-	අධනපන දෙපාර්තමේන්තුව cation – Western Province					
පළමු වාර ඇගයීම First Term Evaluation $ brace^{2019}$						
ලේණිය }10 විෂයය විදනව Subject }	වනය I කාලය } පැ. 01					
නම Name }	විභාග අංකය Index Number					

- පුශ්න සියල්ලටම පිළිතුරු සපයන්න. නිවැරදි හෝ වඩාත් සුදුසු පිළිතුර යටින් ඉරක් අදින්න.
- (1) පහත දැක්වෙන රාශි වලින් දෛශික රාශියක් වන්නේ,
 - (1) දුර ය.
- (2) වේගය ය.
- (3) කාලය ය.
- (4) පුවේගය ය.
- (2) මේද පරිවෘත්තීය හා ඇටම්දුළු වර්ධනයට අතෳාවශෳ වන මෙම විටමිනය ඌන වීමෙන් බෙරි බෙරි රෝගය හට ගනී. මෙම විටමිනය කුමක්ද?
 - (1) විටමින් A
- (2) විටමින් D
- (3) විටමින් C
- (4) විටමින් B

- (3) තාන ප්ලාස්ටය ලෙස හඳුන්වන්නේ මින් කවරක්ද?
 - (1) රික්තක පටලය
- (2) සෛල බිත්තිය
- (3) ප්ලාස්ම පටලය
- (4) නූෂ්ටි පටලය
- (4) 35 Cl නි අඩංගු පුෝටෝන, නියුටෝන හා ඉලෙක්ටෝන ගණන පිළිවෙලින්,
 - (1) 17, 18, 17 වේ
- (2) 17, 18, 18 වේ
- (3) 17, 17, 18 වේ
- (4) 17, 18, 16 වේ

- (5) රයිබොසෝම වල කෘතෳය කුමක්ද?
 - (1) සුාවීය දුවෘ නිපදවීම.

(2) පෝටීන සංස්ලේෂණය කිරීම.

(3) පුෝටීන පරිවහනය කිරීම.

- (4) ශක්තිය නිපදවීම.
- (6) සෛලයක නෘෂ්ටියේ වර්ණදේහ 46 ක් පවතින සත්ත්වයා පහත සතුන් අතුරින් කවුරුන්ද?
 - (1) මිනිසා
- (2) ගෙම්බා
- (3) වී කුරුල්ලා
- (4) මැස්සා
- (7) පුති අම්ල ඖෂධයක් නිපදවීමේ දී භාවිත වනුයේ පහත කුමන ලෝහයේ සංයෝගයක් ද?
 - (1) Mg

- (2) Na
- (3) Ca
- (4) K

පහත දැක්වෙන Y නැමැති මූලදුවෳයේ පරමාණුක වෘුහය ඇසුරින් 8 හා 9 පුශ්න වලට පිළිතුරු සපයන්න.

- (8) Y අයත් ආවර්තය හා කාණ්ඩය නිවැරදිව දක්වා ඇති පිළිතුර තෝරන්න.
 - (1) 2 වන ආවර්තයේ III වන කාණ්ඩයේ ය.
 - (2) 3 වන ආවර්තයේ III වන කාණ්ඩයේ ය.
 - (3) 2 වන ආවර්තයේ II වන කාණ්ඩයේ ය.
 - (4) 4 වන ආවර්තයේ III වන කාණ්ඩයේ ය.
- (9) ඉහත දක්වා ඇති Y මූලදවා කුමක් විය හැකිද?
 - (1) Mg
- (2) K
- (3) Ca
- (4) Al

- (10)එක්තරා චලිතයකට අදාලව පුවේග කාල පුස්තාරය පහත දැක්වේ. 6 s කාලය තුළ විස්ථාපනය වන්නේ.
 - (1) 27m කි (2) 45m කි (3) 54m කි
- (4) 108m කි
- පුවේගය V (ms-1)

