1. 콘텐츠 배포 서비스를 이용한 부하 분산

캐시 서버는 서버 측에 두는 경우와 클라이언트 측에 두는 경우가 이용 효과면에서 차이가 난다.

- 서버 측에 캐시 캐시 서버를 두는 경우
 - → 웹 서버의 부하를 경감하는 효과는 있지만, 인터넷을 흐르는 트래픽을 억제하는 효과는 없다.
- 클라이언트 측에 캐시 서버를 두는 경우
 - → 인터넷안에는 혼잡한 곳이 있으면 그곳을 통과하기 위해 시간이 걸린다.
 - → 이런 경우 클라이언트 측에 캐시 서버가 있으면 혼잡에 휘말려드는 일이 없으므로 패킷의 흐름이 안정된다.
 - → 큰 화상이나 영상 같은 대용량 데이터를 포함하는 콘텐츠에 효과가 크다.
 - → 단, 클라이언트 측의 네트워크를 운영 관리하는 사람이 캐시 서버를 소유하므로 웹 서버 운영자가 제어할 수 없다.

캐시 서버의 위치에 따르는 장점과 단점을 고려할 때 양쪽의 좋은 점만 취하는 방법이 있다. 즉, 프로바이더와 계약하여 웹 서버 운영자가 제어할 수 있는 캐시 서버를 클라이언트 측의 프로바이 더에 두는 방법이다.

- 인터넷 주위에 캐시 서버를 두는 경우
 - → 인터넷의 트래픽을 억제하는 효과가 있을 뿐만 아니라 서버 운영자가 캐시 서버 를 제어할 수 있다.

설치하는 과정에도 여러 문제가 일어나지만 이러한 것들을 해결할 수 있는 방법은 **콘텐츠 배포** 서비스를 사용하는 것이다.

→ **콘텐츠 배포 서비스**란?: 캐시 서버를 설치하고, 이것을 웹 서버 운영자에게 대출 하는 서비스

2. 가장 가까운 캐시 서버의 관점

콘텐츠 배포 서비스를 사용하는 경우 인터넷 전체에 설치된 다수의 캐시 서버를 이용한다. 이러한 상황에서는 가장 가까운 캐시 서버를 찾아내고, 클라이언트가 여기에 액세스 하도록 중재하는 구조가 필요하다.

- 구조 설정 방법

- → DNS 서버가 웹 서버의 IP 주소를 회답할 때 가장 가까운 캐시 서버의 IP 주소를 회답하도록 DNS 서버를 세밀하게 설정한다.
 - DNS의 보통 동작에서 IP주소가 여러 개이면 라운드 로빈 방식으로 되돌려주 어 목적을 이루기 어려울 수 있다.
 - 따라서 클라이언트와 캐시 서버의 거리를 판단하여 클라이언트에 가장 가까 운 캐시 서버의 IP주소를 회답하도록 한다.

- 캐시 서버의 거리 판단 방법

- → DNS에 등록된 캐시 서버의 라우터에서 경로표를 입수한다.
- → 경로표를 사용하여 DNS조회 메시지의 송신처, 즉 클라이언트 측의 DNS 서버에 이르는 경로 정보를 조사한다.
- → 실제로 클라이언트 측의 DNS 서버는 반드시 클라이언트와 같은 장소에 있는 것이 아니기 때문에 정확한 거리를 측정하지는 못하지만 웬만큼 정확하게 거리를 측정할 수 있다.

3. 리피터용 서버로 액세스 대상 분배

가장 가까운 캐시 서버에 액세스하는 다른 방법은 리다이렉트를 사용하는 방법이다.

- → HTTP의 헤더 필드에는 Location이라는 헤더가 있는데 이 것은 웹 서버의 데이터 를 다른 서버로 옮기는 경우에 사용한다.
- → 즉 필요한 데이터가 다른 서버에 있으니 그쪽으로 액세스 하게 한다.
- → 이렇게 해서 다른 웹 서버에 액세스 하도록 처리하는 것을 **리다이렉트**라고 한다.

- 리다이렉트 사용 방법

- → 이 방법을 사용하기 위해서는 리다이렉트용 서버를 웹 서버픅의 DNS 서버에 등록한다.
- → 그러면 클라이언트는 여기에 HTTP 리퀘스트 메시지를 보내고, 라우터에서 모은 경로 정보를 가지고 있는 리다이렉트용 서버에서는 가장 가까운 캐시 서버를 찾는다.
- → 이후 캐시 서버를 나타내는 Location헤더를 붙여 응답을 돌려보내면, 클라이언트 는 캐시 서버에 다시 액세스 한다.

이 외에도 패킷의 왕복 시간을 통해 캐시 서버까지의 거리를 계산하여 최적의 캐시 서버에 액세 스 하도록 스크립트를 내장한 페이지를 반송하는 방법도 있다.

그림 1. 리다이렉트에서 사용하는 HTTP 메시지의 내용