${\it N1MA8W04-Courbes\ Elliptiques-Master\ CSI}$ - année 2012/13 Examen: partie théorique Corrigé

1. Le morphisme de Frobenius

- (a) Soit p un nombre premier. Montrer que pour $1 \le k \le p-1$ le coefficient binomial $\binom{p}{k}$ est divisible par p.
- (b) Soit K un corps de caractéristique p. Montrer que pour $x, y \in K$ on a $(x+y)^p = x^p + y^p$. Plus généralement, $(x+y)^{p^k} = x^{p^k} + y^{p^k}$ avec $k = 0, 1, 2 \dots$
- (c) Soit \mathbb{F}_q le corps de q éléments et $\bar{\mathbb{F}}_q$ sa clôture algébrique.
 - i. Montrer que l'application $\bar{\mathbb{F}}_q \to \bar{\mathbb{F}}_q$ définie par $x \mapsto x^q$ est un automorphisme du corps $\bar{\mathbb{F}}_q$ (le morphisme de Frobenius).
 - ii. Montrer que pour $x \in \bar{\mathbb{F}}_q$ on a $x^q = x$ si est seulement si $x \in \mathbb{F}_q$.
- (a) Puisque $\binom{p}{k} = \frac{p!}{k!(p-k)!} \in \mathbb{Z}$, le produit k!(p-k)! divise $p! = p \cdot (p-1)!$. Pour $1 \le k \le p-1$ on a $\operatorname{pgcd}(p,k!(p-k)!) = 1$, ce qui implique que k!(p-k)! divise (p-1)!, et donc

$$\binom{p}{k} = \frac{p!}{k!(p-k)!} = p \frac{(p-1)!}{k!(p-k)!}$$

est divisible par p.

(b) On a

$$(x+y)^p = x^p + y^p + \sum_{k=1}^{p-1} {p \choose k} x^k y^{p-k}.$$

La question précédente implique qu'en caractéristique p la dernière somme est nulle, ce qui montre $(x+y)^p=x^p+y^p$. On déduit de ceci que $(x+y)^{p^k}=x^{p^k}+y^{p^k}$ par récurrence simple sur k:

$$(x+y)^{p^k} = ((x+y)^{p^{k-1}})^p = (x^{p^{k-1}} + y^{p^{k-1}})^p = x^{p^k} + y^{p^k}.$$

(c) i. On a $(xy)^q = x^qy^q$ et $(x+y)^q = x^q + y^q$ par la question précédente. Ceci démontre que notre application est morphisme de corps. Si $x^q = 0$ alors x = 0 ce qui montre que le noyau de notre morphisme est nul, donc il est injectif.

Si $x^q = 0$ alors x = 0 ce qui montre que le noyau de notre morphisme est nul, donc il est injectif. Puisque $\overline{\mathbb{F}}_q$ est algébriquement clos, pour tout $y \in \overline{\mathbb{F}}_q$ on trouve $x \in \overline{\mathbb{F}}_q$ tel que $x^q = y$; il est donc surjectif. Nous avons donc un isomorphisme.

ii. Le groupe multiplicatif \mathbb{F}_q^{\times} est d'ordre q-1 ce qui montre que pour tout $x\in\mathbb{F}_q^{\times}$ on a $x^{q-1}=1$. Ceci implique que $\mathbb{F}_q\subset\{\text{racines de }x^q-x\}$. Puisque le polynôme x^q-x ne peut pas avoir plus de q racines, on a en fait $\mathbb{F}_q=\{\text{racines de }x^q-x\}$.

2. Frobenius sur les courbes elliptiques On fixe une courbe elliptique E sur \mathbb{F}_q .

(a) Rappeler la définition du morphisme de Frobenius $\phi_q: E \to E$.

On admet (mais vous pouvez essayer de le démontrer) que l'application ϕ_q est un automorphisme du groupe abelien E.

- (b) Montrer que $\phi_q^k = \phi_{q^k}$ et que $\phi_q(P) = P$ si et seulement si $P \in E(\mathbb{F}_q)$.
- (c) Soit $m \in \mathbb{Z}$ un entier vérifiant $m\phi_q(P) = O$ pour tout $P \in E$. Montrer que m = 0. En déduire que l'égalité $m_1\phi_q = m_2\phi_q$ (avec $m_1, m_2 \in \mathbb{Z}$) implique $m_1 = m_2$.
- (a) Pour P = (x, y) on a $\phi_q(P) = (x^q, y^q)$.
- (b) Le premier énoncé est démontré par récurrence simple sur k:

$$\phi_q^k(P) = \phi_q(\phi_q^{k-1}(P)) = \phi_q(\phi_{q^{k-1}}(P)) = \phi_q(x^{q^{k-1}}, y^{q^{k-1}}) = (x^{q^k}, y^{q^k}) = \phi_{q^k}(P).$$

Le deuxième énoncé est une conséquence immédiate de la question 1c:ii.

(c) Supposons $m \neq 0$. Puisque ϕ_q est surjectif, " $m\phi_q(P) = O$ pour tout $P \in E$ " implique que mP = O pour tout $P \in E$; autrement dit, E = E[m]. Mais E est un ensemble infini, tandis que E[m] est fini, contradiction.

Si $m_1\phi_q=m_2\phi_q$ alors $(m_1-m_2)\phi_q=0$, et donc $m_1-m_2=0$ comme on a vu tout à l'heure.

- 3. Le théorème de Weil On fixe toujours une courbe elliptique E sur \mathbb{F}_q . On admet l'énoncé suivant.
 - Posons $a_q = q + 1 N_q$, où $N_q = |E(\mathbb{F}_q)|$. Alors le morphisme de Frobenius ϕ_q vérifie $\phi_q^2(P) a_q \phi_q(P) + qP = O$ pour tout $P \in E$. Autrement dit, $\phi_q^2 a_q \phi_q + q \operatorname{Id} = 0$.

On note par α et β les racines du polynôme $X^2 - a_q X + q$. (Le théorème de Hasse affirme que $\beta = \bar{\alpha}$, mais ceci ne joue aucun rôle dans la suite.)

Notre objectif est de démontrer le théorème de Weil:

$$a_{a^k} = \alpha^k + \beta^k$$
 $(k = 1, 2, 3...).$

Dans la suite on note $a = a_q$, $b_k = \alpha^k + \beta^k$.

- (a) Montrer que $b_2 = a^2 2q$ et que $b_{k+1} = ab_k qb_{k-1}$ pour $k \ge 2$. (Indication: vérifier que $\alpha^{k+1} = a\alpha^k q\alpha^{k-1}$, et le même pour β .) En déduire que $b_k \in \mathbb{Z}$ pour tout $k \ge 1$.
- (b) Montrer que le polynôme $X^2 aX + q$ divise le polynôme $X^{2k} b_k X^k + q^k$. (Indication: montrer que $X^{2k} b_k X^k + q^k = (X^k \alpha^k)(X^k \beta^k)$.)
- (c) Montrer que $\phi_{q^k}^2 b_k \phi_{q^k} + q \operatorname{Id} = 0$. En déduire que $b_k \phi_{q^k} = a_{q^k} \phi_{q^k}$. Conclure, en utilisant la question 2c.
- (a) On a $a = \alpha + \beta$ et $q = \alpha \beta$, ce qui montre que $b_2 = \alpha^2 + \beta^2 = (\alpha + \beta)^2 2\alpha \beta = a^2 2q$. Puis, en multipliant les relations $\alpha^2 = a\alpha - q$ et $\beta^2 = a\beta - q$ respectivement par α^{k-1} et β^{k-1} , on obtient $\alpha^{k+1} = a\alpha^k - q\alpha^{k-1}$ et $\beta^{k+1} = a\beta^k - q\beta^{k-1}$. La somme des deux dernières identités nous donne $b_{k+1} = ab_k - qb_{k-1}$.
- Finalement, on montre par récurrence sur k que $b_k \in \mathbb{Z}$. On a $b_1 = a \in \mathbb{Z}$ et $b_2 = a^2 2q \in \mathbb{Z}$; puis, si $b_{k-1}, b_k \in \mathbb{Z}$, alors $b_{k+1} = ab_k qb_{k-1} \in \mathbb{Z}$.
- (b) On a $(X^k-\alpha^k)(X^k-\beta^k)=X^{2k}-(\alpha^k+\beta^k)X^k+(\alpha\beta)^k=X^{2k}-b_kX^k+q^k,$ ce qui implique que α et β sont des racines de $X^{2k}-b_kX^k+q^k$. Ceci montre que le polynôme $X^2-aX+q=(X-\alpha)(X-\beta)$ divise $X^{2k}-b_kX^k+q^k$.
- (c) Écrivons $X^{2k} b_k X^k + q^k = (X^2 a_q X + q)(X^{2k-2} + c_{2k-3} X^{2k-3} + \dots + c_1 X + c_0)$. Alors $\phi_{q^k}^2 b_k \phi_{q^k} + q \operatorname{Id} = \phi_q^{2k} b_k \phi_q^k + q \operatorname{Id} \quad \text{(parce que } \phi_{q^k} = \phi_q^k)$ $= (\phi_q^2 a_q \phi_q + q \operatorname{Id})(\phi_q^{2k-2} + c_{2k-3} \phi_q^{2k-3} + \dots + c_1 \phi_q + c_0 \operatorname{Id})$ $= 0 \quad \text{(parce que } \phi_q^2 a_q \phi_q + q \operatorname{Id} = 0).$

De $\phi_{q^k}^2 - b_k \phi_{q^k} + q \operatorname{Id} = 0$ et $\phi_{q^k}^2 - a_{q^k} \phi_{q^k} + q \operatorname{Id} = 0$ on déduit que $b_k \phi_{q^k} = a_{q^k} \phi_{q^k}$, ce qui implique $a_{q^k} = b_k = \alpha^k + \beta^k$. Ceci démontre le théorème de Weil.

- 4. Un exemple numérique Dans la suite q = 5 et E est la courbe elliptique $y^2 = x^3 + 2x$ sur \mathbb{F}_5 .
 - (a) Sans utiliser l'ordinateur déterminer les nombres a_{5^k} et $N_{5^k} = |E(\mathbb{F}_{5^k})| = 5^k + 1 a_{5^k}$ pour k = 1, 2, 3, 4.
 - (b) Déterminer la structure des groupes $E(\mathbb{F}_5)$ et $E(\mathbb{F}_{5^3})$.
 - (c) Montrer que le sous-groupe de 2-torsion E[2] est contenu dans $E(\mathbb{F}_{5^2})$. (Indication: rappelons que les points de 2-torsion sont l'origine et les points avec y=0.)
 - (d) Déterminer la structure des groupes $E(\mathbb{F}_{5^2})$ et $E(\mathbb{F}_{5^4})^1$.

 $^{^1}$ C'est une erreur dans le sujet: il est trop difficile de déterminer la structure du groupe $E(\mathbb{F}_{5^4})$ sans ordinateur. Tout étudiant aura 1 point de bonus pour compenser cette faute.

(a) Pour x=0 on trouve $y^2=0^2+2\cdot 0=0$, et on obtient le point $(0,0)\in E(\mathbb{F}_5)$. Pour x=1 on trouve $y^2=3$ et donc il n'y a pas de point dans $E(\mathbb{F}_5)$ avec x=1. De la même façon on vérifie qu'il n'y a pas de points avec x=2,3,4. On conclut que (0,0) est le seul point fini dans $E(\mathbb{F}_5)$, et donc

$$N_5 = |E(\mathbb{F}_5)| = 2,$$
 $a_5 = 5 + 1 - 2 = 4.$

Les racines du polynôme X^2-4X+5 sont $2\pm i$. Par le théorème de Weil $a_{5^k}=(2-i)^k+(2+i)^k$. En particulier,

$$\begin{aligned} a_{5^2} &= (2-i)^2 + (2+i)^2 = 6, & N_{5^2} &= 5^2 + 1 - 6 = 20, \\ a_{5^3} &= (2-i)^3 + (2+i)^3 = 4, & N_{5^3} &= 5^3 + 1 - 4 = 122, \\ a_{5^4} &= (2-i)^4 + (2+i)^4 = -14, & N_{5^2} &= 5^4 + 1 + 14 = 640. \end{aligned}$$

- (b) Le groupe $E(\mathbb{F}_5)$ est le groupe à 2 éléments: $E(\mathbb{F}_5) \cong \mathbb{Z}/2\mathbb{Z}$.
 - En général on sait d'après le cours que $E(\mathbb{F}_q)\cong \mathbb{Z}/m1\mathbb{Z}\times \mathbb{Z}/m_2\mathbb{Z}$ avec $m_1\mid m_2$. En particulier, m_1^2 divise $N_q=|E(\mathbb{F}_q)|$.
 - Dans le cas $q=5^3$ on a $m_1^2 \mid 122=2\cdot 61$, ce qui implique que $m_1=1$ et $m_2=122$. On a donc $E(\mathbb{F}_{5^3})\cong \mathbb{Z}/122\mathbb{Z}$, un groupe cyclique.
- (c) Les racines du polynôme x^3+2x appartiennent au corps $\mathbb{F}_5(\sqrt{-2})=\mathbb{F}_{5^2}$, ce qui implique que $E[2]\subset E(\mathbb{F}_{5^2})$.
- (d) En utilisant les notations ci-dessus, on a $m_1^2 \mid 20$, d'où $m_1 = 1$ ou $m_1 = 2$. Si $m_1 = 1$ alors le groupe $E(\mathbb{F}_{5^2})$ est cyclique. Mais il contient le sous groupe $E[2] \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, un groupe non cyclique. Puisque tout sous groupe d'un groupe cyclique est forcément cyclique, on ne peut pas avoir $m_1 = 1$. On obtient $m_1 = 2$ et $m_2 = 10$, et donc $E(\mathbb{F}_{5^2}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/10\mathbb{Z}$.