Dependente multivaluate

Fie X, Y \subseteq U. O dependenta multivaluata este notata sintactic prin X $\rightarrow \rightarrow$ Y .

Vom da doua definitii pentru satisfacerea unei dependente multivaluate de catre o relatie r peste U.

Definitia 1. Relatia r peste U satisface dependenta multivaluata X →→Y , daca pentru orice doua uple t1, t2 \in r si t1[X] = t2[X], exista uplele t3 si t4 din r, astfel ıncat:

(i) t3[X] = t1[X], t3[Y] = t1[Y] si t3[Z] = t2[Z]; (ii) t4[X] = t2[X], t4[Y] = t2[Y] si t4[Z] = t1[Z], unde Z = U - XY

In definitia 1 este suficient sa cerem existenta lui t3 sau t4, celalalt uplu rezulta considerand uplele in ordinea t2,t1.

Pentru $t \in r$ avem $t[X] \in r[X]$. Notam prin F_Y $(t[X]) = \{t'[Y]/t' \in r, t'[X] = t[X]\}$. Aceasta se numeste multimea Y -valorilor asociate lui t[X]. Exemplul 1. Fie relatia r data astfel:

a₁ b₁ c₁ d₁

ABCD

a₁ b₂ c₂ d₂

a₁ b₁ c₁ d₂

a₁ b₂ c₂ d₁

a₂ b₃ c₁ d₁

a₂ b₃ c₁ d₂

Se verifica faptul ca r satisface A →→ BC conform definitiei 1.

Pentru $t \in r$, definim:

 $M_Y (t[XZ]) = \{t'[Y]/t' \in r, t'[XZ] = t[XZ]\}.$

Definitia 2. Relatia r peste U satisface dependenta multivaluata $X \to Y$, daca pentru orice t1, t2 \in r, astfel incat t1[X] = t2[X] avem: M_Y (t1[XZ]) = M_Y (t2[XZ]).

Propozitia 1. Definitiile 1 si 2 sunt echivalente. Demonstratie. Fie r ce satisface $X \rightarrow Y$ dupa definitia 1 si fie $t_1, t_2 \in r$, astfel ıncat $t_1[X] = t_2[X]$. Fie $t_1[Y] \in M_Y$ ($t_1[XZ]$). Sa aratam ca

 $t'_1[Y] \in M_Y(t_2[XZ]).$

Avem $t'_1 \in r$ si $t'_1[XZ] = t_1[XZ]$. Rezulta $t'_1[X] =$ $t_1[X] = t_2[X]$. Decarece r satisface $X \rightarrow Y$ dupa definitia 1 si $t'_1[X] = t_2[X]$, exista $t_3 \in r$, astfel

incat: $t_3[X] = t'_1[X]$, $t_3[Y] = t'_1[Y]$ si $t_3[Z] = t_2[Z]$.

De aici $t_3[XZ] = t_2[XZ]$, de unde

 $t_3[Y] \in M_Y (t_2[XZ])$. Decarece $t'_1[Y] = t_3[Y]$, obtinem $t'_1[Y] \in M_Y (t_2[XZ])$.

Rationamentul fiind simetric rezulta si invers, adica $t'_2[Y] \in M_Y$ ($t_2[XZ]$) implica: $t'_2[Y] \in M_Y$ ($t_1[XZ]$).

Am aratat:

 M_Y (t₁[XZ]) = M_Y (t₂[XZ]), adica r satisface X $\rightarrow \rightarrow$ Y dupa definitia 2.

Presupunem acum ca r satisface $X \rightarrow Y$ dupa definitia 2 si fie $t_1, t_2 \in r$, astfel incat $t_1[X] = t_2[X]$.

Din M_Y (t₁[XZ]) = M_Y (t₂[XZ]) si faptul ca t₁[Y] \in

 M_Y (t₁[XZ]) obtinem t₁[Y] \in M_Y (t₂[XZ]). Deci \exists t'₂ \in r, astfel incat t₁[Y] = t'₂[Y] si t'₂[XZ] =

Deci $\exists t'_2 \in r$, astfel incat $t_1[Y] = t'_2[Y]$ si $t'_2[XZ] = t_2[XZ]$. Pentru $t'_2 \in r$ avem: $t'_2[X] = t_2[X] = t_1[X]$,

Similar obtinem $t'_1 \in r$, astfel incat: $t'_1[X] = t_2[X]$,

 $t'_1[Y] = t_2[Y]$ si $t'_1[Z] = t_1[Z]$. Am aratat ca r satisface $X \rightarrow Y$ dupa definitia 1.

 $t_2[Y] = t_1[Y] \text{ si } t_2[Z] = t_2[Z].$

Observatia 1. Daca r satisface dependenta functionala $X \to Y$, atunci pentru orice $t \in r$, avem M_Y (t[XZ]) = {t[Y]}. Observatia 2. Daca r satisface dependenta

functionala $X \rightarrow Y$, atunci r satisface

dependenta multivaluata $X \rightarrow Y$.

Observatia 3. Daca r satisface dependenta multivaluata $X \to Y$, atunci putem defini o functie $\psi: r[X] \to P(r[Y])$, prin $\psi(t[X]) = M_Y(t[XZ])$, $\forall t \in r$. Cand r satisface $X \to Y$, atunci $\psi: r[X] \to r[Y]$.

Proprietati ale dependentelor multivaluate:

Propozitia 2. MVD0 (Complementariere).

Fie X, Y,Z \subseteq U,astfel incat XY Z = U si Y \cap Z \subseteq

X. Daca r satisface $X \rightarrow \to Y$, atunci r satisface

 $X \rightarrow \rightarrow Z$.

MVD1 (Reflexivitate). Daca $Y \subseteq X$, atunci orice relatie r satisface $X \rightarrow Y$.

