概率论选讲期末作业

正则条件概率的存在唯一性

Liyve

2025-06-23*

摘要 本作业探讨了正则条件概率的概念,重点关注其存在性与唯一性. [Röc16] 并未给出存在性与唯一性的证明,因此,严谨地补全这些证明成为本次作业的核心内容.

目录

1	則言	1
2	正则条件概率	2
3	正则条件概率的存在性	3
4	正则条件概率的唯一性	8
5	条件期望的积分表示	9
6	结语	10
致谢		10

1 前言

在上学期的 概率论(双语)学习过程中, **求是书院**的同学们使用教材 [李贤平 97] 学习概率 论. 该教材并未采用测度论的语言引入概率论,也没有涉及条件期望的概念. 然而,在本学期第二 周的 数理统计课程证明中,教材 [韦来生 15] 中出现了以条件概率积分形式给出的条件期望. 这让我猜测,教材 [韦来生 15] 中提到的条件期望,应该与我们上学期在 [Röc16] 中学习到的内容是一致的. 经过与同学们讨论,大家始终未能得出令人满意的结论. 直到第四周的 概率论选讲课程中,正则条件概率的概念被简要介绍,但 [Röc16] 认为该主题与后续课程内容关联不大,因而未作深入讨论. 因此,我决定将这一主题作为本次期末作业的研究重点.

^{*}最后更新于 2025-07-02.

2 正则条件概率 2

2 正则条件概率

在课上的讨论中, 我们注意到条件概率

$$P[A \mid \mathcal{A}_0] := \mathbb{E}[\mathbb{I}_A \mid \mathcal{A}_0]$$

在几乎处处意义下具有以下性质:

$$0 \le P[A \mid \mathcal{A}_0] \le 1$$

$$P[\emptyset \mid \mathcal{A}_0] = 0; \ P[\Omega \mid \mathcal{A}_0] = 1$$

对于两两无交的 $A_n, n \in \mathbb{N}$,

$$P[\bigcup_{n=1}^{\infty} A_n \mid \mathcal{A}_0] = \sum_{n=1}^{\infty} P[A_n \mid \mathcal{A}_0]$$

然而,这里的零测集依赖于每一个可测集 A,并不存在一个对所有 A 都适用的"通用"零测集,使得条件概率 $P[A \mid A_0]$ 对 A 成为一个概率测度.这促使我们寻求一种更精细的方式,以更强的意义刻画 $P[A \mid A_0]$.

定义 1(概率核) 设 (Ω, A) 和 (Ω', A') 是一对可测空间. 若函数 $K: \Omega \times A' \to [0, 1]$ 满足:

- 对于任意 $A' \in A'$, 映射 $\omega \mapsto K(\omega, A')$ 是 A-可测的;
- 对于任意 $\omega \in \Omega$, 映射 $A' \mapsto K(\omega, A')$ 是 (Ω', A') 上的概率测度.

则称 K 为概率核 (Probability Kernel).

为了获得理想的"条件概率", 我们需要在结构更良好的空间中进行工作, 在这样的空间里上述构造才能被严格地定义.

定义 2 (标准 Borel 空间) 如果可测空间 (Ω, A) 上存在一个完备度量 d, 使得 (Ω, d) 是可分度量空间, 并且 A 是由该拓扑生成的 Borel σ -代数, 则称 (Ω, A) 为标准 Borel 空间 (Standard Borel Space) .

命题 1 (正则条件概率) 参见 [Röc16, Proposition 5.4.3]

设 (Ω, A) 是标准 Borel 空间, P 是 (Ω, A) 上的概率测度. 则对于每个子 σ -代数 $A_0 \subseteq A$, 存在从 (Ω, A_0) 到 (Ω, A) 的概率核 K_{A_0} , 使得对所有 $A \in A$, 有:

$$K_{\mathcal{A}_0}(\omega, A) = P[A \mid \mathcal{A}_0](\omega)$$
 对 P -几乎处处的 $\omega \in \Omega$.

其中例外集可能依赖于 A.

