Generalized Algebraic Data Types (GADT)

Косарев Дмитрий a.k.a. Kakadu

матмех СПбГУ

7 ноября 2019 г.

В этих слайдах

- 1. Мотивация. Фантомные типы
- 2. GADT
- 3. Применение для интерпретатора мини-языка
- 4. Другие применения (кратко)
- 5. Равенство типов по Лейбницу
- 6. Теория про индексы де Брёйна (скорее всего не дойдем)

Алгебраические типы. Конструкторы данных

```
data ListInt =
    Nil
    Cons Int ListInt
```

- Cons и Nil конструкторы данных
- Это единственные способы построить значения типа ListInt
- Конструкторы по сути тэгируют пары значений
- И действуют как динамические свидетели эти значений

Функция List.hd

С точки зрения системы типов пустые и непустые списки *неразличимы*: и те, и другие имею тип ListInt.

Но благодаря тегирующим конструкторам мы можем написать динамический тест, который локально определит природу списков:

```
hd :: ListInt -> Int
hd Nil = {- List is empty -} error "empty list"
hd (Cons x _) = {- List is non-empty -} x
```

Что на счет более безопасного получения головы?

Возможно ли изменить объявление типа списков так, чтобы получить вариант функции hd, которая всегда работает без ошибок?

Фантомные типы

Определение (Трюк программирования на уровне типов: фантомные типы)

Добавим дополнительный типовый параметр к объявлению типа, не встречающийся в этом определении типа, такой, что его можно свободно уточнить (instantiate), чтобы передать часть статической информации в систему проверки типов (type checker).

Другими словами, типовый параметр а значений v фантомного типа T а будет обозначать не тип какой-то компоненты v, а некоторую статическую информацию, привязанную к v.

Фантомные типы для свойства пустоты

```
Дополнительный типовый параметр newtype Plist info = L ListInt
```

Свойство пустоты кодируется с помощью двух свежих различных типов data Empty data Nonempty

"Умные" конструкторы для конструирования данных

Превратим тип в абстрактный (скрыв его реализацию), а затем специализируем сигнатуру функций конструирования как нам нужно

```
nil :: Plist Empty
nil = L Nil

cons :: Int -> Plist b -> Plist Nonempty
cons x (L xs) = L (Cons x xs)

head :: Plist Nonempty -> Int
head (L (Cons x _ )) = x
head (L Nil) = error "should not happen"
```

Более безопасное (?) извлечение головы списка

```
head :: Plist Nonempty -> Int
head (Cons x _ ) = x
head Nil = error "should not happen"
```

Благодаря фантомным типам некоторые "плохие" вызовы head будут отклонены на стадии проверки типов.

Очевидно, что выражение head Nil не должно типизироваться, такт как типы Empty и Nonempty несовместимы.

Выражение же head (Cons 1 Nil), наоборот, корректно типизируется.

```
head :: Plist Nonempty -> Int
head (Cons x _ ) = x
```

Можем ли мы не разбирать второй случай, так как мы и так знаем что список не пустой?

Проблемка

```
head :: Plist Nonempty -> Int
head (Cons x) = x
Можем ли мы не разбирать второй случай, так как мы и так знаем что список не пустой?
NonemptyList.hs:34:1-16: warning: [-Wincomplete-patterns]
    Pattern match(es) are non-exhaustive
    In an equation for 'totalHd': Patterns not matched: (Cons )
34 \mid totalHd Nil = 42
```

Компилятор недостаточно умён, чтобы доказать, что плохого случая не случится.

Generalized Algebraic Data Types

Механизм проверки типов для Обобщённых Алгебраических Типов Данных (GADTs) преодолевает упомянутое ограничение с помощью *автоматического уточнения контекста типизации в каждой ветке сопоставления с образцом*.

Первый GADT

```
data Empty data Nonempty
```

```
data List prop where
  Nil :: List Empty
  Cons :: Int -> List prop -> List Nonempty
```

Также как и "умные" конструкторы фантомных типов, это объявление ограничивает типы значений, создаваемых с помощью конструкторов.

К тому же, эти конкретные типы теперь привязаны к конструкторам данных, а не к "умным" конструкторам, что позволяет типизировать сопоставление с образцом более точно.

```
hd :: List Nonempty -> Int
hd (Cons h _) = h
```

...и механизм проверки типов больше не будет жаловаться на то, что не все случаи были разобраны при сопоставлении с образцом.

Воистину, можно доказать, что не упомянутый случай, относящийся к конструктору Nil невозможен, так как такой паттерн может использоваться только со значениями типа List Empty, которые несовместны с типом List Nonempty.

Ещё пример

```
hd :: List Nonempty -> Int

totalHd :: List a -> Int

totalHd Nil = 42

totalHd xs@(Cons _ _) = hd xs
```

Во второй ветки компилятор смог передать значение xs типа List a в функцию, которая ожидала тип List Nonempty.

Равенство типов

Мы можем переформулировать предыдущее определение GADT путём добавления равенств типов к каждому конструктору данных:

```
data List prop where Nil :: prop \equiv Empty \rightarrow List prop Cons :: prop \equiv Nonempty \rightarrow Int -> List prop \rightarrow List prop Внимание: воображаемый синтаксис!
```

¹Хотя что-то подобное в Haskell есть

В правой части каждой ветки паттерн-мэтчинга обрабатывается отдельный конструктор и равенства типов *неявно* добавляются в контекст Γ , в котором находится type checker.

```
totalHd :: List a -> Int
totalHd Nil = 42
totalHd xs@(Cons _ _) = hd xs
```

Вывод типов для второй ветки работает примерно так:

- Мы знаем что а ≡ Nonempty
- ullet А также в контексте Γ написано, что xs имеет тип List Nonempty:

```
\Gamma \vdash xs :: List Nonempty
```

 Из того, что a — это Nonempty, по смыслу типов следует, что List a — это List Nonempty:

```
a = Nonempty |= List a = List Nonempty
```

• Подставив типы, получим:

```
\Gamma \vdash xs :: List Nonempty
```

Упражнения (1/3)

Астрактные типы для натуральных чисел в стиле Пеано: "ноль" и "следующий".

type Zero
type Succ a

Используя эти типы напишите другую реализацию типа **IntList**, которая позволит хранить на уровне типов информацию о длине списка.

Упражнения (2/3)

Рассмотрим функцию попарного суммирования списков:

```
sum :: [Int] -> [Int]
sum [] [] = []
sum (x:xs) (y:ys) = (x+y):(sum xs ys)
sum _ _ = error 'different lengths'
```

Перепишите её с помощью списком из упражнения выше. Получился ли более точный тип по сравнению с предыдущей реализацией?

Упражнения (3/3)

Рассмотрим функцию слияния списков:

```
append :: [Int] -> [Int] -> [Int]
append [] xs = xs
append (x:xs) ys = x:(append xs ys)
```

Можно ли с помощью только что введенных списков получить правильно типизированную реализацию?

Язык выражений с парами, проекциями и числами

```
-- t ::= 0, 1, \ldots / \pi_1 t / \pi_2 t / (t, t)
data Term =
    Const Int
  | Pair Term Term
  | Fst Term
  Snd Term
data Value = VInt Int | VPair Value Value
eval :: Term -> Value
```

Интерпретатор "в лоб"

```
eval :: Term -> Value
eval (Const n) = VInt n
eval (Pair l r) = VPair (eval l) (eval r)
eval (Fst t) = case eval t of
  VInt _ -> error "only pairs can be projected"
  VPair a _ -> a

eval (Snd t) = ...
```

Как убедить себя, что если выражение мини-языка построено правильно, то интерпретатор не упадет?

