МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Звіт

Про виконання лабораторної роботи №43 на тему:

«Вивчення спектральних характеристик фотоелементів» з дисципліни «Фізика»

Виконав:

ст. гр. ПЗ-11 Ясногородський Н.В.

Прийняв:

Кашуба А. І

Тема: вивчення спектральних характеристик фотоелементів **Мета роботи:** ознайомитись із законами внутрішнього і зовнішнього фотоефектів, вивчити спектральні характеристики селенового та вакуумного фотоелементів, визначити роботу виходу електрона з катоду вакуумного фотоелемента, визначити ширину забороненої зони напівпровідникового матеріалу — селену, який складає фоточутливий шар фотоелемента.

Прилади та обладнання: монохроматор типу УМ–2, напівпровідниковий (селеновий) та вакуумний фотоелементи, гальванометр, джерело світла

Хід роботи

Таблиця 1

Trial	Metal	Voltage (V)	Current (pA)	Frequency (Hz)	Wavelength (nm)
	1 Sodium	0.381	14.77	1.50E+15	200.00
	2 Sodium	0.382	14.67	1.43E+15	210.00
	3 Sodium	0.379	14.56	1.36E+15	220.00
	4 Sodium	0.380	14.42	1.30E+15	230.00
	5 Sodium	0.380	14.3	1.25E+15	240.00
	6 Sodium	0.382	14.2	1.20E+15	250.00
	7 Sodium	0.382	14.04	1.15E+15	260.00
	8 Sodium	0.381	13.86	1.11E+15	270.0
	9 Sodium	0.378	13.73	1.07E+15	280.0
1	0 Sodium	0.379	13.51	1.03E+15	290.0
1	1 Sodium	0.379	13.34	1.00E+15	300.0
1	2 Sodium	0.380	13.1	9.68E+14	310.0
1	3 Sodium	0.380	12.86	9.38E+14	320.0
1.	4 Sodium	0.381	12.6	9.09E+14	330.0
1	5 Sodium	0.381	12.33	8.82E+14	340.0
1	6 Sodium	0.382	11.98	8.57E+14	350.0
1	7 Sodium	0.378	11.62	8.33E+14	360.0
1	8 Sodium	0.378	11.19	8.11E+14	370.0
1	9 Sodium	0.378	10.74	7.89E+14	380.0
2	0 Sodium	0.379	10.22	7.69E+14	390.0
2	1 Sodium	0.381	9.58	7.50E+14	400.0
2	2 Sodium	0.382	8.87	7.32E+14	410.0
2	3 Sodium	0.380	8.02	7.14E+14	420.0
2	4 Sodium	0.380	6.99	6.98E+14	430.0
2	5 Sodium	0.380	5.7	6.82E+14	440.0
2	6 Sodium	0.380	4.1	6.67E+14	450.0
2	7 Sodium	0.381	1.99	6.52E+14	460.0
2	8 Sodium	0.382	0.02	6.38E+14	470.0
2	9 Sodium	0.382	0	6.25E+14	480.0
3	0 Sodium	0.382	-0.01	6.12E+14	490.0
3	1 Sodium	0.382	-0.02	6.00E+14	500.0
3	2 Sodium	0.378	-0.01	5.88E+14	510.0
3	3 Sodium	0.378	0.01	5.77E+14	520.0
3	4 Sodium	0.379	0	5.66E+14	530.0
3	5 Sodium	0.382	-0.02	5.56E+14	540.0
3	6 Sodium	0.380	-0.01	5.45E+14	550.0
3	7 Sodium	0.380	-0.02	5.36E+14	560.0
3	8 Sodium	0.380	-0.02	5.26E+14	570.0
3	9 Sodium	0.382	0.02	5.17E+14	580.0
	0 Sodium	0.381	-0.01	5.08E+14	590.0
4	1 Sodium	0.381	-0.02	5.00E+14	600.0
4	2 Sodium	0.381	0.01	4.92E+14	610.0
	3 Sodium	0.380	0.01	4.84E+14	620.0
	4 Sodium	0.380	0.01	4.76E+14	630.0
	5 Sodium	0.379	-0.01	4.69E+14	640.0
	6 Sodium	0.378	0	4.62E+14	650.0

Рис 1 Графік залежності струму від довжини хвилі

Рис 2 Графік спектральної залежності фотоструму для хвиль довжиною 250 нм, 300 нм, 310 нм

Таблиця 2 Селеновий фотоелемент

	•				
№ 3/п	n	λ , 10^{-7} M	$I_{\phi},_{MKA}$	E_0 , eB	ΔE_0 , eB
1	1100	4,1	0,5	2,375	15,5
2	1200	4,2	0,5		
3	1300	4,3	1,0		
4	1400	4,4	1,0		
5	1500	4,5	1,5		
6	1600	4,6	2,6		
7	1700	4,7	5,0		
8	1800	4,8	9,8		
9	1900	4,88	17,0		
10	2000	4,98	26,0		
11	2100	5,1	35,0		
12	2200	5,22	42,0		
13	2300	5,4	41,0		
14	2400	5,58	30,5		
15	2500	5,78	14,3		
16	2600	6,0	4,0		
17	2700	6,3	1,0		
18	2800	6,48	1,0		
19	2900	7,0	1,0		

Рис 3 Графік до таблиці 2

Таблиця 3 Вакуумний фотоелемент

№ 3/п	n	λ, 10 ⁻⁷ м	$I_{\phi},_{MKA}$	E_0 , eB	ΔE_0 , eB
1	1100	4,1	7,0	2,160	8,85
2	1200	4,2	7,0		
3	1300	4,3	7,0		
4	1400	4,4	7,5		
5	1500	4,5	8,0		
6	1600	4,6	9,0		
7	1700	4,7	11,0		
8	1800	4,8	13,0		
9	1900	4,88	15,0		
10	2000	4,98	19,0		
11	2100	5,1	22,0		
12	2200	5,22	26,0		

13	2300	5,4	29,0
14	2400	5,58	31,0
15	2500	5,78	31,5
16	2600	6,0	25,0
17	2700	6,3	19,0
18	2800	6,48	7,0
19	2900	7,0	6,0
20	3000	7,4	5,0
21	3100	7,8	5,0
22	3200	8,4	5,0

Висновок: виконуючи лабораторну роботу №43 я ознайомився із законами внутрішнього і зовнішнього фотоефекті та вивчив спектральні характеристики селенового та вакуумного фотоелементів