ANÀLISI MATEMÀTICA(AMA) UT1 - Problemes proposats: NOMBRES REALS

- 1. Determina els valors de $x \in \mathbb{R}$ que satisfan les desigual
tats que segueixen:
 - a) 2x + 3 < 3x 8
 - b) $(x+2)(x-2) \ge -3$
 - $c) \ \frac{2x-1}{x+1} \ge 1$
 - d) $(2x+1)^4 (x-2) (x+3) \le 0$
- 2. Troba els valors de $x \in \mathbb{R}$ que verifiquen:
 - a) $|x 3| \le 8$
 - b) |x-1||x+2| < 3
 - c) $||x| + 4| \le 5$
 - d) $(x-2)^2 \ge 4$
 - e) $|2 |x|| \ge 1$
 - f) $|x-1| > \frac{2x+1}{x+1}$ (sug: |x-a| > b)
 - $g) \left| \frac{x-1}{x+1} \right| = \frac{x-1}{x+1}$
 - h) |x| |x+1| > 1 (sug: |x+1| < |x| 1; sol:)
 - i) $|x^2 2| \le 1$
 - j) ||x-1|+2|<3
 - k) $|2 x^2| \le 1 + 2x^2$.

ANÀLISI MATEMÀTICA (AMA)

UT1 - Exercicis addicionals: NOMBRES REALS

- 1. a) Comprova que $0.\overline{9} = 1$
 - b) Troba la representació decimal de $\frac{19}{8}$ i de $\frac{23}{29}$
 - c) Troba els nombres racionals amb representació decimal $0.\overline{917}$ i $2.3\overline{292}$, respectivament.
- 2. Troba els valors de $x \in \mathbb{R}$ que verifiquen $x^3 + 2x^2 5x > 6$
- 3. Prova la desigual
tat: $0 < a < b \Rightarrow a < \sqrt{ab} < \frac{a+b}{2} < b$.
- 4. Si a, b i c són nombres reals, prova que:
 - a) $0 < a < b \Rightarrow \frac{1}{b} < \frac{1}{a}$
 - b) $0 < a < 1 \Rightarrow a^2 < a$. Què pots dir si a > 1?
- 5. Troba els valors de $x \in \mathbb{R}$ que verifiquen:
 - a) $|x^2 + 6x + 5| \ge 2|x 3|$ (sug: dividir; $x \ne 3$)
 - b) 2 < |x| + |2x + 2| < 4 (sug: considerar regiones; x < -1, -1 < x < 0, x > 0; sol: $\left[-2, -\frac{4}{3} \right] = \left[-\frac{4}{3} \right]$
- *6. a) Verifica que per a tot $x \in \mathbb{R} \{0\}$, resulta $\left| x + \frac{1}{x} \right| \ge 2$
 - b) Comprova que si $x,y \in \mathbb{R}$, aleshores

$$\max(x,y) = \frac{1}{2}(x+y+|x-y|)$$

$$\min(x,y) = \frac{1}{2}(x+y-|x-y|)$$

- *7. a) Verifica que si $x,y \in \mathbb{R}$, aleshores $|xy| \le x^2 + y^2$
 - b) En quines condicions és certa la igual tat |x+y|=|x|+|y|?
- *8. Determina —pots fer ús d'una gràfica com ajuda— el conjunt de parells $(x,y) \in \mathbb{R}^2$ que verifiquen:
 - a) |x| = |y|
 - b) $|x \cdot y| = 2$
 - c) $|x| \le |y|$
 - d) $|x| |y| \ge 2$
 - e) $|x| + |y| \le 1$
 - f) $\max(|x|, |y|) < 2$