RE. I DOCUMENTATION PAGE

AFRL-SR-AR-TR-04-

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching e the collection of information. Such comments regarding this burden estimate or any other aspect of this collection of information, including suggestions Operations and Reports, 1215 Jafferson Devis Highway, Suite 1204, Arington, VA 22202-4302, and to the Office of Management and Budget, Paperwork R.

0059

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

Sige Intersubband Detectors for Terahertz Communication and Sensing

5/1/01 TO 4/30/02 Final 5. FUNDING NUMBERS 62601F 4846/RP

6. AUTHOR(S)

Dr Grein

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of New Brunswick

Fredericton NB

Canada ESB 6E2

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Department of the Air Force Air Force Office of Sdentific Research 801 N. Randolph St. Rm 732

Arlington. VA 22203-1977

10. SPONSORING/MONITOHINA AGENCY REPORT NUMBER

F49620-01-1-0356

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Distribution Statement A. Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

· 13. ABSTRACT (Maximum 200 words)

The g-tensors (2nd order) of daublet radical gallium arseni& clusters Ga^-As^- (x -4- y = 3, 5), wae calculated from first principl using trw packages. Geometry optimizations and hyp&fine coupling constants are also reprinted, using the B3LYP/6-3 ll+g(2df) level ESR results were compared to eperimerital Ga,As, data, and previous calculations for Ga,As, Ga,As3. New ESR and structural results are presented for Ga,As4 and Ga,As3. Our results for Ga,As3, the only Ga,As3 clusters for which experimental ESR data exist, were a better fit to e queximental values than previous calculations, implying our Ag results for the other Ga,As3 clusters are also of good quality.

Best Available Copy

14: SUBJECT TERMS

15. NUMBER OF PAGES

16. PRICE CODE

. 17. SECURITY CLASSIFICATION
OF REPORT

. 18. SECURITY CLASSIFICATION ...

19. SECURITY CLASSIFICATION OF ABSTRACT

20. LIMITATION OF ABSTRACT

nelessatea

Silicol

Present to responsible 20

Final Performance Report

First-principles Theory and Calculations of Electronic g-tensor Elements for Paramagnetic Defects in

Semiconductors and Insulators

AFOSR Grant No. F49620-01-1-0356

Principal Investigator:

Dr. Friedrich Grein

Department of Chemistry

University of New Brunswick

Fredericton, NB

Canada E3B 6E2

Government Program Manager:

Major Dan Johnstone

AFOSR/NE

20040203 018

Geometries, Vertical Excitation Energies, Hyper fine Coupling Constants and Electronic g-tensor Elements for

Small Gallium Arsenide Clusters, $Ga_x As_y (x + y = 3, 5)$

Scott Brownridge, Friedrich Grein*

Department of Chemistry, University of New Brunswick, Fredericton, NB, E3B 6E2, Canada

* Corresponding author. Phone: (506) 453-4776; FAX: (506) 453-4981; e-mail: fritz@unb.ca

Abstract

The g-tensors (2^{nd} order) of doublet radical gallium arsenide clusters Ga_xAs_y (x + y = 3, 5), were calculated from first principles using new packages. Geometry optimizations and hyperfine coupling constants are also reported, using the B3LYP/6-311+g(2df) level. ESR results were compared to experimental Ga_2As_3 data, and previous calculations for Ga_2As_3 , $GaAs_2$, Ga_2As_3 . New ESR and structural results are presented for $GaAs_4$ and Ga_4As . Our results for Ga_2As_3 , the only Ga-As cluster for which experimental ESR data exist, were a better fit to experimental values than previous calculations, implying our Δg results for the other Ga_xAs_y clusters are also of good quality.

1. Introduction

To date there have been few experimental ESR studies on III-V doublet radicals, namely only on BNB¹ and $Ga_2As_3^2$ to our knowledge. For triplet or quartet III-V radicals, experimental ESR data have only been fround for $GaAs^+$ ($X^4\Sigma^-$), $^3GaP^+$ ($X^4\Sigma^-$), $^4GaAs^-Al_xGa_{1-x}As_5^-$ antisite defects (P_{Ga} in GaP_a^-), $^4GaAs_a^-$ and $^4P_{In}$ in $^4P_{In}$ in $^4P_{In}$), and $^4Ga^-$ are electron-irradiated $^4GaP_a^-$.

However there have been a number of theoretical studies on the electronic states and structures of III-V radicals, in particular for Ga-As containing neutral and ionic doublet radicals. ¹⁰⁻²² Arratia-Pérez and Hernández-Acevedo ¹² calculated the magnetic Zeeman and hyperfine interactions of Ga₂As₃ using the self-consistent Dirac scattered wave method (SCF-DSW-Xα) of Yang *et al*²³ and a first-order perturbation procedure, which confirmed Weltner's ESR spectral determination of a trigonal bipyramidal structure for Ga₂As₃: Arratia-Pérez and Hernández-Acevedo have also calculated the magnetic Zeeman and hyperfine interactions for GaAs₂ and Ga₂As, ¹³ although to date there are no experimental ESR data for these species.

We compare these calculated and experimental data to our results, and also use the g-tensor results as a launching point to the study of larger clusters which approach bulk properties, with and without site defects.

2. Methods

GAUSSIAN 98 suite of programs²⁴ at the B3LYP/6-311+G(2df) level. Starting geometries were those given in the literature for GaAs₂,^{14,17} Ga₂As,^{17,19} Ga₂As₃ and Ga₃As₂,^{19,25} GaAs₄ and Ga₄As,¹⁵ with other possible geometries also examined. For GaAs₄ and Ga₄As, only sketches of the structures were provided.¹⁵

The theoretical evaluation of g-tensors using perturbation theory is described in detail in refs. 26 and 27. The total Δg for a given molecule is comprised of first- and second-order terms. In this paper, only second-order g-tensor components were calculated, as the first-order contributions to the total Δg are expected to be

very small (ca. 100 ppm) in relation to the second order Δg values. The contribution to Δg (2nd) is due to the coupling of an excited state with the ground state, and is proportional to their spin-orbit coupling (SO) and magnetic transition moment (L) matrix elements, and inversely proportional to their energy separation (ΔE). The total second-order Δg is calculated as a sum-over-states expansion, which generally involves strong coupling to only the first few low-lying excited states.²⁸⁻³⁰

Programs developed earlier in this group²⁷ worked very well for 1³¹ and 2nd order g-tensor calculations (e.g. refs. 27 - 30) but were limited to systems with up to ca. 80 electrons. Ga-As containing clusters, the focus of this paper, quickly surpassed this limitation. Also, speed is an issue if the calculation of larger clusters is to be practical. New programs were acquired and modified for our purposes to calculate the g-tensors of these Ga-As clusters. They are based on: the Turbomole package³¹ for efficient integral and SCF calculations; on the Grimme multireference CI (MR CI) package,³² which also gives the angular momentum (L) matrix elements that we require; and finally on the Marian-Hess mean-field spin-orbit integrals³³ as implemented by Schimmelpfennig,³⁴ and adapted for the Grimme MRCI package by Marian and Kleinschmidt.³⁵ Here the one-and two-electron spin-orbit elements are calculated from an effective one-electron one-center mean-field approximation. Therefore the spin-orbit matrix elements, which in full ab initio mode require large amounts of computer time, can be calculated in much less time but are not as accurate.

The electronic charge centroid (ECC) was taken as gauge origin. 36

Test results with the new package gave g-shifts within 15 - 20 % of MRCI³⁷ values for small molecules containing first- and second-row atoms (e.g. AlO, H₂CO⁺; LiC₂). ³⁸ With the new package, the following III-V doublet radicals were studied: GaAs₂ (97 electrons), Ga₂As (95 e), Ga₂As₃ (161 e), Ga₃As₂ (159 e), GaAs₄ (163 e), and Ga₄As (157 e).

3. Optimized geometries

All geometry optimizations were done at the B3LYP/6-311+g(2df) level of theory. The results for the lowest energy structures are given in Table 1, and compared with those of previous calculations. The various structures are shown in Figure 1.

3.1. GaAs,

GaAs₂ was first examined in 1987,²⁰ and again in 2000¹⁷ by Balasubramanian as a triangular C_{2v} structure; a 1991 study also considered a linear $C_{\infty v}$ geometry.¹⁶ Work by Meier *et al* in 1991¹⁴ examined triangular C_{2v} and linear $(D_{\infty h}, C_{\infty v})$ geometries. In all cases, the ground state was 2B_2 with a C_{2v} triangular geometry.