MVD2 (Extensie). Fie $Z \subseteq W$ si r satisface $X \rightarrow \rightarrow$

Y . Atunci r satisface XW →→ Y Z.

MVD3 (Tranzitivitate). Daca r satisface $X \rightarrow Y$ si $Y \rightarrow Z$, atunci r satisface $X \rightarrow Z - Y$.

MVD4 (Pseudotranzitivitate). Daca r satisface X

 $\rightarrow \rightarrow$ Y , si YW $\rightarrow \rightarrow$ Z, atunci r satisface XW $\rightarrow \rightarrow$ Z – YW.

MVD5 (Uniune). Daca r satisface $X \rightarrow Y$, si $X \rightarrow Z$, atunci r satisface $X \rightarrow Y$.

MVD6 (Descompunere). Daca r satisface $X \rightarrow \rightarrow Y$, si $X \rightarrow \rightarrow Z$, atunci

r satisface $X \to Y \cap Z, X \to Y - Z, X \to Z - Y$. Deoarece vom lucra cu multimi de dependente, ce pot fi functionale sau multivaluate, vom avea nevoie de asa numitele proprietati mixte.

FD-MVD1. Daca r satisface $X \rightarrow Y$, atunci r satisface $X \rightarrow Y$.

satisface $X \to Y$.

FD-MVD2. Daca r satisface $X \to Z$ si $Y \to Z'$,

cu $Z' \subseteq Z$ si $Y \cap Z = \emptyset$, atunci r satisface $X \to Z'$.

FD-MVD3. Daca r satisface $X \to Y$ si $XY \to Z$,

atunci r satisface X → Z − Y.

Demonstrarea lui MVD0:

Pentru X, Y, Z ⊆ U vom considera, ın general, urmatoarea diagrama:

U reprezinta intregul patrat, $X = \{1, 2, 3, 4\}, Y = \{2, 3, 5, 6\}, Z = \{3, 4, 6, 7\}, U - XYZ = \{8\}.$

In conditiile proprietatii MVD0 (XYZ = U si Y ∩ Z

 \subseteq X), avem 8 = \emptyset si 6 = \emptyset .

 $t_4[T1] = t[T1].$

Fie T1 = U - XY = $\{7\}$, T2 = U - XZ = $\{5\}$.

Presupunem ca r satisface $X \rightarrow Y$. Aceasta inseamna ca pentru orice t, $t' \in r$ cu t[X] = t'[X], exista t_3 si $t_4 \in r$, astfel incat $t_3[X] = t[X]$, $t_3[Y] = t[Y]$, $t_3[T1] = t'[T1]$ si $t_4[X] = t'[X]$, $t_4[Y] = t'[Y]$,

Sa notam prin t_i respectiv t'_i, proiectia lui t respective t', pe domeniul i. Atunci pentru t avem:

avem:
$$X \qquad Y \qquad T1 \\ t \rightarrow ((t_1,\,t_2,\,t_3,\,t_4),\,(t_2,\,t_3,\,t_5),\,(t_7)) \\ t' \rightarrow ((t'_1,\,t'_2,\,t'_3,\,t'_4),\,(t'_2,\,t'_3,\,t'_5),(\,t'_7)) \\ X \qquad Z \qquad T2 \\ t \rightarrow ((t_1,\,t_2,\,t_3,\,t_4),\,(t_3,\,t_4,\,t_7),\,(t_5))$$

$$t' \rightarrow ((t'_1, t'_2, t'_3, t'_4), (t'_3, t'_4, t'_7), (t'_5))$$

Din t[X] = t'[X] rezulta $t_i = t'_i$, i = 1, 4.

Aplicam faptul ca r satisface $X \rightarrow Y$. Rezulta ca exista $t'' \in r$, astfel incat:

 $t'' \rightarrow ((t_1, t_2, t_3, t_4), (t_2, t_3, t_5), (t'_7)).$

Acest t" proiectat pe X, Z, T2 da: $t'' \rightarrow ((t_1, t_2, t_3, t_4), (t_3, t_4, t'_7), (t_5)) =$ $((t'_1, t'_2, t'_3, t'_4), (t'_3, t'_4, t'_7), (t_5))$

Avem deci satisfacuta definitia 1 pentru t' si t. Multimile Y si Z intervin simetric ın MVD0, deci rezulta si invers: daca r satisface $X \rightarrow X$, atunci r satisface $X \rightarrow X$.

Demonstrarea proprietatii MVD1:

$$Y = \{1\}, X = \{1, 2\}, Z = U - XY = \{3\}.$$
Fie t, $t' \in r$, astfel incat $t[X] = t'[X]$, adiating the state of the state of

Fie t,
$$t' \in r$$
, astfel incat $t[X] = t'[X]$, adica $t_i = t'_i$, $i = 1, 2$.

$$t_i = t'_i, i = 1, 2.$$

X Y Z

$$t' \rightarrow ((t'_1, t'_2), (t'_1), (t'_3))$$

 $t \to ((t_1, t_2), (t_1), (t_3))$

consideram t" = t'. Avem:

$$t'' \rightarrow ((t'_1, t'_2), (t'_1), (t'_3)) = ((t_1, t_2), (t_1), (t'_3))$$

Demonstrarea proprietatii MVD2:

Avem $Z \subseteq W$ si r satisface $X \rightarrow Y$. Aratam ca r satisface $XW \rightarrow Y$.

$$X = \{1, 3, 4, 5, 6, 7\}$$
 $Y = \{2, 3, 4, 5, 8, 9\}$
 $W = \{4, 5, 6, 7, 8, 9, 10, 11\}$
 $Z = \{5, 7, 9, 10\}$

$$T1 = U - XY = \{10, 11, 12\}$$

 $T2 = U - XWY Z = \{12\}.$

Fie t, $t' \in r$, astfel incat t[XW] = t'[XW], adica $t_i = t'[XW]$

Fie t,
$$t' \in r$$
, astfel incat t[XW] = t'[XW], adica $t_i = t'_i$, $i = 1, 3, 4 - 11$.

