Die Erfindung betrifft ein biokompatibles Blockcopolymer, enthaltend das Polykondensationsprodukt eines Diols und einer weiteren Komponente ausgewählt aus der Gruppe von gleichen Diol, einem $lpha, \omega$ -Dihydroxy-polyester oder $\alpha, \omega\text{-Dihydroxy-polyether}$. Ausserdem betrifft Erfindung neben den üblichen Anwendungen von Polyurethanen ein medizinisches Implantat, enthaltend Blockcopolymer, die Verwendung des Blockcopolymers zur Herstellung eines medizinischen Implantats, sowie ein Diol und das Verfahren zur Herstellung desselben. Soweit der 10 Ausdruck Medizin verwendet wird, wird darunter sowohl Human- als auch Veterinärmedizin verstanden.

Die Zahl der in der Praxis eingesetzten biokompatiblen Polymere für medizinische Implantate ist überraschend Dies ist, ausser auf das Problem Verträglichkeit, einerseits auf die hohen technischen Anforderungen bezüglich mechanischer Festigkeit, Sterilisierbarkeit, biologischer Abbaubarkeit andererseits auf die Vielzahl verschiedener 20 administrativer Vorschriften in den einzelnen Ländern zurückzuführen. Gerade die biologische Abbaubarkeit eines solchen Polymers stellt immense Anforderungen, da die gewünschte Abbaubarkeitsrate von der Verwendung stark abhängig ist.

Aus EP 0 196 486 ist ein biokompatibles Blockcopolymer bekannt, das als medizinisches Implantat verwendet werden kann. Dieses Blockcopolymer weist eine kristalline und eine amorphe Komponente auf. Die Abbaubarkeit dieser Blockcopolymere ist jedoch nicht für alle Anwendungen rasch genug.

Aufgabe der vorliegenden Erfindung ist die Schaffung eines neuen Polymers mit schnellerer Abbaubarkeit und nicht wesentlich veränderten biologischen Eigenschaften.

Aufgabe der vorliegenden Erfindung ist es ausserdem, ein Polymer bereitzustellen, das ausserhalb des Körpers gut abbaubar ist.

Diese Aufgabe wird durch das Blockcopolymer nach Anspruch 1 gelöst. Bevorzugte Ausführungsformen der Erfindung sind in den Ansprüchen 2-18 und in der Beschreibung beschrieben.

Es wurde festgestellt, dass das biokompatible Blockcopolymer und das Diol eine ausgesprochen Biokompatibilität aufweisen. Ausserdem kann durch den Einbau Glycolidoder Diglycolid-Einheiten hydrolyrische und biologische Abbaubarkeitsrate erfindungsgemässen biokomplatiblen Blockcopolymers und des 15 gesteuert werden. Die Abbaubarkeit erfindungsgemässen Blockcopolymers ausserhalb des Körpers kann nebst dem Einbau von Glycolid- oder Diglycolid-Einheiten durch (L,L)-Dilactid, (D,D)-Dilactid, (D,L)-Dilactid oder Mischungen davon erhöht werden. Da das Diol aus α - und/oder β -Hydroxyalkanoaten aufgebaut ist, werden 20 beim Abbau dessen toxikologisch unbedenkliche Metaboliten gebildet. Intermediär werden feste Partikel gebildet, die relativ klein sind und mittels Phagozytose aus dem Körper eliminiert werden. Die Grösse der wasserunlöslichen Partikel wird durch den 25 Einbau der Diglycolid- oder Glycolideinheiten reduziert, wodurch die Phagocytose der Partikel erleichtert und beschleunigt wird. Anwendungen im nichtmedizinischen Bereich sind beispielsweise Verpackungsmaterialien und Baumaterial.

Durch den Einbau des Diols in die erfindungsgemässen Blockcopolymere ist es möglich die Abbaurate der kristallinen Komponente zu beeinflussen. Die Abbaubarkeit

im Körper wird nur durch den Einbau der Glycolid- oder Digycolid-Einheiten gesteuert. Mithin ist es möglich, die Abbaubarkeit solcher Blockcopolymere über die kristalline Komponente alleine, die amorphe Komponente alleine oder beide Komponenten zusammen zu steuern.

Das erfindungsgemässe Blockcopolymer ist erhältlich durch lineare Polykondensation eines Diols mit einer weiteren Komponente ausgewählt aus der Gruppe des gleichen Diols, einem α , ω -Dihydroxypolyester oder einem 10 Dihydroxypolyether in Anwesenheit von Diisocyanat, Disäurehalogenid oder Phosgen. Durch die Verknüpfung dieser Komponenten werden mit Diisocyanat Polyurethane, Disäurehalogenid Polyester und mit Phosgen Polycarbonate erhalten.

Das Diol (1) ist erhältlich durch Transesterifikation von 15 α , ω -Dihydroxy-[oligo(3-(R)-hydroxybutyrat)-ethylen-oligo-(3-(R)-hydroxybutyrat)(2), das nachfolgend als PHB-Diol bezeichnet wird, mit Diglycolid (3) Dilactid oder Caprolacton oder Mischungen davon, wobei die 20 Transesterifikation bevorzugt ìn Anwesenheit eines Katalysators durchgeführt wird. Im nachfolgenden Reaktionsschema steht m für 1 bis 50, n für 1 bis 50, x+yfür 1 bis 50.

Im Falle des Einbaus von Diglycolid entstehen Polymere mit 25 hoher Abbaubarkeitsrate im Körper, wogegen Dilactid- und Caprolacton-Einheiten diese nicht beeinflussen.

Bevorzuge Katalysatoren sind Transesterfikationskatalysatoren besonders auf der Basis von Zinn, Dibutylzinndilaureat. Das Diol hat vorzugsweise ein Molekulargewicht von 500 bis 10000 Dalton. Bevorzugt weist das Diol (1) einen totalen Glykolid-Gehalt von bis zu 40 mol%, besonders bevorzugt bis zu 30 mol%, bevorzugtes erfindungsgemässes Diol ist α,ω-Dihydroxy-[oligo(3-R-hydroxybutyrat)-stat-glycolid)-ethylen-oligo-10 (3R)-hydroxybutyrat-stat-glycolid) bzw. die entsprechenden stat-lactid oder stat-caprolactat Verbindungen Verwendung von Dilactid oder Caprolacton anstelle von Diglycolid.

