Лабораторная работа № 5

Дискреционное разграничение прав в Linux. Исследование влияния дополнительных атрибутов

Абу Сувейлим Мухаммед Мунифович

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выводы	15
Список литературы		16

Список иллюстраций

4.1	Компилятор дсс
4.2	Команда setenforce
4.3	Программа simpleid.c
4.4	Запуск программы simpleid.c
4.5	Программа simpleid2.c
4.6	Запуск программы simpleid2.c
4.7	Проверка правильности установки новых атрибутов
4.8	Программа readfile.c
4.9	Смена владельца у файла readfile.c
4.10) Чтения файла readfile.c
4.11	. Команда grep
4.12	2 Файл file01.txt
4.13	3 Чтения файла file01.txt от пользователя guest2
4.14	- Команда chmod -t /tmp
4.15	5 Команда chmod -t /tmp

Список таблиц

1 Цель работы

Изучение механизмов изменения идентификаторов, применения SetUID- и Sticky-битов. Получение практических навыков работы в консоли с дополнительными атрибутами. Рассмотрение работы механизма смены идентификатора процессов пользователей, а также влияние бита Sticky на запись и удаление файлов.

2 Задание

Создание программы и исследование Sticky-бита

3 Теоретическое введение

В метаданных каждого объекта (в inode файла/директории) содержится список разрешений на доступ к нему для разных категорий субъектов [1].

Атрибуты Minimal ACL поддерживают три базовых класса субъектов доступа к файлу (класс All объединяет все три класса):

User access (u) – доступ для владельца файла; Group access (g) – доступ для группы, владеющей файлом; Other access (o) – доступ для остальных пользователей (кроме пользователя root). All access (a) – доступ для всех субъектов доступа (u, g, o). Для каждого из этих классов определены три типа разрешений:

На чтение содержимого файла (read) – символ «r». На запись внутри файла или изменения его содержимого (write) – символ «w». На исполнение файла (если это бинарный исполняемый файл или файл сценария интерпретатора (execute)) – символ «x» [2].

4 Выполнение лабораторной работы

Проверяем, что у нас установлен компилятор дсс командой (рис. 4.1):

```
[rootgemabu smabu]* gcc -v
Mcnonsyprcm smytpensee cneuudphraugus.

COLLECT_COCE_D
```

Рис. 4.1: Компилятор дсс

Далее, отключим систему запретов до очередной перезагрузки системы командой (рис. 4.2):

```
[root@smabu smabu]# setenforce 0
[root@smabu smabu]# getenforce
Permissive
[root@smabu smabu]#
```

Рис. 4.2: Команда setenforce

Войдем в систему от имени пользователя guest и создадим программу simpleid.c (рис. 4.3):

```
simpleid.c

                                                                       =
   Открыть 🔻
                                                          Сохранить
                                                                             ×
 1 #include <svs/tvpes.h>
 2 #include <unistd.h>
 3 #include <stdio.h>
 4 int
 5 main ()
 6
           uid_t uid = geteuid ();
 8
           gid_t gid = getegid ();
           printf ("uid=%d, gid=%d\n", uid, gid);
 9
10
           return 0;
11
```

Рис. 4.3: Программа simpleid.c

Скомплилируйем программу и убедимся, что файл программы создан (рис. 4.4):

```
[guest@smabu lab05]$ touch simpleid.c
[guest@smabu lab05]$ ls
simpleid.c
[guest@smabu lab05]$ gcc simpleid.c -o simpleid
[guest@smabu lab05]$ ./simpleid
µid=1001, gid=1001
[guest@smabu lab05]$ id
µid=1001(guest) gid=1001(guest) группы=1001(guest) контекст=unconfined_u:uncon
fined_r:unconfined_t:s0-s0:c0.c1023
[guest@smabu lab05]$
```

Рис. 4.4: Запуск программы simpleid.c

Выполним программу simpleid и системную программу id. Видем, что полученный нами результат с данными предыдущего пункта задания и этого пункта задания совпадают.

Усложним программу, добавив вывод действительных идентификаторов (рис. 4.5):

```
simpleid2.c
  Открыть 🔻
                 ⊞
                                                                Сохранить
                                                                               ≡
 1 #include <sys/types.h>
2 #include <unistd.h>
3 #include <stdio.h>
4 int
5 main ()
6 {
7
           uid_t real_uid = getuid ();
8
           uid_t e_uid = geteuid ();
9
           gid_t real_gid = getgid ();
10
           gid_t e_gid = getegid () ;
           printf ("e_uid=%d, e_gid=%d\n", e_uid, e_gid);
printf ("real_uid=%d, real_gid=%d\n", real_uid, real_gid);
11
12
13
           return 0;
14 }
```

Рис. 4.5: Программа simpleid2.c

Скомпилируйем и запустим simpleid2.c (рис. 4.6):

```
[guest@smabu lab05]$ ls -l simpleid2
-rwsr-xr-x. 1 root guest 17656 окт 5 13:08 simpleid2
[guest@smabu lab05]$ ./simpleid2
g_uid=0, e_gid=1001
real_uid=1001, real_gid=1001
[guest@smabu lab05]$ id
id=1001(guest) gid=1001(guest) группы=1001(guest) контекст=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
```

Рис. 4.6: Запуск программы simpleid2.c

От имени суперпользователя выполним команды:

```
chown root:guest /home/guest/simpleid2
chmod u+s /home/guest/simpleid2
```

Выполним проверку правильности установки новых атрибутов и смены владельца файла simpleid2 и запустим simpleid2 и id (рис. 4.7):

```
[guest@smabu lab05]$ ls -l simpleid2
-rwsr-xr-x. 1 root guest 17656 окт 5 13:08 simpleid2
[guest@smabu lab05]$ ./simpleid2
guid=0, e_gid=1001
real_uid=1001, real_gid=1001
[guest@smabu lab05]$ id
uid=1001(guest) gid=1001(guest) группы=1001(guest) контекст=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
[guest@smabu lab05]$ |
```

Рис. 4.7: Проверка правильности установки новых атрибутов

Создаим программу readfile.c (рис. 4.8):

```
GNU nano 5.6.1
#include <fcntl.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

int
main (int argc, char* argv[])

{
    unsigned char buffer[16];
    size_t bytes_read;
    int i;

    int fd = open (argv[1], O_RDONLY);
    do
    {
        bytes_read = read (fd, buffer, sizeof (buffer));
        for (i =0; i < bytes_read; ++i) printf("%c", buffer[i]);
    }
    while (bytes_read == sizeof (buffer));
    close (fd);
    return 0;</pre>
```

Рис. 4.8: Программа readfile.c

Смените владельца у файла readfile.c (или любого другого текстового файла в системе) и измените права так, чтобы только суперпользователь (root) мог прочитать его, а guest не мог. (рис. 4.9):

```
[guest@smabu lab05]$ su
Пароль:
[root@smabu lab05]# chmod u+s /home/guest/lab05/readfile.c
[root@smabu lab05]# chmod u+s /home/guest/lab05/readfile.c
[root@smabu lab05]#
```

Рис. 4.9: Смена владельца у файла readfile.c

Программа readfile неможет прочитать файл readfile.c и неможет ипрочитать файл /etc/shadow (рис. 4.10)

```
[guest@smabu lab05]$ ./readfile readfile.c
pash: ./readfile: Отказано в доступе
[guest@smabu lab05]$ ./readfile /etc/shadow
pash: ./readfile: Отказано в доступе
[guest@smabu lab05]$
```

Рис. 4.10: Чтения файла readfile.c

Выясним, установлен ли атрибут Sticky на директории /tmp, для чего выполним команду (рис. 4.11):

```
[guest@smabu lab05]$ ls -l / | grep tmp
drwxrwxrwt. 19 root root 4096 окт 5 13:30 tmp
[guest@smabu lab05]$
```

Рис. 4.11: Команда grep

От имени пользователя guest создадим файл file01.txt в директории /tmp со словом test (рис. 4.12):

```
[guest@smabu lab05]$ ls -l / | grep tmp
drwxrwxrwt. 19 root root 4096 окт 5 13:30 tmp
[guest@smabu lab05]$ echo "test" > /tmp/file01.txt
[guest@smabu lab05]$ ls -l /tmp/file01.txt
-rw-r--r-. 1 guest guest 5 окт 5 13:32 /tmp/file01.txt
[guest@smabu lab05]$ chmod o_rw /tmp/file01.txt
chmod: неверный режим: «o_rw»
По команде «chmod --help» можно получить дополнительную информацию.
[guest@smabu lab05]$ chmod o+rw /tmp/file01.txt
[guest@smabu lab05]$ ls -l /tmp/file01.txt
-rw-r--rw-. 1 guest guest 5 окт 5 13:32 /tmp/file01.txt
[guest@smabu lab05]$
```

Рис. 4.12: Файл file01.txt

Просмотрим атрибуты у только что созданного файла и разрешите чтение и запись для категории пользователей «все остальные» (рис. 4.12).

От пользователя guest2 (не являющегося владельцем) попробуйм прочитать файл /tmp/file01.txt (рис. 4.13):

```
[guest@smabu lab05]$ su - guest2
Пароль:
[guest2@smabu ~]$ whoami
guest2
[guest2@smabu ~]$ echo "test2" > /tmp/file01.txt
-bash: /tmp/file01.txt: Отказано в доступе
[guest2@smabu ~]$ cat /tmp/file01.txt
test
[guest2@smabu ~]$ echo "test3" > /tmp/file01.txt
-bash: /tmp/file01.txt: Отказано в доступе
[guest2@smabu ~]$ echo "test3" > /tmp/file01.txt
-bash: /tmp/file01.txt: Отказано в доступе
[guest2@smabu ~]$ cat /tmp/file01.txt
test
[guest2@smabu ~]$ rm /tmp/file01.txt
rm: удалить защищённый от записи обычный файл '/tmp/file01.txt'? у
rm: невозможно удалить '/tmp/file01.txt': Операция не позволена
[guest2@smabu ~]$
```

Рис. 4.13: Чтения файла file01.txt от пользователя guest2

Попробуйм дозаписать в файл /tmp/file01.txt слово test2 командой (рис. 4.13). Проверем содержимое файла командой (рис. 4.13). От пользователя guest2 попробуйм записать в файл /tmp/file01.txt слово test3, стерев при этом всю имеющуюся в файле информацию командой (рис. 4.13). Проверем содержимое файла и попробуйм удалить файл /tmp/file01.txt командой (рис. 4.13).

Выполним после этого команду, снимающую атрибут t (Sticky-бит) с директории /tmp (рис. 4.14):

```
[guest2@smabu ~]$ su
Пароль:
[root@smabu guest2]# chmod -t /tmp
[root@smabu guest2]# exit
exit
[guest2@smabu ~]$
```

Рис. 4.14: Команда chmod -t /tmp

От пользователя guest2 проверем, что атрибута t у директории /tmp нет (рис. 4.15):

```
[root@smabu guest2]# chmod -t /tmp
[root@smabu guest2]# exit
exit
[guest2@smabu ~]$ ls -l | grep tmp
[guest2@smabu ~]$ su
Пароль:
su: Сбой при проверке подлинности
[guest2@smabu ~]$ su
Пароль:
[root@smabu guest2]# chmod +t /tmp
[root@smabu guest2]# exit
exit
[guest2@smabu ~]$ ls -l | grep tmp
[guest2@smabu ~]$
```

Рис. 4.15: Команда chmod -t /tmp

5 Выводы

Изучали механизмы изменения идентификаторов, применения SetUID- и Sticky-битов. Получили практические навыки работы в консоли с дополнительными атрибутами. Рассмотрели работы механизма смены идентификатора процессов пользователей, а также влияние бита Sticky на запись и удаление файлов кратко описываются итоги проделанной работы.

Список литературы

- 1. // skillbox.ru.
- 2. Таненбаум Э., Бос X. Современные операционные системы. 4-е изд. СПб.: Питер, 2015. 1120 с.