Motion planning FIELD AND SERVICE ROBOTICS

www.prisma.unina.it

- In presence of obstacles, it is necessary to plan motions that enable the robot to execute the assigned task without colliding with them
- One would like that the robot can move from an initial to the desired pose without colliding with obstacles, starting from a high-level description of the task and a geometric characterization of the workspace
 - Offline planning: made in advance, the environment is known
 - Online planning: made at runtime, the environment is discovered through sensors
- Static obstacles
 - Fixed with respect to the environment
 - Walls
 - Desks
 - Doors
- Dynamic obstacles
 - Objects that can appear at any time in the environment
 - Persons
 - Other robots
 - Sliding doors

- A fundamental need in robotics is to have algorithms that convert high-level specifications of tasks from humans into low-level descriptions of how to move
 - Motion planning
- A classical version of motion planning is sometimes referred to as the Piano Mover's Problem (2-D version)
 - Generalized Mover's Problem (3-D version)

- A fundamental need in robotics is to have algorithms that convert high-level specifications of tasks from humans into low-level descriptions of how to move
 - Motion planning
- A classical version of motion planning is sometimes referred to as the Piano Mover's Problem (2-D version)
 - Generalized Mover's Problem (3-D version)

- - The robot moves in its workspace $W \equiv \mathbb{R}^n$, with $n = \{2,3\}$
- Denote with \mathcal{O}_1 , \mathcal{O}_2 , ..., \mathcal{O}_p the obstacles
 - We will suppose that, at least for the offline planning, they are fixed in W
- Suppose that, at least for the offline planning, the geometry of \mathfrak{B} , \mathcal{O}_1 , \mathcal{O}_2 , ..., \mathcal{O}_p are known
- Suppose also that B can instantaneously move everywhere
 - We will relax this assumption

Motion planning problem definition

Motion planning problem

- Given the initial and the desired poses of $\mathfrak B$ in W, we want find, if it exists, a path (i.e., a continuous sequence of poses) that drives the robot between the two poses while avoiding any contact and collision with $\mathcal O_1$, $\mathcal O_2$, ..., $\mathcal O_p$. A failure is reported if such path does not exist
- Hypotheses not present in the practice
 - There are moving robots in W
 - The obstacles are moving in W
 - The environment is unstructured/unknown.
 - The robot has nonholonomic constraints
 - The manipulation problem is excluded from the above definition since it intrinsically requires contacts with objects

Distance definition in the configuration space

Distance

Given two points in the configuration space, $q_1 \in C$ and $q_2 \in C$, the following Euclidian metrics can be inaccurate as in the example above for the 2-DoF Cartesian manipulator

$$d(q_1, q_2) = \|q_1 - q_2\|$$

- This is appropriate when C is the Euclidian space only
- When C is not an Euclidian space, intuition suggests that the distance between q_1 and q_2 should go to zero when the portion of the space occupied by the robot in q_1 is coincident with the portion of the space occupied by the robot in q_2
- Let $\mathcal{B}(q)$ the subset of W occupied by the robot \mathcal{B} when it is in $q \in C$
- Let p(q) the position in W of a robot's point, $p \in \mathcal{B}$
- The distance in C can be defined as

$$d_1(q_1, q_2) = \max_{p \in \mathcal{B}} ||p(q_1) - p(q_2)||$$

■ In rough words, $d_1(q_1, q_2)$ is the maximum displacement in W that two model-configurations, q_1 and q_2 , induce on a point $p \in \mathcal{B}$, as the point moves all around the robot

Obstacles definition in the configuration space

Obstacles

- We have to represent \mathcal{O}_1 , \mathcal{O}_2 , ..., \mathcal{O}_p in C
 - It is assumed that the obstacles are closed (they contain their boundaries)
 - In general they are not necessarily limited subsets of W
- Given an obstacle $O_i \in W$, (i = 1, ..., p), the image in the configuration space C is called C-obstacle and it is defined as

$$CO_i = \{q \in C: \mathcal{B}(q) \cap \mathcal{O}_i \neq \emptyset\}$$

- That is, the space occupied by the robot in the workspace has some points in common with the space occupied by the i-th obstacle in the workspace
- In rough words, the C-obstacle, CO_i , is the subset of the model-configurations that cause a collision, or a contact, between the robot \mathcal{B} and the obstacle \mathcal{O}_i
- The union of all the C-obstacle spaces defines the C-obstacle region

$$CO = \bigcup_{i=1}^{p} CO_i$$

The free configuration space

The free configuration space is

$$C_{free} = \mathsf{C} - CO = \{ q \in \mathsf{C} : \mathcal{B}(q) \cap (\bigcup_{i=1}^{p} CO_i) = \emptyset \}$$

- A free path for the robot is a sequence of model-configurations all beloning to C_{free}
- Notice that, even if C is a connected space (given two arbitrary model-configurations there exists a path joining them), the subset C_{free} may not be connected due to the presence of the C-obstacle region

Obstacles

- We can now state a more formal definition for the motion planning problem
 - Let $q_s \in C_{free}$ be the starting model-configuration of the robot \mathcal{B} in its workspace W. Let $q_g \in C_{free}$ be the goal model-configuration. Planning a collision-free motion for \mathcal{B} means generating a path between q_s and q_g as connected components of C_{free} . A failure is reported otherwise.

