[70240413 Statistical Machine Learning, Spring, 2017]

Monte Carlo Methods

Jun Zhu

dcszj@mail.tsinghua.edu.cn
http://bigml.cs.tsinghua.edu.cn/~jun
State Key Lab of Intelligent Technology & Systems
Tsinghua University

May 16, 2017

Monte Carlo Methods

- a class of computational algorithms that rely on repeated random sampling to compute their results.
- tend to be used when it is infeasible to compute an exact result with a deterministic algorithm
- was coined in the 1940s by John von Neumann, Stanislaw Ulam and Nicholas Metropolis

Games of Chance

Monte Carlo Methods to Calculate Pi

Computer Simulation

$$\hat{\pi} = 4 \times \frac{m}{N}$$

- □ N: # points inside the square
- m: # points inside the circle

Bufffon's Needle Experiment

$$\hat{\pi} = \frac{2Nx}{m}$$

□ m: # line crossings

$$x = \frac{l}{d}$$

Typical Outputs with Simulation

Problems to be Solved

Sampling

- o to generate a set of samples $\{\mathbf{z}_l\}_{l=1}^L$ from a given probability distribution $p(\mathbf{z})$
- the distribution is called target distribution
- can be from statistical physics or data modeling

Integral

To estimate expectations of functions under this distribution

$$\mathbb{E}[f] = \int f(\mathbf{z}) p(\mathbf{z}) d\mathbf{z}$$

Use Sample to Estimate the Target Dist.

Draw a set of independent samples (a hard problem)

$$\forall 1 \le l \le L, \ \mathbf{z}^{(l)} \sim p(\mathbf{z})$$

Estimate the target distribution as count frequency

$$p(\mathbf{z}) pprox rac{1}{L} \sum_{l=1}^{L} \delta_{\mathbf{z}, \mathbf{z}^{(l)}}$$

Histogram with Unique Points as the Bins

Basic Procedure of Monte Carlo Methods

Draw a set of independent samples

$$\forall 1 \le l \le L, \ \mathbf{z}^{(l)} \sim p(\mathbf{z})$$

Approximate the expectation with

$$\hat{f} = \frac{1}{L} \sum_{l=1}^{L} f(\mathbf{z}^{(l)})$$

- where is the distribution p? $p(\mathbf{z}) \approx \frac{1}{L} \sum_{l=1}^{L} \delta_{\mathbf{z},\mathbf{z}^{(l)}}$ Histogram with Unique Points as the Bins
- why this is good?

$$\mathbb{E}[\hat{f}] = \mathbb{E}[f] \quad \operatorname{var}[\hat{f}] = \frac{1}{L} \mathbb{E}[(f - \mathbb{E}[f])^2]$$

- Accuracy of estimator does not depend on dimensionality of z
- □ High accuracy with few (10-20 independent) samples
- However, obtaining independent samples is often not easy!

Why Sampling is Hard?

Assumption

 The target distribution can be evaluated, at least to within a multiplicative constant, i.e.,

$$p(\mathbf{z}) = p^*(\mathbf{z})/Z$$

• where $p^*(\mathbf{z})$ can be evaluated

Two difficulties

- Normalizing constant is typically unknown
- Drawing samples in high-dimensional space is challenging

A Simple Example

 Draw samples from a discrete distribution with a finite set of uniformly distributed points

• We can compute the distribution via

$$Z = \sum_{i} p_i^* \qquad p_i = p_i^* / Z$$

- ... then draw samples from the multinomial distribution
- But, the cost grows exponentially with dimension!

Basic Sampling Algorithms

- Strategies for generating samples from a given standard distribution, e.g., Gaussian
- ♠ Assume that we have a pseudo-random generator for uniform distribution over (0,1)
- For standard distributions we can transform uniformly distributed samples into desired distributions

Basic Sampling Algorithms

• If z is uniformly distributed over (0, 1), then y = f(z) has the distribution

$$p(y) = p(z) \left| \frac{dz}{dy} \right|$$

- where p(z) = 1
- \bullet Normally, we know p(y) and infer f. This can be done via

$$z = h(y) = \int_{-\infty}^{y} p(\hat{y})d\hat{y}$$

$$y = h^{-1}(z)$$

- So we have to transform uniformly distributed random numbers
 - using a function which is the inverse of the indefinite integral of the distribution

Geometry of Transformation

Generating non-uniform random variables

- h(y) is indefinite integral of desired p(y)
- \diamond $z \sim \text{Uniform}(0,1)$ is transformed using $y = h^{-1}(z)$
- \bullet Results in y being distributed as p(y)

