CAUCHY-COMPLETE ∞ -CATEGORIES AND LAX ADDIVITIY

MARKUS ZETTO

ABSTRACT. Additive categories can be characterized as those Ab-enriched categories that admit finite coproducts, which automatically coincide with the respective products. This is a particular instance of a paradigm that makes sense for any enrichment category \mathcal{V} : A (weighted) colimit is called absolute if it can be described by a dual limit diagram, and following Lawvere a \mathcal{V} -enriched category is called Cauchy-complete if it admits all absolute colimits. Generalizing to enriched ∞ -categories, I explain how a category enriched over cocomplete ∞ -categories is Cauchy-complete iff it is idempotent complete and admits lax colimits, i.e. it is a lax semiadditive (∞ , 2)-category. Up to idempotent completion, this lets me recover Angus' previous statement about the category of profunctors being the free lax semiadditive (∞ , 2)-category on a point, generalize it to enriched profunctors, and explain its relation to multifusion categories.

1. Notes on Profunctors

1.1. Cocomplete categories. Fix universes $\mathcal{U} < \hat{\mathcal{U}} < \hat{\mathcal{U}}$ of small, large and very large sets. Denote by $\widehat{Cat}^{\text{colim}}$ the very large (locally large) category of large categories admitting small colimits, and functors preserving small colimits. We will also refer to them as *cocomplete categories* and *cocontinuous functors*. A notable full subcategory is the large category \Pr^{L} spanned by the presentable categories.

Proposition 1.1. Given $\mathcal{V} \in Alg(Pr^L)$, a module $\mathcal{M} \in RMod_{\mathcal{V}}(\widehat{\mathfrak{C}at}^{\operatorname{colim}})$ is \mathcal{U} -compact iff it is presentable, i.e. lies in the full subcategory $RMod_{\mathcal{V}}(Pr^L) =: Pr_{\mathcal{V}}$.

Proof. For $\mathcal{V}=\mathcal{S}$, a category $\mathcal{M}\in\widehat{\operatorname{Cat}}^{\operatorname{colim}}$ is \mathcal{U} -compact iff it is presentable by [?, Proposition 5.1.4]. Further by [?, Proposition 5.1.7], $\operatorname{RMod}_{\mathcal{V}}(\widehat{\operatorname{Cat}}^{\operatorname{colim}})$ is \mathcal{U} -compactly generated by the free modules $\mathcal{P}\otimes\mathcal{V}$ for $\mathcal{P}\in\operatorname{Pr}^{\mathbf{L}}$ (even for $\mathcal{V}\in\operatorname{Alg}(\widehat{\operatorname{Cat}}^{\operatorname{colim}})$). In particular, this implies that its \mathcal{U} -compact objects are precisely the small colimits of such $\mathcal{P}\otimes\mathcal{V}$ by a $\operatorname{id}_{\mathcal{M}}\in\operatorname{Map}(\mathcal{M},\mathcal{M})=\operatorname{colim}_i\operatorname{Map}(\mathcal{M},\mathcal{P}_i\otimes\mathcal{V})$ retract argument. Now $\operatorname{RMod}_{\mathcal{V}}(\operatorname{Pr}^{\mathbf{L}})$ contains all of these free modules (as \mathcal{V} is presentable), in fact it is generated by them under geometric realizations, and it is closed under small colimits so we are finished.

elaborate?

Remark 1.2. In particular, any cocomplete \mathcal{M} can be written as a large, \mathcal{U} -filtered colimit of presentable categories in $\widehat{Cat}^{\mathrm{colim}}$. For example $\Pr^{\mathrm{L}} = \mathrm{colim}_{\kappa} \Pr_{\kappa}$ is the colimit over all regular cardinals of the categories \Pr_{κ} of κ -compactly generated categories and cocontinuous functors preserving κ -compact objects. Since $\Pr^{\mathrm{L}} \subseteq \widehat{Cat}^{\mathrm{colim}}$ is dense, there is even a canonical such colimit diagram indexed by $\Pr^{\mathrm{L}}_{\mathcal{M}}$ for each \mathcal{M} .

Lemma 1.3. For C a small category, the functor $\operatorname{Fun}(C,-):\widehat{\operatorname{Cat}}^{\operatorname{colim}}\to\widehat{\operatorname{Cat}}^{\operatorname{colim}}$ preserves $\operatorname{\mathcal{U}\text{-filtered}}$ colimits.

