

VinMin = 14.0V VinMax = 22.0V Vout = 3.3V lout = 2.0A Device = LM3150MH/NOPB Topology = Buck Created = 6/11/16 9:23:59 PM BOM Cost = \$3.47 BOM Count = 15 Total Pd = 0.9W

WEBENCH® Design Report

Design: 4688446/9 LM3150MH/NOPB LM3150MH/NOPB 14.0V-22.0V to 3.30V @ 2.0A

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cbst	Taiyo Yuden	EMK212B7474KD-T Series= X7R	Cap= 470.0 nF VDC= 16.0 V IRMS= 0.0 A	1	\$0.02	0805 7 mm ²
2.	Cbyp	Kemet	C0805C104K5RACTU Series= X7R	Cap= 100.0 nF ESR= 64.0 mOhm VDC= 50.0 V IRMS= 1.64 A	1	\$0.01	0805 7 mm ²
3.	Cff	Kemet	C0805C471K5RACTU Series= X7R	Cap= 470.0 pF ESR= 688.0 mOhm VDC= 50.0 V IRMS= 213.0 mA	1	\$0.01	0805 7 mm ²
4.	Cin	MuRata	GRM31CR71H225KA88L Series= X7R	Cap= 2.2 uF ESR= 4.448 mOhm VDC= 50.0 V IRMS= 2.2252 A	1	\$0.05	1206_190 11 mm ²
5.	Cout	Panasonic	10TPE47MAZB Series= TPE	Cap= 47.0 uF ESR= 35.0 mOhm VDC= 10.0 V IRMS= 1.4 A	1	\$0.39	3528-21 17 mm ²
6.	Css	Yageo America	CC0805KRX7R9BB153 Series= X7R	Cap= 15.0 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
7.	Cvcc	Taiyo Yuden	EMK212B7225KG-T Series= X7R	Cap= 2.2 uF VDC= 16.0 V IRMS= 0.0 A	1	\$0.03	0805 7 mm ²
8.	L1	Bourns	SRP6540-100M	L= 10.0 μH DCR= 78.5 mOhm	1	\$0.49	SRP6540 83 mm ²

<u># Na</u>	ame	Manufacturer	Part Number	Properties	Qty	Price	Footprint
9. M1	1	Texas Instruments	CSD17507Q5A	VdsMax= 30.0 V IdsMax= 65.0 Amps	1	\$0.34	TRANS_NexFET_Q5A 55 mm²
10. M2	2	Texas Instruments	CSD18537NQ5A	VdsMax= 60.0 V IdsMax= 50.0 Amps	1	\$0.46	TRANS_NexFET_Q5A 55 mm²
11. Rft	fb1	Panasonic	ERJ-6ENF1002V Series= ERJ-6E	Res= 10.0 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
12. Rft	fb2	Panasonic	ERJ-6ENF4532V Series= ERJ-6E	Res= 45.3 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
13. Ril	ilim	Vishay-Dale	CRCW0805590RFKEA Series= CRCWe3	Res= 590.0 Ohm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
14. Ro	on	Panasonic	ERJ-6ENF6492V Series= ERJ-6E	Res= 64.9 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
15. U1	1	Texas Instruments	LM3150MH/NOPB	Switcher	1	\$1.62	MXA14A 59 mm ²

Operating Values

	#	Name	Value	Category	Description
-	1.	Cin IRMS	734.154 mA	Current	Input capacitor RMS ripple current
	2.	Cout IRMS	207.215 mA	Current	Output capacitor RMS ripple current
	3.	l lim	3.451 A	Current	Current limit threshold
	4.	lin Avg	340.83 mA	Current	Average input current
	5.	L lpp	717.81 mA	Current	Peak-to-peak inductor ripple current
	6.	SW lpk	2.359 A	Current	Peak switch current
	7.	BOM Count	15	General	Total Design BOM count
	8.	FootPrint	341.0 mm ²	General	Total Foot Print Area of BOM components
	9.	Frequency	418.146 kHz	General	Switching frequency
	10.	IC Tolerance	12.0 mV	General	IC Feedback Tolerance
	11.	Pout	6.6 W	General	Total output power

#	Name	Value	Category	Description
12.	Total BOM	\$3.47	General	Total BOM Cost
13.	Vout Actual	3.318 V	Op_Point	Vout Actual calculated based on selected voltage divider resistors
14.	Duty Cycle	16.051 %	Op_point	Duty cycle
15.	Efficiency	88.02 %	Op_point	Steady state efficiency
16.	IC Tj	49.205 degC	Op_point	IC junction temperature
17.	IOUT_OP	2.0 A	Op_point	lout operating point
18.	M1 Tj	33.828 degC	Op_point	M1 MOSFET junction temperature
19.	M2 Tj	36.671 degC	Op_point	M2 MOSFET junction temperature
20.	VIN_OP	22.0 V	Op_point	Vin operating point
21.	Vout p-p	4.566 mV	Op_point	Peak-to-peak output ripple voltage
22.	Cin Pd	2.397 mW	Power	Input capacitor power dissipation
23.	Cout Pd	1.503 mW	Power	Output capacitor power dissipation
24.	IC Pd	295.456 mW	Power	IC power dissipation
25.	L Pd	392.5 mW	Power	Inductor power dissipation
26.	M1 Pd	74.995 mW	Power	M1 MOSFET total power dissipation
27.	M1 PdCond	7.771 mW	Power	M1 MOSFET conduction losses
28.	M1 PdSw	67.224 mW	Power	M1 MOSFET switching losses
29.	M2 Pd	131.446 mW	Power	M2 MOSFET total power dissipation
30.	M2 PdCond	51.259 mW	Power	M2 MOSFET conduction losses
31.	M2 PdSw	80.187 mW	Power	M2 MOSFET switching losses
32.	Total Pd	898.292 mW	Power	Total Power Dissipation
33.	Vout Tolerance	3.688 %		Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable

Design Inputs

#	Name	Value	Description
1.	lout	2.0	Maximum Output Current
2.	VinMax	22.0	Maximum input voltage
3.	VinMin	14.0	Minimum input voltage
4.	Vout	3.3	Output Voltage
5.	base_pn	LM3150	Base Product Number
6.	source	DC	Input Source Type
7.	Та	30.0	Ambient temperature

Design Assistance

1. LM3150 Product Folder: http://www.ti.com/product/LM3150: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.