Dud of SVH problem

The sum of SVH problem

$$S(\omega,b)$$
 $S(\omega,b)$ $S($

wolfe Phal ω = $\sum_{i=1}^{N} \lambda_i y(i) x(i)$ N 7; y(i) = 0 Eliminate Wi, b max 2/2; -1/2/2/2(i)/2(i)/2(i)/2

5 xiy(i) = 0

 $\frac{N}{2}$ $\frac{N}{N}$ \frac{N} mex λ7/0 5 X; Y Ci) 2 O M(n): Sign (\sum \lambda; \sum \lambda; \sum \lambda; \sum \feature

Solve SUM. in feature space use D(x) of x

121 N Z (i) Z O

Classifier

 $h(x) = sign(\underbrace{\sum_{i=1}^{N} (y^{i})} \overline{D(x^{ii})}) \overline{D(x^{ii})}$

 $K(x, \tilde{x}) = \tilde{\Phi}(x)\tilde{\Phi}(\tilde{x}) = (1+\tilde{x}\tilde{x})^2$

 $\frac{1}{\Phi(x)}, \frac{1}{\sqrt{2}x_1}$ $\frac{1}{\sqrt{2}x_2}$ $\frac{1}{\sqrt{2}x_1}$ $\frac{1}{\sqrt{2}x_2}$ $\frac{1}{\sqrt{2}x_1}$ $\frac{1}{\sqrt{2}x_2}$ $\frac{1}{\sqrt{2}x_2}$

Kernel meltrods For Pattern Analysis

Kernel functions K: XxX=> TR is called a Kernel function if (i) K is Brymmetric 2 K is ponitive semi-defénilé Kis positive semi-defende:
For every n E TN (Set of natural)
numbers one for every Dn, Zzci) E Klie [n]} Kij, K(x(i), z(j))

K & O.

Example $K(X, Z) = X^T Z = K(Z, X)$ For any XIII -- XCM) E IRd $K_{ij}(x^{(i)}, x^{(i)}) = (x^{(i)})^{(x^{(i)})}$ ut Ku 2 SSuilijæ(i) Tæ(j)

 $\frac{1}{2} \times \frac{1}{2} \times \frac{1}$

Mercer's Theorem (Thm 3.13) let x ERd he a compact set. Let K: XXX + R he a continvous symmetric fouretion. then for every f ∈ L2(X) $\int K(x,z) f(x) f(z) dx dz > 0$ Xxxis true iff there exists $\int \phi_i(x) \phi_i(x) dx = 0$ $\phi_i \in L_2(x)$, ch that ∞ $\sum_{i=1}^{\infty} \phi_i(x) \phi_i(z)$.

$$((x,z), \frac{1}{2}(x), \frac{1}{2}(x), \frac{1}{2}(x), \frac{1}{2}(x)$$

Kernel

Then
$$K(x,z)$$
 be a valid

 $K(x,z)$ $K(x,z)$ $K(x,z)$

$$\frac{1}{|\Phi(x)|} = \frac{1}{|\Phi(x)|} = \frac{1}$$

= || \(\frac{\partial}{\partial} \frac{\par

K is called normalized Kernel K(X,X) = 1.

Let K_1 , K_2 be two Kernel fewetions. For any $d, \beta > 0$ $K = \alpha K_1 + \beta K_2$ is a valid Kernel fanction 1((x,2), k,(x,2)k2(x,2) is a Kernel function For any N. (Ki); 2 K(x(i)) X(j)) is a covanance matrix. AERN A~N(0, K,) BEIRN $B \sim N(0, K_2)$ C; A; B; E(Ci): E(Ai)E(Bi)

 $E(C_iC_j) = E(A_i B_i A_j B_j)$ = E(A; A') E(B; B;) $K_{ij} = (K_{1})_{ij} (K_{2})_{ij}$ RERNAN is positive definite

K(x,z): Zai(x^Tz)ⁱ
i=0 ai(x^Tz)ⁱ
is Kernel function if
ai(20 for all i

K(x,2)= (1+ x⁷2)m (0 a Kernel function ((x,2) sht 2 ! (x2) = ex2 moisoi) is a Kernel function 7((X,7): exz 63 XX D355 2 e 2 ||x-2||² Gaussian (RBF) Kernel