# CS xxxx: ວິສະວະກຳ ຊອບແວຣ໌ 2011-2012

ການບໍລິຫານການຜະລິດຊອບແວຣ໌

ບິດທີ 5

ການປະເມີນຕົ້ນທຶນຂອງຊອບແວຣ໌

Software Cost Estimation

# ເນື້ອໃນຫຍໍ້

- 🕈 ການປະເມີນຕົ້ນທຶນຂອງຊອບແວຣ໌
- 🕈 ການປະເມີນຂະໜາດຂອງຊອບແວຣ໌
  - ການນັບຈຳນວນແຖວຂອງໂຄດ
  - ການນັບຈຳນວນ Function
- 🗢 ເທັກນິກການປະເມີນຕົ້ນທຶນ ແລະ ຄວາມພະຍາຍາມ
- ♦ ເທັກນິກການປະເມີນແບບ COCOMO

# ການປະເມີນຕົ້ນທຶນຂອງຊອບແວຣ໌

- 🦴 ການປະເມີນຕົ້ນທຶນຂອງຊອບແວຣ໌ເປັນກິດຈະກຳທີ່ສຳຄັນທີ່ສຸດ ໃນການວາງແຜນໂຄງການ
- 🔖 ເປັນການປະມານຄ່າໃຊ້ຈ່າຍທີ່ເກີດຂຶ້ນທັງໝົດໃນການຜະລິດ ຊອບແວຣ໌ເພື່ອເອົາມາເປັນຕົ້ນທຶນຂອງຊອບແວຣ໌ ແລ້ວນຳໄປປະ ເມີນລາຄາຂອງຊອບແວຣ໌
- 🔖 ຄ່າໃຊ້ຈ່າຍທີ່ສຳຄັນທີ່ສຸດແມ່ນຄ່າແຮງງານ (Effort), ຄ່າໃຊ້ຈ່າຍ ໃນການຊື້ວັດຖຸດິບຕ່າງໆ
- 🔖 ຕົ້ນທຶນຂອງໂຄງການແມ່ນຕົ້ນທຶນຂອງການຜະລິດຊອບ ແວຣ໌ລວມກັບຕົ້ນທຶນອື່ນໆນຳ

# ການປະເມີນຕົ້ນທຶນຂອງຊອບແວຣ໌

### 🦴 ຕົ້ນທຶນຂອງໂຄງການປະກອບດ້ວຍ:

- o ຄ່າໃຊ້ຈ່າຍດ້ານ Hardware, Software ແລະ ການບໍາລຸງຮັກສາ
- ຄ່າໃຊ້ຈ່າຍໃນການເດີນທາງ ແລະ ການຝຶກອົບຮົມ
- ຄ່າໃຊ້ຈ່າຍເປັນຄ່າແຮງງານ
  - ເງິນເດືອນບຸກຄະລາກອນ
  - ຄ່າໃຊ້ຈ່າຍໃນການກະກຽມງານ
  - ຄ່າໃຊ້ຈ່າຍໃນການບໍລິຫານ
  - o ຄ່າຕິດຕໍ່ສື່ສານ
  - ຄ່າສະຫວັດດິການສັງຄົມ

- 🦴 ການຄຳນວນຫາຕຶ້ນທຶນແມ່ນໃຊ້ຄ່າປະສິດທິຜິນໃນການເຮັດວຽກ (Productivity)
- ປະສິດທິຜົນຂອງການເຮັດວຽກສາມາຄຳນວນໄດ້ຈາກຈຳນວນຂອງ ວຽກທີ່ເຮັດ (Size) ຫານດ້ວຍຈຳນວນເວລາທີ່ຕ້ອງການໃນການ ຜະລິດ (Effort) ຊຶ່ງອາດມີຫົວໜ່ວຍເປັນ Person-Hours, Man-Day, Man-Month

#### Productivity = Size/Effort

- 🦫 ການວັດແທກຂະໜາດຂອງຊອບແວຣ໌ນັ້ນມີ 2 ປະເພດຄື:
  - ນັບຈຳນວນແຖວຂອງໂຄດ ແລະ ນັບຈຳນວນ Function(Line of Code: LoC and Function Point:FP)

