T.Y. B.Sc. Sem VI (Computer Science) Rev 21 Practical Examination – April 2025

Duration: 2 hrs **Marks:** 50

Date: 15 April 2025 **Time:** 9:00 - 11:00

Course: USCSP601 Data Science – Practical

1.	Implement Decision Tree Model using Iris dataset using Python/R and interpret	40
	decision rules of classification.	
2.	Viva	05
3.	Journal	05

T.Y. B.Sc. Sem VI (Computer Science) Rev 21 Practical Examination – April 2025

Duration: 2 hrs **Marks:** 50

Date: 15 April 2025 **Time:** 9:00 - 11:00

Course: USCSP601 Data Science – Practical

1.	Load Iris Dataset. Apply K-means Algorithm using Python/R to group similar	40				
	data points into clusters. Determine optimal number of clusters using Elbow					
	Method. Visualize clustering results and analyze cluster characteristics.					
2.	Viva	05				
3.	Journal	05				

T.Y. B.Sc. Sem VI (Computer Science) Rev 21 Practical Examination – April 2025

Duration: 2 hrs **Marks:** 50

Date: 15 April 2025 **Time:** 9:00 - 11:00

Course: USCSP601 Data Science – Practical

1.	Load Iris Dataset. Apply K-means Algorithm using Python/R to group similar	40				
	data points into clusters. Determine optimal number of clusters using Silhouette					
	analysis. Visualize clustering results and analyze cluster characteristics.					
2.	Viva	05				
3.	Journal	05				

T.Y. B.Sc. Sem VI (Computer Science) Rev 21 Practical Examination – April 2025

Duration: 2 hrs Marks: 50 **Time:** 9:00 - 11:00 **Date:** 15 April 2025 Course: USCSP601 Data Science - Practical **Candidate's University Seat Number:** 1. A. Consider a scenario where you have test scores from a sample of students and you want to compare the mean of these scores with hypothesized population mean. Student Score = [72, 88, 64, 74, 67, 79, 85, 75, 89,77] Apply One Sampled T-Test using Python/R for above problem. Assume hypothesized mean as 70. Formulate Null and Alternative Hypothesis for a given problem. Interpret the results and draw the conclusion. [20] B. Apply Feature Scaling technique like standardization and normalization using Python/R to Boston Housing dataset. [20] Viva 2. 05

3.

Journal

05

T.Y. B.Sc. Sem VI (Computer Science) Rev 21 Practical Examination – April 2025

Duration: 2 hrs **Marks:** 50

Date: 15 April 2025 **Time:** 9:00 - 11:00

Course: USCSP601 Data Science – Practical

Candidate's University Seat Number:																	
1.	A. The employee's aptitude and job proficiency score is as follows.										40						
	aptitude	85	65	50	68	87	74	65	96	68	94	73	84	85	87	91	
	jobprof	70	90	80	89	88	86	78	67	86	90	92	94	99	93	87	
				_									-			d job	
			•										•			for a	
		-			Inter	prete	rest	ilts a	and c	iraw	con	clusi	ons	base	d on	test	
	out	come	e. [20)]				. \									
			_		_	_				_				_			
	B. Per		_	•	_							_	•		-		
	bin	ary	outc	ome.	Ev	aluat	e m	odel ³	s pe	erfori	nanc	e u	sing	clas	sific	ation	
	me	trics.	[20]														
2.	Viva				5												05
3.	Journal																05

T.Y. B.Sc. Sem VI (Computer Science) Rev 21 Practical Examination – April 2025

Duration: 2 hrs **Marks:** 50

Date: 15 April 2025 **Time:** 9:00 - 11:00

Course: USCSP601 Data Science – Practical

Candidate's University Seat Number:

1. A. Create CSV file from given data. Read the data from CSV files into a data frame. Perform **Data pre-processing** tasks such as handling missing values and outliers using Python/R [20]

Country	Age	Salary	Purchased
France	44	72000	No
Spain	27	48000	Yes
Germany	30	54000	No
Spain	38	61000	No
Germany	40		Yes
France	35	58000	Yes
Spain		52000	No
France	48	79000	Yes
Germany	50	83000	No
France	37	67000	Yes

B. Implement **Multiple Linear Regression** using Python/R on the below housing dataset to predict price of a house. Evaluate model's performance using classification metrics. [20]

