Basics of Statistical Learning

David Dalpiaz 2019-09-04

Contents

1	Intr	oducti	ion 7
	1.1	Regres	ssion: Powerlifting
		1.1.1	Background
		1.1.2	Data
		1.1.3	EDA
		1.1.4	Modeling
		1.1.5	Model Evaluation
		1.1.6	Discussion
	1.2	Classif	fication: Handwritten Digits
		1.2.1	Background
		1.2.2	Data
		1.2.3	EDA
		1.2.4	Modeling
		1.2.5	Model Evaluation
		1.2.6	Discussion
	1.3	Cluste	ring: NBA Players
		1.3.1	Background
		1.3.2	Data
		1.3.3	EDA
		1.3.4	Modeling
		1.3.5	Model Evaluation
		1.3.6	Discussion
2	Con	nputin	$_{ m g}$
	2.1	Resou	
		2.1.1	R
		2.1.2	RStudio
		2.1.3	R Markdown
	2.2	BSL I	dioms
		2.2.1	Reference Style
		2.2.2	BSL Style Overrides
		2.2.3	Objects and Functions
		2.2.4	Print versus Return

4		CONTENTS

		2.2.5 Help	3
			3
	2.3	Common Issues	34
3	Esti	mation 3	5
	3.1	Probability	35
	3.2	·	35
	3.3		35
			6
			6
			37
۸.		dix 3	_
\mathbf{A}	ppen	dix 3	"
\mathbf{A}	Pro	bability 3	9
	A.1	Probability Models	3 9
	A.2		10
	A.3	Probability Rules	10
	A.4	Random Variables	12
		A.4.1 Distributions	12
		A.4.2 Discrete Random Variables	12
		A.4.3 Continuous Random Variables	13
		A.4.4 Several Random Variables	4
	A.5	Expectations	4
	A.6	-	l5
	A.7		l5
	A.8		16

Preface

Welcome to Basics of Statistical Learning!

- TODO: Warning about development.
- TODO: Warning about PDF version.
- $\bullet\,$ TODO: Transfer acknowledgements.
- TODO: discuss https://daviddalpiaz.github.io/r4sl/
- TODO: course vs book
- TODO: stat432.org

6 CONTENTS

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Chapter 1

Introduction

```
library(readr)
library(tibble)
library(dplyr)
library(purrr)
library(ggplot2)
library(ggridges)
library(lubridate)
library(randomForest)
library(rpart)
library(rpart.plot)
library(cluster)
library(caret)
library(factoextra)
library(rsample)
library(janitor)
library(rvest)
library(dendextend)
library(knitr)
library(kableExtra)
library(ggthemes)
```

- TODO: Show package messaging? check conflicts!
- TODO: Should this be split into three analyses with different packages?

1.1 Regression: Powerlifting

1.1.1 Background

- TODO: https://www.openpowerlifting.org/
- TODO: https://en.wikipedia.org/wiki/Powerlifting

1.1.2 Data

- TODO: Why readr::col_factor() and not just col_factor()?
- TODO: Characters should be character and "categories" should be factors.
- TODO: Is na.omit() actually a good idea?

```
pl = read_csv("data/pl.csv", col_types = cols(Sex = readr::col_factor()))
pl
## # A tibble: 3,604 x 8
##
     Name
                     Sex
                          Bodyweight
                                       Age Squat Bench Deadlift Total
##
     <chr>
                    <fct>
                               <dbl> <dbl> <dbl> <dbl> <
                                                        <dbl> <dbl>
## 1 Ariel Stier
                    F
                                60
                                       32 128.
                                                 72.5
                                                         150
                                                               350
## 2 Nicole Bueno
                                60
                                       26 110
                                                 60
                                                         135
                                                               305
## 3 Lisa Peterson F
                                67.5
                                       28 118.
                                                 67.5
                                                         138. 322.
## 4 Shelby Bandula F
                                67.5
                                       26 92.5 67.5
                                                         140
                                                               300
                                       28 92.5 62.5
                                                         132. 288.
## 5 Lisa Lindhorst F
                                67.5
## 6 Laura Burnett
                     F
                                67.5
                                       30 90
                                                 45
                                                         108. 242.
## 7 Suzette Bradley F
                               75
                                       38 125
                                                 75
                                                         158. 358.
## 8 Norma Romero
                     F
                                75
                                       20 92.5 42.5
                                                         125
                                                               260
## 9 Georgia Andrews F
                                82.5
                                       29 108.
                                                 52.5
                                                         120
                                                               280
## 10 Christal Bundang F
                                90
                                        30 100
                                                 55
                                                         125
                                                               280
## # ... with 3,594 more rows
```

