# INFLUENCE OF RADIUS RATIO ON THE STRUCTURE OF INTERMETALLIC COMPOUNDS OF THE AB<sub>3</sub> TYPE

#### J. H. N. VAN VUCHT

Philips Research Laboratories, N.V. Philips' Gloeilampenfabriehen, Eindhoven (The Netherlands) (Received April 30th, 1966)

#### SUMMARY

Attempts have been made to investigate the factors governing the relative stability of the various structure types found by mixing different kinds of atoms, A or B, in a large number of AB<sub>3</sub> intermetallic compounds related to Cu<sub>3</sub>Au. A geometric factor, leading to the radius-ratio dependent hexagonality of stacking character, as recognized by VAN VUCHT AND BUSCHOW in rare-earth trialuminides, seems to be predominant in many cases and may be used in predicting ternary phases.

This factor has also served as the basis on which trial structures are proposed for three new phases encountered as transition structures between the Cu<sub>3</sub>Au and the Ni<sub>3</sub>Sn types, namely, (Ba<sub>0.95</sub>,Sr<sub>0.05</sub>)Pb<sub>3</sub> with a rhombohedral unit cell (a = 12.180 Å,  $\alpha = 34^{\circ}43'$ ); (Ti<sub>0.97</sub>,Nb<sub>0.03</sub>)Ni<sub>3</sub> with a hexagonal unit cell (a = 5.10 Å, c = 20.80 Å, c/a = 4.08), and Ti(Ni<sub>0.11</sub>,Pt<sub>0.89</sub>)<sub>3</sub> with a hexagonal unit cell (a = 5.482 Å, c = 15.65 Å, c/a = 2.85). The geometric factor may even be seen as influencing a transition of the layer type to be stacked. A second factor, the electronegativity difference of the atoms A and B, is recognized as the principal reason why the radius-ratio rule cannot be given in a quantitative manner. In many cases a third factor, the valence-electron concentration prevails.

#### INTRODUCTION

In a recent paper on the structures of the rare-earth trialuminides<sup>1</sup> it was shown that, depending on the radius of the rare-earth element R, the compound RAl<sub>3</sub> may have the cubic Cu<sub>3</sub>Au type for the smaller R atoms (viz. Sc, Tm, Yb, Er), or the hexagonal Ni<sub>3</sub>Sn type for the larger R atoms (viz. Gd, Sm, Nd, Pr, Ce, La). For R metals with radii lying on the border between these two groups (viz. Y, Tb, Dy and Ho) structures are found which may be considered as intermediate in character. All these structures are built up from the same type of layer; the stacking sequences of the layers, however, change with increasing R radius from purely cubic, through different types of ordered mixtures of hexagonal and cubic layers, to purely hexagonal. Additional proof for the interdependence of radius ratio and structure type was given by experiments on two groups of ternary trialuminides,  $Er_xY_{1-x}Al_3$  and  $Er_xGd_{1-x}Al_3$ .

When the mean R/Al radius ratio is varied, identical types of stacking varieties occur as are found for the binary trialuminides, and, furthermore, an additional type is observed which fits in at the correct position in the series of intermediate structures with increasing hexagonality.

These results clearly indicate that geometric factors may be very important in determining the type of structure of an RAl<sub>3</sub> compound. In order to demonstrate the more general value of this recognition, a series of investigations was undertaken with various intermetallic compounds known to belong to the structure family in question, using, however, elements that are utterly different from the rare-earth elements and aluminium. By partly or wholly replacing one of the components by an atom of different size, it was hoped to stabilize ternary compounds with intermediate structures as above.

#### INVESTIGATION PROGRAM

Starting with the  $AB_3$  compounds in the first column of Table I, substitutions are made of the A atoms or the B atoms with elements of like or unlike valency; the latter to find out whether electronic influences (valence-electron concentration) may prevail over the supposed geometric factor. The radius of the substituting atom relative to the radius of the replaced atom is added between brackets. The direction of structure change, predicted on these geometrical grounds, is indicated in column 3, while column 4 anticipates the experimental justification of these predictions.

Experimental details will be given separately in the discussion of each system. The stoichiometry of the  $AB_3$  phases, either binary or ternary, has not been checked. The systems  $Ni_3(Sn,Ge)$  and  $Ni_3(Sn,Si)$  will be treated in a separate paper² because of special complications which, presumably, are related to the fact that  $Ni_3Sn$  has a structure transformation. The results from the systems  $(Ta,Nb)Co_3$ ,  $(Ta,V)Co_3$ ,  $(Nb,V)Co_3$ ,  $(Ta,Mo)Co_3$ ,  $(Ta,W)Co_3$ ,  $(V,Mo)Co_3$ ,  $(V,W)Co_3$ ,  $(Nb,Mo)Co_3$ ,  $(Nb,W)Co_3$ ,  $(Ta,V)Co_3$ , (Ta,

#### EXPERIMENTAL DATA

## BaPb<sub>3</sub>-CaPb<sub>3</sub> system

Starting with hhc-stacked BaPb<sub>3</sub> (hexagonally a = 7.287 Å, c = 25.77 Å c/a = 3.54, or rhombohedrally a = 9.565 Å,  $\alpha = 44^{\circ}47^{'4}$ ) it was expected that upon the gradual replacement of Ba by Ca, less hexagonal structures might become stable. In fact CaPb<sub>3</sub> itself has been shown to belong to the Cu<sub>3</sub>Au type compounds by ZINTL AND NEUMAYR<sup>5</sup> with a = 4.901 Å.

The samples were prepared by melting mixtures of the metals, weighed in an argon atmosphere, into pure, decarbonized, thick-walled iron crucibles sealed by welding on lids of the same material. These filled bombs were enveloped in silica and heated in this state for one day at 1000°C and subsequently for 3 days at 500°C. After this treatment the bombs were opened in a glove box filled with dry nitrogen; the brittle contents were crushed in this box in an agate mortar and the powder was placed in a special sample holder which allowed an X-ray diffractogram to be made without exposure to the air. The X-ray apparatus consisted of a Philips wide-angle

