hyperSpec Plotting functions

Claudia Beleites <cbeleites@units.it> CENMAT, DMRN, University of Trieste

February 8, 2011

Vignette under Development

This file is currently undergoing a thorough revision. Changes may happen frequently. Even if the file is not yet nice to read, the shown code does work.

Reproducing the Examples in this Vignette

All spectra used in this manual are installed automatically with *hyperSpec*. Note that some definitions are executed in vignette.defs.

Contents

1	Predefined functions	2
2	Arguments for plot	3
3	Spectra 3.1 Stacked spectra	6 8
4	Calibration Plots, (Depth) Profiles, and Time Series Plots 4.1 Calibration plots	10 10 12
5	Levelplot	12
6	Spectra Matrix	13
7	False-Colour Maps: plotmap	14
8	3 D (with rgl)	17
9	Troubleshooting 9.1 No output is produced	17 17
10	Interactive Graphics 10.1 spc.identify: finding out wavelength, intensity and spectrum	17 18 18

For some plots of the chondro dataset, the pre-processed spectra are preferred, and their cluster averages \pm one standard deviation:

> chondro.preproc <- chondro - spc.fit.poly.below (chondro)

Fitting with npts.min = 15

- > chondro.preproc <- sweep (chondro.preproc, 1, mean, "/")</pre>
- > chondro.preproc <- sweep (chondro.preproc, 2, apply (chondro.preproc, 2, quantile, 0.05), "-")
- > cluster.cols <- c ("dark blue", "orange", "#C02020")
- > cluster.meansd <- aggregate (chondro.preproc, chondro\$clusters, mean_pm_sd)
- > cluster.means <- aggregate (chondro.preproc, chondro\$clusters, mean)

For details about the pre-processing, please refer to the vignette vignette ("chondro"), or the help ? chondro.

1 Predefined functions

hyperSpec comes with 5 major predefined plotting functions.

plot main switchyard for most plotting tasks

levelplot hyperSpec has a levelplot method

plotspc plots spectra

plotc calibration plot, time series, depth profile

plotc is a lattice function

more specialized version of levelplot for map or image plots. plotmap

plotmap is a lattice function

plotvoronoi more specialized version of plotmap that produces Voronoi tesselations.

plotvoronoi is a lattice function

plots the spectra, i.e. the intensities \$spc over the wavelengths @wavelength.

> plotspc (paracetamol)

plots an intensity over a single other data column, e.g.

- calibration
- time series
- depth profile
- > plotc (flu)

levelplot

plots a false colour map, defined by a formula.

> levelplot (spc ~ x * y, chondro, aspect = "iso")
Warning: Only first wavelength is used for plotting

 $x/\mu m$

plotmap is a specialized version of levelplot. It uses a single value (e.g. average intensity or cluster membership) over two data columns (default \$x and \$y)

> plotmap (chondro)

plotvoronoi

-5 0 5 10 15 20

plotmap is a specialized version of levelplot. It uses a single value (e.g. average intensity or cluster membership) over two data columns (default \$x and \$y)

> plotvoronoi (sample (chondro, 300), clusters ~ x * y) deldir 0.0-13

Please note: The process for determining duplicated points has changed from that used in version 0.0-9 (and previously).

2 Arguments for plot

hyperSpec's plot method uses its second argument to determine which of the specialized plots to produce. This allows some handy abbreviations. All further arguments are handed over to the function actually producing the plot.

is equivalent to plotspc (flu)
> plot (flu, "spc")

plots mean spectrum \pm 1 standard deviation > plot (chondro.preproc, "spcmeansd")

plots median, $16^{\rm th}$ and $84^{\rm th}$ percentile for each wavelength. For Gaussian distributed data, $16^{\rm th}$, $50^{\rm th}$ and $84^{\rm th}$ percentile are equal to mean \pm standard deviation. Spectroscopic data frequently are not Gaussian distributed. The percentiles give a better idea of the true distribution. They are also less sensitive to outliers.