1.1.3 EDA

```
set.seed(1)

# test-train split
pl_tst_trn_split = initial_split(pl, prop = 0.80)
pl_trn = training(pl_tst_trn_split)
pl_tst = testing(pl_tst_trn_split)

# estimation-validation split
pl_est_val_split = initial_split(pl_trn, prop = 0.80)
```

```
pl_est = training(pl_est_val_split)
pl_val = testing(pl_est_val_split)
rm(pl)
```

- TODO: Train can be used however you want. (Including EDA.)
- TODO: Test can only be used after all model decisions have been made!

pl_trn_tidy\$Lift = factor(pl_trn_tidy\$Lift, levels = c("Squat", "Bench", "Deadlift"))

TODO: https://www.tidyverse.org/
TODO: https://en.wikipedia.org/wiki/Tidy_data
TODO: http://vita.had.co.nz/papers/tidy-data.pdf

1.1.4 Modeling

```
dl_mod_form = formula(Deadlift ~ Sex + Bodyweight + Age + Squat + Bench)
set.seed(1)
lm_mod = lm(dl_mod_form, data = pl_est)
knn_mod = caret::knnreg(dl_mod_form, data = pl_est)
rf_mod = randomForest(dl_mod_form, data = pl_est)
rp_mod = rpart(dl_mod_form, data = pl_est)
```

- TODO: Note: we are not using Name. Why? We are not using Total. Why?
- TODO: look what happens with Total! You'll see it with lm(), you'll be optimistic with randomForest().
- TODO: What variables are allowed? (With respect to real world problem.)
- TODO: What variables lead to the best predictions?

1.1.5 Model Evaluation

• TODO: Never supply data = df to predict(). You have been warned.

```
knitr::include_graphics("img/sim-city.jpg")
```



```
calc_mae = function(actual, predicted) {
  mean(abs(actual - predicted))
}
map_dbl(reg_preds, calc_mae, actual = pl_val$Deadlift)
```

```
## [1] 14.38953 14.99748 17.14823 15.28626
```

```
reg_results = tibble(
  Model = c("Linear", "KNN", "Tree", "Forest"),
  RMSE = map_dbl(reg_preds, calc_rmse, actual = pl_val$Deadlift),
  MAE = map_dbl(reg_preds, calc_mae, actual = pl_val$Deadlift))
```

Model	RMSE	MAE
Linear	18.26654	14.38953
KNN	19.19625	14.99748
Tree	21.68142	17.14823
Forest	19.23643	15.28626

1.1.6 Discussion


```
lm_mod_final = lm(dl_mod_form, data = pl_trn)
calc_rmse(actual = pl_tst$Deadlift,
          predicted = predict(lm_mod_final, pl_tst))
## [1] 22.29668
  • TODO: Is this a good model?
  • TODO: Is this model useful?
william_biscarri = tibble(
  Name = "William Biscarri",
  Age = 28,
  Sex = "M",
  Bodyweight = 83,
  Squat = 130,
  Bench = 90
predict(lm_mod_final, william_biscarri)
##
         1
## 175.495
```

1.2 Classification: Handwritten Digits

1.2.1 Background

- TODO: https://en.wikipedia.org/wiki/MNIST_database
- TODO: http://yann.lecun.com/exdb/mnist/

1.2.2 Data

- TODO: How is this data pre-processed?
- TODO: https://gist.github.com/daviddalpiaz/ae62ae5ccd0bada4b9acd6dbc9008706
- TODO: https://github.com/itsrainingdata/mnistR
- TODO: https://pjreddie.com/projects/mnist-in-csv/
- TODO: http://varianceexplained.org/r/digit-eda/

```
mnist_trn = read_csv(file = "data/mnist_train_subest.csv")
mnist_tst = read_csv(file = "data/mnist_test.csv")

mnist_trn_y = as.factor(mnist_trn$X1)
mnist_tst_y = as.factor(mnist_tst$X1)

mnist_trn_x = mnist_trn[, -1]
mnist_tst_x = mnist_tst[, -1]
```

- TODO: If we were going to tune a model, we would need a validation split as well. We're going to be lazy and just fit a single random forest.
- TODO: This is an agreed upon split.

