

## **TS93x, TS93xA, TS93xB**

### Output rail-to-rail micropower operational amplifiers

#### **Features**

- Rail-to-rail output voltage swing
- Micropower consumption (20 µA)
- Single supply operation (2.7 to 10 V)
- Low offset (2 mV max. for TS93xB)
- CMOS inputs
- Ultra low input bias current (1 pA)
- ESD protection (2 kV)
- Latch-up immunity (class A)
- Available in SOT23-5 micropackage
- Automotive grade

#### **Applications**

- Battery-powered systems
- Portable communication systems
- Alarms, smoke detectors
- Instrumentation and sensoring
- PH meters
- Digital scales
- Automotive

#### **Description**

The TS93x (single, dual and quad) series are operational amplifiers that can operate with voltages as low as 2.7 V and reach a 2.9 Vpp output swing with  $R_L$  = 100  $k\Omega$  when supplied at 3 V.

Offering a typical consumption of only 20  $\mu$ A, these devices are particularly well-suited to battery-powered applications.

The amplifiers' space-saving 5-pin SOT23-5 package with outer dimensions of 2.8 mm x 2.9 mm make them very easy to implement on a board design.



Table 1. Device summary

| Reference | Part number            |
|-----------|------------------------|
| TS93x     | TS931, TS932, TS934    |
| TS93xA    | TS931A, TS932A, TS934A |
| TS93xB    | TS931B, TS932B, TS934B |

September 2009 Doc ID 6911 Rev 4 1/17

#### 1 Absolute maximum ratings and operating conditions

Table 2. Absolute maximum ratings

| Symbol            | Parameter                                                                                       | Value                            | Unit |
|-------------------|-------------------------------------------------------------------------------------------------|----------------------------------|------|
| V <sub>CC</sub>   | Supply voltage <sup>(1)</sup>                                                                   | 12                               | ٧    |
| V <sub>id</sub>   | Differential input voltage (2)                                                                  | ±V <sub>CC</sub>                 | ٧    |
| V <sub>in</sub>   | Input voltage range (3)                                                                         | $V_{CC-}$ -0.3 to $V_{CC+}$ +0.3 | ٧    |
| I <sub>in</sub>   | Input current range (4)                                                                         | 10                               | mA   |
| T <sub>std</sub>  | Storage temperature range                                                                       | -65 to +150                      | °C   |
| T <sub>j</sub>    | Maximum junction temperature                                                                    | 150                              | °C   |
| R <sub>thja</sub> | Thermal resistance junction to ambient <sup>(5)</sup> - SOT23-5 - SO8 - SO14 - TSSOP8 - TSSOP14 | 250<br>125<br>103<br>120<br>100  | °C/W |
|                   | HBM: human body model <sup>(6)</sup>                                                            | 2                                | kV   |
| ESD               | MM: machine model <sup>(7)</sup>                                                                | 200                              | V    |
|                   | CDM: charged device model <sup>(8)</sup>                                                        | 2                                | kV   |
|                   | Latch-up immunity                                                                               | 200                              | mA   |
|                   | Soldering temperature (10 sec), leaded version                                                  | 250                              | °C   |

- 1. All voltages values, except differential voltage are with respect to network terminal.
- 2. Differential voltages are non-inverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of input and output voltages must never exceed  $V_{CC+}$  +0.3 V.
- 4. Input current must be limited by a resistor in series with the inputs.
- 5. Short-circuits can cause excessive heating and destructive dissipation.
- 6. Human body model: 100 pF discharged through a 1.5 k $\Omega$  resistor into pin of device.
- Machine model ESD: a 200 pF capacitor is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < 5 Ω), into pin-to-pin of device.</li>
- Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to ground through only one pin. This is done for all pins.

Table 3. Operating conditions

| Symbol            | Parameter                            | Value                                          | Unit |
|-------------------|--------------------------------------|------------------------------------------------|------|
| V <sub>CC</sub>   | Supply voltage                       | 2.7 to 10                                      | V    |
| V <sub>icm</sub>  | Common mode input voltage range      | V <sub>CC-</sub> -0.2 to V <sub>CC+</sub> -1.5 | V    |
| T <sub>oper</sub> | Operating free air temperature range | -40 to +105                                    | °C   |

## 2 Electrical characteristics

Table 4 and Table 5 give the electrical characteristics at each  $V_{\text{CC}}$  value.

