

Interface maître et esclave d'un robot

CCP PSI 2015

Savoirs et compétences :

- Mod2.C34 : chaînes de solides ;
- Mod2.C34 : degré de mobilité du modèle;
- Mod2.C34 : degré d'hyperstatisme du modèle;

Mise en situation

La téléopération consiste à mettre en relation deux manipulateurs appelés communément maître et esclave. Le manipulateur maître permet au chirurgien de donner sa consigne de déplacement à l'aide d'un levier de commande tandis que l'esclave l'exécute au contact de l'environnement (l'organe à opérer). Les deux sous-systèmes échangent des informations de déplacement et d'effort au travers d'un ou plusieurs canaux de communication. Un retour visuel est également mis en place en parallèle à ce dispositif.

Modélisation de l'interface maître

Ce mécanisme est constitué de 4 barres reliées par des liaisons pivots.

Objectif Vérifier que les exigences « Amplitude déplacement » (id 1.2.1.1), « Mouvement rectiligne » (id 1.2.1.2), « Linéarité déplacement » (id 1.2.1.3) peuvent être satisfaites par le mécanisme de HOEKEN.

- Solide S_0 , repère $\mathcal{R}_0(A; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}), \overrightarrow{AB} = L_0 \overrightarrow{x_0}$ avec $L_0 = 50 \, \text{mm}.$
- Solide S_1 , repère $\mathcal{R}_1(B; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0})$, $\overrightarrow{BC} = L_1 \overrightarrow{x_1}$ avec $L_1 = 25 \,\mathrm{mm}, \; \theta_1 = (\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1}).$
- Solide S_2 , repère $\mathcal{R}_2(A; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_0}), \overrightarrow{AD} = L_2 \overrightarrow{x_2}$ avec $L_2 = 62.5 \,\mathrm{mm}, \; \theta_2 = (\overrightarrow{x_0}, \overrightarrow{x_2}) = (\overrightarrow{y_0}, \overrightarrow{y_2}).$
- Solide S_3 , repère $\mathcal{R}_3(C; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_0})$, $\overrightarrow{ED} = \overrightarrow{DC} =$ $L_2\overrightarrow{x_3}$ avec $\theta_3 = (\overrightarrow{x_0}, \overrightarrow{x_3}) = (\overrightarrow{y_0}, \overrightarrow{y_3}).$

Question 1 Donner une relation algébrique reliant les paramètres L_0 , L_1 , L_2 , θ_1 et θ_3 .

Question 2 De même, exprimer le vecteur position du point $E(\overrightarrow{AE})$ dans la base du repère \mathcal{R}_0 en fonction de L_0 , L_1 , L_2 , θ_1 et θ_3 .

La résolution analytique du système d'équations permettant d'obtenir le déplacement du point E en fonction de l'angle de rotation θ_1 du moteur et des différentes longueurs du mécanisme n'étant pas triviale, seuls les résultats d'une simulation numérique seront analysés.

1

Question 3 Vérifier, à l'aide des figures précédentes, que le déplacement du point E est compatible avec les exigences « Amplitude déplacement » (id 1.2.1.1) et « Mouvement rectiligne » (id 1.2.1.2) sur l'intervalle $X_E \in [-60\,\mathrm{mm};40\,\mathrm{mm}]$.

Question 4 Proposer, à partir de la dernière figure, une démarche permettant de vérifier l'exigence « Linéarité déplacement » (id 1.2.1.3) sur l'intervalle $X_E \in [-60\,\mathrm{mm};40\,\mathrm{mm}]$.

