Group meeting

6/19/24

Yunlong Pan

Outline

- Email
 - Regional climate change projections Web tools
 - Criteria and methods
 - Search for future predictions with LLM
- ChatIAMs
 - Review
 - Demo app (New)

Regional climate change projections Web tools

https://seale vel.nasa.gov /data_tools/ 17

IPCC AR6 Sea Level Projection Tool

Under a warming climate, sea levels around the world have been rising and are projected to continue rising in the future. The projections of future sea level rise are critical for coastal planners and policymakers trying to understand and account for sea-level impacts on their communities. Understanding the science, determining which projections to use, and having

Criteria and methods

https://www.ipcc.ch/report/ar6/wg1

Criteria and methods

- Dataset (IPCC AR6 Sea Level Projections)
 https://zenodo.org/records/6382554
- Guide (to the IPCC AR6 Sea Level Projections)https://github.com/Rutgers-ESSP/IPCC-AR6-Sea-Level-Projections
- Framework for Assessing Changes To Sea-level (FACTS) https://github.com/radical-collaboration/facts

Search for future predictions with LLM

Ex: SEA
LEVEL
PROJECTION
for PORT
JEFFERSON

Demo app (Next week)

Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S
psmsl_i	d process	confidence	scenario	quantile	2020	2030	2040	2050	2060	2070	2080	2090	2100	2110	2120	2130	2140	215
	848 total	medium	ssp119	5	0.048	0.082	0.119	0.166	0.197	0.231	0.253	0.281	0.252	0.259	0.279	0.296	0.311	0.32
	848 total	medium	ssp119	17	0.072	0.126	0.18	0.238	0.282	0.328	0.36	0.397	0.397	0.418	0.453	0.485	0.517	0.54
	848 total	medium	ssp119	50	0.102	0.182	0.254	0.332	0.394	0.458	0.51	0.565	0.603	0.66	0.722	0.781	0.838	0.89
	848 total	medium	ssp119	83	0.134	0.243	0.34	0.443	0.531	0.618	0.696	0.778	0.855	0.955	1.048	1.139	1.228	1.31
	848 total	medium	ssp119	95	0.162	0.295	0.411	0.535	0.644	0.752	0.852	0.954	1.062	1.18	1.297	1.414	1.529	1.64
	848 total	medium	ssp126	5	0.04	0.079	0.127	0.184	0.236	0.288	0.327	0.361	0.396	0.396	0.421	0.445	0.467	0.48
	848 total	medium	ssp126	17	0.066	0.122	0.184	0.251	0.308	0.368	0.413	0.455	0.498	0.512	0.547	0.58	0.611	0.64
	848 total	medium	ssp126	50	0.102	0.184	0.268	0.352	0.424	0.497	0.558	0.619	0.676	0.73	0.788	0.844	0.9	0.95
	848 total	medium	ssp126	83	0.141	0.251	0.361	0.468	0.559	0.656	0.741	0.828	0.906	1.01	1.099	1.188	1.274	1.36
	848 total	medium	ssp126	95	0.17	0.301	0.431	0.557	0.665	0.783	0.89	1.001	1.1	1.222	1.333	1.444	1.557	1.66
	848 total	medium	ssp245	5	0.041	0.076	0.134	0.209	0.279	0.344	0.414	0.475	0.508	0.516	0.569	0.621	0.672	0.7
	848 total	medium	ssp245	17	0.067	0.12	0.188	0.269	0.345	0.421	0.495	0.567	0.621	0.648	0.715	0.78	0.844	0.9
	848 total	medium	ssp245	50	0.104	0.182	0.268	0.362	0.45	0.546	0.636	0.725	0.824	0.906	1.004	1.1	1.194	1.2
	848 total	medium	ssp245	83	0.142	0.248	0.357	0.468	0.576	0.703	0.819	0.94	1.088	1.236	1.377	1.515	1.654	1.7
	848 total	medium	ssp245	95	0.171	0.298	0.424	0.552	0.678	0.83	0.974	1.122	1.308	1.49	1.666	1.839	2.011	2.1
	848 total	medium	ssp370	5	0.033	0.066	0.118	0.195	0.283	0.373	0.477	0.57	0.624	0.633	0.71	0.786	0.861	0.9