TABLE I
REVIEW OF INVESTIGATED SYSTEMS AND RESULTS

| Starting<br>AB <sub>3</sub> | Stacking | Replacement*<br>of  |          | Change<br>expected | Structure types found successively                                                                                                 |  |  |
|-----------------------------|----------|---------------------|----------|--------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                             |          | $\frac{\dot{A}}{A}$ | B        | in direction       |                                                                                                                                    |  |  |
| BaPb <sub>3</sub>           | hhc      | Ca(0.88)            |          | cubic              | 12-layer (hhcc?), Cu <sub>3</sub> Au type (c)                                                                                      |  |  |
|                             |          | Sr(0.94)            |          | cubic              | 12-layer (hhcc?), VCo <sub>3</sub> type (hcc), deformed Cu <sub>3</sub> Au type (c')                                               |  |  |
|                             |          | K(1.05)             |          | hexagonal          | no AB <sub>3</sub> type                                                                                                            |  |  |
|                             |          | La(0.83)            |          | cubic              | Cu <sub>3</sub> Au (c)                                                                                                             |  |  |
|                             |          |                     | Tl(0.98) | hexagonal          | Ni₃Sn type (h)                                                                                                                     |  |  |
|                             |          |                     | Bi(1.04) | cubic              | Cu <sub>3</sub> Au (c), deformed Cu <sub>3</sub> Au<br>type (c')                                                                   |  |  |
| $ThAl_3$                    | h        | U(0.86)             |          | cubic              | Cu <sub>3</sub> Au type (c)                                                                                                        |  |  |
|                             |          |                     | In(1.10) | cubic              | Cu <sub>3</sub> Au type (c)                                                                                                        |  |  |
| SnNi <sub>3</sub>           | h        | Ge(0.88)            |          | cubic              | Cu₃Au type (c)                                                                                                                     |  |  |
|                             |          | Si(0.85)            |          | cubic              | Cu <sub>3</sub> Au type (c)                                                                                                        |  |  |
| TiNi <sub>3</sub>           | hc       | Al(1.00)            |          | indifferent        | Cu <sub>3</sub> Au type (c)                                                                                                        |  |  |
|                             |          | Zr(1.10)            |          | hexagonal          | BaPb <sub>3</sub> type (hhc)                                                                                                       |  |  |
|                             |          | Nb(1.01)            |          | hexagonal          | Io-layer (hhchc?), BaPb <sub>3</sub> type (hhc), Ni <sub>3</sub> Sn type (h), Cu <sub>3</sub> Ti typ                               |  |  |
|                             |          | Ta(1.01)            |          | hexagonal          | io-layer (hhchc?), BaPb <sub>3</sub> type (hhc), Ni <sub>3</sub> Sn type (h), Cu <sub>3</sub> Ti ty                                |  |  |
|                             |          |                     | Cu(1.03) | cubic              | To-layer (hhchc?), BaPb <sub>3</sub> type (hhc), Cu <sub>3</sub> Ti type, Al <sub>3</sub> Ti type, two-phase (no AB <sub>3</sub> ) |  |  |
|                             |          |                     | Co(1.02) | cubic              | VCo <sub>3</sub> type (hcc), two-phase (no AB <sub>3</sub> type)                                                                   |  |  |
|                             |          |                     | Fe(1.02) | cubic              | two-phase (no AB <sub>3</sub> type)                                                                                                |  |  |
|                             |          |                     | Pt(1.09) | cubic              | 7-layer (hchcccc?), Cu3Au type (                                                                                                   |  |  |
| TiPd <sub>a</sub>           | hc       |                     | Pt(1.01) | cubic              | 7-layer (hchcccc?), Cu <sub>3</sub> Au type (                                                                                      |  |  |
| VCo <sub>3</sub>            | hcc      | Nb(1.08)            | , ,      | hexagonal          | no AB <sub>3</sub> type                                                                                                            |  |  |
|                             |          | Ta(1.07)            |          | hexagonal          | no AB <sub>3</sub> type                                                                                                            |  |  |
|                             |          | Mo(1.03)            |          | hexagonal          | BaPb <sub>3</sub> type (hhc), Ni <sub>3</sub> Sn type (                                                                            |  |  |
|                             |          | W(1,04)             |          | hexagonal          | BaPb <sub>3</sub> type (hhc), Ni <sub>3</sub> Sn type (l                                                                           |  |  |
|                             |          | , ,,                | Ni(0.98) | hexagonal          | BaPb <sub>3</sub> type (hhc), Ni <sub>3</sub> Sn type (h<br>unknown, Al <sub>3</sub> Ti type                                       |  |  |
|                             |          |                     | Fe(1.01) | cubic              | Cu <sub>3</sub> Au type (c), two-phase (r<br>AB <sub>3</sub> type)                                                                 |  |  |
| TaCo <sub>3</sub>           | hhc      | Nb(1.00)            |          | indifferent        | no AB <sub>3</sub> type                                                                                                            |  |  |
|                             |          | Mo(0.96)            |          | cubic              | Ni <sub>3</sub> Sn type (h)                                                                                                        |  |  |
|                             |          | W(0.96)             |          | cubic              | Ni₃Sn type (h)                                                                                                                     |  |  |
|                             |          | (··· -> = )         | Ni(0.98) | hexagonal          | Ni <sub>3</sub> Sn type (h), Cu <sub>3</sub> Ti type                                                                               |  |  |
|                             |          |                     | Fe(1.01) | cubic              | no AB <sub>3</sub> type                                                                                                            |  |  |
| GaNi <sub>a</sub>           | c        | In(1,14)            | = 5(51)  | hexagonal          | no AB <sub>3</sub> type                                                                                                            |  |  |
| AlNi <sub>3</sub>           | c        | In(1.10)            |          | hexagonal          | no AB <sub>3</sub> type                                                                                                            |  |  |

<sup>\*</sup> In brackets, the C.N. 12 radius substitution atom/replaced atom is given, as calculated from a table given by LAVES<sup>18</sup>.

goniometer with a proportional counter and a pulse-height discriminator; the radiation used was  $CuK\alpha$ .

On replacement of about 5% of the Ba atoms by Ca a new type of structure became stable, the powder diagram of which is shown in Table II. Indexing is possible on the basis of a hexagonal unit cell with a=7.260 Å and c=34.304 Å, c/a=4.72. From the reflections present it may be concluded that the space group is  $R\overline{3}m$ . The rhombohedral unit cell has the dimensions: a=12.180 Å,  $\alpha=34^{\circ}43'$ .

There is only one way, using the close-packed AB<sub>3</sub> layers, of constructing a