15 Ein α , ω -Dihydroxypolyester kann beispielsweise durch

25

30

Transesterifikation von Poly-[(R)-(3)-hydroxy-buttersäure] beziehungsweise deren Copolymeren mit 3-Hydroxyvaleriansäure mit Ethylenglykol erhalten werden.

Als weitere $\alpha, \omega\text{-Dihydroxypolyester}$ eignen sich Oligomere der α -, β -, γ - und ω -Hydroxycarbonsäuren und deren Cooligomeren, die durch ringöffnende Polymerisation von zyklischen Estern oder Lactonen erhalten Bevorzugte zyklischen Ester dieser Art sind (L,L)Dilactid, (D,D)-Dilactid, (D,L)-Dilactid, Diglycolid oder die bevorzugten Lactone wie $\beta-(R)$ -Butyrolacton, $\beta-(S)$ -10 Butyrolacton, β -rac-Butyrolacton und ϵ -Caprolacton oder deren Gemische. Die Ringöffnung erfolgt mit aliphatischen Diolen wie Ethylenglykol oder längerkettigen Diolen. Durch die stöchiometrisch eingesetzte Menge dieser Diole wird das Molekulargewicht des erhaltenen Makrodiols bestimmt. 15

Die ringöffnende Polymerisation der zyklischen Ester oder Lactone erfolgt vorzugsweise in der Masse in Anwesenheit eines Katalysators, beispielsweise SnO(Bu)₂ bei 100°C bis 160°C. Die erhaltenen Makrodiole weisen Molekulargewichte von etwa 300-10'000 Dalton auf. Die aus Gemischen von zyklischen Estern oder Lactonen hergestellten Makrodiole weisen in Abhängigkeit von der Katalysatormenge eine Mikrostruktur auf, die in der Verteilung der monomeren Komponenten zwischen Blockform, statistisch oder alternierend ist. Die Verteilungsstatistik hat Einfluss auf die physikalischen Eigenschaften. Beispiele solcher durch ringöffnende Polymerisation von zyklischen Estern und Lactonen in Gegenwart eines Katalysators erhaltene Ester, die zur Herstellung der Blockcopolymere verwendet werden können, sind α, ω -Dihydroxy-[poly(Llactid) -ethylen-poly(L-lactid)]; α, ω -Dihydroxy-[oligo(3-(R) -hydroxybutyrat-ran-3-(S) -hydroxybutyrat) -ethylene-

oligo(3-(R)-hydroxybutyrat- ran-3-(S)-hydroxbuyrat)]; α, ω -Dihydroxy-[oligo(glycolid-ran-s-caprolacton)-ethylenoligo(glycolid-ran-s-caprolacton)); α,ω-Dihydroxy-[oligo(L)-lactide-ran-s-caprolacton)-ethylen-oligo(L)lactid-ran-&-caprolacton)]; α,ω-Dihydroxy-[oligo (L) lactide-ran-glycolid) -ethylen-oligo(L) -lactid-ranglycolide)]; α, ω -Dihydroxy-[oligo(3-(R)-hydroxybutyratran-3-(S)-hydroxybutyrat-ran-glycolid)-ethylen-oligo(3-(R) hydroxybutyrat-ran-3-(S) hydroxybutyrat-ran-glycolid); α, ω -Dihydroxy-[oligo-3-(R)-hydroxybutyrat-ran-3-(S)-10 hydroxybutyrat-ran-L-lactid-ethylen-oligo(3-(R)hydroxybutyrat-ran-(S)-hydroxybutyrat-ran-L-lactid)] und α , ω -hydroxy-[oligo(3-(R)-hydroxybutyrat-ran-3-(S)hydroxybutyrat-ran-s-caprolacton) ethylene-oligo(3-(R)hydroxybutyrat-ran-3-(S)-hydroxybutyrat-ran- ϵ -15 caprolacton)]. Die ringöffnende Polymerisation zur Herstellung dieser Makrodiole kann auch ohne Katalysator erfolgen. Diisocyanate für die Herstellung der Polyurethanvariante 20 der Blockcopolymere eignen sich insbesondere Hexamethylendiisocyanat, 2, 2, 4 -Trimethylhexamethylendiisocyanat, Cyclohexyl-1,4diisocyanat, Cyclohexyl-1, 2-diisocyanat, Isophorondiisocyanat, Methylendicyclohexyldiisocyanat und L-Lysindiisocyanatmethylester. 25 Für die Herstellung der Polyestervariante der Blockcopolymere eignen sich insbesondere Disäurehalogenide von Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, 30 Trimethyladipinsäure, Sebazinsäure, Dodecadisaure,

Tetradecandisäure und Hexandecandisäure.

Die Umsetzung zu dem erfindungsgemässen Polymer findet fast quantitativ statt. Überdies wurde festgestellt, dass durch den Einbau der Dilactid-, Diglycolid- und/oder Caprolacton-Einheiten die erfindungsgemässen Polymere in Methylenchlorid löslich werden. Dadurch können Verunreinigungen durch Filtration abgetrennt werden. Dadurch wird ein kostengünstiges Verfahren bereitgestellt, mit dem das erfindungsgemässe Polymer mit hoher Reinheit hergestellt werden kann.

Ein besonders bevorzugtes Blockcopolymer ist Poly[poly[α,ω-Dihydroxy-[oligo(3-(R)-hydroxybutyrat)-stat-glycolid)-ethylen-oligo-(3-(R)-hydroxybutyrat-stat-glycolid)]alt-2,2,4-trimethylhexamethylen-1,6-diisocyanat]-co-poly[dihydroxy[oligo-glykolid-ran-ε-caprolacton)-ethylen-(oligo-glykolid-ran-ε-caprolacton)]alt-2,2,4-trimethylenhexaethylen-1,6-isocyanat] der Formel

wobei a = 1 bis 50, b = 1 bis 10, p = 1 bis 10, q = 1 bis 30 50, r = 1 bis 10, s = 1 bis 50, t = 1 bis 10, u = 1 bis 50 und z = 1 bis 50 ist. Weitere bevorzugte Polymere sind zu dem oben genannnten identisch mit der Ausnahme dass der

Glykolidbaustein des Polymers durch das entsprechende Lactid oder Caprolacton ersetzt wird.

Besonders bevorzugt sind die Glycolid-Einheiten enthaltenden Blockcopolymere und Diole, die in fünf bis sechs Tagen im menschlichen oder im tierischen Körper abbaubar sind. Weitere bevorzugte Blockcopolymere und Diole sind solche, deren Abbau über Monate oder Jahre stattfindet. Die Abbaugeschwindigkeit hängt primär von der Anzahl der Diglycolid- oder Glykolideinheiten ab. Bei 10 Lagerung in einer neutralen Pufferlösung bei 37°C nimmt das Molekulargewicht in Abhängigkeit des Glykolidgehalts mit der Zeit ab. Durch den Einsatz von Dilactid oder Caprolacton-Einheiten ändert sich die Abbaubarkeitsrate im Körper der erfindungsgemässen Polymere nicht. 15

Trotz des relativ hohen Digylkolidoder Glykolid/Lactid/Caprolacton-Gehalts bildet das erfindungsgemässe Blockcopolymer phasensegregierte kristalline Domänen im festen Polymer aus, die die mechanischen Eigenschaften des erfindungsgemässen Blockcopolymers massgeblich bestimmen, wie zum Beispiel die gute Festigkeit, die Sprödigkeit, sowie die erhöhte Bruchdehnung und Bruchspannung.

Die physikalischen Eigenschaften solcher Blockcopolymere
25 werden durch das Massenverhältnis der kristallinen und der
amorphen Polymeranteile massgebend gesteuert. Bevorzugt
ist dabei ein kristalliner Anteil von 5 bis 50%. Durch das
Diol ist die Menge der kristallinen Komponente, die einen
massgebendend Einfluss auf die mechanischen Eigenschaften
30 hat, freier wählbar, da die Abbaurate auch durch das Diol
gesteuert werden kann.

Die erfindungsgemässen Blockcopolymere und Diole sind

können.

ausgesprochen gut löslich in organischen Lösungsmitteln wie Dioxan, chlorierten Lösungsmitteln, DMSO etc. und haben den besonderen Vorteil, dass ihre physikalischen, chemischen und biologischen Eigenschaften durch die Anzahl der Diglycolid/Dilactid/Caprolacton-Einheiten innerhalb eines breiten Spektrums eingestellt werden können. So können die erfindungsgemässen Blockcopolymere und Diole den jeweils spezifischen Verwendungen angepasst werden.

Blockcopolymere können durch Copolymerisation mit Die 10 weiteren niedermolekularen Verbindungen modifiziert werden. Diese copolymerisierten Verbindungen weisen eine mehrere funktionellen Gruppen auf. Bei diesen funktionellen Gruppen kann es sich um geschützte oder ungeschützte reaktive Gruppen handeln, oder um Gruppen, bestimmte Verwendungseigenschaften 15 die den Diolen verleihen. Beispielsweise können diese niedermolekularen Verbindungen die Verwendung der Blockcopolymere Röntgenkontrastmittel oder in anderen diagnostischen Verfahren wie CT und MRI als Mittel zur Kontrasterhöhung ermöglichen. Wenn es sich bei den funktionellen Gruppen um 20 reaktive Gruppen handelt, ermöglichen sie eine kovalente Bindung von Wirkstoffen an das erfindungsgemässe Blockcopolymer. Bei solchen Wirkstoffen handelt es sich beispielsweise um Diagnostika, wie Kontrastmittel, 25 pharmazeutische Wirkstoffe, Peptide, Proteine, etc. geeignete niedermolekulare Comonomere Besonders sind Diatrizoesäure-mono-glycerylester; 10,11-Dihydroxyundecansaure; Phenacyl-10,11-dihydroxyundecanoat; 2,2-Bis-(hydroxymethyl) -propionsäure; Phenacyl-bis-(hydroxymethyl)-propionat. Dem Fachmann ist bekannt, wie 30 solche Wirkstoffe kovalent an das Diol gebunden werden

Eine weiter wichtige Eigenschaft des erfindungsgemässen

Diols oder der Blockcopolymere sind ihre thermoplastische Verarbeitbarkeit. Im allgemeinen sind sie bei Temperaturen zwischen 80°bis 200°, vorzugsweise zwischen: 100°und 150°, verarbeitbar. Die Verarbeitung kann entsprechend bekannten Verfahren durch Extrusion und Blasen oder Spritzgiessen erfolgen. Folien sind auch durch Verpressen herstellbar. Diese thermoplastische Verarbeitbarkeit bringt für die medizinischen Implantate den Vorteil der Anpassbarkeit der Form und Grösse des Implantates. Weiterhin kann chirurgisches Nahtmaterial entsprechend verschweisst werden, was den Verzicht auf das komplizierte Verknüpfen ermöglicht.

10

30

Die Implantate können auch in Form eines Rohres vorliegen. Unter einem Rohr werden auch Schläuche verstanden. Die 15 Rohre können runde, eliptische und mehreckige Querschnitte aufweisen, wobei innerhalb eines Rohres auch mehrere Kanäle angeordnet sein können. Bei den erfindungsgemässen Implantaten kann eine Neubildung einer funktionellen Gefässwand oder eines Nervs erfolgen. Durch einen Überzug mit funktionellen Gefässzellen kann ein thrombotischer 20 Verschluss in der Langzeitanwendung vermieden werden, d.h. das biokompatible Polymer kann durch neue körpereigene Zellen mit der Zeit substituiert werden. Für bestimmte Verwendungen kann das Implantatmaterial eine Struktur aufweisen. Es kann auch Kapselform zur Aufnahme 25 von pharmazeutischen Wirkstoffen oder Diagnostika auch in Form von Partikeln aufweisen.

