BITAmin

12주차 정규 Session

4조 김현우 이수빈 임수진 정정현

목차

- 1. 불균형 데이터와 분류 실습
- 2. 스래킹 앙앙블
- 3. AutoML
- 4. 다른 데이터에 적용해보기 정인 인구 소득 예측 예제

+

의료 현장

은행 거래

클래스		예측한 클래스		
={정상, 블	불량}	정상	불량	
실제 클래스	정상	TN	FP	
를	불량	FN	TP	

정밀도(
$$Precision$$
) = $\frac{$ 옳게 분류된 불량 데이터의 수 $}{$ 불량으로 예측한 데이터 $}=\frac{TP}{FP+TP}$ 재현율($Recall$) = $\frac{$ 옳게 분류된 불량 데이터의 수 $}{$ 실제 불량 데이터의 수 $}=\frac{TP}{FN+TP}$ 특이도($Specificity$) = $\frac{$ 옳게 분류된 정상 데이터의 수 $}{$ 실제 정상 데이터의 수 $}=\frac{TN}{TN+FP}$

정밀도가 높다면?→ major를 major로 잘 판단함 정밀도가 낮다면?→major를 minor로 판단함 재현율이 높다면?→ minor를 minor로 잘 판단함 재현율이 낮다면?→minor를 major로 판단함

가장 큰 ISSUE

-MAJOR CLASS 를 잘못 판단했을 때의 영향

《《《MINOR CLASS를 잘못 판단했을 때의 영향

-ACCURACY PARADOX

1. 불균형 데이터-_{불균형 데이터의 특징}

StandardScaler

로그변환

이상치 제거

SMOTE

O. BASIC

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline

card_df=pd.read_csv('./creditcard.csv')
card_df
```

	Time	V1	V2	V3	V4	V 5	V6	V7	V8	V 9	
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514854	
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	
284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.305334	1.914428	
284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	0.584800	
284804	172788.0	1.919565	-0.301254	-3.249840	-0.557828	2.630515	3.031260	-0.296827	0.708417	0.432454	
284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	0.392087	
284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649817	1.577006	-0.414850	0.486180	
284807	rows × 31	columns									

```
from sklearn.model_selection import train_test_split

def get_preprocessed_df(df=None):
    df_copy=df.copy()
    df_copy.drop('Time', axis=1, inplace=True)
    return df_copy
```

데이러 전처리를 위한 함수 - 이후에 옵션을 추가해가며 빠른 전 처리를 도움

```
X_train, X_test, y_train, y_test=get_train_test_dataset(card_df)

print('학습 데이터 레이블 값 비율')
print(y_train,value_counts()/y_train,shape[0]*100)
print('테스트 데이터 레이블 값 비율')
print(y_test,value_counts()/y_test,shape[0]*100)
```

```
학습 데이터 레이블 값 비율
0 99,827451
1 0,172549
Name: Class, dtype: float64
테스트 데이터 레이블 값 비율
0 99,826785
1 0,173215
Name: Class, dtype: float64
```

IR: Imbalanced Ratio: Majority Class/Minority Class > IR 이 매우 클 > Class-Imbalanced Dataeset

```
from sklearn.linear_model import LogisticRegression

Ir_clf=LogisticRegression()
Ir_clf.fit(X_train, y_train)
Ir_pred=Ir_clf.predict(X_test)
Ir_pred_proba=Ir_clf.predict_proba(X_test)[:, 1]
```

```
def get_model_train_eval(model, ftr_train=None, ftr_test=None, tgt_train=None, tgt_test=None):
    model,fit(ftr_train, tgt_train)
    pred=model,predict(ftr_test)
    pred_proba=model,predict_proba(ftr_test)[:, 1]
    get_clf_eval(tgt_test, pred, pred_proba)
```

Default 값이 바뀜에 따 라 꼭 지정해줘야 함!

```
get_clf_eval(y_test, Ir_pred, Ir_pred_proba)
오차 행렬
[[85283 12]
[ 56 92]]
정확도: 0,9992, 정밀도: 0,8846, 재현율: 0,6216, F1: 0,7302, AUC: 0,9599
```

```
오차 행렬
[[85290 5]
[ 36 112]]
정확도: 0,9995, 정밀도: 0,9573, 재현율: 0,7568, F1: 0,8453, AUC: 0,9790
```

데이터 가공	머신러닝 알고리즘	평가지표			
		정밀도	재현율	ROC-AUC	
원본 데이터	로지스틱 회귀	0.8846	0.6216	0.9599	
	LightGBM	0.9573	0.7568	0.9790	

1. StandardScaler

```
import seaborn as sns
plt.figure(figsize=(8, 4))
plt.xticks(range(0,30000,1000), rotation=60)
sns.distplot(card_df['Amount'])
```

Amount: 정앙/사기 트랜잭션을 결정하는 매우 중요한 옥정

StandardScaler를 통해 이 피처를 정 규분포 형태로 변환


```
from sklearn.preprocessing import StandardScaler
def get_preprocessed_df(df=None):
   df_copv=df.copv()
   |scaler=StandardScaler()|
   amount_n=scaler.fit_transform(df_copy['Amount'].values.reshape(-1, 1))
   df_copy,insert(0, 'Amount_scaled', amount_n)
   df_copy.drop(['Amount', 'Time'], axis=1, inplace=True)
    return df_copy
X_train, X_test, v_train, v_test=get_train_test_dataset(card_df)
Ir_clf =LogisticRegression()
get_model_train_eval(lr_clf, ftr_train=X_train, ftr_test=X_test, tgt_train=v_train, tgt_test=v_test)
print('### LGBM 예측 성능 ###')
lgbm_clf=LGBMClassifier(n_estimators=1000, num_leaves=64, n_jobs=-1, boost_from_average=False).
get_model_train_eval(lgbm_clf, ftr_train=X_train, ftr_test=X_test, tgt_train=y_train, tgt_test=y_test)
```

1. 불균형 데이터-_{불균형 데이터의 특징}

```
오차 행렬
[[85281 14]
[ 58 90]]
정확도: 0,9992, 정밀도: 0,8654, 재현율: 0,6081, F1: 0,7143, AUC: 0,9702
### LGBM 예측 성능 ###
오차 행렬
[[85290 5]
[ 37 111]]
정확도: 0,9995, 정밀도: 0,9569, 재현율: 0,7500, F1: 0,8409, AUC: 0,9779
```

데이터 가공	머신러닝 알고리즘	평가지표				
		정밀도	재현율	ROC-AUC		
원본 데이터	로지스틱 회귀	0.8846	0.6216	0.9599		
	LightGBM	0.9573	0.7568	0.9790		
StandardScaler	로지스틱 회귀	0.8654	0.6081	0.9702		
	LightGBM	0.9569	0.7500	0.9779		

2. 로그 변환

데이러 분포가 심하게 왜곡되어 있을 경우 적용하는 기법

원래 값을 log값으로 변환하기에 상대적으로 적은 값으로 모델을 판단할 수 있음

하양이 5장에서 더 다룰 예정

```
def get_preprocessed_df(df=None):
    df_copy=df ,copy().
    amount_n=np,log1p(df_copy['Amount'])
    df_copy,insert(0, 'Amount_scaled', amount_n);
    df_copy,drop(['Amount', 'Time'], axis=1, inplace=True);
    return df_copy
|X_train, X_test, y_train, y_test=get_train_test_dataset(card_df)|
print('### 로지스틱 회귀 예측 성능 ###')
get_model_train_eval(lr_clf, ftr_train=X_train, ftr_test=X_test, tgt_train=v_train, tgt_test=v_test).
print('### LIGHTGBM 예측 성능 ###')
get_model_train_eval(lgbm_clf, ftr_train=X_train, ftr_test=X_test, tgt_train=y_train, tgt_test=y_test)
```

```
### 로지스틱 회귀 예측 성능 ###
오차 행렬
[[85283 12]
[ 59 89]]
정확도: 0,9992, 정밀도: 0,8812, 재현율: 0,6014, F1: 0,7149, AUC: 0,9727
### LIGHTGBM 예측 성능 ###
오차 행렬
[[85290 5]
[ 35 113]]
정확도: 0,9995, 정밀도: 0,9576, 재현율: 0,7635, F1: 0,8496, AUC: 0,9796
```

데이터 가공	머신러닝 알고리즘	평가지표			
		정밀도	재현율	ROC-AUC	
원본 데이터	로지스틱 회귀	0.8846	0.6216	0.9599	
	LightGBM	0.9573	0.7568	0.9790	
StandardScaler	로지스틱 회귀	0.8654	0.6081	0.9702	
	LightGBM	0.9569	0.7500	0.9779	
로그 변환	로지스틱 회귀	0.8812	0.6014	0.9727	
	LightGBM	0.9576	0.7635	0.9796	

3. OIOXI M71

1. 불균형 데이터-_{불균형 데이터의 특징}

```
plt.figure(figsize=(9, 9))
corr=card_df,corr()
sns,heatmap(corr, cmap='RdBu')
```



```
def get_outlier(df=None, columns=None, weight=1.5):
    fraud=df[df['Class']==1][columns]
    quantile_25=np.percentile(fraud.values, 25)
    quantile_75=np.percentile(fraud.values, 75)
    igr=quantile_75-quantile_25
    igr_weight=igr*weight
    |lowest_val=quantile_25-iqr_weight
    highest_val=quantile_75+iqr_weight
    outlier_index=fraud[(fraud<lowest_val)](fraud>highest_val)].index
    return outlier_index
outlier_index=get_outlier(df=card_df, columns='V14', weight=1.5);
print('미상치 데이터 인덱스:', outlier_index)
이상치 데이터 인덱스: Int64Index([8296, 8615, 9035, 9252], dtype='int64').
```

