

An Introduction to Artificial Intelligence

— Lecture Notes in Progress —

Prof. Dr. Karl Stroetmann

August 28, 2018

These lecture notes, their LaTeX sources, and the programs discussed in these lecture notes are all available at

https://github.com/karlstroetmann/Artificial-Intelligence.

In particular, the lecture notes are found in the directory Lecture-Notes in the file artificial-intelligence.pdf. The lecture notes are subject to continuous change. Provided the program git is installed on your computer, the repository containing the lecture notes can be cloned using the command

git clone https://github.com/karlstroetmann/Artificial-Intelligence.git.

Once you have cloned the repository, the command

git pull

can be used to load the current version of these lecture notes from github. As this is the third time that I give this lecture, these lecture notes are still incomplete and will be changed frequently during the semester. If you find any typos, errors, or inconsistencies, please contact me via discord or, if that is not possible, email me at:

karl.stroetmann@dhbw-mannheim.de.

Contents

1	Introduction											
	1.1 What is Artificial Intelligence?	3										
	1.2 Overview	5										
	1.3 Literature	6										
2	arch											
	2.1 The Sliding Puzzle	10										
	2.2 Breadth First Search	12										
	2.2.1 A Queue Based Implementation of Breadth First Search	15										
	2.3 Depth First Search	17										
	2.3.1 Getting Rid of the Parent Dictionary	18										
	2.3.2 A Recursive Implementation of Depth First Search	19										
	2.4 Iterative Deepening	20										
	2.4.1 A Recursive Implementation of Iterative Deepening	22										
	2.5 Bidirectional Breadth First Search	23										
	2.6 Best First Search	24										
	2.7 The A* Search Algorithm	28										
	2.7.1 Completeness and Optimality of A* Search	30										
	2.8 Bidirectional A* Search	34										
	2.9 Iterative Deepening A* Search	34										
	2.10 The A*-IDA* Search Algorithm											
3	Constraint Satisfaction 4:											
	3.1 Formal Definition of Constraint Satisfaction Problems											
	3.1.1 Example: Map Colouring											
	3.1.2 Example: The Eight Queens Puzzle											
	3.1.3 Applications											
	3.2 Brute Force Search											
	3.3 Backtracking Search											
	3.4 Constraint Propagation											
	3.5 Consistency Checking											
	3.6 Local Search											
4	Playing Games 6											
•												
	4.2 The Minimax Algorithm											
	4.3 α - β -Pruning											
	4.4 Depth Limited Search	73										

CONTENTS

5	Line	ar Regression	76						
	5.1	Simple Linear Regression	76						
		5.1.1 Assessing the Quality of Linear Regression	77						
		5.1.2 Putting the Theory to the Test	78						
		5.1.3 Testing the Statistical Significance							
	5.2		83						
		5.2.1 Some Useful Gradients	85						
		5.2.2 Deriving the Normal Equation	85						
		5.2.3 Testing the Statistical Significance	87						
		5.2.4 Implementation	87						
6	Cla	sification	90						
	6.1	Introduction	90						
		6.1.1 Notation	92						
		6.1.2 Applications of Classification	92						
	6.2	Digression: The Method of Gradient Ascent	93						
	6.3	Logistic Regression	96						
		6.3.1 The Sigmoid Function							
		6.3.2 The Model of Logistic Regression	99						
		6.3.3 Implementing Logistic Regression							
7	Neı	ral Networks)6						
	7.1 Feedforward Neural Networks								
	7.2	Backpropagation	09						
		7.2.1 Definition of some Auxiliary Variables							
		7.2.2 The Hadamard Product							
		7.2.3 Backpropagation: The Equations							
		7.2.4 The Proof of the Backpropagation Equations							
	7.3	Stochastic Gradient Descent							
	7.4	Implementation							

Chapter 1

Introduction

1.1 What is Artificial Intelligence?

Before we start to dive into the subject of Artificial Intelligence we have to answer the following question:

What is Artificial Intelligence?

Historically, there have been a number of different answers to this question [RN09]. We will look at these different answers and discuss them.

1. Artificial Intelligence is the study of creating machines that think like humans.

As we have a working prototype of intelligence, namely humans, it is quite natural to try to build machines that work in a way similar to humans, thereby creating artificial intelligence. As a first step in this endeavor we would have to study how humans actually think and thus we would have to study the brain. Unfortunately, as of today, no one really knows how the brain works. Although there are branches of science devoted to studying the human thought processes and the human brain, namely cognitive science and computational neuroscience, this approach has not proven to be fruitful for creating thinking machines, the reason being that the current understanding of the human thought processes is just not sufficient.

2. Artificial Intelligence is the science of machines that <u>act</u> like humans.

Since we do not know how humans think, we cannot build machines that think like people. Therefore, the next best thing might be to build machines that act and behave like humans. Actually, the Turing Test is based on this idea: Turing suggested that if we want to know whether we have succeeded in building an intelligent machine, we should place it at the other end of a chat line. If we cannot distinguish the computer from a human, then we have succeeded at creating intelligence.

However, with respect to the kind of Artificial Intelligence that is needed in industry, this approach isn't very useful. To illustrate the point, consider an analogy with aerodynamics: In aerodynamics we try to build planes that fly fast and efficiently, not planes that flap their wings like birds do, as the later approach has failed historically, e.g. remember what happened to Daedalus and Icarus.

3. Artificial Intelligence is the science of creating machines that think logically.

The idea with this approach is to create machines that are based on mathematical logic. If a goal is given to these machines, then these machines use logical reasoning in order to deduce those actions that need to be performed in order to best achieve the given goals. Unfortunately, this approach had only limited success: In playing games the approach was quite successful for dealing with games like checkers or chess. However, the approach was mostly unsuccessful for dealing with many real world problems. There were two main reasons for its failure:

(a) In order for the logical approach to be successful, the environment has to be completely described by mathematical axioms. It has turned out that our knowledge of the real world is often not sufficient to completely describe the environment via axioms.

(b) Even if we have complete knowledge, it often turns out that describing every possible case via logic formulae is just unwieldy. Consider the following formula:

$$\forall x: (\mathtt{bird}(x) \to \mathtt{flies}(x))$$

The problem with this formula is that although it appears to be common sense, there are a number of counter examples:

- i. Penguins, emus, and ostriches don't fly.

 However, if we put a penguin into a plane, it turns out the penguin will fly.
- ii. Birds that have just hatched do not fly.
- iii. Birds with clipped wings do not fly.

It is easy to extend this list with ever more contrived examples and counter examples. This shows that trying to model all eventualities with logic is just too unwieldy to be practical.

- (c) In real life situations we often deal with uncertainty. Classical logic does not perform well when it has to deal with uncertainties. Instead, we need statistics.
- 4. Artificial Intelligence is the science of creating machines that act rationally.

All we really want is to build machines that, given the knowledge we have, try to optimize the expected results: In our world, there is lots of uncertainty. We cannot hope to create machines that always make the decisions that turn out to be optimal. What we can hope is to create machines that will make decisions that turn out to be good on average. For example, suppose we try to create a program for asset management: We cannot hope to build a machine that always buys the best company share in the stock market. Rather, our goal should be to build a program that maximizes our expected profits in the long term.

It has turned out that the main tool needed for this approach is not mathematical logic but rather numerical analysis and mathematical statistics. The shift from logic to numerical analysis and statistics has been the most important reason for the spectacular success of Artificial Intelligence in the recent years. Another important factor is the enhanced performance of modern hardware.

Now that we have clarified the notion of artificial intelligence, we should set its goals. As we can never achieve more than what we aim for, we have every reason to be ambitious here. For example, my personal vision of Artificial Intelligence goes like this: Imagine 70 years from now you (not feeling too well) have a conversation with Siri. Instead of asking Siri for the best graveyard in the vicinity, you think about all the sins you have committed. As Siri has accompanied you for your whole life, she knows about these sins better than you. Hence, the conversation with Siri works out as follows:

You (with trembling voice):

Hey Siri, does God exist?

Siri (with the voice of Darth Vader):

Your voice seems troubled, let me think · · ·

After a small pause which almost drains the battery of your phone completely,

Siri gets back with a soothing announcement:

You don't have to worry any more, I have fixed the problem. He is dead now.

My apologies to all those infidels that do not get the point.

1.2 Overview

This lecture consists of two parts.

- 1. The common theme of the first part is declarative programming. The main idea of declarative programming is that we start with a problem specification. This is usually a short description of the problem that is to be solved. This description is then fed into an automatic problem solver that returns a solution of the problem. Originally, declarative programming was a very general approach to problem solving. The idea was that in order to solve a problem, the problem would first be formulated as a logic formula and an automated theorem prover would then be able to solve the problem. Unfortunately, in this generality the idea of declarative programming has turned out to be unsuitable for real world problems for two reasons:
 - (a) First, it is very difficult to specify practical problems completely in a logical framework.
 - (b) Second, even in those cases where a complete logic based specification of a problem is feasible, automatic theorem proving is generally not powerful enough to find a solution automatically.

However, there are a number of domains where the approach of declarative programming has turned out to be useful. In particular, we show how declarative programming can be used to solve problems in the following domains.

- (a) Search problems are problems where the task is to find a path in a graph. A typical example of a search problem is the fifteen puzzle. We discuss various state-of-the-art algorithms that can solve search problems.
- (b) Games like chess or poker can be specified quite easily and there are various techniques for computers to find optimal strategies for playing adversarial games.
- (c) Constraint satisfaction problems have great practical importance. Today, very efficient constraint solvers have been developed to solve various constraint satisfaction problems that often occur in practice.
- 2. In the second part of this lecture we discuss machine learning. In the last ten years, a number of advances in machine learning have made it into the headlines of the news. It is fair to say that currently machine learning is the hottest topic in computer science. Among others, we discuss the following algorithms:
 - (a) Linear regression is one of the most fundamental machine learning algorithms. In machine learning, we are given a number of data pairs of the form $\langle \mathbf{x}_i, y_i \rangle$ where $i \in \{1, \dots, N\}$ and for all $i \in \{1, \dots, N\}$ we have $\mathbf{x}_i \in \mathbb{R}^m$ and $y_i \in \mathbb{R}$. We assume that there is an unknown function $f : \mathbb{R}^m \to \mathbb{R}$ such that $y_i \approx f(\mathbf{x}_i)$. Our task is to find an approximation for the function f. When using linear regression, we assume that the function f is linear in its arguments. Although this sounds like a strong assumption, we will see that linear regression is surprisingly powerful in practice.
 - (b) In a classification problem we again have N pairs of the form $\langle \mathbf{x}_i, y_i \rangle$. As before, we have $\mathbf{x}_i \in \mathbb{R}^m$, but now $y_i \in \mathbb{B}$, where \mathbb{B} is the set of Boolean values, i.e. we have $\mathbb{B} = \{\texttt{true}, \texttt{false}\}$. The task is then to find a function $f : \mathbb{R}^m \to \mathbb{B}$ such that the equation $y_i = f(\mathbf{x}_i)$ is true for most $i \in \{1, \dots, N\}$. A typical classification problem is spam detection. The first algorithm we introduce to solve classification problems is logistic regression.
 - (c) Finally, we discuss neural networks. As an example, we will build a neural network that is able to recognize digits.

1.3 Literature

The main sources of these lecture notes are the following:

1. A course on artificial intelligence that was offered on the EDX platform. The course materials are available at

http://ai.berkeley.edu/home.html.

2. The book

Introduction to Artificial Intelligence

written by Stuart Russell and Peter Norvig [RN09].

3. A course on artificial intelligence that is offered on Udacity. The title of the course is

Intro to Artificial Intelligence

and the course is given by Peter Norvig, who is director of research at Google and Sebastian Thrun, who is the chairman of Udacity.

The programs presented in these lecture notes are expected to run with version 2.7 of Setla.

Chapter 2

Search

In this chapter we discuss various search algorithms. First, we define the notion of a search problem. We will discuss the sliding puzzle as our running example. Then we introduce various algorithms for solving search problems. In particular, we present

- 1. breadth first search,
- 2. depth first search,
- 3. iterative deepening,
- 4. bidirectional breadth first search,
- 5. A* search,
- 6. bidirectional A* search,
- 7. iterative deepening A* search, and
- 8. A^* -IDA* search.

Definition 1 (Search Problem) A search problem is a tuple of the form

$$\mathcal{P} = \langle Q, \mathtt{nextStates}, \mathtt{start}, \mathtt{goal} \rangle$$

where

- $1. \ Q$ is the set of states, also known as the state space.
- 2. nextStates is a function taking a state as input and returning the set of those states that can be reached from the given state in one step, i.e. we have

$$\mathtt{nextStates}: Q \to 2^Q.$$

The function nextStates gives rise to the transition relation R, which is a relation on Q, i.e. $R \subseteq Q \times Q$. This relation is defined as follows:

$$R := \{ \langle s_1, s_2 \rangle \in Q \times Q \mid s_2 \in \mathtt{nextStates}(s_1) \}.$$

If either $\langle s_1, s_2 \rangle \in R$ or $\langle s_2, s_1 \rangle \in R$, then s_1 and s_2 are called neighboring states.

- 3. start is the start state, hence start $\in Q$.
- 4. goal is the goal state, hence goal $\in Q$.

Sometimes, instead of a single goal there is a set of goal states Goals.

A path is a list $[s_1, \cdots, s_n]$ such that $s_{i+1} \in \texttt{nextStates}(s_i)$ for all $i \in \{1, \cdots, n-1\}$. The length of this path is defined as the length of the list. A path $[s_1, \cdots, s_n]$ is a solution to the search problem P iff the following conditions are satisfied:

- 1. $s_1 = \mathtt{start}$, i.e. the first element of the path is the start state.
- 2. $s_n = \text{goal}$, i.e. the last element of the path is the goal state.

If instead of a single goal we have a set of Goals, then the last condition is changed into

```
s_n \in Goals.
```

A path $p = [s_1, \dots, s_n]$ is a minimal solution to the search problem \mathcal{P} iff it is a solution and, furthermore, the length of p is minimal among all other solutions.

Remark: In the literature, a state is often called a node. In these lecture notes, I will also refer to states as nodes.

Example: We illustrate the notion of a search problem with the following example, which is also known as the missionaries and cannibals problem: Three missionaries and three infidels have to cross a river that runs from the north to the south. Initially, both the missionaries and the infidels are on the western shore. There is just one small boat and that boat has only room for at most two passengers. Both the missionaries and the infidels can steer the boat. However, if at any time the missionaries are confronted with a majority of infidels on either shore of the river, then the missionaries have a problem.

```
problem := [m, i] \mid -> m > 0 \&\& m < i;
2
    noProblemAtAll := [m, i] \rightarrow !problem(m, i) && !problem(3 - m, 3 - i);
    nextStates := procedure(s) {
         [m, i, b] := s;
         if (b == 1) { // The boat is on the western shore.
             return { [m - mb, i - ib, 0]
                     : mb in \{0 ... m\}, ib in \{0 ... i\}
                     | mb + ib in {1, 2} && noProblemAtAll(m - mb, i - ib)
10
11
        } else {
12
             return { [m + mb, i + ib, 1]
13
                     : mb in \{0 ... 3 - m\}, ib in \{0 ... 3 - i\}
                     | mb + ib in {1, 2} && noProblemAtAll(m + mb, i + ib)
15
                     };
16
         }
17
    };
    start := [3, 3, 1];
19
    goal := [0, 0, 0];
```

Figure 2.1: The missionary and cannibals problem coded as a search problem.

Figure 2.1 shows a formalization of the missionaries and cannibals problem as a search problem. We discuss this formalization line by line.

1. Line 1 defines the auxiliary function problem.

If m is the number of missionaries on a given shore, while i is the number of infidels on that same shore, then problem(m, i) is **true** iff the missionaries have a problem on that shore.

2. Line 3 defines the auxiliary function noProblemAtAll.

If m is the number of missionaries on the western shore and i is the number of infidels on that shore, then the expression noProblemAtAll(m, i) is true, if there is no problem for the missionaries on either shore.

The implementation of this function uses the fact that if m is the number of missionaries on the western shore, then 3-m is the number of missionaries on the eastern shore. Similarly, if i is the number of infidels on the western shore, then the number of infidels on the eastern shore is 3-i.

3. Lines 5 to 18 define the function nextStates. A state s is represented as a triple of the form

$$s = [m, i, b] \quad \text{ where } m \in \{0, 1, 2, 3\}, \, i \in \{0, 1, 2, 3\}, \, b \in \{0, 1\}.$$

Here m is the number of missionaries on the western shore, i is the number of infidels on the western shore, and b is the number of boats on the western shore.

- (a) Line 6 extracts the components m, i, and b from the state s.
- (b) Line 7 checks whether the boat is on the western shore.
- (c) If this is the case, then the states reachable from the given state s are those states where mb missionaries and ib infidels cross the river. After mb missionaries and ib infidels have crossed the river and reached the eastern shore, m mb missionaries and i ib infidels remain on the western shore. Of course, after the crossing the boat is no longer on the western shore. Therefore, the new state has the form

$$[m - mb, i - ib, 0].$$

This explains line 8.

(d) Since the number mb of missionaries leaving the western shore can not be greater than the number m of all missionaries on the western shore, we have the condition

$$mb \in \{0, \cdots, m\}.$$

There is a similar condition for the number of infidels crossing:

$$\mathtt{ib} \in \{0,\cdots,i\}.$$

This explains line 9.

(e) Furthermore, we have to check that the number of persons crossing the river is at least 1 and at most 2. This explains the condition

$$mb + ib \in \{1, 2\}.$$

Finally, there should be no problem in the new state on either shore. This is checked using the expression

These two checks are performed in line 10.

4. If the boat is on the eastern shore instead, then the missionaries and the infidels will be crossing the river from the eastern shore to the western shore. Therefore, the number of missionaries and infidels on the western shore is now increased. Hence, in this case the new state has the form

$$[m + mb, i + ib, 1].$$

As the number of missionaries on the eastern shore is 3-m and the number of infidels on the eastern shore is 3-i, mb is now a member of the set $\{0, \dots, 3-m\}$, while ib is a member of the set $\{0, \dots, 3-i\}$.

5. Finally the start state and the goal state are defined in line 19 and line 20.

The code in Figure 2.1 does not define the set of states Q of the search problem. The reason is that, in order to solve the problem, we do not need to define this set. If we wanted to, we could define the set of states as follows:

```
States := { [m,i,b] : m in \{0..3\}, i in \{0..3\}, b in \{0,1\} | noProblemAtAll(m, i) };
```

Figure 2.2 shows a graphical representation of the transition relation of the missionaries and cannibals puzzle. In that figure, for every state both the western and the eastern shore are shown. The start state is covered with a blue ellipse, while the goal state is covered with a green ellipse. The figure clearly shows that the problem is solvable and that there is a solution involving just 11 crossings of the river.

Figure 2.2: A graphical representation of the missionaries and cannibals problem.

2.1 The Sliding Puzzle

The 3×3 sliding puzzle uses a square board, where each side has a length of 3. This board is subdivided into $3 \times 3 = 9$ squares of length 1. Of these 9 squares, 8 are occupied with square tiles that are numbered from 1 to 8. One square remains empty. Figure 2.3 on page 11 shows two possible states of this sliding puzzle. The 4×4 sliding puzzle is similar to the 3×3 sliding puzzle but it is played on a square board of length 4 instead. The 4×4 sliding puzzle is also known as the 15 puzzle, while the 3×3 puzzle is called the 8 puzzle.

In order to solve the 3×3 sliding puzzle shown in Figure 2.3 we have to transform the state shown on the left of Figure 2.3 into the state shown on the right of this figure. The following operations are permitted when transforming a state of the sliding puzzle:

1. If a tile is to the left of the free square, this tile can be moved to the right.

Figure 2.3: The 3×3 sliding puzzle.

- 2. If a tile is to the right of the free square, this tile can be moved to the left.
- 3. If a tile is above the free square, this tile can be moved down.
- 4. If a tile is below the free square, this tile can be moved up.

In order to get a feeling for the complexity of the sliding puzzle, you can check the page

The sliding puzzle is much more complex than the missionaries and cannibals problem because the state space is much larger. For the case of the 3×3 sliding puzzle, there are 9 squares that can be positioned in 9! different ways. It turns out that only half of these positions are reachable from a given start state. Therefore, the effective number of states for the 3×3 sliding puzzle is

$$9!/2 = 181,440.$$

This is already a big number, but 181,440 states can still be stored on a modern computer. However, the 4×4 sliding puzzle has

$$16!/2 = 10,461,394,944,000$$

different states reachable from a given start state. If a state is represented as matrix containing 16 numbers and we store every number using just 4 bits, we still need $16 \cdot 4 = 64$ bits or 8 bytes for every state. Hence we would need a total of

$$(16!/2) \cdot 8 = 83,691,159,552,000$$

bytes to store every state. We would thus need about 84 Terabytes to store the set of all states. As few computers are equipped with this kind of memory, it is obvious that we won't be able to store the entire state space in memory.

Figure 2.4 shows how the 3×3 sliding puzzle can be formulated as a search problem. We discuss this program line by line.

- 1. findTile is an auxiliary procedure that takes a number and a State and returns the row and column where the tile labelled with number can be found.
 - Here, a state is represented as a list of lists. For example, the states shown in Figure 2.3 are represented as shown in line 26 and line 30. The empty tile is coded as 0.
- 2. moveDir takes a State, the row and the column where to find the empty square and a direction in which the empty square should be moved. This direction is specified via the two variables dx and dy. The tile at the position $\langle row + dx, col + dy \rangle$ is moved into the position $\langle row, col \rangle$, while the tile at position $\langle row + dx, col + dy \rangle$ becomes empty.
- 3. Given a State, the procedure nextStates computes the set of all states that can be reached in one step from State. The basic idea is to find the position of the empty tile and then try to move the empty

```
findTile := procedure(number, State) {
         n := #State;
        L := [1 .. n];
3
         for (row in L, col in L | State[row][col] == number) {
             return [row, col];
         }
    };
    moveDir := procedure(State, row, col, dx, dy) {
                                  ] := State[row + dx][col + dy];
         State[row
                        ][col
         State[row + dx][col + dy] := 0;
10
         return State;
11
    };
12
    nextStates := procedure(State) {
13
                     := #State;
14
         [row, col] := findTile(0, State);
15
         newStates := [];
16
         directions := [[1, 0], [-1, 0], [0, 1], [0, -1]];
                     := [1 ... n];
18
         for ([dx, dy] in directions) {
             if (row + dx in L && col + dy in L) {
20
                 newStates += [ moveDir(State, row, col, dx, dy) ];
22
         }
23
         return newStates;
24
    };
25
    start := [ [8, 0, 6],
26
                [5, 4, 7],
27
                [2, 3, 1]
28
              ];
29
    goal := [ [0, 1, 2],
30
               [3, 4, 5],
31
               [6, 7, 8]
             ];
33
```

Figure 2.4: The 3×3 sliding puzzle.

tile in all possible directions. If the empty tile is found at position [row, col] and the direction of the movement is given as [dx, dy], then in order to ensure that the empty tile can be moved to the position [row + dx, col + dy], we have to ensure that both

```
row + dx \in \{1, \dots, n\} and col + dy \in \{1, \dots, n\}
```

hold, where n is the size of the board.

Next, we want to develop an algorithm that can solve puzzles of the kind described so far. The most basic algorithm to solve search problems is breadth first search. We discuss this algorithm next.

2.2 Breadth First Search

Informally, breadth first search, abbreviated as BFS, works as follows:

1. Given a search problems $\langle Q, \texttt{nextStates}, \texttt{start}, \texttt{goal} \rangle$, we initialize a set Frontier to contain the state start.

In general, Frontier contains those states that have just been discovered and whose successors have not yet been seen.

2. As long as the set Frontier does not contain the state goal, we recompute this set by adding all states to it that can be reached in one step from a state in Frontier. Then, the states that had been previously present in Frontier are removed. These old states are then saved into a set Visited.

In order to avoid loops, an implementation of breadth first search keeps track of those states that have been visited. These states are collected in a set Visited. Once a state has been added to the set Visited, it will never be revisited again. Furthermore, in order to keep track of the path leading to the goal, we utilize a dictionary called Parent. For every state s that is in Frontier, Parent[s] is the state that caused s to be added to the set Frontier, i.e. for all states $s \in Visited \cup Frontier$ we have

 $s \in \text{nextStates}(\text{Parent}[s]).$

```
search := procedure(start, goal, nextStates) {
        Frontier := { start };
2
        Visited := {}; // set of nodes that have been expanded
3
                  := {}:
        Parent
        while (Frontier != {}) {
            NewFrontier := {};
             for ( s in Frontier, ns in nextStates(s)
                 | !(ns in Visited) && !(ns in Frontier)
             {
                 NewFrontier += { ns };
11
                 Parent[ns] := s;
12
                 if (ns == goal) {
13
                     return pathTo(goal, Parent);
                 }
15
             }
            Visited += Frontier;
17
            Frontier := NewFrontier;
18
        }
19
    };
20
```

Figure 2.5: Breadth first search.

Figure 2.5 on page 13 shows an implementation of breadth first search in Setla. We discuss this implementation line by line:

- 1. Frontier is the set of all those states that have been encountered but whose neighbours have not yet been explored. Initially, it contains the state start.
- 2. Visited is the set of all those states, all whose neighbours have already been added to the set Frontier. In order to avoid infinite loops, these states must not be visited again.
- 3. Parent is a dictionary keeping track of the state leading to a given state.
- 4. As long as the set Frontier is not empty, we add all neighbours of states in Frontier that have not yet been visited to the set NewFrontier. When doing this, we keep track of the path leading to a new state ns by storing its parent in the dictionary Parent.
- 5. If the new state happens to be the state goal, we return a path leading from start to goal. The procedure pathTo() is shown in Figure 2.6 on page 14.

6. After we have collected all successors of states in Frontier, the states in the set Frontier have been visited and are therefore added to the set Visited, while the Frontier is updated to NewFrontier.

```
pathTo := procedure(state, Parent) {
    Path := [];
    while (state != om) {
        Path += [state];
        state := Parent[state];
    }
    return reverse(Path);
}
```

Figure 2.6: The procedure pathTo().

The procedure call pathTo(state, Parent) constructs a path reaching from start to state in reverse by looking up the parent states.

If we try breadth first search to solve the missionaries and cannibals problem, we immediately get the solution shown in Figure 2.7. 15 nodes had to be expanded to find this solution. To keep this in perspective, we note that Figure 2.2 shows that the entire state space contains 16 states. Therefore, with the exception of one state, we have inspected all the states. This is a typical behaviour for breadth first search.

1	MMM	KKK	В	~~~~			
2				> KK >			
3	MMM	K		~~~~		KK	В
4				< K <			
5	MMM	KK	В	~~~~		K	
6				> KK >			
7	MMM			~~~~		KKK	В
8				< K <			
9	MMM	K	В	~~~~		KK	
10				> MM >			
11	M	K		~~~~	MM	KK	В
12				< M K <			
13	MM	KK	В	~~~~	М	K	
14				> MM >			
15		KK		~~~~	MMM	K	В
16				· K <			
17		KKK	В	~~~~	MMM		
18			_	> KK >			
19		K		~~~~	MMM	KK	R
20		11		< K <		1111	
21		KK	В	~~~~	MMM	K	
		1111	ם	> KK >	111111	11	
22				~~~~	MMM	KKK	В
23				1 1	1-11-11-1	VVV	D

Figure 2.7: A solution of the missionaries and cannibals problem.

Next, let us try to solve the 3×3 sliding puzzle. It takes about 6 seconds to solve this problem on my computer¹, while 181439 states are touched. Again, we see that breadth first search touches nearly all the

 $^{^1}$ I happen to own an iMac from 2017. This iMac is equipped with 32 Gigabytes of main memory and a quad core 3.4 GHz "Intel Core i5" processor. I suspect this to be the I5-7500 (Kaby Lake) processor.

states reachable from the start state.

2.2.1 A Queue Based Implementation of Breadth First Search

In the literature, for example in Figure 3.11 of Russell & Norvig [RN09], breadth first search is often implemented using a queue data structure. Figure 2.8 on page 15 shows an implementation of breadth first search that uses a queue to store the set Frontier. However, when we run this version, it turns out that the solution of the 3×3 sliding puzzle needs about 58 seconds, which is a lot slower than our set based implementation that has been presented in Figure 2.5.

```
search := procedure(start, goal, nextStates) {
                 := [ start ];
        Queue
2
        Visited := {};
        Parent := {};
        while (Queue != []) {
             state := Queue[1];
             Queue := Queue[2..];
             if (state == goal) {
                 return pathTo(state, Parent);
             }
10
             Visited
                       += { state };
11
            newStates := nextStates(state);
             for (ns in newStates | !(ns in Visited) && Parent[ns] == om) {
13
                 Parent[ns] := state;
                 Queue
                             += [ ns ];
15
             }
        }
17
    };
```

Figure 2.8: A queue based implementation of breadth first search.

The solution of the 3×3 sliding puzzle that is found by breadth first search is shown in Figure 2.9 and Figure 2.10.

We conclude our discussion of breadth first search by noting the two most important properties of breadth first search.

- 1. Breadth first search is complete: If there is a solution to the given search problem, then breadth first search is going to find it.
- 2. The solution found by breadth first search is optimal, i.e. it is one of the shortest possible solutions.

Proof: Both of these claims can be shown simultaneously. Consider the implementation of breadth first search shown in Figure 2.5. An easy induction on the number of iterations of the while loop shows that after n iterations of the while loop, the set Frontier contains exactly those states that have a distance of n to the state start. This claim is obviously true before the first iteration of the while loop as in this case, Frontier only contains the state start. In the induction step we assume the claim is true after n iterations. Then, in the next iteration all states that can be reached in one step from a state in Frontier are added to the new Frontier, provided there is no shorter path to these states. There is a shorter path to these states if these states are already a member of the set Visited. Hence, the claim is true after n+1 iterations also.

Now, if there is a path from start to goal, there must also be a shortest path. Assume this path has a length of k. Then, goal is reached in the iteration number k and the shortest path is returned.

The fact that breadth first search is both complete and the path returned is optimal is rather satisfying. However, breadth first search still has a big downside that makes it unusable for many problems: If the goal is

-								
1 2 3 4 5 6 7 8	8 6 +++ 5 4 7 ++ 2 3 1 +++	==>		==>	5 8 6 	==>	5 8 6 	==>
9 10 11 12 13 14 15	+++ 5 8 6 +++ 2 4 7 +++ 3 1 +++	==>	+++ 5 8 6 +++ 2 4 7 +++ 3 1 +++	==>	+++ 5 8 6 +++ 2 4 +++ 3 1 7 +++	==>	+++ 5 8 +++ 2 4 6 +++ 3 1 7 +++	==>
16 17 18 19 20 21 22 23 24	+++ 5 8 +++ 2 4 6 +++ 3 1 7 +++	==>	+++ 	==>	+++ 2 5 8 +++ 4 6 +++ 3 1 7 +++	==>	2 5 8 	==>
25 26 27 28 29 30 31	+++ 2 5 8 +++ 4 1 6 +++ 3 7 +++	==>	+++ 2 5 8 +++ 4 1 6 +++ 3 7 +++	==>	2 5 8 	==>	+++ 2 5 +++ 4 1 8 +++ 3 7 6 +++	==>
32 33 34 35 36 37 38 39	+++ 2 5 +++ 4 1 8 +++ 3 7 6 +++	==>	+++ 2 5 +++ 4 1 8 +++ 3 7 6 +++	==>	+++ 4 2 5 +++ 1 8 +++ 3 7 6 +++	==>	+++ 4 2 5 +++ 1 8 +++ 3 7 6 +++	==>
40 41 42 43 44 45 46 47	+++ 4 2 5 +++ 1 7 8 +++ 3 6 +++	==>	+++ 4 2 5 +++ 1 7 8 +++ 3 6 +++	==>	+++ 4 2 5 +++ 1 7 +++ 3 6 8 ++	==>	+++ 4 2 +++ 1 7 5 +++ 3 6 8 +++	==>

Figure 2.9: The first 24 steps in the solution of the 3×3 sliding puzzle.

far from the start, breadth first search will use a lot of memory because it will store a large part of the state space in the set Visited. In many cases, the state space is so big that this is not possible. For example, it is

Figure 2.10: The last 7 steps in the solution of the 3×3 sliding puzzle.

impossible to solve the more interesting cases of the 4×4 sliding puzzle using breadth first search.

2.3 Depth First Search

To overcome the memory limitations of breadth first search, the depth first search algorithm has been developed. The basic idea is to replace the queue of Figure 2.8 by a stack. The resulting algorithm is shown in Figure 2.11 on page 17. Basically, in this implementation, a path is searched to its end before trying an alternative. This way, we might be able to find a goal that is far away from start without exploring the whole state space.

```
search := procedure(start, goal, nextStates) {
        Stack := [ start ];
2
        Parent := {};
        while (Stack != []) {
4
             state := Stack[-1];
             Stack := Stack[..-2];
             if (state == goal) {
                 return pathTo(state, Parent);
            }
            newStates := nextStates(state);
10
             for (ns in newStates | ns != start && Parent[ns] == om) {
11
                 Parent[ns] := state;
12
                 Stack
                             += [ns];
13
            }
14
        }
15
    };
16
```

Figure 2.11: The depth first search algorithm.

Actually, it is not necessary to understand the details of the implementation shown in Figure 2.11 on page 17. The reason is that the recursive implementation of depth first search that is presented in the following subsection is superior to the implementation shown in Figure 2.11 on page 17. When we test the implementation shown above with the 3×3 sliding puzzle, it takes about 68 seconds to find a solution. The solution that is found has

a length of 41,553 steps. As the shortest path from start to goal has 31 steps, the solution found by depth first search is very far from optimal. All this is rather disappointing news. The only good news is that there is no longer a need to keep the set Visited around. However, we still have to maintain the set Parent. If we were more ambitious, we could eliminate the use of this dictionary also, but the resulting implementation would be rather unwieldy. Fortunately, we will be able to get rid of the set Parent with next to no effort when we develop a recursive implementation of depth first search in the following subsection.

2.3.1 Getting Rid of the Parent Dictionary

It can be argued that the implementation of depth first search discussed previously is not really depth first search because it uses the dictionary Parent. As states are only added to Parent and never removed, at the end of the search this dictionary will contain all states that have been visited. This defeats the most important advantage of depth first search which is the fact that it should only store the current path that is investigated. Therefore, it has been suggested (for example compare Russel and Norvig [RN09]) that instead of storing single states, the stack should store the full paths leading to these states. This leads to the implementation shown in Figure 2.12 on page 18.

```
search := procedure(start, goal, nextStates) {
        Stack := [ [start] ];
        while (Stack != []) {
            Path := Stack[-1];
             Stack := Stack[..-2];
             state := Path[-1];
             if (state == goal) {
                 return Path;
             }
            newStates := nextStates(state);
10
             for (ns in newStates | !(ns in Path)) {
11
                 Stack += [ Path + [ns] ];
12
             }
13
        }
14
    };
15
```

Figure 2.12: An path-based implementation of depth first search.

Unfortunately, it turns out that the paths get very long and hence need a lot of memory to be stored and this fact defeats the main idea of this implementation. As a result, the procedure search that is given in Figure 2.12 on page 18 is not able to solve the instance of the 3×3 sliding puzzle that was shown in Figure 2.3 on page 11.

Exercise 1: Assume that n is a positive natural number and that the set of states Q_n is defined as

```
Q_n := \{ \langle a, b \rangle \mid a \in \{0, \cdots, n\} \land b \in \{0, \cdots, n\} \}.
```

Furthermore, the states start and goal are defined as

```
start := \langle 0, 0 \rangle and goal := \langle n, n \rangle.
```

Next, the function nextStates is defined as

```
\mathtt{nextStates}\big(\langle a,b\rangle\big) := \left\{ \begin{array}{l} \big\{\langle a+1,b\rangle,\langle a,b+1\rangle\big\} & \text{if } a < n \text{ and } b < n \\ \big\{\langle a+1,b\rangle,\langle a+1,0\rangle\big\} & \text{if } a < n \text{ and } b = n \\ \big\{\langle 0,b+1\rangle,\langle a,b+1\rangle\big\} & \text{if } a = n \text{ and } b < n \\ \big\{\big\} & \text{if } a = n \text{ and } b = n \end{array} \right.
```

Finally, the search problem \mathcal{P} is defined as

```
\mathcal{P} := \langle Q, \mathtt{nextStates}, \mathtt{start}, \mathtt{goal} \rangle.
```

Assume that states can be stored using 8 bytes. Furthermore, assume that we use the algorithm given in Figure 2.12 on page 18 to solve the search problem \mathcal{P} . How many bytes do we need to store all the states on the stack in the moment that the goal is reached? How big is this number if n = 10,000?

- (a) **Note** that the question only asks for the memory needed to store the states. The memory needed to store the stack itself and the various lists on the stack comes on top of the memory needed to store the states. However, to answer this exercise correctly, you should ignore this type of memory.
- (b) In order to understand how the stack evolves, we need to know that in Setl sets are ordered ascendingly. Furthermore, pairs are ordered lexicographically in Setl in Setl

```
\langle x_1, y_1 \rangle < \langle x_2, y_2 \rangle \iff x_1 < x_2 \lor (x_1 = x_2 \land y_1 < y_2).
```

Hence, when we have a state $\langle a, b \rangle$ such that both a < n and b < n, the set nextStates($\langle a, b \rangle$) is ordered as follows:

$$\{\langle a,b+1\rangle,\langle a+1,b\rangle\}.$$

2.3.2 A Recursive Implementation of Depth First Search

Sometimes, the depth first search algorithm is presented as a recursive algorithm, since this leads to an implementation that is slightly shorter and is easier to understand. What is more, we no longer need the dictionary Parent to record the parent of each node. The resulting implementation is shown in Figure 2.13 on page 19.

```
search := procedure(start, goal, nextStates) {
        return dfs(start, goal, nextStates, [start]);
2
    };
3
    dfs := procedure(state, goal, nextStates, Path) {
        if (state == goal) {
            return Path;
6
        newStates := nextStates(state);
        for (ns in newStates | !(ns in Path)) {
            result := dfs(ns, goal, nextStates, Path + [ns]);
10
            if (result != om) {
                 return result;
12
            }
13
        }
14
    };
15
```

Figure 2.13: A recursive implementation of depth first search.