Bedroom s	Bathroo ms	Sqft_livi ng	Floors	Grade	Sqft_abo ve	Sqft_bas ement	Price
3	1	1180	1	7	1180	0	221900
3	2.25	2570	2	7	2170	400	538000
2	1	770	1	6	770	0	180000
4	3	1960	1	7	1050	910	604000
3	2	1680	1	8	1680	0	510000
4	4.5	5420	1	11	3890	1530	267800
3	2.25	1715	2	7	1715	0	257500
3	1.5	1060	1	7	1060	0	291850
3	1	1780	1	7	1050	730	229500
3	2.5	1890	2	7	1890	0	323000
3	2.5	3560	1	8	1860	1700	662500

2.	Viva	05
3.	Journal	05

T.Y. B.Sc. Sem VI (Computer Science) Rev 21 Practical Examination – April 2025

Duration: 2 hrs **Marks:** 50

Date: 15 April 2025 **Time:** 9:00 - 11:00

40

Course: USCSP601 Data Science – Practical

Candidate's University Seat Number:

1. A. Apply **Feature Scaling** technique like standardization and normalization using Python/R to numerical features of below dataset. [20]

Make	Model	Color	Mileage	Sell Price
Honda	Accord	Red	63,512	4000
Honda	Accord	Blue	95,135	2500
Toyota	Camry	Black	75,006	45000
Nissan	Altima	Green	69,847	3826
Toyota	Corolla	Black	87,278	2224
Honda	Civic	White	1,38,789	2723
Ford	F-150	Black	89,073	3950
Chevrolet	Silverado	Green	1,09,231	4959
Chevrolet	Impala	Silver	87,675	3791
Dodge	Charger	Silver	34,853	4349
Dodge	Charger	Silver	58,173	4252

B. Implement **Multiple Linear Regression** on the "Pima Indian Diabetes dataset" using Python/R. [20]

2.	Viva	05
3.	Journal	05

T.Y. B.Sc. Sem VI (Computer Science) Rev 21 Practical Examination – April 2025

Duration: 2 hrs **Marks:** 50

Date: 15 April 2025 **Time:** 9:00 - 11:00

Course: USCSP601 Data Science – Practical

Candidate's University Seat Number:

40

Make	Model	Color	Mileage	Sell Price	Buy Price
Honda	Accord	Red	63,512	4000	3000
Honda	Accord	Blue	95,135	2500	2000
Toyota	Camry	Black	75,006	45000	44000
Nissan	Altima	Green	69,847	3826	3000
Toyota	Corolla	Black	87,278	2224	2100
Honda	Civic	White	1,38,789	2723	1900
Ford	F-150	Black	89,073	3950	3000
Chevrolet	Silverado	Green	1,09,231	4959	4500
Chevrolet	Impala	Silver	87,675	3791	3500
Dodge	Charger	Silver	34,853	4349	3500
Dodge	Charger	Silver	58,173	4252	4000

Create Pivot Table in Excel for following analysis and visualize the data using PivotChart: [20]

- How many cars do you have by make and model and by color?
- Find out profit margin of all different Make of cars.
- Find out average cost of vehicles.
- Find out percentage of cars of each color.
- B. Perform **Logistic Regression** on the Iris dataset using Python/R to predict binary outcome. Evaluate model's performance using classification metrics. [20]

2.	Viva	05
3.	Journal	05

T.Y. B.Sc. Sem VI (Computer Science) Rev 21 Practical Examination – April 2025

Duration: 2 hrs **Marks:** 50

Date: 15 April 2025 **Time:** 9:00 - 11:00

Course: USCSP601 Data Science – Practical

Candidate's University Seat Number: _

1. A. Apply **Feature Scaling** technique like standardization and normalization using Python/R to numerical features of below dataset. [20]

₽				
	Country	Age	Salary	Purchased
	France	44	72000	No
	Spain	27	48000	Yes
	Germany	30	54000	No
	Spain	38	61000	No
	Germany	40	85000	Yes
	France	35	58000	Yes
	Spain	31	52000	No
	France	48	79000	Yes
	Germany	50	83000	No
	France	37	67000	Yes

