HEURÍSTICAS CONSTRUTIVAS

DCE529 - Algoritmos e Estruturas de Dados III

Atualizado em: 19 de julho de 2022

Iago Carvalho

HEURÍSTICAS

Uma heurística é um procedimento mental simples que ajuda a encontrar respostas adequadas, embora várias vezes imperfeitas, para perguntas difíceis

Em computação, uma heurística tem outro sentido

- É um algoritmo aplicado a problemas exponenciais
 - NP-Completos
- Não garante a solução ótima do problema
- Entretanto, visa obter soluções de boa qualidade

CLASSES DE HEURÍSTICAS

Existem 4 grandes classes de algoritmos heurísticos

- 1. Heurísticas construtivas
- 2. Heurísticas de busca local
- 3. Heurísticas populacionais
- 4. Algoritmos aproximativos

HEURÍSTICAS CONSTRUTIVAS

Constroem uma solução para um problema de otimização

- Muitas vezes, constroem a solução do zero
- Utilizam a definição do problema e os parâmetros da instância

Complexidade polinomial

Na maioria das vezes, garantem uma solução viável

Nunca garantem a otimalidade

HEURÍSTICAS CONSTRUTIVAS

Em sua maioria, são algoritmos gulosos

Outros algoritmos gulosos: Dijkstra, Prim, Kruskal ...

Para a utilização de uma heurística construtiva, deve-se definir dois pontos-chave

- 1. O que é um elemento de uma solução
 - Um vértice
 - Uma aresta
 - Algum outro elemento
- 2. O que é uma solução parcial
 - Um subgrafo
 - Parte de um caminho
 - Componentes desconectados

HEURÍSTICAS CONSTRUTIVAS

Começa de uma solução inicial

O Na maioria das vezes, uma solução vazia

Adiciona elemento por elemento de forma gulosa

Cada adição de um elemento aumenta a solução parcial

Finaliza quando obtiver uma solução completa

APLICAÇÃO - PROBLEMA DA MOCHILA BINÁRIA

Seja I um conjunto de elementos

 \bigcirc Cada elemento $i \in I$ é associado a um peso p_i e a um benefício b_i

Problema da mochila binária: Encontrar $X \subseteq I$ tal que $\sum_{i \in X} b_i$ é máximo e que $\sum_{i \in X} p_i \le c$, para uma constante c qualquer

APLICAÇÃO - PROBLEMA DO CAIXEIRO VIAJANTE

Seja G = (V, E) um grafo

○ Cada aresta $e \in E$ é associada a um peso w_e

Problema do caixeiro viajante: Encontrar um subgrafo G'=(V,X), onde $X\subseteq E$, tal que o grau de todos os vértices seja igual a 2 e que $\sum_{e\in X} w_e$ é mínimo

APLICAÇÃO - PROBLEMA DO EMPACOTAMENTO

Seja *I* um conjunto de elementos

 \bigcirc Cada elemento tem um tamanho $i \in I$ tem um tamanho t_i

Problema do empacotamento: Alocar todos os elementos de I em "potes" de tamanho 1

Utilizar o menor número de "potes"o possível