(11)					දිශාවක් ඇත.			
	(C) විශාලත්වයක් න				දිශාවක් නැත.	_		
	ඉහත A,B,C හා D අ				· •			
	(1) A පමණි. (2) A හා B පමෘ	ණි.	(3)	C හා D පමණි.	(4) A හ) C පමණි.	
(12)	පහත දී ඇති අයන ඇති අයන වන්නේ,	අතුරින් සෝඩ්	යම් අයනයේ	(Na+)	ඉලෙක්ටුෝන	සංඛ්‍යාවට ස	මාන ඉලෙක්ටුෝන	සංබපාවක්
	(1) Cl ⁻	(2) 0)2-	(3) I	Mg ⁺¹	$(4) \text{ Ca}^{2+}$	+	
(13)	මූලදුවෳ කිහිපයක ඉ	ලෙක්ටෝන වින	ානසය පහත	දැක්වේ	්. දක්වා ඇති ස	පංකේත සම්මද	ත ඒවා නොවේ.	
	A – 2,1	В	3 – 2,3		C - 2,6	D - 2,7		
	මෙම මූලදුව¤වල සං	යුජතාව අනුපි@ි	ළිවෙළට දැක්	වෙන්නේ	ි කුමන පිලිතුරෙ	රහිද?		
	(1) 1, 3, 2, 1			(2) 1	.,3 , 6, 7			
	(3) 1, 3, 1, 2			(4) 1	, 5, 6, 7			
(14)	පහත දී ඇති අවස්ථ	ා සලකා බලන්	න.					
	A. පෘෂ්ඨවල කට්ටා ස	ාැපීම.	B. ස්ප	සු සූ	ෂ්ඨ අතරට ලිහි	සි තෙල් යෙදී(ම.	
	C.ස්පර්ෂ පෘෂ්ඨ අතර	ට බෝල බෙයා	රින් හෝ රෝ	ල බෙය	ාරින් යෙදීම.			
	ඉහත අවස්ථා අතරි	න් පෘෂ්ඨ වල භ	ඝර්ෂණය වැඩි	ෝ කර ග	ාත හැකි අවස්ථ	වාව / අවස්ථා	මොනවාද?	
	(1) A පමණි	(2) B පම	ණ <u>ි</u>	(3)	A හා B පමණි	(4) B න) C පමණි	
(15)	එක්තරා මූලදුවඃයක	ලක්ෂණ තුනක්	් පහත දී ඇ	ත.				
	• සිසිල් ප්ලය සමශ්	ා පුතිඛ්යාවන්	නොදැක්වූවද	, උණු ප	්ලය සමග පුති	ඛ්යාවක් දක්ව	3 .	
	• වාතයේ රත් කළ	විට දීප්තිමත්	සුදු දැල්ලක් ව	ඇති ක	රමින් දැල් වේ.			
	• තනුක අම්ල සම	ග පුතිකුියා කර	ර හයිඩුජන් ව	ායුව සා	දයි.			
	ඉහත ලක්ෂණ ෙ	පන්නුම් කරන	මූලදුව¤ය කු@	මක්ද?				
	(1) Na	(2) C		(3) M	I g	(4) S		
	පුවේගය V (ms ⁻¹)			පුස්	තාරයෙන් දැක්ෙ	වන්නේ,		
(16)	†			(1)	ඵ්කාකාර ත්වරණ	ායෙන් ගමන් :	කරන වස්තුවක ච	ලිතයකි.
	80	<u></u>		(2) €	ඵ්කාකාර මන්දන	ායෙන් ගමන් ස	ා රන වස්තුවක ච(ි	විතයකි.
				(3)	ඵ්කාකාර පුවේග	ායෙන් ගමන් ස	ාරන වස්තුවක ච@ි	ිුතයකි.
		→ 8	කාලය t (s)	(4) 8	බිශ්චලතාවයේ ව	පවතින වස්තු(වකට අදාල පුවේශ	ත කාල
				ξ	පුස්තාරයකි.			
(17)	සෛල වල ජලතුල¤ ඉන්දියිකාව මගින් ද?		ගැනීම හා	සන්ධාර	ාණය පවත්වා	ගැනීම සිදුක	රන්නේ පහත සඳ	දුහන් කුමන
	(1) සෛල ඞිත්තිය	(2	2) සෛල ප්ල	ාස්මය	(3) ගොල්ගී	ී දේහ	(4) රික්තකය	
(18)	යම් ජීවී සෛලයක සි	පිදුවන සෛලීය	දුවා බෙදීමේ	් කුියාව	ලිය හඳුන්වන ම	තම කුමක්ද?		
	(1) සෛල විභේදනය	(2	2) සෛල විශ	ශ්ෂණය	(3) මෙසල දි	විභාජනය	(4) සෛල පුනර්ව	ර්ධණය
(19)	ස්කන්ධය 2000000 g	; වන වස්තුවක්	3 20ms ⁻¹ පුණේ	විගයකිං	ත් ගමන් කරයි (නම් එම වස්තු	වේ ගමෳතාව කුම	ක්ද?
	(1) 40 kgms ⁻¹	(2) 4000	gms ⁻¹	(3)	40000 kgms ⁻¹	(4) 40	0000000 kgms ⁻¹	

