0.1 Terms

Making the language no-longer differentiate between values and computations.

0.1.1 Value Terms

$$v :== x$$

$$\mid \lambda x : A.v$$

$$\mid \mathsf{C}^A$$

$$\mid \mathsf{O}$$

$$\mid \mathsf{true} \mid \mathsf{false}$$

$$\mid \Lambda \alpha.v$$

$$\mid v \; \epsilon$$

$$\mid Avv_1v_2$$

$$\mid v_1 \; v_2$$

$$\mid \mathsf{do} \; x \leftarrow v_1 \; \mathsf{in} \; v_2$$

$$\mid \mathsf{return} v$$

0.2 Type System

0.2.1 Ground Effects

The effects should form a monotonous, pre-ordered monoid $(E, \cdot, 1, \leq)$ with ground elements e.

0.2.2 Effect Po-Monoid Under a Effect Environment

Derive a new Po-Monoid for each Φ :

$$(E_{\Phi}, \mathbf{1}, \leq_{\Phi}) \tag{2}$$

Where meta-variables, ϵ , range over E_{Φ} Where

$$E_{\Phi} = E \cup \{ \alpha \mid \alpha \in \Phi \} \tag{3}$$

And

$$\left(\right) \frac{\epsilon_3 = \epsilon_1 \cdot \epsilon_2}{\epsilon_3 = \epsilon_1 \epsilon_2} \tag{4}$$

Otherwise, is symbolic in nature.

$$\epsilon_1 \leq_{\Phi} \epsilon_2 \Leftrightarrow \forall \sigma \downarrow . \epsilon_1 \left[\sigma \downarrow \right] \leq \epsilon_2 \left[\sigma \downarrow \right] \tag{5}$$

Where $\sigma \downarrow$ denotes any ground-substitution of Φ . That is any substitution of all effect-variables in Φ to ground effects. Where it is obvious from the context, I shall use \leq instead of \leq_{Φ} .

0.2.3 Types

Ground Types There exists a set γ of ground types, including Unit, Bool

Term Types

$$A, B, C ::= \gamma \mid\mid \mathsf{M}_{\epsilon} A \mid \forall \alpha. A$$

0.2.4 Sub-typing

There exists a sub-typing pre-order relation $\leq :_{\gamma}$ over ground types that is:

- (Reflexive) $_{\overline{A \leq :_{\gamma} A}}$
- (Transitive) $\frac{A \leq :_{\gamma} B}{A \leq :_{\gamma} C} \frac{B \leq :_{\gamma} C}{A \leq :_{\gamma} C}$

We extend this relation with the function and effect-lambda sub-typing rules to yield the full sub-typing relation \leq :

- (ground) $\frac{A \leq :_{\gamma} B}{A \leq :B}$
- $(\operatorname{Fn}) \frac{A \leq :A' \quad B' \leq :B}{A'B' \leq :}$
- (All) $\frac{A \leq :A'}{\forall \alpha.A \leq :\forall a.A'}$
- (Effect) $\frac{A \leq :B \quad \epsilon_1 \leq \epsilon_2}{\mathsf{M}_{\epsilon_1} A \leq :\mathsf{M}_{\epsilon_2} B}$

0.2.5 Type and Effect Environments

A type environment is a snoc-list of tern-variable, type pairs, $G := \diamond \mid \Gamma, x : A$. An effect environment is a snoc-list of effect-variables.

$$\Phi ::= \diamond \mid \Phi, \alpha$$

Domain Function on Type Environments

- $dom(\diamond) = \emptyset$
- $dom(\Gamma, x : A) = dom(\Gamma) \cup \{x\}$

Membership of Effect Environments Informally, $\alpha \in \Phi$ if α appears in the list represented by Φ .

2

Ok Predicate On Effect Environments

- $(Atom)_{\overline{\diamond 0k}}$
- (A) $\frac{\Phi 0 k \quad \alpha \notin \Phi}{\Phi, \alpha 0 k}$

Well-Formed-ness of effects We define a relation $\Phi \vdash \epsilon$.

- (Ground) $\frac{\Phi \mathbf{0} \mathbf{k}}{\Phi \vdash e}$
- $(Var) \frac{\Phi, \alpha 0k}{\Phi, \alpha \vdash \alpha}$
- (Weaken) $\frac{\Phi \vdash \alpha}{\Phi, \beta \vdash \alpha}$ (if $\alpha \neq \beta$)
- (Monoid Op) $\frac{\Phi \vdash \epsilon_1 \quad \Phi \vdash \epsilon_2}{\Phi \vdash \epsilon_1 \cdot \epsilon_2}$

Well-Formed-ness of Types We define a relation $\Phi \vdash \tau$ on types.