Example #1

• How to get the exponential distribution from uniform variable?

$$p(y) = \lambda \exp(-\lambda y)$$

Do the integral, we get

$$z = h(y) = \int_{-\infty}^{y} p(\hat{y})d\hat{y} = \int_{-\infty}^{y} \lambda \exp(-\lambda \hat{y})d\hat{y}$$
$$= 1 - \exp(-\lambda y)$$

Thus

$$y = h^{-1}(z) = -\frac{1}{\lambda}\ln(1-z)$$

Example #2

• How to get the standard normal distribution from uniform variable?

$$p(y) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}y^2\right)$$

Do the integral, we get

$$z = h(y) = \int_{-\infty}^{y} p(\hat{y})d\hat{y} = \Phi(y)$$
$$= \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{y}{\sqrt{2}}\right) \right]$$

Thus

$$y = h^{-1}(z)$$
 No closed form!!

Example #2: Box-Muller for Gaussian

E xample of a bivariate Gaussian

$$p(y_1, y_2) = \left[\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}y_1^2\right)\right] \left[\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}y_2^2\right)\right]$$

Generate pairs of uniformly distributed random numbers

$$z_1, z_2 \sim \text{Uniform}(-1, 1)$$

Discard each pair unless

$$z_1^2 + z_2^2 \le 1$$

Leads to uniform distribution of points inside unit circle with

$$p(z_1, z_2) = \frac{1}{\pi}$$

Example #2: Box-Muller for Gaussian

E valuate the two quantities

$$y_1 = z_1 \left(\frac{-2\ln z_1}{r^2}\right)^{1/2}$$
 $y_2 = z_2 \left(\frac{-2\ln z_2}{r^2}\right)^{1/2}$

- where $r^2 = z_1^2 + z_2^2$
- Then, we have independent standard normal distribution

$$p(y_1, y_2) = \left[\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}y_1^2\right)\right] \left[\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}y_2^2\right)\right]$$

- How about non-zero means and non-standard variance?
- How about multivariate Gaussian?

Rejection Sampling

Problems with transformation methods

- depend on ability to calculate and then invert indefinite integral
- feasible only for some standard distributions

More general strategy is needed

- Rejection sampling and importance sampling are limited to univariate distributions
 - Although not applicable to complex problems, they are important components in more general strategies
- Allows sampling from complex distributions

Rejection Sampling

- \diamond Wish to sample from distribution p(z)
- lacktriangle Suppose we are able to easily evaluate p(z) for any given value of z
- lacktriangle Samples are drawn from simple distribution, called proposal distribution q(z)
- lacktriangle Introduce constant k whose value is such that $kq(z) \geq p(z)$ for all z
 - Called comparison function

Rejection Sampling

- \diamond Samples are drawn from simple distribution q(z)
- lacktriangle Rejected if they fall in grey area between $\tilde{p}(z)$ and kq(z)

• Resulting samples are distributed according to p(z) which is the normalized version of $\tilde{p}(z)$

How to determine if sample is in shaded region?

E ach step involves generating two random numbers

$$z_0 \sim q(z)$$
 $u_0 \sim \text{Uniform}(0, kq(z_0))$

- lacktriangle This pair has uniform distribution under the curve of function kq(z)
- If $u_0 > p(z_0)$ the pair is rejected otherwise it is retained
- lacktrianglet Remaining pairs have a uniform distribution under the curve of p(z) and hence the corresponding z values are distributed according to p(z) as desired
- Proof?

$$\hat{p}(z) = q(z) \times \frac{\tilde{p}(z)}{kq(z)} \propto \tilde{p}(z)$$

More on Rejection Sampling

The probability that a sample will be accepted (accept ratio)

$$p(\text{accept}) = \int q(z) \times \frac{\tilde{p}(z)}{kq(z)} dz = \frac{1}{k} \int \tilde{p}(z) dz$$

- ◆ To have high accept ratio, k should be as small as possible
 - ... but it needs to satisfy

$$kq(z) \ge \tilde{p}(z) \ \forall z$$

Curse of Dimensionality

Consider two univariate Gaussian distributions

$$P(x) \sim \mathcal{N}(0, \sigma_p^2)$$

$$Q(x) \sim \mathcal{N}(0, \sigma_q^2)$$

$$\sigma_q > \sigma_p$$

- What is k?
 - □ At the origin, we have $k \frac{1}{\sqrt{2\pi}\sigma_q} = \frac{1}{\sqrt{2\pi}\sigma_p}$, so $k = \frac{\sigma_q}{\sigma_p}$
 - How about in 1000 dimensions?

$$k = \left(\frac{\sigma_q}{\sigma_p}\right)^{1000} \approx 20,000 \text{ if } \sigma_q = 1.01\sigma_p$$

Adaptive Rejection Sampling

- When difficult to find suitable analytic distribution
- \bullet Straight-forward when p(z) is log concave
 - \Box When $\ln p(z)$ has derivatives that are non-increasing functions of z
 - ullet Function $\ln p(z)$ and gradients are evaluated at set of grid points
 - □ Intersections are used to construct envelope → a sequence of linear functions

Importance Sampling

- **E** valuating expectation of f(z) with respect to distribution p(z) from which it is difficult to draw samples directly
- lacktriangle Samples $\{z^{(l)}\}$ are drawn from simpler distribution q(z)
- Terms in summation are weighted by ratios $\frac{p(z^{(l)})}{q(z^{(l)})}$

Importance Sampling

The expectation can be computed as

$$\mathbb{E}[f] = \int f(\mathbf{z})p(\mathbf{z})d\mathbf{z} = \int f(\mathbf{z})\frac{p(\mathbf{z})}{q(\mathbf{z})}q(\mathbf{z})d\mathbf{z}$$

Use Monte Carlo methods

$$\mathbb{E}[f] \approx \frac{1}{L} \sum_{l=1}^{L} r_l f(\mathbf{z}^{(l)})$$

where the importance weights are

$$r_l = \frac{p(\mathbf{z}^{(l)})}{q(\mathbf{z}^{(l)})}$$

and the samples are

$$\mathbf{z}^{(l)} \sim q(\mathbf{z})$$

Importance Sampling

For unnormalized distributions

$$p(\mathbf{z}) = \frac{\tilde{p}(\mathbf{z})}{Z_p}, \quad q(\mathbf{z}) = \frac{\tilde{q}(\mathbf{z})}{Z_q}$$

• We have
$$\mathbb{E}[f] = \int f(\mathbf{z})p(\mathbf{z})d\mathbf{z} = \frac{Z_q}{Z_p} \int f(\mathbf{z})\frac{\tilde{p}(\mathbf{z})}{\tilde{q}(\mathbf{z})}q(\mathbf{z})d\mathbf{z}$$

$$\mathbb{E}[f] \approx \frac{Z_q}{Z_p} \frac{1}{L} \sum_{l=1}^{L} \tilde{r}_l f(\mathbf{z}^{(l)}) \text{ where } \tilde{r}_l = \frac{\tilde{p}(\mathbf{z}^{(l)})}{\tilde{q}(\mathbf{z}^{(l)})}$$

The ratio
$$\frac{Z_p}{Z_q} = \frac{1}{Z_q} \int \tilde{p}(\mathbf{z}) d\mathbf{z} = \int \frac{\tilde{p}(\mathbf{z})}{\tilde{q}(\mathbf{z})} q(\mathbf{z}) d\mathbf{z} \approx \frac{1}{L} \sum_{l=1}^{L} \tilde{r}_l$$

Then, the expectation is

$$\mathbb{E}[f] \approx \sum_{l=1}^{L} w_l f(\mathbf{z}^{(l)}), \text{ where } w_l = \frac{\tilde{r}_l}{\sum_m \tilde{r}_m}$$

Problems with Importance Sampling

As with Rejection sampling, the performance depends crucially on how well the proposal matches the target

- $lue{}$ a lot of wastes in the areas where p(z)f(z) is small
- more serious in high dimensional spaces

Summary so far ...

- Monte Carlo methods use samples to estimate expectations
- Rejection sampling and importance sampling are useful when no closed-form transformation is available or is hard
- But they can be inefficient in high-dimensional spaces
 - only works well when the proposal approximate the target well

Markov Chain Monte Carlo (MCMC)

- As with rejection and importance sampling, it samples from a proposal distribution
- \bullet But, it maintains a record of \mathbf{z}^{τ} , and the proposal distribution depends on current state $q(\mathbf{z}|\mathbf{z}^{\tau})$
- It's not necessary for the proposal to look at all similar to the target
- \bullet The sequence $\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \dots$ forms a Markov chain
- Configurable components:
 - Proposal distribution
 - Accept strategy

Geometry of MCMC

- Proposal depends on current state
- Not necessarily similar to the target
- Can evaluate the un-normalized target

Metropolis Algorithm

Proposal distribution is symmetric

$$q(\mathbf{z}|\mathbf{z}') = q(\mathbf{z}'|\mathbf{z})$$

 \bullet The candidate sample \mathbf{z}^* is accepted with probability

$$A(\mathbf{z}^*, \mathbf{z}^{(\tau)}) = \min\left(1, \frac{\tilde{p}(\mathbf{z}^*)}{\tilde{p}(\mathbf{z}^{(\tau)})}\right)$$