1.2.3 EDA

1.2.4 Modeling

```
set.seed(42)
mnist_rf = randomForest(x = mnist_trn_x, y = mnist_trn_y, ntree = 100)
```

1.2.5 Model Evaluation

```
mnist_tst_pred = predict(mnist_rf, mnist_tst_x)
mean(mnist_tst_pred == mnist_tst_y)
## [1] 0.8839
table(predicted = mnist_tst_pred, actual = mnist_tst_y)
##
            actual
## predicted
                     1
                          2
                              3
                                        5
                                             6
                                                   7
                                                       8
                                                             9
                        14
##
          0 959
                    0
                              6
                                   1
                                       15
                                             22
                                                   1
                                                       10
                                                            10
##
           1
                0 1112
                         5
                              5
                                       16
##
           2
                    2 928
                             31
                                   3
                                        5
                                             19
                                                  24
                                                       17
                                                            8
                1
##
           3
                0
                    2
                        11
                             820
                                   1
                                       24
                                             0
                                                  1
                                                      13
                                                           13
           4
##
               4
                    0
                        13
                                 839
                                       21
                                             39
                                                  11
                                                      18
                                                            40
                             1
##
           5
               3
                             88
                                   3 720
                                                  1
                                                      25
                                                            9
                    1
                         1
                                            18
           6
               7
                    2
                                                            2
##
                       15
                              3
                                  25
                                       15
                                            848
                                                   0
                                                       18
##
           7
               2
                    1
                        29
                             24
                                   1
                                       14
                                             2 928
                                                      15
                                                           30
##
           8
               4
                             22
                                    5
                                                      797
                    14
                       13
                                       19
                                              5
                                                   4
                                                             3
##
                   1
                         3
                            10 103
                                       43
                                                 49
                                                      56 888
```

1.2.6 Discussion

```
par(mfrow = c(3, 3))
plot_mistake(actual = 6, predicted = 4)
```

```
mnist_obs_to_check = 2
predict(mnist_rf, mnist_tst_x[mnist_obs_to_check, ], type = "prob")[1, ]

## 0 1 2 3 4 5 6 7 8 9
## 0.09 0.03 0.25 0.14 0.02 0.14 0.25 0.01 0.05 0.02

mnist_tst_y[mnist_obs_to_check]

## [1] 2
## Levels: 0 1 2 3 4 5 6 7 8 9
```

show_digit(mnist_tst_x[mnist_obs_to_check,])

1.3 Clustering: NBA Players

1.3.1 Background

- https://www.youtube.com/watch?v=cuLprHh_BRg
- $\bullet \ \, https://www.youtube.com/watch?v=1FBwSO_1Mb8$
- $\bullet \ \, https://www.basketball-reference.com/leagues/NBA_2019.html$

1.3.2 Data

- $\bullet \ \ https://www.basketball-reference.com/leagues/NBA_2019_totals.html$

- https://www.basketball-reference.com/leagues/NBA_2019_per_poss. html
- https://www.basketball-reference.com/leagues/NBA_2019_advanced.

```
nba = scrape_nba_season_player_stats()
nba$pos = factor(nba$pos, levels = c("PG", "SG", "SF", "PF", "C"))
```

```
## # A tibble: 100 x 93
##
      player_team pos
                                                                fga fg_percent
                           age tm
                                                           fg
                                              gs
                                                     mp
                                         g
##
      <chr>
                  <fct> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
                                                        <dbl> <dbl>
                                                                          <dbl>
    1 Álex Abrin~ SG
                            25 OKC
                                        31
                                               2
                                                    588
                                                           56
                                                                157
                                                                         0.357
    2 Quincy Acy~ PF
                            28 PHO
                                                                         0.222
##
                                        10
                                               0
                                                    123
                                                            4
                                                                 18
##
    3 Jaylen Ada~ PG
                            22 ATL
                                        34
                                               1
                                                    428
                                                           38
                                                                110
                                                                         0.345
##
    4 Steven Ada~ C
                            25 OKC
                                        80
                                              80
                                                   2669
                                                          481
                                                                809
                                                                         0.595
##
   5 Bam Adebay~ C
                            21 MIA
                                        82
                                                   1913
                                                                486
                                                                         0.576
                                              28
                                                          280
    6 Deng Adel ~ SF
##
                            21 CLE
                                        19
                                               3
                                                    194
                                                           11
                                                                 36
                                                                         0.306
##
    7 DeVaughn A~ SG
                            25 DEN
                                         7
                                               0
                                                     22
                                                                 10
                                                                         0.3
                                                            3
##
   8 LaMarcus A~ C
                            33 SAS
                                        81
                                              81
                                                   2687
                                                          684
                                                               1319
                                                                         0.519
##
    9 Rawle Alki~ SG
                            21 CHI
                                        10
                                                    120
                                                           13
                                                                 39
                                                                         0.333
                                               1
## 10 Grayson Al~ SG
                            23 UTA
                                        38
                                               2
                                                    416
                                                           67
                                                                178
                                                                         0.376
## # ... with 90 more rows, and 83 more variables: x3p <dbl>, x3pa <dbl>,
       x3p_percent <dbl>, x2p <dbl>, x2pa <dbl>, x2p_percent <dbl>,
## #
       e_fg_percent <dbl>, ft <dbl>, fta <dbl>, ft_percent <dbl>, orb <dbl>,
## #
       drb <dbl>, trb <dbl>, ast <dbl>, stl <dbl>, blk <dbl>, tov <dbl>,
## #
       pf <dbl>, pts <dbl>, fg_pm <dbl>, fga_pm <dbl>, fg_percent_pm <dbl>,
## #
       x3p_pm <dbl>, x3pa_pm <dbl>, x3p_percent_pm <dbl>, x2p_pm <dbl>,
## #
       x2pa_pm <dbl>, x2p_percent_pm <dbl>, ft_pm <dbl>, fta_pm <dbl>,
## #
       ft_percent_pm <dbl>, orb_pm <dbl>, drb_pm <dbl>, trb_pm <dbl>,
## #
       ast_pm <dbl>, stl_pm <dbl>, blk_pm <dbl>, tov_pm <dbl>, pf_pm <dbl>,
## #
       pts_pm <dbl>, fg_pp <dbl>, fga_pp <dbl>, fg_percent_pp <dbl>,
## #
       x3p_pp <dbl>, x3pa_pp <dbl>, x3p_percent_pp <dbl>, x2p_pp <dbl>,
## #
       x2pa_pp <dbl>, x2p_percent_pp <dbl>, ft_pp <dbl>, fta_pp <dbl>,
## #
       ft_percent_pp <dbl>, orb_pp <dbl>, drb_pp <dbl>, trb_pp <dbl>,
## #
       ast_pp <dbl>, stl_pp <dbl>, blk_pp <dbl>, tov_pp <dbl>, pf_pp <dbl>,
## #
       pts_pp <dbl>, o_rtg_pp <dbl>, d_rtg_pp <dbl>, per <dbl>,
## #
       ts_percent <dbl>, x3p_ar <dbl>, f_tr <dbl>, orb_percent <dbl>,
## #
       drb_percent <dbl>, trb_percent <dbl>, ast_percent <dbl>,
## #
       stl_percent <dbl>, blk_percent <dbl>, tov_percent <dbl>,
## #
       usg_percent <dbl>, ows <dbl>, dws <dbl>, ws <dbl>, ws_48 <dbl>,
## #
       obpm <dbl>, dbpm <dbl>, bpm <dbl>, vorp <dbl>
```