Table 4.  $V_{CC}$ + = +3 V,  $V_{CC}$ - = 0 V,  $T_{amb}$  = 25° C (unless otherwise specified)

| Symbol           | Parameter                                                                                                                    | Min.         | Тур.       | Max.          | Unit  |
|------------------|------------------------------------------------------------------------------------------------------------------------------|--------------|------------|---------------|-------|
| V                | Input offset voltage<br>TS931/2/4<br>TS931/2/4A<br>TS931/2/4B                                                                |              |            | 10<br>5<br>2  | \/    |
| V <sub>io</sub>  | T <sub>min</sub> < T <sub>op</sub> < T <sub>max</sub><br>TS931/2/4<br>TS931/2/4A<br>TS931/2/4B                               |              |            | 15<br>10<br>6 | mV    |
| ΔV <sub>io</sub> | Input offset voltage drift                                                                                                   |              | 3          |               | μV/°C |
| I <sub>io</sub>  | Input offset current <sup>(1)</sup> $T_{min} < T_{op} < T_{max}$                                                             |              | 1          | 100<br>200    | pA    |
| I <sub>ib</sub>  | Input bias current <sup>(1)</sup> $T_{min} < T_{op} < T_{max}$                                                               |              | 1          | 150<br>300    | рА    |
| CMR              | Common mode rejection ratio, $0 \le V_{icm} \le V_{CC+}$ -1.7 $T_{min} < T_{op} < T_{max}$                                   | 55<br>55     | 85<br>85   |               | dB    |
| SVR              | Supply voltage rejection ratio $^{(2)}$<br>$T_{min} < T_{op} < T_{max}$                                                      | 55<br>55     | 85<br>85   |               | dB    |
| A <sub>vd</sub>  | Large signal voltage gain $V_O = 2 \; \text{Vpp, R}_L = 1 \; \text{M}\Omega$ $R_L = 100 \; \text{k}\Omega$                   |              | 120<br>106 |               | dB    |
| V <sub>OH</sub>  | High level output voltage, $V_{ID}$ = 100 mV, $R_L$ = 100 k $\Omega$ $T_{min}$ < $T_{op}$ < $T_{max}$                        | 2.95<br>2.95 | 2.99       |               | V     |
| V <sub>OL</sub>  | Low level output voltage, $V_{ID}$ = -100 mV, $R_L$ = 100 k $\Omega$ $T_{min}$ < $T_{op}$ < $T_{max}$                        |              | 10         | 50<br>50      | mV    |
| I <sub>o</sub>   | Output source current $V_{ID} = 100 \text{mV}, V_O = V_{CC^-}$ Output sink current $V_{ID} = -100 \text{ mV}, V_O = V_{CC+}$ |              | 1.5<br>1.5 |               | mA    |
| I <sub>CC</sub>  | Supply current (per amplifier), $A_{VCL} = 1$ , no load $T_{min} < T_{op} < T_{max}$                                         |              | 20         | 31<br>33      | μΑ    |
| GBP              | Gain bandwidth product $R_L = 100 \ k\Omega \ C_L = 50 \ pF$                                                                 |              | 100        |               | kHz   |
| SR               | Slew rate $R_L = 100 \text{ k}\Omega$ , $C_L = 50 \text{ pF}$                                                                |              | 50         |               | V/ms  |

Table 4.  $V_{CC}$ + = +3 V,  $V_{CC}$ - = 0 V,  $T_{amb}$  = 25° C (unless otherwise specified) (continued)

| Symbol | Parameter                          | Min. | Тур. | Max. | Unit    |
|--------|------------------------------------|------|------|------|---------|
| фm     | Phase margin $C_L = 50 \text{ pF}$ |      | 65   |      | Degrees |
| en     | Input voltage noise                |      | 75   |      | nV/√Hz  |

- 1. Maximum values including unavoidable inaccuracies of the industrial test.
- 2.  $V_{CC}$  has a 0.2 V variation.

Table 5.  $V_{CC}$ + = +5 V,  $V_{CC}$ - = 0 V,  $T_{amb}$  = 25° C (unless otherwise specified)

