

Reed-Solomon Proximity Testing with Fewer Queries

Gal Arnon

Giacomo Fenzi

Alessandro Chiesa

Eylon Yogev

SNARKs in the ROM

Succinct

$$\circ |\pi| \ll |w|$$

- Non-interactive
- Argument of Knowledge
 - Straightline extractor

ROM instantiated using a cryptographic hash function

- ROM instantiated using a cryptographic hash function
- Very fast and efficient instantiations

- ROM instantiated using a cryptographic hash function
- Very fast and efficient instantiations
- Used to secure billions of dollars in real-world blockchains

- ROM instantiated using a cryptographic hash function
- Very fast and efficient instantiations
- Used to secure billions of dollars in real-world blockchains

Rollups: STARKWARE Opolygon ZkSync

zkVMs:

And more...

IOP

IOP

Proof length: I

Queries: q

Proof length: I

Queries: q

Verifier hashes: $O(q \cdot log l)$

Argument size: $O(\lambda \cdot q \cdot \log I)$

Proof length: I

Queries: q

Verifier hashes: $O(q \cdot log l)$

Argument size: $O(\lambda \cdot q \cdot \log I)$

Proof length: I

Queries: q

Verifier hashes: $O(q \cdot log l)$

Argument size: $O(\lambda \cdot q \cdot \log I)$

 $RS[\mathbb{F}, L, d]$

$${\sf RS[F,}L,d]$$
 Field

$$\mathsf{RS}[\mathbb{F}, L, d]$$
 Field Evaluation Degree Domain

 $\hat{p} \in \mathbb{F}^{< d}[X]$

```
\mathsf{RS}[\mathbb{F}, L, d] Field Evaluation Degree Domain \hat{p} \in \mathbb{F}^{\!\!< d}[X] Enc f \colon L \to \mathbb{F} \quad \text{with } \hat{p} \mid_L \equiv f
```

$$\begin{array}{ccc} \mathsf{RS}[\mathbb{F},L,d] \\ \mathsf{Field} & \mathsf{Evaluation} & \mathsf{Degree} \\ \mathsf{Domain} \\ \\ \hat{p} \in \mathbb{F}^{\!\!\!< d}[X] \end{array}$$

$$f\colon L\to \mathbb{F}\quad \text{with } \hat{p}\,|_L\equiv f$$

Enc

Rate: $\rho = d/|L|$, think $\rho = 1/4$

 $L \operatorname{smooth} \Longrightarrow \operatorname{Enc} \operatorname{is} \operatorname{an} \operatorname{FFT}$

$$\hat{p} \in \mathbb{F}^{\!\!<\!d}[X]$$
 Enc
$$f\colon L \to \mathbb{F} \quad \text{with } \hat{p}\,|_L \equiv f$$

Rate: $\rho = d/|L|$, think $\rho = 1/4$

 $L \operatorname{smooth} \Longrightarrow \operatorname{Enc} \operatorname{is} \operatorname{an} \operatorname{FFT}$

IOPP for RS

$$\hat{p} \in \mathbb{F}^{< d}[X]$$

$$\text{Enc}$$

$$f \colon L \to \mathbb{F} \quad \text{with } \hat{p} \mid_L \equiv f$$

Rate: $\rho = d/|L|$, think $\rho = 1/4$

 $L \operatorname{smooth} \Longrightarrow \operatorname{Enc} \operatorname{is} \operatorname{an} \operatorname{FFT}$

IOPP for RS

 $f:L\to \mathbb{F}$

V

$$\hat{p} \in \mathbb{F}^{< d}[X]$$
 Enc
$$f \colon L \to \mathbb{F} \quad \text{with } \hat{p} \mid_L \equiv f$$

Rate: $\rho = d/|L|$, think $\rho = 1/4$

 $L \operatorname{smooth} \Longrightarrow \operatorname{Enc} \operatorname{is} \operatorname{an} \operatorname{FFT}$

IOPP for RS

$$\hat{p} \in \mathbb{F}^{\!<\!d}[X]$$
 Enc
$$f\colon L \to \mathbb{F} \quad \text{with } \hat{p} \,|_L \equiv f$$

Rate: $\rho = d/|L|$, think $\rho = 1/4$

 $L \operatorname{smooth} \Longrightarrow \operatorname{Enc} \operatorname{is} \operatorname{an} \operatorname{FFT}$

IOPP for RS

$$p \in \mathbb{F}^\infty[X]$$

$$\text{Enc}$$

$$f \colon L \to \mathbb{F} \quad \text{with } \hat{p} \mid_L \equiv f$$

Rate: $\rho = d/|L|$, think $\rho = 1/4$

 $L \operatorname{smooth} \Longrightarrow \operatorname{Enc} \operatorname{is} \operatorname{an} \operatorname{FFT}$

Rate: $\rho = d/|L|$, think $\rho = 1/4$

 $L \operatorname{smooth} \Longrightarrow \operatorname{Enc} \operatorname{is} \operatorname{an} \operatorname{FFT}$

IOPP for RS

• $f \in RS[\mathbb{F}, L, d] \implies V$ accepts

RS[F,
$$L$$
, d]

Field Evaluation Degree Domain

$$\hat{p} \in \mathbb{F}^{\!<\!d}[X]$$

$$\mathsf{Enc}$$

$$f \colon L \to \mathbb{F} \quad \mathsf{with} \ \hat{p} \mid_L \equiv f$$

Rate: $\rho = d/|L|$, think $\rho = 1/4$

 $L \operatorname{smooth} \Longrightarrow \operatorname{Enc} \operatorname{is} \operatorname{an} \operatorname{FFT}$

IOPP for RS

- $f \in RS[\mathbb{F}, L, d] \implies V$ accepts
- f is δ -far from RS[F, L, d] \Longrightarrow V rejects w.h.p.

$$\hat{p} \in \mathbb{F}^{< d}[X]$$

$$\mathsf{Enc}$$

$$f \colon L \to \mathbb{F} \quad \mathsf{with} \ \hat{p} \,|_L \equiv f$$

Rate: $\rho = d/|L|$, think $\rho = 1/4$

 $L \operatorname{smooth} \Longrightarrow \operatorname{Enc} \operatorname{is} \operatorname{an} \operatorname{FFT}$

IOPP for RS

- $f \in RS[\mathbb{F}, L, d] \implies V$ accepts
- f is δ -far from RS[F, L, d] \Longrightarrow V rejects w.h.p.