1.3.3 EDA


```
nba_for_clustering = nba %>%
  filter(mp > 2000) %>%
  column_to_rownames("player_team") %>%
  select(-pos, -tm)
```

1.3.4 Modeling

```
# function to compute total within-cluster sum of square
wss = function(k, data) {
   kmeans(x = data, centers = k, nstart = 10)$tot.withinss
}

# Compute and plot wss for k = 1 to k = 15
k_values = 1:15

# extract wss for 2-15 clusters
wss_values = map_dbl(k_values, wss, data = nba_for_clustering)

plot(k_values, wss_values,
   type = "b", pch = 19, frame = TRUE,
   xlab = "Number of clusters K",
   ylab = "Total within-clusters sum of squares")
grid()
```


- TODO: K-Means likes clusters of roughly equal size.
- TODO: http://varianceexplained.org/r/kmeans-free-lunch/

```
nba_hc = hclust(dist(nba_for_clustering))
nba_hc_clust = cutree(nba_hc, k = 5)
table(nba_hc_clust)
```

```
## nba_hc_clust
## 1 2 3 4 5
## 38 13 28 11 1
```

1.3.5 Model Evaluation

1.3.6 Discussion

Chapter 2

Computing

This is not a book about R. It is however, a book that uses R. Because of this, you will need to be familiar with R. The text will point out some thing about R along the way, but some previous study of R is necessary.

The following (freely available) readings are highly recommended:

- Hands-On Programming with R Garrett Grolemund
 - If you have never used R or RStudio before, Part 1, Chapters 1 3, will be useful.
- R for Data Science Garrett Grolemund, Hadley Wickham
 - This book helps getting you up to speed working with data in R.
 While it is a lot of reading, Chapters 1 21 are highly recommended.
- Advanced R Hadley Wickham
 - Part I, Chapters 1 8, of this book will help create a mental model for working with R. These chapters are not an easy read, so they should be returned to often. (Chapter 2 could be safely skipped for our purposes, but is important if you will use R in the long term.)

If you are a UIUC student who took the course STAT 420, the first six chapters of that book could serve as a nice refresher.

• Applied Statistics with R - David Dalpiaz

2.1 Resources

The following resources are more specific or more advanced, but could still prove to be useful.

