Treść:

1
2
2
4
-
ç

<u>Przygotować:</u> Podsystem plików –poziom fizyczny, istniejące systemy plików (FAT, NTFS, ext2,ext3, ext4, NFS, itd.) – sposoby realizacji poziomu fizycznego, pojęcia: partycja, jednostka alokacji, ścieżka dostępu.

<u>Na zajęciach:</u> Podsystem plików –poziom fizyczny, powiązanie poziomu fizycznego z logicznym, istniejące systemy plików (FAT, NTFS, ext2,ext3,..., ext5, NFS, itd.) – sposoby realizacji poziomu fizycznego, pojęcia: partycja, jednostki alokacji, tablica alokacji, ścieżka dostępu.

<u>Ćwiczenia:</u> zarządzanie zasobami użytkownika w ramach SO Linux – kontrola dostępu.

Systemy pomocy w Linuxie - man, info.

Linux ma wbudowany podręcznik systemowy, zawierający 8 rozdziałów:

- 1- Polecenia użytkownika
- 2- Niskopoziomowe wywołania systemowe
- 3- Dokumentacja wysokopoziomowych bibliotek Uniksa
- 4- Informacja o interfejsach urządzeń i sterownikach
- 5- Opisy plików (konfiguracji systemu)
- 6- Gry
- 7- Formaty plików, konwencje i kodowania (ASCII, przyrostki itd.)
- 8- Polecenia systemowe i serwery

```
Dostęp do zawartości można uzyskać poprzez polecenie: man <polecenie> np.: man ls
man -k <slowo_kluczowe> np.: man -k sort
Otrzymana informacja:
comm(1) - compare ... <= w nawiasach nr rozdziału
qsort(3) - sorts an array
...
```

Można się odwołać do polecenia z danego rozdziału, np.: man 5 passwd - opis pliku passwd w rozdziale 5-tym. WYJŚCIE – "q".

Jest również system pomocy GNU – pliki dokumentacji.

Dostęp do tych zasobów: *info <polecenie>*

WYJŚCIE – "q".

Autorytatywnym źródłem jest obecnie dokumentacja Texinfo. Dostęp do niej uzyskasz wpisujac w wierszu poleceń:

pinfo ls

lub

Ta strona podręcznika man opisuje polecenie ls w wersji GNU.

```
Filtry stosowane w poleceniach (tzw. konwencja *):
```

```
Np. cp *.txt /Dane
cp ???.txt /Dane
cp *a* /Dane
```

* - zastępuje dowolną ilość znaków

? - zastępuje dokładnie jeden znak

[listaZnakow] - jeden ze znaków z listy na tej pozycji

np. - [a-z] dowolna mała litera

ls ??[a-k,p,t]* - pokaż zasoby o nazwie zawierającej na trzeciej pozycji jeden ze znaków: a-k,p,t, nazwa powinna zawierać przynajmniej trzy znaki.

Kontrola dostępu do zasobów:

W Linux-ie przyjęto zasadę gradacji dostępu - trzy poziomy - właściciel, grupa lub grupy (stowarzyszona), reszta.

W kontekście każdego z poziomów ustalane są prawa do wykonywanych operacji:

```
r - read - odczyt
w - write - zapis
x - execute - wykonanie.
```

Dają one uprawnienia do:

"-" - oznacza plik zwykły

- r odczytu pliku, czyli przeglądania jego zawartości. W przypadku katalogów będzie to oznaczać możliwość wypisania listy plików i podkatalogów w nim umieszczonych,
- w zapisu pliku, czyli modyfikowanie jego zawartości. W przypadku katalogów możliwe jest tworzenie i usuwanie plików w tym katalogu,
- x uruchomienia pliku wykonywalnego (programu, lub skryptu). W przypadku katalogów oznacza to dostęp do listy plików w nim zapisanych, oraz możliwość przejścia do tego katalogu, np. przez polecenie cd katalog.

```
Tą informację pokazuje np. polecenie tu katalog.

Tą informację pokazuje np. polecenie ls -/

Konwencja pokazywania w /s -/:

jest znaczek= jest prawo

jest '-' = brak prawa.

Is -I <= inf. o plikach:
- rw-rw-r-- 1 st_2014 st_2014 0 mar 1 14:18 Lista.txt

drwxr-xr-x 2 ... ... Dokumenty

INF. od Podsystemu zarządzania plikami - o dostępie do zasobu.
- rw-rw-r--

Pierwszy znak - tu '-' - oznacza typ pliku.

OBECNIE W SO - jest zasada - wszystko jest plikiem (każdy zasób traktowany jest jak plik) - jako plik
możemy potraktować: folder, klawiaturę, monitor, myszkę, partycję, plik, katalog, socket (gniazdo),
(urządzenia blokowe, urządzenia znakowe), ... .

Np.:
```

```
d - oznacza plik typu directory = katalog,
inne: I (link – dowiązanie symboliczne), b (block – urządzenie blokowe), c (char – urządzenie
znakowe), p (pipe – łącze nazwane), s (socket - gniazdo), ...
Następne - 3 x 3 - opis praw dostępu do zasobu.
Pytanie - które prawo pozwala (tak naprawdę) na usunięcie pliku?
Polecenie:
chmod <nowe prawa> <nazwa pliku>
służy do zmiany praw dostępu.
Nowe prawa - możemy zapisać za pomocą notacji 777:
 111 111 111
 rwx rwx rwx
 101 100 110
 r-x r-- rw-
  5 4 6
  chmod 546 plik1
 1=właściciel -5
 2=grupa - 4
 3= reszta - 6.
Inny sposób zapisu polecenia
-rwx r- x r- - ...
111101100 => 754 chmod 754 plik1.
Chcemy dodać prawo w dla grupy, usunąć prawo r dla reszty:
chmod g+w,o-r plik
u- user, g -group, o -other.
Można też przypisywać konkretne prawa niezależnie od tego co było wcześniej:
chmod u=rwx, g=rw,o-r plik
Każdy zasób w Linuxie ma swego właściciela.
Można zmienić właściciela zasobu za pomocą polecenia:
chown [opcje] nazwa_właściciela nazwa_zasobu,
może to wykonać użytkownik uprawniony – właściciel lub root.
np.:
chown jan23 Zapiski.txt .
Można z opcją –R zmienić właściciela dla całego katalogu z podkatalogami (R – rekursywnie) –np.-
jeżeli Dane jest katalogiem z podkatalogami i plikami to zmiana właściciela dla całości:
chown -R jan23 Dane
```

W środowisku bash-a jest dla każdego użytkownika zdefiniowana tzw. maska określająca jakie prawa dostępu będą nadawane domyślnie dla nowo tworzonych zasobów. Jej wartość jest zapisana w specjalnym pliku danego użytkownika i odczytywana w momencie jego logowania do systemu. Działa to tak, że suma maski i nadawanych praw daje:

```
-0666 dla plików-0777 dla katalogów.Sprawdzenie – jaka maska jest ustawiona – polecenie:
```

umask

0002

(pierwsza cyfra dotyczy uprawnień, o których będzie mowa później – m.in. tzw. bitu lepkości). Bierzemy pod uwagę trzy pozostałe cyfry:

-dla plików: 0666-0002 =0664 – czyli: rw-rw-r—

-dla katalogów: 0777-0002 = 0775 – czyli: rwxrwxr-x.

Możemy na czas bieżącego logowania zmienić maskę – to samo polecenie:

umask 0077

Poziom logiczny a poziom fizyczny:

A) Co tak naprawdę powinno się kojarzyć z katalogiem, katalog jako plik, zawartość katalogu?

Katalog – specjalny plik – do obsługi konstrukcji podkatalogów. Jeżeli to jest plik – to co jest w nim zapisane? Zawartość katalogu – pliki i podkatalogi które w nim się znajdują. Katalog – to plik. Przykład: podkatalog "Dane":

Zawartość katalogu Dane: podkatalogi Wyniki, Testy; pliki: dane1, dane2.

