Data Analytics EEE 4774 & 6777

Module 4 - Classification

Logistic Regression (LR), k Nearest Neighbor (kNN), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA)

Spring 2022

Probit Regression

k-Nearest Neighbor (kNN) Classification

- Training: store the feature vectors and class labels of the training samples
- **Testing:** assign a test sample to the label which is most frequent among the k training samples nearest to the test sample
- A commonly used distance metric for continuous

variables is Euclidean distance:
$$\|\widetilde{x}_j - x_i\|_2 = \sqrt{(\widetilde{x}_j - x_i)^T (\widetilde{x}_j - x_i)}$$

Manhattan distance:
$$\|\widetilde{x}_j - x_i\|_1 = \sum_{k=1}^d |\widetilde{x}_{jk} - x_{ik}|$$

For discrete variables, such as for text classification, another metric can be used, e.g., Hamming distance

k is an user-defined parameter: large values suppress noise, but provides less modeling power

• For spherical variables,
$$\sum_{k=1}^{d} x_{ik}^2 = a$$
, cosine distance: $1 - \cos \theta_{ji} = 1 - \frac{\widetilde{x}_{j}^T x_{i}}{a}$

kNN-Distance Classification

Nominal Data

Anomaly Data

Anomaly Test Data Point

10

(anomaly)

- Imbalanced datasets from each class
- More probable to have nearest neighbors from the class with more

Linear Discriminant Analysis (LDA)

$$y(x) = w^T x$$
 : score for \times

- Binary classification: choose C_1 if y > 0, otherwise C_2 $\max_{W} \begin{cases} 1 & \sum_{w} \sum_{h} \sum_{h} \sum_{w} \sum_{h} \sum_{h$
- Projection onto 1-dimensional y(x) from multi-dimensional x
- Choose w such that the class separation is maximized

$$\vec{m}_1 = \frac{1}{N_1} \sum_{n \in C_1} x_n \qquad \vec{m}_2 = \frac{1}{N_2} \sum_{n \in C_2} x_n$$
average of prise in class

Maximize $m_2 - m_1 = \mathbf{w}^T (\mathbf{m}_2 - \mathbf{m}_1)$, where in general $m_k = \mathbf{w}^T \mathbf{m}_k$, s.t. $\sum_i w_i^2 = 1$

for class 2 for class 1
$$w \propto (m_2 - m_1)$$

Linear Diścriminant Analysis (LDA)

• Within-class variance $v_k s_k^2 = \sum_{n \in C_k} (y_n - m_n)^2$ total within-class variance $v_k s_1^2 + s_2^2$ yn=wxn mn=wxmn

$$\mathbf{S}_B = (\mathbf{m}_2 - \mathbf{m}_1)(\mathbf{m}_2 - \mathbf{m}_1)^T$$

 $\max_{\mathbf{w}} J(\mathbf{w}) = \max_{\mathbf{w}}$

 $\mathbf{w} \propto \mathbf{S}_W^{-1}(\mathbf{m}_2 - \mathbf{m}_1)$

 $S_W = \sum (x_n - m_1)(x_n - m_1)^T + \sum (x_n - m_2)(x_n - m_2)^T$

$$= \max_{\boldsymbol{w}} \frac{\boldsymbol{w}^T \boldsymbol{S}_B \boldsymbol{w}}{\boldsymbol{w}^T \boldsymbol{S}_W \boldsymbol{w}}$$

Quadratic Discriminant Analysis (QDA)

- $-\frac{1}{2}(x-M_1)^T \sum_{i} (x-M_1) \frac{1}{2} \frac{|y|^2 |y|^2}{|x|^2 |y|^2} = x^T Ax + b^T x^{1/2}$ $+\frac{1}{2}(x-M_0)^T \sum_{i} (x-M_0) + \frac{1}{2} \frac{|y|^2 |y|^2}{|x|^2 |y|^2} = x^T Ax + b^T x^{1/2}$ Binary classification: choose C_1 if y > 0, otherwise C_2
 - Projection onto 1-dimensional y(x) from multi-dimensional x

are also involved

• Corresponds to a Normality (Gaussian) assumption like LDA, but now quadratic terms

Parameters:

• Closely related to Gaussian Generative Model Classifier – remember the Iris data

example in Quiz 1!
$$(x) M_{1/2} = \sum_{x \in \mathbb{Z}_{y=1}} (x - \mu_{y=1})^T \sum_{y=1}^{-1} (x - \mu_{y=1})$$
 Likelihood ratio
$$(x) M_{1/2} = \sum_{y=1}^{-1} (x - \mu_{y=1})^T \sum_{y=1}^{-1} (x - \mu_{y=1})$$
 Likelihood ratio
$$(x) M_{1/2} = \sum_{y=1}^{-1} (x - \mu_{y=1})^T \sum_{y=1}^{-1} (x - \mu_{y=1})$$

LDA vs. QDA

Both LDA and QDA can be derived from simple probabilistic models which model the class conditional distribution of the data P(X|y=k) for each class k. Predictions can then be obtained by using Bayes' rule, for each training sample $x \in \mathcal{R}^d$:

$$P(y=k|x) = rac{P(x|y=k)P(y=k)}{P(x)} = rac{P(x|y=k)P(y=k)}{\sum_l P(x|y=l) \cdot P(y=l)}$$

and we select the class k which maximizes this posterior probability.

More specifically, for linear and quadratic discriminant analysis, P(x|y) is modeled as a multivariate Gaussian distribution with density:

$$P(x|y=k) = rac{1}{(2\pi)^{d/2}|\Sigma_k|^{1/2}} \mathrm{exp}\left(-rac{1}{2}(x-\mu_k)^t \Sigma_k^{-1}(x-\mu_k)
ight)$$

where d is the number of features.

LDA vs. QDA

According to the model above, the log of the posterior is:

$$egin{aligned} \log P(y=k|x) &= \log P(x|y=k) + \log P(y=k) + Cst \ &= -rac{1}{2} \log |\Sigma_k| - rac{1}{2} (x-\mu_k)^t \Sigma_k^{-1} (x-\mu_k) + \log P(y=k) + Cst, \end{aligned}$$

where the constant term Cst corresponds to the denominator P(x), in addition to other constant terms from the Gaussian. The predicted class is the one that maximises this log-posterior.

Note: Relation with Gaussian Naive Bayes

If in the QDA model one assumes that the covariance matrices are diagonal, then the inputs are assumed to be conditionally independent in each class, and the resulting classifier is equivalent to the Gaussian Naive Bayes classifier naive_bayes.GaussianNB.

LDA is a special case of QDA, where the Gaussians for each class are assumed to share the same covariance matrix: $\Sigma_k=\Sigma$ for all k. This reduces the log posterior to: