DEPARTMENT OF COMMERCE

MISCELLANEOUS
FUBLICATIONS
OF THE
NATIONAL
BUREAU
OF
STANDARDS

NOS. 277 SUPPL. 1. 278 - 280

Photonuclear Data Index

January 1965 through April 1967

United States Department of Commerce

National Bureau of Standards

Miscellaneous Publication 277—Supplement 1

THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ provides measurement and technical information services essential to the efficiency and effectiveness of the work of the Nation's scientists and engineers. The Bureau serves also as a focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To accomplish this mission, the Bureau is organized into three institutes covering broad program areas of research and services:

THE INSTITUTE FOR BASIC STANDARDS . . . provides the central basis within the United States for a complete and consistent system of physical measurements, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. This Institute comprises a series of divisions, each serving a classical subject matter area:

—Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic Physics—Physical Chemistry—Radiation Physics—Laboratory Astrophysics²—Radio Standards Laboratory,² which includes Radio Standards Physics and Radio Standards Engineering—Office of Standard Refer-

ence Data.

THE INSTITUTE FOR MATERIALS RESEARCH . . . conducts materials research and provides associated materials services including mainly reference materials and data on the properties of materials. Beyond its direct interest to the Nation's scientists and engineers, this Institute yields services which are essential to the advancement of technology in industry and commerce. This Institute is organized primarily by technical fields:

—Analytical Chemistry—Metallurgy—Reactor Radiations—Polymers—Inorganic Materials—Cry-

ogenics2—Office of Standard Reference Materials.

THE INSTITUTE FOR APPLIED TECHNOLOGY . . . provides technical services to promote the use of available technology and to facilitate technological innovation in industry and government. The

principal elements of this Institute are:

—Building Research—Electronic Instrumentation—Technical Analysis—Center for Computer Sciences and Technology—Textile and Apparel Technology Center—Office of Weights and Measures—Office of Engineering Standards Services—Office of Invention and Innovation—Office of Vehicle Systems Research—Clearinghouse for Federal Scientific and Technical Information³—Materials Evaluation Laboratory—NBS/GSA Testing Laboratory.

¹ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D. C., 20234.

² Located at Boulder, Colorado, 80302.

³ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

Photonuclear Data Index

January 1965 through April 1967

Prepared by

Photonuclear Data Group

Institute for Basic Standards National Bureau of Standards Washington, D.C.

National Bureau of Standards Miscellaneous Publication 277

Supplement 1

Issued October 1967

Photonuclear Data Group

T. M. Collins, E. G. Fuller, J. D. Murphy, and J. S. O'Connell

Foreword

A Photonuclear Data Center is being operated in the Radiation Physics Division of the NBS Institute for Basic Standards with the support of the NBS Office of Standard Reference Data. The objective of the Center project is the creation and maintenance of a current Photonuclear Data File which will be used as source material for a series of miscellaneous reports covering various aspects of the field.

This publication is the first in a series of supplements to the Photonuclear Data Index (NBS Miscellaneous Publication 277), which the Center issued in April 1966. It essentially covers data published in the field of photonuclear reactions in the period from January 1, 1965 through the middle of April 1967. It is expected that additional cumulative supplements will be issued approximately every one and a half to two years. Future publications of the Center will contain critically evaluated data and will be included in the National Standard Reference Data Series.

The NBS Office of Standard Reference Data was established to carry out the Bureau's assigned responsibility to administer the National Standard Reference Data System (NSRDS). This System is a Government—wide effort to give the American technical community optimum access to the quantitative data of physical science, critically evaluated and compiled for convenience. The NSRDS was established by the President's Office of Science and Technology, acting upon the recommendation of the Federal Council for Science and Technology. Its general objective is to coordinate and integrate existing data evaluation and compilation activities into a systematic, comprehensive program supplementing and expanding technical coverage when necessary, establishing and maintain—ing standards for the output of the participating groups, and providing mechanisms for the dissemination of the output as required.

A. V. Astin, Director.

Contents

		Page
	Foreword	
1.	Introduction	
2.	Scope of the Data Index	
3.	Description of the Index	
4.	Description of Entries	
	4.1. Reference Number (REF)	
5.	References	
6.	Data Index	
7.	Ribliography	

PHOTONUCLEAR DATA INDEX Supplement 1 (1967)

Photonuclear Data Project*

Radiation Physics Division
National Bureau of Standards, Washington, D. C.

This index, a supplement to NBS Miscellaneous Publication 277, primarily covers data published in the period dated January 1, 1965 through the middle of April 1967. Organized by element and isotope, each entry in the index supplies quantitative information for a specific reaction on the ranges of excitation energy, source energy, detected particle energy, and emission angles for reaction produced covered in each reference. Information is also given on the type of measurement and detector used.

Key Words: Bibliography, Data Index, Elements, Isotopes, Nuclear Physics, Photonuclear Reactions.

1. Introduction

The function of this data index is to furnish a means of readily locating experimental data in the field of photonuclear reactions. This index differs from a bibliography in that it supplies quantitative information about the content of a paper. Each entry in the index corresponds to the measurement of a specific photonuclear reaction for a specific nuclide or group of nuclides. An attempt is made to give as complete a description of each measurement as is possible in a single line. The type of measurement is indicated as well as the range of excitation energies covered, the type of detector used and its energy response, and the type of angular distribution data obtained. The object has been to give a description of each measurement that is complete enough to permit an individual looking for specific types of data in the field to locate the pertinent references without having to go through a large number of irrelevant papers as might be the case if only the title of the paper or the reaction studied were listed for each entry.

For the purposes of this index the general criterion as to what constitutes a measurement of photonuclear data is that the measurement must give information on the electromagnetic matrix element between the ground state and excited states of some nucleus. The most common type

^{*}Participants in the photonuclear data project: T. M. Collins, E. G. Fuller, J. D. Murphy, and J. S. O'Connell.

of reactions are: (γ,γ) , (γ,n) , (γ,p) , (p,γ_0) , and (e,e'). Two reactions which fit the matrix element criterion, but which were not included in the compilation because of their rather special nature are heavy particle coulomb excitation and the thermal neutron capture reaction (n,γ_0) . The energy region of interest is from 0 to about 150 MeV. Most of the experiments are concerned with the excitation energy range 8 to 30 MeV, the region of the giant dipole resonance.

2. Scope of the Data Index

This supplement covers experimental data published in the period from January 1, 1965 through April 1967. In addition, it contains the complete index entry for all the items marked with an asterisk in the original Photonuclear Data Index NBS Miscellaneous Publication 277. In the original index, these entries had been made on the basis of the abstracts of the papers only, not a complete reading of the paper. In preparing this supplement, nine journals were searched, issue by issue. These were: Journal of Experimental and Theoretical Physics (JETP), Journal of Experimental and Theoretical Physics (JETP Letters), Journal of Nuclear Physics-USSR (Sov. J. Nucl. Phys.), Physics Letters, Nuclear Physics, Il Nuovo Cimento, Physical Review, Physical Review Letters, and Zeitschrift für Physik (Z. Physik). Nuclear Science Abstracts was used to find papers in other journals.

Only articles published in journals were abstracted. In a few cases, conference reports were used if the article was fairly complete and it was likely that this was the final report of the experiment.

3. Description of the Index

The data index of each element begins with the isotopic abundances for that element and a list of particle thresholds for each isotope. The abundances were taken from a compilation by Gladys Fuller¹. This reference should be consulted for remarks concerning the accuracy of these values and possible variations with the source of the sample. The reaction thresholds were taken from a list of Q-values computed by J. H. E. Mattauch, W. Thiele, and A. H. Wapstra². The values given in reference 2 have been arbitrarily rounded off to the nearest 0.1 MeV except for those cases where the uncertainties quoted are of the order of 1 MeV. In these cases, thresholds are given to the nearest MeV.

In the index itself eight categories are used to describe a given paper. These are: Reference Number; Nucleus Excited; Reaction; Type of Information; Excitation Energy Range; Source Type and Energy Range; Detector Type; Energy and Angular Range; and Remarks.

For each element, entries are grouped under six reaction classes. These are: total absorption cross sections; elastic and inelastic photon scattering; inelastic electron scattering, including coincidence experi-

ments with outgoing reaction products; reactions where a neutron is detected, i.e. (γ,n) , (γ,xn) , (γ,np) , etc.; reactions where protons are detected; reactions where particles of mass greater than one or multiple particles are emitted; inverse capture reactions; and photofission.

4. Description of Entries

4.1. Reference Number (REF)

The reference number is used to cite the full bibliographical reference which is given in the bibliography following the data index. This number is made up of the year and the first two letters of the first author's name, plus an additional serial number. For example, a paper published in 1963 by Galileo would have a reference number 63Gal.

4.2. Nucleus Excited (NUCLIDE)

The atomic number (Z), chemical symbol, and mass number (A) of the excited nucleus (not necessarily the target nucleus) is given. The mass number is listed only if the isotopic assignment is unambiguous. In general, it was assumed that the mass number was unambiguous if in the target the abundance of a single isotope was $\geq 97\%$.

4.3. Reaction

The following table defines the symbols used under IN, OUT:

- \$ polarization of the incident or outgoing particle or polarization or alignment of the target
- A alpha particle
- D deuteron
- E electron
- E/ inelastically scattered electron
- E+ positron
- F fission
- G photon
- G/ inelastically scattered photon
- He3 He
- MU-T total photon absorption
- N neutron

P proton

T triton

XN all neutrons

XP all protons

When two reaction products are listed under OUT they were detected in coincidence, e.g., the notation E,E/P means the inelastically scattered electron and proton were detected in coincidence in a reaction of the type: $A + e \rightarrow (A - 1) + e + p$, while E, P means that only the proton was detected.

4.4. Type of Information (RES)

The following catalog of abbreviations applies to the type of result obtained in an experiment:

ABI absolute integrated cross section data $\int \sigma dE_{\gamma}$

ABX absolute cross-section data

ABY absolute yield data

FMF form factor

LFT excitated state lifetime

NOX no cross-section data

RLI relative integrated cross-section data

RLX relative cross-section data

RLY relative yield data

SPC particle energy spectrum

4.5. Excitation Energy Range (EXCIT)

The excitation energy range of the nucleus involved in the gamma-ray transition is given in MeV. For reactions initiated by gamma rays, the excitation energy is taken as the gamma-ray energy; for reactions initiated by particles, the binding energy and kinematic corrections are made. The abbreviation THR stands for threshold.

4.6. Source Type and Energy Range (SOURCE)

The source of incident particles is characterized by the letter C or D indicating that the source was continuous or discrete in energy. The source energy is indicated under MIN-MAX. The usual source of photons is bremsstrahlung which would be marked C. The range of end point energies is given.

4.7. Detector Type, Energy, and Angular Range (DETECTOR)

The following abbreviations apply under detector TYPE:

ACT measurement of radioactivity of the target

BBL bubble chamber

BF3 BF3 neutron counter with moderator, e.g., Halpern detector, long counter

CCH cloud chamber

EMU emulsions (photographic plates)

IØN ionization chamber

MAG magnetic spectrometer

MGC magnetic Compton spectrometer

MGP magnetic pair spectrometer

MØD moderated neutron detector <u>not</u> employing a BF₃ counter, e₃g., rhodium foil, Szilard-Chalmers reaction, He, Li reactions

NAI NaI(T1) spectrometer

SCD semiconductor (solid state) detector

SCI scintillator detector other than NaI; e.g., CsI, KI, organic (liquid or solid), stilbene, He

SPK spark chamber

TEL counter telescope

THR threshold detector, e.g., 29Si(n,p) 29A1

TØF time-of-flight detector

The symbols D or I under TYPE mean that the reaction product was detected differentially or integrally in energy. For example, a scintillator (SCI) is usually used differentially (D) while a BF3 detector used with a neutron moderator (BF3) integrates over neutron energy. The range of detected particle angular distribution is shown under ANG with the following designations:

0-180 one number in this column means the measurements were made at this angle only (angle in degrees)

4PI a 4π geometry was used or a method like radioactivity or a total absorption measurement

DST an angular distribution was measured

4.8. Remarks

This additional information was selected in a fairly unsystematic way and limited by the available space. It should therefore not be regarded as exhaustive or consistent.

Some of the abbreviations used in this column are:

BREAKS levels located by "breaks" in the yield curve

CF compared with

COINC coincidence

DT BAL detail balance

G-WIDTH Γ_{\sim} , gamma-ray transition width

J-PI spin and parity assignments of levels are made

POL polarization

Q-SQUARE momentum transfer squared (q^2)

REL relative

SEP ISOTPS separated isotope used

5. References

- Gladys Fuller, 1959 Nuclear Data Tables (NUCLEAR DATA PROJECT)-National Academy of Sciences, National Research Council, Washington, D. C.
- 2. J. H.E. Mattauch, W. Thiele, and A. H. Wapstra, Nuclear Phys. <u>67</u>, 32 (1965).

HYDROGEN Z=1

A ABUND. SEPARATION ENERGIES (FIEV)	
A ABUND. SEPARATION ENERGIES (MEV) G,N G,P G,T G,HE3 G,A G,2N G,NP G,2P * * * * * * * * * * *	
1 99.99 * * * * * * * * * * * * * * * * *	
2 1.5(-2) 2.2 2.2 * * * * * * *	
3 * 6.3 8.5 * * * 8.5 8.5 *	
REF NUCLIDE REACTION RES EXCIT SOURCE DETECTOR ANG REMAI	RKS
Z A IN, OUT MIN-MAX TYPE MIN-MAX	
550X1 1H 1 G,G ABX 20- 98 C 98 TEL-D 20- 98 DST	
550X1 1H 1 G,G ABX 20- 98 C 98 TEL-D 20- 98 DS1 61BA3 1H 1 G,G ABX 247 C260 TEL-D DST	
Olday III I G,G IIDII 217	
61PE2 1H 2 E,E/ ABX 0- 12 D 41 MAG-D DST	
65BO1 1H 2 E.E/P ABX 0-100 D350 MAG-D250-350 60,90	
66CO1 1H 2 E.E/ ABX 0- 6 D 54,70 MAG-D 48- 70 180	
66GR2 1H 2 E,E/ ABX 0- 60 D219-447 MAG-D DST	
66HU1 1H 2 E,E/ FMF 0- 70 D146-475 MAG-D DST	
67RA1 1H 2 E,E/ ABX 0- 8 D250-370 MAG-D 180	
66GR2 1H 2 E,E/ ABX 0- 60 D219-447 MAG-D DST 66HU1 1H 2 E,E/ FMF 0- 70 D146-475 MAG-D DST 67RA1 1H 2 E,E/ ABX 0- 8 D250-370 MAG-D 180 66HU2 1H 3 E,E/ FMF 0-160 D250-370 MAG-D130-360 DST	
	D.C. D. MO. C.
57BA1 1H 2 G,N ABY 30-260 C120-260 THR-I 21 DST REL YL	ים אם נים אמי
64BE8 1H 2 \$G,N NOX THR- 32 C 32 SCI-D DST	TIME A COVENIA
65JE1 1H 2 \$G,N NOX 2- 3 D 3 BF3-I DST POL NE	UT ASYMM
67BA1 1H 2 \$G,N NOX 200-400 C 1GEV TEL-D 90	
65BO2 1H 3 G,N ABX 6-11 D 6-11 BF3-I DST	
TEL. D. 40-230 DST	
56DI1 1H 2 G,P ABX 136-293 C342 TEL-D 40-230 DST	
57AL1 1H 2 G,P ABX 50-150 C170,264 TEL-D 20- 75 DST	
58TA2 1H 2 G,P ABX 146-238 C146-238 TEL-D 51-166 DST	IOTON
65LI1 1H 2 \$G,P NOX 75-250 C 75-250 MAG-D DST POL PH	101011
66KO2 1H 3 G,P SPC THR- 33 C 33 TEL-D 4- 14 90	
66KO2 1H 3 G,D ABX THR- 33 C 33 TEL-D 4- 9 90	
66GR1 1H 2 N,G SPC 2 D THM SCD-D BINDIN	NG ENERGY
61CF2 1H 3 N.G ABX 16 D 14 TEL-D 4PI	
65AJ1 1H 4 N,G ABX 11 D 14 SCD-D 0 UPPER	LIMIT ABX

HELIUM Z=2

Α	ABUND.	(1)		SEPARAT	ION ENERG	IES (ME	V)		
		G,N	G,P	G,T	G,HE3	G,A	G,2N	G,NP	G,2P
3	1.4(-4)	7.7	5.5	*	*	*	*	7.7	7.7
4	99.99	20.6	19.8	19.8	20.6	*	*	*	*
(1)) ABUNDAI	NCE DEI	PENDS O	N SOURC	E				

REF	NUCLIDE Z A	REACTION IN, OUT	RES	EXCIT	SOURCE MIN-MAX	DETECTOR TYPE MIN-MAX		REMARKS
66HU2	2HE3	E,E/	ABX	0-150	D250-670	MAG-D130-360	DST	
67FR1		E,E/				MAG-D	60	
65FR1		E,E/				MAG-D160-175		
64G04	2HE3	G,N	ABX	5-170	C170	CCH-D	DST	
65FE1	2HE3	G,N	ABX	THR-170	C170	CCH-D	DST	
66GE1	2HE3	G,N	ABX	THR- 30	CTHR- 30	BF3-I	4PI	
66 VA3	2HE3	G,N	ABX	THR-170	C170	CCH-D	4PI	
58BA3	2HE4	G,NP	RLX	150-280	C280	TEL-D 60-180	DST	NP COINC PSPC
66 FE1	2HE4	G,N	ABX	20-80	C 20-80	BF3-I	4PI	NP COINC PSPC
64G04	2HE3	G,P	ABX	5-170	C170	CCH-D	DST	
65FE1	2HE3	G,P	ABX	THR-170	C170		DST	
65ST1	2HE3	G,2P	SPC	9- 40	C 40		90	
65VA1	2HE3	G,2P	ABX	THR-170	C170			
65VA1		G,PD				CCH-D		
66 VA3		G,P				CCH-D		
60RE2						CCH-D		
65AR1						CCH-D		
65AS1						TEL-D 58-128		
65CL1						SCD-D 3- 10		
67BU1	2HE4	G,P	RLY	THR- 54	C 44,54	ACT-I	4PI	
65ST1	OHEO	G,D	A 10.37	0 //	0 /0 55		00	
65AR1		G,D				SCD-D		
65AS1		G, 2D				CCH-D		COTNOTERNOE
ODASI	ZHE4	6,20	ADA	24-300	0230,300	TEL-D	D21	COINCIDENCE
55GR1	2HE3	P,G	ABX	5- 8	D 0- 2	NAI-D 4- 8	DST	
62GR1						NAI-D 2- 7	DST	
66BA2	2HE3	P.G	ABX	110	D156	SCI-D 83-122	DST	
66W01	2HE3	P.G	ABX	7- 14	D 2- 12	NAT-D 5- 20	DST	
67GE1	2HE3	P.G	ABX	7- 9	D 2- 4	NAI-D	90	
65SC1	2HE4	P,G	ABX	20- 23	D 0- 4	NAI-D 20- 24		

LITHIUM Z=3

A	AE	UND.(1)	,N G,P	SEPA	RATIO	N EN	IER	GIES	S (M	(EV)				
		G	,N G,P	G,	Т	G,HE	:3	(3,A	G,2	N	G,	NP	G,2P
6	7	.42 5	.7 4.7	15.	8	15.	8	-	L.5	×		3	. /	28.7
7	92	.58 7	.7 4.7 .3 10.0	2.	5	28.	3	2	2.5	12.	9	12	.0	29.1
(1)	AE	UNDANCE	DEPENDS (ON SO	URCE									
(-)														
REF		NUCLIDE	REACTION	RES	EXCI	T	S	OUR	CE	DETE	CTOR		ANG	REMARKS
		Z A	IN,OUT				M	IN-	1AX	TYPE M	IN-M	AX		
								_					100	TTTTTT
58B	E3	3LI7	G,G	LFT	1		С	1		NAI-D			120	WIDTH
							_	1.01	- T 7	MAG DI	10 /	50	рет	
640	Hl	3LI6	E,P E,E/	ABX						MAG-D1				
650	H1	3LI7	E,E/	ABX	1		D	2-	4	MAG-D	2-)	102	
		0	G NTD	DY V	150 0	000	00	000		תבו _ו)	60_1	20	тра	NP COINC PSPC
58B	A3	3L1	G,NP	KLX	T30-2	60	C	.00	60	IET-D	00-1	.00	/DT	NP COINC PSPC
65E	A2	3L16	G,XN	ABX	THK-	22	C	5-	22	DES I			/ DT	
65E	El	3L16	G, XN	ABX	0-	32	ע	0-	32	DEO-I			4FI	
65H	IA1	3L16	G,XN	ABX	THR-	30	C	0-	30	BF 3-I			4FI	
660	05	3LI6	G,N	ABX	5-	97	C	5-	97	Br3-1	0	17	411	
66 F	PAl	3LI6	G,N	SPC	THR-	30	C	30	20	EMU-D	0-	1/	/ DT	
65F	IA1	3LI7	G,XN G,N G,XN G,XN	ABX	THR-	30	C	6-	30	BF3-1	0	1.2	471	
65W	IA1	3LI7	G,XN	SPC	THR-	25	C	25	50	EMU-D	2-	13	90 / DT	
67E	BA2	3LI7	G,N	ABX	THR-	50	С	/-	50	BF3-I			4PI	
(()	7	27.7	G,P G,P G,XP G,P G,2P	cnc	10	20	C	32		תבו _D	/-	16	90	
001	1AI	3L1	G,P	SPC	10-	20	C	26		EMII-D	1_	20	60	
601	(05	3L16	G,P	SPU	0-	20	C	20	20	EMII_D	1_	12	TOO	
651	3AZ	3L16	G,XP	KLY	THK-	21	0	20,	20	CCD_D	3_	10	90	
651	1A5	3L10	G,P	SPU	THK-) CEM	D	1.C	E17	ACT_T)-		/ PT	NO H5 SEEN
654	AR2	3L1/	G,2P	ABI	Ink	LGEV	ע	16	EA	ACI-I			411	NO 113 BEEN
661	1A1	3LI	G,D	SPC	10-	28	С	32		TEL-D	4-	16	90	
	1A1	3LI	G.T	ABX	10-	28	С	32		TEL-D	4-	16	90	
	DA1	3LI6	G.D	ABX	2,	3	D	2,	3	TEL-D ION-D			4PI	
	BA2	3LI6	G,D G,T	ABX	19-	25	C	35		EMII-D	1-	10	DST	
	DA1	3LI6	G.D	ABY	THR-	4	С	4		SCD-D			90	
	MA5	3LI6	G,D G,D G,T G,T	SPC	THR-	31	С	31		SCD-D	3-		90	
	MA5	3LI6	G,T	SPC	THR-	31	С	31		SCD-D	3-		90	
	SH1	3LI6	G,T	ABX	19-	24	С	40		SCD-D	1-	13	90	
	MI1	3LI7	G, T	ABX	6-	21	С	10,	21	EMU-D			4PI	
	SH6	3LI7	G,T	ABX	5-	9	С	10		EMU-D	1-	4	ד פת	
	DA1		G,T	ABY	THR-	4	С	4		SCD-D			90	

