BLM1612 Circuit Theory Nodal and Mesh Analysis

Dr. Görkem SERBES

Assistant Profesor in Biomedical Engineering Department

Nodal (or "Node-Voltage") Analysis

- a general, powerful method for methodical linear circuit analysis
- based on Kirchhoff's Current Law
- allows us to analyze circuits for any number of nodes, N
- requires us to solve a system of (at least) N 1 simultaneous equations

Analysis Steps

- (1) Choose a reference node (usually ground or the bottom node) to have a voltage of zero.
- (2) Assign a unique voltage variable to each node that is *not* the reference $(v_1, v_2, v_3, \dots v_{N-1})$.
- (3) For voltage sources, assign a current $(i_1, i_2, ...)$ through each and write the value of the source in terms of node voltages.
 - Write a KCL equation at every node (except for the reference) in terms of voltage differences (divided by $R_1 ... R_N$) and all V or I sources.
 - For dependent sources, write an equation that governs each in terms of node voltages.
- (4) Solve the N-1 node equations + source equations simultaneously.

Example (pg 82, #4.1)

Determine the current flowing left to right through the

15 ohms resistor

$$v_1 = 20 \text{ V}$$
 $v_2 = 20 \text{ V}$ $v_1 - v_2 = 0$

Example (pg 83, #4.2)

Determine the nodal voltages for the circuit.

Example (pg 86, #4.3)

Determine the power supplied by the dependent source.

 $v_1 = -40 \text{ V} \ v_2 = -75 \text{ V}$

power absorbed by the dependent source

$$i_1 = 0.5v_1 = -20 \text{ A}$$

 $(3i_1)(v_2) = -(-60)(-75) = -4.5 \text{ kW}$
Actually 4.5 kW is supplied

we need an additional equation that relates i_1 to one or more nodal voltages

Nodal Analysis with Supernodes

supernode:

a collection of multiple nodes separated by voltage sources

Analysis Steps

- (1) Choose a reference node (usually ground or the bottom node) to have a voltage of zero.
- (2) Assign a unique voltage variable to each node that is *not* the reference $(v_1, v_2, v_3, \dots v_{N-1})$.
- (3) For independent & dependent voltage sources, identify a *supernode* and write the voltage across the supernode in terms of node voltages.
 - Write a KCL equation at all N-1 nodes including the supernode (and not the reference, or a supernode which includes the reference).
- (4) Solve the N-1 node equations + source equations simultaneously.

Example (page 91, #4.6)

Determine the node-to-reference voltages in the circuit provided.

- identify the nodes & supernodes
- write KCL at each node (except the reference)

Example (page 91, #4.6)

$$-2v_1 + 2.5v_2 - 0.5v_3 = 14$$

$$0.1v_1 - v_2 + 0.5v_3 + 1.4v_4 = 0$$

$$v_1 = -12$$

$$0.2v_1 + v_3 - 1.2v_4 = 0$$

When we express the dependent current source in terms of the assigned variables

$$0.5v_x = 0.5(v_2 - v_1)$$

$$v_1 = -12 \text{ V}, v_2 = -4 \text{ V}, v_3 = 0 \text{ V}, \text{ and } v_4 = -2 \text{ V}.$$

Mesh (Current) Analysis

- another powerful method for methodical linear circuit analysis
- based on Kirchhoff's Voltage Law
- •allows us to analyze circuits for any number of mesh currents, M
- mesh = a loop that does not contain any other loopsmesh current = flows only around the *perimeter* of a mesh

3 meshes,
3 mesh currents

Mesh (Current) Analysis

- •another powerful method for methodical linear circuit analysis
- based on Kirchhoff's Voltage Law
- •allows us to analyze circuits for any number of mesh currents, M
- •mesh = a loop that does not contain any other loops

mesh current = flows only around the *perimeter* of a mesh

Analysis Steps

- (1) Draw a mesh current for each mesh. (Clockwise is standard but not required.)
- (2) Write a KVL equation for each mesh. Employ all necessary currents for each term.
- (3) Introduce a voltage variable for each independent or dependent *current* source.
- (4) Express additional unknowns (e.g. dependent V/I) in terms of mesh currents.
- (5) Solve the simultaneous equations (M meshes + dependent source equations).

Writing Mesh Equations

$$-42 + 6i_1 + 3(i_1 - i_2) = 0$$
$$3(i_2 - i_1) + 4i_2 - 10 = 0$$

Writing Mesh Equations

$$9i_1 - 3i_2 = 42$$

$$-3i_1 + 7i_2 = 10$$

$$\begin{bmatrix} 9 & -3 \\ -3 & 7 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} 42 \\ 10 \end{bmatrix} \qquad \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

The current through the 6- Ω resistor is 6 A. The current through the 3- Ω resistor is $(i_1 - i_2) = 2$ A

Example (page 94, #4.7)

Determine the power supplied by the 2 V source

mesh 1.

$$-5 + 4i_1 + 2(i_1 - i_2) - 2 = 0$$

mesh 2.

$$+2 + 2(i_2 - i_1) + 5i_2 + 1 = 0$$

$$6i_1 - 2i_2 = 7$$
$$-2i_1 + 7i_2 = -3$$

$$i_1 = \frac{43}{38} = 1.132 \text{ A}$$

$$i_1 = \frac{43}{38} = 1.132 \text{ A}$$
 $i_2 = -\frac{2}{19} = -0.1053 \text{ A}.$

Power absorbed by the 2 V source

$$-(2)(1.237) = -2.474 \text{ W}.$$

Actually 2.474 W is

supplied

Example (page 95, #4.8)

•Use mesh analysis to determine the three mesh currents in the circuit

Mesh 1
$$-7 + 1(i_1 - i_2) + 6 + 2(i_1 - i_3) = 0$$

Mesh 2
$$1(i_2 - i_1) + 2i_2 + 3(i_2 - i_3) = 0$$

Mesh 3
$$2(i_3 - i_1) - 6 + 3(i_3 - i_2) + 1i_3 = 0$$

$$i_1 = 3 \text{ A}, i_2 = 2 \text{ A}, \text{ and } i_3 = 3 \text{ A}.$$

Example (page 96, #4.9)

•Determine the current i₁ in the circuit

Left Mesh

$$-5 - 4i_1 + 4(i_2 - i_1) + 4i_2 = 0$$

Right Mesh

$$4(i_1 - i_2) + 2i_1 + 3 = 0$$

$$i_2 = 375 \text{ mA}$$
, so $i_1 = -250 \text{ mA}$

Example (page 97, #4.10)

•Determine the current i₁ in the circuit

Left Mesh
$$-5 - 2v_x + 4(i_2 - i_1) + 4i_2 = 0$$

Right Mesh $4(i_1 - i_2) + 2i_1 + 3 = 0$

We need to construct an equation for v_x in terms of mesh currents

$$v_x = 4(i_2 - i_1)$$

$$4i_1 = 5 \qquad i_1 = 1.25 \text{ A}$$

Mesh Analysis with Supermeshes

supermesh = a mesh that contains multiple meshes with a <u>shared current source</u>

For **nodal** analysis, we joined nodes near a **voltage** source. \rightarrow super<u>node</u> For **mesh** analysis, we join meshes near a **current** source. \rightarrow super<u>mesh</u>

→ Reduces the number of simultaneous equations by the number of current sources.

Analysis Steps

- (1) Draw a mesh current for each mesh.
- (2) Identify supermeshes.
- (3) Write KVL around each supermesh, then KVL for each mesh that is not part of a supermesh.
- (4) Express additional unknowns (dependent V/I) in terms of mesh currents.
- (5) Solve the simultaneous equations.

Example (page 98, #4.11)

Determine the current i as labeled in the circuit.

Supermesh

$$-7 + 1(i_1 - i_2) + 3(i_3 - i_2) + 1i_3 = 0$$

Mesh 2

$$1(i_2 - i_1) + 2i_2 + 3(i_2 - i_3) = 0$$
$$-i_1 + 6i_2 - 3i_3 = 0$$

independent source current is related to the mesh currents

$$i_1 - i_3 = 7$$

$$i_1 = 9 \text{ A}, i_2 = 2.5 \text{ A}, i_3 = 2 \text{ A}$$

Example (page 99, #4.12)

Evaluate the three unknown currents in the circuit

Mesh 1 $i_1 = 15 \text{ A}$

- one of the two mesh currents relevant to the dependent current source, there is no need to write a supermesh equation about meshes 1 and 3

$$\frac{v_x}{9} = i_3 - i_1 = \frac{3(i_3 - i_2)}{9}$$

$$-i_1 + \frac{1}{3}i_2 + \frac{2}{3}i_3 = 0 \quad \text{or} \quad \frac{1}{3}i_2 + \frac{2}{3}i_3 = 15$$

Mesh 2
$$1(i_2 - i_1) + 2i_2 + 3(i_2 - i_3) = 0$$
$$6i_2 - 3i_3 = 15$$
$$i_1 = 15 \text{ A} \qquad i_2 = 11 \quad i_3 = 17 \text{ A}$$

Practice (page 100, #4.10)

• Determine v_3 in the circuit

Nodal vs. Mesh Analysis: A Comparison

• A planar circuit with five nodes and four meshes. Determine the current i_x .

Nodal & Mesh Analysis

• Set up a complete, valid set of simultaneous equations to solve for the power absorbed by the 5- Ω resistor. You are not required to solve these equations.

Nodal & Mesh Analysis

• Set up a complete, valid set of simultaneous equations to solve for the power absorbed by the 3- Ω resistor. You are not required to solve these equations.

