

Analiza 2 - definicije, trditve in izreki

Oskar Vavtar po predavanjih profesorja Drnovška in skripti profesorja Strleta 2020/21

Kazalo

1	NE	DOLOČENI INTEGRAL IN POJEM		
	DII	FERENCIALNE ENAČBE 4		
	1.1	Primitivna funkcija in nedoločeni integral		
	1.2	Uvedba nove spremenljivke v nedoločeni integral 5		
	1.3	Integracija po delih v nedoločenem integralu		
	1.4	Diferencialne enačbe 1. reda		
2	DOLOČENI INTEGRAL			
	2.1	Motivacija za določeni integral		
	2.2	Riemannova vsota in Riemannov integral		
	2.3	Integrabilne funkcije		
	2.4	Osnovni izrek analize		
	2.5	Pravila za integriranje in Leibnizova formula		
	2.6	Posplošeni integral na omejenem intervalu		
	2.7	Posplošeni integral na neomejenem intervalu 16		
3	KRIVULJE V RAVNINI			
	3.1	Podajanje krivulj		
	3.2	Enačba tangente na krivuljo		
	3.3	Dolžina loka krivulje		
	3.4	Ploščina območja, določenega s krivuljo		
	3.5	Diferencialne enačbe v obliki diferenciala		
4	ŠTI	EVILSKE VRSTE 21		
	4.1	Osnovni pojmi		
	4.2	Vrste s pozitivnimi členi		
	4.3	Alternirajoče vrste		
	4.4	Absolutna konvergenca		
5	FUNKCIJSKA ZAPOREDJA IN FUNKCIJSKE VRSTE			
	5.1	Konvergenca funkcijskih zaporedij		
	5.2	Enakomerno konvergentne vrste		
	5.3	Potenčne vrste		
	5.4	Taylorjeva vrsta in analitične funkcije		
	5.5	Fourierove vrste		

6	NA	VADNE DIFERENCIALNE ENAČBE	2 9
	6.1	Diferencialna enačba prvega reda	29
	6.2	Linearna diferencialna enačba prvega reda	29
	6.3	Diferencialna enačba drugega reda	29

1 NEDOLOČENI INTEGRAL IN POJEM DIFERENCIALNE ENAČBE

1.1 Primitivna funkcija in nedoločeni integral

Definicija 1.1 (Primitivna funkcija). Naj bo f funkcija ene spremenljivke. Če obstaja odvedljiva funkcija $F:A \to \mathbb{R}$, za katero velja F'=f, imenujemo F primitivna funkcija funkcija f na f.

Lema 1. Naj bosta F in G primitivni funkciji za funkcijo f na nekem intervalu J. Potem obstaja konstanta $C \in \mathbb{R}$, da velja

$$G(x) = F(x) + C \quad za \ \forall x \in J.$$

Definicija 1.2 (Nedoločeni integral). *Nedoločeni integral* funkcije f je skupek vseh njenih primitivnih funkcij. Označimo ga z $\int f(x)dx$, funkcijo f pa imenujemo integrand.

Posledica. Naj bo F neka primitivna funkcija za f na intervalu J. Potem je za $x \in J$

$$\int f(x)dx = F(x) + C,$$

kjer je $C \in \mathbb{R}$ poljubna konstanta, ki jo imenujemo splošna ali integracijska konstanta.

Trditev 1.1 (Lastnosti nedoločenega integrala). Za poljubni funkciji f in g, ki imata primitivni funkciji na intervalu J, ter skalar $a \in \mathbb{R}$ velja

$$\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$$
$$\int af(x) dx = a \int f(x) dx$$

za $x \in J$; torej je nedoločeni integral $\mathit{linearen}.$ Če je F odvedljiva na J, potem za $x \in J$ velja

$$\int F'(x)dx = F(x) + C,$$

kjer je $C \in \mathbb{R}$ poljubna konstanta.

1.2 Uvedba nove spremenljivke v nedoločeni integral

Trditev 1.2. Naj bo funkcija g odvedljiva na intervalu J in naj ima funkcija f primitivno funkcijo F na intervalu $g(J) = \{g(x); x \in J\}$. Potem je $F \circ g$ primitivna funkcija za $(f \circ g) \cdot g'$ na J, torej je

$$\int f(g(x)) g' dx = \int f(t) dt,$$

kjer smo s t = g(x) označili novo spremenljivko.

1.3 Integracija po delih v nedoločenem integralu

Trditev 1.3. Naj bosta f in g odvedljivi funkciji na intervalu J. Potem velja

$$\int f(x)g'(x) \ dx = f(x)g(x) - \int g(x)f'(x) \ dx.$$

Če označimo u=f(x) in v=g(x), lahko zgornjo formulo krajše zapišemo kot

$$\int u \ dv = uv - \int v \ du.$$

1.4 Diferencialne enačbe 1. reda

Definicija 1.3. Navadna diferencialna enačba 1. reda je enačba za neznano funkcijo

$$y = g(x),$$

ki vsebuje tudi odvod y' funkcije y.

Splošna oblika diferencialne enačbe 1. reda je

$$F(x, y, y') = 0,$$

kjer je F funkcija treh spremenljivk, ki je res odvisna od zadnje spremenljivke.

Če iz diferencialne enačbe izrazimo odvod funkcije, dobimo *standardno obliko* diferencialne enačbe 1. reda

$$y' = f(x, y).$$

Začetni pogoj za diferencialno enačbo 1. reda v točki x=a je podan z vrednostjo iskane funkcije y v točki a, torej y(a)=b, kjer je $b\in\mathbb{R}$. Diferencialna enačba in začetni pogoj skupaj sestavljata začetno nalogo.

