Last time

Today • SVMs with slack (reading: Bishop, Sec 7.1.1, Notes by Andrew Ng http:// cs229.stanford.edu/notes/cs229-notes3.pdf)

- Today
 - SVMs with kernels (reading: Bishop Sec 7.1)
 - Multiclass classification (reading: Bishop, Sec 7.1.3)
- Announcements
 - HW 2 due on Wed, Oct 14
 - Midterm exam is coming up (Wed, Oct 21)
 - Time for Q&A on Mon, Oct 19 in lecture
 - Office hours: Mondays from 9-10am, Wednesdays 12.15-1.15pm
 - Current plan: Midterm online via GradScope (more details to come)
 - Tell me asap if you cannot take the exam on Wed, Oct 21 from 11am-12.15pm because of timezone conflicts

SVIMs with kernels

From linear to nonlinear decision boundary

Motivation

board

Least-squares regression with polynomials

First-order polynomial

$$h_{\theta}(x) = \theta_1 x + \theta_0$$

Second-order poly

$$h_{\theta}(x) = \theta_2 x^2 + \theta_1 x + \theta_0$$

Write as

$$h_{\theta}(z) = \boldsymbol{\theta}^T \boldsymbol{z}$$

with

$$z = [x^2, x, 1]$$

• Interpretation of fitting higher-order polynomial: Perform regression on features $z = [x^M, ..., x, 1]$ rather than on x

Feature map

- Define a feature map $\phi : \mathbb{R}^n \to \mathbb{R}^k, k \in \mathbb{N} \cup \{\infty\}$
- Polynomial regression with degree 3

$$\phi(x) = \begin{bmatrix} x^3 \\ x^2 \\ x \\ 1 \end{bmatrix}$$

- Let's apply linear SVM to $\phi(x)$ instead of x
- Potential problem?
 - The dimension k potentially very (infinite) high
 - Goal: Avoid operating in \mathbb{R}^k

Recall: Inner product and SVMs

Solve:

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{N} y^{(i)} y^{(j)} \alpha_{i} \alpha_{j} < x^{(i)}, x^{(j)} > \sum_{i=1}^{N} \alpha_{i}^{*} y^{(i)} < (x^{(i)})^{T}, x > + b$$
s.t. $\alpha_{i} \geq 0, i = 1, ..., N$

Predict:

$$\sum_{i=1}^{N} \alpha_i^* y^{(i)} < (x^{(i)})^T, x > + b$$

$$\sum_{i=1}^{N} \alpha_i y^{(i)} = 0$$

- Solve and predict "touch" training data only via inner products
- This is key for using SVMs with kernels

Kernel

Define the kernel

$$K(x,z) = \phi(x)^T \phi(z) = \langle \phi(x), \phi(z) \rangle$$

- Walk through the SVM algorithm and replace $\langle x,z\rangle$ with $\langle \phi(x),\phi(z)\rangle$
- Kernel trick: Compute $K(x,z) = \langle \phi(x), \phi(z) \rangle$ without computing $\phi(x)$ and $\phi(z)$ (high-dimensional quantities)
- Example
 - $\bullet K(x,z) = (x^T z)^2$
 - $K(x,z) = (x^Tz + c)^2$

Example: quadratic kernel

board

Kernel matrix

- Data set $\mathcal{D} = \{(x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)})\}$
- Kernel matrix

$$K_{ij} = K(x^{(i)}, x^{(j)})$$

- Properties of kernel matrix
 - Symmetric: $K_{ij} = K_{ji}$
 - Positive semi-definite: $\langle Kx, x \rangle \geq 0, x \in \mathbb{R}^N$
- Theorem (Mercer)

Let $K: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ be given, then we call K a kernel if the kernel matrix K for any set $\{x^{(1)}, ..., x^{(N)}\}, N < \infty$ is symmetric positive semi-definite

Common kernels

Polynomials of degree exactly d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

Polynomials of degree up to d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

Note that kernels may depend on parameters, e.g., σ in case of Gaussian Kernel

Gaussian kernels

$$K(\vec{u}, \vec{v}) = \exp\left(-\frac{||\vec{u} - \vec{v}||_2^2}{2\sigma^2}\right)$$

Sigmoid

$$K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

And many others: very active area of research!

Quadratic kernel

Non-linear separator in the original x-space

Linear separator in the feature ϕ -space

[Tommi Jaakkola]

Why slack variables if we have kernels?

- No guarantee that separable in high-dimensional feature space
- One outlier can lead to dramatic change in decision boundary
 - Slack variables (cf. hinge loss) helps to prevent this

SVM with kernels

- Given is training data 20
- Choose a feature map ϕ with kernel K
- Apply linear SVM (w/out slack) to $\phi(\mathcal{D})$ by exploiting dual formulation and that K(x,y) is inner product in feature space given by ϕ

-> homework HW3

Multi-class classification

One versus all classification

Learn 3 classifiers:

- •- vs {o,+}, weights w_
- •+ vs {o,-}, weights w₊
- •o vs {+,-}, weights w_o

Predict label using:

$$\hat{y} \leftarrow \arg\max_{k} \ w_k \cdot x + b_k$$

Any problems?

What is the class of points in the triangle in the middle?

Multi-class SVM

Simultaneously learn 3 sets of weights:

- •How do we guarantee the correct labels?
- •Need new constraints!

The "score" of the correct class must be better than the "score" of wrong classes:

$$w^{(y_j)} \cdot x_j + b^{(y_j)} > w^{(y)} \cdot x_j + b^{(y)} \quad \forall j, \ y \neq y_j$$

Multi-class SVM

As for the SVM, we introduce slack variables and maximize margin:

To predict, we use:
$$\hat{y} \leftarrow \arg\max_{k} \ w_k \cdot x + b_k$$

Note: number of unknowns in optimization problem grows with number of classes K because learn multiple weight vectors and biases

How to deal with imbalanced data?

- In many practical applications we may have imbalanced data sets
- We may want errors to be equally distributed between the positive and negative classes
- A slight modification to the SVM objective does the trick!

$$N = N_+ + N_-$$

$$\min_{w,b} ||w||_{2}^{2} + \frac{CN}{2N_{+}} \sum_{j:y_{j}=+1}^{N} \xi_{j} + \frac{CN}{2N_{-}} \sum_{j:y_{j}=-1}^{N} \xi_{j}$$

Note: # classes = 2 Class-specific weighting of the slack variables can be ignored if C is scaled instead

Algorithm for solving SVM problems

board

Coordinate descent

SMO algorithm

board