(20)	පොස්පරස් හා හයිඩු)ජන් පමණක් අඩංගු වන	සංයෝගයෙ	ස් නිවැරදි රසාය ේ	තික සූතුය මින් කු	ලමක්ද?
	(1) PH	(2) PH ₂	(3)	PH_3	(4) PH ₄	
(21)	කැල්සියම් පොස්ෆේ	්ට් වල නිවැරදි රසායනික	සූතුය වන	ත්නේ,		
(1) CaPO ₄	(2) Ca ₃ PO ₄	(3)	$Ca_2(PO_4)_3$	(4) Ca ₃ (PO ₄))2
(22)	0 0 0	The same				
	200	STATE OFFICE	ඉහත රූ	පවල පෙන්වා ඇ	ත්තේ සෛලය තු	ල පවතින ඉන්දියිකා
		Control of the last	වර්ග 2 කි	හි. Aහා B පිළි	වෙළින් නම් කරන්	්න.
		Anterior Mari				
	(A)	(B)				
(1	l) මයිටුකොන්ඩුයම ,	ගොල්ගි සංකීර්ණය	(2)	ගොල්ගි සංකීර්ණ	ාය , රළු අන්ත:8	ඵ්ලාස්මීය ජාලිකාව
(3	3) නූෂ්ටිය , මයිටුහෙ	තාන්ඩ <u>ි</u> යම	(4) 8	අන්ත:ප්ලාස්මීය (ජාලිකාව , ගොල්	නි සංකීර්ණය
(23)	ගමෳතාවය දක්වන	පුකාශනය වනුයේ, (m =	= ස්කන්ධය	, v = පුවේග	ය)	
	(1) mv	(2) $\frac{m}{v}$	(3)	$\frac{v}{m}$	(4) m ² v	
(24)	පහත පුකාශන අත	රින් නිව්ටන්ගේ දෙවන නි	යමය පැහැ	ැදිි කරනු ලබන <u>ප</u>	ෘකාශය/පුකාශ ස	ඉමක්ද?
	a. වස්තුවක ඇති	වන ත්වරණය , අසමතුලිප	ා බල යට අ	නුලෝමව සමානු	පාතික වේ.	
	b. වස්තුවක ඇති	වන ත්වරණය , අසමතුලිප	ත බලයට <u>ප</u>	ූති <u>ලෝ</u> මව සමානු	පාතික වේ.	
	c. ත්වරණය ස්කෘ	ත්ධයට අනුලෝමව සමානු <u>ද</u>	පාතික වේ.			
	d. ත්වරණය ස්කෘ	ෝධයට පුතිලෝමව සමානු <u></u> ව	පාතික වේ.			
	(1) a හා d පමණි		(2)	a හා c පමණි		
	(3) b හා c පමණි		(4)	a,b,c හා d යන	සියල්ලම	
(25)	සංයෝගයක රසාය	නික සූතුය X₂Y වේ. X හා	Y සඳහා	ගැලපෙන මූලදුදි	ටූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූ	ළින් දක්වා ඇත්තේ කුමන
	පිළිතුරෙහි ද?					
(1) Mg, Cl	(2) K,O	(3)	Mg, O	(4) K, Cl	
(26)	ඩියුටීරියම් සමස්ථා	නිකය දැක්වෙන සම්මත අ	නකාරය කුම	මක්ද?		
	$(1)_{1}^{1}H$	(2) ${}_{1}^{2}$ H	(3)	³ H	$(4)_{2}^{2}H$	
(27)	ගසකින් ගෙඩියක් දි	ටැටීමට අදාල පුවේග කාල) පුස්තාරය	කුමක්ද?		
	▲ \/ (me ⁻¹)	↑ V (ms ⁻¹)		↑ V (ms ⁻¹)	A	V (ms ⁻¹)
	V (ms ⁻¹)	T V (IIIS)		V (III3 1	Ī	V (III3)
		(s) (2)	→ t (s)		\rightarrow t (s)	.
	(1)	(2)		(3)		(4) t (s)
(28)				වල හරිතක්ෂය	ඇතිවීමට බලප	ාන, ඇමයිනෝ අම්ල හා
		කයක් වන මූලදුවෳය කුමෑ (2) සැසුන්	කළෑ	(2) කැල්සිය	a (4)	ದಿನೆನ
(20)	(1) සල්ෆර්	(2) අයන්		(3) කැල්සිර		සින්ක්
(29)		ලෝහාලෝහ සහ අලෝහ (2) Ma N				N O E
(20)	(1) Na, Al, B	(2) Mg, N		(3) Na, Si,		N, O, F
(30)		ා භලයක යෙදීවට චූහ	4111S ⁻² ක	ා තාපටමායක හි	∪ ගනනෙ නම	එම වස්තුවේ ස්කන්ධය
	කොපමණද? (1) 0 25 kg	(2) 4 12~		(3) 16 lza	(4)	64 kg
	(1) 0.25 kg	(2) 4 kg		(3) 16 kg	(4)	64 kg
			[3]			

