- Factors affecting reliablity of state-space age-structured assessment models
- Timothy J. Miller¹, Britten, Brooks, Fay, Legault, Stock, et al.
- ⁴ ¹corresponding author: timothy.j.miller@noaa.gov, Northeast Fisheries Science Center,
- 5 Woods Hole Laboratory, 166 Water Street, Woods Hole, MA 02543 USA

1

- 7 Abstract
- 8 Keywords

₉ 1 Introduction

- Application of state-space models in fisheries stock assessment and management has ex-
- panded dramatically within ICES, Canada and the Northeast US (Nielsen and Berg, 2014;
- ¹² Cadigan, 2016; Stock and Miller, 2021).
- 13 Much is known about the reliability of state-space models that are linear or Gaussian (Ae-
- berhard et al., 2018), but applications in fisheries management are nonlinear and typically
- include multiple types of observations with varying distributional assumptions. We know
- relatively little about the statistical reliability of such models. Also, there is a wide range
- of potential random effects structures in assessment models and we know little about the
- ability of information criteria to distinguish among such alternative structures.
- But those studies focus primarily on Gaussian linear models. review literature on reliability
- of hidden/latent process models. Primarily in other fields.
- 21 Here we conduct a simulation study with operating models varying by degree of observation
- ²² error uncertainty, sources of process error (M, NAA, q, sel), and fishing history. The simu-
- 23 lations from these operating models are fitted with estimating models that make alternative
- 24 assumptions for sources of process error (M, NAA< q, sel), whether a stock-recruit model was
- estimated, and whether M is estimated. We evaluate whether AIC can correctly determine
- the correct source of process error and stock effects on recruitment. We also evaluate the
- degree of bias in the outputs of the assessment model that are important for management.

$_{28}$ 2 Methods

- 29 Used the WHAM package (Stock and Miller, 2021, commit 77bbd94) (Miller and Stock
- 2020). This packages has also been used to configure operating and estimating models for
- closed loop simulations evaluating index-based assessment methods (Legault et al., In press)
- and is used for management of haddock, butterfish, plaice, bluefish in the Northeast US.

- We completed a simulation study with a number of operating models that can be categorized
- based on where random effects are assumed: abundance at age, natural mortality, fleet
- selectivity, or index catchability. For each operating model assumptions about variance of
- process errors and observations are required and the values we used were based on a review
- of the range of estimates from recent applications of WHAM in management of stocks of
- haddock, butterfish, and American plaice in the NE US.
- We simulated 100 data sets for each operating model. For each simulated data from each
- 40 operating model we fit a set of estimating models.
- 41 Y estimating models fit to each

$_{\scriptscriptstyle{42}}$ 2.1 Operating models

- common to all:
- ages = 1 to 10+, M maturity
- 45 marginal standard deviations for random effects are defined in tables of operating models.

46 2.1.1 Population

- There are 10 age classes: ages 1 to 10+.
- Spawning was assumed to occur 1/4 of the way through the year.
- Natural mortality rate was assumed 0.2 when it was constant and the mean of the time series
- process for operating models with M random effects. maturity a50 = 2.89, slope = 0.88
- 51 Weight at age was generated with a LVB growth

$$L_a = L_\infty \left(1 - e^{-k(a - t_0)} \right)$$

where $t_0 = 0$, $L_{\infty} = 85$, and k = 0.3, and a L-W relationship such that

$$W_a = \theta_1 L_a^{\theta_2}$$

where $\theta_1 = e^{-12.1}$ and $\theta_2 = 3.2$.

We assumed a Beverton-Holt stock recruit function with constant pre-recruit mortality parameters for all operating models. All post-recruit productivity components are constant in the NAA and survey catchability process error operating models. Therefore steepness and unfished recruitment are also constant over the time period for those operating models (Miller and Brooks 2021). We specified unfished recruitment = $R_0 = e^{10}$ and $F_{\rm MSY} = F_{40} = 0.348$ equated to a steepness of 0.69 and $\alpha = 0.60$ and $\beta = 2.4 \times 10^{-5}$ for the

$$N_{1,y} = \frac{\alpha SSB_{y-1}}{1 + \beta SSB_{y-1}}$$

- 60 Beverton-Holt parameterization.
- The magnitude of the overfishing assumptions is based on average estimates of overfishing
- for NE groundfish stocks from Wiedenmann et al. (20XX). Legault et al. (2023) also used
- 63 similar approaches to defining fishing mortality histories for operating models.
- 64 Currenlty, initial population is configured at the equilibrium distribution fishing at F=
- $65 \ 2.5 \times F_{\rm MSY}.$
- Initial population was configured at the equilibrium distribution fishing at either $F=2.5 \times$
- F_{MSY} or $F = F_{MSY}$ for the two alternative fishing histories. That is for a deterministic model,
- the age composition would not change over time when the fishing mortality was constant at
- the respective level.
- For operating models with time-varying random effects for M, steepness is not constant, but
- ve used the same alpha and beta parameters as other operating models this equates to a
- steepness and R0 at the mean of the time series process for M. For operating models with

- time-varying random effects for fishery selectivity, Fmsy is also not constant however we
- ⁷⁴ use the same F history as other operating models which corresponds to Fmsy at the mean
- ⁷⁵ selectivity parameters.

76 2.1.2 Fleets

- We assumed a single fleet operating year round for catch observations with logistic selectivity
- for the fleet with $a_{50}=5$ and slope =1. This selectivity is was used to define $F_{
 m MSY}$
- ⁷⁹ for the Beverton-Holt stock recruitment parameters above. We assumed a logistic-normal
- distribution for the age-composition observations for the fleet.

81 2.1.3 Fishing histories

- All operating models assumed one of two different fishing histories. One: Fishing mortality
- is equal to Fmsy (0.348) for the whole 40 year period. Two: Fishing mortality is 2.5 times
- Fmsy for the first 20 years then changes to Fmsy for the last 20 years.

85 **2.1.4** Indices

- Two time series of surveys are assumed and observed in numbers rather than biomass for
- the entire 40 year period with one occurring in the spring (0.25 way through the year) and
- one in the fall (0.75 way through the year). Actually we have it currently configured that
- both occur 0.5 way through the year. Catchability of both surveys are assumed to be 0.1.
- We assumed logistic selectivity for both indices with $a_{50} = 5$ and slope = 1. We assumed a
- 91 logistic-normal distribution for the age-composition observations.

92 2.1.5 Observation Uncertainty

- Standard deviation for log-aggregate catch was 0.1. There were two levels of observation error
- variance for indices and age composition for both indices and fleet catch. A low uncertainty

- 95 specification assumed standard deviation of both series of log-aggregate index observations
- was 0.1 and the standard deviation of the logistic-normal for age composition observations
- was 0.3 In the high uncertainty specification the standard deviation for log-aggregate indices
- was 0.4 and that for the age composition observations was 1.5. For all estimating models,
- 99 standard deviation for log-aggregate observations was assumed known whereas that for the
- logistic-normal age composition observations was estimated.

101 2.1.6 Operating models with random effects on numbers at age

¹⁰² 24 operating models, 16 Sel re operating models and 16 q re operating models. Table of

103 process error assumptions

2.1.7 Operating models with random effects on natural mortality

- 105 16 operating models Table of process error assumptions
- 106 NOTE: inv trans rho function in set M.R is mis-defined. Will affect correlation parame-
- ters assigned in operating models?
- Steepness and BRPs are not constant when M is time-varying (Miller and Brooks 2021). We
- uses the a/b parameters for the B-H defined for Fmsy = F40 at the mean M = 0.2 as defined
- 110 above.

2.1.8 Operating models with random effects on fleet selectivity

- 112 16 operating models Table of process error assumptions
- 113 BRPs are not constant when fleet selectivity is time-varying. We uses the a/b parameters
- 114 for the B-H defined for Fmsy = F40 at the mean of the time series model for selectivity
- which is the same as the constant selectivity defined above.

116 2.1.9 Operating models with random effects on index catchability

117 16 operating models Table of process error assumptions

$_{\scriptscriptstyle 118}$ 2.2 Estimating models

- 32 estimating models Table of estimating models
- 1-20 fit to each NAA RE operating model 5-24 fit to each M RE operating model 5-20,25-28
- to each sel RE operating model 5-20, 29-32 to each q RE operating model
- 122 SR estimation or not
- Make plot of S-R curve, Fmsy = F40 Initial values for BH parameters are the true values.
- 124 Initial values for mean R model = true R0.
- 125 M estimation or not
- NAA_re Random effects on Recruitment only or random effects on recruitment and transi-
- tions among older numbers at age.
- 128 M_re Random effects on Recruitment only, M constant across age.
- sel_re Random effects on Recruitment only, fleet logistic selectivity RE model?
- 130 q re Random effects on Recruitment only, one survey catchability RE model?
- 131 Simulations were all carried out on the University of Massachusetts Green High-Performance
- 132 Computing Cluster. Code for completing the simulations and summarization of results can be
- found at github.com/timjmiller/SSRTWG/Project 0. We used the wham package version
- 1.34 1.X.X (commit 77bbd94).

3 Results

Do each of these by type of operating model (Naa, M, sel, q) Convergence performance

- 137 AIC performance
- 138 SR estimation? M estimation?
- $_{139}$ Bias, Mean Square error
- 140 Certain basic parameters (stock-recruit pars, M, variance parameters) SSB, F, R

- 3.1 Numbers at age operating models
- $^{142}\,$ 3.1.1 Estimating models include alternative random effects options: NAA, M, sel, q

Table 1. Distinguishing characteristics of the operating models with random effects on survival. Standard deviations (SD) are for log-normal distributed indices and logistic normal distributed age composition observations (fleet and indices). Fishing mortality changes after year 20 (of 40) for fishing histories where fishing mortality is not constant.

Model	σ_R	σ_{2+}	Fishing History	Observation Uncertainty
NAA_1	0.5		$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.1, Age composition SD = 0.3
NAA_2	1.5		$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.1, Age composition SD = 0.3
NAA_3	0.5	0.25	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.1, Age composition SD = 0.3
NAA_4	1.5	0.25	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.1, Age composition SD = 0.3
NAA_5	0.5	0.50	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.1, Age composition SD = 0.3
NAA_6	1.5	0.50	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.1, Age composition SD = 0.3
NAA_7	0.5		$F_{ m MSY}$	Index SD = 0.1, Age composition SD = 0.3
NAA_8	1.5		$F_{ m MSY}$	Index SD = 0.1, Age composition SD = 0.3
NAA_9	0.5	0.25	$F_{ m MSY}$	Index SD = 0.1, Age composition SD = 0.3
NAA_{10}	1.5	0.25	$F_{ m MSY}$	Index SD = 0.1, Age composition SD = 0.3
NAA_{11}	0.5	0.50	$F_{ m MSY}$	Index SD = 0.1, Age composition SD = 0.3
NAA_{12}	1.5	0.50	$F_{ m MSY}$	Index SD = 0.1, Age composition SD = 0.3
NAA_{13}	0.5		$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.4 , Age composition SD = 1.5
NAA_{14}	1.5		$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.4 , Age composition SD = 1.5
NAA_{15}	0.5	0.25	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.4 , Age composition SD = 1.5
NAA_{16}	1.5	0.25	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.4 , Age composition SD = 1.5
NAA_{17}	0.5	0.50	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.4 , Age composition SD = 1.5
NAA_{18}	1.5	0.50	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.4 , Age composition SD = 1.5
NAA_{19}	0.5		$F_{ m MSY}$	Index SD = 0.4 , Age composition SD = 1.5
NAA_{20}	1.5		$F_{ m MSY}$	Index SD = 0.4 , Age composition SD = 1.5
NAA_{21}	0.5	0.25	$F_{ m MSY}$	Index SD = 0.4 , Age composition SD = 1.5
NAA_{22}	1.5	0.25	$F_{ m MSY}$	Index SD = 0.4, Age composition SD = 1.5
NAA_{23}	0.5	0.50	$F_{ m MSY}$	Index SD = 0.4 , Age composition SD = 1.5
NAA_{24}	1.5	0.50	$F_{ m MSY}$	Index SD = 0.4 , Age composition SD = 1.5

Table 2. Distinguishing characteristics of the operating models with random effects on natural mortality. Standard deviations (SD) are for log-normal distributed indices and logistic normal distributed age composition observations (fleet and indices). Fishing mortality changes after year 20 (of 40) for fishing histories where fishing mortality is not constant. For AR1 process errors, σ is defined for the marginal distribution of the processes.

Model	σ_R	σ_{M}	ρ_M	Fishing History	Observation Uncertainty
M_1	0.5	0.1	0.0	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.1 , Age composition SD = 0.3
M_2	0.5	0.5	0.0	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.1 , Age composition SD = 0.3
M_3	0.5	0.1	0.9	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.1 , Age composition SD = 0.3
M_4	0.5	0.5	0.9	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.1 , Age composition SD = 0.3
M_5	0.5	0.1	0.0	$F_{ m MSY}$	Index SD = 0.1 , Age composition SD = 0.3
M_6	0.5	0.5	0.0	$F_{ m MSY}$	Index SD = 0.1 , Age composition SD = 0.3
M_7	0.5	0.1	0.9	$F_{ m MSY}$	Index SD = 0.1 , Age composition SD = 0.3
M_8	0.5	0.5	0.9	$F_{ m MSY}$	Index SD = 0.1 , Age composition SD = 0.3
M_9	0.5	0.1	0.0	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.4 , Age composition SD = 1.5
M_{10}	0.5	0.5	0.0	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.4 , Age composition SD = 1.5
M_{11}	0.5	0.1	0.9	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.4 , Age composition SD = 1.5
M_{12}	0.5	0.5	0.9	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.4 , Age composition SD = 1.5
M_{13}	0.5	0.1	0.0	$F_{ m MSY}$	Index SD = 0.4 , Age composition SD = 1.5
M_{14}	0.5	0.5	0.0	$F_{ m MSY}$	Index SD = 0.4 , Age composition SD = 1.5
M_{15}	0.5	0.1	0.9	$F_{ m MSY}$	Index SD = 0.4 , Age composition SD = 1.5
M_{16}	0.5	0.5	0.9	$F_{ m MSY}$	Index SD = 0.4 , Age composition SD = 1.5

Model	σ_R	$\sigma_{ m Sel}$	$ ho_{ m Sel}$	Fishing History	Observation Uncertainty
Sel_1	0.5	0.1	0.0	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.1 , Age composition SD = 0.3
Sel_2	0.5	0.5	0.0	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.1 , Age composition SD = 0.3
Sel_3	0.5	0.1	0.9	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.1 , Age composition SD = 0.3
Sel_4	0.5	0.5	0.9	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.1 , Age composition SD = 0.3
Sel_5	0.5	0.1	0.0	$F_{ m MSY}$	Index SD = 0.1 , Age composition SD = 0.3
Sel_6	0.5	0.5	0.0	$F_{ m MSY}$	Index SD = 0.1 , Age composition SD = 0.3
Sel_{7}	0.5	0.1	0.9	$F_{ m MSY}$	Index SD = 0.1 , Age composition SD = 0.3
Sel_8	0.5	0.5	0.9	$F_{ m MSY}$	Index SD = 0.1 , Age composition SD = 0.3
Sel_9	0.5	0.1	0.0	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.4 , Age composition SD = 1.5
Sel_{10}	0.5	0.5	0.0	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.4 , Age composition SD = 1.5
Sel_{11}	0.5	0.1	0.9	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.4 , Age composition SD = 1.5
Sel_{12}	0.5	0.5	0.9	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.4 , Age composition SD = 1.5
Sel_{13}	0.5	0.1	0.0	$F_{ m MSY}$	Index SD = 0.4 , Age composition SD = 1.5
Sel_{14}	0.5	0.5	0.0	$F_{ m MSY}$	Index SD = 0.4 , Age composition SD = 1.5
Sel_{15}	0.5	0.1	0.9	$F_{ m MSY}$	Index SD = 0.4 , Age composition SD = 1.5
Sel_{16}	0.5	0.5	0.9	$F_{ m MSY}$	Index SD = 0.4 , Age composition SD = 1.5

Table 4. Distinguishing characteristics of the operating models with random effects on catchability. Standard deviations (SD) are for log-normal distributed indices and logistic normal distributed age composition observations (fleet and indices). Fishing mortality changes after year 20 (of 40) for fishing histories where fishing mortality is not constant. For AR1 process errors, σ is defined for the marginal distribution of the processes.

Model	σ_R	σ_q	ρ_q	Fishing History	Observation Uncertainty
q_1	0.5	0.1	0.0	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.1 , Age composition SD = 0.3
q_2	0.5	0.5	0.0	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.1 , Age composition SD = 0.3
q_3	0.5	0.1	0.9	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.1 , Age composition SD = 0.3
q_4	0.5	0.5	0.9	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.1 , Age composition SD = 0.3
q_5	0.5	0.1	0.0	$F_{ m MSY}$	Index SD = 0.1 , Age composition SD = 0.3
q_6	0.5	0.5	0.0	$F_{ m MSY}$	Index SD = 0.1 , Age composition SD = 0.3
q_7	0.5	0.1	0.9	$F_{ m MSY}$	Index SD = 0.1 , Age composition SD = 0.3
q_8	0.5	0.5	0.9	$F_{ m MSY}$	Index SD = 0.1 , Age composition SD = 0.3
q_9	0.5	0.1	0.0	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.4 , Age composition SD = 1.5
q_{10}	0.5	0.5	0.0	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.4 , Age composition SD = 1.5
q_{11}	0.5	0.1	0.9	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.4 , Age composition SD = 1.5
q_{12}	0.5	0.5	0.9	$2.5F_{\mathrm{MSY}} \to F_{\mathrm{MSY}}$	Index SD = 0.4 , Age composition SD = 1.5
q_{13}	0.5	0.1	0.0	$F_{ m MSY}$	Index SD = 0.4 , Age composition SD = 1.5
q_{14}	0.5	0.5	0.0	$F_{ m MSY}$	Index SD = 0.4 , Age composition SD = 1.5
q_{15}	0.5	0.1	0.9	$F_{ m MSY}$	Index SD = 0.4 , Age composition SD = 1.5
q_{16}	0.5	0.5	0.9	$F_{ m MSY}$	Index SD = 0.4 , Age composition SD = 1.5

Table 5. Distinguishing characteristics of the estimating models.

Model	Recruitment model	Mean M	Process error assumption
EM_1	Mean recruitment	0.2	Recruitment (σ_R estimated)
EM_2	Beverton-Holt	0.2	Recruitment (σ_R estimated)
EM_3	Mean recruitment	Estimated	Recruitment (σ_R estimated)
EM_4	Beverton-Holt	Estimated	Recruitment (σ_R estimated)
EM_5	Mean recruitment	0.2	Recruitment and survival $(\sigma_R, \sigma_{2+} \text{ estimated})$
EM_6	Beverton-Holt	0.2	Recruitment and survival $(\sigma_R, \sigma_{2+} \text{ estimated})$
EM_7	Mean recruitment	Estimated	Recruitment and survival (σ_R , σ_{2+} estimated)
EM_8	Beverton-Holt	Estimated	Recruitment and survival $(\sigma_R, \sigma_{2+} \text{ estimated})$
EM_9	Mean recruitment	0.2	Recruitment and uncorrelated natural mortality (σ_R, σ_M estimated, $\rho_M = 0$)
EM_{10}	Beverton-Holt	0.2	Recruitment and uncorrelated natural mortality (σ_R, σ_M estimated, $\rho_M = 0$)
EM_{11}	Mean recruitment	Estimated	Recruitment and uncorrelated natural mortality (σ_R , σ_M estimated, $\rho_M=0$)
EM_{12}	Beverton-Holt	Estimated	Recruitment and uncorrelated natural mortality (σ_R,σ_M estimated, $\rho_M=0$)
EM_{13}	Mean recruitment	0.2	Recruitment and uncorrelated fleet selectivity (σ_R , $\sigma_{\rm Sel}$ estimated, $\rho_{\rm Sel}=0$)
EM_{14}	Beverton-Holt	0.2	Recruitment and uncorrelated fleet selectivity (σ_R , $\sigma_{\rm Sel}$ estimated, $\rho_{\rm Sel}=0$)
EM_{15}	Mean recruitment	Estimated	Recruitment and uncorrelated fleet selectivity (σ_R , $\sigma_{\rm Sel}$ estimated, $\rho_{\rm Sel}=0$)
EM_{16}	Beverton-Holt	Estimated	Recruitment and uncorrelated fleet selectivity (σ_R , $\sigma_{\rm Sel}$ estimated, $\rho_{\rm Sel}=0$)
EM_{17}	Mean recruitment	0.2	Recruitment and uncorrelated catchability (spring index) (σ_R, σ_q) estimated, $\rho_q = 0$
EM_{18}	Beverton-Holt	0.2	Recruitment and uncorrelated catchability (spring index) (σ_R, σ_q) estimated, $\rho_q = 0$
EM_{19}	Mean recruitment	Estimated	Recruitment and uncorrelated catchability (spring index) $(\sigma_R, \sigma_q \text{estimated}, \rho_q = 0)$
EM_{20}	Beverton-Holt	Estimated	Recruitment and uncorrelated catchability (spring index) $(\sigma_R, \sigma_q \text{estimated}, \rho_q = 0)$
EM_{21}	Mean recruitment	0.2	Recruitment and AR1 natural mortality (σ_R , σ_M , ρ_M estimated)
EM_{22}	Beverton-Holt	0.2	Recruitment and AR1 natural mortality (σ_R , σ_M , ρ_M estimated)
EM_{23}	Mean recruitment	Estimated	Recruitment and AR1 natural mortality $(\sigma_R, \sigma_M, \rho_M \text{ estimated})$
EM_{24}	Beverton-Holt	Estimated	Recruitment and AR1 natural mortality (σ_R , σ_M , ρ_M estimated)
EM_{25}	Mean recruitment	0.2	Recruitment and AR1 selectivity (σ_R , $\sigma_{\rm Sel}$, $\rho_{\rm Sel}$ estimated)
EM_{26}	Beverton-Holt	0.2	Recruitment and AR1 selectivity (σ_R , $\sigma_{\rm Sel}$, $\rho_{\rm Sel}$ estimated)
EM_{27}	Mean recruitment	Estimated	Recruitment and AR1 selectivity (σ_R , $\sigma_{\rm Sel}$, $\rho_{\rm Sel}$ estimated)
EM_{28}	Beverton-Holt	Estimated	Recruitment and AR1 selectivity (σ_R , $\sigma_{\rm Sel}$, $\rho_{\rm Sel}$ estimated)
EM_{29}	Mean recruitment	0.2	Recruitment and AR1 catchability (spring index) $(\sigma_R, \sigma_q, \rho_q \text{estimated})$
${\rm EM}_{30}$	Beverton-Holt	0.2	Recruitment and AR1 catchability (spring index) (σ_R , σ_q , ρ_q estimated)
EM_{31}	Mean recruitment	Estimated	Recruitment and AR1 catchability (spring index) (σ_R , σ_q , ρ_q estimated)
EM_{32}	Beverton-Holt	Estimated	Recruitment and AR1 catchability (spring index) $(\sigma_R, \sigma_q, \rho_q)$ estimated)

Table 6. NAA operating models, estimating models all assume a B-H stock recruit relationship and M is fixed at the true value.

σ_R	σ_N	F-history	Obs Error	R only	NAA	Μ	Sel	q
0.5		H-MSY	L	96	0	0	0	4
1.5		H-MSY	${ m L}$	96	0	0	0	4
0.5	0.25	H-MSY	${ m L}$	0	100	0	0	0
1.5	0.25	H-MSY	${ m L}$	0	100	0	0	0
0.5	0.50	H-MSY	${ m L}$	0	96	4	0	0
1.5	0.50	H-MSY	${ m L}$	0	100	0	0	0
0.5		MSY	${ m L}$	97	0	0	0	3
1.5		MSY	${ m L}$	96	0	0	0	4
0.5	0.25	MSY	${ m L}$	0	99	1	0	0
1.5	0.25	MSY	${ m L}$	0	99	1	0	0
0.5	0.50	MSY	${ m L}$	0	100	0	0	0
1.5	0.50	MSY	${ m L}$	0	99	1	0	0
0.5		H-MSY	Н	94	0	0	0	6
1.5		H-MSY	Н	94	0	0	0	6
0.5	0.25	H-MSY	Н	46	50	0	0	4
1.5	0.25	H-MSY	Н	65	30	0	0	5
0.5	0.50	H-MSY	Н	1	99	0	0	0
1.5	0.50	H-MSY	Н	0	98	0	0	2
0.5		MSY	Н	94	0	0	0	6
1.5		MSY	Н	95	0	0	0	5
0.5	0.25	MSY	Н	45	52	0	0	3
1.5	0.25	MSY	Н	63	28	0	0	9
0.5	0.50	MSY	Н	0	100	0	0	0
1.5	0.50	MSY	Н	0	98	1	0	1

Table 7. NAA operating models, estimating models all assume a B-H stock recruit relationship and M is estimated.

σ_R	σ_N	F-history	Obs Error	R only	NAA	M	Sel	q
0.5		H-MSY	L	96	0	0	0	4
1.5		H-MSY	${ m L}$	96	0	0	0	4
0.5	0.25	H-MSY	${ m L}$	0	98	1	1	0
1.5	0.25	H-MSY	${ m L}$	0	100	0	0	0
0.5	0.50	H-MSY	${ m L}$	0	97	3	0	0
1.5	0.50	H-MSY	${ m L}$	0	96	2	2	0
0.5		MSY	${ m L}$	95	1	0	0	4
1.5		MSY	${ m L}$	93	3	0	0	4
0.5	0.25	MSY	${ m L}$	0	94	1	5	0
1.5	0.25	MSY	${ m L}$	0	85	5	3	0
0.5	0.50	MSY	${ m L}$	0	91	7	1	1
1.5	0.50	MSY	${ m L}$	0	77	20	0	1
0.5		H-MSY	Н	94	0	0	0	6
1.5		H-MSY	Н	96	0	0	0	4
0.5	0.25	H-MSY	Н	50	47	0	0	3
1.5	0.25	H-MSY	Н	68	28	0	0	4
0.5	0.50	H-MSY	Н	1	99	0	0	0
1.5	0.50	H-MSY	Н	0	97	1	0	2
0.5		MSY	Н	78	15	0	1	4
1.5		MSY	Н	69	21	0	2	6
0.5	0.25	MSY	Н	45	41	0	0	6
1.5	0.25	MSY	Н	37	44	1	0	8
0.5	0.50	MSY	Н	3	79	0	0	11
1.5	0.50	MSY	Н	4	69	7	1	13

Table 8. NAA operating models, estimating models all estimate a mean recruitment and M is fixed at the true value.

σ_R	σ_N	F-history	Obs Error	R only	NAA	Μ	Sel	q
0.5		H-MSY	L	96	0	0	0	4
1.5		H-MSY	${ m L}$	96	0	0	0	4
0.5	0.25	H-MSY	${ m L}$	0	99	0	1	0
1.5	0.25	H-MSY	${ m L}$	0	100	0	0	0
0.5	0.50	H-MSY	${ m L}$	0	99	1	0	0
1.5	0.50	H-MSY	${ m L}$	0	97	3	0	0
0.5		MSY	${ m L}$	97	0	0	0	3
1.5		MSY	${ m L}$	96	0	0	0	4
0.5	0.25	MSY	${ m L}$	0	100	0	0	0
1.5	0.25	MSY	${ m L}$	0	100	0	0	0
0.5	0.50	MSY	${ m L}$	0	100	0	0	0
1.5	0.50	MSY	${ m L}$	0	100	0	0	0
0.5		H-MSY	Н	94	0	0	0	6
1.5		H-MSY	Н	94	0	0	0	6
0.5	0.25	H-MSY	Н	48	48	0	0	4
1.5	0.25	H-MSY	Н	65	30	0	0	5
0.5	0.50	H-MSY	Н	0	99	1	0	0
1.5	0.50	H-MSY	Н	0	99	0	0	1
0.5		MSY	Н	94	0	0	0	6
1.5		MSY	Н	95	0	0	0	5
0.5	0.25	MSY	Н	46	51	0	0	3
1.5	0.25	MSY	Н	63	28	0	0	9
0.5	0.50	MSY	Н	0	100	0	0	0
1.5	0.50	MSY	Н	0	98	1	0	1

Table 9. NAA operating models, estimating models all estimate a mean recruitment and \mathcal{M} estimated.

σ_R	σ_N	F-history	Obs Error	R only	NAA	Μ	Sel	q
0.5		H-MSY	L	96	0	0	0	4
1.5		H-MSY	${ m L}$	96	0	0	0	4
0.5	0.25	H-MSY	${ m L}$	0	99	0	1	0
1.5	0.25	H-MSY	${ m L}$	0	100	0	0	0
0.5	0.50	H-MSY	${ m L}$	0	99	1	0	0
1.5	0.50	H-MSY	${ m L}$	0	97	3	0	0
0.5		MSY	${ m L}$	97	0	0	0	3
1.5		MSY	${ m L}$	96	0	0	0	4
0.5	0.25	MSY	${ m L}$	0	100	0	0	0
1.5	0.25	MSY	${ m L}$	0	100	0	0	0
0.5	0.50	MSY	${ m L}$	0	100	0	0	0
1.5	0.50	MSY	${ m L}$	0	100	0	0	0
0.5		H-MSY	Н	94	0	0	0	6
1.5		H-MSY	Н	94	0	0	0	6
0.5	0.25	H-MSY	Н	48	48	0	0	4
1.5	0.25	H-MSY	Н	65	30	0	0	5
0.5	0.50	H-MSY	Н	0	99	1	0	0
1.5	0.50	H-MSY	Н	0	99	0	0	1
0.5		MSY	Н	94	0	0	0	6
1.5		MSY	Н	95	0	0	0	5
0.5	0.25	MSY	Н	46	51	0	0	3
1.5	0.25	MSY	Н	63	28	0	0	9
0.5	0.50	MSY	Н	0	100	0	0	0
1.5	0.50	MSY	Н	0	98	1	0	1

 144 3.1.2 Estimating models include NAA random effects and estimation assumes 145 mean R or BH SR

Table 10. Operating models and estimation models all assume RE on recruitment only, estimating models assume mean recruitment or a B-H stock recruit relationship and M is fixed at the true value.

σ_R	σ_N	F-history	Obs Error	R only	ВН
0.5		H-MSY	L	46	54
1.5		H-MSY	${ m L}$	82	18
0.5		MSY	${ m L}$	71	29
1.5		MSY	${ m L}$	85	15
0.5		H-MSY	Н	51	49
1.5		H-MSY	Н	82	18
0.5		MSY	Н	72	28
1.5		MSY	Н	86	14

Table 11. Operating models and estimation models all assume RE on recruitment only, estimating models assume mean recruitment or a B-H stock recruit relationship and M is estimated.

σ_R	σ_N	F-history	Obs Error	R only	ВН
0.5		H-MSY	L	45	55
1.5		H-MSY	${ m L}$	82	18
0.5		MSY	${ m L}$	70	30
1.5		MSY	${ m L}$	87	13
0.5		H-MSY	Н	56	44
1.5		H-MSY	Н	82	18
0.5		MSY	Н	75	25
1.5		MSY	Н	84	16

Table 12. Operating models and estimation models all assume RE on all abundances at age, estimating models assume mean recruitment or a B-H stock recruit relationship and M is fixed at the true value.

σ_R	σ_N	F-history	Obs Error	R only	ВН
0.5	0.25	H-MSY	${ m L}$	43	57
1.5	0.25	H-MSY	${ m L}$	84	16
0.5	0.50	H-MSY	${ m L}$	33	67
1.5	0.50	H-MSY	${ m L}$	77	23
0.5	0.25	MSY	${ m L}$	69	31
1.5	0.25	MSY	${ m L}$	88	12
0.5	0.50	MSY	${ m L}$	55	45
1.5	0.50	MSY	${ m L}$	87	13
0.5	0.25	H-MSY	Н	57	43
1.5	0.25	H-MSY	Н	84	16
0.5	0.50	H-MSY	Н	66	34
1.5	0.50	H-MSY	Н	79	21
0.5	0.25	MSY	Н	78	22
1.5	0.25	MSY	Н	88	12
0.5	0.50	MSY	Н	73	27
1.5	0.50	MSY	Н	83	17

Table 13. Operating models and estimation models all assume RE on all abundances at age, estimating models assume mean recruitment or a B-H stock recruit relationship and M is estimated.

σ_R	σ_N	F-history	Obs Error	R only	ВН
0.5	0.25	H-MSY	${ m L}$	44	56
1.5	0.25	H-MSY	${ m L}$	84	16
0.5	0.50	H-MSY	${ m L}$	31	69
1.5	0.50	H-MSY	${ m L}$	80	20
0.5	0.25	MSY	${ m L}$	68	32
1.5	0.25	MSY	${ m L}$	88	12
0.5	0.50	MSY	${ m L}$	55	45
1.5	0.50	MSY	${ m L}$	86	14
0.5	0.25	H-MSY	Н	59	41
1.5	0.25	H-MSY	Н	81	19
0.5	0.50	H-MSY	Н	67	33
1.5	0.50	H-MSY	Н	80	20
0.5	0.25	MSY	Н	66	34
1.5	0.25	MSY	Н	74	26
0.5	0.50	MSY	Н	74	26
1.5	0.50	MSY	Н	87	13

46 3.2 M operating models

147 3.2.1 Estimating models include NAA random effects and estimation assumes mean R or BH SR

Table 14. M random effects operating models.

σ_{M}	$ ho_M$	F-history	Obs Error	R (M fix)	BH (M fix)	R (M est)	BH (M est)
0.1	0.0	H-MSY	L	38	62	38	62
0.5	0.0	H-MSY	${ m L}$	42	58	42	58
0.1	0.0	MSY	${ m L}$	66	34	66	34
0.5	0.0	MSY	${ m L}$	70	30	58	41
0.1	0.0	H-MSY	Н	45	55	47	53
0.5	0.0	H-MSY	Н	56	43	54	45
0.1	0.0	MSY	Н	66	34	66	33
0.5	0.0	MSY	Н	72	28	57	42
0.1	0.9	H-MSY	${ m L}$	31	69	33	64
0.5	0.9	H-MSY	${ m L}$	15	73	16	64
0.1	0.9	MSY	${ m L}$	44	56	41	47
0.5	0.9	MSY	${ m L}$	12	76	10	69
0.1	0.9	H-MSY	Н	32	68	47	44
0.5	0.9	H-MSY	Н	10	78	21	51
0.1	0.9	MSY	Н	40	60	38	28
0.5	0.9	MSY	Н	22	64	22	49

4 Discussion

The estimating models assumed variances of aggregate catch and index observations was known. This approximation may be appropriate for indices where we have a reliable estimate of uncertainty based on the survey design (), but there may be better approaches for the aggregate catch such as an informed prior on the standard errors with realistic bounds.

154 Acknowledgements

This work was funded by NOAA Fisheries Northeast Fisheries Science Center.

References

- Aeberhard, W. H., Mills Flemming, J., and Nielsen, A. 2018. Review of State-Space Models for Fisheries Science 5(1): 215–235, doi: 10.1146/annurev-statistics-031017-100427.
- ¹⁵⁹ Cadigan, N. G. 2016. A state-space stock assessment model for northern cod, including under-
- reported catches and variable natural mortality rates. Canadian Journal of Fisheries and
- Aquatic Sciences **73**(2): 296–308, doi: 10.1139/cjfas-2015-0047.
- Legault, C. M., Wiedenmann, J., Deroba, J. J., Fay, G., Miller, T. J., Brooks, E. N., Bell,
- R. J., Langan, J. A., Cournane, J. M., Jones, A. W., and Muffley, B. In press. Data-
- rich but model-resistant: an evaluation of data-limited methods to manage fisheries with
- failed age-based stock assessments. Canadian Journal of Fisheries and Aquatic Sciences
- Doi: 10.1139/cjfas-2022-0045.
- Nielsen, A. and Berg, C. W. 2014. Estimation of time-varying selectivity in stock assessments using state-space models. Fisheries Research 158: 96–101, doi:
- 10.1016/j.fishres.2014.01.014.
- Stock, B. C. and Miller, T. J. 2021. The Woods Hole Assessment Model (WHAM): A general
- state-space assessment framework that incorporates time- and age-varying processes via
- random effects and links to environmental covariates. Fisheries Research 240: 105967,
- doi: 10.1016/j.fishres.2021.105967.