Algorithmique Avancée et Complexité: Programmation Dynamique AAC

Sophie Tison-USTL-Master1 Informatique

LA PROGRAMMATION DYNAMIQUE EST:

Un schéma d'algorithme exhibé dans les années 1950 par Bellman et basé sur deux idées simples

LA PROGRAMMATION DYNAMIQUE EST:

Un schéma d'algorithme exhibé dans les années 1950 par Bellman et basé sur deux idées simples

 Résoudre un problème grâce à la solution de sous-problèmes

LA PROGRAMMATION DYNAMIQUE EST:

Un schéma d'algorithme exhibé dans les années 1950 par Bellman et basé sur deux idées simples

- Résoudre un problème grâce à la solution de sous-problèmes
- ► Eviter de calculer deux fois la même chose, i.e. la solution du même sous-problème.

Un exemple basique illustrant le deuxième point

On cherche à calculer la suite définie par :

$$F_n = F_{n-1} + F_{n-2}$$

 $F_0 = F_1 = 1$

Un exemple basique illustrant le deuxième point

On cherche à calculer la suite définie par :

$$F_n = F_{n-1} + F_{n-2}$$

 $F_0 = F_1 = 1$

Quel est le nom de cette suite?

Un exemple basique illustrant le deuxième point

On cherche à calculer la suite définie par :

$$F_n = F_{n-1} + F_{n-2}$$

 $F_0 = F_1 = 1$

Quel est le nom de cette suite?

La suite de Fibonacci

L'ALGORITHME "NATUREL":

```
F_n = F_{n-1} + F_{n-2} F_0 = F_1 = 1 //Précondition: n entier >=0, int Fib (int n) { if (n <=1) return 1; else return Fib (n-1) + Fib (n-2); }
```

Soit A(n) le nombre d'appels à Fib-y compris le principal-lors de l'évaluation de Fib(n)

```
int Fib (int n) {
if ((n<=1)) return 1;
else
return Fib(n-1)+Fib(n-2);}</pre>
```

Soit A(n) le nombre d'appels à Fib-y compris le principal-lors de l'évaluation de Fib(n)

```
int Fib (int n) {
L'appel principal
if ((n<=1)) return 1;
else
return Fib(n-1)+Fib(n-2);}</pre>
```

Soit A(n) le nombre d'appels à Fib-y compris le principal-lors de l'évaluation de Fib(n)

```
int Fib (int n) {
L'appel principal
if ((n<=1)) return 1;
pas d'appel interne si p=0 ou p=1
else
return Fib(n-1)+Fib(n-2);}</pre>
```

Soit A(n) le nombre d'appels à Fib-y compris le principal-lors de l'évaluation de Fib(n)

```
int Fib (int n) {
L'appel principal
if ((n<=1)) return 1;
pas d'appel interne si p=0 ou p=1
else
return Fib(n-1)+Fib(n-2);}
A(n-1)+A(n-2) appels internes</pre>
```

Soit A(n) le nombre d'appels à Fib-y compris le principal-lors de l'évaluation de Fib(n)

Comment le calculer?

```
int Fib (int n) {
L'appel principal
if ((n<=1)) return 1;
pas d'appel interne si p=0 ou p=1
else
return Fib(n-1)+Fib(n-2);}
A(n-1)+A(n-2) appels internes</pre>
```

Donc:

$$A(0) = A(1) = 1$$

 $1 < n : A(n) = 1 + A(n-1) + A(n-2)$

$$A(0) = A(1) = 1$$

 $1 < n : A(n) = 1 + A(n-1) + A(n-2)$

$$A(0) = A(1) = 1$$

 $1 < n : A(n) = 1 + A(n-1) + A(n-2)$

Donc:

$$A(n)$$
? $Fib(n)$

$$A(0) = A(1) = 1$$

 $1 < n : A(n) = 1 + A(n-1) + A(n-2)$

Donc:

$$A(n) \ge Fib(n)$$

$$A(0) = A(1) = 1$$

 $1 < n : A(n) = 1 + A(n-1) + A(n-2)$

$$A(0) = A(1) = 1$$

 $1 < n : A(n) = 1 + A(n-1) + A(n-2)$

Donc:

$$A(n) \ge 2^{n/2}$$
?

$$A(0) = A(1) = 1$$

 $1 < n : A(n) = 1 + A(n-1) + A(n-2)$

Donc:

$$A(n) \ge 2^{n/2}$$
?

