Mechanical Design Selection Process

FRC Team 503

Frog Force

Key Ideas

- Analysis- Analyze the game first
- ► Strategy- **What** are we going to do?
- Design- *Then* design the robot
- ► Tactics- *Finally*, specific match strategy- how are we going to do it?

Strategy

Understand

- Analyze the Game know EVERYTHING about it, including every way to score and PENALTIES
- Build within your means

Identify

 Identify the desired function, everything possible that can be done. Break it up into sections (auton, match, end game)

Prioritize

• List items by points gained, by time, and/or by difficulty

Analysis Leads to Stategy

- Choose a strategy that you can complete reliably.
- A completed robot with time to practice driving is better than shooting for the moon and not completing the build
- ◆ A task that you can accomplish easily and reliably is better than a task that you may spend an entire match and not accomplish.

Strategy

After understanding the game, you start by seeing what functions you want your robot to do

****a function is not how you do something, it is what you want to do****

This is called a QFD or Quality Function Deployment renamed for our team as FFFD

Strategy cont.

- After finding your functions, you prioritize your functions to see what you need to build to complete these functions
- Based on your rankings, you then start thinking about ideas to build and use a Pugh matrix

EX: 2017 Steamworks

Rank _{→†}	Action (verb)	Target Object (noun #1)	Details (noun #2)	Specifications 🔻
1	Drive	itself	(around) the field	including over auton line
2	Place	Gear	Lift	
3	Store	Fuel	robot	A lot
4	Shoot	Fuel	boiler high goal	
5	Intake	Gear	feeder station	
6	Climb	Rope	top	
7	Intake	Fuel	feeder/hopper	
8	Intake	Fuel	floor	
9	Shoot	Fuel	boiler low goal	
10	Intake	Gear	floor	

Strategy Leads to Design

- Only after you've decided on your strategy should you choose what your robot design should be.
- Don't decide on a build design until you know what you want to accomplish

What is a Pugh Matrix?

- ► A Pugh Matrix is a decision making model to choose between a list of alternatives.
- ► It is an engineering tool used across the world to help companies develop the best products

How do you use a Pugh Matrix?

Criteria: Choose the most important things to consider when assessing your ideas

EX: Robustness, Simplicity, Margin of error

Weight: How much does this criteria mean to your decision, you will give each criteria a weight 1-3 on the importance

EX: You would rather have something that will not break than something that has a small margin of error

Ideas: When scoring your ideas based on the criteria, you will use a 0-3 scale with 3 being the best

Criteria	Weight (1-3)	Idea 1 (0-3)	Idea 2 (0-3)	Idea 3 (0-3)	Idea 4 (0-3)
1					
2					
3					
4					

What does this tell you?

- After you put a number for each idea and criteria, you add up all the numbers and find the highest number and pursue that idea
- ▶ Based on your matrix, the highest scoring idea should be the best for your team to build

Pugh Matrix	Weight	spool	spool	single	single	double	double	inchworm	inchworm
Quick	3	3	9	1	3	1	3	0	0
reliable	3	3	9	1	3	2	6	1	3
strength	2	2	4	3	6	2	4	0	0
complexity	1	3	3	2	2	1	1	0	0
			25		14		14		3

Mechanical Design Selection Steps

Steps:	Key Inputs	Key Outputs
Step 1: Analysis	 Game manual Knowledge from other teams/discussions Historical Individual experience 	Scoring worksheetGame strategy
Step 2: Strategy	Scoring worksheetGame strategyRunning Game Estimates	Design functions (move, score high, pull-up)
Step 3: Design	Design functions	BrainstormPrototype ideas (multiple)
Step 4: Build	Prototype testing dataMatrix	Mechanical design selection
Step 5: Repeat	Mechanical design	Back to Step 1

Pugh Matrix Examples

Criteria	Weight (1-3)	Idea 1 (0-3)	Idea 2 (0-3)	Idea 3 (0-3)	Idea 4 (0-3)
1					
2					
3					
4					

