Un plan mondial pour le climat et contre l'extrême pauvreté

Adrien Fabre¹

24 juillet 2023

Table des matières

Table des matières		2
1	Un statu quo insupportable 1.1 Le changement climatique	3 3 4
2	La nécessité de redistribution mondiale	7
3	Les grands principes du Plan mondial pour le climat	9
4	Les détails du Plan	11
5	Un transfert massif vers les pays du Sud	13
6	Un Plan largement soutenu	15
7	Un pas vers un monde soutenable	17
8	L'appel pour la redistribution mondiale	19
9	Foire Aux Questions	21
Bibliographie		23

Un statu quo insupportable

Plusieurs fléaux affligent l'humanité. Dans ce livre, nous nous préoccupons de deux d'entre eux : le changement climatique et l'extrême pauvreté. La lenteur des progrès effectués est une honte pour l'humanité, qui ne semble pas se soucier des personnes vulnérables ni des générations futures. Le constat est insupportable.

1.1 Le changement climatique

Le climat est un système complexe, mais les travaux du GIEC ont prouvé qu'on pouvait l'approximer avec une règle simple : le réchauffement climatique est proportionnel aux émissions de CO₂ cumulées depuis la révolution industrielle ¹. Pour mettre fin au réchauffement climatique dû à l'accumulation de CO₂ dans l'atmosphère, il faut donc atteindre la neutralité carbone. En d'autres termes, il faut amener les émissions de CO₂ à zéro — ou plus exactement zéro net, des émissions résiduelles pouvant être compensées par une captation équivalente grâce à la reforestation ou la séquestration artificielle du carbone. La température à laquelle l'humanité choisit de stabiliser le climat détermine le budget carbone, c'est-à-dire les émissions qu'il nous reste à émettre. Par exemple, pour avoir deux chances sur trois de limiter le réchauffement à +2°C, le budget carbone est de 1 000 milliards de tonnes (Gt) de CO₂ à partir de 2024 ². Le budget carbone pourrait être respecté en réduisant linéairement les émissions de CO₂, en partant de leur valeur actuelle de 38 Gt jusqu'à zéro en 2077.

Si, au contraire, les émissions continuent de croître, le réchauffement pourrait atteindre +4°C en 2100, et jusqu'à +7-8°C entre 2300 et 5000³. La fonte de l'Antarctique pourrait élever le niveau de la mer de 15 mètres d'ici 2500 et submerger d'ici 2300 des zones côtières où vivent actuellement près d'un milliard de personnes ⁴. De vastes zones de

^{1.} La Figure SPM.10 in IPCC (2021) montre qu'un degré de plus correspond à 2 000 GtCO₂.

^{2.} cf. Table SPM.2 in IPCC (2021). La probabilité vient du fait que les modèles climatiques comportent une marge d'erreur sur la température atteinte par un budget carbone donné.

^{3.} Montenegro et al. (2007)

^{4.} DeConto & Pollard (2016); Kopp et al. (2017)

Chine, d'Asie du Sud et du Moyen-Orient seraient rendues inhabitables au XXII^e siècle du fait d'une combinaison létale de température et d'humidité ⁵. Même dans un scénario d'émissions moins extrême, avec une température de +2°C en 2100, le niveau de la mer submergerait (en l'absence de digues) des zones où vivent actuellement 250 millions de personnes ⁶. De manière générale, nos infrastructures (et nos usages des sols) sont adaptées au climat actuel et le changement climatique en rendra de nombreuses obsolètes, lorsqu'elles ne seront pas tout simplement détruites. Pour résumer, la continuation des émissions de gaz à effet de serre mettrait en péril de multiples pans de la société, multipliant les sécheresses, réduisant les rendements agricoles, accroissant la probabilité de conflit violent, et entraînant d'importants déplacements de population ⁷.

1.2 L'extrême pauvreté

La Banque mondiale définit l'extrême pauvreté par une consommation inférieure à 2\$ par jour (en parité de pouvoir d'achat 8). Ce seuil permet de satisfaire les besoins nutritionnels minimaux 9. Ainsi, le nombre de personnes en situation d'extrême pauvreté recoupe celui des 700 millions de personnes sous-alimentées 10.

Bien que la proportion d'humains vivant avec moins de 2\$ par jour ait été divisée par quatre dans les trente dernières années, cela concerne encore deux tiers de la population dans un pays comme le Malawi. En fait, avec l'augmentation de la population, il y a davantage d'Africains extrêmement pauvres aujourd'hui qu'il y a trente ans. Si l'extrême pauvreté s'est réduite durant la période, c'est uniquement grâce au développement de l'Asie, et en particulier de la Chine.

La Chine a désormais un PIB par habitant autour de la moyenne mondiale, soit 960€ par mois. En comparaison, le PIB par habitant est trois fois plus élevé dans les pays à hauts revenus et dix fois plus faible dans les pays à bas revenus. L'écart de niveau de vie est difficile à exagérer. En effet, un transfert de seulement 1% du PIB des pays à hauts revenus (1,2 milliard de personnes) doublerait mécaniquement le revenu national des pays à bas revenus (700 millions de personnes).

^{5.} Im et al. (2017); Kang & Eltahir (2018); Pal & Eltahir (2016)

^{6.} Kulp & Strauss (2019)

^{7.} Ce paragraphe reprend des éléments du préambule de ma thèse (Fabre 2020), et repose sur de nombreux travaux (Burke et al. 2009; Carleton & Hsiang 2016; Cattaneo et al. 2019; Dell et al. 2012; Elliott et al. 2014; Moore et al. 2017; Schlenker & Lobell 2010).

^{8.} Le seuil de 2\$ est exprimé en parité de pouvoir d'achat (2,15\$ en dollar constant de 2017 pour être exact) : il correspond à ce que 2\$ permet d'acheter aux États-Unis. Dans un pays comme l'Inde, il faut ainsi moins de 1\$ pour se procurer l'équivalent de 2\$ aux États-Unis.

^{9.} Allen (2017) calcule que, dans les pays à bas revenus, le seuil d'extrême pauvreté permet de payer 3 m² dans un logement chauffé à 15°C ainsi qu'un régime alimentaire constitué uniquement d'huile et d'une céréale (parfois complété par des lentilles), qui assure un apport journalier de 2100 kcalories, 50 g de protéines et 34 g de lipides.

^{10.} FAO (2023), Banque mondiale.

FIGURE 1.1 – PIB par habitant par rapport à la moyenne mondiale, ajustés en parité de pouvoir d'achat (2021, Banque mondiale).

La nécessité de redistribution mondiale

Qu'elle soit religieuse, philosophique ou intuitive, la morale prescrit généralement des transferts des personnes à hauts revenus vers les personnes à bas revenus, et donc des pays à hauts revenus vers les pays à bas revenus. C'est le cas de l'utilitarisme, la théorie éthique de référence utilisée en économie. L'utilitarisme attribue le même poids à chaque personne et considère ainsi le transfert d'un euro d'une personne riche à une personne pauvre, puisqu'un euro procurera plus de satisfaction à cette dernière. D'après la théorie de la taxation optimale, ce raisonnement est valable tant qu'une augmentation des prélèvements n'incite pas les plus riches à réduire, expatrier ou dissimuler leur activité au point de diminuer les recettes obtenues. En tenant compte de ces effets, des économistes ont calculé qu'un système fiscal optimal reduirait drastiquement les inégalités entre pays et procurerait un revenu minimum de 250\$ par mois au niveau mondial ¹. Pour rationaliser la faiblesse des transferts internationaux, la théorie de la taxation optimale nécessite d'attribuer un poids 2 000 fois plus élevé à un Américain qu'à un Malgache (ou bien, d'attribuer une valeur 100 fois supérieure à l'Américain et de considérer que seul un vingtième de l'argent transféré arrivera à son destinataire, le reste étant détourné par la corruption).

Au-delà des considérations éthiques, la redistribution mondiale a des fondements juridiques. En 2015, l'ensemble des pays a adopté les Objectifs de Développement Durable, au premier rang duquel se trouve l'élimination de l'extrême pauvreté d'ici à 2030. Or, les pays à bas revenus n'ont pas les ressources domestiques suffisantes pour éliminer l'extrême pauvreté. En effet, dans les 19 pays les plus pauvres, exproprier tous les revenus à partir de 13\$ par jour ne suffirait pas à financer des transferts suffisants pour faire passer leurs 700 millions d'habitants au-dessus de 2\$ par jour d'ici à 2030. Même en faisant l'hypothèse optimiste d'une croissance du revenu moyen de 6% par an d'ici à 2030 (soit le maximum observé dans le monde dans les cinq années qui ont précédé la Covid), exproprier tous les revenus au-delà de 7\$ par jour ne suffirait pas à éliminer l'extrême pauvreté dans un pays tel que la République Démocratique du Congo ².

^{1.} Dans ces calculs, Kopczuk et al. (2005) se limitent à un taux unique (une *flat tax*) et ne s'autorisent pas un barème progressif. Sans cette restriction, le véritable optimum serait encore plus redistributif.

