

Support u and v are vectors

Vector \mathbf{u} decomposed into orthogonal components \mathbf{w}_1 and \mathbf{w}_2 .

Want to decompose **u** as: $u = w_1 + w_2$

 \mathbf{w}_1 is parallel to vector \mathbf{v} and \mathbf{w}_1 is perpendicular/orthogonal to \mathbf{w}_2

The vector component \mathbf{w}_1 is also called the projection of vector \mathbf{u} onto vector \mathbf{v} :

$$\mathbf{P} \mathbf{w}_{1} = \operatorname{proj}_{\mathbf{v}} \mathbf{u}$$
.

$$P w_2 = u - w_1$$

The $proj_{\nu}\mathbf{u}$ can be calculated as follows:

$$proj_{v} \quad u = \left[\frac{u \cdot v}{v^{2}}\right] v$$

Vector Projection

Vector Projection

Why is it called projection?

Imagine a light source, parallel to \vec{v} , above \vec{w} . The light would cast rays perpendicular to \vec{v} .

 $\operatorname{proj}_{\vec{v}}\vec{w}$ is the shadow cast by \vec{w} on the line defined by \vec{v} .

Vector Projection

The vector connecting \vec{w} and $c\vec{v}$ is $\vec{w} - c\vec{v}$.

We want to find c such that $\vec{w} - c\vec{v}$ is perpendicular to \vec{v} .

Two perpendicular vectors have vector dot product of zero, so:

$$(\vec{w} - c\vec{v}) \cdot \vec{v} = 0$$

By distribution over addition of dot products:

$$\begin{aligned} (\vec{w} - c\vec{v}) \cdot \vec{v} &= 0 \implies \\ \vec{w} \cdot \vec{v} - c\vec{v} \cdot \vec{v} &= 0 \implies \\ \frac{\vec{w} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} &= c \end{aligned}$$

Because $\|\vec{v}\| = \sqrt{(\vec{v} \cdot \vec{v})}$:

$$c = \frac{\vec{w}}{\|\vec{v}\|}$$

So:

$$\operatorname{proj}_{\vec{v}} \vec{w} = \frac{\vec{w} \cdot \vec{v}}{\|\vec{v}\|^2}$$

We can also write the projection in terms of the unit vector defined by \vec{v} :

$$\hat{u} \triangleq \frac{\vec{v}}{\|\vec{v}\|} \Longrightarrow \text{proj}_{\vec{v}} \vec{w} = \frac{\vec{w} \cdot \vec{v}}{\|\vec{v}\|} \vec{i}$$

Example 1: Let $u = \langle -2, 2 \rangle$ and $v = \langle 3, 5 \rangle$. Write vector u as the sum of two orthogonal vectors one of which is a projection of u onto v.

Step 1: Find the projv u.

$$proj_{v}u = \left[\frac{u \cdot v}{\parallel v \parallel^{2}}\right]v = w_{1}$$

$$proj_{v}u = \left[\frac{u \cdot v}{\parallel v \parallel^{2}}\right]v$$

$$proj_{v}u = \left[\frac{\left(-2\cdot3\right) + \left(2\cdot5\right)}{\sqrt{3^{2} + 5^{2}}}\right]\langle 3, 5\rangle$$

$$proj_v u = \left[\frac{-6+10}{\sqrt{34}}\right] \langle 3, 5 \rangle$$

$$proj_v u = \left[\frac{4}{34}\right] \langle 3, 5 \rangle = \left[\frac{2}{17}\right] \langle 3, 5 \rangle$$

$$proj_v u = \langle \frac{6}{17}, \frac{10}{17} \rangle$$

Step 2:	Find the	orthogonal	component.
---------	----------	------------	------------

$$w_2 = u - w_1$$

Step 3: Write the vector as the sum of two orthogonal vectors.

$$u = w_1 + w_2$$

$$w_2 = u - w_1$$

$$w_2 = \langle -2, 2 \rangle - \langle \frac{6}{17}, \frac{10}{17} \rangle$$

$$w_2 = \langle \left(-2 - \frac{6}{17}\right), \left(2 - \frac{10}{17}\right) \rangle$$

$$w_2 = \langle -\frac{40}{17}, \frac{24}{17} \rangle$$

$$u = w_1 + w_2$$

$$u = \langle \frac{6}{17}, \frac{10}{17} \rangle + \langle -\frac{40}{17}, \frac{24}{17} \rangle$$

Supposing that, vector (a) is decomposed, we get 3 pieces of information:

- 1. The **directions** of projection the **unit** vectors (v_1 and v_2) representing the directions onto which we project (decompose). In the above they're the x and y axes, but can be any other orthogonal axes.
- 2. The lengths of projection (the line segments s_{u1} and s_{u2}) which tell us how much of the vector is contained in each direction of projection (more of vector a is leaning on the direction v₁ than it is on v₂, hence s_{u1}>s_{u2}).
- 3. The vectors of projection (p_{a_1} and p_{a_2})—which are used to reconstruct the original vector a by adding them together (as a vector sum), and for which it's easy to verify that $p_{a_1}=s_{a_1}*v_1$ and $p_{a_2}=s_{a_2}*v_2$ —So they're redundant, as they can be deduced from the former 2 pieces.

A unit vector is a vector with magnitude 1

To find a unit vector, **u**, in the same direction of a vector, **v**, we divide the vector by its magnitude

$$\vec{v} = \frac{\vec{v}}{||\vec{v}||} = \frac{1}{||\vec{v}||} \vec{v}$$

For a vector $\vec{v} = \langle a,b \rangle$ its magnitude is given by

$$||\vec{v}|| = \sqrt{a^2 + b^2}$$

Vector Projection

Any vector can be expressed in terms of:

- 1. Projection directions unit vectors $(v_1, v_2, ...)$.
- 2. The lengths of projections onto them (s a_1 , s_{a_2} , ...).