# CSc 134 Database Management and File Organization

## 3. Relational Data Model and Relational Database Constraints

Ying Jin

Computer Science Department

California state University, Sacramento

### Relational Model Concepts

- Relational Model presents a database as a collection of relations.
  - Table :- Relation
  - Row :- Tuple
  - Column header :- attribute

| <b>Attribute</b> |  | Si | tud   | ant |
|------------------|--|----|-------|-----|
|                  |  |    | Geler |     |

|       | Name           | SSN         | <b>Home Phone</b> |
|-------|----------------|-------------|-------------------|
| Tuple |                |             |                   |
|       | Joe Smith      | 307-88-2907 | 602-7765543       |
|       | Barbara Miller | 590-38-6654 | 422-1076031       |

- Domain
  - Domain: A domain D in the relational model is a set of atomic values.
    - Atomic: Each value in the domain is indivisible as far as the relational model is concerned.
  - Domain:name, data type, format
  - e.g. USA\_Phone\_numbers: A character string of the form (ddd)ddd-dddd, where each d is a numeric (decimal) digit and the first three digits form a valid telephone area code.
  - e.g. employee\_age: Possible ages of employee of a company; each must be an integer value between 15 and 80.

- Relation Schema

name of the relation

- A relation Schema Ř(A1,A2,...An) is made up of a relation name R and a list of attributes A1,A2,...,An
  - E.g. STUDENT(Name,ssn,phoneNumber)
- Domain of Ai is denoted by dom(Ai)
   Degree of a relation: number of attributes n of its relation schema

- relation state
  - A relation (or relation state) of the relation schema R(A1,A2,...An) is denoted by r(R)
    - The relation is a set of of n-tuples r={t1, t2,..tm}, where each n-tuple t is an ordered list of values: t=<v1,v2,..vn>
    - each value vi, 1=<i<=n, is an element of dom(Ai) or is a special null value.

unknown or may not apply to a tuple



- relation state (Cont.)
  - r(R) ⊆ (dom(A1) X dom (A2) X ... X dom (An))
  - Tuples are unordered in a relation
  - A relation cannot have duplicate tuples
  - Denote cardinality (number of values) of domain D by |D|.
  - Maximum number of tuples in r(R) is |dom(A1)| \* |dom(A2)| \* ... \* |dom(An)|

- Attribute value

- Value v in tuple t for attribute A
  - t[Ai] or t.A.
  - E.g. Given tuple t=<'Joe Smith', '307-88-2907', '602-7765543'>
    - t[Name]=<'Joe Smith'>
    - t.Name=<'Joe Smith'>
    - t[SSN,Name]=<'307-88-2907', 'Joe Smith'>
    - t.(SSn,Name)=<'307-88-2907', 'Joe Smith'>
- An attribute A of a relation R can be presented as R.A
  - STUDENT.Name

### Constraints

- Category
  - Constraints on databases can generally be divided into three main categories:
    - Inherent model-based constraints
      - constraints that are inherent in the data model
      - e.g.
        - Ordering of tuples in a relation
        - Relational model represents facts about both entities and relationship uniformly a relation
        - A relation cannot have duplicate tuples

### Constraints

- Category (Cont.)

- Schema-based constraints
  - can be directly expressed in the schemas of the data model, typically by DDL.
- Application-based constraints
  - cannot be directly expressed in the schemas of the data model
  - must be expressed and enforced by application program.
- Another important category of constraints:
   Data Dependencies
  - functional dependencies and multivalued dependencies.

### Schema-based constraints

- Constraints are conditions that must hold on all valid relation states.
- Domain constraints
- Key constraints
- Constraints on nulls
- Entity integrity constraints
- Referential integrity constraints

### Domain constraints

- Within each tuple, the value of each attribute A must be an atomic value from the domain dom(A).
- Data type of domain
  - Integer
  - boolean
  - •

### Key constraints

- SK is a superkey of R, if for any two distinct tuples t1 and t2 in a relation state r of R, we have the constraint that t1[SK] ‡ t2[SK]
- Key constraint, Unique constraint
  - No two distinct tuples in any state r or R can have the same value for SK.
- e.g. {SSN, Name, Age}

### Key

- A key is a minimal superkey a superkey such that removal of any attribute from K results in a set of attributes that is not a superkey.
- e.g. {ssn}
- A relation schema may have more than one key, each of the keys is called a candidate key.
- e.g. fig

| _   |     |                    |                    |            |         |      |
|-----|-----|--------------------|--------------------|------------|---------|------|
| - [ | CAR | LicenseNumber      | EngineSerialNumber | Make       | Model   | Year |
| _   |     | Texas ABC-739      | A69352             | Ford       | Mustang | 96   |
|     |     | Florida TVP-347    | B43696             | Oldsmobile | Cutlass | 99   |
|     |     | New York MPO-22    | X83554             | Oldsmobile | Delta   | 95   |
|     |     | California 432-TFY | C43742             | Mercedes   | 190-D   | 93   |
|     |     | California RSK-629 | Y82935             | Toyota     | Camry   | 98   |
|     |     | Texas RSK-629      | U028365            | Jaguar     | XJS     | 98   |

### Primary Key

- Designate one of the candidate keys as the primary key of the relation.
- The choice of primary key from candidate keys is arbitrary
- It is better to choose a primary key with a single attribute or a small number of attributes.
- The primary key attributes are underlined.