# RADIUS RATIO AND STRUCTURE OF INTERMETALLIC COMPOUNDS OF THE AB3 TYPE 311

TABLE II X-ray powder diagrams of New AB3 phases

| $(Ba_{0.95}, Ca_{0.0})$                     | $_{05})Pb_{3}$ |       | $(Ti_{0.97}, Nb_{0.03})Ni_3$                |           |          | $Ti(Ni_{0.11}, Pt_{0.89})_3$              |                                          |     |
|---------------------------------------------|----------------|-------|---------------------------------------------|-----------|----------|-------------------------------------------|------------------------------------------|-----|
| 10 <sup>3</sup> ×sin <sup>2</sup> θ<br>CuKα | h k l          | I     | 10 <sup>3</sup> ×sin <sup>2</sup> θ<br>CoKα | h k l     | I        | $10^3 \times sin^2 \theta$<br>$CuK\alpha$ | h k l                                    | I   |
| 15.54                                       | 101            | 1     | 40.78                                       | 100       | < I      | 36.15                                     | 102                                      | 3   |
| 17.08                                       | O I 2          | 4     | 42.94                                       | IOI       | < 1      | 48.11                                     | 103                                      | 4   |
| 23.08                                       | 104            | < i   | 47.88                                       | I O 2     | < 1      | 05.25                                     | 104                                      | . 3 |
| 27.75                                       | 015            | 1     | 122.53                                      | 110       | < 1      | 79.15                                     | 110                                      | 3   |
| 45.46                                       | 0.1.1          | I     |                                             | (200      |          | 87.25                                     | 006                                      | 2   |
| 60.84                                       | 021            | 4     | 164.27                                      | 201       | 10       | 105.78                                    | 200                                      | 2   |
| 61.97                                       | 202            | 20    |                                             | 202       |          | 108.05                                    | 2 O I                                    | 2   |
| 65.77                                       | 1010           | 6     | 170.92                                      | 1115      | 15       | 115.08                                    | 202                                      | 20  |
| 68.00                                       | 024            | 8     | 179.28                                      | 203       | 15       | 118.80                                    | 007                                      | 100 |
|                                             | (0012          |       | 185.20                                      | 0010      | > 500    | 127.26                                    | 203                                      | 22  |
| 72.68                                       | 205            | 100*  | 193.00                                      | 204       | 30       | 144.41                                    | 204                                      | 18  |
| 84.61                                       | 027            | 50    | 209.08                                      | 205       | 100      | 166.21                                    | 205                                      | 15  |
| 92.41                                       | 208            | 3     | 229.15                                      | 206       | 15       | 194.10                                    | 212                                      | 2   |
| 100.68                                      | 1013           | 2     | 254.4                                       | 207       | 2        | 197.26                                    | 117                                      | 5   |
| 106.96                                      | I 2 2          | I     | 282.7                                       | 208       | 10       | 206.10                                    | 213                                      | 1   |
| 110.66                                      | 0 2 10         | 10    | 313.3                                       | 200       | 2        |                                           | (2 I 4                                   |     |
|                                             | (1 1 12        |       | 349.5                                       | 2010      | 2        | 223.45                                    | 207                                      | 2   |
| 117.88                                      | 1 2 5          | 3     | 388.0                                       | 2011      | 2        | 3 13                                      | 109                                      |     |
| 121.39                                      | 2011           | I     | 430.2                                       | 2012      | 10       | 237.86                                    | 300                                      | < 1 |
| 129.72                                      | 217            | 2     | 477.3                                       | 2013      | 2        | 261.11                                    | 208                                      | ĭ   |
| 134.92                                      | 300            | < 1   | 491.6                                       | 220       | 15       | 268.52                                    | 1010                                     | 1   |
| 139.50                                      | 303            | 2     | 522.7                                       | 224       | 1        | 271.49                                    | 216                                      | 1   |
| 144.97                                      | 1016           | 1     | 525.6                                       | 2014      | 7        | 293.13                                    | 0011                                     | 1   |
| 153.05                                      | 306            | I     | 580.0                                       | 2015      | 55       | 301.27                                    | 209                                      | 10  |
| . 55.05                                     | 2014           |       | 635.3                                       | 3012      | I.       | 315.94                                    | 220                                      | 10  |
| 159.00                                      | 1115           | 5     | 637.0                                       | 2016      | 5        | 347.98                                    | 2010                                     | 10  |
| 175.85                                      | 309            | 2     | 641.2                                       | 2 2 9     | 1        | 355.48                                    | 307                                      | 2   |
| 179.95                                      | 220            | 20    | 666.9                                       | 0019      | 1        | 372.28                                    | 1111                                     | < 1 |
| 189.15                                      | 0216           | I     | 675. <b>9</b>                               | 2 2 10    | 30       | 374.81                                    | 1012                                     |     |
| 194.24                                      | 131            | 17*   | 698.6                                       | 2017      | 5        | 398.00                                    | 2011                                     | 10  |
| 206.11                                      | 2017           | 15    | 738.1                                       | 0 0 20    | -        | 390.00                                    | (1013                                    | 10  |
| 218.96                                      | 137            | < I   | /30.1                                       | 0020      | 75       | 435.08                                    | 309                                      | 20  |
| 242.33                                      | (0219          | •     | Powder strongly orientated                  |           |          | 433.00                                    | $\binom{3}{2} \binom{3}{2} \binom{7}{7}$ |     |
|                                             | 0 4 2          | 15    | 1 Officer Str                               | ongry or  | lenearea | 442.50                                    | 403                                      | .3  |
|                                             | 2 2 12         |       | hexagonal                                   | unit cell |          | 454.34                                    | 2012                                     | 10  |
| 252.73                                      | 0 4 5          | 30    | a = 5.10  Å $c = 20.80  Å$                  |           |          | 474.70                                    | 0014                                     | 30  |
| Hexagonal description $a = 7.268 \text{ Å}$ |                |       | c/a = 4.08                                  |           |          | Sample quenched from 1600°C               |                                          |     |
| c = 34.304                                  |                |       |                                             |           |          | Powder pro                                | ha bly wit                               | th  |
| c/a = 4.72                                  |                |       |                                             |           |          | some preferred orientation                |                                          |     |
| Rhombohed                                   | dral descrit   | otion |                                             |           |          | hexagonal unit cell                       |                                          |     |
| a = 12.180  Å                               |                |       |                                             |           |          | a = 5.482  Å                              |                                          |     |
| $\alpha = 34^{\circ}43'$                    |                |       |                                             |           |          | c = 15.65  Å                              |                                          |     |
| 31 J3                                       |                |       |                                             |           |          | c/a = 2.85                                |                                          |     |

<sup>\*</sup> Coincidence with lines of f.c.c. lead.

12-layered hexagonal unit cell with rhombohedral symmetry, namely

# ABCBCABABCACA

c c h h c c h h c c h h

It is presumed therefore that this is the structure of the intermediate (Ba,Ca) Pb<sub>3</sub> compound and it is hoped to give further proof of this in future work.

In all probability, the structure encountered here is the 50% hexagonally-stacked structure which was expected to occur in the systems (Er,Y)Al<sub>3</sub> and (Er,Gd) Al<sub>3</sub>, but in these latter cases the Ni<sub>3</sub>Ti-type hchc stacking was found instead. This, together with another observation, at that time justified the statement that those stacking sequences were apparently preferred where the alternation of hexagonal and cubic layers is at its maximum. In the light of the present experiments, however, it must be admitted that, although this may be true for the rare-earth trialuminides it apparently does not apply to the alkaline-earth triplumbides.

On the substitution of more barium by calcium in this lattice the Cu<sub>3</sub>Au type occurs as the second phase.

## BaPb<sub>3</sub>-SrPb<sub>3</sub> system

ZINTL AND NEUMAYR<sup>5</sup> found that SrPb<sub>3</sub> is tetragonal with a=4.965 Å, c=5.035 Å, c/a=1.014, and has a slightly deformed Cu<sub>3</sub>Au type of structure. Our observations, using identical experimental methods to those for the BaPb<sub>3</sub>-CaPb<sub>3</sub> system, yielded virtually the same result, a=4.969 Å, c=5.012 Å, c/a=1.09. Efforts to index the SrPb<sub>3</sub> diagram with a hexagonal unit cell were fruitless.

The composition (Ba<sub>0.5</sub>,Sr<sub>0.5</sub>)Pb<sub>3</sub> provided a diagram that was indexed with a hexagonal unit cell of dimensions a = 7.164 Å, c = 17.199 Å and c/a = 2.40.

The c/a ratio clearly indicates a 6-layer structure, which presumably is identical to the  $\frac{1}{3}$ -hexagonal VCo<sub>3</sub> or PuAl<sub>3</sub> structure (stacking hcc).

This hcc structure is in equilibrium with a 12-layer hhcc structure, similar to  $(Ba_{0.95}, Ca_{0.05})$ Pb<sub>3</sub> at the Sr-poor side, and with the deformed Cu<sub>3</sub>Au type structure at the Sr-rich side.