3.2. Ga, As

For Ga₂As. Balasubramanian reported an X^2B_2 ground state with C_{2v} symmetry and an angle of 79.9°, with a C_1 ($^2A'$) structure (Ga-As = 2.283, 2.534 Å; Ga-As-Ga = 90.3°) 0.025 eV higher in energy (MRCI+Q, where Q was defined as multireference Davidson corrections to the MRCI energies for uncoupled quadruple clusters). Two other low lying states, 2B_1 (2.52 Å, 108.2°, $\Delta E = +0.22$ eV) and 2A_1 (2.47 Å, 118.5°, $\Delta E = +0.19$ eV), were also reported in ref.17. Balasubramanian found a 2B_1 ground state in his 1991 study. In

Our attempts to reproduce Balasubramanian's C_{2v} (X^2B_2) geometry from ref. 17 (2000) resulted instead in an Ga-As-Ga angle of ca. 96 degrees [for the 6-311-g(2df) basis set, B3 LYP gave Ga-As 2.384 Å,

96.3°; MPW1PW91 gave 2.358 Å, 93.3°; and MP2 gave 2.365 Å, 103.5°] for Ga_2As , inclose agreement with the local spin density (LSD) result of 98.0° from ref. 19 (see Table 1). Our linear $D_{\omega h}$ ($X^2\Pi_u$, 2.447 Å) and $C_{\omega v}$ ($X^2\Pi_v$, As-Ga = 2.246 Å, Ga-Ga = 2.665 Å) structures were 0.09 and 0.84 eV higher in energy, respectively, than our X^2B_2 C_{2v} bent geometry. In Bala subrama nian's 1991 paper with the 2B_1 ground state, 16 the ordering was C_{2v} (X^2B_1 : 2.527 Å, 109.5°) 0 eV; $D_{\omega h}$ (2.498 Å) +0.12 eV; $C_{\omega v}$ (As-Ga = 2.319 Å, Ga-Ga = 2.735 Å) +0.68 eV.

3.3. Ga As,

The structure of Ga₂As₃ was predicted in 1992 to be a D_{3h} trigonal bipyramid with an X²A₂" ground state, using the LSD method.¹⁹ The ESR spectrum was obtained one year later, from which a trigonal bipyramidal structure was proposed.² MRCI calculations by Liao *et al*;²⁵ and HF followed by MP2 calculations by Piquini *et al*,¹⁵ also resulted in D_{3h} trigonal bipyramidal structures.

Our calculations showed the lowest energy structure of Ga_2As_3 to have an X^2A_2 " ground state with D_{3h} trigonal bipyramidal geometry, in agreement with the structure proposed from the experimental ESR data² and previous calculations. ^{15,19,25} Alternate possible geometries considered by us, shown in Figure 1, were: a C_{2v} square pyramid (X^2B_1), 0.97 eV higher than the D_{3h} structure; and a C_s square pyramid (X^2A^2 , two Ga in the 'base') 0.46 eV higher in energy.

3.4. Ga.As.

CASSCF and MRCI calculations by Liao *et al*,²⁵ using relativistic effective core potentials (RECP), showed two nearly degenerate isomers for Ga_3As_2 : a distorted C_{2v} trigonal bipyramid (X^2A_1 , C_{2v} (a) in Figure 1), and a C_2 , edge capped tetrahedron (X^2B_1 , C_2 , (b) in Figure 1), with the C_{2v} trigonal bipyramid being lower in energy by 0.005 eV (MRCI+Q, and 0.03 eV CASSCF). LSD calculations by Lou *et al* gave similar results, with an energy separation of 0.01 eV.¹⁹

For Ga_3As_2 , we also found that the lowest energy geometry was not D_{3h} as for Ga_2As_3 , but rather a C_{2v} distorted trigonal bipyramid having a 2A_1 ground state with the equatorial Ga atoms arranged in an isosceles triangle; the energy gap between the C_{2v} and D_{3h} geometries was 0.13 eV (0.1 eV in ref. 19). Other geometries we investigated (see Figure 1) were a C_{2v} edge-capped tetrahedron [X^2B_1 , C_{2v} (b) in Figure 1] 0.16 eV higher in energy; a C_3 square pyramid (X^2A^2 , two As in the 'base') 0.64 eV higher in energy; and a C_{2v} square pyramid [X^2A_1 , X^2 , $X^$

3.5. GaAs

GaAs, was included in a study of electronic and structural trends in small GaAs clusters by Piquini et al, who carried out Hartree-Fock SCF calculations including all electrons and no symmetry constraints during optimization, followed by single-point MP2 calculations on the minimum energy configurations. ¹⁵ However, they did not report any geometry details other than a sketch of the molecule, the symmetry, and a table of selected bond orders.

Our results gave a C_{2v} edge-capped tetrahedron [X^2B_2 , C_{2v} (a) in Figure 1] as the lowest energy structure, resembling that shown in ref. 15. We calculated C_{4v} square pyramidal (X^2A_1) and C_{2v} planar trapezoidal [X^2B_1 , C_{2v} (b) in Figure 1] geometries to be 0.30 and 1.68 eV, respectively, higher in energy than the C_{2v} edge-capped tetrahedron.

3.6. Ga_As

Ga₄As was also included in the study by Piquini *et al*,¹⁵ and again no detailed geometrical information was given. The lowest energy structure we obtained for Ga₂As was a C_2 , planar trapezoidal structure (X^2A_1) , with the As atom in the center $[C_2, (a)]$ in Figure 1], similar to the structure obtained by Piquini *et al*.¹⁵ Our results showed square pyramidal (C_{4v}, X^2B_1) , and C_{2v} edge-capped tetrahedral $[X^2A_2, C_{2v}]$ (b) in Figure 1] geometries to be respectively 0.23 and 0.56 eV higher in energy than the planar trapezoidal structure.

4. Hyperfine coupling constants

The atomic charges, spin densities (SD) and hfcc data are given in Table 2. For all six molecules, the Ga atoms carry positive charges and all As atoms are negatively charged, as expected since As is more electronegative than Ga. The SOMOs are shown in Figure 2.

4.1. GaAs,

The SOMO of GaAs₂ is composed of an in-phase combination of a Ga p_y orbital with As p_z orbitals, forming σ-type antibonding orbitals along each Ga-As bond, as also reported in ref. 13. These Ga-As antibonding orbitals of the SOMO are ca. parallel to the z-axis, perhaps due to the small As-As distance (2.193 Å) which is slightly shorter than that calculated for As; (2.30 Å) and As₂ (2.31 Å).¹⁴

The SD is greater on the As atoms (0.368 per atom) than on the Ga atom (0.262). This is in good agreement with the spin populations calculated in ref. 13, who report 0.338 (0.106 isotropic, 0.232 a nisotropic) per Ga and 0.331 (0.121 isotropic, 0.210 a nisotropic) per As atom. The anisotropic spin-dipolar couplings $(T_{xx,yy,zz}$ in Table 2) are much larger than A_{iso} for both Ga and As, and the relative magnitudes of our spin-dipolar couplings are similar to those from ref. 13 (see Table 2).

4.2. Ga As

The SOMO is formed from an in-phase combination of a p_x orbital from all three atoms according to ref. 13, but this corresponds to the SOMO-1 in our calculations: our SOMO is comprised of three in-plane p-orbitals: p_z on As and the p_α orbitals of Ga lie along the As-Ga bonds such that the negative lobes for all three orbitals point toward the center of the molecule. Our geometry differs slightly from that used in ref. 13; this could be the cause of the different SOMOs, and would also affect the g-tensor calculations (see below).

More than half of the SD in Ga₂As resides on the As (0.515), with 0.242 per Ga atom. A similar trend is reported in ref. 13, but with more SD on the apical As atom: 0.694 per As and 0.153 per Ga, with larger

anisotropic than isotropic SD contributions for each atom A_{iso} is largest for the Ga atoms, and the spin-dipole couplings $(T_{xx,yy,zz})$ are smaller for Ga than As, similar to the results from ref. 13.

4.3. Ga, As;

Our results place the majority of the SD on the Ga atoms (0.369), with only 0.088 per As atom. This agrees with the SD distribution from ref. 12 (0.314 per Ga, 0.124 per As). Based on the experimental results it was estimated that the unpaired electron was mainly confined to $p\sigma$ orbitals on the axial gallium atoms. This estimation is not supported by the SOMO (as also noted in ref. 12), which shows sizeable in-phase π -bonding between the equatorial As atoms via p, orbitals, and p_{σ} antibonding between Ga and As atoms.

Our A_{iso} differs from the experimental ⁶⁹Ga₂As₃ (Ar matrix)² result by 13%. Ref. 12 reports calculated A_{iso} values for only ⁷⁴Ga, even though the natural abundance is 60.4% ⁶⁹Ga and 39.6% ⁷¹Ga; their A_{iso} value is almost identical to the derived experimental ⁷¹Ga₂As₃ result. The experimental results were derived assuming $g_{\parallel} = g_{e}$, and $A_{\parallel} \cong A_{\perp} \cong A_{iso}$ for As. This does not appear to be valid, based on results from ref. 12 where anisotropic spin distributions for the As atoms were calculated to be ca, twice the isotropic spin distribution.

4.4. Ga, As,

The small distortion from D_{3h} to C_{2v} symmetry makes a significant impact on the SD and charges of the Ga atoms in Ga_3As_2 , as well as the SOMO. The SOMO is composed of in-phase p_v orbitals on Ga_1 and the As atoms, with p_σ orbitals on Ga_2 and Ga_3 oriented to form Ga_2 -As and Ga_3 -As antibonds. The SD is four times larger, and the charge is two times smaller, for the Ga_1 atom (Table 2) than for Ga_2 and Ga_3 . The A_{iso} for Ga_1 is much larger than for Ga_2 and Ga_3 , and the SD, charge, A_{iso} , and anisotropic ($T_{xx,yy,zz}$) higher values for Ga_1 are all similar to that for each of the Ga atoms in Ga_2As_3 .

