## Module 164

# PREVIOUS DAYS (need to complete)

# Generalization / specialization (person with the role of driver or dispatcher).

The database modeling approach discussed here is based on the attribute concept, where attributes are defined with specific characteristics and assigned to entity types. A problem arises when multiple entity types share many attributes, leading to redundancy if a real-world object is described by several entity types. For instance, employees who also act as customers or drivers who also work as dispatchers illustrate this issue. According to Zehnder (1989), "local attributes" should only appear once in a database to avoid redundancy. The solution is to consolidate common attributes into a general entity type (generalization) while keeping non-common attributes within their respective specialized entity types (specialization). To prevent information loss, specialized tables should reference generalized tables through foreign keys, establishing an "is-a" relationship, similar to inheritance in object-oriented modeling.



# Relationship Types: Identifying/ Non-Identifying relationship

In databases, relationships between tables can be categorized into identifying and non-identifying relationships. Here's a brief explanation of each:

### 1. Identifying Relationship:

- The foreign key in the child table is part of its primary key.
- This forms a key combination of multiple attributes, with the child table's record partially identified by the parent table's record.
- Example: A room in a building where the room's ID includes the building's foreign key, making it crucial for identification.

### 2. Non-Identifying Relationship:

- The foreign key in the child table is not part of its primary key.
- This allows for the foreign key value to change without affecting the child table's identity.
- Example: An employee and department relationship where the department's foreign key is not part of the employee's primary key, allowing for changes in the department without altering the employee's identity.

own example classmates examples



use cases made by chatGPT for identifiying Relationship.

### 1. Public Policy

- Social Program Evaluation: Identifying relationships between program interventions, target populations, and outcomes helps in assessing program effectiveness.
- Crime Analysis: Understanding relationships between socio-economic factors, crime incidents, and law enforcement practices aids in developing effective crime prevention strategies.
- Urban Planning: Mapping relationships between urban infrastructure, population dynamics, and land use patterns supports sustainable urban development.

#### 2. Environmental Studies

- **Ecosystem Analysis:** Identifying relationships between species, habitats, and environmental factors aids in ecosystem conservation and management.
- Climate Change Research: Understanding the relationships between human activities, climate variables, and environmental impacts helps in developing mitigation and adaptation strategies.
- Resource Management: Analyzing relationships between natural resources, consumption patterns, and sustainability practices supports effective resource management.

### 3. Research and Development

- Scientific Research: Identifying relationships between variables in experiments and studies helps in hypothesis testing and theory development.
- Innovation Networks: Mapping relationships between researchers, institutions, and innovations fosters collaboration and knowledge transfer.

 Patent Analysis: Understanding relationships between patents, inventors, and technological domains supports strategic intellectual property management.

### 4. Technology and Telecommunications

- Network Analysis: Identifying relationships between network components (e.g., servers, routers, devices) aids in network optimization and troubleshooting.
- User Behavior Analysis: Understanding relationships between user activities, service usage, and device interactions helps in improving user experience and service delivery.
- Cybersecurity: Recognizing relationships between different network activities and potential threats enhances threat detection and response strategies.

### 5. Social Networks

- Friendship and Interaction Analysis: Identifying relationships in social networks helps understand community structure, influence patterns, and information dissemination.
- **Influencer Identification:** Recognizing relationships between users and their content interactions helps in identifying key influencers within a network.
- Behavioral Analysis: Understanding relationships between user behaviors and network dynamics can improve content recommendations and user engagement.

# **DBMS (Database Management System)**

A database system (DBS) is designed for efficient, consistent, and permanent electronic data management, providing data subsets in various formats for users and applications. A DBS comprises the database management system (DBMS) and the database (DB). The DBMS organizes data storage and controls access, offering a database language for querying and managing data. The most common database system is relational.

### Features of a DBMS

### A DBMS must provide:

- Integrated data storage: Unified management of all application data, allowing complex relationships and efficient data linking. Controlled redundancy can enhance processing efficiency.
- Database language: Includes Data Request (retrieval), Data Manipulation Language (DML), Data Definition Language (DDL), and Data Control Language (DCL).
- User interfaces: Various interfaces, such as query languages, application programming interfaces, graphical user interfaces (GUI), and web access.

