සියලු ම හිමිකම් ඇවිරිණි / மුඟුப் பதிப்புநிமையுடையது / $All\ Rights\ Reserved]$

([නව නිර්දේශය/பුනිய பாடத்திட்டம்/New Syllabus

මේත්තුව ලී ලංකා විභාග දෙපාර්ත්තුවකින් **විභාගා ලෙපාර්තිල්වියි ව**විභාග දෙපාර්තමේත්තුව ලී ලංකා විභාග දෙපාර්තමේත්තුව நினைக்களம் இலங்கைப் பாடன்தே தினைக்களம் இனங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் பரிட்சைத் தினைக்களம் lions, Sri Lanka Department **இலங்கைப் பரியன் சித**ா**தினைக்குளம**ாs, Sri Lanka Department of Examinations, Sri Lanka මේත්තුව ලී ලංකා විභාග දෙපාර්තමේත්තුව ලී ලංකා විභාග දේපාර්තිමේත්තුව ලී ලංකා විභාග දෙපාර්තමේත්තුව ලී ලංකා විභාග දෙපාර්තමේත්තුව නියාක්ෂය සහ නියාක්ෂය සහ ඉහස්තයේ **වෙන ගැනිම් විභාග දේපාර්තමේ**ත්තුව ලී ලංකා විභාග දෙපාර්තමේත්තුව ලී ලංකා විභාග දෙපාර්තමේත්තුව

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

රසායන විදනාව இரசாயனவியல் Chemistry

2019.08.16 / 0830 - 1030

පැය දෙකයි

இரண்டு மணித்தியாலம் Two hours

උපදෙස්:

- * ආවර්තිතා වගුවක් සපයා ඇත.
- * මෙම පුශ්න පතුය පිටු 09 කින් යුක්ත වේ.
- * සියලු ම පුශ්නවලට පිළිතුරු සපයන්න.
- 🔆 ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ විගාග අංකය ලියන්න.
- 🛠 උත්තර පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් සැලකිලිමත් ව කියවන්න.
- * 1 සිට ${f 50}$ තෙක් එක් එක් පුශ්නයට (1),(2),(3),(4),(5) යන පිළිතුරුවලින් **නිවැරදි හෝ ඉතාමත් ගැළපෙන** හෝ පිළිතුර තෝරා ගෙන, එය **උත්තර පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයක්** (X) **යොද දක්වන්න**.

සාර්වතු වායු නියතය $R = 8.314 \,\mathrm{J \, K}^{-1} \,\mathrm{mol}^{-1}$ ඇවගාඩ්රෝ නියතය $N_A = 6.022 \times 10^{23} \, \mathrm{mol}^{-1}$ ප්ලෑන්ක්ගේ නියතය $h^{3} = 6.626 \times 10^{-34} \text{ J s}$ ආලෝකයේ පුවේගය $c = 3 \times 10^8 \,\mathrm{m \ s}^{-1}$

- පහත දැක්වෙන I සහ II පුකාශ සලකන්න.
 - I. පරමාණු මගින් අවශෝෂණය කරන හෝ විමෝචනය කරන ශක්තිය ක්වොන්ටම්කරණය වී ඇත.
 - II. කුඩා අංශු සුදුසු තත්ත්ව යටතේ දී තරංග ලක්ෂණ පෙන්නුම් කරයි.

මෙම I සහ II පුකාශවලින් දෙනු ලබන වාද ඉදිරිපත් කළ විදාහඥයන් දෙදෙනා පිළිවෙළින්,

- (1) ලුවී ඩි බුෝග්ලි සහ ඇල්බට් අයින්ස්ටයින්
- (2) මැක්ස් ප්ලාන්ක් සහ ලුවී ඩි බෝග්ලි
- (3) මැක්ස් ප්ලාන්ක් සහ අර්නස්ට් රදර්ෆ'ඩ
- (4) නීල්ස් බෝර් සහ ලුවී ඩි බුෝග්ලි
- (5) ලුවී ඩි බුෝග්ලි සහ මැක්ස් ප්ලාන්ක්
- ${f 2.}$ පරමාණුවක පුධාන ක්වොන්ටම් අංකය n=3 හා ආශිුත උපරිම **ඉලෙක්ටුෝන යුගල්** සංඛාාව වනුයේ,

- (4) 8
- 3. ඔක්සලේට් අයනය $\left[{
 m C_2O_4^{2-}} / {
 m (O_2C-CO_2)}^{2-}
 ight]$ ට ඇඳිය හැකි ස්ථායි සම්පුයුක්ත වසුහ ගණන වනුයේ,

- (4) 5

4. පහත දක්වා ඇති සංයෝගයේ IUPAC නාමය කුමක් ද?

HOCH, CH, CH, CCH, NH,

(1) 5-hydroxy-2-oxo-1-pentanamine

(2) 1-amino-5-hydroxy-2-oxopentane

(3) 1-amino-5-hydroxy-2-pentanone

(4) 5-hydroxy-1-amino-2-pentanone

- (5) 5-amino-4-oxo-1-pentanol
- 5. විදාපුත් සෘණතාවේ **වැඩිම** වෙනසක් ඇති මූලදුවා යුගලය හඳුනාගන්න.
 - (1) B සහ Al
- (2) Be to Al (3) B to Si

- (4) B සහ C (5) Al සහ C

f 6.~~H NNO අණුවේ (සැකිල්ල : $f H-\dot N^1-N^2-O$) නයිටුජන් පරමාණු දෙක අවට ($f N^1$ සහ $f N^2$ ලෙස ලේබල් කර ඇත.) ඉලෙක්ටුෝන යුගල් ජාහමිතිය සහ හැඩය පිළිවෙළින් වනුයේ,

	N^1	Land Maria San Land	N^2					
(1)	චතුස්තලීය	පිරමිඩාකාර	තලීය නිකෝණාකාර	කෝණිය				
(2)	පිරමිඩාකාර	තලීය තිුකෝණාකාර	තලීය තිුකෝණාකාර	කෝණීය				
(3)	තලීය තිුකෝණාකාර	පිරමිඩාකාර	තලීය තිුකෝණාකාර	තලීය නිුකෝණාකාර				
(4)	චතුස්තලීය	පිරමිඩාකාර	කෝණිය	තලීය තිුකෝණාකාර				
(5)	චතුස්තලීය	කෝණීය	තලීය නිකෝණාකාර	තලීය තිුකෝණාකාර				

7. පහත දැක්වෙන පුකාශ අතුරෙන් බෙන්සීන් පිළිබඳව වැරදී පුකාශය කුමක් ද?

(1) බෙන්සීන්හි සම්පුයුක්ත මුහුම පහත දී ඇති ආකාරයට පෙන්වනු ලැබේ.

(2) බෙන්සීන්හි කාබන් පරමාණු හයම sp² මුහුම්කරණය වී ඇත.

(3) බෙන්සීන්හි ඕනෑම කාබන් පරමාණු දෙකක් අතර බන්ධන දිග එකම අගයක් ගනී.

(4) බෙන්සීන්හි සියළු C—C—C හා C—C—H බන්ධන කෝණවලට එකම අගයක් ඇත.

(5) බෙන්සීන්හි හයිඩුජන් පරමාණු සියල්ල ම එකම තලයක පිහිටයි.

 $oldsymbol{8}$. ඉහළ උෂ්ණත්වවල දී $\mathrm{TiCl}_{A}(\mathrm{g})$ දුව මැග්නීසියම් ලෝහය ($\mathrm{Mg}(\mathit{l})$) සමග පුතිකිුයා කර $\mathrm{Ti}(\mathrm{s})$ ලෝහය සහ $\mathrm{MgCl}_{A}(\mathit{l})$ ලබා දේ. $\mathrm{TiCl}_4(\mathrm{g})~0.95~\mathrm{kg}$ හා $\mathrm{Mg}(\mathit{l})~97.2~\mathrm{g}$ පුතිකිුයා කිරීමට සැලසූ විට, සම්පූර්ණයෙන් වැයවන පුතිකිුයකය (මෙය සීමාකාරී පුතිකියකය ලෙස සාමානායෙන් හැඳින්වේ) සහ Ti(s) ලෝහය සැදෙන පුමාණ පිළිවෙළින් වනුයේ, (මවුලික ස්කන්ධය: $TiCl_4 = 190 \text{ g mol}^{-1}$; $Mg = 24.3 \text{ g mol}^{-1}$; $Ti = 48 \text{ g mol}^{-1}$)

(1) TiCl₄ සහ 96 g

(2) Mg සහ 96 g

(3) Mg සහ 48 g

(4) TiCl₄ සහ 192 g

(5) Mg සහ 192 g

9. පරිපූර්ණ වායු සමීකරණය, $P=
ho rac{RT}{M}$ ආකාරයෙන් දැක්විය හැක. මෙහි ho යනු වායුවෙහි ඝනත්වය ද, Mයනු වායුවේ මවුලික ස්කන්ධය (g mol^{-1}) ද, Pයනු පීඩනය (Pa) හා Tයනු උෂ්ණත්වය (K) ද වේ. R හි ඒකක $\operatorname{J}\operatorname{mol}^{-1}\operatorname{K}^{-1}$ ුනම්, සමීකරණයෙහි ho හි ඒකක විය යුතු වන්නේ,

(1) kg m⁻³

(2) $g m^{-3}$

(3) $g \text{ cm}^{-3}$

 $(4) g dm^{-3}$

(5) kg cm⁻³

 ${f 10.}$ පහත සඳහන් ජලීය දුාවණයන්හි ${f H_2O}$ ද ඇතුලු ව සන්නායකතාව **අඩුවන** පිළිවෙළ වනුයේ, $0.01\,\mathrm{M\,KCl},\ 0.1\,\mathrm{M\,KCl},\ 0.1\,\mathrm{M\,HAC};\ ($ මෙහි $\mathrm{HAC}=$ ඇසිටික් අම්ලය; $\mathrm{M}=\mathrm{mol\ dm}^{-3}$)

(1) H₂O

> 0.1 M HAC > 0.1 M KCl > 0.01 M KCl

(2) 0.01 M KCl > 0.1 M HAC > 0.1 M KCl $> H_2O$

(3) 0.01 M KCl > 0.1 M KCl > 0.1 M HAC $> H_2O$

(4) 0.1 M KCl > 0.01 M KCl > 0.1 M HAC $> H_2O$

(5) $0.1 \text{ M HAC} > \text{H}_2\text{O}$

> 0.01 M KCl > 0.1 M KCl

 $11. \ \mathrm{SO_2}, \mathrm{SO_3}, \ \mathrm{SO_3^{2-}}, \ \mathrm{SO_4^{2-}}$ සහ $\mathrm{SCl_2}$ යන රසායනික විශේෂ, සල්ෆර් පරමාණුවේ (S) විදාුුත් සෘණතාව **වැඩිවන** පිළිවෙළට සැකසූවිට නිවැරදි පිළිතුර වනුයේ,

(1) $SCl_2 < SO_3^{2-} < SO_2 < SO_3 < SO_4^{2-}$

(2) $SO_3 < SO_4^{2-} < SO_2 < SO_3^{2-} < SCl_2$

(3) $SO_3^{2-} < SO_4^{2-} < SCl_2 < SO_3 < SO_2$ (4) $SCl_2 < SO_3^{2-} < SO_4^{2-} < SO_2 < SO_3$

(5) $SCl_2 < SO_4^{2-} < SO_3^{2-} < SO_2 < SO_3$

12.	පහත	සඳහන්	කුමන	පිළිතුර,	25°C	ති	ඇති	1.7	75 mo	l dm ⁻³	MgCl	ජලීය	දුාවණය	ක පැවැ	තිය හැකි
	උපරිම	හයිඩෙ	<u>ාක්සයි</u>	ඩ් සාන්දු	,ණය ල	,බා	දෙයි	ę?	<u></u>	උෂ්ණ	ත්වයේ ්	ξ Mg	(OH), &	දුාවාසතා	ගුණිතය
	$7.1 \times$	10 ⁻¹² mo	ol ³ dm ⁻⁹	ීවේ.									144		

- (1) $4.0 \times 10^{-6} \text{ mol dm}^{-3}$
- (2) $2.0 \times 10^{-6} \text{ mol dm}^{-3}$
- (3) $1.775 \times 10^{-12} \,\mathrm{mol}\,\mathrm{dm}^{-3}$

- (4) $\sqrt{7.1} \times 10^{-6} \text{ mol dm}^{-3}$
- (5) $1.0 \times 10^{-6} \text{ mol dm}^{-3}$

13. පහත දක්වා ඇති පුතිකිුයාවේ පුධාන ඵලය කුමක් ද?

$$\begin{array}{c} \text{(1)} & \text{CO}_{2}^{-}\text{Na}^{+} \\ \text{Na}^{+}\text{O} & \text{CH}_{2}\text{O}^{-}\text{Na}^{+} \end{array}$$

$$(2) \qquad CO_2^-Na^+$$

$$Na^+O^- \qquad CH_2OH$$

(3)
$$CO_2^-Na^+$$
 $CH_2O^-Na^+$

(4)
$$CO_2^-Na^+$$
 CH_2OH

- 14. පහත දැක්වෙන ඒවායින් නිවැරදි පුකාශය හඳුනාගන්න.
 - (1) NF_3 වල බන්ධන කෝණය NH_3 වල බන්ධන කෝණයට වඩා විශාල වේ.
 - (2) 17 වන කාණ්ඩයේ (හෝ 7A) මූලදුවා, ඔක්සිකරණ අවස්ථා -1 සිට +7 දක්වා පෙන්නුම් කරයි.
 - (3) කාමර උෂ්ණත්වයේ දී සල්ෆර්වල වඩාත් ම ස්ථායි බහුරූපී ආකාරය ඒකානති සල්ෆර් වේ.
 - (4) මිනිරන්වල ඝනත්වය දියමන්තිවල ඝනත්වයට වඩා වැඩි ය.
 - (5) වායුමය අවස්ථාවේ දී ඇලුමිනියම් ක්ලෝරයිඩ් අෂ්ටක නියමය තෘප්ත කරයි.

