cm.	$R = \infty$. Plates.
0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.5 2.0 3.0 4.0 5.0	3720 4680 5310 5970 6300 6840 8070 8670 9960 10140 11250 12210		1560 2460 3300 4050 4740 8490 11460 14310 16950 10740 23790 26190 29970 33060	1530 2430 3240 3990 4560 8490 11340 14340 17220 20070 24780 27810 37260 45480	2340 3060 3810 4560 8370 11190 14250 16650 20070 25830 29850	4500 7770 10560 13140 16470 10380 26220 32760	4350 7590 10650 13560 16320 19110 24960 30840

Based on the results of Baille, Bichat-Blondot, Freyburg, Liebig, Macfarlane, Orgler, Paschen, Quincke, de la Rue, Wolff. For spark lengths from 1 to 200 wave-lengths of sodium light, see Earhart, Phys. Rev. 15, p. 163; Hobbs, Phil. Mag. 10, p. 607, 1905.

TABLE 256.—Alternating Current Potentials required to produce a Spark in Air with various Ball Electrodes.

The potentials given are the maxima of the alternating waves used. Frequency, 33 cycles per second.

Spark length.	R=1 cm.	R=1.92	R=5	R = 7.5	R=10	R=15
0.08 .10 .15 .20	3770 4400 5990 7510 9045	4380 5940 7440 8970	4330 5830 7340 8850	4290 5790 7250 8710	4245 5800 7320 8760	4230 5780 7330 8760
0.30 •35 •40 •45 •50	10480 11980 13360 14770 16140	10400 11890 13300 14700 16070	10270 11670 13100 14400 15890	10130 11570 12930 14290 15640	10180 11610 12980 14330 15690	10150 11590 12970 14320 15690
0.6 .7 .8 0.9	18700 21350 23820 26190 28380	18730 21380 24070 26640 29170	18550 21140 23740 26400 28950	18300 20980 23490 26130 28770	18350 20990 23540 26110 28680	18400 21000 23550 26090 28610
1,2 1.4 1.6 1.8 2.0	32400 35850 38750 40900 42950	34100 38850 43400	33790 38850 43570 48300	33660 38580 43250 47900 52400	33640 38620 43520	33620 38580

Based upon the results of Kawalski, Phil. Mag. 18, 1909.

DIELECTRIC STRENGTH.

TABLE 257. -- Potential Necessary to produce a Spark in Air between more widely Separated Electrodes.

cm.	Alter-		Steady pot	tentials.		cm.	Alter- nt.	Steady potentials.		
Spark length,	ints. Alter-	Ball ele	trodes. Cup elec		Cup electrodes.		5	Ball ele	ctrodes.	
park	Dull points. nating curi	R=1 cm.	R=2.5 cm.	Projection.		Spark length,	Dull points. nating cun	R=1 cm.	R=2.5 cm.	
ω .	Ã	K=1 cm.	K-2.5 cm.	4.5 mm.	1.5 mm.		Ā ~	X-1 cm,		
0.3 0.5 0.7 1.0 1.2 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5	12000 - 29200 - 40000 - 48500	30240 33800 37930 42320 45000 46710 - 49100 - 50310	75300 75400 75400 75400 75500 75500 75500 75500 78500 78500 78500 78500	31400 - 56500 - 80400 - 101700	11280 17420 22950 31260 36700 44510 56530 68720 81140 92400 103800 114600 126500 135700	6.0 7.0 8.0 10.0 12.0 14.0 15.0 16.0 20.0 25.0 35.0	61000 	52000 52400 74300 	86830 - 90200 91930 93300 94400 94700 101000	

This table for longer spark lengths contains the results of Voege, Ann. der Phys. 14, 1904, using alternating current and "dull point" electrodes, and the results with steady potential found in the recent very careful work of C. Müller, Ann. d. Phys. 29, 1909.

The specially constructed electrodes for the columns headed "cup electrodes" had the form of a projecting knob 3 cm. in diameter and having a height of 4.5 mm. and 1.5 mm. respectively, attached to the plane face of the electrodes. These electrodes give a very satisfactory linear relation between the spark lengths and the voltage throughout the range studied.

TABLE 258. - Effect of the Pressure of the Gas on the Dielectric Strength.

Voltages are given for different spark lengths l.

Pressure. cm. Hg.	<i>ไ</i> =0.04	<i>₹</i> =0.06	<i>l</i> =0.08	<i>l</i> =0.10	<i>l</i> =0.20	<i>l</i> =0 30	<i>ไ</i> =0.40	<i>Z</i> =0.50
2 4 6 10	- - -	483 582 771	567 690 933	648 795 1090	744 1015 1290 1840	939 1350 1740 2450	1110 1645 2140 3015	1266 1915 2505 3580
15	-	1060	1280	1490	2460	3300	4080	4850
25	1110	1420	1725	2040	3500	4800	6000	7120
35	1375	1820	2220	2615	4505	6270	7870	9340
45	1640	2150	2660	3120	5475	7650	9620	11420
55	1820	2420	3025	3610	6375	8950	11290	13455
65	2040	2720	3400	4060	7245	10210	12950	15470
75	2255	3035	3805	4565	8200	11570	14650	17450

This table is based upon the results of Orgler, 1899. See this paper for work on other gases (or Landolt-Börnstein-Mayerhoffer)

Meyerhoffer).

For long spark lengths in various gases see Voege, Electrotechn. Z. 28, 1907. For dielectric strength of air and CO₂ in cylindrical air condensers, see Wien, Ann. d. Phys. 29, 1909.

DIELECTRIC STRENGTH.

TABLE 259. - Dielectric Strength of Materials.

Potential necessary for puncture expressed in kilovolts per centimetre thickness of the dielectric.

Substance.	Kilovolts per cm.	Substance.		Kilovolts per cm.	Subst	tance.	Kilovolts per cm.
Ebonite	80-300 450 20 200-300 300-1500 90 80-200 20	Castor Cottonseed Lard Linseed, raw "boiled "Lubricating Neatsfoot Olive Paraffin Sperm, mineral "natural "natural	Thickness. 0.2 mm. 1.0 "	190 130 70 140 40 185 90 190 80 50 200 90 170 75	Blottin Manilli Paraffi Varnis Paraffine Melted " Solid " " Presspap Rubber Vaseline	Melt point. 43° 47° 52° 70° er	75 350 400 230 450 45-75

TABLE 260. - Potentials in Volts to Produce a Spark in Kerosene.

Spark length.		Electrodes Ba	alls of Diam. d.	
mm.	0.5 cm.	ı cm.	2 cm.	3 cm.
0.1	3800	3400	2750	2200
.2	7500	6450	4800	3500
-3	10250	9450	7450	4600
•4	11750	10750	9100	5600
-5	13050	12400	11000	6900
.5 .6 .8	14000	13550	12250	8250
.8	15500	15100	13850	10450
1.0	16750	16400	15250	12350

Determinations of the dielectric strength of the same substance by different observers do not agree well. For a discussion of the sources of error see Mościcki, Electrotechn. Z. 25, 1904.

For more detailed information on the dependence of the sparking distance in oils as a function of the nature of the electrodes, see Edmondson, Phys. Review 6, 1898.

ABSOLUTE MEASUREMENTS OF CURRENT AND OF THE ELECTROMO-TIVE FORCE OF STANDARD CELLS.

			Electro Ford		Electrochemical Equivalent found with Voltameter of	
Date.	Observer,	Method.	Clark Cell at 15°.	Weston Cell at 20°.	Rayleigh Form.	Porous Cup Form.
			volts.	volts.	mg.	mg.
1884	F. and W. Kohlrausch {	Tangent galvanometer. Filter paper voltameter	} -	-	1.1183	ŀ
1884	Rayleigh & Sidgwick. {	Current balance Filter paper voltameter	1.4345	-	1.1179	
1890	Potier and Pellat }	Current balance Filter paper voltameter	} -	-	1.1192	
1896	Kahle	Current balance	1.4328	1.0186	1.1182	
1898	Patterson and Guthe . }	Electrodynamometer . Silver oxide voltameter	} -	-	-	1.1192
1899	Carhart and Guthe	Electrodynamometer .	1.4333			
1903	Pellat and Leduc {	Current balance Leduc voltameter	} -	-	1.1195	
1904	Van Dijk and Kunst . {	Tangent galvanometer. Filter paper voltameter	} -	-	1.1182	
1906	Guthe	Electrodynamometer .	1.4330	1.0185	-	1.1177
1907	Ayrton, Mather and Smith	Current balance	1.4323	1.01819		
1907	Smith and Lowry	Filter paper voltameter	, -	-	1.11827	
1908	Janet, Laporte and Jouaust	Filter paper voltameter Current balance	} -	1.0187	1.1182	
1908	Pellat	Current balance	-	1.0184		
1908	Guillet	Current balance	-	1.0182		

The most probable value of the Weston cell at 20° is 1.0182 volts, assuming the International ohm to be 10⁹ c. g. s. units and the volt to be 10⁸ c. g. s. units. The corresponding value of the Clark cell, as prepared at present, at 15⁰, is 1.4324 volts.

The legal values of the Weston cell, however, are different in different countries, as follows:

United States (Bureau of Standards)		٠		1.019125* v. at 20°
				1.0186 volts at 20°
England (National Physical Laboratory)	٠	٠		1.0184 volts at 20°

The value of the Weston standard cell, used in the United States, is based upon the value adopted by the Chicago Electrical Congress (1893) for the Clark cell. The value used by Germany was adopted in 1896, and is based on Kahle's work at the Reichsanstalt. The value used in England was adopted January 1, 1909, and is based on the recommendation of the London Electrical Conference of 1908. It is expected that a new value will soon be agreed upon by the International Committee on Electrical Units and Standards, which will be adopted generally in all countries.

The value of the electrochemical equivalent of silver is different when filter paper (Rayleigh form), silk, or other textile is used to separate the anode from the cathode from what it is when a porous cup is employed. The value found is also affected by the addition of silver oxide to the silver nitrate solution. The legal value in all countries is 1.118 mg. of silver per coulomb, and this is nearly the value found when using a porous cup voltameter, and the best determinations of the current that have been made by absolute current balances. Some corrections have been made to the figures given in the above table for the excess due to filter paper, but such corrections are very uncertain.

* Based on 1.0189 at 25° C.

COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS.

The electromotive forces given in this table approximately represent what may be expected from a cell in good working order, but with the exception of the standard cells all of them are subject to considerable variation.

		(a) Double Fluid Ci	ELLS.		
Name of cell.	Negative pole.	Solution.	Positive pole.	Solution.	E.M.F. in volts.
Bunsen	Amalgamated zinc	$ \left\{ \begin{array}{c} \text{I part } H_2SO_4 \text{ to } \\ \text{I2 parts } H_2O \end{array} \right\} $	Carbon	Fuming H ₂ NO ₈ .	1.94
"	66 66	46	66	HNO ₈ , density 1.38	1.86
Chromate .	66 66	$ \left\{ \begin{array}{l} \text{12 parts } K_2 C r_2 O_7 \\ \text{to 25 parts of} \\ H_2 S O_4 \text{ and 100} \\ \text{parts } H_2 O \dots \end{array} \right\} $	66	{ 1 part H ₂ SO ₄ to } { 12 parts H ₂ O . }	2.00
• • •	66 66	{ I part H ₂ SO ₄ to }	66	{ 12 parts K ₂ Cr ₂ O ₇ } { to 100 parts H ₂ O }	2.03
Daniell* .	66 66	{ 1 part H ₂ SO ₄ to } 4 parts H ₂ O . }	Copper	Saturated solution of CuSO ₄ +5H ₂ O	1.06
" .	66 66	{ I part H ₂ SO ₄ to }	66	66	1.09
"	66 66	{ 5% solution of } ZnSO ₄ +6H ₂ O }	66		1.08
" .		{ 1 part NaCl to } 4 parts H ₂ O . }	66	"	1.05
Grove	66 66	{ I part H ₂ SO ₄ to } I 2 parts H ₂ O . }	Platinum	Fuming HNO ₈	1.93
"	" "	Solution of ZnSO ₄	46	HNO ₃ , density 1.33	1.66
"	66 66	{ H ₂ SO ₄ solution, } density 1.136 . }	. "	Concentrated HNO ₃	1.93
a	ee ee	{ H ₂ SO ₄ solution, } density 1.136 . }	66	HNO ₈ , density 1.33	1.79
66	66 66	{ H ₂ SO ₄ solution, } density 1.06 . }		66 7.	1.71
"	"	{ H ₂ SO ₄ solution, } density 1.14 . }	66	HNO ₃ , density 1.19	1.66
"	66 66	{ H ₂ SO ₄ solution, } density 1.06	66	et ec ec	1.61
"		NaCl solution	. "	" density 1.33	1.88
Marié Davy	66 86	{ 1 part H ₂ SO ₄ to }	Carbon	Paste of protosulphate of mercury and water	1.50
Partz	. 66 66	Solution of MgSO ₄	66	Solution of K ₂ Cr ₂ O ₇	2.06

^{*} The Minotto or Sawdust, the Meidinger, the Callaud, and the Lockwood cells are modifications of the Daniell, and hence have about the same electromotive force.

COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS.

Name of cell.	Negative pole.	Solution.	Positive pole.	E. M. F. in volts.
		(b) Single Fluid Cells	,	
Leclanche	Amal. zinc	Solution of sal-ammo-	Carbon. Depolari- zer: manganese peroxide with powdered carbon	1.46
Chaperon Edison-Lelande .	66 66	Solution of caustic potash }	Copper. Depolar-	0.98
Chloride of silver	Zinc	{ 23 % solution of sal- ammoniac }	Silver. Depolari-	1.02
Law	• •	15% " (1 pt. ZnO, 1 pt. NH ₄ Cl,) 3 pts. plaster of paris,	Carbon	1.37
Dry cell (Gassner)	<6 · ·	2 pts. ZnCl ₂ , and water to make a paste	66	1.3
Poggendorff	Amal. zinc	Solution of chromate of potash (12 parts K ₂ Cr ₂ O ₇ +)	46	1.08
и	66 66	$\left\{\begin{array}{c} 25 \text{ parts } H_2SO_4 + \\ 100 \text{ parts } H_2O \end{array}\right.$	66	2.01
J. Regnault	46 44	$ \begin{cases} \text{1 part } H_2SO_4 + \\ \text{12 parts } H_2O + \\ \text{1 part } CaSO_4 \end{cases} $	Cadmium	0.34
Volta couple	Zinc	H_2O	Copper	0.98
		(c) Standard Cells.		
Weston normal .	{Cadmi'm} { am'lgam}	Saturated solution of CdSO4	$ \begin{cases} & Mercury. \\ Depolarizer: paste \\ of & Hg_2SO_4 and \\ CdSO_4 . . \end{cases} $	1.0191 at 20° C
Clark standard .	{ Zinc } am'lgam}	{ Saturated solution of } ZnSO ₄ }	$\begin{cases} & \text{Mercury.} \\ & \text{Depolarizer: paste} \\ & \text{of } & \text{Hg}_2\text{SO}_4 & \text{and} \\ & \text{ZnSO}_4 & . & . & . \end{cases}$	1.434* at 15°C
		(d) SECONDARY CELLS.		
Lead accumulator	Lead	{ H ₂ SO ₄ solution of density I.I }	PbO ₂	2.2†
Regnier (1)	Copper .	$CuSO_4 + H_2SO_4$	66	(1.68 to 0.85, av- erage 1.3.
(2) Main	Amal. zinc Amal. zinc	ZnSO ₄ solution H ₂ SO ₄ density ab't 1.1	" in H ₂ SO ₄ .	2.36 2.50 (1.1, mean
Edison	Iron	KOH 20 % solution .	A nickel oxide .	of full discharge.

^{*}E. M. F. hitherto used at Bureau of Standards. See p. 251. The temperature formula is $E_t = E_{20} - 0.000406$ (t-20) + 0.0000005 (t-20)² + 0.0000001 (t-20)³. The value given is that adopted by the Chicago International Electrical Congress in 1893. The temperature formula is $E_t = E_{15} - 0.00119$ (t-15) - 0.00007 (t-15)².

[†] F. Streintz gives the following value of the temperature variation dE/dt at different stages of charge:

E. M. F. 1.9223 1.9828 2.0031 2.0084 2.0105 2.0779 2.2070 dE/dt×10⁶ 140 228 335 285 255 130 73

CONTACT DIFFERENCE OF

Solids with Liquids and

Temperature of substances

	Carbon,	Copper.	Iron.	Lead.	Platinum.	Tin.	Zin e.
Distilled water	(.01 to .17	.269 to .100	.148	.171	{ .285 } to .345 }	.177	{105 to +.156
Alum solution: saturated \\at 16°.5 C	-	127	653	139	.246	225	536
Copper sulphate solution: \ sp. gr. 1.087 at 16°.6 C.	-	.103	-	-	-	-	-
Copper sulphate solution: \ saturated at 15° C \	-	.070	-	-	-	-	-
Sea salt solution: sp. gr. {	- '	- 475	605	-	856	- -334	565
Sal-ammoniac solution: \\ saturated at 15°.5 C \	-	396	652	189	.059	364	637
Zinc sulphate solution: sp. gr. 1.125 at 16°.9 C	-		-	-	-	-	238
Zinc sulphate solution: saturated at 15°.3 C.	-	-	-	-	- 1	-	430
One part distilled water +) 3 parts saturated zinc sulphate solution	-	-	-	-	-	-	- -444
distilled water: 1 to 20 by weight	-		_	-	_	-	344
I to IO by volume	{ about } 035 }	-	-	-	-	-	-
r to 5 by weight	(.01)	-	-	-	-	-	-
5 to 1 by weight	to {	-	-	120	-	25	-
Concentrated sulphuric acid	(.55) to (.85)	1.113	-	1.252	1.3 to 1.6	-	-
Concentrated nitric acid . Mercurous sulphate paste .		~	_	-	.672	_	_
Distilled water containing \\ trace of sulphuric acid	-	-	-	-	-	-	—,24I

^{*} Everett's " Units and Physical Constants: " Table of

POTENTIAL IN VOLTS.

Liquids with Liquids in Air.*

during experiment about 16° C.

	Amalgamated zinc.	Brass.	Mercury.	Distilled water.	Alum solution: saturated at 16°.5 C.	Copper sulphate solution: saturated at 15° C.	Zinc sulphate solution: sp. gr. 1.25 at 16°.9 C.	Zinc sulphate solution: saturated at 15°.3 C.	One part distilled water + 3 pts. zinc sulphate.	Strong nitric acid.
Distilled water	.100	.231	-		-	043	_	.164	-	-
Alum solution: saturated at 16°.5 C	_	014	-	-	-	-	-		-	-
Copper sulphate solution: \ sp. gr. 1.087 at 16°.6 C.	~	-	-	-	-	-	.090	-	-	-
Copper sulphate solution: { saturated at 15° C }	-	-	-	043	-	-	-	.095	.102	-
Sea salt solution: sp. gr. 1 1.18 at 20°.5 C	-	- .435	-	-	-		-	-	-	-
Sal-ammoniac solution: \ saturated at 15°.5 C.	-	348	-	-	-	-	-	-	-	-
Zinc sulphate solution: \ sp. gr. 1.125 at 16°.9 C.	-	-	-	-	-	-	-	-	-	-
Zinc sulphate solution: \ saturated at 15°.3 C.	284	-	-	200	-	095	-	-	-	-
One part distilled water + 3 parts saturated zinc sulphate solution . Strong sulphuric acid in distilled water:	-	-	1	-	-	102			_	-
I to 20 by weight	-	-	_ [-	-	- '	-	-	-	-
I to 10 by volume	358	-	-	-	-	-	-	-	-	-
I to 5 by weight	.429	-	-	-	-	-	_	-	-	-
5 to 1 by weight	-	—. 016	-	-	-	-	-	-	-	-
Concentrated sulphuric acid	.848		-	1.298	1.456	1.269	-	1.699	-	-
Concentrated nitric acid .			_	-	-	-	-	-	-	-
Mercurous sulphate paste. Distilled water containing	-	-	•475	-	-	-	-	-	-	-
trace of sulphuric acid.	-	-	-	-	-	-	-	_	-	.078

Ayrton and Perry's results, prepared by Ayrton.

CONTACT DIFFERENCE OF POTENTIAL IN VOLTS.

Solids with Solids in Air.*

The following results are the "Volta differences of potential," as measured by an electrometer. They represent the difference of the potentials of the air near each of two metals placed in contact. This should not be confused with the junction electromotive force at the junction of two metals in metallic contact, which has a definite value, proportional to the coefficient of Peltier effect. The Volta difference of potential has been found to vary with the condition of the metallic surfaces and with the nature of the surrounding gas. No great reliance, therefore, can be placed on the tabulated values.

The temperature of the substances during the experiment was about 18° C.

	Carbon.	Copper.	Iron.	Lead.	Platinum.	Tin.	Zinc.	Zinc amal- gam.	Brass.
Carbon	0	-370	.485	.858	.113	·79 5	1.096†	1.208†	•414†
Copper	370	0	,146	•542	238	-456	-750	.894	.087
Iron	485†	— .146	0	-401†	369	.313†	.600†	·744†	064
Lead	858	542	-,401	0	—.77I	099	.210	-357†	472
Platinum	113†	.238	.369	.771	0	.690	.981	1.125†	.287
Tin	 .795 [†]	458	-,313	.099	690	0	.281	.463	372
Zinc	 1.096†	750	600	216	981	.281	0	.144	679
" amalgam	—I.208†	894	- .744	357†	— 1.125†	463	144	0	822
Brass	414	087	.064	.472	287	-372	.679	.822	0
Zinc	—1.096† —1.208†	75° 894	600 744	—.216 —.357†	981 -1.125†	.281 —.463	o —.144	.144	—.679 —.822

The numbers not marked were obtained by direct experiment, those marked with a dagger by calculation, on the assumption that in a compound circuit of metals, all at the same temperature, there is no electromotive force.

The numbers in the same vertical column are the differences of potential in volts between the substance named at the top of the column and the substance named on the same line in the first column, when the two substances are in contact.

The metals used were those ordinarily obtained in commerce.

^{*} Everett's "Units and Physical Constants." The table is from Ayrton and Perry's experiments, and was prepared by Ayrton.

DIFFERENCE OF POTENTIAL BETWEEN METALS IN SOLUTIONS OF SALTS.

The following numbers are given by G. Magnanini * for the difference of potential in hundredths of a volt between zinc in a normal solution of sulphuric acid and the metals named at the head of the different columns when placed in the solution named in the first column. The solutions were contained in a U-tube, and the sign of the difference of potential is such that the current will flow from the more positive to the less positive through the external circuit.

	h of the solution in ne molecules per	Zinc.†	Cadmium.†	Lead.	Tin.	Copper.	Silver.				
No. of molecules.	Salt.	Difference of potential in centivolts.									
0.5 1.0 1.0 0.5 1.0	H ₂ SO ₄ NaOH KOH Na ₂ SO ₄ Na ₂ S ₂ O ₃	0.0 -32.1 -42.5 1.4 -5.9	36.6 19.5 15.5 35.6 24.1	51.3 31.8 32.0 50.8 45.3	51.3 0.2 —1.2 51.4 45.7	100.7 80.2 77.0 101.3 38.8	121.3 95.8 104.0 120.9 64.8				
1.0 1.0 0.5 0.5	KNO ₈ NaNO ₈ K ₂ CrO ₄ K ₂ Cr ₂ O ₇ K ₂ SO ₄	11.8‡ 11.5 23.9‡ 72.8 1.8	31.9 32.3 42.8 61.1 34.7	42.6 51.0 41.2 78.4 51.0	31.1 40.9 40.9 68.1 40.9	81.2 95.7 94.6 123.6 95.7	105.7 114.8 121.0 132.4 114.8				
0.5 0.25 0.167 1.0	$(NH_4)_2SO_4 \ K_4FeC_6N_6 \ K_6Fe_2(CN)_2 \ KCNS \ NaNO_8$	-0.5 -6.1 41.0§ -1.2 4.5	37.1 33.6 80.8 32.5 35.2	53.2 50.7 81.2 52.8 50.2	57.6‡ 41.2 130.9 52.7 49.0	101.5 ‡ 110.7 52.5 103.6	125.7 87.8 124.9 72.5 104.6?				
0.5 0.125 1.0 0.2 0.167	SrNO ₃ Ba(NO ₃) ₂ KNO ₃ KClO ₃ KBrO ₃	14.8 21.9 — ‡ 15–10‡ 13–20‡	38.3 39.3 35.6 39.9 40.7	50.6 51.7 47.5 53.8 51.3	48.7 52.8 49.9 57.7 50.9	103.0 109.6 104.8 105.3	119.3 121.5 115.0 120.9 120.8				
I.0 I.0 I.0 I.0	NH₄Cl KF NaCl KBr KCl	2.9 2.8 — 2.3	32.4 22.5 31.9 31.7 32.1	51.3 41.1 51.2 47.2 51.6	50.9 50.8 50.3 52.5 52-6	81.2 61.3 80.9 73.6 81.6	101.7 61.5 101.3 82.4 107.6				
0.5 - 1.0 0.5 0.5	Na ₂ SO ₃ Na ₀ OBr C ₄ H ₆ O ₆ C ₄ H ₆ O ₆ C ₄ H ₄ KNaO ₆	-8.2 18.4 5.5 4.1 -7.9	28.7 41.6 39.7 41.3 31.5	41.0 73.1 61.3 61.6 51.5	31.0 70.6 ‡ 54.4§ 57.6 42-47	68.7 89.9 104.6 110.9 100.8	103.7 99.7 123.4 125.7 119.7				

^{* &}quot;Rend. della R. Acc. di Roma," 1890.

[†] Amalgamated.

¹ Not constant.

[§] After some time.

^{||} A quantity of bromine was used corresponding to NaOH = 1.

THERMOELECTRIC POWER.

The thermoelectric power of a circuit of two metals is the electromotive force produced by one degree C. difference of temperature between the junctions. The thermoelectric power varies with the temperature, thus: thermoelectric power = Q = dE/dt = A + Bt, where A is the thermoelectric power at 0° C., B is a constant, and t is the mean temperature of the junctions. The neutral point is the temperature at which dE/dt = 0, and its value is -A/B. When a current is caused to flow in a circuit of two metals originally at a uniform temperature, heat is liberated at one of the junctions and absorbed at the other. The rate of production or liberation of heat at each junction, or Peltier effect, is given in calories per second, by multiplying the current by the coefficient of the Peltier effect. This coefficient in calories per coulomb $= QT/\mathcal{I}$, in which Q is in volts, T is the absolute temperature of the junction, and $\mathcal{I}=4.19$. Heat is also liberated or absorbed in each of the metals as the current flows through portions of varying temperature. The rate of production or liberation of heat in each metal, or the Thomson effect, is given in calories per second by multiplying the current by the coefficient of the Thomson effect. This coefficient, in calories per coulomb, $=BT\theta/\mathcal{I}$, in which B is in volts per degree C., T is the mean absolute temperature of the junctions, and θ is the difference of temperature of the junctions. (BT) is Sir W. Thomson's "Specific Heat of electricity." The algebraic signs are so chosen in the following table that when A is positive, the current flows in the metal considered from the cold junction to the hot. When B is positive, Q increases (algebraically) with the temperature. The values of A, B, and thermoelectric power, in the following table are with respect to lead as the other metal of the thermoelectric circuit. The thermoelectric power of a couple composed of two metals, I and 2, is given by subtracting the value for 2 from that for I; when this difference is posi

The table has been compiled from the results of Becquerel, Matthiessen and Tait; in reducing the results, the electromotive force of the Grove and Daniell cells has been taken as 1.95 and 1.07 volts. The value for constantin was reduced from results given in Landolt-Börnstein's tables. The thermoelectric powers of antimony and bismuth alloys are given by Becquerel in the

reference given below.