	යම් වස්තුවක, පුවේගය ද මන්දනය කීයද?	තත්පර 4 ක් තුළදී පුවේග	ාය 16ms ⁻¹ සිට 4ms	s ⁻¹ දක්වා ඒකාකාර§	ව අඩු වී නම් එම වස්තුවේ
	(1) -3ms ⁻²	(2) -3ms ⁻¹	(3) 3ms	S^{-2} (4)	3ms ⁻¹
(32)	. ,		, ,	, ,	ඉහළ නැගී උපරිම උස
(=)	කොපමණද? (g=10ms	_		Gé. co cuéc	
	(1) 10 m	(2) 30 m	(3) 35 r	m (4)	45 m
(33)	"X" නම් වූ එක්තරා මූල	දුව¤යක ඉලෙක්ටුෝන විඃ	තහසය 2,8,8,1 වේ.	මෙම මූලදුවඃ කුමඃ	ා් විය හැකිද?
	(1) Ca	(2) Mg	(3) K	(4)	Na
(34)	පහත දී ඇති සාධක ව	අතුරින් එකිනෙක හා ස්ව	පර්ශ වන වස්තු අත	ාර ඇතිවන සීමාකා	රී ඝර්ෂණ බලය කෙරෙහි
	බලපාන සාධකය මින් ස	ාවරක්ද?			
	(1) ස්පර්ශ පෘෂ්ඨ වල භ	ස්වභාවය.	(2) ස්පර්ශ වන 8	වස්තු වල ස්කන්ධය	
	(3) ස්පර්ශ වන වස්තු	වල පරිමාව.	(4) ස්පර්ශ වන ප	සස්ඨ වල වර්ගඵල <u>ග</u>	3.
(35)	වස්තුවක චලිතය නිරූප	ණාය කිරීමට අදින ලද වි	ස්ථාපන කාල	_ විස්ථාප _	ා
	පුස්තාරයක් රූපයේ දැස	්වේ. එයට අනුරූප නිවැ	රදි පුවේග කාල		
	පුස්තාරය පහත දැක්වේ	න පුස්තාර අතුරෙන් කුම	ක්ද?		
					 කාලය
පු© _	ව්ගය පුවේ	නය	_ පුවේගය	පුවේගය	
	9	↑		†	/
L	— කාලය	A manam			
(1)		(2) moea	(3)	කාලය <u>(4)</u>	——▶ කාලය
(36)	5kg වස්තුවක් සිරස්ව ඉ	ඉහළ සිට පහළට චලනය	වේ. මෙහිදී නියතව	පවතින දෛශික ර	ාශිය කුමක්ද?
	(1) පුවේගය	(2) විස්ථාපනය	(3) ගමනතාවය	(4) ත්වරණා	3
(37)	- පහත දී ඇති පුකාශ ස	ලකා බලන්න.			
	_	ු දුවූ පරමාණුවල පෝටෙ	ා්න ගණන සමාන වේ	5.	
		- දුවඃ පරමාණුවල ඉලෙක්¢			
		- දුවඃ පරමාණු වල නියුරෙ			
G	ූූ කාශ අතුරින් සතය				
	(1) A පමණි	(2) B පමණි	(3) C පමණි	(4) A හා C	පමණි
(38)	සෛලයක පුමාණය හෙ	් වියළි බර අපුතිවර්ත _ී	ලෙස වැඩිවීම හඳුන්දි	වන්නේ කෙසේද?	
	(1) සෛල විකසනය.	(2) සෛල වර්ධනය.			විශේෂණය.
(39)	සත්ත්ව දේහ තුළ කාබෙ				
	(1) පිෂ්ටය ලෙයසි	(2) සෙලියුලෝස් ලෙස			· -
(40)	. ,	<u> </u>			ි වෙනස් වී නම්, එම කාලය
,	තුල එම වස්තුවේ ත්වර		- -	J	,
	(1) 3ms ⁻²	(2) 4ms ⁻²	(3) 5ms	s^{-2} (4)	-3ms ⁻²

11	ධසාපන දෙපාර්තමේන්තුව cation – Western Province
පළමු වාර අ	ැගයීම
First Term Eva	aluation } 2019
ලේණිය }10 විෂයය විදසාව Subject }	වනය II කාලය } පැ. 03
නම	විතාග අංකය }
Name }	Index Number }

 ${f A}$ කොටසේ පුශ්න හතරට දී ඇති ඉඩ පුමාණය තුළ පිළිතුරු සපයන්න. ${f B}$ කොටසේ පුශ්න ${f 5}$ න් ${f 3}$ කට පමණක් පිළිතුරු සපයන්න.

${f A}$ කොටස

- 01. A) නිමල් ඉදිිආප්ප, බිත්තර හොදි, ඉදුණු කෙසෙල් හා කිරි තේ උදේ ආහාර වේල සඳහා ගන්නා ලදී.
 - i. ඉහත ආහාර දුවඃ ඇසුරින් පහත වගුව සම්පූර්ණ කරන්න.

ii. a. ඉහත ආහාර අතරින් ඩයි සැකරයිඩ් අඩංගු ආහාර වර්ගයක් නම් කරන්න.

b. ඔබ සඳහන් කළ ආතාරයේ අඩංගු ඩයි සැකරයිඩ වර්ගයක් නම් කරන්න. (ල.1)

.....

B) X හා Y සිසුන් දෙදෙනා A නගරයේ සිට B නගරයට යෑම සඳහා භාවිතා කළ මාර්ග සටහන පහත සටහනේ දැක්වේ.

- i. X ගමන් කළ දුර කොපමණද? (ල.1)
- ii. X ගේ විස්ථාපනය සොයන්න. (ල.1)
- iii. Y ට A නගරයේ සිට B නගරයට යෑමට තත්පර 40 ක් ගතවිය. ඔහුගේ පුවේගය සොයන්න.

(©.2

iv. එක්තරා වස්තුවක චලිතය සම්බන්ධ දුර කාලයත් සමග වෙනස්වීම පහත වගුවේ දැක්වේ.

කාලය (s)	0	1	2	3	4	5
දුර (m)	0	5	10	15	20	25

- a. ඉහත චලිතය සම්බන්ධ පුස්තාරය කොටුව තුල අඳින්න.
- b. පළමු තත්පර තුනේ දී එහි වේගය කොපමණද?.....

