2023 H2MA Prelim Paper 2

-	
1	Solution [5] Complex Numbers P2 Q1
(i)	$ z_1 - z_2 $ $= \text{Distance between } z_1 \text{ and } z_2$ $= \sqrt{4^2 + 2^2 - 2(4)(2)\cos\left(\frac{\pi}{3} + \frac{\pi}{3}\right)} \text{- Using Cosine Rule}$ $= \sqrt{28}$
(ii)	$z_{1} = az_{2} \Rightarrow a = \frac{z_{1}}{z_{2}}$ $a = \frac{4e^{i\frac{\pi}{3}}}{2e^{-i\frac{\pi}{3}}} = 2e^{i\frac{\pi}{3} \left(-i\frac{\pi}{3}\right)}$ $= 2e^{i\frac{2\pi}{3}}$ Either:
	z_1 is the scaling of z_2 by factor of 2 and rotating z_2 $\frac{2\pi}{3}$
	anti-clockwise about the Origin,
	Or:
	z_2 is the scaling of z_1 by factor of $\frac{1}{2}$ and rotating z_1 $\frac{2\pi}{3}$
	clockwise about the Origin,

2	Solution [6] P2 Sequence
(i)	When $n = 0$,
	$u_1 - u_0 = -\frac{4}{3} \left(\frac{1}{3}\right)^0 + Q\left(\frac{2}{3}\right)^0$
	$\frac{4}{3} - 3 = -\frac{4}{3} \left(\frac{1}{3}\right)^0 + Q\left(\frac{2}{3}\right)^0$
	$Q = \frac{8}{3} - 3 = -\frac{1}{3}$ and
	$u_2 - u_1 = -\frac{4}{3} \left(\frac{1}{3}\right)^1 - \frac{1}{3} \left(\frac{2}{3}\right)^1$
	$u_2 = -\frac{4}{3} \left(\frac{1}{3}\right) - \frac{1}{3} \left(\frac{2}{3}\right) + \frac{4}{3} = \frac{2}{3}$
(ii)	$\left u_{n+1} - u_n \right = \left -\frac{4}{3} \left(\frac{1}{3} \right)^n - \frac{1}{3} \left(\frac{2}{3} \right)^n \right $
	$\left u_{n+1} - u_n \right = \frac{1}{3} \left 4 \left(\frac{1}{3} \right)^n + \left(\frac{2}{3} \right)^n \right \le \frac{1}{3} \left 4 \left(\frac{2}{3} \right)^n + \left(\frac{2}{3} \right)^n \right $
	$\left u_{n+1}-u_n\right \leq \frac{5}{3} \left(\frac{2}{3}\right)^n$
	Thus $\left u_{n+1} - u_n\right \le \varepsilon$
	when $\frac{5}{3} \left(\frac{2}{3}\right)^n \le \varepsilon$
	$\left(\frac{2}{3}\right)^n \le \frac{3\varepsilon}{5}$
	$n \ge \frac{\ln\left(\frac{3\varepsilon}{5}\right)}{\ln\left(\frac{2}{3}\right)}$
	$\ln\left(\frac{2}{3}\right)$
	n_0 can be $\left\lceil \frac{\ln\left(\frac{3\varepsilon}{5}\right)}{\ln\left(\frac{2}{3}\right)} \right\rceil$ or celling of $\frac{\ln\left(\frac{3\varepsilon}{5}\right)}{\ln\left(\frac{2}{3}\right)}$.

When
$$\varepsilon = 0.001$$
, $n \ge \frac{\ln\left(\frac{3\varepsilon}{5}\right)}{\ln\left(\frac{2}{3}\right)} = 18.29$

 n_0 can be 19.

