

Varianta 096

Subjectul I

a)
$$5\sqrt{3}$$
. b) 3. c) x-2y+4=0. d) 1. e) 4. f) 0.

Subjectul II

1. a) 45. b)
$$\frac{3}{5}$$
. c) $\hat{0}$. d) 0. e) $(x+2)(x^2+1)=0$, cu solutia reala $x_1=-2$.

2. a)
$$f'(x) = \cos x$$
, $x \in \mathbb{R}$. b) $\int_{0}^{\pi} f(x) dx = -\cos x \Big|_{0}^{\pi} = 2$. c) $f''(x) = -\sin x$, pentru $x \in \left(0, \frac{\pi}{2}\right)$,

f''(x)<0, deci f este concavă pe
$$\left(0, \frac{\pi}{2}\right)$$
.

d) f'(0) =1. e)
$$\lim_{n\to\infty} \frac{1-\cos n}{n} = 0$$
.

Subjectul III

a) det L=0, rang L=1.

b)
$$I^2 = \begin{pmatrix} 1 - \sqrt{2} & 1 \\ \sqrt{2} - 2 & \sqrt{2} \end{pmatrix} \cdot \begin{pmatrix} 1 - \sqrt{2} & 1 \\ \sqrt{2} - 2 & \sqrt{2} \end{pmatrix} = \begin{pmatrix} 1 - \sqrt{2} & 1 \\ \sqrt{2} - 2 & \sqrt{2} \end{pmatrix} = I$$
, deci $I \in U$.

$$L^{2} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = L, \text{ deci } L \in U.$$

c)
$$\begin{pmatrix} 0 & a \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & a \\ 0 & 1 \end{pmatrix}$$
, $\forall a \in \mathbf{R}$, deci $\begin{pmatrix} 0 & a \\ 0 & 1 \end{pmatrix} \in \mathbf{U}$.

$$\begin{pmatrix} 0 & 0 \\ b & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ b & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ b & 1 \end{pmatrix}, \forall b \in \mathbf{R}, \det \begin{pmatrix} 0 & 0 \\ b & 1 \end{pmatrix} \in \mathbf{U}.$$

- d) Pentru $B \in U$, notăm $P(n): B^n = B$, pentru orice n natural nenul. P(1) este evident adevărată. Considerăm P(k) adevărată și avem $B^{k+1} = B^k \cdot B = B \cdot B = B^2 = B$, deci P(k+1) adevărată. Conform principiului inducției matematice P(n) este adevărată pentru orice n număr natural nenul.
- e) Dacă $A \in U$ atunci $A^2 = A$ și deci $a^2 + bc = a$, b(a+d) = b, c(a+d) = c, $bc + d^2 = d$. Scăzând prima și ultima egalitate obținem $a^2 d^2 = a d$, deci (a-d)(a+d) = a d. Pentru $a \ne d$ obținem a+d=1 iar

pentru a=d, înlocuind în egalități pentru b=0 avem a=0 sau a=1, iar dacă b \neq 0 avem a= $\frac{1}{2}$.

Deoarece a=d obtinem a+d=0 sau a+d=2 sau a+d=1.

f) De exemplu
$$M = \begin{pmatrix} \sqrt{1} & \sqrt{3} \\ \sqrt{2} & \sqrt{4} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & \sqrt{3} \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ \sqrt{2} & 1 \end{pmatrix} = L + A + B$$
, din b) avem

 $L \in U$, iar din c) A, $B \in U$.

g) Tr K =1+ $\sqrt{3}$, Fie X₁, X₂,...,X_n \in U, n \in N^{*}, astfel încât $K = X_1 + ... + X_n$. Atunci Tr(X₁+X₂+...+X_n)=Tr(X₁)+Tr(X₂)+...+Tr(X_n) \in N, conform punctului e), deci K nu se poate scrie ca o sumă finită de matrici din U.