Definicija 1.4. Eksplicitna rešitev diferencialne enačbe F(x, y, y') = 0 je takšna odvedljiva funkcija $g: J \to R$, definirana na intervalu J, da postane diferencialna enačba identiteta na J, le vanjo vstavimo y = g(x), torej za $\forall x \in J$ velja

$$F(x, q(x), q'(x)) = 0.$$

Implicitna rešitev diferencialne enačbe je dana z enačbo G(x,y) = 0, ki na nekem intervalu določa eksplicitno rešitev dane diferencialne enačbe.

Splošna rešitev diferencialne enačbe 1. reda je funkcija

$$y = g(x, C)^{-1},$$

ki je odvisna od splošne konstante C in reši dano diferencialno enačbo za poljubno izbiro vrednosti konstante $C \in \mathbb{R}$, poleg tega pa za poljuben začetni

¹Lahko podana implicitno.

pogoj obstaja vrednost konstante C, pri kateri rešitev zadošča izbranemu začetnemu pogoju. Rešitev, ki ne vsebuje splošnih konstant, imenujemo tudi posebna ali partikularna rešitev.

Definicija 1.5 (LDE 1. reda). *Linearna diferencialna enačba* 1. reda ima obliko

$$r_1(x)y' + r_0(x)y = s(x),$$

kjer so $r_0, r_1, s: J \to \mathbb{R}$ funkcije, definirane na nekem intervalu J. Če je s ničelna funkcija, rečemo, da je enačba homogena. Če sta funkciji r_0, r_1 konstantni, pa rečemo, da ima enačba konstante koeficiente.

Standardna oblika linearne diferencialne enačbe 1. reda je

$$y' + p(x)y = q(x),$$

kjer sta $p, q: J \to \mathbb{R}$ funkciji, definirani na intervalu J.

Trditev 1.4. Naj bo dana linearna diferencialna enačba

$$y' + p(x)y = q(x),$$

kjer sta $p, q: J \to \mathbb{R}$ zvezni funkciji, definirani na intervalu J.

(i) Splošna rešitev pripadajoče homogene diferencialne enačbe y' + p(x)y = 0 je

$$y(x) = Ce^{-\int p(x) dx}.$$

kjer je $C \in \mathbb{R}$ splošna konstanta, v kateri je zajeta integracijska konstanta.

(ii) Splošna rešitev dane diferencialne enačbe dobimo iz splošne rešitve pripadajoče homogene enačbe z variacijo konstante, torej z nastavkom

$$y(x) = C(x)e^{-\int p(x) \ dx},$$

kjer funkcija C(x) zadošča

$$C'(x) = g(x)e^{\int p(x) dx}.$$

2 DOLOČENI INTEGRAL

2.1 Motivacija za določeni integral

Definicija 2.1. Naj bo $f:[a,b]\to\mathbb{R}$ nenegativna funkcija, torej $f(x)\geq 0$ za vse $x\in[a,b]$. Rečemo, da graf funkcije f določa območje $A\subset\mathbb{R}^2$ nad intervalom [a,b]. Množica A je navzgor omejena z grafom funkcije f, na levi s premico x=a in na desni s premico x=b.

2.2 Riemannova vsota in Riemannov integral

Definicija 2.2 (Riemannova vsota). *Delitev D* intervala [a, b] na podintervale je dana z izbiro *delilnih točk* x_i :

$$a = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = b,$$

kjer je $n \in \mathbb{N}$. Dolžino *i*-tega podintervala $[x_{i-1}, x_i]$ (za i = 1, 2, ..., n) označimo z $\delta_i := x_i - x_{i-1}$. Velikost delitve D je dolžina najdaljšega podintervala delitve D, torej

$$\delta(D) = \max \{ \delta_i \mid i = 1, 2, ..., n \}.$$

Na vsakem od podintervalov, na katere delitev D razdeli interval [a, b], izberemo $testno točko t_i \in [x_{i-1}, x_i]$ in s $T_D = (t_1, t_2, \ldots, t_n)$ označimo nabor teh točk; nabor testnih točk je usklajen z delitvijo D, ker smo na vsakem podintervalu $[x_{i-1}, x_i]$, določenem zD, izbrali natanko eno testno točko t_i .

 $Riemannova\ vsota$ funkcije $f:[a,b]\to\mathbb{R}$, pridružena delitvi D in usklajenemu naboru testnih točk T_D je

$$R(f, D, T_D) := \sum_{i=1}^n f(t_i)\delta_i.$$

Definicija 2.3 (Riemannov integral). Riemannov integral ali določeni integral funkcije $f:[a,b] \to \mathbb{R}$ je limita Riemannovih vsot $R(f,D,T_D)$, kjer limito vzamemo po vseh delitvah D intervala [a,b] in usklajenih naborih testnih točk T_D , ko pošljemo velikost delitev $\delta(D)$ proti 0, če ta limita obstaja (torej je končna in neodvisna od izbire delitev in testnih točk). Pišemo

$$\int_{a}^{b} f(x)dx := \lim_{\delta(D) \to 0} R(f, D, T_D).$$

Če zgornja limita obstaja, rečemo, da je funkcija f integrabilna na [a, b].

Definicija 2.4.

$$\lim_{\delta(D)\to 0} R(f, D, T_D) = I,$$

če za $\forall \varepsilon>0\ \exists \delta>0,$ da za poljubno delitevD z $\delta(D)<\delta$ in poljuben usklajen nabor testnih točk T_D velja

$$|R(f, D, T_D) - I| < \varepsilon.$$

Trditev 2.1 (Linearnost določenega integrala). Naj bosta $f, g : [a, b] \to \mathbb{R}$ integrabilni funkciji in $c \in \mathbb{R}$. Potem so $f \pm g$ in cf integrabilne na [a, b] in velja

$$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$
$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$

2.3 Integrabilne funkcije

Trditev 2.2. Naj bo f integrabilna na [a, b]. Potem je f omejena na [a, b].

Definicija 2.5 (Zožitev). Naj bo $f:A\to\mathbb{R}$ funkcija in $B\subset A$. Tedaj $f|_B:B\to\mathbb{R}$ označuje funkcijo z definicijskim območjem B, ki $\forall x\in B$ preslika v f(x). Funkcijo $f|_B$ imenujemo zožitev funkcije f na B.

Trditev 2.3 (Aditivnost domene). Naj bodo a < b < c in $f : [a, c] \to \mathbb{R}$. Tedaj je f integrabilna na [a, c] natanko tedaj, ko sta integrabilni zožitvi $f|_{[a,b]}$ in $f|_{[b,c]}$. V tem primeru velja

$$\int_{a}^{c} f(x) \ dx = \int_{a}^{b} f(x) \ dx + \int_{b}^{x} f(x) \ dx.$$

Trditev 2.4. Naj bosta $f, g : [a, b] \to \mathbb{R}$ funkciji, ki se razlikujeta le v točki $c \in [a, b]^2$. Potem je f integrabilna natanko tedaj, ko je integrabilna g; če sta funkciji integrabilni velja

$$\int_a^b f(x) \ dx = \int_a^b g(x) \ dx.$$

Izrek 2.1. Naj bo f zvezna na [a, b]. Potem je f integrabilna na [a, b].

Definicija 2.6 (Enakomerna zveznost). Naj bo $A \subseteq \mathbb{R}^n$. Funkcija $f: A \to \mathbb{R}$ je enakomerno zvezna na A, če za $\forall \varepsilon > 0$ obstaja tak $\delta = \delta_{\varepsilon} > 0$, da za poljubna $x, y \in A$, ki zadoščata $|x - y| < \delta$, velja

$$|f(x) - f(y)| < \varepsilon.$$

Tukaj je za $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$ dolžina |x| definirana z

$$|x| = \sqrt{\sum_{k=1}^{n} x_k^2} = \sqrt{x_1^2 + \dots + x_n^2}.$$

Trditev 2.5. Naj bo $A \subseteq \mathbb{R}^n$ kompaktna množica in $f: A \to \mathbb{R}$ zvezna funkcija. Tedaj je f enakomerno zvezna na A.

 $f(x) = g(x) \text{ za } \forall x \in [a, b], x \neq c$

Definicija 2.7 (Odsekoma zvezna funkcija). Funkcija $f: J \to \mathbb{R}$, definirana na omejenem intervalu J, je odsekoma zvezna, če je zvezna v vseh točkah intervala razen morda v končno mnogo točkah, kjer ima skoke.

Funkcija f ima skok v točki $c \in J$, če f ni zvezna v c, ima pa (končno) levo in desno limito c (če je c krajišče intervala, zahtevamo le obstoj limite na tisti strani c, ki leži v J).

Posledica. Če je $f:[a,b] \to \mathbb{R}$ odsekoma zvezna, potem je integrabilna. Vrednosti funkcije f v skokih ne vplivajo niti na integrabilnost niti na integral funkcije f na [a,b].

Trditev 2.6.

(i) Naj bosta f in g integrabilni na [a,b]. Če je $f(x) \leq g(x)$ za $\forall x \in [a,b]$, potem je

$$\int_a^b f(x) \ dx \le \int_a^b g(x) \ dx \quad \text{(monotonost integrala)}.$$

(ii) Če je f integrabilna na [a,b], potem je tudi |f| integrabilna na [a,b] in velja

$$\left| \int_a^b f(x) \ dx \right| \le \int_a^b |f(x)| \ dx.$$

Dogovor.

• Integral po izrojenemu intervalu [a, a] je nič:

$$\int_{a}^{a} f(x)dx = 0.$$

• Če je
$$a < b$$
, je
$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx.$$

Definicija 2.8 (Povprečna vrednost). *Povprečna vrednost* integrabilne funkcije f na intervalu [a, b] je

$$\mu := \frac{1}{b-a} \int_a^b f(x) dx.$$

Trditev 2.7. Naj bo $f:[a,b] \to \mathbb{R}$ integrabilna, $m:=\inf f$ in $M:=\sup f$. Potem je za povprečno vrednost μ funkcije f velja $m \le \mu \le M$. Če je f zvezna, obstaja taka točka $c \in [a,b]$, da je $\mu = f(c)$.

2.4 Osnovni izrek analize

Definicija 2.9. Naj bo $f:[a,b]\to\mathbb{R}$ integrabilna funkcija. Funkcijo $F:[a,b]\to\mathbb{R}$, definirano s predpisom

$$F(x) = \int_{a}^{x} f(t)dt,$$

imenujemo integral kot funkcija zgornje meje.

Izrek 2.2 (Prvi del osnovnega izreka). Naj bo $f:[a,b] \to \mathbb{R}$ zvezna. Potem je funkcija $F(x) = \int_a^x f(t) \ dt$ odvedljiva na [a,b] in velja

$$F'(x) = f(x)$$
 za $\forall x \in [a, b]$.

Posledica. Naj bo $f:[a,b]\to\mathbb{R}$ zvezna. Potem je $F(x)=\int_a^x f(t)\ dt$ primitivna funkcija za f na [a,b]. Torej velja

$$\int f(x) \ dx = \int_{a}^{x} f(t) \ dt + C,$$

kjer je $C \in \mathbb{R}$ poljubna konstanta.

Izrek 2.3 (Drugi del osnovnega izreka). Naj bo $f:[a,b]\to\mathbb{R}$ zvezna in G poljubna primitivna funkcija za f na [a,b]. Potem je

$$\int_{a}^{b} f(x) \ dx = G(b) - G(a) = G(x) \Big|_{a}^{b}.$$

2.5 Pravila za integriranje in Leibnizova formula

Trditev 2.8.