#### 🦴 ການນັບຈຳນວນແຖວຂອງໂຄດ

- o Simple Line Count ເປັນວິທີນັບໂຄດທຸກແຖວທີ່ມີຢູ່ໃນ Source File
- o Physical Line (LINES) ບໍ່ນັບແຖວທີ່ເປັນນິຍາມຂອງຕົວປ່ຽນ
- o Physical Line of Code ບໍ່ນັບຈຳນວນແຖວຫວ່າງ ແລະ comment
- Logical Lines of Code (LLOC) ຄ້າຍຄືກັບວິທີແບບ physical ແຕ່ ແຕກຕ່າງຢູ່ບ່ອນວ່າ Logical ນັ້ນຈະນັບແຖວທີ່ມີການເຊື່ອມຕໍ່ກັນດ້ວຍເຄື່ອໝາຍ "\_" ເປັນແຖວດຽວກັນ
- Statements (STMT) ເປັນການນັບຈຳນວນປະໂຫຍກຄຳສັ່ງ

#### 🦴 ການນັບຈຳນວນແຖວຂອງໂຄດ

- ການວັດແທກຂະໜາດຂອງຊອບແວຣ໌ດ້ວຍການນັບຈຳນວນແຖວເຫັນ ວ່າຍັງບໍ່ທັນຖືກຕ້ອງເທົ່າທີ່ຄວນ ຫາກຕ້ອງການປຽບທຽບໂຄດທີ່ຂຽນ ຈາກພາສາໂປຣແກຣມທີ່ແຕກຕ່າງກັນ
- ຈຳນວນແຖວທີ່ນັບໄດ້ຂຶ້ນຢູ່ກັບພາສາຂຽນໂປຣແກຣມທີ່ເລືອກໃຊ້ແລະ ຄຸນນະພາບໃນການອອກແບບໂປຣແກຣມ

#### 🦴 ການນັບຈຳນວນແຖວຂອງໂຄດ

o ຕົວຢ່າງການຄຳນວນຫາ Productivity ຂອງຜູ້ຂຽນໂປຣແກຣມ

|               | ວິເຄາະ  | ອອກແບບ  | ຮໄກເດຍແນຍກ | ທິດສອບ   | ສ້າງເອກະສານ |
|---------------|---------|---------|------------|----------|-------------|
| ໂຄດ Assembly  | 4 ອາທິດ | 6 ອາທິດ | 10 ອາທິດ   | 12 ອາທິດ | 2 ອາທິດ     |
| ໂຄດພາລະດັບສຸງ | 4 ອາທິດ | 6 ອາທິດ | 5 ອາທິດ    | 7 ອາທິດ  | 2 ອາທິດ     |

|               | Size     | Effort   | Productivity  |
|---------------|----------|----------|---------------|
| ໂຄດ Assembly  | 6000 ແຖວ | 34 ອາທິດ | 705 ແຖວ/ເດືອນ |
| ໂຄດພາລະດັບສຸງ | 2500 ແຖວ | 24 ອາທິດ | 416 ແຖວ/ເດືອນ |

#### 🧠 ການນັບຈຳນວນ Function (Function Point: FP)

- ເປັນການວັດແທກຂະໜາດຂອງຊອບແວຣ໌ຕາມຈຳນວນ function ຂອງໂປຣແກຣມຈາກຂໍ້ກຳໜົດຄວາມຕ້ອງການ
- ບໍ່ຂຶ້ນກັບພາສາຂຽນໂປຣແກຣມທີ່ເລືອກໃຊ້ ແລະ ການອອກແບບ
- ມີສູດດັ່ງນີ້:

#### $FP = UFP \times VAF$

 ຈາກສູດ, ຈຳນວນ Function ຄຳນວນໄດ້ຈາກຄ່າ FP ທີ່ບໍ່ທັນໄດ້ຖືກ ປັບແຕ່ງ (Unadjusted Function Point : UFP) ຄູນກັບຄ່າປັດໃຈ ຄຸນລັກສະຂອງລະບົບ (Value Adjustment Factor: VAF)

#### 🧠 ການນັບຈຳນວນ Function (Function Point: FP)

- ການຄຳນວນຫາ FP ທີ່ຍັງບໍ່ທັນໄດ້ປັບແຕ່ງ (UFP)
  - ຈຳແນກປະເພດຂອງ Function ໂດຍແບ່ງເປັນ 5 ປະເພດຄື:
    Internal Logical Files (ILF), External Interface Files (EIF), External Inputs (EI), External Outputs (EO) ແລະExternal Queries (EQ)
  - Function ແຕ່ລະປະເພດເກີດຈາກການປະມວນຜົນລາຍການຂໍ້ມູນ (Transaction) ຂອງຜູ້ໃຊ້ ຈຶ່ງມີຄວາມຊັບຊ້ອນແຕກຕ່າງກັນຕາມ ຈຳນວນຂອງຂໍ້ມູນ (Data Element Type: DET), Record (Record Element Type: RET) ແລະ File ທີ່ກ່ຽວຂອງ (File Type Reference: FTR) ທີ່ປະກອບເປັນ Transaction ນັ້ນ