BERYLLIUM Z=4

A	A.	BUND.	0	N G,P 7 16.9	SEP	ARAT I	ON E	NE	RGIE	S (1	MEV)	0		1770		0.			
9	100	0.00	1.	N G,P	17	,T	G,H	.2		G,A	G, 20	2N .6	G 1.	, NP	G	, 2: *	P		
												• •		0.5					
RE	F			REACTION IN,OUT	RES	EXC	IT				DET TYPE	ECTO MIN-			R	EM	ARK	S	
651	WY1	4BE9		G,MU-T	ABX	10-	35	С	90		SCI-D			4PI					
64	LO3	4BE9		G,G	ABX	10-	30	С	10-	30	NAI-D	10-	30	140					
		4BE9 4BE9		E,N E,E/	ABY LFT	THR- 14-	36 17	D D	10- 40-	36 60	BF3-I MAG-D	36-		4PI DST					
	BA5			G,XN G,XN G,N G,XN															
	AL5	4BE9		G,XN	NOX	THR-	34	С	34		THR-I	6-		DST					
	K05	4BE9		G,N	RLY	15-	32	С	35		MAG-D	4-	20	DST					
	CO2	4BE9		G,XN	ABI	6-	80	С	6-	80	BF3-I			4PI					
	CO4	4BE9		G,N	ABI	6-	80	С	6-	80	BF3-I			4PI					
	TH1	4BE9 4BE9		G,N G,N	SPC	THR-	85 17				SCI-D								
57/	CH1	4BE9		G,XP	CDC	מנות	0 /.												
	CH1			G,XP	DIV	TUD_	9A	C	00,	04	TET D	20-	50	DST	זינת	D	ШΟ	D	327 D
	K05	4BE9		G,P	ARX	15-	32	C	35		MAC-D	1_	15	דפת	KEL	ע	10	P	ILD
	DE6			G,P	ABX	THR-	50	С	20-	50	ACT-T	1-	13	4PI					
		4BE9		G,P	ABX	THR-	50	C	20-	50	TEL-D	3-	11						
661	VO1	4BE9		G,P	ABX	THR-	81	С	21-	81	TEL-D	3-	5	90					
590	CH1	4BE9		G,XD G,D G,D	RLY	THR-	80	С	90		TEL-D	15-	60	DST	REL	D	то	P	YLD
	KO5	4BE9		G,D	RLY	15-	32	С	35		MAG-D	4-	14	DST					
661	DE6	4BE9		G,D	ABX	THR-	50	C	20-	50	TEL-D	4-	10	90					
661	DE6	4BE9		G.T	ABX	THR-	50	C	20-	50	TEL-D	4-	1.1	90					
		4BE9		G,D	ABX	THR-	81	С	21-	81	TEL-D	3-	6	90					
661	V01	4BE9		G,T	ABX	THR-	81	С	21-	81	TEL-D	4-	7	90					
651	LA1	4BE7		P,G	ABX	160		D1	.55		SCD-D	0-	30	DST					

BORON Z=5

10 11	19.61 80.39	G 8 11	,N G,P .4 6.6 .5 11.2 DEPENDS	G, 18. 11.	T G, HI 7 17 2 2 27	£3 Q	G /4	,A 5	G,2N G,2N 27.0 19.9	0	. 1	4.3 a J
REF	NUC Z	LIDE A	REACTION IN, OUT	RES	EXCIT	S	OURC	E AX	DETECTO		ANG	REMARKS
64L0 64L0 65KF)3 5B	10 11 11	G,G G,G G,G	ABX ABX LFT	10- 30 10- 30 2	С	10- 10- 5	30	NAI-D 10- NAI-D 10- NAI-D 0-	- 30	140	
65FF 65SI 66K0 66SI 66K0 66R: 66SI 67SI	P1 5E D1 5E P1 5E R2 5E D1 5E I1 5E P1 5E P1 5E	10 10 11 11 11 11 11 11 11 11 11	G,XN	FMF ABX SPC ABX FMF ABX FMF	2,4 2- 9 4,5 THR- 30	D D D D D D	55 50,6 32- 54 50,6 32- 35- 6-	0 57 60 57 57	MAG-D 30-MAG-D MAG-D MAG-D MAG-D MAG-D MAG-D MAG-D MAG-D MAG-D	- 55 - 60 - 60	DST 180 DST 141 180 DST DST DST	J-PI, WIDTH
65H 66N			G,XN G,3P		THR- 30 45-250			30	BF3-I ACT-I		4PI	
66P 65P 66F 61K 62S 64S 66S	A1 51 02 52 N1 53 U2 53 U1 5	8 8 8 10 8 10 8 11 8 11 8 11 8 11	HE3,G A,G D,G D,G D,G	ABX ABX SPC ABX RLX ABX ABX ABX	5- 7 16- 18 16- 20 18- 23 16- 21	D D D D D D	0- 1- 0- 1- 0- 1-	3 2 5 5 6	THR-I NAI-D NAI-D	- 7	DST 90 4PI 90 DST DST	

CARBON Z=6

A A	ABUND	(1)		SEP	ARATION	ENE	RGIE	ES ((MEV)				
		G	,N G,F .7 16.0	P G	G, T G,	HE3		G, A	G,	2N	(G,NP	G,2P
12	98.89	18	.7 16.0	27	2	6.3		7.4	31	8.1	2	27.4	27.2
13	1.11	. 4	.9 17.5	23	.9 2	4.4	1	.0.7	23	3.7	2	20.9	31.6
(1) I	ABUND	ANCE	DEPENDS	ON S	OURCE								
T													
REF			REACTION	RES	EXCIT		SOUR					ANG	REMARKS
	Z	Α	IN, OUT)	MIN-	MA.X	TYPE	MIN-	MAX	X .	
56 T7 1) 60	10	C MII m	T 7970	0.0								
65WY1	60	12	G,MU-T	LFT	23	C	22-	23	ACT-I				
OJWIJ		12	G,MU-T	ABX	10- 35	С	90		SCI-D)		4PI	
59 PA 3	6C	12	G G	ΔRY	17	D	15	10	MAT D	17		00	
59PE5	6C	12	G.G	ARY	19_ 61	C	10.	TO 1	NAI-D	15	61	125	
60BU3	6C	12	G.G	LFT	15	C	23	OI	NAT-D	בכד י	OΤ	TOO	
61WI1	. 6C	12	G,G G,G G,G	ABX	40-120	C.	132		SCI_D			DC.	
			-,-		40 120	0.	172		301-0			חסו	
59BA3	6C	12	E,N	ABY	THR- 36	D	10-	36	BF3-T			/грт	
64BR2	6C	12	E,E/	SPC	0- 20	D	54	30	MAG-D			1/.1	
64CH1	. 6C	12	E,P	ABX		D	4G	EV	MAG-D	110-	4 50	DST	
66 CR1	6C	12	E,E/	FMF	4,10	De	500-	800	MAG-D			DST	
66PR1	6C	12	E,E/	NOX	14- 21	DJ	L00-	200	MAG-D			180	
67CR1	6C	12	E,E/	FMF	0- 10	DJ	100-	200	MAG-D			DST	
67CR2	6C	12	E, N E, E/ E, P E, E/ E, E/ E, E/	FMF	19	D4	00-	800	MAG-D			DST	
55BA5		12	G,XN G,N G,N G,N G,XN G,N	ABY	30-200	C1			THR-I				
55SP2 56TZ1		12	G,N	RLY	THR- 20	C	17-	20	ACT-I				BREAKS
57BA1		12	G,N	KLY	22- 24	С			ACT-I			4PI	
58BA5		12	G,N	ARA	30-260	C1	120-2	260	THR-I		21	DST	
59SA1		12	G,AN	KLI	THR- 23	C	18-	23	BF3-I			4PI	BREAKS
59SA1		12	C N	NOX	19~ 21	C	18-	19	ACT-I			4PI	BREAKS
62FI2					21- 29		18-	21	MOD-1			4PI	BREAKS
64AL5					THR- 34		25-	32	TOF-D				
64BE8	6C	12			THR- 32	C	34		THR-I				
65BA1		12	G,XN	ARX	THR = 52				BF3-I			DST	
		12	G,XN	ABX	THR- 30	СТ	HR-	30	DE3-I			4PI 4PI	
65VE1	6C	12	G,N	SPC	THR- 33		34	50	TOF-D				
66BA4					THR- 52			52	BF3-I	1-	14	4PI	
66BI1	6C			ABX					BF3-I	0-	50	4PI	
66C02	6C	12			THR- 65				ACT-I	9	50	4PI	
66F01	6C				18- 70				ACT-I			4PI	
66FU1	6C				18- 37				BF3-I			4PI	
66L01	6C			ABX					ACT-I			4PI	
66MA2	6C	12	G,NG/	RLX	21- 31				NAI-D				

REF NUCLIDE	REACTION IN,OUT	RES EXCIT	SOURCE MIN-MAX	DETECTOR TYPE MIN-MAX	
57CH1 6C 12 57LI1 6C 12 59CH1 6C 12 64SE1 6C 12 66MA2 6C 12 66PA2 6C 12	G,XP G,XP G,XP G,XP G,PG/	SPC THR- 84 SPC THR- 35 RLY THR- 80 SPC THR- 24 RLX 21- 31 SPC THR- 55	C 64,84 C 35 C 80 C 24	EMU-D 18- 54 EMU-D 5- 12 TEL-D 15- 45 EMU-D 2- 8	DST
55CA2 6C 12 55CA2 6C 12 55GL1 6C 12 55GL1 6C 12 57MU1 6C 12 58MA1 6C 12 58MA1 6C 12 58MA1 6C 12 59CH1 6C 12 64KI1 6C 12 65RO1 6C 12 66AR1 6C 12 64HA3 6C 12 65SE1 6C 12	G,3A G,3A G,3A G,3A G,3A G,PA G,PT G,XD G,D G,3A G,BE7	ABX 12- 18 ABX 12- 18 SPC 17 SPC THR- 60 SPC 15,18 ABX 12- 40 ABX 25- 80 ABX 27- 70 RLY THR- 80 ABY 80-800 ABX 12- 17 ABX 30- 57 ABX 17- 20 ABX 16- 20	D 15,18 D 14,17 C 60 D 15, 18 C150,250 C150,250 C 80 C400-800 C 12- 17 C 30- 57	EMU-D 0- 15 EMU-D 0- 15 EMU-D EMU-D EMU-D TEL-D 15- 45 TOF-D 45- 70 EMU-D	4PI 4PI DST DST 4PI 4PI 4PI 90 REL D TO P YLD

NITROGEN Z=7

A 14 15 (1)	99.63	3 10 7 10	,N G,P .5 7.6	G, 22. 14.	7 20 8 28	E3	G,A	G,2N 30.6		G,2P 25.1 31.0
REF		CLIDE A	REACTION IN, OUT	RES	EXCIT		URCE N-MAX	DETECTO		REMARKS
66 S	W1 7	N 14	G,G	LFT	7	D	7	NAI-D	DST	
66K	01 7	N 14	E,E/	ABX	8- 14	D 5	60,60	MAG-D 30-	60 180	
57L 58G 60R	R1 7	N 14 N 14 N 14	G,XP G,P G,XP	SPC LFT	THR- 70 8		80,70 8 80	EMU-D 5- ION-D 0- CCH-D	15 DST 2 4PI 4PI	
61 K		N 14 N 14	D,G P,G	ABX LFT	10- 12 9	D D 13	0- 2	THR-I NAI-D	4PI DST	

OXYGEN Z=8

A A	BUND.(1))	SEP	ARATI	ON E	ENE.	RGII	ES (MEV)					
	(G,N G,P	G	, T	G,E	IE3		G,A	G,	2N	G	,NP	G,2P	
16 99	9.76 15	5.7 12.1	25	.0	22	8.5		7.2	28	.9	2	3.0	22.3	
17 3.	7(-2)	13.8	18	.6	18	8.8		6.4	19			6.3	25.3	
18		3.0 15.9	15	.8	25	.6		6.2	12	. 2	2	1.9	29.0	
(1) Al	BUNDANCE	E DEPENDS	ON S	OURCE										
REF	NUCLIDE	REACTION	RES	EXC	IT	:	SOUE	RCE	DET	ECTO:	R	ANG	REMA	RKS
	Z A								TYPE					100
	80 16	G,MU-T	ABX	13-	22	C			MGC-D					
65WY1	80 16	G,MU-T	ABX	10-	35	C	90		SCI-D			4PI		
59PA3	80 16	G,G	ABX	17		D	15.	18	NAI-D	17		90		
59 PE5		G,G	ABX	19-	61	С	19-	61	NAI-D	15-	61	135		
59 PE5	80 16	G,G/	ABX	19-					NAI-D					
64LA5	80 16	G,G							NAI-D					
64L03	80 16	G,G	ABX	10-	30	С	10-	30	NAI-D	10-	30	140		
65MA1	80 16	G,G/	SPC	19-					NAI-D					
61IS1		E,E/										DST		
65 VA4	80 16	E,E/	ABX	10-					MAG-D			180		
66 CR1	80 16	E,E/	FMF	6					MAG-D			DST		
66ST2	80 16	E,E/	FMF	5-	14	D	60		MAG-D	46-	60	117		
66VA1		E,E/												
65VA2	80 18	E,E/	ABX	2-	27	D	69		MAG-D	35-	70	180		
55SC2	80 16	G,NA	ABY	THR-	32	С	32		ACT-T			4PI		
57BA3		G,N											RREAKS	
59SA2	80 16	G,N	NOX	THR-	22	C	15-	22	ACT-I				BREAKS	
62FI2	80 16	G,N											2-10022210	
64 B E 8	80 16	\$G,N	NOX	17-	32	С						DST		
65CA1	80 16	G,XN					17-	28	BF3-I				BRANCH	RATIOS
65GA1	80 16	G,NP	ABX	250		C3	300		TEL-D	90-1	L40			
65HA1		G,XN										4PI		
65VE1		G,N								1-	14	DST		
66C01	80 16								ACT-I			4PI		
66FI1	80 16	\$G,N									8	DST		
660W1	80 16	G,NG/	RLY	THR-	29	С	20-	29	SCD-D	4-	9	135		
65M01	80 16	G,P	SPC	15-	29	С	22.	40	SCD-D			90	BRANCH	RATIOS
65ST2	80 16	G,P								2-	4	90		
66DE4	80 16			THR-					TEL-D			90		
660W1	80 16	G,PG/										135		
67KO1	80 16								TEL-D			90		

			TYPE MIN-MAX	
58MA1 80 16 G 58MA1 80 16 G 64T03 80 16 G 64T03 80 16 G 65AR3 80 16 G 65BU1 80 16 G 65R01 80 16 G 65R01 80 16 G 66AR1 80 16 G 66G02 80 16 G	,T ABY THR- 3,4A ABX 20- 4, PA ABY 27- 8, A ABX 9- 3,4A ABX 9- 5, T THR- 50, A ABX 12- 4,4A ABX 14- 4,4A ABX	C150,250 C150,250 C150,250 C1 C 22 C1 C 22 C7 C 57 C 50 C7 C 12- 17 C7 C 12- 17 C7 C 30- 57 C 30- 57 C THR- 55	EMU-D 0- 90 EMU-D EMU-D ACT-I ACT-I EMU-D 1- 11 EMU-D ACT-I	4PI DST DST 4PI 4PI 4PI 4PI 4PI
61TA3 80 16 P 62SU2 80 16 D 63SU2 80 16 D 64EA1 80 16 P 64SU1 80 16 D 66PU1 80 16 HE3 66SU1 80 16 D	ABX 12- G RLX 21- G RLX 21- G ABX 21- G NOX 13- G ABX 24- G RLX 23- ABX 21- G ABX 24- ABX 13-	26 D 0- 14 25 D 1- 5 25 D 1- 4 25 D 1- 13 28 D 1- 5 26 D 1- 4 26 D 1- 6	NAI-D 1- 10 NAI-D NAI-D NAI-D NAI-D NAI-D NAI-D NAI-D NAI-D 15- 26 NAI-D 0- 25 NAI-D	90 90 DST DST DST 90

A AB		,N G,P	SEPAR G,T 11.7	G,HE		G,2N 19.6	G,NP 6.1	G,2P 23.9
REF	NUCLIDE Z A	REACTION IN,OUT	RES	EXCIT	SOURCE MIN-MAX	DETECTOR		REMARKS
64L03	9F 19	G,G	ABX	10- 30	C 10- 30	NAI-D 10-	30 140	
66DE5 66DE5	9F 19 9F 19	G,N G,N		THR-260 THR-260	C260 C260	ACT-I ACT-I	DST DST	
55LA1 55RE1 64SE1		G,P G,2P G,XP		10- 17 THR-400 THR- 24	C 17 C 80-400 C 14- 24		6 DST 4PI 15 DST	
65HA2	9F 19	G,A	SPC '	THR- 31	C 31	EMU-D 5-	20 DST	

NEON Z=10

A A	BUND.		SEP	ARATIO	N ENE	RGIES (MEV)		
	G	,N G,P	G	,T	G,HE3	G,A	G.2N	G.NP	G.2P
20 9	0.92 16	.9 12.8	23	.9	21.2	4.7	28.5	23.3	20.8
21	0.26 6	.8 13.0	21	.6	19.9	7.3	23.6	19.6	23.6
22	8.82 10	.4 15.3	21	.5	26.3	9.7	17.1	23.4	26.4
								-3	2014
REF	NUCLIDE	REACTION	RES	EXCI'	\mathbf{T}	SOURCE	DETECTO	R ANG	REMARKS
	Z A	IN, OUT]	MIN-MAX	TYPE MIN-	MAX	
61CL1	10NE20	G,G	LFT	1-	3 D	1- 3	NAI-D 1-	3 0	
60RE2	10NE20	G,XP			C	240	CCH-D	4PI	
55001	1000				_				
55RE1	IONE	G,N17	ABI	THR-4	00	90-400	ACT-I	4PI	
((D))	102700	-							
66PA3		P,G	NOX	18		5		DST	
67SE1	IUNEZU	P,G	ABX	16-	25 D	3- 13	NAI-D	DST	
				COI	DIUM	7-11			
				301	DIUM	Z=11			
A AI	BUND.		SEP	ARATTO	N ENE	RGIES (MEV)		
		N G.P	G	.T (THE3	G A	G,2N	CND	C 2D
23 100	0.00 12.	4 8.8	17	. 4	24 4	10.5	23.5	19.2	
		. 0.0	_,	• •	~~.~	10.5	20.0	17.2	24.1
REF	NUCLIDE	REACTION	RES	EXCIT	r s	SOURCE	DETECTOR	R ANG	REMARKS
		IN, OUT					TYPE MIN-M		ALLE IL IL IL
65WY1	11NA23	G,MU-T	ABX	10- 3	35 C	90	SCI-D	4PI	
61AM1	11NA23	G,G	LFT	1	D		NAI-D	120	
64L03	11NA23	G,G	ABX	10- 3	30 C	10- 30	NAI-D 10-		
64ME2	11NA23	G,G	LFT	4		4	NAI-D 4	DST	
65BA4	11NA23	E,E/	ABX	4	D	59	MAG-D 50-	59 180	-
55RE1	11NA23		ABI	THR-40	00 C	90-400	ACT-I	4PI	
		G,N17							
65TA1		G,N17 P,G	NOX	7	D	0- 1		8 90	LEVELS, I-PI

MAGNESIUM Z=12

A 24 25 26	78 10	.13	16.	N G,P 5 11.7 3 12.1 1 14.1	G, 26. 23.	7	G,HI 23. 20.	E3 .1	9	G,A 9.3 9.9	G,2 29. 23.	.9	24 19	.1	20.5 22.6	
REF			DE A	REACTION IN,OUT	RES	EXC1	Т		OURO		DETI TYPE N	ECTOR		ANG	REMARK	3
64D0 65D0 65W1	02	12MG 12MG 12MG	;	G,MU-T G,MU-T G,MU-T	ABX	11-	30	C2	250 260 90		MGP-D MGP-D SCI-D					
59L 58BI 60BI 60BI	U1 U2	12MG	24 24	G,G G,G G,G G,G		1		D C	13 1 23		NAI-D SCI-D NAI-D NAI-D	1	12	135 4PI DST DST		
67T	I1	12MC	24	E,E/	SPC	15-	26	D	45-5	54	MAG-D			DST		
64F		12MC		G,N G,XN		18- THR-					TOF-D BF3-I		9	4PI		
65M	A4	12M0	3	G,XP	SPC	THR-	31	С	31		SCD-D	3-	14			
55RI 66H		12M0		G,N17 G,A		THR-			80-4 31		ACT-I SCD-D					
64S	Н6	12M0	3 24	G,F	ABY	THR-	100	C	L00		ACT-I			4PI		

ALUMINUM Z=13

A ABUND.	SEPARATION	ENERGIES (MEV))	0.05
	G,P G,T G,1 8.3 18.2 23		2N G,NP .4 19.4	
27 100.00 13.1	0.3 10.2 2.	0.7 10.1 24	.4 19.4	22.4
REF NUCLIDE REAC	CTION RES EXCIT	SOURCE DETI	ECTOR ANG	REMARKS
Z A IN,O		MIN-MAX TYPE N		
-	IU-T ABX 9- 29			
65WY1 13AL27 G,M	IU-T ABX 10- 70	C 90 SCI-D	4PI	
50m10 40150 5				
59PA3 13AL27 G,G		D 15,18 NAI-D		
60VA1 13AL27 G,G			0- 1 120	
64ME2 13AL27 G,G			4 DST	
65KH1 13AL27 G,G	i LFI 2,3	D 2,3 NAI-D	DST	
65ME3 13AL27 G,G 66H02 13AL27 G,G				
66HO2 13AL27 G,G 66VA4 13AL27 G,G			0- 1 117 0- 10 80	
OOVA4 IJALZ/ G,G	ADI IU	D 10 NAI-D	0- 10 80	
59BA3 13AL27 E,N	ABY THR- 36	D 10- 36 BF3-T	4PI	
64CH1 13AL27 E,P		D 4GEV MAG-D		
,				
55BA5 13AL27 G,X	N ABY 30-200	C150-250 THR-I	30- DST	
58BA5 13AL27 G,X	IN RLY THR- 15			BREAKS
64AL5 13AL27 G,X	NOX THR- 34	C 34 THR-I	6- DST	
64TH1 13AL27 G,N	ABX 15- 24	C 15- 24 ACT-I	4PI	
65TH2 13AL27 G,N	ABX 13- 24	C 13- 25 ACT-I		THRESHOLD
66BI1 13AL27 G,N	ABX 20-200	C 20-200 BF3-I		
	ABX 13- 37			
66FU1 13AL27 G,2	2N ABX 25- 37	D 25- 37 BF3-I	4PI	
57DAO 10AIO7 0 V	ID ADO MILD OF	0.05	15 (0 pam	
57BA2 13AL27 G,X				
58BA6 13AL27 G,X	SPC THR- 85	C 85,90 TEL-D		
	SPC THR- 20 SPC THR- 32		3- 9 1- 20 90	
OULII IJRIIZI G,F	SPC THR= 32	C 32 SCI-D	1- 20 90	
55RE1 13AL27 G,N	117 ABI THR-400	C 80-400 ACT-I	4PI	
56HE1 13AL27 G,T		C 31 ACT-I	4PI	
56WA1 13AL27 G,T		C 31 ACT-I	4PI	
57B01 13AL27 G,A		C 31 EMU-D	5- 15 DST	
65HA2 13AL27 G,A		C 31 EMU-D	5- 20 DST	
66H03 13AL27 G,A		C 31 SCD-D	2- 13 130	
65VA5 13AL27 P,G	SPC 10	D 2 NAI-D	1- 10 DST	