Subjectul IV

a)
$$g'(x) = -\frac{1}{(x-1)^2} - \frac{1}{(x-2)^2} - \dots - \frac{1}{(x-2006)^2}, \forall x \in A.$$

b)
$$g'(x) = -\left[\frac{1}{(x-1)^2} + \frac{1}{(x-2)^2} + \dots + \frac{1}{(x-2006)^2}\right] < 0, \forall x \in A.$$

$$\frac{f'(x)}{f(x)} = \frac{(x-2) \cdot \dots \cdot (x-2006) + (x-1) \cdot (x-3) \cdot \dots \cdot (x-2006) + (x-1) \dots (x-2005)}{(x-1)(x-2) \dots (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006) + (x-1) \cdot (x-2006)}{(x-1)(x-2) \dots (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006) + (x-1) \cdot (x-2006)}{(x-1)(x-2) \dots (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006) + (x-1) \cdot (x-2006)}{(x-1)(x-2) \dots (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006) + (x-1) \cdot (x-2006)}{(x-1)(x-2) \dots (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006) + (x-1) \cdot (x-2006)}{(x-1)(x-2) \dots (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-2006)} = \frac{(x-2) \cdot \dots \cdot (x-2006)}{(x-2) \cdot \dots \cdot (x-200$$

$$= \frac{1}{x-1} + \frac{1}{x-2} + \dots + \frac{1}{x-2006} = g(x), \forall x \in A.$$

d) Din c) obţinem $f'(x)=f(x)\cdot g(x)$, deci $f''(x)=f'(x)\cdot g(x)+f(x)\cdot g'(x)=$

$$f'(x) \cdot \frac{f'(x)}{f(x)} + f(x) \cdot g'(x)$$
. Deci $f''(x) \cdot f(x) = (f'(x))^2 + f^2(x) \cdot g'(x) < (f'(x))^2$ decoarece din b)

avem g'(x)<0, pentru orice x din A.

e) Pentru
$$a \in \{1, 2, ..., 2006\}$$
 avem $\lim_{\substack{x \to a \\ z < a}} g(x) = -\infty$ respectiv $\lim_{\substack{x \to a \\ z > a}} g(x) = \infty$ deci graficul lui

f cu 2006 asimptote verticale.

f) Pentru a,b >2006, g continuă pe [a,b], deci integrabilă pe [a,b] și folosind c)

avem
$$\int_{a}^{b} g(x)dx = \int_{a}^{b} \frac{f'(x)}{f(x)} dx = \ln|f(x)||_{a}^{b} = \ln|f(b)| - \ln|f(a)|$$

respectiv
$$\int_{a}^{b} g(x+1)dx = \int_{a+1}^{b+1} g(t)dt = \int_{a+1}^{b+1} \frac{f'(t)}{f(t)}dt = \ln|f(t)|\Big|_{a+1}^{b+1} = \ln|f(b+1)| - \ln|f(a+1)|.$$

$$I = \int (g(x+1) - g(x))dx = \ln|f(2009)| - \ln|f(2008)| - \ln|f(2008)| + \ln|f(2007)|.$$

Pentru $x \ge 2007$ avem $f(x) \ge 0$ deci

$$I = \ln \frac{f(2009) \cdot f(2007)}{f^2(2008)} = \ln \frac{3 \cdot 4 \cdot \dots \cdot 2008 \cdot 1 \cdot 2 \cdot \dots \cdot 2006}{\left(2 \cdot 3 \cdot \dots \cdot 2007\right)^2} = \ln \frac{2008! \cdot 2006!}{2 \cdot (2007!)^2} = \ln \frac{2008}{2 \cdot (2007!)^2}$$

g) Pentru a=0 ecuația devine f(x)=0 și are 2006 soluții reale și distincte: 1, 2, ...,2006;

Pentru a≠0 ecuația devine
$$\frac{f'(x)}{f(x)} = \frac{1}{a}$$
, deci $g(x) = \frac{1}{a}$.

Pentru a>0 avem 2006 soluții distincte situate în intervalele (1,2), (2,3),...,(2005,2006), $(2006,\infty)$, iar pentru a<0 avem 2006 soluții distincte situate în $(-\infty,1)$, (1,2),...,(2005,2006).