

SCTW100N65G2AG

Automotive silicon carbide Power MOSFET 650 V, 100 A, 22 mΩ (typ., T_J=150 °C), in an HiP247™ package

Datasheet - preliminary data

Figure 1: Internal schematic diagram

Features

- Designed for automotive applications
- Tight variation of on-resistance vs. temperature
- Very fast and robust intrinsic body diode
- Very high operating temperature capability (T_J = 200 °C)
- Low capacitance

Applications

- Traction for inverters
- DC-DC converters

Description

This silicon carbide Power MOSFET device has been developed using ST's advanced and innovative 2nd generation SiC MOSFET technology. The main features of this product include remarkably low on-resistance per unit area and very good switching performance. The variation of both R_{DS(on)} and switching losses are almost independent from junction temperature.

Table 1: Device summary

Order code	Marking	Package	Packaging
SCTW100N65G2AG	SCT100N65G2AG	HiP247™	Tube

The device meets ECOPACK standards, an environmentally-friendly grade of products commonly referred to as "halogen-free". See Section 5: "Package information".

May 2016 DocID029319 Rev 1 1/9

SCTW100N65G2AG

Contents

Contents

Electric	al ratings	
Electric	al characteristics	
	e information	
3.1	HiP247™ package information	
	n history	
	Richard Report of the Control of the	0
Q		
	DocID029319 Rev 1	

SCTW100N65G2AG Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	650	V
\/	Gate-source voltage	-10 to 22	V
V _G s	Gate-source voltage (recommended operating values)	-5 to 20	V
1-	Drain current (continuous) at T _C = 25 °C	100	۸
l _D	Drain current (continuous) at T _C = 100 °C	85	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	200	Α
Ртот	Total dissipation at T _C = 25 °C	390	W
T _{stg}	Storage temperature range	-55 to 200	°C
Tj	Operating junction temperature range	-55 10 200	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.45	°C/W
R _{thi-amb}	Thermal resistance junction-ambient max	50	°C/W

⁽¹⁾Pulse width limited by safe operating area.

Electrical characteristics SCTW100N65G2AG

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified).

Table 4: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	650			V
	Zero gate voltage	$V_{DS} = 650 \text{ V}, V_{GS} = 0 \text{ V}$	1/	5,	50	
I _{DSS}	drain current	$V_{DS} = 650 \text{ V}, V_{GS} = 0 \text{ V},$ $T_{J} = 150 \text{ °C}^{(1)}$	O	ľ	100	μΑ
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = -10 to 22 V			500	nA
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	1.9	3.2		V
		V _{GS} = 20 V, I _D = 50 A		20		
R _{DS(on)}	R _{DS(on)} Static drain-source on-resistance	$V_{GS} = 20 \text{ V}, I_{D} = 50 \text{ A},$ $T_{J} = 150 ^{\circ}\text{C}$		22		mΩ
		V _{GS} = 20 V, I _D = 50 A, T _J = 200 °C		23		

Notes:

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance	\(\dot \)	-	3600	-	pF
Coss	Output capacitance	$V_{DS} = 400 \text{ V}, f = 1 \text{ MHz},$ $V_{GS} = 0 \text{ V}$	-	305	-	pF
Crss	Reverse transfer capacitance	VGS = 0 V	-	78	-	pF
Qg	Total gate charge	1001/1 50 4	-	215	-	nC
Q_{gs}	Gate-source charge	$V_{DD} = 400 \text{ V}, I_{D} = 50 \text{ A},$ $V_{GS} = 0 \text{ to } 20 \text{ V}$	-	32	-	nC
Q_{gd}	Gate-drain charge	VGS = 0 t0 20 V	-	60	-	nC
Rg	Gate input resistance	f=1 MHz, I _D = 0 A	-	1.5	-	Ω

Table 6: Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Eon	Turn-on switching energy	V _{DD} = 400 V, I _D = 50 A	-	300	-	μJ
Eoff	Turn-off switching energy	R_G = 2.2 Ω , V_{GS} = -5 to 20 V	-	250	-	μJ

 $^{^{(1)}}$ Defined by design, not subject to production test.

SCTW100N65G2AG Electrical characteristics

Table 7: Reverse diode characteristics

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
V _{SD}	Diode forward voltage	I _F = 30 A, V _{GS} = 0 V	ı	3.5	1	V
t _{rr}	Reverse recovery time		-	28		ns
Qrr	Reverse recovery charge	I _{SD} = 50 A, di/dt = 4000 A/μs V _{DD} = 400 V, V _{GS} = -5 V	-	795		nC
I _{RRM}	Reverse recovery current	י עטט – 1 00 v, vGS = - 3 v	-	44	9.	Α

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

3.1 HiP247™ package information

HEAT-SINK PLANE

A

BACK VIEW

8396756 A

Figure 2: HiP247™ package outline

Table 8: HiP247™ package mechanical data

Di	mm.		
Dim.	Min.	Тур.	Max.
A	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85	3.0	20.15
E	15.45	0	15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70	8	4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50	30	5.50
S	5.30	5.50	5.70

Revision history SCTW100N65G2AG

4 Revision history

Table 9: Document revision history

Date	Revision	Changes
09-May-2016	1	First release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

