Understanding Magazine Subscription Behaviour

Rajashekar Korutla

Applied Machine Intelligence, Roux Institute at Northeastern University

ALY 6020: Predictive Analytics

CONTENTS

- 1 Problem Statement/Business Requirements
- 2 Overview of data
- 3. Data pre-processing including data exploration analysis
- 4. Details of your modeling strategy
- 5. Estimation of model's performance
- 6. Insights and conclusions

Problem Statement/Business Requirements

A magazine company is trying to understand last year's decline in subscriptions. With people spending more time at home, they thought people would be spending more time reading. Using this dataset, help the company understand what is or isn't working.

Overview Of Data

From the marketing dataset, it can clearly be seen that there are 2240 rows and 29 columns in the dataset.

So, in order to get the list of columns, I used the df.columns line of code and stored the list of columns in the variable named col_list. Here is the line of code to get the columns from the dataset:

After getting the list of columns, I have used the following command to get the datatypes of the columns that are present in the dataset.

df.info()

Data Pre-Processing Including Data Exploration Analysis

Then it happened to realize that there are certain columns with the dataset as object, which are supposed to be changed to numeric for the model to consider them for further process.

For which, I have used the get_dummies function from the pandas library to change their datatype from object to integer.

The get_dummies function would create a dummy column for every category of data present in that specific column, thereby having only Boolean values in the columns.

Here is the line of code, that represents the function:

```
df = pd.get_dummies(df , columns = ['Education', 'Marital_Status'], drop_first = True)
```

when the drop_first is set to True, all the first previous columns are being dropped, thereby giving limited number of columns for the model processing.

Then I found that there exists certain null values in the column of 'Income', these null values have been dropped by the following line of code:

df = df.dropna()

After the above processing is done, this is the information regarding the dataset:

ш	C-1	Non Null Count	Decorate				
#	Column	Non-Null Count	Dtype				
0	ID	2240 non-null	int64				
1	Year Birth	2240 non-null	int64				
2	Income	2216 non-null	float64				
3	Kidhome	2240 non-null	int64				
4	Teenhome	2240 non-null	int64				
5	Dt_Customer	2240 non-null	object				
6	Recency	2240 non-null	int64				
7	MntWines	2240 non-null	int64				
8	MntFruits	2240 non-null	int64				
9	MntMeatProducts	2240 non-null	int64				
10	MntFishProducts	2240 non-null	int64				
11	MntSweetProducts	2240 non-null	int64				
12	MntGoldProds	2240 non-null	int64				
13	NumDealsPurchases	2240 non-null	int64				
14	NumWebPurchases	2240 non-null	int64				
15	NumCatalogPurchases	2240 non-null	int64				
16	NumStorePurchases	2240 non-null	int64				
17	NumWebVisitsMonth	2240 non-null	int64				
18		2240 non-null	int64				
19	AcceptedCmp3	2240 non-null	int64				
	AcceptedCmp4						
20 21	AcceptedCmp5	2240 non-null 2240 non-null	int64 int64				
22	AcceptedCmp1	2240 non-null	int64				
	AcceptedCmp2						
23	Complain	2240 non-null 2240 non-null	int64				
24	Z_CostContact		int64				
25	Z_Revenue	2240 non-null	int64				
26	Response	2240 non-null	int64				
27	Education_Basic	2240 non-null	uint8				
28	Education_Graduation	2240 non-null	uint8				
29	Education_Master	2240 non-null	uint8				
30	Education_PhD	2240 non-null	uint8				
31	Marital_Status_Alone	2240 non-null	uint8				
32	Marital_Status_Divorced	2240 non-null	uint8				
33	Marital_Status_Married	2240 non-null	uint8				
34	Marital_Status_Single	2240 non-null	uint8				
35	Marital_Status_Together		uint8				
36	Marital_Status_Widow	2240 non-null	uint8				
37 Marital_Status_YOLO 2240 non-null uint8							
dtypes: float64(1), int64(25), object(1), uint8(11)							

The date is also later separated into few other columns named day, month and year, so that it automatically changes the type to the integer.

It can be done by the following line of code:

```
df['Dt_Customer'] = pd.to_datetime(df['Dt_Customer'])

df['Year_Customer'] = df['Dt_Customer'].apply(lambda x: x.year)

df['Month_Customer'] = df['Dt_Customer'].apply(lambda x: x.month)

df['Day_Customer'] = df['Dt_Customer'].apply(lambda x: x.day)

df = df.drop('Dt_Customer', axis=1)
```

Details Of Modeling Strategy

The target variable 'Response' has been separated as 'y'. All the other features have been put together into 'x', to form the feature matrix. The data has been split for training data and test data, as 70% for training and the remaining 30% for test data.

This is implemented by the following lines of code:

```
x = df.drop(labels = ['Response'],axis = 1)
y = df['Response']
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.3 , shuffle = 30)
```

Implementing Logistic Regression

After the data has been split into training data and test data, I have imported the logistic regression algorithm from the scikit learn library, with the following line of code:

from sklearn.linear_model import LogisticRegression

then the training data has been fit in the model, and predicted the test data with the following lines of code:

```
lr = LogisticRegression()
logreg = lr.fit(x_train,y_train)
y_pred = logreg.predict(x_test)
```

Implementing Support Vector Machine Algorithm

From scikit learn, support vector machine for classification can be imported with the following line of code:

```
from sklearn import svm from sklearn.svm import LinearSVC
```

After fitting the model with the training data, I used this line of code to know the accuracy of how the model has been fit on the training data:

```
score = lsvc.score(x_train, y_train)
then I found it to be - accuracy score: 0.8478401031592521
```

Estimation Of Model's Performance

The metrics used for evaluation are classification report, confusion matrix. The classification report shows a representation of the main classification metrics such as precision, recall, f1-score. This gives a deeper intuition of the classifier behavior over global accuracy. The metrics are defined in terms of true and false positives, and true and false negatives. a true positive is when the actual class is positive as is the estimated class. A false positive is when the actual class is negative, but the estimated class is positive.

Confusion matrix is a performance measurement for machine learning classification problem where output can be two or more classes. It is a table with 4 different combinations of predicted and actual values.

Classification report for logistic regression algorithm is the following:

support	f1-score	recall	precision	
645	0.92	0.87	0.99	0
20	0.22	0.65	0.13	1
665	0.86			accuracy
665	0.57	0.76	0.56	macro avg
665	0.90	0.86	0.96	weighted avg

Similarly, classification report for the support vector machine algorithm is:

	precision	recall	f1-score	support
0	0.85	1.00	0.92	568
1	0.00	0.00	0.00	97
accuracy			0.85	665
macro avg	0.43	0.50	0.46	665
weighted avg	0.73	0.85	0.79	665

Insights And Conclusions

When the same dataset is tested with both different algorithms of logistic regression and support vector machines, I found out that every model's performance is different on the dataset.

The accuracy is 1% lesser when tried support vector machines, leaving the accuracy to be 85% with that algorithm of support vector machines.

The accuracy is found to be 86% when the dataset is tested with logistic regression algorithm.

I found both the models are performing good on the dataset, without any situation of underfitting or overfitting.