#### 🦴 ການນັບຈຳນວນ Function

- ການຄຳນວນຫາ FP ທີ່ຍັງບໍ່ທັນໄດ້ປັບແຕ່ງ (UFP)
  - o ຈຳແນກປະເພດຂອງ Function

| Functions                      | ລາຍລະອຽດ                                                                                                 |  |  |  |
|--------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| External Inputs (EI)           | ຂໍ້ມູນທີ່ຮັບເຂົ້າມາໃນລະບົບເພື່ອເອົາໄປ update ໃນ ILF                                                      |  |  |  |
| External Output (EO)           | ຂໍ້ມູນທີ່ເປັນຜົນໄດ້ຮັບຈາກການປະມວນຜົນອອກໄປສະແດງ                                                           |  |  |  |
| External Queries(EQ)           | ຂະບວນການດຶງຂໍ້ມູນແລະການປະມວນຜົນເພື່ອສະແດງຜົນຕໍ່ຜູ້ໃຊ້                                                    |  |  |  |
| Internal Logical Files (ILF)   | ເປັນ File ທີ່ກ່ຽວຂ້ອງກັບຂໍ້ມູນທີ່ຢູ່ໃນລະບົບຕະລອດອາຍຸການ<br>ໃຊ້ງານລະບົບທີ່ຖືກບຳລຸງຮັກສາ ແລະ update ຈາກ El |  |  |  |
| External Interface Files (EIF) | ເປັນ File ທີ່ກ່ຽວຂ້ອງກັບຂໍ້ມູນທີ່ໃຊ້ເພື່ອການອ້າງອິງ ແລະ ໃຊ້<br>ຮ່ວມກັບລະບົບອື່ນ                          |  |  |  |

#### 🧠 ການນັບຈຳນວນ Function (Function Point: FP)

- ການຄຳນວນຫາ FP ທີ່ຍັງບໍ່ທັນໄດ້ປັບແຕ່ງ (UFP)
  - ສະນັ້ນ ການນັບ Function ແຕ່ລະປະເພດ ຈຶ່ງຕ້ອງນັບຈຳນວນ
    DET, RET ແລະ FTR ທີ່ກ່ຽວຂ້ອງ ແລ້ວເອົາມາທຽບກັບລະດັບ ຄວາມຊັບຊ້ອນຂອງ Function ທີ່ແບ່ງເປັນ 3 ປະເພດຄື: Low, Average, High
  - ໃຫ້ນັບວ່າແຕ່ລະປະເພດ Function ມີລະດັບ Low, Average ແລະ High ຈຳນວນເທົ່າໃດ ແລ້ວເອົາມາຄຸນກັບ ຕິວຖ່ວງໜັກຂອງ ແຕ່ລະລະດັບໃນ Function ແຕ່ລະປະເພດ
  - ຈາກນັ້ນໃຫ້ຄຳນວນຫາຈຳນວນລວມທັງໝົດທີ່ນັບໄດ້ກໍ່ຈະໄດ້ຄ່າUFP

#### 🧠 ການນັບຈຳນວນ Function (Function Point: FP)

o ສະແດງລະດັບຄວາມຊັບຊ້ອນຂອງ Function EI, EO, EQ

ΕI

| ETD | DET     |         |         |  |  |
|-----|---------|---------|---------|--|--|
| FTR | 1-4     | 5-15    | >15     |  |  |
| < 2 | Low     | Low     | Average |  |  |
| 2   | Low     | Average | High    |  |  |
| > 2 | Average | High    | High    |  |  |

EO, EQ

| FTR | DET      |         |         |  |  |  |
|-----|----------|---------|---------|--|--|--|
| FIK | 1-5 6-19 |         | >19     |  |  |  |
| < 2 | Low      | Low     | Average |  |  |  |
| 2/3 | Low      | Average | High    |  |  |  |
| > 3 | Average  | High    | High    |  |  |  |

(b)

(a)

#### 🧠 ການນັບຈຳນວນ Function (Function Point: FP)

o ສະແດງລະດັບຄວາມຊັບຊ້ອນຂອງ Function ILF ແລະ EIF

ILF, EIF

| RET | DET     |         |         |  |  |  |
|-----|---------|---------|---------|--|--|--|
| KEI | 1-19    | 20-50   | >50     |  |  |  |
| 1   | Low     | Low     | Average |  |  |  |
| 2-5 | Low     | Average | High    |  |  |  |
| > 5 | Average | High    | High    |  |  |  |