(©.2)

(©.1)

C) ©&	හ්ඩියම් මූලළවෘ සම්මත ආකාරයට පහත දක්වා ඇත. එය ඇසුරින් පිළිතුරු සපයන්න.	
	²³ ₁₁ Na	
i.	සෝඩියම් මූලදුවනයේ ස්කන්ධ කුමාංකය ලියන්න	(©.1)
ii.	සෝඩියම් හි ඉලෙක්ටුෝන විනතසය ලියන්න.	(©.2)
iii.	සෝඩියම් ආවර්තිතා වගුවේ අයත් වන කාණ්ඩය හා ආවර්තය සඳහන් කරන්න.	(©.1)
	කාණ්ඩය ආවර්තය	
02. A	A) පෝටීන සියලුම සපීවී සෛල වල අතනාවශන සංඝටකයක් වේ. එමෙන්ම පෝටීන පීවී	
	දේහ තුළ විශාල කාර්යභාරයක් ඉටුකරයි.	
i.	පෝටීනවල අඩංගු පුධාන මූලදුව¤ හතර නම් කරන්න.	(©.1)
ii.	එන්සයිම යන්න හඳුන්වන්න.	
		(©.1)
iii.	පිෂ්ටය මත ඇමයිලේස් එන්සයිමයේ කුියාකාරිත්වයෙන් සැදෙන ඵලය කුමක්ද?	(©.1)
iv.	විදුසාගාරයේ ඇමයිලේස් එන්සයිමය නොමැති අවස්ථාවක ඒ සඳහා ඔබට භාවිතා කළ හැකි දුවසයක්	නම් කරන්න.
		(©.1)
v. a	a. පිෂ්ට දුාවණායට ඇමයිලේස් එන්සයිම දමා අයඩීන් දුාවණය එකතු කර මිනිත්තු කිහිපයක් තබා නිරීෘ	ත්ෂණය කරන
	ලදී. ඛුයාකාරකමේදී ඇමයිලේස් එන්සයිමයේ ඛුයාව අවසන් වූ බව ඔබ දැන ගන්නේ කෙසේද?	
		(©.2)
ŀ	ා. ඇමයිලේස් කිුයාව අවසන් වූ පසු සැදු ඵලය හඳුනා ගැනීමට සුදුසු පුතිකාරකය දක්වා එහිදි ලැබෙන	ා වර්ණා
	ව්පර්යාස වෙන් වෙන්ව දක්වන්න.	(©.2)
		••
B) i.	පහත අවස්ථාවලදී භාවිතා වන ජලය සතු ගුණ නම් කරන්න.	
	a. ජලයේ ඔක්සිජන් දියවී තිබීම නිසා ජලජ ජීවින්ගේ ස්වසනයට දායක වීම	(@.1)
	b. ජලය අයිස් බවට පත්වීමේ දී අයිස් ජලය මත පාවීම	(©.1)
	c. උස ශාකවල කඳ තුළින් ජලය ඉහළට පරිවහනය වීම	(©.1)
ii.	පහත සඳහන් ජෛව අණුවල තැනුම් ඒකකය සඳහන් කරන්න.	
	A. කාබෝහයිඩේට	(©.1)
	B. DNA	(©.1)
iii.	සෛල	(©.1)
iv ۵	තාබෝහයිඩේට වල පොදු අණුක සූතුය කුමක්ද?	(©.1)

03. A) ආවර්තිතා වගුවේ අනුයාත මූලදුවෘ 8 ක් හා ඒවායේ පරමාණුක කුමාංක පහත වගුවේ දැක්වේ. (මෙහි දී ඇති සංකේත මූලදුවෘ පරමාණු වල සතෘ සංකේත නොවේ.)

පරමාණුක කුමාංකය	3	4	5	6	7	8	9	10
<u>මූලද</u> ව¤	Α	В	С	D	Е	F	G	Н

මෙම සංකේත පමණක් යොදවා ගෙන පහත අසා ඇති පුශ්න වලට පිලිතුරු සපයන්න.

i) F^{2-} අයනයේ ඉලෙක්ටෝන විනනාසයට සමාන ඉලෙක්ටෝන විනනාසයක් ඇති මූලදුවන කුමක්ද?

.....(©.1)

- ii) සංයුජතාව 2 වන මූලදුවෘ යුගලයක් ඉහත වගුවෙන් තෝරා ලියන්න...... (ල.2)
- iii) කාමර උෂ්ණාත්වයේ දී උච්ච වායුවක් ලෙස පවතින්නේ කුමන මූලදුවෳයද?...... (ල.1)
- iv) ජලය සමග වඩාත් පුබල අන්දමින් පුතිකිුිිියා කරන මුලදුවූ කුමක්ද? (ල.1)
- v) ඉහත එක් මූලළවෳයක බහුරූප ආකාරයක් විදුලිය සන්නයනය කරයි. එම මූලළවෳ ලියා දක්වන්න.
- (ල.1) P.O.R.S.T. අනයාතු මුලුදවල 5 කි. මෙහි T. මුලුදවල ආගන් වේ. මුලුදවල වල පළමු වැනි අයනීකරණ ශක්ති විචලනය

B) P, Q, R, S, T අනුයාත මූලදවස 5 කි. මෙහි T මූලදවස ආගන් වේ. මූලදවස වල පළමු වැනි අයනීකරණ ශක්ති විචලනය පහත පුස්තාරයෙන් දැක්වේ.

- i. අයනීකරණ ශක්තිය මනින ඒකකය ලියා දක්වන්න...... (ල.1)
- ii. විදුහුත් සෘණතාව වැඩිම වන්නේ ඉහත සඳහන් කුමන මූලදුවශයේද?...... (ල.1)
- iii. T මූලදුවසයේ අයනීකරණ ශක්තිය ඉහලම අගයක් ගැනීමට හේතු 2 ක් සඳහන් කරන්න.

