

Optimization of breeding schemes with GS in R

Friedrich Longin

State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany; https://lsa-weizen.uni-hohenheim.de

University of Hohenheim, Stuttgart

3 faculties

- 1 <u>life sciences</u> (biology, physics, biotechnology, food production and ingredients); ~ 14 institutes
- 2 <u>agriculture</u> (breeding, quantitative genetics, molecular genetics, agronomy, plant health, agroeconomics, animal sciences,...); ~ 15 institutes
- 3 <u>Economy</u> (management, economics, law, social sciences...); ~ 8 institutes
- ~ 4000 students per year, all B.Sc. and M.Sc.
 Master of crop science (english)
- 4 state institutes incorporated into the University
- Experimental station for agriculture

Excellence Unit in Plant Breeding

Institute of Plant Breeding, Seed Science and Population Genetics

Subject Areas:

Applied Genetics and Plant Breeding

Prof. Dr. Albrecht E. Melchinger

Quantitative Genetics and Genomics

Prof. Dr. Scholten

Crop Biodiversity and Breeding Informatics

Prof Dr. Karl Schmid

Seed Science and Technology

Prof. Dr. Michael Kruse

State Plant Breeding Institute

Head: PD Dr. Tobias Würschum

Research groups:

Biotechnology and Mapping Strategies

Dr. Wilmar Leiser

Rye and Biotic Stress Resistance

Prof. Dr. Thomas Miedaner

Triticale and Breeding Methodology

Dr. Hans P. Maurer

Wheat Breeding and Selection Theory

PD Dr. Friedrich Longin

Sunflower and Soybean Breeding

Dr. Volker Hahn

Experimental Station

Experimental stations

Ihinger Hof
Heidfeldhof/Hohenheim
Kleinhohenheim/organic
Lindenhöfe

Eckartsweier

Five experimental stations ensure high-quality phenotyping which is the basis for breeding and science

State Plant Breeding Institute (LSA)

- Six scientists with broad range of expertise,
- PhD and PostDocs (from agronomy, bioinformatics, mathematics)
- Experienced technical staff (>20) with phenotyping facilities, green houses, climate chambers, biotechlab,...
- ~ 20 peer-reviewed publications per year in leading international journals
- ~ 1.800.000€ extramural grants per year
- Cooperations with leading international agricultural research centers (e.g. CAAS, CIMMYT, INRA, ACPFG, NIAB)

Breeding activities at the LSA

LSA has competitive breeding programs

Wheat group - aims

Elite breeding in rare wheat species

- Breeding programs in T. aestivum
 - Pre-Breeding for grain yield: aim to deliver material to community for elite breeding starts
 - Breeding hybrid male parents: aim to deliver elite males to community
- Research accompanying these efforts
 - Genetic architecture of regarded traits
 - Optimized breeding schemes

Wheat group

- 1 scientist Dr. F. Longin
- 7 technicians
- 2 PostDocs, 1 PhDs, studen
- ~ 8 ha of nurseries
- > 25 different field locations

- Special nurseries for stress FHB, virus, frost
- Quality lab for b- value, sds, falling, GI, protein content, vitreousness and dark points
- Machinery for threshing and dehulling

https://lsa-weizen.uni-hohenheim.de/

You are a breeder

- Congratulations → fantastic job!
- A breeder is the <u>head of product</u> <u>development</u>
 - You must be innovative
 - You must be able to rapidly take decisions
 - You must define the strategies
 - You must have success
 - You are responsible for whole product chain

You have to decide = you're responsible

- Marketing tells you your <u>specific framework</u>
 - ? Strategies ?

You have to decide = you're responsible

Marketing tells you your <u>specific framework</u>

? Strategies ?

Which breeding scheme?

Which quality lab analyses?

Molecular markers?

Trial management?

Priorisation of traits?

Orga of phenotyping?

Disease management?

...

You have to decide = you're responsible

Marketing tells you your <u>specific framework</u>

? Strategies ?

Which breeding scheme?

Which quality lab analyses?

Molecular markers?

Trial management?

Orga of phenotyping?

Disease management?

Other lectures

Let's start - what we will do

- Introduction: Breeding categories → focus line breeding
- Theorectical background of selection gain package: formula of selection gain
- Variables influencing the selection gain
 - Important existing results
 - Realization in R package
- GS breeding schemes
 - Important results
 - Realization in R package
- Run your own first simulations

Breeding categories

Line breeding

Wheat

Population breeding

Potato

Maize

Rye

Line breeding based on per se performance

Line breeding

New breeding lines from DH, ssd,...

Field trials – per se performance

New line varieties

Hybrid breeding based on GCA

Line breeding

New breeding lines from DH, ssd,...

Field trials – per se performance

New line varieties

Hybrid breeding

New breeding lines in heterotic group 1

New breeding lines in heterotic group 2

GCA-Tester

GCA- Tester

Field trials –

combining ability

New lines for hybrid production in heterotic group 1

New lines for hybrid production in heterotic group 2

3 Phases in a breeding scheme

Example: phenotypic selection in hybrid breeding

Year 2	DH-Production
Year 3	<i>N</i> ₁ DH lines - multiplication
Year 4	Hybrid seed prod. N ₂ * T ₂

P1 x P2, ...

Field test

 $N_2 * T_2 * L_2$

<u>Year 1</u>

Year 5

Year 6

Hybrid seed prod.

N₃ * T₃

Year 7 Field test $N_3 * T_3 * L_3$

3 Phases in a breeding scheme

Source: Longin et al. 2015

18

Many questions...