XW YZ T2 $t \rightarrow ((t_1, t_3, t_4 - t_{11}), (t_2 - t_5, t_7 - t_{10}), (t_{12}))$

 $t' \rightarrow ((t'_1, t'_3, t'_4 - t'_{11}), (t'_2 - t'_5, t'_7 - t'_{10}, (t'_{12})),$

unde t_i - t_j noteaza toate componentele

Incepand cu t_i si terminand cu t_j , (i < j).

Projectam acum t si t' pe tripleta (X Y T1)

Proiectam acum t si t' pe tripleta (X, Y, T1):

$$t \rightarrow ((t_1, t_3, t_4 - t_7), (t_2 - t_5, t_8, t_9), (t_{10} - t_{12}))$$

 $t' \rightarrow ((t'_1, t'_3, t'_4 - t'_7), (t'_2 - t'_5, t'_8, t'_9), (t'_{10} - t'_{12})).$

Deoarece avem t[X]=t'[X] si r satisface $X \rightarrow \to Y$, rezulta ca exista $t'' \in r$, astfel incat:

 $t'' \rightarrow ((t_1, t_3, t_4 - t_7), (t_2 - t_5, t_8, t_9), (t'_{10} - t'_{12}))$ pe X, Y, T1.

Proiectand acest t" pe XW, YZ, T2, obtinem: $t'' \rightarrow ((t_1, t_3, t_4-t_9, t'_{10}, t'_{11}), (t_2-t_5, t_7-t_9, t'_{10}), (t'_{12}))$

deoarece $t_i = t'_i$, i = 1, 3, 4 - 11.

Pentru t si t' am obtinut t" care satisface definitia1.

 $= ((t_1, t_3, t_4 - t_{11}), (t_2 - t_5, t_7 - t_{10}), (t'_{12})),$

Demonstrarea proprietatii MVD3:

Daca r satisface $X \to Y$, si $Y \to Z$, atunci r satisface $X \to Z - Y$.

$$X = \{1, 2, 3, 4\}$$

 $Y = \{2, 3, 5, 6\}$

$$Z = \{3, 4, 6, 7\},\$$

 $Z - Y = \{4, 7\}$
 $T1 = II - XY = II$

 $Z - Y = \{4, 7\}$

$$T1 = U - XY$$

i = 1, 4

 $T1 = U - XY = \{7, 8\}$ $T2 = U - Y Z = \{1, 8\}$

 $T3 = U - X(Z - Y) = \{5, 6, 8\}$

 $t \rightarrow ((t_1 - t_4), (t_4, t_7), (t_5, t_6, t_8))$

Fie t, $t' \in r$, astfel incat t[X] = t'[X], adica $t_i = t'_i$,

 $t' \rightarrow ((t'_1 - t'_4), (t'_4, t'_7), (t'_5, t'_6, t'_8)) \text{ pe X,Z - Y, T3}$

Consideram t si t' proiectate pe X, Y, T1: $t \rightarrow ((t_1 - t_4), (t_2, t_3, t_5, t_6), (t_7, t_8))$

 $t' \rightarrow ((t'_1 - t'_4), (t'_2, t'_3, t'_5, t'_6), (t'_7, t'_8))$

Deoarece r satisface $X \rightarrow Y$, rezulta ca exista $t'' \in r$, astfel incat:

 $t'' \rightarrow ((t_1 - t_4), (t_2, t_3, t_5, t_6), (t'_7, t'_8)) \text{ pe X, Y, T1.}$

Consideram acum t si t" pe Y,Z, T2.

$$\begin{split} t &\to ((t_2,\,t_3,\,t_5,\,t_6),\,(t_2,\,t_4,\,t_6,\,t_7),\,(t_1,\,t_8)) \\ t'' &\to ((t_2,\,t_3,\,t_5,\,t_6),\,(t_2,\,t_4,\,t_6,\,t'_7),\,(t_1,\,t'_8)) \\ r \; \text{satisface} \; Y &\to\to Z. \; \text{Pentru} \; t'' \; \text{si} \; t \; \text{exista} \; t''' \in r, \end{split}$$

r satisface $Y \to Z$. Pentru t'' si t exista t''' $\in \Gamma$ astfel incat $t''' \to ((t_2, t_3, t_5, t_6), (t_2, t_4, t_6, t'_7), (t_1, t_8)).$

Considerand t''' proiectat pe X, Z – Y si T3 obtinem:

$$t''' \rightarrow ((t_1 - t_4), (t_4, t'_7), (t_5, t_6, t_8)) =$$

 $((t'_1 - t'_4), (t'_4, t'_7), (t_5, t_6, t_8))$

In concluzie, pentru t' si $t \in r$ cu t'[X] = t[X] am gasit t''' ce satisface definitia 1.

Am aratat FD-MVD1. Sa aratam acum FD - MVD2:

Fie r care satisface $X \rightarrow Z$ si $Y \rightarrow Z'$, cu $Z' \subseteq Z$ si $Y \cap Z = \emptyset$.

Sa aratam ca r satisface $X \rightarrow Z'$.

$$X = \{1, 2, 3, 4\}$$

 $Y = \{2, 5\}$

 $Y = \{2, 5\}$

 $Z = \{3, 4, 6, 7\}$

 $Z' = \{4, 6\}$

 $T1 = U - XZ = \{5, 8\}.$

Fie $t,t' \in r$, astfel incat : t[X] = t'[X], deci

 t_i = t'_i , i = 1, 4. Sa aratam ca t[Z'] = t'[Z'], adica t_6 = t'_6 .

