Metaheuristic Lesson: Genetic Algorithm - VRP (Vehicle Routing Problem)

Method ·	August 2021	
DOI: 10.1314)/RG.2.2.35098.98248	
CITATIONS 0		READS 456
1 author		
	Valdecy Pereira Universidade Federal Fluminense 185 PUBLICATIONS 754 CITATIONS	
	SEE PROFILE	

UNIVERSIDADE FEDERAL FLUMINENSE

Metaheuristics

Lesson: Genetic Algorithm - VRP (Vehicle Routing Problem)

Professor: Valdecy Pereira, D. Sc.

email: valdecy.pereira@gmail.com

Outline

1. Genetic Algorithm
2. Initialization
3. Selection
4. Crossover
5. Mutation
6. Elitism
7. Github

The GA (Genetic Algorithm) is a metaheuristic inspired by the process of natural selection that is used for solving optimization problems. The GA selects the fittest individuals (solutions) that are used for reproduction in order to produce offspring (usually a better solution) for the next generation. John Henry Holland (February 2, 1929 – August 9, 2015) was the father of the GA and popularized this term in his paper published in 1973, entitled "Genetic Algorithms and the Optimal Allocation of Trials".

The **GA** (**Genetic Algorithm**) can be understood as a search and optimization technique, inspired by the Darwinian principle of the evolution of species and genetics. It can find the global optimum solution or local optimum solutions depending on the initial setup and parameter calibration.

The **GA** creates an abstract representations (**chromosome** or **genome**) of a candidate solution (**individual**). Traditionally, solutions are encoded in a binary form, but other encodings are also possible. To solve an optimization problem, initially a random set of candidate solutions are created (**population**), and them it evolves towards a better solution using genetic operators called **crossover** and **mutation** to create a **new population**.

The **GA** represents an iterative process, where each iteration is called a **generation**. Then, evaluating the **fitness** of each **individual**, we can select a pair for breeding that will generate an **offspring**. To create the **offspring**, the **crossover** operator exchanges parts of the pair of **chromosomes**, and the **mutation** operator changes the **gene** value in some randomly chosen location of the **offspring chromosome**. This process is repeated until the new **population** has enough members, ending the current **generation**. A common practice is to terminate a **GA** after a specified number of **generations**.

The best solution (elite) of a generation can be stored and then given to next generation, this optional process is called elitism.

5

GA Pseudocode

```
Randomly initialize the first Population (i = 0)

Set \eta (Population size) and k (number of generations)

for (i = 1; i = k; i++) do

Add the Elite as a member of the Population i (Optional)

while card(Population i) < \eta do

Evaluate the Fitness of all Individuals the Population i-1

Using the Fitness from the Population i-1, select any two Individuals to breed Create one Offspring using the genetic operators Crossover and Mutation

Add the Offspring as a member of the Population i
```

Suppose that we want to minimize the following CVRP (Capacitated Vehicle Routing Problem), where each vehicle capacity is equal to 250. Infeasible solutions are penalized with a value equal to 1000 for each violation.

1a	X	\mathbf{y}	Demand
Depot	70	70	-//-
Client 1	20	10	50
Client 2	140	30	60
Client 3	90	70	50
Client 4	130	70	40
Client 5	130	140	250

	Depot	Client 1	Client 2	Client 3	Client 4	Client 5
Depot	0	78.10	80.62	20.00	60.00	92.20
Client 1	78.10	0	121.66	92.20	125.30	170.29
Client 2	80.62	121.66	0	64.03	41.23	110.45
Client 3	20.00	92.20	64.03	0	40.00	80.62
Client 4	60.00	125.30	41.23	40.00	0	70.00
Client 5	92.20	170.29	110.45	80.62	70.00	0

150													C	25		
140																
130														L 		
120														L 		
110														 		
100														 		
90																
80							1		C	23			C	4		
70								H						1		
60														 		
50														 		
40														C	22	
30																
20		C	1											 		
10														L 	L	
0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	

Individual 1 Encoding a Solution

Route 1:

$$0 - 3 - 1 - 4 - 0$$

150													C	25		
140																
130													L	L		
120				 									 	 		
110				 									 	 		
100				 									 	 		
90		i 				 								 		
80				<u> </u>		 			С	23			C	4		
70				 				1 1 🖚								
60				 										 		
50				i 		 			 				 	i - - -		
40				 									 	C	2	
30									 				 			
20		C :	1										 	! ! ! ! ! !		
													 	i 		
10																
0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	

