					HPI	Fantasy 0.9	Action 0.)
					HP2	0.87	0.03
101	Movies HP2 TWI	MI1	M12	S	TW	0.5	0.4
HPI	1		3	Morres	MI1	0.01	0.9
u ₁ 2 Users u ₂					MI2	0.01	0.92
Users us	•						
$\mathfrak{u}_{\mathfrak{z}}$	uz				Peatures		
1	•					featu Fantasy	Action.
		` ` `			u,	1.4	2
uk	1			_	u	0.3	3
		1 L oftwice		1,2021	U3	4	
	utility matrix			0			(
	V				í		1
					!		

action fantasy 1.7 Jeaturis M14 . Movies Movies fantasy Users adion which movie has what features which wer likes which feature & by $[0.5 \ 1.7] [0.1] = 3.45$ how much

 $U \approx P Q^T$

We have to find P & Q^T such that the product PQ^T is very close to U.

 $U = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

loss function (reconstruction loss)
$$Q^{T} = [-1 \ 2] \qquad P = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$PQT = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 & 4 \\ 1 & -2 \end{bmatrix}$$

How close is U

to PQT?

$$\rightarrow$$
 distance $\rightarrow 12$ norm of $\left| U - PQ^{T} \right|$

$$U-PQT = \begin{bmatrix} 3 & -2 \\ 2 & 6 \end{bmatrix}$$

$$|U-PQT| = \begin{bmatrix} 3 - 2 \\ 2 6 \end{bmatrix} ||U-PQT||_{2}^{2} = 3^{2} + (-2)^{2} = 55.$$

I want to find Pla → that reproduces U as PQT≈U) some thing

→ that minimizes || U-PQT||2

-> That minimizes || U-PQT||2 - Recons. error $\frac{\partial l}{\partial P} = 0$; $\frac{\partial l}{\partial Q} = 0$ } gradient descent to find > local minima uneven surface, long time to converge. $P \rightarrow P + \gamma(\cdot, \cdot)$ ALS $Q \rightarrow Q + \gamma(\cdot, \cdot)$ algo. U using decomposing -> P& Q can be found U & SIVT

$$U \approx S \sum V^T \rightarrow using$$
 $V \approx PQ^T \rightarrow what we want.$
 $Q^T \leftarrow \sum V^T$

Result:

SVD minimizes veconstruction error!

$$SVD = SVD = SVD$$

Choice of # of features to be done wisely

Grandomain knowledge

Grecons. evror

 $l = \sum_{i} (y_{i} - w^{T}x_{i})^{2}$ Find w^T that minimizes $\frac{\partial l}{\partial w^T} = 0 \rightarrow X$ closed form solh Gradient Descent

$$l = \sum_{i=1}^{n} (y_i - \omega^T x_i)^2$$

$$\omega = (x^T x)^{-1} x^T y$$

$$X = \begin{bmatrix} x_1 & \cdots & x_2 & \cdots & x_n \\ x_2 & \cdots & x_n & \cdots & x_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \end{bmatrix}$$

$$y = ax^{2} + bx + c$$

$$max / min (y) \left\{ \frac{-b}{2a} \right\} \equiv x$$

Proof x 10 users yeather 1000 x [0000 items wers 10×104 $=10^5$ numbers. 10³ × 10⁴ =104 numbers $= 10^7$ nos ~ 10⁵ numbers. to store. in storage
if we use LF models.

Evaluating Rec Sys Increasing time that users spend Users on the site Revenue ARPU CLTV or ARPT or # of T/time How much value does the add to the platform;

evaluating TP/TP+FP - Amazon (items >> user) Users' way of - accuracy metrics J. - Top N acc/precision/recall Y Netflix Present Absent FN (users >> items) Pred. Absent Present Actual - novelty - ranking metrics - diversity V - Reciprocal Rank Proed: [a,b,c,d,e] = RR = -Acte: [C]

TF-IDF

Term frequency: # of times a term w_j occurs in all does D_1 --- D_N N-docs Inverse doc . $log(\frac{1}{\# of docs + he})$ TF-IDF = TFXIDF term w_j is present for unique words in docs; TF-IDF 1

for common words in all docs; TF-1DF &