Complex Analysis

zyl

Contents

1	Preliminary		
	1.1	Complex numbers	1
	1.2	Different views of complex numbers	3
		algebraic view	3
		geometric view	3
	1.3	Inequality	4
2	Ana	lytic functions	5
		Power series	5
		compute R.C	6
		solutions to exercises	7
	2.2	Analytic functions, first step	7
		isolated property of zeros	7
	2.3	Derivative of analytic function	9
	2.4		11
			12
			14
		principal determination of the togaritation of	
3	Holomorphic functions		
	3.1	•	16
		•	17
	3.2	-	19
	3.3		20
4			22

Preliminary

1.1 Complex numbers

IMAGINARY NUMBER

Let *i* be a number such that

$$i^2 = -1$$
,

we call it *imaginary unit*. A *complex number* z is a number of the form z = x + iy where i is the imaginary number defined previously and x and y are real numbers. Hence it is a vector space over \mathbb{R} , of dimension 2. We call x of z the real part, denoted by $x = \operatorname{Re} z$, and similarly, we call y the imaginary part of z, denoted by $y = \operatorname{Im} z$.

SUM, DIFFERENCE, MULTIPLICATION, INVERSE

$$z := x + iy$$

$$w := u + iv$$

$$z + w = (x + u) + i(y + v)$$

$$z - w = (x - u) + i(y - v)$$

$$zw = (xu - yv) + i(xv + yu)$$

$$1/z = \frac{x - iy}{x^2 + y^2}$$

WARNING When taking inverse, we require it is not zero.

ABSOLUTE VALUE / MODULUS

The absolute value (or modulus) of a complex number z = x + iy is defined by

$$|z| = \sqrt{x^2 + y^2}$$

CONJUGATION

The *conjugation* of z = x + iy is defined by $\bar{z} = x - iy$. Easily finding that

$$\bar{z}=z$$

Especially, we have

$$\operatorname{Re} z = \frac{z + \overline{z}}{2}, \quad \operatorname{Im} z = \frac{z - \overline{z}}{2i}$$

EULER'S IDENTITY

Surprisingly, we have beautiful Euler's identity

$$e^{i\pi} + 1 = 0$$

It is a special case of Euler's fomula

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Here, we require θ is a real number.

POLAR FORM

By the fact every complex number z of absolute value 1 is of the form $\cos \theta + i \sin \theta$ uniquely up to a multiple of 2π , we have for every z,

$$z = \rho e^{i\theta}$$
, $\rho = |z|$.

It is called the *polar form* of z.

Proposition 1.1. Let $z \neq 0$, then, for every $n \in \mathbb{N}$, z has n roots of order n, i.e., n different numbers z_0, \ldots, z_{n-1} such that

$$z_j^n=z, \quad j=0,\ldots,n-1$$

Proof. Clearly, any root of order n of z is nonzero with a polar form

$$w = re^{it}$$

with $z = \rho e^{i\theta}$. If $w^n = z$, then $r = \rho^{1/n}$, $nt = \theta \pmod{2\pi}$. i.e.

$$t = \frac{\theta}{n} + \frac{2k\pi}{n}, \quad k \in \mathbb{Z}$$

Exercise 1

Compute

$$\sum_{j=0}^{n-1} z_j^m, \quad m \in \mathbb{N}$$

1.2 Different views of complex numbers

algebraic view

There are different viewpoints of complex number, algebraically, it is isomorphic to the algebra

$$\mathbb{R}[x]/(x^2+1)$$
.

In this view, every number can uniquely as a + bx where $a, b \in \mathbb{R}$. From this, we can induce that conjugation map $\mathbb{C} \to \mathbb{C}, z \mapsto \bar{z}$ is a field isomorphism. Or we can embedded it into the matrix algebra,by

$$z = x + iy \mapsto \begin{bmatrix} x & -y \\ y & x \end{bmatrix}.$$

geometric view

STEREOGRAPHIC PROJECTION

The stereographic projection Φ_N is defined by the following graph.

The explicit formula of Φ_N is given by:

$$\Phi_N(x_1, x_2, x_3) = \frac{x_1 + ix_2}{1 - x_3}$$

$$\Phi_N^{-1}(z) = \left(\frac{z + \bar{z}}{|z|^2 + 1}, \frac{z - \bar{z}}{i(|z|^2 + 1)}, \frac{|z|^2 - 1}{|z|^2 + 1}\right)$$

EXTENDED PLANE

 $\widehat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ the *extended plane*. The intersection of a plane (*nontangent*) with S^2 is a circle. The ordinary projection of a circle on S^2 on \mathbb{C} is **NOT**a circle in general. However, using the stereographic projection, we have

Exercise 2

- 1. There is a one-to-one correspondence between circles on S^2 and lines and circles on \mathbb{C} .
- 2. Let *C* be a circle on S^2 . Then $\Phi_N(C \setminus \{(0,0,1)\})$ is a circle iff $(0,0,1) \notin C$ and is a line otherwise.

