Umweltmikrobiologie

npikall

11.03.2025

Inhaltsverzeichnis

1	Kometabolismus, Abbau und Transformation	1
	1.1 Abbau & Transformation	. 1
	1.2 Wachstum und Wachstumskinetik	. 2
	1.3 Temperaturabhängigkeit biologischer Prozesse	. 2
	1.4 CSB und Redfield Stöchiometrie	
	1.5 Zellertrag/Yield	. 2
	Altfragen	

1 Kometabolismus, Abbau und Transformation

1.1 Abbau & Transformation

Abbau ist ein Prozess bei dem org. Chemikalien biologisch und deren Enzyme zersetzt werden. Im Idealfall Abbau bis zur Mineralisierung (anorg. Stoffe). Abbau kann auch in stabilen Transformationsprodukten stehen bleiben. Es gibt drei Stufen:

- Umwandlung in ATP (Adenosintriphosphat)
- Citratzyklus zur Bildung zentraler Intermediate unter ATP Verbrauch
- Ausscheidung Stoffwechselprodukte

Weiters unterscheidet man zwischen folgenden Abbaubarkeiten:

- Bio. leicht abbaubar
- Bio. schwer abbaubar
- Persistente Stoffe / refraktäre Stoffe

Ein Metabolit ist zwischen Substrat (Ausgang) und Produkt (Ende), also ein Intermediat. Diese müssen in Folgereaktionen eintreten können und haben eine begrenzte Halbwertszeit. Ein Sekundärmetabolit ist meistens nicht essentiell für Organismen und wird oft als Stoffwechselprodukt ausgeschieden. Transformationsprodukte

Durch Synergismus, also dem Teilabbau von Stoffen durch viele MO, werden gemeinschaftlich Kontaminenten mieralisiert. Bei der Kometabolisierung wird der Abbau von Kontaminenten durch zugabe von Nährstoffen oder Substrate ermöglicht. Der Kontaminent reagiert dann sozusagen mit.

1.2 Wachstum und Wachstumskinetik

1.3 Temperaturabhängigkeit biologischer Prozesse

1.4 CSB und Redfield Stöchiometrie

1.5 Zellertrag/Yield

Yield bezeichnet die Biomasseausbeute bezogen auf das verbrauchte Substrat.

2 Altfragen

? Frage 1

Was ist die Bedeutung von Phosphor in der Umweltmikrobiologie?

Phosphor ist wichtigstes wachstumslimitierendes Substrat. Es spielt eine zentrale Rolle beim Energiestoffwechsel (ATP) und ist Bestandteil der DNA und der Zellmembran. Phosphat (PO_4^{3-}) ist dabei die relevanteste Form.

Frage 2

Beschreiben Sie den aeroben Abbau von aromatischen Kohlenwasserstoffen.

Metabolisierung in 3 Stufen, wobei das Grundmuster des aeroben abbaus bei monocyklischen Aromaten, Phenolen und Carbonsäuren und des letzten Ringes beim Abbau von PAK gleich ist.

- 1. Benzolring, unter Verbrauch von Sauerstoff in Brenzkatechin, umgewandelt, das zwei benachbarte Hydroxylgruppen enthält.
- 2. Ring des Brenzkatechins wird unter Verbrauch von Sauerstoff zwischen den beiden Hydroxylgruppen oder zwischen einer OH-Gruppe und einem C-Atom gespalten.
- 3. Die offenkettigen Verbindungen werden weiter in Säuren und Aldehyde gespalten, die in den Stoffwechsel eingeschleust werden.

? Frage 3

Was ist die Definition für *Hazard* laut WHO?

Biologische, chemische, physikalische oder radiologische Agenzien, die das Potenzial haben Schaden zu verursachen. (WHO 2006)

? Frage 4

Beschreiben Sie die Mechanismen der mikrobiellen Korrosion von Stahl.

MISSING

? Frage 5

Welche sind die drei Hauptübertragungswege von Infektionserkrankungen?

• Person zu Person (direkt, indirekt, airborne)

- Vehikel basierend (waterborne, foodborne, airborne, soilborne)
- Vektor basierend (anthropods/insects)

? Frage 6

Was ist μ_{max} und K_s in der Wachstumskinetik?

 K_s ist die Sättigungskonstante, Nährstoffkonzentration bei $\mu=0.5\cdot\mu_{\rm max} \quad [{\rm mg\ /l}]$ $\mu_{\rm max}$ ist die maximale Wachstumsrate (Zunahme der Zellzahl/-masse pro Zeiteinheit)

$$\mu = \mu_{\max} \frac{S}{S + K_{S_{\max}}}$$

? Frage 7

Beschreiben Sie die Unterschiede zwischen kontinuierlicher Fermentation und Belebungsbecken?

Kontinuierliche Fermentation: Ein vollständig durchmischtes Becken, dem kontinuierlich Abwasser (Nährlösung) zufließt. Dort wachsen MO die das zugeführte Substrat verbrauchen und das System wieder verlassen. Gleichgewichtszustand, d.h. Konzentration im Ablauf bleibt gleich. Ist qR (Wachstumsrate der MO) größer als μ_{max} dann werden MO ausgewaschen. Bei $0 < qR < \mu_{max}$ ist das System selbstregulierend.

Belebungsbecken: Beim Belebungsbecken wird qR und μ_{max} entkoppelt, damit das Volumen des Beckens und die erforderliche Verweilzeit klein gehalten werden. Dies geschieht durch eine Rückführung der MO aus dem Ablauf einer kont. Fermentation in den belüfteten Reaktor. In der Praxis erfolgt das durch Abtrennung der Biomasse im Nachklärbecken oder auch Membranfiltration.

? Frage 8

Charakterisieren Sie die Grün Alge.

Grünalge: (450 Gattungen, >7500 Arten)

- größte Gruppe innerhalb der Algen
- Einzellig, auch koloniebildende Formen
- Lebensweise autotroph (z.T. parasitär auf Landpflanzen)
- Reservestoffe: Stärke gespeichert in Pyrenoiden
- Beweglichkeit: manche Arten 1-2 Flagellen
- Zellwand: innere Lage Zellulose, äußere Lage Pektin
- Habitat: Süßwasser, einige marin, terrestrisch in feuchter Umgebung
- Fortpflanzug: asexuell und sexuell

? Frage 9

Beschreiben Sie die Unterschiede zwichen Katabolismus und Anabolismus.

Katabolismus: Abbau von Stoffwechselprodukten von komplexen zu einfachen Molekülen. Energiefreisetzende (exergone) Stoffumsetzungen. Dient zur Energiegewinnung, Lieferung von Baustoffen und der Entgiftung.

Anabolismus: Ist die Gesamtheit der energieverbrauchenden (endergonen) Stoffumsetzungen und gleichzeitg der aufbauenden Stoffwechselreaktionen.

? Frage 10

Erklären Sie Viroid, defekte Viren und Prionen.

Viroide: kurzer, zu einem Ring geschlossener RNA Einzelstrang (250-400 Basen). Freie DNA, keine Proteine oder Lipide. Replikation in Pflanzenzellen.

defekte Viren: Nicht im Besitz aller Gene für einen vollständigen Infektionszyklus. Benötigen Helfervirus. Konkurenz um Replikationsapparat, Hüllproteine und Capsidproteine.

Prionen: Infektiöse Proteine (falsch gefaltet). Verursachen spongiforme Enzephalopathien. Beispiel: Creutzfeld-Jakob, BSE, Scarpie. Unempfindlich gegenüber UV- und Gammastrahlen, Hitze und Desinfektionsmittel.