

## ELEMENTOS DE ÁLGEBRA

(2do cuatrimestre de 2022)



## TRABAJO PRÁCTICO N°10: Polinomios

1. Dados los polinomios:

$$R(x) = x^5 - x^4 - 4x + 4$$

$$P(x) = x^3 + (-6 - 2i)x^2 + (8 + 12i)x - 16i - 7x^6 + x^5 - x^4 - ix^3$$

- a) Indicar, en cada caso, a qué conjunto pertenecen, el grado, el coeficiente principal, el término independiente, si es mónico, si está ordenado en forma creciente o decreciente y si está completo.
- b) Hallar el valor numérico de R(x) y de P(x) para x = -1 y x = i
- 2. Dado  $P(x) = (3x^4 8ax^5 + 4x^3) (2x^5 ax^3) (2x^2 + ax^5 7x^4)$ , hallar el valor de a para que el polinomio P(x) tenga grado 4.
- 3. Determinar los valores de m, n, r y s para que T(x) = G(x) siendo

$$T(x) = -\frac{1}{2}x^5 + 2x^2 - 5x + 3$$
 
$$G(x) = (n-s)x^5 + rx^3 + \frac{4}{3}(s+r)x^2 + (-2n-m)x + m$$

4. Averiguar si A(x) es divisible por B(x) en cada uno de los siguientes incisos

a) 
$$A(x) = 2x^5 + 16x^3 - x^6$$
,  $B(x) = x^2 + 2x$ 

b) 
$$A(x) = 6x^6 - 9x^4 + 10x^2 - 15$$
,  $B(x) = 2x^2 - 3$ 

5. Obtener, mediante la regla de Ruffini, el cociente y el resto de la división entre A(x) y B(x) en los siguientes incisos

a) 
$$A(x) = ax^3 + a^4$$
,  $B(x) = x - \frac{1}{2}$ 

b) 
$$A(x) = (x+a-1)^2 - a^2 + 2a$$
,  $B(x) = x - a$ 

6. Hallar el o los valores de a para que:

a) el polinomio 
$$H(x) = 3x - 1 - 2x^2$$
 sea divisible por  $N(x) = x - a$ 

b) al dividir 
$$P(x) = 2x^3 + 4x^2 - 2x + a$$
 por  $Q(x) = x - 3$  el resto sea 10

7. Sea  $P(x) = 2x^5 + 16x^4 + 42x^3 + 28x^2 - 40x - 48$ . Verificar que -3, -2 y 1 son raíces de P(x) y hallar el orden de multiplicidad de cada una de ellas.

8. Encontrar el valor de h sabiendo que

a) 
$$(-i)$$
 es raíz de  $P(x) = 5x^6 - 7x^5 + 11x + h$ 

b) 
$$(-1)$$
 es raíz de  $P(x) = x^7 - 10x^4 - hx^3 - 3x + 1$ 

9. Hallar todas las raíces racionales de los siguientes polinomios aplicando el teorema de Gauss.

- a)  $P(x) = x^4 2x^2 3x 2$
- b)  $P(x) = x^5 x^3 + 2$
- c)  $P(x) = 4x^4 11x^2 + 9x 2$
- d)  $P(x) = x^3 \frac{9}{2}x^2 + 6x \frac{5}{2}$
- 10. Escribir los siguientes polinomios como producto de polinomios de grado 1.
  - a)  $A(x) = x^6 + 4x^5 + 9x^4 + 16x^3 + 19x^2 + 12x + 3$  sabiendo que  $r_1 = -1$  es raíz.
  - b)  $B(x) = 3x^4 12x^3 + 48x^2 72x + 60$  sabiendo que  $r_1 = 1 + 3i$  es raíz.
  - c)  $C(x) = x^3 + (-6 3i)x^2 + (9 + 15i)x + (-4 12i)$  sabiendo que  $r_1 = 4$  es raíz.
  - d)  $Q(x) = x^5 x$
  - e)  $P(x) = x^4 + 4x^2 + 4$
  - $f) S(x) = x^4 16$
  - $f(x) = x^6 + 2x^3 + 1$
- 11. Dados los siguientes polinomios:

$$P(x) = x^6 - 6x^4 + 5x^2 + 12$$

$$Q(x) = x^5 + \frac{1}{2}x^4 + x^3 + \frac{1}{2}x^2 - 6x - 3$$

- a) Calcular las raíces racionales aplicando el teorema de Gauss.
- b) Expresarlos factorizados como producto de polinomios de primer grado.
- 12. Construir, en caso de ser posible:
  - a) Un polinomio de grado mínimo, que tenga coeficiente principal  $\frac{3}{2}$ , -1 y 3 sean raíces dobles y sea divisible por (x+2).
  - b) Todos los polinomios de grado 3, con coeficiente principal distinto de 7i, -2 sea raíz simple y  $\sqrt{2}$  sea raíz doble.
  - c) Un polinomio de grado mínimo, mónico y que tenga a -3i y 2 como raíces simples y a 0 como raíz triple.
  - d) Un polinomio de grado mínimo, mónico, con coeficientes reales y que tenga a -3i y 2 como raíces simples y a 0 como raíz triple.
  - e) Un polinomio de grado mínimo, mónico, con término independiente 1 y que tenga a -3i y 2 como raíces simples y a 0 como raíz triple.
  - f) Un polinomio con coeficientes reales, de grado 3 y 0, -1 y (1+i) sean raíces simples.
  - g) Todos los polinomios con coeficientes reales, de grado mínimo y 0, -1 y (1+i) sean raíces simples. Y si el polinomio tiene coeficientes complejos, ¿cuál es su grado mínimo?

Para los incisos a), b), c) y d) indicar el término independiente.

- 13. Analizar, justificando las respuestas, si los siguientes enunciados son verdaderos o falsos:
  - a)  $\forall P(x), Q(x) \in \mathbb{C}[x]: gr(P+Q) = gr(P) + gr(Q).$
  - b)  $\forall P(x), Q(x) \in \mathbb{C}[x] : (Q(x)|P(x) \Longrightarrow gr(P) \ge gr(Q)).$
  - c) El polinomio  $P(x) = x^{3201} 2x^5 + 3$  no tiene raíces reales.

- d) El polinomio  $Q(x) = x^{20049} 2x^3 + 8$  no es divisible por (x 9).
- e) Existen  $r \in \mathbb{C}$  y  $Q(x) \in \mathbb{C}[x]$  tales que  $x^{21} + x^{13} + 2 = (x r)Q(x)$ .
- f) Un polinomio de grado 16, siempre tiene, por lo menos, una raíz real.
- g) Sea  $S(x) = (1+i)x^2 + ix + (1-i)$ 
  - i)  $\forall a \in \mathbb{R} : P(x) = a.S(x)$  tiene las mismas raíces que S(x).
  - ii)  $\exists P(x) \in \mathbb{C}[x] / S(x)$  divide a P(x) y  $P(-1-i) \neq 0$ .
  - iii)  $\exists P(x) \in \mathbb{C}[x] / P(x)$  es de grado 2, con coeficiente principal 7, que tenga a S(x) como factor y  $P(\frac{1}{2} + \frac{1}{2}i) = 0$ .
  - iv)  $\nexists P(x) \in \mathbb{R}[x] / gr(P) = 4$  y que P(x) sea divisor de S(x).