Bayesova teorija odlučivanja

- Teorijski osnovi klasifikacije
 - LR test
 - Verovatnoća greške
 - Bayesov rizik
 - Bayesov, MAP i ML kriterijum
 - Odlučivanje kada postoji više klasa
 - Diskriminantne funkcije

Kod problema klasifikacije, Bayesova teorema se može izraziti kao:

$$P(\omega_{j}|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_{j})P(\omega_{j})}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\omega_{j})P(\omega_{j})}{\sum_{j=1}^{K} p(\mathbf{x}|\omega_{j})P(\omega_{j})}$$

pri čemu je ω_i j-ta klasa, a ${\bf x}$ vektor obeležja

- \square $P(\omega_i)$ Apriorna verovatnoća klase ω_i
- \neg $P(\omega_i | \mathbf{x})$ Aposteriorna verovatnoća klase ω_i ako je data opservacija \mathbf{x}
- $\neg p(\mathbf{x} \mid \omega_i)$ Izglednost/verodostojnost opservacije \mathbf{x} u klasi ω_i
- p(x) Normalizaciona konstanta

Kod problema klasifikacije, Bayesova teorema se može izraziti kao:

$$P(\omega_{j}|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_{j})P(\omega_{j})}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\omega_{j})P(\omega_{j})}{\sum_{j=1}^{K} p(\mathbf{x}|\omega_{j})P(\omega_{j})}$$

pri čemu je ω_{i} j-ta klasa, a ${\bf x}$ vektor obeležja

 \Box $P(\omega_j)$ Apriorna verovatnoća klase ω_j

 \Box $P(\omega_i | \mathbf{x})$ Aposteriorna verovatnoća klase ω_i ako je data opservacija \mathbf{x}

 $\neg p(\mathbf{x} \mid \omega_i)$ Izglednost/verodostojnost opservacije \mathbf{x} u klasi ω_i

 $\neg p(\mathbf{x})$ Normalizaciona konstanta

Apriorna verovatnoća klase ω_i

- \Box Verovatnoća da uzorak pripada klasi ω_j bez obzira na to kako izgleda (bez obzira na **x**)
- Odslikava naše prethodno znanje o problemu
 - S kojom verovatnoćom se na pokretnoj traci može naći losos ili brancin zavisi od stanja lovišta, sezone...

Kod problema klasifikacije, Bayesova teorema se može izraziti kao:

$$P(\omega_{j}|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_{j})P(\omega_{j})}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\omega_{j})P(\omega_{j})}{\sum_{j=1}^{K} p(\mathbf{x}|\omega_{j})P(\omega_{j})}$$

pri čemu je ω_{i} j-ta klasa, a ${\bf x}$ vektor obeležja

 $exttt{$\square$} \quad \mathsf{P}(\omega_j) \qquad \quad \mathsf{Apriorna} \; \mathsf{verovatno\acute{c}a} \; \mathsf{klase} \; \omega_j$

 \neg $P(\omega_i | \mathbf{x})$ Aposteriorna verovatnoća klase ω_i ako je data opservacija \mathbf{x}

 $\neg p(\mathbf{x} \mid \omega_i)$ Izglednost/verodostojnost opservacije \mathbf{x} u klasi ω_i

 $\neg p(\mathbf{x})$ Normalizaciona konstanta

Aposteriorna verovatnoća klase ω_i

- Verovatnoća da uzorak pripada klasi ω_j imajući u vidu to kako izgleda (imajući u vidu **x**)
- Nakon što se registruje (izmeri) \mathbf{x} , verovatnoća pripadnosti klasi ω_i više nije $P(\omega_i)$ nego $P(\omega_i|\mathbf{x})$

