PID Tuning

CSE 425 Industrial Process Control Lecture 6

Controller Tuning

- Tuning is about adjusting the PID controller parameters K_c , T_i , and T_d , to give "best" response.
- It is a compromise between minimizing settling time (speed) & overshoot (stability).

How to judge step response?

- Overshoot: acceptable 5-10%
- Decay ratio = 2nd peak / 1st peak, the smaller the quicker the response
 - If the response makes one or two cycles before reaching setpoint, we make a good job!

Error Integral Criteria

- Error criteria penalize both Size & Duration of Error
 - —Integral of Squared Error (ISE)
 - —Integral of Absolute Error (IAE)
 - —Integral of Time-weighted Absolute Error (ITAE): penalizes late errors (gives best settling time)

PID Controller Tuning

- Tuning can be done by trial and error
 - time-consuming
 - costly
- There are many systematic methods for PID tuning such as classical Ziegler–Nichols (ZN) tuning rules.
- We will study ZN's two methods.

ZN's first method

- 1) Start at steady state
- 2) Turn the controller into Manual mode (*open-loop*)
- 3) Apply a step input, of suitable magnitude, to the process.
- 4) Record the step response (also called process reaction curve). It has to be *S*-shaped in order for this method to be applicable.
- 5) Fit a first-order plus dead time (FOPDT) model to

the curve.

Two-points method

 The Two-points method is used to fit FOPDT model to process reaction curve

$$G(s) = \frac{K_p e^{-\theta s}}{\tau s + 1},$$

Where θ is time delay, τ is time constant, and K_p is dc gain.

$$K_{p} = \frac{\Delta}{\delta} = \frac{total\ output\ change}{total\ input\ change}$$

$$\tau = 1.5\left(t_{63\%} - t_{28\%}\right)$$

$$\theta = t_{63\%} - \tau$$

- Times t₂₈ and t₆₃ are measured from the time step input is applied
- Remember K_p is dimensionless

Process Identification

- The step test is also called Bump test: 5% (Avoid 0-100% change)
- Stay around the middle of normal range of operation to avoid nonlinearity of the valve.
- Apply more than one bump test as shown below; these are three steps.
- If the tests give different parameters, use:
 - largest process gain
 - longest dead time
 - shortest time constant
 - This gives conservative tuning

Bad Bump Test

- In the following figure, the input is not really a step.
- Hence, we can not extract correct information about the time delay and time constant of the process

Dead Time-to-Lag Ratio (θ/τ)

This ratio tells us how much is the process easy to control

$$--\theta/\tau < 0.33$$

easy to control

$$-0.33 < \theta/\tau < 1.0$$

moderate

$$-1.0 < \theta/\tau$$

difficult to control

- The controller gain is inversely proportional to θ/τ.
 - if θ/τ is large, the gain should be low; i.e. the controller must be cautious

ZN Tuning rules

- After having identified the process parameters, we use the following table to find the P, PI, or PID controller parameters corresponding to the FOPDT model obtained.
- Note how adding *Derivative* action allows increasing controller gains to obtain faster response.

Controller	<u>K</u> c	T _i	T_d
P	$\frac{1}{K_p(\theta/\tau)}$	8	0
PI	$\frac{0.9}{K_p(\theta/\tau)}$	3.3 <i>0</i>	0
PID	$\frac{1.2}{K_p(\theta/\tau)}$	2θ	0.5 <i>0</i>

ZN's Second Method

- If the process reaction curve is not s-shaped or the process is open loop unstable, the first method is not applicable.
- In this case, we resort to Ziegler Nichols' second method also called the Ultimate-Cycle method.
- In contrast to the first method, the ultimate cycle method is used in closed-loop.

Procedure

- Put the process under closed-loop proportional control.
- Create a small disturbance in the loop by changing the set point.
- Adjust the proportional gain, increasing and/or decreasing, until the response shows oscillations with constant amplitude (a sustained oscillation called *hunting*).
- 4. Record the gain value (K_{μ}) and period of oscillation (T_{μ}) .

ZN's 2nd Tuning rules

Use the following table to find controller parameters.

Controller	K _c	T_i	T_d
P	0.5 <i>K_u</i>	∞	0
PI	0.455 <i>K</i> _u	0.833 <i>T_u</i>	0
PID	0.6 <i>K_u</i>	0.5 <i>T_u</i>	0.125 <i>T</i> _u

Simulation Example

Consider the following process

$$G(s) = \frac{1}{s(2s+1)^2}$$

- As the process has an integrator, we use ZN's 2nd method.
- Using simulation, we can find that $K_u=1$ and $P_u=12.54$.
- Let us simulate the closed-loop set-point step response using ZN-tuned PID controller.

MATLAB Code

% MATLAB code

```
t=0:0.01:70;
s=tf('s');
G = 1/(s*(2*s+1)^2);
% Process parameters
Ku = 1; Pu = 12.54;
  PID parameters, Method 2
Kc = 0.6*Ku; Ti = 0.5*Pu;
Td = 0.125*Pu;
Gc = pid(Kc, Kc/Ti, Kc*Td);
% Set point step response
cloop = Gc*G/(1+Gc*G);
figure(2)
step(cloop,t)
```


Comments

- We see that the response shows large overshoot (~60%) which is not acceptable.
 - In fact, ZN are designed to give quarter-cycle decay ratio.
 - This gives good disturbance rejection but exhibits large overshoot for set point response.
- Despite this drawback, ZN tuning serves as a good starting point for fine tuning.
- Many other methods are available in the literature (e.g. those minimizing ITAE or ISE criteria)

Set point vs. Disturbance Responses

- When a setpoint change occurs, the controller sees quick and big error signal.
- On the contrary, disturbance causes small gradual error

In general:

Tuning for setpoint changes gives a relaxed controller. This causes very slow load rejection.

Tuning for load rejection is aggressive (higher gain and less T_i). This tuning causes large overshoot for setpoint changes.

Set point vs. Disturbance Responses

- For example, in the following figures, there are several tuning methods.
- We can see that the best method for setpoint tracking is the worse in disturbance rejection and vice versa.

Setpoint Filtering or Softening

- To achieve good setpoint and disturbance responses simultaneously, we tune the controller for load disturbance rejection (i.e., make the controller aggressive) and apply the setpoint through a filter to avoid large overshoot in setpoint response.
- Note the error is E = SP_f-PV

Setpoint Filtering

- With set point filtering, the controller is said to have Two Degrees of Freedom (2DOF)
- Setpoint filtering has no effect on load response