Summarize: Via the map Φ_N^{-1} , the point at ∞ of the extended plane $\widehat{\mathbb{C}}$ should be seen as any other point of \mathbb{C} . Furthermore, there is no difference between lines and circles of \mathbb{C} . A line is a circle whose image under Φ_N^{-1} goes through (0,0,1).

1.3 Inequality

Triangle Inequality

For arbitrary complex numbers, we have the following inequality

$$|z+w| \le |z| + |w|.$$

From this ,we have triangle inequality,

$$|z_1-z_3| < |z_1-z_2| + |z_2-z_3|$$
.

Thus,

$$|z_1 z_2 z_3 \dots z_n| = |z_1| |z_2| |z_3| \dots |z_n|$$

 $|z_1 + z_2 + \dots + z_n| \le |z_1| + |z_2| + \dots + |z_n|$

From this, we have

$$|a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n| \le |a_0| + |a_1| |z| + |a_2| |z|^2 + \ldots + |a_n| |z|^n$$

IDENTITY

$$\frac{w^n - z^n}{w - z} = w^{n-1} + zw^{n-2} + \dots + z^{n-1}$$

Then

$$\left| \frac{w^n - z^n}{w - z} \right| \le nr^{n-1}, \quad \text{if } |w|, |z| < r$$

Analytic functions

2.1 Power series

POWER SERIES

A power series is a series of function of the form

$$\sum_{n=0}^{\infty}a_nz^n, \quad a_n\in\mathbb{C}$$

Proposition 2.1. Let $\rho = \sup\{r \in [0, +\infty) \mid \sum_{n=0}^{\infty} |a_n| r^n < \infty\}$, then

- (i) For all $r < \rho$, the series $\sum_{n=0}^{\infty} a_n z^n$ converges normally on the disc $B_r(0)$.
- (ii) the series $\sum_{n=0}^{\infty} a_n z^n$ diverges for $|z| > \rho$.

WARNING

- 1. ρ exists, but can be 0, finite or infinite.
- 2. the case $|z| = \rho$ is uncertain.
- 3. the sum is continuous inside the disk $B_{\rho}(0)$.

RADIUS OF CONVERGENCE

We call such ρ the *radius of convergence*, denoted by R.C. The closed disc $\overline{B_{\rho}(0)}$ is called the *disc of convergence*.

Lemma 2.2 (Abel). Let r, r_0 be real numbers such that $0 < r < r_0$. If there exists M > 0 such that

$$|a_n| r_0^n \le M$$
, for all $n \ge 0$

Then $\sum_{n=0}^{\infty} a_n z^n$ converges normally for $z \in \overline{B_r(0)}$.

Proof. For $|z| \leq r$,

$$|a_n z^n| \le |a_n| r^n \le M \left(\frac{r}{r_0}\right)^n$$
.

Then use comparison criterion for convergence with the geometric series.

Note. Let ρ be the R.C of a power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g: [0, +\infty) \to [0, +\infty]$ be a function defined by

$$g(r) = \max_{|z|=r} |f(z)|$$

Then $g(r) < \infty$ when $r < \rho$ and $g(r) = \infty$ when $r > \rho$.

compute R.C

If the sequence $\left|\frac{a_{n+1}}{a_n}\right|$ has a limit ℓ , then $R=\frac{1}{\ell}$: we look at $\left|\frac{a_{n+1}z^{n+1}}{a_nz^n}\right|$ which converges to ℓ |z|, and then compare with a geometric series.

Recall: $\limsup a_n = \lim_{p \to \infty} \left(\sup_{n \ge p} a_n \right)$ (always exists, finite or infinite) Then the R.C ρ satisfies

$$\frac{1}{\rho} = \lim \sup |a_n|^{1/n}$$

Ex. 1 — Find the R.C ρ for

$$\sum_{n=0}^{\infty} n! z^n, \qquad \sum_{n=0}^{\infty} \frac{z^n}{n!}, \qquad \sum_{n=0}^{\infty} 2^{-n} z^n, \qquad \sum_{n=0}^{\infty} 9^{n^2} z^n$$

$$\sum_{n=0}^{\infty} \frac{1}{n} z^n, \qquad \sum_{n=0}^{\infty} z^n, \qquad \sum_{n=0}^{\infty} \frac{1}{n^2} z^n.$$

What happend for $|z| = \rho$ for the last 3 series.