若 \tilde{K}_{A_0} 也是从 (Ω, A_0) 到 (Ω, A) 的概率核, 并满足同样的性质, 则存在 P-零测集 $N \in A$, 使得对每个 $\omega \in \Omega \setminus N$ 及每个 $A \in A$, 有:

$$K_{A_0}(\omega, A) = \tilde{K}_{A_0}(\omega, A)$$
 对所有 $A \in \mathcal{A}$.

 $K_{A_0}(\omega, A)$ 被称为由 A_0 给定的正则条件概率.

3 正则条件概率的存在性

在给出证明之前, 我们先陈述并证明后续论证所需的一些引理和定理.

引理 1 (Doob-Dynkin 引理) 设 (Ω, \mathcal{A}, P) 是概率空间, $X: \Omega \to S$ 是从 Ω 到可测空间 (S, \mathcal{S}) 的可测函数. 如果 $f: \Omega \to \mathbb{R}$ 是 $\sigma(X)$ -可测的, 则存在可测函数 $g: S \to \mathbb{R}$, 使得 $f = g \circ X$ 几乎处处成立.

引理 1 的证明 设 $f: \Omega \to \mathbb{R}$ 是 $\sigma(X)$ -可测的, 其中 $X: \Omega \to S$ 可测.

第一步: $\sigma(X)$ 的结构

由 X 生成的 σ -代数为

$$\sigma(X) = \{X^{-1}(B) : B \in \mathcal{S}\}.$$

由于 $f \in \sigma(X)$ -可测的, 对于任意 Borel 集 $B \subseteq \mathbb{R}$, 有

$$f^{-1}(B) \in \sigma(X)$$
.

因此, 存在 $A_B \in \mathcal{S}$, 使得

$$f^{-1}(B) = X^{-1}(A_B).$$

这定义了一个从 \mathbb{R} 的 Borel 集到 \mathcal{S} 的映射 $B \mapsto A_B$. 为保证一致性, 该映射需保持集合运算(如 并、交、补), 这由 f^{-1} 和 X^{-1} 都是 σ -同态所保证.

第二步:用有理区间构造 g

定义 $q: S \to \mathbb{R}$. 对每个有理数 $r \in \mathbb{Q}$, 设

$$A_r = A_{(-\infty,r]} \in \mathcal{S},$$

其中 $A_{(-\infty,r]}$ 满足 $f^{-1}((-\infty,r]) = X^{-1}(A_r)$.

对 $s \in S$, 定义

$$g(s) = \inf\{r \in \mathbb{Q} : s \in A_r\}.$$

该下确界是良定义的, 因为:

- 对任意 $s \in S$, 由于 $f(\omega) \in \mathbb{R}$, 必有某个 $r \in \mathbb{Q}$ 使 $f(\omega) \leq r$, 从而 $X(\omega) \in A_r$.
- 集合 $\{r \in \mathbb{Q} : s \in A_r\}$ 有下界.

第三步: 验证 $f = g \circ X$ 几乎处处成立

对 $\omega \in \Omega$, 我们断言 $f(\omega) = g(X(\omega))$, 除了一个 P-零测集外.

- 若 $f(\omega) < r, r \in \mathbb{O}$:
 - $-f(\omega) \leq r$, \mathbb{M} $\omega \in f^{-1}((-\infty, r]) = X^{-1}(A_r)$, \mathbb{M} $X(\omega) \in A_r$, \mathcal{M} $g(X(\omega)) \leq r$.
 - 反之, 若 $X(\omega) \in A_r$, 则 $g(X(\omega)) \le r$, 即 $f(\omega) \le r$.
- 若 $f(\omega) > r, r \in \mathbb{Q}$:
 - $-f(\omega) > r$, \emptyset $\omega \notin f^{-1}((-\infty, r]) = X^{-1}(A_r)$, \emptyset $X(\omega) \notin A_r$, \emptyset $X(\omega) > r$.

因此, $g(X(\omega)) \leq f(\omega)$ 且 $g(X(\omega)) \geq f(\omega)$, 除了 $f(\omega) \neq g(X(\omega))$ 的零测集外. 由于 f 和 $g \circ X$ 都是可测的, 集合 $\{\omega : f(\omega) \neq g(X(\omega))\}$ 可测且测度为零.

