



# Resistência e Energia — Térmica

2 de janeiro de 2023

Marco Maia — 1210951

Rúben Ferreira — 1210954

João Teixeira — 1210957

José Rente — 1211155

# Conteúdo

| T | Intr | oduçac  | )                                      | 3  |
|---|------|---------|----------------------------------------|----|
| 2 | Sele | eção de | materiais                              | 3  |
|   | 2.1  | Parede  | es Exteriores                          | 3  |
|   |      | 2.1.1   | Camada Exterior                        | 3  |
|   |      | 2.1.2   | Camada Isolante e Estrutural           | 3  |
|   |      | 2.1.3   | Camada Interior                        | 4  |
|   | 2.2  | Parede  | es Interiores                          | 5  |
|   |      | 2.2.1   | Camada Exterior e Interior             | 5  |
|   |      | 2.2.2   | Camada Isolante e Estrutural           | 5  |
|   | 2.3  | Telhad  | lo                                     | 6  |
|   | 2.4  | Portas  |                                        | 7  |
|   | 2.5  | Janelas | S                                      | 7  |
| 3 | Esti | rutura  |                                        | 8  |
|   | 3.1  | Croqui  | i                                      | 8  |
|   | 3.2  | Resistê | ência Térmica nas Secções              | 8  |
|   |      | 3.2.1   | Zona A                                 | 8  |
|   |      | 3.2.2   | Zona B                                 | 11 |
|   |      | 3.2.3   | Zona C                                 | 13 |
|   |      | 3.2.4   | Zona D                                 | 15 |
|   |      | 3.2.5   | Zona E                                 | 17 |
|   |      | 3.2.6   | Telhado                                | 18 |
| 4 | Spr  | int 2   |                                        | 18 |
|   | 4.1  | US406   |                                        | 18 |
|   |      | 4.1.1   | Secção C                               | 19 |
|   |      | 4.1.2   | Secção D                               | 19 |
|   |      | 4.1.3   | Secção E                               | 19 |
|   | 4.2  | US407   |                                        | 20 |
|   |      | 4.2.1   | Formulas Utilizadas                    | 20 |
|   |      | 4.2.2   | Temperatura Exterior de 20°C           | 21 |
|   |      | 4.2.3   | Temperatura Exterior de $28^{\circ}$ C | 31 |
|   | 4.3  | US408   |                                        |    |
|   |      | 4.3.1   | Temperatura de $20^{\circ}$ C          |    |
|   | 4.4  | Diferer | nça de Energias Após Melhorias         |    |
|   | 4.5  |         |                                        |    |
|   |      |         | Ponto 7                                |    |

| 4.5.2 | Ponto8                             | . 36 | 6 |
|-------|------------------------------------|------|---|
| 4.5.3 | Otimizar Sistemas de Arrefecimento | . 36 | 6 |

# 1 Introdução

No âmbito do Projeto Integrador a desenvolver, pretendeu-se elaborar uma estrutura correspondente a um armazém agrícola dividido em cinco zonas — A, B, C, D e E —, de forma a poder suportar diferentes temperaturas.

Este relatório tem, portanto, como objetivo detalhar o processo de escolha de materiais a utilizar na constituição das várias paredes — bem como o telhado — do armazém e as resistências térmicas respetivamente associadas.

# 2 Seleção de materiais

Perante o problema apresentado, investigar um conjunto de materiais para fazerem parte de uma estrutura, iniciou-se uma pesquisa em busca das melhores alternativas. Para tal, procurou-se materiais com um baixo valor de condutividade térmica (k).

### 2.1 Paredes Exteriores

Perante uma situação de diferentes temperaturas nas diversas secções da estrutura, optou-se por manter a consistência e utilizar os mesmos materiais em todas as paredes exteriores.

No final, obteve-se uma espessura de 32cm.

#### 2.1.1 Camada Exterior

Para a camada exterior das paredes, escolheu-se o **cimento**. Este material é usado em infraestruturas de todo o mundo dado, não só às suas **características térmicas satisfatórias** mas, também, ao seu **baixo custo**.

Optou-se pela seguinte disposição:

Material 
$$k \left(W m^{-1} K^{-1}\right) \Delta x \left(m\right)$$
Cimento  $0,46 \left[\begin{array}{cc} \mathbf{1} \end{array}\right] 0,09$ 

Tabela 1: Configuração da camada exterior

#### 2.1.2 Camada Isolante e Estrutural

Para a camada isolante e estrutural, destacaram-se os seguintes materiais:

- ICF;
- Tijolo refratário,  $(k = 0.78 Wm^{-1}K^{-1})$  [2].



Figura 1: Sistema ICF, ainda por preencher com betão armado

Entre ambos, foi decidido utilizar o ICF. O ICF é uma sistema de construção distinguido pelo seu elevado **isolamento térmico** e acústico, baixo custo de manutenção e fácil aplicação. Este sistema é constituído por **dois blocos isolantes verticais** de **poliestireno expandido** que, após a sua respetiva montagem, são preenchidos por **betão armado**.

Tendo sido desenvolvidos há pouco mais de 30 anos, estes sistemas têm sido utilizados um pouco por todo o mundo, com especial ênfase nos EUA e no Canadá, dadas as suas ótimas capacidades **térmicas** e acústicas

Apesar de, na figura 1, estar representado um reforço com barras de metal, essas serão ignoradas neste trabalho experimental.

Optou-se pela seguinte disposição:

| Material               | $k (Wm^{-1}K^{-1})$      | $\Delta x (m)$ |
|------------------------|--------------------------|----------------|
| Poliestireno Expandido | 0,037 [ <mark>3</mark> ] | 0,02           |
| Betão Armado           | 2 [4]                    | 0, 18          |
| Poliestireno Expandido | 0,037                    | 0,02           |

Tabela 2: Configuração da camada isolante e estrutural

### 2.1.3 Camada Interior

Para a camada interior, destacaram-se os seguintes materiais:

- Gesso,  $(k = 0, 25 Wm^{-1}K^{-1})$
- Estuque,  $(k = 0, 4 Wm^{-1}K^{-1})$

Pelas claras diferenças nos valores de condutividade térmica, escolheu-se o **gesso** para o revestimento interior das paredes exteriores.

Optou-se pela seguinte disposição:

| Material | $k (Wm^{-1}K^{-1})$      | $\Delta x (m)$ |
|----------|--------------------------|----------------|
| Gesso    | 0, 25 [ <mark>5</mark> ] | 0,01           |

Tabela 3: Configuração da camada interior

### 2.2 Paredes Interiores

Relativamente às paredes interiores, estas foram divididas em duas categorias — **Estruturais** e **Não Estruturais** —, sendo que o facto de ser uma parede estrutural teve influência na escolha do materiais e da sua respetiva espessura.

