Definition

The formal definition of a multivariable limit given by

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

is given as follows.

Let
$$\epsilon > 0$$
, then for $\delta > 0$, if $\sqrt{(x-a)^2 + (y-b)^2} < \delta$ then $|f(x,y) - L| < \epsilon$.

Thus, what we need to do is find δ as some function ϵ that makes this true. The way to do this is start from |f(x,y)-L| and use algebra to get $\sqrt{(x-a)^2+(y-b)^2}$. For example,

$$|f(x,y) - L| < \dots < C\sqrt{(x-a)^2 + (y-b)^2}$$

thus if say that $\sqrt{(x-a)^2+(y-b)^2}<\delta=\epsilon/C$ then the above equation shows that $|f(x,y)-L|<\epsilon$. Thus the challenge is going from |f(x,y)-L| to $C\sqrt{(x-a)^2+(y-b)^2}$. Below are some tricks for this.

Examples

1. Prove that

$$\lim_{(\mathbf{x},\mathbf{y})\to(0,0)}\frac{\mathbf{x}^3\mathbf{y}-\mathbf{y}^3\mathbf{x}}{390}+10=10$$

Let $\sqrt{(x-0)^2+(y-0)^2}=\sqrt{x^2+y^2}<\delta$. Notice that since $\sqrt{x^2+y^2}$ is the hypotenuse of a triangle with sides x and y, we have $|x|\leq \sqrt{x^2+y^2}$ and $|y|\leq \sqrt{x^2+y^2}$. Thus we have $|x|<\delta$ and $|y|<\delta$. Thus we obtain,

$$|f(x,y) - L| = \left| \frac{x^3y - y^3x}{390} + 10 - 10 \right|$$

$$= \left| \frac{x^3y - y^3x}{390} \right|$$

$$= \frac{1}{390} \left| x^3y - y^3x \right|$$

$$\leq \left| x^3y - y^3x \right|$$

$$\leq \left| x^3y \right| + \left| -y^3x \right|$$

$$= \left| x^3y \right| + \left| y^3x \right|$$
Because 1/390 > 0

Get rid of constant because it's gross
By the triangle inequality
By absolute value
$$= \left| x \right|^3 \left| y \right| + \left| y \right|^3 \left| x \right|$$
Again, by absolute value
$$< \left| \delta \right|^3 \left| \delta \right| + \left| \delta \right|^3 \left| \delta \right|$$
Since $\left| x \right| < \delta$ and $\left| y \right| < \delta$

$$= 2\delta^4$$
Since $0 < \delta$

Thus what we need is $2\delta^4 < \epsilon \iff \delta < \sqrt[4]{\epsilon/2}$. Therefore we conclude that

$$\lim_{(x,y)\to(0,0)} \frac{x^3y - y^3x}{390} + 10 = 10$$

So, in this problem we were able to "cheat" by saying that $|x| < \delta$ and $|y| < \delta$, so we just substituded the separate x's and y's with δ 's and got a function of only 1 variable.

2. Prove that

$$\lim_{(\mathbf{x},\mathbf{y})\to(\mathbf{1},\mathbf{1})}\frac{xy}{x+y}=\frac{1}{2}$$

Here, we can't use the trick that |x| and |y| are less than δ . However, just as above, we can say $\sqrt{(x-1)^2 + (y-1)^2} < \delta \iff |x-1| < \delta$ and $|y-1| < \delta$.

$$|f(x,y) - L| = \left| \frac{xy}{x+y} - \frac{1}{2} \right|$$

$$= \left| \frac{xy - x - y}{2x + 2y} \right|$$

$$\leq \left| \frac{xy + xy - x - y}{2x + 2y} \right|$$

$$= \left| \frac{x(y-1) + y(x-1)}{2x + 2y} \right|$$

$$\leq \left| \frac{x(y-1)}{2(x+y)} \right| + \left| \frac{y(x-1)}{2(x+y)} \right|$$
By Triangle Inequality
$$= \frac{1}{2} \left| \frac{x}{x+y} \right| |y-1| + \frac{1}{2} \left| \frac{y}{x+y} \right| |x-1|$$

Since we are consider values of x and y where $|x-1| < \delta$ or $|y-1| < \delta$, ensure that $\delta < 1$ then x and y must be positive. Thus |x/(x+y)| or |y/(x+y)| must be less than 1. Thus we obtain

$$\frac{1}{2} \left| \frac{x}{x+y} \right| |y-1| + \frac{1}{2} \left| \frac{y}{x+y} \right| |x-1| \leq \frac{1}{2} |y-1| + \frac{1}{2} |x-1| < \frac{1}{2} \delta + \frac{1}{2} \delta = \delta$$

Thus if we set $\delta = \min\{1, \epsilon\}$, then we conclude that $f(x, y) \to 1/2$ as $(x, y) \to (1, 1)$.