• 第一部分	· 质点运动学
o — .	描述运动的物理量
-	1. 位矢、位移和路程
	2. 速度
-	3. 加速度
o <u> </u>	。 - 圆周运动
	1. 线量与角量对应关系
	2. 匀变速圆周运动公式
) · 动量与能量守恒
	质点动量定理与守恒
	· 1. 基本概念
	· 2. 动量定理
	■ 3. 动量守恒定律
	动能定理与机械能守恒
	■ 1. 基本概念
	· 2. 动能定理 · · · · · · · · · · · · · · · · · · ·
	■ 3. 机械能守恒条件
第三部分	
	別体运动学
	· 1. 运动分类
	转动惯量与转动定律
	1. 力矩
	2. 转动惯量计算方法
	3. 转动定律
	角动量守恒
	- HADI
	2. 角动量守恒的条件
	角能量
	中能量 1. 角动能 - 1. 角动能
	2. 角动能定理
	3. 角动能与转动定律的关系
	4. 角能量守恒
	守恒定律的选择 Xtt.VtHpptio
	、狭义相对论
0 -	基本假设

	物埋笔记 第一字期
-	1. 相对性原理
-	2. 光速不变原理
0	洛伦兹变换
	1. 坐标变换公式
-	2. 矩阵形式
	3. 广义洛伦兹变换
-	4. 速度变换
o <u>=</u> _	相对论效应
	1. 时间膨胀(钟慢效应)
	2. 长度收缩
	3. 同时性的相对性
	相对论动力学
	1. 质速关系
	2. 动量-能量关系
	3. 四维形式
第五部分	
	平衡态与物态方程
	1. 平衡态
	2. 理想气体的物态方程
	3. 热力学第零定律
	理想气体的压强公式
	1. 理想气体的微观模型
	2. 压强公式推导
	3. 理想气体压强公式
	4. 推导结论
	分子自由度与热容
	1. 能量均分原理
	2. 不同分子自由度与热容
	3. 热容公式
	麦克斯韦速率分布
	1. 速率分布函数
	2. 三种速率
	-3. p-V图特性
	玻尔兹曼能量分布律与等温气压公式
	1. 玻尔兹曼能量分布律
-	2. 重力场中的等温气压公式

物理笔记第一学期					
0 🔨	分子的平均碰撞频率与平均自由程				
	■ 1. 基本概念与定义				
<u> </u>	■ 2. 平均碰撞频率推导				
	■ 3. 平均自由程公式				
<u> </u>	■ 4. 有效直径与数量级				
。七、	热力学第一定律及应用				
	■ 1. 热力学第一定律				
<u> </u>	■ 2. 四种典型过程				
。八、	热机效率与制冷系数				
	■ 1. 热机效率				
	■ 2. 制冷系数				
	热力学第二定律与卡诺定理				
	1. 热力学第二定律				
<u> </u>	■ 2. 卡诺定理				
	o (1) 可逆机效率公式				
	○ (2) 不可逆机效率关系				
0 +	海与统计解释 · · · · · · · · · · · · · · · · · · ·				
	■ 1. 熵的定义				
	■ 2. 玻耳兹曼熵公式				
第六部分	电荷守恒定律				
	■ 1. 电荷的量子化				
	2. 电荷守恒定律				
	■ 3. 库伦定律				
	电场强度 4. 中长温度学》				
	■ 1. 电场强度定义				
	■ 2. 点电荷的电场强度				
	■ 3. 电场强度叠加原理				
	高斯定理				
	■ 1. 电场强度通量				
	■ 2. 高斯定理				
	电势能				
	■ 1. 静电场力做功				
	■ 2. 静电场的环路定理				
	电势				
	■ 1. 电势				

- 2. 点电荷电势
- 六、电场强度与电势梯度
 - 1. 等势面
 - 2. 电场强度与电势梯度
- 。 七、静电场中的导体
 - 1. 静电平衡条件
 - 2. 导体电荷分布
 - 3. 静电屏蔽
- 。八、静电场中的电介质
 - 1. 相对电容率
 - 2. 电极化强度
 - 3. 电位移
- 九、电容器
 - 1. 电容
 - 2. 常见电容器
 - 3. 电容组合
- 十、静电场的能量
 - 1. 电容器能量
 - 2. 电场能量密度