Date: May 30, 2024, Hamburg.

Proof. By Proposition 1.1 any cocomplete category is a \mathcal{U} -filtered colimit of presentable categories; also any presentable category is a small colimit of presheaf categories so the functors $\operatorname{Map}_{\widehat{\operatorname{Cat}}^{\operatorname{colim}}}(\mathcal{P}(D),-):\widehat{\operatorname{Cat}^{\operatorname{colim}}}\to \mathcal{S}$ for all $D\in\operatorname{Cat}$ are jointly conservative. Since $\mathcal{P}(D)$ is presentable, they also preserve \mathcal{U} -filtered colimits and hence jointly reflect them. Therefore it suffices to show that for any D the functor

$$\begin{aligned} \operatorname{Map}_{\widehat{\operatorname{Cat}}^{\operatorname{colim}}}(\operatorname{\mathcal{P}}(D),\operatorname{Fun}(C,-)) &\simeq \operatorname{Map}_{\widehat{\operatorname{Cat}}^{\operatorname{colim}}}(\operatorname{\mathcal{P}}(D\times C),-): \widehat{\operatorname{Cat}}^{\operatorname{colim}} \to \widehat{\operatorname{Cat}}^{\operatorname{colim}} \\ \end{aligned}$$
 preserves $\operatorname{\mathcal{U}}$ -filtered colimits, which follows from $\operatorname{\mathcal{P}}(D\times C)$ being presentable.

Lemma 1.4. For any collection of κ -small categories \mathcal{K} , the forgetful functor $\operatorname{Cat}^{\mathcal{K}} \to \operatorname{Cat}$ from the category of categories with \mathcal{K} -shaped colimits and functors preserving \mathcal{K} -shaped colimits, creates κ -filtered colimits

Proof. Since the forgetful functor is conservative, it suffices to show that it preserves κ -filtered colimits. Similarly to [Lur09, Proposition 5.5.7.11], show that the inclusions into the colimit calculated in $\mathcal{C}at$ already preserve \mathcal{K} -shaped colimits.

Remark 1.5. In particular, the forgetful functor $\widehat{\operatorname{Cat}}^{\operatorname{colim}} \to \widehat{\operatorname{Cat}}$ preserves \mathcal{U} -filtered colimits. As a sanity check, note that its left adjoint free cocompletion functor sends \mathcal{U} -compact objects, namely small categories, to their presheaf categories which are presentable.

Recall that the tensor product \otimes of cocomplete categories induces a symmetric monoidal structure on $\widehat{\operatorname{Cat}}^{\operatorname{colim}}$ that preserves large colimits in both variables separately, and restricts to a symmetric monoidal structure on $\operatorname{Pr}^{\operatorname{L}}$.

Proposition 1.6. The category of spectra $\mathcal{S}p$ is an idempotent algebra in the symmetric monoidal category $\widehat{Cat}^{\text{colim}}$ of cocomplete categories (equipped with the tensor product of cocomplete categories). Its category of modules $\operatorname{Mod}_{\mathcal{S}p}(\widehat{Cat}^{\text{colim}}) \subseteq \widehat{Cat}^{\text{colim}}$ consists precisely of the cocomplete stable categories.

Proof. In the case where $\mathcal{M} \in \operatorname{Pr}^{\operatorname{L}}$, we know from [Lur17, Example 4.8.1.23] that $\mathcal{S}p \otimes \mathcal{M} \simeq \mathcal{S}p(\mathcal{M})$ agrees with the stabilization of \mathcal{M} , in particular $\mathcal{S}p \otimes \mathcal{M} \simeq \mathcal{M}$ iff \mathcal{M} is stable. As $\mathcal{S}p$ is an idempotent algebra in $\operatorname{Pr}^{\operatorname{L}}$, this is once again equivalent to \mathcal{M} being a module over $\mathcal{S}p$. Now since $\operatorname{Pr}^{\operatorname{L}} \subseteq \widehat{\operatorname{Cat}}^{\operatorname{colim}}$ is a monoidal subcategory, $\mathcal{S}p$ is once again an idempotent algebra in $\widehat{\operatorname{Cat}}^{\operatorname{colim}}$, so it suffices to show that $\mathcal{S}p \otimes \mathcal{M}$ agrees with the stabilization $\lim_{\mathbb{N}} (\cdots \to \mathcal{M} \xrightarrow{\Omega} \mathcal{M})$ even if $\mathcal{M} \in \widehat{\operatorname{Cat}}^{\operatorname{colim}}$. Once again we expand $\mathcal{M} \simeq \operatorname{colim}_i \mathcal{M}_i$ as a \mathcal{U} -filtered colimit with $\mathcal{M}_i \in \operatorname{Pr}^{\operatorname{L}}$, then

$$\mathbb{S}p\otimes \mathbb{M}\simeq \mathop{
m colim}\limits_i\mathbb{S}p\otimes \mathbb{M}_i\simeq \mathop{
m colim}\limits_i\lim_{\mathbb{N}}(\cdots o \mathbb{M}_i\stackrel{\Omega}{ o} \mathbb{M}_i)\simeq \lim_{\mathbb{N}}(\cdots o \mathbb{M}\stackrel{\Omega}{ o} \mathbb{M})$$

since \mathcal{U} -filtered colimit commute with small limits, in particular limits over \mathcal{N} and loop functors.

Proposition 1.7. Let C be a small, and M a cocomplete category. Then $\mathcal{P}(C) \otimes \mathcal{M} \simeq \operatorname{Fun}(\mathbf{C}^{\operatorname{op}}, \mathcal{M})$.

Proof. The statement is true if \mathcal{M} is presentable, since then $\mathcal{P}(C) \otimes \mathcal{M} \simeq \operatorname{Fun}^{\lim}(\mathcal{P}(C)^{\operatorname{op}}, \mathcal{M}) \simeq \operatorname{Fun}^{L}(\mathcal{P}(C), \mathcal{M}^{\operatorname{op}}) \simeq \operatorname{Fun}(C, \mathcal{M}^{\operatorname{op}})$. Using Proposition 1.1, let us write \mathcal{M} as an \mathcal{U} -filtered (large) colimit $\mathcal{M} \simeq \operatorname{colim}_{i} \mathcal{M}_{i}$ with $\mathcal{M}_{i} \in \operatorname{Pr}^{L}$. Then using that \otimes preserves large colimits in both arguments separately,

$$\mathfrak{P}(C) \otimes \mathfrak{M} \simeq \mathop{\mathrm{colim}}\nolimits \mathfrak{P}(C) \otimes \mathfrak{M}_i \simeq \mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Fun}}\nolimits(C^{\mathop{\mathrm{op}}\nolimits}, \mathfrak{M}_i) \simeq \mathop{\mathrm{Fun}}\nolimits(C^{\mathop{\mathrm{op}}\nolimits}, \mathfrak{M})$$

where the last equivalence follows from Lemma 1.3.

Reminder 1.8. Let $0^{\otimes} \to \operatorname{Fin}_*$ be a small operad and C any category. Denote by $\operatorname{Mon}_{0}(C) \subseteq \operatorname{Fun}(0^{\otimes}, C)$ the full subcategory on those functors $M: 0^{\otimes} \to C$ exhibiting $M(o_1, \ldots, o_n) \simeq M(o_1) \times \cdots \times M(o_n)$, for any collection of colors o_n . In particular, the latter products need to exist in C.

Proposition 1.9. For \mathcal{M} a cocomplete category, its categories of \mathcal{O} -monoid objects can be calculated as $\mathrm{Mon}_{\mathcal{O}}(S) \otimes \mathcal{M} \simeq \mathrm{Mon}_{\mathcal{O}}(\mathcal{M})$.

Proof. Note that $\operatorname{Mon}_{\mathcal{O}}(\mathcal{S}) \subseteq \mathcal{P}(\mathcal{O}^{\otimes,\operatorname{op}})$, so we can use Proposition 1.7 and show that the respective subcategories agree. If \mathcal{M} is presentable, we can calculate that

$$\operatorname{Mon}_{\mathcal{O}}(\mathcal{S}) \otimes \mathcal{M} \subseteq \operatorname{Fun}^{\operatorname{lim}}(\mathcal{M}^{op}, \operatorname{Fun}(\mathcal{O}^{\otimes}, \mathcal{S})) \simeq \operatorname{Fun}(\mathcal{O}^{\otimes}, \operatorname{Fun}^{\operatorname{lim}}(\mathcal{M}^{op}, \mathcal{S})) \supseteq \operatorname{Mon}_{\mathcal{O}}(\mathcal{M})$$

translates the subcategories into each other. Following the calculation in the proof of Proposition 1.7, it suffices to show that $\operatorname{Mon}_{\mathcal{O}}(-): \widehat{\operatorname{Cat}}^{\operatorname{colim}} \to \widehat{\operatorname{Cat}}^{\operatorname{colim}}$ commutes with \mathcal{U} -filtered colimits, which by Remark 1.5 are calculated in $\widehat{\operatorname{Cat}}$.

why is this the case?

Corollary 1.10. The category CMon(\mathcal{S}) of commutative monoids, i.e. \mathbb{E}_{∞} -algebras in \mathcal{S} , is an idempotent algebra in $\widehat{Cat}^{\operatorname{colim}}$. Its category of modules $\operatorname{Mod}_{\mathcal{S}p^{\operatorname{cn}}}(\widehat{Cat}^{\operatorname{colim}}) \subseteq \widehat{Cat}^{\operatorname{colim}}$ consists precisely of the cocomplete semiadditive categories.

Proof. By [Lur18, Corollary C.4.1.9] we know that CMon(S) is an idempotent algebra in Pr^L , and hence also in $\widehat{\operatorname{Cat}}^{\operatorname{colim}}$. Its modules are precisely those cocomplete categories $\mathcal M$ such that the functor $\operatorname{CMon}(S) \otimes \mathcal M \to S \otimes \mathcal M \simeq \mathcal M$ is an equivalence, which by \ref{Model} is equivalent to the forgetful functor $\operatorname{CMon}(\mathcal M) \to \mathcal M$ being an equivalence. If $\mathcal M$ is semiadditive, i.e. both the Cartesian and coCartesian symmetric monoidal structure exist and agree, then by [Lur17, Proposition 2.4.3.8] this is the case. Conversely if $\mathcal M \simeq \operatorname{CMon}(\mathcal M)$, replace $\mathcal M$ by a larger cocomplete category $\mathcal M'$ that admits products. By [Lur17, Proposition 3.2.4.10], the monoidal structure on $\operatorname{CMon}(\mathcal M')$ that is induced by the pointwise product is coCartesian, meaning that product and coproduct in $\mathcal M'$ must agree.

how exactly must M' be chosen? can this work?

Proposition 1.11. The category of spectra Sp^{cn} is an idempotent algebra in \widehat{Cat}^{colim} . Its category of modules $\operatorname{Mod}_{Sp^{cn}}(\widehat{Cat}^{colim}) \subseteq \widehat{Cat}^{colim}$ consists precisely of the cocomplete additive categories.

Proof. Let $Z := \operatorname{Sym}_{\mathbb{E}_{\infty}}(\{x,y\})$ be the free commutative algebra in S generated by two points, and define the shearing map $\sigma: Z \to Z$ as the unique algebra map extending $\{x,y\} \to \pi_0 Z$ mapping x to x and y to x+y. By the proof of [Lur18, Theorem C.4.1.1] a cocomplete semiadditive category M is additive if and only if for any cocontinuous map $H: \operatorname{CAlg}(S) \to M$, which is uniquely specified by an object $h \in M$ using Corollary 1.10, the image of the shearing map $H(\sigma)$ is an isomorphism. But $\operatorname{CAlg}(S)$ is presentable, so if we write M as a \mathcal{U} -filtered colimit over presentable additive categories \mathcal{M}_i (which we can do by Proposition 1.1) then H must factor through one of the M_i , where it sends σ to an isomorphism.

1.2. Lax V-additive categories.

Reminder 1.12. content...

Lemma 1.13. Let $\mathcal{V} \in \mathrm{Alg}_{\mathbb{E}_2}(\mathrm{Pr}^{\mathrm{L}})$, fix an \mathbb{E}_2 -algebra $a \in \mathrm{Alg}_{\mathbb{E}_2}(\mathrm{Pr}^{\mathrm{L}})$, and denote by $F: \mathcal{V} \to \mathrm{LMod}_a(\mathcal{V}): U$ the free-forgetful adjunction. We can regard any $\mathrm{LMod}_a(\mathcal{V})$ -tensored category $\mathcal{M} \in \mathrm{Pr}_{\mathrm{LMod}_a(\mathcal{V})}$ as a \mathcal{V} -tensored category $\mathcal{M}_{\mathcal{V}}$ with the same underlying category, by

restricting scalars along F. An object $m \in \mathcal{M}$ is tiny with respect to the $\mathrm{LMod}_a(\mathcal{V})$ -tensoring iff it is tiny with respect to the \mathcal{V} -tensoring on $\mathcal{M}_{\mathcal{V}}$.

Proof. By definition, $m \otimes - := m \otimes F(-) : \mathcal{V} \to \mathcal{M}$ in $\mathcal{M}_{\mathcal{V}}$, so passing to adjoints $\underline{\mathrm{Hom}}_{\mathcal{M}_{\mathcal{V}}}(m,-) \simeq U \circ \underline{\mathrm{Hom}}_{\mathcal{M}}(m,-).$

Since U is conservative, and preserves colimits by [Lur17, arg1 arg2] as V is presentably monoidal, it creates colimits. Similarly it creates V-tensorings since it preserves them, so we are finished.

Definition 1.14. For $\mathcal{V} \in \text{Alg}_{\mathbb{E}_2}(\widehat{\mathbb{C}at}^{\text{colim}})$, we define the category of $lax\ \mathcal{V}$ -additive $(\infty, 2)$ -categories as $CauchyCat(\text{RMod}_{\mathcal{V}}(\widehat{\mathbb{C}at}^{\text{colim}}))$. Explicitly by Lemma 1.13, it consists of $(\infty, 2)$ -categories that are locally cocomplete, locally tensored over \mathcal{V} in a way that is compatible with composition and local colimits, and admits lax colimits and idempotent splittings.

Example 1.15. Let us note several cases of interest:

- A lax S-additive $(\infty, 2)$ -category is a locally cocomplete $(\infty, 2)$ -category with lax colimits and idempotent splittings, also known as an i.c. lax semiadditive $(\infty, 2)$ -category.
- A lax Set-additive $(\infty, 2)$ -category is an i.c. locally cocomplete (2, 2)-category with lax colimits, so we call it an i.c. lax semiadditive (2, 2)-category.
- A lax Sp-additive $(\infty, 2)$ -category is an i.c. lax semiadditive $(\infty, 2)$ -category that is locally tensored over Sp, which by Proposition 1.6 means that it is locally stable. Hence, we recover lax additive $(\infty, 2)$ -categories.
- A lax Ab-additive $(\infty, 2)$ -category using Proposition 1.11 is a lax semiadditive (2, 2)-category that is locally additive.
- Similarly for $S_{\leq m}$, $S_{\leq m,*}$, $S_{p\leq m}$ we obtain locally semiadditive (m+2,2)-categories (that are locally pointed/ additive).
- One should consider lax \Pr_{st}^L -additive $(\infty, 2)$ -categories as 2-lax additive $(\infty, 3)$ -categories. This is because they are enriched over $\operatorname{Mod}_{\Pr_{st}^L}(\widehat{\operatorname{Cat}}^{\operatorname{colim}})$ which is the $\operatorname{Ind}_{\mathcal{U}}$ -completion of the category of presentable stable 2-categories introduced in [?] (just like $\operatorname{Mod}_{\mathcal{Sp}}(\widehat{\operatorname{Cat}}^{\operatorname{colim}})$ is the $\operatorname{Ind}_{\mathcal{U}}$ -completion of Pr_{st}^L in the lax additive case).

Observation 1.16. Any lax \mathcal{V} -additive $(\infty,2)$ -category is automatically 2-idempotent complete (which is a priori a stronger condition). This is because any cocomplete category is idempotent complete, so the forgetful functor $\mathrm{LMod}_{\mathcal{V}}(\widehat{\mathbb{C}at}^{\mathrm{colim}}) \to \widehat{\mathbb{C}at}^{\mathrm{colim}} \to \widehat{\mathbb{C}at}$ factors through $\widehat{\mathbb{C}at}^{\mathrm{idem}}$. Since all of these functors are right adjoints of monoidal functors, change-of-enrichment along them preserves Cauchy-completeness, in particular if $\mathbb{C} \in \mathcal{C}auchy\mathcal{C}at(\mathrm{LMod}_{\mathcal{V}}(\widehat{\mathbb{C}at}^{\mathrm{colim}}))$ then the underlying $\widehat{\mathbb{C}at}^{\mathrm{idem}}$ -enriched category is Cauchy-complete, i.e. 2-idempotent complete.

1.3. Universal Property of Profunctors.

Definition 1.17. Denote by $\mathbb{P}\operatorname{rof}_{\mathcal{V}}$ the full sub-2-category of $\mathbb{P}\operatorname{r}_{\mathcal{V}}$ spanned by the tiny-generated categories, i.e. those of the form $\mathcal{P}_{\mathcal{V}}(\mathcal{C})$ for \mathcal{C} a small \mathcal{V} -enriched category. We call it the 2-category of \mathcal{V} -enriched profunctors.

Example 1.18. For $\mathcal{V} = \mathcal{S}$, this agrees with Haugseng's Morita 2-category $\mathbb{P}\operatorname{rof}_{\mathcal{S}}^{H}$ of profunctors in [?]: Consider the corepresentable 2-presheaf $\operatorname{Hom}_{\mathbb{P}\operatorname{rof}_{\mathcal{S}}^{H}}(*,-): \mathbb{P}\operatorname{rof}_{\mathcal{S}}^{H} \to \mathbb{C}\operatorname{at}$. It sends a small category C to $\mathcal{P}(C)$, and a profunctor $P: C \times D^{op} \to \mathcal{S}$ to the postcomposition $P \circ -: \mathcal{P}(C) \to \mathcal{P}(D)$. It is immediate to see that this construction factors through $\mathbb{P}\operatorname{r}^{L}$,

where it is fully faithful as it induces the equivalence $\operatorname{Fun}(C \times D^{op}, \mathbb{S}) \simeq \operatorname{Fun}^L(\mathfrak{P}(C), \mathfrak{P}(D))$ on morphism categories. Also, its essential image consists of precisely the presheaf categories, as claimed.

more general proof?

Warning 1.19. The 2-category $\operatorname{Prof}_{\mathcal{V}}$ does *not* admit all (conical) colimits, in fact its underlying 1-category is not even idempotent complete since regarded as a full subcategory of $\operatorname{Pr}_{\mathcal{V}}$, it is not closed under retracts: For $\mathcal{V} = \mathcal{S}$ a counterexample is given in [hh], for $\mathcal{V} = \mathcal{S}p$ there is a large supply of compactly assembled stable categories that are not compactly generated, e.g. in [?]. However, $\operatorname{Pr}_{\mathcal{V}}$ is idempotent complete, so the idempotent completion $\widehat{\operatorname{Prof}}_{\mathcal{V}}^{ic}$ can be identified with the full subcategory of $\operatorname{Pr}_{\mathcal{V}}$ spanned by the retracts of tiny-generated categories.

Proposition 1.20. Given $\mathcal{V} \in Alg(Pr^L)$, a module $\mathcal{M} \in RMod_{\mathcal{V}}(\widehat{\mathcal{C}at}^{colim})$ is dualizable iff it is the retract of a tiny-generated category.

Proof. This statement is known to hold in $RMod_{\mathcal{V}}(Pr^L)$ by [?], so it suffices to show that any dualizable \mathcal{M} is automatically presentable. By Proposition 1.1 is suffices to show that \mathcal{M} is \mathcal{U} -compact, which follows from

$$\operatorname{Map}_{\operatorname{RMod}_{\mathcal{V}}(\widehat{\operatorname{Cat}}^{\operatorname{colim}})}(\mathcal{M},-) \simeq \operatorname{Map}_{\widehat{\operatorname{Cat}}^{\operatorname{colim}}}(\mathcal{S},\underline{\operatorname{Hom}}_{\operatorname{RMod}_{\mathcal{V}}(\widehat{\operatorname{Cat}}^{\operatorname{colim}})}(\mathcal{M},-)) \simeq \operatorname{Map}_{\widehat{\operatorname{Cat}}^{\operatorname{colim}}}(\mathcal{S},\mathcal{M}^{\vee} \otimes \nu -)$$

sine $\mathcal{M}^{\vee} \otimes_{\mathcal{V}}$ – preserves all colimits, and $S \in \widehat{\mathbb{C}at}^{\mathrm{colim}}$ is \mathcal{U} -compact since it is presentable. \square

Remark 1.21. By [?], any dualizable $\mathcal{M} \in RMod_{\mathcal{V}}(\widehat{Cat}^{colim})$ is hence even \aleph_1 -compactly generated.

