KJ2050: Exercise No. 2

Determination of calcium and magnesium by complexonometric titration DATA SHEET

Students: Eyvor, Marcus, Sverre, Alexander, Daniel

Collect your results in this sheet and remember to attach it to your report.

A. EDTA Solution: preparation and standardization

A.1. Preparation of 0.008 M EDTA (1.00 L)

Ethylenediaminetetraacetic acid disodium salt dehydrate (Na₂EDTA)-chemical formula:

Na₂EDTA mole weight (g/mol, 4 decimals) (336.21) 336, 2056

 $h = \frac{C}{X}$

Calculated amount Na₂EDTA for 1000 ml of 0.008 M: 0,008

 $n = \frac{m}{m_m}$

 $m_{EDTA} = 26.1.8.96......$ g (4 decimals)

Amount of Na₂EDTA weighed out (m_{EDTA}^{W} ; it should be as close as possible to m_{EDTA}):

 $m_{EDIA}^{W} = 2.7/27$ g (4 decimals)

Calculated EDTA molar concentration:

 $C_{EDTA} = .0.008.0685.7.$ mol/L

A.2. Standardization of the EDTA solution

A.2.1. Ca²⁺ standard solution (1.000 L)

Amount of CaCO₃ (weighing by difference): $m_{CaCO_3} = 1.1.00.5$ R g (4 decimals)

CaCO₃ mole weight:

$$M_{CaCO_3} = .00,086.7.$$
 g/mol (4 decimals)

Ca²⁺ concentration: ($m_{CaCO_3} / M_{CaCO_3} / 1L$) $c_{Ca} = .O_1O10.0.5...$ mol/ L (4 decimals)

$$c_{Ca} = \frac{O_1 O_2 O_3 \dots mol}{L}$$
 (4 decimals)

A.2.2. Titration of the Ca²⁺ solution against EDTA

 Ca^{2+} solution aliquote volume: $V_{Ca} = ... 0.2.5...L$

Titration data: Equivalence volume for three replicates (L)

1) ..36,9

2) 36,5 3) 36,5

Average equivalence volume (V_e :) ...36.,6.333............ L

EDTA average concentration ($\overline{C}_{EDTA} = C_{Ca}V_{Ca}/V_e$) $Q_{\bullet}QQ_{\bullet}Q_{\bullet}Q_{\bullet}$ mol/L (4 decimals)

Deviation from the calculated value (%): $100 \frac{\overline{C}_{EDTA} - C_{EDTA}}{C_{EDTA}} = 15 \%$

B. Determination of calcium and magnesium in presence of each other

Sample information

Sample No6	Sample volume (V_S) Q
Sample analytes: Ca ²⁺ and Mg ²⁺	Aliquot volume (V_A) .0.2.5L

B.1. Determination of calcium concentration by titration in a strongly alkaline solution

Titration data:

Jutlier,	
gikk	١

Aliquote volume (V_A)...Q.Q.Q.S.L

Equivalence volume for three replicates (b)

1) 20.8 mL

2) 20,2 20,25 mL3) 20,30 mL

Average calcium molar concentration: C_{Ca} (= V_e C_{EDTA}/V_A) ... 0, 0.65.436...mol/L

Results for calcium

 $M_{C_2} = ...40, 0.7.80$ g/mol

0,05574

Amount of Ca^{2+} in the sample: $(m_{Ca} = C_{Ca} V_S M_{Ca})$ $\frac{O.65.5.6}{O.65.5.6}$ grams (4 decimals)

Expected amount of Ca, m_f (fasit)grams

Deviation (avvik) $100 \frac{m_{Ca} - m_f}{m_f}$ %

B.2. Determination of the total concentration (C_t i.e. $Ca^{2+} + Mg^{2+}$) by titration in ammonia buffer at about 40° C

Titration data: Equivalence volume for three replicates (L)

Average equivalence volume (V_e) ... 37, 26.7 no L

Molar concentration of $(Ca^{2+} + Mg^{2+})$: $C_t = .O_1O_1O_2O_3$... mol/L (4 decimals) = Ve CEDTA /VA

B.3. Calculation of magnesium content

Average magnesium concentration: $C_{Mg} = C_1 - C_{Ca} \dots Q_L QQ .4.6.7. \dots mol/L$ (4 decimals)

Amount of Mg²⁺ in the sample: $(m_{Mg} = C_{Mg} V_S M_{Mg}) \dots Q_L QQ .4.6.7. \dots grams$ (4 decimals)

Expected (fasit) $m_f \dots grams$ Deviation (avvik) $100 \frac{m_{Mg} - m_f}{m_f} \dots grams$

Summary of results (to be included in the report)

,	Found, g	Expected, g	Deviation, %
Calcium	0,0557		
Magnesium	0,0284		