Nachfolgend werden einige Verwendungen der erfindungsgemässen Diole und der Blockcopolymere im medizinischen Bereich aufgeführt. Selbstverständlich sind weiter Verwendungen möglich.

- Rohrförmige Strukturen (Gefässersatz, Luftröhrenersatz,

Ersatz anderer biologischen Rohrstrukturen) in fester, spiralförmiger, flexibler, expandierbarer, selbstexpandierender, geflochtener und gewirkter Form, entsprechend dem biologischen und funktionellem 5 Bedarf, der an Innenrespektive Aussenseite physikalisch und pharmakologisch adäquat strukturiert oder beschichtet sein können. Die pharmakologischen Substanzen werden entweder durch Absorption kovalente chemische Bindung Diol am oder am 10 Blockcopolymer festgehalten. Ebenso eignen sich die Implantatmaterialien zur Herstellung von Stents (starr, expandierbar, selbstexpandierend) für Gefässe andere biologische Röhrenstrukturen '(Oesophagus, Gallenwege, Harnwege).

- Folienförmige Strukturen (Wundabdeckung, Membranoxygenatoren, Hornhautersatzgrundlage etc.) können ebenfalls mit dem erfindungsgemässen Diol oder dem Blockcopolymer hergestellt werden.
- Fadenförmige Strukturen als chirurgisches Nahtmaterial
 und zur Verarbeitung zu gewobenen, geflochtenen oder
 gewirkten Strukturen.
- Clipförmige oder klammerförmige Strukturen für Klammerngeräte oder Klammern zum Unterbinden kleiner Blutgefässe und Ausnützung der thermoplastischen Eigenschaften zum Verschluss.
 - Feste bis gelartige oder poröse Strukturen als Matrix für die Herstellung von einfachen oder zusammengesetzten biologischen Geweben *in vitro* (Tissue engineering in vivo), Anwendung in der topischen Wundbehandlung.
- of Prekonditionierte Platzhalter für Hautersatz, Fettgewebe, Sehnen, Knorpel und Knochen, Nerven etc.).

15

- Polymere Strukturen, die auf Grund der physikalischen respektive biologischen Ladungseigenschaften und physikalischen Strukturen (Schäume, Gel, Mikro- und Nanosphären) und der Oberflächenstruktur, die Abgabe therapeutischer (Hormone, Medikamente) oder kosmetischer (Liposomen, Proteine, Vitaminen) Substanzen über innere anatomische Strukturen oder über Haut ermöglichen.
- Mittel aus dem erfindungsgemässen Material zur Verödung von Varikocelen, Varicen der Beine (Oeosphagusvarizen) 10 oder von gastroindestinalen Blutungsquellen (endoskopisch oder transvaskulär).
 - Formkörper, die in geeigneter Form und Beladung mit bioaktiven Substanzen die reversible oder irreversible Antikonzeption durch Blockierung (Ovidukt, Duktus spermaticus) ermöglichen.
 - Künstliche Gehörknöchelchen (Ossicles) und künstliche Herzklappen, Aorten und kardiovaskuläre Gefässe.

erfindungsgemässe Diol oder Blockcopolymer ausserdem als Grundlage für Züchtung von Hornhautzellen 20 auf Folien zur Transplantation als Hornhautersatz verwendet werden. Ausserdem sind weitere Verwendungsmöglichkeiten in entsprechenden physikalischen und oder biologischen Form in den medizinischen Dental-, Mikro- oder Nanotechnologien.

- Die erfindungsgemässen Diole sind in in vitro Zellkulturen mit Makrophagen und Fibroblasten auf Grund der Beobachtung von Zelladhäsion, Zellwachstum, Zellvitalität und Zellaktivierung sowie der Produktion von extrazellulären Proteinen und Zytokinen äusserst biokompatibel.
- 30 Ausser im medizinischen Bereich sind die erfindungsgemässen Polymere geeignet als Verpackungs-

WO 2005/007210 PCT/EP2004/007344

- 13 -

materialien und als Baumaterial.

Nachfolgend wird die Erfindung anhand von Beispielen weiter veranschaulicht.

5

Beispiel 1

Herstellung von α, ω -Dihydroxy [oligo(3-(R)

-hydroxybutyrat)-ethylen-oligo(3-(R)

-hydroxybutyrat)] durch Transesterifizeirung von Poly[(R)-10 3-hydroxybutyrat] mit Ethylenglykol.

1055g. Poly[(R)-3-hydroxybutyrat] / Biopol (ICI) werden unter N_2 in 3 l Diglyme bei 140° C gelöst. Dann werden

246 g Ethylenglykol un 5.21 g Dibutylzinndilaurat (Kat.) zugegeben. Nach einer Stunde wird 1.5 g (125°C) und nach 15 weiteren 2.5 Stunden nochmals 1.2 g Katalysator zugesetzt. Der Abbau wird durch GPC Messungen ständig verfolgt und in Intervallen von 1 h werden zusätzliche 0,6 g Katalysator zugesetzt bis das angestrebte Molekulargewicht 20 Abbauprodukts erreicht ist. Kontrolle des Molekulargewichtes durch GPC. Der Abbruch des Abbaus erfolgt durch Ausfällen des Polymers in 10 l Wasser.

Das abgebaute Oligomer wird abfiltriert und insgesamt 5
mal in ca. 6 bis 7 l dest. Wasser aufgeschlämmt und nach
20 h wieder abfiltriert. Nach dem letzten Waschgang wird
das körnige Oligomer während einer Stunde trocken gesaugt
und dananch in 2 grosse Kristallisierschalen zuerst im
Trockenschank bei 50°C im Vakuum getrocknet. Danach im

Hochvakuum (10^{-2} bar) für 30 Stunden am Trockenschrank bei $60\,^{\circ}\text{C}$ weitergetrocknet.