### Constraints on NULL values

- A constraint specifies that null values are or are not permitted
- e.g. employee Name is constrained to be NOT NULL.

### Relational Database Schemas

 A relational database schema S is a set of relation schemas

 A relational database state DB of S is a set of relation states

$$DB = \{r1, r2, ..., rm\}$$

such that each ri is a state of Ri and ri satisfy the IC.

## Example of relational database schema



| FNAME | MINIT | LNAME | SSN | BDATE | ADDRESS | SEX | SALARY | SUPERSSN | DNO |  |
|-------|-------|-------|-----|-------|---------|-----|--------|----------|-----|--|
|-------|-------|-------|-----|-------|---------|-----|--------|----------|-----|--|

#### DEPARTMENT

#### DEPT\_LOCATIONS

| DNUMBER | DLOCATION |
|---------|-----------|
|         |           |

#### **PROJECT**

| PNAME PNUMBER PI | LOCATION | DNUM |
|------------------|----------|------|
|------------------|----------|------|

#### WORKS\_ON

| ESSN | PNO | HOURS |
|------|-----|-------|
|      |     | l     |

#### DEPENDENT

| ESSN | DEPENDENT_NAME | SEX | BDATE | RELATIONSHIP |
|------|----------------|-----|-------|--------------|
|      |                |     |       |              |

## One possible database state for the company schema

| EMPLOYEE | FNAME    | MINIT | LNAME   | SSN       | BDATE      | ADDRESS                  | SEX | SALARY | SUPERSSN   | DNO |
|----------|----------|-------|---------|-----------|------------|--------------------------|-----|--------|------------|-----|
|          | John     |       | Smith   | 123456789 | 1965-01-09 | 731 Fondran, Houston, TX | M   | 30000  | 333445565  | -5  |
|          | Franklin |       | World   | 333445555 | 1955-12-08 | 638 Vass, Hauston, TX    | M   | 40000  | 88866555   | 5   |
|          | Alida    |       | Zdoya   | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F   | 25000  | 9.87654321 | 4   |
|          | Jermifer |       | Wallace | 987654321 | 1941-08-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 88866555   | 4   |
|          | Ramesh   |       | Narayon | 699884444 | 1962-09-15 | 975 Fire Cak, Humble, TX | M   | 38000  | 333445565  | 5   |
|          | Joyce    |       | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F   | 25000  | 333445565  | 5   |
|          | Ahmad    |       | Jabbar  | 987987987 | 1989-03-29 | 980 Dallas, Houston, TX  | M   | 25000  | 9.87654321 | 4   |
|          | James    |       | Borg    | 88866555  | 1937-11-10 | 450 Stone, Houston, TX   | M   | 55000  | nul        | 1   |

| DEPT_LOCATIONS | DNUMBER | DLOCATION |
|----------------|---------|-----------|
|                |         | Houston   |
|                |         | Stofford  |
| GRSTARTDATE    |         | Bellaire  |
| 1988-05-22     |         | Supertand |
| 400E OL D.I.   |         | _         |

| _ |            |                |         |            |              |
|---|------------|----------------|---------|------------|--------------|
|   | DEPARTMENT | DNAME          | DNUMBER | MGRSSN     | MGRSTARTDATE |
|   |            | Researth       | 5       | 333445555  | 1988-05-22   |
|   |            | Administration | 4       | 987654321  | 1995-01-01   |
|   |            | Headquarters   | 1       | 88.8666555 | 1981-08-19   |

| 1 | ESSN       | PNO | HOURS |
|---|------------|-----|-------|
|   | 123456789  | 1   | 325   |
|   | 123456789  | 2   | 7.5   |
|   | 666884444  | 3.  | 40.0  |
|   | 453453453  | 1   | 20.0  |
|   | 453453453  | 2   | 20.0  |
|   | 333445555  | 2   | 10.0  |
|   | 333445555  | 3   | 10.0  |
|   | 333445555  | 10  | 10.0  |
|   | 333445555  | 20  | 10.0  |
|   | 99988.7777 | 30  | 30.0  |
|   | 999687777  | 10  | 10.0  |
|   | 987987987  | 10  | 35.0  |
|   | 987987987  | 30  | 5.0   |
|   | 987654321  | 30  | 20.0  |
|   | 987654321  | 20  | 15.0  |
|   | 88866655   | 20  | null  |
|   |            |     |       |