 ${f V}$ makes "few queries" to f and proof oracles

Our results

STIR : An IOPP for RS

Rounds: $O(\log d)$

Proof length: O(|L|)

STIR : An IOPP for RS

Rounds: $O(\log d)$

Proof length: O(|L|)

Queries:
$$O\left(\lambda \cdot \log\left(\frac{\log d}{-\log\sqrt{\rho}}\right) + \log d\right)$$
 for $\delta = 1 - \sqrt{\rho}$

round-by-round

(To get λ -bits of security, without conjecture)

STIR : An IOPP for RS

Rounds: $O(\log d)$

Proof length: O(|L|)

Queries:
$$O\left(\lambda \cdot \log\left(\frac{\log d}{-\log\sqrt{\rho}}\right) + \log d\right)$$
 for $\delta = 1 - \sqrt{\rho}$

round-by-round

(To get λ -bits of security, without conjecture)

FRI:
$$O\left(\lambda \cdot \frac{\log d}{-\log\sqrt{\rho}}\right)$$

• Rust 🙀 implementation, available at WizardOfMenlo/stir

- Rust 🙀 implementation, available at WizardOfMenlo/stir
- Arkworks as backend, 192-bit field for benchmarks, reasonably optimized

- Rust 🙀 implementation, available at WizardOfMenlo/stir
- Arkworks as backend, 192-bit field for benchmarks, reasonably optimized
- Implemented both FRI and STIR

- Rust pi implementation, available at WizardOfMenlo/stir
- Arkworks as backend, 192-bit field for benchmarks, reasonably optimized
- Implemented both FRI and STIR
- Decently well-written (for academia!)


```
pub trait LowDegreeTest<F, MerkleConfig, FSConfig>
   F: FftField,
   MerkleConfig: Config,
   FSConfig: CryptographicSponge,
   FSConfig::Config: Clone,
   type Prover: Prover<
       MerkleConfig,
       FSConfig,
       Commitment = <Self::Verifier as Verifier<F, MerkleConfig, FSConfig>>::Commitment,
       Proof = <Self::Verifier as Verifier<F, MerkleConfig, FSConfig>>::Proof,
   type Verifier: Verifier<F, MerkleConfig, FSConfig>;
   fn instantiate(
       parameters: Parameters<F, MerkleConfig, FSConfig>,
   ) -> (Self::Prover, Self::Verifier) {
       let prover = Self::Prover::new(parameters.clone());
       let verifier = Self::Verifier::new(parameters);
       (prover, verifier)
```

Drop-in replacement of FRI

- Drop-in replacement of FRI
- Fewer queries leads to:

FRI:
$$O\left(\lambda \cdot \frac{\log d}{-\log\sqrt{\rho}}\right)$$

STIR:
$$O\left(\lambda \cdot \log\left(\frac{\log d}{-\log\sqrt{\rho}}\right) + \log d\right)$$

FRI: $O\left(\lambda \cdot \frac{\log d}{-\log\sqrt{\rho}}\right)$

Drop-in replacement of FRI

- Fewer queries leads to:

FRI: $O\left(\lambda \cdot \frac{\log d}{-\log\sqrt{\rho}}\right)$

Drop-in replacement of FRI

- Fewer queries leads to:

 - Smaller verifier hash-complexity \Longrightarrow faster and more recursion-friendly!

FRI:
$$O\left(\lambda \cdot \frac{\log d}{-\log\sqrt{\rho}}\right)$$

Drop-in replacement of FRI

- Fewer queries leads to:

 - Smaller verifier hash-complexity \Longrightarrow faster and more recursion-friendly!
- Rough query comparison:

FRI:
$$O\left(\lambda \cdot \frac{\log d}{-\log\sqrt{\rho}}\right)$$

STIR:
$$O\left(\lambda \cdot \log\left(\frac{\log d}{-\log\sqrt{\rho}}\right) + \log d\right)$$

- Fewer queries leads to:

 - Smaller verifier hash-complexity \Longrightarrow faster and more recursion-friendly!
- Rough query comparison:
 - Example: $d=2^{20}$, $\rho=1/4$, targeting 100-bits of security

FRI:
$$O\left(\lambda \cdot \frac{\log d}{-\log\sqrt{\rho}}\right)$$

Drop-in replacement of FRI

STIR: $O\left(\lambda \cdot \log\left(\frac{\log d}{-\log\sqrt{\rho}}\right) + \log d\right)$

- Fewer queries leads to:

 - Smaller verifier hash-complexity \Longrightarrow faster and more recursion-friendly!
- Rough query comparison:
 - Example: $d=2^{20}$, $\rho=1/4$, targeting 100-bits of security

can increase by PoW

FRI:
$$O\left(\lambda \cdot \frac{\log d}{-\log\sqrt{\rho}}\right)$$

STIR:
$$O\left(\lambda \cdot \log\left(\frac{\log d}{-\log\sqrt{\rho}}\right) + \log d\right)$$

- Fewer queries leads to:

 - Smaller verifier hash-complexity \Longrightarrow faster and more recursion-friendly!
- Rough query comparison:
 - Example: $d=2^{20}$, $\rho=1/4$, targeting 100-bits of security
 - FRI: ~ 400 queries vs STIR: ~ 200 queries

can increase by PoW

FRI:
$$O\left(\lambda \cdot \frac{\log d}{-\log\sqrt{\rho}}\right)$$

Drop-in replacement of FRI

- Fewer queries leads to:

 - Smaller verifier hash-complexity \Longrightarrow faster and more recursion-friendly!
- Rough query comparison:
 - Example: $d=2^{20}$, $\rho=1/4$, targeting 100-bits of security
 - FRI: ~ 400 queries vs STIR: ~ 200 queries can increase by PoW
- Similar prover runtime (bottleneck is initial function evaluation)

- Better argument size and verifier hash complexity across all params!
- Larger improvements when degree and rate increase

Assuming conjecture

128 bits of security, 22 by PoW

- Better argument size and verifier hash complexity across all params!
- Larger improvements when degree and rate increase

$d = 2^{24}, \rho = 1/4$	FRI	STIR
Size (KiB)	177	107
Hashes	3.5k	1.8k

Assuming conjecture

128 bits of security, 22 by PoW

- Better argument size and verifier hash complexity across all params!
- Larger improvements when degree and rate increase

$d = 2^{24}, \rho = 1/4$	FRI	STIR
Size (KiB)	177	107
Hashes	3.5k	1.8k

$d = 2^{30}, \rho = 1/2$	FRI	STIR
Size (KiB)	494	200
Hashes	10k	3.8k

Assuming conjecture

128 bits of security, 22 by PoW

 $\rho = 1/2$

- Better argument size and verifier hash complexity across all params!
- Larger improvements when degree and rate increase

$d = 2^{24}, \rho = 1/4$	FRI	STIR
Size (KiB)	177	107
Hashes	3.5k	1.8k

$d = 2^{30}, \rho = 1/2$	FRI	STIR
Size (KiB)	494	200
Hashes	10k	3.8k

What about the conjecture?

