▼ Rollno: 1233

Name: Kirti Vichare

```
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sb

df= pd.read_csv("Salary_Data.csv")
df
```

	YearsExperience	Salary
0	1.1	39343.0
1	1.3	46205.0
2	1.5	37731.0
3	2.0	43525.0
4	2.2	39891.0
5	2.9	56642.0
6	3.0	60150.0

df.columns

df.describe()

	YearsExperience	Salary
count	30.000000	30.000000
mean	5.313333	76003.000000
std	2.837888	27414.429785
min	1.100000	37731.000000
25%	3.200000	56720.750000
50%	4.700000	65237.000000
75%	7.700000	100544.750000
max	10.500000	122391.000000
	- · -	

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30 entries, 0 to 29
Data columns (total 2 columns):
# Column Non-Null Count Dtype
```

0 YearsExperience 30 non-null float64
1 Salary 30 non-null float64

dtypes: float64(2)

memory usage: 608.0 bytes

28 10.3 122391.0

df.isnull()

	rearsexpertence	Затагу
0	False	False
1	False	False
2	False	False
3	False	False
4	False	False
5	False	False
6	False	False
7	False	False
8	False	False
9	False	False
10	False	False
11	False	False
12	False	False
13	False	False
14	False	False
15	False	False
16	False	False
17	False	False
18	False	False
19	False	False
20	False	False
21	False	False
22	False	False
23	False	False
24	False	False
25	False	False
26	False	False
27	False	False
20	Eoloo	Edoo
k +∩r	null values	

YearsExperience Salary

#check for null values
df.isnull().sum()

YearsExperience 0 Salary 0

```
x=df.iloc[:,:-1].values
y=df.iloc[:,1].values
```

```
plt.plot(x,y)
plt.title("Years of Experience vs Salary")
plt.xlabel("Years of Experience")
plt.ylabel("Salary")
plt.show()
```



```
plt.scatter(x,y)
plt.title("Years of Experience vs Salary")
plt.xlabel("Years of Experience")
plt.ylabel("Salary")
plt.show()
```


from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,random_state=1)

plt.show()

```
x_train
     array([[ 8.7],
            [7.9],
            [8.2],
            [ 2.2],
            [ 1.5],
            [ 9. ],
            [ 3. ],
            [5.9],
            [4.1],
            [ 3.2],
            [ 9.6],
            [ 1.3],
            [5.1],
            [1.1],
            [4.9],
            [10.5],
            [10.3],
            [ 3.7],
            [ 3.2],
            [ 4. ],
            [ 4. ],
            [ 2.9]])
from sklearn.linear_model import LinearRegression
regressor=LinearRegression()
regressor.fit(x_train,y_train)
     LinearRegression()
y_pred = regressor.predict(x_test)
y_train_pred = regressor.predict(x_train)
plt.scatter(x_train,y_train,color="green")
plt.plot(x_train,y_train_pred,color="red")
plt.title("Years of Experience vs Salary(Training Dataset)")
plt.xlabel("Years of Experience")
plt.ylabel("Salary")
```



```
plt.scatter(x_test,y_test,color="blue")
plt.plot(x_test,y_pred,color="red")
plt.title("Years of Experience vs Salary(Training Dataset)")
plt.xlabel("Years of Experience")
plt.ylabel("Salary")
plt.show()
```


Evaluation

from sklearn.metrics import r2_score
import numpy as np

```
print("Mean absolute error: %.2f" % np.mean(np.absolute(y_pred - y_test)))
print("Mean Squared error: %.2f" % np.mean((y_pred - y_test)**2))
print("Root Mean Squared error: %.2f" % np.sqrt(np.mean(y_pred - y_test)**2))
print("r2_score: %.2f" %r2_score(y_pred,y_test))
```

Mean absolute error: 5215.55 Mean Squared error: 40884620.50 Root Mean Squared error: 3378.35

r2_score: 0.89

```
print("Training Data")
print("Mean absolute error: %.2f" % np.mean(np.absolute(y_train_pred - y_train)))
print("Mean Squared error: %.2f" % np.mean((y_train_pred - y_train)**2))
print("Root Mean Squared error: %.2f" % np.sqrt(np.mean(y_train_pred - y_train)**2))
print("r2_score: %.2f" %r2_score(y_train_pred,y_train))
```

Training Data

Mean absolute error: 4538.96 Mean Squared error: 29258602.85 Root Mean Squared error: 0.00

r2 score: 0.96

```
plt.scatter(x_test,y_test,color="blue")
plt.plot(x_test,y_pred,color="orange")
plt.title("Years of Experience vs Salary(Training Dataset)")
plt.xlabel("Years of Experience")
plt.ylabel("Salary")
plt.show()
```


✓ 0s completed at 3:18 PM

8/8

×