Интерпретатор выражений с комментариями (1/3)

```
\{-\text{ eval e переводит правльно построенные выражения типа } T в значения типа T,
    или более формально:
   \forall e \ T \ . \ Pre : " \vdash e : T" \Rightarrow Pre : " \vdash eval \ e : T"
- 7
eval :: Term -> Value
eval (Const n) = VInt n
   -- Путём разбора случаев (inversion) в Pre получим, что \vdash Const n : int
   -- Следовательно, T = int, u это то, что нужно: VInt x : Int
eval (Pair t1 t2) = VPair (eval t1) (eval t2)
   -- Путём разбора случаев (inversion) в Pre узнаём, что существуют eta_1 и eta_2
   -- makue, umo \vdash Pair(t_1, t_2) : (\beta_1, \beta_2), \vdash t_1 : \beta_1 \ u \vdash t_2 : \beta_2.
   -- Следовательно, \vdash eval\ t_1:\beta_1\ u \vdash eval\ t_1:\beta_1
  -- Итого, получаем, что \vdash (eval\ t_1, eval\ t_2): (\beta_1, \beta_2)
eval (Fst t) = ...
eval (Snd t) = ...
```

Интерпретатор выражений с комментариями (2/3)

```
\{	ext{-} eval e nepeводит правльно построенные выражения типа <math>T в значения типа T,
   или более формально:
   \forall e \ T \ . \ Pre : " \vdash e : T" \Rightarrow Pre : " \vdash eval \ e : T"
- }
eval :: Term -> Value
eval (Fst t) = case eval t of
  VInt _ -> error ''only pairs can be projected''
  VPair v1 -> v1
  -- Путём разбора случаев (inversion) в Pre узнаём, что
  --\exists \beta \vdash t : (T,\beta)
  -- Затем, \vdash eval t: (T, \beta)
  -- T.\kappa. pesynthem uneem mun naph, mo eval t=(v_1,v_2), ede v_1:T
eval (Snd t) = ...
```

Интерпретатор выражений с комментариями (3/3)

```
eval (Fst t) = case eval t of 
VInt _ -> error "only pairs can be projected" 
VPair v1 _ -> v1 
-- Mmozo nonywaem, who eval t=(v_1,v_2) eval (Snd t) = ...
```

Отсюда следует, что мы разбираем всегда пару, а вторая ветка паттерн-мэтчинга никогда не случится, они лишняя (redundant).

Как закодировать это свойство используя типы?

Тип интерпретатора может быть обогащен типовой переменной, которая обозначает результат интерпретации.

```
eval :: Term a -> Value a
```

В данном конкретном случае конструкторы типов **Term** и **Value** выступают в роли фантомных типов. Вопрос: в нашем случае какую именно информацию они кодируют?

Кодирование предикатов, используя типы

Что означает е : Term a? Выражение е имеет тип a.

Другими словами, мы кодируем на уровне типов предикат, который обозначает "правильную типизированность" нашего языка выражений. Чтобы всё сделать правильно, нам нужно ещё закодировать типы в базовом (host) языке программирования. Это может быть сделано с использование конструкторов типа:

```
-- \tau ::= int \mid (\tau, \tau) data IntType data PairType a b
```

Язык корректно построенных выражений

```
-- t ::= 0. 1. ... / \pi_1 t / \pi_2 t / (t. t)
data Term a where
 Lit :: Int
                 -> Term IntType
 Pair :: Term a -> Term b -> Term (PairType a b)
 Fst :: Term (PairType a b) -> Term a
  Snd :: Term (PairType a b) -> Term b
--v ::= 0.1.... / (v.v)
data Value a where
 VInt :: Int -> Value IntType
  VPair :: Value a -> Value b -> Value (PairType a b)
Здесь объявляются два GADTs: Term и Value.
```

Интерпретатор корректно типизированных выражений

```
eval :: Term a -> Value a
eval (Const n) =
  --a == IntTupe
 VInt. n
eval (Pair t1 t2) =
  -- \exists b \ c. \ a = PairType \ b \ c, \ t1 : Term \ b, \ t2 : Term \ c
  VPair (eval t1, eval t2)
eval (Fst t) =
  -- \exists b. t : Term (PairType a b)
  case eval t of
    VPair v1 _ -> v1
eval (Snd t) =
  -- \exists b. t : Term (PairType b a)
  case eval t of
    VPair v2 -> v2
```

28 / 44

Эквивалентность типов с учетом равенств

Используя стандартную процедуру вывода типов, мы можем получить, что во второй ветке

```
VPair (eval t1) (eval t2) :: Value (PairType c d)
```

Это синтаксически отличается от ожидаемого типа Value a.

