FCC CFR47 PART 15 SUBPART C (15.247)

CERTIFICATION

TEST REPORT

For

Shenzhen Century Xinyang Tech Co., Ltd

Wireless Module

Model No.: SL-D001A

Prepared for : Shenzhen Century Xinyang Tech Co., Ltd

Address : Room 3001-3002, East Tower 30/F, Nanshan Software Park,

Shenzhen, China

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1F., Xingyuan Industrial Park, Tongda Road, Bao'an Blvd., Bao'an

District, Shenzhen, Guangdong, China

Date of receipt of test sample : May 24, 2012

Number of tested samples : 1

Serial number : Prototype

Date of Test : May 24, 2012 – June 28, 2012

Date of Report : June 28, 2012

TEST REPORT FCC CFR 47 PART 15 C(15.247)

Report Reference No::		LCS120524110OF
-----------------------	--	----------------

Date of Issue : June 28, 2012

Testing Laboratory Name.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1F., Xingyuan Industrial Park, Tongda Road, Bao'an Blvd.,

Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure......: Full application of Harmonised standards

Partial application of Harmonised standards \square

Other standard testing method \Box

Applicant's Name.....: Shenzhen Century Xinyang Tech Co., Ltd

Address: Room 3001~3002, East Tower 30/F, Nanshan Software Park,

Shenzhen, China

Test Specification

Standard : FCC CFR 47 PART 15 Subpart C: 2011, ANSI C63.4

Test Report Form No.....: LCSEMC-1.0

TRF Originator: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF..... : Dated 2011-03

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: Wireless Module

Trade Mark : widemac

Manufacturer....: Shenzhen Century Xinyang Tech Co., Ltd

Model/ Type reference.....: SL-D001A

Ratings: DC 5V, Current: 500mA

Result Positive

Compiled by:

Supervised by:

Approved by:

Gavin liang

Ada Liang / File administrators

Vito Cao/ Technique principal

Gavin Liang/ Manager

EMC -- TEST REPORT

Test Report No.: LCS120524110QF

June 28, 2012

Date of issue

Type / Model..... : SL-D001A EUT..... · Wireless Module Applicant..... : Shenzhen Century Xinyang Tech Co., Ltd Address..... : Room 3001~3002, East Tower 30/F, Nanshan Software Park, Shenzhen, China Telephone..... : / : / Fax.... Manufacturer..... : Shenzhen Century Xinyang Tech Co., Ltd Address..... : Room 3001~3002, East Tower 30/F, Nanshan Software Park, Shenzhen, China Telephone..... : / Fax.... Factory..... : Shenzhen Century Xinyang Tech Co., Ltd Address..... : Room 3001~3002, East Tower 30/F, Nanshan Software Park, Shenzhen, China Telephone..... : / Fax.....

Test Result: Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

TABLE OF CONTENTS

1. GENERAL INFORMATION	5
1.1. DESCRIPTION OF DEVICE (EUT)	5
1.2. HOST SYSTEM CONFIGURATION LIST AND DETAILS	
1.3. External I/O Cable	
1.4. DESCRIPTION OF TEST FACILITY	
1.5. STATEMENT OF THE MEASUREMENT UNCERTAINTY	
1.6. MEASUREMENT UNCERTAINTY	
1.7. DESCRIPTION OF TEST MODES	6
2. TEST METHODOLOGY	7
2.1. EUT CONFIGURATION	7
2.2. EUT Exercise	
2.3. GENERAL TEST PROCEDURES	7
3. SYSTEM TEST CONFIGURATION	8
3.1. JUSTIFICATION	8
3.2. EUT EXERCISE SOFTWARE	
3.3. SPECIAL ACCESSORIES	8
3.4. BLOCK DIAGRAM/SCHEMATICS	8
3.5. EQUIPMENT MODIFICATIONS	
3.6. BLOCK DIAGRAM OF TEST SETUP	8
4. SUMMARY OF TEST RESULTS	9
5. TEST RESULT	10
5.1. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT	10
5.2. POWER SPECTRAL DENSITY MEASUREMENT	
5.3. 6 dB And 99% Bandwidth Measurement	
5.4. RADIATED EMISSIONS MEASUREMENT	
5.5. CONDUCTED SPURIOUS EMISSIONS	
5.6. POWER LINE CONDUCTED EMISSIONS	
5.7. Antenna Requirements	
5.8. DEVIATION TO TEST SPECIFICATIONS	
6. LIST OF MEASURING EQUIPMENTS	82
7. MANUFACTURER/ APPROVAL HOLDER DECLARATION	83