#### 2.2.1 Camada Exterior e Interior

Relativamente às paredes interiores, optou-se por utilizar o **gesso** como material para a camada exterior de ambos os lados das paredes, pois trata-se de um composto que enfortece [6] as paredes e, visto que estas são as camadas visíveis àqueles que circulam pelo armazém, convém conferir um certo valor estético às paredes. Para além disso, o gesso é um material relativamente barato e possui uma condutividade térmica apreciável ( $k = 0.25 Wm^{-1}K^{-1}$ ) para o contexto [5].

| Material | $k (Wm^{-1}K^{-1})$ | $\Delta x (m)$ |
|----------|---------------------|----------------|
| Gesso    | 0.25                | 0.01           |

Tabela 4: Dados da componente exterior

#### 2.2.2 Camada Isolante e Estrutural

Para as paredes estruturais, o material escolhido foi o ICF, pelas mesmas razões referidas acima na secção 2.1.2. Já para as não estruturais, como estas não necessitam suportar bastante o edifício, foi decidido utilizar um composto de **Poliestireno extrudido** e de **Madeira Pinus**. É no entanto, relevante mencionar que o poliestireno possui um excelente desempenho térmico  $(k = 0.033 \ Wm^{-1}K^{-1})$  [3] e é de uma elevada rapidez de instalação [7].

| Material               | $k \left(W m^{-1} K^{-1}\right)$ | $\Delta x (m)$        |
|------------------------|----------------------------------|-----------------------|
| Poliestireno extrudido | 0.033                            | 0.02 (estrutural)     |
| Betão armado           | 2                                | 0.18                  |
| Poliestireno extrudido | 0.033                            | 0.08 (não estrutural) |
| Madeira Pinus          | 0.12                             | 0.1                   |

Tabela 5: Dados da componente isolante

### 2.3 Telhado

Para o telhado, optou-se por um modelo de duas águas. Para a **estrutura exterior**, o que fez mais sentido foi uma cobertura de **cimento**, sobreposto por uma camada de **telha**. O cimento, pelas mesmas razões referidas no tópico 2.1.1, foi a melhor decisão, dado aos seus baixos valores de condutividade térmica de  $k = 0,46 Wm^{-1}K^{-1}$ .

Já o material isolante escolhido, difere do material isolante das paredes exteriores. Optouse por espuma de poliuretano que, permite obter um isolamento térmico que satisfaz as necessidades do caso de estudo. Este material apresenta um valor de condutividade térmica de  $k = 0,028 Wm^{-1}K^{-1}$  [8] e, é muito popular nas indústrias que dependem de espaços com temperaturas controladas.



Figura 2: Espuma de poliuretano

Por fim, e, à semelhança das paredes exteriores, decidiu-se aplicar uma camada de **gesso**, como **revestimento interior do telhado**.

Optou-se pela seguinte disposição:

| Estrutura | Material              | $k \left(W m^{-1} K^{-1}\right)$ | $\Delta x (m)$ |
|-----------|-----------------------|----------------------------------|----------------|
| Exterior  | Telha                 | 1, 2                             | 0,06           |
| Cobertura | Cimento               | 0,46                             | 0,04           |
| Isolante  | Espuma de Poliuretano | 0,028                            | 0,17           |
| Interior  | Gesso                 | 0, 25                            | 0,03           |

### 2.4 Portas

De acordo com o enunciado providenciado pelo cliente, o armazém possuirna três tipos de portas

- 1. Porta de subir Zona A
- 2. Porta de duas folhas (dupla) Zona B
- 3. Porta simples Restantes zonas

Na escolha dos materiais não se achou necessidade de distinguir os materiais a usar na constituição da porta dupla e das simples e, portanto, decidiu-se utilizar a **Madeira Pinus**.

Já para a porta de vidro, decidiu-se utilizar uma configuração com fibra de vidro.

| Material       | $k (Wm^{-1}K^{-1})$ | $\Delta x (m)$ |
|----------------|---------------------|----------------|
| Madeira Pinus  | 0.12 [9]            | 0.1            |
| Fibra de Vidro | 0.04 [10]           | 0.1            |

Tabela 6: Dados da constituição das portas

## 2.5 Janelas

Por fim, foram idealizadas duas janelas que satisfazem as necessidades térmicas do espaço. Para tal, optou-se por uma construção de duas folhas, com uma estrutura de alumínio e vidro duplo.

| Estrutura | Material | $k \left(W m^{-1} K^{-1}\right)$ | $\Delta x (m)$ |
|-----------|----------|----------------------------------|----------------|
| Perfil    | Alumínio | 237                              | 0,053          |
| Vidro     | Vidro    | 0,79                             | 0,004          |
| Ar        | Ar       | 0,025                            | 0,023          |
| Vidro     | Vidro    | 0,79                             | 0,004          |

Tabela 7: Configuração das janelas

# 3 Estrutura

# 3.1 Croqui

Após a seleção de todos os materiais e a decisão das suas respetivas larguras, obtivemos a seguinte estrutura para responder ao problema apresentado pelo cliente.



Figura 3: Croqui da estrutura concebida

# 3.2 Resistência Térmica nas Secções

### 3.2.1 Zona A

Tendo em conta os materiais apresentados na secção e, o croqui da estrutura, **a zona A**, para funcionar à temperatura de  $15^{\circ}C$  possui as seguintes características:

| Secção                  | Material               | $k \left(W m^{-1} K^{-1}\right)$ | $\Delta x (m)$ | Área $(m^2)$ |
|-------------------------|------------------------|----------------------------------|----------------|--------------|
|                         | Cimento                | 0.46                             | 0.09           | 48, 5        |
| Parede                  | Poliestireno Expandido | 0.037                            | 0.02           | 48,5         |
| Exterior                | Betão Armado           | 2                                | 0.18           | 48, 5        |
| $(\times 2)$            | Poliestireno Expandido | 0.037                            | 0.02           | 48, 5        |
|                         | Gesso                  | 0.25                             | 0.01           | 48, 5        |
| Parede                  | Gesso                  | 0.25                             | 0.01           | 40           |
| Interior                | Poliestireno Extrudido | 0.033                            | 0.08           | 40           |
| Não Estrutural          | Madeira Pinus          | 0.12                             | 0.1            | 40           |
| $(\times 1)$            | Gesso                  | 0.25                             | 0.01           | 40           |
|                         | Gesso                  | 0.25                             | 0.01           | 37           |
| Parede                  | Poliestireno Extrudido | 0.033                            | 0.02           | 37           |
| Interior                | Betão Armado           | 2                                | 0.18           | 37           |
| Estrutural $(\times 1)$ | Poliestireno Extrudido | 0.033                            | 0.02           | 37           |
|                         | Gesso                  | 0.25                             | 0.01           | 37           |
|                         | Alumínio               | 237                              | 0,053          | 0,66         |
| Janela                  | Vidro                  | 0,79                             | 0,004          | 1,34         |
| $(\times 1)$            | Ar                     | 0,025                            | 0,023          | 1,34         |
|                         | Vidro                  | 0,79                             | 0,004          | 1,34         |
| Porta de Subir (×1)     | Fibra de vidro         | 0.04                             | 0.1            | 15           |

Tabela 8: Composição da zona A

Com base na tabela 8, o cálculo das resistências para esta sucede-se da seguinte forma:

Janela: Os vidros e o ar estão associados em série:

$$R_{janelas} = \frac{1}{\frac{1}{R_{aluminio}} + \frac{1}{2 \times R_{vidro} + R_{ar}}}$$
 (1)

$$\Leftrightarrow R_{janelas} = \frac{1}{\frac{1}{0.053} + \frac{1}{2 \times \frac{0.004}{0.79 \times 1.34} + \frac{0.023}{0.025 \times 1.34}}} = 3.40 \times 10^{-4} \, KW^{-1}$$
 (2)

Parede Exterior com Porta da Subir e Janela: Camadas associadas em série:

$$\frac{1}{R} = \frac{1}{R_{cimento} + 2 \times R_{poliestireno} + R_{bet\tilde{a}o} + R_{gesso}} + \frac{1}{R_{porta\_subir}} + \frac{1}{R_{janela}}$$
(3)

$$\Leftrightarrow \frac{1}{R} = \frac{1}{\frac{0.09}{0.460 \times 48.5} + 2 \times \frac{0.02}{0.037 \times 48.5} + \frac{0.18}{2 \times 48.5} + \frac{0.01}{0.25 \times 48.5} + \frac{1}{\frac{0.1}{0.04 \times 15}} + \frac{1}{\frac{3.40 \times 10^{-4}}{0.04 \times 15}}$$

$$(4)$$

$$\Leftrightarrow R_{parede\_ext+porta+janela} = 3.35 \times 10^{-4} \, KW^{-1} \tag{5}$$

Parede Interior Não Estrutural com porta: Paralelo entre a parede e a porta.

$$\frac{1}{R} = \frac{1}{2 \times R_{qesso} + R_{poliestireno\ extrudido} + R_{madeira\ pinus}} + \frac{1}{R_{porta}}$$
(6)

$$\Leftrightarrow \frac{1}{R} = \frac{1}{2 \times \frac{0.01}{0.25 \times 40} + \frac{0.08}{0.033 \times 40} + \frac{0.1}{0.12 \times 40}} + \frac{1}{0.12 \times 3}$$
 (7)

$$\Leftrightarrow \frac{1}{R_{parede\ n\tilde{a}o\ estrut+porta}} = \frac{1}{8.34 \times 10^{-2}} + \frac{1}{2.78 \times 10^{-1}} = 6.42 \times 10^{-2} \ KW^{-1}$$
 (8)

### Parede Interior Estrutural:

$$R = 2 \times R_{gesso} + 2 \times R_{poliestireno} + R_{bet\tilde{a}o} \tag{9}$$

$$\Leftrightarrow R_{parede\_estrut} = 2 \times \frac{0.01}{0.25 \times 37} + 2 \times \frac{0.02}{0.033 \times 37} + \frac{0.18}{2 \times 37} = 3.74 \times 10^{-2} \, KW^{-1} \tag{10}$$

**Total:** Tendo em conta que os componentes estão associados em série e considerando os resultados das equações 5, 8 e 10

$$R_{total} = \frac{1}{\frac{1}{3.35 \times 10^{-4}} + \frac{1}{6.42 \times 10^{-2}} + \frac{1}{3.74 \times 10^{-2}}} = 3.31 \times 10^{-4} \, KW^{-1} \tag{11}$$

### 3.2.2 Zona B

Tendo em conta os materiais apresentados na secção e, o croqui da estrutura, **a zona B**, para funcionar à temperatura de  $20^{\circ}C$  possui as seguintes características:

| Secção                  | Material               | $k \left(W m^{-1} K^{-1}\right)$ | $\Delta x (m)$ | Área $(m^2)$ |
|-------------------------|------------------------|----------------------------------|----------------|--------------|
|                         | Cimento                | 0.46                             | 0.09           | 57.5         |
| Parede                  | Poliestireno Expandido | 0.037                            | 0.02           | 57.5         |
| Exterior                | Betão Armado           | 2                                | 0.18           | 57.5         |
| $(\times 2)$            | Poliestireno Expandido | 0.037                            | 0.02           | 57.5         |
|                         | Gesso                  | 0.25                             | 0.01           | 57.5         |
| Parede                  | Gesso                  | 0.25                             | 0.01           | 25           |
| Interior                | Poliestireno Extrudido | 0.033                            | 0.08           | 25           |
| Não Estrutural          | Madeira Pinus          | 0.12                             | 0.1            | 25           |
| $(\times 1)$            | Gesso                  | 0.25                             | 0.01           | 25           |
|                         | Gesso                  | 0.25                             | 0.01           | 40           |
| Parede                  | Poliestireno Extrudido | 0.033                            | 0.02           | 40           |
| Interior                | Betão Armado           | 2                                | 0.18           | 40           |
| Estrutural $(\times 1)$ | Poliestireno Extrudido | 0.033                            | 0.02           | 40           |
|                         | Gesso                  | 0.25                             | 0.01           | 40           |
|                         | Alumínio               | 237                              | 0,053          | 0,66         |
| Janela                  | Vidro                  | 0,79                             | 0,004          | 1,34         |
| (×1)                    | Ar                     | 0,025                            | 0,023          | 1,34         |
|                         | Vidro                  | 0,79                             | 0,004          | 1, 34        |
| Porta dupla (×1)        | Madeira Pinus          | 0.12                             | 0.1            | 6            |

Tabela 9: Composição da zona B

Com base na tabela 9, o cálculo das resistências para esta secção sucede-se da seguinte forma:

Janela: Os vidros e o ar estão associados em série:

$$\frac{1}{R} = \frac{1}{R_{aluminio}} + \frac{1}{2 \times R_{vidro} + R_{ar}} \tag{12}$$

$$\Leftrightarrow \frac{1}{R_{janelas}} = \frac{1}{\frac{0.053}{237 \times 0.66}} + \frac{1}{2 \times \frac{0.004}{0.79 \times 1.34} + \frac{0.023}{0.025 \times 1.34}} = 3.40 \times 10^{-4} \, KW^{-1}$$
 (13)

Parede Exterior com Porta Dupla e Janela: Camadas associadas em série:

$$\frac{1}{R} = \frac{1}{R_{cimento} + 2 \times R_{poliestireno} + R_{bet\tilde{a}o} + R_{gesso}} + \frac{1}{R_{porta\ dupla}} + \frac{1}{R_{janela}}$$
(14)

$$\Leftrightarrow \frac{1}{R} = \frac{1}{0.09} + 2 \times \frac{0.02}{0.037 \times 57.5} + \frac{0.18}{2 \times 57.5} + \frac{0.01}{0.25 \times 57.5} + \frac{1}{0.12 \times 6} + \frac{1}{3.40 \times 10^{-4}}$$
(15)

$$\Leftrightarrow R_{parede\_ext+porta\_dupla+janela} = 3.34 \times 10^{-4} \ KW^{-1}$$
 (16)

#### Parede Interior Não Estrutural:

$$R_{parede\ n\~{a}o\ estrut} = 2 \times R_{gesso} + R_{poliestireno\ extrudido} + R_{madeira\ pinus}$$
 (17)

$$\Leftrightarrow R_{parede\_n\tilde{a}o\_estrut} = 2 \times \frac{0.01}{0.25 \times 25} + \frac{0.08}{0.033 \times 25} + \frac{0.1}{0.12 \times 25} = 1.34 \times 10^{-1} \ KW^{-1}$$
 (18)

