Курсовой проект Паротурбинные установки Расчеты

к.т.н. Попов Виталий Владимирович

PopovVitV@mpei.ru

Расчет регулирующей ступени

Процесс расширения пара в ступени осевой турбины

Исходные данные:

- расход водяного пара G, кг/с;
- термодинамические параметры пара перед ступенью:
- давление **р**₀, МПа (кПа);
- температура t_0 ,0С;
- скорость потока на входе в ступень $c_0 = 0$, м/с и ее направление (угол $\alpha_0 = 90^\circ$).
- 3. средний диаметр d_{cp} , м;
- 4. частота вращения ротора турбины n = 50 с⁻¹;
- 5. хорды сопловой и рабочей лопаток b_1 , b_2 , м;
- 6. располагаемый теплоперепад ступени по параметрам торможения \overline{H}_0 кДж/кг.

Особенности расчета регулирующей ступени:

- так как скорость на входе в ступень $C_0 = 0$ м/с, то точки начала процесса расширения $\overline{0}$ и 0 совпадают;
- начало процесса расширения в регулирующей ступени это точка 0' в расчете тепловой схемы (параметры после дросселирования в блоке СРК ЦВД);
- если полученное в расчете значение оптимальной степени парциальности $e_{onm}>0.85$, то, с учетом конструкции сопловых коробок, принимается для регулирующей ступени $e_{max}=0.8...0.85$.

Nº	Показатель	Формула или источник
1	Расход пара G, кг/с	Исходные данные
2	Средний диаметр d, м	Исходные данные
3	Частота вращения n, c^{-1}	Исходные данные
4	Окружная скорость на среднем диаметре и, м/с	u=πdn
	Давление пара перед ступенью $ar{P}_0$, МПа	Точка 0 ['] в расчете G ₀ , G _к
	Температура пара перед ступенью $ar{t}_0$, °C	Точка 0' в расчете G_0 , G_{κ}
	Энтропия пара перед ступенью $ar{S}_{ar{0}}$, кДж/(кгК)	Точка $0'$ в расчете G_0 , G_{κ}
	Энтальпия пара перед ступенью $ar{h}_0$, кДж/кг	
	Скорость пара на входе в ступень с $_{0}$, м/с $_{\underline{}}$	Исходные данные
	Энтальпия торможения перед ступенью $\overline{h_0}$, кДж/кг	Точка $0'$ в расчете G_0 , G_{κ}
11	Изоэнтропийный теплоперепад ступени по параметрам торможения $\overline{H_0}$, кДж/кг	Исходные данные
12	Степень реактивности р	Принимаем в диапазоне р=0,05-0,10
13	Изоэнтропийный теплоперепад сопловой решетки по параметрам торможения $\overline{H_{0\mathrm{c}}}$, кДж/кг	$\overline{H_{0c}} = (1 - \rho) \times \overline{H_0}$
14	Изоэнтропийный теплоперепад в рабочей решетке по статическим параметрам $H_{ m 0p}$, кДж/кг	$H_{0p} = \overline{H_0} \times \rho$
	Теоретическая энтальпия за сопловой решеткой h_{1t} , кДж/кг	$h_{1t} = \overline{h_0} - \overline{H_{0c}}$
	Давление за сопловой решеткой p_{1} , МПа	h, s –диаграмма (по h_{1t} и $\bar{S_0}$)
	Удельный объем за сопловой решеткой (теоретический) ${ m v}_{1t}$, ${ m M}^3/{ m K}{ m F}$	h, s –диаграмма (по ${ m h}_{ m 1t}$ и $ar{S}_{ m 0}$)
18	Теоретическая скорость выхода из сопловых лопаток c_{1t} , м/с	$c_{1t} = \sqrt{2\overline{H_{0c}}}$
19	Скорость звука за сопловой решеткой (теоретическая) a_{1t} , м/с	$a_{1t} = \sqrt{kp_1v_{1t}}$
20	Число Маха по скорости с _{1t}	$M_{1t} = c_{1t} / a_{1t}$
	Выходная площадь сопловой решетки (предварительная) F'_1 , м 2 при $\mu'_1=0,97$	$F_1' = \frac{Gv_{1t}}{\mu_1' c_{1t}}$
22	Угол α_{19} направления скорости с $_{1t}$, град	Принимаем в диапазоне α ₁₃ =10-16°
	Произведение el ₁ , м	$el_1 = F_1/(\pi d_{pc} \sin \alpha_{19})$
24	Оптимальное значение степени парциальности e_{ont} (Если получается $e_{ont} > 0.85$, тогда принимаем $e_{ont} = 0.85$)	$e_{onm} = (46)\sqrt{el_1}$
25	Высота сопловых лопаток l_1' , м	$I_1 = eI_1/e_{ont}$
	Размер хорды профиля сопловой решетки b_1 , м	Исходные данные
	Уточняем коэффициент расхода сопловой решетки μ_1	$\mu_1 = 0.982 - 0.005(b_1/l_1)$ 4
	<u>-</u>	

Nº	Показатель	Формула или источник
28	Выбираем тип сопловой решетки	По методике подбора профилей и слайду №6: α_0 = 90°, α_{19} = (п.22), M_{1t} = (п.20)
29	Оптимальный относительный шаг $\overline{t_{1 ext{ont}}}$	Выбираем из оптимального диапазона (см. таблицу на слайде 6)
30	Количество лопаток в сопловой решетке $\mathbf{z_1}$, шт.	$z_1 = (\pi d_{p.c.} e_{ont})/(b_1 \overline{t_1})$, где b_1 , $d_{p.c.} - исходные данные; e_{ont} = (\pi.24)$
31	Берем ближайшее целое, четное число z ₁ , шт.	
32	После округления z ₁ уточним относительный шаг	$\overline{t_1}$ =($\pi d_{p.c.}e_{ont}$)/(b_1z_1) Проверить, чтобы полученное значение попадало в оптимальный диапазон (см. таблицу на слайде 6). В дальнейшем используем это значение.
33	Угол установки лопатки в сопловой решетке $lpha_{_{ extsf{yct}}}$, град	По формуле из атласа профилей для выбранного профиля
34	Коэффициент потерь в сопловой решетке ζ_{c} , %	По атласу профилей
35	Коэффициент скорости сопловой решетки ф	$\phi = \sqrt{1 - \frac{\zeta_c}{100}}$
36	Проверяем коэффициент скорости сопловой решетки ф	$\phi' = 0.98 - 0.008(b_1/l_1)$
37	Находим расхождение между ф и ф'	Расхождение между ф и ф' должно быть не более 1 %. В противном случае ищем ошибку. В дальнейших расчетах используем значение ф.
38	Скорость выхода пара из сопловой решетки с1, м/с	$c_1 = c_{1t} \times \varphi$
39	Угол $lpha_1$ вектора скорости c_1 , град.	$\alpha_1 = \arcsin(\frac{\mu_1}{\varphi}\sin\alpha_{19})$
40	Строим графически входной треугольник скоростей	Определяем W_1 и β_1 . Сравниваем полученные графически и по формулам значения W_1 и β_1 . Расхождение должно быть не больше погрешности графического построения. В дальнейшем используем значения, полученные по формулам.
41	Относительная скорость на входе в рабочую решетку $\mathbf{W_1}$, м/с	$w_1 = \sqrt{c_1^2 + u^2 - 2c_1 u \cos \alpha_1}$
42	Угол eta_1 направления относительной скорости \mathbf{w}_1 , град	$w_1 = \sqrt{c_1^2 + u^2 - 2c_1u\cos\alpha_1}$ $\tan\beta_1 = \frac{\sin\alpha_1}{\cos\alpha_1 - \frac{u}{c_1}}$ 5

tonn

Геометрические характеристики профилей МЭИ

Тип профиля	<mark>а_{1э}, β</mark> 2э град	α _{0расч} , β _{1расч}	\overline{t}_{onm}	$(M_{1t})_{onm}, \ (M_{2t})_{onm}$	<i>b</i> ₁ , <i>b</i> ₂ мм	<i>F</i> , см ²	$I_{\scriptscriptstyle MUH}$, см 4	<i>W</i> _{мин} , см ³
			Сопло	вые решеткі	l			
C-90-12A	10-14	70-120	0,72-0,87	до 0,85	52,5	4,09	0,591	0,575
C-90-15A	13-17	70-120	0,70-0,85	до 0,85	51,5	3,3	0,36	0,45
C-90-18A	16-20	70-120	0,70-0,80	до 0,85	47,1	2,72	0,243	0,333
C-90-22A	20-24	70-120	0,70-0,80	до 0,90	45,0	2,35	0.167	0,265
C-90-27A	24-30	70-120	0,65-0,75	до 0,90	45,0	2,03	0,116	0,195
С-90-12Б	10-14	70-120	0,72-0,87	0,85-1,15	56,6	3,31	0,388	0,420
C-90-15 B	13-17	70-120	0,70-0,85	0,85-1,15	52,0	3,21	0,326	0,413
C-90-12P	10-14	70-120	0,58-0,68	1,4-1,8	40,9	2,30	0,237	0,324
C-90-15P	13-17	70-120	0,55-0,65	1,4-1,7	42,0	2,00	0,153	0,238
			Рабо	чие решетки				
P-23-14A	12-16	20-30	0,60-0,75	до 0,95	25,9	2,44	0,43	0,39
P-26-17A	15-19	23-35	0,60-0,70	до 0,95	25,7	2,07	0,215	0,225
P-30-21A	19-24	25-40	0,58-0,68	до 0,90	25,6	1,85	0,205	0,234
P-35-25A	22-28	30-50	0,55-0,65	до 0,85	25,4	1,62	0,131	0,168
P-46-29A	25-32	44-60	0,45-0,58	до 0,85	25,6	1,22	0,071	0,112
P-27-17 B	15-19	23-45	0,57-0,65	0,80-1,15	25,4	2,06	0,296	0,297
Р-30-21Б	19-24	23-40	0,55-0,65	0,85-1,10	20,1	1,11	0,073	0,101
P-35-25 B	22-28	30-50	0,55-0,65	0,85-1,10	25,2	1,51	0,126	0,159
P-21-18P	16-20	19-24	0,60-0,70	1,3-1,6	20,0	1,16	0,118	0,142
P-25-22P	20-24	23-27	0,54-0,67	1,35-1,6	20,0	0,99	0,084	0,100

Nº	Показатель	Формула или источник
44	Потери в сопловой решетке ΔH _c , кДж/кг	$\Delta H_c = c_{1t}^2/2(1-\varphi^2)$
45	Энтальпия за сопловой решеткой h ₁ , кДж/кг	$h_1 = h_{1t} + \Delta H_c$
46	Энтропия за сопловой решеткой s_1 , кДж/(кгК)	h, s –диаграмма, по (h ₁ , p ₁)
47	Энтальпия за рабочей решеткой теоретическая $h_{2t}^{'}$, кДж/кг	$h_{2t} = h_1 - H_{0p}$
48	Давление за ступенью р ₂ , МПа	h, s –диаграмма, (по h_{2t}, S_1)
49	Теоретическая скорость выхода из рабочей решетки w_{2t} , м/с	$w_{2t} = \sqrt{2H_{0p} + w_1^2}$
50	Перекрыша Δ, м	Принимаем 0,003-0,004
51	Высота рабочих лопаток I_2 , м	$I_2 = I_1 + \Delta$
52	Размер хорды профиля рабочих лопаток b ₂ , м	Исходные данные
53	Коэффициент расхода рабочей решетки μ_2	μ_2 =0,965-0,01(b_2/l_2)
54	Удельный объем (теоретический) за рабочей решеткой ${\rm v_{2t}}, {\rm m^3/kr}$	h, s –диаграмма (по h _{2t} , S ₁)
55	Скорость звука за рабочей решеткой (теоретическая) a_{2t} , м/с	$a_{2t}=\sqrt{kp_2v_{2t}}$, где k = 1,3
56	Число Маха по скорости w _{2t}	$M_{2t} = w_{2t} / a_{2t}$
57	Выходная площадь рабочей решетки F ₂ , м ²	$F_2 = (Gv_{2t})/(\mu_2 w_{2t})$
58	Угол β_{29} направления скорости w_2 , град	$arc\sin\beta_{29} = \frac{F_2}{e_{\text{онт}}\pi dl_2}$
59	Выбираем тип рабочей решетки	По методике подбора профилей и слайду №6 по β ₁ , β ₂₉ , М _{2t}
60	Оптимальный относительный шаг $\overline{t_{20\Pi\mathrm{T}}}$	Выбираем из оптимального диапазона (см. таблицу на слайде 6)
61	Количество лопаток в рабочей решетке ${\sf z_2}$, шт.	z_2 =($\pi d_{p.c.}$)/($b_2 \overline{t_{20\Pi T}}$), где b_2 , $d_{p.c.}$ – исходные данные
62	Берем ближайшее целое число z ₂ , шт.	Необходимо подбирать число кратное 2.
63	После округления z ₂ уточним относительный шаг	$\overline{t_2}$ =($\pi d_{p.c.}$)/($b_2 z_2$). Проверить, чтобы полученное значение попадало в оптимальный диапазон (см. таблицу на слайде <u>6</u>). В
		дальнейшем используем это значение.

Nº	Показатель	Формула или источник
64	Угол установки лопатки в рабочей решетке $eta_{ ext{уст}}$, град	По формуле из атласа профилей для выбранного профиля
65	Коэффициент потерь в рабочей решетке $\zeta_p, \%$	По атласу профилей
66	Коэффициент скорости рабочей решетки ψ	$\psi = \sqrt{1 - \frac{\zeta p}{100}}$
67	Коэффициент скорости рабочей решетки ψ'	$\psi' = 0.96 - 0.014(b_2/l_2)$
68	Находим расхождение между ψ и ψ'	Расхождение между ψ и ψ ' должно быть не более 1 %. В противном случае ищем ошибку. В дальнейших расчетах используем значение ψ .
69	Относительная скорость на выходе из рабочей решетки w_2 , м/с	$w_2 = w_{2t} \psi$
70	Угол β_2 направления скорости w_2 , град	$\beta_2 = arc \sin(\frac{\mu_2}{\psi} sin\beta_{23})$
71	Строим графически выходной треугольник скоростей	Определяем с ₂ и α ₂ . Треугольник строится в том же масштабе, что и входной. Сравниваем полученные графически и по формулам значения. Расхождение должно быть не больше погрешности графического построения. В дальнейшем используем значения, полученные по формулам.
72	Абсолютная скорость на выходе из рабочей решетки c_2 , м/с	$c_2 = \sqrt{w_2^2 + u^2 - 2w_2u\cos\beta_2}$
73	Угол $lpha_2$ направления скорости c_2 , град	$\tan \alpha_2 = \frac{\sin \beta_2}{\cos \beta_2 - \frac{u}{w_2}}$
75	Потери в рабочей решетке ΔH _p , кДж/кг	$\Delta H_p = w_{2t}^2/2(1-\psi^2)$
76	Энергия выходной скорости $\Delta H_{\text{в.с}}$, кДж/кг	$\Delta H_{B.c} = c_2^2/2$
77	Коэффициент использования выходной скорости $\chi_{\text{в.с}}$	Для регулирующей ступени принимается равным 0.
78	Располагаемая энергия ступени ${\sf E}_0$, кДж/кг	$E_0 = \overline{H_0} - \chi_{\mathrm{B.C}} \Delta H_{\mathrm{B.C}}$

Nº	Показатель	Формула или источник
79	Относительный лопаточный КПД $\eta_{o.n}$	$ \eta_{o.n} = \frac{E_o - \Delta H_c - \Delta H_p - (1 - \chi_{B.C}) \Delta H_{B.C}}{E_0} $
80	Относительный лопаточный КПД η _{о.л}	$\eta_{\text{о}.\text{л}} = \frac{u(c_1 \cos \alpha_1 + c_2 \cos \alpha_2)}{E_0}$ Сравниваем значения $\eta_{\text{о}.\text{л}}$, полученные в п.79 и 80. Расхождение должно быть не более 1 %. В противном случае ищем ошибки.
82	Фиктивная скорость с _ф , м/с	$c_{\phi} = \sqrt{2\overline{H_0}}$
83	Отношение скоростей u/c _ф	u/c _o
84	Оптимальное отношение скоростей (u/c $_{\phi}$) $_{ m ont}$	$(u/c_{\phi})_{\text{ORT}} = \frac{\varphi \cos \alpha_1}{2\sqrt{1-\rho}}$
85	Периферийный диаметр d _п , м	$d_n = d + l_2$
86	Коэффициент расхода для осевого зазора периферийного уплотнения μ_a	Принимаем 0,5
	(см. рис.(а) на слайде №10)	
87	Осевой зазор периферийного уплотнения δ _a , м	Принимаем 0,0025
88	Коэффициент расхода через радиальный зазор периферийного уплотнения	Принимаем 0,75
	μ, (см. рис.(а) на слайде №10)	
89	Радиальный зазор в периферийном уплотнении δ_r , м	$\delta_{r} = 0.001 d_{n}$
90	Количество гребней (усиков) в периферийном уплотнении z, шт.	Принимаем
91	Эквивалентный зазор в уплотнении по бандажу (периферийном) $\delta_{\scriptscriptstyle 3}$, м	$\delta_{9} = \left\{ \frac{1}{(\mu_{a}\delta_{a})^{2}} + \frac{z}{(\mu_{r}\delta_{r})^{2}} \right\}^{-\frac{1}{2}}$
92	Относительные потери от утечек через бандажные уплотнения $\xi_{\mathrm{y}}^{\mathrm{f}}$	$\xi_{ m y}^{ m 6} = rac{\pi d_{ m II} \delta_{ m 9} \eta_{ m O, II}}{F_{ m 1}} \sqrt{ ho + 1.8 l_{ m 2}/d}$
93	Абсолютные потери от утечек через периферийное уплотнение ступени $\Delta H_{_{\gamma\prime}}$	$\Delta H_{v} = \xi_{v}^{6} E_{0}$
	кДж/кг	9

Коэффициенты расхода для уплотнений с различной формой гребней (а) и поправочный коэффициент для прямоточного уплотнения (б)

Nº	Показатель	Формула или источник
94	Коэффициент трения k _{тр}	Принимаем 0,7×10-3
95	Относительные потери от трения диска $\xi_{\mathrm{Tp}}^{\mathrm{H}}$	$\xi_{mp}^{\delta} = \frac{k_{mp}d^2}{F_1} (\frac{u}{c_{\phi}})^3$
96	Абсолютные потери от трения диска $\Delta H_{\mathrm{Tp}}^{\mathrm{A}}$, кДж/кг	$\Delta H_{\mathrm{Tp}}^{\mathrm{A}} = \xi_{\mathrm{Tp}}^{\mathrm{A}} \cdot E_{0}$
97	Коэффициент вентиляционных потерь kв	Принимаем 0,065
98	Число венцов в регулирующей ступени m, шт.	Принимаем 1 (одновенечная регулирующая ступень)
99	Коэффициент вентиляционных потерь $\xi_{_{\mathrm{B}}}$	$\xi_{e} = \frac{k_{e}}{\sin \alpha_{19}} \frac{1 - e}{e} \left(\frac{u}{c_{\phi}}\right)^{3} m$
100	Ширина рабочей решетки B ₂ , м	$B_2 = b_2 \cdot \sin \beta_{\mathrm{y}}$
101	Число пар концов сопловых сегментов і, шт.	Принимаем 4
102	Коэффициент сегментных потерь $\xi_{сегм}$	$\xi_{\text{\tiny CEPM}} = 0.25 \frac{B_2 l_2}{F_1} (\frac{u}{c_\phi}) \eta_{on} i$
103	Относительные потери в ступени, связанные с парциальностью, $\xi_{парц}$	$\xi_{\text{парц}} = \xi_{\text{в}} + \xi_{\text{cerm}}$
104	Абсолютные потери от парциальности ΔH _{парц} , кДж/кг	$\Delta H_{napu} = \xi_{napu} \cdot E_0$
105	Использованный теплоперепад ступени H _i , кДж/кг	H_i = $E_0 - \Delta H_c - \Delta H_\mathrm{p} - (1 - \chi_{\scriptscriptstyle \mathrm{B.C}}) \Delta H_{\scriptscriptstyle \mathrm{B.C}}$ - $\Delta H_{\scriptscriptstyle \mathrm{V}}$ - $\Delta H_{\scriptscriptstyle \mathrm{TP}}^{\scriptscriptstyle \mathrm{A}} - \Delta H_{\scriptscriptstyle \mathrm{парц}}$
106	Внутренний относительный КПД ступени η_{oi}	$\eta_{oi} = H_i/E_o$
107	Внутренняя мощность ступени N _i , кВт	N _i =G H _i

Nº	Показатель	Формула или источник
108	Момент сопротивления профиля рабочей лопатки $W_{\scriptscriptstyle \mathrm{MИH}}^{\scriptscriptstyle \mathrm{ATJ}}$, м $^{\scriptscriptstyle 3}$ (для хорды $\mathrm{b}_{\scriptscriptstyle \mathrm{2ath}}$)	Принимаем из атласа профилей для выбранного профиля рабочей лопатки
109	Момент сопротивления профиля рабочей лопатки W _{мин} , м ³	$W_{\text{мин}} = W_{\text{мин}}^{\text{атл}} (b_2/b_{2\text{атл}})^3$
110	Изгибающие напряжения в рабочей лопатке $\sigma_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\sigma_{\scriptscriptstyle exttt{M3}\Gamma} = (G \cdot \overline{H}_0 \cdot \eta_{\scriptscriptstyle exttt{OM}} \cdot l_2)/(2 \cdot u \cdot z_2 \cdot W_{\scriptscriptstyle exttt{MUH}} \cdot e_{\scriptscriptstyle exttt{ONT}})$
111	Если в п.110 получилось, что $\sigma_{_{\rm ИЗГ}}>[\sigma_{_{\rm ИЗГ}}]$, то тогда необходимо определить новое значение $b_{_{2{\rm HoBoe}}}$, м	$b_{2\text{HOBOe}} = b_2 \sqrt{\frac{\sigma_{\text{M3}\Gamma}}{[\sigma_{\text{M3}\Gamma}]}}$
112	Угловая скорость рабочего колеса, рад/с	$\omega = 2 \cdot \pi \cdot n$
113	Напряжение растяжения в корневом сечении рабочей лопатки σ_p , МПа (допускаемые напряжения растяжения [σ_p]=450 МПа, плотность материала ρ =7800 кг/м³)	$\sigma_p = 0.5 \cdot \rho \cdot \omega^2 \cdot d \cdot l_2$