4	Solution [10] P2 3D Vectors
(a)	(0) (1)
	$l_1: \mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ \lambda \in \mathbb{R}$
	Let $\overrightarrow{OB} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}$. Given that $\overrightarrow{OA} = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}$
	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}$
	Let $\mathbf{n}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$
	$\mathbf{r} \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$
	$\pi_1 : \mathbf{r} \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = 3$
	$\pi_1: x - y - z = -3$
(ii)	Q is the foot of perpendicular of P on l_1
	$\overrightarrow{OQ} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \text{ for some } \lambda$
	$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} -3 \\ 4 \\ 5 \end{pmatrix}$
	$\overrightarrow{PQ} = \begin{pmatrix} 3 \\ -4 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$
	\overrightarrow{PQ} perpendicular to the line l_1
	$\overrightarrow{PQ} \cdot \mathbf{d} = 0$

$$\begin{bmatrix} \begin{pmatrix} 3 \\ -4 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 0$$

$$-1 + 2\lambda = 0$$

$$\lambda = \frac{1}{2}$$

$$\overrightarrow{OQ} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0.5 \\ 0.5 \\ 3 \end{pmatrix}$$

(iii)
$$l_2$$
 parallel to π_1

 \Rightarrow **d**₂ is perpendicular to **n**₁

$$\Rightarrow \mathbf{d}_{2} \cdot \mathbf{n}_{1} = 0$$

$$\Rightarrow \begin{pmatrix} 3 \\ 1 \\ m \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = 0$$

$$\Rightarrow$$
 $-3+1+m=0$

$$\Rightarrow m = 2$$

 $h = \text{distance between } l_2 \text{ and } \pi_1$

 $h = \text{distance between} \quad P(-3, 4, 5) \text{ and } \pi_1 : r \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = 3$

Let N be the foot of perpendicular of P on π_1 .

$$l_{PN}: \mathbf{r} = \begin{pmatrix} -3\\4\\5 \end{pmatrix} + \lambda \begin{pmatrix} -1\\1\\1 \end{pmatrix}, \ \lambda \in \mathbb{R} \quad --- (1)$$

$$\pi_1 : \mathbf{r} \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = 3 \quad --- (2)$$

To find *N*, sub (1) into (2):

$$\begin{bmatrix} \begin{pmatrix} -3 \\ 4 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = 3$$

$$\begin{pmatrix} -3\\4\\5 \end{pmatrix} \cdot \begin{pmatrix} -1\\1\\1 \end{pmatrix} + \lambda \begin{pmatrix} -1\\1\\1 \end{pmatrix} \cdot \begin{pmatrix} -1\\1\\1 \end{pmatrix} = 3$$
$$12 + 3\lambda = 3$$
$$\lambda = -3$$

$$\overrightarrow{ON} = \begin{pmatrix} -3\\4\\5 \end{pmatrix} - 3\begin{pmatrix} -1\\1\\1\\1 \end{pmatrix}$$

$$h = \overrightarrow{PN} = \begin{pmatrix} -3\\4\\5 \end{pmatrix} - 3\begin{pmatrix} -1\\1\\1\\1 \end{pmatrix} - \begin{pmatrix} -3\\4\\5 \end{pmatrix} = -3\begin{pmatrix} -1\\1\\1\\1 \end{pmatrix}$$

$$PN = \begin{vmatrix} -3\begin{pmatrix} -1\\1\\1\\1 \end{vmatrix} = 3\begin{pmatrix} -1\\1\\1\\1 \end{vmatrix} = 3\sqrt{3}$$

Alternatively

Note that A(1,0,4) is a point on the plane

Dist of
$$P(-3,4,5)$$
 from π_1 : $\mathbf{r} \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = 3$ is h .

$$h = \left| \overrightarrow{AP} \cdot \hat{\mathbf{n}} \right| \text{ where } \overrightarrow{AP} = \begin{pmatrix} -3 \\ 4 \\ 5 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} = \begin{pmatrix} -4 \\ 4 \\ 1 \end{pmatrix}$$

$$h = \begin{vmatrix} -4 \\ 4 \\ 1 \end{vmatrix} \cdot \frac{1}{\sqrt{3}} \begin{pmatrix} -1 \\ 1 \\ 1 \end{vmatrix}$$
$$= \frac{9}{\sqrt{3}}$$
$$= 3\sqrt{3}$$

