Outline

UE StatComp

.....

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression
Bootstrap & prédiction

onclusio

Références

Bootstrap

Master parcours SSD - UE Statistique Computationnelle

Pierre Mahé - bioMérieux & Université de Grenoble-Alpes

l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

Bootstrap : méthode d'inférence basée sur le ré-échantillonnage d'un échantillon.

- ► Approche non-paramétrique : pas d'hypothèse sur la loi de la variable aléatoire sous-jacente.
- ► Principe générique décliné pour différentes applications.

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap &

Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

► Introduction

- ► Formalisation du principe de ré-échantillonnage
- ► Le bootstrap pour l'inférence statistique :
 - caractérisation d'un estimateur
 - intervalles de confiance
- 2 applications classiques :
 - régression
 - construction de modèles de prédiction
- ► Conclusion

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Application

Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

Introduction

Principe

Outline

UE StatComp

Introduction

Formalisation

l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

Cours précédent :

- méthodes de simulation pour répondre à des questions d'inférence statistique.
- données simulées selon des modèles paramétriques.

Principe

Outline

UE StatComp

Introduction

Formalisation

l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

Cours précédent :

- méthodes de simulation pour répondre à des questions d'inférence statistique.
- données simulées selon des modèles paramétriques.

Le bootstrap :

- ▶ même objectif mais vise à relâcher ces hypothèses.
- se base uniquement sur le vecteur d'observations disponibles : ré-échantillonnage.
- ⇒ une approche totalement non paramétrique

On s'intéresse à un estimateur $\hat{\theta} = \hat{\theta}(X_1,...,X_n)$ d'un paramètre θ .

Outline

UE StatComp

Introduction

Formalisatio

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Bootstrap & régression

régression Bootstrap & prédiction

Conclusion

On s'intéresse à un estimateur $\hat{\theta} = \hat{\theta}(X_1, ..., X_n)$ d'un paramètre θ .

On veut caractériser sa distribution d'échantillonnage, en se basant uniquement sur l'échantillon $(X_1,...,X_n)$.

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression

Bootstrap & prédiction

Conclusion

Outline UE StatComp

Introduction

Caractérisation Intervalles de

Bootstrap & régression Bootstrap & prédiction

On s'intéresse à un estimateur $\hat{\theta} = \hat{\theta}(X_1, ..., X_n)$ d'un paramètre θ .

On veut caractériser sa distribution d'échantillonnage, en se basant uniquement sur l'échantillon $(X_1, ..., X_n)$.

On applique la procédure suivante :

- ▶ Pour b allant de 1 à B.
- ▶ On génère un échantillon $(X_1^*,...,X_n^*)$ en tirant avec remise dans $(X_1, ..., X_n)$.
- On calcule la valeur de notre estimateur $\hat{\theta}^{*(b)}$ à partir de $(X_1^*,...,X_n^*).$

Et on travaille sur les B réalisations $(\hat{\theta}^{*}^{(b)})_{b=1,\dots,B}$.

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

Outline

UE StatComp

Introduction

Formalisatio

Bootstrap poi l'inférence

Caractérisation d'un estimateu Intervalles de confiance

Bootstrap & régression
Bootstrap & prédiction

Références

Données : origine ethnique des étudiants de Standford

- ► On connaît toute la population
- ► Elle contient 6.4% d'étudiants afro-américains.
- ⇒ Question : estimer ce taux à partir d'un échantillon.

^{1.} Tirée de https://web.stanford.edu/class/stats101/sampling/sampling-lecture02.pdf 8/52

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pou l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

On considère :

- des échantillons de taille 50.
- l'estimateur de la fréquence empirique.
- ⇒ distribution d'échantillonnage sur 1000 réalisations :

 \Rightarrow estimateur précis en moyenne, mais forte variance.

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

Sauf qu'en pratique, on n'aurait accès qu'à une réalisation :

Outline

UE StatComp

Introduction

-ormalisation

Bootstrap po

Caractérisation d'un estimateur Intervalles de confiance

Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

Sauf qu'en pratique, on n'aurait accès qu'à une réalisation :

- ⇒ bootstrap : se baser uniquement sur notre échantillon :
 - nombreux tirages avec remise
 - distribution de la fréquence empirique "bootstrapée"

Caractérisation d'un estimateur Intervalles de confiance

Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

Tirages dans la population : Tirages dans l'échantillon :

- ightharpoonup l'échantillon \sim une population finie
- on simule des échantillons de cette population
- on veut en tirer des conclusions sur la vraie population

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression

Bootstrap & prédiction

Conclusion

Références

Remarques:

- ▶ intérêt limité sur cet exemple, car on connaît très bien les propriétés de l'estimateur de la fréquence empirique.
- ▶ intérêt général de la démarche :
 - ne pas "se forcer" à faire d'hypothèses quand les données ne s'y prètent pas
 - permet de considérer des statistiques plus complexes
 - dont on ne connaît pas forcément la distribution d'échantillonnage

Bootstrap, vous avez dit bootstrap?

Terme introduit en statistique par Bradley Efron en 1979...

... vient de l'expression "to pull oneself up by one's bootstrap"...

ightharpoonup \sim s'en sortir par soi même, grâce à ses efforts

...souvent attribuée aux aventures du Baron de Munchausen.

► le Baron, tombé dans un marécage, s'en extrait en se tirant lui même par ses "bootstraps"

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression
Bootstrap & prédiction

Conclu

Outline

UE StatComp

.....

Formalisation

l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

Formalisation du principe de ré-échantillonnage

On s'intéresse à une variable aléatoire X.

Outline

UE StatComp

IIItroduction

Formalisation

Bootstrap pour

Caractérisation d'un estimateur Intervalles de confiance

Bootstrap & régression Bootstrap & prédiction

Conclusion

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

On s'intéresse à une variable aléatoire X.

Au niveau de la population $\mathcal X$:

► X est régie par une distribution P et une fonction de répartition F :

$$P(X \le x) = F(x), \ \forall x \in \mathcal{X}.$$

• $\theta = t(P)$ est un paramètre d'intérêt

On s'intéresse à une variable aléatoire X.

