Problemas Resueltos

Rafael Guillermo Arias Michel

24 de febrero de 2015

Enunciado 1. Decimos que $a \in \mathbb{R}$ es un valor de adherencia de la secuencia $(x_n)_{n\geq 1}$ si existe alguna subsecuencia $(x_{n_k})_{k\geq 1}$ tal que $a=\lim_{k\to +\infty} x_{n_k}$.

- a) Dada una secuencia $(x_n)_{n\geq 1}$, pruebe que el conjunto de susvalores de adherencia es cerrado.
- b) Dado un conjunto cerrado $F \subset \mathbb{R}$, pruebe que existe una secuencia $(x_n)_{n\geq 1}$ cuyo conjunto de valores de adherencia es F.

Solución

a) Dada la sucesión (x_n) , sea $A = \{a \in \mathbb{R} | a = \lim_{n_k \to +\infty} x_{n_k} \}$ el conjunto de los valores de adherencia de (x_n) .

Si $a \in \overline{A}$, existe una sucesión (a_n) , con $a_n \in A \ \forall n \in \mathbb{N}^*$ tal que $\lim_{n \to +\infty} a_n = a$. Por definición, $\forall \varepsilon > 0 \ \exists n_1 \in \mathbb{N}^*; n > n_1 \Rightarrow |a_n - a| < \frac{\varepsilon}{2}$.

Tomando $n > n_1$, $a_n = \lim_{n_k \to +\infty} x_{n_k}$ para alguna subsucesión (x_{n_k}) porque $a_n \in A$. Luego $\forall \varepsilon > 0 \ \exists n_2 \in \mathbb{N}^*; n_k > n_2 \Rightarrow |x_{n_k} - a_n| < \frac{\varepsilon}{2}$.

Para $n_0 = \max \{n_1, n_2\}$ se obtiene $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N}^*; n, n_k > n_0 \Rightarrow |a_n - a| < \frac{\varepsilon}{2} \land |x_{n_k} - a_n| < \frac{\varepsilon}{2}.$ Luego, $|x_{n_k} - a| = |(x_{n_k} - a_n) + (a_n - a)| \le |x_{n_k} - a_n| + |a_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon$, lo cual concluye que $a = \lim_{n_k \to +\infty} x_n$ y $a \in A$. Por tanto, A es cerrado

b) Sea X un conjunto numerable denso en F. Esto es, $X \subset F \subset \overline{X}$. $X \subset F$ implica $\overline{X} \subset \overline{F} = F \Rightarrow F = \overline{X}$. Siendo $X = \{x_1, x_2, \ldots, x_n, \ldots\}$, se puede construir (y_n) del siguiente modo:

$$y_{n(n+1)/2+r} = \begin{cases} x_n \text{ si } r = 0\\ x_r \text{ si } 0 < r < n \end{cases}$$

Abajo se ilustra la forma que adopta la sucesión.

$$y_1 = x_1$$

 $y_2 = x_1$ $y_3 = x_2$
 $y_4 = x_1$ $y_5 = x_2$ $y_6 = x_3$
 \vdots \vdots \vdots \ddots

Dada una sucesión (z_n) de elementos de X, es posible construir una subsucesión $(y_{n_k}) = (z_n)$. Si $z_m = x_r$, se toma $y_{n(n+1)/2+r}$, con r < n. Además, se tiene en cuenta que si $z_{m_1} = y_{n_1(n_1+1)/2+r_1}$ y $z_{m_2} = y_{n_2(n_2+1)/2+r_2}$, debe tomarse $n_2 > n_1$.

Luego, el conjunto de valores de adherencia de (y_n) es $\overline{X} = F$.

Enunciado 2. Sea $(x_n)_{n\geq 1}$ una secuencia acotada.

- a) Pruebe que existe $\lim_{n\to+\infty} (\sup\{x_k, k\geq n\})$ (**Observación:** definimos $\limsup_{n\to+\infty} x_n$ como el límite de arriba).
- b) Pruebe que $\limsup_{n \to +\infty} x_n = \max \{ a \in \mathbb{R} | a \text{ es valor de adherencia de } (x_n) \}.$

Solución.

