CS60065: Cryptography and Network Security

Assignment 3

Name: Anit Mangal Due: 11.59 pm, Oct 6, 2024

Total: 50 points

Note: The basic policies are stated in the course page. Using GPT (or similar tools) to solve problems from the assignment is **strictly prohibited**. Use of any other (possibly online) source(s) **must** be clearly stated in the solution. **Any dishonesty, if caught, will yield zero credits for the entire assignment.**

A. [Block Ciphers: $8 + 10 + (3 \times 4) = 30$ points.]

Answers

A.1 Bit representation for the S-box:

X_1	$\mathbf{X_2}$	X_3	X_4	\mathbf{Y}_1	$\mathbf{Y_2}$	Y_3	$oxed{\mathbf{Y_4}}$
0	0	0	0	1	0	0	0
0	0	0	1	0	1	0	0
0	0	1	0	0	0	1	0
0	0	1	1	0	0	0	1
0	1	0	0	1	1	0	0
0	1	0	1	0	1	1	0
0	1	1	0	0	0	1	1
0	1	1	1	1	1	0	1
1	0	0	0	1	0	1	0
1	0	0	1	0	1	0	1
1	0	1	0	1	1	1	0
1	0	1	1	0	1	1	1
1	1	0	0	1	1	1	1
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	0	0	0	0

Writing count of X,Y assignments which satisfy $\mathbf{E}=0$ in LAT

								b								
a	0	1	2	3	4	5	6	7	8	9	A	B	C	D	$\mid E \mid$	F
0	16	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1	8	10	6	8	10	8	8	6	4	6	6	8	10	8	4	10
2	8	10	8	10	6	8	6	8	6	8	10	4	4	6	8	10
3	8	8	10	10	8	12	10	6	6	6	8	8	10	6	12	8
4	8	10	8	6	8	10	8	6	10	4	10	8	6	8	6	4
5	8	12	6	6	10	10	8	12	6	12	8	8	8	8	10	6
6	8	8	12	8	10	10	6	10	8	8	8	12	6	6	6	10
7	8	6	6	8	12	6	10	8	8	6	6	8	4	6	10	8
8	8	10	10	8	8	6	6	8	10	8	4	6	10	4	8	6
9	8	8	8	12	10	10	6	10	10	6	6	6	8	12	8	8
A	8	12	10	10	6	6	12	8	8	8	6	10	6	10	8	8
B	8	6	12	6	8	6	8	10	4	6	8	6	8	10	8	6
C	8	8	10	10	12	8	10	6	8	12	10	6	8	8	6	6
D	8	6	8	6	6	12	10	8	8	10	4	6	6	8	6	8
E	8	6	6	12	6	8	8	10	6	8	8	10	8	6	6	4
F	8	8	8	8	8	8	12	12	10	6	10	6	10	6	6	10

A.2 A brute-force attack against single DES takes 2^{56} DES encryption calls in the worst case, since the key is 56 bits long.

Consider DESA,

8

+10

$$y = \mathrm{DESA}_{K,K'}(x) = \mathrm{DES}_K(x) \oplus K'$$

If we have 2 valid message-ciphertext pairs (x_1, y_1) and (x_2, y_2) under DESA using key (K, K'),

$$y_1 \oplus y_2 = (\mathrm{DES}_K(x_1) \oplus K') \oplus (\mathrm{DES}_K(x_2) \oplus K')$$

= $\mathrm{DES}_K(x_1) \oplus \mathrm{DES}_K(x_2)$

We can thus brute-force on K and verify by plugging it into the above equation. This requires 2^{57} DES encryption calls in the worst case.

When we find K, we can find K':

$$y_1 = \mathrm{DES}_K(x_1) \oplus K'$$

 $\Rightarrow K' = \mathrm{DES}_K(x_1) \oplus y_1$

This requires one additional call to DES encryption.

Hence, we would need roughly $2^{57} + 1$ DES encryption calls to break DESA encryption using a brute-force attack as compared to roughly 2^{56} encryption calls to break DES, making it around as difficult to break as DES.

A.3 Encrypting $x = 01101 \ 11011 \ 11010 \ 00110$ using $E(m_1 m_2 m_3 m_4 m_5) = (m_2 m_5 m_4 m_1 m_3)$

1. Mode ECB

E(01101) = 11001

E(11011) = 11110

E(11011) = 11110E(11010) = 10110

E(00110) = 00101

Hence, $E(01101\ 11011\ 11010\ 00110) = 11001\ 11110\ 10110\ 00101$ with ECB mode

2. Mode CBC

$$IV = 11001, x_1 = 01101 \Rightarrow y_1 = E(IV \oplus x_1) = E(11001 \oplus 01101) = E(10100) = 00011$$

$$y_1 = 00011, x_2 = 11011 \Rightarrow y_2 = E(y_1 \oplus x_2) = E(11000) = 10010$$

$$y_2 = 10010, x_3 = 11010 \Rightarrow y_3 = E(y_2 \oplus x_3) = E(01000) = 10000$$

$$y_3 = 10000, x_4 = 00110 \Rightarrow y_4 = E(y_3 \oplus x_4) = E(10110) = 00111$$

Hence, $E(01101\ 11011\ 11010\ 00110) = 00011\ 10010\ 10000\ 00111$ with CBC mode

3. Mode CFB

$$IV = 11001, x_1 = 01101 \Rightarrow z_1 = E(IV) = E(11001) = 11010$$

$$\Rightarrow y_1 = z_1 \oplus x_1 = 11010 \oplus 01101 = 10111$$

$$x_2 = 11011 \Rightarrow z_2 = E(y_1) = E(10111) = 01111$$

$$\Rightarrow y_2 = z_2 \oplus x_2 = 01111 \oplus 11011 = 10100$$

$$x_3 = 11010 \Rightarrow z_3 = E(y_2) = E(10100) = 00011$$

$$\Rightarrow y_3 = z_3 \oplus x_3 = 00011 \oplus 11010 = 11001$$

$$x_4 = 00110 \Rightarrow z_4 = E(y_3) = E(11001) = 11010$$

$$\Rightarrow y_4 = z_4 \oplus x_4 = 11010 \oplus 00110 = 11100$$

Hence, $E(01101\ 11011\ 11010\ 00110) = 10111\ 10100\ 11001\ 11100$ with CFB mode

4. Mode OFB

$$IV = 11001, x_1 = 01101 \Rightarrow z_1 = E(IV) = E(11001) = 11010$$

$$\Rightarrow y_1 = z_1 \oplus x_1 = 11010 \oplus 01101 = 10111$$

$$x_2 = 11011 \Rightarrow z_2 = E(z_1) = E(11010) = 10110$$

$$\Rightarrow y_2 = z_2 \oplus x_2 = 10110 \oplus 11011 = 01101$$

$$x_3 = 11010 \Rightarrow z_3 = E(z_2) = E(10110) = 00111$$

$$\Rightarrow y_3 = z_3 \oplus x_3 = 00111 \oplus 11010 = 11101$$

$$x_4 = 00110 \Rightarrow z_4 = E(z_3) = E(00111) = 01101$$

 $\Rightarrow y_4 = z_4 \oplus x_4 = 01101 \oplus 00110 = 01011$

+12 Hence, $E(01101\ 11011\ 11010\ 00110) = 10111\ 01101\ 11101\ 01011$ with OFB mode

B. [Cryptographic Hash Functions & MACs: (3+4)+(4+3)+(3+3)=20 points.]

Answers

B.1 a) Failure probability =
$$\frac{\mathcal{X}_0 \cap h^{-1}(y) = \Phi}{\text{Number of ways to choose } \mathcal{X}_0} = \frac{\begin{pmatrix} N - s_y \\ q \end{pmatrix}}{\begin{pmatrix} N \end{pmatrix}}$$

Pailure probability =
$$\frac{\mathcal{X}_0 \cap h^{-1}(y) = \Phi}{\text{Number of ways to choose } \mathcal{X}_0} = \frac{\begin{pmatrix} N - s_y \\ q \end{pmatrix}}{\begin{pmatrix} N \\ q \end{pmatrix}}$$

$$\Rightarrow \text{Success probability } (\epsilon) = 1 \text{ - Failure probability} = 1 \text{ - } \frac{\left(\begin{array}{c} N - s_y \\ q \end{array} \right)}{\left(\begin{array}{c} N \\ q \end{array} \right)}$$

b)
$$\epsilon_y = 1 - \frac{\begin{pmatrix} N - s_y \\ 1 \end{pmatrix}}{\begin{pmatrix} N \\ 1 \end{pmatrix}} = 1 - \frac{N - s_y}{N} = \frac{s_y}{N}$$

Average success probability =
$$\frac{1}{M} \cdot \sum_{y \in \mathcal{Y}} \epsilon_y$$

= $\frac{1}{M} \cdot \sum_{y \in \mathcal{Y}} \frac{s_y}{N}$
= $\frac{1}{M \cdot N} \sum_{y \in \mathcal{Y}} s_y$
= $\frac{1}{M \cdot N} \cdot N$
= $\frac{1}{M}$

+4

Hence, Average success probability = $\frac{1}{M}$

B.2 a) Assume $x \neq x'$, let h(x) = h(x')

Case 1.
$$|x| = |x'| = n$$

$$h(x) = h(x')$$

$$\Rightarrow 0||x = 0||x'$$

$$\Rightarrow x = x'$$

But we had assumed that $x \neq x'$. This is a contradiction. Hence, $h(x) \neq h(x')$

Case 2.
$$|x| \neq n, |x'| \neq n$$

$$h(x) = h(x')$$

$$\Rightarrow 1||g(x) = 1||g(x')|$$

$$\Rightarrow g(x) = g(x')$$

$$\Rightarrow x = x'$$

(q is collision resistant)

But we had assumed that $x \neq x'$. This is a contradiction. Hence, $h(x) \neq h(x')$ Case 3. $|x| = n, |x'| \neq n \text{ (Or } |x| \neq n, |x'| = n)$

$$h(x) = h(x')$$

$$\Rightarrow 0 ||x = 1||g(x')|$$

+4

This is not possible since the first bit does not match. Hence, $h(x) \neq h(x')$

Hence, h is collision-resistant if g is collision-resistant.

b) Let y be a message digest from h(x).

So, |y| = n + 1.

If $y_0 = 0$, we know that y = 0 || x, from definition of h

 $\Rightarrow x = y_1 y_2 \dots y_{n+1}$

+3

For all possible n + 1-bit digests, half of the digests are such that $y_0 = 0$.

Hence, h is not preimage-resistant.

+1 redn not shown

- **B.3** a) The MAC tag $x||h_K(x)$ is secure. This is because it does not allow forgery, and does not give information about K.
 - b) MAC-and-Encrypt should be avoided. This is because: Suppose the secure block cipher scheme, CTR, is used. Mallory wants to forge a

message m. It intercepts a cryptogram $E_K(m_0)||H_K(m_0)$, where $E_K(m_0)$ is of the form $IV||C_0, C_0$ is the size of m_0 . Here, m_0 is known and its size assumed to be at least that of m. **not sure what you did here**

Mallory computes K as $C_0 \oplus m_0$, which can be truncated to size of m.

Mallory computes $C = m \oplus K$.

0

Mallory replaces the cryptogram by IV||C, causing a successful forgery.