차량 로그 데이터 이용 데이터 엔지니어링

목차

- 구성 및 설정
- 수집
- 적재
- 탐색 및 처리
- 분석
 - ㅇ 군집 분석
 - 。 이상 징후 판별
- 발생한 문제 및 해결
- 중점적으로 고려한 사항

구성 및 설정

▼ 주요 목표

- 차량의 다양한 장치로부터 발생하는 로그 파일을 수집하여 기능 별 상태 점검(배치)
- 운전자의 운행 정보가 담긴 로그를 실시간으로 수집하여 주행 패턴 분석

▼ 가상 머신 설정

- Oracle Virtual Box : 서버 2대 (Server01, Server02)
- OS: CentOS 6
- RAM: Server01 4GB, Server02 4GB

• Cloudera Manager 사용

- 。 통일된 인터페이스를 통해 구성과 리소스를 간편하게 튜닝
- 다양한 환경, 다중 클러스터 관리를 용이하게 함
- Hadoop 모니터링 서비스

수집

▼ 수집 사용 기술

- Flume : Source → Channel → Sink 의 구조를 가지며, 데이터를 수집하기 위한 기능을 담당
- Kafka : 대규모 메시지 성 데이터 중계, Producer 와 Consumer 로 나뉘며 이를 중계하는 Broker 가 중간에 존재
- Storm : 데이터를 In-memory 상에서 병렬 처리하기 위한 소프트웨어, Kafka로부터 받은 데이터를 각각 HBase, Redis로 나누어서 전달
- Esper : 실시간 스트리밍 데이터로 복잡한 이벤트 처리가 필요할 때 사용하는 룰 엔진

적재

▼ 적재 사용 기술

- HDFS : 파일을 블록 단위로 나누어서 각 클러스터에 분산 저장
- Zookeeper : 분산 코디네이터, 분산 환경에서 작동되는 작업들을 감시/감독(Supervisor)

• HBase

- Hadoop 기반 **Column 지향** NoSQL
- Schema 변경이 자유롭다.
- 。 Region 분산 서버로 **샤딩**과 **복제** 지원 → 성능/안정성 향상

• Redis

- 。 분산 Cache
- In-memory Data Grid Software
- 。 실시간 성 데이터 중 일부만 HBase에 저장하기 전에 Redis에 저장할 필요가 있어서 사용(가속 데이터를 Redis에 저장)

[배치성 수집 → 적재]

• 일 단위로 Flume에서 수집한 데이터를 날마다 설정한 시간에 HDFS에 적재

[실시간 수집 → 적재]

- 실시간 수집의 경우 Flume에서 수집 이후 바로 HBase와 같은 곳에 적재를 진행하게 되면, Fault Tolerance 를 보장하지 못한다. 적재 시 HBase에 오류가 발생한다면, 실시간으로 수집되고 있는 데이터들이 손실되거나 예상하지 못한 문제가 발생할 수 있다.
- 이런 점을 해결하기 위해서 중간에 Kafka를 거쳐 Kafka의 높은 처리량, 신뢰성, 즉각적인 피드백을 통해 수집되고 있는 데이터가 손실되지 않고, 즉각적으로 장애에 대응할 수 있도록 구성하였다.

탐색 및 처리

▼ 탐색 및 처리 사용 기술

- Hive
 - 。 기존 방식 : 적재된 데이터를 탐색/분석하기 위해 MapReduce를 주로 사용(복잡도 커짐, Java 이용 필요)
 - **Hive(SQL on Hadoop)**를 이용하여 MapReduce로 변환 및 실행 가능
 - Query Engine : 사용자가 입력한 Hive Query를 분석하여 실행 계획을 수립 → Hive Query를 MapReduce 코드로 변환 및 실행
 - ∘ Interactive(대화형) 방식에는 적합하지 않다.
- Spark : In-memory 방식을 통해 MapReduce보다 데이터를 더욱 효율적으로 처리(적은 데이터의 경우 Spark나 Impala가 Hive보다 유용)
- Impala : 대화형 쿼리을 위한 쿼리 엔진.
- Oozie: 예약 및 실행을 이용한 Workflow 구성
- Hue: Web UI를 이용하여 HDFS 및 Query를 간편하게 이용 가능

기존의 로그를 활용하여 추가 주제 영역 테이블 생성

- 스마트카 상태 모니터링 정보(managed_smartcar_status_info)
 - o smartcar_master_over18, smartcar_status_info 이용

- 스마트카 운전자 운행기록 정보(managed_smartcar_drive_info)
 - o smartcar_master_over18, smartcar_drive_info_2 이용
- 이상 운전 패턴 스마트카 정보(managed_smartcar_symptom_info)
 - o managed_smartcar_drive_info 이용
- 긴급 점검이 필요한 스마트카 정보(managed_smartcar_emergency_check_info)
 - o managed_smartcar_status_info 이용
- 운전자의 차량 용품 구매 이력 정보(managed_smartcar_item_buylist_info)
 - \circ smartcar_master_over18, smartcar_item_buylist 0|8

