线性离散系统分析 离散系统稳定性

Outline

1 稳定性

2 稳定性判据

Topic

1 稳定性

2 稳定性判据

S域到Z域的映射

$$z = e^{sT}$$

$$s = \sigma + j\omega$$

$$z = e^{\sigma T} e^{j\omega T}$$

$$|z| = e^{\sigma T}$$

$$\angle z = \omega T$$

当 $\sigma = 0$ 时

对应到 z 平面的单位圆, 此时, ω 从 $-\infty \to \infty$ 时, z 平面上的点已绕单位圆运动了无数圈, 称 [$-\frac{\omega}{2}$, $\frac{\omega}{2}$] 为主要带.

主要映射关系:

- \mathcal{L}_{σ} 等 σ 线 · \mathcal{L}_{σ} \mathcal{L}_{σ} = $\mathbf{e}^{\sigma T}$
- 等 ω 线: 过原点射线∠z = ωT
- 等 ξ 线 (S 平面过原点射 线): 对数螺线

S域到Z域的映射

$$z = e^{sT}$$

$$s = \sigma + j\omega$$

$$z = e^{\sigma T} e^{j\omega T}$$

$$|z| = e^{\sigma T}$$

$$\angle z = \omega T$$

当 $\sigma = 0$ 时,

对应到 z 平面的单位圆, 此时, ω 从 $-\infty \to \infty$ 时, z 平面上的点 己绕单位圆运动了无数圈, 称 $[-\frac{\omega}{7},\frac{\omega}{7}]$ 为主要带.

主要映射关系:

- 等 σ 线: 圆: $|z| = e^{\sigma T}$
- 等ω线: 过原点射线:
- 等 ξ 线 (S 平面过原点射 线): 对数螺线

S域到Z域的映射

$$z = e^{sT}$$

$$s = \sigma + j\omega$$

$$z = e^{\sigma T} e^{j\omega T}$$

$$|z| = e^{\sigma T}$$

$$\angle z = \omega T$$

当 $\sigma = 0$ 时,

对应到 z 平面的单位圆, 此时, ω 从 $-\infty \to \infty$ 时, z 平面上的点 己绕单位圆运动了无数圈, 称 $[-\frac{\omega}{2}, \frac{\omega}{2}]$ 为主要带.

主要映射关系:

- 等 σ 线: 圆: $|z| = e^{\sigma T}$
- 等 ω 线: 过原点射线:
 ∠z = ωT
- 等 ξ 线 (S 平面过原点射 线): 对数螺线

离散系统的稳定性

- 稳定性定义: 离散系统在有界输入序列下, 输出序列也有界.
- 连续系统中: 闭环系统的特征根实部 σ 小于 (
- 离散系统中: |z| < 1, $(|z| = e^{\sigma})$
 - 差分方程: 特征根的模均小于 1
 - 。 闭环脉冲传递函数: 离散系统闭环特征根在 Z 平面的单位圆内 $(|z_i| < 1)$

离散系统的稳定性

- 稳定性定义: 离散系统在有界输入序列下, 输出序列也有界.
- 连续系统中: 闭环系统的特征根实部 σ 小于 0.
- 离散系统中: |z| < 1, $(|z| = e^{\sigma})$
 - 差分方程: 特征根的模均小于 1
 - 。 闭环脉冲传递函数: 离散系统闭环特征根在 Z 平面的单位圆内 $(|z_i| < 1)$

离散系统的稳定性

- 稳定性定义: 离散系统在有界输入序列下, 输出序列也有界.
- 连续系统中: 闭环系统的特征根实部 σ 小于 0.
- 离散系统中: |z| < 1 , $(|z| = e^{\sigma})$
 - 差分方程: 特征根的模均小于 1
 - 闭环脉冲传递函数: 离散系统闭环特征根在 Z 平面的单位圆内(|z_i| < 1)

Topic

1 稳定性

② 稳定性判据

W域的劳斯判据

Z 域变换到 W 域:

$$z = x + jy$$

$$w = u + jv$$

$$z = \frac{w+1}{w-1}$$

$$w = \frac{z+1}{z-1}$$

$$u + jv = \frac{x^2 + y^2 - 1 - 2y}{(x - 1)^2 + y^2}$$

$$z < 1 \iff u < 0$$

W域的劳斯判据

• Z 域变换到 W 域:

$$z = x + jy$$

$$w = u + jv$$

$$z = \frac{w+1}{w-1}$$

$$w = \frac{z+1}{z-1}$$

• 等价关系:

$$u + jv = \frac{x^2 + y^2 - 1 - 2yj}{(x - 1)^2 + y^2}$$

 $|z| < 1 \Leftrightarrow u < 0$

● 可在 W 域中使用 Routh 判据

W 域的劳斯判据

Z 域変換到 W 域:

$$z = x + jy$$

$$w = u + jv$$

$$z = \frac{w+1}{w-1}$$

$$w = \frac{z+1}{z-1}$$

• 等价关系:

$$u + jv = \frac{x^2 + y^2 - 1 - 2yj}{(x - 1)^2 + y^2}$$

 $|z| < 1 \Leftrightarrow u < 0$

• 可在 W 域中使用 Routh 判据.

W 域的劳斯判据示例:

分有无采样开关 (T=0.1s) 两种情况分析使系统稳定的 k 需要满足的条件.

解:

无采样开关时

$$D(s) = 0.1s^2 + s + k$$

得: k>0

W 域的劳斯判据示例:

分有无采样开关 (T=0.1s) 两种情况分析使系统稳定的 k 需要满足的条件.

解:

无采样开关时:

$$D(s) = 0.1s^2 + s + k$$

得: *k* > 0

W 域的劳斯判据示例 (续): 有采样开关时:

$$G(z) = \mathcal{Z}\left[\frac{k}{s(1+0.1s)}\right] = \frac{0.632kz}{z^2 - 1.368z + 0.368}$$

$$\Phi(z) = \frac{G(z)}{1+G(z)}$$

$$D(z) = z^2 + (0.632k - 1.368)z + 0.368$$

$$z = \frac{w+1}{w-1}$$

$$D(w) = 0.632kw^2 + 1.264w + (2.736 - 0.632k)$$

W 域的劳斯判据示例 (续): 有采样开关时:

• Routh 表:

$$w^2$$
 0.632 k 2.7360 - 0.632 k w^1 1.264 0 w^0 2.736 - 0.632 k

• 得:

$$0.632k > 0$$
$$2.736 - 0.632k > 0$$

• 得:

• 采样开关对稳定性有很大影响

W 域的劳斯判据示例 (续): 有采样开关时:

• Routh 表:

$$w^2$$
 0.632 k 2.7360 - 0.632 k w^1 1.264 0 w^0 2.736 - 0.632 k

• 得:

$$0.632k > 0$$
$$2.736 - 0.632k > 0$$

• 得:

• 采样开关对稳定性有很大影响.

Topic

1 稳定性

2 稳定性判据

- 系统开环增益
 - 。 k↑则离散系统稳定性下降
 - 。 k↓则离散系统稳定性提高
- 采样周期
 - T↑则离散系统稳定性下降
 - T↓则离散系统稳定性提高

- 系统开环增益
 - k↑则离散系统稳定性下降
 - k↓则离散系统稳定性提高
- 采样周期
 - T↑则离散系统稳定性下降
 - T↓则离散系统稳定性提高

- 系统开环增益
 - k↑则离散系统稳定性下降
 - k↓则离散系统稳定性提高
- 采样周期
 - T↑则离散系统稳定性下降
 - T↓则离散系统稳定性提高