15. $\operatorname{Mn}(s) \left| \operatorname{Mn}^{2+}(\operatorname{aq}) \right| \left| \operatorname{Br}^{-}(\operatorname{aq}) \right| \operatorname{Br}_{2}(g) \left| \operatorname{Pt}(s) \right| \operatorname{Pt}(s)$ විද<u>ා</u>පුත්රසායනික කෝෂයෙහි සම්මත විදාුත්ගාමක බලය 2.27 V වේ. $\mathrm{Br}_2(\mathrm{g}) \left| \mathrm{Br}^-(\mathrm{aq}) \; \mathfrak{F} \right| = \mathrm{gr}_2(\mathrm{g}) \left| \mathrm{Br}^-(\mathrm{g}) \; \mathfrak{F} \right| = \mathrm{gr}_2(\mathrm{g}) \left| \mathrm{Br}^-(\mathrm{g$

වනුයේ,

- (1) -3.36 V
- (2) -1.18 V
- (3) 0.59 V (4) 1.18 V
- (5) 3.36 V

16. දුවයක වාෂ්පීකරණයේ එන්තැල්පි වෙනස හා වාෂ්පීකරණයේ එන්ටොපි වෙනස පිළිවෙළින් $45.00~{
m kJ~mol}^{-1}$ හා $90.0~\mathrm{JK}^{-1}~\mathrm{mol}^{-1}$ වේ. දුවයෙහි තාපාංකය වනුයේ,

- (1) 45.0 °C
- (2) 62.7 °C
- (3) 100.0 °C (4) 135.0 °C
- (5) 227.0 °C

- 17. C H N ≡NCl පිළිබඳව වැරදී ප්‍‍ පක්‍ යක්‍ ද?
 - (1) ඇනිලීන්, $HNO_2(NaNO_2/HCl)$ සමග 0-5 °C දී පුතිකිුයා කරවීමෙන් $C_2H_2N\equiv NCl$ ලබා ගත හැක.
 - (2) $C_6H_5N\equiv NCl^{-1},KI$ සමග පුතිකිුයා කර අයඩොබෙන්සීන් ලබා දෙයි.
 - (3) $C_{\zeta}H_{\zeta}N\equiv N$ අයනයට ඉලෙක්ටුෝෆයිලයක් ලෙස කිුිිියා කළ හැකි ය.
 - (4) $C_c H_s N \equiv NCl$ හි ජලීය දුාවණයක් රත් කළ විට එය වියෝජනය වී බෙන්සීන් ලබා දෙයි.
 - (5) $C_6H_5N\equiv NCl$ භාස්මික මාධායේ දී ෆීනෝල සමග පුතිකිුයා කර වර්ණවත් සංයෝග සාදයි.
- පීඩනයක දී සහ $250~^{\circ}\mathrm{C}$ හි දී $\mathrm{H_{2}S(g)}~4~\mathrm{dm^{3}}$ හා $\mathrm{O_{2}(g)}~10~\mathrm{dm^{3}}$ ක් පුතිකිුයා කළ විට මිශුණයේ අවසාන පරිමාව වනුයේ,
 - (1) 6 dm³
- $(2) 8 dm^3$
- (3) 10 dm^3
- (4) 12 dm^3
- (5) 14 dm³

f 19. රේචනය කරන ලද දෘඪ බඳුනක් තුළට f A(g) හා f D(g) හි මිශුණයක් උෂ්ණත්වය T හි දී ඇතුල් කරන ලදී. මෙම උෂ්ණත්වයේ දී A(g) හා D(g) යන දෙකම පහත දී ඇති මූලික පුතිකිුයා අනුව වියෝජනය වේ.

$$2A(g) \rightarrow B(g) + 3C(g)$$
; ශීසුකා නියනය k_1
 $D(g) \rightarrow B(g) + 2C(g)$

බඳුනෙහි ආරම්භක පීඩනය P, පුතිකිුයක දෙක සම්පූර්ණයෙන් ම වියෝජනය වූ පසු $2.7\,P$ දක්වා වෙනස් විය. මෙම උෂ්ණත්වයේ දී A(g) හි වියෝජනයේ ආරම්භක ශීඝුතාවය වනුයේ, (\emph{R} යනු සාර්වතු වායු නියතය වේ)

(1) $1.7k_1\left(\frac{P}{RT}\right)$

- $(2) \quad 2.7k_1 \left(\frac{P}{RT}\right)$
- (3) $0.09k_1\left(\frac{P}{RT}\right)^2$

- (4) $2.89k_1\left(\frac{P}{RT}\right)^2$
- $(5) \quad 7.29k_1 \left(\frac{P}{RT}\right)^2$

 $oldsymbol{20.}$ එක්තරා කාබනික සංයෝගයක් ($oldsymbol{X}$) බෝමීන් ජලය ($oldsymbol{\mathrm{Br}}_{\gamma}/oldsymbol{\mathrm{H}}_{\gamma}\mathrm{O}$) විවර්ණ කරයි. $oldsymbol{\mathrm{X}}$, ඇමෝනීය CuCl සමග අවක්ෂේපයක් ලබා නොදෙයි. \mathbf{X} , ආම්ලික $\mathbf{K}_{\gamma}\mathrm{Cr}_{\gamma}\mathrm{O}_{\gamma}$ දාවණයක් සම්ග පිරියම් කළ විට කොළ පැහැති දාවණයක් ලැබේ. X විය හැක්කේ,

 ${f 21.} \ \ 0.10 \ {
m mol} \ {
m dm}^{-3}$ ඒකභාස්මික දුබල අම්ල දාවණයක හා $0.10 \ {
m mol} \ {
m dm}^{-3}$ වූ එම අම්ලයෙහි සෝඩියම් ලවණයෙහි දුාවණයක සම පරිමා මිශු කිරීමෙන් pH=5.0වූ ස්වාරක්ෂක දුාවණයක් සාදා ඇත. මෙම ස්වාරක්ෂක දුාවණයෙන් $20.00~{
m cm}^3$ හා $0.10~{
m mol}~{
m dm}^{-3}$ දුබල අම්ල දුාවණයෙන් $90.00~{
m cm}^3$ මිශු කළ විට සැදෙන දුාවණයෙහි pH අගය වනුයේ,

- (1) 3.0
- (2) 4.0
- (3) 4.5
- (4) 5.5
- (5) 6.0

22. පහත සඳහන් ජලීය දුාවණ තුන සලකන්න.

P - දුබල අම්ලයක්

Q - දුබල අම්ලයෙහි හා එහි සෝඩියම් ලවණයෙහි සමමවුලික මිශුණයක්

 ${f R}$ - දුබල අම්ලයේ හා පුබල හස්මයක අනුමාපනයේ සමකතා ලක්ෂායේ දී ලැබෙන අනුමාපන මිශුණය එක් එක් දුාවණය නියත උෂ්ණත්වයේ දී එකම පුමාණයෙන් තනුක කිරීමේ දී ${f P},~{f Q}$ හා ${f R}$ හි ${f p}{f H}$ අගයන් පිළිවෙළින්,

- (1) අඩු වේ, වැඩි වේ, වෙනස් නොවේ.
- (2) වැඩි වේ, වෙනස් නොවේ, අඩු වේ.
- (3) වැඩි වේ, වෙනස් නොවේ, වෙනස් නොවේ. (4) වැඩි වේ, වෙනස් නොවේ, වැඩි වේ.
- (5) වැඩි වේ, වැඩි වේ, වැඩි වේ.

 ${f 23.}$ ක්ලෝරීන්හි ඔක්සොඅම්ල වන ${f HOCl}, {f HClO}_{f q}, {f HClO}_{f q}$ හා ${f HClO}_{f q}$ පිළිබඳ **වැරදි** වගන්තිය වනුයේ,

- (1) HClO_2 , HClO_3 හා HClO_4 හි ක්ලෝරීන් වටා හැඩයන් පිළිවෙළින් කෝණික, පිරමිඩීය හා චතුස්තලීය වේ.
- (2) HOCl , HClO_2 , HClO_3 හා HClO_4 හි ක්ලෝරීන්වල ඔක්සිකරණ අවස්ථා පිළිවෙළින් +1, +3, +5 හා +7 වේ.
- (3) ඔක්සොඅම්ලවල අම්ල පුබලතාව $HOCl < HClO_{3} < HClO_{4}$ ලෙස වෙනස් වේ.
- (4) මෙම ඔක්සොඅම්ල සියල්ලෙහි ම අඩු තරමින් එක් ද්විත්ව බන්ධනයක්වත් අඩංගු වේ.
- (5) මෙම ඔක්සොඅම්ල සියල්ලෙහි ම අඩු තරමින් එක් OH කාණ්ඩයක්වත් අඩංගු වේ.

24. ආම්ලික ජලීය දුාවණයක $25~^{\circ}\mathrm{C}$ හි දී ඝනත්වය $1.0~\mathrm{kg}~\mathrm{dm}^{-3}$ වේ. මෙම දුාවණයෙහි pH අගය $1.0~\mathrm{e}$ ව් නම් එහි H[†] සාන්දුණය ppm වලින් වනුයේ,

- (1) 0.1
- (2) 1
- (3) 100
- (4) 1000
- (5) 10,000

- ${f 25.}$ ඕසෝන් $({
 m O_{_{
 m 2}}})$ අඩංගු දූෂිත වායු සාම්පලයක ${
 m 25.0~g},$ වැඩිපුර ${
 m KI}$ අඩංගු ආම්ලික දාවණයක් සමග පිරියම් කරන ලදී. මෙම පුතිකිුියාවේ දී ඕසෝන්, m O හා $m H_2O$ බවට පරිවර්තනය වේ. මුක්ත වූ අයඩීන්, $m 0.002~mol~dm^{-3}$ $m Na_2^{}S_2^{}O_3^{}$ දාවණයක් සමග අනුමාපනය කරන ලදී. අවශා වූ $m Na_2^{}S_2^{}O_3^{}$ පරිමාව $25.0~
 m cm^3$ විය. වායු සාම්පලයේ ඇති O_3 හි ස්කන්ධ පුතිශනය වනුයේ, O=16) (1) 4.8×10^{-3} (2) 6.4×10^{-3} (3) 9.6×10^{-3} (4) 1.0×10^{-2} (5) 3.2×10^{-2}

- **26.** NaCl(s) උත්පාදනයට අදාළ බෝන්-හේබර් චකුයෙහි අඩංගු **නොවන්නේ** පහත සඳහන් කුමන පුතිකිුයා පියවර ද?
 - (1) $Na^{+}(aq) + Cl^{-}(aq) \longrightarrow NaCl(aq)$ (2) $Na(s) \longrightarrow Na(g)$
- (3) $Cl_2(g) \longrightarrow 2Cl(g)$

- (4) $Cl(g) + e \longrightarrow Cl^{-}(g)$
- (5) $Na^{+}(g) + Cl^{-}(g) \longrightarrow NaCl(s)$
- ${f 27.}$ ${f A}({f g})+{f B}({f g})\longrightarrow {f C}({f g})$ යන මූලික පුතිකිුයාවෙහි සකිුයන ශක්තිය ${\it Ea}$ වේ. ${f M}$ ලෝහය මගින් මෙම පුතිකිුයාව උත්පේරණය වේ. උත්පේරිත පුතිකිුිිියාවෙහි ශක්ති සටහන පහත දැක්වේ.