Exo: Par récurrence.

```
//Précondition: n entier >=0,
int Fib (int n) {
  if (p <=1)
    return 1;
  else return Fib(n-1)+Fib(n-2);
}</pre>
```

```
//Précondition: n entier >=0,
int Fib (int n) {
  if (p <=1)
    return 1;
  else return Fib(n-1)+Fib(n-2);
}</pre>
```

- ► Arbre binaire
- ► Longueur minimale d'une branche

```
//Précondition: n entier >=0,
int Fib (int n) {
  if (p <=1)
    return 1;
  else return Fib(n-1)+Fib(n-2);
}</pre>
```

- ► Arbre binaire
- ► Longueur minimale d'une branche: n/2
- ► Longueur maximale d'une branche:

```
//Précondition: n entier >=0,
int Fib (int n) {
  if (p <=1)
    return 1;
  else return Fib(n-1)+Fib(n-2);
}</pre>
```

- ► Arbre binaire
- ► Longueur minimale d'une branche: n/2
- ► Longueur maximale d'une branche: n-1

Soit un arbre binaire: un noeud est soit binaire soit une feuille. Soit N_i son nombre de noeuds internes, N_f son nombre de feuilles, h sa hauteur, l_{min} la longueur minimale d'une branche.

 N_f ??? N_i

$$N_f = 1 + N_i$$

$$N_f = 1 + N_i$$

$$? \leq N_f \leq ?$$

$$N_f = 1 + N_i$$

$$2^{l_{min}} \leq N_f \leq ?$$

$$N_f = 1 + N_i$$

$$2^{l_{min}} \leq N_f \leq 2^h$$

$$N_f = 1 + N_i$$
 $2^{l_{min}} \le N_f \le 2^h$ $\mathrm{si}\ h = l_{min}\ N_f = 2^h$

NOMBRE D'APPELS?

```
//Précondition: n entier >=0,
int Fib (int n) {
  if (p <=1)
    return 1;
  else return Fib(n-1)+Fib(n-2);
}</pre>
```

- ► Arbre binaire
- ► Longueur minimale d'une branche: n/2
- ► Longueur maximale d'une branche: n-1
- ▶ nombre de noeuds internes= nombre d'appels $\geq 2^{n/2} 1$
- ▶ nombre de noeuds internes= nombre d'appels $\leq 2^{n-1} 1$

Soit B(n) le nombre d'appels internes à Fib lors de l'évaluation de Fib(n). Comment le calculer?

```
int Fib (int n) { if ((p<=1)) return 1; else return Fib(n-1)+Fib(n-2);}
```

```
Soit B(n) le nombre d'appels internes à Fib lors de l'évaluation de Fib(n). Comment le calculer? int Fib (int n) { if ((p<=1)) return 1; 0 appel interne si \ p=0 \ ou \ p=1 else return Fib (n-1)+Fib (n-2);}
```

```
Soit B(n) le nombre d'appels internes à Fib lors de l'évaluation de Fib(n). Comment le calculer?

int Fib (int n) { if ((p<=1)) return 1; 0 appel interne si \ p=0 \ ou \ p=1 el se

return Fib (n-1) +Fib (n-2); }

2+B(n-1)+B(n-2) appels internes
```

1 < n : B(n) = 2 + B(n-1) + B(n-2)

B(0) = B(1) = 0

Soit B(n) le nombre d'appels internes à Fib lors de l'évaluation de Fib(n). Comment le calculer?

int Fib (int n) { if ((p<=1)) return 1; 0 appel interne si p=0 ou p=1 else

return Fib (n-1)+Fib (n-2);}

2+B(n-1)+B(n-2) appels internes

Donc:

QUE DIRE DE LA COMPLEXITÉ DE L'ALGORITHME?

L'algorithme est impraticable.

REMARQUE

On se contente de borner inférieurement le nombre d'appels si on veut juste montrer qu'il est "mauvais"!!! Inutile de calculer précisément son ordre de grandeur!

REVENONS À LA PROGRAMMATION DYNAMIQUE

Pourquoi la complexité de l'algo est-elle mauvaise?

REVENONS À LA PROGRAMMATION DYNAMIQUE

Pourquoi la complexité de l'algo est-elle mauvaise?

On recalcule de nombreuses fois les même valeurs!

Une solution itérative

```
// 1<=n
int F[] =new int[n+1];
  F[0]=1;
  F[1]=1;
  for (int i=2; i<=n; i++) F[i]=F[i-1]+F[i-2];</pre>
```

Complexité?

Une solution itérative

Complexité en $\Theta(n)$

```
// 1<n
int F[] =new int[n+1];
  F[0]=1;
  F[1]=1;
  for (int i=2; i<=n;i++) F[i]=F[i-1]+F[i-2];</pre>
```

► Complexité en $\Theta(n)$

- ► Complexité en $\Theta(n)$
- ► La taille de la donnée est log *n*. L'algo est-il polynomial?

- ► Complexité en $\Theta(n)$
- ► La taille de la donnée est log *n*. L'algo est-il polynomial? On dit qu'il est pseudo-polynomial.
- ► Le coût uniforme est-il raisonnable?

- ► Complexité en $\Theta(n)$
- ► La taille de la donnée est log *n*. L'algo est-il polynomial? On dit qu'il est pseudo-polynomial.
- ► Le coût uniforme est-il raisonnable? Pas vraiment ici...
- ► Complexité spatiale: essentiellement le tableau des n+1 valeurs stockées: en $\Theta(n)$, ou plutôt en $\Theta(n^*$ taille max des entiers manipulés), ce qui donnerait ici $\Theta(n^2)$ (Q? Pourquoi?). Comment l'améliorer?

- ► Complexité en $\Theta(n)$
- ► La taille de la donnée est log *n*. L'algo est-il polynomial? On dit qu'il est pseudo-polynomial.
- ► Le coût uniforme est-il raisonnable? Pas vraiment ici...
- ► Complexité spatiale: essentiellement le tableau des n+1 valeurs stockées: en $\Theta(n)$, ou plutôt en $\Theta(n^*$ taille max des entiers manipulés), ce qui donnerait ici $\Theta(n^2)$ (Q? Pourquoi?). Comment l'améliorer? On n'a besoin que des deux dernières valeurs.
- ► Il existe d'autres solutions pour calculer la suite de Fibonacci!

Le problème:

On a un triangle de n lignes de nombres entiers.

Le problème:

On a un triangle de n lignes de nombres entiers.

On part du sommet.

Le problème:

On a un triangle de n lignes de nombres entiers.

On part du sommet.

A chaque étape, on choisit à la ligne du dessous un des deux nombres adjacents.

Le problème:

On a un triangle de n lignes de nombres entiers.

On part du sommet.

A chaque étape, on choisit à la ligne du dessous un des deux nombres adjacents.

On s'arrête quand on est sur la dernière ligne.

Le problème:

On a un triangle de n lignes de nombres entiers.

On part du sommet.

A chaque étape, on choisit à la ligne du dessous un des deux nombres adjacents.

On s'arrête quand on est sur la dernière ligne.

On cherche à maximiser la somme totale des nombres choisis.

5 8 10 11 3 4

8 10 11 3 4

		5		
	8		10	
11		3		4

8 10 11 3 4

5 8 10 11 3 4

Combien de chemins possibles?

Combien de chemins possibles? 2^{n-1}

► Sous-problème:

► Sous-problème: le meilleur gain à partir d'un "sommet" quelconque (de bas en haut par exemple)

- ► Sous-problème: le meilleur gain à partir d'un "sommet" quelconque (de bas en haut par exemple)
- ► Identifier les paramètres d'un sous-problème: un "sommet":

- ► Sous-problème: le meilleur gain à partir d'un "sommet" quelconque (de bas en haut par exemple)
- Identifier les paramètres d'un sous-problème: un "sommet": son numéro de ligne (de bas en haut par exemple),

- ➤ Sous-problème: le meilleur gain à partir d'un "sommet" quelconque (de bas en haut par exemple)
- ► Identifier les paramètres d'un sous-problème: un "sommet": son numéro de ligne (de bas en haut par exemple), son rang dans la ligne (de gauche à droite par exemple)

- ► Sous-problème: le meilleur gain à partir d'un "sommet" quelconque (de bas en haut par exemple)
- ► Identifier les paramètres d'un sous-problème: un "sommet": son numéro de ligne (de bas en haut par exemple), son rang dans la ligne (de gauche à droite par exemple)
- ► G(l,r): gain maximum à partir de la case (l,r) $0 \le l \le n-1$, $0 \le r \le l$

- ► Sous-problème: le meilleur gain à partir d'un "sommet" quelconque (de bas en haut par exemple)
- ► Identifier les paramètres d'un sous-problème: un "sommet": son numéro de ligne (de bas en haut par exemple), son rang dans la ligne (de gauche à droite par exemple)
- ► G(l,r): gain maximum à partir de la case (l,r) $0 \le l \le n-1$, $0 \le r \le l$
- ► Cas simple?

- ► Sous-problème: le meilleur gain à partir d'un "sommet" quelconque (de bas en haut par exemple)
- ► Identifier les paramètres d'un sous-problème: un "sommet": son numéro de ligne (de bas en haut par exemple), son rang dans la ligne (de gauche à droite par exemple)
- ► G(l,r): gain maximum à partir de la case (l,r) $0 \le l \le n-1$, $0 \le r \le l$
- ► Cas simple? l = n 1:

- ► Sous-problème: le meilleur gain à partir d'un "sommet" quelconque (de bas en haut par exemple)
- ► Identifier les paramètres d'un sous-problème: un "sommet": son numéro de ligne (de bas en haut par exemple), son rang dans la ligne (de gauche à droite par exemple)
- ► G(l,r): gain maximum à partir de la case (l,r) $0 \le l \le n-1$, $0 \le r \le l$
- ► Cas simple? l = n 1: G(n 1, r) = val(n 1, r)

- ► Sous-problème: le meilleur gain à partir d'un "sommet" quelconque (de bas en haut par exemple)
- ► Identifier les paramètres d'un sous-problème: un "sommet": son numéro de ligne (de bas en haut par exemple), son rang dans la ligne (de gauche à droite par exemple)
- ► G(l,r): gain maximum à partir de la case (l,r) $0 \le l \le n-1$, $0 \le r \le l$
- ► Cas simple? l = n 1: G(n 1, r) = val(n 1, r)
- ► Récurrence?

- ► Sous-problème: le meilleur gain à partir d'un "sommet" quelconque (de bas en haut par exemple)
- ► Identifier les paramètres d'un sous-problème: un "sommet": son numéro de ligne (de bas en haut par exemple), son rang dans la ligne (de gauche à droite par exemple)
- ► G(l,r): gain maximum à partir de la case (l,r) $0 \le l \le n-1$, $0 \le r \le l$
- ► Cas simple? l = n 1: G(n 1, r) = val(n 1, r)
- ▶ Récurrence? $0 \le l \le n-2$, $0 \le r \le l$:

- ► Sous-problème: le meilleur gain à partir d'un "sommet" quelconque (de bas en haut par exemple)
- ► Identifier les paramètres d'un sous-problème: un "sommet": son numéro de ligne (de bas en haut par exemple), son rang dans la ligne (de gauche à droite par exemple)
- ► G(l,r): gain maximum à partir de la case (l,r) $0 \le l \le n-1, 0 \le r \le l$
- ► Cas simple? l = n 1: G(n 1, r) = val(n 1, r)
- ► Récurrence? $0 \le l \le n-2$, $0 \le r \le l$: G(l,r) = val(l,r) + max(G(l+1,r), G(l+1,r+1))