Kod problema klasifikacije, Bayesova teorema se može izraziti kao:

$$P(\omega_{j}|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_{j})P(\omega_{j})}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\omega_{j})P(\omega_{j})}{\sum_{j=1}^{K} p(\mathbf{x}|\omega_{j})P(\omega_{j})}$$

pri čemu je $\omega_i j$ -ta klasa, a ${\bf x}$ vektor obeležja

- \square $P(\omega_j)$ Apriorna verovatnoća klase ω_j
- \neg $P(\omega_i | \mathbf{x})$ Aposteriorna verovatnoća klase ω_i ako je data opservacija \mathbf{x}
- $\neg p(\mathbf{x} \mid \omega_i)$ Izglednost/verodostojnost opservacije \mathbf{x} u klasi ω_i
- $\neg p(\mathbf{x})$ Normalizaciona konstanta
- Tipično pravilo odlučivanja kako dodeliti vektor obeležja klasi jeste da se izabere klasa ω_i sa najvećom verovatnoćom $P(\omega_i | \mathbf{x})$:

$$\hat{\boldsymbol{\omega}} = \underset{\omega_j, j=1,2,...K}{\operatorname{arg\,max}} P(\boldsymbol{\omega}_j | \mathbf{x}) = \underset{\omega_j, j=1,2,...K}{\operatorname{arg\,max}} \frac{p(\mathbf{x} | \boldsymbol{\omega}_j) P(\boldsymbol{\omega}_j)}{p(\mathbf{x})} = \underset{\omega_j, j=1,2,...K}{\operatorname{arg\,max}} p(\mathbf{x} | \boldsymbol{\omega}_j) P(\boldsymbol{\omega}_j)$$

 Na ovaj način, intuitivno biramo klasu koja ima najveće izglede da je iz nje potekao dati vektor obeležja x

Binarna klasifikacija

Slučaj kada imamo samo dve klase (binarna klasifikacija)

$$P(\omega_1|\mathbf{x}) \gtrsim_{\omega_2}^{\omega_1} P(\omega_2|\mathbf{x})$$

Na osnovu Bayesovog pravila to se svodi na:

$$\frac{p(\mathbf{x} \mid \omega_1) P(\omega_1)}{p(\mathbf{x})} \underset{\omega_2}{\overset{\omega_1}{\gtrless}} \frac{p(\mathbf{x} \mid \omega_2) P(\omega_2)}{p(\mathbf{x})}$$

Pošto p(x) ne utiče na pravilo odlučivanja, može se eliminisati, i izraz se može napisati u obliku:

$$\Lambda(\mathbf{x}) = \frac{\rho(\mathbf{x} \mid \omega_1)}{\rho(\mathbf{x} \mid \omega_2)} \bigotimes_{\omega_2}^{\omega_1} \frac{P(\omega_2)}{P(\omega_1)}$$

- □ Količnik $\Lambda(\mathbf{x})$ se naziva količnik izglednosti (eng. *likelihood ratio*), a odgovarajuće pravilo odlučivanja se naziva *LR test* (test količnika izglednosti)
- Pretpostavka je da su raspodele verovatnoće obeležja u pojedinim klasama i apriorne verovatnoće klasa poznate
 - Ako već nisu unapred date, treba ih estimirati na osnovu podataka za obuku

LR test (primer 1)

Formulisati pravilo odlučivanja prema količniku izglednosti za dve klase čije su apriorne verovatnoće jednake, a gustine raspodele verovatnoća su date izrazima:

$$p(x \mid \omega_1) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-4)^2}{2}}, \ p(x \mid \omega_2) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-10)^2}{2}}.$$

Rešenje:

$$\Lambda(x) = \frac{\frac{1}{\sqrt{2\pi}} e^{-\frac{(x-4)^2}{2}}}{\frac{1}{\sqrt{2\pi}} e^{-\frac{(x-10)^2}{2}}} = e^{-\frac{(x-4)^2}{2} + \frac{(x-10)^2}{2}} \underset{\omega_2}{\overset{\omega_1}{\gtrless}} 1$$

$$(x-10)^2-(x-4)^2 \underset{\omega_2}{\gtrless} 0$$

$$x \lesssim_{\omega_2}^{\omega_1} 7$$

LR test (primer 2)

Formulisati pravilo odlučivanja prema količniku izglednosti za dve klase za čije apriorne verovatnoće važi $P(\omega_1) = 2P(\omega_2)$, a gustine raspodele verovatnoća su date izrazima:

$$p(x | \omega_1) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-4)^2}{2}}, \ p(x | \omega_2) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-10)^2}{2}}.$$