(c)

ສືມມຸດວ່າ ຂໍ້ມູນສິນຄ້າທີ່ຈະເອົາເຂົ້າໄປໃນ ລະບົບ (EI) ກ່ຽວຂ້ອງກັບ file 2 ຊະນິດ (FTR) ແລະ ຂໍ້ມູນສິນຄ້ານີ້ປະກອບດ້ວຍ field ຂໍ້ມູນບໍ່ເກີນ 15 field(DET) ເມື່ອ ທຽບກັບຕາຕະລາງ EI ແລ້ວ ເຫັນວ່າ function EI ມີລະດັບຄວາມຊັບຊ້ອນເທົ່າ ກັບ Average, ແຕ່ຂໍ້ມູນທີ່ຈະເອົາເຂົ້າໄປ ໃນລະບົບທັງໝົດມີ 10 ຊະນິດ ເມື່ອປະ ເມີນແລ້ວເຫັນວ່າ ຢູ່ໃນລະດັບ Low 2 ຊະນິດ, ລະດັບ Average 5 ຊະນິດ ແລະ ລະດັບ High 3 ຊະນິດ

#### 🧠 ການນັບຈຳນວນ Function (Function Point: FP)

ສະແດງຕາຕະລາງຕິວຖ່ວງໜັກ ແລະ ການຄຳນວນ UFP

| ປະເພດຂອງ     | ປະເພດຂອງ ບັນທັດຖານຄວາມຊັບຊ້ອນ |                          |                          |    |  |  |
|--------------|-------------------------------|--------------------------|--------------------------|----|--|--|
| Function Low |                               | Average                  | High                     | ี  |  |  |
| El           | <u>2</u> X 3 = <u>6</u>       | <u>5</u> X 4 = <u>20</u> | <u>3</u> X 6 = <u>18</u> | 44 |  |  |
| EO           | X 4 =                         | X 5 =                    | X 7 =                    |    |  |  |
| EQ           | X 3 =                         | X 4 =                    | X 6 =                    |    |  |  |
| ILF          | X 7 =                         | X 7 =                    | X 15 =                   |    |  |  |
| EIF          | X 5 =                         | X 10 =                   | X 10 =                   |    |  |  |
|              |                               | ລວມ UFP                  |                          |    |  |  |

$$(d) = (a) + (b) + (c)$$

#### 🧠 ການນັບຈຳນວນ Function (Function Point: FP)

- ຄຳນວນຄ່າປັດໃຈຄຸນລັກສະນະຂອງລະບົບ (VAF)
  - ປັດໃຈທີ່ສິ່ງຜິນຕໍ່ຄວາມແຕກຕ່າງລະຫວ່າງກັນຂອງແຕ່ລະລະບົບປະກອບ
    ດ້ວຍຄຸນລັກສະນະເດັ່ນທັງໝົດ 14 ດ້ານ
  - ໃຫ້ກຳໜົດລະດັບອິດທິພົນຂອງຄຸນລັກສະນະໃນແຕ່ລະດ້ານວ່າມີຄວາມ ກ່ຽວຂ້ອງກັບລະບົບຫລາຍປານໃດ ໂດຍມີຄ່າຕັ້ງແຕ່ o ເຖິງ 5 (o ບໍ່ ກ່ຽວຂ້ອງ, 5 ກ່ຽວຂ້ອງຫຼາຍທີ່ສຸດ)
  - ໃຫ້ລວມລະດັບອິດທິພົນທັງ 14 ດ້ານເຂົ້າກັນ ແລ້ວເອົາມາຄຳນວນ VAF
    ຕາມສູດັ່ງນີ້

VAF = 0.65 + (0.01 x ຜົນບວກຂອງຄຸນລັກສະນະ 14 ດ້ານ)