Year	1	P1 x P2,
------	---	----------

Year 2 DH-Production

Year 3 N_1 DH lines - multiplication

Year 4 Hybrid seed prod.

N₂ * T₂

Year 5 Field test $N_2 * T_2 * L_2$

Year 6 Hybrid seed prod. $N_3 * T_3$

Year 7 Field test $N_3 * T_3 * L_3$

e.g. 1: maximum N
→ minimum L

Year 1 P1 x P2, ...

Year 2

DH-Production

Year 3 N_1 DH lines - multiplication

Year 4 Hybrid seed prod. $N_2 * T_2$

Year 5 Field test $N_2 * T_2 * L_2$

Year 6 Hybrid seed prod. $N_3 * T_3$

Year 7 Field test $N_3 * T_3 * L_3$

e.g. 1: maximum N
→ minimum L

P1 x P2, ...

DH-Production

N₁ DH lines - multiplication

Hybrid seed prod. $N_2 * T_2$

Field test $N_2 * T_2 * L_2$

Hybrid seed prod.

N₃ * T₃

Field test $N_3 * T_3 * L_3$

e.g. 2: minimum N
→ maximum L

P1 x P2, ... Year 1

P1 x P2, ...

P1 x P2, ...

Year 2

DH-Production

DH-Production DH-Production

Year 3

N₁ DH lines multiplication N₁ DH lines multiplication

N₁ DH lines multiplication

Year 4

Hybrid seed prod. $N_2 * T_2$

Hybrid seed prod.

 $N_2 * T_2$

Hybrid seed prod. $N_2 * T_2$

Year 5

Field test $N_2 * T_2 * L_2$

Field test $N_2 * T_2 * L_2$

Hybrid

seed prod.

 $N_3 * T_3$

Field test $N_2 * T_2 * L_2$

Year 6

Year 7

Hybrid seed prod. $N_3 * T_3$

Field test $N_3 * T_3 * L_3$

Field test $N_3 * T_3 * L_3$

e.g. 1: maximum N

→ minimum L

e.g. 2: minimum N

→ maximum L

e.g. 3: 1 year less field trials

Source: Longin et al. 2015

Source: Longin et al. 2015

Option 2: Simulation of breeding methods

Year 2 P1 x P2, ...

P1 x P2, ...

Ph-Production

Year 3 N_1 DH lines - multiplication

Year 4

Hybrid seed prod.

N₂ * T₂

Year 5 Field test $N_2 * T_2 * L_2$

Year 6

Hybrid seed prod.

N₃ * T₃

Year 7 Field test $N_3 * T_3 * L_3$

e.g. 1: maximum N
→ minimum L

- Prediction the gain from selection in breeding schemes → Breeder's equation
- Simulation of different breeding schemes
- •R Package "selection gain"

Choice of breeding method

Concept of selection gain

Distribution of phenotypes in the field for quantitative traits:

$$P = G + E;$$

<u>In R:</u>

rnorm (N, 0, $\sigma^2_G + \sigma^2_E$)

Phenotypic value

Selection gain

Post-test = realized:

 $\Delta G = h^2(\mu' - \mu) = h^2 S$

Prae-test = predicted:

 $\Delta G = ih\sigma_y$

Phenotypic value

Prediction of selection gain

Selection gain

$$\Delta G = ih\sigma_y$$

- *i* = selection intensity,
- *h* = square root of the heritability,
- σ_y = square root of the genetic variance of the target variable

Annual selection gain

$$\Delta G_a = ih\sigma_y / Y$$

 Y = no. of years required to finish one breeding cycle

Variables influencing selection gain

Annual selection gain

$$\Delta G_a = ih\sigma_y / Y$$

- *i* = selection intensity,
- *h* = square root of the heritability,
- σ_v = square root of the genetic variance of the target variable
- \bullet Y = no. of years required to finish one breeding cycle

Selection gain is maximized by an

Increase of i

→ reduction of Y

- Increase of h
- Increase of σ_y

Increasing selection intensity

Selected fraction

$$\alpha = \frac{no.selected\ lines}{no.tested\ lines}$$

Selection intensity is increased by

- Increasing the number of tested lines
- Decreasing the number of selected lines

BUT: Increase is not linear

Increasing heritability

$$h^{2} = \sigma_{G}^{2} / \sigma_{P}^{2}$$

$$\sigma_{P}^{2} = \sigma_{G}^{2} + \sigma_{GxE}^{2} / L + \sigma_{e}^{2} / (L * R)$$

L = Locs, R = Reps, σ_G^2 = genet. variance; σ_P^2 = phenotyp. variance, σ_{GXE}^2 = variance due to Genotyp-environment - interaction; σ_e^2 = error variance

→ estimated via ANOVA

Heritability is increased by

- Increasing the number of locations
- Increasing the number of replications, but less than for locations!

BUT: Increase is not linear

Allocation of resources

$$\Delta G = ih\sigma_{y} / Y$$

i: function of $\alpha = N_{sel}(N_1)$

Allocation of resources

$$h^{2} = \sigma_{G}^{2} / \sigma_{P}^{2} \rightarrow \sigma_{P}^{2} = \sigma_{G}^{2} + \sigma_{GxE}^{2} / L + \sigma_{e}^{2} / L * R$$

L = Locs, R = Reps, σ^2_G = genet. variance; σ^2_P = phenotyp. variance, σ^2_{GxE} = variance due to Genotypenvironment - interaction; σ^2_e = error variance

→ estimated via ANOVA

Optimize allocation of resources

Framework

Target criteria: maximize selection gain

– Variables to optimze:

- No. of locations
- No. of replications
- o No. of lines
- No. of testers, type of tester
- Splitting of lines on crosses and lines within crosses

→ Fixed annual budget

Budget of a breeding program = annual budge

	Budget of a breeding program = annual budget															
Seed p	roduction	Seed stock	(Breed	ding schem	е							Special nurseries			
Resp.	Min trials	Ex of	Season Season	Prod	Tests			Trai	its		Resp.	Allocation	Frost	WiSo	FHB	Virus
			Winter										НВ	ВҮ	BY	VL
BY			Summer	P1 x P	2						BY	1 Loc				
			Winter													
BY			Summer	F1 sel	f						BY	1 Loc				
			Winter													
BY			Summer	F2 sel	lf Single pla	<mark>nt</mark> ear c	uality, ke	rnel qu	ality		BY	1 Loc				
		rest F1	Winter													
BY			Summer	F3 sel	lf Ear to ro	w row o	bs, kerne	lqualit	y, colou	r, sds	BY	1 Loc				
		rest F2	Winter													
BY			Summer	F4 sel	lf Ear to ro					-	BY	1 Loc	25 K			
		rest F3	Winter			head	ing, lodo	ging,	height,	diseases,						
BY	1200g		Summer	F5 sel	f LP1	yield	, colour,	sds,	protein,	vitreousity	ВН	4 Loc, 2 reps	25 K	1 row	3 rows	2 Loc, 2 rows
		rest F4	Winter			head	ing, lodo	ging,	height,	diseases,						
BY	2500g		Summer	F6 sel	f LP2	yield	, colour,	sds,	Protein,	vitreousity	ВН	10 Loc, 2 reps		1 row	3 rows	2 Loc, 2 rows
	Official offer															
	Breeding scheme									_] .			
Seasor	n Prod.	Tests								Bu	dq	et: ho	riz(ont	al	
2013/1	Breeding s										_					
	P1 x P2 Prod. T										nd vertical!					
2014/1	5				Breeding so											
	F1 self		P1 x P2	-	Prod.	Tests										
2015/1	6	0: 1 1	E4 16		D4 D0		Breedi									
	F2 self	Single plant	r'i self		P1 x P2		Prod.		ests	Droodin	n ooko:	10				
2016/1	7 F3 self	Ear to row	F2 self 3ing	le plar	F1 self		P1 x P2		-	Breeding Prod.	g scnem Test					
		Lar to low	. 2 0011 71119	io piai	1 1 0011				-	71001	100	Breedin	a sche	me		
2017/1	F4 self	Ear to row	F3 self Ear	to row	F2 self Sin	gle plant	F1 self			P1 x P2		Prod.		ests		
00101															Breedi	ng scheme
2018/1	F5 self	LP1	F4 self Ear	to row	F3 self Ea	r to row	F2 self	Sing	le plant	F1 self		P1 x P2			Prod.	Tests
2019/2	20															

F2 self Single plant

F1 self

P1 x P2

LP2

F6 self

F5 self LP1 F4 self Ear to row F3 self

Examples for budgets per program

Maize

Large: >1.000.000€

- Small: ~ 500.000€

Wheat

- Large: 600.000€

Small: 200.000€

Barley

Large: 400.000€

- Small: 100.000€

Simple budget formula

Budget = N*L*R (*T) + Production of N

- N = no. of test candidates
- L = no. of test locations
- R = no. of replications
- T = no. of testers

Selection intensity vs. heritability

For a fixed budget, maximization of ΔG represents a compromise between a high number of test candidates and a high intensity of testing.

Quelle: Becker 1993

Golden rule

For a fixed budget, maximization of ΔG represents a compromise between a high number of test candidates and a high intensity of testing.

Golden rule: Curves of i and h² level off and increase by L > than in R

Quelle: Becker 1993

Variables influencing selection gain

Annual selection gain

$$\Delta G_a = ih\sigma_y / Y$$

- *i* = selection intensity,
- *h* = square root of the heritability,
- σ_v = square root of the genetic variance of the target variable
- \bullet Y = no. of years required to finish one breeding cycle

Selection gain is maximized by an

Increase of i

> reduction of Y

- Increase of h
- Increase of σ_v

Reduce cycle length

	PS _{standard}	GS _{rapid}
Year 1	P1 x P2,	P1 x P2,
Year 2	DH-Production	DH-Production
Year 3	<i>N</i> ₁ DH lines - multiplication	<i>N₁</i> DH lines - multiplication
		Genomic selection N_1
Year 4	Hybrid seed prod. N ₂ * T ₂	Hybrid seed prod. N ₂ * T ₂
Year 5	Field test	Field test N ₂ * T ₂ * L ₂
Year 6	Hybrid seed prod. N ₃ * T ₃	
Year 7	Field test N ₃ * T ₃ * L ₃	2 years faster breeding scheme