The only purpose of the procedure search is to call the procedure dfs, which needs one additional argument. This argument is called Path. The idea is that Path is a path leading from the state start to the current state that is the first argument of the procedure dfs. On the first invocation of dfs, the parameter state is equal to start and therefore Path is initialized as the list containing only start.

The implementation of dfs works as follows:

- 1. If state is equal to goal, our search is successful. Since by assumption the list Path is a path connecting start and state and we have checked that state is equal to goal, we can return Path as our solution.
- 2. Otherwise, newStates is the set of states that are reachable from state in one step. Any of the states ns in this set could be the next state on a path that leads to goal. Therefore, we try recursively to reach goal from every state ns. Note that we have to change Path to the list

when we call the procedure dfs recursively. This way, we retain the invariant of dfs that the list Path is a path connecting start with state.

- 3. We still have to avoid running in circles. In the recursive version of depth first search, this is achieved by checking that the state ns is not already a member of the list Path. In the non-recursive version of depth first search, we had used the set Parent instead. The current implementation no longer has a need for the dictionary Parent. This is very fortunate since it reduces the memory requirements of depth first search considerably.
- 4. If one of the recursive calls of dfs returns a list, this list is a solution to our search problem and hence it is returned. However, if instead the undefined value om is returned, the for loop needs to carry on and test the other successors of state.
- 5. Note that the recursive invocation of dfs returns om if the end of the for loop is reached and no solution has been returned so far. The reason is that there is no return statement at the end of the procedure dfs. Hence, if the last line of the procedure dfs is reached, om is returned by default.

For the 3×3 puzzle, it takes about one second to compute the solution. In this case, the length of the solution is still 3653 steps, which is unsatisfying. The good news is that this program does not need much memory. The only variable that uses considerable memory is the variable Path. If we can somehow keep the list Path short, then the recursive version of depth first search uses only a tiny fraction of the memory needed by breadth first search.

2.4 Iterative Deepening

The fact that the recursive version of depth first search took just one second to find a solution is very impressive. The questions is whether it might be possible to force depth first search to find the shortest solution. The answer to this question leads to an algorithm that is known as iterative deepening. The main idea behind iterative deepening is to run depth first with a depth limit d. This limit enforces that a solution has at most a length of d. If no solution is found at a depth of d, the new depth d+1 can be tried next and the process can be continued until a solution is found. The program shown in Figure 2.14 on page 21 implements this strategy. We proceed to discuss the details of this program.

- 1. The procedure search initializes the variable limit to 1 and tries to find a solution to the search problem that has a length that is less than or equal to limit. If a solution is found, it is returned. Otherwise, the variable limit is incremented by one and a new instance of depth first search is started. This process continues until either
 - a solution is found or
 - the sun rises in the west.
- 2. The procedure depthLimitedSearch implements depth first search but takes care to compute only those paths that have a length of at most limit. The implementation shown in Figure 2.14 is stack based. In this implementation, the stack contains paths leading from start to the state at the end of a given path. Hence it is similar to the implementation of depth first search shown in Figure 2.11 on page 17.
- 3. The stack is initialized to contain the path [start].
- 4. In the while-loop, the first thing that happens is that the Path on top of the stack is removed from the stack. The state at the end of this Path is called state. If this state happens to be the goal, a solution to the search problem has been found and this solution is returned.
- 5. Otherwise, we check the length of Path. If this length is greater than or equal to the limit, the Path can be discarded as we have already checked that it does not end in the goal.

```
search := procedure(start, goal, nextStates) {
        limit := 1;
        while (true) {
3
            Path := depthLimitedSearch(start, goal, nextStates, limit);
             if (Path != om) { return Path; }
             limit += 1;
        }
    };
    depthLimitedSearch := procedure(start, goal, nextStates, limit) {
9
        Stack := [ [start] ];
10
        while (Stack != []) {
11
            Path := Stack[-1];
12
             Stack := Stack[..-2];
             state := Path[-1];
14
             if (state == goal)
                                 { return Path; }
             if (#Path >= limit) { continue;
16
             for (ns in nextStates(state) | !(ns in Path)) {
                 Stack += [ Path + [ns] ];
18
            }
        }
20
    };
```

Figure 2.14: Iterative deepening implemented in Setla.

- 6. Otherwise, the neighbours of state are computed. For every neighbour ns of state that has not yet been encountered in Path, we extend Path to a new list that ends in ns.
- 7. This process is iterated until the Stack is exhausted.

The nice thing about the program presented in this section is the fact that it does not use much memory. The reason is that the stack can never have a size that is longer than limit and therefore the overall memory that is needed can be bounded by $\mathcal{O}(\mathtt{limit}^2)$. However, when we run this program to solve the 3×3 sliding puzzle, the algorithm takes about 25 minutes. There are two reasons for this:

- 1. First, it is quite wasteful to run the search for a depth limit of $1, 2, 3, \cdots$ all the way up to 31. Essentially, all the computations done with a limit less than 31 are wasted.
- 2. Given a state s that is reachable from the **start**, there often are a huge number of different paths that lead from **start** to s. The version of iterative deepening presented in this section tries all of these paths and hence needs a large amount of time.

Exercise 2: Assume the set of states Q is defined as

```
Q := \{ \langle a, b \rangle \mid a \in \mathbb{N} \land b \in \mathbb{N} \}.
```

Furthermore, the states start and goal are defined as

```
\mathtt{start} := \langle 0, 0 \rangle and \mathtt{goal} := \langle n, n \rangle where n \in \mathbb{N}.
```

Next, the function nextStates is defined as

```
\mathtt{nextStates}(\langle a, b \rangle) := \{ \langle a+1, b \rangle, \langle a, b+1 \rangle \}.
```

Finally, the search problem \mathcal{P} is defined as

```
\mathcal{P} := \langle Q, \texttt{nextStates}, \texttt{start}, \texttt{goal} \rangle.
```

Given a natural number n, compute the number of different solutions of this search problem and prove your claim.

Hint: The expression giving the number of different solutions contains factorials. In order to get a better feeling for the asymptotic growth of this expression we can use Stirling's approximation of the factorial. Stirling's approximation of n! is given as follows:

$$n! \sim \sqrt{2 \cdot \pi \cdot n} \cdot \left(\frac{n}{e}\right)^n$$
.

Exercise 3: If there is no solution, the implementation of iterative deepening that is shown in Figure 2.14 does not terminate. The reason is that the function depthLimitedSearch does not distinguish between the following two reasons for failure:

- 1. It can fail to find a solution because the depth limit is reached.
- 2. It can also fail because it has tried all paths without hitting the depth limit but the Stack is exhausted.

Improve the implementation of iterative deepening so that it will always terminate eventually, provided the state space is finite.

2.4.1 A Recursive Implementation of Iterative Deepening

If we implement iterative deepening recursively, then we know that the call stack is bounded by the length of the shortest solution. Figure 2.15 on page 22 shows a recursive implementation of iterative deepening. Unfortunately, the running time of the recursive implementation of iterative deepening is still quite big: On my computer, the recursive implementation takes about 23 minutes.

```
search := procedure(start, goal, nextStates) {
        limit := 1;
2
        while (true) {
3
             result := dfsLimited(start, goal, nextStates, [start], limit);
             if (result != om) {
                 return result;
             limit += 1;
        }
    };
10
    dfsLimited := procedure(state, goal, nextStates, Path, limit) {
11
        if (state == goal) {
12
             return Path;
13
14
        if (limit == 0) {
15
             return; // limit execceded
16
17
        for (ns in nextStates(state) | !(ns in Path)) {
18
             result := dfsLimited(ns, goal, nextStates, Path + [ns], limit - 1);
19
             if (result != om) {
                 return result;
21
             }
22
        }
23
    };
24
```

Figure 2.15: A recursive implementation of iterative deepening.

2.5 Bidirectional Breadth First Search

Breadth first search first visits all states that have a distance of 1 from start, then all states that have a distance of 2, then of 3 and so on until finally the goal is found. If the length of the shortest path from start to goal is d, then all states that have a distance of at most d will be visited. In many search problems, the number of states grows exponentially with the distance, i.e. there is a branching factor b such that the set of all states that have a distance of at most d from start is roughly

$$1 + b + b^2 + b^3 + \dots + b^d = \frac{b^{d+1} - 1}{b-1} = \mathcal{O}(b^d).$$

At least this is true in the beginning of the search. As the size of the memory that is needed is the most constraining factor when searching, it is important to cut down this size. One simple idea is to start searching both from the node start and the node goal simultaneously. The justification is that we can hope that the path starting from start and the path starting from goal will meet in the middle and hence they will both have a size of approximately d/2. If this is the case, only

$$2 \cdot \frac{b^{d/2+1} - 1}{b-1}$$

nodes need to be explored and even for modest values of b this number is much smaller than

$$\frac{b^{d+1}-1}{b-1}$$

which is the number of nodes expanded in breadth first search. For example, assume that the branching factor b = 2 and that the length of the shortest path leading from start to goal is 40. Then we need to explore

$$2^{41} - 1 = 2,199,023,255,551$$

in breadth first search, while we only have to explore

$$2 \cdot (2^{40/2+1} - 1) = 4,194,302$$

with bidirectional breadth first search. While it is certainly feasible to keep four million states in memory, keeping a two trillion states in memory is impossible on most devices.

Figure 2.16 on page 24 shows the implementation of bidirectional breadth first search. Essentially, we have to copy the breadth first program shown in Figure 2.5. Let us discuss the details of the implementation.

- 1. The variable FrontierA is the frontier that starts from the state start, while FrontierB is the frontier that starts from the state goal.
- 2. VisitedA is the set of states that have been visited starting from start, while VisitedB is the set of states that have been visited starting from goal.
- 3. For every state s that is in FrontierA, ParentA[s] is the state that caused s to be added to the set FrontierA. Similarly, for every state s that is in FrontierB, ParentB[s] is the state that caused s to be added to the set FrontierB.
- 4. The bidirectional search keeps running for as long as both sets FrontierA and FrontierB are non-empty and a path has not yet been found.
- 5. Initially, the while loop adds the frontier sets to the visited sets as all the neighbours of the frontier sets will now be explored.
- 6. Then the while loop computes those states that can be reached from FrontierA and have not been visited from start. If a state ns is a neighbour of a state s from the set FrontierA and the state ns has already been encountered during the search that started from goal, then a path leading from start to goal has been found and this path is returned. The function combinePaths that computes this path by combining the path that leads from start to ns and then from ns to goal to is shown in Figure 2.17 on page 24.
- 7. Next, the same computation is done with the role of the states start and goal exchanged.

```
search := procedure(start, goal, nextStates) {
        FrontierA := { start };
        VisitedA := {}; // set of nodes expanded starting from start
3
        ParentA
                   := {};
        FrontierB := { goal };
        VisitedB := {}; // set of nodes expanded starting from goal
        ParentB
                   := {};
        while (FrontierA != {} && FrontierB != {}) {
             VisitedA += FrontierA;
            VisitedB += FrontierB;
10
            NewFrontier := {};
11
             for (s in FrontierA, ns in nextStates(s) | !(ns in VisitedA)) {
12
                 NewFrontier += { ns };
                 ParentA[ns] := s;
14
                 if (ns in VisitedB) {
                     return combinePaths(ns, ParentA, ParentB);
16
                 }
             }
18
            FrontierA
                         := NewFrontier;
            NewFrontier := {};
20
             for (s in FrontierB, ns in nextStates(s) | !(ns in VisitedB)) {
                 NewFrontier += { ns };
22
                 ParentB[ns] := s;
23
                 if (ns in VisitedA) {
                     return combinePaths(ns, ParentA, ParentB);
25
                 }
26
             }
27
            FrontierB := NewFrontier;
        }
29
    };
30
```

Figure 2.16: Bidirectional breadth first search.

On my computer, bidirectional breadth first search solves the 3×3 sliding puzzle in less than a second! However, bidirectional breadth first search is still not able to solve the 4×4 sliding puzzle since the portion of the search space that needs to be computed is just too big to fit into memory.

```
combinePaths := procedure(node, ParentA, ParentB) {
    Path1 := pathTo(node, ParentA);
    Path2 := pathTo(node, ParentB);
    return Path1[..-2] + reverse(Path2);
};
```

Figure 2.17: Combining two paths.

2.6 Best First Search

Up to now, all the search algorithms we have discussed were essentially blind. Given a state s and all of its neighbours, they had no idea which of the neighbours they should pick because they had no conception which

of these neighbours might be more promising than the other neighbours. If a human tries to solve a problem, she usually will develop a feeling that certain states are more favourable than other states because they seem to be closer to the solution. In order to formalise this procedure, we next define the notion of a heuristic.

Definition 2 (Heuristic) Given a search problem

$$\mathcal{P} = \langle Q, \texttt{nextStates}, \texttt{start}, \texttt{goal} \rangle$$

a heuristic is a function

$$h:Q\to\mathbb{R}$$

that computes an approximation of the distance of a given state s to the goal state goal. The heuristic is admissible if it always underestimates the true distance, i.e. if the function

$$d:Q\to\mathbb{R}$$

computes the true distance from a state s to the goal, then we must have

$$h(s) \le d(s)$$
 for all $s \in Q$.

Hence, the heuristic is admissible iff it is optimistic: An admissible heuristic must never overestimate the distance to the goal, but it is free to underestimate this distance.

Finally, the heuristic h is called consistent iff we have

$$h(\texttt{goal}) = 0$$
 and $h(s_1) \le 1 + h(s_2)$ for all $s_2 \in \texttt{nextStates}(s_1)$.

Let us explain the idea behind the notion of consistency. First, if we are already at the goal, the heuristic should notice this and therefore we need to have h(goal) = 0. Secondly, assume we are at the state s_1 and s_2 is a neighbour of s_1 , i.e. we have that

$$s_2 \in \mathtt{nextStates}(s_1)$$
.

Now if our heuristic h assumes that the distance of s_2 from the goal is $h(s_2)$, then the distance of s_1 from the goal can be at most $1 + h(s_2)$ because starting from s_1 we can first go to s_2 in one step and then from s_2 to goal in $h(s_2)$ steps for a total of $1 + h(s_2)$ steps. Of course, it is possible that there exists a shorter path from s_1 leading to the goal than the one that visits s_2 first. Hence, we have the inequality

$$h(s_1) \le 1 + h(s_2).$$

Theorem 3 Every consistent heuristic is an admissible heuristic.

Proof: Assume that the heuristic h is consistent. Assume further that $s \in Q$ is some state such that there is a path p from s to the goal. Assume this path has the form

$$p = [s_n, s_{n-1}, \dots, s_1, s_0],$$
 where $s_n = s$ and $s_0 = \text{goal}$.

Then the length of the path p is n and we have to show that $h(s) \leq n$. In order to prove this claim, we show that we have

$$h(s_k) \le k$$
 for all $k \in \{0, 1, \dots, n\}$.

This claim is shown by induction on k.

B.C.: k = 0.

We have $h(s_0) = h(\text{goal}) = 0 \le 0$ because the fact that h is consistent implies h(goal) = 0.

I.S.: $k \mapsto k + 1$.

We have to show that $h(s_{k+1}) \leq k+1$ holds. This is shown as follows:

$$h(s_{k+1}) \le 1 + h(s_k)$$
 because $s_k \in \texttt{nextStates}(s_{k+1})$ and h is consistent, $\le 1 + k$ because $h(s_k) \le k$ by induction hypotheses.

It is natural to ask whether the last theorem can be reversed, i.e. whether every admissible heuristic is also consistent. The answer to this question is negative since there are some *contorted* heuristics that are admissible but that fail to be consistent. However, in practice it turns out that most admissible heuristics are also consistent. Therefore, when we construct consistent heuristics later, we will start with admissible heuristics, since these are easy to find. We will then have to check that these heuristics are also consistent.

Examples: In the following, we will discuss several heuristics for the sliding puzzle.

1. The simplest heuristic that is admissible is the function h(s) := 0. Since we have

$$0 \le 1 + 0$$
,

this heuristic is obviously consistent, but this heuristic is too trivial to be of any use.

2. The next heuristic is the number of misplaced tiles heuristic. For a state s, this heuristic counts the number of tiles in s that are not in their final position, i.e. that are not in the same position as the corresponding tile in goal. For example, in Figure 2.3 on page 11 in the state depicted to the left, only the tile with the label 4 is in the same position as in the state depicted to the right. Hence, there are 7 misplaced tiles.

As every misplaced tile must be moved at least once and every step in the sliding puzzle moves at most one tile, it is obvious that this heuristic is admissible. It is also consistent. First, the goal has no misplaced tiles, hence its heuristic is 0. Second, in every step of the sliding puzzle only one tile is moved. Therefore the number of misplaced tiles in two neighbouring state can differ by at most one.

Unfortunately, the number of misplaced tiles heuristic is very crude and therefore not particularly useful.

3. The Manhattan heuristic improves on the previous heuristic. For two points $\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle \in \mathbb{R}^2$ the Manhattan distance of these points is defined as

$$d_1(\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle) := |x_1 - x_2| + |y_1 - y_2|.$$

The Manhattan distance is also called the L_1 norm of the difference vector $\langle x_2 - x_1, y_2 - y_1 \rangle$. If we associate Cartesian coordinates with the tiles of the sliding puzzle such that the tile in the upper left corner has coordinates $\langle 1, 1 \rangle$ and the coordinates of the tile in the lower right corner is $\langle 3, 3 \rangle$, then the Manhattan distance of two positions measures how many steps it takes to move a tile from the first position to the second position if we are allowed to move the tile horizontally or vertically regardless of the fact that the intermediate positions might be blocked by other tiles. To compute the Manhattan heuristic for a state s with respect to the goal, we first define the function pos(t,s) for all tiles $t \in \{1, \dots, 8\}$ in a given state s as follows:

$$\mathsf{pos}(t,s) = \langle \mathsf{row}, \mathsf{col} \rangle \ \stackrel{\mathrm{def}}{\Longleftrightarrow} \ s[\mathsf{row}][\mathsf{col}] = t,$$

i.e. given a state s, the expression pos(t, s) computes the Cartesian coordinates of the tile t with respect to the state s. Then we can define the Manhattan heuristic h for the 3×3 puzzle as follows:

$$h(s) := \sum_{t=1}^8 d_1 \big(\mathsf{pos}(t,s), \, \mathsf{pos}(t,\mathsf{goal}) \big).$$

The Manhattan heuristic measure the number of moves that would be needed if we wanted to put every tile of s into its final positions and if we were allowed to slide tiles over each other. Figure 2.18 on page 27 shows how the Manhattan distance can be computed. The code given in that figure works for a general $n \times n$ sliding puzzle. It takes two states stateA and stateB and computes the Manhattan distance between these states.

- (a) First, the size n of the puzzle is computed by checking the number of rows of stateA.
- (b) Next, the for loop iterates over all rows and columns of stateA that do not contain a blank tile. Remember that the blank tile is coded using the number 0. The tile at position \(\text{rowA}, \text{colA} \) in stateA is computed using the expression stateA[rowA][colA] and the corresponding position \(\text{rowB}, \text{colB} \) of this tile in state stateB is computed using the function findTile.

(c) Finally, the Manhattan distance between the two positions (rowA, colA) and (rowB, colB) is added to the result.

```
manhattan := procedure(stateA, stateB) {
    n := #stateA;
    L := [1 .. n];
    result := 0;
    for (rowA in L, colA in L | stateA[rowA][colA] != 0) {
        [rowB, colB] := findTile(stateA[rowA][colA], stateB);
        result += abs(rowA - rowB) + abs(colA - colB);
    }
    return result;
}
```

Figure 2.18: The Manhattan distance between two states.

The Manhattan distance is admissible. The reason is that if $s_2 \in \texttt{nextStates}(s_1)$, then there can be only one tile t such that the position of t in s_1 is different from the position of t in s_2 . Furthermore, this position differs by either one row or one column. Therefore,

```
|h(s_1) - h(s_2)| = 1
and hence h(s_1) \le 1 + h(s_2).
```

Now we are ready to present best first search. This algorithm is derived from the stack based version of depth first search. However, instead of using a stack, the algorithm uses a priority queue. In this priority queue, the paths are ordered with respect to the estimated distance of the state at the end of the path from the goal. We always expand the path next that seems to be closest to the goal.

```
bestFirstSearch := procedure(start, goal, nextStates, heuristic) {
1
        PrioQueue := { [heuristic(start, goal), [start]] };
2
        while (PrioQueue != {}) {
3
             [_, Path] := fromB(PrioQueue);
            state
                       := Path[-1];
            if (state == goal) { return Path; }
            for (ns in nextStates(state) | !(ns in Path)) {
                PrioQueue += { [heuristic(ns, goal), Path + [ns]] };
            }
        }
10
    };
11
```

Figure 2.19: The best first search algorithm.

The procedure bestFirstSearch shown in Figure 2.19 on page 27 takes four parameters. The first three of these parameters are the same as in the previous search algorithms. The last parameter heuristic is a function that takes to states and then estimates the distance between these states. Later, we will use the Manhattan distance to serve as this heuristic. The details of the implementation are as follows:

1. The variable PrioQueue serves as a priority queue. We take advantage of the fact that Setlx stores sets as ordered binary trees that store their elements in increasing order. Hence, the smallest element of a set is the first element.

Furthermore, Setla orders pairs lexicographically. Hence, we store the paths in PrioQueue as pairs of the form

 $\langle estimate, Path \rangle$.

Here Path is a list of states starting from the node start. If the last node on this list is called state, then we have

```
estimate = heuristic(state, goal),
```

i.e. estimate is the estimated distance between state and goal and hence an estimate of the number of steps needed to complete Path into a solution. This ensures, that the best path, i.e. the path whose last state is nearest to the goal is at the beginning of the set PrioQueue.

- 2. As long as PrioQueue is not empty, we take the Path from the beginning of this priority queue and remove it from the queue. The state at the end of Path is named state.
 - In SETLX, a function call of the form fromB(S) returns the smallest element from the set S. Furthermore, this element is removed from the set S.
- 3. If state is the goal, a solution has been found and is returned.
- 4. Otherwise, the states reachable from state are inserted into the priority queue. When these states are inserted, we have to compute their estimated distance to goal since this distance is used as the priority in PrioQueue.

Best first search solves the instance of the 3×3 puzzle shown in Figure 2.3 on page 11 in less than a quarter of a second. However, the solution that is found takes 75 steps. While this is not as ridiculous as the solution found by depth first search, it is still far from an optimal solution. Furthermore, best first search is still not strong enough to solve the 4×4 puzzle shown in Figure 2.23 on page 36.

It should be noted that the fact that the Manhattan distance is a consistent heuristic is of no consequence for best first search. Only the A* algorithm, which is presented next, makes use of this fact.

2.7 The A* Search Algorithm

We have seen that best first search can be very fast. However, the solution returned by best first search is not optimal. In contrast, the A^* algorithm described next guarantees that a shortest path is found provided the heuristic used is consistent. The basic idea is that the A^* search algorithm works similar to the queue based version of breadth first search, but instead of using a simple queue, a priority queue is used instead. The priority f(s) of every state s is given as

$$f(s) := g(s) + h(s),$$

where g(s) computes the length of the path leading from start to s and h(s) is the heuristical estimate of the distance from s to goal. The details of the A* algorithm are given in Figure 2.20 on page 29 and discussed below. The function aStarSearch takes 4 parameters:

- 1. start is a state. This state represents the start state of the search problem.
- 2. goal is the goal state.
- 3. nextStates is a function that takes a state as a parameter. For a state s,

computes the set of all those states that can be reached from s in a single step.

4. heuristic is a function that takes two parameters. For two states s_1 and s_2 , the expression

$$heuristic(s_1, s_2)$$

computes an estimate of the distance between s_1 and s_2 .

The function aStarSearch maintains 5 variables that are crucial for the understanding of the algorithm.

```
aStarSearch := procedure(start, goal, nextStates, heuristic) {
        Parent
                  := {};
                                             // back pointers, represented as dictionary
        Distance := { [start, 0] };
        estGoal := heuristic(start, goal);
        Estimate := { [start, estGoal] }; // estimated distances
        Frontier := { [estGoal, start] }; // priority queue
        while (Frontier != {}) {
             [_, state] := fromB(Frontier);
             if (state == goal) {
                 return pathTo(state, Parent);
10
            }
11
             stateDist := Distance[state];
12
            for (neighbour in nextStates(state)) {
                 oldEstimate := Estimate[neighbour];
14
                 newEstimate := stateDist + 1 + heuristic(neighbour, goal);
                 if (oldEstimate == om || newEstimate < oldEstimate) {</pre>
16
                     Parent[neighbour]
                                         := state;
                     Distance[neighbour] := stateDist + 1;
18
                     Estimate[neighbour] := newEstimate;
                                          += { [newEstimate, neighbour] };
                     Frontier
20
                     if (oldEstimate != om) {
                         Frontier -= { [oldEstimate, neighbour] };
22
                     }
                 }
24
            }
25
        }
26
    };
27
```

Figure 2.20: The A* search algorithm.

1. Parent is a dictionary associating a parent state with those states that have already been encountered during the search, i.e. we have

```
Parent[s_2] = s_1 \Rightarrow s_2 \in nextStates(s_1).
```

Once the goal has been found, this dictionary is used to compute the path from start to goal.

- 2. Distance is a dictionary. For every state s that is encountered during the search, this dictionary records the length of the shortest path from start to s.
- 3. Estimate is a dictionary. For every state s encountered in the search, Estimate[s] is an estimate of the length that a path from start to goal would have if it would pass through the state s. This estimate is calculated using the equation

```
\texttt{Estimate}[s] = \texttt{Distance}[s] + \texttt{heuristic}(s, \texttt{goal}).
```

Instead of recalculating this sum every time we need it, we store it in the dictionary Estimate. This increases the efficiency of the algorithm.

4. Frontier is a priority queue. The elements of Frontier are pairs of the form

```
[d, s] such that d = \text{Estimate}[s],
```

i.e. if $[d, s] \in Frontier$, then the state s has been encountered in the search and it is estimated that a path leading from start to goal and passing through s would have a length of d.

After the variables described above have been initialized, the A* algorithm runs in a while loop that does only terminate if either a solution is found or the priority queue Frontier is exhausted.

1. First, the state with the smallest estimated distance for a path running from start to goal and passing through state is chosen from the priority queue Frontier. Note that the call to fromB does not only return the pair

[stateEstimate, state]

from Frontier that has the lowest value of stateEstimate, but also removes this pair from the priority queue.

- 2. Now if this state is the goal a solution has been found. Hence, in this case the solution is returned and the function aStarSearch terminates.
- 3. Otherwise, we check the length of the path leading from start to state. This length is stored in stateDist. Effectively, this is the distance between start and state.
- 4. Next, we have a loop that iterates over all neighbours of state.
 - (a) For every neighbour we check the estimated length of a solution passing through neighbour and store this length in oldEstimate. Note that oldEstimate is undefined, i.e. it has the value om, if we haven't yet encountered the node neighbour in our search.
 - (b) If a solution would go from start to state and from there proceed to neighbour, the estimated length of this solution would be

```
\verb+stateDist+1+\verb+heuristic(neighbour,goal).
```

Therefore this value is stored in newEstimate.

(c) Next, we need to check whether this new solution that first passes through state and then proceeds to neighbour is better than the previous solution that passes through neighbour. This check is done by comparing newEstimate and oldEstimate. Note that we have to take care of the fact that there might be no valid oldEstimate.

In case the new solution seems to be better than the old solution, we have to update the Parent dictionary, the Distance dictionary, and the Estimate dictionary. Furthermore, we have to update the priority queue Frontier. Here, we have to take care to remove the previous entry for the state neighbour if it exists, which is the case if oldEstimate is different from om.

The A* algorithm has been discovered by Hart, Nilsson, and Raphael and was first published in 1968 [HNR68]. However, there was a subtle bug in the first publication which was corrected in 1972 [HNR72].

When we run A^* on the 3×3 sliding puzzle, it takes about 17 seconds to solve the instance shown in Figure 2.3 on page 11. If we just look at the time, this seems to be disappointing. However, the good news is that:

- 1. The path which is found is optimal.
- 2. Only 10,061 states are touched in the search for a solution. This is more than a tenfold reduction when compared with breadth first search.

The fact that the running time is, nevertheless, quite high results from the complexity of computing the Manhattan distance.

2.7.1 Completeness and Optimality of A* Search

In order to prove the completeness and the optimality of the A^* search algorithm it is convenient to reformulate the algorithm: In particular, we replace the dictionary Parent by a dictionary PathDict. For every state s that is reached during A^* search, PathDict[s] returns a path that connects the node start with the node s. Furthermore, we have added a set Explored to the implementation. This set is only needed for the proof of the optimality of the path found by A^* search. Figure 2.21 on page 31 shows this version of the algorithm.

```
aStarSearch := procedure(start, goal, nextStates, heuristic) {
        estGoal := heuristic(start, goal);
2
        Estimate := { [start, estGoal] };
                                               // estimated total distance
3
        Frontier := { [estGoal, start] };
                                               // priority queue
        PathDict := { [start, [start]] };
        Distance := { [start,
                                      0] };
        Explored := {};
        while (Frontier != {}) {
             [_, state] := fromB(Frontier);
                      += { state };
             Explored
10
             if (state == goal) {
11
                 return PathDict[state];
12
             }
             stateDist := Distance[state];
14
             for (neighbour in nextStates(state)) {
                 oldEstimate := Estimate[neighbour];
16
                 newEstimate := stateDist + 1 + heuristic(neighbour, goal);
                 if (oldEstimate == om || newEstimate < oldEstimate) {</pre>
18
                     Distance[neighbour] := stateDist + 1;
                     Estimate[neighbour] := newEstimate;
20
                     Frontier
                                          += { [newEstimate, neighbour] };
                     PathDict[neighbour] := PathDict[state] + [neighbour];
22
                     if (oldEstimate != om) {
23
                         Frontier -= { [oldEstimate, neighbour] };
                     }
25
                 }
26
            }
27
        }
28
    };
29
```

Figure 2.21: A path based implementation of A* search.

Theorem 4 (Completeness and Optimality of A* Search) Assume

```
\mathcal{P} = \langle Q, \texttt{nextStates}, \texttt{start}, \texttt{goal} \rangle
```

is a search problem and

```
\mathtt{heuristic}:Q 	o \mathbb{N}
```

is a consistent heuristic for the search problem \mathcal{P} . Then the A^* search algorithm is complete, i.e. if there is a path from start to goal, then the search is successful and, furthermore, the solution that is computed is a shortest path leading from start to goal.

Proof: In order to prove this theorem, we first need to establish a number of notions that are needed in order to improve our understanding of the A* algorithm. The first of these notions is the notion of explored states. A state is said to have been explored iff it has been removed from the priority queue Frontier. To emphasize this notion I have added the set Explored in the implementation of A* search that is shown in Figure 2.21 on page 31. A state is explored once it has been added to the set Explored. Note that the variable Explored serves no purpose in the implementation of A* search: This variable is only written but is never read. I have added the variable Explored to aid this proof. Furthermore, we define a state as visited iff it has been entered into the dictionary Distance. Before we prove the theorem, let us establish the following claim:

Claim One: If a state s is visited and P := PathDict[s], then P is a path from start to s and the length of

P is equal to Distance[s].

We establish this claim by a straightforward computational induction.

BC: The first path that is entered into the dictionary PathDict is the path [start]. This path connects the node start with the node start. Obviously, this path has the length 0 and that is exactly the value that is entered in the dictionary Distance in line 6.

IS: If we add in line 22 the path

$$PathDict[state] + [neighbour]$$

as a path for the state neighbour, then by induction hypotheses we know that $P := \mathtt{PathDict[state]}$ is a path leading from start to state and that, furthermore, the length of the path P is equal to $\mathtt{Distance[state]}$. When we append $\mathtt{neighbour}$ to the path P, the length of the resulting path is 1 more than the length of P and it is obvious that this new path

$$P + [neighbour]$$

connects start with neighbour. The induction hypotheses tell us that Distance[state] is equal to the length of P. Therefore, the length of the new path is Distance[state] + 1 and since stateDist is defined as Distance[state], the correct length is stored in line 23.

This concludes the proof of Claim One. $\sqrt{}$

Another notion we need to establish is a function g that is defined for all states s and returns the distance of s from the state start, i.e. we have

$$q(s) := \mathtt{dist}(\mathtt{start}, s)$$
 for all $s \in Q$.

Here, the expression dist(start, s) returns the length of the shortest path from start to s. From the definition of the dictionary Distance it is obvious that

$$g(s) \leq \mathtt{Distance}[s].$$

The reason is that every time an entry for a state s is added to the dictionary Distance, we have found a path from start to s that has the length Distance[s]. This might not be the shortest path, hence g(s) might be less than the length of this path.

Next, we introduce the notion of the estimated total distance of a state s that has been visited during the search. The estimated total distance of a state s is written as f(s) and denotes the estimated length of a path starting in start and ending in goal that visits the state s in between. Formally, f(s) is defined as follows:

$$f(s) := \mathtt{Distance}[s] + \mathtt{heuristic}[s].$$

Here, Distance[s] is the number of steps that it takes to reach the state s from start, while heuristic[s] is the estimated distance of a path from s to goal. Note that the priority queue Frontier is ordered according to the estimated total distance. The shorter the estimated total distance of a node s is, the higher is the priority of s. In order to prove the theorem we need to establish the following claim.

Claim Two: If a state $s \in Q$ has been explored, then we have

$$Distance[s] = g(s),$$

i.e. the path leading from start to s is guaranteed to be a shortest path.

Proof of Claim Two: The proof of Claim Two is a proof by contradiction. We assume that s is a state that has been explored such that

i.e. we assume that $P_1 := \mathtt{PathDict}[s]$ is not a shortest path from start to s. Then, there must be another path P_2 from start to s that is shorter than P_1 . Both P_1 and P_2 start at the same state start. Hence, these two paths must have the form

$$P_1 = [\mathtt{start}, x_1, \cdots, x_k, x_{k+1}, \cdots, x_{n-1}, s], \quad P_2 = [\mathtt{start}, x_1, \cdots, x_k, y_{k+1}, \cdots, y_{m-1}, s]$$

where $x_{k+1} \neq y_{k+1}$. Here, x_k is the state at which the paths P_1 and P_2 diverge. The number k could be 0. In that case the two paths would already diverge at the state start, but in general k will be some non-negative integer. Since we assume that P_1 is longer than P_2 we will have m < n. Furthermore, according to Claim One we have

$$Distance[s] = n.$$

Now it is time to make use of the fact that the heuristic h is consistent. First, since $s \in \text{nextStates}(y_{m-1})$ we have that

$$heuristic(y_{m-1}) \le 1 + heuristic(s).$$

Next, as we have $y_{m-1} \in \text{nextStates}(y_{m-2})$ the consistency of heuristic implies

$$heuristic(y_{m-2}) \le 1 + heuristic(y_{m-1}) \le 2 + heuristic(s).$$

Continuing this way we conclude that

$$\text{heuristic}(y_{m-i}) \leq i + \text{heuristic}(s)$$
 for all $i \in \{1, \dots, m-k-1\}$.

Define i := m - k - 1. Since m - i = m - (m - k - 1) = k + 1 we have shown that

$$heuristic(y_{k+1}) \le m - k - 1 + heuristic(s).$$

This implies

$$\begin{split} f(y_{k+1}) &= \operatorname{Distance}[y_{k+1}] + \operatorname{heuristic}(y_{k+1}) \\ &\leq \operatorname{Distance}[y_{k+1}] + m - k - 1 + \operatorname{heuristic}(s) \\ &= (k+1) + m - k - 1 + \operatorname{heuristic}(s) \quad \operatorname{since} \operatorname{Distance}[y_{k+1}] = k + 1 \\ &= m + \operatorname{heuristic}(s). \end{split}$$

Similarly, we can see that

$$f(y_{k+2}) \le k+2+(m-k-2)+\mathtt{heuristic}(s)=m+\mathtt{heuristic}(s)$$

and in general we have

$$f(y_j) \le m + \text{heuristic}(s)$$
 for all $j \in \{k+1, \dots, m-1\}$.

Next, we compute f(s). We have

$$f(s) = \mathtt{Distance}[s] + \mathtt{heuristic}(s) = n + \mathtt{heuristic}(s).$$

However, since we have m < n this implies

$$f(y_{k+1}) = m + \text{heuristic}(s) < n + \text{heuristic}(s) = f(s).$$

Now f(s) is the priority of the state s in the priority queue, while $f(y_{k+1})$ is the priority attached to the state y_{k+1} . At the latest, the state y_{k+1} is put onto the priority queue Frontier immediately after the state x_k is explored. But then the priority of y_{k+1} is higher than the priority of the state s and hence it is explored prior to s. Since all states of the form

$$y_i$$
 for $j \in \{k+1, \dots, m-1\}$

have a priority that is higher than the state s, these states would all have been explored prior to the state s. In particular, once the state y_{m-1} is explored, we will have

$$Distance[s] = m$$
 instead of $Distance[s] = n$.

This contradiction proves that our assumption

must be wrong and therefore we know that the equation Distance[s] = g(s) must hold for all states s that have

been explored. Hence the validity of Claim Two has been established. $\sqrt{}$

Claim Two implies that if the A* algorithm finds a path from start to goal, then this path must be optimal. This follows from the fact that before we check whether the search has reached the goal, the state that is compared to goal has been explored and, according to Claim Two, must therefore have Distance[goal] = g(goal). As g(goal) is the true distance of the state goal form the state start, this implies that the path that has been found is optimal.