- Catalogue: Access to metadata via a data dictionary.
- User views: Different views for different user classes, defined in the database's external schema.
- **Consistency control:** Ensures database correctness through integrity assurance, defined by user constraints, and physical integrity.
- Data access control: Prevents unauthorized data access through rules and defined rights.
- Transactions: Combines multiple changes into atomic transactions, ensuring durability if successful.
- Multi-user capability: Synchronizes competing transactions to avoid conflicts, maintaining data isolation for users.
- Backup: Restores the database to a correct state after errors.

## **Advantages of Using a Database**

- Standards: Facilitates central data organization standards.
- Efficient data access: Uses advanced techniques for storing and retrieving large data volumes.
- Shorter development times: Offers common functions for faster application development.
- Flexibility: Allows database structure modifications without significant impact on existing data and applications.
- **High availability:** Supports high-availability applications through synchronization.
- Cost-effectiveness: Centralized investment in powerful hardware reduces overall costs.

### **Disadvantages of Database Systems**

- High initial investment: Requires significant expenditure on hardware and software.
- General-purpose software: Less efficient for specialized applications.
- Optimization limits: Can only be optimized for some applications.
- Additional costs: Involves expenses for data security, synchronization, and consistency control.
- Skilled personnel: Needs experts like database designers and administrators.
- Centralization vulnerability: Risks associated with centralization.

### LIST GIVEN BY THE EXERCISE

| DBMS             | \$? | Manufacturer | Model/Characteristics                                            |
|------------------|-----|--------------|------------------------------------------------------------------|
| Adabas           | \$  | Software AG  | NF2 model (non-normalized)                                       |
| Cache            | \$  | InterSystems | hierarchical, "postrelational"                                   |
| DB2              | \$  | IBM          | Object-relational                                                |
| Firebird         |     | -            | relational, based on InterBase                                   |
| IMS              | \$  | IBM          | hierarchical, mainframe-DBMS                                     |
| Informix         | \$  | IBM          | Object-relational                                                |
| InterBase        | \$  | Borland      | relational                                                       |
| MS Access        | \$  | Microsoft    | relational, desktop system                                       |
| MS SQL<br>Server | \$  | Microsoft    | Object-relational                                                |
| MySQL            |     | MySQL AB     | relational                                                       |
| Oracle           | \$  | ORACLE       | Object-relational                                                |
| PostgreSQL       |     | -            | object-relational, emerged from Ingres and Postgres              |
| Sybase ASE       | \$  | Sybase       | relational                                                       |
| Versant          | \$  | Versant      | Object-oriented                                                  |
| Visual FoxPro    | \$  | Microsoft    | relational, desktop system                                       |
| Teradata         | \$  | NCR Teradata | High-performance relational DBMS, especially for data warehouses |

### LIST FROM DB ENGINE RANKING

| DBMS                    | \$? | Manufacturer                                              | Model/Characteristics   |
|-------------------------|-----|-----------------------------------------------------------|-------------------------|
| Oracle                  | \$  | ORACLE                                                    | Relational, Multi-model |
| MySQL                   |     | ORACLE                                                    | Relational, Multi-model |
| Microsoft SQL<br>Server | \$  | Microsoft                                                 | Relational, Multi-model |
| PostgreSQL              |     | PostgresSQL Global Development Group                      | Relational, Multi-model |
| MongoDB                 |     | MongoDB, Inc                                              | Relational, Multi-model |
| Redis                   |     | Redis project core team, inspired by Salvatore Sanfilippo | Relational, Multi-model |
| Elasticsearch           |     | Elastic                                                   | Relational, Multi-model |
| IBM Db2                 | \$  | IBM                                                       | Relational, Multi-model |

| DBMS                            | \$? | Manufacturer                                                                               | Model/Characteristics        |
|---------------------------------|-----|--------------------------------------------------------------------------------------------|------------------------------|
| Snowflake                       | \$  | Snowflake Computing Inc.                                                                   | Relational                   |
| SQLite                          |     | Dwayne Richard Hipp                                                                        | Relational                   |
| Microsoft Access                | \$  | Microdsoft                                                                                 | Relational                   |
| Cassandra                       |     | Apache Software Foundation                                                                 | Wide Column, Multi-<br>model |
| MariaDB                         |     | MariaDB Corporation ab (MariaDB Enterprise), Maria DB Founsation(community MariaDB Server) | Relational, Multi-model      |
| Splunk                          | \$  | Spluk Inc.                                                                                 |                              |
| Databricks                      | \$  | Databricks                                                                                 | Multi-model                  |
| Microsoft Azure<br>SQL Database | \$  | Microsoft                                                                                  | Relational, Multi-model      |

