СЛУЧАЙНЫЕ ПРОЦЕССЫ НА ГРАФАХ С ОСОБЫМИ ВИДАМИ НЕСТАНДАРТНОЙ ДОСТИЖИМОСТИ

А. А. Елизарова

Направление подготовки: Прикладная математика и информатика

Научный руководитель: проф., д.ф.-м.н. В. А. Скороходов

Южный федеральный университет Институт математики, механики и компьютерных наук имени И.И.Воровича

Ростов-на-Дону, 2019

Содержание

- Постановка задачи
- 2 Графы с нестандартной достижимостью
- 3 Случайные процессы на графах с глобальными условиями на достижимость
- Фезультаты

Постановка задачи

- исследовать графы с глобальными условиями на достижимость,
- разработать методы решения классических задач на графах с глобальными условиями на достижимость,
- рассмотреть задачу о случайном блуждании частиц на графах с глобальными условиями на достижимость,
- предложить методы нахождения предельного распределения для исследуемого процесса случайного блуждания.

Основные характеристики графов с нестандартной достижимостью

Числовая характеристика произвольного пути

Числовой характеристикой произвольного пути μ называется отображение $\psi_{\mu}: \mathcal{N} \to \mathcal{Z}$, причём эта характеристика определяется рекуррентно по последней дуге пути с помощью некоторой заданной функции, а $\psi_{\mu}(0)=0$.

Формальное ограничение на достижимость

Выделяют два типа формальных ограничений:

- строгие следующая дуга пути обязана принадлежать конкретному подмножеству дуг графа;
- нестрогие следующая дуга пути обязана принадлежать этому подмножеству, только если среди инцидентных текущей вершине дуг есть хотя бы одна такая дуга.

Пример глобального условия на достижимость

Постановка условия

Рассмотрим орграф G(X, U, f), в котором дуги разделены на два непересекающихся множества: стандартные U_s и остаточные U_o . Формальное ограничение на достижимость: путь на графе G допустимый, если в нем содержится количество остаточных дуг, кратное фиксированному целому числу p(|p| > 1).

Особенности:

- нет рекурсивности: ни сохранение, ни смена кратности в середине пути не имеет значения, важна лишь кратность в конце пути;
- префикс допустимого пути не обязательно допустим.

Сравнение локальных и глобальных условий на достижимость

	Локальные условия	Глобальные условия
Рекурсивный	Да, по правилу строгого	Нет, не применимо
выбор пути	/нестрогого условия	
Модульность	Да, префикс допустимого	Нет, не применимо
пути	пути всегда допустим	
Проверка	Да, если путь не является	Нет, любая часть,
части пути	допустимым, можно	меньшая целого пути,
	выделить часть, которая	не даст проверить
	также не является	условие на достижимость
	допустимым путем	

Сведение задач на графах с глобальным условием на достижимость к задачам на классических графах

- предложен алгоритм построения вспомогательного графа;
- доказана теорема о соответствии любого пути на вспомогательном графе некоторому пути на исходном графе;
- задачи, сформулированные для исходного графа, можно решать классическими алгоритмами на вспомогательном графе: глобальные условия на достижимость учтены по построению.

Случайные процессы на графах с глобальными условиями на достижимость: формулировка задачи

- орграф G(X, U, f) сильно связный;
- $U_s = \emptyset$ и $U_o = U$ (частный случай);
- случайное блуждение частиц по графу задаётся матрицей переходов P;
- определено множество выходных вершин: из них можно попасть в отдельный от графа сток *s*, если путь частицы до выходной вершины является допустимым в соответствии с глобальным условием на кратность;
- требуется найти количество частиц, которые покинут граф в пределе, и распределение оставшихся частиц по вершинам.

Методы решения

Ищем множества X_{in} и X_{out}

- «наивный»: если среди длин контуров графа и параметра p есть взаимно простые числа, все частицы покинут граф, иначе можем выделить вершины, относящиеся к X_{in} ;
- вычислительный: имея вспомогательный граф, строим его матрицу переходов, возводим в достаточно большую степень и анализируем вероятности;
- **3** теоретический: анализируем компоненты сильной связности вспомогательного графа.

Результаты

- рассмотрен пример глобального условия на достижимость условие проверки кратности;
- для условия проверки кратности описан алгоритм построения вспомогательного графа и доказана теорема о соответствии путей на исходном и вспомогательном графе;
- решена задача о предельном состоянии процесса случайного блуждания частиц на графе с условием проверки кратности.