<u>W systemie ext2</u> - co znajduje się w pliku tego katalogu w pewnym uproszczeniu – zawiera tabela. Dla ścieżki. **/Dane/Wyniki przejścia** do poziomu fizycznego opisane będą w tabelach:

Tabela 1 –	Nazwa	Nr i-węzła	
zawartość	Dane	655	
kat.			
bieżącego			

Tabela 2 –	Nazwa	Nr i-węzła	
zawartość	Wyniki	822	
kat. Dane	Testy	855	
	dane1	1010	
	dane2	1013	

Tabela 3					
zawartość					
kat. Wvni	ki				

Nazwa	Nr i-węzła		
Wynik1	1073		
wyniki2.01.19	1233		

Tabela pozwala na przejście z poziomu logicznego systemu plików na poziom fizyczny. Lewa kolumna – poziom logiczny – nazwa zasobu, prawa – numer odpowiadającego zasobowi i-węzła w tablicy i-węzłów – poziom fizyczny.

Tabela i-węzłów

bloki

W i-węźle zapisane są m. in. numery bloków, w których znajduje się treść pliku.

Jeżeli dla pliku opisującego zawartość katalogu Dane przypisany jest i-węzeł o numerze 55, to w nim są zapisane numery bloków, gdzie zapisana jest "treść" tego pliku. Jeżeli te bloki to: 277, 289,333 – to odczytując ich zawartość – na poziomie logicznym otrzymamy Tabelę 1.

Aby odczytać np. zawartość pliku *dane1* – należy w Tabeli 1 znaleźć numer i-węzła mu odpowiadający - 1073, w i-węźle znaleźć numery bloków zawierające treść pliku - 422, 555,774, następnie odczytać zawartość tych bloków.

<u>W systemie FAT16 (32)</u> sytuacja będzie wyglądała podobnie – ale oczywiście z niuansami. W pliku utożsamianym z tym katalogiem w pewnym uproszczeniu – będzie taka zawartość – Tabela 2:

Tabela 2	Nazwa	Nr 1-go klastra pliku
	Wyniki	122
	Testy	234
	dane1	277
	dane2	2341

Tabela pozwala na przejście z poziomu logicznego systemu plików na poziom fizyczny. Lewa kolumna – poziom logiczny – nazwa zasobu, prawa – numer zapisu w tabeli FAT dotyczącego danego pliku = numer pierwszego klastra zawierającego dane pliku - poziom fizyczny. Sytuację w partycji – dla pliku dane1 – pierwszy klaster ma nr 277, treść pliku jest w klastrach: 277,289,333 – przedstawia poniższy schemat:

Tabela FAT

klastry

W pojedynczym zapisie w tabeli FAT jest m. in. podany numer kolejnego klastra, w którym znajduje się treść pliku. Zapis dotyczący ostatniego klastra pliku zawiera specjalną informację – o tym, że to jest koniec pliku.

Jeżeli klaster nie jest zajęty – w tabeli FAT jest stosowny zapis.

Wniosek – tabela FAT powinna zawierać tyle zapisów – ile jest klastrów w partycji.

<u>W systemie NTFS</u> struktura partycji jest bardziej skomplikowana. Mamy partycje. W ramach partycji mamy tabelę rozmieszczenia plików oraz obszar danych. Partycja dzielona jest na klastry. Klastry w partycji są ponumerowane. Tabela partycji – MFT – Master File Table.

Tabela MFT ma swoją część zasadniczą, która mieści się na początku partycji, pozostałe jej części mogą być zapisywane naprzemiennie z obszarami danych.

Obszar danych składa się z szeregu klastrów.

Obszar danych adresowany jest poprzez adres składający się z trzech części: VCN, LCN, k, gdzie:

VCN – numer pierwszego klastra obszaru w ramach pliku

LCN – numer pierwszego klastra obszaru w ramach partycji

k – ilość klastrów w obszarze.

