Apache Spark Machine Learning Library

Spark MLlib

Spark

A distributed, data processing platform for big data

- Distributed:
 - Runs in cluster of Servers
- Processing:
 - Performs computations, such as ETL and Modeling
- Big Data:
 - Terabyte and more volumes of data

Use Cases

- Real-time monitoring of financial data
- Text-analysis
- E-commerce pattern analysis
- Healthcare applications and genome analysis

1. Preprocessing:

- The first step is preprocessing which includes collecting, reformating, and transforming data.
 - Extract, transform, and load data (it is similar to ETL in BI and data warehousing) to staging area
 - Review data to determine missing and invalid values
 - Normalizing or scaling numeric data
 - Standardize categorical values (e.g. 3-letter ISO code country names)

1. Model Building:

- Applying machine learning algorithm to training data.
 - Selecting algorithms (which works well with our data and use case)
 - Executing algorithms to fit data to the models
 - Tuning hyperparameters (some algorithms requires us to specify parameters, such as how many levels to have in decision tree.)

- 1. Validation:
 - Assess the quality of models
 - We can use:
 - Accuracy
 - Precision (positive predictive value)
 - Sensitivity (recall)

Normalizing

- Normalizing is the process of mapping numeric data from its original range into a range from zero to one.
- This is important, because you may have multiple attributes with different ranges.

Salary	Normalized Salary
60000	0
75000	0.33
90000	0.66
105000	1

Jump into coding

Normalization Notebook

- We may have a data that is pretty close to a bell-shaped curve or normally distributed.
- Standardization is the process of mapping data into a range of [-1,1].
 (Mean is Zero)
- The main reason that we do this is some machine learning algorithms (i.e. SVM) work better when all of the features have unit variance and a zero mean.

Jump into coding

Standardize