(i) Naj bo $g:[a,b]\to\mathbb{R}$ zvezno odvedljiva in $f:Z_g\to\mathbb{R}$ zvezna. Potem ob uvedbi nove spremenljivke t=g(x) velja:

$$\int_{a}^{b} f(g(x)) g'(x) dx = \int_{g(a)}^{g(b)} f(t) dt.$$

(ii) Naj bosta $f,g:[a,b]\to\mathbb{R}$ zvezno odvedljivi. Potem je

$$\int_{a}^{b} f(x)g'(x) \ dx = f(x)g(x)\Big|_{a}^{b} - \int_{a}^{b} g(x)f'(x) \ dx.$$

Če označimo u = f(x) in v = g(x), zgornja formula postane

$$\int_a^b u \ dv = uv \Big|_a^b - \int_a^b v \ du.$$

2.6 Posplošeni integral na omejenem intervalu

Definicija 2.10 (Posplošeni integral). Naj bo $f:(a,b]\to\mathbb{R}$ funkcija, ki je integrabilna na intervalu [t,b] za $\forall t\in(a,b)$. Potem je posplošeni integral funkcije f na intervalu [a,b]

$$\int_{a}^{b} f(x)dx := \lim_{t \searrow a} \int_{t}^{b} f(x)dx,$$

če ta limita obstaja.

Če limita obstaja , rečemo, da je f posplošeno integrabilna na [a,b] in da je $\int_a^b f(x)dx$ konvergenten, sicer pa rečemo, da je integral divergenten.

Opomba.

- Posplošeni integral imenujemo tudi izlimitirani integral ali nepravi integral.
- Če je f integrabilna na [a, b], potem je njen posplošeni integral na [a, b] enak Riemannovemu integralu.

Trditev 2.9. Naj bo $p \in \mathbb{R}$. Posplošeni integral $\int_a^b \frac{1}{(x-a)^p} dx$ je konvergenten natanko tedaj, ko je p < 1.

Izrek 2.4 (Konvergenčni kriterij). Naj bo $g:(a,b] \to \mathbb{R}$ zvezna.

- (i) Če je g omejena na (a,b] in je p<1, potem je $\int_a^b \frac{g(x)}{(x-a)^p} dx$ konvergenten.
- (ii) Če je g omejena stran od nič, torej obstaja neki m>0, da velja $|g(x)|\geq m$ za $\forall x\in(a,b]$ in je $p\geq 1$, potem je $\int_a^b\frac{g(x)}{(x-a)^p}\;dx\;divergenten.$

Opomba.

- Funkcija g v izreku je lahko le odsekoma zvezna na (a, b], saj je takšna g zvezna na nekem manjšem intervalu (a, c]. Ker je integrand potem odsekoma zvezna funkcija na [c, b], moramo obravnavati le konvergenco na (a, c].
- Podobno je v točki (ii) dovolj, da je g omejena stran od nič le na manjšem intervalu $(a, c] \subset (a, b]$.
- Pogoj v točki (i) je izpoljen, če ima g (končno) desno limito pri a.
 Podobno je pogoj v (ii) izpoljen, le ima g od nič različno desno limito v a.

Lema 2. Naj bo $f:(a,b)\to\mathbb{R}$ monotona in omejena funkcija. Potem obstajata limiti

$$\lim_{x \nearrow b} f(x)$$
 in $\lim_{x \searrow a} f(x)$;

ena od teh limit je enaka $\sup f$, druga pa $\inf f$.

Trditev 2.10 (Linearnost posplošenega integrala). Naj bosta $f, g:(a,b] \to \mathbb{R}$ posplošeno integrabilni in $c \in \mathbb{R}$. Potem so tudi $f \pm g:(a,b] \to \mathbb{R}$ in $cf:(a,b] \to \mathbb{R}$ posplošeno integrabilne in velja

$$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$
$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx.$$

Opomba. Pri oznakah v zgornji trditvi velja naslednje: če sta dve od funkcij f, g in $f \pm g$ posplošeno integrabilni na [a,b], potem je tudi tretja. En primer je zajet v trditvi, iz integrabilnosti f in f+g pa sledi integrabilnost g, saj jo lahko zapišemo kot linearno kombinacijo drugih dveh: g = (f+g) - f.

Definicija 2.11.

(i) Naj bo $f:[a,b)\to\mathbb{R}$ integrabilna na [a,b] za $\forall s\in(a,b)$. Potem je posplošeni integral funkcije f na intervalu [a,b]

$$\int_{a}^{b} f(x) \ dx := \lim_{s \nearrow b} \int_{a}^{s} f(x) \ dx,$$

če ta limita obstaja. Če limita obstaja, rečemo, da je f posplošeno integrabilna na [a,b] in da je posplošeni integral konvergenten, sicer pa imenujemo integral divergenten.

(ii) Naj bo $f:[a,c)\cup(c,b]\to\mathbb{R}$ integrabilna na [a,s] za $\forall s\in(a,c)$ in integrabilna na [a,b] za $\forall t\in(c,b)$. Potem je posplošeni integral f na [a,b]

$$int_a^b f(x) dx := \lim_{s \nearrow c} \int_a^s f(x) dx + \lim_{t \searrow c} \int_t^b f(x)^d x,$$

če obe limiti obstajata.

2.7 Posplošeni integral na neomejenem intervalu

Definicija 2.12 (Posplošena integrabilnost).

• Naj bo $f:[a,\infty)\to\mathbb{R}$ integrabilna na [a,s] za $\forall s>a$. Potem je posplošeni integral funkcije f na $[a,\infty)$

$$\int_{a}^{\infty} f(x)dx := \lim_{s \to \infty} \int_{a}^{s} f(x)dx,$$

če ta limita obstaja. Če limita obstaja, rečemo, da je posplošeni integral konvergenten, sicer pa, da je divergenten.

