

Optimization and Decision Analysis

Operations Research, Constrained Optimization, Linear Programming, Sensitivity Analysis

Dr. L. Srinivasa Varadharajan srinivasa.varadharajan@insofe.edu.in

23 October, 2022

Nonlinear Programming

(Inequality

and equality)

Constraints

Subject to $g_1(x_1, x_2, ..., x_n) \le or \ge or = b_1$

$$g_2(x_1, x_2, ..., x_n) \le or \ge or = b_2$$

$$g_3(x_1, x_2, ..., x_n) \le or \ge or = b_3$$

The optimization problem is generally specified using matrices and vectors.

Case Study: Portfolio Allocation of Stocks

How does one quantify Risk?

Risk => Measure of Uncertainty

One Definition of Risk = Std(daily %price changes)

A Simple Example: Stock vs Bank Deposit

 Stock: mean annual ret=15%, std dev=0.35

Bank: mean ret = 6%, std dev = 0.02

How do you invest?

60% in Stocks & 40% in Bank

Expected Return = 0.6*15% + 0.4*5% = 11%

 Regret not investing fully in stock

Investment Goal = Maximize Sharpe Ratio

Stock 1: R_1 , w_1 , σ_1

Stock 2: R_2 , w_2 , σ_2

Total Return:

$$R = w_1 R_1 + w_2 R_2$$

Total Standard Deviation: $\sigma = \sqrt{w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 cov(\sigma_1, \sigma_2)}$

Objective Function: Sharpe Ratio:
$$\frac{R}{\sigma} = \frac{w_1 R + w_2 R_2}{\sqrt{w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 cov(\sigma_1, \sigma_2)}}$$

Maximize Sharpe Ratio Goal:

Constraints:

$$w_1, w_2 \ge 0$$

$$w_1 + w_2 = 1$$

Stock 1: 15%, 35%, w₁

Stock 2: 6%, 2%, w₂

Total Return:

$$R = 0.15w_1 + 0.06w_2$$

Total Standard Deviation:

$$\sigma = \sqrt{w_1^2 \cdot 0.35^2 + w_2^2 \cdot 0.02^2 + 2w_1 * w_2 cov(\sigma_1, \sigma_2)}$$

Thank You