### COMPARISON OF THE TOP 3

### Adabas VS Oracle

This is a rough comparison between both of them

| Name                   | Adabas                                                  | Oracle                                               |  |
|------------------------|---------------------------------------------------------|------------------------------------------------------|--|
| Primary database model | Multivalue DBMS                                         | Relational DBMS                                      |  |
| DB-Engines Ranking     | Score 3.17<br>Rank 94 Overall<br>Rank 1 Multivalue DBMS | Score 1236.29<br>Rank 1 Overall<br>Rank 1 Relational |  |
| Developer              | Software AG                                             | Oracle                                               |  |
| Initial release        | 1971                                                    | 1980                                                 |  |
| License                | Commercial                                              | Commercial                                           |  |

### MySQL Vs Cache

Sadly Cache isn't on the list of DB-Engines.com so I can't compare both of them.

Microsoft SQL Server Vs DB2

Sadly DB2 isn't on the list of DB-Engines.com so I can't compare both of them.

LB1- Teil 1 Ecolm 5Seiten 1/2h (1Tag-3Tag) Teil2 Openbook Praxis 40min

| Data type                                                 | MariaDB              |            | Exa                                   | mple               | Remark/Setting                                   |
|-----------------------------------------------------------|----------------------|------------|---------------------------------------|--------------------|--------------------------------------------------|
| Integers                                                  | INT                  |            | INT                                   | 1254               | from -32768 to 32767                             |
| Natural Numbers                                           | doesn't exist        |            |                                       |                    |                                                  |
| Fixed-Point numbers (decimals)                            | Decimal (M[,D        | )])        | Deci                                  | imal (6,2)<br>4.56 | M= Total number<br>of digits<br>D=Decimal places |
| Bulleted Types                                            |                      |            |                                       |                    |                                                  |
| Boolean (logical values)                                  | Boolean(TINY         | (INT(1))   |                                       |                    |                                                  |
| Character (single character)                              |                      |            |                                       |                    |                                                  |
| Floats                                                    | FLOAT                |            |                                       |                    |                                                  |
| Fixed-length string                                       | CHAR                 |            |                                       |                    |                                                  |
| Variable length string                                    | VARCHAR              |            |                                       |                    |                                                  |
| Date and/or time                                          | Date (YYYY-N         | M-DD)      | Date                                  | e (2024.06.03)     |                                                  |
| Timestamp                                                 | TIMESTAMP DD HH:MM:S | •          | TIMESTAMP<br>(2024-06-03<br>17:14:42) |                    |                                                  |
| Binary data objects<br>of variable length<br>(e.g. image) |                      |            |                                       |                    |                                                  |
| Compound                                                  | doesn't exist        |            |                                       |                    |                                                  |
| JSON                                                      | JSON Data Type       |            |                                       |                    |                                                  |
| Data type                                                 | Data type            |            |                                       | Example            | Remark/Setting                                   |
| Integers                                                  |                      |            |                                       |                    |                                                  |
| Natural Numbers                                           | Natural Numbers      |            |                                       |                    |                                                  |
| Fixed-Point numbers (decimals)                            |                      |            |                                       |                    |                                                  |
| Bulleted Types                                            |                      |            |                                       |                    |                                                  |
| Boolean (logical values)                                  |                      |            |                                       |                    |                                                  |
| Character (single character)                              |                      |            |                                       |                    |                                                  |
| Floats                                                    |                      |            |                                       |                    |                                                  |
| Fixed-length string                                       |                      |            |                                       |                    |                                                  |
| Variable length string                                    |                      |            |                                       |                    |                                                  |
| Date and/or time                                          |                      | Date (YYYY | _                                     | Date               |                                                  |

| Data type                                           | mySQL  | Example      | Remark/Setting |
|-----------------------------------------------------|--------|--------------|----------------|
|                                                     | MM-DD) | (2024.06.03) |                |
| Timestamp                                           |        |              |                |
| Binary data objects of variable length (e.g. image) |        |              |                |
| Compound                                            |        |              |                |
| JSON                                                |        |              |                |