Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей Кафедра

электронных вычислительных машин

Дисциплина: Арифметические и логические основы цифровых устройств

К ЗАЩИТЕ ДОПУСТИТЬ

_____И.В. Лукьянова

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовой работе на тему

ПРОЕКТИРОВАНИЕ И ЛОГИЧЕСКИЙ СИНТЕЗ СУММАТОРА-УМНОЖИТЕЛЯ ДВОИЧНО-ЧЕТВЕРИЧНЫХ ЧИСЕЛ

БГУИР КР 1-40 02 01 312 ПЗ

Студент А. М. Гнездилов

Руководитель И. В. Лукьянова

Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

Дисциплина: Арифметические и логические основы цифровых устройств

УП	ЗЕРЖ	СДАЮ		
Заве	едуюі	щий ка	федрой	ЭВМ
		Б. В.	Никуль	шин
«	>>>		20	_Γ.

ЗАДАНИЕ по курсовой работе студента Гнездилова Александра Максимовича

- **1** Тема работы: «Проектирование и логический синтез сумматораумножителя двоично-десятичных чисел»
- 2 Срок сдачи студентом законченной работы: до 20 мая 2022 г.
- 3 Исходные данные к работе:
 - **3.1** исходные сомножители: MH = 12,39; MT = 95,91;
 - **3.2** алгоритм умножения: Б;
 - **3.3** метод умножения: умножение закодированного двоично-четверичного множимого на два разряда двоичного множителя одновременно в прямых кодах;
 - **3.4** коды четверичных цифр множимого для перехода к двоичночетверичной системе кодирования: $0_4 - 00$, $1_4 - 11$, $2_4 - 01$, $3_4 - 10$;
 - 3.5 тип синтезируемого умножителя: 1;
 - **3.6** логический базис для реализации ОЧС: ИЛИ-НЕ; метод минимизации карты Карно Вейча;
 - **3.7** логический базис для реализации ОЧУ: ИЛИ; исключающее ИЛИ; метод минимизации алгоритм Рота.

4 Содержание пояснительной записки (перечень подлежащих разработке вопросов):

Введение. 1. Разработка алгоритма умножения. 2. Разработка структурной схемы сумматора-умножителя. 3. Разработка функциональных схем основных узлов сумматора-умножителя. 4. Синтез комбинационных схем устройств на основе мультиплексоров. 5. Оценка результатов разработки. Заключение. Список литературы.

- 5 Перечень графического материала:
 - **5.1** Сумматор-умножитель первого типа. Схема электрическая структурная.
 - **5.2** Одноразрядный четверичный сумматор. Схема электрическая функциональная.
 - **5.3** Одноразрядный четверичный умножитель. Схема электрическая функциональная.
 - 5.4 Регистр-аккумулятор. Схема электрическая функциональная.
 - **5.5** Одноразрядный четверичный сумматор. Реализация на мультиплексорах. Схема электрическая функциональная.

КАЛЕНДАРНЫЙ ПЛАН

Наименование этапов	Объём	Срок	
курсовой работы	этапа,	выполнения	Примечания
A500.10	%	этапа	3.03
Разработка алгоритма умножения	10	10.02-20.02	
Разработка структурной схемы	10	21.02-09.03	С выполнением
сумматора-умножителя			чертежа
Разработка функциональных схем	50	10.03-30.04	С выполнением
основных узлов сумматора-			чертежей
умножителя			5000
Синтез комбинационных схем	10	01.05–15.05	С выполнением
устройств на основе мультиплексоров			чертежа
Завершение оформления	20	15.05–20.05	
пояснительной записки			

noneimiesibilen samieki		
Дата выдачи задания: 10 февраля 20	022 г.	
Руководитель	-	 _/И.В.Лукьянова /
ЗАДАНИЕ ПРИНЯЛ К ИСПОЛНЕН	НИЮ _	_/

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	5
1. РАЗРАБОТКА АЛГОРИТМА УМНОЖЕНИЯ	
2. СИНТЕЗ СТРУКТУРЫ СУММАТОРА-УМНОЖЕНИТЕЛЯ ПЕРВОГО	
	9
3. РАЗРАБОТКА ФУНКЦИОНАЛЬНЫХ СХЕМ ОСНОВНЫХ УЗЛОВ	
3.1. Логический синтез ОЧС	
3.2. Логический синтез ОЧУ	
4. ЭФФЕКТИВНОСТЬ МИНИМИЗАЦИИ	24
5. СИНТЕЗ ОЧС НА ОСНОВЕ МУЛЬТИПЛЕКСОРА	25
6. ЛОГИЧЕСКИЙ СИНТЕЗ ПРЕОБРАЗОВАТЕЛЯ МНОЖИТЕЛЯ	27
7. ВРЕМЕННЫЕ ЗАТРАТЫ НА УМНОЖЕНИЕ	28
ЗАКЛЮЧЕНИЕ	29
ЛИТЕРАТУРА	30
ПРИЛОЖЕНИЕ А	31
ПРИЛОЖЕНИЕ Б	32
ПРИЛОЖЕНИЕ В	33
ПРИЛОЖЕНИЕ Г	
ПРИЛОЖЕНИЕ Д	35
ПРИЛОЖЕНИЕ Е	

ВВЕДЕНИЕ

Целью данной работы является разработка сумматора-умножителя первого типа для алгоритма умножения «Б» в дополнительном коде на два разряда одновременно. Чтобы это осуществить нам нужно решить ряд задач:

- 1. Разработать алгоритм умножения и оценить погрешности вычислений.
- 2. Разработать структурную схему сумматора-умножителя первого типа.
- 3. Разработать функциональные схемы основных узлов сумматораумножителя в заданных логических базисах.
- 4. Разработать комбинационную схему на основе мультиплексора.
- 5. Рассчитать временные затраты на умножение.

1. РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ СУММАТОРА-УМНОЖИТЕЛЯ

Перевод данных сомножителей из десятичной системы счисления в четверичную систему счисления:

Множимое:

Множитель:

Сомножители в форме с плавающей запятой в прямом коде:

 $M_H = 0, 100011010010$ $P_{MH} = 0.0001$ (закодирован согласно заданию)

 $M_T = 0,0101111111110$ $P_{MT} = 0.0100$ (закодирован традиционно)

Сложении порядков:

$$P_{MH} = 0.0001 +02$$

 $P_{MT} = 0.0100 +10$
 $P = 0.1101 +12$

Результат операции закодирован согласно задания на кодировку множимого. Знак произведения определяем суммой по модулю двух знаков сомножителей:

зн
$$M_H \oplus 3H M_T = 0 + 0 = 0$$

Для умножения мантисс предварительно преобразуем множитель, чтобы исключить диаду 11 (3₄), заменив ее на триаду 101.

