Derek Haynes
Bridge to Abstract Math
Module 9

Section 3.3 Partitions

2.

For the given set A, determine whether \mathcal{P} is a partion of A.

(c)
$$A = \{1, 2, 3, 4, 5, 6, 7\}, \mathcal{P} = \{\{1, 3\}, \{5, 6\}, \{2, \}, \{7\}\}\}$$

Solution:

 ${\mathscr P}$ is a partition of A because it satisfies all three conditions of the defintion of a partition

7.

(c) Describe the equivalence relation on \mathbb{R} with the partition $\{(-\infty,0),\{0\},(0,\infty)\}$

Solution:

The relation is

reflexive because xRx

symmetric because xRy and yRx

and it is transitive $x, y, z \in \mathbb{R}$ where xRy and yRz therefore xRz.

9.

List the order pairs in the equivalence relation on $A = \{1, 2, 3, 4, 5\}$ associated with the following partitions:

(b)
$$\{\{1\}, \{2\}, \{3,4\}, \{5\}\}$$

Solution:

$$\{(1,1),(2,2),(3,4),(4,3),(4,4),(5,5)\}$$

10.

(b) (Completing a part of the proof of Theorem 3.3.2): Suppose \mathscr{P} is a partition of A and suppose that xQy if there exists $C \in \mathscr{P}$ such that $x \in A$ and $y \in A$. Prove that Q is reflexive on A

Solution:

Let $x \in A$.

As $\mathcal P$ is a partition of A

then $\bigcup_{C \in \mathscr{P}} C = A$

therefore $x \in \bigcup_{C \in \mathscr{P}} C$ because $x \in A$.

So there exists a $C \in P$ such that $x \in C$

therefore $x \in C$ and $x \in C$,

showing that xQx

and Q is reflexive

4.1 Functions as Relations

6(d)

Let $R = \{(x, y) = \mathbb{N} \times \mathbb{N} : 2x^2 - y = 1\}$ Prove that R is a function with domain \mathbb{N}

Solution:

Suppose that x is a natural number.

Then $2x^2 - 1$ is an integer

and
$$(x, 2x^2 - 1) \in R$$

so R is a relation with domain $\mathbb N$

ii)

Suppose that (x, y) and $(x, z) \in R$

Then $2x^2 - 1 = y$ and $2x^2 - 1 = z$

Hence, y = z

From i) and ii) we conclude that x is in the domain set and y in the codomain such that $(x, y) \in R$.

Therefore R defines a function with domain $\mathbb N$

7.

Complete the proof of Theorem 4.1.1. That is, prove that if (i) Dom(f) = Dom(g) and (ii) for all $x \in Dom(f)$, f(x) = g(x), then f = g.

Solution:

Suppose that $x \in Dom(f)$.

Then $(x, y) \in f$ for some y, and because f = g.

we have $(x, y) \in g$.

Therefore $x \in Dom(g)$.

Hence

 $Dom(f) \subseteq Dom(g)$

Similarly, $x \in Dom(g)$

Then $(x, y) \in g$ for some y, because g = f.

then we have $(x, y) \in f$

Therefore $x \in Dom(f)$

This shows that $Dom(g) \subseteq Dom(f)$

Proving condition (i) of 4.1.1

Addtionally, since f(x) = g(x), $forallx \in Dom(f)$ \$

therefore g(x) = f(x) = y

hence $(x, y) \in g$

and for all x, g(x) = f(x) so, f = g

Hence (ii) is proved.

9(d).

Let the Universe be \mathbb{R} and let A = [1, 3)

Find $X_A(2) - X_A(0.2)$

Solution:

A = [1, 3) is closed on 1 and open at 3\$

The characteristic funtion,

$$X_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Then

$$X_A(1) = 1$$
 and $X_A(0.2) = 0$

then
$$X_A(1) - X_A(0) = 1 - 0 = 1$$

10(d)

Let U be the universe. Suppose that $A \subseteq U$ with $A \neq \emptyset$, and $A \neq U$. Let X_A be the characteristic function of A.

Find:

$$\{x \in U : X_A(x) \le 1\}$$

Solution:

Suppose $\{x \in U : X_A(x) \le 1\}$

Then $x \in U$

and as $X_A(x) \leq 1$

Therefore,

$$x \in A, X_A(x) = 1$$

$$x \in A, X_A(x) = 0$$

Furthermore

$$\{x \in U : X_A(x) \le 1\} = \{x \in U : x \in A\} \cup \{x \in U : x \notin A\}$$

= $A \cup (U - A)$ Theorem 2.2.2

=U

Hence,

$$\{x\in U: X_A(x)\leq 1\}=U$$

13 (d)

For the canonical map $f:\mathbb{Z} \to \mathbb{Z}_{\mathbb{G}}$ find all pre-images of $\bar{1}$

f is the canonical map for the relation on congruence modulo 6 on \mathbb{Z} , the preimages of \bar 1\$

are any x such that $f(x) = \overline{1} = \{6k + 1\}$ where k is an integer

Therefore, the pre-mianges of $\bar{1}$ are ..., -17,-11,-5, 1, 7, 13,19, ...

In []: