Euler's formula

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

 $e^{-j\theta} = \cos(\theta) - j\sin(\theta)$

Chapter 1

1.2.2 Bounded signals

A continuous-time signal x(t) is bounded if there exists an M such that $0 < M < \infty$ and $\forall t |x(t)| \leq M$ (has an upper and lower range

1.2.3 Absolutely integrable signals

A continuous-time signal x(t) is absolutely integrable if

$$\int_{-\infty}^{\infty} |x(t)| dt < \infty$$

1.2.4 Periodc and aperiodic signals

Periodic: there is a non-zero positive value. T, satisfying

$$x(t) = x(t+T) \ \forall t \tag{1.1} \ e^{-\alpha t} u$$

Aperiodic: not periodic

1.2.6 Energy and Power Signals

Energy signals

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt \qquad (1.3a)$$

x(t) is an energy signal $\iff 0 < E < \infty$ (1.3b)

Power signals

$$P = \lim_{\tau \to \infty} \frac{1}{2\tau} \int_{-\tau}^{\tau} |x(t)|^2 dt \qquad (1.4a) \quad e^{-\alpha|t|}:$$

x(t) is a power signal $\iff 0 < P < \infty$

If x(t) is a periodic signal, average power may be computed by

 $\frac{1}{T}\int_{-\infty}^{\infty} |x(t)|^2 dt$

- Energy signals have 0 average power, bc E = finite implies P = 0
- · Power signals have infinite total energy, bc $P = \text{finite implies } E = \infty$
- · All bounded periodic signals are power signals

u(t):

sgn(t):

 $rect(\frac{t}{T})$:

 $\mathbf{tri}(\frac{t}{T})$:

 $\operatorname{sinc}(\frac{t}{T})$:

(1.1) $e^{-\alpha t}u(t)$:

Sinusoidal signals

$$x(t) = \mu \cos(\omega_0 t + \phi)$$

$$= \mu \cos(2\pi f_0 t + \phi)$$

$$= \mu \cos(\frac{2\pi t}{T} + \phi)$$

$$T_0 = \frac{2\pi}{\omega_0} = \frac{1}{f_0}$$

Chapter 2

2.1 Time-domain Operations

2.1.1 Time-Scaling

 $x(\alpha t)$: Scale x-axis by a factor of $\frac{1}{2}$ x(-t): Reflect about x-axis

2.1.2 Time-Shifting

 $x(t-\beta)$:

 $\beta > 0$: Delaying x(t) by β units of time (translate right along x-axis)

 $\beta > 0$: Advancing x(t) by β units of time (translate left along x-axis)

2.1.5 Convolution of 2 Signals

 $x(t) * y(t) = \int_{-\infty}^{\infty} x(\alpha)y(t-\alpha) \ d\alpha$

Properties of convolutions

1. Commutative: f * g = g * f2. Associative: f * (g * h) = (f * g) * h

3. Distributive: f * (q + h) = (f * q) + (f * h)

2.2 Dirac- δ function

$$\delta(t) = \begin{cases} \infty; & t = 0\\ 0; & t \neq 0 \end{cases}$$

Properties:

1. Symmetry:

$$\delta(t) = \delta(-t) \tag{2.3}$$

2. Sampling:

$$x(t)\delta(t-\lambda) = x(\lambda)\delta(t-\lambda)$$
 (2.4)

3. Sifting

$$\int_{-\infty}^{\infty} x(t)\delta(t-\lambda)dt$$

$$= x(\lambda)\int_{-\infty}^{\infty} \delta(t-\lambda)dt = x(\lambda) \quad (2.5)$$

$$x(t) * \delta(t - \lambda)$$

$$= \int_{-\infty}^{\infty} x(\zeta)\delta(t - \zeta - \lambda)d\zeta$$

$$= \int_{-\infty}^{\infty} x(\zeta)\delta(\zeta - (t - \lambda))d\zeta = x(t - \lambda)$$
(2.6)

2.2.1 Dirac- δ Comb function

$$\sum_{n=-\infty}^{\infty} \delta(t - nT)$$

$$= \ldots + \delta(t+T) + \delta(t) + \delta(t-T) + \ldots$$

Convolution with Dirac- δ Comb func-

$$x_p(t) = x(t) * \sum_n \delta(t - nT)$$
$$= \sum_n x(t - nT)$$

x(t) is known as the generating function.

Multiplication with the Dirac- δ Comb function

Used for sampling
$$x_s(t) = x(t) \times \sum_n \delta(t - nT)$$

$$= \sum_n x(t) \times \delta(t - nT)$$

$$= \sum_n x(nT)\delta(t - nT)$$

Chapter 3

3.2 Spectrum of a Sinusoid

Spectrum of a Complex Exponential Sig-

 $\tilde{x}(t) = \mu e^{j(2\pi f_0 t + \phi)} = \mu e^{j\phi} \times e^{j2\pi f_0 t}.$ where μ : magnitude spectrum, ϕ : phase spectrum, f_0 : frequency

Spectrum of a Cosine Signal

$$\mu \cos(2\pi f_0 t + \phi)$$

$$= \frac{\mu}{2} e^{j\phi} e^{j2\pi f_0 t} + \frac{\mu}{2} e^{j(-\phi)} e^{j2\pi(-f_0)t}$$

Spectrum of a Sine Signal

$$\mu \sin(2\pi f_0 t + \phi) = \frac{\mu}{2} e^{j(\phi - 0.5\pi)} e^{j2\pi f_0 t} + \frac{\mu}{2} e^{j(-\phi + 0.5\pi)} e^{j2\pi (-f_0)t}$$

Complex exponential Fourier Series

$$x_p(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi kt/T_p}$$

$$= \sum_{k=-\infty}^{\infty} c_k e^{j2\pi k f_p t}$$
 (3.1a) Time Shifting
$$x(t-t)$$

$$c_k = \frac{1}{T_p} \int_{t_0}^{t_0 + T_p} x_p(t) e^{-j2\pi kt/T_p} dt, k \in \mathbb{Z}$$

Trigonometric Fourier Series

$$x_p(t) = a_0 + 2\sum_{k=1}^{\infty} [a_k \cos(2\pi kt/T_p) + b_k \sin(2\pi kt/T_p)]$$

$$a_k = \frac{1}{T_p} \int_{t_0}^{t_0 + T_p} x_p(t) \cos(2\pi kt/T_p) dt; k \ge 0$$
 Integration in the Time Domain

$$b_k = \frac{1}{T_p} \int_{t_0}^{t_0 + T_p} x_p(t) \sin(2\pi kt/T_p) dt; k > 0$$
(3.2)

Chapter 4

Dirichlet Conditions

Conditions for existence of Fourier Transform: 1. x(t) has only a finite number of maxima and minima in any finite time interval

- 2. x(t) has only a finite number of discontinuities in any finite time interval
- 3. x(t) is absolutely integrable

3 is weak Dirichlet condition: satisfied by most energy signals, violated by all power signals.

4.1 Fourier Transform

Forward Fourier Transform

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt \qquad (4.1a)$$

Inverse Fourier Transform
$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft}df \qquad (4.1b)$$

Spectrum of exponentially decaying

$$x(t) = Ae^{-\alpha t}u(t)$$

$$= \begin{cases} Ae^{-\alpha t}; & t > 0\\ 0; & t < 0 \end{cases}$$

Assume
$$\alpha > 0$$

$$X(f) = \frac{A}{\alpha + j2\pi f}$$

4.2 Properties of Fourier Transform

- $X(f) = \Im\{x(t)\}\$ denotes the Fourier transform of x(t)
- $x(t) = \Im^{-1}\{X(f)\}$ denotes the inverse $x_p(t)$ is **REAL** Fourier transform of X(f)
- $x(t) \rightleftharpoons X(f)$ denotes a Fourier transform pair with the time-domain on the LHS and frequency-domain on the RHS.

If $x_1(t) \rightleftharpoons X_1(f)$ and $x_2(t) \rightleftharpoons X_2(f)$, then $\alpha x_1(t) + \beta x_2(t) \rightleftharpoons \alpha X_1(f) + \beta X_2(f)$ (4.2) • $x_p(t)$ is **REAL** and **ODD**

$$x(\beta t) \rightleftharpoons \frac{1}{|\beta|} X\left(\frac{f}{\beta}\right)$$
 (4.3)

