K-theory, Chern-Connes Character and Algebraic Novikov Conjecture

Yihan Zhang

January 26, 2016

Contents

L	K-theory	1
2	Chern-Connes Character	2
3	Algebraic K-theory and Novikov Conjecture	3

1 K-theory

Recall history of K-theory.

- 1. Grothendieck, Riemann-Roch Theorem (for algebraic variety).
- 2. Atiyah, Hirzebruch, topological K-theory.
- 3. Quillen, Milnor, Bass, algebraic K-theory.

Applications: topology, operator algebra, algebra, number theory, etc.

Example 1. X, a compact space. R = C(X). Idempotent $p \in M_{\infty}(C(X)) \iff vector$ bundle over $X. p: X \to M_n(\mathbb{C}), x \mapsto p(x).$

 $Idempotent(M_{\infty}(R))/\sim$, abelian semigroup. Two idempotents p,q are said to be equivalent if \exists an invertible $w \in M_n(R)$ s.t. $w^{-1}pw = q$. $[p] + [q] = \begin{bmatrix} p & 0 \\ 0 & q \end{bmatrix}$. Notice that

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)^{-1} \left(\begin{array}{cc} p & 0 \\ 0 & q \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) = \left(\begin{array}{cc} q & 0 \\ 0 & p \end{array}\right).$$

 $S(\text{abelian semigroup}) \xrightarrow{\text{Grothendieck process}} G(S)(\text{abelian group}). \ G(s) = \{(s,t): s,t \in S\} / \sim. \\ (s,t) \sim (s',t') \text{ iff } \exists x \in S \text{ s.t. } s+t'+x=s'+t+x. \ -[(s,t)]=[(t,s)].$

Example 2. $S = \mathbb{N}, G(s) = \mathbb{Z}.$

Example 3. $S = \mathbb{N} \cup \{+\infty\}, G(S) = \{0\}.$ Notice that $(s,t) \sim (s',t'), s+t'+\infty = s'+t+\infty.$

Definition 1. $K_0(R) = G(Idempotent(M_{\infty}(R))/\sim).$

 Γ , a group. Group ring, $\mathbb{C}\Gamma = \left\{ \sum_{g \in \Gamma} c_g g : c_g \in \mathbb{C} \right\}$, where elements are finite sum. $U_g : \ell^2(\Gamma) \to \ell^2(\Gamma), \ (U_g \xi)(x) = \xi(g^{-1}x).$ Then $\mathbb{C}\Gamma = \left\{ \sum_{g \in \Gamma} c_g U_g \right\} \subset \mathcal{B}(\ell^2(\Gamma)).$ R, a ring. Group ring, $R\Gamma = \left\{ \sum_{g \in \Gamma} r_g g : r_g \in R \right\}$. Question: what is $K_0(R\Gamma)$?

2 Chern-Connes Character

 $\forall p \geq 1, T: H \rightarrow H \text{ is called a Schatten } p\text{-class operator if } tr(T^*T)^{\frac{p}{2}} < +\infty. \quad T = diag(c_1, \dots, c_n, \dots), tr(T^*T)^{\frac{p}{2}} = \sum_{n=1}^{\infty} |c_n|^p < +\infty.$

Definition 2. S_p , the ring of all Schatten p-class operators. $S = \bigcup_{p=1}^{\infty} S_p$, the ring of all Schatten class operators.

 Γ , a group. S, the ring of Schatten class operators. $S\Gamma$, the group ring. Motivations: Connes-Moscovici's higher index theory(1990s, Topology). M^{2n} , a compact manifold. D, an elliptic differential operator on M^{2n} . Higher index, index $D \in K_0(S\Gamma)$, $\Gamma = \pi_1 M$.

Approximating $K_0(S\Gamma)$ using locally finite simplicial homology group of $P_F(\Gamma)$. Γ , a group. $\forall F \subset \Gamma$, a finite subset.

Definition 3. The Rips' complex $P_F(\Gamma)$ is a simplicial complex whose set of vertices is Γ and $\{\gamma_0, \dots, \gamma_n\}$ spans a simplex iff $\gamma_i^{-1}\gamma_j \in F$.

Example 4. $\Gamma = \mathbb{Z}$. $F = \{\pm 1\}$. $\{n_0, n_1\}$ spans a simplex. $n_1 - n_0 \in F = \{\pm 1\}$. $P_F(\Gamma)$ forms a line.

Example 5. $\Gamma = \mathbb{F}_2 = \langle a, b \rangle$. $F = \{a^{\pm 1}, b^{\pm 1}\}$. $\gamma_0^{-1} \gamma_1 \in F$. $P_F(\Gamma)$ forms a tree.