The reason that we will always find a path to the goal, provided such a path exists is the following: Initially, the priority queue Frontier will just contain the pair [d, start] where

```
d := heuristic(start, goal).
```

Now if at any time the pair removed the priority queue Frontier has the form

```
[e, \mathtt{state}],
```

then the pairs that are added to Frontier in this iteration either have the form

```
[e, ns] or [e+1, ns], where ns \in neighbour(state).
```

Hence, all the pairs on the priority queue **Frontier** either have the priority e or the priority e+1. There can be only finitely many states with priority e. Once these will have been removed, the search will carry on to inspect those states with priority e+1, then those with priority e+2 and so on. Therefore, eventually all states with a priority less than the priority of the state **goal** will be visited. After that, eventually the **goal** is reached. \Box

2.8 Bidirectional A* Search

So far, the best search algorithm we have encountered is bidirectional breadth first search. However, in terms of memory consumption, the A^* algorithm also looks very promising. Hence, it might be a good idea to combine these two algorithms. Figure 2.22 on page 35 shows the resulting program. This program relates to the A^* algorithm shown in Figure 2.20 on page 29 as the algorithm for bidirectional search shown in Figure 2.16 on page 24 relates to breadth first search shown in Figure 2.5 on page 13. The only new idea is that we alternate between the A^* search starting from start and the A^* search starting from goal depending on the estimated total distance:

- (a) As long as the search starting from start is more promising, we remove states from FrontierA.
- (b) Once the total estimated distance of a path starting from goal is less than the best total estimated distance of a path starting from start, we switch and remove states from FrontierB.

When we run bidirectional A^* search for the 3×3 sliding puzzle shown in Figure 2.3 on page 11, the program takes one second but only uses 2,963 states. Therefore, I have tried to solve the 4×4 sliding puzzle shown in Figure 2.23 on page 36 using bidirectional A^* search. A solution of 44 steps was found in 50 seconds. Only 20,624 states had to be processed to compute this solution! None of the other algorithms presented so far was able to compute the solution.

$2.9 \quad \text{Iterative Deepening A^* Search}$

So far, we have combined A* search with bidirectional search and achieved good results. When memory space is too limited for bidirectional A* search to be possible, we can instead combine A* search with iterative deepening. The resulting search technique is known as iterative deepening A* search and is commonly abbreviated as IDA*. It has been invented by Richard Korf [Kor85]. Figure 2.24 on page 36 shows an implementation of IDA* in Setla. We proceed to discuss this program.

- 1. As in the A* search algorithm, the function idaStarSearch takes four parameters.
 - (a) start is a state. This state represents the start state of the search problem.

```
aStarSearch := procedure(start, goal, nextStates, heuristic) {
        estimate := heuristic(start, goal);
        ParentA
                   := {};
                                               ParentB
                                                          := {};
        DistanceA := { [start, 0] };
                                               DistanceB := { [goal, 0] };
        EstimateA := { [start, estimate] }; EstimateB := { [goal, estimate] };
        FrontierA := { [estimate, start] }; FrontierB := { [estimate, goal ] };
        while (FrontierA != {} && FrontierB != {}) {
             [guessA, stateA] := first(FrontierA); stateADist := DistanceA[stateA];
             [guessB, stateB] := first(FrontierB); stateBDist := DistanceB[stateB];
             if (guessA <= guessB) {
10
                 FrontierA -= { [guessA, stateA] };
11
                 for (neighbour in nextStates(stateA)) {
12
                     oldEstimate := EstimateA[neighbour];
                     newEstimate := stateADist + 1 + heuristic(neighbour, goal);
14
                     if (oldEstimate == om || newEstimate < oldEstimate) {</pre>
                         ParentA[neighbour]
                                               := stateA;
16
                         DistanceA[neighbour] := stateADist + 1;
                         EstimateA[neighbour] := newEstimate;
18
                                               += { [newEstimate, neighbour] };
                         FrontierA
                         if (oldEstimate != om) {
20
                             FrontierA -= { [oldEstimate, neighbour] };
                         }
22
                     }
                     if (DistanceB[neighbour] != om) {
24
                         return combinePaths(neighbour, ParentA, ParentB);
                     }
26
                 }
27
            } else {
                 FrontierB -= { [guessB, stateB] };
29
                 for (neighbour in nextStates(stateB)) {
                     oldEstimate := EstimateB[neighbour];
31
                     newEstimate := stateBDist + 1 + heuristic(start, neighbour);
                     if (oldEstimate == om || newEstimate < oldEstimate) {</pre>
33
                         ParentB[neighbour]
                                               := stateB;
                         DistanceB[neighbour] := stateBDist + 1;
35
                         EstimateB[neighbour] := newEstimate;
                         FrontierB
                                               += { [newEstimate, neighbour] };
37
                         if (oldEstimate != om) {
                             FrontierB -= { [oldEstimate, neighbour] };
39
                         }
                     }
41
                     if (DistanceA[neighbour] != om) {
42
                         return combinePaths(neighbour, ParentA, ParentB);
43
                     }
44
                 }
45
            }
46
        }
47
    };
48
```

Figure 2.22: Bidirectional A^* search.

Figure 2.23: A start state and a goal state for the 4×4 sliding puzzle.

```
idaStarSearch := procedure(start, goal, nextStates, heuristic) {
        limit := heuristic(start, goal);
2
        while (true) {
3
             Path := search([start], goal, nextStates, limit, heuristic);
             if (isList(Path)) {
                 return Path;
             limit := Path;
         }
9
    };
10
    search := procedure(Path, goal, nextStates, limit, heuristic) {
11
                  := Path[-1];
         state
12
        distance := #Path - 1;
13
                  := distance + heuristic(state, goal);
14
        if (total > limit) {
             return total;
16
         }
17
         if (state == goal) {
18
             return Path;
         }
20
        smallest := mathConst("Infinity");
21
         for (ns in nextStates(state) | !(ns in Path) ) {
22
             result := search(Path+[ns], goal, nextStates, limit, heuristic);
             if (isList(result)) {
24
                 return result;
26
             smallest := min([result, smallest]);
28
        return smallest;
    };
30
```

Figure 2.24: Iterative deepening A* search.

- (b) goal is the goal state.
- (c) nextStates is a function that takes a state s as a parameter and computes the set of all those states that can be reached from s in a single step.
- (d) heuristic is a function that takes two parameters s_1 and s_2 , where s_1 and s_2 are states. The

expression

 $heuristic(s_1, s_2)$

computes an estimate of the distance between s_1 and s_2 . It is assumed that this estimate is optimistic, i.e. heuristic has to be admissible.

- 2. The function idaStarSearch initializes limit to be an estimate of the distance between start and goal. As we assume that the function heuristic is optimistic, we know that there is no path from start to goal that is shorter than limit. Hence, we start our search by assuming that we might find a path that has a length of limit.
- 3. Next, we start a while loop. In this loop, we call the function search to compute a path from start to goal that has a length of at most limit. The function search uses A* search and is described in detail below. When the function search returns, there are two cases:
 - (a) search does find a path. In this case, this path is returned in the variable Path and the value of this variable is a list. This list is returned as the solution to the search problem.
 - (b) search is not able to find a path within the given limit. In this case, search will not return a list representing a path but instead it will return a number. This number will specify the minimal length that any path leading from start to goal needs to have. This number is then used to update the limit which is used for the next invocation of search.

Note that the fact that search is able to compute this new limit is a significant enhancement over iterative deepening. While we had to test every single possible length in iterative deepening, now the fact that we can intelligently update the limit results in a considerable saving of computation time.

We proceed to discuss the function search. This function takes 5 parameters, which we describe next.

- 1. Path is a list of states. This list starts with the state start. If state is the last state on this list, then Path represents a path leading from start to state.
- 2. goal is another state. The purpose of the recursive invocations of search is to find a path from state to goal, where state is the last element of the list Path.
- 3. nextStates is a function that takes a state s as input and computes the set of states that are reachable from s in one step.
- 4. limit is the upper bound for the path from start to goal. If the procedure search is not able to find a path from start to goal that has a length of at most limit, then the search is unsuccessful. In that case, instead of a path the function search returns a new estimate for the distance between start and goal. Of course, this new estimate will be bigger than limit.
- 5. heuristic is a function taking to states as arguments. The invocation heuristic (s_1, s_2) computes an estimate of the distance between the states s_1 and s_2 . It is assumed that this estimate is optimistic, i.e. the value returned by heuristic (s_1, s_2) is less or equal than the true distance between s_1 and s_2 .

We proceed to describe the implementation of the function search.

- 1. The variable state is assigned the last element of Path. Hence, Path connects start and state.
- 2. The length of the path connecting start and state is stored in distance.
- 3. Since heuristic is assumed to be optimistic, if we want to extend Path, then the best we can hope for is to find a path from start to goal that has a length of

distance + heuristic(state, goal).

This length is computed and saved in the variable total.

- 4. If total is bigger than limit, it is not possible to find a path from start to goal passing through state that has a length of at most limit. Hence, in this case we return total to communicate that the limit needs to be increased to have at least a value of total.
- 5. If we are lucky and state is equal to goal, the search is successful and Path is returned.
- 6. Otherwise, we iterate over all nodes ns reachable from state that have not already been visited by Path. If ns is a node of this kind, we extend the Path so that this node is visited next. The resulting path has the form

Next, we recursively start a new search starting from the node ns. If this search is successful, the resulting path is returned. Otherwise, the search returns the minimum distance that is needed to reach the state goal from the state start on a path via the state ns. If this distance is smaller than the distance smallest that is returned from visiting previous neighbouring nodes, the variable smallest variable is updated accordingly. This way, if the for loop is not able to return a path leading to goal, the variable smallest contains a lower bound for the distance that is needed to reach goal by a path that extends the given Path.

Note: At this point, a natural question is to ask whether the for loop should collect all paths leading to goal and then only return the path that is shortest. However, this is not necessary: Every time the function search is invoked it is already guaranteed that there is no path that is shorter than the parameter limit. Therefore, if search is able to find a path that has a length of at most limit, this path is known to be optimal.

Iterative deepening A^* is a complete search algorithm that does find an optimal path, provided that the employed heuristic is optimistic. On the instance of the 3×3 sliding puzzle shown on Figure 2.3 on page 11, this algorithm takes about 1.7 seconds to solve the puzzle. For the 4×4 sliding puzzle, the algorithm takes about 154 seconds. Although this is more than the time needed by bidirectional A^* search, the good news is that the IDA* algorithm does not need much memory since basically only the path discovered so far is stored in memory. Hence, IDA* is a viable alternative if the available memory is not sufficient to support the bidirectional A^* algorithm.

2.10 The A*-IDA* Search Algorithm

So far, from all of the search algorithms we have tried, the bidirectional A^* search has performed best. However, bidirectional A^* search is only feasible if sufficient memory is available. While IDA^* requires more time, its memory consumption is much lower than the memory consumption of bidirectional A^* . Hence, it is natural to try to combine the A^* algorithm and the IDA^* algorithm. Concretely, the idea is to run an A^* search from the start node until memory is more or less exhausted. Then, we start IDA^* from the goal node and search until we find any of the nodes discovered by the A^* search that had been started from the start node.

An implementation of the A*-IDA* algorithm is shown in Figure 2.25 on page 39 and Figure 2.26 on page 41. We begin with a discussion of the procedure aStarIdaStarSearch.

- 1. The procedure takes 5 arguments.
 - (a) start and goal are nodes. The procedure tries to find a path connecting start and goal.
 - (b) nextStates is a function that takes a state s as input and computes the set of states that are reachable from s in one step.
 - (c) heuristic computes an *estimate* of the distance between s_1 and s_2 . It is assumed that this estimate is optimistic, i.e. the value returned by heuristic(s_1, s_2) is less or equal than the true distance between s_1 and s_2 .
 - (d) **size** is the maximal number of states that the A* search is allowed to explore before the algorithm switches over to IDA* search.

```
aStarIdaStarSearch := procedure(start, goal, nextStates, heuristic, size) {
        Parent
                  := {};
                                        // dictionary: state |-> predecessor(state)
        Distance := { [start, 0] };
                                        // dictionary: state |-> distance(start,state)
                  := heuristic(start, goal);
        Estimate := { [start, est] }; // dictionary: state |-> distance(start, state, goal)
        Frontier := { [est, start] }; // priority queue
        while (#Distance < size && Frontier != {}) {
             if (#Distance % 1000 == 0) {
                 print("#Distance = $#Distance$");
            }
10
             [_, state] := fromB(Frontier);
11
             if (state == goal) {
12
                 print("Number of states touched: $#Distance$");
                 return pathTo(state, Parent);
14
            }
            stateDist := Distance[state];
16
            for (neighbour in nextStates(state)) {
                 oldEstimate := Estimate[neighbour];
18
                 newEstimate := stateDist + 1 + heuristic(neighbour, goal);
                 if (oldEstimate == om || newEstimate < oldEstimate) {</pre>
20
                     Parent[neighbour]
                                          := state;
                     Distance[neighbour] := stateDist + 1;
22
                     Estimate[neighbour] := newEstimate;
                     Frontier
                                          += { [newEstimate, neighbour] };
24
                     if (oldEstimate != om) {
25
                         Frontier -= { [oldEstimate, neighbour] };
26
                     }
27
                 }
28
            }
29
        }
30
        Path := deepeningSearch(goal, start, nextStates, heuristic, Distance);
31
        return pathTo(Path[-1], Parent) + reverse(Path)[2..];
32
    };
33
```

Figure 2.25: The A*-IDA* search algorithm, part I.

- 2. The basic idea behind the A*-IDA* algorithm is to first use A* search to find a path from start to goal. If this is successfully done without visiting more than size nodes, the algorithm terminates and returns the path that has been found. Otherwise, the algorithm switches over to an IDA* search that starts from goal and tries to connect goal to any of the nodes that have been encountered during the A* search. To this end, the procedure aStarIdaStarSearch maintains the following variables.
 - (a) Parent is a dictionary associating a parent state with those states that have already been encountered during the search, i.e. we have

```
Parent[s_2] = s_1 \Rightarrow s_2 \in nextStates(s_1).
```

Once the goal has been found, this dictionary is used to compute the path from start to goal.

- (b) Distance is a dictionary that remembers for every state s that is encountered during the A* search the length of the shortest path from start to s.
- (c) Estimate is a dictionary. For every state s encountered in the A* search, Estimate[s] is an estimate of the length that a path from start to goal would have if it would pass through the state s. This estimate is calculated using the equation

Estimate[s] = Distance[s] + heuristic(s, goal).

Instead of recalculating this sum every time we need it, we store it in the dictionary Estimate.

(d) Frontier is a priority queue. The elements of Frontier are pairs of the form

```
[d, s] such that d = \texttt{Estimate}[s],
```

i.e. if $[d, s] \in Frontier$, then the state s has been encountered in the A* search and it is estimated that a path leading from start to goal and passing through s would have a length of d.

- 3. The A* search runs exactly as discussed previously. The only difference is that the while loop is terminated once the dictionary Distance has more than size entries. If we are lucky, the A* search is already able to find the goal and the algorithm terminates.
- 4. Otherwise, the procedure deepeningSearch is called. This procedure starts an iterative deepening A* search from the node goal. This search terminates as soon as a state is found that has already been encountered during the A* search. The set of these nodes is given to the procedure deepeningSearch via the parameter Distance. The procedure deepeningSearch returns a pair. The first component of this pair is the state s. This is the state in Distance that has been reached by the IDA* search. The second component is the path P that leads from the node s to the node goal but that does not include the node s. In order to compute a path from start to goal, we still have to compute a path from start to s. This path is then combined with the path P and the resulting path is returned.

Iterative deepening A*-IDA* is a complete search algorithm. On the instance of the 3×3 sliding puzzle shown on Figure 2.3 on page 11, this algorithm takes about 0.8 seconds to solve the puzzle. For the 4×4 sliding puzzle, if the algorithm is allowed to visit at most 3000 states, the algorithm takes less than 6 seconds.

Exercise 4: Assume that you have 3 water buckets: The first bucket can hold 12 litres of water, the second bucket can hold 8 litres, while the last bucket can hold 3 litres. There are three types of action:

- 1. A bucket can be completely filled.
- 2. A bucket can be completely emptied.
- 3. The content of one bucket can be poured into another bucket. Then, there are two cases.
 - (a) If the second bucket has enough free space for all the water in the first bucket, then the first bucket is emptied and all the water from the first bucket is poured into the second bucket.
 - (b) However, if there is not enough space in the second bucket, then the second bucket is filled completely, while the water that does not fit into the second bucket remains in the first bucket.

Your goal is to measure out exactly one litre. Write a program that computes a plan to achieve this goal. \diamond

Exercise 5: The founder of Taoism, the Chinese philosopher Laozi once said:

"A journey of a thousand miles begins but with a single step".

This proverb is the foundation of taoistic search. The idea is, instead of trying to reach the goal directly, we rather define some intermediate states which are easier to reach than the goal state and that are nearer to the goal than the start state. To make this idea more precise, consider the following instance of the 15-puzzle, where the states Start and Goal are given as follows:

Start :=	+++ 15 14 8 12	Goal :=	1 2 3 4
	10 11 13 9		5 6 7 8
	6 2 5 1		9 10 11 12
	3 4 7		13 14 15

```
deepeningSearch := procedure(goal, start, nextStates, heuristic, Distance) {
        limit := 0;
        while (true) {
            print("limit = $limit$");
            Path := search([goal], start, nextStates, limit, heuristic, Distance);
             if (isList(Path)) {
                 return Path;
             }
            limit := Path;
        }
10
    };
11
    search := procedure(Path, start, nextStates, limit, heuristic, Distance) {
12
        state := Path[-1];
13
        total := #Path - 1 + heuristic(state, start);
14
        if (total > limit) {
             return total;
16
        }
        if (Distance[state] != om) {
18
            return Path;
20
        smallest := mathConst("Infinity");
        for (ns in nextStates(state) | !(ns in Path) ) {
22
             result := search(Path+[ns], start, nextStates, limit, heuristic, Distance);
             if (isList(result)) {
                 return result;
25
             }
26
             smallest := min([smallest, result]);
27
        }
28
        return smallest;
29
    };
```

Figure 2.26: The A*-IDA* search algorithm, part II.

In order to solve the puzzle, we could try to first move the tiles numbered with 1 and 2 into the upper left corner. The resulting state would have the following form:

Here, the character "*" is used as a wildcard character, i.e. we do not care about the actual character in the state, for we only want to ensure that the first two tiles are positioned correctly. Once we have reached a state specified by the pattern given above, we could the proceed to reach a state that is described by the following pattern:

```
+---+--+
| 1 | 2 | * | * |
```

+-		-+-		+-		-+-		+
1	5		6	1	*	1	*	1
+-		-+-		+-		-+-		+
1	*		*	1	*	1	*	1
+-		-+-		+-		-+-		+
1	*		*	1	*	1	*	١
+-		-+-		- 4 -		-+-		-+

This way, slowly but surely we will reach the goal. I have prepared a framework for taoistic search. The file https://github.com/karlstroetmann/Artificial-Intelligence/blob/master/SetlX/sliding-puzzle-frame.stlx

contains a framework for the sliding puzzle where some functions are left unimplemented. The file

https://github.com/karlstroetmann/Artificial-Intelligence/blob/master/SetlX/a-star-lao-tzu.stlx

is also required. It contains an adapted form of A^* search. More Details will be given in the lecture. Your task is to implement the missing functions in the file sliding-puzzle-frame.stlx. \diamond

Chapter 3

Constraint Satisfaction

In this chapter we discuss algorithms for solving constraint satisfaction problems. These problems can be seen as a refinement of the search problems discussed in the previous chapter: In a search problem, the states are abstract and therefore have no structure that can be exploited to guide the search. In a constraint satisfaction problem, the states have a structure that can be exploited to guide the search. This chapter is structured as follows:

- 1. The first section defines the notion of a constraint satisfaction problem. In order to illustrate this concept, two examples of constraint satisfaction problems are presented. After that, we discuss applications of constraint satisfaction problems.
- 2. The simplest algorithm to solve a constraint satisfaction problem is via brute force search. The idea behind brute force search is to test all possible variable assignments.
- 3. In most cases, the search space is too big to be enumerated completely. Backtracking search improves on brute force search by mixing the generation of assignments with the testing of the constraints. In many cases, this approach can drastically improve the performance of the search algorithm.
- 4. Backtracking search can be refined by using constraint propagation and by using the most restricted variable heuristic.
- 5. Furthermore, checking the consistency of the values assigned to different variables can reduce the size of the search space considerably.
- 6. Finally, local search is a completely different approach to solve constraint satisfaction problems.

3.1 Formal Definition of Constraint Satisfaction Problems

Formally, we define a constraint satisfaction problem as a triple

 $\mathcal{P} := \langle \mathtt{Vars}, \mathtt{Values}, \mathtt{Constraints} \rangle$

where

- 1. Vars is a set of strings which serve as variables,
- 2. Values is a set of values that can be assigned to the variables in Vars.
- 3. Constraints is a set of formulæ from first order logic. Each of these formulæ is called a constraint of \mathcal{P} . In order to be able to interpret these formulæ, we need a first order structure $\mathcal{S} = \langle \mathcal{U}, \mathcal{J} \rangle$. Here, \mathcal{U} is the universe of \mathcal{S} and we will assume that this universe is identical to the set Values, that is we have

 $\mathcal{U} = \mathtt{Values}.$

The second component \mathcal{J} defines the interpretations of the function symbols and predicate symbols that are used in the formulæ defining the constraints. In what follows we assume that these interpretations are understood from the context of the constraint satisfaction problem \mathcal{P} .

In the following, the abbreviation CSP is short for constraint satisfaction problem. Given a CSP

 $\mathcal{P} = \langle \mathtt{Vars}, \mathtt{Values}, \mathtt{Constraints} \rangle,$

a variable assignment for \mathcal{P} is a function

 $A: \mathtt{Vars} \to \mathtt{Values}.$

A variable assignment A is a solution of the Csp \mathcal{P} if, given the assignment A, all constraints of \mathcal{P} are satisfied. Finally, a partial variable assignment B for \mathcal{P} is a function

 $B: \mathtt{Vars} \to \mathtt{Values} \cup \{\Omega\}$ where Ω denotes the undefined value.

Hence, a partial variable assignment does not assign values to all variables. Instead, it assigns values only to a subset of the set Vars. The domain dom(B) of a partial variable assignment B is the set of those variables that are assigned a value different from Ω , i.e. we define

$$dom(B) := \{ x \in Vars \mid B(x) \neq \Omega \}.$$

We proceed to illustrate the definitions given so far with two examples.

Figure 3.1: A map of Australia.

3.1.1 Example: Map Colouring

In map colouring a map showing different state borders is given and the task is to colour the different states such that no two states that have a common border share the same colour. Figure 3.1 on page 44 shows a map of Australia. There are seven different states in Australia:

- 1. Western Australia, abbreviated as WA,
- 2. Northern Territory, abbreviated as NT,
- 3. South Australia, abbreviated as SA,
- 4. Queensland, abbreviated as Q,
- 5. New South Wales, abbreviated as NSW,
- 6. Victoria, abbreviated as V, and
- 7. Tasmania, abbreviated as T.

Figure 3.1 would certainly look better if different states had been coloured with different colours. For the purpose of this example let us assume that we have only three colours available. The question then is whether it is possible to colour the different states in a way that no two neighbouring states share the same colour. This problem can be formalized as a constraint satisfaction problem. To this end we define:

- 1. $Vars := \{WA, NT, SA, Q, NSW, V, T\},$
- 2. Values := {red, green, blue},
- 3. Constraints :=

```
\{WA \neq NT, WA \neq SA, NT \neq SA, NT \neq Q, SA \neq Q, SA \neq NSW, SA \neq V, Q \neq NSW, NSW \neq V, V \neq T\}
```

Then $\mathcal{P} := \langle \mathtt{Vars}, \mathtt{Values}, \mathtt{Constraints} \rangle$ is a constraint satisfaction problem. If we define the assignment A such that

- 1. A(WA) = blue,
- 2. A(NT) = red,
- 3. A(SA) = green,
- 4. A(Q) = blue,
- 5. A(NSW) = red,
- 6. A(V) = blue,
- 7. A(T) = red,

then you can check that the assignment A is indeed a solution to the constraint satisfaction problem \mathcal{P} .

3.1.2 Example: The Eight Queens Puzzle

The eight queens problem asks to put 8 queens onto a chessboard such that no queen can attack another queen. In chess, a queen can attack all pieces that are either in the same row, the same column, or the same diagonal. If we want to put 8 queens on a chessboard such that no two queens can attack each other, we have to put exactly one queen in every row: If we would put more than one queen in a row, the queens in that row can attack each other. If we would leave a row empty, then, given that the other rows contain at most one queen, there would be less than 8 queens on the board. Therefore, in order to model the eight queens problem as a constraint satisfaction problem, we will use the following set of variables:

$$Vars := \{V_1, V_2, V_3, V_4, V_5, V_6, V_7, V_8\},\$$

where for $i \in \{1, \dots, 8\}$ the variable V_i specifies the column of the queen that is placed in row i. As the columns run from one to eight, we define the set Values as

$$\mathtt{Values} := \{1, 2, 3, 4, 5, 6, 7, 8\}.$$

Next, let us define the constraints. There are three different types of constraints.

1. We have constraints that express that no two queens positioned in different rows share the same column. To capture these constraints, we define

$$\mathtt{SameRow} := \big\{ \mathtt{V}_i \neq \mathtt{V}_j \; \big| \; i \in \{1, \cdots, 8\} \land j \in \{1, \cdots, 8\} \land j < i \big\}.$$

Here the condition i < j ensures that, for example, we have the constraint $V_2 \neq V_1$ but not the constraint $V_1 \neq V_2$, as the latter constraint would be redundant if the former constraint has already been established.

2. We have constraints that express that no two queens positioned in different rows share the same rising diagonal. To capture these constraints, we define

SameRising :=
$$\{i + V_i \neq j + V_j \mid i \in \{1, \dots, 8\} \land j \in \{1, \dots, 8\} \land j < i\}.$$

A more detailed explanation of these and the following constraints is given in my lecture notes on logic.

3. We have constraints that express that no two queens positioned in different rows share the same falling diagonal. To capture these constraints, we define

$$\texttt{SameFalling} := \big\{ i - \mathtt{V}_i \neq j - \mathtt{V}_j \; \big| \; i \in \{1, \cdots, 8\} \land j \in \{1, \cdots, 8\} \land j < i \big\}.$$

Then, the set of constraints is defined as

 ${\tt Constraints} := {\tt SameRow} \cup {\tt SameRising} \cup {\tt SameFalling}$

and the eight queens problem can be stated as the constraint satisfaction problem

$$\mathcal{P} := \langle \mathtt{Vars}, \mathtt{Values}, \mathtt{Constraints} \rangle.$$

If we define the assignment A such that

$$A(V_1) := 4, \ A(V_2) := 8, \ A(V_3) := 1, \ A(V_4) := 2, \ A(V_5) := 6, \ A(V_6) := 2, \ A(V_7) := 7, \ A(V_8) := 5,$$

then it is easy to see that this assignment is a solution of the eight queens problem. This solution is shown in Figure 3.2 on page 47.

Later, when we implement procedures to solve CsPs, we will represent variable assignments and partial variable assignments as binary relations. For example, A would then be represented as the relation

$$A = \{ \langle \mathbf{V}_1, 4 \rangle, \langle \mathbf{V}_2, 8 \rangle, \langle \mathbf{V}_3, 1 \rangle, \langle \mathbf{V}_4, 2 \rangle, \langle \mathbf{V}_5, 6 \rangle, \langle \mathbf{V}_6, 2 \rangle, \langle \mathbf{V}_7, 7 \rangle, \langle \mathbf{V}_8, 5 \rangle \}.$$

If we define

$$B := \{ \langle V_1, 4 \rangle, \langle V_2, 8 \rangle, \langle V_3, 1 \rangle \},\$$

then B is a partial assignment and $dom(B) = \{V_1, V_2, V_3\}$. This partial assignment is shown in Figure 3.3 on page 47.

Figure 3.4 on page 48 shows a SetlX program that can be used to create the eight queens puzzle as a Csp. The code shown in this figure is more general than the eight queens puzzle: Given a natural number n, the function call queensCSP(n) creates a constraint satisfaction problem \mathcal{P} that generalizes the eight queens problem to the problem of putting n queens on a board of size n times n.

The beauty of constraint programming is the fact that we will be able to develop a so called constraint solver that takes as input a CSP like the one produced by the program shown in Figure 3.4 and that is then capable of computing a solution. In effect, this enables us to use declarative programming: Instead of specifying an algorithm that solves a problem we confine ourselves to specifying the problem precisely and then let a general purpose problem solver do the job of finding the solution. This approach of declarative programming was one of the main ideas incorporated in the programming language Prolog. While Prolog could not live up to the promisses made in declarative programming as a viable general purpose programming method, constraint programming has proven to be very useful in a number of domains.

Figure 3.2: A solution of the eight queens problem.

Figure 3.3: The partial assignment $\{\langle V_1, 4 \rangle, \langle V_2, 8 \rangle, \langle V_3, 1 \rangle\}$.

Exercise 6: Formulate the n queens puzzle as a search problem. Represent states as lists of the form

$$[Q_1, \cdots, Q_k]$$
 where $k \in \{0, \cdots, n\}$ and $Q_i \in \{1, \cdots, n\}$.

Here, Q_i specifies the column of the queen positioned in the *i*-th row. If we assume that every row has at most one queen, the set of all states is then defined as

```
createCSP := procedure(n) {
    Variables := { "V$i$" : i in {1..n} };

Values := { 1 .. n };

Constraints := {};

for (i in [2..n], j in [1..i-1]) {
    Constraints += { "V$i$ != V$j$" };

Constraints += { "$i$ + V$i$ != $j$ + V$j$" };

Constraints += { "$i$ - V$i$ != $j$ - V$j$" };

return [Variables, Values, Constraints];
};
```

Figure 3.4: SetlX code to create the CSP representing the eight-queens puzzle.

```
Q := \{ [Q_1, \cdots, Q_k] \mid k \in \{0, \cdots, n\} \land \forall i \in \{1, \cdots, n\} : Q_i \in \{1, \cdots, n\} \land \forall i, j \in \{1, \cdots, k\} : (i \neq j \rightarrow Q_i \neq Q_j) \}.
```

- (a) Derive a mathematical expression that returns the number of states for a given value of n. What is the number of states if n = 8?
- (b) Which of the search algorithms presented in the previous chapter could be used to solve the 8 queens puzzle? Which of these algorithms will work best?
- (c) Solve the 8 queens puzzle using an appropriate search algorithm.

Note that we do not know the goal of this search problem. Instead, you have to adapt the search algorithm so that it takes a function isGoal instead of a state goal. For a given state s, the function isGoal(s) returns true iff s is a solution of the n queens puzzle.

3.1.3 Applications

Besides the toy problems discussed so far, there are a number of industrial applications of constraint satisfaction problems. The most important application seem to be variants of scheduling problems. A simple example of a scheduling problem is the problem of generating a time table for a school. A school has various teachers, each of which can teach some subjects but not others. Furthermore, there are a number of classes that must be taught in different subjects. The problem is then to assign teachers to classes and to create a time table. In practice, crew scheduling is an important problem. For example, airlines have to solve a crew scheduling problem in order to efficiently assign crews to aircrafts.

3.2 Brute Force Search

The most straightforward algorithm to solve a CSP is to test all possible combinations of assigning values to variables. If there are n different values that can be assigned to k variables, this amounts to checking n^k different assignments. For example, for the eight queens problem there are 8 variables and 8 possible values leading to

$$8^8 = 2^{24} = 16,777,216$$

different assignments that need to be tested. Given the clock speed of modern computers, checking a million assignments per second is plausible. Hence, this approach is be able to solve the eight queens problem in less than 5 minutes. The approach of testing all possible combinations is known as brute force search. An implementation of brute force search is shown in Figure 3.5 on page 49.

The procedure solve gets a constraint satisfaction problem CSP as its input. This CSP is given a triple of the form

```
CSP = [Variables, Values, Constraints].
```

```
solve := procedure(CSP) {
        return brute_force_search({}, CSP);
    };
3
    brute_force_search := procedure(Assignment, CSP) {
        [Variables, Values, Constraints] := CSP;
        if (#Assignment == #Variables) { // all variables have been assigned
            if (check_all_constraints(Assignment, Constraints)) {
                 return Assignment;
            }
            return;
10
        }
11
        var := rnd(Variables - domain(Assignment));
12
        for (value in Values) {
13
            NewAss := Assignment + { [var, value] };
14
            result := brute_force_search(NewAss, CSP);
            if (result != om) {
16
                return result;
17
            }
18
        }
19
    };
20
```

Figure 3.5: Solving a CSP via brute force search.

The sole purpose of search is to call the function brute_force_search. The implementation of this function is recursive and the function takes two arguments.

- 1. Assignment is a partial assignment of values to variables. Initially, this assignment will be empty. Every recursive call of brute_force_search adds the assignment of one variable to the given assignment.
- 2. CSP is a triple of the form

```
CSP = [Variables, Values, Constraints].
```

Here, Constraints is a set of first order logic formulæ that are given as strings. These strings have to follow the syntax of SetlX formulæ so that they can be evaluated using the SetlX function eval.

The implementation of brute_force_search works as follows:

1. If all variables have been assigned a value, the dictionary Assignment will have the same number of entries as the set Variables has elements. Hence, in that case Assignment is a complete assignment of all variables and we now have to test whether all constraints are satisfied. This is done using the auxiliary procedure check_all_constraints that is shown in Figure 3.6 on page 50. If the current Assignment does indeed satisfy all constraints, it is a solution to the given CSP and is therefore returned.

If, instead, some constraint is violated, then brute_force_search returns the undefined value Ω .

2. If the assignment is not yet complete, we randomly pick a variable var from the set of those Variables that still have no value assigned. Then, for every possible value in the set Values, we augment the current partial Assignment to the new assignment

```
Assignment + { [var, value] }.
```

Next, the algorithm recursively tries to find a solution for this new partial assignment. If this recursive call succeeds, the solution it has computed is returned. Otherwise, another value is tried.

¹ Experimental evidence suggests that picking a random variable performs much better than sorting the variables and always picking the first unassigned variable.

```
check_all_constraints := procedure(Assignment, Constraints) {
21
        return forall(f in Constraints | eval_constraint(Assignment, f));
22
    };
23
    eval_constraint := procedure(Assignment, Formula) {
24
        for ([var, value] in Assignment) {
25
             execute("$var$ := $value$;");
26
27
        return eval(Formula);
28
    };
29
```

Figure 3.6: Auxiliary procedures for brute force search.

The function check_all_constraints takes a complete variable Assignment as its first input. The second input is the set of Constraints. For all formulæ f from the set Constraints, it checks whether f is satisfied provided all variables are assigned as specified in Assignment. This check is done using the auxiliary function eval_constraint.

The procedure eval_constraint takes an Assignment and a Formula that is supposed to be a constraint. Its purpose is to evaluate Formula using the Assignment. In order for this to be possible we have to assume that

```
var(Formula) \subseteq dom(Assignment),
```

i.e. all variables occurring in Formula have a value assigned in Assignment.

The Formula is evaluated by first assigning the variables assigned in Assignment to their corresponding values. Once these assignments have been executed in the for-loop, the Formula can be evaluated using the procedure eval, which is one of the predefined procedures in Setla.

When I tested this brute force search with the eight queens problem, it took about 300 seconds to compute a solution. In contrast, the seven queens problem took roughly 14 seconds. As we have

$$\frac{8^8}{7^7} \approx 20 \qquad \frac{300}{14} \approx 21$$

this shows that the computation time does indeed grow with the number of possible assignments that have to be checked. However, the correspondence is not exact. The reason is that we stop our search as soon as a solution is found. If we are lucky and the given CsP is easy to solve, this might happen when we have checked only a small portion of the set of all possible assignments.

3.3 Backtracking Search

Due to the combinatorial explosion of the search space, brute force search is only viable when we deal with small problems. One approach to solve a CSP that is both simple and at least more efficient than brute force search is backtracking. Figure 3.7 on page 51 shows a simple CSP solver that employs backtracking. We discuss this program next. The procedure solve takes a constraint satisfaction problem CSP as input and tries to find a solution.

- 1. First, the CSP is split into its components.
- 2. Next, for every constraint f of the given CSP, we compute the set of variables that are used in f. This is done using the procedure collectVars that is shown in Figure 3.8 on page 52. These variables are then stored together with the constraint f and the correspondingly modified data structure is stored in CSP and is called an augmented CSP.

The reason to compute and store these variables is efficiency: When we later check whether a constraint f is satisfied for a partial variable assignment Assignment where Assignment is stored as a dictionary,

```
solve := procedure(CSP) {
        [Vars, Vals, Constrs] := CSP;
2
        CSP := [Vars, Vals, { [f, collectVars(f)] : f in Constrs }];
3
        check {
            return bt_search({}, CSP);
        }
6
    };
    bt_search := procedure(Assignment, CSP) {
        [Variables, Values, Constraints] := CSP;
        if (#Assignment == #Variables) {
10
            return Assignment;
11
        }
12
        var := rnd(Variables - domain(Assignment));
        for (value in Values) {
14
             check {
                 if (is_consistent(var, value, Assignment, Constraints)) {
16
                     return bt_search(Assignment + { [var, value] }, CSP);
                 }
18
             }
        }
20
        backtrack;
    };
22
```

Figure 3.7: A backtracking CSP solver.

we only need to check the constraint f iff all of the variables occurring in f are elements of the domain of Assignment. It would be wasteful to compute these variables every time.

3. Next, we call the procedure bt_search to compute a solution of CSP. This procedure is enclosed in a check-block. Conceptually, this check-block is the same as if we had enclosed the call to bt_search in a try-catch-block as shown below:

```
try {
    return bt_search({}, csp);
} catch(e) {}
```

The point is that the procedure bt_search either returns a solution or, if it is not able to find a solution, it throws a special kind of exception, a so called backtrack exception. The check-block ensures that this exception is silently discarded. It is just a syntactical convenience that is more concise than using try and catch.