Ex. 2 — Find the R.C ρ for

$$\sum_{n=0}^{\infty} (\log n)^2 z^n, \qquad \sum_{n=0}^{\infty} \frac{(n!)^3}{(3n)!} z^n, \qquad \sum_{n=0}^{\infty} n^2 z^n, \qquad \sum_{n=0}^{\infty} \frac{n!}{n^n} z^n$$

$$\sum_{n=0}^{\infty} n^{(-1)^n} z^n, \qquad \sum_{n=0}^{\infty} z^{n!}, \qquad \sum_{n=0}^{\infty} z^{(2^n)}.$$

Exercise 3 **Sum and Products**

If $f(z) = \sum_{n=0}^{\infty} a_n z^n$ where R.C of f is ρ_1 , $g(z) = \sum_{n=0}^{\infty} b_n z^n$ where R.C of g is ρ_2 , $R = \min\{\rho_1, \rho_2\}$. f(z) + g(z) and f(z)g(z) have R.C at least equal to R where

$$f(z) + g(z) = \sum_{n=0}^{\infty} c_n z^n \quad \text{with } c_n = a_n + b_n$$
$$f(z)g(z) = \sum_{n=0}^{\infty} d_n z^n \quad \text{with } d_n = \sum_{i+j=n} a_j b_j$$

solutions to exercises

2.2 Analytic functions, first step

ANALYTIC FUNCTIONS

Let $U \subset \mathbb{C}$ be an open set and

$$f:U\to\mathbb{C}$$

be a mapping. For $z_0 \in U$, we say that f is analytic at z_0 if there exist

- (i) r > 0 such that the disk $B_r(z_0)$ is included in U
- (ii) A power series $\sum_{n=0}^{\infty} a_n w^n$ of radius of convergence $\rho \geq r$, such that for all $z:|z-z_0| < r$, we have

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

We say that f is *analytic* on U if it is analytic at every point of U. (It is a local property.) **EXAMPLE** Polynomials are analytic in \mathbb{C} .

Proposition 2.3. *The set of analytic function defined over* U *is an algebra over* \mathbb{C} . *We denote it by* $\mathcal{O}(U)$.

EXAMPLE f(z) = z is analytic on \mathbb{C} , $\frac{1}{f(z)} = \frac{1}{z}$ is **NOT**analytic on \mathbb{C} .

isolated property of zeros

ISOLATED PROPERTY OF ZEROS (AND POLES)

The zeros (or poles) of an analytic function has no convergent points over C unless it is zero itself.

Proposition 2.4. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be the sum of a power series of radius of convergence $\rho > 0$. If at least one of the coefficients a_n is nonzero, there exists $r \in (0, \infty)$ such that f(z) does not vanish for $B_r(0)^* := \{z : 0 < |z| < r\}$.

Proof. Let *p* be the smallest nonzero integer such that $a_p \neq 0$. Then

$$f(z) = \sum_{n \ge p} a_n z^n = z^p g(z)$$

where

$$g(z) = a_p + a_{p+1}z + \dots, \quad g(0) = a_p \neq 0$$

g(z) is the sum of a convergent power series, and so it is continuous inside the convergence disc and thus in a neighbourhood of 0, g(z) does not vanish, and so f(z) is not zero on this neighbourhood (except possibly at 0.)

Remark. In this proof, if p = 0, f = g and so f is nonzero in a neighbourhood of 0. If p > 0, then $f(z) = z^p g(z)$ vanishes at 0, but 0 is an isolated zero of f(z).

The principal of isolated series says:

If not all the a_n 's are zero. There exists r' > 0 such that f(z) does not vanish for $B_{r'}(z_0)$.

Corollary. Every analytic function on U has a unique power series expansion in the neighbourhood of each point of U.

Proof. If two analytic function f(z), g(z) such that f(z) = g(z), then all coefficients of their power series are the same.

continuation principle

CONNECTED

Let $U \subset \mathbb{C}$ be an open set, U is called *connected* if: whenever $U = U_1 \cup U_2$ with $U_1 \cap U_2 = \emptyset$ and U_1, U_2 open, then $U_1 = \emptyset$ or $U_2 = \emptyset$.

CONTINUATION PRINCIPLE

From isolated property of zeros, we can conclude that

Theorem 2.5 (Analytic Continuation Principle). Let W be an open set of U that is also connected (it is called domain). Let f and g be two analytic functions on W. If f and g coincide on a subset $\Sigma \subset W$ which has an accumulation point in W. Then f and g coincide every where on W.

Proof. It is a corollary of the isolated property of zeros. We can consider h := f - g at the accumulation point. Let

$$A = \{b \in W \mid \exists \Sigma_b, \text{ a neighbourhood of } b, h|_{\Sigma_b} = 0\}$$

Then A is open by definition and close by continuity, A is nonempty, hence h(z) is zero on its connected component of A.

2.3 Derivative of analytic function

DERIVATIVE

We start from a proposition and also a definition.

Proposition 2.6. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series of R.C ρ and let $f'(z) = \sum_{n\geq 1} n a_n z^{n-1}$. The R.C of f'(z) is ρ and for $|z| < \rho$, we have

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}.$$

f'(z) is called the *derivative* of f(z).

Proof. Let $\frac{1}{\rho} = \limsup_{n \to \infty} |a_n|^{1/n}$. Then

$$|na_n|^{1/n} = n^{1/n} |a_n|^{1/n}, \quad \lim_{n \to \infty} n^{1/n} = 1$$

which implies $\limsup_{n\to\infty} |na_n|^{1/n} = \limsup_{n\to\infty} |a_n|^{1/n}$.

