BME Gépészmérnöki Kar	SZILÁRDSÁGTAN	Név:
Műszaki Mechanikai Tanszék	2. HÁZI FELADAT	Neptun kód: AHU27Z
2024/25 II.	Határidő: lásd Moodle	Késedelmes beadás: □ Javítás: □
Nyilatkozat: Aláírásommal igazolom, hogy szítettem el, az abban leírtak saját megértése	Aláírás:	

Csak a formai követelményeknek megfelelő feladatokat értékeljük! http://www.mm.bme.hu/targyak/bsc/sziltan

Feladatkitűzés

Az ábrán vázolt szerkezet két rúdja csuklósan kapcsolódik, anyaguk homogén, izotrop, lineárisan rugalmas (rugalmassági modulusz: E=210 GPa; Poisson-tényező: $\nu=0,3$). Az (1)-es rúd keresztmetszete az ábrán látható I-szelvény (I-80-MSZ-325), míg a (2)-es rúdé d külső átmérőjű körgyűrű.

Adatok

$L\left[\mathbf{m}\right]$	h [m]	d [mm]	F [kN]	M [kNm]	p [kN/m]	$\varepsilon_a [10^{-4}]$	$\varepsilon_b [10^{-4}]$	$\varepsilon_c [10^{-4}]$	α [°]
1.50	2.50	58	4	1.50	1.75	-5.20	2.50	6	30

(Rész)eredmények

A_z [kN	x_{max} [m]		w_{\max} [mm]		$t_{ m min}$ [mm]	$\varepsilon_y [10^{-4}]$		$\gamma_{xz} \left[10^{-4} \right]$		σ_x [MPa]			
σ_z [MPa	a]	$ au_{xz}$ [N	MPa]	σ_1	[MPa]	σ_2 [MPa]	σ_3 [MP	σ_3 [MPa]		$\Delta\sigma_{\rm e}$ [MPa]		u_d [J/cm ³]	
e_{1x} [-]	$e_{:}$	_{1y} [-]	e_{1z} [[-]	e_{2x} [-]	e_{2y} [-]	e_{2z} [-]	e_3	x [-]	e_{3y} [·	-]	e_{3z} [-]	

Pontozás

Minimumfeladat			Felac	Feladatok Dokumentáció				
	2.	3.	4.	5.	6.	7.	Dokumentacio	Összesen
	/5	/3	/4	/4	/2	/2	/5	/25

Adatok:

$$\begin{split} L &= 1.5 \; [\mathrm{m}] \quad h = 2.5 \; [\mathrm{m}] \quad d = 58 \; [\mathrm{mm}] \\ F &= 4 \; [\mathrm{kN}] \quad M = 1.5 \; [\mathrm{kNm}] \; p = 1.75 \; [\mathrm{kN/m}] \\ \epsilon_A &= -5.2 \; [10^{-4}] \quad \epsilon_B = 2.5 \; [10^{-4}] \quad \epsilon_C = 6 \; [10^{-4}] \quad \alpha = 30 \; [^\circ] \\ E &= 210 \; [\mathrm{GPa}] \quad \nu = 0.3 \; [-] \end{split}$$

1. Feladat:

Az ábrán egy egység megfelel 1 m-nek és 2 kN-nak

A szerkezetünket két részre tudjuk bontani, hogy ki tudjuk számolni a reakcióerőket. Ekkor C-pontban meg fog jelenni egy C vektor, és a két rúdra külön tudunk 3-3 egyensúlyiegyenletet írni. A két rész (1. eset balra, 2. eset jobbra) szabadtest-ábrája:

1. esetben kijövő egyensúlyi egyenletek A pontra vonatkoztatva:

(1)
$$\sum F_x = 0 = C_x$$

(2)
$$\sum F_y = 0 = A_z + C_z + p \cdot L - F$$

(3)
$$\sum M_{A'} = 0 = C_z \cdot L - M - F \cdot 2L - (p \cdot L) \cdot \frac{L}{2}$$

2. esetben kijövő egyensúlyi egyenletek B pontra vonatkoztatva:

(4)
$$\sum F_x = 0 = -C_x + B_x$$

(5)
$$\sum F_y = 0 = -C_z + B_z$$

$$(6) \sum M_B = 0 = M_B + B_x \cdot h$$

A két egyenletrendszer megoldása:

$$A_z = -8.9375 \, [kN]$$

$$B_x = \underline{0 \text{ [kN]}}$$

$$B_z = \underline{10.3125 \text{ [kN]}}$$

$$M_B = 0 [kN]$$

$$C_x = 0 [kN]$$

$$C_z = \underline{10.3125 \text{ [kN]}}$$

2. Feladat:

Ahhoz hogy meg tudjuk határozni w(x)-et először meg kell adnunk az (1)-es rúd hajlítónyomatéki igénybevételét: A szerkezetet három részre tudjuk bontani, így a függvény:

	N	V	$ m M_h$	$ m M_t$	
I.	$-A_x = 4 [kN]$	$A_y - x \cdot p = M_A - x \cdot A_y + \frac{x}{2} \cdot (x \cdot p) = M_A - x \cdot A_y $			
0 < x < 1	$n_x = 4 \text{ [KIV]}$	=7.5577 - 5x [kN]	$= 2.5x^2 - 7.5577x + 5.8577 [kNm]$	0 [kNm]	
II.	$-A_x + C_x = 0 \text{ [kN]}$	$A_y - x \cdot p =$	$M_A - M_C - x \cdot A_y + \frac{x}{2} \cdot (x \cdot p) =$	0 [kNm]	
1 < x < 1.7	$\prod_{x \in \mathcal{C}_x} \sigma_x = \sigma_x$	=7.5577 - 5x [kN]	$= 2.5x^2 - 7.5577x + 5.0577 [kNm]$		
III.	$-A_x + C_x = 0 \text{ [kN]}$	$A_y - (a+b) \cdot p =$	$M_A - M_C - x \cdot A_y + (x - \frac{a+b}{2}) \cdot ((a+b) \cdot p) =$	0 [kNm]	
1.7 < x < 2.3	x = 0 [M1]	= -0.9423 [kN]	= 0.9423x - 2.1673 [kNm]	0 [111 (111]	