- a) Sea $s_n = \sup x_k, k \ge n$. Si $x_n \ge x_{n+r} \ \forall r \in \mathbb{N}^*$, entonces $s_n = x_n \ge s_{n+1}$. En cambio, si $\exists r \in \mathbb{N}^*; x_n < x_{n+r}$, entonces $s_n = s_{n+1}$. En general, $s_n \ge s_{n+1}$. Luego, (s_n) es una secuencia (no estrictamente) decreciente y acotada, por tanto converge y $\exists \lim_{n \to +\infty} s_n$.
- b) Sea $s = \lim_{n \to +\infty} s_n$. Como $s_n = \sup x_k, k \ge n$, existe una subsecuencia (x_{n_k}) tal que $s_n = \lim_{n_k \to +\infty} x_{n_k}$, o bien, $\forall \varepsilon > 0 \ \exists N \in \mathbb{N}^*; n_k > N \Rightarrow |x_{n_k} s_n| < \varepsilon$. Entonces, sean $n_1 < n_2 < \ldots \in \mathbb{N}^*$ tales que $|x_{n_i} s_i| < \frac{\varepsilon}{2i} \forall i \in \mathbb{N}^*$. Además, para i suficientemente grande, $|s_i s| < \frac{\varepsilon}{2}$. Luego, $|x_{n_i} s| \le |x_{n_i} s_i| + |s_i s| < \frac{\varepsilon}{2i} + \frac{\varepsilon}{2} \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \Rightarrow \lim_{n_i \to +\infty} x_{n_i} = s$. Esto significa que s es un valor de adherencia de (x_n) .

Sea $x=\lim_{n_k\to+\infty}x_{n_k}$ un valor de adherencia de (x_n) . Luego, $x_{n_k}\leq s_{n_k}\forall n_k$. Como (s_{n_k}) es una subsecuencia de (s_n) , $\lim_{n_k\to+\infty}s_{n_k}=\lim_{n\to+\infty}s_n=s$. Inmediatamente, $x=\lim_{n_k\to+\infty}x_{n_k}\leq \lim_{n_k\to+\infty}s_{n_k}=s$, lo cual demuestra que s es el mayor valor de adherencia de (x_n) .

Enunciado 3. Sean $f, g: (0; +\infty) \to \mathbb{R}$ funciones derivables.

a) Pruebe que si existe $L=\lim_{x\to +\infty}\frac{f'(x)}{g'(x)}$ y $\lim_{x\to +\infty}f(x)=\lim_{x\to +\infty}g(x)=0$ entonces $\lim_{x\to +\infty}\frac{f(x)}{g(x)}=L$.

b) Pruebe que si $\lim_{x\to 0} |f(x)| = \lim_{x\to 0} |g(x)| = +\infty$ y existe $\lim_{x\to 0} \frac{f'(x)}{g'(x)} = L$ entonces $\lim_{x\to 0} \frac{f(x)}{g(x)} = L$.

Solución.

a) Dados $a,b \in \mathbb{R}$ tales que a < b, defínase l(x) = f(x) + dg(x) de tal modo que l(a) = l(b). De ser así, $f(a) + dg(a) = f(b) + dg(b) \Rightarrow d = \frac{f(a) - f(b)}{g(b) - g(a)}$.

Por el teorema de Rolle, existe $c\in(a,b)$ tal que l'(c)=0. Esto es $f'(c)+dg'(c)=0\Rightarrow \frac{f'(c)}{g'(c)}=-d=\frac{f(b)-f(a)}{g(b)-g(a)}.$

Esto es equivalente a decir, dados $a \in \mathbb{R}$ y h > 0, existe $\theta \in (0, 1)$ tal que

$$\frac{f(a+h) - f(a)}{g(a+h) - g(a)} = \frac{f'(a+\theta h)}{g'(a+\theta h)}.$$
(1)

Sabiendo $\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} g(x) = 0$, obtenemos que

$$\lim_{h \to +\infty} \frac{f(a+h) - f(a)}{g(a+h) - g(a)} = \lim_{h \to +\infty} \frac{0 - f(a)}{0 - f(b)} = \frac{f(a)}{f(b)}.$$
 (2)

Por hipótesis, $\forall \varepsilon > 0 \ \exists A > 0; x > A \Rightarrow f'(x)/g'(x) \in \left(L - \frac{\varepsilon}{2}, L + \frac{\varepsilon}{2}\right)$. Si a > A, de (1) obtenemos

$$\left| \frac{f(a+h) - f(a)}{g(a+h) - g(a)} - L \right| < \frac{\varepsilon}{2}.$$

De (2) deducimos

$$\forall \varepsilon > 0 \; \exists H > 0; h > H \to \left| \frac{f(a+h) - f(a)}{g(a+h) - g(a)} - \frac{f(a)}{g(a)} \right| < \frac{\varepsilon}{2}.$$

