Fonctions linéaires

Guillaume Barré

Collège La Bruyère

7 février 2012

I. Rappels sur la proportionnalité

I. Rappels sur la proportionnalité

Définition

On dit que deux grandeurs sont **proportionnelles** lorsque l'on peut passer des valeurs de l'une aux valeurs de l'autre en multipliant par une même constante.

Cette constante est alors appelée **coefficient de proportionnalité**.

Nombre de chocolats	2	6	8	10
Prix (en €)	0,24	0,72	0,96	1,20

Nombre de chocolats	2	6	8	10
Prix (en €)	0,24	0,72	0,96	1,20

Le tableau ci-dessus est un tableau de proportionnalité, le coefficient de proportionnalité est

Nombre de chocolats	2	6	8	10
Prix (en €)	0,24	0,72	0,96	1,20

Le tableau ci-dessus est un tableau de proportionnalité, le coefficient de proportionnalité est 0,12.

Nombre de chocolats	2	6	8	10
Prix (en €)	0,24	0,72	0,96	1,20

Le tableau ci-dessus est un tableau de proportionnalité, le coefficient de proportionnalité est 0,12.

Remarques

Nombre de chocolats	2	6	8	10
Prix (en €)	0,24	0,72	0,96	1,20

Le tableau ci-dessus est un tableau de proportionnalité, le coefficient de proportionnalité est 0,12.

Remarques

1. On passe de la première à la deuxième colonne en multipliant les valeurs par 3.

Nombre de chocolats	2	6	8	10
Prix (en €)	0,24	0,72	0,96	1,20

Le tableau ci-dessus est un tableau de proportionnalité, le coefficient de proportionnalité est 0,12.

Remarques

- 1. On passe de la première à la deuxième colonne en multipliant les valeurs par 3.
- 2. La troisième colonne est la somme des deux précédentes.

II. Fonctions linéaires

- A. Définitior
- B. Propriété
- C. Représentation graphique

- II. Fonctions linéaires
 - A. Définition

II. Fonctions linéaires

- A Définition
- B. Propriété
- C. Représentation graphique

Définition

On dit qu'une fonction f est **linéaire** s'il existe un nombre a tel que $f: x \longmapsto ax$.

Le nombre a est appelé **coefficient directeur** ou **coefficient de linéarité** de la fonction f.

Fonction	Linéaire?	Coefficient?
$f: x \longmapsto 2x$		
$g: x \longmapsto x/2$		
$h: x \longmapsto 3x + 2$		
$i: x \longmapsto x$		
$j: x \longmapsto x^2$		

Fonction	Linéaire?	Coefficient?
$f: x \longmapsto 2x$	oui	
$g: x \longmapsto x/2$		
$h: x \longmapsto 3x + 2$		
$i: x \longmapsto x$		
$j: x \longmapsto x^2$		

Fonction	Linéaire?	Coefficient?
$f: x \longmapsto 2x$	oui	a=2
$g: x \longmapsto x/2$		
$h: x \longmapsto 3x + 2$		
$i: x \longmapsto x$		
$j: x \longmapsto x^2$		

Fonction	Linéaire?	Coefficient?
$f: x \longmapsto 2x$	oui	a=2
$g: x \longmapsto x/2$	oui	
$h: x \longmapsto 3x + 2$		
$i: x \longmapsto x$		
$j: x \longmapsto x^2$		

Fonction	Linéaire?	Coefficient?
$f: x \longmapsto 2x$	oui	a=2
$g: x \longmapsto x/2$	oui	$a = \frac{1}{2}$
$h: x \longmapsto 3x + 2$		
$i: x \longmapsto x$		
$j: x \longmapsto x^2$		

Fonction	Linéaire?	Coefficient?
$f: x \longmapsto 2x$	oui	a=2
$g: x \longmapsto x/2$	oui	$a = \frac{1}{2}$
$h: x \longmapsto 3x + 2$	non	
$i: x \longmapsto x$		
$j: x \longmapsto x^2$		

