		Pa	rt A: Introduction	n		
Pro	gram: Degree Cou	rse Class: B.	Sc. Sem	ester: Sixth	Session:2024-2025	
1	Course Code	PSE - 05T				
2	Course Title	MATHEMATICAL PHYSICS				
3	Course Type	Theory				
4	Pre-requisite (if any)	NO				
5	Course Learning Outcomes (CLO)	After completion of the course students will be able to:				
6	Credit Value	Theory: 3				
7	Total Marks	Max. N	1arks: 100	Min	Passing Marks: 40	

	Part B: Content of the Course						
Total Hours: 45							
Unit	Topic	Number of Hour					
1	Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. Constrained Maximization using Lagrange Multipliers. Frobenius Method and Special Functions: Singular Points of Second Order Linear Differential Equations and their importance. Frobenius method and its applications to differential equations.						
П	Special Functions: Legendre, Bessel, Hermite and Laguerre Differential Equations. Properties of Legendre Polynomials: Rodrigues Formula, Orthogonality. Simple recurrence relations.	11					
Ш	Fourier Series: Periodic functions. Orthogonality of sine and cosine functions, Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients. Complex representation of Fourier series. Expansion of functions with arbitrary period. Expansion of non-periodic functions over an interval. Even and odd functions and their Fourier expansions. Application. Summing of Infinite Series.						
IV	Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. Error Function	11					

(Proba	abilit	v In	tegra	1).
fr root	****	,	to Paren	.,,

Partial Differential Equations: Solutions to partial differential equations, using separation of variables: Laplace's Equation in problems of rectangular, cylindrical and spherical symmetry.