Homework assignment 2 for course 01018.

Deadline: Wednesday 21st October 2020 before midnight.

Question 1

Consider the group (G, \circ) of all the maps $f_{a,b} : \mathbb{R} \to \mathbb{R}$ defined by $f_{a,b}(x) := ax + b$, where $a, b \in \mathbb{R}$, $a \neq 0$ and \circ is the composition operation. Let $\varphi : G \to \mathbb{R}^*$ with $\varphi(f_{a,b}) := a$. Here \mathbb{R}^* is the set of all non-zero real numbers.

- a) Let $a, b, c, d \in \mathbb{R}$ and suppose that $a \neq 0$ and $c \neq 0$. Show that $f_{a,b}^{-1} = f_{a^{-1},-a^{-1}b}$ and $f_{a,b} \circ f_{c,d} = f_{ac,ad+b}$.
- b) Define $T := \{f_{1,b} \mid b \in \mathbb{R}\} \subset G$. Show that T is a subgroup of (G, \circ) .
- c) Show that for any $g \in G$ it holds that gT = Tg. Remark: if H is a subgroup of a group (G, \cdot) such that for all $g \in G$ the left coset gH is equal to the right coset Hg, one calls H a *normal* subgroup of (G, \cdot) .

Question 2

Consider the permutations $g_1 = (132)$ and $g_2 = (1345)$ from S_5 .

- a) Compute the order and the sign of the permutation $g_1 \circ g_2$.
- b) It is given that the set of permutations $H := \{id, g_1, g_1^2\} \subset S_5$ is a subgroup of (S_5, \circ) . You may use this fact without proving it. Now compute the cosets $g_2 \circ H$ and $H \circ g_2$.
- c) How many distinct left cosets does H have in S_5 ?