CSci 5607, Fall 2019	Name
Assignment 1c: Triangles, Texture and Parallel Projection	
Due: Wednesday Oct 16 th	Score (out of 100)
	· · · · · · · · · · · · · · · · · · ·
The program robustly accepts extended scene description f and triangle definitions, including texture coordinates and per-vert correctly reads the specified information and stores it in a suitable	ex surface normals. The program
The program correctly computes ray/plane as well as ray/sp	phere intersection points. (10 pts)
The program correctly performs point-in-triangle testing us	sing Barycentric coordinates. (15 pts)
When per-vertex surface normals are provided, the program shading at every point within a triangle by using a correctly interpolated rection N in the Phong illumination equation. The interpolated reprovided normals at the triangle vertices by using the barycentric of	olated, unit-length surface normal normal is achieved from the
When per-vertex normals are not provided, the program cashading (a constant color value is shown at every point within a triplane of the triangle when evaluating the Phong illumination equation point. (10 pts)	iangle) by using the normal to the
The program is capable of calculating appropriate texture continuous intersection points using a pre-determined 1-1 mapping between the and a 2D parametric representation of the sphere surface. (15 pts)	ne 3D surface normal direction
The program is capable of correctly interpolating a texture intersection point from the texture coordinate values at the vertices (10 pts)	
The program uses an appropriate mapping (nearest neighboretrieve the correct corresponding color for a given texture coordin map, and that texture color is used for the object's diffuse color in (15 pts)	nate from the appropriate texture
The student has submitted a sufficient set of scene descript images to successfully demonstrate all of the capabilities of their prendering a single opaque triangle, rendering a single textured trianguing flat shading, rendering a polygonal model using smooth shad polygonal model, and rendering one or more textured spheres. The constructed and accurately rendered. (10 pts)	orogram, including, for example: ngle, rendering a polygonal model ding, rendering a texture-mapped
For 5% extra credit, the program is capable of rendering the orthographic and/or oblique parallel projection, rather than a perspepair of images is provided that demonstrates the success of this imposame scene rendered with both a perspective and an parallel projection.	pective projection. At least one plementation by showing the