第一部分质点运动学

- 一、描述运动的物理量
- 1. 位矢、位移和路程

口 位矢

由坐标原点到质点位置的矢量 r

- 表达式: $\boldsymbol{r} = x\boldsymbol{i} + y\boldsymbol{j}$
- 大小: $r = |{m r}| = \sqrt{x^2 + y^2}$
- 运动方程
 - 矢量形式: r = r(t)
 - 。 分量形式:

$$egin{cases} x = x(t) \ y = y(t) \end{cases}$$

□ 位移与路程

• 位移: $\Delta m{r} = m{r}_B - m{r}_A = \Delta x m{i} + \Delta y m{j}$

• 大小: $|\Delta m{r}| = \sqrt{\Delta x^2 + \Delta y^2}$

• 路程: Δs (轨迹的实际长度,标量)

2. 速度

□ 平均速度

$$\overline{oldsymbol{v}} = rac{\Delta oldsymbol{r}}{\Delta t} = rac{\Delta x}{\Delta t} oldsymbol{i} + rac{\Delta y}{\Delta t} oldsymbol{j}$$

□ 瞬时速度

$$oldsymbol{v} = rac{doldsymbol{r}}{dt} = rac{dx}{dt}oldsymbol{i} + rac{dy}{dt}oldsymbol{j} = v_xoldsymbol{i} + v_yoldsymbol{j}$$

• 大小: $|oldsymbol{v}| = \sqrt{v_x^2 + v_y^2}$

• 速率: $v = \frac{ds}{dt}$ (速度的大小)

3. 加速度

□平均加速度

$$\overline{m{a}} = rac{\Delta m{v}}{\Delta t}$$

□ 瞬时加速度

$$oldsymbol{a} = rac{doldsymbol{v}}{dt} = rac{d^2oldsymbol{r}}{dt^2} = a_xoldsymbol{i} + a_yoldsymbol{j}$$

• 大小:
$$|m{a}| = \sqrt{a_x^2 + a_y^2}$$

二、圆周运动

1. 线量与角量对应关系

物理量	线量表示	角量表示
位移	Δs	$\Delta heta$
速度	$v=rac{ds}{dt}$	$\omega=rac{d heta}{dt}$
加速度	$a_{ au}=rac{dv}{dt}$ (切向) $a_{n}=rac{v^{2}}{R}$ (法向)	$lpha=rac{d\omega}{dt}$
	$a_n = rac{v^-}{R}$ (法向)	

2. 匀变速圆周运动公式

// 线量关系

$$egin{cases} v = v_0 + a_ au t \ s = v_0 t + rac{1}{2} a_ au t^2 \ v^2 - v_0^2 = 2 a_ au s \end{cases}$$

角量关系

$$egin{cases} \omega = \omega_0 + lpha t \ heta = \omega_0 t + rac{1}{2} lpha t^2 \ \omega^2 - \omega_0^2 = 2 lpha heta \end{cases}$$

第二部分 动量与能量守恒

一、质点动量定理与守恒

1. 基本概念

甲动量

质点的动量定义为质量与速度的乘积

$$\boldsymbol{p}=m\boldsymbol{v}$$

中冲量

力在一段时间内对物体作用效果的量度

$$oldsymbol{I} = \int_{t_1}^{t_2} oldsymbol{F} \, dt$$

2. 动量定理

物体所受冲量等于物体动量的变化量

$$oldsymbol{I} = \Delta oldsymbol{p} = m oldsymbol{v}_2 - m oldsymbol{v}_1$$

分量形式:

$$egin{cases} I_x = \int F_x \, dt = m(v_{2x} - v_{1x}) \ I_y = \int F_y \, dt = m(v_{2y} - v_{1y}) \end{cases}$$

3. 动量守恒定律

当系统所受合外力为零时,系统总动量保持不变:

$$\sum oldsymbol{F}_{ ext{ext}} = 0 \quad \Rightarrow \quad \sum m_i oldsymbol{v}_i =$$
常量