- The acceptance can be done by
 - draw a random $u \sim \text{Uniform}(0,1)$
 - accepting the sample if $A(\mathbf{z}^*, \mathbf{z}^{(\tau)}) > u$
- \bullet If sample is accepted, set $\mathbf{z}^{(\tau+1)} = \mathbf{z}^*$; otherwise $\mathbf{z}^{(\tau+1)} = \mathbf{z}^{(\tau)}$
- \bullet **Note:** $\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \dots$ is not a set of independent samples

Geometry of Metropolis Algorithm

- ♦ Sample from Gaussian distribution with the proposal being an isotropic Gaussian with std 0.2.
- ♦ Green: accepted steps; Red: rejected steps

Properties of Markov Chains

 $\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \dots, \mathbf{z}^{(M)}$ is a *first-order Markov chain* if conditional independence property holds

$$p(\mathbf{z}^{(m+1)}|\mathbf{z}^{(1)},\dots,\mathbf{z}^{(m)}) = p(\mathbf{z}^{(m+1)}|\mathbf{z}^{(m)})$$

- Transition probabilities $T_m(\mathbf{z}^{(m)}, \mathbf{z}^{(m+1)}) \triangleq p(\mathbf{z}^{(m+1)}|\mathbf{z}^{(m)})$
- \bullet If T_m are the same for all m, it is *Homogeneous* Markov chain
- $p^*(\mathbf{z})$ satisfies the *detailed balance* if

$$p^*(\mathbf{z})T(\mathbf{z},\mathbf{z}') = p^*(\mathbf{z}')T(\mathbf{z}',\mathbf{z})$$

• If $p^*(\mathbf{z})$ satisfies the detailed balance, then it's *invariant* (stationary) $p^*(\mathbf{z}) = \sum T(\mathbf{z}', \mathbf{z}) p^*(\mathbf{z}')$

♦ A chain is *ergodic* if it converges to the invariant distribution, irrespective of the initial distribution

Metropolis-Hasting Algorithm

- A generalization of the Metropolis algorithm to the case where the proposal distribution is no longer symmetric
- Draw sample $\mathbf{z}^* \sim q_k(\mathbf{z}|\mathbf{z}^{(\tau)})$ and accept it with probability

$$A_k(\mathbf{z}^*, \mathbf{z}^{(\tau)}) = \min\left(1, \frac{\tilde{p}(\mathbf{z}^*) q_k(\mathbf{z}^{(\tau)} | \mathbf{z}^*)}{\tilde{p}(\mathbf{z}^{(\tau)}) q_k(\mathbf{z}^* | \mathbf{z}^{(\tau)})}\right)$$

• We can show $p(\mathbf{z})$ is an invariant distribution of MC defined by MH algorithm, by showing the detailed balance

$$p(\mathbf{z})q_k(\mathbf{z}'|\mathbf{z})A_k(\mathbf{z}',\mathbf{z}) = \min\left(p(\mathbf{z})q_k(\mathbf{z}'|\mathbf{z}), p(\mathbf{z}')q_k(\mathbf{z}|\mathbf{z}')\right)$$

$$= \min\left(p(\mathbf{z}')q_k(\mathbf{z}|\mathbf{z}'), p(\mathbf{z})q_k(\mathbf{z}'|\mathbf{z})\right)$$

$$= p(\mathbf{z}')q_k(\mathbf{z}|\mathbf{z}')\min\left(1, \frac{p(\mathbf{z})q_k(\mathbf{z}'|\mathbf{z})}{p(\mathbf{z}')q_k(\mathbf{z}|\mathbf{z}')}\right)$$

$$= p(\mathbf{z}')q_k(\mathbf{z}|\mathbf{z}')A_k(\mathbf{z},\mathbf{z}')$$

Issues with Proposal Distribution

Proposal: isotropic Gaussian (blue) centered at current state

- ullet Small ho leads to high accept rate, but progress through the state space takes a long time due to random walk
- floor Large ho leads to high rejection rate
- □ Roughly best choice: $\rho \approx \sigma_{\min}$

