

Figure 1: A circuit that has 3 loops and 2 junctions.

Figure 2

Figure 3: An ammeter is placed in series with a resistor to measure the current through the resistor.

 $Figure\ 4:\ Constructing\ an\ ammeter\ from\ a\ galvanometer\ by\ placing\ a\ shunt\ resistor.$

Figure 5: The resistors from the circuit in Figure ?? have been combined in series to simplify the circuit.

Figure 6: A simple circuit, showing a 9V battery and a 2Ω resistor. For ease in analyzing circuits, we suggest drawing a "battery arrow" above batteries that goes from the negative to the positive terminal.

Figure 7: Circuit diagram symbols that can be used for a battery.

Figure 8: The resistors r_2 , R_1 and R_2 in series from the circuit in Figure ?? have been combined into the effective resistor, R_6 , to simplify the circuit.

Figure 9: The resistors R_4 and R_5 in parallel from the circuit in Figure ?? have been combined into the effective resistor, R_7 , to simplify the circuit.

Figure 10: The resistors r_1 and R_7 in series from the circuit in Figure ?? have been combined into the effective resistor, R_8 , to simplify the circuit.

Figure 11: Final and labelled circuit diagram that is simplified from the one in Figure \ref{figure} .

 $Figure\ 12:\ A\ circuit\ that\ can\ be\ simplified\ and\ then\ solved\ with\ Kirchhoff's\ rules$

Figure 13: The components of the effective R_8 resistor from Figure ??. The current, I_1 , coming from the battery goes through r_1 and then splits up.

Figure 14: Simplified version of the circuit in Figure ??.

Figure 15: The same circuit as in Figure ??, with values filled in.

Figure 16: A weird looking circuit.

Figure 17: A much less weird looking circuit.

Figure 18: A simple circuit.

Figure 19: A junction with 5 segments and 5 currents.

Figure 20: A loop with 2 batteries and 3 resistors.

Figure 21: A circuit with a battery of unknown voltage

Figure 22: A simple circuit with a resistor, battery, and capacitor.

Figure 23: A simple circuit with a resistor and a capacitor.

Figure 24: A circuit showing a real battery (with internal resistance r) in series with a resistor.

Negative terminal
$$\bullet$$
 — $|$ + — \bullet Positive terminal ΔV_{ideal} internal r

Figure 25: Circuit diagram symbol for a battery.

Figure 26: Circuit diagram symbols for a resistor, using the North American convention (left), and the European convention (right).

Figure 27: Two resistors connected in series with a battery

Figure 28: When using a voltmeter, the circuit is modified.

Figure 29: A voltmeter is placed in parallel with a resistor to measure the voltage across the resistor.

Figure 30: Constructing an voltmeter from a galvanometer by placing a resistor in series with the galvanometer.