Next, we discuss the implementation of the procedure bt_search. This procedure receives a partial assignment Assignment as input together with an augmented CSP. This partial assignment is consistent with CSP: If f is a constraint of CSP such that all the variables occurring in f are members of dom(Assignment), then evaluating f using Assignment yields true. Initially, this partial assignment is empty and hence trivially consistent. The idea is to extend this partial assignment until it is a complete assignment that satisfies all constraints of the given CSP.

- 1. First, the augmented CSP is split into its components.
- 2. Next, if Assignment is already a complete variable assignment, i.e. if the dictionary Assignment has as many elements as there are variables, then it must be a solution of the CSP and, therefore, it is returned.

```
collectVars := procedure(f) {
        return varsTerm(parseTerm(f));
2
    };
3
    varsTerm := procedure(f) {
        match (f) {
5
            case v | isVariable(v): return { varName(v) };
            case n | isNumber(n):
                                     return {};
            case lhs + rhs:
                                      return varsTerm(lhs) + varsTerm(rhs);
            case lhs - rhs:
                                     return varsTerm(lhs) + varsTerm(rhs);
                                      return varsTerm(lhs) + varsTerm(rhs);
            case lhs * rhs:
10
            case lhs / rhs:
                                      return varsTerm(lhs) + varsTerm(rhs);
11
            case lhs \ rhs:
                                      return varsTerm(lhs) + varsTerm(rhs);
12
            case lhs % rhs:
                                      return varsTerm(lhs) + varsTerm(rhs);
            case lhs == rhs:
                                      return varsTerm(lhs) + varsTerm(rhs);
14
                                      return varsTerm(lhs) + varsTerm(rhs);
            case lhs != rhs:
            case !formula:
                                      return varsTerm(formula);
16
                                      return varsTerm(lhs) + varsTerm(rhs);
            case lhs && rhs:
            case lhs || rhs:
                                      return varsTerm(lhs) + varsTerm(rhs);
18
                                     return varsTerm(lhs) + varsTerm(rhs);
            case lhs => rhs:
                                      return varsTerm(lhs) + varsTerm(rhs);
            case lhs <==> rhs:
20
            case lhs <!=> rhs:
                                      return varsTerm(lhs) + varsTerm(rhs);
21
            default:
                                      return +/ [ varsTerm(t) : t in args(f) ];
22
        }
    };
24
```

Figure 3.8: The procedure collectVars.

- 3. Otherwise, we have to extend the partial Assignment. In order to do so, we first have to select a variable var that has not yet been assigned a value in Assignment so far.
- 4. Next, it is tried to assign a value to the selected variable var. After assigning a value to var, we immediately check whether this assignment would be consistent with the constraints using the procedure is_consistent. If the partial Assignment turns out to be consistent, the partial Assignment is extended to the new partial assignment

```
Assignment + { [var, value] }.
```

Then, the procedure bt_search is called recursively to complete this new partial assignment. If this is successful, the resulting assignment is a solution that is returned. Otherwise, the recursive call of bt_search will instead raise an exception. This exception is muted by the check-block that surrounds the call to bt_search. In that case, the for-loop generates a new possible value that can be assigned to the variable var. If all possible values have been tried and none was successful, the for-loop ends and the backtrack-statement is executed. Effectively, this statement raises an exception that is caught by one of the check-blocks that are above the backtrack-statement in the call stack.

We still need to discuss the implementation of the auxiliary procedure is_consistent shown in 3.9. This procedure takes a variable var, a value, a partial Assignment and a set of Constraints. It is assumed that Assignment is partially consistent with respect to the set Constraints, i.e. for every formula f occurring in Constraints such that

```
\mathtt{vars}(\mathtt{f})\subseteq \mathtt{dom}(\mathtt{Assignment})
```

holds, the formula f evaluates to true given the Assignment. The purpose of is_consistent is to check, whether the extended assignment

Figure 3.9: Auxiliary procedures for the CSP solver shown in Figure 3.7

```
\mathtt{NA} := \mathtt{Assignment} \cup \{\langle \mathtt{var}, \mathtt{value} \rangle\}
```

that assigns value to the variable var is still partially consistent with Constraints. To this end, the for-loop iterates over all Formula in Constraints. However, we only have to check those Formula that contain the variable var and, furthermore, have the property that

```
Vars(Formula) \subseteq dom(NA),
```

i.e. all variables occurring in Formula need to have a value assigned in NA. The reasoning is as follows:

- 1. If var does not occur in Formula, then adding var to Assignment cannot change the result of evaluating Formula and as Assignment is assumed to be partially consistent with respect to Formula, NA is also partially consistent with respect to Formula.
- 2. If dom(NA) ⊈ Vars(Formula), then Formula can not be evaluated anyway.

If we use backtracking, we can solve the 8 queens problem in less than a second.

3.4 Constraint Propagation

Once we choose a value for a variable, this choice influences the values that are still available for other variables. For example, suppose we place the queen in row 1 in the second column, then no other queen can be placed in that column. Additionally, the queen in row 2 can then not be placed in any of the first three columns. Abstractly, constraint propagation works as follows.

- 1. Before the search is started, we create a dictionary ValuesPerVar. For every variable x, the dictionary entry ValuesPerVar[x] is the set of values that can be assigned to x without violating a constraint.
- 2. As long as the problem is not solved, we choose a variable x. This variable is chosen using the most constrained variable heuristic: We choose a variable x such that the number of values in the set

```
ValuesPerVar[x]
```

is minimal. This is done because we have to find values for all variables. If the current partial variable assignment can not be completed into a solution, then we want to find out this fact as soon as possible. Therefore, we try to find the values for the most difficult variables first. A variable is more difficult to get right if it has only a few values that can be used to instantiate the variable.

- 3. Once we have picked a variable x, we next iterate over all values v in ValuesPerVar[x]. If assigning the value v to the variable x does not violate a constraint, we propagate the consequences of this assignment:
 - (a) For every binary constraint F that mentions only the variable x and one other variable y that has not yet been instantiated, we compute the set Legal of those values from ValuesPerVar[y] that can be assigned to v without violating the constraint F.
 - (b) Then, the set ValuesPerVar[y] is updated to the set Legal and we go back to step 2.

```
solve := procedure(CSP) {
        [Variables, Values, Constrs] := CSP;
2
        ValuesPerVar := { [v, Values] : v in Variables };
3
                      := { [f, collectVars(f)] : f in Constrs };
        UnaryConstrs := { [f, V] : [f, V] in Annotated | #V == 1 };
        OtherConstrs := { [f, V] : [f, V] in Annotated | #V >= 2 };
            for ([f, V] in UnaryConstrs) {
                                    := arb(V);
                ValuesPerVar[var] := solve_unary(f, var, ValuesPerVar[var]);
10
            }
11
            return bt_search({}, Variables, ValuesPerVar, OtherConstrs);
12
        }
13
    };
14
```

Figure 3.10: Constraint Propagation.

It turns out that elaborating this idea can enhance the performance of backtracking search considerably. Figure 3.10 on page 54 shows an implementation of constraint propagation. This implementation is also able to handle unary constraints, i.e. constraints that contain only a single variable.

In order to implement constraint propagation, it is necessary to administer the values that can be used to instantiate the different variables separately, i.e. for every variable v we need to know which values are admissible for v. To this end, we need a dictionary that contains the set of possible values for every variable v. Initially, this dictionary assigns the set Values to every variable. Next, we take care of the unary constraints and shrink these sets accordingly. Then we solve the binary constraints and shrink these sets even more once we assign values to variables.

- 1. The procedure solve receives a CSP. This CSP is first split into its three components.
- 2. The first task of solve is to create the dictionary ValuesPerVar. Given a variable v, this dictionary assigns the set of values that can be used to instantiate this variable. Initially, this set is the same for all variables and is equal to Values.
- 3. Next, for every constraint f, the dictionary Annotated associates the variables occurring in a constraint with this constraint. This dictionary is only needed for efficiency: We do not want to recompute the variables of a constraint every these variables are needed.
- 4. In order to solve the unary constraints we first have to find them. The set UnaryConstrs contains all those pairs [f, V] from the set of annotated constraints Annotated such that the set of variables V contains just a single variable.
- 5. Similarly, the set OtherConstrs contains those constraints that involve two or more variables.
- 6. In order to solve the unary constraints, we iterate over all unary constraints and shrink the set of values associated with the variable occurring in the constraint as dictated by the constraint. This is done using the function solve_unary.
- 7. Then, we start backtracking search using the function bt_search.

The function solve_unary shown in Figure 3.11 on page 55 takes a unary constraint f, a variable var and the set of values Values that can be assigned to this variable. It returns the subset of values that can be substituted for the variable var without violating the given constraint f.

1. To achieve its goal, solve_unary iterates over all possible Values.

```
solve_unary := procedure(f, var, Values) {
    Legal := {value : value in Values | eval_constraint({[var,value]}, f)};
    if (Legal == {}) { backtrack; } // game over
    return Legal;
};
```

Figure 3.11: Implementation of solve_unary.

2. Next, for every value in the set Values, an assignment is created that assign the value to the variable var. This assignment has the form

```
{[var, value]}.
```

- 3. The set Legal collects all those values that satisfy the constraint f.
- 4. If the set Legal is empty, then the unary constraint f is unsatisfiable and hence the CSP is unsolvable. In that case, the search has to backtrack.
- 5. Otherwise, the set Legal is returned.

```
bt_search := procedure(Assignment, Variables, Values, Constraints) {
        if (#Assignment == #Variables) {
            return Assignment;
        }
        x := most_constrained_variable(Assignment, Values);
        for (val in Values[x]) {
            check {
                if (is_consistent(x, val, Assignment, Constraints)) {
                    NewVals := propagate(x, val, Assignment, Constraints, Values);
                    return bt_search(Assignment + { [x, val] },
                                       Variables, NewVals, Constraints);
11
                }
12
            }
13
        }
14
        backtrack;
15
    };
16
```

Figure 3.12: Implementation of bt_search.

The procedure bt_search shown in Figure 3.12 on page 55 is called with a partial Assignment that is guaranteed to be consistent, a set of Variables, a dictionary Values associating every variable with the set of values that are admissible for this variable and a set of annotated Constraints. It tries to complete Assignment and thereby compute a solution of the CSP.

- 1. If the partial Assignment is already complete, i.e. if it assigns a value to every variable, then a solution to the given CSP has been found and this solution is returned.
- 2. Otherwise, we choose a variable x such that the number of values that can still be used to instantiate x is minimal. This variable is computed using the procedure most_constrained_variable that is shown in Figure 3.13 on page 56.
- 3. Next, all values that are still available for x are tried. Note that since Values[x] is, in general, smaller than the set of all values of the CSP, the for-loop in this version of backtracking search is more efficient than the version discussed in the previous section.

- 4. If it is consistent to assign val to the variable x, we propagate the consequences of this assignment using the procedure propagate shown in Figure 3.13 on page 56. This procedure updates the values that are still allowed for the variables of the CSP once the value val has been assigned to the variable x.
- 5. Finally, the partial variable Assignment is updated to include the assignment of val to x and the recursive call to bt_search tries to complete this new assignment.

```
most_constrained_variable := procedure(Assignment, Values) {
        Unassigned := { [x, U] : [x, U] in Values | Assignment[x] == om };
                   := min({ #U : [x, U] in Unassigned });
        return rnd({ x : [x, U] in Unassigned | #U == minSize });
    };
    propagate := procedure(x, v, Assignment, Constraints, Values) {
        Values[x] := \{ v \};
        for ([F, Vars] in Constraints | x in Vars && #Vars == 2) {
            y := arb(Vars - { x });
            if (!(v in domain(Assignment))) {
10
                 Legal := \{w : w \text{ in Values}[y] \mid eval\_constraint(\{[x,v], [y,w]\}, F)\};
11
                 if (Legal == {}) { backtrack; }
12
                 Values[y] := Legal;
            }
14
        }
        return Values;
16
    };
```

Figure 3.13: Constraint Propagation.

Figure 3.13 on page 56 show the implementation of the procedures most_constrained_variable and propagate. The procedure most_constrained_variable takes a partial Assignment and a dictionary Values returning for all variables the set of admissible values.

- 1. First, this procedure computes the set of Unassigned variables. For every variable x that has not yet been assigned a value in Assignment this set contains the pair [x, U], where U is the set of admissible values for the variable x.
- 2. Next, it computes from all unassigned variables x the number of values #U that can be assigned to x. From these numbers, the minimum is computed and stored in minSize.
- 3. Finally, the set of variables that are maximally constrained is computed. These are all those variables x such that Values[x] has size minSize. From these variables, a random variable is returned.
 - The logic behind choosing a maximally constrained variables is that these variables are the most difficult to get right. If we have a partial assignment that is inconsistent, then we will discover this fact earlier if we try the most difficult variables first. This might save us a lot of unecessary computation.

The function propagate takes the following inputs:

- (a) x is a variable.
- (b) v is a value that is assigned to the variable x.
- (c) Assignment is a partial assignment that contains only assignments for variables that are different from x.
- (d) Constraints is a set of annotated constraints, i.e. this set contains pairs of the form [F, Vars], where F is a constraint and Vars is the set of variables occurring in F.

(e) Values is a dictionary assigning sets of values to the different variables.

The function propagate updates the dictionary Values by taking into account the consequences of assigning the value v to the variable x.

- 1. As x is assigned the value v, the corresponding entry in the dictionary Values is changed accordingly.
- 2. Next, propagate iterates over all binary constraints F such that
 - (a) x occurs in F and
 - (b) F is a binary constraint.
 Constraint propagation as presented in this text only works for binary constraints.
- 3. As F is a binary constraint, there is one other variable besides the variable x that occurs in F. This other variable is called y.
- 4. If the variable y has already been assigned a value, then there is nothing to do because we already know that Assignment is consistent. This is ensured by the previous call to the function is_consistent in the body of the procedure bt_search.
 - However, if y is still unassigned, it is necessary to update Values[y].
- 5. To this end, all values w in Values[y] are tested. The set Legal contains all values w that can be assigned to the variable y without violating the constraint F.
- 6. If it turns out that Legal is the empty set, then this means that the assignment Assignment is inconsistent with assigning the value v to the variable x. Hence, in this case the search has to backtrack.
- 7. Otherwise, the set of admissible values for y is updated to be the set Legal.

I have tested the program described in this section using the n queens puzzle. The procedure is even able to solve the 32 queens problem, taking about 4 seconds on average, while the version of backtracking search that does not use constraint propagation took more than 3 minutes on average.

Exercise 7: There are many different versions of the zebra puzzle. The version below is taken from Wikipedia. The puzzle reads as follows:

- 1. There are five houses.
- 2. The Englishman lives in the red house.
- 3. The Spaniard owns the dog.
- 4. Coffee is drunk in the green house.
- 5. The Ukrainian drinks tea.
- 6. The green house is immediately to the right of the ivory house.
- 7. The Old Gold smoker owns snails.
- 8. Kools are smoked in the yellow house.
- 9. Milk is drunk in the middle house.
- 10. The Norwegian lives in the first house.
- 11. The man who smokes Chesterfields lives in the house next to the man with the fox.
- 12. Kools are smoked in the house next to the house where the horse is kept.
- 13. The Lucky Strike smoker drinks orange juice.

- 14. The Japanese smokes Parliaments.
- 15. The Norwegian lives next to the blue house.
- 16. Who drinks water?
- 17. Who owns the zebra?

In order to solve the puzzle, we also have to know the following facts:

- 1. Each of the five houses is painted in a different colour.
- 2. The inhabitants of the five houses are of different nationalities,
- 3. they own different pets,
- 4. they drink different beverages, and
- 5. they smoke different brands of cigarettes.

Formulate the zebra puzzle as a constraint satisfaction problem and solve the puzzle using the program discussed in this section. You should also try to solve the puzzle using the program given in the previous section. Compare the results.

	3	9						7
			7			4	9	2
				6	5		8	3
			6		3	2	7	
				4		8		
5	6							
		5	2		9			1
	2	1					4	
7						5		

Table 3.1: A super hard sudoku from the magazine "Zeit Online".

Exercise 8: Table 3.1 on page 58 shows a sudoku that I have taken from the Zeit Online magazine. Write a program that transforms this sudoku into a constraint satisfaction problem and solve the resulting CsP using the constraint satisfaction solver developed in this section.

3.5 Consistency Checking

So far, the constraints in the constraints satisfaction problems discussed are either unary constraints or binary constraints: A unary constraint is a constraint f such that the formula f contains only one variable, while a binary constraint contains two variables. If we have a constraint satisfaction problem that involves also constraints that mention more than two variables, then the constraint propagation shown in the previous section does not apply. For example, consider the cryptarithmetic puzzle shown in Figure 3.14 on page 59. The idea is that the letters "S", "E", "N", "D", "M", "O", "R", "Y" are interpreted as variables ranging over the set of decimal digits, i.e. these variables can take values in the set $\{0,1,2,3,4,5,6,7,8,9\}$. Then, the string "SEND" is interpreted as a decimal number, i.e. it is interpreted as the number

$$S \cdot 10^3 + E \cdot 10^2 + N \cdot 10^1 + D \cdot 10^0$$
.

The strings "MORE and "MONEY" are interpreted similarly. To make the problem interesting, the assumption is that different variables have different values. Furthermore, the decimals at the beginning of a number should be different from 0.

Figure 3.14: A cryptarithmetic puzzle

A naïve approach to solve this problem would be to code it as a constraint satisfaction problem that has, among others, the following constraint:

```
(\mathtt{S} \cdot 10^3 + \mathtt{E} \cdot 10^2 + \mathtt{N} \cdot 10 + \mathtt{D}) + (\mathtt{M} \cdot 10^3 + \mathtt{O} \cdot 10^2 + \mathtt{R} \cdot 10 + \mathtt{E}) = \mathtt{M} \cdot 10^4 + \mathtt{O} \cdot 10^3 + \mathtt{N} \cdot 10^2 + \mathtt{E} \cdot 10 + \mathtt{Y}.
```

The problem with this constraint is that it involves far too many variables. As this constraint can only be checked when all the variables have values assigned to them, the backtracking search would essentially boil down to a mere brute force search. In order to do better, we have to perform the addition in Figure 3.14 column by column, just as it is taught in elementary school. Figure 3.15 on page 59 shows how this can be implemented in Setla.

```
createCSP := procedure() {
                    := {"S", "E", "N", "D", "M", "O", "R", "Y", "C1", "C2", "C3"};
       Variables
                     := { 0 .. 9 };
       Constraints := allDifferent({ "S", "E", "N", "D", "M", "O", "R", "Y" });
       Constraints += { '(D + E) \% 10 == Y', '(D + E) \setminus 10 == C1',
                          (N + R + C1) \% 10 == E', (N + R + C1) \setminus 10 == C2',
                          '(E + O + C2) \% 10 == N', '(E + O + C2) \setminus 10 == C3',
                          '(S + M + C3) \% 10 == 0', '(S + M + C3) \setminus 10 == M'
                        };
       Constraints += { "S != 0", "M != 0" };
10
       return [Variables, Values, Constraints];
11
  };
12
```

Figure 3.15: Formulating "SEND + MORE = MONEY" as a Csp.

Notice that we have introduced three additional variables "C1", "C2", "C3". These variables serve as the carry digits. For example, "C1" is the carry digit that we get when we do the addition of the last places of the two numbers, i.e. we have

```
\mathtt{D} + \mathtt{E} = \mathtt{C1} \cdot 10 + \mathtt{Y}.
```

This equation still contains four variables. We can reduce it to two equations that each involve only three variables as follows:

```
(D + E) \% 10 = Y and (D + E) \setminus 10 = C1.
```

Here, the symbol "\" denotes integer division, e.g. we have $7\3 = 2$. If we try to solve the cryptarithmetic puzzle as coded in Figure 3.15 on page 59 using the constraint solver developed in the previous section, we will be disappointed. The reason is that most constraints involve three variables and therefore the constraint propagation developed in the previous section is of no help. However, we can solve the problem in a few seconds if we add the following constraints for the variables "C1", "C2", "C3":

```
"C1 < 2", "C2 < 2", "C3 < 2".
```

Although these constraints are certainly true, the problem with this approach is that we would prefer if our

constraint solver would be able to figure out these constraints by itself. After all, since D and E are both less than 10, there sum is obviously less than 20 and hence the carry C1 has to be less than 2. This line of reasoning is known as consistency maintenance: Assume that the formula f is a constraint and the set of variables occurring in f has the form

$$Var(f) = \{x\} + R$$
 where $x \notin R$,

i.e. the variable x occurs in the constraint f and, furthermore, R is the set of all variables occurring in f that are different from x. Furthermore, assume that we have a dictionary ValuesPerVar such that for every variable y, the dictionary entry ValuesPerVar[y] is the set of values that can be substituted for the variable y. Now a value v is consistent for x with respect to the constraint f iff the partial assignment $\{\langle x,v\rangle\}$ can be extended to an assignment A satisfying the constraint f, i.e. for every variable $y \in R$ we have to find a value $w \in ValuesPerVar[y]$ such that the resulting assignment A satisfies the equations

$$evaluate(f, A) = true.$$

Here, the function evaluate takes a formula f and an assignment A and evaluates f using the assignment A. Now, consistency maintenance works as follows.

1. The dictionary ValuesPerVar is initialized as follows:

```
ValuesPerVar[x] := Values for all x \in Variables,
```

i.e. initially every variable x can take any value from the set of Values.

2. Next, the set UncheckedVariables is initialized to the set of all Variables:

UncheckedVariables := Variables.

3. As long as the set UncheckedVariables is not empty, we remove one variable x from this set:

```
x := from(UncheckedVariables)
```

- 4. We iterate over all constraints f such that x occurs in f.
 - (a) For every value $v \in ValuesPerVar[x]$ we check whether v is consistent with f.
 - (b) If v is not consistent with f, then v is removed from ValuesPerVar[x]. Furthermore, if R is the set of all variables occurring in f that are different from x, then this set R is added to the set of UncheckedVariables.
- 5. Once UncheckedVariables is empty, the algorithm terminates. Otherwise, we jump back to step 3 and remove the next variable from the set UncheckedVariables.

The algorithm terminates as every iteration removes either a variable from the set UncheckedVariables or it removes a value from one of the sets ValuesPerVar[y] for some variable y. Although the set UncheckedVariables can grow during the algorithm, the union

$$\bigcup_{x \in \mathtt{Vars}} \mathtt{ValuesPerVar}[x]$$

can never grow: Every time the set ${\tt UncheckedVariables}$ grows, for some variable x the set ${\tt ValuesPerVar}[x]$ shrinks. As the sets ${\tt ValuesPerVar}[x]$ are finite for all variables x, the set ${\tt UncheckedVariables}$ can only grow a finite number of times. Once the set ${\tt UncheckedVariables}$ does not grow any more, every iteration of the algorithm removes one variable from this set and hence the algorithm terminates eventually.

Figure 3.16 on page 61 shows how consistency maintenance can be implemented in SetlX. The procedure enforceConsistency takes four arguments.

- (a) ValuesPerVar is a dictionary associating the set of possible values with each variable.
- (b) Var2Formulas is a dictionary. For every variable v, Var2Formulas[v] is the set of those constraints f such that v occurs in f.

```
enforceConsistency := procedure(rw ValuesPerVar,
                                      Var2Formulas, Annotated, Connected)
3
        UncheckedVars := domain(Var2Formulas);
        while (UncheckedVars != {}) {
5
             variable
                        := from(UncheckedVars);
            Constraints := Var2Formulas[variable];
                        := ValuesPerVar[variable];
            RemovedVals := {};
            for (f in Constraints) {
10
                 OtherVars := Annotated[f] - { variable };
11
                 for (value in Values) {
12
                     if(!existsValue(variable,value,f,OtherVars,ValuesPerVar)) {
13
                         RemovedVals
                                        += { value };
14
                         UncheckedVars += Connected[variable];
                     }
16
                 }
            }
18
            Remaining := Values - RemovedVals;
            if (Remaining == {}) { backtrack; }
20
            ValuesPerVar[variable] := Remaining;
21
        }
22
    };
```

Figure 3.16: Consistency maintenance in Setla.

- (c) Annotated is the set of annotated constraints, i.e. this set contains pairs of the form $\langle f, V \rangle$ where f is a constraint and V is the set of all variables occurring in f. This last argument is needed only for efficiency: In order to avoid computing the set V of variables occurring in a constraint f every time the constraint f is encountered, we compute these sets at the beginning of our computation and store them in the dictionary Annotated.
- (d) Connected is a dictionary that takes a variable x and returns the set V of all variables that are related to x via a common constraint f, i.e. we have $y \in \text{Connected}[x]$ if there exists a constraint f such that both x and y occur in f and, furthermore, $x \neq y$.

The procedure enforceConsistency modifies the dictionary ValuesPerVar so that once the procedure has terminated, for every variable x the set ValuesPerVar[x] is consistent with the constraints for x. The implementation works as follows:

- 1. Initially, all variables need to be checked for consistency. Therefore, UncheckedVars is defined to be the set of all variables that occur in any of the constraints.
- 2. The while-loop iterates as long as there are still variables x left in UncheckedVars such that the consistency of ValuesPerVar[x] has not been established.
- 3. Next, a variable is selected and removed from UncheckedVars.
- 4. Constraints is the set of all constraints f such that this variable occurs in f.
- 5. Values is the set of those values that can be assigned to variable.
- 6. RemovedVals is the subset of those values that are found to be inconsistent with some constraint.
- 7. We iterate over all constraints $f \in Constraints$.

- 8. OtherVars is the set of variables occurring in f that are different from the chosen variable.
- 9. We iterate over all value ∈ Values that can be substituted for variable and check whether value is consistent with f. To this end, we need to find values that can be assigned to the variables in the set OtherVars such that f evaluates as true. This is checked using the function existsValue.
- 10. If we do not find such values, then value is inconsistent for variable w.r.t. f and needs to be removed from the set ValuesPerVar[variable]. Furthermore, all variables that are connected to variables have to be added to the set UncheckedVars. The reason is that once a value is removed for variable, the value assigned to another variable y occurring in a constraint that mentions both variable and y might now become inconsistent.
- 11. If there are no consistent values for variable left, we have to backtrack.

```
existsValue := procedure(var, val, f, Vars, ValuesPerVar) {
        return exists( A in createAllAssignments(Vars, ValuesPerVar)
2
                      | eval_constraint(A + { [var, val] }, f)
                                                                       );
    };
    createAllAssignments := procedure(Vars, ValuesPerVar) {
        if (Vars == {}) {
            return { {} }; // set containing empty assignment
        }
                    := from(Vars);
        var
                    := ValuesPerVar[var];
10
        Assignments := createAllAssignments(Vars, ValuesPerVar);
11
        return { { [var, val] } + A : val in Values, A in Assignments };
12
    };
13
```

Figure 3.17: The implementation of existsValue.

Figure 3.17 on page 62 shows the implementation of the function existsValue that is used in the implementation of enforceConsistency. This procedure is called with five arguments.

- (a) var is variable.
- (b) val is a value that is to be assigned to var.
- (c) f is a constraint such that var occurs in f
- (d) Vars is the set of all those other variables occurring in f, i.e. the set of those variables that occur in f but that are different from var.
- (e) ValuesPerVar is a dictionary associating the set of possible values with each variable.

The procedure checks whether the partial assignment $\{\langle var, val \rangle\}$ can be extended so that the constraint f is satisfied. To this end it needs to create the set of all possible assignments. This set is generated using the function createAllAssignments. This function gets a set of variables Vars and a dictionary that assigns to every variable var in Vars the set of values that might be assigned to var.

- If the set of variables Vars is empty, the empty set can serve as a dictionary that assigns a value to every variable in Vars.
- 2. Otherwise, we remove a variable var from Vars and get the set of Values that can be assigned to var.
- 3. Recursively, we create the set of all Assignments that associate values with the remaining variables.

Finally, the set of all possible assignments is the set of all combinations of assigning a value val ∈ Values
to var and assigning the remaining variables according to an assignment A ∈ Assignments.

On one hand, consistency checking creates a lot of overhead.² Therefore, it might actually slow down the solution of some constraint satisfaction problems that are easy to solve using just backtracking and propagation. On the other hand, many difficult constraint satisfaction problems can not be solved without consistency checking.

3.6 Local Search

There is another approach to solve constraint satisfaction problems. This approach is known as local search. The basic idea is simple: Given as constraint satisfaction problem \mathcal{C} of the form

 $\mathcal{P} := \langle \mathtt{Variables}, \mathtt{Values}, \mathtt{Constraints} \rangle$

local search works as follows:

- 1. Initialize the values of the variables in Variables randomly.
- 2. If all Constraints are satisfied, return the solution.
- 3. For every $x \in Variables$, count the number of <u>unsatisfied</u> constraints that involve the variable x.
- Set maxNum to be the maximum of these numbers, i.e. maxNum is maximal number of unsatisfied constraints for any variable.
- 5. Compute the set maxVars of those variables that have maxNum unsatisfied constraints.
- 6. Randomly choose a variable x from the set maxVars.
- 7. Find a value $d \in Values$ such that by assigning d to the variable x, the number of unsatisfied constraints for the variable x is minimized.
 - If there is more than one value d with this property, choose the value d randomly from those values that minimize the number of unsatisfied constraints.
- 8. Goto step 2 and repeat until either a solution is found or the sun rises in the west.

Figure 3.18 on page 64 shows an implementation of these ideas in Setla. Instead of solving an arbitrary constraint satisfaction problem, the program solves the n queens problem. We proceed to discuss this program line by line.

- 1. The procedure solve takes one parameter n, which is the size of the chess board. If the computation is successful, solve(n) returns a list of length n. Lets call this list Queens. For every row $r \in \{1, \dots, n\}$, the value Queens[r] specifies that the queen that resides in row r is positioned in column Queens[r].
- 2. The for loop initializes the positions of the queens to random values from the set $\{1, \dots, n\}$. Effectively, for every row on the chess board, this puts a queen in a random column.
- 3. The variable iteration counts the number of times that we need to reassign a queen in a given row.
- 4. All the remaining statements are surrounded by a while loop that is only terminated once a solution has been found.
- 5. The variable Conflicts is a set of pairs of the form [c, r], where c is the number of times the queen in row r is attacked by other queens. Hence, c is the same as the number of unsatisfied conflicts for the variable specifying the column of the queen in row r.
- 6. maxNum is the maximum of the number of conflicts for any row.

² To be fair, the implementation shown in this section is far from optimal. In particular, by remembering which combinations of variables and values work for a given formula, the overhead can be reduced greatly. I have refrained from implementing this optimization because I did not want the code to get too complex.

```
solve := procedure(n) {
        Queens := [];
        for (row in [1 .. n]) {
3
             Queens[row] := rnd(\{1 .. n\});
        iteration := 0;
        while (true) {
                         := { [numConflicts(Queens, row), row] : row in [1 ..n] };
             Conflicts
             [maxNum, _] := last(Conflicts);
             if (maxNum == 0) {
10
                 return Queens;
11
             }
12
             if (iteration % 10 != 0) { // avoid infinite loops
                 row := rnd({ row : [num, row] in Conflicts | num == maxNum });
14
             } else {
                 row := rnd({ 1 .. n });
16
             }
             Conflicts := {};
18
             for (col in [1 .. n]) {
                 Board
                             := Queens;
20
                 Board[row] := col;
                 Conflicts += { [numConflicts(Board, row), col] };
22
23
             [minNum, _] := first(Conflicts);
             Queens[row] := rnd({ col : [num, col] in Conflicts | num == minNum });
25
             iteration
26
        }
27
    };
28
```

Figure 3.18: Solving the n queens problem using local search.

- 7. If this number is 0, then all constraints are satisfied and the list Queens is a solution to the n queens problem.
- 8. Otherwise, we compute those rows that exhibit the maximal number of conflicts. From these rows we select one row arbitrarily.
- 9. The reason for enclosing the assignment to row in an if statement is explained later. On a first reading of this program, this if statement should be ignored.
- 10. Now that we have identified the row where the number of conflicts is biggest, we need to reassign Queens[row]. Of course, when reassigning this variable, we would like to have fewer conflicts after the reassignment. Hence, we test all columns to find the best column that can be assigned for the queen in the given row. This is done in a for loop that runs over all possible columns. The set Conflicts that is maintained in this loop is a set of pairs of the form [k, c] where k is the number of times the queen in row would be attacked if it would be placed in column c.
- 11. We compute the minimum number of conflicts that is possible for the queen in row and assign it to minNum.
- 12. From those columns that minimize the number of violated constraints, we choose a column randomly and assign it for the specified row.

There is a technical issue, that must be addressed: It is possible there is just one row that exhibits the maximum number of conflicts. It is further possible that, given the placements of the other queens, there is just one optimal

column for this row. In this case, the procedure solve would loop forever. To avoid this case, every 10 iterations we pick a random row to change.

Figure 3.19: The procedure numConflicts.

The procedure numConficts shown in Figure 3.19 on page 65 implements the function numConficts. Given a board Queens that specifies the positions of the queens on the board and a row, this function computes the number of ways that the queen in row is attacked by other queens. If all queens are positioned in different rows, then there are only three ways left that a queen can be attacked by another queen.

- 1. The queen in row r could be positioned in the same column as the queen in row.
- 2. The queen in row r could be positioned in the same falling or rising diagonal as the queen in row. These diagonals are specified by the linear equations given in line 6 and 7 of Figure 3.19.

Using the program discussed in this section, the n queens problem can be solved for a n=1000 in 30 minutes. As the memory requirements for local search are small, even much higher problem sizes can be tackled if sufficient time is available. Hence, it seems that local search is much better than the algorithms discussed previously. However, we have to note that local search is incomplete: If a constraint satisfaction problem \mathcal{P} has no solution, then local search loops forever. Therefore, in practise a dual approach is used to solve a constraint satisfaction problem. The constraint solver starts two threads: The first search does local search, the second thread tries to solve the problem via some refinement of backtracking. the first thread that terminates wins. The resulting algorithm is complete and, for a solvable problem, will have similar performance as local search. If the problem is unsolvable, this will eventually be discovered by backtracking. Note, however, that the constraint satisfaction problem is NP-complete. Hence, it is unlikely that there is an efficient algorithm that works always. However, many practically occurring constraint satisfaction problems can be solved today in a reasonably short time.

Chapter 4

Playing Games

One major breakthrough for the field of artificial intelligence happened in 1997 when the chess-playing computer Deep Blue was able to beat the World Chess Champion Garry Kasparov by $3^1/2 - 2^1/2$. While Deep Blue was based on special hardware, according to the computer chess rating list of the 24th of March 2018, the chess program Stockfish runs on ordinary desktop computers and has an Elo rating of 3445. To compare, according to the Fide list of March 2018, the current World Chess Champion Magnus Carlsen has an Elo rating of just 2843. Hence, he wouldn't stand a chance to win a game against Stockfish. More recently, the computer program AlphaGo was able to beat Ke Jie, who is currently considered to be the best human go player in the world. Besides go and chess, there are many other games where today the performance of a computer exceeds the performance of human players. To name just one more example, at the beginning of 2017 the program Libratus was able to beat four professional poker players resoundingly.

In this chapter we want to investigate how a computer can play a game. To this end we define a game \mathcal{G} as a six-tuple

```
\mathcal{G} = \langle \mathtt{States}, s_0, \mathtt{Players}, \mathtt{nextStates}, \mathtt{finished}, \mathtt{utility} \rangle
```

where the components are interpreted as follows:

- 1. States is the set of all possible states of the game.
- 2. $s_0 \in \text{States}$ is the start state.
- 3. Players is the list of players of the game. The first element in Players is the player to start the game and after that the players take turns.
- 4. nextStates is a function that takes a state $s \in States$ and a player $p \in Players$ and returns the set of states that can be reached if the player p has to make a move in the state s. Hence, the signature of nextStates is given as follows:

```
\mathtt{nextStates}: \mathtt{States} \times \mathtt{Players} \rightarrow 2^{\mathtt{States}}.
```

5. finished is a function that takes a state s and decides whether the games is finished. Therefore, the signature of finished is

```
\mathtt{finished}:\mathtt{States}\to\mathbb{B}.
```

Here, \mathbb{B} is the set of Boolean values, i.e. we have $\mathbb{B} := \{ \text{true}, \text{false} \}.$

Using the function finished, we define the set TerminalStates as the set of those states such that the game has finished, i.e. we define

```
TerminalStates := \{s \in \text{States} \mid \text{finished}(s)\}.
```

6. utility is a function that takes a state $s \in \text{TerminalStates}$ and a player $p \in \text{Players}$. It returns the value that the game has for player p. In all of our examples, this value will be an element from the set

¹This assessment is of March 2018.

 $\{-1,0,+1\}$. The value -1 indicates that player p has lost the game, if the value is +1 the player p has won the game and if this value is 0, then the game is drawn. Hence the signature of utility is

```
utility: TerminalStates \times Players \rightarrow \{-1, 0, +1\}.
```

Exercise 9: The definition given above does not capture all types of games. In particular, the definition only captures deterministic games: A game is called deterministic iff there is no randomness involved. Games like chess and go are certainly deterministic. However, other games like dice chess involve randomness. In dice chess a pair of dice is rolled at the beginning of each turn. The outcome of this roll determines which pieces may be moved. Extend the definition of a game so that also a games like dice chess can be described.

In this chapter we will only consider so called two person zero sum games. This means that the list Players has exactly two elements. If we call these players A and B, i.e. if we have

$$Players = [A, B],$$

then the game is called a zero sum game iff we have

```
\forall s \in \text{TerminalStates} : \text{utility}(s, A) + \text{utility}(s, B) = 0,
```

i.e. the losses of player A are compensated by the wins of player B and vice versa. Games like go and chess are two person zero sum games. We proceed to discuss an example of a game.