Annual selection gain

$$\Delta G_a = ih\sigma_y/Y$$
 Assumptions: $i = 2$

- h = 0.7
- $\sigma_v = 5$ dt/ha

Example:

$$\Delta G = 2*0.7*5/7 = 1$$

$$\Delta G = 2*0.7*5/5 = 1.4$$

> 40 % higher annual selection gain

Cycle length has very strong effect on annual selection gain

→You must be faster than your competitor

Variance components

	Variance components due to				
Crop	G	GxL	GxY	GxLxY	E
Winter wheat	14.2	2.4	2.4	9.2	14.4
Winter barley	6.1	1.6	1.6	6.7	13
Grain maize early	19.6	6.1	5.1	11.7	27.1
Forage maize early	38.7	15.6	8.6	17.8	80.8
Winter oil seed rape	3.3	1.7	2	3.8	9.7
Sugarbeet	33.6	9.1	1.7	4.8	35.2

Source: Laidig et al. 2008

Variance components

	Variance components due to				
Сгор	G	GxL	GxY	GxLxY	E
Winter wheat	14.2	2.4	2.4	9.2	14.4
Winter barley	6.1	1.6	1.6	6.7	13
Grain maize early	19.6	6.1	5.1	11.7	27.1
Forage maize early	38.7	15.6	8.6	17.8	80.8
Winter oil seed rape	3.3	1.7	2	3.8	9.7
Sugarbeet	33.6	9.1	1.7	4.8	35.2

High variance due to

- genotype x year and
- genotype x year x location interaction

Source: Laidig et al. 2008

Year → large effect on genotype ranki

Genotyp	Rank 2015	Rank 2016	Yield 2016	Yield 2015
	21	1	58,71	77,10
Miradoux		2	58,66	
W-10066-217-316/14/3-512-2/1	8	3	58,57	82,33
W-10037-210-309/17/1-487-1/3	2	4	58,03	86,39
W-10021-204-307/4/3-468-2/1	1	5	57,89	90,33
W-10029-207-305/11/1-439-4/1	17	6	57,22	79,24
W-10066-217-316/9/2-511-3/1	6	7	57,02	83,49
W-10013-202-302/9/1-408-2/1	16	8	56,44	79,45
Lupidur	10	9	55,87	81,85
W-10058-214-313/21/2-501-1/3	9	10	55,68	82,07
W-10033-209-308/3/1-474-1/3	19	11	55,00	78,42
W-10064-216-315/10/3-506-2/1	13	12	54,97	80,86
W-10021-204-307/2/2-466-6/3	18	13	54,97	79,24
W-10058-214-313/11/1-499-1/3	15	14	54,89	80,46
W-10031-208-306/22/1-460-3/1	5	15	54,87	84,43
W-10066-217-316/23/3-514-6/3	4	16	54,65	84,81
W-10064-216-315/17/3-507-1/1	3	17	54,54	86,30
W-10043-211-310/19/2-494-3/3	12	18	54,34	81,28
W-10033-209-308/10/3-476-6/3	23	19	54,32	76,02

Further advantages of multiple year testing

- Disease resistance (natural occurring)
- Frost
- Drought, heat
- → Speed of the program is also a compromise between a maximum annual selection gain and a security of the results

Compromise necessary

Annual selection gain

$$\Delta G_a = ih\sigma_v/Y$$

Annual selection gain is maximized by an

increase of i

→ reduction of Y

- increase of h
- increase of σ_{v}

Compromise necessary between theory and practice!

R package "selection gain"

- Open source software package R (<u>www.r-project.org</u>)
- Package selectiongain
- https://cran.rproject.org/web/packages/selectiongain/index.html

selectiongain: A Tool for Calculation and Optimization of the Expected Gain from Multi-Stage Selection

Multi-stage selection is practiced in numerous fields of life and social sciences and particularly in breeding. A special characteristic of multi-stage selection is fraction of the superior candidates is selected and promoted to the next stage. For the optimum design of such selection programs, the selection gain plays a cr While mathematical formulas for calculating the selection gain and the variance among selected candidates were developed long time ago, solutions for nume selection programs for a given total budget and different costs of evaluating the candidates in each stage.

Version: 2.0.50.1

Depends: $R (\geq 3.0.0)$, mvtnorm, parallel

Published: 2016-03-14

Author: Xuefei Mi, Jose Marulanda, H. Friedrich Utz, Albrecht E. Melchinger (Project contact person: Melchinger@uni-hohenheim.de)

Maintainer: Xuefei Mi <mi xue fei at hotmail.com>

License: <u>GPL-2</u> NeedsCompilation: no

CRAN checks: selectiongain results

Downloads:

Reference manual: selectiongain.pdf

Package source: <u>selectiongain 2.0.50.1.tar.gz</u>

Windows binaries: r-devel: selectiongain 2.0.50.1.zip, r-release: selectiongain 2.0.50.1.zip, r-oldrel: selectiongain 2.0.50.1.zip

OS X Mavericks binaries: r-release: selectiongain 2.0.50.1.tgz, r-oldrel: selectiongain 2.0.50.1.tgz

Old sources: selectiongain archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=selectiongain to link to this page.

Selectiongain - Manual

tiongain.pdf	G	Q wetter	
- + 90%			
Package 'selectiongain'			
March 14, 2016			
Type Package Title A Tool for Calculation and Optimization of the Expected Gain from Multi-Stage Selection Version 2.0.50.1 Date 2016-02-28 Author Xuefei Mi, Jose Marulanda, H. Friedrich Utz, Albrecht E. Melchinger (Project contact person: Melchinger@uni-hohenheim.de) Maintainer Xuefei Mi <mi_xue_fei@hotmail.com> Depends R (>= 3.0.0), mvtnorm.parallel Description Multi-stage selection is practiced in numerous fields of life and social sciences and particularly in breeding. A special characteristic of multi-stage selection is that candidates are evaluated in successive stages with increasing intensity and effort, and only a fraction of the superior candidates is selected and promoted to the next stage. For the optimum design of such selection programs, the selection gain plays a crucial role. It can be calculated by integration of a truncated multivariate normal (MVN) distribution. While mathematical formulas for calculating the selection gain and the variance among selected candidates were developed long time ago, solutions for numerical calculation were not available. This package can also be used for optimizing multi-stage selection programs for a given total bud-</mi_xue_fei@hotmail.com>			
get and different costs of evaluating the candidates in each stage. License GPL-2			
NeedsCompilation no			
Repository CRAN			
Date/Publication 2016-03-14 12:58:02			
R topics documented:			
1			

Selectiongain - download

What is possible? – Breeding scheme

Field test N₃ x T₃ x L₃

GSstandard

Breeding scheme:

- DH production
- Nursery selection on traits not correlated to yield
- GS on yield
- 2 stage phenotypic selection on yield

 N_i , L_i , R_i , T_i = number of lines, locations, replications and testers used in stage $i \rightarrow optimized$

What is possible? – Breeding scheme

GSstandard

Breeding scheme:

- DH production
- Nursery selection on traits not correlated to yield
- GS on yield
- 2 stage phenotypic selection on yield

Breeding scheme - modifications

- Each test stage can be witched off
- You can enter maximum nubers in each test stages of N, L, R, T
- GS → yes/no

Budget & Costs

GSstandard

 $N_{ini}(Cost_{DH} + Cost_{nursery\ test})$

- $+ N_1(Cost_{Genotyping}) + N_2T_2Cost_{Hybridseed}$
- $+N_2T_2L_2R_2+N_3(T_3-T_2)Cost_{Hybridseed}$
- $+ N_3 T_3 L_3 R_3$

Costs for:

- DH production
- Nursery selection
- GS
- Hybrid seed production
- Field plot,....
- → All "redefined" in field plot equivalents

Nursery selection

GSstandard

We assume:

Nursery selection on traits not correlated to yield (e.g. lodging, leaf rust resistance, SDS,...)

- → Nursery selection will not impact the selection gain formula
- → Nursery selection: costs money (budget impact)
- → Affects number of test lines
- \rightarrow Nursery selection intensity is predefined (not optimized!) as $\alpha = \frac{N_{ini}}{N_1}$

First step of simulations

Frequencies

We define basics:

- Budget (for crossing, line development, GS, field tests) in field plot equivalents
- Crop & Trait to select for → variance components

$$\sigma_{P}^{2} = \sigma_{GCA}^{2} + \sigma_{GCAxy}^{2} + \sigma_{GCAxl}^{2} / L + \sigma_{GCAxlxy}^{2} / L +$$

$$\sigma_{SCA}^{2} / TM + \sigma_{SCAxy}^{2} / TM + \sigma_{SCAxl}^{2} / TML + \sigma_{SCAxlxy}^{2} / TML$$

$$\sigma_{e}^{2} / (TLR)$$

 σ^2_{GCA} = GCA variance; σ^2_{SCA} = SCA variance; σ^2_{P} = phenotyp. variance, $\sigma^2_{GCAx...}$ = variance due to Genotypenvironment - interaction; σ^2_{e} = error variance

→ estimated via ANOVA

Getting started with the code

library(selectiongain) → load the package

sessionInfo() → Info on the version you use

Important input parameters

- Budget = in field plot eqivalents
- VCGCAandError = c(GCA,GCA*loc, GCA*year, GCA*loc*year, error)
- VCSCA = c(SCA, SCA*loc, SCA*year, SCA*loc*year)

Example for hybrid wheat:

- Budget =10 000
- VCGCAandError=c(5.7, 5.19, 0, 0, 24.37)
- VCSCA=c(1.88, 2.94, 0,0)

Second step of simulations

We define breeding operations:

- Intensity of nursery selection
- GS: yes/no; predictive ability
- Number of test stages in field
- Maximum numbers of testers, locations,...
- Costs for each operation

Most important code


```
Budget = 10000
VCGCAandError = c(5.7,5.19,0,0,24.37)
VCSCA = c(1.88, 2.94, 0, 0)
multistageoptimum.search (
       maseff=NA, alpha.nursery = 1,
      VGCAandE=VCGCAandError, VSCA=VCSCA,
       cost.nursery = c(1,0.3), CostProd = c(0,4,4),
       CostTest = c(2,1,1), t2free = T,
       Nf = 5, Budget = Budget,
      N2grid = c(5, 511, 10), N3grid = c(5, 20, 1),
      L2grid=c(2,5,1), L3grid=c(1,5,1),
      T2grid=c(1,1,1), T3grid=c(1,5,1),
      R2=1, R3=1, alg = Miwa(),
      detail=FALSE, fig=FALSE)
```


GSstandard

Most important code - explained


```
multistageoptimum.search (
      maseff = GS pred. accuracy,
      alpha.nursery = selected fraction in disease nursery,
      VGCAandE=VCGCAandError, VSCA=VCSCA,
      cost.nursery = c(line prod., test in nursery),
      CostProd = c(0, hybrid seed prod., hybrid seed prod.),
      CostTest = c(GS, yield plot, yield plot), t2free = T,
      Nf = no. finally selected lines, Budget = Budget,
      N2grid = c(5, 511, 10), N3grid = c(5, 5, 1),
      L2grid=c(1,5,1), L3grid=c(1,5,1),
      T2grid=c(1,1,1), T3grid=c(1,3,1),
      R2=1, R3=1, alg = Miwa(),
      detail=FALSE, fig=FALSE)
```

Let's go into breeding world

Modeling the optimum allocation

1. Basic level

- Target criterion
- Trait

2. Breeding level

- Scheme
- Scenario

3. Optimization level

Test resources

Modeling the optimum allocation

1. Basic level

Target criterion = selection gain

Trait = grain yield in wheat

2. Breeding level

Scheme = PS standard

Scenario = variance components, budget, selected fraction, technical requirements,...