Au niveau de la population ${\mathcal X}$:

► X est régie par une distribution P et une fonction de répartition F :

$$P(X \le x) = F(x), \ \forall x \in \mathcal{X}.$$

• $\theta = t(P)$ est un paramètre d'intérêt

On dispose d'un échantillon $\mathbf{X} = (X_1, ..., X_n)$:

- ▶ les X_i sont iid selon P
- $ightharpoonup \hat{ heta} = s(X)$ est un estimateur de heta

Outline
UE StatComp

On s'intéresse à une variable aléatoire X.

Au niveau de la population \mathcal{X} :

Formalisation

➤ X est régie par une distribution P et une fonction de répartition F : Bootstrap pour l'inférence

$$P(X \le x) = F(x), \ \forall x \in \mathcal{X}.$$

Caractérisation d'un estimateur Intervalles de confiance

• $\theta = t(P)$ est un paramètre d'intérêt

Bootstrap & régression
Bootstrap & prédiction

On dispose d'un échantillon $\mathbf{X} = (X_1, ..., X_n)$:

Conclusion

ightharpoonup les X_i sont iid selon P

- $ightharpoonup \hat{ heta} = s(X)$ est un estimateur de θ
- \Rightarrow inférence : tirer des conclusions sur θ à partir de $\hat{\theta}$.
- \Rightarrow nécessite la distribution d'échantillonnage de $\hat{\theta}$.

Question clé : estimer la distribution d'échantillonnage de $\hat{\theta}$.

Outline

UE StatComp

meroduction

Formalisation

Bootstrap pour

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

Question clé : estimer la distribution d'échantillonnage de $\hat{\theta}$.

Stratégie #1: l'estimer empiriquement à partir de plusieurs échantillons :

- lacktriangle on collecte plusieurs échantillons $old X_{old j}=\left(X_{j1},...,X_{jn}
 ight)$
- on calcule $\hat{\theta}_j = s(X_j)$
- lacktriangle on l'estime par la distribution des $\{\hat{ heta}_i\}$

Outline

UE StatComp

.....

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

onclusion

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

Question clé : estimer la distribution d'échantillonnage de $\hat{\theta}$.

Stratégie #1 : l'estimer empiriquement à partir de plusieurs échantillons :

- lacktriangle on collecte plusieurs échantillons $old X_{old j}=(X_{j1},...,X_{jn})$
- on calcule $\hat{\theta}_j = s(\mathbf{X_j})$
- on l'estime par la distribution des $\{\hat{ heta}_j\}$

Mais en pratique on ne dispose que d'un échantillon X...

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

Question clé : estimer la distribution d'échantillonnage de $\hat{\theta}$.

Stratégie #1 : l'estimer empiriquement à partir de plusieurs échantillons :

- lacktriangle on collecte plusieurs échantillons $old X_{old j}=(X_{j1},...,X_{jn})$
- on calcule $\hat{\theta}_j = s(X_j)$
- lacktriangle on l'estime par la distribution des $\{\hat{ heta}_j\}$

Mais en pratique on ne dispose que d'un échantillon X...

- \Rightarrow approche paramétrique : faire des hypothèses sur la nature de la distribution P des données.
- \Rightarrow approche non-paramétrique : ré-échantillonnage dans X pour estimer la distribution d'échantillonnage de $\hat{\theta}$.

Bootstrap pour

Caractérisation d'un estimateur Intervalles de

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

Soit un échantillon $\mathbf{X} = (X_1, ..., X_n)$.

On définit la distribution empirique \hat{P}_n comme :

$$\hat{P}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(X_i = x).$$

On définit de même la fonction de répartition empirique \hat{F}_n :

$$\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(X_i \le t).$$

Caractérisation Intervalles de

Bootstrap &

régression Bootstrap & prédiction

Soit le vecteur $x = \{1, 1, 2, 3, 3, 4, 4, 4, 5, 5\}.$

 \Rightarrow distribution empirique \hat{P}_n :

 \Rightarrow répartition empirique \hat{F}_n :

Distribution empirique & ré-échantillonnage

Comment simuler un échantillon selon une distribution empirique?

Outline

UE StatComp

Introducti

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Bootstrap &

régression
Bootstrap &
prédiction

Distribution empirique & ré-échantillonnage

Comment simuler un échantillon selon une distribution empirique?

- ⇒ il suffit de tirer avec remise dans l'échantillon original.
- ⇒ pour s'en convaincre, on peut utiliser la méthode d'inversion.

Outline

UE StatComp

IIILIOGUCLIOI

Formalisation

Bootstrap pour

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

On s'intéresse à un estimateur $\hat{\theta} = \hat{\theta}(X_1,...,X_n)$ d'un paramètre θ .

Outline

UE StatComp

merodaction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Bootstrap & régression Bootstrap & prédiction

Conclusion

On s'intéresse à un estimateur $\hat{\theta} = \hat{\theta}(X_1,...,X_n)$ d'un paramètre θ .

On veut caractériser sa distribution d'échantillonnage, en se basant uniquement sur l'échantillon $(X_1,...,X_n)$.

Outline

UE StatComp

.....

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression

Bootstrap & prédiction

Conclusion

Outline
UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

On s'intéresse à un estimateur $\hat{\theta} = \hat{\theta}(X_1, ..., X_n)$ d'un paramètre θ .

On veut caractériser sa distribution d'échantillonnage, en se basant uniquement sur l'échantillon $(X_1,...,X_n)$.

On applique la procédure suivante :

- ▶ Pour b allant de 1 à B,
- ▶ On génère un échantillon $(X_1^*, ..., X_n^*)$ en tirant avec remise dans $(X_1, ..., X_n)$.
- On calcule la valeur de notre estimateur $\hat{\theta}^{*}(b)$ à partir de $(X_1^*,...,X_n^*)$.

Et on travaille sur les B réalisations $(\hat{\theta^*}^{(b)})_{b=1,\dots,B}$.

Outline

UE StatComp

IIItroducti

Formalisation

Bootstrap pou l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

Monde réel et monde bootstrap

Formellement, le bootstrap considère des réalisations tirées de la distribution empirique définie par l'échantillon original.

