

یادگیری تقویتی تعاملی برای رباتیک

- انسان در حلقه (Human-in-the-loop)
 - تعامل انسان و کامپیوتر

The Multidisciplinary Field of HCI

وظایف مهندسین تعامل انسان و کامپیوتر در زمینه IML

- تعریف تکنیکهای تعامل انسان و کامپیوتر
 - پیدا کردن کابردهای جدید

Figure 1. The interactive RL architecture.

محیطهای آزمایشی یادگیری تقویتی تعاملی

- رباتیک
- هوش مصنوعی در بازیها
 - تعامل انسان و کامپیوتر

ابعاد طراحي

R' = R + F, where $F: S \times A \times S \rightarrow \mathbb{R}$ is the *shaping reward*

 تابع پاداش: فیدبک انسانی (توسط شخص خبره)، جهت تسریع یادگیری

- سیاست بهینه
 - كاوش
 - تابع ارزش

Design Dimension	Testbed	Interaction	Initiative	нкі	Feedback	Algorithms
Reward Function	Robot in maze-like environment [10] Navigation simulation [12] Sophie's Kitchen game [105, 103] Bowling game [108] Shopping assistant, GridWorld [76] Mario, GridWorld, Soccer simulation [85] Navigation simulation [102] Atari, robotics simulation [20]	FE GUI GUI GUI GUI COding VC GUI	Passive Passive, Active Passive Active Passive Passive Active Passive Active	RS using HF + ER Advantage Function RS using HF + EF RS + HF Active IRD PBRS RS using HF + ER RS using HF	Critique Critique Critique Scalar-valued Queries Heuristic Function AcAd Queries	DQL [67, 77] DAC QL [109], HRL DQL Model-based RL QL, QSL, QL(λ), QSL(λ) SARSA [86], SARSA(λ) DRL
Policy	GridWorld, TurtleBot robot [71] GridWorld [56] Pac-Man, Frogger [37]	GUI, GC VC GUI	Passive Passive Passive	PS PS PS	AcAd Critique, AcAd Critique	AC(λ) [15, 91] BQL [26] BQL
Exploration Process	Pac-Man, Cart-Pole simulation [114] Simulated cleaning Robot [24, 23] Pac-Man [7] Pac-Man [32] Sophie's Kitchen game [103] Street Fighter game [13] Nao Robot [93] Nexi robot [54]	GUI VC GUI GUI GUI Not apply GUI AT + CT	Passive Passive Active Active Active Passive Passive Passive	GEP GEP GEP Myopic Agent ACTG EB using Safe RL ACTG Myopic Agent	AcAd AcAd AcAd AcAd Guidence Demonstration Guidence AcAd	QL SARSA SARSA(λ) QL, QRL QL HRL QL SARSA(λ)
Value Function	Mountain Car simulation [52] Keepaway simulation [101] Mario, Cart Pole [18]	GUI GUI Not apply	Passive Passive Passive	Weighted VF Weighted VF Initialization of VF	Demonstration Demonstration Demonstration	SARSA(λ) SARSA QL(λ)

ابعاد طراحي

طراحی یاداش:

The reward shaping (RS) method aims to mold the behavior of a learning agent by modifying its reward function to encourage the behavior the RL designer wants.

• طراحی سیاست:

The policy shaping (PS) approach consists of directly molding the policy of a learning agent to fit its behavior to what the RL designer envisions.

• فرآیند کاوش هدایتشده:

Guided exploration process methods aim to minimize the learning procedure by injecting human knowledge to guide the agent's exploration to states with a high reward.

• تابع ارزش تقویتشده:

The procedure to augment a value function consists of combining the value function of the agent with one created from human feedback.

High-dimensional Environments محیطهای با ابعاد بال Lack of Evaluation Techniques کمبود روشهای ارزیابی Lack of Human-like Oracles فقدان مشاوران شبیه به انسان

Modeling Users مدلسازی کاربر ان

Combining Different Design Dimensions ترکیب ابعاد مختلف طراحی

Safe Interactive RL یادگیری تقویتی تعاملی ایمن Fast Evaluation of Behaviors ارزیابی سریع رفتارها Explainable Interactive RL یادگیری تقویتی تعاملی قابل

یادکیری تقویتی تعاملی قابل توضیح

یادگیری تقلیدی تعاملی در یادگیری تقویتی

- اعمال فیدبک توسط انسان در صورت بهینه نبودن پالیسی
- اعمال یادگیری تقویتی با فیدبک تعاملی بعنوان سیگنال ریوارد

