

Lecture 9: Combinational Circuit Design

Outline

- Bubble Pushing
- □ Compound Gates
- □ Logical Effort Example
- Input Ordering
- □ Asymmetric Gates
- Skewed Gates
- Best P/N ratio

10: Combinational Circuits

CMOS VLSI Design 4th Ed.

module mux(input s, d0, d1, output y); assign y = s ? d1 : d0; endmodule 1) Sketch a design using AND, OR, and NOT gates. D0 S D1 S D1 S CMOS VLSI Design 4th Ed. 3

Inner & Outer Inputs

- ☐ *Inner* input is closest to output (A)
- ☐ Outer input is closest to rail (B)

- ☐ If input arrival time is known
 - Connect latest input to inner terminal

10: Combinational Circuits

CMOS VLSI Design 4th Ed

11

Asymmetric Gates

- ☐ Asymmetric gates favor one input over another
- ☐ Ex: suppose input A of a NAND gate is most critical
 - Use smaller transistor on A (less capacitance)
 - Boost size of noncritical input
- A reset
- So total resistance is same
- \Box $g_A =$
- \Box $g_B =$

- \square Asymmetric gate approaches g = 1 on critical input
- But total logical effort goes up

10: Combinational Circuits

CMOS VLSI Design 4th Ed.

Symmetric Gates

☐ Inputs can be made perfectly symmetric

10: Combinational Circuits

CMOS VLSI Design 4th Ed.

13

Skewed Gates

- ☐ Skewed gates favor one edge over another
- ☐ Ex: suppose rising output of inverter is most critical
 - Downsize noncritical nMOS transistor

HI-skew inverter (equal rise resistance) unskewed inverter (equal fall resistance)

- ☐ Calculate logical effort by comparing to unskewed inverter with same effective resistance on that edge.
 - $-g_u =$
 - $-g_d =$

10: Combinational Circuits

CMOS VLSI Design 4th Ed.

HI- and LO-Skew

- □ Def: Logical effort of a skewed gate for a particular transition is the ratio of the input capacitance of that gate to the input capacitance of an unskewed inverter delivering the same output current for the same transition.
- ☐ Skewed gates reduce size of noncritical transistors
 - HI-skew gates favor rising output (small nMOS)
 - LO-skew gates favor falling output (small pMOS)
- ☐ Logical effort is smaller for favored direction
- But larger for the other direction

10: Combinational Circuits

CMOS VLSI Design 4th Ed.

Asymmetric Skew

- □ Combine asymmetric and skewed gates
 - Downsize noncritical transistor on unimportant input
 - Reduces parasitic delay for critical input

10: Combinational Circuits

CMOS VLSI Design 4th Ed.

17

Best P/N Ratio

- We have selected P/N ratio for unit rise and fall resistance (μ = 2-3 for an inverter).
- ☐ Alternative: choose ratio for least average delay
- Ex: inverter
 - Delay driving identical inverter

$$-t_{odf} =$$

$$-t_{pd} =$$

$$-dt_{pd}/dP =$$

– Least delay for P =

10: Combinational Circuits

CMOS VLSI Design 4th Ed.

- ☐ In general, best P/N ratio is sqrt of equal delay ratio.
 - Only improves average delay slightly for inverters
 - But significantly decreases area and power

10: Combinational Circuits

CMOS VLSI Design 4th Ed.

19

Observations

- ☐ For speed:
 - NAND vs. NOR
 - Many simple stages vs. fewer high fan-in stages
 - Latest-arriving input
- ☐ For area and power:
 - Many simple stages vs. fewer high fan-in stages

10: Combinational Circuits

CMOS VLSI Design 4th Ed.