Homomorfismos

Andoni Latorre Galarraga

Definición:

Sean (G_1, \cdot) y $(G_2, *)$ grupos. Decimos que $f: G_1 \longrightarrow G_2$ es un homomorfismo de de grupos, si verifica

$$f(x \cdot y) = f(x) * f(y) \quad \forall x, y \in G_1$$

Ejemplo:

Homomorfismo trivial $f(x) = e_2 \quad \forall x \in G_1$.

Definición:

Un homomorfismo inyectivo se llama monomorfismo.

Un homomorfismo suprayectivo se llama epimorfismo.

Un homomorfismo biyectivo se llama isomorfismo.

Si existe un isomorfismo entre G_1 y G_2 decimos que son isomorfos y escribimos $G_1 \simeq G_2$.

Proposición:

Ser isomorfo es relación de equivalencia.

Dem:

$$\tilde{\varphi}(\underbrace{x}_{=\varphi(g)} * \underbrace{y}_{=\varphi(h)}) = \tilde{\varphi}(\varphi(g) * \varphi(h)) = \tilde{\varphi}(\varphi(g \cdot h)) = g \cdot h = \tilde{\varphi}(\varphi(g)) \cdot \tilde{\varphi}(\varphi(h)) = \tilde{\varphi}(x) \cdot \tilde{\varphi}(y)$$

Propiedad transitiva: Sabemos que la composición de funciones biyectivas es biyectiva. Veamos que la composición de homomorfismos es homomorfismo. Sean $(G_1, \overset{1}{*}), (G_2, \overset{2}{*})$ y $(G_3, \overset{3}{*})$ grupos. Si f y g son homomorfismos es fismos, entonces $g \circ f$ es homomorfismo.

$$\begin{array}{cccc} G_1 & \xrightarrow{g} & G_2 & \xrightarrow{f} & G_3 \\ g_1 & \longmapsto & g_2 & \longmapsto & g_3 \end{array}$$

$$f(g(x \overset{1}{*} y)) = f(g(x) \overset{2}{*} g(y)) = f(g(x)) \overset{3}{*} f(g(y))$$

Definición:

Si $(G_1,\cdot)=(G_2,*)=G$ se llama endomorfismo, y si es biyectivo automorfismo.

Elemplo:

Automorfismo identidad $1_G(x) = x \quad \forall x \in G$.

Proposición:

Si $f: G_1 \longrightarrow G_2$ es un homomorfismo de de grupos, entonces se verifican

$$i) f(e_1) = e_2$$

$$f(a^{-1}) = f(a)^{-1}$$

i)
$$f(e_1) = e_2$$

ii) $f(a^{-1}) = f(a)^{-1}$
iii) Si $o(a) = n < \infty$, entonces $f(a)^n = e_2$

iv Si
$$H_1 \leq G_1$$
, entonces $f(H_1) \leq G_2$

iv Si
$$H_1 \leq G_1$$
, entonces $f(H_1) \leq G_2$
v) Si $H_2 \leq G_2$, entonces $f^1(H_2) \leq G_1$

$$i) \ f(e_1) = f(e_1 \cdot e_1) = f(e_1) * f(e_1), \text{ entonces } f(e_1) = f(e_1) * f(e_1) \Leftrightarrow f(e_1)^{-1} * f(e_1) = f(e_1)^{-1} * f(e_1) \Leftrightarrow e_2 = e_2 * f(e_1) = f(e_1).$$

ii) Veamos que
$$f(a) * f(a^{-1}) = e_2 = f(a^{-1}) * f(a)$$
. Aplicando i) $f(a) * f(a^{-1}) = f(a \cdot a^{-1}) = f(e_1) = e_2 = f(e_1) = f(a^{-1} \cdot a) = f(a^{-1}) * f(a)$.

$$(iii)$$
 $f(a^n) = f(a) * \cdots * f(a) = f(a)^n$, entonces $e_2 = f(e_1) = f(a^{o(a)}) = f(a)^{o(a)}$

$$e_2 \in f(H_1)$$
 $f(\underbrace{e_1}) = e_2$ $f(y) \in f(H_1) \Rightarrow f(y)^{-1} \in f(H_1)$ $f(y)^{-1} = f(\underbrace{y^{-1}}) \in f(H_1)$

v)

$$e_1 \in f^{-1}(H_2) \qquad f^{-1}(\underbrace{e_2}) \ni e_1$$

$$y \in f^{-1}(H_2) \Rightarrow y^{-1} \in f^{-1}(H_1) \qquad f(y) \in H_2 \Rightarrow f(y)^{-1} \in H_2 \Rightarrow f(y^{-1}) \in H_2 \Rightarrow y^{-1} \in f^{-1}(H_2)$$

Definición:

Dado un homorfismo f de (G_1, \cdot) en $(G_2, *)$. Llamamos núcleo de f a $Ker(f) = \{g \in G_1 \mid f(g) = e_2\}$.

