计算机网络实验指导 郑宏 宿红毅 编著

第3章

数据链路层

3.1	PPP 配置与分析
3.2	交换机的 MAC 地址表管理
3.3	STP 配置与分析
3.4	虚拟局域网(VLAN)配置与分析
3.5	链路聚合配置与分析

3.1	
PPP 配置与	
分析	

实验 3.1.1	PPP 基本配置
实验 3.1.2	PAP 鉴别配置
实验 3.1.3	CHAP 鉴别配置
实验 3.1.4	IP 地址协商

3.1 PPP 配置与分析

◆实验目的

- 1. 掌握 PPP 特点、工作过程和基本配置方法。
- 2. 掌握 PPP PAP 鉴别的特点配置方法。
- 3.掌握 PPP CHAP 鉴别的特点和配置方法。
- 4 . 掌握 PPP IP 地址协商的配置方法。

◆实验装置

- 1 . 华为 eNSP 软件。
- 2 . ping.
- 3. Wireshark

3.1 PPP 配置与分析

- ◆实验原理(1/2)
 - PPP 是目前使用最为广泛的数据链路层协议,可以在点对点链路上传输多种协议的数据。
 - PPP 包括三个组成部分:
 - > 1. 将数据报封装到串行链路的方法。
 - > 2. 一个用来建立、配置和测试数据链路连接的链路控制协议 LCP (Link Control Protocol)。
 - > 3. 一套用于建立和配置不同网络层协议的网络控制协议 NCP (Network Control Protocol)。

3.1 PPP 配置与分析

- ◆实验原理(2/2)
 - PPP 支持的鉴别协议包括 PAP 和 CHAP。
 - PAP :
 - 两次握手协议,通过用户名和密码对用户进行鉴别。
 - > 适用于对网络安全要求相对较低的环境。
 - CHAP :
 - > 三次握手协议,只在链路上传输用户名。安全性比PAP高。
 - > 不适用于大型网络。

实验 3.1.1 PPP 基本配置

- ◆任务要求:
 - 为路由器配置 PPP,通过串行线路实现两个校区网络 BJ 和 SZ 之间的通信。

表 3-1 端口 IPv4 地址和子网掩码定义

设备端口	IPv4地址	子网掩码
RT-BJ		
S 4/0/0	192.168.90.2	255.255.255.0
RT-SZ		
S 4/0/0	192.168.90.3	255.255.255.0

图 3-2 通过广域网串行线互连两个校区网络

实验 3.1.1 PPP 基本配置

- ◆实验步骤:
 - 步骤1:创建拓扑。需要为2台路由器添加同 异步WAN接口卡(2SA),并将其拖入路由 器的第1个扩展插槽中。保存创建的拓扑。
 - 步骤2:启动设备。
 - 步骤3:配置路由器。分别配置路由器 RT-BJ和 RT-SZ 的串口采用 PPP 及其 IP 地址,检查配置结果,记录状态信息。
 - 步骤4:验证测试。
- **◆完成并提交实验报告**

创建的网络拓扑

实验 3.1.2 PAP 鉴别配置

◆任务要求:

为路由器配置 PPP 和 PAP,通过串行线路实现两个校区网络 BJ 和 SZ 之间的安全通信。RT-BJ 为验证方,BT-SZ 为被验证方。网络拓扑和端口的 IP 地址定义与实验 3.1.1 中的相同。

表 3-7 端口 IPv4 地址和子网掩码定义

设备端口	IPv4地址	子网掩码
RT-BJ		
S 4/0/0	192.168.90.2	255.255.255.0
RT-SZ		
S 4/0/0	192.168.90.3	255.255.255.0

图 3-4 通过广域网串行线互连两个校区网络

实验 3.1.2 PAP 鉴别配置

- ◆实验步骤(1/2):
 - 步骤1:加载拓扑。打开实验 3.1.1 中保存的拓扑文件,将其加载到工作区。当然,也可以创建拓扑。保存拓扑。
 - 步骤2:启动设备。
 - 步骤3:配置 PPP。分别配置路由器 RT-BJ 和 RT-SZ 的串口采用 PPP 及其 IP 地址,检查配置结果,记录状态信息。

创建的网络拓扑

实验 3.1.2 PAP 鉴别配置

- ◆实验步骤(2/2):
 - 步骤4:配置 PAP。分别配置路由器 RT-BJ 和 RT-SZ 的串口采用 PAP 进行鉴别, RT-BJ 为验证方, BT-SZ 为被验证方。注意:验证方和被验证方的用户名密码必须一致。记录状态信息,观察配置过程中的状态变化情况。
 - 步骤5:验证测试。
 - 步骤6:数据抓包与分析。开启路由器 RT-BJ 串口 serial 4/0/0 的数据抓包,链路类型选择 "PPP"。为了抓取 PAP 数据包,请先关闭(使用命令 shutdown)、然后再打开(使用命令 undo shutdown)路由器的串口 serial 4/0/0,使链路重新协商。分析抓取的 PAP 数据包,了解 PAP 实现过程。
- ◆ 完成并提交实验报告