B. Load the Iris dataset. Perform **Principal component Analysis (PCA)** using Python/R on a dataset to reduce dimensionality. Select appropriate number of principle components. Visualize the data in the reduced-dimensional space. [20]

2.	Viva	05
3.	Journal	05

T.Y. B.Sc. Sem VI (Computer Science) Rev 21 Practical Examination – April 2025

Duration: 2 hrs **Marks:** 50

Date: 15 April 2025 **Time:** 9:00 - 11:00

Course: USCSP601 Data Science – Practical

Candidate's University Seat Number:

1. A. Convert Categorical Column to numerical representation (**Feature Dummification**) of below dataset using Python/R. [20]

4				
	Country	Age	Salary	Purchased
	France	44	72000	No
	Spain	27	48000	Yes
	Germany	30	54000	No
	Spain	38	61000	No
	Germany	40	85000	Yes
	France	35	58000	Yes
	Spain	31	52000	No
	France	48	79000	Yes
	Germany	50	83000	No
	France	37	67000	Yes

B. Perform **Logistic Regression** on the Iris dataset using Python/R to predict binary outcome. Evaluate model's performance using classification metrics. [20]

2.	Viva	05
3.	Journal	05

T.Y. B.Sc. Sem VI (Computer Science) Rev 21 Practical Examination – April 2025

Duration: 2 hrs **Marks:** 50

Date: 15 April 2025 **Time:** 9:00 - 11:00

Course: USCSP601 Data Science – Practical

Candidate's University Seat Number: _____

1. A. Create CSV file from given data. Read the data from CSV files into a data frame.

Make	Model	Color	Mileage	Sell Price	Buy Price
Honda	Accord	Red	63,512	4000	3000
Honda	Accord	Blue	95,135	2500	2000
Toyota	Camry	Black	75,006	45000	44000
Nissan	Altima	Green	69,847	3826	3000
Toyota	Corolla	Black	87,278	2224	2100
Honda	Civic	White	1,38,789	2723	1900
Ford	F-150	Black	89,073	3950	3000
Chevrolet	Silverado	Green	1,09,231	4959	4500
Chevrolet	Impala	Silver	87,675	3791	3500
Dodge	Charger	Silver	34,853	4349	3500
Dodge	Charger	Silver	58,173	4252	4000

Perform transformation functions on given data using Python/R. [20]

- Display records of the car having Sell Price greater than 4000.
- Sort the car data in ascending order.
- Group the data according the "Make" of car.
- B. Load the Iris dataset. Perform **Principal component Analysis (PCA)** using Python/R on a dataset to reduce dimensionality. Select appropriate number of principle components. Visualize the data in the reduced-dimensional space. [20]

2.	Viva	05
3.	Journal	05

T.Y. B.Sc. Sem VI (Computer Science) Rev 21 Practical Examination – April 2025

1.1	. D.Sc. Sem VI (Computer Science) Rev 21 Hactical Examination – April 202	.5
Dura	tion: 2 hrs Marks	: 50
Date:	15 April 2025 Time: 9:00 - 11	:00
Cour	se: USCSP601 Data Science – Practical	
Cand	idate's University Seat Number:	
1.	 A. Consider you have a dataset that contains the exam scores of students from three different classes: A, B, and C. Class A = [85, 90, 88, 82, 87] Class B = [76, 78, 80, 81, 75] Class C= [92, 88, 94, 89, 90] Perform One Way ANOVA Test using Python/R to determine if there is a significant difference in the mean exam scores among these classes. Formulate Null and Alternative Hypothesis for a given problem. Interpret results and draw conclusions based on test outcome. [20] B. Load the Wine Quality dataset. Perform Principal component Analysis (PCA) using Python/R on a dataset to reduce dimensionality. Select 	40
	appropriate number of principle components. Visualize the data in the reduced-dimensional space. [20]	
2.	Viva	05
3.	Journal	05