K счастью, в этой ветке локально присутсвует информация о равенстве типо $a = PairType \ c \ d.$

Из этого системы проверки типов может доказать, что:

```
a = PairType c d |= Value a = Value (PairType c d)
```

Что очевидно верно в системе типов языка Haskell (и системах на основе алгоритма вывода типов Хиндли-Милнера).

```
eval :: Term a -> Value a
eval (Const n) = ...
eval (Pair t1 t2) = ...
eval (Fst t) =
  -- \exists b. t : Term (PairType a b)
  case eval t of
    -- Единственный паттерн, который тут может быть,
    -- должен иметь mun PairType a b
    VPair v1 -> v1
eval (Snd t) = ...
```

Tagless интерпретатор

Bo всех вложенных pattern matching у нас стоят одиночные паттерны, которые покрывают все возможные случаи значений. В некотором смысле они "неопровержимые" (irrefutable).

Это означает, что мы можем безопасно объявить type Value a = a

Другими словами, мы можем использовать базовый (host) язык с GADT (в этих слайдах это Haskell) одновременно и как язык для написания интерпретатора, и как язык, выражает значения и типы встраиваемого языка.

Язык корректно типизированных выражений

C учетом нового определения типа Value мы молучаем новое определение GADT типа Term

```
-- t ::= 0,1,... | \pi_1 | \pi_2 | (t,t) data Term a where

Const :: Int -> Term Int

Pair :: Term a -> Term b -> Term (a,b)

Fst :: Term (a,b) -> Term a

Snd :: Term (a,b) -> Term b
```

Сейчас мы не только избавились от конструкторов, подчистив код, но также его линейно ускорив [5].

Окончательная реализация tagless интерпретатора

```
eval :: Term a -> Value a
eval (Const n) =
  -- \alpha = Tn.t.
  n
eval (Pair 1 r) =
  -- \exists b \ c. \ a = (b,c), \ t1 : Term \ b, \ t2 : Term \ c
  (eval 1. eval r)
eval (Fst t) =
  -- \exists b. t : Term (a. b)
  fst (eval t)
eval (Snd t) =
  -- \exists b. t : Term (b, a)
  snd (eval t)
```

Другие применения GADT

- Красно-черные деревья, сбалансированные по построению [3][5].
- Или то же самое для 2-3 деревьев.
- Simply-typed Lambda Calculus интерпретатор [2], где используется GADT для корректного (каждое имя переменной вводилось λ -абстракцией) представления выражений.
- Можно сделать из GADT типизированное внутреннее представление программы [6].
- Эмуляция некоторых свойств зависимых типов, когда в самом языке зависимых типов нет.
- Различное представление в памяти различных данных [7].

Равенство типов по Лейбницу

Определение (Равенство по Лейбницу)

Две сущности равны, если они неразличимы (а, следовательно – взаимозаменяемы) в любом контексте.

Равенство типов по Лейбницу

Определение (Равенство по Лейбницу)

Две сущности равны, если они неразличимы (а, следовательно – взаимозаменяемы) в любом контексте.

