Lista 7 de Geometria Riemanniana

IMPA, Mar/Jun 2025 - Monitor: Ivan Miranda

Exercício 1. Exercício 1 do Capítulo 10 do livro do professor Manfredo, quinta edição, sobre o Lema de Klingenberg.

Exercício 2. Exercício 2 do Capítulo 10 do livro do professor Manfredo, quinta edição, sobre uma prova alternativa do Teorema de Hadamard.

Exercício 3. Exercício 3 do Capítulo 10 do livro do professor Manfredo, quinta edição, sobre o comportamento expansivo do mapa exponencial em variedades de curvatura não positiva.

Complemento: suponha adicionalmente M simplesmente conexa e prove que o mapa exponencial é uma expansão métrica, i.e. aumenta distâncias. Além disso, se M não é simplesmente conexa, o mapa exponencial pode não ser uma expansão métrica.

Exercício 4. Seja $\gamma:[0,a]\to M$ uma geodésica em uma variedade Riemanniana M. Prove que se γ é minimizante, então γ não possui pontos conjugados em (0,a). Encontre um exemplo de geodésica $\gamma:[0,a]\to M$ sem pontos conjugados que não é minimizante.

Comentário: é possível provar esse resultado utilizando apenas o Lema do Índice.

Exercício 5. Prove que o Lema do Índice (Lema 2.2 do Capítulo 10 do livro do professor Manfredo, quinta edição) continua verdadeiro sem a hipótese de ortogonalidade $(J \perp \gamma)$.

Comentário: essa versão mais geral é útil na prova do Teorema do Índice de Morse. Utilizando o Teorema do Índice de Morse, é possível provar uma versão ainda mais geral do Lema do Índice, permitindo J(0) = V(0) não necessariamente nulos nesse ponto (notação do Lema do livro citado).

Exercício 6. Exercício 1 do Capítulo 11 do livro do professor Manfredo, quinta edição, sobre uma prova alternativa de uma versão do Teorema de Bonnet-Myers.

Exercício 7. Suponha M^n uma variedade Riemanniana com curvatura seccional $K_M \ge 1$. Suponha que γ é uma geodésica em M de comprimento $l(\gamma) > \pi$. Prove que $i(\gamma) \ge n-1$, onde $i(\gamma)$ denota o Índice de Morse de γ .

Exercício 8. Suponha que M é uma variedade Riemanniana com $Ric \geq 1$. Suponha que $\gamma: \mathbb{R} \to M$ é uma geodésica de M. Seja $L \in \mathbb{N}$ um número natural arbitrário. Prove que há pelo menos L pontos conjugados a $\gamma(0)$ ao longo de γ no intervalo $[0, L\pi]$. Conclua que $i(\gamma_{[0, L\pi]}) \geq L-1$, onde $i(\beta)$ denota o Índice de Morse de β .

Sugestão: utilize as ideias da prova do Teorema de Bonnet-Myers e o resultado do Teorema do Índice de Morse. Prove primeiro que há um ponto conjugado em $[0,\pi]$. Complemento: encontre contra-exemplos para as desigualdades estritas.

Exercício 9. Dê significado para a equação de Ricatti

$$A' + A^2 + R_{\gamma'} = 0$$

ao longo de uma geodésica sem pontos conjugados, $\gamma:[0,a]\to M$, com $v:=\gamma'(0)$ unitário, e forneça uma demonstração.

Exercício 10. Prove a versão local do Teorema de Toponogov como um corolário do Teorema de Rauch.

Referências

Livro do professor Manfredo, Geometria Riemanniana.

Exercícios do professor Luis Florit, https://luis.impa.br/.

Listas de exercícios do Diego Guajardo, https://luis.impa.br/.

Listas de exercícios do Luciano Luzzi, https://sites.google.com/impa.br/lucianojunior/.

Livro do professor P. Petersen, Riemannian Geometry.

Livro do professor J. Lee, Introduction to Riemannian Manifolds.