

# LabelCraft: Empowering Short Video Recommendations with Automated Label Crafting

Yimeng Bai<sup>1</sup>, Yang Zhang<sup>1</sup>, Jing Lu<sup>2</sup>, Jianxin Chang<sup>2</sup>, Xiaoxue Zang<sup>2</sup>, Yanan Niu<sup>2</sup>, Yang Song<sup>2</sup>, Fuli Feng<sup>1</sup>

USTC<sup>1</sup> & Kuaishou<sup>2</sup>

email: baiyimeng@mail.ustc.edu.cn





# Background

- Short video recommendation
  - **Influence**: immense popularity



355.7 million daily active users612.7 million monthly active users129.2 minutes daily usage time

Method: personalized video filtering





**User interested videos** 

# Background

### Recommendation paradigm

Fitting historical labeled data (click, purchase, ....) with a recommender model f



Feedback in video recommendation



#### Feedback as label directly



- Unreliability
  - 15s/60s v.s. 10s/5s
- Sparsity
  - Explicit but sparse

# Background

### Label generation

- Map raw feedback to a new label, optimizing platform objectives
- Examples
  - PlayCompletion = 1 if watch time > duration
  - PlayCompletionRate = watch time / duration
- Disadvantages
  - Rely on manual rules and demand substantial human effort
  - Cannot consider all feedback comprehensively
  - Misalign with the desired objectives of the platform



Platform objectives

- Learnable labeling model
  - Incorporate both watch time and other feedback
  - Flexible model choice to form complex rules
- Explicit optimization
  - Evaluate the label fitted recommender by top-k list
  - Align labeling process with the platform objectives



#### Problem definition

- Labeling model  $g_{\phi}: \mathcal{X} \times \mathcal{Y}^r \longmapsto \mathcal{Y}^c$ , Recommender model  $f_{\theta}: \mathcal{X} \longmapsto \mathcal{Y}^c$ ,
- Loss function  $L(f_{\theta},g_{\phi};\mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{(\boldsymbol{x},\boldsymbol{y}^r) \in \mathcal{D}} l(f_{\theta}(\boldsymbol{x}),y^c) + \lambda \|\theta\|^2, \quad y^c = g_{\phi}(\boldsymbol{x},\boldsymbol{y}^r),$
- Bi-level optimization



Alignment evaluation metric



### Learning strategy

- Random initialization of two models
- Update of labeling model
  - Fit the recommender model and obtain a temporary model
  - Evaluate the temporary recommender model on the platform objectives and update the labeling model.
- Update of recommender model
  - Fit new labels and update the recommender model.

#### **Algorithm 1:** Training of LabelCraft

**Input:** Recommender model  $f_{\theta}$ , labeling model  $g_{\phi}$ , training dataset  $\mathcal{D}$ , hold-out dataset  $\mathcal{D}_v$ , recommender learning rate  $\eta_1$  for  $f_{\theta}$ , and learning rate  $\eta_2$  for  $g_{\phi}$ .

- 1 Initialize  $\phi$  and  $\theta$  randomly;
- <sup>2</sup> while Stop condition is not reached do
- $^{3}$  // Step 1 (update of  $\phi$ );
- Compute  $\theta'$  with  $\theta' = \theta \eta_1 \nabla_{\theta} L(f_{\theta}, g_{\phi}; \mathcal{D}),$
- Update  $\phi$  according to  $\phi \leftarrow \phi + \eta_2 \nabla_{\phi} M(f_{\theta'}; \mathcal{D}_v)$ ,
- 6 // Step 2 (update of  $\theta$ );
- Update  $\theta$  according to Equation  $\theta \leftarrow \theta \eta_1 \nabla_{\theta} L(f_{\theta}, g_{\phi}; \mathcal{D})$ ,
- 8 end
- 9 return  $f_{\theta}, g_{\phi}$

