Engineering Mathematics I-(BAS-103)

Unit 2 Differential Calculus I

Tutorial 3

Que1. If
$$e^{-z/x^2-y^2} = x - y$$
 then show that $y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = x^2 - y^2$ [2016-17]

Que2. If
$$u = f(r)$$
 and $r^2 = x^2 + y^2$ show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$ [2015-16]

Que3. If
$$x^2 = au + bv$$
, $y^2 = au - bv$ Find $\left(\frac{\partial u}{\partial x}\right)_v \left(\frac{\partial x}{\partial u}\right)_v$ [2017-18]

Que4. If
$$= x^2 \tan^{-1} \frac{y}{x} - y^2 \tan^{-1} \frac{x}{y}$$
, Find the value of $\frac{\partial^2 u}{\partial x \partial y}$ [2018-19]

Que5. If
$$u = x^3 y^2 sin^{-1} \left(\frac{y}{x}\right)$$
 then find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ [2018-19]

Que6. If
$$v = (x^2 + y^2 + z^2)^{-1/2}$$
 then find $xv_x + yv_y + zv_z$ [2015-16]

Que 7. If
$$u = sin^{-1} \left(\frac{x^3 + y^3}{\sqrt{x} + \sqrt{y}} \right)$$
 prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{5}{2} tan u$ [2022-23]

Que8.If
$$u = sec^{-1}\left(\frac{x^3 - y^3}{x + y}\right)$$
 then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \cot u$. Also evaluate $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$ [2020-21]

Que9.If
$$u = y^2 e^{\frac{y}{x}} + x^2 \tan^{-1} \frac{x}{y}$$
 then prove that [2023-24]

$$(i)x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2u \quad (ii)x^2\frac{\partial^2 u}{\partial x^2} + 2xy\frac{\partial^2 u}{\partial x\partial y} + y^2\frac{\partial^2 u}{\partial y^2} = 2u$$

Que10.If
$$u = \frac{x^2y^2}{x^2+y^2} + \cos\left(\frac{xy}{x^2+y^2}\right)$$
 then prove that $x^2\frac{\partial^2 u}{\partial x^2} + 2xy\frac{\partial^2 u}{\partial x\partial y} + y^2\frac{\partial^2 u}{\partial y^2} = 2\frac{x^2y^2}{x^2+y^2}$ [2022-23]

Que11. If
$$u = sin^{-1} \left(\frac{x^3 + y^3 + z^3}{ax + by + cz} \right)$$
 prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 2 \tan u$ [2017-18]

Que12. If
$$u = cos^{-1} \left(\frac{x+y}{\sqrt{x}+\sqrt{y}} \right)$$
 then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + \frac{1}{2} \cot u = 0$ [2018-19]

Que13. If
$$w = \sqrt{x^2 + y^2 + z^2}$$
 and $x = u\cos v$, $y = u\sin v$, $z = uv$ Show that $u\frac{\partial w}{\partial u} - v\frac{\partial w}{\partial v} = \frac{u}{\sqrt{1 + v^2}}$ [2016-17]

Que14. Prove the following

(i) If
$$If \ v = f(2x - 3y, 3y - 4z, 4z - 2x)$$
 then $\frac{1}{2} \frac{\partial v}{\partial x} + \frac{1}{3} \frac{\partial v}{\partial y} + \frac{1}{4} \frac{\partial v}{\partial z} = 0$ [2019-20]

(ii) If
$$u = f(r, s, t)$$
 $r = \frac{x}{y}$, $s = \frac{y}{z}$, $t = \frac{z}{x}$ then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$ [2017-18]

(iii) If
$$u = f(y - z, z - x, x - y)$$
 then $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$ [2020-21]

(iv) If
$$Z = f(x, y)$$
 and $x = e^u + e^{-v}$, $y = e^{-u} - e^v$ then $\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}$ [2023-24]

Que15. Find du/dt as a total derivative

(i)
$$x = e^{2t}$$
, $y = e^{2t} \cos 3t$, $z = e^{2t} \sin 3t$ [2014-15] (ii) $x = a \cos t$, $y = b \sin t$ [2019-20]

Answers

Ans 3.
$$\frac{1}{2}$$
 Ans 4. $\frac{x^2 - y^2}{x^2 + y^2}$ Ans 5. $5x^3y^2 sin^{-1} \left(\frac{y}{x}\right)$

Ans 6.
$$-(x^2 + y^2 + z^2)^{-1/2}$$
 Ans 8. $-2 \cot u (2 \csc^2 u + 1)$

Ans 15 (i)
$$2e^{4t}$$
 (ii) $-3a^3\cos^2 t \sinh + 3b^3\sin^2 t \cos t$