(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003 年10 月23 日 (23.10.2003)

PCT

(10) 国際公開番号 WO 03/086334 A1

(51) 国際特許分類⁷: A61K 7/06, 45/00, A61P 17/14, C07D 271/08, 313/00, 493/04, 493/06, 493/08, 493/16

(KASAI, Yoko) [JP/JP]; 〒170-8633 東京都 豊島区 高田3丁目24番1号大正製薬株式会社内 Tokyo (JP).

(21) 国際出願番号:

PCT/JP03/04884

(22) 国際出願日:

2003 年4 月17 日 (17.04.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-115529 2002 年4 月17 日 (17.04.2002) JP

(71) 出願人 (米国を除く全ての指定国について): 大正製薬 株式会社 (TAISHO PHARMACEUTICAL CO.,LTD.) [JP/JP]; 〒170-8633 東京都 豊島区 高田 3 丁目 2 4 番 1号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 池田 明子 (IKEDA,Akiko) [JP/JP]; 〒170-8633 東京都 豊島区 高田 3 丁目 2 4番 1号 大正製薬株式会社内 Tokyo (JP). 篠永 英樹 (SHINONAGA,Hideki) [JP/JP]; 〒170-8633 東京都 豊島区 高田 3 丁目 2 4番 1号 大正製薬株式会社内 Tokyo (JP). 藤本 奈津子 (FUJIMOTO,Natsuko) [JP/JP]; 〒170-8633 東京都 豊島区 高田 3 丁目 2 4番 1号 大正製薬株式会社内 Tokyo (JP). 葛西 陽子

(74) 代理人: 佐鳥 宗一, 外(SATORI,Soichi et al.); 〒170-8633 東京都 豊島区 高田 3 丁目 2 4 番 1 号 大正製薬 株式会社 知的財産部内 Tokyo (JP).

- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

--- 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: HAIR GROWTH TONIC

(54) 発明の名称: 育毛剤

(57) Abstract: A hair papilla cell growth promoter, a hair growth stimulant and a hair growth tonic containing a compound having an activity of inhibiting the function of WNT-5A.

(57) 要約: WNT-5Aの機能阻害活性を有する化合物を含有する毛乳頭細胞増殖促進剤、発毛剤及び育毛剤。

明細書

育毛剤

技術分野

本発明は、毛乳頭細胞増殖促進剤、発毛剤及び育毛剤に関するものである。具体的には、WNT-5Aの機能阻害物質を有効成分とする毛乳頭細胞増殖促進剤、発毛剤及び育毛剤に関するものである。また、WNT-5A機能阻害作用に基づく毛乳頭細胞増殖促進剤のスクリーニング方法に関するものである。

背景技術

ヒト毛髪毛包は、角化細胞、毛乳頭細胞、繊維芽細胞及び脂腺細胞等の様々な上皮系及び真皮間様系の細胞から構成されており、これらの細胞間相互作用を介して、毛髪の成長サイクル(毛周期)が調節されている。毛の本体は、毛包角化細胞の増殖/分化(角化)により形成されるが、この毛包角化細胞の増殖、分化及びアポトーシスを制御し、毛周期調節の中心的な役割を担っているのは、毛乳頭である。したがって、発毛剤/育毛剤を開発する上で毛乳頭細胞に対する作用を研究することは重要と考えられる。しかし、これまでに毛乳頭細胞の増殖能及び毛周期調節能を制御する分子機構については、ほとんど明らかにされていない

一方、WNT-5Aは、WNTファミリーに属する分泌性糖蛋白質である。WNTファミリーには、約20種類の分子が存在し、各分子は線虫から哺乳類まで広く保存されている。これらWNTsは、胎生期の体軸形成や器官形成を制御する重要な細胞間シグナル分子であることが知られている(Annu. Rev. Cell Dev. Biol. 14,59-88 (1998)、Genes & Dev. 11,3286-3305 (1997))。WNTsの受容体は、7回膜質通型のFrizzledで、ヒトでは10種類存在する(Annu. Rev. Cell Dev. Biol. 14,59-88 (1998)、Genes & Dev. 11,3286-3305 (1997))。WNTとFrizzledの結合の組み合わせに依存して、3種類のシグナル伝達経路(WNT/ β -カテニン経路、PCP経路、WNT/ Ca^{2+} 経路)が存在する(Annu. Rev. Cell Dev. Biol. 14,59-88 (1998))。