```
def get_preprocessed_df(df=None):
    df_copy=df.copy()
    amount_n=np.log1p(df_copy['Amount'])
    df_copy.insert(0, 'Amount_scaled', amount_n)
    df_copy.drop(['Amount', 'Time'], axis=1, inplace=True)
    outlier_index=get_outlier(df=df_copy, columns='V14', weight=1.5)
    df_copy.drop(outlier_index, axis=0, inplace=True)
    return df_copy
```

1. 불균형 데이터-_{불균형 데이터의 특징}

```
### 로지스틱 회위 예측 성능 ###
오차 행렬
[[85281 14]
[ 48 98]]
정확도: 0.9993, 정밀도: 0.8750, 재현율: 0.6712, F1: 0.7597, AUC: 0.9743
### LIGHTGBM 예측 성능 ###
오차 행렬
[[85290 5]
[ 25 121]]
정확도: 0.9996, 정밀도: 0.9603, 재현율: 0.8288, F1: 0.8897, AUC: 0.9780
```

데이터 가공	머신러닝 알고리즘	평가지표			
		정밀도	재현율	ROC-AUC	
원본 데이터	로지스틱 회귀	0.8846	0.6216	0.9599	
	LightGBM	0.9573	0.7568	0.9790	
StandardScaler	로지스틱 회귀	0.8654	0.6081	0.9702	
	LightGBM	0.9569	0.7500	0.9779	
로그 변환	로지스틱 회귀	0.8812	0.6014	0.9727	
	LightGBM	0.9576	0.7635	0.9796	
이상치 제거	로지스틱 회귀	0.8750	0.6712	0.9743	
	LightGBM	0.9603	0.8288	0.9780	

4. SMOTE

- pip: pip install -U imbalanced-learn
- anaconda: conda install -c glemaitre imbalanced-learn

```
### smote=SMOTE(random_state=0)

**X_train_over, y_train_over=smote.fit_sample(X_train, y_train)

**print('SMOTE 적용 전 학습용 피처/레이블 데이터 세트: ', X_train_over.shape, y_train_shape)

**print('SMOTE 적용 후 학습용 피처/레이블 데이터 세트: ', X_train_over.shape, y_train_over.shape)

**print('SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)

**SMOTE 적용 전 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (398040, 29) (398040,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (398040, 29) (398040,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)

**SMOTE 적용 후 학습용 피처/레이블 데이터 세트: (199362, 29) (199362,)
```

오차 행렬 [[82937 2358] 135]] 정확도: 0.9723,

<mark>정밀도: 0.0542,</mark>재현율: 0.9247, F1: 0.1023, AUC: 0.9737

로지스틱 회귀 모델이 오버 샘플링으로 인해 실제 원 본 데이터의 유형보다 너무나 많은 Class=1 데이터를 학습하면서 실제 데이터 세트에서 Class=1 예측을 지 나치게 적용해 정밀도가 급격히 떨어지게 된 것

```
def precision_recall_curve_plot(y_test, pred_proba):
    precisions, recalls, thresholds=precision_recall_curve(y_test, pred_proba)
    plt.figure(figsize=(8,6))
    threshold_boundary=thresholds.shape[0]
    plt.plot(thresholds, precisions[0:threshold_boundary], linestyle='-', label='precision')
    plt.plot(thresholds, recalls[0:threshold_boundary], label='recall')

    start, end=plt.xlim()
    plt.xlicks(np.round(np.arange(start, end, 0.1), 2))

    plt.xlabel('Treshold value'); plt.ylabel('Precision and Recall Value')
    plt.legend();plt.grid()
    plt.show()
```

precision_recall_curve_plot(y_test, Ir_clf.predict_proba(X_test)[:,1])

분류 결정 임계값에 따른 정밀도와 재현율 곡선을 통해 SMOTE로 학습된 로지스틱 회귀 모델에 어떠한 문제가 발생했는지 확인

〈임계값 O.99를 기준〉

이앙: 재현율 높고, 정밀도 낮음

이하: 재현율 낮아지고 정밀도 높아짐

데이터 가공	머신러닝 알고리즘	평가지표			
		정밀도	재현율	ROC-AUC	
원본 데이터	로지스틱 회귀	0.8846	0.6216	0.9599	
	LightGBM	0.9573	0.7568	0.9790	
StandardScaler	로지스틱 회귀	0.8654	0.6081	0.9702	
	LightGBM	0.9569	0.7500	0.9779	
로그 변환	로지스틱 회귀	0.8812	0.6014	0.9727	
	LightGBM	0.9576	0.7635	0.9796	
이상치 제거	로지스틱 회귀	0.8750	0.6712	0.9743	
	LightGBM	0.9603	0.8288	0.9780	
SMOTE	로지스틱 회귀	0.0542	0.9247	0.9737	
	LightGBM	0.9118	0.8493	0.9814	

Random Sampling

Cost-Sensitive Learning

반드시

학습 데이터에 대해서만 over/under 샘플링을 진행해 야 함.

검증 데이터에 대해서 over/under 샘플링을 할 경 우 올바른 검증을 할 수 없음.

1. 불균형 데이터-_{불균형 데이터의 특징}

- Random Over Sampling

SMOTE(Synthetic Minority Over-sampling Technique)


```
Algorithm SMOTE(T, N, k)
Input: Number of minority class samples T; Amount of SMOTE N%; Number of nearest
    neighbors k
Output: (N/100) * T synthetic minority class samples
1. (* If N is less than 100%, randomize the minority class samples as only a random
    percent of them will be SMOTEd. *)
2. if N < 100
      then Randomize the T minority class samples
            T = (N/100) * T
            N = 100
6.
    endif
    N = (int)(N/100) (* The amount of SMOTE is assumed to be in integral multiples of
   k = \text{Number of nearest neighbors}
    numattrs = Number of attributes
10. Sample [] : array for original minority class samples
11. newindex: keeps a count of number of synthetic samples generated, initialized to 0
12. Synthetic | | | : array for synthetic samples
    (* Compute k nearest neighbors for each minority class sample only. *)
14.
           Compute k nearest neighbors for i, and save the indices in the nnarray
15.
            Populate(N, i, nnarray)
16. endfor
    Populate(N, i, nnarray) (* Function to generate the synthetic samples. *)
17. while N \neq 0
           Choose a random number between 1 and k, call it nn. This step chooses one of
18.
           the k nearest neighbors of i.
19.
           for attr \leftarrow 1 to numattrs
20.
                  Compute: dif = Sample[nnarray[nn]][attr] - Sample[i][attr]
21.
                  Compute: gap = random number between 0 and 1
                  Synthetic[newindex][attr] = Sample[i][attr] + gap * dif
22.
23.
           endfor
24.
           newindex++
25.
           N = N - 1
26. endwhile
27. return (* End of Populate. *)
    End of Pseudo-Code.
```


- Majority class samples
- Minority class samples
- Synthetic samples

1. 소수 클래스에서 각각의 샘플들의 KNN을 찾는다.

2. 각각의 군집을 선으로 이은 후, 선 위의 임의의 점에 새로운 점을 생성한다.

+

1. 불균형 데이터-불균형 데이터의 특징

- BLSMOTE(Border Line SMOTE)

- Tomek Links

- 이 외에도 Easy Ensemble, Balance Cascade와 같은 기법 이 있음

- 1. 서로 다른 클래스의 데이터를 모두 있는 다.
- 2. 임의의 점 k 에 그은 전분의 길이보다 짧은 거리에 있는 점과의 연결을 토맥링크라고 한다.
- 3. 토맥링크 중 Major class를 삭제한다.

Over Sampling

- →데이터의 크기를 늘리기에 시간이 오래 걸림
- →over-generating 현삼
- →과적합의 이슈가 있음

Over Sampling을 통해 의사 결정 경계 가 과하게 커지며, 기존의 데이러 분포가 과하게 왜곡되는 경우 발맹

OI러한 OI유를 해결하기 위해 현재에는 DBSM과 같은 hybrid resampling 기 법이 발달

Under Sampling

- → 학습에 필요하지 않은 데이터의 수를 줄임으로써 학습속도 향상
- → Decision Boundary 부근에 있는 데이터를 제거할 경우 학습에 악영향

2. 스래킹 암상블

<u> 스래킹</u>

- * 배깅 및 부스팀과의 공통점
 - 개별적인 여러 알고리즘을 서로 결합해 예측 결과를 도출
- * 배깅 및 부스팀과의 차이점
 - 알고리즘으로 예측한 데이터를 기반으로 다시 예측을 수행
 - ! 즉, 개별 알고리즘의 예측 결과 데이터세트를 최종적인 메타 데이터세트로 만들어 별도의 ML 알고리즘으로 최종 학습을 수행하고 테스트 데이터를 기반으로 다시 최종 예측을 수행하는 방식
 - -> 메타 모델: 개별 모델의 예측된 데이터 세트를 다시 기반으로 하여 학습하고 예측하는 방식

- * 두 종류의 모델 필요
 - 1) 개별적인 기반 모델
 - 2) 이 개별 기반 모델의 예측 데이터를 학습 데이터로 만들어서 학습하는 최종 메타 모델

핵심 ! 여러 개별 모델의 예측 데이터를 각각 스태킹 형태로 결합해 최종 메타 모델의 학습용 피처 데이터 세트와 테스트용 피처 데이터 세트를 만드는 것

* 스태킹의 개념

M개의 로우, N개의 피처(칼럼)을 가진 데이터세트에 스태킹 앙상블을 적용

3가지 모델로 각 모델을 학습한 뒤 예측을 수행하면 M개의 로우를 가진 1개의 레이블 값 도출

- -> 모델별로 도출된 예측 레이블 값을 다시 합해서(스태킹)
- -> 스태킹된 새로운 데이터세트에 대해 최종 모델 적용하여 최종 예측

* 예제 (위스콘신 암 데이터 세트)

스태킹에 사용될 머신러닝 알고리즘 클래스 생성

