1 Определения и формулировки

1.1 Внутренняя точка множества, открытое множество, внутренность

a — внутренняя точка множества D, если $\exists U(a):U(a)\subset D$, т.е. $\exists r>0:B(a,r)\subset D$ D — открытое множество, если $\forall a\in D:a$ — внутренняя точка D Внутренностью множества D называется $Int(D)=\{x\in D:x$ — внутр. точка $D\}$

1.2 Предельная точка множества

a — предельная точка множества D, если

$$\forall \dot{U}(a) \ \dot{U}(a) \cap D \neq \emptyset$$

1.3 Замкнутое множество, замыкание, граница

D — замкнутое множество, если оно содержит все свои предельные точки.

 $\overline{D} = D \cup$ (множество предельных точек D) — замыкание.

Граница множества — множество его граничных точек. Обозначается ∂D

1.4 Изолированная точка, граничная точка

a — изолированная точка D, если $a \in D$ и a — не предельная, то есть:

$$\exists U(a) \quad U(a) \cap D = \{a\}$$

a — граничная точка D, если $\forall U(a) \quad U(a)$ содержит точки как из D, так и из D^c

1.5 Описание внутренности множества

- 1. IntD откр. множество
- 2. $IntD = \bigcup_{\substack{D \supset G \\ G \text{ открыт}}}$ максимальное открытое множество, содержащееся в D
- 3. D откр. в $X \Leftrightarrow D = IntD$

1.6 Описание замыкания множества в терминах пересечений

$$\overline{D} = \bigcap_{\substack{D \subset F \\ F-\text{ замкн.}}} F-$$
 мин. (по вкл.) замкн. множество, содержащее D .

1.7 Верхняя, нижняя границы; супремум, инфимум

 $E\subset\mathbb{R}.$ E — orp. сверху, если $\exists M\in\mathbb{R}\ \forall x\in E\ x\leq M.$ Кроме того, всякие такие M называются верхними границами E.

Аналогично ограничение снизу.

$$E \subset \mathbb{R}, E \neq \emptyset.$$

Для E — огр. сверху супремум (sup E)— наименьшая из верхних границ E.

Для E — огр. снизу **инфимум** (sup E) — наибольшая из нижних границ E.

1.8 Техническое описание супремума

Техническое описание супремума: $b = \sup E \Leftrightarrow \begin{cases} \forall x \in E \ x \leq b \\ \forall \varepsilon > 0 \ \exists x \in E \ b - \varepsilon < x \end{cases}$

1.9 Последовательность, стремящаяся к бесконечности

 $B \mathbb{R}$:

1.
$$x_n \to +\infty \quad \forall E > 0 \ \exists N \ \forall n > N \ x_n > E$$

2.
$$x_n \to -\infty \quad \forall E \ \exists N \ \forall n > N \ x_n < E$$

3.
$$x_n \to \infty \Leftrightarrow |x_n| \to +\infty$$

1.10 Компактное множество

 $K\subset X$ — компактное, если для любого открытого покрытия этого множества \exists конечное подпокрытие $\Leftrightarrow \exists \alpha_1\dots\alpha_n \quad K\subset \bigcup_{i=1}^n G_{\alpha_i}$

1.11 Секвенциальная компактность

Секвенциально компактным называется множество $A \subset X : \forall$ посл. (x_n) точек $A \equiv$ подпосл. x_{n_k} , которая сходится к точке из A

1.12 Определения предела отображения (3 шт)

$$(X, \rho^x), (Y, \rho^y)$$
 $D\subset X$ $f:D\to Y$ $a\in X, a$ — пред. точка множества $D,A\in Y$ Тогда $\lim_{x\to a}f(x)=A$ — предел отображения, если:

1. По Коши:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D : 0 < \rho^X(a, x) < \delta \quad \rho^Y(f(x), A) < \varepsilon$$

