Ozone groups of AS regular algebras satisfying a polynomial identity

Recent Developments in Noncommutative Algebra and Tensor Categories Washington, DC April 6, 2024

> Jason Gaddis Miami University

My collaborators

Kenneth Chan

Setup

Let k be a field of characteristic zero.

Definition

A connected graded algebra A is called Artin–Schelter (AS) Gorenstein if A has injective dimension $d<\infty$ on the left and on the right, and

$$\mathsf{Ext}_A^i({}_A\Bbbk,{}_AA)\cong \mathsf{Ext}_A^i(\Bbbk_A,A_A)\cong \delta_{id}\Bbbk(\ell)$$

where δ_{id} is the Kronecker-delta.

If, in addition, A has finite global dimension and finite Gelfand–Krillov (GK) dimension, then A is called Artin–Schelter (AS) regular of dimension d.

Skew polynomial rings

Given $\mathbf{p}=(p_{ij})\in M_n(\Bbbk^\times)$ multiplicatively antisymmetric, the skew polynomial ring is

$$S_{\mathbf{p}} = \mathbb{k}_{\mathbf{p}}[x_1, \ldots, x_n] = \mathbb{k}\langle x_1, \ldots, x_n \rangle / (x_j x_i = p_{ij} x_i x_j).$$

Let $\phi_i \in Aut_{gr}(S_p)$ denote conjugation by x_i :

$$\phi_i(f) = x_i^{-1} f x_i$$
 for all $f \in S_p$.

Let $O = \langle \phi_1, \dots, \phi_n \rangle$, which is a subgroup of $\operatorname{Aut}_{\operatorname{gr}}(S_p)$.

One can show that $O = \operatorname{Aut}_{Z(S_p)-\operatorname{alg}}(S)$.

Suppose the p_{ij} are all roots of unity (e.g., S is PI). Since $Z(S_p) = S_p^O$, we can study $Z(S_p)$ using tools from (noncommutative) invariant theory. For example...

Theorem (CGWZ)

Suppose n=3 and S_p is PI. Then $Z(S_p)$ is regular if and only if the orders of p_{12} , p_{13} , and p_{23} are pairwise coprime.

The ozone group

Definition

Let A be an algebra and C be a subalgebra of Z(A). The Galois group of A over C is

$$\operatorname{\mathsf{Gal}}(A/C) := \{ \sigma \in \operatorname{\mathsf{Aut}}(A) \mid \sigma(c) = c \text{ for all } c \in C \}.$$

We call Oz(A) = Gal(A/Z(A)) the ozone group of A.

Example

Let $A = k_q[x, y]$ where q is a primitive nth root of unity.

The automorphisms determined by conjugation by x and by y generate the ozone group and we have $Oz(A) = \mathbb{Z}_n \times \mathbb{Z}_n$.

Lemma

Suppose A is \mathbb{Z}^n -graded domain which is prime and a finite module over its center.

If $\phi \in Oz(A)$, then ϕ is given by conjugation by a normal homogeneous element.

In particular, $Oz_{gr}(A) = Oz(A)$.

The ozone group

Example

Given a primitive ℓ th root of unity q, $\ell \geq 2$ and $3 \nmid \ell$, the quantum Heisenberg algebra is

$$H_q = \mathbb{k}\langle x, y, z \rangle / (zx - qxz, yz - qzy, xy - qyx - z^2).$$

Set $\Omega=xy-q^{-2}yx$. The center of H_q is generated by x^ℓ , y^ℓ , z^ℓ , and Ωz .

Let $\phi \in Oz(H_q)$. Then

$$\phi(x) = \epsilon_1 x, \quad \phi(y) = \epsilon_2 y, \quad \phi(z) = \epsilon_3 z$$

where each ϵ_i is an ℓ th root of unity.

In order to fix Ωz and satisfy $0 = \phi(xy - qyx - z^2)$, we must have

$$\epsilon_3^{-1} = \epsilon_1 \epsilon_2 = \epsilon_3^2,$$

so $\epsilon_3^3 = 1$. Since $3 \nmid \ell$, then $Oz(H_q) \cong \mathbb{Z}_{\ell}$.

Down-up algebras

Definition

For $\alpha, \beta \in \mathbb{k}$ with $\beta \neq 0$, the graded down-up algebra is defined as

$$A(\alpha,\beta) := \mathbb{k}\langle x,y\rangle/(x^2y - \alpha xyx - \beta yx^2, xy^2 - \alpha yxy - \beta y^2x).$$

The algebras $A(\alpha, \beta)$ are AS regular of global dimension three.

Let $A = A(\alpha, \beta)$ be PI. Let ω_1 and ω_2 be the roots of the characteristic equation

$$w^2 - \alpha w - \beta = 0.$$

Set $z = \Omega_1 = xy - \omega_1 yx$. Then

$$xz = \omega_2 zx$$
, $\omega_2 yz = zy$, $xy = \omega_1 yx + z$.

That is, A is a filtered skew polynomial ring.

If $\phi \in Oz(A)$, then $\phi(x) \in \mathbb{k}x$ and $\phi(y) \in \mathbb{k}y$. As a consequence, Oz(A) is abelian.

Ozone groups of extensions

Lemma

Let A be a noetherian PI domain and suppose $\sigma \in \operatorname{Aut}(A)$ has finite order n. Suppose further that σ^i is not inner for any $1 \le i < n$. Then

$$\mathsf{Oz}(A[t;\sigma]) \cong \mathbb{Z}_n \times \{ \tau \in \mathsf{Aut}(A) \mid \sigma \tau = \tau \sigma \text{ and } \tau(a) = a \text{ for all } a \in \mathsf{Z}(A)^{\langle \sigma \rangle} \}$$

where \mathbb{Z}_n is the cyclic group of automorphisms generated by an automorphism which fixes A and maps t to ξ t for a primitive nth root of unity ξ .

Lemma

If A and B are noetherian PI AS regular algebras, then

$$Oz(A \otimes B) = Oz(A) \times Oz(B).$$

In particular, Oz(A[t]) = Oz(A).

Hence, every finite abelian group is realizable as the ozone group of a noetherian PI AS regular algebra.

The hole in the ozone group

Conjecture

If A is a PI AS regular algebra, then Oz(A) is abelian.

Example

Let A be the preprojective algebra of the extended Dynkin quiver \widetilde{A}_2 . Then A is a quotient of the path algebra of the quiver.

with the relation $\sum (a_i a_i^* - a_i^* a_i)$.

The Ozone group of A is infinite and non-abelian.

Trivial ozone

If A is PI AS regular, then the Nakayama automorphism μ_A is an element of Oz(A).

So, trivial ozone implies Calabi-Yau.

Example

Let $(a, b, c) \in (\mathbb{k})^3$, the 3-dimensional Sklyanin algebra

$$S(a,b,c) = \mathbb{k}\langle x,y,z\rangle/(axy+byx+cz^2,ayz+bzy+cx^2,azx+bxz+cy^2).$$

Suppose S(a, b, c) is AS regular and rank n^2 over its center. Then S(a, b, c) has trivial ozone group if and only if n > 1 and $3 \nmid n$.

Example

Let $S_{\mathbf{p}} = \Bbbk_{\mathbf{p}}[x,y,z]$ be a Calabi-Yau PI skew polynomial ring. In this case, the relations are

$$yx = \xi xy, \qquad zy = \xi yz, \qquad xz = \xi zx.$$

Then $Oz(S_p) = \mathbb{Z}_n \times \mathbb{Z}_n$.

Trivial ozone

Using the classification of Itaba and Mori of quantum projective planes finite over their centers, we obtain the following classification result.

Theorem (CGWZ)

Let A be a PI quadratic AS regular algebra of global dimension 3 with trivial ozone group. Then A is isomorphic to one of the following:

- a Skylanin algebra S(a, b, c) which is rank n^2 over its center, n > 1 and $3 \nmid n$, or
- the algebra

$$B_q = \mathbb{k}\langle x, y, z \rangle / (xy - qyx, zx - qxz - y^2, zy - q^{-1}yz - x^2)$$

where $q \neq 1$ is a root of unity and 3 does not divide the order of q.

Lemma

Let A be a \mathbb{Z} -graded domain which is a finite module over its center. Then Oz(A) is trivial if and only if every normal element is central.

Skew polynomial rings

The ozone group can be used to characterize skew polynomial rings.

Lemma

Let A be a noetherian connected graded algebra, generated in degree 1, with finite global dimension. If A is generated (as a k-algebra) by normal elements, then A is isomorphic to S_p for some p.

Lemma

Suppose $\mathbb{k} = \overline{\mathbb{k}}$. Let A be a noetherian PI AS regular algebra. If Oz(A) is abelian and $|Oz(A)| = rk_Z(A)$, then A is generated by normal elements.

Theorem (CGWZ)

Suppose $\mathbb{k} = \overline{\mathbb{k}}$ and A is generated in degree 1. Then A is a skew polynomial ring if and only if Oz(A) is abelian and $|Oz(A)| = \operatorname{rk}_Z(A)$.

Iterated Fixed Rings

Our results imply that for a PI AS regular algebra A generated in degree one, if $A^{Oz(A)} = Z(A)$ and Oz(A) is abelian, then A is a skew polynomial ring.

Can we use invariant theory and ozone groups to understand centers of other PI AS regular algebras?

Example

Let
$$A = A(0,-1) = \mathbb{k}\langle x,y \rangle / (x^2y + yx^2, xy^2 + y^2x)$$
.

Then $\operatorname{Oz}(A) \cong \mathbb{Z}_4 \times \mathbb{Z}_2$. Here $B = A^{\operatorname{Oz}(A)}$ is generated by

$$a = x^4$$
, $b = y^4$, $c = x^2y^2$, $d = xyxy$, $e = yxyx$.

Since Oz(A) acts by trivial homological determinant on A, then B is (AS) Gorenstein.

We have $G = Gal(B/Z(A)) = \{1, \tau\}$ where

$$\tau(a) = a$$
, $\tau(b) = b$, $\tau(c) = -c$, $\tau(d) = e$, $\tau(e) = d$.

Then $B^G = Z(A)$.

Since B is commutative and det $\tau|_{B_1} = 1$, then $B^G = Z(A)$ is Gorenstein.

Quantum thickenings

For a Hopf algebra H, let G(H) denote the group of grouplike elements of H.

Definition

Let G be a group acting faithfully on an algebra A. Suppose that H is a semisimple Hopf algebra acting inner-faithfully on A with group of grouplikes G(H).

The H-action on A is a quantum thickening of the G-action on A if G(H) if there is an isomorphism $G \to G(H)$ which preserves the actions on A, or H is a quantum thickening of G if the actions are clear.

Question

Given a PI AS regular algebra A, is there a quantum thickening H of Oz(A) such that $A^H = Z(A)$?

Quantum thickenings?

Example

Let
$$A = A(0,1) = \mathbb{k}\langle x, y \rangle / (x^2y - yx^2, xy^2 - y^2x)$$
.

Then
$$Oz(A) = \langle \phi \rangle \cong \mathbb{Z}_2$$
 where $\phi(x) = -x$ and $\phi(y) = -y$.

Let H be a quantum thickening of Oz(A) with dim(H) = 4. Then H is either a group algebra or a dual of a group algebra and hence $A^H \neq Z(A)$.

Example

Let
$$A = A(0,-1) = \mathbb{k}\langle x,y \rangle / (x^2y + yx^2, xy^2 + y^2x)$$
.

Then
$$Oz(A) \cong \mathbb{Z}_4 \times \mathbb{Z}_2$$
.

There is an action of the dimension 8 Kac–Palyutkin Hopf algebra H on A in which G(H) = Oz(A), but one can verify that $A^H \neq Z(A)$.

Similarly, there are actions when $\dim(H) = 16$ and $G(H) = \operatorname{Oz}(A)$, but again we find that $A^H \neq Z(A)$.

But wait! There's more!

Questions

Let A be a PI AS regular algebra.

- Is there a connection between Z(A) having an isolated singularity and Oz(A) being trivial?
- What role does the Nakayama automorphism play in the study of the ozone group and the center?
- Assume Oz(A) is abelian. If the Oz(A)-action on A has trivial homological determinant, then is A CY? One can also ask the converse. If A is CY, does the action of Oz(A) on A necessarily have trivial homological determinant?
- Let Z' denote the center of $A^{Oz(A)}$ and \overline{Z} denote the center of A# & Oz(A). Under what hypotheses on A are Z' and \overline{Z} isomorphic as graded algebras? (They are when A is a skew polynomial ring.)

Thank You!