Then we have to show

$$\lim_{|h| \to 0} \frac{f(z+h) - f(z)}{h} - f'(z) = 0$$

To be well-defined, we focus on the open subset $\overline{B_r(0)}$ where $r < \rho$, which means, $z, w \in \overline{B_r(0)}$. Let w = z + h,

$$\frac{f(w) - f(z) - hf'(z)}{h} = \frac{\sum_{n=0}^{\infty} a_n \left(w^n - z^n - nhz^{n-1} \right)}{h}$$

$$\leq \sum_{n=0}^{\infty} |a_n| \left| \sum_{i=0}^{n-1} z^{n-i} \left(w^i - z^i \right) \right|$$

$$\leq \frac{|h|}{2} \sum_{n=0}^{\infty} n(n-1) |a_n| r^{n-1}$$

Since

$$\limsup_{n\to\infty} |n(n-1)a_n|^{1/n} = \rho > r$$

then $\sum_{n=0}^{\infty} n(n-1) |a_n| r^{n-1}$ converges. Thus we get

$$\lim_{h\to 0}\frac{f(w)-f(z)}{h}=f'(z).$$

Corollary. An analytic function on U has a derivative of any order.

2.3. DERIVATIVE OF ANALYTIC FUNCTION CHAPTER 2. ANALYTIC FUNCTIONS

Theorem 2.7. The sum of a power series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n = a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots$$

is analytic inside its disc of convergence.

To be more precise, we have

Proposition 2.8. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with R.C $\rho > 0$. Let z_0 be a point inside the disk of convergence. Then the series

$$\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(z_0) w^n$$

has a radius of convergence at least equal to $\rho - |z_0|$ and we have

$$f(z) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(z_0) (z - z_0)^n.$$

Proof. Set $r_0 = |z_0|$, $\alpha_n = |a_n|$

$$f^{(p)}(z_0) = \sum_{q=0}^{\infty} \frac{(p+q)!}{q!} a_{p+q} z_0^q$$

so that $\left|f^{(p)}(z_0)\right| \leq \sum_{q=0}^{\infty} \frac{(p+q)!}{q!} \alpha_{p+q} r_0^q$. For $r_0 \leq r < \rho$, we have

$$|f(r-r_0)| = \sum_{p=0}^{\infty} \frac{1}{p!} |f^{(p)}(z_0)| (r-r_0)^p$$

$$\leq \sum_{p,q=0}^{\infty} \frac{(p+q)!}{p!q!} \alpha_{p+q} (r-r_0)^p r_0^q$$

$$= \sum_{n=0}^{\infty} \alpha_n r^n$$

Note. We have used the fact that a series of positive terms can be rearranged because it converges absolutely.

Therefore, the radius of convergence of $\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(z_0) z^n$ is at least $r - r_0$. We have chosen r arbitrary between r_0 and ρ , therefore, this radius of convergence is at least $\rho - |z_0|$. The above calculation also use that the double series

$$\sum_{p,q=0}^{\infty} \frac{(p+q)!}{p!q!} a_{p+q} z_0^q (z-z_0)^p$$

converges absolutely. Therefore we can compute it by rearranging its terms in two ways:

• p + q = n:

$$\sum_{n=0}^{\infty} a_n \left(\sum_{p=0}^n \frac{n!}{p!(n-p)!} (z-z_0)^p z_0^{n-p} \right) = \sum_{n=0}^{\infty} a_n z^n = f(z).$$

• p,q

$$\sum_{p=0}^{\infty} \frac{(z-z_0)^p}{p!} \left(\sum_{q=0}^{\infty} \frac{(p+q)!}{q!} a_{p+q} z_0^q \right)$$

Thus,

$$f(z) = \sum_{p=0}^{\infty} \frac{f^{(p)}(z_0)}{p!} (z - z_0)^p.$$

2.4 Exponential and logarithm

COMPLEX EXPONENTIAL

The complex exponential is defined by

$$\exp(z) = e^z = \sum_{n=0}^{\infty} \frac{1}{n!} z^n$$

Remark. R.C $\rho = \infty$. $\exp(0) = 1$ and $\exp(a + b) = \exp(a) \exp(b)$.

Proposition 2.9. (i) $\exp : \mathbb{C} \to \mathbb{C}^*$ is onto.

- (ii) $\exp' = \exp$.
- (iii) the restriction of exp to \mathbb{R} is strictly increasing.
- (iv) there exists a positive real number π such that $\exp(i\pi/2) = i$ and $e^z = 1$ iff $z \in 2\pi i\mathbb{Z}$.
- (v) exp is periodic of period $2\pi i$.
- (vi) $t \mapsto e^{it}$ sends the real line onto the unit circle.