(iv) PQ:PR=2:5

Case 1: Q is between P and R

Distance between π_1 and $\pi_2 = \frac{3h}{2}$

Case 2: P is between Q and R

Distance between π_1 and $\pi_2 = \frac{7h}{2}$

5	Solution [12] Integration
(i)	$u^2 = x + 1$ when $x = -1$, $u = 0$
	$2u\frac{\mathrm{d}u}{\mathrm{d}x} = 1 \qquad \text{when } x = a - 1, u = \sqrt{a}$
	$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2u}$
	$\int_{-1}^{a-1} x \sqrt{x+1} \mathrm{d}x$
	$=\int_0^{\sqrt{a}} (u^2-1)(u)(2u) du$
	$=2\int_0^{\sqrt{a}}u^4-u^2\mathrm{d}u$
	$=2\bigg[\frac{1}{5}u^5 - \frac{1}{3}u^3\bigg]_0^{\sqrt{a}}$
	$=2\left[\left(\frac{1}{5}\sqrt{a}^{5}-\frac{1}{3}\sqrt{a}^{3}\right)-\left(\frac{1}{5}(0)^{5}-\frac{1}{3}(0)^{3}\right)\right]$
	$=\frac{2}{5}a^{\frac{5}{2}}-\frac{2}{3}a^{\frac{3}{2}}$
(ii)	C: $y = x\sqrt{x+1}$
	Translate curve C, $\sqrt{2}$ units in the negative y direction, to
	obtain curve D.
	D: $y = x\sqrt{x+1} - \sqrt{2}$
	Let S denote the region bounded by curve D, x-axis and $x = -1$.
	Volume obtained by revolving region R , 2π radians about
	the line $y = \sqrt{2}$, is the same as the volume obtained by
	revolving region S , 2π radians about the x-axis.
	$y = x\sqrt{x+1} - \sqrt{2}$
	x 5
	(-1,-12) (-12

From GC, x-intercept happens at
$$x = 1$$
.
Volume of solid
$$= \pi \int_{-1}^{1} (x\sqrt{x+1} - \sqrt{2})^{2} dx$$

$$= \pi \int_{-1}^{1} x^{2} (x+1) - 2\sqrt{2} (x\sqrt{x+1}) + 2 dx$$

$$= \pi \int_{-1}^{1} x^{3} + x^{2} + 2 dx - 2\sqrt{2}\pi \int_{-1}^{1} x\sqrt{x+1} dx$$

$$= \pi \left[\frac{x^{4}}{4} + \frac{x^{3}}{3} + 2x \right]_{-1}^{1} - 2\sqrt{2}\pi \left[\frac{2}{5} (2)^{\frac{5}{2}} - \frac{2}{3} (2)^{\frac{3}{2}} \right]$$

$$= \pi \left[\left(\frac{1}{4} + \frac{1}{3} + 2 \right) - \left(\frac{1}{4} - \frac{1}{3} - 2 \right) \right] - 2\sqrt{2}\pi \left[\frac{8}{5}\sqrt{2} - \frac{4}{3}\sqrt{2} \right]$$

