Teilnehmer/innen des Teams:

Klasse:	Team:	
BI19a	Oliver Ammann, Senthil Nagendran, Athavan Ranganathan	

Anforderungsdefinition (Meilenstein A)

"EINWANDERER!"

Auftrag:

(Allgemeine Beschreibung)

Nutzen: Mit dem Spiel sollen

Szenario:

- Ein Kampfjet (Spieler) und mehrere UFOs (Gegner->Bots) auf einer rechteckigen Flä-
- Der Spieler befindet sich im unteren und die Gegner im oberen Bereich der Welt.
- Der Spieler ist in der Lage sich in alle Richtungen zu bewegen.
- Die Gegner bewegen sich als ganze Gruppe horizontal und nach unten.
- Der Spieler kann gerade nach oben schiessen.
- Die Gegner schiessen gerade nach unten.
- Der Spieler und die Bots versuchen sich gegenseitig zu vernichten.
- Sobald alle Gegner-UFOs eliminiert wurden beginnt die nächste Welle.
- Das Spiel endet wenn der Spieler getroffen wird oder mit einem UFO zusammenstösst oder wenn alle Level geklärt werden.

Welt:

- Rechteckige Fläche (Eventuell mit Hindernissen)
- Weltall-Setting

Aktoren:

- Kampfjet(Player): Zweidimensionales Flugzeug mit einer Kanone
- UFOs(Bots): Zweidimensionale UFOs mit einer Kanone
- Schuss (Bullet): Schussobjekt das aus den Flugobjekten geschossen wird
- Statistic board: Kills / Score etc. Simpler Aktor

Details:

- Rechts befinden sich Statistik-Anzeigen (Punkte/Kills)
- Das Spiel ist zweidimensional.
- Das Spiel beinhaltet mehrere Level. Darin hat es mehr/stärkere/schnellere Gegner. Evtl. hat es einen Boss-Gegner.

20.12.2022 14:15:00 TBZ Technische Berufsschule Zürich

Machbarkeitsabklärung:

 Folgende Features sind vorab untersucht worden und (Skizze / Mockup)

MUSS

Kriterien:

(Konkrete Features, die umzusetzen sind)

Folgende Features sollen implementiert werden (Funktionalität):

- Welt: Hintergrund, keine speziellen Funktionen
- Der Spieler (Kampfjet) kann sich in jede Richtung bewegen / ausweichen
- Der Kampfjet kann auf Gegner schiessen
- Die Gegner schiessen den Kampfjet ab (jeweils der unterste von einer Spalte)
- Die Gegner bewegen sich synchron nach links, rechts und unten
- Verschiedene Levels

KANN Kriterien: (Konkrete Features, die optional sind)

Folgende Features können zusätzlich implementiert werden: (Kreativität)

- "Wände" können als Schutz für den Kampfjet dienen. Hinter diesen Wänden kann er nicht getroffen werden.
- Gegner bewegen sich unregelmässig / asynchron / schneller
- Gegner verfügen über mehr Trefferpunkte
- Gegner schiessen schneller oder mit einem anvisierendem Schuss(verfolgt Spieler)
- Boss-Gegner implementieren
- Power-Ups für den Spieler
- Auswählen des Kampfjets (verschiedene Modelle)

2.1 Planung LB2

MS	Tätigkeit / Abgabe	Soll-Datum	Ist-Datum
А	Projektstart ➤ Team Bildung ➤ Wahl / Ausarbeitung der Anforderungsdefinition Abnahme Anforderungsdefinition durch Lehrperson	06.12.22	06.12.22
В	Teamaufgabe 1: ➤ Abgabe: Lösungsdesign (Analyse, Design: Funktionsmodell, UseCase, GUI, Storyboard)	13.12.22	13.12.22
B2	Teamaufgabe 2: ➤ Abgabe: Testvorschrift und Testfälle		
С	 Einzelaufgabe 3: ➤ Abgabe Szenario (.zip) mit Inline-Dokumentation, Systemdokumentation (UML Klassen-, Sequenzdiagramm) ➤ Fachgespräch Projektabnahme 		
C2	Einzelaufgabe 4: Abgabe: Ausgefüllter Systemtest		

20.12.2022 14:15:00 TBZ Technische Berufsschule Zürich

3 Lösungsdesign (Meilenstein B: Teamaufgabe 1)

Anhand der Analyse wurde folgendes Lösungsdesign entworfen:

3.1 Funktionsmodell

Im Folgenden sind die erwarteten Eingaben und Ausgaben beschrieben / dargestellt:

3.2 Anwendungsfälle (UseCases)

Folgende Anwendungsfälle sind hier detailliert dokumentiert:

3.3 Ablauf

Aus Benutzersicht ist folgender Ablauf des Programms zu erwarten:

...

(Storyboard)

4 Testvorschrift (LB2 Meilenstein B2: Teamaufgabe 2)

Testbeschrieb und vorbereitetes Testprotokoll siehe Dokument M226B LB2 Testvorschrift MS-B2.docx

5 Systemdokumentation (Meilenstein C: individuelle Aufgabe 3)

Das erstellte Java-Projekt (Greenfoor-Szenario) ist hier detailliert abgelegt:

M226B_ Aufgabe_3_Szenario_IhrName.zip

5.1 Statisches Design: Klassendiagramm

Folgend die statische Struktur des Szenarios

...

(UML Klassendiagramm mit Assoziationen und Kardinalitäten)

5.2 Umfang / Abgrenzung / Änderungen gegenüber Design

Aufgrund unten beschriebener Umstände sind Anpassungen des ursprünglichen Lösungsdesigns gemacht worden:

. . .

(Umstände / Anpassungen / Veränderungen)

5.3 Funktionalität der Implementation.

Zusätzlich zu der Inline-Dokumentation sind hier folgende Funktionen detailliert beschrieben:

...

(Ausführliche Beschreibung der internen Funktionen oder Verweis zum Inline-Kommentar mit JavaDoc! (/** @param @return **/)

5.4 Dynamische Struktur: Sequenzdiagramm

Ein zentraler Ablauf eines UseCases ist im Folgenden dargestellt:

. . .

(Darstellung eines zentralen Ablaufs mittels Sequenzdiagramm)

Trace: ...

...

6 Bedienungsanleitung (Meilenstein C: individuelle Aufgabe 3)

...

7 Testprotokoll (LB2 Meilenstein C2: individuelle Aufgabe 4)

Ausgefülltes Testprotokoll siehe Dokument M226B_LB2_Testvorschrift_MS-C2_Name.docx