IA-DATAHACK Défi Accoustics

Localisation d'un humain dans un salon avec une impulsion sonore

Lilian SCHALL, Théophile STOURBE, Julien SCHAFFAUSER, Simon THUAUD et Elias TEBBANI

Contexte

Tâche et méthodologie

Notre méthodologie pour ce hackaton:

- Lecture de l'article de référence pour le jeu de données SoundCam [3]
- Découverte et analyse du jeu de données ainsi que les fichiers de méta-données fournies
- Implémentation et reproduction des différents modèles "baseline" conseillés par l'article: séparation du groupe en 2 sous-groupes pour optimiser notre productivité
- Analyse et visualisation des résultats
- Finalisation du rapport (qui a été écrit au fur et à mesure du hackaton, à la fin de chaque journée), et préparation de notre présentation

Contexte

Situation d'enregistrement

Figure: Visualisation du salon et des différentes positions enregistrées pour l'humain numéro 1. [3]

Contexte

Réponse sonore du salon

Figure: A gauche, spectrogramme de la *Room impulse response*[1] avec l'humain numero; à droite, la difference de RIR entre un salon vide et un salon avec humain.

Feature extraction

Valeur efficace entière

Figure: Visualisation d'un calcul de valeur efficace sur signal entier

source: https://community.sw.siemens.com/s/article/root-mean-square-rms-and-overall-level

5/14

Feature extraction

Valeur efficace avec fenêtre glissante

Figure: Visualisation des fenêtres glissantes pour le calcul des valeurs efficaces

Feature extraction

Benchmark

	Time to process	nb feature per mic-signal
RMS full	$pprox 1 \min 30$	1
RMS rolling window	pprox 20min	1304

Table: Benchmark des méthodes d'extraction de la valeur efficace sur 4000 prises de son

Modèle linéaire: distance d'erreur

Figure: Distance d'erreur pour le modèle linear: à gauche RMS full, à droite RMS rolling window

Modèle K-nearest-neighbours[2]: distance d'erreur

Figure: Distance d'erreur pour le modèle KNN: à gauche RMS full, à droite RMS rolling window

Modèle linéaire: heatmap d'erreur

Figure: Distance d'erreur pour le modèle linear: à gauche RMS full, à droite RMS rolling window

Modèle K-nearest-neighbours[2]: heatmap d'erreur

Figure: Distance d'erreur pour le modèle KNN: à gauche RMS full, à droite RMS rolling window

Conclusion

Analyse et conclusion

	Linear : RMS full	Linear : RMS rolling window	Linear : Paper
Avg distance error (in mm) Std deviation error (in mm)	1498 582	1812 1040	1545 547
	K-NN: RMS full	K-NN: RMS rolling window	K-NN : Paper
Avg distance error (in mm) Std deviation error (in mm)	957	K-NN : RMS rolling window 528 512	K-NN : Paper 932 771

Figure: Résultats de nos différents modèles, comparés aux résultats du papier[3]

Bibliographie I

Groupe 19

- [1] Diego Di Carlo et al. dEchorate: a Calibrated Room Impulse Response Database for Echo-aware Signal Processing. 2021. arXiv: 2104.13168 [eess.AS].
- [2] Jingwen Sun, Weixing Du, and Niancai Shi. "A Survey of kNN Algorithm". In: *Information Engineering and Applied Computing* 1 (May 2018). DOI: 10.18063/ieac.v1i1.770.
- [3] Mason Wang et al. SoundCam: A Dataset for Finding Humans Using Room Acoustics. 2024. arXiv: 2311.03517 [cs.SD].

13 / 14

Questions

Merci de votre attention ! Des questions ?