常用导数与积分公式

1 常用导数与积分对照表

	P. W.	5n /\
序号 	 	积分
1	(c)' = 0	$\int 0 \mathrm{d}x = C$
2	$(x^{\alpha})' = \alpha x^{\alpha - 1} (\alpha \neq 0)$	$\int x^{\alpha} \mathrm{d}x = \frac{x^{\alpha+1}}{\alpha+1} + C$
3	$(a^x)' = \ln a \cdot a^x$	$\int a^x \mathrm{d}x = \frac{a^x}{\ln a} + C$
4	$(\sin x)' = \cos x$	$\int \cos x \mathrm{d}x = \sin x + C$
5	$(\cos x)' = -\sin x$	$\int \sin x \mathrm{d}x = -\cos x + C$
6	$(\tan x)' = \frac{1}{\cos^2 x} = \sec^2 x$	$\int \frac{1}{\cos^2 x} \mathrm{d}x = \tan x + C$
7	$(\cot x)' = \frac{1}{\sin^2 x}$	$\int \frac{1}{\sin^2 x} \mathrm{d}x = \cot x + C$
8	$\left(\ln x \right)' = \frac{1}{x}$	$\int \frac{1}{x} \mathrm{d}x = \ln x + C$
9	$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{1}{\sqrt{1-x^2}} \mathrm{d}x = \arcsin x + C$
10	$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$	$\int \frac{1}{\sqrt{1-x^2}} \mathrm{d}x = -\arccos x + C$
11	$(\arctan x)' = \frac{1}{1+x^2}$	$\int \frac{1}{1+x^2} \mathrm{d}x = \arctan x + C$
12	$(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$	$\int \frac{1}{1+x^2} \mathrm{d}x = -\arccos x + C$
13	-	$\int \tan x \mathrm{d}x = -\ln \cos x + C$
14	-	$\int \cot x \mathrm{d}x = \ln \sin x + C$
15	-	$\int \frac{\mathrm{d}x}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C(a > 0)$
16	-	$\int \frac{\mathrm{d}x}{x^2 - a^2} = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C(a > 0)$

17
$$\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$$
18
$$\int \frac{\mathrm{d}x}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

2 常用积分技巧

2.1 换元法

1. 第一换元法:

$$\int f(\varphi(x))\varphi'(x)\mathrm{d}x = \int f(\varphi(x))\mathrm{d}\varphi(x) = F(x) + C.$$

2. 第二换元法:

$$\int f(x)dx = \int f(\varphi(t))d\varphi(t) = F(\varphi^{-1}(x)) + C.$$

3. 分部积分法:

$$\int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx.$$