3. Optimization level

Test resources = number of test locations, testers,
 replications, DH lines

Determining the opt. allocation within a given model framework

1. Basic level

- Selection gain
- Maize grain yield

2. Breeding level

- PSstandard
- Given scenario

3. Optimization level

specific allocation of the number of testers, test locations, DH lines, replications

AIM: Find the allocation maximizing selection gain for that specific def. of level 1 and 2

= optimum allocation

Use of molecular markers

Nothing else than indirect selection

$$\Delta G = ih\rho\sigma_{y}/Y$$

- 0 < ρ < 1: selection gain is only increased if the use of the test criteria enables
 - Increase of i → high throughput: N₁
 - Increase of h
 - Increase of σ_v
 - Decrease of Y → fast recycling

Genomic selection

We assume, that

- Retraining of the model is done with routine field trials → no additional budget required for it!

Source: Zhao et al. 2015

Prediction accuracy for hybrids

We need prediction ability

Correlation between observed and predicted breeding value = prediction ability

→ that's what we nee

→ that's what we need for our simulations

$$Prediction \ accuracy = \frac{prediction \ ability}{h}$$

Modifications of the framework

Besides budget, variance components, costs for line production and phenotyping we need further data:

- Correlation GS with GCA: ρ(GS, GCA)= 0.3 (for T0 scenario; Zhao et al. 2014)
- Costs GS = high density genotyping of 1 line costs as much as 2 field plots
- (data is shown for wheat with framwork based on papers below)

Breeding schemes

PS_{standard}

Year 1 P1 x P2, ...

Year 2 DH-Production

Year 3 N_1 DH lines - multiplication

Year 4 Hybrid seed prod. N₂ * T₂

Year 5 Field test $N_2 * T_2 * L_2$

Year 6 Hybrid seed prod. $N_3 * T_3$

Year 7 Field test $N_3 * T_3 * L_3$

Year 8, 9,... Pre-registration trials

Breeding schemes

	PS _{standard}	GS _{standard}
Year 1	P1 x P2,	P1 x P2,
Year 2	DH-Production	DH-Production
Year 3	<i>N</i> ₁ DH lines - multiplication	<i>N</i> ₁ DH lines - multiplication
		Genomic selection N_1
Year 4	Hybrid seed prod. N ₂ * T ₂	Hybrid seed prod. N ₂ * T ₂
Year 5	Field test N ₂ * T ₂ * L ₂	Field test N ₂ * T ₂ * L ₂
Year 6	Hybrid seed prod. N ₃ * T ₃	Hybrid seed prod. N ₃ * T ₃
Year 7	Field test N ₃ * T ₃ * L ₃	Field test N ₃ * T ₃ * L ₃

Increase in selection gain with GS

The higher the prediction accuracy the larger is the advantage of GS schemes

Reduce cycle length with GS

	PS _{standard}	GS _{standard}	GS _{rapid}	GS _{only}
Year 1	P1 x P2,	P1 x P2,	P1 x P2,	P1 x P2,
Year 2	DH-Production	DH-Production	DH-Production	DH-Production
Year 3	<i>N</i> ₁ DH lines - multiplication	<i>N</i> ₁ DH lines - multiplication	<i>N</i> ₁ DH lines - multiplication	<i>N₁</i> DH lines - multiplication
		Genomic selection N_1	Genomic selection N_1	Genomic selection N_1
Year 4	Hybrid seed prod. N ₂ * T ₂	Hybrid seed prod. N ₂ * T ₂	Hybrid seed prod. N ₂ * T ₂	
Year 5	Field test $N_2 * T_2 * L_2$	Field test	Field test $N_2 * T_2 * L_2$	
Year 6	Hybrid seed prod. N ₃ * T ₃	Hybrid seed prod. N ₃ * T ₃		
Year 7	Field test $N_3 * T_3 * L_3$	Field test $N_3 * T_3 * L_3$		

Reduce cycle length with GS

	PS _{standard}	GS _{standard}	GS _{rapid}	GS _{only}
Year 1	P1 x P2,	P1 x P2,	P1 x P2,	P1 x P2,
Year 2	DH-Production	DH-Production	DH-Production	DH-Production
Year 3	<i>N₁</i> DH lines - multiplication	<i>N</i> ₁ DH lines - multiplication	<i>N₁</i> DH lines - multiplication	<i>N₁</i> DH lines - multiplication
		Genomic selection N_1	Genomic selection N_1	Genomic selection N_1
Year 4	Hybrid seed prod. N ₂ * T ₂	Hybrid seed prod. N ₂ * T ₂	Hybrid seed prod. N ₂ * T ₂	
Year 5	Field test N ₂ * T ₂ * L ₂	Field test N ₂ * T ₂ * L ₂	Field test N ₂ * T ₂ * L ₂	
Year 6	Hybrid seed prod. N ₃ * T ₃	Hybrid seed prod. N ₃ * T ₃		Up to 4 years faster breeding schemes
Year 7	Field test $N_3 * T_3 * L_3$	Field test $N_3 * T_3 * L_3$		feasible with GS

GS for yield is interesting

Genomic selection is promising for grain yield especially when used to shorten breeding cycle length

GS for yield is interesting

With recent GS accuracy breeding scheme GS_{rapid} seems most promising: + 35% in annual selection gain

Generalisation of results

We state that a breeding scheme using GS, namely Gsrapid, is top and should be used; but is it also the truth for

- small budgets ?
- different variance components?
- reduced hybrid seed production costs?

