CLAIMS

What is claimed is:

1	1. In a data processing system with a processor chip that includes a processor core.	a store			
2	queue (STQ) mechanism with a store queue, and RC dispatch logic, a method for improvin				
3	gathering capabilities for entries of the store queue that gather processor-issued store operations				
4	said method comprising:				
5	gathering data of a first processor-issued store operation to an entry of the store qu	eue;			
6	activating a timer to track elapsed time from a completion of the gathering step;	•			
7	when said timer reaches a pre-established threshold for elapsed time, signaling th				
8	arbitration logic that said entry is eligible for selection for dispatch to the RC dispatch logic; and				
9	when a second processor-issued store operation gathers to the entry before said pre-				
10	established threshold for elapsed time is reached:				
11	holding off tagging said entry as eligible for dispatch; and				
12	restarting said timer to track elapsed time from a completion of said gather	r of the			
13	second processor-issued store operation.				
1	2. The method of Claim 1, further comprising:				
2	monitoring for a receipt of a barrier operation from said processor core; and				
3	when a barrier operation is received,				
4	tagging all active entries as eligible for dispatch; and				
5	preventing further gathering to said active entries, wherein a subseque	nt store			
6	operation targeting a cache line associated with on of said active entries is assigne	d a new			
7	entry within said store queue; and				
8	stopping a respective timer for each active entry.				
1	3. The method of Claim 1, further comprising:				
2	tracking gathers to said entry to determine when said entry contains a full set	of store			
3	operations to update an entire cache line;				

- when said contains a full set of store operations, signaling said entry as eligible for dispatch independent of a current status of the timer for that entry, wherein a new gather to said entry does not affect the entry's eligibility for dispatch.
- 1 4. The method of Claim 1, further comprising:
- 2 monitoring said entry to determining when said entry is still gatherable;
- 3 when said entry is no longer gatherable,
- 4 signaling said entry as eligible for dispatch; and
- 5 stopping said timer for the entry.
- 1 5. The method of Claim 4, wherein said timer is a counter that increments each clock tick of
- 2 a system clock within said data processing system and said threshold for elapsed time is a
- 3 saturation value of said counter, wherein said counter increment to saturation unless a new gather
- 4 occurs or said counter is stopped.
- 1 6. The method of Claim 5, wherein said STQ mechanism comprises a STQ controller and
- 2 said counter has an associated counter logic that activates, resets, and stops said counter, wherein
- 3 said counter logic further signals said STQ controller when said counter has reach said threshold
- 4 or is stopped.
- 1 7. A processor chip for utilization within a data processing system having a memory
- 2 hierarchy, said processor chip comprising:
- a processor core;
- a store queue having multiple entries, each having at least an address register and a data
- 5 register for storing address and data of a store operation issued by the processor core;
- a store queue (STQ) controller having an associated arbitration logic, wherein said STQ
- 7 controller monitors said store queue and identifies when an entry is eligible to be selected for
- 8 dispatch by the arbitration logic; and
- 9 a plurality of timers and an associated timer logic, said plurality of timers being each
- assigned to an entry and utilized for tracking elapsed time since a last gather of a store operation
- 11 to that entry; and

12		logic for signaling an entry as eligible to be selected for dispatch when the timer			
13	associated with that entry reaches a pre-established threshold before another store operation				
14	gathe	rs into the entry.			
1	8.	The processor chip of claim 7, further comprising:			
2		logic for gathering data of a first processor-issued store operation to the entry;			
3		logic for activating the timer to track elapsed time from a completion of the gather of the			
4	first p	first processor-issued store operation;			
5		when a second processor-issued store operation gathers to the entry before said pre-			
6	established threshold for elapsed time is reached:				
7		logic for holding off tagging said entry as eligible for dispatch; and			
8		logic for restarting said timer to track elapsed time from a completion of said			
9		gather of the second processor-issued store operation.			
1	9.	The processor chip of Claim 7, further comprising:			
2		logic for monitoring for a receipt of a barrier operation from said processor core; and			
3		when a barrier operation is received,			
4		logic for tagging all active entries as eligible for dispatch; and			
5		logic for preventing further gathering to said active entries, wherein a subsequent			
6		store operation targeting a cache line associated with on of said active entries is assigned			
7		a new entry within said store queue; and			
8		logic for stopping a respective timer for each active entry.			
1	10.	The processor chip of Claim 7, further comprising:			
2		logic for tracking gathers to said entry to determine when said entry contains a full set of			
3	store	operations to update an entire cache line;			

logic that, when said contains a full set of store operations, signals said entry as eligible

for dispatch independent of a current status of the timer for that entry, wherein a new gather to

11. The processor chip of Claim 7, further comprising:

said entry does not affect the entry's eligibility for dispatch.

