

ELECTRICITY

PHYSICS

Lecture - 04

By - ER. RAKSHAK SIR

opics to be covered

OHM'S LAW (Continued)

RESISTANCE

3 VERIFICATION OF OHM'S LAW

FACTORS AFFECTING RESISTANCE 4

DIFFERENCE BETWEEN Rand 5

6 RESISTIVITY OF ELECTRICAL SUBSTANCES

* Revision

Ohm's law

 $V \propto I$ V = IRConstant

Revision contd.

Ohm's Law (Validity)

- 1. Conductor ~
- 2. Temperature Constant

Ohm (52)

VERIFICATION OF OHM'S LAW

BATTERY **ELIMINATORS**

VOLTMETER

AMMETER

PLUG KEY

(Changing Resistance)

CONNECTING WIRE

ON/Ott)

Fig.1 (a) Arrangement diagram (b) Circuit diagram

Verification of ohm's law (Va

V-I CHARACTERISTIC CURVE/GRAPH

Shope =
$$\Delta y$$

= ΔV
 ΔT = R

RA>RB -> False

a) $R_x > R_y > R_z$ 45) R2> Ry> Rx () $R_y > R_z > R_X$ d) Rx>Rz>Ry

Slope = R

$$(V-1)$$

$$Slope = \frac{1}{R}$$
 $(1-V)$

Jugaad
Jo V' ke Paas
hoga, Uska R' Bada.

FACTORS AFFECTING RESISTANCE

- 1. length of the Wire (1) -> metre (m) | (lambai)
- 2. Cross-sectional Area of wire (A) (metre) (m²)

 (Motai)

 (Motai)
- 3. Material of the Wire [Resultivity](P) ______ (Konse chakki ka Atta Khaya hai)
- 4. Temperatury of the Wire [t] oc/k

 (Taapman)

Personal
$$R = Pl$$

Fermilla

Personal $R = Pl$

Formula

 $R = Pl$
 $R = Pl$

Feel of P

Resistivity (adverb)

Rokne Ki Kshmta

· Define - It is a property of material

to oppose the How of Current through it.

Resistance (Verb) Rukawat Very high - Insulator
(1014 - 1016)

Med - Alloys
(16, 103)2m
Very low - Conductor

 $\int_{0^{-1}}^{2} \frac{10^{-8} 2^{4}}{10^{-12}}$

DIFFERENCE BETWEEN

Summary

RESISTANCE (Rukawat)

- opposition offered by the atoms and particles of the Conductor in the path of Current.
 - > SI unit -> DL (ohm)
 - -> denoted by R'
- -> depends on I,A, g, t

RESISTIVITY (Rokne Ki Kshmta)

- This the property of the material to offer opposition for the current to flow.
- (extern-mde) m22 c-tinu I2 (
- > denoted by ?
- -> defends on substance of the wise,

Temperature.

RESISTIVITY OF ELECTRICAL SUBSTANCES

Conductors	Silver
	Copper
	Aluminium
	Tungsten
	Nickel
	Iron
	Chromium
	Mercury
	Manganese
Alloys	Constantan
A THE CONTROL OF	(alloy of Cu and Ni)
	Manganin
	(alloy of Cu, Mn and
	Nichrome
	(alloy of Ni, Cr, Mn
Insulators	Glass
mountors	Hard rubber
	Ebonite
	Diamond
	Danor (dm)
	Alloys

	Material	Resistivity (Ω m)
Conductors	Silver	1.60 × 10⁻8 ✓
	Copper	1.62 × 10 ⁻⁸ ✓
	Aluminium	2.63 × 10 ⁻⁸
	Tungsten	5.20 × 10 ⁻⁸
	Nickel	6.84 × 10 ⁻⁸
	Iron	1 <u>0.</u> 0 × 10⁻8
	Chromium	12.9 × 10 ⁻⁸
	Mercury	94.0 × 10 ⁻⁸
	Manganese	1.84 × 10⁻
Alloys	Constantan	49×10^{-6}
A HILLS SECTION	(alloy of Cu and Ni)	
	Manganin	44×10^{-6}
	(alloy of Cu, Mn and Ni)	—
	Nichrome	100×10^{-6}
	(alloy of Ni, Cr, Mn and Fe)	
Insulators	Glass	10 ¹⁰ − 10 ¹⁴ ∨
	Hard rubber	10 ¹³ ∠ 10 ¹⁶ ✓
	Ebonite	1015 - 1017
	Diamond	10 ¹² - 10 ¹³
	Paper (dry)	1012

Comparitive Numerical

R = SRCase

Another identical Wire is joined, find the new R = ?

$$R = \int \frac{\ell}{A}$$

Another identical wire is fused parallely.

$$A = 2l$$

$$\frac{1}{R'} = 4R$$

A wire of length L and resistance R is stretched so that its length is doubled and the area of cross-section is halved. How will it's

(1) resistance change (2) resistivity change.

QUESTION

The resistance of a metallic wire becomes 8 times when:

- A length is doubled
- B length is tripled
- length is doubled and radius is halved
- length is halved and radius is doubled

