

Fit term in equation above is the transformed tangent vector. I'll denote that as $f = \int_{-\infty}^{\infty} F f + f = 0$.

Because their scalar product is 0, $\vec{n}^T \vec{F}^T$ must be orthogonal to it. So, the correctly transformed vector $\vec{n} \vec{F}^T$ must be

transposing both sides to express TET as Column vector:

 $\widehat{N}_{F} = (\widehat{N}^{T}F^{-1})^{T}$ Since $(AB)^{T} = B^{T}A^{T}$ $\widehat{N}_{F} = (F^{-1})^{T}\widehat{N}^{T}$

They F' matrix that transforms normal vectors correctly is (F-1) T