^{2.} Ces calculs sont inspirés de Bolch et al. (2022), reposent sur les données Poverty and Inequality Platform

Les grands principes du Plan mondial pour le climat

Chapitre 4 Les détails du Plan

Un transfert massif vers les pays du Sud

Chapitre 6 Un Plan largement soutenu

Fabre (2023)

Un pas vers un monde soutenable

L'appel pour la redistribution mondiale

Chapitre 9 Foire Aux Questions

Bibliographie

- R. C. Allen. Absolute Poverty: When Necessity Displaces Desire. *American Economic Review*, 2017. Link. 4
- K. B. Bolch, L. Ceriani, & L. F. López-Calva. The arithmetics and politics of domestic resource mobilization for poverty eradication. *World Development*, 2022. Link. 7
- M. B. Burke, E. Miguel, S. Satyanath, J. A. Dykema, & D. B. Lobell. Warming increases the risk of civil war in Africa. *Proceedings of the National Academy of Sciences*, 2009. Link. 4
- T. A. Carleton & S. M. Hsiang. Social and economic impacts of climate. *Science*, 2016. Link. 4
- C. Cattaneo, M. Beine, C. J. Fröhlich, D. Kniveton, I. Martinez-Zarzoso, M. Mastrorillo, K. Millock, E. Piguet, & B. Schraven. Human Migration in the Era of Climate Change. *Review of Environmental Economics and Policy*, 2019. Link. 4
- R. M. DeConto & D. Pollard. Contribution of Antarctica to past and future sea-level rise. *Nature*, 2016. Link. 3
- M. Dell, B. F. Jones, & B. A. Olken. Temperature Shocks and Economic Growth: Evidence from the Last Half Century. *American Economic Journal: Macroeconomics*, 2012. Link. 4
- J. Elliott, D. Deryng, C. Müller, K. Frieler, M. Konzmann, D. Gerten, M. Glotter, M. Flörke, Y. Wada, N. Best, S. Eisner, B. M. Fekete, C. Folberth, I. Foster, S. N. Gosling, I. Haddeland, N. Khabarov, F. Ludwig, Y. Masaki, S. Olin, C. Rosenzweig, A. C. Ruane, Y. Satoh, E. Schmid, T. Stacke, Q. Tang, & D. Wisser. Constraints and potentials of future irrigation water availability on agricultural production under climate change. *Proceedings of the National Academy of Sciences*, 2014. Link. 4
- A. Fabre. *Is Decarbonization Achievable? Essays on the Economics of the Energy Transition*. PhD thesis, Paris School of Economics, 2020. 4
- A. Fabre. The Global Climate Plan Policy Brief. Technical report, Global Redistribution Advocates, 2023. Link. 15
- . FAO. The State of Food Security and Nutrition in the World 2023. FAO; IFAD; UNICEF; WFP; WHO;, 2023. ISBN 978-92-5-137226-5. Link. 4

- E.-S. Im, J. S. Pal, & E. A. B. Eltahir. Deadly heat waves projected in the densely populated agricultural regions of South Asia. *Science Advances*, 2017. Link. 4
- . IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Technical report, 2021. Link. 3
- S. Kang & E. A. B. Eltahir. North China Plain threatened by deadly heatwaves due to climate change and irrigation. *Nature Communications*, 2018. Link. 4
- W. Kopczuk, J. Slemrod, & S. Yitzhaki. The limitations of decentralized world redistribution: An optimal taxation approach. *European Economic Review*, 2005. Link. 7
- R. E. Kopp, R. M. DeConto, D. A. Bader, C. C. Hay, R. M. Horton, S. Kulp, M. Oppenheimer, D. Pollard, & B. H. Strauss. Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections. *Earth's Future*, 2017. Link. 3
- S. A. Kulp & B. H. Strauss. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. *Nature Communications*, 2019. Link. 4
- A. Montenegro, V. Brovkin, M. Eby, D. Archer, & A. J. Weaver. Long term fate of anthropogenic carbon. *Geophysical Research Letters*, 2007. Link. 3
- F. C. Moore, U. Baldos, T. Hertel, & D. Diaz. New science of climate change impacts on agriculture implies higher social cost of carbon. *Nature Communications*, 2017. Link. 4
- J. S. Pal & E. A. B. Eltahir. Future temperature in southwest Asia projected to exceed a threshold for human adaptability. *Nature Climate Change*, 2016. Link. 4
- W. Schlenker & D. B. Lobell. Robust negative impacts of climate change on African agriculture. *Environmental Research Letters*, 2010. Link. 4