# BaPb<sub>3</sub>-"KPb<sub>3</sub>" system

The replacement of barium in BaPb<sub>3</sub> by potassium should lead to the stabilization of a more hexagonal structure, e.g. the Ni<sub>3</sub>Sn type. However, it appeared experimentally that under the conditions of preparation as detailed for the BaPb<sub>3</sub>–CaPb<sub>3</sub> system no new AB<sub>3</sub> type became stable. A sample of the composition (Ba<sub>0.9</sub>,K<sub>0.1</sub>)Pb<sub>3</sub> showed only the 9-layer diffraction pattern, while (Ba<sub>0.5</sub>,K<sub>0.5</sub>)Pb<sub>3</sub> showed a mixture of a weak 9-layer pattern, very strong lines of f.c.c. Pb and a weak, third pattern of a non identified phase, probably not of AB<sub>3</sub> composition. An intermetallic compound, KPb<sub>3</sub>, seems not to be stable at the annealing temperature chosen.

### $BaPb_3$ - $LaPb_3$ system

Though the radius of lanthanum atoms differs quite considerably from the barium atom radius, a small percentage of Ba was substituted. It was expected in this way to stabilize stackings which were more cubic. However, an inspection of the X-ray diagrams of the samples  $(Ba_{0.9},La_{0.1})Pb_3$  and  $(Ba_{0.5},La_{0.5})Pb_3$  showed no traces of transition types. Besides the peaks of the 9-layered BaPb<sub>3</sub> type, lines of Pb were observed, probably due to superficial oxidation of the powdered sample. LaPb<sub>3</sub> was found to be of Cu<sub>3</sub>Au type with a = 4 941 Å.

#### BaPb<sub>3</sub>-"BaTl<sub>3</sub>" system

Since the radius of Tl is larger than that of Pb it was expected that, upon

replacing Pb by Tl, the structure of BaPb<sub>3</sub> would make room for a still more hexagonal structure. This proved to be justified: a sample of the composition Ba(Pb<sub>0.5</sub>,Tl<sub>0.5</sub>)<sub>3</sub> showed the characteristic X-ray diagram of a Ni<sub>3</sub>Sn structure with a hexagonal unit cell of a = 7.392 Å, c = 5.475 Å, c/a = 0.74. A compound BaTl<sub>3</sub> does not seem to exist.

## BaPb<sub>3</sub>-BaBi<sub>3</sub> system

Since bismuth is smaller than lead, the replacement of lead atoms in BaPb<sub>3</sub> by bismuth should lead to structures with less than two-thirds hexagonal character. The tendency to such a shift appears immediately from the fact that BaBi<sub>3</sub> has a structure, according to Zhuravlev *et al.*<sup>6</sup>, of the Cu<sub>3</sub>Au type although it is slightly tetragonally deformed (a = 5.188 Å, c = 5.157 Å). In fact it is found that 90% of a sample of composition Ba(Pb<sub>0.91</sub>, Bi<sub>0.09</sub>)<sub>3</sub> consists of a (non-deformed) Cu<sub>3</sub>Au type with a = 5.159 Å.

## ThAl<sub>3</sub>-ThIn<sub>3</sub> system

The  $Ni_3Sn$ -type  $ThAl_3$  was expected, if some Al atoms at random could be replaced by indium atoms, to change into one of the more cubically-stacked transition structures. However, using as-cast argon-arc welded specimens, we did in fact find that the ternary samples with the compositions  $ThAl_2In$  and  $ThAlIn_2$  consisted of the phases  $ThAl_3$  ( $Ni_3Sn$  type),  $ThAl_2$  ( $AlB_2$  type) and indium metal.

Only the total replacement of Al succeeded: ThIn<sub>3</sub> proved to have the Cu<sub>3</sub>Au type structure with a=4.96 Å. Apparently the great stability of the heterogeneous ThAl<sub>2</sub>-In mixture makes it impossible to stabilize the ternary AB<sub>3</sub> compound.

# ThAl3-UAl3 system

Neither was this system succesful in yielding ternary transition structures. The compositions ThUAl<sub>6</sub> and ThU<sub>2</sub>Al<sub>9</sub> were investigated. The first was mainly single-phase and showed a Ni<sub>3</sub>Sn type with a = 6.43 Å, c = 4.61 Å, c/a = 0.717 (pure ThAl<sub>3</sub> has a = 6.499 Å, c = 4.626 Å, c/a = 0.712), the second was mainly two-phase and consisted of a Ni<sub>3</sub>Sn type with a = 6.38 Å, c = 4.60 Å, c/a = 0.72, and a Cu<sub>3</sub>Au type with a = 4.32 Å (pure UAl<sub>3</sub> has been reported<sup>7</sup> to have a = 4.287 Å). Both samples contained traces of additional MgCu<sub>2</sub> type (U,Th)Al<sub>2</sub>, and of (U,Th)Al<sub>4</sub>.

## Ni<sub>3</sub>Ti-Ni<sub>3</sub>Al system

Ni<sub>3</sub>Ti has a 50% hexagonal structure. The unit cell is hexagonal with  $a=5.109\,\text{Å}$  and  $c=8.299\,\text{Å}$  (c/a=1.624); the stacking sequence is ABACA (hchc). Upon replacement of Ti by Al, which has a somewhat smaller radius, it was expected that the hexagonal character would diminish. In fact, Ni<sub>3</sub>Al itself is Cu<sub>3</sub>Au type (with values varying with vacancy concentration from  $a=3.557\,\text{Å}$  to  $a=3.565\,\text{Å}$  according to Taylor and Floyd. Disappointingly, however, the investigation of the intermediate compositions showed no transition structures. In an as-cast sample of composition Ni<sub>3</sub>(Ti<sub>0.75</sub>,Al<sub>0.25</sub>) a Ni<sub>3</sub>Ti-type unit cell with  $a=5.09^5\,\text{Å}$ ,  $c=8.30\,\text{Å}$ , c/a=1.63 was found in addition to the Cu<sub>3</sub>Au type with  $a=3.595\,\text{Å}$ . This is in qualitative agreement with the result of Taylor and Floyd who state that about  $\frac{2}{3}$  of the Al atoms in Ni<sub>3</sub>Al can be replaced by Ti.

## Ni<sub>3</sub>Ti-"Ni<sub>3</sub>Zr" system

Substitution of Ti by the larger atom Zr should lead according to our scheme,

to a more hexagonal stacking. Total replacement should lead to a compound Ni<sub>3</sub>Zr, which, however, does not occur in the Ni–Zr equilibrium diagram as given by Kramer<sup>9</sup>. It was expected that an Ni<sub>3</sub>Sn type would be encountered between Ni<sub>3</sub>Ti and a hypothetical Ni<sub>3</sub>Zr. Instead our as-cast, argon-arc-melted alloys showed, in the compositions ranging from Ni<sub>3</sub>(Ti<sub>0.75</sub>,Zr<sub>0.25</sub>) to Ni<sub>3</sub>(Ti<sub>0.5</sub>,Zr<sub>0.5</sub>), a 9-layered BaPb<sub>3</sub> structure (hhc) with some homogeneity region. With the composition Ni<sub>3</sub>(Ti<sub>0.67</sub>, Zr<sub>0.33</sub>) the lattice constants were a = 6.961 Å,  $\alpha = 43^{\circ}30'$  (the hexagonal unit cell a = 5.158 Å, c = 18.875 Å, c/a = 3.66). Annealing, however, at temperatures below 1300°C resulted in a decomposition of this phase into a Ni<sub>3</sub>Ti-type structure and an unknown structure which has an X-ray diagram isotypic with the one obtained for the composition Ni<sub>3</sub>Zr (which deviates from Kramer's data). It was possible to find the single-phase 9-layered structure again, by quenching the samples from about 1500°C in water.

