IDENTIFICAREA AUTOMATELOR

S.l. dr. Ing. Vlad-Cristian Miclea

Universitatea Tehnica din Cluj-Napoca Departamentul Calculatoare

- 1) Introducere
- 2) Identificarea automatelor
- 3) Procesul identificarii automatelor
 - 1) Aducerea intr-o stare cunoscuta
 - 2) Verificarea starilor
 - 3) Verificarea tranzitiilor
- 4) Concluzii

PLAN CURS

- Partea 1 VHDL
 - 1. Limbajul VHDL 1
 - 2. Limbajul VHDL 2
 - 3. Limbajul VHDL 3
- Partea 2 Implementarea sistemelor numerice
 - 4. Microprogramare
 - 5. Partea 1 Unitate de comanda exemplu cuptor
 - 5. Partea 2 Unitate de executie exemplu cuptor
- Partea 3 Automate
 - 6. Automate finite
 - 7. Stari
 - 8. Automate sincrone
 - 9. Automate asincrone
 - 10. Identificarea automatelor
 - 11. Automate fara pierderi
 - 12. Automate liniare
- Partea 4 Probleme si discutii

CONTEXT

Cursurile trecute

- Automate finite
 - Abstractizarea circuitelor secventiale
 - Clasificarea automatelor (Moore, Mealy)
- Stari ale automatelor
 - Reducerea numarului de stari
 - Codificarea eficienta a starilor
- Automate sincrone
 - Metode de eficientizare
- Automate asincrone
 - Analiza si sinteza automatelor asincrone
 - Curse Critice

IDENTIFICAREA AUTOMATELOR

Introducere

- Scop: determinarea funcţionării automatelor
- Există fizic automatul şi tabelul lui de tranziţii (black box)
- Verificăm:
 - Funcţionarea corectă
 - Respectarea tabelului de tranziţii
- Experimental:
 - Se aplică automatului secvenţe de intrări
 - Se observă ieşirile
- Se determină dacă tranziţiile automatului sunt corecte
- Rezultatul verificarii asigura (sau nu) ca automatul este: redus, complet determinat (specificat) şi conex (orice stare este accesibilă din oricare altă stare)

IDENTIFICAREA AUTOMATELOR

- Procesul de identificare are 3 etape:
 - 1. Aducerea automatului într-o stare cunoscută
 - Se realizează prin:
 - Aplicarea unei secvenţe de sincronizare (dacă există!)
 - Aplicarea unei secvenţe de iniţializare (există întotdeauna)
 - 2. Verificarea stărilor automatului
 - Se realizează prin:
 - Aplicarea repetată a unor secvenţe de distingere (dacă există!) pentru determinarea tuturor stărilor automatului
 - 3. Verificarea propriu-zisă a tranziţiilor

1. Aducerea automatului într-o stare cunoscută

Exemplu: se dă automatul redus, complet specificat şi conex cu tabelul de tranziţii:

f, g x	0	1	
А	A,1	D,0	
В	A,0	A,1	
С	C,0	В,О	
D	D,1	C,1	

Se observa ca se poate ajunge in orice stare (A, B, C, D), deci putem identifica automatul.

1. Aducerea automatului într-o stare cunoscută

- Secvenţa de iniţializare SI
 - Determinarea se face cu ajutorul unui arbore de iniţializare (AI)
 - Arborele de iniţializare:
 - Conţine în noduri grupuri de stări
 - Ramificaţiile din noduri corespund numărului intrărilor automatului
 - Nodul rădăcină conţine toate stările
 - Un nod de pe nivelul k nu se mai dezvoltă dacă este identic cu un nod de pe un nivel anterior
 - Alg se consideră încheiat când pentru prima dată un nod din arbore conţine stări singulare (eventual duplicate)
 - Calea de la nodul rădăcină la nodul cu stări singulare, obţinută prin concatenarea intrărilor corespunzătoare, determină secvenţa de iniţializare SI
 - Prin aplicarea SI automatul este adus într-o stare cunoscută

Curs Identificarea Automatelor

PROCESUL DE IDENTIFICARE

1. Aducerea automatului într-o stare cunoscută

- Secvenţa de iniţializare SI
- **Exemplu**: arborele de iniţializare este:

Secvenţa de iniţializare este SI = 10

Curs Identificarea Automatelor

PROCESUL DE IDENTIFICARE

1. Aducerea automatului într-o stare cunoscută

- Secvenţa de iniţializare SI
 - Observaţii:
 - Orice automat are o secvență de iniţializare
 - Dacă rezultă mai multe secvenţe de iniţializare se alege cea mai scurtă
 - Interpretarea SI:

Stare iniţială	Răspunsul la SI = 10	Stare finală	
necunoscută	(ieşiri)	cunoscută	
Α	01	D	
В	11	А	
С	00	А	
D	10	С	

1. Aducerea automatului într-o stare cunoscută

- Secvenţa de sincronizare SS
 - Determinarea se face cu ajutorul unui arbore de sincronizare (AS)
 - Arborele de sincronizare:
 - Conţine în noduri grupuri de stări
 - Nu ne interesează ieşirile automatului
 - Ramificaţiile din noduri corespund numărului intrărilor automatului
 - Nodul rădăcină conţine toate stările
 - Stările care apar duplicate in noduri se scriu o singură dată
 - Un nod de pe nivelul k nu se mai dezvoltă dacă este identic cu un nod de pe un nivel anterior
 - Dacă într-un nivel j apar mai multe noduri cu aceeaşi informaţie se continuă dezvoltarea doar a unuia dintre aceste noduri
 - AS se consideră încheiat când pentru prima dată un nod din arbore conţine o stare singulară
 - Calea de la nodul rădăcină la nodul cu stare singulară, obţinută prin concatenarea intrărilor corespunzătoare, determină secvenţa de sincronizare SS
 - Indiferent de starea în care se află automatul, prin aplicarea SS se ajunge într-o stare finală cunoscută, unică