Fonction	Linéaire?	Coefficient?
$f: x \longmapsto 2x$	oui	a=2
$g: x \longmapsto x/2$	oui	$a = \frac{1}{2}$
$h: x \longmapsto 3x + 2$	non	×
$i: x \longmapsto x$		
$j: x \longmapsto x^2$		

Fonction	Linéaire?	Coefficient?
$f: x \longmapsto 2x$	oui	a=2
$g: x \longmapsto x/2$	oui	$a = \frac{1}{2}$
$h: x \longmapsto 3x + 2$	non	×
$i: x \longmapsto x$	oui	
$j: x \longmapsto x^2$		

Fonction	Linéaire?	Coefficient?
$f: x \longmapsto 2x$	oui	a=2
$g: x \longmapsto x/2$	oui	$a = \frac{1}{2}$
$h: x \longmapsto 3x + 2$	non	×
$i: x \longmapsto x$	oui	a = 1
$j: x \longmapsto x^2$		

Fonction	Linéaire?	Coefficient?
$f: x \longmapsto 2x$	oui	a=2
$g: x \longmapsto x/2$	oui	$a = \frac{1}{2}$
$h: x \longmapsto 3x + 2$	non	×
$i: x \longmapsto x$	oui	a = 1
$j: x \longmapsto x^2$	non	

Fonction	Linéaire?	Coefficient?
$f: x \longmapsto 2x$	oui	a=2
$g: x \longmapsto x/2$	oui	$a = \frac{1}{2}$
$h: x \longmapsto 3x + 2$	non	×
$i: x \longmapsto x$	oui	a = 1
$j: x \longmapsto x^2$	non	×

Calculer les images connaissant les antécédents

- f(0) =
- g(21) =
- h(5) =

Calculer les images connaissant les antécédents

- $f(0) = -2 \times 0 = 0$
- g(21) =
- h(5) =

Calculer les images connaissant les antécédents

- $f(0) = -2 \times 0 = 0$
- $g(21) = \frac{21}{7} = 3$
- h(5) =

Calculer les images connaissant les antécédents

- $f(0) = -2 \times 0 = 0$
- $g(21) = \frac{21}{7} = 3$
- h(5) = 5

Déterminer les antécédents connaissant les images

On donne la fonction $f: x \longmapsto 8x$.

Déterminer les antécédents de 24 et de 4.

Déterminer une fonction linéaire à l'aide d'un nombre et de son image

1. Déterminer la fonction linéaire f telle que f(2) = 7.

Déterminer une fonction linéaire à l'aide d'un nombre et de son image

- 1. Déterminer la fonction linéaire f telle que f(2) = 7.
- 2. Déterminer la fonction linéaire g telle que g(-3) = 6.

- II. Fonctions linéaires
 - B. Propriété

II. Fonctions linéaires

- A Définition
- B. Propriété
- C. Représentation graphique

Propriété

Soient f une fonction linéaire telle que f(x)=ax et k un nombre.

Pour tous nombres x_1 et x_2 on a :

$$f(x_1 + x_2) = f(x_1) + f(x_2)$$

 $f(k \times x_1) = k \times f(x_1)$

Propriété

Soient f une fonction linéaire telle que f(x)=ax et k un nombre.

Pour tous nombres x_1 et x_2 on a :

$$f(x_1 + x_2) = f(x_1) + f(x_2)$$

 $f(k \times x_1) = k \times f(x_1)$

Exemples

49 et 50 page 152

- II. Fonctions linéaires
 - C. Représentation graphique

II. Fonctions linéaires

- A. Définitior
- B. Propriéte
- C. Représentation graphique

C. Représentation graphique

Propriété

La représentation graphique d'une fonction linéaire est une droite passant par l'origine du repère.

Propriété

La représentation graphique d'une fonction linéaire est une droite passant par l'origine du repère.

