СЛАУ.

1. Сформулируйте теорему о структуре общего решения однородной СЛАУ.

Пусть $\Phi_1, \dots, \Phi_k - \Phi$ CP однородной СЛАУ $A \cdot x = 0$. Тогда любое решение этой СЛАУ можно представить в виде $x = c_1 \cdot \Phi_1 + \dots + c_k \cdot \Phi_k$, где c_1, \dots, c_k - некоторые постоянные.

2. Сформулируйте теорему о структуре общего решения неоднородной системы линейных алгебраических уравнений.

Пусть известно частное решение \tilde{x} СЛАУ $A\cdot x=b$. Тогда любое решение этой СЛАУ можно представить в виде $x=\tilde{x}+c_1\cdot\Phi_1+\ldots+c_k\cdot\Phi_k$, где Φ_1,\ldots,Φ_k — ФСР соответствующей однородной СЛАУ, а c_1,\ldots,c_k — некоторые постоянные.

Ангем.

3. Дайте определение векторного произведения векторов в трехмерном пространстве.

Вектор \overrightarrow{c} называют векторным произведением векторов \overrightarrow{a} и \overrightarrow{b} , если:

- 1) $|\overrightarrow{c}|=|\overrightarrow{a}|\cdot|\overrightarrow{b}|\cdot\sin\varphi$, где φ угол между \overrightarrow{a} и \overrightarrow{b}
- 2) $\overrightarrow{c} \perp \overrightarrow{a}, \overrightarrow{c} \perp \overrightarrow{b}$
- 3) тройка \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} правая

4. Сформулируйте три алгебраических свойства векторного произведения.

- 1) $\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$ (антикоммутативность)
- 1) $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{a}$ (distributions assumed to \overrightarrow{b}) 2) $(\overrightarrow{a}\overrightarrow{a}) \times \overrightarrow{b} = \lambda(\overrightarrow{a} \times \overrightarrow{b})$ 3) $(\overrightarrow{a} + \overrightarrow{b}) \times \overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{c}$ (ducmpubymubnocmb)

5. Выпишите формулу для вычисления векторного произведения в координатах, заданных в ортонормированном базисе.

Пусть \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} — правый ортонормированный базис, $\overrightarrow{a} = a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}$, $\overrightarrow{b} = b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k}$. Тогда:

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \overrightarrow{i} (a_y b_z - b_y a_z) + \overrightarrow{j} (a_z b_x - a_x b_z) + \overrightarrow{k} (a_x b_y - a_y b_x)$$

6. Дайте определение смешанного произведения векторов. Как вычислить объем тетраэдра с помощью смешанного произведения?

Смешанным произведением векторов \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} называют число ($\overrightarrow{a} \times \overrightarrow{b}$, \overrightarrow{c}).

Объем тетраэдра, построенного на векторах \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} равен $V_T = \frac{1}{c} |\langle \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \rangle|$.

7. Выпишите формулу для вычисления смешанного произведения в координатах, заданных в ортонормированном базисе.

Пусть \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} – правый ортонормированный базис, $\overrightarrow{a} = a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}$, $\overrightarrow{b} = b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k}$, $\overrightarrow{c} = c_x \overrightarrow{i} + c_y \overrightarrow{j} + c_z \overrightarrow{k}$. Тогда:

$$\langle \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \rangle = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

8. Сформулируйте критерий компланарности трех векторов с помощью смешанного произведения.

Векторы \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} компланарны $\Leftrightarrow \langle \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \rangle = 0$.

9. Дайте определение прямоугольной декартовой системы координат.

Прямоугольной декартовой системой координат называют пару, состоящую из точки О и ортонормированного базиса.

10. Что такое уравнение поверхности и его геометрический образ?

Уравнение F(x,y,z) = 0 называют *уравнением поверхности* S, если этому уравнению удовлетворяют координаты любой точки, лежащей на поверхности, и не удовлетворяют координаты ни одной точки, не лежащей на поверхности.

При этом поверхность S называют геометрическим образом уравнения F(x,y,z) = 0.

Сформулируйте теорему о том, что задает любое линейное уравнение на координаты точки в трехмерном пространстве.

Любое уравнение Ax + By + Cz + D = 0, где $A^2 + B^2 + C^2 > 0$, определяет в пространстве плоскость.