Преобразованный множитель имеет вид: $M\tau^{\Pi} = 01100000\overline{01}10$

 $\begin{array}{l} \text{MH=301203} \\ \text{MT}_4 = 113332 \\ \text{MT}^{\Pi} = 1200\overline{12} \\ \text{MT}^{\Pi} = 01100000\overline{01}10 \\ [-\text{MH}]_{\mathcal{A}} = 3.032131 \\ [2\text{MH}]_{\Pi D} = 0,1203012 \end{array}$

Умножение мантисс по алгоритму «Б» приведено в таблице 1.1.

Таблица 1.1 - Умножение мантисс

U	Іетверичная с/с		Двоично-четверичная с/с	Комментарии					
	1		2	3					
0.	000000000000	0.	000000000000000000000000000000000000000	$\sum_{\mathbf{q}}^{0} = 0$					
<u>0.</u>	000001203012	<u>0.</u>	00000000011010010001101	$\Pi_1^{q} = M_{H} \cdot 2 \cdot 2^0$					
0.	000001203012	0.	00000000011010010001101	$\Sigma_1^{ ext{ iny q}}$					
<u>3.</u>	333330321310	<u>1.</u>	101010101000100111101100	$\Pi_2^{q} = M_{H} \cdot (-1) \cdot 2^1$					
3.	333332130322	1.	101010101001111000100101	\sum_{2}^{4}					
<u>0.</u>	00000000000000000	<u>0.</u>	000000000000000000000000000000000000000	$\Pi_3^{q} = M_{H} \cdot 0 \cdot 2^2$					
3.	333332130322	1.	101010101001111000100101	\sum_3^4					
<u>0.</u>	00000000000000000	<u>0.</u>	000000000000000000000000000000000000000	$\Pi_4^{\rm q} = \mathrm{MH} \cdot 0 \cdot 2^3$					
3.	333332130322	1.	101010101001111000100101	\sum_{4}^{4}					
<u>0.</u>	012030120000	<u>0.</u>	001101001000110100000000	$\Pi_5^{\rm q} = \mathrm{MH} \cdot 2 \cdot 2^4$					
0.	012022310322	0.	001101000101101100100101	$\Sigma_5^{ ext{q}}$					
<u>0.</u>	030120300000	<u>0.</u>	0010001101001000000000000	$\Pi_6^{q} = M_{H} \cdot 1 \cdot 2^5$					
0.	102203210322	0.	110001010010011100100101	$\Sigma_6^{ ext{ iny q}}$					

Окончив умножение, необходимо оценить погрешность вычислений. Для этого полученное произведение (Мн * Мт) $_4$ = 0,102203210322 ($P_{\rm MH}*P_{\rm MT}=12_4$) приводим к нулевому порядку, а затем переводим в десятичную систему счисления:

$$(M_H * M_T)_4 = 102203,210322 \quad (P_{M_H} * P_{M_T} = 0)$$

 $(M_H * M_T)_{10} = 1187.5766$

$$M_{H_{10}} * M_{T_{10}} = 1188,3249$$

Абсолютная погрешность:

$$\Delta = 1188,3249 - 1187,5766 = 0,7483$$

$$\delta = \frac{\Delta}{(\text{MH*MT})_{10}} = \frac{0,7483}{1188,3249} = 0,0006297$$

$$\delta = 0,06297\%$$

2.РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ СУММАТОРА- УМНОЖИТЕЛЯ

Структурная схема сумматора-умножителя 1-го типа алгоритма умножения "Б" приведена в приложении А.

Если устройство работает как сумматор (на входе mul/sum - "1"), то оба слагаемых последовательно записываются в регистр множимого, а на управляющий вход формирователя дополнительного кода (ФДК) F2 поступает «1». Нужно помнить, что числа представлены в форме с плавающей запятой. Поэтому, перед тем как складывать мантиссы, необходимо выровнять порядки. В блоке порядков нужно обеспечить сравнение порядков, используя сумматор порядков, и в зависимости от знака результата сдвигать первое или второе слагаемое. Реализация сдвига мантиссы числа с меньшим порядком будет зависеть от алгоритма умножения. Этим будет определяться порядок подачи слагаемых на операцию и то, где будет сдвигаться мантисса (в регистре множимого или в регистре результата). На выходах ФДК формируется дополнительный код одного слагаемого с учетом знака. Это слагаемое может в регистр множимого, при этом управляющие быть записано поступающие на входы «h» всех ОЧУ, дают возможность переписать на выходы без изменений. Если есть ОЧУ разряды слагаемого необходимость выравнивания порядков, то в регистре-аккумуляторе может выполняться сдвиг мантиссы первого слагаемого. Если на вход «h» поступает «0», то ОЧУ перемножает разряды Мн и Мт.

Рисунок 2.1 – Режимы работы ОЧУ

Одноразрядный четверичный сумматор предназначен для сложения двух двоично-четверичных цифр, подаваемых на его входы.

Рисунок 2.2 – Однозарядный четверичный сумматор

В ОЧС первое слагаемое складывается с нулем, так как на старших выходах ОЧУ будут формироваться только коды нуля. После первое слагаемое попадает в регистр-аккумулятор, который изначально обнулен.

На втором такте второе слагаемое из регистра множимого через цепочку ОЧУ и ОЧС попадает в аккумулятор, где складывается с первым слагаемым. Таким образом, аккумулятор (накапливающий сумматор) складывает операнды и хранит результат. Разрядность аккумулятора должна быть на единицу больше, чем разрядность исходных слагаемых, чтобы предусмотреть возможность возникновения при суммировании переноса.