2. На языке окрестностей:

$$\forall U(A) \ \exists V(a) \ \forall x \in \dot{V}(a) \ f(x) \in U(A)$$

- 3. По Гейне: $\forall (x_n) \text{посл. в } X$:
 - (a) $x_n \to a$
 - (b) $x_n \in D$
 - (c) $x_n \neq a$

$$f(x_n) \to A$$

1.13 Определения пределов в $\overline{\mathbb{R}}$

Для $Y = \overline{\mathbb{R}}, -\infty < x < +\infty$:

1.
$$\lim_{x \to a} f(x) = +\infty$$
: $\forall E \ \exists \delta > 0 \ \forall x \in X : 0 < |x - a| < \delta \ f(x) > E$

2.
$$\lim_{x \to a} f(x) = -\infty$$
: $\forall E \ \exists \delta > 0 \ \forall x \in X : 0 < |x - a| < \delta \ f(x) < E$

3.
$$\lim_{x \to +\infty} f(x) = c \in \mathbb{R} \quad \forall \varepsilon > 0 \ \exists \delta \ \forall x \in X : x > \delta \ |f(x) - c| < \varepsilon$$

4.
$$\lim_{x \to -\infty} f(x) = c \in \mathbb{R} \quad \forall \varepsilon > 0 \ \exists \delta \ \forall x \in X : x < \delta \ |f(x) - c| < \varepsilon$$

1.14 Предел по множеству

$$f:D\subset X o Y, D_1\subset D, x_0$$
 — пред. точка D_1 Тогда предел по множеству D_1 в точке x_0 — это $\lim_{x o x_0}f|_{D_1}(x)$

1.15 Односторонние пределы

В $\mathbb R$ одностор. = $\{$ левостор., правостор. $\}$ Левосторонний предел $\lim_{x\to x_0-0}f(x)=L$ - это $\lim f|_{D\cap(-\infty,x_0)}$

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in (x_0 - \delta, x_0) \cap D \ |f(x) - L| < \varepsilon$$

Аналогично правосторонний.

1.16 Непрерывное отображение

 $f: D \subset X \to Y \quad x_0 \in D$ f — непрерывное в точке x_0 , если:

1.
$$\lim_{x \to x_0} f(x) = f(x_0)$$
, либо x_0 — изолированная точка D

2.
$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D \ \rho(x, x_0) < \delta \ \rho(f(x), f(x_0)) < \varepsilon$$

3.
$$\forall U(f(x_0)) \ \exists V(x_0) \ \forall x \in V(x_0) \cap D \ f(x) \in U(f(x_0))$$

4. По Гейне
$$\forall (x_n): x_n \to x_0; x_n \in D \ f(x_n) \xrightarrow[n \to +\infty]{} f(x_0)$$

1.17 Непрерывность слева

f — непр. слева в x_0 , если $f|_{(-\infty,x_0]\cap D}$ — непрерывно в x_0

1.18 Разрыв, разрывы первого и второго рода

Если $ot\equiv\lim_{x\to x_0}f(x)$, либо $ot\equiv\lim_{x\to x_0}f(x)\neq f(x_0)$ — точка разрыва.

Пусть $\exists f(x_0-0), f(x_0+0)$ и не все 3 числа равны: $f(x_0-0), f(x_0), f(x_0+0)$. Это разрыв I рода *(скачок)*.

Остальные точки разрыва — разрыв II рода.

Примечание.

$$f(x_0 - 0) \Leftrightarrow \lim_{x \to x_0 - 0} f(x)$$

1.19 О большое, о маленькое

$$f,g:D\subset X o\mathbb{R}$$
 x_0 — пр. точка D Если $\exists V(x_0)$ $\exists arphi:V(x_0)\cap D o\mathbb{R}$ $f(x)=g(x)arphi(x)$ при $x\in V(x_0)\cap D$

- 1. φ ограничена. Тогда говорят f=O(g) при $x\to x_0$ "f ограничена по сравнению с g при $x\to x_0$ "
- 2. $\varphi(x) \xrightarrow[x \to x_0]{} 0$ f беск. малая по отношению к g при $x \to x_0$, f = o(g)
- 3. $\varphi(x) \xrightarrow[x \to x_0]{} 1$ f и g экв. при $x \to x_0$ $f \underset{x \to x_0}{\sim} g$

Примечание. О большое и о малое — разные вопросы в табличке.

