WHAT IS CLAIMED IS:

1. A composition for dyeing human keratinous fibres comprising, in a cosmetically acceptable medium, at least one monocationic monoazo dye of formula (I):

$$W_1-N=N-W_2-NW_3-W_4-W_5$$
 (I)

wherein:

- W₁ is chosen from 5- and 6-membered cationic aromatic heterocycles of formulae (II) and (III):

wherein:

- Z₁ is chosen from an oxygen atom, a sulphur atom, NR₂ radicals, and CR₃ radicals,
- Z₂ is chosen from a nitrogen atom and CR₄ radicals,
- Z₃ is chosen from NR₁₂ radicals and CR₁₃ radicals,
- Z₄ is chosen from a nitrogen atom and CR₁₄ radicals,
- Z₅ is chosen from a nitrogen atom and CR₁₅ radicals,

with the proviso that formulae (II) and (III) do not comprise more than two adjacent heteroatoms;

- the bond **a** connects the 5-membered cationic ring of formula (II) to the azo functional group of formula (I),
- the bond **b** connects the 6-membered cationic ring of formula (III) to the azo functional group of formula (I),
- X is chosen from organic and inorganic anions,
- W₂ and W₄ (formula I), which may be identical or different, are chosen from divalent carbonaceous aromatic groupsand pyridine groups of formulae (IV) and (V):

- W_3 is chosen from a hydrogen atom and C_1 - C_6 alkyl radicals that may be optionally substituted with at least one radical chosen from hydroxyl radicals, alkoxy radicals, amino radicals, mono(C_1 - C_4)alkylamino radicals, and di(C_1 - C_4)alkylamino radicals,
- $_{-}$ W_{5} is a 5-membered nitrogenous heteroaromatic radical connected to W_{4} via the nitrogen atom of the ring of the said heteroaromatic radical, wherein the heteroaromatic radical is chosen from pyrazolyl, pyrrolyl, imidazolyl, triazolyl, and thiadiazolyl radicals, it

being possible for each of these heteroaromatic radicals to be substituted by at least one entity chosen from hydrogen, chlorine, and fluorine atoms, C_1 - C_6 alkyl radicals optionally substituted by at least one radical chosen from hydroxyl, C_1 - C_4 alkoxy, C_2 - C_4 (poly)hydroxyalkoxy, amino, (di)(C_1 - C_4)alkylamino, C_2 - C_4 (poly)hydroxyalkylamino, carboxyl, sulpho, C_1 - C_4 alkoxycarbonyl, and C_1 - C_4 alkylthio radicals; and at least one phenyl radical, which may be optionally substituted by at least one entity chosen from halogen atoms and hydroxyl, C_1 - C_2 alkoxy, amino, (di)(C_1 - C_2)alkylamino, carboxyl, sulpho, C_1 - C_4 alkyl, and C_1 - C_2 alkylthio radicals,

- R_1 , R_2 , R_9 and R_{12} , which may be identical or different, are chosen from phenyl radicals that may be optionally substituted and C_1 - C_8 alkyl radicals that may be optionally substituted by at least one radical chosen from hydroxyl, C_1 - C_2 alkoxy, C_2 - C_4 (poly)hydroxyalkoxy, amino, and (di)(C_1 - C_2)alkylamino radicals,
- R₅, R₆, R₇ and R₈, which may be identical or different, are chosen from a hydrogen atom; a chlorine atom; a bromine atom; linear and branched, saturated and unsaturated C₁-C₈ hydrocarbonaceous chains that can form at least one 3- to 6-membered carbonaceous ring, at least one carbon atom of the carbonaceous chain of which can be replaced by at least one entity chosen from oxygen, nitrogen, and sulphur atoms and SO₂ groups, and the carbon atoms of which can, independently of one another, be substituted by at least one halogen atom; with the proviso that R₅, R₆, R₇ and R₈ do not comprise a peroxide bond or a diazo or nitroso radical,

