

Spark Hands-On

Mai H. Nguyen, Ph.D.

Setup

- Login to Expanse
 - Open terminal window on local machine
 - ssh login.expanse.sdsc.edu -l <account>
- Pull latest from repo
 - git pull
 - · URL:

https://github.com/ciml-org/ciml-summer-institute-2024.git

Server Setup for PySpark - Command Line

In terminal window

- jupyter-shared-spark
 - Alias for: galyleo launch --account \${CIML_ACCOUNT}
 --reservation \${CIML_RESERVATION_CPU} --partition shared
 --cpus 4 --memory 16 --time-limit 04:00:00 --env-modules
 singularitypro --sif
 /cm/shared/apps/containers/singularity/spark/spark-latest.sif
 --bind /expanse,/scratch,/cm --quiet
- To check queue
 - squeue -u \$USER

PySpark Scaling Hands-On

Data

- BookReviews_5M.txt
 - Source : https://jmcauley.ucsd.edu/data/amazon/

Notebook

- pyspark_demo.ipynb
- Location: <ciml_dir>/4.3_spark

To do

- Change number of cores: 1, 2, 4
- Note difference in execution times
- Run each configuration 3 times

SPARK SESSION

```
available cores, or
                                                       integer value to
import pyspark
                                                       specify number of
from pyspark.sql import SparkSession, SparkConf
                                                       cores to use
conf = SparkConf().setAll([
           ('spark.master', 'local[*]'),
           ('spark.app.name', 'PySpark Demo')])
spark = SparkSession.builder.config(conf=conf).getOrCreate()
                          Configuration
                                                   Get existing Spark
                          parameters for
                                                   session or create
                          Spark session
                                                   new one
```

Use * to use all

GETTING EXECUTION TIMES

- In notebook, execution time is printed out in cell before Spark session is stopped (next to last cell)
- Need to <u>restart the kernel</u> and run all cells without stopping to get accurate execution time:
 - Run -> Restart Kernel and Run All Cells
- Find mean and standard deviation of execution times over 3 runs for
 - 1 core, 2 cores, and 4 cores

PySpark Cluster Analysis Hands-On

Data

Weather station measurements

Task

Perform cluster analysis to identify different weather patterns

Approach

Spark k-means

SPARK PROGRAM STRUCTURE

Start Spark session

- spark = SparkSession.builder.config(conf=conf).getOrCreate()
- Create distributed dataset
 - df = spark.read.csv("data.csv",header="True")
- Apply transformations
 - new_df = df.filter(col("dept") == "Sales")
- Perform actions
 - df.collect()
- Stop Spark session
 - spark.stop()

START SPARK SESSION

```
Use * to use all
                                                       available cores, or
import pyspark
                                                       integer value to
from pyspark.sql import SparkSession, SparkConf
                                                       specify number of
                                                       cores to use
conf = SparkConf().setAll([
           ('spark.master', 'local[*]'),
           ('spark.app.name', 'PySpark Demo')])
spark = SparkSession.builder.config(conf=conf).getOrCreate()
                          Configuration
                                                    Get existing Spark
                          parameters for
                                                    session or create
```

Spark session

new one

Run Spark locally.

LOAD DATA

DROP ROWS WITH NULLS

Drop rows with null values

```
df.dropna()
df.dropna(how='any')
df.dropna(how='all')
```

Check number of rows before and after dropping rows

```
df.count()
```


PARTITION DATA

Partition available data into train and test data sets

CREATE FEATURE VECTOR COLUMN

- Create feature vector column
 - Combines given list of columns into single vector column
 - To feed data to machine learning models

```
from pyspark.ml.feature import VectorAssembler
features = ['air_temp','relative humidity']
assembler = VectorAssembler(inputCols=features,
                              outputCol='featureVector')
features df = assembler.transform(df)
features df.show()
                                                 New column
air temp|relative humidity
                                                 appended to
                                                 features df
          63.9
62.96
air temp|relative_humidity|featureVector
                           [62.96, 63.9]
          63.9
62.96
```