#### Parede Interior Estrutural:

$$R_{parede\_estrut} = 2 \times R_{gesso} + 2 \times R_{poliestireno} + R_{bet\tilde{a}o}$$
 (19)

$$\Leftrightarrow R_{parede\_estrut} = 2 \times \frac{0.01}{0.25 \times 40} + 2 \times \frac{0.02}{0.033 \times 40} + \frac{0.18}{2 \times 40} = 3.46 \times 10^{-2} \, KW^{-1}$$
 (20)

**Total:** Tendo em conta que os componentes estão associados em série e considerando os resultados das equações 16, 18 e 20

$$R_{total} = \frac{1}{\frac{1}{3.34 \times 10^{-4}} + \frac{1}{1.34 \times 10^{-1}} + \frac{1}{3.46 \times 10^{-2}}} = 3.30 \times 10^{-4} \, KW^{-1} \tag{21}$$

#### 3.2.3 Zona C

Tendo em conta os materiais apresentados na secção e, o croqui da estrutura, **a zona C**, para funcionar à temperatura de  $-10^{\circ}C$  possui as seguintes características:

| Secção                     | Material               | $k (Wm^{-1}K^{-1})$ | $\Delta x (m)$ | Área $(m^2)$ |
|----------------------------|------------------------|---------------------|----------------|--------------|
|                            | Cimento                | 0.46                | 0.09           | 40           |
| Parede                     | Poliestireno Expandido | 0.037               | 0.02           | 40           |
| Exterior                   | Betão Armado           | 2                   | 0.18           | 40           |
| $(\times 1)$               | Poliestireno Expandido | 0.037               | 0.02           | 40           |
|                            | Gesso                  | 0.25                | 0.01           | 40           |
| Parede                     | Gesso                  | 0.25                | 0.01           | 50           |
| Interior                   | Poliestireno Extrudido | 0.033               | 0.08           | 50           |
| Não Estrutural             | Madeira Pinus          | 0.12                | 0.1            | 50           |
| $(\times 2)$               | Gesso                  | 0.25                | 0.01           | 50           |
|                            | Gesso                  | 0.25                | 0.01           | 37           |
| Parede                     | Poliestireno Extrudido | 0.033               | 0.02           | 37           |
| Interior                   | Betão Armado           | 2                   | 0.18           | 37           |
| Estrutural $(\times 1)$    | Poliestireno Extrudido | 0.033               | 0.02           | 37           |
|                            | Gesso                  | 0.25                | 0.01           | 37           |
| Porta Simples $(\times 1)$ | Madeira Pinus          | 0.12                | 0.1            | 3            |

Tabela 10: Composição da zona C

Com base na tabela 10, o cálculo das resistências para esta secção sucede-se da seguinte forma:

Parede exterior: Camadas associadas em série:

$$R_{parede\_ext} = R_{cimento} + 2 \times R_{poliestireno} + R_{bet\tilde{a}o} + R_{gesso}$$
 (22)

$$\Leftrightarrow R_{parede\_ext} = \frac{0.09}{0.46 \times 40} + 2 \times \frac{0.02}{0.037 \times 40} + \frac{0.18}{2 \times 40} + \frac{0.01}{0.25 \times 40} = 3.52 \times 10^{-2} \ KW^{-1} \ (23)$$

### Paredes Interiores Não Estruturais:

$$R_{parede\_n\tilde{a}o\_estrut} = 2 \times R_{gesso} + R_{poliestireno\_extrudido} + R_{madeira\_pinus}$$
 (24)

$$\Leftrightarrow R_{parede\_n\tilde{a}o\_estrut} = 2 \times \frac{0.01}{0.25 \times 50} + \frac{0.08}{0.033 \times 50} + \frac{0.1}{0.12 \times 50} = 6.68 \times 10^{-2} \ KW^{-1}$$
 (25)

Parede Interior Estrutural com Porta: Paralelo entre a parede e a porta.

$$R_{parede\_estrut+porta} = \frac{1}{2 \times R_{qesso} + 2 \times R_{poliestireno} + R_{bet\tilde{a}o}} + \frac{1}{R_{porta}}$$
(26)

$$\Leftrightarrow R_{parede\_estrut+porta} = \frac{1}{2 \times \frac{0.01}{0.25 \times 37} + 2 \times \frac{0.02}{0.033 \times 37} + \frac{0.18}{2 \times 37}} + \frac{1}{0.12 \times 3}$$
(27)

$$\Leftrightarrow R_{parede\_estrut+porta} = 3.29 \times 10^{-2} \, KW^{-1} \tag{28}$$

**Total:** Tendo em conta que os componentes estão associados em série e considerando os resultados das equações 23, 25 e 28

$$R_{total} = \frac{1}{\frac{1}{3.52 \times 10^{-2}} + \frac{1}{6.67 \times 10^{-2}} + \frac{1}{3.29 \times 10^{-2}}} = 2.30 \times 10^{-2} \, KW^{-1}$$
 (29)

#### 3.2.4 Zona D

Tendo em conta os materiais apresentados na secção 2 e o croqui da secção 3.1, a zona D possui as seguintes características:

| Secção                  | Material               | $k (Wm^{-1}K^{-1})$ | $\Delta x (m)$ | Área $(m^2)$ |
|-------------------------|------------------------|---------------------|----------------|--------------|
|                         | Cimento                | 0.46                | 0.09           | 40           |
| Parede                  | Poliestireno Expandido | 0.037               | 0.02           | 40           |
| Exterior                | Betão Armado           | 2                   | 0.18           | 40           |
| $(\times 1)$            | Poliestireno Expandido | 0.037               | 0.02           | 40           |
|                         | Gesso                  | 0.25                | 0.01           | 40           |
| Parede                  | Gesso                  | 0.25                | 0.01           | 22           |
| Interior                | Poliestireno Extrudido | 0.033               | 0.08           | 22           |
| Não Estrutural          | Madeira Pinus          | 0.12                | 0.1            | 22           |
| $(\times 2)$            | Gesso                  | 0.25                | 0.01           | 22           |
|                         | Gesso                  | 0.25                | 0.01           | 37           |
| Parede                  | Poliestireno Extrudido | 0.033               | 0.02           | 37           |
| Interior                | Betão Armado           | 2                   | 0.18           | 37           |
| Estrutural $(\times 1)$ | Poliestireno Extrudido | 0.033               | 0.02           | 37           |
|                         | Poliestireno Extrudido | 0.033               | 0.02           | 37           |
| Porta Simples (×3)      | Madeira Pinus          | 0.12                | 0.1            | 3            |

Tabela 11: Composição da zona D

Como esta zona deveria funcionar com uma temperatura interna de 0°C, o cálculo das resistências sucede-se da seguinte maneira:

Parede Exterior: Camadas associadas em série:

$$R_{parede\_ext} = R_{cimento} + 2 \times R_{poliestireno} + R_{bet\tilde{a}o} + R_{gesso}$$
 (30)

$$\Leftrightarrow R_{parede\_ext} = \frac{0.09}{0.46 \times 40} + 2 \times \frac{0.02}{0.037 \times 40} + \frac{0.18}{2 \times 40} + \frac{0.01}{0.25 \times 40} = 3.52 \times 10^{-2} \ KW^{-1} \ (31)$$