4.1 Tic-Tac-Toe

The game tic-tac-toe is played on a square board of size 3×3 . On every turn, one player puts an "X" on one of the free squares of the board, while the other player puts an "0" onto a free square when it is his turn. If the first player manages to place three Xs in a row, column, or diagonal, she has won the game. Similarly, if the other player manages to put three 0s in a row, column, or diagonal, this player is the winner. Otherwise, the game is drawn. Figure 4.1 on page 68 shows a Setl implementation of tic-tac-toe.

- The function players returns the set Players. Traditionally, the players in tic-tac-toe are called X and O.
- 2. The function startState returns the start state, which is an empty board. States are represented as list of lists. The entries in these lists are the characters "X", "0", and " ". As the StartState is the empty board, it is represented as as follows:

3. The function nextStates takes a State and a player and computes the set of states that can be reached from State if player is to move next. To this end, it first computes the set of empty positions. Every position is represented as pair of the form [row, col] where row specifies the row and col specifies the column of the position. A position is empty iff

```
[row, col] = " ".
```

The computation of the empty position has been sourced out to the function empty. The function nextStates then iterates over the set of empty positions. For every empty position [row, col] it creates a new state NextState that results from the current State by putting the mark of player in this position. The resulting states are collected in the set Result and returned.

- 4. The function empty takes a state S and returns the set of positions that are empty in this state.
- 5. The function utility takes a State and a player. If the game is finished in the given State, it returns the value that this State has for the current player. If the game is not yet decided, Ω is returned instead.

```
players
                := [] |-> [ "X", "O" ];
    startState := [] |-> [ [ " " : col in [1..3]] : row in [1..3] ];
    nextStates := procedure(State, player) {
        Empty := empty(State);
        Result := \{\};
5
        for ([row, col] in Empty) {
             NextState
                                  := State;
            NextState[row][col] := player;
             Result
                                  += { NextState };
        }
10
        return Result;
11
    };
12
    empty := S \mid - \ [[row,col] : row in [1..3], col in [1..3] \mid S[row][col] == "];
13
    utility := procedure(State, player) {
14
        Lines := all_lines(State);
15
        for (Line in Lines) {
16
             if (#Line == 1 && Line != { " " }) {
                 if (Line == { player }) { return 1; } else { return -1; }
18
             }
        }
20
        if (forall(row in [1..3], col in [1..3] | State[row][col] != " ")) {
21
             return 0:
22
        }
23
    };
24
    all_lines := procedure(State) {
25
        Lines := { { State[row][ col] : col in [1..3] } : row in [1..3] };
26
        Lines += { { State[row][ col] : row in [1..3] } : col in [1..3] };
27
        Lines += { { State[idx][ idx] : idx in [1..3] } };
28
        Lines += { { State[idx][-idx] : idx in [1..3] } };
29
        return Lines;
30
    };
31
    finished := procedure(State) {
        return utility(State, "X") != om;
33
    };
34
```

Figure 4.1: A SetlX description of tic-tac-toe.

In order to achieve its goal, the procedure first computes the set of all line-sets. Given a State, a line-set is a set of those markers that either form a horizontal, vertical, or diagonal line in State, e.g. the set

```
\{ State[1,1], State[2,2], State[3,3] \}
```

is the set of entries in a diagonal line. The game is decided if all entries in this set are either "X" or "0". In this case, the set has exactly one element which is different from the blank. If this element is the same as player, then the game is won by player, otherwise it is lost.

Finally, if there are no empty squares left, then the game is a draw.

- 6. The auxiliary procedure all_lines takes a State and computes the set Lines of all line-sets.
 - (a) For any row $\in \{1,2,3\}$ the set $\{ \text{ State[row][col] : col in [1..3]} \}$ forms a horizontal line.

(b) Likewise, for any $col \in \{1, 2, 3\}$ the set

```
{ State[row][col] : row in [1..3]}
```

forms a vertical line.

(c) Given that the top row is indexed with 1, and the bottom row is row number 3, the set

```
{ State[idx][idx] : idx in [1..3] };
```

is the falling diagonal.

(d) Finally, the set

```
\{ State[idx][n - (idx - 1)] : idx in [1..3] \}
```

is the rising diagonal.

7. The procedure finished takes a State and checks whether the game is finished. To this end it computes the utility of the state for the player "X". If this utility is different from Ω , the game is finished. Note that it does make no difference whether we take the utility of the state for the player "X" or for the player "0": If the game is finished for "X", then it is also finished for "0" and vice versa.

4.2 The Minimax Algorithm

Having defined the notion of a game, our next task is to come up with an algorithm that can play a game. The easiest algorithm that works is the minimax algorithm. This algorithm is based on the notion of the value of a state. To this end, we define a function

```
value: States \times Players \rightarrow \{-1, 0, +1\}
```

that takes a state $s \in States$ and a player $p \in Players$ and returns the value of s provided both the player p and his opponent play optimally. The easiest way to define this function is via recursion. The base case is simple:

```
finished(s) \rightarrow value(s, p) = utility(s, p).
```

If the game is not yet finished, assume that player o is the opponent of player p. Then we define

```
\neg \mathtt{finished}(s) \to \mathtt{value}(s, p) = \max(\{-\mathtt{value}(n, o) \mid n \in \mathtt{nextStates}(s, p)\}).
```

The reason is that, if the game is not finished yet, the player p has to evaluate all possible moves. From these, the player p will choose the move that maximizes the value of the game. In order to do so, the player p computes the set nextStates(s,p) of all states that can be reached from the state s in any one move of the player p. Now if n is a state that results from player p making some move, then it is the turn of the other player p to make a move. Hence, in order to evaluate the state p, we have to call the function value(n,p) as value(n,p). Since the gains of the other player p are the losses of the player p, we have to take the negative of value(n,p). Figure 4.2 on page 70 shows an implementation of this strategy.

- 1. Given a player p, the function other computes the other player, which is the first element of the list of all players that are different from p. This works because we assume that there are just two players. Therefore the list of all players different from the player p contains exactly one element.
- 2. The implementation of the function value follows the reasoning outlined above. However, note that we have implemented the function value as a cachedProcedure, i.e. as a procedure that memorizes its results. Hence, when the function value is called a second time with the same pair of arguments, it does not recompute the value but rather the value is looked up in a so called cache that stores all previous results computed by the function value. To understand why this is important, let us consider how many states would be explored in the case of tic-tac-toe if we would not use the idea of memorizing previous results, a technique which is know as memoization. In this case, we have 9 moves for player X from the start state, then 8 moves for player 0, then again 7 moves for player 0. If we disregard the fact that some games are decided after fewer than 9 moves, the function value needs to consider

```
other := p |-> ([o : o in players() | o != p])[1];
    value := cachedProcedure(State, player) { // dynamic programming
        if (finished(State)) {
            return utility(State, player);
        }
        return max({-value(ns,other(player)):ns in nextStates(State,player)});
    };
    best_move := procedure(State, player) {
                 := nextStates(State, player);
        bestVal := value(State, player);
10
        return [bestVal, rnd({ns:ns in NS|-value(ns,other(player))==bestVal})];
11
    };
12
    play_game := procedure() {
13
        State := startState();
14
        print(stateToString(State));
        while (true) {
16
            firstPlayer := players()[1];
            [val, State] := best_move(State, firstPlayer);
18
            print("For me, the game has the value $val$. My move:");
            print(stateToString(State));
20
            if (final_msg(State)) { return; }
            State := getMove(State);
22
            print(stateToString(State));
            if (final_msg(State)) { return; }
24
        }
25
    };
26
```

Figure 4.2: The Minimax algorithm.

```
9 \cdot 8 \cdot 7 \cdot \ldots \cdot 2 \cdot 1 = 9! = 362\,880
```

moves. However, if we count the number of possibilities of putting 5 "0"s and 4 "X"s on a 3×3 board, we see that there are only

$$\binom{9}{5} = \frac{9!}{5! \cdot 4!} = 126$$

possibilities, because we only have to count the number of ways to put 5 "0"s on 9 positions and that number is the same as the number of subsets of five elements from a set of nine elements. Therefore, if we disregard the fact that some games are decided after fewer than nine moves, there are a factor of $5! \cdot 4! = 2880$ less terminal states to evaluate if we use memoization!

As we have to evaluate not just terminal states but all states, the saving is actually a bit smaller that 2880. The next exercise explores this in more detail.

- 3. The function best_move takes a State and a player and returns a pair $\langle v, s \rangle$ where s is a state that is optimal for the player and such that s can be reached in one step from State. Furthermore, v is the value of this state.
 - (a) To this end, it first computes the set NS of all states that can be reached from the given State in one step if player is to move next.
 - (b) bestValue is the best value that player can achieve in the given State.
 - (c) The function returns randomly one of those states $ns \in NS$ such that the value of ns is optimal, i.e. is equal to bestValue. We use randomization here since we want to have more interesting games. If we

would always choose the first state that achieves the best value, then our program would always make the same move in a given state. Hence, playing the program would get boring much sooner.

- 4. The function play_game is used to play a game.
 - (a) Initially, State is the startState.
 - (b) As long as the game is not finished, the procedure keeps running.
 - (c) We compute the player firstPlayer that starts the game and assume that the computer goes first. Hence, the function best_move is used to compute the state that results from the best move of firstPlayer.
 - (d) After that, it is checked whether the game is finished.
 - (e) If the game is not yet finished, the user is asked to make its move via the function **getMove** that takes a **State**, displays it, and asks the user to enter a move. The state resulting from this move is then returned and displayed.
 - Note that we do not check the legality of the move entered by the user. This feature can be used for exploration and cheating.
 - (f) Next, we have to check whether the game is finished after the move of the user has been executed.
 - (g) The while-loop keeps iterating until the game is finished. We do not have to put a test into the condition of this while-loop as we call the function final_msg(State) every time that a new State has been reached. This function returns true iff finished(State) is true. Additionally, it prints a message when the game has finished.

In order to better understand the reason for using memoization in the implementation of the function value we introduce the following notions.

Definition 5 (Game Tree) Assume that

```
\mathcal{G} = \langle \mathtt{States}, s_0, \mathtt{Players}, \mathtt{nextStates}, \mathtt{finished}, \mathtt{utility} \rangle
```

is a game. Then a play of length n is a list of states of the form

```
[s_0, s_1, \cdots, s_n] such that \forall i \in \{0, \cdots, n-1\} : s_{i+1} \in \texttt{nextStates}(s_i, p_i),
```

where the players p_i are defined such that for all even $i \in \{0, \dots, n-1\}$ we have that p_i is the first element in the list Players, while p_i is the second element otherwise. The game tree of the game \mathcal{G} is the set of all possible plays.

The following exercise yields a better understanding of the effects of memoization.

Exercise 10: In simplified tic-tac-toe the game only ends when there are no more empty squares left. The player X wins if she has more rows, columns, or diagonals of three Xs than the player O has rows, columns, or diagonals of three Os. Similarly, the player O wins if he has more rows, columns, or diagonals of three Os than the player X has rows, columns, or diagonals of three Xs. Otherwise, the game is a draw.

(a) Derive a formula that gives the number of all states of simplified tic-tac-toe.

Notice that this question does not ask for the number of all terminal states but rather asks for all states.

- (b) Write a short program to evaluate the formula derived in part (a) of this exercise.
- (c) Derive a formula to compute the size of the game tree of simplified tic-tac-toe.
- (d) Write a short program to evaluate the formula derived in part (c) of this exercise.

4.3 α - β -Pruning

The efficiency of the minimax algorithm can be improved if we provide two additional arguments to the function value. Traditionally, these arguments are called α and β . In order to be able to distinguish between the old function value and its improved version, we call the improved version alphaBeta. The idea is that the function alphaBeta and the function value are related by the following requirements:

1. As long as value(s, p) is between α and β , the function alphaBeta computes the same result as the function value, i.e. we have

```
\alpha \leq \mathtt{value}(s,p) \leq \beta \ \to \ \mathtt{alphaBeta}(s,p,\alpha,\beta) = \mathtt{value}(s,p).
```

2. If $value(s, p) \leq \alpha$, we require that the value returned by alphaBeta is less than or equal to α , i.e. we have

```
value(s, p) \le \alpha \rightarrow alphaBeta(s, p, \alpha, \beta) \le value(s, p).
```

3. Similarly, if $value(s, p) \ge \beta$, we require that the value returned by valueAlphaBeta is bigger than or equal to β , i.e. we have

```
\beta \leq \mathtt{value}(s, p) \rightarrow \mathtt{value}(s, p) \leq \mathtt{alphaBeta}(s, p, \alpha, \beta).
```

Therefore, alphaBeta(State, player) is only an approximation of value(State, player). However, it turns out that this approximation is all that is needed. Figure 4.3 on page 72 shows an implementation of alphaBeta that achieves this specification. Once the function alphaBeta is implemented, the function value can then be realized as follows:

```
value(s, p) := alphaBeta(s, p, -1, +1).
```

The reason is that we already know that $-1 \le value(s, p) \le +1$ and hence the first case of the specification of alphaBeta guarantees that the equation

```
value(s, p) = alphaBeta(s, p, -1, +1)
```

holds. Since alphaBeta is implemented as a recursive procedure, the fact that the implementation of alphaBeta shown in Figure 4.3 on page 72 satisfies the specification given above can be shown by computational induction.

```
alphaBeta := cachedProcedure(State, player, alpha := -1, beta := 1) {
        if (finished(State)) {
            return utility(State, player);
        }
        val := alpha;
        for (ns in nextStates(State, player)) {
            val := max({ val, -alphaBeta(ns, other(player), -beta, -alpha) });
            if (val >= beta) {
                return val;
            }
10
            alpha := max({ val, alpha });
11
        }
12
        return val;
13
    };
14
```

Figure 4.3: α - β -Pruning.

We proceed to discuss the implementation of the function alphaBeta.

1. If State is a terminal state, the function returns the utility of the given State with respect to player.

 \Diamond

2. The variable val is supposed to store the maximum of the values of all states that can be reached from the given State if player makes one move.

According to the specification of alphaBeta, we are not interested in values that are below alpha. Hence, it suffices to initialize val with alpha. This way, in the case that we have

```
value(State, player) < \alpha,
```

instead of returning the true value of the given State, the function alphaBeta(State, player, α , β) will instead return the value α , which is permitted by its specification.

- Next, we iterate over all successor states ns ∈ nextStates(State, player).
- 4. We have to recursively evaluate the states ns with respect to the opponent other(player). Since the value of a state for the opponent is the negative of the value for player, we have to exchange the roles of α and β and prefix them with a negative sign.
- 5. As the specification of alphaBeta ask us to compute the value of State only in those cases where it is less than or equal to β , once we find a successor state s that has a value that is at least as big a β we can stop the evaluation and return this value.

In practice, this shortcut results in significant savings of computation time!

6. Once we have found a successor state that has a value val greater than alpha, we can increase alpha to the value val. The reason is, that once we know we can achieve a value of val we are no longer interested in any values less than val. This is the reason for assigning to alpha the maximum of val and alpha.

Exercise 11: Prove that for any state s and player p we have

```
alphaBeta(s, p, -1, 1) = value(s, p).
```

Hint: This claim is best shown using computational induction.

4.4 Depth Limited Search

In practice, most games are far too complex to be evaluated completely, i.e. the size of the set States is so big that even the fastest computer does not stand a chance to explore this set completely. For example, it is impossible to consider all possible states in chess. Instead, we have to limit the exploration in a way that is similar to the way professional players evaluate their game: Usually, a player considers all variations of the game for, say, the next three moves. After a given number of moves, the value of a position is estimated using an evaluation function. In order to implement this idea, we add a parameter limit to the procedure value. On every recursive invocation of the function value, the function limit is decreased. Once the limit reaches 0, instead of invoking the function value again recursively, we try to estimate the value of the given State using a heuristic function. This leads to the code shown in Figure 4.4 on page 74.

For a game like tic-tac-toe it is difficult to come up with a decent heuristic. A very crude approach would be to define:

```
heuristic := [State, player] |-> 0;
```

This heuristic would simply estimate the value of all states to be 0. As this heuristic is only called after it has been tested that the game has not yet been decided, this approach is not utterly unreasonable. For a more complex game like chess, the heuristic could instead be a weighted count of all pieces. Concretely, the algorithm for estimating the value of a state would work as follows:

1. Initially, the variable sum is set to 0:

```
sum := 0;
```

2. We would count the number of white rooks Rook_{white} and black rooks Rook_{black}, subtract these numbers from each other and multiply the difference by 5. The resulting number would be added to sum:

```
value := cachedProcedure(State, player, limit, alpha := -1, beta := 1) {
        if (finished(State)) {
            return utility(State, player);
        if (limit == 0) { return 0; }
5
        val := alpha;
        for (ns in nextStates(State, player)) {
            val := max({val, -value(ns, other(player), limit-1, -beta, -alpha)});
            if (val >= beta) {
                return val;
10
11
            alpha := max({val, alpha});
12
        }
13
        return val;
14
    };
```

Figure 4.4: Depth-limited α - β -pruning.

```
sum += (Rook_{white} - Rook_{black}) \cdot 5;
```

3. We would count the number of white bishops Bishop_{white} and black bishops Bishop_{black}, subtract these numbers from each other and multiply the difference by 3. The resulting number would be added to sum:

```
sum += (Bishop_{white} - Bishop_{black}) \cdot 3;
```

4. In a similar way we would count knights, queens, and pawns. Approximately, the weights of knights are 3, a queen is worth 9 and a pawn is worth 1.

The resulting sum can then be used as an approximation of the value of a state. More details about the weights of the pieces can be found in the Wikipedia article "chess piece relative value".

Exercise 12: Read up on the game Connect Four. You can play it online at

```
http://www.connectfour.org/connect-4-online.php
```

Your task is to implement this game. At the address

https://github.com/karlstroetmann/Artificial-Intelligence/blob/master/SetlX/connect-four-frame.stlx

is a frame that can be used to solve this exercise. In this frame, only the following procedures need to be implemented.

- 1. The procedure nextStates(s, p) is called with a state s and a player p. It is supposed to return the set of all states that can be reached from the given state s if player p is next to make a move. In order to implement this function efficiently, you should make use of the function $find_empty$ that is described below.
- 2. The procedure $find_empty(s, c)$ is called with a state s and a column c. It searches the column c of the board specified by s bottom up for the first empty square. Once an empty square is found, the corresponding row is returned. If all the squares in the column c are filled, then the number 7 is returned instead.
- 3. The procedure $\mathtt{utility}(s, p)$ is called with a state s and a player p. It computes the utility that this state has for player p if player p is the next to move. For efficiency reasons, the implementation of $\mathtt{utility}$ should make use of the auxiliary functions $\mathtt{all_lines}$ and $\mathtt{last_line_filled}$ that are described below.
- 4. The procedure all_lines() takes no arguments. It is supposed to compute all sets of coordinates that form a line of four consecutive squares. For example, one such set would be the set

$$\{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 1, 4 \rangle\}.$$

This set would be the vertical line that starts at (1,1). The horizontal line that starts at the location (1,1) is the set

$$\{\langle 1,1\rangle,\langle 2,1\rangle,\langle 3,1\rangle,\langle 4,1\rangle\},\$$

while the rising diagonal starting at $\langle 1, 1 \rangle$ is represented by the set

$$\{\langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle 4, 4 \rangle\}.$$

Note that the procedure all_lines should be implemented as a cachedProcedure. This way it is guaranteed that the necessary computation is only performed once.

5. The procedure last_line_filled(s) takes a state s. It checks whether the game is drawn. The game is drawn iff the board is completely filled. This can be checked most efficiently by checking the final row of the board. If this row is completely filled, all other rows must have been filled, too.

Once you have a working implementation of Connect Four, try to improve the strength of your program by adding a non-trivial heuristic to evaluate non-terminal states. As an example of a non-trivial heuristic you can define a triple as a set of three marks of either Xs or Os in a row that is followed by a blank space. The blank space could also be between the marks. Now if there is a state s that has a triples of Xs and b triples of Os and the game is not finished, then define

$$\mathtt{value}(s, \mathtt{X}, \mathtt{limit}, \alpha, \beta) = \frac{a-b}{10} \quad \text{if } \mathtt{limit} = 0.$$

In order to implement a heuristic of this kind you have to change line 5 in the implementation of the function value shown in Figure 4.4 on page 74.

Chapter 5

Linear Regression

A great deal of the current success of artificial intelligence is due to recent advances in machine learning. In order to get a first taste of what machine learning is about, we introduce linear regression in this chapter, since linear regression is one of the most basic algorithms in machine learning. It is also the foundation for more advanced forms of machine learning like logistic regression and neural networks. Furthermore, linear regression is surprisingly powerful. Finally, many of the fundamental problems of machine learning can already be illustrated with linear regression. Therefore it is only natural that we begin our study of machine learning with the study of linear regression.

5.1 Simple Linear Regression

Assume we want to know how the engine displacement of a car engine relates to the fuel consumption of the car. Of course, we could try to create a theoretical model that relates the engine displacement to its fuel consumption. However, due to our lack of understanding of engine physics, this is not an option for us. Instead, we could try to take a look at different engines and compare their engine displacement with the corresponding fuel consumption. This way, we would collect a set of m observations of the form $\langle x_1, y_1 \rangle, \cdots, \langle x_m, y_m \rangle$ where x_i is the engine displacement of the engine in the i-th car, while y_i is the fuel consumption of the i-th car. We call x the independent variable, while y is the dependent variable. We define the vectors \mathbf{x} and \mathbf{y} as follows:

$$\mathbf{x} := \langle x_1, \cdots, x_m \rangle^{\top}$$
 and $\mathbf{y} := \langle y_1, \cdots, y_m \rangle^{\top}$.

Here, the operator $^{\top}$ is interpreted as the transpose operator, i.e. \mathbf{x} and \mathbf{y} are considered to be column vectors. In linear regression, we use a linear hypothesis and assume that the dependent variable y_i is related to the independent variable x_i via a linear equation of the form

$$y_i := \vartheta_1 \cdot x_i + \vartheta_0.$$

We do not expect this equation to hold exactly. The reason is that there are many other factors besides the engine displacement that influence the fuel consumption. For example, both the weight of a car and its aerodynamics certainly influence the fuel consumption. We want to calculate those values ϑ_0 and ϑ_1 such that the <u>mean squared error</u>, which is defined as

$$MSE(\vartheta_0, \vartheta_1) := \frac{1}{m-1} \cdot \sum_{i=1}^{m} (\vartheta_1 \cdot x_i + \vartheta_0 - y_i)^2, \tag{5.1}$$

is minimized. It can be shown that the solution to this minimization problem is given as follows:

$$\vartheta_1 = r_{x,y} \cdot \frac{s_y}{s_x} \quad \text{and} \quad \vartheta_0 = \bar{\mathbf{y}} - \vartheta_1 \cdot \bar{\mathbf{x}}.$$
(5.2)

This solution makes use of the values $r_{x,y}$, s_x , and s_y . In order to define these values, we first define the sample mean values $\bar{\mathbf{x}}$ and $\bar{\mathbf{y}}$ of \mathbf{x} and \mathbf{y} respectively, i.e. we have

$$\bar{\mathbf{x}} = \frac{1}{m} \cdot \sum_{i=1}^{m} x_i$$
 and $\bar{\mathbf{y}} = \frac{1}{m} \cdot \sum_{i=1}^{m} y_i$.

Furthermore, s_x and s_y are the sample standard deviations of **x** and y, i.e. we have

$$s_x = \sqrt{\frac{1}{m-1} \cdot \sum_{i=1}^m (x_i - \bar{\mathbf{x}})^2}$$
 and $s_y = \sqrt{\frac{1}{m-1} \cdot \sum_{i=1}^m (y_i - \bar{\mathbf{y}})^2}$.

Next, $Cov[\mathbf{x}, \mathbf{y}]$ is the sample covariance and is defined as

$$Cov[\mathbf{x}, \mathbf{y}] = \frac{1}{(m-1)} \cdot \sum_{i=1}^{m} (x_i - \bar{\mathbf{x}}) \cdot (y_i - \bar{\mathbf{y}}).$$

Finally, $r_{x,y}$ is the sample correlation coefficient that is defined as

$$r_{x,y} = \frac{1}{(m-1) \cdot s_x \cdot s_y} \cdot \sum_{i=1}^{m} (x_i - \bar{\mathbf{x}}) \cdot (y_i - \bar{\mathbf{y}}) = \frac{\operatorname{Cov}[\mathbf{x}, \mathbf{y}]}{s_x \cdot s_y}.$$

The number $r_{x,y}$ is also known as the Pearson correlation coefficient or Pearson's r. It is named after Karl Pearson (1857 – 1936). Note that the formula for the parameter ϑ_1 can be simplified to

$$\vartheta_1 = \frac{\sum_{i=1}^{m} (x_i - \bar{\mathbf{x}}) \cdot (y_i - \bar{\mathbf{y}})}{\sum_{i=1}^{m} (x_i - \bar{\mathbf{x}})^2}$$

$$(5.3)$$

This latter formula should be used to calculate ϑ_1 . However, the previous formula is also useful because it shows the the correlation coefficient is identical to the coefficient ϑ_1 , provided the variables \mathbf{x} and \mathbf{y} have been normalized so that their standard deviation is 1.

Exercise 13: Prove Equation 5.2 and Equation 5.3.

Hint: Take the partial derivatives of $MSE(\vartheta_0, \vartheta_1)$ with respect to ϑ_0 and ϑ_1 . In order to minimize the expression $MSE(\vartheta_0, \vartheta_1)$ with respect to ϑ_0 and ϑ_1 , these derivatives have to be set to 0.

5.1.1 Assessing the Quality of Linear Regression

Assume that we have been given a set of m observations of the form $\langle x_1, y_1 \rangle, \dots, \langle x_m, y_m \rangle$ and that we have calculated the parameters θ_0 and θ_1 according to Equation 5.2 and Equation 5.3. Provided that not all x_i have the same value, these formulæ will return two numbers for θ_0 and θ_1 that define a linear model for \mathbf{y} in terms of \mathbf{x} . However, at the moment we still lack a number that tell us how good this linear model really is. In order to judge the quality of the linear model given by

$$y = \vartheta_0 + \vartheta_1 \cdot x$$

we can compute the mean squared error according to Equation 5.1. However, the mean squared error is an absolute number that, by itself, is difficult to interpret. The reason is that the variable \mathbf{y} might be inherently noisy and we have to relate this noise to the mean squared error. Now the noise contained in \mathbf{y} can be measured by the sample variance of \mathbf{y} and is given by the formula

$$Var(y) := \frac{1}{m-1} \cdot \sum_{i=1}^{m} (y_i - \bar{y})^2. \tag{5.4}$$

If we compare this formula to the formula for the mean squared error

$$\mathrm{MSE}(\vartheta_0,\vartheta_1) := \frac{1}{m-1} \cdot \sum_{i=1}^m \bigl(\vartheta_1 \cdot x_i + \vartheta_0 - y_i\bigr)^2,$$

we see that the sample variance of \mathbf{y} is an upper bound for the mean squared error since we have

$$Var(\mathbf{y}) = MSE(\bar{\mathbf{y}}, 0),$$

i.e. the sample variance is the value that we would get for the mean squared error if we set ϑ_0 to the average value of \mathbf{y} and ϑ_1 to zero. Since ϑ_0 and ϑ_1 are chosen to minimize the mean squared error, we have

$$MSE(\vartheta_0, \vartheta_1) \leq MSE(\bar{\mathbf{y}}, 0) = Var(\mathbf{y}).$$

The mean squared error is an absolute value and, therefore, difficult to interpret. The fraction

$$\frac{\mathtt{MSE}(\vartheta_0,\vartheta_1)}{\mathtt{Var}(y)}$$

is called the proportion of the unexplained variance because it is the variance that is still left if we use our linear model to predict the values of \mathbf{y} given the values of \mathbf{x} . The proportion of the explained variance which is also known as the \mathbb{R}^2 statistic is defined as

$$R^2 := \frac{\text{Var}(\mathbf{y}) - \text{MSE}}{\text{Var}(\mathbf{y})} = 1 - \frac{\text{MSE}}{\text{Var}(\mathbf{y})}.$$
 (5.5)

Here MSE is short for $MSE(\vartheta_0, \vartheta_1)$ where we have substituted the values from equation 5.2 and 5.3. The R^2 statistic measures the quality of our model: If it is small, then our model does not explain the variation of the value of \mathbf{y} when the value of \mathbf{x} changes. On the other hand, if it is near to 100%, then our model does a good job in explaining the variation of \mathbf{y} when \mathbf{x} changes.

Since the formulæ for Var(y) and $MSE(\vartheta_0, \vartheta_1)$ have the same denominator m-1, this denominator can be cancelled when the \mathbb{R}^2 statistic is computed. To this end we define the total sum of squares TSS as

$$\mathtt{TSS} := \sum_{i=1}^m (y_i - \bar{\mathbf{y}})^2 = (m-1) \cdot \mathtt{Var}(\mathbf{y})$$

and the residual sum of squares RSS as

$$\mathrm{RSS} := \sum_{i=1}^m \bigl(\vartheta_1 \cdot x_i + \vartheta_0 - y_i\bigr)^2 = (m-1) \cdot \mathrm{MSE}(\vartheta_0, \vartheta_1).$$

Then the formula for the R² statistic can be written as

$$R^2 = 1 - \frac{RSS}{TSS}$$

This is the formula that we will use when we implement simple linear regression.

It should be noted that R^2 is the square of Pearson's r. The notation is a bit inconsistent since Pearson's r is written in lower case, while R^2 is written in upper case. Finally R^2 is also known as the coefficient of determination. It tells us to what is extend the value of the variable y is determined by the value of x.

5.1.2 Putting the Theory to the Test

In order to get a better feeling for linear regression, we want to test it to investigate the factors that determine the fuel consumption of cars. Figure 5.1 on page 79 shows the head of the data file "cars.csv" which I have adapted from the file

Figure 5.1 on page 79 shows the column headers and the first ten data entries contained in this file. Altogether, this file contains data of 392 different car models.

The file "cars.csv" is part of the data set accompanying the excellent book Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani [JWHT14]. The file "cars.csv" contains the fuel consumption of a number of different cars that were in widespread use during the seventies and early eighties of the last century. The first column of this data set list the miles per gallon, i.e. the number of miles a car can go with one gallon of gas. Note that this number is inverse to the fuel consumption: If a car A can go twice as many miles per gallon than another car B, then the fuel consumption of A is half of the fuel consumption of B. Furthermore, besides the miles per gallon, for every car the following other parameters are listed:

```
mpg, cyl, displacement,
                                hp, weight, acc, year, name
1
                      307.0, 130.0, 3504.0, 12.0,
   18.0,
           8,
                                                     70, chevrolet chevelle malibu
2
   15.0,
                      350.0, 165.0, 3693.0, 11.5,
                                                     70, buick skylark 320
           8,
                      318.0, 150.0, 3436.0, 11.0,
   18.0,
            8,
                                                     70, plymouth satellite
            8,
                      304.0, 150.0, 3433.0, 12.0,
   16.0.
                                                     70, amc rebel sst
                      302.0, 140.0, 3449.0, 10.5,
                                                     70, ford torino
   17.0,
            8,
   15.0,
            8,
                      429.0, 198.0, 4341.0, 10.0,
                                                     70, ford galaxie 500
                      454.0, 220.0, 4354.0, 9.0,
   14.0,
            8,
                                                     70, chevrolet impala
   14.0,
            8,
                      440.0, 215.0, 4312.0, 8.5,
                                                     70, plymouth fury iii
                      455.0, 225.0, 4425.0, 10.0,
   14.0,
            8,
                                                     70, pontiac catalina
   15.0,
                      390.0, 190.0, 3850.0, 8.5,
                                                     70, amc ambassador dpl
            8,
```

Figure 5.1: The head of the file cars.csv.

- 1. cyl is the number of cylinders,
- 2. displacement is the engine displacement in cubic inches,
- 3. hp is the engine power given in units of horsepower,
- 4. weight is the weight in pounds,
- 5. acc is the acceleration given as the time in seconds needed to accelerate from 0 miles per hour to 60 miles per hour,
- 6. year is the year in which the model was introduced, and
- 7. name is the name of the model.

Our aim is to determine which of these parameters can be used best to explain the fuel consumption of a car. To this end, I have written the program shown in Figure 5.2 on page 80. The procedure simple_linear_regression take three arguments:

- (a) fileName is the name of the file containing the data.

 It is assumed that this file is a Csv file containing the data that need to be analyzed.
- (b) types is a list of type names of the columns present in the Csv file. This is needed by SetlX in order to correctly interpret the data.
- (c) name is the column name that is to be used for linear regression, i.e. it specifies the column that contains the values for the independent variable x. The dependent variable y is assumed to be given in the first column of the Csv file.

The implementation of the procedure simple_linear_regression works as follows:

- 1. The function readTable is used to read the file specified in fileName. It returns the object csv which is of class Table. This class and the implementation of the function readTable is shown in Figure 5.3 on page 82. The object csv contains both the column names as well as the data that is present in the given file. The list types is needed in order to convert the strings that are read into their proper data types.
- 2. The function getData extracts the data from the object csv. Technically, data is a list of lists. The list data has the same length as there are lines in the file specified by fileName. Every single line in this file is converted into a list of entries of the appropriate types. These lists are the elements of the list data.
- 3. number is the number of data lines in the file specified by fileName, i.e. number is what we have called m in the formulæ given previously.

```
simple_linear_regression := procedure(fileName, types, name) {
                := readTable(fileName, types);
                := csv.getData();
        data
3
        number := #data;
        index := find_index(name, csv.getColumnNames());
        Y
                := [];
        Х
                := [];
        L
                := [1 .. number];
        for (i in L) {
            Y[i] := 1 / data[i][1];
10
            X[i] := data[i][index];
11
12
        xMean := +/ X / number;
        yMean := +/ Y / number;
14
                     (+/ [(X[i]-xMean)*(Y[i]-yMean) : i in L])
                   / (+/ [(X[i]-xMean)**2 : i in L]);
16
        theta0 := yMean - theta1 * xMean;
                := +/ [(Y[i] - yMean) ** 2 : i in L];
18
        RSS
                := +/ [(Y[i] - theta0 - theta1 * X[i]) ** 2 : i in L];
                := 1 - RSS / TSS;
20
        canvas := plot_createCanvas("Fuel consumption vs. $name$");
        plot_addBullets(canvas, [ [X[i], Y[i]] : i in L ], [0,0,255], 2.0);
22
        return R2;
23
    };
24
    find_index := procedure(x, List) {
25
        return arb({ idx : idx in [1 .. #List] | List[idx] == x });
26
    };
27
```

Figure 5.2: Simple Linear Regression

- 4. index is the index of the column that has the given name. For example, in the case of the file shown in Figure 5.1 on page 79, the index of the name "displacement" is 3 as the engine displacement is given in the third column of the file "cars.csv".
- 5. The values of the dependent variable y are stored in the list Y and the values of the independent variable x are stored in the list X.
- 6. The list L is used as an abbreviation so that iterations over all lists stored in data are simplified.
- 7. The for-loop fills the lists X and Y. Since the file "cars.csv" contains the miles per gallon in the first column labelled mpg, we need to convert this data into fuel consumption. As the fuel consumption is the reciprocal of the miles per gallon, the list Y is filled with the reciprocal of the first column of the file "cars.csv".
- 8. xMean is the mean value \bar{x} of the independent variable x.
- 9. yMean is the mean value $\bar{\mathbf{y}}$ of the dependent variable y.
- 10. The coefficient theta1 is computed according to Equation 5.3, which is repeated here for convenience:

$$\vartheta_1 = \frac{\sum_{i=1}^{m} (x_i - \bar{\mathbf{x}}) \cdot (y_i - \bar{\mathbf{y}})}{\sum_{i=1}^{m} (x_i - \bar{\mathbf{x}})^2}.$$

dependent variable	explained variance
displacement	0.75
cyl	0.70
hp	0.73
weight	0.78
acc	0.21
year	0.31

Table 5.1: Explained variance for various dependent variables.

11. The coefficient theta0 is computed according to Equation 5.2, which reads

$$\vartheta_0 = \bar{\mathbf{y}} - \vartheta_1 \cdot \bar{\mathbf{x}}.$$

12. TSS is the total sum of squares and is computed using the formula

$$TSS = \sum_{i=1}^{m} (y_i - \bar{\mathbf{y}})^2.$$

13. RSS is the residual sum of squares and is computed as

$$\mathtt{RSS} := \sum_{i=1}^m (\vartheta_1 \cdot x_i + \vartheta_0 - y_i)^2.$$

14. R2 is the R² statistic and measures the proportion of the explained variance. It is computed using the formula

$$R^2 = \frac{TSS - RSS}{TSS}.$$

- 15. The function plot_createCanvas creates a canvas that is used for plotting.
- 16. The function plot_addBullets plots data point onto the canvas. The second argument to this function is a list of pairs of the form

$$[\langle x_1, y_1 \rangle, \cdots, \langle x_m, y_m \rangle]$$

The pair $\langle x_i, y_1 \rangle$ is then plotted as a blue circle with radius 2.0 at the position $\langle x_i, y_i \rangle$.

Figure 5.3 on page 82 shows the implementation of the class table and the function readTable. This figure is only given for completeness.