SCALE DATA

Scale input data values

- Standardize values to have zero mean and unit standard deviation
- Each feature is scaled separately
- Create scale transformer using train data, then apply to train/test data

BUILD MODEL

- Build decision tree classifier
 - Create model
 - Use fit() to train model

APPLY MODEL

- Apply trained model
 - Use transform()

EVALUATE CLASSIFICATION MODEL

- Evaluator for classification model
 - Calculates F1, precision, recall, accuracy

PySpark Cluster Analysis Hands-On

Data

Weather station measurements

Task

Perform cluster analysis to identify different weather patterns

Approach

Spark k-means

Notebook

- Location: <ciml_dir>/3.6_spark
- pyspark-clustering.ipynb
- pyspark-clustering-wOutput.ipynb
- pyspark-clustering-soln.ipynb

Starter notebook

Has cell outputs

Solution

Dataset Description

- Measurements from weather station on Mt. Woodson, San Diego
- Air temperature, humidity, wind speed, wind direction, etc.
- Three years of data: Sep. 2011 Sep. 2014
 - minute_weather.csv: measurement every minute
- Source
 - http://hpwren.ucsd.edu

Map of HPWREN Weather Stations

Cluster Analysis

- Cluster analysis divides data into groups
 - · Grouping is based on some similarity measure.
 - Samples within a cluster are more similar to each other than to samples in other clusters.

http://www-users.cs.umn.edu/~kumar/dmbook/index.php

k-Means Clustering

Partitional

Clusters are divided into non-overlapping subsets

Centroid-Based

Cluster represented by central vector

Simple, classic clustering technique

- Data points are grouped into k clusters
- Cluster defined by cluster mean

Algorithm

Select *k* initial *centroids* (cluster centers)

Repeat

Assign each sample to closest centroid Calculate mean of cluster to determine new centroid

Until some stopping criterion is reached

k-Means Clustering Illustration

Original samples

Initial Centroids

Assign Samples

Re-calculate Centroids

Assign Samples

Re-calculate Centroids

Choosing Number of Clusters (k)

Elbow method

- Plot cluster evaluation metric (e.g., WSSE) vs. different values for k
- "Elbow" in plot suggests value(s) for k

http://stackoverflow.com/questions/6645895/calculating-the-percentage-of-variance-measure-for-k-means

Evaluating Clustering Results

- Within-Cluster Sum of Squared Error (WSSE)
- For each sample, error is distance to centroid.
 Then, WSSE is computed as:

$$WSSE = \sum_{i=1}^{K} \sum_{x \in C_i} ||x - m_i||^2$$

x: data sample in cluster C_i m_i : cluster centroid (i.e., mean of cluster) $||x - m_i||^2$: Euclidean distance between m_i and x

Clustering Hands-On Overview

Setup

- Start Spark
- Load modules

Load data

- Specify schema
- Read in data from "minute_weather.csv"

Explore data

Look at schema, number of rows, summary statistics

Prepare data

- Drop nulls
- Create feature vector

Perform k-means cluster analysis

- Use elbow plot to determine k
- Build k-means model

Evaluate clusters

- Plot cluster profiles
- Stop Spark session

Cluster Profile: Parallel Plots

utils.parallel_plot(centersNamed[centersNamed['relative_humidity'] < -0.5], numClusters, colors=colors_used);

PySpark Cluster Analysis Hands-On

Code

- pyspark-clustering.ipynb
 - Notebook for hands-on
 - Add your code where indicated: # ==> YOUR CODE HERE
- pyspark-clustering-wOutput.ipynb
 - Has cell outputs
- pyspark-clustering-soln.ipynb
 - Solution
- utils.py
 - Has utility functions

Resources

- Apache Spark
- PySpark Documentation PySpark Documentation
- Spark SQL and DataFrames Guide
- Python for Data Science Cheat Sheet (pdf)