Substance	A Microvolts.	B Microvolts.		ctric power temp. of nicrovolts).	Neutral pointAB	Author- ity.
Aluminum Antimony, comm'l pressed wire " axial " equatorial " ordinary Argentan " Arsenic Bismuth, comm'l pressed wire " pure " crystal, axial " equatorial " commercial " commercial " commercial " dused Cobalt Constantin Copper " commercial " galvanoplastic Gold " Iron " pianoforte wire " commercial " used Lead Magnesium Mercury Nickel " (—18° to 175°) " (250°—300°) " (above 340°)	1 00.	-0.0039 -0.0506 -0.0506 -0.0094 -0.0101 -0.0482 -0.0000 -0.094 -0.0506 -0.2384 -0.0506	0.68 -6.0 -22.6 -26.4 -17.0 12.95 -13.56 97.0 89.0 65.0 45.0 -3.48 -1.2 -3.0 -16.2 -17.5 - 0.00 -22.8 - 22.8	0.56	195	T M " " B T B M " " B T B M - T M B "

THERMOELECTRIC POWER.

TABLE 266. - Thermoelectric Power (continued).

Substance.	A Microvolts.	B Microvolts.	at mean	ctric power temp. of nicrovolts).	Neutral point $-\frac{A}{B}$.	Author-
Palladium " (hardened) " (malleable) " wire " another specimen Platinum alloys: 85 % Pt+15 % Ir 90 % Pt+10 % Ir 95 % Pt + 5 % Ir Selenium Silver " (pure hard) " wire Steel Tellurium " Tin (commercial) " Zinc " pure pressed	6.18	0.0355 	6.9 -29.9 -0.9 -2.42 8.828.03 -5.63 -6.26 -807 -7.241 -3.00 -10.62 -5020.1 0.33 -2.79 -3.7	7.96 6.9	-174 - 347 -55 - [-1274] 444 [-1118] -144 - 347 - 78 - 98	T B M " T " " M B T M B T M B T M B T M M M T M M

B Ed. Becquerel, "Ann. de Chim. et de Phys." [4] vol. 8.
 M Matthiesen, "Pogg. Ann." vol. 103, reduced by Fleming Jenkin.
 T Tait, "Trans. R. S. E." vol. 27, reduced by Mascart.

TABLE 267. - Thermoelectric Power against Platinum.

One junction is supposed to be at o°C; + indicates that the current flows from the o° junction into the platinum. The rhodium and iridium were rolled, the other metals drawn.*

Tempera- ture, ° C.	Au.	Ag.	90%Pt+ 10%Pd.	10%Pt+ 90%Pd.	Pd.	90%Pt+ 10%Rh.	90%Pt+ 10%Ru.	Ir.	Rh.
-185 -80 +100 +200 +300 +400 +500 +600 +700 +1000 +1100 +(1300) +(1500)	-0.15 -0.31 +0.74 +1.8 +3.0 +4.5 +6.1 +7.9 +9.9 +12.0 +14.3 +16.8	-0.16 -0.30 +0.72 +1.7 +3.0 +4.5 +6.2 +10.6 +13.2 +16.0	-0.11 -0.09 +0.26 +0.62 +1.0 +1.5 +1.9 +2.4 +2.9 +3.4 +3.8 +4.3 +4.8	+0.24 +0.15 -0.19 -0.31 -0.37 -0.18 +0.12 +0.61 +1.2 +2.1 +4.2	+0.77 +0.39 -0.56 -1.20 -2.0 -2.8 -3.8 -4.9 -6.3 -7.9 -9.6 -11.5 -13.5	+2.3 +3.2 +4.1 +5.1 +6.2 +7.2 +8.3 +9.5 +10.6 +13.1 +15.6	-0.53 -0.39 +0.73 +1.6 +2.6 +3.6 +4.6 +5.7 +6.9 +8.0 +9.2 +10.4 +11.6 +14.2 +16.9	-0.28 -0.32 +0.65 +1.5 +2.5 +3.6 +4.8 +6.1 +7.6 +9.1 +10.8 +12.6 +14.5 +18.6 +23.1	0.24 0.31 +-0.65 +-1.5 +-2.6 +-3.7 +-5.1 +-6.5 +-8.1 +-9.9 +-11.7 +-13.7 +-15.8 +-20.4 +-25.6

* Holborn and Day.

PELTIER EFFECT.

The coefficient of Peltier effect may be calculated from the con-The coemcient of retter enert may be calculated from the constants A and B of Table 255, as there shown. Experimental results, expressed in slightly different units, are here given. The figures are for the heat production at a junction of copper and the metal named, in calories per ampere-hour. The current flowing from copper to the metal named, a positive sign indicates a warming of the junction. The temperature not being stated by either author, and Le Roux not giving the algebraic signs, these results are not of great value.

	Calories per am	pere-hour.
Metals.	Jahn.*	Le Roux.†
Antimony (Becquerel's);	~	13.02
" (commercial)	-	4.8
Bismuth (pure)	-	19.1
" (Becquerel's)\$	-	25.8
Cadmium	-0.616	0.46
German silver	-	2.47
Iron	-3.613	2.5
Nickel	4.362	
Platinum	0.320	
Silver	-0.413	
Zinc	o.585	0.39

"Wied. Ann." vol. 34, p. 767.

""Ann. de Chim. et de Phys." (4) vol. 10, p. 201.

Becquerel's antimony is 806 parts Sb+406 parts Zn+121 parts Bi.

Becquerel's bismuth is 10 parts Bi+1 part Sb.

SMITHSONIAN TABLES.

THE POST OF SELECTION

TABLE 269.

VARIOUS DETERMINATIONS OF THE VALUE OF THE OHM.

Date.	Observer,	Method.	Value of B. A. unit in ohms.	Value of Sie- mens unit, B. A. unit.	Value of ohm in cms. of Hg.
1882 1883 1884 1887 1887	Lord Rayleigh Lord Rayleigh Mascart Rowland Kohlrausch	Rotating coil Lorenz method Induced current Mean of several methods Damping of magnets .	0.98651 •98677 •98611 •98644 •98660	0.95412 .95412 .95374 .95349 .95338	106.24 106.21 106.33 106.32
1882 1888 1890 1890 1891 1894 1895	Glazebrook Wuilleumeier	Induced currents		-95352 -95355 -95341 - - -	106.29 106.31 106.34 106.31 106.33 106.28 106.27
1883 1884 1884 1884 1884	Wild Wiedemann	Means Damping of magnet . Earth inductor Induced current . Rotating coil . Mean effect of induced current current silver coils certifie		0.95366 - - - - -	106.288 106.03 106.19 105.37 106.16
1885 1885 1889	Himstedt	Mean effect of induced cur German silver coils certifie Lorenz method . Damping of magnet .	rrent, using	- - -	105.98 105.93 106.24

The legal value of the ohm is the resistance of a column of mercury of uniform cross-section, weighing 14.4521 gms., and having a length of 106.30 cms. This is known as the international ohm. Mercury ohms conforming to these specifications have been prepared in recent years at the Physikalisch-Technische Reichsanstalt and the National Physical Laboratory, and are now being set up at the Bureau of Standards. The wire standards of resistance at the above-named laboratories agree in value to within two parts in 100000. Hence there is a very close agreement in the values of precision resistances calibrated at these laboratories.

SPECIFIC RESISTANCE OF METALLIC WIRES.

This table is modified from the table compiled by Jenkin (1862) from Matthiessen's results by taking the resistance of silver, gold, and copper from the observed metre gramme value and assuming the densities found by Matthiessen, namely, 10.468, 19.265, and 8.95.

							.:
Substance.	Resistance at o° C. of a wire one cm. long, one	sq. cm. in section.	Resistance at o° C. of a wire one metre long, one mm. in diam.	Resistance at o° C. of a wire one metre long, weighing one gramme.	Resistance at 0° C. of a wire one foot long, roby in in diam.	Resistance at o° C, of a wire one foot long, weighing one grain,	Percentage increase of resistance for 1° C. increase of temp. at 20° C
Silver annealed	1.460	× 10-6	0.01859	.1523	8.781	.2184	0.377
" hard drawn	1.585	56	0.02019	.1659	9.538	.2379	-
Copper annealed	1.584	44	0.02017	.1421	9.529	.2037	0.388
" hard drawn	1.619	66	0.02062	.1449	9.741	.2078	-
Gold annealed	2.088	66	0.02659	.4025	12.56	.5771	0.365
" hard drawn	2.125	"	0.02706	.4094	12.78	.5870	-
Aluminium annealed	2.906	66	0.03699	.0747	17.48	.1071	~
Zinc pressed	5.613	"	0.07146	.4012	33.76	-5753	0.365
Platinum annealed	9.035	66	0.1150	1.934	54-35	2.772	-
Iron "	9.693	66	0.1234	.755I	58.31	1.083	-
Nickel "	12.43	56	0.1583	1.057	74.78	1.515	-
Tin pressed	13.18	56	0.1678	.9608	79.29	1.377	0.365
Lead "	19.14	-65	0.2437	2.227	115.1	3.193	0.387
Antimony pressed	35.42	66	0.4510	2.379	213.1	3.410	0.389
Bismuth "	130.9	66	1.667	12.86	787.5	18.43	0.354
Mercury "	94.07	66	1.198	12.79	565.9	18.34	0.072
Platinum-silver, 2 parts Ag, 1 part Pt, by weight .	24.33	66	0.3098	2.919	146.4	4.186	0.031
German silver	20.89	66	0.2660	1.825	125.7	2.617	0.044
Gold-silver, 2 parts Au, 1 part Ag, by weight .	10.84	66	0.1380	1.646	65.21	2.359	0.065

TABLE 271.

SPECIFIC RESISTANCE OF METALS.

The specific resistance is here given as the resistance, in microhms, per centimetre of a bar one square centimetre in cross section.

Substance.	Physical state.	Specific resistance.	Temp. ° C.	Authority.
Aluminum		2.6-3.0	o	Various.
Antimony	Solid Liquid	35.4-45.8 182.8 129.2	Melting-point	De la Rive.
" Arsenic		137.7 33·3	860 o	Matthiessen and
Bismuth	Electrolytic soft	108.0	0	Vogt. Van Aubel.
Boron	" hard Commercial Pulverized and com-	110-268	Ö	Various.
Cadmium	pressed	8×10 ¹⁰ 6.2–7.0		Moissan. Various.
"	Solid Liquid	16.5 37.9 2.04–2.09	318 318	Vassura.
Gold		7.5 9.8	16.8	Matthiessen.
Copper	Annealed Hard-drawn	1.55-1.63 1.61-1.68	0	Various.
Iron	Commercial Electrolytic	9.7-12.0 11.2 105.5	Ordinary Red heat	Kohlrausch.
46	66	105.5 114.8 118.3	Yellow heat Iron magnetic	66
Steel	Cast	19.1 85.8	heat Ord. temp. Red heat	46
"	66	104.4	Yellow heat Nearly white	46
"	Tempered glass hard	45.7 (1 + .00161 <i>t</i>)	heat #	Barus and Strouhal.
66	" light yellow vellow	28.9 (I + .00244t) 26.3 (I + .00280t)	t t	66 66
66	" yellow blue " light blue	20.5 (1 + .00330t) 18.4 (1 + .00360t) 15.9 (1 + .00423t)	t t	66 66 66 66
Iron	" soft Cast, hard " soft	97.8 74.4	0 0	66 66
Indium Lead	-	8.38 18.4–19.6	0	Erhard. Various.
Lithium	, =	8.8 4.1-5.0 10.7-12.4	0 0	Matthiessen. Various.
Nickel Palladium Platinum	-	10.6-13.6	0	66
Potassium	Fluid	25.I 50.4	100	Matthiessen.
Silver Strontium Tellurium	=	$ \begin{array}{c} 1.5 - 1.7 \\ 25.13 \\ 2.17 \times 10^5 \end{array} $	0 20 19.6	Matthiessen.
66	-	55. 05	294	Vincentini and Omodei. Various.
Tin "	Solid	9.53–11.4 9.53 20.96	0 0 226.5	Vassura.
Zinc	Liquid	44.56 5.56–6.0 4	226.5	" De la Pive
"	Solid Liquid	18.16 36.00	Melting-point	De la Rive.

RESISTANCE OF METALS AND

The electrical resistance of some pure metals and of some alloys have been determined by Dewar and Fleming and increases as the temperature is lowered. The resistance seems to approach zero for the pure metals, but not for temperature tried. The following table gives the results of Dewar and Fleming.*

When the temperature is raised above o° C. the coefficient decreases for the pure metals, as is shown by the experience experiments to be approximately true, namely, that the resistance of any pure metal is proportional to its absolute is greater the lower the temperature, because the total resistance is smaller. This rule, however, does not even zero Centigrade, as is shown in the tables of resistance of alloys. (Cf. Table 262.)

Temperature =	100°	200	00	80°
Metal or alloy.	Sp	ecific resistanc	e in c. g. s. un	its.
Aluminium, pure hard-drawn wire	4745	3505	3161	
Copper, pure electrolytic and annealed	1920	1457	1349	-
Gold, soft wire	2665	2081	1948	1400
Iron, pure soft wire	13970†	9521	8613	-
Nickel, pure (prepared by Mond's process from compound of nickel and carbon monoxide)	19300	13494	12266	7470
Platinum, annealed	10907	8752	8221	6133
Silver, pure wire	2139	1647	1559	1138
Tin, pure wire	13867	10473	9575	6681
German silver, commercial wire	35720	34707	34524	33664
Palladium-silver, 20 Pd + 80 Ag	15410	14984	14961	14482
Phosphor-bronze, commercial wire	9071	8588	8479	8054
Platinoid, Martino's platinoid with 1 to 2% } tungsten	44590	43823	43601	43022
Platinum-iridium, 80 Pt + 20 Ir	31848	29902	29374	27 504
Platinum-rhodium, 90 Pt + 10 Rh	18417	14586	13755	10778
Platinum-silver, 66.7 Ag + 33.3 Pt	27404	26915	26818	26311
Carbon, from Edison-Swan incandescent lamp	-	4046×10 ⁸	4092×108	4189×108
Carbon, from Edison-Swan incandescent }	3834×108	3908×108	395 5 ×108	4054×10 ⁸
Carbon, adamantine, from Woodhouse and } Rawson incandescent lamp } .	6168×108	6300×108	6363×108	6495×108

^{# &}quot; Phil. Mag." vol. 34, 1892.

[†] This is given by Dewar and Fleming as 13777 for 96°.4, which appears from the other measurements too high.

ALLOYS AT LOW TEMPERATURES.

by Cailletet and Bouty at very low temperatures. The results show that the coefficient of change with temperature the alloys. The resistance of carbon was found by Dewar and Fleming to increase continuously to the lowest

ments or Müller, Benoit, and others. Probably the simplest rule is that suggested by Clausius, and shown by these temperature. This gives the actual change of resistance per degree, a constant; and hence the percentage of change approximately hold for alloys, some of which have a negative temperature coefficient at temperatures not far from

Temperature ==	100°	— 182°	— 197°	Mean value of
Metal or alloy.	Specific resistance in c. g. s. units.			temperature co- efficient between — 100° and + 100° C.*
Aluminum, pure hard-drawn wire	1928	894	-	.00446
Copper, pure electrolytic and annealed	757	272	178	431
Gold, soft wire	1207	604		375
Iron, pure soft wire	4010	1067	608	578
Nickel, pure (prepared by Mond's process from compound of nickel and carbon monoxide)	6110	1900	-	538
Platinum, annealed	5295	2821	2290	341
Silver, pure wire	962	472	_	377
Tin, pure wire	5671	2553	_	428
German silver, commercial wire	33280	32512	_	035
Palladium-silver, 20 Pd + 80 Ag	14256	13797	_	039
Phosphor-bronze, commercial wire	7883	7371	-	070
Platinoid, Martino's platinoid with 1 to 2%	42385	41454	-	025
Platinum-iridium, 80 Pt + 20 Ir	26712	24440	-	087
Platinum-rhodium, 90 Pt + 10 Rh	9834	7134	-	312
Platinum-silver, 66.7 Ag + 33.3 Pt	26108	25537	-	024
Carbon, from Edison-Swan incandescent } .	4218×108	4321×108	-	
Carbon, from Edison-Swan incandescent }	4079×108	4180×108	-	031
Carbon, adamantine, from Woodhouse and Rawson incandescent lamp	6533×108	-		029

^{*} This is a in the equation $R = R_0$ (1 + at), as calculated from the equation $a = \frac{R_{100} - R_{-100}}{200 R_0}$.

CONDUCTIVITY OF THREE-METAL AND MISCELLANEOUS ALLOYS.

Conductivity in mhos or $\frac{\pi}{\text{ohms per cm. cube}} = C_i = C_o (1 - at + b\ell^2)$.

Metals and alloys.	Composition by weight.	<u>C₀</u>	a×106	<i>b</i> × 10 ⁹	Authority.
Gold-copper-silver	58.3 Au + 26.5 Cu + 15.2 Ag 66.5 Au + 15.4 Cu + 18.1 Ag 7.4 Au + 78.3 Cu + 14.3 Ag	7.58 6.83 28.06	574 529 1830	924 93 7280	I
Nickel-copper-zinc	{ 12.84 Ni + 30.59 Cu + } { 6.57 Zn by volume }	4.92	444	51	I
Brass	Various	12.2-15.6 12.16 14.35	1-2 × 10 ⁸ - -	-	3
German silver	Various	3-5	-	-	2
66 66	14.03 Ni+.30 Fe with trace of cobalt and manganese.	3-33	360	-	4
Aluminum bronze		7.5-8.5	5-7 × 10 ²	-	2
Phosphor bronze		10-20	'	-	2
Silicium bronze		41	-	-	5
Manganese-copper	30 Mn + 70 Cu	1.00	40	-	4
Nickel-manganese-copper	3 Ni + 24 Mn + 73 Cu	2.10	-30	-	4
Nickelin	\[\begin{pmatrix} 18.46 \text{ Ni} + 61.63 \text{ Cu} + \\ 19.67 \text{ Zn} + 0.24 \text{ Fe} + \\ 0.19 \text{ Co} + 0.18 \text{ Mn} \\ \dots \end{pmatrix}. \]	3.01	300	-	4
Patent nickel	25.1 Ni + 74.41 Cu + 0.42 Fe + 0.23 Zn + 0.13 Mn + trace of cobalt	2.92	190	-	4
Rheotan	53.28 Cu + 25.31 Ni + 16.89 Zn + 4.46 Fe + 0.37 Mn	1.90	410	-	4
Copper-manganese-iron	91 Cu + 7.1 Mn + 1.9 Fe . 70.6 Cu + 23.2 Mn + 6.2 Fe 69.7 Cu + 29.9 Ni + 0.3 Fe .	4.98 1.30 2.60	120 22 120	-	6 6 7
Manganin	84 Cu + 12 Mn + 4 Ni 60 Cu + 40 Ni	2.3 2.04	0– 42	300-600	8
	Siemens. 5 Van de ssner and Lindeck. 6 Blood.		Feussner. Jaeger-Di	esselhorst	

CONDUCTING POWER OF ALLOYS.

This table shows the conducting power of alloys and the variation of the conducting power with temperature.* The values of C_o were obtained from the original results by assuming silver $=\frac{10^8}{1.585}$ mhos. The conductivity is taken as $C_o = C_o$ ($x-at+bt^2$), and the range of temperature was from 0° to 100° C.

The table is arranged in three groups to show (1) that certain metals when melted together produce a solution which has a conductivity equal to the mean of the conductivities of the components, (2) the behavior of those metals alloyed with others, and (3) the behavior of the other metals alloyed together.

It is pointed out that, with a few exceptions, the percentage variation between 0° and 100° can be calculated from the formula $P = P_o \frac{l}{l'}$, where l is the observed and l' the calculated conducting power of the mixture at 100° C., and P_o is the calculated mean variation of the metals mixed.

	Weight %	Volume %	Co			Variation	per 100° C.
Alloys.	of first named.		104	a × 10 ⁶	§ × 109	Observed.	Calculated.
		Gı	ROUP I.				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77.04	83.96	7.57	3890	8670	30.18	29.67
	82.41	83.10	9.18	4080	11870	28.89	30.03
	78.06	77.71	10.56	3880	8720	30.12	30.16
	64.13	53.41	6.40	3780	8420	29.41	29.10
	24.76	26.06	16.16	3780	8000	29.86	29.67
	23.05	23.50	13.67	3850	9410	29.08	30.25
	7.37	10.57	5.78	3500	7270	27.74	27.60
		G	ROUP 2.				
Lead-silver (Pb ₂₀ Ag) .	95.05	94.64	5.60	3630	7960	28.24	19.96
Lead-silver (PbAg) .	48.97	46.90	8.03	1960	3100	16.53	7.73
Lead-silver (PbAg ₂) ,	32.44	30.64	13.80	1990	2600	17.36	10.42
Tin-gold (Sn ₁₂ Au) (Sn ₅ Au)	77·94	90.32	5.20	3080	6640	24.20	14.83
	59·54	79.54	3.03	2920	6300	22.90	5.95
Tin-copper	92.24	93.57	7.59	3680	8130	28.71	19.76
	80.58	83.60	8.05	3330	6840	26.24	14.57
	12.49	14.91	5.57	547	294	5.18	3.99
	10.30	12.35	6.41	666	1185	5.48	4.46
	9.67	11.61	7.64	691	304	6.60	5.22
	4.96	6.02	12.44	995	705	9.25	7.83
	1,15	1.41	39.41	2670	5070	21.74	20.53
Tin-silver	91.30	96.52	7.81	3820	. 8190	30.00	23.31
	53.85	75.51	8.65	3770	8550	29.18	11.89
Zinc-copper †	36.70	42.06	13.75	1370	1340	12.40	11.29
	25.00	29.45	13.70	1270	1240	11.49	10.08
	16.53	23.61	13.44	1880	1800	12.80	12.30
	8.89	10.88	29.61	2040	3030	17.41	17.42
	4.06	5.03	38.09	2470	4100	20.61	20.62

Note. — Barus, in the "Am. Jour. of Sci." vol. 36, has pointed out that the temperature variation of platinum alloys containing less than 10% of the other metal can be nearly expressed by an equation $y = \frac{n}{x} - m$, where y is the temperature coefficient and x the specific resistance, m and n being constants. If a be the temperature coefficient at 0° C. and s the corresponding specific resistance, s(x + m) = n.

For platinum alloys Barus's experiments gave m = -.000194 and n = .0378. For steel m = -.000303 and n = .0620.

Matthiessen's experiments reduced by Barus gave for

Gold alloys m = -.000045; n = .00721. Silver " m = -.000112, n = .00538. Copper " m = -.000386, n = .00055.

^{*} From the experiments of Matthiessen and Vogt, "Phil. Trans. R. S." v. 154.

CONDUCTING POWER OF ALLOYS.

		Gı	ROUP 3.					
Alloys.	Weight %	Volume %	C ₀			Variation	Variation per 100° C.	
Alloys.	of first	named.	104	a×10 ⁶	δ × 109	Observed.	Calculated.	
Gold-copper †	99.23 90.55	98.36 81.66	35.42 10.16	2650 749	4650 81	21.8 7 7.41	23.22 7·53	
Gold-silver †	87.95 87.95 64.80 64.80 31.33 31.33	79.86 79.86 52.08 52.08 19.86	13.46 13.61 9.48 9.51 13.69	1090 1140 673 721 885 908	793 1160 246 495 531 641	10.09 10.21 6.49 6.71 8.23 8.44	9.65 9.59 6.58 6.42 8.62 8.31	
Gold-copper †	34.83 1.52	19.17	12.94 53.02	864 3320	570 7300	8.07 25.90	8.18 25.86	
Platinum-silver † " † " †	33·33 9.81 5.00	19.65 5.05 2.51	4.22 11.38 19.96	330 774 1240	208 656 1150	3.10 7.08 11.29	3.21 7.25 11.88	
Palladium-silver †	25.00	23.28	5.38	324	154	3.40	4.21	
Copper-silver†	98.08 94.40 76.74 42.75 7.14 1.31	98.35 95.17 77.64 46.67 8.25	56.49 51.93 44.06 47.29 50.65 50.30	3450 3250 3030 2870 2750 4120	7990 6940 6070 5280 4360 8740	26.50 25.57 24.29 22.75 23.17 26.51	27.30 25.41 21.92 24.00 25.57 29.77	
Iron-gold †	13.59 9.80 4.76	27.93 21.18 10.96	1.73 1.26 1.46	3490 2970 487	7010 1220 103	27.92 17.55 3.84	14.70 11.20 13.40	
Iron-copper †	0.40	0.46	24.51	1550	2090	13.44	14.03	
Phosphorus-copper † .	2.50 0.9 5	_	4.62 14.91	476 1320	145 1640	-	-	
Arsenic-copper †	5.40 2.80 trace	- - -	3.97 8.12 38.52	516 736 2640	989 446 4 830	-	-	

* Annealed.

† Hard-drawn.

ELECTRICAL RESISTANCE OF STRAIGHT WIRES WITH ALTERNATING CURRENTS OF DIFFERENT FREQUENCIES.

This table gives the ratio of the resistance of straight copper wires with alternating currents of different frequencies to the value of the resistance with direct currents.

Diameter of wire in		Frequency n =											
millimeters.	60	190	1000	10000	100000	1000000							
0.05	_	-	-	-	-	*1.001							
0.1	-	-	-	-	*1.001	1.008							
0.25	-	-	-	_	1.003	1.247							
0.5	-	-	-	*1.001	1.047	2.240							
1.0		-	_	1.008	1.503	4.19							
2	-	-	1.001	1.120	2.756								
3	-	-	1.006	1.437	4.00								
4 5	-	-	1.021	1.842									
5	100	*1.001	1.047	2.240									
7.5	1.001	1.002	1.210	3.22									
10	1.003	1.008	1.503	4.19									
15	1.016	1.038	2.136										
20	1.044	1.120	2.756 3.38										
25	1.105	1.247	3.38										
40	1.474	1.842											
100	3.31	4.19											

Values between 1.000 and 1.001 are indicated by *1.001.

The change of resistance of wires other than copper (iron wires excepted) may be calculated from the above table, making use of the fact that the change of resistance is a function of the argument $p = 2\pi r \sqrt{2n\lambda}$ where r = radius of cross-section, n = frequency, $\lambda =$ conductivity.

If a given wire be wound into a solenoid, its resistance, at a given frequency, will be greater than the values in the table, which apply to straight wires only. The resistance in this case is a complicated function of the pitch and radius of the winding, the frequency, and the diameter of the wire, and is found by experiment to be sometimes as much as twice the value for a straight wire.

INTERNATIONAL ATOMIC WEIGHTS AND ELECTROCHEMICAL EQUIVA-LENTS.

The International Atomic Weights are quoted from the report of the International Committee on Atomic Weights ("Jour. Am. Chem. Soc.," vol. 32, p. 3, 1910).

With the exception of the value given for silver and that corresponding to valence 2 for copper, the electrochemical equivalents given in this table have been calculated from the atomic weights and one or two of the more common apparent valences of the substance. The value given for silver is that which was adopted by the International Congress of Electricians at Chicago in 1894.

