QuTiP stochastic solvers: mcsolve

Nathan Shammah
Theoretical Quantum Physics Lab
Cluster for Pioneering Research
RIKEN, Saitama, Japan

QuTiP: The Quantum Physics Simulator

The Quantum Toolbox in Python: A toolbox to study the open quantum dynamics of realistic systems.

Interactive Lectures @ ICTP, Leonardo Building

Tue 25th June - 11:45am, Seminar Room – Driven-dissipative models in quantum physics

Wed 26th June - 11am, Seminar Room – Quantum Open Source & Introduction to QuTiP

Thur 27th June - 9am, Computer Room – Hands-on session on QuTiP's main features

QuTiP stochastic solvers

Tue 2nd July - 9am, Computer Room – How to Build your Own Scientific Software Library in Python (Wed 3rd July - 9am, Computer Room – Extra meeting: SISSA/ICTP projects)

Take a snapshot

https://github.com/nathanshammah/interactive-notebooks

QuTiP: Interactive Notebooks

The Quantum Toolbox in Python

You can find an interactive notebook at

https://github.com/nathanshammah/

Repository: interactive-notebooks

You can run the notebook live at

Take a snapshot

https://mybinder.org/v2/gh/nathanshammah/interactive-notebooks/binder

QuTiP: The Quantum Physics Simulator

The Quantum Toolbox in Python

A toolbox to study the open quantum dynamics of realistic systems.

QuTiP: Map of code

The Quantum Toolbox in Python

QuTiP: Map of code

The Quantum Toolbox in Python

QuTiP: The QObj class

The Quantum Toolbox in Python

J. R. Johansson, P. D. Nation, and F. Nori, Comp. Phys. Comm. **183**, 1760–1772 (2012) *QuTiP: An open-source Python framework for the dynamics of open quantum systems*

QuTiP: The QObj class

The Quantum Toolbox in Python

• State and operators are declared as QObj

- Generate states and operators
- Algebra (bosonic)

$$AB - BA \neq 0$$

$$\mathscr{E}(\rho) = A\rho B^{\dagger} \longrightarrow \mathscr{D} = B^* \otimes A$$

$$\dot{\rho} = \mathcal{D}\rho$$

```
>> q = Qobj([1], [0])
Quantum object: dims = [[2], [1]],
shape = (2, 1), type = ket
>> d = destroy(2)
Quantum object: dims = [[2], [2]],
shape = (2, 2), type = oper,
isherm = False
Quantum object: dims = [[1], [2]],
shape = (1, 2), type = bra
```

QuTiP: Map of code

The Quantum Toolbox in Python

QuTiP: Map of code

The Quantum Toolbox in Python

QuTiP: Numerical Solvers

The Quantum Toolbox in Python

The Result class stores the expectation values of the operators passed to the solver.

Simple Example: A driven, damped single mode cavity.

result_ref = mesolve(H, rho0, times, c_ops, e_ops)
plot_expectation_values(result_ref, y_labels = "E[a'a], ...,)

Solvers:

- `mesolve`: Lindblad master equations
- `mcsolve`: Monte-Carlo quantum trajectory
- `floquet_modes`: Floquet theory for strong driving
- bloch_redfield: Bloch-Redfield solver
- `sesolve`, `ssesolve`, `smesolve`: Stochastic solvers

Solving a many-qubit dynamics

Closed vs. Open dynamics

Schrödinger Equation

$$i\hbar \frac{d}{dt} |\psi\rangle = H |\psi\rangle$$

Master Equation

$$i\hbar \frac{d}{dt}\rho = [H, \rho] + \text{Noise}$$

	Schrödinger Equation	Lindblad Master Equation
Probability	Conserved	Conserved
Evolution	Unitary, $H=H^\dagger$	Non-Unitary
Time reversal	Preserved	Broken
Features	Closed system	Open system: noise and dissipation
Scaling with N qubits	2^N	

Solving a many-qubit dynamics

Exponential scaling even with Lindblad dynamics

$$\frac{d}{dt}\rho = -i[H,\rho] + \gamma \sum_{i}^{N} \left(L_{i}\rho L_{i}^{\dagger} - \frac{1}{2}L_{i}^{\dagger}L_{i}\rho - \frac{1}{2}\rho L_{i}^{\dagger}L_{i} \right)$$