Luego, con a > A y h > H,

$$\begin{split} \left| \frac{f(a)}{g(a)} - L \right| &= \left| \left(\frac{f(a)}{g(a)} - \frac{f(a+h) - f(a)}{g(a+h) - g(a)} \right) + \left(\frac{f(a+h) - f(a)}{g(a+h) - g(a)} - L \right) \right| \\ &\leq \left| \frac{f(a)}{g(a)} - \frac{f(a+h) - f(a)}{g(a+h) - g(a)} \right| + \left| \frac{f(a+h) - f(a)}{g(a+h) - g(a)} - L \right| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

Por tanto, $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = L$.

b) Demostremos que para cualquier $\varepsilon > 0$ existen $\varepsilon_1, \varepsilon_2 > 0$, con $\varepsilon_2 < 1$ tales que

$$L - \varepsilon < \frac{L - \varepsilon_1}{1 + \varepsilon_2},$$
 $L + \varepsilon > \frac{L + \varepsilon_1}{1 - \varepsilon_2}.$ (3)

Resolviendo las desigualdades, obtenemos $\varepsilon_1 + (L - \varepsilon)\varepsilon_2 < \varepsilon$ y $\varepsilon_1 + (L + \varepsilon)\varepsilon_2 < \varepsilon$; y adicionándolas deducimos $\varepsilon_1 + L\varepsilon_2 < \varepsilon$. Si $\varepsilon_1 = \varepsilon_2$ tenemos $(L+1)\varepsilon_1 < \varepsilon$. En ese caso, si $L+1 \leq 0$, cualquier $\varepsilon_1 < 1$ es suficiente. En cambio, si L+1>0, necesitamos $\varepsilon_1 < \min\left\{1,\frac{\varepsilon}{L+1}\right\}$.

Sean $x, h \in \mathbb{R}^+$. Luego, por (1), existe $\theta \in (0; 1)$ tal que

$$\frac{f(x+h) - f(x)}{g(x+h) - g(x)} = \frac{f'(x+\theta h)}{g'(x+\theta h)}.$$

Obsérvese además que

$$\frac{f(x+h) - f(x)}{g(x+h) - g(x)} = \frac{f(x) \left[\frac{f(x+h)}{f(x)} - 1 \right]}{g(x) \left[\frac{g(x+h)}{g(x)} - 1 \right]}.$$

Para cualquier $\varepsilon > 0$, existe ε_1 tal que se cumplan las dos desigualdades mencionadas en (3). Además, existe δ_1 tal que $0 < x < \delta_1 \Rightarrow f'(x)/g'(x) \in (L - \varepsilon_1, L + \varepsilon_1)$. Entonces, si tomamos $x, h \in \mathbb{R}+$ tales que $x + h < \delta_1$ deducimos que

$$L - \varepsilon_1 \le \frac{f(x+h) - f(x)}{g(x+h) - g(x)} = \frac{f'(x+\theta h)}{g'(x+\theta h)} = \frac{f(x) \left[\frac{f(x+h)}{f(x)} - 1 \right]}{g(x) \left[\frac{g(x+h)}{g(x)} - 1 \right]} \le L + \varepsilon_1.$$

$$(4)$$

Fijando la h, además, podemos observar que

$$\lim_{x \to 0} \frac{\frac{f(x+h)}{f(x)} - 1}{\frac{g(x+h)}{g(x)} - 1} = \frac{0-1}{0-1} = 1.$$

Esto es lo mismo que decir que, para x suficientemente pequeña (digamos, $0 < x < \delta_2$),

$$\frac{\frac{f(x+h)}{f(x)} - 1}{\frac{g(x+h)}{g(x)} - 1} \in (1 - \varepsilon_1, 1 + \varepsilon_1). \tag{5}$$

Combinando (4) y (5) tenemos

$$L - \varepsilon_1 < \frac{f(x)}{g(x)}(1 + \varepsilon_1),$$

$$\frac{f(x)}{g(x)}(1 - \varepsilon_2) < L + \varepsilon_1.$$

Inmediatamente deducimos que

$$L - \varepsilon < \frac{L - \varepsilon_1}{1 + \varepsilon_1} < \frac{f(x)}{g(x)} < \frac{L + \varepsilon_1}{1 - \varepsilon_1} < L + \varepsilon$$

y concluimos que $\lim_{x\to 0} \frac{f(x)}{g(x)} = L$.

