ACTIVITY RECOGNITION FROM A SINGLE CHESTMOUNTED ACCELEROMETER

Introducing Dataset

- □ The dataset collects data from a wearable accelerometer mounted on the chest.
- Uncalibrated Accelerometer Data are collected from 15 participants performing 7 activities.
- □ The dataset is intended for Activity Recognition research purposes.
- https://archive.ics.uci.edu/ml/datasets/Activity+Recognition+from+Single
 e+Chest-Mounted+Accelerometer

Relevant Information

3

- Sampling frequency of the accelerometer: 52 Hz
- Accelerometer Data are Uncalibrated
- □ Number of Participants: 15
- Number of Activities: 7
- Data Format: CSV

Dataset Information

- Data are separated by participant
- Each file contains the following information
 - $lue{}$ sequential number, x acceleration, y acceleration, z acceleration, label
- Labels are codified by numbers
 - 1: Working at Computer
 - 2: Standing Up, Walking and Going up\down stairs
 - 3: Standing
 - 4: Walking
 - 5: Going Up\Down Stairs
 - 6: Walking and Talking with Someone
 - 7: Talking while Standing

label	Z	У	х	No.
1	2153	2215	1502	0
1	2047	2072	1667	1
1	1906	1957	1611	2
1	1831	1939	1601	3
1	1879	1965	1643	4
7	2074	2383	1930	162500
7	2076	2385	1929	162500
7	2078	2385	1926	162500
0	2078	2387	1922	162500

Reference Papers

- □ Casale, P. Pujol, O. and Radeva, P.
 - Human activity recognition from accelerometer data using a wearable device, IbPRIA'11, 289-296, Springer-Verlag, 2011
 - https://www.researchgate.net/publication/221258784_Human_Activity_Recognition_from_Accelerometer_Data_Using_a_Wearable_Device

Step 1: Compute the magnitude

6

Compute the magnitude of the acceleration

$$A_m = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

□ Each time series Ai, with $i = \{x, y, z, m\}$ has been filtered with a digital filter in order to separate low frequencies components and high frequencies components

Exercise: Compute the magnitude

- □ Use 1.csv
- □ Generate four time series Ai, with $i = \{x, y, z, m\}$
 - Remove the records with error labels.

Step 2: Frequency analysis

- 8
- □ The cut-off frequency has been set to 1 Hz, arbitrarily.
- □ In this way, we obtain for each time series, three more time series A_{ij} with $j = \{b, dc, ac\}$,
 - *b* represents the time series without filtering
 - dc represents the time series resulting from a low pass filtering
 - ac represents the time series resulting from a high pass filtering

Exercise

q

- □ Read 1.csv and generate 84 time series A_{ijk} , with $i = \{1, 2, ..., 7\}$, $j = \{x, y, z, m\}$, $k = \{b, dc, ac\}$
- □ Plot these time series including b, dc and ac.
- Store each label series in one file. Thus, 7 labels should have 7 files. Each file has 12 columns {x, y, z, m} * {b, dc, ac}.

header = 'x_b, x_dc, x_ac, y_b, y_dc, y_ac,z_b, z_dc, z_ac,m_b, m_dc, m_ac' np.savetxt('{}/label_{}.csv'.format(out_path, i), arr, delimiter=',', header=header, comments='')

```
df = pd.read_csv(f) # read csv file
print(df.columns) # header
data = df.values # to numpy array
```


Plot Example

fig, (ax1, ax2, ax3) = plt.subplots(3,1) fig.set_size_inches(12, 5) ax1.set_ylim(0, 50000)

12

PATHLIB MODULE

Pathlib module

- High-level path objects
 - https://docs.python.org/3/library/pathlib.html
 - This module offers classes representing filesystem paths with semantics appropriate for different operating systems.
 - Path classes are divided between pure paths, which provide purely computational operations without I/O, and concrete paths, which inherit from pure paths but also provide I/O operations.