第四步: g 的可测性

要证明 g 是 S-可测的, 对任意 $a \in \mathbb{R}$, 需有 $\{s \in S : g(s) \leq a\} \in S$.

a 为有理数时:

$$\{s \in S : g(s) \le a\} = \bigcap_{\substack{r \in \mathbb{Q} \\ r \le a}} A_r^c \cup A_a.$$

这由 g 的定义可得.

• a **为任意实数时:** 用递减有理数列 $\{r_n\}$ 逼近 a, 则

$${s \in S : g(s) \le a} = \bigcap_{n=1}^{\infty} A_{r_n}.$$

每个 $A_{r_n} \in \mathcal{S}$, 可数交仍在 \mathcal{S} 中.

因此, g 是 S-可测的.

第五步: 零测集上的唯一性

若 g' 也是满足 $f = g' \circ X$ 几乎处处的可测函数,则 $g(X(\omega)) = g'(X(\omega))$ 对 P-几乎处处 ω 成立. 由于 X 可测, $P_X = P \circ X^{-1}$, 故 g = g' 在 P_X -几乎处处成立.

综上, 构造了可测函数
$$g: S \to \mathbb{R}$$
, 使 $f = g \circ X$ 几乎处处成立, 证毕.

注记 Doob-Dynkin 引理说明, 任何 $\sigma(X)$ -可测函数 f 都可以表示为 $f = g \circ X$, 其中 g 是某个可测函数. 在正则条件概率的背景下, 这意味着条件期望 $\mathbb{E}[1_A \mid A_0]$ 作为 A_0 -可测函数, 可以表示为某个生成随机变量 η (如 $\eta(\omega) = \omega$)的函数. 这为构造核 $K_{A_0}(\omega, A)$ 提供了基础, 使其成为 ω 的可测函数, 并满足所需的性质.

定理 1 (Carathéodory 扩张定理) 设 \mathcal{C} 是集合 Ω 上的一个代数, $\mu_0: \mathcal{C} \to [0, \infty]$ 是一个可数可加的前测度(pre-measure). 则存在一个测度 μ , 定义在由 \mathcal{C} 生成的 σ -代数 $\mathcal{A} = \sigma(\mathcal{C})$ 上, 并且 $\mu|_{\mathcal{C}} = \mu_0$. 此外, 若 μ_0 是 σ -有限的, 则该扩张是唯一的.

定理 1 的证明 设 \mathcal{C} 是 Ω 上的一个集合代数, $\mu_0: \mathcal{C} \to [0,\infty]$ 是可数可加的前测度.

第一步: 外测度的构造

对任意 $E \subseteq \Omega$, 定义外测度 μ^* :

$$\mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu_0(C_n) : E \subseteq \bigcup_{n=1}^{\infty} C_n, C_n \in \mathcal{C} \right\}.$$

可验证 μ^* 满足外测度的三条性质:

- 单调性: 若 $A \subseteq B$, 则 B 的任意覆盖也是 A 的覆盖, 故 $\mu^*(A) \le \mu^*(B)$.
- **可列次可加性**: 对任意 $\{A_n\}$, 分别取 $\{C_{n,k}\}_{k=1}^{\infty}$ 覆盖 A_n 且 $\sum_{k=1}^{\infty} \mu_0(C_{n,k}) \leq \mu^*(A_n) + \epsilon/2^n$. 则 $\bigcup_{n,k} C_{n,k}$ 覆盖 $\bigcup_n A_n$, 且 $\sum_{n,k} \mu_0(C_{n,k}) \leq \sum_n \mu^*(A_n) + \epsilon$. 令 $\epsilon \to 0$ 得 $\mu^*(\bigcup_n A_n) \leq \sum_n \mu^*(A_n)$.
- **空集**: $\mu^*(\emptyset) = 0$, 因 $\emptyset \subseteq \emptyset$ 且 $\mu_0(\emptyset) = 0$.