- R₃, R₄, R₁₀, R₁₁, R₁₃, R₁₄ and R₁₅, which may be identical or different, are chosen from a hydrogen atom and linear and branched, saturated and unsaturated C₁-C₁₆ hydrocarbonaceous chains that can form at least one 3- to 6-membered carbonaceous ring, one or more carbon atoms of the carbonaceous chain of which can be replaced by at least one entity chosen from oxygen, nitrogen, and sulphur atoms, and SO₂ groups, and the carbon atoms of which can, independently of one another, be substituted by at least one halogen atom; with the proviso that R₃, R₄, R₁₀, R₁₁, R₁₃, R₁₄ and R₁₅ do not comprise a peroxide bond or a diazo or nitroso radical,
 - R₄ with R₁₃ and R₁₄ with R₁₅ can form a carbonaceous aromatic ring.
- 2. The composition according to Claim 1, wherein the human keratinous fibers are human hair.
- 3. The composition according to Claim 1, wherein R_4 with R_{13} and R_{14} with R_{15} form a phenyl ring.
- 4. The composition according to Claim 1, wherein W_3 (formula I) is chosen from a hydrogen atom and C_1 - C_4 alkyl radicals that may be optionally substituted with at least one radical chosen from hydroxyl, C_1 - C_2 alkoxy, amino, and (di)(C_1 - C_2)alkylamino radicals.
- 5. The composition according to Claim 4, wherein W_3 (formula I) is chosen from a hydrogen atom and methyl, ethyl, and 2-hydroxyethyl radicals.
- 6. The composition according to Claim 5, wherein W₃ (formula I) is a hydrogen atom.
- 7. The composition according to Claim 1, wherein W_5 (formula I) is chosen from pyrazolyl, pyrrolyl, and imidazolyl rings.

- 8. The composition according to Claim 7, wherein W_5 (formula I) is chosen from pyrrolyl and imidazolyl rings.
- 9. The composition according to Claim 8, wherein W_5 (formula I) is a 5-membered nitrogenous heteroaromatic ring substituted with at least one radical chosen from C_1 - C_6 alkyl radicals that may be optionally substituted by at least one entity chosen from hydroxyl, C_1 - C_4 alkoxy, amino, C_1 - C_4 monoalkylamino, C_1 - C_4 alcoxycarbonyl and $di(C_1$ - C_4)alkylamino radicals; chlorine and fluorine atoms; phenyl radicals that may be optionally substituted with at least one entity chosen from a bromine atom, a chlorine atom, and hydroxyl, C_1 - C_2 alkoxy, amino, $(di)(C_1$ - C_2)alkylamino, $di(C_1$ - C_2)alkylamino, and C_1 - C_2 alkoxy radicals.
- 10. The composition according to Claim 8, wherein W_5 (formula I) is chosen from pyrrolyl and imidazolyl radicals optionally substituted with one or two radicals chosen from methyl, ethyl, propyl, phenyl, 4-chlorophenyl and ethoxycarbonyl radicals.
- 11. The composition according to Claim 1, wherein R_1 , R_2 , R_9 and R_{12} , which may be identical or different, are chosen from C_1 - C_4 alkyl radicals optionally substituted with at least one radical chosen from hydroxyl, C_1 - C_2 alkoxy, amino, and $(di)(C_1$ - $C_2)$ alkylamino radicals.
- 12. The composition according to Claim 11, wherein R_1 , R_2 , R_9 and R_{12} , which may be identical or different, are chosen from methyl, ethyl, propyl, and 2-hydroxyethyl radicals.
- 13. The composition according to Claim 1, wherein R₅, R₆, R₇ and R₈, which may be identical or different, are chosen from a hydrogen atom and methyl, ethyl, isopropyl, methoxymethyl, hydroxymethyl, 1-carboxymethyl, 1-aminomethyl, 2-carboxyethyl, 2-hydroxyethyl, 3-hydroxypropyl, 1,2-dihydroxyethyl, 1-hydroxy-2-aminoethyl,

2-hydroxy-1-aminoethyl, methoxy, ethoxy, 2-hydroxyethyloxy, and 2-aminoethyloxy radicals.