近年、WNT/β-カテニン経路が毛包形成に重要であることが明らかにされた(G

enes & Dev. 8, 2691-2703 (1994)、Cell 95, 605-614 (1998)、Dev. Biol. 207 , 133-149 (1999)、Genes & Dev. 14, 1181-1185 (2000)、Cell 105, 533-545 (2001))。1998年には、安定化 β -カテニンの皮膚におけるトランスジェニックマウスが作製され、このマウスは毛包新生が亢進し多毛となることが報告された (Cell 95, 605-614 (1998))。また、2000年には、毛乳頭細胞の毛包誘導能の維持に、WNT/ β -カテニンシグナルが重要であることが報告された(Genes & Dev . 14, 1181-1185 (2000))。

しかし、WNT-5Aからのシグナル伝達は、 β -カテニン経路ではなく、 Ca^{2} +経路を介することが明らかにされており(Dev. Biol. 182, 114-120(1997)、 Curr. Biol. 9, 695-698(1999))、WNT-5Aと毛包新生との関連性については何ら報告はない。

この他、アフリカツメガエルWNT-5A mRNA をヒトFrizzled5 mRNAとともにアフリカツメガエル初期胚に注入すると二次体軸が誘導する(Science275,1652-1654(1997))一方、WNT-1やWNT-8 mRNAの注入により誘導される二次体軸形成をWNTー5Aが抑制するという報告(J. Cell Biol. 133,1123-1137(1996))や、アフリカツメガエルWNT-5Aは、ラットFrizzled2と結合し、Ca²+経路を介してCamKII(Ca²+/calmodulin-dependent protein kinase II)とPKC(protein kinase II)が活性化されるなどの報告(Curr. Biol. 9,695-698(1999))があるが、生理的な意味は未だ解明されておらず、WNT-5Aと発毛/育毛との関連性についても何ら報告はない。

発明の開示

本発明は、毛乳頭細胞の増殖を制御する分子を用いたスクリーニング方法、毛乳頭細胞増殖促進剤並びに新規な作用に基づく発毛剤又は育毛剤を提供することを目的とする。

本発明者らは上記目的のため鋭意研究を行った結果、毛乳頭細胞にWNT-5Aが高発現していること、WNT-5Aが毛乳頭細胞の増殖能に関与することを発見した。さらにこの知見に基づき検討を重ねた結果、WNT-5Aの機能を阻害することにより毛乳頭細胞の増殖を顕著に促進し、毛包の毛球部位を増大することを見出し

、本発明を完成するに至った。

すなわち、本発明の1態様によると、WNT-5Aの機能阻害活性を有する化合物を含有する毛乳頭細胞増殖促進剤を提供する。

また、本発明の他の態様によると、WNT-5A産生抑制作用を有する化合物を含有する毛乳頭細胞増殖促進剤を提供する。

また、本発明の他の態様によると、式(I)

$$R^{2}O$$
 R^{3}
 R^{3}
 R^{3}
 R^{3}
 R^{4}
 R^{6}
 R^{7}
 R^{7}
 R^{7}

[式中、 R^1 及び R^2 は 同一又は異なって水素原子、 C_{1-6} アルキル基又は C_{2-6} アルカノイル基を示し、

Xは水素原子又はハロゲン原子を示し、

R3a及びR3bは異なって水素原子又は水酸基を示し、

 R^4 、 R^6 、 R^7 、 R^8 及び R^9 は同一又は異なって水素原子、水酸基、ハロゲン原子又は C_{2-6} アルカノイルオキシ基を示すか、又は隣り合う基が一緒になってパイ結合又はエーテル結合を形成するか、あるいは R^6 と R^8 若しくは R^6 と R^9 が一緒になってエーテル結合を形成する。] で表される化合物を提供する。