第二步: Carathéodory 可测集

称 $A \subseteq \Omega$ 是 μ^* -可测的, 若对任意 $E \subseteq \Omega$,

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \setminus A).$$

记所有 μ^* -可测集为 A. 可证明 A 是 σ -代数:

- **对补封闭**: 若 $A \in \mathcal{A}$, 则 A^c 也满足同样条件.
- 对可列并封闭: 先对有限并用归纳法证明, 再对可列并用极限逼近.

第三步: 限制在 A 上是测度

将 $\mu = \mu^*|_{\mathcal{A}}$, 可验证其为测度:

- 对任意两两不交的 $\{A_n\} \subseteq A$, 由可列次可加性有 $\mu^*(\bigcup_n A_n) \leq \sum_n \mu^*(A_n)$.
- 反向不等式: 对有限并用 Carathéodory 条件递归证明 $\mu^*(\bigcup_{n=1}^N A_n) = \sum_{n=1}^N \mu^*(A_n)$, 再令 $N \to \infty$ 得可列可加性.

第四步:扩张性质

对 $C \in \mathcal{C}$, 需证 $C \neq \mu^*$ -可测集且 $\mu^*(C) = \mu_0(C)$:

- **可测性**: 对任意 $E \subseteq \Omega$, 设 $\{C_n\}$ 覆盖 E, 则 $C_n \cap C$, $C_n \setminus C \in \mathcal{C}$, 且 $\mu_0(C_n) = \mu_0(C_n \cap C) + \mu_0(C_n \setminus C)$. 两边求和得 $\sum_n \mu_0(C_n) \ge \mu^*(E \cap C) + \mu^*(E \setminus C)$, 对所有覆盖取下确界 得 $\mu^*(E) \ge \mu^*(E \cap C) + \mu^*(E \setminus C)$.
- 等式: 由定义 $\mu^*(C) \leq \mu_0(C)$. 反向不等式: 若 $C \subseteq \bigcup_n C_n$, 则 $\mu_0(C) \leq \sum_n \mu_0(C_n \cap C) \leq \sum_n \mu_0(C_n)$, 取下确界得 $\mu^*(C) \geq \mu_0(C)$.

第五步: 唯一性

若 μ_0 是 σ -有限的, 则扩张唯一. 设 ν 也是 A 上的测度且 $\nu|_{\mathcal{C}} = \mu_0$:

- 用 π-λ 定理:
 - C 是 π -系统(对有限交封闭).
 - 集合 $\{A \in \mathcal{A} : \mu(A) = \nu(A)\}$ 是 λ-系统.
 - $-\mu$ 与 ν 在 \mathcal{C} 上一致, 故在 $\sigma(\mathcal{C})$ 上一致.
- σ -有限性: $\Omega = \bigcup_n \Omega_n$, $\mu_0(\Omega_n) < \infty$. 对任意 $A \in \mathcal{A}$, $\mu(A \cap \Omega_n) = \nu(A \cap \Omega_n)$, 故 $\mu(A) = \lim_{n \to \infty} \mu(A \cap \Omega_n) = \nu(A)$.

注记 Carathéodory 扩张定理保证: 只要前测度在代数上是 σ -有限的, 就能唯一地将其扩张为生成的 σ -代数上的测度. 在正则条件概率存在性的证明中, 这一结论确保了定义在可数生成集 \mathcal{C} 上的有限可加映射 $f_A(\omega) = \mathbb{E}[1_A \mid \mathcal{A}_0](\omega)$ 能唯一扩张为 A 上的概率测度 $K_{\mathcal{A}_0}(\omega, \cdot)$. 这一步骤对于严谨构造正则条件概率核至关重要.

定理 2 [KK02, Theorem 6.3]

对于任意 Borel 空间 S 和可测空间 T, 设 ξ 和 η 分别为 S 和 T 中的随机元. 则存在从 T 到 S 的概率核 μ , 使得

$$\mathbb{P}[\xi \in \cdot \mid \eta] = \mu(\eta, \cdot)$$
 a.e. $\mathcal{L}(\eta)$,

且 μ 在 $\mathcal{L}(\eta)$ 几乎处处唯一.