[결과 확인]

```
managed_smartcar_drive_info
managed_smartcar_emergency_check_info
managed_smartcar_item_buylist_info
managed_smartcar_status_info
managed_smartcar_symptom_info
managed_smartcar_symptom_info
smartcar_drive_info
smartcar_drive_info_2
smartcar_item_buylist
smartcar_master
smartcar_master
smartcar_master_over18
smartcar_status_info
```

분석 및 분석 환경

- 군집 분석
 - Mahout을 사용한 Canopy 분석(이후 K-means의 적절한 K값 찾기)
 - Canopy 분석의 결과 중 유효한 변수만 선정하여 Feature → 실루엣 분석
- 차량 이상 징후 판별

▼ 군집 분석 시 사용 기술

- Mahout: 분산 처리, 확장성을 가진 라이브러리
- Spark K-means

군집 분석

Mahout을 사용한 Canopy 분석

• 정보 생성

```
insert overwrite local directory '/home/pilot-pjt/mahout-data/clustering/input'
row fotmat delimited
fields terminated by ' '
select
car_number,
case
when (car_capacity < 2000) then '소형'
when (car_capacity < 3000) then '중형'
when (car_capacity < 4000) then '대형'
end as car_capacity
case
when ((2016 - car_year) <= 2) then 'NEW'
when ((2016 - car_year) <= 8) then 'NORMAL'
else 'OLD'
```

```
end as car_year,
  car_model,
  sex as owner_sex,
  floor (cast(age as int) * 0.1) * 10 as owner_age,
  marriage as owner_marriage,
  job as owner_job,
  region as owner_region
from smartcar_master
```

• Canopy 분석을 위한 입력 데이터

```
$ hdfs dfs -mkdir -p /pilot-pjt/mahout/clustering/input
$ cd /home/pilot-pjt/mahout-data/clustering/input
$ mv 0000000_0 smartcar_master.txt
$ hdfs dfs -put smartcar_master.txt /pilot-pjt/mahout/clustering/input
$ mahout seq2sparse -i /pilot-pjt/mahout/clustering/output/seq -o /pilot-pjt/mahout/clustering/output/vec
-wt tf -s 5 -md 3 -ng 2 -x 85 --namedVector
```

- Canopy 군집 분석 (Centroid로부터 거리를 나타내는 t1, t2 옵션을 바꿔가면서 수행
 - o Centroid ~ t2까지 : 해당 군집
 - 。 t2 ~ t1까지: 다른 군집의 데이터로 취합 가능

```
$ mahout canopy -i /pilot-pjt/mahout/clustering/output/vec/tf-vectors/ -o /
pilot-pjt/mahout/clustering/canopy/out -dm org.apache.mahout.common.distance.
SquaredEuclideanDistanceMeasure -t1 50 -t2 45 -ow
```

Canopy 분석을 통해 K-means Clustering에 적절한 K 값 변수 발견

Canopy 분석의 결과 중 유효한 변수만 선정하여 Feature → 실루엣 분석

- 차량 용량
- 차량 연식
- 차량 모델
- 성별
- 결혼 여부

```
val dsSmartCar_Master_12 = dsSmartCar_Master_11.drop("car_capacity").drop("car_year").drop("car_model").drop("FINISHED
                                           .drop("age").drop("marriage").drop("job").drop("region").drop("features")
                                           .withColumnRenamed("scaledfeatures", "features")
dsSmartCar_Master_12.show(5)
val Array(trainingData, testData) = dsSmartCar_Master_12.randomSplit(Array(0.7, 0.3))
|car_number|car_capacity_n|car_year_n|car_model_n|sex_n|age_n|marriage_n|job_n|region_n|
                                                             0.0 3.0 14.0 [0.0,1.0,0.0,0.0,...
                                                            0.0 | 2.0 | 12.0 | [0.5,0.5,0.142857... |
                                       1.0 | 1.0 | 2.0 |
                    1.0
                            1.0
     A0002
                    1.0
                            1.0
                                                            1.0 | 5.0 | 2.0 | [0.5,0.5,0.714285... |
                                       5.0 0.0 3.0
     A0003
                                                             0.0 | 6.0 | 1.0 | [0.5,1.0,0.857142... |
                             2.0
                    1.0
                                       6.0 | 1.0 | 4.0 |
     A0004
                                                            0.0| 6.0| 0.0|[0.0,0.0,1.0,1.0,...|
                    0.0
                              0.0
                                        7.0 | 1.0 | 3.0
     A0005
```