FRI and STIR benefit in roughly the same way

- Conjecture on list-decoding up to distance $1-\rho$ (instead of $1-\sqrt{\rho}$)

• STIR queries:
$$O\left(\lambda \cdot \log\left(\frac{\log d}{-\log \rho}\right) + \log d\right)$$

• FRI queries: $O\left(\lambda \cdot \frac{\log d}{-\log \rho}\right)$

In both, for $\delta = 1 - \rho$, reduces queries by ~2x

Techniques

Reduce $RS[\mathbb{F}, L, d]$ to $RS[\mathbb{F}, L^k, d/k]$

Reduce $RS[\mathbb{F}, L, d]$ to $RS[\mathbb{F}, L^k, d/k]$

$$L^k = \{x^k : x \in L\}$$
$$|L^k| = |L|/k$$

 $L^k = \{x^k : x \in L\}$ $|L^k| = |L|/k$

Reduce $RS[\mathbb{F}, L, d]$ to $RS[\mathbb{F}, L^k, d/k]$

$$L^k = \{x^k : x \in L\}$$
$$|L^k| = |L|/k$$

Reduce $RS[\mathbb{F}, L, d]$ to $RS[\mathbb{F}, L^k, d/k]$

Selecting α defines a function Fold(f, k, α)

$$L^k = \{x^k : x \in L\}$$
$$|L^k| = |L|/k$$

Reduce $RS[\mathbb{F}, L, d]$ to $RS[\mathbb{F}, L^k, d/k]$

Selecting α defines a function Fold(f, k, α)

Local

$$L^k = \{x^k : x \in L\}$$
$$|L^k| = |L|/k$$

Reduce $RS[\mathbb{F}, L, d]$ to $RS[\mathbb{F}, L^k, d/k]$

Selecting α defines a function Fold(f, k, α)

Local

By querying f at k locations, \mathbf{V} can compute $\operatorname{Fold}(f,k,\alpha)$ at $z\in L^k$

$$L^k = \{x^k : x \in L\}$$
$$|L^k| = |L|/k$$

Reduce $RS[\mathbb{F}, L, d]$ to $RS[\mathbb{F}, L^k, d/k]$

Selecting α defines a function Fold(f, k, α)

Local

By querying f at k locations, \mathbf{V} can compute $\operatorname{Fold}(f,k,\alpha)$ at $z\in L^k$

Fold
$$(f, k, \alpha)$$

$$L^k = \{x^k : x \in L\}$$
$$|L^k| = |L|/k$$

Reduce $RS[\mathbb{F}, L, d]$ to $RS[\mathbb{F}, L^k, d/k]$

Selecting α defines a function Fold(f, k, α)

Local

By querying f at k locations, \mathbf{V} can compute $\operatorname{Fold}(f, k, \alpha)$ at $z \in L^k$

$$f:L \to \mathbb{F}$$

$$L^k = \{x^k : x \in L\}$$
$$|L^k| = |L|/k$$

Reduce $RS[\mathbb{F}, L, d]$ to $RS[\mathbb{F}, L^k, d/k]$

Selecting α defines a function Fold(f, k, α)

Local

By querying f at k locations, V can compute $Fold(f, k, \alpha)$ at $z \in L^k$

$$f:L \to \mathbb{F}$$

$$L^k = \{x^k : x \in L\}$$
$$|L^k| = |L|/k$$

Reduce $RS[\mathbb{F}, L, d]$ to $RS[\mathbb{F}, L^k, d/k]$

Selecting α defines a function Fold(f, k, α)

Local

By querying f at k locations, \mathbf{V} can compute $\operatorname{Fold}(f, k, \alpha)$ at $z \in L^k$

Reduce $RS[\mathbb{F}, L, d]$ to $RS[\mathbb{F}, L^k, d/k]$

$$L^k = \{x^k : x \in L\}$$
$$|L^k| = |L|/k$$

Selecting α defines a function Fold(f, k, α)

Local

By querying f at k locations, \mathbf{V} can compute $\operatorname{Fold}(f, k, \alpha)$ at $z \in L^k$

Distance Preserving

Folding

Reduce $RS[\mathbb{F}, L, d]$ to $RS[\mathbb{F}, L^k, d/k]$

$$L^k = \{x^k : x \in L\}$$
$$|L^k| = |L|/k$$

Selecting α defines a function Fold(f, k, α)

Local

By querying f at k locations, \mathbf{V} can compute $\operatorname{Fold}(f, k, \alpha)$ at $z \in L^k$

Distance Preserving

f is δ -far from RS

Folding

Reduce $RS[\mathbb{F}, L, d]$ to $RS[\mathbb{F}, L^k, d/k]$

$$L^k = \{x^k : x \in L\}$$
$$|L^k| = |L|/k$$

Selecting α defines a function Fold(f, k, α)

Local

By querying f at k locations, \mathbf{V} can compute $\operatorname{Fold}(f, k, \alpha)$ at $z \in L^k$

Distance Preserving

f is δ -far from RS

w.h.p. over α

Folding

Reduce $RS[\mathbb{F}, L, d]$ to $RS[\mathbb{F}, L^k, d/k]$

$$L^k = \{x^k : x \in L\}$$
$$|L^k| = |L|/k$$

Selecting α defines a function Fold(f, k, α)

Local

By querying f at k locations, \mathbf{V} can compute $\operatorname{Fold}(f, k, \alpha)$ at $z \in L^k$

Distance Preserving

$$f_0:L\to\mathbb{F}$$

 $\begin{array}{c} f_0: L \to \mathbb{F} \\ \alpha_1 \end{array}$

P

$$f_0: L \to \mathbb{F}$$

$$\alpha_1$$

$$f_1: L^k \to \mathbb{F}$$

$$-\Box \Box \Box \Box \Box \to$$

 $f_1 = \operatorname{Fold}(f_0, k, \alpha)$ suppose to be in RS[F, L^k , d/k]