Enunciado 4. Sea $F \neq \emptyset$ un conjunto cerrado. Dado $x \in \mathbb{R}$ sea $f(x) = \inf\{|x-y|, y \in F\}$. Pruebe que f es una función continua y $\{x \in \mathbb{R} | f(x) = 0\} = F$.

Solución. Primero, demostraremos que f(x) = |x - y| para algún $y \in F$. Para ello, basta demostrar que, dado $x \in \mathbb{R}$, $D_x = \{|x - y|, y \in F\}$ es cerrado (en todo conjunto cerrado y acotado inferiormente, el ínfimo es un elemento del conjunto, y 0 es una cota inferior de D_x). Lo haremos en dos pasos:

- 1. Si $F = \overline{F}$, entonces, dado $c \in \mathbb{R}$, $G = \{c y, y \in F\}$ es cerrado. En efecto, sea $z \in \overline{G}$, esto es, existe (z_n) en G tal que $z = \lim_{n \to +\infty} z_n$. Sea (y_n) en F tal que $z_n = c - y_n \forall n \in \mathbb{N}^*$. Luego, $z = \lim_{n \to +\infty} (c - y_n) = \lim_{n \to +\infty} c - \lim_{n \to +\infty} y_n = c - \lim_{n \to +\infty} y_n \Rightarrow \lim_{n \to +\infty} y_n = c - z \in F$. Por último, $z = c - (c - z) \in G \Rightarrow G = \overline{G}$.
- 2. Si $F = \overline{F}$, entonces $G = \{|y|, y \in F\}$ es cerrado. $z \in \overline{G} \Rightarrow z = \lim_{n \to +\infty} z_n$ para alguna secuencia $(z_n) \in G$. Entonces, $z = \lim_{n \to +\infty} z_{n_k}$ para cualquier subsecuencia (z_{n_k}) . Sea (y_n) en F tal que $|y_n| = z_n \forall n \in \mathbb{N}^*$. Como y_n es una secuencia infinita, existe en ella infinitos elementos positivos o infinitos elementos negativos; esto es, puedo construir una subsecuencia (y_{n_k}) tal que $y_{n_k} = z_{n_k} \forall n \in \mathbb{N}^*$ o $y_{n_k} = -z_{n_k} \forall n \in \mathbb{N}^*$. Podemos generalizar diciendo que $z_{n_k} = \epsilon y_{n_k} \forall n \in \mathbb{N}^*$, con $\epsilon \in \{-1; 1\}$ (téngase en cuenta que $\epsilon^{-1} = \epsilon$ y que $|\epsilon| = 1$).

Así, $z = \lim_{n \to +\infty} z_{n_k} = \lim_{n \to +\infty} \epsilon y_{n_k} = \epsilon \lim_{n \to +\infty} y_{n_k} \Rightarrow \lim_{n \to +\infty} y_{n_k} = \epsilon z \in F$. Luego, $|z| = |\epsilon| \cdot |z| = |\epsilon z| \in G$, por tanto, $G = \overline{G}$.

Entonces, dados $x_1, x_2 \in \mathbb{R}$, existen $y_1, y_2 \in F$ tales que $f(x_1) = |x_1 - y_1|$ y $f(x_2) = |x_2 - y_2|$. Como $f(x_1) = \inf D_{x_1}$ y $f(x_2) = \inf D_{x_2}$, es inmediato que $|x_1 - y_1| \le |x_1 - y_2|$ y $|x_2 - y_2| \le |x_2 - y_1|$. Luego:

$$f(x_1) - f(x_2) = |x_1 - y_1| - |x_2 - y_2| \le |x_1 - y_2| - |x_2 - y_2| \le |x_1 - x_2|$$

$$f(x_2) - f(x_1) = |x_2 - y_2| - |x_1 - y_1| \le |x_2 - y_1| - |x_1 - y_1| \le |x_2 - x_1|$$

De las dos desigualdades, es inmediato que $|f(x_1) - f(x_2)| \le |x_1 - x_2|$. Luego, dado $\varepsilon > 0$, tomando $|x_1 - x_2| < \varepsilon$, deducimos $|f(x_1) - f(x_2)| < \varepsilon$, lo cual demuestra que f es uniformemente continua (y por supuesto, es continua). Para concluir, sea x tal que f(x) = 0. Sabemos que existe $y \in F$ tal que f(x) = |x - y|. Luego, $|x - y| = 0 \Rightarrow x = y \Rightarrow x \in F$. Además, evidentemente, si $x \in F \Rightarrow f(x) = |x - x| = 0$, por tanto, $\{x \in \mathbb{R}, f(x) = 0\} = F$.

