Assessing Urinary Proteins as Diagnostic Markers for Preeclampsia

Yuki Ogawa¹, Priyanka Mathews¹, Anthony William Paul Fitzpatrick PhD²

¹Department of Biology, Columbia University ²Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center

INTRODUCTION

- Preeclampsia (PE), a hypertensive pregnancy-specific disorder, is a leading cause of neonatal and maternal mortality affecting 5-8% of women globally.
- Currently, there is no reliable prognostic leading lack of diagnosis to be the primary cause of PE deaths.
- This project aimed to develop a reliable method of detecting PE by surveying urinary proteins associated with PE in PE and non-PE urine.

Uromodulin

Function: Fibrillary uromodulin traps bacteria in its net-like structure.

Diseased state: Fibrillary uromodulin

traps the bacteria present in UTIs

Relation to PE: UTIS increase one's risk of PE during pregnancy by 1.31 fold

Relation to PE: PE increases one's risk of developing dementia by 1.31-1.38 fold

Perlecan

Function: Perlecan

of the extracellular

Diseased state:

Perlecan interacts

with amyloid-β, which

creates tangles that

neurodegenerative

characterizes

diseases.

matrix

crosslinks components

present in the urine of patients with PE at elevated levels compared to healthy urine.

Studies have found uromodulin and perlecan

DOT BLOT

- Dot blots were used to quantify the amount of each protein present in the urine samples.
- Samples were spun down to isolate the insoluble fraction and diluted by a factor of 1:1000.
- This was spotted onto nitrocellulose membrane alongside a standard urine control
- The membranes were incubated with a primary antibody specific to the protein and a secondary florescent antibody
 - Uromodulin: The primary antibody bound to the bacterial binding domain, only quantifying fibrillary uromodulin.
 - Perlecan: The primary antibody bound to domain IV.
- The membranes were scanned using florescent imaging and quantified in ImageJ.

Figure #2: Quantified dot blot data measuring the integrated density of dots. Bars show standard error of the mean. A) Uromodulin, comparing healthy non-pregnant and severe PE. B) Perlecan, comparing healthy pregnant and severe PE.

Figure #3: Dot blot scans measuring uromodulin and perlecan across cohorts. A) Uromodulin+healthy non-pregnant. B) Uromodulin+severe preeclampsia. C) Perlecan+healthy nonpregnant. D) Perlecan + healthy pregnant. E) Perlecan+high risk pregnant. F) Perlecan+severe preeclampsia.

PULL-DOWN MASS SPECTROMETRY

Pull-down assay is used to confirm the physical interaction between proteins. We used pull-down assay to extract proteins that have interactions with uromodulin and analyzed them with mass spectrometry to determine the identities.

-	Proteins	Fold Enrichment	
	SERPINA 1	29-fold	Amyloid fibril candidate
	Isoform SERPINA 1	89-fold	Amyloid fibril candidate
	Ceruloplasmin	88-fold	Amyloid fibril candidate
	Transthyretin	16-fold	Amyloid fibril candidate
	Serum Albumin	8-fold	Amyloid fibril candidate
	Perlecan	16-fold	Co-localizes with amylid beta
	PTGDS	510-fold	Major apoptotic factor in Alzheimer's disease plasma

Figure #4: STRING network depicting proteins known to colocalize with uromodulin

Figure #5: Chart listing proteins that appeared significantly higher on the preeclamptic uromodulin mass-spec pull down compared to healthy pregnant pulldown.

CONCLUSIONS

- Uromodulin levels are not shown to be significantly greater in preeclamptic urine.
- Perlecan levels are not shown to be significantly greater in preeclamptic urine.
 - Preliminary evidence suggests perlecan levels are lower in the preeclamptic urine.
- Pull-down mass spectrometry reveals that some proteins implicated in neurodegenerative diseases increase in the urine of women with preeclampsia.
 - Among those proteins, SERPINA1, Albumin, and Ceruloplasmin are predicted to have associations with uromodulin.
 - Transthyretin, perlecan, and PTGDS are not currently predicted to have associations with uromodulin.
- We suggest that these interactions are caused by amyloid fibrils being trapped in uromodulin's net-like structure.
 - This indicates a relationship between these proteins' roles in preeclampsia and neurodegenerative disease and is a promising avenue for further work.

REFERENCES

- . Buhimschi, Irina A et al. "Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia." Science translational medicine vol. 6,245 (2014): 245ra92. doi:10.1126/scitranslmed.3008808
- 2. Carty, David M et al. "Urinary proteomics for prediction of preeclampsia." Hypertension (Dallas, Tex.: 1979) vol. 57,3 (2011): 561-9. doi:10.1161/HYPERTENSIONAHA.110.164285
- 3. Khan, Bisma et al. "Preeclampsia Incidence and Its Maternal and Neonatal Outcomes With Associated Risk Factors." Cureus vol. 14,11 e31143. 6 Nov. 2022. doi:10.7759/cureus.31143
- 4. Lavorgna, Tessa R et al. "Perlecan: a review of its role in neurologic and musculoskeletal disease." Frontiers in physiology vol. 14 1189731. 30 May. 2023, doi:10.3389/fphys.2023.1189731
- 5. Tong S, Hastie R. Preeclampsia and the Risk of Young-Onset Open. 2024;7(5):e2412780. jamanetworkopen.2024.12780
- 6. Weiss, Gregor L et al. "Architecture and function of human uromodulin filaments in urinary tract infections." Science (New York, N.Y.) vol. 369,6506 (2020): 1005-1010. doi:10.1126/science.aaz9866

ACKNOWLEDGEMENTS

The authors would like to thank their collaborators, Aisha Nabali and Lucas Choy, for their contributions to this project, as well as Tamta Arakhamia, Carolyn Lee, and Dr. Anthony Fitzpatrick for their invaluable mentorship. Y. Ogawa thanks the I. I. Rabi Scholars program and P. Mathews thanks the Laidlaw Scholars program.