1.20 Эквивалентные функции, таблица эквивалентных

Эквивалентные функции даны выше.

Таблица эквивалентных для $x \to 0$:

$$\sin x \sim x$$

$$\sinh x \sim x$$

$$\tan x \sim x$$

$$\arctan x \sim x$$

$$1 - \cos x \sim \frac{x^2}{2}$$

$$\cosh x - 1 \sim \frac{x^2}{2}$$

$$e^x - 1 \sim x$$

$$\ln(1+x) \sim x$$

$$(1+x)^{\alpha} - 1 \sim \alpha x$$

$$a^x - 1 \sim x \ln a$$

1.21 Асимптотически равные (сравнимые) функции

В условиях прошлых определений $f=O(g), g=O(f)\Leftrightarrow f\asymp g$ — асимптотически сравнимы на множестве D, "величины одного порядка".

1.22 Асимптотическое разложение

$$g_n: D\subset X o \mathbb{R}$$
 x_0 — пред. точка D $\forall n$ $g_{n+1}(x)=o(g_n), x o x_0$ Пример. $g_n(x)=x^n, n=0,1,2\dots$ $x o 0$ $g_{n+1}=xg_n, x o 0$ (g_n) называется шкала асимптотического разложения. $f:D o \mathbb{R}$ Если $f(x)=c_0g_0(x)+c_1g_1(x)+\dots+c_ng_n(x)+o(g_n)$, то это асимптотическое разложение f по шкале (g_n)

1.23 Наклонная асимптота графика

Пусть $f(x)=Ax+B+o(1), x\to +\infty$ Прямая y=Ax+B — наклонная асимптота к графику f при $x\to +\infty$

1.24 Путь в метрическом пространстве

Y — метр. пр-во $\gamma:[a,b] o Y$ — непр. на [a,b] = путь в пространстве Y

1.25 Линейно связное множество

 $E \subset Y$

E — линейно связное, если $\forall A, B \in E \; \exists$ путь $\gamma: [a,b] \to E$ такой, что:

- $\gamma(a) = A$
- $\gamma(b) = B$

1.26 Функция, дифференцируемая в точке и производная

 $f:\langle a,b
angle o\mathbb{R}$ $x_0\in\langle a,b
angle$ f — дифференцируема. в точке x_0 , если $\exists A\in\mathbb{R}$

$$f(x) = f(x_0) + A \cdot (x - x_0) + o(x - x_0), x \to x_0$$

При этом A называется производной f в точке x_0

Примечание. Это два разных билета.

2 Теоремы

2.1 Теорема об открытых и замкнутых множествах в пространстве и в подпространстве

 $Y\subset X, X$ — метр.п., Y — подпространство, $D\subset Y\subset X$

- 1. D откр. в $Y \Leftrightarrow \exists G$ откр. в X $D = G \cap Y$
- 2. D замкн. в $Y \Leftrightarrow \exists F$ замкн. в X $D = F \cap Y$

2.2 Теорема о компактности в пространстве и в подпространстве

 (X,ρ) — метрич. пространство, $Y\subset X$ — подпространство, $K\subset Y$ Тогда K — комп. в $Y\Leftrightarrow K$ — компактно в X.

2.3 Простейшие свойства компактных множеств

 (X,ρ) — метрическое пространство, $K\subset X$

- 1. K комп. $\Rightarrow K$ замкн., K огр.
- 2. $X \text{комп}, K \text{замкн.} \Rightarrow K \text{комп}.$

2.4 Лемма о вложенных параллелепипедах

$$[a,b] = \{x+\mathbb{R}^m: \forall i=1\dots m \ a_i \leq x_i \leq b_i\}$$
 — параллелепипед. $[a^1,b^1] \supset [a^2,b^2] \supset \dots$ — бесконечная последовательность параллелепипедов.

