Lesson 3: Trees

CSC325 - ADVANCED DATA STRUCTURES & ALGORITHMS | SPRING 2022

DR. ANDREY TIMOFEYEV

OUTLINE

- •Introduction.
- •Binary search trees.
- •Search space.
- •AVL trees.
- Splay trees.

INTRODUCTION

- Trees data structure.
 - Non-sequential.
 - Data stored in nodes with links to two or more other nodes.
 - Root, parents, children, siblings, subtrees.
 - Abstract Syntax Trees (ASTs) used by programming languages to convert source code to a tree-like structure for evaluation.
- Binary search trees.
 - Each node has up to two child nodes.
 - Values in left subtree < root value < values in right subtree.
 - Left & right subtrees are binary search trees.
 - **Insertion** is *O(nlogn)* but takes **more** space than lists.
 - If items sorted, then insertion is $O(n^2)$.
 - Tree -> stick -> linked list.
 - Improved performance: AVL trees & splay trees.

Fib(5) call Tree

BINARY SEARCH TREES: INSERTION (1)

•Inserting 5, 8, 2, 1, 4, 9, 6, 7 into binary search tree:

BINARY SEARCH TREES: INSERTION (2)

•Inserting 5, 8, 2, 1, 4, 9, 6, 7 into binary search tree (cont.): tree **Insert 4 Insert 9 Insert 6** tree **Insert 7**

BINARY SEARCH TREES: INSERTION (3)

•Inserting 5, 8, 2, 1, 4, 9, 6, 7 into binary search tree (cont.):

Final tree

BINARY SEARCH TREES: DELETION

•Deleting 9, 6, 5 from binary search tree:

SEARCH SPACES

- Normally, problems consist of many different states.
 - **Goal** (*end state*) = finding a **solution** to the problem.
 - Collection of all problem states = search space.
 - A solution can be found by applying a depth first search on the problem search space.
- •Depth first search of a problem space:
 - Check for a solution by making a guess.
 - If guess does not lead to a solution, then backtrack.
 - Backtracking undoing unsuccessful guess and trying next guess.
 - Keep trying guesses and backtracking until solution is found.

BALANCED BINARY SEARCH TREES

- Unbalanced binary search trees.
 - <u>Problem:</u> BST operations computational complexity grows once the tree becomes unbalanced.
 - <u>Solution</u>: **Balanced** BST structure with guaranteed *logn* height, $\Theta(nlogn)$ to build a tree, $\Theta(n)$ for in-order traversal.
 - AVL trees & splay trees.
- •Balanced binary search trees are used when many insert/delete/lookup operations & many iterations over items in ascending/descending order are required.

AVL TREES

AVL trees.

- Binary search trees with an additional information to maintain the balance.
- **Height** is *logn*.
- Lookup/insert/delete operations are Θ(logn).
- Tree is **built** in $\Theta(nlogn)$.
- In-order traversing (yields sorted items) is $\Theta(n)$.

•AVL tree definitions:

- Height = 1 + the maximum height of subtrees.
 - Height of leaf node = 1.
- <u>Balance</u> = (height of right subtree) (height of left subtree).
- AVL tree = balance of every node must be in [-1, 0, 1].
- •Balance is maintained using height or balance of each node in the tree.

AVL TREES: INSERTION (1)

Inserting into AVL trees:

- Initially, same process as for BST start from the root, find correct position.
 - In addition, **keep track** of the nodes along the path.
 - Traversed nodes are pushed onto the stack (path stack).
- Once node is inserted, nodes balances are adjusted.
 - Pop nodes off the path stack and adjust balances.
 - If found node with balance != 0 before adjusting pivot node.
- Based on the pivot node and location of inserted node, three cases must be considered:
 - Case 1: No pivot found.
 - Case 2: Pivot found; no rotation needed.
 - Case 3: Pivot found; rotation needed.
 - Single rotation or double rotation.

AVL TREES: INSERTION (2)

Case 1: No pivot found.

- Balance of each node along the path == 0.
- Adjust balance of each node in path stack.

Inserting 39, no pivot

AVL TREES: INSERTION (3)

Case 2: Pivot found, no rotation.