12. Что такое нормаль плоскости?

Пусть Ax + By + Cz + D = 0 — уравнение плоскости. Тогда вектор $\overrightarrow{n} = (A, B, C)$ перпендикулярен плоскости и называется нормалью к этой плоскости.

13. Выпишите формулу для расстояния от точки до плоскости.

Рассмотрим плоскость L: Ax + By + Cz + D = 0 и точку $M(x_0, y_0, z_0)$. Тогда:

$$\rho(M, L) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

14. Общие уравнения прямой. Векторное уравнение прямой. Параметрические и канонические уравнения прямой.

$$ullet$$
 $egin{cases} A_1x+B_1y+C_1z+D_1=0 \ A_2x+B_2y+C_2z+D_2=0 \end{cases}$ — общее уравнение прямой

- Векторное уравнение прямой: $\overrightarrow{r} = \overrightarrow{r_0} + t \overrightarrow{s}$, где $\overrightarrow{r_0}$ радиус-вектор некоторой точки прямой, \overrightarrow{s} направляющий вектор прямой
- Параметрическое уравнение: $\begin{cases} x-x_0=tl\\ y-y_0=tm\,, \text{ где } \overrightarrow{p}(l,m,n)-\text{направляющий вектор прямой,}\\ z-z_0=tn \end{cases}$

 $M(x_0, y_0, z_0)$ – точка прямой

• Каноническое уравнение прямой: $t = \frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}$

15. Сформулируйте критерий принадлежности двух прямых одной плоскости.

Пусть $M_1(x_1, y_1, z_1) \in L_1$, $M_2(x_2, y_2, z_2) \in L_2$. Тогда L_1 и L_2 в одной плоскости $\Leftrightarrow \overrightarrow{s_1}, \overrightarrow{s_2}$ и $\overrightarrow{M_1 M_2}$ компланарны, где $\overrightarrow{s_1}, \overrightarrow{s_2}$ – направляющие вектора прямых L_1 и L_2 соответственно.

16. Выпишите формулу для вычисления расстояния от точки до прямой.

Рассмотрим точку $M_1(x_1,y_1,z_1)$ и прямую $L: \frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$. Пусть $\overrightarrow{s} = (l,m,n), \ M_0(x_0,y_0,z_0)$. Тогда:

$$\rho(M_1, L) = \frac{|\overrightarrow{M_0M_1} \times \overrightarrow{s}|}{|\overrightarrow{s}|}$$

17. Выпишите формулу для вычисления расстояния между двумя скрещивающимися прямыми.

Рассмотрим скрещивающиеся прямые L_1 и L_2 , s_1 и s_2 – их направляющие векторы и точки $M_1 \in L_1$, $M_2 \in L_2$. Тогда:

$$\rho(L_1, L_2) = \frac{|\langle \overrightarrow{s_1}, \overrightarrow{s_2}, \overrightarrow{M_1 M_2} \rangle|}{|\overrightarrow{s_1} \times \overrightarrow{s_2}|}$$

Комплексные Числа.

18. Что такое алгебраическая и тригонометрическая формы записи комплексного числа?

Алгебраическая форма комплексного числа

Запись комплексного числа z в виде z=a+bi, где a и b - действительные числа, называется алгебраической формой комплексного числа.

Hапример. z = 1 - i

Подробнее о данной форме записи комплексных чисел по ссылке →

Тригонометрическая форма комплексного числа

Если $|z|=\sqrt{a^2+b^2}$ - модуль комплексного числа z=a+bi, а ϕ - его аргумент, то **тригонометрической** формой комплексного числа z называется выражение

 $z = |z|(\cos \phi + i \sin \phi)$

19. Дайте определения модуля и аргумента комплексного числа. Что такое главное значение аргумента комплексного числа?

$$x = r \cdot \cos \varphi$$
$$y = r \cdot \sin \varphi$$

 \emph{r} - называется модулем комплексного числа (это расстояние от \emph{z} до 0)

$$\begin{split} r &= \sqrt{x^2 + y^2} = |z| \\ z &= x + iy = r \cdot \cos \varphi + i \cdot r \cdot \sin \varphi = r \cdot \left(\cos \varphi + i \cdot \sin \varphi\right) \end{split}$$

 $x+i\cdot y$ - алгебраическая форма записи комплексного числа

$$r \cdot (\cos \varphi + i \cdot \sin \varphi)$$

 φ - это аргумент комплексного числа (это угол между радиус-вектором z и полярном направляющим вещественной оси)

$$\varphi = Arg \ z = \{arg \ z + 2\pi k | k \in \mathbb{Z}\}$$

 $arg\ z$ - главное значение аргумента

$$arg~z\in [0,2\pi)$$
 или $(-\pi,\pi)$

20. Сложение, умножение комплексных чисел. Что происходит с аргументами и модулями комплексных чисел при умножении и при делении?

