

About the Spallation Neutron Source

- Accelerator based neutron source in Oak Ridge, TN, USA
- DOE user facility for neutron scattering research
- Built by a partnership of six DOE laboratories
- Completed in 2006, began user program in 2007
- The SNS now operates ~4500 hours per year and has 20 instruments available for users
- Two upgrade projects in progress
 - PPU will increase machine power from 1.4 MW to 2.8 MW
 - STS Will build a second target station with a new suite of instruments for users; beam will be shared on a pulse-by-pulse basis

How the Control System was built

- Partner labs delivered sub-systems with controls based on SNS standards
- Controls group at SNS was responsible for global systems and integration
- Selected standards included:
 - EPICS framework and tools
 - Allen Bradley PLCs
 - Motorola VME IOCs
- EPICS has been used to integrate controls based on a diverse set of hardware platforms, given the operators a common view

Control System Architecture

Control System Growth

	2006	2021
VME IOCs	168	167
Linux IOCs	46	152
μ TCA	0	9
Windows IOCs	248	400
PLCs	100	189
MPS inputs	923	1000
PVs	395000	603000

Availability

Upgrading an operational facility

- Initially we addressed performance issues
- Always expanding the system by adding controls for new devices as needed for other subsystems
- Added new tools and support for additional hardware types
- Address hardware and software obsolescence
- Challenge No longer possible to have the control system down for an extended period so upgrades must be phased in during scheduled outages
- Upgrades are based on resource availability, person power and budget for hardware

Global Systems

Infrastructure

Network and computing technology refresh ongoing Upgrade from 32 to 64-bit Linux in progress

Network requires segmentation for additional growth

Timing

New distribution hardware New master New software Completed 2019

MPS

New field nodes New master Firmware, software, testing progress

EPICS, Services and Back-end tools

EPICS

Upgrade to EPICS 7
EPICS 3 systems
peacefully co-exist
with EPICS 4 systems
Run Channel Access
and PV Access

Services

Developed new in CS-Studio

New archive engine

New alarm handler

Subsequent
refactoring from
Eclipse RCP to
Phoebus

Tools

Developed new in CS-Studio, Provides interoperability and common look/feel/behavior Archive Browser Alarm Display Display manager Web Display

Soft IOCs

Increasing use of Linux based soft IOCs:

For systems that do not need a direct hardware connection

To create composite or calculated PVs

Front-end systems

Slow Controls

Allen Bradley PLCs Upgraded processors in 2009 due to manufacturing issues Now need to convert slow, obsolete ControlNet and DeviceNet communications to Ethernet

VME

Increasingly difficult to get VME modules, many obsolete Some VME based systems don't need high performance and can be converted to PLC based systems (e.g. motor controls) Real-time systems upgrade path is µTCA

μΤCΑ

Used for new real-time systems Ring/Linac LLRF Kicker Waveform Monitoring Kicker Waveform Generation MPS

Conclusions

- The SNS control system has been growing, evolving since original commissioning
- Controls is particularly vulnerable to vendor technology cycles causing obsolescence
- Original control room tools were basic, needed improvement and were replaced by the CS-Studio services and tools
- No need for disruptive changes to the EPICS based architecture; it has proven reliable, extensible and sustainable
- We are looking for a few good engineers © ksw@ornl.gov