මෙම පුතිකිුිිිියාව සම්බන්ධයෙන් පහත දී ඇති කුමක් හැමවිට ම සතා වේ ද?

- (1) $Ea < E_1$
- (2) $Ea = E_1 + E_2 + E_3 \Delta H_1$ (3) $Ea < E_1, Ea < E_2 \iff Ea < E_3$
- (4) $Ea > E_1 + E_2$
- (5) $Ea > \Delta H_1 + E_2$
- 28. දුබල අම්ලයක් සඳහා, $F=rac{අම්ලයෙහි විඝටනය වූ පුමාණය} අම්ලයෙහි විඝටනය නොවූ පුමාණය$ – ලෙස දැක්විය හැක. Log F (ලඝු F) හා pH

අගය අතර සම්බන්ධය දැක්වෙනුයේ පහත සඳහන් කුමන පුස්තාරයෙන් ද?

- 29. බහුඅවයවක පිළිබඳව පහත සඳහන් පුකාශවලින් නිවැරදි වන්නේ කුමක් ද?
 - (1) නයිලෝන් ආකලන බහුඅවයවකයකි.
 - (2) ටෙෆ්ලෝන් සංඝනන බහුඅවයවකයකි.
 - (3) බේක්ලයිට් රේඛීය බහුඅවයවකයකි.
 - (4) ස්වභාවික රබර්වල පුනරාවර්තන ඒකකයේ කාබන් පරමාණු 4ක් ඇත.
 - (5) ඒකඅවයවක සම්බන්ධ වී සංඝනන බහුඅවයවක සැදීමේ දී කුඩා සහසංයුජ අණු ඉවත් වේ.
- 30. එකිනෙක හා පුතිකිුයා නොකරන පරිපූර්ණ වායූත් දෙකක් කපාටයක් මගින් වෙන් කර දෘඪ බඳුනක් තුළ තබා ඇත. මෙම පද්ධතිය නියත උෂ්ණත්වයක හා පීඩනයක පවත්වා ගනී. කපාටය විවෘත කළ පසු පද්ධතියෙහි ගිබ්ස් ශක්තිය, එන්තැල්පිය හා එන්ටොපියෙහි වෙනස්වීම පිළිවෙළින් පහත කුමක් මගින් නිවැරදිව විස්තර වේ ද?
 - (1) අඩුවේ, අඩුවේ, අඩුවේ.
- (2) අඩුවේ, අඩුවේ, වැඩිවේ.
- (3) අඩුවේ, වෙනස් නොවේ, වැඩිවේ. (4) අඩුවේ, වැඩිවේ, වැඩිවේ.
- (5) වැඩිවේ, වැඩිවේ, වැඩිවේ.

- අංක 31 සිට 40 තෙක් එක් එක් පුශ්නය සඳහා දී ඇති (a),(b),(c) සහ (d) යන පුතිචාර හතර අතුරෙන්, එකක් හෝ වැඩි සංඛාාවක් හෝ නිවැරදි ය. නිවැරදි පුතිචාරය/පුතිචාර කවරේ දැ'යි තෝරා ගන්න.
 - (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද
 - (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද
 - (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද
 - (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද

වෙනත් පුතිචාර සංඛාහවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද

උත්තර පතුයෙහි දැක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

ඉහත උපදෙස් සම්පිණ්ඩනය

(1)	(2)	(3)	(4)	(5)
(a) සහ (b)	(b) සහ (c)	(c) සහ (d)	(d) සහ (a)	වෙනත් පුතිචාර
පමණක්	පමණක්	පමණක්	පමණක්	සංඛාාවක් හෝ
<i>නිවැරදි</i> යි	නිවැරදියි	නිවැරදියි	නිවැරදියි	සංයෝජනයක් හෝ නිවැරදියි

- 31. ඔක්සිජන් සහ සල්ෆර් පරමාණු අඩංගු සරල සහසංයුජ අණු පිළිබඳව පහත දැක්වෙන කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
 - (a) H₂O උභයගුණි ලක්ෂණ පෙන්නුම් කරයි.
 - (b) $H_2^{-}O_2$ වල තාපාංකය $H_2^{-}O$ හි තාපාංකයට වඩා ඉහළ ය.
 - (c) ආම්ලික මාධාායකදී පමණක් $\mathrm{H_2O_2}$ වලට ඔක්සිකාරකයක් ලෙස කිුයා කළ හැක.
 - (d) $H_{\gamma}S$ සහ SO_{γ} යන දෙකට ම හැකියාව ඇත්තේ ඔක්සිහාරක ලෙස කිුිිියා කිරීමට පමණි.
- 32. හයිඩොකාබන පිළිබඳව පහත දක්වා ඇති කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
 - (a) සියලු ම හයිඩොකාබන වැඩිපුර O_{γ} සමග සම්පූර්ණයෙන් පුතිකිුයා කළ විට CO_{γ} හා $H_{\gamma}O$ ලබා දෙයි.
 - (b) සියලු ම ඇල්කයින ගිුනාඩ් පුතිකාරක සමග පුතිකිුිිියා කර ඇල්කයිනයිල්මැග්නීසියම් හේලයිඩ ලබා දෙයි.
 - (c) අතු බෙදුනු ඇල්කේනයක තාපාංකය එම සාපේක්ෂ අණුක ස්කන්ධය ම ඇති අතු නොබෙදුනු ඇල්කේනයක තාපාංකයට වඩා වැඩිය.
 - (d) කිසිදු හයිඩොකාබනයක් ජලීය NaOH සමග පුතිකිුයා නොකරයි.
- 33. තාපඅවශෝෂක පුතිකිුයාවක් නියත උෂ්ණත්වයේ දී හා පීඩනයේ දී ස්වයංසිද්ධව සිදු වේ නම් එවිට,
 - (a) පද්ධතියෙහි එන්තැල්පිය අඩු වේ.

(b) පද්ධතියෙහි එන්ටොපිය වැඩි වේ.

(c) පද්ධතියෙහි එන්තැල්පිය වැඩි වේ.

- (d) පද්ධතියෙහි එන්ටොපිය වෙනස් නොවේ.
- 34. ලෝහ අයන, ඒවායේ ජලීය දුාවණවලට $\mathrm{H}_2\mathrm{S}(\mathrm{g})$ යැවීමෙන් අවක්ෂේප කිරීම සම්බන්ධයෙන් පහත සඳහන් කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
 - (a) $H_{\gamma}S(g)$ හි පීඩනය අඩු කරන විට සල්ෆයිඩ් අයන සාන්දුණය වැඩි වේ.
 - (b) උෂ්ණත්වය වැඩි කරන විට සල්ෆයිඩ් අයන සාන්දුණය අඩු වේ.
 - (c) දාවණයට $\mathrm{Na_2S(s)}$ එකතු කිරීම, දවණය වූ $\mathrm{H_2S(aq)}$ හි විඝටනය අඩු කරයි.
 - (d) දාවණයෙහි pH අගය වැඩි කිරීම, සල්ෆයිඩ් අයන සාන්දුණය අඩු කරයි.
- ${f 35.}$ පහත දැක්වෙන ඒවායින් නියුක්ලියොෆිලික ආදේශ පුතිකිුයාවක්/පුතිකිුයා වන්නේ කුමක් ද ${f ?}/$ කුමන ඒවා ද ${f ?}$

$$(a) CH_{3}C-H + HCN \longrightarrow CH_{3}CHCN$$

$$(b) \quad \mathrm{CH_3CH_2OH} + \mathrm{PCl_3} \quad \longrightarrow \quad \mathrm{CH_3CH_2Cl}$$

(c)
$$CH_3CHCI + NaOH \longrightarrow CH_3CHOH$$
 $CH_3 CH_3$
 CH_3

(d)
$$CH_3CHCH_3 + Cl_2 \xrightarrow{hv} CH_3CCH_3 CH_3$$

- 36. වායුගෝලයේ කාබන්ඩයොක්සයිඩ් මට්ටම ඉහළයාම සම්බන්ධයෙන් පහත දැක්වෙන කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
 - (a) එය මුහුදු ජලයේ ආම්ලිකතාව ඉහළයාමට දායක වේ.
 - (b) එය ජල පද්ධතිවල කඨිනත්වය අඩු කරයි.
 - (c) එය සූර්යාගෙන් පැමිණෙන ${
 m UV}$ කි්රණ පුබලව අවශෝෂණය කරයි.
 - (d) එය අම්ල වැසිවලට දායක නොවේ.
- 37.~~3d-ගොනුවේ මූලදුවාායන් සම්බන්ධයෙන් පහත දැක්වෙන කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
 - (a) 3d-ගොනුවේ මූලදුවා අතුරෙන් ඉහළම පළමු අයනීකරණ ශක්තිය ${
 m Zn}$ වලට ඇත.
 - (b) පුධාන කාණ්ඩයේ (s හා p-ගොනු) බොහෝ මූලදුවාවල අයන මෙන් නොව 3d-ගොනුවේ ලෝහ අයන උච්ච වායු විනාහසය ලබා ගන්නේ කලාතුරකිනි.
 - (c) 3d-ගොනුවේ මූලදවාවල විදයුත් සෘණතාවයන් අනුරූප s-ගොනුවේ මූලදවාවල විදයුත් සෘණතාවයන්ට වඩා වැඩි නමුත්, ඒවායේ පරමාණුක අරයන් අනුරූප s-ගොනුවේ මූලදවාවල පරමාණුක අරයන්ට වඩා අඩු වේ.
 - (d) අවර්ණ සංයෝග සාදන 3d-ගොනුවේ මූලදුවා වන්නේ ${
 m Ti}$ සහ ${
 m Zn}$ ය.
- 38. සංකෘප්ත වාෂ්ප පීඩන $P_{\rm A}^{\circ}$ හා $P_{\rm B}^{\circ}$ වන $\left(P_{\rm A}^{\circ} \neq P_{\rm B}^{\circ}\right)$ A සහ ${\bf B}$ වාෂ්පශීලි දුව පරිපූර්ණ දුාවණයක් සාදයි. සංවෘත බඳුනක් තුළ ${\bf A}$ සහ ${\bf B}$ දුවයන්හි මිශුණයක් ඒවායේ වාෂ්ප කලාපය සමග සමතුලිතව ඇත. බඳුනෙහි පරිමාව වැඩි කර එම උෂ්ණත්වයේ දී ම සමතුලිතතාවය නැවත ස්ථාපිත වූ පසු පහත සඳහන් කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
 - (a) ${f A}$ හා ${f B}$ යම් පුමාණයක් වාෂ්ප කලාපයට යන අතර දුව කලාපයෙහි සංයුතිය නොවෙනස්ව පවතී.
 - (b) ${f A}$ හා ${f B}$ යම් පුමාණයක් වාෂ්ප කලාපයට යන අතර වාෂ්ප කලාපයෙහි සංයුතිය නොවෙනස්ව පවතී.
 - (c) \mathbf{A} හා \mathbf{B} යම් පුමාණයක් වාෂ්ප කලාපයට යන අතර දුව කලාපයෙහි සංයුතිය වෙනස් වේ.
 - (d) \mathbf{A} හා \mathbf{B} යම් පුමාණයක් වාෂ්ප කලාපයට යන අතර වාෂ්ප කලාපයෙහි සංයුතිය වෙනස් වේ.
- 39. දුබල අම්ලයක ජලීය දුාවණයක් සම්බන්ධයෙන් පහත සඳහන් කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
 - (a) දුබල අම්ලයේ සාන්දුණය අඩුවන විට දුාවණයෙහි සන්නායකතාව වැඩි වේ.
 - (b) උෂ්ණත්වය වැඩිවන විට දුාවණයෙහි සන්නායකතාව වැඩි වේ.
 - (c) දාවණයට වැඩිපුර ජලය එකතු කිරීමේ දී දාවණයෙහි සන්නායකතාව අඩුවන නමුත් දුබල අම්ලයෙහි විඝටනය වූ භාගය වැඩි වේ.
 - (d) දුබල අම්ල දුාවණයෙහි NaCl(s) දුවණය කළ විට, සත්තායකතාව අඩු වේ.
- 40. A සංයෝගය සම්බන්ධයෙන් පහත දැක්වෙන කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?

