1 Test 1 Review

1.1 AFSA

Question 1:

- a) Design a AFSA for $x \in \{0,1\}^*$ x has a 0 fourth from the end and x represents in binary an integer evenly divisible by 3
- b) Construct the computation tree for m on 10101

${\bf Question} \ 2:$

- a) Design a AFSA for $x \in \{0,1\}^*$ x does not have a 0 fourth from the end and x represents in binary an integer that doesn't evenly divisible by 3
- b) Computation tree for m on 10101

- Question 3: a) Design AFSA $L=\{x\in\{0,1\}^*\}$, x represents in binary evenly divisible by 15. b) Design $L_2=L_1'$

 $\begin{array}{l} {\rm Question~4:}\\ {\rm Let}~\overline{M_1=\{x\in\{0,1\}^*\}~/~x~begins~or~ends~with~00}\\ {\rm Let}~M_2=\{x\in\{0,1\}^*\}~/~x~has~both~00~and~11~as~substring \end{array}$

- a) Design AFSA $M_3=M_1\cap M_2.$ b) Design AFSA $M_4=M_1\cup \bar{M}_2$ c) Design AFSA $M_5=\bar{M}_3$

 $\frac{\text{Question 5:}}{\text{Convert the AFSA to DFSA}}$

M	0	1
1	$2 \wedge 3$	1
2	3 ∨4	$2 \lor 4$
3	3 V1	3
4	1 ∧4	$2 \wedge 3$

The initial state is 1, and the final state is also 1

 ${\it Question}~6$

Given the AFSA, where 1 is the initial state, and 1 and 3 are final states

Μ	0	1
1	1	1 \(\sqrt{3} \)
2	$2 \wedge 4$	3 ∧4
3	3	4
4	$2 \vee 3$	1∨4

- a) Draw the computation tree for string 101100 and explain if it is an accepting computation
- b)Convert M to its equivalent DFSA. Represent all of the states in CNF and simplify them. Dont forget to indicate final states.

1.2 Two way FSA

Question 7:

Given machine M, where 1 is initial state, and 3 is final state

M	a	b
1	2L	3R
2	4L	2R
3	2L	4R
4	4R	1L

- a) Construct the Rebound Table
- b) Convert machine M to 1 DFSA using the Rebound Table
- c) Simulate the 2 dfsa to see if ba or bb string got rejected or accepted

 $\frac{\text{Question 8}}{\text{Given machine M, where } q_1 \text{ is the final state}}$

M	0	1
q_0	q_0 R	q_1R
q_1	q_1 R	q_2 L
q_2	q_0 R	q_2L

- a) Construct the Rebound Table for machine M
- b) Simulate the 2dfsa to show that 1001 is accepted by M

${\bf Question} \ 9$

Given the following 2-way deterministic fsa (2dfsa), where state 1 is the initial state, and states 2 and 3 are final states.

- (a) Simulate the 2dfsa and show how the string babb is accepted.
- (b) Construct the rebound tables and the equivalent 1dfsa partially only for consuming the string babb

Μ	a	b
1	2R	3R
2	4L	2R
3	4R	2L
4	1R	4L