- 1. Aducerea automatului într-o stare cunoscută
 - Secvenţa de sincronizare SS
 - **Exemplu**: arborele de sincronizare este:

Secvenţa de sincronizare este SS = 011101110; starea finală este A

2. Verificarea stărilor automatului

- Secvenţa de distingere SD
 - Determinarea se face cu ajutorul unui arbore de distingere (AD)
 - Arborele de distingere (AD) are structură asemănătoare cu cel de iniţializare (AI), cu diferentele:
 - Dacă un nod conţine stări duplicate, el nu se mai dezvoltă
 - AD se consideră încheiat când pentru prima dată un nod din arbore conţine stări singulare
 - Calea de la nodul rădăcină la nodul cu stări singulare, obţinută prin concatenarea intrărilor corespunzătoare, determină secvenţa de distingere SD

Observaţii:

- Nu orice automat are secvenţă de distingere
- Se poate întâmpla ca AI să fie un subarbore al AD

2. Verificarea stărilor automatului

- Secvenţa de distingere SD
- **Exemplu**: arborele de distingere este:

Secvenţa de distingere SD = 10 şi coincide cu secvenţa de iniţializare

Curs Identificarea Automatelor

PROCESUL DE IDENTIFICARE

2. Verificarea stărilor automatului

- Secvenţa de distingere SD
- Exemplu 1: Automat fără secvenţă de distingere

	0	1	
Α	В,О	D,0	
В	A,1	C,0	
С	D,0	A,0	
D	A,1	B,0	

Exemplu 2: Automat cu SI diferit de SD

	0	1
Α	A,0	C,0
В	A,0	B,1
С	В,1	A,0

2. Verificarea stărilor automatului

■ Identificarea stărilor

	SS=	SD=10	SD=10	SD=10	111	SD=10
	011101110					
Stare	X	Α	D	С	А	В
iniţială						
Răspuns	_	01	10	00	010	11
(ieşiri)						
Stare	А	D	С	Α	В	А
finală						
Concluzie	Faza de	A este	D este	C este		B este
	iniţializare	identificată	identificată	identificată		identificată

- În cazul în care nu există SS, se utilizează SI pentru faza de iniţializare
- Deoarece aplicând SD nu se poate ajunge în starea B, se aplică intrările 111, care generează ieşirile 010

3. Verificarea tranziţiilor

- Trebuie verificată fiecare tranziție din tabelul de tranziții al automatului
- Verificarea se face prin aplicări repetate de intrări şi eventual de secvențe de distingere (dacă există)
- Pentru o succesiune de intrări aplicate automatului trebuie să rezulte o succesiune corespunzătoare de ieşiri, identică cu cele deduse din tabelul de tranziţii

3. Verificarea tranziţiilor

- Exemplu:
 - Dacă se aplică pe intrări SS = 011101110 automatul va ajunge în starea

SS 0 SD 0 SD 0 SD 1

$$X \rightarrow A \rightarrow A \rightarrow D \rightarrow D \rightarrow C \rightarrow C \rightarrow A \rightarrow D \rightarrow \dots$$

1 01 1 10 0 00 0

- Dacă în A se aplică 0 pe intrare şi se obţine 1 pe ieşire, conform tabelului de tranziţii automatul va rămâne în starea A
- Dacă se aplică o secvenţă de distingere în A şi pe ieşire se obţine 01 ştim că se ajunge în D
- Dacă în D se aplică 0 pe intrare şi se obţine 1 pe ieşire, conform tabelului de tranziţii automatul va rămâne în starea D
- Dacă se aplică o secvenţă de distingere în D şi pe ieşire se obţine 10 ştim că se ajunge în C
- Etc.

3. Verificarea tranziţiilor

- Exemplu: dacă nu se foloseşte secvenţa de distingere SD
 - Dacă se aplică pe intrări SS = 011101110 automatul va ajunge în starea
 - Apoi se aplică intrări astfel încât să se verifice toate tranziţiile posibile (asta înseamnă că din fiecare stare trebuie să se aplice şi intrare 0 şi intrare 1)

SS 0 1 0 1 0 1 0 1 1 1 1 1
$$X \rightarrow A \rightarrow A \rightarrow D \rightarrow D \rightarrow C \rightarrow C \rightarrow B \rightarrow A \rightarrow D \rightarrow C \rightarrow B \rightarrow A$$
1 0 1 1 0 0 0 1 0 1

■ Dacă după ce ajungem în A se aplică pe intrare secvenţa 01010101111 şi se obţine pe ieşire secvenţa 10110000101, atunci toate tranziţiile posibile ale automatului au fost verificate şi sunt corecte

Alte metode de identificare a automatelor

- Automatele au memorie ⇒ evoluţia lor poate depinde de evenimente trecute
- **Definiție**: Deschiderea (distanța) memoriei reprezintă cantitatea de informație determinată de intrările și ieșirile trecute, care determină comportarea viitoare a automatului
- Dacă se cunoaşte starea iniţială şi secvenţa de intrări aplicate trebuie să se determine în mod unic starea finală şi secvenţa de ieşiri rezultată
- Identificarea automatelor în funcţie de deschiderea memoriei se face în 3 situaţii:
 - În raport cu secvenţa de intrare / ieşire
 - În raport cu secvenţa de intrare
 - În raport cu secvenţa de ieşire

Identificarea automatelor

- Generalitati
- Procesul identificarii automatelor
 - Aducerea intr-o stare cunoscuta
 - Verificarea starilor
 - Verificarea tranzitiilor
- Data viitoare automate fara pierderi