定理 2 的证明 我们可以假设 $S \in \mathcal{B}(\mathbb{R})$. 对每个 $r \in \mathbb{Q}$, 可以选取某个可测函数 $f_r = f(\cdot,r): T \to [0,1]$, 使得

$$f(\eta, r) = \mathbb{P}[\xi \le r \mid \eta] \quad \text{a.e.,} \quad r \in \mathbb{Q}.$$
 (1)

令 A 为所有 $t \in T$ 使得 f(t,r) 关于 $r \in \mathbb{Q}$ 单调递增, 且在 $\pm \infty$ 处极限分别为 1 和 0 的集合. 由于 A 由可数个可测条件刻画, 且这些条件在 η 上几乎处处成立, 故 $A \in \mathcal{T}$ 且 $\eta \in A$ 几乎处处成立. 现在定义

$$F(t,x) = \mathbf{1}_A(t) \inf_{r>x} f(t,r) + \mathbf{1}_{A^c}(t) \mathbf{1}\{x \ge 0\}, \quad x \in \mathbb{R}, \ t \in T,$$

注意到对每个 $t \in T$, $F(t, \cdot)$ 是 \mathbb{R} 上的分布函数. 因此, 由命题 ~??, 存在概率测度 $m(t, \cdot)$ 使得

$$m(t, (-\infty, x]) = F(t, x), \quad x \in \mathbb{R}, \ t \in T.$$

对每个 x, F(t,x) 显然关于 t 可测, 通过单调类论证可得 m 是从 T 到 $\mathbb R$ 的概率核.

由式 1 及 \mathbb{E}^{η} 的单调收敛性质, 有

$$m(\eta, (-\infty, x]) = F(\eta, x) = \mathbb{P}[\xi \le x \mid \eta]$$
 a.e., $x \in \mathbb{R}$.

利用单调类论证和几乎处处的单调收敛性质,可将上述关系推广为

$$m(\eta, B) = \mathbb{P}[\xi \in B \mid \eta] \quad \text{a.e.,} \quad B \in \mathcal{B}(\mathbb{R}).$$
 (2)

特别地, $m(\eta, S^c) = 0$ 几乎处处成立, 因此在 $S = \mathcal{B} \cap S$ 上, 今

$$\mu(t,\cdot) = m(t,\cdot)\mathbf{1}\{m(t,S) = 1\} + \delta_s\mathbf{1}\{m(t,S) < 1\}, \quad t \in T,$$

其中 $s \in S$ 任取, 则式 2 对 μ 依然成立. 如果 μ' 是另一个满足条件的核, 则有

$$\mu(\eta, (-\infty, r]) = \mathbb{P}[\xi \le r \mid \eta] = \mu'(\eta, (-\infty, r])$$
 a.e., $r \in \mathbb{Q}$,

再由单调类论证可得 $\mu(\eta,\cdot) = \mu'(\eta,\cdot)$ 几乎处处成立.

正则条件概率存在性的证明 设 (Ω, A) 是标准 Borel 空间, P 是其上的概率测度, $A_0 \subseteq A$ 是子 σ -代数.

第一步: 可数生成集与条件期望

由于 (Ω, A) 是标准 Borel 空间, 存在使 A 成为 Borel σ -代数的 Polish 拓扑. 标准 Borel 空间的一个重要性质是: 对任意子 σ -代数, 概率测度都存在正则条件概率.

取 \mathcal{C} 为生成 \mathcal{A} 的可数 π -系统. 对每个 $A \in \mathcal{C}$, 条件期望 $\mathbb{E}[1_A \mid \mathcal{A}_0]$ 存在且为 \mathcal{A}_0 -可测函数, P-几乎处处唯一. 由 Doob-Dynkin 引理 (见引理 1), 对每个 $A \in \mathcal{C}$, 存在可测函数 $f_A : \Omega \to [0,1]$, 使得

$$\mathbb{E}[1_A \mid \mathcal{A}_0] = f_A \circ \eta$$
 几乎处处,

其中 η 是生成 A_0 的可测函数 (如 $\eta(\omega) = \omega$).