• Naj bo $f:(-\infty,b]\to\mathbb{R}$ integrabilna na [t,b] za $\forall t< b$. Potem je posplošeni integral funkcije f na $(-\infty,b]$

$$\int_{-\infty}^{b} f(x)dx := \lim_{t \to -\infty} \int_{t}^{b} f(x)dx,$$

če ta limita obstaja. Če limita obstaja, rečemo, da je posplošeni integral konvergenten, sicer pa, da je divergenten.

• Funkcija $f:(-\infty,\infty)\to\mathbb{R}$ je posplošeno integrabilna, če sta posplošeno integrabilni zožitvi $f|_{(-\infty,a]}$ in $f|_{[a,\infty)}$ za $\forall a\in\mathbb{R}$.

Izrek 2.5 (Konvergenčni kriterij). Naj bo $g:[a,\infty)\to\mathbb{R}$ zvezna, a>0.

- (i) Če je g omejena na $[a, \infty)$ in je p > 1, potem je $\int_a^\infty \frac{g(x)}{x^p} dx$ konvergenten.
- (ii) Če je g omejena stran od nič na $[a, \infty)$ in je $p \le 1$, potem je $\int_a^\infty \frac{g(x)}{x^p} \ dx$ divergenten.

3 KRIVULJE V RAVNINI

3.1 Podajanje krivulj

• EKSPLICITNO: Funkcija $f: j \to \mathbb{R}$ za $J \subseteq \mathbb{R}$ določa krivuljo Γ_f , ki je graf te funkcije, torej

$$\Gamma_f = \{ (x, f(x)) \mid x \in J \}.$$

• IMPLICITNO: Funkcija $g:A\to\mathbb{R}$ za $A\subseteq\mathbb{R}^2$ določa krivuljo K_g , ki je množica rešitev enačbe g(x,y)=0, torej

$$K_g = \{(x, y) \in A \mid g(x, y) = 0\}.$$

• PARAMETRIČNO: Funkciji $\alpha, \beta: J \to \mathbb{R}$ za $J \subseteq \mathbb{R}$ določata krivuljo K_F , ki je množica vseh točk (x, y), določenih z $x = \alpha(t)$ in $y = \beta(t)$, torej

$$K_F = \{ (\alpha(t), \beta(t)) \mid J \}.$$

Preslikavo $F: J \to \mathbb{R}^2$, $F(t) := (\alpha(t), \beta(t))$ imenujemo pot ali parametrizacija krivulje K_F . Krivuljo K_F imenujemo tudi tir poti F.

• POLARNO: Funkcija $h: J \to \mathbb{R}$ za $J \subseteq \mathbb{R}$ določa krivuljo K_h , ki je množica točk v ravnini s polarnima koordinatama (r, θ) , kjer je $r = h(\theta)$, torej

$$K_h = \{(h(\theta)\cos\theta, h(\theta)\sin\theta) \mid \theta \in J\}.$$

3.2 Enačba tangente na krivuljo

Definicija 3.1 (Regularna točka). Naj bo $g:A\to\mathbb{R}$ odvedljiva v točki $(a,b)\in A\subseteq\mathbb{R}^2$. Če je

$$\nabla g(a,b) \neq (0,0),$$

rečemo, da je (a,b) regularna točka za g, sicer pa, da je (a,b) singularna točka za g.

Definicija 3.2. Naj bosta $\alpha, \beta: J \to \mathbb{R}$ odvedljivi, kjer je $J \subseteq \mathbb{R}$ interval, ter $F = (\alpha, \beta)$ pripadajoča odvedljiva pot. Odvod poti F po t je hitrostni vektor $\dot{F}(t) = (\dot{\alpha}(t), \dot{\beta}(t))$. Če je

$$\dot{F}(t) \neq (0,0)$$

za neki $t \in J$, imenujemo t regularna točka parametrizacije F. Če so vse točke intervala J regularne, imenujemo F regularna parametrizacija. Naj bo $g: I \to J$ odvedljiva surjektivna funkcija, kjer je $I \subset \mathbb{R}$ interval. Pot

$$G := F \circ g$$

imenujemo reparametrizacija poti F.

3.3 Dolžina loka krivulje

Definicija 3.3. Naj bo dana pot $F:[a,b]\to\mathbb{R}^2,\ F(t)=(\alpha(t),\beta(t)),$ ki določa krivuljo K. Izberimo delitev

$$D = \{a = t_0 < t_1 < \dots < t_n = b\}$$

intervala [a, b]. Pot F(t) na *i*-tem podintervalu $[t_{i-1}, t_i]$ zamenjamo z daljico od $F(t_{i-1})$ do $F(t_i)$.

Dolžina tako nastale lomljene črte, ki aproksimira tir poti F, je

$$\ell(D) = \sum_{i=1}^{n} \sqrt{(\alpha(t_i) - \alpha(t_{i-1}))^2 + (\beta(t_i) - \beta(t_{i-1}))^2}.$$

Če obstaja limita dolžin $\ell(D)$, ko pošljemo velikost delitve $\delta(D)$ proti nič (neodvisno od izbire delitev), jo imenujemo dolžina poti F in označimo $\ell(F)$:

$$\ell(F) = \lim_{D,\delta(D)\to 0} \ell(D).$$

Definicija 3.4 (Ločna dolžina). Diferencial dolžina loka krivulje označimo z ds in ga imenujemo ločna dolžina. V vseh opisih krivulje velja

$$ds^2 = dx^2 + dy^2.$$

Uporaba 3.1 (Površina rotacijske ploskve). Naj bo $f : [a,b] \to \mathbb{R}$ nenegativna zvezna funkcija. Ploskev, ki jo dobimo z vrtenjem grafa funkcije f nad intervalom [a,b] okoli osi x, imenujemo rotacijska ploskev.