Rešenje:

$$\Lambda(x) = \frac{\frac{1}{\sqrt{2\pi}} e^{-\frac{(x-4)^2}{2}}}{\frac{1}{\sqrt{2\pi}} e^{-\frac{(x-10)^2}{2}}} = e^{-\frac{(x-4)^2}{2} + \frac{(x-10)^2}{2}} \stackrel{\omega_1}{\underset{\omega_2}{\gtrless}} \frac{1}{2}$$

$$(x-10)^2 - (x-4)^2 \stackrel{\omega_1}{\underset{\omega_2}{\gtrless}} 2 \ln \frac{1}{2}$$

$$x \stackrel{\omega_1}{\underset{\omega_2}{\lessgtr}} 7 + \frac{\ln 2}{6} \approx 7,12$$

Granica odlučivanja pomera se ka centru raspodele sa manjom apriornom verovatnoćom

Verovatnoća greške

- Bez obzira na optimalno pravilo odlučivanja, greške su neizbežne
 - Verovatnoća greške opisuje kvalitet performansi pravila odlučivanja
- Na osnovu teoreme totalne verovatnoće, verovatnoća greške jednaka je:

$$P(greška) = \sum_{i=1}^{K} P(greška | \omega_i) P(\omega_i),$$

pri čemu je verovatnoća greške unutar određene klase jednaka:

P(greška |
$$\omega_i$$
) = P(odabrano ω_j , $j \neq i | \omega_i$) = $\int_{R_i, j \neq i} p(\mathbf{x} | \omega_i) d\mathbf{x}$

□ U najjednostavnijem slučaju, kada postoje dve klase, verovatnoća greške je:

$$P(\text{greška}) = P(\omega_1)P(\text{greška}|\omega_1) + P(\omega_2)P(\text{greška}|\omega_2)$$

$$= P(\omega_1)\int_{R_2} p(\mathbf{x}|\omega_1)d\mathbf{x} + P(\omega_2)\int_{R_1} p(\mathbf{x}|\omega_2)d\mathbf{x}$$

Bayesov rizik

- U opštem slučaju cena pogrešne klasifikacije uzorka iz klase ω_1 u klasu ω_2 nije ista kao kada se uzorak iz klase ω_2 pogrešno klasifikuje u klasu ω_1
 - Slučaj kada se bolestan čovek proglasi za zdravog opasniji je nego kada se zdrav čovek proglasi za bolesnog
- Ovaj koncept se može formalizovati pomoću funkcije cene C_{ij}
 - \Box C_{ij} predstavlja cenu izbora klase ω_i ako je stvarna klasa ω_i (za i=j obično $C_{ij}=0$)
- Bayesov rizik definiše se kao matematičko očekivanje cene:

$$\Re = E[C] = \sum_{i=1}^{K} \sum_{j=1}^{K} C_{ij} \cdot P(\text{odabrano } \omega_i \text{ a stvarna klasa je } \omega_j)$$
$$= \sum_{i=1}^{K} \sum_{j=1}^{K} C_{ij} \cdot P(\mathbf{x} \in R_i | \omega_j) P(\omega_j)$$

pri čemu:

$$P(\mathbf{x} \in R_i \mid \omega_j) = \int_{R_i} p(\mathbf{x} \mid \omega_j) d\mathbf{x}$$

Kako izgleda pravilo odlučivanja koje minimizuje Bayesov rizik?

Bayesov rizik (slučaj dve klase)