| PROJECT | PNAME           | PNUMBER | PLOCATION | DNUM |
|---------|-----------------|---------|-----------|------|
|         | ProductX        | 1       | Ballaira  | 5    |
|         | ProductY        | 2       | Sugarland | 5    |
|         | ProductZ        | 3       | Houston   | 5    |
|         | Computerization | 10      | Stafforti | 4    |
|         | Reorganization  | 20      | Hauston   | 1    |
|         | Newbenefts      | 30      | Staffort  | 4    |

| DEPENDENT | ESSN      | DEPENDENT_NAME | SEX | BDATE      | RELATIONSHIP |
|-----------|-----------|----------------|-----|------------|--------------|
|           | 333445555 | Alos           | F   | 1986-04-05 | DAUGHTER     |
|           | 333445555 | Theodore       | M   | 1983-10-25 | SON          |
|           | 333445656 | Joy            | F   | 1958-05-03 | SPOUSE       |
|           | 987654321 | Abner          | M   | 1942-02-28 | SPOUSE       |
|           | 123456789 | Michael        | M   | 1988-01-04 | SON          |
|           | 123456789 | Alica          | F   | 1988-12-30 | DAUGHTER     |
|           | 123456789 | Elizabeth      | F   | 1987-05-05 | SPOUSE       |

### Valid /invalid state

- When we refer to a relational database, we implicitly include its schema and its current state.
- A database state satisfies all the constraints in IC is called a valid state.
- A database state does not obey all the integrity constraints is called an invalid state.

### Entity integrity constraint

- Entity integrity constraint: No primary key value can be null
- Because the primary key value is used to identify individual tuples in a relation.
- Involve a single relation

### Referential integrity constraints

- Specify a relationship among tuples in two relations: the referencing relation and the referenced relation.
- Informally:
  - refer to an existing tuple

### Foreign Key

- A set of attributes FK in relation schema R1
  is a foreign key of R1 that references
  relation R2 if it satisfies two rules:
  - 1. The attributes in FK have the same domain(s) as the primary key attributes PK of R2
  - 2. A value of FK in a tuple t1 of the current state r1 (R1) either occurs as a value of PK for some tuple t2 in the current state r2(R2), or is NULL.

t1[FK] = t2[PK]. t1 references or refers to t2.

## Referential integrity constraint definition

- If the two conditions hold, the referencing integrity constraint from R1 to R2 is said to hold.
- A referential integrity constraint can be displayed in a relational database schema as a directed arc from R<sub>1</sub>.FK to R<sub>2</sub>.

## Referential integrity constraint example



### Refer to its own relation

- A foreign key can refer to its own relation.
- e.g. superssn

### Application-based constraints

- Semantic integrity constraints
- e.g. "The salary of an employee should not exceed the salary of the employee's supervisor"
- Constraint specification language
  - e.g. trigger, assertions
- Check within application programs

### **Update Operations on Relations**

- INSERT a tuple.
- DELETE a tuple.
- MODIFY a tuple.
- Integrity constraints should not be violated by the update operations.
- Updates may propagate to cause other updates automatically. This may be necessary to maintain integrity constraints.

### Update Operations on Relations (Cont.)

- In case of integrity violation, several actions can be taken:
  - Cancel the operation that causes the violation (REJECT option)
  - Perform the operation but inform the user of the violation
  - Trigger additional updates so the violation is corrected (CASCADE option, SET NULL option)
  - Execute a user-specified error-correction routine

### Constraint violation

- Insert

- Insert can violate
  - Domain constraints
  - Key constraints
  - Entity integrity constraints
  - Referential integrity constraints
- Reject the insertion in case of constraint violation

### Constraint violation

- Delete
  - Can violate referential integrity
  - In case of violation
    - Reject the deletion
    - Attempt to cascade the deletion
    - Modify the referencing attribute values the cause the violation
      - Set to null
        - foreign key is part of the primary key.
      - Change to reference another valid tuple
    - Specify it in DDL

### Constraint violation

- Update
  - Modify neither a primary key nor a foreign key
    - Check new value in the correct domain
  - Update a primary key or a foreign key
    - Delete + Insert
    - Can use DDL to specify how to handle update

These slides are based on the textbook:

R. Elmaseri and S. Navathe, *Fundamentals of Database Systems*, 6th Edition, Addison-Wesley.

Chapter 7.