INTRO recap SW10

Arbnor Hoti ¹ Raphael Wirtz ²

1 arbnor.hoti@stud.hslu.ch

²raphael.wirtz@stud.hslu.ch

HSLU Hochschule Luzern

November 29, 2018

Inhaltsverzeichnis

- Übersicht
- IR Sensor
- Motoren & H-Brücke
- 4 Fragen

Hoti, Wirtz (hslu)

Übersicht

- Liniensensor, für Position auf der Linie
- Motor
- PID, um auf der Linie zu bleiben
- Quadratur Encoder, zur Bestimmung von Position und Geschwindigkeit

Hoti, Wirtz (hslu) INTRO recap November 29, 2018 3/13

IR Sensor

- Sender: IR-LED
- Empfänger: Phototransistor
- Unterschiedliche IR Reflexion
 - Unterscheidung zwischen Schwarz und Weiss
- Energieversorgung über Akkumulatoren

IR Sensor

- Transistoren werden über ein Array angesteuert
 - Array ein-/ausschalten über Port IR_LED_ON (via Jumper)
- Störgrössen
 - Crosstalk: IR LED sendet an falschen Transistor
 - Externe Lichteinstreuung

Implementation

- Task, oder Prozess für Sensor
- Periodisches sampling, oder auf Abfrage
 - ⇒ Periodisches sampling für vorsehbares Systemverhalten (stabiles System)
- Kalibration
 - min und max Werte skalieren zwischen 0 und 1000
 - In Event, auf externen Befehl (Button, ...)
 - Daten im RAM gespeichert
 - Nach jedem Neustart erneut Kalibration nötig
 - ⇒ Kalibrationdaten in Flash verschieben (nicht flüchtig)

Motoren

- Geschwindikeit proportional zur Spannung (ohne Störgrössen)
- Störgrössen
 - Mechanische Belastung
 - Toleranzen im Antriebsstrang

 $\Rightarrow \mathsf{Regler}$

7/13

H-Brücke

Treiber IC (Dual H-Brücke)

- x = H-Bridge A,B...
- xENABLE: speed, via PWM
- xPHASE: direction, Vorwärts (1) und Rückwärts (0)
- MODE über Hardware auf 1 gesetzt

Treiber Ansteuerung (motor.c)

- xPHASE ← PWM
- xENABLE ← DIR

Robo V1: Stützkondensatoren zu gering

⇒ Spannungsversorgung sinkt bei Belastung.

Hoti, Wirtz (hslu) INTRO recap November 29, 2018 8/13

motor.c Interface

Funktionen

MOT_SetDirection : DIR (boolean)

 $MOT_SetSpeedPercent : percent (\pm 0-100)$

Gemeinsamer Wert für Geschwindikeit und Richtung

 \Rightarrow speed: (-100% zu 100%)

PWM: (0x0000-0xffff)

• DIR: (boolean)

currSpeeedPercent: ist nicht die relative Geschwindigkeit gegenüber Unterboden!

9/13

Fragen

- Weshalb kann der Motor nicht direkt mit einem PWM angesteuert werden?
- Welche Eingänge vom H-Brücken Treiber IC werden benötigt?
- Was ist der Vorteil, wenn die relative Geschwindikeit (%)verwendet wird?
- Was muss aktiviert werden, damit die Phototransistoren verwendet werden können (Hardware)?
- Wieso wird eine Kalibierung gemacht?

Hoti, Wirtz (hslu) INTRO recap November 29, 2018 10 / 13

Fragen & Antworten

- Weshalb kann der Motor nicht direkt mit einem PWM angesteuert werden?
 - ⇒ Ausgang liefert zu wenig Leistung.
- Welche Eingänge vom H-Brücken Treiber IC werden von der Software angesteuert?
 - ⇒ xENABLE, xPHASE
- Was ist der Vorteil, wenn die relative Geschwindikeit (%) verwendet wird?
 - ⇒ Modularität, Relation zwischen Wirklichkeit und Software
- Was muss aktiviert werden, damit die Phototransistoren verwendet werden können (Hardware)?
 - \Rightarrow Sensor Array, Port IR_LED_ON via Jumper setzen.
- Wieso wird eine Kalibierung gemacht?
 - ⇒ Normalisierte Werte

Bug

 $MOT_SetSpeedPercent: percent (\pm 0-100)$

Outro