二、动能定理与机械能守恒

1. 基本概念

中动能

物体由于运动而具有的能量

$$E_k=rac{1}{2}mv^2$$

甲功

力沿位移方向的积分

$$W = \int m{F} \cdot dm{r}$$

2. 动能定理

合外力对物体所做的功等于物体动能的变化量

$$W_{
m net} = \Delta E_k = rac{1}{2} m v_2^2 - rac{1}{2} m v_1^2$$

3. 机械能守恒条件

若仅有保守力做功,则系统机械能守恒:

$$W_{非保守力}=0$$
 \Rightarrow $E=E_k+U=$ 常量

第三部分 刚体力学

一、刚体运动学

1. 运动分类

运动类型	描述	速度公式
平动	各点运动相同	$oldsymbol{v}_P = oldsymbol{v}_{ m cm}$
定轴转动	绕固定轴旋转	$oldsymbol{v} = oldsymbol{\omega} imes oldsymbol{r}$
平面运动	平动与转动的合成	$oldsymbol{v}_P = oldsymbol{v}_{ m cm} + oldsymbol{\omega} imes oldsymbol{r}_{P/ m cm}$

二、转动惯量与转动定律

1. 力矩

甲定义

力矩 (M) 是描述力对物体产生转动效果的物理量,定义为:

$$oldsymbol{M} = oldsymbol{r} imes oldsymbol{F}$$

其中:

• r 是从转轴到力的作用点的位矢(单位: m)

• F 是作用力 (单位: N)

• M 是力矩 (单位: N·m)

力矩的方向由右手定则确定:四指从r转向F,拇指方向即为力矩方向

2. 转动惯量计算方法

甲转动惯量

基本定义

• 离散质点系: $J=\sum_{i=1}^n m_i r_i^2$

• 连续刚体: $J=\int r^2\,dm$

计算技巧

• 分解法:复杂刚体分解为简单几何形状之和, $J_{\mbox{ ilde l}}=J_1+J_2+\cdots+J_n$

• 平行轴定理: $J=J_{
m cm}+Md^2$

• 垂直轴定理(薄板): $J_z = J_x + J_y$

刚体形状	转动惯量公式	转动轴描述
细棒	$J=rac{ml^2}{12}$	转动轴通过中心与棒垂直
圆柱体	$J=rac{mR^2}{2}$	转动轴沿几何轴
薄圆环	$J=mR^2$	转动轴沿几何轴
球体	$J=rac{2mR^2}{5}$	转动轴沿球的任一直径
圆筒 (空心圆柱)	$J=rac{m}{2}(R_1^2+R_2^2)$	转动轴沿几何轴
细棒	$J=rac{ml^2}{3}$	转动轴通过棒的一端

3. 转动定律

	合外力矩等于转动惯量与角加速度的乘积:
MIII/N.42210171518125771071	

$$\sum M = J\alpha$$

三、角动量守恒

1. 角动量

中定义

刚体绕固定轴转动时的角动量定义为:

$$oldsymbol{L} = oldsymbol{J}oldsymbol{\omega} = oldsymbol{r} imesoldsymbol{p}$$

2. 角动量守恒的条件

♀ 角动量守恒定律

当合外力矩为零时,系统的角动量保持不变:

$$\sum oldsymbol{M}_{ ext{ext}} = 0 \quad \Rightarrow \quad oldsymbol{L} = 常量$$

四、角能量

1. 角动能

甲定义

角动能 (E_k) 是刚体绕固定轴转动时所具有的动能,定义为:

$$E_k=rac{1}{2}J\omega^2$$

其中:

- J 是刚体的转动惯量 (单位: $kg \cdot m^2$)
- ω 是刚体的角速度 (单位: $\mathrm{rad/s}$)
- *E_k* 的单位是焦耳 (J)

角动能是刚体转动状态的一种能量表现形式,类似于平动动能 $E_k=rac{1}{2}mv^2$

2. 角动能定理

角动能定理描述了外力对刚体所做的功与刚体角动能变化的关系:

$$W=\Delta E_k=rac{1}{2}J\omega_2^2-rac{1}{2}J\omega_1^2$$

其中:

- W 是外力对刚体所做的功
- ω_1 和 ω_2 分别是刚体的初角速度和末角速度

3. 角动能与转动定律的关系

结合转动定律 $\sum M = J\alpha$ 和角动能定理,可以得到:

$$W=\int M d heta = \Delta E_k$$

其中:

- W 是外力矩对刚体所做的功
- *M* 是力矩
- θ 是刚体的角位移
- ΔE_k 是角动能的变化量

4. 角能量守恒

当系统不受外力矩作用时($\sum M_{\rm ext}=0$),系统的总角能量守恒:

$$E_k = rac{1}{2}J\omega^2 =$$
 常量

此时, 系统的角动能不会因内部作用而改变

五、守恒定律的选择

第四部分 狭义相对论

一、基本假设

1. 相对性原理

♀定义

所有惯性参考系中, 物理定律具有相同形式

- 不存在"绝对静止"的参考系
- 物理规律与惯性系的运动状态无关

2. 光速不变原理

♀定义

真空中的光速。在所有惯性系中相同

- 与光源和观察者的运动状态无关
- $ullet cpprox 3 imes 10^8 \mathrm{m/s}$

二、洛伦兹变换

1. 坐标变换公式

 \mathscr{O} 正变换($S \rightarrow S'$)

$$\left\{egin{aligned} x' &= \gamma(x-vt) \ y' &= y \ z' &= z \ t' &= \gamma\left(t-rac{vx}{c^2}
ight) \end{aligned}
ight.$$

 \mathscr{O} 逆变换($S' \to S$)

口 洛伦兹因子

$$\gamma=rac{1}{\sqrt{1-rac{v^2}{c^2}}}=rac{1}{\sqrt{1-eta^2}}\quad (\gamma\geq 1)$$

2. 矩阵形式

② **正变换矩阵**

$$\begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix}$$

// 逆变换矩阵

$$egin{pmatrix} ct \ x \ y \ z \end{pmatrix} = egin{pmatrix} \gamma & \gamma eta & 0 & 0 \ \gamma eta & \gamma & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix} egin{pmatrix} ct' \ x' \ y' \ z' \end{pmatrix}$$

3. 广义洛伦兹变换

$$egin{aligned} ct' &= \gamma \left(ct - rac{oldsymbol{eta} \cdot oldsymbol{r}}{c}
ight) \ oldsymbol{r}' &= oldsymbol{r} + oldsymbol{eta} \left(rac{\gamma - 1}{eta^2} (oldsymbol{eta} \cdot oldsymbol{r}) - \gamma ct
ight) \end{aligned}$$

其中:
$$\boxed{oldsymbol{eta} = rac{oldsymbol{v}}{c}}$$

4. 速度变换

// 速度变换公式

$$u_x' = rac{u_x - v}{1 - rac{u_x v}{c^2}}, \quad u_y' = rac{u_y}{\gamma \left(1 - rac{u_x v}{c^2}
ight)}, \quad u_z' = rac{u_z}{\gamma \left(1 - rac{u_x v}{c^2}
ight)}$$

三、相对论效应

1. 时间膨胀 (钟慢效应)

♀时间膨胀

$$\Delta t = \gamma \Delta t_0$$

其中:

Δt₀: 固有时 (本征时间)

Δt: 运动观测时间

2. 长度收缩

♀长度收缩

$$L=rac{L_0}{\gamma}$$

其中:

L₀: 固有长度 (静止长度)

• L: 运动观测长度

3. 同时性的相对性

i 同时性的相对性

- 不同惯性系对"同时事件"的判断可能不同
- 时序关系取决于 $\frac{v\Delta x}{c^2}$

四、相对论动力学

1. 质速关系

0

$$m=\gamma m_0=rac{m_0}{\sqrt{1-rac{v^2}{c^2}}}$$

其中:

• m_0 : 静质量

• m: 动质量

2. 动量-能量关系

物理量	公式
动量	$oldsymbol{p} = \gamma m_0 oldsymbol{v}$
总能	$E=\gamma m_0 c^2$
静能	$E_0=m_0c^2$
动能	$E_k=(\gamma-1)m_0c^2$
总能关系	$E^2 = m{p}^2 c^2 + m_0^2 c^4$

3. 四维形式

□ 四维位移

$$X^{\mu}=(ct,x,y,z)$$

中 四维动量

$$P^{\mu}=\left(rac{E}{c},p_{x},p_{y},p_{z}
ight)$$

第五部分 热力学

一、平衡态与物态方程

1. 平衡态

中定义

系统各部分 压强相等、温度相同,物态参量 (p,V,T) 确定,与外界无能量/物质交换

• 近似平衡态: 状态变化微小可忽略时视为平衡态

2. 理想气体的物态方程

// 微观形式

pV = NkT

- N: 分子数
- $k = 1.38 \times 10^{-23} \, \text{J·K}^{-1}$ (玻耳茲曼常量)

