Problem Set 1

Fernando, Dang, Raj, Eric M.

September 12, 2025

Problem 1

Statement: Using a proof by contradiction, prove for any integer n if $n^3 + 5$ is odd, then n is even.

Proof by Contradiction:

Assume for contradiction that $n^3 + 5$ is odd and n is odd.

Since n is odd, we can write n = 2k + 1 for some integer k.

Then:

$$n^3 = (2k+1)^3 (1)$$

$$=8k^3 + 12k^2 + 6k + 1\tag{2}$$

$$=2(4k^3+6k^2+3k)+1\tag{3}$$

Let $m = 4k^3 + 6k^2 + 3k$. Since k is an integer, m is also an integer.

Therefore, $n^3 = 2m + 1$, which means n^3 is odd.

Now,
$$n^3 + 5 = (2m + 1) + 5 = 2m + 6 = 2(m + 3)$$
.

Since m+3 is an integer, n^3+5 is even.

Any integer times 2 is even. Therefore, $n^3 + 5$ is even.

This contradicts the assumption that $n^3 + 5$ is odd.

Therefore, if $n^3 + 5$ is odd, then n must be even.

Problem 2

Statement:

$$\overline{A} \cap \overline{B} = \overline{A \cup B}$$

Example: Let the universal set be

$$U = \{1, 2, 3, 4, 5\}$$

and let

$$A = \{1, 2\}, \quad B = \{3, 4\}.$$

Step 1: Find complements:

$$\overline{A} = U - A = \{3, 4, 5\}, \quad \overline{B} = U - B = \{1, 2, 5\}$$

Step 2: Solve left-hand side:

$$\overline{A} \cap \overline{B} = \{3, 4, 5\} \cap \{1, 2, 5\} = \{5\}$$

Step 3: Solve right-hand side:

$$A \cup B = \{1, 2\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

$$\overline{A \cup B} = U - (A \cup B) = \{5\}$$

Step 4: Compare both sides:

$$\overline{A} \cap \overline{B} = \{5\} = \overline{A \cup B}$$

Conclusion: The equality holds in this example, showing that it's true

$$\overline{A} \cap \overline{B} = \overline{A \cup B}$$

Problem 3

Statement: Using a proof by induction, show that for all n > 5, $2^n > 5n$.

Proof by Induction:

Base Case: Let n=6. $2^6=64$ and $5\cdot 6=30$ Since 64>30, the base case holds.

Inductive Hypothesis: Assume that for some $k \ge 6$, $2^k > 5k$.

Inductive Step: We need to show that $2^{k+1} > 5(k+1)$.

 $2^{k+1} = 2 \cdot 2^k > 2 \cdot 5k = 10k$ (by the inductive hypothesis)

We need to show that 10k > 5(k+1) = 5k + 5.

This is equivalent to showing 10k > 5k + 5, or 5k > 5, or k > 1.

Since $k \ge 6 > 1$, we have 10k > 5k + 5.

Therefore, $2^{k+1} > 10k > 5k + 5 = 5(k+1)$.

By mathematical induction, $2^n > 5n$ for all n > 5.

This also holds true because $2^n > 5n$ for all n > 5.

Problem 4

Statement: Let p and q be truth values. Using a truth table, prove or disprove the following statement:

$$(\neg p \lor q) \land (p \land (p \land q)) \Leftrightarrow (p \land q)$$

Truth Table:

p	q	$\neg p$	$\neg p \lor q$	$p \wedge q$	$p \wedge (p \wedge q)$	LHS	$LHS \Leftrightarrow RHS$
Т	Т	F	Т	Т	Т	Т	Т
T	F	F	F	F	F	F	T
F	T	Τ	T	F	\mathbf{F}	F	T
F	F	Т	Т	F	F	F	Т

Where LHS = $(\neg p \lor q) \land (p \land (p \land q))$ and RHS = $(p \land q)$. Step-by-step calculation:

- Row 1: $(\neg T \lor T) \land (T \land (T \land T)) = (F \lor T) \land (T \land T) = T \land T = T$
- Row 2: $(\neg T \lor F) \land (T \land (T \land F)) = (F \lor F) \land (T \land F) = F \land F = F$
- Row 3: $(\neg F \lor T) \land (F \land (F \land T)) = (T \lor T) \land (F \land F) = T \land F = F$
- Row 4: $(\neg F \lor F) \land (F \land (F \land F)) = (T \lor F) \land (F \land F) = T \land F = F$

The biconditional is true in all rows, therefore we end up with a tautology, therefore the statement is ${\bf true}$.

 $(\neg p \lor q) \land (p \land (p \land q)) \Leftrightarrow (p \land q)$ is **true**.