DATA 556 Review

Problem 1

Let *X* be a continuous random variable with PDF f(x) and CDF F(x). For a fixed number x_0 such that $F(x_0) < 1$, define the function:

$$g(x) = \begin{cases} \frac{f(x)}{1 - F(x_0)}, & \text{for } x \ge x_0, \\ 0, & \text{for } x < x_0. \end{cases}$$

Prove that g(x) is a PDF.

Problem 2

Let *X* be a random variable with PDF

$$f(x) = \frac{1}{2}(1+x)$$
, for $-1 < x < 1$.

- (a) Find the PDF of the random variable $Y = X^2$.
- (b) Find the mean E(Y) and the variance Var(Y) of the random variable Y.

Problem 3

Let X be a random variable with moment generating function $M_X(t)$, for -h < t < h. Prove that

- (a) $P(X \ge a) \le e^{-at} M_X(t)$, for 0 < t < h.
- (b) $P(X \le a) \le e^{-at} M_X(t)$, for -h < t < 0.

Problem 4

Let $X \sim N(\mu, \sigma^2)$. Find the values of μ and σ^2 such that

$$P(|X| < 2) = \frac{1}{2}.$$

Prove or disprove that these values of μ and σ^2 are unique.

Problem 5

Find $P(X > \sqrt{Y})$ if X and Y are jointly distributed with PDF

$$f(x, y) = x + y$$
, for $0 \le x \le 1$, $0 \le y \le 1$.

Problem 6

Suppose X and Y are independent N(0, 1) random variables.

- (a) Find $P(X^2 < 1)$.
- (b) Find $P(X^2 + Y^2 < 1)$.

Problem 7

Let $X \sim N(\mu, \sigma^2)$, and let $Y \sim N(\gamma, \sigma^2)$. Suppose X and Y are independent. Define two random variables: U = X + Y and V = X - Y.

- (a) Show that U and V are independent Normal random variables.
- (b) Find the distribution of *U*.
- (c) Find the distribution of V.

DATA 556 Review

Problem 8

A random variable X is defined by the transformation $Z = \log(X)$, where the mean of the random variable Z is E(Z) = 0. Is E(X) greater than, less than, or equal to 1?