System til detektering af kropsbalance P3 Projektrapport

Aalborg universitet, 02/09/15 - 16/12/15

SKREVET AF

GRUPPE 375

Kilder: http://www.brainharmonycenter.com/what-is-brain-balance.html~&~http://www.thehealersjournal.com/pineal-gland-activation/

Titel: System til detektering af kropsbalance

Tema: Instrumentering til opsamling af fysiologiske

signaler

Fredrik Bajers Vej 7 9220 Aalborg http://smh.aau.dk

Projektperiode: D. 02/09/2015 - 16/12/2015

P3, efterår 2015

Projektgruppe: 375	Synopsis:	
Deltagere:		
Cecilie Sophie Rosenkrantz Topp		
Mads Jozwiak Pedersen		
Maria Kaalund Kroustrup		
Mathias Vassard Olsen		
Nikoline Suhr Kristensen		
Sofie Helene Bjørsrud Jensen		
Vejleder: Erika G. Spaich		

Oplagstal:

Sideantal:

Bilagsantal og -art:

Afsluttet den 16. december 2015

Forord

Denne rapport er udarbejdet os..

Ind holds for tegnels e

K apite		ndledning 1 ende problem
Kanite		roblemanalyse 3
2.1		eksi
2.1	2.1.1	Påvirkning på encephalon
	2.1.2	Plasticitet
2.2	Under	søgelse og behandling
	2.2.1	Undersøgelse
	2.2.2	Behandling
	2.2.3	Forebyggelse
2.3	Følger	af apopleksi
	2.3.1	Sensoriske og motoriske skader
	2.3.2	Personlige følger
2.4	Rehab	ilitering
	2.4.1	Forløbsprogram for rehabilitering
	2.4.2	Organisering af rehabiliteringsprocessen
	2.4.3	Metoder til rehabilitering af balance
2.5	Biofee	dback
	2.5.1	Fysiologisk biofeedback
	2.5.2	Biomekanisk biofeedback
	2.5.3	Krav til patienter med balanceproblemer ved anvendelse af biofeedback 16
2.6	Behan	dling af biologiske signaler
	2.6.1	Forstærker
	2.6.2	Filtrering
	2.6.3	Støj
	2.6.4	Komparator
	2.6.5	ADC og konvertering til computeren
2.7	Proble	emafgrænsning
2.8	Proble	emformulering
K anita	12 D	${ m robleml}$ gsning 22
кар пе 3.1		nbeskrivelse
3.1	3.1.1	Systemets bruger
		· 0
	3.1.2 $3.1.3$	· 0
		, 1,0,0
2.0	3.1.4	1
3.2		, 0
	3.2.1	Formål
	5.2.2	Materialer

	3.2.3	Metode	25
	3.2.4	Fremgangsmåde	26
Littera	tur		27
Bilag A	A Ner	rvesystemer og nervefysiologi	32
A.1	$_{ m Hjerne}$	ens anatomi	32
A.2	Nerve	ens anatomi	33
A.3	Aktio	onspotentiale	33
		oppens balance	36
B.1	\emptyset rets	s bidrag til balance	36
B.2	Øjets	bidrag til balance	37
B.3	Propr	rioceptorerne og skeletmuskulaturens bidrag til balancen	38

Kapitel 1

Indledning

Apopleksi er den tredje største dødsårsag i Danmark og ca. 12.500 personer indlægges hvert år pga. sygdommen [1]. I 2011 levede 75.000 danskere med følger af apopleksi, og ud af disse er omkring hver fjerde person afhængig af andres hjælp [1]. Det er dog ikke alle patienter, der får mén af apopleksi.

Der sker en stigning af indlæggelsesforløb for mænd og kvinder, når de bliver ældre end 65 år [2]. Antallet af danskere, der lever med følger og varige mén af apopleksi, forventes derfor at være stigende i takt med, at der kommer flere ældre [3]. Apopleksi er i forvejen den sygdom, der kræver flest plejedøgn i sundhedssektoren, men i takt med, at der kommer flere ældre, forventes det at udgifterne til denne pleje stige. Ud fra et økonomisk perspektiv er det derfor omkostningsfuldt for samfundet ift. behandling, rehabilitering og produktivitetstab. Udgifterne til sygdommen udgør 4% af sundhedsvæsenets samlede udgifter [1, 4].

Følgerne af apopleksi opstår ofte pludseligt og kan medføre både fysiske og mentale konsekvenser for patienten [5]. Efter et apopleksitilfælde kan patienter opleve nedsat eller ikke funktionsdygtig balance. Problemer med balancen opstår, da encephalon ikke kan bearbejde de balanceinformationer, som proprioceptorerne og sansereceptorerne sender. [6] Dette resulterer i, at 40% af det samlede antal apopleksipatienter oplever faldulykker i det første år. [7]. Apopleksipatienter kan desuden opleve neglekt, der også er skade på de sensoriske og motoriske funktioner og er et af de hyppigste mén. Der findes forskellige typer af neglekt. Eksempelvis kan patienten opleve ikke at være opmærksom på den ene side af kroppen. [8]

Balanceproblemer og neglekt har alvorlige konsekvenser for apopleksipatienter, da de bl.a. kan føre til begrænsninger i hverdagen. [5, 9] For en apopleksipatient med balanceproblemer kan det være vanskeligt at vende tilbage til sin normale hverdag, da almindelige huslige pligter, såsom rengøring og personlig pleje kan være vanskeligt at klare uden hjælp. [10]

Balanceproblemer samt begrænsninger i hverdagen kan medføre nedsat livskvalitet. Dette ses eksempelvis ved, at apopleksipatienter har dobbelt så stor selvmordsrate som baggrundsbefolkningen [10]. Et apopleksitilfælde medfører en pludselig afbrydelse i patientens livsforløb. Det kan for patienten blive uoverskueligt at opretholde sociale- og familierelationer, hvilket medfører, at de senere i livet oplever en forringelse af deres livskvalitet. En forbedret livskvalitet kan skabes ved hurtigere rehabilitering samt forbedrede kropslige funktioner, herunder balancen. [10]

For at apopleksipatienter opnår den bedst mulige behandling og rehabilitering er det afgørende, at der er et fungerende sammenspil mellem kommuner, sygehuse og praktiserende læger [10]. Det er essentielt, at rehabiliteringen påbegyndes få dages efter apopleksitilfældet er opstået, for så vidt muligt at genskabe tabte funktionsevner. [11]

Gruppe 375 1. Indledning

1.1 Initierende problem

Hvilke fysiologiske konsekvenser kan apopleksi have for patienten, og hvad er rehabiliterings mulighederne for en patient med balanceproblemer?

Kapitel 2

Problemanalyse

2.1 Apopleksi

Encephalon har brug for ilt og næringsstoffer for at kunne fungere normalt og er derfor afhængig af en konstant blodtilstrømning. Hvis denne tilstrømning stopper, kan det have alvorlige konsekvenser. [1] Apopleksi er en sygdom, som har indvirkning på blodgennemstrømningen til encephalon, da den nedsætter blodtilførslen enten ved en blodprop eller ved en blødning [1]. Symptomerne fra apopleksi fremtræden kan variere fra et par minutter op til et par dage [12, 4]. Sundhedsstyrelsen definerer apopleksi som pludseligt opståede fokalneurologiske symptomer af formodet vaskulær genese med en varighed på over 24 timer. [13] Hvis varigheden er under 24 timer, betegnes det som transitorisk cerebral iskæmi (TCI), hvor de fleste tilfælde varer under en time uden permanent hjerneskade [8, 14]. Flere tusinde danskere oplever TCI årligt, men det er sjældent, at den ramte selv opdager det. Symptomerne heraf er milde og kan være en følelsesløshed i lemmerne eller i ansigtet samt korte oplevelser af forvirring, synsforstyrrelser og sproglige forstyrrelser. Det er sjældent, at der opstår mén fra TCI og derfor kræves der ingen behandling. [12, 1] Risikofaktorer, der kan medføre apopleksi, er forhøjet blodtryk, rygning, højt kolesteroltal, diabetes og arvelige defekter. Konsekvenserne fra apopleksi kan omfatte forbigående eller varig lammelse af forskellige dele af kroppen, vanskeligheder ved tale og spisning samt et tab i muskulær koordinering. [12] Hurtig behandling er essentielt for at mindske disse konsekvenser [1]. Et apopleksitilfælde kan være forårsaget af enten en embolia cerebri (iskæmisk) eller hæmorrhagia cerebri (hæmoragisk), som ses på figur 2.1. [14]

Figur 2.1: På billedet ses, hvad der sker i encephalon, når henholdsvis iskæmisk og hæmoragisk apopleksi opstår. Der ses til venstre på billedet, at iskæmisk apopleksi sker, hvis en artierie blokkeres. Til højre ses, at hæmoragisk apopleksi opstår, når en arterie brister. (Revideret) [14]

Iskæmisk apopleksi

Iskæmisk apopleksi opstår i 80-85% af alle apopleksitilfælde [8]. Her blokeres en hjernearterie af en blodprop, der stopper tilførslen af blod til et bestemt område i encephalon, hvilket ses på figur 2.1. Blodpropperne dannes primært pga. åreforkalkning enten ved en trombe eller en emboli. Trombe sætter sig fast det sted, hvor den er dannet og består af blodplader og fibrin. [15] Emboli består typisk af fragmenter af blodceller eller kolesterol, som er diffunderet ind i blodcirkulationen af encephalon fra arterierne [16]. Nervecellerne skades efter få minutter grundet iltmangel men kan i værste tilfælde dø efter denne periode [15, 17].

Hæmoragisk apopleksi

Hæmoragisk apopleksi opstår i 10-15% af tilfældene iblandt det samlede antal af apopleksiramte [8]. Årsagen heraf skyldes hovedsagligt forhøjet blodtryk eller, i sjældnere tilfælde, aneurismer eller medfødte misdannede kar [15]. Hæmoragisk apopleksi opstår, når en hjernearterie brister, og lækage af blod danner en blodansamling, hvilket ses på figur 2.1. Dette beskadiger det omkringliggende væv og forøger trykket i encephalon. Intracerebral hæmoragi opstår ofte af forhøjet blodtryk, der danner et pres på de små arterier, som får dem til at briste. [18]

Blødning i subaraknoidalrummene skyldes ofte bristning af en aneurisme i encephalon [15]. Symptomerne ved subaraknoidalblødning er generel tab af hjernefunktion, da der forekommer et øget pres på cerebrum, hvorimod hæmatomet ved intracerebral hæmoragi er lokaliseret et bestemt sted i encephalon og forårsager nedsat funktion af én bestemt hjernefunktion [18].

2.1.1 Påvirkning på encephalon

Cerebrum er den største region af encephalon og kan deles op i to hjernehalvdele. Her sker en processering af sanserne, tale, tanker, synet, hukommelsen og følelser. [19] For en yderligere beskrivelse af hjernens anatomi, nervefysiologi samt biologisk kommunikation se bilag A. Som tidligere nævnt i afsnit 2.1 er 80-85% af apopleksitilfældene iskæmiske og rammer hyppigst i media arterien, der forsyner det meste af cerebrum med blod. Derfor er det ofte sensoriske- og motoriske områder, der bliver skadet ved et apopleksitilfælde. [20, 21, 22] For at opretholde balancen kræves et samarbejde af de sensoriske- og motoriske områder i encephalon som ses på figur 2.2.

¹FiXme Note: subaraknoidalrummene er rummet mellem hjernehinderne

Figur 2.2: På figuren ses de sensoriske og motoriske regioner på den venstre hjernehalvdel af cerebrum. Derudover ses cerebellum og truncus encephalius. (Revideret) [23]

De sensoriske- og motoriske områder har stor indflydelse på hinanden. I **tabel 2.1** vil områder i encephalon, der har med balancen at gøre, samt deres funktion fremgå. Ved apopleksi kan flere områder rammes samtidig, hvilket kan gøre, at flere funktioner svækkes. Da balancen er styret af flere forskellige områder i encephalon betyder en skade på f.eks. det visuelle cortex ikke, at man mister balancen helt.

Område i encephalon	Funktioner
Cerebellum	Modtager proprioreceptiv og vestibulær information fra me-
	dulla spinalis og truncus encephalius. Fortolker og koordine-
	rer frivillige bevægelser.
Det visuelle cortex	Fortolker lyssignaler, videresender informationer omkring
	rumlige forhold, bevægelse og koordinerer visuelle og soma-
	tosensoriske impulser.
Det præmotoriske cortex	Integrerer den sensoriske og motoriske systemer og igangsæt-
	ter bevægelse som respons på visuelle eller auditive stimuli.
Det præfrontale cortex	Koordinerer information fra de andre cortex og udarbejder
	abstrakte intellektuelle funktioner, som at forudse hvilken ef-
	fekt en handling vil have. Bearbejdere eksterne sanseindtryk
	inden der foretages en handling.
Truncus Encephalius	Modtager vestibulær information fra det indre ører, som
	fortæller hovedets placering i rummet og generel balance ift.
	til tyngdekraften.

Tabel 2.1: På tabellen ses en oversigt over de områder af encephalon, som påvirker balancen, samt deres funktion. Områder kan yderligere ses på **figur 2.2** [19, 24]

De sensoriske- og motoriske nervebaner fra sensorisk- og motorisk cortex løber ned gennem medulla spinalis og leder derved impulser ud til target organer og muskler og tilbage igen. Nervebanerne fra hhv. højre og venstre hjernehalvdel krydser i medulla oblongata eller i medulla spinalis. Denne krydsning betyder, at afferente signaler fra højre side af kroppen behandles i venstre hjernehalvdel, der sender efferente signaler tilbage til højre side af kroppen. [19, 23] Dette medfører, at et apopleksitilfælde i højre hjernehalvdel kan give sensoriske- og motoriske skader i venstre kropsdel og omvendt med venstre hjernehalvdel. [13, 9]

Hver muskelgruppe har sine egne dedikerede nerveceller. Antallet af nerveceller til hver muskel afhænger af, hvor præcis legemets bevægelse skal være. Flere nerveceller gør musklens bevægelse mere præcis. [23] Nervecellerne har en bestemt placering i cerebral cortex. Derfor vil et apopleksitilfælde et bestemt sted ramme en bestemt muskel. F.eks. vil en skade på det auditive cortex kunne medføre balanceproblemer, da det derved er svært for patienten at vide hvor hovedet er placeret i rummet. [25] Efter et apopleksitilfælde har encephalon en naturlig tilpasning ift. at genskabe disse tabte funktioner. I nogle tilfælde kan encephalon genskabe skadede nerver eller finde en anden vej for funktionen, som en eventuelt tabt nerve skulle udføre. [19] Denne mekanisme kaldes plasticitet [26].

2.1.2 Plasticitet

Encephalon kan ændre eller tilpasse sig de stimuli, den udsættes for, hvilket kaldes encephalons plasticitet eller nerveplasticitet. Processen sker kontinuerligt igennem hele livet, men encephalon kan ikke danne nye nerver. [23] Under et apopleksitilfælde forekommer der som sagt iltmangel til encephalon, og nervecellerne kan derved blive skadet eller gå tabt [15]. Celledød medfører, at den døde nerve mister sine forbindelser til fungerende nerver. Denne forbindelsesafbrydelse i encephalon bevirker, at der kan opstå en kaskade af mistet kommunikation i de eksisterende nerver. Herved kan en nerves celledød påvirke andre områder af encephalon end blot der, hvor skaden er sket. [27] Encephalon benytter sig af sin plasticitet således, at den omlægger det eksisterende nervenetværk til et nyt. Den aktiverer nogle signalstoffer, som kan finde en alternativ metode til at gennemføre den ønskede handling. [28] Som nævnt kan encephalon ikke danne nye nerver efter celledød, hvilket betyder, at der ikke kan generhverves præcis samme funktion som tidligere men evt. en lignende funktion. Plasticitet kan deles op i tre fænomener: [27]

- Denervation Supersensitivity: Dette er en afbrydelse imellem akson og synapse. Dette gør synapsen overfølsom og bliver derved lettere påvirket til at lave nye synapseforbindelser.
- Unmasking of Silent (Latent) Synapses: Denne hændelse sker når synapser, der har fuld funktionalitet men ingen effekt på slutstedet, afsløres, hvorefter der opstår en aktivitet og effekt. Dvs. synapsen fungerer, men encephalon er ikke opmærksom på dette.
- Collateral Sprouting: Dette sker hvis to nerver innerverer på samme slutsted, og den ene nerve dør. Så vil den anden nerve spire ind i den skadede nerves telodendron, så funktionen genvindes.

Ud fra disse tre fænomener findes der en fysiologisk baggrund for rehabilitering. Nerveplasticitet er særlig øget op til en måned efter et apopleksitilfælde. Det er derfor vigtigt at foretage genoptræning i denne periode, så encephalon kan danne nye forbindelser og kommunikationsveje. [28] Gentagelser af en færdighed effektiviserer synapseforbindelser, hvilket betyder, at den kompenserende færdighed styrkes. [23]. En kompenserende færdighed dækker over de kompenserende bevægelserm, som kroppen skaber for at erstatte en tabt funktionsevne [29, 30].

Nerveplasticitet ses dog ikke kun som en positiv egenskab. Plasticiteten gør encephalon fleksibel for omlægning efter en skade men også sårbar over for udefrakommende og interne ubevidste påvirkninger. Dårlige vaner er encephalons negative side af plasticitet, fordi gentagende hændelser, der frigiver dopamin, også giver stærke synapseforbindelser. Når man forsøger at kvitte en dårlig vane som f.eks. rygning vil det neurale kredsløb i encephalon blive svagere, men det findes stadig og kan nemt genaktiveres. [31]

2.2 Undersøgelse og behandling

Det er vigtigt, at patienter med formodet apopleksi får den rette undersøgelse og behandling. Undersøgelse og diagnosticering er afgørende for det efterfølgende forløb, da behandling samt rehabilitering planlægges herefter. [13]

2.2.1 Undersøgelse

Når en patient med apopleksi indlægges, er grundig undersøgelse nødvendig for at identificere, hvilken form for apopleksi patienten har. Diagnosticeringsprocessen består af flere trin. Først optages en anamnese, hvor lægen stiller patienten spørgsmål omkring sygdomsforløbet og eventuelle risikofaktorer. Herefter anvendes en udvalgt, standardiseret skala til at foretage en klinisk undersøgelse af patientens almene tilstand. Den valgte skala gør det muligt for lægen at vurdere, hvordan patientens tilstand udvikler sig i perioden efter indlæggelsen. Der kan efterfølgende foretages enten en CT- eller MR-scanning for at undersøge, om patienten er ramt af iskæmisk eller hæmoragisk apopleksi. MR-scanning er at foretrække, hvis lægen mistænker blødning i cerebellum eller truncus encephalius, hvorimod CT-scanning anvendes til at bedømme området og omfanget af blødningen. Under forløbet kontrollerer lægen også andre fysiologiske faktorer, eksempelvis blodtryk og temperatur. Disse faktorer kan give information om apopleksien. [13, 15]

2.2.2 Behandling

Ved både iskæmisk og hæmoragisk apopleksi er det vigtigt at komme i behandling hurtigst muligt. [32] Standardbehandling for iskæmisk apopleksi har siden 2006 været trombolyse. Selve behandlingen foregår ved, at der sprøjtes blodpropopløsende medicin ind i en arterie, hvorefter blodproppen opløses. Denne behandling skal senest foregå 12 timer efter, da behandlingen derved ikke vil have nogen indvirkning efter længere tid. Ved hurtig behandling kan områder af encpehalon reddes, hvormed patientens fremtidige livskvalitet forbedres.² En risiko ved behandling med blodpropopløsende medicin er, at det kan skabe nye blødninger i dele af hjernen eller andre steder i kroppen. [33] Behandlingen af patienter, der rammes af hæmoragisk apopleksi, afhænger af hæmatomets placering samt størrelse. Primært vil lægerne dræne blodet ud, såfremt det er muligt. Der kan desuden behandles med blodtrykssænkende medicin for at begrænse blødningen. [18]

2.2.3 Forebyggelse

En væsentlig del af iskæmisk apopleksi behandling er forebyggelse, da der er risiko for en ny blodprop. Til dette anvendes antikoagulationsbehandling, som er blodfortyndende medicin. Normalt har kroppen sit eget koagulationsssystem, som får blodet til at størkne. Derudover medvirker koagulationsssystem til at opløse evt. blodpropper i det kardiovaskulære system. For iskæmiske apopleksipatienter fungerer koagulationssystemet ikke optimalt, og det er dermed nødvendigt at hæmme blodets evne til at koagulere. Dette modvirker dannelsen af nye blodpropper. [34] For både iskæmisk og hæmoragisk apopleksi er en væsentlig del af forebyggelsen at undgå diverse risikofaktorer ift. livsstil. [35]

²FiXme Note: Nice to know: Trombolysebehandling finder sted på 12 sygehuse fordelt over de fem regioner.

2.3 Følger af apopleksi

Apopleksi kan forekomme pludseligt og dermed uden, at den ramte kan forberede sig på følgerne. Dette er modsat andre sygdomme, såsom diabetes, sclerose og KOL, hvor progressionen ofte sker gradvist. Der kan opstå psykiske konsekvenser forårsaget af hæmoragisk eller iskæmisk apopleksi som f.eks. depression eller angst, hvilket bl.a. går udover patientens lyst til at komme tilbage til sin normale hverdag. Følgerne kan derfor have indflydelse på patientens fysiske og mentale tilstand. [5] Udover de psykiske konsekvenser giver apopleksi andre følger, som afhænger af, hvilken del af encephalon der rammes, og hvor omfangsrig hjerneskaden er. Omfanget afhænger af tiden, hvor en del af encephalon ikke får ilt, størrelse af den eventuelle blødningen og trykket i arterien [36].

2.3.1 Sensoriske og motoriske skader

De sensoriske og motoriske konsekvenser er de hyppigst forekommende følger hos apopleksiramte og kan medføre problemer med udførsel af orienterende handlinger. [20, 37] De sensoriske og motoriske funktioner har indflydelse på hinanden, da der ofte anvendes sanser og motorik til udførsel af forskellige funktioner [9].

Som tidligere nævnt i afsnit 2.1.1 kan apopleksi skade sensoriske såvel som motoriske funktioner, som kan ses på **figur 2.2** på side 5.

Symptomerne på sensoriske følger kan bl.a. være:

- Agnosi: Manglende evne til at genkende genstande på trods af klare sanseindtryk af genstanden. Der er flere former for agnosi, som har indflydelse på det at kunne genkende ansigter, lyde og legemesdele [38].
- Agnosognosi: Manglende sygdomserkendelse, hvilket f.eks. kan opleves ved, at patienten nægter sin halvsidige lammelse. I nogle tilfælde kan patienten oplyse om sin lammelse men vil stadig ikke erkende, at den er der [39].

Apopleksipatienterne kan derfor både have problemer med forholdet mellem egen krop og objekter omkring sig, afstandsbedømmelse samt kropsdelenes indbyrdes forhold [20, 37]. Derudover kan de sensoriske følger have indflydelse på motoriske følger, som f.eks. hvis encephalon ikke kan genkende og omdanne signalerne fra sansereceptorer til motoriske bevægelser. [19, 9].

Symptomerne på motoriske følger kan bl.a. være:

- Parese: Nedsat kraft i muskulaturen, hvilket vil sige, at der er bevægelse men i mindre grad end normalen. Hvis der er nedsættelse i halvdelen af kroppen kaldes det hemiparese [20].
- Paralyse: Ingen bevægelse i hele muskulaturen, hvilket vil sige, at kroppen er fuldstændig lammet. [40]
- Ataksi: Manglende evne til koordinering af muskelbevægelser. Dette sker ofte pga. sygdom i cerebellum [41].

Som følge af et apopleksitilfælde kan motoriske mén medføre begrænsninger i bevægelse ift. præcision, generel stivhed, opstart af gang, hurtige og spontane bevægelser samt rystelser. Alle disse følger har betydning for patientens balance og kan give udfordringer for patienten ift. at kunne sidde, stå eller gå. [20, 37]

Balance

En sensorisk og motorisk skade kan lede til balanceproblemer, da både kroppens sanser samt motorik hjælper til opretholdelse af balance. Balancen er vigtig for mennesket, eftersom den opretholder kropsstillingen vha. ubevidste bevægelser og gør bevægelse muligt uden fald. For at opretholde balancen bliver kropsvægten så vidt mulig fordelt omkring kroppens akse og de vægtbærende legemer, herunder fødder i oprejst position og gluteal musklerne i siddende position. [9]

Balancen er et komplekst system, da proprioceptorer og sansereceptorer samarbejder om at sende balanceinformation til encephalon, hvor den bearbejdes. Samarbejdet mellem receptorerne er illustreret på figur 2.3. Proprioceptorerne kontrollerer muskler, sener og leddenes position, dvs. de styrer ubevidste bevægelser. [19] Sansereceptorer fra vestibulen og øjne opfanger sanseindtryk. Proprioceptorer og sansereceptorer udgør de sensoriske indput, som videresendes til områder i cerebral cortex, cerebellum og til centre i hele truncus encephalicus. Disse områder bearbejder balanceinformationen for at konkludere den fysiske position af kroppen og dens lemmer. Herved opretholdes balancen. [6, 19] Proprioceptorer og sansereceptorerne, samt hvor de findes, uddybes i bilag B.

Figur 2.3: På dette flowdiagram ses, hvordan sansereceptorer og propioreceptorer samarbejder for at opretholde kropsbalancen [42].

Apopleksipatienter oplever balanceproblemer, da samarbejdet mellem proprioceptorerne og sansereceptorer er svækket, og de behandlende centre i encephalon er skadet. [19] Balancen har betydning for den siddende, stående og gående position, og de forskellige positioner afhænger af hinanden, hvilket kan give begrænsninger i hverdagen. [6]

Problemer ved opretholdelse af nævnte positioner giver øget risiko for faldulykker. [6]

Et eksempel på, hvordan balancen påvirkes, er Pusher Syndrom. Dette er en lidelse, hvor halvsidigt lammede patienter aktivt skubber deres kropsvægt mod den lammede kropsside,

hvilket er illustreret på **figur 2.4**. Lidelsen kan opstå som følge af både højre- og venstresidig hjerneskade. Patienter med Pusher Syndrom registrerer ikke, at deres krop hænger, hvilket kan være med til at besværliggøre funktioner i dagligdagen og giver øget risiko for faldulykker i både stående, gående og siddende stilling. [6]

Figur 2.4: På dette billede ses en patient med pusher syndrom. Det ses tydeligt, at patienten hænger til sin venstre side med kroppen [6].

Neglekt

Neglekt er en sensorisk og motorisk skade, og derfor kan sygdommen forekomme visuelt, kropsligt eller kombineret. ³ Der er mange former for neglekt, hvor graden kan variere, som kan forekomme samtidigt [8]. Det anslås, at 25% af apopleksipatienterne i 2009 var ramt af neglekt. [13]

Ved visuel neglekt kan patienten bl.a. mangle sanseindtryk fra den påvirkede side af kroppen. Patienten er eksempelvis ikke opmærksom på den ene side af teksten, når vedkommende skal læse, selvom synet er normalt. Derudover kan patienten opleve kun at spise fra den ene del af tallerkenen, eftersom encephalon ikke registrerer den anden halvdel. [8]

Ved den kropslige neglekt kan patienten have manglende kropsbevidsthed. Patienten har ofte normal følelse i den syge side af kroppen - indtrykkene bemærkes, men registres ikke i encephalon. Det kan komme til udtryk i, at patienten glemmer at klæde den syge side af kroppen ordentligt på eller kun barbere halvdelen af ansigtet. En alvorlig følge af kropslig neglekt kan være, at patienten udfører ubevidst skade på sig selv. Patienten kan f.eks. støde ind i ting med den syge side eller ikke være opmærksom på, at benene ikke kan bære kropsvægten og derved miste balancen. Af denne grund kan der på længere sigt forekomme ergonomiske skader andre steder i kroppen. [20]

³FiXme Note: http://gade.psy.ku.dk/bogkap/neglekt.htm - skal IKKE indsættes i kildeliste, da det ikke er en "pålidelig"kilde, men den er god for os at læse.

2.3.2 Personlige følger

Dette afsnit er baseret på hjerneskader generelt. Dvs. det ikke er sikkert, at apopleksi er årsagen, men det antages, at de samme udfordringer gør sig gældende hos personer, der får hjerneskader af apopleksi. Derudover skal det noteres, at det ikke er sikkert, at en patient får følger af apopleksi.

Personer, der rammes af en hjerneskade, beskriver hjerneskaden som et brud i deres liv, som de skal lære at forholde sig til. Det kan tage tid for patienterne at indse, at de er ramt af en sygdom. Patienten er ikke i stand til at udføre de samme opgaver som tidligere f.eks. grundet balancebesvær, hvilket har betydning den ramtes identitet, aktivitet og sociale relationer. Kroppens funktionsændringer gør, at den ramte kommer til at leve et mere inaktivt og hjemmeorienteret liv end før. En yngre patient er mere ramt af denne forandring ift. en ældre patient. Dette kan bl.a. skyldes vanskeligheden i at opretholde sociale relationer og begå sig i hverdagen. Apopleksiramte kan derudover opleve en kropsspaltning, hvor kroppen opleves som et fremmedobjekt. [10, 43]

Der findes ikke synlige vanskeligheder for patienter med hjerneskade som f.eks. besvær med hukommelse, læsning og regning. Disse vanskeligheder har også en indflydelse på patientens selvopfattelse og kan derved være med til at nedsætte livskvaliteten for den enkelte. [10]

2.4 Rehabilitering

Når selve apopleksien er stabiliseret og behandlet, er det essentielt, at rehabiliteringen af patienten indfindes hurtigst muligt - gerne en til to dage efter apopleksitilfældet. I Danmark dækker rehabilitering af en patient med apopleksi områderne: direkte træning af funktioner, kompenserende bevægelser, ændringer i miljø samt social og psykologisk støtte. Patientens daglige rutiner kan være gået tabt pga. apopleksitilfældet, hvorfor det er vigtigt, at få vedkommende tilbage i sit vante miljø. Plejepersonale skal hjælpe patienten til at genfinde rytmen og til evt. at udføre dagligdagsopgaver på en ny måde. Det kan ske, at patienten ikke længere er i stand til at beherske begge sine hænder til en opgave, hvorved plejepersonalet skal bistå patienten i indlæringen af kun at benytte én hånd. [11]

Apopleksipatienten skal i samarbejde med lægen, sygeplejersken og andet hjælpepersonale opstille nogle mål for sin rehabilitering. Målene skal være realistiske, så patienten ikke mister sin motivation til genoptræningen. [11]

2.4.1 Forløbsprogram for rehabilitering

Sundhedsstyrelsen har udarbejdet et forløbsprogram for rehabilitering af patienter med hjerneskade. Forløbsprogrammet strækker sig fra patienten erhverver hjerneskaden til bedst mulig funktionsevne er opnået. Herefter udføres kontrol og vedligeholdelse af funktionsevnen. Tidsperioden for rehabilitering varierer ift. hjerneskadens sværhedsgrad, samt graden af funktionstab. [44]

Forløbsprogrammet er essentielt ift. at kunne give patienten den korrekte rehabilitering, da patienterne har forskellige behov. Deruodver kræves der forskellige former for teknologi og metoder i de enkelte faser. Det vil derfor være oplagt at undersøge, hvilken form for rehabilitering der er at foretrække i de enkelte faser som ses på **figur 2.5**.

Figur 2.5: På figuren ses et forenklet overblik over de fire faser, som patienter med apopleksi skal igennem i forløbsprogrammet for rehabilitering. [44]

Den første fase

Første fase på figur 2.5 er den del af forløbsprogrammet, som foregår på sygehusets apopleksiafdeling, hvor der primært foretages akut behandling. Den tidlige rehabilitering påbegyndes, når patienten er stabiliseret og følgerne er begrænset, hvorefter en speciallæge i neurologi giver en vurdering af patientens rehabiliteringsbehov. Derudover overvåges patienterne ift. bevidsthed, fysiologiske ændringer og amnesi og der foretages vurderinger af patientens basale fysiologiske funktioner.

Den anden fase

Det fremgår af **figur 2.5**, at patienten i den anden fase gennemgår rehabilitering på sygehuset. Her er der fokus på de skadede funktioner. Ligeledes bliver patienten på samme måde som i den første fase undervist af fagkyndigt personale, hvor patientens behov for rehabilitering og rehabiliteringens udvikling vurderes. Patienterne bliver i denne fase udredt ift. funktionsevne, mentale funktioner, bevægelsesfunktioner samt rehabilitering med henblik på daglige aktiviteter. Hvis patienten vurderes til at have en stabil udvikling i rehabiliteringsprocessen, vil vedkommende blive udskrevet og påbegynde fase tre. [44]

Den tredje fase

I den tredje fase på **figur 2.5** er patienten udskrevet fra sygehuset. Derved foregår rehabiliteringen ambulant og som selvstændig træning. Selve rehabiliteringen i tredje fase er bygget op ud fra rehabiliteringsforløbet i den anden fase. Det afgørende for den tredje fase er, hvorvidt patienten skal vedblive rehabilitering på sygehuset eller henvises til de kommunale rehabiliteringscentre. Dette afgøres på baggrund af observationer foretaget i anden fase. Den selvstændige træning kan for patienter med neglekt og balanceproblemer være en udfordring ift. bevægelsesmønstre og kropsholdning. [44]

Den fjerde fase

Det fremgår på figur 2.5, at fjerde fase er den afsluttende fase for behandlingsforløbet. Patienterne går stadig til kontrol og vedligeholdelse for at sikre, at rehabiliteringens udvikling er stabil. Det kan i sidste ende have betydning for, hvor lang tid det tager for patienten at generhverve sine tabte funktioner. Den fjerde fase varierer derfor yderligere fra patient til patient alt efter udviklingen af rehabiliteringen. [44]

2.4.2 Organisering af rehabiliteringsprocessen

I sundhedssektoren arbejder de forskellige organisatoriske aktører på tværs af hinanden, hvilket vil sige, at der er et samarbejde mellem sygehuse, kommuner og praktiserende læger. Dette samarbejde sker både internt på sygehusene, på afdelingerne og kommunalt mellem forvaltningerne. [10] De nævnte aktører er de centrale enheder i forbindelse med hjerneskaderehabilitering.⁴ De har opgaver i alle faser i varierende grad. Sygehuset har flest opgaver i første og anden fase, mens kommuner og praktiserende læger har flest opgaver i tredje og fjerde fase. [44] Det er vigtigt, at det organisatoriske samspil fungerer, da en god kommunikationen mellem aktørerne skaber en effektiv rehabilitering for patienten. De enkelte forløb kan være forskellige, afhængig af hvor i landet patienten befinder sig, samt hvor omfattende hjerneskaden er. [10]

2.4.3 Metoder til rehabilitering af balance

Der findes flere forskellige metoder og teknologier til at hjælpe med balanceproblemer under rehabiliteringsprocessen. Disse omfatter: [44]

- Platform feedback: En metode baseret på biofeedback, hvor patienten står på en platform, der måler graden af patientens svajning⁵. Når platformen har målt svajningen af patienten, kan vedkommende enten få visuel eller auditiv feedback. Feedbacken skal gøre patienten mere opmærksom på, hvor meget kroppen svajer, hvilket gør det muligt at opretholde balancen en stående position. Denne metode har vist sig at forbedre en symmetrisk holdning for patienten. [45] Denne form for teknologi benyttes særligt i de tidlige faser af rehabiliteringen [44].
- Passiv sensorisk stimulation: En rehabiliteringsform, hvor patienten modtager elektrisk stimulation, der ikke medfører aktivitet i musklerne. Stimulationen underretter patienten om, hvad kroppen foretager sig, så det bliver muligt at korrigere bevægelserne og opretholde balancen. [10] Denne metode tilbydes under hele rehabiliteringsforløbet og har effekt for gangfunktionen [44].⁶
- Balancetræning med fysioterapeut: Denne træningsform indebærer forskellige træningsmetoder med f.eks. et vippebræt eller skumpude. Her skal patienten stå på brættet eller puden mens der foretages andre øvelser, eksempelvis boldkast eller rotation på stedet. I nogle tilfælde kan fysioterapeuten bede patienten om at lukke øjnene eller blinde vinklen ned til fødderne, så patienten skal stole på kroppens egne signaler til opretholdelse af balancen. [46] Denne form for rehabilitering tilbydes under hele rehabiliteringsforløbet og har en god effekt på patientens balance samt sociale kompetencer. [44]
- Styrketræning: Træning af kroppens styrke og især muskelpower har en dokumenteret effekt på balancen, da en god koordinering for musklernes sammenspil er essentiel. Hvis musklerne er stærke, er kroppen bedre til at stå imod udefrakommende påvirkninger som f.eks. tyngdekraften, hvilket giver en bedre balance. [46]

⁴FiXme Note: Hvilke øvrige aktører indgår, som ikke er de centrale? Svar: Forskellige faggrupper med neurofaglige kompetencer. Andre aktører - kommunikationscentre (kommunal/regionalt eller foreningsejet/privat) med specialiserede hjerneskadetilbud, hvis de centrale aktører ikke kan leverer det de skal. Ellers er der VISO, ViHS, UU og borgerorganisationer. Tjek kilde "Sundhedsstyrelsen2011a"for yderligere info

⁵FiXme Note: centre of pressure

⁶FiXme Note: NTK: Når musklerne stimuleres passivt, kan patienten 'mærke' den lammede kropsdel, og selvom den ikke kan styres fuldt ud kan der stadig gradvist skabes kontakt til den igen, da det er muligt at føle hvad den foretager sig.

Efter rehabiliteringsforløbet er det besværligt at måle, om genoptræningen har været succesfuld af flere årsager. Nogle sygdomme kan læges over tid uden nogen form for behandling. Derfor vil nogle patienter muligvis opnå samme resultat uden rehabiliteringen. Derudover skal man ikke altid opfatte faldulykker som et tegn på, at patienten ikke har gjort fremskridt. Når patienten får bedre balance og stoler mere på sine egne signaler, vil der naturligt foregå mere aktivitet i hverdagen, hvilket indebærer en højere risiko for at komme ud af balance. [47] Man mener, at den bedste målemetode for succes af rehabilitering er spørgeskemaer til patienter. [47]

2.5 Biofeedback

Biofeedback blev introduceret i slutningen af 1960 og har herefter været anvendt i forbindelse med rehabilitering af patienter [48, 49]. Biofeedback er en terapeutisk metode, der hjælper individet med at genoptræne fysiologiske aktiviteter og kropsfunktioner, der er blevet glemt eller gået tabt som følge af f.eks. apopleksi [49].

Biofeedback kan anvendes både før, under og efter udførelsens af øvelser [49, 50]. Formålet med biofeedback er at forbedre en patients helbred, livskvalitet og præstationer under rehabilitering og daglige gøremål. [49]

Der findes flere forskellige apparater og sensorer til at opfange fysiologiske signaler. De opfangede signaler kan benyttes sammen med et biofeedback system til bevægelses-, styrke- og balancetræning. Signalerne opfanges af apparatet eller sensoren, hvorefter signalet behandles og fortolkes af et system. Systemet kan herefter give feedback til patienten på baggrund af signalernes information. [49] Denne feedback leveres til patienten visuelt, auditivt og sensorisk.

- Visuel Biofeedback: Patienten får visuel feedback ved f.eks. lysdioder i forskellige farver, en monitor med farver, billeder eller grafer. F.eks. kan lysdioderne anvendes til at vise i hvilken grad patienten svajer, og i hvilken retning svajningen sker. Den visuelle feedback afhænger af patientens syn, da patienter med forringet visuelle funktioner kan have udfordringer ift. at registrere feedbacken og derved reagere korrekt på feedbacken. [51, 52]
- Audio Biofeedback: Patienten får feedback via lyd. Dette kan gøres ved f.eks. at bruge lydsignaler, hvor patienten er blevet instrueret i, hvad de enkelte signaler betyder ift. kropsstillingen. Denne form for feedback afhænger af patientens hørelse, og registrering af lyde. Derudover skal lydsignalerne være tilpas komplekse, så patienten kan stå i den ønskede kropsstilling, og samtidig simpel nok til at patienten kan foretage konkrete bevægelser. [51, 52]
- Sensorisk feedback: Denne form for feedback kan gives ved f.eks. stød eller vibration. Ved sensorisk biofeedback vil patienten modtage f.eks. vibrationer bestemte steder på kroppen, hvis personen er ved at falde eller kommer ud af balance uden at registrere det. Dette kræver midlertidig at patienten kan føle vibrationerne og forstå, hvad de betyder ift. de bevægeler, som er nødvendige for at korrigere. [52]

Ved alle tre biofeedback metoder er der fordele og ulemper, og det kan være vanskeligt at bestemme hvilken metode, der kan anvendes som en generel metode. Patienternes problemer kan være individuelle, og det er derfor vigtigt at overveje hvilken form for feedback, patienten er i stand til at processere. En kombination af metoderne kan være at foretrække, for at forstærke feedbackens påvirkning på patienten.

⁷FiXme Note: Hvad menes der med denne sætning?

Biofeedback kan overordnet inddeles i to grupper: Direkte feedback, hvor det målte signal udtrykkes som eksempelvis en numerisk værdi, og transformeret feedback, hvor det målte signal kontrollerer et udstyr, der kan give patienten et bestemt signal. Dette signal kan f.eks. være auditivt eller visuelt. [50]

Biofeedback kan hjælpe patienten med at udvikle en bedre voluntær kontrol over kroppen samt genoptræne patienter til at bevare disse forbedringer uden brug af biofeedback systemet [49]. For at patienten kan modtage feedbacken, skal signalet måles på patienten og fortolkes. Der kan benyttes forskellige typer af sensorer til at opfange fysiologiske signaler fra patienterne, som kan deles ind i en fysiologisk og en biomekanisk del. [50]

2.5.1 Fysiologisk biofeedback

Fysiologisk biofeedback omfatter måling på forskellige kropslige systemer. Det kan bl.a. måles på det neuromuskulære system, det kardiovaskulære system eller respirationssystemet. En fysiologisk feedback kan f.eks. anvendes til patienter med balanceproblemer ved brug af elektromyografisk (EMG) feedback, hvor myoelektriske signaler omsættes til et signal til patienten, hvormed der kan opnås bevidsthed om svage muskler. Foruden EMG kan der anvendes hjerneaktivitet (EEG), øjenmuskelaktivitet (EOG) og hjerteaktivitet (EKG) til feedback til patienter med balanceproblemer, da disse måleparametre alle er dele af kroppens systemer og påvirkes, hvis kroppen er i ubalance. Hvilken sensor der benyttes afhænger af, hvilken form for feedback der anvendes samt hvad man ønsker at måle på patienten. [49]

2.5.2 Biomekanisk biofeedback

Ved biomekanisk biofeedback måles der på generelle motoriske egenskaber såsom kroppens bevægelser og selve kropsholdningen. For apopleksipatienter med balanceproblemer kan flere forskellige biomekaniske biofeedback systemer anvendes under rehabiliteringen af balancen. Disse omfatter f.eks. [50]:

- En trykplade: Her måles fordelingen af patientens kropsvægt under forskellige øvelser.
- Inerti-sensorer ⁸: Der anvender et accelerometer og gyroskop til bestemmelse af kroppens bevægelse i de tre dimensioner: Position, hastighed og acceleration ⁹. Gyroskopet måler vinkelhastigheden, hvor accelerometeret måler accelerationen i en bestemt retning ift. tyngdekraften.
- Et kamerasystem: Giver et visuelt indtryk af patientens bevægelser og kropshældning. Flere studier evaluerer effekten af inerti-sensorer i forbindelse med rehabiliteirng af patienter med balanceproblemer. Et studie viser bl.a. positive resultater, da effekten af et gyroskop i forbindelse med rehabilitering af patienter med kropssvaj blev testet. Her skulle patienterne på samme tid udføre kognitive og motoriske handlinger imens de gik. Imens modtog de biofeedback vedrørende deres kropshældning ud fra gyroskopmålinger. Det viste sig, at især de yngre patienter havde gavn af at modtage signaler omkring deres kropshældning imens de udførte opgaverne. Hvorimod de ældre patienter havde gavn af at modtage biofeedback imens de kun udførte én af opgaverne det blev forvirrende for dem at skulle udføre flere opgaver på én gang, imens de skulle fokuserer på balancen. Et andet studie, der gør brug af et accelerometer, viser effektiviteten af audio biofeedback for testpersonernes balancefunktion og kropsholdning. Studiet konkluderede, at audio biofeedback medførte en

⁸FiXme Note: Er i tvivl om dette er den rette oversættelse af Inertial sensing

⁹FiXme Note: Dette er kinematik af kroppens bevægelser

signifikant forbedring af testpersonernes balancefunktion. [50]

Fordelen ved at benytte et accelerometer til at detektere apopleksipatienternes kropshældning er, at det kan måle patientens acceleration i en bestemt retning ift. tyngdekraften. Gyroskopet måler herimod kun vinkelhastigheden, når objektet er i bevægelse og kan derfor ikke detektere, hvor meget patienten svajer. For at få de bedste resultater ift. genkendelse af apopleksipatientens kropshældning placeres accelerometeret øverst på sternum [53]. Accelerometeret har derved formålet at advare apopleksipatienter, der kommer i ubalance, for at undgå faldulykker. Valg af feedback udstyr afhænger f.eks. af patientens hørelse og følsomhed samt sværhedsgraden af hjerneskaden og hvilke funktioner, der skal genoptrænes. [54]

2.5.3 Krav til patienter med balanceproblemer ved anvendelse af biofeedback

Biofeedback er anvendt i flere årtier, men på trods af dette er det stadig vanskeligt at fastslå, i hvilken grad det gavner patienten [55]. Derfor er det vigtigt, at biofeedback systemet er designet til den enkelte patientgruppes behov ift. til begrænsninger og brug af feedback. Hvis en patient skal have gavn af biofeedback kræver det, at patienten har en kognitiv kapacitet til at følge instruktionerne under behandlingssessioner og fastholde læring fra session til session. Derudover kræves neurologisk kapacitet til at genskabe frivillig kontrol, samt motorisk kapacitet, hvis patienten skal opnå genskabelse af evt. tabte fysiske funktioner. [56] Kravene til patienten ved anvendelse af et medicinsk instrument kan være forskellige alt efter instruments virkemåde. Det er i midlertid vigtigt, at systemets design tilpasses til patienters begrænsninger, som det skal anvendes på. Som tidligere nævnt er måden hvorpå feedback gives vigtigt ift. patientens evner til at opfange og fortolke forskellige feedback former. Det kan f.eks. for nogle patientgrupper være vanskeligt at registrere den visuelle feedback, hvis de har problemer med forringet syn, hvorimod andre patientgrupper kan have nedsat hørelse, og derved vil have svært ved at udnytte audio biofeedback. Disse problemer opleves ofte i den ældre patientgruppen, stiller det bestemte krav til måde hvorpå feedback gives. [2].

2.6 Behandling af biologiske signaler

Et biologisk signal skal behandles for at kunne give et feedback til patienten samt et digitalt output evt. til plejepersonale. For at kunne behandle et signal fra et accelerometer kræves der hhv. en forstærker, filtre, komparator samt ADC. Der kan anvendes andre komponenter til signalbehandling ift. hvad accelerometret skal benyttes til, men de nævnte vil blive benyttet i dette projekt.

2.6.1 Forstærker

En forstærker kan benyttes til at ændre inputtet fra et biologisk signal til et ønsket output. Dette kan gøres ved at kombinere en operationsforstærker med modstandere, der derved kan skalere, ændre fortegn på, addere og subtrahere signalet. Der findes fire forskellige forstærkningskredsløb til at udføre de nævnte opgaver: [57]

• Inverterende forstærkningskredsløb: Benyttes til at invertere signalet, samtidig med det skaleres. Inverteringen af signalet betyder, at der ændres fortegn på signalet.

• Summerende forstærkningskredsløb: Fungerer ligesom det inverterende forstærkningskredsløb med den undtagelse, at input signaler summeres.

- Ikke-inverterende forstærkningskredsløb: Benyttes kun til at skalere input signalet.
- Differens forstærkningskredsløb: Benyttes til at trække to input signaler fra hinanden, så det bliver muligt at se forskellen[57]. Der findes forskellige typer af differensforstærkning, herunder et kredsløb med en enkelt operationsforstærker samt en såkaldt instrumenteringsforstærker. I instrumenteringsforstærkeren indgår yderligere to operationsforstærkere, for at lave inputbuffere til den oprindelige operationsforstærker.¹⁰

For at forstærke signalet fra et accelerometer benyttes operationsforstærkeren, der skalerer input-spændingen til en ønsket output-spænding. Dette gøres for at opnå et bestemt output, hvis den næste komponent skal bruge et specifikt input eller for at forstærke signaler med lav frekvens eller amplitude. Der kan f.eks. bruges en inverterende forstærker, som ses på **figur 2.6**, hvor Vs er det målte signal, der ønskes forstærket og Vo er output. Inputtets forstærkning kaldes gain og er en ratio mellem Rf/Rs, som er de to modstande. [57]

Figur 2.6: En ideel operationsforstærker, som er inverterende koblet og kan forstærke input signalet Vs til et ønsket output signal Vo. [57]

2.6.2 Filtrering

Filtrering er et værktøj indenfor databehandling, som anvendes i det biologiske signals frekvensdomæne. Formålet med at filtrere et målt signal er at fjerne uønskede frekvenser, også kaldet støj, der ikke tilhører det signal, der ønskes undersøgt. Filtret kan opdele signalet i såkaldte bånd: Pasbånd, hvor frekvenserne frit passerer igennem filteret uden påvirkning, samt stopbånd, hvor frekvenserne dæmpes, så de ikke har indflydelse på signalet. Dette gøres ved en knækfrekvens. Der findes flere forskellige typer af filtre, der afhænger af, hvilke frekvenser der skal fjernes fra det målte signal [58]:

- Lavpasfiltret: Anvendes til at dæmpe frekvenser over den valgte knækfrekvens. Dette gøres ved at dæmpe de frekvenser, som ligger over knækfrekvensen.
- Højpasfilteret: Anvendes, modsat lavpasfiltret, til at dæmpe frekvenser under den valgte knækfrekvens ved at dæmpe signalet under knækfrekvensen.

¹⁰FiXme Note: Spørg Erika om bogens titel

• Båndpasfilteret: Er en kombination af et lav- og højpasfilter. Her defineres et interval, hvormed de frekvenser der ligger udenfor intervallet vil blive dæmpet.

• Båndstopfilteret: Fungerer, modsat båndpasfilteret, ved at dæmpe specifikt definerede frekvensområder. Frekvenserne udenfor det definerede område påvirkes ikke.

I forbindelse med databehandling kan flere af filtrene anvendes samtidig [58]. Princippet i de fire filtertyper er illustreret på figur 2.7.

Figur 2.7: De fire filtertyper ses her [?] 11

Filtrene kan desuden inddeles i forskellige grader eller ordener, afhængigt af hvor stejl filtreringskurven er, dvs. hvor meget signalet dæmpes pr. dekade[?].

2.6.3 Støj

Støj er den uønskede del af et opsamlet signal, der ikke har nogen relation til det ønskede signal ¹². Signaler, der er fordelt udover et frekvensspektrum, kan filtreres for støj vha. de tidligere beskrevne filtre. [58] Støj kan inddeles i flere forskellige generelle typer, som typisk vil forekomme:

- Elektriske signaler: Dette er bl.a. 50 Hz støj, som er en frekvens fra elnettet. Denne 50 Hz frekvens kan gå ind og påvirke de biologiske signaler, der måles på. Hvis der er flere 50 Hz kilder, der interagerer, kan det give ekko ved eksempelvis 100 Hz og 150 Hz. Det er denne form for støj, der skal undgås, når signalet analyseres.
- Ledninger: Kan fungere som antenner, der opfanger 50 Hz støj og andre former for støj. Problemet bliver større jo længere ledningen er.
- Magnetfelt: Kan komme i kontakt med ledningerne og derved inducere strømmen, der skaber støj i signalet. Jordens magnetfelt kan f.eks. påvirke ledningerne. For at mindske støjen kan ledningerne snoes / flettes sammen.

2.6.4 Komparator

En analog komparator er et kredsløb, der sammenligner en inputspænding eller -strøm med en eller flere referencespændinger eller -strømme. Komparatorens output går fra en

¹²FiXme Note: Må man citere til en forelæsning? - Hvis ja, så ved Nikoline, hvilken forelæsning det er

mætningsgrænse til en anden, når det negative input af operationsforstærkeren passerer igennem 0 V. Dette betyder, at ved en inputspænding på mere end tærskel niveauet vil outputspændingen opnå negativ mætningsgrad. Omvendt ved en inputspænding, som er lavere end tærskelniveauet, vil output spændingen opnå positiv mætningsgrad ¹³. Den simpleste komparator er en operationsforstærker. [51] Når accelerometerets signal er blevet behandlet, modtager komparatoren dette. Den vil have nogle indstillede tærskelværdier, og hvis en eller flere af disse opnås, vil komparatoren aktivere de tilknyttede komponenter. ¹⁴

Det kan være fordelagtig at placere modstanden R1 ved inputsignalet, som det kan ses på **figur 2.8**, da dette minimerer overstyringen¹⁵ af operationsforstærkeren. Når inputtet, ved en simpel komparator, når tærskelniveauet og der forekommer støj på inputtet, kan outputsignalet svinge kraftigt. Dette kan imidlertid undgås ved at tilføje to modstande, R2 og R3. [51]

Figur 2.8: En simpel komparator, der har fået tilføjet R2 og R3 for at undgå svingninger i outputsignalet. (Billedet er udarbejdet i LT-spice)

2.6.5 ADC og konvertering til computeren

Når der foretages målinger på kroppens signaler, er output et analogt signal, som er kontinuert i tid og amplitude. Ved behandling af det analoge signal anvendes digital processering, hvilket betyder, at det analoge signal skal konverteres til et digital signal vha. en ADC (Analog-to-Digital-Converter). Det digitale signal er diskret i tid og amplitude, så det analoge signal kvantificeres under konverteringen [?]. Konverteringsprocessen består af to dele: sampling og kvantisering [59].

Sampling er processen, hvor diskretisering i tidsdomænet finder sted. Tidsdomænet i det kontinuerte signal konverteres derved til et diskret signal. Samplingsfrekvensen er den hyppighed, hvormed signalet måles. Hvis der ikke vælges en passende samplingsfrekvens, kan information fra det originale signal gå tabt. Ifølge Nyquists sætning er en hensigtsmæssig samplingsfrekvens således, at samplingsfrekvensen skal være mindst det dobbelte af frekvensen i det originale signal. [59] Det anbefales dog i praksis at sample med en samplingsfrekvens, der er ti gange frekvensen af det originale signal. Det er derudover vigtig, at der ikke bliver samplet med for høj samplingsfrekvens, hvis det ikke er nødvendigt. En større mængde data bruger

¹³FiXme Note: skriv hvorfor dette sker rent teknisk

¹⁴FiXme Note: kilde - Cecilie

¹⁵FiXme Note: Et bedre ord end overstyring

mere plads og processering, hvilket kan resultere i datadøden. ¹⁶. En for lav samplingsfrekvens kan medføre, at kurven fra det rekonstruerede signal ligger forskudt ift. det originale signal, hvilket kaldes alias. [59] Det skal derfor inden opsamlingen af data bestemmes, hvor meget data, der er nødvendigt.

Diskretisering af amplituden betegnes som kvantisering. De enkelte samples har en amplitudeværdi, og ved kvantisering inddeles denne analoge værdi i trin. I modsætning til sampling sker der en approksimering i det rekonstruerede signal, da værdierne mellem to trin repræsenteres af samme digitale værdi. Dette gør, at flere værdier kan ligge indenfor den samme digitale værdi [59]. Antallet af amplitudeniveauer, der er tilgængelige til at repræsentere det analoge signal, determineres af antal bits. En ADC med en opløsning på 12-bit inddeles f.eks. i 4096 niveauer, da $2^{12} = 4096$. [60] Det mindste amplitudeniveau, ADCen kan opnå, kaldes Least Significant Bit (LSB) og bestemmes ved følgende ligning 17:

$$LSB = \frac{FSR}{(2n-1)} = \frac{FSR}{2^n} \tag{2.1}$$

FSR er "full scale voltage range" 18 , n er antal bits, 2^n er antal værdier og $2^n - 1$ er antal intervaller.

Ved forstærkning er det essentielt at være opmærksom på ADC'ens arbejdsområde, da den har et bestemt inputområde. Hvis et outputsignal er større eller mindre end hhv. den øvre og nedre værdi inden for arbejdsområdet for ADCen, vil signalet blive afskåret. Herved går en del af dataen tabt. ¹⁹

 $^{^{16}\}mathsf{FiXme}$ Note: kilde - forelæsning

¹⁷FiXme Note: kilde - forelæsning Sofie

¹⁸FiXme Note: (arbejdsområdet)

¹⁹FiXme Note: problemer igen med at finde nogle kilder til det

2.7 Problemafgrænsning

Apopleksi er en sygdom, der har stor indflydelse på blodtilførslen til encephalon. Hvis tilstrømningen af blod er nedsat, kan der opstå både motoriske og sensoriske skader hos patienten, hvilket kan komme til udtryk som balanceproblemer. Balancen er vigtig for at kunne fungere i dagligdagen, da den sikrer at man holder kroppen oprejst og muliggør bevægelse uden fald. [9] ²⁰ Apopleksipatienter med balanceproblemer oplever en begrænsning i deres dagligdag, da de er afhængige af hjælp til daglige gøremål, som de før sygdommen selv kunne udføre. De oplever det som et brud på deres tidligere liv, hvilket påvirker deres identitet og livskvalitet. [10]

For at begrænse de fysiske, og dermed også de personlige, følger mest muligt, er det essentielt at rehabiliteringen påbegyndes hurtigt efter apopleksitilfældet. Indenfor rehabilitering af balance tilbydes forskellige metoder, såsom platform feedback og passiv sensorisk stimulation. En anden mulighed ift. rehabilitering af balancen er biofeedback. Studier viser positive resultater med biomekanisk biofeedback, herunder inerti-sensorer, hvor der måles på kroppens generelle motoriske egenskaber. [50] For at biofeedback er en mulighed, er det en forudsætning, at patientens kognitive evner er tilstrækkelige til at kunne blive instrueret og kunne huske de indlærte øvelser fra gang til gang. [56] Dette gør sig især gældende for den ældre befolkning, som systemet skal designes til, da det er denne befolkningsgruppe, der i højere grad rammes af apopleksi. [2]

Det er interessant at undersøge, hvordan et system baseret på biomekanisk biofeedback kan designes således, at det vha. et accelerometer hjælper apopleksipatienter med at genoptræne deres balance. Der kan benyttes forskellige komponenter til signalbehandling, men til behandling af accelerometrets signal er der valgt en forstærker, filtre, komparator samt ADC.

Det er essentielt at undersøge, om systemet kan designes sådan, at det i højere grad tillader patienterne at bidrage til deres egen rehabilitering ved at benytte visuel, sensorisk og/eller audio biofeedback. Det er muligt, at dette kan begrænse nogle af patienternes personlige følger, da kontakten med sundhedspersonale i forbindelse med rehabiliteringen kan begrænses, hvormed det normale hverdagsliv hurtigere kan genoptages.

2.8 Problemformulering

Hvordan designes et biofeedbacksystem med et accelerometer således, at det hjælper apopleksipatienter under rehabilitering af balancen?

²⁰FiXme Note: Burde alt EFTER denne fxnote og indtil det nye afsnit omformuleres eller udelades? Det bygger op til et problem, som vi ikke arbejder med.

Kapitel 3

Problemløsning

3.1 Systembeskrivelse

Dette afsnit indeholder en beskrivelse af det system, der skal kunne anvendes af apopleksipatienter som et selvstændigt træningsapparat i rehabiliteringen af balanceproblemer. Systembeskrivelsen indeholder målgruppen for designet, samt hvilket formål og anvendelse det har. Ud fra disse faktorer er systemet blevet designet og illustreret i et blokdiagram.

3.1.1 Systemets bruger

Systemet udvikles til apopleksipatienter med balanceproblemer mhp. selvtræning af balance i rehabiliteringsfasen, der bliver omtalt som fase 3 og 4 i afsnit 2.4.1 på side 11. Jævnfør afsnit 1 på side 1 ses det, at majoriteten af apopleksipatienter er over 65 år, og systemet skal derfor være let anvendeligt. Systemets design skal altså være enkelt, så der ikke skabes forvirring blandt brugerne ift. systemets funktioner. Fagkyndigt personale, såsom fysioterapeuter og læger, skal kunne instruere patienten i brugen af systemet samt følge med i udviklingen, som patienten gennemgår. Det skal derfor være muligt for det fagkyndige personale at anvende systemet og aflæse data herfra. Dette gøres ved, at systemet både har et output henvendt til patienterne og det fagkyndige personale. Patienternes output er den feedback, der oplyser om deres hældningsgrad og programmet der skal behandle og gemme patienternes øvelsesresultater er output til det fagkyndige personale.

3.1.2 Systemets formål og anvendelse

Systemets input er patienternes kropshældning, dvs. hvor meget vedkommende svajer i anatomisk position og under udførelse af en bestemt øvelse ¹. Systemet skal kunne konvertere informationerne vedrørende patienternes kropshældning til visuel og sensorisk feedback, samt et digitalt output i form af grafer. Den visuelle og sensoriske feedback har til formål at gøre apopleksipatienter opmærksomme på, hvornår de har bevæget sig over den normale grænse for krops svaj. Således kan systemet registrere, hvis patienten er i risiko for at falde. Inden et fald sker udsendes et feedback signal, så patienterne har mulighed for at rette sig op. Selve systemet skal anvendes til selvtræning i hjemmet. Det skal derfor være et brugervenligt system, dvs. systemet skal kunne påsættes uden problemer og fungere uden, at patienten skal navigere rundt i forskellige funktioner for at påbegynde feedbacken. Systemet skal fungere som en hjælp for patienten, da vedkommende bliver bevidst omkring sin balance. Herved kan patienten være mere selvstændig i rehabiliteringsprocessen.

Systemet designes til selvtræning af statisk balance. Patienterne kan anvende systemet ved to sværhedsgrader: Ved normal kropsstilling (anatomisk udgangsposition) og en bestemt

¹FiXme Note: skriv øvelsens navn

øvelse kaldet Sharpened Rombergs Test, som patienterne skal udføre. Apopleksipatienternes balance udfordres i højere grad af Sharpened Rombergs Test end ved normal kropsstilling, eftersom kropsvægten fordeles anderledes ved denne øvelse ift. den normale kropsstilling omtalt i afsnit 2.3.1 på side 9. Sharpened Romberg Test udføres i stående udgangsposition med fødderne på en tegnet linje, så den ene fods tæer er mod den anden fods hæl [61]. Det er på baggrund af afsnit 2.5.2 på side 15 valgt, at systemet skal placeres øverst på sternum for at få bedst mulige målinger ift. patienternes kropshældning. Systemet skal give sensorisk og visuel feedback i form af en vibrator samt fem dioder bestående af en grøn, to gule og to røde. Som udgangspunkt svajer kroppens position omkring seks til syv grader i lateral retning ved raske forsøgspersoner [62, 61] ², så hvis forsøgspersonernes kropshældning ligger over denne værdi er de i fare for at miste balancen. Grænsen for hvornår balancen ikke kan opretholdes er individuel og påvirkes af forskellige faktorer, såsom alder [61]. Det kan derfor være vanskeligt at definere en værdi for denne grænse. I praksis bør systemet dermed tilpasses til den enkelte patient på baggrund af testøvelser ift. balancen. Hældningsgraderne vil i dette projekt blive valgt på baggrund af raske forsøgspersoner, da det vurderes udfra problemanalysen afsnit 2.3.1 side 9, at apopleksipatienter har flere sygdomsrelaterede faktorer, der kan påvirke deres hældningsgrad. Hvis patienten hælder i intervallet 8°-13° til højre, indikeres dette af den gule diode på højresiden af den grønne diode. Derudover aktiveres en mild vibration, når den gule diode lyser. Hvis patienten hælder 13° eller derover, lyser den røde diode til højre for den gule diode og styrken af vibrationen forøges. Det samme gør sig gældende for hældning mod venstre. Med denne metode indikeres både, hvilken retning patienten svajer samt graden heraf. Ved benyttelse af to feedback former er der større mulighed for, at patienten kan opfange signalerne. Hvis patientens visuelle sans er begrænset kan systemet stadig benyttes grundet den sensoriske feedback.

Efter en testøvelse af systemet udføres selve træningsøvelsen, hvor udgangspositionen indtages på linjen. For at øge sværhedsgraden yderligere kan den visuelle sans udelukkes. Patienten skal under øvelsen forsøge at holde balancen så længe som muligt uden at bevæge sig ud i risikozonerne. Hvis patienten kommer ud i risikozonerne vil dette blive markeret ved lys i dioderne samt vibration. Træningsøvelsen gentages efter behov. Ved at tage flere målinger igennem rehabiliteringsforløbet vil det forventes, at der sker en fremgang ift. tiden, hvori balancen kan opretholdes uden at patienten bevæger sig ud i risikozonerne.

3.1.3 Systemets opbygning

³ Systemets opbygning fremgår af **figur 3.1**.

Figur 3.1: Figuren viser de enkelte blokke, som systemet skal indeholde.

²FiXme Note: Vi skal have noget point of no return ind her ift fald

³FiXme Note: Ny figur - Erika: strømforsyning?

Det biologiske signal der opnås fra accelerometeret skal som det første filtreres vha. et lavpasfilter. Dette gøres for at frasortere uønskede frekvenser over 45 Hz. Grunden til disse frekvenser kan frasorteres, er at det signal som skal måles ligger under 45 Hz. Efter filtreringen af signalet benyttes en variabel forstærker, for at tilpasse signalets amplitude til ADC'en og komparatoren. Signalet ledes herefter videre i et analogt og digitalt kredsløb. I det analoge kredsløb kommer signalet først gennem en komparator. Denne skal sammenligne signalet der optages, så den rigtige feedback kan gives til patienten. Feedbacken bliver givet til patienten, således det bliver muligt at holde balancen, dette gøres i form at dioder og vibratorer. I det digitale kredsløb, bliver signalet ledt ind i en ADC. Denne vil omdanne det analoge biologiske signal til et digitalt signal. Det digitale signal bliver herefter ledt ind i en USB-isolator, så der ikke opstår lækstrømme og for at sikre patientens sikkerhed. Til sidst vil det digitale signal overført til en computer, hvor signalet herefter vil kunne gemmes. Det bliver herved muligt at databehandle signalet og opstille det som en graf eller lignende.

3.1.4 Kravspecifikationer

For at gøre anvendelse af samme system muligt til 4. Semester skal arbejdsområdet kunne benyttes sammen med et USB-baseret trådløst udviklingsværktøj eZ430-RF2500 fra Texas Instruments. Det er derfor nødvendigt, at designet stemmer overens med udviklingsværktøjet for at kunne sende og modtage data til og fra computeren. Udviklingsværktøjet indeholder hardware og software som evaluerer mikrokontrolleren MSP430F2274. For at hele vores system kan anvendes med udviklingsværktøjet, skal outputsignalet være 0-3V, eftersom mikrokontrolleren opererer med spændingsforsyning mellem 1,8V og 3,6V.

I praksis er det ikke muligt at have ideelle komponenter ⁴. Der vurderes derfor ud fra et pilotforsøg, litteratur og accelerometerets datablad hvilke krav de enkelte komponenter i blokdiagrammet skal opflyde og den tolerance, der accepteres ift. komponenterne.

Overordnede funktionelle krav til systemet:

- Systemet skal være brugervenligt, så det kan anvendes af apopleksipatienter og fagkyndigt personale
- Systemet skal kunne måle kropshældning, samt angive hvilken retning hældningen sker mod. Derudover skal det kunne måle statisk acceleration, eftersom vi måler på stående position ⁵.
- Systemet skal kunne give visuel og sensorisk feedback ved forskellige hældningsgrader.
 - Grøn diode: Skal lyse, når patienten ikke er ude i risikozonerne.
 - Gul diode: Skal lyse, når den første risikozone defineret i grader indtræffer og slukke, hvis patienten retter sig op.
 - Rød diode: Skal lyse, når den anden risikozone defineret i grader indtræffer og slukke, hvis patienten retter sig op.
 - Vibration: Skal aktiveres, når den første risikozone indtræffer og skal slukke, hvis patienten retter sig op. Hvis patienten hælder yderligere, skal vibrationshastigheden stige.
- Systemet skal kunne skifte mellem to sværhedsgrader.

⁴FiXme Note: husk kilde

⁵FiXme Note: skal sidste sætning med - referer til Erikas rettelse på side 4 fra statusseminar "skal kunne måle statisk acceleration- hvorfor?

• Signalet i systemet må ikke forstærkes til en værdi over 3V, da det så vil nå mætning.

• Systemet skal kunne give et digitalt outout, så det er muligt at behandle og gemme patienternes data i et program.

3.2 Pilotforsøg

Før systemet kan designes, er det nødvendigt at vide hvilke frekvenser af signalet der er støj. Grunden til dette er at det signal, der optages gerne skal være af den bedste kvalitet og derfor skal støjsignaler frasorteres. Derudover er det nødvendigt at vide hvilket outputsignal accelerometeret giver ift. den valgte hældningsgrad. Ud fra disse oplysninger er det muligt at designe de enkelte blokke i systemet.

3.2.1 Formål

- 1. Identificere de frekvenser, der udgør støj i outputsignalet fra accelerometeret.
- 2. Identificere maksimum og minimum outputsignal af accelerometeret.

3.2.2 Materialer

- ADXL335 accelerometer.
- Kondensator.
- Breadboard.
- Spændingsforsyning.
- Tavle.
- Vinkelmåler
- Hæftemasse (Elefantsnot).
- Kridt
- NI USB-6009.
- USB isolator USI-01.
- Computer med Scopelogger og MatLab.
- Diverse ledninger og modstandere⁶.

3.2.3 Metode

Måden hvorpå støjfrekvenserne i outputsignalet identificeres er ved først at måle en baseline uden hældning, dvs. ved 0°. Dette medfører at signalet kan analyseres, uden nogen påvirkning på outputsignalet. Dernæst måles der ved en hældning på 90°, til både højre og venstre. Derved kan det sammenlignes om der er støj i forhold til baseline. Det samme gøres for de specificerede hældningsgrader. For at simulere den påvirkning accelerometeret udsættes for, og identificere den mulige støj ved en rotation, skal der ske en langsom rotation ned til 90°, både til venstre og højre. Denne metode vil også identificere minimum og maksimum outputsignalet, som accelerometeret vil afgive.

⁶FiXme Note: Specificer yderligere efter forsøg

3.2.4 Fremgangsmåde

Opsætning

- Accelerometeret tilnyttes en forsyningsspænding på 5.6V.
- Accelerometeret tilkobles breadboardet.
- En kondensator på $0.10\mu F$ (Giver en båndbredde på 50 Hz.).
- Outputtet fra kondensatoren sendes igennem NI USB-6009.
- Signalet fra NI USB-6009 sendes igennem USI-01.
- Outputsignalet sendes ind i computeren hvor det optages med Scopelogger.

Forsøget

- \bullet Accelerometeret sættes fast på en tavle ved 0° ift. tyngdekraften.
- Herefter måles der i 30 sekunder .
- Det samme gentages for $\pm 90^{\circ}$ samt de valgte hældningsgrader på 8° og 13° .
- Derefter måles accelerometeret under rotation fra 0° til $\pm 90^{\circ}$. Rotationen foretages langsomt og kontrolleret. Her måles 5 sekunder inden, under og efter rotationen.
- Dataen fra forsøgene gemmes på computeren.

Litteratur

- [1] Hjernesagen. Fakta om apopleksi, April 2015. URL http://www.hjernesagen.dk/om-hjerneskader/bloedning-eller-blodprop-i-hjernen/fakta-om-apopleksi.
- [2] Sundhedsstyrelsen. Bilag til forløbsprogram for rehabilitering af voksne med erhvervet hjerneskade apopleksi og tci. Sundhedsstyrelsen, 2011.
- [3] Ældre Sagen. Antal Ældre. Danmarks Statistik, 2014.
- [4] Christina Rostrup Kruuse. Apopleksi blodprop eller blødning i hjernen, August 2014. URL https://www.sundhed.dk/borger/sygdomme-a-aa/hjerte-og-blodkar/sygdomme/apopleksi/apopleksi-blodprop-eller-bloedning-i-hjernen/.
- [5] Ingrid Muus, Karin C Ringsberg, Max Petzold, and Lars-Olof Persson. Helbredsrelateret livskvalitet efter apopleks: Validering og anvendelse af SSQOL-DK, et diagnosespecifikt instrument til måling af helbredsrelateret livskvalitet blandt danske apopleksipatienter.

 PhD thesis, Nordic School of Public Health NHV Göteborg, Sweden, 2008.
- [6] Doris Karnath, Hans-Otto; Broetz. Understanding and treating "pusher syndrome". Physical Therapy. Volume 83. Number 12, 2003.
- [7] National Stroke Association. Recovery after stroke: Movement and balance. *National Stroke Association*, 2006.
- [8] Sundhed.dk. Apopleksi og tci(=tia), September 2014. URL https://www.sundhed.dk/sundhedsfaglig/laegehaandbogen/hjerte-kar/tilstande-og-sygdomme/apopleksi-og-tia/apopleksi-og-tia-tci/#1.
- [9] D.S. Nichols. Balance retraining after stroke using force platform biofeedback. *Physical Therapy. Volume 77. Number 5. Page 553-558*, 1997.
- [10] Sundhedsstyrelsen. Hjerneskaderehabilitering en medicinsk teknologivurdering. Sundhedsstyrelsen, 2010.
- [11] Christina Rostrup Kruuse. Apopleksi, rehabilitering, April 2015. URL https://www.sundhed.dk/borger/sygdomme-a-aa/hjerte-og-blodkar/sygdomme/apopleksi/apopleksi-rehabilitering/.
- [12] Britannica Academic. Stroke, September 2015. URL http://academic.eb.com.zorac.aub.aau.dk/EBchecked/topic/569347/stroke.
- [13] Sundhedsstyrelsen. Referenceprogram for behandling af patienter med apopleksi. Sundhedsstyrelsen, 2009.
- [14] Leslie Ritter and Bruce Coull. Lowering the risks of storke in women (and men), 2015. URL http:
 //heart.arizona.edu/heart-health/preventing-stroke/lowering-risks-stroke.

[15] Svend Schulze and Torben V. Schroeder. Basisbog i Sygdomslære. Munksgaard Danmark, 2011. URL https://books.google.dk/books?id=vNK8CRu4t9sC&pg=PA444& lpg=PA444&dq=karokklusion&source=bl&ots=jAu__8N40z&sig= I4LKVLfRFQVE4NZYjHpUepM6jms&hl=da&sa=X&ved=OCEMQ6AEwB2oVChMI1Lbp_fv4xwIVCANzChOAmgAV#v=onepage&q=apopleksi&f=false.

- [16] Britannica Academic. Nervous system disease, September 2015. URL http://academic.eb.com/EBchecked/topic/1800831/nervous-system-disease/75792/Stroke?anchor=ref606262.
- [17] Elias A. Giraldo. Overview of stroke, 2015. URL http://www.merckmanuals.com/home/brain-spinal-cord-and-nerve-disorders/stroke-cva/overview-of-stroke.
- [18] Louis R. Caplan. Stroke. Demos Medical, 2006.
- [19] Frederic H. Martini et al. Fundamentals of Anatomy & Physiology. Pearson Education, 2012.
- [20] Christina Rostrup Kruuse, John Sahl Andersen, Nanna Witting, and Finn Klamer. Apopleksi, kognitive symptomer, 2015. URL https://www.sundhed.dk/sundhedsfaglig/laegehaandbogen/hjerte-kar/tilstande-og-sygdomme/apopleksi-og-tia/apopleksi-kognitive-symptomer/.
- [21] Anders Gade, Annelise Smed, and Palle Møller Pedersen. Neuropsykologiske opslag og temaer til "gads psykologileksikon". Bog, 2004. URL http://gade.psy.ku.dk/Undervis/a.htm.
- [22] B. J. Boss. Pathopsysiology: The biologic basic for disease in adults and children. Mosby Elsevier, 2010.
- [23] Cindy L. Stanfield. Principles of Human Physiology. Pearson Education, 2014.
- [24] Torben Moos and Morten Møller. Basal neuroanatomi. FADL's forlag, 2010.
- [25] Yurong Mao et al. Virtual reality training improves balance function. Neural Regeneration Research, 2014.
- [26] Dhakshin Ramanathan, James M. Conner, and Tuszynski Mark H. A form of motor cortical plasticity that correlates with recovery of function after brain injury. *Pubmed*, 2006. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1544093/.
- [27] Sue Raine, Linzi Meadows, and Mary Lynch-Ellerington. Bobath Concept Theory and Clinical Practice in Neurological Rehabilitation. Wiley-Blackwell, 2009. URL http://faculty.mu.edu.sa/public/uploads/1348328471.2341Bobath.Concept.2009.pdf.
- [28] Michael Rugnetta. Neuroplasticity, Oktober 2015. URL http://academic.eb.com.zorac.aub.aau.dk/EBchecked/topic/410552/neuroplasticity.
- [29] Naoyuki Takeuchi and Shin-Ichi Izumi. Maladaptive plasticity for motor recovery after stroke: Mechanisms and approaches. Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, 2012.

[30] Mi Young Leea, Ji Won Parkb, et al. Cortical activation pattern of compensatory movement in stroke patients. *NeuroRehabilitation*, 2009.

- [31] Debbie Hampton. Your plastic brain: The good, the bad, and the ugly, Oktober 2015. URL http://www.thebestbrainpossible.com/the-good-the-bad-and-the-ugly-2/.
- [32] Birgitte R. Sønderborg. Hjerneblødninger svære at behandle akut, April 2013. URL http://www.hjernesagen.dk/om-hjerneskader/behandling/hjernebloedning.
- [33] Hjernesagen. Trombolysebehandling af blodprop i hjernen, 2015. URL http://www.hjernesagen.dk/om-hjerneskader/behandling/trombolyse.
- [34] Jesper Kjærgaard. Antikoagulationsbehandling (blodfortyndende medicin), 2015. URL https://www.sundhed.dk/borger/sygdomme-a-aa/hjerte-og-blodkar/sygdomme/behandlinger/antikoagulationsbehandling-blodfortyndende-medicin/.
- [35] Hanne Christensen. Forebyggelse, 2015. URL http://www.hjernesagen.dk/forebyggelse.
- [36] Patricia; Shortland Peter Michael-Titus, Adina; Revest. The nervous system: basic science and clinical conditions. Edinburgh: Churchill Livingstone, 2010.
- [37] DSfA. Referenceprogram for behandling af patienter med apopleksi. Dansk Selskab for Apopleksi, 2009.
- [38] Den store danske Redaktionen. Agnosi, 2015. URL http://www.denstoredanske.dk/ Krop,_psyke_og_sundhed/Psykologi/Psykologiske_termer/agnosi.
- [39] S. T. Pedersen, P. M. og Olsen. Kognitive forstyrrelser ved apopleksi hyppighed, betydning og genoptræning. *Munksgaard*, 1999.
- [40] Lene Vistrup. Paralyse, 2015. URL http://www.denstoredanske.dk/Krop,_psyke_ og_sundhed/Sundhedsvidenskab/Medicinske_nervesygdomme/paralyse.
- [41] D. s. d. Redaktionen. Ataksi, 2015. URL http://www.denstoredanske.dk/Krop,_psyke_og_sundhed/Sundhedsvidenskab/B\T1\ornesygdomme_og_medf\T1\odte_misdannelser/ataksi.
- [42] Mary Ann Watson and F. Owen Black, 2015. URL http: //vestibular.org/understanding-vestibular-disorder/human-balance-system.
- [43] Mary Beth Badke et al. Tongue-based biofeedback for balance in stroke: Results of an 8-week pilot study. *Physical Medicine and Rehabilitation*, 2009.
- [44] Sundhedsstyrelsen. Forløbsprogram for rehabilitering af voksne med erhvervet hjerneskade. Sundhedsstyrelsen, 2011.
- [45] Ruth E. Barclay-Goddard et al. Force platform feedback for standing balance training after stroke. *The Cochrane Library*, 2004.
- [46] Tom Jørgensen. Vestibulær rehabilitering. 2004. URL https://fysio.dk/Upload/ Graphics/PDF/Artikeltillaeg/vestibulaer_rehabilitering.pdf.

[47] Timothy C. Hain. What is balance and vestibular rehabilitation therapy?, 2008. URL http://www.brainline.org/content/2011/02/what-is-balance-and-vestibular-rehabilitation-therapy_pageall.html.

- [48] Morton Glanz et al. Biofeedback therapy in poststroke rehabilitation: A meta-analysis of the randomized controlled trials. *Physical Medicine and Rehabilitation*, 1995.
- [49] William E. Prentice and Michael I. Voight. *Techniques in musculoskeletal rehabilitation*. The McGraw-Hill Companies, 2007.
- [50] Oonagh M Giggins, Ulrik McCarthy Persson, et al. Biofeedback in rehabilitation. Journal of Neuroengineering and Rehabilitation, 2013.
- [51] John G Webster. Medical Instrumentation: Application and Design. John Wiley And Sons Ltd, 2009.
- [52] Edward B. Blanchard and Larry D. Young. The relative efficacy of visual and auditory feedback for self-control of heart rate. 1972.
- [53] Hristijan Gjoreski et al. Accelerometer placement for posture recognition and fall detection. *Intelligent Environments*, 2011.
- [54] Hjælpemiddelbasen. Biofeedback udstyr til bevægelses-, styrke- og balancetræning. URL http://www.hmi-basen.dk/r4x.asp?linktype=iso&linkinfo=044824&P=1.
- [55] Morton Glanz et al. Biofeedback therapy in stroke rehabilitation: a review. 1997.
- [56] Susan J. Middaugh et al. Biofeedback in treatment of urinary incontinence in stroke patients. *Biofeedback and Self-regulation*, 1989.
- [57] James W. Nilsson and Susan A. Riedel. *Electric circuits*. Pearson Education, 2011.
- [58] Suresh R. Devasahayam. Signals and Systems in Biomedical Engineering: Signal Processing and Physiological Systems Modelling. Springer Science+Business Media, LLC, 2000.
- [59] George Zouridakis and James Moore. Biomedical Technology and Devices Handbook. CRC Press, 2003.
- [60] Peter Konrad. The ABC of EMG A Practical Introduction to Kinesiological Electromyography. Noraxon INC. USA., 2006.
- [61] Feng Huo. Limits of stability and postural sway in young and older people. Master's thesis, Queen's University, Kingston, Ontario, Canada, 1999.
- [62] Fang Wang, Marjorie Skubic, et al. Body sway measurement for fall risk assessment using inexpensive webcams. 2010.
- [63] Britannica Academic. Human nervous system, Oktober 2015. URL http://academic.eb.com.zorac.aub.aau.dk/EBchecked/topic/409709/ human-nervous-system/75529/The-brain.
- [64] Finn Bojsen-Møller, Erik B. Simonsen, and Jørgen Tranum-Jensen. *Bevægeapparatets Anatomi*. Gyldendal Akademisk, 2012.

[65] John E Hall. Guyton and Hall Textbook of Medical Physiology. Elsevier - Health Sciences Division, 2015.

[66] Diana L. Schulmann et al. Effect of eye movements on dynamic equilibrium. 1987.

Bilag A

Nervesystemer og nervefysiologi

Kroppens nervesystem kan inddeles i to dele; det centrale nervesystem (CNS) og det perifere nervesystem (PNS). CNS indeholder encephalon og columna, mens PNS indebærer kommunikationen imellem CNS og kroppens øvrige dele. PNS kan yderligere opdeles i det somatiske nervesystem, som består af det motoriske og sensoriske nervesystem, og autonome nervesystem, som består af en sympatisk og parasympatisk del. Det somatiske nervesystem styrer kroppens bevidste bevægelser og sender afferente signaler tilbage til CNS, hvorimod det autonome nervesystem regulerer kroppens ubevidste funktioner. Det er altså PNS, som registrerer signaler, CNS integrerer disse signaler og dirigerer et motorisk signal, som PNS skal omsætte til en handling. [19, 23] Et overblik over dette ses på figur A.1.