## Ni<sub>3</sub>Ti-Ni<sub>3</sub>Nb system

Although  $Ni_3Nb$  has the  $Cu_3Ti$  structure, which is built up from close-packed layers structurally different from those of  $Ni_3Ti$ , it was thought interesting to find out whether a substitution of Ti by Nb in  $Ni_3Ti$  would lead to intermediate ternary phases of the  $Cu_3Au$  family and if so, how the transition to the  $Cu_3Ti$  type takes place. The predicted direction for a structure change, starting with  $Ni_3Ti$ , is the hexagonal one because the radius of Nb is larger than that of titanium. As-cast, argon-arcmelted buttons of compositions progressively increasing in Nb content were investigated with  $CoK\alpha$  radiation. The following structure types were encountered:

```
Ni<sub>3</sub>Ti hexagonal Ni<sub>3</sub>Ti type, a = 5.109 Å, c = 8.299 Å, c/a = 1.624 Ni<sub>3</sub>(Ti<sub>0.97</sub>,Nb<sub>0.03</sub>) hexagonal, a = 5.106 Å, c = 20.81 Å, c/a = 4.08 (probably 10 layers)

Ni<sub>3</sub>(Ti<sub>0.89</sub>,Nb<sub>0.11</sub>) rhombohedral BaPb<sub>3</sub> type, a = 6.930 Å, \alpha = 43^{\circ}18' (hexagonal, a = 5.115 Å, c = 18.809 Å, c/a = 3.68)

Ni<sub>3</sub>(Ti<sub>0.67</sub>,Nb<sub>0.33</sub>) hexagonal Ni<sub>3</sub>Sn type, a = 5.130 Å, c = 4.211 Å, c/a = 0.82 Orthorhombic Cu<sub>3</sub>Ti type, a = 5.11 Å, b = 4.53 Å, c = 4.21 Å
```

Between the compositions mentioned, the appropriate two-phase regions were found. Some unidentified peaks (weak or very weak) present in the diagrams of samples having compositions between the last two mentioned, presumably indicate a more gradual transition of the structure than is given by the list above. For this reason this list is probably not complete.

The first transition phase, the 10-layered one, is likely to be intermediate in hexagonality between hc Ni<sub>3</sub>Ti and hhc Ni<sub>3</sub> (Ti<sub>0.89</sub>,Nb<sub>0.11</sub>). Its stacking mode may then be one of the following alternatives for the 60% hexagonal type with a 5-layer repeat period hhchc (ABABCBABACA) and hhhcc (ABABCBCBCA). Other possibilities (with 10-layer repeat periods) are

```
hhhhhcchcc (ABABABACBCA...),
hhhchchchc (ABABACABACA...),
hchhhhchcc (ABACACACBCA...)
```

and hhhchhchcc (ABABACACBCA...).

In view of the experiences with the rare-earth trialuminides the first possibility, hhchc, is to be preferred as a trial structure. A structure determination is in progress. In the meantime a list of the reflections is given in Table II.

Annealing experiments at 1000°C showed that both the 10-layered and 9-layered structures are stable only at temperatures close to the melting points of the specimens. This, together with the strong inclination to a preferred orientation of the X-ray powder specimens for the hexagonal basal planes, is an extra experimental difficulty in the structure determination.

## Ni<sub>3</sub>Ti-Ni<sub>3</sub>Ta system

After the investigation of the system Ni<sub>3</sub>Ti-Ni<sub>3</sub>Nb, similar behaviour was expected in the system Ni<sub>3</sub>Ti-Ni<sub>3</sub>Ta. In fact, the following phases were encountered in the as-cast, argon-arc melted buttons:

Ni<sub>3</sub>(Ti<sub>0.96</sub>,Ta<sub>0.04</sub>) hexagonal a = 5.104 Å, c = 20.83 Å, c/a = 4.08, ro-layered (probably hhche stacked).

Ni<sub>3</sub>(Ti<sub>0.83</sub>,Ta<sub>0.17</sub>) rhombohedral BaPb<sub>3</sub> type, a = 6.939 Å,  $\alpha = 43^{\circ}16'$  (hexagonal, a = 5.116 Å, c = 18.837 Å, c/a = 3.68) hhc.

 $Ni_3(Ti_{0.67}, Ta_{0.33})$  hexagonal  $Ni_3Sn$  type, a = 5.126 Å, c = 4.208 Å, c/a = 0.82.

In compositions beyond those containing the Ni<sub>3</sub>Sn type, a series of intermediate structures is observable (among which is the Cu<sub>3</sub>Ti type, analogous to the Ni<sub>3</sub>(Ti,Nb) system) until at about Ni<sub>3</sub>(Ti<sub>0.35</sub>,Ta<sub>0.65</sub>) the ultimate room-temperature Ni<sub>3</sub>Ta type is present.

The structure of Ni<sub>3</sub>Ta was originally reported to be of the Cu<sub>3</sub>Ti type (like Ni<sub>3</sub>Nb) but Nowotny et al. 11 have recently reported the existence of another modification, namely the related Al<sub>3</sub>Ti type. In the course of our investigations into the ternary systems of tantalum with Ni, Co and Fe it was discovered that pure TaNi<sub>3</sub> (from arc-melted buttons, as well as from the alloys melted in Al<sub>2</sub>O<sub>3</sub> crucibles) underwent a structural transformation, probably diffusionless, at about 300°C. High-temperature X-ray diffractometry showed that above this temperature the structure was of the Cu<sub>3</sub>Ti type. This type could be stabilized to room temperature by the replacement of very little of the nickel by iron or cobalt atoms. Below the transformation temperature the diffractogram showed a pattern which was not that of an Al<sub>3</sub>Ti type, but which looked rather similar to that of TaPt<sub>3</sub>, which is a monoclinic structural relative of Cu<sub>3</sub>Ti with the stacking sequence hhcc or ABABCACABCBCA...<sup>12-14</sup>.

#### Ni<sub>3</sub>Ti-Cu<sub>3</sub>Ti system

This system shows, at least at small substitution percentages, similar behaviour to the Ni<sub>3</sub>Ti-Ni<sub>3</sub>Nb (or Ni<sub>3</sub>Ta) system, though here the majority atom is replaced. The change in structure is towards a more hexagonal character, again opposite to the expectation on geometrical grounds.

At the composition  $(Ni_{0.97}, Cu_{0.03})_3Ti$ , a ten-layered hexagonal structure with a=5.112 Å, c=20.840 Å, c/a=4.08 (probably hhche stacked) becomes stable. At  $(Ni_{0.93}, Cu_{0.07})_3Ti$ , a BaPb<sub>3</sub>-type hhc stacking occurs with cell dimensions (hexagonal) a=5.112 Å, c=18.871 Å, c/a=3.69 or, (rhombohedral) a=6.948 Å,  $\alpha=31^{\circ}24'$ .