Parede Interior Não Estrutural com Porta: Paralelo entre a parede e a porta. Como existem duas paredes, o cálculo possui o dobro do valor.

$$\frac{1}{R_{parede\_n\tilde{a}o\_estrut+porta}} = 2\left(\frac{1}{2 \times R_{gesso} + R_{poliestireno} + R_{madeira\_pinus}} + \frac{1}{R_{porta}}\right)$$
(32)

$$\Leftrightarrow \frac{1}{R_{parede\_n\tilde{a}o\_estrut+porta}} = 2\left(\frac{1}{2 \times \frac{0.01}{0.25 \times 22} + \frac{0.08}{0.033 \times 22} + \frac{0.1}{0.12 \times 22}} + \frac{1}{0.12 \times 22} + \frac{1}{0.12 \times 3}\right)$$
(33)

$$\Leftrightarrow R_{parede\_n\tilde{a}o\_estrut+porta} = \frac{1}{2} \times 9.81 \times 10^{-2} = 4.91 \times 10^{-2} \ KW^{-1}$$
 (34)

Parede Interior Estrutural com Porta: Paralelo entre a parede e a porta.

$$\frac{1}{R_{parede\ estrut+porta}} = \frac{1}{2 \times R_{gesso} + 2 \times R_{poliestireno} + R_{bet\tilde{a}o}} + \frac{1}{R_{porta}}$$
(35)

$$\Leftrightarrow \frac{1}{R_{parede\_estrut+porta}} = \frac{1}{2 \times \frac{0.01}{0.25 \times 37} + 2 \times \frac{0.02}{0.033 \times 37} + \frac{0.18}{2 \times 37}} + \frac{1}{0.12 \times 3}$$
(36)

$$\Leftrightarrow R_{parede\_estrut+porta} = 3.29 \times 10^{-2} \, KW^{-1} \tag{37}$$

**Total:** Tendo em conta que os componentes estão associados em paralelo e considerando os resultados das equações 31, 34 e 37

$$R_{total} = \frac{1}{\frac{1}{3.52 \times 10^{-2}} + \frac{1}{4.90 \times 10^{-2}} + \frac{1}{3.29 \times 10^{-2}}} = 1.26 \times 10^{-2} \, KW^{-1} \tag{38}$$

#### 3.2.5 Zona E

Tendo em conta os materiais apresentados na secção e, o croqui da estrutura, **a zona E**, para funcionar à temperatura de  $10^{\circ}C$  possui as seguintes características:

| Secção                     | Material               | $k (Wm^{-1}K^{-1})$ | $\Delta x (m)$ | Área $(m^2)$ |
|----------------------------|------------------------|---------------------|----------------|--------------|
|                            | Cimento                | 0.46                | 0.09           | 90           |
| Paredes                    | Poliestireno Expandido | 0.037               | 0.02           | 90           |
| Exteriores                 | Betão Armado           | 2                   | 0.18           | 90           |
| (Área com base no croqui)  | Poliestireno Expandido | 0.037               | 0.02           | 90           |
|                            | Gesso                  | 0.25                | 0.01           | 90           |
| Parede                     | Gesso                  | 0.25                | 0.01           | 47           |
| Interior                   | Poliestireno Extrudido | 0.033               | 0.08           | 47           |
| Não Estrutural             | Madeira Pinus          | 0.12                | 0.1            | 47           |
| (×1)                       | Gesso                  | 0.25                | 0.01           | 47           |
| Porta Simples $(\times 1)$ | Madeira Pinus          | 0.12                | 0.1            | 3            |

Tabela 12: Composição da zona E

Com base na tabela 12, o cálculo das resistências para esta secção sucede-se da seguinte forma:

Parede exterior: Camadas associadas em série:

$$R_{parede\_ext} = R_{cimento} + 2 \times R_{poliestireno} + R_{bet\tilde{a}o} + R_{gesso}$$
(39)

$$\Leftrightarrow R_{parede\_ext} = \frac{0.09}{0.46 \times 90} + 2 \times \frac{0.02}{0.037 \times 90} + \frac{0.18}{2 \times 90} + \frac{0.01}{0.25 \times 90} = 1.56 \times 10^{-2} \, KW^{-1}$$
 (40)

Parede Interior Não Estrutural com Porta: Paralelo entre a parede e a porta.

$$\frac{1}{R_{parede\_n\tilde{a}o\_estrut+porta}} = \frac{1}{2 \times R_{gesso} + R_{poliestireno\_extrudido} + R_{madeira\_pinus}} + \frac{1}{R_{porta}}$$
(41)

$$\Leftrightarrow \frac{1}{R_{parede\_n\tilde{a}o\_estrut+porta}} = \frac{1}{2 \times \frac{0.01}{0.25 \times 47} + \frac{0.08}{0.033 \times 47} + \frac{0.1}{0.12 \times 47}} + \frac{1}{0.12 \times 3}$$
(42)

$$\Leftrightarrow R_{parede\_n\tilde{a}o\_estrut+porta} = \frac{1}{7.10 \times 10^{-2} + 2,78 \times 10^{-2}} = 5.66 \times 10^{-2} \, KW^{-1}$$
 (43)

**Total:** Tendo em conta que os componentes estão associados em série e considerando os resultados das equações 40 e 43

$$R_{total} = \frac{1}{\frac{1}{1.56 \times 10^{-2}} + \frac{1}{5.65 \times 10^{-2}}} = 1.22 \times 10^{-2} \, KW^{-1} \tag{44}$$

#### 3.2.6 Telhado

Para cada uma das secções, **a área do telhado é igual**. Deste modo, ao calcular a resistência do telhado para uma secção, estamos a obter também o seu valor para todas as outras.

| Secção  | Material              | $k \left(W m^{-1} K^{-1}\right)$ | $\Delta x (m)$ | Área $(m^2)$ |
|---------|-----------------------|----------------------------------|----------------|--------------|
|         | Telha                 | 1.2                              | 0.06           | 80.1         |
| Telhado | Cimento               | 0.46                             | 0.04           | 80.1         |
|         | Espuma de Poliuretano | 0.028                            | 0.17           | 80.1         |
|         | Gesso                 | 0.25                             | 0.03           | 80.1         |

Tabela 13: Composição da zona C

Com base na tabela 13, o cálculo das resistência para o telhado sucede-se da seguinte forma:

$$R_{telhado} = R_{telha} + R_{cimento} + R_{poliuretano} + R_{gesso}$$
 (45)

$$\Leftrightarrow R_{telhado} = \frac{0.06}{1.2 \times 80.1} + \frac{0.04}{0.46 \times 80.1} + \frac{0.17}{0.028 \times 80.1} + \frac{0.03}{0.25 \times 80.1} = 7.90 \times 10^{-2} \ KW^{-1} \ (46)$$

# 4 Sprint2

### 4.1 US406

Para calcular a energia necessária para manter as secções às temperaturas solicitadas, devemos calcular o R total da secção e com isso calcular a energia.

