Spam and Phishing Detection

CSIT375/975 AI and Cybersecurity

Dr Wei Zong

SCIT University of Wollongong

Disclaimer: The presentation materials come from various sources. For further information, check the references section

Outline

- What are Spam and Phishing?
- Spam Filtering Techniques
- Pre-processing Text in Email Messages

What is Spam

- Spam: Unsolicited bulk email or message
- Emails that involves sending identical or nearly identical messages to thousands (or millions) of recipients

What are the problems?

- With a tiny investment, a spammer can send over 100,000 bulk emails per hour
- Waste users' time, may cause financial loss
 - Study shows: an average person spends 28% of the workday (≈ 670 hrs/year) reading and responding to emails
 - only 38% of the emails on an average are relevant and important
- Junk mails waste storage and transmission bandwidth
- Might include malware as executable files
- Spam is a problem because the cost is forced onto the recipient

Statistics

- Spam accounts for 45% of all emails sent
- About 14.5 billion spam emails are sent every single day
- Spam costs \$20.5 billion yearly (reduced network bandwidth, storage capacity)
- Spammers receive on average 1 click for every 12 million emails sent
 - Even with this response, spammers earn millions of dollars yearly
- 80% of all spam is sent by the same 100 spammers

Phishing

- Phishing: attacks where a victim is lured to a fake web, and is deceived into disclosing personal data or credentials
- Phishing URLs seem like legitimate URLs, and redirect the users to phishing web pages, which mimic the look and feel of their target websites
 - URL (Uniform Resources Locator) is a web address that specifies the location of the webpage on a computer network
 - A typical URL http://www.example.com/index.html consists of several components:
 - Protocol type = http
 - Domain name = www.example.com
 - File name = index.html

Phishing

 Phishing emails are a more serious threat than spam emails, because they aim to steal users' private information, such as bank accounts, passwords, SSNs

Dropbox Phishing

- Attackers create fake sign-in pages for Dropbox as a part of credential harvesting
- They then use the stolen credentials to log in to legitimate sites and steal user data

 used Dropbox to share a file with you

I used Dropbox to share a file with you

For security purposes, you would be required to sign into your email address to view

Click here to view.

CEO Fraud

- CEO fraud: (also called whaling attack)
 - target: top executives of an organization
 - suffer from account takeovers due to stolen login credentials
- The scammer takes over CEO Account
- CEO's credentials are used to login
- Scam emails sent to all

HOW CEO FRAUD IMPACTS YOU

Spam Filtering

• Spam filter: Goal is to determine whether an incoming message is legitimate (i.e., non-spam, ham) or unsolicited (i.e., spam)

Email spam

Spam Filtering

- A typical data flow in spam filtering
- How input emails are processed and sent to the model
- To give data as input to the model, we'd need to transform them to some numerical format

Spam Filtering

- ML-based spam classifiers were among the first applications of machine learning in the cyber security domain
 - Subsequently, they were among the first to be attacked
 - Attackers' goal is to modify spam emails (without changing the nature of the message) to bypass spam filters
- Recent spam filters increasingly rely on machine learning and neural networks approaches for email classification
 - These approaches are being extensively used by email service providers like Gmail, Outlook, or Yahoo

Filtering Techniques

- Challenge-Response Filtering
- Blacklists and Whitelists
- Rule based filters
- Content based filters

Challenge-Response Filtering

- When a sender sends an email message, a challenge (e.g., CAPTHCA) is sent to the sender. A legitimate user can solve the challenge easily
- But, if a spammer sends a large number of spam messages, it is difficult for the spammer to solve the challenge
- As a result, the challenge-response spam filtering system can differentiate legitimate emails from spam emails easily
- Limitation
 - Sometimes senders don't or forget to reply to the challenge
 - Advance in ML techniques facilitates automatic challenge solving.

Blacklists and Whitelists

- Blacklists of misbehaving servers or known spammers that are collected by several sites
- Sender id in the email is compared with the blacklist
- Whitelists are complementary to blacklists, and contain addresses of trusted contacts
- Use blacklists and whitelists for the first level filtering (before applying content checks) and not used as the only tool for making decision
- Limitation
 - Prone to wrong configurations with legitimate servers unable to exit from a list where they had been incorrectly inserted

Rule based Filtering

Rule-based filtering techniques

- Apply static rules to discover similar patterns in a large number of spam and non-spam emails
- Scores are assigned to each rule, and the scores are weighted based on the importance of the rule
- If the total score > a predefined threshold, the message is labeled as spam

Rules could be created based on:

• Words and phrases, lots of uppercase characters, exclamation points, unusual Subject lines, special characters, web links, HTML messages, background colors, etc

Limitation

- Requires constant updating of the rules
- Continually adapting strategies by spammers

Content based Filtering

- Content based filtering techniques
 - The filter scans the content of incoming emails, looking for trigger keywords
 - E.g., keywords frequently used in spam emails, such as free, buy, application, mortgage
 - The content of the body and header of emails are scanned
- The frequency of occurrence and distribution of trigger words and phrases in the content of emails are used as features for training ML approaches, and afterward, for classifying new emails
 - Naïve Bayes classifiers are one of the early successful ML models for spam filtering
 - Other conventional ML approaches have been successfully applied, such as SVMs, knearest neighbors, decision trees, ...
 - Deep neural networks are commonly used nowadays for spam classification

Content based Filtering

- Scanning the body of emails explores the what in the email
 - Scanning the header of emails explores the who sent the email
- Email headers display important information, such as:
 - Message ID an identifier generated by the sender's email service
 - There can be no two identical message IDs, hence, it helps to detect forged email headers
 - Sender address is used to consult blacklists to check sender's domain reputation
 - DNS records the DNS (Domain Name System) records of the sender allows to check the sender's SPF, DKIM, and DMARC policies regarding email authentication
 - SPF (Sender Policy Framework), DKIM (Domain Keys Identified Mail), DMARC (Domainbased Message Authentication, Reporting and Conformance)

An example of a Gmail header

Original Message

Message ID	<00000000000d7d44705c2854da2@google.com>
Created at:	Mon, May 17, 2021 at 2:57 PM (Delivered after 12 seconds)
From:	christian@gmail.com
То:	folderly@gmail.com
Subject:	Request to connect
SPF:	PASS with IP 209.85.220.69 Learn more
DKIM:	'PASS' with domain belkins.io Learn more
DMARC:	'PASS' Learn more

Spam filters in action - a Motivating Example

- How does an anti-spam algorithm behave in the classification of emails? - based on suspicious keywords, e.g. buy, shop
- Task: classify the email messages within a table, showing the number of occurrences of the individual keywords identified within the text of the emails, indicating the messages as spam or ham:

Email	Buy	Shop	Spam or Ham?
1	1	0	Н
2	0	1	Н
3	0	0	Н
4	1	1	S

Spam filters in action - a Motivating Example

- Need to assign a score to every single email message
 - This score will be calculated using a scoring function that takes into account the number of occurrences of suspicious keywords contained within the text
- ullet A simple scoring function with weights $\,y=2B+3S\,$

Email	В	s	2B + 3S	Spam or Ham?
1	1	0	2	Н
2	0	1	3	Н
3	0	0	0	Н
4	1	1	5	S

• Threshold value to separate spam from ham: e.g. 4

Pre-processing Text in Email Messages

- Before we can process documents (emails), it's important to convert these documents into numerical representations
- Preprocessing text data in emails typically involves
 - Tokenization
 - Refers to separating the words in a text
 - Tokenization transforms an email into a sequence of representative symbols (tokens)
 - Vectorization
 - Transform to numerical format 'vectors'
 - Text in Email Messages is preprocessed into numeric representation for use by ML models

Tokenization

- Tokenization usually includes several steps.
- Remove punctuation signs (comma, period) or non-alphabetic characters (@, #, {,])
- Remove stop words, such as for, the, is, to, some
 - These words appear in both spam and non-spam emails, and are not relevant for filtering
- Correct spelling errors or abbreviations
- Change all words to lower-case letters
 - I.e., the model should consider Text and text as the same word
- Stemming transforming words to their base form
 - E.g., the words buy-bought or grill-grilled have a common root

Tokenization

Example of tokenization

Vectorization

We need to transform the tokens (terms) to numerical format

```
tokenized messages: {
                              'A': ['hello', 'mr', 'bear'],
                              'B': ['hello', 'hello', 'gunter'],
Some methods:
                              'C': ['goodbye', 'mr', 'gunter']

    Bag of words

    n-grams

                          # Bag-of-words feature vector column labels:
   • TF-IDF
                          # ['hello', 'mr', 'doggy', 'bear', 'gunter', 'goodbye']
                          vectorized messages: {
                              'A': [1,1,0,1,0,0],
                              'B': [2,0,0,0,1,0],
                              'C': [0,1,0,0,1,1]
```

Bag-of-Words

- Bag-of-words model
 - The tokenized words in emails are represented as a bag (i.e., set) of words
- The term bag implies that the order of the words and the structure of the text is lost
- Each word is a token having a numeric feature representation
- Typically, the frequency of occurrence of each word is used as a feature for training a classifier
- Example
 - Text: John likes to watch movies. Mary likes movies too.
 - Bag-of-words listing the words and the frequency of each word:
 {"John":1,"likes":2,"to":1, "watch":1, "movies":2,"Mary":1,"too":1}

Bag-of-Words

- Represent an email by the occurrence counts of each word
- What information is lost with this representation?
- Ordering of words is lost
 - Alice is quicker than Bob and Bob is quicker than Alice have the same vector representation
 - => n-grams
- Term importance is also lost
 - => TF-IDF

n-Grams

- Instead of using single words as tokens, it is also possible to use n consecutive words, referred to as n-grams
 - Combining several consecutive words together creates more specialized tokens
 - E.g., the word *play* is considered a neutral word, but the two-words phrase *play lotto* is less neutral
 - Such *n*-grams consisting of adjacent pairs of words are called bigrams
 - n-grams consisting of single words are called unigrams
- The *n*-grams model preserves the words order, potentially capture more information than the bag-of-words model

TF-IDF

- Assume t distinct tokens remain after preprocessing
 - call them terms or the vocabulary
- Each token i, in a document j, is given a real-valued weight, w_{ii}
- Documents are expressed as *t*-dimensional vectors

$$d_j = (w_{1j}, w_{2j}, ..., w_{tj})$$

Document Collection

- A collection of n documents can be represented in the vector space model by a term-document matrix
- An entry in the matrix corresponds to the "weight" of a term in the document
 - zero means the term has no significance in the document or it simply doesn't exist in the document
- How to compute w_{ii}
 - TF-IDF (or TF.IDF)
 - Term frequency—inverse document frequency

TF-IDF: Term Frequency

Terms

 To compute the term frequency, we can use a term-document count matrix

Documents

		Email 1	Email 2	Email 3	Email 4	Email 5	Email 6
-	lotto	4	0	0	3	0	0
	mr	1	0	0	1	0	0
	bear	2	0	0	0	4	0
	gunter	0	5	0	0	0	0
	doggy	0	0	0	0	0	5
	win	0	2	3	0	0	0

Log-Frequency Weighting

- The *raw term frequency*, $tf_{t,d}$, of term t in document d is defined as the number of times that t occurs in d
 - However, relevance does not increase proportionally with raw term frequency
 - To this end, we can use log-frequency weighting

• The log-frequency weight, $w_{t,d}$, of term t in document d is:

$$m{w_{t,d}} = \left\{egin{align*} m{1} + m{log}m{(}tf_{t,d}m{)} & m{if} \ tf_{t,d} > m{0} \ m{0} & m{otherwise} \end{array}
ight.$$

Log-Frequency Weighting: Example

• Here is our previous term-document *count matrix*

							-
- 11				m		n	te
-	U	U	u		ᆫ		ts

	Email 1	Email 2	Email 3	Email 4	Email 5	Email 6
lotto	4	0	0	3	0	0
mr	1	0	0	1	0	0
bear	2	0	0	0	4	0
gunter	0	5	0	0	0	0
doggy	0	0	0	0	0	5
win	0	2	3	0	0	0
		-	1			
			$tf_{win Fmo}$	= 0		

$$tf_{win, Email 3} = 3 > 0$$

$$tf_{win Email 5} = 0$$

Log-Frequency Weighting: Example

 $w_{win, Email 3} = 1 + log(tf_{win, Email 3}) = 1 + log(3) = 1.477$

• Here is the corresponding term-document *log frequency matrix*

			ts			
	Email 1	Email 2	Email 3	Email 4	Email 5	Email 6
lotto	1.602	0	0	1.477	0	C
mr	1	0	0	1	0	0
bear	1.301	0	0	0	1.602	0
gunter	0	0	0	0	1	C
doggy	О	1.698	0	0	0	1.698
win	0	1.301	1.477	0	0	0
k					1	

 $w_{win, Email 5} = 0$

Document frequency

- Rare terms are more informative than frequent terms
 - Recall stop words: "a", "the", "to", "of", etc., are frequent but not very informative

Want higher weights for rare terms than for more frequent terms

Use document frequency to capture this

Document frequency

- Document frequency df_t , of term t
 - the number of documents in the given collection that contain t
- Thus, $df_t \leq N$, where N is the number of documents in the collection
- df_t is an inverse measure of the informativeness of t
 - the smaller the number of documents that contain t the more informative
 t is
- Inverse document frequency, idf_t , is defined as:

$$idf_t = log \begin{pmatrix} N \\ df_t \end{pmatrix}$$
 If $df_t = 1$, $idf_t = log(N)$ If $df_t = N$, $idf_t = 0$

Document frequency

- Document frequency df_t , of term t
 - the number of documents in the given collection that contain t
- Thus, $df_t \leq N$, where N is the number of documents in the collection
- df_t is an inverse measure of the informativeness of t
 - the smaller the number of documents that contain t the more informative
 t is
- Inverse document frequency, idf_t , is defined as:

$$idf_t = log\left(\frac{N}{df_t}\right)$$
 Note: There is only one value of idf_t for each t in the collection

TF-IDF Weighting

A typical combined term importance indicator is TF.IDF weighting:

$$w_{t,d} = TF.IDF = (1 + log(tf_{t,d})) \times log(\frac{N}{df_{t}})$$

- A term occurring frequently in the document but rarely in the rest of the collection is given high weight
- **TF.IDF** increases with:
 - the number of occurrences of term t in document d
 - the rarity of t in the collection

TF-IDF: Example

• here is the respective term-document **TF-IDF matrix**Documents

	· -			1		
	Email 1	Email 2	Email 3	Email 4	Email 5	Email 6
lotto	0.764	0	0	0.704	0	0
mr	0.477	0	0	0.477	0	0
bear	0.620	0	0	0	0.764	0
gunter	0	0	0	0	0.778	0
doggy	0	0.810	0	0	0	0.810
win	0	0.620	0.704	0	0	0

$$w_{win, Email 3} = \left[1 + log(tf_{win, Email 3})\right] \times log\left(\frac{N}{df_{win}}\right) = 1.477 \times log\left(\frac{6}{2}\right) = 0.704$$

Spam Detection

- Task: separate spam emails from a set of nonspam emails
 - Given a large collection of example emails, each labeled "spam" or "ham"
 - Learn to predict labels of new, future emails
 - Binary classification.
- How: use your favorite classifier(s) to distinguish between spam and ham emails.

Summary

- Spam and phishing
- Spam Filtering Techniques
- Pre-processing Text in Email Messages
 - bag-of-words
 - n-gram
 - TF-IDF

References

- Email Spam Filtering, Computer Security Seminar, N. Muthiyalu Jothir
- Special Topics: Adversarial Machine Learning, Dr. Alex Vakanski, University of Idaho
- Introduction to Information Retrieval, Christopher D. Manning et al, Cambridge University Press. 2008.
- Machine Learning and Security Protecting Systems with Data and Algorithms, Clarence Chio, David Freeman