C-obstacle region of a disk-shaped robot

Obstacles examples

- Consider a disk-shaped robot
 - $W \equiv \mathbb{R}^2$

$$q = \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

- $C \equiv \mathbb{R}^2$
- The boundaries of CO₁ are the locus of the model-configurations in which the robot touches the obstacle in W
- CO₁ can be built through a growing procedure
 - In this case, since the robot is diskshaped, the procedure is isotropic

C-obstacle region of a robot manipulator

Obstacles examples

- Consider a robot manipulator \mathcal{B} made by n rigid links $\mathcal{B}_1, ..., \mathcal{B}_n$ connected by joints
- Two kinds of C-obstacle regions exist
 - Collision between a link B_i and an obstacle O_i
 - Collision between a link \mathcal{B}_i and another link \mathcal{B}_j , $i \neq j$ (self-collision)
- To obtain the boundaries of CO_i it is necessary to identify,, through appropriate inverse kinematic computations, all the model-configurations that bring one or more links of B in contact with O_i
- Notice that, in the second part of this example, there exist three distinct connected regions

- Therefore, first, we need an algebraic or CAD model of the obstacle \mathcal{O}_i in W
- Then, we need to compute the CO_i image exactly
 - The procedure may be complex
- A simple, but computationally intensive, way to build the CO_i image is to sample C by a regular grid
 - We then compute the volume occupied by $\mathcal B$ via direct kinematics and identify those samples bringing the robot in contact with O_i through a collision checking algorithm
 - The accuracy improves by increasing the grid resolution

- The idea is to build an approximation of C_{free}
 - Then, we seek the path connecting q_s from q_g , if it exists
- At each iteration of the planner, a sample model-configuration is chosen and it is checked whether there is a collision/contact or not with some obstacles
 - If there is a collision/contact, the sample is discarded from C_{free}
 - If there is not a collision/contact, the sample is saved in the current roadmap
 - The roadmap is a structure representing the approximation of C_{free}

- Discretize the configuration space as a set of occupied/free cells of a matrix
- A common approach:
 - 1 Free cells
 - -1 Unknown cells
 - 0 Occupied cells
- Increasing the resolution of the cells help to speed up the planning process
- Increasing the resolution of the cells generate worst paths

- Map representation is still a problem
 - Which kind of data structure must be used?
 - The data structure must be
 - Easy to read (time complexity)
 - Easy to visualize
 - Easy to maintain (space complexity)

- Wheeled ground-based robots
 - Occupancy grid map
- Aerial robots, legged robots, etc.
 - Discretize the configuration space as a set of occupied/free cells of a matrix

- The basic idea is to generate randomly a sample $q_{rand} \in C$, with uniform probability distribution
 - This sample q_{rand} is tested for collisions
 - If the description of CO is available, it is easy since one must check if q_{rand} belongs to CO or not
 - If the description of CO is not available, kinematics and geometric relationships must be used to check if the robot is in contact or collides in W
 - If q_{rand} des not cause collisions, it is added to the roadmap, otherwise it is discarded
- At the end, many points will belong to C_{free}
- It is now important to create connections between these points approximating C_{free}
 - These connections should be collision-free as well
- The procedure to generate a free local path between q_{rand} and its closest model-configuration q_{near} is a job of the local planner
 - A common choice is a rectilinear path between q_{rand} and q_{near} in C
 - This rectilinear path is sampled, and each sample is checked for collisions
 - A "near" model-configuration, q_{near} , must be determined on the chosen metrics on C

- The PRM incremental generation procedure stops when either a maximum pre-determined number of iterations is reached, or the number of connected components (connected regions of C_{free}) are small than a given threshold (the roadmap well describes C_{free})
- At this point, it is necessary to solve the motion planning problem by connecting $q_{\scriptscriptstyle S}$ to $q_{\scriptscriptstyle G}$
 - First, q_s and q_g are connected to the roadmap through the local planner, if they do not belong yet to it
 - It means that we find a rectilinear path, that is collision-free, connecting q_s and q_g to the respective closest model-configurations of the roadmap
 - Then, the path connecting q_s and q_g is found on the roadmap (graph search algorithms)

- If a solution cannot be found, the PRM can be improved by performing more iterations so that the roadmap is more dense
 - Being the PRM a probabilistic methodology, the probability to find a suitable path connecting q_s and q_g tends to 1 as the execution time increases
 - This means that, if a solution does not exist, the algorithm continues indefinitely
- The PRM is critical for the narrow passages in C_{free}
 - This can be avoided by avoiding a uniform probability distribution
- The PRM describes the whole C_{free} , maybe including portions not of interest for the connection between q_s and q_g
- The PRM does not require the explicit computation of CO since we check only for collisions given a random sample or a local path

- The graph search algorithms are needed to find the best path connecting two points on the roadmap
- Let G = (N, A) be a graph consisting of N nodes and A arcs
 - n = card(N)
 - a = card(A)
- G is usually represented by an adjacent list
 - To each node, N_i , is associated a list of nodes connected to N_i itself by arcs
- Consider the problem of searching G to find a path from the starting node, N_S , to the final one, N_G
 - We will see three techniques

Breadth-first search (BFS)

Graph search algorithms

- The BFS uses a queue, that is a FIFO (First-Input First-Output) data structure of nodes
 - We refer to this queue as OPEN
- At the beginning, OPEN contains the node N_s only and it is marked as visited
- Then, the other nodes are marked as unvisited
- At each iteration, the first node in OPEN is extracted and all the connect nodes marked as unvisited are inserted into OPEN as visited
- The search terminates once N_g is in OPEN as visited, or OPEN is empty (failure)
- During this search, the algorithm must keep track of the BFS tree, containing all the nodes that have led to unvisited nodes
 - If it exists, the BFS tree contains the path connecting N_s to N_g

Graph search algorithms

OPEN

Node (visited from)

 N_{s}

Nodes	Visited/Unvisited
$N_{\scriptscriptstyle S}$	Visited
N_1	Unvisited
N_2	Unvisited
N_3	Unvisited
N_4	Unvisited
N_5	Unvisited
N_6	Unvisited
N_7	Unvisited
N_8	Unvisited
N_9	Unvisited
N ₁₀	Unvisited
N ₁₁	Unvisited
N ₁₂	Unvisited
N ₁₃	Unvisited
N ₁₄	Unvisited
N ₁₅	Unvisited
N ₁₆	Unvisited
N ₁₇	Unvisited
N_g	Unvisited