SILICON Z=14

28 92 29 4 30 3	G, .21 17. .70 8. .09 10.	N G,P 2 11.6 5 12.3 6 13.5 DEPENDS (G, 27, 24, 22,	T G,F 5 23 6 20 2 24	E3 .2	G,A 10.0 11.1	G,2 30. 25.	5	24 20	.7	19.9 21.9
REF	NUCLIDE Z A	REACTION IN,OUT	RES				DETE TYPE M			ANG	REMARKS
65WY1	14SI	G,MU-T	ABX	10- 35	C 90		SCI-D			4PI	
65SW1 64RE1		G,G G,G	LFT LFT	7 1	D 7 D 1		NAI-D NAI-D			DST 90	J
64BR2 66LI2	14SI28 14SI28	E,E/ E,E/	SPC LFT	0-12 2,11			MAG-D MAG-D			152 DST	
65G01 66LI1 67G01 64UL3 65BI1 65CA2 65MA6	14SI 14SI28 14SI28	G,P G,P G,P G,P G,P G,P	SPC ABX SPC RLX ABX	THR- 32 THR- 29 13- 23 18	C 21 C 11 C 24 D 18 C 16	,32 - 29 - 23	SCD-D SCD-D SCD-D	1- 1- 1- 4- 3-	19 11 8 12	90 4PI 4PI 4PI 4PI	
65HA2 65BI1 65CA2 65MA6 61GA1 65SI1	14SI28 14SI28 14SI28	G,A G,A	RLX ABX ABX	THR- 23 17- 22 16- 25	D 18 C 16 D 17	- 23 - 22 - 13	SCD-D SCD-D SCD-D	6- 3- 4-	8 12 12	4PI 4PI 4PI 90	

PHOSPHORUS Z=15

A ABUND. G 31 100.00 12	N G,P	SEPARATI G,T 17.9	ON ENE G,HE3 22.5	CRGIES (I	MEV) G,2N 23.6	G,NP 17.9	G,2P 20.8
REF NUCLIDE Z A					DETECTO:		REMARKS
61BO3 15P 31	G,MU-T	ABX 11-	20 C	11- 20	ACT-I	4PI	
66H02 15P 31	G,G	LFT 1	C	1	NAI-D O-	1 117	
65K01 15P 31	E,E/	FMF 1-	6 D	130-180	MAG-D120-	180 DST	
57BA3 15P 31	G,N	ABY 11-	14 C	11- 14	ACT-I	4PI	BREAKS
66YO1 15P 29 66VA2 15P 31	P,G P,G	SPC 8- SPC 8-	9 D	5- 6 1- 2	ACT-I NAI-D 1-	4PI 11 DST	
		S	ULPHUR	Z=16			
A ABUND.(1)		SEPARATI	ON ENE	RGIES (1	MEV)		
G, 32 95.0 15.	N G,P	G,T 24 O	G,HE3	G,A	G,2N	G,NP	G,2P 16.1
33 0.76 8.	6 9.6	21.3	17.1	7.1	23.7	17.5	18.2
33 0.76 8. 34 4.22 11.	4 10.9	20.4	21.9	7.9	20.1	21.0	20.3
36 1.4(-2) 9. (1) ABUNDANCE	9 *	19.3	ΰc	8.9	16.9	21.2	*
REF NUCLIDE Z A					DETECTOR		REMARKS
65WY1 16S	G,MU-T	ABX 10-	35 C	90	SCI-D	4PI	
					ACT-I		
		RLY 16-		32		12	
62MI5 16S 32		SPC 15-		30		15 DST	
65TH1 16S 32 66BI1 16S 32		ABX THR- ABX 20-		15- 22 20-200		4PI 50 4PI	
66LI1 16S	G,P	SPC THR-	32 C	32	SCI-D 1-	20 90	
67IS1 16S		ABX THR-				DST	

REF	NUCLIDE Z A	REACTION IN, OUT	RES I				DETE TYPE M			REMAF	RKS
55RI1 66HO3	16S 16S	G,D G,A	RLY TH	HR- 65 HR- 31	C 65 C 31		CCH-I SCD-D	3- 13	4PI 3 130	RLY TO	PROTONS
65DE1 66HO1 65MC2 67WI1	16S 32	P,G P,G A,G A,G	SPC I	LO	D 1 D 3-	- 4	NAI-D NAI-D	1- 10	0 55 2 DST		
				CHLOR	INE :	Z=17					
Λ Δ	RIIND		SEPARA	ATION E	NERGII	ES O	MEV)				
A A	G G	,N G,P .6 6.4 .3 8.4	G,T	G,H	E3	G,A	G, 2	2N (G,NP	G,2P	
35 7.	5.53 12	.6 6.4	18.0	19	.6	7.0	24.	1	17.8	17.3	
37 2	4.47 10	.3 8.4	16.8	21	.9	7.9	18.	.9	18.3	×	
REF		REACTION IN,OUT	RES 1				DETH TYPE N			REMAI	RKS
66BE3	17CL 17CL35	G,G G,G	RLX LFT	5- 10 1-	D 5.	- 10	NAI-D NAI-D	5- 10 0-	0 135 1 117		
57BA3	17CL35	G,N	RLY	12- 14	C 12	- 14	ACT-I		4PI	BREAKS	
		G,A									
				ARGON	Z=1	8					
A A	BUND.			ATION E				227	a vin	0.00	
36	0.34 15		G,T 24.2		E3	G,A 6.6	G,2 28		G,NP 21.2	G,2P 14.9	
	3(-2) 11		20.7		.8	7.2			20.6		
			18.2		.0	6.8			20.6	22.8	
REF		REACTION	RES	EXCIT	SOU MIN		DETI	ECTOR MIN-MA	ANG X	REMA	RKS

REF NUCLIDE REACTION Z A IN,OUT	RES EXCIT	SOURCE DETECTO	· · · · · · · · · · · · · · · · · · ·
55SP3 18AR40 G,P	SPC THR- 23	C 23 EMU-D 1-	8 DST
		C 90 CCH-D 2-	
65RE1 18AR40 G,P	ABX 9		6 4PI
•			
65RE1 18AR40 G,A	ABX 9	D 9 CCH-D 1-	· 12 4PI
	POTAS	SSIUM Z=19	
A ABUND.	SEPARATION I	ENERGIES (MEV) HE3 G,A G,2N	a v= a 05
G,N G,P	G,T G,1	EES G,A G,ZN	G, NP G, 2P
39 93.10 13.1 6.4 40 1.2(-2) 7.8 7.6			
40 1.2(-2) 7.8 7.8	15 0 20	0.7 6.2 17.9	
41 0.80 10.1 7.8	13.6 20	0.2 17.9	17.7 20.5
REF NUCLIDE REACTION	RES EXCIT	SOURCE DETECTO	OR ANG REMARKS
Z A IN, OUT		MIN-MAX TYPE MIN-	-MAX
65CO1 19K 38 G,N	ABX THR- 70	C 12- 70 ACT-I	4PI
65CO3 19K 39 G,N	ABX THR- 80	C 80 ACT-I	4PI
65CO3 19K 39 G,NP	ABX THR- 80	C 80 ACT-I	
55SC2 19K 39 G,NA	ABY THR- 32	C 32 ACT-I	4PI
	CALC	IUM Z=20	
A ABUND.	CEDADATION I	ENERGIES (MEV)	
A ABUND. G,N G,P	CT C	HE3 G,A G,2N	G NP G 2P
		3.8 7.0 29.3	
42 0.64 11.5 10.3		0.2 6.2 19.8	20.4 18.1
43 0.15 7.9 10.7		3.3 7.6 19.4	
44 2.06 11.1 12.2		3.3 8.8 19.1	
46 3.3(-3) 10.4 13.8		* 11.1 17.8	
48 0.19 9.9 15.3		* * 17.2	24. *
		on y V Go	
REF NUCLIDE REACTION	RES EXCIT	SOURCE DETECTO	
Z A IN, OUT		MIN-MAX TYPE MIN-	-MAX
(FD01 0001/0 0 307 7	ADV 10 00	0260 402 10	20 /nr
	ABX 10- 28		- 28 4PI
65WY1 20CA40 G,MU-T	WRY TO- \0	C 90 SCI-D	4PI

REF	NUCLIDE Z A	REACTION IN, OUT	RES	EXCIT	SOURCE MIN-MAX	DETECTOR TYPE MIN-MAX	ANG REMARKS
66ME3	20CA42	G,G	LFT	2	D 2	NAI	
62BL1 65CR1			FMF ABX		D120-220 D250	MAG-D170-180 MAG-D	DST DST
62FI3 65VA3 66AN1 66BA1	20CA40 20CA40	G,NP G,XN	RLY ABI ABX ABX	50-300	C 16- 62	ACT-I ACT-I	4PI 4PI 4PI
59KO2 64IS3					C 85 C 18- 34	EMU-D 1- 15 EMU-D 3- 15	
57SC1	20CA40	G,3N3P	ABX	35- 70	C 35- 70	ACT-I	4PI
61TA2 66LE1			RLY SPC	18- 22 9- 11		NAI-D 10- 25 NAI-D 2- 12	

SCANDIUM Z=21

A	ABUND	•		SEPA	RATION	ENEF	RGIES (N	ŒV)			
		G,1	N G,P	(,T G	HE3	G,A	A G,	2 N	G,NP	G,2P
45	100.00	11.3	3 6.9	17	.5	21.0	7.9	9 21	.0	18.1	19.1
REI	F NUC	LIDE	REACTION	RES	EXCIT	5	SOURCE	DETE	CTOR	ANG	REMARKS
	Z	A	IN,OUT			1	IN-MAX	TYPE M	IN-MAX		
661	TA1 21	SC45	G,N	RLY	THR- 48	3 C	24- 48	ACT-I		4PI	
661	VA1 21	SC45	G,N	RLY	THR-300) C	50-300	ACT-I		4PI	
		SC49	- , -		10- 11	-	_		1- 12		
670	CH1 21	SC49	P,G	LFT	12	D	2	SCD-D		90	

TITANIUM Z=22

A	ABUND.		SEPARATION			_	
46	7.93	G,N G,P 13.1 10.4	G,T 22.9	G,HE3 20.7		2N G,NP .6 21.7	
47	7.28		22.0	18.4	9.0 22	.1 19.3	
48	73 94	11 6 11 4	22.4	22.6	9.4 20	.5 22.1	19.9
49	5.51	8.1 11.3	21.8	20.4	10.1 19	.8 19.6	
50	5.34	10.9 12.2	22.0	24.0	10.7 19	.1 22.3	21.8
					•		
REF	NUCLI	DE REACTION	RES EXCI			CTOR ANG	REMARKS
	Z	A IN,OUT		MIN-	MAX TYPE M	IIN-MAX	
66B	E3 22TI	G,G	RLX 5- 3	10 D 5-	10 NAI-D	5- 10 135	
64A	L5 22TI	G,XN	NOX THR-	34 C 34	THR-I	6- DST	
67C			ABX 12-			4PI	
66T	Al 22TI	46 G,NP	RLY THR-	48 C 24-	48 ACT-I	0- 1 4PI	
			VAI	NADIUM Z	=23		
A	ABUND.		SEPARATION	N ENERGIE	S (MEV)		
		G,N G,P		G,HE3		2N G,NP	
	0.24		19.2	19.8		16.1 19.0	19.3 20.2
51	99.76	11.0 8.1	18.7	22.6	10.3 20	19.0	20.2
REF		DE REACTION	RES EXCI			CTOR ANG	REMARKS
	Z .	A IN, OUT		MIN-	MAX TYPE M	IIN-MAX	
56 H	E2 23V	51 G,2P	RLY THR-	31 C 31	ACT-I	4PI	
	E2 23V	,	RLY THR- SPC THR-		ACT-I EMU-D	4PI 2- 20 DST	

CHROMIUM Z=24

A	ABUND.		SE	PARATIO	N ENERGI	ES (ME	V)		
		G.N	G,P	G,T	G,HE3	G,A	G,2N	G,NP	
50	4.31		9.6		20.3	8.6	23.3		
	83.76				21.8	9.4	21.3		
			11.1	21.0	18.8	9.1	20.0		
54	2.38			19.7	22.1	7.9	17.6	20.9	22.
						ID OF	D.C.M.C.M.O.D.	ANIC	REMARKS
REF	NUCL Z		CTION RE	S EXCI	_	JRCE N-MAX T	DETECTOR YPE MIN-M		KEMAKAS
64C	03 24C	R G,	N AB	I THR-	80 C 10)- 80 B	F3-I	4PI	
		-		X THR-			HR-I 6-	DST	
				MA	MGANESE	Z=25			
٨	ARIMD		SF				EV)		
A	ABUND.	G N		PARATIO	ON ENERG	IES (ME		G,NP	G,2P
			G,P	PARATIC G,T	ON ENERG	IES (ME	G,2N	-	G,2P 20.
	100.00	10.2	G,P 8.1 ACTION RI	PARATIO G,T 17.2	ON ENERG G,HE3 21.2	IES (ME G,A 7.9	G,2N 19.2 DETECTOR	17.8 ANG	-
55	100.00	10.2	G,P 8.1	PARATIO G,T 17.2	ON ENERG G,HE3 21.2	IES (ME G,A 7.9	G,2N 19.2	17.8 ANG	20.
55 REF	100.00 F NUCL Z	10.2 IDE REA A IN	G,P 8.1 ACTION RI	PARATIC G,T 17.2	ON ENERG G,HE3 21.2 IT SO MI	IES (ME G,A 7.9 URCE N-MAX T	G,2N 19.2 DETECTOR	ANG AX	20.
55 REF	100.00 F NUCL Z CO3 25M	10.2 TIDE REA A IN	G,P 8.1 ACTION RI OUT	PARATIC G,T 17.2	ON ENERG G,HE3 21.2 IT SO MI	IES (ME G,A 7.9 URCE N-MAX T	G,2N 19.2 DETECTOR TYPE MIN-M	ANG AX	20.
55 REF 640 66V	100.00 NUCL Z CO3 25M VA1 25M	10.2 IDE REA A IN IN55 G IN55 G	G,P 8.1 ACTION RI OUT, N AI	PARATIC G,T 17.2 CS EXCI	ON ENERG G,HE3 21.2 IT SO MI 80 C 1 300 C10	IES (ME G,A 7.9 URCE N-MAX T	G,2N 19.2 DETECTOR TYPE MIN-M BF3-I ACT-I	ANG AX	20.

IRON Z=26

A	A	ABUND.			SEP	ARATION	ENER	GIES (MEV)			
			G,	N G,P			G,HE3			2 N	G,NP	G,2P
	54	5.82	13.	6 8.9	2	2.9	-	-		.1	20.9	
	56		11.			0.9	20.3			.5	20.4	18.3
ι			7.			9.6		7.		.8		
	58		10.				22.0				17.9	
-	,	0.33	10.	12.0	т.	7.4	22.0	/ •	6 17	.7	20.6	21.4
т	ידידו	MILCI	TDF	DE LOS TON	DHA	*****	_					
1	REF			REACTION	RES	EXCIT		OURCE		CTOR	ANG	REMARKS
		Z	A	IN, OUT			M	IN-MAX	TYPE M	IN-MAX	ζ	
6	64C0	3 26 F	E	G,N	ABI	THR- 8	0 C	10- 80	BF3-I		4PI	
6	6WA	1 26F	E	G,5PXN	RLY	THR-25	0 C1	00-250	ACT-I		4PI	
6	66WA	1 26F	E	G, PXN	RLY	THR-25			ACT-I		4PI	
6	66BE	4 26F	E56	G,N	ABX	11	С		TOF-D		135	
				,					101 2		133	
6	6BE	1 26F	F.	N,G	SPC	15	D	7	NAI-D	8- 18)	
				11,0	51 0	13	D	/	NAI-D	0- 10)	
						COBA	ALT :	Z=27				
A	. 4	ABUND.			SEPA	ARATION	ENER	GIES (N	(EV)			
			G,	N G,P	(G,T (HE3	G.A	A G,	2 N	G,NP	G,2P
- 5	9 10	00 00	10									

59 100	0.00 10	.5 7.4	16.6	20.3 7.	0 19.0	17.4	19.3
REF		REACTION IN,OUT	RES EXCIT	SOURCE MIN-MAX	DETECTOR TYPE MIN-MAX	ANG X	REMARKS
65WY1	27C059	G,MU-T	ABX 10- 35	C 90	SCI-D	4PI	
65BA3	27C059 27C059 27C059	G,XN	ABI THR- 80 ABX THR- 28 ABX 11		BF3-I BF3-I BF3-I	4PI 4PI 4PI	
57RO1	27CO59	G,P	SPC 15,18	D 15,18	EMU-D 3- 7	7 DST	
56WA1	27CO59	G,T	RLY THR- 31 RLY THR- 31 RLY THR-150	C 31		4PI 4PI 4PI	

NICKEL Z=28

A A.T.	IIIID		CEDA	RATIO	N E	NED	CTEC	: (N	(EV)				
A AE	BUND.	,N G,P					B III.			2 N	G	, NP	G,2P
58 67	.88 12		21	1			,			2.5		9.6	
	.23 11						2).4		0.0	
	.19 7	.8 9.9	19	.3	1)			.2		7.4	
	3.66 10		19	.5	2	1.0)			3.4		.0.5	19.8
	.08 9	.7 12.5	19	1.1	2	2.9)	8.0) 16	5.5	2	21.0	*
									D.E.M.I	amor		4370	DEMARKS
REF		REACTION	RES	EXC	IT		SOUR			ECTOR		ANG	REMARKS
	Z A	IN, OUT				P	11N-1	1AX	TYPE N	11N-P	IAA		
65WY1	2011	G,MU-T	ARY	10-	35	C	90		SCI-D			4PI	
DOWLI	ZONI	G,M0-1	ADA	10-	رر	Ü	70		DOI D				
65GI1	28NT	G,G/	RLY	8		D	8		NAI-D	8		135	
66BE3		G,G			10	D	5-	10	NAI-D	5-	10	135	
67ES1		G,G/				D	8		NAI-D			DST	
66DU1	28NI58		FMF						MAG-D			DST	
66DU1		•	FMF						MAG-D				
66DU1	28NI62	E,E/	FMF	1		D	45-	65	MAG-D			DST	
(1002	2017	G,N	ADT	מטיד	٥0	C	10-	80	RF3_T			4PI	
64CO3 65BA3		G,N G,XN					10-	30	BF3-I			4PI	
CAGCO	20N1	G, AN	ADA	1111	20		10	50	213 1				
57BA2	28NI	G,XP	SPC	THR-	85	С	85		TEL-D	15-	60	DST	
58BA6		G,XP					85		TEL-D	13-	40	DST	
64MA2		G,XP		THR-			22		SCD-D	3-	9		
										_			
57B01	28NI	G,A		THR-		C	31		EMU-D				
66H03		G,A							SCD-D	3-	14	130	
67KN1	28NI	G,T	RLY	THR-	49	C	36,	49	ACT-I			4PI	
66 DE1	2017	N. C	CDC	16		D	7		NAI-D	8-	18		
66BE1	28NI	N,G	SPC	10		ע	/		MAITD	0-	10		

COPPER Z=29

A AF	BUND.			ARATIO	ON E	NEF	RGIE	S (MEV)				
	G	N G, P	(G,T	G,	HE3	3	G,	A G	2N	(G,NP	G,2P
63 69	.09 10.	8 6.1		6.1	1	8.9)	5.	8 19	7.7		16.8	17.2
65 30).91 9.	9 7.4	1.	5.5	2	0.7	7	6.	8 17	7.8		17.1	19.9
REF	NIICI TOE	REACTION											
KLI	Z A	IN, OUT	KES	EXC	LI		SOUR(TYPE N	ECTOI IIN-I		ANG	REMARKS
65WY1	29CU	G,MU-T	ABX	10-	35	С	90		SCI-D			4PI	
55BU1	29CU	G,G	RLX	0-	3	С	3		NAI-D			90	
57BE1	29CU	G,G	ABX	13-	21				ACT-I			90	
59PE5	29CU	G,G	ABX		61				NAI-D	15-	61	135	
66BE3	29CU	G,G	RLX	5-	10				NAI-D			135	
50-10	20	-											
59BA3		E,N		THR-	36				BF3-I			4PI	
64CH1	29CU	E,P	ABX			D	4GI	EV	MAG-D1	L10-4	450	DST	
55MC1	29CU	G,XN	RLY	THR-	22	С	22		NAI-I			90	
64AL5	29CU	G,XN	NOX	THR-	34	C	34		THR-I	6-		DST	
64C03	29CU	G,N	ABI	THR-	80	C	10-	80	BF3-I			4PI	
65BA3	29CU	G,XN	ABX	THR-	28	C	10-	30	BF3-I			4PI	
6 / M A O	29CU63	O VD	CD C	miin	17	_	17		aan n	2	0		
64MA2				THR-			17	F 0	SCD-D	3-	9	00	
66 VO1	29CU64	G,P	KLI	THR-	54	C	23-	52	TEL-D	4-	5	90	
56HE1	29CU	G,T	RLY	THR-	31	С	31		ACT-I			4PI	
56WA1	29CU	G,T	RLY	THR-	31	С	31		ACT-I			4PI	
57B01	29CU	-		THR-			31		EMU-D	5-	15		
65ME2	29CU			THR-			35			5		90	
66H03				THR-			31		SCD-D			130	
66 VO1	29CU64			THR-				52	TEL-D	4-	6		
		, –				_						, ,	

ZINC Z=30

A ABUND.	SEPARATION ENERGIES (MEV)	
	G,T G,HE3 G,A G,2N	G,NP G,2P
G,N G,P 64 48.89 11.9 7.7	19.0 16.7 4.0 21.0	18.6 13.8
		18.8 16.4
		16.0 17.3
68 18.57 10.2 10.0		19.1 18.5
70 0.62 9.2 *	17.2 * 5.9 15.7	19.5 *
REF NUCLIDE REACTION	RES EXCIT SOURCE DETECTOR	ANG REMARKS
Z A IN, OUT	MIN-MAX TYPE MIN-MAX	
·		
66BE3 30ZN G,G	RLX 5- 10 D 5- 10 NAI-D 5- 10	135
65VA3 30ZN G,NP	ABI 50-300 C 50-300 ACT-I	4PI
65VA3 30ZN G,NP 67CO1 30ZN G,XN	ABX 12- 24 C 24 BF3-I	4PI
57EL1 30ZN64 G,2N	ABX 12- 24 C 24 BF3-I RLY THR- 30 C 32 ACT-I ABX 22- 30 C 32 ACT-I ABI THR- 80 C 10- 80 BF3-I	4PI
57EL1 30ZN66 G,NP	ABX 22- 30 C 32 ACT-I	4PI
64CO3 30ZN66 G,N	ABI THR- 80 C 10- 80 BF3-I	4PI
04C03 30ZN00 G,N	ADI 111K- 00 C 10- 00 BF31	411
66 IV1 30 ZN67 G,P	ABX THR- 28 C 12- 28 ACT-I	4PI
57EL1 30ZN68 G,P		4PI
66HO3 30ZN G,A	SPC THR- 31 C 31 SCD-D 3- 14	130
	GALLIUM Z=31	
4 A DEISTD	SEPARATION ENERGIES (MEV)	
A ABUND.	G,T G,HE3 G,A G,2N	G,NP G,2P
G,N G,P 69 60.4 10.3 6.6	G,T G,HE3 G,A G,2N 15.4 18.0 4.5 16.6	16.9 16.6
71 39.6 9.6 7.9	15.1 19.7 5.3 17.0	17.1 *
71 39.0 9.0 7.9	15.1 19.7 5.5 17.0	17.1
REF NUCLIDE REACTION	RES EXCIT SOURCE DETECTOR	ANG REMARKS
Z A IN, OUT	MIN-MAX TYPE MIN-MAX	
		4PI
65BA3 31GA G,XN	ABX THR- 28 C 10- 30 BF3-I	4PI

GERMANIUM Z=32

A AB	UND.		SEPA	ARATION E	NERGIES (MEV)		
	G,	N G,P	(G,T G,	HE3 G,	A G,2N		
70 20	.52 11.	5 8.5	18	3.6 1	7.6 4.	1 20.		
72 27	.43 10.	7 9.7	18	3.2 1	9.1 5.			
73 7	.76 6.	8 10.0	17	7.3 1	6.7 5.			
			18	3.2 2	0.8 6.	3 17.0	20.2	
76 7	.76 9.	4 *	18	3.4	* 7.	5 16.9	20.8	*
משמ	NUCL TOP	DEACTION	DEC	EVCIT	SOURCE	DETECTOR	ANG	REMARKS
REF		REACTION IN, OUT	KES	EACII		TYPE MIN-M		KETIAKKS
		•						
64C03	32GE	G,N	ABI	THR- 80	C 10- 80	BF3-I	4PI	
56HE2	32GE73	G,A	RLY	THR- 31	C 31	ACT-I	4PI	
				ARSEN	IC Z=33			
A AB	UND.		CED	ADATTON E	NERGIES (MEV)		
A AD	OND.	N CP	SEF1	T C.	HE3 G.	A G,2N	G. NP	G. 2P
75 100	00 10	2 6.9	1	5.4 1	.9.4 5.	3 18.3	17.1	17.9
,5 100	.00 200	2 017						
REF	NUCLIDE	REACTION	RES	EXCIT	SOURCE	DETECTOR	ANG	REMARKS
REF	NUCLIDE Z A	REACTION IN,OUT	RES	EXCIT		DETECTOR TYPE MIN-M		REMARKS
	Z A	IN, OUT						REMARKS
	Z A 33AS75	IN,OUT G,G		1	MIN-MAX	TYPE MIN-M	AX	REMARKS
64SH5 67LA1	Z A 33AS75 33AS75	IN,OUT G,G G,G	LFT LFT	1 1	MIN-MAX D 1 D 1	TYPE MIN-M NAI-D NAI-D	AX 122 DST	REMARKS
64SH5 67LA1 56SU1	Z A 33AS75 33AS75	IN,OUT G,G G,G	LFT LFT	1 1	MIN-MAX D 1 D 1	TYPE MIN-M NAI-D NAI-D	AX 122 DST	REMARKS
64SH5 67LA1 56SU1 56SU1	Z A 33AS75 33AS75 33AS75	IN,OUT G,G G,G	LFT LFT	1 1	MIN-MAX D 1 D 1	TYPE MIN-M NAI-D NAI-D	AX 122 DST	REMARKS
64SH5 67LA1 56SU1 56SU1 64CO3	Z A 33AS75 33AS75 33AS75 33AS75 33AS75	IN,OUT G,G G,G G,N G,3N G,N	LFT LFT RLY RLY ABI	1 1 THR-320 THR-320 THR- 80	MIN-MAX D 1 D 1 C140,320 C140,320 C 10- 80	TYPE MIN-M NAI-D NAI-D ACT-I ACT-I BF3-I	122 DST 4PI 4PI 4PI 4PI	REMARKS
64SH5 67LA1 56SU1 56SU1 64CO3 65FI1	Z A 33AS75 33AS75 33AS75 33AS75 33AS75	G,G G,G G,N G,3N G,N G,XN	LFT LFT RLY RLY ABI ABX	1 1 THR-320 THR-320 THR- 80 10- 25	MIN-MAX D 1 D 1 C140,320 C140,320 C 10-80 C 10-25	NAI-D NAI-D ACT-I ACT-I BF3-I BF3-I	122 DST 4PI 4PI 4PI 4PI 4PI	REMARKS
64SH5 67LA1 56SU1 56SU1 64CO3	Z A 33AS75 33AS75 33AS75 33AS75 33AS75	G,G G,G G,N G,3N G,N G,XN	LFT LFT RLY RLY ABI ABX	1 1 THR-320 THR-320 THR- 80	MIN-MAX D 1 D 1 C140,320 C140,320 C 10- 80	NAI-D NAI-D ACT-I ACT-I BF3-I BF3-I	122 DST 4PI 4PI 4PI 4PI	REMARKS
64SH5 67LA1 56SU1 56SU1 64CO3 65FI1	Z A 33AS75 33AS75 33AS75 33AS75 33AS75 33AS75 33AS75	G,G G,G G,N G,3N G,N G,XN G,N	LFT LFT RLY RLY ABI ABX ABX	1 1 THR-320 THR-320 THR- 80 10- 25 11 THR-320	MIN-MAX D 1 D 1 C140,320 C140,320 C 10- 80 C 10- 25 D 11 C140,320	NAI-D NAI-D ACT-I ACT-I BF3-I BF3-I BF3-I	122 DST 4PI 4PI 4PI 4PI 4PI 4PI	REMARKS
64SH5 67LA1 56SU1 56SU1 64CO3 65F11 67HU1	Z A 33AS75 33AS75 33AS75 33AS75 33AS75 33AS75 33AS75	G,G G,G G,N G,3N G,N G,XN G,N	LFT LFT RLY RLY ABI ABX ABX RLY RLY	1 1 THR-320 THR-320 THR- 80 10- 25 11 THR-320 THR-320	MIN-MAX D 1 D 1 C140,320 C140,320 C 10- 80 C 10- 25 D 11 C140,320 C140,320	NAI-D NAI-D ACT-I ACT-I BF3-I BF3-I BF3-I ACT-I ACT-I	122 DST 4PI 4PI 4PI 4PI 4PI 4PI	REMARKS
64SH5 67LA1 56SU1 56SU1 64CO3 65FI1 67HU1 56SU1 56SU1	Z A 33AS75 33AS75 33AS75 33AS75 33AS75 33AS75 33AS75 33AS75 33AS75	G,G G,G G,N G,3N G,N G,XN G,N G,2P G,N2P G,3N2P	LFT LFT RLY RLY ABI ABX ABX RLY RLY	1 1 THR-320 THR- 320 THR- 80 10- 25 11 THR-320 THR-320 THR-320	MIN-MAX D 1 D 1 C140,320 C140,320 C 10- 80 C 10- 25 D 11 C140,320 C140,320 C140,320	NAI-D NAI-D NAI-D ACT-I ACT-I BF3-I BF3-I BF3-I ACT-I ACT-I	122 DST 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI	REMARKS
64SH5 67LA1 56SU1 56SU1 64CO3 65FI1 67HU1 56SU1 56SU1 56SU1	Z A 33AS75	G,G G,G G,N G,3N G,N G,XN G,N G,2P G,N2P G,3N2P G,3N4P	LFT LFT RLY RLY ABI ABX ABX RLY RLY RLY	1 1 THR-320 THR-320 THR- 80 10- 25 11 THR-320 THR-320 THR-320 THR-320	MIN-MAX D 1 D 1 C140,320 C140,320 C 10- 80 C 10- 25 D 11 C140,320 C140,320 C140,320 C140,320 C140,320	NAI-D NAI-D NAI-D ACT-I ACT-I BF3-I BF3-I BF3-I ACT-I ACT-I ACT-I	122 DST 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI	REMARKS
64SH5 67LA1 56SU1 56SU1 64CO3 65F11 67HU1 56SU1 56SU1 56SU1 56SU1	Z A 33AS75	G,G G,G G,N G,3N G,N G,XN G,N G,2P G,N2P G,3N2P G,3N4P G,4N5P	LFT LFT RLY RLY ABI ABX ABX RLY RLY RLY RLY	1 1 THR-320 THR-320 THR- 80 10- 25 11 THR-320 THR-320 THR-320 THR-320 THR-320	MIN-MAX D 1 D 1 C140,320 C140,320 C 10- 80 C 10- 25 D 11 C140,320 C140,320 C140,320 C140,320 C140,320 C140,320	NAI-D NAI-D ACT-I ACT-I BF3-I BF3-I BF3-I ACT-I ACT-I ACT-I ACT-I ACT-I	122 DST 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI	REMARKS
64SH5 67LA1 56SU1 56SU1 64CO3 65F11 67HU1 56SU1 56SU1 56SU1 56SU1 56SU1	Z A 33AS75	G,G G,G G,N G,3N G,N G,XN G,N G,2P G,3N2P G,3N2P G,3N4P G,4N5P G,5N2P	LFT LFT RLY RLY ABI ABX ABX RLY RLY RLY RLY RLY	1 1 THR-320 THR-320 THR- 80 10- 25 11 THR-320 THR-320 THR-320 THR-320 THR-320 THR-320	MIN-MAX D 1 D 1 C140,320 C140,320 C 10- 80 C 10- 25 D 11 C140,320 C140,320 C140,320 C140,320 C140,320 C140,320 C140,320 C140,320	NAI-D NAI-D ACT-I ACT-I BF3-I BF3-I BF3-I ACT-I ACT-I ACT-I ACT-I ACT-I ACT-I	122 DST 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI	REMARKS
64SH5 67LA1 56SU1 56SU1 64CO3 65F11 67HU1 56SU1 56SU1 56SU1 56SU1 56SU1 56SU1	Z A 33AS75	G,G G,G G,N G,3N G,N G,XN G,N G,2P G,3N2P G,3N2P G,3N4P G,4N5P G,5N2P G,5N5P	LFT LFT RLY RLY ABI ABX ABX RLY RLY RLY RLY RLY RLY	1 1 THR-320 THR-80 10-25 11 THR-320 THR-320 THR-320 THR-320 THR-320 THR-320 THR-320	MIN-MAX D 1 D 1 C140,320 C140,320 C 10- 25 D 11 C140,320 C140,320 C140,320 C140,320 C140,320 C140,320 C140,320 C140,320 C140,320	NAI-D NAI-D NAI-D ACT-I ACT-I BF3-I BF3-I BF3-I ACT-I ACT-I ACT-I ACT-I ACT-I ACT-I ACT-I ACT-I	122 DST 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI	REMARKS
64SH5 67LA1 56SU1 56SU1 64CO3 65F11 67HU1 56SU1 56SU1 56SU1 56SU1 56SU1 56SU1 56SU1	Z A 33AS75	G,G G,G G,N G,3N G,N G,XN G,N G,2P G,N2P G,3N2P G,3N4P G,4N5P G,5N2P G,5N5P G,7N2P	LFT LFT RLY RLY ABI ABX ABX RLY RLY RLY RLY RLY RLY RLY	1 1 THR-320 THR-80 10-25 11 THR-320 THR-320 THR-320 THR-320 THR-320 THR-320 THR-320 THR-320 THR-320	MIN-MAX D 1 D 1 C140,320 C140,320 C 10- 80 C 10- 25 D 11 C140,320	NAI-D NAI-D NAI-D ACT-I ACT-I BF3-I BF3-I BF3-I ACT-I ACT-I ACT-I ACT-I ACT-I ACT-I ACT-I ACT-I ACT-I	122 DST 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI	REMARKS
64SH5 67LA1 56SU1 56SU1 64CO3 65F11 67HU1 56SU1 56SU1 56SU1 56SU1 56SU1 56SU1 56SU1 56SU1	Z A 33AS75	G,G G,G G,N G,3N G,N G,XN G,N G,2P G,3N2P G,3N2P G,3N4P G,4N5P G,5N2P G,5N5P G,5N5P G,7N2P G,7N4P	LFT LFT RLY RLY ABI ABX ABX RLY RLY RLY RLY RLY RLY RLY RLY	1 1 THR-320 THR- 80 10- 25 11 THR-320 THR-320 THR-320 THR-320 THR-320 THR-320 THR-320 THR-320 THR-320	MIN-MAX D 1 D 1 C140,320 C140,320 C 10- 80 C 10- 25 D 11 C140,320	NAI-D NAI-D NAI-D ACT-I ACT-I BF3-I BF3-I BF3-I ACT-I	122 DST 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI	REMARKS
64SH5 67LA1 56SU1 56SU1 64CO3 65F11 67HU1 56SU1 56SU1 56SU1 56SU1 56SU1 56SU1 56SU1 56SU1 56SU1	Z A 33AS75 33AS75	G,G G,G G,N G,3N G,N G,XN G,N G,2P G,3N2P G,3N2P G,3N4P G,4N5P G,5N5P G,5N5P G,7N2P G,7N4P G,8N6P	LFT LFT RLY RLY ABI ABX ABX RLY RLY RLY RLY RLY RLY RLY RLY RLY	1 1 THR-320 THR- 320 THR- 80 10- 25 11 THR-320 THR-320 THR-320 THR-320 THR-320 THR-320 THR-320 THR-320 THR-320 THR-320	MIN-MAX D 1 D 1 C140,320 C140,320 C 10- 80 C 10- 25 D 11 C140,320	NAI-D NAI-D NAI-D ACT-I ACT-I BF3-I BF3-I BF3-I ACT-I	122 DST 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI	REMARKS
64SH5 67LA1 56SU1 56SU1 64CO3 65F11 67HU1 56SU1 56SU1 56SU1 56SU1 56SU1 56SU1 56SU1 56SU1	Z A 33AS75	G,G G,G G,N G,3N G,N G,XN G,N G,2P G,3N2P G,3N2P G,3N4P G,4N5P G,5N2P G,5N5P G,7N2P G,7N4P G,7N4P G,8N6P G,10N4P	LFT LFT RLY RLY ABI ABX ABX RLY RLY RLY RLY RLY RLY RLY RLY RLY	1 1 THR-320 THR- 80 10- 25 11 THR-320 THR-320 THR-320 THR-320 THR-320 THR-320 THR-320 THR-320 THR-320	MIN-MAX D 1 D 1 C140,320 C140,320 C 10- 80 C 10- 25 D 11 C140,320	NAI-D NAI-D NAI-D ACT-I ACT-I BF3-I BF3-I BF3-I ACT-I	122 DST 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI 4PI	REMARKS

SELENIUM Z=34

						D. 1 T. c		NI PID C		(2)				
A	ABUNI			0.70		RATIO						2 N	C ND	G,2P
- (0.00			G,P			_	HE3				,2N		
	0.87			8.6				7.2 8.9		5 1	. 2	9.2	19.4	
	9.02			9.5				6.1				.8.6		17.3
	7.58			9.6				0.1				7.9		18.4
				10.4				1.5				.6.9		*
				11.4		8.8	2	* T•0		/.U		.6.0	21.2	*
82	9.19	9 9	. 3	^	10	.0		^		^	1	.0 . 0	21.2	
REF	NU	CLIDE	REA	CTION	RES	EXC	ΙΤ	SC				ECTO		REMARKS
	Z	Α	IN,	OUT				M.	IN-M	ΙΑΧ	TYPE	MIN-	MAX	
					D 7 17	_	10		_	10	NIAT D	٠	10 125	
66B	E3 34	4SE	G,	G	KLX	5-	10			10	NAI-L))-	10 135	
60 D	E2 3	4SE/0	G,	G	LFT	1		D	1					
						ים	ROMI	NIE	Z=3	2.5				
						DI	COM	NE	2-3	, ,				
A	ABUN	n			SEDA	RATT	N F	NER	TES	: (M	(EV)			
Λ	ADOM		. N	G,P								.2N	G,NP	G,2P
79	50.5	4 10	7	6.3	19	. 8	1	8.7		5.5	5]	9.0	16.9	
	49.4			7.5				0.2				18.0		
OI	47.4	0 10		7.5		• 5	-			0.00	_			
								_			T) 27/10			DEMARKO
REF				CTION	RES	EXC:	IT		OURC			ECTO		REMARKS
	Z	Α	IN,	OUT				M	TW-L	1AX	TYPE	MIN-	MAX	
66 L	A1 3	5BR79	G,	G	LFT	0-	1	D	0-	1	NAI-I	0-	1 123	
			Í											
55S	C2 3	5BR81	G,	A	ABY	THR-	32	C	32		ACT-	[4PI	
						KRY	PTON	I Z:	≈ 36					
A	ABU					ARATI							O ND	0.27
		(3,N	G,P	(HE3		G, E	A (3,2N	G,NP	G,2P
78	0.3	5 11	L.9	8.2	19	9.6	1					20.9		
		7 11	L.5	9.1	19	9.6	1	.8.2		5.1		19.9		
82	11.5	6 11	1.0	9.9	15	7.5	1					18.8		
	11.5	5 1	/ • 5	9.8	15	J. 1	1				5 .			
84	56.9	0 10).5	10.7	19	7.4	2					18.0		
86	17.3	/ 9	8.6	11.9	19	1.2		ж		8.1	L :	17.0	20.9	^
REF	NU	CLIDI	E REA	CTION	RES	EXC	IT	S	OUR	CE	DE	гесто	R ANG	REMARKS
			IN,								TYPE	MIN-	MAX	
			·											
66B	E2 3	6KR8	2 G,	G	LFT	1		С	1		NAI-	D 0-	2 113	

RUBIDIUM Z=37

Λ	ABUND.	G,N	G,P			ENERG	IES (MEV)		G,NP	G,2P
85 87	72.15 27.85	10.5 9.9	7.0 8.6	16.5	5	19.6 21.8		19. 18.6	17.6 18.5	17.7 20.5
	2,,000		3,00	_, _,	-					
					NO	DATA				
					STRO	NTIUM	Z=38			
A	ABUND.			SEPARA	ATION	ENERG	IES (MEV))		
6.4		G,N				HE3	G,A			•
	0.56		8.			17.9	5.2		19.6 20.1	14.6 16.6
			9.6 9.4			19.4 17.4	6.3 7.3		18.1	18.0
88			10.6			21.3	7.9	19.5	20.6	19.2
	02130	32 32 4 32	2010		,					
REF	MICI	IDE REA	CTION	DEC 1	EXCIT	80	URCE 1	DETECTOR	R ANG	REMARKS
KEr	Z	A IN,		KES .	EVCII		N-MAX TY			KETIAKKS
	2	11 111,	001			***				
64B	E7 38S	R88 G,	G	LFT	2	D	2	D		
					YTTF	RIUM	Z=39			
Α	ABUND.						IES (MEV)			
0.0	****	-	G,P	-			G,A		G,NP	
89	100.00	11.5	/.1	18.	T	19.9	7.9	20.7	18.2	17.7
REF	NUCL	IDE REA	CTION	RES	EXCIT	SO	URCE	DETECTOR	R ANG	REMARKS
	Z	A IN,	OUT			MI	N-MAX TY	PE MIN-N	MAX	

66WA1 39Y 89 G,2N RLY THR-280 C150,280 ACT-I 4PI

ZIRCONIUM Z=40

G,N G,P 90 51.46 12.0 8.4 91 11.23 7.2 8.7 92 17.11 8.6 9.4 94 17.40 8.2 10.3	20.6 18.8 6.7 21. 19.9 18.6 14.9 5.4 19.2 15.6 15.7 17.2 3.0 15.8 17.4 15.9 18.5 3.8 14.9 17.8	15.5 16.2 17.1 18.9
REF NUCLIDE REACTION	RES EXCIT SOURCE DETECTOR ANG	21.2 REMARKS
	MIN-MAX TYPE MIN-MAX RLX 5- 10 D 5- 10 NAI-D 5- 10 135 ABX THR- 70 C 12- 70 ACT-I 4PI	
	ABX THR- 70 C 12- 70 ACT-I 4PI RLX 11- 14 D 2- 6 NAI-D 0- 14 0,90	
	NIOBIUM Z=41	
G,N G,P	SEPARATION ENERGIES (MEV) G,T G,HE3 G,A G,2N G,NP 13.4 15.7 2.0 16.6 14.7	
REF NUCLIDE REACTION Z A IN,OUT	RES EXCIT SOURCE DETECTOR ANG MIN-MAX TYPE MIN-MAX	REMARKS
	ABX 9- 11 D 9- 11 BF3-I 4PI RLY THR-280 C150,280 ACT-I 4PI	o

MOLYBDENUM Z=42

Α	ABUND.			SEPA	RATIO	N E	NER	GIES	(M	EV)		
		G,N	G,P	G	,T	G,	HE3		G,A	G,2N	G,NP	G,2P
92	15.84	12.6	7.3	20	.8	1	6.9		5.	22.8	19.5	12.6
94	9.04	9.7	8.5	16	. 6	1	5.4		2.1		17.4	14.5
95	15.72	7.4	8.7	16	.2	1	4.2		2.2		15.9	15.1
96	16.53	9.2	9.3	16	.5	1	6.6		2.8		17.8	16.1
97	9.46	6.8	9.2	16	.1	1	5.2		2.8		16.1	16.5
98	23.78	8.6	9.8	16	.3		.7.4		3.3		17.9	17.3
100	9.63	8.3	11.	15	.5	1	8.2		3.2	14.2	18.	19.
REF	NUCL	IDE R	EACTION	RES	EXCI	T	S	OURC	E	DETECTO	OR ANG	REMARKS
	Z	A I	N,OUT				M	IN-M	IAX	TYPE MIN-	-MAX	
66B	E3 42M	Ю	G,G	RLX	5-	10	D	5-	10	NAI-D 5-	- 10 135	
57E	L1 42M	1092	G,NP		THR-			32		ACT-I	4PI	
65C	01 42M	1092	G,N	RLX	THR-	70	С	12-	70	ACT-I	4PI	
57E	L1 42M	1092	G,P	RLY	THR-	32	C	32		ACT-I	4PI	

RUTHENIUM Z=44

Α	ABUND.			SEPARATI	ON ENERGI	ES (MEV)		
		G.N	G.P	G,T	G,HE3	G,A	G,2N	G,NP	G,2P
96	5.51	10.1	7.3	17.4	14.2	1.7	*	17.3	12.2
98	1.87	10.3	8.	17.1	15.4	2.2	18.3	17.7	14.0
99	12.72	7.5	8.4	14.4	14.6	2.3	17.7	15.8	14.7
100	12.62	9.7	9.2	16.9	16.6	2.9	17.1	18.1	15.7
101	17.07	6.8	9.4	16.4	14.8	2.8	16.5	16.0	16.6
102	31.61	9.2	10.1	14.1	14.4	3.4	16.0	18.6	17.5
	18.58	8.9	10.5	16.7	19.5	4.3	15.1	19.	19.

