Visualizations Appendix

Jonathan Neimann

2024-12-10

All Visualizations and Code

Visualizations From Report

Popularity distributions

```
# Create a new dataframe where track_popularity is 5 or higher
spotify_popularity <- spotify30k[spotify30k$track_popularity >= 5, ]

hist(spotify_popularity$track_popularity,
    main = "Distribution of Track Popularity",
    xlab = "Track Popularity",
    col = "blue")
```

Distribution of Track Popularity

Coorelation Matrix

```
library(corrplot)

## corrplot 0.95 loaded

corr_data <- spotify_popularity %>%
    select(track_popularity, danceability, energy, loudness, valence, tempo, duration_ms, liveness, instrumentalness, tempo, speechiness, acousticness)

%>%
    cor(use = "complete.obs")
    corrplot(corr_data, method = "color")
```


Popularity bar and density by Genre

```
ggplot(spotify_popularity, aes(x = playlist_genre, y = track_popularity, fill
= playlist_genre)) +
    geom_boxplot() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
    labs(title = "Popularity Across Genres", x = "Genre", y = "Danceability")
```

Popularity Across Genres


```
ggplot(spotify_popularity, aes(x = track_popularity, fill = playlist_genre))
+
    geom_density(alpha = 0.6) +
    labs(title = "Popularity by Genre", x = "Popularity", y = "Density") +
    theme(legend.position = "bottom")
```


Musical Keys

```
key_mapping <- c("C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#",
"B")
spotify_popularity$key_label <- key_mapping[spotify_popularity$key + 1]

key_counts <- table(spotify_popularity$key_label)

pie(key_counts,
    main = "Proportion of Musical Keys",
    col = rainbow(length(key_counts)))</pre>
```

Proportion of Musical Keys


```
avg_popularity_by_key <- spotify_popularity %>%
  group_by(key_label) %>%
  summarize(avg_popularity = mean(track_popularity, na.rm = TRUE))

ggplot(avg_popularity_by_key, aes(x = reorder(key_label, avg_popularity), y = avg_popularity, fill = key_label)) +
  geom_bar(stat = "identity") +
  coord_flip() +
  labs(title = "Average Popularity by Musical Key", x = "Key", y = "Average Popularity") +
  theme_minimal() +
  theme(legend.position = "none")
```

Average Popularity by Musical Key

Danceability by genre

```
ggplot(spotify_popularity, aes(x = danceability, fill = playlist_genre)) +
   geom_density(alpha = 0.6) +
   labs(title = "Danceability by Genre", x = "Popularity", y = "Density") +
   theme(legend.position = "bottom")
```

Danceability by Genre

Additional Visualizations

Playlist Genre vs Subgenre

```
# Create contingency table
genre_subgenre_table <- table(spotify_popularity$playlist_genre,
spotify_popularity$playlist_subgenre)

# Convert to a data frame for ggplot
heatmap_data <- as.data.frame(as.table(genre_subgenre_table))

# Plot heatmap
ggplot(heatmap_data, aes(x = Var1, y = Var2, fill = Freq)) +
    geom_tile(color = "white") +
    scale_fill_gradient(low = "white", high = "blue") +
    labs(title = "Playlist Genre vs Subgenre", x = "Playlist Genre", y =
    "Playlist Subgenre") +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))</pre>
```

Playlist Genre vs Subgenre

Track Popularity vs different variables scatterplots

Track Popularity vs Instrumentalness (by Playlist Genre

Track Popularity vs Duration (ms) (by Playlist Genre)

Track Popularity vs Energy (by Playlist Genre)

Track Popularity vs Danceability (by Playlist Genre)

Popularity by subgenre

Live vs Studio

```
spotify_popularity <- spotify_popularity %>%
   mutate(recording_type = ifelse(liveness > 0.8, "Live", "Studio"))

ggplot(spotify_popularity, aes(x = recording_type, y = track_popularity, fill = recording_type)) +
   geom_boxplot() +
   labs(title = "Popularity: Live vs Studio Recordings", x = "Recording Type", y = "Popularity")
```

Popularity: Live vs Studio Recordings

popularity by tempo

Popularity by Tempo Category

Track Count by Tempo

Count of Tracks by Tempo Category

Mode Distribution

```
ggplot(spotify_popularity, aes(x = factor(mode, labels = c("Minor",
"Major")), fill = factor(mode))) +
  geom_bar() +
  labs(title = "Distribution of Mode (Major vs Minor)", x = "Mode", y =
"Count") +
  theme(legend.position = "none")
```

Distribution of Mode (Major vs Minor)

Key Distribution by Mode

```
ggplot(spotify_popularity, aes(x = key_label, fill = factor(mode, labels =
c("Minor", "Major")))) +
  geom_bar(position = "dodge") +
  labs(title = "Key Distribution by Mode", x = "Key", y = "Count", fill =
"Mode") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

Key Distribution by Mode

Popularity by Key and Mode

```
avg_popularity_key_mode <- spotify_popularity %>%
  group_by(key_label, mode = factor(mode, labels = c("Minor", "Major"))) %>%
  summarize(avg_popularity = mean(track_popularity, na.rm = TRUE)) %>%
  ungroup()

## `summarise()` has grouped output by 'key_label'. You can override using
the

## `.groups` argument.

ggplot(avg_popularity_key_mode, aes(x = key_label, y = mode, fill =
avg_popularity)) +
  geom_tile(color = "white") +
  scale_fill_gradient(low = "lightblue", high = "darkblue") +
  labs(title = "Average Popularity by Key and Mode", x = "Key", y = "Mode",
fill = "Popularity") +
  theme_minimal()
```