X, a simplicial complex. $H^{lf}_*(X)$, the locally finite homology group of X. $C^{lf}_n(X)$, the n-dimensional locally finite simplicial chain group. $C^{lf}_n(X) = \left\{\sum c_{[v_0,\cdots,v_n]}[v_0,\cdots,v_n]: c_{[v_0,\cdots,v_n]}\in\mathbb{C}\right\}$. $[v_0,\cdots,v_n]$, oriented simplex with vertices v_0,\cdots,v_n . $\sum c_{[v_0,\cdots,v_n]}[v_0,\cdots,v_n]$ locally finite, i.e. \forall a compact subset $K\subset X$, \exists at most finitely many $[v_0,\cdots,v_n]$ s.t. $c_{[v_0,\cdots,v_n]}\neq 0$ and $[v_0,\cdots,v_n]\cap K\neq \phi$. $\partial_n:C^{lf}_n(X)\to C^{lf}_{n-1}(X)$, boundary map. $\partial_n[v_0,\cdots,v_n]=\sum_{i=0}^n (-1)^i[v_0,\cdots,\hat{v_i},\cdots,v_n]$.

Definition 4. $H_n^{lf}(X) = Ker\partial_n/Im\partial_{n+1}$.

Example 6. $X = \mathbb{R}$. $H_1^{lf}(\mathbb{R}) = \mathbb{C}$. $H_1(\mathbb{R}) = 0$. Generator of $H_1^{lf}(\mathbb{R})$, $\sum_{n=-\infty}^{\infty} [n, n+1] \in C_1^{lf}(\mathbb{R})$. $\partial_1 \left(\sum_{n=-\infty}^{\infty} [n, n+1] \right) = \sum_{n=-\infty}^{\infty} ([n+1] - [n]) = 0$.

 (v_0,v_1,\cdots,v_n) , an ordered simplex of $X(v_i$ may be the same as v_j). $(v_0,v_1,\cdots,v_n) \rightarrow (v_n,v_0,\cdots,v_{n-1})$ is called a cyclic permutation. $(v_0,\cdots,v_n) \sim (v_0',\cdots,v_n')$ 1. if one can be obtained by any number of cyclic permutations if n is even; 2. one can be obtained from another by even number of cyclic permutation if n is odd. The cyclically oriented simplex $[v_0,\cdots,v_n]_{\lambda}$ is defined to be the equivalence class of ordered simplex.

Theorem 1.
$$H_{n,\lambda}^{lf}(X) \cong \bigoplus_{\substack{k \leq n, \\ n-k \text{ even}}} H_k^{lf}(X).$$

Proof.
$$H_{n-2}^{lf}(X) \hookrightarrow H_{n,\lambda}^{lf}(X)$$
. $\sum c_{[v_0,\dots,v_{n-2}]}[v_0,\dots,v_{n-2}] \to \sum c_{[v_0,\dots,v_{n-2}]}[v_0,v_0,v_0,\dots,v_{n-2}]_{\lambda}$.

 Γ , a group. X, a simplicial complex. Γ acts on X simplicially. Define $H_k^{\Gamma}(X), H_{k,\lambda}^{\Gamma}(X)$ by requiring all chains to be Γ -invariant.

 Γ , a group(torsion free, i.e. if $g^n=1$ for some $g\in\Gamma$, then n=0 or g=1.). S, the ring of Schatten class operators. $c:K_0(S\Gamma)\to \lim_{finite\ subsets\ F\ of\ \Gamma,} H_{2n,\lambda}^{\Gamma}(P_F(\Gamma))=$

 $\lim_{F} \left(\bigoplus H_{2k}^{\Gamma}(P_{F}(\Gamma)) \right). \quad [p] - [p_{0}] \in K_{0}(S_{p}\Gamma) \text{ for some } p. \quad p \in M_{\infty}((S_{p}\Gamma)^{+}), p_{0} \in M_{\infty}(\mathbb{C})$ are idempotents. $p = q + p_{0}, q \in M_{\infty}(S_{p}\Gamma)$. Let $q = \sum_{g \in \Gamma} k_{g}g, k_{g} \in M_{\infty}(S_{p})$. $c([p] - [p_{0}]) = \sum tr(k_{x_{0}^{-1}x_{1}}k_{x_{1}^{-1}x_{2}} \cdots k_{x_{n}^{-1}x_{b}})[x_{0}, \cdots, x_{n}]_{\lambda}$, where $n \geq p$, n even. Let $F = \{g : k_{g} \neq 0\}$.

Proposition 1. $c([p] - [p_0]) \in H_n^{\Gamma}(P_F(\Gamma)).$

3 Algebraic K-theory and Novikov Conjecture

Conjecture 1 (Novikov). $\lim_{F} H_n^{\Gamma}(P_F(\Gamma), \mathbb{K}(S)^{-\infty}) \xrightarrow{assembly map} K_n(S\Gamma)$ is rationally injective.

Theorem 2. This conjecture is true!

Proof.

$$\lim_{F} H_{n}^{\Gamma}(P_{F}(\Gamma), \mathbb{K}(S)^{-\infty}) \xrightarrow{A} K_{n}(S\Gamma)$$

$$\downarrow c$$

$$\downarrow c$$

$$\lim_{F} \left(\bigoplus H_{2k}^{\Gamma}(P_{F}(\Gamma)) \right)$$

Claim: $c \circ A$ is rationally an isomorphism (Mayer-Vietoris sequence & Five Lemma).