NO DATA

RHODIUM Z=45

A ABUND. G,N G,P 100 100.00 9.3 6.2	G,T G,		G,2N C	G,NP 15.4	
REF NUCLIDE REACTION					
Z A IN, OUT	11021	MIN-MAX TYI			
59 IK1 45 RH 103 G, G/ 65 KR 1 45 RH 103 G, G/	ABX 1 RLY 7- 18		Γ-Ι Γ-Ι	4PI 4PI	ISOMER YIELD
65KR1 45RH103 E,E/	RLY 7- 18	D 7- 18 AC	T-I	4PI	ISOMER YIELD
67HU1 45RH103 G,N	ABX 10,11	D 10,11 BF	3-I	4PI	
65KR1 45RH103 G,2P	ABX 15- 40	C 15- 40 AC	T-I	4PI	
	PALLA	DIUM Z=46			
A ABUND.	SEPARATION E	NERGIES (MEV			
		HE3 G,A		G,NP	
102 0.96 10.4 7. 104 10.97 10.0 8.		15.2 2.1 16.4 2.6		17.7 18.0	
104 10.97 10.0 8.		4.2 2.9		15.8	
106 27.33 9.5 9.		17.6 3.2	16.6	18.4	16.4
108 26.71 9.2 10.		18.5 3.9		18.5	
110 11.81 8.8 11.	16.4	19.6 4.4	15.0	18.7	19.2
					•
REF NUCLIDE REACTION Z A IN,OUT	RES EXCIT	SOURCE MIN-MAX TY	DETECTOR PE MIN-MAX	ANG	REMARKS
67KN1 46PD G,T	RLY THR- 49	C 36,49 AC	T-I	4PI	

SILVER Z=47

A	ABUND.		ARATION			G 0)		
107	51.35 9.5			,HE3	G,A		G,NP	
	48.65 9.2		.3.8	16.4		17.		15.1
10)	40.03	0.5 1	.3 • 0	17.3	3.3	16.5	15.8	16.4
REF	NUCLIDE RE	ACTION RES	EXCIT	SOUR	CE DE	TECTOR	ANC	DEMARKO
		,OUT	LHOII		MAX TYPE			REMARKS
		,		11111-1	MAX IIIE	riin-ri	H.A.	
65WY1	47AG G	,MU-T ABX	10- 35	C 90	SCI-	D	4PI	
					501	_	411	
58B01		,G/ ABX	6- 28	C 6-	28 ACT-	I	4PI	
66CA1		,G/ ABI	0- 2				4PI	
66CA1	47AG109 G	,G/ ABI	0- 2	C 0-			4PI	
67HU1	. 47AG G	N ABX	10,11	D 10,1	l1 BF3-	I	4PI	
				ŕ				
56WA1	- :	T RLY	THR- 31	C 31	ACT-	I	4PI	
65ME2	47AG G	A SPC	THR- 35	C 35	SCD-	D 5- 2		
66WI1		T ABX	THR- 56	C 31-	56 ACT-	 T	4PI	
55ER1	47AG109 G	A ABY	THR- 31	C 32	ACT-	T	4PI	
55SC2	47AG109 G	A ABY	THR- 31 THR- 35 THR- 56 THR- 31 THR- 32	C 32	ACT-	T	4PI	
59R03		A ABX	15- 25	C 15-	25 ACT-	ī	4PI	
	,			0 2.5	25 AGI-		411	
			CADM	EUM Z=4	8			
A A	ABUND.	CED	ADATTON I	NEDOTEO	()(7)(1)			
	G,N		ARATION I					
106	1.22 11.			HE3		G,2N	-	
	0.88 10.3	8.1 17	7 - 4 1	L4.6		19.	17.4	
	12.39 9.9		5.9	15.7		18.3		
	12.75 7.0			16.9	2.9	17.2		
112	24.07 9.4					.6.8		
	24.07 9.4 12.26 6.5	9.7 16 9.7 16				.6.4	18.5	16.8
						.5.9	16.2	17.6
	28.86 9.0					.5.6	18.8	18.3
116	7.58 8.7	11.2	* 1	.6.6	4.9 1	.4.7	18.7	*
חחת	MIGITAR BEL							
REF	NUCLIDE REA		EXCIT	SOURC	E DET	ECTOR	ANG	REMARKS
	Z A IN,	OUT		MIN-M	AX TYPE	MIN-MA	X	
EEDII1	/ 0 ap =							
	48CD G,		_				90	
65GI1	- ,		8	D 8	NAI-D	8	135	
66BE3	48CD G,	G RLX	5- 10	D 5-			0 135	
66CA1	- ,			C 0-	2 ACT-I		4PI	
66MI1	48CD112 G,	G ABX	8	D 8	NAI-D	0- 8	8 DST	

REF	NUCLIDE REACTION Z A IN,OUT			DETECTOR ANG TYPE MIN-MAX	REMARKS
65CH1	48CD111 E,E/	ABX 1	D 1- 2	ACT-I 4PI	
55MC1	48CD G,XN	RLY THR- 22	C 22	NAI-I 90	
59KU2	48CD112 G,P 48CD113 G,P 48CD114 G,P 48CD116 G,P	ABX THR- 28 ABX THR- 28	C 15- 28 C 15- 28	ACT-I 4PI ACT-I 4PI	
		INDIU	JM Z=49		
A	ABUND.	SEPARATION E	NERGIES (M	EV)	
	ABUND. G,N G,	P G,T G,	HE3 G,A	G,2N G,NP	G,2P
113	4.28 9.4 6.	1 13.9 1	.6.8 3.0	17.3 15.5	15.7
115	95.72 9.0 6.	8 13.9 1	.7.9 3.0	10.3 15.9	17.1
REF	NUCLIDE REACTION Z A IN,OUT	RES EXCIT	SOURCE MIN-MAX	DETECTOR ANG	REMARKS
55BU1	49IN G,G	RLX 0- 3	C 3	NAI-D 90	
66VE1	49 IN 113 G,G/ 49 IN 115 G,G/	ABX 1	D 0- 1	ACT-I 4PI	
65KR1	49 IN115 G,G/	RLY 7-18	C 7- 18	ACT-I 4PI	
66 VE1	49 IN115 G,G/	ABX 1	D 0- 1	ACT-I 4PI	
	49 IN115 E,E/				
65KR1	49 IN115 E,E/	RLY 7- 18	D 7- 18	ACT-I 4PI	ISOMER YIELD
67HU1	49IN115 G,N	ABX 10,11	D 10,11	BF3-I 4PI	
57RO2	49 IN G.P	SPC 15.18	D 15.18	EMU-D 2- 7 DST	
56HE2	49IN G,P 49IN115 G,2P	RLY THR- 31	C 31	ACT-I 4PI	

65ME2 49IN G,A SPC THR- 35 C 35 SCD-D 5- 26 90 56HE2 49IN115 G,A RLY THR- 31 C 31 ACT-I 4PI

TIN Z≃50

Α .	ABUND.			PARATI			-	-			
	0.04	G,N	G,P	G,T		HE3	G,A			G,NP	G,2P
	0.96	11.1	7.8	17.1		5.0	1.8	•	*	17.6	12.9
	0.66	10.3	8.5	14.3		5.3	2.6			18.0	14.6
	0.35	7.5	8.7	17.0		4.4	3.2		.9	16.1	15.6
	14.30	9.6	9.3	17.1		7.4	3.4		.1	18.3	16.1
	7.61	6.9	9.5	16.8		5.3	3.8			16.2	16.9
	24.03	9.3	10.0	17.1		8.5	4.]		.3	18.8	17.5
			9.9	16.8		6.3	4.4		.8	16.5	18.2
		9.1	10.8	17.1		9.6	4.8			19.0	19.0
		8.8	11.6	17.3	2	8.0	5.7 *		.0	20.	*
124	5.94	8.5	12.	18.		*	*	14	. 4	20.4	*
REF	NUCLII	E REACT	CION RES	EXC	IT	SO	URCE	DETE	CTOR	ANG	REMARKS
	Z A							TYPE M			
66BE3		G,G	RLX		10	D	5- 10	NAI-D	5-	10 135	
66HR1		118 G,G	LFT				1	NAI-D	1	90	
66HR1	50SN1	L20 G,G	LFI	1		D	1	NAI-D	1	90	
6 /. AT E	FOCN	C VI	ı Nos	מנומי ז	27	0 1	,	mun T	,	D am	
64AL5	50SN	G,XI	N NO2	THR-	34	C 3	4	THR-I	6-	DST	
				A	NTIM	ONY	Z=51				
A A	ABUND.			PARATI			-				
		G,N	G,P	G,T		HE3	G,A		2N	G,NP	G,2P
		9.3	5.8	12.9		7.1	3.1			14.9	16.6
123	42.75	9.0	6.6	13.1	18	8.	4.1	. 15	.8	15.4	18.
מממ	MUCTER	ATE TOTELA CO	יים אסדי	TENO	Tm	00	WD O E	PEME	amon	4370	DEMARKS
REF	Z A		TION RES	EXC	LT		URCE	DETE TYPE M			REMARKS
	L F	111,00) I			PIL.	N-MAA	IIPE M	T14-147	A.A.	
66 RE3	51SR	G,G	RT.X	5-	10	D	5- 10	NAI-D	5-	10 135	
		.23 G,G	1.177	1	10	D		NAI-D	J	122	
040113	21011	0,0	LAT 1			ַ	-	MIT_D		144	
67HU1	51SB	G,N	ABX	10.	11	D 10	0.11	BF3-I		4PI	
		- ,		,			,				
55ER1	51SB1	21 G,A	ABY	THR-	31	C 3	2	ACT-I		4PI	
		21 G,A		THR-				ACT-I		4PI	
		,						_			

TELLURIUM Z=52

120 8.9(-2) 10.	N G,P 3 7.2 1 8.0 9 8.1 4 8.6 6 8.7 1 9.1 8 9.6	15.8 1: 15.8 1: 15.7 1: 15.9 1: 15.7 1: 15.8 1: 15.7 1:	HE3 G, 3.9 O. 5.2 1. 3.0 1. 6.2 1. 4.0 2. 7.2 .	A G,2N 3 18. 1 17.0 5 17.0 8 16.4 2 16.0	17.6 15.2 17.9 18.0	12.3 13.8 14.5 15.1 15.8 16.4
	EACTION RES	EXCIT	SOURCE MIN-MAX	DETECTOR TYPE MIN-M		REMARKS
66BE3 52TE 65AK1 52TE124 66ME1 52TE125	G,G LFT	5- 10 1 1	D 5- 10 D 1 D 1	NAI-D 5- NAI-D SCD-D 1		WIDTH
		IODINI	E Z=53			
	SEPA					
127 100.00 9.	N G,P 1 6.2	13.4		G,2N 2 16.2	G,NP 15.4	G,2P 15.3
	EACTION RES	EXCIT		DETECTOR TYPE MIN-M		REMARKS
66FR1 53I 127	G,G LFT	1	D 1	SCD-D 1	140	
66BR1 53I 127 666BR1 53I 127 67HU1 53I 127	G,N ABX G,2N ABX G,N ABX	THR- 33	D 8- 33 D 8- 33 D 10,11	BF3-I	4PI 4PI 4PI	
59B01 53I 127 (G,P ABX	15,18	D 15,18	SCI-D 2-	12 4PI	

XENON Z=54

Α	ABUND.			SEPA	RATION EN	ERGIES	(MEV)		
		G,N	G,P	G,T	G,HE3	G,A	G,2N	G,NP	G,2P
124	0.10	10.0	7.0	16.5	14.1	0.5	*	16.7	11.7
126	0.09	10.0	7.6	16.0	14.9	1.3	17.9	17.2	13.2
128	1.92	9.6	8.2	15.9	15.7	1.8	16.8	17.3	14.4
129	26.44	6.9	8.3	15.7	13.6	2.1	16.6	15.1	15.0
130	4.08	9.3	8.7	15.9	16.5	2.3	16.2	17.6	15.5
131	21.18	6.6	8.8	15.7	14.4	2.5	15.9	15.3	16.0
132	26.89	8.9	9.1	15.7	17.2	2.7	15.5	17.7	16.5
134	10.44	8.5	9.5	15.6	17.9	3.2	15.0	17.8	17.5
136	8.87	7.9	10.0	15.4	*	3.6	14.4	17.8	*

NO DATA

CESIUM Z=55

Α	ABUND.		SEPA	RATION	ENERGIE	S (MEV)			
						G,A	G,2N	•	G,2P
133	100.00	9.0	6.1 1	.3.2	16.2	2.1	16.2	15.1	15.3
REF		REACTI		EXCIT		-	ETECTOR PE MIN-M		REMARKS
67HU	1 55CS13	33 G,N	ABX	10,11	D 10,	11 BF3	3-I	4PI	
59в0	1 55CS13	33 G,P	ABX	15,18	B D 15,	18 SC1	I-D 2-	12 4PI	

BARIUM Z=56

SEPARATION ENERGIES (MEV)

A ABUND.

		G,N	G,P	G,T	G,HE3	G,A	G,2N	G,NP	G,2P
130	0.10	10.	7.	16.1	14.0	0.6	18.	16.8	12.0
132	9.7(-2)	9.6	7.6	15.7	14.6	0.9	17.2	16.9	13.1
134	2.42	9.2	8.0	15.7	15.4	1.4	16.6	17.1	14.2
135	6.59	7.2	8.5	15.7	13.6	2.0	16.4	15.2	14.8
136	7.81	9.2	8.7	15.9	16.3	2.3	3 16.4	17.7	15.6
137	11.32	6.9	9.0	16.2	14.8	2.7	7 16.2	15.6	16.0
138	71.66	8.5	8.9	15.7	16.8	2.8	3 15.5	17.6	16.6
REF	NUCLI	ስፍ ይፍለ <i>ር</i> '	TION RE	S EXC	rr c	OURCE	DETECTOR	R ANG	REMARKS
KLI		A IN,O		S LAC.		•	TYPE MIN-N	_	ich alice
	2 1	H IN, O	01		F1	TM-LIMI	11111 11111 1	M LA L	
64AI	.5 56BA	G,X	N NO	X THR-	34 C	34	THR-I 6-	DST	
UHAL	אמטכ כנ	0,10	110	21 21111	3, 0			201	
59HA	2 56BA	G,A	SP	C THR-	30 C	30	EMU-D 2-	5 DST	
JJLE	12 JUDA	U, h	O1	J 11110	30 0	-		2 201	

LANTHANUM Z=57

A ABUND. G,N G,P	SEPARATION ENERGIES (M. G,T G,HE3 G,A	EV) G,2N G,NP	G,2P
139 99.91 8.8 6.2	13.7 13.9 2.3 13.2 16.0 2.1	16. 14.8	15.1
REF NUCLIDE REACTION Z A IN,OUT	RES EXCIT SOURCE MIN-MAX	DETECTOR ANG TYPE MIN-MAX	REMARKS
66BE3 57LA139 G,G	RLX 5- 10 D 5- 10	NAI-D 5- 10 135	
67HU1 57LA139 G,N	ABX 9- 11 D 9- 11	BF3-I 4PI	
	CERIUM Z=58		
A ABUND.	SEPARATION ENERGIES (M. G,T G,HE3 G,A 16.0 13.8 .6 16. 14.7 1.2 16. 15.0 1.4 12.1 14.4 -1.4	EV)	G 2P
136 0.19 10. 7	16 0 13 8 6	G,2N G,NP	G, ZP
138 0.25 9. 7.	16. 14.7 1.2	17.3 16.8	13.1
140 88.48 9.0 8.0	16. 15.0 1.4	16.6 16.8	14.2
142 11.07 7.2 8.9	12.1 14.4 -1.4	12.6 15.7	15.9
	RES EXCIT SOURCE		
66BE3 58CE G,G	RLX 5- 10 D 5- 10 D	NAI-D 5- 10 135	
59HA2 58CE G,A	SPC THR- 30 C 30	EMU-D 2- 5 DST	
	PRASEODYMIUM Z	=59	
A ABUND.	SEPARATION ENERGIES (M	EV)	
G,N G,P	G,T G,HE3 G,A	G,2N G,NP	G,2P
141 100.00 9.4 5.2	13.3 14.3 1.	17.1 14.3	13.2
REF NUCLIDE REACTION Z A IN,OUT	RES EXCIT SOURCE MIN-MAX	DETECTOR ANG	REMARKS
61B03 59PR141 G,MU-T	ABX 11- 20 C 11- 20	ACT-I 4PI	
66BE3 59PR141 G,G	RLX 5- 10 D 5- 10 D	NAI-D 5- 10 135	
59DI1 59PR141 G,N	RLY 9- 30 C 30	ACT-I 4PT	REL CU63 (G,N)
	ABX THR- 33 D 8- 33		(0,11)
66BR1 59PR141 G,2N	ABX THR- 30 D 8- 33	BF3-I 4PI	
66BR1 59PR141 G,3N	ABX THR- 30 D 8- 33 I	BF3-I 4PI	
	ABX THR- 65 CTHR- 70		
67HU1 59PR141 G,N	ABX 10,11 D 10,11	BF3-I 4PI	

NEODYMIUM Z=60

Α	ABUND.		SEP	ARATIO	ON ENERG	IES (MEV)		
		G,N	G,P	G,T	G,HE3	G,A	G,2N	G,NP	G,2P
142	27.11	9.8	7.2	15.8	13.8	0.7	17.7	16.6	12.5
143	12.17	6.1	7.5	14.2	10.8	0.7	15.9	13.4	13.1
144	23.85	7.8	8.0	12.7	13.2	-1.9	13.9	15.3	13.7
145	8.30	5.7	7.9	12.6	11.8	-1.6	13.6	13.8	14.4
146	17.22	7.6	8.6	12.8	14.2	-1.2	13.3	15.5	15.0
148	5.73	7.3	9.	12.7	15.	-0.6	12.	16.1	*
150	5.62	7.3	*	13.	*	0.3	12.3	16.	*
REF	NUCL ID	E REACT	TON PF9	EXC:	וד כח	URCE	DETECTOR	ANG	REMARKS
KLF	Z A		_	Lato.			PE MIN-M		112121110
	2 A	111,00	•		***				
66 BE 3	60ND	G,G	RLX	5-	10 D	5- 10 NA	MI-D 5-	10 135	
59HA2	2 60ND	G,A	SPC	THR-	30 C 3	0 EM	1U-D 2-	5 DST	

SAMARIUM Z=62

G,2P 10.5 12.4 13.0
12.4
13.0
13.0
13.5
14.2
15.6
*
REMARKS
CU63 (G,N)

EUROPIUM Z=63

				OROT TOT	2-05			
A AB	UND.	C E	DADATT	ON ENER	CIEC ()	MET/)		
A AD						A G,2N	C ND	C 2D
151 47	.82 7.9	4.9	10.2	12 7	-2 (14.4	12.9	
153 52	.18 8.5	5.9	11.2	14.7	-0.	3 14.8	14.2	14.5
233 32	.10 013	3.7		1407	0.	14.0	17.2	14.5
	War 755 551 65							
	UCLIDE REACT		S EXC		OURCE			REMARKS
•	Z A IN,OU	71		M	IN-MAX	TYPE MIN-M	AX	
66AT1	63EU153 G,G	ים ז	r 1	D	1	SCD-D 1		
OUNTI	0520155 0,0	Lir.		D	1	3CD-D 1		
67HU1 6	63EU G,N	AB	X 9-	11 D	9- 11	BF3-T	4PI	
	0,1		•	2	, 11	<i>D</i> 1 <i>J</i> 1	711	
			C	ADOLINI	IIM 7-6	5/1		
			G	MUULINI	OF1 Z=0	74		
A ABI	UND.	SE	PARATI	ON ENER	GIES (N	(EV)		
				G,HE3			G,NP	G,2P
152 0.	.20 8.			12.5				
154 2	.15 8.6				-1.0			
	.73 6.4		14.1		-0.1			
	.47 8.5		14.1			2 15.0		
	.68 6.4				0.6	14.9		
	.87 7.9					14.3		
160 21.	.90 6.1	*	13.3	*	0.9	13.3	16.1	*
REF NU	UCLIDE REACT	TON RES	S EXC	IT S	OURCE	DETECTOR	ANG	REMARKS
	Z A IN, OU					TYPE MIN-M		KIII IIIKKO
66BA3 6	64GD155 G,G	LFT	1	D	1	NAI-D 1		
	64GD155 G,G			D		NAI-D 1		
			T	ERBIUM	Z=65			
4 477	n n				(-			
A ABI	UND.			ON ENER				- 0-
156 5 04	G,N	G,P	G,T	G,HE3	G , A	G,2N	G,NP	
150 5.20	(-2) 10.	/.	14.	12.7	-1.4	16.5	16.	
139 99.	.95 8.2	6.2	12.0	14.4	0.2	2 14.9	14.2	14.6
REE MI	UCLIDE REACT	TON DEC	FVC	IT S	OIDCE.	DETECTOR	ANO	DEMARKS
	Z A IN, OU		EAC.			DETECTOR TYPE MIN-M		REMARKS
2	11 111,00	1		PI	IN-UMA	TIFE PIEN-PL	n.A	
66AT2 6	65TB159 G,G	I,F1	1	D	1	SCD-D	DST	
	65TB159 G,G			D		NAI-D	DST	

DYSPROSIUM Z=66

Α	ABUND.	SEPARATION ENERGIES (MEV)									
		G,N	G,P	G,T	G,HE3	G,A	G,2N	G,NP	G,2P		
156	5.2(-2)	7.1	*	12.9	*	0.6	12.8	15.8	*		
158	9.0(-2)	9.	6.9	14.	13.3	-0.8	15.7	16.	12.5		
160	2.29	8.6	7.4	13.9	13.8	-0.4	15.4	15.6	13.6		
161	18.88	6.4	7.5	13.6	12.3	-0.3	15.0	13.9	14.0		
162	25.53	8.2	8.0	13.6	14.5	0.0	14.6	15.7	14.9		
163	24.97	6.2	8.3	13.4	13.4	0.2	14.5	14.3	15.5		
164	28.18	7.7	8.5	13.4	15.4	0.5	13.9	16.0	16.		

