Vaja 31 Torzijsko nihalo

Jure Kos

5.1.2022

Uvod

S pomočjo vsiljenega nihanja smo poskušali narisati resonančno krivuljo torzijskega nihala. Nihalo je bilo v vaji nedušeno, delno dušeno in nato zelo dušeno. Dušili smo ga z magnetom. Prav tako nas je zanimal fazni premik, ki nastane pri vsiljenem nihanju ter povprečna sprejeta moč.

Naloga

Izmeri in izračunaj resonančno krivuljo za torzijsko nihalo pri dveh različnih dušenjih.

Pripomočki

- 1. Torzijsko nihalo,
- 2. elektromotor z vzvodom,
- 3. štoparica.

Navodila

Nedušeno nihalo s prstom poženi, da začne nihati in izmeri nihajni čas 5 nihajev. Istočasno odberi prvo in zadnjo amplitudo na isti strani. S tem lahko izračunaš koeficient dušenja β ter lastno frekvenco ω_0 , ki bi jo imelo nedušeno nihalo. Pred merjenjem se sprehodi s potenciometrom čez frekvence, da dobiš približno predstavo resonačne krivulje. Po tem daj potenciometer na najmanjšo možno frekvenco ω_0 , počakaj, da se nihanje umiri, ter odčitaj amplitudo B_0 . Ponovi postopek za višje frekvence, in odčitaj amplitudo B vedno na isti strani. Gosteje izvajaj meritve okrog resonance. Isto ponovi za delno dušeno in zelo dušeno nihalo.

Nariši:

- na isti graf resonančne krivulje za nedušeno, delno dušeno in zelo dušeno, kjer je na abcisi ω/ω_0 in na ordinati B/B_0
- graf faznega premika v odvisnosti ω/ω_0
- $\bullet\,$ graf povprečno sprejete moči v odvisnosti ω/ω_0

Določi enačbo resonančne krivulje z merjenimi B_0 , ω_0 in β .

Skica

Nedušeno nihanje

Število nihajev N=5Nihajni čas 5 nihajev $t=12,11s\pm0,05s$ Nihajni čas:

$$t_0 = \frac{t_5}{N} = \frac{12,11s}{5} = 2,42s \pm 0,01s$$

Lastna krožna frekvenca nihala ω_d :

$$\omega_d = \frac{2\pi}{t_0} = \frac{2\pi}{2.4s} = 2,26s^{-1} \pm 0,01s^{-1}$$

Prva amplituda $A_0=22\pm0,25,$ Zadnja amplituda $A_5=9\pm0,25$ Koeficient dušenja $\beta\colon$

$$\beta = \frac{\omega_d}{2\pi n} \ln \frac{A_0}{A_n} = \frac{2,26s^{-1}}{2\pi 5} \ln \frac{22}{9} = 0,06s^{-1} \pm 0,01s^{-1}$$

Lastna frekvenca ω_0 :

$$\omega_0 = \sqrt{\omega_d^2 + \beta^2} = \sqrt{(2, 26s^{-1})^2 + (0, 06s^{-1})^2} = 2, 26s^{-1} \pm 0, 002s^{-1}$$

Malo dušeno nihanje

Število nihajev N=5Nihajni čas 5 nihajev $t=11,79s\pm0,05s$ Nihajni čas:

$$t_0 = \frac{t_5}{N} = \frac{11,79s}{5} = 2,36s \pm 0,004s$$

Lastna krožna frekvenca nihala ω_d :

$$\omega_d = \frac{2\pi}{t_0} = \frac{2\pi}{2,36s} = 2,66s^{-1} \pm 0,01s^{-1}$$

Prva amplituda $A_0=22\pm0,25,$ Zadnja amplituda $A_5=4\pm0,25$ Koeficient dušenja β :

$$\beta = \frac{\omega_d}{2\pi n} \ln \frac{A_0}{A_n} = \frac{2,36s^{-1}}{2\pi 5} \ln \frac{22}{4} = 0,13s^{-1} \pm 0,01s^{-1}$$

Lastna frekvenca ω_0 :

$$\omega_0 = \sqrt{\omega_d^2 + \beta^2} = \sqrt{(2, 66s^{-1})^2 + (0, 13s^{-1})^2} = 2, 66 \pm 0, 003s^{-1}$$

Zelo dušeno nihanje

Število nihajev N=5Nihajni čas 5 nihajev $t=12,21s\pm0,05$ Nihajni čas:

$$t_0 = \frac{t_5}{N} = \frac{12,21s}{5} = 2,44s \pm 0,01s$$

Lastna krožna frekvenca nihala ω_d :

$$\omega_d = \frac{2\pi}{t_0} = \frac{2\pi}{2.44s} = 2,58s^{-1} \pm 0,01s^{-1}$$

Prva amplituda $A_0=22\pm0,25$ Zadnja amplituda $A_5=1\pm0,25$ Koeficient dušenja β :

$$\beta = \frac{\omega_d}{2\pi n} \ln \frac{A_0}{A_n} = \frac{2,58s^{-1}}{2\pi 5} \ln \frac{22}{1} = 0,25s^{-1} \pm 0,1s^{-1}$$

Lastna frekvenca ω_0 :

$$\omega_0 = \sqrt{\omega_d^2 + \beta^2} = \sqrt{(2, 58s^{-1})^2 + (0, 25s^{-1})^2} = 2, 59s^{-1} \pm 0, 03s^{-1}$$

Grafi

Graf resonančne krivulje:

Graf faznega premika:

Graf povprečno sprejete moči:

