Exercices "Calcul différentiel"

I. Continuité - Différentiabilité

Exercice 1. 1. En utilisant la définition de la différentielle d'une fonction en un point, calculer la différentielle en (0,0) des applications de \mathbb{R}^j (j=2,3) dans \mathbb{R} définies par :

$$f(x, y, z) = 2 + 3z + xy + z\sin(x^2 + y^2), \quad g(x, y) = \sqrt{y^2 + 1}.$$

2. Calculer les dérivées partielles de la fonction g et montrer qu'elles sont continues.

Exercice 2. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$\begin{cases} f(x,y) = \frac{xy^2}{x^2 + y^2} & \text{pour } (x,y) \neq (0,0), \\ f(0,0) = 0. \end{cases}$$

- **1.** L'application f est-elle continue sur \mathbb{R}^2 ?
- $\mathbf{2}$. Calculez les dérivées partielles de f. Sont-elles continues?
- **3.** Pour tout A:(a,b) et tout H:(h,k) de \mathbb{R}^2 , calculez directement $f'(A;H)=\lim_{t\to 0,t\neq 0}\frac{f(A+tH)-f(A)}{t}$. L'application $H\mapsto f'(A;H)$ est-elle linéaire en H?

Exercice 3. On considère l'application f de \mathbb{R}^2 dans \mathbb{R} définie par

$$\begin{cases} f(x,y) = \frac{xy}{2x^2 + 3y^2} & \text{si } (x,y) \neq (0,0), \\ f(0,0) = 0. \end{cases}$$

Montrez que les dérivées partielles $D_1 f(x, y)$ et $D_2 f(x, y)$ existent pour tout $(x, y) \in \mathbb{R}^2$, y compris à l'origine. La fonction f est-elle continue à l'origine?

Exercice 4. Montrez que l'application g de \mathbb{R}^2 dans \mathbb{R} définie par

$$\begin{cases} g(x,y) = \frac{5x^3y}{2x^2 + 3y^2} + \frac{x^2|y|^{3/2}}{2x^2 + 3y^2} & \text{si } (x,y) \neq (0,0), \\ g(0,0) = 0 \end{cases}$$

est différentiable en (0,0).

Exercice 5. Déterminer sur quelle partie de \mathbb{R}^2 la fonction f définie par $f(x,y) = \inf(x^2,y^2)$ est continue (resp. différentiable, resp. de classe \mathcal{C}^1).

Exercice 6. Déterminer les fonctions f de classe \mathcal{C}^1 sur une partie U de \mathbb{R}^2 et vérifiant sur U:

$$\begin{pmatrix}
\frac{\partial f}{\partial x} &= \frac{x}{\sqrt{x^2 + y^2}} \\
\frac{\partial f}{\partial y} &= \frac{y}{\sqrt{x^2 + y^2}}
\end{pmatrix} (ii) \begin{cases}
\frac{\partial f}{\partial x} &= \frac{x}{x^2 + y^2} \\
\frac{\partial f}{\partial y} &= \frac{-y}{x^2 + y^2}
\end{cases} (ii) \begin{cases}
\frac{\partial f}{\partial x} &= \frac{x}{x^2 + y^2} \\
\frac{\partial f}{\partial y} &= \frac{y}{x^2 + y^2} + \frac{y}{1 + y^2}
\end{cases}$$

Exercice 7. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction différentiable sur \mathbb{R}^2 . Pour tout $t \in \mathbb{R}$, on pose

$$\varphi(t) = f(t, f(t, f(t, t))).$$

Calculer $\varphi'(t)$ en fonction des dérivées partielles de f. Traiter l'exemple $f(t,s)=ts^2$.