LA SOLUTION "NAÏVE"

G(n-1,r) = val(n-1,r)

```
\begin{split} 0 &\leq l \leq n-2, 0 \leq rl \\ G(l,r) &= val(l,r) + max(G(l+1,r),G(l+1,r+1)) \\ \text{D'où l'algorithme:} \\ \text{// val un tableau "triangle" de n lignes} \\ \text{int Gain (l,r) } \\ \text{if } l=n-1 \text{ return val(l,r)} \\ \text{else} \\ \text{return val(l,r)+max(Gain(l+1,r),Gain(l+1,r+1))} \end{split}
```

Complexité?

COMPLEXITÉ DE LA SOLUTION "NAÏVE"

```
// val un tableau "triangle" de n lignes
int Gain (l,r) {
  if l=n-1 return val(l,r)
  else
    return val(l,r)+max(Gain(l+1,r),Gain(l+1,r+1))
```

Complexité en $\Theta(2^n)$ donc impraticable!

EST-ON DANS LE CADRE DE LA PROGRAMMATION DYNAMIQUE?

Environ 2^n appels.

EST-ON DANS LE CADRE DE LA PROGRAMMATION DYNAMIQUE?

Environ 2^n appels.

Il ne peut y avoir plus d'appels "différents" que d'entiers, soit n(n+1)/2!

EST-ON DANS LE CADRE DE LA PROGRAMMATION DYNAMIQUE?

Environ 2^n appels.

Il ne peut y avoir plus d'appels "différents" que d'entiers, soit n(n+1)/2!

Donc on recalcule de nombreuses fois les mêmes valeurs!

EST-ON DANS LE CADRE DE LA PROGRAMMATION DYNAMIQUE?

Environ 2^n appels.

Il ne peut y avoir plus d'appels "différents" que d'entiers, soit n(n+1)/2!

Donc on recalcule de nombreuses fois les mêmes valeurs!

On est bien dans le cadre de la programmation dynamique: on va utiliser une table (par exemple) pour mémoriser les valeurs.

LA SOLUTION DYNAMIQUE ITÉRATIVE :

```
G(n-1,r) = val(n-1,r)
0 < l < n - 2, 0 < r < l
G(l,r) = val(l,r) + max(G(l+1,r), G(l+1,r+1))
// val un tableau "triangle" de n lignes
int Gain[][] = new int[n][n];
// init: cas de base
  for ( int r=0 ; i <= n-1; i++)
     Gain[n-1][r]=Val[n-1][r];
//remplissage selon récurrence
  for (int l=n-2; l>=0; l--)
     for ( int r=0 ; r <= 1 ; r++)
        Gain[]][r]= Val[]][r]
            +Maths.max(Gain[l+1][r], Gain[l+1][r+1]);
  return Gain[0][0];
```

LA SOLUTION DYNAMIQUE ITÉRATIVE :

```
// val un tableau "triangle" de n lignes
int Gain[][] = new int[n][n];
// init: cas de base
  for ( int r=0 ; i <= n-1; i++)
     Gain[n-1][r]=Val[n-1][r];
//remplissage selon récurrence
  for (int l=n-2; l>=0; l--)
     for ( int r=0 ; r <= 1 ; r++)
        Gain[l][r] = Val[l][r]
           +Maths.max(Gain[l+1][r], Gain[l+1][r+1]);
 return Gain[0][0];
```

Complexité en $\Theta(n^2)$

RÉCUPÉRER LA STRATÉGIE?