T.Y. B.Sc. Sem VI (Computer Science) Rev 21 Practical Examination – April 2025

Duration: 2 hrs **Marks:** 50

Date: 15 April 2025 **Time:** 9:00 - 11:00

Course: USCSP601 Data Science – Practical

Cano	indate's University Stat Number.	
1.	A. The company is accessing the difference in time to complete the task	40
	between two groups of employees. State the hypothesis and do the Two	
	Sampled T-Test using Python/R for the given dataset. [20]	
	Group-I: Experience(0-1 year)	
	Group-II: Experience(1-2 year)	
	Time taken by Group1: 85,95,100,80,90,97,104,95,88,92,94,99	
	Time taken by Group2: 83,85,96,92,100,104,94,95,88,90,93,94	
	09	
	B. Perform Multiple Linear Regression on the "Pima Indian Diabetes	
	dataset" using Python/R. [2-]	
2.	Viva	05
3.	Journal	05

T.Y. B.Sc. Sem VI (Computer Science) Rev 21 Practical Examination – April 2025

Duration: 2 hrs **Marks:** 50

Date: 15 April 2025 **Time:** 9:00 - 11:00

Course: USCSP601 Data Science – Practical

- Construct a **Decision Tree** using Python/R to classify whether a person can play tennis or not. Test the model and check prediction of the model is correct or not. The following data set recorded whether or not a person played tennis depending on the outlook and wind conditions.
 - Each instance (example) is represented by the three attributes.
 - o Outlook: a value of {Sunny, Overcast, Rain}.
 - o Wind: a value of {Weak, Strong}.
 - o PlayTennis: the classification attribute (i.e., Yes- the person plays tennis; No the person does not play tennis).

Date	Outlook	Wind	PlayTennis	Date	Outlook	Wind	PlayTennis
1	Sunny	Weak	No	11	Sunny	Strong	Yes
2	Sunny	Strong	No	12	Overcast	Strong	Yes
3	Overcast	Weak	Yes	13	Overcast	Weak	Yes
4	Rain	Weak	Yes	14	Rain	Strong	No
5	Rain	Weak	Yes	15	Sunny	Strong	Yes
6	Rain	Strong	No	16	Overcast	Strong	No
7	Overcast	Strong	Yes	17	Overcast	Weak	Yes
8	Sunny	Weak	No	18	Rain	Weak	No
9	Sunny	Weak	Yes	19	Sunny	Weak	No
10	Rain	Weak	Yes	20	Rain	Strong	Yes

2	Viva	05
3	Journal	05

T.Y. B.Sc. Sem VI (Computer Science) Rev 21 Practical Examination – April 2025

Duration: 2 hrs **Marks:** 50

Date: 15 April 2025 **Time:** 9:00 - 11:00

Course: USCSP601 Data Science – Practical

Candidate's University Seat Number:

1. A. Implement **Decision Tree Model** on Titanic dataset using Python/R and interpret decision rules of classification. Perform **Linear Regression** on the following dataset in Python/R for predicting the weight of the person depending on height. [20]

Height	151	174	138	186	128	136	179	163	152
weight	63	81	56	91	47	57	76	² 72	62

B. Create CSV file from given data. Read the data from CSV files into a data frame.

Honda Accord Blue 95,135 2500 2000 Toyota Camry Black 75,006 45000 44000 Nissan Altima Green 69,847 3826 3000 Toyota Corolla Black 87,278 2224 2100 Honda Civic White 1,38,789 2723 1900 Ford F-150 Black 89,073 3950 3000 Chevrolet Silverado Green 1,09,231 4959 4500						
Honda Accord Blue 95,135 2500 2000 Toyota Camry Black 75,006 45000 44000 Nissan Altima Green 69,847 3826 3000 Toyota Corolla Black 87,278 2224 2100 Honda Civic White 1,38,789 2723 1900 Ford F-150 Black 89,073 3950 3000 Chevrolet Silverado Green 1,09,231 4959 4500	Make	Model	Color	Mileage	Sell Price	Buy Price
Toyota Camry Black 75,006 45000 44000 Nissan Altima Green 69,847 3826 3000 Toyota Corolla Black 87,278 2224 2100 Honda Civic White 1,38,789 2723 1900 Ford F-150 Black 89,073 3950 3000 Chevrolet Silverado Green 1,09,231 4959 4500	Honda	Accord	Red	63,512	4000	3000
Nissan Altima Green 69,847 3826 3000 Toyota Corolla Black 87,278 2224 2100 Honda Civic White 1,38,789 2723 1900 Ford F-150 Black 89,073 3950 3000 Chevrolet Silverado Green 1,09,231 4959 4500	Honda	Accord	Blue	95,135	2500	2000
Toyota Corolla Black 87,278 2224 2100 Honda Civic White 1,38,789 2723 1900 Ford F-150 Black 89,073 3950 3000 Chevrolet Silverado Green 1,09,231 4959 4500	Toyota	Camry	Black	75,006	45000	44000
Honda Civic White 1,38,789 2723 1900 Ford F-150 Black 89,073 3950 3000 Chevrolet Silverado Green 1,09,231 4959 4500	Nissan	Altima	Green	69,847	3826	3000
Ford F-150 Black 89,073 3950 3000 Chevrolet Silverado Green 1,09,231 4959 4500	Toyota	Corolla	Black	87,278	2224	2100
Chevrolet Silverado Green 1,09,231 4959 4500	Honda	Civic	White	1,38,789	2723	1900
	Ford	F-150	Black	89,073	3950	3000
Chevrolet Impala Silver 87,675 3791 3500	Chevrolet	Silverado	Green	1,09,231	4959	4500
	Chevrolet	Impala	Silver	87,675	3791	3500
Dodge Charger Silver 34,853 4349 3500	Dodge	Charger	Silver	34,853	4349	3500
Dodge Charger Silver 58,173 4252 4000	Dodge	Charger	Silver	58,173	4252	4000

