MATH 135: INTRODUCTION TO THE THEORY OF SETS AUTUMN 2011 SOLUTIONS TO MIDTERM I

- 1. (20 points) Define the following terms. When referring to another term introduced in this course, completely define that term as well.
 - (1) Given a set x the set y is equal to the union of x, $\bigcup x$ if and only if

$$(\forall s)(s \in y \longleftrightarrow (\exists t)(t \in x \& s \in t))$$

(2) A set x is an ordered pair if and only if

$$(\exists a)(\exists b)x = \langle a, b \rangle$$

Here we say for sets a, b, and c we say that

$$c = \{a, b\} \iff (\forall s)(s \in c \iff (s = a \text{ or } s = b))$$

For sets a and b we say

$$b = \{a\} \iff b = \{a, a\}$$

For sets a, b and c we say

$$c = \langle a,b\rangle \Longleftrightarrow c = \{\{a\},\{a,b\}\}$$

(3) A set f is a function if and only if

$$(\forall t)(t \in f \to t \text{ is an ordered pair}) \text{ and } (\forall x)(\forall y)(\forall z)[(\langle x,y \rangle \in f \& \langle x,z \rangle \in f) \to y = z]$$

(4) A set R is a transitive relation if and only if

$$(\forall t)(t \in R \to t \text{ is an ordered pair }) \text{ and } (\forall x)(\forall y)(\forall z)[(\langle x,y \rangle \in R \& \langle y,z \rangle \in R) \to \langle x,z \rangle \in R]$$

- 2. (10 points) State the following axioms in the formal language. You may write the axiom in mathematical English also to explain the formal sentence. As in question 1, if you refer to a term introduced in this course, you must define that term.
 - (1) Empty Set Axiom

$$(\exists x)(\forall t)\neg(t \in x)$$

(2) Extensionality Axiom

$$(\forall x)(\forall y)([(\forall s)(s \in x \leftrightarrow s \in y)] \leftrightarrow x = y)$$

3. (15 points) Prove or disprove: If $a \in b$, the $\mathcal{P}a \in \mathcal{P}b$.

Disproof: Consider $a = \{\emptyset\}$ and $b = \{\{\emptyset\}\}$. Then $\mathscr{P}a = \{\emptyset, \{\emptyset\}\}$ while $\mathscr{P}b = \{\emptyset, \{\{\emptyset\}\}\}$. Visibly, $a \in b$, but $\mathscr{P}a \notin \mathscr{P}b$ as there are two members of $\mathscr{P}a$ while every member of $\mathscr{P}b$ has at most one element.

4. (15 points) Prove or disprove: If \mathscr{F} is a nonempty set of functions, then $\bigcap \mathscr{F}$ is a function.

Proof: Since $\mathscr{F} \neq \varnothing$, we can find some $f \in \mathscr{F}$. It follows that that $\bigcap \mathscr{F} \subseteq f$ is indeed a set as shown in class. Moreover, $\bigcap \mathscr{F}$ is indeed a relation as if $t \in \bigcap \mathscr{F}$, then in particular $t \in f$, which is a relation, so that t is an ordered pair. Finally, suppose that for sets x, y and z we have $\langle x, y \rangle \in \bigcap \mathscr{F}$ and $\langle x, z \rangle \in \bigcap \mathscr{F}$. Then, in particular, $\langle x, y \rangle \in f$ and $\langle x, z \rangle \in f$. Since f is a function, we have f is a function, we have f is a function f is a function, we have f is a function f i

5. (15 points) Show that if $f: A \to B$ is a function which is onto B but is not one-to-one, then there are at least two distinct functions $g: B \to A$ and $h: B \to A$ for which $f \circ g = I_B = f \circ h$.

Proof: We have already proven that there is at least one right inverse $g: B \to A$. Since f is not one-to-one, there are sets x, y, and z so that $\langle x, y \rangle \in f$ and $\langle z, y \rangle \in f$ but $x \neq z$. In particular, either $x \neq g(y)$ or $z \neq g(y)$. Without loss of generality, $x \neq g(y)$. Define

$$h := \{t \in B \times A : (\exists u)[u \in B \& u \neq y \& t = \langle u, g(u) \rangle] \text{ or } t = \langle y, x \rangle \}$$

We have shown that $B \times A$ is a set. Hence, from the subset axiom we know that h is a set. Moreover, h is clearly relation being a subset of $B \times A$. The relation h is a function as if $\langle a,b \rangle \in h$ and $\langle a,c \rangle \in h$, then either $a \neq y$ in which case b = g(a) = c or a = y in which case b = x = c. We see that $f \circ h = I_B$ as if $a \in B$, then either $a \neq y$ in which case $f \circ h(a) = f(h(a)) = f(g(a)) = a$ (as $f \circ g = I_B$) or a = y in which case $f \circ h(a) = f(h(y)) = f(x) = y = a$. Finally, since $\langle y,x \rangle \in h$ but $\langle y,x \rangle \notin g$ we see that $h \neq g$.