Если устройство работает как умножитель (на входе mul/sum - "0"), то множимое и множитель помещаются в соответствующие регистры, а на управляющий вход ФДК F2 поступает «0». Диада множителя поступает на входы преобразователя множителя (ПМ). Задачей ПМ является преобразование диады множителя в соответствии с алгоритмом преобразования. При этом в случае образования единицы переноса в старшую диаду множителя она должна быть учтена при преобразовании этой старшей диады (выход 1 ПМ). В регистре множителя в конце каждого такта умножения содержимое сдвигается на 2 двоичных разряда, и в последнем такте умножения регистр обнуляется. Это позволяет использовать регистр множителя для хранения младших разрядов произведения при умножении по алгоритму "Б" (регистр множителя служит как бы "продолжением" регистра результата). Выход 2 ПМ переходит в единичное состояние, если текущая диада содержит отрицание (01). В этом случае инициализируется управляющий вход F1 формирователя дополнительного кода (ФДК), и на выходах ФДК формируется дополнительный код множимого с обратным знаком (умножение на -1). Принцип работы ФДК в зависимости от управляющих сигналов приведен в таблице 2.1

T () 1	D	_	1		
Таблина 2 Т	- Режимы	nabothi (формирова	тепя лопо	олнительного кода.
т ислици для		Paccibi	4 CPMIIP CDC	и отп доп	инительного кода.

		1 1 1
Сигналы на	а входах ФДК	DODAH TOT HO DI IVOHOV ONIV
F1	F2	Результат на выходах ФДК
0	0	Дополнительный код множимого
0	1	Дополнительный код слагаемого
1	0	Меняется знак Мн
1	1	Меняется знак слагаемого

На выходах 3,4 ПМ формируются диады преобразованного множителя, которые поступают на входы ОЧУ вместе с диадами множимого.

ОЧУ предназначен только для умножения двух четверичных цифр. Если в процессе умножения возникает перенос в следующий разряд, необходимо предусмотреть возможность его прибавления. Для суммирования результата умножения текущей диады Мн · Мт с переносом из предыдущей диады предназначены ОЧС. Значит, чтобы полностью сформировать частичное произведение четверичных сомножителей, нужна комбинация цепочек ОЧУ и ОЧС. Частичные суммы формируются в аккумуляторе. На первом этапе он обнулен, и первая частичная сумма получается за счет сложения первого частичного произведения (сформированного на выходах ОЧС) и нулевой частичной суммы (хранящейся в аккумуляторе). Потом в аккумуляторе происходит сложение і-й частичной суммы с (i+1)-м частичным произведением, результат сложения сохраняется. Содержимое аккумулятора сдвигается на один четверичный разряд влево в конце каждого такта умножения по алгоритму «Б».

На четырех выходах ОЧУ формируется результат умножения диад $Mh\cdot M\tau$. Максимальной цифрой в диаде преобразованного множителя является двойка, поэтому в старшем разряде произведения максимальной цифрой может оказаться только «1» :

$$3 \cdot 2 = 12.$$

 $max \quad max$
 $MH \quad MT$

От сюда следует, что на младшие входы ОЧС никогда не поступят диады цифр, соответствующие кодам «2» и «3», следовательно, в таблице истинности работы ОЧС будут содержаться 16 безразличных входных наборов. Частичные суммы хранятся в аккумуляторе и регистре множителя, так как алгоритм умножения «Б» предполагает возможность синхронного сдвига этих устройств. Количество тактов умножения определяется разрядностью Мт.

3.РАЗРАБОТКА ФУНКЦИОНАЛЬНЫХ СХЕМ ОСНОВНЫХ УЗЛОВ 3.1Логический синтез одноразрядного четверичного сумматора

ОЧС - это комбинационное устройство (5 входов и 3 выхода):

- 2 разряда одного слагаемого (множимого);
- 2 разряда второго слагаемого (регистр результата);
- вход переноса из младшего ОЧС.

Разряды обоих слагаемых закодированы : 0 - 01; 1 - 11; 2 - 10; 3 -00. Принцип работы ОЧС представлен с помощью таблицы 3.1.

Таблица 3.1 - Таблица истинности ОЧС

Tuon													
a_1	a_2	b_1	b_2	p	Π	S_1	S_2	Пример					
0	0	0	0	0	0	0	0	0+0+0=00					
0	0	0	0	1	0	1	1	0+0+1=01					
0	0	0	1	0	X	X	X	0+2+0=02					
0	0	0	1	1	X	X	X	0+2+1=03					
0	0	1	0	0	X	X	X	0+3+0=03					
0	0	1	0	1	X	X	X	0+3+1=10					
0	0	1	1	0	0	1	1	0+1+0=01					
0	0	1	1	1	0	0	1	0+1+1=02					
0	1	0	0	0	0	0	1	2+0+0=02					
0	1	0	0	1	0	1	0	2+0+1=03					
0	1	0	1	0	X	X	X	2+2+0=10					
0	1	0	1	1	X	X	X	2+2+1=11					
0	1	1	0	0	X	X	X	2+3+0=11					
0	1	1	0	1	X	X	X	2+3+1=12					
0	1	1	1	0	0	1	0	2+1+0=03					
0	1	1	1	1	1	0	0	2+1+1=10					
1	0	0	0	0	0	1	0	3+0+0=03					
1	0	0	0	1	1	0	0	3+0+1=10					
1	0	0	1	0	X	X	X	3+2+0=11					
1	0	0	1	1	X	X	X	3+2+1=12					
1	0	1	0	0	X	X	X	3+3+0=12					
1	0	1	0	1	X	X	X	3+3+1=13					
1	0	1	1	0	1	0	0	3+1+0=10					
1	0	1	1	1	1	1	1	3+1+1=11					
1	1	0	0	0	0	1	1	1+0+0=01					
1	1	0	0	1	0	0	1	1+0+1=02					
1	1	0	1	0	X	X	X	1+2+0=03					
1	1	0	1	1	X	X	X	1+2+1=10					
1	1	1	0	0	X	X	X	1+3+0=10					

Продолжение таблицы 3.1

1	1	1	0	1	X	X	X	1+3+1=11
1	1	1	1	0	0	0	1	1+1+0=02
1	1	1	1	1	0	1	0	1+1+1=03

Минимизацию выходов ОЧС S_2 проведем с помощью карты Карно и Алгоритма Рота, минимизацию S_1 и Π проведем с помощью карт Карно.

