

T9 Outliers – Final Project

#### **Telecom Churn Prediction**

- Pranav Chandaliya
- Pooja Chandrashekara
- Vaishnavi Nagarajaiah
- Sunisha Harish
- Kunal Inglunkar





### **Problem Statement**

A telecom company's postpaid business of voice-only plans is struggling to maintain its strong foothold in the local market due to:

- High churn rate amongst customers leading to a revenue decline of ~500k USD every month.
- The decline in overall customer base (high churn rate combined with low acquisition rate), leading to a decline in total market share.





### **About the Dataset**

Our data is majorly classified into the following categories:

| Data Types    | Examples                                    |
|---------------|---------------------------------------------|
| Demographics  | occupation, age                             |
| Service Usage | monthly call minutes, roaming calls         |
| Finance       | credit rating, monthly revenue              |
| Marketing     | retention calls, referrals made by customer |



Rows: 51,047 Columns: 58



## Key takeaways from EDA

- We observed null values in few columns but it was less than 2%.
- Few customers have incorrect age as 0 which could be interpreted as null values.
   Hence imputation is necessary.
- There are too many features (57), hence feature selection is required.
- Few customers had < = 0 monthly revenue. These can be considered as outliers and it also shows that few customers are inactive.
- Target class is imbalanced.



## **Data Preprocessing**



#### How to deal with incorrect data entries and handle outliers?

- Imputed median for age column as we observed data was skewed
- Removed inactive customers as well (Monthly revenue and minutes <= 0)</li>







# What are the important features that are impacting customer churn?

- Our dataset contains a lot of variables, hence it was necessary to select only the important features.
- For this purpose, we have done Chi Square tests on the categorical variables and ANOVA test on the numerical variables.
- We have selected the features based on the p value obtained.



## Feature selection for Categorical Features

| Variables     | P-value ( <0.05) | Chi-square (X-squared) |
|---------------|------------------|------------------------|
| IncomeGroup   | 0.00020          | 32                     |
| ChildrenInHH  | 0.03163          | 5                      |
| Homeownership | 0.00303          | 9                      |
| PrizmCode     | 0.00026          | 19                     |



### **Feature selection for Numerical Features**

| Variables             | P-value ( <0.05) |
|-----------------------|------------------|
| MonthlyMinutes        | 0                |
| MonthlyRevenue        | 0.0068           |
| TotalRecurringCharge  | 0                |
| DirectorAssistedCalls | 0                |
| OverageMinutes        | 2e-04            |
| RoamingCalls          | 0.0141           |
| DroppedCalls          | 5e-04            |
| UnansweredCalls       | 0                |
| CustomerCareCalls     | 0                |
| MonthsInService       | 0                |
| UniqueSubs            | 0                |
| ActiveSubs            | 5e-04            |
| CurrentEquipmentDays  | 0                |
| AgeHH1                | 0                |
| AgeHH2                | 0                |



#### How to handle an imbalanced dataset for customer churn?

We have tried the following sampling techniques to balance our data before modelling:

- Under sampling
- SMOTE (Over Sampling)

We have tested our models on both the sampling techniques.



Which model evaluation metrics should be considered to choose the best fit model?

#### **Actual**

|             | Churned          | Not Churned            |
|-------------|------------------|------------------------|
| Churned     | Well Done (TP)   | Not that critical (FP) |
| Not Churned | Danger Zone (FN) | Well Done (TN)         |

**Danger Zone** <- Customers who are going to churn but are not detected by the model (Recall)

Not that Critical <- Customers who aren't going to churn but model says churn



## Logistic Regression Model

- Logistic regression is one of the commonly used models for classification.
- For our model, we used all the features that we selected and we built a binomial logistic regression model.
- We built the model on pre-processed under sampled and over sampled data.



## **Logit Model Evaluation**

#### **Confusion Matrix for SMOTE**

|        | Prediction  |                |         |
|--------|-------------|----------------|---------|
|        |             | Not<br>Churned | Churned |
| Actual | Not Churned | 7,074(TN)      | 106(FP) |
|        | Churned     | 5,516(FN)      | 120(TP) |

Accuracy: 56.13% Recall: 53.09%

#### **Confusion Matrix for Under Sampling**

|        | Prediction  |                |           |
|--------|-------------|----------------|-----------|
|        |             | Not<br>Churned | Churned   |
| Actual | Not Churned | 1,895(TN)      | 1,047(FP) |
|        | Churned     | 1,441(FN)      | 1,377(TP) |

Accuracy: 56.8% Recall: 56.8%



### **Decision Tree Model**

- A decision tree is a decision support tool that uses a tree-like model to make decisions and their possible consequences.
- We have taken the pre-processed under sampled data to fit in to the decision tree model.
- In our model we are trying to find the variables that is affecting the churn.



### **Decision Tree Model Evaluation**

- Figure shows the final decision tree.
- If the customer has less than 10 months in service then the customer is unlikely to be churned.
- If primary holders have no children, then the customer is unlikely to be churned.
- Customers unknown of owning a home are likely to be not churned.





## Variable Importance in Decision Tree

- Figure shows the variable importance in the decision tree model.
- Customers unknown of owning a home is given high importance while plotting the decision tree followed by chances of children being primary holder, unique subscribers, months in service of the customers.





### **Confusion Matrix**

- Confusion matrix shows the performance of the classification algorithm.
- There are 7180 True negatives, 4557 false positives, 0 false positives and 1079 true positives.
- Model gave the accuracy of 64.4%.

| Prediction |             |             |           |
|------------|-------------|-------------|-----------|
|            |             | Not Churned | Churned   |
| Actual     | Not Churned | 7,180(TN)   | 4,557(FP) |
|            | Churned     | O(FN)       | 1,079(TP) |



## Naïve Bayes Model

- The Naive Bayesian classifier is based on Bayes' theorem with independent assumptions between predictors.
- Naive Bayes classifier assume that the effect of the value of a predictor (x) on a given class (c) is independent of the values of other predictors.
- Naïve Bayesian model is easy to build and fast to predict class of test data set, requires less training and performs well in case of categorical input variables.
- We have taken pre-processed under sampled and smote data for our model building.



## Naïve Bayes Model Evaluation

#### **Confusion Matrix for SMOTE**

| Prediction |             |             |          |
|------------|-------------|-------------|----------|
|            |             | Not Churned | Churned  |
| Actual     | Not Churned | 754(TN)     | 330(FP)  |
|            | Churned     | 6426(FN)    | 5306(TP) |

#### **Confusion Matrix for Under Sampling**

|        | Prediction  |             |          |  |
|--------|-------------|-------------|----------|--|
|        |             | Not Churned | Churned  |  |
| Actual | Not Churned | 1528(TN)    | 1089(FP) |  |
|        | Churned     | 6426(FN)    | 1729(TP) |  |

Accuracy: 47.3% Recall: 30.05% Accuracy: 56.5% Recall: 51.9%



### KNN Model

- Churn variable will be used as the dependent variable. All other selected features will be used as predictor variables.
- Categorical data fields have been converted from Yes or No to either 0 or 1.
- We found out optimal K value by finding accuracy for each K value and selected the best one.



## Accuracy vs k value plot



**For Under Sampling** 



**For SMOTE** 



### **KNN Model Evaluation**

#### **SMOTE**

| Prediction |             |             |           |
|------------|-------------|-------------|-----------|
|            |             | Not Churned | Churned   |
| Actual     | Not Churned | 4427(TN)    | 1,393(FP) |
|            | Churned     | 2,753(FN)   | 4,243(TN) |

#### **Under Sampling**

| Prediction |             |             |          |
|------------|-------------|-------------|----------|
|            |             | Not Churned | Churned  |
| Actual     | Not Churned | 4818(TN)    | 1653(FP) |
|            | Churned     | 2362(FN)    | 1165(TN) |

Accuracy: 67.6% Recall: 61.7% Accuracy: 56.1% Recall: 59.7%



### Random Forest Model



- Figure shows the Feature importance for the Random Forest model.
- Current Equipment, months in service, Monthly minutes and Unanswered calls are important features in predicting churn.



### Random Forest Model Evaluation

#### **SMOTE**

|        | Prediction  |             |           |  |
|--------|-------------|-------------|-----------|--|
|        |             | Not Churned | Churned   |  |
| Actual | Not Churned | 5,026(TN)   | 1,328(FP) |  |
|        | Churned     | 2,154(FN)   | 4,254(TP) |  |

#### **Under Sampling**

| Prediction |             |             |           |
|------------|-------------|-------------|-----------|
|            |             | Not Churned | Churned   |
| Actual     | Not Churned | 1,786(TN)   | 1,328(FP) |
|            | Churned     | 1,127(FN)   | 1,691(TP) |

Accuracy: 72.7% Recall: 66.3% Accuracy: 58.61% Recall: 60.00%



### **Model Evaluation**

|                            | SMOTE  |          | UNDER SAMPLING |          |
|----------------------------|--------|----------|----------------|----------|
| Model                      | Recall | Accuracy | Recall         | Accuracy |
| <b>Logistic Regression</b> | 0.53   | 0.56     | 0.56           | 0.56     |
| Decision Tree              | 0.61   | 0.64     | 0.54           | 0.56     |
| Naïve Bayes                | 0.10   | 0.47     | 0.51           | 0.56     |
| KNN                        | 0.61   | 0.67     | 0.59           | 0.56     |
| Random Forest              | 0.66   | 0.72     | 0.60           | 0.58     |



## Improving Random Forest for better Recall

Trying out different threshold cut-off values for better recall and accuracy Threshold values: 0.30,0.35,0.40,0.45



| Prediction |             |             |           |  |
|------------|-------------|-------------|-----------|--|
|            |             | Not Churned | Churned   |  |
| Actual     | Not Churned | 5,026(TN)   | 1,328(FP) |  |
|            | Churned     | 2,154(FN)   | 4,254(TP) |  |

#### **Best Fit Model**

| Accuracy | Recall |
|----------|--------|
| 0.72     | 0.75   |



## **Model Interpretation**

| Customer types                                    | Counts | %   |
|---------------------------------------------------|--------|-----|
| High risky customers Churn Probability > 0.80     | 2379   | 73% |
| Moderate risky customers Churn Probability > 0.60 | 864    | 23% |



### Conclusion

- Logistic regression and Naïve Bayes didn't perform well due to the complexity of the relation between the target and features.
- Reduced 57 features to around 20 by using Chi square and ANOVA test
- Data Imbalance technique SMOTE worked well.
- All the models had a low recall, it's difficult to detect customer which are going to churn.
- Random forest performed well hence the model was tuned for better Recall.
- We further divided the outcome of the model into high-risky customers and moderately risky customers for a better interpretation of the model.



## Thank you