```
# 개별 ML 모델을 위한 Classifier 생성.
knn_clf = KNeighborsClassifier(n_neighbors=4)
rf_clf = RandomForestClassifier(n_estimators=100, random_state=0)
dt_clf = DecisionTreeClassifier()
ada_clf = AdaBoostClassifier(n_estimators=100)
# 최종 Stacking 모델을 위한 Classifier생성.
lr_final = LogisticRegression(C=10)
```

```
# 개별 모델들을 학습.
knn_clf.fit(X_train, y_train)
rf_clf.fit(X_train , y_train)
dt_clf.fit(X_train , y_train)
ada_clf.fit(X_train, y_train)
```

AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1.0, n_estimators=100, random_state=None)

-> 개별 모델: KNN, 랜덤 포레스트, 결정 트리, 에이다부스트

최종 모델: 로지스틱 회귀

```
# 학습된 개별 모델들이 각자 반환하는 예측 데이터 셋을 생성하고 개별 모델의 정확도 측정.
knn_pred = knn_clf.predict(X_test)
rf_pred = rf_clf.predict(X_test)
dt_pred = dt_clf.predict(X_test)
ada_pred = ada_clf.predict(X_test)

print('KNN 정확도: {0:.4f}'.format(accuracy_score(y_test, knn_pred)))
print('랜덤 포레스트 정확도: {0:.4f}'.format(accuracy_score(y_test, rf_pred)))
print('결정 트리 정확도: {0:.4f}'.format(accuracy_score(y_test, dt_pred)))
print('에이다부스트 정확도: {0:.4f} :'.format(accuracy_score(y_test, ada_pred)))
```

KNN 정확도: 0.9211

랜덤 포레스트 정확도: 0.9649 결정 트리 정확도: 0.9035 에이다부스트 정확도: 0.9561 :

-> 개별 모델의 예측 정확도

```
pred = np.array([knn_pred, rf_pred, dt_pred, ada_pred])
print(pred.shape)
# transpose를 이용해 행과 열의 위치 교환. 컬럼 레벨로 각 알고리즘의 예측 결과를 피처로 만듦.
pred = np.transpose(pred)
print(pred.shape)
```

(4, 114) (114, 4)

최종 메타 모델의 예측 정확도: 0.9737

스태킹 적용한 결과, 개별 모델 정확도보다 향상됨

! but 최종 학습할 때 테스트용 레이블 데이터 세트를 기반으로 학습함으로 인해 과적합 문제 발생 가능

해결 -> CV 세트 기반 스태킹 모델

-> 예측 데이터로 생성된 데이터 세트를 기반으로 최종 메타 모델인 로지스틱 회귀 학습, 예측 정확도 측정

- * CV 세트 기반의 스태킹
 - : 과적합 개선을 위해 최종 메타 모델을 위한 데이터 세트를 만들 때 교차 검증 기반으로 예측된 결과 데이터 세트를 이용
- * 2단계의 스텝
 - 1) 각 모델별로 원본 학습/테스트 데이터를 예측한 결과 값을 기반으로 메타 모델을 위한 학습용/테스트용 데이터를 생성

STEP 1

- 2) STEP 1에서 개별 모델들이 생성한 학습용 데이터를 모두 스태킹 형태로 합쳐서 메타 모델이 학습할 최종 학습용 데이터 세트 생성
- 3) 마찬가지로 각 모델들이 생성한 테스트용 데이터를 모두 스태킹 형태로 합쳐서 메타 모델이 예측할 최종 테스트 데이터 세트를 생성
- 4) 최종적으로 생성된 학습 데이터 세트와 원본 학습 데이터의 레이블 데이터를 기반으로 학습 -> 최종적으로 생성된 테스트 데이터 세트 예측, 원본 테스트 데이터의 레이블 데이터를 기반으로 평가

STEP 2

* CV 세트 기반 스태킹의 개념 (STEP 1)

N개의 폴드만큼 반복을 수행하면서 스태킹 데이터를 생성 (N=3)

* CV 세트 기반 스태킹의 개념 (STEP 2 + 모델 전체)

각 모델들이 STEP 1으로 생성한 학습과 테스트 데이터를 모두 합쳐서 최종적으로 메타 모델이 사용할 학습 데이터와 테스트 데이터를 생성 -> 메타 모델 학습 후 최종 테스트 데이터로 예측, 원본 테스트 레이블 데이터와 비교해 평가

* CV 세트 기반 스태킹 예제

```
from sklearn.model_selection import KFold
from sklearn.metrics import mean_absolute_error
# 개별 기반 모델에서 최종 메타 모델이 사용할 학습 및 테스트용 데이터를 생성하기 위한 함수.
def get_stacking_base_datasets(model, X_train_n, y_train_n, X_test_n, n_folds ):
   # 지정된 n folds값으로 KFold 생성.
   kf = KFold(n_splits=n_folds, shuffle=False, random_state=0)
   #추후에 메타 모델이 사용할 학습 데이터 반환을 위한 넘파이 배열 초기화
   train_fold_pred = np.zeros((X_train_n.shape[0] ,1 ))
   test_pred = np.zeros((X_test_n.shape[0],n_folds))
   print(model.__class__.__name__ , ' model 시작 ')
   for folder_counter , (train_index, valid_index) in enumerate(kf.split(X_train_n)):
      #입력된 학습 데이터에서 기반 모델이 학습/예측할 폴드 데이터 셋 추출
      print('\t 폴드 세트: ',folder_counter,' 시작 ')
      X \text{ tr} = X \text{ train } n[\text{train index}]
      y_tr = y_train_n[train_index]
      X te = X train n[valid index]
      #폴드 세트 내부에서 다시 만들어진 학습 데이터로 기반 모델의 학습 수행.
      model.fit(X_tr , y_tr)
      #폴드 세트 내부에서 다시 만들어진 검증 데이터로 기반 모델 예측 후 데이터 저장.
      train_fold_pred[valid_index, :] = model.predict(X_te).reshape(-1,1)
      #입력된 원본 테스트 데이터를 풀드 세트내 학습된 기반 모델에서 예측 후 데이터 저장.
      test pred[:, folder counter] = model.predict(X test n)
   # 폴드 세트 내에서 원본 테스트 데이터를 예측한 데이터를 평균하여 테스트 데이터로 생성
   test_pred_mean = np.mean(test_pred, axis=1).reshape(-1,1)
   #train fold pred는 최종 메타 모델이 사용하는 학습 데이터, test pred mean은 테스트 데이터
   return train fold pred , test pred mean
```

STEP 1

- 메타 모델을 위한 학습/테스트 데이터를 생성하는 get_stacking_base_datasets 함수 정의
- 파라미터 : 개별 모델의 classifier 객체, 원본인 학습용 피처 데이터, 원본인 학습용 레이블 데이터, 원본인 테스트 피처 데이터, k폴드 개수
- 폴드된 학습용 데이터로 학습한 뒤 예측 결과값을 기반으로 메타 모델을 위한 학습/테스트 데이터 생성 (폴드의 개수만큼 반복을 수행)
 - ※ 주의) for문에서 split할때 index가 나눠지면서 연속적인 숫자로 들어가지 않는 경우가 발생하기 때문에 모델을 돌릴때 index를 못찾는 경우 iloc방법을 이용해서 X_tr에 train_index를 넣어줘야함 (복습문제 참고)

메타 모델이 추후에 사용할 학습용, 테스트용 데이터 세트 반환

knn_train, knn_test = get_stacking_base_datasets(knn_clf, X_train, y_train, X_test, 7)
rf_train, rf_test = get_stacking_base_datasets(rf_clf, X_train, y_train, X_test, 7)
dt_train, dt_test = get_stacking_base_datasets(dt_clf, X_train, y_train, X_test, 7)
ada_train, ada_test = get_stacking_base_datasets(ada_clf, X_train, y_train, X_test, 7)

KNeighborsClassifier model 시작 폴드 세트: 0 시작 폴드 세트: 1 시작

폴드 세트: 2 시작 폴드 세트: 3 시작 폴드 세트: 4 시작

폴드 세트: 5 시작 폴드 세트: 6 시작

RandomForestClassifier model 시작

폴드 세트: 0 시작 폴드 세트: 1 시작

메타 모델이 학습할 학습용 피처 데이터 세트

STEP 2

넘파이의 concatenate() 이용해 각 모델별 학습 데이터와 테스트 데이터 합치기