Route 2:

$$0 - 2 - 5 - 0$$

150													C	25		-
140											 					-
130				 												-
120																-
110																-
100																-
90																-
80								_	→ //	23	 		C	4		-
70											 					-
60															+	-
50				 											†	-
40											 			C	22	-
30											 					-
20		C	1					 						L - - - - -		-
10																-
0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	-

Route 1:
$$0 - 3 - 1 - 4 - 0$$

Route 2:
$$0 - 2 - 5 - 0$$

	Depot	Client 1	Client 2	Client 3	Client 4	Client 5
Depot	0	78.10	80.62	20.00	60.00	92.20
Client 1	78.10	0	121.66	92.20	125.30	170.29
Client 2	80.62	121.66	0	64.03	41.23	110.45
Client 3	20.00	92.20	64.03	0	40.00	80.62
Client 4	60.00	125.30	41.23	40.00	0	70.00
Client 5	92.20	170.29	110.45	80.62	70.00	0

Load =
$$50 + 50 + 40 = 140$$

Route 1: 0 - 3 - 1 - 4 - 0

Route 2: 0 - 2 - 5 - 0

Id	Demand
Client 1	50
Client 2	60
Client 3	50
Client 4	40
Client 5	250

	Depot	Client 1	Client 2	Client 3	Client 4	Client 5
Depot	0	78.10	80.62	20.00	60.00	92.20
Client 1	78.10	0	121.66	92.20	125.30	170.29
Client 2	80.62	121.66	0	64.03	41.23	110.45
Client 3	20.00	92.20	64.03	0	40.00	80.62
Client 4	60.00	125.30	41.23	40.00	0	70.00
Client 5	92.20	170.29	110.45	80.62	70.00	0

$$Load = 140$$

Route 1:
$$0 - 3 - 1 - 4 - 0$$

Route 2:
$$0 - 2 - 5 - 0$$

	Depot	Client 1	Client 2	Client 3	Client 4	Client 5
Depot	0	78.10	80.62	20.00	60.00	92.20
Client 1	78.10	0	121.66	92.20	125.30	170.29
Client 2	80.62	121.66	0	64.03	41.23	110.45
Client 3	20.00	92.20	64.03	0	40.00	80.62
Client 4	60.00	125.30	41.23	40.00	0	70.00
Client 5	92.20	170.29	110.45	80.62	70.00	0

Cost = 20

$$Load = 140$$

Route 1:
$$0 - 3 - 1 - 4 - 0$$

$$Cost = 20 + 92.20$$

Route 2:
$$0 - 2 - 5 - 0$$

	Depot	Client 1	Client 2	Client 3	Client 4	Client 5
Depot	0	78.10	80.62	20.00	60.00	92.20
Client 1	78.10	0	121.66	92.20	125.30	170.29
Client 2	80.62	121.66	0	64.03	41.23	110.45
Client 3	20.00	92.20	64.03	0	40.00	80.62
Client 4	60.00	125.30	41.23	40.00	0	70.00
Client 5	92.20	170.29	110.45	80.62	70.00	0

$$Load = 140$$

Route 1:
$$0 - 3 - 1 - 4 - 0$$

$$Cost = 20 + 92.20 + 125.30$$

Route 2:
$$0 - 2 - 5 - 0$$

	Depot	Client 1	Client 2	Client 3	Client 4	Client 5
Depot	0	78.10	80.62	20.00	60.00	92.20
Client 1	78.10	0	121.66	92.20	125.30	170.29
Client 2	80.62	121.66	0	64.03	41.23	110.45
Client 3	20.00	92.20	64.03	0	40.00	80.62
Client 4	60.00	125.30	41.23	40.00	0	70.00
Client 5	92.20	170.29	110.45	80.62	70.00	0