### Objective representation

- Evaluate based on the top-k list provided by the recommender model, using SOFT top-k [1] technique to ensure differentiability
- Sub-objective
  - User usage time: average watch time
  - User engagement: average explicit feedback
  - Duration debias: std of video duration [2]

$$\alpha_{u, \mathbf{x}} = SOFT(\mathbf{x}; \{f_{\theta}(\mathbf{x}') | (\mathbf{x}', \mathbf{y}) \in \mathcal{D}_{v}^{u}\})$$

$$= \begin{cases} 1, & \text{if } f_{\theta}(\mathbf{x}) \text{ is in the top-}k \text{ highest predictions,} \\ 0, & \text{else,} \end{cases}$$

$$M_{1}(f_{\theta}; \mathcal{D}_{v}) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \sum_{(x,y) \in \mathcal{D}_{v}^{u}} \frac{\alpha_{u,x}}{k} scale(y_{w}),$$

$$M_{2}(f_{\theta}; \mathcal{D}_{v}) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \sum_{(x,y) \in \mathcal{D}_{v}^{u}} \frac{\alpha_{u,x}}{k} \delta(sum(y_{e})),$$

$$M_3(f_{\theta}; \mathcal{D}_v) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \left( \sum_{(x,y) \in \mathcal{D}_v^u} \frac{\alpha_{u,x}}{k} (scale(x_d) - E_{w,k})^2 \right)^{-1/2},$$

- [1] Xie et al. Differentiable Top-k with Optimal Transport. NIPS 2020.
- [2] Wang et al. Surrogate for Long-Term User Experience in Recommender Systems. KDD 2022

### Objective balancing

#### • Scaling scheme [3]

- $M_1, M_2, M_3$  are all defined based on feedback, while there exist differences in the magnitude among the feedback
- We adjust the watch time and video duration to a range of 0-1 based on their distributions

### Dynamic balancing

- The difficulty of learning varies among different objectives
- We dynamically allocate weights such that smaller weights are assigned to larger losses



$$scale(y_w) = \begin{cases} \frac{y_w}{w_{\beta}} \beta', & \text{if } 0 \le y_w \le w_{\beta}, \\ 1 - (1 - \beta') \frac{w_{max} - y_w}{w_{max} - w_{\beta}}, & \text{else,} \end{cases}$$

$$M(f_{\theta}; \mathcal{D}_{v}) = \sum_{i=1}^{3} softmax(-\tau M_{i}(f_{\theta}; \mathcal{D}_{v})) \cdot M_{i}(f_{\theta}; \mathcal{D}_{v}),$$

$$softmax(-\tau M_i(f_{\theta}; \mathcal{D}_v)) = \frac{\exp(-\tau M_i(f_{\theta}; \mathcal{D}_v))}{\sum_{j=1}^3 \exp(-\tau M_j(f_{\theta}; \mathcal{D}_v))},$$

[3] Sun et al. CREAD: A Classification-Restoration Framework with Error Adaptive Discretization for Watch Time Prediction in Video Recommender Systems. AAAI 2024

### Experiment setting

Datasets: Wechat (public) & Kuaishou (private)

#### Baselines:

- WT, EF: feedback as labels directly
- PC, PCR: manually defined labels
- D2Q, DVR: label debiasing method
- WT/D2Q/DVR + EF: multi-task learning method

#### Evaluation metrics:

- Customized NDCG based on watch time (NWTG@k) and explicit feedback(NEG@k)
- Standard deviation of video duration (DS@k)