- (a) A ජාහමිතික සමාවයවිකතාවය පෙන්වයි.
- (b) A පුකාශ සමාවයවිකතාවය නොපෙන්වයි.
- (c) A පිරිඩීනියම් ක්ලෝරොකුෝමේට් (PCC) සමග පුතිකිුිිිිිිිිිිිිිිි තියම් ක්ලෝරොකුෝමේට් (PCC) සමග පුතිකිිිිිිිිිිි කිරීමෙන් ලැබෙන ඵලය පුකාශ සමාවයවිකතාවය පෙන්වයි.
- (d) A පිරිඩීනියම් ක්ලෝරොකුෝමේට් සමග පුතිකිුිිිිිිිිිිිිිිිිිි ලැබෙන ඵලය ජාාමිතික සමාවයවිකතාවය නොපෙන්වයි.

• අංක 41 සිට 50 තෙක් එක් එක් පුශ්නය සඳහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට හොඳින් ම ගැළපෙනුයේ පහත වගුවෙහි දැක්වෙන පරිදි (1),(2),(3),(4) සහ (5) යන පුතිචාරවලින් කවර පුතිචාරය දැ'යි තෝරා උත්තර පතුයෙහි උචිත ලෙස ලකුණු කරන්න.

පුතිචාරය	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
(1)	සතා වේ.	සතා වන අතර, පළමුවැනි පුකාශය නිවැරදි ව පහදා දෙයි.
(2)	සතා වේ.	සතා වන නමුත් පළමුවැනි පුකාශය නිවැරදි ව පහදා නොදෙයි.
(3)	සතා වේ.	අසතා වේ.
(4)	අසතා වේ.	සතා වේ.
(5)	අසතා වේ.	අසතා වේ.

	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
41.	හැලජන අතුරෙන්, ${\rm I}_2$ ඝනයක් වන අතර ${ m Br}_2$ දවයකි.	අණුක පෘෂ්ඨික වර්ගඑලය වැඩිවීමත් සමග ලන්ඩන් බල වඩා පුබල වේ.
42.	දෙන ලද පීඩනයක දී, උෂ්ණත්වය වැඩිවීමත් සමග, N_2 සහ H_2 පුතිකිුයා කර NH_3 සෑදෙන පුතිකිුයාවේ ස්වයංසිද්ධතාව පහළ බසී.	$\mathrm{NH_3}$ ලබාදෙන $\mathrm{N_2}$ සහ $\mathrm{H_2}$ අතර පුතිකිුයාවේ එන්ටොපි වෙනස සෘණ වේ.
43.	සගන්ධ තෙල්, ශාකමය දවාවලින් සාමානායෙන් නිස්සාරණය කරන්නේ හුමාල ආසවනය මගින් ය.	සගන්ධ තෙල්වලට ජලයේ ඉහළ දුාවාතාවයක් ඇත.
44.	ස්වයංසිද්ධ පුතිකිුයාවක් සඳහා තත්ත්වයන් කුමක් වුවත් සැමවිටම ඍණ ගිබ්ස් ශක්ති වෙනසක් ඇත.	පුතිකිුයාවක් සිදුවන දිශාව පුරෝකථනය කිරීම සඳහා ගිබ්ස් ශක්ති වෙනස භාවිත කළ හැකි වන්නේ නියත උෂ්ණත්ව හා නියත පීඩන තත්ත්ව යටතේ දී පමණි.
45.	1-බියුටනෝල්හි ජලයේ දාවානාවය මෙතනෝල්හි ජලයේ දාවාතාවයට වඩා අඩු ය.	ධැවීය OH කාණ්ඩයට සාපේක්ෂව නිර්ධැවීය ඇල්කයිල් කාණ්ඩයේ විශාලත්වය වැඩි වීමත් සමග මධාාසාරවල ජලයේ දුාවාතාවය අඩු වේ.
46.	$CH_3-CH=CH_2 \xrightarrow{HBr} CH_3-CH-CH_3$ Br	ද්විතීයික කාබොකැටායනයක් පුතිකිුයා අතරමැදියක් ලෙස පහත දැක්වෙන පුතිකිුයාවේදී සෑදේ.
	පුතිකියාව, නියුක්ලියෝෆිලික ආකලන පුතිකියාවකි.	$CH_{3}\text{-}CH=CH_{2} \xrightarrow{HBr} CH_{3}\text{-}CH-CH_{3}$ Br
47.	කාර්මික කිුියාවලි කිහිපයකම කෝක් (Coke) භාවිත වේ.	කාර්මිකව කෝක් (Coke) භාවිත වන්නේ ඉන්ධනයක් ලෙස පමණි.
48.	කීටෝනයක කාබනයිල් කාබන් පරමාණුව සහ එයට බන්ධනය වූ අනෙකුත් පරමාණු එකම තලයක පිහිටයි.	කීටෝනයක කාබනයිල් කාබන් පරමාණුව ${ m sp}^2$ මුහුම්කරණය වී ඇත.
49.	එකම උෂ්ණත්වයේදී ඕනෑම පරිපූර්ණ වායූන් දෙකකට එකම මධානා වාලක ශක්තීන් ඇත.	දෙන ලද උෂ්ණත්වයක දී වායු අණුවල මධානා වේගය ඒවායේ ස්කන්ධය අනුව සැකසේ.
50.	CFC ඕසෝන් වියන හායනයට දායක වූවත් HFC වල දායකත්වය නොගිණිය හැකි තරම් කුඩා ය.	ඉහළ වායුගෝලයට ළඟාවීමට පෙර HFC සම්පූර්ණයෙන් ම වියෝජනය වෙයි.

57

La

89

Ac

58

Ce

90

Th

59

Pr

91

Pa

60

Nd

92

U

61

Pm

93

Np

62

Sm

94

Pu

63

Eu

95

64

Gd

96

Am Cm

65

Tb

97

Bk

66

Dy

98

Cf

67

Ho

99

Es

68

Er

100

Fm

69

Tm

101

Md

70

102

No

71

Lu

103

Lr

ආවර්තිතා වගුව

	1																	2
1	H		22															He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	0	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											AI	Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu		1	1				36
					-	CI		I.C	CO	141	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113	114	115	116		
7	E-	Da														110	117	118
′	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og

and the same of the same of the same

and the first of the desired the second of the second

සියලු ම හිමිකම් ඇව්රිනි / முழுப் பதிப்புரிமையுடையது /All Rights Reserved]

(නව නිර්දේශය/பුதிய பாடத்திட்டம்/New Syllabus)

අධනයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු සல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

රසායන විදාහව II இரசாயனவியல் II Chemistry II

2019.08.19 / 0830 - 1140

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අ**මතර කියවීම කාලය** - **මිනිත්තු 10** යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

ව්භාග අංකය :

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේ දී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදා ගන්න.

- * අාවර්තිතා වගුවක් 16 වැනි පිටුවෙහි සපයා ඇත.
- * ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * සාර්වනු වායු නියනය, $R = 8.314 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- st ඇවගාඩ්රෝ නියතය, $N_{\scriptscriptstyle A} = 6.022 imes 10^{23}~{
 m mol}^{-1}$
- 🔆 මෙම පුශ්න පතුයට පිළිතුරු සැපයීමේ දී ඇල්කයිල් කාණ්ඩ සංක්ෂිප්ත ආකාරයකින් නිරුපණය කළ හැකි ය.

- A කොටස වනුහගත රචනා (පිටු 2 8)
- * සියලු ම පුශ්නවලට මෙම පුශ්න පතුයේ ම පිළිතුරු සපයන්න.
- * ඔබේ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බව ද සලකන්න.
 - □ B කොටස සහ C කොටස රචනා (පිටු 9 15)
- * එක් එක් කොටසින් පුශ්න **දෙක** බැගින් තෝරා ගනිමින් පුශ්න **හතරකට** පිළිතුරු සපයන්න. මේ සඳහා සපයනු ලබන කඩදාසි භාවිත කරන්න.
- * සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු A, B සහ C කොටස් තුනට පිළිතුරු, A කොටස මුලින් තිබෙන පරිදි එක් පිළිතුරු පතුයක් වන සේ අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B සහ f C කොටස් **පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි

කොටස	පුශ්න අංකය	ලැබූ ලකුණු
	1	
A	2	
A [3	
	4	
	5	
В	6	
	7	
	8	
C	9	
	10	
	එකතුව	

	එකතුව
ඉලක්කමෙන්	
අකුරින්	

සංකේත අංක

උත්තර පතු පරීක්ෂක 1	
උත්තර පතු පරීක්ෂක 2	
පරීක්ෂා කළේ :	
අධීක්ෂණය කළේ :	

A කොටස - වපුහගත රචනා

පුශ්න **හතරට ම** මෙම පතුයේ ම පිළිතුරු සපයන්න. (එක් එක් පුශ්නය සඳහා නියමිත ලකුණු පුමාණය **100** කි.)

මෙම තීරයේ කිසිවක් නො ලියන්න

- 1. (a) පහත සඳහන් පුශ්න ආවර්තිතා වගුවේ දෙවන ආවර්තයේ මූලදුවා හා සම්බන්ධ වේ. කොටස් (i) සිට (vi) දක්වා පිළිතුරු දීමේ දී ලබා දී ඇති අවකාශයේ මූලදුවායේ **සංකේතය** ලියන්න.
 - (i) වැඩීම විදාුත් ඍණතාව ඇති මූලදුවාසය හඳුනාගන්න. (උච්ච වායුව නොසලකා හරින්න.)
 - (ii) විදයුතය සන්නයනය කරන බහුරුපී ආකාරයක් ඇති මූලදුවසය හඳුනාගන්න.
 - (iii) පුමාණයෙන් විශාල ම ඒකපරමාණුක අයනය සාදන මූලදුවාසය හඳුනාගන්න (මෙම අයනය ස්ථායි විය යුතු ය).
 - (iv) p ඉලෙක්ටෝන **නොමැති** නමුත් ස්ථායි s විනාහසයක් ඇති මූලදුවාසය හඳුනාගන්න.
 - (v) වැඩීම පළමු අයනීකරණ ශක්තිය ඇති මූලදුවාය හඳුනාගන්න.
 - (vi) බොහෝවිට ඉලෙක්ටෝන ඌන තලීය තිුකෝණාකාර සහසංයුජ සංයෝග සාදන මූලදුවාය හඳුනාගන්න. (ලකුණු 24 යි)
 - (b) (i) SO_3F_2 අණුව සඳහා **වඩාත් ම** පිළිගත හැකි ලුවිස් තිත්-ඉරි වපුහය අඳින්න. එහි සැකිල්ල පහත දක්වා ඇත.

(ii) H_3N_3O අණුව සඳහා වඩාත් ම ස්ථායි ලුවිස් තිත්-ඉරි වනුහය පහත දක්වා ඇත. මෙම අණුව සඳහා තවත් ලුවිස් තිත්-ඉරි වනුහ (සම්පුයුක්ත වනුහ) **දෙකක්** අඳින්න. ඔබ විසින් අඳින ලද වඩා අස්ථායි වනුහය යටින් 'අස්ථායි' ලෙස ලියන්න.

$$H-\ddot{Q}-\ddot{N}=\ddot{N}-\ddot{N}-H$$

- (iii) පහත සඳහන් ලුවිස් තිත්-ඉරි වාුහය පදනම් කරගෙන වගුවේ දක්වා ඇති C,N හා O පරමාණුවල
 - I. පරමාණුව වටා VSEPR යුගල්
- II. පරමාණුව වටා ඉලෙක්ටුෝන යුගල් ජාහාමිතිය
- III. පරමාණුව වටා හැඩය
- IV. පරමාණුවේ මුහුම්කරණය

සඳහන් කරන්න.