			2 3 3 3 3 3 3 3		ins at Chicago in 1894
Substance.	Symbol.	Relative atomic wt. Oxygen = 16.	Relative atomic wt. Hydrogen = 1.	Valence.	Electrochemical equivalent in grammes per coulomb X 1000.
Aluminum	Al Sb "	27.I I20.2	26.9 119.3	3 3 5	.0936 .4152 .2491
Argon	A As "	39.9 74.96	39.6 74.4	3 5	.2590 .1554
Barium	Ba Bi "	137.37 208.0	136.27 206.3	2 3 5 3	.7118 .7185 .4311
Boron	B Br	11.0 79.92	10.9 79.28	3	.0380 .8282
Cadmium	Cd Cs Ca	112.40 132.81 40.09	111.51 131.76 39.77	2 I 2	0.5824 1.3764 0.2077
Carbon	C Ce	12.00	11.99	4 2	.7267
Chromium	Cr " Co	35.46 52.0 ". 58.97	35.19 51.6 "	3 6 2	.3675 .1797 .0900
Columbium	"Cb	93.5	58.50 "	3 5	.3061 .2041
Copper	Cu " Dy	63.57	63.07	1 2 -	.1937 .6588 .3290
Erbium	Er Eu	167.4	166.1 150.8	2	.8624
Fluorine	F Gd Ga	19.0 157.3 69.9	18.9 156.1 69.3	1 - 3	.1968 - .2414
Glucinum	Ge Gl	72.5 9.1	71.9 9.03	2	.0471
Gold	Au He H	197.2 4.0 1.008	195.7 4.0 1.000	3	.6818
Indium	In I	114.8	113.9	3	o.396Ġ
Iridium	Ir Fe	193.1 55.85	191.6 55.41	4 2 3	1.3153 0.5003 .2894 .1929
Krypton	Kr La	83.0 139.0	82.4	3 - 2	0.7202
Lead	Pb Li Lu	207.10 7.00 174.0	205.46 6.94 172.6	2 I	1.0731 0.0725
Magnesium	Mg Mn "	24.32 54:93	24.13 54.49	2 2 4	.1260 .2846 .1423
					12423

INTERNATIONAL ATOMIC WEIGHTS AND ELECTROCHEMICAL EQUIVA-LENTS.

Substance.	Symbol.	Relative atomic wt. Oxygen == 16.	Relative atomic wt. Hydrogen = re	Valence.	Electrochemical equivalent in grammes per coulomb × 1000.
Mercury	Hg Mo Nd Ne	200.0 ff 96.0 144.3 20.0	95·3 143.2 19.9	1 2 6 - -	2.0727 1.0363 0.1658 - -
Nickel	Ni " N " Os	58.68 14.01 190.9	58.21 13.90 189.4	3 3 5 6	.3040 .2027 .0484 .0290 .3297
Oxygen	O Pd " P	16.00 106.7 " 31.0	15.88 105.9 30.8	2 2 5 3 5	.0829 .5528 .2211 .1071 0.0642
Platinum	Pt " K Pr Rd	195.0 " 39.10 140.6 226.4	193.4 38.79 139.5 224.6	2 4 1 -	1.0104 0.5052 -4052 -
Rhodium Rubidium	Rh Rb Ru Sa Sc	102.9 85.45 101.7 150.4 44.1	102.1 84.77 100.9 149.2 43.7	3 1 4	.3554 .8855 .2635
Selenium Silicon Silver Sodium Strontium	Se Si Ag Na Sr	79.2 28.3 107.88 23.00 87.62	78.6 28.2 107.02 22.82 86.92	2 4 1 1 2	.4104 0.0733 1.1180 0.2384 .4540
Sulphur Tantalum	S Ta Te Tb Tl	32.07 181.0 127.5 159.2 204.0	31.82 179.6 126.5 157.9 202.4	5 2 -	.1662 .3751 0.6606 - 2.1141
Thorium	Th Tm Sn "	232.42 168.5 119.0 " 48.1	230.57 167.2 118.1 " 47.7	2 - 2 4 4	1.2043 0.6166 .3083 .1246
Tungsten	W U " V	184. 238.5 " 51.2	183. 236.6 " 50.8	6 2 3 3 5	0.3178 1.2358 0.8238 .1768 .1061
Xenon	Xe Yb Yt Zn Zr	130.7 172.0 89.0 65.37 90.6	129.7 170.6 88.3 64.88 89.9	- 2 2 4	- .4611 .3385 .2347

CONDUCTIVITY OF ELECTROLYTIC SOLUTIONS.

This subject has occupied the attention of a considerable number of eminent workers in molecular physics, and a few results are here tabulated. It has seemed better to confine the examples to the work of one experimenter, and the tables are quoted from a paper by F. Kohlrausch,* who has been one of the most reliable and successful workers in this field.

The study of electrolytic conductivity, especially in the case of very dilute solutions, has furnished material for generalizations, which may to some extent help in the formation of a sound theory of the mechanism of such conduction. If the solutions are made such that per unit volume of the solvent medium there are contained amounts of the salt proportional to its electrochemical equivalent, some simple relations become apparent. The solutions used by Kohlrausch were therefore made by taking numbers of grammes of the pure salts proportional to their electrochemical equivalent, and using a litre of water as the standard quantity of the solvent. Taking the electrochemical equivalent number as the chemical equivalent or atomic weight divided by the valence, and using this number of grammes to the litre of water, we get what is called the normal or gramme molecule per litre solution. In the table, m is used to represent the number of gramme molecules to the litre of water in the solution for which the conductivities are tabulated. The conductivities were obtained by measuring the resistance of a cell filled with the solution by means of a Wheatstone bridge alternating current and telephone arrangement. The results are for 18° C., and relative to mercury at 0° C., the cell having been standardized by filling with mercury and measuring the resistance. They are supposed to be accurate to within one per cent of the true value.

The tabular numbers were obtained from the measurements in the following manner:—

Let K_{18} = conductivity of the solution at 18° C. relative to mercury at o° C. K_{18}^{w} = conductivity of the solvent water at 18° C. relative to mercury at o° C. Then $K_{18} = K_{18}^{w} = k_{18}$ = conductivity of the electrolyte in the solution measured.

 $\frac{k_{18}}{k_{18}} = \mu = \text{conductivity of the electrolyte in the solution per molecule, or the "specific$ molecular conductivity."

TABLE 277. — Value of k_{18} for a few Electrolytes.

This short table illustrates the apparent law that the conductivity in very dilute solutions is proportional to the amount of salt dissolved.

m	KCl	NaCl	AgNO ₃	KC ₂ H ₃ O ₂	K ₂ SO ₄	MgSO ₄
0.000001	1.216	1.024	1.080	0.939	1.275	1.056
0.00002	2.434	2.056	2.146	1.886	2.532	2.104
0.00006	7.27 2	6.162	6.462	5.610	7.524	6.216
0.0001	12.09	10.29	10.78	9.34	12.49	10.34

TABLE 278. - Electro-Chemical Equivalents and Normal Solutions.

The following table of the electro-chemical equivalent numbers and the densities of approximately normal solutions of the salts quoted in Table 271 may be convenient. They represent grammes per cubic centimetre of the solution at the temperature given.

Salt dissolved.	Grammes per litre.	m	Temp. C.	Density.	Salt dissolved.	Grammes per litre.	m	Temp.	Density.
KCl	74-59 53-55 58-50 42-48 104-0 68.0 165.9 101.17 85.08 169-9 65.28 61.29 98.18	1.0 1.0009 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	15.2 18.6 18.4 18.4 18.6 15.0 18.6 18.7	1.0457 1.0152 1.0391 1.0227 1.0888 1.0592 1.1183 1.0601 1.0542	½K ₂ SO ₄ . ½Na ₂ SO ₄ . ½Li ₂ SO ₄ . ½MgSO ₄ . ½ZnSO ₄ . ½CuSO ₄ . ½CuSO ₄ . ½K ₂ CO ₃ . ½Na ₂ CO ₃ . ½Na ₂ CO ₃ . KOH . HCl HNO ₈ . ½H ₂ SO ₄ .	87.16 71.09 55.09 60.17 80.58 79.9 69.17 53.04 56.27 36.51 63.13 49.06	I,0 1,0003 1,0007 1,0023 1,0 1,001 1,0006 1,0 1,0025 1,0041 1,0006	18.9 18.6 18.6 18.6 18.3 17.9 18.8 18.6 18.6	1.0658 1.0602 1.0445 1.0573 1.0776 1.0576 1.0576 1.0517 1.0477 1.0161 1.0318 1.0300

SPECIFIC MOLECULAR CONDUCTIVITY μ : MERCURY=10°.

Salt dissolved.	m=10	5	3	ı	0.5	0.1	•05	.03	10.
½K ₂ SO ₄		770 752	827 900 825 572	919 968 907 752	6 72 958 997 948 839	736 1047 1069 1035 983	897 1083 1102 1078 1037	959 1107 1123 1101 1067	1098 1147 1161 1142 1122
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	- - - 351	487 - - 150 448	658 - - 241 635	725 799 531 288 728	861 927 755 424 886	904 (976) 828 479 936	939 1006 (870) 537 (966)	1006 1053 951 675 1017
½ZnSO ₄	- - 60 -	82 82 - 180 398	146 151 - 280 528	249 270 475 514 695	302 330 559 601 757	431 474 734 768 865	500 53 ² 784 817 897	556 587 828 851 (920)	685 715 906 915 962
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 - 660 0.5	- 240 - 1270 2.6	430 381 254 1560 5.2	617 594 427 1820	694 671 510 1899 19	817 784 682 2084 43	855 820 751 2343 62	877 841 799 2515 79	907 879 899 2855 132
HCl	600	1420	2010	2780	3017	3244	3330	3369	3416
	610	1470	2070	2770	2991	3225	3289	3328	3395
	148	160	170	200	250	430	540	620	790
	423	990	1314	1718	1841	1986	2045	2078	2124
	0.5	2.4	3.3	8.4	12	31	43	50	92
Salt dissolved.	.006	.002	1001	.0006	.0002	10001	.00006	,00002	10000
½K ₂ SO ₄	1130	1181	1207	1220	1241	1249	1254	1266	1275
	1162	1185	1193	1199	1209	1209	1212	1217	1216
	1176	1197	1203	1209	1214	1216	1216	1216	1207
	1157	1180	1190	1197	1204	1209	1215	1209	1205
	1140	1173	1180	1190	1199	1207	1220	1198	1215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1031	1074	1092	1102	1118	1126	1133	1144	1142
	1068	1091	1101	1109	1119	1122	1126	1135	1141
	982	1033	1054	1066	1084	1096	1100	1114	1114
	740	873	950	987	1039	1062	1074	1084	1086
	1033	1057	1068	1069	1077	1078	1077	1073	1080
½ZnSO4	744	861	919	953	1001	1023	1032	1047	1060
	773	881	935	967	1015	1034	1036	1052	1056
	933	980	998	1009	1026	1034	1038	1056	1054
	939	979	994	1004	1020	1029	1031	1035	1036
	976	998	1008	1014	1018	1029	1027	1028	1024
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	921	942	952	956	966	975	970	972	975
	891	913	919	923	933	934	935	943	939
	956	1010	1037	1046	988	874	790	715	697*
	3001	3240	3316	3342	3280	3118	2927	2077	1413*
	170	283	380	470	796	995	1133	1328	1304*
HC!	3438	3455	3455	3440	3340	3170	2968	2057	1254*
	3421	3448	3427	3408	3285	3088	2863	1904	1144*
	858	945	968	977	920	837	746	497	402*
	2141	2140	2110	2074	1892	1689	1474	845	747*
	116	190	260	330	500	610	690	700	560*

^{*} Acids and alkaline salts show peculiar irregularities.

LIMITING VALUES OF μ . TEMPERATURE COEFFICIENTS.

TABLE 280. - Limiting Values of µ.

This table shows limiting values of $\mu = \frac{k}{m}$.108 for infinite dilution for neutral salts, calculated from Table 271.

Salt.	μ	Salt.	μ	Salt.	μ	Salt.	μ
½K2SO4 .	1280	½BaCl₂ .	1150	⅓MgSO₄ .	1080	½H2SO4 .	3700
ксі	1220	⅓KClO ₈ .	1150	$\frac{1}{2}$ Na ₂ SO ₄ .	1060	HC1	3500
KI	1220	$\frac{1}{2}$ BaN $_2$ O $_6$.	1120	½ZnCl	1040	HNO ₃	3500
NH4Cl	1210	½CuSO₄ .	1100	NaCl	1030	½H₃PO₄ .	1100
KNO ₃	1210	AgNO ₈ .	1090	NaNO ₈ .	980	кон	2200
-	-	⅓ZnSO₄ .	1080	K ₂ C ₂ H ₈ O ₂	940	⅓Na₂CO ₈ .	1400

If the quantities in Table 271 be represented by curves, it appears that the values of the specific molecular conductivities tend toward a limiting value as the solution is made more and more dilute. Although these values are of the same order of magnitude, they are not equal, but depend on the nature of both the ions forming the electrolyte.

When the numbers in Table 272 are multiplied by Hittorf's constant, or 0.00011, quantities ranging between 0.14 and 0.10 are obtained which represent the velocities in millimetres per second of the ions when the electromotive force gradient is one volt per millimetres.

Specific molecular conductivities in general become less as the concentration is increased, which may be due to mutual interference. The decrease is not the same for different salts, but becomes much more rapid in salts of high valence.

Salts having acid or alkaline reactions show marked differences. They have small specific molecular conductivity in very dilute solutions, but as the concentration is increased the conductivity rises, reaches a maximum and again falls off. Kohlrausch does not believe that this can be explained by impurities. H_3PO_4 in dilute solution seems to approach a monobasic acid, while H_2SO_4 shows two maxima, and like H_3PO_4 approaches in very weak solution to a monobasic acid.

Kohlrausch concludes that the law of independent migration of the ions in media like water is sustained.

TABLE 281. - Temperature Coefficients.

The temperature coefficient in general diminishes with dilution, and for very dilute solutions appears to approach a common value. The following table gives the temperature coefficient for solutions containing o.or gramme molecule of the salt.

Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.
KCl	0.0221	кі	0.0219	½K2SO4 .	0.0223	½K₂CO ₈	0.0249
NH4Cl	0.0226	KNO ₈	0.0216	½Na₂SO₄ .	0.0240	½Na₂CO ₈	0.0265
NaCl	0.0238	NaNO ₈	0.0226	½Li ₂ SO ₄ .	0.0242	WOH	
LiCl	0.0232	AgNO ₈	0.0221	⅓MgSO ₄ .	0.0236	KOH HCl	0.0194
∄BaCl₂	0.0234	$\frac{1}{2}$ Ba(NO ₃) ₂	0.0224	½ZnSO ₈ .	0.0234	$HNO_8 \cdot \cdot \cdot \cdot \frac{1}{2}H_2SO_4 \cdot \cdot \cdot$	0.0162
½ZnCl ₂	0.0239	KC10 ₈	0.0219	½CuSO ₄ .	0.0229	111 00	
⅓MgCl₂ .	0.0241	KC ₂ H ₈ O ₂ .	0.0229	~		$ \frac{1}{2}H_2SO_4 for m = .001$	0.0159

THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS.

In the following table the equivalent conductance is expressed in reciprocal ohms. The concentration is expressed in milli-equivalents of solute per litre of solution at the temperature to which the conductance refers. (In the cases of potassium hydrogen sulphate and phosphoric acid the concentration is expressed in milli-formula-weights of solute, KHSO₄ or H₃PO₄, per litre of solution, and the values are correspondingly the modal, or "formal," conductances.) Except in the cases of the strong acids the conductance of the water was subtracted, and for sodium acetate, ammonium acetate and ammonium chloride the values have been corrected for the hydrolysis of the salts. The atomic weights used were those of the International Commission for 1905, referred to oxygen as 16.00. Temperatures are on the hydrogen gas scale.

Concentration in gramme equivalents

Equivalent conductance in reciprocal ohms per centimetre cube gramme equivalents per cubic centimetre

Substance.	Concen- tration.		Equiv	alent co	ductanc	e at the	follow	ing ° C	tempera	tures.	
Dabbaa.co.	Cor	180	250	500	75°	1000	1280	156°	2180	2810	306°
Potassium chloride .	0	130.1	(152.1)	(232.5)	(321.5)	414	(519)	625	825	1005	1120
46 66	2	126.3	146.4		-	393	-	588	779	930	1008
" "	10	122.4	141.5	215.2	295.2	377	470	560	741	874	910
66 66	80	113.5		-		342	_	498	638	723	720
	100	112.0	129.0	194.5	264.6	336	415	490			
Sodium chloride	0	109.0	-	_	_	362	_	555	760	970	1080
46 66	2	105.6	-	-	_	349	_	534	722	895 820	955 860
46 46	10 80	102.0	-	_	_	336	-	511	685		680
"	100	93.5				301 296	_	450	500	674	000
Silver nitrate	0	115.8	_	***	_	367	_	570	780	965	1065
66 66	2	112.2	_	_	_	353	_	539	727	877	
"	10	108.0	_	_	- 1	337		507	673	790	935 818
" "	20	105.1		_	_	326	-	488	639	17-	
4 44	40	101.3	-	_		312	_	462	599	680	680
46 66	80	96.5	-	_	-	294	-	432	552	614	604
66 66	100	94.6	-	-	_	289					
Sodium acetate	0	78.1	-	-		285	- 1	450	660	-	924
"	2	74.5	-			268	-	421	578		801
66 66	10	71.2	_		-	253		396	542	_	702
	80	63.4	~	_	-	221	_	340	452		
Magnesium sulphate	0	114.1	~	_		426	-	690	1080 260		į į
46 46	2	94.3	~	-	_	302		377			
66 66	20	76.1			_	234	_	24I 195	143		
46 46	40	59.3				190 160	_	195	88		
46 46	80	59.3	_	00	-	136		133	75		
66 66	100	49.8	_	_	-	130	-	126	13		
65 66	200	43.1	_	-	_	110		100			
Ammonium chloride	0	131.1	152.0	-		(415)	-	(628)	(841)	No.	(1176)
66	2	126.5	146.5	-		399	-	601	801	-	1031
66 66	10	122.5	141.7	-	-	382	-	573	758	-	925
46 "	30	118.1	-	-	-	-	-		- 1	-	828
Ammonium acetate.	0	(99.8)	-	-	-	(338)	-	(523)			
66 66	IO	91.7	_	-	-	300	-	456			
66 66	25	88.2	_	-	-	286	-	426			
								1			

From the investigations of Noyes, Melcher, Cooper, Eastman and Kato; Journal of the American Chemical Society, 30, 1908.

THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS.

	Concen- tration.		Equiv	alent co	nductano	e at th	e follow	ing ° C	tempera	itures.	
Substance.	Con	180	25°	500	75°	1000	1280	156°	2180	2810	306°
Barium nitrate	0 2 10 40 80	116.9 109.7 101.0 88.7 81.6			11111	385 352 322 280 258		600 536 481 412 372	840 715 618 507 449	828 658 503 430	1300 824 615 448
Potassium sulphate . " " " " " " " " " " " " " " " " " " "	100 0 2 10 40 80	79.1 132.8 124.8 115.7 104.2 97.2 95.0				249 455 402 365 320 294 286	1 1 1 1	715 605 537 455 415	1065 806 672 545 482	1460 893 687 519 448	1725 867 637 466 396
Hydrochloric acid """ """ """ Nitric acid	0 2 10 80 100	379.0 373.6 368.1 353.0 350.6	- - - - 421.0	- - - - - 570	- - - - 706	850 826 807 762 754 826	945	1085 1048 1016 946 929 1047	1265 1217 1168 1044 1006 (1230)	1380 1332 1226 1046	1424 1337 1162 862 (1380)
" " " " " " " " " " " " " " " " " " "	2 10 50 100 0 2	371.2 365.0 353.7 346.4 383.0 353.9 309.0	413.7 406.0 393.3 385.0 (429) 390.8 337.0	559 548 528 516 (591) 501 406	690 676 649 632 (746) 561 435	806 786 750 728 891 571 446	919 893 845 817 (1041) 551 460	978 917 880	1166 - 1505 563 533	1 111	454* (2030) 637
Potassium hydrogen sulphate	50 100 2 50 100	253.5 233.3 455.3 295.5 263.7	273.0 251.2 506.0 318.3 283.1 376	3 ² 3 300 661.0 374.4 3 ² 9.1	356 336 754 403 354 631	384 369 784 422 375 730	417 404 773 446 402 839	448 435 754 477 435 930 489	502 483	-	474*
Acetic acid	10 50 100 0	283.1 203.0 122.7 96.5 (347.0) 14.50	311.9 222.0 132.6 104.0	401 273 157.8 122.7	464 300 168.6 129.9	498 308 168 128 (773) 25.1	508 298 158 120	489 274 142 108 (980) 22.2	(1165)	-	(1268)
" " Sodium hydroxide . " " "	30 80 100 0 2	8.50 5.22 4.67 216.5 212.1 205.8			-	14.7 9.05 8.10 594 582		13.0 8.00 - 835 814 771	8.65 5.34 4.82 1060	-	1.57
Barium hydroxide .	50 0 2 10 50	205.6 200.6 222 215 207 191.1	256 - 235 215.1	389 359 342 308	(520) 4 449 399	559 540 645 591 548 478	(760) 664 549	771 738 847 722 593	930 873		
Ammonium hydrox-	100 0 10 30	180.1 (238) 9.66 5.66	204.2 (271)	291 (404) -	373 (526)	443 (647) 23.2 13.6	503 (764)	531 (908) 22.3 13.0	(1141)	-	(1406)
	100	3.10	3.62	5-35	6.70	7.47	-	7.17	4.82	-	1.33

^{*} These values are at the concentration 80.0.

THE EQUIVALENT CONDUCTIVITY OF SOME ADDITIONAL SALTS IN AQUEOUS SOLUTION.

Conditions similar to those of the preceding table except that the atomic weights for 1908 were used.

63.4	Concen-	F	Equivalen	t conduct	ance at t	he follow	ring ° C	temperatu	re.
Substance.	tration.	00	180	250	50°	75°	1000	1280	1560
Potassium nitrate	0	80.8	126.3	145.1	219	299	384	485	580
66 46	2	78.6	122.5	140.7	212.7	289.9	370.3	460.7	551
66 66	12.5	75.3	117.2	134.9	202.9	276.4	351.5	435.4	520.4
44 44	50	70.7	109.7	126.3	189.5	257.4	326.1	402.9	476.1
	100	67.2	104.5	120.3	180.2	244.I	308.5	379.5	447.3
Potassium oxalate	0	79.4	127.6	147.5	230	322	419	538	653
" "	2	74.9	119.9	139.2	215.9	300.2	389.3	489.I	587
" "	12.5	69.3	III.I	129.2	199.1	275.1	354.1	438.8	524.3
"	50	63	101	116.5	178.6	244.9	312.2	383.8	449.5
" "	100	59.3 55.8	94.6 88.4	109.5	167	227.5	288.9	353.2	409.7
Calcium nitrate	200		112.7	102.3	202	282	265.1 369	321.9	372.1
66 66	0 2	70.4 66.5	107.1	130.0	191.9	266.7	346.5	474 438.4	575
66 46	12.5	61.6	98.6	114.5	176.2	244	340.5	394.5	529.8
66 66			88.6	102.6	157.2	216.2	276.8		473·7 405.1
66 66	50 100	55.6 51.9	82.6	95.8	146.1	199.9	255.5	343 315.1	369.1
46 66	200	48.3	76.7	88.8		184.7	234.4	288	334.7
Potassium ferrocyanide.	0	98.4	159.6	185.5	135.4 288	403	527	300	3347
"" tabbrain torrocyanide .	0.5	91.6	- 39.0	171.1		4-3	3-7		
"	2.	84.8	137	158.9	243.8	335.2	427.6		
<i>u e e e e e e e e e e</i>	12.5	71	113.4	131.6	200.3	27 I	340		
44 46	50	58.2	93.7	108.6	163.3	219.5	272.4		
"	100		84.9	98.4	148.1	198.1	245		
66 66	200	53 48.8	77.8	90.1	135.7	180.6	222.3		
"	400	45.4	72.I	83.3	124.8	165.7	203.1		
Barium ferrocyanide	0	91	150	176	277		521		
66 66	2	46.9	7.5	86.2	127.5	393 166.2	202.3		
66 66	12.5	30.4	48.8	56.5	83.1	107	129.8		
Calcium ferrocyanide .	0	88	146	171	27 I	386	512		
66 66	2	47.I	75.5	86.2	130				ļ:
"	12.5	31.2	49.9	57-4					
"	50	24.1	38.5	44.4	64.6	81.9			
" "	100	21.9	35.1	40.2	58.4	73.7 68.7	84.3		
" "	200	20.6	32.9	37.8	55		77.5		
" "	400	20.2	32.2	37.1	54 228	67.5	76.2		
Potassium citrate	0	76.4	124.6	144.5	228	320	420		
" "	0.5	-	120.1	139.4			0		
" "	2	71	115.4	134.5	210.1	293.8	381.2		
46 66	5	67.6	109.9	128.2	198.7	276.5	357.2		
	12.5	62.9	8.101	118.7	183.6	254.2	326		
" "	50	54.4	87.8	102.1	I 57.5	215.5	273		
46 66	100	50.2	80.8	93.9	143.7	196.5	247.5		
	300	43.5	69.8		123.5	167	209.5	F2.1	657
Lanthanum nitrate	0 2	7 5 ·4 68.9	122.7	142.6	223	313	413	534	651
			110.8		200.5	279.8	363.5	457·5 383.4	549
"	12.5	61.4	98.5 86.1	114.4	176.7	243.4	311.2 261.4		447.8
66 66	50	54		99.7	152.5	207.6	236.7	31 5.8	357·7 316.3
66 66	100 200	49.9	79.4	82 #	139.5		210.8	249.6	276.2
• •	200	46	72.1	83.5	120.4	170.2	210.0	249.0	2/0.2

From the investigations of Noyes and Johnston, Journal of the American Chemical Society, 31, 1909.

CONDUCTANCE OF IONS. - HYDROLYSIS OF AMMONIUM ACETATE.

TABLE 284. - The Equivalent Conductance of the Separate Ions.

Ion.	oo	180	25°	500	75°	100°C	128°	156°
K	40.4	64.6	74·5	115	159	206	263	317
	26	43.5	50.9	82	116	155	203	249
	40.2	64.5	74·5	115	159	207	264	319
	32.9	54.3	63·5	101	143	188	245	299
	33	55 ²	65	104	149	200	262	322
	30	51 ²	60	98	142	191	252	312
	35	61	72	119	173	235	312	388
$\begin{array}{c} \text{Cl} & & \\ \text{NO}_3 & & \\ \text{C}_2\text{H}_3\text{O}_2 & \\ \text{2SO}_4 & & \\ \text{2C}_2\text{O}_4 & & \\ \text{3C}_6\text{H}_5\text{O}_7 & \\ \text{4Fe}(\text{CN})_6 & & \\ \end{array}$	41.1 40.4 20.3 41 39 36 58	65.5 61.7 34.6 68 ² 63 ² 60 95	75.5 70.6 40.8 79 73 70	116 104 67 125 115 113 173	160 140 96 177 163 161 244	207 178 130 234 213 214 321	264 222 171 303 275	318 263 211 370 336
H	240	314	350	465	565	644	722	777
	105	172	192	284	360	439	525	592

From Johnson, Journ. Amer. Chem. Soc., 31, 1909.

TABLE 285. - Hydrolysis of Ammonium Acetate and Ionization of Water.

Temperature.	Percentage hydrolysis.	Ionization constant of water.	Hydrogen-ion concentration in pure water. Equivalents per litre.
ź	iooh	K _W ×zol4	C _H ×10 ⁷
0	-	0.089	0.30
18	(0.35)	0.46	o.68
25	-	0.82	0.91
100	4.8	48.	6.9
156	18.6	223.	14.9
218	52.7	461.	21.5
306	91.5	168.	13.0

Noyes, Kato, Kanolt, Sosman, No. 63 Publ. Carnegie Inst., Washington.

DIELECTRIC CONSTANTS.

TABLE 286. — Dielectric Constant (Specific Inductive Capacity) of Gases. Atmospheric Pressure.

Wave-lengths of the measuring current greater than 10000 cm.