On passe du monde réel au "monde bootstrap" :

▶ illustration tirée de Efron and Tibshirani (1993).

Outline

UE StatComp

merodaction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression

Bootstrap & prédiction

Conclusion

Monde réel et monde bootstrap

Monde réel vs monde bootstrap :

Outline

UE StatComp

Illiroduction

Formalisation

Bootstrap pour

Caractérisation d'un estimateur Intervalles de confiance

Bootstrap & régression
Bootstrap & prédiction

Conclusion

Monde réel et monde bootstrap

Monde réel vs monde bootstrap :

- ▶ distribution des données : P vs \hat{P}_n
 - vraie distribution P inconnue
 - distribution \hat{P}_n parfaitement connue

Outline

UE StatComp

III Caaction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression

Bootstrap & prédiction

Conclusion

Monde réel et monde bootstrap

Monde réel vs monde bootstrap :

- ▶ distribution des données : P vs \hat{P}_n
 - vraie distribution P inconnue
 - ightharpoonup distribution \hat{P}_n parfaitement connue
- échantillon : $(X_1, ..., X_n)$ vs $(X_1^*, ..., X_n^*)$
 - un unique échantillon $(X_1,...,X_n) \sim P$
 - autant d'échantillons $(X_1^*, ..., X_n^*) \sim \hat{P}_n$ qu'on veut

Outline

UE StatComp

III oud culon

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression
Bootstrap & prédiction

Conclusion

Monde réel vs monde bootstrap :

- distribution des données : P vs \hat{P}_n
 - vraie distribution P inconnue
 - ightharpoonup distribution \hat{P}_n parfaitement connue
- échantillon : $(X_1, ..., X_n)$ vs $(X_1^*, ..., X_n^*)$
 - un unique échantillon $(X_1,...,X_n) \sim P$
 - autant d'échantillons $(X_1^*,...,X_n^*) \sim \hat{P}_n$ qu'on veut
- ightharpoonup paramètre : heta vs $\hat{ heta}$ vs $\hat{ heta}^*$
 - ightharpoonup un vrai paramètre heta inconnu
 - une estimation $\hat{\theta} = s(X_1, ..., X_n)$ connue
 - ightharpoonup NB : une estimation de heta
 - ▶ autant d'estimations $\hat{\theta^*} = s(X_1^*, ..., X_n^*)$ qu'on veut
 - ightharpoonup NB : des estimations de $\hat{\theta}$

Monde réel et monde bootstrap

Dans le monde bootstrap :

- ▶ la distribution des données est \hat{P}_n
 - ▶ elle est parfaitement connue
 - ▶ on peut en tirer/simuler des échantillons
- lacktriangle le "vrai" paramètre de la population est $\hat{ heta}$
 - ▶ il est parfaitement connu
 - on peut le comparer aux estimations $\hat{\theta^*}$

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

onclusion

Monde réel et monde bootstrap

Dans le monde bootstrap :

- ▶ la distribution des données est \hat{P}_n
 - ▶ elle est parfaitement connue
 - ▶ on peut en tirer/simuler des échantillons
- lacktriangle le "vrai" paramètre de la population est $\hat{ heta}$
 - ▶ il est parfaitement connu
 - ▶ on peut le comparer aux estimations $\hat{\theta^*}$

⇒ principe du bootstrap :

- 1. se placer dans le monde bootstrap
- 2. calculer la distribution d'échantillonnage des $\hat{\theta^*}$
- 3. se comparer à $\hat{\theta}$ (le "vrai" paramètre de \hat{P}_n)
- 4. en déduire des caractéristiques de $\hat{\theta}$ (par rapport à P).
 - e.g., biais, erreur-type et intervalle de confiance

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour 'inférence

Caractérisation d'un estimateur Intervalles de confiance

Bootstrap & régression
Bootstrap & prédiction

onclusion

References

Outline

UE StatComp

merodaction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de

confiance

Applications

Bootstrap & régression

Bootstrap & prédiction

.

Références

Bootstrap et inférence statistique : caractérisation d'un estimateur

Bootstrap et estimation

Outline

UE StatComp

Introduction

Formalisatio

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de

confiance

Bootstrap & régression
Bootstrap & prédiction

onclusio

Références

On peut par exemple appliquer le bootstrap pour :

- Estimer le biais d'un estimateur.
- ► Estimer son erreur quadratique moyenne.
- Estimer son erreur type.
- ▶ Donner un intervalle de confiance sur une estimation.

Estimer le biais d'un estimateur

Rappel: biais d'un estimateur : Biais $(\hat{\theta}) = E[\hat{\theta}] - \theta$.

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de

confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

Procédure bootstrap :

1. On dispose d'un échantillon $(X_1, ..., X_n)$.

Rappel: biais d'un estimateur: Biais $(\hat{\theta}) = E[\hat{\theta}] - \theta$.

- 2. On calcule $\hat{\theta}$ sur l'échantillon.
- 3. On applique la procédure bootstrap pour obtenir des réalisations $\hat{\theta^*}^{(b)}$:
 - ▶ Pour *b* allant de 1 à *B*.
 - on génère un échantillon $(X_1^*,...,X_n^*)$,
 - on calcule $\hat{\theta}^{*(b)}$ à partir de $(X_1^*,...,X_n^*)$.

Estimer le biais d'un estimateur

Rappel: biais d'un estimateur: Biais $(\hat{\theta}) = E[\hat{\theta}] - \theta$.

Procédure bootstrap :

- 1. On dispose d'un échantillon $(X_1, ..., X_n)$.
- 2. On calcule $\hat{\theta}$ sur l'échantillon.
- 3. On applique la procédure bootstrap pour obtenir des réalisations $\hat{\theta^*}^{(b)}$:
 - ► Pour *b* allant de 1 à *B*,
 - on génère un échantillon $(X_1^*,...,X_n^*)$,
 - on calcule $\hat{\theta}^{*}^{(b)}$ à partir de $(X_1^*,...,X_n^*)$.