Theorem 1.22. The idempotent completion of the $(\infty, 2)$ -category $\mathbb{P}\operatorname{rof}_{\mathcal{V}}$ of \mathcal{V} -enriched profunctors is the free i.c. lax semiadditive category on the delooping $B\mathcal{V}$. Further, it is the free lax \mathcal{V} -additive category on the point.

$$\begin{split} &\operatorname{Fun}^{\operatorname{loc.coc.}}(\widehat{\mathbb{P}\mathrm{rof}}_{\mathcal{V}}^{\operatorname{ic}},\mathbb{D}) \simeq \operatorname{Fun}^{\operatorname{loc.coc.}}(B\mathcal{V},\mathbb{D}) \\ &\operatorname{Fun}^{\operatorname{loc.coc.}}(\widehat{\mathbb{P}\mathrm{rof}}_{\mathcal{V}}^{\operatorname{ic}},\mathbb{E}) \simeq \operatorname{Fun}^{\operatorname{loc.coc.}}(B\mathcal{V},\mathbb{E}) \simeq \operatorname{Fun}(*,\mathbb{E}) \simeq \mathbb{E} \end{split}$$

Proof. Note that BV is the free $\mathrm{RMod}_{V}(\widehat{\mathbb{C}at}^{\mathrm{colim}})$ -enriched category on the point, since V is the image of * under the left adjoint to the forgetful functor $\mathrm{RMod}_{V}(\widehat{\mathbb{C}at}^{\mathrm{colim}}) \to \mathbb{C}at$. Hence, it suffices to show that $\mathbb{P}\mathrm{rof}_{V}$ is the Cauchy-completion of BV both regarded as a $\mathrm{RMod}_{V}(\widehat{\mathbb{C}at}^{\mathrm{colim}})$ -enriched category and as a $\widehat{\mathbb{C}at}^{\mathrm{colim}}$ -enriched category. However in both settings, its enriched presheaf category is given by $\mathrm{RMod}_{V}(\widehat{\mathbb{C}at}^{\mathrm{colim}})$, and the notions of tiny objects agree, so it suffices to consider the first case. Tiny objects in $\mathrm{RMod}_{V}(\widehat{\mathbb{C}at}^{\mathrm{colim}})$ regarded as a category presentably tensored over itself are precisely the dualizable objects by ??. Now, we are finished after combining Proposition 1.20 with ??.

Corollary 1.23. The $(\infty, 2)$ -category \mathbb{P} rof of profunctors is the free lax semiadditive category on BS, or on the point.

Proof. Up to idempotent completion this is immediate from the above theorem. For the full statement, use Angus' results that \mathbb{P} rof admits all lax colimits, and generated under lax colimits by the point.

Proposition 1.24. The idempotent completion of the $(\infty, 2)$ -category $\mathbb{P}rof^{ex}$ of stable categories and exact profunctors (in other words, the category of compactly assembled stable categories and colimit-preserving functors) is the free i.c. lax additive category on the point, and the free i.c. lax semiadditive category on $B \mathfrak{S} p$.

Proof. Combine the above theorem with the observation that the category of Sp-enriched profunctors is equivalent to its full subcategory on (i.c.) stable categories since any Sp-enriched category is equivalent to its Cauchy-completion which lies in there. Also, Sp-enriched functors between stable categories are the same thing as exact functors.

Remark 1.25. Once again, this statement is true without idempotent completing.

References

[hh] Yonatan Harpaz (https://mathoverflow.net/users/51164/yonatan harpaz). Dualizable object in the category of locally presentable categories. MathOverflow. URL:https://mathoverflow.net/q/335340 (version: 2019-07-03).

[Lur09] Jacob Lurie. Higher topos theory. Princeton University Press, 2009.

[Lur17] Jacob Lurie. Higher algebra. 2017.

[Lur18] Jacob Lurie. Spectral algebraic geometry. preprint, 2018.