# 🔖 ຄຳນວນຄ່າປັດໃຈຄຸນລັກສະນະຂອງລະບົບ (VAF)

| ລ/ດ | ຄຸນລັກສະນະ                                                  | ຄ່າ | ລ/ດ | ຄຸນລັກສະນະ                                                    | ຄ່າ |
|-----|-------------------------------------------------------------|-----|-----|---------------------------------------------------------------|-----|
| 1   | ການຕິດຕໍ່ສື່ສານຂໍ້ມູນ (Data<br>Communication)               |     | 8   | ການປັບປຸງຂໍ້ມູນແບບ Online (Online<br>Update)                  |     |
| 2   | ການປະມວນຜິນຂໍ້ມູນແບບກະຈາຍ<br>(Distributed Data Processing)  |     | 9   | ຄວາມຊັບຊ້ອນຂອງການປະມວນຜືນ<br>(Complex Processing)             |     |
| 3   | ປະສິດທິພາບຂອງລະບົບ (Performance)                            |     | 10  | ການນຳໄປໃຊ້ຄືນໄດ້ (Reusability)                                |     |
| 4   | ການປ່ຽນແປງແກ້ໄຂຄ່າຂອງລະບົບ<br>(Configuration)               |     | 11  | ຄວາມງ່າຍໃນການຕິດຕັ້ງ (Installation<br>Ease)                   |     |
| 5   | ປະລິມານລາຍການຂໍ້ມູນ (Transaction)                           |     | 12  | ຄວາມງ່າຍໃນການດຳເນີນງານ<br>(Operational Ease)                  |     |
| 6   | ການປ້ອນຂໍ້ມູນເຂົ້າສູ່ລະບິບແບບ Online<br>(Online Data Entry) |     | 13  | ການໃຊ້ງານໄດ້ຫລາຍ site (Multiple Site)                         |     |
| 7   | ປະສິດທິພາບການໃຊ້ງານຂອງຜູ້ໃຊ້ (End-<br>user Efficiency)      |     | 14  | ຮອງຮັບການປ່ຽນແປງຄວາມຕ້ອງການຂອງຜູ້<br>ໃຊ້ (Change Requirement) |     |

#### 🧠 ການນັບຈຳນວນ Function (Function Point: FP)

- ຄຳນວນຄ່າ FP ທີ່ປັບແຕ່ງແລ້ວ
  - ເມື່ອຄຳນວນ UFP ແລະ VAF ໄດ້ແລ້ວ ເອົາມາຄູນກັນຈະໄດ້ຄ່າ
    ຂອງ FP ທີ່ປັບແຕ່ງແລ້ວຕາມຄຸນລັກສະນະຂອງລະບົບ ຕາມສຸດ ດັ່ງນີ້

 $FP = UFP \times VAF$ 

# ເທັກນິກການປະເມີນຕົ້ນທຶນ ແລະ ຄວາມພະຍາຍາມ

ຈຶ່ງເປັນການເຮັດໄດ້ຍາກ ສະນັ້ນ ຈຶ່ງໄດ້ມີການຄິດຄົ້ນເທັກນິກການປະເມີນຂຶ້ນ ມາຫຼາຍແບບດັ່ງນີ້

| ເທັກນິກ                      | ລາຍລະອຽດ                                                                                                                                                                 |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Algorithmic Cost<br>Modeling | ການໃຊ້ແບບຈຳລອງທາງຄະນິດສາດເພື່ອປະເມີນໂດຍແບບຈຳລອງນັ້ນຖືກພັດທະນາ<br>ມາຈາກການລວບລວມຂໍ້ມູນຕຶ້ນທຶນຈິງໃນອະດີດທີ່ມີຄວາມສຳພັນກັບການວັດແທກ<br>ບາງຢ່າງຂອງຊອບແວຣ໌ ເຊັ່ນ: ຂະໜາດຂອງມັນ |
| Expert Judgement             | ການໃຊ້ຄວາມເຫັນຜູ້ຊ່ຽວຊານໃນການປະເມີນ ປຽບທຽບກັບຂໍ້ມູນໃນອາດີດ ເພື່ອ<br>ປຶກສາ ແລະ ຕຶກລົງກຳໜິດຕຶ້ນທຶນຮ່ວມກັນ                                                                  |
| Estimation by Analogy        | ການປະເມີນດ້ວຍການວິເຄາະ ໂດຍອາໃສຂໍ້ມູນຈາກໂຄງການໃນທຸລະກິດດຽວກັນທີ່<br>ເຮັດປະສືບຜືນສຳເລັດມາແລ້ວເປັນຂໍ້ມູນຫລັກໃນການວິເຄາະ                                                     |
| Parkinson's Law              | ເປັນການແຈກຢາຍວຽກໃຫ້ກັບບຸກຄະລາກອນຕາມໄລຍະເວລາທີ່ມີຢູ່                                                                                                                      |
| Pricing to Win               | ການປະເມີນເພື່ອໃຫ້ຊະນະການປະມູນ                                                                                                                                            |