$$Load = 140$$

Route 1:
$$0 - 3 - 1 - 4 - 0$$

$$Cost = 20 + 92.20 + 125.30 + 60$$

Route 2:
$$0 - 2 - 5 - 0$$

	Depot	Client 1	Client 2	Client 3	Client 4	Client 5
Depot	0	78.10	80.62	20.00	60.00	92.20
Client 1	78.10	0	121.66	92.20	125.30	170.29
Client 2	80.62	121.66	0	64.03	41.23	110.45
Client 3	20.00	92.20	64.03	0	40.00	80.62
Client 4	60.00	125.30	41.23	40.00	0	70.00
Client 5	92.20	170.29	110.45	80.62	70.00	0

$$Load = 140$$

Route 1: 0 - 3 - 1 - 4 - 0

Cost = 20 + 92.20 + 125.30 + 60 = 297.50

Route 2: 0 - 2 - 5 - 0

	Depot	Client 1	Client 2	Client 3	Client 4	Client 5
Depot	0	78.10	80.62	20.00	60.00	92.20
Client 1	78.10	0	121.66	92.20	125.30	170.29
Client 2	80.62	121.66	0	64.03	41.23	110.45
Client 3	20.00	92.20	64.03	0	40.00	80.62
Client 4	60.00	125.30	41.23	40.00	0	70.00
Client 5	92.20	170.29	110.45	80.62	70.00	0

$$Load = 140$$

Route 1:
$$0 - 3 - 1 - 4 - 0$$

$$Cost = 297.50$$

Route 2: 0 - 2 - 5 - 0

Load = 60 + 250 = 310

Id	Demand
Client 1	50
Client 2	60
Client 3	50
Client 4	40
Client 5	250

	Depot	Client 1	Client 2	Client 3	Client 4	Client 5
Depot	0	78.10	80.62	20.00	60.00	92.20
Client 1	78.10	0	121.66	92.20	125.30	170.29
Client 2	80.62	121.66	0	64.03	41.23	110.45
Client 3	20.00	92.20	64.03	0	40.00	80.62
Client 4	60.00	125.30	41.23	40.00	0	70.00
Client 5	92.20	170.29	110.45	80.62	70.00	0

$$Load = 140$$

Route 1:
$$0 - 3 - 1 - 4 - 0$$

$$Cost = 297.50$$

Route 2:
$$0 - 2 - 5 - 0$$

$$Cost = 1000$$

Penalty Value for violating the vehicle maximum capacity constraint (250)

	Depot	Client 1	Client 2	Client 3	Client 4	Client 5
Depot	0	78.10	80.62	20.00	60.00	92.20
Client 1	78.10	0	121.66	92.20	125.30	170.29
Client 2	80.62	121.66	0	64.03	41.23	110.45
Client 3	20.00	92.20	64.03	0	40.00	80.62
Client 4	60.00	125.30	41.23	40.00	0	70.00
Client 5	92.20	170.29	110.45	80.62	70.00	0

$$Load = 140$$

Route 1:
$$0 - 3 - 1 - 4 - 0$$

Route 2:
$$0 - 2 - 5 - 0$$

Cost = 1000

Cost = 297.50

$$Load = 310$$

	Depot	Client 1	Client 2	Client 3	Client 4	Client 5
Depot	0	78.10	80.62	20.00	60.00	92.20
Client 1	78.10	0	121.66	92.20	125.30	170.29
Client 2	80.62	121.66	0	64.03	41.23	110.45
Client 3	20.00	92.20	64.03	0	40.00	80.62
Client 4	60.00	125.30	41.23	40.00	0	70.00
Client 5	92.20	170.29	110.45	80.62	70.00	0

$$Load = 140$$

Route 1:
$$0 - 3 - 1 - 4 - 0$$
 Cost = 297.50

Route 2:
$$0 - 2 - 5 - 0$$
 $Cost = 1000 + 80.62$

	Depot	Client 1	Client 2	Client 3	Client 4	Client 5
Depot	0	78.10	80.62	20.00	60.00	92.20
Client 1	78.10	0	121.66	92.20	125.30	170.29
Client 2	80.62	121.66	0	64.03	41.23	110.45
Client 3	20.00	92.20	64.03	0	40.00	80.62
Client 4	60.00	125.30	41.23	40.00	0	70.00
Client 5	92.20	170.29	110.45	80.62	70.00	0