On estime le biais de $\hat{\theta}$ par :

$$\widehat{\mathsf{Biais}(\hat{\theta})} = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta^*}^{(b)} - \hat{\theta}.$$

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pou

Caractérisation d'un estimateur Intervalles de

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

References

Estimer l'erreur quadratique moyenne (MSE) d'un estimateur

Rappel : MSE d'un estimateur : $MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2]$.

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour

Caractérisation d'un estimateur Intervalles de

confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

Estimer l'erreur quadratique moyenne (MSE) d'un

estimateur

Rappel: MSE d'un estimateur : $MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2]$.

Procédure bootstrap :

- 1. On dispose d'un échantillon $(X_1, ..., X_n)$.
- 2. On calcule $\hat{\theta}$ sur l'échantillon.
- 3. On applique la procédure bootstrap pour obtenir des réalisations $\hat{\theta^*}^{(b)}$:
 - ▶ Pour *b* allant de 1 à *B*,
 - on génère un échantillon $(X_1^*, ..., X_n^*)$,
 - on calcule $\hat{\theta}^{*}^{(b)}$ à partir de $(X_1^*,...,X_n^*)$.

Outline

UE StatComp

merodaction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de

confiance

Bootstrap & régression
Bootstrap & prédiction

Conclusion

Estimer l'erreur quadratique moyenne (MSE) d'un estimateur

Rappel: MSE d'un estimateur : $MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2]$.

Procédure bootstrap:

- 1. On dispose d'un échantillon $(X_1, ..., X_n)$.
- 2. On calcule $\hat{\theta}$ sur l'échantillon.
- 3. On applique la procédure bootstrap pour obtenir des réalisations $\hat{\theta^*}^{(b)}$:
 - ► Pour *b* allant de 1 à *B*,
 - on génère un échantillon $(X_1^*,...,X_n^*)$,
 - on calcule $\hat{\theta}^{*}^{(b)}$ à partir de $(X_1^*,...,X_n^*)$.

On estime l'erreur quadratique moyenne de $\hat{\theta}$ par :

$$\widehat{\mathsf{MSE}(\hat{\theta})} = \frac{1}{B} \sum_{b=1}^{B} (\hat{\theta^*}^{(b)} - \hat{\theta})^2.$$

Outline

UE StatComp

Introduction

Formalisatio

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de

confiance
Applications

Bootstrap & régression
Bootstrap & prédiction

onclusion

References

Estimer l'erreur type d'un estimateur

Rappel : erreur type d'un estimateur : l'écart type de sa distribution d'échantillonnage.

Outline

UE StatComp

III Caaction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de

Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

Rappel : erreur type d'un estimateur : l'écart type de sa distribution d'échantillonnage.

introduction

Procédure bootstrap:

_ _____

1. On dispose d'un échantillon $(X_1, ..., X_n)$.

Caractérisation d'un estimateur

2. On applique la procédure bootstrap pour obtenir des réalisations $\hat{\theta^*}^{(b)}$:

Intervalles de confiance

► Pour *b* allant de 1 à *B*.

Bootstrap & régression
Bootstrap & prédiction

• on génère un échantillon $(X_1^*,...,X_n^*)$,

Conclusion

• on calcule $\hat{\theta}^{*}^{(b)}$ à partir de $(X_1^*,...,X_n^*)$.

Rappel : erreur type d'un estimateur : l'écart type de sa distribution d'échantillonnage.

Procédure bootstrap:

- 1. On dispose d'un échantillon $(X_1, ..., X_n)$.
- 2. On applique la procédure bootstrap pour obtenir des réalisations $\hat{\theta^*}^{(b)}$:
 - ▶ Pour *b* allant de 1 à *B*,
 - on génère un échantillon $(X_1^*,...,X_n^*)$,
 - on calcule $\hat{\theta}^{*(b)}$ à partir de $(X_1^*,...,X_n^*)$.

On estime l'erreur-type de $\hat{ heta}$ par l'écart-type des $(\hat{ heta^*}^{(b)})$:

$$\widehat{\mathsf{se}(\hat{\theta})} = \sqrt{\frac{1}{B-1} \sum_{b=1}^{B} \left(\hat{\theta^*}^{(b)} - \bar{\hat{\theta^*}} \right)^2} \ \ \text{où} \ \ \bar{\hat{\theta^*}} = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta^*}^{(b)}.$$

Remarque importante

In fine, on estime la "vraie" variance de $\hat{\theta}$ (i.e., selon P) par la variance empirique des $(\hat{\theta}^{*(b)})$ (i.e., selon \hat{P}_n).

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de

Confiance
Applications

Bootstrap & régression
Bootstrap & prédiction

Conclusion

Remarque importante

In fine, on estime la "vraie" variance de $\hat{\theta}$ (i.e., selon P) par la variance empirique des $(\hat{\theta^*}^{(b)})$ (i.e., selon \hat{P}_n).

Il faut bien comprendre qu'il y a 2 niveaux d'approximation :

- 1. approximer la vraie distribution P par l'empirique \hat{P}_n .
- 2. approximer la variance de $\hat{\theta}$ selon \hat{P}_n par la variance empirique des $(\hat{\theta^*}^{(b)})$.

Outline

UE StatComp

Introduction

Formalisation

l'inférence

Caractérisation d'un estimateur Intervalles de

Applications
Bootstrap &

Bootstrap & régression
Bootstrap & prédiction

Conclusion

In fine, on estime la "vraie" variance de $\hat{\theta}$ (i.e., selon P) par la variance empirique des $(\hat{\theta}^{*(b)})$ (i.e., selon \hat{P}_n).

Il faut bien comprendre qu'il y a 2 niveaux d'approximation :

- 1. approximer la vraie distribution P par l'empirique \hat{P}_n .
- 2. approximer la variance de $\hat{\theta}$ selon \hat{P}_n par la variance empirique des $(\hat{\theta^*}^{(b)})$.
- \Rightarrow point #2 : ok, il suffit de prendre B grand.
- \Rightarrow point #1 : plus délicat...mais valide quand n est grand.