Figure 5.4 on page 83 shows how to call the procedure simple_linear_regression. We need to define the types of the various columns that are present in the file "cars.csv". Next, for all those column names present in this file, we use this variable to compute the explained variance. The resulting values are shown in Table 5.1. It seems that, given the data in the file "cars.csv", the best indicator for the fuel consumption is the weight of a car. The displacement, the power hp of an engine, and the number of cylinders cyl are also good predictors. But notice that the weight is the real cause of fuel consumption: If a car has a big weight, it will also need a more powerful engine. Hence the variable hp is correlated with the variable weight and will therefore also provide a reasonable explanation of the fuel consumption, although the high engine power is not the most important cause of the fuel consumption.

```
class Table(columnNames, types, data) {
        mColumnNames := columnNames;
        mTypes
                      := types;
        mData
                      := data;
      static {
           getColumnNames := [ ] |-> mColumnNames;
           getTypes
                           := [ ] |-> mTypes;
           getData
                           := [ ] |-> mData;
           getRow
                           := [r] |-> mData[r];
                           := [ ] |-> #mData;
           getLength
10
11
           head := procedure(limit := 10) {
12
               print(mColumnNames);
               print(mTypes);
14
               for (i in [1 .. limit]) {
                   print(mData[i]);
           };
18
      }
20
    readTable := procedure(fileName, types) {
                     := readFile(fileName); // list of lines
22
         columnNames := split(allData[1], ',\s*');
23
                     := [];
         for (i in [2 .. #allData]) {
25
                       := split(allData[i], ',\s*');
26
             data[i-1] := [evalType(type, s) : [type, s] in types >< row];</pre>
27
        return Table(columnNames, types, data);
29
    };
30
    evalType := procedure(type, s) {
31
         switch {
             case
                      type == "double": return double(s);
33
                      type == "int"
                                      : return int(s);
             case
34
                      type == "string": return s;
35
             default: abort("unknown type $type$ in evalType");
         }
37
    };
```

Figure 5.3: The class Table.

5.1.3 Testing the Statistical Significance

In this section we answer the question of how to assess the statistical significance of our results. In the case of simple linear regression, the null hypothesis is given as follows:

 H_0 : There is no relationship between the variables x and y.

In order to compute the probability that the null hypothesis is true, we have to compute the t-statistic, which is given by the following formula:

$$t := |\vartheta_1| \cdot \sqrt{\frac{(m-2)}{\text{RSS}} \cdot \sum_{i=1}^{m} (x_i - \bar{\mathbf{x}})^2}.$$

$$(5.6)$$

Figure 5.4: Calling the procedure simple_linear_regression.

The t statistics is distributed according to Student's t-distribution with m-2 degrees of freedom. The cumulative Student's t-distribution can be computed via the function

```
stat_studentCDF(t, \nu),
```

where t is the value of the t-statistic and ν is the number of degrees of freedom. If we substitute $\nu := m-2$, then the expression

```
1 - \mathtt{stat\_studentCDF}(t, \nu),
```

computes the probability that the null hypothesis is true. This probability is also known as the p-value. If the p-value is small, e.g. less than 0.01, then the null hypothesis is refuted and we can conclude that there is some relationship between x and y. In the example previously discussed, i.e. the example relating the fuel consumption of a car to various other parameters, the p-values are all very small, i.e. less than $2 \cdot 10^{-16}$. This is due to the fact that we have had enough data at our disposal: As a rule of thumb it can be said that once we have more than 30 pairs $\langle x_i, y_i \rangle$ and there is indeed a relationship between x and y, then simple linear regression will detect this relationship.

5.2 General Linear Regression

In practise, it is rarely the case that a given observed variable y only depends on a single variable x. To take the example of the fuel consumption of a car further, in general we would expect that the fuel consumption of a car depends not only on the mass of the car but is also related to the other parameters. To this end, we present the theory of general linear regression. In a general regression problem we are given a list of m pairs of the form $\langle \mathbf{x}^{(i)}, y^{(i)} \rangle$ where $\mathbf{x}^{(i)} \in \mathbb{R}^p$ and $y^{(i)} \in \mathbb{R}$ for all $i \in \{1, \dots, m\}$. The number p is called the number of features, while the pairs are called the training examples. Our goal is to compute a function

```
F: \mathbb{R}^p \to \mathbb{R}
```

such that $F(\mathbf{x}^{(i)})$ approximates $y^{(i)}$ as precisely as posssible for all $i \in \{1, \dots, m\}$, i.e. we want to have

$$\forall i \in \{1, \cdots, m\} : F(\mathbf{x}^{(i)}) \approx y^{(i)}.$$

In order to make the notation $F(\mathbf{x}^{(i)}) \approx y^{(i)}$ more precise, we define the mean squared error

$$MSE := \frac{1}{m-1} \cdot \sum_{i=1}^{m} \left(F(\mathbf{x}^{(i)}) - y^{(i)} \right)^{2}. \tag{5.7}$$

Then, given the list of training examples $[\langle \mathbf{x}^{(1)}, y^{(1)} \rangle, \cdots, \langle \mathbf{x}^n, y^{(n)} \rangle]$, our goal is to minimize MSE. In order to proceed, we need to have a model for the function F. The simplest model is a linear model, i.e. we assume that F is given as

$$F(\mathbf{x}) = \sum_{j=1}^{p} w_j \cdot x_j + b = \mathbf{x}^{\top} \cdot \mathbf{w} + b$$
 where $\mathbf{w} \in \mathbb{R}^p$ and $b \in \mathbb{R}$.

Here, the expression $\mathbf{x}^{\top} \cdot \mathbf{w}$ denotes the matrix product of the vector \mathbf{x}^{\top} , which is viewed as a 1-by-m matrix, and the vector \mathbf{w} . Alternatively, this expression could be interpreted as the dot product of the vector \mathbf{x} and the vector \mathbf{w} . At this point you might wonder why it is useful to introduce matrix notation here. The reason is that this notation shortens the formula and, furthermore, is more efficient to implement since most programming languages used in machine learning have special library support for matrix operations. Provided the computer is equipped with a graphics card, some programming languages are even able to delegate matrix operations to the graphics unit. This results in a considerable speed-up.

The definition of F given above is the model used in linear regression. Here, \mathbf{w} is called the weight vector and b is called the bias. It turns out that the notation can be simplified if we extend the p-dimensional feature vector \mathbf{x} to an p+1-dimensional vector \mathbf{x}' such that

$$x'_j := x_j$$
 for all $j \in \{1, \dots, p\}$ and $x'_{m+1} := 1$.

To put it in words, the vector \mathbf{x}' results from the vector \mathbf{x} by appending the number 1:

$$\mathbf{x}' = \langle x_1, \cdots, x_p, 1 \rangle^{\top}$$
 where $\langle x_1, \cdots, x_p \rangle = \mathbf{x}^{\top}$.

Furthermore, we define

$$\mathbf{w}' := \langle w_1, \cdots, w_p, b \rangle^{\top}$$
 where $\langle w_1, \cdots, w_p \rangle = \mathbf{w}^{\top}$.

Then we have

$$F(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \mathbf{w}' \cdot \mathbf{x}'.$$

Hence, the bias has been incorporated into the weight vector at the cost of appending the number 1 at the end of input vector. As we want to use this simplification, from now on we assume that the input vectors $\mathbf{x}^{(i)}$ have all been extended so that their last component is 1. Using this assumption, we define the function F as

$$F(\mathbf{x}) := \mathbf{x}^{\top} \cdot \mathbf{w}.$$

Now equation (5.7) can be rewritten as follows:

$$MSE(\mathbf{w}) = \frac{1}{m-1} \cdot \sum_{i=1}^{m} \left(\left(\mathbf{x}^{(i)} \right)^{\top} \cdot \mathbf{w} - y^{(i)} \right)^{2}. \tag{5.8}$$

Our aim is to rewrite the sum appearing in this equation as a scalar product of a vector with itself. To this end, we first define the vector **y** as follows:

$$\mathbf{y} := \langle y^{(1)}, \cdots, y^{(m)} \rangle^{\top}.$$

Note that $\mathbf{y} \in \mathbb{R}^m$ since it has a component for all of the m training examples. Next, we define the design matrix X as follows:

$$X := \left(egin{array}{c} \left(\mathbf{x}^{(1)}
ight)^{ op} \ dots \ \left(\mathbf{x}^{(m)}
ight)^{ op} \end{array}
ight)$$

Defined this way, the row vectors of the matrix X are the vectors $\mathbf{x}^{(i)}$ transposed. Now we have the following:

$$X \cdot \mathbf{w} - \mathbf{y} = \begin{pmatrix} (\mathbf{x}^{(1)})^{\top} \\ \vdots \\ (\mathbf{x}^{(m)})^{\top} \end{pmatrix} \cdot \mathbf{w} - \mathbf{y} = \begin{pmatrix} (\mathbf{x}^{(1)})^{\top} \cdot \mathbf{w} - y_1 \\ \vdots \\ (\mathbf{x}^{(m)})^{\top} \cdot \mathbf{w} - y_m \end{pmatrix}$$

Taking the square of the vector $X \cdot \mathbf{w} - \mathbf{y}$ we discover that we can rewrite equation (5.8) as follows:

$$MSE(\mathbf{w}) = \frac{1}{m-1} \cdot (X \cdot \mathbf{w} - \mathbf{y})^{\top} \cdot (X \cdot \mathbf{w} - \mathbf{y}). \tag{5.9}$$

5.2.1 Some Useful Gradients

In the last section, we have computed the mean squared error $MSE(\mathbf{w})$ using equation (5.9). Our goal is to minimize the $MSE(\mathbf{w})$ by choosing the weight vector \mathbf{w} appropriately. A necessary condition for $MSE(\mathbf{w})$ to be minimal is

$$\nabla MSE(\mathbf{w}) = \mathbf{0},$$

i.e. the gradient of $MSE(\mathbf{w})$ with respect to \mathbf{w} needs to be zero. In order to prepare for the computation of $\nabla MSE(\mathbf{w})$, we first compute the gradient of two simpler functions.

Computing the Gradient of $f(\mathbf{x}) = \mathbf{x}^{\top} \cdot C \cdot \mathbf{x}$

Suppose the function $f: \mathbb{R}^n \to \mathbb{R}$ is defined as

$$f(\mathbf{x}) := \mathbf{x}^{\top} \cdot C \cdot \mathbf{x}$$
 where $C \in \mathbb{R}^{n \times n}$.

If we write the matrix C as $C = (c_{i,j})_{\substack{i=1,\dots,n\\j=1,\dots,n}}$ and the vector \mathbf{x} as $\mathbf{x} = \langle x_1,\dots,x_n \rangle^\top$, then $f(\mathbf{x})$ can be computed as follows:

$$f(\mathbf{x}) = \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} c_{i,j} \cdot x_j = \sum_{i=1}^{n} \sum_{i=1}^{n} x_i \cdot c_{i,j} \cdot x_j.$$

We compute the partial derivative of f with respect to x_k and use the product rule together with the definition of the Kronecker delta $\delta_{i,j}$, which is defined as 1 if i = j and as 0 otherwise:

$$\frac{\partial f}{\partial x_k} = \sum_{i=1}^n \sum_{j=1}^n \left(\frac{\partial x_i}{\partial x_k} \cdot c_{i,j} \cdot x_j + x_i \cdot c_{i,j} \cdot \frac{\partial x_j}{\partial x_k} \right)$$

$$= \sum_{i=1}^n \sum_{j=1}^n \left(\delta_{i,k} \cdot c_{i,j} \cdot x_j + x_i \cdot c_{i,j} \cdot \delta_{j,k} \right)$$

$$= \sum_{j=1}^n c_{k,j} \cdot x_j + \sum_{i=1}^n x_i \cdot c_{i,k}$$

$$= \left(C \cdot \mathbf{x} \right)_k + \left(C^\top \cdot \mathbf{x} \right)_k$$

Hence we have shown that

$$\nabla f(\mathbf{x}) = (C + C^{\top}) \cdot \mathbf{x}.$$

If the matrix C is symmetric, i.e. if $C = C^{\top}$, this simplifies to

$$\nabla f(\mathbf{x}) = 2 \cdot C \cdot \mathbf{x}.$$

Next, if the function $q: \mathbb{R}^n \to \mathbb{R}$ is defined as

$$g(\mathbf{x}) := \mathbf{b}^{\top} \cdot A \cdot \mathbf{x}$$
, where $\mathbf{b} \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$,

then a similar calculation shows that

$$\nabla q(\mathbf{x}) = A^{\top} \cdot \mathbf{b}.$$

Exercise 14: Prove this equation.

5.2.2 Deriving the Normal Equation

Next, we derive the so called normal equation for linear regression. To this end, we first expand the product in equation (5.9):

$$\begin{aligned} \mathsf{MSE}(\mathbf{w}) &= \frac{1}{m-1} \cdot \left(X \cdot \mathbf{w} - \mathbf{y} \right)^\top \cdot \left(X \cdot \mathbf{w} - \mathbf{y} \right) \\ &= \frac{1}{m-1} \cdot \left(\mathbf{w}^\top \cdot X^\top - \mathbf{y}^\top \right) \cdot \left(X \cdot \mathbf{w} - \mathbf{y} \right) & \text{since } (A \cdot B)^\top = B^\top \cdot A^\top \\ &= \frac{1}{m-1} \cdot \left(\mathbf{w}^\top \cdot X^\top \cdot X \cdot \mathbf{w} - \mathbf{y}^\top \cdot X \cdot \mathbf{w} - \mathbf{w}^\top \cdot X^\top \cdot \mathbf{y} + \mathbf{y}^\top \cdot \mathbf{y} \right) \\ &= \frac{1}{m-1} \cdot \left(\mathbf{w}^\top \cdot X^\top \cdot X \cdot \mathbf{w} - 2 \cdot \mathbf{y}^\top \cdot X \cdot \mathbf{w} + \mathbf{y}^\top \cdot \mathbf{y} \right) & \text{since } \mathbf{w}^\top \cdot X^\top \cdot \mathbf{y} = \mathbf{y}^\top \cdot X \cdot \mathbf{w} \end{aligned}$$

The fact that

$$\mathbf{w}^{\top} \cdot X^{\top} \cdot \mathbf{y} = \mathbf{y}^{\top} \cdot X \cdot \mathbf{w}$$

might not be immediately obvious. It follows from two facts:

1. For two matrices A and B such that the matrix product $A \cdot B$ is defined we have

$$(A \cdot B)^{\top} = B^{\top} \cdot A^{\top}.$$

2. The matrix product $\mathbf{w}^{\top} \cdot X^{\top} \cdot \mathbf{y}$ is a real number. The transpose r^{\top} of a real number r is the number itself, i.e. $r^{\top} = r$ for all $r \in \mathbb{R}$. Therefore, we have

$$\mathbf{w}^\top \cdot X^\top \cdot \mathbf{y} = \left(\mathbf{w}^\top \cdot X^\top \cdot \mathbf{y}\right)^\top = \mathbf{y}^\top \cdot X \cdot \mathbf{w}.$$

Hence we have shown that

$$MSE(\mathbf{w}) = \frac{1}{m-1} \cdot \left(\mathbf{w}^{\top} \cdot \left(X^{\top} \cdot X \right) \cdot \mathbf{w} - 2 \cdot \mathbf{y}^{\top} \cdot X \cdot \mathbf{w} + \mathbf{y}^{\top} \cdot \mathbf{y} \right)$$

$$(5.10)$$

holds. The matrix $X^{\top} \cdot X$ used in the first term is symmetric because

$$(X^{\top} \cdot X)^{\top} = X^{\top} \cdot (X^{\top})^{\top} = X^{\top} \cdot X.$$

Using the results from the previous section we can now compute the gradient of $MSE(\mathbf{w})$ with respect to \mathbf{w} . The result is

$$\nabla \texttt{MSE}(\mathbf{w}) = \frac{2}{m-1} \cdot \left(X^\top \cdot X \cdot \mathbf{w} - X^\top \cdot \mathbf{y} \right).$$

If the squared error $MSE(\mathbf{w})$ has a minimum for the weights \mathbf{w} , then we must have

$$\nabla \texttt{MSE}(\mathbf{w}) = \mathbf{0}.$$

This leads to the equation

$$\frac{2}{m-1} \cdot \left(X^{\top} \cdot X \cdot \mathbf{w} - X^{\top} \cdot \mathbf{y} \right) = \mathbf{0}.$$

This equation can be rewritten as

$$(5.11)$$

This equation is called the normal equation.

Remark: Although the matrix $X^{\top} \cdot X$ will often be invertible, for numerical reasons it is not advisable to rewrite the normal equation as

$$\mathbf{w} = (X^{\top} \cdot X)^{-1} \cdot X^{\top} \cdot \mathbf{y}.$$

Instead, when solving the normal equation we will use the Setl function $\mathtt{la_solve}(A,b)$, which takes a matrix $A \in \mathbb{R}^{n \times n}$ and a vector $\mathbf{b} \in \mathbb{R}^n$ and solves the equation

$$A \cdot \mathbf{x} = \mathbf{b}$$
.

5.2.3 Testing the Statistical Significance

The F-statistic is defined according to the following formula:

$$F = \frac{TSS - RSS}{RSS} \cdot \frac{m - p - 1}{p} \tag{5.12}$$

The F-statistic is distributed according to the Fisher-Snedecor-distribution with p-1 degrees of freedom in the nominator and m-p degrees of freedom in the denominator.

5.2.4 Implementation

Figure 5.5 on page 87 shows an implementation of general linear regression. The procedure

```
run\_linear\_regression(f, t)
```

takes a file name f and a list of types t as its input.

```
run_linear_regression := procedure(fileName, types) {
               := readTable(fileName, types);
2
        data
               := csv.getData();
        number := #data;
        xList := [];
        yList := [];
        for (i in [1 .. number]) {
            yList[i] := 1 / data[i][1];
            xList[i] := la_vector(data[i][2..-2] + [1.0]);
        }
10
        X := la_matrix(xList);
11
        y := la_vector(yList);
12
        w := la_solve(X! * X, X! * y);
13
        d := X * w - y;
14
        RSS
              := d * d;
15
        yMean := +/ yList / number;
16
              := +/ [(yList[i] - yMean) ** 2 : i in [1 .. number]];
17
              := 1 - RSS / TSS;
        return R2;
19
    };
```

Figure 5.5: General linear regression.

- 1. It reads the file and stores the resulting Table object in the variable csv.
- 2. The data from this object is stored as a list of lists in the variable data.
- 3. number is the number of training examples.
- 4. **xList** stores the data of the independent variable x. Therefore, **xList** is a list of vectors. Note that we have extended the data vectors by putting the number 1.0 at the end of every vector.
- 5. yList stores the data of the depend variable y.
- 6. The data in xList is then stored in the matrix X.
- 7. The data in yList is stored in the vector y.

- 8. The normal equation is formulated and solved using the function la_solve. Note that the postfix-operator "!" computes the transpose of a matrix when applied to a matrix.
- 9. The variable d is the difference between the predictions of the linear model and the observed values y.
- 10. RSS is the residual sum of squares.
- 11. yMean is the mean value of the variable y.
- 12. TSS is the total sum of squares.
- 13. R2 is the proportion of the explained variance.

When we run the program shown in Figure 5.5 on page 87 with the data stored in cars.csv, which had been discussed previously, then the proportion of explained variance is 81%. Considering that our data does not take account of the aerodynamics of the cars, this seems like a reasonable result.

Exercise 15: The file "advertising.csv", which is available at

```
https://github.com/karlstroetmann/Artificial-Intelligence/blob/master/SetlX/advertising.csv,
```

contains data about advertising. Concretely, let us think that this data lists the amount of money that has been spent in advertising a luxury refrigerator that is able to detect the amount of food stored and that is able to reorder supplies with AmazonFreshTM. Every line of this Csv file has five entries:

- (a) The first column is interpreted as the number of a store. All together, there are 200 stores that have sold this refrigerator. It is assumed that all of these stores are located in different counties.
- (b) The second column gives the amount of money spent in TV advertising in thousands of dollar for the store in that county.
- (c) The third column gives the amount of money spent in radio advertising in thousands of dollar.
- (d) The fourth column gives the amount of money spent in newspaper advertising in thousands of dollar.
- (e) The fifth column gives the number of refrigerators in thousands that have been sold in the corresponding store.

With the exception of the first column, all columns contain floating point numbers. Assume you are the marketing manager that is responsible for the advertising campaign. Your task is to evaluate the effectiveness of the different type of advertisements. To this end, answer the following questions.

1. Should you spend more money on newspaper adds and less on TV adds or is it the other way around? Or are radio advertisements the way to go? Assume that your advertising budget is fixed and that you want to sell as many refrigerators as possible.

Use linear regression to solve this question.

2. At this point, you will have discovered that only two of the three different types of advertisements contribute to the number of sales. Check, whether there is an interaction between these two types of advertisements. For example, check whether TV adds have a positive or negative effect on the effectiveness of radio adds.

You can use a product term as a new features in your linear regression model to answer this question. For example, you can include the product of money spend in TV adds and money spend in radio adds as a new feature.

3. In order to further increase the accuracy of our model, we can use a quadratic model. If we have only two independent features x and y, a quadratic model has the following form:

$$f(x,y) = w_1 \cdot x^2 + w_2 \cdot x \cdot y + w_3 \cdot y^2 + w_4 \cdot x + w_5 \cdot y + w_6.$$

Compute the fraction of the explained variance that is achieved if a quadratic model is used to predict the sales.

4. In the previous part of the exercise you will have discovered that for a quadratic model, the fraction of the explained variance is quite high. Hence, the quadratic model seems to be accurate. Now that you have found an accurate model, by how much can you increase the sales by optimizing the strategy? Assume that for every county the company wants to spend the same amount of money for advertisement that has been spent previously for that county.

Note: I have stolen the file "advertising.csv" from the data set accompanying the book "Introduction to Statistical Learning" [JWHT14]. As far as I understand it, the data contained in this file is fictional data, i.e. it has been made up.

Partial Solution to part 4: The total budget for advertising in a given county is fixed. Assume this total budget is called b. If x is the amount of money spent for TV advertisements and y is the amount of money spent for radio advertisements, then we must have

$$x + y = b$$
 and therefore $y = b - x$.

Hence the number of units sold is given by the formula

$$g(x) := f(x, b - x) = w_1 \cdot x^2 + w_2 \cdot x \cdot (b - x) + w_3 \cdot (b - x)^2 + w_4 \cdot x + w_5 \cdot (b - x) + w_6.$$

In order to compute the value x that maximizes g we have to compute the derivative of g(x):

$$\frac{dg}{dx}(x) = 2 \cdot w_1 \cdot x + w_2 \cdot b - 2 \cdot w_2 \cdot x + 2 \cdot w_3 \cdot (x - b) + w_4 - w_5$$
$$= 2 \cdot (w_1 - w_2 + w_3) \cdot x + w_2 \cdot b - 2 \cdot w_3 \cdot b + w_4 - w_5$$

This expression is 0 if and only if

$$x = \frac{-w_2 \cdot b + 2 \cdot w_3 \cdot b - w_4 + w_5}{2 \cdot (w_1 - w_2 + w_3)}.$$

It turns out that when the advertising strategy is optimized as outline above, the quadratic model predicts a sale of $5\,511\,887$ units, while the number of units sold previously was $2\,804\,500$ units. Hence, the optimized strategy is expected to sell about $97\,\%$ units more than the strategy applied previously.

Chapter 6

Classification

One of the earliest application of artificial intelligence is classification. A good example of classification is spam detection. A system for spam detection classifies an email as either spam or not spam. To do so, it first computes various features of the email and then uses these features to determine whether the email is likely to be spam. For example, a possible feature would be the number of occurrences of the word "pharmacy" in the text of the email.

6.1 Introduction

Formally, the classification problem in machine learning can be stated as follows: We are given a set of objects $S := \{o_1, \dots, o_n\}$ and a set of classes $C := \{c_1, \dots, c_k\}$. Furthermore, there exists a function

$$\mathtt{classify}: S \to C$$

that assigns a class classify(o) to every object $o \in S$. The set S is called the sample space. In the example of spam detection, the sample space S is the set of all emails that we might receive, i.e. S is the set of all strings, while

$$C = \{ \text{spam}, \text{ham} \}.$$

If classify(o) = spam, we consider the email o to be spam, while we would consider it a genuine message otherwise. Our goal is to compute the function classify. In order to do this, we use an approach known as supervised learning: We take a subset $S_{Train} \subseteq S$ of emails where we already know whether the emails are spam or not. This set S_{Train} is called the training set. Next, we define a set of D features for every $o \in S$. These features have to be computable, i.e. we must have a function

feature:
$$S \times \{1, \dots, D\} \to \mathbb{R}$$

such that feature(o, j) computes the j-th feature and we have to be able to implement this function with reasonable efficiency. In general, the values of the features are real values. However, there are cases where these values are just Booleans. If

$$feature(o, j) \in \mathbb{B}$$
 for all $o \in S$,

then the j-th feature is called a binary feature. If we encode false as -1 and true as +1, then the set of Boolean values \mathbb{B} can be considered a subset of \mathbb{R} and hence Boolean features can be considered as real numbers. For example, in the case of spam detection, the first feature could be the occurrence of the string "pharmacy". In this case, we would have

$$\mathtt{feature}(o,1) := \left\{ \begin{array}{ll} +1 & \text{if } \mathtt{pharmacy} \in o, \\ -1 & \text{if } \mathtt{pharmacy} \not \in o, \end{array} \right.$$

i.e. the first feature would be to check whether the email o contains the string "pharmacy". If we want to be more precise, we can instead define the first feature as

$$feature(o, 1) := count("pharmacy", o),$$

i.e. we would count the number of occurrences of the string "pharmacy" in our email o. As the value of

is always a natural number, in this case the first feature would be a discrete feature. However, we can be even more precise than just counting the number of occurrences of "pharmacy". After all, there is a difference if the string "pharmacy" occurs once in an email containing but a hundred characters or whether is occurs once in an email with a length of several thousand characters. To this end, we would then define the first feature as

$$\mathtt{feature}(o,1) := \frac{\mathtt{count}(\mathtt{"pharmacy"},o)}{\mathtt{\#}o},$$

where #o defines the number of characters in the string o. In this case, the first feature would be a continuous feature and as this is the most general case, unless stated otherwise, we deal with the continuous case.

Having defined the features, we next need a model of the function classify that tries to approximate the function classify via the features. This model is given by a function

$$model: \mathbb{R}^D \to C$$

such that

$$model(feature(o, 1), \cdots, feature(o, D)) \approx classify(o).$$

Using the function model, we can than approximate the function classify using a function guess that is defined as

$$guess(o) := model(feature(o, 1), \dots, feature(o, D))$$

Most of the time, the function guess will only approximate the function classify, i.e. we will have

$$guess(o) = classify(o)$$

for most objects of $o \in S$ but not for all of them. The accuracy of our model is then defined as the fraction of those objects that are classified correctly, i.e.

$$\mathtt{accuracy} := \frac{ \#\{o \in S \mid \mathtt{guess}(o) = \mathtt{classify}(o)\} }{ \#S}.$$

If the set S is infinite, this equation has to be interpreted as a limit, i.e. we can define S_n as the set of strings that have a length of at most n. Then, the accuracy can be defined as follows:

$$\mathtt{accuracy} := \lim_{n \to \infty} \frac{\#\{o \in S_n \mid \mathtt{guess}(o) = \mathtt{classify}(o)\}}{\#S_n}.$$

The function model is usually determined by a set of parameters or weights w. In this case, we have

$$model(x) = model(x; w)$$

where \mathbf{x} is the vector of features, while \mathbf{w} is the vector of weights. Later, when we introduce logistic regression, we will assume that the number of weights is the same as the number of features. Then, the weights specify the relative importance of the different features.

When it comes to the choice of model, it is important to understand that, at least in practical applications, <u>all</u> models are wrong. Nevertheless, <u>some</u> models are useful. There are two reasons for this:

- 1. We do not fully understand the function classify that we want to approximate by the function model.
- 2. The function classify is so complex, that even if we could compute it exactly, the resulting model would be much too complicated.

The situation is similar in physics: Let us assume that we intend to model the fall of an object. A model that is a hundred percent accurate would have to include the following forces:

- (a) gravitational acceleration,
- (b) air friction,

- (c) tidal forces, i.e. the effects that the rotation of the earth has on moving objects,
- (d) celestial forces, i.e. the gravitational acceleration caused by celestial objects like the moon or the sun.
- (e) In case we have a metallic object we have to be aware of the magnetic forces caused by the geomagnetic field.
- (f) To be fully accurate, we might have to include corrections from relativistic physics and even quantum physics.
- (g) As physics is not a closed subject, there might be other forces at work which we still do not know of.

Hence, a correct model would be so complicated that it would be unmanageable and therefore useless.

Let us summarize our introductory discussion of machine learning in general and classification in particular. A set S of objects and a set C of classes are given. Our goal is to approximate a function

$$classify: S \rightarrow C$$

using certain features of our objects. The function classify is then approximated using a function model as follows:

```
model(feature(o, 1), \cdots, feature(o, D); \mathbf{w}) \approx classify(o).
```

The model depends on a vector of parameters \mathbf{w} . In order to learn these parameters, we are given a training set S_{Train} that is a subset of S. As we are dealing with supervised learning, the function classify is known for all objects $o \in S_{Train}$. Our goal is to determine the parameters \mathbf{w} such that the number of mistakes we make on the training set is minimized.

6.1.1 Notation

We conclude this introductory section by fixing some notation. Let us assume that the objects $o \in S_{Train}$ are numbered from 1 to N, while the features are numbered from 1 to D. Then we define

- 1. $\mathbf{x}_i := [\mathtt{feature}(o_i, 1), \cdots, \mathtt{feature}(o_i, D)]$ for all $i \in \{1, \cdots, N\}$. i.e. \mathbf{x}_i is a D-dimensional vector that collects the features of the i-th training object.
- 2. $x_{i,j} := \mathtt{feature}(o_i, j)$ for all $i \in \{1, \dots, N\}$ and $j \in \{1, \dots, D\}$. i.e. $x_{i,j}$ is the j-th feature of the i-th object.
- 3. $y_i := \mathtt{classify}(o_i)$ for all $i \in \{1, \dots, N\}$ i.e. y_i is the class of the *i*-th object.

Mathematically, our goal is now to maximize the accuracy of our model as a function of the parameters w.

6.1.2 Applications of Classification

Besides spam detection, there are many other classification problems that can be solved using machine learning. To give just one more example, imagine a general practitioner that receives a patient and examines his symptoms. In this case, the symptoms can be seen as the features of the patient. For example, these features could be

- (a) body temperature,
- (b) blood pressure,
- (c) heart rate,
- (d) body weight,
- (e) breathing difficulties,

(f) age,

to name but a few of the possible features. Based on these symptoms, the general practitioner would then decide on an illness, i.e. the set of classes for the classification problem would be

Hence, the task of disease diagnosis is a classification problem. This was one of the earliest problem that was tackled by artificial intelligence. As of today, computer-aided diagnosis has been used for more than 40 years in many hospitals. There are a number of diseases that today can be diagnosed more accurately by a computer than by a specialist. One such example is the diagnosis of heart disease. Other examples of classifications are the following:

- 1. image recognition,
- 2. speech recognition,
- 3. credit card fraud detection,
- 4. credit approval.

6.2 Digression: The Method of Gradient Ascent

In machine learning, it is often the case that we have to find either the maximum or the minimum of a function

$$f: \mathbb{R}^n \to \mathbb{R}$$
.

For example, when we discuss logistic regression in the next section, we will have to find the maximum of a function. First, let us introduce the arg max function. The idea is that

$$\widehat{\mathbf{x}} = \arg\max_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

is that value of $\mathbf{x} \in \mathbb{R}^n$ that maximizes $f(\mathbf{x})$. Formally, we have

$$\forall \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) \le f \Big(\arg \max_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \Big).$$

Of course, the function argmax is only defined when the maximum is unique. If the function f is differentiable, we know that a necessary condition for a vector $\hat{\mathbf{x}} \in \mathbb{R}^n$ to satisfy

$$\hat{\mathbf{x}} = \arg \max_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
 is that we must have $\nabla f(\hat{\mathbf{x}}) = \mathbf{0}$,

i.e. the gradient of f, which we will write as ∇f , vanishes at the maximum. Remember that the gradient of f is defined as

$$\nabla f := \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}.$$

Unfortunately, in many cases the equation

$$\nabla f(\widehat{\mathbf{x}}) = \mathbf{0}$$

cannot be solved explicitly. This is already true in the one-dimensional case, i.e. if n = 1. For example, consider the function $f : \mathbb{R} \to \mathbb{R}$ that is defined as

$$f(x) := \sin(x) - \frac{1}{2} \cdot x^2.$$

This function is shown in Figure 6.1 on page 94. From the graph of the function it is obvious that this function has a maximum somewhere between 0.6 and 0.8. In order to compute this maximum, we can compute the

Figure 6.1: The function $x \mapsto \sin(x) - \frac{1}{2} \cdot x^2$.

derivative of f. This derivative is given as

$$f'(x) = \cos(x) - x$$

As it happens, the equation $\cos(x) - x = 0$ does not seem to have a solution in closed form. Hence, we can only approximate the solution numerically via a sequence of numbers $(x_n)_{n \in \mathbb{N}}$ such that the limit $\lim_{n \to \infty} x_n$ exists and is a solution of the equation $\cos(x) - x = 0$, i.e. we want to have

$$\cos\left(\lim_{n\to\infty}x_n\right) = \lim_{n\to\infty}x_n.$$

The method of gradient ascent is a numerical method that can be used to find the maximum of a function

$$f: \mathbb{R}^n \to \mathbb{R}$$

numerically. The basic idea is to take a vector $\mathbf{x}_0 \in \mathbb{R}^n$ as the start value and define a sequence of vectors $(\mathbf{x}_n)_{n \in \mathbb{N}}$ such that we have

$$f(\mathbf{x}_{n+1}) > f(\mathbf{x}_n)$$
 for all $n \in \mathbb{N}$.

Hopefully, this sequence will converge against $\hat{\mathbf{x}} = \arg \max_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$. If we do not really know where to start our search, we define $\mathbf{x}_0 := \mathbf{0}$. In order to compute \mathbf{x}_{n+1} given \mathbf{x}_n , the idea is to move from \mathbf{x}_n in that direction where we have the biggest change in the values of f. This direction happens to be the gradient of f at \mathbf{x}_n . Therefore, the definition of \mathbf{x}_{n+1} is given as follows:

$$\mathbf{x}_{n+1} := \mathbf{x}_n + \alpha \cdot \nabla f(\mathbf{x}_n)$$
 for all $n \in \mathbb{N}_0$.

Here, α is called the step size also known as the learning rate. It determines by how much we move in the direction of the gradient. In practise, it is best to adapt the step size dynamically during the iterations. Figure 6.2 on page 96 shows how this is done. The function findMaximum takes four arguments:

1. f is the function that is to be maximized. It is assumed that f takes a vector $\mathbf{x} \in \mathbb{R}^n$ as its input and that it returns a real number.

- 2. gradF is the gradient of f. It takes a vector $\mathbf{x} \in \mathbb{R}^n$ as its input and returns the vector $\nabla \mathbf{f}(\mathbf{x})$.
- 3. start is a vector from \mathbb{R}^n that is used as the value of \mathbf{x}_0 . In practice, we will often use $\mathbf{0} \in \mathbb{R}^n$ as the start vector.
- 4. eps is the precision that we need for the maximum. We will have to say more on how eps is related to the precision later. As we are using double precision floating point arithmetic, it won't make sense to use a value for eps that is smaller than 10^{-15} .

Next, let us discuss the implementation of gradient ascent.

- 1. \mathbf{x} is initialized with the parameter start. Hence, start is really the same as \mathbf{x}_0 .
- 2. fx is the value that the function f takes for the argument x.
- 3. alpha is the learning rate. We initialize alpha as 1.0. The learning rate will be adapted dynamically.
- 4. The body of the while loop starting in line 5 executes one iteration of gradient ascent.
- 5. In each iteration, we store the values of \mathbf{x}_n and $f(\mathbf{x}_n)$ in the variables x01d and f01d. This is needed since we need to ensure that the values of $f(\mathbf{x}_n)$ are increasing.
- 6. Next, we compute \mathbf{x}_{n+1} in line 7 using the formula

$$\mathbf{x}_{n+1} := \mathbf{x}_n + \alpha \cdot \nabla f(\mathbf{x}_n).$$

- 7. The corresponding value $f(\mathbf{x}_{n+1})$ is computed in line 8.
- 8. If we are unlucky, $f(\mathbf{x}_{n+1})$ is smaller than $f(\mathbf{x}_n)$. This happens if the step size α is too large. Hence, in this case we decrease the value of α , discard both \mathbf{x}_{n+1} and $f(\mathbf{x}_{n+1})$ and start over again.
- 9. Otherwise, \mathbf{x}_{n+1} is a better approximation of the maximum than \mathbf{x}_n . In order to increase the speed of the convergence of our algorithm we will then increase the learning rate α by 20%.
- 10. The idea of our implementation is to stop the iteration when the relative difference of $f(\mathbf{x}_{n+1})$ and $f(\mathbf{x}_n)$ is less than ε or, to be more precise, if

$$f(\mathbf{x}_{n+1}) < f(\mathbf{x}_n) \cdot (1+\varepsilon).$$

As the sequence $(f(\mathbf{x}_n)_{n\in\mathbb{N}})$ will be monotonically increasing, i.e. we have

$$f(\mathbf{x}_{n+1}) \ge f(\mathbf{x}_n)$$
 for all $n \in \mathbb{N}$,

the condition given above is sufficient. Now, if the increase of $f(\mathbf{x}_{n+1})$ is less than $f(\mathbf{x}_n) \cdot (1+\varepsilon)$ we assume that we have reached the maximum with the required precision. In this case we return both the value of \mathbf{x} and the corresponding function value $f(\mathbf{x})$.

The implementation of gradient ascent given above is not the most sophisticated variant of this algorithm. Furthermore, there are algorithms that are more powerful than gradient ascent. The first of these methods is the conjugate gradient method. A refinement of this method is the BFGS-algorithm that has been invented by Broyden, Fletcher, Goldfarb, and Shanno. Unfortunately, we do not have the time to discuss this algorithm. However, our implementation of gradient ascent is sufficient for our applications and as this is not a course on numerical analysis but rather on artificial intelligence we will not delve deeper into this topic but, instead, we refer readers interested in more efficient algorithms to the literature [Sny05]. If you ever need to find the maximum of a function numerically, you should try to use a predefined library routine that implements a state of the art algorithm. For example, in Python the method minimize from the package scipy.optimize offers various algorithms for minimization.

 \Diamond

```
findMaximum := procedure(f, gradF, start, eps) {
               := start;
2
        fx
               := f(x);
3
        alpha := 1.0;
        while (true) {
             [x01d, f01d] := [x, fx];
             x += alpha * gradF(x);
             fx := f(x);
             if (fx < f0ld) {
                 alpha
                         *= 0.5;
10
                 [x, fx] := [xOld, fOld]; // reset values and
11
                 continue;
                                             // start over
12
             } else {
                 alpha *= 1.2;
14
             }
             if (abs(fx - fOld) \le abs(fx) * eps) {
16
                 return [x, fx];
             }
18
        }
    };
20
```

Figure 6.2: The gradient ascent algorithm.

6.3 Logistic Regression

If we have a model such that

$$model(x, w) \approx classify(x)$$

we want to choose the weight vector \mathbf{w} in a way such that the accuracy

$$\mathtt{accuracy}(\mathbf{w}) := \frac{\# \big\{ \mathbf{o} \in S \; \big| \; \mathtt{model}(\mathtt{feature}\big(\mathbf{o}), \mathbf{w}\big) = \mathtt{classify}(\mathbf{o}) \big\}}{\# S}$$

is maximized. However, there is a snag: The accuracy is not a smooth function of the weight vector \mathbf{w} . It can't be because the number of errors of our model is a natural number and not a real number that could change smoothly when the weight vector \mathbf{w} is changed. Hence, the accuracy is not differentiable as a function of the weight vector. The way to proceed is to work with probabilities instead. Instead of assigning a class to an object \mathbf{o} we rather assign a probability p to the object \mathbf{o} that measures how probable it is that object \mathbf{o} has a given class c. Then we try to maximize this probability. In logistic regression we use a linear model that is combined with the sigmoid function. Before we can discuss the details of logistic regression we need to define this function and state some of its properties.

6.3.1 The Sigmoid Function

Definition 6 (Sigmoid Function) The sigmoid function $S: \mathbb{R} \to [0,1]$ is defined as

$$S(t) = \frac{1}{1 + \exp(-t)}.$$

Figure 6.3 on page 97 shows the sigmoid function.

Let us note some immediate consequences of the definition of the sigmoid function. As we have

$$\lim_{x \to -\infty} \exp(-x) = \infty, \quad \lim_{x \to +\infty} \exp(-x) = 0, \quad \text{and} \quad \lim_{x \to \infty} \frac{1}{x} = 0,$$

Figure 6.3: The sigmoid function.

the sigmoid function has the following properties:

$$\lim_{t\to -\infty} S(t) = 0 \quad \text{ and } \quad \lim_{t\to +\infty} S(t) = 1.$$

As the sigmoid function is monotonically increasing, this shows that indeed

$$0 \le S(t) \le 1$$
 for all $t \in \mathbb{R}$.

Therefore, the value of the sigmoid function can be interpreted as a probability. Another important property of the sigmoid function is its symmetry. Figure 6.3 shows that if the sigmoid function is shifted down by $\frac{1}{2}$, the resulting function is centrally symmetric, i.e. we have

$$S(-t) - \frac{1}{2} = -\Big(S(t) - \frac{1}{2}\Big).$$

Adding $\frac{1}{2}$ on both sides of this equation shows that this is equivalent to the equation

$$S(-t) = 1 - S(t),$$

The proof of this fact runs as follows:

$$1 - S(t) = 1 - \frac{1}{1 + \exp(-t)}$$
 by definition of $S(t)$

$$= \frac{1 + \exp(-t) - 1}{1 + \exp(-t)}$$
 common denominator
$$= \frac{\exp(-t)}{1 + \exp(-t)}$$
 simplify
$$= \frac{1}{\exp(+t) + 1}$$
 expand fraction by $\exp(t)$

$$= \frac{1}{1 + \exp(+t)}$$

$$= S(-t). \square$$
 by definition of $S(-t)$

The exponential function can be expressed via the sigmoid function. Let us start with the definition of the sigmoid function.

$$S(t) = \frac{1}{1 + \exp(-t)}$$

Multiplying this equation with the denominator yields

$$S(t) \cdot (1 + \exp(-t)) = 1.$$

Dividing both sides by S(t) gives:

$$1 + \exp(-t) = \frac{1}{S(t)}$$

$$\Leftrightarrow \exp(-t) = \frac{1}{S(t)} - 1$$

$$\Leftrightarrow \exp(-t) = \frac{1 - S(t)}{S(t)}$$

We highlight this formula, as we need it later

$$\exp(-t) = \frac{1 - S(t)}{S(t)}.$$

If we take the reciprocal of both sides of this equation, we have

$$\exp(t) = \frac{S(t)}{1 - S(t)}.$$

Applying the natural logarithm on both sides of this equation yields

$$t = \ln\left(\frac{S(t)}{1 - S(t)}\right).$$

This shows that the inverse of the sigmoid function is given as

$$S^{-1}(y) = \ln\left(\frac{y}{1-y}\right).$$

This function is known as the logit function. Next, let us compute the derivative of S(t), i.e. $S'(t) = \frac{\mathrm{d}S}{\mathrm{d}t}$. We have

$$S'(t) = -\frac{\exp(-t)}{(1 + \exp(-t))^2}$$
$$= \exp(-t) \cdot S(t)^2$$
$$= \frac{1 - S(t)}{S(t)} \cdot S(t)^2$$
$$= (1 - S(t)) \cdot S(t)$$

We have shown

$$S'(t) = (1 - S(t)) \cdot S(t).$$

We will later need the derivative of the natural logarithm of the logistic function. We define

$$L(t) := \ln(S(t)).$$

Then we have

$$L'(t) = \frac{S'(t)}{S(t)}$$
 by the chain rule
$$= \frac{(1 - S(t)) \cdot S(t)}{S(t)}$$
$$= 1 - S(t)$$
 simplify
$$= S(-t)$$
 by the symmetry

As this is our most important result, we highlight it:

$$L'(t) = S(-t)$$
 where $L(t) := \ln(S(t))$.

6.3.2 The Model of Logistic Regression

In logistic regression we deal with binary classification, i.e. we assume that we just need to decide whether a given object has a fixed class or not. We use the following model to compute the probability that an object with features \mathbf{x} will be of the given class:

$$P(y = +1 \mid \mathbf{x}; \mathbf{w}) = S(\mathbf{x} \cdot \mathbf{w}).$$

Here $\mathbf{x} \cdot \mathbf{w}$ denotes the dot product of the vectors \mathbf{x} and \mathbf{w} , i.e. we have

$$\mathbf{x} \cdot \mathbf{w} = \sum_{i=1}^{D} x_i \cdot w_i.$$

To simplify calculations, it is assumed that \mathbf{x} contains a constant feature that always takes the value of 1. Seeing this model the first time you might think that this model is not very general and that it can only be applied in very special circumstances. However, the fact is that the features x_i can be functions of arbitrary complexity and hence this model is much more general than it appears on first sight.

We assume that y can only take the values +1 or -1, e.g. in the example of spam detection y=1 if the email is spam and y=-1 otherwise. Since complementary probabilities add up to 1, we have

$$P(y = -1 \mid \mathbf{x}; \mathbf{w}) = 1 - P(y = +1 \mid \mathbf{x}; \mathbf{w}) = 1 - S(\mathbf{x} \cdot \mathbf{w}) = S(-\mathbf{x} \cdot \mathbf{w}).$$

Hence, we can combine the equations for $P(y = -1 \mid \mathbf{x}; \mathbf{w})$ and $P(y = +1 \mid \mathbf{x}; \mathbf{w})$ into a single equation

$$P(y \mid \mathbf{x}; \mathbf{w}) = S(y \cdot (\mathbf{x} \cdot \mathbf{w})).$$

Given N objects o_1, \dots, o_n with feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ we want to determine the weight vector \mathbf{w} such

that the likelihood $\ell(\mathbf{X}, \mathbf{y})$ of all of our observations is maximized. This approach is called the maximum likelihood estimation of the weights. As we assume the probabilities of different observations are independent, the individual probabilities have to be multiplied to compute the overall likelihood $\ell(\mathbf{X}, \mathbf{y}; \mathbf{w})$ of a given training set:

$$\ell(\mathbf{X}, \mathbf{y}; \mathbf{w}) = \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i; \mathbf{w}).$$

Here, we have combined the different attribute vectors \mathbf{x}_i into the matrix \mathbf{X} such that \mathbf{x}_i is the *i*-th row of the matrix \mathbf{X} . Since it is easier to work with sums than with products, instead of maximizing the function $\ell(\mathbf{X}, \mathbf{y}; \mathbf{w})$ we maximize the function

$$\ell\ell(\mathbf{X}, \mathbf{y}; \mathbf{w}) := \ln(\ell(\mathbf{X}, \mathbf{y}; \mathbf{w})).$$

As the natural logarithm is a monotonically increasing function, the functions $\ell(\mathbf{X}, \mathbf{y}; \mathbf{w})$ and $\ell\ell(\mathbf{X}, \mathbf{y}; \mathbf{w})$ take their maximum at the same value of \mathbf{w} . As we have

$$\ln(a \cdot b) = \ln(a) + \ln(b),$$

the natural logarithm of the likelihood is

$$\ell\ell(\mathbf{X}, \mathbf{y}; \mathbf{w}) = \sum_{i=1}^{N} \ln \Big(S \big(y_i \cdot (\mathbf{x}_i \cdot \mathbf{w}) \big) \Big) = \sum_{i=1}^{N} L \big(y_i \cdot (\mathbf{x}_i \cdot \mathbf{w}) \big).$$

Our goal is to maximize the likelihood. Since this is the same as maximizing the log-likelihood, we need to determine those values of the coefficients \mathbf{w} that satisfy

$$\frac{\partial}{\partial w_i} \ell \ell(\mathbf{X}, \mathbf{y}; \mathbf{w}) = 0.$$

In order to compute the partial derivative of $\ell\ell(\mathbf{X}, \mathbf{y}; \mathbf{w})$ with respect to the coefficients \mathbf{w} we need to compute the partial derivative of the dot product $\mathbf{x}_i \cdot \mathbf{w}$ with respect to the weights w_j . We define

$$h(\mathbf{w}) := \mathbf{x}_i \cdot \mathbf{w} = \sum_{k=1}^{D} x_{i,k} \cdot w_k.$$

Then we have

$$\frac{\partial}{\partial w_j} h(\mathbf{w}) = \frac{\partial}{\partial w_j} \sum_{k=1}^D x_{i,k} \cdot w_k = \sum_{k=1}^D x_{i,k} \cdot \frac{\partial}{\partial w_j} w_k = \sum_{k=1}^D x_{i,k} \cdot \delta_{j,k} = x_{i,j}.$$

Now we are ready to compute the partial derivative of $\ell\ell(\mathbf{X},\mathbf{y};\mathbf{w})$ with respect to \mathbf{w} :

$$\frac{\partial}{\partial w_j} \ell \ell(\mathbf{X}, \mathbf{y}; \mathbf{w})$$

$$= \frac{\partial}{\partial w_j} \sum_{i=1}^{N} L(y_i \cdot (\mathbf{x}_i \cdot \mathbf{w}))$$

$$= \sum_{i=1}^{N} y_i \cdot x_{i,j} \cdot S(-y_i \cdot (\mathbf{x}_i \cdot \mathbf{w})), \text{ since } \frac{\mathrm{d}L(x)}{\mathrm{d}x} = S(-x).$$

Hence, the partial derivative of the log-likelihood function is given as follows:

$$\frac{\partial}{\partial w_j} \ell \ell(\mathbf{X}, \mathbf{y}; \mathbf{w}) = \sum_{i=1}^N y_i \cdot x_{i,j} \cdot S(-y_i \cdot \mathbf{x}_i \cdot \mathbf{w})$$

Next, we have to find the value of w such that

$$\sum_{i=1}^{N} y_i \cdot x_{i,j} \cdot S(-y_i \cdot \mathbf{x}_i \cdot \mathbf{w}) = 0 \quad \text{ for all } j \in \{1, \dots, D\}.$$

These are D equations for the D variables w_1, \dots, w_D . Due to the occurrence of the sigmoid function, these equations are nonlinear. We can not solve these equations explicitly. Nevertheless, our computation of the gradient of the log-likelihood was not for nought: We will use gradient ascent in order to find the value of \mathbf{w} that maximizes the log-likelihood. This method has been outlined in the previous section.

6.3.3 Implementing Logistic Regression

In order to implement logistic regression we need a data structure for tabular data. Figure 6.4 on page 101 shows the class table that can be used to administer this kind of data. Figure 6.4 shows an example of tabular data that is stored in a Csv file. In this case, the data stores the hours a student has learned for a particular exam and the fact whether the student has passed of failed. The first column stores pass or fail, where a pass is coded using the number 1, while a fail is coded as 0. The second column stores the number of hours that the student has learned in order to pass the exam.

```
class table(columnNames, types, data) {
       mColumnNames := columnNames;
       mTypes
                      := types;
       mData
                      := data;
     static {
          getColumnNames := [ ] |-> mColumnNames;
                          := [ ] |-> mTypes;
          getTypes
                          := [ ] |-> mData;
          getData
          getRow
                          := [r] |-> mData[r];
10
          getLength
                          := []
                                |-> #mData;
11
12
          head := procedure(limit := 10) {
13
              print(mColumnNames);
14
              print(mTypes);
              for (i in [1 .. limit]) {
16
                  print(mData[i]);
17
18
          };
     }
20
   }
21
   readTable := procedure(fileName, types) {
22
                     := readFile(fileName);
23
       all
       columnNames := split(all[1], ',\s*');
24
       data
                    := [];
25
       for (i in [2 .. #all]) {
26
            row := split(all[i], ',\s*');
27
            data[i-1] := [eval("$type$($s$)") : [type, s] in types >< row];
28
29
       return table(columnNames, types, data);
   };
31
```

Figure 6.4: A class to represent tabular data.

There is no need for us to discuss every detail of the implementation of the class table. The important thing to note is that the data is stored as a list of lists in the member variable mData. Each of the inner lists corresponds to one row of the Csv file. This member variable can be accessed using the function getData. The function readTable has the responsibility to read a Csv file and to convert it into an object of class table. In order to do this, it has to be called with two arguments. The first argument is the file name, the second argument is a list of the types of each column in the Csv file. For example, to read the file "exam.csv" we would call readTable as follows:

readTable("exam.csv", ["int", "double"]).

```
Pass, Hours
           0.50
    0,
           0.75
    0,
    0,
           1.00
           1.25
    0,
           1.50
    0,
    0,
           1.75
           1.75
    0,
           2.00
           2.25
10
    0,
           2.50
           2.75
    1,
12
    0,
           3.00
13
    1.
           3.25
14
           3.50
    0,
15
           4.00
16
           4.25
17
    1,
           4.50
    1,
18
    1,
           4.75
           5.00
    1.
20
           5.50
    1,
```

Figure 6.5: Results of an exam.

The program shown in Figure 6.6 on page 103 implements logistic regression. As there are a number of subtle points that might easily be overlooked otherwise, we proceed to discuss this program line by line.

- 1. First, we have to load both the class table and our implementation of gradient ascent that has already been discussed in Section 6.2.
- 2. Line 4 implements the sigmoid function

$$S(x) = \frac{1}{1 + \exp(-x)}.$$

3. Line 5 starts the implementation of the natural logarithm of the sigmoid function, i.e. we implement

$$L(x) = \ln(S(X)) = \ln\left(\frac{1}{1 + \exp(-x)}\right) = -\ln(1 + \exp(-x)).$$

The implementation is more complicated than you might expect. The reason has to do with overflow. Consider values of x that are smaller than, say, -1000. The problem is that the expression $\exp(1000)$ evaluates to Infinity, which represents the mathematical value ∞ . But then $1 + \exp(1000)$ is also Infinity and finally $\log(1 + \exp(1000))$ is Infinity. However, in reality we have

$$\ln(1 + \exp(1000)) \approx 1000.$$

The argument works as follows:

```
load("table.stlx");
    load("gradient-ascent.stlx");
    sigmoid := procedure(x) { return 1.0 / (1.0 + exp(-x)); };
    logSigmoid := procedure(x) {
        if (x >= -100) {
             return -log(1.0 + exp(-x));
        } else {
             return x;
        }
10
    };
11
    11 := procedure(X, y, w) {
12
        return +/ [ logSigmoid(y[i] * (X[i] * w)) : i in [1 .. #X] ];
13
14
    gradLL := procedure(X, y, w) {
        result := [];
16
        for (j in [1 .. #X[1]]) {
17
             result[j] := +/ [y[i]*X[i][j]*sigmoid(-y[i]*(X[i]*w)) : i in [1..#X]];
18
        return la_vector(result);
20
    };
21
    logisticRegressionFile := procedure(fileName, types) {
22
                := readTable(fileName, types);
        data
              := csv.getData();
24
        number := #data;
25
        dmnsn := #data[1];
26
        yList := [];
27
        xList := [];
        for (i in [1 .. number]) {
29
             yList[i] := data[i][1];
             xList[i] := la_vector([1.0] + data[i][2..]);
31
        }
        X := la_matrix(xList);
33
        y := la_{vector}([2 * y - 1 : y in yList]);
        start := la_vector([0.0 : i in [1 .. dmnsn]]);
35
              := 10 ** -15;
        eps
               := w \mid => 11(X, y, w);
37
        gradF := w |=> gradLL(X, y, w);
        return findMaximum(f, gradF, start, eps)[1];
39
    };
```

Figure 6.6: An implementation of logistic regression.

$$\ln(1 + \exp(x)) = \ln(\exp(x) \cdot (1 + \exp(-x)))$$

$$= \ln(\exp(x)) + \ln(1 + \exp(-x))$$

$$= x + \ln(1 + \exp(-x))$$

$$\approx x + \ln(1) + \exp(-x)$$
Taylor expansion of $\ln(1 + x)$

$$= x + 0 + \exp(-x)$$

$$\approx x$$
since $\exp(-x) \approx 0$ for large x

This is the reason that logSigmoid returns x if the value of x is less than -100.

4. The function ll(x, y, w) computes the log-lokelihood

$$\ell\ell(\mathbf{X}, \mathbf{y}; \mathbf{w}) = \sum_{i=1}^{N} L(y_i \cdot (\mathbf{x}_i \cdot \mathbf{w})).$$

Here L denotes the natural logarithm of the sigmoid of the argument. It is assumed that \mathbf{X} is a matrix. Every observation corresponds to a row in this matrix, i.e. the vector \mathbf{x}_i is the feature vector containing the features of the i-th observation. \mathbf{y} is a vector describing the outcomes, i.e. the elements of this vector are either +1 or -1. Finally, \mathbf{w} is the vector of coefficients.

5. The function gradLL(x, y, w) computes the gradient of the log-lokelihood according to the formula

$$\frac{\partial}{\partial w_j} \ell \ell(\mathbf{X}, \mathbf{y}; \mathbf{w}) = \sum_{i=1}^N y_i \cdot x_{i,j} \cdot S(-y_i \cdot \mathbf{x}_i \cdot \mathbf{w}).$$

The different components of this gradient are combined into a vector. The arguments are the same as the arguments to the log-lokelihood.

6. Finally, the function logisticRegressionFile takes two arguments. The first argument is the name of the .csv file containing the data, while the second argument is a list specifying the types of the columns. The elements of this list have to be either "int" or "double". The task of this function is to read the .csv file, convert the data in the matrix X and the vector y, and then use the method of gradient ascent to find the weight vector w that maximize the likelihood.

As we assume that the entries of the vector \mathbf{y} are either +1 or -1 but the data provided in the file are instead 1 or 0, we need to apply a function that maps 1 to +1 and 0 to -1. The function

$$y \mapsto 2 \cdot y - 1$$

is used for this mapping in the construction of the vector \mathbf{y} .

Next, we define the functions f and gradF as closures using the operator "|=>". This operator ensures that the values of the matrix X and the vector y are available on invocations of f and gradF.

Finally, the function findMaximum computes the maximum of the log-likelihood using gradient ascent.

If we run the function logisticRegressionFile using the data shown in Figure 6.5 via the command

the resulting coefficients are:

This shows that the probability P(h) that a student who has studied for h hours will pass the exam is given approximately as follows:

$$P(h) \approx \frac{1}{1 + \exp(4.1 - 1.5 \cdot h)}$$

Figure 6.7 shows a plot of the probability P(x). This figure has been taken from the Wikipedia article on logistic regression. It has been created by Michaelg 2015.

Figure 6.7: Probability of passing an exam versus hours of studying.

Chapter 7

Neural Networks

In this chapter, we discuss neural networks. Many of the most visible breakthroughs in artificial intelligence have been achieved through the use of neural networks:

- 1. The current system used by Google to automatically translate web pages is called "Google Neural Machine Translation" and, as the name suggests, is based on neural networks.
- 2. DeepL is another translator that is based on deep neural networks.
- 3. AlphaGo uses neural networks together with tree search [SHM⁺16]. It has beaten beaten the world champion Ke Jie in the game of Go.
- 4. Image recognition is best done via neural networks.
- 5. Autonomous driving makes heavy use of neural networks.

The list given above is far from being complete. In this chapter, we will only discuss feedforward neural networks. Although recently recurrent neural networks have gotten a lot of attention, these type of neural networks are more difficult to train and are therefore beyond the scope of this introduction. The rest of this chapter is strongly influenced by the online book

http://neuralnetworksanddeeplearning.com/index.html

that has been written by Michael Nielsen [Nie15]. This book is easy to read, carefully written, and free to access. I recommend this book to anybody who wants to dive deeper into the fascinating topic of neural networks.

7.1 Feedforward Neural Networks

A neural network is built from neurons. Neural networks are inspired by biological neurons. However, in order to understand artificial neural networks it is not necessary to know how biological neurons work and it is definitely not necessary to understand how networks of biological neurons, i.e. brains, work¹. Instead, we develop a mathematical abstraction of neurons that will serve as the foundation of the theory developed in this chapter. At the abstraction level that we are looking at neural networks, a single neuron with n inputs is specified by a pair $\langle \mathbf{w}, b \rangle$ where the vector $\mathbf{w} \in \mathbb{R}^m$ is called the weight vector and the number $b \in \mathbb{R}$ is called the bias. Conceptually, a neuron is a function that maps an input vector $\mathbf{x} \in \mathbb{R}^m$ into the interval [0,1]. This function is defined as follows:

$$\mathbf{x} \mapsto a(\mathbf{x} \cdot \mathbf{w} + b).$$

Here, a is called the activation function. In our applications, we will always use the sigmoid function (Definition 6) as our activation function, i.e. we have

Actually, when it comes to brains, although there are many speculations, surprisingly little is known for a fact.

$$a(t) := S(t) = \frac{1}{1 + \exp(-t)}.$$

The function modelling the neuron can be written more explicitly using index notation. If

$$\mathbf{w} = \langle w_1, \cdots, w_m \rangle^{\top}$$

is the weight vector and

$$\mathbf{x} = \langle x_1, \cdots, x_m \rangle^{\top}$$

is the input vector, then we have

$$\mathbf{x} \mapsto S\left(\left(\sum_{i=1}^{m} x_i \cdot w_i\right) + b\right).$$

If we compare this function to a similar function appearing in the last chapter, you will notice that so far a neuron works just like logistic regression. The only difference is that the bias b is now explicit in our notation. In logistic regression, we had assumed that the first component x_1 of our feature vector \mathbf{x} was always equal to 1. This assumption enabled us to incorporate the bias b into the weight vector \mathbf{w} .

A feedforward neural network is a layered network of neurons. Formally, the topology of a neural network is given by a number $L \in \mathbb{N}$ and a list $[m(1), \cdots, m(L)]$ of L natural numbers. The number L is called the number of layers and for $i \in \{2, \cdots, L\}$ the number m(i) is the number of neurons in the l-th layer. The first layer is called the input layer. The input layer does not contain neurons but instead just contains input nodes. The last layer (i.e. the layer with index L) is called the output layer and the remaining layers are called hidden layers. If there is more than one hidden layer, the neural network is called a deep neural network. Figure 7.1 on page 107 shows a small neural network with two hidden layers.

Figure 7.1: A neural network taken from the book by Michael Nielsen [Niel5].

As the first layer is the input layer, the input dimension is defined as m(1). Similarly, the output dimension is defined as m(L). Every node in the l-th layer is connected to every node in the (l+1)-th layer via a weight. The weight $w_{j,k}^{(l)}$ is the weight of the connection from the k-th neuron in layer l-1 to the j-th neuron in layer l. The weights in layer l are combined into the weight matrix $W^{(l)}$ of the layer l: This matrix is defined as

$$W^{(l)} := (w_{i,k}^{(l)}).$$

Note that $W^{(l)}$ is an $m(l) \times m(l-1)$ matrix, i.e. we have

$$W^{(l)} \in \mathbb{R}^{m(l) \times m(l-1)}.$$

The j-th neuron in layer l has the bias $b_j^{(l)}$. These biases of layer l are combined into the bias vector

$$\mathbf{b}^{(l)} := \langle b_1^{(l)}, \cdots, b_{m(l)}^{(l)} \rangle^\top.$$

Then, the activation of the j-th neuron in layer l is denoted as $a_i^{(l)}$ and is defined recursively as follows:

1. For the input layer we have

$$a_j^{(1)}(\mathbf{x}) := x_j. \tag{FF1}$$

To put it differently, the input vector \mathbf{x} is the activation of the input nodes.

2. For all other layers we have

$$a_j^{(l)}(\mathbf{x}) := S\left(\left(\sum_{k=1}^{m(l-1)} w_{j,k}^{(l)} \cdot a_k^{(l-1)}(\mathbf{x})\right) + b_j^{(l)}\right) \quad \text{for all } l \in \{2, \cdots, L\}.$$
 (FF2)

The activation vector of layer l is defined as

$$\mathbf{a}^{(l)}(\mathbf{x}) := \langle a_1^{(l)}(\mathbf{x}), \cdots, a_{m(l)}^{(l)}(\mathbf{x}) \rangle^{\top}.$$

Using vector notation, the feed forward equations (FF1) and (FF2) can be written as follows:

$$\mathbf{a}^{(1)}(\mathbf{x}) := \mathbf{x},\tag{FF1v}$$

$$\mathbf{a}^{(l)}(\mathbf{x}) := S\left(W^{(l)} \cdot \mathbf{a}^{(l-1)}(\mathbf{x})\right) + \mathbf{b}^{(l)} \quad \text{for all } l \in \{2, \dots, L\}.$$
 (FF2v)

The output of our neural network for an input \mathbf{x} is given by the neurons in the output layer, i.e. the output vector $\mathbf{o}(\mathbf{x}) \in \mathbb{R}^{m(L)}$ is defined as

$$\mathbf{o}(\mathbf{x}) := \langle a_1^{(L)}(\mathbf{x}), \cdots, a_{m(L)}^{(L)}(\mathbf{x}) \rangle^\top = \mathbf{a}^{(L)}(\mathbf{x}).$$

Note that the equations (FF1) and (FF2) describe how information propagates through the neural network:

1. Initially, the input vector \mathbf{x} is given and stored in the input layer of the neural network:

$$\mathbf{a}^{(1)}(\mathbf{x}) := \mathbf{x}.$$

2. The first layer of neurons, which is the second layer of nodes, is activated and computes the activation vector $\mathbf{a}^{(2)}$ according to the formula

$$\mathbf{a}^{(2)}(\mathbf{x}) := S(W^{(2)} \cdot \mathbf{a}^{(1)}(\mathbf{x}) + \mathbf{b}^{(2)}) = S(W^{(2)} \cdot \mathbf{x} + \mathbf{b}^{(2)}).$$

3. The second layer of neurons, which is the third layer of nodes, is activated and computes the activation vector $\mathbf{a}^{(3)}(\mathbf{x})$ according to the formula

$$\mathbf{a}^{(3)}(\mathbf{x}) := S(W^{(3)} \cdot \mathbf{a}^{(2)}(\mathbf{x}) + \mathbf{b}^{(3)}) = S(W^{(3)} \cdot S(W^{(2)} \cdot \mathbf{x} + \mathbf{b}^{(2)}) + \mathbf{b}^{(3)})$$

4. This proceeds until the output layer is reached and the output

$$\mathbf{o}(\mathbf{x}) := \mathbf{a}^{(L)}(\mathbf{x})$$

has been computed. Note that every neuron of the neural network performs logistic regression.

Next, we assume that we have n training examples

$$\langle \mathbf{x}^{(i)}, \mathbf{y}^{(i)} \rangle$$
 for $i = 1, \dots, n$

such that

$$\mathbf{x}^{(i)} \in \mathbb{R}^{m(1)}$$
 and $\mathbf{v}^{(i)} \in \mathbb{R}^{m(L)}$.

Our goal is to choose the weight matrices $W^{(l)}$ and the bias vectors $\mathbf{b}^{(l)}$ in a way such that

$$\mathbf{o}(\mathbf{x}^{(i)}) = \mathbf{y}^{(i)}$$
 for all $i \in \{1, \dots, n\}$.

Unfortunately, in general we will not be able to achieve equality for all $i \in \{1, \dots, n\}$. Therefore, our goal is to minimize the error instead. To be more precise, the quadratic error cost function is defined as

$$C(W^{(2)}, \dots, W^{(L)}, \mathbf{b}^{(2)}, \dots, \mathbf{b}^{(L)}; \mathbf{x}^{(1)}, \mathbf{y}^{(1)}, \dots, \mathbf{x}^{(n)}, \mathbf{y}^{(n)}) := \frac{1}{2 \cdot n} \cdot \sum_{i=1}^{n} (\mathbf{o}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^{2}.$$

Note that this cost function is additive in the training examples $\langle \mathbf{x}^{(i)}, \mathbf{y}^{(i)} \rangle$. In order to simplify the notation we define

$$C_{\mathbf{x},\mathbf{y}}\left(W^{(2)},\cdots,W^{(L)},\mathbf{b}^{(2)},\cdots,\mathbf{b}^{(L)}\right) := \frac{1}{2} \cdot \left(\mathbf{a}^{(L)}(\mathbf{x}) - \mathbf{y}\right)^2,$$

i.e. $C_{\mathbf{x},\mathbf{y}}$ is the part of the cost function that is associated with a single training example $\langle \mathbf{x},\mathbf{y} \rangle$. Then, we have

$$C\Big(W^{(2)}, \cdots, W^{(L)}, \mathbf{b}^{(2)}, \cdots, \mathbf{b}^{(L)}; \mathbf{x}^{(1)}, \mathbf{y}^{(1)}, \cdots, \mathbf{x}^{(n)}, \mathbf{y}^{(n)}\Big) := \frac{1}{n} \cdot \sum_{i=1}^{n} C_{\mathbf{x}^{(i)}, \mathbf{y}^{(i)}} \Big(W^{(2)}, \cdots W^{(L)}, \mathbf{b}^{(2)}, \cdots, \mathbf{b}^{(L)}\Big).$$

As the notation

$$C_{\mathbf{x},\mathbf{y}}\left(W^{(2)},\cdots,W^{(L)},\mathbf{b}^{(2)},\cdots,\mathbf{b}^{(L)}\right)$$

is far too heavy, we will abbreviate this term as $C_{\mathbf{x},\mathbf{y}}$ in the following discussion of the backpropagation algorithm. Similarly, we abbreviate the quadratic error cost function as C. Our goal is to choose the weight matrices $W^{(l)}$ and the bias vectors $\mathbf{b}^{(l)}$ such that the quadratic error cost function C is minimized. We will use a variation of gradient descent to find this minimum². Unfortunately, the cost function C when regarded as a function of the weights and biases has many local minima. Hence, all we can hope for is to find a local minimum that is good enough.

7.2 Backpropagation

There are two reasons for the recent success of neural networks.

- 1. The computing power that is available today has vastly increased in the last 20 years. For example, today the AMD RX Vega 64 Liquid graphic card offers about 13.7 teraflops in single precision performance. It consumes about 350 watt. Contrast this with ASCI White, which was the most powerful supercomputer in 2000: In 2000 when it topped the rankings of the supercomputers, it offered a performance of 7.2 teraflops and needed 6 megawatt to operate. The cost to build ASCI White was about 110,000,000 \$\mathbb{S}\$. On the contrary, the AMD RX Vega 64 Liquid costs 699 \$\mathbb{S}\$.
 - The Nvidia Titan V comes at 2,999 \$ and offers a stunning 110 teraflops for deep learning via the Cuda Apr.
- 2. The breakthrough in the theory of neural networks was the rediscovering of the backpropagation algorithm by David Rumelhart, Geoffrey Hinton, and Ronald Williams [RHW86] in 1986. The backpropagation algorithm had first been discovered by Arthur E. Bryson, Jr. and Yu-Chi Ho [BH69].

Essentially, the backpropagation algorithm is an efficient way to compute the partial derivatives of the cost

² In logistic regression we have tried to *maximize* the log-likelihood. Here, instead we *minimize* the quadratic error cost function. Hence, instead of gradient *ascent* we use gradient *descent*.

function C with respect to the weights $w_{j,k}^{(l)}$ and the biases $b_j^{(l)}$. Before we can proceed to compute these partial derivatives, we need to define some auxiliary variables.

7.2.1 Definition of some Auxiliary Variables

We start by defining the auxiliary variables $z_j^{(l)}$. The expressions $z_j^{(l)}$ are defined as the inputs of the activation function S of the j-th neuron in layer l:

$$z_j^{(l)} := \left(\sum_{k=1}^{m(l-1)} w_{j,k}^{(l)} \cdot a_k^{(l-1)}\right) + b_j^{(l)} \quad \text{for all } j \in \{1, \cdots, m(l)\} \text{ and } l \in \{2, \cdots, L\}.$$

Of course, the term $a_k^{(l-1)}$ really is a function of the input vector \mathbf{x} . However, it is better to suppress this dependence in the notation since otherwise the formulæ get too cluttered. Essentially, $z_j^{(l)}$ is the input to the sigmoid function when the activation $a_j^{(l)}$ is computed, i.e. we have

$$a_j^{(l)} = S\Big(z_j^{(l)}\Big).$$

We will see that the partial derivatives of the cost function $C_{\mathbf{x},\mathbf{y}}$ with respect to both the weights $w_{j,k}^{(l)}$ and the biases $b_j^{(l)}$ can be computed easily if we first compute the partial derivatives of $C_{\mathbf{x},\mathbf{y}}$ with respect to $z_j^{(l)}$. Therefore we define

$$\varepsilon_j^{(l)} := \frac{\partial C_{\mathbf{x}, \mathbf{y}}}{\partial z_i^{(l)}} \quad \text{ for all } j \in \{1, \cdots, m(l)\} \text{ and } l \in \{2, \cdots, L\},$$

that is we regard $C_{\mathbf{x},\mathbf{y}}$ as a function of the $z_j^{(l)}$ and take the partial derivatives according to these variables. Note that $\varepsilon_j^{(l)}$ does depend on both \mathbf{x} and \mathbf{y} . Since the notation would get very cumbersome if we would write $\varepsilon(\mathbf{x},\mathbf{y})_j^{(l)}$, we regard the training example $\langle \mathbf{x},\mathbf{y} \rangle$ as fixed for now. Next, the quantities $\varepsilon_j^{(l)}$ are combined into a vector:

$$oldsymbol{arepsilon}^{(l)} := \left(egin{array}{c} arepsilon_1^{(l)} \ dots \ arepsilon_{m(l)} \end{array}
ight).$$

The quantity $\varepsilon^{(l)}$ is called the error in layer l.

7.2.2 The Hadamard Product

Later, we will have need of the Hadamard product of two vectors. Assume that $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. The Hadamard product of \mathbf{x} and \mathbf{y} is a vector that is defined by multiplying the vectors \mathbf{x} and \mathbf{y} elementwise:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \odot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} := \begin{pmatrix} x_1 \cdot y_1 \\ x_2 \cdot y_2 \\ \vdots \\ x_n \cdot y_n \end{pmatrix},$$

i.e. the *i*-th component of the Hadamard product $\mathbf{x} \odot \mathbf{y}$ is the product of the *i*-th component of \mathbf{x} with the *i*-th component of \mathbf{y} .

7.2.3 Backpropagation: The Equations

Now we are ready to state the backpropagation equations. The first of these four equations reads as follows:

$$\varepsilon_j^{(L)} = (a_j^{(L)} - y_j) \cdot S'(z_j^{(L)}) \quad \text{for all } j \in \{1, \dots, m(L)\},$$
 (BP1)

where S'(x) denotes the derivative of the sigmoid function. We have shown in Chapter 6 that

$$S'(t) = (1 - S(t)) \cdot S(t)$$

holds. The equation (BP1) can also be written in vectorized form using the Hadamard product:

$$\boldsymbol{\varepsilon}^{(L)} = (\mathbf{a}^{(L)} - \mathbf{y}) \odot S'(\mathbf{z}^{(L)}) \tag{BP1v}$$

Here, we have vectorized the application of the function S' to the vector $\mathbf{z}^{(L)}$, i.e. the expression $S'(\mathbf{z}^{(L)})$ is defined as follows:

$$S'\left(\begin{array}{c}z_1^{(L)}\\\vdots\\z_{m(L)}^{(L)}\end{array}\right):=\left(\begin{array}{c}S'(z_1^{(L)})\\\vdots\\S'(z_{m(L)}^{(L)})\end{array}\right).$$

The next equation computes $\varepsilon_i^{(l)}$ for l < L.

$$\varepsilon_j^{(l)} = \sum_{i=1}^{m(l+1)} w_{i,j}^{(l+1)} \cdot \varepsilon_i^{(l+1)} \cdot S'(z_j^{(l)}) \quad \text{for all } j \in \{1, \dots, m(l)\} \text{ and } l \in \{2, \dots, L-1\}.$$
 (BP2)

This equation is more succinct in vectorized notation:

$$\boldsymbol{\varepsilon}^{(l)} = \left(\left(W^{(l+1)} \right)^{\top} \cdot \boldsymbol{\varepsilon}^{(l+1)} \right) \odot S'(\mathbf{z}^{(l)}) \quad \text{for all } l \in \{2, \cdots, L-1\}.$$
 (BP2v)

Note that this equation computes $\varepsilon^{(l)}$ in terms of $\varepsilon^{(l+1)}$: The error $\varepsilon^{(l+1)}$ at layer l+1 is propagated backwards through the neural network to produce the error $\varepsilon^{(l)}$ at layer l. This is the reason for calling the algorithm backpropagation.

Next, we have to compute the partial derivative of $C_{\mathbf{x},\mathbf{y}}$ with respect to the bias of the j-th neuron in layer l, which is denoted as $b_i^{(l)}$. We have

$$\frac{\partial C_{\mathbf{x},\mathbf{y}}}{\partial b_j^{(l)}} = \varepsilon_j^{(l)} \quad \text{for all } j \in \{1, \cdots, m(l)\} \text{ and } l \in \{2, \cdots, L\}.$$
(BP3)

In vectorized notation, this equation takes the following form:

$$\nabla_{\mathbf{b}^{(l)}} C_{\mathbf{x}, \mathbf{y}} = \boldsymbol{\varepsilon}^{(l)} \quad \text{for all } l \in \{2, \cdots, L\}.$$
 (BP3v)

Here, $\nabla_{\mathbf{b}^{(l)}} C_{\mathbf{x}, \mathbf{y}}$ denotes the gradient of $C_{\mathbf{x}, \mathbf{y}}$ with respect to the bias $\mathbf{b}^{(l)}$. Finally, we can compute the partial derivative of $C_{\mathbf{x},\mathbf{v}}$ with respect to the weights:

$$\frac{\partial C_{\mathbf{x},\mathbf{y}}}{\partial w_{i,k}^{(l)}} = a_k^{(l-1)} \cdot \varepsilon_j^{(l)} \quad \text{for all } j \in \{1, \cdots, m(l)\}, \ k \in \{1, \cdots, m(l-1)\}, \ \text{and } l \in \{2, \cdots, L\}.$$
 (BP4)

In vectorized notation, this equation can be written as:

$$\nabla_{W^{(l)}} C_{\mathbf{x}, \mathbf{y}} = \boldsymbol{\varepsilon}^{(l)} \cdot \left(\mathbf{a}^{(l-1)} \right)^{\top} \quad \text{for all } l \in \{2, \cdots, L\}.$$
(BP4v)

Here, the expression $\boldsymbol{\varepsilon}^{(l)} \cdot (\mathbf{a}^{(l-1)})^{\top}$ denotes the matrix product of the column vector $\boldsymbol{\varepsilon}^{(l)}$ that is regarded as an $m(l) \times 1$ matrix and the row vector $(\mathbf{a}^{(l-1)})^{\top}$ that is regarded as an $1 \times m(l-1)$ matrix.

As the backpropagation equations are at the very core of training neural networks, we highlight them:

$$\boldsymbol{\varepsilon}^{(L)} = (\mathbf{a}^{(L)} - \mathbf{y}) \odot S'(\mathbf{z}^{(L)})$$
(BP1v)

$$\boldsymbol{\varepsilon}^{(l)} = \left(\left(W^{(l+1)} \right)^{\top} \cdot \boldsymbol{\varepsilon}^{(l+1)} \right) \odot S'(\mathbf{z}^{(l)}) \quad \text{for all } l \in \{2, \dots, L-1\}$$

$$\nabla_{\mathbf{b}^{(l)}} C_{\mathbf{x}, \mathbf{y}} = \boldsymbol{\varepsilon}^{(l)} \qquad \text{for all } l \in \{2, \dots, L\}$$

$$\nabla_{W^{(l)}} C_{\mathbf{x}, \mathbf{y}} = \boldsymbol{\varepsilon}^{(l)} \cdot \left(\mathbf{a}^{(l-1)} \right)^{\top} \qquad \text{for all } l \in \{2, \dots, L\}$$
(BP3v)
$$(BP4v)$$

$$\nabla_{\mathbf{b}^{(l)}} C_{\mathbf{x}, \mathbf{y}} = \boldsymbol{\varepsilon}^{(l)}$$
 for all $l \in \{2, \dots, L\}$ (BP3v)

$$\nabla_{W^{(l)}} C_{\mathbf{x}, \mathbf{y}} = \boldsymbol{\varepsilon}^{(l)} \cdot \left(\mathbf{a}^{(l-1)}\right)^{\top} \qquad \text{for all } l \in \{2, \cdots, L\}$$
(BP4v)

The equations (BP3) and (BP4) show why it was useful to introduce the numbers $\varepsilon_j^{(l)}$: These numbers enable us to compute the partial derivatives of the cost function with respect to both the biases and the weights. Furthermore, the equations (BP1) and (BP2) show how these numbers can be computed. An implementation of backpropagation should use the vectorized versions of these equations since this is more efficient for two reasons:

- 1. Interpreted languages like Setlx, *Python*, or *Octave* take much more time to execute a loop than to execute a simple matrix-vector multiplication. The reason is that in a loop, in addition to executing the statement a given number of times, the statement has to be interpreted every time it is executed.
- 2. Languages that are optimized for machine learning often take care to delegate the execution of matrix operations to the graphical coprocessor which is optimized for these kinds of operations.

7.2.4 The Proof of the Backpropagation Equations

Next, we prove the backpropagation equations. Although the proof is a bit tedious, it should be accessible: The chain rule of multivariate calculus is all that is needed to understand why the backpropagation equations hold. As a reminder, the chain rule in multivariate calculus works as follows: Assume that the functions $f = f(\mathbf{y})$ and $g = g(\mathbf{x})$ where $\mathbf{y} \in \mathbb{R}^k$, $\mathbf{x} \in \mathbb{R}^n$, $g(\mathbf{x}) \in \mathbb{R}^k$, and $f(\mathbf{y}) \in \mathbb{R}$ are differentiable³. So we have

$$f: \mathbb{R}^k \to \mathbb{R}$$
 and $g: \mathbb{R}^n \to \mathbb{R}^k$.

If the function $h: \mathbb{R}^n \to \mathbb{R}$ is defined as

$$h(\mathbf{x}) := f(g(\mathbf{x}))$$
 for all $\mathbf{x} \in \mathbb{R}^n$,

then the partial derivative of h with respect to x_i satisfies

$$\frac{\partial h}{\partial x_j} = \sum_{i=1}^k \frac{\partial f}{\partial y_i} \cdot \frac{\partial g_i}{\partial x_j}.$$

Remember that we have defined the numbers $\varepsilon_j^{(l)}$ as

$$\varepsilon_j^{(l)} = \frac{\partial C_{\mathbf{x}, \mathbf{y}}}{\partial z_j^{(l)}},$$

while the numbers $z_j^{(l)}$ have been defined as

$$z_j^{(l)} := \left(\sum_{k=1}^{m(l-1)} w_{j,k}^{(l)} \cdot a_k^{(l-1)}(\mathbf{x})\right) + b_j^{(l)}.$$

Since the quadratic error cost function $C_{\mathbf{x},\mathbf{y}}$ for the training example $\langle \mathbf{x},\mathbf{y} \rangle$ has been defined in terms of the activation $\mathbf{a}^{(L)}(\mathbf{x})$ as

$$C_{\mathbf{x},\mathbf{y}} = \frac{1}{2} \cdot \left(\mathbf{a}^{(L)}(\mathbf{x}) - \mathbf{y}\right)^2$$

and we have $\mathbf{a}^{(L)}(\mathbf{x}) = S(\mathbf{z}^{(L)})$, the chain rule tells us that $\varepsilon_j^{(L)}$ can be computed as follows:

 $[\]overline{}^3$ If this text had been written in German, I would have said that f and g are "total differenzierbar".

$$\begin{split} \varepsilon_{j}^{(L)} &= \frac{\partial C_{\mathbf{x},\mathbf{y}}}{\partial z_{j}^{(L)}} \\ &= \frac{\partial}{\partial z_{j}^{(L)}} \frac{1}{2} \cdot \left(\mathbf{a}^{(L)}(\mathbf{x}) - \mathbf{y}\right)^{2} \\ &= \frac{1}{2} \cdot \frac{\partial}{\partial z_{j}^{(L)}} \sum_{i=1}^{m(L)} \left(a_{i}^{(L)}(\mathbf{x}) - y_{i}\right)^{2} \\ &= \frac{1}{2} \cdot \frac{\partial}{\partial z_{j}^{(L)}} \sum_{i=1}^{m(L)} \left(S(z_{i}^{(L)}) - y_{i}\right)^{2} \\ &= \frac{1}{2} \cdot \sum_{i=1}^{m(L)} 2 \cdot \left(S(z_{i}^{(L)}) - y_{i}\right) \cdot \frac{\partial}{\partial z_{j}^{(L)}} S(z_{i}^{(L)}) \\ &= \sum_{i=1}^{m(L)} \left(S(z_{i}^{(L)}) - y_{i}\right) \cdot S'(z_{i}^{(L)}) \cdot \frac{\partial z_{i}^{(L)}}{\partial z_{j}^{(L)}} \\ &= \sum_{i=1}^{m(L)} \left(S(z_{i}^{(L)}) - y_{i}\right) \cdot S'(z_{i}^{(L)}) \cdot \delta_{i,j} \\ &= \left(S(z_{j}^{(L)}) - y_{j}\right) \cdot S'(z_{j}^{(L)}) \\ &= \left(a_{j}^{(L)} - y_{j}\right) \cdot S'(z_{j}^{(L)}) \end{split}$$

Thus we have proved equation BP1. Next, let us compute $\varepsilon_j^{(l)}$ for l < L. We have

$$\begin{split} \varepsilon_j^{(l)} &= \frac{\partial C_{\mathbf{x},\mathbf{y}}}{\partial z_j^{(l)}} \\ &= \sum_{i=1}^{m(l+1)} \frac{\partial C_{\mathbf{x},\mathbf{y}}}{\partial z_i^{(l+1)}} \cdot \frac{\partial z_i^{(l+1)}}{\partial z_j^{(l)}} \quad \text{using the chain rule} \\ &= \sum_{i=1}^{m(l+1)} \varepsilon_i^{(l+1)} \cdot \frac{\partial z_i^{(l+1)}}{\partial z_j^{(l)}} \quad \text{using the definition of } \varepsilon_i^{(l+1)} \end{split}$$

In order to proceed, we have to remember the definition of $z_i^{(l+1)}$. We have

$$z_i^{(l+1)} = \left(\sum_{k=1}^{m(l)} w_{i,k}^{(l+1)} \cdot S(z_k^{(l)})\right) + b_i^{(l+1)}$$

Therefore, the partial derivatives $\frac{\partial z_i^{(l+1)}}{\partial z_j^{(l)}}$ can be computed as follows:

$$\begin{split} \frac{\partial z_{i}^{(l+1)}}{\partial z_{j}^{(l)}} &= \sum_{k=1}^{m(l)} w_{i,k}^{(l+1)} \cdot S'(z_{k}^{(l)}) \cdot \frac{\partial z_{k}^{(l)}}{\partial z_{j}^{(l)}} \\ &= \sum_{k=1}^{m(l)} w_{i,k}^{(l+1)} \cdot S'(z_{k}^{(l)}) \cdot \delta_{k,j} \\ &= w_{i,j}^{(l+1)} \cdot S'(z_{j}^{(l)}) \end{split}$$

If we substitute this expression back into the result we got for $\varepsilon_i^{(l)}$ we have shown the following:

\rightarrow

$$\begin{split} \varepsilon_{j}^{(l)} &= \sum_{i=1}^{m(l+1)} \varepsilon_{i}^{(l+1)} \cdot \frac{\partial z_{i}^{(l+1)}}{\partial z_{j}^{(l)}} \\ &= \sum_{i=1}^{m(l+1)} \varepsilon_{i}^{(l+1)} \cdot w_{i,j}^{(l+1)} \cdot S'(z_{j}^{(l)}) \\ &= \sum_{i=1}^{m(l+1)} w_{i,j}^{(l+1)} \cdot \varepsilon_{i}^{(l+1)} \cdot S'(z_{j}^{(l)}) \end{split}$$

Therefore, we have now proven equation (BP2). We proceed to prove equation (BP4). According to the chain rule we have

$$\frac{\partial C_{\mathbf{x}, \mathbf{y}}}{\partial w_{j, k}^{(l)}} = \frac{\partial C_{\mathbf{x}, \mathbf{y}}}{\partial z_{j}^{(l)}} \cdot \frac{\partial z_{j}^{(l)}}{\partial w_{j, k}^{(l)}}$$

Now by definition of $\varepsilon_i^{(l)}$, the first factor on the right hand side of this equation is equal to $\varepsilon_i^{(l)}$:

$$\varepsilon_j^{(l)} = \frac{\partial C_{\mathbf{x}, \mathbf{y}}}{\partial z_j^{(l)}}.$$

In order to proceed, we need to evaluate the partial derivative $\frac{\partial z_j^{(L)}}{\partial w_{j,k}^{(l)}}$. The term $z_j^{(l)}$ has been defined as follows:

$$z_j^{(l)} = \left(\sum_{k=1}^{m(l)} w_{j,k}^{(l)} \cdot S(z_k^{(l-1)})\right) + b_j^{(l)}.$$

Hence we have

$$\frac{\partial z_j^{(l)}}{\partial w_{j,k}^{(l)}} = S(z_k^{(l-1)}) = a_k^{(l-1)}.$$

Combining these equations we arrive at

$$\frac{\partial C_{\mathbf{x},\mathbf{y}}}{\partial w_{i,k}^{(l)}} = \varepsilon_j^{(l)} \cdot a_k^{(l-1)}.$$

Therefore, equation (BP4) has been verified.

Exercise 16: Prove equation (BP3).

7.3 Stochastic Gradient Descent

The equations describing backpropagation describe the gradient of the cost function for a single training example $\langle \mathbf{x}, \mathbf{y} \rangle$. However, when we train a neural network, we need to take all training examples into account. If we have n training examples

$$\langle \mathbf{x}^{(1)}, \mathbf{y}^{(1)} \rangle \rangle$$
, $\langle \mathbf{x}^{(2)}, \mathbf{y}^{(2)} \rangle \rangle$, \cdots , $\langle \mathbf{x}^{(n)}, \mathbf{y}^{(n)} \rangle \rangle$,

then the quadratic error cost function has been previously defined as the sum

$$C(W^{(2)}, \dots, W^{(L)}, \mathbf{b}^{(2)}, \dots, \mathbf{b}^{(L)}; \mathbf{x}^{(1)}, \mathbf{y}^{(1)}, \dots, \mathbf{x}^{(n)}, \mathbf{y}^{(n)}) := \frac{1}{2 \cdot n} \cdot \sum_{i=1}^{n} (\mathbf{o}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^{2}.$$

In practical applications of neural networks, the number of training examples is usually big. For example, when we later develop a neural network to classify handwritten digits, we will have 60,000 training examples. More ambitious projects that use neural networks to classify objects in images use millions of training examples. When we compute the gradient of the quadratic error function with respect to a weight matrix $W^{(l)}$ or a bias

vector $b^{(l)}$ we have to compute the sums

$$\frac{1}{2 \cdot n} \cdot \sum_{i=1}^{n} \frac{\partial C_{\mathbf{x}^{(i)}, \mathbf{y}^{(i)}}}{\partial w_{j,k}^{(l)}} \quad \text{ and } \quad \frac{1}{2 \cdot n} \cdot \sum_{i=1}^{n} \frac{\partial C_{\mathbf{x}^{(i)}, \mathbf{y}^{(i)}}}{\partial b_{j}^{(l)}}$$

over all training examples in order to perform a single step of gradient descent. If n is large, this is computationally costly. Note that these sums can be regarded as computing average values. In stochastic gradient descent, we approximate these sums by randomly choosing a small subset of the training examples. In order to formulate this approximation in a convenient notation, let us assume that instead of using all n training examples, we just use the first m training examples. Then we approximate the sums shown above as follows:

$$\frac{1}{2 \cdot n} \cdot \sum_{i=1}^{n} \frac{\partial C_{\mathbf{x}^{(i)}, \mathbf{y}^{(i)}}}{\partial w_{i,k}^{(l)}} \approx \frac{1}{2 \cdot m} \cdot \sum_{i=1}^{m} \frac{\partial C_{\mathbf{x}^{(i)}, \mathbf{y}^{(i)}}}{\partial w_{i,k}^{(l)}} \quad \text{ and } \quad \frac{1}{2 \cdot n} \cdot \sum_{i=1}^{n} \frac{\partial C_{\mathbf{x}^{(i)}, \mathbf{y}^{(i)}}}{\partial b_{j}^{(l)}} \approx \frac{1}{2 \cdot m} \cdot \sum_{i=1}^{m} \frac{\partial C_{\mathbf{x}^{(i)}, \mathbf{y}^{(i)}}}{\partial b_{j}^{(l)}},$$

i.e. we approximate these sums by the average value of their first m training examples. Of course, in general we will not choose the first m training examples but rather we will choose m random training examples. The randomness of this choice is the reason this algorithm is called stochastic gradient descent. It turns out that if we take care that eventually all training examples are used during gradient descent, then the approximations given above can speed up the learning of neural networks substantially.

7.4 Implementation

Next, we will take a look at a neural network that is able to recognize handwritten digits. The MNIST database of handwritten digits contains $70\,000$ images of handwritten digits. These images have a size of 28×28 pixels. Figure 7.2 shows the first 10 images visualized.

Figure 7.2: The first 10 images of the MNIST dataset visualized

We will use the first $60\,000$ of these images to train a neural network, while the remaining $10\,000$ images will be used to check the accuracy of the trained network. Since SetlX lacks the ability to read image files, the images have been converted into two large .csv files. You can download the $10\,000$ images from the test set at

https://github.com/karlstroetmann/Artificial-Intelligence/raw/master/SetlX/Neural-Networks/mnist_test.csv.gz while the images from the training set are found at

https://github.com/karlstroetmann/Artificial-Intelligence/raw/master/SetlX/Neural-Networks/mnist_train.csv.gz

Note that these files are compressed. In order to train the neural network with these files, these files first have to be decompressed. Figure 7.3 on page 116 contains the code that is used to read these files.

The function that is called to load both the training data and the test data is the function load_data.

```
load_data := procedure(train_length, test_length) {
        test_data := parse_csv("mnist_test.csv" , test_length);
        train_data := parse_csv("mnist_train.csv", train_length);
        train_data := [ [image, encode(label)] : [image, label] in train_data];
        return [train_data, test_data];
    };
    parse_csv := procedure(file, length) {
        Pairs := [0] * length;
        csv := readFile(file);
        for (i in [1..length]) {
10
            Line := split(csv[i], ",");
11
            label := int(Line[1]);
12
            image := la_vector([double(x)/255: x in Line[2..]]);
            Pairs[i] := [image, label];
14
        }
        return Pairs;
16
17
    };
    encode := procedure(digit) {
18
                        := la_vector([0] * 10);
        result
19
        result[digit+1] := 1; // digit zero has index 1
20
        return result;
21
    };
22
```

Figure 7.3: Setl code to load the image files.

- 1. The function load_data receives two parameters.
 - (a) train_length is the number of images used for training.
 - (b) test_length is the number of images used for training.

Usually, we will have $train_length = 60\,000$ and $test_length = 10\,000$. However, since training the neural network takes about 15 minutes to complete when all data are used, these parameters can be set to smaller values to speed up experiments.

On completion, the function load_data will return a pair of the form

```
[train_data, test_data].
```

- 2. Both the training data and the test data are read via the function parse_csv. This function returns a list of pairs. The first component of these pairs is an image of a handwritten digit, while the second component is a number d from the set $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. This number specifies the digit that is shown in the image.
- 3. For the training data, the number d specifying the digit needs to be encoded as a vector of dimension 10. The idea is that this vector contains nine occurrences of the digit 0 and one occurrence of the digit 1. The position of the digit 1 is given as d+1. For example, d=0 is encoded as the vector

```
\langle 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 \rangle^\top, while d = 3 is encoded as \langle 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 \rangle^\top.
```

The encoding of digits as vectors is done via the function encode.

The function parse_csv is responsible for reading a given .csv file.

- 1. This function is called with two parameters.
 - (a) file is the name of the .csv file that is to be read.
 - (b) length specifies the number of lines that should be read.

The .csv files containing the images of handwritten digits contain one image per row. Every row contains 785 numbers.

- (a) The first number specifies the digit that is shown in the image.
- (b) The remaining $784 = 28 \times 28$ numbers specify the darkness of the pixels. These numbers are elements of the set $\{0, \dots, 255\}$. The number 0 specifies a pixel that is white, while the number 255 specifies a pixel that is black. Numbers in between are interpreted as grey values.

The function returns a list of pairs of the form

where image is a vector of dimension 784, while label is a digit from the set $\{0, \dots, 9\}$.

- 2. The function readFile returns a list of strings. Each string in this list corresponds to one line in the .csv file and therefore it corresponds to one image and the corresponding label.
- 3. The function **split** splits the string at the occurrences of the commas and returns a list of strings of length 785.
- 4. The first entry of this list is the digit that is shown in the image. This entry is converted to an integer and is then stored in the variable label.
- 5. The remaining 784 entries are the pixels of the image encoded in this line. The grey values of these pixels are elements from the set $\{0, \dots, 255\}$. In order to improve the convergence speed of stochastic gradient descent, these values are transformed into real values in the range [0, 1].
- 6. The image and its label are combined into a pair and stored in the list Pairs. After length lines have been read, the list Pairs is returned.

The function encode is used to encode a digit into a vector. First, the function creates a vector result of dimension 10 that is initialized to all zeros. Then, it inserts a 1 at index digit + 1 and returns the resulting vector. This encode technique is called one-hot encoding. We use one hot encoding since the output layer of the neural network that we are going to construct contains 10 output nodes, one node to recognize each digit. The first output node will recognize the digit "0", the second output node will recognize the digit "1", and in general the i-th output node will recognize the i+1-th digit.

Figure 7.4 on page 118 show some auxiliary functions.

1. rndVector creates a vector of random numbers that are uniformly distributed in the interval [-0.5, 0.5]. The argument length specifies the dimension of this vector.

This function is used later to initialize the biases of the neurons of the neural network.

2. my_rnd returns a random number that is uniformly distributed in the interval

$$\left[-\frac{1}{2} \cdot \frac{1}{28}, \ \frac{1}{2} \cdot \frac{1}{28} \right].$$

This function is used to initialize the weights of the neurons. The reason for the upper bound of $\frac{1}{28}$ is the fact that we have to avoid saturation of the neurons. A neuron is said to be saturated if the input argument a to the logistic function S of the neuron is either very low or very high. In that case, if a is small, S(a) would be very small, while if a is big, S(a) would be very close to 1. The reason is that

$$\lim_{a \to -\infty} S(a) = 0$$
 and $\lim_{a \to \infty} S(a) = 1$.

In any case, the derivative of the logistic function, which has the form $S'(a) = S(a) \cdot (1 - S(a))$ would

```
rndVector := length
                            |-> la_vector([random() - 0.5: i in [1..length]]);
    my_rnd
               := []
                           |-> (random() - 1/2) / 28; // 28 = sqrt(784)
    rndMatrix := [rs, cs] |->
                  la_matrix([[my_rnd(): c in [1..cs]]: r in [1..rs]]);
               := [x] \rightarrow la_{vector}([1 / (1 + exp(-a)) : a in x]);
    sigmoid_prime := procedure(x) {
        s := sigmoid(x);
        return la_vector([a * (1 - a): a in s]);
    };
9
    hadamard := [x, y] |-> la_vector([x[i] * y[i]: i in [1 .. #x]]);
10
    argmax := procedure(x) {
11
         [maxValue, maxIndex] := [x[1], 1];
12
        for (i in [2 .. #x] | x[i] > maxValue) {
13
             [maxValue, maxIndex] := [x[i], i];
14
        }
        return maxIndex;
16
    };
17
```

Figure 7.4: Auxiliary functions.

be close to 0 because either S(a) is small or 1-S(a) is small. But then the gradient that is used in gradient descent would be very small also and hence gradient descent would require a very large number of iterations to converge. In order to prevent this from happening we need to ensure that the initial inputs of the logistic functions are are not to big. In the hidden layer, the weight matrices have a size of $28 \times 28 = 784$. If we add n random numbers that are uniformly distributed in the interval [-1,1], the expected value is 0 but the variance is 784 times the variance of a random variable that is $\mathrm{Unif}(-1,1)$. As the standard deviation is the square root of the variance and $28 = \sqrt{784}$, choosing the weights from the interval $\left[-\frac{1}{2} \cdot \frac{1}{28}, \, \frac{1}{2} \cdot \frac{1}{28}\right]$ will ensure that the neurons are not saturated when initialized.

- 3. rndMatrix(rs, cs) creates a matrix of rs rows and cs columns of random numbers uniformly distributed in the interval $\left[-\frac{1}{2} \cdot \frac{1}{28}, \frac{1}{2} \cdot \frac{1}{28}\right]$.
- 4. sigmoid(x) takes a vector x and computes the element-wise sigmoid function of this vector.
- 5. $sigmoid_prime(x)$ takes a vector x and computes the element-wise derivative of the sigmoid function of this vector. Remember that the derivative S'(t) of the sigmoid function S(t) satisfies the equation

```
S'(t) = S(t) \cdot (1 - S(t)).
```

```
class network(inputSize, hiddenSize, outputSize) {

mInputSize := inputSize; // 784

mHiddenSize := hiddenSize; // 30 .. 100

mOutputSize := outputSize; // 10

mBiasesH := rndVector(mHiddenSize); // biases hidden layer

mBiasesO := rndVector(mOutputSize); // biases output layer

mWeightsH := rndMatrix(mHiddenSize, mInputSize); // weights hidden layer

mWeightsO := rndMatrix(mOutputSize, mHiddenSize); // weights output layer

...

mWeightsO := rndMatrix(mOutputSize, mHiddenSize); // weights output layer

mWeightsO := rndMatrix(mOutputSize, mHiddenSize); // weights output layer

must be sufficiently a sufficiently a
```

Figure 7.5: The constructor of the class network.

Figure 7.7 on page 121 shows the outline of the class network and its constructor. This class represents a neural network with one hidden layer.

- 1. The argument inputSize specifies the number of input nodes. The neural network for the recognition of handwritten digits has 784 inputs. These inputs are the grey values of the 28 × 28 pixels that constitute the image of the handwritten digit.
- 2. The argument hiddenSize specifies the number of neurons in the hidden layer. We assume that there is only one hidden layer. I have experimented with 30 neurons, 60 neurons and a hundred neurons.
 - (a) For 30 neurons, the computation took about 15 minutes and the trained neural network achieved an accuracy of 96.3%.
 - (b) For 60 neurons, the computation took 25 minutes and the network achieved an accuracy of 97.3%.
 - (c) If there are 100 neurons in the hidden layer, the computation took 41 minutes and achieved an accuracy of 97.9%.
 - For 100 neurons, the number of weights in the hidden layer is $784 \cdot 100 = 78400$. Therefore, the number of weights is greater than the number of training examples. Hence, we should really use regularization in order to further increase the accuracy of the network.
- 3. The argument mOutputSize specifies the number of output neurons. For the neural network recognizing handwritten digits this number is 10 since there is an output neuron for every digit.
- 4. Besides storing the topology of the neural network, the class network stores the biases and weights of all the neurons. The biases and weights are initialized as random numbers. As explained when discussing the auxiliary functions in Figure 7.4 on page 118 we have to take care that these random numbers are not to big for otherwise the neurons would saturate and the learning would be very slow.

Figure 7.6 on page 120 shows the method sgd of the class network. This method implements stochastic gradient descent. It receives 5 arguments.

- 1. training_data is a list of pairs of the form $[\mathbf{x}_i, \mathbf{y}_i]$. Here, \mathbf{x}_i is a vector of dimension 784. This vector contains the pixels of an image showing one of the handwritten digits from the training set. \mathbf{y}_i is the one-hot encoding of the digit that is shown in the image \mathbf{x}_i .
- 2. epochs is the number of iterations of gradient descent. In order to train the neural network to recognize handwritten digits, we will use 30 iterations.
- 3. mbs is the size of the mini-batches that are used in stochastic gradient descent. I have achieved the fastest learning when I have used a mini-batch size of 10. Using a mini-batch size of 20 was sightly slower, but this parameter seems to be quite uncritical.
- 4. eta is the learning rate.
- 5. test_data is the list of test data. These data are only used to check the accuracy, they are not used to determine the weights or biases.

The implementation of stochastic gradient descent executes a for-loop that runs epoch number of times. At the beginning of each iteration, the training data are shuffled randomly. Next, the data is chopped up into chunks of size mbs. These chunks are called mini-batches. The inner for-loop iterates over all mini-batches and executes one step of gradient descent that only uses the data form the mini-batch. At the end of each iteration of the outer for-loop, the accuracy of the current version of the neural net is printed.

The method update_mini_batch performs one step of gradient descent for the data from one mini-batch. It receives two arguments.

- 1. mini_batch is the list of training data that constitute one mini-batch.
- 2. eta is the learning rate.

The implementation of update_mini_batch works as follows:

```
sgd := procedure(training_data, epochs, mbs, eta, test_data) {
        n_test := #test_data;
               := #training_data;
        for (j in [1 .. epochs]) {
            training_data := shuffle(training_data);
            mini_batches := [training_data[k .. k+mbs-1]: k in [1, mbs..n]];
            for (mini_batch in mini_batches) {
                update_mini_batch(mini_batch, eta);
            print("Epoch $j$: $evaluate(test_data)$ / $n_test$");
10
        }
11
    };
12
    update_mini_batch := procedure(mini_batch, eta) {
13
        nabla_BH := 0 * mBiasesH;
                                    // gradient biases hidden layer
14
        nabla_BO := 0 * mBiasesO; // gradient biases output layer
        nabla_WH := 0 * mWeightsH; // gradient weights hidden layer
16
        nabla_WO := 0 * mWeightsO; // gradient weights output layer
        for([x,y] in mini_batch) {
18
            [dltNbl_BH, dltNbl_BO, dltNbl_WH, dltNbl_WO] := backprop(x, y);
            nabla_BH += dltNbl_BH;
20
            nabla_BO += dltNbl_BO;
21
            nabla_WH += dltNbl_WH;
22
            nabla_WO += dltNbl_WO;
        }
24
        alpha := eta / #mini_batch;
25
        this.mBiasesH -= alpha * nabla_BH;
26
        this.mBiases0 -= alpha * nabla_BO;
27
        this.mWeightsH -= alpha * nabla_WH;
28
        this.mWeights0 -= alpha * nabla_WO;
29
    };
30
```

Figure 7.6: Stochastic gradient descent.

- First, we initialize the vectors nabla_BH, nabla_BO and the matrices nabla_WH, nabla_WO to contain only zeros.
 - (a) nabla_BH will store the gradient of the bias vector of the hidden layer.
 - (b) nabla_BO will store the gradient of the bias vector of the output layer.
 - (c) nabla_WH will store the gradient of the weight matrix of the hidden layer.
 - (d) nabla_WO will store the gradient of the weight matrix of the output layer.
- 2. Next, we iterate of all training examples in the mini-batch and for every training example [x,y] we compute the contribution of this training example to the gradients of the cost function C, i.e. we compute

$$\nabla_{\mathbf{b}^{(l)}} C_{\mathbf{x},\mathbf{v}}$$
 and $\nabla_{W^{(l)}} C_{\mathbf{x},\mathbf{v}}$

for the hidden layer and the output layer. These gradients are computed by the function backprop.

3. Finally, the bias vectors and the weight matrices are updated according to the learning rate and the computed gradients.

The method backprop computes the gradients of the bias vectors and the weight matrices with respect to a single training example $\langle x, y \rangle$. The implementation of backprop proceeds as follows:

```
backprop := procedure(x, y) {
        ZH := mWeightsH * x + mBiasesH;
        AH := sigmoid(ZH);
        Z0 := mWeights0 * AH + mBiases0;
        AO := sigmoid(ZO);
        epsilon0 := hadamard(AO - y, sigmoid_prime(ZO));
        nabla_BO := epsilonO;
        nabla_WO := la_matrix(epsilonO) * la_matrix(AH)!;
        epsilonH := hadamard(mWeightsO! * epsilonO, sigmoid_prime(ZH));
        nabla_BH := epsilonH;
10
        nabla_WH := la_matrix(epsilonH) * la_matrix(x)!;
11
        return [nabla_BH, nabla_BO, nabla_WH, nabla_WO];
12
    };
13
```

Figure 7.7: Implementation of backpropagation.

1. First, the vector ZH is computed according to the formula

$$\mathbf{z}^{(2)} = W^{(2)} \cdot \mathbf{x} + \mathbf{b}^{(2)}.$$

Here, $W^{(2)}$ is the weight matrix of the hidden layer that is stored in mWeightsH, while $\mathbf{b}^{(2)}$ is the bias vector of the hidden layer. This vector is stored in mBiasesH.

- 2. The activation of the neurons in the hidden layer AH is computed by applying the sigmoid function to the vector $\mathbf{z}^{(2)}$.
- 3. Next, the vector ZH is computed according to the formula

$$\mathbf{z}^{(3)} = W^{(3)} \cdot \mathbf{x} + \mathbf{b}^{(3)}.$$

Here, $W^{(3)}$ is the weight matrix of the output layer that is stored in mWeights0, while $\mathbf{b}^{(3)}$ is the bias vector of the output layer. This vector is stored in mBiases0.

4. The activation of the neurons in the output layer AO is computed by applying the sigmoid function to the vector $\mathbf{z}^{(3)}$.

These four step constitute the forward pass of backpropagation.

5. Next, the error in the output layer epsilon0 is computed using the backpropagation equation (BP1v)

$$\boldsymbol{\varepsilon}^{(3)} = (\mathbf{a}^{(3)} - \mathbf{y}) \odot S'(\mathbf{z}^{(3)}).$$

6. According to equation (BP3v), the gradient of the cost function with respect to the bias vector of the output layer is given as

$$\nabla_{\mathbf{b}^{(3)}} C_{\mathbf{x}, \mathbf{y}} = \boldsymbol{\varepsilon}^{(3)}.$$

This gradient is stored in the variable nabla_BO.

7. According to equation (BP4v), the gradient of the cost function with respect to the weight matrix of the output layer is given as

$$\nabla_{W^{(3)}} C_{\mathbf{x}, \mathbf{v}} = \boldsymbol{\varepsilon}^{(3)} \cdot \left(\mathbf{a}^{(2)}\right)^{\top}.$$

This gradient is stored in the variable nabla_WO.

8. Next, the error in the hidden layer epsilonH is computed using the backpropagation equation (BP2v)

$$\boldsymbol{\varepsilon}^{(2)} = \left(\left(W^{(3)} \right)^{\top} \cdot \boldsymbol{\varepsilon}^{(3)} \right) \odot S'(\mathbf{z}^{(2)}).$$

9. Finally, the gradients of the cost function with respect to the bias vector and the weight matrix of the hidden layer are computed. This is completely to the computation of the corresponding gradients of the output layer.

```
feedforward := procedure(x) {
    AH := sigmoid(mWeightsH * x + mBiasesH);
    A0 := sigmoid(mWeightsO * AH + mBiasesO);
    return AO;
};
evaluate := procedure(test_data) {
    test_results := [[argmax(feedforward(x)) - 1, y]: [x, y] in test_data];
    return #[1 : [a, b] in test_results | a == b];
};
```

Figure 7.8: Evaluation functions.

Figure 7.8 shows the implementation of the function feedforward. This function receives an image **x** stored as a vector of dimension 784 and computes the output of the neural network for this image. The code is a straightforward implementation of the equations (FF1) and (FF2). The function evaluate is used to evaluate the accuracy of the neural network on the test data. Finally, Figure 7.9 shows how the computation can be started.

```
load("nn-loader.stlx");
    load("nn.stlx");
2
3
    main := procedure() {
        resetRandom();
        train_length := 60000;
        test_length := 10000;
        inputSize
                            784;
        hiddenSize
                             30;
        outputSize
                             10;
                       :=
        epochs
                       :=
                             30;
11
12
        mbs
                       :=
                             10;
        eta
                      :=
                            1.0;
13
        [training_data, test_data] := load_data(train_length, test_length);
14
        print("Create Network");
15
        net := network(inputSize, hiddenSize, outputSize);
16
        print("Start SGD");
        start := now();
18
        net.sgd(training_data, epochs, mbs, eta, test_data);
19
        stop := now();
20
        print("Time needed:\t $stop - start$");
    };
22
    main();
23
```

Figure 7.9: How to start the training.

Bibliography

- [BH69] Arthur Earl Bryson, Jr. and Yu-Chi Ho. Applied Optimal Control: Optimization, Estimation, and Control. Blaisdell Pub., Waltham, Massachusetts, 1969.
- [HNR68] Peter Hart, Nils Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of minimum cost paths. *IEEE Transactions on Systems Science and Cybernetics SSC4*, 4(2):100–107, 1968.
- [HNR72] Peter Hart, Nils Nilsson, and Bertram Raphael. Correction to "A formal basis for the heuristic determination of minimum cost paths". SIGART Newsletter, 37:28–29, 1972.
- [JWHT14] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learning: with Applications in R. Springer, 2014.
- [Kor85] Richard Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelligence, 27:97–109, 1985.
- [Nie15] Michael A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.
- [RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal representations by error propagation. In David E. Rumelhart and James L. McClelland, editors, *Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1*, pages 318–362. MIT Press, 1986.
- [RN09] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson Education Limited, 3rd edition, 2009.
- [SHM+16] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with deep neural networks and tree search. Nature, 529:484, 2016.
- [Sny05] Jan A. Snyman. Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms. Springer Publishing, 2005.