Introduction to Analysis Lecture 9

Haoming Wang

28 May 2019

Abstract

This is the Lecture note for the Introduction to Analysis class in Spring 2019.

1 Lebesgue criterion

Definition 1 (Countable set). A set *S* is countable if \exists a bijection $S_0 \xrightarrow{f} S$ with $S_0 \subseteq \mathbb{N}$.

Example 1. finite set, \mathbb{N} , \mathbb{Z} , \mathbb{Q} are countable sets. \mathbb{R} is not countable (refer to the note *Introduction to Topology / Cardinality /* \mathbb{N} *and* \mathbb{R}).

Definition 2 (Lebesgue d - dimensional measure 0). $S \subseteq \mathbb{R}^d$ is of Lebesgue d - dimensional measure 0, if $\forall \epsilon > 0, \exists$ rectangles $R_n(n \in \mathbb{N})$ s.t. $S \subseteq \bigcup_{n=1}^{\infty} R_n$ and $\sum_{n=1}^{\infty} vol_d(R_n) < \epsilon$.

Example 2. If $S \subseteq \mathbb{R}^d$ is countable, then S is of measure 0.

Proof. Let $S = \{s_1, s_2, \dots\}$. For any $\epsilon > 0$, choose a rectangle R_n s.t. $s_n \in R_n$ and $vol_d(R_n) < \epsilon/2^n$, then $S \subseteq \bigcup_{n=1}^{\infty} R_n$ and $\sum_{n=1}^{\infty} vol_d(R_n) < \epsilon$.

Exercise 1. If $[0,1] \subseteq \bigcup_{j=1}^{\infty} [a_j,b_j]$, show that $\sum_{j=1}^{\infty} (b_j-a_j) \ge 1$, that is [0,1] is not of measure 0.

Proof. Claim 1, if $\exists m \in \mathbb{N}$, s.t. $[0,1] \subseteq \bigcup_{j=1}^m [c_j,d_j] \Rightarrow \sum_{j=1}^m (d_j-c_j) \geq 1$. Trivial. Claim 2, (general cases) **enlarge** $[a_j,b_j]$ to (a_j',b_j') s.t.

$$b_j'-a_j'=b_j-a_j+\frac{\eta}{2^j},$$

 $\eta > 0, j \in \mathbb{N}$. Since [0,1] is compact, then $\exists m \in \mathbb{N}$ s.t. $[0,1] \subseteq \bigcup_{j=1}^m (a'_j, b'_j)$, and by Claim 1, we have

$$1 \le \sum_{j=1}^m (b_j' - a_j')$$

$$= \sum_{j=1}^{m} \left(b_j - a_j + \frac{\eta}{2^j} \right)$$
$$< \sum_{j=1}^{\infty} \left(b_j - a_j \right) + \eta$$

That is for any $\eta > 0$, $\sum_{j=1}^{\infty} (b_j - a_j) + \eta \ge 1 \Rightarrow \sum_{j=1}^{\infty} (b_j - a_j) \ge 1$.

Lemma 1. Given $S_i \subseteq \mathbb{R}^n (j \in \mathbb{N})$, if for $\forall j$, S_j is of measure $0 \Rightarrow \bigcup_{j \in \mathbb{N}} S_j$ is of measure 0.

Proof. For any j, there exists rectangles $R_{j,k}(k \in \mathbb{N})$, such that

$$\bigcup_{k\in\mathbb{N}}vol(R_{j,k})<\frac{\epsilon}{2^j}$$

and then encode them from northeast to southwest as $R_l(l \in \mathbb{N})$, then

$$\cup_{j\in\mathbb{N}}S_j\subseteq\cup_{j\in\mathbb{N}}(\cup_{k\in\mathbb{N}}R_{j,k})=\cup_{l\in\mathbb{N}}R_l$$

and

$$\sum_{l\in\mathbb{N}}vol(R_l)=\sum_{j\in\mathbb{N}}\sum_{k\in\mathbb{N}}vol(R_{j,k})<\sum_{j\in\mathbb{N}}\frac{\epsilon}{2^j}<\epsilon.$$

Thus $\bigcup_{i\in\mathbb{N}} S_i$ is of measure 0.

Lemma 2. Let $X \xrightarrow{f} \mathbb{R}$ be a bdd. function, X is a metric space, for any $a \in X$, define

$$o_f(a) := \lim_{\delta \to 0} \left(\sup_{B_{\delta}(a)} f - \inf_{B_{\delta}(a)} f \right),$$

then

- 1. f is conti. at $a \in X \Leftrightarrow o_f(a) = 0$.
- 2. for $c \in \mathbb{R}$, $\Lambda_c = \{x \in X | o_f(x) < c\} \subseteq_{open} X$. Correspondingly, $\Omega_c := \{x \in X | o_f(x) \ge c\} \subseteq_{close} X$.
- 3. if $a \in B_r(a) \subseteq S \subseteq X$, for some r, i.e. $a \in S^o$, then $\sup_S f \inf_S f \ge o_f(a)$.

