1

Let $\{a_n\}_{n\geq 1}$ be a Cauchy sequence of real numbers. Show that $\{a_n^2\}_{n\geq 1}$ is also a Cauchy sequence.

 $\mathbf{2}$

Let $\{a_n\}_{n\geq 1}$ be a sequence defined by the following rule:

$$a_1 = 3$$
 and $a_{n+1} = \frac{a_n}{2} + \frac{1}{a_n}$ for all $n \ge 1$. (1)

- (2.a) Show that the sequence is bounded below.
- (2.b) Show that this is a sequence of rational numbers.
- (2.c) Prove that the sequence is monotonically decreasing.
- (2.d) Deduce that $\{a_n\}_{n\geq 1}$ converges and find its limit.

Remark: This is an example of Cauchy sequence of rational numbers converging to an irrational number.

3

Let $\{a_n\}_{n\geq 1}$ and $\{b_n\}_{n\geq 1}$ be two bounded sequences. Show that

$$\lim_{n \to \infty} \sup(a_n + b_n) \le \lim_{n \to \infty} \sup a_n + \lim_{n \to \infty} \sup b_n. \tag{2}$$

4

Let $\{a_n\}_{n\geq 1}$ be a sequence of real numbers that is bounded above. Prove that $L=\limsup a_n n$ has the following properties:

- (4.a) For every $\epsilon > 0$ there are only finitely many n for which $a_n > L + \epsilon$.
- **(4.b)** For every $\epsilon > 0$ there are infinitely many n for which $a_n > L \epsilon$.

Remark: It is also true that there can be at most one real number with both of the above two properties.

5

Show that a sequence $\{a_n\}_{n\geq 1}$ is bounded if and only if $\limsup_{n\to\infty}|a_n|<\infty$.