The SOMO of GaAs₄ lies in the yz-plane from p_y orbitals on all atoms; the orbitals on Ga, As₁ and As₂ are in-phase, and of opposite phase to those on As₃ and As₄.

The majority of SD lies on As_1 and As_2 (see Figure 1), with very little on the other three atoms. This is reflected in the larger A_{dip} values for these atoms (Table 2), which are an order of magnitude larger for As_1 and As_2 than for As_3 and As_4 .

4.6. Ga_As

The SOMO lies in the plane of the molecule, with p_y orbitals of Ga₁ and Ga₂ oriented to be bonding between Ga₁-Ga₂, with the pσ orbitals of Ga₄ and Ga₅ positioned to be Ga₁-Ga₅ and Ga₂-Ga₄ antibonding. The p_z orbital on As is small and is oriented to be in phase with the p_y orbitals between Ga₁ and Ga₂.

There is almost no SD associated with the As atom in Ga₄As, but the largest atomic charge resides on As (-0.509). Most of the SD resides on Ga₁ and Ga₂, and is ca. twice the SD for Ga₃ and Ga₄; whereas the charges on Ga₁ and Ga₂ is ca. half that for Ga₃ and Ga₄. This inverse relationship between charge and SD was observed by Bruna and Grein for alkali-metal diatomic radical cations.³⁰

5. G-tensors

In Table 3, the types of excited states that couple with four different ground states in C_{2v} symmetry $(X^2A_1, X^2A_2, X^2B_1, X^2B_2)$ are listed. Table 4 summarizes our total Δg (2^{nd} order) values and compares them to known experimental and theoretical results. To our knowledge there are no experimental or calculated ESR data for Ga_3As_2 , $GaAs_4$, or Ga_4As . For all Ga_xAs_y doublet radicals (x + y = 3, 5) ΔE , SO, L and Δg values for the first five excited states for each irreducible are given in Tables 5 - 10, and results for higher excited states if they have a strong magnetic coupling with the ground state. Fifteen excited states were calculated for Ga_3As_2 , $GaAs_4$ and Ga_4As since significant magnetic coupling with the ground state was still observed in the higher states of initial 9-root calculations. Tables 5 - 10 can also be used for vertical excitation energies, which

are given in the body of the table or as a footnote.

All C_{2v} molecules have the z-axis along the C_2 symmetry axis. $GaAs_2$ and Ga_2As are placed in the yz-plane.

5.1. GaAs₂

Table 5 shows that Δg_{xx} for GaAs₂ is governed by the coupling of 1^2A_1 ($4a_1 \rightarrow 2b_2$, SOMO-1 to SOMO) and 2^2A_1 ($3a_1 \rightarrow 2b_2$, SOMO-3 to SOMO) with X^2B_2 .

The Δg_{yy} component is dominated by the coupling with 1^2A_2 ($2b_2 - 2b_1$), SOMO to LUMO+1. There are also strong couplings with 2^2A_2 and 3^2A_2 but they almost cancel each other: their individual Δg_{yy} contributions are similar in magnitude and opposite in sign. This is a general trend observed for a pair of states generated by a three open shell configuration, 28,39,40 e.g. for H_2CO^+ the ΔE , SO and L values for the $1,2^2A_2$ states (Δg_{yy}) were of similar magnitude but their contributions to Δg were of opposite sign. 28 In the case of GaAs₂, the ΔE and SO values for 2^2A_2 and 3^2A_2 are similar, but the L values differ by ca. 50% (15% deviation in L values in the H_2CO^+ example 28). This variation of the L values may occur since although the leading configuration for both 2^2A_2 and 3^2A_2 is a $4a_1 - 2b_1$ excitation (90% and 85%, respectively), there are small differences in the other configurations contributing to 2^2A_2 and 3^2A_2 (Table 5).

The total Δg_{xx} component is an order of magnitude smaller than Δg_{xx} and Δg_{yy} . Although the strongest couplings with X^2B_2 arise from 5^2B_1 and 6^2B_1 , their Δg contributions almost cancel each other, since both of these states derive from a three open shell configuration^{28,39,40} ($3a_1 \rightarrow 1a_2$, SOMO-3 to LUMO). In this case the ΔE for the two states are very close, but the SO and L values differ by ca. 50%. These differences arise from mixing of the leading configuration.

Calculated g-shifts for GaAs₂ by Arratia-Perez *et al*¹³ utilized a first-order perturbation procedure based on the SCF-DSW-X α method,²³ and a geometry by Lou *et al*.^{18,19} Although three g-components are expected for C₂, symmetry, they give only Δg_{α} and Δg_{\perp} values. Assuming their Δg_{β} is along As-As (Δg_{yy}) and

 $\Delta g \perp$ is Δg_{xx} , our calculated Δg values for GaAs₂ differ significantly from those calculated in ref. 13, being ca. 70000 ppm larger in magnitude. There is no experimental ESR data available for GaAs₂ to gauge the accuracy of either result.

5.2: Ga, As.

The Δg_{xx} value of Ga_2As is not dominated by coupling with any one excited state; rather $1^2A_1 - 4^2A_1$ all make large negative contributions to Δg_{xx} , countered to a small extent by 6^2A_1 (Table 6).

The two largest contributions to Δg_{yy} are negative values from 2^2A_2 and 4^2A_2 , countered by a positive one from 5^2A_2 . As the leading configurations for 4^2A_2 and 5^2A_2 are the same $(3a_1 - 2b_1)$, the ΔE and L values are similar and their Δg contributions are of opposite sign, but the SO values differ by ca. 50%. This is due to 5^2A_2 being dominated by a three open shell configuration $(3a_1 - 2b_1)$, whereas 4^2A_2 is more evenly comprised of this (40 %) and a double excitation from the SOMO-1 to the SOMO and LUMO+1 $(3a_1^2 - 2b_2^2)$ (37 %).

The Δg_{zz} value is dominated by coupling to 1^2B_1 , with contributions from 3,5,6 2B_1 . The 5^2B_1 and 6^2B_1 states have the same leading three open shell configuration, SOMO-1 (3a₁) to the LUMO+2 (1a₂), but again the Δg contributions from these two states do not cancel ^{28,39,40} due to differences in the configuration setup.

As with GaAs₂, only Δg_{\parallel} and Δg_{\perp} values for Ga₂As are given in ref. 13. If we assume that their Δg_{\parallel} is along Ga-Ga (y-axis, as for GaAs₂ along As-As), then the Δg_{yy} comparison is very poor. If their Δg_{\parallel} corresponds instead to Δg_{yz} , then the result differs from ours by ca. 20%, but is inconsistent with the GaAs₂ x, y, z-axis assignments.

5.3. Ga₂As₃

In D_{3h} symmetry (X^2A_2 "), the standard orientation places the Ga atoms of Ga_2As_3 along the z-axis, with the As atoms in the xy-plane; x and y (and Δg_{xy} and Δg_{yy}) are degenerate ($^2E'$). Our Δg calculations were done

with Ga_2As_3 in $C_{2\nu}$ symmetry (X²B₁), placing the Ga atoms along the x-axis and the As atoms in the yz-plane with one As atom lying on the z-axis. In this case, the 2A_1 and 2B_2 states correspond to 2E . For checking the accuracy of our calculations, we calculated Δg for both 2A_1 and 2B_2 states. The degenerate components of Δg will always be called Δg_{xx} and Δg_{yy} , corresponding to the D_{3h} notation. Due to the independent selection of reference configurations and extrapolation for 2A_1 and 2B_2 states, slightly different values were obtained for Δg_{xx} and Δg_{yy} .

The degree of degeneracy of Δg_{xx} and Δg_{yy} can be checked in Table 7. The values are dominated by coupling of the ground state with 3^2A_1 and 2^2B_2 , respectively, corresponding to excitation from the SOMO $(3b_1)$ to the degenerate LUMO $(6a_1)$ for Δg_{xx} and LUMO+1 $(3b_2)$ for Δg_{yy} . The second largest contribution is from 5^2A_1 , an excitation from the SOMO to the degenerate LUMO+4 $(7a_1)$, and from 4^2B_2 , SOMO to LUMO+3 $(5b_2)$. The remaining major excited state couplings involve 6, 7^2A_1 and 5, 6^2B_2 , excitations from the degenerate SOMO-2 $(1a_2, \Delta g_{xx})$ and SOMO-1 $(2b_1, \Delta g_{zz})$ to the LUMO+2 $(4b_2)$, resulting in three open shell configurations. As shown in Table 7 for Δg_{yy} , the ΔE , SO and L values for 5^2B_2 and 6^2B_2 are very similar and the Δg values are opposite in sign. This behaviour is expected for pairs of states generated by a three open shell configuration. 28,39,40 This is not as evident in 6^2A_1 and 7^2A_1 in Δg_{xx} , where the SO and L values are similar, but the ΔE values differ by 1.1 eV.

