Lab Presentation - 2

July 10, 2017

Prerit Gupta Summer Intern Ravi Kiran Sarvadevabhatla
PhD Student

Unique characteristics of Sketch-a-Net Architecture

- Larger First Layer Filters
- No Local Response Normalization
- Larger Pooling Size

Q. Yu, Y. Yang, Y.-Z. Song, T. Xiang, and T. Hospedales. Sketch-a-net that beats humans *BMVC*, 2015.

Index	Layer	Type	Filter Size	Filter Num	Stride	Pad	Output Size
0		Input	¥2	9/	Ψ.	127	225×225
1	L1	Conv	15×15	64	3	0	71×71
2		ReLU	+1	***	Ψ.	-0	71×71
3		Maxpool	3×3	2	2	0	35×35
4	L2	Conv	5×5	128	1	0	31×31
5		ReLU	-	4.5	∇	2	31×31
6		Maxpool	3×3	-	2	0	15×15
7	L3	Conv	3×3	256	1	1	15×15
8		ReLU	-	-	-	-	15×15
9	L4	Conv	3×3	256	1	1	15×15
10		ReLU	-	4	∇	2	15×15
. 11	L5	Conv	3×3	256	1	1	15×15
12		ReLU	40	× 5	*	-	15×15
13		Maxpool	3×3	2	2	0	7×7
14	L6	Conv(=FC)	7×7	512	1	0	1×1
15		ReLU	2	<u> </u>	2	28	1×1
16		Dropout (0.50)	-		-	70	1×1
17	L7	Conv(=FC)	1×1	512	1	0	1×1
18		ReLU	2	-	-	-	1×1
19		Dropout (0.50)	-	-	-	-	1×1
20	L8	Conv(=FC)	1×1	250	1	0	1×1

Deconvnet Visualization: Lower Layers

Fig. 9 Visualisation of the learned filters by deconvolution. Through visualisation of the filters by deconvolution, we can see that filter of higher-level layer are modeling more complex concepts. For example, what neurons represented in conv2 are basic building blocks to compose other concepts like lines, circles and textures; layer conv3 learns more mid-level concepts or object parts, like eye and wheel; and in conv4 and conv5, neurons are representing complex concepts like head, roof, and body.

Deconvnet Visualization: Higher Layers

Fig. 9 Visualisation of the learned filters by deconvolution. Through visualisation of the filters by deconvolution, we can see that filter of higher-level layer are modeling more complex concepts. For example, what neurons represented in conv2 are basic building blocks to compose other concepts like lines, circles and textures; layer conv3 learns more mid-level concepts or object parts, like eye and wheel; and in conv4 and conv5, neurons are representing complex concepts like head, roof, and body.

Analysis through Deep Visualization Toolbox

- Software tool that provides a live, interactive visualization of every neuron in a trained convnet as it responds to a user-provided image or video.
- The tool displays forward activation values, preferred stimuli via gradient ascent, top images for each unit from the training set, deconv highlighting (Zeiler & Fergus, 2013) of top images, and backward diffs computed via backprop or deconv starting from arbitrary units.

Reference: J. Yosinki, Understanding Neural Networks through Deep Visualization, ICML

DL Workshop, 2015

Github Repository: https://github.com/yosinski/deep-visualization-toolbox

Link: http://yosinski.com/deepvis

Yosinki's Deep Visualization Toolbox is used to visualize different filters within selected layers.

Toolbox displays:

- **Input:** Selected input image for visualization
- Selected Channel: Filter selected within layer
- Deconv: Deconvolution of the selected filter to observe for which input pixels it was activated.
- Whole layer: All filters within selected layer.
- Gradient Ascent: Synthetic image generation for maximum activation from random noise by gradient ascent
- Top 9 images: From validation set leading to maximum activation.
- Deconv of top 9: Deconvolution of the filters of top 9 images leading to maximum activation.

Deep Visualization toolbox

Fine-tuned Alexnet Architecture for 160 class output

Alexnet Architecture for 160 class output is fine tuned upto 10500 iterations with final layer parameters: Ir_mult = 10 for weights

Ir_mult = 20 for bias

Yosinki's Deep Visualization Toolbox is used to visualize different filters within selected layer for sketches.