NO DATA

HOLMIUM Z=67

A A	BUND.		SEP	ARATIO	ON E	NEF	RGIES	5 (1	MEV)				
		G,N	G,P	G,T	G,I	HE3	3	G,	A G.	2N	G.NP	G,2P	
165 10	0.00								2 14				
REF	NUCLID Z A	E REACTI		EXC	ΙΤ		SOUR(11N-1		DETE TYPE M	CTOR IN-MAX	ANG	REMARKS	5
66AX1	67HO1	65 G,G	ABX	13,1	L6	D	13,1	L6	NAI-D		90,1	135	
65AM1	67H01	55\$G,XN	ABY	10-	20	С	10-	20	BF3-I		4PI	ORIENTED	TARGET
66AX1	67H01	55 G,N	ABX	8-	20	D	8-	20	BF3-I		4PI		
66AX1	67H016	55 G,2N							BF3-I		4PI		
67HU1	67H01	65 G,N		9-					BF3-I		4PI		
66SC1	67H016	65 G,P	SPC	THR-	70	С	70		TEL-D	6- 14	90,1	135	
66SC1	67H016	55 G,D	RLY	THR-	70	С	70		TEL-D	6- 14	90.1	35	
66SC1			RLY						TEL-D				

ERBIUM Z=68

Α	ABUND.	SEPARATION ENERGIES (MEV)										
		G,N	G,P	G,T	G,HE3	G,A	G,2N	G, NP	G,2P			
162	0.14	9.	6.	14.	12.2	-1.5	*	15.4	11.3			
164	1.56	8.8	6.8	14.	12.8	-1.3	15.6	15.2	12.3			
166	33.41	8.5	7.4	13.5	13.5	-0.8	15.2	15.5	13.5			
167	22.94	6.4	7.5	13.4	12.3	-0.6	15.0	13.9	14.3			
168	27.07	7.8	8.0	13.1	14.4	-0.5	14.2	15.3	15.0			
170	14.88	7.2	8.5	12.7	*	-0.1	13.2	15.7	*			

NO DATA

THULIUM Z=69

THULIUM Z=69													
A ABUND. SEPARATION ENERGIES (MEV)													
		G,N	G,P	G,T	G,HE3	G,A	G,2N		G,2P				
169	100.00	8.0	5.6	12.8	13.2	-1.1	15.	13.4	13.5				
				NO	DATA								
				NO	DATA								
				YTTI	ERBIUM	Z=70							
A	ABUND.					ES (MEV)							
160	0.1/					G,A							
	0.14					-2.1 -2.0							
	3.03 14.31					-1.6							
						-1.3							
						-0.8							
						-0.5							
	12.73					-0.7							
1,0	12113												
				NO	DATA								
				LUT	ETIUM	Z=71							
A	ABUND.					ES (MEV)			a 05				
						G,A							
				11.0	12.8	-1.4 -1.6	14.4	11.7					
1/6	2.59	0.1	5.9	10.7	12.0	-1.0	14.0	11.7	13.9				
				NO	DATA								
				II A TO	NIUM Z	7-72							
				nar	NION Z	/2							
A	ABUND.		SEF	ARATION	ENERGI	ES (MEV)							
		G,N	G,P	G,T	G,HE3	G,A	G,2N	G,NP	G,2P				
174	0.18	*	5.8	13.	11.3	-2.6	*	14.4	10.9				
176	5.20	8.	6.4	12.4	11.7	-2.4	15.0	14.3	11.9				
177	18.50	6.40	6.6	12.1	10.6	-2.5	14.	12.8	12.5				
178	27.14	7.6	7.3	11.9	12.4	-2.4	14.0	14.2	13.5				
179	13.75	6.1	7.5	11.8	11.8	-2.1	13.7	13.4	14.0				
180	35.24	7.3	7.9	12.2	13.6	-1.4	13.4	14.9	15.1				
חשם	MICITI	DE DEAC	TAN DEC	EXCIT	SOI	JRCE I	ETECTOR	ANG	REMARKS				
REF		A IN,O	TION RES	EACII		N-MAX TYP			CHILITAL				
	6	U TIN, 01	01		LILI	. IMM. III	LILIN FIL						

61HA1 72HF177 G,G LFT 0- 1 D 0- 1 NAI-D 0- 1 110

TANTALUM Z=73

A	ABUND.	CN	SEP.	ARATION	ENERGII	ES (MEV)	0.01	C ND	0.05
180	1.2(-2)	G, N	G, P		11.6		G,2N		
181	99.99	7.6	5.9	11 1	11.0	-Z.I	14.6	12.0	
101	77.77	/.0	0.2	11.1	13.3	-1.4	14.4	13.5	14.1
REF	NUCLIDE			EXCIT			ETECTOR	ANG	REMARKS
	Z A	IN,OUT			MIN-	-MAX TYP	E MIN-MAX	ζ.	
FO. D. 4	2 72 10	1 17 17	A 70.22	mm11D 0	C D 10	0 (570	_	4 ***	
59 BA	3 /3TA18	1 E,N	ABY	THK- 3	р 10-	- 36 BF3	-1	4PI	
64AL	5 73TA18	1 C YN	NOX	THR_ 3.	4 C 34	тир	-I 6-	DST	
67HU		1 G N	ΔRY	8_ 1	4 0 34 1 h 8-	- 11 BF3	-1 0-	4PI	
0,110	1 /31/110	1 0,11	ADA	0 1.	I D 0-	- II DED	-1	41.1	
59 SE	2 73TA18	1 G.P	ABX	15.18	D 15.	18 EMU	- T	4PI	
		, -				, 20 2210	-	** _	
			יונייי	JC CTEN	/U/OT TO AR	1) Z=74			
			101	MGS I EIN	(WOLFKAL	1) 2-/4			
A	ABUND.		SEP	ARATTON	ENERGIE	ES (MEV)			
				G,T	G,HE3	, ,	G,2N	G,NP	G,2P
180	0.14	*			11.6	-2.6	*	14.4	
182		8.0			12.8		14.9	14.7	
					11.7		14.2	13.2	13.4
					13.1		13.6		
186					14.4		13.0		*
							23 0 0	20 0	
REF	NUCLIDE	DEACTE	ON DEC	EVOTE	COLUM	ACE D	DE CENT	4310	DENABARA
KEr	NUCLIDE Z A		JN KES	EXCIT			ETECTOR		REMARKS
	Z A	IN,001			MIN-	-MAX IIP	E MIN-MAX		
66 BE	3 74W	G.G	RLX	5 1(ה 5 ת	. 10 NAT	-D 5- 10	135	
66 SH		3 G,G			D 1				
	_ , 20	5 0,0	22. 1	_	20 1.	1411	<i>D</i> 1	41.1	~
				RHENIU	JM Z=75				
A	ABUND.				ENERGIE				
		G,N			G,HE3		G,2N	-	-
	37.07				12.2		14.	12.9	
187	62.93	7.3	6.0	10.5	13.2	-1.6	13.5	13.2	14.3
REF	NUCLIDE	REACTIO	ON RES	EXCIT	SOUR	CE D	ETECTOR	ANG	REMARKS
	Z A						E MIN-MAX		
64SH	5 75RE18	7 G,G	LFT	1	D 1	NAI:	-D	122	

OSMIUM Z=76

				OSMIC	JM Z=70				
A 184 186 187 188 189 190	ABUND. 0.02 1.59 1.64 13.3 16.1 26.4 41.0	G,N * 8.3 6.3 7.8 6.0 7.8 7.6	G,P 6.0 6.5	G,T * 13.0 12.0 12.1 11.9 12.4 13.0	ENERGIES G,HE3 10.7 11.6 10.5 12.5 11.3 13.7 *	(MEV) G,A 2.9 2.8 2.7 2.3 2.0 1.5	G,2N * 15.1 14.5 14.1 13.8 13.8 13.8	G,NP 14.1 14.4 12.8 14.4 13.1 15.1	G,2P 10.4 11.9 12.4 13.0 13.6 14.8
				NO	DATA				
				IRID	IUM Z=77				
A	ABUND.	G,N	SEPA G,P	RATION G,T	ENERGIES G,HE3	(MEV) G,A	G,2N	G,NP	G,2P
191	37.3	8.2	5.4	10.7		-2.0	14.5	13.2	13.4
193	62.7	7.8	5.8	10.9	14.0	-1.0	13.9	13.5	*
				NO	DATA				
				PLATI	NUM Z=78	1			
A	ABUND.		SEPA	ARATION	ENERGIES	(MEV)			
		G,N	-	G,T	G,HE3	G,A	G,2N	G,NP	G,2P
190	1.3(-2)	9.	6.	13.		-3.2	15.9	14.6 15.1	$11.0 \\ 12.2$
192	0.78	8.4	6.8 7.6	13. 13.0		-2.3 -1.4	15.0 14.7	15.4	13.4
194 195	32.9 33.8	6.1	7.6	12.9		-1.2	14.5	13.7	14.0
196	25.3	7.9	8.1	13.1	14.2	-0.8	14.0	15.5	14.8
198	7.21	7.6	8.8	13.1	15.1	0.0	13.4	15.7	*
DEE	MICLIDE	DEACTE	ON DEC	EXC IT	SOURO	יני חו	ETECTOR	ANG	REMARKS
REF	NUCLIDE Z A	REACTI IN, OUT	ON KES	EACII			E MIN-MAX		

66BE3 78PT G,G RLX 5- 10 D 5- 10 NAI-D 5- 10 135

GOLD Z=79

A	ABUND.	CN		ION ENER	(/	0.20	0.110	0.05	
197	100.00		G,P G,7 5.8 11.4		,	G,2N 14.8			
REF	NUCLIDE	REACTIO	N RES EY	CIT S	OURCE D	ETECTOR	ANIC	DEMADEC	
ILLI	Z A	IN,OUT	N KLS EA		IN-MAX TYP		ANG	REMARKS	
60 BA 67 HU		,		,18 D	14,18 ACT 9- 11 BF3		4PI		
59MA		,					4PI		
		•		- 70 C		-D 5- 11		REL D TO	
59MA 65HA			RLY THR- SPC THR-					REL D TO	P YLD
65ME.			SPC THR-			-D 5- 26			

MERCURY Z=80

A	ABUND.		SEP	ARATION	ENERGIE	S (MEV)			
		G,N	G,P	G,T	G,HE3	G,A	G,2N	G, NP	G,2P
196	0.15	9.	6.6	13.	12.4	-1.9	16.	15.0	11.7
198	10.02	8.6	7.1	13.4	13.1	-1.3	15.3	15.2	12.9
199	16.84	6.6	7.2	13.3	11.8	-0.8	15.3	13.8	13.7
200	23.13	8.0	7.7	13.3	14.0	-0.7	14.7	15.3	14.2
201	13.22	6.2	7.6	13.0	12.7	-0.3	14.2	14.0	14.8
202	29.80	7.8	8.5	13.2	14.9	-0.1	14.0	15.4	15.
204	6.85	7.5	9.	13.5	16.1	1.	13.5	16.	*
									0
REF	NUCLIDE	REACTIO	ON RES	EXCIT	SOUR	CE DE'	TECTOR	ANG	REMARKS
	Z A	IN,OUT			MIN-	MAX TYPE	MIN-MAX		
((0.00								
66BE3		G,G	RLX	5- 10		10 NAI-	5- 10	135	
57KN1	80HG199	G,G	LFT	1	D 1	SCI-	0 0- 1	90	
55MC1	80HG	G,XN	ע זע	THR- 22	0 0 22	NAT	T	00	
JUNIOT	oong	G, AIN	KLI	THR- 22	C 22	NAI-	Т	90	

THALLIUM Z=81

A	ABUND.				ENERGIE				
	22.5	G,N	G,P	G,T	G,HE3	G,	, A G, 2N	G,NP	G,2P
203	29,5	7.7	5.7	11.2	13.4	-0,	9 14.6	13.5	14.2
205	70.5	7.5	6.4	11.4	15.	0.	.0 14.2	14.0	15.
ממת	MICLIDE	DEACTIO	M DEC	EVC TO	COIM	OF.	DETECTOD	ANO D	EMADICO.
REF		REACTIO	N RES	EXCIT			DETECTOR TYPE MIN-MAX	ANG R	EMARKS
	Z A	IN, OUT			MIN-	MAX	TIPE MIN-MAX		
66 BE	81TL	G,G	PIY	5- 10	5 מ (10	NAI-D 5- 10	135	
OODL	01111	0,0	KLIA)- I(ר ע י	10	NAI-D J- 10	133	
65M02	2 81TL	G,XN	ABX	10-110	C 16-	110	ACT-T	4PI	
031101	0111	0,12		10 110	. 0 10		1101		
56HE2	81TL20	3 G,A	RLY	THR- 31	. C 31		ACT-I	4PI	
57EL2	2 81TL20	5 G.A	ABX	THR- 32	C 32			4PI	
		- J							
				LEAD	Z=82				
A	ABUND. (1))	SEP	ARATION	ENERGIE	S (N	MEV)		
		G,N	G,P	G,T	G, HE3	G,	,A G,2N	G,NP	G,2P
204	1.48	8.2	6.6	12.8	12.4	-2.	.0 15.2	14.4	12.3
206							.1 14.8	14.8	13.7
207	22.6	6.7	7.5	13.0	12.7	-0.	4 14.8	14.0	14.9
208	52.3	7.4	8.0	12.9	14.5	-0.	5 14.1	14.9	15.4
(1)	ABUNDAN	CE DEPEN	DS ON	SOURCE					
REF	NUCLIDE	REACTIO	N RES	EXCIT	SOUR	CE	DETECTOR	ANG R	EMARKS
	Z A	IN, OUT			MIN-	MAX	TYPE MIN-MAX		
55BU					3 C 3		NAI-D	90	
59C06		G,G		6,7	D 6,	7	NAI-D	30	
59PA3			ABX				NAI-D 17	90	
	L 82PB						NAI-D 3- 8	135	
66DE1		G,G		12- 17	D 12-	17	NAI-D	DST	
66BE3	82PB20	6 G,G	RLX	5- 10			NAI-D 5- 10	135	
65MC	L 82PB20	8 G,G	LFT	7			NAI-D	DST	
66BE3	82PB20	B G,G	RLX	5- 10			NAI-D 5- 10		
66 DO	L 82PB20	B G,G	LFT	7	D 7		NAI-D	DST	
- 4									
59BA3	82PB	E,N	ABY	THR- 36	D 10-		BF3-I	4PI	
66 PE 1	L 82PB208	B E,E/	FMF	0- 6	D 70		MAG-D	130	

REF	NUCLIDE REACTION Z A IN,OUT	RES EXCIT	SOURCE DETECTOR ANG MIN-MAX TYPE MIN-MAX	REMARKS
55BA5		ABY 30-200	C150-250 THR-I 30- DST	
55MC1	82PB G,XN	RLY THR- 22	C 22 NAI-I 90	
64AL5	82PB G,XN	NOX THR- 34	C 34 THR-I 6- DST	
67HU1	82PB206 G,N	ABX 9- 11	D 9- 11 BF3-I 4PI	
66DE2	82PB207 G,N	SPC THR- 80	C 80 CCH-D 0- 15 135	
67HU1	82PB208 G,N	ABX 9- 11	D 9- 11 BF3-I 4PI	
66BE1	82PB N,G	SPC 14	D 7 NAI-D 8- 18	

BISMUTH Z=83

Α	ABUND.		SEPA	RATION	ENERGIES (N	(EV)	
		G,N G	G,P	G,T	G,HE3 G	,A G,2N	G,NP G,2P
209	100.00	7.4 3	3.8	9.4	10.9 -3.	.1 14.3	11.2 11.8
REF	NUCLIDE	REACTION	RES	EXCIT	SOURCE	DETECTOR	ANG REMARKS
	Z A	IN, OUT			MIN-MAX	TYPE MIN-MAX	
66 BE			RLX	5- 10		NAI-D 5- 10	135
66DE	1 83BI209	9 G,G	RLX	12- 17	7 D 12- 17	NAI-D	DST
64AL	5 83BI209	9 G,XN	NOX	THR- 34	C 34	THR-I 6-	DST
66BE	4 83BI209	9 G,N	ABX	7	C 11	TOF-D	135
66DE	2 83BI209	9 G,N	SPC	THR- 80) CTHR- 80	CCH-D 0- 15	135
67HU	1 83BI209	9 G,N	ABX	9- 11	L D 9- 11	BF3-I	4PI
66BE	1 83BI210	O N.G	SPC	11	D 7	NAI-D 8- 18	

THORIUM Z=90

SEPARATION ENERGIES (MEV)

A ABUND.

232	100.00	G,N 6.4	G,P 7.7	G,T 10.	G,HE3	G,A -4.1	G,2N 11.4	G,NP 14.	G,2P *
REF		REACTI		EXCIT	SOUR		TECTOR MIN-MAX		REMARKS
57KA	1 90ТН23	2 G,XN	ABX	6- 2	3 C 6-	23 BF3-	I	4PI	
65AL1 65CA3 65SA1	2 90TH23 3 90TH23 2 90TH23 2 90TH23 2 90TH23 4 90TH23	2 G,F 2 G,F 2 G,F 2 G,F 2 G,F 2 G,F 2 G,F 2 G,F 2 G,F 2 G,F	ABX SPC RLY NOX ABX RLY NOX SPC RLX ABY SPC	8- 2 THR- 1 THR- 1 THR- 2 THR- 2 6 THR- 7 2- 300-10 THR-	0 C 6- D 6 O C 70 7 D 6- 000 C 1G 8 C 8	24 ION- ION- 16 ACT- EMU- 18 ION- 20 ION- BF3- EMU- 7 EMU- EV EMU- TOF-	T D 50-100 I I I I I I I I I I I I I I I I I I	4PI 4PI DST DST DST 4PI DST 4PI 77,15	ELAYED NEUT
			ì	URANIUM	1 Z=92				
A	ABUND.		SEP	ARATION	ENERGIE	S (MEV)			
201	5.6(-3) 0.72 99.27	G,N	G,P	G,T	G,HE3	G,A	G,2N	G,NP	G,2P
234	0.72	5.3	6.6	10.3	9.5	-4.8 -4.7	12.7	13.3	12.0
238	99.27	6.1	7.6	10.0	*	-4.3	11.4	14.0	*
REF	NUCLIDE Z A			EXCIT			TECTOR MIN-MAX	ANG	REMARKS
59BA	3 92U 23	8 E,N	ABY	THR- 3	6 D 10-	36 BF3-	·I	4PI	
57KA 57KA	1 92U 23 1 92U 23	3 G,XN 8 G,XN	ABX ABX	6- 2 6- 2	23 C 6- 23 C 6-	23 BF3- 23 BF3-	·I	4PI 4PI	
58KA	2 92U 23	3 G,F	ABX	5- 1	.8 C 5-	18 ION-	·I	DST	
59BA	4 92U 23 4 92U 23	4 G,F	RLY	THR- 2	10 C 6-	20 ION-	·I	DST DST	

REF	NUCLIDE REACTION Z A IN,OUT	RES EXCIT		DETECTOR TYPE MIN-MAX	ANG	REMARKS
59BA4 55KA1 55LA2 56K02 56K03 57BA4 57SC2 58BA7 58KA2 59BA4	92U 238 G,F	RLY THR- 20 ABX THR- 26 RLY THR- 19 ABX 8- 24 SPC THR- 18 NOX THR- 27 RLY THR- 15 NOX THR- 27 ABX 5- 18 RLY THR- 20 NOX 6 RLX 6- 7 ABY 300-1000 RLY THR- 33 NOX 7 ABY 6- 7 ABX 5- 8 RLY THR- 15 RLX 6- 7 NOX THR- 15 RLX 6- 7 NOX THR- 9 ABY 17	C 6- 20 C 12- 26 C 19 C 8- 24 C 18 C 9- 27 C 4- 16 C 6- 27 C 5- 18 C 6- 20 D 6 D 6- 7 C 1GEV C 33 D 7 C 5- 7 D 5- 8 C 10- 15 D 6- 7 C 5- 9	ION-I ACT-I BF3-I ION-I ION-D 50-100 EMU-D ACT-I EMU-I ION-I ION-I BF3-I EMU-D EMU-D SCD-D100-200 SCI-I ACT-I EMU-D BF3-I	4PI DST DST DST DST 4PI DST 4PI 4PI 4PI 4PI	DELAYED NEUT MASS SPC TRACKS IN GLASS TRACKS IN GLASS
REF	NUCLIDE REACTION		NIUM Z=93 SOURCE		ANG	REMARKS
	Z A IN,OUT 93NP237 G,F 93NP237 G,F		C 5- 18		DST DST	

PLUTONIUM Z=94

REF	NUCLIDE REACTION Z A IN,OUT	RES EXCIT	SOURCE DETECTOR MIN-MAX TYPE MIN-MAX	ANG REMARKS
57KA1	94PU239 G,XN	ABX 6- 23	C 6- 23 BF3-I	4PI
59BA4 66RA2	94PU239 G,F 94PU239 G,F 94PU239 G,F 94PU240 G,F	RLY THR- 20 NOX 5- 7	C 5- 18 ION-I C 6- 20 ION-I C 5- 8 C 6- 20 ION-I	DST DST DST DST

AMERICIUM Z=95

REF	NUCLIDE REACTION	RES EXCIT	SOURCE	DETECTOR	ANG REMARKS
	Z A IN, OUT		MIN-MAX	TYPE MIN-MAX	
	95AM241 G,F 95AM241 G,F	ABX 5- 18 RLY THR- 20			DST DST

Bibliography

In the following bibliography Conference Proceedings are indicated as follows:

- PICNS-60 Proceedings of the International Conference on Nuclear Structure, Kingston, Ontario 1960 (Bromley, D. A. and Vogt, E. W., Eds., University of Toronto Press, 1960)
- PICNS-61 Proceedings of the Rutherford Jubilee International Conference Manchester 1961 (Birks, J. B., Ed., Academic Press Inc., New York, 1961)
- PICNS-62 Proceedings of the Conference on Direct Interactions and Nuclear Reaction Mechanisms, University of Padua 1962 (Clementel, E. and Villi, C., Eds., Gordon and Breach, New York-London, 1963)
- PICNS-64 Congrès International de Physique Nucléaire, Paris 1964 (Gugenberger, P., Ed., Editions Centre Natl. Rech. Sci., Paris, 1964)
- 55Ba5 P. S. Baranov, V. I. Gol'danskii; Zhur. Eksp. i Teoret. Fiz. 28, 746, (1955); Soviet Phys. JETP 1, 613 (1955)
- 55Bul J. L. Burkhardt; Phys. Rev. 100, 192 (1955)
- 55Ca2 J. H. Carver, H. J. Hay, E. W. Titterton; Phil Mag. 46, 841 (1955)
- 55Erl P. Erdos, P. Jordan, P. Stoll; Helv. Phys. Acta 28, 322 (1955)
- 55G11 H. Glattli, E. Loepfe, P. Stoll; Helv. Phys. Acta 28, 366 (1955)
- 55Gol F. K. Goward, J. J. Wilkins; Proc. Roy. Soc. (London) A228, 376 (1955)
- 55Kal L. Katz, T. M. Kavanagh, A. G. W. Cameron, E. C. Bailey, J. W. T. Spinks; Phys. Rev. 99, 98 (1955)
- 55Lal W. B. Lasich, E. G. Muirhead, G. G. Shute; Australian J. Phys. 8, 456 (1955)
- 55La2 L. E. Lazareva, B. S. Ratner, I. V. Shtranikh; Zhur. Eksp. i Teoret. Fiz. 29, 274 (1955); Soviet Phys. JETP 2, 301 (1956)
- 55Mc1 K. G. McNeill; Phil. Mag. 46, 321 (1955)
- 55Mil M. Miwa; J. Phys. Soc. Japan 10, 273 (1955)
- 550x1 C. L. Oxley, V. L. Telegdi; Phys. Rev. 100, 435 (1955)
- 55Rel D. Reagan; Phys. Rev. 100, 113
- 55Ril L. S. Ring, Jr.; Phys. Rev. 99, 137 (1955)
- 55Sc2 J. Schmouker, P. Erdos, P. Jordan, P. Stoll; J. Phys. Radium 16, 169 (1955)