第二步:通过扩张构造概率核

对每个固定 $\omega \in \Omega$, 定义 $f_A(\omega)$, $A \in \mathcal{C}$. 映射 $A \mapsto f_A(\omega)$ 满足:

- 有限可加性: 若 $A_1, A_2 \in \mathcal{C}$ 且互不相交,则 $f_{A_1 \cup A_2}(\omega) = f_{A_1}(\omega) + f_{A_2}(\omega)$;
- 非负性: $f_A(\omega) \ge 0$;
- 归一性: $f_{\Omega}(\omega) = 1$.

要将 $f_A(\omega)$ 扩张为 (Ω, A) 上的概率测度,可用 Carathéodory 扩张定理(见定理 1). 由于 \mathcal{C} 是 π -系统,若 $f_A(\omega)$ 在 \mathcal{C} 上可数可加,则扩张唯一. 这可由主导收敛定理和 \mathcal{C} 生成 \mathcal{A} 得到.

因此, 对 P-几乎处处的 ω , 存在唯一的概率测度 $K_{A_0}(\omega, \cdot)$, 使得

$$K_{\mathcal{A}_0}(\omega, A) = f_A(\omega), \quad \forall A \in \mathcal{C}.$$

第三步: 概率核的可测性

对每个 $A \in \mathcal{A}$, 映射 $\omega \mapsto K_{\mathcal{A}_0}(\omega, A)$ 需为 \mathcal{A}_0 -可测. 由于 \mathcal{C} 生成 \mathcal{A} , 可用 π - λ 定理: - 设 $\mathcal{L} = \{A \in \mathcal{A} : K_{\mathcal{A}_0}(\cdot, A) \ \mathcal{E} \mathcal{A}_0$ -可测}; - \mathcal{L} 是包含 \mathcal{C} 的 λ -系统, 故 $\mathcal{L} = \mathcal{A}$.

第四步: 联合可测性

由定理 2, 存在从 A_0 到 A 的概率核 μ , 使得

$$\mathbb{P}[\xi \in \cdot \mid \eta] = \mu(\eta, \cdot)$$
 几乎处处,

其中 ξ, η 是 Ω 上的随机元. 此处 $\mu(\eta(\omega), A) = K_{\mathcal{A}_0}(\omega, A), P$ -几乎处处成立. $(\omega, A) \mapsto K_{\mathcal{A}_0}(\omega, A)$ 的联合可测性由可数生成集 \mathcal{C} 的构造和 μ 的唯一性保证.

第五步:条件概率的验证

对所有 $A \in \mathcal{A}$, $K_{\mathcal{A}_0}(\omega, A)$ 满足:

- **可测性**: $K_{A_0}(\cdot, A)$ 是 A_0 -可测;
- 积分公式: 对任意 $B \in A_0$,

$$\int_{B} K_{\mathcal{A}_{0}}(\omega, A) dP(\omega) = P(A \cap B).$$

该式对 $A \in \mathcal{C}$ 成立, 由 π - λ 定理推广到所有 $A \in \mathcal{A}$.

因此, K_{A_0} 是正则条件概率核.

参见 [BR07] 和 [KK02].

因此, 在标准 Borel 空间中, 对于任意子 σ -代数 A_0 , 正则条件概率总是存在的.

注记 标准 Borel 空间的假设是至关重要的. 对于一般的可测空间, 正则条件概率可能并不存在.

4 正则条件概率的唯一性

正则条件概率在 P-零测集意义下是唯一的. 即, 如果 K_{A_0} 和 \tilde{K}_{A_0} 都是关于 A_0 的正则条件概率, 则存在 P-零测集 N, 使得对所有 $\omega \notin N$ 及所有 $A \in A$,

$$K_{\mathcal{A}_0}(\omega, A) = \tilde{K}_{\mathcal{A}_0}(\omega, A).$$

这意味着正则条件概率在本质上是唯一的:任意两个版本在概率为零的集合之外都一致.