Proof. See Proposition ??.

Theorem 1 (Lebesgue's criterion of Darboux integrability). Let $S \xrightarrow{f} \mathbb{R}$ be a bdd. function, with $R := \prod_{i=1}^{d} [a_i, b_i] \subseteq S \subseteq \mathbb{R}^d$. Then f is Darboux integrable on $R \Leftrightarrow D := \{x \in R | f \text{ is disconti. at } x\}$ is of d - dim measure 0.

Proof. ⇒: For any $\eta > 0$, there exists a partition Δ of R s.t.

$$\overline{S}(f,\Delta) - \underline{S}(f,\Delta) = \sum_{R^{\Delta}_{\cdot}} \left(\sup_{R^{\Delta}_{\cdot}} f - \inf_{R^{\Delta}_{\cdot}} f \right) \cdot vol(R^{\Delta}_{\cdot}) < \eta$$

Where $R^{\Delta}_{\cdot} = \prod_{i=1}^{d} [c_i, d_i]$ is a subinterval of R w.r.t. partition Δ . Define $\tilde{R}^{\Delta}_{\cdot} = \prod_{i=1}^{d} (c_i, d_i)$. It is direct to see that

$$D = \cup_{c>0} \Omega_c = \cup_{n \in \mathbb{N}} D_{1/n}$$

by Archimedean Property. Then

$$\begin{split} \eta &> \sum_{R^{\Delta}} \left(\sup_{R^{\Delta}} f - \inf_{R^{\Delta}} f \right) \cdot vol(R^{\Delta}) \\ &\geq \sum_{R^{\Delta} s.t.} \left(\sup_{R^{\Delta}} f - \inf_{R^{\Delta}} f \right) \cdot vol(R^{\Delta}) \\ &\geq \sum_{R^{\Delta} s.t.} c \cdot vol(R^{\Delta}) \\ &\geq \sum_{R^{\Delta} s.t.} c \cdot vol(R^{\Delta}) \\ &= c \cdot \sum_{R^{\Delta} s.t.} vol(R^{\Delta}) \\ &= c \cdot \sum_{R^{\Delta} s.t.} vol(R^{\Delta}) \end{split}$$

(*) is since $\tilde{R}^{\Delta} \cap \Omega_c \neq \emptyset \Rightarrow \exists x \in \Omega_c$ s.t. $x \in \tilde{R}^{\Delta} \Rightarrow x \in (R^{\Delta})^o \Rightarrow \exists r > 0$, s.t. $B_r(x) \subseteq R^{\Delta} \Rightarrow \sup_{R^{\Delta}} f - \inf_{R^{\Delta}} f \geq o_f(x) \geq c$, by the third conclusion of second Lemma. Since for any given $n \in \mathbb{N}$

$$\Omega_{1/n} = \{ x \in \Omega_{1/n} | x \in \tilde{R}^{\Delta}_{\cdot} \} \cup \{ x \in \Omega_{1/n} | x \in R^{\Delta}_{\cdot} \setminus \tilde{R}^{\Delta}_{\cdot} \}$$

:= $\Omega^{1}_{1/n} \cup \Omega^{2}_{1/n}$

And $\Omega^1_{1/n} \subseteq \cup_{\tilde{R}^{\Delta} \cap \Omega_{1/n} \neq \emptyset} R^{\Delta}$ and

$$\sum_{\substack{R^{\Delta} \text{ s.t.} \\ \tilde{R}^{\Delta} \cap \Omega_{1/n} \neq \emptyset}} vol(R^{\Delta}) \leq n\eta$$

for any $\eta > 0$, thus $\Omega^1_{1/n}$ is of measure 0. $\Omega^2_{1/n}$ is of measure if trivial. Thus $\Omega_{1/n}$ is of measure 0, then $D = \bigcup_{n \in \mathbb{N}} \Omega_{1/n}$ is of measure 0.

(=:

(A) For any $n \in \mathbb{N}$, since $D_{1/n}$ is closed (by Lemma) and bdd. in Euclidean space $\Rightarrow D_{1/n}$ is cpt. And $D_{1/n}$ is of measure $0 \Rightarrow \forall \epsilon > 0, \exists$ (closed) rectangles $R_j (j \in \mathbb{N})$ s.t.

$$D_{1/n} \subseteq \bigcup_{j=1}^{\infty} R_j, \quad \sum_{j=1}^{\infty} vol(R_j) < \epsilon.$$

Enlarge all R_j to be open rectangle R'_j (like Exercise 1) with $vol(R'_j) = vol(R_j) + 1/2^j$ and hence

$$\sum_{j\in\mathbb{N}}vol(R'_j)<2\epsilon,$$

then $D_{1/n} \subseteq \bigcup_{j \in \mathbb{N}} R_j = \bigcup_{j \in \mathbb{N}} R'_j$.