PANDAS API ON SPARK

- Pandas API integrated into Spark as of v. 3.2
- Allows for simple porting of already existing Pandas code to Spark
 - Same code can run with pandas (single node) and Spark (distributed system)
- Can use Spark to scale to multiple machines
- Can take advantage of unified analytics provided by Spark
 - Can access functionality provided by other Spark libraries
- Covers subset of pandas API
- To use

from pandas import read_csv from pyspark.pandas import read_csv pdf = read_csv("data.csv")

SPARK INTERFACE

Goals: speed, ease of use, generality, unified platform

R FOR STATISTICAL ANALYSIS

R

- Open source programming language and software environment for statistical computing and graphics
- · Widely used for statistical analysis and machine learning
- https://www.r-project.org/about.html

RStudio

- IDE (integrated development environment) for R
- · Has source code editor, build automation tools, debugger
- https://www.rstudio.com/
- Powerful, but limited to single-machine execution

SparkR

- R package that provides frontend to use Spark from R
- Supports scalable machine learning using R API
- Allows R script to connect to Spark cluster
- Can use with R shell or RStudio or other R IDEs.

SparkR

- Uses MLlib for machine learning functionality
- Familiar R syntax:
 - Read contents of file into a Spark dataframe
 - newdata <- read.df ("data.txt", source="csv")
 - R formula operators for model fitting:
 - model <- spark.randomForest(training, label ~ features, "classification", numTrees = 10)
 - Get summary of fitted model
 - summary(model)
 - Apply model to make predictions
 - predictions <- predict(model, testDF)
 - Save model
 - write.ml (model, "mymodel")

Running SparkR Code

File Edit Code View Plots Session Build Debug Tools Help

_ D X

RStudio

sparklyr

- R interface for Spark
- R Legacy
 - From Rstudio
 - Available on CRAN
- Spark backend to dplyr and SQL
 - Interactively manipulate Spark data using dplyr and SQL
- Access to Spark functionality
 - Interface to Spark MLlib algorithms
- Connect to Spark clusters

sparklyr

Setup

- install.packages("sparklyr")
- library(sparklyr)
- spark_install ()

Connect to Spark

sc <- spark_connect (master="local")

Using dplyr

```
flights_sdf %>% group_by(tailnum)%>% filter(count > 20)
```

Machine Learning

```
    model <- ml_random_forest (
        train_sdf, quality ~ ., type="classification")</li>
```

sparklyr Functions

Spark Operations

Manage Spark connections (e.g., spark_config())

Spark Data Manipulation

 Read data in Spark DataFrame and perform operations (e.g., spark_read_csv(), tbl_cache())

Feature Transformers

Transform data (e.g., ml_pca(), ft_bucketizer())

Distributed Machine Learning

Access Spark Mllib algorithms (e.g., ml_kmeans())

Streaming

Support streaming data operations (e.g., stream_read_json())

Extensions

Interface to platforms for big data analysis, graph analytics, production

Resources

- Spark
 - https://spark.apache.org/
- PySpark API
 - https://spark.apache.org/docs/latest/api/python/index.html
- Spark DataFrame
 - https://spark.apache.org/docs/latest/sql-programming-quide.html
- MLlib
 - https://spark.apache.org/mllib/
- SparkR
 - https://spark.apache.org/docs/latest/sparkr.html
- SparkR API
 - https://spark.apache.org/docs/latest/api/R/
- sparklyr
 - https://spark.rstudio.com/

PANDAS API ON SPARK RESOURCES

User's Guide

 https://spark.apache.org/docs/latest/api/python/user_guid e/pandas_on_spark/index.html

Sample Notebook

 https://mybinder.org/v2/gh/apache/spark/4f25b3f712?file path=python%2Fdocs%2Fsource%2Fgetting_started%2 Fquickstart_ps.ipynb

API Reference

https://spark.apache.org/docs/latest/api/python/reference/pyspark.pandas/index.html

Spark Topics

Spark

- History & Design Goals
- RDDs
- DataFrames
- Spark Architecture
- Spark API
- Spark Core & Libraries

Spark Hands-On

- Scaling
- Cluster Analysis
- Pandas on Spark
- R on Spark
 - SparkR
 - sparklyR