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : Wireless Module

Model Number : SL-D001A

Power Supply : DC 5.0V

Frequency Range : 5745-5825MHz

Modulation Technology OFDM (BPSK, QPSK, 16-QAM, 64-QAM)

Antenna Gain : 1.0dBi

1.2. Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	Certificate
Lenovo	Notebook	Lenovo B470	WB05067151	DoC

1.3. External I/O Cable

Cable Description	Length (M)	From/Port	То
N/A	N/A	N/A	N/A

1.4. Description of Test Facility

Site Description EMC Lab.

Accredited by CNAS, June 04, 2010

The Certificate Registration Number. is L4595.

Accredited by FCC, July 14, 2011

The Certificate Registration Number. is 899208.

Accredited by Industry Canada, May. 02, 2011

The Certificate Registration Number. is 9642A-1

1.5. Statement of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		30MHz~200MHz	±2.96dB	(1)
Radiation Uncertainty	:	200MHz~1000MHz	±3.10dB	(1)
		1GHz~26.5GHz	±3.80dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±1.63dB	(1)
Power disturbance	:	30MHz~300MHz	±1.60dB	(1)

^{(1).} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Description Of Test Modes

The EUT has been tested under operating condition.

Worst-case mode and channel used for 150kHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, that was determined to be 802.11a mode, mid channel.

Worst-case mode and channel used for 9kHz-1000 MHz radiated and power line conducted emissions was the mode and channel with the highest output power, that was determined to be 802.11a mode, mid channel.

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

For MIMO PSD measurement preliminary testing showed that combiner is worst-case compared to individual chains; therefore final measurements were performed using combiner for all channels and modes.

```
802.11a Mode - port 1.
802.11 HT20 Mode - port 1.
802.11 HT40 Mode - port 1.
802.11 HT20 Mode - port 2.
802.11 HT40 Mode - port 2.
```

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd..

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to FCC's request, Test Procedure KDB558074 is required to be used for this kind of FCC 15.247 digital modulation device.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a typical fashion (as normally used by a typical user).

3.2. EUT Exercise Software

N/A.

3.3. Special Accessories

N/A.

3.4. Block Diagram/Schematics

Please refer to the report.

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Block Diagram of Test Setup

4. SUMMARY OF TEST RESULTS

Applied Standard: 47 CFR FCC Part 15 Subpart C				
FCC Rules	Description of Test	Result		
§15.247(b)	Maximum Conducted Output Power	Compliant		
§15.247(e)	Power Spectral Density	Compliant		
§15.247(a)(2)	6dB Bandwidth	Compliant		
§15.247(a)	Occupied Bandwidth	Compliant		
§15.209, §15.247(d)	Radiated and Conducted Spurious Emissions	Compliant		
§15.205	Emissions at Restricted Band	Compliant		
§15.207(a)	Conducted Emissions	Compliant		
§15.203	Antenna Requirements	Compliant		
§15.247(i)§2.1093§1.1307	RF Exposure	Compliant		

5. TEST RESULT

5.1. Maximum Conducted Output Power Measurement

5.1.1. Standard Applicable

According to §15.247(b): if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in the Table 24, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400 - 2483.5 MHz band may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 5725 - 5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Fixed, point-to-point operation excludes the use of point-to-multipoint systems, omni-directional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

5.1.2. Measuring Instruments and Setting

Please refer to section 6 of equipments list in this report.

5 1 3 Test Procedures

- a. The transmitter output (antenna port) was connected to the power meter.
- b. Detector = peak.

5.1.4. Test Setup Layout

5.1.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.1.6. Test Result of Maximum Conducted Output Power

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: ZNPSLD001A	Report No.: LCS120524110QF

Temperature	25 ℃	Humidity	60%
Test Engineer	Vito Cao	Configurations	802.11a

802.11a mode – port 1

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
149	5745	5.14	30	Complies
157	5785	5.39	30	Complies
165	5825	5.28	30	Complies

802.11 HT20 mode – port 1

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
149	5745	5.78	30	Complies
157	5785	5.96	30	Complies
165	5825	5.83	30	Complies

802.11 HT40 mode – port 1

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
151	5755	5.57	30	Complies
159	5795	5.82	30	Complies