实验 3.1.3 CHAP 鉴别配置

◆任务要求:

为路由器配置 PPP 和 CHAP,通过串行线路实现两个校区网络 BJ 和 SZ 之间的安全通信。RT-BJ 为验证方,BT-SZ 为被验证方。网络拓扑和端口的 IP 地址定义与实验 3.1.2 中的相同。

表 3-10 端口 IPv4 地址和子网掩码定义

设备端口	IPv4地址	子网掩码
RT-BJ		
S 4/0/0	192.168.90.2	255.255.255.0
RT-SZ		
S 4/0/0	192.168.90.3	255.255.255.0

图 3-5 通过广域网串行线互连两个校区网络

实验 3.1.3 CHAP 鉴别配置

- ◆实验步骤(1/2):
 - 步骤1:加载拓扑。打开实验 3.1.2 中保存的拓扑文件,将其加载到工作区。当然,也可以创建拓扑。保存拓扑。
 - 步骤2:启动设备。
 - 步骤3:配置 PPP。分别配置路由器 RT-BJ 和 RT-SZ 的串口采用 PPP 及其 IP 地址,检查配 置结果,记录状态信息。

创建的网络拓扑

实验 3.1.3 CHAP 鉴别配置

- ◆实验步骤(2/2):
 - 步骤4:配置 CHAP。分别配置路由器 RT-BJ 和 RT-SZ 的串口采用 CHAP 进行鉴别,
 RT-BJ 为验证方, BT-SZ 为被验证方。注意:验证方和被验证方的用户名密码必须一致。
 记录状态信息,观察配置过程中的状态变化情况。
 - 步骤5:验证测试。
 - 步骤6:数据抓包与分析。开启路由器 RT-BJ 串口 serial 4/0/0 的数据抓包,链路类型选择"PPP"。为了抓取 CHAP 数据包,请先关闭(使用命令 shutdown)、然后再打开(使用命令 undo shutdown)路由器的串口 serial 4/0/0,使链路重新协商。分析抓取的 CHAP 数据包,了解 CHAP 实现过程。
- ◆完成并提交实验报告

◆任务要求:

为路由器配置 PPP、CHAP 和 IP 地址协商,通过串行线路实现两个校区网络BJ 和 SZ 之间的安全通信。RT-BJ 为验证方,BT-SZ 为被验证方。被验证方通过 IP 地址协商从验证方获得 IP 地址。网络拓扑和端口的 IP 地址定义与实验 3.1.3 中的相同。

表 3-14 端口 IPv4 地址和子网掩码定义

设备端口	IPv4地址	子网掩码
RT-BJ		
S 4/0/0	192.168.90.2	255.255.255.0
RT-SZ		
S 4/0/0	192.168.90.3	255.255.255.0

图 3-6 通过广域网串行线互连两个校区网络

- **◆实验步骤(1/3):**
 - 步骤1:加载拓扑。打开实验 3.1.3 中保存的拓扑文件,将其加载到工作区。当然,也可以创建拓扑。保存拓扑。
 - 步骤2:启动设备。
 - 步骤3:配置 PPP。分别配置路由器 RT-BJ 和 RT-SZ 的串口采用 PPP 及其 IP 地址,检查配置结果,记录状态信息。

创建的网络拓扑

- ◆实验步骤(2/3):
 - 步骤4:配置 CHAP。分别配置路由器 RT-BJ 和 RT-SZ 的串口采用 CHAP 进行鉴别, RT-BJ 为验证方, BT-SZ 为被验证方。注意:验证方和被验证方的用户名密码必须一致。记录状态信息,观察配置过程中的状态变化情况。
 - 步骤5:配置 IP 地址池和配置 IP 地址协商。在验证方路由器 RT-BJ 上配置 IP 地址池,用于为被验证方分配地址。在被验证方路由器 RT-SZ 的串口上配置 IP 地址协商,从验证方分配 IP 地址。记录状态信息,观察配置过程中的状态变化情况。

- ◆实验步骤(3/3):
 - 步骤6:验证测试。
 - 步骤7:数据抓包与分析。开启路由器 RT-BJ 串口 serial 4/0/0 的数据抓包, 链路类型选择 "PPP"。分析抓取的 PPP 数据包, 了解 IP 地址协商实现过程。
- ◆完成并提交实验报告

