UBC MECH 222: MATLAB Computer Lab 7

Flux integrals over triangulated parametric surfaces


```
[T,X,Y,Z] = triangulate(@paraboloid,[0,1],[0,2*pi],[5,10]);
total_flux = flux_integral(T,X,Y,Z,@(x,y,z) [x,y,z]);

function p = paraboloid(r,theta)
    x = r.*cos(theta);
    y = r.*sin(theta);
    z = 1 - r.^2;
    p = [x,y,z];
end
```

```
total_flux = 8.4968
```

Instructions

Write a function called flux_integral which takes 5 input parameters: ☐ T is a matrix of vertex indices of a triangulation \square X is the vector of x coordinates of the vertices \square Y is the vector of y coordinates of the vertices \square Z is the vector of z coordinates of the vertices \square F is a function handle defining a vector field $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ The function performs the following tasks: ☐ Use trimesh to plot the triangulated surface defined by T, X, Y and Z \square Let A_i , B_i and C_i be the vertices of triangle T_i in the triangulation and let \mathbf{n}_i be the normal vector to the face with upward orientation (ie. $\mathbf{n}_i \cdot (0,0,1) \geq 0$). Let P_i be the centroid of the triangle $P_i = \frac{A_i + B_i + C_i}{3}$ For each triangle T_i in the triangulation, use quiver3 to plot the vectors \mathbf{n}_i and $\mathbf{F}(P_i)$ with their tails at P_i . ☐ Approximate the flux integral $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$ where S is the triangulated surface with *upward* orientation by computing the sum $\sum_{i} \mathbf{F}(P_i) \cdot \mathbf{n}_i$

Write comments at the beginning of your function to describe its purpose, inputs, outputs and **include your name and student number**. When you are satisfied with your function, submit your M-file (called flux_integral.m) to Connect. This lab is an extension of Computer Lab 5 on triangulated parametric surfaces. You may copy and modify your m-file from Lab 5 to complete this lab.