As shown in Table 7, Δg_{xx} was calculated to be an order of magnitude smaller than Δg_{yy} and Δg_{zz} , with the largest contribution from coupling with the 3^2A_2 state, an excitation from SOMO-5 ($4a_1$) to LUMO+2 ($4b_2$).

Ga₂As₃ is the only Ga₈As₃ doublet radical with published experimental ESR data; comparison of our results to the experimental² and published theoretical¹² g-tensor data is given in Table 4. Our results are in good agreement with experiment,² being a much closer fit than the theoretical results from ref. 12.

In our calculations the three Ga atoms of Ga_3As_2 were placed in the yz-plane and the two As atoms along the x-axis. The distortion from a D_{3h} trigonal bipyramid to C_{2v} symmetry was accomplished by having the Ga_1-Ga_2 (and Ga_1-Ga_3) distance shorter than Ga_2-Ga_3 [See Figure 1, C_{2v} (a)]. Ga_1 lies along the z-axis, Ga_2 and Ga_3 along y.

The Δg_{xx} value is governed by the coupling of 1^2B_2 and 3^2B_2 with the X^2A_1 ground state (Table 8).

There are numerous contributions to Δg_{yy} , the largest being 1^2B_1 ($2b_1 - 5a_1$, SOMO-3 to SOMO) and 3^2B_1 ($5a_1 - 3b_1$, SOMO to LUMO+2), which almost cancel each other. The overall Δg_{yy} is relatively small, with most of the small negative contributions ($2,4,6,14^2B_1$) being negated by positive contributions from 5^2B_1 and 11^2B_1 .

The overall Δg_{zz} is also small, due to cancelling contributions from pairs of states generated by three open shell configurations. Contributions to Δg_{zz} from 2^2A_2 and 3^2A_2 , both having the same configuration, almost cancel each other; their ΔE values are almost identical, and although the SO of 2^2A_2 is ca. 70% larger than that of 3^2A_2 , the L value for 2^2A_2 is ca. 80% smaller than that of 3^2A_2 . The leading configuration for 4^2A_2 and 5^2A_2 is the same ($1a_2 - 6a_1$, SOMO-2 to LUMO+1), but the respective Δg 's differ vastly in magnitude, due probably to some mixing of configurations.

5.5. GaAs

The molecule was oriented such that Ga lies on the z-axis, and As_1 - As_2 in the yz-plane; As_3 and As_4 lie in the xz-plane [Figure 1, C_{2y} (a)].

For Δg_{xx} , magnetic coupling was dominated by coupling with 1^2A_1 ($3b_2 \rightarrow 6a_1$, SOMO to LUMO). Large negative contributions from 2.5^2A_1 are effectively cancelled by 4.9^2A_1 (Table 9).

In contrast to Δg_{xx} , the overall Δg_{yy} and Δg_{zz} values were small due to cancelling positive and negative Δg components from numerous excited states. For Δg_{yy} , large contributions from 1^2A_2 and 2^2A_2 are of opposite (three open shells) and nearly cancel. The next largest contributions arise from 5^2A_2 and 10^2A_3 , both being

positive. However, the overall Δg_{yy} is relatively small and negative due to negative contributions from a number of states $(3,4,6,7,9,11^2A_2)$.

The largest contributions to Δg_{zz} , from 1^2B_1 and 2^2B_1 , are again of opposite sign although the two states do not derive from the same configuration. Next largest in magnitude are contributions from 8^2B_1 and 11^2B_1 , which have the same three open shell configuration. Due to other contributing states, the final Δg_{zz} is again relatively small.

5.6. Ga₄As

In our calculations Ga₄As was in the yz-plane, with the z-axis bisecting the Ga₂-As-Ga₃ and Ga₄-As-Ga₅ angles (see Figure 1); the x-axis was perpendicular to the molecular plane.

For Δg_{xx} , the magnetic coupling was dominated by two excited states $(1,2^2B_2)$, the leading configurations for which were the same $(5a_1 \rightarrow 4b_2 \text{ and } 3b_2 \rightarrow 5a_1)$ but contributed in an approximately opposite manner $(1^2B_2: 62\% \text{ and } 29\%; 2^2B_2: 29\% \text{ and } 63\%, \text{ respectively, see Table 10})$.

The largest contributions to Δg_{yy} were from high-lying excited states $(6,7,8^2B_1)$. All of the states contributing significantly to Δg_{yy} had negative Δg components with the exception of 5^2B_1 , which is one of a pair of states (with 6^2B_1) from a three open shell configuration $(4a_1 \rightarrow 2b_1)$.

High-lying states also dominate Δg_{zz} , with the largest negative contributions from 6,7,12,14 2 Å₂. The largest positive Δg contribution is from 11^2 Å₂, which has the same three open shell configuration as 12^2 Å₂ (3b₂ \rightarrow 3b₁), although neither state is dominated by this configuration (42% for 11^2 Å₂, 60% for 12^2 Å₂). The other state with a positive contribution to Δg_{zz} is 4^2 Å₂, which has the same leading three open shell configuration as 6^2 Å₂ (3b₂ \rightarrow 2b₁); here the SO values are quite different and the ΔE 's differ by ca. 1 eV, and two Δg contributions are opposite in sign but are not similar in magnitude.

6. Summary and Conclusions

New programs developed for the calculation of g-tensors, based on multireference CI wavefunctions, have been capable of determing g-tensors for III-V doublet radicals with up to 163 electrons in an efficient manner, and without the need for RECPs (although this may still be necessary for the study of larger clusters).

In contrast to smaller molecules for which strong magnetic coupling with the ground state is observed with only a few excited states (e.g. refs. 28-30), significant contributions to Δg were often observed from various higher excited states of Ga_xAs_y . This is due in part to the higher energy-density of excited states of these molecules, e.g. 14 excited states are within 4 eV for Ga_xAs (Δg_{zz} in Table 10).

From comparison with experimental ESR data for $Ga_2As_3^2$ (Table 4) it is evident that our new g-tensor results are significantly better than the DFT results reported in ref. 12, although they correctly reproduced the trends of the experimental results (i.e. $\Delta g_{xx} \ll \Delta g_{yy}$, Δg_{zz}). This suggests that our g-tensor results for $GaAs_2$ and Ga_2As are also improved over published DFT values, ¹³ and that results for the other clusters are reliable. Future work includes using these new programs to investigate the structures and properties of larger III-V clusters (11+ atoms), and the study of paramagnetic defects (heteroatomic, ⁵ anti-site ⁶⁻⁸ and hole defects) within these larger clusters. Results presented in this paper show that one does not need to consider all valence electrons (VE), which decreases calculation times and may allow larger molecules to be calculated before the use of RECPs is required.

Also planned are modifications to the program code to allow g-tensor calculations for triplet and quartet multiplicities. A number of AB III-V compounds for which experimental ESR data are available (e.g. GaAs⁺, GaP⁺) have quartet ground states. Higher spin states are not restricted to ions, e.g. GaP₃ has a ³A₂ ground state. These would be helpful in gauging the quality of our results, since to our knowledge Ga₂As₃² and BNB¹ are the only III-V doublet radicals with published ESR data.

Acknowledgements

Financial support from the US Air Force Office of Scientific Research is gratefully acknowledged. We

thank Dr. Pablo Bruna for helpful discussions, and Alan Pickard for preliminary geometry optimizations of the Ga_xAs_y clusters.

References

- 1. L. B. Knight, D. W. Hill, T. J. Kirk, and C. A. Arrington. J. Phys. Chem., 96, 555 (1992).
- 2. R. J. Van Zee, S. Li, and W. Weltner Jr., J. Chem. Phys., 98, 4335 (1993).
- 3. L. B. Knight Jr. and J. T. Petty. J. Chem. Phys., 88, 481 (1988).
- 4. L. B. Knight Jr. and J. O. Herlong, J. Chem. Phys., 91, 69 (1989).
- 5. D. Stein, K. v. Klitzing, and G. Weimann. Phys. Rev. Lett., 51, 130 (1983).
- 6. U. Kauffmann, J. Schneider, and A. Räuber. Appl. Phys. Lett., 29, 312 (1976).
- 7. R. J. Wagner, K. J. Krebs, G. H. Strauss, and A. M. White. Solid State Commun. 36, 15 (1980).
- 8. T. A. Kennedy and N. D. Wilsey. Appl. Phys. Lett., 44, 1089 (1984).
- 9. T. A. Kennedy and N. D. Wilsey. Phys. Rev. Lett. 41, 977 (1978).
- 10. K. Bakubramanian and Z. Zhu. J. Chem. Phys. 115, 8858 (2001).
- 11. K. Balasubramanian. Chem. Phys. Lett. 150, 71 (1988).
- 12. R. Arratia-Pérez and L. Hernández-Acevedo. J. Chem. Phys., 109, 3497 (1998).
- 13. R. Arrafia-Pérez and L. Hernández-Acevedo, B. Weiss-López, J. Chem. Phys., 110, 10882 (1999)
- 14. U. Meier, S. D. Peyerimhoff, and F. Grein. Chem. Phys., 150, 331 (1991).
- 15. P. Piquini, S. Canuto, and A. Fazzio. Nanostruct, Mater., 10, 635 (1998)...
- 16. K. K. Das and K. Balasubramanian. J. Chem. Phys., 94, 6620 (1991).
- 17. K. Balasubramanian J. Phys. Chem. A. 104, 1969 (2000).
- 18. L. Lou, L. Wang, L. P. F. Chibante, R. T. Laaksonen, P. Nordlander, and R. E. Smalley. J. Chem. Phys.,
- **94**, 8015 (1991).
- 19. L. Lou, P. Nordlander, and R. E. Smalley. J. Chem. Phys., 97, 1858 (1992).
- 20. K. Balasubramanian. J. Chem. Phys. 87, 3518 (1987).
- 21. P. Piquini, S. Canuto, and A. Fazzio. Int. J. Quantum Chem., 28, 571 (1994).

