

F	Pišemo kod za Gaus-Zajdelov metod. Kao pomoć koristimo isti primer 3x3 sistema kao za Jakometod. $4x_1-x_2-x_3=3\\-2x_1+6x_2+x_3=9$
2	$x_1^{novo} = (3 + x_2^{staro} + x_3^{staro})/4$ $x_2^{novo} = (9 + 2x_1^{novo} - x_3^{staro})/6$ $x_3^{novo} = (-6 + x_1^{novo} - x_2^{novo})/7$ $x^0 = \begin{bmatrix} x_1^0 \\ x_2^0 \\ x_3^0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ $x_1^1 = (3 + x_2^0 + x_3^0)/4 = (3 + 2 + 3)/4 = 2$ $x_2^1 = (9 + 2x_1^1 - x_3^0)/6 = (9 + 2 \cdot 2 - 3)/6 = \frac{5}{3}$ $x_3^1 = (-6 + x_1^1 - x_2^1)/7 = (-6 + 2 - \frac{5}{3})/7 = -\frac{17}{21}$ function x=gausx(\hat{\alpha}, \hat{\beta}, \hat{\alpha}, \alpha
2	<pre>end if(norm(x0-x1,"inf")<tacnost)< th=""></tacnost)<></pre>
i l l:	Dodaćemo sada u kod malo ispisa da bi mogli da pratimo rešenje kroz iteracije. Slobodno moži (gnorisati kod za ispis jer nije deo gradiva.) spisujemo rezultate po iteracijama i poredimo Gaus-Zajdelovu i Jakobijevu metodu. \$\frac{2}{2}\{4},-1,-1;-2,6,1;-1,1,71;\\ \$\to=\(\frac{2}{3}\{3},-6\);\\ \$\times\(\frac{2}{3}\{3},-6\);\\ \$
i i 1 2 3 3 4 4 5 6 7 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Spisupiemo rezultate po iteracijama i poredimo Gaus-Zajdelovu i Jakobijevu metodu za primer sistema 2x2 koji smo koristili do sada.
Z C	Konvergencija iterativnih metoda Za rešavanje SLAJ potrebno je prvo da pokaž da se metode koje smo danas učili mogu prikazati pomoću matrica. Prvo treba uvideti da se svaki sistem oblika $Ax=b$ može transformisati u sldeći oblik: $x=Tx+c$ gde je T matrica, a c vektor. Kada uradimo transformaciju, onda možemo x sa leve strane
	edankosti da proglasimo za sledeće, a x sa desne strane za prethodno reŝenje i tako dobijemo terativnu formulu: $x^{k+1} = Tx^k + c$ Sada ćemo pokazati na koji način formiramo matricu T i vektor c za Jakobijev metod. Matricu s A rastavljamo na tri matrice: $A = L + D + U$ $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ a_{21} & 0 & 0 \\ a_{31} & a_{32} & 0 \end{bmatrix} + \begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{bmatrix} + \begin{bmatrix} 0 & a_{12} & a_{13} \\ 0 & 0 & a_{23} \\ 0 & 0 & 0 \end{bmatrix}$ Ako koristimo matrične i vektorske operacije jasno je da važi: $Ax = b$ $(L + D + U)x = b$ Ako hoćemo da sa leve strane jednakosti iz prve jedančine izrazimo x_1 , iz druge x_2 i tako redo pomoću matričnih operacija možemo uraditi na sledeći način: $Dx + Lx + Ux = b$ $Dx = -(L + U)x + b$ $x = -D^{-1}(L + U)x + D^{-1}b$
\$ 	Ako sada uradimo sledeće dodele za matricu T i vektor c i uvedemo brojač iteracija k imamo sledeće: $x=-D^{-1}(L+U)x+D^{-1}b$ $T=-D^{-1}(L+U)$ $c=D^{-1}b$ $x^{k+1}=Tx^k+c$ Matricu T i vektor c za Gaus-Zajedelov metod određujemo na sličan način. Razlika je u tome števe strane jednakosti sada ostavljamo sve nepoznate do one na glavnoj dijagonali, kao i tu na glavnoj dijagonali. $Dx+Lx+Ux=b$ $Dx^{k+1}+Lx^{k+1}=-Ux^k+b$ $x^{k+1}=-(D+L)^{-1}Ux^k+(D+L)^{-1}b$ $T=-(D+L)^{-1}U$ $c=(D+L)^{-1}b$ $x^{k+1}=Tx^k+c$