(B) $D_{1/n} \subseteq_{close} R \Rightarrow R \setminus D_{1/n} \subseteq_{open} R$, then for $\forall a \in R \setminus D_{1/n}$, i.e. $a \notin D_{1/n}$ and hence $o_f(a) = \inf_{\delta} \left(\sup_{B_{\delta}(a)} f - \inf_{B_{\delta}(a)} f \right) < 1/n \Rightarrow \exists \delta(a) > 0$ s.t.

$$\sup_{B_{\delta(a)}(a)} f - \inf_{B_{\delta(a)}(a)} f < \frac{1}{n}$$

And hence $\{R'_j|j\in\mathbb{N}\}\cup\{B_{\delta(a)}(a)|a\in R\setminus D_{1/n}\}$ is an open cover of the cpt. set R. Let $\delta>0$ be a lebesgue number of this open cover.

(C) Choose a partition Δ of R s.t. for every R^{Δ} we have $\forall x, x' \in R^{\Delta} \Rightarrow d(x, x') < \delta$. Then $R^{\Delta} \subseteq R'_j$ for some j or $R^{\Delta} \subseteq B_{\delta(a)}(a)$ for some $a \in R \setminus D_{1/n}$ by Theorem ??. And hence

$$\begin{split} \overline{S}(f,\Delta) - \underline{S}(f,\Delta) &= \sum_{R^{\Delta}} \left(\sup_{R^{\Delta}} f - \inf_{R^{\Delta}} f \right) \cdot vol(R^{\Delta}) \\ &= \sum_{R^{\Delta} \subseteq R'_{j}} \left(\sup_{R^{\Delta}} f - \inf_{R^{\Delta}} f \right) \cdot vol(R^{\Delta}) \\ &+ \sum_{R^{\Delta} \subseteq B_{\delta(a)}(a)} \left(\sup_{R^{\Delta}} f - \inf_{R^{\Delta}} f \right) \cdot vol(R^{\Delta}) \\ &\coloneqq (I) + (II). \end{split}$$

Since *f* is bdd., then $\exists M > 0$, s.t. $\forall x \in R, |f| \leq M \Rightarrow$

$$\begin{split} (I) &= \sum_{R^{\Delta} \subseteq R'_j} \left(\sup_{R^{\Delta}} f - \inf_{R^{\Delta}} f \right) \cdot vol(R^{\Delta}) \\ &\leq \sum_{R^{\Delta} \subseteq R'_j} 2M \cdot vol(R^{\Delta}) \end{split}$$

$$\leq 2M \sum_{j \in \mathbb{N}} vol(R'_j)$$

 $< 4M\epsilon.$

And

$$(II) = \sum_{R^{\Delta} \subseteq B_{\delta(a)}(a)} \left(\sup_{R^{\Delta}} f - \inf_{R^{\Delta}} f \right) \cdot vol(R^{\Delta})$$

$$\leq \sum_{R^{\Delta} \subseteq B_{\delta(a)}(a)} \left(\sup_{B_{\delta(a)}(a)} f - \inf_{B_{\delta(a)}(a)} f \right) \cdot vol(R^{\Delta})$$

$$< \sum_{R^{\Delta} \subseteq B_{\delta(a)}(a)} \frac{1}{n} \cdot vol(R^{\Delta})$$

$$\leq \frac{1}{n} \cdot vol(R).$$
(*)

 (\star) is since $R^{\Delta}_{\cdot} \subseteq B_{\delta(a)}(a)$. In summary, we have

$$\overline{S}(f,\Delta) - \underline{S}(f,\Delta) \le 4M\epsilon + \frac{1}{n} \cdot vol(R).$$

Thus for any $\mu > 0$, select n so large and ϵ so small that $4M\epsilon + \frac{1}{n} \cdot vol(R) < \mu$, then we can form a Δ of R, s.t. $\overline{S}(f,\Delta) - \underline{S}(f,\Delta) < \mu \Rightarrow f$ is integrable on R.

Remark 1. Recall that Thomae function, the set of disconti. point is \mathbb{Q} which is of measure 0, thus Thomae function is integrable.

