Freeform Search

Database:	US Pre-Grant Publication Full US Patents Full-Text Databas US OCR Full-Text Database EPO Abstracts Database JPO Abstracts Database Derwent World Patents Index									
Term:	IBM Technical Disclosure Bul L5 and (predict\$ with	destinat\$).clm								
Display: 10 Documents in <u>Display Format</u> : - Starting with Number 1 Generate: O Hit List O Hit Count O Side by Side O Image										
-11-11-1	Search	©lear in	terrupt		,					
Name of the Control o		Search History								
DATE: Wedne	esday, December 28, 2005	Printable Copy	Create Case							
Set Name side by side	Query			Hit Count	<u>Set</u> <u>Name</u> result set					

side by side			result set
DB=PGPB,U OP=OR	USPT,USOC,EPAB,JPAB,DWPI,TDBD; THES=ASSIGNEE; PLUR=YE	S;	
<u>L7</u>	L5 and (predict\$ with destinat\$).clm.	2	<u>L7</u>
<u>L6</u>	L5 and (predict\$ with destinat\$)	10	<u>L6</u>
<u>L5</u>	L4 and 701/207-209.ccls.	496	<u>L5</u>
<u>L4</u>	L3 or 12	37596	<u>L4</u>
<u>L3</u>	L1 and @pd<=20031208	27734	<u>L3</u>
<u>L2</u>	L1 and @ad<=20031208	37413	<u>L2</u>
<u>L1</u>	(pattern\$ or profil\$) and map\$ and route	44279	<u>L1</u>

END OF SEARCH HISTORY

First Hit Fwd Refs

Previous Doc Next Doc Go to Doc#

End of Result Set

Generate Collection Print

L7: Entry 2 of 2 File: USPT Oct 19, 2004

US-PAT-NO: 6807483

DOCUMENT-IDENTIFIER: US 6807483 B1

TITLE: Method and system for prediction-based distributed navigation

DATE-ISSUED: October 19, 2004

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Chao; Yi-Chung Fremont CA
Jin; HaiPing San Jose CA
Dai; DongHai Fremont CA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Televigation, Inc. Sunnyvale CA 02

APPL-NO: 10/408325 [PALM]
DATE FILED: April 8, 2003

PARENT-CASE:

CROSS-REFERENCE TO RELATED APPLICATIONS This application relates to issued U.S. Pat. No. 6,266,615 entitled "Method And System For An Interactive And Real-Time Distributed Navigation System" by HaiPing Jin, issued on Jul. 24, 2001, herein incorporated in its entirety by reference. RELATED APPLICATION This application claims priority to U.S. provisional application Ser. No. 60/417,956 entitled "Prediction-based Positioning, Routing and Rerouting" filed Oct. 11, 2002.

INT-CL-ISSUED: [07] G01 C 21/00

US-CL-ISSUED: 701/210; 701/201, 701/209, 340/995.12, 340/995.23 US-CL-CURRENT: 701/210; 340/995.12, 340/995.23, 701/201, 701/209

FIELD-OF-CLASSIFICATION-SEARCH: 701/201, 701/202, 701/207, 701/208, 701/209, 701/210, 701/211, 701/214, 340/991, 340/993, 340/995.12, 340/995.16, 340/995.17, 340/995.19, 340/995.25, 340/995.23, 340/995.27 See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

Search Selected Search ALL Clear

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
5902350	May 1999	Tamai et al.	
5904728	May 1999	Tamai et al.	
5910177	June 1999	Zuber	
<u>5912635</u>	June 1999	Oshizawa et al.	
5922042	July 1999	Sekine et al.	
5928307	July 1999	Oshizawa et al.	
5938720	August 1999	Tamai	
6073075	June 2000	Kondou et al.	701/203
<u>6266615</u>	July 2001	Jin	
6418374	July 2002	Sakamoto et al.	701/209

ART-UNIT: 3661

PRIMARY-EXAMINER: Nguyen; Tan Q.

ATTY-AGENT-FIRM: Hu; Irene Y.

ABSTRACT:

Method and system for prediction-based navigation in a real-time distributed navigation system. In one embodiment, a server receives a request from a client comprising one or more position coordinates. The server estimates the user's speed, estimates total elapsed time, calculates an optimal route to the destination and sends a set of routing directions to the client. Moreover, the server estimates a route origin within an estimated comfort zone in order to calculate the optimal route from the estimated origin to the destination.