 $t_6 = t'_6$. Consideram proiectiile uplelor t si t' pe X, Z,T1: $t \to ((t_1 - t_4), (t_3, t_4, t_6, t_7), (t_5, t_8))$ $t' \to ((t'_1 - t'_4), (t'_3, t'_4, t'_6, t'_7), (t'_5, t'_8))$

Deoarece r satisface $X \rightarrow Z$, exista $t'' \in r$, astfel incat proiectiile lui t'' pe X, Z, T1 sunt :

 $t'' \rightarrow ((t_1 - t_4), (t_3, t_4, t_6, t_7), (t'_5, t'_8))$

Avem $t''_2 = t_2 = t'_2$ si $t''_5 = t'_5$, deci t''[Y] = t'[Y].

Deoarece r satisface $Y \rightarrow Z'$, obtinem t''[Z'] =

t'[Z'], adica $t''_6 = t'_6$, dar $t''_6 = t_6$. Deci $t_6 = t'_6$. Sa aratam acum FD-MVD3:

Presupunem ca r satisface $X \rightarrow Y$ si $XY \rightarrow Z$.

Aratam ca r satisface

 $X \rightarrow Z - Y$

 $X = \{1, 2, 3, 4\}$

 $Y = \{2, 3, 5, 6\}$

 $Z = \{3, 4, 6, 7\}$

 $Z - Y = \{4, 7\}$

 $T1 = U - XY = \{7, 8\}.$

Fie t, $t' \in r$, astfel incat t[X] = t'[X], adica $t_i = t'_{i}$, i = 1, 4. Sa aratam ca

t[Z - Y] = t'[Z - Y], adica $t_7 = t'_7$.

(Avem $t_4 = t'_4$).

Proiectam t si t' pe X, Y si T1:

 $t \rightarrow ((t_1 - t_4), (t_2, t_3, t_5, t_6), (t_7, t_8))$

 $t' \rightarrow ((t'_1 - t'_4), (t'_2, t'_3, t'_5, t'_6), (t'_7, t'_8))$

Deoarece r satisface $X \rightarrow Y$, exista $t'' \in r$, astfel incat proiectiile lui t'' pe X, Y si T1 sunt: $t'' \rightarrow ((t_1 - t_4), (t_2, t_3, t_5, t_6), (t'_7, t'_8))$

Avem $t''_{i} = t_{i}$, i = 1, 6.

Deoarece r satisface XY \rightarrow Z, rezulta t''[Z] = t[Z], de unde t''₇ = t₇. Dar t''₇ = t'₇, deci t'₇ = t₇.

Pentru fiecare proprietate a dependentelor multivaluate asociem o regula formala prin aceeasi metoda ca la dependentele functionale:

MVD0f: XY Z = U si Y
$$\cap$$
 Z \subseteq X, X $\rightarrow \rightarrow$ Y

$$X \rightarrow \rightarrow Z$$

MVD1f: $Y \subseteq X$

$$X \rightarrow \rightarrow Y$$

MVD2f:
$$Z \subseteq W, X \rightarrow Y$$

 $XW \rightarrow \rightarrow YZ$

MVD3f:
$$X \rightarrow Y, Y \rightarrow Z$$

$$X \rightarrow Z - Y$$

MVD4f: $X \rightarrow Y, YW \rightarrow Z$

$$XW \rightarrow Z - YW$$

 $X \rightarrow \rightarrow YZ$

MVD5f:
$$X \rightarrow Y, X \rightarrow Z$$

MVD6f:
$$X \rightarrow Y, X \rightarrow Z$$

 $X \rightarrow \rightarrow Y \cap Z, X \rightarrow \rightarrow Y - Z, X \rightarrow \rightarrow Z - Y$

FD-MVD1f:
$$X \rightarrow Y$$

$$X \rightarrow Y$$

FD-MVD2f:
$$X \rightarrow Z$$
, $Y \rightarrow Z'$, $Z' \subseteq Z$, $Y \cap Z = \emptyset$

$$X \rightarrow Z'$$

FD-MVD3f: $X \rightarrow Y, XY \rightarrow Z$

$$X \rightarrow Z - Y$$

Propozitia 3. Regulile de inferenta enuntate mai sus sunt valide.

Demonstratie. Rezulta imediat din propozitia 2.

Propozitia 4. Fie \mathscr{R} o multime de reguli valide si o regula: $\sigma_1, \ldots, \sigma_k$

σ,

astfel ıncat $\{ \sigma_1, \ldots, \sigma_k \} | --\Re \sigma$, atunci si regula este valida.

Afirmatia rezulta usor prin inductie dupa lungimea demonstratiei in $\{\sigma_1, \ldots, \sigma_k\}$ utilizand \mathscr{R} . Faptul ca $\{\sigma_1, \ldots, \sigma_k\}$ |--- \mathscr{R} σ il vom numi: "regula se exprima cu ajutorul regulilor de inferenta din \mathscr{R} ". In continuare, vom

considera in afara de regulile de inferenta de mai sus si regulile de inferenta FD1f, FD2f, FD3f pentru dependentele functionale. Propozitia 5 Fie \mathcal{R}_{FM} = { FD1f-FD3f, MVD0f-MVD3f, FD-MVD1f- FD-MVD3f }. Avem: FD-MVD3f se exprima prin celelalte reguli din \mathcal{R}_{FM} si FD-MVD2f se exprima prin celelalte reguli din $\mathcal{R}_{\mathsf{FM}}$.

Demonstratie. Fie $\sigma_1: X \to Y$ si $\sigma_2: XY \to Z$.

Aplicam la prima MVD0f obtinem $\sigma_3: X \to U = XY \cdot Din XY \to Z \text{ si } Z \to Z$

 σ_3 : X $\rightarrow \rightarrow$ U - XY . Din XY \rightarrow Z si Z \rightarrow Z - XY (obtinuta din FD1f) prin FD3f rezulta

(obtinuta din FD1f) prin FD3f rezulta $\sigma_4: XY \to Z - XY$. Deoarece $Z - XY \subseteq U - XY$ si $XY \cap (U - XY) = \emptyset$, putem aplica FD-MVD2f pentru σ_3 si σ_4 si obtinem: $\sigma_5: X \to Z - XY$.

