Printed page: 2	5
rimted page; 2	Subject Code: ACSBS010

Roll No:	
Kon No:	100

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B. Tech

SEM: 1st

SESSIONAL EXAMINATION -III (2020-2021)

Subject Name: Discrete Mathematics

Time: 1.15 Hours Max. Marks: 30

General Instructions:

> All questions are compulsory. Answers should be brief and to the point.

This Question paper consists of 2 pages & 5 questions.

> It comprises of three Sections, A, B, and C. You are to attempt all the sections.

- Section A -Question No-1 is objective type questions carrying 1 mark each, Question No-2 is very short answer type carrying 2 mark each. You are expected to answer them as directed.
- Section B Question No-3 is Short answer type questions carrying 5 marks each. You need to attempt any two out of three questions given.
- Section C Question No. 4 & 5 are Long answer type (within unit choice) questions carrying 6 marks each. You need to attempt any one part <u>a or b.</u>
- > Students are instructed to cross the blank sheets before handing over the answer sheet to the invigilator.
- ➤ No sheer should be left blank. Any written material after a blank sheet will not be evaluated/checked.

		SECTION – A	[8]	
		M.		
1.	Que	Question -		СО
	a.	Find the value of a_4 for the recurrence relation $a_n = 2a_{n-1} + 3$ with $a_0 = 6$. a) 320 b) 221 c) 141 d) 65	(4×1=4) (1)	CO3
	b.	How many cells are there for an 8-variable K-Map? a) 421 b) 1048 c) 256 d) 375	(1)	COI
	c,	What should be the order of this recurrence relation: $a_n = a_{n-1} + 4a_{n-2}$.	(1)()	СОЗ

	1	b) 2		
		c) -2 d) -1		
	d.	What is the use of Boolean identities? a) Minimizing the Boolean expression b) Maximizing the Boolean expression c) To evaluate a logical identity d) Searching of an algebraic expression	(1)	СО
2.	Que	estions-	(2×2=4)	CC
			(2.2.4)	
	a.	Determine the solution for the recurrence relation $b_n = 8b_{n-1} - 12b_{n-2}$ with $b_0 = 3$ and $b_1 = 4$.	(2)	CO3
	0,	Proof by contradiction that there exist no integers a and b for which 18a + 6b = 1.	(2)	CO3
100		SECTION D		
A Park		SECTION – B	CU	
3.	Ansv	wer any two of the following-	10 5 10	
	a.	Determine the solution of the recurrence relation $F_n = 20F_{n-1} - 25F_{n-2}$ where $F_0 = 4$ and $F_1 = 14$	[2×5=10] (5)	CO ₃
3	b.	Use generating function to solve the recurrence relation $a_n - 9a_{n-1} + 20a_{n-2} = 0$ with $a_0 = -3$ and $a_1 = -10$.	(5)	CO.
	c.	Minimize the Boolean expression using Boolean identities: A'B+ABC'+BC'+AB'C'	(5)	CO1
		SECTION - C		
4		wer any one of the following-	[2×6=12]	СО
	a.	Proof by contradiction that for all integers n, if $n^3 + 5$ is odd then n is even.	(6)	CO3
5.	b.	Use mathematical induction to prove that $1^3 + 2^3 + 3^3 + + n^3 = n^2(n + 1)^2/4$ for all positive integers n. wer any one of the following-	(6)	CO3
3.	a.	An engineer hands you a piece of reconstitution		
		An engineer hands you a piece of paper with following Boolean expression on it, and tells you to build a gate circuit to perform that function AB'+C (A+B). Draw a logic circuit for this function.	(6)	CO1
	b.	Simplify the expression using K-maps: $F(A,B,C) = \Sigma(1,3,5,6,7)$.	(6)	CO1