Références

In fine, on estime la "vraie" variance de $\hat{\theta}$ (i.e., selon P) par la variance empirique des $(\hat{\theta}^{*(b)})$ (i.e., selon \hat{P}_n).

Il faut bien comprendre qu'il y a 2 niveaux d'approximation :

- 1. approximer la vraie distribution P par l'empirique \hat{P}_n .
- 2. approximer la variance de $\hat{\theta}$ selon \hat{P}_n par la variance empirique des $(\hat{\theta^*}^{(b)})$.
- \Rightarrow point #2 : ok, il suffit de prendre B grand.
- \Rightarrow point #1 : plus délicat...mais valide quand n est grand.

\triangle bootstrap \neq méthode pour petits échantillons!

- ▶ intérêt #1 = relâcher hypothèses paramétriques
- ▶ intérêt #2 = générique, valable pour toute statistique

Conclusion

```
Calcul du biais et de l'erreur type de la moyenne :
```

```
> x = c(1,1,2,3,3,4,4,4,5,5)
> n = length(x)
> B = 2000
> theta.hat = mean(x)
> theta.b = numeric(B)
> for(b in 1:B){
ind = sample(1:n, size = n, replace = TRUE)
theta.b[b] = mean(x[ind])
> bias = mean(theta.b) - theta.hat
> se = sd(theta.b)
```

Outline

UE StatComp

Caractérisation Intervalles de

confiance

Bootstrap & régression Bootstrap & prédiction

Bootstrap et inférence statistique : intervalles de confiance

Bootstrap et intervalles de confiance

confiance par bootstrap.

Outline

UE StatComp

Caractérisation d'un estimateur Intervalles de

confiance

Bootstrap & régression Bootstrap & prédiction

Il existe de nombreuses manières de définir des intervalles de

Bootstrap et intervalles de confiance

Outline

UE StatComp

Caractérisation

Intervalles de

confiance

Bootstrap & régression Bootstrap & prédiction

Il existe de nombreuses manières de définir des intervalles de confiance par bootstrap.

Nous allons considérer deux définitions se basant uniquement sur les quantiles de la distribution des $\hat{\theta^*}^{(b)}$:

- ▶ l'intervalle de confiance des percentiles.
- ▶ l'intervalle de confiance basique (ou "du pivot").

Ces définitions font le moins d'hypothèses possible.

Cette définition est probablement la plus simple et intuitive.

Elle consiste à calculer empiriquement l'intervalle couvrant $100(1-\alpha)\%$ des estimations bootstrap obtenues.

Formellement, en notant q_{α}^* le quantile d'ordre α de la distribution des estimations bootstrap $\hat{\theta^*}^{(b)}$, il est défini comme :

$$\left[q_{\alpha/2}^* \; ; \; q_{1-\alpha/2}^*\right].$$

On va s'intéresser à la distribution de la statistique $(\hat{\theta} - \theta)$:

Si a_{α} le quantile d'ordre α de la statistique $(\hat{\theta} - \theta)$ alors :

$$P(\hat{\theta} - \theta \le a_{\alpha}) = \alpha \text{ et } P(\hat{\theta} - \theta \ge a_{1-\alpha}) = \alpha.$$

Outline

UE StatComp

Introduction

anna dia atau

Bootstrap pour

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

On a donc (par définition) :

$$P(\hat{\theta} - \theta \le a_{\alpha}) = \alpha \text{ et } P(\hat{\theta} - \theta \ge a_{1-\alpha}) = \alpha,$$

où a_{α} le quantile d'ordre α de la statistique $(\hat{\theta} - \theta)$.

Outline

UE StatComp

Introduction

Formalisatio

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

On a donc (par définition) :

$$P(\hat{\theta} - \theta \le a_{\alpha}) = \alpha \text{ et } P(\hat{\theta} - \theta \ge a_{1-\alpha}) = \alpha,$$

où a_{α} le quantile d'ordre α de la statistique $(\hat{\theta} - \theta)$.

 \Rightarrow on peut écrire :

$$P(\theta \ge \hat{\theta} - a_{\alpha}) = \alpha \text{ et } P(\theta \le \hat{\theta} - a_{1-\alpha}) = \alpha,$$

Outline

UE StatComp

Introduction

Formalisation

l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

On a donc (par définition) :

$$P(\hat{\theta} - \theta \le a_{\alpha}) = \alpha \text{ et } P(\hat{\theta} - \theta \ge a_{1-\alpha}) = \alpha,$$

où a_{α} le quantile d'ordre α de la statistique $(\hat{\theta} - \theta)$.

 \Rightarrow on peut écrire :

$$P(\theta \ge \hat{\theta} - a_{\alpha}) = \alpha \text{ et } P(\theta \le \hat{\theta} - a_{1-\alpha}) = \alpha,$$

et en déduire l'intervalle de confiance à $100(1-\alpha)\%$:

$$\left[\hat{\theta}-a_{1-\alpha/2} ; \hat{\theta}-a_{\alpha/2}\right].$$

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

On considère donc l'intervalle de confiance défini comme

$$\left[\hat{\theta}-a_{1-\alpha/2} ; \hat{\theta}-a_{\alpha/2}\right],$$

où a_{α} le quantile d'ordre α de la statistique $(\hat{\theta} - \theta)$.

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap &

prédiction Conclusion

On considère donc l'intervalle de confiance défini comme

$$\left[\hat{\theta}-a_{1-\alpha/2} ; \hat{\theta}-a_{\alpha/2}\right],$$

où a_{α} le quantile d'ordre α de la statistique $(\hat{\theta} - \theta)$.

Problème : on ne connaît pas la distribution de $(\hat{\theta} - \theta)$.

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression
Bootstrap & prédiction

Conclusion

On considère donc l'intervalle de confiance défini comme

$$[\hat{\theta}-a_{1-\alpha/2} ; \hat{\theta}-a_{\alpha/2}],$$

où a_{α} le quantile d'ordre α de la statistique $(\hat{\theta} - \theta)$.

Problème : on ne connaît pas la distribution de $(\hat{\theta} - \theta)$.

 \Rightarrow On passe dans le monde bootstrap : on approxime la distribution de $(\hat{\theta} - \theta)$ par celle de $(\hat{\theta^*}^{(b)} - \hat{\theta})$.

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression

Bootstrap & prédiction

Conclusion

On considère donc l'intervalle de confiance défini comme

$$\big[\hat{\theta}-a_{1-\alpha/2}\ ;\ \hat{\theta}-a_{\alpha/2}\big],$$

où a_{α} le quantile d'ordre α de la statistique $(\hat{\theta} - \theta)$.

Problème : on ne connaît pas la distribution de $(\hat{\theta} - \theta)$.

- \Rightarrow On passe dans le monde bootstrap : on approxime la distribution de $(\hat{\theta} \theta)$ par celle de $(\hat{\theta^*}^{(b)} \hat{\theta})$.
 - on peut donc écrire :
 - $\mathbf{a}_{\alpha} = \mathbf{q}_{\alpha}^* \hat{\mathbf{\theta}}$, où \mathbf{q}_{α}^* est le quantile d'ordre α des $\hat{\mathbf{\theta}^*}^{(b)}$.

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

On considère donc l'intervalle de confiance défini comme

$$\left[\hat{\theta}-a_{1-\alpha/2} \; ; \; \hat{\theta}-a_{\alpha/2}\right],$$

où a_{α} le quantile d'ordre α de la statistique $(\hat{\theta} - \theta)$.

Problème : on ne connaît pas la distribution de $(\hat{\theta} - \theta)$.

- \Rightarrow On passe dans le monde bootstrap : on approxime la distribution de $(\hat{\theta} \theta)$ par celle de $(\hat{\theta^*}^{(b)} \hat{\theta})$.
 - on peut donc écrire : $\mathbf{a}_{\alpha} = \mathbf{q}_{\alpha}^* \hat{\mathbf{\theta}}$, où \mathbf{q}_{α}^* est le quantile d'ordre α des $\hat{\theta}^{*(b)}$.
 - on en déduit la définition suivante :

$$[2\hat{\theta} - q_{1-\alpha/2}^* ; 2\hat{\theta} - q_{\alpha/2}^*].$$

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression

Bootstrap & prédiction

Conclusion

Bootstrap & intervalles de confiance - remarques

Outline

UE StatComp

Bootstrap pour

Caractérisation d'un estimateur Intervalles de

confiance

Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

Deux définitions considérées :

- 1. IC des percentiles : $\left[q_{\alpha/2}^* \; ; \; q_{1-\alpha/2}^*\right]$.
- 2. IC basique : $\left[2\hat{\theta}-q_{1-\alpha/2}^* \; ; \; 2\hat{\theta}-q_{\alpha/2}^*\right]$.
- \Rightarrow se basent uniquement sur q_{α}^* : le quantile d'ordre α des estimations bootstrap $\hat{\theta}^{*(b)}$.
- ⇒ méthode "basique" / "pivot" : analogie monde bootstrap
 - \bullet $\theta \rightarrow \hat{\theta}$; $\hat{\theta} \rightarrow \hat{\theta}^*$

Deux définitions considérées :

- 1. IC des percentiles : $[q_{\alpha/2}^*; q_{1-\alpha/2}^*]$.
- 2. IC basique : $\left[2\hat{\theta}-q_{1-\alpha/2}^* \; ; \; 2\hat{\theta}-q_{\alpha/2}^*\right]$.
- \Rightarrow se basent uniquement sur q_{α}^* : le quantile d'ordre α des estimations bootstrap $\hat{\theta}^{*(b)}$.
- ⇒ méthode "basique" / "pivot" : analogie monde bootstrap
 - \bullet $\theta \rightarrow \hat{\theta}$; $\hat{\theta} \rightarrow \hat{\theta}^*$

De nombreuses autres définitions existent.

▶ normal, "studentisé", accéléré, corrigé du biais...

Outline

UE StatComp

IIILIOGUCLIOII

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

Applications : bootstrap et régression

Caractérisation Intervalles de confiance

Bootstrap & régression Bootstrap & prédiction

Objectif : prédire / modéliser une variable $Y \in \mathbb{R}$ à partir de p variables explicatives $X^j \in \mathbb{R}$.

Modèle:

$$Y=eta_0+\sum_{j=1}^peta_jX^j+\epsilon$$
 avec ϵ un terme d'erreur.

Caractérisation Intervalles de

Bootstrap &

régression Bootstrap & prédiction

Objectif: prédire / modéliser une variable $Y \in \mathbb{R}$ à partir de p variables explicatives $X^j \in \mathbb{R}$.

Modèle:

$$Y=eta_0+\sum_{j=1}^peta_jX^j+\epsilon$$
 avec ϵ un terme d'erreur.

- \Rightarrow on estime les coefficients β_i par moindre carrés
 - ightharpoonup à partir d'un échantillon $(X_i, Y_i) \in \mathbb{R}^p \times \mathbb{R}, i = 1, ..., n$

Objectif: prédire / modéliser une variable $Y \in \mathbb{R}$ à partir de p variables explicatives $X^j \in \mathbb{R}$.

Modèle:

$$Y=eta_0+\sum_{j=1}^peta_jX^j+\epsilon$$
 avec ϵ un terme d'erreur.

- \Rightarrow on estime les coefficients β_i par moindre carrés
 - ightharpoonup à partir d'un échantillon $(X_i, Y_i) \in \mathbb{R}^p \times \mathbb{R}, i = 1, ..., n$
- \Rightarrow sous l'hypothèse que les résidus ϵ_i sont iid selon $\mathcal{N}(0, \sigma^2)$ on connait la distribution d'échantillonnage des $\hat{\beta}_i$.
 - on peut donc en tirer des intervalles de confiance

Approche bootstrap

Outline

UE StatComp

IIILIOGUCLIOII

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression
Bootstrap & prédiction

Conclusio

Références

Bootstrap et régression = alternative non-paramétrique.

relâcher les hypotèses du modèle.

Objectif : estimer la distribution d'échantillonnage des $\hat{\beta}_{j}$.

▶ in fine : calcul d'intervalles de confiance comme avant.