また、本発明の他の態様によると、式(II)

$$\begin{array}{c|c}
 & OR^1 & O & \\
\hline
 & OR^1 & OR^2 & \\
\hline
 & OR^2 & OR^2$$

[式中、 R^1 及び R^2 は 同一又は異なって水素原子、 C_{1-6} アルキル基又は C_{2-6} アルカノイル基を示し、

Xは水素原子又はハロゲン原子を示し、

 R^{3} 。及び R^{3} 。は同一又は異なって水素原子、水酸基又は C_{1-6} アルコキシ基を示すか、あるいは R^{3} 。と R^{3} 。が一緒になってオキソ基、ヒドロキシイミノ基又は C_{1-6} アルコキシイミノ基を形成し、

R⁴、R⁵、R⁶、R⁷、R⁸及びR⁹は同一又は異なって水素原子、水酸基、ハロゲン原子又はC₂₋₆アルカノイルオキシ基を示すか、又は隣り合う基が一緒になってパイ結合又はエーテル結合を形成するか、あるいはR⁵とR⁸若しくはR⁵とR⁹が一緒になってエーテル結合を形成する。〕で表される化合物を含有する毛乳頭細胞増殖促進剤を提供する。

また、本発明の他の態様によると、式(IX)

$$R^{2a} O X R^{3a} R^{3a} R^{6a} R^{7a}$$
 $R^{3a} R^{3a} R^{4a} R^{6a} R^{6b}$

[式中、 R^{1} ® 及び R^{2} ® は 同一又は異なって水素原子、 C_{1-6} アルキル基、 C_{1-6} アルカノイル基、

 $(CH_2)_p$ $CO-Y-R^{10}$ (式中、Yは酸素原子又は硫黄原子を示し、 R^{10} は水素原子、 C_{1-6} アルキル基又は置換若しくは無置換のアリール基を示し、p は 0 又は1 を示す。)で表される基、

 $(CH_2)_q$ R^{11} (式中、 R^{11} は置換若しくは無置換のシクロアルキル基又は置換若しくは無置換の C_{2-10} ヘテロ環を示し、qは0又は1を示す。)で表される基、又は COR^{12} (式中、 R^{12} は置換若しくは無置換のアリール基又は置換若しくは無置換の C_{2-10} ヘテロ環を示す。)で表される基を示し、

Xは水素原子又はハロゲン原子を示し、

 R^{3} 。及び R^{3} 「は同一又は異なって水素原子、水酸基、 C_{1-6} アルコキシ基又は C_{1-6} アルカノイルオキシ基を示すか、又は R^{3} 。と R^{3} 「が一緒になってオキソ基、ヒドロキシイミノ基又は C_{1-6} アルコキシイミノ基を形成し、

 R^{4*} 、 R^{5*} 、 R^{6*} 、 R^{7*} 、 R^{8*} 及び R^{9*} は同一又は異なって水素原子、水酸基、ハロゲン原子又は

 $Z-R^{13}$ (式中、Zは酸素原子又は硫黄原子を示し、 R^{13} は C_{1-6} アルキル基、 C_{1-6} アルカノイル基又は置換若しくは無置換のアリール基を示す。)で表される基を示すか、又は隣り合う基が一緒になってパイ結合又はエーテル結合を形成するか、あるいは R^{5a} と R^{8a} 若しくは R^{5a} と R^{9a} が一緒になってエーテル結合を形成し、

 $R^{\mathfrak{s}\mathfrak{b}}$ は水素原子を示すか、あるいは $R^{\mathfrak{s}\mathfrak{s}}$ 若しくは $R^{\mathfrak{s}\mathfrak{s}\mathfrak{s}}$ と一緒になってエーテル結合を形成する。] で表される化合物を含有する毛乳頭細胞増殖促進剤を提供する

また、本発明の他の態様によると、上記毛乳頭細胞増殖促進剤を有効成分とする発毛剤又は育毛剤を提供する。

また、本発明の他の態様によると、WNT-5Aの機能を阻害する物質を選択することを特徴とする、毛乳頭細胞増殖促進剤のスクリーニング方法を提供する。

また、本発明は、WNT-5Aの機能を阻害する物質を選択する方法であって、下記(a)~(c)の工程を含むことを特徴とする毛乳頭細胞増殖促進剤のスクリーニング方法である。

