Lab 10

NMOS Amplifiers

Learning outcomes

- 1) Studying the amplification characteristics of Common Source Amplifiers
- 2) Studying the amplification characteristics of Common Source Amplifiers with source resistance
- 3) Studying the amplification characteristics of Common Drain Amplifiers or "Source Follower"
- 4) Studying the amplification characteristics of Common Gate Amplifiers

Experiment 1) Studying the amplification characteristics of CS amplifiers

A) Create a new Multisim project and construct the circuit shown

- B) Run the simulation and record I_D , V_G , V_S and calculate gm
- C) Calculate the theoretical values of I_D , V_G , V_S then calculate gm
- D) Based on your measurements and calculations fill the following table

	Measured	Theoretical	$Error = \frac{\ Measured - Theortical\ }{Theortical} \times 100$
I _D			
V_{G}			
V_s			
gm			

E) Read $v_{o\text{-pp}}$ and $v_{in\text{-pp}}$ after setting both ChA and ChB as shown below

F) Take a screenshot of the outputs of the oscilloscope and put it in the following place holder

Put a screenshot of your output ($v_{o\text{-pp}}$ and $v_{in\text{-pp}}$) here and PIz make $v_{o\text{-pp}}$ in green and $v_{in\text{-pp}}$ in red

- G) Calculate voltage gain Av= v_{o-pp} / v_{in-pp}
- H) Calculate overall voltage gain Gv= $v_{\text{o-pp}}\,/\,v_{\text{sig-pp}} \!= v_{\text{o-pp}}\,/\,20\text{mV}$
- I) Calculate the theoretical values of Av = $-gm \cdot (R_L || R_D)$
- J) Based on your measurements and calculations fill the following table

		Measured	Theoretical	$Error = \frac{\ Measured - Theortical\ }{Theortical} \times 100$
	Av			

Answer the following questions:

1- Why Gv \approx 0.5 Av?

Experiment 2) Studying the amplification characteristics of CS amplifiers with Rs

A) Create a new Multisim project and construct the circuit shown

- B) Run the simulation and record I_D, V_G, V_S and calculate gm
- C) Calculate the theoretical values of I_D , V_G , V_S then calculate gm
- D) Based on your measurements and calculations fill the following table

	Measured	Theoretical	$Error = \frac{\ Measured - Theortical\ }{Theortical} \times 100$
I _D			
V _G			
V _s			
gm			

E) Read v_{o-pp} and v_{in-pp} after setting both ChA and ChB as shown below

F) Take a screenshot of the outputs of the oscilloscope and put it in the following place holder

Put a screenshot of your output ($v_{o\text{-pp}}$ and $v_{in\text{-pp}}$) here and Plz make $v_{o\text{-pp}}$ in green and $v_{in\text{-pp}}$ in red

- G) Calculate voltage gain Av= v_{o-pp} / v_{in-pp}
- H) Calculate overall voltage gain Gv= $v_{\text{o-pp}}\,/\,v_{\text{sig-pp}} \!= v_{\text{o-pp}}\,/\,20\text{mV}$
- I) Calculate the theoretical values of Av = $\frac{-gm \cdot (R_L||R_D)}{1+gm \cdot Rs}$
- J) Based on your measurements and calculations fill the following table

	Measured	Theoretical	$Error = \frac{\ Measured - Theortical\ }{Theortical} \times 100$
Av			

Answer the following questions:

- 1- Why DC values of currents and voltages does not change from exp 1?
- 2- Why Av is reduced when Rs is included in AC analysis?

Experiment 3) Studying the amplification characteristics of CD amplifiers "Source Follower"

A) Create a new Multisim project and construct the circuit shown

- B) Run the simulation and record I_D, V_G, V_S and calculate gm
- C) Calculate the theoretical values of I_D, V_G, V_S then calculate gm
- D) Based on your measurements and calculations fill the following table

	Measured	Theoretical	$Error = \frac{\ Measured - Theortical\ }{Theortical} \times 100$
I _D			
V_{G}			
Vs			
gm			

E) Read v_{o-pp} and v_{in-pp} after setting both ChA and ChB as shown below

F) Take a screenshot of the outputs of the oscilloscope and put it in the following place holder

Put a screenshot of your output ($v_{o\text{-pp}}$ and $v_{in\text{-pp}}$) here and Plz make $v_{o\text{-pp}}$ in green and $v_{in\text{-pp}}$ in red

- G) Calculate voltage gain Av= v_{o-pp} / v_{in-pp}
- H) Calculate overall voltage gain Gv= $v_{\text{o-pp}}\,/\,v_{\text{sig-pp}} = v_{\text{o-pp}}\,/\,20\text{mV}$
- I) Calculate the theoretical values of Av = $\frac{R_S}{\frac{1}{gm} + RS}$
- J) Based on your measurements and calculations fill the following table

	Measured	Theoretical	$Error = \frac{\ Measured - Theortical\ }{Theortical} \times 100$
Av			

Answer the following questions:

- 3- Why DC values of currents and voltages does not change from exp 1?
- 4- Why CD amplifier is called Source Follower?

Experiment 4) Studying the amplification characteristics of CG amplifiers

A) Create a new Multisim project and construct the circuit shown

- B) Run the simulation and record I_D, V_G, V_S and calculate gm
- C) Calculate the theoretical values of I_D , V_G , V_S then calculate gm
- D) Based on your measurements and calculations fill the following table

	Measured	Theoretical	$Error = \frac{\ Measured - Theortical\ }{Theortical} \times 100$
I _D			
V _G			
V _s			
gm			

E) Read $v_{o\text{-pp}}$ and $v_{in\text{-pp}}$ after setting both ChA and ChB as shown below

F)	Take a screenshot of the out	puts of the oscilloscope and p	out it in the following place holder
----	------------------------------	--------------------------------	--------------------------------------

Put a screenshot of your output ($v_{o\text{-pp}}$ and $v_{in\text{-pp}}$) here and PIz make $v_{o\text{-pp}}$ in green and $v_{in\text{-pp}}$ in red

- G) Calculate voltage gain Av= v_{o-pp} / v_{in-pp}
- H) Calculate overall voltage gain Gv= $v_{\text{o-pp}}\,/\,v_{\text{sig-pp}} \!= v_{\text{o-pp}}\,/\,20\text{mV}$
- I) Calculate the theoretical values of Av = $gm \cdot R_D$
- J) Repeat G, H, and I for Rsig=100 Ω and Rsig=1000 Ω and fill the following table

		•	•	•
Rsig	Av	Measured	Theoretical	$Error = \frac{\ Measured - Theortical\ }{Theortical} \times 100$
0				
100				
1000				

Answer the following questions:

5- Why Av is reduced when Rsig increased in AC analysis?