Pathlib Example

□ Find all sub directories' files that match the pattern L*.csv

```
import pathlib
import os
data_path = '/data/'
dpath = pathlib.Path(data_path)
sub_dir = [x for x in dpath.iterdir() if x.is_dir()]
for d in sub_dir:
    files = sorted(d.glob('L*.csv'))
    for f in files:
        print(f.name)
        os.remove(f) # delete file
```

Path.iterdir()

When the path points to a directory, yield path objects of the directory contents:

```
>>> p = Path('docs')
>>> for child in p.iterdir(): child
...
PosixPath('docs/conf.py')
PosixPath('docs/_templates')
PosixPath('docs/make.bat')
PosixPath('docs/index.rst'
```

Pathlib Methods and properties

- Path.is dir()
 - Return True if the path points to a directory (or a symbolic link pointing to a directory), False if it points to another kind of file.
 - False is also returned if the path doesn't exist or is a broken symlink; other errors (such as permission errors) are propagated.
- Path.is_file()
 - Return True if the path points to a regular file (or a symbolic link pointing to a regular file), False if it points to another kind of file.
 - False is also returned if the path doesn't exist or is a broken symlink; other errors (such as permission errors) are propagated.

- Path.glob(pattern)
 - Glob the given relative pattern in the directory represented by this path, yielding all matching files (of any kind):

```
>>> sorted(Path('.').glob('*.py'))
[PosixPath('pathlib.py'), PosixPath('setup.py')]
```

■ The "**" pattern means "this directory and all subdirectories, recursively". In other words, it enables recursive globbing:

```
>>> sorted(Path('.').glob('**/*.py'))
[PosixPath('build/lib/pathlib.py'), PosixPath('docs/conf.py'),
  PosixPath( 'pathlib.py' ), PosixPath( 'setup.py' ),
  PosixPath('test_pathlib.py')]
```

Pathlib Methods and properties

- PurePath.match(pattern)
 - Match this path against the provided glob-style pattern. Return True if matching is successful, False otherwise.
 - If pattern is relative, the path can be either relative or absolute, and matching is done from the right:

```
>>> PurePath('a/b.py').match('*.py')
True
>>> PurePath('/a/b/c.py').match('b/*.py')
True
>>> PurePath('/a/b/c.py').match('a/*.py')
False
```

PurePath.name

■ A string representing the final path component, excluding the drive and root, if any:

```
>>> PurePosixPath('my/library/setup.py').name
'setup.py'
```

PurePath.stem

■ The final path component, without its suffix:

```
>>> PurePosixPath('my/library.tar.gz').stem
'library.tar'
>>> PurePosixPath('my/library.tar').stem
'library'
```

Pathlib Example

Check whether a path exists. If not, create one.

```
out_path = 'e:/tmp/'
outpath = pathlib.Path(out_path)

# combine and create a child path obj 'e:/tmp/outavi'
outavi_path = outpath.joinpath('outavi')

# check whether 'e:/tmp/outavi' exists
if not outavi_path.exists():
    outavi_path.mkdir() # make directory
```

- PurePath.joinpath(*other)
 - Calling this method is equivalent to combining the path with each of the other arguments in turn:

```
>>> PurePosixPath('/etc').joinpath('passwd')
PurePosixPath('/etc/passwd')
>>> PurePosixPath('/etc').joinpath('init.d', 'apache2')
PurePosixPath('/etc/init.d/apache2')
```

Pathlib Methods and properties

- Path.exists()
 - Whether the path points to an existing file or directory.
- Path.mkdir(mode=00777, parents=False, exist_ok=False)
 - Create a new directory at this given path.
 - If parents is True, any missing parents of this path are created as needed.
 - If parents is False (the default), a missing parent raises FileNotFoundError.
 - If exist_ok is false (the default), FileExistsError is raised if the target directory already exists.
 - If exist_ok is true, FileExistsError exceptions will be ignored.

FEATURE EXTRACTION

Step 3: Feature extraction

24

 We extract features from data using windows of 52 samples, corresponding to 1 second of accelerometer data, with 50% of overlapping between windows.

