DAVID DOAN

$www.ddoan.com\\ddoan@stanford.edu$

EDUCATION

Stanford University

Present

Master of Science (M.S.), Ph.D. Candidate, Mechanical Engineering

Stanford, CA

Massachusetts Institute of Technology (MIT)

Bachelor of Science (B.S.), Mechanical Engineering (Course 2)

June 2017 Cambridge, MA

EXPERIENCE

Gu Lab, Researcher

Sept 2017 - Present

 ${\bf Relativity\ Space},\ Mechanical\ Engineering\ Intern$

Jun - Sept 2017

- Development of a novel, automated manufacturing process
- Development of in-house toolpath planning for said manufacturing process

MIT Lincoln Beaver Works Center, Researcher

Jan - Jun 2017

- Designed a benchtop system to convert a 1kW generator (four-stroke) to run on hydrogen produced by an Al-H₂O reaction by carburetor injection
- Designed a benchtop system to convert a 1.2kW airplane engine (two-stroke) to run on hydrogen by continuous direct injection at top dead center (TDC) that resulted in higher power density

MIT Global Engineering and Research (GEAR) Lab, Researcher

Sept 2016 - Jun 2017

- Developed MATLAB code in order to decrease the cost of solar powered, drip irrigation systems in developing countries
- Modelled drip-irrigation systems by coupling several subsystem models (solar, pump, water consumption etc.)
- Cost-optimized the system configuration (specific PV, specific water pump, tilt and azimuth angle, etc.) using a genetic algorithm for several different plants for the specific location of Jalgaon, India

Tesla Motors, Drive Systems Engineering Intern

Jun - Sept 2016

- Designed dozens of locating and test fixtures for automated equipment for the current and future stator manufacturing lines
- Researched and implemented automated vision systems to detect defects in stators during the winding stage to prevent rework and scrap
- Analyzed and calculated detailed numbers for future stator lines in order to ensure smooth process flows and provide quantitative metrics for automated deliveries
- Designed and modelled concepts for automated ceramic breaking to reduce cycle times

Space Exploration Technologies (SpaceX), Avionics Engineering Intern

Jun - Aug 2015

- \bullet Developed, from design to implentation, a first prototype for automated mechanical testing of >80% of all harness connectors in Falcon 9 and Dragon vehicles
- Designed and implemented over a dozen tooling solutions for several harnesses in order to decrease cycle times and rework
- Identified root cause, tested, and developed a solution for a mechanical issue on Dragon harnesses to prevent mechanical failure and rework

PUBLICATIONS

Kiani, Mehrdad T., Christopher Michael Barr, Shicheng Xu, **David Doan**, Zhaoxuan Wang, Abhinav Parakh, Khalid Hattar, and X. Wendy Gu. "Ductile Metallic Glass Nanoparticles via Colloidal Synthesis." *Nano Letters* (2020).

Patil, Radhika P., **David Doan**, Zachary H. Aitken, Shuai Chen, Mehrdad T. Kiani, Christopher M. Barr, Khalid Hattar, Yong-Wei Zhang, and X. Wendy Gu. "Hardening in Au-Ag nanoboxes from stacking fault-dislocation interactions." *Nature Communications* 11, no. 1 (2020): 1-9.

Parakh, Abhinav, Sangryun Lee, K. Anika Harkins, Mehrdad T. Kiani, **David Doan**, Martin Kunz, Andrew Doran, Lindsey A. Hanson, Seunghwa Ryu, and X. Wendy Gu. "Nucleation of Dislocations in 3.9 nm Nanocrystals at High Pressure." *Physical Review Letters* 124, no. 10 (2020): 106104.

Conferences

The Minerals, Metals & Materials Society (TMS) Annual Meeting & Exhibit	February 2020 San Diego, CA
Talk: "Programmable Self-Assembly of 3D Printed Particles"	Sun Diego, On
Materials Research Society (MRS) Fall Meeting & Exhibit	December 2019 Boston, MA
Talk: "Programmable Self-Assembly of 3D Printed Particles"	D050016, 1411
Gordon Research Conference (GRC)	July 2018
Thin Film and Small Scale Mechanical Behavior Poster: "Femtosecond laser additive manufacturing of nanocrystalline metallic nanostr	Lewiston, ME ructures"
Teaching	
ME 340: Elasticity and Inelasticity Stanford University, Course Assistant (CA)	Fall 2019
Leadership	
Founding Member, Board Member, Director — MakeMIT	Sept 2013 - Feb 2015
Founding Board Member — Design for America	Sept 2014 - Jun 2015
Awards and Honors	
Questbridge Scholar — Massachusetts Institute of Technology	2013 - 2017
National Science Foundation (NSF) Research Fellow — Stanford University	2017 - 2020