Минимизация функции П картами Карно:

Минимизировав функцию, получим:

$$f_{min_{ДH\Phi}} = a_1 \overline{a}_2 p + \overline{a}_1 a_2 b_1 p + a_1 \overline{a}_2 b_1$$

Минимизация функции S_1 картами Карно:

Минимизировав функцию, получим:

$$f_{min_{\text{СДН}\Phi}} = a_1 \overline{b}_2 \overline{p} + \overline{a}_1 \overline{b}_1 p + \overline{a}_1 b_2 \overline{p} + a_1 b_1 p$$

Минимизация функции S_2 картами Карно:

Минимизировав функцию, получим:

$$f_{min_{\text{СДН}\Phi}} = \overline{a}_1 \overline{a}_2 p + \overline{a}_1 \overline{a}_2 b_2 + a_2 \overline{b}_2 \overline{p} + a_1 a_2 \overline{b}_2 + a_1 a_2 \overline{p} + \overline{a}_2 b_1 p$$

Минимизация функции S2 алгоритмом Рота:

Определим количество единичных кубов:

 $L = \{ 00001; 00110; 00111; 01000; 10111; 11000; 11001; 11110 \}$

и множество безразличных кубов:

 $N = \{ 00010; 00011; 00100; 00101; 01010; 01011; 01100; 01101; 10010; 10011; 10100; 10101; 11010; 11011; 11100; 11101 \}$

Таблица 3.2 – Минимизация N

$\begin{array}{c} b_1b_2p \\ a_1a_2 \end{array}$	000	001	011	010	110	111	101	100
00			X	x			х	х
01			х	х			х	х
11			х	х			х	х
10			х	x			х	x

 $N = \{xx01x; xx10x\}$

 $C_0 = \{ 00001; 00110; 00111; 01000; 10111; 11000; 11001; 11110, xx01x; xx10x \}$

Первым этапом алгоритма Рота является нахождение множества простых импликант. Для реализации этого этапа будем использовать операцию умножения (*) над множествами Со, С1 и т.д., пока в результате операции будут образовываться новые кубы большей размерности. Первый шаг умножения (С0*Со) приведен в табл. 3.3. В результате этой операции сформируем новое множество кубов:

Таблица 3.3 – Поиск простых импликант ($C_0 * C_0$)

гаолица $5.5 - 110$ иск простых импликант ($C_0 \cdot C_0$)													
C0*C0	00001	00110	00111	01000	10111	11000	11001	11110	xx01x	xx10x			
00001	-												
00110		-											
00111		0011y	-										
01000				-									
10111			y0111		-								
11000				y1000		-							
11001						1100y	-						
11110								-					
xx01x	000y1	00y10	00y11	010y0	10y11	110y0	110y1	11y10	-				
xx10x	00y01	001y0	001y1	01y00	101y1	11y00	11y01	111y0		1			
A1	000x1 00x01	0011x 00x10 001x0	x0111 00x11 001x1	x1000 010x0 01x00	10x11 101x1	1100x 110x0 11x00	110x1 11x01	11x10 111x0	Ø	Ø			

```
A1 = \{ 000x1; 00x01; 0011x; 00x10; 001x0; x0111; 00x11; 001x1; x1000; 010x0; 01x00; 10x11; 101x1; 1100x; 110x0; 11x00; 110x1; 11x01; 11x10; 111x0 \} Z0 = \{ \emptyset \} B1 = \{ 00001; 00110; 00111; 01000; 10111; 11000; 11001; 11110; xx01x; xx10x \} C1 = \{ 000x1; 00x01; 0011x; 00x10; 001x0; x0111; 00x11; 001x1; x1000; 010x0; 01x00; 10x11; 101x1; 1100x; 110x0; 11x00; 110x1; 11x01; 11x0; xx01x; xx10x \}
```

Таблица 3.4 – Поиск простых импликант ($C_1 * C_1$)

											ІИКа											
C1*C1	000x1	00x01	0011x	00x10	001x0	x0111	00x11	001x1	x1000	010x0	01x00	10x11	101x1	1100x	110x0	11x00	110x1	11x01	11x10	111x0	xx01x	xx10x
000x1	-																					
00x01		-																				
0011x			-																			
00x10				-																		
001x0					-																	
x0111						-																
00x11		00xy1		00x1y			-															
001x1	00yx1				001xy			-														
x1000									-													
010x0										-												
01x00											-											
10x11							y0x11					-										
101x1								y01x1					-									
1100x														-								
110x0										y10x0					-							
11x00											y1x00					-						
110x1															110xy		-					
11x01																11x0y		-				
11x10																11xy0			-			
111x0															11yx0					-		
xx01x			00y1x			x0y11			x10y0					110yx							-	
xx10x			001yx			x01y1			x1y00					11y0x								-
A2	00xx1	00xx1	00x1x 001xx	00x1x	001xx	x0x11 x01x1	x0x11	x01x1	x10x0 x1x00	x10x0	x1x00	Ø	Ø		110xx 11xx0		Ø	Ø	Ø	Ø	Ø	Ø

```
A2 = \{ 00xx1; 00x1x; 001xx; x0x11; x01x1; x10x0; x1x00; 110xx; 11x0x; 11xx0 \}  Z1 = \{ \emptyset \}  B2 = \{ 000x1; 00x01; 0011x; 00x10; 001x0; x0111; 00x11; 001x1; x1000; 010x0; 01x00; 10x11; 101x1; 1100x; 110x0; 11x00; 110x1; 11x01; 11x10; 111x0; xx01x; xx10x \}  C2 = \{ 00xx1; 00x1x; 001xx; x0x11; x01x1; x10x0; x1x00; 110xx; 11x0x; 11xx0; xx01x; xx10x \}
```

Таблица 3.5 – Поиск простых импликант ($C_2 * C_2$)

C2*C2	00xx1	00x1x	001xx	x0x11	x01x1	x10x0	x1x00	110xx	11x0x	11xx0	xx01x	xx10x
00xx1	-											
00x1x		-										
001xx			-									
x0x11				-								
x01x1					-							
x10x0						-						
x1x00							-					
110xx								-				
11x0x									-			
11xx0										-		
xx01x											-	
xx10x												-
A3	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

$$A3 = \{ \emptyset \}$$

Новых кубов (третьей размерности) не образовалось. На этом заканчивается этап поиска простых импликант, так как |C3|<=1. Конечное множество простых импликант $Z = \{00xx1; 00x1x; 001xx; x0x11; x01x1; x10x0; x1x00; 110xx; 11x0x; 11xx0; xx01x; xx10x \}$