(a)ヒトWNT-5A発現細胞を被検化合物を添加した培地を用いて培養する工程:

(b) 工程(a) で培養したヒトWNT-5A発現細胞を溶解してRNAを抽出し、WNT-5A mR NA量を測定する工程:及び

(c)工程(b)で測定したWNT-5A mRNA量を比較する工程。

図面の簡単な説明

図1は、毛乳頭細胞にWNT-5A mRNAが発現していることを示す電気泳動図を表す

図2は、被検化合物が毛乳頭細胞においてWNT-5A mRNA量を減少させることを示す電気泳動図を表す。

図3は、被検化合物が毛乳頭細胞の増殖促進活性を有することを示すグラフを表す。

図4は、サル皮膚器官培養におけるWNT-5A mRNAの減少を示す電気泳動図である

図5は、サル皮膚器官培養における休止期毛包及び成長期毛包のPCNA染色の結果を表す。

図6は、化合物7がサル皮膚器官培養における毛球部径を増大させることを示す ヒストグラムを表す。

図7は、化合物3がサル皮膚器官培養における毛球部径を増大させることを示す ヒストグラムを表す。

図8は、ベニガオザル発毛試験における6ヶ月間塗布前後の皮膚拡大写真を表す

発明の実施の形態

以下、本発明を更に具体的に説明する。

<WNT-5Aの機能を阻害する化合物>

本発明において「WNT-5Aの機能を阻害する化合物」(以下、「WNT-5A機能阻害剤」ということがある。)とは、WNT-5AとWNT-5A受容体の結合を阻害する化合物、又は、WNT-5Aの産生を抑制する化合物を意味し、好ましくはWNT-5Aの産

生を抑制する化合物である。

WNT-5Aは、ヒト、マウス、ラット、アフリカツメガエル等でその発現が確認されているWNTファミリーに属する分泌性糖蛋白質であるが、医薬品として使用する点からヒトのWNT-5A(配列番号1)機能を阻害する化合物が好ましい。

WNT-5AとWNT-5A受容体の結合を阻害する化合物とは、WNT-5A又はWNT-5A受容体に作用することによりWNT-5AとWNT-5A受容体の結合を阻害し、WNT-5Aによるシグナル伝達を抑制するものを意味し、好ましくは Ca^2 + 経路を介したシグナル伝達を抑制する化合物であり、例えば、WNT-5A受容体アンタゴニストを挙げることができる。WNT-5A受容体としては、具体的には例えば、ヒトFrizzled5(配列番号 4)、ラットFrizzled2(配列番号 6)を挙げることができる。当該化合物は、ペプチド性でも非ペプチド性でもよいが、作用時間が長い利点がある非ペプチド性の阻害剤が好ましい。また、当該化合物は、標識したWNT-5A及びWNT-5A受容体を用いたスクリーニング系により選択することができ、好ましくは IC_{50} が $30\,\mu$ M以下のものであり、更に好ましくは $10\,\mu$ M以下のものである。

WNT-5A産生を抑制する化合物とは、WNT-5A遺伝子の発現を抑制する化合物を意味する。当該化合物は、ペプチド性でも非ペプチド性でもよいが、作用時間が長い利点がある非ペプチド性の阻害剤が好ましい。また、当該化合物は、WNT-5A蛋白質量(配列番号 1)又はWNT-5A mRNA量(配列番号 2)の減少を指標として選択することができ、好ましくはHartleyらの方法(Drug Metabolism and Disposition 28(5), 608-616 (2000)、後述する試験例 4)に準じた核酸プローブアッセイ方法により IC_{50} が 30μ M以下のものであり、更に好ましくは 10μ M以下のものである。

特に好ましくは、式(I)、(II)及び(IX)で表される化合物である。

式 (I) 、 (II) 及び (IX) で表される化合物において C_{1-6} アルキル基とは、 炭素数 $1\sim 6$ の直鎖又は分枝鎖状のアルキル基を意味し、具体的には、例えばメ チル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、 te r t -ブチル基、ペンチル基、2-エチルプロピル基、ヘキシル基等が挙げら れる。