Klastry

Zawartość katalogu opisana jest za pomocą tabeli – jak w ext2 i FAT (Tabela1, Tabela 2). W tabeli opisującej zawartość katalogu podaje się numer zapisu przyporządkowanego dla danego zasobu w tabeli MFT.

Tabela 3

Nazwa	Nr zapisu w MFT
Wyniki	122
Testy	134
dane1	233
dane2	2341

Np. dla pliku dane1 – nr zapisu w MFT – 233. Jak widać z obrazka – plik jest z kategorii duży – jego dane mieszczą się w jednym zapisie w MFT i w dodatkowym obszarze o rozmiarze 3 klastrów.

Ale sytuacja się komplikuje – gdyż w systemie rozróżnia się ze względu na rozmiar – 4 wielkości plików: małe (small), duże (large), bardzo duże (huge), ekstremalnie duże (extremely huge).

Struktura jednego zapisu w tabeli MFT – mały plik:

SI	FN	Data	SD

SI – standardowa informacja, FN – nazwa pliku, Data – dane pliku, SD – deskryptor bezpieczeństwa.

Małe mieszczą się w jednym zapisie w tabeli MFT, duże – jeden zapis w MFT i kilka obszarów (obszar zawiera zwarty ciąg klastrów) w przestrzeni danych, bardzo duże – mieszczą się w dwóch zapisach w MFT – pierwszy – ma strukturę jak w poprzednich typach plików, drugi jest używany do adresowania pośredniego - i pewnej ilości obszarów w przestrzeni danych, ekstremalnie duże – mają więcej zapisów w tabeli MFT do adresowania pośredniego.

B) Jak w oparciu o ścieżkę dostępu na poziomie logicznym znaleźć zawartość zasobu (pliku) na poziomie fizycznym?

Np. - cat /home/WMII/s123456/dane.txt

Odpowiedzi – należy sformułować w oparciu o informację zawartą w tekście powyżej.

C) Co to jest i-wezeł?

Polecenie Is -i.

Koncepcja pliku.

Koncepcja – "wszystko jest plikiem". Cel – unifikacja obsługi – typowe operacje na plikach.

Pliki nietypowe (drukarka, mysz, ...) = plik specjalny. Operacje nie mające specjalnie sensu – zamienia się na atrapy – jest operacja, ale inaczej się wykonuje (np. zapis do myszy).

OBECNIE W SO - jest zasada - **wszystko jest plikiem** (każdy zasób traktowany jest jak plik) - jako plik możemy potraktować: folder, klawiaturę, monitor, myszkę, partycję, plik, katalog, socket (gniazdo), (urządzenia blokowe, urządzenia znakowe),

Np.:

- - oznacza plik zwykły

d - oznacza plik typu directory=katalog,

inne: l,b,c,p,s,... .

Pytanie – <u>jak wygląda logiczna organizacja pliku</u> – tzn. jakimi porcjami informacja jest w pliku zamieszczana – nie chodzi o rozmieszczenie na nośniku – tylko o to – czy plik to zestaw pewnych porcji o znanej strukturze czy też ciąg bitów?

Są dwa podejścia:

- 1-sze dane z pliku są interpretowane wyłącznie przez aplikację wtedy plik dla SO przedstawia sobą nieustrukturowany ciąg bitów – stosowane do zwykłych plików w Unixie, Linuxie, Windows, itp.,
- 2-gi plik składa się z zapisów o zdefiniowanej budowie (strukturze) logicznych rekordów wtedy SO musi znać strukturę rekordów używanych w tego typu plikach i zapis/odczyt robić na poziomie tych rekordów. Do zwykłych plików stosowane rzadko, natomiast stosowane w SO do plików specjalnych np. opisujących zawartość katalogu albo urządzeń specjalnych.

Przy pierwszym podejściu – zapis/odczyt sekwencyjny, można używać narzędzi pozwalających na przesunięcie wskaźnika do pliku o wybraną ilość bajtów od początku/końca pliku i ustalenie porcji danych do zapisu/odczytu.