Exercice 8. Pour b > 0, on définit la fonction h_b dans le demi-plan $H = \{(x, y) \in \mathbb{R}^2 : x > 0\}$ par :

$$h_b(x,y) = \frac{\pi}{2} + \arctan\left(\frac{y-b}{x}\right).$$

- **1.** Calculer, pour tout $x \in \mathbb{R} \setminus \{0\}$, $\arctan(x) + \arctan(1/x)$.
- **2.** Montrer que h_b se prolonge continûment au demi-plan $\{(x,y) \in \mathbb{R}^2 : x \geq 0\}$ privé du point (0,b) et expliciter ce prolongement.
- **3.** Montrer que $\lim_{x\to 0^+} \frac{h_b(x,0)}{x} = \frac{1}{b}$.

Exercice 9. Notons $E = \mathcal{C}([0,1],\mathbb{R})$ muni de la norme $\|\varphi\| = \sup |\varphi|$.

1. On considère la fonction F de E dans E définie par $F(\varphi) = \varphi^2$. Montrez que F est différentiable et explicitez la différentielle $DF(\varphi)$ de F au point $\varphi \in E$.

Explicitez ensuite l'application différentielle $DF: E \to E$.

2. Traitez la même question avec $F(\varphi) = f \circ \varphi$ où f est une fonction donnée de classe \mathcal{C}^1 de \mathbb{R} dans \mathbb{R} .

II. Fonctions implicites - Inversion

Exercice 10. On considère la fonction f de \mathbb{R} dans \mathbb{R} définie par

$$\begin{cases} f(x) = x + 2x^2 \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0, \\ f(0) = 0. \end{cases}$$

- **1.** Montrez que f est dérivable sur \mathbb{R} et que f'(0) = 1. Montrez que Df(0) est un isomorphisme de \mathbb{R} dans \mathbb{R} .
- **2.** Montrez que f n'est injective sur aucun voisinage de 0.
- 3. Pourquoi le théorème d'inversion locale ne s'applique-t-il pas?

Exercice 11. On considère l'application f de \mathbb{R}^2 dans \mathbb{R}^2 définie par

$$f(x,y) = (e^x \cos y, e^x \sin y).$$

- 1. Déterminez l'image de \mathbb{R}^2 par f.
- **2.** Montrez que f définit un difféomorphisme local au voisinage de tout point de \mathbb{R}^2 .
- **3.** L'application f est-elle un difféomorphisme de \mathbb{R}^2 sur $f(\mathbb{R}^2)$?
- **4.** Mêmes questions avec l'application $q:(x,y)\mapsto (x^2-y^2,2xy)$.

Exercice 12. 1. Montrer que l'ensemble $S = \{(x,y) \in \mathbb{R}^2 / x^3 + y^3 - 3xy = 1\}$ est, au voisinage de (0,1), le graphe d'une fonction φ de classe \mathcal{C}^2 telle que $\varphi(0) = 1$.

2. Donner un développement limité de φ à l'ordre 2 en 0.

Exercice 13. Soit $P_0 = \sum_{k=0}^n a_k^0 X^k \in \mathbb{R}[X]$ admettant une racine simple α_0 .

- 1. Montrer qu'il existe un voisinage U de (a_0^0,\ldots,a_n^0) dans \mathbb{R}^{n+1} telle que pour tout $(a_0,\ldots,a_n)\in U$, le polynôme $P=\sum_{k=0}^n a_k X^k$ admet une unique racine simple α .
- **2.** Quelle est la dépendance de α par rapport à (a_0, \ldots, a_n) ?

Exercice 14. On note $M_n(\mathbb{C})$ l'algèbre des matrices carrées $n \times n$ à coefficients complexes.

- 1. On considère l'application Φ de $M_n(\mathbb{C})$ dans $M_n(\mathbb{C})$ définie par : $\Phi(M) = M^2$. Montrez que Φ est différentiable sur $M_n(\mathbb{C})$ et explicitez l'application différentielle $D\Phi$. Pourquoi ne précise t-on pas la norme choisie sur $M_n(\mathbb{C})$?
- **2.** Montrer qu'il existe une fonction différentiable F, définie dans un voisinage U de la matrice I_n , telle que $F(X)^2 = X$, pour tout $X \in U$.
- **3.** On suppose que n=2. Soit $X=\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$. Calculer DF(X).J où $J=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Que peut-on en déduire ?
- **4.** Même question avec l'application Ψ définie par $\Psi(M) = M^3$.

