In Section 358 of $\it Disquisitiones\ Mathematicae\ (1801)$, Gauss computed

$$\#\{(x,y)\in[0,p-1]^2,\ ax^3-by^3\equiv 1\pmod{p}\}.$$

Nowadays

$$C/\mathbb{F}_p$$
: $ax^3-by^3-1=0\subset\mathbb{A}^2$ (better: $ax^3-by^3-z^3=0\subset\mathbb{P}^2$) and ask for $\#C(\mathbb{F}_p)$.

Applications: cryptography, error-correcting codes, information on moduli spaces,...

Let $k = \mathbb{F}_q$ and C/k be a projective smooth absolutely irreducible curve of genus g over k.

Zeta function:

$$Z(C/k;T) = exp\left(\sum_{n=1}^{\infty} \#C(\mathbb{F}_{q^n}) \cdot \frac{T^n}{n}\right).$$

Weil conjectures (1949): $Z(C/k;T) = \frac{\chi(T)}{(1-T)(1-qT)}$ where

$$\chi(T) = \prod_{i=1}^{g} (1 - \alpha_i T)(1 - \bar{\alpha}_i T) \in \mathbb{Z}[T]$$

with $|\alpha_i| = \sqrt{q}$.

Ex. :
$$C/\mathbb{F}_{13}$$
: $x^3 - y^3 - z^3 = 0$, $\chi(T) = 13x^2 - 5x + 1$
 $\#C(\mathbb{F}_{13}) = 9$, $\#C(\mathbb{F}_{13^2}) = 171, \dots$,
 $\#C(\mathbb{F}_{13^{20}}) = 19004963775136363496979$

Jac C: an abelian variety A of dimension g over k.

Action of the Frobenius on $T_{\ell}(A) \otimes \mathbb{Q}$: $h_A(T) = T^{2g} \chi(1/T)$.

Existence of a (canonical) principal polarization: an isomorphism $\lambda:A\to A^\vee$ such that $\lambda(x)=t_x^*\mathcal{L}\otimes\mathcal{L}^{-1}$ for an ample line bundle \mathcal{L} on A.

Two ways to understand the concept:

- Over \mathbb{C} : $A = V/\Lambda$ then $A^{\vee} = V^{\vee}/\Lambda^{\vee}$ where
 - $V^{\vee} = \operatorname{\mathsf{Hom}}_{\bar{\mathbb{C}}}(V, \mathbb{C});$
 - $\bullet \ \Lambda^{\vee} = \{ \ell \in V^{\vee}, \operatorname{Im} \ell(v) \in \mathbb{Z} \ \forall v \in \Lambda \}.$

A p.p is a positive definite hermitian form $H: V \times V \to \mathbb{C}$ (to be continued)

• The case of $A = E^g$ when $\operatorname{End}(E) \simeq \mathbb{Z}$:

 $\{\mathrm{principal\ polarizations}\}\longleftrightarrow\{\mathrm{symmetric\ matrices}>0\in\mathsf{GL}_g(\mathbb{Z})\}$

- gives a complete description of the possible h_A ;
- $h_A = h_B$ if and only if dim $A = \dim B$ and there exists $f: A \to B$ surjective.

- gives a complete description of the possible h_A ;
- $h_A = h_B$ if and only if dim $A = \dim B$ and there exists $f: A \to B$ surjective.

- gives a complete description of the possible h_A ;
- $h_A = h_B$ if and only if dim $A = \dim B$ and there exists $f: A \to B$ surjective.

- gives a complete description of the possible h_A ;
- $h_A = h_B$ if and only if dim $A = \dim B$ and there exists $f: A \to B$ surjective.

- gives a complete description of the possible h_A ;
- $h_A = h_B$ if and only if dim $A = \dim B$ and there exists $f: A \to B$ surjective.

- gives a complete description of the possible h_A ;
- $h_A = h_B$ if and only if dim $A = \dim B$ and there exists $f: A \to B$ surjective.

Ex. for g = 2 over \mathbb{F}_{13} : $h_A = T^4 + aT^3 + bT^2 + aqT + q^2$

Definition

An a.v. A over \mathbb{F}_{p^n} of dimension g is ordinary if h_A (mod p) is not divisible by p^{g+1} .

Deligne equivalence for ordinary abelian varieties (1969)

- Serre-Tate (1964) prove that A can be lifted over \mathbb{C} to an abelian variety \widetilde{A} with $\operatorname{End}(A)$;
- Let $F: \widetilde{A} \to \widetilde{A}$ be the lift of the Frobenius $f: A \to A$;
- $\widetilde{A} = \mathbb{C}^g/\Lambda$ and let $T(A) = \Lambda$.

Theorem

The functor $A\mapsto (T(A),F)$ is an equivalence of categories between the category of ordinary abelian varieties over \mathbb{F}_q and the categories of free \mathbb{Z} -modules T of rank 2g with an endomorphism F such that

- ① F is semi-simple and its eingenvalues have absolute value $p^{n/2}$;
- a half of these roots are p-adic units;
- 3 there exists an endomorphism V of T such that FV=q.

Howe's work on polarizations (1995)

Let
$$R = \mathbb{Z}[F, V]$$
 and $K = R \otimes \mathbb{Q}$. Let

$$\Phi = \{\phi : K \to \mathbb{C}, \ v_p(\phi(F)) > 0\}.$$

Duality: $(T(A^{\vee}), F^{\vee}) = (\operatorname{Hom}_{\mathbb{Z}}(T, \mathbb{Z}), \psi \mapsto \psi \circ V).$

Theorem

A morphism $\lambda:(T,F)\to (T^\vee,F^\vee)$ is a polarization if and only if

- $\lambda \otimes \mathbb{Q}$ is invertible (i.e. an isogeny);
- $\lambda = \operatorname{tr}_{K/\mathbb{Q}} \circ S$ where S is a R-skew-hermitian form, i.e. $S(t_1, t_2) = -\overline{S(t_2, t_1)};$
- $\operatorname{Im}(\phi(S(t,t))) \leq 0$ for all $\phi \in \Phi$ and $t \in T \otimes \mathbb{Q}$.