	848 total	medium	ssp370	17	0.062	0.113	0.177	0.26	0.35	0.447	0.551	0.655	0.738	0.763	0.854	0.946	1.035	1.
	848 total	medium	ssp370	50	0.103	0.178	0.262	0.358	0.454	0.566	0.68	0.808	0.938	1.03	1.158	1.285	1.41	1.5
	848 total	medium	ssp370	83	0.145	0.249	0.356	0.469	0.584	0.721	0.862	1.032	1.216	1.374	1.55	1.728	1.903	2.0
	848 total	medium	ssp370	95	0.178	0.302	0.426	0.555	0.688	0.851	1.02	1.228	1.458	1.657	1.875	2.092	2.31	2.5
	848 total	medium	ssp585	5	0.048	0.089	0.154	0.226	0.309	0.41	0.498	0.612	0.71	0.708	0.794	0.877	0.958	1.0
	848 total	medium	ssp585	17	0.071	0.129	0.206	0.29	0.382	0.488	0.592	0.715	0.83	0.853	0.956	1.054	1.148	1.2
	848 total	medium	ssp585	50	0.103	0.186	0.282	0.388	0.494	0.618	0.752	0.9	1.045	1.15	1.294	1.432	1.566	1.69
	848 total	medium	ssp585	83	0.137	0.247	0.368	0.501	0.634	0.786	0.962	1.157	1.356	1.557	1.76	1.961	2.157	2.3
	848 total	medium	ssp585	95	0.163	0.293	0.434	0.59	0.747	0.93	1.146	1.381	1.635	1.875	2.126	2.377	2.623	2.8
	848 total	low	ssp126	5	0.04	0.079	0.127	0.184	0.236	0.288	0.327	0.361	0.39	0.396	0.421	0.445	0.467	0.4
	848 total	low	ssp126	17	0.066	0.122	0.184	0.251	0.308	0.368	0.413	0.455	0.498	0.512	0.547	0.58	0.611	0.6
	848 total	low	ssp126	50	0.104	0.187	0.272	0.356	0.43	0.502	0.564	0.624	0.68	0.743	0.806	0.869	0.933	0.9
	848 total	low	ssp126	83	0.144	0.258	0.378	0.49	0.592	0.69	0.779	0.871	0.955	1.055	1.157	1.267	1.383	1.49
	848 total	low	ssp126	95	0.17	0.308	0.459	0.601	0.724	0.847	0.971	1.114	1.248	1.392	1.529	1.675	1.826	1.9
	848 total	low	ssp585	5	0.048	0.089	0.152	0.224	0.309	0.41	0.498	0.612	0.71	0.708	0.794	0.877	0.958	1.0
	848 total	low	ssp585	17	0.071	0.129	0.205	0.288	0.38	0.488	0.592	0.715	0.83	0.853	0.956	1.054	1.148	1.2
	848 total	low	ssp585	50	0.104	0.187	0.284	0.392	0.505	0.638	0.79	0.968	1.155	1.342	1.569	1.821	2.1	2.4
	848 total	low	ssp585	83	0.141	0.258	0.396	0.552	0.732	0.941	1.182	1.442	1.707	2.002	2.589	3.396	4.474	5.6
	848 total	low	ssp585	95	0.164	0.31	0.491	0.698	0.932	1.229	1.612	2.057	2.539	3.083	3.708	4.392	5.119	6.37

ChatIAMs

- Paper Draft https://www.overleaf.com/1225397724nhhpgfjszczg#a93b66
 - Introduction
 - Background
 - Method
 - Experiment level1 (Simple Q&A)
 - Experiment level2
 - Experiment level3 (General Q&A)
 - Discussion
 - Conclusion
- Demo app https://github.com/yl1127/ChatlAMs/tree/main

7 questions:

- 1. What is the best estimate of the equilibrium climate sensitivity?
- 2. Is it possible the Arctic will become ice free at some points before 2050?
- 3. How likely will the world see runaway ice loss from the Antarctic ice sheets by 2100?
- 4. To what extent has climate change impacted ice sheets in both polar regions?
- 5. Will coastal New York see the impact of Greenland ice sheet melting by 2100?
- 6. What will be the likely changes to weather and climate extremes in coastal New York around 2050 if the world take no action to reduce greenhouse gas emissions?
- 7. What are the primary evidence and how robust is it that human activities caused the observed global warming since the pre-industrial period?

