Fundamentals of Machine Learning

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Learn the most classical methods of machine learning
 - Rule based approach
 - Classical statistics approach
 - Information theory appraoch
- Rule based machine learning
 - How to find the specialized and the generalized rules
 - Why the rules are easily broken
- Decision Tree
 - How to create a decision tree given a training dataset
 - Why the tree becomes a weak learner with a new dataset
- Linear Regression
 - How to infer a parameter set from a training dataset
 - Why the feature engineering has its limit

Entropy

- Better attribute to check?
 - Reducing the most uncertainty

• Then, how to measure are X=0 the uncertainty of a feature variable

- Entropy of a random variable
 - Features are random variables
 - Higher entropy means more uncertainty

•
$$H(X) = -\sum_{X} P(X = x) \log_b P(X = x)$$

- Conditional Entropy
 - We are interested in the entropy of the class given a feature variable
 - Need to introduce a given condition in the entropy

•
$$H(Y|X) = \sum_{X} P(X = x) H(Y|X = x)$$

= $\sum_{X} P(X = x) \{ -\sum_{Y} P(Y = y|X = x) log_b P(Y = y|X = x) \}$

Information Gain

- Let's calculate the entropy values
 - $H(Y) = -\sum_{Y \in \{+,-\}} P(Y = y) \log_2 P(Y = y)$
 - $H(Y|A1) = \sum_{X \in \{a,b,?\}} \sum_{Y \in \{+,-\}} P(A1 = x, Y = y) log_2 \frac{P(A1 = x)}{P(A1 = x, Y = y)}$
 - $H(Y|A9) = \sum_{X \in \{t,f\}} \sum_{Y \in \{+,-\}} P(A9 = x, Y = y) log_2 \frac{P(A9 = x)}{P(A9 = x, Y = y)}$
- What's the difference before and after?
 - $IG(Y, A_i) = H(Y) H(Y|A_i)$
- Who is the winner?

KAIST

Top-Down Induction Algorithm

- Many, many variations in learning a decision tree
 - ID3, C4.5 CART....
- One example: ID3 algorithm
- ID3 algorithm
 - Create an initial open node
 - Put instances in the initial node
 - Repeat until no open node
 - Select an open node to split
 - Select a best variable to split
 - For values of the selected variable
 - Sort instances with the value of the selected variable
 - Put the sorted items under the branch of the value of the variable
 - If the sorted items are all in one class
 - Close the leaf node of the branch

Only using A1 and A9, we have 21+56+0+5+17+1 (100) instances classified inaccurately. (85.5% Accr.)

If you want more....

Problem of Decision Tree

Typical result of decision tree

- We did better in the given dataset!
 - Only in the given experience,
 a.k.a. Training dataset
- What if we deploy the created decision tree in the field?
 - World has so much noise and inconsistencies.
 - The training dataset will not be a perfect sample of the real world
 - Noise
 - Inconsistencies

Knowing when to stop is a pretty difficult task. How to do it?

- Pruning by divided dataset?
- Path length penalty?

Why we are not interested in these?

- Rule based machine learning algorithms
 - Easy to implement
 - Easily interpretable
 - Particularly, decision tree
- Their weaknesses
 - Fragile
 - Assume the perfect world in the dataset
 - Any new observations, contradicting to the training, will cause problems
 - Convergence
 - Convergence only guaranteed in the perfect dataset
 - Once there is a noise, there is a possibility that the true hypothesis can be ruled out.
 - Also, very hard to tell when to stop in some cases
- Still used in many places
 - Easy → Wide audience and users → Many applications → Better result???
- Need a white knight as a savior
 - Should be able to handle noisy datasets
 - Robust to errors