- COCOMO (Constructive Cost Model) ເປັນແບບ ຈຳລອງການປະເມີນຕື່ນທຶນ, Effort ແລະ ການຈັດຕາຕະລາງ ເຮັດວຽກ
- ແບບຈຳລອງດັ່ງກ່າວແມ່ນພິຈາລະນາຈາກຂະໜາດຂອງຊອບ ແວຣ໌, ຄຸນລັກສະນະຂອງຊອບແວຣ໌ທີ່ຜູ້ໃຂ້ຕ້ອງການ ແລະ ປັດໃຈແວດລ້ອມອື່ນໆ ເຊັ່ນ: ຄວາມແນ່ນອນຂອງຂະບວນການ ແລະ ຄວາມສາມາດໃນການຜະລິດຊອບແວຣ໌ຂອງທີມງານ, ຄວາມຢຶດຢຸ່ນ, ຄວາມສ່ຽງ ແລະ ວິທີການຈັດການຄວາມສ່ຽງ ເປັນຕົ້ນ
- 🦴 ສາມາດຄຳນວນແບບ Exponential

- 🔖 COCOMO ໄດ້ຖືກພັດທະນາເປັນລຸ້ນທີ່ 2 ໃນປີ 1997 ໂດຍ ລວບລວມຂໍ້ມູນຈາກໂຄງການທັງໝົດ 161ໂຄງການ
- Substitution of the control of the
  - Application-composition Model ເໝາະສົມກັບການຜະລິດ ຊອບແວຣ໌ແບບ Component ແລະ ໃຊ້ຢູ່ ໃນໄລຍະສະຫລຸບ concept ໃນການດຳເນີນງານ, ໃຊ້ Object Point ແທນຂະໜາດ ຂອງຊອບແວຣ໌
  - 2. Early Design Model ໃຊ້ປະເມີນຢູ່ໃນໄລຍະກ່ອນອອກແບບ ຊອບແວຣ໌ ຫລັງຈາກການກຳໜິດຄວາມຕ້ອງການ, ໃຊ້ FP
  - 3. Post-architecture Model ໃຊ້ຫລັງການອອກແບບ

#### Application-composition Model

- o ເປັນແບບຈຳລອງຂອງ COCOMO II
- ເໜາະສືມກັບການຜະລິດຊອບແວຣ໌ດ້ວຍວິທີທາງແບບ component ຊຶ່ງ ແຕ່ລະ component ສາມາດນັບເປັນ Object point ໄດ້ (ຂະໜາດ)
- ບັນດາ Object component ຈະມີຈຳນວນ Object point ຕ່າງກັນ ຂຶ້ນຢູ່ກັບລະດັບຄວາມຊັບຊ້ອນ ທີ່ແບ່ງອອກເປັນ 3 ລະດັບດັ່ງນີ້

|             | ່ງາຍ | ຊັບຊ້ອນທຳມະດາ | ຊັບຊ້ອນຫຼາຍ |
|-------------|------|---------------|-------------|
| Screen      | 1    | 2             | 3           |
| Report      | 2    | 5             | 8           |
| зGL Modules | 4    | 10            | -           |

#### Application-composition Model

 ກໍລະນີ component ຂອງຊອບແວຣ໌ຖືກອອກແບບໃຫ້ສາມາດເອົາກັບ ມາໃຊ້ໃໝ່ໄດ້ ແລະ ມີການໃຊ້ Library ນຳ ຈະຕ້ອງເອົາອັດຕາການເອົາ ກັບມາໃຊ້ໃໝ່ມາລົບອອກຈຳນວນ Object point ທີ່ນັບໄດ້ທັງໝົດ ຊຶ່ງ ເອີ້ນວ່າ Revised Object Point (ROP)

ROP = ObjectPoint x (100-%reuse)/100

o ເອົາ ROP ທີ່ໄດ້ໄປຄຳນວນຫາ Effort ດັ່ງນີ້

MME = ROP/(Productivity constant)

MME = ManMonthEffort

#### Application-composition Model

ຕາຕະລາງສະແດງຄ່າຄົງທີ່ປະສິດທິຜົນໃນການຜະລິດຊອບແວຣ໌

| ລະດັບປະສິບການ ແລະ<br>ຄວາມສາມາດ        | ຕ່ຳຫຼາຍ | ຕ່ຳ | ປານກາງ | ສຸງ | ສຸງຫຼາຍ |
|---------------------------------------|---------|-----|--------|-----|---------|
| Productivity Constant (NOP per Month) | 4       | 7   | 13     | 25  | 50      |