38 Claims, 6 Drawing figures

Go to Doc# Previous Doc Next Doc

First Hit Fwd Refs End of Result Set

Previous Doc Next Doc Go to Doc#

Generate Collection Print

L7: Entry 2 of 2

File: USPT

Oct 19, 2004

US-PAT-NO: 6807483

DOCUMENT-IDENTIFIER: US 6807483 B1

TITLE: Method and system for prediction-based distributed navigation

DATE-ISSUED: October 19, 2004

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Chao; Yi-Chung Fremont CA
Jin; HaiPing San Jose CA
Dai; DongHai Fremont CA

US-CL-CURRENT: 701/210; 340/995.12, 340/995.23, 701/201, 701/209

CLAIMS:

We claim:

- 1. A prediction-based navigation method in a distributed system comprising a client and a remote server, wherein the steps of providing prediction-based distributed navigation by the client comprises: sending a request for a set of routing information to the server by the client, wherein the request comprises sending a set of position coordinates; estimating an initial user position in response to receiving the client request and the set of position coordinates; calculating a comfort zone range wherein the comfort zone range comprises a minimum and a maximum displacement value, wherein the minimum displacement is defined by a minimum weighted function, an initial user speed, and an estimated elapsed time, and the maximum displacement of the comfort zone range is defined by a maximum weighted function, the initial user speed, and the estimated elapsed time; and generating a new set of routing information to a destination requested by the user using the calculated comfort zone range to estimate a route origin and accessing one or more databases to determine a set of routing directions from the estimated route origin to the destination.
- 2. The prediction-based distributed navigation method of claim 1 wherein each position coordinate comprises a corresponding time component.
- 3. The prediction-based distributed navigation method of claim 2, wherein the request for routing instructions further comprises an initial user velocity having a speed component and a heading component.
- 4. The prediction-based distributed navigation method of claim 3, wherein the initial user speed is derived from the initial user velocity.
- 5. The prediction-based distributed navigation method of claim 2, wherein an

initial user velocity comprising a speed component and a heading component is derived from the set of position coordinates and corresponding time components.

- 6. The prediction-based distributed navigation method of claim 2, wherein an initial user speed is derived from the set of position coordinates and associated time components.
- 7. The prediction-based distributed navigation method of claim 1 wherein the maximum and minimum weighted functions comprise one or more weighted factors from a set of one or more weighted factors comprising a speed limit factor, a road condition factor, a traffic condition factor, a traffic signal factor, a weather factor, and a visibility factor.
- 8. The prediction-based distributed navigation method of claim 7 wherein each weighted factor comprises a variable multiplier.
- 9. The prediction-based distributed navigation method of claim 1 wherein the step of estimating the initial user position comprises providing the client a list of candidate locations to receive user selection input.
- 10. The prediction-based distribution navigation method of claim 1 wherein the step of estimating the initial user position comprises using a global positioning system in conjunction with the set of position coordinates.
- 11. The prediction-based distribution navigation method of claim 1 wherein the client communicates with the server via a wireless network.
- 12. The prediction-based distribution navigation method of claim 1 wherein the step of the server generating the new set of routing information comprises the server accessing one or more databases via a network.
- 13. The prediction-based distribution navigation method of claim 1 wherein the one or more databases accessed comprises a <u>map</u> database, a weather database, or a traffic database.
- 14. A prediction-based navigation method in a distributed system comprising a client and a remote server, wherein the steps of providing prediction-based distributed navigation by the client comprises: a) sending a request for a set of routing information to the server by the client, wherein the request comprises sending a set of position coordinates; b) estimating an initial user position in response to receiving the client request and the set of position coordinates; c) determining if the initial user position is ambiguous; d) if the initial user position is not ambiguous, calculating a comfort zone range wherein the comfort zone range comprises a minimum and a maximum displacement value, wherein the minimum displacement is defined by a minimum weighted function, an initial user speed, and an estimated elapsed time, and the maximum displacement of the comfort zone range is defined by a maximum weighted function, the initial user speed, and the estimated elapsed time; and e) generating a new set of routing information to a destination requested by the user using the calculated comfort zone range to estimate a route origin and accessing one or more databases to determine a set of routing directions from the estimated <u>route</u> origin to the destination.
- 15. The prediction-based distributed navigation method of claim 14 wherein each position coordinate comprises a corresponding time component.