$$R_{total}(K/W) = \frac{1}{\frac{1}{R_{secc\tilde{a}o}} + \frac{1}{R_{total}}}$$

$$\tag{47}$$

$$Energia(J) = \frac{1}{R_{total}} * \Delta T * \Delta t$$
 (48)

### 4.1.1 Secção C

Temperatura Interior =  $-10^{\circ}$ C

$$\frac{1}{R_{total}} = \frac{1}{0.0280} + \frac{1}{0.0790} \tag{49}$$

$$\Leftrightarrow R_{total} = 0.0207 \tag{50}$$

$$Energia = \frac{1}{0.0207} * (15 + 10) * 3600$$
 (51)

$$\Leftrightarrow Energia\_C = 4348574 \tag{52}$$

### 4.1.2 Secção D

Temperatura Interior =  $0^{\circ}$ C

$$\frac{1}{R_{total}} = \frac{1}{0.0140} + \frac{1}{0.0790} \tag{53}$$

$$\Leftrightarrow R_{total} = 0.0119 \tag{54}$$

$$Energia = \frac{1}{0.0119} * (15 - 0) * 3600$$
 (55)

$$\Leftrightarrow Energia\_D = 4539094 \tag{56}$$

### 4.1.3 Secção E

Temperatura Interior =  $10^{\circ}$ C

$$\frac{1}{R_{total}} = \frac{1}{0.0156} + \frac{1}{0.0790} \tag{57}$$

$$\Leftrightarrow R_{total} = 0.0130 \tag{58}$$

$$Energia = \frac{1}{0.0130} * (15 - 10) * 3600$$
 (59)

$$\Leftrightarrow Energia\_E = 11382313 \tag{60}$$

### 4.2 US407

Com as resistências previamente calculadas, vamos calcular o total para cada face que se oponha a uma superfície com diferente temperatura. Após isso com a diferença de temperatura entre cada uma das secções calculamos a potência. A soma das potências de cada secção dá-nos uma potência total, e através dela multiplicando com o período de tempo em estudo, é possível calcular a energia a fornecer para aquela secção. Através disso a soma de todas as energias entregam a energia total a fornecer há estrutura.

#### 4.2.1 Formulas Utilizadas

$$\frac{1}{R_{TotalExterior}(K/W)} = \frac{1}{R1} + \frac{1}{R2} + \cdots$$
 (61)

Exemplo para o Calculo da Resistência da Secção A Formulas 62, 63, 64

$$\frac{1}{R_{TotalExterior}} = \frac{1}{R_{ParedeExterior}} + \frac{1}{R_{Janela}} + \frac{1}{R_{PortadeSubir}} + \frac{1}{R_{Telhado}}$$
(62)

$$R_{TotalInteriorEstrutural} = R_{ParedeInteriorEstrutural}$$
 (63)

$$\frac{1}{R_{TotalInteriorNaoEstrutural}} = \frac{1}{R_{ParedeInteriorNaoEstrutural}} + \frac{1}{R_{PortaSimples}}$$
(64)

$$Potencia(W) = \frac{\Delta T}{R_{Total}} \tag{65}$$

$$PotenciaTotal(W) = Potencia1 + Potencia2 + \dots + PotenciaN$$
 (66)

$$Energia(J) = PotenciaN * \Delta t \tag{67}$$

$$\Delta t(s) = 3600 \tag{68}$$

Estas formulas com as necessárias adaptações são utilizadas para todos os cálculos das 4.2 e 4.3.

# 4.2.2 Temperatura Exterior de 20°C

# Secção A

| Secção A                       | R (K/W) |
|--------------------------------|---------|
| Parede Exterior                | 0.0399  |
| Janela                         | 0.0880  |
| Porta de Subir                 | 0.1667  |
| Parede Interior Estrutural     | 0.0374  |
| Parede Interior não Estrutural | 0.0834  |
| Porta Simples                  | 0.2778  |
| Telhado                        | 0.0790  |

Tabela 14: Composição da zona A

| R Total por Estrutura   | R (K/W) |
|-------------------------|---------|
| Exterior                | 0.0182  |
| Interior Estrutural     | 0.0374  |
| Interior não Estrutural | 0.0642  |

Tabela 15: R Total da zona A

| Temperatura         | $\Delta T(^{\circ}\mathrm{C})$ |
|---------------------|--------------------------------|
| Exterior com Zona A | 25                             |
| Zona B com Zona A   | 0                              |
| Zona D com Zona A   | 5                              |

Tabela 16: Temperatura da zona A

| Potência            | I (W)   |
|---------------------|---------|
| Exterior com Zona A | 1376.49 |
| Zona B com Zona A   | 0.00    |
| Zona D com Zona A   | 77.92   |

Tabela 17: Potência da zona A

| Potência Total | I (W) |
|----------------|-------|
| Potência A     | 1454  |

Tabela 18: Potência Total da zona A

| Energia por Hora | $(I * \Delta t) (J)$ |
|------------------|----------------------|
| Energia A        | 5235891              |

Tabela 19: Energia da zona A

# Secção B

| Secção B                       | R (K/W) |
|--------------------------------|---------|
| Parede Exterior                | 0.0337  |
| Janela                         | 0.0880  |
| Porta de Dupla                 | 0.1389  |
| Parede Interior Estrutural     | 0.0346  |
| Parede Interior não Estrutural | 0.1335  |
| Telhado                        | 0.0790  |

Tabela 20: Composição da zona B

| R Total por Estrutura   | R (K/W) |
|-------------------------|---------|
| Exterior                | 0.0164  |
| Interior Estrutural     | 0.0346  |
| Interior não Estrutural | 0.1335  |

Tabela 21: R Total da zona B

| Temperatura         | $\Delta T$ (°C) |
|---------------------|-----------------|
| Exterior com Zona B | 25              |
| Zona A com Zona B   | 0               |
| Zona C com Zona B   | 5               |

Tabela 22: Temperatura da zona B

| Potência            | I (W)   |
|---------------------|---------|
| Exterior com Zona B | 1522.63 |
| Zona A com Zona B   | 0.00    |
| Zona C com Zona B   | 37.45   |

Tabela 23: Potência da zona B

| Potência Total | I (W) |
|----------------|-------|
| Potência B     | 1560  |

Tabela 24: Potência Total da zona B

| Energia por Hora | $(I * \Delta t) (J)$ |
|------------------|----------------------|
| Energia B        | 5616308              |

Tabela 25: Energia da zona B

# Secção C

| Secção C                          | R(K/W)  |
|-----------------------------------|---------|
| Parede Exterior                   | 0.0484  |
| 2x Parede Interior não Estrutural | 0.1335  |
| Parede Interior Estrutural        | -0.0374 |
| Porta Simples                     | 0.2778  |
| Telhado                           | 0.0790  |

Tabela 26: Composição da zona  ${\bf C}$ 

| R Total por Estrutura   | R (K/W) |
|-------------------------|---------|
| Exterior                | 0.0300  |
| Interior Estrutural     | 0.0329  |
| Interior não Estrutural | 0.1335  |
| Interior não Estrutural | 0.1335  |

Tabela 27: R<br/> Total da zona  ${\bf C}$ 

| Temperatura         | $\Delta T$ (°C) |
|---------------------|-----------------|
| Exterior com Zona C | 30              |
| Zona B com Zona C   | 5               |
| Zona D com Zona C   | 10              |
| Zona E com Zona C   | 20              |

Tabela 28: Temperatura da zona  ${\bf C}$ 

| Potência            | I (W)  |
|---------------------|--------|
| Exterior com Zona C | 999.11 |
| Zona B com Zona C   | 37.45  |
| Zona D com Zona C   | 303.70 |
| Zona E com Zona C   | 149.81 |

Tabela 29: Potência da zona C

| Potência Total | I (W) |
|----------------|-------|
| Potência C     | 1490  |

Tabela 30: Potência Total da zona C

| Energia por Hora | $(I * \Delta t) (J)$ |
|------------------|----------------------|
| Energia C        | 5364270              |

Tabela 31: Energia da zona C

# Secção D

|    | Secção D                       | R (K/W) |
|----|--------------------------------|---------|
|    | Parede Exterior                | 0.0484  |
| 2x | Parede Interior não Estrutural | 0.1517  |
| ZΧ | Porta Simples                  | 0.2778  |
|    | Parede Interior Estrutural     | 0.0374  |
|    | Porta Simples                  | 0.2778  |
|    | Telhado                        | 0.0790  |

Tabela 32: Composição da zona D

| R Total por Estrutura      | R (K/W) |
|----------------------------|---------|
| Exterior                   | 0.0300  |
| Interior Estrutural        | 0.0329  |
| 2x Interior não Estrutural | 0.0981  |

Tabela 33: R Total da zona D

| Temperatura         | $\Delta T$ (°C) |
|---------------------|-----------------|
| Exterior com Zona D | 20              |
| Zona A com Zona D   | 5               |
| Zona C com Zona D   | 10              |
| Zona E com Zona D   | 10              |

Tabela 34: Temperatura da zona D

| Potência            | I (W)  |
|---------------------|--------|
| Exterior com Zona D | 666.07 |
| Zona A com Zona D   | 50.96  |
| Zona C com Zona D   | 303.70 |
| Zona E com Zona D   | 101.92 |

Tabela 35: Potência da zona D

| Potência Total | I (W) |
|----------------|-------|
| Potência D     | 1123  |

Tabela 36: Potência Total da zona D

| Energia por Hora | $(I * \Delta t) (J)$ |
|------------------|----------------------|
| Energia D        | 4041544              |

Tabela 37: Energia da zona D

# Secção E

| Secção E                       | R (K/W) |
|--------------------------------|---------|
| Parede Exterior                | 0.0215  |
| Parede Interior não Estrutural | 0.1517  |
| Porta Simples                  | 0.2778  |
| Parede Interior não Estrutural | 0.1335  |
| Telhado                        | 0.0790  |

Tabela 38: Composição da zona E

| R Total por Estrutura       | R (K/W) |
|-----------------------------|---------|
| Exterior                    | 0.0169  |
| Interior não Estrutural (1) | 0.0981  |
| Interior não Estrutural (2) | 0.1335  |

(1) com Porta (2) sem Porta

Tabela 39: R Total da zona E

| Temperatura         | $\Delta T$ (°C) |
|---------------------|-----------------|
| Exterior com Zona E | 10              |
| Zona D com Zona E   | 10              |
| Zona C com Zona E   | 20              |

Tabela 40: Temperatura da zona  ${\bf E}$ 

| Potência            | I (W)  |
|---------------------|--------|
| Exterior com Zona E | 591.13 |
| Zona D com Zona E   | 101.92 |
| Zona C com Zona E   | 149.81 |

Tabela 41: Potência da zona E

| Potência Total | I (W) |
|----------------|-------|
| Potência E     | 843   |

Tabela 42: Potência Total da zona E

| Energia por Hora | $(I * \Delta t) (J)$ |
|------------------|----------------------|
| Energia E        | 3034283              |

Tabela 43: Energia da zona E

### Energia Total da Estrutura

$$EnergiaTotal(J) = EnergiaA + EnergiaB + EnergiaC + EnergiaD + EnergiaE$$
 (69)

$$\Leftrightarrow EnergiaTotal = 23292296J \tag{70}$$

## 4.2.3 Temperatura Exterior de 28ºC

Para este exemplo iremos proceder com a mesma sequência de cálculos, mas agora considerando uma temperatura exterior de 28ºC. Desta forma iremos apresentar apenas os resultados para tornas uma mais simples leitura

### Secção A

| Energia por Hora | $(I * \Delta t) (J)$ |
|------------------|----------------------|
| Energia A        | 6821609              |

Tabela 44: Energia da zona A

# Secção B

| Energia por Hora | $(I * \Delta t) (J)$ |
|------------------|----------------------|
| Energia B        | 7370381              |

Tabela 45: Energia da zona B

## Secção C

| Energia por Hora | $(I * \Delta t) (J)$ |
|------------------|----------------------|
| Energia C        | 6323414              |

Tabela 46: Energia da zona C

### Secção D

| Energia por Hora | $(I * \Delta t) (J)t$ |
|------------------|-----------------------|
| Energia D        | 5000689               |

Tabela 47: Energia da zona D

### Secção E

| Energia por Hora | $(I * \Delta t) (J)$ |
|------------------|----------------------|
| Energia E        | 4736740              |

Tabela 48: Energia da zona E

## Energia Total da Estrutura

$$EnergiaTotal = EnergiaA + EnergiaB + EnergiaC + EnergiaD + EnergiaE$$
 (71)

$$\Leftrightarrow EnergiaTotal = 30252833J \tag{72}$$

## 4.3 US408

Como só foi alterado a estrutura das paredes interiores serão apresentadas as mudanças das resistências das paredes em questão. Existem nos quatro cenários possíveis, Paredes Estruturais e não Estruturais com Portas ou não e os cálculos serão os mesmos que no 4.2.

| Paredes Interiores       | R (K/W) |
|--------------------------|---------|
| Estrutural com Porta     | 0.0696  |
| Estrutural sem Porta     | 0.0644  |
| não Estrutural com Porta | 0.1357  |
| não Estrutural sem Porta | 0.2171  |

Tabela 49: Resistências após Melhorias

# 4.3.1 Temperatura de $20^{\circ}$ C

# Secção A

| Energia por Hora | $(I * \Delta t) (J)$ |
|------------------|----------------------|
| Energia A        | 5142852              |

Tabela 50: Energia da zona A

# Secção B

| Energia por Hora | $(I * \Delta t) (J)$ |
|------------------|----------------------|
| Energia B        | 5564375              |

Tabela 51: Energia da zona B

# Secção C

| Energia por Hora | $(I * \Delta t) (J)$ |
|------------------|----------------------|
| Energia C        | 4658306              |

Tabela 52: Energia da zona C

# Secção D

| Energia por Hora | $(I * \Delta t) (J)$ |
|------------------|----------------------|
| Energia D        | 3458141              |

