

Determining the Absolute Configuration of the α -Carbon in JNJ-A (a GPR40 Superagonist) by NMR Spectroscopy

2019 Eastern Analytical Symposium & Exposition: NMR Spectroscopy Instrumentation and Application 11:10 AM, Nov. 19th, 2019

Ronghui Zhou, Ph.D.
rzhou11@its.jnj.com
Discovery Chemistry, Janssen R&D
Spring House, PA

Chirality

Handedness

Chiral Drug: the Thalidomide Tragedy in the 1960s

Thousands of children around the world were born with severe birth defects.

$$(R)$$
-
thalidomide

 (S) -
thalidomide

The *S* enantiomer causes birth defects, while the *R* enantiomer is effective against morning sickness.

Diabetes is a Global Health Crisis

DIABETES

3.7 MILLION
deaths due to diabetes
and high blood glucose

1.5 MILLION
deaths caused
by diabetes

THAT'S 1 PERSON IN 11

GPR40 Agonism is a Novel Mechanism for T2D

Defossa and Wagner (2014) Bioorganic and Medicinal Chemistry Letters, 24, 2291-3000

- A "nutrient sensor" GPCR on the pancreatic beta cell
- Highly expressed in the pancreas, intestine, also human brain
- GPR40 activation induces insulin secretion, in a glucose-dependent manner
- Expected to lower glucose in patients with T2DM with low risk of hypoglycemia
- GPR40 agonist has additional benefit of weight loss

GPR40 Agonists: Conformationally Constrained Fatty Acid Mimetics

Ph 3, Terminated

partial agonist

Ph 1 Discontinued

partial agonist

AM-1638

full agonist

BMS-986118

full agonist

Merck, WO2016022448

full agonist

JNJ-A is a GPR40 Superagonist

EC₅₀ -Calcium Mobilization (nM) (Mean ± SD)

	hGPR40 (n=)	rGPR40 (n=)
JNJ-A	0.25 ± 0.13 (6)	0.34 ± 0.18 (6)
JNJ-0	0.94 ± 0.37 (10)	4.1 ± 2.4 (10)

ACS Med. Chem. Lett. 2019, 10, 1, 16-21

The Absolute Configuration of α -carbon in JNJ-A

How to determine the absolute configuration of a-carbon: *R* or *S*?

Absolute Configuration: Analytical Techniques

Single-crystal X-ray Diffraction

Vibrational Circular Dichroism

Chiral chromatography

NMR

Absolute Configuration: NMR Methods

the (R)/(S) notation Cahn-Ingold-Prelog Rules

Molecular Structure Feature

Single chiral center or remote chiral centers

Chiral Auxiliary

Chiral derivatizing agent: Mosher's acid Chiral solvating/shift agent Alignment medium

Molecular Structure Feature

Scalar Coupling Constant

Nuclear Overhauser Effect

Conformational Analysis

With neighboring predefined chiral center

Scalar Coupling Constant & the NOE Effect

 $\Theta = 0^{\circ}$

$$\Theta = 0^{\circ}$$
 $\Theta = 60^{\circ}$ $\Theta = 90^{\circ}$ $\Theta = 180^{\circ}$
 $^{3}J = 7-11 \text{ Hz}$ $^{3}J = 2-5 \text{ Hz}$ $^{3}J = 0-2 \text{ Hz}$ $^{3}J = 8-15 \text{ Hz}$

Karplus Equation

$$^{3}J_{HH} = J_{o} \cdot \cos^{2}\Theta - K$$

 $J_{o} = 14 (90-180^{\circ}), J_{o} = 10 (0-90^{\circ}), K = 0$

Bothner-By equation

$$^{3}J_{\text{HH}} = 7 \cdot \cos \Theta + 5 \cdot \cos 2\Theta$$

OH

Magritek Application Note 5: Glucose Anomers

The Absolute Configuration of the α -carbon in JNJ-A

Acyclic & highly flexible carbon-carbon single bond

What can we do to determine the absolute configuration of α -carbon: R or S?

Chiral Auxiliary: CDA, CSA, Alignment Medium Conformational Analysis & Relative Stereochemistry

1D ¹H NMR Fully Assigned

H-F Coupling: Anti-conformer Predominates

between H_{24} and F_{30}

Figure 3. Variation of H-F coupling with dihedral angle

Anal. Chem. 1965, 37, 3, 403-405

DFT Calculation: Anti-conformer Predominates

B3LYP-D3/6-31G** optimization of 20 conformers from OPLS3e conformational search PCM water

MM/QM Calculation: Torsion/Energy Profiles

COOH

OPLS3e GB/SA water

DFT B3LYP-D3 PCM water (rigid scan)

COO-

Why Anti-conformer: Steric Hindrance?

Relative size (A-value):

$$CH_3 \sim COOH >> F$$

$$H_3C$$
 $COOH$
 $COOH$
 $COOH$
 $COOH$
 $COOH$
 $COOH$
 $COOH$

Steric Hindrance: Energy Barrier?

The Absolute Configuration of the α -carbon in JNJ-B

H instead of CH_3 How to determine the absolute configuration of α -carbon: R or S?

Anti-conformer: beyond Steric Hindrance

DFT Calculation: Anti-conformer Predominates

B3LYP-D3/6-31G** optimization of 13 conformers from OPLS3e conformational search PCM water

Anti-conformer: beyond Steric Hindrance

Further investigation:

What's the driving force for the anti-conformer in this case?
 What's the role of carboxylic acid?

The Nuclear Overhauser Effect: R or S at α -carbon

R-configuration Confirmed by XRD

04

R-configuration

F₃₀

1—OH

32

XRD Obtained on a Bruker D8 Platinum¹³⁵ CCD

diffractometer equipped with Cu K_a radiation (I = 1.5478) at UCSD Crystallography Lab.

Summary

- 1. The absolute configuration: NMR consistent with XRD
- 2. The steric hindrance around the α & β -carbons locks the anti-conformation between the β -proton H₂₄ and fluorine
- 3. Key information: scalar coupling constant and NOE
- 4. MM/QM: energy profile and population distribution
- 5. NMR: convenient and reliable alternative to XRD

Acknowledgements

Computational Chemistry

Maxwell D. Cummings, Ph.D.

(mcummin1@its.jnj.com)

Analytical Chemistry

Gregory C. Leo, Ph.D.

A. Kerem Bingol, Ph.D.

John A. Masucci, Ph.D.

Gary W. Caldwell, Ph.D.

Zhicai Shi, Ph.D.

Medicinal Chemistry

Hui Huang, Ph.D.

(hhuang2@its.jnj.com)

Mark R. Player, Ph.D.

James C. Lanter, Ph.D.

Sanath K. Meegalla, Ph.D.

Michael P. Winters, Ph.D.

Discovery Chemistry, Discovery Sciences
Discovery, Product Development & Supply
Janssen Research & Development
Spring House, PA