> plot (chondro.preproc, "spcprctile")

like "spcprctl" plus $5^{\rm th}$ and $95^{\rm th}$ percentile. > plot (chondro.preproc, "spcprctl5")

```
plot (x, "c")
                                              > plot (flu, "c")
                                              is equivalent to plotc (flu)
   150
l₁/a.u.
001
   50
             0.10
                   0.15
                         0.20
                               0.25
                                     0.30
       0.05
                    c / (ma / I)
 plot (x, "ts")
                                              plots a time series plot
  75000
                                              > plot (laser [,, 405], "ts")
  70000
                                              equivalent to plotc (laser, spc ~ t)
  65000
e 60000
  55000
  50000
             1000
                  2000 3000
                            4000 5000
 plot (x, "depth")
                                              plots a depth profile plot
  20
                                              > depth.profile <- new ("hyperSpec",</pre>
                                                     spc = as.matrix (rnorm (20) + 1:20),
  15
                                                     data = data.frame (z = 1 : 20),
1/ a.u.
                                                     label = list (spc = "I / a.u.",
                                                         z = expression ('/' (z, mu*m)),
   5
                                                         .wavelength = expression (lambda)))
                                              > plot (depth.profile, "depth")
                                              the same as plotc (laser, spc ~ z)
                     10
                              15
                                      20
                     z/\mu m
 plot (x, "mat")
                                              plots the spectra matrix.
  80
                                       70000
                                              > plot (laser, "mat")
                                       60000
                                              Equivalent to
  60
                                       50000
                                              > levelplot (spc \tilde{\ } .wavelength * .row, laser)
                                       40000
<u>8</u> 40
                                       30000
                                       20000
  20
                                       10000
    404.6 404.8 405.0 405.2 405.4 405.6 405.8
                \lambda/\text{nm}
```


> plot (sample (chondro, 300), "voronoi") See plotvoronoi

3 Spectra

 ${\tt plotspc}$ offers a variety of parameters for customized plots. To plot \dots

if only one wavelength range is needed, the extract command is handiest:

plotspc

> plotspc (paracetamol [,, 700 ~ 1200])

If wl.range already contains indices: use wl.index = TRUE.

use wl.range = list (600 ~ 1800, 2800 ~ 3100). Cut the wavelength axis appropriately with xoffset = 750 > plotspc (paracetamol,

+ wl.range = c (300 ~ 1800, 2800 ~ max),

+ xoffset = 750)

If available, the package plotrix is used to produce the cut mark.

use wl.reverse = TRUE > plotspc (paracetamol, wl.reverse = TRUE)

in different colours

use col = vector.of.colours > plotspc (flu, col = matlab.dark.palette (6))

dots instead of lines

use lines.args = list (pch = 20, type = "p")
> plotspc (paracetamol [,, 2800 ~ 3200], lines.args = list (pch = 20, type = "p"))

use lines.args = list (type = "h") > plot (barbituates [[1]], lines.args = list (type = "h"))

more spectra into an exsisting plot

```
000 800 1000 1300 1600
Δ⊽/cm<sup>-1</sup>
```

```
use add = TRUE > plotspc (chondro [ 30,,]) > plotspc (chondro [300,,], add = TRUE, col = "blue")
```

Summary characteristics

func may be used to calculate summary characteristics prior to plotting. To plot e.g. the standard deviation of the spectra, use:

> plotspc (chondro, func = sd)

 $zero line\ {\tt takes}\ {\tt a}\ {\tt list}\ {\tt with}\ {\tt parameters}\ {\tt to}\ {\tt abline},\ {\tt NULL}\ {\tt suppresses}\ {\tt the}\ {\tt line}.$

> plotspc (paracetamol,
+ zeroline = list (col = "red"))

adding to a spectra plot

plotspc uses base graphics. After plotting the spectra, more content may be added to the graphic by abline, lines, points, etc.

3.1 Stacked spectra

stacked = TRUE

Stacking groups of spectra

The spectra to be stacked can be grouped: stacked = factor. Alternatively, the name of the grouping extra data column can be used:

```
> plot (cluster.meansd,
+ stacked = ".aggregate",
+ fill = ".aggregate",
+ col = cluster.cols)
```

Manually giving yoffset

Stacking values can also be given manually as numeric values in yoffset:

```
> plotspc (cluster.meansd,
+ yoffset = rep (0:2, each = 3),
+ col = rep (cluster.cols, each = 3))
```

Dense stacking

To obtain a denser stacking:

```
> yoffsets <- apply (cluster.means [[]], 2, diff)
> yoffsets <- - apply (yoffsets, 1, min)
> plot (cluster.means, yoffset = c (0, cumsum (yoffsets)),
+ col = cluster.cols)
```

Elaborate example

```
600 800 1000 1300 1600
Δῦ/cm<sup>-1</sup>
```

4 Calibration Plots, (Depth) Profiles, and Time Series Plots

plotc

4.1 Calibration plots

Intensities over concentration

Plotting the Intensities of one wavelength over the concentration for univariate calibration:

> plotc (flu [,, 450])

The default is to use the first intensity only.