$$= \frac{14}{3}\pi - \frac{16}{15}\pi$$

$$= \frac{18}{5}\pi \text{ units}^{3}$$

(i)	X $P(X=x)$	1	2	3	4	5	6	
	P(X-X)	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$	
(ii)	E(X)							
	$= \left(1\right) \left(\frac{1}{36}\right) + \left(2\right)$	$\left(\frac{3}{36}\right) + \left(\frac{3}{36}\right)$	$(3)\left(\frac{5}{36}\right)$	$+(4)\left(\frac{7}{36}\right)$				
	$+(5)\left(\frac{9}{36}\right)+($	$(6)\left(\frac{11}{36}\right)$						
	$=\frac{161}{36}\approx 4.472$							
	$\mathrm{E}\left(X^{2}\right) = \left(1\right)^{2} \left($	$\left(\frac{1}{36}\right) + \left(2\right)$	$\left(\frac{3}{36}\right) +$	$-\left(3\right)^{2}\left(\frac{5}{36}\right)$	$\left(4\right)^{2}$	$\left(\frac{7}{36}\right)$		
	$+(5)^{2}$	$\left(\frac{9}{36}\right) + \left(6\right)$	$\left(\frac{11}{36}\right)^2 \left(\frac{11}{36}\right)$					
	$=\frac{791}{36}$							
	$\operatorname{Var}(X) = \operatorname{E}(X)$	$(X^2) - E(X^2)$	$(Y)^2$					
	$=\frac{791}{36}$	$-\left(\frac{161}{36}\right)^2$						
	$=\frac{255}{129}$	$\frac{65}{6} \approx 1.97$						

7	Solution [7] P&C P2 Q7
(i)	Required number of ways to have WCW, with M all separated = All W separated = (4-1)!×4! = 144
	Alternatively
	Case 1: 2 groups of WCW.

Number of ways to choose first group of

$$WCW = \binom{4}{2} \binom{2}{1} (2!)$$

Number of ways to permute 2 men amongst the 2 groups of WCW = 2!

When seating the 4 units around a circle

- Let a WCW unit be seated first
- This set the position of the second WCW unit
- The 2 men are then slotted in between the WCW units in 2! Ways.

Number of ways to arrange 4 units: 2 men and 2 groups of WCW in a circle = 2!

Note there are 3 groups of CWC, so divide by 2! So as not to overcount

Number of ways

$$=\frac{\binom{4}{2}\binom{2}{1}(2!)(2!)}{(2!)}(2)=48$$

Case 2: 1 group of WCWCW

Number of ways =
$$\binom{4}{3} (3!)(2!)(2!) = 96$$

Total number of ways = 48 + 96 = 144

Alternatively

Case 1: 2 groups of WCW.

	There are $(4!)(2!)$ ways to get 2 groups of WCW.
	Number of ways = $\frac{2!}{2!}(4!)(2!) = 48$
	Case 2: 1 group of WCWCW
	There are $(4!)(2!)$ ways to get 1 group of WCWCW and a
	W.
	Number of ways = $\frac{2!}{2!}(4!)(2!)(2!) = 96$
	Total number of ways = $48 + 96 = 144$
(ii)	Number of ways = $\frac{8!}{4!}$ = 1680
	since 4! Ways to arrange women if there is no restriction on them.
(iii)	Number of ways = $\frac{\binom{2}{1}\binom{4}{2}\binom{2}{1}}{2!} = \frac{24}{2} = 12$

Q	Solution [7] Probability						
(i)	Solution [7] Probability P(Get all Bots ∩ Get all number sets)						
	$= P(\text{box contain } \alpha \text{ and } \mathbb{R}) \times P(\text{box contain } \beta \text{ and } \mathbb{Z})$						
	$\times P(\text{box contain } \gamma \text{ and } \mathbb{Q}) \times P(\text{box contain } \omega \text{ and } \mathbb{N})$						
	$+P(\text{box contain } \alpha \text{ and } \mathbb{Z}) \times P(\text{box contain } \beta \text{ and } \mathbb{Q})$						
	$\times P(\text{box contain } \gamma \text{ and } \mathbb{R}) \times P(\text{box contain } \omega \text{ and } \mathbb{N})$						
	$= \left(\frac{1}{8} \times \frac{1}{8} \times \frac{1}{8} \times \frac{1}{10}\right) (4!) + \left(\frac{1}{8} \times \frac{1}{8} \times \frac{1}{8} \times \frac{1}{10}\right) (4!)$						
	$=\frac{24}{2560}$						
	$=\frac{3}{320}(\text{shown})$						
	320						
(ii)	P(Get all bots get all number sets)						
	$= \frac{P(Get \ all \ Bots \cap Get \ all \ number \ sets)}{P(Get \ all \ number \ sets)}$						
	P(Get all number sets)						
	3						
	$=\frac{320}{\frac{1}{4}\times\frac{1}{4}\times\frac{1}{4}\times\frac{1}{4}\times4!}$						
	$=\frac{1}{10}$						
	$-\frac{10}{10}$						
(c)	$P(\text{get all bots}) = 0.3 \times 0.3 \times 0.3 \times 0.1 \times 4!$						
(iii)	= 0.0648						
	≠ 0.1						
	= P(get all bots get all number sets)						
	The event that he gets all the bots and the event that he get all the number sets are not independent.						
	OR						
	P(Get all bots \cap Get all number sets) = $\frac{3}{320}$						
	$P(Get all bots) \times P(Get all number sets)$						
	$= (0.3^3 \times 0.1 \times (4!)) \left(\frac{1}{4^4} \times (4!)\right) = 0.006048$						