Exercice 15. On note S l'espace des matrices carrées symétriques $n \times n$ à coefficients réels. Etant donnée $A_0 \in S$ on appelle Φ l'application de $\mathcal{M}_n(\mathbb{R})$ dans S définie par $\Phi(M) = {}^t M A_0 M$.

- 1. Montrez que Φ est de classe \mathcal{C}^1 et calculez $D\Phi(Id)$.
- **2.** Déterminez le noyau et l'image de $D\Phi(Id)$.
- **3.** On note E l'espace des matrices $M \in \mathcal{M}_n(\mathbb{R})$ telles que $A_0M \in S$ et l'on note $\overline{\Phi}$ l'application Φ restreinte à E. Quel est le noyau et l'image de $D\overline{\Phi}$?
- **4.** Montrez qu'il existe un voisinage \mathcal{U} de A_0 dans S tel que toute matrice $A \in \mathcal{U}$ s'écrit sous la forme $A = {}^t MA_0M$, pour une matrice M dans $\mathcal{M}_n(\mathbb{R})$, et que l'on peut choisir M dépendant de manière \mathcal{C}^1 de la matrice A dans \mathcal{U} (c'est-à-dire qu'il existe une application Ψ de \mathcal{U} dans $\mathcal{M}_n(\mathbb{R})$ telle que $M = \Psi(A)$, pour tout $A \in \mathcal{U}$).

Exercice 16. Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ une application de classe \mathcal{C}^1 . On suppose qu'il existe k > 0 tel que pour tout $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$:

$$||f(x) - f(y)|| \ge k||x - y||.$$

- **1.** Montrer que f est injective.
- **2.** Montrer que pour tout $x \in \mathbb{R}^n$ et tout $h \in \mathbb{R}^n$:

$$||Df(x)(h)|| \ge k||h||.$$

- 3. En déduire que Df(x) est un isomorphisme de \mathbb{R}^n sur lui-même.
- **4.** Montrer que f est localement inversible en tout point de \mathbb{R}^n , i.e. que pour tout $x \in \mathbb{R}^n$, il existe un ouvert U contenant x tel que f soit un difféomorphisme de classe \mathcal{C}^1 de U sur f(U).
- **5.** Montrer que f est un difféomorphisme de classe \mathcal{C}^1 de \mathbb{R}^n sur lui-même. (On pourra montrer que $f(\mathbb{R}^n)$ est ouvert et fermé.)

Exercice 17.

- 1. Soit N une norme sur un espace vectoriel. Montrer que N n'est pas différentiable en 0. On munit \mathbb{R}^n de sa norme euclidienne notée $||\cdot||$.
- **2.** Montrer que l'application $N_2: x \mapsto ||x||$ est de classe \mathcal{C}^1 sur $\mathbb{R}^n \setminus \{0\}$ et calculer sa différentielle. Soit $f \in \mathcal{C}^1(\mathbb{R}^+, \mathbb{R})$ et F l'application définie sur \mathbb{R}^n par F(x) = f(||x||)x.

- 3. Montrer que F est de classe \mathcal{C}^1 sur \mathbb{R}^n et déterminer sa différentielle.
- **4.** Montrer que pour tout $x \in \mathbb{R}^n$ et $h \in \mathbb{R}^n$, on a :

$$\langle DF(x)(h), h \rangle \ge f(||x||)||h||^2.$$

5. Montrer que F est un difféomorphisme de \mathbb{R}^n sur lui-même.

II. Extrema - Extrema liés

Exercice 18. Soit $a \in \mathbb{R}^n \setminus \{0\}$ et soit f la fonction définie sur \mathbb{R}^n par :

$$f(x) = (a|x) \exp(-\|x\|^2).$$

1. Montrer que f est de classe \mathcal{C}^1 et montrer que la différentielle de f en $x \in \mathbb{R}^n$ est donnée par :

$$\forall h \in \mathbb{R}^n, Df(x).h = [(a|h) - 2(a|x)(x|h)] \exp(-\|x\|^2).$$

Ici $(\cdot|\cdot)$ désigne le produit scalaire usuel de \mathbb{R}^n .