Figur A.1: På figuren ses en opdeling af PNS og CNS samt hvordan et signal proceseres til en handling af nervesystemerne. [23]

A.1 Hjernens anatomi

Cerebrum er encephalons største del og er involveret i sanseintegration, styring af frivillige bevægelser og højere intellektuelle funktioner, såsom tale og abstrakt tænkning. [63] Cerebrums ydre lag hedder cerebral cortex men kaldes hjernens grå substans. Her ligger nervers soma med dendritter. Cerebral cortex har forskellige centre, men kan også inddeles

i højre og venstre halvdel. Delen af cerebral cortex, der kontrollerer kroppens motorik med motor cortex, kaldes gyrus præcentralis. Nerverne i dette område leder motoriske impulser til kroppens muskler igennem nervebanerne i den hvide substans, som indeholder nervernes aksoner og fungerer derved som transportvej. [19, 23, 63] Disse aksoner krydses i medulla oblongata og medulla spinalis og løber derefter til den modsatte legemeshalvdel fra, hvor impulsen afsendes. [19]

Når en bevægelse udføres, starter det med en idé eller en intention om at lave en bevægelse. Denne tanke opstår i det præfrontale cortex. Præfrontal cortex er specielt aktivt under udførelse af nye situationer / bevægelser og har forbindelse til motor cortex, som sætter indlærte bevægelser i gang. Samtidig modtager basalganglier i cerebellum signalet, hvorved kroppen kan modificere bevægelsen i forhold til omgivelserne. Cerebellum samarbejder altså med motor cortex, så bevægelsesplanen kan samles og sendes via de decenderende baner i medulla spinalis til bestemmelsesstedet. [64]

Hvis en bevægelse gentages, vil præmotor cortex gemme stimulationsmønstret. Dette gør, at bevægelsen kan udføres nemmere og mere præcist end ellers. Bevægelsen lagres i basalganglierne ved at synapseforbindelserne er styrket. [19]

A.2 Nervens anatomi

En nerve består af soma, dendritter og et myelineseret akson. Soma indeholder cellekernen, endoplasmatisk reticulum, golgi apparater og de fleste frie ribosomer. Indholdet i soma bestemmer, hvordan cellen agerer med andre samt dets funktion og vedligeholdelse. Dendritter er udløbere fra soma, som modtager impulser fra en anden nerve og fører signalet ind til cellekroppen. Aksonet leder impulser fra soma til sin ende, der har mange små forgreninger, kaldet aksonterminaler. Disse danner synapser med targetorgan eller andre nervers dendritter. [23]

En nerve kan kun lede signaler, hvis der forekommer en tilstrækkelig høj elektrisk spændingsforskel mellem det intracellulær- og ekstracellulærvæske af membranen. Dette danner et aktionspotentiale. I en hvilende nerve er der et overskud af negative ioner i den intracellulære væske i forhold til den ekstracellulære væske. Denne spændingsforskel mellem det intracellulære og ekstracellulære kaldes membranpotentialet. [19, 23]

A.3 Aktionspotentiale

Signaler i kroppen videresendes vha. aktionspotentialer. En celle i hvile har et spændingsniveau på ca. -70 mV, hvilket skyldes koncentrationsforskellen mellem natrium-ion (Na^+) udenfor cellen og kalium-ion (K^+) indvendigt i cellen. Begge ioner kan diffundere over cellemembranen, men spændingsniveauet kan stadig opretholdes af natrium/kalium-pumpen. Denne pumpe skaber en ligevægt imellem indpumpning af K^+ og udpumpning af Na^+ . Hvis en nervecelle modtager et stimulus, påvirker dette mekanisk- eller kemisk styrede Na^+ kanaler, som vil åbne sig og pumpe mere Na^+ ind i cellen. Derved stiger permeabiliteten af Na^+ og den samlede ladning af cellen ændres. Hvis den påbegyndte stimulus, som skaber et gradet potential, ikke var stærk nok til, at cellen når sin tærskelværdi, vil natrium kanalerne lukkes. Natrium/kalium-pumpen vil derefter arbejde sig tilbage til hvile spændingsniveauet. Hvis stimulus var stærkt nok til, at mange natriumkanaler åbner sig og cellen når sin tærskelværdi, så vil de elektrisk styrede natriumkanaler også åbne sig som reaktion på, at spændingsforskellen

bliver mindre. Herved ender cellen med et overskud af negativ ladning udenfor ift. indenfor cellemembranen dvs. den modsatte situation af hvile, hvilket skaber et aktionspotentiale. [19, 23]

Figur A.2: På figuren ses stadierne for et aktionspotentiale. [19]

Når et nervesignal skal overføres til en muskel, sker det i en neuromuskulær synapse, som er en kemisk synapse. Den kemiske synapse består generelt af en præsynaptisk terminal, en synapsekløft og en postsynaptisk celle. En vigtig egenskab ved den kemiske synapse er, at aktionspotentialer udelukkende kan bevæge sig i én retning; fra den præsynaptiske terminal imod den postsynaptiske terminal. [65] Vesiklerne i den præsynaptiske terminal rummer neurotransmittere, som er et kemisk stof, der overfører signalet på tværs af synapsen. I neuromuskulære synapser vil neurotransmitteren ofte være acetylcholin (ACh). Ved et aktionspotentiale vil den præsynaptiske terminal frigive ACh, som bevæger sig ud i synapsekløften mod receptorerne på muskelfiberen. Bindingen af ACh til receptorerne medfører en depolarisering af den synaptiske kløft ved diffusion af Na^+ . Herved bliver aktionspotentialet transporteret ned til sarcoplasmatisk reticulum i muskelfiberen, som frigiver Ca^{2+} til filamenterne i myofibrillerne, der gør kontraktion af musklen mulig. [65, 19] Dette ses på figur A.3.

Figur A.3: På figuren ses, hvordan nervens frigivelse af ACh sætter en muskelkontraktion i gang. [19]

Bilag B

Kroppens balance

Apopleksipatienter oplever ofte problemer med balancen, da den ofte er nedsat eller slet ikke funktionsdygtig af forskellige årsager. [6] Proprioceptorer og sansereceptorer hjælper kroppen med balancen. Proprioceptorerne kontrollerer muskler, sener og leddenes position, hvorimod sansereceptorer er en bestemt slags celler, som er placeret i ørerne og øjnene. [19] Disse celler sender balanceinformationer til det centrale nervesystem og encephalon. Sansereceptorerne opfanger indtryk fra sanserne, som omsættes til bestemte signaler, der sendes til områder i cerebral cortex, cerebellum og til centre i hele hjernestammen. Her bearbejdes informationen, hvorefter der konkluderes den korrekte fysiske position af kroppen og dens lemmer. Når encephalon har bearbejdet indtrykkene, udsender den nerveimpulser til skeletmuskulaturen om at foretage jævne og koordinerede bevægelser, hvorved kropsbalancen opretholdes.[19]

Øjet opfanger lys og er med til orienteringen af kroppen og dens lemmer. Hårceller i øret registrerer derimod f.eks. hovedets bevægelser vha. tyngdekraften. Selvom et balanceorgan er ude af funktion, er kroppen stadig i stand til at opretholde balancen ved hjælp fra andre balanceorganer. Det er til gengæld vanskeligt for kroppen at opretholde balancen, hvis de behandlende centre i encephalon bliver skadet, som det kan ske ved apopleksipatienter. [19]

B.1 Ørets bidrag til balance

Øret består overordnet af tre dele; det ydre øre, mellemøret og det indre øre, som kan ses på figur B.1. Det indre øre er med til at kontrollere balancen vha. hårcellerne, som sættes i bevægelse. Det ydre øre modtager trykbølger, som sætter trommehinden i svingninger. Disse transporteres af mellemørets knogler, der forstærker svingningerne. Væsken i mellemøret modtager svingningerne fra knoglerne, hvilket sætter væsken i bevægelse. Denne bevægelse trækker i hårcellerne, og der skabes derved et aktionspotentiale. I det indre øre findes et netværk af sammenhængende væskeholdige kanaler, som er indkapslet i knoglen. Det er i disse kanaler receptorerne sidder. Det indre øre kan opdeles i tre underdele; vestibulen, øresneglen og buegangen. De centrale dele, der har med balancen at gøre er vestibulen og buegangen, hvorimod øresneglen kun bidrager til hørelsen.[19]

Vestibulen består af to membransække; sacculen og utriclen, der opfanger sanseindtryk vedrørende tyngdekraft og lineær acceleration. Buegangens sansereceptorer opfanger stimuli omkring hovedets bevægelse, og hvor hurtigt bevægelsen foregår. Sansereceptorerne er placeret i buegangens tre væskefyldte knoglekanaler ved ampulla, der er forbundet til utriclen. Hårcellerne er kun aktive, når kroppen er i bevægelse ved at videregive information vedrørende hovedets bevægelse ift. tyngdekraften. Når hovedet er i bevægelse, sættes væskens i kanalerne også i bevægelse således, at væskebevægelser i den ene retning stimulerer hårcellerne, mens bevægelser i den modsatte retning forhindrer dem. For at få mest mulig information

angående hovedets position, stimuleres de tre buegange af forskellige hovedbevægelser. Bevægelsesinformationerne sendes via vestibulocochlearnerven, der sender både information vedrørende balancen og hørelsen til encephalon i området mellem pons og medulla oblongata. [19]

Figur B.1: På figuren ses en anatomisk beskrivelse af øret [19].

B.2 Øjets bidrag til balance

Synet er en central faktor for, hvordan encephalon holdes informeret omkring kroppens balance og generel orientering. Dette gøres ved at give et indtryk af, hvordan kroppen og dens lemmer er placeret ift. omgivelserne [66]. Øjet har tre hinder omkring sig; fibrøs hinde, uvea og retina, som kan ses på figur B.2. Den fibrøse hinde¹ er den yderste, som beskytter og støtter øjet. Den midterste hinde, kaldet uvea, indeholder blod og lymfekar samt regulerer mængden af lys, der kommer ind i øjet. Retina² er den inderste hinde, som er placeret bagerst i øjet. Den består af en pigmentdel og en indre neuraldel. Den neurale del indeholder fotoreceptorer, kaldet stave og tappe. Stave er følsomme overfor skarp lys og gør det muligt at se i tusmørke. Tappe er følsomme overfor farvers bølgelængde, hvilket giver farvesyn. Pigmentdelen absorberer lys, der passerer gennem den neurale del og gør, at lyset ikke har mulighed for at reflektere tilbage. Foto- og lysreceptorerne konverterer lyset fra omgivelserne til elektrisk nervesignal, der giver information omkring det objekt, der betragtes, herunder dets størrelse, form og bevægelser. Informationerne processeres således, at horisontale celler lokaliserer områdets størrelse. Hvis der er kommet nok signal ind, der kræver en reaktion, sendes informationen først til bipolære celler herefter via synsnerven til det visuelle cortex, hvor informationen bearbejdes. [19]

¹FiXme Note: hornhinden ²FiXme Note: nethinden

Figur B.2: På figuren ses en anatomisk beskrivelse af øjet. [19]

B.3 Proprioceptorerne og skeletmuskulaturens bidrag til balancen

Proprioceptorer monitorer leddenes position, muskelkontraktioners tilstand, samt spændinger i ledbånd og sener og de er placeret i skeletmuskulaturen. Informationerne sendes via nervesignaler til medulla spinalis og herfra igennem CNS til cerebellum. Proprioceptorer inddeles i tre overordnet grupper; muskelspindlere, golgi-sene organer og receptorer i ledkapsler. [19]

Muskelspindlere styrer og kontrollerer ændringer af muskellængder og kan udløse en strækrefleks. Den sensoriske nerve er forbundet centralt på muskelspindleren, hvor den kontinuert sender sensoriske impulser til CNS. Hvis den sensoriske nerve modtager stimuli, i form af stræk, vil den motoriske nerve på muskelspindleren blive stimuleret. Stimulation af den motoriske nerve vil forkorte musklens længde. Nogle strækreflekser er holdningsreflekser, som hjælper os med at holde balancen. I stående position kræves der samarbejde mellem forskellige muskelgrupper for at forblive stående. Dette ses f.eks. hvis kroppen lænes forover, vil strækreflekserne i læggene blive aktiveret og kontraherer. Derved vil kroppen læne sig bagud og igen stå i en opret position. Hvis der sker en overkompensation fra lægmusklerne og kroppen læner sig for meget bagud, vil strækreflekser i skinnebenet og lårene aktiveres. Derved vil kroppen læne sig forover igen. Kroppen foretager mange af disse ubevidste korrektioner. [19]

Golgi-sene organer sidder i en kløft³ mellem skeletmusklen og tilhørende sene. Dendritterne fra golgi-sene organet kopler sig på den tætteste sene og stimuleres af spændingen i denne, hvorved den eksterne spænding i en muskelkontraktion bliver målt. [19]

Ledkapsler er fyldt med frie nerveender, som kaldes receptorer. Disse receptorer detekterer

³FiXme Note: junction

tryk, spænding og bevægelse i leddet. [19]

Det er en lille del, af den information proprioceptererne sender, der opfanges af bevidstheden, eftersom størstedelen foregår på et underbevidst niveau. [19]