Propocición:

Dado un homorfismo f de (G_1,\cdot) en $(G_2,*)$. $Ker(f) \leq G_1$

Primero veamos que es subgrupo. $e_1 \in Ker(f)$ ya que $f(e_1) = e_2$. Si $x \in Ker(f)$, entonces $x^{-1} \in Ker(f)$ ya que $e_2 = f(e_1) = f(x^{-1}x) = f(x^{-1}) * f(x) = f(x^{-1}) * e_2 = f(x^{-1})$. Ahora veamos que es subgrupo normal probando que $x \in Ker(f) \Rightarrow y^{-1}xy \in Ker(f)$. Observamos que $f(y^{-1}xy) = f(y^{-1}) * f(x) * f(y) = f(y)^{-1} * e - 2 * f(y) = e_2$.

Proposición:

Dado un homorfismo f de (G_1, \cdot) en $(G_2, *)$. f es inyectivo sii $Ker(f) = \{e_1\}$.

Si f es inyectiva $f(a) = e_2 = f(e_1)$, entonces $a = e_1$. Si f(a) = f(b), entonces $e_2 = f(a) * f(b)^{-1} = f(a) * f(b^{-1}) = f(ab^{-1}) \in Ker(f) = \{e_1\}$, ahora $ab^{-1} = e_1$ y a = b

Primer teorema de isomorfía de grupos:

Dado un homorfismo f de $G_1,\cdot)$ en $(G_2,*)$. $G_1/Ker(f)\simeq f(G_1)$.

Dem:

Consideramos la siguiente aplicación

$$ar{f}: G_1/Ker(f) \longrightarrow f(G_1)$$

 $aKer(f) \longmapsto f(a)$

Veamos que es isomorfismo. Primero que es suprayectiva pues todo elemento de $f(G_1)$ es de la forma f(x) con $x \in G_1$. Veamos que es inyectiva, si $aKer(f) \in Ker(\bar{f})$ entonces $f(a) = e_2$ por lo que $a \in Ker(f)$ y aKer(f) = Ker(f). Veamos que es homomorfismo $\bar{f}(aKer(f) \cdot bKer(f)) = \bar{f}((ab)Ker(f)) = f(ab) = f(a) * f(b) = \bar{f}(aKer(f)) * \bar{f}(bKer(f))$.

Definición:

Sea G un grupo y $N \subseteq G$. Definimos el epimorfismo canónico

Es epimorfismo ya que todo elemento de G/N es de la forma xN y por lo tanto es imagen de x. Por otra parte, $\pi(xy) = (xy)N = (xN)(yN) = \pi(x)\pi(y)$.

Proposición: Si $f: G \longrightarrow H$ es homomorfismo, entonces $Ker(f) \subseteq G$ y $\begin{array}{ccc} \pi: & G & \longrightarrow & g/Ker(f) \\ a & \longmapsto & aKer(f) \end{array}$ es un epimorfismo con $Ker(\pi) = Ker(f)$.

 $Ker(f) \subseteq G$ ya está probado, y $x \in Ker(\pi)$ entonces xKer(f) = Ker(f) y $x \in Ker(f)$. Ahora, si $x \in Ker(f)$, entonces $\pi(x) = xKer(f) = Ker(f)$ y $x \in Ker(\pi)$.