Tabela 53: Energia da zona D

### Secção E

| Energia por Hora | $(I * \Delta t) (J)$ |
|------------------|----------------------|
| Energia E        | 2735153              |

Tabela 54: Energia da zona E

## Energia Total da Estrutura

$$EnergiaTotal(J) = EnergiaA + EnergiaB + EnergiaC + EnergiaD + EnergiaE$$
 (73)

$$\Leftrightarrow EnergiaTotal = 21558827J \tag{74}$$

# 4.4 Diferença de Energias Após Melhorias

$$Diferenca De Energia 20$$
°C =  $Energia Antes Da Melhoria - Energia Apos Melhoria$  (75)

$$\Leftrightarrow DiferencaDeEnergia20C = 1717290J \tag{76}$$

### 4.5 US409

### Formulas Utilizadas

$$Potencia(W) = \frac{\Delta T}{R_{Total}} \tag{77}$$

$$PotenciaTotal(W) = Potencia1 + Potencia2 + \dots + PotenciaN \tag{78}$$

$$1BTU/h = 3412.142KW/h (79)$$

$$Arrefecimento Necessario = \frac{3412.142}{1000} \times Potencia \tag{80}$$

Estas formulas com as necessárias adaptações são utilizadas para todos os cálculos da US409.

### 4.5.1 Ponto 7

### Temperatura = $20^{\circ}$ C

| Potência | I (W) |
|----------|-------|
| Secção A | 1450  |
| Secção B | 1560  |
| Secção C | 1490  |
| Secção D | 1123  |
| Secção E | 843   |
| Total    | 6466  |

Tabela 55: Potência para o Arrefecimento

## Temperatura = $28^{\circ}C$

| Potência | I (W) |
|----------|-------|
| Secção A | 1890  |
| Secção B | 2047  |
| Secção C | 1757  |
| Secção D | 1389  |
| Secção E | 1316  |
| Total    | 8399  |

Tabela 56: Potência para o Arrefecimento

# 4.5.2 Ponto8

| Potência | I (W) |
|----------|-------|
| Secção A | 1429  |
| Secção B | 1546  |
| Secção C | 1294  |
| Secção D | 961   |
| Secção E | 760   |
| Total    | 5989  |

Tabela 57: Potência para o Arrefecimento

## 4.5.3 Otimizar Sistemas de Arrefecimento

| Potência (BTU/h) | Potência (KW/h) |
|------------------|-----------------|
| 1                | 3412.142        |

Tabela 58: Conversão pata BTU/h

| Arrefecimento | Potência (BTU/h) |
|---------------|------------------|
| Secção A      | 4874             |
| Secção B      | 5274             |
| Secção C      | 4415             |
| Secção D      | 3278             |
| Secção E      | 2592             |
| Total         | 20434            |

Tabela 59: BTU's Necessários para Manter Temperatura

| Potência (BTU/h) | Consumo (KW/h) | Tarifa (€) | Custo por Hora de Funcionamento $(\ensuremath{\mathfrak{C}})$ |
|------------------|----------------|------------|---------------------------------------------------------------|
| 6000             | 1.46           | 0.24       | 0.35                                                          |
| 12000            | 2.10           | 0.24       | 0.50                                                          |

Tabela 60: Ar Condicionados

Para otimizar o numero de sistemas de arrefecimento optamos pelo Ar Condicionado encontrado com menor produção de BTU/h suficiente para satisfazer as condições pretendidas. Para as secções C, D e E não foi possível outras formas de otimizar estes sistemas de arrefecimentos pelas diferentes temperaturas presentes em cada uma. Contudo a mesma coisa não se aplica nas secções A e B por ambas estarem a  $-5^{\circ}$ C. Com a criação de uma porta com a mesma estrutura das outras "Portas Simples", entre as duas secções e deixar esta porta aberta apenas enquanto as portas para a o exterior estiverem fechadas, é possível colocar apenas um ar condicionado de 12 mil BTU/h. Desta forma, como um Ar Condicionado de 12 mil BTU's, não tem consumos diretamente proporcionais com o aumento de BTU/h seria economicamente mais apetecível abdicar de colocar dois Ar Condicionados de metade de produção de BTU's e optar por um mais potente pela vantagem económica como demonstra a seguinte tabela.

| Nº Ar Condicionados | Potência (BTU/h) | Custo por Hora de Funcionamento (€) |
|---------------------|------------------|-------------------------------------|
| 2                   | 6000             | 0.70                                |
| 1                   | 12000            | 0.50                                |

Tabela 61: Numero de Ar Condicionados com Custo

# Referências

- [1] I. Asadi, P. Shafigh, Z. F. B. A. Hassan e N. B. Mahyuddin, «Thermal conductivity of concrete A review,» Journal of Building Engineering, vol. 20, pp. 81–93, novembro de 2018. DOI: 10.1016/j.jobe.2018.07.002. URL: https://doi.org/10.1016%2Fj.jobe.2018.07.002.
- [2] E. RUH e J. S. McDOWELL, «Thermal Conductivity of Refractory Brick,» Journal of the American Ceramic Society, vol. 45, n.º 4, pp. 189–195, abril de 1962. DOI: 10.1111/ j.1151-2916.1962.tb11118.x. URL: https://doi.org/10.1111%2Fj.1151-2916.1962.tb11118.x.
- [3] Soprema. «CONDUTIBILIDADES TÉRMICAS DOS ISOLAMENTOS TÉRMICOS (EN 12667).» (janeiro de 2021), URL: https://www.soprema.pt/pt/sopra-xps-isolamento-termico-resistencia-termica (acedido em 2022-11-29).
- [4] I. Asadi, P. Shafigh, Z. F. B. A. Hassan e N. B. Mahyuddin, «Thermal conductivity of concrete A review,» Journal of Building Engineering, vol. 20, pp. 81–93, novembro de 2018. DOI: 10.1016/j.jobe.2018.07.002. URL: https://doi.org/10.1016%2Fj.jobe.2018.07.002.
- [5] «Typical Thermal Conductivity of Building Materials,» em *Spon's Architects' and Builders' Price Book 2013*, CRC Press, setembro de 2012. DOI: 10.1201/b12706-61. URL: https://doi.org/10.1201%2Fb12706-61.
- [6] admin. «Why Plastering Your Wall Is Important?» (Fevereiro de 2021), URL: https://budgetpainting.sg/why-plastering-your-wall-is-important/ (acedido em 2022-11-29).
- [7] Fibrosom. «Isolamento térmico com poliestireno extrudido.» (abril de 2019), URL: http://www.fibrosom.com/Produtos.aspx?id=3 (acedido em 2022-11-29).
- [8] N. Connor. «O que é espuma de poliuretano definição.» (novembro de 2019), URL: https://www.thermal-engineering.org/pt-br/o-que-e-espuma-de-poliuretano-definicao/ (acedido em 2022-10-15).
- [9] H. Kol, «Thermal and dielectric properties of pine wood in the transverse direction,» *BioResources*, vol. 4, novembro de 2009.
- [10] T. L. Bergman, A. S. Lavine, F. P. Incropera e D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 8<sup>a</sup> ed. Wiley, 2018, ISBN: 978-1-119-35388-1.