GB2172425

Publication Title:
Klystron
Abstract:
Abstract of GB2172425
An external cavity klystron vacuum tube has a ceramic cylindrical wall surrounded by an external cavity within which is an output probe. The cylindrical wall section 1 is sealed at its ends to other components of the tube to enable the interior to be evacuated by sealing means such as to avoid a sharp edge projecting inwardly towards the interior of the cavity.
Data supplied from the esp@cenet database - Worldwide b38
Courtesy of http://v3.espacenet.com

UK Patent Application (19) GB (11) 2 172 425 A

(43) Application published 17 Sep 1986

(21) Application No 8527376

(22) Date of filing 14 Mar 1985

Date lodged 6 Nov 1985

- (60) Derived from Application No 8506610 under Section 15(4) of the Patents Act 1977
- (71) Applicant English Electric Valve Company Limited (United Kingdom), 106 Waterhouse Lane, Chelmsford, Essex
- (72) Inventors Maurice Esterson, Jennifer May
- (74) Agent and/or Address for Service D. G. Rouse, GEC Pic, Central Patent Dept (Chelmsford Office), Marconi Research Centre, West Hanningford Rd, Gt Baddow, Chelmsford, Essex

(51) INT CL4 H01J 5/26 23/12

- (52) Domestic classification (Edition H): H1D 16A2B 16A2Y 16A6 16A8 16AY 16S3 16S6 16S8 9C2 9CY 9F1 9FY K
- (56) Documents cited None
- (58) Field of search H₁D Selected US specifications from IPC sub-class H01J

(54) Klystron

(57) An external cavity klystron vacuum tube has a ceramic cylindrical wall surrounded by an external cavity within which is an output probe. The cylindrical wall section 1 is sealed at its ends to other components of the tube to enable the interior to be evacuated by sealing means such as to avoid a sharp edge projecting inwardly towards the interior of the cavity.

SPECIFICATION

Improvements in or relating to klystron vacuum tubes

This invention relates to klystron vacuum tubes and in particular to so called external cavity klystron vacuum tubes.

Part of a typical external cavity klystron vacuum 10 tube arrangement as at present known is illustrated in Figure 1.

Referring to Figure 1 the tube comprises a vacuum wall section 1 in the form of a dielectric cylinder transparent to electro-magnetic radiation. This

15 forms a window through which power is effectively transmitted. The cylindrical section 1 has, at either end, cylindrical copper annuli 2,3 which are shaped to receive the ends of the cylindrical wall member 1 and provide, by portions of increased diameter,

20 contact for spring fingers 4 attached to the inner rims of a box member 5 surrounding the cylindrical wali 1 and forming the external cavity. In order to adjust the resonant frequency of the external cavity, a pair of moveable tuning plungers (extending at right

25 angles to the plane of the paper and not shown) is provided, one one each side of the cylindrical wall member 1. To the left (as shown) of the cylindrical wall member 1 is a coupling loop 7, adjustable by rotation, by which output power is coupled to an

30 external transmission line and aerial (not shown). Particular attention should be given to the method of forming the vacuum seal between the cylindrical wall member 1 and the copper annuli 2,3. Since the cylindrical wall member 1 is normally of a high

35 purity alumina or beryllia ceramic consistent with its function as a window, there will be observed a differential expansion between the cylindrical member 1 and the copper annuli 2,3. The coefficient of expansion of the material of the cylindrical wall 40 member 1 is very much less than that of copper.

In order to accommodate for this differential expansion the joint between the cylindrical wall member 1 and each of the copper annuli 2,3 is normally as shown in more detail in Figure 2.

Referring to Figure 2 it will be seen that the cylindrical wall member 1 is located within a recess 8 in the copper annulus 3 (with a similar arrangement at the other end of the member 1). Use is made of an inner cylindrical flare 9 and an outer cylindrical flare

50 10. Inner flare 9 is brazed at one end 11 between the end of the ceramic wall member 1 and a ceramic balance ring member 12. The outer flare member 10 is brazed to the outermost wall of the recess 8 in the copper annulus 3. Finally the vacuum seal is com-

55 pleted by welding inner flare member 9 to outer flare

The whole construction forms a vacuum joint with the balance ring 12 pressing against the copper disc 3 and taking up the axial thrust due to the external

60 pressure when the tube is under vacuum. In addition the balance ring 12 forms a sliding abutment with the base of the recess 8 accommodating for differential expansion between the cylindrical wall member 1 and the copper disc 3.

It has been found that a kiystron constructed as

described with reference to Figures 1 and 2 suffers from a serious defect. The output cavity 5 operates at the highest power level and the peak radio frequency voltage across the cavity is approximately the same 70 as the operating voltage of the klystron, typically between 20 and 26kV for a high power television klystron. It has been found that arcing sometimes occurs in the cavity which not only can cause puncturing of the seal provided by the flares 9 and 10 75 but also, of course, interruption of operation if, as is commonly the case, an arc detector is introduced which removes the r.f drive from the klystron upon the detection of an arc.

The present invention seeks to provide an im-80 proved construction in which the aforementioned problem is mitigated.