At the approximate composition  $(Ni_{0.67},Cu_{0.33})_3Ti$  an unknown structure

becomes stable, probably based on close packing of somewhat modified layers. When ultra-rapidly cooled from the liquid state this specimen appeared to be single-phase  $Cu_3Ti$  type with a=5.067 Å, b=4.216 Å and c=4.495 Å. The as-cast specimen  $(Ni_{0.33},Cu_{0.67})_3Ti$  was two-phase, showing a mixture of virtually pure copper, f.c.c., with a=3.615 Å and tetragonal Al<sub>3</sub>Ti type with a=3.114 Å, c=7.955 Å, c/a=2.55. Ultimately the specimen with composition " $Cu_3Ti$ " was found to be also two-phase. Indications are that pure  $Cu_3Ti$ , has paradoxically, no simple  $Cu_3Ti$ -type structure and indeed, does not exist at this composition. Instead we observed a phase with a very narrow homogeneity range of presumably the composition  $Cu_{15}Ti_4$  with an orthorhombic unit cell of the dimensions a=4.531 Å, b=12.929 Å and c=4.343 Å. A recheck on the binary Cu-Ti phase diagram is in progress.

## Ni<sub>3</sub>Ti-"Co<sub>3</sub>Ti" system

The compound  $Co_3Ti$  is not stable according to the handbooks<sup>15,16</sup>. Because cobalt is slightly larger than nickel it was hoped that a gradual substitution in Ni<sub>3</sub>Ti would give rise to related AB<sub>3</sub> structures before the ultimate instability interfered. In fact it is found that the Ni<sub>3</sub>Ti type stays intact until about the composition (Ni<sub>0.6</sub>,  $Co_{0.4}$ )<sub>3</sub>Ti. At the composition (Ni<sub>0.5</sub>,  $Co_{0.5}$ )<sub>3</sub>Ti, however, the VCo<sub>3</sub>-type, six-layered hcc structure becomes stable and stays so until at about (Ni<sub>0.25</sub>,  $Co_{0.75}$ )<sub>3</sub>Ti the MgCu<sub>2</sub> type Laves phase (a = 6.706 Å) appears, probably to be identified with  $Co_2Ti$ .

## Ni<sub>3</sub>Ti-"Fe<sub>3</sub>Ti" system

The solubility of Fe in hc-type  $Ni_3Ti$  is found to extend to about  $(Ni_{0.9},Fe_{0.1})_3Ti$  in the as-cast, argon-arc melts. Upon substitution of more iron, a MgZn<sub>2</sub>-type Laves phase appears, which is probably to be identified with Fe<sub>2</sub>Ti with some nickel dissolved in it.

#### $Ni_3Ti-Pt_3Ti$ system

According to the literature <sup>15,16</sup>, Pt<sub>3</sub>Ti has the cubic Cu<sub>3</sub>Au-type structure (a=3.898 Å). Since Pt is larger than Ni this is in agreement with the radius-ratio rule. A partial substitution of Ni in Ni<sub>3</sub>Ti seemed to yield no new compounds at first sight. On closer investigation, however, the X-ray diffractograms of the as-cast, argon-arc-melted alloys showed some reflections which belonged neither to the Ni<sub>3</sub>Ti(hc)-type, nor the Cu<sub>3</sub>Au(c)-type phase.

It was possible to demonstrate that these extra reflections are due to a new ternary phase with the approximate compositions  $(Ni_{0.11},Pt_{0.89})_3Ti$ . This phase becomes stable at relatively high temperatures (about 1250°C, the melting point is higher than 1500°) and its X-ray diagram can be indexed on the basis of a hexagonal unit cell with a=5.482 Å and c=15.65 Å (c/a=2.85). Clearly it constitutes another extension of the family of polytypes of the AB<sub>3</sub> intermetallic compounds. According to the c/a ratio the hexagonal unit cell has 7 layers.

This means that the following three stacking modes are possible,

```
\begin{array}{cccc} ABABABCA & & & & & & & \\ h h h h c c c & & & & & & \\ or & ABABCBCA & & & & & \\ h h c h h c c & & & & & & \\ \end{array}
```

### or ABACABCA

h c h c c c c  $(\frac{2}{7} \text{ hexagonal}).$ 

In view of the hitherto useful rule for interchange of metals of like valency, that a radius-ratio decrease results in a less-hexagonal stacking, it seems justified to reject the first two possibilities as trial structures. Table II gives observed and calculated spacings and intensities for a composition  $(Ni_{0.11}, Pt_{0.89})_3Ti$ . A full structure determination is in progress.

## VCo3-VNi3 system

Argon-arc-melted buttons of various compositions were annealed in Al<sub>2</sub>O<sub>3</sub> in vacuo (enveloped in SiO<sub>2</sub>) for 60 h at 950°C. They were then polished and the flat surfaces were used to make X-ray diagrams (CoK $\alpha$ ). As expected, it was found that the shift in structural character took place in the hexagonal direction, in agreement with the fact that nickel is somewhat smaller than cobalt. The hcc VCo<sub>3</sub>-type has made way for the hcc BaPb<sub>3</sub>-type already at the composition V(Co<sub>0.67</sub>,Ni<sub>0.33</sub>)<sub>3</sub> with a = 5.02 Å and c = 18.40 Å, c/a = 3.66 (or rhombohedrally  $a = 6.77^5$  Å,  $\alpha = 43^\circ 30'$ ).

The composition  $V(Co_{0.33}, Ni_{0.67})_3$  is (at this temperature) two-phase, viz.  $Ni_3Sn$  type (a = 5.040 Å, c = 4.089 Å, c/a = 0.812) and f.c.c. (Ni,Co,V) solid solution.  $VNi_3$  is, in agreement with literature data<sup>17</sup>,  $TiAl_3$  type. At the composition  $V(Co_{0.17}, Ni_{0.83})_3$  an unknown structure is found.

# VCo3-"VFe3" system

A substitution of iron atoms in VCo<sub>3</sub> was expected to yield structures with less hexagonal character, for the radius of iron (C.N.12) is somewhat larger than the cobalt radius<sup>18</sup>. This was expected only at the beginning of the series, because VFe<sub>3</sub> does not exist as an intermetallic compound.

The specimens (treated similarly to the previously referred to  $VCo_3-VNi_3$  alloys) show only one structure related to hcc  $VCo_3$ .

According to the occurrence of one extra peak (for hkl = 100) in the X-ray diagram of the polished specimen V(Co<sub>0.83</sub>,Fe<sub>0.17</sub>)<sub>3</sub> it must be concluded that this specimen is single-phase Cu<sub>3</sub>Au type with a = 3.567 Å. In the more iron-rich specimens annealed at 950°C, a disordered f.c.c. structure occurs as one of the phases present (no AB<sub>3</sub> structures).

## Pd<sub>3</sub>Ti-Pt<sub>3</sub>Ti system

Pd<sub>3</sub>Ti has, according to the literature<sup>16</sup>, the Ni<sub>3</sub>Ti-type structure with a = 5.486 Å, c = 8.976 Å, c/a = 1.636.