BFS TREE

The visited from part is taken from the adjacency list

Graph search algorithms

OPEN

Nodes (visited from)

 $N_1(N_s)$

N_{16} N_{15}
N_{15}
N_{17}
N_{s} , q_{s} , N_{4}
7 4 _s 14
N_1 N_5

 N_{s}

BFS TREE

 N_{14}

Nodes

 N_{s}

 N_1

 N_2

 N_3

 N_4

 N_5

 N_6

 N_7

 N_8

 N_9

 N_{10}

 N_{11}

 N_{12}

 N_{13}

 N_{14}

 N_{15}

 N_{16}

 N_{17}

 N_g

Visited/Unvisited

Visited

Visited

Visited

Unvisited

Visited

Unvisited

Breadth-first search (BFS): Example

0

Graph search algorithms

OPEN

Nodes (visited from)

N_2	(N_1)
N	(N_1)

λI	(N_1)	١
IV A.	(<i>I</i> V ₁	

N_{16} N_{15}	N ₁₄ .
N_{17} N_{S} q_s N_4	N_{13} N_{12}
N_1 N_5	N_7 N_2 q_g N_{11}
N_2	N_8 N_9 N_1

BFS TREE

Nodes

 N_{s}

 N_1

 N_2

 N_3

 N_4

 N_5

 N_6

 N_7

 N_{16}

 N_{17}

 N_g

Breadth-first search (BFS): Example

Graph search algorithms

OPEN

Nodes (visited from)

 $N_4 (N_1)$

 $N_3 (N_2)$

N_{16} N_{15}	
N ₁₇	N_1
N_{s} , q_{s} , N_{4}	N_6 N_{12}
N_1	N_7
N_2	N_g

 N_3

BFS TREE

 N_{14}

 N_8 Unvisited N_9 Unvisited N_{10} Unvisited N_{11} Unvisited N_{12} Unvisited N_{13} Unvisited N_{14} Unvisited N_{15} Unvisited

Visited/Unvisited

Visited

Visited

Visited

Visited

Visited

Unvisited

Unvisited

Unvisited

Unvisited

Unvisited

Unvisited

Graph search algorithms

OPEN

Nodes (visited from)

 $N_3 (N_2)$

 $N_5 (N_4)$

•
þ
1
•

BFS TREE

Nodes

 N_{s}

 N_1

 N_2

 N_3

 N_4

 N_5

 N_6

 N_{17}

 N_g

Breadth-first search (BFS): Example

Graph search algorithms

OPEN

Nodes (visited from)

 $N_5 (N_4)$

N_{16} N_{15}	N_{14}
N_{17} N_{s} q_s N_4	N_{13} N_{12}
N_1 N_5	N_g N_{10}
N_2	N_8 N_9

BFS TREE

Visited/Unvisited

Visited

Visited

Visited

Visited

Visited

Visited

Unvisited

Unvisited

Unvisited

Graph search algorithms

_			
\sim	О.	_	
, ,	u	_	ıv
	_		ı١

Nodes (visited from)

 $N_6 (N_5)$

 $N_7 (N_5)$

N_{16} N_{15}		N ₁₄
N_s q_s N_4	N_6	N ₁₂
N_1 N_2 N_3	N	N_g N_{10}

BFS TREE

Graph search algorithms

OPEN

Nodes (visited from)

 $N_7(N_5)$

N_{16} N_{15}	N ₁₄
N ₁₇ • N ₁₅	N_{13}
1	N_{12}
N_s q_s N_4 N_6	
N_1 N_5	N_q
N_2 N_8	N_9

BFS TREE

Graph search algorithms

OPEN

Nodes (visited from)

 $N_8 (N_7)$

N ₁₆ • N ₁₅ •	N ₁₄ .
N_{17} N_{s, q_s, N_4}	N_{12} N_{11}
N_1 N_5	N_g
N_2	N_8 N_9

BFS TREE

Graph search algorithms

_			
$\overline{}$		_	
, ,	u	_	ıv
. ,			ı١

Nodes (visited from)

 $N_9 (N_8)$

N_{17} N_{s} q_{s} N_{4} N_{7} N_{11}	N_{16} N_{15} N_{13}
N_{\star}	N_{17} $N_{s,q}$ N_{4} N_{6}
N_2 N_5 N_8 N_9 N_{10}	N_1 N_5 N_7 N_g q_g N_1

BFS TREE

Graph search algorithms

OPEN

Nodes (visited from)

 $N_{10} (N_9)$

N ₁₆ N ₁₅ N ₁₅	N ₁₄ .
,	N_{12} N_{11}
N_2 N_3 N_5	N_g N_{10}

BFS TREE

Visited/Unvisited **Nodes** N_{s} Visited N_1 Visited N_2 Visited N_3 Visited N_4 Visited N_5 Visited N_6 Visited N_7 Visited N_8 Visited Visited N_9 N_{10} Visited N_{11} Unvisited N_{12} Unvisited N_{13} Unvisited N_{14} Unvisited N_{15} Unvisited N_{16} Unvisited N_{17} Unvisited N_g Unvisited

Graph search algorithms

OPEN

Nodes (visited from)