- 2. Déterminer les points critiques de f, c'est-à-dire les points x de \mathbb{R}^n tels que Df(x) = 0.
- 3. Déterminer les éventuels maxima et minima de f.

Exercice 19. Soit U l'ouvert de \mathbb{R}^n défini par $U = (]0, +\infty[)^n$ et f l'application de U dans \mathbb{R} définie par :

$$f(x_1, \dots, x_n) = x_1 \cdots x_n + \alpha^{n+1} \left(\frac{1}{x_1} + \dots + \frac{1}{x_n} \right)$$

où α est un réel strictement positif fixé.

- 1. Montrer que f est de classe \mathcal{C}^1 sur U (on calculera les dérivées partielles de f).
- 2. Déterminer le point critique de f et préciser sa nature (maximum, minimum, point selle).

Exercice 20. Pour une fonction f de classe \mathcal{C}^2 définie sur une partie ouverte de \mathbb{R}^2 on note :

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}.$$

Soit U une partie ouverte non vide de \mathbb{R}^2 et soit f une fonction de classe \mathcal{C}^2 sur U, à valeurs réelles. On suppose que $\Delta f(x,y) > 0$ pour tout $(x,y) \in U$.

Montrer que f ne peut pas avoir de maximum sur U (on pourra raisonner par l'absurde en considérant un point (x_0, y_0) de U où un maximum serait atteint et introduire les fonctions f_1 : $t \mapsto f(x_0 + t, y_0)$ et $f_2 : t \mapsto f(x_0, y_0 + t)$.

Exercice 21. Soit a > 0 et S la partie de \mathbb{R}^3 définie par :

$$S = \{(x, y, z) \in \mathbb{R}^3 / x + y + z = a, \ x^2 + y^2 + z^2 = a^2 \}.$$

La fonction $g:(x,y,z)\in\mathbb{R}^3\mapsto xyz$ admet-elles des extrema sur S? Si oui, les déterminer.

Exercice 22. Soit (E, <, >) un espace euclidien et u un endomorphisme symétrique de E. Soit \mathbb{S}^n la sphère unité de $E: \mathbb{S}^n = \{x \in E/ < x, x >= 1\}$.

- **1.** Montrer que l'application $f: x \in E \longrightarrow \langle u(x), x \rangle \in \mathbb{R}$ est de classe \mathcal{C}^{∞} sur E.
- **2.** Montrer qu'il existe $x_0 \in \mathbb{S}^n$ tel que $f(x_0) = \sup_{x \in \mathbb{S}^n} f(x)$.
- **3.** En déduire que x_0 est un vecteur propre de l'endomorphisme u.
- **4.** Montrer que u est diagonalisable dans une base orthonormée de E.

Exercice 23. Soit $f:(x_1,\ldots,x_n)\in\mathbb{R}^n\mapsto x_1\cdots x_n$ et $g:(x_1,\ldots,x_n)\in\mathbb{R}^n\mapsto x_1+\cdots+x_n$. Pour s>0, on définit $K_s:=\{x=(x_1,\ldots,x_n)\in(\mathbb{R}^+)^n/\ g(x)=s\}$. **1.** Montrer que pour tout $x\in K_s: f(x)\leq f(s/n,\ldots,s/n)$.

- 2. En déduire l'inégalité arithmético-géométrique :

$$\forall n \ge 1, \ \forall (x_1, \dots, x_n) \in (\mathbb{R}^+)^n, \ (x_1 \cdots x_n)^{\frac{1}{n}} \le \frac{1}{n} \sum_{k=1}^n x_k.$$