	O_2
	1
$F_{-}O^{1}_{-}N^{2}_{-}$	$-C^3 - N^4 - CI$
$F - O^1 - N^2 -$	$-C^{3}-N^{4}-Cl$

පහත දැක්වෙන පරිදි පරමාණු අංකුනය කර ඇත.

		O_1	N ²	C ³	N ⁴
I.	VSEPR යුගල්				
II.	ඉලෙක්ටුෝන යුගල් ජාාාමිතිය				
III.	හැඩය				
IV.	මුහුම්කරණය				

- 3 -

	(iv)				100		The second second			ත සඳහන් σ බන්ධන සෑදීමට සහභාගි වන ය (iii) කොටසෙහි ආකාරයටම වේ.)	කිසිවස නො දි
		I.	F-O1	F	·				O^1		
		II.	O1—N2	2 ()¹				N^2		
		III.	N^2 — C^3	, ,	N ²			·	\mathbb{C}^3		
		IV.	C3—N	4 (3				N^4		
		V.	N ⁴ —O ²	5 N	J ⁴				O ⁵		
		VI.	N ⁴ —Cl	N	N ⁴				Cl		
	(v)									හත සඳහන් π බන්ධන සෑදීමට සහභාගි ය (iii) කොටසෙහි ආකාරයටම චේ.)	
		I.	N^2 — C^3	N	J ²			. (73		

	(vi)	I.	ඉහත (ii ඇත්තේ			දෙන ලද	ලුවිස් ති	ත්-ඉරි ව)පුත	යෙහි ද්විත්ව බන්ධන දෙක දිශානති වී	
		II.	මේ හා ස දෙන්න.	මොන දිර	ශානතිය	යක් ඇති ද්	විත්ව බන	ත්ධන ස	හිත	අණුවක්/අයනයක් සඳහා උදාහරණයක්	
		සැ.යු								නාවිය යුතු ය. වගුවේ පළමුවන හා දෙවන ආවර්තවලට	
			සීමා	විය යුතු	ය.					(ලකුණු 52 යි)	
(c)	(i)	පරම	ාණුක කා	ක්ෂිකයා	ක් විස්ත	ාර කරනුෙ	ය් <i>n, l</i> සාෙ	න m_{l} ක්ශ	ම වා:	න්ටම් අංක තුන මගිනි.	
		අදාල	ළ ක්වොත්	්ටම් අංක	ා සහ ප	රමාණුක 2	කාක් ෂික ෙ	යේ නම	පහඃ	ත දැක්වෙන කොටුවල ලියන්න.	
			r	n	7	l	_	m	ı	පරමාණුක කාක්ෂිකය	
		I	• = - [+	l	3 <i>p</i>	
		II		3		2		-2	2		
		III	. [2s	
	(ii)	වරහ:	න් තුළ දස	ත්වා ඇසි	හී ගිණය	වැඩිවන පි	3ළිවෙළට	පහත ස	පඳහ	ාන් දෑ සකසන්න. (හේතු අවශා නොවේ .)	
		I. I	LiF, LiI,	KF (چ٤	ාංකය)						
		243	*******	<	<						
		II.]	NO_2^- , N	O ₄ ³⁻ , N	F ₅ (ස්ථ	ථායිතාව)					1
			18	777	57%					ą	
	I	II. N	NOCI, N	OCl ₃ , 1	NO ₂ F	(N–O බන	්ධන දිග)				10

..... < <

(ලකුණු 24 යි)

ක්තීන්	මෙම තීරයේ කිසිවක් නො ලියන්න
සයිඩය ; සමග ලයෙහි	
ණේඩය ග්න.	
අඩංගු	

2.	(a)	පිදි සා පුද්	යනු ආවර්තිතා වගුවේ s -ගොනුවේ මූලදුවාසයකි. \mathbf{X} හි පළමු, දෙවැනි හා තුන්වැනි අයනීකරණ ශක්තීන් දීවෙළින්, k J mol^{-1} වලින්, 738 , 1451 හා 7733 වේ. $H_2(g)$ මුදා හැරෙමින් හා එහි හයිඩොක්සයිඩය දමින් \mathbf{X} උණු ජලය සමග සෙමින් පුතිකිුයා කරයි. හයිඩොක්සයිඩය භාස්මික වේ. \mathbf{X} තනුක අම්ල සමග හිකියාවේදී ද $H_2(g)$ මුදා හැරේ. දීප්තිමත් සුදු ආලෝකයක් සමග \mathbf{X} වාතයෙහි දහනය වේ. ජලයෙහි යිනත්වයට \mathbf{X} හි කැටායනය දායක වේ.	66 60
		(i)	X හඳුනාගන්න. X:	
		(ii)	X හි භූමි අවස්ථාවේ ඉලෙක්ටුෝනික විනාහසය ලියන්න	
		(iii)	X වාතයෙහි දහනය වූ විට සෑදෙන සංයෝග දෙකෙහි රසායනික සූතු ලියන්න.	
			800	
		(iv)	ආවර්තිතා වගුවෙහි 🗶 අයත්වන කාණ්ඩයෙහි මූලදවායන්හි දී ඇති සංයෝග සලකන්න. කාණ්ඩය පහළට යෑමේදී දක්වා ඇති ගුණය වැඩිවේ ද අඩුවේ ද යන්න දී ඇති කොටු තුළ සඳහන් කරන්න.	
			I. සල්ෆේටවල ජලයෙහි දුාවානතාවය	
			II. හයිඩුොක්සයිඩවල ජලයෙහි දුාවානාවය	
			III. ලෝහ කාබනේටවල තාප ස්ථායිතාවය	
			III හි ඔබගේ පිළිතුරට හේතු දක්වත්න.	
		(v)	$H_2(g), O_2(g)$ හා $N_2(g)$ සමග X ට බොහෝ දුරට සමාන ලෙස පුතිකිුයා කරන, නමුත් X අඩංගු කාණ්ඩයට අයත් නොවන ආවර්තිතා වගුවේ s -ගොනුවේ මූලදවාය හඳුනාගන්න.	
		(vi)	ජලයේ කයිනත්වයට දායක වන වෙනත් ලෝහ අයනයක් හඳුනාගන්න.	
		(vii)	ජලයේ කඨිනත්වය ඉවත් කිරීම සඳහා බහුල වශයෙන් භාවිත වන සංයෝගය හඳුනාගන්න.	
	7)	viii)	කාබතික රසායන විදාහවේ හොඳින් දන්නා පුතිකාරකයක ${f X}$ සංඝටකයක් වේ. මෙම පුතිකාරකයේ නම දෙන්න.	
			(ලකුණු 50 යි)	

(b) \mathbf{A} සිට \mathbf{E} දක්වා ලේබල් කර ඇති පරීක්ෂා නළවල $\mathrm{Na_2S_2O_3}$, $\mathrm{Na_2CO_3}$, $\mathrm{KNO_2}$, KBr , හා $\mathrm{Na_2S}$ හි (පිළිවෙළින් සියියේ නොවේ) ජලීය දාවණ අඩංගු වේ. \mathbf{A} සිට \mathbf{E} දක්වා ඇති එක් එක් පරීක්ෂා නළයට තනුක HCl එක් කළ විට නො දියන්න

පරීක්ෂා නළය	දුාවණයේ පෙනුම	වායුව	
A	අවර්ණයි	අවර්ණ හා ගඳක් නොමැත	
В	අවර්ණයි	රතු-දුඹුරු වර්ණයක් හා කටුක ගඳක් ඇත	
C	අවර්ණයි	අවර්ණ හා කුණු බිත්තර ගඳක් ඇත	
D	ආවිලතාවයක්	අවර්ණ හා කටුක ගඳක් ඇත	
E	අවර්ණයි	මුක්ත නොවේ	
(i) A සිට E දක්වා	පරීක්ෂා නළවල දුාවණ හඳු2	තාගන්න.	
B :		E : කි්ුිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිි	
C 8 :			
D & :			
******			······
		(ලකුණු :	50 (d.)
පසටහනෙහි දක්වා ඇත 0.00 cm ³ කෝප්පයට එක් .0°C ලෙස මැනගන්නා (ටම කලතන ලදී. දාවණගෙ රන ලදී. මනින ලද අඩුම ර X(s) මුළුමනින්ම දුවණය ශ්ෂ්ට තාපධාරිතාවය පිළිශේ X(s) දුවණය නිසා ජලගෙ තාවන බව උපකල්පනය ස		වදී. ආසුැත ජලය රම්භක උෂ්ණත්වය රව ජලයට එකතුකර වන බව නිරීක්ෂණය ක කළ ජල පුමාණය යෙහි සනත්වය හා 20 J g ⁻¹ °C ⁻¹ වේ.	ානය

(ii)	MX(s) හි ජලයේ දුවණය තාප අවශෝෂක හෝ තාපදායක කිුයාවලියක් වේ ද? ඔබගේ පිළිතුර පැහැදිලි කරන්න.	මෙම තීරයේ කිසිවක් තො ලියන්න
(iii)	$\mathrm{MX}(\mathrm{s}) + \mathrm{H_2O}(\mathit{l}) \longrightarrow \mathrm{M}^+(\mathrm{aq}) + \mathrm{X}^-(\mathrm{aq})$ පුතිකිුයාව ආශිත එන්තැල්පි වෙනස ($\mathrm{kJ} \ \mathrm{mol}^{-1} \ \mathrm{D}$ ලින්) ගණනය කරන්න.	
	,	
(iv)	මෙම පරීක්ෂණය ජලය $200.00~{ m cm}^3$ භාවිතයෙන් සිදු කළේ නම් උෂ්ණක්ව වෙනස ඉහත අගයට වඩා වැඩි වේ යයි ඔබ බලාපොරොත්තු වන්නේ ද? ඔබගේ පිළිතුර පහදන්න.	
(v)	පද්ධතියේ (දාවණයෙහි) උෂ්ණත්වය වෙනස්වන අයුරු උෂ්ණත්ව-කාල වකුය ඇඳීමෙන් පෙන්වන්න. සැ.යු. : අවසානයේ දී පද්ධතිය කාමර උෂ්ණත්වය ($25.0~^{\circ}$ C) කරා පැමිණේ.	
	උෂ්ණත්වය∱	
	කාලය	
(vi)	මෙම පරීක්ෂණයේදී ලෝහ කෝප්පයක් වෙනුවට ප්ලාස්ටික් කෝප්පයක් භාවිත කරන්නේ ඇයි දැයි පැහැදිලි කරන්න.	
(vii)	25.0 °C උෂ්ණත්වයේ දී හා 1.0 atm පීඩනයේ දී MX(s) හි ජලයේ දුවණය වීම සඳහා ගිබ්ස් ශක්ති වෙනස	
(vii)	(ΔG) , $-26.0 \text{kJ} \text{mol}^{-1}$ බව ගණනය කරන ලදී. ඉහත ගණනය කරන ලද එන්තැල්පි වෙනස භාවිතයෙන් $25.0 ^{\circ}\text{C}$ හි දී $\text{MX}(s)$ හි ජලයේ දුවණය සඳහා එන්ටොපි වෙනස (ΔS) ගණනය කරන්න.	
(viii)	උෂ්ණත්වය වැඩිවීමත් සමග MX(s) හි දුාවානතාවය වැඩි හෝ අඩු වේ යයි ඔබ බලාපොරොත්තු වන්නේ ද? ඔබගේ පිළිතුර සඳහා හේතු දක්වන්න.	
	The state of the s	
		/
		100
	 (ලකුණු 100 යි.)	100

ලමම
තීරයේ
කිපිවක්
නො ලියන්න

(-)	හ H හි ව <u>ූ</u> ුහ අඳින්න.		
	G	Н	_
(ii) A, C	,E සහ F හි ව ූ හ අඳින්න		
	, , , ,		
	A	C	
	E	F	
Al ₂ O ₃ &	මෙග D රත් කළ විට I (C	.H ₁₀) ඇල්කීනය ලැබේ. සාන්දු	$ m H_2SO_4$ සමග $ m I$ පුතිකිුයා කර, ලැබෙන
	ල විච්ඡේදනය කළ විට G (D සහ I හි ව ූහ අඳි න්න.	ලැ⊚බ්.	
(III) B ,	D as 1 a 2 <u>2</u> a 6 (2.23) .		
	В	D	1

(b) (i) පහත සඳහන් පුතිකුියා අනුකුමයන්හි ${f J},\ {f K},\ {f L}$ සහ ${f M}$ හි වාුුහ දක්වන්න.