Тогда
$$\bigcap\limits_{i=1}^{+\infty}[a^i,b^i]
eq \emptyset$$

Если
$$diam[a^n,b^n]=||b^n-a^n|| o 0$$
, тогда $\exists!c\in \bigcap\limits_{i=1}^\infty [a^i,b^i]$

2.5 Компактность замкнутого параллелепипеда в \mathbb{R}^m

[a,b] — компактное множество в \mathbb{R}^m

2.6 Теорема о характеристике компактов в \mathbb{R}^m

 $K \subset \mathbb{R}^m$. Эквивалентны следующие утверждения:

- 1. K замкнуто и ограничено
- 2. K компактно
- 3. K секвенциально компактно

2.7 Эквивалентность определений Гейне и Коши

Определение Коши \Leftrightarrow определение Гейне.

2.8 Единственность предела, локальная ограниченность отображения, имеющего предел, теорема о стабилизации знака

$$f:D\subset X o Y,$$
 a — пред. точка D

$$\lim_{x \to a} f(x) = A; \lim_{x \to a} f(x) = B$$

$$\stackrel{x \to a}{\text{Тогда}} \stackrel{x}{A} = B$$

О локальной ограниченности отображения, имеющего предел.

$$f:D\subset X\to Y,$$
 a — пред. точка $D,$ $\exists\lim_{x\to a}f(x)=A$

Тогда $\exists V(a): f$ — огр. на $V(a)\cap D$, т.е. $f(V(a)\cap D)$ содержится в некотором шаре.

О стабилизации знака.

$$f:D\subset X o Y,$$
 a — пред. точка D , $\exists\lim_{x\to a}f(x)=A$

Пусть
$$B \in Y, B \neq A$$

Тогда
$$\exists V(a) \ \forall x \in \dot{V}(a) \cap D \ f(x) \neq B$$

2.9 Арифметические свойства пределов отображений. Формулировка для $\overline{\mathbb{R}}$

 $f,g:D\subset X\to Y,X$ — метрич. пространство, Y— норм. пространство над $\mathbb{R},$ a— пред. точка D

$$\lim_{x \to a} f(x) = A, \lim_{x \to a} g(x) = B$$

$$\lambda : D \to \mathbb{R}, \lim_{x \to a} \lambda(x) = \lambda_0$$

Тогда:

1.
$$\exists \lim_{x \to a} f(x) \pm g(x)$$
 и $\lim_{x \to a} f(x) \pm g(x) = A \pm B$

- 2. $\lim_{x \to a} \lambda(x) f(x) = \lambda_0 A$
- 3. $\lim_{x \to a} ||f(x)|| = ||A||$
- 4. Для случая $Y=\mathbb{R}$ и для $B\neq 0$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$$

 $\frac{f}{g}$ задано на множестве $D'=D\setminus\{x:g(x)=0\}$

a — пр. точка D' по теореме о стабилизации знака $\exists V(a) \ \, \forall x \in V(a) \cap D \ \, g(x)$ — того же знака, что и B, т.е. $g(x) \neq 0$

$$\dot{V}(a)\cap D'=\dot{V}(a)\cap D\Rightarrow a$$
 — пред. точка для D'

2.10 Принцип выбора Больцано-Вейерштрасса

Если в \mathbb{R}^m (x_n) — ограниченная последовательность, то у неё существует сходящаяся подпоследовательность.

2.11 Сходимость в себе и ее свойства

 x_n — фундаментальная, последовательность Коши, сходящаяся в себе, если:

$$\forall \varepsilon > 0 \ \exists N \ \forall m, n > N \ \rho(x_m, x_n) < \varepsilon$$

- 1. Сходящаяся в себе последовательность ограничена.
- 2. Если у сходящейся в себе последовательности есть сходящаяся подпоследовательность, то сама последовательность сходится.