Broad advantage of GSrapid

The use of GS in elite breeding is recommended for a broad range of scenarios; also for small breeding programs!

Think about....

Using **GSrapid** with a budget of 3.000 field plots has a 7.6 % higher annual selection gain than PSstandard with a budget of 10.000 field plots!

Realization of GSrapid


```
Budget = 10000
VCGCAandError = c(5.7, 5.19, 0, 0, 24.37)
VCSCA = c(1.88, 2.94, 0, 0)
multistageoptimum.search (
       maseff = 0.3, alpha.nursery = 0.25,
      VGCAandE=VCGCAandError, VSCA=VCSCA,
        cost.nursery = c(1,0.3), CostProd = c(0,4,0),
       CostTest = c(2,1,0), t2free = T,
       Nf = 5, Budget = Budget,
      N2grid = c(5, 511, 10), N3grid = c(5, 5, 1),
      L2grid=c(1,5,1), L3grid=c(0,0,1),
      T2grid=c(1,3,1), T3grid=c(0,0,1),
      R2=1, R3=1, alg = Miwa(),
      detail=FALSE, fig=FALSE)
```


GSstandard

Student simulations

Line breeding

PS _{standard}

GS_{rapid}

Year 1

P1 x P2, ...

P1 x P2, ...

Year 2

DH-Production

DH-Production

Year 3

Nursery with N_{nurs} DH lines **Nursery with** N_{nurs} DH lines

> Genomic selection N_{GS}

Year 4

Field test

 $N_1 * L_1$

Year 5

Field test $N_2 * L_2$

Field test $N_1 * L_1$

1 year faster

Questions

- Is Gsrapid better than PS standard also for line breeding?
- Does nursery selection impacts the ranking fo the breeding schemes?
- Is SSD competitive to DH?
- → Look on annual and absolute selection gain and elaborate potential differences in the allocation of resources

Questions

- Is Gsrapid better than PS standard also for line breeding?
- Does nursery selection impacts the ranking fo the breeding schemes?
- Is SSD competitive to DH?
- → Look on annual and absolute selection gain and elaborate potential differences in the allocation of resources
- Three student groups
 - Optimize both breeding schemes for line breeding and different budgets
 - Optimize both breeding schemes for different intensity of nursery selection for $\rho(GS, per se) = 0.3, 0.5, 0.7$
 - Optimize both breeding schemes for SSD and DH

How to realize

Examples for wheat:

- Budget: large =12 000; small = 5 000
- VCGCAandError=c(14.06, 22.27, 0, 0, 24.37)
- VCSCA=c(0, 0, 0,0)
- Cost DH = 1
- Cost nursery = 0.3
- Cost GS = 3 versus 1
- GS prediction ability for yield = 0.3, 0.4, 0.5

Compare SSD with DHs: play around with

- Cost SSD = 0.1
- σ^2_G (SSD) =0.88 * σ^2_G (DH)
- Cycle length DH versus SSD

Changes in code


```
Budget = 10000
VCGCAandError = c(14.06,22.27,0,0,24.37)
VCSCA = c(0,0,0,0)
multistageoptimum.search (
       maseff=NA, alpha.nursery = 0.25,
      VGCAandE=VCGCAandError, VSCA=VCSCA,
       cost.nursery = c(1,0.3), CostProd = c(0,0,0),
       CostTest = c(2,1,1), t2free = T,
       Nf = 5, Budget = Budget,
      N2grid = c(5, 6011, 40), N3grid = c(5, 1511, 5),
      L2grid=c(1,5,1), L3grid=c(2,10,1),
      T2grid=c(1,1,1), T3grid=c(1,1,1),
      R2=1, R3=1, alg = Miwa(),
      detail=FALSE, fig=FALSE)
```


SSD better than DH?

Breeding schemes with phenotypic selection in 2 years on

<u>yield</u>

	DH-fast	DH-slow	SSD	Pedigree
Year 1	Cross	Cross	Cross	Cross
Year 2	DH	DH	SSD	F1
Year 3	Multiplication	DH	SSD	F2
Year 4	Yield test	Multiplication	Multi	F3
Year 5	Yield test	Yield test	Yield test	F4
Year 6		Yield test	Yield test	Yield test
Year 7				Yield test

- DH fast: able to realize?
- DH slow: realizable for all crosses

Contact

PD Dr. Friedrich Longin

State Plant Breeding Institute, University of Hohenheim,

Fruwirthstrasse 21

70593 Stuttgart, Germany

Phone: (++49) 0711 459 23846

friedrich.longin@uni-hohenheim.de

Prediction of selection intensity

$$S = i(\alpha)\sigma_P$$

$$\alpha = \frac{no.selected\ lines}{no.tested\ lines}$$

$$k = G_{0,1}^{-1}(1 - \alpha)$$
 = truncation point calculated by the cumulative density function

$$i(\alpha) = \frac{z(\alpha)}{\alpha} = \frac{g_{0,1}(k)}{\alpha} = \frac{g_{0,1}[G_{0,1}^{-1}(1-\alpha)]}{\alpha}$$