Summary Intensities over concentration

A function to compute a summary of the intensities before drawing can be used:

> plotc (flu, func = range, groups = .wavelength)

If func returns more than one value, the different results are accessible by .wavelength.

Condidioning: plotting more traces separately

```
> plotc (flu [,, c (405, 445)], spc ~ c | .wavelength,
+ cex = .3, scales = list (alternating = c(1, 1)))
```

Grouping: plot more traces in one panel

> plotc (flu [,, c (405, 445)], groups = .wavelength)

Changing Axis Labels (and other parameters)


```
Arguments for xyplot can be given to plotc:
> plotc (flu [,, 450],
+ ylab = expression (I ["450 nm"] / a.u.),
+ xlim = range (0, flu$c + .01),
+ ylim = range (0, flu$spc + 10),
+ pch = 4)
```

Adding things to the plot: customized panel function


```
As plotc uses the lattice function xyplot, additions to the plot must be made via the panel function:

> panelcalibration <- function (x, y, ..., clim = range (x), level = .

+ panel.xyplot (x, y, ...)

+ lm <- lm (y ~ x)

+ panel.abline (coef (lm), ...)

+ cx <- seq (clim [1], clim [2], length.out = 50)

+ cy <- predict (lm, data.frame (x = cx),

interval = "confidence",

+ level = level)

+ panel.lines (cx, cy [,2], col = "gray")

+ panel.lines (cx, cy [,3], col = "gray")

+ }

> plotc (flu [,,405], panel = panelcalibration,

+ pch = 4, clim = c (0, 0.35), level = .99)
```

4.2 Time series and other Plots of the Type Intensity-over-Something

Abscissae other than c 60000 20000 0 1000 2000 3000 4000 5000 t/s

Other abscissae may be specified by explicitly giving the model formula:

5 Levelplot

hyperSpec's levelplot can use two special column names:

.wavelength for the wavelengths

.row for the row index (i. e. spectrum number) in the data

Besides that, it behaves exactly like levelplot. Particularly, the data is given as the second argument:

If the colour-coded value is a factor, the display is adjusted to this fact:

> levelplot (clusters ~ x * y, chondro)

6 Spectra Matrix

It is often useful to plot the spectra against an additional coordinate, e.g. the time for time series, the depth for depth profiles, etc.

This can be done by plot (object, "mat"). The actual plotting is done by levelplot, so the plots can be grouped or conditioned.

different palette 60000 60 50000 40000 § 40 30000 20000 20 10000

```
> plot (laser, "mat",
        col.regions = matlab.palette (20) )
is the same as
> levelplot (spc ~ .wavelength * .row,
             laser,
             col.regions = matlab.palette (20))
```

5000

different y axis

404.6 404.8 405.0 405.2 405.4 405.6 405.8 λ/nm

Changing the y axis is only possible with levelplot: > levelplot (spc ~ .wavelength * t, laser)

colour-coded points: different panel function


```
> barb <- do.call (collapse, barbituates[1:50])</pre>
> barb <- orderwl (barb)</pre>
 if (!require (latticeExtra)){
    panel.levelplot.points <- function (...)</pre>
      panel.levelplot (...)
    warning ('package latticeExtra required, panel.levelplot.points re
+ }
 levelplot (spc ~ .wavelength * z, barb,
             panel = panel.levelplot.points,
             cex = .33, col.symbol = NA,
+
```

col.regions = matlab.palette)

contour lines Contour lines may be added to all levelplot based plots: 700 650 600 550 plot (flu, "mat", 600 contour = TRUE, 500 labels = TRUE, 400 350 col = "#00000080", 300 at = seq (0, 700, by = 50))200 100 100 420 440 460 480 λ/nm

7 False-Colour Maps: plotmap

plotmap uses levelplot, a *lattice* function. Therefore, in loops, functions, Sweave chunks, etc. the lattice object needs to be printed explicitly by print (plotmap (object)) (R FAQ: Why do lattice/trellis graphics not work?).

plotmap is a specialized version of levelplot. The spectral intensities may be summarized by a function before plotting (default: mean). The same scale is used for x and y axes (aspect = "iso").

plotting maps with other than x and y

specify the colour-coded variable, abscissa and ordinate as
formula: colour.coded ~ abscissa * ordinate
> plotmap (chondro, spc ~ y * x)

colour-coded factors

> plotmap (chondro, clusters ~ x * y)

If the colour-coded variable is a factor, each level gets its own colour, and the legend is labeled accordingly.

different palette

To plot with a different palette, use trellis.args= list (col.regions = palette).
> print (plotmap (chondro, clusters ~ x * y,
+ col.regions = cluster.cols))

defined wavelengths

To plot a map with particular wavelengths use this:
> plotmap (chondro.preproc [, , c(728, 782, 1098,
+ 1240, 1482, 1577)],
+ col.regions = matlab.palette)

Conditioning

plotmap automatically applies the function in func before plotting. This defaults to the mean. In order to suppress this, use func = NULL. This allows conditioning on the wavelengths.

To plot e.g. the first two score maps of a principal component analysis:

```
> pca <- prcomp (~ spc, data = chondro.preproc$.)</pre>
 scores <- decomposition (chondro, pca$x,
                             label.wavelength = "PC",
                             label.spc = "score / a.u.")
  plotmap (scores [,,1:2],
           spc \tilde{\ } y * x | as.factor(.wavelength),
+
           func = NULL,
           col.regions = matlab.palette(20))
```

Conditioning on .wavelength II $_{\rm 0\ 5\ 10\ 15}$

Alternatively, use levelplot directly:

```
> levelplot (spc ~ y * x | as.factor(.wavelength),
             scores [,,1:2],
+
             aspect = "iso",
             col.regions = matlab.palette(20))
```

Voronoi plot


```
> plotvoronoi (sample (chondro, 300), clusters \tilde{\ } x * y,
                col.regions = matlab.palette(20))
```

Mark missing spectra I 850 800 750 700 10 650 600 550 500 0 450 400 0 10 15 20 -5 5 $x/\mu m$

If the spectra come from a rectangular grid, missing positions can be marked with this panel function:

8 3 D (with rgl)

rgl offers fast 3d plotting in R. As rgl's axis annotations are sometimes awkward. They may better be set manually:

9 Troubleshooting

9.1 No output is produced

plotmap and plotc use levelplot, a *lattice* function. Therefore, in loops, functions, Sweave chunks, etc. the lattice object needs to be printed explicitly by print (plotmap (object)) (R FAQ: Why do lattice/trellis graphics not work?).

For suggestions how the lattice functions can be redefined so that the result is printed without external print command, see vignettes.defs.

10 Interactive Graphics

hyperSpec offers two basic interaction functions, spc.identify, and map.identify. They identify

points in spectra plots and map plots, respectively.

10.1 spc.identify: finding out wavelength, intensity and spectrum

spc.identify allows to measure points in graphics produced by plotspc. It works correctly with reversed and cut wavelength axes.

```
> spc.identify (plotspc (paracetamol, wl.range = c (600 ~ 1800, 2800 ~ 3200), xoffset = 800))
```

The result is a data.frame with the indices of the spectra, the wavelength, and its intensity.

10.2 map.identify: finding a spectrum in a map plot

map.identify returns the spectra indices of the clicked points.

> map.identify (chondro)

10.3 Related functions provided by base graphics and lattice

For base graphics (as produced by plotspc), locator may be useful as well. It returns the clicked coordinates. Note that these are *not* transformed according to xoffset & Co.

For lattice graphics, grid.locator may be used instead. If it is not called in the panel function, a preceeding call to trellis.focus is needed:

```
> plot (laser, "mat")
> trellis.focus ()
> grid.locator ()
```

identify (or panel.identify for lattice graphics) allows to identify points of the plot directly. Note that the returned indices correspond to the plotted object.

10.4 Interactively changing graphics

hyperSpec's lattice functions work with playwith and latticist. These packages allow easy customization of the plots and also identification of points.