Deux stratégies principales :

- 1. bootstrap par paires
- 2. bootstrap des résidus

Principe: tirer avec remise dans $\{(X_i, Y_i)\}_{i=1}^n$

Procédure bootstrap :

- ▶ On dispose d'un échantillon $(Z_1, ..., Z_n)$, $Z_i = (X_i, Y_i)$
- ▶ On estime $\hat{\beta}_i$ sur l'échantillon original
- On applique le bootstrap par paires :
 - ▶ pour b de 1 à B
 - on génère un échantillon $(Z_1^*,...,Z_n^*)$
 - on estime les coefficients $\hat{\beta}_i^*$ à partir des $(Z_1^*,...,Z_n^*)$

Caractérisation d'un estimateur Intervalles de confiance

Applicatio

Bootstrap & régression
Bootstrap & prédiction

Conclusio

Références

Principe: tirer avec remise dans $\{(X_i, Y_i)\}_{i=1,...,n}$.

Procédure bootstrap:

- ▶ On dispose d'un échantillon $(Z_1, ..., Z_n)$, $Z_i = (X_i, Y_i)$
- On estime $\hat{\beta}_j$ sur l'échantillon original
- On applique le bootstrap par paires :
 - ▶ pour b de 1 à B
 - on génère un échantillon $(Z_1^*,...,Z_n^*)$
 - on estime les coefficients $\hat{\beta}_j^*$ à partir des $(Z_1^*,...,Z_n^*)$
- \Rightarrow l'approche "standard".
- \Rightarrow hypothèse : (X_i, Y_i) iid selon une loi (jointe) P.

Intervalles de

Bootstrap &

régression Bootstrap & prédiction

Procédure bootstrap:

▶ On dispose d'un échantillon $(Z_1,...,Z_n)$, $Z_i = (X_i,Y_i)$

Principe : travailler à partir des résidus du modèle initial.

- ▶ On estime $\hat{\beta}_i$ sur l'échantillon original
- On considère les résidus $(\epsilon_1, ..., \epsilon_n)$
- On applique le bootstrap par résidus :
 - pour b de 1 à B
 - on génère un échantillon $(\epsilon_1^*,...,\epsilon_n^*)$
 - on calcule $Y_i^* = \hat{\beta_0} + \sum_{i=1}^p \hat{\beta_i} X_{ij} + \epsilon_i^*$
 - on estime les coefficients $\hat{\beta}_i^*$ à partir des (X_i, Y_i^*)

Bootstrap des résidus

Principe : travailler à partir des résidus du modèle initial.

Procédure bootstrap :

- ▶ On dispose d'un échantillon $(Z_1, ..., Z_n)$, $Z_i = (X_i, Y_i)$
- On estime $\hat{\beta}_j$ sur l'échantillon original
- ▶ On considère les résidus $(\epsilon_1, ..., \epsilon_n)$
- ► On applique le bootstrap par résidus :
 - pour b de 1 à B
 - on génère un échantillon $(\epsilon_1^*,...,\epsilon_n^*)$
 - on calcule $Y_i^* = \hat{\beta}_0 + \sum_{j=1}^p \hat{\beta}_j X_{ij} + \epsilon_i^*$
 - on estime les coefficients $\hat{\beta}_j^*$ à partir des (X_i, Y_i^*)
- ⇒ on tire avec remise les résidus.
 - ▶ tous les X_i sont utilisés à chaque fois
 - ▶ hypothèse : $Y_i|X_i$ iid
- ⇒ semble être la stratégie la plus classique

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour

Caractérisation d'un estimateur Intervalles de confiance

Bootstrap &

régression Bootstrap & prédiction

Conclusion

References

Outline

UE StatComp

.....

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression
Bootstrap & prédiction

rediction

Conclusion

Références

Applications : bootstrap et modèles de prédiction

Principe bootstrap pour la construction de prédicteurs :

Outline

UE StatComp

introduction

ormalisation

Bootstrap pour

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

Principe bootstrap pour la construction de prédicteurs :

1. Apprentissage : construire *B* prédicteurs à partir d'échantillons obtenus en tirant avec remise dans l'échantillon original.

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

Principe bootstrap pour la construction de prédicteurs :

- 1. Apprentissage : construire *B* prédicteurs à partir d'échantillons obtenus en tirant avec remise dans l'échantillon original.
- 2. Prédiction : aggréger les prédictions des B modèles
 - régression : prédire la moyenne des valeurs obtenues.
 - classification : prédire la classe prédite le plus souvent

Outline

UE StatComp

Introduction

Formalisatio

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap &

régression Bootstrap & prédiction

Conclusion

Principe bootstrap pour la construction de prédicteurs :

- 1. Apprentissage : construire *B* prédicteurs à partir d'échantillons obtenus en tirant avec remise dans l'échantillon original.
- 2. Prédiction : aggréger les prédictions des B modèles
 - régression : prédire la moyenne des valeurs obtenues.
 - classification : prédire la classe prédite le plus souvent

On parle de stratégie bagging, pour bootstrap-aggregating.

Stratégie générique, souvent basée sur des arbres de décision

En pratique elle permet de limiter le sur-apprentissage.

Outline

UE StatComp

Introduction

Formalisatio

Bootstrap poi l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap &

régression Bootstrap & prédiction

Conclusion

Outline UE StatComp

Intervalles de confiance

Bootstrap &

régression Bootstrap & prédiction

Principe bootstrap pour la construction de prédicteurs :

- 1. Apprentissage : construire B prédicteurs à partir d'échantillons obtenus en tirant avec remise dans l'échantillon original.
- 2. Prédiction : aggréger les prédictions des B modèles
 - régression : prédire la moyenne des valeurs obtenues.
 - classification : prédire la classe prédite le plus souvent

On parle de stratégie bagging, pour bootstrap-aggregating.

Stratégie générique, souvent basée sur des arbres de décision

En pratique elle permet de limiter le sur-apprentissage.

⇒ à suivre dans cours "Apprentissage Statistique II".