- 14. The composition according to Claim 13, wherein R₅, R₆, R₇ and R₈, which may be identical or different, are chosen from a hydrogen atom and methyl, hydroxymethyl, 2-hydroxyethyl, 1,2-dihydroxyethyl, methoxy, and 2-hydroxyethyloxy radicals.
- 15. The composition according to Claim 14, wherein R_5 , R_6 , R_7 and R_8 , which may be identical or different, are chosen from a hydrogen atom, methyl radicals and methoxy radicals.
- 16. The composition according to Claim 1, wherein R₃, R₄, R₁₀, R₁₁, R₁₃, R₁₄ and R₁₅, which may be identical or different, are chosen from hydrogen atoms; linear and branched C₁-C₄ alkyl radicals optionally substituted by at least one radical chosen from hydroxyl, C₁-C₂ alkoxy, C₂-C₄ (poly)hydroxyalkoxy, amino and (di)(C₁-C₂)alkylamino radicals; phenyl radicals optionally substituted by at least one entity chosen from hydroxyl, C₁-C₂ alkoxy, C₂-C₄ (poly)hydroxyalkoxy, amino and (di)(C₁-C₂)alkylamino radicals, and halogen atoms; sulphonylamino radicals; C₁-C₂ alkoxy radicals; C₂-C₄ (poly)hydroxyalkoxy radicals; amino radicals; (di)(C₁-C₂)alkylamino radicals; and C₂-C₄ (poly)hydroxyalkylamino radicals.
- 17. The composition according to Claim 16, wherein the halogen atoms are chosen from chlorine, fluorine and bromine atoms.
- 18. The composition according to Claim 16, wherein R₃, R₄, R₁₀, R₁₁, R₁₃, R₁₄ and R₁₅, which may be identical or different, are chosen from a hydrogen atom; C₁-C₄ alkyl radicals optionally substituted by at least one radical chosen from hydroxyl, amino and

(di)(C_1 - C_2)alkylamino radicals; C_1 - C_2 alkoxy radicals; amino radicals; (di)(C_1 - C_2)alkylamino radicals; and C_2 - C_4 (poly)hydroxyalkylamino radicals.

- 19. The composition according to Claim 18, wherein R₃, R₄, R₁₀, R₁₁, R₁₃, R₁₄ and R₁₅, which may be identical or different, are chosen from a hydrogen atom and methyl, phenyl, 2-hydroxymethyl, methoxy, ethoxy, 2-hydroxyethyloxy, amino, methylamino, dimethylamino and 2-hydroxyethylamino radicals.
- 20. The composition according to Claim 1, wherein Z_1 (formula (II)) is chosen from NR₂ radicals.
- 21. The composition according to Claim 1, wherein Z_2 (formula (II)) is chosen from CR_4 radicals.
- 22. The composition according to claim 1, wherein Z_3 (formula (II)) is chosen from CR_{13} radicals.
- 23. The composition according to Claim 1, wherein Z_4 (formula (III)) is chosen from CR_{14} radicals.
- 24. The composition according to Claim 1, wherein Z_5 (formula (III)) is chosen from CR_{15} .
- 25. The composition according to Claim 1, wherein the monocationic monoazo dye of formula (I) is chosen from:
- 2-(4-amino-N-(4-(N-pyrrolophenyl))phenylazo)-1,3-dimethyl-3H-imidazol-1-ium,
- 2-(4-amino-N-(4-(N-(2,5-di-methyl)pyrrolophenyl))phenylazo)-1,3-dimethyl-3H-imidazol-1-ium,
- 2-(4-amino-N-(4-(N-(2-methyl-5-propyl)pyrrolophenyl))phenylazo)-1,3-dimethyl-3H-imidazol-1-ium,

- 2-(4-amino-N-(4-(N-(2-methyl-5-phenyl)pyrrolophenyl))phenylazo)-1,3-dimethyl-3H-imidazol-1-ium, and
- 2-(4-amino-N-(4-(N-[2-methyl-3-carboxyethyl-5-(4-chlorophenyl)pyrrolophenyl)]phenylazo)-1,3-dimethyl-3H-imidazol-1-ium,

wherein each of these dyes is associated with at least one X⁻ anion.

