Topic 2

Divide & Conquer
Sorting and Selecting

Aim

- The general aim is to present recursivity as a design tool,
 alternative to the iterative approach:
 - To study time complexity of the recursive methods via recurrence relations
 - To introduce the recursive strategy Divide & Conquer (D&C) and its application in methods such as MergeSort, QuickSort and QuickSelect.

Contents (4 sessions approx.)

- 1. Analysis of complexity
 - 1.1. Complexity of a recursive method: recurrence relations
- 2. Divide & Conquer
 - 2.1. Generic schema
 - 2.2. MergeSort
 - 2.3. QuickSort
 - 2.4. QuickSelect

1. Analysis of complexity

Asymptotical bounds

Name Asymptotical notation

exponential $\Theta(2^{\text{size}})$

cubic $\Theta(\text{size}^3)$

quadratic $\Theta(\text{size}^2)$

linear $\Theta(\text{size})$

logarithmic $\Theta(\log \text{size})$

constant $\Theta(1)$

1. Analysis of complexity

1.1. Complexity of a recursive method

```
static int factorial(int N) {
  if (N < 1) return 1;
                                                      // Base case
  else return N * factorial(N-1); // General case
T_{factorial}(N = 0) = k
T_{factorial}(N > 0) = k + T_{factorial}(N - 1) = k + k + T_{factorial}(N - 2) = ...
  = k + k + ... + k + T_{factorial}(0) = k * N + k
\RightarrowT<sub>factorial</sub>(N) \in \Theta(N)
```

 What is its space complexity? And the one of the iterative version? Therefore, what is the most efficient one?

1. Analysis of complexity 1.1. Recurrence relations (1/3)

- The complexity of a recursive method depends on:
 - The number of recursive invocations
 - The way the size of the problems decreases
 - The complexity of the calculations in each invocation
- Recurrence relations allow to obtain the time complexity of a method on the basis of these three parameters

1. Analysis of complexity

1.1. Recurrence relations (2/3)

```
Theorem 1: T_{recMethod}(x) = a \cdot T_{recMethod}(x - c) + b, with b \ge 1
```

- If a = 1, $T_{recMethod}(x) \in \Theta(x)$
- If a > 1, $T_{recMethod}(x) \in \Theta(a^{x/c})$

Example:

1. Analysis of complexity

1.1. Recurrence relations (3/3)

Theorem 2: $T_{recMethod}(x) = a \cdot T_{recMethod}(x - c) + b \cdot x + d$, with b and d ≥ 1

- If a = 1, $T_{\text{recMethod}}(x) \in \Theta(x^2)$
- If a > 1, $T_{recMethod}(x) \in \Theta(a^{x/c})$

Theorem 3: $T_{recMethod}(x) = a \cdot T_{recMethod}(x/c) + b$, with $b \ge 1$

- If a = 1, $T_{recMethod}(x) \in \Theta(log_c x)$
- If a > 1, $T_{recMethod}(x) \in \Theta(x^{log_{c^a}})$

Theorem 4: $T_{\text{recMethod}}(x) = a \cdot T_{\text{recMethod}}(x/c) + b \cdot x + d$, with b and d ≥ 1

- If a < c, $T_{recMethod}(x) \in \Theta(x)$
- If a = c, $T_{recMethod}(x) \in \Theta(x \cdot log_c x)$
- If a > c, $T_{recMethod}(x) \in \Theta(x^{log_{c^a}})$

2.1. Introduction

- Complexity of multiple recursivity is greater than of linear one but is size is decreased in a geometric way in each invocation, it could be very efficient.
 - Divide & Conquer (D&C) technique is based on on this idea
- D&C technique is based on the following steps:
 - <u>DIVIDE</u>: a problem of size x is divided in N > 1 disjoint subproblems, with the size of the subproblems the most similar as possible
 - CONQUER: solve recursively each subproblem
 - <u>COMBINE</u>: combine the solutions of the subproblems in order to obtain the solution of the original problem

2.1. Generic schema

```
public static TypeResult conquer( TypeData x ) {
    TypeResult resMethod, resInvoke_1,..., resInvoke_a;
    if ( baseCase(x) ) resMethod = solutionBase(x);
    else {
        int c = divide(x);
        resInvoke_1 = conquer(x / c);
        resInvoke_a = conquer(x / c);
        resMethod = combine(x, resInvoke_1,...resInvoke_a);
    }
    return resMethod;
}
```

Recurrence relation:

invocations

$$T_{conquer}(x > x_{base}) = a * T_{conquer}(x/c) + T_{divide}(x) + T_{combine}(x)$$

Complexity as number of decreased size overloading in each invocation

2.1. Sorting an array

- The easiest sorting algorithms (InsertionSort, SelectionSort and bubbleSort) have a quadratic complexity
- The methods QuickSort y MergeSort employ the D&C strategy in order to improve the efficiency:
 - The original problem is divided into subproblems (a=2) whose size is approximately the half of the original one (c=2)
 - Divide and combine has a linear complexity
 - The complexity of both algorithms is $\Theta(x^*\log_2 x)$

