Formulario ingeniería económica

 $P = ext{Cantidad inicial}$ $n = ext{Numero de periodos}$ $CB = ext{cantidad Base}$

 $I={
m Inter\acute{e}s}$ $A={
m Anualidad}$ $n={
m cantidad}$ en el periodo n

G = Gradiente aritmetico

Interes basico

• F - P = Interes (I)

• I/P = Tasa de interes (i)

• $100 \cdot i$ = Tasa de interes porcentual (i%)

• F/(i+1) = Cantidad inicial (P)

• $P \cdot (i+1) = \text{Cantidad final (F)}$

Interés simple

• $P \cdot (1 + i \cdot n) = \text{Futuro dado un presente (F)}$

• $F/(1+i \cdot n) = Presente dado un futuro (P)$

Interés compuesto

• $P \cdot (1+i)^n = \text{Futuro dado un presente } (F/P)$

• $F/(1+i)^n$ = Presente dado un futuro (P/F)

Anualidad

• $A \frac{(1+i)^n-1}{i} = \text{Futuro dado una anualidad } (F/A)$

• $A \frac{(1+i)^n-1}{(1+i)^n \cdot i} = \text{Presente dado una anualidad (P/A)}$

• $F \frac{i}{(1+i)^n-1} =$ Anualidad dada un futuro (A/F)

• $P \frac{(1+i)^n \cdot i}{(1+i)^n - 1} =$ Anualidad dado un presente (A/P)

Gradiente aritmetico

• $\frac{C_n - CB}{n-1} = \text{Gradiente (G)}$

• $G\left[\frac{(1+i)^n-i\cdot n-1}{i^2(1+i)^n}\right]=$ Presente dado un gradiente (P_G) (P/G)

• $G\left[\frac{1}{i} - \frac{n}{(1+i)^n-1}\right]$ = Anualidad dado un gradiente (A_G) (A/G)

• $G\left[\frac{1}{i}\left(\frac{(1+i)^n-1}{i}-n\right)\right]=$ Futuro dado un gradiente (F_G) (F/G)

Convertir interés de un periodo a otro¹

• $i_a = (1+i)^k - 1$

• $i = (1+i_a)^{\frac{1}{k}} - 1$