Inhaltverzeichnis

1	Tunnelvermessung und Kreisel			
	1.1	Vermes	ssungsaufgaben beim Tunnelbau	2
		1.1.1	Absteckung	2
		1.1.2	Abnahme und Überwachung	2
	1.2	Vermes	ssungskreisel	3
		1.2.1	Grundprinzip	3
		1.2.2	Bauformen und Gerätesysteme	4
		1.2.3	Messverfahren	4
		1.2.4	Korrektionen und Reduktion	7
	1.3	Bestim	nmung des Durchschlagspunktes	9
	1.4	Vortrie	bssteuerung	10
	1.5	Konve	rgenzmessungen	10

1 Tunnelvermessung und Kreisel

1.1 Vermessungsaufgaben beim Tunnelbau

1-a Absteckung

Tunnelnetze und deren Aufbau

- Hauptnetz verbindet die Portale (GNSS oder Tachymeter)
- Portalnetz: Grundlagen für Tunnelpolygon, 3-4 Punkte + Hauptnetzpunkte, tachymetrisch
- Tunnelpolygon: (a) für den Vortrieb. (b) zur Kontrolle
 - Problem:
 - * Lange einseitig angeschlossenen Polygonzug
 - * Unsicherheit des Richtungswinkel
 - * Querabweichung stiegt mit zunehmende Länge
 - Lösung
 - * Bestimmung der Richtungswinkel ohne Anschlußpunkte durch Vermessungskreisel

Kreiselanwendungen

- Tunnelbau
- Bergbau
- Anschluss terrestische Messungen an GNSS Punkte

Altenative Lösung

- Magnetische Orientierung (zu ungenau)
- Astronomische Orientierung (nicht möglich)
- GNSS Messung (nicht möglich)

1-b Abnahme und Überwachung

- Kontrollpolygon
- Monitoring der Umgebung (Setzung oberhalb des Tunnels)
- Konvergenzmessungen (Stabilitätsprüfung des Tunnels)

1.2 Vermessungskreisel

2-a Grundprinzip

- Kreisel weist aufgrund der Rotation um die eigene Achse einen Drehimpuls auf.
- Unter Wirkung der Erdrotation wirkt die Schwerekraft als äußere Kraft auf die Rotationsachse des Kreisels
- Kreisel verschwenkt seine Rotationsebene
- Kreisel weicht mit den Präzensionsbewegung rechtwinklig aus Rotationsachse des Kreisels zeigt noch Nord.

1) Einfluss der Breite:

(a) Einfluss der Breite

$$\omega_E = Erddrehung$$

$$\varepsilon = Kreiseldrehung$$

$$M = I_w \cdot \omega_E \cdot \cos(\varphi)$$

2) Einfluss der Auslenkung (Kreiselazimuth) Gesamt Drehmoment:

$$D = I_w \cdot \omega_E \cdot \cos(\varphi) \cdot \sin(A)$$

(b) Einfluss der Auslenkung

Drehmoment / Präzessionsgeschwindigkeit wird umso größer:

- ullet je größer die Auslenkung A
- je größer die geographische Brete φ bei $\cos(\varphi)=1$ um Äquator maximal am Pol $\cos(\varphi)=0$ Kein Drehmoment. in der Praxis $|\varphi|\leq 75^\circ$

Problem: Massenträgheit schwingt der Kreisel um den Meridianen.

• Schwingungsdauer T_0 hängt von Konstruktionsprinzip ab

$$T \approx \frac{T_0}{\sqrt{\cos(\varphi)}}$$

breitenabhängig.

2-b Bauformen und Gerätesysteme

2-c Messverfahren

Kreiselschwingung ist durch Ablesereinrichtung und Lichtzeigen ablesbar:

- 1) Schnellorientierung
 - Grobverfahren auf 0,05 gon
 - Nachführen des Lichtzeigens auf der Skalermittel durch Drehen der Alhidade(Theodolitoberbau) bis zu den Umkehrpunkte v_W und v_E
 - An der Umkehrpunkte die Ablesung A_W (West) und A_E (Ost) durchführen

- $N = \frac{A_E + A_W}{2}$
- Mittelwert N aus Theodolit einstellen
- Nordwert N ist ungenau, die die Schwingung gedämpft ist.

2) Umkehrpunktmethode

• Feinorientierung $\sigma_N = 5 - 10$ mgon bei 4 bis 6 Umkehrpunkten

a) Mit nachführen:

- Drehe der Alhidade führt zum Holten das Lichtzeiger in der Skalarmitte
- Ablesen des Teilkreisens an den Umkehrpunkten
- aus jeweils 3 Messungen das Schulen-Mittelbilden

Vorteile:

• Vororientierung von geringer Bedeutung

Nachteile:

- Umkehrpunkten unsicher ablesbar
- Nachführen erforderlich

b) Ohne nachführen

- Ablesung der Umkehrpunkten an den Hilfskalar
- Bildung des Schulemittels aus Hilfsskalarmitte, danach Transformation in Teilkreiswerte
- Diesmal schwingt der Lichtzeiger im Gesichtsfeld. Hierfür muss die Vorientierung sehr gut sein. bzw. der Kreisel machanisch abgebremst werden.