A substitution of Pd by Pt atoms was therefore expected to yield similar results to those of the system Ni<sub>3</sub>Ti–Pt<sub>3</sub>Ti. This proved to be correct: a 7-layered hexagonal-phase was observed in rapidly-cooled specimens of compositions (Pd<sub>0.33</sub>, Pt<sub>0.67</sub>)<sub>3</sub>Ti and (Pd<sub>0.17</sub>, Pt<sub>0.63</sub>)<sub>3</sub>Ti. The dimensions of the unit cell are a = 5.52 Å, c = 15.77 Å, c/a = 2.85. Efforts made to isolate the new phase by rapid quenching were unsuccessful. It is possible therefore that the new structure represents a state which is metastable at all temperatures.

#### Ni<sub>3</sub>In-Ni<sub>3</sub>Ga system

Since Ni<sub>3</sub>In was reported to have the Ni<sub>3</sub>Sn type structure a = 5.32 Å, c = 4.24 Å,

c/a = 0.798 and Ni<sub>3</sub>Ga the Cu<sub>3</sub>Au type structure a = 3.58 Å<sup>16</sup>, a pseudobinary series of compositions was made to determine whether intermediate types occur. The result was negative. In each specimen (melted in Al<sub>2</sub>O<sub>3</sub> crucibles in argon by high-frequency induction) even annealing at 750°C for one week failed to produce AB<sub>3</sub>-type phase. Instead, mixtures of f.c.c. nickel solid solutions and Ni<sub>2</sub>In-type ternary phases were found, though at the far Ga side traces of superstructure were found in the f.c.c. nickel.

## Ni<sub>3</sub>In-Ni<sub>3</sub>Al system

This system too yielded negative results. Even after annealing for one week at 750°C, a sample of composition Ni<sub>3</sub>(Al<sub>0.75</sub>,In<sub>0.25</sub>) showed a mixture of Ni<sub>2</sub>In type and a Cu<sub>3</sub>Au type with a = 3.573 Å.

#### DISCUSSION

The experimental results demonstrate that  $AB_3$  transition structures may occur in systems that vary widely as regards the nature and character of their components. Whether they do occur and in which of the possible structures they crystallize, can only be predicted if their stability is known relative to all the other possible structures in the system.

This is not possible in the present state of knowledge, but the experiments reported here have demonstrated that the structures that occur always form a logical series as far as their stacking character is concerned. This enables us henceforth to predict possible intermediate phases when both the starting- and the end-phases are known and may help to suggest trial structures when new types are found.

Analysis of the results shows furthermore, that the radius-ratio rule, as deduced from the rare-earth trialuminides<sup>1</sup>, applies to all those substitutions in which the valency of the atoms remains constant. In most of the cases where atoms of unlike valency are interchanged, an increase of valency electrons leads to increase of hexagonality. To this well-known rule<sup>19,20</sup> exceptions are found in the systems BaPb<sub>3</sub>–LaPb<sub>3</sub>, BaPb<sub>3</sub>–BaTl<sub>3</sub> and BaPb<sub>3</sub>–BaBi<sub>3</sub>, but this is probably due to the size effect.

Electronegativity differences of the interchanging metals may play a role, e.g. in the systems TaCo<sub>3</sub>-MoCo<sub>3</sub> and TaCo<sub>3</sub>-WCo<sub>3</sub>, because tantalum undoubtedly has a somewhat smaller radius in TaCo<sub>3</sub> than the normally listed C.N.12 value. Substitution of molybdenum for Ta results then, in a less than linear decrease of the apparent radius ratio A/B. Two of the systems studied by Sadagopan and Giessen<sup>19</sup> may also be examples of this case. In the first system ZrPt<sub>3</sub>-NbPt<sub>3</sub> they observed successively the types (hc) Ni<sub>3</sub>Ti, (hhc) BaPb<sub>3</sub>, (h) Ni<sub>3</sub>Sn, Cu<sub>3</sub>Ti and NbPt<sub>3</sub>. In the second system, YPt<sub>3</sub>-NbPt<sub>3</sub>, they found successively the types (c) Cu<sub>3</sub>Au, (hchcc) HoAl<sub>3</sub>, (hc) Ni<sub>3</sub>Ti<sub>1</sub>, (h) Ni<sub>3</sub>Sn<sub>1</sub>, Cu<sub>3</sub>Ti and NbPt<sub>3</sub>. In both cases the electronegativity difference of the substitution partners is rather large and helps the electronic influence to obscure the size effect considerably. VAN VUCHT AND BUSCHOW1 have pointed out that, in the rare-earth trialuminides, the metallic bond is mixed to some extent with an ionic character because of the electronegativity difference of the rare-earth metals and aluminium. In the meantime, the measurement of magnetic properties at low temperatures on PrAl<sub>3</sub> and ErAl<sub>3</sub> has provided independent experimental evidence for the existence of a crystal field in these lattices corresponding to an effective negative charge of roughly 0.1 electron per Al atom<sup>21</sup>. In view of this the correction of the tabulated radius for yttrium due to an undoubtedly even larger ionic admixture in the binding character in YPt<sub>3</sub>, must be considerable.

While the electron-concentration influence on structure has been attributed to the filling of Brillouin zones no explanation has hitherto been given for the size effect. We may try the following qualitative approach. Let us consider a close-packed lattice of equally sized atoms A and B in the composition AB<sub>3</sub>. At higher temperatures the entropy of mixing stabilizes a random mixture of A and B but, on cooling we note a tendency to order, because the interaction energy  $\frac{1}{2}(E_{AA}+E_{BB})$  is less than the interaction energy  $E_{AB}$ . It will immediately be clear that, when directional bonds are absent, the ordered lattice prefers the maximum symmetry, such as is found in the cubic Cu<sub>3</sub>Au type, in which each A-atom is surrounded by 12 B-atoms as first neighbours and 6 A-atoms as next neighbours. A somewhat less symmetrical surrounding is found in the hexagonal Ni<sub>3</sub>Sn type, built up from the same close-packed AB<sub>3</sub> layers, where the number and distance of the neighbouring B-atoms and next-neighbouring A-atoms is the same, but where two of the next-next neighbouring A-atoms are closer than in the Cu<sub>3</sub>Au type lattice. This is a small, second-order effect which causes the Cu<sub>3</sub>Au type to be stable when  $r_A/r_B = I$  but it may easily be overruled when  $r_A/r_B$ increases. The reason for this is the increasing bad fit of the atoms, which means an increase of potential energy. Naturally, the atoms tend to seek their potential minima, but they can achieve this only at the expense of the lattice symmetry. Given the high symmetry of the space group of the Cu<sub>2</sub>Au type, the size of each atom in the lattice is defined, with no free parameter left. At a certain  $r_A/r_B$  value the bad fit "potential energy" is so large that it becomes energetically profitable to stack the AB<sub>3</sub> layers hexagonally, notwithstanding the disadvantageous closer approach of the A-atoms in next-neighbouring layers. The lower symmetry of the hexagonal space group allows the clustering of the smaller atoms in the layers (see Fig. 1(a)), thus admitting a better packing when the larger A-atoms of both adjoining layers profit from the open spaces (Fig. 1(b)). The c/a ratio per stacked layer must then be smaller than in the cubic arrangement of AB<sub>3</sub> layers.



