A.2 Static Optimization

A.2.1 Unconstrained Maximan

- In optimization, we often need to find the maximum value of a function.
- We explore conditions under which a function achieves its local maxima.
- This section deals with finding maxima without any constraints (unconstrained).

Local Maximum of a Univariate Function

- Definition:
- Consider a univariate real function $u(\bullet)$. A function u(x) has a local maximum at \bar{x} if: $u(\bar{x}) \ge u(x)$ for all x in a neighborhood of \bar{x} , for all x in the interval $[\bar{x} \epsilon, \bar{x} + \epsilon]$ where ϵ is some positive number.

• Absolute Maximum: $u(\bar{x})$ is said to have an absolute maximum at \bar{x} if: $u(\bar{x}) \ge u(x)$ for all x in the domain of the function.

Necessary Conditions for Local Maxima (Univariate Case)

- First Derivative Condition (Critical Points):
- For a function u(x), the first derivative at a local maximum \bar{x} must satisfy: $u'(\bar{x})=0$
- This means the slope of the function at \bar{x} is zero, making the function flat at that point.
 - Second Derivative Condition:
 - To ensure that \bar{x} is a local maximum (and not a minimum or saddle point), the second derivative must satisfy: $u''(\bar{x}) \le 0$
 - If $u''(\bar{x})$ <, the function is concave at that point, confirming a local maximum.

Example: Univariate Maximization

- Suppose we have a function $u(x) = -x^2 + 4x + 5$
- First Derivative: u'(x) = -2x + 4
- Setting $u'(x) =: -2x + 4 = 0 \implies x = 2$
- Second Derivative: u''(x)=-2
- Since u''(x) < -2, the function is concave at x=2, confirming that x=2 is a local maximum.

Multivariate Case

- The multidimensional case is similar to the unidimensional case
- Consider a function $u: R_n \rightarrow R$, twice continuously differentiable.
- Local Maxima in Higher Dimensions:

For a function $u(x_1, x_{2,...,}, x_n)$, the necessary conditions for a local maximum are generalized to partial derivatives.

- First Derivative Condition:
- The partial derivatives must vanish at the local maximum $\bar{x} : \frac{\partial u}{\partial x_i}(\bar{x}) = 0$ for all i

A.2.2 Classical Nonlinear Programming: Equality Constraints

Problem Overview

- Objective: Maximize a function $u(x_1, x_{2,...}, x_n)$ subject to the constraint $g(x_1, x_{2,...}, x_n) = a$.
- $\max_{x_1, x_2, ..., x_n} [u(x_1, x_2, x_n)]$
subject to $g(x_1, x_2, x_n) = a$

where g: $R^n \to R$

We assume that $u(\bullet)$ and $g(\bullet)$ are twice continuously differentiable.

Implicit Function & Reformulation

- The constraint $g(x_1, ..., x_n) = a$ implicitly defines a function for x_1 :
- $x_1 = \tilde{x}_1(x_{2,...}, x_n)$
- This reduces the problem to an unconstrained maximization:

$$u[\tilde{x}_1 (x_{2....} x_n), x_{2....} x_n] \equiv \tilde{u} (x_{2....} x_n)$$

Necessary Condition for Maximum

• Necessary condition for the constrained maximum: All partial derivatives vanish for i = 2, ..., n:

$$\partial \tilde{u}(\bullet)/\partial x_i = [\partial u(\bullet)/\partial x_1] \cdot \partial \tilde{x}_1/\partial x_i + \partial u(\bullet)/\partial x_i = 0$$

Using the Implicit Function Theorem

• From the Implicit Function Theorem, the derivative $\partial \tilde{x}_1 / \partial x_i$ can be calculated:

$$\partial \tilde{x}_1/\partial x_i = -\left[\partial g(\bullet)/\partial x_i\right]/\left[\partial g(\bullet)/\partial x_1\right]$$

• Substituting into the necessary condition for maximum:

$$\frac{\partial g(\bullet)/\partial x_i}{\partial g(\bullet)/\partial x_1} = \frac{\partial u(\bullet)/\partial x_i}{\partial u(\bullet)/\partial x_1}$$

Proportionality in Partial Derivatives

- The partial derivatives of g with respect to x_i should be proportional to the partial derivatives of u with respect to x_i .
- The constant of proportionality, μ , is the same for all i.

Matrix Representation of the Condition

• The condition can be expressed in matrix form:

$$Du(\overline{\overline{x}}) = \mu \cdot Dg(\overline{\overline{x}})$$

where:

- \bar{x} is an n-dimensional vector.
- Du and Dg are gradients of the functions u and g, respectively.

Gradient Interpretation

- $Du = [\partial \mathbf{u}/\partial \mathbf{x}_1, ..., \partial \mathbf{u}/\partial \mathbf{x}_n], Dg = [\partial \mathbf{g}/\partial \mathbf{x}_1, ..., \partial \mathbf{g}/\partial \mathbf{x}_n].$
- The gradient of u at a point \bar{x} is perpendicular to the tangent line at that point.

Lagrange Multiplier Interpretation

• μ is the factor of proportionality.

• In economics, μ represents the familiar equality between marginal rates of substitution and marginal rates of transformation (or relative prices).