 $N_g(N_{10})$

 $N_{11} (N_{10})$

N ₁₄
V ₁₃
2
$g^{\mathbf{q}_g}$
V_9

BFS TREE

 N_{s}

 N_1

 N_2

 N_3

 N_4 N_5

 N_6

 N_7

 N_8

 N_9

 N_{10}

 N_{11}

 N_{12}

N₁₃

 N_{15}

 N_{16}

 N_{17}

 N_{q}

Visited/Unvisited

Visited

Unvisited

Unvisited

Unvisited

Unvisited

Unvisited

Unvisited

Visited

Breadth-first search (BFS): Example

Graph search algorithms

_			
\sim	_	_	R
- / \		_	ľ

Nodes (visited from)

 $N_g(N_{10})$

 $N_{11}(N_{10})$

 N_{16} N_{15} N_{14} N_{17} N_{18} N_{19} N_{11} N_{11} N_{11} N_{2} N_{3} N_{15} N_{15} N_{10} N_{11} N_{11} N_{11} N_{12} N_{11} N_{11} N_{12} N_{11} N_{11} N_{12} N_{13}

BFS ends since N_g is in OPEN and it is added to the tree

BFS TREE

Depth-first search (DFS)

Graph search algorithms

- The DFS uses a stack, that is a LIFO (Last-Input First-Output) data structure of nodes
 - We refer to this stack as OPEN
- At the beginning, OPEN contains the node N_s only and it is marked as visited
- Then, the other nodes are marked as unvisited
- At each iteration, the last node in OPEN is extracted and all the connect nodes marked as unvisited are inserted into OPEN as visited
- The search terminates once N_g is in OPEN as visited, or OPEN is empty (failure)
- During this search, the algorithm must keep track of the DFS tree, containing all the nodes that have led
 to unvisited nodes
 - If it exists, the DFS tree contains the path connecting N_s to N_g

 N_{s}

 N_1

 N_2

 N_3

 N_4

 N_5

 N_6

 N_{16}

 N_{17}

 N_g

Depth-first search (DFS): Example

Graph search algorithms

_			
\sim	О.	_	
, ,	u	_	ıv
	_		ı١

Node (visited from)

N	S

The visited from part is taken from the adjacency list

N ₁₆ N ₁₅	N_{14} N_{13}
N_{17} N_{s} q_{s} N_{4}	N
N_1 N_5 N_5 N_3	N_g N_g N_{10}

DFS TREE

 N_7 Unvisited N_8 Unvisited N_9 Unvisited N_{10} Unvisited N_{11} Unvisited N_{12} Unvisited N_{13} Unvisited N_{14} Unvisited N_{15} Unvisited

Visited/Unvisited

Visited

Unvisited

Unvisited

Unvisited

Unvisited

Unvisited

Unvisited

Unvisited

Unvisited

Unvisited

Graph search algorithms

OPEN

Nodes (visited from)

 $N_1(N_s)$

N ₁₆ • N ₁₅ •	
N_{17} N_{s} q_s N_4	N_6
N_1	N_7

 N_3

DFS TREE

 N_{s}

Visited/Unvisited **Nodes** N_{s} Visited N_1 Visited N_2 Unvisited N_3 Unvisited N_4 Unvisited N_5 Unvisited N_6 Unvisited N_7 Unvisited N_8 Unvisited N_9 Unvisited N_{10} Unvisited N_{11} Unvisited N_{12} Unvisited N_{13} Unvisited N_{14} Unvisited N_{15} Unvisited N_{16} Unvisited N_{17} Unvisited N_g Unvisited

Graph search algorithms

OPEN

Nodes (visited from) $N_2 (N_1)$

 N_4 (N_1)

N ₁₆ N ₁₅ N ₁₅	N ₁₄ N ₁₃
N ₁	N_{12} N_{11} N_{12}
N_2 N_3	N_g N_{10}

Graph search algorithms

_			
$\overline{}$		_	
, ,	u	_	ıv
. ,			ı١

Nodes (visited from)

 $N_2(N_1)$

 $N_5 (N_4)$

N ₁₆ N ₁₅	N_{14} N_{13}
N_{17} N_{S} q_{s} N_{4}	N_6 N_{12} N_{11}
N_1 N_2 N_3	N_5 N_g N_{10} N_8 N_9

$$N_s$$

$$N_1 - N_4$$

Nodes

 N_{s}

 N_1 N_2

 N_3

 N_4

 N_5

 N_{16}

 N_{17}

 N_g

Depth-first search (DFS): Example

Graph search algorithms

OPEN

Nodes (visited from)
$N_2(N_1)$
N_6 (N_5)
N_7 (N_5)

N_{16} N_{15}		N ₁₄ .
N_s q_s N_4	N_6	N_{12} N_{11}
N_2 N_3	N ₈	$N_g \longrightarrow N_{10}$

DFS TREE

 N_6 Visited N_7 Visited N_8 Unvisited N_9 Unvisited N_{10} Unvisited N_{11} Unvisited N_{12} Unvisited N_{13} Unvisited N_{14} Unvisited N_{15} Unvisited

Visited/Unvisited

Visited Visited

Visited

Unvisited

Visited

Visited

Unvisited

Unvisited

Unvisited

Graph search algorithms

OPEN

Nodes (visited from)
$N_2(N_1)$
$N_6 (N_5)$
$N_8 (N_7)$

N_{16} N_{15} N_{17}	N ₁₄ .
N_s , q_s , N_4 , N_5	N_6 N_{12} N_{11} N_7 N_{11}
N_2 N_3	N_g N_{10}

DFS TREE

Visited/Unvisited **Nodes** N_{s} Visited Visited N_1 N_2 Visited N_3 Unvisited N_4 Visited N_5 Visited N_6 Visited N_7 Visited N_8 Visited N_9 Unvisited N_{10} Unvisited N_{11} Unvisited N_{12} Unvisited N_{13} Unvisited N_{14} Unvisited N_{15} Unvisited N_{16} Unvisited N_{17} Unvisited N_g Unvisited

 N_{s}

 N_1 N_2

 N_3

 N_4

 N_5

 N_6

 N_{16}

 N_{17}

 N_g

Depth-first search (DFS): Example

Graph search algorithms

OPEN

Nodes (visited from)
$N_2(N_1)$
N_6 (N_5)
N_9 (N_8)

N_{16} N_{15}	N ₁	V ₁₄ •
N_s q_s N_4	N_6 N_{12}	N ₁₁
N_2 N_3	N_g	N_{10}

DFS TREE

 N_7 Visited N_8 Visited N_9 Visited N_{10} Unvisited N_{11} Unvisited N_{12} Unvisited N_{13} Unvisited N_{14} Unvisited N_{15} Unvisited

Visited/Unvisited

Visited Visited

Visited

Unvisited

Visited

Visited

Visited

Unvisited

Unvisited

Unvisited

Nodes

Depth-first search (DFS): Example

Graph search algorithms

OPEN

Nodes (visited from)
$N_2(N_1)$
$N_6 (N_5)$
$N_{10} (N_9)$

N ₁₆ N ₁₅	N ₁₄ .
N_s q_s N_4	N_{12} N_{11}
N_2 N_3	N_g N_g N_{10}

N_{s} Visited Visited N_1 N_2 Visited N_3 Unvisited N_4 Visited N_5 Visited N_6 Visited N_7 Visited N_8 Visited Visited N_9 N_{10} Visited N_{11} Unvisited N_{12} Unvisited N_{13} Unvisited N_{14} Unvisited N_{15} Unvisited N_{16} Unvisited N_{17} Unvisited N_g Unvisited

Visited/Unvisited

Graph search algorithms

OPEN

Nodes	Visited/Unvisited
$N_{\scriptscriptstyle S}$	Visited
N_1	Visited
N_2	Visited
N_3	Unvisited
N_4	Visited
N_5	Visited
N_6	Visited
N_7	Visited
<i>N</i> ₈	Visited
N_9	Visited
N ₁₀	Visited
N_{11}	Visited
N_{12}	Unvisited
N_{13}	Unvisited
N_{14}	Unvisited
N ₁₅	Unvisited
N ₁₆	Unvisited
N_{17}	Unvisited
N_g	Visited

Nodes (visited from)
$N_2(N_1)$
$N_6 (N_5)$
N_g (N_{10})
$N_{11} (N_{10})$

DFS TREE

Graph search algorithms

OPEN

Nodes	Visited/Unvisited
N_{s}	Visited
N_1	Visited
N_2	Visited
N_3	Unvisited
N_4	Visited
N_5	Visited
N_6	Visited
N_7	Visited
N_8	Visited
N_9	Visited
N_{10}	Visited
N_{11}	Unvisited
N ₁₂	Unvisited
N ₁₃	Unvisited
N_{14}	Unvisited
N ₁₅	Unvisited
N ₁₆	Unvisited
N_{17}	Unvisited
N_g	Unvisited

Nodes (visited from)
$N_2(N_1)$
$N_6 (N_5)$
N_g (N_{10})
$N_{11} (N_{10})$

DFS TREE

DFS ends since N_g is in OPEN and it is added to the tree

- In many applications, the arcs of the graph G are weighted with positive numbers
 - In this way, it is possible to define a cost of a path on G as the sum of the weights on its arcs
 - The problem is now connecting N_s to N_g through a path associated to the minimum cost, called minimum path
- It is possible to associate a cost function associated to a node N_i , i=1,...,N $f(N_i) = g(N_i) + h(N_i)$
 - $g(N_i)$ is the cost of the path from N_s to N_i as stored in the current tree
 - $h(N_i)$ is a heuristic estimate of the cost $h^*(N_i)$ of the minimum path from N_i to N_g
 - Any choice of the heuristic such that $0 \le h(N_i) \le h^*(N_i)$, $\forall N_i$ is admissible, meaning that the heuristic should not overestimate the real cost
 - The choice $h(N_i) = 0$ corresponds to the Dijkstra algorithm

- The A* algorithm uses an ordinated list
 - We refer to this list as OPEN
- At the beginning, OPEN contains the node N_s only and it is marked as visited
 - The other nodes are marked as unvisited
- At each iteration, the node in OPEN associated to the minimum cost function is extracted
 - We refer to this node as N_{best}
- The search terminates once N_g is extracted from OPEN, or OPEN is empty (failure)
- During this search, the algorithm must keep track of the A* tree, containing all the nodes that have led to unvisited nodes
 - If it exists, the DFS tree contains the path connecting N_s to N_a
 - The tree adjusts the pointer from N_i to N_{best} if $g(N_{best}) + c(N_{best}, N_i) < g(N_i)$, with $c(N_{best}, N_i)$ the cost from N_i to N_{best}

Pseudo-code

```
A^* algorithm
      repeat
         find and extract N_{\text{best}} from OPEN
         if N_{\text{best}} = N_g then exit
         for each node N_i in ADJ(N_{best}) do
          if N_i is unvisited then
            add N_i to T with a pointer toward N_{\text{best}}
            insert N_i in OPEN; mark N_i visited
          else if g(N_{\text{best}}) + c(N_{\text{best}}, N_i) < g(N_i) then
            redirect the pointer of N_i in T toward N_{\text{best}}
|10
            if N_i is not in OPEN then
10
              insert N_i in OPEN
            else update f(N_i)
|10
            end if
|10|
          end if
|11
      until OPEN is empty
```


Graph search algorithms

Node list

Nodes	Visited/Unvisited	
N_1	Visited	
N_2	Unvisited	
N_3	Unvisited	
N_4	Unvisited	
N_5	Unvisited	
N_6	Unvisited	
N_7	Unvisited	

Adjacency list

Nodes	Adjacent nodes	
N_1	N_2, N_3	
N_2	N_1, N_3, N_4	
N_3	N_1, N_2, N_5	
N_4	N_2, N_6, N_7	
N_5	N_3	
N_6	N_4 , N_7	
N_7	N_4, N_6	

DFS TREE

OPEN

Node (visited from / cost)

 N_1

The visited from part is taken from the adjacency list

Graph search algorithms

OPEN

Node (visited from / cost)

 $N_2(N_1/1)$

 $N_3(N_1/2)$

Node list

Nodes	Visited/Unvisited	
N_1	Visited	
N_2	Visited	
N_3	Visited	
N_4	Unvisited	
N_5	Unvisited	
N_6	Unvisited	
N_7	Unvisited	

Adjacency list

Nodes	Adjacent nodes	
N_1	N_2, N_3	
N_2	N_1, N_3, N_4	
N_3	N_1, N_2, N_5	
N_4	N_2, N_6, N_7	
N_5	N_3	
N_6	N_4, N_7	
N_7	N_4, N_6	

Graph search algorithms

OPEN

Node (visited from / cost)

 $N_3(N_1/2)$

 $N_4(N_2/2)$

$g(N_2) + c(N_2, N_1) < g(N_1)$ is
not verified since 1+1<0
$g(N_2) + c(N_2, N_3) < g(N_3)$ is not verified since 1+1<2

A^* :	algorithm
1	repeat
2	find and extract N_{best} from OPEN
3	if $N_{\text{best}} = N_g$ then exit
4	for each node N_i in ADJ(N_{best}) do
5	if N_i is unvisited then
6	add N_i to T with a pointer toward N_{best}
7	insert N_i in OPEN; mark N_i visited
8	else if $g(N_{\text{best}}) + c(N_{\text{best}}, N_i) < g(N_i)$ then
9	redirect the pointer of N_i in T toward N_{best}
10	if N_i is not in OPEN then
10	insert N_i in OPEN
10	else update $f(N_i)$
10	end if
11	end if
12	until OPEN is empty

Node list

Nodes	Visited/Unvisited
N_1	Visited
N_2	Visited
N_3	Visited
N_4	Visited
N_5	Unvisited
N_6	Unvisited
N_7	Unvisited

Adjacency list

Nodes	Adjacent nodes
N_1	N_2, N_3
N_2	N_1, N_3, N_4
N_3	N_1, N_2, N_5
N_4	N_2, N_6, N_7
N_5	N_3
N_6	N_4, N_7
N_7	N_4, N_6

Graph search algorithms

OPEN

Node (visited from / cost)

 $N_4(N_2/2)$

 $N_5(N_3/7)$

$g(N_3) + c(N_3, N_1) < g(N_1)$ is
not verified since 2+2<0
$g(N_3) + c(N_2, N_3) < g(N_2)$ is not verified since 2+1<1

A* :	algorithm
1	repeat
2	find and extract N_{best} from OPEN
3	if $N_{\text{best}} = N_q$ then exit
4	for each node N_i in $ADJ(N_{best})$ do
5	if N_i is unvisited then
6	add N_i to T with a pointer toward N_{best}
7	insert N_i in OPEN; mark N_i visited
8	else if $g(N_{\text{best}}) + c(N_{\text{best}}, N_i) < g(N_i)$ then
9	redirect the pointer of N_i in T toward N_{best}
10	if N_i is not in OPEN then
10	insert N_i in OPEN
10	else update $f(N_i)$
10	end if
11	end if
12	until OPEN is empty

Node list

Nodes	Visited/Unvisited
N_1	Visited
N_2	Visited
N_3	Visited
N_4	Visited
N_5	Visited
N_6	Unvisited
N_7	Unvisited

Adjacency list

Nodes	Adjacent nodes
N_1	N_2, N_3
N_2	N_1, N_3, N_4
N_3	N_1, N_2, N_5
N_4	N_2, N_6, N_7
N_5	N_3
N_6	N_4, N_7
N_7	N_4, N_6

Graph search algorithms

OPEN

Node (visited from / cost)

N_7	(N_4)	/4
- ' / '	(* ' 4	/ -

$$N_5(N_3/7)$$

$$N_6(N_4/12)$$

$g(N_4) + c(N_4, N_2) < g(N_2)$ is not verified since 2+1<1

A^*	algorithm
1	repeat
2	find and extract N_{best} from OPEN
3	if $N_{\text{best}} = N_q$ then exit
4	for each node N_i in $ADJ(N_{best})$ do
5	if N_i is unvisited then
6	add N_i to T with a pointer toward N_{best}
7	insert N_i in OPEN; mark N_i visited
8	else if $g(N_{\text{best}}) + c(N_{\text{best}}, N_i) < g(N_i)$ then
9	redirect the pointer of N_i in T toward N_{best}
10	if N_i is not in OPEN then
10	insert N_i in OPEN
10	else update $f(N_i)$
10	end if
11	end if
12	until OPEN is empty

Node list

Nodes	Visited/Unvisited
N_1	Visited
N_2	Visited
N_3	Visited
N_4	Visited
N_5	Visited
N_6	Visited
N_7	Visited

Adjacency list

Nodes	Adjacent nodes
N_1	N_2, N_3
N_2	N_1, N_3, N_4
N_3	N_1, N_2, N_5
N_4	N_2, N_6, N_7
N_5	N_3
N_6	N_4, N_7
N_7	N_4, N_6

Graph search algorithms

OPEN

Node (visited from / cost)

 $N_5(N_3/7)$

 $N_6(N_4/12)$

Node list

Nodes	Visited/Unvisited
N_1	Visited
N_2	Visited
N_3	Visited
N_4	Visited
N_5	Visited
N_6	Visited
N_7	Visited

Adjacency list

Nodes	Adjacent nodes				
N_1	N_2, N_3				
N_2	N_1, N_3, N_4				
N_3	N_1, N_2, N_5				
N_4	N_2, N_6, N_7				
N_5	N_3				
N_6	N_4, N_7				
N_7	N_4, N_6				

DFS TREE

 $g(N_7) + c(N_7, N_4) < g(N_4)$ is not verified since 4+2<2 $g(N_7) + c(N_7, N_6) < g(N_6)$ IS VERIFIED since 4+3<12

```
A* algorithm
        find and extract N_{\text{best}} from OPEN
        if N_{\text{best}} = N_g then exit
        for each node N_i in ADJ(N_{best}) do
         if N_i is unvisited then
           add N_i to T with a pointer toward N_{\text{best}}
           insert N_i in OPEN; mark N_i visited
          else if g(N_{\text{best}}) + c(N_{\text{best}}, N_i) < g(N_i) then
           redirect the pointer of N_i in T toward N_{\text{best}}
           if N_i is not in OPEN then
            insert N_i in OPEN
           else update f(N_i)
           end if
         end if
12 until OPEN is empty
```


Graph search algorithms

OPEN

Node (visited from / cost)

 $N_6(N_4/12)$

 $g(N_5) + c(N_5, N_3) < g(N_3)$ is not verified since 7+5<2 N_6 is then extracted and the algorithm ends

1	algorithm repeat
	•
2	find and extract N_{best} from OPEN
3	if $N_{\text{best}} = N_g$ then exit
4	for each node N_i in ADJ (N_{best}) do
5	if N_i is unvisited then
6	add N_i to T with a pointer toward N_{best}
7	insert N_i in OPEN; mark N_i visited
8	else if $g(N_{\text{best}}) + c(N_{\text{best}}, N_i) < g(N_i)$ then
9	redirect the pointer of N_i in T toward N_{best}
10	if N_i is not in OPEN then
10	insert N_i in OPEN
10	else update $f(N_i)$
10	end if
11	end if
12	until OPEN is empty

Node list

Nodes	Visited/Unvisited				
N_1	Visited				
N_2	Visited				
N_3	Visited				
N_4	Visited				
N_5	Visited				
N_6	Visited				
N_7	Visited				

Adjacency list

Nodes	Adjacent nodes
N_1	N_2, N_3
N_2	N_1, N_3, N_4
N_3	N_1, N_2, N_5
N_4	N_2, N_6, N_7
N_5	N_3
N_6	N_4, N_7
N_7	N_4, N_6

Rapidly-exploring random tree method (RRT)

Probabilistic planning

- It might be a good idea not to build a roadmap describing the entire C_{free}
 - It may be useful to explore only the part of C_{free} connecting q_s to q_g
- Denote with G the current graph
 - The first step is the generation of a random model-configuration q_{rand} as for the PRM with a uniform probability distribution
 - Given G, the model-configuration $q_{near} \in G$ closer to q_{rand} is found
 - A new model-configuration, q_{new} , is chosen as the segment joining q_{near} and q_{rand} at a pre-determined distance δ from q_{near}
 - A collision-check is carried out for q_{new} and the segment connecting q_{near} and q_{new}
 - If there are no collisions, q_{new} and its segment connecting q_{near} are added to G
 - Notice that q_{rand} can also be a point belonging to the CO-obstacle region

- To speed-up the search, two graphs are considered
 - One graph, G_s , starts from q_s
 - The other graph, G_q, starts from q_q
 - They evolve in parallel
- At a certain point (i.e., after a certain number of iterations), G_s must be connected to G_g
 - In this phase, q_{new} acts as q_{rand} for G_g
 - One finds the closest q_{near} in G_g and moves it trying to have $q_{rand}=q_{new}$ with a variable step-size instead of a fixed δ
 - If this segment is free from collisions, the graphs are connected

- This method is suitable for on-line applications
 - The obstacles are not known in advance
 - Sensors are indeed needed
 - It is employed also off-line
- The aim is not to build C_{free} , but only to reach q_g
- The artificial potentials method exploits the superimposition of two terms
 - An attractive potential to the goal
 - A repulsive potential away from the *CO*-obstacle region

• The robot must be guided to q_g through the potential

$$U_a(q) = \frac{1}{2}k_a e^T(q)e(q) = \frac{1}{2}k_a ||e(q)||^2$$

- $k_a > 0$
- $e(q) = q_g q$
- $U_a(q)$ has the global minimum in e(q) = 0
- The resulting force from this potential is

$$f_a(q) = -\nabla U_a(q) = k_a e(q)$$

Applying this force to the robot, q tends to q_q linearly

Another choice for the potential might be

$$U_b(q) = k_a ||e(q)||$$

- $k_a > 0$
- $e(q) = q_a q$
- $U_h(q)$ has the global minimum in e(q) = 0
- The resulting force from this potential is

$$f_b(q) = -\nabla U_b(q) = k_a \frac{e(q)}{\|e(q)\|}$$

- Notice that this force is not defined when e(q) = 0, therefore it is not denoted when $q = q_g$, the desired model-configuration
- The advantage in applying this force is that $f_b(q)$ does not go to infinite when e(q) increases in norm, therefore it is suitable for large initial errors
- It is slower than $f_a(q)$ close to the desired model-configuration q_a

A way to combine the two forces is to use

$$f(x) = \begin{cases} f_a(q), & ||e(q)|| < 1\\ f_b(q), & ||e(q)|| \ge 1 \end{cases}$$

