INCOGNITO CTF Write-up

작성자: Team CodeCure - 박의준

HS (Forensics)

이동식 저장장치의 Serial Number를 구하시오

주어진 레지스트리 하이브 파일의 Base Block을 살펴보면 파일의 Signature와 File Name Field가 "INCO" 문자열로 Overwrite 되어있다.

\$ \$%																	
Offset(h)	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	OD	0E	OF	Decoded text
00000000	49	4E	43	4F	71	02	00	00	70	02	00	00	00	00	00	00	INCOqp
00000010	00	0.0	00	00	01	00	00	0.0	05	00	00	00	00	00	00	00	
00000020	01	00	00	00	20	00	00	00	00	FO	Cl	00	01	00	00	00	ðÁ
00000030	49	4E	43	4F	49	4E	43	4F	49	4E	43	4F	49	4E	43	4F	INCOINCOINCOINCO
00000040	49	4E	43	4F	49	4E	43	4F	49	4E	43	4F	49	4E	43	4F	INCOINCOINCOINCO
00000050	49	4E	43	4F	49	4E	43	4F	49	4E	43	4F	49	4E	43	4F	INCOINCOINCOINCO
00000060	49	4E	43	4F	49	4E	43	4F	49	4E	43	4F	49	4E	43	4F	INCOINCOINCOINCO

Overwrite

정상 하이브 파일의 Base Block 구조를 참고하여 Offset(0), Length(4), Field("regf") 형식으로 Signature Field를 채워넣으면 레지스트리 도구에서 정상적으로 인식한다.

USB 정보가 담긴 하이브 파일 - SYSTEM / type: UTF-16LE

(File Name Field는 다른 값으로 overwrite 되어도 분석에 지장 없음)

Original Field

RegRipper3.0, USBSTOR 플러그인을 활용하여 하이브 파일을 분석하여 이동식 저장장치의 정보를 추출할 수 있고 Serial Number를 얻을 수 있다.

```
(kali⊕ kali)-[~/Desktop]
$ rip.pl -r \? -p usbstor > usbstor.csv
Launching usbstor v.20200515
```

RegRipper3.0 – USBSTOR

```
usbstor v.20200515
(System) Get USBStor key info
USBStor
ControlSet001\Enum\USBStor
Disk&Ven_Samsung&Prod_Flash_Drive&Rev_1100 [2020-12-18 08:30:32]
  S/N: 0374120030028536&0 [2020-12-18 08:30:33Z]
  Device Parameters LastWrite: [2020-12-18 08:30:34Z]
  Properties LastWrite : [2020-12-18 08:30:39Z]
    FriendlyName
                          : Samsung Flash Drive USB Device
    FriendlyName : Samsung Flash Drive | First InstallDate : 2020-12-18 08:30:33Z
    InstallDate
                           : 2020-12-18 08:30:33Z
    Last Arrival
                          : 2020-12-18 08:30:32Z
    Last Removal
                           : 2020-12-18 08:43:43Z
```

Usbstor.csv

분석 결과의 Serial Number 값으로 "0374120030028536&0"로 기록되었더라도 실질적인 Serial Number는 '&' 문자를 기준으로 앞부분의 "0374120030028536"이고 뒷부분의 '0'는 PnP Manager로부터 받아오는 Random Number(USB 장치 연결 번호, Port 번호)를 의미하기 때문에 FLAG를 인증할 때 유의해야한다.

INCO{0374120030028536}

DogeDoge (Forensics)

숨겨진 이미지를 찾으시오

주어진 Elon.zip 파일의 암호를 Brute-force 도구를 활용하여 풀어낸다

AZPR 4.00

Elon.zip 을 압축 해제하여 얻은 Musk.zip 파일의 바이너리를 확인하면 Signature Field가 Microsoft Office Open XML Format Signature 값을 가지고 있고 ".docx" 확장자였음을 확인할 수 있다.

.docx Signature

Extension	<u>Signature</u>	<u>Description</u>
DOCX	<u>50 48 03 04</u>	MS Office Open XML Format Document
	ASCII PK••	Sizet: 4 Bytes Offset: 0 Bytes

It's same.

Musk.docx를 실행하면 Doge 이미지가 존재하지만 문제의 조건은 "숨겨진" 이미지를 찾는 것이기 때문에 다시한번 바이너리를 확인한다.

Doge

Extra Field

Extra Field가 존재하는 것으로 보아 OOXML Steganography를 활용하여 이미지를 은닉한 것으로 추정할 수 있다. ooXML_Steganography_v4의 ooXML_Steganography_UnHider 도구를 활용하고 "Elon.zip" 파일의 패스워드인 ":p:d" 문자열이 AES Descryption Key 라는 것을 Guessing, 숨겨진 이미지를 추출할 수 있다.

Input decryption key

UnHider Finished

DogeDoge.png (FLAG)

FLAG: INCO{M4R5_GAZUA}