Aufgabe 1 (Frühjahr 2014). Seien $a,b\in\mathbb{Q}$, und sei K der Zerfällungskörper des Polynoms

$$p = x^3 + x + b \in \mathbb{Q}[x].$$

Wir nehmen an, daß p keine Nullstelle in \mathbb{Q} hat. Zeigen Sie:

- (a) p ist irreduzibel in $\mathbb{Q}[x]$ und hat keine mehrfache Nullstellen in K.
- (b) Die Galoisgruppe $G = \operatorname{Gal}(K/\mathbb{Q})$ ist eine Untergruppe von \mathfrak{S}_3 .
- (c) G hat entweder 3 oder 6 Elemente.
- (d) Sei $\delta = (\alpha_1 \alpha_2)(\alpha_1 \alpha_3)(\alpha_2 \alpha_3)$, wobei $\alpha_1, \alpha_2, \alpha_3 \in K$ die Nullstellen von p sind. Dann gilt für $\sigma \in G$ stets $\sigma(\delta) = \delta$ oder $\sigma(\delta) = -\delta$.
- (e) Gilte $\sigma(\delta) = \delta$ für alle $\sigma \in G$, dann ist G zyklische und hat Ordnung 3. Andernfalls ist $G = \mathfrak{S}_3$.

Aufgabe 2. Für $k \in \mathbb{Z}$ sei $a = k^2 + k + 7$. Man zeige: Das Polynom $X^3 - aX + a$ ist irreduzibel über \mathbb{Q} und hat Galoisgruppe isomorph zu A_3 .

Aufgabe 3 (Frühjahr 1978). (a) Jede endliche abelsche Gruppe ist isomorph zu einer Faktorgruppe der Gruppe

$$\prod_{p} \mathbb{Z}/(p-1)\,\mathbb{Z},$$

wobei p alle Primzahlen durchläuft.

Hinweis: Man benutze den Dirichletschen Primzahlsatz: Zu jeder natürlichen Zahl n gibt es unendlich viele Primzahlen mit $p \equiv 1 \mod n$.

- (b) Jede endliche abelsche Gruppe ist isomorph zu einer Faktorgruppe der Gruppe $(\mathbb{Z}/n\mathbb{Z})^{\times}$ der teilerfremden Reste modulo n, wenn n passend gewählt wird.
- (c) Zu jeder endlichen abelschen Gruppe A gibt es eine Galois'sche Erweiterung K/\mathbb{Q} , deren Galoisgruppe $\operatorname{Gal}(K/\mathbb{Q})$ zu A isomorph ist.
- (z) Man konstruiere eine Galoiserweiterung K/\mathbb{Q} deren Galois
gruppe isomorph zu einer abelschen Gruppe der Ordnung 2019 ist.

Hinweis: 2693 ist prim in \mathbb{Z} .

Aufgabe 4 (Herbst 1992). Es sei $f=a_nX^n+a_{n-1}X^{n-1}+\ldots+a_1X+a_0\in K[X]$ ein nichtkonstantes separables Polynom mit $a_0a_n\neq 0$. Sei $g=a_0X^n+a_1X^{n-1}+\ldots+a_{n-1}X+a_n$ das sogenannte "reziproke" Polynom zu f. Zeigen Sie:

f und g haben die gleiche Galoisgruppe über K.