- 26. The composition according to Claim 1, wherein X^- is chosen from halides, hydroxides, sulphates, hydrogensulphates, (C_1-C_6) alkyl sulphates, acetates, tartrates, oxalates, (C_1-C_6) alkylsulphonates and arylsulphonates, which are optionally substituted by at least one C_1-C_4 alkyl radical.
- 27. The composition according to Claim 1, wherein the monocationic monoazo dye of formula (I) is present in an amount ranging from 0.001 to 5% by weight, relative to the total weight of the dyeing composition.
- 28. The composition according to Claim 27, wherein the monocationic monoazo dye of formula (I) is present in an amount ranging from 0.05 to 2% by weight, relative to the total weight of the composition.
- 29. The composition according to Claims 1, further comprising at least one direct dye other than those of formula (I), wherein said at least one direct dye is chosen from neutral, acidic and cationic direct nitrobenzene dyes; neutral, acidic and cationic direct azo dyes; neutral, acidic and cationic direct quinone dyes; direct azine dyes; direct methine dyes; direct triarylmethane dyes, direct indoamine dyes, and direct natural dyes.
- 30. The composition according to Claim 29, wherein the cationic direct quinone dyes are chosen from anthraquinone dyes.
- 31. The composition according to Claim 1, further comprising at least one oxidizing agent.

- 32. The composition according to Claim 1, wherein the at least one oxidizing agent is hydrogen peroxide.
- 33. The composition according to Claim 1, further comprising at least one oxidation base.
- 34. The composition according to Claim 33, wherein the at least one oxidation base is chosen from para-phenylenediamines, bisphenylalkylenediamines, para-aminophenols, ortho-aminophenols, heterocyclic bases and their addition salts with an acid.
- 35. The composition according to Claim 33, further comprising at least one coupler.
- 36. The composition according to Claim 35, wherein the at least one coupler is chosen from meta-phenylene-diamines, meta-aminophenols, meta-diphenols, naphthalene couplers, heterocyclic couplers and their addition salts with an acid.
- 37. The composition according to Claim 1, wherein R₃, R₄, R₁₀, R₁₁, R₁₃, R₁₄ and R₁₅, which may be identical or different, are chosen from hydrogen atoms; linear and branched C₁-C₈ alkyl radicals optionally substituted by at least one radical chosen from hydroxyl, C₁-C₂ alkoxy, C₂-C₄ (poly)hydroxyalkoxy, amino and (di)(C₁-C₂)alkylamino radicals; phenyl radicals optionally substituted by at least one entity chosen from hydroxyl, C₁-C₂ alkoxy, C₂-C₄ (poly)hydroxyalkoxy, amino and (di)(C₁-C₂)alkylamino radicals, and halogen atoms; sulphonylamino radicals; C₁-C₂ alkoxy radicals; C₂-C₄ (poly)hydroxyalkoxy radicals; amino radicals; (di)(C₁-C₂)alkylamino radicals; and C₂-C₄ (poly)hydroxyalkylamino radicals.
- 38. The composition according to Claim 1, wherein if W_5 is imidazole, W_1 is benzimidazole, and W_4 is phenyl, then W_3 not hydrogen.