Step 3: Feature extraction

25

- □ The paper calculates 319 features for each window including
 - mean value (np.mean), standard deviation (np.std)
 - Skewness (scipy.stats.skew), kurtosis (scipy.stats.kurtosis)
 - Mean value of MinMax sum
 - Root mean squared value of integration of acceleration in a window
 - correlation between each pairwise of accelerometer axis (not including magnitude)
 - energy of coefficients of seven level wavelet decomposition.

Important Features

Feature	Importance	Feature	Importance
Mean Value A_{zdc}	4.64	Mean Value A_{ydc}	3.86
$MinMax A_{zdc}$	4.61	Rms Velocity A_{ydc}	3.67
RMS Velocity A_{zdc}	4.23	Mean Value A_{zb}	3.59
RMS Velocity A_{mdc}	4.2	Mean Value A_{xdc}	3.57
RMS Velocity A_{xac}	4.14	$MinMax A_{xdc}$	3.52
Mean Value A_{mdc}	4.07	$\operatorname{MinMax} A_{zb}$	3.51
$MinMax A_{ydc}$	3.92	Mean Value A_{yb}	3.33
Standard Deviation A_{xb}	3.9	Rms Velocity A_{xdc}	3.22
$MinMax A_{mdc}$	3.89	Rms Velocity A_{zb}	3.2
Standard Deviation A_{xdc}	3.87	$MinMax A_{yb}$	2.96

Overlapping moving window

27

- skimage.util.view_as_windows(arr in, window shape, step=1)
 - Windows are overlapping views of the input array, with adjacent windows shifted by a single row or column (or an index of a higher dimension).
- Parameters
 - arr in: ndarray. N-d input array. Input should be a contiguous array.
 - window shape: integer or tuple of length arr in.ndim
 - Defines the shape of the elementary n-dimensional hyper-rectangle of the rolling window view.
 - Step: integer or tuple of length arr in.ndim
 - Indicates step size at which extraction shall be performed. If integer is given, then the step is uniform in all dimensions.

skimage.util.view_as_windows()

28

 RuntimeWarning: Cannot provide views on a noncontiguous input array without copying.

```
class: ndarray
shape: (26943,)
strides: (96,)
itemsize: 8
aligned: True
contiguous: False
```

```
a1 = a.copy()
print(np.info(a1))

class: ndarray
shape: (26943,)
strides: (8,)
itemsize: 8
aligned: True
contiguous: True
```

```
import numpy as np
from skimage.util.shape import view_as_windows
a = np.arange(16)
print(a.shape)
print(a)
b = view_as_windows(a, (4,), 2)
                                   (16,)
print(b.shape)
                                   [0 1 2 3 4 5 6 7 8 9 10 11 12
print(b)
                                   13 14 15]
                                   (7, 4)
win_mean = np.mean(b, axis = 1)
                                   [[0 1 2 3]
print(win_mean)
                                    [ 2
                                         3 4 5]
                Axis 1: running
                                    [ 4
                                         5 6
                                             7]
               horizontally across
                                        7 8
                                             9]
                                     6
                                    [8 9 10 11]
                columns
                                    [10 11 12 13]
                                    [12 13 14 15]]
                                   [ 1.5 3.5 5.5 7.5 9.5 11.5 13.5]
```

```
(2, 2, 4, 3)
a = np.arange(5*4).reshape(5, 4)
                                                  [[[[ 0 1 2]
window_shape = (4, 3)
                                                    [456]
b = view as windows(a, window shape)
                                                    [8 9 10]
                                                    [12 13 14]]
                               print(b.shape)
print(a)
                               print(b)
                                                   [[ 1 2 3]
[[ 0
         2
            3]
     1
                                                    [5 6 7]
 [ 4
      5
         6 7]
                                                    [ 9 10 11]
 [ 8
      9 10 11]
                                                    [13 14 15]]]
                      print(b[0,1])
 [12 13 14 15]
                                                  [[[ 4 5 6]
 [16 17 18 19]]
                       [[1 2]
                               3]
                                                    [8 9 10]
                        [5 6 7]
                                                    [12 13 14]
                        [ 9 10 11]
                                                    [16 17 18]]
                        [13 14 15]]
                                                   [[5 6 7]
                                                    [ 9 10 11]
                                                    [13 14 15]
                                                    [17 18 19]]]
```