Izberemo neko delitev

$$D = \{ a = x_0 < x_1 < \dots < x_n = b \}$$

intervala [a,b]. Nad intervalom $[x_{i-1},x_i]$ graf funkcije f aproksimiramo z daljico od točke $(x_{i-1},f(x_{i-1})$ do točke $(x_i,f(x_i))$. Ko daljico zavrtimo okoli x-osi, dobimo plašč prisekanega stožca s polmeroma leve in desne mejne krožnice $f(x_{i-1})$ in $f(x_i)$ ter višino $\delta_i = x_i - x_{i-1}$. To da približek za površino ploskve:

$$\sum_{i=1}^{n} \pi(f(x_{i-1}) + f(x_i)) \sqrt{{\delta_i}^2 + (f(x_{i-1}) - f(x_i))^2}.$$

Če je f zvezno odvedljiva, dobimo za površino v limiti, ko pošljemo velikost delitve $\delta(D)$ proti 0, formulo

$$P = 2\pi \int_{a}^{b} f(x)\sqrt{1 + (f'(x))^{2}} dx = 2\pi \int_{a}^{b} y\sqrt{1 + {y'}^{2}} dx.$$

3.4 Ploščina območja, določenega s krivuljo

Definicija 3.5. Naj bo $F:[a,b]\to\mathbb{R}^2$ regularna parametrizacija krivulje K. Potem F določa usmerjenost K, določeno s smerjo, v kateri potuje točka F(t) po K, ko potuje t od a do b.

Gladka enostavna sklenjena krivulja je krivulja K, ki ima regularno parametrizacijo $F:[a,b]\to\mathbb{R}^2$, za katero velja F(a)=F(b) in $\dot{F}(a)=\dot{F}(b)$, $F|_{[a,b)}$ pa je injektivna.

Naj bo A območje, ki ga omejuje gladka enostavna sklenjena krivulja K. Regularna parametrizacija F krivulje K določa pozitivno usmerjenost krivulje K, če je A na levi strani, ko se pomikamo vzdolž K v smeri usmerjenosti, ki jo določa F.

3.5 Diferencialne enačbe v obliki diferenciala

Definicija 3.6. Diferencialna enačba v obliki diferenciala je enačba oblike

$$P(x,y) dx + Q(x,y) dy = 0,$$

kjer sta $P,Q:A\to\mathbb{R}$ definirani na nekem območju $A\subset\mathbb{R}^2.$

Naj bosta $P,Q:A\to\mathbb{R}$ odvedljivi. Diferencialna enačba P(x,y) dx+Q(x,y) dy=0 je eksaktna na A, če velja

$$\frac{\partial P}{\partial y}(x,y) = \frac{\partial Q}{\partial x}(x,y)$$

za $\forall x \in A$.

Definicija 3.7 (Integral s parametrom). Naj bo $A = [a,b] \times [c,d] \subset \mathbb{R}^2$ pravokotnik in naj bo $f:A \to \mathbb{R}$ zvezna funkcija. Funkcijo $F:[a,b] \to \mathbb{R}$, definirano s predpisom

$$F(x) = \int_{c}^{d} f(x, y) dy,$$

imenujemo integral s parametrom.

Definicija 3.8 (Integrirajoči množitelj). Naj bo dana diferencialna enačba P(x,y) dx+Q(x,y) dy=0, kjer sta $P,Q:A\to\mathbb{R}$ zvezno odvedljivi funkciji. Če je $\mu:A\to\mathbb{R}$ takšna zvezno odvedljiva funkcija, da je enačba

$$\mu(x,y)P(x,y) dx + \mu(x,y)Q(x,y) dy = 0$$

eksaktna, potem funkcijo μ imenujemo integrirajoči množitelj dane enačbe.

4 ŠTEVILSKE VRSTE

4.1 Osnovni pojmi

Definicija 4.1 (Številska vrsta). *Številska vrsta* je vsote (neskončnega) zaporedja realnih števil. Če je $(a_n)_{n\in\mathbb{N}}$ zaporedje realnih števil, je pripadajoča številska vrsta

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \ldots + a_n + \ldots$$

Za naravno število k je k-ta delna vsota vrste $\sum_{n=1}^{\infty} a_n$ enak

$$s_k := \sum_{n=1}^k a_n = a_1 + a_2 + \dots + a_k.$$

Vrsta $\sum_{n=1}^{\infty} a_n$ je konvergentna (divergentna), če je konvergentno (divergentno) zaporedje delnih vsot $(s_k)_{k\in\mathbb{N}}$. Če je vrsta konvergentna, za njeno vsoto vzamemo limito delnih vsot.

4.2 Vrste s pozitivnimi členi

4.3 Alternirajoče vrste

Definicija 4.2 (Alternirajoča vrsta). Vrsta $\sum_{n=1}^{\infty} a_n$ je alternirajoča, če je člen a_{n+1} nasprotno predznačen kot člen a_n za $\forall n \in \mathbb{N}$.

4.4 Absolutna konvergenca

Definicija 4.3. Vrsta $\sum_{n=1}^{\infty} a_n$ je $absolutno\ konvergentna,$ če je konvergentna

vrsta $\sum_{n=1}^{\infty} |a_n|$ iz absolutnih vrednosti členov vrste.

Če je vrsta $\sum_{n=1}^\infty a_n$ konvergentna, ni pa absolutno konvergenta, rečemo, da je pogojno konvergentna.

5 FUNKCIJSKA ZAPOREDJA IN FUNKCIJSKE VRSTE

5.1 Konvergenca funkcijskih zaporedij

Definicija 5.1 (Funkcijsko zaporedje). Naj bo $A \subset \mathbb{R}$ in naj bo za $\forall n \in \mathbb{N}$ dana funkcija $f_n : A \to \mathbb{R}$. Tedaj funkcije f_n sestavljajo funkcijsko zaporedje $(f_n)_{n \in \mathbb{N}}$.