// 宏观形式

$$pV = \nu RT$$

- ν: 物质的量
- $R = 8.314 \, \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

// 分子数密度形式

$$p = nkT$$

• n = N/V: 分子数密度

3. 热力学第零定律

♀ 热力学第零定律

若两系统分别与第三系统热平衡,则它们彼此热平衡

• 温度是热平衡的判据

二、理想气体的压强公式

1. 理想气体的微观模型

中定义

从气体动理论观点看,理想气体微观模型为:

- 分子本身大小可忽略 (可视为质点)
- 除碰撞瞬间外,分子间相互作用力忽略 (碰撞间作匀速直线运动)

• 分子间及分子与器壁碰撞为完全弹性碰撞(动能不损失)

2. 压强公式推导

① 推导前提

设长方体容器尺寸为 $x \times y \times z$,内含N个分子,单个分子质量m

☑ 单个分子对器壁作用

- 分子与 A_1 面碰撞时,动量变化: $\Delta p_x = -2mv_x$
- 相邻两次碰撞时间间隔: $\Delta t = rac{2x}{v_x}$
- 单分子对 A_1 面平均作用力: $F_x = 2mv_x \cdot rac{v_x}{2x} = rac{mv_x^2}{x}$

☑ 所有分子对器壁作用

$$F = \sum_{i=1}^N rac{m v_{ix}^2}{x} = rac{m}{x} \sum_{i=1}^N v_{ix}^2$$

// 压强表达式

$$p = rac{F}{yz} = rac{m}{xyz} \sum_{i=1}^N v_{ix}^2 = rac{Nm}{V} \cdot rac{\sum v_{ix}^2}{N}$$

其中:

- 分子数密度n=N/V
- x方向速度平方平均值:

$$\overline{v_x^2} = rac{\displaystyle\sum_{i=1}^N v_{ix}^2}{N}$$

① 统计规律应用

• 气体平衡态具有各向同性:

$$\overline{v_x^2}=\overline{v_y^2}=\overline{v_z^2}=rac{1}{3}\overline{v^2}$$

• 分子平均平动动能:

$$\overline{arepsilon_k} = rac{1}{2} m \overline{v^2}$$

3. 理想气体压强公式

Ō

$$p=rac{1}{3}nm\overline{v^2}=rac{2}{3}n\overline{arepsilon_k}=rac{1}{3}
ho\overline{v^2}$$

其中:

• n: 分子数密度 (m⁻³)

• $\overline{\varepsilon_k}$: 分子平均平动动能 (J)

• ho=nm: 气体密度 (kg/m^3)

4. 推导结论

/ 能量关系

$$\therefore p = rac{3}{2}n\left(rac{1}{2}m\overline{v^2}
ight) \qquad p = nkT$$
 $\therefore arepsilon_k = rac{1}{2}m\overline{v^2} = rac{3}{2}kT$

三、分子自由度与热容

1. 能量均分原理

气体处于平衡态时,分子在任何一个方向的运动都不比其他方向占有优势,分子 在各个方向运动的概率是相等的

2. 不同分子自由度与热容

分子类型	自由度	组成(平动+转动 +振动)	$C_{V,m}$	$C_{p,m}$	$\gamma = rac{C_{p,m}}{C_{V,m}}$
单原子分子 (如 He)	3	3 + 0 + 0	$-\frac{3}{2}R$	$\frac{5}{2}R$	$rac{5}{3}pprox 1.67$
刚性双原子分子 (如 O₂)	5	3 + 2 + 0	$\frac{5}{2}R$	$\frac{7}{2}R$	$\frac{7}{5} = 1.40$
非刚性双原子分子	7	3 + 2 + 2	$\frac{7}{2}R$	$\frac{9}{2}R$	$rac{9}{7}pprox 1.29$
刚性多原子分子 (如 CO₂)	6	3 + 3 + 0	3R	4R	$rac{4}{3}pprox 1.33$
非刚性多(n)原子 分子	3n	线性: $3+2+3n-5$ 非线性: $3+3+3n-6$	$\frac{3n}{2}R$	$rac{3n+2}{2}R$	$\frac{3n+2}{3n}$

