CLAIMS:

1. An integrated tuner circuit, comprising:

a tuned LC band-pass filter (10) having a variable capacitance (Ct) and fixed inductance (L);

an external load capacitor having a variable capacitance (C_t); and a fixed-frequency control loop (30) for producing a voltage (V_{TUN}) for adjusting the variable capacitances of the band-pass filter and external load capacitor to achieve tracking of the band-pass filter with an arbitrary oscillator frequency ω_{LO} .

- 2. The integrated tuner circuit according to claim 2, wherein the fixed-frequency control loop (30) further comprises a fixed-frequency oscillator (32) and a circuit (34) for receiving a programmable value N for setting the value of ω_{LO} , wherein the fixed-frequency control loop adjusts the variable capacitances C_t such that C_t :: $(\omega_{LO} \pm \omega_{IF})^{-2}$:: N^{-2} , wherein ω_{IF} is an intermediate frequency.
- 3. The integrated tuner circuit according to claim 2, wherein the band-pass filter (10) is tuned to each of a plurality of different IF distances from ω_{LO} by adjusting the programmable value N.
- 4. The integrated tuner circuit according to claim 2, wherein the fixed-frequency oscillator (32) outputs a signal having a frequency ω_{xtal} , and wherein the tuned LC band-pass filter (10) is tuned to a virtual oscillator frequency ω_{LO} given by $N\omega_{xtal}$.
- 5. The integrated tuner circuit according to claim 1, wherein the fixed-frequency control loop (30) provides compensation for parasitic capacitance (C_p).
- 6. The integrated tuner circuit according to claim 5, further comprising a capacitor corresponding to the parasitic capacitance C_p in parallel with the external load capacitor.

7. The integrated tuner circuit according to claim 1, wherein the fixed-frequency control loop (30) operates to produce a signal:

$$1 - (\alpha \omega_{\text{xtal}}^2 R^2 C) N^2 C_t \rightarrow 0$$

where α is a variable gain, ω_{xtal} is a frequency of a fixed-frequency oscillator, R is a resistance, C is a capacitance, and N is a programmable value for setting the value of ω_{LO} .

- 8. The integrated tuner circuit according to claim 7, wherein N and C_t are the only oscillator frequency dependent variables.
- 9. A method for tracking a LC tuned band-pass filter (10) with an arbitrary oscillator ω_{LO} , wherein the band-pass filter includes a variable capacitance C_t and a fixed inductance (L), comprising:

providing a fixed-frequency control loop (30) for producing a voltage (V_{TUN}) for adjusting the variable capacitance C_t of the tuned band-pass filter (10) and for adjusting a variable capacitance C_t of a load capacitor; and

inputting a programmable value N into the fixed-frequency control loop (30) for setting the value of ω_{LO} , wherein the fixed-frequency control loop adjusts the variable capacitances C_t such that $C_t :: (\omega_{LO} \pm \omega_{IF})^{-2} :: N^{-2}$, wherein ω_{IF} is an intermediate frequency.

10. The method according to claim 9, further comprising:

tuning the band-pass filter (10) to each of a plurality of different IF distances from ω_{LO} by adjusting the programmable value N.

11. The method according to claim 9, wherein the fixed-frequency control loop (30) includes a fixed-frequency oscillator (32) that outputs a signal having a frequency ω_{xtal} , further comprising:

tuning the band-pass filter (10) to a virtual oscillator frequency ω_{LO} given by $N\omega_{xtal}$.

- 12. The method according to claim 9, wherein the fixed-frequency control loop (30) provides compensation for parasitic capacitance (C_p).
- 13. The method according to claim 12, further comprising: $providing \ a \ capacitor \ corresponding \ to \ the \ parasitic \ capacitance \ C_p \ in parallel \ with \ the \ load \ capacitor.$
- 14. The method according to claim 9, wherein the fixed-frequency control loop (30) operates to produce a signal:

$$1 - (\alpha \omega_{\text{xtal}}^2 R^2 C) N^2 C_t \rightarrow 0$$

where α is a variable gain, ω_{xtal} is a frequency of a fixed-frequency oscillator, R is a resistance, and C is a capacitance.

15. The method according to claim 14, wherein N and C_t are the only oscillator frequency dependent variables.