

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА

Биологический факультет Кафедра биоинженерии Группа интегративной биологии

Выпускная квалификационная работа бакалавра

Дизайн биосенсора нуклеиновых кислот на основе двух dCas9 белков

Новиков Роман Вячеславович, студент 426 группы

Научные руководители:

д. ф.-м. н. Шайтан Алексей Константинович к. ф.-м. н. Армеев Григорий Алексеевич

Москва 2021

Методы детекции последовательностей ДНК/РНК

Существующие

Изотермическая амплификация

ПЦР в реальном

Плюсы:

времени

Чувствительность

Плюсы:

Минусы:

Многоэтапность

Дороговизна

Минусы:

специфичности

Перспективный

Ha основе систем CRISPR/Cas

Плюсы:

Чувствительность

-Специфичность

Скорость

Постоянная температура

Структура системы CRISPR/Cas

Ключевые элементы **комплекса Cas**:

- 1) Белок Саѕ
- Из разных видов: SpCas9 (Streptococcus pyogenes) и т.д.
- dCas9 связывает, но не режет ДНК
- sgRNA = crRNA + tracrRNA
- 3) ДНК
 - Протоспейсер
- PAM protospacer adjacent motif

Варианты биосенсоров последовательностей ДНК на основе CRISPR/Cas

dCas9

Использование коллатеральной активности Cas12a для детекции последовательностей ДНК

Источник:

ЛактамазыИсточник: https://2019.igem.org/Team:Moscow

Сплит-система на основе

фрагментов

4/17

β-

двух белков

фермента

Целью данной работы являлся молекулярный дизайн структуры биосенсора нуклеиновых кислот на основе двух белков dCas9 и фрагментов фермента β-лактамазы.

Для достижения данной цели были поставлены следующие задачи:

- 1. Разработка принципиальной структуры биосенсора, способного к генерации детектируемого сигнала при связывании двух белков dCas9 с соседними локусами ДНК. Определение пространства параметров для оптимизации структурной модели.
- 2. Создание структурных моделей посадки пар химерных белков dCas9 с пришитыми фрагментами фермента β-лактамазы на ДНК, анализ геометрических свойств комплексов и подбор оптимальных вариантов расположения комплексов.
- 3. Анализ характеристик пептидных линкеров, соединяющих комплексы dCas9 с фрагментами β-лактамазы с помощью метода молекулярной динамики.
- 4. Анализ эффективности взаимодействия фрагментов β-лактамазы при заданных сайтах посадки белков dCas9 и длинах пептидых линкеров.
- Определение оптимальных параметров биосенсорной системы на основе результатов моделирования.

Варьируемые параметры

 Взаимная ориентация двух нуклеопротеиновых комплексов dCas9 на ДНК

3. Ориентация фрагментов 2. Позиции крепления β-лактамазы фрагментов сплит-фермента Clact **Nlact** ##||||||| PAM 4. Расстояние вдоль ДНК между сайтами связывания комплексов dCas9 3 7/17 PAM PAM

Оптимизируемые параметры

Вспомогательные параметры

Анализ характеристик пептидных линкеров

Анализ эффективности взаимодействия

фрагментов β-лактамазы

Функции на языке Python 3

Пакет MDAnalysis

Анализ эффективности взаимодействия фрагментов β-лактамазы

Графики зависимости эффективности взаимодействия фрагментов βлактамазы от расстояния между последовательностями РАМ

Оптимальная модель

Выводы

- 1. Разработана принципиальная молекулярная структура биосенсора последовательностей нуклеиновых кислот, основанного на паре химерных белков dCas9 с пришитыми фрагментами фермента β-лактамазы (Nlact и Clact). Определено пространство параметров для оптимизации структурной модели биосенсора: взаимная ориентация двух нуклеопротеиновых комплексов dCas9 на ДНК (PAM-direct, PAM-in, PAM-out), позиции крепления фрагментов сплит-фермента с помощью линкеров к белкам dCas9 (N- или Сконцевые аминокислотные остатки), расстояние вдоль ДНК между сайтами связывания двух комплексов dCas9.
- 2. Созданы структурные модели посадки пар химерных белков на ДНК (dCas9-Nlact, dCas9-Clact), проведен анализ геометрических свойств комплексов, а также выбор оптимальных моделей для исследования систем методом молекулярной динамики.

Выводы

- 3. Методом молекулярной динамики для тестовых систем охарактеризованы вероятности расположения фрагментов сплит-фермента относительно белков dCas9, скрепленных с ними гибким пептидным линкером. Рассчитанные параметры использованы для огрубленного моделирования вероятности нахождения фрагментов в определенных областях пространства вокруг белков dCas9.
- Проведен анализ методами огрубленного моделирования эффективности взаимодействия фрагментов β-лактамазы для различных конфигураций биосенсора при варьировании структурных параметров. Осуществлен дизайн оптимальной системы с наибольшей вероятностью взаимодействия фрагментов сплит-фермента при отсутствии стерических пересечений между нуклеопротеиновыми комплексами dCas9.
- 5. Определены оптимальные параметры биосенсорной системы: взаимная ориентация PAM-in; крепление Nlact и Clact через линкеры производится к С-концевым аминокислотным остаткам двух белков dCas9, при этом Nlact крепится к первому белку dCas9, Clact ко второму; расстояние между последовательностями PAM 29 нуклеотидов.

Публикации автора по теме работы

- 1) Дизайн биосенсоров нуклеиновых кислот на основе систем CRISPR/Cas и репортерных сплит-белков [Текст] / Р. Новиков [и др.] // Вестник Москов ского университета. Серия 16. Биология. 2021. Т. 76, No 2. С. 67—75.
- 2) Detecting Cas9-sgRNA Complex Interactions with DNA via Fluorescent Microscopy: Computer Simulations of Experimental Designs [Текст] / R. Novikov [и др.] // Microscopy and Microanalysis. 2020. Т. 26, S2. С. 310—311. DOI: 10.1017/S1431927620014166.