On Nonsingular M-Matrices

J. P. Milaszewicz

Departamento de Matemática Facultad de Ciencias Exactas y Naturales Ciudad Universitaria 1428 Buenos Aires, Argentina

and

L. P. Moledo

Instituto de Investigaciones Económicas y Sociales Facultad de Ciencias Económicas Córdoba 2121 1120 Buenos Aires, Argentina

Submitted by Daniel Hershkowitz

ABSTRACT

We extend to nonsingular M-matrices the following result by G. Sierksma: If S is a nonsingular irreducible M-matrix and if x and $y \neq 0$ satisfy Sx = y, with $x_i > 0$ whenever $y_i < 0$, then all the coordinates in x are positive. This theorem has several corollaries dealing with bounds on solutions and their relative errors, which we also generalize.

1. INTRODUCTION

It is a standard fact in the Perron-Frobenius theory that if T is a nonnegative irreducible matrix, then there exists a unique (up to constants) eigenvector corresponding to the spectral radius of T, such that all its coordinates are positive. This theorem is a basic tool in the input-output Leontief model; a complete analysis of this theorem for a general nonnegative T can be found in [1].

LINEAR ALGEBRA AND ITS APPLICATIONS 195: 1-8 (1993)

1

Let now s > r(T) := spectral radius of T, and consider the nonsingular M-matrix S := sI - T; another useful result for the Leontief model is that the solution of Sx = y satisfies $x \gg 0$ (i.e. $x_i > 0$ for all i), whenever y > 0 (i.e. $y \neq 0$ and $y_i \geqslant 0$ for all i). This result has been extended by G. Sierksma in the following remarkable way (see Theorem 6 in [2]):

If
$$Sx = y \neq 0$$
 and $x_i > 0$ whenever $y_i < 0$, then $x \gg 0$.

Our aim is to extend Sierksma's result as well as some of its corollaries to the case where S is a general nonsingular M-matrix.

2. ON POSITIVE SOLUTIONS

We assume from now on that S is defined as above with a nonnegative T, but not necessarily irreducible. N will denote the set of positive integers not greater than n, the order of S. G(S) is the directed graph of S.

We say that a nonempty subset K of G(S) is a *nucleus* if it is a strongly connected component of G(S). For a nucleus K, N_K denotes the set of indices involved in K; for a vector y, y_K is the subvector whose indices are in N_K ; analogously, S_K denotes the corresponding principal submatrix of S. Note that S_K is maximal irreducible.

It will also be assumed throughout that the vectors x and y satisfy

$$Sx = y, (2.1)$$

and we define

$$N_{+}(x) := \{i \in N : x_{i} > 0\}.$$

THEOREM 2.1. If $y_K \neq 0$ for each nucleus K, and if $x_i > 0$ whenever $y_i < 0$, then $x \gg 0$.

Proof. Observe that by performing a permutation similarity on S we can bring S to a block lower triangular form, where the diagonal blocks are the principal submatrices of S indexed by (the vertices of) the strongly connected components of S. Let the diagonal block S_{ii} correspond to the nucleus K_i . We now show that for every i we have

$$N_{K_{\bullet}} \subseteq N_{+}(x). \tag{2.2}$$

Assume to the contrary that (2.2) does not hold, and let i be the minimal positive integer for which

$$N_{K_{\cdot}} \nsubseteq N_{+}(x). \tag{2.3}$$

If $N_{K_i} \cap N_+(x) = \emptyset$, then it follows that $y_{K_i} > 0$. Since S is in block lower triangular form, and since i is the minimal positive integer for which (2.3) holds, it now follows that

$$S_{K_i} x_{K_i} \geqslant y_{K_i}. \tag{2.4}$$

If K_i is a single node and $T_{K_i} = 0$, then we trivially have $x_{K_i} \gg 0$. Else, S_{K_i} is an irreducible matrix, and by applying the result mentioned in the introduction to (2.4) we obtain $x_{K_i} \gg 0$, contradicting our assumption (2.3). Therefore, we have

$$N_{K_i} \cap N_+(x) \neq 0.$$
 (2.5)