• The transition is smooth when e(q) = 1, avoiding jumps in the control actions

- The repulsive potential is needed to avoid collisions
 - The idea is to build a sort of a virtual barrier potential around the obstacles
- It is assumed that CO is convex, or partitioned in convex components CO_i , $i=1,\ldots,p$
- For each CO_i, the associated potential is

$$U_{r,i}(q) = \begin{cases} \frac{k_{r,i}}{\gamma} \left(\frac{1}{\eta_i(q)} - \frac{1}{\eta_{o,i}} \right)^{\gamma}, & \eta_i(q) \le \eta_{o,i} \\ 0, & \eta_i(q) > \eta_{o,i} \end{cases}$$

- $k_{r,i} > 0$ is a gain
- $\eta_i(q) = \min_{q' \in CO_i} ||q q'||$ is the distance from the obstacle
- $\eta_{o,i}$ is the range of influence of the obstacle
- $\gamma = \{2,3\}$ is a factor
- Notice that $U_{r,i}(q)$ is zero outside the range of influence and positive inside

The repulsive force is

$$f_{r,i}(q) = -\nabla U_{r,i}(q) = \begin{cases} \frac{k_{r,i}}{\eta_i(q)^2} \left(\frac{1}{\eta_i(q)} - \frac{1}{\eta_{o,i}}\right)^{\gamma - 1} \nabla \eta_i(q), & \eta_i(q) \le \eta_{o,i} \\ 0, & \eta_i(q) > \eta_{o,i} \end{cases}$$

- The convexity hypothesis regarding the obstacles is necessary to compute $\nabla \eta_i(q)$ analytically
- During on-line planning, $\nabla \eta_i(q)$ must be computed numerically
- Notice that $\eta_i(q_g) \ge \eta_{o,i}$, $i=1,\ldots,p$, meaning that the final model-configuration is sufficiently outside any influence region

The sum of all the repulsive potentials and forces is

$$U_r(q) = \sum_{i=1}^p U_{r,i}(q)$$
$$f_r(q) = -\nabla U_r(q) = \sum_{i=1}^p f_{r,i}(q)$$

The total potential is the sum of the attractive and the repulsive one

$$U_t(q) = U_a(q) + U_r(q) > 0$$

- This total potential has a global minimum in q_g by construction
- The resulting force field is

$$f_t(q) = -\nabla U_t(q) = f_a(q) + f_r(q)$$

- This is called deepest descent method
- The artificial potentials method suffers of local minima in which

$$\begin{cases} f_t(\overline{q}) = 0 \\ U_t(\overline{q}) > 0 \end{cases} \text{ with } \overline{q} \neq q_g$$

- There are different interpretations for the total force
 - $f_t(q) = \tau$
 - The total force is seen as the vector of generalized forces (force plus torques) that induce a motion of the robot in accordance with its dynamic model
 - In case of on-line planning, the total force is directly the control input
 - In case of off-line planning, it generates smooth trajectories since the reactions of the robot are filtered by the robot dynamcis
 - $f_t(q) = \ddot{q}$
 - The total force is seen as the acceleration moving the robot that is considered as a point mass
 - In case of on-line planning, it requires the solution of the inverse dynamic problem or an on-line 2nd order kinematic control scheme
 - In case of off-line planning, it is an intermediate case as the above one and the below one
 - $f_t(q) = \dot{q}$
 - The total force is seen as the velocity vector moving the robot, that is considered from a kinematic viewpoint only
 - In case of on-line planning, it requires the solution of an on-line 1st order kinematic control scheme
 - In case of off-line planning, it is faster to generate trajectories as q(t)
 - This is the only method ensuring that q_g is reached with zero velocity, $\dot{q}=0$, while the other methods require the addition of a damping term in $f_a(q)$
 - This is the most common choice, where $q_{k+1} = q_k + T_s f_t(q)$, that is the next model-configuration is the actual one plus the sampling time multiplied by the total force given by the artificial potentials methodology

Local minima - Heuristic motions

- If a local minima is recognised, one solution is to stop the execution of the artificial potentials method and perform some random motions
 - Be careful of the environment!
- The artificial potentials method can be re-activated afterwards
- In case of on-line planning without any prior information or reconstruction of the environment, this is the only method that we consider here
 - Other methods can be used in case of off-line planning and they are explained in the following

Local minima - Best-first algorithm

- Suppose to discretize C_{free} using a regular grid
- Each free cell of this grid is assigned to a value of $U_t(q_c)$, where q_c is the model-configuration of the cell's centre
- The algorithm builds a graph rooted at q_s aiming at q_g
- At each iteration, the adjacent cells (4,8,...) of the node with a minimum $U_t(q_c)$ are considered
 - Those nodes that are not in the graph are added as children of the considered node
- The algorithm stops when the cell containing q_g is in the graph
 - Otherwise, a failure is reported
- This best-first algorithm is the discretized version of the steepest descent method
- This best-first algorithm is used to exit a local minimum, the artificial potentials method is re-activated afterwards, or it is employed from the beginning

Local minima - Navigation functions

- The best-first algorithm, in general, may lead to inefficient paths
 - The robot can enter into other local minima
- The numerical navigation function is a potential built on the grid-map of C_{free} associated to its distance from q_a
 - $0 \rightarrow$ is assigned to the cell containing q_a
 - 1 → is assigned to the adjacent cells of q_a
 - $2 \rightarrow$ is assigned to the unmarked cells among those adjacent to the ones marked with 1
 - ..
- The steepest descent method can be applied on this grid-map
 - Again, the navigation function can be applied to exit from the local minima only
 - It can be also applied from the beginning as an off-line planning

	2	1	2	3	4	5	6	7	8	9		19
Ì	1	0	1			6	7	8	9	10		18
İ	2	1	2	3		7	8		10	11		17
Ī	3		3	4	5	6	7	8		12		16
	4			5	6	7			12	13		15
Ī	5	6	7	6	7	8	9	10	11	12	13	14
	6	7	8	7	8	9	10	11	12	13	14	15