Gas.	Temp.		c constant red to	Authority,
Gas.	° C:	Vacuum=1	Air=1	Authority.
Air	0 -	1.000590 1.000586	I.000000	Boltzmann, 1875. Klemenčič, 1885.
Ammonia	20	1.00718	1.00659	Bädeker, 1901.
Carbon bisulphide	0	1.00290	1.00231	Klemenčič. Bädeker.
Carbon dioxide	0	1.000946	1.000356 1.000399	Boltzmann. Klemenčič.
Carbon monoxide	0	1.000690	1.000100	Boltzmann. Klemenčič.
Ethylene	0	1.00131	1.00072	Boltzmann. Klemenčič.
Hydrochloric acid	100	1.00258	1.00199	Bädeker.
Hydrogen	0	1.000264 1.000264	0.999674 0.999678	Boltzmann. Klemenčič.
Methane	0	1.000944	1.000354	Boltzmann. Klemenčič.
Nitrous oxide (N2O)	0	1.00099	1.00057	Boltzmann. Klemenčič.
Sulphur dioxide	0	1.00993	1.00934 1.00846	Bädeker. Klemenčič.
Water vapor, 4 atmospheres	145	1.00705	1.00646	Bädeker.

TABLE 287. - Variation of the Dielectric Constant with the Temperature.

For variation with the pressure see next table.

If D_{θ} = the dielectric constant at the temperature θ° C., D_{t} at the temperature t° C., and α and β are quantities given in the following table, then

$$D_{\theta} = D_{t} \left[\mathbf{I} - \mathbf{a}(t - \theta) + \beta(t - \theta)^{2} \right].$$

The temperature coefficients are due to Bädeker.

Gas.	a	β	Range of temp. ° C.
Ammonia	5.45×10 ⁻⁵	2.59 × 10 ⁻⁷	10-110
Sulphur dioxide	6.19 × 10 ⁻⁶	1.86 × 10 ⁻⁷	0-110
Water vapor .	1.4×10 ⁻⁴	-	145

The dielectric constant of air at atmospheric pressure but with varying temperature may also be calculated from the fact that $D-\mathbf{r}$ is approximately proportional to the density.

TABLES 288, 289.

DIELECTRIC CONSTANTS (continued).

TABLE 288. — Change of the Dielectric Constant of Gases with the Pressure,

Gas.	Temper- ature, C. Pressi		Authority.
Air	19 20 - 40 - 60 - 80 - 100 11 20 - 40 - 100 - 120 - 144 - 160 - 188 15 10 - 20 - 40 15 15 - 40	1.0218 1.0330 1.0439 1.0548 1.0101 1.0196 1.0294 1.0387 1.0482 1.0579 1.0674 1.0760 1.0845 1.020 1.060	Tangl, 1907. "" "" Occhialini, 1905. "" "" "" "" "" "" "" "" "" "" Linde, 1895. "" "" "" "" "" "" ""

TABLE 289. - Dielectric Constants of Liquids.

A wave-length greater than 10000 centimetres is denoted by ..

Substance.		Wave- ength, cm.	Dielectric constant.	Author-	Substance.	Temp. ° C.	Wave- length, cm.	Dielectric constant.	Author-
Alcohol:	18 frozen —120 —80 —40 0 +20	200 73 00 "" 200 75 53 4 0.4	2.4 30.1 23.0 17.4 16.0 10.8 4.7 2.7 54.6 44.3 35.3 28.4 25.8 24.4 23.0 20.6 8.8 5.0 3.07 58.0	I I I I I I I I I I I I I I I I I I I	Alcohol: Methyl " " " " " " " " " " " Acetone " " " " Acetic acid " " " " Amyl acetate Amylene	-50 0 +20 17 -120 -60 0 +15 -80 0 15 17 18 15 17 19 19	∞ " " 75 ∞ " " 1200 73 ∞ 1200 200 75 ∞ "	45.3 35.0 31.2 33.2 46.2 46.2 12.3 33.8 26.6 21.85 20.7 9.7 10.3 7.07 6.29 4.81 2.20	1 1 1 2 1 1 1 1 2 5 5 6 7 8 6 2 2 9 10

References on page 28x.

DIELECTRIC CONSTANTS OF LIQUIDS.

A wave-length greater than 10000 centimetres is designated by $\infty\,.$

Substance.	Temp. ○ C.	Wave- length cm.	Diel.	Author-	Substance.	Temp.	Wave- length cm.	Diel. const.	Author-
Anilin	18 18 19 23 20 17 18 17 —80 —40 0 18 20 60 100 140 180 Crit. temp. 192 (frozen) 15 15 15 17 18	73 84 ∞ 73 ∞ 73 ∞ " " " " " " " " " " 83 73 1200 75 8.5 0.4 ∞	7-316 2.288 2.26 3.18 2.626 4.95 2.24 4.95 5.67 2.224 7.05 5.68 4.368 4.30 3.05 3.12 2.66 2.12 1.53 4.35 19.0 62.0 58.5 56.2 39.1 25.4 4.4 2.880 84.7	11 " 2 12 13 2 11 12 10 " 11 13 " " " " " " 14 2 6 2 6 2 " 15 4 6 17	Nitrobenzol	(frozen) -10 -5 0 +15 30 18 17 17 20 11 20 14 21 13 -20 11.4 -488 -83 +16 19 18 17 17 18 17 17	00 44 44 44 44 44 44 44 44 44 44 44 44 4	9.9 42.0 41.0 37.8 35.1 36.45 34.0 1.949 2.83 4.67 3.11 3.10 2.25 3.02 3.11 3.03 2.13 2.23 2.17 9.68 2.51 2.23 2.37 8.66 81.7 83.6	1 " " " " " " " " " " " " " " " " " " "
1 Abegg-Seitz, 18 2 Drude, 1896. 3 Marx, 1898. 4 Lampa, 1896. 5 Abegg, 1897. 6 Thwing, 1894. 7 Drude, 1898. 8 Francke, 1893. 9 Löwe, 1898.	19 A 20 H 21 S 9. 22 T		ibens, 1 on, 1881 1888. wski, 18	:892.					

DIELECTRIC CONSTANTS OF LIQUIDS (continued).

TABLE 290. - Temperature Coefficients of the Formula:

 $D_{\theta} = D_{t}[\mathbf{I} - \mathbf{a}(t - \theta) + \beta(t - \theta)^{2}].$

Substance.	a	β	Temp.	Authority.
Amyl acetate Aniline	0.0024 0.00351 0.00106 0.000966 0.000922 0.00410 0.00459 0.0057 0.00163 0.01067 0.00364 0.000738	0.0000087 0.0000060 0.000015 	10-40 20-181 22-181 - - - 0-13 20-181	Löwe. Ratz. Hasenöhrl. Ratz. Tangl. "Ratz. Drude. Hasenöhrl. Heinke, 1896. "" Hasenöhrl. Ratz.
Water	0.000977 0.004474 0.004583 0.00436 0.000817	0.00000046 	5-20 0-76 4-25 20-181	Tangl. Heerwagen. Drude. Coolidge. Tangl.

(See Table 287 for the signification of the letters.)

TABLE 291.—Dielectric Constants of Liquified Gases.

A wave-length greater than 10000 centimetres is designated by oo.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Substance.	Temp. o C.	Dial. constant.	Authority.	Substance.	Temp.	Wave- length cm.	Dial. constant.	Authority.
. 90 3.70	Carbon dioxide """ Chlorine "" Cyanogen Hydrocyanic acid Hydrogen sulph.	-34 7 7 14 11 15 -60 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	75	2 3 4 5	N ₂ O """ Oxygen Sulphur dioxide """ """ """ """ """ """ """	-5 +5 +15 -182 " 14.5 20 40 60 80 100 120 140	66 66 66 67 120 66 66 66	1.630 1.578 1.578 1.491 1.495 13.75 14.0 12.5 10.8 9.2 7.8 6.4 4.8	98 46 "

- 1 v. Pirani, 1903. 2 Bahn-Kiebitz, 1904.
- 3 Goodwin-Thompson, 1899.

- 4 Coolidge, 1899. 5 Linde, 1895. 6 Eversheim, 1904.
- 7 Schlundt, 1901. 8 Hasenöhrl, 1900.
- 9 Fleming-Dewar, 1896.

TABLE 292. - Standard Solutions for the Calibration of Apparatus for the Measuring of Dielectric Constants.

Turner.			Dru	de.		Ne	rnst.			
Substance.	Diel. const. at 18°.	Acet	one in benzol a	water a	cohol in					
Benzol	λ = ∞. 2.288	Per cent by weight.	Density 16°.	Dielectric constant.	Temp.		Dielectric			
Meta-xylol Ethyl ether	2.376 4.36 ⁷	0 20	o.885 o.866	2.26	0.1%	by weight.	constant.			
Aniline Ethyl chloride O-nitro toluol	7.29 ⁸ 10.90 27.71	10.90 27.71	10.90 27.71	10.90	10.90 40 27.71 60	40 0. 847 60 0. 830	5.10 8.43 12.1 16.2	0.3 0.4 0.5	100 90 80	26.0 29.3 33.5
Nitrobenzol	36.45 81.07	30.45		20.5	0.5 0.6	70 60	38.0 43.1			
•		Wat	ter in acetone a	t 19°, λ=	75 cm.					
		0 20	0.797 0.856	20.5 31.5	0.6% 0.5					
		40 60 80	0.90 3 0.940 0.973	43.5 57.0 70.6	0.5 0.5 0.					
		100	0.999	80.9	0.4					

TABLE 293. - Dielectric Constants of Solids.

				_					
Substance.	Condi- tion.	Wave- length, cm.	Dielectric constant.	Author-	Substance.	Condi- tion.	Wave- length, cm-	Dielectric constant.	Author-
Asphalt	_	00	2.68	1		Temp.			ŀ
Barium sul-					Iodine (cryst.) .	23	75	4.00	2
phate		75	10.2	2	Lead chloride .	_			
Caoutchouc .		°°	2.22	3	(powder)	-	66	42	2
Diamond	_		16.5	I 2	" nitrate . " sulphate .		66	16 28	2 2
Ebonite		75 ∞	5.50 2.72	4	" molybde-			20	2
"		"	2.86		nate	_	66	24	2
"	-	1000	2.55	5	Marble				
Glass *	Density.				(Carrara)	-	66	8.3	2
Flint (extra					Mica	_	∞ "	5.66-5.97	5
heavy) .	4.5	00	9.90	7	Madras, brown	_	66	5.80-6.62	15
Flint (very light).	2.87	66	6.61	7	" green	_	66	2.5-3.4 3.9-5.5	16
Hard crown	2.48	66	6.96	7	" ruby.	_	46	4.4	16
Mirror	-	66	6.44-7.46		Bengal, vellow	_	46	2.8	16
66	-	66	5.37-5.90	5	" white .	-	66	4.2	16
H	-	600	5.42-6.20	8	" ruby .	-	66	4.2-4.7	16
Lead (Pow-					Canadian am-		66		16
ell) Jena	3.0-3.5	∞	5.4-8.0	9	ber South America		66	3.0 5.9	16
Boron .	_	66	5.5-8.1	10	Ozokerite (raw)	_	46	2.21	I
Barium .	-	66	7.8-8.5	10	Paper (tele-				
Borosili-		,,			phone)	-	66	2.0	17
cate .	-	66	6.4-7.7	1	" (cable) .	_	66	2.0-2.5	18
Gutta percha.	Temp.		3.3-4.9	II	Paraffine	Melting point.	66	2. 46 2. 32	19
Ice		1200	2.85	12	"	44-46	66	2.10	20
"	-18	5000	3.16	13	"	54-56	66	2.14	20
"	-190	75	1.76–1.88	14	"	74-76	46	2.16	20
	1	1	1	1	H			1	1

References on p. 284.

^{*} For the effect of temperature, see Gray-Dobbie, Pr. Roy. Soc. 63, 1898; 67, 1900.
" " " wave-length, see K. F. Löwe, Wied. Ann. 66, 1898.

DIELECTRIC CONSTANTS (continued).

TABLE 293. - Dielectric Constants of Solids (continued).

I	Substance.	Condi- tion.	Wave- length, cm.	Diel. constant,	Author-	Substance.	Condi- tion.	Wave- length, cm.	Diel. constant.	Author-
	Paraffine	47.06 56.02	61 61 75 80 80 80 """ "" 75 00 1000 00	2.16 2.25 3.60 4.1 3.85 5.73 6.61 6.84 7.44 6.60 6.13 6.14 3.10 2.95-3.73 3.67	21 21 22 22 22 22 23 15 15 1 2 23 23 4 24 25	Sulphur Amorphous Cast, fresh """ Cast, old . Liquid . Strontium sulphate Thallium carbonate "nitrate . Wood Red beech . "" Oak	near melting-point	75 % 75 % 75 % 75 % 75 %	3.98 3.80 4.22 4.05 3.95 3.60 3.90 3.42 11.3 17 16.5 dried 4.83-2.51 7.73-3.63 4.22-2.46 6.84-3.64	1 2 1 18 2 18 2 18 2 2 2 2 2
	v. Pirani, i 2 Schmidt, i 3 Gordon, i 4 Winklema 5 Elsas, 189 6 Ferry, 189 7 Hopkinson 8 Arons-Rul 9 Gray-Dobl	1903. 879. 1100, 1889 1. 7. 1, 1891. bens, 189	ı,	12 Thw 13 Abe	maring, 18 gg, 18 n-Kie ke, 18 Vilson	e-data). 1894. 397. bitz, 1904. 397.	18 Fallinger, 1902. 19 Boltzmann, 1875. 20 Zietkowski, 1900. 21 Hormell, 1902. 22 Schlundt, 1904. 23 Vonwiller-Mason, 1907. 24 Wüllner, 1887. 25 Donle.			

TABLE 294. - Dielectric Constants of Crystals.

 $D\alpha$, $D\beta$, $D\gamma$ are the dielectric constants along the brachy, macro and vertical axes respectively.

Substance.	Wave- length, cm.	Diel. const.	Author-ity.	Substance.	Wave- length, cm.	Dα	iel. con	st. Dγ	Author-
UNIAXIAL: Apatite Beryl " Calcspar Dolomite Liceland spar Quartz " Rutil (TiO ₂) Tourmaline Zircon.	75 75 000 1000 75 75	9.50 7.40 7.85 7.44 7.10 6.05 5.52 8.49 7.56 8.78 8.29 7.80 6.80 4.69 5.06 4.38 4.46 4.27 4.34 4.60 89 173 7.13 6.54 6.75 12.8 12.6	1 2 3 1 4 5 1 1 4 6 6 1 1 4 1 1 1	RHOMBIC: Arragonite " Barite " Cœlestin Cerussite MgSO ₄ Rochelle salt Sulphur " Topaz.	∞ 75 ∞ 75 75 75 75 77 75 77 75 77 75 77 75	6.97 7.65 7.70 25.4 5.26 6.09 6.70 3.81	7.68 10.09 12.20 18.5 23.2 6.05 5.08 6.92 3.97 3.85 3.85	7.00 7.70 8.30 19.2 8.28 4.48 8.89 4.77	4 1 7 7 7 8
1 Schmidt, 2 Starke, 1 3 Curie, 18	897.	5	v. P	iinger, 1902. irani, 1903. ry, 1897.	7 Bo 8 Bo	rel, 18 itzma	393. nn, 18	75-	

VARIATION OF ELECTRICAL RESISTANCE OF GLASS AND PORCELAIN WITH TEMPERATURE.

The following table gives the values of a, b, and c in the equation

 $\log R = a + bt + ct^2,$

where R is the specific resistance expressed in ohms, that is, the resistance in ohms per centimetre of a rod one square centimetre in cross section.*

_									
No.	Kind	of glass.		Density.	а	ъ		с	Range of temp. Centigrade.
I	Test-tube glass			-	13.86	044	.00	00065	0°-250°
2				2.458	14.24	055	.00	100	37-131
3	Bohemian glass			2.43	16.21	043	.00	00394	60-174
4	Lime glass (Japa	nese man	ufacture).	2.55	13.14	031	00	0021	10-85
5	cc cc cc		"	2.499	14.002	025	00	0006	35-95
6	Soda-lime glass (French fl	ask) .	2.533	14.58	049	.00	0075	45-120
7	Potash-soda lime	glass .		2.58	16.34	042	.00	00364	66-193
8	Arsenic enamel f	lint glass		3.07	18.17	055	.00	8800	105-135
9	Flint glass (Thor	nson's ele	ctrometer	3.172	18.021	036	00	00091	100-200
10	Porcelain (white	evaporati	ng dish) .	· -	15.65	042	.00	005	68-290
	Co	OMPOSITION	OF SOME OF	THE ABOV	e Specii	MENS OF	GLASS.		
	Number of specimen	n =	3	4		5	7	8	9
Sil	ica ,		61.3	57.2	7	0.05	75.65	54.2	55.18
Po	tash		22.9	21.1		1.44	7.92	10.5	13.28
So	da		Lime, etc.	Lime,	etc. I	4.32	6.92	7.0	-
Le	ad oxide	4 .	by diff.	by dif	f.	2.70	-	23.9	31.01
Liı	me		15.8	16.7	r	0.33	8.48	0.3	0.35
· Ma	ignesia	-	-		-	0.36	0.2	0.06	
Ar	senic oxide .	-	_		-	-	3.5	-	
A 7									

^{*} T. Gray, "Phil. Mag." 1880, and "Proc. Roy. Soc." 1882.

1.45

0.70

0.67

0.4

SMITHSONIAN TABLES.

Alumina, iron oxide, etc.

PERMEABILITY OF IRON.

TABLE 296. - Permeability of Iron Rings and Wire.

This table gives, for a few specimens of iron, the magnetic induction B, and permeability \(\mu\), corresponding to the magneto-motive forces H recorded in the first column. The first specimen is taken from a paper by Rowland,* and refers to a welded and annealed ring of "Burden's Best" wrought iron. The ring was 6,77 cms. in mean diameter, and the bar had a cross sectional area of 0.016 s. cms. Specimens 2-4 are taken from a paper by Bosanquet,† and also refers to soft iron rings. The mean diameters were 21.5, 22.1, and 22.725 cms., and the thickness of the bars 2.535, 1.295, and .7544 cms. respectively. These experiments were intended to illustrate the effect of thickness of bar on the induction. Specimen 5 is from Ewing's book,‡ and refers to one of his own experiments on a soft iron wire .077 cms. diameter and 30.5 cms. long.

7.7	Specime H		nen 1 2		3		4		6		gh re- ity wn
H	<i>B</i>	μ	В	μ	В	μ	В	μ	В	μ	tively hi g force rmeabil hin dravimen 5.
0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0 100.0	80 330 1450 4840 9880 12970 14740 16390	400 660 1450 2420 1976 1297 737 328	126 377 1449 4564 9900 13023 14911 16217 17148	630 754 1449 2282 1980 1302 746 324 171	65 224 840 3533 8293 12540 14710 16062 17900	325 448 840 1766 1659 1254 735 321 179	85 214 885 2417 8884 11388 13273 13890 14837	425 428 885 1208 1777 1139 664 278 148	22 74 246 950 12430 15020 15790	110 148 246 475 2486 1502 789	Note. — The comparatively high value of the magnetizing force required for maximum permeability when the specimen is a thin drawn wire is noticeable in specimen s.

TABLE 297. — Permeability of Transformer Iron.§

This table contains the results of some experiments on transformers of the Westinghouse and Thomson-Houston types. Referring to the headings of the different columns, M is the total magneto-motive force applied to the iron; M/I the magneto-motive force per centimetre length of the iron circuit; B the total induction through the magnetizing coil; B/a the induction per square centimetre of the mean section of the iron core; M/B the magnetic reluctance of the iron circuit; BI/Ma the permeability of the iron, a being taken as the mean cross section of the iron circuit as it exists in the transformer, which is thus slightly greater than the actual cross section of the iron.

	(a) Westinghouse No. 8 Transformers (about 2500 Watts Capacity).											
			First sp	pecimen.	Second specimen.							
M	M	В	$\frac{B}{a}$	$\frac{M}{B}$	Bl Ma	В	$\frac{B}{a}$	M B	Bl Ma			
20 40 60 80 100 120 140 160 180 200 220 260	0.597 1.194 1.791 2.338 2.985 3.582 4.179 4.776 5.373 5.970 6.567 7.761	218×108 587 878 " 878 " 1091 " 1219 " 1405 " 1475 " 1532 " 1532 " 1618 " 1618 "	1406 3790 5660 7040 7860 8580 9060 9510 9880 10200 10430 10910	0.917 × 10 ⁻⁴ 0.681 " 0.683 " 0.734 " 0.819 " 0.993 " 0.994 " 1.090 " 1.180 " 1.270 " 1.360 "	2360 3120 3180 2960 2640 2410 2186 2000 1850 1720 1590 1410	16 × 10 ⁴ 49 " 82 " 104 " 118 " 124 " 131 " 135 " 140 " 142 "	1032 3140 5290 6710 7610 8000 8450 8710 9030 9160 9290	1.25 × 10 ⁻⁴ 0.82 " 0.73 " 0.77 " 0.85 " 0.97 " 1.07 " 1.18 " 1.29 " 1.41 " 1.53 "	1730 2640 2970 2820 2560 2250 2036 1830 1690 1540			

§ T. Gray, from special experiments.

^{* &}quot;Phil. Mag." 4th series, vol. xlv. p. 151.
† Ibid. 5th series, vol. xix. p. 73.
‡ "Magnetic Induction in Iron and Other Metals."

PERMEABILITY OF TRANSFORMER IRON.

		(b) W	ESTINGH	ouse No). 6 T	'RANSFO	RMERS	(ABOI	JT 1800	WAT	TS CAPA	CITY).		
		76			First sp	ecim	en.					Second s	pecimen.		
M		$\frac{M}{l}$		В	$\frac{B}{a}$		$\frac{M}{B}$	B		В		$\frac{B}{a}$	$\frac{M}{B}$		Bl Ma
200 40 60 80 100 120 140 160 180 200		5.62 3.23 3.85 2.46 3.70 3.31 4.93 5.55 5.16	147 442 697 862 949 1016 1060 1120	7 " 2 " 2 " 2 " 2 " 2 " 2 " 2 " 2 " 2 "	1320 3980 6280 7770 8550 9106 9550 9820 10100	1.3 0.9 0.8 0.9 1.0 1.1 1.3 1.4 1.6	6 " 3 " 5 " 9 " 7 "	4 2140 215×10 ⁸ 3260 615 " 3390 826 " 3140 986 " 2770 1050 " 2450 1100 " 2210 1140 " 1990 1170 " 1830 1190 "			66 66 66 66 66 66	1940 5540 7440 8880 9460 9910 10300 10500	0.93× 0.64 0.72 0.81 0.95 1.09 1.23 1.37 1.51	10 -4	3140 4490 4030 3590 3060 2670 2430 2180 1970
((c) W:	ESTIN	GHOUS 1200	WATTS	4 Transf Capacit	FORME	R	(d) :	Сном	son-Ho	USTON	1500 W.	ATTS TR	ANSFO	RMER.
M	$\frac{M}{l}$		В	$\frac{B}{a}$	$\frac{M}{B}$		Bl Ma	M	$\frac{M}{l}$		В	$\frac{B}{a}$	$\frac{M}{B}$		Bl Ma
20	0.69	147	×10 ⁸	1470	1.36×1	10-4	2140	20	0.42		×108	1560 3160	2.86× 2.81	10-4	3730 3780
40	1.38	406		4066	0.90	"	2940	60 80	1.68	265	66	4770	3.02	66	3790 3520
60	2.07	573 659	46	5730	1.05	66	2770	100	2.10	348	66	6890 7760	3.24	66	3280 3080
80	2.76	"	6590	1.21	66	2390	160	3.30	456	66	9100	3.92	66	2710	
100	3.45	714	66	7140	1.40	"	2070	280	5.8	524	"	11690	4.87	66	1990
140	4.83	748	"	7490	1.00	46	1610	320 360 400 440	6.7: 7.5: 8.4: 9.2:	573	"	12270 12780 13180 13470	5.82 6.29 6.78 7.28	66	1820 1690 1570 1460

TABLE 298. - Magnetic Properties of Iron and Steel.

	Electro-	Good Cast	Poor Cast	Steel.	Cast	Electrica	d Sheets.
	Iron. Steel.		Steel.	Stock.	Iron.	Ordinary.	Silicon Steel.
Chemical composition in per cent { C Si Mn P S	0.024 0.004 0.008 0.008 0.001	0.044 0.004 0.40 0.044 0.027	0.56 0.18 0.29 0.076 0.035	0.99 0.10 0.40 0.04 0.07	3.11 3.27 0.56 1.05 0.06	0.036 0.330 0.260 0.040 0.068	0.036 3.90 0.090 0.009 0.006
Coercive force {	2.83 [0.36]	1.51 [0.37]	7.I (44.3)	16.7 (52.4)	11.4 [4.6]	[1.30]	[0.77]
Residual B }	11400 [10800]	10600	10500 (10500)	13000 (7500)	5100 [5350]	[9400]	[9850]
Maximum permeability {	1850 [14400]	3550 [14800]	700 (170)	375 (110)	240 [600]	[3270]	[6130]
B for H=150 {	19200 [18900]	18800 [19100]	17400 (15400)	16700 (11700)	10400 [11000]	[18200]	[17550]
4πI for saturation . {	21620 [21630]	21420 [21420]	20600 (20200)	19800)	16400 [16800]	[20500]	[19260]

E. Gumlich, Zs. für Electrochemie, 15, p. 599; 1909.

Brackets indicate annealing at 800° C in vacuum. Parenthe

Parentheses indicate hardening by quenching from cherry-red.

TABLE 299. - Cast Iron in Intense Pields.

	Soft Cast	Iron.			Hard Cas	st Iron.	
Н	Η Β Ι μ				В	I	μ
114	9950	782	87.3 62.8	142	7860	614	55.4 38.2
172 433	13900	846	62.8 32.1	254 330	9700	75 ² 836	38.2 30.6
744	1 57 50	1200	21.2	339 684	13050	983	19.1
1820	17300	1280	14.0	1570	14050	1044	15.4 10.1
12700	31100	1465	2.5	2020	16800	1146	8.3
13550	32100	1475	2.4 2.4	13200	26540 28600	1235	2.4
15100	33650	1472	2.2	14800	30200	1226	2.0

B. O. Peirce, Proc. Am. Acad. 44, 1909.

TABLE 300. - Corrections for Ring Specimens.

In the case of ring specimens, the average magnetizing force is not the value at the mean radius, the ratio of the two being given in the table. The flux density consequently is not uniform, and the measured hysteresis is less than it would be for a uniform distribution. This ratio is also given for the case of constant permeability, the values being applicable for magnetizations in the neighborhood of the maximum permeability. For higher magnetizations the flux density is more uniform, for lower it is less, and the correction greater.

Ratio of Radial	Ratio of Ave H at Mean			esis for Uniform ctual Hysteresis.	
Width to Diameter of Ring.	Rectangular Cross-section.	Circular Cross-section.	Rectangular Cross-section.	Circular Cross-section.	
I /2	1.0986	1.0718	1.112	1.084	
1/3	1.0397	1.0294	1.045	1.033	
1/4	1.0216	1.0162	1.024	1.018	
1/5	1.0137	1.0102	1.015	1.011	
1/6	1.0094	1.0070	1.010	1.008	
1/7	1.0069	1.0052	1.008	1.006	
1/8	1.0052	1.0040	1.006	1.004	
1/10	1.0033	1.0025	1.003	1.002	
1/19	1.0009	1.0007	1.001	1.001	

M. G. Lloyd, Bull. Bur. Standards, 5, p. 435; 1908.

DEMAGNETIZING FACTORS FOR RODS.

TABLE 301.

H= true intensity of magnetizing field, H' = intensity of applied field, I=in-

tensity of magnetization, H = H' - NI.

Shuddemagen says: The demagnetizing factor is not a constant, falling for highest values of I to about I/7 the value when unsaturated; for values of B (= $H+4\pi I$) less than 10000, N is approximately constant; using a solenoid wound on an insulating tube, or a tube of split brass, the reversal method gives values for N which are considerably lower than those given by the step-by-step method; if the solenoid is wound on a thick brass tube, the two methods practically agree.

