Пациент: Иванов Иван Иванович

1. Аминокислоты			
Метаболизм фенилаланина	Результат	20% 40% 60% 80%	Референсные значения,
Фенилаланин (Phe) Незаменимая глюко-, кетогенная аминокислота	48.0		35.8 - 76.9
Тирозин (Tyr) Заменимая глюко-, кетогенная аминокислота	70.2		27.8 - 83.3
Индекс AAAs [Phe + Tyr] Запас ароматических аминокислот	118.2	V	60.0 - 180.0
Лейцин + Изолейцин (Leu+lle) Незаменимая глюко-, кетогенная аминокислота	173.5		92.6 - 310.0
Валин (Val) Незаменимая глюкогенная аминокислота	177.3		133.0 - 317.1
Индекс BCAAs [Leu + Ile + Val] Запас аминокислот с разветвленной боковой цепью	350.8		212 - 577
Индекс Фишера FR [BCAAs / AAAs] Отношение запаса аминокислот с разветвленной цепью к запасу ароматических аминокислот	3.0		3.0 - 3.5
Метаболизм гистидина	Результат	20% 40% 60% 80%	Референсные значения, [→] мкмоль/л
Гистидин (His) Незаменимая глюкогенная аминокислота	+ 159.2		60 - 109
Метилгистидин (МН) Метаболит карнозина	25.1		< 47.0
Треонин (Thr) Незаменимая глюкогенная аминокислота	87.2	V	67.8 - 211.6
Карнозин (Car) Дипептид, состоящий из аланина и гистидина	0.2	V	< 6.3
Глицин (Gly) Заменимая глюкогенная аминокислота	158.1	V	122 - 322
Диметилглицин (DMG) Промежуточный продукт синтеза глицина	- 0.3		1.6 - 5.0
Серин (Ser) Заменимая глюкогенная аминокислота	102.6	V	65 - 138
Лизин (Lys) Незаменимая кетогенная аминокислота	217.3	▼	119 - 233
Глутаминовая кислота (Glu) Заменимая глюкогенная аминокислота	65.6	T	10 - 97

Дата: 21.07.2023 MetaboScan-Test01 Metabo**SCAN** Пациент: Иванов Иван Иванович Референсные значения, 80% Метаболизм гистидина Результат мкмоль/л Глутамин (Gln) 373 - 701 Заменимая глюкогенная аминокислота Индекс [Gln / Glu] 0.06 - 0.235.25 Активность глутаминсинтетазы Индекс GSG [Glu / (Ser + Gly)] 0.25 0.17 - 0.31Запас аминокислот для синтеза глутатиона Референсные значения, Метаболизм метионина Результат мкмоль/л Метионин (Met) 28.5 16 - 34 Незаменимая глюкогенная аминокислота Метионин сульфоксид (MetSO4) Продукт окисления метионина 0.5 - 5.0Taypuн (Tau) 0.07 - 0.55Заменимая глюкогенная аминокислота Бетаин (Bet) 50 - 139 Продукт метаболизма холина Холин (Chl) 21 - 71 Компонент мембран клеток, источник ацетилхолина Триметиламин-N-оксид (ТМАО) 5.2 - 13.0 Продукт метаболизма холина, бетаина и др. бактериями ЖКТ Индекс Chl / Bet Соотношение холина к бетаину < 6.2 2. Метаболизм триптофана Референсные значения, 80% Кинурениновый путь Результат

MetaboScan-Test01 Дата: 21.07.2023 Metabo**SCAN** Пациент: Иванов Иван Иванович Референсные значения, Кинурениновый путь Результат мкмоль/л Кинурениновая кислота (Купа) 0.002 - 0.037 0.06 Продукт метаболизма кинуренина Индекс Kyn / Qnl 0.032 - 0.167 Соотношение кинуренина к хинолиновой кислоте Референсные значения, Серотониновый путь Результат мкмоль/л Серотонин 0.18 - 1.18Нейромедиатор 5-Гидроксииндолуксусная кислота (5-НІАА) 0.04 - 0.30 Метаболит серотонина Индекс Qnl / 5-HIAA 0.1 - 1.1Соотношение 5-гидроксииндолуксусной кислоты к хинолиновой кислота 5-Гидрокситриптофан (5-НТР) 0.0153 - 0.0207 0.2458 Прекурсор серотонина Референсные значения, Индоловый путь Результат мкмоль/л 3-Индолуксусная кислота (I3A) 0.3 - 23Продукт катаболизма триптофана кишечной микробиотой 3-Индолмолочная кислота (I3L) Продукт катаболизма триптофана кишечной микробиотой 1.09 0.08 - 5.03-Индолкарбоксальдегид (I3AI) Продукт катаболизма триптофана кишечной микробиотой 0.01 - 0.203-Индолпропионовая кислота (I3P) 0.5 - 12.0Продукт катаболизма триптофана кишечной микробиотой 3-Индолмасляная кислота (I3B) 0.001 - 0.400 Продукт катаболизма триптофана кишечной микробиотой Триптамин Продукт катаболизма триптофана кишечной < 0.003 микробиотой, прекурсор для нейромедиаторов 3. Метаболизм аргинина Референсные значения, 40% 60% 80% Метаболизм аргинина Результат мкмоль/л Пролин (Рго) 209.4 104 - 383 Заменимая глюкогенная аминокислота Гидроксипролин (Нур) 4.7 - 35.2Источник коллагена

Асимметричный диметиларгинин (ADMA)

Эндогенный ингибитор синтазы оксида азота

0.23 - 0.50

MetaboScan-Test01

Metabo**\$CAN**

Пациент: Иванов Иван Иванович

Дата: 21.07.2023

4. Метаболизм жирных кислот Референсные значения, 40% 60% 80% Метаболизм ацилкарнитинов Результат мкмоль/л Аланин 213.7 Заменимая глюкогенная аминокислота 209 - 516 Карнитин (СО) 30.78 19 - 48 Основа для ацилкарнитинов, транспорт жирных кислот Ацетилкарнитин (С2) 3.23 - 10.30 Референсные значения, Короткоцепочечные ацилкарнитины Результат мкмоль/л Пропионилкарнитин (С3) 0.16 - 0.62 Бутирилкарнитин (С4) 0.08 - 0.38

Дата: 21.07.2023 Пациент: Иванов Иван Иванович

MetaboScan-Test01

Аллергия и стресс

Результат

0.44

Референсные значения, мкмоль/л

Тистамин

- 0.0

О.0018 - 0.1329