Das trockene Oligomer wird anschliessend in Methylenchlorid gelöst, SO dass eine 30-35% Lösung resultiert. Die leicht erwärmte Lösung wird dann über ein Quarzsandbett auf einer Glasfilternutsche filtriert. Das Filtrat wird chromatographisch über ein Kieselgel 60 -Säule gereinigt.

10

Säulenhöhe ca. 15 cm, Durchmesser 3 cm. Das Filtrat wird aufkonzentriert, bis Oligomere bei 35°C auszufallen beginnen. Dann wird die Lösung (4,5 1) wurde in 10 1 Petrolether 30/50 gegossen, so dass das Oligomer ausfällt.

15

Der Niederschlag wird abfiltriert und getrocknet.

Ausbeute = 86 % Oligomer $(M_n = 2450)$

20 Beispiel 2

Synthese von α, ω -Dihydroxy[oligo-3-(R)-hydroxybutyrat-stat-glycolid)- ethylen-oligo- (3-(R)-hydroxybutyrat-stat-glycolid)]

25

30

Die Transesterifizierung von α, ω -Dihydroxy[oligo-3-(R)-hydroxybutyrat)- ethylen-oligo- (3- (R)-hydroxybutyrat)] mit Diglycolid wurde in einem ölbeheizten doppelwandigen 350 ml Reaktor, der mit einem Temperaturfühler, Kapillarefür Stickstoff als Schutzgas und einem Rückflusskühler auf

einem Tropftrichter mit Druckausgleich bestückt war, durchgeführt. Der Tropftrichter wurde mit Molekularsieb A4 gefüllt. Als Lösungsmittel diente Diglym oder Xylole oder andere hochsiedende inerte Lösungsmittel. aufgeheizt bis die gewünschte Reaktionstemperatur 140°C im Reaktor erreicht wurde. Die gewünschte Menge des Diglykolids wurde in trockenem Diglym gelöst und mittels einer Dosierpumpe in der gewünschten Menge pro Zeiteinheit zum Reaktorinhalt zugegeben. langsam Der Katalysator Dibutylzinndilaureat wurde zu Beginn der Glykolidzugabe in 10 Reaktor gegeben. Die Menge des zugegebenen Katalysators lag zwischen 0 - 10 Gew% bezogen auf das Diglykolid. Die gesamte Reaktionsdauer wurde in einigen Versuchen im Vergleich zur Glykolidzugabezeit erhöht, um Glykolideinbau quantitativer 15 den zu bekommen. Die Reaktionstemperatur betrug 140°C, bei E7 130°C und E8 120°C. Nach der Reaktion wurde das Polymer in der 5fachen Menge n-Hexan gefällt, abfiltriert und getrocknet.

20 Reinigung Diydroxy[oligo-3-(R)-hydroxybutyrat-statvon ethylen-oligo-(3-(R)- hydroxybutyrat-statglycolid) glycolid)] Sinkt das Verhältnis bei der Transesterifikation von eingesetzten 3 - (R) hydroxybutyrateinheiten/ Glykolateinheiten unter von ca 25 3, entsteht so gegen das Ende Transesterifikation im Reaktionsgemisch eine Trübung, die auf die Entstehung unlöslicher Oligoglykolide zurückgeführt werden kann. Das Polymer kann auf folgende Weise von diesen Teilen, dem Katalysator DBTL und von 30 Diglykolid gereinigt werden:

25 g Rohpolymer werden in einem Soxhlet mit Kühlmantel unter Kühlen auf 18°C während 6h mit Methanol extrahiert und danach im Vakuum getrocknet. Anschliessend wird das

Polymer im gleichen gekühlten Soxhlet mit trockenem Methylenchlorid extrahiert und mit der fünffachen Menge trockenem Methanol gefällt und am Vakuum getrocknet.

Ausbeute: 86% des Rohpolymers.

5

Tab. 1 Reaktionsbedingungen

							· ·
Proben-	PHB-diol	Glykolid	Zugabe	Zugabe	Zugabe-	Reaktions	Diglym
bezeichn	[g]	[g]	-	-	zeit	_	[ml]
ung	-		menge	menge	[h]	dauer	
			[g/h]	[%/h]		[h]	·
E1	20.04	2.08	0.12	5.8	17.8	23.5	170
E2	20.04	2.08	0.17	8.2	12.0	12.0	170
E3	19.73	4.2	0.35	8.3	11.0	18.0	170
E4	20.07	6.66	0.36	5.4	18.5	18.5	170
E5	20.04	6.64	0.3	4.5	22.0	22.0	170
. E6 .	100.02	33.75	1.02	3.0	33.0	44.0	340
E7	150.36	50.25	1.26	2.5	40.0	62.0	400
E8	20.8	5.4	0.34	6.8	16.0	33.5	200

Tabelle2: Zeitlicher Verlauf von Experiment 2

	Zugefügte	Maximales	Gefundenes	Glykolat-	Anteil von
	Glykolid-	Verhältnis	Verhältnis	umsatz	transeteri
			3-(R)-	[8]	fizier -
Reaktions-	zogen auf	hydroxy-	hydroxy-		tem
beginn	Total	butyrat/	butyrat/		Glykolid
	[8]*	Glykolat	Glykolat		in Blöcken
		im Polymer	im Polymer		von 3 und
					mehr ·
					Einheiten
	•				[8]
6.0	40	6.2:1	22:1	20	20
8.5	50	4.9:1	10:1	49	23
14.5	88	2.8:1	5.7:1	50	33
16.0	100	2 5.1			
			4:1	63	47
33.5		2.5:1	4:1	63	33
	nahme nach Reaktions- beginn 6.0	Probenent- Glykolid- nahme nach menge be- Reaktions- zogen auf beginn Total [%]* 6.0 40 8.5 50 14.5 88 16.0 100	Probenent- Glykolid- Verhältnis nahme nach menge be- 3-(R)- hydroxy- beginn Total butyrat/ Glykolat im Polymer 6.0 40 6.2:1 8.5 50 4.9:1 14.5 88 2.8:1 16.0 100 2.5:1	Probenent- Glykolid- Verhältnis Verhältnis nahme nach menge be- 3-(R)- 3-(R)- hydroxy- beginn Total butyrat/ Glykolat im Polymer im Polymer 6.0 40 6.2:1 22:1 8.5 50 4.9:1 10:1 14.5 88 2.8:1 5.7:1 16.0 100 2.5:1 4:1	Probenent- Glykolid- Verhältnis Verhältnis umsatz nahme nach menge be- zogen auf hydroxy- hydroxy- beginn Total [%]* Glykolat Glykolat im Polymer 6.0 40 6.2:1 22:1 20 8.5 50 4.9:1 10:1 49 14.5 88 2.8:1 5.7:1 50 16.0 100 2.5:1 4:1 63

Beispiel 3

Herstellung von Poly[poly[α,ω -dihydroxy[oligo-3-(R)-hydroxybutyrat-stat-glycolid) - ethylen-oligo-(3-(R)-hydroxybutyrat-stat-glycolid)]-alt-2,2,4trimethylhexamethylen- 1,6- diisocyanat]-co-poly[α,ω diydroxy[oligo-glykolid-ran-ε-caprolactone) - ethylen(oligo- glykolid-ran-ε-caprolactone)] -alt-2,2,4trimethylhexamethylen-1,6-diisocyanat].

Die Polymerisation wurde in einem ölbeheizten doppelwandigen 1000 ml Reaktor, der mit einem

Temperaturfühler, Kapillare für Stickstoff als Schutzgas und einem Rückflusskühler auf einem Tropftrichter Druckausgleich bestückt war, durchgeführt. Der Tropftrichter wurde mit Molekularsieb A4 gefüllt. Reaktor wurde mit 400 ml 1,2- Dichlorethan und 31,3 g Diydroxy[oligo-3-(R)-hydroxybutyrat-stat-glycolid)ethylen- oligo-(3-(R)-hydroxybutyrat- stat-glycolid)] $,M_n=$ 2440, Produkt aus E7, beschickt und aufgeheizt, bis das Lösungsmittel in den Kühler aufgestiegen war und über das Molekularsieb rückflussierte. Es wurde rückflussiert, bis 10 das Lösungsmittel auf unter 20 ppm getrocknet war. Dann wurden 46,25 ${\tt Diydroxy[oligo-glykolid-ran-\epsilon-}\\$ q caprolactone) ethylen-(oligo-glykolid-ran-εcaprolactone)] $M_n=1320$ (3-(R)-hydroxybutyrat/glycolat = 2,2,4- und 1,4,4-Trimethylhexameth-15 1:1) und 10,01 q ylendiisocyanat, Isomerengemisch, zugefügt. Als Katalysator wurden 100 μ l Dibutylzinndilauret zugegeben. Polymerisation wurde bei Die 85°C während 5 Tagen durchgeführt. Während dieser Reaktionsdauer wurde Reaktion mittels GPC und Infrarotspektroskopie verfolgt. 20 Nach dem dritten Reaktionstag wurden noch weitere 5 Gew.% des amorphen Diols in mehreren Schritten zugesetzt bis das Molekulargewicht unverändert blieb und im IR die Iscyanatbande vollständig verschwunden war. Die Polymerisation wurde durch Ausfällen des Polymers in der fünffachen Menge Methanol abgebrochen. kaltem Das Polymer wurde abfiltriert und am Vakuum getrocknet.

Beispiel 4

Hydrolytischer Abbau von Poly[poly[α, ω -dihydroxy[oligo-3-(R)-hydroxybutyrat-stat- glycolid)- ethylen-oligo-(3-(R)hydroxybutyrat-stat-glycolid)]-alt-2,2,4trimethylhexamethylen-1,6-diisocyanat]-co-poly[α,ω diydroxy[oligo-glykolid-ran-s- caprolactone)- ethylen-(oligo-glykolid-ran-s-caprolactone)] -alt-2,2,4trimethylhexamethylen-1,6- diisocyanat] im Vergleich zum Referenzpolymer 10 Poly[poly[α , ω -Dihydroxy[oligo-3-(R)hydroxybutyrat)- ethylen-oligo-(3-(R)-hydroxybutyrat]alt-2,2,4trimethylhexamethylen- 1,6-diisocyanat]-copoly[α,ωdiydroxy[oligo-glykolid-ran-εcaprolactone) ethylen- (oligo-glykolid-ran-s-caprolactone)] -alt-2,2,4trimethylhexamethylen-1,6- diisocyanat] 15 Glycolid/ ϵ -caprolactone = 1/1 molar ; PHB/glykolid-Diol aus Experiment 1.

Der Einfluss des Glykolid modifizierten PHB-diols auf die 20 Abbaurate wurde bezüglich eines strukturell Polymers mit unmodifiziertem PHB-diol ermittelt. Die Abbauversuche wurden am pulerförmigen Rohpolymer und an Polymerproben durchgeführt, die zuvor zu Filmen und offenporigen Schäumen (Porengrösse ca 50 300 μm) 25 verarbeitet wurden.

Vom Polymer aus Beispiel 2 und dem Referenzpolymer wurden je 3 Schaum- und 3 Pulverproben sowie 20 Filmproben angesetzt. Die Einwagen lagen zwischen 0,1 und 1 g. Die Proben wurden in verschliessbaren Plastikgefässen in 40 ml destilliertem Wasser bei 37°C, über einen Zeitraum von bis zu 88 Tagen gelagert. Zur Vermeidung des Algenwachstumswurden 40 mg Natriumazid zu jeder Probe gegeben. Für die

Molmassenbestimmung ist in Abständen von einem Tag bis zu drei Wochen abwechselnd aus den drei Kolben, jeweils vom Schaum und Pulver eine kleine Materialmenge entnommen, in Vakuumschrank bei Raumtemperatur getrocknet und die Molmasse mittels GPC bestimmt worden. Für die Zugversuche wurden jeweils 5 Folien entnommen, die im Vakuumschrank bei Raumtemperatur getrocknet wurden, Die Filmproben wurden durch Spannungs- Dehnungsmessungen charakterisiert. Je . 5 Filme sowie Schaum und Pulverproben Ausgangsprodukte sind bei Beginn des Abbauversuches getestet worden (Figur 1).