• 군집 번호 별 차량 번호

```
FINISHED D 共 国
 val transKmeansModel = kmeansModel.transform(dsSmartCar_Master_12)
 transKmeansModel.groupBy("prediction").agg(collect_set("car_number").as("car_number")).orderBy("prediction").show(200, false)
3, B0024, Q0035, W0042, P0085, D0058]
24
           [K0087, E0024, U0099, V0031, M0074, C0006, N0090, L0006, B0085, M0094]
25
           [M0047, W0011, X0024, F0080, C0073, Y0005, Y0082, C0082, Z0014, C0040, U0060, W0070]
26
           [00099, E0052, V0002, 00070, 00084, 00094, K0082, U0062, C0020, N0035, U0015, D0066, 00017, K0036, Z0001, L0016, M003
0, M0052, T0055, N0094, L0039]
           [T0028, P0036, P0032, D0087, R0038, A0008, R0068, H0016, G0045, O0095, T0017, W0093, F0006, Q0070, B0069, R0091, P007
1, I0040, R0034, J0084, J0011, T0046, C0078, I0041, J0048, Z0094, P0063, S0071, B0046, V0038, Z0075, A0013, C0014]
           [Z0098, X0050, S0025, O0087, N0096, C0088, L0060, B0033, N0052, R0065, Y0092, C0093, W0060, H0059, E0088]
28
29
           [H0092, S0036, D0031, H0046, Z0034, X0048, B0025, E0065, P0006, K0027, L0093, L0081, G0015, S0062, P0018, Q0023, W002
7]
30
           [Q0048, S0004, J0026, D0019, R0035, K0040, Y0062]
31
           [L0002, J0081, Z0004, C0009, P0005, T0095, F0039, K0018, L0052, R0099, P0093, W0002, Z0076, M0041]
           TELIBRET ARROY CARTS CARTS CARTS ERROY TARRA VARAS DARRA TARRA CARTS TARRA LARRE HARES GRATE MARTE VARAS
```

• 실루엣 분석을 통해 군집이 잘 이루어 졌는지 판단

```
val evaluator = new ClusteringEvaluator()
val silhouette = evaluator.evaluate(transKmeansModel)

println(s"Silhouette Score = $silhouette")

Silhouette Score = 0.8586774865237091
evaluator: org.apache.spark.ml.evaluation.ClusteringEvaluator = cluEval_03930801f4a4
silhouette: Double = 0.8586774865237091
```

차량 이상 징후 판별

- ▼ 차량 이상 징후 판별 시 사용 기술
 - Python, Impyla 이용 Hive 데이터 웨어하우스 연결
 - Tensorflow, Keras, Scikit-learn, Pandas, Matplotlib 활용

[최종 구성]

발생한 문제 및 해결

- 1. 앞선 수집/적재 프로세스에서 실시간 로그를 수집/적재 진행 중에 과속 데이터 발생 시 Redis에 적재되도록 했다.
 - 과속 시 실시간으로 적재가 되지 않는 오류가 발생했다. 시간이 흐른 후에 적재가 되는데 이속도가 매우 늦다.

원인

• Kafka의 Topic에서 실시간으로 쌓이는 데이터의 속도보다, Storm에서 데이터를 빼와 처리하고 Redis로 전송하는 속도가 느려서 발생한 문제

해결

- 아직 Kafka의 Topic에 이전에 처리 중인 데이터가 남아 있었다면, Storm에서 과속 여부를 판단해 Redis로 전송할 수 있기 때문에 **이전에** 처리 중인 데이터가 해결되지 않아서 현재 실시간으로 데이터가 전송되지 않는다.
- Kafka의 Topic에 해당 데이터가 남아 있는지 확인

\$ kafka-console-consumer --bootstrap-server server02.hadoop.com:9092 --topic SmartCar-Topic --partition 0 --from-beginning

이전의 데이터가 너무 늦게 전송되어 Kafka Retention Time을 줄여서 이전에 전송 실패한 데이터들을 제거하고 다시 진행함으로써 해결하였다.

2. MapReduce가 진행되지 않는 문제(Accepted 단계에서 Running 단계로 넘어가지 않음)

ACCEPTED Applications

원인

- 1. MapReduce가 많이 몰려있고 끝나지 않았을 때(Reducer 제한이 5개인데 5개 모두 동작 중인 경우)
- 2. 디스크 제한 임계치가 90%인데 이 임계값을 넘어서 Unhealthy Node로 설정되어 MapReduce가 실행되지 않았다.

해결

1번의 경우

- 실행 중인 것들을 종료해주고, 필요한 것부터 우선적으로 실행
- Reducer 개수 늘이기 (무작정 늘인다고 속도가 빨라지는 것이 아니므로 실행 쿼리/워크플로우 및 작업을 고려해서 설정할 필요가 있다 2번의 경우
- 디스크 제한 임계치를 변경하거나 ex) 80% → 90%(90%이상은 추천되지 않는 방법 예상치 못한 문제 발생할 수 있다)
- 디스크 용량을 늘이는 방법을 선택할 수 있다.

중점적으로 고려한 사항

- 실제로 현업에서 처리되는 만큼의 많은 데이터나 고성능의 환경이 아니기 때문에 제약이 있으나, DB나 Pandas의 데이터 처리 방법을 쓰는 방식이 아닌 데이터 웨어하우스를 구성하는 이유가 잘 반영되도록 구성했다.
 - 。 실시간 수집/적재 시 Flume에서 Kafka를 거쳐 적재하는 구조를 이용(Fault Tolerance)
 - Oozie를 통한 예약 및 실행을 통한 Workflow 구성(실시간 수집/적재)
 - 。 분산 처리 및 In-memory 기술들을 잘 활용하여 효율적으로 구성