(©.2)

iv. R හයිඩුජන් සමග සංයෝජනය වීමෙන් සෑදෙන සංයෝගයේ රසායනික සූතුය කුමක්ද?

.....(©.2)

v. වඩාත් පුබල ආම්ලික ඔක්සයිඩය සාදන මුලදුවෘ කුමක්ද?(ල.1)

vi. R වාතය තුල දහනය කිරීමේ දී දැකිය හැකි නිරීක්ෂණ 2 ක් ලියන්න. (ල.2)

04. A) වාතය පිරවූ බැලුනයක්, සෙලෝටේප් කැබලි හා බෝල්පොයින්ට් පෑන් බටය ආධාරයෙන් රූපයේ දැක්වෙන පරිදි ඇටවුම සකස් කර ඇත.

	i)	වාතය බැලුනයෙන් ඉවතට යාහැකි පරිදි බැලුනයේ කටෙති ගැට ගසා ඇති නූල බුරුල් කල විට ද නි්රීක්ෂණ 2 ක් ලියන්න	_
			(©.2)
	ii)	බැලුනය චලනය වන දිශාව හා බැලුනය තුල ඇති වාතය පිට වී යන දිශාව ඊතල මගින් පෙන්නුර	මී කරන්න.
			(©.2)
	iii)	මෙම සංසිද්ධියට අදාළ වන චලිතය පිළිබඳ නිව්ටන් නියමය කුමක්ද?	
			(©.1)
	iv)	බැලුනය කම්බිය දිගේ වඩා වේගයෙන් චලනය කිරීම සඳහා මෙම ඇටවුමෙහි සිදු කළ හැකි රේ ලියන්න.	
			(©.2)
	v)	මෙම සංසිද්ධිය එදිනෙදා පීවිතයේ ඔබ දකින වෙනත් අවස්ථාවක් ලියන්න.	
			(©.1)
	vi)	මෙම බැලුනයේ චලනය සිදුවන ආකාරය පැහැදිලි කරන්න.	(©.2)
B)	එක්තර	ා වස්තුවක බර 30N කි.	
-,	i.	එහි ස්කන්ධය කීයද? (g= 10ms ⁻²)	(©.1)
	ii.	වස්තුවක ස්කන්ධය යනුවෙන් ඔබ අදහස් කරන්නේ කුමක්ද?	(©.1)
	iii.	වස්තුවක බර මැනීමට විදුසාගාරයේ දී යොදා ගත හැකි උපකරණය කුමක්ද?	
			(©.1)
	iv.	ගසක ඇති ගෙඩියක් නටුවෙන් ගිලිහී ගුරුත්වය යටතේ පහළට වැටේ. තත්පර 4 කදී එහි පුවේ	ගය සොයන්න.
		(g= 10ms ⁻²)	
			(0.2)

B කොටස

පුශ්න අංක 5,6,7,8 හා 9 යන පුශ්න වලින් පුශ්න 3 කට පමණක් පිළිතුරු සපයන්න.

05. (A) සියලූම ජීවින් තනි සෛලයකින් හෝ සෛල සමූහයකින් ගොඩනැගී ඇත. පහත a හා b වලින් දැක්වෙන්නේ ජීවීන්ගේ සෛල වර්ග දෙකකි.

- i. a හා b අතරින් සත්ත්ව සෛලය දක්වා ඇත්තේ කුමන අක්ෂරයෙන්ද?
- ii. a සෛල නිරීක්ෂණය සඳහා ලබාගත යුතු නිදර්ශකයන් නම් කරන්න. (ල.1)
- iii. පහත සඳහන් සෛල ඉන්දිකා හඳුනාගෙන නම් කරන්න.

iv. a හා c මගින් ඉටුකරන කාර්යයන් වෙන වෙනම ලියන්න.

- a. b. c. (©.3)
- v. සෛල බිත්තිය ගොඩනැගී ඇති රසායන දුවෘ කුමක්ද? (ල.1)
- vi. සත්ත්ව සෛලයක නොමැති ශාක සෛලයක පවතින ලක්ෂණ 2 ක් සඳහන් කරන්න. (ල.2)
- vii. සෛල වාදයේ සඳහන් කරුණු 2 ක් ලියන්න. (ල.2)
- B) සිසුන් ආහාරයක එක්තරා පෝෂකයක් හඳුනාගැනීමට සිදුකල කුියාකාරකමක එක් පියවරක් පහත ලෙස දක්වා තිබුණි.

- i. ආහාර පුභේදයෙන් හඳුනාගෙන ඇති පෝෂකය කුමක්ද? (ල.1)
- ii. එම පෝෂකය ගොඩ නැගී ඇති සංඝටක දෙක නම් කරන්න. (ල.2)
- iii. ඉහත සටහනේ P පුතිකාරකය නම් කරන්න. (ල.1)
- iv. සෛල පටල තැනීම දායක වන ලිපිඩමය සංඝටකයක් ලියන්න. (ල.1)
- v. ආහාරයේ සංඝටකයක් ලෙස ජලය පවතින බව හඳුනාගැනීමට ඔබ සිදුකළ ඛ්යාකාරකමේදී භාවිත කල රසායන දුවෘ හා එහිදී ලැබුණු නිරීක්ෂණය දක්වන්න.
 - (0.2)

(0.1)

(0.1)

vi. ශාක තුල කැල්සියම් බනිජය ඌන වීම නිසා පෙන්වන ඌනතා ලක්ෂණයක් ලියන්න. (ල.1)

06. (A). ආවර්තිතා වගුවේ තෙවන ආවර්තයට අයත් මුලදුවෘ සියල්ලම අනුපිළිවෙළින් තොරව පහත දක්වා ඇත.