- (Ground) $_{\overline{\Phi} \vdash \gamma}$
- (Lambda) $\frac{\Phi \vdash A \quad \Phi \vdash B}{\Phi \vdash}$
- (Computation) $\frac{\Phi \vdash A \quad \Phi \vdash \epsilon}{\Phi \vdash M_{\epsilon} A}$
- (For-All) $\frac{\Phi, \alpha \vdash A}{\Phi \vdash \forall \alpha. A}$

Ok Predicate on Type Environments We now define a predicate on type environments and effect environments: $\Phi \vdash \Gamma Ok$

•
$$(Nil)_{\Phi \vdash \diamond 0k}$$

$$\bullet \ (\mathrm{Var})^{\frac{\Phi \vdash \Gamma \mathsf{0k} \ x \notin \mathsf{dom}(\Gamma) \ \Phi \vdash A}{\Phi \vdash \Gamma, x : A \mathsf{0k}}}$$

0.2.6 Type Rules

• (Const)
$$\frac{\Phi \vdash \Gamma \mathsf{0k} \quad \Phi \vdash A}{\Phi \mid \Gamma \vdash \mathsf{C}^A : A}$$

•
$$(Unit) \frac{\Phi \vdash \Gamma Ok}{\Phi \mid \Gamma \vdash () : Unit}$$

•
$$(True) \frac{\Phi \vdash \Gamma Ok}{\Phi \mid \Gamma \vdash true : Bool}$$

•
$$(False) \frac{\Phi \vdash \Gamma Ok}{\Phi \mid \Gamma \vdash false:Bool}$$

•
$$(\text{Var}) \frac{\Phi \vdash \Gamma, x : A \cap \mathbf{k}}{\Phi \mid \Gamma, x : A \vdash x : A}$$

• (Weaken)
$$\frac{\Phi|\Gamma \vdash x: A \quad \Phi \vdash B}{\Phi|\Gamma, y: B \vdash x: A}$$
 (if $x \neq y$)

•
$$(\operatorname{Fn}) \frac{\Phi \mid \Gamma, x : A \vdash v : \beta}{\Phi \mid \Gamma \vdash \lambda x : A \cdot v :}$$

• (Sub)
$$\frac{\Phi|\Gamma \vdash v:A \quad A \leq :B}{\Phi|\Gamma \vdash v:B}$$

• (Effect-Abs)
$$\frac{\Phi, \alpha | \Gamma \vdash v : A}{\Phi | \Gamma \vdash \Lambda \alpha . v : \forall \alpha . A}$$

• (Effect-apply)
$$\frac{\Phi|\Gamma \vdash v : \forall \alpha. A \quad \Phi \vdash \epsilon}{\Phi|\Gamma \vdash v \in A[\epsilon/\alpha]}$$

$$\bullet \ (\text{Return}) \frac{\Phi | \Gamma \vdash v : A}{\Phi | \Gamma \vdash \mathsf{return} v : \mathsf{M}_{\mathbf{1}} A}$$

$$\bullet \ \ \big(\mathrm{Apply} \big) \frac{\Phi | \Gamma \vdash v_1 : A \rightarrow \mathsf{M}_{\epsilon} B \ \Phi | \Gamma \vdash v_2 : A}{\Phi | \Gamma \vdash v_1 \ v_2 : \mathsf{M}_{\epsilon} B}$$

$$\bullet \ (\mathrm{If}) \tfrac{\Phi |\Gamma \vdash v : \mathsf{Bool} \ \Phi |\Gamma \vdash v_1 : A \ \Phi |\Gamma \vdash v_2 : A}{\Phi |\Gamma \vdash AV v_1 v_2 : A}$$

$$\bullet \ (\mathrm{Do}) \frac{\Phi | \Gamma \vdash v_1 : \mathtt{M}_{\epsilon_1} A \ \Phi | \Gamma, x : A \vdash v_2 : \mathtt{M}_{\epsilon_2} B}{\Phi | \Gamma \vdash \mathtt{do} \ x \leftarrow v_1 \ \mathtt{in} \ v_2 : \mathtt{M}_{\epsilon_1 \cdot \epsilon_2} B}$$

0.2.7 Ok Lemma

If $\Phi \mid \Gamma \vdash t : \tau$ then $\Phi \vdash \Gamma Ok$.

Proof If $\Gamma, x: A0k$ then by inversion $\Gamma0k$ Only the type rule Weaken adds terms to the environment from its preconditions to its post-condition and it does so in an 0k preserving way. Any type derivation tree has at least one leaf. All leaves are axioms which require $\Phi \vdash \Gamma0k$. And all non-axiom derivations preserve the 0k property.