```
✔Stack_final_X_train = np.concatenate((knn_train, rf_train, dt_train, ada_train), axis=1)
✔Stack_final_X_test = np.concatenate((knn_test, rf_test, dt_test, ada_test), axis=1)
print('원본 학습 피처 데이터 Shape:',X_train.shape, '원본 테스트 피처 Shape:',X_test.shape)
print('스태킹 학습 피처 데이터 Shape:',Stack_final_X_train.shape,
'스태킹 테스트 피처 데이터 Shape:',Stack_final_X_test.shape)
```

원본 학습 피처 데이터 Shape: (455, 30) 원본 테스트 피처 Shape: (114, 30) 스태킹 학습 피처 데이터 Shape: (455, 4) 스태킹 테스트 피처 데이터 Shape: (114, 4)

```
Ir_final.fit(Stack_final_X_train, y_train)
stack_final = Ir_final.predict(Stack_final_X_test)
print('최종 메타 모델의 예측 정확도: {0:.4f}'.format(accuracy_score(y_test, stack_final)))
```

최종 메타 모델의 예측 정확도: 0.9737

* 스태킹 모델은 분류뿐만 아니라 회귀에도 적용 가능

Automated Machine Learning (AutoML)이란? 기계 학습 파이프 라인에서 반복되는 수작업을 자동화하는 프로세스

-> 예측 모델 개발에 많은 시간을 소요했던 코딩, 전처리, 알고리즘 선택, 튜닝 작업을 자동화

PyCaret은 머신러닝 워크 플로우를 자동화하는 Python의 오픈 소스 머신러닝 라이브러리

설치

pip install pycaret

버젼 확인 import pycaret pycaret.__version__

'2.2.0'

데이터 불러오기

```
import pandas as pd
data = pd.read_csv('creditcard.csv') 앞서 사용한 creditcard 데이터로 비교/적용해 봅시다.
```

data.head()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	Amount	Class
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	149.62	0
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	2.69	0
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	378.66	0
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	123.50	0
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	69.99	0

5 rows × 31 columns

```
# Time == 제기
data.drop('Time',axis=1, inplace=True)
```

Initialize Setup (초기 세팅)

Initialize Setup (초기 세팅)

다음과 같이 description이 제공됩니다.

	Description	Value
0	session_id	6
1	Target	Class
2	Target Type	Binary
3	Label Encoded	0: 0, 1: 1
4	Original Data	(284807, 30)
5	Missing Values	False
6	Numeric Features	29
7	Categorical Features	0
8	Ordinal Features	False
9	High Cardinality Features	False
10	High Cardinality Method	None

10	High Cardinality Method	None
11	Transformed Train Set	(227845, 29)
12	Transformed Test Set	(56962, 29)
13	Shuffle Train-Test	True
14	Stratify Train-Test	False
15	Fold Generator	StratifiedKFold
16	Fold Number	10
17	CPU Jobs	-1
18	Use GPU	False
19	Log Experiment	False
20	Experiment Name	clf-default-name

·· ··· (이하 생략)

〈참고〉

초기 setup 단계에서, use_gpu=True로 절정하면 GPU를 사용할 수 있다.

19	Log Experiment	False	use_gpu	=True 설정시	T
18	Use GPU	False	 18	Use GPU	
17	CPU Jobs	-1			
16	Fold Number	10			
15	Fold Generator	StratifiedKFold			

GPU 지원 알고리즘:

- Extreme Gradient Boosting
- CatBoost Classifier -> GPU 는 데이터가 50,000 행 이상인 경우에만 활성화 됨
- Light Gradient Boosting Machine -> GPU 설치 필요 https://lightgbm.readthedocs.io/en/latest/GPU-Tutorial.html
- Logistic Regression, Ridge Classifier, Random Forest, K Neighbors Classifier, Support Vector Machine -> cuML> = 0.15 필요 https://github.com/rapidsai/cuml

```
# GPU가 적용되는 모텔 확인
models(internal=True)[['Name', 'GPU Enabled']]
```

Name GPU Enabled

use_gpu=False가 디폴트이기 때문에 현재는 모두 False

טו		
lr	Logistic Regression	False
knn	K Neighbors Classifier	False
nb	Naive Bayes	False
dt	Decision Tree Classifier	False
svm	SVM - Linear Kernel	False
rbfsvm	SVM - Radial Kernel	False
gpc	Gaussian Process Classifier	False
mlp	MLP Classifier	False
ridge	Ridge Classifier	False
rf	Random Forest Classifier	False
qda	Quadratic Discriminant Analysis	False
ada	Ada Boost Classifier	False

ID

gbc	Gradient Boosting Classifier	False
lda	Linear Discriminant Analysis	False
et	Extra Trees Classifier	False
xgboost	Extreme Gradient Boosting	False
lightgbm	Light Gradient Boosting Machine	False
catboost	CatBoost Classifier	False
Bagging	Bagging Classifier	False
Stacking	Stacking Classifier	False
Voting	Voting Classifier	False
CalibratedCV	Calibrated Classifier CV	False

Compare Baseline (모델 비교) # F1스코어 기준 상위 3개 모델을 best3models에 저장

- ㆍ 15개 모델 비교
- compare_models()

(참고) 현재 로컬 환경 노트북 사양(문서용)

- CPU: 8MICH i3(4C4T)

- RAM: 8GB 7I준

약 24분정도 소요됩니다.

default7h n_jobs=-1017l 때문에, 컴퓨터의 모든 코어를 사용하여 코드 돌리는 동안 속도가 느려집니다.

best3models = compare_models(sort='F1',n_select=3, fold=2)

default 는 각각 'Accuracy' , 1, 10

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
xgboost	Extreme Gradient Boosting	0.9995	0.9736	0.7843	0.9279	0.8501	0.8498	0.8528	51.4900
catboost	CatBoost Classifier	0.9995	0.9743	0.7817	0.9305	0.8496	0.8494	0.8526	83.1300
rf	Random Forest Classifier	0.9995	0.9447	0.7665	0.9183	0.8354	0.8351	0.8386	66.0550
et	Extra Trees Classifier	0.9995	0.9500	0.7640	0.9154	0.8326	0.8324	0.8359	16.8600
lda	Linear Discriminant Analysis	0.9994	0.9009	0.7614	0.8634	0.8083	0.8079	0.8100	1.8900
svm	SVM - Linear Kernel	0.9993	0.0000	0.7360	0.8231	0.7770	0.7766	0.7779	1.4100
ada	Ada Boost Classifier	0.9992	0.9685	0.6853	0.8165	0.7451	0.7447	0.7476	36.6900
Ir	Logistic Regression	0.9992	0.9742	0.6421	0.8753	0.7358	0.7354	0.7467	19.5250
gbc	Gradient Boosting Classifier	0.9992	0.8221	0.6472	0.8343	0.7255	0.7251	0.7327	172.3000
dt	Decision Tree Classifier	0.9990	0.8627	0.7259	0.7073	0.7160	0.7155	0.7158	11.5000
knn	K Neighbors Classifier	0.9991	0.8640	0.5609	0.8911	0.6885	0.6881	0.7066	142.1100
ridge	Ridge Classifier	0.9989	0.0000	0.4264	0.8526	0.5663	0.5658	0.6012	0.9300
lightgbm	Light Gradient Boosting Machine	0.9951	0.6921	0.5406	0.1857	0.2764	0.2745	0.3149	6.4950
nb	Naive Bayes	0.9778	0.9623	0.8325	0.0618	0.1150	0.1121	0.2232	0.9200
qda	Quadratic Discriminant Analysis	0.9768	0.9684	0.8629	0.0611	0.1140	0.1112	0.2260	1.2400

Create Model (모델 만들기)

- •로지스틱 회귀
- · create_model()

```
#로지스틱 회귀
Ir = create_model('Ir', fold = 2)
```

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	0.9993	0.9838	0.7360	0.8580	0.7923	0.7920	0.7944
1	0.9991	0.9646	0.5482	0.8926	0.6792	0.6788	0.6991
Mean	0.9992	0.9742	0.6421	0.8753	0.7358	0.7354	0.7467
SD	0.0001	0.0096	0.0939	0.0173	0.0566	0.0566	0.0476

۱r

```
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=1000, multi_class='auto', n_jobs=None, penalty='l2', random_state=6, solver='lbfgs', tol=0.0001, verbose=0, warm_start=False)
```

+

3. Auto ML(Automated Machine Learning)

Create Model (모델 만들기)

- LightGBM
- · create_model()

```
# /ightgbm
| Igbm = create_model('lightgbm', fold= 2 )
```

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	0.9953	0.6736	0.5178	0.1865	0.2742	0.2723	0.3089
1	0.9950	0.7106	0.5635	0.1850	0.2785	0.2767	0.3210
Mean	0.9951	0.6921	0.5406	0.1857	0.2764	0.2745	0.3149
SD	0.0002	0.0185	0.0228	0.0007	0.0022	0.0022	0.0061

```
lgbm
```

```
LGBMClassifier(boosting_type='gbdt', class_weight=None, colsample_bytree=1.0, importance_type='split', learning_rate=0.1, max_depth=-1, min_child_samples=20, min_child_weight=0.001, min_split_gain=0.0, n_estimators=100, n_jobs=-1, num_leaves=31, objective=None, random_state=6, reg_alpha=0.0, reg_lambda=0.0, silent=True, subsample=1.0, subsample_for_bin=200000, subsample_freq=0)
```

Tune Hyperparameters(하이대 마라미터 튜닝)

- •로지스틱 회귀
- tune_model()