Dupa FD1f avem $\sigma_6: X \to X \cap Z - Y$.

Aplicand FD5f care se exprima cu ajutorul regulilor FD1f-FD3f (Propozitia 1.3 Cap. II) rezulta $\sigma_7: X \to Z - Y$, adica FD-MVD3f se exprima prin celelalte reguli din \mathcal{R}_{FM} . Fie date $\sigma_1: X \to Z$, $\sigma_2: Y \to Z'$ cu conditiile $Z' \subseteq Z$ si $Y \cap Z = \emptyset$.

Aplicand MVD0f lui σ₁ obtinem:

 $\sigma_3: X \rightarrow U - XZ$.

Deoarece $Y \subseteq X(U - XZ)$ prin FD1f obtinem:

 σ_4 : $X(U-XZ) \to Y$. Aplicand FD3f pentru σ_4 si σ_2 se obtine σ_5 : $X(U-XZ) \to Z'$.

Putem aplica regula FD-MVD3f pentru σ_3 si σ_5 , ceea ce conduce la σ_6 : $X \to Z'$ – (U – XZ).

Dar Z' – (U–XZ) = Z'. Deci σ_6 : X \rightarrow Z'.

In concluzie, regula FD-MVD2f se exprima prin celelalte reguli din \mathcal{R}_{FM} .

Propozitia 6. Regulile MVD4f-MVD6f se exprima cu ajutorul regulilor MVD0f-MVD3f. Demonstratie. Fie σ_1 : X \rightarrow Y si σ_2 : YW \rightarrow Z. Aplicam pentru σ_1 si W \subseteq W regula MVD2f si

obtinem: σ_3 : XW $\rightarrow \rightarrow$ YW.

Pentru σ_3 si σ_2 aplicam MVD3f si se obtine:

 σ_4 : XW $\rightarrow \rightarrow$ Z - YW.

Deci $\{\sigma_1, \sigma_2\}$ | -- {MVD2f, MVD3f} σ_4

(regula pentru pseudotranzitivitate).

Consideram acum MVD5f. Fie $\sigma_1: X \to Y$ si $\sigma_2:$

 $X \rightarrow Z$.

Din σ_1 , $Z \subseteq Z$ si MVD2f se obtine

 $\sigma_3: XZ \rightarrow Y Z$. Aplicand lui σ_3 regula MVD0f se obtine

 σ_4 : XZ $\rightarrow \rightarrow$ (U-XYZ). Din σ_2 , X \subseteq X si MVD2f rezulta σ_5 : X $\rightarrow \rightarrow$ XZ. Din σ_5 , σ_4 si regula MVD3f rezulta σ_6 : X $\rightarrow \rightarrow$ U -XYZ.

Aplicand pentru σ_6 regula MVD0f rezulta σ_7 : X $\rightarrow \rightarrow$ YZ.

Fie $\sigma_1: X \to Y \text{ si } \sigma_2: X \to Z.$

Din $X \rightarrow X$ (reflexivitate)

si σ_1 prin MVD3f obtinem $\sigma_3: X \to Y - X$.

Aplicand lui σ₃ regula MVD0f obtinem
σ₄: X →→ U − XY

Din $X \rightarrow \to X$ si $X \rightarrow \to Z$ prin MVD3f obtinem:

 σ_5 : X $\rightarrow \rightarrow$ Z – X. Aplicand acesteia MVD0f obtinem:

 σ_6 : X $\rightarrow \rightarrow$ U - XZ. Aplicand acum MVD4f (reuniunea) pentru σ_4 si σ_6 obtinem:

 σ_7 : X $\rightarrow \rightarrow$ (U-XY)(U-XZ). Aplicam acum MVD0f pentru σ_7 , vom avea:

 σ_8 : $X \to Y \cap Z - X$. Prin MVD1f avem σ_9 : $X \to X \cap Y \cap Z$.

Prin reuniune (MVD4f) din σ_8 si σ_9 se obtine σ_{10} : $X \to Y \cap Z$.

Astfel, pornind de la σ_1 si σ_2 si aplicand regulile MVD0f-MVD3f se obtine σ_{10} .

Sa aratam acum cea de a doua parte a lui MVD6f. Pornim de la σ_1 : $X \to Y$ si σ_2 : $X \to Z$. Aplicand MVD5f se obtine $X \to YZ$.

De aici, prin MVD0f, se obtine:

 σ_3 : X $\rightarrow \rightarrow$ U - XYZ. Aplicam MVD5f pentru σ_2 si σ_3 ceea ce produce:

 σ_4 : X $\rightarrow \rightarrow$ Z(U - XYZ). Pentru σ_4 aplicam MVD0f, ceea ce conduce la

 σ_5 : $X \to Y - XZ$. Prin reflexivitate avem σ_6 : $X \to X \cap Y - Z$. Prin MVD5f din σ_5 si σ_6 se obtine: σ_7 : $X \to Y - Z$. In mod similar, se obtine $X \to Z - Y$ (schimband in fond Y cu Z peste tot).

Teorema 1. Fie Σ o multime de dependente functionale sau multivaluate si X o submultime de atribute. Atunci exista o partitie a lui U - X notate prin $\{Y_1, \ldots, Y_k\}$, astfel ıncat pentru $Z \subseteq U - X$ avem $\Sigma \mid -- \Re_{\mathbb{P}^M} X \to Z$ iff Z este reuniunea unui numar de multimi din partitia $\{Y_1, \ldots, Y_k\}$.

Demonstratie. Construim partitia notata P, astfel: initial consideram ın P numai U – X. Fie P obtinuta la un moment dat avand elementele W_1, \ldots, W_n .