P

$$f_0: L \to \mathbb{F}$$

$$\alpha_1$$

$$f_1: L^k \to \mathbb{F}$$

$$\alpha_2$$

$$\alpha_2$$

$$f_2: L^{k^2} \to \mathbb{F}$$

$$-\Box \Box \Box \Box \to$$

 $f_1 = \operatorname{Fold}(f_0, k, \alpha)$ suppose to be in $\operatorname{RS}[\mathbb{F}, L^k, d/k]$

P

$$f_0: L \to \mathbb{F}$$

$$\alpha_1$$

$$f_1: L^k \to \mathbb{F}$$

$$\alpha_2$$

$$\alpha_2$$

$$f_2: L^{k^2} \to \mathbb{F}$$

$$-\Box \Box \Box \Box \Box \to$$

 $f_1 = \operatorname{Fold}(f_0, k, \alpha)$ suppose to be in $\operatorname{RS}[\mathbb{F}, L^k, d/k]$

 $f_i = \operatorname{Fold}(f_{i-1}, k, \alpha_{i-1})$ suppose to be in RS[F, L^{k^i} , d/k^i]

P

$$f_0: L \to \mathbb{F}$$

$$\alpha_1$$

$$f_1: L^k \to \mathbb{F}$$

$$\alpha_2$$

$$\alpha_2$$

$$f_2: L^{k^2} \to \mathbb{F}$$

$$\vdots$$

$$\hat{p} \in \mathbb{F}^{$$

 $f_1 = \operatorname{Fold}(f_0,k,\alpha) \ \text{ suppose to be in RS}[\mathbb{F},L^k,d/k]$ $f_i = \operatorname{Fold}(f_{i-1},k,\alpha_{i-1}) \ \text{suppose to be in RS}[\mathbb{F},L^{k^i},d/k^i]$

P

 $f_1 = \operatorname{Fold}(f_0, k, \alpha)$ suppose to be in RS[F, L^k , d/k]

 $f_i = \operatorname{Fold}(f_{i-1}, k, \alpha_{i-1})$ suppose to be in RS[F, L^{k^i} , d/k^i]

Check consistency between functions using t queries

P


```
f_1 = \operatorname{Fold}(f_0, k, \alpha) \text{ suppose to be in RS}[\mathbb{F}, L^k, d/k] f_i = \operatorname{Fold}(f_{i-1}, k, \alpha_{i-1}) \text{ suppose to be in RS}[\mathbb{F}, L^{k^i}, d/k^i]
```

Check consistency between functions using t queries

Soundness error: $\rho^{\frac{t}{2}}$

$$\mathrm{RS}[\mathbb{F},L,d] \ \Rightarrow \ \mathrm{RS}[\mathbb{F},L^2,d/k]$$
 where $|L^2|=|L|/2.$

Main idea to reduce:

$$\mathrm{RS}[\mathbb{F},L,d] \ \Rightarrow \ \mathrm{RS}[\mathbb{F},L^2,d/k]$$
 where $|L^2|=|L|/2.$

. New rate: $\rho' = \frac{2\rho}{k}$. If $k > 2 \Rightarrow$ rate improves \Rightarrow new code is easier to test

$$\mathrm{RS}[\mathbb{F},L,d] \ \Rightarrow \ \mathrm{RS}[\mathbb{F},L^2,d/k]$$
 where $|L^2|=|L|/2.$

- . New rate: $\rho' = \frac{2\rho}{k}$. If $k > 2 \Rightarrow$ rate improves \Rightarrow new code is easier to test
- Distance: preserve distance expect w.p. $\rho^{t/2}$ where t is number of queries

$$\mathrm{RS}[\mathbb{F},L,d] \ \Rightarrow \ \mathrm{RS}[\mathbb{F},L^2,d/k]$$
 where $|L^2|=|L|/2.$

- . New rate: $\rho' = \frac{2\rho}{k}$. If $k > 2 \Rightarrow$ rate improves \Rightarrow new code is easier to test
- Distance: preserve distance expect w.p. $\rho^{t/2}$ where t is number of queries
- Round-by-round errors:

$$\mathrm{RS}[\mathbb{F},L,d] \ \Rightarrow \ \mathrm{RS}[\mathbb{F},L^2,d/k]$$
 where $|L^2|=|L|/2.$

- . New rate: $\rho' = \frac{2\rho}{k}$. If $k > 2 \Rightarrow$ rate improves \Rightarrow new code is easier to test
- Distance: preserve distance expect w.p. $\rho^{t/2}$ where t is number of queries
- Round-by-round errors: $\rho_0^{\frac{t_1}{2}},...,\rho_M^{\frac{t_M}{2}}$

$$\mathrm{RS}[\mathbb{F},L,d] \ \Rightarrow \ \mathrm{RS}[\mathbb{F},L^2,d/k]$$
 where $|L^2|=|L|/2.$

- . New rate: $\rho' = \frac{2\rho}{k}$. If $k > 2 \Rightarrow$ rate improves \Rightarrow new code is easier to test
- Distance: preserve distance expect w.p. $\rho^{t/2}$ where t is number of queries

• Round-by-round errors:
$$\rho_0^{\frac{t_1}{2}},...,\rho_M^{\frac{t_M}{2}}$$
 $t_i = \frac{\lambda}{-\log(\sqrt{\rho_i})}$

$$\mathrm{RS}[\mathbb{F},L,d] \ \Rightarrow \ \mathrm{RS}[\mathbb{F},L^2,d/k]$$
 where $|L^2|=|L|/2.$

- . New rate: $\rho' = \frac{2\rho}{k}$. If $k > 2 \Rightarrow$ rate improves \Rightarrow new code is easier to test
- Distance: preserve distance expect w.p. $\rho^{t/2}$ where t is number of queries
- Round-by-round errors: $\rho_0^{\frac{t_1}{2}}, ..., \rho_M^{\frac{t_M}{2}}$ $t_i = \frac{\lambda}{-\log(\sqrt{\rho_i})}$ Less queries each round!

$$\mathrm{RS}[\mathbb{F},L,d] \ \Rightarrow \ \mathrm{RS}[\mathbb{F},L^2,d/k]$$
 where $|L^2|=|L|/2.$