- 16. The prediction-based distributed navigation method of claim 15, wherein the request for routing instructions further comprises an initial user velocity having a speed component and a heading component.
- 17. The prediction-based distributed navigation method of claim 16, wherein the initial user speed is derived from the initial user velocity.
- 18. The prediction-based distributed navigation method of claim 15, wherein an initial user velocity is derived from the set of position coordinates and corresponding time components.
- 19. The prediction-based distributed navigation method of claim 15, wherein an initial user speed is derived from the set of position coordinates and associated time components.
- 20. The prediction-based distribution navigation method of claim 15, wherein the initial user position is ambiguous, further comprising the step of sending a list of candidate locations to the user for selection.
- 21. The prediction-based distribution navigation method of claim 20, wherein the user selects a location from the list of candidate locations.
- 22. The prediction-based distribution navigation method of claim 21, wherein the client periodically acquires a set of most recent user position coordinates and sends the position coordinates to the server.
- 23. The prediction-based distribution navigation method of claim 22, wherein the server updates the user initial position to a new value according to the user-selected location from the list of candidate locations and the most recently acquired position coordinates from the client.
- 24. The prediction-based distribution navigation method of claim 20, wherein the user does not select a location from the list of candidate locations within an allotted timeout period.
- 25. The prediction-based distribution navigation method of claim 24, further comprising the step of selecting a location from the candidate list as a default selection.
- 26. The prediction-based distribution navigation method of claim 25, wherein the client periodically acquires a set of most recent user position coordinates and sends the position coordinates to the server.
- 27. The prediction-based distribution navigation method of claim 26, wherein the server updates the user initial position to a new value according to the default location selection from the list of candidate locations and the most recently acquired position coordinates from the client.
- 28. A prediction-based distributed navigation system comprising: a client for sending a request for a set of routing information, wherein the request comprises sending a set of position coordinates; and a server for receiving the request from the client, calculating a comfort zone range wherein the comfort zone range comprises a minimum and a maximum displacement value, and generating a new set of routing information to a destination requested by the client using the calculated comfort zone range to estimate a route origin and accessing one or more databases to determine a set of routing directions from

the estimated route origin to the destination.

- 29. The prediction-based distributed navigation system of claim 28, further comprising a wireless carrier coupled to the client on a first end for receiving the request from the client and coupled to the server on a second end for relaying the request from the client to the server.
- 30. The prediction-based distributed navigation system of claim 29, further comprising one or more direct links coupled to the wireless carrier on a first end for receiving the request from the wireless carrier and coupled to the server on a second end for relaying the request from the wireless carrier to the server.
- 31. The prediction-based distributed navigation system of claim 29, further comprising a gateway coupled to the wireless carrier on a first end for receiving the request from the wireless carrier and coupled to the server on a second end for relaying the request from the wireless carrier to the server.
- 32. The prediction-based distributed navigation system of claim 31, further comprising a network coupled to the gateway on a first end for receiving the request from the gateway and coupled to the server on a second end for relaying the request from the gateway to the server.
- 33. A <u>prediction-based</u> distributed navigation system comprising: a server for receiving a navigation request, calculating a comfort zone range wherein the comfort zone range comprises a minimum and a maximum displacement value, generating a new set of routing information to a requested <u>destination</u> using the calculated comfort zone range to estimate a <u>route</u> origin and accessing one or more databases to determine a set of routing directions from the estimated <u>route</u> origin to the <u>destination</u>; and a client for receiving the set of routing directions from the server.
- 34. The prediction-based distributed navigation system of claim 33, further comprising one or more direct links coupled on a first end to the server for receiving the routing directions and coupled on a second end to the client for relaying the routing directions.
- 35. The prediction-based distributed navigation system of claim 34, further comprising a wireless carrier coupled on a first end to the direct links for receiving the routing directions and coupled on a second end to the client for relaying the routing directions.
- 36. The prediction-based distributed navigation system of claim 33, further comprising a network coupled on a first end to the server for receiving the routing directions and coupled on a second end to the client for relaying the routing directions.
- 37. The prediction-based distributed navigation system of claim 36, further comprising a gateway coupled on a first end to the network for receiving the routing directions and coupled on a second end to the client for relaying the routing directions.
- 38. The prediction-based distributed navigation system of claim 37, further comprising a wireless carrier coupled on a first end to the gateway for receiving the routing directions and coupled on a second end to the client for relaying the routing directions.

