Principles of Machine Learning CSCI-B455

Supervised Learning — I

A simple classification task

- Class C represents the family cars, and we aim to learn this class.
- Given a car, can we decide whether it is a family car?
- Output is yes (positive) or no (negative), a binary classification
- The purpose might be the
 - Prediction: When we see a new car, we want to answer the query
 - Knowledge extraction: The car manufacturer wants to get a good definition of a 'family car'
- Assume we decided to use the **price** and **engine power** as the input representation, the attributes or dimensions of the input
- We have previously **labeled** data, the cars in class C and outside of it, to use in our learning

Two-Class or Binary Classification

$$\chi = \{x_1^t, x_2^t, r^t\}_{t=1}^N$$

N distinct car samples the training set, where

- x_1^t is the price of the car t.
- x_2^t is the engine power of the car t.
- r^t is 1, if the car t is a family car, otherwise 0.

How would you mark the family car area on the figure left?

Empirical error of a hypothesis h on training set $\mathcal X$ is

$$E(h \mid \mathcal{X}) = \sum_{a=1}^{N} 1 \cdot (h(x^t) \neq r^t)$$

 $(h(x^t) \neq r^t)$ is 1 if the output of h on x^t is not equal to r^t , else 0.

- Possibly many hypotheses h without error, $E(h \mid \mathcal{X}) = 0$
- How will you choose among them?
- The future performance of chosen h cannot be known.
- This is the generalization problem in learning.

What can be the future implications of hypothesis h?

h is the learned hypothesis, and C is the actual class (ground truth)

False positive

The **cost** of false positive and false negatives can be **different**.

- High-risk, low-risk analysis for a credit customer?
- Is the customer a low-risk one?
- Yes(positive), No (negative)
- False positive: A high-risk customer label as a low-risk. Credit granted and lost
- False negative: A low-risk customer labeled high-risk. Credit not granted, bank lost the opportunity of profit.

- Most **specific** hypothesis \mathcal{S} : The smallest rectangle including all positives
- Most general hypothesis \mathcal{G} : The largest rectangle excluding all negatives

- All h in between \mathcal{S} and \mathcal{G} is called the **version space.**
- Any such h is **consistent** without error on \mathcal{X} .
- Having h in half-way between $\mathcal S$ and $\mathcal G$ seems intuitive.
- Why? Because, it increases the margin, distance between boundary and its closest instances.
- To learn such an h, it needs a fix on the empirical error calculation!
 - h(x) should return a distance value rather than 0/1
 - This return value should be used in a loss function for the optimization
 - **SVM**, support-vector-machine, is the typical example

• Most specific hypothesis \mathcal{S} : The smallest rectangle including all positives

• Most general hypothesis \mathscr{G} : The largest rectangle excluding all negatives

In case, the consequences of false positives or negatives are very serious, the area in between \mathcal{S} and \mathcal{G} is assumed the **doubt** region, and forwarded to <u>human judgement</u>

Vapnik-Chervonenkis (VC) Dimension

- ullet A measure of the capacity or the expressive power of a hypothesis set ${\mathcal H}$
- N points define 2^N different +/- attribution, each of which is a learning problem
- If there's an $h \in \mathcal{H}$ that solves all possible attributions, then \mathcal{H} shatters N points.
- This means the learning problem defined by N points can be solved without error.

Example:

Assume \mathcal{H} consists of axis-aligned rectangles, i.e. we draw an axis-aligned rectangle to separate positives from negatives or vice versa.

What is the VC-dimension of \mathcal{H} ?

For the 4-points in 2D space, there is an axis-aligned rectangle that does the job for every possible +/- labeling of the points.

But, it does not hold for 5 points, so VC-dimension is 4.

Very pessimistic, it says you can only learn 4-point data sets with \mathcal{H} . Does it really that limiting in real-world?

Vapnik-Chervonenkis (VC) Dimension

- Assume \mathcal{H}' is consist of drawing lines in 2D space, instead of axis-aligned rectangles.
- What is the VC dimension of \mathcal{H}' ?
- There are N=3 points all possible +/- assignments can be separated by a single line.
- Not possible to shatter for N=4. Thus, VC dimension of \mathcal{H}' is 3.

The VC dimension of \mathcal{H} is 4 while \mathcal{H}' is 3. What does it mean?

The expressive power, the capacity of learning, of \mathcal{H} is superior to \mathcal{H}' . \mathcal{H} can learn more complex data sets compared to \mathcal{H}' .

Vapnik-Chervonenkis (VC) Dimension

- What is the VC dimension of a triangle on 2D space (or plane)?
- 7 points in a plane can be shattered by a triangle. Thus, VC dimension of triangle on 2D is 7.

- •However, VC is still very pessimistic. With axis-aligned rectangles you can only learn 4-point data sets and with lines only 3-point data sets!
- •Real-world practice is different, data points are not random, we are free to have errors on the training data, etc...

Probably Approximately Correct (PAC) Learning

- Accuracy: We want the hypothesis h to be close to the true target class C.
- A probability that a given point is misclassified is at most ϵ , i.e., the error is at most ϵ
- The level of desired accuracy is denoted by ϵ .

	h: If (weight > 115) then Orange, else Apple	C: If $(weight > 125)$ then Orange else Apple	
Training Data 1. Apple 120g	Learned 1. Orange	True Class 1. Apple	h deviates from C by 20%, accuracy is 80%.
 Orange: 150g Apple: 130g 	2. Orange3. Orange	2. Orange3. Orange	Error rate is then $\epsilon = 0.2$.
4. Orange: 140g 5. Apple: 110g	4. Orange 5. Apple	4. Orange5. Apple	Does h provide a confidence?

- Confidence: We want to be confident that the h provides the desired level of accuracy.
- The level of desired accuracy is maintained with at least $(1-\delta)$ probability.