	Von Neumann Equation	Lindblad Master Equation
Probability	Conserved	Conserved
Evolution	Unitary, $H=H^{\dagger}$	Non-Unitary
Features	Closed system	Open system: noise and dissipation
Scaling with N qubits	2^N	4^N

$$\frac{d}{dt}|\rho\rangle = \mathcal{L}|\rho\rangle$$

Solving a many-qubit dynamics: Quantum Trajectories

Photon counting statistics

$$\frac{d}{dt} \rho = -\frac{i}{\hbar} [H, \rho] + \gamma \left(L \rho L^\dagger - \frac{1}{2} L^\dagger L \rho - \frac{1}{2} \rho L^\dagger L \right)$$
 master equation

Solving a many-qubit dynamics: Quantum Trajectories

Photon counting statistics

$$\frac{d}{dt}\rho = -\frac{i}{\hbar}[H,\rho] + \gamma \left(L\rho L^{\dagger} - \frac{1}{2}L^{\dagger}L\rho - \frac{1}{2}\rho L^{\dagger}L\right)$$
 continuous decay

Effective Hamiltonian: shrinking the state

$$H_{\text{eff}} = H_{\text{sys}} - \frac{i\hbar}{2} L^{\dagger} L$$

$$|\psi(t+\delta t)\rangle = \frac{L|\psi(t)\rangle}{\left\langle \psi(t) \left| L+L \right| \psi(t) \right\rangle^{1/2}}$$

Solving a many-qubit dynamics: Quantum Trajectories

Photon counting statistics

$$\frac{d}{dt}\rho = -\frac{i}{\hbar}[H,\rho] + \gamma \left(L\rho L^{\dagger} - \frac{1}{2}L^{\dagger}L\rho - \frac{1}{2}\rho L^{\dagger}L\right)$$
 continuous decay

A. **Effective Hamiltonian**: shrinking the state

$$H_{\text{eff}} = H_{\text{sys}} - \frac{i\hbar}{2} L^{\dagger} L$$

- B. Quantum jump:
- 1. Generale random number, *r*.
- 2. Is r > norm(psi)?
 - I. Yes: keep integrating (A)
 - II. No: apply jump and renormalize

$$|\psi(t+\delta t)\rangle = \frac{L|\psi(t)\rangle}{\left\langle \psi(t) \left| L^{+}L \right| \psi(t) \right\rangle^{1/2}}$$

Explore this Physics with Interactive Notebooks

The Quantum Toolbox in Python

You can find an interactive notebook at

https://github.com/nathanshammah/

Repository: interactive-notebooks

You can run the notebook live at

Take a snapshot

https://mybinder.org/v2/gh/nathanshammah/interactive-notebooks/binder

Thank you

GitHub: nathanshammah LinkedIn: Nathan Shammah

Extra Slides

Stochastic solvers

Stochastic master equation: Continuous weak measurements

continous weak measurements

Heterodyne Detection

$$\omega_{LO} \neq \omega_{signal}$$

Homodyne Detection

$$\omega_{LO} = \omega_{signal}$$

result = smesolve(H, rho0, times, [], c_ops, e_ops)

Stochastic solvers

Stochastic master equation: Continuous weak measurements

continous weak measurements

$J_{x}(t)$ **Heterodyne Detection** $d\rho(t) = -i[H, \rho(t)]dt + \gamma \mathcal{D}[a]\rho(t)dt + \frac{1}{\sqrt{2}}dW_1(t)\sqrt{\gamma}\mathcal{H}[a]\rho(t) + \frac{1}{\sqrt{2}}dW_2(t)\sqrt{\gamma}\mathcal{H}[-ia]\rho(t)$ $\mathscr{D}[A]\rho = A\rho A^{\dagger} - \frac{1}{2} \left(\rho A^{\dagger} A + A^{\dagger} A \rho \right)$ Lindblad term $\mathscr{H}[A]\rho = A\rho + \rho A^{\dagger} - \mathrm{Tr}\left[A\rho + \rho A^{\dagger}\right]\rho$ Nonlinear term result = smesolve(H, rho0, times, [], c_ops, e_ops, method='heterodyne') method = 'heterodyne' method = 'homodyne' method = 'photocurrent'