```
#로지스틱 회귀
tuned_Ir = tune_model(Ir, fold = 2, optimize='F1')
```

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	0.9993	0.9839	0.7411	0.8588	0.7956	0.7953	0.7975
1	0.9991	0.9633	0.5584	0.8943	0.6875	0.6871	0.7063
Mean	0.9992	0.9736	0.6497	0.8766	0.7416	0.7412	0.7519
SD	0.0001	0.0103	0.0914	0.0177	0.0541	0.0541	0.0456

```
tuned_Ir
```

```
LogisticRegression (C=8.026 class_weight={}, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=1000, multi_class='auto', n_jobs=None, penalty='l2', random_state=6, solver='lbfgs', tol=0.0001, verbose=0, warm_start=False)
```

Tune Hyperparameters(하이데 마라미터 튜닝)

- LightGBM
- tune_model()

```
# /ightgbm
tuned_lgbm = tune_model(lgbm, fold = 2, optimize='F1')
```

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	0.9995	0.9786	0.7868	0.9226	0.8493	0.8491	0.8518
1	0.9995	0.9805	0.7411	0.9419	0.8295	0.8293	0.8353
Mean	0.9995	0.9795	0.7640	0.9323	0.8394	0.8392	0.8435
SD	0.0000	0.0009	0.0228	0.0097	0.0099	0.0099	0.0083

```
LGBMClassifier(bagging_fraction=0.5, bagging_freq=2, boosting_type='gbdt', class_weight=None, colsample_bytree=1.0, feature_fraction=0.9, importance_type='split', learning_rate=0.234, max_depth=-1, min_child_samples=75, min_child_weight=0.001, min_split_gain=0.3, n_estimators=100, n_jobs=-1, num_leaves=80, objective=None, random_state=6, reg_alpha=0.5, reg_lambda=2, silent=True, subsample=1.0, subsample_for_bin=200000, subsample_freq=0)
```

하이퍼 파라미터 튜닝 결과 비교

로지스틱 회귀

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	0.9993	0.9838	0.7360	0.8580	0.7923	0.7920	0.7944
1	0.9991	0.9646	0.5482	0.8926	0.6792	0.6788	0.6991
Mean	0.9992	0.9742	0.6421	0.8753	0.7358	0.7354	0.7467
SD	0.0001	0.0096	0.0939	0.0173	0.0566	0.0566	0.0476

		Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
	0	0.9993	0.9839	0.7411	0.8588	0.7956	0.7953	0.7975
	1	0.9991	0.9633	0.5584	0.8943	0.6875	0.6871	0.7063
	Mean	0.9992	0.9736	0.6497	0.8766	0.7416	0.7412	0.7519
	SD	0.0001	0.0103	0.0914	0.0177	0.0541	0.0541	0.0456

소폭 암승

LightGBM

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	0.9953	0.6736	0.5178	0.1865	0.2742	0.2723	0.3089
1	0.9950	0.7106	0.5635	0.1850	0.2785	0.2767	0.3210
Mean	0.9951	0.6921	0.5406	0.1857	0.2764	0.2745	0.3149
SD	0.0002	0.0185	0.0228	0.0007	0.0022	0.0022	0.0061

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	0.9995	0.9786	0.7868	0.9226	0.8493	0.8491	0.8518
1	0.9995	0.9805	0.7411	0.9419	0.8295	0.8293	0.8353
Mean	0.9995	0.9795	0.7640	0.9323	0.8394	0.8392	0.8435
SD	0.0000	0.0009	0.0228	0.0097	0.0099	0.0099	0.0083

Analyze Model (다양한 시각화)

plot_model()

Analyze Model (다양한 시각화)

plot_model()

Analyze Model (다양한 시각화)

plot_model()

plot_model(tuned_lgbm,'learning') # 약 4분 소요됩니다.

plot_model(tuned_lgbm, 'threshold') # 약 4분 소요됩니다.

Blend Models (모델 결합)

- ·다시 돌아와서, 앞서 만든 best3models의 세 모델로 앙앙블(soft vote)하기
- blend_models()

> Default는 'auto' 'auto'는 'soft'를 사용하고, 'soft'가 지원되지 않는 경우 'hard'로 대체됨

모델 예측 (Prediction)

- predict_model()
- · setup 환경에 이미 hold-out set이 존재함

pred_holdout = predict_model(blended)

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс
0	Voting Classifier	0.9996	0.9787	0.8061	0.9634	0.8778	0.8776	0.8811

하이퍼 파라미터 튜닝을 하지않은 장위 3개의 모델을 사용했는데도 정능이 꽤 좋다!

> ^ 심고 정확이는 finalize_model() 함수를 사용하여 전체 데이터에 대해 학습을 하고, predict_model()을 이용하여 실제 test 데이터에 적용을 해야합니다.

결론

- · 정규화, 로그변환, 이상치제거, SMOTE 등을 직접 하지 않고 모두 기계에게 맡기는 AutoML
- · Pycaret 이 제공하는 기본적인 기능을 사용했으나, 유의미한 결과를 얻을 수 있었음
- ㆍ추가 작업을 통해 정능을 더 향상시킬 수 있을거라 기대됨
- ·홈페이지와 공식 문서가 매우 잘 정리되어 있으니 관심있다면 공부해 보는 것도 좋을 것 같습니다.

https://pycaret.org/
https://pycaret.readthedocs.io/en/latest/index.html#

1994년 미국 정인을 대상으로 한 데이터

室村: https://www.kaggle.com/c/kakr-4th-competition/overview

목표: F1 스코어 높이기

* 변수설명

id

age : 나이

workclass : 고용 형태

• fnlwgt : 사람 대표성을 나타내는 가중치 (final weight의 약자)

education : 교육 수준

education_num : 교육 수준 수치

• marital status: 결혼 상태

occupation : 업종

relationship : 가족 관계

race : 인종sex : 성별

• capital_gain : 양도 소득

capital_loss : 양도 손실

• hours per week : 주당 근무 시간

native_country : 국적

income : 수익 (예측해야 하는 값)

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
import os

warnings.filterwarnings('ignore')

train = pd.read_csv('/train.csv')
test = pd.read_csv('/python/test.csv')
```

print(train.shape, test.shape)

(26049, 16) (6512, 15)

train, test 의 분포를 따로 봐야하는 이유는 캐글에서 가끔 함정으로 train 에 없는 값 분포를 test에 심어 놓기 때문

4. 정인 인구 소득 예측 예제

train.head(3)

	id	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capital_loss	hours_per_we
0	0	40	Private	168538	HS-grad	9	Married-civ- spouse	Sales	Husband	White	Male	0	0	
1	1	17	Private	101626	9th	5	Never-married	Machine- op-inspct	Own-child	White	Male	0	0	
2	2	18	Private	353358	Some- college	10	Never-married	Other- service	Own-child	White	Male	0	0	

test.head(3)

	id	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capital_loss	hours_per_
0	0	28	Private	67661	Some- college	10	Never-married	Adm- clerical	Other- relative	White	Female	0	0	
1	1	40	Self-emp- inc	37869	HS-grad	9	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	
2	2	20	Private	109952	Some- college	10	Never-married	Handlers- cleaners	Own-child	White	Male	0	0	

```
# 결촉剂
print(test.isnull().sum())
```

```
id
                       id
age
                       аяе
workclass
                       workclass
fnlwgt
                       folwat
education
                       education
education_num
                       education_num
marital_status
                       marital_status
occupation
                      occupation
relationship
                       relationship
race
                       race
sex
                       sex
capital_gain
                      capital_gain
capital_loss
                      capital_loss
hours_per_week
                      hours_per_week
native_country
income
                      native_country
dtype: int64
                      dtype: int64
```

컬럼 별 into() 확인 print(train.info(),'\mun') print(test.info())

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 26049 entries, 0 to 26048

Data columns (total 16 columns): Non-Null Count Dtype Column id 26049 non-null int64 26049 non-null int64 age 26049 non-null workclass object 26049 non-null int64 fnlwgt education. 26049 non-null object education_num 26049 non-null int64 26049 non-null marital_status object occupation 26049 non-null object 26049 non-null relationship object 26049 non-null object race 26049 non-null sex object 26049 non-null capital_gain int64 26049 non-null capital_loss int64 26049 non-nul hours_per_week int64 26049 non-null native_country object income 26049 non-null object dtypes: int64(7), object(9)

None

14 native_country 6512 non-null dtypes: int64(7), object(8) memory usage: 763.2+ KB memory usage: 3.2+ MB None

<class 'pandas.core.frame.DataFrame'>

marital_status 6512 non-null

hours_per_week 6512 non-null

Non-Null Count Dtype

int64

int64

object

int64

object

int64

object

object

object

object

object

int64

int64

int64

object

6512 non-null

RangeIndex: 6512 entries, 0 to 6511

Data columns (total 15 columns):

Column

id

аяе

workclass

education

occupation

relationship

capital_gain

capital_loss

education_num

fnlwgt

race

sex

결측치가 존재하지 않는다

```
train['income'].value_counts()
<=50K
       19744
>50K
        6305
Name: income, dtype: int64
# 소득이 50k이하인 사람은 0. 그렇지 않으면 1 (즉, 저소득자 0, 고소득자 1)
train['income'] = train['income'].apply(lambda x: 0 if x == '<=50K' else 1)
train['income'].value_counts()
    19744
     6305
Name: income, dtype: int64
                                                      train, test 데이터 확인 결과 별다른 이상이 없으므로
all_data = pd.concat([train, test])
                                                      train+test로 병합하여 전처리한다.
all_data.head(1)
  id age workclass fnlwgt education education_num marital_status occupation relationship race sex capital_gain capital_loss hours_per_w
                                      Married-civ-
0 0 40
                                                      Husband White Male
         Private 168538 HS-grad
```

- 칼럼별로 살펴보기 (int64형)

age : 나이

• fnlwgt : 사람 대표성을 나타내는 가중치 (final weight의 약자)

education_num : 교육 수준

• capital_gain : 양도 소득

capital_loss : 양도 손실

hours_per_week : 주당 근무 시간

```
plt.figure(figsize=(12,8))
plt.subplot(231)
sns.distplot(all_data['age'])
plt.subplot(232)
sns.distplot(all_data['fnlwgt'])
plt.subplot(233)
sns.distplot(all_data['education_num'])
plt.subplot(234)
sns.distplot(all_data['capital_gain'])
plt.subplot(235)
sns.distplot(all_data['capital_loss'])
plt.subplot(236)
sns.distplot(all_data['hours_per_week'])
```


fnlwgt, capital_grain, capital_loss의 분포가 치우쳐있다. -> 로그변환!