 C_{1-6} アルカノイル基とは、炭素数 $1\sim 6$ の直鎖又は分枝鎖状のアルカノイル基を意味し、具体的には、例えばアセチル基、プロピオニル基、プチリル基、 t ープチリル基等を挙げることができる。

 C_{1-6} アルコキシ基とは、炭素数 $1\sim 6$ の直鎖又は分枝鎖状のアルコキシ基を意味し、具体的には、例えばメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソプトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチロキシ基、イソペンチロキシ基、ネオペンチロキシ基、tert-ペンチロキシ基、1-メチルブトキシ基、2-メチルブトキシ基、1, 2-ジメチルプロポキシ基、ヘキシロキシ基、イソヘキシロキシ基等が挙げられる。

 C_{1-6} アルコキシイミノ基とは、炭素数 $1\sim 6$ の直鎖又は分枝鎖状のアルコキシイミノ基を意味し、具体的には、例えばN-メトキシイミノ基、N-エトキシイミノ基、N-ブロポキシイミノ基、N-ブロポキシイミノ基、N-ブレオキシイミノ基、N-イソプトキシイミノ基、N-ペンチルオキシイミノ基、N-ヘキシルオキシイミノス基、N-ペンチルオキシイミノ基、N-ヘキシルオキシイミノス基等が挙げられる。

 C_{1-6} アルカノイルオキシ基とは、炭素数 $1\sim 6$ の直鎖又は分枝鎖状のアルカノイルオキシ基を意味し、具体的には、例えばアセトキシ基、プロピオニルオキシ基、ピバロイルオキシ基等が挙げられる。

 C_{3-10} シクロアルキル基とは、炭素数 $3\sim10$ のシクロアルキル基を意味し、具体的には、例えばシクロプロピル基、シクロプチル基、シクロペンチル基、シクロペンチル基、シクロペンチル基、シクロペンチル基、シクロインチル基、シクロインチル基、シクロイニル基等が挙げられる。

置換 C_{3-10} シクロアルキル基の例としては、シクロアルキル基の水素原子をハロゲン原子、置換若しくは無置換の C_{1-10} アルキル基、水酸基、 C_{1-5} ヒドロキシアルキル基、カルボキシル基、メルカプト基、インドリル基、 C_{1-5} アルキルチオ基、アミノ基、アミド基及び C_{1-5} アルコキシ基からなる群より選ばれる1つ以上の基で置換されたシクロアルキル基を挙げることができる。

アリール基の例としては、フェニル基、ナフチル基、アントラセン基等を挙げることができる。

置換アリール基の例としては、アリール基の水素原子をハロゲン原子、置換若しくは無置換の C_{1-10} アルキル基、水酸基、 C_{1-5} ヒドロキシアルキル基、カルボキシル基、メルカプト基、インダゾリル基、インドリル基、 C_{1-5} アルキルチオ基、シアノ基、ニトロ基、アミノ基、アミド基、アセチルアミノ基及び C_{1-5} アルコキシ基からなる群より選ばれる1つ以上の基で置換されたアリール基を挙げることができる。

C₂₋₁₀へテロ環の例としては、フラン、ピロール、チオフェン、オキサゾール、イソオキサゾール、チアゾール、イミダゾール、ピラゾール、ピラン、ピリジン、ピリジン、ピリジン、ピリジン、キノリン等を挙げることができる。

置換 C_{2-10} へテロ環の例としては、ヘテロ環の水素原子をハロゲン原子、置換若しくは無置換の C_{1-10} アルキル基、水酸基、 C_{1-5} ヒドロキシアルキル基、カルボキシル基、メルカプト基、インダゾリル基、インドリル基、 C_{1-5} アルキルチオ基、シアノ基、ニトロ基、アミノ基、アミド基、アセチルアミノ基及び C_{1-5} アルコキシ基からなる群より選ばれる1つ以上の基で置換されたヘテロ環を挙げることができる。