- 22. P. Piquini, A. Fazzio, and S. Canuto. Z. Phys. D 33, 125 (1995)
- 23. (a) C. Y. Yang, D. A. Case, in Local Density Approximations in Quantum Chemistry and Physics, edited by J. P. Dahl and J. Avery (Plenum, New York, 1983); (b) R. Arratia-Pérez and D. A. Case. J. Chem. Phys. 79, 4939 (1983); (c) R. Arratia-Pérez and G. L. Malli. J. Chem. Phys. 85, 6610 (1986); (d) R. Arratia-Pérez, L. Hernández-Acevedo, and J. S. Gómez-Jeria. Chem. Phys. Lett., 236, 37 (1995); (e) J. Pablo-Vás quez and R. Arratia-Pérez. J. Phys. Chem. 98, 5627 (1994); (f) R. Arratia-Pérez, L. Hernández-Acevedo, and L. Alvarez-Thon. J. Chem. Phys. 108, 5795 (1998).
- 24. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Öchterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople. GAUSSIAN 98, Revision A.9, Gaussian, Inc.: Pittsburgh PA. 1998.
- 25. M. Z. Liao, D. Dai, and K. Balasubramanian. Chem. Phys. Lett. 239, 124 (1995).
- 26. J. E. Harriman. Theoretical Foundations of Electron Spin Resonance. Academic Press, New York, 1978.

 27. (a) G. H. Lushington, P. Bündgen, and F. Grein. Int. J. Quantum Chem. 55, 377 (1995); (b) G. H. Lushington and F. Grein. Theor. Chim. Acta. 93, 259 (1996); (c) G. H. Lushington and F. Grein. Int. J. Quantum Chem. 60, 1679 (1996); (d) G. H. Lushington. Ph.D. Thesis, University of New Brunswick, Fredericton, NB, Canada, 1996.
- 28. P. J. Bruna, G. H. Lushington, and F. Grein. J. Mol. Struct. 537, 139 (2000), and refs. therein.

- 29. P. J. Bruna and F. Grein. J. Chem Phys., 112, 10796 (2000), and refs. therein
- 30. P. J. Bruna and F. Grein. Chem. Phys. 276, 1 (2002).
- 31. R. Ahlrichs, M. Bär, M. Häser, H. Horn, and C. Kölmel. Chem. Phys. Lett., 162, 165 (1989).
- 32. (a) S. Grimme and M. Waletzke. J. Chem. Phys., 111, 5645 (1999); (b) S. Grimme, M. Waletzke. Phys. Chem. Phys. 2, 2075 (2000).
- 33. B. A. Hess, C. M. Marian, U. Wahlgren, and O. Gropen. Chem. Phys. Lett., 251, 365 (1996).
- 34. B. Schimmelpfennig. *Atomic Spin-Orbit Mean-Field Integral Program*; Stockholms Universitet, Sweden, 1996.
- 35. C. M. Marian and M. Kleinschmidt. Unpublished results.
- 36. A. V. Luzanov, E. N. Babich, and V. V. Ivanov. J. Mol. Struct. (Theochem) 331, 211, (1994).
- 37. (a) R. J. Buenker and S. D. Peyerimhoff. Theor. Chim. Acta. 35, 33 (1974); (b) R. J. Buenker and S. D. Peyerimhoff. Theor. Chim. Acta. 39, 217 (1975); (c) R. J. Buenker, S. D. Peyerimhoff, and W. Butscher. Mol. Phys. 35, 771 (1978); (d) R. J. Buenker, in: R. Carbó (ed), Current Aspects of Quantum Chemistry, Studies in Physical and Theoretical Chemistry, vol. 21. Elsevier, Amsterdam, 1982, p. 17; (e) C. M. Marian. Ph.D. Thesis, Bonn, Germany, 1981; (f) B. A. Hess. Ph.D. Thesis, Bonn, Germany, 1981; (g) P. Chandra and R. J. Buenker. J. Chem. Phys. 79, 358 (1983).
- 38. S. Brownridge, F. Grein, and co-authors. Manuscript in preparation.
- 39. G. H. Lushington and F. Grein. J. Chem. Phys. 106, 3292 (1997).
- 40. J. T. Törring, S. Un, M. Knüpling, M. Plato, and K. Möbius. J. Chem. Phys. 107, 3905 (1997).
- 41. P. Y. Feng and K. Balasubramanian. Chem. Phys. Lett. 288, 1 (1998).

Table 1. Optimized bond distances (Å) and angles (deg) from this work [B3LYP/6-311+G(2df)], and comparison to literature values, for all Ga_xAs_y (x + y = 3, 5) doublet radicals.

Molecule, symmetry, ground state		Results	
$GaAs_2 C_{2\nu}, X^2B_2$	This work	Ref. 17 (MRCI)	Ref. 14 (MRCI)
Ga-As	. 2.775	2.80	2.86
As-Ga-As	46.5	45.9	46.6
		•	,
Ga_2As C_{2v} , X^2B_2	This work .	Ref. 17 (MRCI)	Ref. 19 (LSD)
Ga-As	2.384	2.407	2.33
Ga-As-Ga	96.3	79.9	98.0
Same and the same		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •
Ga_2As_3 D_{3h} , X^2A_2 "	. This work	Ref. 25 (MRCI)	Ref. 19 (LSD)
Ga-Ga	4.268	not reported	not reported
Ga-As	2.594	2.589	2.65
As-As	2.555	2.563	2.62
Ga_3As_2 C_{2v} , X^2A_1	This work	Ref. 25 (MRCI)	Ref. 19 (LSD)
Ga_1 - Ga_2 , Ga_1 - Ga_3 ^a	3.751	3.702	3.72
Ga ₂ -Ga ₃	3.979	4.114	4.57
Ga ₁ -As ₁	2.446	2.401	2.41
Ga_2 - As_1 , Ga_3 - As_1	2.671	2.725	2.59.
As_1-As_2	2.725	2.782	2.70
Ga_2 - Ga_1 - Ga_3 .	64.0	·67.5	70.0
As_1 - Ga_1 - As_2	67.7	70.8	67.9
As_1 - Ga_2 - As_2 , As_1 - Ga_3 - As_2	61.3	61.4	55.2

Table 1 continued.

$GaAs_4 C_{2v}, X^2B_2$	This work	Ref. 15
Ga-As ₁ , Ga-As ₂ ^a	3.116	no data given:
Ga-As ₃ , Ga-As ₄	2.545	C _{2v} , edge-capp ed
As ₁ -As ₃ , As ₁ -As ₄ , As ₂ -As ₃ , As ₂ -As ₄	2.454	tetrahedron
As ₁ -As ₂	3.006	
Ga_4As C_{2v} , X^2A_1	This work	Ref. 15
Ga ₁ -As, Ga ₂ -As ^a	2.588	no data given:
Ga ₃ -As, Ga ₄ -As	2.487	C _{2v} , planar
Ga ₁ -Ga ₃ , Ga ₂ -Ga ₄	2.870	trapezoid
Ga ₁ -Ga ₂	2.599	with As in center
Ga ₁ -Ga ₄ , Ga ₂ -Ga ₃	4.583	man and the second second second
Ga ₃ -Ga ₄	4.913	
Ga ₁ -As-Ga ₂ · · · ·	60.3	
Ga ₁ -As-Ga ₃ , Ga ₂ -As-Ga ₄	68.8	
Ga ₁ -As-Ga ₄ , Ga ₂ -As-Ga ₃	129.1	
Ga ₃ -As-Ga ₄	162.0	•

a See Figure 1 for atom labelling scheme.

Table 2. Spin densities, atomic charges, and hyperfine coupling constants (MHz) for all Ga_xAs_y (x + y = 3, 5) doublet radicals.

