MO 24: VZÁJOMNÁ POLOHA LINEÁRNYCH ÚTVAROV V E2

MO 24:

VZÁJOMNÁ POLOHA LINEÁRNYCH ÚTVAROV V E₂

Bod: $X[x_1, x_2]$

Vyjadrenie priamky v rovine :

- priamka je daná 2 rôznymi bodmi alebo bodom a smerovým vektorom
 - Všeobecný tvar:
 - ax + by + c = 0, $a, b, c \in R (a, b) \neq (0, 0)$
 - vektor \vec{n} (a, b) je normálový vektor priamky
 - $\vec{n} \cdot \vec{s} = 0$
 - Smernicový tvar:
 - y = kx + q, $k, q \in R$
 - q je úsek, ktorý vytína priamka na osi y
 - k je smernica priamky a platí $k=tg\ \alpha$, kde α je orientovaný uhol, ktorý zviera priamka s kladným smerom osi x
 - Úsekový tvar:

- $p, q \in R \{0\}$
- p je úsek, ktorý vytína priamka na osi x
- q je úsek, ktorý vytína na osi y
- priamka neprechádza začiatkom a je rôznobežná so súradnicovými osami
- Parametrický tvar:

$$\begin{array}{ccc} \bullet & p: x = a_1 + tu_1 \\ & y = a_2 + tu_2 \end{array}$$

 $t \in \mathbb{R}$, $[a_1, a_2]$ je bod priamky, \overrightarrow{u} $(u_1, u_2) \neq (0, 0)$ je smerový vektor priamky

• opačná polpriamka⇒t∈R

MO 24: VZÁJOMNÁ POLOHA LINEÁRNYCH ÚTVAROV V E2

VZÁJOMNÁ POLOHA:

• Bodu a priamky:

- bod [x,y] ∈ priamke : dosadím jeho súradnice do daného vzťahu vyjadrujúceho priamku a ak platí, tak bod priamke patrí
- Ak bod nepatrí, tak vieme vypočítať jeho vzdialenosť v od priamky:
- <u>Vzdialenosť</u> v bodu A[a_1 , a_2] od priamky, ktorá je daná rovnicou ax + by + c = 0, je:

$$v = \frac{|aa_1 + ba_2 + c|}{\sqrt{a^2 + b^2}}$$

• tri alebo viac bodov, ktoré ležia na tej istej priamke, sa nazývajú kolineárne

• Priamok p, q určených smernicovo:

•
$$p: y = k_1x + q_1$$
;
 $q: y = k_2x + q_2$;
 $u, v sú smerové vektory priamok$

• Rovnobežné:

- rovnobežka je priamka majúca s inou priamkou stálu vzájomnú vzdialenosť
- Rôzne $p \neq q$ platí : $k_1 = k_2$ a $q_1 \neq q_2$ u = k. $v, k \in R - \{0\}$ $\overrightarrow{AB} = (B - A) \neq k.v, k \in R - \{0\}$ \rightarrow nie sú lineárne závislé

• Rôznobežné:

- priamky sa pretnú v práve jednom bode (priesečníku)
- $p \times q$ platí : $k_1 \neq k_2$ $u \neq k$. $v, k \in R - \{0\}$ (nemožno zapísať u ako reálny násobok v) $\exists P[p_1, p_2]$
- ak sú priamka p, q na seba kolmé potom platí: $k_1 \cdot k_2 = -1$

MO 24: VZÁJOMNÁ POLOHA LINEÁRNYCH ÚTVAROV V E2

- Priamok p, q určených parametrickými rovnicami:
 - $p: x = a_1 + tu_1$ $y = a_2 + tu_2, t \in R$ $q: x = b_1 + sv_1$ $y = b_2 + sv_2, s \in R$
 - určíme smerové vektory u, v a postupujem ako v prípade priamok určených smernicovo
- Priamok p, q určených všeobecnými rovnicami:

• p:
$$a_1x + b_1y + c_1 = 0$$

q: $a_2x + b_2y + c_2 = 0$,
 $a_1, b_1, c_1, a_2, b_2, c_2 \in R$, $(a_1, b_1) \neq (0, 0)$, $(a_2, b_2) \neq (0, 0)$

• Rovnobežné splývajúce

jedna rovnica je násobkom druhej. $a_1:a_2=b_1:b_2=c_1:c_2$ (nelíšia sa, sú násobkami)

Rovnobežné rôzne

$$a_1: a_2 = b_1: b_2 \neq c_1: c_2$$
 (líšia sa v c)

Rôznobežné

$$a_1 : a_2 \neq b_1 : b_2$$

(líšia sa v a,b)

• Priamok p, q - jedna určená parametricky a jedna všeobecne:

$$\begin{array}{ll} \bullet & p:ax+by+c=0, & a,\,b,\,c\in\,R\;(a,\,b)\neq(0,\,0)\\ q:x=a_1+tu_1\\ &y=a_2+tu_2\;,\,t\in\,R \end{array}$$

- dosadím parametrické rovnice do všeobecnej za x a y a podľa počtu výsledných t určím vzájomnú polohu:
 - Počet riešení:
 - a) jedno riešenie priamky sú rôznobežné
 - b) nemá riešenie priamky sú rovnobežné rôzne
 - c) nekonečne veľa priamky sú splývajúce