- . New rate: $\rho' = \frac{2\rho}{k}$. If $k > 2 \Rightarrow$ rate improves \Rightarrow new code is easier to test
- Distance: preserve distance expect w.p. $\rho^{t/2}$ where t is number of queries
- Round-by-round errors: $\rho_0^{\frac{t_1}{2}},...,\rho_M^{\frac{t_M}{2}}$ $t_i=\frac{\lambda}{-\log(\sqrt{\rho_i})}$ Less queries each round! Example k=16, $\rho_0=1/2$, 100 bits of security:

$$\mathrm{RS}[\mathbb{F},L,d] \ \Rightarrow \ \mathrm{RS}[\mathbb{F},L^2,d/k]$$
 where $|L^2|=|L|/2.$

- . New rate: $\rho' = \frac{2\rho}{l}$. If $k > 2 \Rightarrow$ rate improves \Rightarrow new code is easier to test
- Distance: preserve distance expect w.p. $\rho^{t/2}$ where t is number of queries
- Round-by-round errors: $\rho_0^{\frac{t_1}{2}}, \dots, \rho_M^{\frac{t_M}{2}}$ $t_i = \frac{\lambda}{-\log(\sqrt{\rho_i})}$ Less queries each round! Example k=16, $\rho_0=1/2$, 100 bits of security:

$$\rho_1 = 1/16, \rho_2 = 1/128, \dots$$

$$\mathrm{RS}[\mathbb{F},L,d] \ \Rightarrow \ \mathrm{RS}[\mathbb{F},L^2,d/k]$$
 where $|L^2|=|L|/2.$

- . New rate: $\rho' = \frac{2\rho}{l}$. If $k > 2 \Rightarrow$ rate improves \Rightarrow new code is easier to test
- Distance: preserve distance expect w.p. $\rho^{t/2}$ where t is number of queries
- Round-by-round errors: $\rho_0^{\frac{t_1}{2}}, \dots, \rho_M^{\frac{t_M}{2}}$ $t_i = \frac{\lambda}{-\log(\sqrt{\rho_i})}$ Less queries each round! Example k=16, $\rho_0=1/2$, 100 bits of security:

$$\rho_1 = 1/16, \rho_2 = 1/128, \dots$$

$$t_0 = 200, t_1 = 50, t_2 = 29, \dots$$

Given test for $RS[\mathbb{F}, L^*, d]$, test $RS[\mathbb{F}, L, d]$

Given test for $RS[\mathbb{F}, L^*, d]$, test $RS[\mathbb{F}, L, d]$

$$f:L o \mathbb{F}$$

Given test for $RS[\mathbb{F}, L^*, d]$, test $RS[\mathbb{F}, L, d]$

$$f: L \to \mathbb{F}$$

Test for $RS[\mathbb{F}, L^*, d]$

Given test for $RS[\mathbb{F}, L^*, d]$, test $RS[\mathbb{F}, L, d]$

$$f: L \to \mathbb{F}$$

$$\longrightarrow \operatorname{shift}$$

Test for $RS[\mathbb{F}, L^*, d]$

Given test for $RS[\mathbb{F}, L^*, d]$, test $RS[\mathbb{F}, L, d]$

Given test for $RS[\mathbb{F}, L^*, d]$, test $RS[\mathbb{F}, L, d]$

Challenges:

No relation between L and $L^*!$

How to enforce consistency?

 $g:L^*\to \mathbb{F}$

Test for $RS[\mathbb{F}, L^*, d]$

Enforce constraints on f or amplify distance

Enforce constraints on f or amplify distance

Let:

 $f:L\to \mathbb{F}$ be a function Ans: $S\to \mathbb{F}$ be a list of (claimed) evaluations of (the extension of) f on S

Enforce constraints on f or amplify distance

Let:

$$f:L \to \mathbb{F}$$
 be a function Ans: $S \to \mathbb{F}$ be a list of (claimed) evaluations of (the extension of) f on S

Quotient
$$(f, Ans)(x) := \frac{f(x) - A\hat{n}s(x)}{V_S(x)}$$

Enforce constraints on f or amplify distance

Let:

 $f:L\to \mathbb{F}$ be a function Ans: $S\to \mathbb{F}$ be a list of (claimed) evaluations of (the extension of) f on S

Quotient(
$$f$$
, Ans)(x) := $\frac{f(x) - A\hat{n}s(x)}{V_S(x)}$

Local

Enforce constraints on f or amplify distance

Let:

 $f:L\to \mathbb{F}$ be a function Ans: $S\to \mathbb{F}$ be a list of (claimed) evaluations of (the extension of) f on S

Quotient
$$(f, Ans)(x) := \frac{f(x) - A\hat{n}s(x)}{V_S(x)}$$

Local

V can compute $\text{Quotient}(f, \text{Ans}) \text{ at } x \in L \backslash S$ by querying f at x

Quotienting

Enforce constraints on f or amplify distance

Let:

 $f:L\to \mathbb{F}$ be a function Ans: $S\to \mathbb{F}$ be a list of (claimed) evaluations of (the extension of) f on S

Quotient
$$(f, Ans)(x) := \frac{f(x) - A\hat{n}s(x)}{V_S(x)}$$

Local

V can compute $\text{Quotient}(f, \text{Ans}) \text{ at } x \in L \backslash S$ by querying f at x

Consistency

Quotienting

Enforce constraints on f or amplify distance

Let:

 $f:L\to \mathbb{F}$ be a function Ans: $S\to \mathbb{F}$ be a list of (claimed) evaluations of (the extension of) f on S

Quotient
$$(f, Ans)(x) := \frac{f(x) - A\hat{n}s(x)}{V_S(x)}$$

Local

V can compute $\text{Quotient}(f, \text{Ans}) \text{ at } x \in L \backslash S$ by querying f at x

Consistency

If every $\hat{v} \in \text{List}(f, d, \delta)$ has $\hat{v}|_{S} \not\equiv \text{Ans then}$ Quotient(f, Ans) is δ -far from RS

Let
$$\delta^* := \frac{1-\rho^*}{2}$$
, $L \cap L^* = \emptyset$.

Let
$$\delta^* := \frac{1-\rho^*}{2}$$
, $L \cap L^* = \emptyset$.

At this distance, at most one codeword is close.

Let
$$\delta^* := \frac{1-\rho^*}{2}$$
, $L \cap L^* = \emptyset$.

Let
$$\delta^* := \frac{1-\rho^*}{2}$$
, $L \cap L^* = \emptyset$.

Want to $\operatorname{test} f$ on L

Let
$$\delta^* := \frac{1-\rho^*}{2}$$
, $L \cap L^* = \emptyset$.

Want to $\operatorname{test} f$ on L

P

Let
$$\delta^* := \frac{1-\rho^*}{2}$$
, $L \cap L^* = \emptyset$.

Want to $\operatorname{test} f$ on L

$$g:L^* \to \mathbb{F}$$

P

V

Let
$$\delta^* := \frac{1-\rho^*}{2}$$
, $L \cap L^* = \emptyset$.

Want to test f on L

$$\begin{array}{c}
g:L^* \to \mathbb{F} \\
\hline
x_1, \dots, x_t \leftarrow L
\end{array}$$

Let
$$\delta^* := \frac{1-\rho^*}{2}$$
, $L \cap L^* = \emptyset$.

Want to test f on L

$$g: L^* \to \mathbb{F}$$

$$x_1, \dots, x_t \leftarrow L$$

Query
$$y_i = f(x_i)$$

$$\forall i : \mathsf{Ans}(x_i) = y_i$$

Let
$$\delta^* := \frac{1-\rho^*}{2}$$
, $L \cap L^* = \emptyset$.

Want to $\operatorname{test} f$ on L

$$\begin{array}{c}
g:L^* \to \mathbb{F} \\
\hline
x_1, \dots, x_t \leftarrow L
\end{array}$$

Query
$$y_i = f(x_i)$$

$$\forall i : \mathsf{Ans}(x_i) = y_i$$

$$g^* := Quotient(g, Ans)$$

Test g^* on L^*

Let
$$\delta^* := \frac{1-\rho^*}{2}$$
, $L \cap L^* = \emptyset$.

Want to test f on L

$$g: L^* \to \mathbb{F}$$

$$x_1, \dots, x_t \leftarrow L$$

Query
$$y_i = f(x_i)$$

$$\forall i : \mathsf{Ans}(x_i) = y_i$$

$$g^* := Quotient(g, Ans)$$

Test g^* on L^*

Since in unique decoding, there is **unique** \hat{v} close to g, and:

Let
$$\delta^* := \frac{1-\rho^*}{2}$$
, $L \cap L^* = \emptyset$.

Want to test f on L

 $g: L^* \to \mathbb{F}$ $x_1, \dots, x_t \leftarrow L$

Query
$$y_i = f(x_i)$$

$$\forall i : \mathsf{Ans}(x_i) = y_i$$

$$g^* := Quotient(g, Ans)$$

Test g^* on L^*

Since in unique decoding, there is **unique** \hat{v} close to g, and:

If at any point $\hat{v}(x_i) \neq y_i$ then, by quotients, g^* is δ^* -far from C^*

Let
$$\delta^* := \frac{1-\rho^*}{2}$$
, $L \cap L^* = \emptyset$.

Want to test f on L

 $g: L^* \to \mathbb{F}$ $x_1, \dots, x_t \leftarrow L$

Query
$$y_i = f(x_i)$$

$$\forall i : \mathsf{Ans}(x_i) = y_i$$

$$g^* := Quotient(g, Ans)$$

Test g^* on L^*

Since in unique decoding, there is **unique** \hat{v} close to g, and:

If at any point $\hat{v}(x_i) \neq y_i$ then, by quotients, g^* is δ^* -far from C^*

Since $\Delta(f, \hat{v}|_{I}) > \delta$, then:

Let
$$\delta^* := \frac{1-\rho^*}{2}$$
, $L \cap L^* = \emptyset$.

Want to test f on L

 $g: L^* \to \mathbb{F}$ $x_1, \dots, x_t \leftarrow L$

Query
$$y_i = f(x_i)$$

$$\forall i : \mathsf{Ans}(x_i) = y_i$$

$$g^* := Quotient(g, Ans)$$

Test g^* on L^*

Since in unique decoding, there is **unique** \hat{v} close to g, and:

If at any point $\hat{v}(x_i) \neq y_i$ then, by quotients, g^* is δ^* -far from C^*

Since $\Delta(f, \hat{v}|_{I}) > \delta$, then:

$$\Pr\left[g^* \text{ is } \delta^* \text{ close }\right]$$

$$\leq \Pr\left[\forall i, \, \hat{v}(x_i) = y_i\right]$$

$$= \Pr\left[\forall i, \, \hat{v}(x_i) = f(x_i)\right]$$

$$\leq (1 - \delta)^t$$

Move to unique decoding range

8

Move to unique decoding range

 $\begin{array}{c}
g: L^* \to \mathbb{F} \\
\hline
\alpha \leftarrow \mathbb{F} \setminus L^*
\end{array}$

- By fundamental theorem of algebra of w.h.p. no pair \hat{u}, \hat{v} with $\hat{u}(\alpha) = \hat{v}(\alpha)$
- Prover "chooses" which codeword \hat{u} it "commits" to

- By fundamental theorem of algebra of w.h.p. no pair \hat{u} , \hat{v} with $\hat{u}(\alpha) = \hat{v}(\alpha)$
- Prover "chooses" which codeword \hat{u} it "commits" to

Move to unique decoding range

- By fundamental theorem of algebra of w.h.p. no pair \hat{u} , \hat{v} with $\hat{u}(\alpha) = \hat{v}(\alpha)$
- Prover "chooses" which codeword \hat{u} it "commits" to

 $List(g, d, \delta^*)$ By Johnson bound, this is small δ^*

Use Quotient($g, \alpha \mapsto \beta$) to enforce the constraint

Let
$$\delta^* := 1 - \sqrt{\rho^*}$$
, $L \cap L^* = \emptyset$.

Let
$$\delta^* := 1 - \sqrt{\rho^*}$$
, $L \cap L^* = \emptyset$.

P

Let
$$\delta^* := 1 - \sqrt{\rho^*}$$
, $L \cap L^* = \emptyset$.

$$g:L^*\to \mathbb{F}$$

P

Let
$$\delta^* := 1 - \sqrt{\rho^*}$$
, $L \cap L^* = \emptyset$.

Let
$$\delta^* := 1 - \sqrt{\rho^*}$$
, $L \cap L^* = \emptyset$.

Let
$$\delta^* := 1 - \sqrt{\rho^*}$$
, $L \cap L^* = \emptyset$.

Let
$$\delta^* := 1 - \sqrt{\rho^*}$$
, $L \cap L^* = \emptyset$.

$$\forall i : \mathsf{Ans}(x_i) = y_i$$

 $g^* := Quotient(g, Ans)$

Test g^* on L^*

Let
$$\delta^* := 1 - \sqrt{\rho^*}$$
, $L \cap L^* = \emptyset$.

