3 Ryby

Daniel Skýpala

21. ledna 2022

Popis algoritmu

Budueme provádět známý postup zametání roviny. Vezmeme si přímku, která je rovnoběžná s vektorem $[s_x, s_y]$ a protíná osu y v bodě $[0, -\infty]$ a budeme ji pomalu posouvat do $[0, \infty]$, čímž vyzkoušíme všechny kombinace.

Nejdřív si rozmyslíme, že není zapotřebí zkoušet veškeré možné souřadnice, ale jenom ty, kde naše přímka protíná jeden z vrcholů našich zadaných mnohoúhelníků. Je tomu tak proto, že vždy můžeme naši přímku posunout do jednoho z vrcholů, aniž bychom něco změnili. Mezi těmito vrcholy se totiž nic nemění.

Pro vrcholy každého mnohoúhelníka si spočítám, kde přímka rovnoběžná s $[s_x, s_y]$ procházející příslušným vrcholem protíná osu x. Můžu si všimnout, že přímka bude současný mnohoúhelník protínat pouze když bude mezi přímkami, která protínají vrcholy mnohoúhelníka a jejich průsečík s osou y (jeho druhá souřadnice) je co nejmenší / největší:

Tím pádem jsou relevantní z každého mnohoúhelníka jen tyto 2 body. Krátká vsuvka: Jak počítat průsečík s osou y? Aby byla naše přímka rovnoběžná s $[s_x, s_y]$ musí mít $a = \frac{s_y}{s_x}$ (a jenom říká o kolik se změní y za $\Delta x = 1$). Pokud chceme, aby přímka procházela daným bodem, souřadnice již známe, takže jen vyjádříme b:

$$y = ax + b$$
$$y = \frac{s_y}{s_x}x + b$$

$$b = y - \frac{s_y}{s_x} x$$

Přičemž průsečík s osou y je f(0) = 0a + b = b, takže jsme ho spočítali. Ale abychom se nemuseli potýkat se zlomky:

$$s_x b = s_x y - s_y x$$

A můžeme porovnávat hondotu $s_x b$. Vzhledem k tomu, že hodnota s_x je kladná a stejná pro všechny vrcholy, tak platí:

$$b_1 < b_2 \Leftrightarrow s_x b_1 < s_x b_2$$

$$b_1 = b_2 \Leftrightarrow s_x b_1 = s_x b_2$$

$$b_1 > b_2 \Leftrightarrow s_x b_1 > s_x b_2$$

Čímž jsme se kompletně zbavili desetiných čísel.

Teď když víme, jak spočítat průsečíky s osou y, můžeme si z každého mnohoúhelníka vzít vrchol s nejmenším a největším průsečíkem. K těm s nejmenším průsečíkem si zapíšu, že jsou vstupní, těm největším výstupní.

Potom je všechny seřadím vzestupně. (Pokud mají dva body stejný průsečík s osou y, tak nejdřív budu dávat ty vstupní, protože když přímka protíná mnohoúhelník ve vrcholu, je to taky průsečík.) Potom je všechny projedu. Budu si udržovat nejvyšší počet protnutých mnohoúhelníků a aktuální počet protnutých mnohoúhelníků a pro každý vrchol v seřazeném pořadí:

- Pokud je to vstupní vrchol, od teď protínám o mnohoúhelník víc. Přičtu si aktuálnímu počtu 1.
- Pokud je to výstupní vrchol, protínám o mnohoúhelník míň. Odečtu si od aktuálního počtu 1.
- Pokud aktuální počet je vyšší jak maximum, uložím si ho jako maximum.

Na konci jen vypíšu maximum.

Celý tento postup funguje proto, že vyzkouším všechny možnosti, kam přímku můžu umístit.

Časová složitost

Děláme následující operace (N - #mnohúhelníku, B - #bodů):

- 1. Načtení vrcholů a mnohoúhelníků: O(B+N)
- 2. Spočtení $s_x b$ pro body a vybrání dvou pro každý mnohoúhelník: O(B)
- 3. Setřízení: $O(N \log N)$
- 4. Projití O(N)

Celkem $O(B + N \log N)$

Paměťová složitost

Pro každý bod si pamatujeme jeho hodnotu $s_x b.$ Potom si pamatujeme seřazený seznam. Celkem B+N.