Une fois la table *Gain* remplie, on fait une "remontée" (en fait ici une descente!) dans la table pour récupérer la stratégie.

```
// val un tableau "triangle" de n lignes
// Gain le tableau rempli des gains optimaux
int l=0;
int r=0;
//on se positionne à la case de départ
while (1 < n-1) {
     if Gain(l+1,r+1) > Gain(l+1,r) r++;
                          // on va à droite!
     1++;
     "sortir l,r";
```

UNE SOLUTION RÉCURSIVE DYNAMIQUE

```
// val un tableau "triangle" de n lignes
// G une table qui stocke les valeurs calculées
// DejaCalc table de booléens
         qui indique si une valeur est calculée
int Gain (l,r) {
 if l==n-1 return val(1,r)
 else if DejaCalc[l][r] return G[l][r];
       //on retourne la valeur stockée
 else
   {DejaCalc[1][r]=true;
     return G[1][r]=val(1,r)
         +\max(Gain(l+1,r), Gain(l+1,r+1));
      //on calcule, stocke et retourne
```

UNE SOLUTION RÉCURSIVE DYNAMIQUE

```
// val un tableau "triangle" de n lignes
// G une table qui stocke les valeurs calculées
// DejaCalc table de booléens
         qui indique si une valeur est calculée
int Gain (l,r) {
 if l==n-1 return val(1,r)
 else if DejaCalc[l][r] return G[l][r];
       //on retourne la valeur stockée
 else
   {DejaCalc[l][r=true;
     return G[1][r]=val(1,r)
         +\max(Gain(l+1,r), Gain(l+1,r+1));
      //on calcule, stocke et retourne
```

UNE AUTRE SOLUTION RÉCURSIVE DYNAMIQUE

```
// val un tableau "triangle" de n lignes
// table G stocke les valeurs calculées
// G initialisée à 0
// on suppose les entiers strictement positifs
// 0 est donc valeur sentinelle
int Gain (l,r) {
 if l=n-1 return val(l,r)
 else if G[l][r] >0 return G[l][r];
           //on retourne la valeur stockée
 else return G[l][r]=val(l,r)
             + \max (Gain (l+1,r), Gain (l+1,r+1));
           //on calcule, stocke et retourne
```

Complexité en $\Theta(n^2)$

QUAND PEUT-ON UTILISER LA PROGRAMMATION DYNAMIQUE?

. La solution (optimale) d'un problème de taille n s'exprime en fonction de la solution (optimale) de problèmes de taille inférieure à n -c'est le principe d'optimalité-.

QUAND PEUT-ON UTILISER LA PROGRAMMATION DYNAMIQUE?

- . La solution (optimale) d'un problème de taille n s'exprime en fonction de la solution (optimale) de problèmes de taille inférieure à n -c'est le principe d'optimalité-.
- . Une implémentation récursive "naïve" conduit à calculer de nombreuses fois la solution de mêmes sous-problèmes.

COMMENT UTILISER LA PROGRAMMATION DYNAMIQUE?

On définit une table pour mémoriser les calculs déjà effectués: à chaque élément correspondra la solution d'un et d'un seul problème intermédiaire, un élément correspondant au problème final.

COMMENT UTILISER LA PROGRAMMATION DYNAMIQUE?

On définit une table pour mémoriser les calculs déjà effectués: à chaque élément correspondra la solution d'un et d'un seul problème intermédiaire, un élément correspondant au problème final.

Il faut donc qu'on puisse déterminer les sous-problèmes (ou un sur-ensemble de ceux-ci) qui seront traités au cours du calcul (ou un sur-ensemble de ceux-ci) ...

COMMENT UTILISER LA PROGRAMMATION DYNAMIQUE?

On définit une table pour mémoriser les calculs déjà effectués: à chaque élément correspondra la solution d'un et d'un seul problème intermédiaire, un élément correspondant au problème final.

Il faut donc qu'on puisse déterminer les sous-problèmes (ou un sur-ensemble de ceux-ci) qui seront traités au cours du calcul (ou un sur-ensemble de ceux-ci) ...

Ensuite il faut remplir cette table; il y a deux approches, l'une itérative, l'autre récursive.

LA VERSION ITÉRATIVE

On initialise les "cases" correspondant aux cas de base.

LA VERSION ITÉRATIVE

On initialise les "cases" correspondant aux cas de base.

On remplit ensuite la table selon un ordre bien précis à déterminer: on commence par les problèmes de "taille" la plus petite possible, on termine par la solution du problème principal: il faut bien sûr qu'à chaque calcul, on n'utilise que les solutions déjà calculées.

