

Exercise 5

Practical Data Science (PDS)

- 1. Assignment 2 Overview
- 2. Training Machine Learning Models
- 3. Assignment 3 Predicting Video Sale Games with Deep Learning

Assignment 2

- Passing Criteria: all tasks until the model training task are complete & runnable
- Not penalizing buggy implementations (will do for the next assignment)
 - Use correct encoding algorithms but incorrect data structure
 - Loss is way over 1.0
- Interesting ways to improve the results: encoding strategy (K-NN), new models (Catboost, XGBoost), etc.
 - Some justifications are incorrect (e.g., did not consider loss visualization to prevent overfitting)
 - Good pre-processing techniques (advanced imputation, encoding) can yield better performance

Overfitting vs. Underfitting

https://srdas.github.io/DLBook/ImprovingModelGeneralization.html

Overfitting vs. Underfitting – In a nutshell

- Underfitting: train (in-sample) and validation (out-sample) losses can still decrease after training
- Overfitting: train (in-sample) loss decreases, and validation (out-sample) loss increases
- Desirable case:
 - Train (in-sample) loss decreases
 - Validation (out-sample) loss decreases
 - They decrease stably without too much fluctuations
 - Small (generalization) gap between train and validation losses

Recipe to start a deep learning project

- Sanity check 1: use only a single training sample
 - Model should memorize (overfit) the sample with 100% accuracy
 - This prevents any unwanted bugs in the implementation
- Sanity check 2: increase to a small subset of training samples
 - Similar reason, making sure model works correctly
- Start increasing samples for training, e.g., 20%, 50%, 80% and 100% of the train set
 - Generalization should occur at some point
- Find a good learning rate
- Why all of these? GPUs are expensive!

Total Time (h)	Total Cost (€)	Cost per Hour	Total Jobs
13,505	167,392	12	5,812
1,671	46,036	27	171

Assignment 3 - Predicting Video Game Sales with Deep Learning

Deadline: 07.12.2024 at 23:59 pm

Additional Materials

- Practical Deep Learning lectures: https://cvg.cit.tum.de/teaching/ws2024/i2dl
 - Implement DL models with PyTorch
 - More in-depth engineering skills for training Neural Networks
- Improving model generalization: https://srdas.github.io/DLBook/ImprovingModelGeneralization.html
- Analyze different loss curves: https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
- Practical Deep Learning book: https://udlbook.github.io/udlbook/
 - Beginner-friendly with many examples
 - Each chapter is accompanied with Jupyter Notebooks

