yadwicksSolution

破电子裁判的运行规则

烧杯(Beaker)

- 属性:
 - 。 物质
 - 物质
 - ID:数量 (初始为 *H*₂*O*:56)
 - ∘ pH
 - 初始为7
 - 。 玩家编号
- 操作:
 - 。 加入物质
 - 。 烧杯反应

物质种类:

- $H_2O(H2O)$
 - 。 溶剂, 默认为56
- 离子(lon)
 - 。 溶液的溶质部分, 不包括 H^+ , OH^-
 - 。 离子的属性:
 - 氧化还原性: int (0为不会发生氧化还原反应)
 - 电荷: int (不为0)
- Z物质(Subs)
 - 。 稳定的物质
 - 。 Z物质的属性:
 - 氧化还原性: int (0为不会发生氧化还原反应)
- Zs类物质(SubsZs)
 - 。 沉淀, 如 $CaCO_3$
- Zg类物质(SubsZg)
 - 。 气体, 如 H_2 , NH_3 , SO_2

烧杯反应(或者这里叫变化)

X类反应(reactionX)

 $X和H_2O$ 的反应

$$X+H_2O=Y+Zg\uparrow/Zs\downarrow$$

- X类反应的优先度最高
- X类:
 - 。 [反应物(ID, 数量)], [生成物(ID, 数量)]

按照真实世界的说法, X类反应实际上是0R类反应的一种.....

OR类反应(reactionOR)

单质与溶液中离子发生的氧化还原反应(在此处与电子*无关*)

$$M + N^n = M^{n-m} + N^m$$

- OR类反应优先度次于X类
- OR类:
 - 。 [反应物(ID, 数量)], 条件, [生成物(ID, 数量)]

I类反应(reactionI)

某物质的电离

$$CiAi = Ci^{n+} + Ai^{n-}$$

- 反应优先度低于OR类
- l类:
 - 。 [反应物(ID, 数量)], 条件, [生成物(ID, 数量)]

按照真实世界的说法, I类反应实际上不是化学反应.....

IOR类反应(reactionIOR)

某物质电离出的离子与溶液中原有的离子发生氧化还原反应

$$M^m + N^n = M^p + N^q$$

- 反应优先度低于I类
- IOR类:
 - 。 [反应物(ID, 数量)], 条件, [生成物(ID, 数量)]

IE类反应(reactionIE)

复分解反应/离子交换

$$Ci^{n+}+Ai^{n-}=Zg\uparrow/Zs\downarrow$$

- IE类反应的优先度在IOR之后
- IE类:
 - 。 [反应物(ID, 数量)], 条件, [生成物(ID, 数量)]

DH类反应(reactionDH)

双水解反应

- 优先度低于IE类
- DH类:
 - 。 [反应物(ID, 数量)], [生成物(ID, 数量)]

F类反应(reactionF)

- 实际是个自动过程
- 清除烧杯中所有Zs类物质
- 清除烧杯中所有Zg类物质
- F类:
 - 。 [反应物(ID, 数量)]

走一遍这个流程看看?