By (2.3) and (2.5) let $r,t\in K_i$ be such that $r\notin N_+(x)$ and $t\in N_+(x)$. Since T_{K_i} is an irreducible nonnegative matrix, there exists a positive integer p such that $(T^p)_{rt}>0$. Let p be the minimal such integer. We use the asterisk * to denote subvectors and principal submatrices indexed by the complement of $N_+(x)$. Clearly, $y^*\geqslant 0^*$ and $x^*\leqslant 0^*$. If p=1, then, in view of $T_{rt}>0$, we have

$$S^*x^* > y^*. {(2.6)}$$

Since S^* is a nonsingular *M*-matrix, we get from (2.6) the contradiction $x^* > 0^*$. Suppose now that p > 1. Since

$$(T^m)_{rt} = 0$$
 $\forall r \notin N_+(x), \forall t \in N_+(x) \text{ and } m < p$

we get

$$(T^m y)_r \geqslant 0$$
 for $r \notin N_+(x)$. (2.7)

Since

$$(s^{p}I - T^{p})x = \left(\sum_{j=1}^{p} s^{p-j}T^{j-1}\right)(SI - T)x = \left(\sum_{j=1}^{p} s^{p-j}T^{j-1}\right)y,$$

(2.7) implies that

$$s^{p}x_{r} - \sum_{j} (T^{p})_{rj}x_{j} \ge 0$$
 for $r \notin N_{+}(x)$. (2.8)

The choice of p and (2.8) finally imply that

$$[s^{p}I^{*} - (T^{p})^{*}]x^{*} > 0. (2.9)$$

Now S is a nonsingular M-matrix, whence the same holds for $s^p I^* - (T^p)^*$, which applied in (2.9) yields the contradiction $x^* > 0$.

Let us finally prove that $N = N_+(x)$. If we had $N \neq N_+(x)$, consider $r \notin N_+(x)$. Equation (2.2) implies that there exists a path in G(S) leading from r to a nucleus K, whence there exists a minimal positive p and an index t such that $(T^p)_{rt} > 0$. If we use the asterisk as above, once again we have $y^* \ge 0^*$ and $x^* \le 0^*$, and by reasoning in the same way we have already done, we get the contradiction $x^* > 0^*$.

Thus,
$$N_{+}(x) = N$$
 and the proof is complete.

REMARK 2.2. Our proof of Theorem 2.1 is very similar to the proof of Theorem 6 in [2] handling the irreducible case. In [2], the author applies his Proposition 2 to the matrix T_*^{α} . Proposition 2 holds in general only for irreducible matrices, while, although T is irreducible, T_*^{α} can be reducible. Thus technically, the proof of Theorem 6 in [2] is incorrect. Our result, generalizing Theorem 6 in [2] to the general (reducible) case, settles this point.

3. BOUNDS FOR THE SOLUTION

We assume in this section that S is diagonally dominant and set

$$N_{-}(y) \coloneqq N_{+}(-y).$$

THEOREM 3.1. The following propositions hold:

(i) If $N_K \cap N_+(y) \neq \emptyset$ for each nucleus K, then

$$x_i \leq \max\{0, \max\{x_j : j \in N_+(y)\}\}$$
 $\forall i \in N.$

(ii) If $N_K \cap N_-(y) \neq \emptyset$ for each nucleus K, then

$$\min\{0, \min\{x_j : j \in N_-(y)\}\} \leqslant x_i \qquad \forall i \in N.$$

(iii) If the hypotheses in (i) and (ii) hold and there exist j_1 and j_2 such that $x_{j_1} < 0$ and $x_{j_2} > 0$, then we have

$$\min\{x_i: j \in N_-(y)\} \leqslant x_i \leqslant \max\{x_i: j \in N_+(y)\} \qquad \forall i \in N.$$

Remark 3.2. The diagonal dominance of S in the theorem above is not redundant, as the following example with irreducible T puts in evidence. Consider

$$T := \begin{pmatrix} 0 & 0.5 \\ 1.5 & 0 \end{pmatrix}, \quad y_1 := \frac{3}{8}, \quad y_2 := -\frac{1}{4}, \text{ and } s := 1.$$

The solution of (2.1) is given by $x_1 = 1$, $x_2 = \frac{5}{4}$; and (i) in Theorem 3.1 does not hold.

COROLLARY 3.3. The following propositions hold:

(i) If $N_K \cap N_+(y) \neq \emptyset$ for each nucleus K, and if for some m

$$x_m = \max\{x_j : j \in N_+(y)\}$$
 and $x_m \geqslant 0$,

then

$$y_m \ge 0$$
.

(ii) If $N_K \cap N_-(y) \neq \emptyset$ for each nucleus K, and if for some m

$$x_m = \min\{x_j : j \in N_-(y)\}$$
 and $x_m \le 0$,

then

$$y_m \leq 0$$
.