$$\begin{split} \mathfrak{R} &= E[C] = \sum_{i=1}^{2} \sum_{j=1}^{2} C_{ij} \cdot \mathsf{P}(\mathsf{odabrano} \ \omega_{i} \ \mathsf{a} \ \mathsf{stvarna} \ \mathsf{klasa} \ \mathsf{je} \ \omega_{j}) \\ &= \sum_{i=1}^{2} \sum_{j=1}^{2} C_{ij} \cdot \mathsf{P}(\mathbf{x} \in R_{i} | \omega_{j}) \, \mathsf{P}(\omega_{j}) \\ &= \sum_{i=1}^{2} \sum_{j=1}^{2} C_{ij} \cdot \mathsf{P}(\omega_{j}) \int_{R_{i}} \rho(\mathbf{x} | \omega_{j}) \mathsf{d} \mathbf{x} \\ &= C_{11} \cdot \mathsf{P}(\omega_{1}) \int_{R_{1}} \rho(\mathbf{x} | \omega_{1}) \mathsf{d} \mathbf{x} + C_{12} \cdot \mathsf{P}(\omega_{2}) \int_{R_{1}} \rho(\mathbf{x} | \omega_{2}) \mathsf{d} \mathbf{x} \\ &+ C_{21} \cdot \mathsf{P}(\omega_{1}) \int_{R_{2}} \rho(\mathbf{x} | \omega_{1}) \mathsf{d} \mathbf{x} + C_{22} \cdot \mathsf{P}(\omega_{2}) \int_{R_{2}} \rho(\mathbf{x} | \omega_{2}) \mathsf{d} \mathbf{x} \\ &= C_{11} \cdot \mathsf{P}(\omega_{1}) \int_{R_{1}} \rho(\mathbf{x} | \omega_{1}) \mathsf{d} \mathbf{x} + C_{12} \cdot \mathsf{P}(\omega_{2}) \int_{R_{1}} \rho(\mathbf{x} | \omega_{2}) \mathsf{d} \mathbf{x} \\ &+ C_{21} \cdot \mathsf{P}(\omega_{1}) \left(1 - \int_{R_{1}} \rho(\mathbf{x} | \omega_{1}) \mathsf{d} \mathbf{x}\right) + C_{22} \cdot \mathsf{P}(\omega_{2}) \left(1 - \int_{R_{1}} \rho(\mathbf{x} | \omega_{2}) \mathsf{d} \mathbf{x}\right) \\ &= C_{21} \cdot \mathsf{P}(\omega_{1}) + C_{22} \cdot \mathsf{P}(\omega_{2}) \\ &+ (C_{12} - C_{22}) \, \mathsf{P}(\omega_{2}) \int_{R_{1}} \rho(\mathbf{x} | \omega_{2}) \mathsf{d} \mathbf{x} - (C_{21} - C_{11}) \, \mathsf{P}(\omega_{1}) \int_{R_{1}} \rho(\mathbf{x} | \omega_{1}) \mathsf{d} \mathbf{x} \end{split}$$

Potrebno je odabrati region odlučivanja kojim se \Re minimizuje, pri čemu je jasno da sabirci $C_{21} \cdot P(\omega_1)$ i $C_{22} \cdot P(\omega_2)$ ne utiču na to

Bayesov rizik (slučaj dve klase)

$$\begin{split} \hat{R}_1 &= \operatorname{argmin} \left\{ \Re \right\} \\ &= \operatorname{argmin} \left\{ \iint_{R_1} \left[\left(C_{12} - C_{22} \right) \mathsf{P}(\boldsymbol{\omega}_2) \, \rho(\mathbf{x} \, | \, \boldsymbol{\omega}_2) - \left(C_{21} - C_{11} \right) \mathsf{P}(\boldsymbol{\omega}_1) \, \rho(\mathbf{x} \, | \, \boldsymbol{\omega}_1) \right] \mathrm{d}\mathbf{x} \right\} \\ &= \operatorname{argmin} \left\{ \iint_{R_1} \left(\mathsf{g}(\mathbf{x}) \, \mathsf{d}\mathbf{x} \right) \, \mathrm{d}\mathbf{x} \right\} \end{split}$$

Pošto je potrebno minimizovati integral, treba odabrati samo oblasti u kojima $g(\mathbf{x}) < 0$:

$$(C_{21} - C_{11}) P(\omega_1) \rho(\mathbf{x} | \omega_1) \underset{\omega_2}{\gtrless} (C_{12} - C_{22}) P(\omega_2) \rho(\mathbf{x} | \omega_2)$$

$$\frac{\rho(\mathbf{x} \mid \omega_1)}{\rho(\mathbf{x} \mid \omega_2)} \underset{\omega_2}{\overset{\omega_1}{\gtrless}} \frac{(C_{12} - C_{22})}{(C_{21} - C_{11})} \cdot \frac{P(\omega_2)}{P(\omega_1)}$$