3. 热容公式

// 摩尔定容热容

$$C_{V,m}=rac{i}{2}R$$

// 摩尔定压热容

$$C_{p,m} = C_{V,m} + R$$

$$\gamma = 1 + rac{2}{i}$$

四、麦克斯韦速率分布

1. 速率分布函数

中定义

$$f(v) = \lim_{\Delta x o \infty} rac{\Delta N}{N \Delta v} = rac{1}{n} \lim_{n o \infty} rac{\Delta N}{\Delta v}$$
以 $rac{dN}{N} = f(v) dv$

②麦克斯韦速率分布函数

$$f(v)=4\pi \Bigl(rac{m}{2\pi kT}\Bigr)^{3/2}v^2e^{-rac{mv^2}{2kT}}$$

2. 三种速率

① 分子速率统计值

• 最概然速率: $v_p = \sqrt{\frac{2kT}{m}}$

• 平均速率: $\overline{v}=\sqrt{\frac{8kT}{\pi m}}$

• 方均根速率: $v_{
m rms} = \sqrt{rac{3kT}{m}}$

3. p-V图特性

□ p-V图特征

• 等温线: 双曲线 pV = 常量

• 绝热线: $pV^{\gamma} =$ 常量 (比等温线陡峭)

五、玻尔兹曼能量分布律与等温气压公式

1. 玻尔兹曼能量分布律

♀定义

$$dN = N \Big(rac{m}{2\pi kT}\Big)^{rac{3}{2}} e^{-rac{arepsilon_k}{kT}} 4\pi v^{2dv} \ n = n_0 e^{-rac{arepsilon_p}{kT}} = n_0 e^{-rac{mgz}{kT}}$$

2. 重力场中的等温气压公式

0

$$p=p_0e^{-rac{arepsilon_p}{kT}}=p_0e^{-rac{mgz}{kT}}
otag \ z=rac{kT}{mg}{
m ln}rac{p_0}{p}=rac{RT}{Mg}{
m ln}rac{p_0}{p}$$

六、分子的平均碰撞频率与平均自由程

1. 基本概念与定义

□ 平均碰撞频率

Z = 单位时间内分子与其他分子碰撞的平均次数

□平均自由程

 $\bar{\lambda}$ = 分子连续两次碰撞间通过路程的平均值

∅ 核心关系

$$\overline{\lambda} = rac{\overline{v}}{\overline{Z}}$$

其中 \overline{v} 为分子平均速率

① 物理意义

- 分子碰撞实现动量、动能交换,驱动气体从非平衡态向平衡态过渡
- 碰撞使温度均匀化 (如容器内温度差异通过碰撞消除)

2. 平均碰撞频率推导

☑ 推导步骤

- 1. 简化模型假设:
 - 选定分子α以平均速率ν运动, 其余分子静止
 - 分子视为直径 d的弹性小球 (碰撞完全弹性)
 - 运动轨迹为折线,碰撞发生在球心距 < d时
- 2. 碰撞圆柱体模型:

• 圆柱体体积: $V=\pi d^2\overline{v}$

• 球心在圆柱体内的分子均与α碰撞

3. 公式推导:

• 未修正公式: $\overline{Z} = \pi d^2 \overline{v} n$

• 实际修正: $\overline{Z}=\sqrt{2}\pi d^2\overline{v}n$ (修正因子 $\sqrt{2}$ 源于麦克斯韦分布)

□影响因素

- $\overline{Z} \propto n$ (分子数密度)
- $\overline{Z} \propto \overline{v}$ (分子平均速率)
- $\overline{Z} \propto d^2$ (分子有效直径平方)