Le but est bien sûr que chaque élément soit calculé une et une seule fois.

A chaque appel, on regarde dans la table si la valeur a déjà été calculée (donc une "case" correspond à un booléen et une valeur ou à une seule valeur si on utilise une valeur "sentinelle").

A chaque appel, on regarde dans la table si la valeur a déjà été calculée (donc une "case" correspond à un booléen et une valeur ou à une seule valeur si on utilise une valeur "sentinelle").

Si oui, on ne la recalcule pas: on récupère la valeur mémorisée.

A chaque appel, on regarde dans la table si la valeur a déjà été calculée (donc une "case" correspond à un booléen et une valeur ou à une seule valeur si on utilise une valeur "sentinelle").

Si oui, on ne la recalcule pas: on récupère la valeur mémorisée.

Si non, on la calcule, on mémorise qu'on l'a calculée et on stocke la valeur correspondante.

Donc si la version récursive naïve est:

```
fonction f(parametres p)
  si cas_de_base(p) alors g(p)
  sinon h(f(p_1),...,f(p_k))
```

le schéma de l'algorithme récursif dynamique sera:

```
//tabcalcul: dictionnaire des valeurs calculées
//...un tableau, ou une table de hachage
// le sous-problème-ses paramètres- est la clé
fonction fdynrec(parametres p)
{si non (tabcalcul.contains(p))
                   alors //on calcule et on mémorise
                   \{val = (si casdebase(p) alors q(p)\}
                         sinon h(fdynrec(p_1), ..., fdynrec(p_k)));
                        tabcalcul. ajouter(p, val); };
     retourner tabcalcul.valeur(p);}
                                                                                                                                                                                                           4 D D A 同 D A E D A 目 D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O D A O
```

CONCEPTION D'UN ALGORITHME DE PROGRAMMATION DYNAMIQUE

L'essentiel du travail conceptuel réside dans l'expression d'une solution d'un problème en fonction de celles de problèmes "plus petits"!!!

Le problème: Une sous-suite (ou sous-mot) d'un mot u est un mot w obtenu à partir de u en effaçant des lettres: aac est sous-suite de arracher, de avancer, de hamac...

Le problème: Une sous-suite (ou sous-mot) d'un mot u est un mot w obtenu à partir de u en effaçant des lettres: aac est sous-suite de arracher, de avancer, de hamac... Soient deux mots u et v. On cherche la longueur de la (ou d'une) plus longue sous-suite commune des deux mots ainsi qu'une telle sous-suite. On notera lcs(u,v) cette longueur.

Le problème: Une sous-suite (ou sous-mot) d'un mot u est un mot w obtenu à partir de u en effaçant des lettres: aac est sous-suite de arracher, de avancer, de hamac... Soient deux mots u et v. On cherche la longueur de la (ou d'une) plus longue sous-suite commune des deux mots ainsi qu'une telle sous-suite. On notera lcs(u,v) cette longueur. Par exemple, si u = acc et v = archi,

Le problème: Une sous-suite (ou sous-mot) d'un mot u est un mot w obtenu à partir de u en effaçant des lettres: aac est sous-suite de arracher, de avancer, de hamac... Soient deux mots u et v. On cherche la longueur de la (ou d'une) plus longue sous-suite commune des deux mots ainsi qu'une telle sous-suite. On notera lcs(u,v) cette longueur. Par exemple, si u = acc et v = archi, ac est la sous-suite de longueur maximale et donc lcs(u,v) vaut 2.

