

UNIVERSITYHACK 2018® DATATHON

wefferent

Deloitte.

Àlex Escolà Nixon

Florent Micand

Jaume Puigbò Sanvisens

La competición de analítica de datos más grande de España. Del 31 de enero al 12 de abril.

2 RETOS

19 CENTROS

1 () EQUIPOS x CENTRO

Inscripciones

Del 15 al 29 de enero de 2018

Fase LOCAL

Del 31 de enero al 21 de febrero de 2018

Fase NACIONAL

Del 1 de marzo al 14 de marzo de 2018

Presentación de mejores trabajos y Fallo del Jurado Nacional

12 de abril de 2018

¿Eres capaz de estimar el **poder** adquisitivo de un cliente?

Objetivo

Encontrar el mejor modelo de regresión mediante el desarrollo de un modelo predictivo que defina con precisión el **poder adquisitivo** de los clientes del Grupo Cajamar.

[&]quot;... puedes utilizar las distintas técnicas de Machine Learning disponibles para este tipo de problemas."

¿Qué hicimos?

Obtención de datos

Análisis exploratorio

Modelizar

Manipulación de variables

Diagnosis / Evaluación de Resultados Interpretación del Modelo

Condicionantes

- 1. No hay contacto con el **usuario del modelo**.
 - a. Falta de conocimiento del negocio.
 - b. Casos de uso limitados.
- 2. No tenemos especificaciones de las variables.
 - a. No es posible clasificar en categorías concretas.
 - b. Con tan alto nivel de abstracción no es posible orientar el análisis.

Dataset

Datos históricos de un grupo clientes, particulares y autónomos, del Grupo Cajamar con 88 variables de productos incluyendo atributos socio demográficos.

El número total de registros es de **363.834** con 89 variables por registro.

Variables en el Dataset

- ID_Customer: Identificador de cliente.
- Socio_Demo_01-05: Variables sociodemográficas relacionadas con el cliente.
- Imp_Cons_01-17: Importe de consumos habituales del cliente en base a sus operaciones con tarjetas y domiciliaciones más comunes.
- Imp_Sal_01-21: Importe de los saldos de los distintos productos financieros.
- Ind_Prod_01-24: Tenencia de los distintos productos financieros.
- Num_Oper_01-20: Número de operaciones a través de los distintos productos financieros.
- Poder_Adquisitivo: Variable objetivo, variable numérica que define el poder adquisitivo del cliente.

Distribución del poder adquisitivo

Poder Adquisitivo en Euros

Min	5%	10%	25%	Mediana	Media	75%	90%	95%	99%	Max
3.600	5.140	5.961	9.300	12.925	16.421	18.948	27.812	35.013	63.924	5.040.000

- Modificación de variables
- Transformación de variables
- Feature Engineering

- Modificación de variables
- Transformación de variables
- Feature Engineering

- Dependencia de las variables con el poder adquisitivo
- Correlación entre variables

Correlación entre los Imp. de Saldos

#UniversityHack

13

- Dependencia de las variables con el poder adquisitivo
- Correlación entre variables

Manipulación de variables

Manipulaciones mencionadas previamente

- Eliminación de variables
- "2" a "1" en productos
- Buckets Socio_Demo_01

- Outliers
- Regresión lineal como característica de entrada

- Normalización de variables numéricas
- OneHot Encoding de variables catégoricas no binarias

Modelo

Extreme Gradient Boosting Regressor

- Split train (70%) / test (30%)
- Transformación de variables (formato sparse)
- Ajuste de parámetros mediante Grid Search
- Evaluación
- Entrenamiento sobre el conjunto completo
- Generación de predicciones

Random Forest, Dense Neural Networks

Evaluación

1. Mean Absolute Error

$$MAE = \frac{1}{n} \sum_{i=1}^{n} \left| y_{real} - y_{pred} \right|$$

2. Mean Absolute Percentage Error

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_{real} - y_{pred}|}{|y_{real}|}$$

3. Evaluación por umbrales

Resultados

Resultados

Evaluación por umbrales

	Muestras de Test	Muestras de Pred correspondientes	Precisión por Umbral (%)
< 5000€	2314	38	1.64
5000€ - 7000€	10245	5074	49.53
7000€ - 9000€	8786	4045	46.04
9000€ - 11000€	12799	8510	66.49
11000€ - 13000€	11743	8317	70.83
13000€ - 15000€	9583	7020	73.25
15000€ - 17000€	7237	5327	73.61
17000€ - 19000€	5571	4211	75.59
19000€ - 21000€	4174	3174	76.04
21000€ - 23000€	3356	2609	77.74
23000€ - 25000€	2708	2163	79.87
25000€ - 27000€	2270	1833	80.75
> 29000€	8104	4278	52.79

Interpretación

- SHAP: Teoría de juegos + explicaciones locales
- Gain, Split Count, Permutation son inconsistentes.
- Resultados individualizados.
- Mide el efecto al quitar ciertas variables y compara los resultados con los valores esperados usando la teoría de juegos.

Interpretación

Mejoras futuras

- Ampliar el **Grid Search** del modelo
- Clasificador del PA por umbrales como modelo alternativo
- Obtener bondad de cada predicción mediante un clasificador cuyo target es el MAPE

Mas información

Notebook: https://github.com/jpuigbo88/Universityhack2018

SHAP: https://github.com/slundberg/shap

Ganadores:

http://www.cajamardatalab.com/datathon-cajamar-universityhack-2018/ganadores/

La competición de analítica de datos más grande de toda España.

Muchas gracias.