Target Class: Airplane Predicted Probabilities:

- 0.96 Airplane
- 0.04 Flying Bird

Deep Visualization toolbox

The Local Response Normalization (LRN) Layer after the 1st convolutional operation:

Filter Size: 11 x 11

• Stride: 4

• Output filters: 96

Normalized Layer 1

The Local Response Normalization (LRN) Layer after the 2nd convolutional operation:

• Filter Size: 5 x 5

Stride: 1

Output filters: 256

Normalized Layer 2

3rd Convolutional layer:

• Filter Size: 3 x 3

• Stride: 1

• Output filters: 384

4th Convolutional layer:

• Filter Size: 3 x 3

• Stride: 1

• Output filters: 384

5th Convolutional layer:

• Filter Size: 3 x 3

• Stride: 1

• Output filters: 256

Three fully connected layers with output neurons:

• FC6: 4096

• FC7:4096

• FC8:160

Fully Connected Layer 8

Softmax operation applied to the Fully Connected Layer 8 to observe the class probabilities

 White filter corresponds to the class predicted for the sketch by the network.

Output Probability

Visualizing layers by finding the Maximum Activated Input Patch & perform Deconvolution

- Finding the top 9 patches from the input images in validation set which maximally activate a filter for a certain layer.
- To understand which kind of features are learned by filters in different layers and observe their sensitivity towards certain classes & localized patches with certain geometry.
- Perform deconvolution for the filters that are activated by maximally activating input patches.

Visualization with Deconvnet

- 1. Unpooling
- 2. Rectification
- 3. Filtering

Zeiler, Matthew D. and Fergus, Rob. Visualizing and understanding convolutional networks. CoRR, abs/1311.2901, 2013. URL http://arxiv.org/abs/1311. 2901.

Input Patch for Maximum Activation

Deconvolution of the activated patch

- 11 x 11 Input Patch for 96th filter in 1st convolutional layer
- Filter sensitive to edge transition.

Input Patch for Maximum Activation

Deconvolution of the activated patch

- 51 x 51 Input Patch for 256th filter in 2nd convolutional layer
- Filter sensitive to straight lines.

Input Patch for Maximum Activation

Deconvolution of the activated patch

- 99 x 99 Input Patch for 384th filter in 3rd convolutional layer
- Filter sensitive to specific parts of sketches like circles in middle i.e. eyes, wheel etc.

Input Patch for Maximum Activation

Deconvolution of the activated patch

- 131 x 131 Input Patch for 384th filter in 4th convolutional layer
- Filter sensitive to specific classes like chairs, present, envelope etc.

Input Match for Maximum Activation

Deconvolution of the activated patch

- 163 x 163 Input Patch for 256th filter in 5th convolutional layer
- Filter sensitive to specific classes that have curved geometry like snake, dragon, telephone etc.

Fully Connected Layer 8

Input Patch for Maximum Activation

Deconvolution of the activated patch

- 227 x 227 Input Patch (complete image) for 160th filter in 8th layer which is fully connected.
- Filter sensitive to the zebra class. (which is also 160th class in target attribute)

Softmax Probability Layer

Input Patch for Maximum Activation

Deconvolution of the activated patch

- 227 x 227 Input Patch for 256th filter in the final softmax layer.
- The final layer is sensitive to only certain hand drawn images of zebras.

Lab Meeting Presentation-2

May 31, 2017

Prerit Gupta
Summer Intern

Ravi Kiran Sarvadevabhatla PhD Student

Objective

- Characterizing Visual Representations within Sketch-a-Net
- Using Yosinki's Deep Visualization Toolbox to analyse the different layers of Alexnet for top 160 classes of TU Berlin Sketch Dataset.

Characterizing Visual Representation within SketchNets

Results from : Q. Yu, Y. Yang, Y.-Z. Song, T. Xiang, and T. Hospedales. Sketch-a-net that beats humans, BMVC, 2015

Conclusion

- Filters in lower level layers are sensitive to edges, patterns, corners, lines and certain localized geometries present in sketches.
- Filters in higher level layers are sensitive to certain classes & some specific objects in sketches.
- Deconvolution of the filters shows which input pixels resulted to activation within these filters as we map input space from feature space.

For next week ...

- Extending the usuage of Yosinski's Deep Visualization Toolbox to analyze sketch CNNs fine-tuned for sketches (VGG, GoogLeNet, ResNet) and Sketch-CNN (Matconvnet → Caffe)
- To plot histogram for every filter for the top 5 classes it is the most sensitive.
- Do a weighted sum of all the histograms to get a single histogram for every layer & compare the top classes for which it is sensitive with the class performance over network.

Thank You

