PSET-3

b) i) $|7,+\rangle$ states are retained from F, ii) for \hat{S}_{R}^{+} , $\cos \frac{\theta}{2}|+\rangle + \sin \frac{\theta}{2}|-\rangle$ has eigenvalue $\frac{\pi}{2}$ $\sin \frac{\theta}{2}|+\rangle - \cos \frac{\theta}{2}|-\rangle$ has eigenvalue $-\frac{\pi}{2}$ $|7,+\rangle = \cos \frac{\theta}{2}|n,+\rangle + \sin \frac{\theta}{2}|n,-\rangle$

> on average cos2 traction will pass
through F2

(ii) The states coming out from Fz are cos 0/2/+> + sin 0/2/->

Thus, after passing through f_3 , $\cos^2\theta$ will have eigenvalue $+\hbar/2$, $\sin^2\theta/2$ will have $-\hbar/2$ (($\cos^4\theta/2$, $\cos^2\theta/2$, $\sin^2\theta/2$) of input to F_1)

2-PSET-3 MZ7 OCW-1.05 2013

cost 0/2 are found in LT by F3 out of those who endered F2 sm² 0/2 $os^2 0k$ found in L> $sin^2 0/2$ never made to F3 for $\theta = 0$, $F_2 = \hat{S}_2$, in case all atoms pass from F3 $cos^4 0/2 = 1$ for $\theta = 0$ for $\theta = \pi / 2$, 1/2 pass through F_2 , 1/4 in L+> and 1/4 in 1/2 for $\theta = \pi / 2$, no atom passes through F_2 for all three coses, our formula makes sense

Intensity of beams