 $P(Get all bots \cap Get all number sets)$ $\neq P(Get all bots) \times P(Get all number sets)$

The event that he gets all the bots and the event that he get all the number sets are not independent

9	Solution [8] Binomial Dist
(i)	The probability of a student achieving distinction in the
	course is a constant
	OR
	The event that a student achieves distinction is
	independent of the event that another student achieves
	distinction.
(ii)	(p)
	$X \sim B\left(10, \frac{p}{100}\right)$
	Mode of X is 7.
	P(X=6) < P(X=7)
	$\binom{10}{6} \left(\frac{p}{100}\right)^6 \left(1 - \frac{p}{100}\right)^4 < \binom{10}{7} \left(\frac{p}{100}\right)^7 \left(1 - \frac{p}{100}\right)^3$
	$\frac{10!}{6!4!} \left(\frac{p}{100}\right)^6 \left(1 - \frac{p}{100}\right)^4 < \frac{10!}{7!3!} \left(\frac{p}{100}\right)^7 \left(1 - \frac{p}{100}\right)^3$
	$7\left(1 - \frac{p}{100}\right) < 4\left(\frac{p}{100}\right)$
	$p > \frac{700}{11}$
	and $P(X=7) > P(X=8)$
	$\frac{10!}{7!3!} \left(\frac{p}{100}\right)^7 \left(1 - \frac{p}{100}\right)^3 > \frac{10!}{8!2!} \left(\frac{p}{100}\right)^8 \left(1 - \frac{p}{100}\right)^2$
	$8\left(1 - \frac{p}{100}\right) > 3\left(\frac{p}{100}\right)$
	$p < \frac{800}{11}$
	$\Rightarrow \frac{700}{11}$
	$\Rightarrow 63.6$
1	

(iv)	$X \sim B(10, 0.68)$
	$P(X > 6) = 1 - P(X \le 6) = 0.595637$

Let *Y* be the number of concluded courses out of 8 courses, with more than 6 students achieving distinction

$$Y \sim B(8,0.595637)$$

$$P(Y \le 7 | Y \ge 5) = \frac{P(5 \le Y \le 7)}{P(Y \ge 5)}$$

$$= \frac{P(Y \le 7) - P(Y \le 4)}{1 - P(Y \le 4)}$$

$$= \frac{0.984156 - 0.416069}{1 - 0.416069}$$

$$\approx 0.973(3sf)$$

For regression line of y on x, the <u>values of x are considered</u> as accurate and the <u>sum of squares of deviation in the</u> y-direction is minimized.

For regression line of x on y, the <u>values of y are considered</u> as accurate and the <u>sum of squares of deviation in the</u> x-direction is minimized.

Not appropriate as the scatter diagram indicates that as x increases, y increases at a decreasing rate.