Če za $\forall a \in A$ obstaja limita številskega zaporedja $(f_n(a))_n$, rečemo, da funkcijsko zaporedje konvergira po točkah na A. V tem primeru za $a \in A$ označimo

$$f(a) := \lim_{n \to \infty} f_n(a).$$

Tako dobljeno funkcijo $f:A\to\mathbb{R}$ imenujemo limitna funkcija zaporedja $(f_n)_n$; pišemo

$$f = \lim_{n \to \infty} f_n$$

in rečemo, da zaporedje $(f_n)_n$ konvergira k f po točkah.

Opomba. Funkcijsko zaporedje $(f_n : A \to \mathbb{R})_n$ v splošnem konvergira le v točkah iz neke podmnožice B definicijskega območja A; množico B imenujemo konvergenčno območje funkcijskega zaporedja.

Definicija 5.2 (Enakomerna konvergenca funkcijskega zaporedja). Naj funkcijsko zaporedje

 $(f_n:A\to\mathbb{R})_n$ konvergira po točkah proti limitni funkciji $f:A\to\mathbb{R}$, torej za $\forall x\in A$ in za $\forall \varepsilon>0$

 $\exists n_{x,\varepsilon}, da za \forall n \geq n_{x,\varepsilon} velja$

$$|f_n(x) - f(x)| < \varepsilon.$$

Pravimo, da zaporedje $(f_n)_n$ konvergira proti f enakomerno na A, če za $\forall \varepsilon > 0 \ \exists n_{\varepsilon}$, da za $\forall n \geq n_{\varepsilon}$ in za $\forall x \in A$ velja

$$|f_n(x) - f(x)| < \varepsilon.$$

Definicija 5.3 (Funkcijska vrsta). Naj bo dano zaporedje funkcij $(f_n:A\to\mathbb{R})_n$. Vsoto $\sum_{n=1}^\infty f_n$ imenujemo $funkcijska\ vrsta$.

Funkcijska vrsta $\sum_{n=1}^{\infty} f_n$ konvergira po točkah na A, če zaporedje delnih

$$vsot \ s_k = \sum_{n=1}^k f_n$$

konvergira po točah na A; to pomeni, da za $\forall a \in A$ konvergira številska vrsta $\sum_{n=1}^{\infty} f_n(a)$.

Naj bo $s:A\to\mathbb{R}$ limitna funkcija zaporedja delnih vsot $(s_k)_k.$ Funkcijska vrsta $\sum_{n=1}^\infty f_n$ konvergira k $s:A\to\mathbb{R}$ enakomerno na A, če zaporedje delnih vsot $(s_k)_k$ konvergira ksenakomerno na A.

Posledica. Če so funkcije $(f_n : A \to \mathbb{R})_n$ zvezne in funkcijska vrsta $\sum_{n=1}^{\infty} f_n$ konvergira $k : A \to \mathbb{R}$ enakomerno na A, potem je s zvezna na A.

5.2 Enakomerno konvergentne vrste

5.3 Potenčne vrste

Definicija 5.4 (Potenčna vrsta). Naj bo $(a_n)_{n\geq 0}$ realno zaporedje in $c\in\mathbb{R}$. Funkcijsko zaporedje

$$\sum_{n=0}^{\infty} a_n (x-c)^n$$

imenujemo potenčna vrsta s središčem v c.

Opomba.

- 1. Potenčna vrsta vedno konvergira v središču c.
- 2. Središče c lahko vedno prestavimo v 0 z uvedbo nove spremenljivke t=x-c:

$$\sum_{n=0}^{\infty} a_n (x - c)^n = \sum_{n=0}^{\infty} a_n t^n.$$

Definicija 5.5 (Konvergenčni polmer). Naj bo dana potenčna vrsta $\sum_{n=0}^{\infty} a_n x^n$.

Število

 $R := \sup\{b \ge 0 \mid \text{vrsta konvergira pri } b\} \in [0, \infty)$

imenujemo konvergenčni polmer potenčne vrste.

Konvergenčno območje potenčne vrste označimo z ${\cal D}.$

Posledica. Naj bo R > 0 konvergenčni polmer potenčne vrste $\sum_{n=0}^{\infty} a_n x^n$.

Potem vrsta absolutno konvergira za |x| < R. Vrsta enakomerno konvergira na vsakem manjšem intervalu $|x| \le r < R$. Vsota potenčne vrste je zvezna funkcija na (-R,R). Vrsta divergira za $\forall x, |x| > R$; v krajiščih intervala lahko potenčna vrsta konvergira ali divergira. Torej je

$$(-R,R) \subseteq D \subseteq [-R,R].$$

Definicija 5.6 (Limes superior). Naj bo $(b_n)_n$ zaporedje realnih števil. Največje stekališče zaporedja $(b_n)_n$ označimo

$$\lim_{n\to\infty}\sup b_n\in[-\infty,\infty]$$

in ga imenujemo limes superior.

5.4 Taylorjeva vrsta in analitične funkcije

Definicija 5.7 (Taylorjeva vrsta). Naj bo f poljubno mnogokrat zvezno odvedljiva v okolici točke $c \in \mathbb{R}$. Taylorjeva vrsta funkcije f s središčem v c je

$$T_c(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n.$$

Naj bo $J \subset \mathbb{R}$ odprt interval in $f \in \mathcal{C}^{\infty}(J)$. Rečemo, da je f analitična na J, če je za $\forall c \in J$ Taylorjeva vrsta T_e enaka funkciji f na neki okolici točke c.