Dakle, minimizacija Bayesovog rizika takođe se svodi na primenu LR testa

Bayesov rizik (primer)

Neka je potrebno izvršiti klasifikaciju u dve klase za koje su raspodele obeležja date sledećim izrazima:

$$p(\mathbf{x} \mid \omega_1) = \frac{1}{\sqrt{2\pi}\sqrt{3}}e^{-\frac{x^2}{6}}, \quad p(\mathbf{x} \mid \omega_2) = \frac{1}{\sqrt{2\pi}}e^{-\frac{(x-2)^2}{2}}.$$

Skicirati raspodele obeležja i, uz pretpostavku da je $P(\omega_1) = P(\omega_2) = 0.5$, $C_{11} = C_{22} = 0$, $C_{12} = 1$ i $C_{21} = \sqrt{3}$, odrediti pravilo odlučivanja koje minimizuje Bayesov rizik.

Rešenje:

$$\Lambda(x) = \frac{\frac{1}{\sqrt{2\pi}\sqrt{3}}e^{-\frac{x^2}{6}}}{\frac{1}{\sqrt{2\pi}}e^{-\frac{(x-2)^2}{2}}} = \frac{1}{\sqrt{3}}e^{-\frac{x^2}{6} + \frac{(x-2)^2}{2}} \underset{\omega_2}{\overset{\omega_1}{\sim}} \frac{1}{\sqrt{3}}$$
$$-\frac{x^2}{6} + \frac{(x-2)^2}{2} \underset{\omega_2}{\overset{\omega_1}{\sim}} 0$$
$$\hat{R}_1 = (-\infty, 3 - \sqrt{3}] \cup [3 + \sqrt{3}, \infty)$$
$$= (-\infty, 1.27] \cup [4.73, \infty)$$

Bayesov rizik (primer)

Neka je potrebno izvršiti klasifikaciju u dve klase za koje su raspodele obeležja date sledećim izrazima:

$$p(\mathbf{x} \mid \omega_1) = \frac{1}{\sqrt{2\pi}\sqrt{3}}e^{-\frac{x^2}{6}}, \quad p(\mathbf{x} \mid \omega_2) = \frac{1}{\sqrt{2\pi}}e^{-\frac{(x-2)^2}{2}}.$$

Skicirati raspodele obeležja i, uz pretpostavku da je $P(\omega_1) = P(\omega_2) = 0.5$, $C_{11} = C_{22} = 0$, $C_{12} = 1$ i $C_{21} = \sqrt{3}$, odrediti pravilo odlučivanja koje minimizuje Bayesov rizik.

Rešenje:

$$\Lambda(x) = \frac{\frac{1}{\sqrt{2\pi}\sqrt{3}}e^{-\frac{x^2}{6}}}{\frac{1}{\sqrt{2\pi}}e^{-\frac{(x-2)^2}{2}}} = \frac{1}{\sqrt{3}}e^{-\frac{x^2}{6} + \frac{(x-2)^2}{2}} \underset{\omega_2}{\overset{\omega_1}{\sim}} \frac{1}{\sqrt{3}}$$
$$-\frac{x^2}{6} + \frac{(x-2)^2}{2} \underset{\omega_2}{\overset{\omega_1}{\sim}} 0$$
$$\hat{R}_1 = (-\infty, 3 - \sqrt{3}] \cup [3 + \sqrt{3}, \infty)$$
$$= (-\infty, 1.27] \cup [4.73, \infty)$$

Rezime

Pravilo odlučivanja zasnovano na LR testu koje minimizuje Bayesov rizik često se naziva Bayesov kriterijum:

$$\Lambda(\mathbf{x}) = \frac{p(\mathbf{x} \mid \omega_1)}{p(\mathbf{x} \mid \omega_2)} \underset{\omega_2}{\overset{\omega_1}{\gtrless}} \frac{(C_{12} - C_{22})}{(C_{21} - C_{11})} \cdot \frac{P(\omega_2)}{P(\omega_1)}$$
Bayesov kriterijum