The exponential map is a group homomorphism.

$$\exp: \mathbb{C} \to \mathbb{C}^*, \quad \phi: \mathbb{R} \to S^1$$

where $\phi(t)=e^{it}$. $\ker\phi=2\pi\mathbb{Z}$. Then we have a group isomorphism:

$$\mathbb{R}/\ker\phi\cong S^1$$

ARGUMENTS

The inverse map associate to each complex number w in S^1 a class modulo $2\pi\mathbb{Z}$ of real numbers: its *arguments*.

It is a multi-valued function, to define a single-valued function, the *principal value* of the argument (sometimes denoted $\operatorname{Arg} z$) is used. It is often chosen to be the unique value of the argument that lies within the interval $(-\pi, \pi]$.

Also, for $z \neq 0$, we define $\arg z = \arg (z/|z|)$ up to unique multiple of 2π .

COMPLEX LOGARITHM

We have to invert exp. It does not look easy because exp is not one-to-one.

Exercise 4

Let $t \in \mathbb{C}^*$, we look for z such that $e^z = t$. Note that $t = |t| \exp(i \arg t)$.

Answer of exercise 4

Look for z = x + iy, we have $e^z = e^x \cdot e^{iy} = |t|e^{i\arg t} \implies |t| = e^x$, that is $x = \log|t|$, $y = \arg t$. We wish we can write

$$|z| = \log|t| + i\arg t,$$

WARNING I will fix it.

but this is up to a multiple of 2π .

determination

DETERMINATION

We say that a continuous function f defined on a domain $U \subset \mathbb{C}$, not containing 0, is a *determination* of the logarithm on U if:

$$\forall t \in U, \exp(f(t)) = t.$$

Note. Such determination does not always exist. For instance when $U = \mathbb{C}^*$. However, if once exists then many others exist else.

Proposition 2.10. Let U be a domain, $0 \notin U$. If f is a determination of the \log on U, every other determination of the \log on U has the form $f + 2ik\pi$ for some integer k. Conversely, every $f + 2ik\pi$ is a determination of the \log on U.

Proof. If f and g are two determination of log,

$$h(t) = \frac{f(t) - g(t)}{2i\pi}$$

is continuous on the domain *U* and takes only integer values:

$$\exp(f(t)) = \exp(g(t)) = t \implies \exp(f(t) - g(t)) = 1 \implies f(t) - g(t) = 2i\pi k, \quad k \in \mathbb{Z}.$$

Then we get $h(t) = k_0$ for some integer k_0 thanks to h is continuous and U is connected.

Remark. The continuous image of a connected set is connected. And \mathbb{Z} is *discrete*, which means every single point is a connected component. The converse is clear.

Proposition 2.11. There is no continuous determination of the logarithm on \mathbb{C}^* .

Proof. Suppose such determination exists. Set $u(z) = \operatorname{Im} f(z)$. On S^1 , define $v(\theta) = u(e^{i\theta})$, then $v : \mathbb{R} \to \mathbb{R}$ is continuous and 2π -periodic.

$$e^{iv(\theta)} = e^{iu(e^{i\theta})}$$

$$= e^{f(e^{i\theta})} / e^{\operatorname{Re} f(e^{i\theta})}$$

$$= e^{i\theta} / \lambda$$

Remark. Taking modulus, we have $\lambda = 1$.

For all θ , both θ and $v(\theta)$ are arguments for $e^{i\theta}$. Therefore, $\exists n(\theta) \in \mathbb{Z}$:

$$v(\theta) - \theta = 2n(\theta)\pi$$
.

As v is continuous, n is a continuous function: $\mathbb{R} \to \mathbb{Z}$, so it is constant. Thus

$$v(\theta) = \theta + 2n\pi$$

As v is 2π -periodic,

$$\theta + 2\pi + 2n\pi = v(\theta + 2\pi) = v(\theta) = \theta + 2n\pi$$

Impossible.

Proposition 2.12. The power series

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^n}{n}$$

converges for |z| < 1. The sum of the series

$$f(t) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} (t-1)^n}{n}$$

is a determination of the logarithm on the open disk |z-1| < 1.

Proof.

$$f'(t) = \sum_{n=1}^{\infty} (-1)^{n-1} (t-1)^{n-1}$$
$$= \sum_{n=0}^{\infty} (1-t)^n$$
$$= \frac{1}{1-(1-t)}$$
$$= \frac{1}{t}$$

The restriction f(t) to real t (on (0,2)) is $\log t$. The composition $\exp \circ f$ is = t on (0,2) and so it coincides with g(t) = t on (0,2) which has accumulation points. $\exp \circ f$ is the composition of 2 analytic functions and so it is analytic, thus $\exp \circ f(t) = t$ on |t-1| < 1 using the principle of analytic continuation.

Remark. In fact. we have a determination of the logarithm on every disc in \mathbb{C}^* .

