-	
	Problem Solution Set 3
	Chapter 16
14)	Technical progress is not neutral. Less labor was
	required to spin the same amount of cotton.
	Land
	2 before
	Kafor
	Cotton
	240.34 0.34
21)	MPR = (2.5) 10.64) A 0.25 R -0.25 = 1.6 (A/R) 0.25 MPR = (2.5) 10.75) A 0.25 R -0.25 = 1.875 (A/R)
	M R 2 (3.5) (0.15) A N = 1815 (7) (2)
	b) MRTS": -MP/MP = -(9)(PA) assuming A an MRTSP: -MP/MP : -3(PA) x-axis
	(c) Yes (onsider)
	Gw: 3A°25 ROW and Gp: 25A°5 ROW
	These have some MRTS but different marginal
	products.
~ \	
26)	a) constant returns to scale
	if at B>1, constant. if at B>1, increasing
	if a+B L1, decreasing
	el same as above
	d) if d=1, constand d L1, decreasing
	271, increasing

extra credit 30) if $F(xL,xh): x^{g}(L,h)$ then $JL: xf'(xL,xh)=x^{g}f$ and $F'_{s}(xL,xh): x^{g-1}F'_{s}(L,h)$ then $JF'_{s}F'_{s}(xL,xh): y$	',(L,K) x ^{y-} f ₂ (2,K)
31) from above with you, fi(kL, xkh): fi(L, k) and fi(xL, xkh): fi(L, k) which implies: Fi(xL, xkh): fi(L, kk) Fi(xL, xkh): fi(L, k) and the MRTS is independent of x.	
32) If F(xL, xh) = xy F(L, K) then do gt : Lf; (xL, xh) + KF' (xL, xW = yxy F(L, W). Set x=1: LF; (1, K) + hF'_2(L, K) = yF(L, K)	
Chapter 7 (lo a) quantity or midwa isoquant 15 2530 50 aL	
b) The firm chooses latermachine technology C) cost Ac (sumar-mache) Ac (pure labor)	
C)	

23) A(Cq): 0 55 q 067 + 80 q 2 DACCQ): 0 3685 q 0.33 +1685q 3 = 0 Day 9267: 4341.93 9=23 ACIA) = 0.55 q 0.67 + 800 q + 400 q 1 DAC 0.3685 q 33 40-1600 q - 400 q 2 = 0 9, = 68 27/a) You must set Jac 20 for each firm The minimum point of AC, is at q:2 At plant 2, the min is 1 Wi The Am should produce 3 units in plant by and I unit in plant 2. 31 Suppose capital is fixed at h Frh = 20K VC=WL= DL Total Cost: C= F+VC = 20K +10L

9: 10 20.32 K 0.56 => 2000 +10L

1: 0.19 K 0.56 => 2000 +10L AVC: UC/q = 0.0078 a2.125 MC= dv/dq = d(00075q3.125)/dq=0.023q,2.125

20) MY 1MY = 10.7 g/L/11 0.3 g/K): 3= w/r
In the US, who wire 7/3 -> L= h; q= L 0.7 4 L
when 9,2100, h: L: 100 0,2000
In Asia, w/r= 7/9 > L=34 9= L0.7 K0.3=216K
when q = 100, 4:246.3, L = 138.9, C= 694.5
If it had to use same factor quarteting as
US (K=L=100) C: 350 x 450: 800
extra crodit
37)
·