Remarque

Pour représenter graphiquement une fonction linéaire dans un repère, il suffit donc de connaître l'image d'un nombre $x_0 \neq 0$. On place ensuite sur le repère le point de coordonnées $(x_0; f(x_0))$ et on trace la droite passant par l'origine et par ce point.

Exercices

Tracer les représentations graphiques des fonctions suivantes :

$$f: x \longmapsto 2x$$

$$g: x \longmapsto \frac{x}{3}$$

$$h: x \longmapsto -x$$

III. Pourcentages

III. Pourcentages

Prendre t % d'une quantité q, c'est la multiplier par $\frac{\iota}{100}$

Prendre t % d'une quantité q, c'est la multiplier par $\frac{t}{100}$

Exemple

Un lecteur mp3 coûte 249 €. Un étudiant bénéficie d'une réduction de 6 %.

Prendre t % d'une quantité q, c'est la multiplier par $\frac{t}{100}$.

Exemple

Un lecteur mp3 coûte 249 €. Un étudiant bénéficie d'une réduction de 6 %.

$$249 \times \frac{6}{100} = 14,94$$

Prendre t % d'une quantité q, c'est la multiplier par $\frac{t}{100}$.

Exemple

Un lecteur mp3 coûte 249 €. Un étudiant bénéficie d'une réduction de 6 %.

$$249 \times \frac{6}{100} = 14,94$$

S'il commande dans ce magasin, il va économiser 14,94 \in . Il payera donc son lecteur mp3 : $249 - 14,94 = 234,06 \in$.

Il est possible de calculer la variation d'une quantité de $t\ \%$ en la modélisant par une fonction linéaire.

Il est possible de calculer la variation d'une quantité de $t\ \%$ en la modélisant par une fonction linéaire.

• Pour une augmentation de t %, on utilise la fonction :

$$f: x \longmapsto \left(1 + \frac{t}{100}\right)x \quad \text{(ou } f(x) = \text{``1, } t\text{''} x\text{)}$$

Il est possible de calculer la variation d'une quantité de t % en la modélisant par une fonction linéaire.

• Pour une augmentation de t %, on utilise la fonction :

$$f: x \longmapsto \left(1 + \frac{t}{100}\right)x \quad \text{(ou } f(x) = \text{``1, } t\text{''} x\text{)}$$

• Pour une diminution de t %, on utilise la fonction :

$$g: x \longmapsto \left(1 - \frac{t}{100}\right) x$$

Dans le cas du lecteur mp3 précédent, le calcul du prix payé est :

Dans le cas du lecteur mp3 précédent, le calcul du prix payé est :

$$p = \left(1 - \frac{6}{100}\right) \times 249 = \frac{94}{100} \times 249 = 234,06$$

Dans le cas du lecteur mp3 précédent, le calcul du prix payé est :

$$p = \left(1 - \frac{6}{100}\right) \times 249 = \frac{94}{100} \times 249 = 234,06$$

Exemple 2

Le lecteur mp3 a vu la capacité de son disque dur augmentée de $50 \,\%$. Sachant que sa capacité était de $80 \,$ Go, la nouvelle capacité est :

Dans le cas du lecteur mp3 précédent, le calcul du prix payé est :

$$p = \left(1 - \frac{6}{100}\right) \times 249 = \frac{94}{100} \times 249 = 234,06$$

Exemple 2

Le lecteur mp3 a vu la capacité de son disque dur augmentée de $50 \,\%$. Sachant que sa capacité était de $80 \,$ Go, la nouvelle capacité est :

$$m = \left(1 + \frac{50}{100}\right) \times 80 = \left(\frac{100 + 50}{100}\right) \times 80 = \frac{150}{100} \times 80 = 120$$

Table des matières

I. Rappels sur la proportionnalité

II. Fonctions linéaires

- A. Définition
- B. Propriété
- C. Représentation graphique

III. Pourcentages