

OCT. 2. 2007 6:41PM 866 741 0075

**RECEIVED
CENTRAL FAX CENTER**

NO. 1067 P. 3/13

OCT 02 2007 Application No. 10/736,329
Docket No. 740756-2685
Page 2

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1-18. (Canceled)

19. (Currently Amended) A method for manufacturing an electroluminescent device comprising at least an anode, a cathode and an electroluminescent layer formed between the anode and the cathode and including at least one organic compound layer, comprising the step of:

forming the organic compound layer by co-depositing a metal salt metal alkoxide and an organic compound including a proton-donating functional group and a functional group having a non-covalent electron pair over the anode or the cathode,

wherein the proton-donating functional group is one of a hydroxyl group, a carboxyl group and a mercapto group;

~~wherein the metal salt is one of a metal acetate salt, a metal halide and a metal alkoxide.~~

20. (Canceled)

21. (Previously Presented) The method for manufacturing the electroluminescent device according to claim 19, wherein the functional group having the non-covalent electron pair is one of a heterocyclic residue group, an azomethine group and a carbonyl group.

22. (Previously Presented) The method for manufacturing the electroluminescent device according to claim 19, wherein the proton-donating functional group is one of a hydroxyl group, a carboxyl group and a mercapto group, and the functional group having the non-covalent electron pair is one of a heterocyclic residue group, an azomethine group and a carbonyl group.

23. (Canceled)

10747406.1

PAGE 3/13 * RCVD AT 10/2/2007 6:14:49 PM [Eastern Daylight Time] * SVR:USPTO-EFXRF-3/7 * DNIS:2738300 * CSID:866 741 0075 * DURATION (mm:ss):03:50

Application No. 10/736,329
Docket No. 740756-2685
Page 3

24. (Withdrawn) A method for manufacturing an electroluminescent device comprising at least an anode, a cathode and an electroluminescent layer formed between the anode and the cathode and including at least one organic compound layer, comprising the step of:

forming the organic compound layer by co-depositing an organic compound represented by a following general formula (1) and a metal salt over the anode or the cathode:

wherein R₁ to R₆ each represents one of a hydrogen element, a halogen element, a cyano group, an alkyl group (1 to 10 carbon atoms), an alkoxy group (1 to 10 carbon atoms), a substituted or non-substituted aryl group (1 to 10 carbon atoms), and a substituted or non-substituted heterocyclic residue group (1 to 20 carbon atoms), including the cases of R₃ and R₄, R₄ and R₅ or R₅ and R₆ being mutually bonded to form a benzene ring or poly-condensed rings (1 to 20 carbon atoms) and R₁ and R₂ being mutually bonded to form a pyridine ring.

25. (Withdrawn) A method for manufacturing an electroluminescent device comprising at least an anode, a cathode and an electroluminescent layer formed between the anode and the cathode and including at least one organic compound layer, comprising the step of:

forming the organic compound layer by co-depositing an organic compound represented by a following general formula (2) and a metal salt over the anode or the cathode:

Application No. 10/736,329
 Docket No. 740756-2685
 Page 4

wherein R₁ to R₁₅ each represents one of a hydrogen element, a halogen element, a cyano group, an alkyl group (1 to 10 carbon atoms), an alkoxy group (1 to 10 carbon atoms), a substituted or non-substituted aryl group (1 to 20 carbon atoms), and a substituted or non-substituted heterocyclic residue group (1 to 20 carbon atoms), including a case of R₁ and R₂ being mutually bonded to form a pyridine ring.

26. (Currently Amended) A method for manufacturing an electroluminescent device comprising at least an anode, a cathode and an electroluminescent layer formed between the anode and the cathode and including at least one organic compound layer, comprising the step of:

forming the organic compound layer by co-depositing an organic compound represented by a following general formula (3) and a metal-salt metal alkoxide over the anode or the cathode:

wherein R₁ to R₁₂ each represents one of a hydrogen element, a halogen element, a cyano group, an alkyl group (1 to 10 carbon atoms), an alkoxy group (1 to 10 carbon atoms), a substituted or non-substituted aryl group (1 to 20 carbon atoms), and a substituted or non-substituted heterocyclic residue group (1 to 20 carbon atoms), including cases of R₁ and R₂

Application No. 10/736,329
 Docket No. 740756-2685
 Page 5

being mutually bonded to form a cycloalkane structure, a benzene ring or poly-condensed rings (1 to 20 carbon atoms), R₄ and R₅, R₅ and R₆, R₆ and R₇, R₈ and R₉, R₉ and R₁₀ or R₁₀ and R₁₁ being mutually bonded to form a benzene ring or poly-condensed rings (1 to 20 carbon atoms), and R₂ and R₃ or R₁ and R₃₀ being mutually bonded to form a pyridine ring; and

~~wherein the metal salt is one of a metal acetate salt, a metal halide and a metal alkoxide.~~

27. (Withdrawn) A method for manufacturing an electroluminescent device comprising at least an anode, a cathode and an electroluminescent layer formed between the anode and the cathode and including at least one organic compound layer, comprising the step of:

forming the organic compound layer by co-depositing an organic compound represented by a following general formula (4) and a metal salt over the anode or the cathode:

wherein R₁ to R₃₀ each represents one of a hydrogen element, a halogen element, a cyano group, an alkyl group (1 to 10 carbon atoms), an alkoxy group (1 to 10 carbon atoms), a substituted or non-substituted aryl group (1 to 20 carbon atoms), and a substituted or non-substituted heterocyclic residue group (1 to 20 carbon atoms) R₁ and R₂ being mutually bonded to form a cycloalkane structure, a benzene ring or poly-condensed rings (1 to 20 carbon atoms) and R₂ and R₃ or R₁ and R₃₀ being mutually bonded to form a pyridine ring.

Application No. 10/736,329
Docket No. 740756-2685
Page 6

28. (Withdrawn) A method for manufacturing an electroluminescent device comprising at least an anode, a cathode and an electroluminescent layer formed between the anode and the cathode and including at least one organic compound layer, comprising the step of:

forming the organic compound layer by co-evaporating an organic compound represented by a following general formula (5) and a metal salt over the anode or the cathode:

wherein R₁ to R₅ each represents one of a hydrogen element, a halogen element, a cyano group, an alkyl group (1 to 10 carbon atoms), an alkoxy group (1 to 10 carbon atoms), a substituted or non-substituted aryl group (1 to 20 carbon atoms), and a substituted or non-substituted heterocyclic residue group (1 to 20 carbon atoms), including cases of R₄ representing one of an amino group, a dialkylamino group, and an arylamino group, R₂ and R₃, R₃ and R₄ or R₄ and R₅ being mutually bonded to form a benzene ring or poly-condensed rings (1 to 20 carbon atoms), and R₃ and R₄, or R₄ and R₅ being mutually bonded to form a julolidine skeleton.

29. (Withdrawn) The method for manufacturing the electroluminescent device according to any one of claims 24, 25, 27, and 28, wherein the metal salt is one of a metal acetate salt, a metal halide and a metal alkoxide.

30. (Withdrawn) The method for manufacturing the electroluminescent device according to any one of claims 24 to 28, wherein the metal salt includes one of zinc, aluminum, silicon, gallium and zirconium.

Application No. 10/736,329
Docket No. 740756-2685
Page 7

31. (Previously Presented) The method according to claim 19, wherein the metal salt including a metal element selected from the group consisting of a group of zinc, aluminum, silicon, gallium, and zirconium.