$$Load = 140$$

Route 1:
$$0 - 3 - 1 - 4 - 0$$
 Cost = 297.50

	Depot	Client 1	Client 2	Client 3	Client 4	Client 5
Depot	0	78.10	80.62	20.00	60.00	92.20
Client 1	78.10	0	121.66	92.20	125.30	170.29
Client 2	80.62	121.66	0	64.03	41.23	110.45
Client 3	20.00	92.20	64.03	0	40.00	80.62
Client 4	60.00	125.30	41.23	40.00	0	70.00
Client 5	92.20	170.29	110.45	80.62	70.00	0

$$Load = 140$$

Route 1:
$$0 - 3 - 1 - 4 - 0$$
 Cost = 297.50

Route 2:
$$0 - 2 - 5 - 0$$

$$Cost = \frac{1000}{1000} + 80.62 + 110.42 + 92.20$$

	Depot	Client 1	Client 2	Client 3	Client 4	Client 5
Depot	0	78.10	80.62	20.00	60.00	92.20
Client 1	78.10	0	121.66	92.20	125.30	170.29
Client 2	80.62	121.66	0	64.03	41.23	110.45
Client 3	20.00	92.20	64.03	0	40.00	80.62
Client 4	60.00	125.30	41.23	40.00	0	70.00
Client 5	92.20	170.29	110.45	80.62	70.00	0

$$Load = 140$$

Route 1:
$$0 - 3 - 1 - 4 - 0$$

$$-0$$
 Cost = 297.50

Route 2:
$$0 - 2 - 5 - 0$$

$$Cost = \frac{1000}{1000} + 80.62 + 110.42 + 92.20 = 1283.24$$

T1		7	1 A
Load	=	≺ .	1 ()
Louu		J	10

	Depot	Client 1	Client 2	Client 3	Client 4	Client 5
Depot	0	78.10	80.62	20.00	60.00	92.20
Client 1	78.10	0	121.66	92.20	125.30	170.29
Client 2	80.62	121.66	0	64.03	41.23	110.45
Client 3	20.00	92.20	64.03	0	40.00	80.62
Client 4	60.00	125.30	41.23	40.00	0	70.00
Client 5	92.20	170.29	110.45	80.62	70.00	0

Route 1:
$$0 - 3 - 1 - 4 - 0$$

$$Cost = 297.50$$

Route 2:
$$0 - 2 - 5 - 0$$

$$Cost = 1283.24$$

Total Cost =
$$297.50 + 1283.24 = 1580.74 \text{ km}$$

	Depot	Client 1	Client 2	Client 3	Client 4	Client 5	
Depot	0	78.10	80.62	20.00	60.00	92.20	
Client 1	78.10	0	121.66	92.20	125.30	170.29	
Client 2	80.62	121.66	0	64.03	41.23	110.45	
Client 3	20.00	92.20	64.03	0	40.00	80.62	
Client 4	60.00	125.30	41.23	40.00	0	70.00	
Client 5	92.20	170.29	110.45	80.62	70.00	0	

De	Depot	Client	Client	Client	Depot	Client	Client	Depot
Individual 1	0	3	1	4	0	2	5	0

	Depot	Client	Client	Client	Depot	Client	Client	Depot		
ndividual 1	0	3	1	4	0	2	5	0		
									•	
	Depot	Client	Client	Depot	Client	Depot	Client	Client	Depot	
	_			_		_			_	
Individual 2	0	3	1	0	5	0	4	2	0	

	Depot	Client	Client	Client	Depot	Client	Client	Depot		Cost
Individual 1	0	3	1	4	0	2	5	0		1580.
	Depot	Client	Client	Depot	Client	Depot	Client	Client	Depot	Cos
Individual 2	0	3	1	0	5	0	4	2	0	556.5

	Depot	Client	Client	Client	Depot	Client	Client	Depot		(
Individual 1	0	3	1	4	0	2	5	0		15
	Depot	Client	Client	Depot	Client	Depot	Client	Client	Depot	
Individual 2	0	3	1	0	5	0	4	2	0	55
	Depot	Client	Client	Depot	Client	Depot	Client	Client	Depot	
Individual 3	0	2	3	0	4	0	1	5	0	

