PURDUE UNIVERSITY

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 9 (Apr 4 – Apr 11)

- 1 (10+5) a) Let L be the splitting field of the polynomial $t^{13} 1$. Find all subgroups of $Gal_{\mathbb{Q}}(L)$.
 - b) How many intermediate subfields are there in the extension $L:\mathbb{Q}$?
- **2** (10) Draw the lattice of subfields and corresponding lattice of subgroups of $Gal_{\mathbb{F}_3}(\mathbb{F}_{3^8})$. Find orders of all subgroups of $Gal_{\mathbb{F}_3}(\mathbb{F}_{3^8})$.
- **3** (10) Prove Artin's theorem: let $[L:K] < \infty$, $G := \operatorname{Gal}_K(L)$. Then $[L:L^G]$ is a Galois extension.
- 4 (10) Let L: K be a finite Galois extension, $G:=\operatorname{Gal}_K(L)$. For any $\alpha \in L$ define

$$\operatorname{Tr}(\alpha) = \sum_{g \in G} g(\alpha)$$
 and $\operatorname{Norm}(\alpha) = \prod_{g \in G} g(\alpha)$.

Prove that for an arbitrary $\alpha \in L$ one has $\text{Tr}(\alpha)$, $\text{Norm}(\alpha) \in K$.

- **5** (15+15) a) Find all of the subfields of $\mathbb{Q}(2^{1/3}, e^{2\pi i/3})$.
 - b) Draw the lattice of subfields and corresponding lattice of subgroups of $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(2^{1/3}, e^{2\pi i/3}))$.