C\$21B061 Shafi We Rahman Khan Homework-1

Quep!) Let us assume that there is a task which involves N processes

TASK: - Analytically prove the reptimality of the STF scheduling.

folm: - STF scheduling a associates with each process, process the length of the process, the length of the process, ment the length of the the nent cru burst of 2 processes are same, first some first some first some first some first as used to break the tie.

-> Aug. moiting time for n processes:

 $\omega_{\tau} = (\omega_1 + \omega_2 + \cdots + \omega_n) - (i)$

ruhere wr: - total moiting time

where $t_{i-1} := 0$ is 0 in 0 i

Noupider wo=0 & to=0

using (i) & (ii):-

```
WI= Wo+ to
                                                                             wo+to+ti
             w_= witti =
                                                                               wo+to+ti+tz
             Wz= Wz+tz=
         w_n = w_{n-1} + t_{n-1} = w_0 + \angle t_1^2

where w_n = w_0 + d_1 + d_2 + d_3 + d_4 + d_4
2> ω_= nxwo+ mtor (n-1)tit (n-2)tzto-+tn-1
                     Wy = (n-1) ti+ (n-2) ti+000+tn-1 - (iii)
   taking 2 reandons processes i & j where.

ti>tj & j>i
  suapping them, me get new ang. maiting time
 \omega_{T} = (m-1)t_1 + ... + (m-i)t_j + ... + (m-j)t_i + ... + t_{m-1}
                                                                                                                                                                               L> (iv)
     subtracting (iii) & (iv)
        \omega_{\tau} - \omega'_{\tau} = (j-i)(ti-t_{j}^{*})
      now, o; j>i & ti > ti
                                                       w_ -w_ >0
                                        :. [WT>W'T]
                                                                                                                                                                                                                until they
       similarly , me can keep smafgling ouder.
```

Hence proved

Drawbacks: - It can't be implemented at CPU
scheduling level, as there is no way
to know the length of ment CPU
burst. we can approximate it at
best & that two only to a
sertain degree.

Quet 2)	Process id	Burst time	Avaual time		
	Pi Pz P3	2 1 8	000		
	Pu Ps	4	0		

Spantt chart :-

		TO-	Pa Pu	TPS	P3	PS	13	7
P ₁ P _L	P3 P	4 115	1.31	13	15	רו	18	20
0 2	3 5	7	9					

anerage response =
$$0+2+3+5+7 = 17 = 3.4$$
 mper
time

maiting time = tionaround - brockt

auerage twenaround = $2+3+20+13+18 = \frac{56}{5} = \frac{11.2 \text{ msec}}{5}$ vauerage burst = $\frac{2+1+8+4+5}{5} = \frac{20}{5} = \frac{4}{5}$ burgt. We can approximate it

average maiting = (11.2-4) msec time = 7.2 msec

Arriva

Burst time

(msec)

bi sassay

[3] 39 [3] [3] [3] [3] [3] [3] [3] [3]