Perform transformation function on given data using Python/R. [20]

- Display records of the car having Buy Price greater than equal to 3000.
- Sort the car data in ascending order.
- Group the data according to the "Model" of car.

2.	Viva	05	
3.	Journal	05	

T.Y. B.Sc. Sem VI (Computer Science) Rev 21 Practical Examination – April 2025

Duration: 2 hrs **Marks:** 50

Date: 15 April 2025 **Time:** 9:00 - 11:00

40

Course: USCSP601 Data Science – Practical

Candidate's University Seat Number: _____

1. A. Perform **Linear Regression** on the following dataset in Python/R for predicting the salary of the person depending on his/her years of experience. [20]

Years of Experience	Salary
2	30000
10	95000
4	45000
20	178000
8	84000
12	120000
22	200000

B. Consider dataset given below.

		_			
		Part		Part	
	Supplier ID	Number	Part Name	Price	Status
	SP301	A001	water	6800	In
	SP302	A002	altenator	3800	In
	SP303	A003	air filter	4500	In
			wheel		In
	SP304	A004	bearing	3582	stock
	SP305	A005	muffler	1600	In
					Out of
	SP306	A006	oil pan	1005	stock
	SP307	A007	brake pads	6500	In
			brake		Out of
	SP308	A008	rotors	8549	stock
	SP309	A009	headlight	6500	In
	SP310	A010	brake	1500	In
	SP311	A011	Strut	4500	In
	SP312	A012	Deive	1580	In
			CV Boot		In
	SP313	A013	Kit	2650	stock
	SP314	A014	Oil Pump	4660	In
	SP315	A015	Oil Filter	4350	In
	SP316	A016	Fuel Filter	1280	In
Г			Tie Rod		In
	SP317	A017	End	1800	stock
	SP318	A018	Ball Joint	2500	In
			Steering		Out of
	SP319	A019	Rack	2700	stock
					Out of
	SP320	A020	Piston	4500	stock

Apply VLOOKUP function to retrieve information for the following queries. Also write down the steps for the same. [20]

- Find the Part Name for Part Number "A002".
- Find the Supplier ID for the Part Name "Ball Joint".
- Find the Part Price for Part Name "muffler".
- Find the Status of Part Number "A008".

2.	Viva	05
3.	Journal	05

T.Y. B.Sc. Sem VI (Computer Science) Rev 21 Practical Examination – April 2025

Duration: 2 hrs **Marks:** 50 **Date:** 15 April 2025 **Time:** 9:00 - 11:00

A. Perform **Linear Regression** on the Iris dataset of R/Python for predicting

Course: USCSP601 Data Science – Practical

Candidate's University Seat Number:

petal.width on petal.length. [20]

1.

