MAU22C00: TUTORIAL 6 PROBLEM SHEET HOMOMORPHISMS AND ISOMORPHISMS

- 1) Let A be a finite set, and let A^* be the set of all words over the alphabet A. Consider (A^*, \circ, ϵ) with the operation of concatenation and empty word ϵ as the identity element. Let $(\mathbb{N}, +, 0)$ be the set of natural numbers with the operation of addition and 0 as the identity element. Let $f: A^* \to \mathbb{N}$ be the function that assigns to each word $w \in A^*$ its length, $f(w) = |w| \in \mathbb{N}$.
- (a) What type of object is (A^*, \circ, ϵ) in abstract algebra (semigroup, monoid, group)? Justify your answer.
- (b) What type of object is $(\mathbb{N}, +, 0)$ in abstract algebra (semigroup, monoid, group)? Justify your answer.
- (c) Is f a homomorphism? Justify your answer.
- (d) Is f an isomorphism? Justify your answer.
- 2) Let $(\mathbb{Z}, +, 0)$ be the set of integers with the operation of addition and 0 as the identity element. Let E be the set of even integers, $E = \{2p \mid p \in \mathbb{Z}\}$. Consider (E, +, 0) the set of even integers with the operation of addition and 0 as the identity element. Let $f : \mathbb{Z} \to E$ be the function f(n) = 2n.
- (a) What type of object is $(\mathbb{Z}, +, 0)$ in abstract algebra (semigroup, monoid, group)? Justify your answer.
- (b) What type of object is (E+,0) in abstract algebra (semigroup, monoid, group)? Justify your answer.
- (c) Is f a homomorphism? Justify your answer.
- (d) Is f an isomorphism? Justify your answer.