WHAT IS CLAIMED IS:

- 1. A biodegradable wrap film, which is a biodegradable wrap film comprising as a main component a lactic acid resin
- 5 composition comprising a poly(DL-lactic acid) in which the proportion of L-isomer and D-isomer is 88:12 to 85:15 or 12:88 to 15:85, and a plasticizer, the lactic acid resin composition, wherein

the value of storage modulus at 40°C is in the range of 10 100 MPa to 3 GPa as measured at a frequency of 10 Hz and a distortion of 0.1% by the dynamic viscoelasticity testing method from Method A of JIS K-7198,

the value of storage modulus at $100\,^{\circ}\text{C}$ is in the range of 30 MPa to 500 MPa, and

15 the peak value of loss tangent (tan δ) is in the range of 0.1 to 0.8.

2. The biodegradable wrap film as recited in Claim 1, wherein the value of storage modulus at 20°C is in the range 20 of 1 GPa to 4 GPa, as measured at a frequency of 10 Hz and a distortion of 0.1% by the dynamic viscoelasticity testing method from Method A of JIS K-7198, and the value of loss tangent (tan δ) at 20°C is 0.5 or less.

25 3. The biodegradable wrap film as recited in Claim 1 or 2, wherein the value of storage modulus at 60°C is in the range

of 100 MPa to 800 MPa as measured at a frequency of 10 Hz and a distortion of 0.1% by the dynamic viscoelasticity testing method from Method A of JIS K-7198.

- 5 4. The biodegradable wrap film as recited in any of Claims 1 to 3, wherein the lactic acid resin composition comprises a lactic acid resin and a plasticizer in a proportion of 60:1 to 99:1 by mass.
- The biodegradable wrap film as recited in any of Claims 1 to 4, wherein the difference (ΔHm ΔHc) is 10 J/g or more between ΔHm, the heat of melting required to melt the crystals completely when heating the film according to JIS K-7121 at a heating rate of 10°C/minute using a differential scanning calorimeter, and ΔHc, the heat of crystallization produced concomitantly with crystallization during the heating.
- 6. The biodegradable wrap film as recited in any of Claims
 20 1 to 5, wherein the formed film is heated at a temperature
 between the glass transition temperature when heating
 according to JIS K-7121 at a heating rate of 10°C/minute
 using a differential scanning calorimeter, and the peak
 temperature of the heat of crystallization produced
 25 concomitantly with crystallization during the heating, and
 cured for 6 hours or longer.