39. A process for the direct dyeing of human keratinous fibres, comprising applying to the fibres a composition comprising, in a cosmetically acceptable medium, at least one monocationic monoazo dye of formula (I):

$$W_1-N=N-W_2-NW_3-W_4-W_5$$
 (1)

wherein:

- W₁ is chosen from 5- and 6-membered cationic aromatic heterocycles of formulae (II) and (III):

R11
$$Z_3$$
 Z_2
 Z_3
 Z_4
 Z_4
 Z_5
 Z_4
 Z_5
 Z_4
 Z_5
 Z_4
 Z_5
 Z_5
 Z_4
 Z_5
 Z_5
 Z_7
 Z_7

wherein:

- Z₁ is chosen from an oxygen atom, a sulphur atom, NR₂ radicals, and CR₃ radicals,
- Z₂ is chosen from a nitrogen atom and CR₄ radicals,
- Z₃ is chosen from NR₁₂ radicals and CR₁₃ radicals,
- Z₄ is chosen from a nitrogen atom and CR₁₄ radicals,
- Z₅ is chosen from a nitrogen atom and CR₁₅ radicals,

with the proviso that formulae (II) and (III) do not comprise more than two adjacent heteroatoms;

- the bond **a** connects the 5-membered cationic ring of formula (II) to the azo functional group of formula (I),
- the bond **b** connects the 6-membered cationic ring of formula (III) to the azo functional group of formula (I),
- X is chosen from organic and inorganic anions,
- W₂ and W₄ (formula I), which may be identical or different, are chosen from divalent carbonaceous aromatic groups and pyridine groups of formulae (IV) and (V):

- W_3 is chosen from a hydrogen atom and C_1 - C_6 alkyl radicals that may be optionally substituted with at least one radical chosen from hydroxyl radicals, alkoxy radicals, amino radicals, mono(C_1 - C_4)alkylamino radicals, and di(C_1 - C_4)alkylamino radicals,
- W_5 is a 5-membered nitrogenous heteroaromatic radical connected to W_4 via the nitrogen atom of the ring of the said heteroaromatic radical, wherein the heteroaromatic radicals are chosen from pyrazolyl, pyrrolyl, imidazolyl, triazolyl, and thiadiazolyl radicals, it

being possible for each of these heteroaromatic radicals to be substituted by at least one entity chosen from hydrogen, chlorine, and fluorine atoms, C_1 - C_6 alkyl radicals optionally substituted by at least one radical chosen from hydroxyl, C_1 - C_4 alkoxy, C_2 - C_4 (poly)hydroxyalkoxy, amino, (di)(C_1 - C_4)alkylamino, C_2 - C_4 (poly)hydroxyalkylamino, carboxyl, sulpho, C_1 - C_4 alkoxycarbonyl, and C_1 - C_4 alkylthio radicals; and at least one phenyl radical, which may be optionally substituted by at least one entity chosen from halogen atoms and hydroxyl, C_1 - C_2 alkoxy, amino, (di)(C_1 - C_2)alkylamino, carboxyl, sulpho, C_1 - C_4 alkyl, and C_1 - C_2 alkylthio radicals,

- R_1 , R_2 , R_9 and R_{12} , which may be identical or different, are chosen from phenyl radicals that may be optionally substituted and C_1 - C_8 alkyl radicals that may be optionally substituted by at least one radical chosen from hydroxyl, C_1 - C_2 alkoxy, C_2 - C_4 (poly)hydroxyalkoxy, amino, and (di)(C_1 - C_2)alkylamino radicals,
- R₅, R₆, R₇ and R₈, which may be identical or different, are chosen from a hydrogen atom; a chlorine atom; a bromine atom; linear and branched, saturated and unsaturated C₁-C₈ hydrocarbonaceous chains that can form at least one 3- to 6-membered carbonaceous ring, at least one carbon atom of the carbonaceous chain of which can be replaced by at least one entity chosen from oxygen, nitrogen, and sulphur atoms and SO₂ groups, and the carbon atoms of which can, independently of one another, be substituted by at least one halogen atom; with the proviso that R₅, R₆, R₇ and R₈ do not comprise a peroxide bond or a diazo or nitroso radical,