Result:

Questions	tool_calls	IAMs
Q1	No	
Q2	No	
Q3	No	
Q4	No	
Q5	No	
Q6	Yes	{"variable":"Surface Air Temperature Change","year":"2050","s cenario":"ssp585"}'
Q7	No	

 Q6: What will be the likely changes to weather and climate extremes in coastal New York around 2050 if the world take no action to reduce greenhouse gas emissions?

IAMs:

	model	quantile	variable	unit	scenario	2050
99	REMIND- MAGPIE	0.005	Surface Air Temperature Change	K	ssp585	2.09478
199	REMIND- MAGPIE	0.025	Surface Air Temperature Change	K	ssp585	2.11271
299	REMIND- MAGPIE	0.5	Surface Air Temperature Change	K	ssp585	2.38907
399	REMIND- MAGPIE	0.975	Surface Air Temperature Change	K	ssp585	2.64485
499	REMIND- MAGPIE	0.995	Surface Air Temperature Change	K	ssp585	2.66145

Q6 answers:

```
▷ Initialize Reactive Jupyter | Sync all Stale code

display (Markdown (get_chatiams (Q6)))

Python
```

```
[{'role': 'user', 'content': 'What will be the likely changes to weather and [{'role': 'user', 'content': 'What will be the likely changes to weather and
```

If no action is taken to reduce greenhouse gas emissions, the climate model projections under the high-emission scenario SSP5-8.5 suggest significant increases in surface air temperatures for coastal New York by around 2050. The median estimate indicates an increase of approximately 2.39°C above the baseline temperature levels.

Here are some likely changes to weather and climate extremes in coastal New York around 2050 under these conditions:

1. Increased Temperature Extremes:

- More frequent and intense heatwaves, with higher maximum temperatures.
- Warmer night-time temperatures, reducing the occurrence of cool nights.

2. Sea-Level Rise:

- Rising sea levels will contribute to more frequent and severe coastal flooding, especially during high tides and storm surges.
- Increased risk of coastal erosion and loss of land due to higher sea levels coupled with storm events.

3. More Intense Storms:

- Potential for more intense tropical cyclones (hurricanes) with higher wind speeds and more heavy rainfall, although the frequency of these storms can vary.
- Greater likelihood of damaging storm surges due to a combination of sea-level rise and intense storm activity.

4. Increased Precipitation Extremes:

- More frequent and severe heavy rainfall events, leading to a higher risk of flash flooding and urban flooding.
- Possible changes in seasonal precipitation patterns, potentially causing prolonged periods of both drought and intense rainfall.

5. Changes in Ocean Conditions:

- Ocean warming and acidification can impact coastal ecosystems, fisheries, and biodiversity.
- More frequent and widespread harmful algal blooms, affecting water quality and marine life.

Adapting to these changes will require significant efforts in updating infrastructure, improving emergency response systems, and planning for resilient coastal development.

Possible powerful climate models

- GraphCast: https://deepmind.google/discover/blog/graphcast-ai-modelfor-faster-and-more-accurate-global-weather-forecasting/
- Aurora: https://www.microsoft.com/en-us/research/blog/introducing-aurora-the-first-large-scale-foundation-model-of-the-atmosphere/

ClimaX: https://arxiv.org/abs/2301.10343

Demo app (Old)

- Jupyter notebook
- https://github.com/yl1127/Acad emicprojects/blob/main/yl_Climate_ LLM/yl ChatIAMs 0612.ipynb

Demo app (Docker)

https://github.com/yl1127/ChatlAMs/tree/main

Demo

- https://github.com/yl1127/ChatlAMs/tree/main
- Q6: What will be the likely changes to weather and climate extremes in coastal New York around 2050 if the world take no action to reduce greenhouse gas emissions?

Plan

- Application:
 - − ✓ LLM (ChatGPT-4o)
 - Climate models (IAMs)
 - − ✓ function_call (OpenAl Assistant API) 50% -> 90%
 - Meb application (Text-> Texct, documents(PDF, CSV), image(PNG), audio(mp3))
- Research
 - Experiments

Discussion