Presupunem ca $\Sigma | -- \Re_{FM} X \rightarrow W_i$, pentru orice i = 1, n (initial $\Sigma \vdash X \rightarrow U - X$ dupa MVD0f si MVD1f).

Fie $\Sigma|_{--\mathscr{R}_{\text{FM}}} X \to Z$ si $Z \subseteq U - X$ si Z nu este reuniune de multimi W_i .

Deoarece P este partitie pentru U – X, rezulta ca exista W_i din P, astfel incat $W_i \cap Z \not= \emptyset$ si $W_i - Z \not= \emptyset$. Pentru fiecare astfel de W_i din P inlocuim in P pe W_i cu $W_i \cap Z$ si $W_i - Z$. Deoarece $\Sigma | -- \Re_{FM} X \rightarrow - Z$ si dupa

ipoteza inductiei $\Sigma | -- \mathscr{R}_{\text{FM}} X \to W_i$, aplicand MVD6f se obtine $\Sigma | -- \mathscr{R}_{\text{FM}} X \to W_i \cap Z$ si $\Sigma | -- \mathscr{R}_{\text{FM}} X \to W_i - Z$.

Altfel spus, noua partitie satisface aceeasi proprietate ca vechea partitie.

Deoarece U este finita si multimea dependentelor functionale sau multivaluate

este finita, rezulta ca algoritmul de mai sus este finit. (Numarul partitiilor lui U - X este de asemenea finit).

Fie P = $\{Y_1, \ldots, Y_k\}$ partitia finala obtinuta.

Rezulta prin inductie

dupa pasii folositi ın constructia lui P ca:

 $\Sigma | -- \Re_{EM} X \rightarrow Y_i$, i = 1, k.

Daca $Z \subseteq U - X$ este reuniune de Y_i , adica $Z = Y_{i1} \cup \ldots \cup Y_{ih}$, aplicand MVD5f se obtine $\Sigma | -- \mathcal{R}_{FM} \mid X \rightarrow \to Z$.

Invers. Pentru $Z \subseteq U - X$, daca $\Sigma | -- \Re_{FM} X \to Z$, atunci Z este reuniune de Y_i , pentru ca altfel sar putea rafina partitia P, ceea ce este o contradictie.

Definitia 3. Pentru Σ o multime de dependente functionale sau multivaluate si X o submultime de atribute, numim baza de dependenta pentru X cu privire la Σ , partitia $B(\Sigma,X) = \{\{A_1\},\dots\{A_h\}, Y_1,\dots,Y_k\}$, unde

 $X = A_1 ... A_h$, iar $Y_1 ... Y_k$ este partitia construita in teorema 1.

Observatia 4. Avem $\Sigma | -- \Re X \to Z$ iff Z este o reuniune de elemente din partitia $B(\Sigma,X)$. In adevar, daca Z este reuniune de elemente din $B(\Sigma,X)$, atunci fie

$$Z = A_{i1} \dots A_{it} \cup Y_{i1} \cup \dots \cup Y_{il}$$
.

Avem : $\Sigma|_{--\mathscr{R}_{FM}} X \to A_{ip}$, p = 1, t dupa MVD1f si $\Sigma|_{--\mathscr{R}_{FM}} X \to Y_{jq}$, q = 1, I dupa teorema 1.

Aplicand acestora MVD5f se obtine

$$\Sigma | -- \mathscr{R}_{FM} X \rightarrow Z.$$

Invers, presupunem c´a avem $\Sigma | \mathscr{R}FM$

unde X1
$$\subseteq$$
 X si Z1 \subseteq U - X. (X1 \cap Z1 = \emptyset).

Dup a MVD6f rezulta

 $X \rightarrow Z$. Fie $Z = X1 \cup Z1$,

$$\Sigma | \mathscr{R}_{FM} X \to Z1$$
. De aici dupa teorema 1, $Z1 = Y_{i1} \cup \ldots \cup Y_{il}$.

Daca $X1 = A_{i1} ... A_{it}$, atunci Z este reuniunea elementelor $A_{i1} ... A_{it}$, $Y_{j1} ... Y_{jl}$

din B(Σ ,X). Observatia 5. Fie $X_{\Sigma} = \{A|\Sigma|\mathscr{R}_{FM} \ X \to A\}$. Atunci pentru orice $A \in X*_{\Sigma}$ avem $\{A\}$ B(Σ ,X). In adevar, pentru $A \in X*_{\Sigma}$ dupa FD-MVD1f, obtinem $\Sigma|\mathscr{R}_{FM} \ X \to A$ si aplicand teorema 1, rezulta $\{A\} \in B(\Sigma,X)$.

1 Studiul dependentelor functionale si multivaluate utilizand calculul propozitional

Pentru fiecare atribut $A \in U$ asociem o variabila propozitionala notata a. Pentru o dependenta functionala $\sigma: A_1 \dots A_m \to B_1 \dots B_h$ asociem

formula (numita implicatie) σ : $a_1 \dots a_m \Rightarrow b_1 \dots$

. b_h (ca in cazul studiului dependentelor functionale, utilizand calculul propozitional, capitolul II, §2).

Daca $\sigma: A_1 \dots A_m \to B_1 \dots B_h$ este o dependenta multivaluata si $U - A_1 \dots A_m B_1 \dots B_h = C_1 \dots C_p$, atunci formula asociata lui σ va fi

 σ : $a_1 \ldots a_m \Rightarrow b_1 \ldots b_h + c_1 \ldots c_p$.

Semnul + noteaza disjunctia logica.

Daca $\sigma:X\to Y$, atunci _ se noteaza si prin $x\Rightarrow y.\ \text{Daca}\ \sigma:X\to\to Y\ ,$

atunci _ se noteaza si prin $x \Rightarrow y$.

Multimile X, Y si Z = U - XY pot fi vide. Facem conventia ca pentru multimea vida \emptyset , formula

asociata are valoarea true (conjunctia unei multimi vide de variabile propozitionale este true).

