

Ireland For what's next

Introduction to Linux

Speaker: Declan Bennett

BennettD@universityofgalway.ie

Who am I

- 2016 BSc Biotechnology -> psychiatric genetics project
- 2017 MSc Biomedical Genomics, Genetic variation in the somatic mutation rate
- 2017-2018 Bioinformatician EMBL-EBI Accelerating medicines project
- 2018- PhD bioinformatics. Inference of somatic mutation in 200,000 UK biobank exomes.

Preliminary advice

- •Data analysis can be very frustrating, you will make mistakes, and get error messages:
- •Expect to spend a large part of your time on Google / forums or learning to use new tools / techniques...
- •Don't run things blindly, always make sure you know how tools / packages work, the stats / biases behind them...
- Data analysis can be as experimental as wet-lab science!
- •Tools and applications are constantly evolving, best practices are extremely hard to come by. Computation however doesn't consume samples / reagents, so don't be afraid to try new things...

What is Linux/Unix

Unix (originally developed at Bell labs in 1960s/70s) is a family of operating systems with some powerful features:

- •Stable / Secure Generally less prone to crashes / hacks
- •Efficient multitasking Designed for a multiuser environment
- •Minimalist, modular code ("Do one thing and do it well") written mostly in C portable
- •Unix shell command line interpreter/interface (CLI), user enters text in a window to execute commands
- •Unified File System "everything is a file" (documents/directories/devices/)

Linux is an open-source Unix-like OS which comes in various distributions - RedHat, Fedora, Debian, etc., etc. Modern variants typically use X11 Windows System plus a desktop environment to provide a GUI.

Most compute clusters (supercomputers) run headless Unix / Linux OS – we usually need to use these types of systems to handle large-scale genomics analyses.

Terminal vs Desktop

Sep 4 11:14 AM 🗓

Q Type to search

- □Understanding files (system)
 - Everything is a file
- □File permissions and groups
 - orwx
 - OPitfalls when working on a shared system
 - Owner,group,everybody
- □Desktop vs terminal
 - Methods of interaction
- □Introduction to the terminal
 - OMost common use for servers/HPC
- □Creating files gedit, vi, nano etc...
 - OBasic create empty file, vi shortcuts

Files

```
declan@somu:~/work/thesis/chapter2$ tree -d -L 1 /
   bin -> usr/bin
   lib -> usr/lib
   lib64 -> usr/lib64
  libx32 -> usr/libx32
  sbin -> usr/sbin
```

```
declan@somu:~/work/thesis/chapter2$ l
total 643M
-rw-rw-r-- 1 declan declan 4.1K May 24 10:44 Age_correlations.R
-rw-rw-r-- 1 declan declan 884 May 23 18:25 asymmetry_probes.R
drwxrwxr-x 2 declan declan 4.0K May 25 16:08 batch_corr
-rw-rw-r-- 1 declan declan 665 Jan 14 2022 Check_chr5_assoc.R
drwxrwxr-x 2 declan declan 4.0K May 25 13:00 data
drwxrwxr-x 3 declan declan 4.0K May 24 12:34 expression
drwxrwxr-x 5 declan declan 4.0K Feb 27 2022 gwas
-rw-rw-r-- 1 declan declan 643M Jan 14 2022 old_counts.norm
drwxrwxr-x 2 declan declan 4.0K May 19 11:42 pheno_norm
drwxrwxr-x 2 declan declan 4.0K Apr 5 11:48 pipeline
-rw-rw-r-- 1 declan declan 8.8K May 25 09:39 probe_asymmetry_df.txt
```

Multiple user system

```
dbennett@lugh:/data/Seoighe_data$ ls -l
total 984
drwxrwxr-x 3 dbennett seoighe group
                                      45 Nov 15
                                                 2019
drwxrwxr-x 4 dbennett dbennett
                                       42 Dec 10
                                                 2019
drwxrwxr-x 4 dbennett seoighe group
                                     8192 Apr 19 11:00
drwxr-x--- 7 scleary seoighe group
                                     111 Feb 24 2022
drwxrwxr-x 2 scleary seoighe group
                                      167 May 14 2020
drwxrwxr-x 2 scleary scleary
                                       10 Nov 20 2019
```

File permissions

Paths, environments + commands

- □ Paths, environment, bashrc + profile, alias'
 - How does the computer know where an executable file is
 - How to specify
 - Some example bash alias'
- □ Example commands cd, ls, mkdir, rm, top, less, cat, grep, zcat, pipe
 - Moving about, making files, directories, zipping, peaking at files etc...
- Exercises

- All instructions from outside of the kernel space are executed in the context of processes
- A process can be seen as a set of instructions with controlled data attached to it
- □ The top command can be used to list these processes
- □ The processes information is stored under /proc/PID/

"FINAL".doc

FINAL.doc!

FINAL_rev.2.doc

FINAL_rev.6.COMMENTS.doc

FINAL_rev.8.comments5. CORRECTIONS.doc

JORGE CHAM @ 2012

FINAL_rev.18.comments7. FINAL_rev.22.comments49. corrections9.MORE.30.doc corrections.10.#@\$%WHYDID ICOMETOGRADSCHOOL????.doc

WWW.PHDCOMICS.COM

 Methodology in software development that ensures all changes to a software project (and code) are tracked in time.

- Advantages
 - you can revert back to specific 'versions' of your code
 - collaboration becomes practical, as specific changes and associated contributors are tracked
- The most commonly used version control systems is Git

'Edits' etc. are easily forgotten - with git all changes are logged

Version Control with Git

Collaborative software

GENOMICS DATA SCIENCE

•Difference between virtual machines and containers

Virtual Machines

Core concepts

- Docker Image: read-only template with instructions for creating a container
- Docker Container: a runnable instance of an image
- Docker Registry: 'App-store' for Docker images. Docker is configured to use Docker Hub by default.
- Dockerfile: set of instructions to build an image

Core commands and options

command	description
docker images	list all local images
docker history image	show the image history
	(list of ancestors)
docker inspect image	show low-level infos
	(in json format)
docker tag image tag	tag an image
docker commit container image	create an image
	(from a container)
docker import url- [tag]	create an image
	(from a tarball)
docker rmi <i>image</i>	delete images

command	description
docker create image [command]	create the container
docker run image [command]	= create $+$ start
docker rename container new_name	rename the container
docker update container	update the container config
docker start container	start the container
docker stop container	graceful ² stop
docker kill container	kill (SIGKILL) the container
docker restart container	= stop $+$ start
docker pause container	suspend the container
docker unpause container	resume the container
docker rm [-f ³] container	destroy the container

 $^{^{2}}$ send SIGTERM to the main process + SIGKILL 10 seconds later

³-f allows removing running containers (= docker kill + docker rm)