5.5 Fourierove vrste

Definicija 5.8 (Fourierova vrsta). Fourierova vrsta je funkcijska vrsta oblike

$$a_0 + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)),$$

kjer sta $(a_n)_{n\geq 0}$ in $(b_n)_{n\geq 1}$ realni zaporedji.

Definicija 5.9 (Skalarni produkt). Naj bosta $f,g:[a,b]\to\mathbb{R}$ odekoma zvezni funkciji.

Izraz

$$\langle f, g \rangle := \int_a^b f(x)g(x)dx$$

imenujemo skalarni produkt funkcij f in g. Če je $\langle f,g\rangle=0$, rečemo, da sta f in g ortogonalni. Izraz $\|f\|=\sqrt{\langle f,f\rangle}$ imenujemo norma funkcije f.

Dogovor. Za odsekoma zvezno funkcijo f v točkah nezveznosti vrednost funkcije v točki določimo kot

$$f(x) = \frac{1}{2} \left(\lim_{t \nearrow x} f(t) + \lim_{t \searrow x} f(t) \right).$$

Definicija 5.10. Funkcija $f:[a,b] \to \mathbb{R}$ je odsekoma zvezno odvedljiva, če je odsekoma zvezna na [a,b] in zvezno odvedljiva na [a,b] razen morda v končno mnogo točkah, v katerih obstajata leva in desna limita odvoda.

Opomba. Odsekoma zvezno odvedljiva funkcija ni odvedljiva v skokih in v točkah, kjer se graf f zlomi, torej ima različni levo in desno tangento v tej točki. V takšni točki namreč res obstajata levi in desni odvod, saj na primer

$$f'(x^{-}) = \lim_{t \nearrow x} \frac{f(t) - f(x)}{t - x} = \lim_{t \nearrow x} f'(t),$$

torej levi odvod obstaja, saj pbstaja leva limita odvodov; analogno velja za desni odvod.

 $\check{C}e$ torej v skoku spremenimo vrednost funkcije f tako, da je enaka levi (desni) limiti f v tej točki, potem obstaja levi (desni) odvod funckije f v tej točki.

Definicija 5.11. Ker lahko vsako *odsekoma zvezno odvedljivo* funkcijo na $[-\pi, \pi]$ razvijemo v Fourierovo vrsto, ki konvergira proti f (vsaj po točkah), rečemo, da funkcije

$$\{1, \cos(nx), \sin(nx) \mid n \in \mathbb{N}\}\$$

sestavljajo poln sistem funkcij na intervalu $[-\pi, \pi]$.

Posledica (Fourierova sinusna in kosinusna vrsta). Naj bo $f:[0,\pi] \to \mathbb{R}$ odsekoma zvezno odvedljiva. Potem lahko f na intervalu $[0,\pi]$ ravzijemo v sinusno Fourierovo vrsto

$$f(x) = \sum_{n=1}^{\infty} b_n \sin(nx), \quad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx$$

 $in\ v\ kosinusno\ Fourierovo\ vrsto$

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx), \ a_0 = \frac{1}{\pi} \int_0^{\pi} f(x) dx, \ a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(nx) dx.$$

Posledica (Kompleksna Fourierova vrsta). Naj bo $f: [-\pi, \pi] \to \mathbb{R}$ odsekoma zvezno odvedljiva. Potem lahko f razvijemo v kompleksno Fourierovo vrsto

$$f(x) = \sum_{n = -\infty}^{\infty} A_n e^{inx},$$

kjer je $i=\sqrt{-1}$ imaginarna enota, koeficienti A_n za $n\in\mathbb{Z}$ pa so dani z

$$A_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx.$$

Posledica (Razvoj v Fourierovo vrsto na drugih intervalih). Naj bo f: $[a,b] \to \mathbb{R}$ odsekoma zvezno odvedljiva. Potem f lahko razvijemo v Fourierovo vrsto po funkcijah

$$\{1, \cos(\frac{2n\pi}{b-a}x), \sin(\frac{2n\pi}{b-a}x) \mid n \in \mathbb{N}\}.$$

Tako dobimo

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos(\frac{2n\pi}{b-a}x) + b_n \sin(\frac{2n\pi}{b-a}x) \right),$$

kjer je

$$a_0 = \frac{1}{b-a} \int_a^b f(x) dx,$$

$$a_n = \frac{2}{b-a} \int_a^b f(x) \cos(\frac{2n\pi}{b-a}x) dx,$$

$$b_n = \frac{2}{b-a} \int_a^b f(x) \sin(\frac{2n\pi}{b-a}x) dx.$$

6 NAVADNE DIFERENCIALNE ENAČBE

6.1 Diferencialna enačba prvega reda

Definicija 6.1. Radi bi poiskali *enkrat odvedljivo* funkcijo, ki zadošča enačbi

$$y' = f(x, y).$$

Vsako tako funkcijo imenujemo $re\check{s}itev$ dane diferencialne enačbe, njen graf y=y(x) pa $re\check{s}itvena~krivulja$.

Pravimo, da je z enačbo podano polje smeri, v vsaki točki je predpisana smer, v kateri mora potekati rešitvena krivulja. To polje smeri grafično predstavimo kot družino krivulj-izoklin-vzdolž katerih je smer konstantna.

Definicija 6.2 (Ortogonalne trajektorije). *Ortogonalne trajektorije* dane družine krivulj so take krivulje, ki v vsaki svoji točki sekajo tisto od krivulj dane družine, ki poteka skozi točko, pod pravim kotom.

Tej ortogonalni družini pripada diferencialna enačba, ki je v preprosti zvezi z diferencialno enačbo prvotne družine krivulj. V enačbi prvotne družine le zamenjamo y' z $\frac{1}{y'}$ (kar določa pravokotno smer).

- 6.2 Linearna diferencialna enačba prvega reda
- 6.3 Diferencialna enačba drugega reda