Definición:

Dado un homorfismo f de G_1, \cdot) en $(G_2, *)$. Se tiene la descomposición canonica del homomorfismo

$$f = \underbrace{\iota}_{\text{monomorfismo inclusión}} \circ \underbrace{\frac{\bar{f}}{i\text{somorfismo}}} \circ \underbrace{\pi}_{\text{epimorfismo canónico}}$$

$$\frac{f}{G_1 \xrightarrow{\pi} G_1/Ker(f) \xrightarrow{\bar{f}} f(G_1) \xrightarrow{\iota} G_2}$$

$$a \longmapsto aKer(f) \longmapsto f(a) \longmapsto f(a)$$

Teorema: Sea $N \subseteq G$. Entonces todo subgrupo de G/N es de la forma H/N con $N \subseteq H \subseteq G$. Dem:

Suponganmos que $K \leq G/N$, Sea $H = \{x \in G \mid xN \in K\}$. Veamos que H es subgrupo. Tenemos que $e \in H$ ya que $e_1N = N$ que es el elemento neutro en G/N y por lo tanto esta en K. Veamos que si $y \in H$, entonces $y^{-1} \in H$. Tenemos que $yN \in K$ entonces por ser N subgrupo normal $K \ni (yN)^{-1} = N^{-1}y^{-1} = Ny^{-1} = y^{-1}N$ por lo que $y^{-1} \in H$. Para ver que $N \subseteq H$, si $n \in N$, entonces $nN = N \in K$ por ser el elemento neutro y $n \in H$.

Teorema: Sea $N \subseteq G$. Entonces si $N \subseteq H \subseteq G$ entonces $H/N \subseteq G/N$. Dem:

Veamos que es subgrupo. Si $x, y \in H$, $xN, yN \in H/N$ entonces $xy \in H$ y $(xy)N \in H/N$. Si $e \in H$, entonces eN = N. Si $x \in H$, $xN \in H/N$, entonces $x^{-1} \in H$ y $x^{-1}N \in H/N$, $(xN)(x^{-1}N) = (Nx)(x^{-1}) = N$.

Segundo teorema de isomorfía de grupos:

Sea G un grupo, $N \leq G$ y $H \leq G$, entonces

- i) $N \triangleleft NH$
- ii) $N \cap H \subseteq H$
- iii) $NH/N \simeq H/(N \cap H)$

Dem:

- i) Veamos que $(nh)^{-1}N(nh) = N$. $(nh)^{-1}N(nh) = h^{-1}n^{-1}Nnh = h^{-1}Nh = N$.
- ii) Veamos que si $h \in H$, entonces $h^{-1}(N \cap H)h = N \cap H$. $(h^{-1}Nh) \cap (h^{-1}Hh) = N \cap H$.
- iii) La aplicación $f: NH/N \longrightarrow H/(N\cap H)$ es un isomorfismo de grupos. Está bien definida ya que si hN = h'N entonces $h^{-1}h' \in N$, H y $h(N\cap H) = h'(N\cap H)$. Es homomorfismo ya que $f((hN)(h'N)) = f((hh')N) = (hh')(N\cap H) = h(N\cap H)h'(N\cap H) = f(hN)f(h'N)$. Es inyectiva ya que si $x \in Ker(f)$, entonces $x \in (N\cap H)$ y xN = N, es decir, $Ker(f) = \{N\}$. Es suprayectiva ya que dado un $h \in H$ existe hN tal que $f(hN) = h(N\cap H)$.

Tercer teorema de isomorfia de grupos:

Sea G un grupo y $N \subseteq M$ dos subgrupos normales de G. Entonces se verifican

i)
$$M/N \subseteq G/N$$

ii) $(G/N)/(M/N) \simeq G/M$

Dem:

Sabemos que M/N es subgrupo.

$$(gN)^{-1}(mN)(gN) = (g^{-1}mg)N = mN$$

Consideramos la aplicación $f: G/N \longrightarrow G/M \atop xN \longmapsto xM$, esta bien definida ya que si xN = yN, entonces $x^{-1}y \in N \subseteq M$ y xM = yM. Es homomorfismo ya que f((xN)(yN) = f((xy)N) = (xy)M = f(xN)f(yN). Es suprayectiva ya que para todo $xM \in G/M$ existe $xN \in G/N$ tal que f(xN) = xM. Calculamos ker(f), si N = f(xM) = xN se tiene que $x \in N$ por lo que

$$Ker(f) = \{xM \mid x \in N\} = M/N$$

Por el primer teorema de isomorfía, aplicado a f,

$$(G/N)/Ker(f) = (G/N)/(M/N) \simeq f(G/N) = G/M$$

 $(G/N)/(M/N) \simeq G/M$