Gibbs Sampling

- A special case of Metropolis-Hastings algorithm
- \bullet Consider the distribution $p(\mathbf{z}) = p(z_1, \dots, z_M)$
- Gibbs sampling performs the follows
 - Initialize $\{z_i : i = 1, \ldots, M\}$
 - ightharpoonup For $au = 1, \ldots, T$
 - Sample $z_1^{(\tau+1)} \sim p(z_1|z_2^{(\tau)}, z_3^{(\tau)}, \dots, z_M^{(\tau)})$:
 - Sample $z_j^{(\tau+1)} \sim p(z_j|z_1^{(\tau+1)}, \dots, z_{j-1}^{(\tau+1)}, z_{j+1}^{(\tau)}, \dots, z_M^{(\tau)})$:
 - : Sample $z_M^{(\tau+1)} \sim p(z_j|z_1^{(\tau+1)}, z_2^{(\tau+1)}, \dots, z_{M-1}^{(\tau+1)})$

The target distribution in 2 dimensional space

lacktriangle Starting from a state $\mathbf{x}^{(t)}$, $x_1^{(t+1)}$ is sampled from $P(x_1|x_2^{(t)})$

 \bullet A sample is drawn from $P(x_2|x_1^{(t+1)})$

this finishes one single iteration.

After a few iterations

Gibbs Sampling

- \bullet How to show Gibbs sampling samples from $p(\mathbf{z})$?
 - $lue{}$ show that p(z) is an invariant distribution at each sample steps
 - The marginal $p(\mathbf{z}_{-i})$ is invariant as \mathbf{z}_{-i} is unchanged
 - Also, the conditional $p(z_i|\mathbf{z}_{-i})$ is correct
 - Thus, the joint distribution $p(z_i|\mathbf{z}_{-i})p(\mathbf{z}_{-i})$ is invariant at each step
 - the Markov chain is ergodic
 - A sufficient condition is that none of the conditional distributions be anywhere zero
 - If the requirement is not satisfied (some conditionals have zeros),
 ergodicity must be proven explicitly

Gibbs Sampling

- a special case of Metropolis-Hastings algorithm
- \bullet Consider a MH sampling step involving variable z_k in which other variables \mathbf{z}_{-k} remain fixed
- The transition probability is

$$q_k(\mathbf{z}^*|\mathbf{z}) = p(z_k^*|\mathbf{z}_{-k})$$

- \bullet Note that $\mathbf{z}_{-k}^* = \mathbf{z}_{-k}$ and $p(\mathbf{z}) = p(z_k|\mathbf{z}_{-k})p(\mathbf{z}_{-k})$
- Then, the MH acceptance probability is

$$A(\mathbf{z}^*, \mathbf{z}) = \frac{p(\mathbf{z}^*)q_k(\mathbf{z}|\mathbf{z}^*)}{p(\mathbf{z})q_k(\mathbf{z}^*|\mathbf{z})} = \frac{p(z_k^*|\mathbf{z}_{-k}^*)p(\mathbf{z}_{-k}^*)p(z_k|\mathbf{z}_{-k}^*)}{p(z_k|\mathbf{z}_{-k})p(z_k^*|\mathbf{z}_{-k})} = 1$$

always accepted!

Behavior of Gibbs Sampling

igoplus **Correlated Gaussian**: marginal distributions of width L and conditional distributions of width l

Summary

Monte Carlo methods are power tools that allow one to implement any distribution in the form

$$p(\mathbf{x}) = p^*(\mathbf{x})/Z$$

Monte Carlo methods can answer virtually any query related to by putting the query in the form

$$\int f(\mathbf{x})p(\mathbf{x})d\mathbf{x} \approx \frac{1}{L} \sum_{l} f(\mathbf{x}^{(l)})$$

- In high-dimensional problems the only satisfactory methods are those based Markov chain Monte Carlo: Metropolis-Hastings and Gibbs sampling
- Simple Metropolis and Gibbs sampling algorithms, although widely used, may suffer from slow random walk. More sophisticated algorithms are needed.

Sampling and EM Algorithm

- General procedure of the EM algorithm
 - E-step: compute the expected complete-data log-likelihood

$$Q(\theta, \theta^{\text{old}}) = \int p(\mathbf{Z}|\mathbf{X}, \theta^{\text{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\theta) d\mathbf{Z}$$

M-step: update model parameters

$$\theta^{\text{new}} = \arg\max_{\theta} Q(\theta, \theta^{\text{old}})$$

- Sampling methods can be applied to approximate the integral in E-step
 - called Monte Carlo EM algorithm

$$Q(\theta, \theta^{\text{old}}) \approx \frac{1}{L} \sum_{l=1}^{L} \ln p(\mathbf{X}, \mathbf{Z}^{(l)} | \theta)$$

References

- Chap. 11 of Pattern Recognition and Machine Learning, Bishop, 2006
- Introduction to Monte Carlo Methods. D. J. C. MacKay, 1998