- 칼럼별로 알펴보기 (int64형)

```
# fn/wgt, capital_gain, capital_loss에 로그를 料配다.
all_data['fn|wgt_log'] = np.log1p(all_data['fn|wgt'])
all_data['capital_gain_log'] = np.log1p(all_data['capital_gain'])
all_data['capital_loss_log'] = np.log1p(all_data['capital_loss'])

plt.figure(figsize=(12,4))
plt.subplot(131)
sns.distplot(all_data['fn|wgt_log'])
plt.subplot(132)
sns.distplot(all_data['capital_gain_log'])
plt.subplot(133)
sns.distplot(all_data['capital_loss_log'])
```


capital_gain과 capital_loss에는 큰 변화가 없음

- education_num(교육 수준 수치)

```
# 出全한 이름을 가진 education 칼럼과 비교
print(all_data['education'].value_counts(),'\n')
print(all_data['education_num'].value_counts())
```

```
# 두 칼럼이 동일하기 때문에 둘 중 하나는 제거
all_data = all_data.drop('education_num', axis=1)
```

HS-grad	10501	9	10501
Some-college	7291	10	7291
Bachelors	5355	13	5355
Masters	1723	14	1723
Assoc-voc	1382	11	1382
11th	1175	7	1175
Assoc-acdm	1067	12	1067
10th	933	6	933
7th-8th	646	4	646
Prof-school	576	15	576
9th	514	5	514
12th	433	8	433
Doctorate	413	16	413
5th-6th	333	3	333
1st-4th	168	2	168
Preschool	51	1	51
	1.		

Name: education, dtype: int64

Name: education_num, dtype: int64

- 칼럼별로 알펴보기 (object64형)

workclass : 고용 형태
education : 교육 수준
marital status: 결혼 상태

occupation : 업종

relationship : 가족 관계

race : 인종sex : 성별

native_country : 국적

```
plt.figure(figsize=(15,15))
plt.subplot(331)
all_data.groupby('workclass')['income'].mean().sort_values().plot(kind='bar')
plt.subplot(332)
all_data.groupby('education')['income'].mean().sort_values().plot(kind='bar')
plt.subplot(333)
all_data.groupby('marital_status')['income'].mean().sort_values().plot(kind='bar')
plt.subplot(334)
all_data,groupby('occupation')['income'].mean().sort_values().plot(kind='bar')
plt.subplot(335)
all_data.groupby('relationship')['income'].mean().sort_values().plot(kind='bar')
plt.subplot(336)
all_data.groupby('sex')['income'].mean().sort_values().plot(kind='bar')
plt.subplot(337)
all_data.groupby('race')['income'].mean().sort_values().plot(kind='bar')
plt.subplot(338)
all_data.groupby('native_country')['income'].mean().sort_values().plot(kind='bar')
```


- 칼럼별로 알퍼보기 (object64형)
 - workclass(고용 혐래)

Never-worked와 Without-pay의 평균 income이 O이다.

```
all_data.groupby('workclass')['income'].sum()
workclass
                    153.0
                    292.0
Federal-gov
                    505.0
Local-gov
Never-worked
                      0.0
                              Sum으로 확인한 결과 0
Private
                   3993.0
Self-emp-inc
                    496.0
Self-emp-not-inc
                    577.0
                    289.0
State-gov
₩ithout-pav
                      0.0
Name: income, dtype: float64
```

```
all_data['workclass'].value_counts()
Private
                     22696
                      2541
Self-emp-not-inc
                      2093
Local-gov
                      1836
                      1298
State-gov
                      1116
Self-emp-inc
                       960
Federal-gov
                        14
₩ithout-pay
Never-worked
```

Name: workclass, dtype: int64

```
# Never-worked와 Without-pay를 Ohter로 하나로 할친다
workclass_other = ['Without-pay', 'Never-worked']
all_data['workclass'] = all_data['workclass'].apply(lambda x: 'Other' if x in workclass_other else x)
all_data['workclass'].value_counts()
Private
                    22696
Self-emp-not-inc
                    2541
                    2093
Local-gov
                     1836
                     1298
State-gov
                    1116
Self-emp-inc
                     960
Federal-gov
Other
Name: workclass, dtvpe: int64
```

- 칼럼별로 알펴보기 (object64형)
 - education(교육 수준)

all_data.groupby(['education'])['income'].agg(['mean', 'count']).sort_values('mean') mean count education Preschool 0.000000 40 1st-4th 0.037313 134 5th-6th 0.049057 265 9th 0.052632 418 7th-8th 0.057426 505 11th 0.059653 922 0.072423 359 0.072503 731 HS-grad 0.158544 Some-college 0.192586 Assoc-acdm 0.255344 842 Assoc-voc 0.255474 1096 Bachelors 0.415516 Masters 0.561684 1378 Prof-school 0.733906 466 Doctorate 0.734177 316

- 칼럼별로 알퍼보기 (object64형)
 - education(교육 수준)

단계가 너무 많으면 모델 학습시 과적합이 일 어날 수 있으므로, 8단계로 소득분위 지정

```
# 8단계로 소득 분위 일의 지정
education_map = {
    'Preschool' 'level_0'.
   '1st-4th' 'level_1'.
   '5th-6th' 'level_1'.
   '7th-8th' 'level_1'.
   '9th' 'level_2'.
                                                              보사+불여넣기
   '10th' 'level_2'
   '11th' 'level_2'.
   '12th' 'level_2'.
   'HS-grad' 'level_3'.
   'Some-college' 'level_3',
   'Assoc-acdm' 'level_4'.
   'Assoc-voc' 'level_4'.
   'Bachelors' 'level_5'.
   'Masters' 'level_6'.
   'Prof-school' 'level_7'.
   'Doctorate' 'level_7'.
```

```
all_data['education'] = all_data['education'].map(education_map)
```

```
# 8단계로 소득 분위 임의 지정
education_map = {
   'Preschool': 'level 0',
   '1st-4th': 'level 1',
   '5th-6th': 'level 1',
   '7th-8th': 'level 1',
   '9th': 'level 2',
   '10th': 'level 2',
   '11th': 'level 2',
   '12th': 'level 2',
   'HS-grad': 'level 3',
   'Some-college': 'level_3',
   'Assoc-acdm': 'level 4',
   'Assoc-voc': 'level 4',
   'Bachelors': 'level 5',
   'Masters': 'level 6',
   'Prof-school': 'level 7',
   'Doctorate': 'level 7',
```

- 칼럼별로 알펴보기 (object64형)
 - education(교육 수준)

```
all_data['education'].value_counts()
Tevel_3
           17792
Tevel_5
            5355
level_2
            3055
level_4
            2449
Tevel_6
            1723
level_1
            1147
Tevel_7
Tevel_0
              51
Name: education, dtype: int64
all_data.groupby('education')['income'].mean().sort_values().plot(kind='bar')
<AxesSubplot:xlabel='education'>
 0.6
 0.5
 0.3
 0.2
 0.1
```

- 칼럼별로 알퍼보기 (object64형)
 - occupation(업종)

```
all_data['occupation'].value_counts()
 Prof-specialty
                     4099
 Craft-repair
                     4066
 Exec-managerial
 Adm-clerical
                     3770
 Sales
                     3295
 Other-service
                     2002
 Machine-op-inspct
                     1843
                     1597
 Transport-moving
 Handlers-cleaners
                     1370
 Farming-fishing
 Tech-support
                      928
 Protective-serv
                      649
                      149
 Priv-house-serv
 Armed-Forces
                        9
 Name: occupation, dtype: int64
all_data.groupby('occupation')['income'].sum()
  occupation
                        153.0
  Adm-clerical
                        402.0
  Armed-Forces
                          0.0
  Craft-repair
                        738.0
                       1593.0
  Exec-managerial
                         91.0
  Farming-fishing
  Handlers-cleaners
                         71.0
  Machine-op-inspct
                        200.0
  Other-service
                        110.0
  Priv-house-serv
                        1.0
  Prof-specialty
                       1491.0
  Protective-serv
                        167.0
  Sales
                        811.0
  Tech-support
                        224.0
  Transport-moving
                        253.0
```

