Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа: <u>R3137</u>	_К работе допущен <u> :</u>		
Студент: Нестеров И.А,	_Работа выполнена <u>:</u>		
Преподаватель: Крылов В.А.	_Отчет принят <u>:</u>		
Рабочий протокол и отчет по лабораторной работе № 1.001. <i>«Измерение объема простейших</i>			

форм».

1. Цель работы:

- 1. Измерить диаметр и высоту цилиндра и по ним рассчитать его объем.
- 2. Представить результаты измерения объема с указанием абсолютной и относительной погрешностей.

2. Задачи, решаемые при выполнении работы:

Измерение диаметра цилиндра с целью последующего нахождения объема тела. Изучение представления произведенных измерений с указанием абсолютной и относительной погрешностей.

- **3. Объект исследования** измерение величин и их представление с указанием абсолютной и относительной погрешностей
- 4. Методы экспериментального исследования.
- 1. Анализ
- 2. Лабораторный эксперимент
- 5. Рабочие формулы и исходные данные.

$$\Delta_{H} = \sqrt{\Delta_{\overline{H}}^{2} + \left(\frac{2}{3}\Delta_{\text{M}H}\right)^{2}}, \qquad \Delta_{\overline{H}} = t_{\alpha n} S_{\overline{H}},$$

$$S_{\overline{H}} = \sqrt{\frac{\sum_{i=1}^{n} (H_{i} - \overline{H})^{2}}{n(n-1)}} = \sqrt{\frac{(H_{1} - \overline{H})^{2} + (H_{2} - \overline{H})^{2} + (H_{3} - \overline{H})^{2}}{3(3-1)}}. \quad (10)$$

$$\overline{H} = \frac{1}{n} \sum_{i=1}^n H_i = \frac{1}{3} \left(H_1 + H_2 + H_3 \right). \qquad \qquad \varepsilon_D = \frac{\Delta_D}{D} 100 \ . \qquad \Delta_D = \sqrt{\Delta_{\overline{D}}^2 + \left(\frac{2}{3} \Delta_{\text{ND}} \right)^2}$$

$$\Delta_{\overline{D}} = t_{CON} S_{\overline{D}}, \qquad S_{\overline{D}} = \sqrt{\frac{\sum_{i=1}^{n} (D_i - \overline{D})^2}{n(n-1)}} = \sqrt{\frac{(D_1 - \overline{D})^2 + \dots + (D_5 - \overline{D})^2}{5(5-1)}}.$$

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D_i = \frac{1}{5} (D_1 + \dots + D_5).$$
 $V = \frac{\pi D^2}{4} H.$ $\overline{V} = \frac{\pi \overline{D}^2}{4} \overline{H}.$

$$\Delta_V = \frac{\varepsilon_V \ \overline{V}}{100} \,. \qquad \qquad \varepsilon_V = \sqrt{\left(2\varepsilon_D\right)^2 + \varepsilon_H^2} \,. \qquad \qquad \varepsilon_H = \frac{\Delta_H}{H} \,100 \,.$$

6. Измерительные приборы.

Наименование	Предел измерения, мм	Цена деления, мм	Класс точности	Погрешность,
средства				мм
измерения				
Линейка	150	1	-	0,5

7. Схема установки (перечень схем, которые составляют Приложение 1).

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1. Результаты прямых измерений.

Диаметр	D_1 , мм	D_2 , мм	D_3 , мм	D_4 , мм	D ₅ , мм
Значения диаметра	43	44	39	40	42
Высота	<i>H</i> ₁ , мм	H ₂ , мм	<i>H</i> ₃ , мм	-	-
Значение высоты	51	54	52	-	-

9.	Расчет результатов	косвенных измерений	(таблины.	. примеры расчетов)	
<i>一</i> 。	Tactu Desympiator	RUCDUNDIA NSMUDUNIN	t i avлицы.	. HUMMCDDI DACACIUD <i>i</i>	•

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

11. Графики

В данной лабораторной работе построение графиков не требуется

12. Окончательные результаты:

$$V = (41\pm6) \text{ mm}; \ \boldsymbol{\varepsilon V} = 14\%; \ \alpha = 0.95$$

- **13. Выводы и анализ результата работы:** в ходе данной работы разными способами был измерен объем цилиндра. Выполняя работу, я убедился в важности учета погрешностей измерения и научился записывать данные с их учетом.
- 14. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).

Приложение №1.