| Symbol          | Parameter                                                                                                                  | Min.         | Тур.       | Max.          | Unit  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------|--------------|------------|---------------|-------|
| V               | Input offset voltage<br>TS931/2/4<br>TS931/2/4A<br>TS931/2/4B                                                              |              |            | 10<br>5<br>2  | mV    |
| V <sub>io</sub> | $T_{min} < T_{op} < T_{max}$ $TS931/2/4$ $TS931/2/4A$ $TS931/2/4B$                                                         |              |            | 15<br>10<br>6 | IIIV  |
| $\Delta V_{io}$ | Input offset voltage drift                                                                                                 |              | 3          |               | μV/°C |
| l <sub>io</sub> | Input offset current <sup>(1)</sup> $T_{min} < T_{op} < T_{max}$                                                           |              | 1          | 100<br>200    | pA    |
| I <sub>ib</sub> | Input bias current <sup>(1)</sup> $T_{min} < T_{op} < T_{max}$                                                             |              | 1          | 150<br>300    | pA    |
| CMR             | Common mode rejection ratio, $0 \le V_{icm} \le V_{CC+} - 1.7$<br>$T_{min} < T_{op} < T_{max}$                             | 55<br>55     | 85<br>85   |               | dB    |
| SVR             | Supply voltage rejection ratio <sup>(2)</sup> $T_{min} < T_{op} < T_{max}$                                                 | 55<br>55     | 85<br>85   |               | dB    |
| A <sub>vd</sub> | Large signal voltage gain $V_O=4~Vpp,~R_L=1~M\Omega \\ R_L=100~k\Omega$                                                    |              | 120<br>112 |               | dB    |
| V <sub>OH</sub> | High level output voltage, $V_{ID}$ = 100 mV, $R_L$ = 100 k $\Omega$ $T_{min}$ < $T_{op}$ < $T_{max}$                      | 4.95<br>4.95 | 4.99       |               | V     |
| V <sub>OL</sub> | Low level output voltage, $V_{ID}$ = -100 mV, $R_L$ = 100 k $\Omega$ $T_{min}$ < $T_{op}$ < $T_{max}$                      |              | 10         | 50<br>50      | mV    |
| I <sub>o</sub>  | Output source current $V_{ID} = 100 \text{ mV}, V_O = V_{DD}$ Output sink current $V_{ID} = -100 \text{ mV}, V_O = V_{CC}$ |              | 5<br>5     |               | mA    |
| I <sub>CC</sub> | Supply current (per amplifier), $A_{VCL} = 1$ , no load $T_{min} < T_{op} < T_{max}$                                       |              | 20         | 33<br>35      | μΑ    |

Table 5.  $V_{CC}$ + = +5 V,  $V_{CC}$ - = 0 V,  $T_{amb}$  = 25° C (unless otherwise specified) (continued)

| Symbol | Parameter                                                                  | Min. | Тур. | Max. | Unit    |
|--------|----------------------------------------------------------------------------|------|------|------|---------|
| GBP    | Gain bandwidth product $R_L = 100 \text{ K}\Omega$ , $C_L = 50 \text{ pF}$ |      | 100  |      | kHz     |
| SR     | Slew rate $R_L = 100 \text{ K}\Omega$ , $C_L = 50 \text{ pF}$              |      | 50   |      | V/ms    |
| φm     | Phase margin C <sub>L</sub> = 50 pF                                        |      | 65   |      | Degrees |
| en     | Input voltage noise                                                        |      | 76   |      | nV/√Hz  |

- 1. Maximum values including unavoidable inaccuracies of the industrial test.
- 2.  $V_{CC}$  has a 0.2 V variation.

Figure 1. Input offset voltage vs. temperature Figure 2. Supply current vs. supply voltage, in open loop configuration.



Figure 3. Supply current vs. supply voltage Figure 4. Supply current vs. temperature in follower configuration,



Figure 5. Output short circuit current vs. Figure 6. Output short circuit current vs. temperature supply voltage



6/17 Doc ID 6911 Rev 4

Source

Figure 7. Output short circuit current vs. output voltage at  $V_{CC}$ + = 2.7 V

Figure 8. Output short circuit current vs. output voltage at  $V_{CC}$ + = 3 V



Figure 9. Output short circuit current vs. output voltage at  $V_{CC}$ + = 5 V

Figure 10. Output short circuit current vs. output voltage at  $V_{CC}$ + = 10 V



Figure 11. High level output voltage drop vs. supply voltage

Figure 12. Low level output voltage drop vs. supply voltage



Figure 13. Voltage gain and phase vs. frequency for  $C_L = 50 \text{ pF}$ 

Figure 14. Voltage gain and phase vs. frequency for  $C_L = 100 \text{ pF}$ 





Figure 15. Distortion vs. frequency

Figure 16. Equivalent input noise voltage vs. frequency





Figure 17. Distortion vs. output voltage

Figure 18. Supply voltage rejection vs. frequency





8/17 Doc ID 6911 Rev 4

Figure 19. Slew rate vs. time for small input voltage signal

Figure 20. Slew rate vs. time for large input voltage signal



## 3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: <a href="https://www.st.com">www.st.com</a>. ECOPACK<sup>®</sup> is an ST trademark.

