

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ

KATEDRA INFORMATYKI STOSOWANEJ

Analiza i modelowanie oprogramowania

Dokumentacja projektowa - automatyczny parking

Autor: Mateusz Grzeliński, Agata Sidło, Katarzyna Lambrecht, Katarzyna Wilczak

Kierunek studiów: Informatyka

Semestr: V

Spis treści

1.	Ogól	ny opis systemu	3
	1.1.	Cel (przeznaczenie) systemu	3
	1.2.	Udziałowcy i użytkownicy	3
	1.3.	Podstawowe cele udziałowców i użytkowników	3
	1.4.	Granice systemu	4
	1.5.	Lista funkcji systemu	5
2.	Anali	iza Dziedziny	9
	2.1.	Klasy i opis atrybutów	9
	2.2.	Diagramy klas - relacje	9
	2.3.	Diagramy stanów dla wybranych klas	9
	2.4.	Słownik pojęć	9
3.	SRS	- specyfikacja wymagań	11
	3.1.	Ogólny diagram przypadków użycia	11
	3.2.	Definicje przypadków użycia	11
4.	Architektura systemu		
	4.1.	Wyliczenie warstw lub wyliczenie podstawowych komponentów będących odrębnymi	
		programami (nadawca-odbiorca, klient-serwer). Zamodelowanie ich jako klas z odpo-	
		wiednim zestawem metod.	13
	4.2.	Specyfikacja interfejsu pomiędzy komponentami	13
5.	Projekt oprogramowania		
	5.1.	Sekcja.	15
6.	Proje	ekt interfejsu użytkownika IRS	17
	6.1.	Sekcja	17
7.	Proje	ekt bazy danych DBDD	19
	7.1.	Diagram ERD	19
	7.2.	Specyfikacja kwerend	19

1. Ogólny opis systemu

1.1. Cel (przeznaczenie) systemu

Celem systemu automatyczny parking jest umożliwienie komputerowej obsługi pobierania opłat za pozostawienie pojazdu na parkingu na określony czas. System rozpoznaje ze zdjęcia tablice rejestracyjne pojazdów i na tej podstawie umożliwia wjazd samochodów na parking, a także opuszczenie go.

1.2. Udziałowcy i użytkownicy

- Właściciel posiada parking, jest kierownikiem zarządzającym pracownikami, system prezentuje mu zebrane statystki
- Klient osoba, która korzysta z usług automatycznego parkingu i wjeżdza samochodem na jego teren
- Operator osoba kontrolująca parking w danej chwili, w przypadku błędów, przegląda zarejestrowane zdjęcia i określa czas wjazdu i wyjazdu

1.3. Podstawowe cele udziałowców i użytkowników

Udziałowcy	Cel	Priorytet
Klient	Wjechanie na parking	Wysoki
Klient	Opuszczenie parkingu	Wysoki
Klient	Wpisanie numeru rejestracyjnego	Wysoki
Klient	Potwierdzenie zdjęcia	Wysoki
Klient	Anulowanie wpisanego numeru rejestracyjnego	Średni
Klient	Uiszczenie opłaty	Wysoki
Operator	Przeglądanie zdjęć	Średni
Operator	Określenie czasu wyjazdu i wyjazdu	Średni
Właściciel	Wyświetlenie statystyk	Niski

4 1.4. Granice systemu

W aktualnym systemie klient podjeżdża do terminala, naciska przycisk i odbiera bilet z godziną wjazdu. Przy opuszczaniu parkingu wkłada otrzymany przy wjeździe bilet i dokonuje opłaty. W naszym systemie klient, wjeżdżając na parking, nie musi podjeżdżać do terminala i czekać na wydrukowanie kartki z godziną wjazdu. System zrobi zdjęcie tablicy rejestracyjnej i sam otworzy szlaban. W ten sposób oszczędzany jest papier oraz tusz. Operator nie musi dbać o to żeby ich nie zabrakło. Musi jedynie interweniować w przypadku oszustwa.

1.4. Granice systemu

Rys. 1.1. Granice systemu automatyczny parking

1.5. Lista funkcji systemu

Rys. 1.2. Diagram czynności: Klient wjeżdża na parking

Rys. 1.3. Diagram czynności: Klient opuszcza parking

Rys. 1.4. Diagram czynności: Operator weryfikuje wykryte oszustwo

Rys. 1.5. Diagram czynności: Właściciel wyświetla statystyki

2. Analiza Dziedziny

Analiza obiektów biznesowych

- 2.1. Klasy i opis atrybutów
- 2.2. Diagramy klas relacje
- 2.3. Diagramy stanów dla wybranych klas
- 2.4. Słownik pojęć

10 2.4. Słownik pojęć

3. SRS - specyfikacja wymagań

- 3.1. Ogólny diagram przypadków użycia
- 3.2. Definicje przypadków użycia

4. Architektura systemu

- 4.1. Wyliczenie warstw lub wyliczenie podstawowych komponentów będących odrębnymi programami (nadawca-odbiorca, klient-serwer). Zamodelowanie ich jako klas z odpowiednim zestawem metod.
- 4.2. Specyfikacja interfejsu pomiędzy komponentami

5. Projekt oprogramowania

5.1. Sekcja..

16 5.1. Sekcja..

6. Projekt interfejsu użytkownika IRS

6.1. Sekcja...

18 6.1. Sekcja...

7. Projekt bazy danych DBDD

- 7.1. Diagram ERD
- 7.2. Specyfikacja kwerend