エーテル結合とは、-O-、式 $-(CH_2)_m-O-(CH_2)_n-$ (式中、m及びn はそれぞれ $1\sim3$ の整数を表し、式中のアルキレン基はアルキル基で置換されていてもよい。)又は、式 $-O-(CH_2)_m-O-$ (式中、mは $1\sim3$ の整数を表し、式中のアルキレン基はアルキル基で置換されていてもよい。)を意味する。

パイ結合又はエーテル結合を形成する隣り合う基の組み合わせとしては、(R 4 と R^5)、(R^5 と R^6)、(R^6 と R^7)、(R^7 と R^8)及び(R^8 と R^9)を挙げることができる(式(IX)における $R^{48}\sim R^{98}$ も同様)。

式(IX)で表される化合物の中でより好ましくは式(I)で表される化合物であり、更に好ましくは $R^{3\,a}$ が水素原子であり、 $R^{3\,b}$ は水酸基である化合物である。また、化合物の安定性の点から、式($II\,a$)、式($II\,b$)、式($II\,c$) で表される化合物が好ましい。

[式 (II) において (R⁴とR⁵) 及び (R6とR7) がパイ結合を形成する化合物]

(式中、R¹、R²、R^{3c}、R^{3d}、R⁸、R⁹及びXは前記と同意義である。)

[式 (II) において (R^4 と R^5) がパイ結合を形成し、 R^6 及び R^7 は水素原子をである化合物]

 (式中、R¹、R²、R³°、R³°、R³°、R³ 及びXは前記と同意義である。)

 [式(II)において、R⁴、R⁵、R⁵ 及びR¹が水素原子である化合物]

(式中、R¹、R²、R³⁶、R³⁴、R⁸、R⁹及びXは前記と同意義である。)

また、式(IX)で表される化合物のうち R^{3} 6 6 が一緒になってエーテル結合を形成し、(R^{3} 1 2 4 8 8 1 8 1

例えば化合物77など)は、毛乳頭細胞におけるWNT-5A mRNAの発現を効果的に抑制し、毛乳頭細胞の増殖を促進する点で好ましい。

また、式(IX)で表される化合物のうち R^{18} 、 R^{28} が、(CH_2) $_pCO-Y-R^{10}$ (式中、Yは酸素原子又は硫黄原子を示し、 R^{10} は水素原子、 C_{1-6} アルキル基又は置換若しくは無置換のアリール基を示し、pは0又は1を示す。)で表される基である化合物(例えば化合物52など)や COR^{12} (式中、 R^{12} は置換若しくは無置換のアリール基又は置換若しくは無置換のヘテロ環を示す。)で表される基である化合物(例えば化合物58など)は、毛乳頭細胞におけるWNT-5A IR RNAO発現を効果的に抑制し、毛乳頭細胞の増殖を促進する点で好ましい。

また、 R^{7a} が $Z-R^{13}$ (式中、Zは酸素原子又は硫黄原子を示し、 R^{18} は C_{7} は、 C_{18} が C_{19} であっていカノイル基又は置換若しくは無置換のアリール基を示す。)で表される基である化合物(例えば化合物53など)は、毛乳頭細胞におけるWNT-5A RNAの発現を効果的に抑制し、毛乳頭細胞の増殖を促進する点で好ましい。

式(II)で表される化合物は、例えば、以下の製法を組み合わせることにより 製造することができる。

(式中、R¹、R²、R³⁶、R³⁶、R⁸、R⁹及びXは前記と同意義である。)

式(III)の化合物をパラジウム炭素などの触媒存在下、有機溶媒(例えば、酢酸エチル、テトラヒドロフラン、ジエチルエーテル、エチルアルコール、メチルアルコールなど)中、水素添加反応を行い、式(IV)若しくは式(IV')の化合物、あるいはこれらの混合物を得る。これらの式(IV)及び式(IV')の化合物はカラムクロマトグラフィーなど通常用いられる分離法にて分離精製することができる。

(式中、 R^1 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 、 R^9 及びXは前記と同意義である。)