### 3.1 SO-8 package information

Figure 21. SO-8 package mechanical drawing



Table 6. SO-8 package mechanical data

|      | Dimensions |             |      |        |       |       |  |
|------|------------|-------------|------|--------|-------|-------|--|
| Ref. |            | Millimeters |      | Inches |       |       |  |
|      | Min.       | Тур.        | Max. | Min.   | Тур.  | Max.  |  |
| Α    |            |             | 1.75 |        |       | 0.069 |  |
| A1   | 0.10       |             | 0.25 | 0.004  |       | 0.010 |  |
| A2   | 1.25       |             |      | 0.049  |       |       |  |
| b    | 0.28       |             | 0.48 | 0.011  |       | 0.019 |  |
| С    | 0.17       |             | 0.23 | 0.007  |       | 0.010 |  |
| D    | 4.80       | 4.90        | 5.00 | 0.189  | 0.193 | 0.197 |  |
| Е    | 5.80       | 6.00        | 6.20 | 0.228  | 0.236 | 0.244 |  |
| E1   | 3.80       | 3.90        | 4.00 | 0.150  | 0.154 | 0.157 |  |
| е    |            | 1.27        |      |        | 0.050 |       |  |
| h    | 0.25       |             | 0.50 | 0.010  |       | 0.020 |  |
| L    | 0.40       |             | 1.27 | 0.016  |       | 0.050 |  |
| L1   |            | 1.04        |      |        | 0.040 |       |  |
| k    | 1°         |             | 8°   | 1°     |       | 8°    |  |
| ccc  |            |             | 0.10 |        |       | 0.004 |  |

## 3.2 SO-14 package information

Figure 22. SO-14 package mechanical drawing



Table 7. SO-14 package mechanical data

| Dimensions |           |             |      |       |      |       |  |
|------------|-----------|-------------|------|-------|------|-------|--|
| D-4        |           | Millimeters |      |       |      |       |  |
| Ref.       | Min.      | Тур.        | Max. | Min.  | Тур. | Max.  |  |
| Α          | 1.35      |             | 1.75 | 0.05  |      | 0.068 |  |
| A1         | 0.10      |             | 0.25 | 0.004 |      | 0.009 |  |
| A2         | 1.10      |             | 1.65 | 0.04  |      | 0.06  |  |
| В          | 0.33      |             | 0.51 | 0.01  |      | 0.02  |  |
| С          | 0.19      |             | 0.25 | 0.007 |      | 0.009 |  |
| D          | 8.55      |             | 8.75 | 0.33  |      | 0.34  |  |
| E          | 3.80      |             | 4.0  | 0.15  |      | 0.15  |  |
| е          |           | 1.27        |      |       | 0.05 |       |  |
| Н          | 5.80      |             | 6.20 | 0.22  |      | 0.24  |  |
| h          | 0.25      |             | 0.50 | 0.009 |      | 0.02  |  |
| L          | 0.40      |             | 1.27 | 0.015 |      | 0.05  |  |
| k          | 8° (max.) |             |      |       |      |       |  |
| ddd        |           |             | 0.10 |       |      | 0.004 |  |

#### **TSSOP14** package information 3.3

Figure 23. TSSOP14 package mechanical drawing



Table 8. TSSOP14 package mechanical data

|      | Dimensions |             |      |       |        |        |  |
|------|------------|-------------|------|-------|--------|--------|--|
| Ref. |            | Millimeters |      |       | Inches |        |  |
|      | Min.       | Тур.        | Max. | Min.  | Тур.   | Max.   |  |
| Α    |            |             | 1.20 |       |        | 0.047  |  |
| A1   | 0.05       |             | 0.15 | 0.002 | 0.004  | 0.006  |  |
| A2   | 0.80       | 1.00        | 1.05 | 0.031 | 0.039  | 0.041  |  |
| b    | 0.19       |             | 0.30 | 0.007 |        | 0.012  |  |
| С    | 0.09       |             | 0.20 | 0.004 |        | 0.0089 |  |
| D    | 4.90       | 5.00        | 5.10 | 0.193 | 0.197  | 0.201  |  |
| E    | 6.20       | 6.40        | 6.60 | 0.244 | 0.252  | 0.260  |  |
| E1   | 4.30       | 4.40        | 4.50 | 0.169 | 0.173  | 0.176  |  |
| е    |            | 0.65        |      |       | 0.0256 |        |  |
| L    | 0.45       | 0.60        | 0.75 | 0.018 | 0.024  | 0.030  |  |
| L1   |            | 1.00        |      |       | 0.039  |        |  |
| k    | 0°         |             | 8°   | 0°    |        | 8°     |  |
| aaa  |            |             | 0.10 |       |        | 0.004  |  |

