# 1.1单相半波可控整流电路

#### 1. 电阻性负载

#### ■输出电压平均值:

$$U_{d_{ave}} = \frac{1}{2\pi} \int_{\alpha}^{\pi} \sqrt{2}U_{2} \sin(\omega t) d(\omega t)$$

$$= \frac{\sqrt{2}U_{2}}{2\pi} (1 + \cos \alpha)$$

$$= 0.45U_{2} \frac{1 + \cos \alpha}{2}$$

#### 其中:

$$u_2 = \sqrt{2}U_2 \sin(\omega t)$$



晶闸管触发角a移相范围0~180°



## 2. 电感性负载

- ① 0~ωt<sub>1</sub>: VT未导通
- ② ωt<sub>1</sub>: VT导通
- $\odot$   $\omega t_1 \sim \omega t_2 : i_d \uparrow$
- (4)  $\omega t_2 \sim \omega t_3 : i_d \downarrow$
- ⑤  $\omega t_3 = \pi$ :  $u_2 = 0$  但  $L_d$ 存在电势,导 致VT仍导通
- ⑥  $\omega t_3 \sim \omega t_4$ :  $i_d \downarrow$
- ② ωt<sub>4</sub>: VT正向阳极电压为0, VT关断





## 2. 电感性负载

- ① 0~ωt<sub>1</sub>: VT未导通
- ② ωt<sub>1</sub>: VT导通
- $\odot$   $\omega t_1 \sim \omega t_2 : i_d \uparrow$
- (4)  $\omega t_2 \sim \omega t_3 : i_d \downarrow$
- ⑤  $\omega t_3 = \pi$ :  $u_2 = 0$  但  $L_d$ 存在电势,导 致VT仍导通
- ⑥  $\omega t_3 \sim \omega t_4$ :  $i_d \downarrow$
- ① ωt<sub>4</sub>: VT正向阳极电压为0, VT关断





## 2. 电感性负载

- ①  $0\sim\omega t_1$ : VT未导通
- ②  $\omega t_1$ : VT导通
- $\odot$   $\omega t_1 \sim \omega t_2 : i_d \uparrow$
- (4)  $\omega t_2 \sim \omega t_3 : i_d \downarrow$
- ⑤  $\omega t_3 = \pi$ :  $u_2 = 0$  但  $L_d$ 存在电势,导 致VT仍导通
- ⑥  $\omega t_3 \sim \omega t_4$ :  $i_d \downarrow$
- ① ωt<sub>4</sub>: VT正向阳极电压为0, VT关断





#### 3. 并续流二极管VD

■ 目的:避免*U*<sub>d</sub>太小

■ **续流**: *u*<sub>2</sub>过零变负时, VD<sub>F</sub>导通, *u*<sub>d</sub>=0,

VT受反压关断, $i_d$ 在L-R-VD<sub>F</sub>中流通。

■ 数量关系 $(i_d \approx I_d)$ 

VT电流平均值 
$$I_{dT} = \frac{\pi - \alpha}{2\pi} I_d$$
 VT电流有效值  $I_{T} = \sqrt{\frac{1}{2\pi} \int_{\alpha}^{\pi} I_d^2 d(\omega t)} = \sqrt{\frac{\pi - \alpha}{2\pi}} I_d$ 

VD电流平均值 
$$I_{\text{dVDR}} = \frac{\pi + \alpha}{2\pi} I_{\text{d}}$$
VD电流有效值  $I_{\text{VDR}} = \sqrt{\frac{1}{2\pi} \int_{\pi}^{2\pi + \alpha} I_{\text{d}}^2 d(\omega t)} = \sqrt{\frac{\pi + \alpha}{2\pi}} I_{\text{d}}$ 