S P Cl Si Na Al Ar Mg

i. ඉහත මුලදුවෘ සියල්ල ආවර්තිතා වගුවේ පිහිටන ආකාරයට පෙළ ගස්වන්න.

(0.2)

ii.මෙම මූලදුවෘ අතරින් වඩාත්ම භාෂ්මික හා වඩාත්ම ආම්ලික ඔක්සයිඩ වල රසායනික සූතුය ලියා දක්වන්න.

(0.2)

iii. සෝඩියම් ලෝහය ගබඩාකරණ ආරක්ෂණ පිලිවෙත කුමක්ද?

(0.1)

iv. ඉහත මුලදුවෘ අතරින් සංයුජතා කවචයේ ඉලෙක්ටෝන 4 ක් ඇති මුලදුවෘයේ ඉලෙක්ටෝන විනෘාසය ලියන්න.

(0.2)

v.සිලිකන් මුලදුවූයයේ භාවිත අවස්ථා 2 ක් ලියන්න.

(0.2)

(B). ශිෂ්‍යකු විසින් කුඩා සෝඩියම් කැබැල්ලක් ගෙන ජල බඳුනකට දමා නිරීක්ෂණය කරන ලදී.

i. මෙහිදී ලැබෙන නිරීක්ෂණ දෙකක් ලියන්න.

(o.2)

ii. සෝඩියම් ලෝහය සතු භෞතික ගුණ දෙකක් දක්වන්න.

(_©.2)

iii. සෝඩියම් ලෝහයේ භාවිත අවස්ථා දෙකක් දෙන්න.

(_©.2)

(C). එකම මූලදුපයේ එකිනෙකට වෙනස් ස්වරූප බහුරූපී ආකාර ලෙස හඳුන්වයි.

i. කාබන් හි අස්පටිකරූපි ආකාර දෙකක් ලියන්න.

(0.2)

ii. කාබන් හි අස්පටිකරූපි ආකාරයක් භාවිතයට ගන්නා අවස්ථාවක් ලියන්න.

(o.1)

iii. කාබන් හි ඝනත්වය අධිකම බහුරූපි ආකාරය දක්වා එයින් ලබා ගන්නා පුයෝජනයක් ලියන්න. (ල.2)

07. (A) සරල රේඛ්ය මාර්ගයක ධාවනය වූ රථයක චලිතයට අදාල පුවේග කාල පුස්තාරය පහත පරිදි වේ.

ii. රථය ලබාගෙන ඇති උපරිම පුවේගය කොපමණද? (ල.1)

iii. මුල් තත්පර 10 තුළ දී රථයේ පුවේග වෙනස්වීමේ සිසුතාවය ගණනය කරන්න. (ල.2)

iv. A සිට B දක්වා සිදුවු විස්ථාපනය ගණනය කරන්න. (ල.2)

(B) i ඉහත පුස්ථාරය පරිදි රථය මත බාහිර අසංතුලිත බල කිුයාත්මක වූ අවස්ථා දෙක දක්වන්න. (ල.2)

(0.2)

ii නිව්ටන්ගේ දෙවන නියමයෙන් සඳහන් වන කරුණු දෙක දක්වන්න.

(0.4)

iii රථයේ ස්කන්ධය 1200kg නම් මුල් තත්පර 10 දී රථය මත කිුිිිියාත්මක වූ බලය ගණනය කරන්න. (ල.2)

(C) i. මෝටර් රථයක ගමන් කරන මගීන් ආසන පට් පැළඳීමෙන් ඇති පුයෝජනය කුමක්ද?

(0.2)

ii. A සිට B දක්වා ගමන් කිරීමේ දී රථයේ ගමෘතාවය ගණනය කරන්න.

(0.2)

iii. ඉහත රථයේ බර ගණනය කරන්න. (g=10ms-2)

(0.2)

- 08. (A) සෛලයකට වර්ධනය වීම මෙන්ම ගුණනය වීමට ද හැකියාව ඇත. ගුණනය වීමෙන් නව සෛල ඇති වේ.
 - i. සෛල විතාජනය වීම යන්න හඳුන්වන්න.

(0.2)

- ii. මානව යුක්තානුවක් සෑදීමේ දී මවගේ හා පියාගෙන් ලැබෙන වර්ණදේහ ගණන වෙන වෙනම ලියන්න. (ල.2)
- iii. සමාන පුවේණික තොරතුරු දරණ වර්ණදේහ යුගලක් හඳුන්වන නම කුමක්ද?

(p.1)

(B) එක්තරා සෛලයක් විභාජනය වීමේ අවස්ථා දැක්වෙන දල රූප සටහනක් පහත දැක්වේ.