Modélisation de l'interface esclave

Solide	Repère associé	Paramètres géométriques	Paramètres dynamiques
S_0 (bâti)	$R_0(A, \vec{x}_0, \vec{y}_0, \vec{z}_0)$		
S_1 (barre AB + rotor moteur)	$\mathcal{R}_1(A, \vec{x}_1, \vec{y}_1, \vec{z}_0)$	$ \overrightarrow{AB} = L_1 \overrightarrow{x}_1 $ avec $L_1 = 35 \text{mm}$ $\theta_1 = (\overrightarrow{x}_0, \overrightarrow{x}_1) = (\overrightarrow{y}_0, \overrightarrow{y}_1) $	$\label{eq:local_local_local} \begin{array}{ll} \text{Inertic} & \text{\'equivalente} & \text{ramen\'ee} & \tilde{\epsilon} \\ \text{l'ars} \left(A, \tilde{z_0}\right) : \\ I_1 = 5, 7 \times 10^{-5} \text{kg} \cdot \text{m}^2 \\ \text{Frottement} & \text{fluide} & \text{entre rotor} & \text{et stator} : \\ f_v = 1, 6 \times 10^{-3} \text{N} \cdot \text{m} \cdot \text{s} \\ \text{Masse} & \text{n\'eglig\'ee} \\ \end{array}$
S_2 (barre BC)	$\mathcal{R}_2(B, \vec{x}_2, \vec{y}_2, \vec{z}_0)$	$\overrightarrow{BC} = L_2 \vec{x}_2$ avec $L_2 = 80 \text{ mm}$ $\theta_2 = (\vec{x}_0, \vec{x}_2) = (\vec{y}_0, \vec{y}_2)$	Masse et inertie négligées
S_3 (organe terminal)	$\mathcal{R}_3(C, \vec{x}_0, \vec{y}_0, \vec{z}_0)$	$\overrightarrow{AC} = L_3 \cdot \vec{y}_0 + x_s(t) \cdot \vec{x}_0$ avec $L_3 = 25 \text{ mm}$	Masse : $M_3 = 0.1 \mathrm{kg}$
S_4 (barre DE)			Masse et inertie négligées
S_5 (barre EF)			Masse et inertie négligées

Objectif Modéliser le comportement dynamique de l'interface esclave de façon à évaluer son comportement au sein d'une boucle d'asservissement.

On note $\{\mathcal{T}(\text{mot} \to S_1)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_m \overrightarrow{z} \end{array}\right\}_{\forall P}$ l'expression, dans la base \mathcal{B}_0 du torseur de l'action mécanique exercée par le moteur sur le solide S_1 et l'accélération de la

pesanteur sera représentée par le vecteur $\overrightarrow{g} = -g \overrightarrow{y_0}$. **Question** 5 Tracer le graphe des liaisons du dispositif esclave. Précisier les actions mécaniques extéreiures Donner le degré d'hyperstatisme de la modélisation de ce mé-

Question 6 Proposer une modification simple pour le rendre isostatique.

Question 7 Montrer que le mouvement de S_3/S_0 ne peut être qu'une translation de direction $\overrightarrow{x_0}$.

Question 8 En utilisant le théorème de l'énergie cinétique, déterminer l'équation de mouvement liant les paramètres C_m , $\dot{\theta}_1$, $\ddot{\theta}_1$, \dot{x}_s , \ddot{x}_s , f_v , M_3 et I_1 .

Question 9 La relation géométrique liant les paramètres x_s et θ_1 n'étant pas triviale, on propose de la linéariser autour du point de fonctionnement par l'expression $\theta_1(t) \simeq \alpha x_s(t)$ avec $\alpha = -30 \, \mathrm{m}^{-1}$. En déduire l'équation différentielle liant les paramètres C_m , \dot{x}_s , \ddot{x}_s , f_v , M_3 , I_1 et α .

Question 10 Donner, dans les conditions d'Heaviside et sous forme canonique, la fonction de transfert modélisant le comportement dynamique du manipulateur esclave : $H(p) = \frac{X_s(p)}{C_m(p)}$ sachant que $X_s(p) = \mathcal{L}[x_s(t)]$ et $C_m(p) = \mathcal{L}[c_m(t)]$. Faire l'application numérique.

canisme.

TD 1 - Corrigé

Interface maître et esclave d'un robot

CCP PSI 2015

Savoirs et compétences :

- Mod2.C34 : chaînes de solides ;
- Mod2.C34 : degré de mobilité du modèle ;
- Mod2.C34 : degré d'hyperstatisme du modèle;

Mise en situation

Modélisation de l'interface maître

Question 1 Donner une relation algébrique reliant les paramètres L_0 , L_1 , L_2 , θ_1 et θ_3 .

En réalisant une fermeture géométrique on a \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = $\overrightarrow{0}$.

On a alors,
$$L_0 \overrightarrow{x_0} + L_1 \overrightarrow{x_1} - L_2 \overrightarrow{x_3} - L_2 \overrightarrow{x_2} = \overrightarrow{0}$$
.
 $\Leftrightarrow L_0 \overrightarrow{x_0} + L_1 (\cos \theta_1 \overrightarrow{x_0} + \sin \theta_1 \overrightarrow{y_0}) - L_2 (\cos \theta_3 \overrightarrow{x_0} + \sin \theta_2 \overrightarrow{y_0}) - L_2 (\cos \theta_2 \overrightarrow{x_0} + \sin \theta_2 \overrightarrow{y_0}) = \overrightarrow{0}$.

En projetant dans la base \mathcal{B}_0 , on a :

$$\begin{cases} L_0 + L_1 \cos \theta_1 - L_2 \cos \theta_3 - L_2 \cos \theta_2 = 0 \\ L_1 \sin \theta_1 - L_2 \sin \theta_3 - L_2 \sin \theta_2 = 0 \end{cases}$$

Il faut supprimer θ_2 :

$$\int_{0}^{\infty} L_0 + L_1 \cos \theta_1 - L_2 \cos \theta_3 = L_2 \cos \theta_2$$

mant, on a : $(L_0 + L_1 \cos \theta_1 - L_2 \cos \theta_3)^2 + (L_1 \sin \theta_1 - L_2 \sin \theta_3)^2 = L_2^2$

Question 2 De même, exprimer le vecteur position du point $E(\overrightarrow{AE})$ dans la base du repère \mathcal{R}_0 en fonction de L_0 , L_1 , L_2 , θ_1 et θ_3 .

$$\begin{aligned} & \text{Correction} \\ & \text{On a } \overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CE} \text{ et donc } \overrightarrow{AE} = L_0 \overrightarrow{x_0} + L_1 \overrightarrow{x_1} - 2L_2 \overrightarrow{x_3}, \\ & \overrightarrow{AE} = L_0 \overrightarrow{x_0} + L_1 \left(\cos \theta_1 \overrightarrow{x_0} + \sin \theta_1 \overrightarrow{y_0} \right) - 2L_2 \left(\cos \theta_3 \overrightarrow{x_0} + \sin \theta_3 \overrightarrow{y_0} \right). \\ & \text{Et } \overrightarrow{AE} = \begin{pmatrix} L_0 + L_1 \cos \theta_1 - 2L_2 \cos \theta_3 \\ L_1 \sin \theta_1 - 2L_2 \sin \theta_3 \end{pmatrix}_{\mathscr{R}_0} \end{aligned}$$

Question 3 Vérifier, à l'aide des figures précédentes, que le déplacement du point E est compatible avec les exigences « Amplitude déplacement » (id 1.2.1.1) et « Mouvement rectiligne » (id 1.2.1.2) sur l'intervalle $X_E \in [-60 \,\mathrm{mm}; 40 \,\mathrm{mm}]$.

Correction

- Amplitude déplacement de 50 mm minimum : OK (amplitude de 100 mm).
- Mouvement rectiligne d'une amplitude $\Delta Y = 0.5 \, \text{mm}$ maximum : OK (amplitude de $0.25 \, \text{mm}$).
- Mouvement rectiligne d'une amplitude taux de variation $\frac{dY_E}{dX_E}$ < 2 % : OK (amplitude de ±2%).

Question 4 Proposer, à partir de la dernière figure, une démarche permettant de vérifier l'exigence « Linéarité déplacement » (id 1.2.1.3) sur l'intervalle $X_E \in [-60\,\mathrm{mm};40\,\mathrm{mm}]$.

Correction

Il serait possible de faire une régression linéaire sur l'intervalle [-60 mm; 40 mm] et de vérifier que le coefficient de corrélation est supérieur à 0,99.

Modélisation de l'interface esclave

Objectif Modéliser le comportement dynamique de l'interface esclave de façon à évaluer son comportement au sein d'une boucle d'asservissement.

Question 5 Tracer le graphe des liaisons du dispositif esclave. Précisier les actions mécaniques extéreiures Donner le degré d'hyperstatisme de la modélisation de ce mécanisme.

Correction

Méthode statique

- Nombre de mobilité : m = 1.
- Nombre d'inconnues : 6 liaisons pivot. $I_S = 30$.
- Nombre d'équations : 5 solides. $E_S = 30$.
- $h = m E_S + I_S = 1 30 + 30 = 1$.

Méthode cinématique

- Nombre de mobilité : m = 1.
- Nombre d'inconnues : 6 liaisons pivot. $I_c = 6$.
- Nombre d'équations : 1 cycle. $E_c = 6$.
- $h = m I_c + E_c = 1 6 + 6 = 1$.

Question 6 Proposer une modification simple pour le rendre isostatique.

Correction

Pour rendre le système isostatique il faudrait ajouter une inconnue cinématique sans ajouter de mobilité. On peut par exemple remplacer une des liaison pivot par une liaison sphérique à doigt.

Question 7 Montrer que le mouvement de S_3/S_0 ne peut être qu'une translation de direction $\overrightarrow{x_0}$.

Correction

D'une part, $\overrightarrow{\Omega(3/0)} = \overrightarrow{\Omega(3/2)} + \overrightarrow{\Omega(2/1)} + \overrightarrow{\Omega(1/0)} = \dot{\theta}_{30} \overrightarrow{z_0}$ (pivots parallèles d'axe $\overrightarrow{z_0}$).

D'autre part, $\overline{\Omega(3/0)} = \overline{\Omega(3/5)} + \overline{\Omega(5/4)} + \overline{\Omega(4/0)} = \dot{\theta}'_{30} \overrightarrow{y_0}$ (pivots parallèles d'axe $\overrightarrow{y_0}$).

On a donc $\dot{\theta}_{30} \overrightarrow{z_0} = \dot{\theta}'_{30} \overrightarrow{y_0}$ et donc nécessairement $\dot{\theta}_{30} = \dot{\theta}'_{30} = 0$.

Le mouvement de 3/0 est donc une translation.

Question 8 En utilisant le théorème de l'énergie cinétique, déterminer l'équation de mouvement liant les paramètres C_m , $\dot{\theta}_1$, $\ddot{\theta}_1$, \dot{x}_s , \ddot{x}_s , f_v , M_3 et I_1 .

Correction

On isole $\Sigma = S_1 + S_2 + S_3 + S_4 + S_5$.

Calcul de l'énergie cinétique : $\mathcal{E}_c(\Sigma/0) = \mathcal{E}_c(S_1/0) + \mathcal{E}_c(S_3/0)$ car les masses et les inerties des autres solides sont négligés. On a donc $\mathcal{E}_c(\Sigma/0) = \frac{1}{2}I_1\dot{\theta}_1^2 + \frac{1}{2}M_3\overrightarrow{V(C \in 3/0)}^2$ (car le mouvement de 3/0 est une

translation.
$$\overrightarrow{V(C \in 3/0)} = \frac{\overrightarrow{dAC}}{\overrightarrow{dt}} = \dot{x}_s \overrightarrow{x_0}$$
.

Au final $\mathscr{E}_s(\Sigma/0) = \frac{1}{2} J_s \dot{\theta}_s^2 + \frac{1}{2} M_2 \dot{x}^2$

Au final, $\mathcal{E}_c(\Sigma/0) = \frac{1}{2}I_1\dot{\theta_1}^2 + \frac{1}{2}M_3\dot{x}_s^2$. **Bilan des puissances intérieures :** il n'y a pas de frottements; donc $\mathcal{P}_{\text{int}} = 0$.

Bilan des puissances extérieures :

- $\mathscr{P}(\text{pes} \to 3/=) M g \overrightarrow{y_0} \cdot \dot{x}_s \overrightarrow{x_0} = 0;$
- $\mathscr{P}(0 \to 1/0)_{\text{mot}} = C_m \dot{\theta}_1$;
- $\mathscr{P}(0 \to 1/0)_{\text{frot}} = -f_{\nu} \dot{\theta}_{1}^{2}$.

Application du théorème de l'énergie cinétique :

on a
$$\frac{\mathrm{d}\mathscr{E}_{c}\left(\Sigma/0\right)}{\mathrm{d}t} = \mathscr{P}_{\mathrm{int}} + \mathscr{P}\left(\overline{\Sigma} \to \Sigma/0\right)$$
, et donc $I_{1}\dot{\theta}_{1}\ddot{\theta}_{1} + M_{3}\dot{x}_{s}\ddot{x}_{s} = C_{m}\dot{\theta}_{1} - f_{v}\dot{\theta}_{1}^{2}$.

Question 9 La relation géométrique liant les paramètres x_s et θ_1 n'étant pas triviale, on propose de la linéariser autour du point de fonctionnement par l'expression $\theta_1(t) \simeq \alpha x_s(t)$ avec $\alpha = -30 \, \mathrm{m}^{-1}$. En déduire l'équation différentielle liant les paramètres C_m , \dot{x}_s , \ddot{x}_s , f_v , M_3 , I_1 et α .

Correction

On a directement
$$I_1 \alpha \dot{x}_s(t) \alpha \ddot{x}_s(t) + M_3 \dot{x}_s \ddot{x}_s(t) = C_m \alpha \dot{x}_s(t) - f_v \alpha^2 x_s(t)^2 \Leftrightarrow I_1 \alpha^2 \ddot{x}_s(t) + M_3 \ddot{x}_s = C_m \alpha - f_v \alpha^2 \dot{x}_s(t)$$

Question 10 Donner, dans les conditions d'Heaviside et sous forme canonique, la fonction de transfert modélisant le comportement dynamique du manipulateur esclave : $H(p) = \frac{X_s(p)}{C_m(p)}$ sachant que $X_s(p) = \mathcal{L}\left[x_s(t)\right]$ et $C_m(p) = \mathcal{L}\left[c_m(t)\right]$. Faire l'application numérique.

Correction

En transformanr l'équation dans le domaine de Laplace, on a : $I_1\alpha^2 p^2 X_s(p) + M_3 p^2 X_s(p) = C_m(p)\alpha - f_v\alpha^2 p X_s(p) \Leftrightarrow X_s(p) \left(I_1\alpha^2 p^2 + M_3 p^2 + f_v\alpha^2 p\right) = C_m(p)\alpha \Leftrightarrow H(p) = \frac{\alpha}{p\left((I_1\alpha^2 + M_3)p + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1/(f_1\alpha)}{p\left((I_1\alpha^2 + M_3)p + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H(p) = \frac{1}{p\left((I_1\alpha) p^2 + M_3(p) + f_v\alpha^2\right)} \Leftrightarrow H$

$$\frac{1/\left(f_{v}\alpha\right)}{p\left(\frac{I_{1}\alpha^{2}+M_{3}}{f_{v}\alpha^{2}}p+1\right)}.$$

On a alors K = -20,83, $\tau = \frac{0,0513 + 0,1}{1,44} = 0,105 \text{ s.}$