 Ako je cilj minimizovati verovatnoću greške, to je specijalan slučaj Bayesovog kriterijuma kada su cene simetrične i jednake 0 ili 1. Ova varijanta pravila odlučivanja zasnovanog na LR testu naziva se kriterijum maksimalne aposteriorne verovatnoće (MAP kriterijum)

$$C_{ij} = \begin{cases} 0, & i = j \\ 1, & i \neq j \end{cases} \qquad \Lambda(\mathbf{x}) = \frac{p(\mathbf{x} \mid \omega_1)}{p(\mathbf{x} \mid \omega_2)} \overset{\omega_1}{\underset{\omega_2}{\gtrless}} \frac{P(\omega_2)}{P(\omega_1)} \iff \frac{P(\omega_1 \mid \mathbf{x})}{P(\omega_2 \mid \mathbf{x})} \overset{\omega_1}{\underset{\omega_2}{\gtrless}} 1 \qquad \text{MAP kriterijum}$$

Ako su pri tome i apriorne verovatnoće jednake, $P(\omega_1) = P(\omega_2) = 1/2$, pravilo odlučivanja zasnovano na LR testu se svodi na *kriterijum maksimalne izglednosti* (ML kriterijum), koji maksimizuje izglednost $P(\mathbf{x} | \omega_i)$

$$C_{ij} = \begin{cases} 0, & i = j \\ 1, & i \neq j \end{cases} \land P(\omega_1) = P(\omega_2) = 1/2 \qquad \Lambda(\mathbf{x}) = \frac{p(\mathbf{x} \mid \omega_1)}{p(\mathbf{x} \mid \omega_2)} \overset{\omega_1}{\underset{\omega_2}{\gtrless}} 1 \qquad \text{ML kriterijum}$$

Još neke varijante LR testa

- Neyman-Pearsonov kriterijum
 - Maksimalna verovatnoća greške za jednu klasu se fiksira na određenu vrednost,
 nakon čega se minimizuje verovatnoća greške za drugu klasu
 - Kod binarne klasifikacije obično se fiksira verovatnoća lažnog pozitivnog rezultata (npr. pri detekciji radarom), ali ima i drugih okolnosti kada je ovaj pristup pogodan
 - Npr. u problemu klasifikacije ribe, moguće je da postoji propis kojim se zabranjuje da više od 1% lososa bude klasifikovano kao brancin
 - NP kriterijum je veoma popularan pošto ne zahteva predznanje o apriornim verovatnoćama pojedinih klasa niti cenama
- Minimax kriterijum
 - Zasniva se na minimizaciji gornjeg ograničenja Bayesovog rizika (Bayesovog rizika u najgorem slučaju) i često se koristi u teoriji igara
 - Minimax kriterijum ne zahteva poznavanje apriornih verovatnoća pojedinih klasa, ali se cene moraju definisati
 - Pogodan u slučajevima kada apriorne verovatnoće mogu varirati

Minimizacija verovatnoće greške za više od dve klase

Verovatnoća tačne klasifikacije iznosi:

$$P(\text{tačno}) = 1 - P(\text{greška}) = \sum_{i=1}^{K} P(\omega_i) \int_{R_i} p(\mathbf{x} \mid \omega_i) d\mathbf{x}$$
$$= \sum_{i=1}^{K} \int_{R_i} P(\omega_i) p(\mathbf{x} \mid \omega_i) d\mathbf{x} = \sum_{i=1}^{K} \int_{R_i} p(\mathbf{x}) P(\omega_i \mid \mathbf{x}) d\mathbf{x}$$

- Maksimizacija P(tačno) podrazumeva maksimizaciju svakog integrala I_i , tako da za svako \mathbf{x} treba odabrati klasu za koju je $P(\omega_i|\mathbf{x})$ maksimalno (odnosno, R_i treba definisati kao region u kom je $P(\omega_i|\mathbf{x})$ maksimalno)
- Dakle, i u slučaju više od dve klase, MAP kriterijum minimizuje verovatnoću greške

Minimizacija Bayesovog rizika za više od dve klase

 Pravilo odlučivanja koje minimizuje Bayesov rizik za dve klase može se jednostavno uopštiti i na slučaj sa tri ili više klasa

$$\Re = E[C] = \sum_{i=1}^{K} \sum_{j=1}^{K} C_{ij} \cdot P(\text{odabrano } \omega_i \text{ a stvarna klasa je } \omega_j)$$

$$= \sum_{i=1}^{K} \sum_{j=1}^{K} C_{ij} \cdot P(\mathbf{x} \in R_i | \omega_j) P(\omega_j)$$

$$= \sum_{i=1}^{K} \sum_{j=1}^{K} C_{ij} \cdot P(\omega_j) \int_{R_i} p(\mathbf{x} | \omega_j) d\mathbf{x}$$

$$= \sum_{i=1}^{K} \int_{R_i} \sum_{j=1}^{K} C_{ij} \cdot P(\omega_j) p(\mathbf{x} | \omega_j) d\mathbf{x}$$

 \square Minimizacija \Re postiže se minimizacijom svakog integrala pojedinačno, što znači da R_i treba birati tako da bude:

$$\mathbf{x} \in R_i \iff \sum_{j=1}^K C_{ij} \cdot P(\omega_j) \, p(\mathbf{x} \mid \omega_j) < \sum_{j=1}^K C_{kj} \cdot P(\omega_j) \, p(\mathbf{x} \mid \omega_j), \, \forall k \neq i$$

što se ponovo svodi na LR test, odnosno, uzorak \mathbf{x} će se smestiti u klasu ω_i ako važi:

$$\frac{p(\mathbf{x} \mid \omega_i)}{p(\mathbf{x} \mid \omega_i)} > \frac{(C_{ij} - C_{jj})}{(C_{ij} - C_{jj})} \cdot \frac{P(\omega_j)}{P(\omega_i)}, \ \forall j \neq i$$

Minimizacija Bayesovog rizika za više od dve klase

- Moguća je i alternativna formulacija
 - \square Neka je α_i odluka da se uzorak **x** klasifikuje u klasu ω_i
 - Rizik (prosečna cena) te odluke jednak je:

$$\mathfrak{R}(\boldsymbol{\alpha}_{i} | \mathbf{x}) = \sum_{j=1}^{K} C_{ij} \cdot \mathsf{P}(\boldsymbol{\omega}_{j} | \mathbf{x})$$

□ Za svako **x** treba odabrati ono $ω_i$ koje daje najmanje $\Re(\alpha_i|\mathbf{x})$, tj. minimalni rizik klasifikacije u $ω_i$

Diskriminantne funkcije

- Sva dosad prikazana pravila odlučivanja imaju istu strukturu
 - U svakoj tački **x** prostora obeležja bira se klasa ω_i koja maksimizuje (ili minimizuje) neku meru $g_i(\mathbf{x})$, koju nazivamo diskriminantna funkcija
 - Pravilo odlučivanja u tom slučaju glasi:

"dodeli **x** klasi ω_i ako je $g_i(\mathbf{x}) \ge g_i(\mathbf{x})$ za svako $j \ne i$ "

odnosno, svodi se na poređenje diskriminanata za različite klase

- U nekim slučajevima diskriminante se mogu svesti na jednostavne izraze
- Ista monotona transformacija svih diskriminantnih funkcija ne utiče na rezultat, npr:
 - dodavanje konstante
 - logaritmovanje

Diskriminantne funkcije

Tri osnovna pravila odlučivanja mogu se predstaviti preko diskriminantnih funkcija na sledeći način:

Kriterijum	Diskriminantna funkcija
Bayesov	$g_i(\mathbf{x}) = -\Re(\alpha_i \mid \mathbf{x})$
MAP	$g_i(\mathbf{x}) = P(\omega_i \mathbf{x})$
ML	$g_i(\mathbf{x}) = p(\mathbf{x} \mid \omega_i)$

- Bayesova teorija odlučivanja daje dobru teorijsku osnovu za klasifikaciju
 - U praksi apriorne verovatnoće pojedinih klasa, kao ni raspodele obeležja unutar tih klasa, nisu poznate, već ih je potrebno proceniti
 - Mnogi klasifikatori radije direktno određuju granice odlučivanja, koje su u opštem slučaju suboptimalne u odnosu na Bayesove klasifikatore
 - Linearne diskriminantne funkcije, perceptroni, vektori nosači, neuralne mreže...