The Contents of Case 10730642_2b

Qnum	Query 6748318.pn	DB Name	Thesaurus	Operator	Plural
Q1	or 6567745.pn	USPT	ASSIGNEE	OR	YES
Q2	Q1 and (pattern\$ or recogni\$)		ASSIGNEE	OR	YES
Q3	(pattern\$ with data with recogni\$)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	ASSIGNEE	OR	YES
Q4	Q3 and (navigat\$ with vehicle)	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	ASSIGNEE	OR	YES
Q5	Q4 and ((predict or forecast\$) with (destinat\$ or address\$ or	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	ASSIGNEE	OR	YES
Q6	location\$)) Q5 and compar\$	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD	ASSIGNEE	OR	YES

Case Operation
Run Case
Submit Cancel

Hit List

First Hit Clear Generate Collection Print Fwd Refs Blawd Refs
Generate OACS

Search Results - Record(s) 1 through 10 of 10 returned.

☐ 1. Document ID: US 20050125148 A1

Using default format because multiple data bases are involved.

L6: Entry 1 of 10

File: PGPB

Jun 9, 2005

PGPUB-DOCUMENT-NUMBER: 2005/125148

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20050125148 A1

TITLE: Prediction of vehicle operator destinations

PUBLICATION-DATE: June 9, 2005

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY Van Buer, Darrel J. Los Angeles CA US Johnson, Richard A. Rochester Hills ΜI US Dao, Son K. Northridge CA US Simon, Andrea Marie Walled Lake MΙ US

US-CL-CURRENT: 701/209; 340/995.19

=											
Full Title	Citation	Front	Review	Classification	Date	Reference	Sequences	Attachments	Claims	KWIC	Draw, De
			-					·		·	

☐ 2. Document ID: US 20040073361 A1

Q

L6: Entry 2 of 10

File: PGPB

Apr 15, 2004

PGPUB-DOCUMENT-NUMBER: 20040073361

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20040073361 A1

TITLE: Enhanced mobile communication device, and transportation application thereof

PUBLICATION-DATE: April 15, 2004

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY

Tzamaloukas, Assimakis San Jose CA US Farmwald, P. Michael Portola Valley CA US

US-CL-CURRENT: 701/210; 342/454, 701/209

☐ 3. Document ID: US 20020156572 A1 ○

L6: Entry 3 of 10

File: PGPB

Oct 24, 2002

PGPUB-DOCUMENT-NUMBER: 20020156572

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20020156572 A1

TITLE: Method of compiling navigation route content

PUBLICATION-DATE: October 24, 2002

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY

Bullock, James Blake Gilbert AZ US Geranen, J. Scott Phoenix AZ US

US-CL-CURRENT: 701/209; 340/988

US-PAT-NO: 6807483

DOCUMENT-IDENTIFIER: US 6807483 B1

TITLE: Method and system for prediction-based distributed navigation

☐ 5. Document ID: US 6745123 B1 ◊

L6: Entry 5 of 10

File: USPT

Jun 1, 2004

US-PAT-NO: 6745123

DOCUMENT-IDENTIFIER: US 6745123 B1

TITLE: Method and device for transmitting navigation information from data processing center to an on-board navigation system

☐ 6. Document ID: US 6526349 B2

L6: Entry 6 of 10

File: USPT

Feb 25, 2003

US-PAT-NO: 6526349

DOCUMENT-IDENTIFIER: US 6526349 B2

TITLE: Method of compiling navigation route content

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims KWIC Draw De

☐ 7. Document ID: US 6233517 B1 ∅

L6: Entry 7 of 10

File: USPT

May 15, 2001

US-PAT-NO: 6233517

DOCUMENT-IDENTIFIER: US 6233517 B1

TITLE: Predictive model for automated vehicle recommendation system

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims KMIC Draw De

□ 8. Document ID: US 6169515 B1

L6: Entry 8 of 10

File: USPT

C/

Jan 2, 2001

US-PAT-NO: 6169515

DOCUMENT-IDENTIFIER: US 6169515 B1

TITLE: Navigation information system

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims KWC Draw De

☐ 9. Document ID: US 5948040 A 0

L6: Entry 9 of 10

File: USPT

Sep 7, 1999

US-PAT-NO: 5948040

DOCUMENT-IDENTIFIER: US 5948040 A

TITLE: Travel reservation information and planning system

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims KMC Draw De

 \square 10. Document ID: US 5508930 A

L6: Entry 10 of 10

File: USPT

Apr 16, 1996

US-PAT-NO: 5508930

DOCUMENT-IDENTIFIER: US 5508930 A

TITLE: Vehicle navigation apparatus with new route replanning apparatus

Display Format: - Change Format

<u>Previous Page</u> <u>Next Page</u> <u>Go to Doc#</u>