ຕົວຢ່າງ: ໂຄງການ ກ ມີ Object point = 40, ອັດຕາການການເອົາ code ໄປໃຊ້ໃໝ່ແມ່ນ 10% ແລະ ຄວາມສາມາດຂອງທີມງານແມ່ນປານ ກາງ ຊອກຫາ Effort ທີ່ຕ້ອງການໃຊ້ໃນໂຄງການດັ່ງກ່າວ

$$ROP = 40 \times (100-10)/100$$
  
=  $40\times0.9 = 36$ 



MME = 36/13 ≈ 3 Man-Months

#### Early Design Model

ເປັນແບບຈຳລອງຂອງ COCOMO II ທີ່ໃຊ້ໃນໄລຍະກ່ອນການອອກ
 ແບບຊອບແວຣ໌ ຊຶ່ງມີສຸດດັ່ງນີ້:

$$MME = A \times (Size)^B$$

MME ແມ່ນ Effort ທີ່ມີຫົວໜ່ວຍເປັນ Man Month Effort A ແມ່ນຄ່າຄືງທີ່ຂອງປະສິດທິຜິນໃນການຜະລິດຊອບແວຣ໌ ໃນລະດັບປານກາງ B ແມ່ນຄ່າຂອງປັດໃຈທີ່ສິ່ງຜິນກະທົບຕໍ່ Effort ທີ່ເອີ້ນວ່າ Cost Driver Size ແມ່ນຂະໜາດຂອງຊອບແວຣ໌ມີຫົວໜ່ວຍເປັນ KLoC (Kilo of Line of Code = 1000 LoC)

B = 0.91 + 0.01 (
$$\sum_{i=1}^{5}$$
 Ratings)

#### Early Design Model

Cost Driver ທີ່ເອົາມາໃຊ້ມີທັງໝົດ 5 ປັດໃຈ ຊຶ່ງແບ່ງອອກເປັນ 4
 ລະດັບ ດັ່ງຕາຕະລາງ:

| Factor Code | ຕ່ຳຫຼາຍ | ຕ່ຳ  | ປານກາງ | ສຸງ  | Factor Name      |
|-------------|---------|------|--------|------|------------------|
| PREC        | 6.20    | 4.96 | 3.72   | 2.48 | Precedentness    |
| FLEX        | 5.07    | 4.05 | 3.04   | 2.03 | Flexibility      |
| RESL        | 7.07    | 5.65 | 4.24   | 2.83 | Risk Resolution  |
| TEAM        | 5.48    | 4.38 | 3.29   | 2.19 | Team Cohesion    |
| PMAT        | 7.80    | 6.24 | 4.68   | 3.12 | Process Maturity |

ໂດຍເບື້ອງຕົ້ນຈະຕ້ອງປະເມີນລະດັບແລະໃຫ້ຄະແນນແຕ່ລະປັດໃຈແລ້ວຈຶ່ງຄຳນວນຫາຄ່າຂອງ Cost Driver ຈາກສູດຂ້າງເທິງ

#### Searly Design Model

ຄວາມໝາຍຂອງແຕ່ລະປັດໃຈ

| Factor | ถอามฒาย ฺ                                                                                                                             |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PREC   | ຄວາມຄ້າຍຄືກັນຂອງຊອບແວຣ໌ໃໝ່ກັບຊອບແວຣ໌ທີ່ເຄີຍພັດທະນາມາແລ້ວ ຖ້າຄ້າຍຄື<br>ກັນຫຼາຍຈະມີຄ່າໜ້ອຍ ໝາຍຄວາມວ່າມັນສິ່ງຜົນກະທົບໜ້ອຍ ແລະ ກັງກັນຂ້າມ |  |  |
| FLEX   | ການວັດແທກລະດັບຄວາມຢຶດຢຸ່ນໃນການບໍລິຫານຈັດການ ແລະ ດຳເນີນໂຄງການ                                                                          |  |  |
| RESL   | ການວັດແທກລະດັບຄວາມສາມາດໃນການຈັດການຫຼືຄວບຄຸມຂອງອົງກອນຫຼືທີມງານ<br>ໂຄງການ                                                               |  |  |
| TEAM   | ການວັດແທກລະດັບການເຮັດວຽກເປັນທີມຂອງອົງກອນຫຼືທີມງານໂຄງການ                                                                               |  |  |
| PMAT   | ການວັດແທກລະດັບວຸດທິຄວາມສາມາດຂອງອົງກອນຫຼືທີມງານໂຄງການ ແຕ່ລະດັບຕ່ຳ<br>ສຸດແມ່ນ 1 ຈີນເຖິງລະດັບສຸງສຸດແມ່ນ 5                                |  |  |