正则条件概率唯一性的证明 设 K_{A_0} 和 \tilde{K}_{A_0} 是关于 A_0 的两个正则条件概率. 对每个 $A \in A$, 定义

$$N_A = \{ \omega \in \Omega : K_{\mathcal{A}_0}(\omega, A) \neq \tilde{K}_{\mathcal{A}_0}(\omega, A) \}.$$

第一步: 可数生成集上的零测集

由正则条件概率的定义, $K_{A_0}(\cdot,A)$ 和 $\tilde{K}_{A_0}(\cdot,A)$ 都是 $\mathbb{E}[1_A\mid A_0]$ 的版本, 因此 P-几乎处处相等, 即 $P(N_A)=0$.

由于 A 是标准 Borel, 存在可数 π -系统 C 生成 A. 定义

$$N = \bigcup_{A \in \mathcal{C}} N_A.$$

 \mathcal{C} 可数, N 是可数个 P-零测集的并, 故 P(N) = 0.

第二步: π - λ 定理推广到整个 σ -代数

对任意 $\omega \notin N$, 定义

$$\mathcal{D}_{\omega} = \{ A \in \mathcal{A} : K_{\mathcal{A}_0}(\omega, A) = \tilde{K}_{\mathcal{A}_0}(\omega, A) \}.$$

 \mathcal{D}_{ω} 是包含 \mathcal{C} 的 λ -系统:

- 包含全集: $K_{\mathcal{A}_0}(\omega,\Omega)=1=\tilde{K}_{\mathcal{A}_0}(\omega,\Omega)$, 故 $\Omega\in\mathcal{D}_{\omega}$.
- 对可列不交并封闭: 若 $A_n \in \mathcal{D}_{\omega}$ 两两不交, 则

$$K_{\mathcal{A}_0}\left(\omega,\bigcup_{n=1}^{\infty}A_n\right)=\sum_{n=1}^{\infty}K_{\mathcal{A}_0}(\omega,A_n)=\sum_{n=1}^{\infty}\tilde{K}_{\mathcal{A}_0}(\omega,A_n)=\tilde{K}_{\mathcal{A}_0}\left(\omega,\bigcup_{n=1}^{\infty}A_n\right).$$

对补集封闭: 若 A ∈ Dω, 则

$$K_{\mathcal{A}_0}(\omega, A^c) = 1 - K_{\mathcal{A}_0}(\omega, A) = 1 - \tilde{K}_{\mathcal{A}_0}(\omega, A) = \tilde{K}_{\mathcal{A}_0}(\omega, A^c).$$

由于 $\mathcal{C} \subseteq \mathcal{D}_{\omega}$ 且 \mathcal{C} 是 π -系统, π - λ 定理得 $\mathcal{A} \subseteq \mathcal{D}_{\omega}$. 因此对所有 $\omega \notin N$ 及 $A \in \mathcal{A}$, 有 $K_{\mathcal{A}_0}(\omega, A) = \tilde{K}_{\mathcal{A}_0}(\omega, A)$.

$$N \neq P$$
-零测集, 故正则条件概率在 P -几乎处处唯一.

注记 这一唯一性性质确保,尽管正则条件概率在每一点上未必唯一,但任意两个版本在P-几乎处处都一致.

5 条件期望的积分表示

至此,我们已经证明了条件概率可以提升为更精细的版本(即正则条件概率),它本身是一个概率测度.这使得我们可以以它为测度定义积分.

接下来, 我们将证明: 以正则条件概率为测度的积分运算, 恰好与条件期望一致.

定理 3(条件期望的积分表示) 设 (Ω, A, P) 是一个概率空间, $A_0 \subseteq A$ 是一个子 σ -代数, $K(\omega, A)$ 是一个概率核, 满足 $K(\omega, A) = \mathbb{E}[1_A \mid A_0](\omega)$ 即是说, 对于所有 $A \in A$. 那么对于所有可积随机变量 X, 它的条件期望满足:

$$\mathbb{E}[X \mid \mathcal{A}_0](\omega) = \int_{\Omega} X(\omega') K(\omega, d\omega') \quad \text{a.e. } P.$$

定理 3的证明

第一步: 示性函数

设 $X = 1_A$ 关于 $A \in A$. 由正则条件概率的定义有:

$$\mathbb{E}[1_A \mid \mathcal{A}_0](\omega) = K(\omega, A) = \int_{\Omega} 1_A(\omega') K(\omega, d\omega') \quad \text{a.e. } P.$$