Corollary. Let $t_0 \in \mathbb{C}$, $t_0 \neq 0$, θ_0 is an argument of t_0 , $t_0 = |t_0| e^{i\theta_0}$. On the disc $B_{|t_0|}(t_0)$, the series

$$g(t) = \log|t_0| + i\theta_0 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \left(\frac{t - t_0}{t_0}\right)^n$$

is an analytic determination of the logarithm.

Proof. The above proposition says that

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \left(\frac{t}{t_0} - 1 \right)^n$$

converges for $\left| \frac{t}{t_0} - 1 \right| < 1$ to $f(t/t_0)$. Hence

$$\exp(g(t)) = |t_0| e^{i\theta_0} \exp f(t/t_0) = t_0 \cdot \frac{t}{t_0} = t.$$

principal determination of the logarithm

Proposition 2.13. Let U_{π} be the complement in \mathbb{C} of $\mathbb{R}_{\leq 0}$ (All complex numbers whose argument is not π .) The expression:

$$f(t) = \log(|t|) + i \begin{cases} \arcsin\frac{y}{|t|} & \text{if } x \ge 0\\ \pi - \arcsin\frac{y}{|t|} & \text{if } x \le 0, y \ge 0\\ = -\pi - \arcsin\frac{y}{|t|} & \text{if } x \le 0, y \le 0 \end{cases}$$

where t = x + iy and $\arcsin: (-1,1) \to (-\pi/2, \pi/2) \nearrow$ define a continuous function on U_{π} which is a determination of the logarithm on U_{π} .

Proof. Continuous is easy to verify, and the reason why is it analytic is that it is a determination of logarithm, thereof it is a difference of $2k\pi$ with g(t) in the previous corollary and g(t) is analytic, so is f.

Corollary. If $\theta \in \mathbb{R}$, $U_{\theta} = \{z \in \mathbb{C} \mid \theta \text{ is not an argument of } z\}$. On U_{γ} , there exists a determination of the logarithm.

Proof. We get back to U_{π} by a rotation of angle $\phi = \pi - \theta : z \mapsto \exp{-i\phi \cdot z}$ sends the half line of argument θ to the half line argument π .

$$g(t) = f(e^{-i\phi t}) + i\phi$$

$$\implies \exp(g(t)) = \exp(f(e^{-i\phi}t))e^{i\phi} = e^{-i\phi} \cdot t \cdot e^{i\phi} = t$$

Then g(t) is a determination of log on U_{θ} .

THE SQUARE ROOT OF FUNCTION

We denote $z^{1/2}$ or \sqrt{z} to be the square root of function z. In polar coordinate, $z = re^{i\theta} = re^{i(\theta+2\pi)}$, then

$$z^{1/2} = r^{1/2}e^{i\theta} \neq z^{1/2} = r^{1/2}e^{i\theta + i\pi} = -r^{1/2}e^{i\theta/2}.$$

the same applies to m-th root of $z: z^{1/m}$.

Remark. For x real > 0, $x^{1/m} = e^{1/m \log x}$. Whenever there is a determination of the logarithm, there is also a determination of $z^{1/m}$. For instance, there is always a determination of $z^{1/m}$ over U_{θ} , $\theta \in \mathbb{R}$.

 \sqrt{z} will defined a complex number since $w^2 = z$ has always a solution.

Exercise 5

If *f* analytic, nonzero over *U*,

$$f(a+b) = f(a)f(b)$$

Then $f(z) = e^{bz}$ for some constant $b \in \mathbb{C}$.

Holomorphic functions

3.1 Holomorphic functions

HOLOMORPHIC

Here we go from definition,

Definition 3.1. Let U be an open set in \mathbb{C} . A function $f:U\to\mathbb{C}$ is \mathbb{C} differentiable at $z\in U$ if:

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

exists. If the limit exists at every $z \in U$, and $f' : U \to \mathbb{C}$ thus defined is continuous, we say that f is *holomorphic* on U.

In this case, we write

$$f(z+h) - f(z) = f'(z) \cdot h + \alpha(h) \cdot |h|$$

where $\lim_{h\to 0} \alpha(h) = 0$.

Identify \mathbb{C} with \mathbb{R}^2 , $x + iy \mapsto (x, y)$ and $f(z) \mapsto f(x, y)$.

CAUCHY RIEMANN EQUATION

R-differentiability says:

$$f(x+k,y+l) - f(x,y) = a \cdot k + b \cdot l + \beta(k,l) \sqrt{k^2 + l^2}$$

where $\lim_{(k,l)\to(0,0)} \beta(k,l) = 0$ and $a = \frac{\partial f}{\partial x}(x,y)$, $b = \frac{\partial f}{\partial y}(x,y)$.