Tabelle 3: Abnahme der Molmasse von Schaum und Pulver mit Exponentialfunktion als Trendlinie

Probenbezeichnung	Halbwertszeit [d]
Polymer-Schaum	8.9
Referenz-Schaum	19.5
Polymer-Pulver	8
Referenz-Pulver	18

10

15

15

20

Patentansprüche

- 1. Biokompatibles Blockcopolymer mit mindestens zwei chemisch verschiedenen Blockbausteinen erhältlich durch lineare Polykondensation von einem Diol mit einer Komponente ausgewählt aus der Gruppe von dem gleichen Diol, einem α, ω -Dihydroxy-polyester oder einem α, ω -Dihydroxy-polyether in Anwesenheit von Diisocyanat, Disäurehalogenid oder Phosgen,
- wobei das Diol erhältlich ist durch

 Transesterifikation von α,ω-Dihydroxy-[oligo(3-(R)-hydroxybutyrat)-ethylen-oligo-3-(R)-hydroxybutyrat)

 mit Diglycolid und/oder Dilactid und/oder Caprolacton oder Mischungen davon ,
 - der α,ω-Dihydroxy-polyester durch Transesterifikation von Poly-(R)-hydroxyvaleriansäure oder deren Copolymeren mit 3-Hydroxyvaleriansäure mit Ethylenglykol erhältlich ist,
 - der α , ω -Dihydroxy-polyether ausgewählt ist aus der Gruppe von α , ω -Dihydroxy-poly(oxytetra-methylen), α , ω -Dihydroxy-poly(oxyethylen) und Copolymeren von Ethylenglykol und Propylenglykol.
- Biokompatibles Blockcopolymer gemäss Anspruch 1, wobei das Blockcopolymer Poly[poly[α, ω-Dihydroxy-[oligo(3-(R)-hydroxybutyrat)-stat-glycolid)-ethylen-oligo-(3-(R)-hydroxybutyrat-stat-glycolid)]alt-2,2,4-trimethylhexamethylen-1,6-diisocyanat]-co-poly[dihydroxy[oligo-glykolid-ran-ε-caprolacton)-ethylen-(oligo-glykolid-ran-ε-caprolacton)]alt-2,2,4-trimethylenhexaethylen-1,6-isocyanat] ist.

- 3. Biokompatibles Blockcopolymer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es biologisch abbaubar ist.
- Biokompatibles Blockcopolymer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es im menschlichen und im tierischen Körper abbaubar ist.
- 5. Biokompatibles Blockcopolymer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es thermoplastisch verarbeitbar ist.
 - 6. Biokompatibles Blockcopolymer einem der vorangehenden Ansprüche, erhältlich durch lineare Cokondensation mit weiteren niedermolekularer Verbindungen mit zusätzlichen funktionellen Gruppen.
- 7. Biokompatibles Blockcopolymer nach Anspruch 6, dadurch gekennzeichnet, dass es chemisch gebundene pharmazeutische Wirkstoffe oder Diagnostika enthält.
 - 8. Formkörper, enthaltend ein biokompatibles Blockcopolymer nach einem der vorangehenden Ansprüche.
 - 9. Medizinisches oder tiermedizinisches Implantat, enthaltend ein biokompatibles Blockcopolymer nach einem der vorangehenden Ansprüche.
- 10. Implantat nach Anspruch 9, dadurch gekennzeichnet,25 dass es eine poröse Struktur aufweist.
 - 11. Implantat nach einem der Ansprüche 9 oder 10 in Form eines Rohres mit einem oder mehreren Kanälen.
 - 12. Implantat nach einem der Ansprüche 9 oder 10 in Form einer Herzklappe.
- 30 13. Chirurgisches Hilfsmittel, bestimmt zur Anbringung im

- und am menschlichen oder tierischen Körper, enthaltend das biokompatible Blockcopolymer gemäss einem der vorangehenden Ansprüche.
- 14. Diol gemäss Anspruch 1, erhältlich durch Transesterifikation von α,ω-Dihydroxy-[oligo(3-(R)-hydroxybutyrat)-ethylen-oligo-(3R)-hydroxybutyrat) mit Diglycolid.
 - 15. α,ω-Dihydroxy-[oligo(3-R-hydroxybutyrat)-stat-glycolid)-ethylen-oligo-(3R)-hydroxybutyrat-stat-glycolid) als Diol nach Anspruch 14.
- 16. Verfahren zur Herstellung eines Diols nach Anspruch 14, dadurch gekennzeichnet, dass α,ω-Dihydroxy-[oligo(3-R-hydroxybutyrat)-ethylen-oligo-3-(R)hydroxybutyrat) mit Diglycolid und/oder Dilactid und/oder Caprolacton oder Mischungen davon umgesetzt wird.
 - 17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die Umsetzung in Anwesenheit eines Katalysators durchgeführt wird.
- 20 18. Verfahren nach einem der Ansprüche 16 oder 17, dadurch gekennzeichnet, dass zur Reinigung das Diol in Methylenchlorid gelöst wird und Verunreinigungen abgetrennt werden.