Realisation in R

Numerical calculation:

$i(\alpha)$	$=\frac{z(\alpha)}{z(\alpha)}$	$=\frac{g_{0,1}(k)}{}$	$= \frac{g_{0,1}[G_{0,1}^{-1}(1-\alpha)]}{1-\alpha}$
	α	lpha	lpha

	R	Excel
$g_{\mu,\sigma^2}(x)$	dnorm(x,mu,sigma)	=NORMVERT(x;mu;sigma;0)
$G_{\mu,\sigma^2}(x)$	<pre>pnorm(x,mu,sigma)</pre>	=NORMVERT(x;mu;sigma;1)
$G_{\mu,\sigma^2}^{-1}(1-\alpha)$	qnorm(1-alpha,mu,sigma)	=NORMINV(1-alpha;mu;sigma)

Keep in mind:

- these formula assume infinite number of candidates
- for exact calculation → order statistics but difficult to realize for multistage selection
- no difference in allocation of resources and selection gain only slightly overestimated by infinitessimal model

Approximation from Dickerson and Hazel 1944

$$\Delta G = i_1 \rho_1 \sigma_y + i_2 \rho_2 \sigma_y$$

Genomic selection N_1

Nursery assessment N_{ini}

Hybrid seed prod. $N_2 \times T_2$

> Field test $N_2 \times T_2 \times L_2$

Hybrid seed prod. $N_3 \times T_3$

> Field test $N_3 \times T_3 \times L_3$

GSstandard

- ρ_1 = heritability
- σ'_{ν} = genetic variance after first selection =

$$\sqrt{\sigma_y^2(1-\rho_1^2(i_1(i_1-k_1)))} > \text{for decreased } \alpha$$

$$\rho_2' = \frac{\rho_2 - \rho_1 \rho_{12} i_1(i_1-k_1)}{\sqrt{(1-\rho_1^2 i_1(i_1-k_1)(1-\rho_{12}^2 i_1(i_1-k_1))}}$$

$$\rho_2' = \frac{\rho_2 - \rho_1 \rho_{12} i_1 (i_1 - k_1)}{\sqrt{(1 - \rho_1^2 i_1 (i_1 - k_1)(1 - \rho_{12}^2 i_1 (i_1 - k_1))}}$$

Interested in more details?

Vortr. Pflanzenzüchtg. 7, 30-40 (1984)

- 31 -

Calculating and maximizing the gain from selection

H.F. Utz

Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim

1. Introduction

The breeder must often predict the gain due to selection. As early as 1934, STUDENT used the gain to interpret a selection experiment. With the aid of the expected gain, SMITH (1936) derived the optimum weighting of characters, i.e. the selection index. In the meantime, this equation has become a standard instrument in deciding which alternative selection procedure is better or in answering questions such as how many replications or candidates would be needed to reach a maximum of gain. KEMPTHORNE (1977) succinctly stated that the expected gain is "the 'work horse' formula of quantitative selection".

Whoever calculates expected gains will be confronted with certain numerical problems. It will therefore be useful to discuss the calculation and maximization of such gains. In the following paper, the basic formulae will be presented and some helpful approximations given for the cases of one-stage and multi-stage selection.

where σ_y is the standard deviation of the genetic values y of the candidates,

 $\rho_{\mbox{yn}} \mbox{ is the correlation coefficient between y and} \\ \mbox{ the phenotypic measurement η , which can be a single observation, a mean of values, or a selection index criterion, and} \\$

 $i_{(\alpha)}$ is the selection intensity or the standardized selection differential.

The determination of σ_y and $\rho_{y\eta}$ is rather a problem of estimation, since the parameters of the population undergoing selection are usually unknown. The size of $\rho_{y\eta}$ depends on the test situation, the number of replications, of locations, and also which parts of the genetic variance can be exploited. A detailed discussion of these topics can be found in the textbook of HALLAUER and MIRANDA (1981) or in SCHNELL (1982).

Assuming a normal distribution for y and a great population of candidates, then the selection intensity can be obtained as

$$i_{(\alpha)} = z_{(\alpha)} / \alpha \qquad (2)$$

where $z_{(\alpha)}$ is the ordinate of the standardized normal distribution at the point of truncation, and α is the selected fraction.

The ordinate $z_{(\alpha)}$ for certain α is tabulated in standard statistical tables (cf. PEARSON and HARTLEY, 1970). The direct use of tables of $i_{(\alpha)}$ is more convenient. KONDO and ELDERTON (1931) tabulated $i_{(\alpha)}$ for α = 0.001(0.001)1 with 10 decimals. BECKER (1975) gives tables for the same steps

- For exact formulas: Mi Papers, Cochran (1951),...
- For finite sample size: MC simulations or order statistics

Nursery selection

Further data required:

- Breeders usually select lines first based on high heritable traits (diseases, qualities,...)
- Assumption: traits observed in nursery do not correlate with target trait, eg. GCA for grain yield
- Cost for nursery selection = 0.3 yield plots

GSstandard

Impact of nursery selection

Ranking of schemes nearly not affected by nursery selection → GSrapid is top!

Impact of nursery selection

2. With increasing nursery selection (smaller α), ΔG_a for grain yield is reduced

Impact of nursery selection

3. This reduction is larger for GS schemes and for increased GS prediction accuracy