#### Early Design Model

- ຕົວຢ່າງ: ສິມມຸດວ່າ ປັດໃຈທັງຫ້າຖືກຈັດໃຫ້ຢູ່ໃນລະດັບຕ່ຳຫຼາຍ ແລະ ກຳໜົດໃຫ້ຂະໜາດຂອງຊອບແວຣ໌ທີ່ປ່ຽນມາເປັນ LoC ແລ້ວເທົ່າກັບ 10 KLoC. ໃຫ້ຄຳນວນຫາແຮງງານໂດຍປະມານບົນພື້ນຖານຄ່າຄົງທີ່ຂອງປະສິດທິຜົນໃນການຜະລິດໃນລະດັບປານກາງ
- ຄຳນວນຫາ Cost Driver B ດັ່ງນີ້:

$$B = 0.91 + 0.01 (6.20+5.07+7.07+5.48+7.80)$$
$$= 0.91 + 0.01X31.62$$
$$= 1.2262$$

- $\circ \Rightarrow \mathsf{B} > \mathsf{1} \Rightarrow \mathsf{Cost} \; \mathsf{Driver} \; \hat{\mathsf{Li}} \; \hat{\mathsf{Li}} \; \mathsf{Li} \; \mathsf{Li}$
- o ຄຳນວນຫາ Effort ດັ່ງນີ້:

#### > Post-architecture Model

- ນອກຈາກ Cost Driver ທັງ 5 ຍັງມີປັດໃຈອື່ນທີ່ມີຜົນກະທົບຕໍ່
  Effort ທັງໃນດ້ານຄຸນລັກສະນະຂອງຜະລິດຕະພັນ (Product Factor), ດ້ານ Platform, ດ້ານບຸກຄະລາກອນ (Personnel Factor)
- ປັດໃນທີ່ມີຜົນກະທົບລວມທັງໝົດ 16 ປັດໃຈ ທີ່ໃຫ້ຄ່າຄະແນນເປັນ
  ລະດັບຕ່ຳຫຼາຍ, ຕ່ຳ, ປານກາງ, ແລະ ສຸງ
- ເອົາຄະແນນລະດັບທີ່ປະເມີນທັງ 16 ປັດໃຈມາຄູນກັນຈະໄດ້ Effort Multiplier ດັ່ງນີ້:

#### $MME (Modified) = MME \times EM$

EM ແມ່ນ Effort Multiplier ທີ່ເປັນຜືນຄູນຂອງບັນດາປັດໃຈທີ່ສົ່ງຜືນກະທົບ

ΕI DET FTR 5-15 >15 1-4 < 2 Low Low Average High Low Average 2 High High Average > 2

|  | EO, EQ |         |         |         |  |  |  |  |  |
|--|--------|---------|---------|---------|--|--|--|--|--|
|  | FTR    | DET     |         |         |  |  |  |  |  |
|  |        | 1-5     | 6-19    | >19     |  |  |  |  |  |
|  | < 2    | Low     | Low     | Average |  |  |  |  |  |
|  | 2/3    | Low     | Average | High    |  |  |  |  |  |
|  | > 3    | Average | High    | High    |  |  |  |  |  |

| RET | DET     |         |         |  |
|-----|---------|---------|---------|--|
| 111 | 1-19    | 20-50   | >50     |  |
| 1   | Low     | Low     | Average |  |
| 2-5 | Low     | Average | High    |  |
| > 5 | Average | High    | High    |  |

| ປະເພດຂອງ | ບັນທັດຖານຄວາມຊັບຊ້ອນ    |                          |                          | ลอม |
|----------|-------------------------|--------------------------|--------------------------|-----|
| Function | Low                     | Average                  | High                     | พอม |
| EI       | <u>2</u> X 3 = <u>6</u> | <u>5</u> X 4 = <u>20</u> | <u>3</u> X 6 = <u>18</u> | 44  |
| EO       | X 4 =                   | X 5 =                    | X 7 =                    |     |
| EQ       | X 3 =                   | X 4 =                    | X 6 =                    |     |
| ILF      | X 7 =                   | X 7 =                    | X 15 =                   |     |
| EIF      |                         | X 10 =                   | X 10 =                   |     |
|          | ລວມ UFP                 |                          |                          |     |