Outline

${\sf UE\ StatComp}$

IIILIOGUCLIOII

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Application

Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

Conclusion

▶ Bootstrap : un principe très simple à mettre en oeuvre.

Outline

UE StatComp

.....

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Bootstrap & régression
Bootstrap &

prédiction Conclusion

Outline

UE StatComp

IIILIOGUCLIOII

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression
Bootstrap & prédiction

Conclusion

- ▶ Bootstrap : un principe très simple à mettre en oeuvre.
- Il permet de répondre à des questions d'inférence statistique sans aucune information sur la loi de la variable aléatoire sous-jacente.

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

- ▶ Bootstrap : un principe très simple à mettre en oeuvre.
- ▶ Il permet de répondre à des questions d'inférence statistique sans aucune information sur la loi de la variable aléatoire sous-jacente.
- ▶ Dans ce cas là, travailler par ré-échantillonnage de l'échantillon disponible est parfois la meilleure stratégie, surtout si la loi sous-jacente n'est pas une loi usuelle.

- ► Intérêts principaux :
 - relâcher les hypothèses sur la loi de la variable aléatoire étudiée qu'on doit faire avec les approches paramétriques
 - 2. principe générique applicable à n'importe quelle statistique (dont on ne connait pas la distribution)

Outline

UE StatComp

IIILIOGUCLIOII

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression

Bootstrap & prédiction

Conclusion

► Intérêts principaux :

- relâcher les hypothèses sur la loi de la variable aléatoire étudiée qu'on doit faire avec les approches paramétriques
- 2. principe générique applicable à n'importe quelle statistique (dont on ne connait pas la distribution)
- ► Bien garder en tête qu'il y a 2 niveaux d'approximation
 - 1. remplacer la "vraie" distribution par l'empirique
 - 2. remplacer la "vraie" distribution d'échantillonnage (selon la loi empirique) par celle obtenue par tirages

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Bootstrap &

Bootstrap & régression
Bootstrap & prédiction

Conclusion

► Intérêts principaux :

- relâcher les hypothèses sur la loi de la variable aléatoire étudiée qu'on doit faire avec les approches paramétriques
- 2. principe générique applicable à n'importe quelle statistique (dont on ne connait pas la distribution)
- ► Bien garder en tête qu'il y a 2 niveaux d'approximation
 - 1. remplacer la "vraie" distribution par l'empirique
 - remplacer la "vraie" distribution d'échantillonnage (selon la loi empirique) par celle obtenue par tirages
- ► Par conséquent : méthode valide quand *n* est grand
 - résultats théoriques pour démontrer la validité des procédures décrites (caractérisation et IC)
 - le bootstrap n'est **pas** dédié aux petits échantillons

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression

Bootstrap & prédiction

Conclusion

► Intérêts principaux :

- relâcher les hypothèses sur la loi de la variable aléatoire étudiée qu'on doit faire avec les approches paramétriques
- principe générique applicable à n'importe quelle statistique (dont on ne connait pas la distribution)
- ► Bien garder en tête qu'il y a 2 niveaux d'approximation
 - 1. remplacer la "vraie" distribution par l'empirique
 - remplacer la "vraie" distribution d'échantillonnage (selon la loi empirique) par celle obtenue par tirages
- ► Par conséquent : méthode valide quand *n* est grand
 - résultats théoriques pour démontrer la validité des procédures décrites (caractérisation et IC)
 - le bootstrap n'est pas dédié aux petits échantillons
- ► Et si *n* est petit? Pas forcément pire qu'une approche paramétrique...

Outline

UE StatComp

Introduction

Formalisatio

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression

Bootstrap & prédiction

Conclusion

References

► Le principe du bootstrap a été décliné avec succès pour construire des modèles de prédiction, dans une stratégie dite de bagging.

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression

Bootstrap & prédiction

Conclusion

- Le principe du bootstrap a été décliné avec succès pour construire des modèles de prédiction, dans une stratégie dite de bagging.
- Un exemple important est celui des forêts aléatoires, qui sont des classifieurs très performants et relativement simples à mettre en oeuvre.

Outline

UE StatComp

Introduction

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

Introduction

- 0.00

Bootstrap pour l'inférence

Outline

UE StatComp

Caractérisation d'un estimateur Intervalles de confiance

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

- Le principe du bootstrap a été décliné avec succès pour construire des modèles de prédiction, dans une stratégie dite de bagging.
- Un exemple important est celui des forêts aléatoires, qui sont des classifieurs très performants et relativement simples à mettre en oeuvre.
- On peut également utiliser ce principe pour évaluer les performances d'un modèle de prédiction, comme une alternative à la validation croisée.
 - mais c'est moins classique.
- \Rightarrow à suivre dans le cours "Apprentissage Statistique II".

Mise en oeuvre R.

Outline

UE StatComp

Introduction

Formalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Applications

Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

Le pilier du bootstrap :

> ind.bs = sample(n, replace = TRUE)

Les packages bootstrap et boot implémentent les méthodes vues en cours.

Le package boot est le plus recommandé.

extrait tiré de la documentation du package bootstrap : New projects should preferentially use the recommended package "boot"

Mise en oeuvre R.

Outline

UE StatComp

Introduction

Formalisatio

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de

Applications
Bootstrap & régression
Bootstrap & prédiction

Conclusion

Références

Package boot : deux fonctions principales

1. fonction boot()

- en entrée : données, statistique considérée (une fonction) et B.
- en sortie : un objet contenant (en 1er lieu) les estimations bootstrap.
- ▶ la fonction print() affiche le biais et l'erreur type.

2. fonction boot.ci()

- ▶ en entrée : l'objet retourné par la fonction boot().
- ▶ en sortie : les intervalles de confiance par différentes statégies (e.g., basic, perc, norm).

\Rightarrow à voir en TP.

Références

Outline

UE StatComp

IIILIOGUCLIOII

ormalisation

Bootstrap pour l'inférence

Caractérisation d'un estimateur Intervalles de confiance

Bootstrap &

régression

Bootstrap & prédiction

Conclusion

Références

B. Efron and R. Tibshirani. *An introduction to the boostrap*. Chapman & Hall, 1993.