Medical Image Analysis and Processing

Image Noise Filtering

Sparse Denoising

Emad Fatemizadeh

Distance/online Course: Session 16

Date: 20 April 2021, 31th Farvardin 1400

Contents

- > Low Rank Representation and Denoising
- > Fidelity Criteria
- > Deep Image Denoising (Machine Learning)

Low-Rank Matric Recovery

> Most popular approach is low rank minimization problem

$$\widehat{X} = \min_{X} \left\{ \frac{1}{2} \|X - Y\|_{F}^{2} + \lambda \|X\|_{*} \right\}$$

> Where $||X||_*$ is nuclear norm:

$$\|X\|_* = \sum_{i=1}^r \sigma_i(X)$$

> It is shown that the basic solution is:

 $X = U\Sigma_{\lambda}V^{T}$, where $Y = U\Sigma V^{T}$ (SVD of noisy observation) and:

$$\Sigma_{\lambda} = \max\{\Sigma - \lambda I, \mathbf{0}\}$$

Low-Rank Matric Recovery

> Weighted Nuclear Norm Minimization (WNNM) is an alternative:

$$\widehat{X} = \min_{X} \left\{ \frac{1}{2} \|X - Y\|_{F}^{2} + \|X\|_{w_{*}} \right\}$$

 \rightarrow where $||X||_{w_*}$ is weighted nuclear norm:

$$\|X\|_{w_*} = \sum_{i=1}^r w_i \sigma_i(X), \qquad 0 \le w_1 \le w_2 \le \dots \le w_r$$

> It is shown that the solution is:

 $X = U\Sigma_{\lambda}V^{T}$, where $Y = U\Sigma V^{T}$ (SVD of noisy observation) and:

$$\Sigma_{\lambda} = \max{\{\Sigma - diag(w), 0\}}$$

WNNM Denoising

- >An important fact:
- > The singular values of a matrix are always sorted in a non-ascending order, and the larger singular values usually correspond to the subspaces of more important components of the data matrix.
- > Therefore, we would better shrink the larger singular values *less*, that is, assigning smaller weights to the larger singular values in the weighted nuclear norm.

WNNM Denoising Idea

- > Algorithm:
- > For a local patch y_j in image y, we search for its nonlocal similar patches across the image.
- > Stacking those nonlocal similar patches into a matrix, denote by Y_j , we have $Y_j = X_j + N_j$, where X_j and N_j are the patch matrices of original image and noise, respectively.
- > Intuitively, X_j is a low rank matrix, and the low rank matrix approximation methods can be used to estimate X_j from Y_j .
- > By aggregating all the denoised patches, the whole image can be estimated.

WNNM Denoising Formulation

> Using the noise variance σ_n^2 to normalize the *F*-norm:

$$\widehat{\boldsymbol{X}_j} = \min_{\boldsymbol{X}_j} \left\{ \frac{1}{\sigma_n^2} \| \boldsymbol{X}_j - \boldsymbol{Y}_j \|_F^2 + \| \boldsymbol{X}_j \|_{w_*} \right\}$$

- > Key problem is weight vector determination!
- > In the application of denoising, the larger the singular values, the less they should be shrunk.

WNNM Denoising Formulation

> Therefore, a natural idea is:

$$w_i = \frac{c\sqrt{n}}{\sigma_i(\mathbf{X}_j) + \varepsilon}$$

- > where c > 0 is a constant, n is the number of similar patches in Y_j , $\varepsilon = 10^{-6}$.
- > The singular values $\sigma_i(X_j)$ are not available. We assume that the noise energy is evenly distributed over each subspace spanned by the basis pair of **U** and **V**:

$$\hat{\sigma}_i(\mathbf{X}_j) = \sqrt{\max(\sigma_i^2(\mathbf{Y}_j) - n\sigma_n^2, 0)}$$

Low-Rank Matric Recovery

> WNNM Algorithm:

```
Algorithm 1 Image Denoising by WNNM
Input: Noisy image y
 1: Initialize \hat{x}^{(0)} = y, y^{(0)} = y
 2: for k=1:K do
        Iterative regularization \mathbf{y}^{(k)} = \hat{\mathbf{x}}^{(k-1)} + \delta(\mathbf{y} - \hat{\mathbf{y}}^{(k-1)})
        for each patch y_i in y^{(k)} do
           Find similar patch group Y_j
          Estimate weight vector w
           Singular value decomposition [U, \Sigma, V] = SVD(Y_j)
           Get the estimation: \hat{X}_j = US_w(\Sigma)V^T
        end for
        Aggregate X_j to form the clean image \hat{x}^{(k)}
11: end for
Output: Clean image \hat{x}^{(K)}
```

- > How to measure distance between denoised and clean image, or denoising performance.
- > Consider additive noise model:

$$y(i,j) = x(i,j) + n(i,j)$$

- \rightarrow and $\widehat{x}(i,j)$ is denoised image, where $\{x,y,n,\widehat{x}\}\in\mathbb{R}^{M\times N}$
- > Most used (with reference) metrics are:
 - -SNR
 - -PSNR
 - -SSIM

> Signal-to-Noise Ratio (in dB)

$$SNR(x,y) = 10log_{10} \frac{\sum_{i,j} (x(i,j))^2}{\sum_{i,j} (x(i,j) - \widehat{x}(i,j))^2}$$

- > Higher means better (maximum is infinite in theory)
- > around 40dB is OK

> Peak Signal-to-Noise Ratio (in dB)

$$PSNR(x,y) = 10log_{10} \frac{L^2}{\frac{1}{MN} \sum_{i,j} (\mathbf{x}(i,j) - \widehat{\mathbf{x}}(i,j))^2}$$

- > where L is peak signal value in image (for example: 255)
- > Higher means better (maximum is infinite in theory)
- Around 40dB is OK

- > The Structural SIMilarity (SSIM) Index)
- > This metric correlated to human perception

$$SSIM(x(i,j), \hat{x}(i,j)) = \frac{(2\mu_{x(i,j)}\mu_{\hat{x}(i,j)} + C_1)(2\sigma_{x(i,j)\hat{x}(i,j)} + C_2)}{(\mu_{x(i,j)}^2 + \mu_{\hat{x}(i,j)}^2 + C_1)(\sigma_{x(i,j)}^2 + \sigma_{\hat{x}(i,j)}^2 + C_2)}$$

> where $\mu_{x(i,j)}$; $\mu_{\hat{x}(i,j)}$; $\sigma_{x(i,j)}^2$, and $\sigma_{\hat{x}(i,j)}^2$ are the means and variances of a window around pixel (i,j), respectively, and $\sigma_{x(i,j)\hat{x}(i,j)}$ is the covariance between windows around (i,j) in x and \hat{x} , C_1 and C_2 are constant values used to avoid instability.

> The Structural SIMilarity (SSIM) Index

$$> C_1 = (k_1 L)^2 \text{ and } C_1 = (k_2 L)^2,$$

- $> k_1 = 0.01, k_2 = 0.03$, as default
- > Maximum (best match) is 1.0
- > Overall SSIM Index of two images:

$$MSSIM(\mathbf{X}, \mathbf{Y}) = \frac{1}{\# \ of \ windows} \sum_{(i,j)} SSIM(\mathbf{x}(i,j), \widehat{\mathbf{x}}(i,j))$$

- > Less used fidelity criteria (with references):
 - -EPI (Edge Preserving Index)
 - -FSIM (Feature similarity index)
 - -QILV (Quality Index based on Local Variance)
 - IQI (Image Quality Index)
 - -MI (Mutual Information)
- > No reference fidelity criteria:
 - -SI (Sharpness Index) using image total variation.
 - Image Entropy (More is better)
 - -NIQE (Naturalness Image Quality Evaluator)

Machine Learning

- > The most recent methods uses Deep Neural Network
- > Deep Neural Network (CNN) is a complex and highly nonlinear mapping (deep cascade of convolution layer) from input space to output space: $\mathbb{R}^{M\times N}\to\mathbb{R}^{P\times Q}$
- x: input, y: output, θ : map parameters:

$$y = \mathcal{F}(x; \Theta)$$

> Deep Neural Network (CNN) training, is to estimate desired output with low error with respect to a loss function:

$$\widehat{\Theta} = \underset{\Theta}{\operatorname{argmin}} loss(\mathcal{F}(\mathbf{x}; \Theta), \mathbf{y}_{desired})$$

Deep Denosing

- > There are two different strategy:
 - 1. Input (x): noisy image (or patch tensor), Output (y): clean image
 - 2. Input (x): noisy image (or patch tensor), Output (y): residual noise

Deep Denosing

1. Deep Neural Network, predict clean image:

Deep Denosing

1. Deep Neural Network, predict residual noise:

1. DnCNN architecture:

- \rightarrow Noisy observation: y = x + n
- \rightarrow Deep CNN Mapping: $\widehat{\boldsymbol{n}} = \mathcal{R}(\boldsymbol{y}; \Theta)$
- > Loss function: $l(\Theta) = \frac{1}{2N} \sum_{i=1}^{N} ||\mathcal{R}(\mathbf{y}_i; \Theta) (\mathbf{y}_i \mathbf{x}_i)||_F^2 \longrightarrow \widehat{\mathbf{x}} = \mathbf{y} \widehat{\mathbf{n}}$
- > Where $\{(x_i, y_i)\}_{i=1}^N$ is N noisy-clean training image (patch) pairs.

- > DnCNN setting (1):
- > Noise: AWGN
- 1. DnCNN-S (Known noise variance):
 - \square Patch size: 40×40
 - \square Number of training samples: 128 × 1600
 - □Noise variance: $\sigma = 15, 25, and 50$

- > DnCNN setting (2):
- > Noise: AWGN
- 1. DnCNN-B (Unknown noise variance):
 - \square Patch size: 50 × 50
 - \square Number of training samples: 128 × 3000
 - □Noise variance: σ ∈ [0, 50]

> Some results:

Methods	BM3D	WNNM	DnCNN-S	DnCNN-B
$\sigma = 15$	31.07	31.37	31.73	31.61
$\sigma = 25$	28.57	28.83	29.23	29.16
$\sigma = 50$	25.62	25.87	26.23	26.23

π

FFDNet - FFDNet: Toward a Fast and Flexible Solution for CNN-Based Image Denoising (IEEE, TIP, 2018)

> FFDNet architecture:

- \rightarrow Noisy observation: y = x + n
- \rightarrow Deep CNN Mapping: $\hat{x} = \mathcal{F}(\tilde{y}_i, M_i; \Theta)$
- > Loss function: $l(\Theta) = \frac{1}{2N} \sum_{i=1}^{N} ||\mathcal{F}(\widetilde{\boldsymbol{y}}_i, \boldsymbol{M}_i; \Theta) \boldsymbol{x}_i||_F^2$
- > where $\{(\boldsymbol{x}_i, \widetilde{\boldsymbol{y}}_i, \boldsymbol{M}_i)\}_{i=1}^N$ is N input-output training image (patch) pairs and \boldsymbol{M}_i is noise level map.

> FFDNet architecture:

- > Input tensor, \tilde{y}_i , (assume image size is $W \times H$):
 - Four down-sampled (reversible) sub-images of size $\frac{W}{2} \times \frac{H}{2}$
 - -Noise level map (For spatially invariant AWGN with noise level σ , M is a uniform map with all elements being σ) of size $\frac{W}{2} \times \frac{H}{2}$

> FFDNet architecture:

- > Output, \hat{x} , is denoised image:
 - -After the last layer, an upscaling operation is applied as the *reverse* operator of the *down-sampling operator* applied in the input stage to produce the estimated clean image \hat{x} of size $W \times H$.

- > FFDNet setting:
- > Noise: AWGN
 - \square Patch size: 70 × 70
 - \square Number of training samples: 128 × 8000
 - □Noise variance: σ ∈ [0, 75]

> Some results

Methods	BM3D	WNNM	DnCNN	FFDNet
$\sigma = 15$	31.07	31.37	31.72	31.63
$\sigma = 25$	28.57	28.83	29.23	29.19
$\sigma = 35$	27.08	27.30	27.69	27.73
$\sigma = 50$	25.62	25.87	26.23	26.29
$\sigma = 75$	24.21	24.40	24.64	24.79

The End

>AnY QuEsTiOn?