Определение типа равенства с помощью GADT:

```
data Eq a b where
  Refl :: Eq a a
```

Другое определение типа равенства на случай, если GADT в языке нет, но есть экзистенциальные типы и типы высшего порядка (higher-kinded types):

```
data Eq a b = forall f . (f a \rightarrow f b, f b \rightarrow f a)
```

Легко понять, то если существует типобезопасная функция с таким типом, то она всегда зависает

```
test1 :: a -> (b -> c) -> c
test1 = error "doesn't exist"
```

Легко понять, то если существует типобезопасная функция с таким типом, то она всегда зависает

```
test1 :: a -> (b -> c) -> c
test1 = error "doesn't exist"
```

Но мы можем это попробовать исправить, явно передав информацию, что два типа равны.

```
data Eq a b where
  Refl :: Eq a a

test2 :: Eq a b -> a -> (b -> c) -> c
test2 Refl x f = f x
```

Тип Eq – это отношение равенства

• Рефлексивность

```
Refl :: Eq a a
```

• Симметричность

```
symm :: Eq a b -> Eq b a
symm Refl = Refl
```

• Транзитивность

```
trans :: Eq a b -> Eq b c -> Eq a c
trans Refl Refl = Refl
```

Если у вас нет в языке GADT (например, вы пишете на $F\sharp$), то с помощью обычных алгебраических типов и **Eq**, вы можете сэмулировать наличие GADT.

Дальше есть слайды про ещё одно применение, но на них времени скорее всего не хватит.

Безымянное представление через индексы де Брёйна (de Bruijn)

Идея

- Заводим глобальный контекст Γ , где взаимно однозначно сопоставляем каждому натуральному числу имея переменной.
- Связанные переменные представляем числом k>0. Оно означает, что переменная связывается k-й охватывающей лямбдой.
- Свободная переменная x представляются в виде суммы Γx и глубины её местоположения внутри терма в λ абстракциях.

Пример: $\Gamma = \{b \mapsto 0, a \mapsto 1, z \mapsto 2, y \mapsto 3, x \mapsto 4\}$

- $x(yz) \equiv 4(3\ 2)$
- $(\lambda w \to yw) \equiv (\lambda \to 4 \ 0)$
- $(\lambda w \to yx) \equiv (\lambda \to \lambda \to 6)$

Подстановка в безымянном представлении $[k\mapsto s]t$ (1/2)

Пример: $[1 \mapsto s](\lambda \to 2) = [x \mapsto s](\lambda y \to x)$

Когда s проникнет под абстракцию, то надо будет "сдвинуть" некоторые индексы переменных, но не все, например, если $s=2(\lambda\to 0)$ (т.е. $s=z(\lambda w\to w)$), то надо сдвинуть 2, а не 0.

Определение

Сдвиг терма t на d позиций с отсечкой c (обозначается $\uparrow_c^d(t)$)

- ullet $\uparrow_c^d(k) = egin{cases} k, & ext{если } k < c \ k+d, & ext{если } k \geq c \end{cases}$
- $\bullet \uparrow_c^d (t_1 t_2) = \uparrow_c^d (t_1) \uparrow_c^d (t_2)$

Подстановка в безымянном представлении $[k\mapsto s]t$ (2/2)

Определение

Подстановка терма s вместо переменной номер j (обозначается $[j\mapsto s]t)$

- ullet $[j\mapsto s]k=egin{cases} s, & ext{если } k=j \ k, & ext{в противном случае} \end{cases}$
- $[j \mapsto s](\lambda \to t_1) = (\lambda \to [(j+1) \mapsto \uparrow_0^1 s]t_1)$
- $[j \mapsto s](t_1t_2) = ([j \mapsto s]t_1[j \mapsto s]t_2)$

Упражнения на подстановку с индексами де Брёйна

- $[b \mapsto a](b(\lambda x \to \lambda y \to b))$
- $[b \mapsto a(\lambda z \to a)](b(\lambda x \to b))$
- $[b \mapsto a](\lambda b \to b \ a)$
- $[b \mapsto a](\lambda a \to b \ a)$

Ссылки І

Red-Black trees, balanced by construction Github gist

GADT slides in OCaml context Yann Régis-Gianas PDF slides

Ссылки II

Investigation of GADT applications and usage Parth Shah
PDF

A Type-Preserving Compiler in Haskell Louis-Julien Guillemette & Stefan Monnier PDF

Why GADTs matter for performance Yaron Minsky blog post