6. (15 points) Prove that relative to the other axioms of set theory, the following assertion is equivalent to the Axiom of Choice:

*: For every partition Π of some set x, there is a set $y \subseteq x$ such that for each $\rho \in \Pi$ the set $\rho \cap y$ is a singleton. **Proof:** Let us first show that ACI implies *. We know that ACI implies that if F is any function, I = dom(F) and $(\forall i \in I)F(i) \neq \emptyset$, then $\prod_{i \in I} F(i) \neq \emptyset$. Let $F := I_{\Pi}$ be the identity function of Π . By definition of a partition, for every $\rho \in \Pi$ we have $\rho \neq \emptyset$. Hence, $\prod_{\rho \in \Pi} \rho \neq \emptyset$. Let $g : \Pi \to \bigcup \Pi = x$ be some element of $\prod_{\rho \in \Pi} \rho$. Set y := ran(g), which is a subset of x as the target of g is x. Let now $\rho \in \Pi$. Then $g(\rho) \in \rho$ (by definition of the product) and $g(\rho) \in \text{ran}(g) = y$ (by definition of the range). Hence, $g(\rho) \in \rho \cap y$. On the other hand, if $z \in y \cap \rho$, then there is some $\sigma \in \text{dom}(g) = \Pi$ for which $z = g(\sigma)$. We know that $g(\sigma) \in \sigma$ (by definition of the product) so that $z \in \sigma \cap \rho$. As Π is a partition, having $\sigma \cap \rho \neq \emptyset$ implies that $\sigma = \rho$. As g is a function, this implies that $z = g(\rho)$. Thus, $y \cap \rho = \{g(\rho)\}$ is a singleton, as desired.

In the other direction, let R be any relation. Let x := R. For $a \in dom(R)$, we define

$$R_a := \{ s \in R : (\exists b) s = \langle a, b \rangle \}$$

Let

$$\Pi := \{ t \in \mathscr{P}R : (\exists a \in \text{dom}(R)) t = R_a \}$$

Then Π is a partition of R as if $u \in R$, then because R is a relation, u is an ordered pair so that $u = \langle a, b \rangle$ for some a and b. By definition of the domain, $a \in \text{dom}(R)$ and then $u \in R_a$. Thus, $\bigcup \Pi = R$. By definition of dom(R), each set R_a for $a \in \text{dom}(R)$ is nonempty. Finally, if $R_a \cap R_c \neq \emptyset$ for some a and c, then there are u and v for which $\langle a, u \rangle = \langle c, v \rangle$ which by the characteristic property of the ordered pair implies that a = c so that $R_a = R_c$. Thus, Π is a partition of R. By *, there is a set $y \subseteq x = R$ so that for each $\rho \in \Pi$, $y \cap \rho$ is a singleton. I claim that y is a function whose domain is dom(R). Indeed, as y is a subset of R, it is a relation. If $\langle a, b \rangle \in y$ and $\langle a, c \rangle \in y$. Then $\langle a, b \rangle \in y \cap R_a$ and $\langle a, c \rangle \in y \cap R_a$. As $y \cap R_a$ is a singleton, $\langle a, b \rangle = \langle a, c \rangle$ so that b = c as desired. Finally, if $a \in \text{dom}(R)$, then as $y \cap R_a$ is a singleton, which in particular is nonempty, there is some $t \in y \cap R_a$. Every element of R_a has the form $\langle a, b \rangle$ for some b. Hence, $t = \langle a, b \rangle$ for some b. That is, $a \in \text{dom}(y)$. Thus, $\text{dom}(R) \subseteq \text{dom}(y)$. As $y \subseteq R$, we have $\text{dom}(y) \subseteq \text{dom}(R)$. Therefore, dom(y) = dom(R).