			Values	of N× 104.				
				Cylinde	r.			
Ratio				I	Ballistic Step Method.			
Length to Diameter.	Ellipsoid.	Uniform Magneti-	Magneto- metric Method	Dubois.		agen for I		
		zation.	(Mann),		Diamet	ter.		
				0.158 cm.	0.3175 cm.	1.111 cm.	1.905 cm.	
5 10 15 20 30 40 50 60 70 80 90 100 150 200 300 400	7015 2549 1350 848 432 266 181 132 101 80 65 54 26 16 7.5 4.5	- 630 280 160 70 39 25 18 13 9.8 7.8 6.3 2.8 1.57 0.70 0.39	6800 2550 1400 898 460 274 182 131 99 78 63 51.8 25.1 15.2 7.5	2160 1206 775 393 238 162 118 89 69 55 45 20 11 5.0 2.8	- - 388 234 160 116 88 69 56 46 23 12.5	350 212 145 106 66 41 21	1960 1075 671 343 209 149 106 63 41 21	

TABLE 302.

Shuddemagen also gives the following, where B is determined by the step method and H = H' - KB.

Ratio of	Values of K×106.						
Length to Diameter.	Diameter 0.3175 cm.	Diameter 1.1 to 2.0 cm.					
15 20 25 30 40 50 60 80 100	30.9 18.6 12.7 9.25 5.5 3.66 1.83	85.2 53.3 36.6 27.3 16.6 11.6 8.45 5.05 3.26 1.67					

<sup>C. R. Mann, Physical Review, 3, p. 359; 1896.
H. DuBois, Wied. Ann. 7, p. 942; 1902.
C. L. B. Shuddemagen, Proc. Am. Acad. Arts and Sci. 43, p. 185, 1907 (Bibliography).</sup>

COMPOSITION AND MACNETIC

This table and Table 289 below are taken from a paper by Dr. Hopkinson * on the magnetic properties of iron and steel. which is stated in the paper to have been 240. The maximum magnetization is not tabulated; but as stated in the by 4π . "Coercive force" is the magnetizing force required to reduce the magnetization to zero. The "demagnetization in the opposite direction to the "maximum induction" stated in the table. The "energy which, however, was only found to agree roughly with the results of experiment.

Test	No.					Chemic	al analys	sis.	
Malleable cast iron	of		Temper.		Manga- nese.	Sulphur.	Silicon.		Other substances.
3	r		Annealed	_	-	-	_	_	_
Bessemer steel			**	-	-	_	-	-	-
Whitworth mild steel			_	0.045	0.200	0.020	None	-	_
To Hadfield's manganese Steel			Annealed						_
Rened	6						0.042		-
8	7	"		"	66	66	66	"	_
10		II "		0.800	0.165	0.00	0.081	0.010	_
Hadfield's manganese Steel Steel				_		-			
Steel	9	•							-
Manganese steel	10		-	1.005	12.360	0.038	0.204	0.070	-
13		Manganese steel		0.674	4.730			0.078	-
13				66	"	,,		,	_
15	13	•							-
16				1.298	8.740		0.094	0.072	
17 18 18 19 18 19 18 19 18 19 18 19 19		" "		66	66	"	46	"	~
19			As forged	0.685	0.694		3.438		~
Chrome steel Sened As forged Annealed (Oil-hard-ened Annealed (Oil-hard-ened Annealed (Oil-hard-ened Annealed (Oil-hard-ened Annealed (Oil-hard-ened Annealed (Oil-hard-ened		• •							-
21	19	66 65	ened		**	**	66	66	-
22				0.532	0.393				0.621 Cr.
23	1		∫ Oil-hard-	66	66	66	66	66	66
24		" "		0.687	0.028	££	0.134	0.042	LIOT Cr
26 Tungsten steel		" "	Annealed		"	66	"	"	2.193 01.
26 Tungsten steel As forged Annealed (Hardened in cold water (Hardened in tepid water) 29 " " (French) . Oil-hardened in tepid water (Gil-hardened in tepid water) 30 Gray cast iron	25			46	66	"	"	ш	"
27 " "	26	Tungsten steel	As forged	1.357	0.036	None.	0.043	0.047	4.649 W.
28 " " in cold water Hardened in tepid water Hardened in tepid water Oil-hardened Water Oil-hardened O.511 O.625 None. O.021 O.028 O.444 W. O.855 O.312 O.315 O.855 O.312 O.315 O.855 O.312 O.315 O.855	27	" "	Annealed	"	66	66	"	66	66
water Hardened in tepid water Water Hardened in tepid water Oil-hardened o.511 o.625 None. o.021 o.028 3.444 W. 31	28	"			66	"	66	66	66
29 " " in tepid water " " " " " " " " "			water						
30 " " (French) . Mitchell water Oil-hard-ened O.511 O.625 None. O.021 O.028 3.444 W. 31		44 44		"		"		.,	
30	29				"	ı.		**	"
31	30	" (French) .) Oil-hard-	0.511	0.625	None.	0.021	0.028	3.444 W.
32 Gray cast iron - 3.455 0.173 0.042 2.044 0.151 2.064 C.†		66 66				_			
33 Mottled cast iron - 2.581 0.610 0.105 1.476 0.435 1.477 C.†		Gray cast iron		3.455		0.042		- 1	2.064 C.†
34 White " " • • - 2.036 0.386 0.467 0.764 0.458 -			-		0.610	0.105	1.476	0.435	
35 Spiegeleisen 4.510 7.970 1 race. 0.502 0.128 -		W little	-					0.458	-
	35	opiegeieisen		4.510	7.970	race.	0.502	0.128	-

^{*} Phil. Trans. Roy. Soc. vol. 176.

PROPERTIES OF IRON AND STEEL.

The numbers in the columns headed "magnetic properties" give the results for the highest magnetizing force used, paper, it may be obtained by subtracting the magnetizing force (240) from the maximum induction and then dividing netizing force" is the magnetizing force which had to be applied in order to leave no residual magnetization after dissipated" was calculated from the formula:—Energy dissipated = coercive force \times maximum induction $\frac{1}{2}$.

			Specific	1	Aagnetic p	roperties	S.	
No.	Description of	Temper.	electri-	25 .				Energy dis- sipated per
Test.	specimen.	Temper.	cal resis- tance.	Maxi- mum in-	Residual induc-	Coer-	Demag- netizive	cycle.
1	•			duction.	tion.	force.	force.	
				-				
1	Wrought iron	Annealed "	.01378		7248	2.30 8.80	_	13356
3	Gray cast iron		.03254	10783	7479 3928	3.80		34742 13037
4	Bessemer steel		.01050	18196	7860	2.96	-	17137
5	Whitworth mild steel .	Annealed "		19840	7080 9840	1.63	-	10289 40120
	66 66	(Oil-hard-				6.73		
7		ened		18796	11040	11.00	_	65786
8	" "	Annealed Oil-hard-	.01559		10740	8.26		42366
9	66 66	ened	.0 1695	16120	8736	19.38	-	99401
10	Hadfield's manganese	-	.06554	310	-	-		-
II	Manganese steel	As forged	.05368	4623	2202	23.50	37.13	34567
12	-66 64	Annealed	.03928	10578	5848	33.86	46.10	113963
13	" "	Oil-hard-	.05556	4769	2158	27.64	40.29	41941
14		As forged	.06993	747	-	-	-	-
15		Annealed (Oil-hard-	.06316	1985	540	24.50	50.39	15474
16	" "	ened	.07066	733		-	~	-
17	Silicon steel	As forged	.06163		11073	9.49	12.60	45740
18		Annealed Oil-hard-	.06185		8149	7.80	10.74	36485
19	" "	ened	.06195	14696	8084	12.75	17.14	59619
20	Chrome steel	As forged		15778	9318	12.24	13.87	61439
21		Annealed Oil-hard-	1	14848	7570	8.98	12.24	42425
22	66 66	ened		13960	8595	38.15	48.45	169455
23	66 66	As forged Annealed	.01791		7568	18.40	22.03	85944 64842
24	" "	(Oil-hard-		13233	6489	15.40	19.79	1 1
25		ened	.03035	_	7891	40.80	56.70	167050
26	Tungsten steel	As forged Annealed		15718	11008	15.71	17.75	78568 80315
27		(Hardened		16498	11000	13.30	10.93	00313
28	" "	in cold	.02274	-	-	-	-	-
		water (Hardened						
29	66	in tepid		15610	9482	30.10	34.70	149500
		water	'					
30	" (French) .	Oil hard-	.03604	14480	8643	47.07	64.46	216864
31	66 66 a a	Very hard	.04427		6818	51.20	70.69	197660
32	Gray cast iron	441	.11400	9148	3161	13.67	17.03	39789
33	Mottled cast iron White " "		.05661	9342	5108	12.24	20.40	36383
34	Spiegeleisen	-	.10520		77	-	-	-
					<u> </u>			

PERMEABILITY OF SOME OF THE SPECIMENS IN TABLE 303.

This table gives the induction and the permeability for different values of the magnetizing force of some of the specimens in Table 303. The specimen numbers refer to the same table. The numbers in this table have been taken from the curves given by Dr. Hopkinson, and may therefore be slightly in error; they are the mean values for rising and falling magnetizations.

Magnetiz- ing force.	Specimen	ı (iron).	Specim (annealed		Specimen 9 8 tempe		Specin (cast i	
H	В	μ	В	μ	В	μ	В	μ
Ĭ	_	~		_	_	_	265	265
2	200	100	_	_	· –	_	700	350
3	-	-	-	-	-	-	1625	542
5	10050	2010	1525	300	750	150	3000	600
IO	12550	1255	9000	900	1650	165	5000	500
20	14550	727	11500	57.5	5875	294	6000	300
30	I 5200	507	12650	422	9875	329	6500	217
40	1 5800	395	13300	332	11600	290	7100	177
50	16000	320	13800	276	I 2000	240	7350	149
70	16360	234	14350	205	13400	191	7900	113
100	16800	168	14900	149	14500	145	8500	85
150	17400	116	15700	105	1 5800	105	9500	63
200	17950	. 90	16100	80	16100	80	10190	51

Tables 305-309 give the results of some experiments by Du Bois,* on the magnetic properties of iron, nickel, and cobalt under strong magnetizing forces. The experiments were made on ovoids of the metals 18 centimetres long and 0.6 centimetres diameter. The specimens were as follows: (1) Soft Swedish iron carefully annealed and having a density 7.82. (2) Hard English cast steel yellow tempered at 230° C.; density 7.78. (3) Hard drawn best nickel containing 99 % Ni with some SiO₂ and traces of Fe and Cu; density 8.82. (4) Cast cobalt giving the following composition on analysis: (0.0 = 93.1, Ni=5.8, Fe = 0.8, Cu = 0.2, Si = 0.1, and C = 0.3. The specimen was very brittle and broke in the lathe, and hence contained a surfaced joint held together by clamps during the experiment. Referring to the columns, H, B, and \(\text{h} and \(\te

TABLE 305.

MACNETIC PROPERTIES OF SOFT IRON AT 0° AND 100° C.

Soft iron at o° C.				Sof	t iron at 100	° C.			
Н	S	I	В	μ	Н	S	I	В	μ
100 200 400 700 1000 1200	180.0 194.5 208.0 215.5 218.0 218.5	1408 1521 1627 1685 1705 1709	17790 19310 20830 21870 22420 22670	177.9 96.5 52.1 31.2 22.4 18.9	100 200 400 700 1000 1200	180.0 194.0 207.0 213.4 215.0 215.5	1402 1511 1613 1663 1674 1679	17720 19190 20660 21590 22040 22300	177.2 96.0 51.6 29.8 21.0 18.6

TABLE 306.

MAGNETIC PROPERTIES OF STEEL AT 0° AND 100° C.

Steel at o° C.			Steel at 100° C.						
Н	S	I	В	μ	Н	S	I	В	μ
100 200 400 700 1000 1200 3750†	165.0 181.0 193.0 199.5 203.5 205.0 212.0	1283 1408 1500 1552 1583 1595 1650	16240 17900 19250 20210 20900 21240 24470	162.4 89.5 48.1 28.9 20.9 17.7 6.5	100 200 400 700 1000 1500 3000 5000	165.0 180.0 191.0 197.0 199.0 203.0 205.5 208.0	1278 1395 1480 1527 1543 1573 1593 1612	16170 17730 19000 19890 20380 21270 23020 25260	161.7 88.6 47.5 28.4 20.4 14.2 7.7 5.1

^{* &}quot;Phil. Mag," 5 series, vol. xxix.

† The results in this and the other tables for forces above 1200 were not obtained from the ovoids above referred
to, but from a small piece of the metal provided with a polished mirror surface and placed, with its polished face normal to the lines of force, between the poles of a powerful electromagnet. The induction was then inferred from
the rotation of the plane of a polarized ray of red light reflected normally from the surface. (See Kerr's "Constants," p. 292,)

MACNETIC PROPERTIES OF METALS.

TABLE 307. - Cobalt at 100° C.

Н	S	I	В	μ		
200	106	848	10850	54.2		
300	116	928	11960	39.9		
500	127	1016	13260	26.5		
700	131	1048	13870	19.8		
1000	134	1076	14520	14.5		
1500	138	1104	15380	10.3		
2500	143	1144	16870	6.7		
4000	145	1164	18630	4.7		
6000	147	1176	20780	3.5		
9000	149	1192	23980	2.6		
At o° C. this specimen gave the fol-						
lowing results:						
7900	154	1232	23380	3.0		

TABLE 308. - Nickel at 100° C.

Н	S	I	В	μ
100	35.0	309	3980	39.8
200	43.0	380	4966	24.8
300	46.0	406	5399	18.0
500	50.0	441	6043	I 2.I
700	51.5	454	6409	9.1
1000	53.0	468	6875	6.9
1500	56.0	494	7707	5.1
2500	58.4	515	8973	3.6
4000	59.0	520	10540	2.6
6000	59.2	522	12561	2.1
9000	59.4	524	15585	1.7
I 2000	59.6	526	18606	1.5
At o° C		pecimen		e fol-
	lowi	ing resu		
12300	67.5	595	19782	1.6

TABLE 309. - Magnetite.

The following results are given by Du Bois * for a specimen of magnetite.

Н	I	В	μ
500	325	8361	16.7
1000	345	9041	9.0
2000	350	10084	5.0
12000	350	20084	1.7

Professor Ewing has investigated the effects of very intense fields on the induction in iron and other metals.† The results show that the intensity of magnetization does not increase much in iron and other metals. The results show that the intensity of magnetization does not increase much in iron after the field has reached an intensity of roco c. g. s. units, the increase of induction above this being almost the same as if the iron were not there, that is to say, AB/AH is practically unity. For hard steels, and particularly manganese steels, much higher forces are required to produce saturation. Hadfield's manganese steel seems to have nearly constant susceptibility up to a magnetizing force of to_0 -coo. The following tables, taken from Ewing's papers, illustrate the effects of strong fields on iron and steel. The results for nickel and cobalt do not differ greatly from those given above.

TABLE 310. — Lowmoor Wrought Iron.

Н	I	В	μ
3080	1680	24130	7.83
6450	1740	28300	4.39
10450	1730	32250	3.09
13600	1720	35200	2.59
16390	1630	36810	2.25
18760	1680	39900	2.13
18980	1730	40730	2.15

TABLE 311. — Vicker's Tool Steel.

Н	I	В	μ
6210	1530	25480	4.10
9970	1570	29650	2.97
12120	1550	31620	2.60
14660	1580	34550	2.36
15530	1610	35820	2.31

TABLE 312. — Hadfield's Manganese Steel.

Н	I	В	μ
1930	55 84	2620	1.36
2380		3430	1.44
3350	84	4400	1.31
5920	III	7310	1.24
6620	187	8970	1.35
7890	191	10290	1.30
8390	263	11690	1.39
9810	396	14790	1.51

TABLE 313. - Saturation Values for Steels of Different Kinds.

		Н	I	В	μ
Bessemer steel containing about 2 Siemens-Marten steel contain 3 Crucible steel for making check cent carbon	ing about 0.5 per cent carbon isels, containing about 0.6 per	17600 18000 19470 18330	1770 1660 1480 1580	39880 38860 38010 38190	2.27 2.16 1.95 2.08
5 Crucible steel containing 1 pe	r cent carbon	19620	1440	37690 38710	1.92

TABLE 314.-MAGNETIC PROPERTIES OF IRON IN VERY WEAK FIELDS.

The effect of very small magnetizing forces has been studied by C. Baur* and by Lord Rayleigh.† The following short table is taken from Baur's paper, and is taken by him to indicate that the susceptibility is finite for zero values of H and for a finite range increases in simple proportion to H. He gives the formula k = 15 + 100 H? The experiments were made on an annealed ring of round n = 100 sms. radius, the ring having a radius of 9.432 cms. Lord Rayleigh's results for an iron wire not annealed give k = 6.4 + 5.1 H, or l = 6.4 H +5.1 H². The forces were reduced as low as 0.00004 c. g. s., the relation of k to H remaining constant.

F	irst experimen	Second experiment.		
Н	k	I	Н	k
.01 580 .03081 .07083 .13188 .23011 .38422	16.46 17.65 23.00 28.90 39.81 58.56	2.63 5.47 16.33 38.15 91.56 224.87	.0130 .0847 .0946 .1864 .2903	15.50 18.38 20.49 25.07 32.40 35.20

TABLES 315, 316.-DISSIPATION OF ENERGY IN CYCLIC MAGNETIZATION OF MAGNETIC SUBSTANCES.

When a piece of iron or other magnetic metal is made to pass through a closed cycle of magnetization dissipation of energy results. Let us suppose the iron to pass from zero magnetization to strong magnetization in one direction and then gradually back through zero to strong magnetization in the other direction and thence back to zero, and this operation to be repeated several times. The iron will be found to assume the same magnetization when the same magnetizing force is reached from the same direction of change, but not when it is reached from the other direction. This has been long known, and is particularly well illustrated in the permanency of hard steel magnets. That this fact involves a dissipation of energy which can be calculated from the open loop formed by the curves giving the relation of magnetization to magnetizing force was pointed out by Warburg t in 1881, reference being made to experiments of Thomson, & where such curves are illustrated for magnetism, and to E. Cohn, || where similar curves are given for thermoelectricity. The results of a number of experiments and calculations of the energy dissipated are given by Warburg. The subject was investigated about the same time by Ewing, who published results somewhat later. T Extensive investigations have since been made by a number of investigators.

TABLE 315 .- Soft Iron Wire.

(From Ewing's 1885 paper.)

Total induction per sq. cm.	Dissipation of energy in ergs per cu. cm.	Horse- power wasted per ton at 100 cycles per sec.
2000	420	0.74
3000	800	1.41
4000	1230	2.18
5000	1700	3.01
6000	2200	3.89
7000	2760	4.88
8000	3450	6.10
9000	4200	7.43
10000	5000	8.84
11000	5820	10.30
12000	6720	11.89
13000	7650	13.53
14000	8650	15.30

TABLE 316. - Cable Transformers.

This table gives the results obtained by Alexander Siemens with one of Siemens' cable transformers. The transformer core consisted of 900 soft iron wires 1 mm. diameter and 6 metres long.** The dissipation of energy in watts is for 100 complete cycles per second.

Total ob- served dis- sipation of energy in the core in watts per 112 lbs.	Calculated eddy current loss in watts per 112 lbs.	Hysteresis loss of energy in watts per 112 lbs.	Hysteresis loss of energy in ergs per cu. cm. per cycle.
43.2	4	39.2	602
		80.2	1231
158.0	36	122.0	. 1874
231.2	64	167.2	2566
309.5	100	209.5	3217
390.1	144	246.1	3779
	served dissipation of energy in the core in watts per 112 lbs. 43-2 96.2 158.0 231.2 309.5	served dissipation of eddy current energy in the core in watts per 112 lbs. 43.2 96.2 158.0 36 231.2 64 309.5 100	Served dissipation of eddy current energy in the core in watts per 112 lbs. Served dispersion of the core in watts per 112 lbs.

^{* &}quot;Wied. Ann." vol. xi. "Wied. Ann." vol. xiii. p. 141. | "Wied. Ann." vol. 6.

^{† &}quot;Phil. Mag," vol. xxiii.

\$ "Phil. Trans. Roy. Soc." vol. 175.

† "Proc. Roy. Soc." 1882, and "Trans. Roy. Soc." 1885.

** "Proc. Inst. of Elect. Eng." Lond., 1892.

DISSIPATION OF ENERGY IN THE CYCLIC MACNETIZATION OF VARIOUS SUBSTANCES.

C. P. Steinmetz concludes from his experiments * that the dissipation of energy due to hysteresis in magnetic metals can be expressed by the formula $e = aB^{1.6}$, where e is the energy dissipated and a a constant. He also concludes that the dissipation is the same for the same range of induction, no matter what the absolute value of the terminal inductions may be. His experiments show this to be nearly true when the induction does not exceed ± 15000 c. g. s. units per sq. cm. It is possible that, if metallic induction only be taken, this may be true up to saturation; but it is not likely to be found to hold for total inductions much above the saturation value of the metal. The law of variation of dissipation with induction range in the cycle, stated in the above formula, is also subject to verification.†

Values of Constant a.

The following table gives the values of the constant a as found by Steinmetz for a number of different specimens.

The data are taken from his second paper.

Number of specimen.	Kind of material.	Description of specimen.	Value of a.
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	Iron	Norway iron Wrought bar Commercial ferrotype plate Annealed "" Thin tin plate Medium thickness tin plate Soft galvanized wire Annealed cast steel Soft annealed cast steel Very soft annealed cast steel Same as 8 tempered in cold water Tool steel glass hard tempered in water " " tempered in oil " " annealed (Same as 12, 13, and 14, after having been subjected to an alternating m. m. f. of from 4000 to 6000 ampere turns for demagnetization Gray cast iron " " " containing \frac{1}{2} \% aluminium " " " " containing \frac{1}{2} \% aluminium " " " Soft wire Annealed wire, calculated by Steinmetz from Ewing's experiments Hardened, also from Ewing's experiments Rod containing about 2 % of iron, also calculated from Ewing's experiments by Steinmetz Consisted of thin needle-like chips obtained by milling grooves about 8 mm. wide across a pile of thin sheets clamped together. About 30 % by volume of the specimen was iron. 1st experiment, continuous cyclic variation of m. m. f. 180 cycles per second 2d experiment, 114 cycles per second 3d "79-91 cycles per second	.00227 .00326 .00548 .00458 .00286 .00425 .00349 .00848 .00457 .00318 .02792 .07476 .02670 .01899 (.06130 .02700 .01445 .01300 .01365 .01459 .02348 .0122 .0156 .0385 .0120

^{* &}quot;Trans. Am. Inst. Elect. Eng." January and September, 1892. † See T. Gray, "Proc. Roy. Soc." vol. lvi.

ENERGY LOSSES IN TRANSFORMER STEELS.

Determined by the wattmeter method. Loss per cycle per $cc = AB^x + bnB^y$, where B = flux density in gausses and n = frequency in cycles per second. x shows the variation of hysteresis with B between 5000 and 10000 gausses, and y the same for eddy currents.

		Ergs p	er Gran	nme per (Cycle.					er Pound d 10000 G	
Designation.	Thick- ness.	10000 G		5000 Ga		x	y	а	Current for Gage		
	cm.	Hyste- resis.	Eddy Currents at	Hyste- resis.	Eddy Currents at				Eddy Cur Loss for (No. 29. ‡	Hyste- resis.	Total.
Unannealed A B C D	0.0399 .0326 .0422 .0381	1599 1156 1032 1009	186 134 242 184	562 384 356 353	46 36 70 48	1.51 1.59 1.51 1.52	2.02 1.89 1.79 1.94	0.00490 .00358 .00319	0.4 1 0.44 0.47 0.44	4·35 3·14 2·81 2·74	4.76 3.58 3.28 3.18
Annealed E F G H* J K* L B M N P	.0476 .0280 .0394 .0307 .0318 .0282 .0346 .0338 .0335 .0340	735 666 563 412 341 394 381 354 372 321 334	236 100 210 146 202 124 184 200 178 210 184	246 220 193 138.5 111.5 130 125 116 127 105	58 27 54 39 55 32 50 57 46 56 50	1.58 1.60 1.54 1.58 1.62 1.61 1.61 1.55 1.62	2.02 1.88 1.96 1.90 1.88 1.90 1.88 1.81 1.95 1.90	.00227 .00206 .00174 .00127 .00105 .00122 .00118 .00110 .00115 .00099	0.36 0.44 0.47 0.54 0.70 0.535 0.61 0.55 0.63 0.34	2.00 1.81 1.53 1.12 0.93 1.07 1.035 0.96 1.01 0.87 0.91	2.36 2.25 2.00 1.66 1.63 1.61 1.57 1.57 1.56 1.50 1.25
Silicon steels Q† R S T U V* W* X	.0361 .0315 .0452 .0338 .0346 .0310 .0305	303 288 278 250 270 251.5 197 200	54 42 72 60 42 47 43 65	98 93 90 78 86 79 62.3 64.2	15 11 18 18 12 13 12.4 16.6	1.63 1.64 1.63 1.68 1.66 1.68 1.67		.00094 .00089 .00086 .00077 .00084 .00078 .00061	0.14 0.15 0.12 0.18 0.12 0.17 0.16 0.12	0.825 0.78 0.755 0.68 0.735 0.685 0.535 0.545	0.965 0.93 0.875 0.86 0.855 0.855 0.695 0.665

Lloyd and Fisher, Bull. Bur. Standards, 5, p. 453; 1909.

^{*} German. † English.

‡ In order to make a fair comparison, the eddy current loss has been computed for a thickness of 0.0357 cm. (Gage No. 29), assuming the loss proportional to the thickness.

MACNETO-OPTIC ROTATION.

Faraday discovered that, when a piece of heavy glass is placed in magnetic field and a beam of plane polarized light passed through it in a direction parallel to the lines of magnetic force, the plane of polarization of the beam is rotated. This was subsequently found to be the case with a large number of substances, but the amount of the rotation was found to depend on the kind of matter and its physical condition, and on the strength of the magnetic field and the wave-length of the polarized light. Verdet's experiments agree fairly well with the formula—

$$\theta = clH\left(r - \lambda \frac{dr}{d\lambda}\right) \frac{r^2}{\lambda^2},$$

where c is a constant depending on the substance used, I the length of the path through the substance, H the intensity of the component of the magnetic field in the direction of the path of the beam, r the index of refraction, and λ the wave-length of the light in air. If H be different, at different parts of the path, H is to be taken as the integral of the variation of magnetic potential between the two ends of the medium. Calling this difference of potential v, we may write $\theta = Av$, where A is constant for the same substance, kept under the same physical conditions, when the one kind of light is used. The constant A has been called "Verder's content A" as A0. stant," * and a number of values of it are given in Tables 303-310. For variation with temperature the following formula is given by Bichat: -

$$R = R_0 (1 - 0.00104t - 0.000014t^2),$$

which has been used to reduce some of the results given in the table to the temperature corresponding to a given measured density. For change of wave-length the following approximate formula, given by Verdet and Becquerel, may be used:—

$$\frac{\theta_1}{\theta_2} = \frac{\mu_1^2(\mu_1^2 - 1)\lambda_2^2}{\mu_2^2(\mu_2^2 - 1)\lambda_1^2},$$

where μ is index of refraction and λ wave-length of light.

A large number of measurements of what has been called molecular rotation have been made, particularly for organic substances. These numbers are not given in the table, but numbers proportional to molecular rotation may be derived from Verdet's constant by multiplying in the ratio of the molecular weight to the density. The densities and chemical formulæ are given in the table. In the case of solutions, it has been usual to assume that the total rotation is simply the algebraic sum of the rotations which would be given by the solvent and dissolved substance, or substances, separately; and hence that determinations of the rotary power of the solvent medium and of the solution enable the rotary power of the dissolved substance to be calculated. Experiments by Quincke and others do not support this view, as very different results are obtained from different degrees of saturation and from different solvent media. No results thus calculated have been given in the table, but the qualitative result, as to the sign of the rotation produced by a salt, may be inferred from the table. For example, if a solution of a salt in water gives Verdet's constant less than 0.0130 at 20° C., Verdet's constant for the salt is negative.