- Subtree of the pivot node (where new node inserted) has smaller height.
- Adjust balance from new nodes up to pivot node.
- Balances of nodes above the pivot are not affected.
 - Height of the subtree rooted at the pivot node is not changed by the insertion of the new node.

Inserting 12, pivot = 18

AVL TREES: INSERTION (4)

Case 3: Pivot found, rotation needed.

- Node is added to subtree of larger height.
- Pivot balance becomes -2 or 2 -> tree is no longer AVL.
 - Single or double rotation must be performed.
- Bad child pivot child in the direction of the imbalance.
- Bad grandchild child of a bad child in the direction of the imbalance.

•Two subcases must be considered:

- Subcase A: Single rotation.
 - Node is added to the subtree of a bad child in the direction of the imbalance.
 - Rotate at the pivot in the direction opposite to the imbalance.
- Subcase B: Double rotation.
 - Node is added to the subtree of a bad child in the direction opposite to the imbalance.
 - Rotate at the bad child in the direction of the imbalance.
 - Rotate at the pivot in the direction opposite to the imbalance.

AVL TREES: INSERTION (5)

Case 3: Pivot found, rotation needed (cont.)

- Subcase A: Single rotation.
 - Node is added to the subtree of a bad child in the direction of the imbalance.
 - Rotate at the pivot in the direction opposite to the imbalance.

AVL TREES: INSERTION (6)

- Case 3: Pivot found, rotation needed (cont.)
 - Subcase A: Single rotation.

AVL TREES: INSERTION (7)

- Case 3: Pivot found, rotation needed (cont.)
 - Subcase B: Double rotation.
 - Node is added to the subtree of a bad child in the direction opposite to the imbalance.
 - Rotate at the bad child in the direction of the imbalance.
 - Rotate at the pivot in the direction opposite to the imbalance.

Inserting 11, pivot = 10, bad child = 18, bad grandchild = 13

AVL TREES: INSERTION (8)

- Case 3: Pivot found, rotation needed (cont.)
 - Subcase B: Double rotation.
 - Node is added to the subtree of a bad child in the direction opposite to the imbalance.
 - Rotate at the bad child in the direction of the imbalance.
 - Rotate at the pivot in the direction opposite to the imbalance.

Inserting 11, pivot = 10, bad child = 18, bad grandchild = 13

AVL TREES: INSERTION (9)

- Case 3: Pivot found, rotation needed (cont.)
 - Subcase B: Double rotation.

Step 1: Rotate Left at A

Step2: Rotate Right at B

SPLAY TREES

- •AVL tree drawback node must maintain the balance.
 - Extra work to calculate + extra space to store.
 - Improvement exploiting spatial locality.
- Spatial locality.
 - In large data sets a relatively **small subset** of data is **accessed** over a **short period** of time.
- •Splay tree relatively balanced binary search tree with no stored balance.
 - Insert/lookup moves the node to the root of the tree (splaying through rotations).
 - **Deletion** of item splays the parent node to the root of the tree.
- •Splay trees performance is same/better than AVL trees on random data sets.
 - Balanced enough to get amortized complexity of $\Theta(logn)$ for insert/lookup/delete operations.

SPLAY TREES: OPERATIONS & SPLAYING

•Operations:

- Insertion.
 - Value splayed to the root.
- Lookup.
 - Value found splayed to the root.
 - Value not found would-be parent splayed to the root.
- Deletion.
 - Parent is splayed to the root.
- •Value is splayed to the top of the tree through **rotations**:
 - <u>Single rotations:</u> *zig* or *zag*.
 - Double rotations: zig-zig or zig-zag.
- •Series of double rotations take node to the root or to the root child.
 - If at root child additional single rotation to get to the root.

SPLAY TREES: EXAMPLE

Inserting values 30, 5, 8, 42, 15, 10 into Splay tree.

SPLAY TREES: ROTATIONS (1)

•Zig-zig rotations.

SPLAY TREES: ROTATIONS (2)

•Zig-zag rotations.

SUMMARY

- •Trees.
- Binary search trees.
 - Properties, Insertion, deletion, traversal.
- Search spaces.
 - DFS + backtracking.
- Unbalanced vs. balanced trees.
- •AVL trees.
 - Properties, insertions.
- Splay trees.
 - Spatial locality, properties, rotations, operations.