C-differentiability says:

$$\frac{\partial f}{\partial x} \cdot k + \frac{\partial f}{\partial y} \cdot l = f'(z)(k+il)$$

here, $h \leftrightarrow k + il$. As they are both equal to the linear term in f(z + h) - f(z) = f(x + k, y + l) - f(x, y) which implies

$$f'(z) = \frac{\partial f}{\partial x}(x, y)$$
$$if'(z) = \frac{\partial f}{\partial y}$$

which implies

$$\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = 0 \tag{3.1}$$

If f(x,y) = P(x,y) + iQ(x,y)

$$P,Q:\mathbb{R}^2\to\mathbb{R}$$

then

$$\frac{\partial f}{\partial x} = \frac{\partial P}{\partial x} + i \frac{\partial Q}{\partial x}$$
$$\frac{\partial f}{\partial y} = \frac{\partial P}{\partial y} + i \frac{\partial Q}{\partial y}$$

the equation (3.1) implies

$$\frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y} + i\left(\frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y}\right) = 0$$

We obtain the *Cauchy-Riemann equation*:

$$\frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y} = 0$$

$$\frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y} = 0$$
(3.2)

Proposition 3.1. A function $f: U \to \mathbb{C}$ is \mathbb{C} -differentiable at a point iff it is differentiable at a function of two real variables and its partial derivatives satisfies the Cauchy-Riemann equation (3.2).

Remark. If f, g are holomorphic on U, then all the rules of differentiation apply. For example, the sum, the product, composition \cdots

examples

EXAMPLE Consider
$$f(z) = z^2 = (x + iy)^2 = x^2 - y^2 + i2xy$$
 where $P = x^2 - y^2$, $Q = 2xy$

$$\frac{\partial P}{\partial x} = 2x = \frac{\partial Q}{\partial y}, \quad \frac{\partial P}{\partial y} = -2y = -\frac{\partial Q}{\partial x}$$

Hence, Cauchy-Riemann equation satisfied, z^2 is holomorphic on \mathbb{C} .

EXAMPLE Consider $g(z) = e^z = e^{x+iy} = e^x e^{iy} = e^x \cos y + ie^x \sin y$, where

$$P = e^x \cos y$$
, $Q = e^x \sin y$

$$\frac{\partial P}{\partial x} = e^x \cos y = \frac{\partial Q}{\partial y}, \quad \frac{\partial P}{\partial y} = -e^x \sin y = -\frac{\partial Q}{\partial x}$$

hence, Cauchy-Riemann equation satisfied, e^z is holomorphic.

EXAMPLE Consider $f(z) = z\bar{z} = x^2 + y^2 = |z|^2$, where

$$P = x^2 + y^2$$
, $Q = 0$

$$\frac{\partial P}{\partial x} = 2x \neq \frac{\partial Q}{\partial y}$$

f is **NOT** \mathbb{C} -differentiable at any $z \neq 0$.

EXAMPLE Consider $\bar{z} = x - iy$,

$$\frac{\partial P}{\partial x} = 1, \quad \frac{\partial Q}{\partial y} = -1,$$

Cauchy-Riemann equation fails. \bar{z} is **NOT** holomorphic.

HOLOMORPHIC FROM ∂̄z̄

We have

$$f(z) = \text{Re}(z) = x$$
, $g(z) = \text{Im}(z) = y$, $Q = 0$

Both are not C-differentiable anywhere. Actually,

$$Re(z) = \frac{1}{2}(z + \bar{z}), \quad Im z = \frac{1}{2i}(z - \bar{z})$$

For \mathbb{R}^2 , x, y are independent variables.

$$z = x + iy$$
, $\bar{z} = x - iy$

 z,\bar{z} are independent variables.

By chain rule,

$$\frac{\partial f}{\partial \bar{z}} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial \bar{z}} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial \bar{z}}$$

$$z = x + iy \implies \bar{z} = x - iy,$$

$$\frac{\partial \bar{z}}{\partial x} = 1, \frac{\partial \bar{z}}{\partial y} = -i$$

$$\implies \frac{\partial f}{\partial \bar{z}} = \frac{\partial f}{\partial x} + i\frac{\partial f}{\partial y}$$

From (3.1), f is \mathbb{C} -differentiable at z iff

$$\frac{\partial f}{\partial \bar{z}}(z) = 0$$

3.2 Analyticity of holomorphic functions

CAUCHY THEOREM

It is remarkable that the C-differentiability implies analyticity. Here is the tools:

Theorem 3.2 (Cauchy). Let f be a holomorphic function on the open disc $|z-z_0|<\rho$. The complex number

$$a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f(z_0 + re^{it}) e^{-int} dt$$

is independent of the choice of $r < \rho$.

Furthermore, the power $\sum_{n=0}^{\infty} a_n z^n$ has $R.C \ge \rho$ and we have

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

for $|z-z_0| \leq \rho$.