Duality

$$X(t) \rightleftharpoons x(-f)$$
 (4.4)
or $X(-t) \rightleftharpoons x(f)$

$$x(t - t_0) \rightleftharpoons X(f)e^{-j2\pi f t_0}$$

$$x(t + t_0) \rightleftharpoons X(f)e^{j2\pi f t_0}$$

$$(4.5)$$

(3.1b) Frequency Shifting (Modulation)

$$x(t)e^{j2\pi f_0 t} \rightleftarrows X(f - f_0)$$

$$x(t)e^{-j2\pi f_0 t} \rightleftarrows X(f + f_0)$$

$$(4.6)$$

Differentiation in the Time Domain

$$\frac{d}{dt}x(t) \rightleftharpoons j2\pi f \cdot X(f) \tag{4.7}$$

$$b_k = \frac{1}{T_p} \int_{t_0}^{t_0 + T_p} x_p(t) \sin(2\pi kt/T_p) dt; k > 0$$

$$(3.2) \qquad \int_{-\infty}^t x(\tau) d\tau \rightleftharpoons \frac{1}{j2\pi f} X(f) + \frac{1}{2} X(0) \delta(f)$$
Chapter 4 (4.8)

Convolution in the Time Domain / Multiplication in the Frequency Domain

$$x_1(t) * x_2(t)$$

$$= \int_{-\infty}^{\infty} x_1(\alpha) x_2(t - \alpha) \ d\alpha \rightleftharpoons X_1(f) X_2(f)$$
(4.0a)

Multiplication in the Time Domain Convolution in the Frequency Domain

$$x_1(t)x_2(t) \rightleftharpoons \int_{-\infty}^{\infty} X_1(\alpha)X_2(f-\alpha) \ d\alpha$$
$$= X_1(f) * X_2(f)$$
(4.9b)

4.3 Spectral properties of a REAL signal

- If x(t) is **REAL** $(x^*(t) = x(t))$, then - X(f) is conjugate symmetric $(X^*(f) =$ X(f)
- |X(f)| is even (|X(f)| = |X(-f)|) $- \angle X(f)$ is odd $(\angle X(f) = -\angle X(-f))$
- If x(t) is **REAL** and **EVEN** $(x^*(t)) =$ $x(t) \wedge x(-t) = x(t)$, then
- -X(f) is real $(X^*f=X(f))$ - X(f) is even (X(-f) = X(f))
- If x(t) is **REAL** and **ODD** $(x^*(t)) =$ $x(t) \wedge x(-t) = -x(t)$, then - X(f) is imaginary $(X^*(f) = -X(f))$

-X(f) is odd (X(-f)=-X(f))The above can apply to Fourier series coefficients of periodic signals too:

- c_k is conjugate symmetric $(c_k^* = c_{-k})$ - $|c_k|$ has even symmetry $(|c_k| = |c_{-k}|)$

 ∠c_k has odd symmetry (∠c_k = -∠c_{-k}) • $x_p(t)$ is **REAL** and **EVEN**

 $-c_k$ is real $(c_k^* = c_k)$

 − c_k is even (c_k = c_{−k}) $-c_k$ is imaginary $(c_k^* = -c_k)$ $-c_k$ is odd $(c_k = -c_{-k})$

4.4 Spectrum of Signals that are not Absolutely Integrable

$$\Im\{K\delta(t)\} = \int_{-\infty}^{\infty} K\delta(t)e^{-j2\pi ft}dt = K$$
(4.1)

By duality, $\Im\{K\} = K\delta(f)$

4.4.1 Spectrm of Unit Step and Signum function

$$\Im\{u(t)\} = \frac{1}{j2\pi f} + \frac{1}{1^2}\delta(f)$$
$$\Im\{\operatorname{Sgn}(t)\} = \frac{1}{j\pi f}$$

4.4.2 Continuous-Frequency Spectrum of Periodic Signals

The following make use of the fact that

$$\Im\{k\} = K\delta(f) \tag{4.14}$$

DC

$$x_{dc}(t) = K$$

$$X_{dc}(f) = \Im\{k\} = K\Im\{1\} = K\delta(f)$$

Complex Exponential

$$\tilde{x}(t) = Ke^{j2\pi f_0 t}$$

$$\tilde{X}(f) = \Im\{Ke^{j2\pi f_0 t}\} = K\delta(f - f_0)$$

Cosine

$$\Im\{K\cos(2\pi f_0 t)\}$$

$$= \frac{K}{2}\delta(f - f_0) + \frac{K}{2}\delta(f + f_0)$$

Arbitrary periodic signals

Let $x_p(t)$ be a periodic signal with period T_p and fundamental frequency f_n

$$X_p(f) = \sum_{k=-\infty}^{\infty} c_k \delta(f - kf_p)$$
 (4.16)