	Depot	Client	Client	Client	Depot	Client	Client	Depot		C
Individual 1	0	3	1	4	0	2	5	0		158
	Depot	Client	Client	Depot	Client	Depot	Client	Client	Depot	
Individual 2	0	3	1	0	5	0	4	2	0	55
	Depot	Client	Client	Depot	Client	Depot	Client	Client	Depot	(
Individual 3	0	2	3	0	4	0	1	5	0	162

Penalty Value

	Depot	Client	Client	Client	Depot	Client	Client	Depot			Cost
Individual 1	0	3	1	4	0	2	5	0			1580.74
	Depot	Client	Client	Depot	Client	Depot	Client	Client	Depot		Cost
Individual 2	0	3	1	0	5	0	4	2	0		556.54
	Depot	Client	Client	Depot	Client	Depot	Client	Client	Depot		Cost
Individual 3	0	2	3	0	4	0	1	5	0		1625.25
	Depot	Client	Depot	Client	Depot	Client	Depot	Client	Client	Depot	Cost
Individual 4	0	4	0	3	0	1	0	2	5	0	

150						 							C	5	
140															
130						 									
120															
110															
100						i	i								
90						†									
80						 			C	3			C	4	
70						/	/ 8								
60															
50							 								
40						†								C	22
30						 	 								
20		C	1				!							L	
10						 									
0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150

	Depot	Client	Client	Client	Depot	Client	Client	Depot			Cost
Individual 1	0	3	1	4	0	2	5	0			1580.74
	Depot	Client	Client	Depot	Client	Depot	Client	Client	Depot		Cost
Individual 2	0	3	1	0	5	0	4	2	0		556.54
	Depot	Client	Client	Depot	Client	Depot	Client	Client	Depot		Cost
Individual 3	0	2	3	0	4	0	1	5	0		1625.25
	Depot	Client	Depot	Client	Depot	Client	Depot	Client	Client	Depot	Cost
Individual 4	0	4	0	3	0	1	0	2	5	0	1599.48

Penalty Value

Initialization

In the first **generation**, the **population** size depends on the nature of the problem, but a common approach is to have a **population** size with hundreds of **individuals**. Traditionally, this **population** is generated randomly, but it can start with any set of solutions.

For each successive **generation**, the fitter **individuals** (solutions with the best **fitness** values) are typically more likely to be selected to breed to form the **new population**. A small proportion of less fit **individuals** can also be selected to breed, helping keep the diversity of the **population**, preventing premature convergence on poor solutions.

A popular and well-studied selection method, called **Roulette Wheel Selection**, can be performed to make selections of **individuals** in a way that is directly proportionate to their **fitness**.

Each pair can generate one or more **offspring**, however as a good practice, different pairs should be used to generate the **new population**.

Roulette Wheel Selection – Step 1. Take from each **individual** the **fitness** value. For maximization problems, use the **fitness** values without modifications, for minimization problems go to Step 1b.

	Cost
Individual 1	1580.74
Individual 2	556.54
Individual 3	1625.25
Individual 4	1599.48

Roulette Wheel Selection – Step 1b. Use the inverse formula to transform a minimization problem into a maximization problem.

$$inverse = \frac{1}{1 + Cost + |\min(Cost)|}$$

Cost

Individual **1** 1580.74

Individual 2 556.54

Individual **3** 1625.25

Individual **4** 1599.48

$$inverse = \frac{1}{1 + Cost + |\min(Cost)|}$$

	Cost	inverse
Individual 1	1580.74	
Individual 2	556.54	
Individual 3	1625.25	
Individual 4	1599.48	

$$inverse = \frac{1}{1 + Cost + |\min(Cost)|}$$

$$inverse = \frac{1}{1 + Cost + |\min(Cost)|}$$

	Cost	inverse
Individual 1	1580.74	4.68
Individual 2	556.54	8.98
Individual 3	1625.25	4.58
Individual 4	1599.48	4.64

	Cost	inverse	acc.
Individual 1	1580.74	4.68	
Individual 2	556.54	8.98	
Individual 3	1625.25	4.58	
Individual 4	1599.48	4.64	

	Cost	inverse	acc.
Individual 1	1580.74	4.68	4.68
Individual 2	556.54	8.98	13.66
Individual 3	1625.25	4.58	18.24
Individual 4	1599.48	4.64	22.88

	Cost	inverse	acc.
Individual 1	1580.74	4.68	4.68
Individual 2	556.54	8.98	13.66
Individual 3	1625.25	4.58	18.24
Individual 4	1599.48	4.64	22.88
	Sum	22.88	

	Cost	inverse	acc.	%
Individual 1	1580.74	4.68	4.68	
Individual 2	556.54	8.98	13.66	
Individual 3	1625.25	4.58	18.24	
Individual 4	1599.48	4.64	22.88	
	Sum	22.88		

Roulette Wheel Selection – Step 3. Divide each value of the acc. column by the sum of the inverse column.