802.11 HT20 mode – port 2

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
149	5745	5.71	30	Complies
157	5785	5.93	30	Complies
165	5825	5.91	30	Complies

802.11 HT40 mode – port 2

	1			
Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
151	5755	5.84	30	Complies
159	5795	5.99	30	Complies

802.11n mode (20MHz) All Ports

Channel	Fraguency	Port 1	Port 2	Total	Total
Chamei	Frequency	(dBm)	(dBm)	(dBm)	(W)
149	5745	5.78	5.71	8.755	0.007508
157	5785	5.96	5.93	8.955	0.007862
165	5825	5.83	5.91	8.880	0.007728

802.11n mode (40MHz) All Ports

Channel	Fraguency	Port 1	Port 2	Total	Total
Channel	Frequency	(dBm)	(dBm)	(dBm)	(W)
151	5755	5.57	5.84	8.717	0.007443
159	5795	5.82	5.99	8.916	0.007791

 $Note: Total\ Output\ Power = Port\ 1\ (10^{(Output\ Power/10)/1000}) + Port\ 2\ (10^{(Output\ Power/10)/1000})$

5.2. Power Spectral Density Measurement

5.2.1. Standard Applicable

According to §15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.2.2. Measuring Instruments and Setting

Please refer to section 6 of equipments list in this report. The following table is the setting of Spectrum Analyzer.

5.2.3. Test Procedures

- 1. The transmitter was connected directly to a Spectrum Analyzer through a directional couple.
- 2. The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.
- 3. Set the RBW = 100 kHz.
- 4. Set the VBW \geq 300 kHz.
- 5. Set the span to a value that is 5-30 % greater than the EBW.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.
- 10. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.
- 11. Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log (3 kHz/100kHz = -15.2 dB).
- 12. The resulting peak PSD level must be ≤ 8 dBm.

5.2.4. Test Setup Layout

5.2.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.2.6. Test Result of Power Spectral Density

Temperature	25℃	°C Humid	dity 60%	
Test Enginee	er Vito Cao	Cao Configura	ations 802.11a	

802.11a mode – port 1

Channel	Frequency	Power Density (dBm)	BWCF (dB)	Max. Limit (dBm)	Result
149	5745	-7.20	-15.2	8	Complies
157	5785	-6.10	-15.2	8	Complies
165	5825	-4.71	-15.2	8	Complies

802.11 HT20 mode – port 1

Channel	Frequency	Power Density (dBm)	BWCF (dB)	Max. Limit (dBm)	Result
149	5745	-8.39	-15.2	8	Complies
157	5785	-8.55	-15.2	8	Complies
165	5825	-8.12	-15.2	8	Complies

802.11 HT40 mode – port 1

Channel	Frequency	Power Density (dBm)	BWCF (dB)	Max. Limit (dBm)	Result
151	5755	-7.04	-15.2	8	Complies
159	5795	-6.05	-15.2	8	Complies

802.11 HT20 mode – port 2

Channel	Frequency	Power Density (dBm)	BWCF (dB)	Max. Limit (dBm)	Result
149	5745	-6.60	-15.2	8	Complies
157	5785	-5.40	-15.2	8	Complies
165	5825	-6.30	-15.2	8	Complies

802.11 HT40 mode – port 2

Channel	Frequency	Power Density (dBm)	BWCF (dB)	Max. Limit (dBm)	Result
151	5755	-6.55	-15.2	8	Complies
159	5795	-6.61	-15.2	8	Complies

802.11n HT20 MIMO mode (Port1+Port2)

Channel	Fraguenay	Port 1	Port 2	Total	BWCF	Max. Limit
Channel	Frequency	(dBm)	(dBm)	(dBm)	(dB)	(dBm)
149	5745	-8.39	-6.60	-4.39	-15.2	8
157	5785	-8.55	-5.40	-3.69	-15.2	8
165	5825	-8.12	-6.30	-4.11	-15.2	8

802.11n HT40 MIMO mode (Port1+Port2)

Channal	Fraguenay	Port 1	Port 2	Total	BWCF	Max. Limit
Channel	Frequency	(dBm)	(dBm)	(dBm)	(dB)	(dBm)
151	5755	-7.04	-6.55	-3.78	-15.2	8
159	5795	-6.05	-6.61	-3.31	-15.2	8

Note: $Total\ PSD = 10Log(Port\ 1\ (10^(Output\ Power/10)) + Port\ 2\ (10^(Output\ Power/10))\)$

802.11a mode – port 1 Date: June 15, 2012

802.11 HT20 model - port 1

Date: June 15, 2012

802.11 HT40 mode – port 1 Date: June 15, 2012

802.11 HT20 mode – port 2

802.11 HT40 mode - port 2

5.3. 6 dB And 99% Bandwidth Measurement

5.3.1. Standard Applicable

According to §15.247(a): Operation under the provisions of this section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

For systems using digital modulation techniques, the EUT may operate in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. The minimum 6dB bandwidth shall be at least 500 kHz.