Enunciado 5. Decimos que $f: X \to \mathbb{R}$ es semicontinua superiormente si $\forall a \in X, \forall \varepsilon > 0 \ \exists \delta > 0; x \in (a - \delta, a + \delta) \cap X \Rightarrow f(x) < f(a) + \varepsilon$. Pruebe que si $K \subset \mathbb{R}$ es compacto con $K \neq \emptyset$ y $f: K \to \mathbb{R}$ es semicontinua superiormente entonces existe $b \in K$ tal que $f(x) \leq f(b) \ \forall x \in K$.

Soluci'on. El problema se puede dividir en dos partes: demostrar que f está acotada superiormente y que el supremo de f está en f(K). Para ambas partes, se trabajará con una estrategia muy similar, así que se abordará de forma general para luego adaptar a cada subproblema.

Sea $y=\lim_{n\to +\infty}y_n,\ y_n\in f(K)$ (se admitirá la posibilidad de que $y=+\infty$ para generalizar la estrategia). Para cada y_n , existe x_n tal que $f(x_n)=y_n$. Como K es compacto, se puede obtener una subsecuencia convergente (x_{n_k}) (sea $a=\lim_{n_k\to +\infty}x_{n_k}$). Es sabido que $\lim_{n\to +\infty}y_{n_k}=\lim_{n\to +\infty}y_n=y$.

Teniendo en cuenta que $\forall \varepsilon > 0 \ \exists \delta > 0; x \in (a - \delta, a + \delta) \Rightarrow f(x) < f(a) + \varepsilon$ y $\forall \delta > 0 \ \exists n_0 \in \mathbb{N}^*; n_k > n_0 \Rightarrow x_{n_k} \in (a - \delta, a + \delta)$, se deduce que

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N}^*; n_k > n_0 \Rightarrow f(x_{n_k}) < f(a) + \varepsilon \Rightarrow y_{n_k} < f(a) + \varepsilon.$$

Se procederá ahora a demostrar que f está acotada superiormente. Supóngase por absurdo que no es así. Luego, se puede construir una sucesión (y_n) tal que $\lim_{n\to+\infty}y_n=+\infty$ (basta tomar $y_n>n$ $\forall n\in\mathbb{N}^*$). Luego, procediendo como se describió anteriormente, se obtiene que, para cualquier $\varepsilon>0$, existen $(x_{n_k}),\ (y_{n_k})$ y $n_0\in\mathbb{N}^*$ tales que $f(x_{n_k})=y_{n_k}$ $\forall n_k\in\mathbb{N}^*,\ a=\lim_{n\to+\infty}x_{n_k}$ y $n_k>n_0\Rightarrow y_{n_k}< f(a)+\varepsilon$. Esto lleva rápidamente a una contradicción, pues debería existir $y_{n_k}>f(a)+\varepsilon$, por tanto, f está acotada.

Para demostrar que el supremo s de f pertenece a f(K), téngase en cuenta que existe una secuencia (y_n) en f(K) tal que $s=\lim_{n\to +\infty}y_n$. Procediendo del mismo modo mencionado anteriormente, se obtiene que para cualquier $\varepsilon>0$ existen $(x_{n_k}), (y_{n_k})$ y $n_1\in \mathbb{N}^*$ tales que $f(x_{n_k})=y_{n_k}$ $\forall n_k\in \mathbb{N}^*, a=\lim_{n\to +\infty}x_{n_k}$ y $n_k>n_1\Rightarrow y_{n_k}< f(a)+\frac{\varepsilon}{2}$. Como $s=\lim_{n\to +\infty}y_{n_k}, \ \exists n_2\in \mathbb{N}^*; n_k>n_2\Rightarrow s-\frac{\varepsilon}{2}< y_{n_k}< s+\frac{\varepsilon}{2}$. Luego, $s-\frac{\varepsilon}{2}< f(a)+\frac{\varepsilon}{2}\Rightarrow s< f(a)+\varepsilon \ \forall \varepsilon>0$.

 $\tilde{f}(a) \leq s$ por ser el supremo. Si f(a) < s, entonces existe $\varepsilon > 0$ tal que $f(a) + \varepsilon < s$ (se elige $0 < \varepsilon < s - f(a)$), lo cual contradice lo dicho anteriormente. Por tanto, $s = f(a) \in f(K)$.