Algorithm 2 RLIF

```
Require: \pi, \pi^{\text{exp}}, D
 1: for trial i = 1 to N do
       Train \pi on D via reinforcement learning.
       for timestep t = 1 to T do
 3:
 4:
          if \pi^{\text{exp}} intervenes at t then
             label (s_{t-1}, a_{t-1}, s_t) with -1 reward,
             append to D_i
          else
 6:
 7:
             label (s_{t-1}, a_{t-1}, s_t) with 0 reward,
             append to D_i
          end if
 8:
       end for
 9:
       D \leftarrow D \cup D_i
10:
11: end for
```

Intervention

Release Control

یادگیری تقلیدی تعاملی در یادگیری تقویتی

- D4RL : ابزار متن-باز برای بنچ-مارک الگوریتمهای آفلاین یادگیری تقویتی
 - محیط Adroit Pen

Pen Value-Based RLIF

یادگیری تقلیدی تعاملی در یادگیری تقویتی

- استراتژی مداخله:
- random : مداخله در ۳۰ و ۵۰ و ۸۵ درصد زمانها
 - بر پایه value : مقایسه با پالیسی خبره

$$\mathbb{P}(\mathit{Intervention}|s) = \begin{cases} \beta, & \text{if } Q^{\pi^{\mathrm{ref}}}(s, \pi^{\mathrm{exp}}(s)) * \alpha > Q^{\pi^{\mathrm{ref}}}(s, \pi(s)) \\ 1 - \beta, & \text{otherwise.} \end{cases}$$

We choose a value for β close to 1 such as 0.95 and a value of α close to 1 such as 0.97.

- پالیسی خبرہ:
- ترین روی دیتاست D4RL در ابعاد کوچکتر (۱۰ و ۴۰ و ۹۰ درصد)

Tasks	Dataset	Subsampled Size
Adroit Pen	pen-expert-v1	50 trajectories

RLIF: Interactive Imitation Learning as Reinforcement Learning

یادگیری تقلیدی تعاملی در یادگیری تقویتی

Jianlan Luo*

Perry Dong*

Yuexiang Zhai

Yi Ma

Sergey Levine

International Conference on Learning Representations (ICLR) 2024

Vienna, Austria

نتيجه شبيهسازي

Domain	Expert Level	RLIF with Value Based Intervention	RLIF with Random Intervention	HG-DAgger	HG-DAgger with 85% Random Intervention	DAgger	DAgger with 85% Random Intervention	BC
adroit-pen	~90%	88.47	42.87	73.47	74.27	78.13	79.07	
	∼40%	80.87	34.13	60	29.33	35.73	38.67	54.13
	~10%	64.04	28.33	28.53	9.47	8.93	12.8	
	average	77.79	35.11	54	37.69	40.93	43.51	54.13
locomotion-	~110%	108.99	106.51	53.55	112.7	57.94	76.13	
hopper	∼70%	99.66	75.62	44.75	69.73	20.49	43.59	44.46
	~20%	102.85	19.11	11.94	19.66	12.37	20.1	
	average	103.83	67.08	36.75	67.36	30.27	46.61	44.46
locomotion-	~110%	109.17	93.76	80.3	86.93	70.58	61.64	
walker	~40%	108.42	103.9	40.66	42.65	38.7	19.63	64.77
	~15%	108.01	75.12	25.2	24.37	19.54	10.29	
	average	108.53	90.93	48.72	51.32	42.94	30.46	64.77

یادگیری تقلیدی تعاملی در یادگیری تقویتی

bash scripts/run_pen_hgdagger.sh
bash scripts/run_pen_value_based_rlif.sh

· نتیجه شبیهسازی

یادگیری تقلیدی تعاملی در یادگیری تقویتی

- اعمال روی ربات حقیقی
- داینامیک غیرپیوسته و غیرقابل پیشبینی برخورد
 - ورودی سنگین (تصویر دوربین)
 - اعمال روی پلتفرم با شکل متغیر (حوله)
 - اپراتور مداخلهگر (انسان) غیر ایدهآل
- انتخاب ریوارد بصورت دستی بسیار دشوار است.
- تتیجه: ۹۵ درصد نرخ موفقیت در ۲۰ مسیر سنجش

