Universidade Federal de Santa Maria - UFSM Disciplina: ELC123 - Comunicação de Dados Prof. Carlos Raniery P. dos Santos Prova II - Data: 28/06/2016 Aluno: Elton Luiz 1) (Valor = 0,5) Um esquema de codificação tem uma distância de Hamming D_{min}=3. Qual é a capacidade de detecção e de correção de erros desse esquema? a. 4-2 b. 3 - 2 c. 3-1 d. 2-4 (e.) 2 - 1 2) (Valor = 0,5) Em um canal com largura de banda de 1MHz e SNR de 255, quais são: a taxa de transferência e quantos níveis de sinal são necessários? (a) 8Mbps; 4 níveis b. 6Mbps; 8 níveis c. 6Mbps; 4 níveis d. 6Mbps; 16 níveis e, 8Mbps; 16 níveis 3) (Valor = 0,5): Dadas as seguintes palavras; 0101010101, 00000000000, 1111111111, 0000011111, 1111100000. Qual a distância de Hamming mínima e sua capacidade de detecção de erros? 0181010101 0101 01018 a. 6:5 1=10 - 1010 b. 3; 2 c. 2; 1 (d) 4; 3 e. 5:4 -13 -1101 4) (Valor = 0,5) Marque qual das seguintes afirmações sobre o padrão Ethernet é =14-1110 -15-1111 INCORRETA. a. A transmissão é feita utilizando um canal passa-baixa. b. O modo full-duplex do Gigabit Ethernet não usa CSMA/CD. C O padrão Fast Ethernet suporta autonegociação. (d) Quadros possuem um tamanho fixo. (e) O padrão Gigabit Ethernet usa codificação de blocos. 5) (Valor = 2,0) Comente a afirmação de que o HDLC utiliza o mecanismo de piggybacking. 6) (Valor = 2,0) Um emissor precisa enviar os dados a seguir: 0xABCC. Demonstre quais informações serão enviadas para os seguintes casos: a. Paridade simples b. Paridade bidimensional c. Checksum d. CRC (101) e. Hamming 🔀

- 7) (Valor = 2,0) Considerando um cenário onde 4 estações utilizam CDMA, informe qual foi a informação originalmente enviada por cada uma quando no canal agregado temos os seguintes níveis: -1, +1, -1, -3. (Utilizar como tabela de Walsh W₁=[-1])
- 8) (Valor = 2,0) Explique o funcionamento dos seguintes métodos de acesso andômico:
 - a. ALOHA puro;
 - b. Slotted ALOHA;
 - c. CSMA/CD;
 - d. CSMA/CA.

COMPLEX.
60 HOLC possis 3 tipos de frames. O tipo 5 o o componsaivel
por envier de dos, o tipo l'arriege informações (FC+'s),
Milizadas para confirmação do recelrimento do mensagens.
O Ultime tipo serve para controle do entace. A técnica de
Mygybacking i resta cenairio, utilina or pacote do tipo S
para incorporar FCKS, poupando o transmissos de monseguis
tipo la armentando o quantidade de dodos transmitida, uma vez que
menos viensagens i po i são entrados.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{vmatrix} A = -1 + 1 - 1 - 3 \\ -1 + 1 - 1 - 1 \\ -1 + 1 - 1 - 1 \end{vmatrix} = \begin{vmatrix} B = -1 + 1 - 1 + 1 \\ -1 + 1 - 1 - 3 \end{vmatrix} = 0 \begin{vmatrix} C = -1 - 1 + 1 + 1 \\ -1 + 1 - 1 - 3 \end{vmatrix} = 0$

Equações úteis:	
f=1/1	
$\lambda = c/f$	
Número de bits por nível = log ₂ ^N	Service of the service of the contract of the service of the servi
$SNR_{\phi} = 10 \log_{10} \frac{(P2PT)}{}$	
Taxa de transferência do canal sem ruido	= 2 ° largura de banda x lou.
Capacidade do canal com ruído = largura	de banda * log (11808)
Velocidade de propagação = 3 • 10 (luz)	etakan dan dan mengan dan mengan dan dan dan mengantah dan dan dan seriah seriah dan seriah dan dan dan dan seriah dan
Erro de quantização (SNR) = (6 02n +	