2.1.1 R

- Efficient R programming
- R Programming for Data Science
- R Graphics Cookbook
- Modern Dive
- The tidyverse Website
 - dplyr Website
 - readr Website
 - tibble Website
 - forcats Website

2.1.2 RStudio

- RStudio IDE Cheatsheet
- RStudio Resources

2.1.3 R Markdown

- R Markdown Cheatsheet
- R Markdown: The Definitive Guide Yihui Xie, J. J. Allaire, Garrett Grolemund
- R4DS R Markdown Chapter

2.1.3.1 Markdown

- Daring Fireball Markdown: Basics
- GitHub Mastering Markdown
- CommonMark

2.2 BSL Idioms

Things here supercede everythign above.

2.2.1 Reference Style

• tidyverse Style Guide

2.2. BSL IDIOMS 31

2.2.2 BSL Style Overrides

- TODO: never use T or F, only TRUE or FALSE

```
## [1] FALSE
F == TRUE

## [1] FALSE
F = TRUE
F == TRUE
```

[1] TRUE

FALSE == TRUE

- TODO: never ever use attach()
- TODO: never ever use <<-
- TODO: never ever ever use setwd() or set a working directory some other way
- TODO: a newline before and after any chunk
- TODO: use headers appropriately! (short names, good structure)
- TODO: never ever ever put spaces in filenames. use -. (others will use _.)
- TODO: load all needed packages at the beginning of an analysis in a single chunk (TODO: pros and cons of this approach)
- TODO: one plot per chunk! no other printed output

Be consistent...

- with yourself!
- with your group!
- with your organization!

```
set.seed(1337);mu=10;sample_size=50;samples=100000;
x_bars=rep(0, samples)
for(i in 1:samples)
{
x_bars[i]=mean(rpois(sample_size,lambda = mu))}
x_bar_hist=hist(x_bars,breaks=50,main="Histogram of Sample Means",xlab="Sample Means",col="darkon mean(x_bars>mu-2*sqrt(mu)/sqrt(sample_size)&x_bars<mu+2*sqrt(mu)/sqrt(sample_size))</pre>
```

2.2.3 Objects and Functions

To understand computations in R, two slogans are helpful:

- Everything that exists is an object.
- Everything tha thappens is a function call.

— John Chambers

2.2.4 Print versus Return

```
cars_mod = lm(dist ~ speed, data = cars)
summary(cars mod)
##
## Call:
## lm(formula = dist ~ speed, data = cars)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -29.069 -9.525 -2.272
                            9.215 43.201
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -17.5791
                           6.7584 -2.601 0.0123 *
## speed
                3.9324
                           0.4155 9.464 1.49e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 15.38 on 48 degrees of freedom
## Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
## F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
is.list(summary(cars_mod))
## [1] TRUE
names(summary(cars_mod))
  [1] "call"
                       "terms"
                                       "residuals"
                                                       "coefficients"
   [5] "aliased"
                       "sigma"
                                       "df"
                                                       "r.squared"
   [9] "adj.r.squared" "fstatistic"
                                       "cov.unscaled"
str(summary(cars_mod))
## List of 11
## $ call
                  : language lm(formula = dist ~ speed, data = cars)
## $ terms
                  :Classes 'terms', 'formula' language dist ~ speed
    ....- attr(*, "variables")= language list(dist, speed)
    ....- attr(*, "factors")= int [1:2, 1] 0 1
##
    .. .. ..- attr(*, "dimnames")=List of 2
   .. .. .. ..$ : chr [1:2] "dist" "speed"
   .. .. .. ..$ : chr "speed"
##
```

2.2. BSL IDIOMS 33

```
##
     ....- attr(*, "term.labels")= chr "speed"
     .. ..- attr(*, "order")= int 1
##
     .. ..- attr(*, "intercept")= int 1
     ... - attr(*, "response")= int 1
##
     ....- attr(*, ".Environment")=<environment: R_GlobalEnv>
##
     .. ..- attr(*, "predvars")= language list(dist, speed)
     ....- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
    ..... attr(*, "names")= chr [1:2] "dist" "speed"
                  : Named num [1:50] 3.85 11.85 -5.95 12.05 2.12 ...
    $ residuals
    ..- attr(*, "names")= chr [1:50] "1" "2" "3" "4" ...
##
   $ coefficients : num [1:2, 1:4] -17.579 3.932 6.758 0.416 -2.601 ...
     ..- attr(*, "dimnames")=List of 2
     .. ..$ : chr [1:2] "(Intercept)" "speed"
     ....$ : chr [1:4] "Estimate" "Std. Error" "t value" "Pr(>|t|)"
                  : Named logi [1:2] FALSE FALSE
     ..- attr(*, "names")= chr [1:2] "(Intercept)" "speed"
##
##
   $ sigma
                  : num 15.4
## $ df
                  : int [1:3] 2 48 2
                : num 0.651
## $ r.squared
## $ adj.r.squared: num 0.644
## $ fstatistic : Named num [1:3] 89.6 1 48
    ..- attr(*, "names")= chr [1:3] "value" "numdf" "dendf"
## $ cov.unscaled : num [1:2, 1:2] 0.19311 -0.01124 -0.01124 0.00073
     ..- attr(*, "dimnames")=List of 2
     .. ..$ : chr [1:2] "(Intercept)" "speed"
##
    ....$ : chr [1:2] "(Intercept)" "speed"
## - attr(*, "class")= chr "summary.lm"
# RStudio only
View(summary(cars_mod))
```