2 Convergence and integration

Proposition 1. Let $[a,b] \xrightarrow{f} \mathbb{R}(n \in \mathbb{N})$ be integrable on [a,b], and $f_n \to f$ uni., show that f is integrable on [a,b], and

$$\lim_{n\to\infty}\int_a^b f_n(x)\,\mathrm{d}x = \int_a^b f(x)\,\mathrm{d}x.$$

Proof. 1. *f* is integrable: has been proved before.

$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| = \left| \int_{a}^{b} f_{n}(x) - f(x) dx \right|$$

$$\leq \left| \int_{a}^{b} \left| f_{n}(x) - f(x) \right| dx \right|$$

$$\leq \epsilon \cdot (b-a)$$

Thus $\lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$.

Proposition 2. Let $[a,b] \xrightarrow{f} \mathbb{R}(n \in \mathbb{N})$ be C^1 on [a,b], and $f'_n \to g$ uni., and $\exists c \in [a,b]$ s.t. $f_n(c)$ converges as $n \to \infty$. Then

1. for $\forall x \in [a,b]$, $f_n(x)$ converges to a number h(x) as $n \to \infty$

2. g(x) = h'(x) for $\forall x \in (a, b)$, that is

$$\lim_{n\to\infty}\frac{\mathrm{d}}{\mathrm{d}x}f_n(x)=\frac{\mathrm{d}}{\mathrm{d}x}\left(\lim_{n\to\infty}f_n(x)\right).$$

and
$$h'_{+}(a) = f(a), h'_{-}(b) = g(b).$$

Proof. Since f'_n is continuous, then by FTC' we have that

$$f_n(x) = f_n(c) + \int_c^x f_n'(t) \, \mathrm{d}t$$

for all $x \in [a, b]$ and $n \in \mathbb{N}$. Then

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} f_n(c) + \lim_{n \to \infty} \int_c^x f'_n(t) dt$$
$$= h(c) + \int_c^x g(t) dt$$
$$:= h(x).$$

And since f_n is conti. \Rightarrow g is conti. then by FTC, we have h'(x) = g(x) and $h'_+(a) = f(a), h'_-(b) = g(b)$.

Remark 2. These two props are both sufficient conditions.

Corollary 1. Let $a_n(x)(n \in \mathbb{N})$ be integrable on [a,b], if $\sum_{n=1}^{\infty} a_n(x)$ converges uniformly, then

$$\sum_{n=1}^{\infty} \int_a^b a_n(x) dx = \int_a^b \left(\sum_{n=1}^{\infty} a_n(x) \right) dx.$$

Proof. Let $f_n = \sum_{m=1}^n a_m(x)$, then $f_n \xrightarrow{uni.} f = \sum_{m=1}^\infty a_n(x)$. By Proposition 1, we have that

$$\int_{a}^{b} \left(\sum_{n=1}^{\infty} a_{n}(x) \right) dx = \int_{a}^{b} f(x) dx$$
$$= \lim_{n \to \infty} \int_{a}^{b} f_{n}(x) dx$$

$$= \lim_{n \to \infty} \int_{a}^{b} \sum_{m=1}^{n} a_{m}(x) dx$$

$$= \lim_{n \to \infty} \sum_{m=1}^{n} \int_{a}^{b} a_{m}(x) dx$$

$$= \sum_{m=1}^{\infty} \int_{a}^{b} a_{m}(x) dx.$$

Corollary 2. If $a_n(x)(n \in \mathbb{N})$ are C^1 , $\sum_{n=1}^{\infty} a'_n(x)$ cvg. uni. and $\exists c \in [a,b]$, s.t. $\sum_{n=1}^{\infty} a_n(c)$ cvg. then

1. $\sum_{n=1}^{\infty} a_n(x)$ cvg. for all $x \in [a, b]$;

2.

$$\sum_{n=1}^{\infty} \frac{\mathrm{d}}{\mathrm{d}x} a_n(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\sum_{n=1}^{\infty} a_n(x) \right).$$

Proof. Let $g_n = \sum_{m=1}^n a_m(x)$, then $\exists c \in [a,b]$ s.t. $g_n(c)$ cvg. And $g_n'(x) = \sum_{m=1}^n a_m'(x)$ and hence $g_n'(x)$ cvg. uni. and be continuous. Thus

$$\sum_{n=1}^{\infty} \frac{\mathrm{d}}{\mathrm{d}x} a_n(x) = \sum_{n=1}^{\infty} a'_n(x)$$

$$= \lim_{n \to \infty} \sum_{m=1}^n a'_m(x)$$

$$= \lim_{n \to \infty} g'_n(x)$$

$$= \frac{\mathrm{d}}{\mathrm{d}x} \left(\lim_{n \to \infty} g_n(x) \right)$$

$$= \frac{\mathrm{d}}{\mathrm{d}x} \left(\sum_{n=1}^{\infty} a_n(x) \right).$$