

Final Presentation
Sarah Pristash, Shaun Gallagher, Wenqi Cui

Problems

- Transportation accounts for 60% of total core emissions in Seattle, 61% percent of which is attributed to gasoline/diesel sources
- Population increased 25% from 2008 2018, projected to continue and intensify city-wide traffic burden
- Citizen survey data indicates current transportation must be more robust and equitable, especially for BIPOC communities
- Large data sets make it difficult to visualize

From Seattle.gov: 2018 Traffic Flow Counts

Background and Scope

- Modeling the impact on traffic can give an idea of which features most affect flow
- Visualizing these changes regionally allow for a regional approach to discover the best solutions for specific areas of Seattle

Questions:

- How can we use data science to predict traffic volumes based on urban features?
- How can data from traffic flow be effectively visualized?

Chloropleth Plot Generated in geoplot

Technology Overview: Geographic Information Systems

Objective: Use python to create interactive plots to visualize traffic and input feature data over geographic areas

GeoPandas

Shapely: allows us to merge data based on geographic location - i.e. point in polygon, line intersecting polygon, etc.

Folium: Creates visually pleasing, interactive, detailed maps of geospatial data

Data Processing Workflow

- -What geographic level should we be looking at for our dataset?
- -How can we deal with different reporting between different datasets?

Zip Codes as a Geographic Marker

-Looking at every individual street could obscure area-level trends, the same is true for a city-wide view

-Here several census tracts are contained within zip codes, we can sum up these data to get a representative intermediate-level pictures

-This can be accomplished through Shapely sjoin Feature, which can group the data sets into larger pre-defined features

Objective: Use spatial aspects of geographical data to organize input feature data into geographic locations

Zip

Objective: Use spatial aspects of geographical data to organize input feature data into geographic locations

Objective: Use spatial aspects of geographical data to organize input feature data into geographic

Combined

Objective: Use spatial aspects of geographical data to organize input feature data into geographic locations

Objective: Use spatial aspects of geographical data to organize input feature data into geographic locations

Objective: Use spatial aspects of geographical data to organize input feature data into geographic locations

traffic_zones = city_by_zip.dissolve(by='ZIPCODE', aggfunc = sum)

Objective: Use spatial aspects of geographical data to organize input feature data into geographic locations

	NAME10	geometry	AAWDT
ZIPCODE			
98101	13323.60	POLYGON ((-122.34598 47.60892, -122.34490 47.6	1.877668e+06
98102	2738.74	POLYGON ((-122.33574 47.64203, -122.33108 47.6	4.782904e+05
98103	5670.00	POLYGON ((-122.35808 47.69966, -122.35741 47.6	1.880369e+06
98104	13944.00	POLYGON ((-122.34105 47.59627, -122.34031 47.5	1.847450e+06
98105	6560.00	MULTIPOLYGON (((-122.32859 47.66646, -122.3285	1.762661e+06

traffic_zones = city_by_zip.dissolve(by='ZIPCODE', aggfunc = sum)

Demo: Interactive plots using folium

http://localhost:8888/view/map html/choropleth map v3.html

Visualize the model

- Make use of the 'keras.utils.plot_model' function in Tensorflow
- The structure is of two dense layer, each has 16 neurons, with tanh activation

Visualize the Neural Network

Visualize the Weight through epochs

Compare the true label with the predicted label

Compare the error on the training set and the test set

Loss verses epochs