Abnahme der Molmasse des Pulvers in Abhängigkeit der Lagerung in Wasser

▲ Polymer mit Trendlinie 唐 Referenzpolymer mit Trendlinie

Figur 1

Abnahme der Molmasse des Pulvers in Abhängigkeit der Lagerung in Wasser

▲ Polymer mit Trendlinie 磨 Referenzpolymer mit Trendlinie

Figur 2

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
/EP2004/007344

a. Klassifizierung des anmeldungsgegenstandes IPK 7 A61L27/18 A61L31/06 A61L17/10 A61L17/12 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 A61L Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der Internationalen Recherche konsultilerte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, WPI Data, PAJ C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. χ EP 0 696 605 A (UHLSCHMID GEORG K ; SUTER 1 - 18ULRICH W (CH): NEUENSCHWANDER PETER (CH)) 14. Februar 1996 (1996-02-14) das ganze Dokument Α EP 0 552 896 A (TAKASAGO PERFUMERY CO LTD) 1 - 1828. Juli 1993 (1993-07-28) das ganze Dokument DE 42 24 401 A (PHARMATECH GMBH) Α 1,6,7 27. Januar 1994 (1994-01-27) Seite 1 - Seite 4 EP 0 295 055 A (YISSUM RES DEV CO) Α 1 14. Dezember 1988 (1988-12-14) Ansprüche Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu X Slehe Anhang Patentfamilie Besondere Kategorien von angegebenen Veröffentlichungen 'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der 'A' Veröffentlichung, die den allgemelnen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist *E* älleres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist 'X' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden 'L' Veröffentlichung, die geeignet Ist, einen Prioritätsanspruch zwelfeihaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdalum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit elner oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach
dem beanspruchten Prioritätsdatum veröffentlicht worden ist *&' Veröffentlichung, die Mitglied derselben Patentfamille ist Datum des Abschlusses der internationalen Recherche Absendedatum des Internationalen Recherchenberichts 16. November 2004 26/11/2004 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Böhm, I

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
T/EP2004/007344

UNG) ALS WESENTI ICH ANGESEHENE INTEGNACEN	004/007344	
Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Bote Assessed No.	
	Betr. Anspruch Nr.	
US 4 281 077 A (HIRZY J WILLIAM) 28. Juli 1981 (1981-07-28) Spalte 2, Zeilen 27-66 Ansprüche	1	
·		
·		
	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Verdifentlichung, soweil erforderlich unter Angabe der in Betracht kommenden Teile US 4 281 077 A (HIRZY J WILLIAM) 28. Juli 1981 (1981-07-28) Spalte 2, Zeilen 27-66 Ansprüche	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentligen, die zur selben Patentfamilie gehören

Internationales Aldenzeichen PT/EP2004/007344

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 0696605	À	14-02-1996	AT DE EP JP JP US	196486 59508729 0696605 3126637 8059811 5665831	T D1 A1 B2 A	15-10-2000 26-10-2000 14-02-1996 22-01-2001 05-03-1996 09-09-1997
EP 0552896	A	28-07-1993	JP JP DE DE EP US	2884123 5194697 69311144 69311144 0552896 5352763	A D1 T2 A1	19-04-1999 03-08-1993 10-07-1997 04-12-1997 28-07-1993 04-10-1994
DE 4224401	Α	27-01-1994	DE	4224401	A1	27-01-1994
EP 0295055	A	14-12-1988	IL CA EP JP US	82834 1329854 0295055 1195862 4826945	C A2 A	05-11-1990 24-05-1994 14-12-1988 07-08-1989 02-05-1989
US 4281077	A	28-07-1981	US US EP US	4212957 4210730 0038392 4273890	A A1	15-07-1980 01-07-1980 28-10-1981 16-06-1981

INTERNATIONAL SEARCH REPORT

International Application No

T/EP2004/007344 A. CLASSIFICATION OF SUBJECT MATTER IPC 7 A61L27/18 A61L A61L31/06 A61L17/12 A61L17/10 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 A61L Documentation searched other than minimum documentation to the extent that such documents are included in the fletds searched Electronic data base consulted during the International search (name of data base and, where practical search terms used) EPO-Internal, WPI Data, PAJ C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with Indication, where appropriate, of the relevant passages Category * Relevant to claim No. χ EP 0 696 605 A (UHLSCHMID GEORG K ; SUTER 1 - 18ULRICH W (CH); NEUENSCHWANDER PETER (CH)) 14 February 1996 (1996-02-14) the whole document Α EP 0 552 896 A (TAKASAGO PERFUMERY CO LTD) . 1-18 28 July 1993 (1993-07-28) the whole document Α DE 42 24 401 A (PHARMATECH GMBH) 1,6,7 27 January 1994 (1994-01-27) page 1 - page 4 Α EP 0 295 055 A (YISSUM RES DEV CO) 1 14 December 1988 (1988-12-14) claims Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special calegories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the 'A' document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled 'O' document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Dale of the actual completion of the international search Date of mailing of the international search report 16 November 2004 26/11/2004 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Böhm, I

INTERNATIONAL SEARCH REPORT

International Application No EP2004/007344

.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Er200	.,, .,, .,,		
alegory °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.		
\	US 4 281 077 A (HIRZY J WILLIAM) 28 July 1981 (1981-07-28) column 2, lines 27-66 claims		1		
:					
ļ					
			·		
		·			
		·			

INTERNATIONAL SEARCH REPORT

iformation on patent family members

International Application No FP2004/007344

~					· ·
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 0696605	Α	14-02-1996	AT DE EP JP- JP US	196486 T 59508729 D1 0696605 A1 3126637 B2 8059811 A 5665831 A	15-10-2000 26-10-2000 14-02-1996 22-01-2001 05-03-1996 09-09-1997
EP 0552896	Α	28-07-1993	JP JP DE DE EP US	2884123 B2 5194697 A 69311144 D1 69311144 T2 0552896 A1 5352763 A	19-04-1999 03-08-1993 10-07-1997 04-12-1997 28-07-1993 04-10-1994
DE 4224401	Α	27-01-1994	DE	4224401 A1	27-01-1994
EP 0295055	Α	14-12-1988	IL CA EP JP US	82834 A 1329854 C 0295055 A2 1195862 A 4826945 A	05-11-1990 24-05-1994 14-12-1988 07-08-1989 02-05-1989
US 4281077	A	28-07-1981	US US EP US	4212957 A 4210730 A 0038392 A1 4273890 A	15-07-1980 01-07-1980 28-10-1981 16-06-1981