B.	A student is enrolled in the class. His /Her current grade is 65 which is
	average of all type of work during the semester and he/she needs atleast
	72 to pass this class. Final exam is not yet completed. Apply what-if
	analysis using Goal seek to determine the marks need to obtained in Final
	Exam to complete the goal. [20]

Semester Work	Grade	
Paper Presentation	58	
Case Study	70	
Assignment	72	
Practical	60	
Final Exam	60	
Final Grade	65	

2.	Viva	05
3.	Journal	05

T.Y. B.Sc. Sem VI (Computer Science) Rev 21 Practical Examination – April 2025

Duration: 2 hrs **Marks:** 50

Date: 15 April 2025 **Time:** 9:00 - 11:00

Course: USCSP601 Data Science – Practical

Candidate's University Seat Number:

- 1. A. Perform Linear Regression on the Iris dataset of R/Python for predicting petal.width on petal.length. [20]
 - B. Consider the dataset given below.

	Part		Part	
Supplier ID	Number	Part Name	Price	Status
SP301	A001	water	6800	In
SP302	A002	altenator	3800	In
SP303	A003	air filter	4500	In
		wheel		In
SP304	A004	bearing	3582	stock
SP305	A005	muffler	1600	In
				Out of
SP306	A006	oil pan	1005	stock
SP307	A007	brake pads	6500	In
		brake		Out of
SP308	A008	rotors	8549	stock
SP309	A009	headlight	6500	In
SP310	A010	brake	1500	In
SP311	A011	Strut	4500	In
SP312	A012	Deive	1580	In
		CV Boot		In
SP313	A013	Kit	2650	stock
SP314	A014	Oil Pump	4660	In
SP315	A015	Oil Filter	4350	In
SP316	A016	Fuel Filter	1280	In
		Tie Rod		In
SP317	A017	End	1800	stock
SP318	A018	Ball Joint	2500	In
·		Steering		Out of
SP319	A019	Rack	2700	stock
				Out of
SP320	A020	Piston	4500	stock

Apply VLOOKUP function to retrieve information for the following queries. Also write down the steps for the same. [20]

- 1. Find the Part Name for Part Number "A016".
- 2. Find the Supplier ID for the Part Name "Oil Pump".
- 3. Find the Part Price for Part Name "Brake".
- 4. Find the Status of Part Number "A020".

2.	Viva	05
3.	Journal	05

T.Y. B.Sc. Sem VI (Computer Science) Rev 21 Practical Examination – April 2025

Duration: 2 hrs **Marks:** 50

Date: 15 April 2025 **Time:** 9:00 - 11:00

Course: USCSP601 Data Science – Practical

Candidate's University Seat Number:

1. A. Create CSV file from given data. Read the data from CSV files into a data frame. Perform data pre-processing tasks such as handling missing values and outliers. [20]

Rollno	Name	Age	Marks	Class
1	Sudin	44	47	FY
2	Shaima	46	86	SY
3	Raina	27	45	TY
4	Paul	38		SY
5	Rahul	46	45	FY
6	Gopal		67	TY
7	Yatin	59	45	FY
8	Jim	36	34	FY
9	Nima	45	32	TY

B. Implement **Linear Regression** on the Iris dataset using Python/R for predicting petal.width on petal.length. [20]

2.	Viva	05
3.	Journal	05

T.Y. B.Sc. Sem VI (Computer Science) Rev 21 Practical Examination – April 2025

Duration: 2 hrs **Marks:** 50

Date: 15 April 2025 **Time:** 9:00 - 11:00

Course: USCSP601 Data Science – Practical

Candidate's University Seat Number:

- 1. A. Perform **Logistic Regression** on the Iris dataset using Python/R to predict binary outcome. Evaluate model's performance using classification metrics. [20]
 - B. Consider the dataset given below.

Date	Color	Region	Units	Sales
03-Jan-20	Red	West	1	110000
14-Jan-20	Blue	South	8	96000
21-Jan-20	Green	West	2	26000
30-Jan-20	Blue	North	7	84000
07-Feb-20	Green	North	8	25000
13-Feb-20	Red	South	2	60000
22-Feb-20	Blue	East	5	35000
01-Mar-20	Green	West	2	87000
13-Mar-20	Blue	East	8	69000
23-Mar-20	Blue	North	7	54000

Create Pivot Table in Excel for following analysis and visualize the data using PivotChart: [20]

- Find out the total Sales.
- Find out the Sum of Sales color-wise.
- Find out the Sum of Units.

Find out Region-wise total sales and total units.

2.	Viva	05
3.	Journal	05