Name: income, dtype: float64

Armed-Forces가 매우 소수이고, Armed-Forces의 income은 모두 0임을 알 수 있다. -> 과적합 방제를 위해 Armed-Forces을 Priv-house-serve에 포함

```
# 과적할 방지를 위해 Armed-Forces을 Priv-house-serve에 포함시킨다.
all_data.loc[all_data['occupation'].isin(['Armed-Forces', 'Priv-house-serv']), 'occupation'] = 'Priv-house-serv
all_data['occupation'].value_counts()
Prof-specialty
                     4140
Craft-repair
                     4099
                     4066
Exec-managerial
Adm-clerical
                     3770
                     3650
Sales
                     3295
Other-service
                     2002
Machine-op-inspct
                     1843
                     1597
Transport-moving
                     1370
Handlers-cleaners
                      994
Farming-fishing
Tech-support
                      928
Protective-serv
                      649
                      158
Priv-house-serv
Name: occupation, dtype: int64
```

- 갈럼별로 알펴보기 (object64형)

- native_country(국적)

United-States	29170	Haiti	44
Mexico	643	Iran	43
?	583		3
Philippines	198	Portugal	
Germany	137	Nicaragua	34
Canada	121	Peru	31
Puerto-Rico	114	Greece	29
El-Salvador	106	France	29
India	100	Ecuador	28
Cuba	95	Ireland	24
England	90	Hong	20
Jamaica	81	Trinadad&Tobago	19
South	80	Cambodia	19
China	75	Thailand	18
Italy	73	Laos	18
Dominican-Republic	70	Yugoslavia	16
Vietnam	67	Outlying-US(Guam-USVI-etc)	14
Guatemala	64	Honduras	13
Japan	62	Hungary	13
Poland	60	Scotland	12
Columbia	59	Holand-Netherlands	1
Taiwan	51	Name: native_country, dtype:	int64

https://en.wikipedia.org/wiki/List_of_countries_by_GNI _(nominal)_per_capita 에 따라 그룹으로 나눈다. (과적합방지)

- 칼럼별로 알펴보기 (object64형)

- native_country(국적)

```
income_01 = ['Jamaica',
 'Haiti'
 'Puerto-Rico'.
 'Laos',
 "Thailand"
 'Ecuador',]
income_02 = ['Outlying-US(Guam-USVI-etc)',
 'Honduras',
 'Columbia',
 'Dominican-Republic'.
 'Mexico',
 'Guatemala',
 'Portugal',
 "Trinadad&Tobago".
 'Nicaragua',
 'Peru'
 'Vietnam',
 'El-Salvador'.]
income_03 = ['Poland',
'Ireland'.
 'South'.
 'China',]
income_04 = [
    'United-States',
```

```
income_05 = 1
 'Greece'.
 "Scotland".
 'Cuba',
 'Hungary',
 'Hong'
 'Holand-Netherlands'.
income\_06 = [
 'Philippines'.
 'Canada',
income_07 = [
 England'.
 'Germany',
income_08 = 1
'Italy',
 'India'.
 'Japan'.
 'France'.
 'Yugoslavia',
 'Cambodia',
income_09 = [
 'Taiwan'.
'Iran'.
income_other=['?', ]
```

잘 안보이시겠지만 복사+붙여넣기 하시면 됩니다!

```
income 01 = ['Jamaica'
'Puerto-Rico'
'Ecuador',]
income_02 = ['Outlying-US(Guam-USVI-etc)',
'Honduras',
'Mexico',
'Guatemala',
'Portugal',
'Trinadad&Tobago'
'Nicaragua',
'Vietnam',
'El-Salvador',]
income 03 = ['Poland',
'Ireland',
'South',
'China',]
income 04 = [
   'United-States'
income 05 = [
'Greece'.
'Scotland'
'Hungary',
'Holand-Netherlands'
income 06 = [
'Philippines',
'Canada',
'England',
'Germany'
income_08 = [
'India',
'Yugoslavia',
'Cambodia',
income_09 = [
'Taiwan',
'Iran'.
income_other=['?', ]
```

- 갈럼별로 알펴보기 (object64형)
 - native_country(국적)

소득 구간별로 나누기 위한 함수 생성

```
def convert_country(x):
   if x in income_O1:
       return 'income_01'
   elif x in income_02:
       return 'income_02'
   elif x in income_03:
       return 'income_03'
   elif x in income_04:
       return 'income_04'
   elif x in income_05:
       return 'income_05'
   elif x in income_06:
       return 'income_06'
   elif x in income_07:
       return 'income_07'
   elif x in income_08:
       return 'income_08
   elif x in income_09:
       return 'income_09'
   else:
       return 'income_other
```

```
all_data['country_bin'] = all_data['native_country'].apply(convert_country)
all_data['country_bin'].value_counts()
income_04
                29170
income_02
                  1157
income_other
                   583
income_06
                   319
                   303
income_O1
income_08
                   299
                   239
income_03
                   227
income_07
income_05
                   170
income_09
                    94
Name: country_bin, dtype: int64
```

- 최종 칼럼 선택

```
features = [
      2/d2.
    'age',
    'workclass'.
     "fn/wgt".
    'fnlwgt_log',
    'education',
    'marital_status'.
    'occupation',
    'relationship',
    'race',
    'sex'
     'capital_gain',
    'capital_gain_log'.
     'capital_loss',
    'capital_loss_log',
    'hours_per_week',
     'native_country'.
    'country_bin'
```

```
label = ['income']

# One-Hot Encoding
all_data_dummies = pd.get_dummies(all_data[features + label])
```

```
all_data_dummies.head()
                                                                                      workclass Federal- workclass Local-
    age fnlwgt_log capital_gain_log capital_loss_log hours_per_week income workclass_?
                                                                                                                        workclass Other ...
    40 12.034922
                              0.0
                                             0.0
                                                              60
                                                                     1.0
                                                                                   0
                                                                                                                                     0 ...
     17 11.529065
                              0.0
                                                              20
                                                                     0.0
                                                                                                                                     0 ...
 2 18 12.775240
                              0.0
                                                              16
                                                                     0.0
                                                                                                                                     0 ...
 3 21 11.926088
                              0.0
                                             0.0
                                                              25
                                                                     0.0
                                                                                                                                     0
```

0.0

0 ...

5 rows × 66 columns

4 24 11.713701

처음에 합쳤던 데이러셋을 다시 train, test 데이터로 나누기

20

```
train_features = all_data_dummies.drop('income', axis=1).iloc[:len(train)]
test_features = all_data_dummies.drop('income', axis=1).iloc[len(train):]
train_features.shape, test_features.shape
```

((26049, 65), (6512, 65))

레이블 지정

train_label = train[label]

0.0

- 분류모델 적용 1) Random forest

from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import classification_report, f1_score, confusion_matrix

Classification_report: 각각의 클래스를 양성(positive) 클래스로 보았을 때의 정밀도, 재현율, F1점수를 구하고 그 평균값으로 전체 모형의 성능을 평가한다.

```
from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(n_estimators=100, random_state=42)
    rf.fit(x_train, y_train)
    print("Test Accuracy: {}%".format(round(rf.score(x_test, y_test)*100, 2)))

Test Accuracy: 85.3%

pred_rf = rf.predict(x_test)
    print("Random Forest Classifier report: \n\n\n", classification_report(y_test, pred_rf))
```

Random Forest Classifier report:

	precision	recall	f1-score	support
0 1	0.88 0.74	0.93 0.61	0.91 0.67	3949 1261
accuracy macro avg weighted avg	0.81 0.85	0.77 0.85	0.85 0.79 0.85	5210 5210 5210

4. 정인 인구 소득 예측 예제

validation_0-logloss:0.34107

validation_0-logloss:0.33046

validation_0-logloss:0.32190

validation_0-logloss:0.31618 validation_0-logloss:0.31242

validation_0-logloss:0.30907

validation_0-logloss:0.30684

validation_0-logloss:0.30534 validation_0-logloss:0.30403

validation_0-logloss:0.30236

validation_0-logloss:0.30015

validation_0-logloss:0.29927 validation_0-logloss:0.29820

- 분류모델 적용 2) xgboost

accuracy

macro avg

weighted avg

0.83

0.86

0.78

0.87

```
pred_xgb = xgb_wrapper.predict(x_test)
print("XGBClassifier report: \\ \pin\\", classification_report(y_test, pred_xgb))

XGBClassifier report:

precision recall f1-score support

0 0.89 0.94 0.91 3949
1 0.78 0.63 0.69 1261
```

5210

5210

5210

0.87

0.80

0.86

Test Accuracy: 86.64%

[5]

[6]

[7]

[8]

[10]

[11]

[12]

[14]

[15]

[16]

- 분류모델 적용 3) lgbm

Test Accuracy: 86.81%

```
from lightgbm import LGBMClassifier
lgbm wrapper = LGBMClassifier(random state=42)
evals = [(x test, y test)]
lgbm_wrapper.fit(x_train,y_train,early_stopping_rounds=100,eval_set=evals,verbose=True)
print("Test Accuracy: {}%".format(round(lgbm_wrapper.score(x_test, y_test)*100, 2)))
           valid_0's binary_logloss: 0.51121
   Training until validation scores don't improve for 100 rounds
           valid_0's binary_logloss: 0.479711
           valid_0's binary_logloss: 0.45501
           valid_0's binary_logloss: 0.434664
           valid_0's binary_logloss: 0.417514
           valid_0's binary_logloss: 0.403037
           -valid_0's binary_logloss: 0.390581
           valid_0's binary_logloss: 0.379714
           valid_0's binary_logloss: 0.369946
           -valid_0's binary_logloss: 0.36195
           valid_0's binary_logloss: 0.354916
           valid_0's binary_logloss: 0.34849
           valid_0's binary_logloss: 0.343188
           valid_0's binary_logloss: 0.337497
           ualid O's bissey lealess: O 999000
```

```
preds = lgbm_wrapper.predict(x_test)
print("lgbm report: \forall f1-score support

preds = lgbm_wrapper.predict(x_test)
print("lgbm report: \forall f1-score support)
```

