

A Survey of Deep Causal Models and Their Industrial Applications

Zongyu Li^{1,2}, Zhenfeng Zhu^{1,2}, Xiaobo Guo³, Siwei Qiang³ and Yao Zhao^{1,2}

1.School of Computer and Information Technolog, Beijing Jiaotong University, China

2. Institute of Information Science, Beijing Jiaotong University, China

2. MYBank, Ant Group, China

Problems: How to provide a overview of the latest applications of deep causal models in industry

Introduction

Preliminaries

Challenges: Representation learning, Debias estimation, Counterfactual inference

Definitions: Observed outcome, Counterfactual outcome, Dose, Covariates

Assumptions: Stable Sample Treatment Value, Ignorability, Overlap

Treatments: Binary treatment, Multiple treatment, Continuous dose treatment

Metrics: ATE, ITE, ATT, CATE, PEHE, RMSE, MISE, DPE, PE

Datasets: IHDP, Jobs, Twins, News, ACIC, TCGA, MIMIC III

Materials and Methods: Development of Deep Causal Models

■ A Timeline of Development

We present the development timeline about 50 classical deep causal models from June 2016 to November 2022.

■ Model Classification

Learning balanced representations;
 Covariate confounding learning;
 Time series causal learning;
 GANs based Counterfactual simulation;
 Multi treatment and continuous dose treatment.

Summary: Typical Deep Causal Models and Their Industrial Applications

■ Deep Frameworks on Classical Causal Models ■ Current Status of Industrial Applications ■ Future Prospect

It is inseparable from the proposal of deep network models such as statistical theory, biological application scenarios and the reliable assumptions of Robin causal model.

	Application Scenario	Problem
Marketing	Maximizing the return on investment	Estimate users' purchase probability with different incentives
E-commerce	Recommender systems with causality	Address selection bias, exposure bias, position bias and conformity bias in recommender systems
Financial	Estimating the impact of policies	Solve the biased problem of non-A/B experiment to measure the intervention effect
Economic	Gaining transparent strategies	Learn causal effects from surrogate experiments with selection-biase and imperfect compliance
Medical	Precision medicine	Explore quantitative individual-level effect of a treatment with assignment bias
Educational	Determine best policies and practices	Effectiveness of an intervention is multifaceted and complex