- i. ඉහත විභාජන කුමය කුමක්ද? (ල.1)
- ii. ඉහත විභාජන කුමය මිනිස් දේහයක සිදුවන ස්ථානයක් දක්වන්න. (ල.1)
- iii. ඉහත විභාජන කුමය හැරණු විට ඇති අනෙක් විභාජන කුමය කුමක්ද? (ල.1)
- iv. ඉහත i.හි විභාජන කුමයේ වැදගත්කම් 2 ක් ලියන්න. (ල.2)
- v. ඉහත සටහනේ දක්වා ඇති 1 වන අවස්ථාවේ දී හා 2 වන අවස්ථාවේ දී සිදුවන විභාජන කුම වෙන වෙනම ලියන්න. $(\varrho,2)$
- (C) ඝර්ණය පිලිබඳ පායෝගික කියාකාරකමක දී මේසයක් මත ලී කුට්ටියක් තබා බලයක් ලබා දී දුනු තරාදියේ පාඨාංක ලබාගන්නා ලදී. දුනු තරාදි පාඨාංකය 15N අවස්ථාවේ දී ලී කුට්ටිය යන්තමින් චලනය විය.

- i. ඉහත ලී කුට්ටියේ චලිතය ඇරඹීමට පෙර කිුයාකරන ඝර්ෂණ බලය හඳුන්වන නම කුමක්ද? (ල.1)
- ii. මෙහිදී ලී කුට්ටිය මත කුියාකරන බලය වැඩිකළ අවස්ථාවේ දී,
 - a. ලී කුට්ටිය චලනය වීම ඇරඹිණි. එම අවස්ථාවේ දී එම පෘෂ්ඨ 2 අතර ඇතිවන උපරිම ඝර්ෂණ බලය හඳුන්වන නම කුමක්ද? (ල.1)
 - b. එහි අගය කීයද? (ල.1)
- iii. ඉහත වස්තුවේ බර කොපමණද? (ල1)
- iv. මෙහිදී වස්තුවට යෙදෙන අතිලම්බ තෙරපුම් බලය (R) කොපමණද? (ල.1)
- v. නිව්ටන් තරාදියේ අගය 20N වන විට ලී කුට්ටිය මත බලපෑ අසංතුලිත බලය කොපමණද? (ල.1)
- vi. 20N යොදන අවස්ථාවේ ලී කුට්ටියේ ත්වරණය ගණනය කරන්න. (ල.2)

09. (A) පහත පෙන්වා ඇත්තේ ආවර්තිතා වගුවේ මුලදුවූ කිහිපයක් පිහිටා ඇති ආකාරයයි. ඒවා දක්වා ඇත්තේ සම්මත සංකේත වලින් නොවේ. දී ඇති සංකේත ඇසුරින් පුශ්න වලට පිළිතුරු සපයන්න.

					S
P			Q	R	
	Т			U	V
W					

- i. ආවර්තිතා වගුව ගොඩනැගීමට යොදාගෙන ඇති නිර්ණායක දෙක දක්වන්න. (ල.2)
- ii. ඉහත මුලදුවෘ අතරින් අඩුම පුථම අයනිකරණය ශක්තිය ඇති මුලදුවෘ කුමක්ද? (ල.1)
- iii. Q මුලදුවපයේ ඉලෙක්ටෝන විනපාසය ලියන්න. (ල.1)
- iv. T හා U අතර සෑදෙන සංයෝගයේ සුතුය ලියා දක්වන්න. (ල.2)
- v. P හා W පළමු කාණ්ඩයට ඇතුලත් කිරීමට හේතුව කුමක්ද? (ල.1)
- vi. R හා U මුලදවූ දෙක අතරින් විදුපුත් සෘණතාව වැඩි අගයක් ගන්නේ කුමක්ද? (ල.1)
- vii. T පරමාණුවේ පෝටෝන 12 ක් ද නියුටෝන 12 ක් ද ඇත. T පරමාණුවේ සම්මත අංකනය ලියා දක්වන්න.

(c.2)

(B) යන්තු ක්‍රියාකිරීමේ දී එකිනෙක ස්පර්ශ වී ඇති පෘෂ්ඨ අතර ඝර්ෂණ බල ක්‍රියාකාත්මක වීම සිදුවේ. ඝර්ෂණය කෙරෙහි බලපාන එක් සාධකයක් සොයා බැලීමට සිදුකල ක්‍රියාකාරකමක අවස්ථා දෙකක් (1) හා (2) රූප සටහන් වලින් දැක්වේ.

- i. මෙහිදී සොයා බැලූ ඝර්ෂණය කෙරෙහි බලපාන සාධකය කුමක්ද? (ල.1)
- ii. මෙම කියාකාරකමේ දී නියතව තිබිය යුතු සාධකය කුමක්ද? (ල.1)
- iii. ගතික සර්ෂණ බලය යනුවෙන් අදහස් වන්නේ කුමක්ද? (ල.2)
- iv. සර්ෂණ බලය බලපෑම නිසා සිදුවන අවාසි 2 ක් ලියන්න. (ල.2)
- v. පහත අවස්ථා වල ඝර්ෂණ බල වැඩිකර ගැනීමට යොදන උපකුම මොනවාද?
 - a. ගස් නැගීම
 - b. වාහනයක ටයර් මතුපිට (ල.2)
- vi. වර්ෂා දිනවල දී බෑවුම් සහිත මාර්ග වල වාහන අනතුරු වැඩිවීමට හේතුව පහදන්න. (ල.2)