Query
$$y_i = f(x_i)$$

$$\forall i : \mathsf{Ans}(x_i) = y_i$$

$$g^* := Quotient(g, Ans)$$

Test g^* on L^*

By OOD, there is unique \hat{v} close to g, with $\hat{v}(x_0) = y_0$

Domain shifting in list decoding

Let
$$\delta^* := 1 - \sqrt{\rho^*}$$
, $L \cap L^* = \emptyset$.

$$g: L^* \to \mathbb{F}$$

$$x_0 \leftarrow \mathbb{F} \setminus L^*$$

$$x_1, \dots, x_t \leftarrow L$$

Query $y_i = f(x_i)$

 $\forall i : \mathsf{Ans}(x_i) = y_i$

 $g^* := Quotient(g, Ans)$

Test g^* on L^*

By OOD, there is unique \hat{v} close to g, with $\hat{v}(x_0) = y_0$

If at any point $\hat{v}(x_i) \neq y_i$ then, by **quotients**, g^* is δ^* -far from C^*

Domain shifting in list decoding

Let
$$\delta^* := 1 - \sqrt{\rho^*}$$
, $L \cap L^* = \emptyset$.

$$\forall i : \mathsf{Ans}(x_i) = y_i$$

Query $y_i = f(x_i)$

$$g^* := Quotient(g, Ans)$$

Test g^* on L^*

By OOD, there is unique \hat{v} close to g, with $\hat{v}(x_0) = y_0$

If at any point $\hat{v}(x_i) \neq y_i$ then, by **quotients**, g^* is δ^* -far from C^*

Since $\Delta(f, \hat{v}|_{L}) > \delta$, then:

Domain shifting in list decoding

Let
$$\delta^* := 1 - \sqrt{\rho^*}$$
, $L \cap L^* = \emptyset$.

$$g: L^* \to \mathbb{F}$$

$$x_0 \leftarrow \mathbb{F} \setminus L^*$$

$$x_1, \dots, x_t \leftarrow L$$

Query $y_i = f(x_i)$

 $\forall i : \mathsf{Ans}(x_i) = y_i$

 $g^* := Quotient(g, Ans)$

Test g^* on L^*

By OOD, there is unique \hat{v} close to g, with $\hat{v}(x_0) = y_0$

If at any point $\hat{v}(x_i) \neq y_i$ then, by **quotients**, g^* is δ^* -far from C^*

Since $\Delta(f, \hat{v}|_L) > \delta$, then:

Pr
$$[g^* \text{ is } \delta^* \text{ close}]$$

 $\leq \Pr \left[\forall i, \hat{v}(x_i) = y_i \right]$
 $= \Pr \left[\forall i, \hat{v}(x_i) = f(x_i) \right]$
 $\leq (1 - \delta)^t$

STIR: domain shifting of fold

Soundness

STIR: domain shifting of fold

Soundness

By distance-preservation of **folding**, $\Delta(\text{Fold}(f, k, \alpha), \text{RS}[\mathbb{F}, L^k, d/k]) > \delta$ w.h.p

STIR: domain shifting of fold

Soundness

By distance-preservation of **folding**, $\Delta(\text{Fold}(f,k,\alpha), \text{RS}[\mathbb{F},L^k,d/k]) > \delta$ w.h.p

By domain-shifting, $\Delta(g^*, \mathrm{RS}[\mathbb{F}, L^*, d/k]) > 1 - \sqrt{\rho^*}$ unless w.p. $(1-\delta)^t$

STIR: domain shifting of fold

Soundness

By distance-preservation of **folding**, $\Delta(\text{Fold}(f,k,\alpha), \text{RS}[\mathbb{F},L^k,d/k]) > \delta$ w.h.p

By domain-shifting, $\Delta(g^*, \mathrm{RS}[\mathbb{F}, L^*, d/k]) > 1 - \sqrt{\rho^*}$ unless w.p. $(1 - \delta)^t$

Recursing, yields STIR

Conclusion

What we did have time to talk about

Domain shifting:

- Domain shifting:
 - Quotienting and its properties

- Domain shifting:
 - Quotienting and its properties
 - Out-Of-Domain sampling

- Domain shifting:
 - Quotienting and its properties
 - Out-Of-Domain sampling
- Folding and its properties

- Domain shifting:
 - Quotienting and its properties
 - Out-Of-Domain sampling
- Folding and its properties
- STIR

What we did not have time to talk about

Degree corrections

What we did not have time to talk about

Degree corrections

• Quotient(f, Ans) has degree d - |S|, how to bump up to d?

What we did not have time to talk about

Degree corrections

• Quotient(f, Ans) has degree d - |S|, how to bump up to d?

High-soundness compiler for Poly-IOPs

What we did not have time to talk about

Degree corrections

• Quotient(f, Ans) has degree d - |S|, how to bump up to d?

High-soundness compiler for Poly-IOPs

• Builds on compiler in [ACY23] to achieve concrete efficiency

What we did not have time to talk about

Degree corrections

• Quotient(f, Ans) has degree d - |S|, how to bump up to d?

High-soundness compiler for Poly-IOPs

• Builds on compiler in [ACY23] to achieve concrete efficiency

Round-by-round soundness of STIR \Longrightarrow secure in non-interactive setting

What we hope to have time to talk about next talk!

Small fields:

- Small fields:
 - STIR variant of CIRCLE-STARKs?

- Small fields:
 - STIR variant of CIRCLE-STARKs?
 - Basefold STIR? Binary-STIR?

- Small fields:
 - STIR variant of CIRCLE-STARKs?
 - Basefold STIR? Binary-STIR?
- Breaking the $O(\log d)$ -query barrier

- Small fields:
 - STIR variant of CIRCLE-STARKs?
 - Basefold STIR? Binary-STIR?
- Breaking the $O(\log d)$ -query barrier
 - Work in [ACY23] achieves $O(\log \log d)$ queries proximity tests

- Small fields:
 - STIR variant of CIRCLE-STARKs?
 - Basefold STIR? Binary-STIR?
- Breaking the $O(\log d)$ -query barrier
 - Work in [ACY23] achieves $O(\log \log d)$ queries proximity tests
 - Not concretely efficient, lacks efficient soundness amplification

- Small fields:
 - STIR variant of CIRCLE-STARKs?
 - Basefold STIR? Binary-STIR?
- Breaking the $O(\log d)$ -query barrier
 - Work in [ACY23] achieves $O(\log \log d)$ queries proximity tests
 - Not concretely efficient, lacks efficient soundness amplification
 - Exciting!!!

Thankyou!

See paper: ia.cr/2024/390

And blog post: gfenzi.io/papers/stir

Extra slides

Reducing to low-degree testing

Poly IOP

Reducing to low-degree testing

Typically very

efficient

• IOP-based SNARKs instantiated using the BCS transformation

- IOP-based SNARKs instantiated using the BCS transformation
- Secure in the ROM: can be instantiated with only hash-functions

- IOP-based SNARKs instantiated using the BCS transformation
- Secure in the ROM: can be instantiated with only hash-functions
- Transparent (public-coin) setup

- IOP-based SNARKs instantiated using the BCS transformation
- Secure in the ROM: can be instantiated with only hash-functions
- Transparent (public-coin) setup
- Fast proving, not tied to ECC fields, post quantum secure in QROM [CMS].

- IOP-based SNARKs instantiated using the BCS transformation
- Secure in the ROM: can be instantiated with only hash-functions
- Transparent (public-coin) setup
- Fast proving, not tied to ECC fields, post quantum secure in QROM [CMS].

- IOP-based SNARKs instantiated using the BCS transformation
- Secure in the ROM: can be instantiated with only hash-functions
- Transparent (public-coin) setup
- Fast proving, not tied to ECC fields, post quantum secure in QROM [CMS].

zkVMs:

- IOP-based SNARKs instantiated using the BCS transformation
- Secure in the ROM: can be instantiated with only hash-functions
- Transparent (public-coin) setup
- Fast proving, not tied to ECC fields, post quantum secure in QROM [CMS].

zkVMs:

And more...

What about the conjecture?

FRI and STIR benefit in roughly the same way

- Conjecture on list-decoding up to distance $1-\rho$ (instead of $1-\sqrt{\rho}$)
- FRI queries:

$$O\left(\lambda \cdot \frac{\log d}{-\log \rho}\right)$$

In both, for $\delta = 1 - \rho$,

reduces queries by ~2x

STIR queries:

$$O\left(\lambda \cdot \log\left(\frac{\log d}{-\log \rho}\right) + \log d\right)$$

$$f:L o \mathbb{F}$$

g is *claimed* to be equal to (the extension of) Fold(f, k, α) on L^*

g is claimed to be equal to (the extension of) $\operatorname{Fold}(f,k,\alpha)$ on L^*

g is *claimed* to be equal to (the extension of) Fold(f, k, α) on L^*

Problem: We can only query Fold(f, k, α) on $L^k \neq L^*$.

Enforce consistency via Quotient!

g is *claimed* to be equal to (the extension of) Fold(f,k,α) on L^*

Problem: We can only query Fold(f, k, α) on $L^k \neq L^*$.

Enforce consistency via Quotient!

Query Fold (f, k, α) at $x_1, ..., x_t \in L^k$ to get $y_1, ..., y_t$

g is claimed to be equal to (the extension of) Fold (f,k,α) on L^{\ast}

Problem: We can only query Fold(f, k, α) on $L^k \neq L^*$.

Enforce consistency via Quotient!

Query Fold (f, k, α) at $x_1, ..., x_t \in L^k$ to get $y_1, ..., y_t$

g is *claimed* to be equal to (the extension of) Fold(f, k, α) on L^*

Problem: We can only query Fold(f, k, α) on $L^k \neq L^*$.

Enforce consistency via Quotient!

Query Fold (f, k, α) at $x_1, ..., x_t \in L^k$ to get $y_1, ..., y_t$

Test
$$f'$$

 $y_i = \text{Fold}(f, k, \alpha)(x_i)$

f' := Quotient(g, Ans)

g is claimed to be equal to (the extension of) $Fold(f, k, \alpha)$ on L^*

Problem: We can only query Fold (f, k, α) on $L^k \neq L^*$.

Enforce consistency via Quotient!

Query Fold (f, k, α) at $x_1, ..., x_t \in L^k$ to get y_1, \ldots, y_t

New function is quotient of g w.r.t. to these points + OOD sample

$$f:L \to \mathbb{F}$$

$$\alpha$$
 $\alpha \leftarrow \mathbb{F}$

$$x_0 \qquad x_0 \leftarrow \mathbb{F} \setminus L^*$$

$$y_0$$

$$x_1, \dots, x_t \qquad x_1, \dots, x_t \leftarrow L^k$$

$$\forall i : \mathsf{Ans}(x_i) = y_i$$

$$\forall i : \mathsf{Ans}(x_i) = y_i$$
 Query f to get $f' := \mathsf{Quotient}(g, \mathsf{Ans})$ $y_i = \mathsf{Fold}(f, k, \alpha)(x_i)$

Test f'

Folding

Folding

OOD

 \hat{v} is **unique** close codeword to g with $\hat{v}(x_0) = y_0$

Folding OOD $\begin{array}{c}
f \\
\downarrow \alpha \\
\hline
\text{Fold}(f, k, \alpha) \\
\hline
x_1, \dots, x_t
\end{array}$

 \hat{v} is **unique** close codeword to g with $\hat{v}(x_0) = y_0$

Folding OOD $Fold(f, k, \alpha)$ Compare 1

 \hat{v} is **unique** close codeword to g with $\hat{v}(x_0) = y_0$

 \hat{v} is **unique** close codeword to g with $\hat{v}(x_0) = y_0$

If at any point $\hat{v}(x_i) \neq y_i$ then, by quotients, f' is $(1 - \sqrt{\rho'})$ -far from C'

 \hat{v} is **unique** close codeword to g with $\hat{v}(x_0) = y_0$

If at any point $\hat{v}(x_i) \neq y_i$ then, by quotients, f' is $(1 - \sqrt{\rho'})$ -far from C'

Since Fold is δ -far from the code, $\Delta(\hat{v}|_{L^k}, \operatorname{Fold}(f, k, \alpha)) > \delta$

 \hat{v} is **unique** close codeword to g with $\hat{v}(x_0) = y_0$

If at any point $\hat{v}(x_i) \neq y_i$ then, by quotients, f' is $(1 - \sqrt{\rho'})$ -far from C'

Since Fold is δ -far from the code, $\Delta(\hat{v}|_{L^k}, \operatorname{Fold}(f, k, \alpha)) > \delta$

$$\Pr \left[f' \text{ is } 1 - \sqrt{\rho'} \text{ close} \right]$$

$$\leq \Pr \left[\forall i, \, \hat{v}(x_i) = y_i \right]$$

$$= \Pr \left[\forall i, \, \hat{v}(x_i) = \text{Fold}(f, k, \alpha)(x_i) \right]$$

$$\leq (1 - \delta)^t$$