4.4.2.1 Spectrum of Dirac- δ Comb func- PSD of $x_p(t)$

$$\begin{split} \Im\{\mathrm{comb}_{\lambda}(t)\} &= \mathrm{COMB}_{\lambda}(f) \\ &= \frac{1}{\lambda} \sum_{k} \delta(f - k/\lambda) \end{split}$$

5.1 Energy Spectral Density (ESD)

Total energy of a signal x(t) is defined as

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt \text{ (Joules)}$$
 (5.1)

Rayleigh Energy Theorem
$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df, \quad (5.2)$$
where $X(f) = \Im\{x(t)\}$ is the spectrum of the signal

Energy Spectral Density

$$E_x(f) = |X(f)|^2 \text{ Joules Hz}^{-1}$$
 (5.3)

Properties of $E_x(f)$

- 1. $E_x(f)$ is a real function of f
- 2. $E_x(f) \ge 0 \quad \forall f$
- 3. $E_x(f)$ is an even function of f if x(t) is

5.2 Power Spectral Density (PSD)

In the time-domain, the average power of a signal x(t) is defined as

$$P = \lim_{\tau \to \infty} \frac{1}{2\tau} \int_{-\tau}^{\tau} |x(t)|^2 dt \qquad (5.4)$$

Windowed version of x(t)

$$x_W(t) = x(t)\operatorname{rect}\left(\frac{t}{2W}\right)$$
 (5.5)

Parseval Power Theorem
$$P = \lim_{W \to \infty} \frac{1}{2W} \int_{-W}^{W} |x(t)|^2 dt$$

$$= \int_{-\infty}^{\infty} \lim_{W \to \infty} \frac{1}{2W} |X_W(f)|^2 df \qquad (5.$$

Power Spectral Density
$$P_x(f) = \lim_{W \to \infty} \frac{1}{2W} |X_W(f)|^2 \text{ Watts Hz}^{-1}$$

Properties of $P_x(f)$

- 1. $P_x(f)$ is a real function of f
- 2. $P_x(f) \ge 0 \quad \forall f$
- 3. $P_x(f)$ is an even function of f if x(t) is

5.2.1 PSD of Periodic Signals

From chapter 4 equation 4.16:

$$X_p(f) = \sum_{k=-\infty}^{\infty} c_k \delta(f - kf_p)$$

$$P_x(f) = \sum_{k=-\infty}^{\infty} |c_k|^2 \delta(f - kf_p) \qquad (5.12)$$

Average power of $x_n(t)$

$$P = \int_{-\infty}^{\infty} P_x(f)df = \sum_{k=-\infty}^{\infty} |c_k|^2 \quad (5.13)$$

5.3.1 Bandlimited Signals

Lowpass signal

A signal x(t) is said to be a bandlimited lowpass signal if its magnitude spectrum is concentrated around 0 Hz, and at the same time

$$|X(f)| = 0; \quad |f| > B$$
 (5.14)

where B is defined as the bandwidth of the

Bandpass signal

pass signal if its magnitude spectrum is concentrated around a non-zero center frequency f_c , and at the same time satisfies

|X(f)| = 0; $||f| - f_c| > B/2$ where B is defined as the bandwidth of the

5.3.2 Signals with Unrestricted Band 5.3.2.1 3dB Bandwidth

Lowpass signal: The frequency where $|X(f)| = |X(0)|/\sqrt{2}$ first occurs (or where $|X(f)|^2 = |X(0)|^2/2$ first occurs) when f is increased from 0 Hz.

Bandpass signal:

5.3.2.2 1st-null Bandwidth

Lowpass signal: The frequency at which |X(f)| = 0 first occurs when f is increased from 0 Hz:

Bandpass signal:

5.3.2.3 M% Energy Containment Band-

Smallest bandwidth that contains at least M% of the total signal energy $E = \int_{-\infty}^{\infty} E_x(f) df$ Lowpass:

Bandpass:

A signal x(t) is said to be a band limited band- 5.3.2.4 M% Power Containment Band-

The smallest bandwidth that contains at least ${\rm M}\%$ of the average signal power. For a peri-(5.15) odic signal, the aerage power is given by

$$P = \int_{-\infty}^{\infty} P_x(f)df = \sum_{k=-\infty}^{\infty} |c_k|^2$$

where $f_p(Hz)$ is the fundamental frequency and c_k 's are the Fourier series coefficients.

where K is the smallest positive integer that

$$\sum_{k=-k}^{K} \left| c_k \right|^2 \ge \frac{M}{100} \times P$$