45

6

1

2	logic for monitoring said entry to determining when said entry is still gatherable;				
3	when said entry is no longer gatherable,				
4	logic or signaling said entry as eligible for dispatch; and				
5	logic stopping said timer for the entry.				
1	12. The processor chip of Claim 7, wherein said timer is a counter that increments each clock				
2	tick of a system clock within said data processing system and said threshold for elapsed time is a				
3	saturation value of said counter, wherein said counter increment to saturation unless a new gather				
4	occurs or said counter is stopped.				
1	13. The processor chip of Claim 12, wherein said timer logic that activates, resets, and stops				
2	said counter, wherein said timer logic further signals said STQ controller when said counter has				
3	reach said threshold or is stopped.				
1	14. The processor chip of Claim 7, further comprising logic that, when said timer reaches a				
2	pre-established threshold for elapsed time, said logic signals the arbitration logic that said entry				
3	is eligible for selection for dispatch to the RC dispatch logic.				
1	15. A data processing system comprising:				
2	a processor chip that includes:				
3	a processor core;				
4	a store queue having multiple entries, each having at least an address register and				
5	a data register for storing address and data of a store operation issued by the processor				
6	core;				
7	a store queue (STQ) controller having an associated arbitration logic, wherein				
8	said STQ controller monitors said store queue and identifies when an entry is eligible to				
9	be selected for dispatch by the arbitration logic; and				
10	a plurality of timers and an associated timer logic, said plurality of timers being				
11	each assigned to an entry and utilized for tracking elapsed time since a last gather of a				
12	store operation to that entry; and				

13		logic for signaling an entry as eligible to be selected for dispatch when the timer		
14		associated with that entry reaches a pre-established threshold before another store		
15		operation gathers into the entry; and		
16		a memory hierarchy coupled to said processor chip.		
1	16.	The data processing system of claim 15, wherein said processor chip further includes:		
2		logic for gathering data of a first processor-issued store operation to the entry;		
3		logic for activating the timer to track elapsed time from a completion of the gather of the		
4	first p	processor-issued store operation;		
5		when a second processor-issued store operation gathers to the entry before said pre-		
6	estab	lished threshold for elapsed time is reached:		
7		logic for holding off tagging said entry as eligible for dispatch; and		
8		logic for restarting said timer to track elapsed time from a completion of said		
9		gather of the second processor-issued store operation.		
10	17.	The data processing system of claim 15, wherein said processor chip further includes:		
11		logic for monitoring for a receipt of a barrier operation from said processor core; and		
12		when a barrier operation is received,		
13		logic for tagging all active entries as eligible for dispatch; and		
14		logic for preventing further gathering to said active entries, wherein a subsequent		
15		store operation targeting a cache line associated with on of said active entries is assigned		
16		a new entry within said store queue; and		
17		logic for stopping a respective timer for each active entry.		
1	18.	The data processing system of claim 15, wherein said processor chip further includes:		
2	10.	logic for tracking gathers to said entry to determine when said entry contains a full set of		
3	store	store operations to update an entire cache line;		
4	5.010	logic that, when said contains a full set of store operations, signals said entry as eligible		
5	for d	ispatch independent of a current status of the timer for that entry, wherein a new gather to		
6		entry does not affect the entry's eligibility for dispatch.		

- 7 19. The data processing system of claim 15, wherein said processor chip further includes: 8 logic for monitoring said entry to determining when said entry is still gatherable; 9 when said entry is no longer gatherable, 10 logic or signaling said entry as eligible for dispatch; and 11 logic stopping said timer for the entry. 1 20. The data processing system of claim 15, wherein: 2 said timer is a counter that increments each clock tick of a system clock within said data 3 processing system and said threshold for elapsed time is a saturation value of said counter, 4 wherein said counter increment to saturation unless a new gather occurs or said counter is
- stopped; and
 said timer logic that activates, resets, and stops said counter, wherein said timer logic
 further signals said STQ controller when said counter has reach said threshold or is stopped.