CH₃COCl නිර්ජලීය AlCl₃	$CH_3C \equiv CMgBr$	Т	H ⁺ /H ₂ O	K	H ₂ / Pd BaSO₄ / ක්විතොලින්	L
(පතිකියාව I)	(පුතිකියාව II)				4	

$$CH_3$$
— $C=CH_2$ සාන්දු H_2SO_4 M (පුතිකිුයාව III)

(ii) පුතිකිුයා I, II හා III හි සිදුවන පුතිකිුයා වර්ගය පහත දැක්වෙන ලැයිස්තුවෙන් තෝරාගෙන ලියන්න.

නියුක්ලියොෆිලික (නාඃෂ්ටිකාම්) ආකලනය, නියුක්ලියොෆිලික (නාඃෂ්ටිකාම්) ආදේශය, ඉලෙක්ටුෝෆිලික (ඉලෙක්ටුෝනකාමී) ආකලනය, ඉලෙක්ටුෝෆිලික (ඉලෙක්ටුෝනකාමී) ආදේශය, ඉවත්වීම

පුතිකිුයාව I	
පුතිකිුයාව II	
පුතිකිුයාව III	

(iii) ඇල්කීන හා HBr අතර පුතිකිුිිියාවේ යන්තුණය පිළිබඳ ඔබේ දැනුම උපයෝගී කර ගනිමින් පුතිකිුිිිියාව III හි යන්තුණය දක්වන්න.

(ලකුණු 50 යි)

100

මෙම තීරයේ කිසිවක් සියලු ම හිමිකම් ඇව්රිණි / (மු(ழப் பதிப்புநிமையுடையது / All Rights Reserved)

(නව නිර්දේශය/புதிய பாடத்திட்டம்/New Syllabus

මේත්තුව ලී ලංකා විභාග දෙපාර්ත් කුළියින් මෙන්වන දෙපාල්තුමේන් මුළුන් විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව නිසානාසිසහාර මුලාස්කයට පාද්යාවේ නිසානාසිසහාර මුලාස්කයට ප්රියාවේන්තුව හි දිසානාසිසහාර මුලාස්කයට ප්රියාවේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව නිසාස්කයෙන් මුලාස්කයට ප්රියාවේන්ත්ව කියා සිටියාවේන්ත්ව මුලාස්කයෙන් ප්රියාවේන්ත්ව මුලාස්කයෙන් ප්රියාවේන්ත්ව විභාග ප්රියාවේන්ත්ව විභාග ප්රියාවේන්ත්ව විභාග ප්රියාවේන්ත්ව සිටියාවේන්ත්ව මුලාස්කයේ ප්රියාවේන්ත්ව සිටියාවේන්ත්ව සිටියාවේන්

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்றீ General Certificate of Education (Adv. Level) Examination, August 2019

රසායන විදනව II

இரசாயனவியல்

II II Chemistry

* සාර්වනු වායු නියනය $R=8.314~{
m J~K}^{-1}{
m mol}^{-1}$ * ඇවගාඩ්රෝ නියනය $N_A=6.022~{
m x}~10$ ${
m mol}^{-1}$

B කොටස _ රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 150** බැගින් ලැබේ.)

- 5. (a) ඒක ආම්ලික දුබල හස්මය ${f B}$ $(0.15~{
 m mol~dm}^{-3})$ හා ${
 m HCl}$ $(0.10~{
 m mol~dm}^{-3})$ අතර අනුමාපනයක් පහත විස්තර කර ඇති පරිදි සුදුසු දර්ශකයක් භාවිතයෙන් සිදු කරන ලදී. HCl දාවණය ($25.00\,\mathrm{cm}^3$) අනුමාපන ප්ලාස්කුවෙහි තබා දුබල භස්මය ${f B}$, බියුරෙට්ටුවක් භාවිතයෙන් එකතු කරන ලදී. ${f 25~^{\circ}C}$ හි දී දුබල භස්මයෙහි විඝටන නියතය $K_{\rm h}$, $1.00 \times 10^{-5} \, {
 m mol \ dm}^{-3}$ වේ. සියලුම පරීක්ෂණ $25 \, {
 m ^{\circ}C}$ හි දී සිදු කරන ලදී.
 - (i) භස්මය ${f B}$ එකතු කිරීමට පෙර අනුමාපන ප්ලාස්කුවෙහි ඇති අම්ල දුාවණයෙහි ${f pH}$ අගය ගණනය කරන්න.
 - (ii) ${f B}$ හි දුාවණයෙන් $10.00~{
 m cm}^3$ එකතු කළ පසු අනුමාපන ප්ලාස්කුවෙහි ඇති දුාවණයෙහි ${
 m pH}$ අගය ගණනය කරන්න. අනුමාපන ප්ලාස්කුවෙහි ඇති දුාවණයට ස්වාරක්ෂක දුාවණයක් ලෙස කිුිිිියා කළ හැකි ද? ඔබගේ පිළිතුර පහදන්න.
 - (iii) සමකතා ලක්ෂායට ළඟා වීම සඳහා අවශා දුබල භස්ම දුාවණයෙහි පරිමාව ගණනය කරන්න.
 - (iv) සමකතා ලක්ෂායට ළඟා වූ පසු දුබල භස්මයෙහි තවත් $10.00~{
 m cm}^3$ පරිමාවක් අනුමාපන ප්ලාස්කුවට එකතු කරන ලදී. අනුමාපන ප්ලාස්කුවෙහි ඇති දුාවණයෙහි pH අගය ගණනය කරන්න.
 - (v) ඉහත (iv) දී ලැබෙන දුාවණයට ස්වාරක්ෂක දුාවණයක් ලෙස කිුියා කළ හැකි ද? ඔබගේ පිළිතුර පහදන්න.
 - (vi) එකතු කරනු ලබන දුබල භස්ම දුාවණ පරිමාව සමග අනුමාපන ප්ලාස්කුවෙහි ඇති මිශුණයෙහි pH අගය වෙනස්වන අයුරු (අනුමාපන වකුය) කටු සටහනකින් දක්වන්න. අක්ෂ නම් කරන්න, y-අක්ෂය මත ${
 m pH}$ හා x-අක්ෂය මත එකතු කරනු ලබන දුබල භස්ම දුාවණ පරිමාව දක්වන්න. සමකතා ලක්ෂාය ආසන්න වශයෙන් ලකුණු කරන්න. [සමකතා ලක්ෂයෙහි pH අගය ගණනය කිරීම බලාපොරොත්තු (ලකුණු 75 යි)
 - (b) පරිපූර්ණ දුාවණයක් සාදන ${f C}$ හා ${f D}$ වාෂ්පශීලී දුව භාවිතයෙන් පහත පරීක්ෂණ දෙක තියත උෂ්ණත්වයක දී සිදු කරන ලදී.
 - **පරීක්ෂණය I** : C හා D දුව රේචනය කරන ලද දෘඪ බඳුනක් තුළට ඇතුල් කර සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. පද්ධතිය සමතුලිතතාවයේ ඇතිවිට දුව කලාපයෙහි $(\mathbf{L}_{\scriptscriptstyle I})$ \mathbf{C} හා \mathbf{D} හි මවුල භාග පිළිවෙළින් 0.3 හා 0.7 බව නිරීක්ෂණය කරන ලදී. බඳුනෙහි මුළු පීඩනය 2.70 × 10⁴ Pa විය.
 - **පරීක්ෂණය II** : මෙම පරීක්ෂණය C හා D වෙනස් පුමාණ භාවිතයෙන් සිදු කරන ලදී. සමතුලිතතාව ඇති වූ පසු දුව කලාපයෙහි (L_{II}) \mathbf{C} හා \mathbf{D} හි මවුල භාග පිළිවෙළින් 0.6 හා 0.4 බව නිරීක්ෂණය කරන ලදී. බඳුනෙහි මුළු පීඩනය $2.40 imes 10^4 \; \mathrm{Pa}$ විය.
 - (i) වාෂ්ප කලාපයෙහි ${f C}$ හි ආංශික පීඩනය ($P_{f C}$), එහි සංතෘප්ත වාෂ්ප පීඩනය (P_C°), හා එහි දුව කලාපයෙහි මවුල භාගය $(X_{\mathbf{C}})$ අතර සම්බන්ධය සමීකරණයක ආකාරයෙන් දෙන්න. මෙම සමීකරණය භෞතික රසායන විදුපාවේ බහුලව භාවිත වන නියමයක් පුකාශ කරයි. මෙම නියමයෙහි නම ලියන්න.
 - (ii) C හා D හි සංතෘප්ත වාෂ්ප පීඩන ගණනය කරන්න.
 - (iii) පරීක්ෂණය I හි වාෂ්ප කලාපයෙහි $(\mathbf{V_I}),~\mathbf{C}$ හා \mathbf{D} හි මවුල භාග ගණනය කරන්න.
 - (iv) පරීක්ෂණය II හි වාෂ්ප කලාපයෙහි (${
 m V_{II}}$), ${
 m C}$ හා ${
 m f D}$ හි මවුල භාග ගණනය කරන්න.
 - (v) නියත උෂ්ණත්වයෙහි අඳින ලද පීඩන-සංයුති කලාප සටහනක ඉහත පරීක්ෂණ දෙකෙහි දුව හා වාෂ්ප කලාපවල $(L_{\mathrm{I}},\ L_{\mathrm{II}},\ V_{\mathrm{I}}$ සහ $V_{\mathrm{II}})$ සංයුති හා අදාළ පීඩන දක්වන්න. (ලකුණු 75 යි)

6. (a) කාබනික දාවකයක් (org-1) හා ජලය (aq) එකිනෙක මිශු නොවන අතර ඒවා ද්විකලාප පද්ධතියක් සාදයි. T උෂ්ණත්වයේදී org-1 හා ජලය අතර \mathbf{X} හි වසාප්තිය සඳහා විභාග සංගුණකය, $K_{\mathrm{D}} = \frac{[\mathbf{X}]_{\mathrm{org-1}}}{[\mathbf{X}]_{\mathrm{org}}} = 4.0$ වේ.

org-1 හි $100.00~{
m cm}^3$ හා ජලය $100.00~{
m cm}^3$ අඩංගු පද්ධතියකට ${f X}$ හි $0.50~{
m mol}$ පුමාණයක් එකතු කරන ලදී. පද්ධතිය ${f T}$ උෂ්ණත්වයේ දී සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී.

- (i) org-1 හි X හි සාන්දුණය ගණනය කරන්න.
- (ii) ජලයෙහි ${f X}$ හි සාන්දුණය ගණනය කරන්න.

(ලකුණු 20 යි)

(b) Y සංයෝගය ජලීය කලාපයෙහි පමණක් දුාවා වේ. ජලීය කලාපයේ දී X හා Y පුතිකිුයා කර Z සාදයි. Y හා Z තිබීම org-1 හා ජලය අතර X හි වාාප්තියට බලපාන්නේ නැත. org-1 හා ජලය අඩංගු ද්විකලාප පද්ධති ශේණියක් සාදන ලදී. ඉන්පසු X හි විවිධ පුමාණ මෙම ද්විකලාප පද්ධති තුළ වාාප්ත කර, පද්ධති සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙම ද්විකලාප පද්ධතිවල ජලීය කලාපයට Y එකතු කිරීමෙන් පසු, X හා Y අතර ජලීය කලාපයෙහි සිදුවන පුතිකිුයාවේ ආරම්භක ශීඝුතාවය මනින ලදී. T උෂ්ණත්වයේ දී සිදු කරන ලද මෙම පරීක්ෂණවල පුතිඵල වගුවෙහි දැක්වේ.

පරීක්ෂණ අංකය	ජලය පරිමාව (cm ³)	org-1 පරිමාව (cm ³)	එකතු කරන ලද සම්පූරණ X පුමාණය (mol)	එකතු කරන ලද සම්පූරණ Y පුමාණය (mol)	පුතිකුියාවෙහි ආරම්භක ශීඝුතාවය (mol dm s ⁻¹)
1	100.00	100.00	0.05	0.02	2.00×10^{-6}
2	100.00	100.00	0.10	0.04	1.60×10^{-5}
3	50.00	50.00	0.25	0.02	4.00×10^{-4}

පුතිකිුයාවෙහි \mathbf{X} හා \mathbf{Y} අනුබද්ධයෙන් පෙළ පිළිවෙළින් m හා n වේ. \mathbf{T} උෂ්ණත්වයේ දී පුතිකිුයාවෙහි ශීඝුතා තියතය k වේ.

- (i) ජලීය කලාපයෙහි \mathbf{X} හා \mathbf{Y} හි සාන්දුණ පිළිවෙළින් $\left[\mathbf{X}\right]_{\mathrm{aq}}$ හා $\left[\mathbf{Y}\right]_{\mathrm{aq}}$ ලෙස දී ඇත්නම්, පුතිකිුයාව සඳහා ශීඝුතා පුකාශනය $\left[\mathbf{X}\right]_{\mathrm{aq}}$, $\left[\mathbf{Y}\right]_{\mathrm{aq}}$ m,n හා k ඇසුරින් ලියන්න.
- (ii) එක් එක් පරීක්ෂණයේ ජලීය කලාපයෙහි ${f X}$ හි ආරම්භක සාන්දුණය ගණනය කරන්න.
- (iii) එක් එක් පරීක්ෂණයේ ජලීය කලාපයෙහි Y හි ආරම්භක සාන්දුණය ගණනය කරන්න.
- (iv) $\mathbf X$ හා $\mathbf Y$ අනුබද්ධයෙන් පුතිකිුයාවෙහි පෙළ පිළිවෙළින් m හා n ගණනය කරන්න.
- (v) පුතිකියාවෙහි ශීඝුතා නියතය ගණනය කරන්න.
- (vi) ඉහත දී ඇති විභාග සංගුණකය භාවිත කර පුතිකිුයාවෙහි ශීඝුතාවය මත උෂ්ණත්වයෙහි බලපෑම අධායනය කිරීම සඳහා පරීක්ෂණයක් සැලසුම් කර ඇත.

පුතිකිුියාවෙහි ශීඝුතාවය මත උෂ්ණත්වයෙහි බලපෑම අධාායනය කිරීම සඳහා මෙම පරීක්ෂණය සුදුසු ද? ඔබගේ පිළිතුර පහදන්න. (ලකුණු 105 යි)

(c) org-2 කාබනික දාවකය හා ජලය ද එකිනෙක මිශු නොවන අතර ද්විකලාප පද්ධතියක් සාදයි. org-2 හි $100.00~{
m cm}^3$ හා ජලය $100.00~{
m cm}^3$ අඩංගු පද්ධතියකට ${
m X}$ $(0.20~{
m mol})$ එකතු කර ${
m T}$ උෂ්ණත්වයේ දී සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. ඉන්පසු ${
m Y}$ $(0.01~{
m mol})$ ජලීය කලාපයට එකතුකර පුතිකිුයාවෙහි ආරම්භක ශීඝුතාවය මනින ලදී. org-2 හි ${
m Y}$ දාවා නොවේ. ${
m X}$ හා ${
m Y}$ අතර ජලීය කලාපයෙහි සිදුවන පුතිකිුයාවෙහි ආරම්භක ශීඝුතාවය $6.40 \times 10^{-7}~{
m mol}~{
m dm}^{-3}~{
m s}^{-1}$ බව සොයාගන්නා ලදී.

org-2 හා ජලය අතර \mathbf{X} හි වසාප්තිය සඳහා විභාග සංගුණකය $\dfrac{\left[\mathbf{X}\right]_{\text{org-2}}}{\left[\mathbf{X}\right]_{\text{aq}}}$ ගණනය කරන්න.

 $\left[\mathbf{X}
ight]_{\mathrm{org-2}}$ යනු $\mathrm{org-2}$ කලාපයෙහි \mathbf{X} හි සාන්දුණය වේ.

(ලකුණු 25 යි)

7. (a) M ලෝහයේ සාපේක්ෂ පරමාණුක ස්කත්ධය සෙවීම සඳහා රූපයෙහි දක්වා ඇති ඇටවුම භාවිත කරන ලදී. නියත ධාරාවක් භාවිතයෙන් මිනිත්තු 10ක කාලයක් තුළ විදුහුත්වීච්ඡේදනය සිදු කරන ලදී. මෙම කාල පරාසය තුළදී A කෝෂයේ කැතෝඩයෙහි 31.75 mg ස්කත්ධය වැඩිවීමක් සිදු වූ අතර, B කෝෂයේ කැතෝඩයෙහි 147.60 mg ස්කත්ධය වැඩිවීමක් සිදු වීය. (කෝෂ A සහ B වල ජලය විදුහුත්වීච්ඡේදනය වීමක් සිදු නොවන බව උපකල්පනය කරන්න.)

- (i) ${f A}$ සහ ${f B}$ එක් එක් කෝෂයේ ඇතෝඩය සහ කැතෝඩය (${f 0}$, ${f 0}$, ${f 0}$ අංක අනුසාරයෙන්) හඳුනාගන්න.
- (ii) එක් එක් කෝෂයේ එක් එක් ඉලෙක්ටුෝඩයෙහි සිදුවන අර්ධ පුතිකිුයාව ලියා දක්වන්න.
- (iii) විදු<u>ප</u>ුත්විච්ඡේදනය සඳහා භාවිත කරන ලද නියත ධාරාව ගණනය කරන්න.
- (iv) M ලෝහයෙහි සාපේක්ෂ පරමාණුක ස්කන්ධය ගණනය කරන්න.

(ලකුණු 75 යි)

(b) (i) ${\bf A}, {\bf B}$ හා ${\bf C}$ සංගත සංයෝග වේ. ඒවාට අෂ්ටතලීය ජනාමිතියක් ඇත. එක් එක් සංයෝගයෙහි ලිගන **වර්ග දෙකක්** ලෝහ අයනයට සංගත වී ඇත. සංයෝගවල අණුක සූතු වනුයේ (පිළිවෙළින් **නොවේ**): ${
m NiCl_2H_{12}N_4, Nil_2H_{16}N_4O_2}$ හා ${
m NiCl_2H_{15}N_3O_3}$.

සංයෝගවල ජලීය දුාවණ $Pb(CH_3COO)_2(aq)$ සමග පිරියම් කළ විට ලැබුණු නිරීක්ෂණ පහත දී ඇත.

සංයෝගය	Pb(CH ₃ COO) ₂ (aq)	
A	උණු ජලයෙහි දුවණය වන සුදු පැහැති අවක්ෂේපයක්	
B අවක්ෂේපයක් නොමැත		
С	උණු ජලයෙහි දුවණය වන කහ පැහැති අවක්ෂේපයක්	

- I. A, B සහ C හි වාූහ දෙන්න.
- II. $Pb(CH_3COO)_2(aq)$ සමග සංයෝග පිරියම් කළ විට ලැබෙන අවක්ෂේපවල රසායනික සූතු ලියන්න. (**සැ.යූ.** සංයෝගය හා පුතිකාරකය සඳහන් කරන්න)
- III. ඉහත දී ඇති සංයෝගවල ලෝහ අයනය හා සංගත වී නොමැති ඇතායනයක්/ඇතායන තිබේ නම්, එම එක් එක් ඇතායනය හඳුනාගැනීම සඳහා රසායනික පරීක්ෂාවක් බැගින් නිරීක්ෂණය ද සමග සඳහන් කරන්න.

(සැ.යු. ඔබ විසින් දෙනු ලබන පරීක්ෂා මෙහි සඳහන් පරීක්ෂාවක් නොවිය යුතු ය.)

(ii) ${\bf M}$ ආන්තරික ලෝහය ජලීය මාධායේ දී වර්ණවත් ${\bf P}$ සංකීර්ණ අයනය සාදයි. එයට ${[{\bf M}({\bf H_2O})}_{\bf n}]^{\bf m^+}$ සාමානාන රසායනික සූතුය ඇත. එය පහත දී ඇති පුකිකිුයාවලට භාජනය වේ.

- I. M ලෝහය හඳුනාගන්න. P සංකීර්ණ අයනයේ M හි ඔක්සිකරණ අවස්ථාව දෙන්න.
- II. f P සංකීර්ණ අයනයෙහි f M හි ඉලෙක්ටෝනික විනාහසය දෙන්න.
- III. n හා m හි අගයයන් දෙන්න.
- IV. P හි ජාාමිතිය දෙන්න.
- $V.\ \mathbf{Q},\mathbf{R}$ සහ \mathbf{S} හි වාපුහ දෙන්න.
- VI. P, R සහ S සංකීර්ණ අයනයන්හි IUPAC නම් දෙන්න.

(ලකුණු 75 යි)

C කොටස 🗕 රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 150** බැගින් ලැබේ.)

8. (a) $C_6H_5CO_2CH_3$ එකම කාබනික ආරම්භක දුවාය වශයෙන් සහ පුතිකාරක වශයෙන් ලැයිස්තුවේ දී ඇති ඒවා පමණක් යොදා ගනිමින්, **හතකට** (7) නොවැඩි පියවර සංඛාාවක් භාවිත කර පහත සඳහන් සංයෝගය සංශ්ලේෂණය කරන්නේ කෙසේදැයි පෙන්වන්න.

රසායන දුවන ලැයිස්තුව

 PCl_3 , Mg/වියළි ඊතර්, H^+/H_2O , $LiAlH_4$, සාන්දු H_2SO_4

(ලකුණු 60 යි)

(b) පහත සඳහන් එක් එක් පරිවර්තනය **තුනකට** (3) **නොවැඩි** පියවර සංඛාාවක් භාවිත කර, සිදු කරන්නේ කෙසේදැයි පෙන්වන්න.

(ලකුණු 60 යි)

(c) පහත සඳහන් පුතිකිුිිිිිිිිිි එල දෙකක් ලබා දේ.

$$CH_3CH_2CH_2Br \xrightarrow{C_2H_5O^-}$$

- (i) ඵල දෙකෙහි වසුහ ලියන්න.
- (ii) මෙම ඵල දෙක සෑදීම සඳහා යන්තුණ ලියන්න.

(ලකුණු 30 යි)

9. (a) \mathbf{X} දාවණයෙහි ලෝහ කැටායන **හතරක්** අඩංගු වේ. මෙම කැටායන හඳුනාගැනීම සඳහා පහත පරීක්ෂා සිදු කරන ලදී.

	පරීක්ෂාව	නිරීක්ෂණය	
0	X හි කුඩා කොටසකට තනුක HCl එක් කරන ලදී.	අවක්ෂේපයක් නොමැත.	
2	ඉහත $igodot$ හි ලැබෙන දුාවණය තුළින් $ m H_2S$ බුබුලනය කරන ලදී.	කළු පැහැති අවක්ෂේපයක්	(P ₁)
3	${f P}_1$ පෙරා වෙන් කරන ලදී. ${ m H}_2{ m S}$ ඉවත් කිරීම සඳහා පෙරනය නටවා, සිසිල් කර, ${ m NH}_4{ m Cl}$ $/{ m NH}_4{ m OH}$ එක් කරන ලදී.	කොළ පැහැති අවක්ෂේපයක්	(P ₂)
4	\mathbf{P}_2 පෙරා වෙන් කර පෙරනය තුළින් $\mathrm{H}_2\mathrm{S}$ බුබුලනය කරන ලදී.	සුදු පැහැති අවක්ෂේපයක්	(P ₃)
⑤	${f P}_3$ පෙරා වෙන් කරන ලදී. ${ m H_2S}$ ඉවත් කිරීම සඳහා පෙරනය නටවා, සිසිල් කර, ${ m (NH_4)_2CO_3}$ එක් කරන ලදී.	සුදු පැහැති අවක්ෂේපයක්	(P ₄)

 $\mathbf{P_1}$, $\mathbf{P_2}$, $\mathbf{P_3}$ හා $\mathbf{P_4}$ අවක්ෂේප සඳහා පහත සඳහන් පරීක්ෂා සිදු කරන ලදී.