Notons LCS(i,j) la longueur maximale d'une sous-suite des mots $u_1..u_i$ -les i premières lettres de u- et $v_1..v_j$ -les j premières lettres de v-. On a donc:

► Les cas de base: LCS(i, 0) = 0 = LCS(0, j)

- ► Les cas de base: LCS(i, 0) = 0 = LCS(0, j)
- ▶ la récurrence:

- ► Les cas de base: LCS(i, 0) = 0 = LCS(0, j)
- ▶ la récurrence:
 - si $u_i = v_j$,

- ► Les cas de base: LCS(i,0) = 0 = LCS(0,j)
- ▶ la récurrence:
 - si $u_i = v_j$, LCS(i, j) = 1 + LCS(i 1, j 1)

- ► Les cas de base: LCS(i,0) = 0 = LCS(0,j)
- ▶ la récurrence:
 - $\operatorname{si} u_i = v_j$, LCS(i, j) = 1 + LCS(i 1, j 1)
 - si $u_i \neq v_j$,

- ► Les cas de base: LCS(i,0) = 0 = LCS(0,j)
- ▶ la récurrence:
 - $\operatorname{si} u_i = v_j$, LCS(i, j) = 1 + LCS(i 1, j 1)
 - si $u_i \neq v_j$, LCS(i,j) = max(LCS(i-1,j), LCS(i,j-1))

Version récursive naïve

```
....int solvpart(int i, int j) {
    //retourne LCS(i, j)
    if (i==0) return 0;
    else if (j==0) return 0;
    else if (pb.u.charAt(i-1)==pb.v.charAt(j-1))
        return 1+solvpart(i-1, j-1);
    else return
        max (solvpart(i-1, j), solvpart(i, j-1));}
```

Complexité de la version récursive naïve?

```
....int solvpart(int i, int j) {
   //retourne LCS(i,j)
   if (i==0) return 0;
   else if (j==0) return 0;
   else if (pb.u.charAt(i-1)==pb.v.charAt(j-1))
        return 1+solvpart(i-1, j-1);
   else return
        max (solvpart(i-1, j),solvpart(i, j-1));}
```

La complexité dans le pire des cas (en nombre d'appels) est au moins de l'ordre de $2^{min(u.length(),v.length())}$.

Complexité de la version récursive naïve?

```
....int solvpart(int i, int j) {
   //retourne LCS(i,j)
   if (i==0) return 0;
   else if (j==0) return 0;
   else if (pb.u.charAt(i-1)==pb.v.charAt(j-1))
        return 1+solvpart(i-1, j-1);
   else return
        max (solvpart(i-1, j),solvpart(i, j-1));}
```

La complexité dans le pire des cas (en nombre d'appels) est au moins de l'ordre de $2^{min(u.length(),v.length())}$

Le nombre d'appels différents est au plus (1 + u.length() * (1 + v.length).

On est dans le cadre de la programmation dynamique!

Version dynamique itérative

```
..int sol (PbLCS pb) {
  int T[][]=new int[pb.u.length()+1][pb.v.length()
  //T[i][j] memorisera LCS(u[0..i-1],v[0,..j-1])
  //cas de base:
  for (int i=0; i < pb.u.length(); i++) T[i][0]=0;
  for (int j=0; j < pb.v.length(); j++) T[0][j]=0;
  //la récurrence:
  for (int i=1; i \le pb.u.length(); i++) {
         for (int j=1; j \le pb.v.length(); j++) {
            if (pb.u.charAt(i-1) == pb.v.charAt(j-1))
                T[i][j]=1+T[i-1][j-1];
            else T[i][j] = max(T[i][j-1], T[i-1][j]);
  return T[pb.u.length()][pb.v.length()];}
```

La remontée, ou comment récupérer une sous-suite commune de longueur maxi

```
//Précondition TCalc[i][j]=LCS(i,j) pour les
// valeurs ''nécessaires'' (à formaliser...)
  String s=""; //s contiendra une sous-suite maxi
  int i=pb.u.length();
  int j=pb.v.length();
  //(i,j) représentent la 'case courante''
  // on part de la case ''finale''
  // et on remonte jusqu'au cas de base
  while ((i>0) \&\& (j>0)) {
    if (pb.u.charAt(i-1) == pb.v.charAt(j-1))
         \{s = (pb.u.substring(i-1,i)).concat(s);
         i--; j--; }
    else if (T[i][j] == T[i-1][j]) i--;
    else j--; }
  return s;
                                 4□ ト 4 昼 ト 4 昼 ト ■ 9 9 0 0
```