3. 平均自由程公式

// 基本表达式

$$\overline{\lambda} = rac{1}{\sqrt{2}\pi d^2 n}$$

// 压强与温度形式

$$\overline{\lambda} = rac{kT}{\sqrt{2}\pi d^2 p}$$

① 物理含义

• 温度T一定时: $p \uparrow \Rightarrow \overline{\lambda} \downarrow$

• 压强p一定时: $T \uparrow \Rightarrow \overline{\lambda} \uparrow$

• $\overline{\lambda}$ 独立于 \overline{v} ,仅取决于d, n, T, p

4. 有效直径与数量级

□ 模型近似性

- 分子非理想球体,碰撞非完全弹性
- d为有效直径:综合反映分子相互作用

淀 典型数值

- 标准状态下:
 - $oldsymbol{\circ} \ \overline{Z} \sim 10^9 \, \mathrm{s}^{-1}$
 - $oldsymbol{\circ}$ $\overline{\lambda}\sim 10^{-8}-10^{-7}\,\mathrm{m}$

七、热力学第一定律及应用

1. 热力学第一定律

$$\Delta U = Q - W$$

2. 四种典型过程

过程	条件	功 W	热量 Q	内能变化 ΔU
等容	$\Delta V=0$	0	$Q_V = u C_{V,m} \Delta T$	$\Delta U = Q_V$
等压	p =常量	$p\Delta V$	$Q_p = u C_{p,m} \Delta T$	$\Delta U = Q_p - W$
等温	T =常量 PV =常量	$ u RT \ln rac{V_2}{V_1}$	$Q_T=W$	$\Delta U=0$
绝热	$Q=0$ $PV^{\gamma}=$ 常量	$W=rac{p_1V_1-p_2V_2}{\gamma-1}$	0	$\Delta U = -W$

八、热机效率与制冷系数

1. 热机效率

// 热机效率

$$\eta = rac{W}{Q_1} = rac{Q_1 - |Q_2|}{Q_1} = 1 - rac{|Q_2|}{Q_1}$$

♀卡诺热机效率

$$\eta_{+$$
诺 $=1-rac{T_2}{T_1}$

2. 制冷系数

/ 制冷系数

$$e = rac{Q_2}{|W|} = rac{Q_2}{|Q_1| - Q_2}$$

♀卡诺制冷系数

$$e_{+$$
诺 $}=rac{T_2}{T_1-T_2}$

九、热力学第二定律与卡诺定理

1. 热力学第二定律

□ 开尔文表述

无法从单一热源吸热全部转化为功而不产生其他影响

□克劳修斯表述

热量不能自发从低温传至高温

2. 卡诺定理

♀ 基本结论

在温度为 T_1 的高温热源和温度为 T_2 的低温热源之间工作的热机,必须满足:

- 1. 相同热源间的任意可逆机效率相同
- 2. 任何不可逆机效率均不大于可逆机效率

(1) 可逆机效率公式

/ 卡诺热机效率

$$\eta = 1 - rac{|Q_2|}{Q_1} = 1 - rac{T_2}{T_1}$$

其中:

• Q1: 高温热源吸热量 (单位: J)

• Q2: 低温热源放热量 (取绝对值,单位: J)

• T₁: 高温热源温度 (单位: K)

• T₂: 低温热源温度 (单位: K)

(2) 不可逆机效率关系

《不可逆机效率限制

$$\eta'\leqslant 1-rac{T_2}{T_1}$$

- =: 适用于可逆机
- <: 适用于不可逆机

十、熵与统计解释

1. 熵的定义

中 熵变

$$\Delta S = \int rac{dQ_{
m rev}}{T}$$

♀ 熵增加原理

孤立系统中, $\Delta S \geq 0$ (不可逆过程熵增加)

2. 玻耳兹曼熵公式

Ø 统计熵

$$S=k\ln W$$

其中:

- k: 玻耳兹曼常数 (1.38 × 10⁻²³ J/K)
- W: 热力学概率 (微观状态数)

第六部分 静电场

一、电荷守恒定律

1. 电荷的量子化

甲定义

电子电荷的绝对值e被称为元电荷

$$e = 1.602 \times 10^{-19} \text{ C}$$

2. 电荷守恒定律

Ō

不管系统中的电荷如何转移, 系统中电荷的代数和保持不变

3. 库伦定律

中定义

在真空中,两个静止的点电荷之间的相互作用力:

- 大小与电荷乘积成正比
- 与距离平方成反比
- 方向沿两点电荷连线

公式表述:

$$oldsymbol{F} = rac{1}{4\piarepsilon_0}rac{q_1q_2}{r^2}oldsymbol{e_r}$$

其中:

$$\varepsilon_0 = 8.85 \times 10^{-12} \; \mathrm{C^2 \cdot N^{-1} \cdot m^{-2}} = 8.85 \times 10^{-12} \; \mathrm{F \cdot m^{-1}}$$