The table has been for the most part compiled from the experiments of Verdet,† H. Becquerel,‡ Quincke, § Koepsel, Arons, Kundt,** Jahn,†† Schönrock,‡‡ Gordon, §§ Rayleigh and Sidgewick, Productive the salt is resulted to the salt is negative.

As a basis for calculation, Verdet's constant for carbon disulphide and the sodium line D has been taken as 0.0420 and for water as 0.0130 at 20° C.

* The constancy of this quantity has been verified through a wide range of variation of magnetic field by H, E, J, G. Du Bois (Wied. Ann. vol. 35).

† "Ann. de Chim. et de Phys." [3] vol. 52.

‡ "Ann. de Chim. et de Phys." [5] vol. 12; "C. R." vols. 90 and 100.

§ "Wied. Ann." vol. 24.

"Wied. Ann." vol. 24.

** "Wied. Ann." vol. 23 and 27.

†† "Wied. Ann." vol. 23.

†† "Zeits, für Phys. Chem." vol. 11.

§ "Proc. Roy. Soc." 1883.

¶ "Jour. Chem. Soc." vols. 8 and 12.

*** "Jour. de Phys." vols. 8 and 9.

TABLE 320.

MACNETO-OPTIC ROTATION.

Solids.

Substance.	Chemical formula.	Density or grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp. C.	Authority.
Amber		<u>-</u>	D	0.0095	18-200	Quincke.
Blende	ZnS	-	"	0.2234	15	Becquerel.
Diamond	С	_	"	0.0127	66	66
Fluor spar	CaFl ₂	_	"	0.0087	66	66
Glass:						
Crown	-	-	"	0.0203	46	44
Faraday A	-	5.458	"	0.0782	18-20	Quincke.
" B	-	4.284	66	0.0649	66	66
Flint	-	-	"	0.0420	66	66
	_	-	"	0.0325	15	Becquerel.
	-	-	46	0.0416	66	46
" dense	_	-	- "	0.0576	"	и
cc ec	_	-	46	0.0647	"	66
Plate	_	-	66	0.0406	18-20	Quincke.
Lead borate	PbB ₂ O ₄	~	66	0.0600	15	Becquerel.
Quartz (perpendicular to axis)	-	-	"	0.0172	18-20	Quincke.
Rock salt	NaCl	-	"	0.0355	15	Becquerel.
Selenium	Se	-	В	0.4625	46	66
Sodium borate	Na ₂ B ₄ O ₇	-	D	0.0170	"	- 66
Spinel (colored by chrome) .	-	-	66	0.0209	"	66
Sylvine	KC1	-	46	0.0283	"	66
Ziqueline (suboxide of copper)	Cu ₂ O	-	В	0.5908	66	66

MAGNETO-OPTIC ROTATION.

Liquids.

Substance.	Chemical formula.	Density in grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp.	Authority.
Acetone	C ₈ H ₆ O	0.7947	D	0.0113	20	Jahn.
44		0.7957	66	0.0115	15	Perkin.
<i>a</i>	66	0.7947	66	0.0114	16	Schönrock.
Acids: (see also solutions in						
water)	CIIO		EE			Perkin.
Acetic	$C_2H_4O_2$ $C_4H_8O_2$	0.9663	66	0.0105	21	Perkin.
Butyric	CH_2O_2	1.2273	66	0.0105	15	66
Hydrochloric	HCl	1.2072	66	0.0224	15	66
"	"	-	66	0.0206	15	Becquerel.
Hydrobromic	HBr	1.7859	66	0.0343	15	Perkin.
Hydroiodic	HI	1.9473	66	0.0513	15	46
Nitric	HNO ₈	1.5190	46	0.0070	13	66
" (fuming)	66	-	66	0.0080	15	Becquerel.
Propionic	$C_8H_6O_2$	0.9975	66	0.0110	15	Perkin.
Sulphuric	H ₂ SO ₄	-	66	0.0121	15	Becquerel.
Sulphurous	H ₂ SO ₃	-	46	0.0153	15	Perkin.
Valeric	$C_5H_{10}O_2$	0.9438		0.0121	15	reikiii.
Amyl	C ₅ H ₁₁ OH	_	66	0.0131	15	Becquerel.
66	"	0.8107	66	0.0128	20	Jahn.
Butyl	C ₄ H ₉ OH	0.8021	66	0.0124	20	66
"	66	-	66	0.0124	15	Becquerel.
Ethyl	C ₂ H ₅ OH	0.7929	66	0.0107	18-20	Quincke.
66	66	0.7900	66	0.0112	20	Jahn.
	66	0.7944	66	0.0114	15	Perkin.
"		0.7943	"	0.0113	16	Schönrock.
Methyl	CH ₃ OH	0.7915	66	0.0094	18-20	Quincke.
66	66	0.7920	66	0.0093	20	Jahn. Becquerel.
46	46	0.7966	"	0.0096	15	Perkin.
46	66	0.7903	66	0.0096	21.9	Schönrock.
Octyl	C ₈ H ₁₇ OH	0.8296	66	0.0134	15	Perkin.
Propyl	C ₈ H ₇ OH	0.8050	46	0.0120	20.8	Schönrock.
66	66	0.8082	66	0.0120	15.0	Perkin.
" , , , ,	66 66	_	66	0.0118	15	Becquerel.
_ "		0.8042	46	0.0120	20	Jahn.
Benzene	C ₆ H ₆	0.8786	66	0.0297	20	Jahn.
66	66	0.8718	66	0.0200	15 26.9	Becquerel. Schönrock.
Bromides:		0.0/10		0.0301	20.9	Denomitors.
Bromoform	CHBr ₃	2.9021	44	0.0317	15	Perkin,
Ethyl	C ₂ H ₅ Br	1.4486	66	0.0183	15	66
Ethylene	$C_2H_4Br_2$	2.1871	66	0.0268	15	66
165	68	2.1780	66	0.0269	20	Jahn.
Methyl	CH ₃ Br	1.7331	66	0.0205	0	Perkin.
Methylene	CH ₂ Br ₂	2.4971	66	0.0276	15	66
Octyl	C ₈ H ₁₇ Br C ₈ H ₇ Br	1.1170	66	0.0164	15	66
Propyl	CS ₂	1.2644	66	0.0160	18-20	Ouincke.
" "	"	212044	66			Becquerel.
• • •		_		0.0434	0	1885.
66 66	66	-	"	0.0433	0	Gordon.
66 66 6	66	-	66	0.0420	18	Rayleigh.
66 66	"	- 1	66	0.0420	18	Koepsel.
				0.0439	0	Arons.

MACNETO-OPTIC ROTATION.

Liquids.

					_	
Substance,	Chemical formula.	Density in grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp, C.	Authority.
Chlorides:			-			
Amyl	CHCI	0.8740	D "	0.0140	20	Jahn.
Arsenic	As	_	66	0.0422	15	Becquerel.
Carbon	C	_	66	0.0170	15	"
Cla (CCl ₄ CHCl ₈	1.4823	66	0.0321	15	Jahn.
Chloroform	CHCIS	1.4990	66	0.0164	20	Perkin.
Ethyl .	C ₂ H ₅ Cl	0.9169	66	0.0100	15	ferkin.
Ethylene	$C_2H_4Cl_2$	1.2589	66	0.0136	15	66
"	66	1.2561	86	0.0164	20	Jahn.
Methyl	CH ₈ Cl	1.2501	66	0.0170	15	Becquerel.
Methylene	CH ₂ Cl ₂	1.3361	44	0.0162	15	Perkin.
Octyl	C ₈ H ₁₇ Cl	0.8778	46	0.0141	15	66
Phosphorus protochloride .	PCl ₈	-	66	0.0275	15	Becquerel.
Propyl	C ₈ H ₇ Cl	0.8922	66	0.0135	15	Perkin.
Silicon	SiCl ₄	_	46	0.0275	15	Becquerel.
Sulphur bichloride	S ₂ Cl ₂	-	46	0.0393	15	46
Tin bichloride	SnCl ₄	_	66	0.0151	15	. "
Zinc bichloride	ZnCl ₂	-	66	0.0437	15	66
Iodides:						
Ethyl	C_2H_5I	1.9417	66	0.0296	15	Perkin.
Methyl	$CH_{8}I$	2.2832	66	0.0336	15	66
Octyl	C ₈ H ₁₇ I	1.3395	46	0.0213	15	66
Propyl	C ₈ H ₇ I	1.7658	46	0.0271	15	**
Nitrates:	G ** 0 3*0		66			"
Ethyl .	$C_2H_5O.NO_2$	1.1149	66	0.0091	15	"
Ethylene (nitroglycol)	$C_2H_4(NO_8)_2$	1.4948	66	0.0088	15	"
Methyl	CH ₈ O.NO ₂	1.2157		0.0078	15	"
Propyl	$C_8H_7O.NO_2$ $C_8H_5(NO_8)_8$	1.5996	66	0.0000	15	66
Trinitrin (nitroglycerine) Nitro ethane	$C_2H_5NO_2$	1.0552	66	0.0095	15	46
Nitro methane	CH_8NO_2	1.1432	66	0.0084	15	46
Nitro methane	C ₈ H ₅ NO ₂	1.0100	66	0.0102	15	66
Paraffins:	081101102	1.0.00		5.0102	13	
Decane	C ₁₀ H ₂₂	0.7218	66	0.0128	23.1	Schönrock.
Heptane	C ₇ H ₁₆	0.6880	66	0.0125	15	Perkin.
Hexane	C ₆ H ₁₄	0.6580	66	0.0122	22.1	Schönrock.
66	. 66	0.6743	66	0.0125	15	Perkin.
Octane	C ₈ H ₁₈	0.7011	66 .	0.0128	23.1	Schönrock.
Pentane	C5H12	0.6196	66	0.0119	21.1	66
"	"	0.6332	66	0.0118	15	Perkin.
Phosphorus (melted)	P	-	66	0.1316	33	Becquerel.
Sulphur (melted)	S	. 0 .0	66	0.0803	114	0.1"
Toluene	C ₇ H ₈	0.8581	66	0.0269	28.4	Schönrock.
337-4	H O		"	0.0243	15	Becquerel.
Water	H ₂ O	0.9992	66	0.0130	18-20	Ouincke.
	66	0.9983	66	0.0131	20	Jahn.
Xylene	C ₈ H ₁₀	0.9903	66	0.0132	15	Becquerel.
"	66	0.8746	44	0.0263	27	Schönrock.
		5.07.40		5.0203	-/	- Stone out

MACNETO-OPTIC ROTATION.

Solutions of Acids and Salts in Water.

Substance.	Chemical formula.	Density, grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp.	Authority.
Acetone	C ₈ H ₆ O	0.9715	D	0.0129	200	Jahn.
Hydrobromic	HBr	1.7859	- 66	0.0343	15	Perkin.
66	66	1.6104	66	0.0304	46	46
* * *	66	1.3775	66	0.0244	66	"
66	66	1.1163	66	0.0168	46	- "
Hydrochloric	HC1	1.2072	66	0.0225	66	66
	"	1.1856	66	0.0219	66	46
66	66	1.1573	66	0.0204	"	66
4	46	1.1279	66	0.0193	66	46
66	66	1.0323	66	0.0150	20	Jahn.
46	66	1.0158	66	0.0140	66	
Hydriodic	HI	1.9473	"	0.0513	"	Perkin.
"	46	1.9057	66	0.0499	66	66
	66	1.8229	"	0.0468	66	66
46	66	1.7007	66	0.0421	"	66
"	46	1.2966	46	0.0258	66	66
66	66	1.1760	66	0.0205	66	46
Nitric	HNO ₃	1.5190	66 66	0.0010	66	"
Sulphuria Lau O	H ₂ SO ₄	1.3560	66	0.0105	46	Becquerel.
Sulphuric + 3H ₂ O	NH ₃	0.8918	66	0.0121	15	Perkin.
Ammonium	NH ₄ Br	1.2805	66 65	0.0226	66 66	66
Barium	BaBr ₂	1.5399	46	0.0215	20	Jahn.
66	66	1.2855	- 66	0.0176	66	"
Cadmium	CdBr ₂	1.3291	66 66	0.0192	66	66
Calcium	CaBr ₂	1.1608	"	0.0162	"	66
"	"	1.1337	66	0.0164	66	66
Potassium	KBr	1.1424	46	0.0163	66	66
	66	1.0876	46	0.0151	66	46
Sodium	NaBr "	1.1351	66	0.0165	66	"
Strontium	SrBr ₂	1.2901	66	0.0152	66	"
Ci · · · ·	"	1.1416	66	0.0159	46	"
Carbonate of potassium	K ₂ CO ₃	1.1906	"	0.0140	20	66
" " sodium	Na ₂ CO ₈	1.1006	66	0.0140	66	"
Chlorides:		1.0564		0.0137		
Ammonium (sal ammoniac)	NH ₄ Cl	1.0718	66	0.0178	15	Verdet.
Barium	BaCl ₂	1.2897	66	0.0168	20	Jahn.
	"	1.1338	66	0.0149	66	"
Cadmium	CdCl ₂	1.3179	66	0.0185	66	66
"	66	1.2755 1.1732	"	0.0179	66	46
"	66	1.1531	66	0.0157	66	46
Calcium	CaCl ₂	1.1504	46	0.0165	66	"
66	66	1.0832	66	0.0152	-6	Coh Samoole
	CuCl ₂	1.1049	- 66	0.0157	16	Schönrock. Becquerel.
Copper	4 4	1.2789	66	0.0221	15	766
"	66	1.1330	66	0.0156	46	· ·

MAGNETO-OPTIC ROTATION.

Solutions of Acids and Salts in Water.

Substance.	Chemical formula.	Density, grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp.	Authority.
Chlorides:						
	Tr-C1		D		0	Deggueral
Iron	FeCl ₂	1.4331	D "	0.0025	150	Becquerel.
	66	1.2141	- 66	0.0099	66	66
	66	1.1093	66	0.0118	"	"
		1.0548	66	0.0124	"	"
" (ferric)	Fe ₂ Cl ₆	1.6933		0.2026	66	46
66	66	1.5315	66	0.1140	66	"
44	66	1.3230	66	—0. 0348	66	"
	"		66	-0.0015	66	"
"	46	1.0864		0.0081	66	"
		1.0445	- 66	0.0113		66
"	66	1.0232	66	0.0122	66	
Lithium	LiCl	1.0619	66	0.0145	20	Jahn.
"	66	1.0316	46	0.0143	66	"
Manganese	MnCl ₂	1.1966	66	0.0167	15	Becquerel.
-"	"	1.0876	66	0.0150		66
Mercury	HgCl ₂	1.0381	46	0.0137	16	Schönrock.
	66	1.0349	66	0.0137	- 66	66
Nickel	NiCl ₂	1.4685	66	0.0270	15	Becquerel.
"	46	1.2432	- 66	0.0196	66	66
46	66	1.1233	66	0.0162	66	66
66	66	1.0690	66	0.0146	66	66
Potassium	KCl	1.6000	- 66	0.0163	66	66
66	46	1.0732	66	0.0148	20	Jahn.
66	66	1.0418	66	0.0144	66	66
Sodium	NaCl	1.2051	66	0.0180	15	Becquerel.
46	46	1.1058	66	0.0155	ii	₹6
"	66	1.0546	66	0.0144	66	- 66
"	46	1.0817	66	0.0154	20	Jahn.
"	66	1.0418	- 66	0.0144	66	66
Strontium	SrCl ₂	1.1921	66	0.0162	66	66
"	"	1.0877	66	0.0146	66	66
Tin	SnCl ₂	1.3280	66	0.0266	15	Verdet.
- 4	66	1.1637	- 66	0.0198	ű	46
66	66	1.1112	66	0.0175	66	66
Zinc	ZnCl ₂	1.2851	66	0.0196	66	66
Line is	"	1.1595	66	0.0161	66	46
Chromate of potassium.	K ₂ CrO ₄	1.3598	66	0.0098	66	
Bichromate of "	$K_2Cr_2O_7$	1.0786	66	0.0126	66	66
Cyanide of mercury	Hy(CN) ₂	1.0638	66	0.0136	16	Schönrock.
66 66 66	66	1.0425	66	0.0134	66	66
£6 £6 £ 6	ti.	1.0605	66	0.0135	66	44
Iodides:		1113		33		
Ammonium	NH ₄ I	1.5948	66	0.0396	15	Perkin.
"	"	1.5688	46	0.0386		66
"	66	1.5109	66	0.0358	46	46
"	66	1.2341	66	0.0235	66	46
Cadmium	CdI	1.5156	66	0.0291	20	Jahn.
66	"	1.2770	- 66	0.0215	66	" "
66	66	1.1521	66	0.0177	66	66
Potassium	KI	1.6743	66	0.0338	15	Becquerel.
66	66	1.3398	66	0.0237	46	66
u	66	1.1705	- 66	0.0182	66	66
44	66	1.0871	- 66	0.0152	66	, 66
"	66	1.2380	46	0.0211	20	Jahn.
"	"	1.1245	. 66	0.0174	66	ં હ
Sodium	NaI	1.1939	66	0.0200	66	66
	66	1.1191	66	0.0175	66	46

MACNETO-OPTIC ROTATION.

TABLE 322. - Solutions of Acids and Salts in Water.

Substance.	Chemical formula.	Density, grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp.	Authority.
Nitrates: Ammonium Potassium Sodium Uranium " " Sulphates: Ammonium " (acid) Barium " Cadmium " Lithium " Manganese	NH4NO8 KNO8 NaNO8 U2O8.N2O6 " " (NH4)2SO4 NH4.HSO4 BaSO4 " CdSO4 " Li2SO4 MnSO4	1.2803 1.0634 1.1112 2.0267 1.7640 1.3865 1.1963 1.2286 1.4417 1.1788 1.0938 1.1762 1.0890 1.1762 1.0942	D	0.0121 0.0130 0.0131 0.0053 0.0105 0.0105 0.0115 0.0140 0.0085 0.0134 0.0133 0.0139 0.0136 0.0137 0.0135 0.0135	15 20	Perkin. Jahn. "" Perkin. "" Jahn. "" "" "" "" "" "" "" "" "" "" "" "" "
Potassium	K ₂ SO ₄ NaSO ₄	1.1416 1.0475 1.0661	66 66	0.0136 0.0133 0.0135	66 66	66

TABLE 323. - Solutions of Salts in Alcohol.

Substance.	Chemical formula.	Density, grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp.	Authority.
Cadmium bromide	CdBr ₂ " CaBr ₂ " SrBr ₂ " CdCl ₂ SrCl ₂ " CdI ₂ " CdI ₂ "	1.0446 0.9420 0.9966 0.8846 0.9636 0.8814 0.8303 0.8274 1.0988 0.9484	D	0.0159 0.0140 0.0154 0.0130 0.0140 0.0126 0.0118 0.0118 0.0117 0.0199 0.0156	20 	Jahn.

TABLE 324. - Solutions in Hydrochloric Acid.

Substance.	Chemical formula.	Density, grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp. C.	Authority.	
Antimony trichloride "" "" "" "" Bismuth "" "" ""	• • •	SbCl ₈ " " BiCl ₈ " "	2.4755 1.8573 1.5195 1.3420 2.0822 1.6550 1.4156	D 46 66 66 66 66 66 66 66 66 66 66 66 66	0.0603 0.0449 0.0347 0.0277 0.0396 0.0359	15 44 44 44 44	Becquerel. " " " " " " " " "

TABLE 325. - Magneto-Optic Rotation.

Gauss.

Substance,					Pressure.	Temp.	Verdet's constant in minutes.	Authority.
Atmospheric air Carbon dioxide Carbon disulphide Ethylene . Nitrogen . Nitrous oxide . Oxygen . Sulphur dioxide		•	•	•	Atmospheric 74 cms. Atmospheric " " " 246 cms.	Ordinary '' 70° C. Ordinary " " " 20° C.	6.83 × 10 ⁻⁶ 13.00 " 23.49 " 34.48 " 6.92 " 16.90 " 6.28 " 31.39 " 38.40 "	Becquerel. Bichat. Becquerel. " " " Bichat.

Du Bois discusses Kundt's results and gives additional experiments on nickel and cobalt. He shows that in the case of substances like iron, nickel, and cobalt which have a variable magnetic susceptibility the expression in Verdet's equation, which is constant for substances of constant susceptibility, requires to be divided by the susceptibility to obtain a constant. For this expression he proposes the name "Kundt's constant." These experiments of Kundt and Du Bois show that it is not the difference of magnetic potential between the two ends of the medium, but the product of the length of the medium and the induction per unit area, which controls the amount of rotation of the beam,

TABLE 326. - Verdet's and Kundt's Constants.

The following short table is quoted from Du Bois' paper. The quantities are stated in c. g. s. measure, circular measure (radians) being used in the expression of "Verdet's constant" and "Kundt's constant."

	Magnetic	Verdet's co	nstant.	Wave-length	Kundt's
Name of substance.	susceptibility.	Number.	Authority.	of light in cms.	constant.
Cobalt	+0.0126 × 10 ⁻⁵ -0.0751 " -0.0694 " -0.0633 " -0.0566 " -0.0541 " -0.0876 " -0.0716 " -0.0982 "		Becquerel. Arons Becquerel. De la Rive. Becquerel. Rayleigh. Becquerel.	6.44×10 ⁻⁵ 6.56 ' 5.89 " " " " "	3.99 3.15 2.63 0.014 4.00 5.4 5.8 5.8 14.9 17.1

TABLE 327. - Magnetic Susceptibility of Liquids and Gases.

The following table gives a comparison by Du Bois * of his own and some other determinations of the magnetic susceptibility of a few standard substances. Verdet's and Kundt's constants are in radians for the sodium line D.

Substance.	Verdet's constant.	Farac val &×	ue		cquerel's value × × 10 ⁶	Wähner's value &× 10 ⁶
Water	3.77 × 10	-6 —o.	69	_	-0.63	0.536
Alcohol, C ₂ H ₆ O	3.30 "	-0.	57	_	-0.49	-0.388
Ether, C ₄ H ₁₀ O	3.15 "	-0.	54		-	-0.360
Carbon disulphide	12.22 "	—о.	72	-	-0. 84	-0.465
Oxygen at I atmosphere .	0.00179"	0.	13		0.12	-
Air at 1 atmosphere	0.00194 "	0.	024		0.025	-
	Quincke	at 20° C.		1	ou Bois at 1	5° C.
Substance.	Density.	<i>k</i> × 10 ⁶	Den	sit y .	& × 10 ⁸	Kundt's constant.
Water	0.9983	-0.815	0.99	92	0.83	7 —4.50
Alcohol, C ₂ H ₆ O	0.7929	0.660	0.79	63	—0. 69.	4 -4.75
Ether, C ₄ H ₁₀ O	0.7152	0.607	0.72	50	— 0.64	2 -4.91
Carbon disulphide	1.2644	-0.724	1.26	92	o.81	6 —14.97
Oxygen at 1 atmosphere .		•	0.00	135	0.11	7 0.016
Air at 1 atmosphere	-	-	0.00	123	0.02	4 0.081

TABLE 328. - Values of Kerr's Constant. †

Du Bois has shown that the rotation of the major axis of vibration of radiations normally reflected from a magnet is algebraically equal to the normal component of magnetization multiplied into a constant K. He calls this constant, K, Kerr's constant for the magnetized substance forming the magnet.

		1. 1.	-	Spectrum	Wave- length	Kerr's constan	nt in minutes pe	r c. g. s. unit of	magnetization.
Cold	or or	light.		line.	in cms.	Cobalt.	Nickel.	Iron.	Magnetite.
Red			•	Liα	67.7	-0.0208	0.0173	-0.0154	+0.0096
Red	•	•	•	_	62.0	0.0198	—0. 0160	0.0138	+0.0120
Yellow	•	٠	٠	D	58.9	0.0193	-0.0154	0.0130	+0.0133
Green	•	•	•	ō	51.7	0.0179	-0.0159	0.0111	+0.0072
Blue			•	F	48.6	0.0180	0.0163	0.0101	+0.0026
Violet			•	G	43.I	-0.0182	-0.0175	0.0089	-

^{* &}quot; Wied. Ann." vol. 35, p. 163.

[†] H. E. J. G. Du Bois, " Phil. Mag." vol. 29.

TABLE 329. - Variation of Resistance of Bismuth, with Temperature, in a Transverse Magnetic Field.

		P	roportional	Values o	f Resistan	ice.			
Н	-192°	-135°	-100°	-37°	o°	+18°	+600	+1000	+1830
0 2000 4000 6000 8000 12000 14000 16000 25000 30000 35000	0.40 1.16 2.32 4.00 5.90 8.60 10.8 12.9 15.2 17.5 19.8 25.5 30.7 35.5	0.60 0.87 1.35 2.06 2.88 3.80 4.76 5.82 6.95 8.15 9.50 13.3 18.2 20.35	0.70 0.86 1.20 1.60 2.00 2.43 2.93 3.50 4.11 4.76 5.40 7.30 9.8 12.2	0.88 0.96 1.10 1.29 1.50 1.72 1.94 2.16 2.38 2.60 2.81 3.50 4.20 4.95	1.00 1.08 1.18 1.30 1.43 1.57 1.71 1.87 2.02 2.18 2.33 2.73 3.17 3.62	1.08 1.11 1.21 1.32 1.42 1.54 1.67 1.80 1.93 2.06 2.20 2.52 2.86 3.25	1.25 1.26 1.31 1.39 1.46 1.54 1.62 1.70 1.79 1.88 1.97 2.22 2.46 2.69	1.42 1.43 1.46 1.51 1.57 1.62 1.67 1.73 1.80 1.87 1.95 2.10 2.28 2.45	1.79 1.80 1.82 1.85 1.87 1.92 1.94 1.96 1.99 2.03 2.09 2.17 2.25

TABLE 330. — Increase of Resistance of Nickel due to a Transverse Magnetic Field, expressed as % of Resistance at 0° and H = 0.

Н	-190°	-75°	00	+180	-+100°	+1820
1000	+0.26	+0.23	+0.07	+0.07	+0.96	+0.04
2000	+0.17	+0.16	+0.03	+0.03	+0.72	-0.07
3000	0.00	-0.05	-0.34	-0.36	-0.14	-0.60
4000	-0.17	-0.15	-0.60	-0.72	-0.70	-1.15
6000	-0.19	-0.20	-0.70	-0.83	-1.02	-1.53
8000	-0.19	-0.23	-0.76	-0.90	-1.15	-1.66
10000	-0.18	-0.27	-0.82	-0.95	-1.23	-1.76
12000	-0.18	-0.30	-0.87	-1.00	-1.30	-1.85
14000	-0.18	-0.32	-0.91	-1.04	-1.37	-1.95
16000	-0.17	-0.35	-0.94	-1.09	-1.44	-2.05
20000 25000 30000 35000	-0.17 -0.16 -0.14 -0.12 -0.10	-0.38 -0.41 -0.49 -0.56 -0.63	-0.98 -1.03 -1.12 -1.22 -1.32	-1.13 -1.17 -1.29 -1.40 -1.50	-1.51 -1.59 -1.76 -1.95 -2.13	-2.15 -2.25 -2.50 -2.73 -2.98

F. C. Blake, Ann. der Physik, 28, p. 449; 1909.

TABLE 331. — Change of Resistance of Various Metals in a Transverse Magnetic Field.

Room Temperature.

Metal. Nickel "" Cobalt Cadmium Zine Copper	Field Strength in Gausses.	Per cent Increase, -1.2 -1.4 -1.0 -1.4 -0.53 +0.03 +0.01 +0.004	Authority. Williams, Phil. Mag. 9, 1905. Barlow, Pr. Roy. Soc. 71, 1903. Dagostino, Attl Ac. Linc. 17, 1908. Grummach, Ann. der Phys. 22, 1906.
Silver Gold Tin Palladium Platinum Lead Tantalum Magnesium Manganin Tellurium Antimony Iron Nickel steel	diverse results, crease in weak i in strong.	+0.004 +0.003 +0.002 +0.001 +0.0005 +0.0004 +0.0003 +0.01 +0.02 to 0.34 +0.02 to 0.16 mens show very usually an in- fields, a decrease	Dagostino, l. c. Goldhammer, Wied Ann. 31, 1887. Grummach, l. c. Barlow, l. c. Williams, l. c.

TABLE 332. - Transverse Galvanomagnetic and Thermomagnetic Effects.

Effects are considered positive when, the magnetic field being directed away from the observer, and the primary current of heat or electricity directed from left to right, the upper edge of the specimen has the higher potential or higher temperature.

E = difference of potential produced; T = difference of temperature produced; I = primary

current; $\frac{dt}{dx}$ = primary temperature gradient; B = breadth, and D = thickness, of specimen; H =intensity of field. C. G. S. units.

Hall effect (Galvanomagnetic difference of Potential), $E = R \frac{HI}{D}$

" Temperature), $T = P \frac{HI}{D}$ Ettingshausen effect ("

" Potential), $E = QHB \frac{dt}{dx}$ Nernst effect (Thermomagnetic

" Temperature), $T = SHB \frac{dt}{ds}$ Leduc effect (

Substance,	Values of R.	P×108,	Q×108.	.801×2
Tellurium	+400 to 800	+200	-360000	+400
Antimony	+ 0.9 " 0.22 +.012 " 0.033	+2 0.07	+9000 to 18000 -700 " 1700	+200 +69
Hensler alloy	+.010 " 0.026	- 1	+1600 " 7000	1 -9
Iron	+.007 " 0.011	-0.06	—1000 " 1500	+39
Cobalt	+.0016 " 0.0046	+0.01	+1800 " 2240 -54 " 240	+13
Cadmium	+.00055		-54 240	+13
Iridium	+.00040	~	up to —5.0	+5
Lead	+.00009		—5.0 (?)	
Tin	00003 0002	_	4.0 (?)	2
Copper	00052		-90 to 270	-18
German silver	00054			
Gold	00057 to .00071			
Manganese	00093			
Palladium	0007 to .0012	-	+50 to 130	<u>—3</u>
Silver	—.0008 " .0015	-	-46 " 430	<u>-41</u>
Sodium	0023 00094 to .0035			
Aluminum	00036 " .0037			
Nickel	0045 " .024	+0.04 to 0.19	+2000 " 9000	-45
Carbon	—.017 — up to 16.	+5. +3 to 40	+100 - up to 132000	-200
Districti	up to 10.	73 10 40	ap to 132000	

TABLE 333. - Variation of Hall Constant with the Temperature.

		Bisn	nuth.1			11		A	ntimony.	2	
н	-1820	-90°	-23°	+11.50	+1000	н	-	1860	-79°	+21.5°	+580
1000 2000 3000 4000 5000 6000	62.2 55.0 49.7 45.8 42.6 40.1	28.0 25.0 22.9 21.5 20.2 18.9	17.0 16.0 15.1 14.3 13.6 12.9	13.3 12.7 12.1 11.5 11.0 10.6	7.28 7.17 7.06 6.95 6.84 6.72	175 396 616	0.	263 252 245	0.249 0.243 02.35	0.211	0.203
					Bismu	h.8					
Н	+14.5°	+1040	12	5° :	1890	2120	239 ⁰		259 ⁰	2 69 ⁰	270 ⁰
890	5.28	2.57	2.1	12 1	.42	1.24	1.11		0.97	0.83	0.77*

¹ Barlow, Ann. der Phys. 12, 1903.
2 Everdingen, Comm. Phys. Lab. Leiden, 58,
3 Traubenberg, Ann. der Phys. 17, 1905.
3 Melting-point.
3 Both tables taken from Jahr, Jahrbuch der Radioactivität und Electronik, 5, p. 166; 1908, who has collected data of all observers and gives extensive bibliography.

APPENDIX I.

TABLES 334, 335. THE SPECIFIC HEAT OF IRON AT HIGH TEMPERATURES.

Analysis of iron - (0.01 C, .02 Si, .03 S, .04 P, trace Mn).

TABLE 334. — Mean Specific Heat between 0° and T° Centigrade, S_0^T .

Т	S ₀ T	т	S ₀ ^T
2000	0.1175	7000	0.1487
250	.1204	750	.1 537
300	.1233	800	.1 597
350	.1257	850	.1647
400	.1282	900	.1644
450	.1311	950	.1612
500	.1338	1000	.1557
550	.1361	1050	.1512
600	.1396	1100	.1534
650	.1440		

TABLE 335. — Total Heat between 0° and T° Centigrade, Q_0^T .

т	Q ₀ ^T Pionchon's value recalculated.	Q ^T Harker's value.
200	23.5	. 23.5
300	36.8	37.0
400	51.6	51.3
500	66.0	66.9
600	83.2	83.8
700	102.2	104.1
800	125.0	127.8
900	146.7	148.0
1000	166.0	155.7
1100	-	168.8

J. A. Harker, Proc. Physical Society, London, 19, p. 703; 1905. Pionchon's data, based on experiments made many years ago, should be regarded only as corroborative of the more recent and careful experiments of Harker.

APPENDIX II.

DEFINITIONS OF UNITS.

ACTIVITY. Power or rate of doing work; unit, the watt.

AMPERE. Unit of electrical current. The international ampere, "which is one tenth of the unit of current of the C. G. S. system of electro-magnetic units, and which is represented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, and in accordance with accompanying specifications" (see pages xxxiv and 251), "deposits silver at the rate of 0.001118 of a gramme per second."

The ampere = I coulomb per second = I volt through I ohm;

Amperes = volts/ohms = watts/volts = (watts/ohms) $^{\frac{1}{2}}$.

Amperes \times volts = amperes $^2 \times$ ohms = watts.

Unit of wave-length = 10⁻¹⁰ metre. ANGSTROM.

ATMOSPHERE. Unit of pressure.

English normal=14.7 pounds per sq. in.=29.929 in.=760.18 mm. Hg. 32° F. French = 760 mm. of Hg. 0° C.=29.922 in.=14.70 lbs. per sq. in.

BARAD. C. G. S. unit of pressure = I dyne per sq. cm.
BOUGIE DECIMALE. Photometric standard; see page 177.
BRITISH THERMAL UNIT. Heat required to raise one pound of water at its temperature of maximum density, 1° F. = 252 gramme-calories.

CALORY. Small calory = gramme-calory = therm = quantity of heat required to raise one gramme of water at its maximum density, one degree Centigrade.

Large calory = kilogramme-calory = 1000 small calories = one kilogramme of water raised one degree Centigrade at the temperature of maximum density.

For conversion factors see page 227.

CANDLE. Photometric standard, see page 177. CARAT. The diamond carat = 3.168 grains = 0.2053 grammes. The gold carat: pure gold is 24 carats; a carat is 1/24 part. CARCEL. Photometric standard; see page 177. CIRCULAR AREA. The square of the diameter = 1.2733×true area.

True area = 0.785398 × circular area.

COULOMB. Unit of quantity. The international coulomb is the quantity of electricity transferred by a current of one international ampere in one second. $Coulombs = (volts-seconds) / ohms = amperes \times seconds.$

CUBIT = 18 inches.

DAY. Mean solar day = 1440 minutes = 86400 seconds = 1.0027379 sidereal day.

Sidereal day = 86164.10 mean solar seconds.

3/4 inch; 1/12 the diameter of the sun or moon. C. G. S. unit of force = that force which acting for one second on one gramme pro-DYNE. duces a velocity of one centimetre per second.

= weight in grammes divided by the acceleration of gravity in cm. per sec.

ENERGY. See Erg. ERG. C. G. S. unit of work and energy = one dyne acting through one centimetre.

For conversion factors see page 227.

FARAD. Unit of electrical capacity. The international farad is the capacity of a condenser charged to a potential of one international volt by one international coulomb of electricity.

The one-millionth part of a farad (microfarad) is more commonly used.

Farads = coulombs/volts.

FOOT-POUND. The work which will raise one pound one foot high.

For conversion factors see page 227.

FOOT-POUNDALS. The English unit of work = foot-pounds/g.

For conversion factors see page 227.

g. The acceleration produced by gravity.
GAUSS. A unit of intensity of magnetic field = 108 C. G. S. units.

GRAMME. See page 6.

310 APPENDIX.

GRAMME-CENTIMETRE. The gravitation unit of work = g. ergs.

For further conversion factors see page 227.

HEAT UNIT. See Calory. HEAT OF THE ELECTRIC CURRENT generated in a metallic circuit without selfinduction is proportional to the quantity of electricity which has passed in coulombs multiplied by the fall of potential in volts, or is equal to (coulombs xvolts) /4.181 in small calories.

The heat in small or gramme-calories per second = (amperes 2 × ohms)/4.181 = volts 2/

(ohms ×4.181) = (volts × amperes) /4.181 = watts/4.181.

HEAT. Absolute zero of heat = -273° Centigrade, -459.4° Fahrenheit, -218.4° Reaumur.

HEFNER UNIT. Photometric standard; see page 177.

HENRY. Unit of induction. It is "the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampere per second."

HORSE-POWER. The practical unit of power = 33,000 pounds raised one foot per min-

ute.
JOULE. Unit of work=107 ergs.

Joules = $(\text{volts}^2 \times \text{seconds}) / \text{ohms} = \text{watts} \times \text{seconds} = \text{amperes}^2 \times \text{ohms} \times \text{sec.}$

For conversion factors see page 227.

JOULE'S EQUIVALENT. The mechanical equivalent of heat = 4.181 × 107 ergs. See page 227. KILODYNE.

1000 dynes. About I gramme.

LITRE. See page 6.

MEGABAR.

MEGABAR. Unit of pressure = 0.987 atmospheres. MEGADYNE. One million dynes. About one kilogramme.

METRE. See page 6.
METRE CANDLE. The intensity lumination due to standard candle distant one metre. METRET. An exponential subdivision of the metre. The ordinal number before the word metre denotes the power of ten serving as the divisor; e. g., a tenth-metret=10⁻¹⁰= I/10¹⁰ metre. The first metret is the decimetre, the second, the centimetre, etc. MHO. The unit of electrical conductivity. It is the reciprocal of the ohm.

MICRO. A prefix indicating the millionth part.

MICROFARAD. One millionth of a farad, the ordinary measure of electrostatic capacity. MICRON. (μ) = one millionth of a metre.

MIL. One thousandth of an inch.
MILE. See pages 5, 6.
MILE, NAUTICAL or GEOGRAPHICAL=6080.204 feet.

MILLI-. A prefix denoting the thousandth part.

MONTH. The anomalistic month = time of revolution of the moon from one perigee to another = 27.55460 days.

The nodical month = draconitic month = time of revolution from a node to the same node

again = 27.21222 days.

The sidereal month = the time of revolution referred to the stars = 27.32166 days (mean value), but varies by about three hours on account of the eccentricity of the orbit and "perturbations."

The synodic month = the revolution from one new moon to another = 29.5306 days (mean

value) = the ordinary month. It varies by about 13 hours.

OHM. Unit of electrical resistance. The international ohm is based upon the ohm equal to 109 units of resistance of the C. G. S. system of electromagnetic units, and "is represented by the resistance offered to an unvarying electric current by a column of mercury, at the temperature of melting ice, 14.4521 grammes in mass, of a constant cross section and of the length of 106.3 centimetres.

International ohm = 1.01367 B. A. ohms = 1.06292 Siemens' ohms.

B. A. ohm = 0.98651 international ohms.

Siemens' ohm =0.94080 international ohms. See page 261. PENTANE CANDLE. Photometric standard. See page 177.

 $PI = \pi = \text{ratio of the circumference of a circle to the diameter} = 3.14159265359$.

POUNDAL. The British unit of force. The force which will in one second impart a velocity of one foot per second to a mass of one pound.

RADIAN = $180^{\circ}/\pi = 57.29578^{\circ} = 57^{\circ} 17' 45'' = 206625''$. SECOHM. A unit of self-induction = I second × I ohm.

THERM = small calory = quantity of heat required to warm one gramme of water at its

temperature of maximum density one degree Centigrade.

THERMAL UNIT, BRITISH = the quantity of heat required to warm one pound of water at its temperature of maximum density one degree Fahrenheit =252 gramme-calories. VOLT. The unit of electromotive force (E. M. F.). The international volt is "the

electromotive force that, steadily applied to a conductor whose resistance is one international ohm, will produce a current of one international ampere, and which is represented sufficiently well for practical use by 1000/1434 of the electromotive force beAPPENDIX. 311

tween the poles or electrodes of the voltaic cell known as Clark's cell, at a temperature of 15° C and prepared in the manner described in the accompanying specification.'

See pages xxxiv and 251.

VOLT-AMPERE. Equivalent to Watt.

WATT. The unit of electrical power = 107 units of power in the C. G. S. system. It is represented sufficiently well for practical use by the work done at the rate of one Joule per second.

Watts = $volts \times amperes = amperes^2 \times ohms = volts^2 / ohms$.

For conversion factors see page 227.

Watts x seconds = Joules.
WEBER. A name formerly given to the coulomb.
YEAR. See page 108.

Anomalistic year = 365 days, 6 hours, 13 minutes, 48 seconds. " = 365 " 6 " 9 " = 365 " 5 " 48 " same as the ordinary year. Sidereal 9.314 seconds. Ordinary 46+

Tropical

For the definitions of units, see Appendix.

Aberration constant	PAGE.
Aberration constant 109	Capacity, specific inductive: solids . 283 Capillarity, correction to barometer for liquids
Absorption of gases by liquids , 141	Capillarity, correction to barometer for 121
Absorption of light: atmospheric 179	liquids 142–143
color screens 195	liquids near solidifying point 143
Jena glasses 193	salt solutions in water 142
various crystals 194	thickness of soap films 143
Acceleration of gravity 104-107	Carcel unit
Aerodynamic data: soaring data	Cells, voltaic: composition, E. M. F 252-253
wind pressures 122	double-fluid
Agonic line	secondary
Air: density	single-fluid
Air thermometer, comparisons	standard
Air: transmissibility of, for radiation 170	storage
Alcohol: density	Chemical, electro-, equivalents
vapor pressure	equivalent of silver
viscosity	Chemical elements: atomic weights
Alloys densities 80	boiling-points 210 compressibility
electrical conductivity of	compressibility
resistance of 262-268	conductivity thermal roo
low temp	densities 2r or
molting points	electro-chemical equivalents 270
merting-points	hordness #6
Abarral conductivity	hardness
thermal conductivity	mercing-points 209
thermoelectric powers	resistance, electrical . 262–263 specific heats
Alternating currents, resistance of wires for 209	specinc neats
Aluminum wire, weights of	thermai conductivities 199
Alums: indices of refraction	expansion, linear . 222
Antilogarithms	Circular functions: argument (°') 30
Aqueous solutions: boiling-points 219	(radians)35
densities	Coals, heat of combustion of
alcohols 98	Cobalt, magnetic properties of
alcohol, temperature var'n 100	Color screens 195–196
alcohol, temperature var'n 100 diffusion of 136	Combination, heat of
plactrolytic conductivities and and	Combustion, heat of: coals
Aqueous vapor: vapor pressure, low temp 151 0° to 100° C 152 100° to 230° C 153	explosives 203
o° to 100° C . 152	fuels (liquid) 202
. · 100° to 230° C . 153	peats 202
pressure of, in atmosphere 155 (saturated) weight of 155 (saturated) weight of 154 Astronomical data 108-109 Atmosphere, aqueous vapor in 155	Circular functions: argument (5'). 30 Coals, heat of combustion of 202 Cobalt, magnetic properties of 293 Color screens 195–196 Combination, heat of 204 Combustion, heat of 204 Combustion, heat of 204 Combustion, heat of 204 Combustion, heat of 204 Explosives 203 fuels (liquid) 202 peats 202 Compressibility: chemical elements 76 gases 70–81 liquids 82 solids 83 Concretes: resistance to crushing 71 Conductivity, electrical: see Resistance. alloys 266–268 alternating currents, effect of 269
(saturated) weight of 154	gases 70–81
Astronomical data 108-100	liquids 82
Atmosphere, aqueous vapor in	solids
transmissibility for radiation 179	Concretes: resistance to crushing
Atomic weights	Conductivity, electrical: see Resistance.
Troute Halling A A A A A A A A A A A A A A A A A A A	allovs
Barometer: boiling temperature of water for va-	alternating currents, effect of 260
rious heights	alternating currents, effect of . 269 magnetic field, effect of 306
correction for capillarity	electrolytic 272-278
latitude inch	electrolytic 272-278 equivalent 275-278 jonic (separate ions)
metric 120	ionic (separate ions) 278
sea level TIR	specific molecular 272
temperature	limiting values 274
heights determination of by 167	temp'ture coef. 274
Ratteries: composition electromotive forces	
Recumé scale: conversion to densities	Conductivity thermal gases
Barometer: boiling temperature of water for various heights	glass and porc 1 n, temp ture coef. 285
Rigmuth registance of in magnetic field	salt solutions
"Plack hody" majotion	eolida Too
Dilling points: chemical elements	water 200
Bolinig-points, themical elements 210	Contact differences of potential
morganic compounds 213	Convection cooling by
Weiling point roising of hy solts in solution	Conversion: Beaumé to specific gravities 84
bonning-point, raising of, by saits in solution 219	
of water and barometric pressure . 168	factors for work units
Brass wire, weights of, common measure 60	Cooling by radiation, perfect radiator 238
metric measure 02	Cosines byporballa return!
Brick, crushing strength of 71	Cosines, hyperbolic natural 41
metric measure 62 Brick, crushing strength of 71 British wire gauge	Critical data for mass
British weights and measures 7-10	Critical data for gases
Or to ton the course to set and	Crushing, resistance to: Dricks 71
Cadmium line, wave-length red 170	concretes 71
Candle power, standard	stones 71
Capacity, specific inductive: crystals 284	Cooling by radiation, perfect radiator 230 and convection 239-240 Cosines, hyperbolic natural 41 Critical data for gases 221 Crushing, resistance to: bricks 71 concretes 71 stones 71 timber, wood 72 Cubical thermal expansion: 2388
gases 279	Cubical thermal expansion: gases
Cadmium line, wave-length red	Cubical thermal expansion: gases
liquid gases 282	solids 224

Crystals: dielectric constant	Electricity, specific heat of
elasticity	Electric units, dimensional formulæ
expansion, cubical thermal	Electrochemical equivalents 270, 272
expansion, cubical therma 224 transmissibility for radiation 194 Current, absolute, measures 251	silver 25I
Current, absolute, measures	Electrolytic conductivity:
Cyclic magnetization, energy losses in 294-296	dilute solutions
	equivalent
Declination, secular change of magnetic 110	ionic
Declination, secular change of magnetic	specific molecular 273
Density: air: values of $h/760 \dots 160$	limiting values 274
alcohol: aqueous ethyl 98	temp. coef 274
methyl 98	Electromagnetic system of units
temperature variation 100	Electromagnetic/electrostatic units = v 247
alloys 89	Electromotive force: cells: double field 253
aqueous alconol	secondary 253
sait, acid, basic solutions 92	single nuid 252
chemical elements	standard 251, 253
earth	liquide liquide in ois
gases	metals in solt solutions
mercury 07	temp. coef. 274 Electromagnetic system of units 274 Electromagnetic/electrostatic units 272 Electromotive force: cells: double fluid 253 secondary 253 single fluid 253 standard 251, 253 storage 253 liquids-liquids in air 254 metals in salt solutions 257 salts with liquids 254 solids-solids in air 254 Elements: atomic weights (platinum) 255 Elements: atomic weights 270
motals 8c	solids solids in air
organic compounds	thermo-electric 258
water	(platinum) . 250
woods 87	Elements: atomic weights
Dew points	boiling-points
Dielectric constant: (specific inductive capacity)	compressibility
	conductivity, thermal
gases, atm. pressure 270	densities 85, 91
gases, atm. pressure	solids-solids in air 255 thermo-electric 258 thermo-electric 258 (platinum) 255 boilling-points 270 compressibility 76 conductivity, thermal 199 densities 270 hardness 76 melting-points 200 resistance, electrical 26. specific heats 222 specific heats 25 specific heats 26. specific heats 270 cubical, gases 26 specific heats 270 cubical, gases 26 specific prominent lines 270 cubical, gases 270 cub
temperature coef. , 280	hardness
liquids 280	melting-points 200
temperature coef 282	resistance, electrical
solids	specific heats
Dielectric strength: air: alternating potential . 248	spectra (prominent lines) 170
steady potential 248	thermal conductivities 199
kerosene 250	expansion, linear
large spark-gaps 249	cubical, gases 220
steady potential	Elliptic integrals
various materiais 250	Emission of perfect radiator
Difference of potential:	Equivalent, electro-chemical; elements 270
cells: double fluid	silver
secondary	Fourtelant mechanical of heat
single mild	Energy data relating to solar
standard	Ethyl alcohol specific gravity of aqueous
storage	Ettinghausen effect
metals in salt solutions 257	Expansion, thermal: cubical, crystals
salts with liquids 25/	gases
solids-solids in air 256	liquids
salts with liquids	solids 22
platinum couples 250	linear, elements
thermo-electric 258 Differential formulæ 259 Diffusion: aqueous solutions, water 136 gases and vapors: coefficients 138 metals into metals 138 vapors 137 Diffusion integral 50 Dip, magnetic 112 Secular change 112 Dynamical equivalent of thermal unit 227	various
Diffusion: aqueous solutions, water	perfect gas
gases and vapors: coefficients 138	Explosives, composition, etc 203
metals into metals	Exponential functions: e^{x} , e^{-x} , their logs 43, 4
vapors	$\log e^{x}$, $x = 10$ to 30 4
Diffusion integral 50	e^{ω^2} , $e^{-\omega^2}$, their logs 4.
Dip, magnetic	, o , o , chette rogo
Secular change	$e^{\pi_{z}}, e^{-\pi_{z}}$
Dynamical equivalent of thermal unit 227	0,0 4
	$\sqrt{\pi}$ $\sqrt{\pi}$
e, value of $$ 12 e^x , e^{-x} , and their logarithms $$ 43, 47	$e^{\sqrt{\pi}}$, $e^{\sqrt{\pi}}$, their logs. 4
e, e, and their logarithms 43, 47	
$\log e^{y}$, x from 10 to 30	$\frac{e^{x}+x^{-x}}{2}, \text{ their logs.} \qquad 41, 4$ $\frac{e^{x}-e^{-x}}{2} \qquad \cdots \qquad 39, 4$
e^{x^2} , e^{-x^2} , and their logarithms 45	2
	$e^{x}-e^{-x}$
$e^{\pi e}$, $e^{-\pi x}$, and their logarithms	39, 4
	diffusion integral se
$e^{\frac{\sqrt{\pi}}{4}s}$, $e^{-\frac{\sqrt{\pi}}{4}s}$, and their logarithms 46	hyperbolic sines
e, e, and their logarithms40	cosines
all I would	logs, hyperbolic sines . 4
$\frac{e^n+e^{-n}}{2}$, and their logarithms 41, 42	cosines . 4
2	probability integral . 47, 4
$e^{2}-e^{-2}$ " " 30, 40	Eye, sensitiveness of, to radiation
2	probability integral . 47, 4 Eye, sensitiveness of, to radiation
Earth: densities	Fabry-Buisson, standard are Fe wave-lengths 179
miscellaneous data 108	Factorials, n1 3; Fechner's law 1971 Field: earth's magnetic field, components of 110-11 magnetic, behavior of metals in 286-29
Elasticity: crystals	Fechner's law
moduli of rigidity	Field: earth's magnetic field, components of 110-11
modulus, Young's	magnetic, behavior of metals in 280-29
Electrical conductivity: alloys 200-208	resistance of metals in
alternating current, effect of 269	thermo-, galvanometric effects 30
magnetic field, effect of 300	Films, thin: thickness, colors, tension of . 142, 14
Electrical resistance: see Conductivity. metals and alloys, low temp. 264	Fluorite: index of refraction
ohm, various determinations 261	Formulæ conversion: dynamic units
specific: metallic wires 262	electric "
metals 263	fundamental
	geometric

