TI DSP, MCU, Xilinx Zynq FPGA 프로그래밍 전문가 과정

강사 - Innova Lee (이상훈) gcccompil3r@gmail.com 학생 - 김형주 mihaelkel@naver.com 라플라스 변환의 정의식

$$F(s) = \mathcal{L}(f) = \int_0^\infty e^{-st} f(t) dt$$

라플라스 변환 선형성

$$\pounds \{(af(t) + bg(t)) = a\pounds \{f(t)\}b\pounds \{g(t)\}$$

정의식에 대입하면

$$\mathcal{L}\left\{af(t) + bg(t)\right\} = \int_0^\infty e^{-st} [af(t) + bg(t)]$$

$$= a\int_0^\infty e^{-st} f(t) dt + b\int_0^\infty e^{-st} g(t) dt$$

$$= a\mathcal{L}\left\{f(t)\right\} + b\mathcal{L}\left\{g(t)\right\}$$

제 1이동 정리

7]

$$F(s)=$$
 £ $(f)=\int_0^\infty e^{-st}f(t)dt$ 에서 s를 s-a로 두면

$$\begin{split} F(s-a) &= \int_0^\infty e^{-(s-a)t} f(t) dt | \\ &= \int_0^\infty e^{-st} \left[e^{at} f(t) \right] dt \\ &= \pounds \left\{ e^{at} f(t) \right\} \end{split}$$

f(t)도함수의 라플라스변환

$$\mathcal{L}(f') = s \mathcal{L}(f) - f(0)$$

$$\mathcal{L}(f') = \int_0^\infty e^{-st} f'(t) dt$$

$$= \left[e^{-st} f(t) \right]_0^\infty + s \int_0^\infty e^{-st} f(t) dt$$

n계 도함수의 경우

$$\mathcal{L}\left(f^{(n)}\right) = s^{n}\mathcal{L}\left(f\right) - s^{n-1}f(0) - s^{n-2}f'(0) - \ldots - f^{(n-1)}(0)$$

$$\mathcal{L}(f'') = s \mathcal{L}(f') - f'(0)$$

= $s[s\mathcal{L}(f) - f(0)] - f'(0)$
= $s^2 \mathcal{L}(f) - sf(0) - f'(0)$

 $\pounds(f''')$ 인 경우에도 위와 같이 전개 되며, 귀납법을 이용하여 증명.

Entry No.	$f(t) = \frac{1}{2\pi i} \int_{\sigma - j\infty}^{\sigma + j\infty} F(s)e^{st} ds$	$F(s) = \int_0^\infty f(t)e^{-st} dt$
1	$\delta(t)$	1
2	u(t)	1 1 s
3	t^n for $n > 0$	$\frac{n!}{s^{n+1}}$
4	e^{-at}	$\frac{1}{s+a}$ $\frac{1}{(s+a)^2}$ $\frac{1}{(s+a)^n}$ 1
5	te ^{-at}	$\frac{1}{(s+a)^2}$
6	$\frac{t^{n-1}e^{-at}}{(n-1)!}$	$\frac{1}{(s+a)^n}$
7	$\frac{1}{b-a}(e^{-at}-e^{-bt}) a\neq b$	$\frac{1}{(s+a)(s+b)}$
8	$-\frac{1}{b-a}(ae^{-at}-be^{-bt}) a\neq b$	$\frac{s}{(s+a)(s+b)}$
9	sin ωt	$\frac{\omega}{s^2 + \omega^2}$
10	cos wt	$\frac{s}{s^2 + \omega^2}$
11	$e^{-at}\sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
12	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$
13	$\sinh \omega t$	$\frac{\omega}{s^2-\omega^2}$
14	cosh ωt	$\frac{s}{s^2 - \omega^2}$
15	$\frac{\sqrt{a^2+\omega^2}}{\omega}\sin(\omega t+\varphi),\varphi=\tan^{-1}\frac{\omega}{a}$	$\frac{s+a}{s^2+\omega^2}$

(continued)