18. Nonlinear least squares

Outline

Nonlinear equations and least squares

Examples

Levenberg-Marquardt algorithm

Nonlinear model fitting

Nonlinear least squares classification

Nonlinear equations

▶ set of m nonlinear equations in n unknowns x_1, \ldots, x_n :

$$f_i(x_1,...,x_n) = 0, \quad i = 1,...,m$$

- $f_i(x) = 0$ is the *i*th equation; $f_i(x)$ is the *i*th residual
- *n*-vector of unknowns $x = (x_1, \dots, x_n)$
- write as vector equation f(x) = 0 where $f: \mathbf{R}^n \to \mathbf{R}^m$,

$$f(x) = (f_1(x), \dots, f_m(x))$$

- \blacktriangleright when f is affine, reduces to set of m linear equations
- over-determined if m > n, under-determined if m < n, square if m = n

Nonlinear least squares

• find \hat{x} that minimizes

$$||f(x)||^2 = f_1(x)^2 + \dots + f_m(x)^2$$

- includes problem of solving equations f(x) = 0 as special case
- like (linear) least squares, super useful on its own

Optimality condition

- optimality condition: $\nabla ||f(\hat{x})||^2 = 0$
- any optimal point satisfies this
- points can satisfy this and not be optimal
- can be expressed as $2Df(\hat{x})^T f(\hat{x}) = 0$
- ▶ $Df(\hat{x})$ is the $m \times n$ derivative or Jacobian matrix,

$$Df(\hat{x})_{ij} = \frac{\partial f_i}{\partial x_j}(\hat{x}), \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

ightharpoonup optimality condition reduces to normal equations when f is affine

Difficulty of solving nonlinear least squares problem

- solving nonlinear equations or nonlinear least squares problem is (in general) much harder than solving linear equations
- even determining if a solution exists is hard
- so we will use *heuristic* algorithms:
 - not guaranteed to always work
 - but often work well in practice

(like *k*-means)

Outline

Nonlinear equations and least squares

Examples

Levenberg-Marquardt algorithm

Nonlinear model fitting

Nonlinear least squares classification

Computing equilibrium points

- equilibrium prices: find *n*-vector of prices *p* for which S(p) = D(p)
 - -S(p) is supply of n goods as function of prices
 - -D(p) is demand for n goods as function of prices
 - take f(p) = S(p) D(p)
- chemical equilibrium: find *n*-vector of concentrations c so C(c) = G(c)
 - C(c) is consumption of species as function of c
 - G(c) is generation of species as function of c
 - take f(c) = C(c) G(c)

Location from range measurements

- ▶ 3-vector *x* is position in 3-D, which we will estimate
- range measurements give (noisy) distance to known locations

$$\rho_i = ||x - a_i|| + v_i, \quad i = 1, \dots, m$$

 a_i are known locations, v_i are noises

► least squares location estimation: choose \hat{x} that minimizes

$$\sum_{i=1}^{m} (\|x - a_i\| - \rho_i)^2$$

GPS works like this

Outline

Nonlinear equations and least squares

Examples

Levenberg-Marquardt algorithm

Nonlinear model fitting

Nonlinear least squares classification

The basic idea

ightharpoonup at any point z we can form the affine approximation

$$\hat{f}(x;z) = f(z) + Df(z)(x - z)$$

- $\hat{f}(x;z) \approx f(x)$ provided x is near z
- we can minimize $||\hat{f}(x;z)||^2$ using linear least squares
- we'll iterate, with z the current iterate

Levenberg-Marquardt algorithm

- iterates $x^{(1)}, x^{(2)}, ...$
- ▶ at iteration k, form affine approximation of f at $x^{(k)}$:

$$\hat{f}(x; x^{(k)}) = f(x^{(k)}) + Df(x^{(k)})(x - x^{(k)})$$

• choose $x^{(k+1)}$ as minimizer of

$$\|\hat{f}(x;x^{(k)})\|^2 + \lambda^{(k)}\|x - x^{(k)}\|^2$$
 (where $\lambda^{(k)} > 0$)

• we want $||\hat{f}(x;x^{(k)})||^2$ small, but we don't want to move too far from $x^{(k)}$, where $\hat{f}(x;x^{(k)}) \approx f(x)$ no longer holds

Levenberg-Marquardt iteration

• $x^{(k+1)}$ is solution of least squares problem

minimize
$$||f(x^{(k)}) + Df(x^{(k)})(x - x^{(k)})||^2 + \lambda^{(k)}||x - x^{(k)}||^2$$

solution is

$$x^{(k+1)} = x^{(k)} - \left(Df(x^{(k)})^T Df(x^{(k)}) + \lambda^{(k)} I\right)^{-1} Df(x^{(k)})^T f(x^{(k)})$$