## 3.4 SOT23-5 package information

Figure 24. SOT23-5 package mechanical drawing



Table 9. SOT23-5 package mechanical data

|      | Dimensions |             |            |       |        |       |  |
|------|------------|-------------|------------|-------|--------|-------|--|
| Ref. |            | Millimeters |            |       | Inches |       |  |
|      | Min.       | Тур.        | Max.       | Min.  | Тур.   | Max.  |  |
| Α    | 0.90       | 1.20        | 1.45       | 0.035 | 0.047  | 0.057 |  |
| A1   |            |             | 0.15       |       |        | 0.006 |  |
| A2   | 0.90       | 1.05        | 1.30       | 0.035 | 0.041  | 0.051 |  |
| В    | 0.35       | 0.40        | 0.50       | 0.013 | 0.015  | 0.019 |  |
| С    | 0.09       | 0.15        | 0.20       | 0.003 | 0.006  | 0.008 |  |
| D    | 2.80       | 2.90        | 3.00       | 0.110 | 0.114  | 0.118 |  |
| D1   |            | 1.90        |            |       | 0.075  |       |  |
| е    |            | 0.95        |            |       | 0.037  |       |  |
| Е    | 2.60       | 2.80        | 3.00       | 0.102 | 0.110  | 0.118 |  |
| F    | 1.50       | 1.60        | 1.75       | 0.059 | 0.063  | 0.069 |  |
| L    | 0.10       | 0.35        | 0.60       | 0.004 | 0.013  | 0.023 |  |
| K    | 0 degrees  |             | 10 degrees |       |        |       |  |

# 4 Ordering information

Table 10. Order codes

| Order code                                                                                          | Temperature range | Package                                      | Packing                                                           | Marking                                          |
|-----------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|
| TS931ID<br>TS931IDT<br>TS931AID<br>TS931AIDT<br>TS931BID<br>TS931BIDT                               |                   | SO-8                                         | Tube<br>Tape & reel<br>Tube<br>Tape & reel<br>Tube<br>Tape & reel | 931I<br>931I<br>931AI<br>931AI<br>931BI<br>931BI |
| TS931ILT<br>TS931AILT<br>TS931BILT                                                                  |                   | SOT23-5L                                     | Tape & reel                                                       | K205<br>K206<br>K207                             |
| TS932ID<br>TS932IDT<br>TS932AID<br>TS932AIDT<br>TS932BID<br>TS932BIDT                               | -40°C, +105°C     | SO-8                                         | Tube Tape & reel Tube Tape & reel Tube Tube Tape & reel           | 932I<br>932I<br>932AI<br>932AI<br>932BI<br>932BI |
| TS934ID<br>TS934IDT<br>TS934AID<br>TS934AIDT<br>TS934BIDT<br>TS934BIDT                              |                   | SO-14                                        | Tube<br>Tape & reel<br>Tube<br>Tape & reel<br>Tube<br>Tape & reel | 934I<br>934I<br>934AI<br>934AI<br>934BI<br>934BI |
| TS934IPT<br>TS934AIPT<br>TS934BIPT                                                                  |                   | TSSOP-14<br>(Thin shrink outline<br>package) | Tape & reel                                                       | 934I<br>934AI<br>934BI                           |
| TS934IYD <sup>(1)</sup> TS934IYDT <sup>(1)</sup> TS934AIYD <sup>(1)</sup> TS934AIYDT <sup>(1)</sup> |                   | SO-14<br>(automotive grade)                  | Tube<br>Tape & reel<br>Tube<br>Tape & reel                        | 934IY<br>934IY<br>934AIY<br>934AIY               |

Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.

# 5 Revision history

Table 11. Document revision history

| Date        | Revision | Changes                                                                                                                                                                                                             |
|-------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01-Nov-2001 | 1        | Initial release.                                                                                                                                                                                                    |
| 01-Dec-2004 | 2        | Modified AMR values in <i>Table 2</i> (explanation of Vid and Vi limits).                                                                                                                                           |
| 04-May-2009 | 3        | Document reformatted. Removed DIP package information and order codes from Chapter 3. Modified temperature range: extended to -40 to +105° C in Table 10: Order codes. Added automotive grade products in Table 10. |
| 07-Sep-2009 | 4        | Added root part numbers (TS93xA, TS93xB) and Table 1: Device summary on cover page.  Added parameters for full temperature range in Table 4 and in Table 5.                                                         |

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

577

Doc ID 6911 Rev 4 17/17