Parameter

- a_i : Ablesung an der Hilfsskala in s_E
- N': Nordwert aus Vororientierung
- $\Delta N = c \cdot S$: Korrkturwert aus 2b)

• c: Gerätekonstante/Umrechnunsfaktor

Vorteile:

- · Kein Nachführung
- gut automatisiert
- gute Vororienntierung erforderlich
- zum Teil mechanisches Abbremsen nötig
- 3) Durchgangsmethode
 - Feinorientierung
 - $G_N = 5 10$ mgon bei 4 5 Durchgängen
 - Vororientierung und Abbremsen wie bei 2b)
 - Beobachten von Durchgangszeiten t_i des Lichtzeigers durch Skalennull mit der Stoppuhr
 - Zusätzliche Ablesung der Amplituden an der Hilfsskala

$$T_{E,i} = t_{2i} - t_{2i-1} \qquad T_{W,i} = t_{2i+1} - t_{2i}$$

$$T_E = \frac{1}{m} \sum_{i=1}^m T_{E_i} \qquad T_W = \frac{1}{m} \sum_{i=1}^m T_{W_i}$$

$$m = \frac{n}{2} - 1$$

$$T_E = \frac{T}{2} + 2\delta T \qquad T_W = \frac{T}{2} - 2 \cdot \delta T$$

$$\Rightarrow T_E - T_W = 4 \cdot \delta T$$

$$\Rightarrow \delta T = \frac{T_E - T_W}{4}$$

$$und: T = T_E + T_W$$

Amplituden aus Hilfsskala

$$a = \frac{a_E - a_W}{2}$$

$$S = a \cdot \sin(2\pi \cdot \frac{\delta T}{T}) \to S = a \cdot 2\pi \cdot \frac{\delta T}{T}$$

$$N = N' + c \cdot S$$

Vorteile:

· Kein Nachführen erforderlich

- Durchgänge präziser beobachtbar
- automatisiertbar

Nachteile:

- gute Vororientierung notwendig
- mechanisches Abbremsen schwierig
- Stoppuhr notwendig
- 4) Schwingungsintegration (für Kreiseltheodolite)

$$\Delta N = \frac{1}{T} \int_{t_0}^{t_1} \Delta N(t) dt \approx \frac{1}{n} \sum_{k=1}^{n} \Delta N_k$$

Vorteile

- Kein Nachführen, keine Stoppuhr
- Komplett automatisiert
- höchste Genauigkeit: ca. 1mgon

2-d Korrektionen und Reduktion

- 1) Korrektion a) Gerätekonstante E
 - Abweichung der Nullmarken der Skala gegenüber dem Momentanpol (Nullpunktfehler)
 - Bestimmung Kreiseln aus Soll-Azimuts
- b) Fehlwinkel α
 - nur bei Aufsatzkreiseln
 - zwischen Kreisellage und Zielfernrohr des Theodolites
- c) In der Regel werden E und α In einem Wert zusammengefasst

$$A_m = \bar{z} - N + E - \alpha \Longrightarrow A_m = \bar{z} - N + E$$

- 2) Reduktion
- a) Polbewegung
 - CIO: Conventional International Origin
 - Astromisches Azimut: $A = A_m \beta$
 - Polreduktion: $\beta = \frac{x_p}{den}$

- aktuelle Polkoordiate: x_P, y_P
- astronomische Standpunktkoordinate: Λ_S, Φ_S
- Querkrümmungsradius der Erde: R

Abschätzung:

- Polschwankung < 0,3''
- $\Rightarrow \beta < 0,15$ mgon
- vernachlässigbar
- b) Übergang zum Ellipsoid
 - Ellipsoidisches Azimut $\alpha = A + \varepsilon$
 - Laplace-Reduktion(verkürzt): $\varepsilon = -\eta \tan(\Phi_S)$
 - Komponente der Lotabweichung: $\eta = (\Lambda \lambda) \cos(\varphi)$, $(\Phi_S \text{ kann durch } \phi_S \text{ ersetzt werden})$

Abschätzung: (mit z = 100gon, und $h_z \le 1$ km)

• $\varepsilon \leq 1$ mgon

Bei Gyromat zu berücksichtigen Bei Fennel TK4 nicht berücksichtigen

- c) Übergang in die Ebene
 - Richtungswinkel: $T = \alpha \gamma$
 - Meridiankonvergenz: $\gamma = (\lambda_s \lambda_0) \cdot \sin(\varphi_s) = \frac{200gon}{\pi R} y_s \tan(\varphi_s)$
 - ellipsoidische Breite des Standpunkts: y_s
 - ellipsoidische Länge des Standpunkts, des Zentralmeridians: λ_s , λ_0
 - Abstand des Standpunkts von Zentralmeridian im UTM-System