(ii)

$$y = -3.506924046 + 6.082293948 \ln x$$
$$y = -3.51 + 6.08 \ln x$$

When
$$y = 12$$
,

$$12 = -3.506924046 + 6.082293948 \ln x$$

$$x = 12.80095 \approx 12.8 \text{ ml}$$

(iii)

Not reliable as y = 12 is outside the input data range, $3 \le y \le 10$.

(iv)

No change in the product-moment correlation coefficient.

y in cm. y' in mm

Then
$$y = \frac{y'}{10}$$
.

$$\frac{y'}{10} = -3.506924046 + 6.082293948 \ln x$$

$$y' = -35.1 + 60.8 \ln x$$

11	Solution [12] Normal Dist P2 Q11
(i)	Mass of a completed ornament $Y = 1.05(0.9X) = 0.945X$ $Y \sim N(283.5, 357.21)$
	$P(290 < Y < 350) = 0.365238 \approx 0.365$
(ii)	Required prob $= \binom{9}{2} 0.365^2 (1 - 0.365)^7 0.365 = 0.072878121 \approx 0.0729$
(iii)	Let B be the mass of a box. B = $\alpha Y \sim N(283.5\alpha, 357.21\alpha^2)$ Let S be the total mass of an ornament and its box. $S = Y + B \sim N(283.5\alpha + 283.5, 357.21\alpha^2 + 357.21)$ $S \sim N(283.5(\alpha + 1), 357.21(\alpha^2 + 1))$
	D(G 0.60) 0.4

$$P(S > 360) = 0.4$$

By GC, $\alpha = 0.252$

If $W \sim N(130, 80^2)$, $P(W < 0) \approx 0.0521$.

That is, Approx 5.21% of the blocks are of negative masses. Thus, this distribution is not appropriate.

Alternatively

99.7% of the population should be within the range of $\mu\pm3\sigma$ i.e. (-110, 370). However, this range contains negative values which are not possible. Thus the distribution is not appropriate.

12	Solution [12] Hypothesis Testing P2 Q12
(i)	$\overline{x} = \frac{7644}{52} = 147$

$$\Sigma(x-20) = \Sigma x - 20(52) = 6604$$

$$\Sigma(x-20) = \Sigma x - 20(52) = 6604$$
$$s^{2} = \frac{1}{51} \left[840008 - \frac{6604^{2}}{52} \right] = \frac{16900}{663} \approx 25.5$$

(ii) Test H_0 : $\mu = 149$ μ < 149 $H_1:$ against

at 5% level of significance.

Test statistic:

Under H₀,
$$Z = \frac{\overline{X} - 149}{\sqrt[s]{52}} \sim N(0,1)$$
 approximately

$$z_{\text{calculated}} = -2.86$$

p-value =
$$P(Z < z_{\text{calculated}}) = 0.00214 < 0.05$$
, we reject H₀

There is sufficient evidence at 5% level of significance that the newly developed filter is more effective.

(iii) p-value = $0.00214 = P(Z < -2.86) = P(\overline{X} < 147)$

> p-value of 0.00214 refers to a probability of 0.00214 of obtaining a sample mean as extreme as the observed sample mean of 147 value given that the true population mean is 149.

Alternatively

p-value of 0.00214 means that the least significance level the test concluding that the new filter is more effective is 0.214%.

Let Y denotes the amount of impurities in water of another town.

Test

 $H_0: \mu = 150$

against

 $H_1: \mu \neq 150$

at 5% level of significance.

$$s^2 = \frac{100}{99} (29.85)^2$$
$$s \approx 30$$

Test statistic:

Under H₀,
$$Z = \frac{\overline{Y} - 150}{30 / \sqrt{100}} \sim N(0,1)$$
.

To reject Ho,

$$|z_{cal}| > z_{0.975} = 1.959964$$

$$\left| \frac{\overline{y} - 150}{3} \right| > 1.959964$$

$$\frac{\overline{y}-150}{3} < -1.959964$$
 or $\frac{\overline{y}-150}{3} > 1.959964$

$$0 < \overline{y} < 144 \quad or \quad \overline{y} > 156$$