Galvanometric effects of magnetic field Gamma function Games: absorption of, by liquids atomic weights compressibility of critical data for critical data for diffusion expansion of perfect expansion, thermal capanion, thermal capanion, thermal capanion of refraction magnetic susceptibility magneto-optic rotation refractive indices of solubility of solubility of solubility of specific heats thermal conductivity conduct	ds sssure coef.	18: 18: 18: 18: 18: 18: 18: 18: 18: 18:
Fraunhofer lines, wave-lengths of 176 Freezing mixtures	ds ssure coef.	29. 29. 18. 18. 11. 18. 18. 18. 18. 18. 18. 18
Freezing mixtures Freezing-points, lowering of, by salts in solution Function, coefficients of Functions: circular arguments (°) 30 Functions: circular arguments (°) 30 cappendial 30 cap	ds ssure coef.	. 18
Friction, coefficients of	ds ssure coef.	. III . 181 . 183 . 193 . 183 . 183 . 183 . 183 . 183 . 184 . 185 . 185
Fuels, heats of combustion of Functions: circular arguments (° ') . 30 (radians) . 35 (radians) . 36 (radians) . 39 - 47 (fluorite . 29 (fluorite . 208 (fluorite . 2	ds ssure coef.	111 188 188 188 188 188 188 188 188 188
Functions: circular arguments (°)	ds ssure coef.	18 18 18 18 18 18 18 18 18 18 18 18 18 1
exponential	ds ssure coef.	16 18 18 18 18 18 18 18 18 18 18 18 18 18
exponential 39-47 gamma 52, 38 hyperbolic 39-42 glass 1 glass 52, 38 glass 3-42 Fusion, latent heat of 208 Galvanometric effects of magnetic field 307 metals, metallic oxides monorefringent solids monorefringent solids monorefringent solids mitroso-dimethyl-amilin quartz 70 metals in diffusion 138 expansion of perfect 162 expansion, thermal 226 heat, conductivity for 200 indices of refraction 190 magnetic susceptibility 305 magneto-optic rotation 190 magnetic susceptibility 305 magneto-optic rotation 190 solud, velocity of, in 102 solubility of 140, 141 specific heats 232 thermal conductivity 200 thermal expansion 226 viscosity of 134 thermal conductivity 200 thermal expansion 226 viscosity of 134 thermal conductivity 200 thermal expansion 226 viscosity of 134 thermal conductivity 200 thermal expansion 226 viscosity of 134 thermal conductivity 200 thermal expansion 226 viscosity of 134 volume of perfect (1-0.00376!) 162-166 Gas thermometry 233-235 Gauges, wire: Birmingham 550 discorption and the probability of 233-235 Gas wire: Birmingham 550 discorption and the probability of 233-235 glass . Galvanometric effects of magnetic field 309-42 glass . 140, 141 quartz 100, 141 quart	ds ssure coef.	18. 18. 18. 18. 18. 18. 18. 18. 18. 18.
gamma	ds ssure coef.	. 199 . 188 . 188 . 188 . 188 . 188 . 188 . 188 . 188 . 188 . 188 . 189 . 279 . 279 . 279 . 280
Fundamental units	ds d	. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18
Galvanometric effects of magnetic field . 307 Gamma function . 52, 38 Gases: absorption of, by liquids . 140, 141 atomic weights . 270 compressibility of . 79-81 dielectric constants . 279, 280 diffusion . 138 expansion of perfect . 162 expansion, thermal . 226 heat, conductivity for . 200 findices of refraction . 190 magnetic susceptibility . 305 magneto-optic rotation . 190 solubility of . 140, 141 dielectric constants . 279, 280 diffusion . 138 expansion of perfect . 162 expansion, thermal . 226 heat, conductivity for . 200 findices of refraction . 190 magnetic susceptibility . 305 magneto-optic rotation . 304 refractive indices of . 190 solubility of . 140, 141 specific heats . 232 thermal conductivity . 200 thermal expansion . 226 Viscosity of . 140, 141 specific heats . 232 thermal conductivity . 200 thermal expansion . 226 Gas thermometry . 233-235 Gas thermometry . 233-235 Gauges, wire: Birmingham . 50	ds ssure coef. eef.	186 188 188 188 188 188 188 188 188 289 279 279 279 286 286 288 288 288 288 288 288 288 288
Galvanometric effects of magnetic field . 307 Gamma function	ds ssure coef.	188 188 188 188 188 188 188 188 188 188
Gas thermometry Gas thermometry Gas thermometry Gaugets, absorption of, by liquids 140, 141 140 140, 141 140,	ds ssure coef.	18, 18, 18, 186, 186, 186, 28, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21
Gas thermometry Gas thermometry Gas thermometry Gaugets, absorption of, by liquids 140, 141 140 140, 141 140,	ds ssure coef.	18, 18, 18, 186, 186, 186, 28, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21
Gas thermometry Gas thermometry Gas thermometry Gaugets, absorption of, by liquids 140, 141 140 140, 141 140,	ds ssure coef.	18, 18, 18, 186, 186, 186, 28, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21
expansion of perfect 162 expansion, thermal 226 heat, conductivity for 200 indices of refraction 190 magnetic susceptibility 305 magneto-optic rotation 304 refractive indices of 190 sound, velocity of, in 102 solubility of 140, 141 specific heats 232 thermal conductivity 200 thermal expansion 226 viscosity of 134 volume of perfect (1- -0.00376!) 162-166 Gas thermometry 233-235 Gauges, wither Birmingham 59 gades, stath, pressure pressure temp. cool liquids 100 temp. cool liquid	coef	279 280 280 280 280 280 280 280 210 210
expansion of perfect 162 expansion, thermal 226 heat, conductivity for 200 indices of refraction 190 magnetic susceptibility 305 magneto-optic rotation 304 refractive indices of 190 sound, velocity of, in 102 solubility of 140, 141 specific heats 232 thermal conductivity 200 thermal expansion 226 viscosity of 134 volume of perfect (1- -0.00376!) 162-166 Gas thermometry 233-235 Gauges, wither Birmingham 59 gades, stath, pressure pressure temp. cool liquids 100 temp. cool liquid	coef	279 280 280 280 280 280 280 280 210 210
expansion of perfect 162 expansion, thermal 226 heat, conductivity for 200 indices of refraction 190 magnetic susceptibility 305 magneto-optic rotation 304 refractive indices of 190 sound, velocity of, in 102 solubility of 140, 141 specific heats 232 thermal conductivity 200 thermal expansion 226 viscosity of 134 volume of perfect (1- -0.00376!) 162-166 Gas thermometry 233-235 Gauges, wither Birmingham 59 gades, stath, pressure pressure temp. cool liquids 100 temp. cool liquid	coef	279 280 280 280 280 280 280 280 210 210
expansion of perfect 162 expansion, thermal 226 heat, conductivity for 200 indices of refraction 190 magnetic susceptibility 305 magneto-optic rotation 304 refractive indices of 190 sound, velocity of, in 102 solubility of 140, 141 specific heats 232 thermal conductivity 200 thermal expansion 226 viscosity of 134 volume of perfect (1- -0.00376!) 162-166 Gas thermometry 233-235 Gauges, wither Birmingham 59 gades, stath, pressure pressure temp. cool liquids 100 temp. cool liquid	coef	279 280 280 280 280 280 280 280 210 210
expansion of perfect 162 expansion, thermal 226 heat, conductivity for 200 indices of refraction 190 magnetic susceptibility 305 magneto-optic rotation 304 refractive indices of 190 sound, velocity of, in 102 solubility of 140, 141 specific heats 232 thermal conductivity 200 thermal expansion 226 viscosity of 134 volume of perfect (1- -0.00376!) 162-166 Gas thermometry 233-235 Gauges, wither Birmingham 59 gades, stath, pressure pressure temp. cool liquids 100 temp. cool liquid	coef	279 280 280 280 280 280 280 280 210 210
expansion of perfect 162 expansion, thermal 226 heat, conductivity for 200 indices of refraction 190 magnetic susceptibility 305 magneto-optic rotation 304 refractive indices of 190 sound, velocity of, in 102 solubility of 140, 141 specific heats 232 thermal conductivity 200 thermal expansion 226 viscosity of 134 volume of perfect (1- -0.00376!) 162-166 Gas thermometry 233-235 Gauges, wither Birmingham 59 gades, stath, pressure pressure temp. cool liquids 100 temp. cool liquid	coef	279 280 280 280 280 280 280 280 210 210
viscosity of	coef	279 280 280 283 283 213 213
viscosity of	ef	280 282 283 283 213 213
viscosity of	ef	282 283 50 213
viscosity of	45, 43	28; 58; 21; 21;
viscosity of	45. 47	58 213 211
viscosity of	45, 43	211
viscosity of	45, 4	211
viscosity of	45. 4	
viscosity of		
viscosity of		57
viscosity of		54
Viscosity of the control of the cont		7-48
Gas thermometry		II
Gauges, wife, Diffining name , a s s s s s s s s s s s s s s s s s s		
		II
British standard 59 secular varia		
Brown and Sharp		278
Geodetic data		278
Geometric units, conversion factors for 2 Iron: hysteresis in soft		294
Glass: indices of refraction		
transmissibility of Jena 193 saturated . various 195–196 permeabilities	286	293
various 195–196 permeabilities	200	308
		. I70
Glass vessels, volumes of		174
correction to barometer		
Gyration, radii of 58 Joule's (mechanical) equivalent of heat .		227
TT-11 -fft		
Hall effect		250
Hardness		305
Heat: combination, heat of		302
combustion: coals 202 definition of		304
explosives 203		
fuels liquid Latent heat of fusion		
peats vaporization		208
conductivity for: gases 200 Latitude correction to barometer	206,	, 241
Salt solutions 200 Legal electrical units	206, 119-	-120
	206, 119- • 4'	, 241 ~120 7-49
solids 199 Leduc thermomagnetic effect	206, 119-	7-49 200
solids 199 Leduc thermomagnetic effect Light: indices of refraction	206, 119-	7-49 200
solids 199 water 200 latent heat of fusion 208 Leduc thermomagnetic effect	206, 119-	7-49 200
solids 199 water 200 latent heat of fusion 208 vaporization 206, 241 realsolide level of the solid l	206, 119-	7-49 200
latent heat of fusion 208 reflection of; function of "n" waporization 206, 241 metals	206, 119- • 4' • X	-120 7-49 500 307 -190 191 192
latent heat of fusion	206, 119- . 4' . X . 181-	7-49 (7-49 (7-49 (7-49 (7-49) (7-
latent heat of fusion	206, 119- 4'. X 181- 193- ions 297-	-120 7-49 -190 -190 191 -190 -190 -304
latent heat of fusion	206, 119- 4'. X 181- 193- ions 297-	-120 7-49 -190 -190 191 -190 -190 -304
latent heat of fusion	206, 119- 4'. X 181- 193- cions 297-	7-49 (XXIV) 307 -190 191 178 -190 197 -304 170
latent heat of fusion	206, 119- 4' X 181- 193- cions 297-	7-49 (
latent heat of fusion 208 vaporization 206, 241 mechanical equivalent of 227 specific: elements 228 gases 232 liquids 230 mercury 229 minerals 231 rocks 231 rocks 230 solids 230 solids 230 st'd iron arc, Fabry	206, 119- 4'. X 181- 193- cions 297-	-120 7-49 -120 7-49 -190 -190 -190 -190 -190 -190 -170 -170 -170
latent heat of fusion 208 vaporization 206, 241 mechanical equivalent of 227 specific: elements 228 gases 232 liquids 230 mercury 229 minerals 231 rocks 231 solids 230 solids 3230	206, 119- 4' X 181- 193- tions 297-	-120 7-49 -120 7-49 -190 -190 -190 -190 -190 -170 -170 -170
latent heat of fusion 208 vaporization 206, 241 mechanical equivalent of 227 specific: elements 228 gases 232 liquids 230 mercury 229 minerals 231 rocks 231 solids 230 solids 3230	206, 119- 4' X 181- 193- cions 297-	7, 241120 7-49190
latent heat of fusion 208 vaporization 206, 241 mechanical equivalent of 227 specific: elements 228 gases 232 liquids 230 mercury 229 minerals 231 rocks 231 rocks 231 rocks 231 solids 230 wave-lengths: cadmium st'd line solids 230 wave-lengths: cadmium st'd line fraunhofer, lines solids 230 wave-lengths: cadmium st'd line fraunhofer, lines solids 230 wave-lengths: cadmium st'd line solids 230 solids 230 solids 230 vapors 232 water 220 water 220 welocity of substances polarized: rotation of plane by solution for plane by solution for plane by solution and solution in st'd line solution and solution are plant of the p	206, 119- 4'. X 181- 193- cions 297-	-120 7-49 -120 7-49 -190 -190 -190 -190 -190 -170 -170 -170
latent heat of fusion 208	206, 119- 4'. X 181- 193- cions 297-	7, 241 7, 241 7, 242 7, 242 1, 202 1,
latent heat of fusion 208 vaporization 206, 241 mechanical equivalent of 227 specific: elements 228 gases 232 liquids 230 mercury 229 minerals 231 rocks 231 solids 230 vapors 232 water 232 "Heat, specific; of electricity 258 Hefner photometric unit 177 Heights determinations of by barometer 167 Horizontal intensity of earth's field 114 Liquids: absorption of gases by	206, 119- 4' X 181- 193- cions 297- tes	170 170 170 170 170 170 170 170 170 170
latent heat of fusion	206, 119- 4' X 181- 193- cions 297- es	170 170 170 170 170 170 170 170 170 170
latent heat of fusion	206, 119- 4/	7, 241 120 120 120 120 120 130 170 170 170 170 170 170 170 17
latent heat of fusion 208	206, 119- 4	7-49-120
latent heat of fusion	206, 119- 4	, 241, 241, 241, 241, 241, 241, 241, 241
latent heat of fusion 208	206, 119-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-	7, 241 7, 241 7, 242 120 7, 242 120 120 130 130 130 140 150 170 170 170 170 170 170 170 17
latent heat of fusion	206, 119-3-4	7, 241 7, 241 7, 242 120 7, 242 120 120 130 130 130 140 150 170 170 170 170 170 170 170 17

Liquids: fuels, heat of combustion 202 magnetic susceptibility 305 magneto-optic rotation 304 potential differences with liquids 254 metals 257 salts 254 specific heats 230 surface tensions 142-143 thermal conductivity 200 expansion 225 vapor pressures 144-153 velocity of sound 102 viscosity 127-128 Logarithms 22 anti- 26 Lowering of freezing-points by salts 217 Maclaurin's theorem 12	
magnetic susceptibility	Nernst thermo-magnetic difference of potential . 307
	Neutral points, thermo-electric 258-250
magneto-ontic rotation 204	Newton's rings and scale of colors
nagneto-optic rotation	Michael Vern's constants for
potential differences with figures 254	NICKEL Kerr's constants for
metals 257	magnetic properties of, at 100° C 293
salts 254	resistance in magnetic field
specific heats	Nitroso-dimethyl-aniline, refractive index 184
surface tensions	Nernst thermo-magnetic difference of potential 307 Neutral points, thermo-electric 258-259 Newton's rings and scale of colors 198 Nickel: Kerr's constants for 305 magnetic properties of, at 100° C 293 resistance in magnetic field 306 Nitroso-dimethyl-aniline, refractive index 184 Ohm, various determinations of 261 legal value 261 Oils, viscosity of 126 Organic compounds, boiling-points 215 densities 215 melting-points 211
thermal conductivity	Ohm, various determinations of 261
expansion	lared value
expansion	Oile minustrus f
vapor pressures 144-153	Ons, viscosity of
velocity of sound	Organic compounds, boiling-points 215
viscosity	densities 215
Logarithms	melting-points 211
T000-2000	
anti-	Parallare solare lunar
0000-7-0000	Politice officet
.9000-1.0000	Pettier effect
Lowering of freezing-points by salts 217	Pendulum, length of seconds 107
	Perfect gas, expansion of
Maclaurin's theorem	volume of
Magnetic field: hismuth, resistance in 306	Permeabilities magnetic
Ettingchausen effect 207	Photometric standards
Estingshausen enect 30/	Di
gatvanomagnetic enects 307	$P1, \pi, \text{ value of}$
Hall effect 307	Planck's radiation formula
Leduc effect 307	Plane, data for the soaring of a
Nernst effect	Planets, miscellaneous data
nickel, resistance in 306	Poisson's ratio
Maclaurin's theorem	Polarized light: by reflection
registance of motols in	rotation by marratic field
resistance of metals in 300	rotation by magnetic neid 297-304
thermo-magnetic effects 307	solutions 197
Magnetic properties: of cobalt at 100° C 293	Potential difference: cells: double fluid 253
iron: hysteresis . 204-206	secondary 253
permeability	single fluid 252
286-288, 292-293	standard ast asa
200 200, 292 293	standard ajr, ajj
saturated 293	storage 253
weak neids 294	contact: nquid-nquid 254
magnetite 293	liquid-salt 254
nickel at 100° C 293	metal-liquid 257
Magnetic susceptibility, liquids, gases 305	solid-solid 256
Magnetic units conversion formulæ	enerking air 248-240
Magnetic units, conversion formate	borecone ago
Magnetism, terrestriar; agoing time 115	Kerosene 250
declination 110	various 250
dip 112	thermoelectric 258–259
286–288. 292–293 saturated . 293 weak fields . 294 magnetite	Precession
inclination	Pressure: harometric measures
intensity, horizontal 113	harometric and hoiling water 168-160
total TT4	hoights 76
Manual and and the	neights
Magneto-optic rotation 297–304	mercury columns, due to
Masses of the earth and planets 109	water columns, "
alloys , , 89	wind
elements, liquid and solid 85	Pressure, vapor: alcohol, ethyl and methyl 146
eolide 88	
woods 87	aqueous: low temperature 151
woods	aqueous: low temperature 151
woods	Parallax: solar; lunar
woods	aqueous; low temperature 151 0° to 100° C 152 100° to 230° C 153 in atmosphere 155
Woods	aqueous: low temperature . 151 0 to 100 C 152 100 to 230 C 153 in atmosphere 155 mercury 148
Solution Section Sec	aqueous: low temperature 151 0° to 100° C 152 100° to 230° C 153 in atmosphere 155 mercury 148 salt solutions 149
woods	aqueous: low temperature . 151 0 to 100 C 152 100 to 230 C 153 in atmosphere 155 mercury 148 salt solutions 149 various
woods	aqueous: low temperature . 151 0 0 to 100 C . 152 100 to 230 C . 153 in atmosphere . 155 mercury 148 salt solutions 149 various 144-148 Probability tables
Woods 87 87	aqueous: low temperature . 151 0 to 100 C . 152 100 to 230 C . 153 in atmosphere . 155 mercury 148 salt solutions 149 Probability tables 144 Probability tables
Materials, strength of: bricks 71	aqueous: low temperature . 151
woods 87 Materials, strength of: bricks 71	Pressure, vapor: alcohol, ethyl and methyl . 149 aqueous: low temperature . 151 0° to 100° C . 152 100° to 230° C . 153 in atmosphere . 155 mercury 148 salt solutions 149 various 144-148 Purkinje's phenomenon
Materials, strength of: bricks 71	aqueous: 16w temperature . 151
Materials, strength of: bricks 71	in atmosphere i.55 mercury
Materials, strength of: bricks 71	in atmosphere i.55 mercury
Materials, strength of: bricks 71	in atmosphere i.55 mercury
Materials, strength of: bricks 71	in atmosphere i.55 mercury
Materials, strength of: bricks 71	in atmosphere i.55 mercury
Materials, strength of: bricks 71	in atmosphere i.55 mercury
Materials, strength of: bricks 71	in atmosphere i.55 mercury
Materials, strength of: bricks 71 concrete 71 metals 71 stones 71 metals 71 metals 71 metals 71 metals 71 72-73 Mechanical equivalent of heat 227 Melting-points: chemical elements 209 mixtures (alloys) 214 corganic compounds 211 mixtures (alloys) 214 Organic compounds 215 Mercury: density of 97 electric resistance of 262-263 pressure of columns of 116 specific heat 229	in atmosphere i.55 mercury
Materials, strength of: bricks 71	in atmosphere i.55 mercury
Materials, strength of: bricks 71 concrete 71 metals 71 stones 71 metals 71 metals 71 metals 71 metals 71 metals 71 metals 72 73 Mechanical equivalent of heat 227 Melting-points: chemical elements 209 morganic compounds 211 mixtures (alloys) 214 organic compounds 215 mixtures (alloys) 214 organic compounds 215 Mercury: density of 97 electric resistance of 262 263 pressure of columns of 116 specific heat 229 vapor pressure 148 Metals: diffusion of, into metals 138	in atmosphere i.55 mercury
Materials, strength of: bricks 71	in atmosphere i.55 mercury
Materials, strength of: bricks 71 concrete 71 metals 71 stones 71 metals 72 73 Mechanical equivalent of heat 227 Melting-points: chemical elements 209 mixtures (alloys) 214 corganic compounds 211 mixtures (alloys) 214 organic compounds 215 Mercury: density of 97 electric resistance of 262 263 pressure of columns of 116 specific heat 229 vapor pressure 148 Metals: diffusion of, into metals 138 indices of refraction 182 potential differences with solids 256	in atmosphere i.55 mercury
Materials, strength of: bricks 71	in atmosphere i.55 mercury
Materials, strength of: bricks 71 concrete 71 metals 71 stones 71 metals 71 stones 71 metals 71 stones 71 metals 71 metals 71 metals 71 metals 71 metals 72 73 Mechanical equivalent of heat 227 Melting-points: chemical elements 209 minorganic compounds 211 mixtures (alloys) 214 organic compounds 215 mixtures (alloys) 214 organic compounds 215 Mercury: density of 97 electric resistance of 262 203 pressure of columns of 116 specific heat 229 vapor pressure 148 midices of refraction 182 potential differences with solids 256 solutions 257 reflection of light by 202 202 203 2	in atmosphere i.55 mercury
inclination	in atmosphere i.55 mercury
Materials, strength of: bricks 71	in atmosphere i.55 mercury
refractive indices	in atmosphere

Resistance: see also Conductivity. alloys, low temperature alternating current, effect of . electrolytic. see Conductivity.		Specific resistance 262-263 viscosity: gases and vapors 134-135 liquids and oils 126-135 Solutions 129-133 Spectra: elements, brighter lines 170 Kayser 174 solar, Fraunhofer lines 176 Rowland's measures 171 Squares, least, tables 47-49 Standard cells 251-253 wave-lengths: Fabry-Buisson 170 Kayser 174 Standard cells 251-253 Wave-lengths: Fabry-Buisson 170 Kayser 174 Standards, photometric 177 Steam tables: metric units 241 Steel: magnetic properties: hysteresis 291, 294-296 Steel: magnetic properties: hysteresis 291, 294-296 Description 174 Steel: magnetic properties: hysteresis 291, 294-296 Description 186-294 Steel: magnetic properties: hysteresis 291, 294-296 Description 286-294 Steel: magnetic properties: hysteresis 291, 294-296 Description 291, 294-296 Description 291, 294-296 Steel: magnetic properties: hysteresis 291, 294-296 Steel: magnetic properties: hysteresis 291, 294-296 Steel: magnetic properties: hysteresis 291, 294-296 Description 291, 291, 291, 291, 291, 291, 291, 291,
alloys, low temperature	264	viscosity: gases and vapors 134-135
electrolytic, see Conductivity.	209	solutions 120–120
glass and porcelain		Spectra: elements, brighter lines
		iron, Fabry-Buisson 170
magnetic field, of bismuth in metals in	306	Kayser
metals in .	300	Solar, Fraunhoter lines 170
nickel in metals at low temperatures ohm, various determinations of	264	Squares least tables
ohm, various determinations of	261	Standard cells
specific: metals	263	wave-lengths: Fabry-Buisson 170
specific: metals wires	262	Kayser 174
temperature variation 262	-266, 285	Rowland 171
wire (copper) table, common un	1168 . 00	Steam tables: metric units
Rigidity, modulus of	74	common "
temperature variation	74	Steel: magnetic properties: hysteresis 291, 294-296
Ring correction (magnetization)	288	permeabilities 286-294
Rock-salt, indices of refraction	183	Stefan-Boltzmann radiation formula 238
Rock-salt, indices of refraction Rods, demagnetizing factors for Rotation of polarized light: by solutions .	289	Stone; strength of 71
Rotation, magneto-optic: formulæ	207	Storage batteries
gases	304	Strength of materials: bricks
gases Kerr's constant	305	concrete 71
liquids	200	metals 71
solids solutions	298	stones 71
Verdet's constant	301-303	Sun: constant of radiation 170
Rowland's standard wave-lengths	171	disk: distribution of intensity
		Stefan-Boltzmann radiation formula 238 Stone: strength of 71 thermal conductivity 199 Storage batteries 253 Strength of materials: bricks 71 concrete 71 metals 71 stones 71 sto
Salts, lowering of freezing-point by	217	parallax 109
raising boiling- "	219	radiation
Saturation, magnetic, for steel	293	spectrum
Screens color	105-106	Surface tension
Seconds pendulum	107	Susceptibility, magnetic, liquids and gases 305
Secondary batteries	253	Sylvine, refractive indices
Sections of wires	. 59–66	m + + +
Shearing tests of timber	. 72-73	Taylor's series
Silver electro-chemical equivalent	251 270	resistances for low
Silvine, indices of refraction	183	sun's
Sines, natural and logarithmic, circular .	. 30-38	Tensile strengths 71–73
hyperbolic	. 39-40	Taylor's series
Sky-light, comparison with sunlight	179	vapor, see Vapor pressure.
Soaring of planes, data for	123	declination, secular change 110
energy data of	179	
wave-lengths, Rowland's	171	dip
Sollds: compressibility	. 76, 83	horizontal intensity 113
densities	. 85-89	secular change 113 inclination 112 secular change . 112
dielectric constant	283	inclination
hardness	201-209	total intensity 114
indices of refraction	183-187	secular change 114
magneto-optic rotation by	298	Thermal conductivities: gases 200
thermal conductivity	• • 199	liquids 200
expansion	222-224	salt solutions 200
boiling-points of aqueous	219	water acc
conductivity, thermal	200	Thermal expansion: cubical: crystals
electrolytic	272-278	gases 226
densities of aqueous	. 92-93	liquids 225
diffusion of aqueous	136	solids 224
Rowland's standard wave-lengths Salts, lowering of freezing-point by raising boiling- Saturation, magnetic, for steel scales, musical Screens, color Seconds pendulum Secondary batteries Sections of wires Shearing tests of timber Shear metal, weights of Silver, electro-chemical equivalent Silvine, indices of refraction Silver, indices of refraction Sines, natural and logarithmic, circular hyperbolic Sky-light, comparison with sunlight Soaring of planes, data for Solar constant of radiation energy, data of wave-lengths, Rowland's Sollds: compressibility densities dielectric constant electrical resistance hardness indices of refraction magneto-optic rotation by thermal conductivity expansion Solutions: boiling-point, raising by salts in boiling-points of aqueous conductivity, thermal electrolytic densities of aqueous diffusion of aqueous freezing-points, lowering by salt indices of refraction magneto-optic rotation of potential (contact) differences specific heats surface tensions viscosities Sound, velocity of, in solids liquids and gases Sparking potentials Specific gravity, see Density heat of air	217	total intensity
indices of refraction	188	Thermal unit, dynamical equivalent
magneto-optic rotation of	301-303	Thermo-electricity
potential (contact) differences .	254-257	Peltier effect
specific heats	230-231	Thermo-magnetic effects
surface tensions	142	I nermometer: air-10, 0° to 300° C 234
Sound velocity of in solids	101	high-temperature-50
liquids and gases	102	hydrogen-16, 0° to 100° C 233
Sparking potentials	248-250	16, 59, -5° to -35° C . 233
Specific gravity, see Density.		59, 0° to 100° C 233
neat of air	232	Thermometer stem correction
Sound, velocity of, in soinds liquids and gases liquids and gases liquids and gases specific gravity, see Density. heat of air elements gases iron at high temperatures liquids mercury minerals and rocks solids solids	228	59, o' to 100° C . 233 Various . 235 Thermometer stem correction . 236-237 Thomson thermo-electric effect . 258 Timber, strength of . 72-73 Time, sidereal, solar . 108 Transformer-iron, permeability of . 266-287 steels, energy losses in . 294, 296 Transmissibility to radiation: atmospheric . 179 Transmissibility to radiation: atmospheric . 1794 Glass . 103
iron at high temperatures	308	Timber, strength of
liquids	230	Time, sidereal, solar
mercury	229	Transformer-iron, permeability of 286-287
minerals and rocks	231	steels, energy losses in 294, 296
SOIIGS	230	transmissibility to radiation; atmospheric 179
water	232	glass 194
"Specific heat of electricity"	258	glass 193 Trigonometric functions: arguments (° ') 30 (radians) . 35
Specific inductive capacity: gases	279-280	(radians) . 35
Inquids	280-282	
Solids	283	United States weights and measures, conversion
opecine molecular conductivities	4/3-2/4	to metric units 5-6

318

Units of measurement: definitions, see Appendix.	Volumes: gases, perfect
discussion, see Introduction.	Water: boiling-points for various pressures:
ratio of electro-magnetic to static 247	common measures 168
radio of ciccino-magnetic to sease . #4/	metric measures . 169
V, ratio of electro-magnetic to -static units 247	densities, temperature variation 95, 96
Vapor, aqueous: vapor pressure, low temp 151	ionization of
0°-100° C 152	solutions in: boiling-points 219
100°-230° C , 153	densities
pressure of, in atmosphere 155	diffusion
relative humidity 158	electrolytic conduction 272-278
(saturated) weight of 154	solutions of alcohol, densities 98-100
Vaporization, latent heat of 206	thermal conductivity,
for steam 241, 242	o° to 100° C 151
Vapors: densities 91	100° to 230° C 153
diffusion of	vapor, pressure of, in atmosphere 155
indices of refraction 190	(saturated) weights of 154
pressures: alcohol, ethyl, methyl 146	viscosity: absolute, temp. var
aqueous: low temp 151 0°-100° C 152 100°-230° C 153	specific, temp. var
0°-100° C 152	Wave-lengths: cadmium red line
100°-230° C , , 153	elements, brighter lines 170
mercury	Fabry-Buisson iron arc lines 170
various	Fraunhofer lines 176
specific heats	iron lines, Fabry-Buisson 170
viscosity, specific	Kayser 174
Velocity of light	Kayser's iron arc lines 174
sound; in gases and liquids 102	Rowland's solar lines 171
solids 101	solar lines (Rowland) 171
Verdet's constants: Verdet and Kundt's 304	Weights and measures: British to metric 9-10
gasesi 304, 305	metric to British 7-8
liquids 209, 305	metric to U.S 6
solids	U. S. to metric 5
solutions, alcoholic 303	Weights of bodies.
aqueous 301	Weights of sheet metal
hydrochloric 303	wire: copper, iron, brass:
Viscosity: alcohol in water	metric units . 62
gases	aluminum, common and metric 64
liquids	copper wire, electrical constants
vapors	common units 66
water: temperature variation 125	metric units . 68
specific: gases	Wind pressures
oils	Wire gauges: Birmingham 59
vapors	British standard 59
water: temp. var	Brown and Sharp 66
Voltaic cells: composition, E. M. F 252-253	Wire, weights of: brass, copper, iron 60, 62
double-fluid	aluminum 64
secondary	copper 66, 68
single-fluid	Woods: densities of 87
standard	strength of
storage	Young's modulus of elasticity 75
Volts, legal (international) xxxiv, 251	
Volumes: critical, for gases	Zonal harmonics