Abschätzung:

$$\varphi_s = 49^{\circ}$$

$$\lambda_s - \lambda_0 \le 1, 5^{\circ}$$

$$\Rightarrow \gamma = 1, 25gon$$

$$\Rightarrow wichtigste Reduktion$$

- d) Berücksichtigung der Abbildungsreduktion
 - Richtungswinkel: $t = T \delta$

• Richtungsreduktion $\delta = \frac{\rho}{b \cdot R^2} (x_z - x_s) \cdot (2y_s + y_z)$

• Zielpunkt: x_z, y_z

• Standpunkt: x_s, y_s

Abschätzung:

$$y_s = y_z < 100km$$

$$x_z - x_s < 1km$$

$$\Rightarrow \sigma < 0,08mgon$$

$$\Rightarrow ohne Bedeutung$$

$$\Rightarrow T = t$$

Zusammenfassung

• Gyromat: $t = A + \varepsilon - \gamma$

• Fennel: $t = A - \gamma$

1.3 Bestimmung des Durchschlagspunktes

Problem bei Tunnelpolygon: Einseitig umgeschlossen. daher schlechtes Fehlerverhalten und geringen Zuverlässigkeit. — Zuverlässigkeit kann durch Messungen oder Doppelpolygongzug verbessert werden, Fehlerverhalten nicht.

Einsatz von Kreiselmessung:

$$t_{k,k+1} = t_{0,1} + \sum_{i=1}^{k} \beta_i + k \cdot 200gon - v \cdot 400gon$$

wobei t Richtungswinkel im Polygonzug ist.

Varianz: $\sigma_{t_{k,k+1}}^2 = \sigma_{t_{0,1}}^2 + k \cdot \sigma_{\beta}^2$, mit $\sigma_{\beta}^2 = 2\sigma_r^2$. σ_r ist Standardabweichung der Richtungsmessung.

Festlegung der Station P_k , ab der die Kreiselmessungen einen Genauigkeitsgewinn bringen. (Bedingungen für den Einsatz von Kreiselmessung:

$$\begin{split} \sigma_N^2 &\leq \sigma_{t_{k,k+1}}^2 \\ \Longrightarrow \sigma_N^2 &\leq \sigma_{t_{0,1}}^2 + k \cdot \sigma_\beta^2 \\ \Longrightarrow k &\geq \frac{\sigma_N^2 - \sigma_{t_{0,1}}^2}{\sigma_\beta^2} \end{split}$$

Wenn Portalnetz "fehlerfrei", dann $\sigma_{t_{0,1}}^2 = \sigma_r^2$

$$k \ge \frac{\sigma_N^2 - \sigma_r^2}{2 \cdot \sigma_r^2}$$

Auswirkung der Kreiselmessung auf die Durchschlagsgenauigkeit(siehe Lagegenauigkeit Polygonzug)

• Längsfehler: $\sigma_L = \sigma_s \cdot \sqrt{k}$

• Querfehler: $\sigma_Q = s \cdot \sqrt{k^2 \cdot \sigma_{t_{0,1}}^2 + \frac{1}{6}k(k-1)(2k-1) \cdot \sigma_\beta^2}$

• Gesamtfehler: $\sigma_p = \sqrt{\sigma_Q^2 + sigma_L^2}$

• Vortrieb von Beiden Seiten $\sigma_{2p} = \sqrt{\sigma_{p_1}^2 + \sigma_{p_2}^2} = \sqrt{2}\sigma_p$

Bei Einführung von Kreiselmessungen wird die Kovarianzfortpflanzung unterbericht und es entstehet Teilpolygon

$$\sigma_{Q,i} = s\sqrt{k^2\sigma_N^2 + \frac{1}{6}k(k-1)(2k-1)\sigma_\beta^2}$$

$$\sigma_Q = \sqrt{\sum_{i=1}^l \sigma_{Q,i}^2}$$

k ist Anzahl der Punkte im Teilpolygon. l ist Anzahl der Teilpolygon. für erstes Teilpolygon

$$\sigma_N = \sigma_{t_{0,1}} = \sigma_r$$

 σ_L unverändert.

1.4 Vortriebssteuerung

Prinzip:

- auf einem Theodolit wird ein Laser montiert, der die Referenzlinse vorgibt(Absteckung)
- Abbildung des Strahls auf 2 Zieltafeln
- Soll-Ist-Vergleich für Position und 3D Orientierung
- auf Basis dieser Abweichungen erfolgt die Steuerung der TBM
- Später Ersatz der Zieltafeln durch aktive Prismen, zusätzliche Messung der Längs- und Querneigung

1.5 Konvergenzmessungen

Definition Konvergenz: Bezeichung im Bergbau für aufgrund des Gebergsdrucksauftretende Annährung(Längenänderung) zwischen Hangendem (Tunneldecke) und Liegendem (Tunnelsohle) Konvergenzmessverfahren

• Invardrähle (wenig praktikalel)

- Neigungsmessung (nur beim Tübbingbau/TBM)
- Tachymetrische Messung (Standard)
- Laserscanning (flächenhaft)