Attorney Docket No. 05725.1240-00000

- R₃, R₄, R₁₀, R₁₁, R₁₃, R₁₄ and R₁₅, which may be identical or different, are chosen from a hydrogen atom and linear and branched, saturated and unsaturated C₁-C₁₆ hydrocarbonaceous chains that can form at least one 3- to 6-membered carbonaceous ring, one or more carbon atoms of the carbonaceous chain of which can be replaced by at least one entity chosen from oxygen, nitrogen, and sulphur atoms, and SO₂ groups, and the carbon atoms of which can, independently of one another, be substituted by at least one halogen atom; with the proviso that R₃, R₄, R₁₀, R₁₁, R₁₃, R₁₄ and R₁₅ do not comprise a peroxide bond or diazo or nitroso radicals,
 - R_4 with R_{13} and R_{14} with R_{15} can form a carbonaceous aromatic ring.
- 40. The process according to Claim 39, wherein the human keratinous fibers are hair.
- 41. The process according to Claim 39, wherein the dyeing composition comprises at least one oxidizing agent.
- 42. The process according to Claim 41, wherein the at least one oxidizing agent is mixed at the time of use with the dyeing composition.
- 43. The process according to Claim 41, wherein the at least one oxidizing agent is applied to the fibres in the form of an oxidizing composition, simultaneously with, or sequentially to, the dyeing composition.
- 44. The process according to Claim 39, wherein if W_5 is imidazole, W_1 is benzimidazole, and W_4 is phenyl, then W_3 is not hydrogen.
- 45. A monocationic monoazo compound chosen from compounds of formula (I):

 $W_1-N=N-W_2-NW_3-W_4-W_5$ (1)

wherein:

- W_1 is chosen from 5- and 6-membered cationic aromatic heterocycles of formulae (II) and (III):

wherein:

- Z_1 is chosen from an oxygen atom, a sulphur atom, NR $_2$ radicals, and CR $_3$ radicals,
- Z₂ is chosen from a nitrogen atom and CR₄ radicals,
- Z₃ is chosen from NR₁₂ radicals and CR₁₃ radicals,
- Z₄ is chosen from a nitrogen atom and CR₁₄ radicals,
- Z₅ is chosen from a nitrogen atom and CR₁₅ radicals,

with the proviso that formulae (II) and (III) do not comprise more than two adjacent heteroatoms;

- the bond **a** connects the 5-membered cationic ring of formula (II) to the azo functional group of formula (I),
- the bond **b** connects the 6-membered cationic ring of formula (III) to the azo functional group of formula (I),

- X⁻ is chosen from organic and inorganic anions,
- W₂ and W₄ (formula I), which may be identical or different, are chosen from divalent carbonaceous aromatic groups and pyridine groups of formulae (IV) and (V):

- W_3 is chosen from a hydrogen atom and C_1 - C_6 alkyl radicals that may be optionally substituted with at least one radical chosen from hydroxyl radicals, alkoxy radicals, amino radicals, mono(C_1 - C_4)alkylamino radicals, and di(C_1 - C_4)alkylamino radicals,
- W₅ is a 5-membered nitrogenous heteroaromatic radical connected to W₄ via the nitrogen atom of the ring of the said heteroaromatic radical, wherein the heteroaromatic radicals are chosen from pyrazolyl, pyrrolyl, imidazolyl, triazolyl, and thiadiazolyl radicals, it being possible for each of these heteroaromatic radicals to be substituted by at least one entity chosen from hydrogen, chlorine, and fluorine atoms, C₁-C₆ alkyl radicals optionally substituted by at least one radical chosen from hydroxyl, C₁-C₄ alkoxy, C₂-C₄ (poly)hydroxyalkoxy, amino, (di)(C₁-C₄)alkylamino, C₂-C₄ (poly)hydroxyalkylamino, carboxyl, sulpho, C₁-C₄ alkoxycarbonyl, and C₁-C₄ alkylthio radicals; and at least one phenyl radical, which may be optionally substituted by at least one entity chosen from

halogen atoms and hydroxyl, C_1 - C_2 alkoxy, amino, (di)(C_1 - C_2)alkylamino, carboxyl, sulpho, C_1 - C_4 alkyl, and C_1 - C_2 alkylthio radicals,