Proof. We may suppose that $z_0 = 0$ and let z such that $|z| < \rho$ and r > 0 with $|z| < r < \rho$. We consider the function $g : [0,1] \to \mathbb{C}$ defined by

$$g(\alpha) = \int_0^{2\pi} \frac{f\left((1-\alpha)z + \alpha r e^{it}\right) - f(z)}{r e^{it} - z} r e^{it} dt$$

the integrand is continuous and differentiable (z fixed, and denominator $\neq 0$), hence g is differentiable.

$$g'(\alpha) = \int_0^{2\pi} f'\left((1-\alpha)z + \alpha r e^{it}\right) r e^{it} dt$$
$$= \frac{1}{\alpha i} f\left((1-\alpha)z + \alpha r e^{it}\right) \Big|_0^{2\pi}$$
$$= 0$$

which implies g is constant on [0,1].

As g(0) = 0, the constant is 0. In particular g(1) = 0 which yields

$$\int_0^{2\pi} \frac{f(re^{it}) - f(z)}{re^{it} - z} re^{it} = 0$$

$$\implies f(z) \cdot \int_0^{2\pi} \frac{re^{it}}{re^{it} - z} dt = \int_0^{2\pi} \frac{re^{it} f(re^{it}) dt}{re^{it} - z}$$
(3.3)

3.3. CAUCHY'S INTEGRAL FORMULA CHAPTER 3. HOLOMORPHIC FUNCTIONS

Now, for r > |z|:

$$\frac{re^{it}}{re^{it} - z} = \frac{1}{1 - z/(re^{it})}$$
$$= 1 + \frac{z}{re^{it}} + \dots + \left(\frac{z}{re^{it}}\right)^n + \dots$$

with normal convergence for all $t \in \mathbb{R}$, we can integrate termwise:

$$\int_0^{2\pi} \frac{re^{it}}{re^{it} - z} dt = \int_0^{2\pi} 1 dt + \int_0^{2\pi} \frac{z}{re^{it}} dt + \cdots$$

$$= 2\pi$$

For n > 0:

$$\int_0^{2\pi} \left(\frac{z}{re^{it}}\right)^n dt = \left(\frac{z}{n}\right)^n \int_0^{2\pi} e^{-int} dt$$

$$= \left(\frac{z}{r}\right)^n \left(\frac{-1}{in}\right) e^{-int} \Big|_0^{2\pi}$$

$$= 0$$

$$\implies \int_0^{2\pi} \frac{re^{it}}{re^{it} - z} dt = 2\pi.$$

As $f(re^{it})$ is bounded, we can integrate termwise in the second integral.

$$2\pi f(z) = \int_0^{2\pi} \frac{re^{it} f(re^{it})}{re^{it} - z} dt = \sum_{n=0}^{\infty} z^n \int_0^{2n} \frac{f(re^{it})}{r^n e^{int}} dt = \sum_{n=0}^{\infty} a_n z^n$$

Therefore,

$$f(z) = \sum_{n=0}^{\infty} a_n z^n.$$

The fact that a_n is independent of r is a consequence of the uniqueness of the power series expansion of f.

3.3 Cauchy's integral formula

If f is a holomorphic function on a disc $B_{(z_0)r}$, then for all z in this disc, we have

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(z_0 + re^{it})re^{it}}{z_0 + re^{it} - z} dt$$

which takes the equivalent form:

$$f(z) = \frac{1}{2\pi i} \int_{|z_0 - w| = r} \frac{f(w)}{w - z} dw$$

3.3. CAUCHY'S INTEGRAL FORMULA CHAPTER 3. HOLOMORPHIC FUNCTIONS

From the previous calculation of a_n , we have

$$\frac{1}{n!}f^{(n)}(z_0) = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(z_0 + re^{it})}{r^n e^{int}} dt$$

or

$$f^{n} = \frac{n!}{2\pi i} \int_{|w-z_{0}|=r} \frac{f(w)}{(w-z_{0})^{n+1}} dw$$

Summarize: If f is a holomorphic function on open disc $B_{\rho}(z_0)$. Then f is analytic on $B_{\rho}(z_0)$ and

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

for

$$a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f(z_0 + re^{it}) e^{-int} dt$$

and $r \in (0, \rho)$.

$$f(z) = \frac{1}{2\pi i} \int_{|w-z_0|=r} \frac{f(w)}{w-z} dw$$
$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{|w-z|=r} \frac{f(w)}{(w-z)^{n+1}} dw$$

Corollary. If f is holomorphic on an open set U, then, for $z_0 \in U$, f has a power series expansion on the maximal disc $B_{\rho}(z_0)$ included in U.

For all
$$z \in B_{\rho}(z_0)$$
, $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$. In particular, R.C $\geq \rho$.

Proposition 3.3 (Cauchy's inequality). Let f be a holomorphic function on an open set U in \mathbb{C} . Let $z_0 \in U$ and r > 0 such that $B_r(z_0) \subseteq U$. For all $n \in \mathbb{N}$, we have:

$$\left| f^{(n)}(z_0) \right| \le \frac{n!}{r^n} \sup_{|w-z_0|=r} |f(w)|$$

Proof. We have

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{|w-z_0|=r} \frac{f(w)}{(w-z)^{n+1}} dw$$

If
$$w = z_0 + re^{it}$$
, $dw = ire^{it}dt$