	Cost	inverse	acc.	%
Individual 1	1580.74	4.68	4.68	20.45%
Individual 2	556.54	8.98	13.66	59.70%
Individual 3	1625.25	4.58	18.24	79.72%
Individual 4	1599.48	4.64	22.88	100%
	Sum	22.88		

Roulette Wheel Selection – Step 5. Select the pairs.

The **crossover** may happen always (100% chance) or have a probability to occur, for example, a **crossover** for a selected pair may have a chance of 70% to breed, and if no **crossover** occurs then the selected pair is copied directly to the **new population**. The most common type o **crossover** operator, called **OX** (**Order Based Crossover**), is performed by copying a route from the first element of a pair (**parent**₁ & **parent**₂) and the remaining routes from the second element of the same pair. Adjusts may be needed to avoid repeated nodes in the **offspring**.

Optionally a local search method (2-opt, k-opt, best insertion, etc.) can be performed to improve the offspring fitness.

	Depot	Client	Client	Client	Depot	Client	Client	Depot					C	Cost	Cost	Cost	Cost	Cost	Cost
Individual 1	0	3	1	4	0	2	5	0				15	158	1580.7	1580.7	1580.74	1580.74	1580.74	1580.74
	Depot	Client	Client	Depot	Client	Depot	Client	Client	Depot				C	Cost	Cost	Cost	Cost	Cost	Cost
	-1			_		_			11	ı			<u>C(</u>	Cost	Cost	Cost	Cost	Cost	Cost
Individual 2	0	3	1	0	5	0	4	2	0			55	556	556.5	556.5	556.54	556.54	556.54	556.54

Let's suppose that the pair (individual 1 & individual 2) will breed, the pair (individual 3 & individual 4) will be copied to directly to the new population. Therefore:

Route Randomly Selected

Let's suppose that the pair (individual 1 & individual 2) will breed, the pair (individual 3 & individual 4) will be copied to directly to the new population. Therefore:

Cost

Offspring

Let's suppose that the pair (individual 1 & individual 2) will breed, the pair (individual 3 & individual 4) will be copied to directly to the new population. Therefore:

643.13

Offspring

Mutation

The **mutation** is a genetic operator that, for a small chance (usually between 10% and 15%), can modify a **gene** of the **offspring**. This process ensures the genetic diversity and avoids solutions to be trapped in local maxima/minima. The most common type of **mutation** operator is called **Insertion** and it randomly selects a **gene** and inserts it in another randomly selected place of the same **individual**.

	Depot	Client	Client	Client	Depot	Client	Depot	Client	Depot	Cost
Offspring	0	3	1	4	0	5	0	2	0	643.13

	Depot	Client	Client	Client	Depot	Client	Depot	Client	Depot	Cost
Offspring	0	3	1	4	0	5	0	2	0	643.13

	Depot	Client	Client	Depot	Client	Depot	Client	Client	Depot	Cost
Offspring	0	3	4	0	5	0	2	1	0	

	Depot	Client	Client	Depot	Client	Depot	Client	Client	Depot	Cost
Offspring	0	3	4	0	5	0	2	1	0	584.77

Individual 1	0	3	1	4	0	2	5	0			1580.74
Individual 2	0	3	1	0	5	0	4	2	0		556.54
Individual 3	0	2	3	0	4	0	1	5	0		1625.25
Individual 4	0	4	0	3	0	1	0	2	5	0	1599.48
		_									
Crossover &	Mutation										
Crossover & New Ind. 1	Mutation 0	3	1	0	5	0	4	2	0	l	556.54
			3	0	5 4	0	4	2 5	0		556.54 1625.25
New Ind. 1	0	3								0	

We discard the **old population** and use the **new population** to repeat this process all over again, or in another words, to create a new **generation**.