	电场强	度
_	• 6/2/1132	2

1. 电场强度定义

甲定义

$$oldsymbol{E} = rac{oldsymbol{F}}{q_0}$$

表明电场中某点处的电场强度 医等于位于该点处单位试验电荷所受的电场力

2. 点电荷的电场强度

∅点电荷场强

$$oldsymbol{E} = rac{1}{4\piarepsilon_0}rac{Q}{r^2}oldsymbol{e_r}$$

其中:

• Q: 源点电荷大小

• q₀: 试验电荷大小

3. 电场强度叠加原理

Ō

电场强度遵循矢量叠加原则

三、高斯定理

1. 电场强度通量

甲定义

2. 高斯定理

$$oldsymbol{arPhi}_e = \oint_S oldsymbol{E} \cdot doldsymbol{S} = rac{q}{arepsilon_0}$$

其中q为闭合曲面S所包围的净电荷量

☑ 推导

$$egin{aligned} dots E &= rac{1}{4\piarepsilon_0}rac{q}{R^2} \ d arPhi_e &= oldsymbol{E} \cdot d oldsymbol{S} = E d S \cos heta = rac{q}{4\piarepsilon_0}rac{d S \cos heta}{r^2} \ dots arPhi_e &= \oint_S d arPhi_e = rac{q}{4\piarepsilon_0} \oint_S d \Omega = rac{q}{arepsilon_0} \end{aligned}$$

四、电势能

1. 静电场力做功

/静电力做功

$$W=q_0\int m{E}\cdot dm{l}$$

点电荷直线运动:

物理笔记第一学期
$$W=rac{qq_0}{4\piarepsilon_0}igg(rac{1}{r_A}-rac{1}{r_B}igg)$$

2. 静电场的环路定理

$$q_0 \oint_l m{E} \cdot dm{l} = 0$$

五、电势

1. 电势

甲电势

$$V=rac{E_p}{q_0}$$

其中 E_p 为电势能

2. 点电荷电势

⊘ 点电荷电势

$$V = \int_{r}^{\infty} oldsymbol{E} \cdot doldsymbol{l} = rac{q}{4\piarepsilon_0} rac{1}{r}$$

六、电场强度与电势梯度

1. 等势面

甲定义

电场中电势相等的点构成的面

2. 电场强度与电势梯度

$$m{E} = -
abla V = -\left(rac{\partial V}{\partial x}m{i} + rac{\partial V}{\partial y}m{j} + rac{\partial V}{\partial z}m{k}
ight)$$

七、静电场中的导体

1. 静电平衡条件

Ö

- 1. 导体内部电场强度为零
- 2. 导体表面电场方向与表面垂直

2. 导体电荷分布

- 导体内部无净电荷
- 表面电荷密度σ与场强关系:

$$E = \frac{\sigma}{arepsilon_0}$$

_			_	
つ	王久	电	₩	亚左
-5	83	ш.	呸	MV
∵ .	HJ	- 0	77	ドルス

甲定义

导体空腔可屏蔽外部电场对内部的影响

八、静电场中的电介质

1. 相对电容率

中定义

$$arepsilon_r = rac{arepsilon}{arepsilon_0}$$

其中:

• ε: 电介质电容率 (单位: F/m)

• ε_0 : 真空电容率 ($8.85 imes 10^{-12}$ F/m)

2. 电极化强度

甲定义

$$m{P} = rac{\sum m{p}}{\Delta V}$$

单位: C·m⁻²

3. 电位移

甲定义

$$oldsymbol{D} = arepsilon_0 arepsilon_r oldsymbol{E} = arepsilon oldsymbol{E}$$

♀ 有介质时的高斯定理

$$\oint_S m{D} \cdot dm{S} = Q$$

九、电容器

1. 电容

甲定义

$$C=rac{Q}{V}$$

2. 常见电容器

《平行板电容器

$$C=rac{arepsilon_0arepsilon_rS}{d}$$

// 球形电容器

$$C=4\piarepsilon_0 R$$

3. 电容组合

并联

$$C = \sum C_i$$

