Der Satz von Rolle

Jendrik Stelzner

26. Dezember 2014

Wir wollen hier den Satz von Rolle angeben und beweisen. Als Vorbereitung hierfür wollen wir das Verhalten von differenzierbaren Funktionen an Extremstellen untersuchen.

1 Extremstellen

Definition 1. Es sei $X \subseteq \mathbb{R}^n$, $f: X \to \mathbb{R}$ und $x \in X$. f heißt lokal maximal an x, falls es eine Umgebung V von x gibt, so dass

$$f(x) \ge f(y)$$
 für alle $y \in V \cap X$.

f heißt lokal minimal an x, falls es eine Umgebung V von x gibt, so dass

$$f(x) < f(y)$$
 für alle $y \in V \cap X$.

Ist f lokal maximal oder lokal minimal an x, so heißt f lokal extremal an x; x ist dann eine lokale Extremstelle von f.

Im Eindimensionalen lässt sich für differenzierbare Funktionen mithilfe der Ableitung eine notwendige Bedingungen für das Vorhandensein einer lokalen Extremstelle angeben.

Lemma 2. Es sei $V \subseteq \mathbb{R}$ eine Umgebung von $x \in \mathbb{R}$ und $f \colon V \to \mathbb{R}$ lokal extremal an x. Dann ist f'(x) = 0.

Beweis. Wir zeigen, dass f nicht lokal extremal an x ist, wenn $f'(x) \neq 0$. Wir beschränken uns dabei auf den Fall f'(x) > 0, der Fall f'(x) < 0 verläuft analog.

Da
$$f'(x) > 0$$
 ist

$$\lim_{h \to \infty} \frac{f(x+h) - f(x)}{h} > 0.$$

Es gibt daher ein $\varepsilon > 0$, so dass

$$\frac{f(x+h)-f(x)}{h}>0\quad \text{für alle }h\neq 0 \text{ mit }|h|<\varepsilon.$$

Für alle $0 < h < \varepsilon$ ist daher

$$\frac{f(x+h)-f(x)}{h}>0 \Leftrightarrow f(x+h)-f(x)>0 \Leftrightarrow f(x+h)>f(x),$$

und für alle $-\varepsilon < h < 0$ ist

$$\frac{f(x+h) - f(x)}{h} > 0 \Leftrightarrow f(x+h) - f(x) < 0 \Leftrightarrow f(x+h) < f(x).$$

Es ist daher

$$f(x) < f(y)$$
 für alle $y \in (x, x + \varepsilon)$

und

$$f(x) > f(y)$$
 für alle $y \in (x - \varepsilon, x)$.

Es kann also f an x nicht extremal sein.

Wir können nun den Satz von Rolle beweisen. (Wir benötigen auch noch, dass abgeschlossene Intervalle [a,b] kompakt sind — siehe hierzu die entsprechende Übersicht zu kompakten Teilmengen von \mathbb{R}^n .)

Theorem 3 (Satz von Rolle). Es seien $a, b \in \mathbb{R}$ mit a < b. Es sei $f : [a, b] \to \mathbb{R}$, so dass

- 1. f ist stetig auf [a, b],
- 2. f ist differenzierbar auf (a, b), und
- 3. f(a) = f(b).

Dann gibt es ein $\xi \in (a,b)$ mit $f'(\xi) = 0$.

Beweis. Wir können o.B.d.A. davon ausgehen, dass f(a)=f(b)=0. Ist f konstant, also f=0, so ist die Aussage klar. Ansonsten gibt es ein $c\in [a,b]$ mit $f(c)\neq 0$; daher ist

$$\sup_{x \in [a,b]} f(x) > 0 \quad \text{oder} \quad \inf_{x \in [a,b]} f(x) < 0.$$

Da [a,b] kompakt und f stetig ist, werden beide Werte angenommen; es gibt also $\xi \in [a,b]$, so dass

$$f(\xi) = \max_{x \in [a,b]} f(x) > 0 \quad \text{oder} \quad f(\xi) = \min_{x \in [a,b]} f(x) < 0.$$

Wir erhalten in beiden Fällen, dass ξ eine lokale Extremstelle von f. Da $f(\xi) \neq 0$ ist außerdem $\xi \notin \{a,b\}$, also $\xi \in (a,b)$ und f somit differenzierbar an ξ . Da ξ eine lokale Extremstelle von f ist, haben wir $f'(\xi) = 0$.