0.89 0.94 0.92 3949 0.780.640.701261 0.87 5210 accuracy 5210 0.830.790.81 macro avg 5210 0.86 0.87 0.86 weighted ava

AutoML 사용해보기

```
from pycaret.classification import *
                                             AutoML을 사용하기 위해, 원핫인코딩 되지 않은
all_data_caret = all_data[features + label]
                                             데이러를 다시 불러옵니다.
all_data_caret.head(1)
   age workclass fnlwgt_log education marital_status occupation relationship race
                                                                             sex capital_gain_log cap
                                       Married-civ-
                                                              Husband White Male
          Private 12.034922
                             level 3
                                                      Sales
                                                                                            0.0
    40
                                          spouse
train_clean = all_data_caret[:len(train)]
test_clean = all_data_caret[len(train):]
setup(data = train_clean, target = 'income',session_id=42)
  Processing:
 Initiated
                                  11:34:16
                          Preprocessing Data
  Status .....
  Following data types have been inferred automatically, if they are correct press enter to continue or type 'quit' otherwise.
```

AutoML 사용해보기

Data Type

age	Numeric
workclass	Categorical
fnlwgt_log	Numeric
education	Categorical
marital_status	Categorical
occupation	Categorical
relationship	Categorical
race	Categorical
sex	Categorical
capital_gain_log	Numeric
capital_loss_log	Numeric
hours_per_week	Numeric
country_bin	Categorical
income	Label

데이터 라입을 확인하고,

	Description	Value
0	session_id	42
1	Target	income
2	Target Type	Binary
3	Label Encoded	0.0: 0, 1.0: 1
4	Original Data	(26049, 14)
5	Missing Values	False
6	Numeric Features	5
7	Categorical Features	8
8	Ordinal Features	False
9	High Cardinality Features	False
10	High Cardinality Method	None
11	Transformed Train Set	(18234, 63)
12	Transformed Test Set	(7815, 63)
13	Shuffle Train-Test	True
14	Stratify Train-Test	False
15	Fold Generator	StratifiedKFold
16	Fold Number	10
17	CPU Jobs	-1

엔터키를 눌러 넘어갑니다

4. 성인 인구 소득 예측 예제

AutoML 사용해보기

랜덤 포레스트

```
# 약 1~2분 정도 소요됩니다.
rf_automl = create_model('rf',fold=5) # 모텔 생성
tuned_rf_automl = tune_model(rf_automl, optimize='F1',fold=5) # 튜닝
```

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	0.8552	0.9110	0.5226	0.8151	0.6369	0.5518	0.5731
1	0.8541	0.9101	0.5226	0.8094	0.6351	0.5492	0.5697
2	0.8563	0.9089	0.5260	0.8175	0.6401	0.5556	0.5767
3	0.8670	0.9161	0.5716	0.8284	0.6765	0.5963	0.6125
4	0.8560	0.9115	0.5158	0.8264	0.6352	0.5514	0.5751
Mean	0.8577	0.9115	0.5317	0.8194	0.6447	0.5608	0.5814
SD	0.0047	0.0025	0.0202	0.0071	0.0160	0.0178	0.0157

앞서 직접 만든 모델과 비교

```
rf_scores = cross_val_score(rf, train_features, train_label, scoring='f1', cv = 5)
print('평균 검증 f1 score:' ,np.round(np.mean(rf_scores),4))
```

평균 검증 f1 score: 0.6785

4. 성인 인구 소득 예측 예제

AutoML 사용해보기

XGBOOST

```
#약 3분 정도 소요됩니다.
xgboost_automl = create_model('xgboost',fold=5) #모텔 생성
tuned_xgboost_automl = tune_model(xgboost_automl, optimize='F1',fold=5) # 튜닝
```

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	0.7719	0.9187	0.9120	0.5173	0.6601	0.5074	0.5537
1	0.7661	0.9184	0.9334	0.5102	0.6598	0.5039	0.5574
2	0.7732	0.9205	0.9233	0.5187	0.6642	0.5126	0.5613
3	0.7686	0.9257	0.9369	0.5133	0.6632	0.5089	0.5624
4	0.7836	0.9253	0.9379	0.5310	0.6781	0.5332	0.5823
Mean	0.7727	0.9217	0.9287	0.5181	0.6651	0.5132	0.5634
SD	0.0060	0.0032	0.0098	0.0071	0.0067	0.0104	0.0099

앞서 직접 만든 모델과 비교

```
xgb_wrapper_scores = cross_val_score(xgb_wrapper, train_features, train_label, scoring='f1', cv = 5)
print('평균 검증 f1 score:' ,np.round(np.mean(xgb_wrapper_scores),4))
```

평균 검증 f1 score: 0.7093

4. 성인 인구 소득 예측 예제

AutoML 사용해보기

LGBM

```
# 약 30초 정도 소요됩니다.
|gbm_automl = create_model('lightgbm',fold=5) #모텔 생성
tuned_lgbm_automl = tune_model(lgbm_automl, optimize='F1',fold=5) # 튜닝
```

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	0.8656	0.9229	0.6354	0.7712	0.6968	0.6115	0.6162
1	0.8706	0.9243	0.6546	0.7775	0.7108	0.6282	0.6321
2	0.8706	0.9259	0.6354	0.7907	0.7046	0.6230	0.6291
3	0.8714	0.9288	0.6584	0.7787	0.7135	0.6313	0.6350
4	0.8714	0.9274	0.6467	0.7860	0.7096	0.6280	0.6329
Mean	0.8699	0.9259	0.6461	0.7808	0.7071	0.6244	0.6291
SD	0.0022	0.0021	0.0095	0.0068	0.0059	0.0070	0.0067

앞서 직접 만든 모델과 비교

```
lgbm_wrapper_scores = cross_val_score(lgbm_wrapper, train_features, train_label, scoring='f1', cv = 5)
print('평균 검증 f1 score:' ,np.round(np.mean(lgbm_wrapper_scores),4))
```

평균 검증 f1 score: 0.7119

AutoML 사용해보기 스래킹

약 2~3분 정도 소요됩니다.

best4models = compare_models(sort = 'F1', n_select = 4, fold=3)

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
catboost	CatBoost Classifier	0.8687	0.9261	0.6434	0.7777	0.7042	0.6207	0.6253	20.6267
lightgbm	Light Gradient Boosting Machine	0.8677	0.9241	0.6421	0.7748	0.7022	0.6181	0.6226	0.5400
xgboost	Extreme Gradient Boosting	0.8650	0.9207	0.6423	0.7646	0.6981	0.6121	0.6159	3.0267
ada	Ada Boost Classifier	0.8600	0.9173	0.6247	0.7569	0.6844	0.5956	0.6001	0.7533
gbc	Gradient Boosting Classifier	0.8648	0.9214	0.5965	0.7959	0.6819	0.5982	0.6083	1.7667
rf	Random Forest Classifier	0.8527	0.9027	0.6177	0.7340	0.6708	0.5768	0.5804	1.8067
lr	Logistic Regression	0.8444	0.9011	0.5917	0.7183	0.6489	0.5501	0.5544	5.3167
lda	Linear Discriminant Analysis	0.8424	0.8959	0.5861	0.7141	0.6437	0.5438	0.5482	0.3300
et	Extra Trees Classifier	0.8333	0.8782	0.6093	0.6735	0.6398	0.5317	0.5328	2.0633
svm	SVM - Linear Kernel	0.7465	0.0000	0.8510	0.5175	0.6314	0.4665	0.5098	0.6000
ridge	Ridge Classifier	0.8418	0.0000	0.5383	0.7400	0.6232	0.5262	0.5369	0.2367
dt	Decision Tree Classifier	0.8072	0.7450	0.6240	0.5995	0.6114	0.4833	0.4836	0.3033
knn	K Neighbors Classifier	0.8109	0.8341	0.5712	0.6208	0.5949	0.4718	0.4726	3.9933
nb	Naive Bayes	0.6755	0.8606	0.9066	0.4222	0.5760	0.3656	0.4362	0.2700
qda	Quadratic Discriminant Analysis	0.6775	0.5089	0.1810	0.2649	0.2116	0.0202	0.0213	0.3000
4	quadratio Discriminanti, maryoto	0.0110	0.0000	0.1010	0.2010	0.2110	0.0202	0.0210	0.0000

4. 정인 인구 소득 예측 예제

AutoML 사용해보기 스래킹

```
# 약 2분 정도 소요됩니다.
stacker = stack_models(estimator_list = best4models[1:], meta_model = best4models[0], fold = 3)
```

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	0.8644	0.9217	0.6175	0.7788	0.6888	0.6036	0.6103
1	0.8680	0.9268	0.6398	0.7778	0.7021	0.6184	0.6232
2	0.8720	0.9247	0.6662	0.7754	0.7167	0.6346	0.6377
Mean	0.8682	0.9244	0.6412	0.7773	0.7025	0.6189	0.6237
SD	0.0031	0.0021	0.0199	0.0014	0.0114	0.0127	0.0112

스래킹을 하면 정능이 높아질 가능정은 있으나 반드시 정능이 좋아지는 것은 아니다.

Q&A

감사합니다