- R_1 , R_2 , R_9 and R_{12} , which may be identical or different, are chosen from phenyl radicals that may be optionally substituted and C_1 - C_8 alkyl radicals that may be optionally substituted by at least one radical chosen from hydroxyl, C_1 - C_2 alkoxy, C_2 - C_4 (poly)hydroxyalkoxy, amino, and (di)(C_1 - C_2)alkylamino radicals,
- R₅, R₆, R₇ and R₈, which may be identical or different, are chosen from a hydrogen atom; a chlorine atom; a bromine atom; linear and branched, saturated and unsaturated C₁-C₈ hydrocarbonaceous chains that can form at least one 3- to 6-membered carbonaceous ring, at least one carbon atom of the carbonaceous chain of which can be replaced by at least one entity chosen from oxygen, nitrogen, and sulphur atoms and SO₂ groups, and the carbon atoms of which can, independently of one another, be substituted by at least one halogen atom; with the proviso that R₅, R₆, R₇ and R₈ do not comprise a peroxide bond or a diazo or nitroso radical,
- R₃, R₄, R₁₀, R₁₁, R₁₃, R₁₄ and R₁₅, which may be identical or different, are chosen from a hydrogen atom and linear and branched, saturated and unsaturated C₁-C₁₆ hydrocarbonaceous chains that can form at least one 3- to 6-membered carbonaceous ring, one or more carbon atoms of the carbonaceous chain of which can be replaced by at least one entity chosen from oxygen, nitrogen, and sulphur atoms, and SO₂ groups, and the carbon atoms of which can, independently of one another, be substituted by at least

one halogen atom; with the proviso that R_3 , R_4 , R_{10} , R_{11} , R_{13} , R_{14} and R_{15} do not comprise a peroxide bond or diazo or nitroso radicals,

R₄ with R₁₃ and R₁₄ with R₁₅ can form a carbonaceous aromatic ring.

- 46. The monocationic monoazo compound according to Claim 45, wherein R₃, R₄, R₁₀, R₁₁, R₁₃, R₁₄ and R₁₅, which may be identical or different, are chosen from hydrogen atoms; linear and branched C₁-C₈ alkyl radicals optionally substituted by at least one radical chosen from hydroxyl, C₁-C₂ alkoxy, C₂-C₄ (poly)hydroxyalkoxy, amino and (di)(C₁-C₂)alkylamino radicals; phenyl radicals optionally substituted by at least one entity chosen from hydroxyl, C₁-C₂ alkoxy, C₂-C₄ (poly)hydroxyalkoxy, amino and (di)(C₁-C₂)alkylamino radicals, and halogen atoms; sulphonylamino radicals; C₁-C₂ alkoxy radicals; C₂-C₄ (poly)hydroxyalkoxy radicals; amino radicals; (di)(C₁-C₂)alkylamino radicals; and C₂-C₄ (poly)hydroxyalkylamino radicals.
- 47. A multi-compartment kit or device for the dyeing of human keratinous fibres, comprising:

at least one first compartment comprises a composition comprising, in a cosmetically acceptable medium,

at least one monocationic monoazo dye of formula (I):

$$W_1-N=N-W_2-NW_3-W_4-W_5$$
 (I)

wherein:

- W₁ is chosen from 5- and 6-membered cationic aromatic heterocycles of formulae (II) and (III):

R11
$$Z_3$$
 Z_2
 Z_3
 Z_4
 Z_4
 Z_5
 Z_4
 Z_5
 Z_4
 Z_5
 Z_4
 Z_5
 Z_5
 Z_4
 Z_5
 Z_5
 Z_5
 Z_5
 Z_7
 Z_7
 Z_7
 Z_8
 Z_8
Formula (III)

wherein:

- Z₁ is chosen from an oxygen atom, a sulphur atom, NR₂ radicals, and CR₃ radicals,
- Z₂ is chosen from a nitrogen atom and CR₄ radicals,
- Z₃ is chosen from NR₁₂ radicals and CR₁₃ radicals,
- Z₄ is chosen from a nitrogen atom and CR₁₄ radicals,
- Z₅ is chosen from a nitrogen atom and CR₁₅ radicals,

with the proviso that formulae (II) and (III) do not comprise more than two adjacent heteroatoms;