Propozitia 1.1 x $\Rightarrow \Rightarrow$ y este true iff x $\Rightarrow \Rightarrow$ y - x este true.

Demonstratie. Daca $X = A_1 ... A_m$, $Y = B_1 ... B_h$ si $Z = U - XY = C_1 ... C_p$, atunci $x \Rightarrow y$ este

$$a_1 \ldots a_m \Rightarrow b_1 \ldots b_n + c_1 \ldots c_p$$

Fie Y - X = $B_1 ... B_t$ si Y \cap X = $B_{t+1} ... B_h$.

Daca δ este o asignare, astfel ıncat

 $\delta(x \Rightarrow y) = \text{true}$, atunci putem avea:

a) exista i, i \in {1, 2, . . . ,m}, astfel incat $\delta(a_i)$ = false.

In acest caz $\delta(x \Rightarrow y - x) = true$.

b) $\forall i$, $i \in \{1, 2, ...m\}$, $\delta(a_i) = true$.

De aici $\delta(a_1 \dots a_m)$ = true.

Rezulta $\delta(b_1 \dots b_h)$ = true sau $\delta(c_1 \dots c_p)$ = true.

b1) $\delta(b_1 \dots b_h) = \text{true implica } \delta(b_1 \dots b_t) = \text{true, deci } \delta(x \Rightarrow (y - x) + c_1 \dots c_p) = \text{true.}$

b2) $\delta(c_1 \dots c_p) = \text{true atunci } \delta(x \Rightarrow y - x) = \text{true}.$

Invers rezulta similar.

Pentru simplitatea scrierii vom considera valoarea de adevar true notata prin 1, iar false prin 0.

Ca si in cazul dependentelor functionale, intentia noastra este de a stabili o legatura intre notiunea de consecinta din domeniul dependentelor

functionale si multivaluate si notiunea de consecinta logica din calculul propozitional.

Exemplul 1.1 Fie U = $\{A,B,C,D\}$, si $\Sigma = \{A \rightarrow \rightarrow \}$

 $B,C \rightarrow B$ si

 σ : A \rightarrow B. Atunci _ : a \Rightarrow b,

 $\Sigma = \{a \Rightarrow b + cd, c \Rightarrow b\}.$

Aratam ca $\Sigma =$ _. In adevar, fie r o relatie ce satisface dependentele

 $A \rightarrow \rightarrow B$ si $C \rightarrow B$. Sa aratam ca r satisface $A \rightarrow$

B. Fie t_1 , $t_2 \in r$ cu $t_1[A] = t_2[A]$ si fie $t_1 = (a_1, b_1, c_1, d_1)$ si $t_2 = (a_2, b_2, c_2, d_2)$.

Deoarece r satisface A $\rightarrow \rightarrow$ B, rezulta ca exista t_3 , $t_4 \in r$, astfel incat $t_3 = (a1, b1, c2, d2)$

si t₄ = (a1, b2, c1, d1). Deoarece t1, t4 ∈ r si r satisface C → B, rezulta ca b1 = b2, adica $t_1[B] = t_2[B]$, deci r satisface A \rightarrow

B. Aratam acum ca Σ |=c.l._.

Fie δ o asignare, astfel incat $\delta(a \Rightarrow b + cd) = 1$ si $\delta(c \Rightarrow b) = 1$.

Sa aratam ca $\delta(a \Rightarrow b) = 1$.

Daca $\delta(a) = 0$, atunci am terminat.

Daca $\delta(a) = 1$, atunci $\delta(b+cd) = 1$, deci $\delta(b) = 1$ sau $\delta(cd) = 1$; in cazul $\delta(b) = 1$ am terminat.

In cazul $\delta(cd) = 1$ rezulta $\delta(c) = 1$ si cu $\delta(c \Rightarrow b)$

= 1 se obtine $\delta(b)$ = 1, deci iarasi $\delta(a \Rightarrow b)$ = 1.

Teorema 1.1 Teorema de echivalenta.

Fie Σ o multime de dependente functionale sau multivaluate si $\,\sigma$ o dependenta functionala sau multivaluata.

Urmatoarele afirmatii sunt echivalente:

a) σ este o consecinta a lui Σ .

b) σ este o consecinta a lui Σ pe multimea relatiilor cu 2 uple.

c) este consecinta logica a lui Σ.

Vom da intai o demonstratie sintactica a teoremei de echivalenta. Pentru aceasta vom considera reguli de inferenta pentru implicatii ce se construiesc

pornind de la regulile de inferenta din $\mathscr{R}FM = \{FD1f-FD3f, MVD0f-MVD3f, FD-MVD1f-FD-MVD3f\}$

A1', A2', A3' pentru implicatii din calculul propozitional, reguli ce

corespund axiomelor lui Armstrong.

In capitolul II am considerat regulile de inferenta

 $x \Rightarrow y$

y ⊆ x noteaza faptul ca orice variabila ce apare ın y, apare de asemenea ın x.