After 2,500 generations

The **best individual** found was:

150						 							C	25		
140								!	 							
130						I I I I I I								L 		
120						 			/					 		
110						 								 		
100					† 	i	† 							 		
90					i	i	i									
80										23			C	4		
70					**************************************	†	1									
60				 			†	1	1 ! ! ! !			 				
50														\		
40															22	
30																
20		C	1								10 m m					
10							! ! ! ! !		/							
0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	

https://github.com/Valdecy/pyVRP

The **pyVRP** is python library that solves (using **Genetic Algorithms**): Capacitated VRP, Multiple Depot VRP, VRP with Time Windows, VRP with Homogeneous or Heterogeneous Fleet, VRP with Finite or Infinite Fleet, Open or Closed Routes, TSP, mTSP and various combination of these types.

Follow the link to try it onine.

https://github.com/Valdecy/J-Horizon

The **J-Horizon** is java based vehicle problem software that uses the jsprit library to solve: Capacitated VRP, Multiple Depot VRP, VRP with Time Windows, VRP with Backhauls, VRP with Pickups and Deliveries, VRP with Homogeneous or Heterogeneous Fleet, Finite or Infinite Fleet, TSP, mTSP and various combination of these types.

Accepted inputs: Cartesian Coordinates, Latitude and Longitude, Distance Matrix, Time Matrix, Distance and Time Matrices.

J-Horizon: CVRP with LatLong Example

Model Input	Dist/Time Output						
+							
Problem							
Indicator	Value						
Clients	24						
Services	24						
Shipments	0						
Breaks Fleet Size	0 INFINITE						
	+						
			+				
Solution			!				
Indicator	Value		·				
+			-				
Costs	164.59		!				
Vehicles Unassig. Job	2 8 0						
			+				
		+			+	+	
Detailed Sol							
Route	-+	+		ArrTime (minutes)	+	+	
				+			
1	DT_0_VT-1#1	start	j -	***	0	1 0	
1	DT_0_VT-1#1	service	2	15.008	15.008	12.506	
	DT_0_VT-1#1 DT 0 VT-1#1	service	3	21.507	21.507	17.923	
1	DT 0 VT-1#1	service service	4	25.499	25.499	21.249	
1	DT 0 VT-1#1	service	1 6	34.017	34.017	28.347	
1	DT 0 VT-1#1	service	1 7	39.701	39.701	33.085	
1	DT_0_VT-1#1	service	8	47.694	47.694	39.745	
1	DT_0_VT-1#1	service	1 9	56.434	56.434	47.028	
1	DT_0_VT-1#1 DT 0 VT-1#1	service service	10 11	65.04 68.413	65.04 68.413	54.2 57.011	
1 1	DT 0 VT-1#1	service	1 12	72.741	72.741	1 60.618	
1	DT 0 VT-1#1	service	24	81.242	81.242	67.702	
1	DT_0_VT-1#1	service	1 1	100.406	100.406	83.671	
1	DT_0_VT-1#1	end	1 -	108.672	***	90.56	
2	DT 0 VT-1#1	+	-		+	+	
2	DT 0 VT-1#1	service	23	15.369	15.369	1 12.807	
2	DT_0_VT-1#1	service	13	29.117	29.117	24.264	
2	DT_0_VT-1#1	service	14	36.113	36.113	30.095	
2	DT_0_VT-1#1	service	15 16	40.487	40.487	33.74	
2 2	DT_0_VT-1#1 DT 0 VT-1#1	service service	16	47.209 51.561	47.209 51.561	39.341 42.967	
1 2	DT 0 VT-1#1	service	22	56.46	56.46	1 47.05	
2	DT_0_VT-1#1	service	18	63.049	63.049	52.541	
2	DT_0_VT-1#1	service	19	66.887	66.887	55.739	
2	DT_0_VT-1#1	service	20	75.848	75.848	63.207	
2	DT_0_VT-1#1 DT 0 VT-1#1	service end	21	79.862 88.836	79.862 ***	66.552 74.03	
2	DI_O_AI_I#I	enu	- +	00.030	· ·	/4.03 +	

