§6.4 Derivatives of Logarithmic Function

In-class Activity 6.4

Dr. Jorge Basilio

gbasilio@pasadena.edu

Activity 1: Derivative of Natural Logarithm

Find the derivatives of the following functions:

(a)
$$h(x) = x^2 \ln(x)$$

(b)
$$p(t) = \frac{\ln(t)}{e^t + 1}$$

(a)
$$h(x) = x^2 \ln(x)$$
 (b) $p(t) = \frac{\ln(t)}{e^t + 1}$ (c) $s(y) = \ln(\cos(y) + 2)$ (d) $z(x) = \tan(\ln(x))$ (e) $m(z) = \ln(\ln(z))$

(d)
$$z(x) = \tan(\ln(x))$$

(e)
$$m(z) = \ln(\ln(z))$$

Activity 2: Derivative of Natural Logarithm

Find the derivative of $f(x) = \ln\left(\frac{2x+1}{\sqrt{x+6}}\right)$ in two ways:

- (a) using derivative rules directly
- (b) by using the properties of log to simplify before you apply derivative rules
- (c) Which method do you prefer?
- (d) Find as many pros/cons of each method.

Activity 3: Anti-derivatives of 1/x

- (a) Evaluate: $\int \frac{2}{x} \, dx$
- (b) Find the area under the hyperbola xy=2 from x=1 to x=2. Round your answer to three decimal places.
- (c) Compute: $\int \frac{2x}{x^2+4} dx$
- (d) Find: $\int_1^e \frac{\ln(x)}{x} dx$
- (e) What is $\int \tan(x) dx$?

Activity 4:

- (a) If $y = \log_{10}(1 + x + \tan(x))$, find y'
- (b) Compute: $\frac{d}{dx}[10^{x^2}]$
- (c) Evaluate: $\int_0^4 3^x dx$

Activity 5:

Use Log Diff to find the derivatives of

(a)
$$y = \frac{x^{3/4}\sqrt{x^2+1}}{(3x+5)^5}$$

(b)
$$y = x^x$$