FD2': $x \Rightarrow y, z \subseteq w$

$$xw \Rightarrow yz$$

FD3':
$$x \Rightarrow y, y \Rightarrow z$$

$$X \Rightarrow Z$$

MVD0':
$$xyz = u, y \cap z \subseteq x, x \Rightarrow y$$

$$X \Rightarrow \Rightarrow Z$$

u este conjunctia tuturor variabilelor asociate lui U.

$$MVD1'$$
: y ⊆ x

$$x \Rightarrow \Rightarrow y$$

$$\mathsf{MVD2'} \colon \mathsf{Z} \subseteq \mathsf{w}, \ \mathsf{x} \Rightarrow \mathsf{y}$$

 $XW \Rightarrow \Rightarrow YZ$

MVD3':
$$x \Rightarrow y, y \Rightarrow z$$

$$x \Rightarrow z - y$$

FD-MVD1':
$$x \Rightarrow y$$

 $x \Rightarrow \Rightarrow y$

FD-MVD2':
$$x \Rightarrow z$$
, $y \Rightarrow z'$, $z' \subseteq z$, $y \cap z = \emptyset$

$$X \Rightarrow Z'$$

FD-MVD3':
$$x \Rightarrow y$$
, $xy \Rightarrow z$

 $X \Rightarrow Z - Y$

Observatia 1.2 Deoarece sistemul de reguli {A1', A2', A3'} este valid si {A1', A2', A3'} este echivalent cu {FD1',FD2',FD3'} (ın virtutea

faptului ca {A1, A2, A3} este echivalent cu {FD1f, FD2f, FD3f} si Σ -- {FD1f-FD3f} σ iff Σ --|{A1,A2,A3} σ) rezulta ca FD1', FD2', FD3' sunt valide. Aceasta afirmatie rezulta desigur si direct.

Observatia 1.3 In virtutea propozitiei 5 ne vom dispensa de una din

regulile FD-MVD2' sau FD-MVD3'. Vom renunta la ultima.

Lema 1.4 Regulile de inferenta FD1'-FD3', MVD0'-MVD3', FD-MVD1',FD-MVD2' sunt valide. Fie \mathscr{R} FM' multimea acestor reguli. Demonstratie. Primele 3 sunt valide dupa observatia 1.2.

MVD0' este valida: Consideram reprezentarea multimilor de variabile

din x, y, z, u - xy, u - xz:

Din ipotezele respective se obtine: $6 = \emptyset$ si 8 =

Fie t1 = u - xy si t2 = u - xz.

Sa notam prin i conjunctia variabilelor din domeniul i, i = 1, 5, 7.

Formula $x \Rightarrow y$ se scrie astfel: 1 2 3 4 \Rightarrow 2 3 5

+ 7, iar x ⇒⇒ z devine

 $1\ 2\ 3\ 4 \Rightarrow 3\ 4\ 7\ +\ 5.$

Ø.

Fie δ o asignare astfel incat $\delta(x \Rightarrow y) = 1$.

Daca $\delta(1\ 2\ 3\ 4) = 0$, atunci $\delta(x \Rightarrow z) = 1$.

Daca $\delta(1\ 2\ 3\ 4) = 1$, atunci $\delta(2\ 3\ 5) = 1$ sau $\delta(7) = 1$.

Cand avem $\delta(2\ 3\ 5)=1$, atunci $\delta(5)=1$, deci $\delta(x\Rightarrow z)=1$.

Cand avem $\delta(7) = 1$, atunci $\delta(3 \ 4 \ 7) = 1$, deci $\delta(x \Rightarrow z) = 1$.

Observatia 1.4 Fie Σ o multime de formule din calculul propozitional si Σ^+ multimea formulelor ce pot fi derivate din Σ , utilizand regulile de inferenta FD1'-FD3', MVD0'- MVD3', FD-MVD1', FD-MVD2'.

Atunci dupa lema 1.4 rezulta ca $\Sigma \mid =_{c.l.} \Sigma^+$, adica formulele din Σ^+ sunt consecinte logice ale formulelor din Σ .

Lema 1.5 Fie Σ o multime de formule asociate multimii Σ de dependente functionale sau multivaluate si X o multime de atribute. Fie $X^+ = \{A | \Sigma^{--}_{FM} X \rightarrow A\}$. Fie $B(\Sigma, X)$ baza de

dependenta pentru X cu privire la Σ si W \in B(Σ ,X), astfel ıncat W \cap X+ = \varnothing . Consideram asignarea δ_0 definita astfel: δ_0 (a) = 0 iff A \in W.

Atunci avem: $\delta_0(\underline{\ }) = 1 \text{ pentru } \underline{\ } \in \Sigma.$

Teorema 1.2 (Teorema de completitudine pentru formule).

Fie Σ multimea de formule asociate multimii Σ de dependente functionale sau multivaluate si _ formula asociata dependentei _ (functionala sau multivaluata). Atunci _ este consecinta logica a lui Σ daca si numai daca _ poate fi

demonstrata in Σ utilizand regulile de inferenta $\mathscr{R}FM'$. Pe scurt: $\Sigma \mid =_{c.l.}$ _ iff $\Sigma \mid FM'$ _.

In continuare vom da demonstratia sintactica a teoremei de echivalenta.

Teorema 1.3 (Teorema de echivalenta). Fie Σ o multime de dependente

functionale sau multivaluate si _ o dependenta functionala sau multivaluata.

Atunci sunt echivalente urmatoarele afirmatii:

a) $_$ este o consecinta a lui Σ .

b) _ este o consecinta a lui Σ pe domeniul relatiilor cu 2 uple.

c) $_$ este o consecina logica a lui Σ .

Demonstratie.

a) implica b) rezulta imediat.

Aratam ca b) implica c). Fie b) adevarata si presupunem c) falsa.

Atunci exista o asignare δ , astfel incat $\delta(_) = 1$ pentru orice $_ \in \Sigma$ si $\delta(_) = 0$.

Consideram relatia r cu 2 uple t₁ si t₂ definite astfel:

 $t_1[A] = 1 \ pentru \ orice \ A \in U, \ t_2[A] = 1 \ iff \ \delta(a) = 1.$

Dupa lema 2.5 obtinem:

r satisface _, orice _ $\in \Sigma$ si r nu satisface _, ceea ce contrazice b).

Aratam acum: c) implica a). Fie _ consecinta logica a lui Σ. Dupa teorema 1.1 rezulta ca

 $\Sigma | \mathscr{R}' \mathsf{FM} \ _$, de unde $\Sigma | \mathscr{R} \mathsf{FM} \ _$.

Avem atunci $\Sigma = _{-}$

deoarece regulile din *RFM* sunt valide.