5.3.2. Measuring Instruments and Setting

Please refer to section 6 of equipments list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	10dB
Span Frequency	> RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using a RBW approximately 1% of the total emission bandwidth, VBW > RBW.
- 3. The 6 dB Bandwidth was measured and recorded. The measurements were repeated at the low and high channels.

5.3.4. Test Setup Layout

5.3.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.3.6. Test Result of Occupied Bandwidth

Temperature	25 ℃	Humidity	60%
Test Engineer	Vito Cao	Configurations	802.11a

802.11a mode - port 1

Channel	Frequency	6dB Bandwidth (MHz)	99% Bandwidth (kHz)	Min. Limit (kHz)	Result
149	5745	17.726	17.7817	500	Complies
157	5785	17.619	17.7118	500	Complies
165	5825	17.693	17.7707	500	Complies

802.11 HT20 mode – port 1

Channel	Frequency	6dB Bandwidth (MHz)	99% Bandwidth (kHz)	Min. Limit (kHz)	Result
149	5745	17.667	17.8020	500	Complies
157	5785	17.657	17.6896	500	Complies
165	5825	17.619	17.7061	500	Complies

802.11 HT40 mode – port 1

Channel	Frequency	6dB Bandwidth (MHz)	99% Bandwidth (kHz)	Min. Limit (kHz)	Result
151	5755	35.850	36.2790	500	Complies
159	5795	35.975	36.4244	500	Complies

802.11 HT20 mode – port 2

Channel	Frequency	6dB Bandwidth (MHz)	99% Bandwidth (kHz)	Min. Limit (kHz)	Result
149	5745	17.697	17.7392	500	Complies
157	5785	17.519	17.7339	500	Complies
165	5825	17.003	17.7307	500	Complies

802.11 HT40 mode – port 2

Channel	Frequency	6dB Bandwidth (MHz)	99% Bandwidth (kHz)	Min. Limit (kHz)	Result
151	5755	36.253	36.2779	500	Complies
159	5795	35.131	36.1766	500	Complies

802.11a mode – port 1 Date: June 15, 2012

802.11 HT20 mode – port 1 Date: June 15, 2012

802.11 HT40 mode – port 1 Date: June 15, 2012

802.11 HT20 mode – port 2 Date: June 15, 2012

802.11 HT40 mode – port 2 Date: June 15, 2012

5.4. Radiated Emissions Measurement

5.4.1. Standard Applicable

According to §15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a). then the 15.209(a) limit in the table below has to be followed.

Frequencies(MHz)	Field Strength(micorvolts/meter)	Measurement Distance(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

5.4.2. Measuring Instruments and Setting

Please refer to section 6 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

5.4.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.

- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 m to 4 m) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For intentional radiators with a digital device portion which operates below 10 GHz, the spectrum was investigated as per §15.33(a)(1) and §15.33(a)(4); i.e., the lowest RF signal generated or used in the device up to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 7. In accordance with §15.35(b) the limit on the radio frequency emissions as measured using instrumentation with a peak detector function shall be 20 dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules.

5.4.4. Test Setup Layout

For radiated emissions below 30MHz

For radiated emissions above 30MHz

Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = 20 log (specific distanc [3m] / test distance [1.5m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

5.4.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.4.6. Results of Radiated Emissions (9kHz~30MHz)

Temperature	25℃	Humidity	60%
Test Engineer	Vito Cao	Configurations	802.11a

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

5.4.7. Results of Radiated Emissions (30MHz~1GHz)

Temperature	Temperature 25°C		60%		
Test Engineer	Vito Cao	Configurations	Normal Link		

Env. /Ins: 24°C/56%
EUT: Wireless Adapter
M/N: SL-D001A

Power Rating: DC 5V From PC Input AC 120/60Hz

Test Mode: ON
Operator: FOX
Memo:

pol: HORIZONTAL

	Freq.	Reading	CabLos	AntFac	PreFac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB/m	dВ	dBuV/m	dBuV/m	dB	
1	36.79	46.11	0.00	12.76	30.13	28.74	40.00	-11.26	QP
2	55.22	44.94	0.00	13.01	30.15	27.80	40.00	-12.20	QP
3	96.93	43.97	0.00	12.96	30.20	26.73	43.50	-16.77	QP
4	124.09	49.98	0.00	9.85	30.20	29.63	43.50	-13.87	QP
5	472.32	41.72	0.00	15.89	30.06	27.55	46.00	-18.45	QP
6	608.12	41.15	0.00	18.48	30.00	29.63	46.00	-16.37	QP
3 4 5	55.22 96.93 124.09 472.32	44.94 43.97 49.98 41.72	0.00 0.00 0.00	13.01 12.96 9.85 15.89	30.15 30.20 30.20 30.06	27.80 26.73 29.63 27.55	40.00 43.50 43.50 46.00	-12.20 -16.77 -13.87 -18.45	QP QP QP QP

Note: 1. All readings are Quasi-peak values.

- 2. Measured = Reading + Antenna Factor + Cable Loss Amp Factor.
- 3. The emission levels that ate 20dB below the official limit are not reported.

Env. /Ins: EUT:

24°C/56% Wireless Adapter

M/N: Power Rating:

SL-D001A DC 5V From PC Input AC 120/60Hz

Test Mode: Operator:

 \circ N FOX

Memo:

VERTICAL pol:

	Freq.	Reading	CabLos	AntFac	PreFac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB/m	dB	dBuV/m	dBuV/m	dB	
1	39.70	48.46	0.00	13.50	30.13	31.83	40.00	-8.17	QP
2	121.18	45.43	0.00	10.30	30.20	25.53	43.50	-17.97	QP
3	164.83	48.22	0.00	8.81	30.20	26.83	43.50	-16.67	QP
4	291.90	43.61	0.00	12.90	30.15	26.36	46.00	-19.64	QP
5	428.67	45.91	0.00	15.51	30.09	31.33	46.00	-14.67	QP
6	593.57	41.48	0.00	18.33	30.00	29.81	46.00	-16.19	QP

- Note: 1. All readings are Quasi-peak values.
 2. Measured = Reading + Antenna Factor + Cable Loss Amp Factor.
 3. The emission levels that ate 20dB below the official limit are not reported.

Note:

Pre-scan all mode and recorded the worst case results in this report (802.11a middle Channel). Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

5.4.8. Results for Radiated Emissions (1GHz~10th Harmonic)

802.11a mode – port 1

Channel 149

Freq GHz	Level dBuV/m	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
11.49	47.67	45.71	33.06	35.04	3.94	74	-26.33	Peak	Horizontal
11.49	39.21	37.25	33.06	35.04	3.94	54	-14.79	Average	Horizontal
17.235	48.24	46.28	33.06	35.04	3.94	74	-25.76	Peak	Vertical
17.235	40.12	38.16	33.06	35.04	3.94	54	-13.88	Average	Vertical

Channel 157

Freq GHz	Level dBuV/m	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
11.57	47.86	45.89	33.16	35.15	3.96	74	-26.14	Peak	Horizontal
11.57	36.09	34.12	33.16	35.15	3.96	54	-17.91	Average	Horizontal
17.335	46.28	44.31	33.16	35.15	3.96	74	-27.72	Peak	Vertical
17.335	35.76	33.79	33.16	35.15	3.96	54	-18.24	Average	Vertical

Freq GHz	Level dBuV/m	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
11.65	46.36	44.26	33.26	35.14	3.98	74	-27.64	Peak	Horizontal
11.65	34.78	32.68	33.26	35.14	3.98	54	-19.22	Average	Horizontal
17.475	45.27	43.17	33.26	35.14	3.98	74	-28.73	Peak	Vertical
17.475	34.05	31.95	33.26	35.14	3.98	54	-19.95	Average	Vertical

802.11 HT20 mode – port 1

Channel 149

Freq GHz	Level dBuV/m	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
11.49	47.33	45.37	33.06	35.04	3.94	74	-26.67	Peak	Horizontal
11.49	37.58	35.62	33.06	35.04	3.94	54	-16.42	Average	Horizontal
17.235	46.70	44.74	33.06	35.04	3.94	74	-27.3	Peak	Vertical
17.235	35.65	33.69	33.06	35.04	3.94	54	-18.35	Average	Vertical

Channel 157

Freq GHz	Level dBuV/m	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
11.57	48.25	46.28	33.16	35.15	3.96	74	-25.75	Peak	Horizontal
11.57	40.13	38.16	33.16	35.15	3.96	54	-13.87	Average	Horizontal
17.335	47.74	45.77	33.16	35.15	3.96	74	-26.26	Peak	Vertical
17.335	41.42	39.45	33.16	35.15	3.96	54	-12.58	Average	Vertical

Freq GHz	Level dBuV/m	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
11.65	50.82	48.72	33.26	35.14	3.98	74	-23.18	Peak	Horizontal
11.65	41.28	39.18	33.26	35.14	3.98	54	-12.72	Average	Horizontal
17.475	48.32	46.22	33.26	35.14	3.98	74	-25.68	Peak	Vertical
17.475	42.39	40.29	33.26	35.14	3.98	54	-11.61	Average	Vertical

802.11 HT40 mode – port 1

Channel 151

Freq GHz	Level dBuV/m	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
11.51	45.33	43.23	33.06	35.04	3.94	74	-28.67	Peak	Horizontal
11.51	35.84	33.74	33.06	35.04	3.94	54	-18.16	Average	Horizontal
17.265	44.29	42.19	33.06	35.04	3.94	74	-29.71	Peak	Vertical
17.265	34.63	32.53	33.06	35.04	3.94	54	-19.37	Average	Vertical

Freq GHz	Level dBuV/m	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Lo s dB	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
11.59	46.8	44.7	33.16	35.15	3.96	74	-27.2	Peak	Horizontal
11.59	36.29	34.19	33.16	35.15	3.96	54	-17.71	Average	Horizontal
17.385	45.33	43.23	33.16	35.15	3.96	74	-28.67	Peak	Vertical
17.385	35.66	33.56	33.16	35.15	3.96	54	-18.34	Average	Vertical

802.11 HT20 mode – port 2

Channel 149

Freq GHz	Level dBuV/m	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
11.49	44.14	42.18	33.06	35.04	3.94	74	-29.86	Peak	Horizontal
11.49	37.3	35.34	33.06	35.04	3.94	54	-16.7	Average	Horizontal
17.235	42.45	40.49	33.06	35.04	3.94	74	-31.55	Peak	Vertical
17.235	35.67	33.71	33.06	35.04	3.94	54	-18.33	Average	Vertical

Channel 157

Freq GHz	Level dBuV/m	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Lo s dB	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
11.57	47.73	45.76	33.16	35.15	3.96	74	-26.27	Peak	Horizontal
11.57	37.36	35.39	33.16	35.15	3.96	54	-16.64	Average	Horizontal
17.335	46.15	44.18	33.16	35.15	3.96	74	-27.85	Peak	Vertical
17.335	35.44	33.47	33.16	35.15	3.96	54	-18.56	Average	Vertical

Freq GHz	Level dBuV/m	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
11.65	50.52	48.42	33.26	35.14	3.98	74	-23.48	Peak	Horizontal
11.65	41.01	38.91	33.26	35.14	3.98	54	-12.99	Average	Horizontal
17.475	47.36	45.26	33.26	35.14	3.98	74	-26.64	Peak	Vertical
17.475	41.47	39.37	33.26	35.14	3.98	54	-12.53	Average	Vertical

802.11 HT40 mode – port 2

Channel 151

Freq GHz	Level dBuV/m	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
11.51	45.24	43.28	33.06	35.04	3.94	74	-28.76	Peak	Horizontal
11.51	38.81	36.85	33.06	35.04	3.94	54	-15.19	Average	Horizontal
17.265	43.31	41.35	33.06	35.04	3.94	74	-30.69	Peak	Vertical
17.265	36.52	34.56	33.06	35.04	3.94	54	-17.48	Average	Vertical

Freq GHz	Level dBuV/m	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Lo s dB	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
11.59	48.54	46.57	33.16	35.15	3.96	74	-25.46	Peak	Horizontal
11.59	38.56	36.59	33.16	35.15	3.96	54	-15.44	Average	Horizontal
17.385	47.71	45.74	33.16	35.15	3.96	74	-26.29	Peak	Vertical
17.385	36.89	34.92	33.16	35.15	3.96	54	-17.11	Average	Vertical

5.5. Conducted Spurious Emissions

5.5.1. Standard Applicable

According to §15.247 (d): Output power was measured based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

5.5.2. Measuring Instruments and Setting

Please refer to section 6 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Detector	Peak
Attenuation	Auto
RB / VB (Emission in restricted band)	100KHz/300KHz
RB / VB (Emission in non-restricted band)	100KHz/300KHz

5.5.3. Test Procedures

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

5.5.4. Test Setup Layout

This test setup layout is the same as that shown in section 5.4.4.

5.5.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.5.6. Test Results of Conducted Spurious Emissions

802.11a mode – port 1 low channel

802.11a mode – port 1 middle channel

802.11a mode – port 1 high channel

802.11 HT20 mode – port 1 low channel

802.11 HT20 mode – port 1 middle channel

802.11 HT20 mode – port 1 high channel

802.11 HT40 mode – port 1 low channel

802.11 HT40 mode – port 1 high channel

802.11 HT20 mode – port 2 low channel

802.11 HT20 mode – port 2 middle channel

802.11 HT20 mode – port 2 high channel

802.11 HT40 mode – port 2 low channel

802.11 HT40 mode – port 2 high channel

5.5.7. Test Results of Band Edge Emissions

802.11a mode – port 1

802.11 HT20 mode – port 1

802.11 HT40 mode - port 1

802.11 HT20 mode – port 2

802.11 HT40 mode – port 2

5.6. Power line conducted emissions

5.6.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits	(dBμV)
(MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

5.6.2 Block Diagram of Test Setup

5.6.3 Test Results

PASS.

The test data please refer to following page.

Env. Ins: EUT: M/N:

24*/56% Wireless Adapter SL-D001A DC 5V From PC Inj

From PC Input AC 120V/60Hz

Power Rating: Test Mode: Operator: On FOX Memo: Pol: LINE

	Freq	Reading	LisnFac	CabLos	Measured	Limit	0ver	Remark
	MHz	dBuV	dB	dB	dBu∀	dBu∀	dB	
1	0.15	34.24	9.58	0.02	43.84	55.78	-11.94	Average
2	0.15	50.30	9.58	0.02	59.90	65.78	-5.88	QP
3	0.21	28.78	9.63	0.03	38.44	53.36	-14.92	Average
4	0.21	42.20	9.63	0.03	51.86	63.36	-11.50	QP
5	0.28	25.24	9.63	0.03	34.90	50.90	-16.00	Average
6	0.28	37.96	9.63	0.03	47.62	60.90	-13.28	QP
7	0.41	19.10	9.62	0.04	28.76	47.55	-18.79	Average
8	0.41	35.40	9.62	0.04	45.06	57.55	-12.49	QP
9	0.62	16.47	9.63	0.04	26.14	46.00	-19.86	Average
10	0.62	32.13	9.63	0.04	41.80	56.00	-14.20	QP
11	17.38	14.63	9.73	0.11	24.47	50.00	-25.53	Average
12	17.38	28.80	9.73	0.11	38.64	60.00	-21.36	QP

Remarks: 1. Measured = Reading + Lisn Factor +Cable Loss.
2. The emission levels that are 20dB below the official limit are not reported.

Env. Ins: EUT: M/N: Power Rating: Test Mode: Operator: Memo:

Pol:

Wireless Adapter SL-D001A DC 5V From PC Input AC 120V/60Hz

NEUTRAL

MHz dBuV dB dB dBuV dBuV dB	
1 0.15 37.89 9.70 0.02 47.61 56.00 -8.39 Ave	erage
2 0.15 50.37 9.70 0.02 60.09 66.00 -5.91 QP	
3 0.21 30.69 9.59 0.03 40.31 53.36 -13.05 Ave	erage
4 0.21 43.57 9.59 0.03 53.19 63.36 -10.17 QP	
5 0.27 22.15 9.60 0.03 31.78 50.98 -19.20 Ave	erage
6 0.27 36.36 9.60 0.03 45.99 60.98 -14.99 QP	
7 0.42 18.32 9.61 0.04 27.97 47.51 -19.54 Ave	erage
8 0.42 34.49 9.61 0.04 44.14 57.51 -13.37 QP	
9 0.57 13.86 9.62 0.04 23.52 46.00 -22.48 Ave	erage
10 0.57 32.19 9.62 0.04 41.85 56.00 -14.15 QP	
11 17.11 14.28 9.77 0.11 24.16 50.00 -25.84 Ave	erage
12 17.11 29.75 9.77 0.11 39.63 60.00 -20.37 QP	

Measured = Reading + Lisn Factor +Cable Loss. The emission levels that are 20dB below the official limit are not reported. Remarks: 1.

Note: Pre-scan all mode and recorded the worst case results in this report (802.11a Channel 6)

5.7. Antenna Requirements

5.7.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.7.2. Antenna Connector Construction

The EUT has a component antenna, which, in accordance to the above sections, is considered sufficient to comply with the provisions of these sections. Please see EUT photo for details.

5.7.3. Results: Compliance.

5.8. Deviation to test specifications

[NONE]

6. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Cal Date	Due Date
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	June 17,2012	June 16,2013
LISN	MESS Tec	NNB-2/16Z	99079	9KHz-30MHz	June 17,2012	June 16,2013
LISN (Support Unit)	EMCO	3819/2NM	9703-1839	9KHz-30MHz	June 17,2012	June 16,2013
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9KHz-30MHz	June 26,2012	June 25,2013
ISN	SCHAFFNER	ISN ST08	21653	9KHz-30MHz	June 17,2012	June 16,2013
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03СН03-НҮ	30M-1GHz 3m	June 17,2012	June 16,2013
Amplifier	SCHAFFNER	COA9231A	18667	9kHz-2GHzz	June 17,2012	June 16,2013
Amplifier	Agilent	8449B	3008A02120	1GHz-26.5GHz	June 17,2012	June 16,2013
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5GHz-40GHz	June 17,2012	June 16,2013
Spectrum Analyzer	Agilent	E4446A	MY41440289	9k-26.5GHz	June 17,2012	June 16,2013
Spectrum Analyzer	Agilent	E4407B	MY41440292	9k-26.5GHz	June 17,2012	June 16,2013
Loop Antenna	R&S	HFH2-Z2	860004/001	9k-30MHz	July 07,2011	July 07,2012
By-log Antenna	SCHAFFNER	CBL 6112D	22237	30MHz-1GHz	July 07,2011	July 07,2012
Horn Antenna	EMCO	3115	6741	1GHz-18GHz	July 07,2011	July 07,2012
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz-40GHz	July 07,2011	July 07,2012
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz-1GHz	June 26,2012	June 25,2013
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz-40GHz	June 26,2012	June 25,2013
Spectrum Meter	R&S	FSP 40	100023	9kHz-40GHz	June 26,2012	June 25,2013
Power Meter	R&S	NRVS	100444	DC-40GHz	June 26,2012	June 25,2013
Power Sensor	R&S	NRV-Z51	100458	DC-30GHz	June 17,2012	June 16,2013
Power Sensor	R&S	NRV-Z32	10057	30MHz-6GHz	June 17,2012	June 16,2013
AC Power Source	НРС	HPA-500E	HPA-9100024	AC 0~300V	June 26,2012	June 25,2013
DC power Soure	GW	GPC-6030D	C671845	DC 1V-60V	June 26,2012	June 25,2013
Temp. and Humidigy	Giant Force	GTH-225-20-S	MAB0103-00	N/A	June 17,2012	June 16,2013
RF CABLE-1m	JYE Bao	RG142	CB034-1m	20MHz-7GHz	June 26,2012	June 25,2013
RF CABLE-2m	JYE Bao	RG142	CB)35-2m	20MHz-1GHz	June 26,2012	June 25,2013
Vector signal Generator	R&S	SMU200A	102098	100kHz~6GHz	June 26,2012	June 25,2013
Signal Generator	R&S	SMR40	10016	10MHz~40GHa	June 26,2012	June 25,2013
Oscilloscope	Tektonix	TDS380	B016197	400MHz/2GRS	June 17,2012	June 16,2013

7. MANUFACTURER/ APPROVAL HOLDER DECLARATION

The following identical model(s):

SL-5401G	SL-5402G	SL-5405G	SL-1501N
SL-1502N	SL-1503N	SL-1504N	SL-1505N
SL-1506N	SL-1507N	SL-1508N	SL-1509N
SL-3502N	SL-3503N	SL-3504N	SL-3505N
SL-3506N	SL-D001	SL-D002	

Belong to the tested device:

Product description : Wireless Module

Model name : SL-D001A

No additional models were tested.