X/Y	0-2000	2	2000-5000	5000-20000	20000-100000	ni.
500 - 1000		40	12	8	-	60
1000-1500		16	48	12	4	80
1500-2500		8	80	92	20	200
2500-5000		4	40	72	24	140
n.j		68	180	184	48	480

f13	0.01666667	1.66666667	x=x1 / y=y2	
f44	0.05	5	0.06666667	6.66666667
f1.	0.125	12.5		
f.4	0.1	10	y=y3 / x=x2	
			0.15	15

n1.

n3.

(Suma columna F)

```
a) Calcular n1., n.3.
n1=60 n3=200

b) Expresar em porcentaje f13, f44, f1., y f.4.
f13=1.67%
f44=5%
f1.=12,5%
f.4=10%

c) Calcular la proporción de individuos que tienen X = x1, condicionado a que Y = y2.
x=x1 / y=y2 = 6,67%
coordenada(1,2) --> 12/180 (entre 180 ya que x esta concicionadad de y, cogemos valor columna)
(Otro ejemplo)
y=y3/x=x2 = 15%
coordenada(2,3) --> 12/80 (entre 80 ya que y esta condicionada por x, cogemos valor final fila)
valor dependiente | valor indepentiente
```

уј	->	100	350	750	1150		
хi		(0,200]	(200,500]	(500,1000]	(1000,1300]	n.i	xi*yj*nij
	2	5	4	1	2	12	9900
	3	2	6	5	8	21	45750
	4	0	2	10	15	27	101800
	5	0	0	10	0	10	37500
n.j		7	12	26	25	70	194950
	yj*n.j	700	4200	19500	28750	>	53150
(у	/j-mediay)^2	434657.653	167514.796	86.2244898	152657.653		
(yj-	-mediay)^2n.j	3042603.57	2010177.55	2241.83673	3816441.33	>	8871464.29

Media x	3.5		
Media y	759.285714		
Varianza x	0.87857143		
Varianza y	126735.204		
Desviacion tipica x	0.93732141		
Desviacion tipica y	355.998882		
Covarianza	127.5		
Correlacion lineal	0.38209646		
R2	0.1459977		

xi*yi	(xi-mediax)^2	(xi-mediax)^2ni.
24	2.25	27
63	0.25	5.25
108	0.25	6.75
50	2.25	22.5
245		61.5

xi*yj*nij

La sumatoria final de este ar

Para hacer el tercer apartado habria que realizar prediccion mediante rectas de regresion simple o algo pero no tenemos soluciones asi que no tiene sentido hacerlo

1.Covarianza:

$$S_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) (y_j - \bar{y})$$

(Forma más cómoda de calcular covarianza)

$$S_{xy} = \left(\frac{1}{n}\sum_{i=1}^n x_i y_i\right) - \bar{x}\bar{y} \;\; {
m datos} \; {
m en} \; {
m dos} \; {
m columnas}$$

2. Coeficiente de correlación lineal

$$r_{xy} = \frac{S_{xy}}{S_x S_y}$$

5.Recta regresion Y/X

$$y - \overline{y} = \frac{S_{xy}}{S_x^2} (x - \overline{x})$$

8. Coeficiente de determinacion

9. Coeficiente de determinacion ^2 = coeficiente de correlación lineal a

$$R^2 = 1 - \frac{S_{ry/x}^2}{S_v^2}$$

3. Ajuste por minimos cuadrados

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

6.Recta regresion X/Y

$$x - \overline{x} = \frac{S_{xy}}{S_y^2} (y - \overline{y})$$
 $x - \overline{x} = r \frac{S_x}{S_y} (y - \overline{y})$

I cuadrado, $(R^2 = r^2)$

4. Recta regresión simple

$$b = \frac{S_{xy}}{S_x^2} \qquad a = \overline{y} - b\overline{x} = \overline{y} - \frac{S_{xy}}{S_x^2} \overline{x}$$

7. Varianza residual

$$S_{ry/x}^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - f(x_{i}))^{2}$$