According to this invention an external cavity klystron vacuum tube is provided including a cylindrical section of wall transparent to electro-magnetic 85 radiation and provided to be surrounded by an external resonant cavity, at least one end of said cylindrical wall section being closed by a copper annulus which is stepped at its outer periphery, the inner rim of a flexible ring being secured to the base 90 of said step whilst the outer rim thereof is turned over the outer edge of said copper annulus away from the interior of said cavity, the inner rim of another flexible ring is secured between the end of said cylindrical wall section and a balance ring member which bears upon the inner rim of said first flexible ring member, the outer rim of said second ring member is turned over the outer edge of said copper annulus away from the interior of said cavity and the outer edges of said two ring members are united. Normally with a construction as described 100 above a collar is provided attached to said annulus and extending over the outer rim of said second ring member, the collars at each end of said wall section providing abutments for the walls forming said 105 external cavity. Normally, as known per se, the walls of said external cavity terminate in spring fingers

said collars. Normally said cylindrical wall member and said 110 balance ring member are of ceramic material. Normally said flexible rings are of cupro-nickel. Normally the edges of the flexible rings are united

which, in the embodiment just described, bear upon

Normally the or each annulus closing an end of 115 said cylindrical wall section is of copper.

The invention is further described with reference to Figure 3 of the accompanying drawings which illustrates an embodiment of a klystron vacuum tube in accordance with the present invention.

Figure 3 illustrates detail of the vacuum sealing 120 means provided by the present invention in the way that Figure 2 illustrates the sealing means employed in the conventional tube and like references are used for like parts.

It will be seen that the embodiment of the 125 invention illustrated is constructed so as to avoid having an edge between an inner and outer flare projecting inwardly towards the interior of the external cavity 5 and the coupling loop 7. Investiga-

130 tion suggested that it was this edge featuring in the

known construction illustrated in Figures 1 and 2 which tended to provoke arcing and thus the problems outlined hereinbefore. With the known construction of Figures 1 and 2 the electric field in the 5 cavity tended to be concentrated at the welded edge of the inner and outer flares and high electric fields tended to be set up between the welded edge of the flares and the output loop 7 by means of which the power is coupled to an external transmission line

10 and, subsequently, and aerial.
Referring to Figure 3, the seal is effected by means of a copper annulus 3 stepped at its outer periphery 18 and the inner rim 19 of a flexible cupro-nickel ring 20 is brazed to the base of the step to form a seating 15 for the balance ring 12. The outer periphery of an annular ring 13 of cupro-nickel is turned down (as viewed) over the edge of annulus 3 and away from the interior of the external cavity 5. A thin cupro-nickel ring 21 has its inner rim 22 secured by brazing 20 between the cylindrical wall member 1 and the balance ring 12. The outer rim of the ring 21 is also

turned down (as viewed) over the edge of annulus 3 away from the interior of the external cavity 5 to meet the external periphery of the ring 20. The edge 25 thus formed is welded to complete the required vacuum joint. To provide a suitable contact for the

spring fingers 4 of the box section forming the cavity
1 (which should not bear on the surface of the ring 21
because of the risk of burning at the finger contact
30 and consequent puncturing of the ring), a copper
collar 23 is fitted around the sealing ring 21. Copper

collar 23 is fitted either by means of a screw thread or it is soldered to the underside (as viewed) of the copper annulus 3.

The construction at the other and (not shown) of

35 The construction at the other end (not shown) of the cavity is similar.

CLAIMS

- 40 1. An external cavity klystron vacuum tube including a cylindrical section of wall transparent to electro-magnetic radiation and provided to be surrounded by an external resonant cavity, and wherein at least one end of said cylindrical wall section is
- 45 closed by a copper annulus which is stepped at its outer periphery, the inner rim of a flexible ring being secured to the base of said step whilst the outer rim thereof is turned over the outer edge of said copper annulus away from the interior of said cavity, the
- 50 inner rim of another flexible ring is secured between the end of said cylindrical wall section and a balance ring member which bears upon the inner rim of said first flexible ring member, the outer rim of said second ring member is turned over the outer edge of 55 said copper annulus away from the interior of said
- 55 said copper annulus away from the interior of said cavity and the outer edges of said two ring members are united.
- A tube as claimed in claim 1 and wherein a collar is provided attached to said annulus and
 extending over the outer rim of said second ring member, the collars at each end of said wall section providing abutments for the walls forming said external cavity.
- A tube as claimed in claim 2 and wherein the
 walls of said external cavity terminate in spring

fingers which bear upon said collars.

- A tube as claimed in any of the preceding claims and wherein said cylindrical wall member and said balance ring member are of ceramic
 material.
 - 5. A tube as claimed in any of the preceding claims and wherein said flexible rings are of cupronickel.
- A tube as claimed in claim 1, 2 or 3 and
 wherein the edges of said two flexible rings are united by welding.
 - 7. A tube as claimed in any of the preceding claims and wherein the or each annulus closing an end of said cylindrical wall section is of copper.
- 8. An external cavity klystron vacuum tube substantially as herein described with reference to Figure 2 of the accompanying drawings.

Amendments to the claims have been filed, and have 85 the following effect:-

- (a) Claim 1 above has been textually amended.
- (b) New or textually amended claims have been filed as follows:-
- 1. An external cavity klystron vacuum tube including a cylindrical section of wall transparent to electro-magnetic radiation and provided to be surrounded by an external resonant cavity, and wherein at least one end of said cylindrical wall section is 95 closed by an annulus which is stepped at its outer periphery, the inner rim of a flexible ring being secured to the base of said step whilst the outer rim thereof is turned over the outer edge of said annulus away from the interior of said cavity, the inner rim of 100 another flexible ring is secured between the end of said cylindrical wall section and a balance ring member which bears upon the inner rim of said first flexible ring member, the outer rim of said second ring member is turned over the outer edge of said 105 annulus away from the interior of said cavity and the outer edges of said two ring members are united.

Printed in the UK for HMSO, D8818935, 7/86, 7102. Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.