F	Sada kada imamo formule za matricu T možemo da pokažemo zašto je ona značajna za konvergenciju. Neka je \hat{x} tačno rešenje nekog sistema, a e_k greška u k -toj iteraciji metoda, odnosno važi: $x_k=e_k+\hat{x}$ U prethodnu jednakost ubacujemo u jednakost $x^{k+1}=Tx^k+c$ i tako dobijamo: $e_{k+1}+\hat{x}=x^{k+1}=Tx^k+c=T(e_k+\hat{x})+c=Te_k+T\hat{x}+c$ Pošto važi $T\hat{x}+c=\hat{x}$ imamo sledeće: $e_{k+1}+\hat{x}=Te_k+T\hat{x}+c$ $e_{k+1}=Te_k$
l i	Ako nastavimo da smanjujemo k i koristimo $e_{k+1}=Te_k$ imamo: $e_{k+1}=Te_k=TTe_{k-1}=TTTe_{k-2}=\cdots=T^{k+1}e^0$ Uspeli smo da povežemo grešku u iteraciji k sa matricom T . Ako uzmemo normu greške e imamo: $\ e_{k+1}\ \leq \ T^{k+1}\ \ e^0\ $ Očigledno je da ako je norma od T veća od 1 greška će se kroz iteracije povećavati, odnosno nće divergirati. Takođe, ako je norma od T manja od 1 greška će se smanjivati odnosno metod će konvergirati. Ovi uslovi važe za bilo koje početno rešenje x_0 . $\lim_{k\to\infty} \ e^k\ = 0 \text{ ako } \lim_{k\to\infty} \ T^k\ = 0$ Da bi važilo $\lim_{k\to\infty} \ T^k\ = 0$
	Problem sa ovim testom za konvergenciju je što postoji više različitih načina da odredimo normatrice, a ako neka od normi nije manja od jedan to ne mora da znači da neka druga neće biti, i što možete videti u sledećem primeru:
, , , , , , , , , , , , , , , , , , ,	Dakle, potreban uslov za konvergenciju iterativnog metoda za rešavanje SLAJ za bilo koje počerešenje je: $\rho(T) < 1$ odnosno ako je $\rho(T) > 1$ metod će divergirati. $\rho(T) < 1$ odnosno ako je $\rho(T) > 1$ metod će divergirati. $\rho(T) < 1$ onda metod konvergenciju, odosno ak važi: $\rho(T) < 1$ onda metod konvergira. Dokaz za tvrđenje imate u udžbeniku predmeta. $\rho(T) < 1$ onda metod konvergenciju na primerima 2x2 i 3x3 sistema koje smo koristili tokom predavanja. $\rho(T) = \frac{1}{1} \sum_{L=1 \\ L=1 $
	ro-max(abs(eig(T))); andfunction function [T, ro] = test_conv_gausz(A) [L,D,U] = decompose_matrix(A); T=-(L+D)^-1*U; ro-max(abs(eig(T))); andfunction A={4,-1,-1;-2,6,1;-1,1,7} c=(3,9,-6)'; [TJ,roJ]-test_conv_jacobi(A) [TGZ,roGZ]=test_conv_gausz(A) A = 4 -1 -1 -2 6 1 -1 1 7 TJ = -0.00000 0.25000 0.25000 0.33333 -0.00000 -0.16667 0.14286 -0.14286 -0.00000 roJ = 0.42946 TGZ = 0.00000 0.25000 0.25000 0.00000 0.08333 -0.08333 0.00000 0.02381 0.04762
	A=[2,1;1,2] b=[6,6]'; [TJ,roJ]=test_conv_jacobi(A) [TGZ,roGZ]=test_conv_gausz(A) A = 2
r	TJ = -0.00000 -1.50000 -1.14286 -0.00000 roJ = 1.3093 roZ = 0.00000 -1.50000 0.00000 1.71429 roGZ = 1.7143 x = 10.3061 -9.9213 20 19 18 17 16 15 14 13 12 11 10 9
]:	8 7 6 7 8 9 7 7 7 8 9 9 9 9 9 9 9 9 8 7 6 5 5 6 7 7 6 5 7 6 7 5 7 6 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9