Problem Set 2: Simple Type Theory

Released: January 23, 2023 Due: February 03, 2023, 11:59pm Last modified: Jan 26, 2023, 1:00pm

Submit your solutions to this homework on Canvas in a group of 2 or 3. Your solutions must be submitted in pdf produced using LaTeX.

Corrections/Modifications: The following have been fixed from the initial released version:

- 1. The rule of substitution ()[γ] = () has been corrected.
- 2. The notation γ , M/x was previously incorrectly written as $\gamma[M/x]$.
- 3. Extra parentheses were added to help disambiguate the meaning of $(\gamma(x))[\delta]$: This means first apply γ to the variable x to get a term $\gamma(x)$ and then apply the substitution δ to that term.
- 4. The rule for weakening was reversed.

Problem 1 Exponential Isomorphisms

We say that $x:A \vdash M:B$ and $y:B \vdash N:A$ form an isomorphism if $x:A \vdash N[M/y] = x$ and $y:B \vdash M[N/x] = y:B$. In this case we say A and B are isomorphic, written $A \cong B$.

Construct the following isomorphisms (with proof):

- 1. $A \Rightarrow B \Rightarrow C \cong (A \times B) \Rightarrow C$
- 2. $A \Rightarrow (B \times C) \cong (A \Rightarrow B) \times (A \Rightarrow C)$
- $3. \ (A \Rightarrow 1) \cong 1$
- 4. $(A+B) \Rightarrow C \cong (A \Rightarrow C) \times (B \Rightarrow C)$
- $5. \ 0 \Rightarrow C \cong 1$

This gives an idea of why $A \Rightarrow B$ is in category theory sometimes called the *exponential* and written B^A .

• • • • • • • •

Problem 2

Problem 2 Admissibile Rules in STT

When all variables are known to be distinct, substitution M[N/x] can simply be defined as the replacement of x with N everywhere in the term M. This definition is the STT version of the admissibility of the substitution principle of IPL:

$$\frac{\Gamma \vdash M : A \qquad \Gamma, x : A \vdash N : B}{\Gamma \vdash N[M/x]}$$
 Subst(*)

The admissible principle of contraction can also be viewed as a textual substitution in the term:

$$\frac{\Gamma, x : A, y : A, \Delta \vdash M : C}{\Gamma, x : A, \Delta \vdash M[x/y] : C}$$
CONTRACTION(*)

On the other hand, the use of variables to stand for assumptions means that exchange and weakening have no effect on the proof term:

$$\frac{\Gamma, y: B, x: A, \Delta \vdash M: C}{\Gamma, x: A, y: B, \Delta \vdash M: C} \text{ Exchange(*)} \qquad \frac{\Gamma, \Delta \vdash M: C}{\Gamma, x: A, \Delta \vdash M: C} \text{ Weakening(*)}$$

In this exercise you will show all of these principles are admissible and additionally prove some *equations* about substitution.

The simplest inductive proofs involve an auxiliary notion. We define a substitution from Δ to Γ to be a function γ that for each variable $x:A\in\Gamma$ produces a term $\Delta\vdash\gamma(x):A$. We write $\gamma:\Delta\to\Gamma$ to mean a substitution from Δ to Γ . We can then define an admissible action of substitution:

$$\frac{\gamma: \Delta \to \Gamma \qquad \Gamma \vdash M: A}{\Delta \vdash M[\gamma]: A} \text{ GenSubst}$$

Defined by induction on M:

$$x[\gamma] = \gamma(x)$$

$$f(M_1, \dots,)[\gamma] = f(M_1[\gamma], \dots)$$

$$(M, N)[\gamma] = (M[\gamma], N[\gamma])$$

$$(\pi_j M)[\gamma] = \pi_j M[\gamma]$$

$$()[\gamma] = ()$$

$$(i_j M)[\gamma] = i_j M[\gamma]$$

$$(\operatorname{case}_+ M\{i_1 x_1 \to N_1 | i_2 x_2 \to N_2\})[\gamma] = (\operatorname{case}_+ M[\gamma]\{i_1 x_1 \to N_1[\gamma, x_1/x_1] | i_2 x_2 \to N_2[\gamma, x_2/x_2]\})$$

$$(\operatorname{case}_0 M\{\})[\gamma] = \operatorname{case}_0 M[\gamma]\{\}$$

$$(\lambda x. M)[\gamma] = \lambda x. M[\gamma, x/x]$$

$$(MN)[\gamma] = M[\gamma] N[\gamma]$$

Problem 2

Where the notation γ , M/x is the extension of the function to map x to M:

$$(\gamma, M/x)(y) = M (if x = y)$$

$$(\gamma, M/x)(y) = \gamma(y)$$
 (if $x \neq y$)

Define the *identity* substitution $\mathrm{id}_{\Gamma}:\Gamma\to\Gamma$ to map each variable in Γ to itself: $\mathrm{id}(x)=x.$

Given $\gamma: \Delta \to \Gamma$ and $\delta: \Xi \to \Delta$, define the composition $\gamma \circ \delta: \Xi \to \Gamma$ as $(\gamma \circ \delta)(x) = (\gamma(x))[\delta]$.

Below assume $\gamma: \Delta \to \Gamma$, $\delta: \Xi \to \Delta$, $\xi: \Xi' \to \Xi$ and $\Gamma \vdash M: A$.

- 1. Show M that $\Delta \vdash M[\gamma] : A$, i.e., that the GenSubst typing rule is admissible.
- 2. Show that one-place substitution, weakening, exchange and contraction are all instances of GenSubst.
- 3. Show that $M[id_{\Gamma}] = M$. Note that this and the following equalities are exact syntactic equalities, you will not need to use any $\beta \eta$ rules to prove it.
- 4. Show that $\gamma \circ id_{\Delta} = \gamma$ and $id_{\Gamma} \circ \gamma = \gamma$.
- 5. Show that $M[\gamma \circ \delta] = M[\gamma][\delta]$
- 6. Show as a corollary that if $x_2 : A_2 \vdash N_1 : A_1$ and $x_3 : A_3 \vdash N_2 : A_2$ and $x_4 : A_4 \vdash N_4 : A_4$ then $(N_1[N_2/x_2])[N_3/x_3] = (N_1[N_2/x_2])[N_3/x_3]$.
- 7. Show that $(\gamma \circ \delta) \circ \xi = \gamma \circ (\delta \circ \xi)$

.