

第61讲 单因素方差分析

• 方差分析(ANOVA), 是由英国 统计学家费歇尔(Fisher)在 20世纪20年代提出的,可用 于推断两个或两个以上总体 均值是否有差异的显著性检 验.

例1:保险公司为了解某一险种 在四个不同地区索赔额情况是 否存在差异。搜集了这四个不同 地区一年的索赔额情况记录如表 所示. 试判断在四个不同地区 索赔额有无显著的差异?

保险索赔记录								
地区	索赔额(万元)							
A 1	1.60	1.61	1.65	1.68	1.70	1.70	1.78	
A2	1.50	1.64	1.40	1.70	1.75			
A 3	1.64	1.55	1.60	1.62	1.64	1.60	1.74	1.80
A4	1.51	1.52	1.53	1.57	1.64	1.60		

- 其一, 由于地区不同, 而引起索赔额差异.
- 其二, 同一地区, 由于随机因素的影响, 也使其索赔额存在差异.

差异原因

• 在方差分析中, 通常把研究对象的特征值, 即所考察的试验结果称为试验指标.

本例中"索赔额"就是试验指标.

• 对试验指标产生影响的原因称为因素.

本例中"地区"即为因素。

• 因素中各个不同状态称为水平.

本例中"四个不同地区"即为四个水平.

单因素方差分析 仅考虑有一个因素A对试验指标的影响. 假如因素A有r个水平,分别在第 i 水平下进行了多次独立观测,所得到的试验指标的数据.

各总体间相互独立. 因此, 有如下的数学模型:

$$\begin{cases} X_{ij} = \mu_i + \varepsilon_{ij}, \\ \varepsilon_{ij} \sim N(0, \sigma^2), 各 \varepsilon_{ij} 独立, \\ j = 1, 2, \dots, n_i, \quad i = 1, 2, \dots, r. \end{cases}$$

$$i$$
之 $\sum_{i=1}^{r} n_i = n, \overline{X}_{i \bullet} = \frac{1}{n_i} \sum_{j=1}^{n_i} X_{ij}, \overline{X} = \frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{n_i} X_{ij}.$

• 方差分析的目的就是要比较因素A 的r 个水平下试验指标理论均值的差异,问题可归结为比较这r个总体的均值差异.

检验假设 $H_0: \mu_1 = \mu_2 = ... = \mu_r$ $H_1: \mu_1, \mu_2, ..., \mu_r$ 不全相等。

- 检验假设采用的方法是平方和分解。即
- 假设数据总的差异用总离差平方和S_T表示,
 S_T分解为二个部分:
- 一部分是由于因素A引起的差异——效应平方和S_Δ;
- 另一部分则由随机误差所引起的差异——误差平方和S_E。

总偏差平方和
$$S_T = \sum_{i=1}^r \sum_{j=1}^{n_i} \left(X_{ij} - \overline{X}\right)^2$$

效应平方和
$$S_A = \sum_{i=1}^{r} n_i \left(\overline{X}_{i \bullet} - \overline{X} \right)^2$$

误差平方和
$$S_E = \sum_{i=1}^r \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_{i\bullet})^2$$

定理 $(1)S_T = S_A + S_E$,

$$(2)\frac{S_E}{\sigma^2} \sim \chi^2 (n-r); \qquad S_A = \sum_{i=1}^r n_i (\bar{X}_{i\bullet} - \bar{X})^2$$

$$(3)S_A$$
与 S_E 相互独立,

$$S_{T} = \sum_{i=1}^{r} \sum_{j=1}^{n_{i}} (X_{ij} - \overline{X})^{2}$$

$$S_A = \sum_{i=1}^r n_i \left(\overline{X}_{i\bullet} - \overline{X} \right)^2$$

$$S_E = \sum_{i=1}^r \sum_{j=1}^{n_i} \left(X_{ij} - \overline{X}_{i\bullet} \right)^2$$

当
$$H_0$$
为真时, $\frac{S_A}{\sigma^2} \sim \chi^2(r-1)$.

此时,
$$F = \frac{S_A/(r-1)}{S_E/(n-r)} \sim F(r-1, n-r).$$

单因素试验方差分析表

方差来源	平方和	自由度	均方	F
因素A	S _A	r-1	$MS_A = S_A / (r-1)$	MS_A/MS_E
误差	S _E	n-r	$MS_E = S_E / (n-r)$	
总和	S _T	n-1		

当 $F \ge F_{\alpha}(r-1, n-r)$ 时, 拒绝原假设.

方差分析通常都是直接用统计软件计算,在 EXCEL中计算也非常方便。具体可以看实验25.

对例1的EXCEL结果如下:

表一: 摘要

组	观测数	求和	平均	方差
行1	7	11. 72	1. 674	0.0038
行2	5	7. 99	1. 598	0.0210
行3	8	13. 19	1. 649	0.0067
行4	6	9. 37	1.562	0.0026

表二: 方差分析表

方差	平方和	自	均方	F	P-	F crit
来源		由			value	
		度				
组间	0. 0492	3	0. 0164	2. 1659	0./1208	3. 0491
组内	0. 1666	22	0. 0076	$< F_{0.05}(3,22)$ 接受 H_0 .	> 0.05	$F_{0.05}(3,22)$
				接受 H_0 .	接受 H_0 .	
总计	0. 2158	25			Ů	