1 Aufgabenstellung

Bei diesem Experiment soll die Verbrennungsenthalpie $\Delta_C U$ einer unbekannten Substanz, mit einem Bombenkalorimeter nach Berthelot, bestimmt werden.

2 Durchführung

Messung	Substanz	Einwaage[g]
1	Benzoesäure	0.512
2	Substanz M	0.545
3	Substanz M	0.555g
4	Benzoesäure	0.576

Tabelle 1: Gewichte der Tabletten

Die bekannten Werte sind:

- M[Benz.] = 122.12g/mol
- \bullet das Molekulargewicht der unbekannten Substanz MM[M]=152g/mol
- \bullet der Brennwert des Zünddrahts: 30J
- \bullet der Brennwert des Baumwollfadens: 50J
- \bullet die Verbrennungsenthalpie von der Benzoesäure $\Delta_C U = -3226\,KJ/mol$

3 Versuchsaufbau

Abbildung 1: Aufbau eines Bombenkalorimeters

4 Auswertung

4.1 Bestimmung von C_{sys}

Zur Ermittlung der Wäremkapzität des Systems wurde zweimal Benzoesäure verbrannt, durch den Anstieg der Temperatur kann man ΔT ermitteln. Mit der Formel $\Delta_c U = C_{sys} \Delta T$ kann dann nach Umformen C_{sys} berechnen. Zuerst muss aber noch die molare Verbrennungsenergie $\Delta_c U_{molar}$ in $\Delta_c U$ umgerechnet werden.

$$n = m/M \tag{1}$$

$$\Delta_c U = \Delta_c U_{molar} \cdot n \tag{2}$$

$$\Delta_c U_1[Benz.] = \Delta_c U_{molar} \cdot n_1 = -13.53KJ$$

$$\Delta_c U_2[Benz.] = \Delta_c U_{molar} \cdot n_2 = -15.22KJ$$

Jetzt können die einzelnen Werte in die Formel zur Berechnung der Wäremkapzität eingesetzt werden.

$$C_{sys} = \frac{\Delta_c U + Z}{\Delta T} \tag{3}$$

Wobei Z für die Zündquellen steht, in unserem Fall für den Zünddraht und den Baumwollfaden.

$$C_{sys1} = \frac{-13530J + 80J}{0.904K} = -14873J/K$$

$$C_{sys2} = \frac{-15220J + 80J}{1.17K} = -12236J/K$$

Der gemittelte Wert der Wäremkapzität des Systems ist somit $C_{sys} = -13555 J/K$.

4.2 Bestimmung der molaren Verbrennungsenergie der unbekannten Substanz

Da jetzt C_{sys} bekannt ist, kann über die Formel (3) $\Delta_c U$ der unbekannten Substanz ermittelt werden.

$$\Delta_c U_1[M] = C_{sys} \cdot \Delta T_1 = -14233J$$

$$\Delta_c U_2[M] = C_{sys} \cdot \Delta T_2 = -15737J$$

Um die molare Verbrennungsenergie zu berechnen muss die 2. Formel nach $\Delta_c U_m$ umgeformt werden

$$\Delta_c U_m = \frac{\Delta_c U}{n}$$

$$\Delta_c U_{m1} = \frac{-14604J}{3.6 \cdot 10^{-3}} = -3898KJ/mol$$

$$\Delta_c U_{m1} = \frac{-16148J}{3.7 \cdot 10^{-3}} = -4153KJ/mol$$

Der gemittelte Wert ist somit $\Delta_c U_m = -4025 K J/mol$

4.3 Berechnung von $\Delta_f H$

1. aufstellen der Reaktionsgleichung:

$$C_7H_6O_2(s) + \frac{15}{2}O_2(g) \longrightarrow 7CO_2(g) + 3H_2O(l)$$

2. $\Delta_c H$ berechnen:

$$\begin{split} &\Delta_c H = \Delta_c U + \Delta n(g)RT \\ &\Delta_c H = -3226000 J/mol - (0.5mol \cdot R \cdot 298.15K) = -3227KJ/mol \end{split}$$

- 3. Berechnung von $\Delta_f H$
 - Gegeben:

$$\begin{split} &\Delta_f H(CO_2(g)) = -393.5 KJ/mol \quad \Delta_f H(H_2O(l)) = -241.8 KJ/mol \\ &\Delta_v H(H_2O) = 44 KJ/mol \end{split}$$

• $\Delta_f H(H_2O(g))$ berechnen:

$$\Delta_f H(H_2O(l)) = \Delta_f H(H_2O(g)) - \Delta_v H(H_2O) = -285.8KJ/mol$$

$$\Delta_f H = 3 \cdot \Delta_f H(H_2O(l)) + 7 \cdot \Delta_f H(CO_2(g)) - \Delta_c H = -384.9 KJ/mol$$

5 Anhang

	Substanz	M [g/mol]	Einwage [g]	ΔT	n [mol]	$\Delta_c U_m [{ m J/mol}]$	$\Delta_c U$ [J]	C_{sys} [J]
	Benzoesäure	122.12	0.512	0.904	0.004193	-3.226e+06	-13525.3	-14873.14
	Benzoesäure M	$122.12 \\ 152.00$	$0.545 \\ 0.555$	1.170 1.050	0.004463 0.003651	$-3.226\mathrm{e}{+06} \\ -3.897\mathrm{e}{+06}$	-14397.0 -14232.7	-12236.81
	M	152.00	0.576	1.161	0.003789	$-4.152\mathrm{e}{+06}$	-15737.3	
Mittelwert						-3.22e+06		-13554.97
						-4.02e+06		

Tabelle 2: Alle Ergebnisse und Messungen

Abbildung 2: Temperaturverlauf der 1. Probe

Abbildung 3: Temperaturverlauf der 2. Probe

Abbildung 4: Temperaturverlauf der 2. Probe

Abbildung 5: Temperaturverlauf der 2. Probe