- 55Sp2 B. M. Spicer, A. S. Penfold; Phys. Rev. 100, 1375 (1955)
- 55Sp3 B. M. Spicer; Phys. Rev. 100, 791 (1955)
- 56Dil D. R. Dixon, K. C. Bandtel; Phys. Rev. 104, 1730 (1956)
- 56Hel F. Heinrich, H. Waffler; Helv. Phys. Acta 29, 232 (1956)
- 56He2 F. Heinrich, H. Waffler, M. Walter; Helv. Phys. Acta 29, 3 (1956)
- 56Ko2 V. A. Korotkova, P. A. Cherenkov, I. V. Chuvilo; Dokl. Akad. Nauk SSSR 106, 633 (1956); Soviet Phys. Doklady 1, 77 (1956)
- 56Ko3 V. A. Korotkova, P. A. Cherenkov, I. V. Chuvilo; Dokl. Akad. Nauk SSSR 106, 811 (1956); Soviet Phys. Doklady 1, 104 (1956)
- 56Sul T. T. Sugihara, I. Halpern; Phys. Rev. 101, 1768 (1956)
- 56Tzl C. Tzara; Compt. Rend. 242, 2340 (1956)
- 56Tz2 C. Tzara; J. Phys. Radium 17, 1001 (1956)
- 56Wal H. Waffler, F. Heinrich; Physica 22, 1146 (1956)
- 57All Yu. A. Aleksandrov, N. B. Delone, L. I. Slovokhotov, G. A. Sokol, L. N. Shtarkov; Zhur. Eksp. i Teoret. Fiz. 33, 614 (1957); Soviet Phys. JETP 6, 472 (1958)
- 57Bal P. S. Baranov, V. I. Gol'danskii, V. S. Roganov; Zhur. Eksp. i Teoret. Fiz. 33, 1123 (1957); Soviet Phys. JETP 6, 865 (1958); Phys. Rev. 109, 1801 (1958)
- 57Ba2 E. B. Bazhanov, Yu. M. Volkov, A. P. Komar, L. A. Kul'chitskii, V. P. Chizhov; Dokl. Akad. Nauk SSSR 113, 65 (1957); Soviet Phys. Doklady 2, 107 (1957)
- 57Ba3 R. Basile; Ann. Phys. (Paris) 2,267 (1957)
- 57Ba4 B. P. Bannik, N. M. Kulikova, L. E. Lazareva, V. A. Yakovlev; Zhur. Eksp. i Teoret. Fiz. 33, 53 (1957); Soviet Phys. JETP 6, 39 (1958)
- 57Bel J. B. Bellicard, J. Miller, C. Tzara, J. Phys. Radium 18, 201 (1957)
- 57Bol F. Bobard, G. Boulegue, P. Chanson; Compt. Rend. 244, 1761 (1957)
- 57Chl I. V. Chuvilo, V. G. Shevchenko; Zhur. Eksp. i Teoret. Fiz. 32, 1335 (1957); Soviet Phys. JETP 5, 1090 (1957)
- 57Ell A. El Sioufi, P. Erdos, P. Stoll; Helv. Phys. Acta 30, 264 (1957)
- 57E12 A. El Sioufi, P. Erdos, P. Stoll; Helv. Phys. Acta 30 266 (1957)
- 57Kal L. Katz, K. G. McNeill, M. LeBlanc, F. Brown; Can. J. Phys. 35, 470 (1957)
- 57Knl V. Knapp; Proc. Phys. Soc. (London) A70, 142 (1957)
- 57Ko2 A. P. Komar, I. P. Yavor; Zhur. Eksp. i Teoret. Fiz. 31, 531 (1956); Soviet Phys. JETP 4, 432 (1957)

- 57Lil D. L. Livesey; Can. J. Phys. 35, 987 (1957)
- 57Mul J. Muto, E. Takekoshi, T. Nakamura, A. Imamura, Y. Tsuneoka; J. Phys. Soc. Japan 12, 109 (1957)
- 57Rol M. Rozkos; Czech. J. Phys. 7, 592 (1957)
- 57Ro2 M. Rozkos; Czech. J. Phys. 7, 20 (1957)
- 57Scl F. D. Schupp, C. B. Colvin, D. S. Martin, Jr.; Phys. Rev. 107, 1058 (1957)
- 57Sc2 R. A. Schmitt, R. B. Duffield; Phys. Rev. 105, 1277 (1957)
- 58Ba3 M. Q. Barton, J. H. Smith; Phys. Rev. 110, 1143 (1958)
- 58Ba5 R. Basile and M. Gusakow; Compt. Rend. 246, 588 (1958)
- 58Ba6 E. B. Bazhanov, Yu. M. Volkov, L. A. Kul'chitskii; Zhur. Eksp. i Teoret. Fiz. 35, 322 (1958); Soviet Phys. JETP 8, 224 (1959)
- 58Ba7 A. I. Baz, N. M. Kulikova, L. E. Lazareva, N. V. Nikitina, V. A. Semenov; Int. Conf. Peaceful Uses of Atomic Energy 15, 2037 (1958)
- 58Be3 O. Beckman, R. Sandstrom; Nuclear Phys. 5, 595 (1958)
- 58Bol O. V. Bogdankevich, B. S. Dolbilkin, L. E. Lazareva, F. A. Nikolaev; PICNS 697 (1958)
- 58Bul N. A. Burgov, Yu. V. Terekhov; J. Nucl. Energy 7, 247 (1958)
- 58Fa2 H. Faissner, F. Gonnenwein; Z. Physik 153, 257 (1958)
- 58Grl G. M. Griffiths; Proc. Phys. Soc. (London) 72, 337 (1958)
- 58Hal A. Halsteinslid, K. Nybo, R. B. Mollerud; Univ. Bergen Arb. Naturv. R. 15, 1 (1958)
- 58Kal L. Katz, A. P. Baerg, F. Brown; Peaceful Uses of Atomic Energy, Switzerland 1958)
- 58Mal V. N. Maikov; Zhur. Eksp. i Teoret. Fiz. 34, 1406 (1958); Soviet Phys. JETP 7, 973 (1958)
- 58Ta2 C. A. Tatro, T. R. Palfrey, Jr., R. M. Whaley, R. O. Haxby; Phys. Rev. 112, 932 (1958)
- 59Ba3 W. C. Barber, W. D. George; Phys. Rev. 116, 1551 (1959)
- 59Ba4 A. P. Baerg, R. M. Bartholomew, F. Brown, L. Katz, S. B. Kowalski; Can. J. Phys. 37, 1418 (1959)
- 59Bol M. Bormann, H. Neuert; Z. Naturforsch. 14a, 922 (1959)
- 59Chl V. P. Chizhov, L. A. Kul'chitskii; Zhur. Eksp. i Teoret. Fiz. 36, 345 (1959); Soviet Phys. JETP 9, 239 (1959)
- 59Co6 S. G. Cohen; Nuovo Cimento 14, 931 (1959)
- 59Dal F. Daublin, F. Berthold, P. Jensen; Z. Naturforsch. 14a, 208 (1959)
- 59Dil G. Di Caporiacco, M. Mando, F. Ferrero; Nuovo Cimento 13, 522 (1959)
- 59Ha2 F. I. Havlicek; Nuovo Cimento 13, 969 (1959)
- 591kl N. Ikeda, K. Yoshihara; Radioisotopes (Tokyo) 8, 24 (1959)

- 59Ko2 A. P. Komar, T. N. Dragnev; Dokl. Akad. Nauk SSSR 126, 1234 (1959); Soviet Phys. Doklady 4, 653 (1959)
- 59Ku2 Chi-Ti Kuo, B. S. Ratner; Dokl. Akad. Nauk SSSR 125, 761 (1959); Soviet Phys. Doklady 4, 369 (1959)
- 59Lal M. Langevin, A. Bussiere de Nercy; J. Phys. Radium 20, 831 (1959)
- 59Mal E. D. Makhnovskii; Zhur. Eksp. i Teoret. Fiz. 36, 739 (1959); Soviet Phys. JETP 9, 519 (1959)
- 59Pa3 P. Paul, U. Stierlin; Nuclear Phys. 13, 576 (1959)
- 59Pe5 A. S. Penfold, E. L. Garwin; Phys. Rev. 116, 120 (1959)
- 59Ro3 J. P. Roalsvig, R. N. H. Haslam, L. D. Skarsgard, E. E. Wuschke; Can. J. Phys. 37, 722 (1959)
- 59Sal D. Sadeh; Compt. Rend. 249, 531 (1959)
- 59Sa2 D. Sadeh; Compt. Rend. 249, 2313 (1959)
- 59Se2 W. Sebaoun, H. Gauvin; Compt. Rend. 248, 791 (1959)
- 60Ba8 M. A. Bak, K. A. Petrzhak, Tei-Mei Chen; Izv. Akad. Nauk SSSR 24, 818 (1960)
- 60Bu2 A. Bussiere de Nercy; Compt. Rend. 250, 1252 (1960)
- 60Bu3 A. Bussiere de Nercy, M. Langevin; J. Phys. Radium 21, 293 (1960)
- 60De2 N. N. Delyagin; Zhur. Eksp. i Teoret. Fiz. 38, 1111 (1960); Soviet Phys. JETP 11, 803 (1960)
- 60Ko5 A. Komar; PICNS 494 (1960)
- 60Pr2 L. I. Prokhorova, G. N. Smirenkin; Atom. Energiya 8, 457 (1960)
- 60Re2 J. M. Reid, B. Lalovic; Proc. Phys. Soc. (London) 76 65 (1960)
- 60Val V. J. Vanhuyse, G. J. Vanpraet; J. Phys. Radium 21, 290 (1960)
- 61Aml B. Ambrozy, A. Faudrowicz, A. Jasinski, J. Kownacki,
 - H. Lancman, J. Ludziejewski; PICNS-61 281 (1961)
- 61Ba3 P. S. Baranov, L. I. Slovokhotov, G. A. Sokol, L. N. Shtarkov; Zhur. Eksp. i Teoret. Fiz. 41, 1713 (1961); Soviet Phys. JETP 14, 1219 (1962)
- 61Bo2 B. A. Bochagov, A. P. Komar, G. E. Solyakin, V. I. Fadeev; Atom. Energiya 11, 540 (1961)
- 61Bo3 O. A. Borello; Rev. Un. Mat. Argent. As. Fis. Argent. 19, 251 (1961)
- 61Ce2 M. Cerineo, K. Ilakovac, I. Slaus, P. Tomas; Phys. Rev. 124, 1947 (1961)
- 61C11 M. A. Clark, H. E. Gove, A. E. Litherland; PICNS-61 807 (1961)
- 61Gal C. C. Gardner, P. C. Gugelot; PICNS-61 263 (1961)
- 61Hal W. D. Hamilton, B. S. Sood; Nuclear Phys. 27, 66 (1961)
- 61Isl D. B. Isabelle, G. R. Bishop; J. Phys. Radium 22, 548 (1961)

- 61Knl H. H. Knitter, H. Waffler; PICNS-61 823 (1961)
- 61Pe2 G. A. Peterson, W. C. Barber; PICNS-61 831 (1961)
- 61Sh6 V. G. Shevchenko, B. A. Yur'ev; Izv. Akad Nauk SSSR 25, 1269 (1961)
- 61Ta2 N. W. Tanner, G. C. Thomas, E. D. Earle; PICNS 61 297 (1961)
- 61Ta3 N. W. Tanner, G. C. Thomas, E. D. Earle; PICNS-61 295 (1961)
- 61Wil W. S. C. Williams, H. S. Caplan, D. T. Stewart; Proc. Phys. Soc. (London) 78, 1125 (1961)
- 62B11 D. Blum, P. Barreau, J. Bellicard; PICNS-62 761 (1962)
- 62Fi2 F. W. K. Firk, K. H. Lokan, E. M. Bowey; PICNS-62 804 (1962)
- 62Fi3 F. W. K. Firk, E. R. Rae; PICNS-62 807 (1962)
- 62Grl G. M. Griffiths, E. A. Larson, L. P. Robertson; Can. J. Phys. 40, 402 (1962)
- 62Mi5 C. Milone, S. Milone Tamburino, V. Emma, S. Femino, S. Jannelli; PICNS-62 817 (1962)
- 62Su2 M. Suffert, G. Costa, D. Magnac-Valette; PICNS-62 842 (1962)
- 63Su2 M. Suffert, G. Costa, D. Magnac-Valette; J. de Phys. 24, 1029 (1963)
- 64A15 F. R. Allum, T. W. Quirk, B. M. Spicer; Nuclear Phys. 53, 545 (1964)
- 64Be7 R. B. Begzhanov, A. A. Islamov; Zhur. Eksp. i Teoret. Fiz. 47, 768 (1964); Soviet Phys. JETP 20, 513 (1965)
- 64Be8 W. Bertozzi, P. Demos, F. Hanser, S. Kowalski, C. Sargent, W. Turchinetz, R. Fullwood, J. Russell; PICNS-64 1026 (1964)
- 64Br2 P. Brix, H. G. Clerc, R. Engfer, G. Fricke, F. Gudden, H. Liesem, E. Spamer; PICNS-64 372 (1964)
- 64Chl K. W. Chen, J. R. Dunning, Jr., J. R. Rees, W. Shlaer, J. K. Walker, R. Wilson; Phys. Rev. 135, 4B B1030 (1964)
- 64Co3 S. Costa, F. Ferrero, S. Ferroni, R. Malvano; PICNS-64 1034 (1964)
- 64Do2 B. S. Dolbilkin, V. A. Zapevalov, V. I. Korin, L. E. Lazareva, F. A. Nikolaev; PICNS-64 1060 (1964)
- 64Eal E. D. Earle, N. W. Tanner, G. C. Thomas, PICNS-64 385 (1964)
- 64Fi2 F. W. K. Firk, E. M. Bowey; PICNS-64 1013 (1964)
- 64Go4 A. N. Gorbunov, A. T. Varfolomeev; PICNS-1071 (1964)
- 64Ha3 S. S. Hanna, R. E. Segel, R. G. Allas; PICNS-64 1022 (1964)
- 64Is3 B. S. Ishkhanov, I. M. Kapitonov, B. A. Yur'ev, V. G. Shevchenko; PICNS-64 1042 (1964)
- 64Kil M. Kihara, K. Baba, K. Miyake, T. Nakamura, T. Yamaki, S. Yasumi, Y. Yoshimura; J. Phys. Soc. Japan 19, 2236 (1964)
- 64Ko5 A. P. Komar and Yu. D. Makhnovsky; Nuclear Phys. 65, 662 (1964)
- 64La5 M. Langevin, J. M. Loiseaux, J. M. Maison; PICNS-64 1045 (1964)
- 64Lo3 J. M. Loiseaux, M. Langevin, J. M. Maison; PICNS-64 1048 (1964)
- 64Ma2 M. Masuda, M. Kondo, S. Takeda, M. Okumura, J. Ookuma; J. Phys. Soc. Japan 19, 2339 (1964)

- 64Me2 F. R. Metzger; PICNS-64 392 (1964)
- 64Rel T. W. Retz-Schmidt, S. J. Skorka, J. Morgenstern, H. Schmidt; PICNS-64 396 (1964)
- 64Sel S. Seki, M. Yamanouchi, M. Miwa; J. Phys. Soc. Japan 19, 1999 (1964)
- 64Sh5 Yu. K. Shubnyi, D. K. Kaipov, R. B. Begzhanov; Zhur. Eksp. i Teoret. Fiz. 47, 16 (1964); Soviet Phys. JETP 20, 11 (1965)
- 64Sh6 N. K. Sherman; PICNS-64 1051 (1964)
- 64Sul M. Suffert, G. Costa, D. Magnac-Valette; PICNS-64 1054 (1964)
- 64Thl M. N. Thompson, J. M. Taylor, B. M. Spicer; PICNS-64 1008 (1964)
- 64To3 M. E. Toms; PICNS-64 1004 (1964)
- 64U13 H. Ullrich; PICNS-64 1038 (1964)
- 65Ajl V. Ajdacic, M. Cerineo, B. Lalovic, G. Paic, I. Slaus, P. Tomas; Phys. Rev. Letters 14, 444 (1965)
- 65Akl A. F. Akkerman, V. L. Kochetkov, V. N. Chekanov; J. Nucl. Phys. (USSR) 1, 738 (1965); Sov. J. Nucl. Phys. 1, 527 (1965)
- 65All E. Albertsson, B. Forkman; Nuclear Phys. 70, 209 (1965)
- 65Aml E. Ambler, E. G. Fuller, H. Marshak; Phys. Rev. 138, B117 (1965)
- 65Arl P. E. Argan, G. Mantovani, A. Piazzoli; Nuovo Cimento 37, 376 (1965)
- 65Ar2 P. E. Argan, L. Meneghetti, S. Vitale; Nuovo Cimento 38, 1489 (1965)
- 65Ar3 H. Artus; Z. Naturforschg. 20, 320 (1965)
- 65Asl J. G. Asbury and F. J. Loeffler; Phys. Rev. 137, B1214 (1965)
- E. B. Bazhanov, A. P. Komar, A. V. Kulikov, V. I. Ogurtzov; Phys. Letters 19, 239 (1965)
- 65Ba2 E. B. Bazhanov, A. P. Komar, A. V. Kulikov, E. D. Makhnovsky; Nuclear Phys. 68, 191 (1965)
- 65Ba3 G. Baciu, G. C. Bonazzola, B. Minetti, C. Molino, L. Pasqualini, G. Piragino; Nuclear Phys. 67, 178 (1965)
- 65Ba4 W. C. Barber, G. J. Vanpraet; Nuclear Phys. 72, 63 (1965)
- 65Bel B. L. Berman, R. L. Bramblett, J. T. Caldwell, R. R. Harvey,
 - S. C. Fultz; Phys. Rev. Letters 15, 727 (1965)
- P. G. Bizzeti, A. M. Bizzeti Sona, M. Bocciolini, G. Di Caporiacco, T. Fazzini, M. Mando; Nuclear Phys. 63, 161 (1965)
- 65Bol P. Bounin, M. Croissiaux; Nuclear Phys. 70, 401 (1965)
- 65Bo2 R. Bosch, J. Lang, R. Muller, W. Wolfli; Helv. Phys. Acta 38, 753 (1965)
- 65Bul H. v. Buttlar, A. Goldmann; Z. Physik 187, 355 (1965)
- 65Cal J. T. Caldwell, R. L. Bramblett, B. L. Berman, R. R. Harvey,
 - S. C. Fultz; Phys. Rev. Letters 15, 976 (1965)
- 65Ca2 P. H. Cannington, R. J. J. Stewart, G. R. Hogg, K. H. Lokan,
 - D. G. Sargood; Nuclear Phys. 72, 23 (1965)
- 65Ca3 F. Carbonara, H. G. DeCarvalho, R. Rinzivillo, E. Sassi, G. P. Murtas; Nuclear Phys. 73, 385 (1965)
- 65Chl B. T. Chertok, E. C. Booth; Nuclear Phys. 66, 230 (1965)
- 65C11 H. G. Clerc, R. J. Stewart, R. C. Morrison; Phys. Letters 18, 316 (1965)

- 65Col S. Costa, F. Ferrero, S. Ferroni, L. Pasqualini, E. Silva; Nuclear Phys. 72, 158 (1965)
- 65Co2 S. Costa, B. Minetti, C. Molino, L. Pasqualini, G. Piragino; Atti Cl. di Sci. Fis. 99, 1157 (1965)
- 65Co3 S. Costa, F. Ferrero; Mat. Nat. 99, 85 (1965)
- 65Crl M. Croissiaux, R. Hofstadter, A. E. Walker, M. R. Yearian, D. G. Ravenhall, B. C. Clark, R. Herman; Phys. Rev. 137, B865 (1965)
- 65Dal P. J. Dallimore, K. S. Lam and H. H. Thies; Aust. J. Phys. 18, 389 (1965)
- 65Del G. Dearnaley, D. S. Gemmell, B. W. Hooton, G. A. Jones; Nuclear Phys. 64, 177 (1965)
- 65De2 R. W. Detenbeck, J. C. Armstrong, A. S. Figuera, J. B. Marion; Nuclear Phys. 72, 552 (1965)
- 65Dol B. S. Dolbilkin, V. I. Korin, L. E. Lazareva, F. A. Nikolaev; Phys. Letters 17, 49 (1965)
- 65Do2 B. S. Dolbilkin, V. I. Korin, L. E. Lazareva, F. A. Nikolaev, V. A. Zapevalov; Nuclear Phys. 72, 137 (1965)
- 65Do3 B. S. Dolbilkin, V. I. Korin, F. A. Nikolaev; ZhETF Pis'ma 1, No. 5 (1965); JETP Letters 1, 148 (1965)
- 65Ehl D. Ehhalt, R. Kosiek, R. Pfeiffer; Z. fur Physik 187, 210 (1965)
- 65Fel V. N. Fetisov, A. N. Gorbunov, A. T. Varfolomeev; Nuclear Phys. 71, 305 (1965)
- D. S. Fielder, J. Le Tourneux, K. Min, W. D. Whitehead; Phys. Rev. Letters 15, 33 (1965)
- 65Frl R. Frosch, R. E. Rand, M. R. Yearian, H. L. Crannell, L. R. Suelzle; Phys. Letters 19, 155 (1965)
- 65Fr2 G. Fricke, G. R. Bishop, D. B. Isabelle; Nuclear Phys. 67, 187 (1965)
- 65Gal J. Garvey, B. H. Patrick, J. G. Rutherglen, I. L. Smith; Nuclear Phys. 70, 241 (1965)
- 65Gil M. Giannini, P. Oliva, D. Prosperi, S. Sciuti; Nuclear Phys. 65, 344 (1965)
- 65Gol B. I. Goryachev, B. S. Ishkhanov, I. M. Kapitonov, V. G. Shevchenko, B. A. Yur'ev; J. Nucl. Phys. (USSR) 1, 1005 (1965); Sov. J. Nucl. Phys. 1, 716 (1965)
- 65Hal E. Hayward, T. Stovall; Nuclear Phys. 69, 241 (1965)
- 65Ha2 F. I. Havlicek, M. Modesto; Energia Nucleare 12, 77 (1965)
- 65Hol G. R. Hogg; Nuclear Phys. 72, 167 (1965)
- 65Ho2 M. Holmberg, H. Conde; Arkiv for Fysik 29, 301 (1965)
- 65Jel R. W. Jewell, W. John, J. E. Sherwood, D. H. White; Phys. Rev. 139, B71 (1965)
- 65Kel E. F. Kennedy, W. C. Miller; Nuclear Phys. 63, 634 (1965)
- 65Khl N. A. Khan, V. K. Rasmussen; Phys. Rev. 138, B1385 (1965)
- 65Kil T. Kivikas, B. Forkman; Nuclear Phys. 64, 420 (1965)
- P. Kossanyi-Demay, R. M. Lombard, G. R. Bishop, Nuclear Phys. 62, 615 (1965)
- 65Krl P. Kruger, T. M. Crawford, J. Goldemberg, W. C. Barber; Nuclear Phys. 62, 584 (1965)