第二步: 简单函数

设 $X = \sum_{i=1}^{n} a_i 1_{A_i}$ 关于 $A_i \in \mathcal{A}, a_i \in \mathbb{R}$. 由条件期望与积分的线性性有:

$$\mathbb{E}[X \mid \mathcal{A}_0](\omega) = \sum_{i=1}^n a_i \mathbb{E}[1_{A_i} \mid \mathcal{A}_0](\omega) = \sum_{i=1}^n a_i \int_{\Omega} 1_{A_i}(\omega') K(\omega, d\omega') = \int_{\Omega} X(\omega') K(\omega, d\omega').$$

第三步: 非负可积函数

设 $X \ge 0$ 是可测函数. 取简单函数单调列 $X_n \uparrow X$. 由 Levi 单调收敛定理:

- $\mathbb{E}[X_n \mid \mathcal{A}_0] \uparrow \mathbb{E}[X \mid \mathcal{A}_0]$ a.e.
- $\int X_n K(\omega, d\omega') \uparrow \int XK(\omega, d\omega')$.

因此:

$$\mathbb{E}[X \mid \mathcal{A}_0](\omega) = \lim_{n \to \infty} \mathbb{E}[X_n \mid \mathcal{A}_0](\omega) = \lim_{n \to \infty} \int X_n K(\omega, d\omega') = \int X K(\omega, d\omega') \quad \text{a.e. } P.$$

第四步:一般可积函数

对于任意可积函数 X, 可分解为 $X = X^+ - X^-$ 其中 $X^{\pm} \ge 0$. 由第三步:

$$\mathbb{E}[X \mid \mathcal{A}_0] = \mathbb{E}[X^+ \mid \mathcal{A}_0] - \mathbb{E}[X^- \mid \mathcal{A}_0] = \int X^+ K(\omega, d\omega') - \int X^- K(\omega, d\omega') = \int XK(\omega, d\omega') \quad \text{a.e. } P.$$

Step 5: 可测性与唯一性

- **可测性**: 根据概率核 K 的构造, 积分 $\int XK(\omega, d\omega')$ 是 A_0 -可测的.
- **唯一性**: 正则条件概率是一致的在 P-几乎处处的意义下, 确保了积分表示也是几乎处处一致的.

6 结语 10

6 结语

通过本次作业的研究,我们系统梳理了 Regular Conditional Probability 的构造逻辑,并严格证明了其在标准 Borel 空间下的存在性与唯一性. 这一结果表明,在满足良好拓扑结构的测度空间中,条件概率可以被提升为一个关于样本点 ω 的概率测度核 $K_{A_0}(\omega,A)$,从而避免了传统条件概率定义中因依赖于事件 A 而导致的" 零测集选取问题". 这一结论为条件期望的积分表示提供了严格的数学基础.

然而,正则条件概率的构造对空间的结构性质具有强依赖性. 若放宽至一般可测空间,此类核的存在性可能失效.

致谢

衷心感谢朱蓉禅老师在本学期《概率论选讲》课程中的指导. 感谢刘晨浩同学与宋柯师姐在课外学习提供的帮助. 同时也感谢大三强基计划的钟星宇学长与我共同探究"不同版本的教材中条件概率与条件期望是否一致", 促使我深入思考正则化条件概率的必要性. 此外, 感谢钟星宇学长的开源排版工具SunQuarTex, 使本文档的排版得以高效完成.

参考文献

- [BR07] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. *Measure theory*. Vol. 1. 1. Springer, 2007.
- [KK02] Olav Kallenberg and Olav Kallenberg. Foundations of modern probability. Vol. 2. Springer, 2002.
- [Röc16] Michael Röckner. "Probability Theory I and II". Unpublished lecture notes for Probability Theory I and II, Universit" atBielefeld, 2016. 2016.
- [李贤平 97] 李贤平. 概率论基础. 高等教育出版社, 1997.
- [韦来生 15] 韦来生. 数理统计. 科学出版社, 2015.