Сложение: $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$

Умножение: $(x_1, y_1) \cdot (x_2, y_2) = (x_1 \cdot x_2 - y_1 \cdot y_2, x_1 \cdot y_2 + x_2 \cdot y_1).$

При умножении модули комплексных чисел перемножаются, а аргументы складываются. Модуль частного двух комплексных чисел равен частному модулей, а аргумент – разности аргументов делимого и делителя.

21. Что такое комплексное сопряжение? Как можно делить комплексные числа в алгебраической форме?

Комплексное сопряжение: $\overline{z} = \overline{a+b\cdot i} = a-b\cdot i$

Пусть $z_1, z_2 \in \mathbb{C}$ и $z_2 \neq 0$. Тогда:

$$\frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{z_2 \cdot \overline{z_2}} = \frac{z_1 \cdot \overline{z_2}}{|z_2|^2}$$

22. Выпишите формулу Муавра.

$$z^n = r^n \cdot (\cos n\phi + i \cdot \sin n\phi), n \in \mathbb{N}$$

23. Как найти комплексные корни n-ой степени из комплексного числа? Сделайте эскиз, на котором отметьте исходное число и все корни из него.

Дано число $w = \rho \cdot (\cos \psi + i \cdot \sin \psi)$ и число $n \in \mathbb{N}$

$$\sqrt[n]{w} = \left\{ z = \sqrt[n]{\rho} \cdot \left(\cos \frac{\psi + 2\pi k}{n} + i \cdot \sin \frac{\psi + 2\pi k}{n} \right), \ k = \overline{0, n - 1} \right\}$$

24. Сформулируйте основную теорему алгебры. Сформулируйте теорему Безу.

Основная теорема алгебры: \forall многочлена $f(z) = a_n \cdot z^n + a_{n-1} \cdot z^{n-1} + \ldots + a_0 \cdot z^0, \ a_i \in \mathbb{C}, \ n \in \mathbb{N}, \ a_n \neq 0 \ \exists$ корень $z_0 \in \mathbb{C}$.

Теорема Безу: Остаток от деления многочлена f(x) на x – c равен f(c).

25. Выпишите формулу Эйлера. Выпишите выражения для синуса и косинуса через экспоненту.

Формула Эйлера: $\cos \phi + i \cdot \sin \phi = e^{i\phi}, \ \phi \in \mathbb{R}$

$$\cos \phi = \frac{e^{i\phi} + e^{-i\phi}}{2}, \ \sin \phi = \frac{e^{i\phi} - e^{-i\phi}}{2i}$$

26. Выпишите формулы Виета для многочлена третьей степени.

При n=3 уравнение (7) имеет вид

$$a_0 x^3 + a_1 x^2 + a_2 x + a_3 = 0, \quad a_0 \neq 0,$$

а формулы Виета записываются так:

$$\begin{cases} \boldsymbol{z}_{1} + \boldsymbol{z}_{2} + \boldsymbol{z}_{3} = -\frac{\boldsymbol{a}_{1}}{\boldsymbol{a}_{0}}, \\ \boldsymbol{z}_{1}\boldsymbol{z}_{2} + \boldsymbol{z}_{1}\boldsymbol{z}_{3} + \boldsymbol{z}_{2}\boldsymbol{z}_{3} = \frac{\boldsymbol{a}_{2}}{\boldsymbol{a}_{0}}, \\ \boldsymbol{z}_{1}\boldsymbol{z}_{2}\boldsymbol{z}_{3} = -\frac{\boldsymbol{a}_{3}}{\boldsymbol{a}_{0}}. \end{cases}$$

27. Какие многочлены называются неприводимыми?

Многочлен называется npusodumым, если \exists нетривиальное разложение $f=g\cdot h$ и nenpusodumым в противном случае.