Следующий этап - поиск L-экстремалей на множестве простых импликант. Для этого используется операция # (решетчатое вычитание). В табл. 3.6 из каждой простой импликанты поочередно вычитаются все остальные простые импликанты $Z\#(Z\z)$, результат операции (последняя строка таблицы) указывает на то, что L-экстремалями стали следующие простые импликанты:

$$\mathbf{E} = \{ 00xx1; 11xx0 \}.$$

Таблица 3.6 – Поиск L-экстремалей

				Respe						
z#(Z-z)	00xx1	00x1x	001xx	x0x11	x01x1	x10x0	x1x00	110xx	11x0x	11xx0
00xx1	-		zzzz0 001x0			1yzzy x10x0				
00x1x	zzz0z 00x01	1		yzzzz 10x11		1yz0z x10x0				
001xx	zz0zz 00001	zz0zz 00010	1	yz0zz 10x11		1yyzz x10x0				
x0x11		zzzzy 00010	zzzyy 00100	1		zyz0y x10x0				
x01x1		zzyzy 00010	zzzzy 00100		1				zy0z0 11x0x	
x10x0		zyzzz 00010			zyyzy 10101	1	zz1zz x1100		zz1z1 1110x 11x01	zz1zz 111x0
x1x00		zyzyz 00010				zzz1z x1010	ı	zzz1y 110x1	zzzz1 zzzzy 11101 11x01	zzz1z 11110
110xx		yyzzz 00010				0zzzz 01010		ı	zzyzz zz1zz 11101 11101	zzyzz 11110
11x0x		yyzyz 00010				yzzyz 01010			ı	zzzyz 11110
11xx0		yyzzz 00010				yzzzz 01010	•		zzzzy 11101 11101	-
xx01x	zzzyz 00001	zzzzz Ø	zzyyz 00100	zzzzz Ø	zzyyz 10101	zzzzz Ø	zzyyz 01100	zzzzz Ø	zzyyz 11101 11101	zzyzz 11110
xx10x	zzyzz 00001	Ø	zzzzz Ø	Ø	zzzzz Ø	Ø	zzzzz Ø	Ø	zzzzz Ø	zzzyz 11110
Остаток	00001	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	11110

Проверка L-экстремалий показана в таблице 3.7

Таблица 3.7

z#(Z-z) n L	00001	00110	00111	01000	10111	11000	11001	11110
	00001	Ø	Ø	Ø	Ø	Ø	Ø	ууууу Ø
11110	ууууу Ø	yy110 Ø	yy11y Ø	y1yy0 Ø	1y11y Ø	11yy0 Ø	11yyy Ø	11110
10010	y00yy	y0y10	y0y1y	yy0y0	10y1y	1y0y0	1y0yy	1yy10
	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
01011	0y0y1	0yy1y	0yy11	010yy	yyy11	y10yy	y10y1	y1y1y
	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
10010	y00yy	y0y10	y0y1y	yy0y0	10y1y	1y0y0	1y0yy	1yy10
	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
10100	y0y0y	y01y0	y01yy	yyy00	101yy	1yy00	1yy0y	1y1y0
	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
01101	0yy01	0y1yy	0y1y1	01y0y	yy1y1	y1y0y	y1y01	y11yy
	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
10100	y0y0y	y01y0	y01yy	yyy00	101yy	1yy00	1yy0y	1y1y0
	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

 $E = \{ 00xx1; 11xx0 \}$

 $Z' = Z - E = \{ 00x1x; 001xx; x0x11; x01x1; x10x0; x1x00; 110xx; 11x0x; xx01x; xx10x \}$

Таблица 3.8 – Множество L-экстремалей

L#E	00001	00110	00111	01000	10111	11000	11001	11110
00xx1		zzzzy 00110		zyzzy 01000				
11xx0	Ø	yyzzz 00110		yzzzz 01000			zzzzy 11001	
Остаток	Ø	00110	Ø	01000	10111	Ø	11001	Ø

Множество кубов, непокрываемых L-экстремалями, L' = L # E = { 00110; 01000; 10111; 11001 }

Таблица 3.9- Множество кубов, непокрываемых L-экстремалями

Z'i n L'	00110	01000	10111	11001
00x1x	00110	Ø	Ø	Ø
001xx	00110	Ø	Ø	Ø
x0x11	Ø	Ø	10111	Ø
x01x1	Ø	Ø	10111	Ø
x10x0	Ø	01000	Ø	Ø
x1x00	Ø	01000	Ø	Ø
110xx	Ø	Ø	Ø	11001
11x0x	Ø	Ø	Ø	11001
xx01x	Ø	Ø	Ø	Ø
xx10x	Ø	Ø	Ø	Ø

Могут быть получены следующие тупиковые формы:

 $Fmin1 = \{00x1x; x01x1; x1x00; 11x0x; 00xx1; 11xx0\} =$

$$= \overline{a}_1 \overline{a}_2 b_2 + \overline{a}_2 b_1 p + a_2 \overline{b}_2 \overline{p} + a_1 a_2 \overline{b}_2 + \overline{a}_1 \overline{a}_2 p + a_1 a_2 \overline{p}$$

Преобразуем функции Π , S_1 , S_2 к заданному логическому базису:

$$\Pi = \overline{a_1} + a_2 + \overline{p} + \overline{a_1} + \overline{a_2} + \overline{b_1} + \overline{p} + \overline{a_1} + a_2 + \overline{b_1}$$

$$S_I = \overline{a_1} + b_2 + \overline{p} + \overline{a_1} + b_1 + \overline{p} + \overline{a_1} + \overline{b_2} + \overline{p} + \overline{a_1} + \overline{b_1} + \overline{p}$$

$$S_2 = \overline{a_1} + \underline{a_2} + \overline{p} + \overline{a_1} + a_2 + \overline{b_2} + \overline{a_2} + \overline{b_2} + \overline{a_1} + \overline{a_2} + \overline{b_2} + \overline{a_1}$$

$$\overline{a_1} + \overline{a_2} + \overline{p} + \overline{a_2} + \overline{b_1} + \overline{p}$$

Функциональная схема в заданном логическом базисе ОЧС представлена в приложении Б.

3.2. Логический синтез одноразрядного четверичного умножителя

ОЧУ - это комбинационное устройство, имеющее 5 входов и 4 выхода. Принцип работы ОЧУ представлен с помощью таблицы истинности (таблица 3.2).

Таблица 3.2 – Таблица истинности ОЧУ

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Taos	тица	5.4	Tac	лиц	a nem	ппости	1 0 13		
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X_1	X ₂	y_1	y ₂	h	P_1	P_2	P_3	P_4	Пример
0 0 0 1 0	0	0	0	0	0	0	0	0	0	0*0=00
0 0 0 1 1 0	0	0	0	0	1	0	0	0	0	Выход «00»
0 0 1 0	0	0	0	1	0	0	0	0	0	0*0=00
0 0 1 0 1 0 0 0 Выход «00» 0 0 1 1 0 x x x x x 0*3=00 0 0 1 1 0 0 0 0 0 2*0=00 0 1 0 0 0 0 0 2*0=00 0 1 0 0 0 0 1 Bыход «02» 0 1 0 1 0 0 0 1 2*1=02 0 1 0 1 0 0 0 1 2*2=10 0 1 1 0 0 0 1 3*2=10 0 1 1 0 0 0 1 3*3=12 0 1 1 1 1 1 0 3*3=00 1 0 0 0 0 0	0	0	0	1	1	0	0	0	0	Выход «00»
0 0 1 1 0 x x x x x x x Bыход «00» 0 1 0 0 0 0 0 2*0=00 0 1 0 0 0 0 1 Bыход «02» 0 1 0 1 0 0 0 1 2*1=02 0 1 0 1 1 1 1 0 0 Bыход «02» 0 1 1 1 1 0 0 Bыход «02» 0 1 1 0 0 0 1 Bыход «02» 0 1 1 0 0 0 1 Bыход «02» 1 0 0 0 0 0 0 3*0=00 1 0 0 0 0 0 3*3=00 1 0 0 1 0 Bыход «03»	0	0	1	0	0	0	0	0	0	0*2=00
0 0 1 1 1 x x x x Bыход «00» 0 1 0 0 0 0 0 2*0=00 0 1 0 0 0 1 Bыход «02» 0 1 0 1 0 0 0 1 2*1=02 0 1 0 1 1 1 1 0 0 Bыход «02» 0 1 1 0 0 0 1 0 1 2*2=10 0 1 1 0 0 0 1 0 1 2*3=12 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 3*0=00 1 0 0 0 0 0 0 0 3*0=00 0 0 0 0 0	0	0	1	0	1	0	0	0	0	Выход «00»
0 1 0 0 0 0 0 2*0=00 0 1 0 0 0 1 Bыход «02» 0 1 0 1 0 0 0 1 2*1=02 0 1 0 1 1 1 1 0 0 0 1 2*2=10 0 1 1 0 0 0 1 0 1 2*2=10 0 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 <t< td=""><td>0</td><td>0</td><td>1</td><td>1</td><td>0</td><td>X</td><td>X</td><td>X</td><td>X</td><td>0*3=00</td></t<>	0	0	1	1	0	X	X	X	X	0*3=00
0 1 0 0 0 1 Выход «02» 0 1 0 1 0 0 0 1 2*1=02 0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0	0	0	1	1	1	X	X	X	X	Выход «00»
0 1 0 1 0 0 0 1 2*1=02 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 </td <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>2*0=00</td>	0	1	0	0	0	0	0	0	0	2*0=00
0 1 0 1 1 1 1 0 0 Bыход «02» 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 <td< td=""><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td><td>Выход «02»</td></td<>	0	1	0	0	1	0	0	0	1	Выход «02»
0 1 1 0 1 2*2=10 0 1 1 0 0 0 1 Выход «02» 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3*0=00 0 0 0 3*0=00 0 0 0 0 0 0 0 0 3*0=00 0 0 0 0 0 0 3*0=00 0 0 0 0 3*0=00 0	0	1	0	1	0	0	0	0	1	2*1=02
0 1 1 0 0 0 1 Выход «02» 0 1 1 1 0 0 0 1 0 3*0-00 0	0	1	0	1	1	1	1	0	0	Выход «02»
0 1 1 1 0 x	0	1	1	0	0	0	1	0	1	2*2=10
0 1 1 1 x x x x Bыход «02» 1 0 0 0 0 0 3*0=00 1 0 0 1 0 0 1 0 Bыход «03» 1 0 0 1 0 0 1 0 Bыход «03» 1 0 1 0 0 1 0 Bыход «03» 1 0 1 0 0 1 0 Bыход «03» 1 0 1 0 0 1 0 Bыход «03» 1 0 1 0 0 1 0 Bыход «03» 1 0 1 1 0 0 0 1*0=0 1 1 0 1 1 0 0 1*0=0 1 1 0 1 1 1 1 1*0=0 1 1 <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>Выход «02»</td>	0	1	1	0	1	0	0	0	1	Выход «02»
1 0 0 0 0 0 3*0=00 1 0 0 1 0 0 1 0 Bыход «03» 1 0 0 1 0 0 1 0 3*1=03 1 0 0 1 0 0 1 0 Bыход «03» 1 0 1 0 0 1 0 1 3*2=12 1 0 1 0 0 1 0 Bыход «03» 1 0 1 1 0 0 1 0 Bыход «03» 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0	0	1	1	1	0	X	X	X	X	2*3=12
1 0 0 1 0 0 1 0 Выход «03» 1 0 0 1 0 0 1 0 3*1=03 1 0 0 1 0 0 1 0 Bыход «03» 1 0 1 0 0 1 0 Bыход «03» 1 0 1 0 0 1 0 Bыход «03» 1 0 1 1 0 0 1 0 Bыход «03» 1 1 0 1 1 1 0	0	1	1	1	1	X	X	X	X	Выход «02»
1 0 0 1 0 3*1=03 1 0 0 1 0 Bыход «03» 1 0 1 0 1 0 1 3*2=12 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1	0	0	0	0	0	0	0	0	3*0=00
1 0 0 1 0 Выход «03» 1 0 1 0 1 0 1 3*2=12 1 0 1 0 1 0 Выход «03» 1 0 1 1 0 1 0 Выход «03» 1	1	0	0	0	1	0	0	1	0	Выход «03»
1 0 1 0 1 3*2=12 1 0 1 0 1 0 Bыход «03» 1 0 1 1 0 1 0 1 0 1 0	1	0	0	1	0	0	0	1	0	3*1=03
1 0 1 0 1 0 Выход «03» 1 0 1 1 0 1 0 3*3=21 1 0 1 <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>Выход «03»</td>	1	0	0	1	1	0	0	1	0	Выход «03»
1 0 1 1 0 x </td <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>3*2=12</td>	1	0	1	0	0	1	1	0	1	3*2=12
1 0 1 1 1 x x x x Bыход «03» 1 1 0 0 0 0 0 1*0=00 1 1 0 0 1 1 Bыход «01» 1 1 0 1 1 1 1*1=01 1 1 0 1	1	0	1	0	1	0	0	1	0	Выход «03»
1 1 0 0 0 0 0 1*0=00 1 1 0 0 1 1 1 1 1 1 1*1=01 1 1 0 1 1 1 1 1 1 1 1*1=01 1 1 0 1 <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>X</td> <td>X</td> <td>X</td> <td>X</td> <td>3*3=21</td>	1	0	1	1	0	X	X	X	X	3*3=21
1 1 0 0 1 1 Выход «01» 1 1 0 1 1 1 1*1=01 1 1 0 1 3 1 1 3 1 1 3	1	0	1	1	1	X	X	X	X	Выход «03»
1 1 0 1 0 0 0 1 1 1*1=01 1 1 0 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 <t< td=""><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1*0=00</td></t<>	1	1	0	0	0	0	0	0	0	1*0=00
1 1 0 1 1 1 Выход «01» 1 1 1 0 0 0 1 1*2=02 1 1 1 0 1 1 1 1 1 1 1 1 1 1*3=03	1	1	0	0	1	0	0	1	1	Выход «01»
1 1 1 0 0 0 0 1 1*2=02 1 1 1 0 1 1 1 1 1 1 1 1*3=03	1	1	0	1	0	0	0	1	1	1*1=01
1 1 1 0 1 1 1 Выход «01» 1 1 1 1 0 x x x x x 1*3=03	1	1	0	1	1	0	0	1	1	Выход «01»
1 1 1 1 0 x x x x 1*3=03	1	1	1	0	0	0	0	0	1	1*2=02
	1	1	1	0	1	0	0	1	1	Выход «01»
1 1 1 1 1 x x x x Bыход «01»	1	1	1	1	0	X	X	X	X	1*3=03
	1	1	1	1	1	X	X	X	X	Выход «01»

Минимизацию выходов ОЧУ P_1, P_2, P_3 и P_4 проведем с помощью карт Вейча.

Минимизация функции P_1 картами Вейча:

Минимизировав функцию, получим:

h

$$f_{min_{\text{СДН}\Phi}} = x_1 \overline{x}_2 y_1 \overline{h} + \overline{x}_1 x_2 y_1 \overline{h}$$

h

Минимизация функции Р2 картами Вейча:

•		Α			_			
	1				1			
	*	*	*	*	*	*	*	*
							_	
				x	2			_
	•	1	<u>'a</u>		Z		h	-

Минимизировав функцию, получим: $f_{min_{\text{СДН}\Phi}} = x_1 \overline{x}_2 y_1 \overline{h} + \overline{x}_1 x_2 y_1 \overline{h}$

Минимизация функции Р₃ картами Вейча:

Минимизировав функцию, получим:

$$f_{min_{\text{JH}\Phi}} = x_1 h + x_1 x_2 y_2 + x_1 \overline{x}_2 \overline{y}_1 \overline{y}_2$$

Минимизация функции P_4 картами Вейча:

Минимизировав функцию, получим:

$$f_{min_{\text{ДH}\Phi}} = x_1 y_1 \overline{h} + x_2 h + x_1 x_2 y_1 \overline{y}_2 + x_2 y_2$$

Преобразуем функции , S_1 , S_2 к заданному логическому базису:

$$P_1/P_2 = (((x_1 \oplus 1) + x_2 + (y_1 \oplus 1) + h) \oplus 1) + ((x_1 + (x_2 \oplus 1) + (y_1 \oplus 1) + h) \oplus 1)$$

$$P_3 = (((x_1 \oplus 1) + (h \oplus 1)) \oplus 1) + (((x_1 \oplus 1) + (x_2 \oplus 1) + (y_2 \oplus 1)) \oplus 1) + (((x_1 \oplus 1) + x_2 + y_1 + y_2) \oplus 1)$$

$$\begin{array}{l} \textbf{\textit{P}}_{\textbf{4}} = (((x_1 \oplus 1) + (y_1 \oplus 1) + h) \oplus 1) + (((x_2 \oplus 1) + (h \oplus 1)) \oplus 1) + ((x_1 \oplus 1) + (x_2 \oplus 1) + (y_1 \oplus 1) + y_2) \oplus 1) + (((x_2 \oplus 1) + (y_2 \oplus 1)) \oplus 1) \end{array}$$

Функциональная схема в заданном логическом базисе ОЧУ представлена в приложении В.

4.ЭФФЕКТИВНОСТЬ МИНИМИЗАЦИИ

Для проведения оценки эффективности минимизации переключательных функций необходимо посчитать цену схемы до минимизации и цену схемы после минимизации.

Все рассчитанные данные сведены в таблицу 4.1 и 4.2

Таблица 4.1 - Эффективность минимизации ОЧС

Выход схемы	Количество входов до минимизации	Количество входов после минимизации	Эффективность минимизации
П	c=5+4*5+4=29	c=10+2+3=15	1,93
S_1	c=5+8*5+8=53	c=12+4+4=20	2,65
S_2	c=5+8*5+8=53	c=18+4+6=28	1,89

Таблица 4.2 - Эффективность минимизации ОЧУ

Выход схемы	Количество входов до минимизации	Количество входов после минимизации	Эффективность минимизации	
P_1/P_2	c=5+2*5+2=17	c=8+3+2=13	1,3	
P_3	c=5+9*5+9=59	c=9+3+3=15	3,93	
P ₄	c=5+10*5+10=65	c=11+2+4=17	3,82	

5.СИНТЕЗ ОЧС НА ОСНОВЕ МУЛЬТИПЛЕКСОРА

Мультиплексор – это логическая схема, имеющая п входов, туправляющих входов и один выход. При этом должно выполняться равенство $n=2^m$. На выход мультиплексора может быть пропущен без изменений любой (один) логический сигнал, поступающий на информационные входы. Порядковый номер информационного входа, значение с которого в данный момент должно быть передано на выход, должно быть передано на выход, определяется двоичным кодам на управляющих входах. Для синтеза ОЧС будем использовать мультиплексор «один из восьми» (1 из 8-ми). Входы $D_0, D_1, ..., D_7$ — это информационные входы мультиплексора. Входы A_0, A_1, A_2 — управляющие входы.

Рисунок 5.1 - Мультиплексор «один из восьми»

Используя таблицу истинности ОЧС, составим таблицу истинности для построения ОЧС на мультиплексорах (таблица 5.1).

Управление мультиплексором осуществляется тремя переменными: a_1, a_2, b_1 , а вход соответствующих значений функций на информационные входы обеспечивается реализацией этих функций на дополнительных логических элементах.

a ₁	a_2	b_1	b_2	p	П		S_1		S ₂	
0	0	0	0	0	0	"0"	0	b ₂*P	0	\overline{b}_2*P
0	0	0	0	1	0		1	- 2 -	1	~ Z -
0	0	0	1	0	X		X		X	
0	0	0	1	1	X		X		X	
0	0	1	0	0	X	"0"	X	$b_2 * \overline{p}$	X	"1"
0	0	1	0	1	X		X		X	
0	0	1	1	0	0		1		1	
0	0	1	1	1	0		0		1	
0	1	0	0	0	0	"0"	0	\overline{b}_2*P	1	$\overline{\mathbf{b}}_2 * \overline{p}$
0	1	0	0	1	0		1	2	0	~2 P
0	1	0	1	0	X		X		X	
0	1	0	1	1	X		X		X	
0	1	1	0	0	X	$b_2 * P$	X	$b_2 * \overline{p}$	X	"0"
0	1	1	0	1	X		X		X	
0	1	1	1	0	0		1		0	
0	1	1	1	1	1		0		0	
1	0	0	0	0	0	\overline{b}_2*P	1	$\overline{b}_2 * \overline{p}$	0	"0"
1	0	0	0	1	1	2	0	2 1	0	
1	0	0	1	0	X		X		X	
1	0	0	1	1	X		X		X	
1	0	1	0	0	X	"1"	X	$b_2 * P$	X	$b_2 * P$
1	0	1	0	1	X		X		X	
1	0	1	1	0	1		0		0	
1	0	1	1	1	1		1		1	
1	1	0	0	0	0	"0"	1	$\overline{b}_2 * \overline{p}$	1	"1"
1	1	0	0	1	0		0		1	
1	1	0	1	0	X		X		X	
1	1	0	1	1	X		X		X	
1	1	1	0	0	X	"0"	X	$b_2 * P$	X	$b_2 * \overline{p}$
1	1	1	0	1	X		X		X	
1	1	1	1	0	0		0		1	
1	1	1	1	1	0		1		0	

Функциональная схема ОЧС на основе мультиплексора представлена в приложении Γ .

6.ЛОГИЧЕСКИЙ СИНТЕЗ ПРЕОБРАЗОВАТЕЛЯ МНОЖИТЕЛЯ

Преобразователь множителя (ПМ) служит для исключения из множителя диад 11, заменяя их на триады $1\overline{01}$.

Таблица 6 - таблица истинности ПМ

Вх. д	иада	Тригер	Зн.	Вых. диада		
Q_1	Q_2	T	П	S_1	S_2	
0	0	0	0	0	0	
0	0	1	0	0	1	
0	1	0	0	0	1	
0	1	1	0	1	0	
1	0	0	0	1	0	
1	0	1	1	0	1	
1	1	0	1	0	1	
1	1	1	1	0	0	

Проведём минимизацию П при помощи карты Карно:

$$P = Q_1 T + Q_1 Q_2$$

Очевидно, что S_1 не минимизируется, поэтому $S_1 = \overline{Q_1}Q_2T + Q_1\overline{Q_2T}$

Проведём минимизацию S_2 при помощи карты Карно:

$$S_2 = \overline{Q_2}T + Q_2\overline{T}$$

Реализация ПМ представлена в приложении Д.

7.ВРЕМЕННЫЕ ЗАТРАТЫ НА УМНОЖЕНИЕ

Временные затраты на умножение сомножителей определяются в основном затратами на образование частичных произведений, получаемых на выходах ОЧС.

 $T = n*(T_{\Pi M} + T_{\Phi Д K} + T_{CДВИГА} + 2n*T_{OЧУ} + 2n*T_{OЧС}),$ где

 $T_{\text{ПМ}}$ – время преобразования множителя;

 $T_{\Phi \Pi K}$ – время формирования дополнительного кода множимого;

 $T_{\text{ОЧУ}}$ – время умножения на ОЧУ;

 $T_{\rm OYC}$ – время формирования единицы переноса в ОЧС;

 $T_{\text{сдвига}}$ — время сдвига частичной суммы;

n – количество разрядов на множителе.

ЗАКЛЮЧЕНИЕ

При выполнения курсового проекта были разработаны структурная схема сумматора-умножителя первого типа и функциональные схемы ОЧС и ОЧУ.

Одноразрядный четверичный умножитель — это комбинационное устройство, имеющее 5 двоичных входов (2 разряда и регистра Мн, 2 разряда из регистра Мт и управляющий вход h) и 4 двоичных выхода.

Одноразрядный четверичный сумматор — это комбинационное устройство, имеющее 5 двоичных входов (2 разряда одного слагаемого, 2 разряда второго слагаемого и вход переноса) и 3 двоичных выхода.

Мультиплексор-это логическая схема, имеющая n информационных входов, m управляющих входов и один выход. При этом должно выполняться условие $n=2^m$.

Принцип работы мультиплексора состоит в следующем. На выход мультиплексора может быть пропущен без изменений любой (один) логический сигнал, поступающий на один из информационных входов. Порядковый номер информационного входа, значение которого в данный момент должно быть передано на выход, определяется двоичным кодом, поданным на управляющие входы.

Также удалось усвоить навыки работы с различными типами минимизации переключательных функций, с проектированием функциональных схем в различных базисах и с расчетом времени работы схем.

ЛИТЕРАТУРА

- [1] Савельев А.Я. Прикладная теория цифровых автоматов. М.: Высшая школа, 1985.
- [2] Лысиков Б.Г. Арифметические и логические основы цифровых автоматов. Мн.: Вышейшая школа, 1980.
 - [3] Лысиков Б.Г. Цифровая вычислительная техника. Мн.: , 2003 г.
- [4] Луцик Ю.А., Лукьянова И.В., Ожигина М.П. Учебное пособие по курсу "Арифметические и логические основы вычислительной техники". -Мн.: ротапринт МРТИ ,2001 г.
- [5] Луцик Ю.А., Лукьянова И.В.— Учебное пособие по курсу "Арифметические и логические основы вычислительной техники". Мн.:ротапринт МРТИ ,2004 г.