2.2.5 Help

• TODO: ?, google, stack overflow, (office hours, course forums)

2.2.6 Keyboard Shortcuts

- TODO: copy-paste, switch program, switch tab, etc...
- TODO: TAB!!!
- TODO: new chunk!
- TODO: style!
- TODO: keyboard shortcut for keyboard shortcut

2.3 Common Issues

• TODO: cannot find function called ""

Chapter 3

Estimation

- TODO: Where we are going, estimating conditional means and distributions.
- TODO: estimation = learning. "learning from data." what are we learning about? often parameters.
- TODO: https://stat400.orgTODO: https://stat420.org

3.1 Probability

- TODO: See Appendix A
- TODO: In R, d*(), p*(), q*(), r*()

3.2 Statistics

- TODO: parameters are a function of the population distribution
- TODO: statistics are a function of data.
- TODO: parameters:population::statistics::data
- TODO: statistic vs value of a statistic

3.3 Estimators

- TODO: estimator vs estimate
- TODO: Why such a foucs on the mean, E[X]? Because E[(X a)^2] is minimized by E[X]
 - https://www.benkuhn.net/squared

- https://news.ycombinator.com/item?id=9556459

3.3.1 Properties

3.3.1.1 Bias

bias
$$\left[\hat{\theta}\right] \triangleq \mathbb{E}\left[\hat{\theta}\right] - \theta$$

3.3.1.2 Variance

$$\operatorname{var}\left[\hat{\theta}\right] \triangleq \mathbb{E}\left[\left(\hat{\theta} - \mathbb{E}\left[\hat{\theta}\right]\right)^{2}\right]$$

3.3.1.3 Mean Squared Error

$$\mathrm{MSE}\left[\hat{\theta}\right] \triangleq \mathbb{E}\left[\left(\hat{\theta} - \theta\right)^{2}\right] = \mathrm{var}\left[\hat{\theta}\right] + \left(\mathrm{Bias}\left[\hat{\theta}\right]\right)^{2}$$

3.3.1.4 Consistency

An estimator $\hat{\theta}_n$ is said to be a **consistent estimator** of θ if, for any positive ϵ ,

$$\lim_{n \to \infty} P\left(\left|\hat{\theta}_n - \theta\right| \le \epsilon\right) = 1$$

or, equivalently,

$$\lim_{n \to \infty} P\left(\left| \hat{\theta}_n - \theta \right| > \epsilon \right) = 0$$

We say that $\hat{\theta}_n$ converges in probability to θ and we write $\hat{\theta}_n \stackrel{P}{\to} \theta$.

3.3.2 Methods

• TODO: MLE

Given a random sample $X_1, X_2, ..., X_n$ from a population with parameter θ and density or mass $f(x \mid \theta)$, we have:

The Likelihood, $L(\theta)$,

$$L(\theta) = f(x_1, x_2, \dots, x_n) = \prod_{i=1}^n f(x_i \mid \theta)$$

The Maximum Likelihood Estimator, $\hat{\theta}$

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \ L(\theta) = \underset{\theta}{\operatorname{argmax}} \ \log L(\theta)$$

• TODO: Invariance Principle

If $\hat{\theta}$ is the MLE of θ and the function $h(\theta)$ is continuous, then $h(\hat{\theta})$ is the MLE of $h(\theta)$.

• TODO: MOM

3.3.3

Appendix A

Probability

• TODO: Note! This is copy-pasted from R4SL.

We give a very brief review of some necessary probability concepts. As the treatment is less than complete, a list of references is given at the end of the chapter. For example, we ignore the usual recap of basic set theory and omit proofs and examples.

A.1 Probability Models

When discussing probability models, we speak of random **experiments** that produce one of a number of possible **outcomes**.

A **probability model** that describes the uncertainty of an experiment consists of two elements:

- The sample space, often denoted as Ω , which is a set that contains all possible outcomes.
- A **probability function** that assigns to an event A a nonnegative number, P[A], that represents how likely it is that event A occurs as a result of the experiment.

We call P[A] the **probability** of event A. An **event** A could be any subset of the sample space, not necessarily a single possible outcome. The probability law must follow a number of rules, which are the result of a set of axioms that we introduce now.

A.2 Probability Axioms

Given a sample space Ω for a particular experiment, the **probability function** associated with the experiment must satisfy the following axioms.

- 1. Nonnegativity: $P[A] \geq 0$ for any event $A \subset \Omega$.
- 2. Normalization: $P[\Omega] = 1$. That is, the probability of the entire space is 1.
- 3. Additivity: For mutually exclusive events E_1, E_2, \ldots

$$P\left[\bigcup_{i=1}^{\infty} E_i\right] = \sum_{i=1}^{\infty} P[E_i]$$

Using these axioms, many additional probability rules can easily be derived.

A.3 Probability Rules

Given an event A, and its complement, A^c , that is, the outcomes in Ω which are not in A, we have the **complement rule**:

$$P[A^c] = 1 - P[A]$$

In general, for two events A and B, we have the **addition rule**:

$$P[A \cup B] = P[A] + P[B] - P[A \cap B]$$

If A and B are also disjoint, then we have:

$$P[A \cup B] = P[A] + P[B]$$

If we have n mutually exclusive events, $E_1, E_2, \dots E_n$, then we have:

$$P\left[\bigcup_{i=1}^{n} E_i\right] = \sum_{i=1}^{n} P[E_i]$$

Often, we would like to understand the probability of an event A, given some information about the outcome of event B. In that case, we have the **conditional probability rule** provided P[B] > 0.

$$P[A \mid B] = \frac{P[A \cap B]}{P[B]}$$

Rearranging the conditional probability rule, we obtain the **multiplication** rule:

$$P[A \cap B] = P[B] \cdot P[A \mid B] \cdot$$

For a number of events $E_1, E_2, \dots E_n$, the multiplication rule can be expanded into the **chain rule**:

$$P\left[\bigcap_{i=1}^{n} E_{i}\right] = P[E_{1}] \cdot P[E_{2} \mid E_{1}] \cdot P[E_{3} \mid E_{1} \cap E_{2}] \cdots P\left[E_{n} \mid \bigcap_{i=1}^{n-1} E_{i}\right]$$

Define a **partition** of a sample space Ω to be a set of disjoint events A_1, A_2, \ldots, A_n whose union is the sample space Ω . That is

$$A_i \cap A_i = \emptyset$$

for all $i \neq j$, and

$$\bigcup_{i=1}^{n} A_i = \Omega.$$

Now, let A_1, A_2, \ldots, A_n form a partition of the sample space where $P[A_i] > 0$ for all i. Then for any event B with P[B] > 0 we have **Bayes' Rule**:

$$P[A_i|B] = \frac{P[A_i]P[B|A_i]}{P[B]} = \frac{P[A_i]P[B|A_i]}{\sum_{i=1}^{n} P[A_i]P[B|A_i]}$$

The denominator of the latter equality is often called the **law of total probability**:

$$P[B] = \sum_{i=1}^{n} P[A_i]P[B|A_i]$$

Two events A and B are said to be **independent** if they satisfy

$$P[A \cap B] = P[A] \cdot P[B]$$

This becomes the new multiplication rule for independent events.

A collection of events $E_1, E_2, \dots E_n$ is said to be independent if

$$P\left[\bigcap_{i\in S} E_i\right] = \prod_{i\in S} P[E_i]$$

for every subset S of $\{1, 2, \dots n\}$.

If this is the case, then the chain rule is greatly simplified to:

$$P\left[\bigcap_{i=1}^{n} E_i\right] = \prod_{i=1}^{n} P[E_i]$$

A.4 Random Variables

A **random variable** is simply a *function* which maps outcomes in the sample space to real numbers.

A.4.1 Distributions

We often talk about the **distribution** of a random variable, which can be thought of as:

distribution = list of possible values + associated probabilities

This is not a strict mathematical definition, but is useful for conveying the idea.

If the possible values of a random variables are discrete, it is called a discrete random variable. If the possible values of a random variables are continuous, it is called a continuous random variable.

A.4.2 Discrete Random Variables

The distribution of a discrete random variable X is most often specified by a list of possible values and a probability **mass** function, p(x). The mass function directly gives probabilities, that is,

$$p(x) = p_X(x) = P[X = x].$$

Note we almost always drop the subscript from the more correct $p_X(x)$ and simply refer to p(x). The relevant random variable is discerned from context

The most common example of a discrete random variable is a **binomial** random variable. The mass function of a binomial random variable X, is given by

$$p(x|n,p) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, \dots, n, \ n \in \mathbb{N}, \ 0$$

This line conveys a large amount of information.