Molecule	Atom	Spin Density ^a	Charge ^a	A_{iso}	$T_{xx} / T_{yy} / T_{zz}^{b}$
GaAs ₂ C _{2v} , X ² B ₂	Ga	0.262	0.226		-57 / 131 / -74
Ref. 10	•	0.338	0.193		· 83 ^d
•	As	0.368	-0.113	· . 7	· -111 / -113' / 225'
Ref. 10		0.331	-0.096		125 ^d
Ga_2As C_{2v} , X^2B_2	Ga	0.242	0.128	447	-63 / -81' / -63'
Ref. 10		0.153	0.103		27 ^đ
	As	0.515	-0.257	-148	-159 / 304 / -145
Ref. 10		0.694	-0.206		216 ^d
Ga_2As_3 D_{3h} , X^2A_2 "	. Ga	0.369	0.194	1325°	-65 / -65 / 129
Ref. 9		0.314	0.150		. 81 ^d
•	As	0.088	-0.129	-23°	-35 / -36 / 71
Ref. 9	• • •	0.124	-0.100	•	14
Ga_3As_2 C_{2v} , X^2A_1	Ga ₁	0.426	0.175	1735	-85 / -71 / 156
•	Ga ₂ , Ga ₃	0.085	0.276	203	-21 / 45' / -24'
	As_1, As_2	0.202	-0.363	-25	-61' / -56 / 116'
$GaAs_4 C_{2v}, X^2B_2$	Ga	-0.038	0.214	-153	. 4/17/-21
	As_1, As_2	0.585	-0.078	-46	-156 / 308' / -152'
	As_3 , As_4	-0.066	-0.030	12	-10' / 45 / -36'
Ga_4As C_{2v} , X^2A_1	Ga ₁ , Ga ₂	0.342	0.083	-122	-89 / 177' / -88'
	Ga ₃ , Ga ₄	0.169	0.171	153	-34 / -43' / 76'
	As	-0.021	-0.509	0.05	13 / -7 / 20

a Atomic charges from a Mulliken population analysis.

b Off-diagonal spin-dipolar (anisotropic) coupling terms T'_{xx} , T'_{yy} , T'_{zz} are indicated by a 'after the value.

 $c~A_{\rm iso}$ = 1524 [1936] MHz, $A_{\rm dip}$ = 87 [71] MHz from experimental ESR spectra for $^{69}{\rm Ga_2As_3}$ [$^{71}{\rm Ga_2As_3}$]. $^2~A_{\rm iso}$

^{= 2012} Mhz, $A_{dip} = 88$ Mhz for $^{71}Ga_2^{75}As_3$ in ref. 12.

d The spin-dipolar contribution to heac from ref. 13, defined as the expectation value $(3x^2 - r^2)/r^5$ averaged over the relativistic wave function.

Table 3. Excited state couplings for the four possible ground states in $C_{2\nu}\,\text{symmetry}.$

		Excited State C	Coupling
Ground State	Δg_{xx}	$\Delta \mathtt{g}_{yy}$	Δg_{zz}
X^2A_i	$^{2}\mathrm{B}_{2}$	$^{2}\mathrm{B_{i}}$.	² A ₂
X^2A_2	$^{2}\mathrm{B}_{_{1}}$	$^{2}\mathrm{B}_{2}$	2 A $_{1}$
X^2B_1	$^{2}A_{2}$	$^{2}A_{1}$	$^{2}\mathrm{B}_{2}$
X^2B_2	$^{2}A_{i}$	² A ₂	$^{2}\mathrm{B}_{_{1}}$

Table 4. Calculated g-tensor data (Δg in ppm) for Ga_xAs_y (x + y = 3, 5), and comparison with experimental and other theoretical results.

	Δg_{xx}	Δg_{yy}	Δg_{zz}	
GaAs ₂ (X ² B ₂)	175300	-175120	-18280	
Ref. 13, calc.	95600	-116500		
$Ga_2As(X^2B_2)$	-125950	-24850	51030	
Ref. 13, calc.	-188500	40100		
Ga_2As_3 (X^2A_2 " in D_{3h})	-73410 ^a		6460	
Ref. 2, expt.	-82300	-	~ 0	~
Ref. 12, calc.	-148000	-	-16200	
$Ga_3As_2(X^2A_1)$	-71590 ·	-11150	13270	
$GaAs_4(X^2B_2)$	-171030	-7540	-14720	
$Ga_4As(X^2A_1)$	-123540	-21850	-43470	

a Average of Δg_{xx} and Δg_{yy} from Table 7.

Table 5. Calculated values of ΔE , SO, L and Δg (2nd order) for excited states having a large magnetic coupling with the ground state of GaAs₂ (X²B₂), and ²B₂ vertical excitation energies^a.

Component	ΔE (eV)	SO (cm ⁻¹)	L (au)	$\Delta g (ppm)^b$
$\Delta g_{xx} (^2A_1)$				
$1^{2}A_{1} (4a_{1} \rightarrow 2b_{2}, S-1 \rightarrow S)^{c}$	1.47	169.5	1.096	64366
$2^{2}A_{1} (3a_{1} \rightarrow 2b_{2}, S-3 \rightarrow S)$	2.67	475.1	1.105	99952
$3^2A_1 (1b_1 - 1a_2, S-2 - L)$	2.89	165.1	0.149	4333
$4^{2}A_{1}(2b_{2} - 5a_{1}, S - L+3)$	3.97	116.2	0.784	11687
$5^{2}A_{1} (1b_{1} \rightarrow 1a_{2}, S-2 \rightarrow L) [30\%]$	4.24	69.2	-0.404	-3357 175300
$\Delta g_{yy} (^2A_2)$				
$1^2A_2 (2b_2 - 1a_2, S - L)$	1.26	476.4	-0.897	-172824
$2^{2}A_{2}$ (4a ₁ \rightarrow 2b ₁ , S-1 \rightarrow .L+1)	3.19	98.4	0.872	13686
3^2A_2 (4a ₁ \rightarrow 2b ₁ , S-1 \rightarrow L+1)	3.90	-86.1	1.530	-17199
$4^{2}A_{2} (3a_{1}4a_{1} \rightarrow 2b_{2}1a_{2}, S-3+S-1 \rightarrow S+L)$	4.37	31.8	0.034	128
$5^{2}A_{2} (4a_{1}^{2} \rightarrow 2b_{2}1a_{2}, S-1 \rightarrow S+L) [26\%]$	4.71	50.1	0.130	708 -175120
$\Delta g_{zz} (^2B_1)$			•	
$1^{2}B_{1} (2b_{2} \rightarrow 2b_{1}, S \rightarrow L+1)$	2.27	-129.3	0.657	-19067
$2^{2}B_{1} (1b_{1} \rightarrow 2b_{2}, S-2 \rightarrow S)$	2.55	36.5	-0.042	-307
$3^{2}B_{1}$ (4a ₁ \rightarrow 1a ₂ , S-1 \rightarrow L)	2.62	81.2	-0.033	-526
$4^{2}B_{1} (4a_{1} \rightarrow 1a_{2}, S-1 \rightarrow L) [57\%]$	3.13	250.8	-0.149	-6072
$5^{2}B_{1} (3a_{1} \rightarrow 1a_{2}, S-3 \rightarrow L)$	3.61	348.0	0.983	48315
$6^{2}B_{1} (3a_{1} \rightarrow 1a_{2}, S-3 \rightarrow L)$	3.89	190.9	-1.612	-40264 -18280

a The X^2B_2 ground state is ... $1b_2^21b_1^24a_1^22b_2^1$ (13 VE). Vertical excitation energies for 2^2B_2 to 5^2B_2 are 3.58, 4.25, 4.35, and 4.76 eV, respectively.

 \boldsymbol{b} Total contribution for all calculated excited states in boldface.

c S = SOMO, L = LUMO.

Table 6.Calculated values of ΔE , SO, L and Δg (2nd order) for excited states having a large magnetic coupling with the ground state of Ga₂As (X²B₂), and ²B₂ vertical excitation energies^a.

Component	ΔE (eV)	SO (cm ⁻¹)	L (au)	$\Delta g (ppm)^b$
$\Delta \mathbf{g}_{xx} (^2 \mathbf{A}_1)$				
$1^{2}A_{1} (3a_{1} \rightarrow 2b_{2}, S-1 \rightarrow S)^{c}$	0.17	177.4	-0.069	-36004
$2^{2}A_{1} (2b_{2} \rightarrow 4a_{1}, S \rightarrow L) [58\%]$	1.97	243.5	-1.019	-64115
$3^{2}A_{1}$ (1b ₁ \rightarrow 1a ₂ , S-2 \rightarrow L+1) [33%]	2.72	-60.7	0.735	-8368
$4^{2}A_{1} (3a_{1}^{2} \rightarrow 2b_{2}4a_{1}, S-1 \rightarrow S + L)$	2.90	-204.4	0.910	-32678
$5^{2}A_{1} (1b_{1} \rightarrow 1a_{2}, S-2 \rightarrow L+1)$	3.38	-30.86	0.306	-1424
$6^{2}A_{1}$ (3a ₁ - 3b ₂ , S-1 - L+3) [39%]	3.72	84.9	1.271	14761 -125950
$\Delta \mathbf{g}_{yy} (^2 \mathbf{A}_2)$				
$1^{2}A_{2} (1b_{1} - 4a_{1}, S-2 - L)$	2.32	2.7	0.154	91
$2^{2}A_{2} (2b_{2} \rightarrow 1a_{2}, S \rightarrow L+1)$	2.57	156.8	-0.477	-14834
$3^{2}A_{2} (1b_{1} \rightarrow 4a_{1}, S-2 \rightarrow L)$	2.78	41.9	0.014	108
$4^{2}A_{2} (3a_{1} \rightarrow 2b_{1}, S-1 \rightarrow L+2) [39\%]$	3.32	158.5	-0.784	-19071
5^2A_2 (3a ₁ \rightarrow 2b ₁ , S-1 \rightarrow L+2)	3.82	100.8	0.737	9909 -24850
$\Delta \mathbf{g}_{zz} (^2 \mathbf{B}_1)$				
$1^{2}B_{1} (1b_{1} - 2b_{2}, S-2 - S)$	0.33	254.7	0.219	87664
$2^{2}B_{1} (1b_{1}3a_{1} \rightarrow 2b_{2}4a_{1}, S-2+S-1 \rightarrow S+L)$	2.57	-0.2	0.140	-4
$3^{2}B_{1} (3a_{1} \rightarrow 1a_{2}, S-1 \rightarrow L+2)$	2.66	122.2	0.904	21148
$4^{2}B_{1} (1b_{1}3a_{1} \rightarrow 2b_{2}4a_{1}, S-2+S-1 \rightarrow S+L)$	3.01	41.3	0.051	360
$5^{2}B_{1} (3a_{1} \rightarrow 1a_{2}, S-1 \rightarrow L+2)$	3.32	-220.1	1.066	-35932
$6^{2}B_{1} (2b_{2} - 2b_{1}, S - L+2) [40\%]$	3.74	146.9	-1.052	-21056 51030