- 65Lal H. Langevin-Joliot, C. Stephan, G. Johnson, J. Vernotte; Phys. Letters 14, 208 (1965)
- 65Lil F. F. Liu; Phys. Rev. 138, B1443 (1965)
- 65Mal J. M. Maison, M. Langevin, J. M. Loiseaux; Phys. Letters 19, 308 (1965)
- 65Ma3 A. Manfredini, M. Muchnik, L. Fiore, C. Ramorino, H. G. De Carvalho, J. Lang and R. Muller; Nuclear Phys. 74, 377 (1965)
- 65Ma4 G. Manuzio, G. Ricco, M. Sanzone; Nuovo Cimento 39, 1057 (1965)
- 65Ma5 G. Manuzio, R. Malvano, G. Ricco, M. Sanzone; Nuovo Cimento 40B, 300 (1965)
- 65Ma6 S. Matsumoto, H. Yamashita, T. Kamae, Y. Nogami; J. Phys. Soc. Japan 20, 1321 (1965)
- 65Mcl J. A. McIntyre, J. D. Randall; Phys. Letters 17, 137 (1965)
- 65Mc2 W. R. McMurray, I. J. Van Heerden, G. Wiechers; Nuclear Phys. 72, 113 (1965)
- 65Mel F. R. Metzger; Phys. Rev. 137, B1415 (1965)
- 65Me2 L. Meneghetti, S. Vitale; Nuclear Phys. 61, 316 (1965)
- 65Me3 F. R. Metzger; Phys. Rev. 139, B1464 (1965)
- 65Mil K. Min, W. D. Whitehead; Phys. Rev. 137, B301 (1965)
- 65Mol R. C. Morrison, J. R. Stewart, J. S. O'Connell; Phys. Rev. Letters 15, 367 (1965)
- 65Mo2 J. Moffatt, D. Reitmann; Nuclear Phys. 65, 130 (1965)
- 65Nil O. P. Nikotin, K. A. Petrzhak; Atom. Energ. 19, 185 (1965); Sov. At. Energy 19, 1080 (1965)
- 65Pal P. Paul, S. L. Blatt, D. Kohler; Phys. Rev. 137, B493 (1965)
- 65Rel M. A. Reimann, J. R. MacDonald, J. B. Warren; Nuclear Phys. 66, 465 (1965)
- 65Rol J. P. Roalsvig; Can. J. Phys. 43, 330 (1965)
- 65Sal C. P. Sargent, W. Bertozzi, P. T. Demos, J. L. Matthews, W. Turchinetz; Phys. Rev. 137, B89 (1965)
- 65Scl R. Schrack, D. Kohler, N. G. Puttaswamy, W. E. Meyerhof; Phys. Letters 18, 327 (1965)
- 65Sel R. E. Segel, S. S. Hanna, R. G. Allas; Phys. Rev. 139, B818 (1965)
- 65Sil P. P. Singh, R. E. Segel, L. Meyer-Schutzmeister, S. S. Hanna, R. G. Allas; Nuclear Phys. 65, 577 (1965)
- 65Sol A. S. Soldatov, Z. A. Aleksandrova, L. D. Gordeeva, G. N. Smirenkin; J. Nucl. Phys. (USSR) 1, 471 (1963); Sov. J. Nucl. Phys. 1, 335 (1965)
- 65Spl E. Spamer, F. Gudden; Phys. Letters 14, 210 (1965)
- 65Stl J. R. Stewart, R. C. Morrison, J. S. O'Connell; Phys. Rev. 138, B372 (1965)
- 65St2 R. J. J. Stewart, P. H. Cannington, B. M. Spicer; Aust. J. Phys. 18, 661 (1965)
- 65Swl C. P. Swann; Phys. Rev. 139, B271 (1965)
- 65Tal N. W. Tanner; Nuclear Phys. 61, 297 (1965)
- 65Thl M. N. Thompson, J. M. Taylor, D. V. Webb; Phys. Letters 14, 223 (1965)
- M. N. Thompson, J. M. Taylor, B. M. Spicer, J. E. E. Baglin; Nuclear Phys. 64, 486 (1965)

- 65Val A. T. Varfolomeev, A. N. Gorbunov; Zhur. Eksp. i Teoret. Fiz. 47, 30 (1964); Soviet Phys. JETP 20, 20 (1965)
- 65Va2 G. J. Vanpraet; Phys. Letters 17, 120 (1965)
- 65Va3 J. R. Van Hise, R. A. Meyer, J. P. Hummel; Phys. Rev. 139, B554 (1965)
- 65Va4 G. J. Vanpraet; Nuclear Phys. 74, 219 (1965)
- 65Va5 A. K. Val'ter, E. G. Kopanets, S. P. Tsytko; Izv. Akad. Nauk SSSR Ser. Fiz. 29, 803 (1965); Bull. Acad. Sci. USSR (Phys. Sci.) 29, 806 (1965)
- 65Vel V. V. Verbinski, J. C. Courtney; Nuclear Phys. 73, 398 (1965)
- 65Wal A. Wataghin, M. Scotto, G. Paoli; Nuovo Cimento 40B, 441 (1965)
- 65Wyl J. M. Wyckoff, B. Ziegler, H. W. Koch, R. Uhlig; Phys. Rev. 137, B576 (1965)
- D. W. Anderson, B. C. Cook, J. A. Kadlecek; Nuclear Phys. 83, 584 (1966)
- 66Arl H. Artus; Z. Physik 189, 355 (1966)
- 66Atl U. Atzmony, S. Ofer; Phys. Rev. 145, B915 (1966)
- 66At2 U. Atzmony, E. R. Bauminger, S. Ofer; Nuclear Phys. 89, 433 (1966)
- 66Axl P. Axel, J. Miller, C. Schuhl, G. Tamas, C. Tzara; J. Phys. et Rad. 27, 262 (1966)
- 66Bal E. B. Bazhanov, A. P. Komar, A. V. Kulikov, V. I. Ogurtsov; Dokl. Akad. Nauk. SSSR 167, 1263 (1966); Sov. Phys. Doklady 11, 332 (1966)
- D. Bachelier, M. Bernas, I. Brissaud, C. Detraz, J. P. Didelez, H. Langevin-Joliot, J. Lee, P. Radvanyi; Phys. Letters 21, 697 (1966)
- 66Ba3 A. E. Balabanov, N. N. Delyagin, H. el Sayes; J. Nucl. Phys. (USSR) 3, 209 (1966); Sov. J. Nucl. Phys. 3, 150 (1966)
- 66Ba4 E. B. Bazhanov, A. P. Komar, A. V. Kulikov, V. I. Ogurtsov; J. Nucl. Phys. (USSR) 3, 711 (1966); Sov. J. Nucl. Phys. 3, 522 (1966)
- 66Bel I. Bergqvist, B. Lundberg, L. Nilsson, N. Starfeld; Phys. Letters 19, 670 (1966)
- 66Be2 G. B. Beard; Phys. Rev. 145, B862 (1966)
- 66Be3 G. Ben-David, B. Arad, J. Balderman, Y. Schlesinger; Phys. Rev. 146, B852 (1966)
- 66Be4 B. L. Berman, G. S. Sidhu, C. D. Bowman; Phys. Rev. Letters 17, 761 (1966)
- 66Bil G. Bishop, S. Costa, S. Ferroni, R. Malvano, G. Ricco, Nuovo Cimento 42B, 158 (1966)
- 66Bol I. E. Bocharova, V. G. Zolotukhin, S. P. Kapitza, G. N. Smirenkin, A. S. Soldatov, Yu. M. Tsipenyuk; Zhur. Eksp. i Teoret. Fiz. 49, 476 (1965); Sov. Phys. JETP 22, 335 (1966)
- 66Brl R. L. Bramblett, J. T. Caldwell, B. L. Berman, R. R. Harvey, S. C. Fultz; Phys. Rev. 148, B1198 (1966)
- 66Cal Y. Cauchois, Y. Heno, M. Boivin; C. R. Acad. Sci. Paris 262, B503 (1966)

- 66C11 H. G. Clerc, K. J. Wetzel, E. Spamer; Phys. Letters 20, 667 (1966)
- 66Col B. C. Cook, J. E. E. Baglin, J. N. Bradford, J. E. Griffin; Phys. Rev. 143, B712 (1966)
- 66Co2 B. C. Cook, J. E. E. Baglin, J. N. Bradford, J. E. Griffin; Phys. Rev. 143, B724 (1966)
- 66Co3 B. C. Cook, D. R. Hutchinson, R. C. Waring, J. N. Bradford, R. G. Johnson, J. E. Griffin; Phys. Rev. 143, B730 (1966)
- 66Co4 S. Costa, L. Pasqualini, G. Piragino, L. Roasio; Nuovo Cimento 42B, 306 (1966)
- 66Co5 S. Costa, F. Ferrero, C. Manfredotti, L. Pasqualini, L. Roasio; Nuovo Cimento 42B, 382 (1966)
- 66Crl H. Crannell; Phys. Rev. 148, B1107 (1966)
- No. De Botton, J. Miller, C. Schuhl, G. Tamas, C. Tzara; Nuclear Phys. 75, 396 (1966)
- 66De2 A. De Marco, R. Garfagnini, G. Piragino; Nuovo Cimento 44B, 172 (1966)
- 66De3 A. De Marco, R. Garfagnini, G. Piragino; Nuovo Cimento 42B, 355 (1966)
- 66De4 V. P. Denisov, L. A. Kul'chitskii; J. Nucl. Phys. (USSR) 2, 70 (1965); Sov. J. Nucl. Phys. 2, 48 (1966)
- 66De5 V. P. Denisov, A. Duisebaev, K. V. Kosareva, P. A. Cerenkov; J. Nucl. Phys. (USSR) 1, 82 (1965); Sov. J. Nucl. Phys. 2, 58 (1966)
- 66De6 V. P. Denisov, L. A. Kul'chitskii; J. Nucl. Phys. (USSR) 3, 268 (1966); Sov. J. Nucl. Phys. 3, 192 (1966)
- 66Dol E. J. Dowdy, J. A. McIntyre; Phys. Rev. 145, B982 (1966)
- 66Dul M. A. Duguay, C. K. Bockelman, T. H. Curtis, R. A. Eisenstein; Phys. Rev. Letters 17, 28 (1966)
- 66Du2 J. Dubois, S. Maripuu, O. Almen; Ark. Fysik 31, 65 (1966)
- 66Evl A. E. Evans, B. Brown, J. B. Marion; Phys. Rev. 149, 863 (1966)
- 66Fel F. Ferrero, C. Manfredotti, L. Pasqualini, G. Piragino P. G. Rama; Nuovo Cimento 45B, 273 (1966)
- 66Fil F. W. K. Firk; Nuclear Instr. & Methods 43, 312 (1966)
- 66Fol G. M. Fossa, G. Ricco, C. Manfredotti; Nuovo Cimento 43B, 347 (1966)
- 66Fo2 P. D. Forsyth, H. T. Tu and W. F. Hornyak; Nuclear Phys. 82, 33 (1966)
- 66Frl L. Frevert, W. Schott, H. Langhoff, A. Flammersfeld; Z. Physik 194, 248 (1966)
- 66Ful S. C. Fultz, J. T. Caldwell, B. L. Berman, R. L. Bramblett, R. R. Harvey; Phys. Rev. 143, B790 (1966)
- 66Gel H. M. Gerstenberg, J. S. O'Connell; Phys. Rev. 144, B834 (1966)
- 66Gol J. Goldemberg, C. Schaerf; Phys. Letters 20, 193 (1966)
- 66Go2 A. Goldmann, P. Kneisel, H. v. Buttlar; Z. Physik, 192, 282 (1966)
- 66Grl R. C. Greenwood, W. W. Black; Phys. Letters 21, 702 (1966)
- 66Gr2 B. Grossetete, S. Jullian, P. Lehmann; Phys. Rev. 141, B1435 (1966)

- 66Hol P. Holmberg; Comm. Phys. Math. Ed. Soc. Sci. Fennica 31, 1 (1966)
- 66Ho2 J. H. Hough, W. L. Mouton; Nuclear Phys. 76, 248 (1966)
- 66Ho3 H. Hoffmann, B. Prowe, H. Ullrich; Nuclear Phys. 85, 631 (1966)
- 66Hrl B. Hrastnik, V. Knapp, M. Vlatkovic; Nuclear Phys. 89, 412 (1966)
- 66Hul E. B. Hughes, T. A. Griffy, R. Hofstadter, M. R. Yearian; Phys. Rev. 146, B973 (1966)
- 66Hu2 E. B. Hughes, M. R. Yearian, R. Hofstadter; Phys. Rev. 151, 841 (1966)
- 66Ivl V. G. Ivanchenko, B. S. Ratner; ZhETF Pis'ma 3, No. 11, 452 (1966); JETP Letters 3, No. 11, 296 (1966)
- 66Kol P. Kossanyi-Demay, G. J. Vanpraet; Nuclear Phys. 81, 529 (1966)
- R. Kosiek, D. Muller, R. Pfeiffer, O. Merwitz; Phys. Letters 21, 199 (1966)
- 66Lal H. Langhoff, L. Frevert, W. Schott, A. Flammersfeld; Nuclear Phys. 79, 145 (1966)
- 66Lel H. P. Leenhouts, P. M. Endt; Physica 32, 322 (1966)
- 66Lil H. Lichtblau, B. M. Spicer; Aust. J. Phys. 19, 297 (1966)
- 66Li2 H. Liesem; Z. Physik 196, 174 (1966)
- 66Lol W. A. Lochstet, W. E. Stephens; Phys. Rev. 141, B1002 (1966)
- 66Mal G. E. Manuzio, G. Ricco, M. Sanzone; Nuovo Cimento 42B, 348 (1966)
- 66Ma2 J. M. Maison, M. Langevin, J. M. Loiseaux; J. Physique Colloq. 1, 36 (1966)
- 66Mel F. R. Metzger, R. S. Raghavan; Phys. Rev. 145, B968 (1966)
- 66Me2 J. L. Meason, P. K. Kuroda; Phys. Rev. 142, 691 (1966)
- 66Me3 F. R. Metzger, G. K. Tandon; Phys. Rev. 148, B1133 (1966)
- 66Mil K. Min; Phys. Rev. 152, 1062 (1966)
- 66Nel B. M. K. Nefkens, D. C. Sutton, M. N. Thompson; Nuclear Phys. 88, 523 (1966)
- 660bl E. Obst, F. Rauch, E. Rossle; Phys. Letters 21, 50 (1966)
- 660wl R. O. Owens, J. E. E. Baglin; Phys. Rev. Letters 17, 1268 (1966)
- 66Pal G. Paoli, M. Scotto, A. Wataghin; Nuovo Cimento 43B, 189 (1966)
- 66Pa2 V. Parikh; Nuclear Phys. 77, 157 (1966)
- 66Pa3 A. W. Parker, R. R. Whitehead, G. G. Shute; Aust. J. Phys. 19, 147 (1966)
- 66Pa4 P. D. Parker; Phys. Rev. 150, 851 (1966)
- 66Pel G. A. Peterson, J. F. Ziegler; Phys. Letters 21, 543 (1966)
- 66Prl G. Proca, D. Isabelle, J. Goldemberg; J. Physique Colloq. 1, 105 (1966)
- 66Pul N. G. Puttaswamy, D. Kohler; Phys. Letters 20, 288 (1966)
- 66Ral R. S. Raghavan; Phys. Rev. 143, B947 (1966)
- N. S. Rabotnov, G. N. Smirenkin, A. S. Soldatov, L. N. Usachov, S. P. Kapitza, Yu. M. Tsipenyuk, Nuclear Phys. 77, 92 (1966)

- 66Ril R. Riskalla, D. Vinciguerra; J. Physique Colloq. 1, 106 (1966)
- 66Sal K. Sakamtoto, P. J. Kuroda; J. Inorg. Nucl. Chem. 28, 679 (1966)
- 66Scl P. J. Scanlon; Nuclear Phys. 88, 424 (1966)
- 66Shl N. K. Sherman, J. R. Stewart, R. C. Morrison; Phys. Rev. Letters 17, 31 (1966)
- 66Sh2 N. Shikazono, H. Takekoshi, T. Shoji; J. Phys. Soc. Japan 21, 829 (1966)
- 66Spl E. Spamer; Z. Physik, 191, 24 (1966)
- 66Stl R. R. Stevens, Jr., Y. K. Lee, J. C. Walker; Phys. Letters 21, 401 (1966)
- 66St2 M. Stroetzel, F. Gudden; Phys. Letters 22, 485 (1966)
- 66Sul M. Suffert, Nuclear Phys. 75, 226 (1966)
- 66Swl C. P. Swann, Phys. Rev. 148, B1119 (1966)
- 66Tal J. R. Tatarczuk, H. A. Medicus; Phys. Rev. 143, B818 (1966)
- 66Thl M. N. Thompson, J. M. Taylor; Nuclear Phys. 76, 377 (1966)
- 66Val G. J. Vanpraet, W. C. Barber; Nuclear Phys. 79, 550 (1966)
- 66Va2 H. A. Van Rinsvelt, P. M. Endt; Physica 32, 513 (1966)
- 66Va3 A. T. Varfolomeev, A. N. Gorbunov, G. G. Taran; J. Nucl. Phys. (USSR) 3, 647 (1966); Sov. J. Nucl. Phys. 3, 473 (1966)
- 66Va4 C. Van der Leun, N. C. Burhoven Jaspers; Nuclear Phys. 88, 235 (1966)
- 66Vel A. Veres, I. Pavlicsek; Int. J. App. Rad. & Isotopes 17, 69 (1966)
- 66Vol Yu. M. Volkov, A. P. Komar, V. P. Chizhov; J. Nucl. Phys. (USSR) 3, 277 (1966); Sov. J. Nucl. Phys. 3, 198 (1966)
- 66Vul P. H. Vuister; Nuclear Phys. 83, 593 (1966)
- 66Wal W. B. Walters, J. P. Hummel; Phys. Rev. 150, 867 (1966)
- 66Wel E. Wernbom-Selin, S. E. Arnell; Ark. Fysik 31, 113 (1966)
- 66Wil Bjorn Wiik; Z. Physik 189, 423 (1966)
- 66Wol W. Wolfli, R. Bosch, J. Lang, R. Muller, P. Marmier; Phys. Letters 22, 75 (1966)
- 66Yol D. H. Youngblood, G. C. Morrison, R. E. Segel; Phys. Letters 22, 625 (1966)
- 66Zil B. Ziegler, W. Buss, H. Waffler; Nuclear Phys. 83, 145 (1966)
- 67Bal G. Barbiellini, C. Bernardini, F. Felicetti, G. P. Murtas; Phys. Rev. 154, 988 (1967)
- 67Ba2 E. B. Bazhanov, A. P. Komar, A. V. Kulikov; Dokl. Akad. Nauk. SSSR 171, 549 (1966); Sov. Phys. Doklady 11, 953 (1967)
- 67Bul H. v. Buttlar, F. Freund, G. Gammel; Z. Physik 200, 1 (1967)
- 67Chl C. Chasman, K. W. Jones, R. A. Ristinen, J. T. Sample; Phys. Rev. Letters 18, 219 (1967)
- 67Col S. Costa, F. Ferrero, C. Manfredotti, L. Pasqualini, G. Piragino, H. Arenhovel; Nuovo Cimento 48B, 460 (1967)
- 67Crl H. Crannell, T. A. Griffy, L. R. Suelzle, M. R. Yearian; Nuclear Phys. A90, 152 (1967)

- 67Cr2 H. Crannell, H. A. Dahl, F. H. Lewis, Jr.; Phys. Rev. 155, 1062 (1967)
- 67Eal E. D. Earle, N. W. Tanner; Nuclear Phys. A95, 241 (1967)
- 67Esl G. P. Estes, K. Min; Phys. Rev. 154, 1104 (1967)
- 67Frl R. F. Frosch, H. L. Crannell, J. S. McCarthy, R. E. Rand, R. S. Safrata, L. R. Suelzle, M. R. Yearian; Phys. Letters 24B, 54 (1967)
- 67Gel K. N. Geller, E. G. Muirhead, L. D. Cohen; Nuclear Phys. A96, 397 (1967)
- 67Gol B. I. Goryachev, B. S. Ishkhanov, I. M. Kapitonov, Zh. M. Seliverstova, V. G. Shevchenko, B. A. Yur'ev; J. Nucl. Phys. (USSR) 4, 505 (1966); Soviet J. Nucl. Phys. 4, 359 (1967)
- 67Hul R. R. Hurst, D. J. Donahue; Nuclear Phys. A91, 365 (1967)
- 67Isl B. S. Ishkhanov, I. M. Kapitonov, V. G. Shevchenko, B. A. Yur'ev; J. Nucl. Phys. (USSR) 4, 765 (1966); Soviet J. Nucl. Phys. 4, 544 (1967)
- 67Knl P. Kneisel, A. Goldmann, H. v. Buttlar; Z. Physik 199, 440 (1967)
- 67Kol A. P. Komar, V. P. Denisov, L. A. Kul'chitskii; Dokl. Akad. Nauk. SSSR, 169, 1307 (1966); Sov. Phys. Doklady 11, 728 (1967)
- 67Lal H. Langhoff, M. Schumacher; Phys. Rev. 155, 1246 (1967)
- 67Ral R. E. Rand, R. F. Frosch, C. E. Littig, M. R. Yearian; Phys. Rev. Letters 18, 469 (1967)
- 67Sel R. E. Segel, Z. Vager, L. Meyer-Schutzmeister, P. P. Singh, R. G. Allas; Nuclear Phys. A93, 31 (1967)
- 67Spl E. Spamer, H. Artus; Z. Physik 198, 445 (1967)
- 67Til O. Titze, E. Spamer, A. Goldmann; Phys. Letters 24B, 169 (1967)
- 67Wil G. Wiechers, W. R. McMurray, I. J. Van Heerden; Nuclear Phys. A92, 175 (1967)

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$5.00; foreign, \$6.00*.

• Mathematics and Mathematical Physics

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$2.25; foreign, \$2.75*.

• Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \$2.75; foreign, \$3.50*.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$1.50; foreign, \$2.25*.

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Miscellaneous Publications. Charts, administrative pamphlets, Annual reports of the Bureau, conference reports, bibliographies, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

CLEARINGHOUSE

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Government-generated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

Clearinghouse
U.S. Department of Commerce
Springfield, Virginia 22151

Order NBS publications from:
Superintendent of Documents
Government Printing Office
Washington, D.C. 20402

^{*}Difference in price is due to extra cost of foreign mailing.

U.S. DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20230

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

OFFICIAL BUSINESS

