Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).
- A. Fie următoarea definiție de funcție în LISP

 (DEFUN F(L1 L2)

 (APPEND (F (CAR L1) L2)

 (COND

 ((NULL L1) (CDR L2))

 (T (LIST (F (CAR L1) L2) (CAR L2)))

)

Rescrieți această definiție pentru a evita dublul apel recursiv (F (CAR L1) L2). Nu redefiniți funcția. Nu folosiți SET, SETQ, SETF. Justificați răspunsul.

В.	Dându-se o listă formată din numere întregi și subliste de elementele listei (inclusiv și cele din subliste) formează o : 7, 4], 2, 5, 1] rezultatul va fi true .	numere îr secvență s	ntregi, se o simetrică.	cere un progra De exemplu, p	m SWI-Prolog c entru lista [1, 5	are verifică dacă , [2,4], 7, 11, 2	á toate 5, [11,
	7, 4], 2, 5, 1] rezultatul va fi true .	·					

C. Dându-se o listă formată din numere întregi, să se genereze lista submulțimilor cu **k** elemente numere impare, în progresie aritmetică. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista L=[1,5,2,9,3] şi k=3 \Rightarrow [[1,5,9],[1,3,5]] (nu neapărat în această ordine)

D. Se consideră o listă neliniară. Să se scrie o funcție care să aibă ca rezultat lista inițială in care atomii de pe nivelul k au fost înlocuiți cu 0 (nivelul superficial se consideră 1). Se va folosi o funcție MAP.

 <u>Exemplu</u> pentru lista (a (1 (2 b)) (c (d)))
 a) k=2 => (a (0 (2 b)) (0 (d)))
 b) k=1 => (0 (1 (2 b)) (c (d)))
 c) k=4 =>lista nu se modifică