2.2. MergeSort

O Merge:

- Given two arrays in ascending order (a and b)
- Merge returns a new array, also in ascending order, that contains the elements of a and b

```
public static <T extends Comparable<T>>
  T[] merge(T[] a, T[] b) {
  T[] res = (T[]) new Comparable[a.length + b.length];
  int i = 0, j = 0, k = 0;
  while (i < a.length && j < b.length) {
    if (a[i].compareTo(b[j]) < 0) res[k++] = a[i++];
    else res[k++] = b[j++];
  }
  for (int r = i; r < a.length; r++) res[k++] = a[r];
  for (int r = j; r < b.length; r++) res[k++] = b[r];
  return res;
}</pre>
```

2.2 MergeSort

2.2. MergeSort

The method is modified in order to receive one array and not two

The complexity of a method D&C is:

$$T_{\text{conquer}}(x > x_{\text{base}}) = a * T_{\text{conquer}}(x/c) + T_{\text{divide}}(x) + T_{\text{combine}}(x)$$

$$a=2 \qquad c=2 \qquad \Theta(x)$$

14

2.3. QuickSort

○ Given an array v:

Step 1: an element of the array is chosen (pivot)

• E.g.: 4

 Step 2: given the pivot, the elements of the array are organised in a way that the elements on its left are smaller and those on its right are greater:

The pivot is already in its final position

 Step 3: we do the same with the subarrays on its left and right

2.3. QuickSort

2.3. QuickSort

- A not properly chosen pivot produces imbalanced partitions and higher complexity
- A good pivot divides the array in two subarray of equal size, that is, it has to be the <u>median</u> of the array
- To calculate the median has a high complexity. Therefore, as approximation the *median of three* is employed (as the leftmost element, the rightmost element and the element in the middle)

2.3. QuickSort

It took less time to sort the array now in comparison to when we selected as pivot the leftmost element

2.3. QuickSort

 Partition: in the following code the elements smaller than the pivot are on the left and those greater than the pivot on the right

```
int posPivot = selectPivot(v, left, right);
T pivot = v[posPivot];
swap(v, posPivot, right);
int i = left, j = right - 1;
do {
   while (v[i].compareTo(pivot) < 0 ) i++;</pre>
   while (v[j].compareTo(pivot) > 0) j--;
    if (i < j) {
            swap(v, i, j); i++; j--;
} while (i <= j);</pre>
swap(v, i, right);
```

The complexity of this algorithm is linear

2.3. QuickSort

- The complexity of QuickSort depends on the method partition:
 - Best case: partition divides the array into two balanced halves
 - Worst case: partition divides it into completely imbalanced two parts: a part with all the elements and the other one with none

2.3. QuickSort

o If partition divides the array into two balanced halves:

$$\begin{split} & T_{quickSort}{}^{M}(x) = 2 * T_{quickSort}{}^{M}(x/2) + \underbrace{k * x} \Longrightarrow \\ & \Rightarrow T_{quickSort}{}^{M}(x) \in \Theta(x*log_2x) \end{split}$$

o If partition divides it in a completely imbalanced way:

$$T_{quickSort}^{P}(x) = T_{quickSort}^{P}(x-1) + k * x \implies$$

$$\Rightarrow T_{quickSort}^{P}(x) \in \Theta(x^{2})$$

- QuickSort nearly always is faster than MergeSort:
 - O Although the complexity of both of them is $\Theta(x^*\log_2 x)$, the process of *Partition* is more efficient than *Merge*

2.4. QuickSelect

- To find the k-th smallest element of an array
- o If we use *QuickSort* the problem is soved with a complexity $\Theta(x^*log_2x)$
- \circ With *InsertionSort*: $\Theta(k^*x)$
- The method QuickSelect allows to solve it with linear complexity

2.4. QuickSelect

```
static <T extends Comparable <T>>
  void QuickSelect(T[] v, int k, int left, int right) {
  if (left + LIMIT > right) InsertionSort(v, left, right);
                    threshold for the selection of the sorting method
  else {
   int indexP = partition(v, left, right);
   if (k-1 < indexP)
      QuickSelect(v, k, left, indexP-1);
   else if (k-1 > indexP)
      QuickSelect(v, k, indexP+1, right);
```

2.4. QuickSelect

```
public static <T extends Comparable<T>>
 T select(T v[], int k) {
      return select(v, 0, v.length - 1, k - 1);
private static <T extends Comparable <T>>
 T select(T[] v, int left, int right, int k) {
      if (left == right) return v[k];
      else {
        int indexP = partition(v, left, right);
        if (k <= indexP) return select(v, left, indexP, k);</pre>
        else return select(v, indexP + 1, right, k);
```