### Performance comparison

| Method     | Kuaishou |             |            |                 |        |      | Wechat  |       |           |        |        |          |
|------------|----------|-------------|------------|-----------------|--------|------|---------|-------|-----------|--------|--------|----------|
|            | NWTG@10  | RI          | DS@10      | RI              | NEG@10 | RI   | NWTG@10 | RI    | DS@10     | RI     | NEG@10 | RI       |
| PC         | 0.2121   | 41.6%       | 15         | 792.1%          | 0.7902 | 3.3% | 0.4563  | 39.0% | 10        | 134.4% | 0.7776 | 7.2%     |
| PCR        | 0.2493   | 20.5%       | 67         | 105.9%          | 0.8005 | 2.0% | 0.4125  | 53.8% | 12        | 100.3% | 0.8109 | 2.8%     |
| WT         | 0.2939   | 2.2%        | 113        | 21.6%           | 0.7991 | 2.2% | 0.4972  | 27.6% | 15        | 58.7%  | 0.8201 | 1.7%     |
| D2Q        | 0.2722   | 10.4%       | 122        | 12.4%           | 0.7949 | 2.7% | 0.6202  | 2.3%  | <u>23</u> | 6.8%   | 0.8191 | 1.8%     |
| DVR        | 0.2814   | 6.7%        | <u>135</u> | 1.8%            | 0.7866 | 3.8% | 0.5300  | 19.7% | 18        | 32.2%  | 0.8219 | 1.4%     |
| EF         | 0.2557   | 17.5%       | 113        | 21.2%           | 0.8097 | 0.8% | 0.4593  | 38.1% | 15        | 65.6%  | 0.8261 | 0.9%     |
| WT+EF      | 0.2631   | 14.2%       | 119        | 15.5%           | 0.8000 | 2.1% | 0.5195  | 22.1% | 21        | 17.4%  | 0.8205 | 1.6%     |
| D2Q+EF     | 0.2800   | 7.3%        | 111        | 23.4%           | 0.7896 | 3.4% | 0.5790  | 9.5%  | 22        | 12.8%  | 0.8197 | 1.7%     |
| DVR+EF     | 0.2876   | 4.4%        | 124        | 10.9%           | 0.7862 | 3.9% | 0.5698  | 11.3% | 22        | 11.0%  | 0.8232 | 1.3%     |
| LabelCraft | 0.3003   | hatulinana. | 137        | 11 192 7 89 143 | 0.8165 | -    | 0.6343  |       | 24        |        | 0.8338 | <u> </u> |

- LabelCraft consistently exhibits superior performance compared to the baselines across all aspects
- This consistent superiority emphasizes the remarkable **alignment** between the labels generated by LabelCraft and the multi-aspect platform objectives

### Ablation study

#### Variants

- Disable balancing (w/o B)
- Disable scaling (w/o S)
- Remove labeling model input (w/o WI DI EI)
- Remove sub-objective (w/o WO DO EO)

#### Observations

 Disabling the scaling (w/o S) or balancing (w/o B) result in that most metrics decrease

| Method            | NWTG@10 | DS@10 | NEG@10 |
|-------------------|---------|-------|--------|
| LabelCraft        | 0.3003  | 137   | 0.8165 |
| LabelCraft w/o B  | 0.2710  | 122   | 0.7960 |
| LabelCraft w/o S  | 0.2627  | 101   | 0.8165 |
| LabelCraft w/o WI | 0.2677  | 103   | 0.8151 |
| LabelCraft w/o DI | 0.2935  | 127   | 0.7919 |
| LabelCraft w/o EI | 0.3237  | 124   | 0.7927 |
| LabelCraft w/o WO | 0.2785  | 112   | 0.8001 |
| LabelCraft w/o DO | 0.3290  | 128   | 0.7982 |
| LabelCraft w/o EO | 0.3109  | 131   | 0.7962 |

- Removing any sub-objective (w/o WO DO EO) would lead to decrease in at least one metric, particularly the metric corresponding to the removed sub-objective
- Removing any input from the labeling model (w/o WI DI EI) would lead to more pronounced decreases on certain evaluation metrics

### Debiasing performance

- LabelCraft effectively mitigates duration bias, which can be attributed to the alignment between the labels generated by LabelCraft and the platform objectives
- When the platform objective is appropriately designed to be free of biases, it could guide the labeling model to generate **bias-free labels**



### Conclusion & Future Work

- Conclusion
  - Label generation task
  - LabelCraft, automated labeling & explicit optimization
- Future work
  - Align with more complex objectives
  - Better objective balancing method