a The X^2B_2 ground state is ... $1b_2^21b_1^23a_1^22b_2^1$ (11 VE). Vertical excitation energies for 2^2B_2 to 5^2B_2 are 2.24,

2.65, 3.17, and 3.41 eV, respectively.

b Total contribution for all calculated excited states in boldface.

c S = SOMO, L = LUMO.

Table 7. Calculated values of ΔE , SO, L and Δg (2nd order) for excited states having a large magnetic coupling with the ground state of Ga_2As_3 (X^2B_1), and 2B_1 vertical excitation energies^a.

Component	ΔE (eV)	SO (cm ⁻¹)	L (au)	$\Delta g (ppm)^b$
$\Delta g_{xx} (^2A_1)$				
$1^2A_1 (5a_1 + 3b_1, S-3 + S)^c$	1.98	41.5	-0.037	-398
$2^{2}A_{1}$ (4a ₁ \rightarrow 3b ₁ , S-5 \rightarrow S)	2.98	0.4	-0.014	-1
3^2A_1 $(3b_1 \rightarrow 6a_1, S \rightarrow L)$	3.30	342.9	-1.777	-94074
$4^2A_1 (3a_1 - 3b_1, S-6 - S)$	3.87	0.02	0.003	0
$5^2A_1 (3b_1 \rightarrow 7a_1, S \rightarrow L+4)$	3.70	246.7	0.634	21549
6^2A_1 (1a ₂ - 4b ₂ , S-2 - L+2)	3.43	148.1	0.396	8742
$7^{2}A_{1}$ (1a ₂ \rightarrow 4b ₂ , S-2 \rightarrow L+2)	2.29	133.4	-0.368	-10911 -75230
$\Delta g_{yy} (^2B_2)$				
$1^{2}B_{2} (2b_{2} - 3b_{1}, S-4 - S)$	2.69	-40.5	0.037	-284
$2^{2}B_{2} (3b_{1} \rightarrow 3b_{2}, S \rightarrow L+1)$	3.28	-355.5	1.761	-97100
$3^{2}B_{2} (3b_{1} \rightarrow 4b_{2}, S \rightarrow L+2)$	3.50	4.9	0.032	23
$4^{2}B_{2} (3b_{1} \rightarrow 5b_{2}, S \rightarrow L+3)$	3.67	269.0	0.713	26635
$5^{2}B_{2} (2b_{1} \rightarrow 4b_{2}, S-1 \rightarrow L+2)$	3.83	101.8	0.316	4287
$6^{2}B_{2} (2b_{1} \rightarrow 4b_{2}, S-1 \rightarrow L+2)$	3.93	119.2	-0.342	-5280 -71590

$\Delta g_{zz} (^2A_2)$					
$1^2A_2 (1a_2 \rightarrow 3b_1, S-2 \rightarrow S)$	1.58	-0.1	3x10 ⁻⁴	0	
$2^{2}A_{2}$ (5a ₁ - 4b ₂ , S-3 - L+2)	3.64	0.9	6x10 ⁻⁵	0	
3^2A_2 (4a ₁ \rightarrow 4b ₂ , S-5 \rightarrow L+2)	2.89	71.8	0.401	5083	
$4^{2}A_{2}$ (3b ₁ - 2a ₂ , S - L+7)	4.55	0.3	2x10 ⁻⁴	0	
5^2A_2 (5a ₁ - 4b ₂ , S-3 - L+2)	3.85	0.7	-0.021	-2	
$6^{2}A_{2}$ (5a ₁ - 5b ₂ , S-3 - L+3) [50%]	4.09	194.5	0.084	2041	6460

a The X^2B_2 ground state is ... $2b_2^25a_1^21a_2^22b_1^23b_1^1$ (21 VE). Vertical excitation energies for 2^2B_1 to 5^2B_1 are 1.58, 3.85, 4.54, and 4.50 eV, respectively.

b Total contribution for all calculated excited states in boldface.

c S = SOMO, L = LUMO.

Table 8. Calculated values of ΔE , SO, L and Δg (2nd order) for excited states having a large magnetic coupling with the ground state of Ga_3As_2 (X^2A_1), and 2A_1 vertical excitation energies^a.

Component	ΔE (eV)	SO (cm ⁻¹)	L (au)	$\Delta g (ppm)^b$
$\Delta g_{xx} (^2B_2)$				
$1^{2}B_{2} (2b_{2} \rightarrow 5a_{1}, S-1 \rightarrow S)^{c}$	0.72	-72.2	0.525	-26906
$2^{2}B_{2} (1a_{2} \rightarrow 3b_{1}, S-2 \rightarrow L+2)$	1.87	5.1	0.038	53
$3^{2}B_{2} (5a_{1} \rightarrow 3b_{2}, S \rightarrow L) [48\%]$	2.94	221.4	-1.402	-53718
$4^{2}B_{2} (1a_{2} - 3b_{1}, S-2 - L+2)$	2.52	46.7	-0.653	-6177
$5^{2}B_{2} (2b_{2} \rightarrow 6a_{1}, S-1 \rightarrow L+1) [52\%]$	2.94	22.2	-0.921	-3537
$6^2B_2 (2b_2 - 6a_1, S-1 - L+1)$	3.16	72.1	1.605	18664 -71590
$\Delta g_{yy} (^2B_1)$				
$1^{2}B_{1} (2b_{1} \rightarrow 5a_{1}, S-3 \rightarrow S)$	1.15	80.3	0.902	32076
$2^{2}B_{1} (1a_{2} \rightarrow 3b_{2}, S-2 \rightarrow L)$	2.52	41.2	-0.783	-6518
$3^{2}B_{1} (5a_{1} \rightarrow 3b_{1}, S \rightarrow L+2)$	2.94	320.5	-0.599	-33328
$4^{2}B_{1} (1a_{2} \rightarrow 3b_{2}, S-2 \rightarrow L)$	2.58	15.3	-0.506	-1530
$5^2B_1 (2b_1 \rightarrow 6a_1, S-3 \rightarrow L+1)$	3.90	24.8	0.567	1840
6^2B_1 (4a ₁ - 3b ₁ , S-4 - L+2)	2.50	-79.7	0.511	-8297
$11^2B_1 (5a_1 \rightarrow 4b_1, S \rightarrow L+3)$	4.34	71.2	0.955	7981
$14^{2}B_{1} (3a_{1} \rightarrow 3b_{1}, S-5 \rightarrow L+2) [26\%]$	4.20	73.5	-0.732	-6536 -11150

Δg_{zz}	$^{2}A_{2}$
-----------------	-------------

5^2A_2 (1a ₂ \rightarrow 6a ₁ , S-2 \rightarrow L+1)	2.92	2.7	-0.415	-200	13270
$4^{2}A_{2} (1a_{2} \rightarrow 6a_{1}, S-2 \rightarrow L+1)$	3.05	20.8	0.630	2191	
$3^{2}A_{2} (2b_{2} \rightarrow 3b_{1}, S-1 \rightarrow L+2)$	2.79	75.3	-1.121	-15409	
$2^{2}A_{2} (2b_{2} - 3b_{1}, S-1 - L+2)$	2.73	253.8	0.252	11927	
$1^2A_2 (1a_2 - 5a_1, S-2 - S)$	1.00	76.5	0.394	15339	

a The X^2A_1 ground state is ... $4a^{12}2b_1^21a_2^22b_2^25a_1^1$ (19 VE). Vertical excitation energies for 2^2A_1 to 5^2A_1 are 1.68, 2.18, 2.56, and 2.90 eV, respectively.

$$c$$
 S = SOMO, L = LUMO.

b Total contribution for all calculated excited states in boldface.