28. Сформулируйте утверждение о разложении многочленов на неприводимые множители над полем комплексных чисел.

 \forall многочлен степени n>0 разлагается в произведение неприводимых многочленов. Комплексный многочлен степени n разлагается в произведение:

$$P_n(z)$$
 = $a_n\cdot(z-z_1)^{\alpha_1}\cdot\ldots\cdot(z-z_k)^{\alpha_k}$, где сумма кратностей $\alpha_1+\ldots+\alpha_k=n, z_i\in\mathbb{C}$

Группы.

29. Какие бинарные операции называются ассоциативными, а какие коммутативными?

Бинарная операция \times называется ассоциативной, если $\forall a, b, c \in X : a \times (b \times c) = (a \times b) \times c$.

Бинарная операция * называется коммутативной, если $\forall a, b \in X \ a * b = b * a$.

30. Дайте определения полугруппы и моноида. Приведите примеры.

Множество с заданной на нем ассоциативной бинарной операцией называется *полугруппой*. **Пример:** $(\mathbb{N},+)$.

Полугруппа, в которой есть нейтральный элемент, называется *моноидом*. **Пример:** (\mathbb{N},\cdot) – моноид, e=1.

31. Сформулируйте определение группы. Приведите пример.

Моноид G, все элементы которого обратимы, называется *группой*. **Пример:** множество всех невырожденных (det $A \neq 0$) матриц $A_{n \times n}$ с операцией матричного умножения.

32. Что такое симметрическая группа? Укажите число элементов в ней.

Симметрическая группа S_n — множество всех подстановок длины n $\sigma = \begin{pmatrix} 1 & \dots & n \\ l_1 & \dots & l_n \end{pmatrix}$ с операцией композиции. В ней n! элементов.

33. Что такое общая линейная и специальная линейная группы?

Множество всех невырожденных (det $A \neq 0$) матриц $A_{n \times n}$ с операцией матричного умножения – $GL_n(\mathbb{R})$ – общая линейная группа.

 $SL_n(\mathbb{R}) = \{A \in GL_n(\mathbb{R}) | \det A = 1\} -$ специальная линейная группа.

34. Сформулируйте определение абелевой группы. Приведите пример.

Группа с коммутативной операцией называется *абелевой*. **Пример:** $(\mathbb{Z}, +)$ – абелева группа.

35. Дайте определение подгруппы. Приведите пример группы и её подгруппы.

Определение Подмножество $H\subseteq G$ называется подгруппой в G, если:

- 1. $e \in H$
- 2. Если $h_1,h_2,\in H\implies h_1\cdot h_2\in H$, т. е. множество H замкнуто относительно умножения
- 3. Если $h \in H \implies h^{-1} \in H$, т. е. H замкнуто относительно взятия обратного

36. Дайте определение гомоморфизма групп. Приведите пример.

Отображение $f:G \to G'$ группы (G,*) в группу (G',\circ) называется гомоморфизмом, если $\forall a,b \in G \ f(a*b) = f(a) \circ f(b)$.

 $\textbf{Пример:} \ \det : GL_n(\mathbb{R}) \to \mathbb{R}^* \ (\mathbb{R}^* - \text{это } \mathbb{R} \setminus \{0\} \ \text{с операцией умножения}). \ \exists \text{то гомоморфизм, так как } \det(A \cdot B) = \det A \cdot \det B.$

37. Дайте определение изоморфизма групп. Приведите пример.

Изоморфизм – это биективный гомоморфизм.

Пример: $(\mathbb{R},+) \simeq (\mathbb{R}^+,\cdot)$ посредством изоморфизма $f(x) = e^x$.

38. Сформулируйте определение циклической группы. Приведите пример.

Определение Пусть g - элемент группы G. Если любой элемент $g \in G$ имеет вид $g = a^n$, где $a \in G$, то G называют циклической группой. Обозначение G = < a >

Пример

- 1. $(\mathbb{Z},+)$ циклическая группа a=1 ("порождена единицей") 2. $(\{1,-1\},\cdot)$
- 39. Дайте определение порядка элемента.

Порядок элемента $a \in G$ — наименьшее натуральное число p такое, что $a^p = e$.

- 40. Сколько существует, с точностью до изоморфизма, циклических групп данного порядка?
- блять.