- the bond **a** connects the 5-membered cationic ring of formula (II) to the azo functional group of formula (I),
- the bond **b** connects the 6-membered cationic ring of formula (III) to the azo functional group of formula (I),

X is chosen from organic and inorganic anions,

- W₂ and W₄ (formula I), which may be identical or different, are chosen from divalent carbonaceous aromatic groups and pyridine groups of formulae (IV) and (V):

- W_3 is chosen from a hydrogen atom and C_1 - C_6 alkyl radicals that may be optionally substituted with at least one radical chosen from hydroxyl radicals, alkoxy radicals, amino radicals, mono(C_1 - C_4)alkylamino radicals, and di(C_1 - C_4)alkylamino radicals,
- W₅ is a 5-membered nitrogenous heteroaromatic radical connected to W₄ via the nitrogen atom of the ring of the said heteroaromatic radical, wherein the heteroaromatic radicals are chosen from pyrazolyl, pyrrolyl, imidazolyl, triazolyl, and thiadiazolyl radicals, it being possible for each of these heteroaromatic radicals to be substituted by at least one entity chosen from hydrogen, chlorine, and fluorine atoms, C₁-C₆ alkyl radicals optionally substituted by at least one radical chosen from hydroxyl, C₁-C₄ alkoxy, C₂-C₄ (poly)hydroxyalkoxy, amino, (di)(C₁-C₄)alkylamino, C₂-C₄ (poly)hydroxyalkylamino, carboxyl, sulpho, C₁-C₄ alkoxycarbonyl, and C₁-C₄ alkylthio radicals; and at least one phenyl radical, which may be optionally substituted by at least one entity chosen from halogen atoms and hydroxyl, C₁-C₂ alkoxy, amino, (di)(C₁-C₂)alkylamino, carboxyl, sulpho, C₁-C₄ alkyl, and C₁-C₂ alkylthio radicals,
- R₁, R₂, R₉ and R₁₂, which may be identical or different, are chosen from phenyl radicals that may be optionally substituted and C₁-C₈ alkyl radicals that may be optionally

substituted by at least one radical chosen from hydroxyl, C_1 - C_2 alkoxy, C_2 - C_4 (poly)hydroxyalkoxy, amino, and (di)(C_1 - C_2)alkylamino radicals,

- R₅, R₆, R₇ and R₈, which may be identical or different, are chosen from a hydrogen atom; a chlorine atom; a bromine atom; linear and branched, saturated and unsaturated C₁-C₈ hydrocarbonaceous chains that can form at least one 3- to 6-membered carbonaceous ring, at least one carbon atom of the carbonaceous chain of which can be replaced by at least one entity chosen from oxygen, nitrogen, and sulphur atoms and SO₂ groups, and the carbon atoms of which can, independently of one another, be substituted by at least one halogen atom; with the proviso that R₅, R₆, R₇ and R₈ do not comprise a peroxide bond or a diazo or nitroso radical,
- R₃, R₄, R₁₀, R₁₁, R₁₃, R₁₄ and R₁₅, which may be identical or different, are chosen from a hydrogen atom and linear and branched, saturated and unsaturated C₁-C₁₆ hydrocarbonaceous chains that can form at least one 3- to 6-membered carbonaceous ring, one or more carbon atoms of the carbonaceous chain of which can be replaced by at least one entity chosen from oxygen, nitrogen, and sulphur atoms, and SO₂ groups, and the carbon atoms of which can, independently of one another, be substituted by at least one halogen atom; with the proviso that R₃, R₄, R₁₀, R₁₁, R₁₃, R₁₄ and R₁₅ do not comprise a peroxide bond or a diazo or nitroso radical,
 - R₄ with R₁₃ and R₁₄ with R₁₅ can form a carbonaceous aromatic ring; and at least one second compartment comprises at least one oxidizing composition.