REMARK 3.4. Theorem 3.1 and Corollary 3.3 generalize Theorem 7 and Corollaries 8 and 9 in [2].

4. BOUNDS FOR THE RELATIVE ERRORS

We assume now that y in (2.1) satisfies

$$y \ge 0$$
 and $y_K \ne 0$ for each nucleus K . (4.1)

Note that (4.1) implies that $x \gg 0$. Let Δy be a vector such that if $y_i = 0$ then $\Delta y_i \geqslant 0$, and consider Δx such that

$$S \Delta x = \Delta y$$
.

THEOREM 4.1. The following propositions hold:

(i) If $N_K \cap N_+(\Delta y) \neq \emptyset$ for each nucleus K, then

$$(\Delta x_i/x_i) \leq \max \{0, \max \{\Delta x_j/x_j : j \in N_+(\Delta y)\}\} \quad \forall i \in N.$$

(ii) If $N_K \cap N_-(\Delta y) \neq \emptyset$ for each nucleus K, then

$$\min\{0,\min\{\Delta x_j/x_j:j\in N_-(\Delta y)\}\}\leqslant (\Delta x_i/x_i)\quad\forall i\in N.$$

Remark 4.2. Sierksma's proof of Theorem 4.1 for irreducible S implicitly assumes that $y+\Delta y\gg 0$ (See Theorem 21 in [2]); with that assumption, the same proof works for a general nonsingular M-matrix S. The general case treated here can then be obtained in the following way: Consider, for positive real t, y(t):=y+tu, with $u_i:=1$ for all i, and let x(t) be such that

$$Sx(t) = y(t).$$

 $y(t) + \Delta y$ has all its coordinates positive, and the inequalities in Theorem 4.1 hold for x(t) and Δx . By letting t tend to 0, we get the final conclusion.

REMARK 4.3. Theorem 25 in [2] states that if $\Delta y \neq 0$ and $\Delta y_i = 0$, then for such i, strict inequalities are valid in Theorem 4.1 (with irreducible S). In order for this to be true, a stronger hypothesis on T is necessary (such as $t_{jk} > 0$ for all $j \neq k$), as the following example shows: Consider a positive real t < 1, and define

$$T := \begin{pmatrix} 0 & t & 0 \\ 0 & 0 & t \\ t & 0 & 0 \end{pmatrix}.$$

T is irreducible and its spectral radius is t. If we take

$$x_i := \frac{1}{1-t}$$
 for $1 \le i \le 3$, and $s := 1$,

then Sx = u, with u as in Remark 4.2. If we now define

$$\Delta u_1 := -\frac{1}{2}$$
, $\Delta u_2 := 0$, and $\Delta u_3 := t/2$,

then the solution for $S\Delta x = \Delta u$ is given by

$$\Delta x_1 = -\frac{1}{2}$$
, $\Delta x_2 = 0$, and $\Delta x_3 = 0$.

But we have $N_{+}(\Delta u) = \{3\}$, and (i) in Theorem 4.1 does not hold with strict inequality for i := 2.

COROLLARY 4.4. Let there be j_1 and j_2 such that $x_{j_1} < 0$ and $x_{j_2} > 0$. If for each nucleus K

$$N_{\kappa} \cap N_{+}(\Delta y) \neq \emptyset$$
 and $N_{\kappa} \cap N_{-}(\Delta y) \neq \emptyset$,

then we have

$$\min \left\{ \frac{\Delta x_j}{x_j} : j \in N_-(\Delta y) \right\} \leq \frac{\Delta x_i}{x_i} \leq \max \left\{ \frac{\Delta x_j}{x_j} : j \in N_+(\Delta y) \right\} \qquad \forall i \in N.$$

REMARK 4.5. Corollary 4.4 generalizes Corollary 23 in [2].

The authors are indebted to the anonymous referee who pointed out the paper by Hans Schneider; the results contained in that paper and other remarks (including the detection and correction of a flaw in our proof of Theorem 2.1) by the same referee have been very helpful in order to simplify earlier versions of this paper.

REFERENCES

- 1 Hans Schneider, The influence of the marked reduced graph of a nonnegative matrix on the Jordan form and on related properties: A survey, *Linear Algebra Appl.* 84:161–189 (1986).
- 2 G. Sierksma, Nonnegative matrices: The open Leontief model, *Linear Algebra Appl.* 26:175–201 (1979).
- 3 R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962.

Received 17 December 1991; final manuscript accepted 29 October 1992