- The function p(x|n, p) is the mass function. It is a function of x, the possible values of the random variable X. It is conditional on the **parameters** n and p. Different values of these parameters specify different binomial distributions.
- x = 0, 1, ..., n indicates the **sample space**, that is, the possible values of the random variable.
- $n \in \mathbb{N}$ and 0 specify the**parameter spaces**. These are the possible values of the parameters that give a valid binomial distribution.

Often all of this information is simply encoded by writing

$$X \sim \text{bin}(n, p)$$
.

A.4.3 Continuous Random Variables

The distribution of a continuous random variable X is most often specified by a set of possible values and a probability **density** function, f(x). (A cumulative density or moment generating function would also suffice.)

The probability of the event a < X < b is calculated as

$$P[a < X < b] = \int_a^b f(x)dx.$$

Note that densities are **not** probabilities.

The most common example of a continuous random variable is a **normal** random variable. The density of a normal random variable X, is given by

$$f(x|\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \cdot \exp\left[\frac{-1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right], \quad -\infty < x < \infty, \ -\infty < \mu < \infty, \ \sigma > 0.$$

- The function $f(x|\mu, \sigma^2)$ is the density function. It is a function of x, the possible values of the random variable X. It is conditional on the **paramters** μ and σ^2 . Different values of these parameters specify different normal distributions.
- $-\infty < x < \infty$ indicates the sample space. In this case, the random variable may take any value on the real line.

• $-\infty < \mu < \infty$ and $\sigma > 0$ specify the parameter space. These are the possible values of the parameters that give a valid normal distribution.

Often all of this information is simply encoded by writing

$$X \sim N(\mu, \sigma^2)$$

A.4.4 Several Random Variables

Consider two random variables X and Y. We say they are independent if

$$f(x,y) = f(x) \cdot f(y)$$

for all x and y. Here f(x,y) is the **joint** density (mass) function of X and Y. We call f(x) the **marginal** density (mass) function of X. Then f(y) the marginal density (mass) function of Y. The joint density (mass) function f(x,y) together with the possible (x,y) values specify the joint distribution of X and Y.

Similar notions exist for more than two variables.

A.5 Expectations

For discrete random variables, we define the **expectation** of the function of a random variable X as follows.

$$\mathbb{E}[g(X)] \triangleq \sum_{x} g(x) p(x)$$

For continuous random variables we have a similar definition.

$$\mathbb{E}[g(X)] \triangleq \int g(x)f(x)dx$$

For specific functions g, expectations are given names.

The **mean** of a random variable X is given by

$$\mu_X = \text{mean}[X] \triangleq \mathbb{E}[X].$$

So for a discrete random variable, we would have

A.6. LIKELIHOOD

45

$$\mathrm{mean}[X] = \sum_x x \cdot p(x)$$

For a continuous random variable we would simply replace the sum by an integral.

The **variance** of a random variable X is given by

$$\sigma_X^2 = \operatorname{var}[X] \triangleq \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2.$$

The **standard deviation** of a random variable X is given by

$$\sigma_X = \operatorname{sd}[X] \triangleq \sqrt{\sigma_X^2} = \sqrt{\operatorname{var}[X]}.$$

The **covariance** of random variables X and Y is given by

$$\operatorname{cov}[X,Y] \triangleq \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y].$$

A.6 Likelihood

Consider n iid random variables $X_1, X_2, \dots X_n$. We can then write their likelihood as

$$\mathcal{L}(\theta \mid x_1, x_2, \dots x_n) = \prod_{i=i}^n f(x_i; \theta)$$

where $f(x_i; \theta)$ is the density (or mass) function of random variable X_i evaluated at x_i with parameter θ .

Whereas a probability is a function of a possible observed value given a particular parameter value, a likelihood is the opposite. It is a function of a possible parameter value given observed data.

Maximumizing likelihood is a common techinque for fitting a model to data.

A.7 Videos

The YouTube channel mathematicalmonk has a great Probability Primer playlist containing lectures on many fundamental probability concepts. Some of the more important concepts are covered in the following videos:

- Conditional Probability
- Independence
- More Independence
- Bayes Rule

A.8 References

Any of the following are either dedicated to, or contain a good coverage of the details of the topics above.

- Probability Texts
 - Introduction to Probability by Dimitri P. Bertsekas and John N. Tsitsiklis
 - A First Course in Probability by Sheldon Ross
- Machine Learning Texts with Probability Focus
 - Probability for Statistics and Machine Learning by Anirban Das-Gupta
 - Machine Learning: A Probabilistic Perspective by Kevin P. Murphy
- Statistics Texts with Introduction to Probability
 - Probability and Statistical Inference by Robert V. Hogg, Elliot Tanis, and Dale Zimmerman
 - Introduction to Mathematical Statistics by Robert V. Hogg, Joseph McKean, and Allen T. Craig