අවක්ෂේපය	පරීක්ෂාව	නිරික්ෂණ ය
\mathbf{P}_1	$_{ m C}$ ණුසුම් තනුක ${ m HNO_3}$ හි ${ m extbf{P}}_1$ දුවණය කර වැඩිපුර සාන්ද ${ m NH_4OH}$ එක් කරන ලදී.	තද නිල් පැහැති දුාවණයක් (1 දුාවණය)
\mathbf{P}_2	* ${f P}_2$ ට වැඩිපුර තනුක NaOH එක් කර, පසුව ${f H}_2{f O}_2$ එක් කරන ලදී. * ${f 2}$ දාවණයට තනුක ${f H}_2{f SO}_4$ එක් කරන ලදී.	කහ පැහැති දාවණයක් (2 දාවණය) තැඹිලි පැහැති දාවණයක් (3 දාවණය)
P ₃	* තනුක HCl හි P ₃ දවණය කර තනුක NaOH කුමකුමයෙන් එක් කරන ලදී. * තනුක NaOH එක් කිරීම තවදුරටත් සිදු කරන ලදී.	සුදු පැහැති අවක්ෂේපයක් (\mathbf{P}_5) අවර්ණ දාවණයක් දෙමින් \mathbf{P}_5 දුවණය විය (4 දාවණය)
P ₄	සාන්දු HCl හි \mathbf{P}_4 දුවණය කර, පහන් සිළු පරීක්ෂාවට භාජනය කරන ලදී.	ගඩොල්-රතු දැල්ලක්

- (i) ${f X}$ දාවණයෙහි ලෝහ කැටායන **හතර** හඳුනාගන්න. (**හේතු අවශෘ නැත**.)
- (ii) P_1, P_2, P_3, P_4 සහ P_5 අවක්ෂේප සහ 1, 2, 3 සහ 4 **දාවණවල** වර්ණයන්ට හේතුවන රසායනික විශේෂ හඳුනාගන්න.

(සැ.යු. රසායනික සූතු පමණක් ලියන්න.)

(ලකුණු 75 යි)

(b) Y ජල සාම්පලයෙහි SO_3^{2-} , SO_4^{2-} සහ NO_3^- ඇතායන අඩංගු වේ. ජල සාම්පලයේ අඩංගු ඇතායන පුමාණාත්මකව විශ්ලේෂණය කිරීම සඳහා පහත කිුිිියාපිළිවෙළ සිදු කරන ලදී.

කුියාපිළිවෙළ 1

Y සාම්පලයෙහි $25.00~{
m cm}^3$ ට, වැඩිපුර, තනුක ${
m BaCl}_2$ දාවණයක් කලතමින් එක් කරන ලදී. ඉන්පසු, සෑදුණ අවක්ෂේපයට, කටුක ගඳක් සහිත වායුවක් තවදුරටත් මුක්ත වීම නවතින තෙක්, කලතමින්, වැඩිපුර, තනුක ${
m HCl}$ එක් කරන ලදී. දාවණය මිනිත්තු 10ක් තබා හැර පෙරන ලදී. අවක්ෂේපය ආසුැත ජලයෙන් සෝදා නියත ස්කන්ධයක් ලැබෙන තුරු $105~{
m °C}$ දී උදුනක වියළන ලදී. අවක්ෂේපයේ ස්කන්ධය $0.174~{
m g}$ විය. ලැබුණු පෙරනය වැඩිදුර විශ්ලේෂණය සඳහා තබා ගන්නා ලදී. (කිුයාපිළිවෙළ 3 බලන්න.)

තුියාපිළිවෙළ 2

Y සාම්පලයෙහි $25.00~{
m cm}^3$ ට, වැඩිපුර, තනුක $H_2{
m SO}_4$ හා ආම්ලිකෘත $5\%~{
m KIO}_3$ දාවණ එක් කරන ලදී. පිෂ්ටය දර්ශකය ලෙස භාවිත කරමින් $0.020~{
m mol~dm}^{-3}~{
m Na}_2{
m S}_2{
m O}_3$ දාවණයක් සමග, මුක්ත වූ I_2 ඉක්මනින් අනුමාපනය කරන ලදී. භාවිත වූ ${
m Na}_2{
m S}_2{
m O}_3$ පරිමාව $20.00~{
m cm}^3$ විය. (මෙම කිුියාපිළිවෙළෙහි දී ${
m SO}_3^{2-}$ අයන වායුගෝලයට පිට නොවී, සල්ෆේට් අයන $\left({
m SO}_4^{2-}\right)$ බවට ඔක්සිකරණය වේ යැයි උපකල්පනය කරන්න.)

කුියාපිළිවෙළ 3

ඛ්යාපිළිවෙළ 1 හි ලැබුණු පෙරනය, තනුක NaOH සමග උදාසීන කර, එයට වැඩිපුර Al කුඩු හා තනුක NaOH එක් කරන ලදී. දාවණය රත් කර, මුක්ත වූ වායුව, 0.11 mol dm^{-3} HCl දාවණයක 20.00 cm^{3} පරිමාවකට පුමාණාත්මකව යවා පුතිකිුයා කරවන ලදී. පුතිකිුයාව සම්පූර්ණ වීම ලිට්මස් සමග පරීක්ෂා කරන ලදී. මුක්ත වූ වායුව සමග පුතිකිුයා කිරීමෙන් පසු ඉතිරිව ඇති HCl, 0.10 mol dm^{-3} NaOH දාවණයක් සමග මෙතිල් ඔරේන්ජ් දර්ශකය ලෙස භාවිත කරමින් අනුමාපනය කරන ලදී. අවශා වූ NaOH පරිමාව 10.00 cm^{3} විය.

- (i) **කියාපිළිවෙළ** 1,2 හා 3 හි සිදුවන පුතිකිුයා සඳහා තුලිත අයනික/අයනික නොවන සමීකරණ ලියන්න.
- (ii) \mathbf{Y} ජල සාම්පලයේ $\mathrm{SO_3^{2-}}$, $\mathrm{SO_4^{2-}}$ සහ $\mathrm{NO_3^-}$ සාන්දුණ (mol dm $^{-3}$) නිර්ණය කරන්න. (Ba = 137; S = 32; O = 16)
- (iii) තියාපිළිවෙළ 2 හා 3 හි අනුමාපනවල දී නිරීක්ෂණය කළ හැකි වර්ණ විපර්යාස දෙන්න. (හැ.යූ. විශ්ලේෂණයට බාධා විය හැකි වෙනත් අයන Y සාම්පලයේ නැති බව උපකල්පනය කරන්න.)

(ලකුණු 75 යි)

ඩව් කිුයාවලිය (Dow Process) යොදා ගනිමින් මැග්නීසියම් ලෝහය (Mg) නිෂ්පාදනය කිරීම ඉහත දක්වා ඇති ගැලීම් සටහනින් පෙන්නුම් කරයි.

ගැලීම් සටහන මත පදනම් වූ පහත දැක්වෙන පුශ්නවලට පිළිතුරු සපයන්න.

- (i) ආරම්භක දුවාසය A හඳුනාගන්න.
- (ii) B, C, D, E, F සහ G හි උපයෝගී කරගන්නා කියාවලි පහත දැක්වෙන ලැයිස්තුවෙන් හඳුනාගන්න. වාෂ්පීකරණය, දුවණය කිරීම, තාප වියෝජනය, විද්යුත්විච්ඡේදනය, පුතිකාරකයක් පුතිචකීකරණය, අවක්ෂේපණය
- (iii) **B** හි භාවිත කරන රසායනික සංයෝගය හඳුනාගන්න.
- (iv) $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ සහ \mathbf{T} රසායනික විශේෂ හඳුනාගන්න.
- (v) B,C,D හා F වල සිදුවන කියාවලි සඳහා තුලිත රසායනික සමීකරණ/අර්ධ පුතිකියා දෙන්න. (සැ.යු. අර්ධ පුතිකියා ලිවීමේ දී අදාළ අවස්ථාවන්හි ඇනෝඩය හා කැතෝඩය හඳුනාගන්න.)
- (vi) G හි සිදුවන පුතිකිුයාවේ වැදගත්කම සඳහන් කරන්න.

(ලකුණු 50 යි)

(b) (i) පහත දක්වා ඇති කර්මාන්ත සලකන්න.

ගල් අඟුරු බලාගාර ශීතකරණ සහ වායුසමීකරණ පුවාහනය කෘෂිකර්මාන්තය සත්ත්ව පාලනය

- I. ඉහත දක්වා ඇති කර්මාන්ත පහම ගෝලීය උණුසුම්වීමට දායක වේ. එක් එක් කර්මාන්තය ආශිත ගෝලීය උණුසුම්වීමට දායක වන වායුමය රසායනික විශේෂ හඳුනාගන්න.
- II. ගෝලීය උණුසුම්වීම නිසා ඇතිවිය හැකි හානිකර දේශගුණ විපර්යාස **තුනක්** සඳහන් කරන්න.
- (ii) ඉහත (i) හි දී ඇති කර්මාන්ත අතුරෙන්
 - I. පුකාශ රසායනික ධූමිකාවට
 - II. අම්ල වැසිවලට
 - III. සුපෝෂණයට

දායක වන පුධාන කර්මාන්තය/කර්මාන්ත හඳුනාගන්න.

(iii) ශුී ලංකාවේ වර්ෂාපතනය අඩුවීම හේතුවෙන් ජල විදුලිය ජනනය කිරීමට භාවිත වන ජලාශවල පෝෂක පුදේශ ආසන්නයේ කෘතීම වැසි ඇති කිරීම අත්හදා බලන ලදී. මෙම කිුියාවලියේ දී ජලවාෂ්ප ඝනීභවනය වී වලාකුළු ඇතිවීම උත්තේජනය කිරීමට ජලාකර්ෂක ලවණවල (NaCl, CaCl₂, NaBr) සියුම් අංශු විසුරුවනු ලැබේ.

මෙම ලවණ පෝෂක පුදේශ අවට ජලයට ඇතුල්වීම හේතුවෙන් සෘජුවම

- I. බලපෑමට ලක්වන
- II. බලපෑමට ලක් නොවන

ජල තත්ත්ව පරාමිති පහත දැක්වෙන ලැයිස්තුවෙන් තෝරා ගන්න. ඔබේ තෝරා ගැනීමට හේතු කෙටියෙන් දෙන්න.

ජල තත්ත්ව පරාමිති ලැයිස්තුව:

pH, සන්නායකතාව, ආවිලතාව, දුාවිත ඔක්සිජන්

(ලකුණු 50 යි)

- (c) පහත සඳහන් පුශ්න ජෛව ඩීසල් නිෂ්පාදනය මත පදනම් වේ.
 - (i) ජෛව ඩීසල් නිෂ්පාදනයේ දී භාවිත වන අමුදුවා සඳහන් කරන්න.
 - (ii) එම එක් එක් අමුදුවායේ ඇති පුධාන රසායනික සංයෝගය අදාළ අවස්ථාවන්හි නම් කරන්න.
 - (iii) පාසල් රසායනාගාරයේ දී ජෛව ඩීසල් නිෂ්පාදනයට උත්පේුරකය වශයෙන් යොදා ගනු ලබන රසායනික සංයෝගයේ නම සඳහන් කරන්න.
 - (iv) ඉහත (ii) කොටසේ සඳහන් කළ රසායනික සංයෝග භාවිත කර ජෛව ඩීසල් සංශ්ලේෂණය පෙන්වීමට තුලිත රසායනික සමීකරණයක් දෙන්න.
 - (v) උත්පේරකය වැඩිපුර යොදා ගතහොත් සිදුවිය හැකි අතුරු පුතිකිුයාවක් එහි ඵල සමග හඳුනාගන්න.

(ලකුණු 50 යි)

ආවර්තිතා වගුව

1																	2
H																	Не
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
87	88	Ac-	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
	H 3 Li 11 Na 19 K 37 Rb 55 Cs 87	H 3 4 Li Be 11 12 Na Mg 19 20 K Ca 37 38 Rb Sr 55 56 Cs Ba 87 88	H 3 4 Li Be 11 12 Na Mg 19 20 21 K Ca Sc 37 38 39 Rb Sr Y 55 56 La- Cs Ba Lu 87 88 Ac-	H 3 4 Li Be 11 12 Na Mg 19 20 21 22 K Ca Sc Ti 37 38 39 40 Rb Sr Y Zr 55 56 La 72 Cs Ba Lu Hf 87 88 Ac 104	H 3	H 3	H 3	H 3	H 3 4 Li Be 11 12 Na Mg 19 20 21 22 23 24 25 26 27 K Ca Sc Ti V Cr Mn Fe Co 37 38 39 40 41 42 43 44 45 Rb Sr Y Zr Nb Mo Tc Ru Rh 55 56 La- 72 73 74 75 76 77 Cs Ba Lu Hf Ta W Re Os Ir 87 88 Ac- 104 105 106 107 108 109	H 3	H 3	H 3	H 3	H S S S S S S S S S	H	H S S S S S S S S S	H S S S S S S S S S

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr