DATA SCIENCE IN MANUFACTURING WEEK 3

ANDREW SHERLOCK, JONATHAN CORNEY, DANAI KORRE

LECTURE: WEEK 3

Product Lifecycle / Material Flow

BY THE END OF THIS LECTURE YOU SHOULD:

Understand product lifecycle and material flow

Understand why coding skills are important for a career in manufacturing

Review applications on industrial cases

Data Carpentry and the importance of structured and clean data

PRODUCT LIFECYCLE

Lifecycle id defined by Grieves [1] as all aspects of a product's life, from its design through manufacture, deployment and maintenance. Culminating in the product's removal from service and final disposal.

Digital coordination of manufacturing

Product-type lifecycle Concept Design & Develop Prototype Launch Production Service Phase-out & Disposal Product Lifecycle Management (PLM)

Data-driven Manufacturing and Valuechain

Physical te Reduced cost of conversion technologies and their increased Validation capabilities is driving digital manufacturing

οТ

Conversion Technology **Physical** Digital Product Forces, fluids ... Physical testing Look & Feel Validation Editing THE Sch

Conversion Technology **Digital Physical** Sensors Product Control 3D scanning Visualisation Forces, fluids ... Cameras Physical testing Coordination Look & Feel Communication **Actuators** Collaboration Validation Distribution Search Retrieval Virtual Reality Editing Augmented Reality Simulation

Product-type lifecycle

Product lifecycle / Material Flow

CASE STUDY: DIGITAL THREAD

- External project led by AFRC technical teams with support of Data Analytics Theme
- Objective explore data engineering/analytics for digital threads of parts manufactured by AFRC Radial Forge and then subsequently machined
- Identified machining chatter and currently exploring the relationship with initial radial forging conditions

Product-type lifecycle

Product lifecycle / Material Flow

Customers

Background

- Manufacturer of industrial valves
- Company acquired as low-cost manufacturing base for global manufacturer

Issues

- Severely underperforming in terms of operational efficiency
- Significant quality issues
- Significant on-time delivery problems
- Needed to understand where problems were to know what needed addressing and fixing
- Limited ability to understand true performance of different value streams
- Perception of excessive product and part variety

Analysis

- Large amount of product and part variety discovered (~100,000 parts, ~10,000 valves)
- However, variety **not** driven by engineering, but instead by **sales**

Follow on analysis

■ Analyse how to rationalise product portfolio on basis of margin

The Approach

Build model by extracting transactional and Bill of Material data from ERP / CAD / PLM

2

Allocate costs to each transaction: 1. direct material costs

2. non-direct costs down to EBITA agree method based on activity or usage

3 Ana

Analyse model to identify where profit and losses are in the business and the drivers of profitability.

Step 1: Build model

Extract BoM and transactional data from ERP/CAD/PLM Production orders Production operations Sales lines BoM items dupes similars

24

Step 2a: Map Activity Chain

Step 2b: Apply costs to Activity Chain

What did we find?

Example: Valve company (India)

Model enables in-depth operational analysis

Outcomes

- Product portfolio rationalized and improved make-vs-buy decisions
- Sales teams incentivized in line with new product strategy
- Ongoing engineering effort to develop more 'configured' product to reduce variety
- Significant simplification of operations
- Significant quality and on-time delivery improvements
- EBITA increased from £2m to £3.2m

Product-type lifecycle

Product lifecycle / Material Flow

Data-driven
Manufacturing:
example

Large food tray manufacturer

CNC moulds like these...

...to use on machines like these

FOOD TRAY MANUFACTURER: THE PROBLEM

Customer (supermarket or food manufacturer) asks for quotes for a fixed design

Customer's design often inadequate - not manufacturable, not stiff enough, lip too narrow for bonding film

Design requires new tooling

Lead times too short

FOOD TRAY MANUFACTURER: THE PROBLEM

Quality problems

Very low margin business

Concept Design & Prototype Launch Production Service Phase-out & Disposal

Company recognised value chain was controlled by the designer of the tray – customer able to force low price

However, customer not in best position to optimise value chain

Imaginative use of data and digital technology put company in dominant position in value chain to increase margins

COMMON PROCESS DIFFICULTIES

- 1. Approvals
- 2. Sharing information
- 3. Maintaining a single source of truth
- 4. Communication during change

Ken English

INDUSTRY NEEDS: SKILLS

Computer science graduates have the coding and software engineering skills, but lack manufacturing domain knowledge

Engineers have manufacturing domain knowledge, but lack coding skills

There will be a strong demand for graduates who can operate in both domains

REFERENCES

1. Grieves, Michael. (2005). Product Lifecycle Management: Driving the Next Generation of Lean Thinking.

