1 Exercices de niveau 1

901.1

cc-INP

Soit $A, B \in \mathcal{M}_n(\mathbb{R}), P \in \mathbb{R}[X]$ et M définie par blocs : $M = \begin{pmatrix} A & A \\ 0_n & A \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$

- (a) Montrer que, si A est semblable à B, alors P(A) est semblable à P(B).
- (b) Calculer M^k .
- (c) Exprimer P(M) en fonction de P(A), A et P'(A).
- (d) En déduire que, si M est diagonalisable, A l'est aussi.
- (e) Montrer que, si A n'est pas inversible et M diagonalisable, alors A est nulle.

Examinatrice sympathique.

901.2

cc-INP

- (a) Énoncer le théorème de Cayley-Hamilton.
- (b) Soit $A, B, C \in \mathcal{M}_n(\mathbb{C})$ avec $C \neq 0$ et telles que AC = CB.
 - b1. Montrer que, pour tout $k \in \mathbb{N}$, $A^kC = CB^k$.
 - b2. En déduire que, pour tout $P \in \mathbb{C}[X]$, P(A)C = CP(B).
 - b3. Montrer que le produit de deux matrices est inversible si et seulement si chaque matrice est inversible, en déduire que A et B ont une valeur propre commune.
- (c) c1. Montrer que si X et Y sont deux matrices colonnes non nulles, alors XY^{\top} est non nulle.
 - c2. Montrer que, si A et B ont une valeur propre en commun, il existe une matrice $C \neq 0$ telle que AC = CB.

901.3

cc-INP

Soit $A \in \mathcal{M}_n(\mathbb{C})$ et $B = \begin{pmatrix} A & A \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{C})$.

- (a) Donner le rang de B en fonction de celui de A.
- (b) Montrer que, pour tout $P \in \mathbb{C}[X]: P(B) = \begin{pmatrix} P(A) & P(A) \\ 0 & 0 \end{pmatrix} + P(0) \begin{pmatrix} 0 & -I_n \\ 0 & I_n \end{pmatrix}$
- (c) Montre que, si B est diagonalisable, alors A est diagonalisable.
- (d) Que penser de la réciproque?

901.4

Mines-Télécom

Soit E un espace vectoriel, $s \in \mathcal{L}(E)$ une symétrie. Pour $u \in \mathcal{L}(E)$, on note :

$$\varphi(u) = \frac{1}{2}(u \circ s + s \circ u)$$

- (a) Montrer que φ est un endomorphisme de $\mathcal{L}(E)$.
- (b) Calculer $\varphi^3(u)$. En déduire un polynôme annulateur de φ .

2024-2025 http://mpi.lamartin.fr 1/3

(c) Est-ce que φ est diagonalisable?

Examinateur sympathique qui laisse dérouler l'exercice sans trop poser de quetsion et donne des indices si besoin.

901.5

Mines-Télécom

- (a) Soit $M \in \mathcal{M}_n(\mathbb{Z})$. Que peut-on dire des coefficients de la comatrice de M?
- (b) Soit $A, B \in \mathcal{M}_n(\mathbb{Z})$ telles que $\det(A)$ et $\det(B)$ sont premiers entre eux. Démontrer qu'il existe $U, V \in \mathcal{M}_n(\mathbb{Z})$ telles que :

$$AU + BV = I_n$$

et donner une méthode permettant de calculer explicitement un tel couple.

(c) On considère à nouveau $A, B \in \mathcal{M}_n(\mathbb{Z})$ telles que $\det(A)$ et $\det(B)$ sont premiers entre eux. En utilisant le théorème de Cayley-Hamilton, démontrer l'existence de deux polynômes $P, Q \in \mathbb{Z}[X]$ tels que les matrices P(A) et Q(B) vérifient :

$$AP(A) + BQ(B) = I_n$$

2 Exercices de niveau 2

901.6

Centrale

Soit $\alpha \in \mathbb{K}$ et $f_{\alpha} : M \mapsto M^{\top} + \alpha M$, définie sur $\mathcal{M}_n(\mathbb{K})$.

- (a) f_0 est-elle diagonalisable?
- (b) Pour quelles valeurs de α f_{α} est-elle diagonalisable?
- (c) Déterminer les éléments propres de f_{α} .

901.7

Mines-Ponts

On considère f l'endomorphisme de \mathbb{R}^3 représenté par :

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$

dans la base \mathcal{B} .

- (a) Préciser ses valeurs propres. A est-elle diagonalisable?
- (b) On note u un vecteur propre associé à la plus grande valeur propre, v associé à l'autre valeur propre et k de coordonnées (0,0,1) dans la base \mathcal{B} . Montrer que :

$$B = \text{Mat}_{\mathcal{B}'}(f) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & \alpha \\ 0 & 0 & 1 \end{pmatrix}$$

où $\mathcal{B}' = (u, v, k)$ et α est à préciser.

- (c) Pour $n \in \mathbb{N}$, déterminer B^n et en déduire A^n .
- (d) Question bonus Que dire de dim $Vect(I_3, A, A^2, A^3, \dots)$?

Examinateur neutre, qui partait à plusieurs reprises et aidait peu.

901.8

Centrale

Soit $M \in \mathcal{M}_n(\mathbb{C})$ et $p \ge 2$ tel que M admet $\lambda_1, \ldots, \lambda_p$ valeurs propres distinctes. On suppose :

$$\forall i \in [2, p], \ |\lambda_i| < |\lambda_1| \qquad (\star)$$

Pour $k \in \mathbb{N}$ tel que $\operatorname{tr}(M^k) \neq 0$, on définit :

$$t_k(M) = \frac{\operatorname{tr}(M^{k+1})}{\operatorname{tr}(M^k)}$$

- (a) Montrer que $(t_k)_k$ est définie à partir d'un certain rang et converge.
- (b) Montrer que, si (\star) n'est pas vérifiée, ce n'est pas toujours vrai.
- (c) Soit $A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 3 & 1 \\ 4 & -4 & -1 \end{pmatrix}$.
 - c
1. Montrer que A est semblable à $B=\begin{pmatrix}1&0&0\\0&1&1\\0&0&1\end{pmatrix}.$
 - c2. Déterminer la limite de $\frac{A^k}{k}$.

Examinateur plutôt sympathique qui m'a demandé de faire une méthode « bourrin » pour la question 3a plutôt qu'une analyse/synthèse. Cest un exercice qui reste assez classique.

901.9

Mines-Ponts

Soit $A \in \mathcal{M}_{2n}(\mathbb{R})$. Démontrer que les propriétés suivantes sont équivalentes :

- (i) 0 est racine de $\chi_A(X)$, d'ordre de multiplicité n;
- (ii) A est semblable à une matrice de la forme $\begin{pmatrix} N & 0 \\ 0 & U \end{pmatrix}$ où N et U sont des matrices de $\mathcal{M}_n(\mathbb{R})$ qui sont respectivement nilpotente et inversible.

3 Exercices de niveau 3

901.10

X

Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que tr $A^m \xrightarrow[m \to +\infty]{} 0$. Montrer que les valeurs propres de A sont de module strictement inférieur à 1.

4 Exercices de la banque CC-INP

63, 67 à 75, 83, 88, 91