VALORES Y VECTORES PROPIOS

Definición 1 Sea A una matriz cuadrada de orden n con elementos en un cuerpo K (\mathbb{R} δ \mathbb{C}). Un escalar λ se denomina un valor propio de A si existe un vector no nulo $\mathbf{x} \in K^n$ tal que $A\mathbf{x} = \lambda \mathbf{x}$, y en tal caso \mathbf{x} se llama vector propio de A asociado a λ .

Ejemplo. Consideremos la matriz:

$$A = \left(\begin{array}{cc} 1 & 4 \\ 2 & 3 \end{array}\right)$$

Entonces $\lambda = -1$ es un valor propio de A y $\mathbf{x} = \begin{pmatrix} -4 \\ 2 \end{pmatrix}$ su vector propio asociado. En efecto:

$$A\mathbf{x} = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} -4 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$$

$$\lambda \mathbf{x} = (-1) \begin{pmatrix} -4 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$$

de donde $A\mathbf{x} = \lambda \mathbf{x}$.

observación Al operar con elementos de \mathbb{R}^n (ó \mathbb{C}^n), estos deben ser puestos como una matriz columna.

Definición 2 Sea λ un valor propio de una matriz A. Se llama espacio propio asociado a λ al conjunto de todos los vectores propios asociados a dicho valor propio más el vector nulo de K^n , Es decir, si el espacio propio lo denotamos por E_{λ} , entonces

$$E_{\lambda} = \{ \mathbf{x} \in K^n : A\mathbf{x} = \lambda \mathbf{x} \}$$

Si λ es un valor propio entonces existe un vector \mathbf{x} tal que $A\mathbf{x} = \lambda \mathbf{x}$ o equivalentemente $(A - \lambda I)\mathbf{x} = \theta$, donde I es la matriz identidad de orden n. Como \mathbf{x} debe ser distinto del vector nulo, entonces $det(A - \lambda I)$ no podría ser distinto de cero; ya que de lo contrario, tendríamos sólo la solución trivial. También si dicho determinante no es cero, la solución no es única; lo cual, aparte de la solución trivial habrían otras soluciones. De lo anterior, se tiene la siguiente proposición:

Proposición 1 Sea A una matriz cuadradada de orde n. Un escalar λ es valor propio de A sí y sólo sí

$$det(A - \lambda I) = 0,$$

 $donde\ I\ es\ la\ matriz\ identidad\ de\ orden\ n.$

La expresión:

$$f_A(\lambda) = det(A - \lambda I)$$

es un polinomio de orden n en λ y recibe el nombre de *polinomio carasterístico*. Dicho polinomio se puede escribir entonces como:

$$f_A(\lambda) = (-1)^n (\lambda^n + a_{n-1}\lambda^{n-1} + \dots a_0)$$

Si $\lambda_1, \lambda_2, \ldots, \lambda_k$ son los ceros del polinomio carasterístico, entonces $f_A(\lambda)$ puede ser factorizado de la siguiente manera:

$$f_A(\lambda) = (-1)^n (\lambda - \lambda_1)^{\beta_1} (\lambda - \lambda_2)^{\beta_2} \cdot \cdot \cdot \cdot \cdot (\lambda - \lambda_k)^{\beta_k}$$

donde $\beta_1, \beta_2, \ldots, \beta_k$ son números naturales tales que:

$$\beta_1 + \beta_2 + \ldots + \beta_k = n$$

El número β_i , i=1,2...,k, de veces que se repite el factor $(\lambda - \lambda_i)$ se llama multiplicidad algebraica de λ_i . Por otra parte la dimensión del espacio propio asociado a un valor propio λ recibe el nombre de multiplicidad geométrica y se denota por $\rho(\lambda)$.

Existe un resultado del algebra lineal que dice que al valor propio λ_i le pueden corresponder a lo más β_i vectores propios linealmente independiente. Ahora, el número máximo de vectores propios de una matriz A asociado a un valor propio λ_i y que son linealmente idependiente es igual a $\rho(\lambda_i)$; dado que dicho valor es la dimensión del espacio propio asociado a ese valor propio. En otras palabras, se tiene que

$$\rho(\lambda_i) < \beta_i, \quad \forall \ i = 1, 2, \dots, k;$$

lo que quiere decir que la multiplicida geométrica de λ_i no excede a su multiplicidad algebraica.

Ejemplo. Consideremos la matriz:

$$A = \left(\begin{array}{ccc} 2 & -2 & 3\\ 0 & 3 & -2\\ 0 & -1 & 2 \end{array}\right)$$

Entonces los valores propios de la matriz A, por Proposición 1, son obtenidos de $det(A-\lambda I)=0$. Así

$$(A - \lambda I) = \begin{pmatrix} 2 & -2 & 3 \\ 0 & 3 & -2 \\ 0 & -1 & 2 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

con lo cual $det(A - \lambda I) = 0$ implica que:

$$\begin{vmatrix} 2 - \lambda & -2 & 3 \\ 0 & 3 - \lambda & -2 \\ 0 & -1 & 2 - \lambda \end{vmatrix} = 0$$

con lo que:

$$(2 - \lambda)[(3 - \lambda)(2 - \lambda) - 2] = 0$$

y haciendo el desarrollo en el primer miembro se llega a que:

$$(2-\lambda)[\lambda^2 - 5\lambda + 4] = 0$$

o también

$$(2 - \lambda)(\lambda - 4)(\lambda - 1) = 0$$

con lo que las raíces son $\lambda=2,\,\lambda=4$ y $\lambda=1$ y por lo tanto los valores propios de la matriz A son 2, 4 y 1 con multiplicidad algebraica 1 cada uno de ellos. Obtengamos ahora los vectores propios, y por ende los espacios propios, asociados a los valores propios. Para ellos reemplazamos los valores correspondientes de λ en $(A-\lambda I)\mathbf{x}=\theta$

• Para $\lambda = 2$, el sistema $(A - \lambda I)\mathbf{x} = \theta$ queda como:

$$\begin{array}{rrr}
-2x_2 & +3x_3 = 0 \\
+x_2 & +2x_3 = 0 \\
-x_2 & = 0
\end{array}$$

con lo cual, de la tercera ecuación se tiene que $x_2 = 0$ y por lo tanto de la primera y segunda ecuación se tiene que $x_3 = 0$. De lo anterior se tiene que los vectores propios para $\lambda = 2$ son de la forma $(x_1, 0, 0)$ y así:

$$E_{\lambda=2} = \{(x,0,0)/x \in \mathbb{R}\}$$

• Para $\lambda = 4$, el sistema $(A - \lambda I)\mathbf{x} = \theta$ queda como:

$$-2x_1 - 2x_2 + 3x_3 = 0$$

$$-x_2 - 2x_3 = 0$$

$$-x_2 - 2x_3 = 0$$

De la segunda y tercera ecuación se tiene que $x_2 = -2x_3$ y reemplazando x_2 en la primera ecuación se tiene que $x_1 = \frac{7}{2}x_3$. Entonces, los vectores propios para $\lambda = 4$ tienen la forma $(\frac{7}{2}x_3, -2x_3, x_3)$ y así:

$$E_{\lambda=4} = \{ (\frac{7}{2}x, -2x, x)/x \in \mathbb{R} \}$$

En forma análoga se obtiene el espacio propio para $\lambda = 1$