Feature: Mean value of MinMax sum

31

The Minmax sums are computed as the sum of all the differences of the ordered pairs of the peaks of the time series. $Msum = \sum_{i=1}^{n} d_i$

Find local minima/maxima

- □ There are four functions in numpy to do this
 - scipy.signal.argrelextrema
 - scipy.signal.argrelmin (based on argrelextrema)
 - scipy.signal.argrelmax (based on argrelextrema)
 - scipy.signal.find_peaks
 - Powerful, more options

scipy.signal.argrelextrema

33

- scipy.signal.argrelextrema(data, comparator, axis=0, order=1, mode='clip')
 - □ Calculate the relative extrema of *data*.

```
from scipy.signal import argrelextrema
x = np.array([2, 1, 2, 3, 2, 0, 1, 0])
maxidx = argrelextrema(x, np.greater)
minidx = argrelextrema(x, np.less)
print(maxidx)
print(minidx)
```


(array([3, 6], dtype=int64),) (array([1, 5], dtype=int64),)

scipy.signal.argrelmin and argrelmax

- scipy.signal.argrelmin (data, axis=0, order=1, mode='clip')
 - This function uses argrelextrema with np.less as comparator.
- □ scipy.signal.argrelmax(data, axis=0, order=1, mode='clip')
 - This function uses argrelextrema with np.greater as comparator.
- Parameter:
 - order: int, optional. How many points on each side to use for the comparison to consider comparator(n, n+x) to be True.

cannot detect flat extrema

35

 argrelextrema, argrelmin, and argrelmax cannot detect flat (more than one sample wide) minima and maxima

scipy.signal.find_peaks

- find_peaks(x, height=None, threshold=None, distance=None, prominence=None, width=None, wlen=None, rel_height=0.5, plateau_size=None)
 - This function takes a one-dimensional array and finds all local maxima by simple comparison of neighbouring values.
 - find_peaks can detect all local maxima, including flat ones.
 - Detect minima by calling it with negated data.
 - It's important to understand well its parameters width, threshold, distance and above all prominence to get a good peak extraction.

scipy.signal.find_peaks

37

- Parameters
 - height: number or ndarray or sequence, optional
 - Required height of peaks. Either a number, None, an array matching x or a 2element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required height.
 - threshold : number or ndarray or sequence, optional
 - Required threshold of peaks, the vertical distance to its neighbouring samples. Either a number, None, an array matching x or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required threshold.
 - distance : number, optional
 - Required minimal horizontal distance (>= 1) in samples between neighbouring peaks.

scipy.signal.find_peaks

- Parameters
 - prominence (突出): number or ndarray or sequence, optional
 - Required prominence of peaks. Either a number, None, an array matching x or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required prominence.
 - width: number or ndarray or sequence, optional
 - Required width of peaks in samples. Either a number, None, an array matching x or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required prominence.
 - wlen : int, optional
 - Used for calculation of the peaks prominences, thus it is only used if one of the arguments prominence or width is given. See argument when in peak prominences for a full description of its effects.

- Returns
 - peaks : ndarray. Indices of peaks in x that satisfy all given conditions.
 - properties: dict. A dictionary containing properties of the returned peaks:
 - peak_heights, left_thresholds, right_thresholds, prominences, right_bases, left_bases, width_heights, left_ips, right_ips, plateau_sizes, left_edges, right_edges

```
import numpy as np
                                           Parameters: distance
import matplotlib.pyplot as plt
                                           minimal horizontal distance
from scipy.signal import find peaks
                                           between neighbouring peaks
%matplotlib inline
data = np.genfromtxt('1.csv', delimiter=',',
usecols=(1,2,3,4),dtype='int32')
y = data[1000:1100,1]
peaks_d10, _ = find_peaks(y, distance=10)
peaks_d3, _ = find_peaks(y, distance=3)
print('distance 10 idx:',peaks d10)
print('distance 3 idx:',peaks d3)
plt.figure(figsize=(12, 5))
plt.plot(y)
plt.plot(peaks_d3, y[peaks_d3], "vr", label='distance 3')
plt.plot(peaks_d10, y[peaks_d10], "xk", label='distance 10')
plt.legend()
```

Parameters: distance

41

- distance 10 idx: [8 19 30 50 61 73 85 95]
- distance 3 idx: [2 8 11 19 24 27 30 35 42 46 50 54 61 66 69 73 76 80 85 88

95]

Parameters: threshold

42

Vertical distance to its neighbouring samples

```
peaks_d10, _ = find_peaks(y, threshold=5)
peaks_d3, _ = find_peaks(y, threshold=3)
print('threshold 5 idx:',peaks_d10)
print('threshold 3 idx:',peaks_d3)
print(y)
plt.figure(figsize=(12, 5))
plt.plot(y)
plt.plot(peaks_d3, y[peaks_d3], "vr", label='threshold 3')
plt.plot(peaks_d10, y[peaks_d10], "xk", label='distance 10')
plt.legend()
```

Parameters: threshold

43

- threshold 5 idx: [19 30 50 54 61]
 threshold 3 idx: [19 27 30 50 54 56 59 61 63 76]
- [2385 2380 2381 2379 2378 | Idx 19 | 2381 2386 2386 2380 2382 2301 2374 2371 2379 2383 2384 2383 2391 2378 2381 2381 2381 2382 2380 2379 2384 2381 2387 2390 2385 2383 2383 2375

Idx 30

Parameters: height

44

height of peaks

```
peaks_h2390, _ = find_peaks(y, height=2390)
peaks_h2380, _ = find_peaks(y, height=[2380,2385])
print('height >2390 :',y[peaks_h2390])
print('height [2380,2385] :',y[peaks_h2380])

plt.figure(figsize=(12, 5))
plt.plot(y)
plt.plot(peaks_h2390, y[peaks_h2390], "vr", label='height >2390')
plt.plot(peaks_h2380, y[peaks_h2380], "xk", label='height [2380,2385]')
plt.legend()
```

Parameters: height

45

- height >2390 : [2391 2390 2390]
- height [2380,2385]: [2381 2382 2384 2382 2384 2383 2383 2381 2384 2383 2381 2384 2383 2381 2385 2380]

peak_widths()

- scipy.signal.peak_widths(x, peaks, rel_height=0.5, prominence_data=None, wlen=None)
 - This function calculates the width of a peak in samples at a relative distance to the peak's height and prominence.
- Green: calculate their widths at the relative height of 0.5 (contour line at half the prominence height)
- Red: calculate their widths at the relative height of 1 (at the lowest contour line at full prominence height).

Parameters: width

47

width of peaks in samples

```
peaks_w3, _ = find_peaks(y, width=3)
peaks_w5, _ = find_peaks(y, width=5)
print('width=3 :',peaks_w3)
print('width=5 :',peaks_w5)
print(y)
plt.figure(figsize=(12, 5))
plt.plot(y)
plt.plot(peaks_w3, y[peaks_w3], "vr", label='width=3')
plt.plot(peaks_w5, y[peaks_w5], "xk", label='width=5')
plt.legend()
```

Parameters: width

48

□ width=3:[8192442507376]

□ width=5:[42 73 76]

Peak Prominences

49

Vertical arrows show the topographic prominence (突出)
 of three peaks on an island.

The dashed horizontal lines show the lowest contours that do not encircle higher peaks. Curved arrows point from a peak to

its parent.

Parameters: prominence

```
peaks_p10, _ = find_peaks(y, prominence=10)
peaks_p15, _ = find_peaks(y, prominence=15)
print('prominence=10 :',peaks_p10)
print('prominence=15 :',peaks_p15)
print(y)
plt.figure(figsize=(12, 5))
plt.plot(y)
plt.plot(peaks_p10, y[peaks_p10], "vr", label='prominence=10')
plt.plot(peaks_p15, y[peaks_p15], "xk", label='prominence=15')
plt.legend()
```

Parameters: prominence

51

- prominence=10: [8 19 30 42 50 54 61 73 76 85]
- prominence=15:[19 42 50 73 76]

peak_prominences()

- □ scipy.signal.peak_prominences(x, peaks, wlen=None)
 - Calculate the prominence of each peak in a signal.
 - The prominence of a peak measures how much a peak stands out from the surrounding baseline of the signal and is defined as the vertical distance between the peak and its lowest contour line.

Feature: Mean value of MinMax sum

- 53
- If no minimum or maximum
 - Mean value of MinMax sum is set to NaN
 - np.NaN
 - Later, use pandas fillna() to fill the NaN
 - df.fillna(method='ffill', inplace = True)
 - df.fillna(method='bfill', inplace = True)

	mean_xb	std_xb	minmax_xb	rms_xb	mean_yb	std_yb	
1			NaN				

pandas.DataFrame.fillna

- 54
- □ DataFrame.fillna(value=None, method=None, axis=None, inp lace=False, limit=None, downcast=None, **kwargs)
 - Fill NA/NaN values using the specified method.
- Parameters
 - value: scalar, dict, Series, or DataFrame
 - method: {'backfill', 'bfill', 'pad', 'ffill', None}, default None
 - **axis**: {o or 'index', 1 or 'columns'}
 - inplace : boolean, default False. If True, fill in place.

Feature: RMS velocity

55

- $oldsymbol{a}$ Instantaneous acceleration $oldsymbol{a} = \lim_{\Delta t o 0} rac{\Delta \mathbf{v}}{\Delta t} = rac{d \mathbf{v}}{dt}$
- □ It can be seen that the integral of the acceleration function a(t) is the velocity function v(t)

$${f v}=\int {f a} \; dt$$
 (Continuous) $v=\sum_t a$ (Discrete)

- □ Root mean squared value of integration of acceleration (velocity) in a window
 - The integral has been approximated using running sums with step equals to 10 samples.

Feature: RMS velocity

56

RMS velocity

Convert to velocity series

Velocity series

Calculate RMS velocity for each window (52 samples)

Source Services $RMS = \sqrt{rac{\sum_{i=1}^n x_i^2}{n}} = \sqrt{rac{x_1^2 + x_2^2 + \cdots + x_n^2}{n}}$

rms = np.sqrt(np.mean(np.square(b), axis = 1))

Feature vector

57

- Calculate the following 4 features for 84 time series A_{ijk} , with $i = \{1, 2, ..., 7\}$, $j = \{x, y, z, m\}$, $k = \{b, dc, ac\}$
 - mean value, standard deviation
 - Mean value of MinMax sum, RMS velocity
- Store one label features in one file
 - Each file has j x k x 4= 48 columns (features)
 - The feature vector dimensionality is 48

mean_x_b, std_x_b, minmax_x_b, rms_x_b,mean_ x_dc, std_ x_dc, minmax_ x_dc, rms_ x_dc,mean_ x_ac, std_ x_ac, minmax_ x_ac, rms_ x_ac,mean_ y_b, std_ y_b, minmax_ y_b, rms_ y_b,mean_ y_dc, std_ y_dc, minmax_ y_dc, rms_ y_dc,mean_ y_ac, std_ y_ac, minmax_ y_ac, rms_ y_ac,mean_ z_b, std_ z_b, minmax_ z_b, rms_ z_b,mean_ z_dc, std_ z_dc, minmax_ z_dc, rms_ z_dc,mean_ z_ac, std_ z_ac, minmax_ z_ac, rms_ z_ac,mean_m_b, std_m_b, minmax_m_b, rms_m_b,mean_ m_dc, std_ m_dc, minmax_ m_dc, rms_ m_dc,mean_ m_ac, std_ m_ac, minmax_ m_ac, rms_ m_ac

Verify your results

58

□ Feature 1.csv

		_										
1	mean_x_b	std_x_b	minmax_x_	rms_x_b	mean_ x_dc	std_ x_dc	minmax_ x	rms_ x_dc	mean_ x_ac	std_ x_ac	minmax_ x	rms_ x_ac
2	1971.37	3.16	5.13	19713.06	1971.08	0.40	0.72	19712.30	0.28	3.27	5.10	10.35
3	1971.96	3.28	5.07	19721.75	1972.00	1.05	2.81	19721.99	-0.03	3.20	4.82	8.23
4	1973.00	3.13	5.81	19731.48	1973.01	0.53	0.90	19730.93	-0.01	3.15	5.45	8.78
5	1973.12	3.10	5.05	19730.37	1973.13	0.26	0.63	19730.95	-0.02	3.12	5.07	8.69
6	1972.92	2.65	4.10	19725.35	1972.85	0.44	1.27	19727.99	0.07	2.68	4.11	10.93
7	1972.69	3.14	4.79	19727.60	1972.63	0.37	1.02	19726.26	0.06	3.09	4.79	10.31
8	1972 50	3.75	6.56	19727.02	1972.62	N 38	nan	19725.96	J) 12	3.70	5.84	6.78

Feature 5.csv

1	mean_x_b	std_x_b	minmax_x_	rms_x_b	mean_ x_do	std_ x_dc	minmax_ x	rms_ x_dc	mean_ x_ac	std_ x_ac	minmax_ x	rms_ x_ac
2	1917.96	33.93	19.22	19127.57	1916.94	35.08	nan	19120.37	1.02	15.70	12.68	107.60
3	1886.81	39.82	29.33	18850.22	1885.65	26.87	nan	18838.81	1.16	23.76	18.20	154.35
4	1896.46	36.29	32.75	18974.24	1894.58	21.09	9.23	18992.31	1.89	24.68	29.13	169.65
5	1911.12	25.41	38.67	19110.65	1911.18	3.63	9.23	19098.91	-0.07	25.11	38.68	144.66
6	1892.48	44.70	46.30	18917.52	1893.16	22.55	60.52	18897.17	-0.68	39.91	48.97	206.28
7	1891.58	68.48	83.50	18916.71	1887.34	25.58	nan	18909.84	4.24	57.78	74.35	308.26

Data Visualization: mplot3d

59

- □ Mplot3d, http://matplotlib.org/examples/mplot3d/scatter3d demo.html
- □ To see which features can be used to discriminate these activities
 - Use different colors and markers for different labels
 - Choose any three features and plot them.

Protocol

60

□ Select 100 points

```
 n = 100 \\ np.random.seed(100) \\ idx = np.random.choice(data.shape[o], min(n, data.shape[o]), replace=False) \\ arr = data[idx,:] \\ color = ['b', 'g', 'r', 'c', 'm', 'y', 'k'] \\ marker = ['o', '^', '.', 'p', '*', '+', 'x'] \\ x = 1 \# dim 1, starting from o \\ y = 2 \# dim 2 \\ z = 3 \# dim 3
```

Data Visualization: t-SNE

61

- t-SNE (t-distributed Stochastic Neighbor Embedding)
 - t-SNE is a tool to visualize high-dimensional data.
 - It converts similarities between data points to joint probabilities and tries to minimize the KL divergence between the joint probabilities of the low-dimensional embedding and the high-dimensional data.
 - It is highly recommended to use another dimensionality reduction method (e.g. PCA for dense data) to reduce the number of dimensions to a reasonable amount (e.g. 50) if the number of features is very high.
 - https://scikitlearn.org/stable/modules/generated/sklearn.manifold.TSNE.html

t-SNE Result

- □ perplexity = 30
- n_components = 2
- □ Use the same 100 samples

Random forest classifier

- □ Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)
- A powerful new approach to data exploration, data analysis, and predictive modeling
- Random Forest is a collection of binary trees


```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pathlib
from sklearn.ensemble import RandomForestClassifier
n = 100 # select 100 training samples
np.random.seed(100) # fix the random number generator
fea_lst = []
y_lst = []
for i, f in enumerate(files):
    print(i, f.name)
    df = pd.read_csv(f)
    df.fillna(method='ffill', inplace = True)
    df.fillna(method='bfill', inplace = True)
    data = df.values
    idx = np.random.choice(data.shape[0], min(n, data.shape[0]),replace=False)
    arr = data[idx,:]
    fea lst.append(arr)
    y_lst.append(np.full(arr.shape[0], i))
    print('df.shape {}, select {} features'.format(df.shape, arr.shape[0]))
```

```
fea name = list(df.columns)
x data = np.vstack(fea lst)
y label = np.hstack(y_lst)
print(y_label)
print('x_data:',x_data.shape)
print('y_label:',y_label.shape)
clf = RandomForestClassifier(n estimators=100, random state=0)
clf.fit(x_data, y_label) # Build a forest of trees from the training set (X, y)
print(clf.score(x_data, y_label)) # Returns the mean accuracy
# print(clf.feature importances )
fea_dict= {}
for i, fea in enumerate(fea_name):
    fea_dict[fea] = clf.feature_importances_[i]
fea_import = [(v, k) for k, v in fea_dict.items() ]
fea_import = sorted(fea_import, reverse = True)
print(fea_import)
```

```
0 feature 1.csv
df.shape (1034, 48), select 100 features
1 feature 2.csv
df.shape (27, 48), select 27 features
2 feature 3.csv
df.shape (342, 48), select 100 features
3 feature 4.csv
df.shape (825, 48), select 100 features
4 feature_5.csv
df.shape (96, 48), select 96 features
5 feature 6.csv
df.shape (88, 48), select 88 features
6 feature 7.csv
df.shape (2575, 48), select 100 features
[000...666]
x data: (611, 48)
y label: (611,)
mean accuracy: 1.0
```

```
(0.049568055101517065, 'mean x b'),
(0.04370705943602313, 'rms x dc'),
(0.04158527009299771, 'mean_ x_dc'),
(0.0387946200649185, 'rms_z_b'),
(0.03850317617170872, 'rms m ac'),
(0.037917685233579274, 'mean z dc'),
(0.03679943959893353, 'rms z dc'),
(0.03662608452791006, 'mean z b'),
(0.03487082364825953, 'mean m dc'),
(0.03464635935090369, 'rms_x_b'),
(0.02922324634874958, 'rms_m_dc'),
(0.027748125631727665, 'mean m b'),
(0.02711904464950775, 'rms_m_b'),
(0.026808337784851925, 'std m ac'),
(0.026413551845069175, 'std y b'),
(0.02427264741100405, 'rms z ac'),
```

•••

Midterm

67

- Reorganize your program about frequency analysis and feature extraction to process the whole 15-user dataset (1.csv, 2.csv, ..., 15.csv).
 - Put the code of frequency analysis and feature extraction into one jupyter notebook.
- Create directories for each user data file.
 - □ Create 15 directories: user1, user2, ..., user15
 - Each directory contains the label and feature data for the user.
- Use user1's features as training data to predict other users data, and show the clf.score
 - Only show user1 to user8 because there are some problems in user9's features.

protocol

- In user 1 training data
 - □ n = 100 # select 100 training samples
 - np.random.seed(100) # fix the random number
 generator
 - clf = RandomForestClassifier(n_estimators=100, random state=0)
- In other users data
 - Use all features. Not just select 100 samples.

My Results

69

- predict, d:/tmp/user2
- mean accuracy: 0.2678022237993849
- predict, d:/tmp/user3
- mean accuracy: 0.021364795918367346
- predict, d:/tmp/user4
- mean accuracy: 0.2711502535361623
- predict, d:/tmp/user5
- mean accuracy: 0.5180281116316969

- predict, d:/tmp/user6
- mean accuracy: 0.220162224797219
- predict, d:/tmp/user7
- mean accuracy: 0.206675994403358
- predict, d:/tmp/user8
- mean accuracy: 0.1575958353052532
- predict, d:/tmp/user9
- _____
- ValueError Traceback (most recent call last)

Only show user1 to user8 because there are some problems in user9's features.