Table 9. Calculated values of ΔE , SO, L and Δg (2nd order) for excited states having a large magnetic coupling with the ground state of GaAs₄ (X²B₂), and ²B₂ vertical excitation energies.

Component		SO	L (au)	$\Delta g (ppm)^b$
	(eV)	(cm ⁻¹)		
$\Delta g_{xx}(A_1)$				
$1^{2}A_{1} (3b_{2} \rightarrow 6a_{1}, S \rightarrow L)^{c}$	0.55	390.3	-0.496	-179018
$2^{2}A_{1} (5a_{1} \rightarrow 3b_{2}, S-1 \rightarrow S)$	2.22	-249.0	1.0471	-59761
$3^2A_1 (3b_2 - 7a_1, S - L+4)$	2.46	171.5	0.070	2501
$4^{2}A_{1} (2b_{2} \rightarrow 6a_{1}, S-3 \rightarrow L)$	2.82	265.0	0.7923	37977
$5^{2}A_{1} (2b_{2} \rightarrow 6a_{1}, S-3 \rightarrow L) [64\%]$	2.61	-139.8	0.386	-10558
$9^{2}A_{1} (5a_{1} \rightarrow 4b_{2}, S \rightarrow L+1) [39\%]$	4.10	162.8	1.850	37462 -171030
$\Delta \mathbf{g}_{yy} (^2 \mathbf{A}_2)$				
$1^2A_2 (3b_1 \rightarrow 6a_1, S-2 \rightarrow L)$	1.91	-311.7	0.807	-66989
$2^{2}A_{2} (3b_{1} \rightarrow 6a_{1}, S-2 \rightarrow L)$	2.32	162.1	1.378	49104
$3^2A_2 (3b_2 - 2a_2, S - L+5)$	3.06	-188.6	0.117	-3699
$4^2A_2 (2b_1 \rightarrow 6a_1, S-4 \rightarrow L)$	3.37	336.6	0.057	-2937
$5^2A_2 (2b_1 \rightarrow 6a_1, S-4 \rightarrow L)$	3.18	129.2	0.794	16423
6^2A_2 (5a ₁ - 4b ₁ , S-1 - L+3)	2.91	123.4	-0.372	-8027
$7^2A_2 (3b_1 \rightarrow 7a_1, S-2 \rightarrow L+4)$	3.44	111.3	-0.321	-5292
$9^2A_2 (1a_2 \rightarrow 3b_2, S-5 \rightarrow S)$	3.78	49.5	-0.355	-2363
$10^2 A_2 (3b_1 \rightarrow 7a_1, S-2 \rightarrow L+4)$	4.43	83.0	1.561	14898
$11^2 A_2 (5a_1 - 4b_1, S-1 - L+3) [55\%]$	3.67	84.2	-0.494	-5790
$13^{2}A_{2} (3b_{1}3b_{2} \rightarrow 6a_{1}5b_{2}, S-2+S \rightarrow L+L+2) [28\%]$	3.66	70.5	0.702	6890 -7540

$\Delta g_{zz} (^2B_1)$					
$1^{2}B_{1} (3b_{1} - 3b_{2}, S-2 - S)$	1.90	285.7	0.777	59501	
$2^{2}B_{1} (3b_{2} \rightarrow 4b_{1}, S \rightarrow L+3)$	2.57	-259.9	1.285	-66074	
$3^{2}B_{1} (3b_{1}3b_{2} \rightarrow 6a_{1}^{2}, S-2 + S \rightarrow L)$	2.40	163.7	0.200	6966	
$4^{2}B_{1} (2b_{1} \rightarrow 3b_{2}, S-4 \rightarrow L)$	3.10	293.5	0.102	4943	
$5^{2}B_{1} (3b_{1} \rightarrow 4b_{2}, S-2 \rightarrow L+1)$	3.19	-63.2	0.765	-7720	
$6^{2}B_{1} (3b_{2} \rightarrow 5b_{1}, S \rightarrow L+6) [58\%]$	2.54	-79.2	0.921	-14645	
$8^{2}B_{1}$ (3b ₁ - 5b ₂ , S-2 - L+2)	3.67	-118.9	1.378	-22751	
$11^2B_1 (3b_1 - 5b_2, S-2 - L+2)$	3.72	114.4	1.319	20686	-14720

a The X^2B_2 ground state is ... $1a_2^22b_2^23b_1^25a_1^23b_2^1$ (23 VE). Vertical excitation energies for 2^2B_2 to 5^2B_2 are 1.62, 2.60, 2.54, and 2.63 eV, respectively.

b Total contribution for all calculated excited states in boldface.

c S = SOMO, L = LUMO.

Table 10. Calculated values of ΔE , SO, L and Δg (2nd order) for excited states having a large magnetic coupling with the ground state of Ga₄As (X²A₁), and ²A₁ vertical excitation energies^a.

Component	ΔΕ	SO	L (au)	Δg (ppm)	ь
	(eV)	(cm ⁻¹)			
$\Delta g_{xx} (^2B_2)$					
$1^{2}B_{2} (5a_{1} \rightarrow 4b_{2}, S \rightarrow L+1)^{c} [62\%]$	1.28	223.4	-1.224	-108538	
$2^{2}B_{2}$ (5a ₁ - 4b ₂ , S - L+1) [29%]	1.59	-51.6	1.4029	-23187	
$3^{2}B_{2} (2b_{2} - 5a_{1}, S-4 - S)$	2.73	-24.1	1.423	-6406	
$4^{2}B_{2} (1b_{1} \rightarrow 1a_{2}, S-3 \rightarrow L)$	2.98	6.6	-0.664	-751	
$5^{2}B_{2} (1b_{1} \rightarrow 1a_{2}, S-3 \rightarrow L) [46\%]$	3.02	-23.0	-0.147	572	-123540
$\Delta g_{yy} (^2B_1)$					
$1^{2}B_{1} (5a_{1} \rightarrow 2b_{1}, S \rightarrow L+2)$	1.45	-18.1	0.216	-1378	
$2^{2}B_{1} (1b_{1} \rightarrow 5a_{1}, S-3 \rightarrow S)$	2.23	47.8	-0.041	-457	
$3^{2}B_{1}(3b_{2} \rightarrow 1a_{2}, S-1 \rightarrow L)$	2.03	-1.6	0.148	-61	
$4^{2}B_{1} (3b_{2} \rightarrow 1a_{2}, S-1 \rightarrow L)$	2.44	-30.0	0.224	-1405	
$5^{2}B_{1}$ (4a ₁ \rightarrow 2b ₁ , S-2 \rightarrow L+2)	2.75	249.0	0.0782	3601	
$6^{2}B_{1} (4a_{1} \rightarrow 2b_{1}, S-2 \rightarrow L+2)$	2.92	-30.7	1.616	-8668	
$7^{2}B_{1} (5a_{1} \rightarrow 3b_{1}, S \rightarrow L+3)$	3.06	-72.1	0.724	-8675	
$8^{2}B_{1} (2b_{2} \rightarrow 1a_{2}, S-4 \rightarrow L)$	2.99	-24.6	1.409	-5893	-21850

$12^{2}A_{2} (3b_{2} \rightarrow 3b_{1}, S-1 \rightarrow L+3) [60\%]$ $14^{2}A_{2} (2b_{2} \rightarrow 2b_{1}, S-4 \rightarrow L+2)$	3.96 3.98	-63.9 -39.4	1.277 1.652	-10487 -8334	-43470
$11^{2}A_{2} (3b_{2} \rightarrow 3b_{1}, S-1 \rightarrow L+3) [42\%]$	3.83	102.7	0.847	11592	
$7^{2}A_{2} (5a_{1} \rightarrow 2a_{2}, S \rightarrow L+5) [41\%]$	3.26	205.7	-0.451	-14511	
6^2A_2 (3b ₂ - 2b ₁ , S-1 - L+2)	3.44	215.6	-0.422	-13477	
5^2A_2 (1b ₁ \rightarrow 4b ₂ , S-3 \rightarrow L+1)	2.93	7.1	-0.049	-62	
4^2A_2 (3b ₂ - 2b ₁ , S-1 - L+2)	2.42	-43.5	-0.432	3948	
3^2A_2 ($4a_1 \rightarrow 1a_2$, S-2 \rightarrow L)	2.62	12.7	-0.105	-262	
$2^{2}A_{2}$ (4a ₁ \rightarrow 1a ₂ , S-2 \rightarrow L)	2.49	-0.06	0.357	- 5	
$1^2A_2 (5a_1 \rightarrow 1a_2, S \rightarrow L)$	1.22	-63.9	0.256	-6838	
$\Delta g_{zz} (^2A_2)$					

a The X^2A_1 ground state is ...1 $b_1^24a_1^23b_2^25a_1^1$ (17 VE). Vertical excitation energies for 2^2A_1 to 5^2A_1 are 1.66, 2.79, 2.80, and 3.02 eV, respectively.

b Total contribution for all calculated excited states in boldface.

c S = SOMO, L = LUMO.

Captions for figures:

Figure 1. Optimized geometries of Ga_xAs_y (x + y = 3, 5) isomers, shown in increasing relative energy from left to right. Bond lengths and angles given in Table 1.

Best Available Copy