Przy drugim – możliwa jest organizacja dostępu sekwencyjnego albo bezpośredniego do wybranego rekordu. Możliwa też jest indeksacja zapisów.

W Linux-ie – pliki związane z obsługą urządzeń zawarte są w podkatalogu /dev:

w Linux-le – pliki związane z obsiugą urządzen zawarte są w podkatalogu /dev:					
autofs	log	ram0	tty1	tty36	tty62
bus	loop0	ram1	tty10	tty37	tty63
cdrom	loop1	ram10	tty11	tty38	tty7
cdrom-hdc	loop2	ram11	tty12	tty39	tty8
console	loop3	ram12	tty13	tty4	tty9
core	loop4	ram13	tty14	tty40	ttyS0
cpu	loop5	ram14	tty15	tty41	ttyS1
cpu_dma_latency	loop6	ram15	tty16	tty42	ttyS2
disk	loop7	ram2	tty17	tty43	ttyS3
dvd	MAKEDEV	ram3	tty18	tty44	urandom
dvd-hdc		ram4	tty19	tty45	usbdev1.1_ep00
fd	mcelog	ram5	tty2	tty46	usbdev1.1_ep81
full	md0	ram6	tty20	tty47	usbdev1.2_ep00
gpmct1	mem	ram7	tty21	tty48	usbdev1.2_ep81
hda		ram8	tty22	tty49	VCS
hda1	network_latency	ram9	tty23	tty5	vcs2
hda2	network_throughput	ramdisk	tty24	tty50	vcs3
hda3	null	random	tty25	tty51	vcs4
hda4	nvram	rawctl	tty26	tty52	vcs5
hda5	oldmem	root	tty27	tty53	vcs6
hda6	parport0	rtc	tty28	tty54	vcsa
hda7	parport1		tty29	tty55	vcsa2
hdc	parport2	snapshot	tty3	tty56	vcsa3
hidraw0	parport3	stderr	tty30	tty57	vcsa4
hpet	port	stdin	tty31	tty58	vcsa5
initctl	ppp	stdout	tty32	tty59	vcsa6
input	ptmx	systty	tty33	tty6	XOR
js0		tty	tty34	tty60	zero
kmsg	ram	tty0	tty35	tty61	

Operacje na pliku – z poziomu użytkownika – wydają się oczywiste – zapisz do pliku, odczytaj z pliku. Natomiast SO musi wykonać wiele składowych działań.

W przypadku np. polecenia:

cat dane1 - odczytu zawartości pliku dane1

SO musi: wyszukać plik w strukturze katalogów, odczytać inf. o nim, sprawdzić prawa dostępu, jeżeli pozwalają – to: otworzyć plik w odpowiednim trybie – do odczytu, odczytać potrzebne dane, zamknąć plik.

Bufory.

Należy pamiętać o tym, że SO stosuje system podręcznej dyskowej pamięci *cache* - w pamięci operacyjnej RAM wydzielane są segmenty – <u>bufory</u>, w których przechowuje się ostatnio używane bloki plików – bo być może będą one jeszcze używane. Wtedy operacje na pliku faktycznie będą się odbywać zawartości buforów i nie będzie zgodności w zawartości buforów i plików na nośniku zewnętrznym. Co jakiś czas następuje zapis zawartości buforów do pamięci zewnętrznej – synchronizacja zawartości plików.

W Linuxie żeby używać jakiegoś nośnika (np. pendrive'a, CD, DVD, dysk zewnętrzny, itp.), który trzeba dołączyć do komputera – po jego dołączeniu trzeba go dołączyć do systemu plików – zamontować, przed wyjęciem - odmontować. W Windows montowanie dla pendrive'ów jest automatyczne (chociaż domontowywanie wskazane).

Przy domontowywaniu powinna nastąpić automatyczna synchronizacja zawartości plików, ale bezpieczniej jest wykonać polecenie

sync

które ją wymusi.

W przypadku awarii SO możliwa jest utrata danych zawartych w buforach – jeżeli nie nastąpiła synchronizacja.