四川大学平时测验试题 (2018~2019-1)

课程号: <u>304131030</u>课序号: <u>7</u>教学周: <u>16</u>课程名称: <u>数字逻辑(双语)</u>任课教师: <u>吴志红</u>

1. Fill in the blanks with the correct answer. (20p)

- a) When the Q output is HIGH, the latch is in the____state.
- b) The flip-flop can not change state except on the triggering edge of a pulse.
- c) A 4-bit binary up/down counters is in the reset state. The next state in the DOWN mode is _____ and the next state in the UP mode is _____ and the
- d) A modulus 6 counter has states and requires flip-flops at least.
- e) A register has two basic function; data_____ and data_____.
- f) In general, a Johnson counter will produce a modulus of ____, where n is the number of stages in the counter.
- g) \(\sum \) Clock pulses are required to enter a byte of data serially into an 8-bit shift register.

2. Complete the JK flip-flop'timing diagram.(10p)

3. Given the logic diagram shown below, complete the partial timing diagram.(10p)

- 4. Given the logic diagram for this problem as the figure, complete follow: a) Write the excitation equations and output equations; b) Write the next state equations; c) Create the state table; d) Create a state diagram.(30 points)
- 5. Design a counter with the next-state table, the transition table and the excitation equations to produce the following sequence: 1, 4, 3, 5, 7, 6, 2, 1, ...(30p)

注:字迹务必清晰,书写工整。

1. Fill in the blanks with the correct answer. (20p)

Set Clock 1111 0001 6 3 storage movement 2n 8

2. Complete the JK flip-flop'timing diagram.(10 points)

3. Given the logic diagram shown below, complete the partial timing diagram.(10 points)

4. Given the logic diagram for this problem as the figure, complete follow: a) Write the excitation equations and output equations; b)
Write the next state equations; c) Create the state table; d) Create a state diagram.(30 points)
a)The excitation equations(6p):

Theoutput equations(3p): $z=xF_2$

b)The next state equations(6p):

$$F_2(t+1)=D_2=xF_1F_2'$$
 $F_1(t+1)=D_1=x'+F_1F_2'$

c)The state table(9p):

F ₂ F ₁	x=0		x=1	
	F ₂ (t+1) F ₁ (t+1)	Z	F ₂ (t+1) F ₁ (t+1)	Z
00	01 0		00 0	
01	01	0	11	0
10	01	0	00	1
11	01	0	00	1

d)Thestate diagram(6p):

5. Design a counter with the next-state table, the transition tableand the excitation equations to produce the following sequence: $1, 4, 3, 5, 7, 6, 2, 1, \dots (30 points)$

The next state table(4p):

The heat state table (ip).			
$Q_2(t)Q_1(t)Q_0(t)$	$Q_2(t+1)Q_1(t+1)Q_0(t+1)$		
000	XXX		
001	100		
010	001		
011	101		
100	011		
101	111		
110	010		
111	110		

The transition table if select the D filp-flops(8p):

$Q_2(t)Q_1(t)Q_0(t)$	$\mathbf{D}_2\mathbf{D}_1\mathbf{D}_0$
000	XXX
001	100
010	001
011	101
100	011
101	111
110	010
111	110

The excitation equations (10p):

\mathbf{D}_2 :	00	01	11	10
0	X	1	1	0
1	0	1	1	0
$\mathbf{D}_2 = \mathbf{Q}_0$				

\mathbf{D}_1 :	00	01	11	10
0	X	0	0	0
1	1	1	1	1
$D_1 = Q_2$				

\mathbf{D}_1 :	00	01	11	10
0	X	0	1	1
1	1	1	0	0
· O ₂ O ₂ · · O ₂ O ₂ - O ₂ A O ₂				

The logic diagram(8p):

If select the \emph{JK} flip-flops, the transition table(8p):

$Q_2(t)Q_1(t)Q_0(t)$	$Q_2(t+1)Q_1(t+1)Q_0(t+1)$	$J_2 K_2$	J ₁ K ₁	J ₀ K ₀
000	XXX	/\xx\	XX /	T XX
001	100	/ / 1x	0x /	x1
010		/ / 0 x	X1	1x // <
011		1x	√ x1	// _x0// \
100/ \/ \		x1//	1\(\times\)	1x
101		/ ×0	1x	x0
110	# / / (/ O10 D	x1	x0	0 x
111\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	110	x0	x0	x1

☐ The excitation equations (6p):

$$J_2 = Q_0$$
 $K_2 = Q_0$;

$$J_1=O_2$$

$$K_1=O_2$$

$$J_1=Q_2$$
 $K_1=Q_2'$; $J_0=Q_2'+Q_1'$

$$K_0=Q_2' Q_1'+Q_2Q_1$$

The logic diagram(8p):