- inverse always exists (since $\lambda^{(k)} > 0$)
- $x^{(k+1)} = x^{(k)}$ only if $Df(x^{(k)})^T f(x^{(k)}) = 0$, *i.e.*, optimality condition holds

Adjusting $\lambda^{(k)}$

idea:

- if $\lambda^{(k)}$ is too big, $x^{(k+1)}$ is too close to $x^{(k)}$, and progress is slow
- if too small, $x^{(k+1)}$ may be far from $x^{(k)}$ and affine approximation is poor

update mechanism:

• if $||f(x^{(k+1)})||^2 < ||f(x^{(k)})||^2$, accept new x and reduce λ

$$\lambda^{(k+1)} = 0.8\lambda^{(k)}$$

• otherwise, increase λ and do not update x:

$$\lambda^{(k+1)} = 2\lambda^{(k)}, \qquad x^{(k+1)} = x^{(k)}$$

Example: Location from range measurements

- range to 5 points (blue circles)
- red square shows \hat{x}

Introduction to Applied Linear Algebra

Boyd & Vandenberghe

Levenberg-Marquardt from three initial points

Levenberg-Marquardt from three initial points

Outline

Nonlinear equations and least squares

Examples

Levenberg-Marquardt algorithm

Nonlinear model fitting

Nonlinear least squares classification

Nonlinear model fitting

minimize
$$\sum_{i=1}^{N} (\hat{f}(x^{(i)}; \theta) - y^{(i)})^2$$

- $x^{(1)}, \dots, x^{(N)}$ are feature vectors
- $y^{(1)}, \ldots, y^{(N)}$ are associated outcomes
- model $\hat{f}(x;\theta)$ is parameterized by parameters $\theta_1, \ldots, \theta_p$
- this generalizes the linear in parameters model

$$\hat{f}(x;\theta) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

- here we allow $\hat{f}(x,\theta)$ to be a nonlinear function of θ
- the minimization is over the model parameters θ

Example

a nonlinear least squares problem with four variables θ_1 , θ_2 , θ_3 , θ_4 :

minimize
$$\sum_{i=1}^{N} \left(\theta_1 e^{\theta_2 x^{(i)}} \cos(\theta_3 x^{(i)} + \theta_4) - y^{(i)} \right)^2$$

Orthogonal distance regression

- to fit model, minimize sum square distance of data points to graph
- example: orthogonal distance regression to cubic polynomial

Nonlinear least squares formulation

minimize
$$\sum_{i=1}^{N} \left((\hat{f}(u^{(i)}; \theta) - y^{(i)})^2 + ||u^{(i)} - x^{(i)}||^2 \right)$$

- optimization variables are model parameters θ and N points $u^{(i)}$
- *i*th term is squared distance of data point $(x^{(i)}, y^{(i)})$ to point $(u^{(i)}, \hat{f}(u^{(i)}, \theta))$

- minimizing over $u^{(i)}$ gives squared distance of $(x^{(i)}, y^{(i)})$ to graph
- minimizing over $u^{(1)}, \ldots, u^{(N)}$ and θ minimizes the sum square distance

Outline

Nonlinear equations and least squares

Examples

Levenberg-Marquardt algorithm

Nonlinear model fitting

Nonlinear least squares classification

Nonlinear least squares classification

linear least squares classifier:

- classifier is $\hat{f}(x) = \text{sign}(\tilde{f}(x))$ where $\tilde{f}(x) = \theta_1 f_1(x) + \cdots + \theta_p f_p(x)$
- θ is chosen by minimizing $\sum_{i=1}^{N} (\tilde{f}(x_i) y_i)^2$ (plus optionally regularization)

nonlinear least squares classifier:

 \triangleright choose θ to minimize

$$\sum_{i=1}^{N} (\mathbf{sign}(\tilde{f}(x_i)) - y_i)^2 = 4 \times \text{number of errors}$$

- replace sign function with smooth approximation ϕ , e.g., sigmoid function
- use Levenberg–Marquardt to minimize $\sum_{i=1}^{N} (\phi(\tilde{f}(x_i)) y_i)^2$

Sigmoid function

Example

- MNIST data set; feature vector x is 493-vector of pixel intensities
- nonlinear least squares 10-way multi-class classifier: 7.5% test error
- Boolean classifiers computed by solving nonlinear least squares problems

minimize
$$\sum_{i=1}^{N} (\phi((x^{(i)})^{T}\beta + v) - y^{(i)})^{2} + \lambda \|\beta\|^{2}$$

Feature engineering

- add 5000 random features as before
- test set error drops to 2%
- this matches human performance
- with more feature engineering, can substantially beat human performance