2.12 Критерий Коши для последовательностей и отображений

 $f:D\subset X\to Y,$ a — пр. точка D, Y — полное метрическое пространство. Тогда

$$\exists \lim_{x \to a} f(x) \in Y \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1, x_2 \in D \ \rho(x_1, a) < \delta; \rho(x_2, a) < \delta \ \rho(f(x_1), f(x_2)) < \varepsilon$$

2.12.1 Для последовательностей

- 1. В любом метрическом пространстве x_n сходящ. $\Rightarrow x_n$ фунд.
- 2. В $\mathbb{R}^m x_n \phi$ унд. $\Rightarrow x_n c$ ходящ.

2.13 Теорема о пределе монотонной функции

$$f:D\subset\mathbb{R} o\mathbb{R}$$
, монотонная, $a\in\overline{\mathbb{R}}$ $D_1:=D\cap(-\infty,a),a$ — пред. точка $D_1.$ Тогда:

- 1. f возрастает, огр. сверху D_1 . Тогда \exists конечный предел $\lim_{x \to a-0} f(x)$
- 2. f убывает, огр. снизу D_1 . Тогда \exists конечный предел $\lim_{x \to a = 0} f(x)$

2.14 Свойства непрерывных отображений: арифметические, стабилизация знака, композиция

1.
$$f, g: D \subset X \to Y \ x_0 \in D (X - \text{норм. пространство})$$

 $f, g - \text{непр. в } D; \lambda: D \to \mathbb{R}(\mathbb{C}) - \text{непр. } x_0$

Тогда
$$f\pm g, ||f||, \lambda f$$
 — непр. x_0

2.
$$f, g: D \subset X \to \mathbb{R}$$
 $x_0 \in D$

$$f, g$$
 — непр. в x_0

Тогда
$$f \pm g, |f|, fg$$
 — непр. в x_0

$$g(x_0)
eq 0$$
, тогда $rac{f}{g}$ — непр. x_0

2.14.1 Стабилизация знака

Если функция $f:D\to\mathbb{R}$ непрерывна в точке x_0 и $f(x_0)\neq 0$, то:

$$\exists V(x_0): \forall x \in V(x_0) \cap D \quad \operatorname{sign} f(x) = \operatorname{sign} f(x_0)$$

2.14.2 Непрерывность композиции непрерывных отображений

$$f:D\subset X o Y$$
 $g:E\subset Y o Z$ $f(D)\subset E$ f — непр. в $x_0\in D,$ g — непр. в $f(x_0)$ Тогда $g\circ f$ непр. в x_0

2.15 Непрерывность композиции и соответствующая теорема для пределов

Непрервыность композиции дана выше.

2.15.1 Теорема о пределе композиции непрерывных отображений

$$f:D\subset X\to Y\quad g:E\subset Y\to Z\quad f(D)\subset E$$
 a — предельн. точка $D\quad f(x)\xrightarrow[x\to a]{}A$ A — предельн. точка $E\quad g(y)\xrightarrow[y\to A]{}B$ $\exists V(a)\quad \forall x\in \dot{V}(a)\cap D\quad f(x)\neq A\quad (*)$

Тогда
$$g(f(x)) \xrightarrow[x \to a]{} B$$

2.16 Теорема о замене на эквивалентную при вычислении пределов. Таблица эквивалентных

$$f, ilde{f},g, ilde{g}:D\subset X o\mathbb{R}$$
 x_0 — предельная точка D $f\sim ilde{f},g\sim ilde{g}$ при $x o x_0$ Тогда

$$\lim_{x \to x_0} f(x)g(x) = \lim_{x \to x_0} \tilde{f}(x)\tilde{g}(x)$$

, т.е. если \exists один из пределов, то \exists и второй и имеет место равенство

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{\tilde{f}(x)}{\tilde{g}(x)}$$

, если x_0 лежит в области определения $\frac{f}{g}$ Таблица эквивалентных дана выше.

2.17 Теорема единственности асимптотического разложения

$$f,g_n:D\subset X o\mathbb{R}$$
 x_0 — предельная точка D $orall n\ g_{n+1}=o(g_n),x o x_0$ $\exists U(x_0)\ orall x\in \dot{U}(x_0)\cap D\ orall i\ g_i(x)
eq 0$ Если $f(x)=c_0g_0(x)+\ldots+c_ng_n(x)+o(g_n(x))$ $f(x)=d_0g_0(x)+\ldots+d_mg_m(x)+o(g_m(x))$ $]n\le m$ Тогда $orall i\ c_i=d_i$

2.18 Теорема о топологическом определении непрерывности

$$f:X\to Y$$
 — непр. на $X\Leftrightarrow \forall G\subset Y,$ откр. $f^{-1}(G)$ — откр. в $X.$

2.19 Теорема Вейерштрасса о непрерывном образе компакта. Следствия

$$f:X \to Y$$
 — непр. на X Если X — комп., то $f(X)$ — комп.

Следствие. Непрерывный образ компакта замкнут и ограничен.

Следствие. (1-я теорема Вейерштрасса)

$$f:[a,b] \to \mathbb{R}$$
 — непр.

Тогда
$$f$$
 — огр.

Следствие.
$$f:X \to \mathbb{R}$$

$$X$$
 — комп., f — непр. на X

Тогда
$$\exists \max_{v} f, \min_{v} f$$

$$\exists x_0, x_1 : \forall x \in X \quad f(x_0) \le f(x) \le f(x_1)$$

Следствие.
$$f:[a,b] \to \mathbb{R}$$
 — непр.

$$\exists \max f, \min f$$

2.20 Лемма о связности отрезка

Промежуток $\langle a,b \rangle$ (границы могут входить, могут не входить) — не представим в виде объединения двух непересекающихся непустых открытых множеств Т.е. $\not\exists G_1, G_2 \subset \mathbb{R}$ — откр.:

- $G_1 \cap G_2 = \emptyset$
- $\langle a, b \rangle \cap G_1 \neq \emptyset$ $\langle a, b \rangle \cap G_2 \neq \emptyset$
- $\langle a, b \rangle \subset G_1 \cup G_2$

2.21 Теорема Больцано-Коши о промежуточном значении

 $f:[a,b] o \mathbb{R}$, непр. на [a,b]. Тогда

$$\forall t$$
 между $f(a)$ и $f(b)$ $\exists x \in [a,b]: f(x) = t$

2.22 Теорема о сохранении промежутка

 $f:\langle a,b \rangle \to \mathbb{R}$, непр. Тогда $f(\langle a,b \rangle)$ — промежуток.

2.23 Теорема Больцано-Коши о сохранении линейной связности

X, Y — метрические пространства, $f: X \to Y$ — непрерывное и сюръекция X — линейно связное множество. Тогда Y — линейно связное множество.

2.24 Описание линейно связных множеств в \mathbb{R}

В $\mathbb R$ линейно связанными множествами являются только промежутки.

2.25 Теорема о бутерброде

Кусок хлеба и кусок колбасы, лежащие на столе, можно разрезать прямой на две равные по площади части каждый.

2.26 Теорема о вписанном n-угольнике максимальной площади

Вписанный n-угольник максимальной площади — правильный.

2.27 Теорема о непрерывности монотонной функции. Следствие о множестве точек разрыва

 $f:\langle a,b\rangle\to\mathbb{R}$, монотонна. Тогда

- 1. Точки разрыва f (если есть) I рода
- 2. f непр. на $\langle a,b\rangle \Leftrightarrow f(\langle a,b\rangle)$ промежуток

У монотонной функции, заданной на промежутке, имеется не более чем счётное (НБЧС) множество точек разрыва.

2.28 Теорема о существовании и непрерывности обратной функции

$$f:\langle a,b
angle o\mathbb{R}$$
 — непр., строго монот. $m:=\inf_{\langle a,b
angle}f(x), M:=\sup_{\langle a,b
angle}f(x).$ Тогда:

- 1. f обратимая и $f^{-1}:\langle m,M\rangle \to \langle a,b\rangle$
- 2. f^{-1} строго монотонна и того же типа (возрастает или убывает)
- 3. f^{-1} непрерывна