Fig. 1. (a) Layer of a  $Ni_3Sn$ -type  $AB_3$  compound. Note the clustering of the smaller atoms. (b) Projection of  $Ni_3Sn$ -type layers on the 11 $\overline{2}o$ -plane. The larger atoms fit in the holes formed by the clustering in the layers.

The fitting of the atoms in the diverse possible AB<sub>3</sub> lattices may be roughly compared by calculating the space filling per AB<sub>3</sub> unit using the hard-spheres model. Figure 2 shows the result for the Cu<sub>3</sub>Au and the Ni<sub>3</sub>Sn type lattices, both homogeneous stackings of the same layer types, but the first purely cubic and the second purely

hexagonal. It seems plausible that, by varying gradually the radius ratio A/B (and nothing more) structures may become stable that are to be considered as mixtures of both stacking types. These mixtures apparently prefer to order for the same reason as ordering in the layer occurs.



Fig. 2. The maximum packing density as a function of the radius ratio of the participating atoms, calculated for the structure types Cu<sub>3</sub>Au and Ni<sub>3</sub>Sn (hard-spheres model).



Fig. 3. Schematic drawing of a  $\text{Cu}_3\text{Ti-type}$  layer. Note the tendency for the larger atoms to approach each other.

Fig. 4. (a) The maximum packing density (two dimensional) as a function of radius ratio, calculated for layers of the Ni<sub>3</sub>Sn and Cu<sub>3</sub>Ti types. (b) Three-dimensional maximum packing density as a function of radius ratio, calculated for the Ni<sub>3</sub>Sn and Cu<sub>3</sub>Ti types.

In the ternary AB<sub>3</sub> compounds a radius change of A or B is simulated by adding a third kind of atom that is likely to mix randomly with the A- or the B-atoms respectively. For many elements this is possible only at higher temperatures; at lower temperatures they may tend to order (on the A or the B sites in the AB<sub>3</sub> lattice) or to separate (giving a mixture of two AB<sub>3</sub> structures). In those AB<sub>3</sub> compounds where the energy gained by ordering A and B mutually is low (i.e. in AB<sub>3</sub> compounds that disorder below their melting point e.g. Cu<sub>3</sub>Au and VCo<sub>3</sub>), such a partially-random mixture of atoms may be difficult to realize.

Several of the pseudo-binary systems studied show a more or less systematic succession of AB<sub>3</sub>-structure types beyond the Ni<sub>3</sub>Sn type. These structures are built up by stacking AB<sub>3</sub> layers of a different type (shown in Fig. 3). This layer is commonly characterized by its so-called "shift density"  $\frac{1}{2}$  which indicates the fractional number of its ABAB atom rows shifted with respect to their positions in the purely hexagonal layer of maximum symmetry discussed hitherto (shift density o). Though we did not find experimental evidence for the occurrence of these types in those pseudobinary systems, where only size effects are assumed to be effective, it can be shown that the idea of the ordering energy/packing density antagonism may also explain such a continuation beyond the Ni<sub>3</sub>Sn type. Giving away some symmetry (disadvantageous in terms of ordering energy because the larger A atoms approach each other) the Cu<sub>3</sub>Titype layer may be much more densely-packed compared with the Ni<sub>2</sub>Sn-type layer with the higher symmetry (see Figures 1 (a) and 3). This applies also to purely hexagonal stacking of the Cu<sub>3</sub>Ti-layer type compared with the same stacking of the Ni<sub>3</sub>Sn-type layers. Figure 4 shows the maximum packing density in both the twodimensional and the three-dimensional case. It must be pointed out that with regard to the structure parameter the maximum attainable three-dimensional "space" gain does not coincide with the maximum two-dimensional "space" gain in the layer. Following the above general line of thought a logical succession of types seems to demand that between the hh-stacked Ni<sub>3</sub>Sn type (shift density o) and the hh-stacked  $\text{Cu}_3\text{Ti}$  type (shift density  $\frac{1}{2}$ ), other types may occur, viz. hh-stacked with intermediate shift densities (see also ref. 20). Indications of the existence of such types seem to be found in the structure sequences of the systems Ni<sub>3</sub>Ti-Ni<sub>3</sub>Nb and Ni<sub>3</sub>Ti-Cu<sub>3</sub>Ti.

#### ACKNOWLEDGEMENT

Thanks are due to my colleagues A. I. LUTEIIN and P. HOKKELING for assistance in the preparative work, and to Prof. J. L. MEYERING for the many valuable discussions. In particular I wish to thank Mr. H. C. Donkersloot for his assistance in making the investigations described.

#### REFERENCES

```
I J. H. N. VAN VUCHT AND K. H. J. BUSCHOW, J. Less-Common Metals, 10 (1966) 98-107.
```

<sup>1</sup> J. H. N. VAN VUCHI AND R. H. J. BUSCHOW, J. Less-Common Metals, 10 (1906) 98-107.
2 H. A. G. M. Bruning and J. H. N. VAN VUCHT, to be published.
3 J. C. M. A. Ponsioen and J. H. N. VAN VUCHT, to be published.
4 D. E. Sands, D. H. Wood and W. J. Ramsey, Acta Cryst., 17 (1964) 986-989.
5 E. Zintl and S. Neumayr, Z. Elektrochem., 39 (1933) 86.
6 N. N. Zhuravley, G. S. Zhdanow and R.N. Kuz'nin, Soviet. Phys. Cryst., 5 (1961) 532.
7 R. E. Rundle and A. S. Wilson, Acta Cryst., 2 (1949) 148.

<sup>8</sup> A. TAYLOR AND R. W. FLOYD, J. Inst. Metals, 81 (1952) 25.

- 9 D. KRAMER, Trans. AIME, 251 (1959) 256-258.
- 10 N. KARLSSON, J. Inst. Metals, 79 (1951) 391.
- II H. NOWOTNY AND H. OESTERREICHER, Monatsh. Chem., 95 (1964) 982-989.
- 12 A. MALDONADO AND K. SCHUBERT, Z. Metallk., 55 (1964) 619-626.
- B. C. GIESSEN AND N. J. GRANT, Acta Cryst., 17 (1964) 615-616.
   B. C. GIESSEN, R. H. KANE AND N. J. GRANT, Trans. AIME, 233 (1965) 855-863.
- 15 M. HANSEN AND K. ANDERKO, Constitution of Binary Alloys, McGraw-Hill, New York, 1958.
- 16 W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, London, 1958.
- 17 W. B. PEARSON AND W. HUME-ROTHERY, J. Inst. Metals, 80 (1952) 641.
- 18 Theory of alloy phases, Trans. Am. Soc. Metals, 48A (1956) 131-132.
- 19 V. SADAGOPAN AND B. C. GIESSEN, J. Metals, 17 (1965) 1058.
- 20 K. Schubert, Kristallstrukturen zweikomponentiger Phasen, Springer Verlag, Berlin, 1964, pp. 120-121.
- 21 K. H. J. Buschow and J. F. Fast, Z. Physik. Chem. N.F., to be published.
- J. Less-Common Metals, 11 (1966) 308-322