Lagrangian Function and First-Order Conditions

• The Lagrangian function is used to derive the first-order conditions:

$$L(\bullet) = u(x_1, ..., x_n) + \mu \cdot [a - g(x_1, ..., x_n)]$$

• First-order conditions are derived by differentiating with respect to each argument.

$$\frac{\partial L(\cdot)}{\partial x_1} = 0, \frac{\partial L(\cdot)}{\partial x_2} = 0, \dots, \frac{\partial L(\cdot)}{\partial \mu} = 0$$
 (recovers the constraint)

Economic Interpretation of Lagrange Multiplier

• Change in utility $u(\bullet)$ when income a changes:

$$du(\bullet)/da = \sum_{i=1}^{n} [\partial u(\bullet)/\partial x_i] \cdot \partial \overline{\overline{x}}_i/\partial a$$
(A.50)

where $\partial \overline{\overline{x}}_i/\partial a$ is the change in optimal quantity of x_i when the constraint is relaxed.

Expressing the Change in Utility

• Using first-order conditions from $Du(\overline{x}) = \mu \cdot Dg(\overline{x})$ we rewrite the utility change as:

$$du(\bullet)/da = \sum_{i=1}^{n} \mu \cdot [\partial g(\bullet)/\partial x_i] \cdot \partial \overline{\overline{x}}_i/\partial a$$

Differentiating the Budget Constraint

• Totally differentiate the budget constraint with respect to a:

$$dg(\bullet)/da = \sum_{i=1}^{n} [\partial g(\bullet)/\partial x_i] \cdot \partial \overline{\overline{x}}_i/\partial a = 1$$

• Substitute this result into (A.50) to get:

$$du(\bullet)/da = \mu$$

Lagrange Multiplier

- The Lagrange multiplier μ represents the additional utility gained when the constraint is relaxed.
- It is often referred to as the shadow price or shadow value of the constraint.

A.2.3 Inequality Constraints: The Kuhn–Tucker Conditions

Introduction to the Problem and Inequality Constraints

• The problem begins by introducing m inequality constraints of the form:

$$g_i(x_1,\ldots,x_n) \leq a_i$$
 for $i=1,\ldots,m$

- All functions $g_i(.)$ are twice continuously differentiable, and each a_i is constant.
- Optimization Problem: $\max_{x_1, \dots, x_n} [u(x_1, \dots, x_n)]$
 - $g_1(x_1,\ldots,x_n)\leq a_1$

• Subject to:

$$g_m(x_1,\ldots,x_n)\leq a_m$$

Kuhn-Tucker Theorem and Lagrange Multipliers

- Solution to the Inequality Constraints:
- If $\overline{\overline{x}} = (\overline{\overline{x}}_1, \dots, \overline{\overline{x}}_n)$ is a solution to the problem, there exists a set of m Lagrange multipliers μ_i .
- Conditions: (a) $Du(\bullet) = \sum_{i=1}^{m} \mu_i \cdot [Dg_i(\bullet)]$

(b)
$$g_i(\bullet) \leq a_i, \mu_i \geq 0$$

(c)
$$\mu_i \cdot [a_i - g_i(\bullet)] = 0$$

Interpretation of Kuhn-Tucker Conditions

• Condition (a): $Du(\bullet) = \sum_{i=1}^{m} \mu_i \cdot [Dg_i(\bullet)]$

The gradient of the objective function must be a linear combination of the gradients of the restrictions.

• Condition (b): $g_i(\bullet) \le a_i, \mu_i \ge 0$

The constraints must be satisfied and the shadow prices must be nonnegative.

• Condition (c): $\mu_i \cdot [a_i - g_i(\bullet)] = 0$

Complementary-slackness condition: the product of the shadow price and the constraint is zero.

Graphical Representation of Constraints

- Figure A.12 illustrates the solution to the maximization problem with two inequality constraints, g_1 and g_2 .
- Graph Elements:
- Gradients Dg_1 and Dg_2 show the direction of change in the constraints tied to the utility function Du.
- Maximum occurs where the gradient of the objective function is perpendicular to the constraints.

Complementary-Slackness Condition and Examples

- Condition:
- When the constraint is not binding, the shadow price must be zero, meaning Dg_i is not included in Du.
- If the constraint is binding, the shadow price is positive, and the constraint actively influences the solution.

Example (Figure A.13):

(a) Preferences over two goods. The indifference curves for x_1 and x_2 are assumed to take the form of a bell.

Example (Figure A.13):

• (b) Maximizing utility subject to a binding inequality constraint. In this example, the budget constraint for x_1 and x_2

is binding

Example (Figure A.13):

• Maximizing utility subject to a nonbinding inequality constraint. In this example, the budget constraint for x_1 and x_2 is not binding.

Constrained and unconstrained maximum at Du = 0 x_1^*

The Lagrangian Formulation

• Lagrangian Function:

$$L(x_1,\ldots,x_n;\mu_1,\ldots,\mu_m)=u(x_1,\ldots,x_n)+\sum_{i=1}^m\mu_i\cdot[a_i-g_i(x_1,\ldots,x_n)]$$

Necessary Conditions for Maximum:

For the solution \bar{x} to be optimal, the Lagrangian must satisfy the Kuhn–Tucker conditions, i.e., be a saddle point (\bar{x}, μ) , meaning it should be maximized with respect to \bar{x} and minimized with respect to μ

Summary of Necessary and Sufficient Conditions

• Key Takeaway: Conditions (a), (b), and (c) of Kuhn–Tucker theorem are necessary for optimality.

Sufficiency:

• If the objective function u(.) is concave and the constraints form a convex set, the Kuhn–Tucker conditions are sufficient for an optimal solution.