式(V)の化合物を水素化ホウ素カリウム、水素化ホウ素ナトリウム、水素化ホウ素リチウムなどの還元剤と、必要に応じてLiCl、MgCl₂、CeCl₃、CaCl₂、NiCl等の塩類の共存下有機溶媒(例えば、テトラヒドロフラン、ジエチルエーテル、エチルアルコール、メチルアルコールなど)中、-20~100℃、好ましくは0~20℃で反応させ、式(VI)の化合物を得る。式(VI)の化合物はカラムクロマトグラフィーなど通常用いられる分離法にて分離精製することができる。

(式中、R¹、R²、R³c、R³d、R⁴、R⁵、R⁶、R¹及びXは前記と同意義である。)

式 (VII) の化合物を適当な有機溶媒(例えば、テトラヒドロフラン、ジエチルエーテル、エチルアルコール、メチルアルコールなど)中、酸又は塩基で処理することにより、式 (VIII) の化合物を得る。

また、式(IX)で表される化合物(1,60~78)の生産は、大略一般の発酵生産物を生産する場合に準じ、各種の栄養物を含む培地で

Pochonia chlamydosporia var. chlamydosporia TF-0480株を好気的条件下で培養することにより行う。

培地は主として液体培地を用い、炭素源、窒素源、無機塩よりなり、必要に応じてビタミン類、先駆物質及び消泡剤を加えることができ、pHは7前後に調整する。炭素源としては、例えばグルコース、デキストリン、グリセリン、澱粉などを単独又は混合して用いる。窒素源としては、例えば肉エキス、オートミール、酵母エキス、大豆粉、ポリペプトン、コーンスティープ・リカー、尿素、アンモニウム塩などを単独又は混合して用いる。無機塩としては、例えばリン酸一カリウム、硫酸マグネシウム、塩化ナトリウム、炭酸カルシウムなどを単独又は混合して用いる。消泡剤としてはアデカノール、シリコン化合物を用いることができる。培養方法は振とう培養、通気撹拌培養などの好気的培養が適しており、pH4~10、25~35℃で2~5日間、望ましくは25~28℃で3日間培養する。

この培養により生産された1、60~78 を単離するには、発酵生産物を採取する一般的な方法に準じて行えばよい。例えば次のような方法が効果的である。すなわち、培養終了後遠心分離又は濾過により培養濾液を得、ダイヤイオンHP-20(商品名、三菱化学社製)などのポリスチレン樹脂に吸着させた後、低級アルコール、アセトンなどの有機溶媒で溶出させる。菌体は低級アルコール、アセトンなどの有機溶媒で抽出する。次いでこの菌体抽出液及び吸着樹脂からの溶出液を合わせて減圧濃縮し、残った水層に酢酸エチル、クロロホルム、nーブタノールなどの有機溶媒を加え抽出し、抽出液を濃縮する。得られた残渣を再度ベン

ゼン、酢酸エチル、アセトン、メタノール、クロロホルムなどの有機溶媒に溶解し、シリカゲルカラムクロマトグラフィー、ゲル濾過カルムクロマトグラフィー及び逆層分配用ODSを充填したカラムクロマトグラフィー及び高速液体クロマトグラフィーを行うことにより本発明化合物を精製単離することができる。

本発明の有効成分を生産する菌株は、本発明者らが土壌から新たに分離した菌株であり、微生物の名称「ポコニア クラミドスポリア バラエティー クラミドスポリア TF-0480 (Pochonia chlamydosporia var. chlamydosporia TF-0480)」及び微生物寄託番号「FERM BP-8332」として、独立行政法人産業技術総合研究所特許生物寄託センター(日本国茨城県つくば市東1丁目1番地1中央第6)に2003年3月14日に寄託されている。

この菌株の菌学的性状を以下に示す。

1) 培地上での生育状態

本菌は、各種寒天平板培地上で良好な生育を示し、試験した培地上で良好又は中程度に胞子を形成する。各種培地上、26℃、2週間で形成したコロニーの特徴を次の表1に示した。なお色の表示は、A. Kornerupら著『Dizionario dei colori』Musterschmidt (1978年)のカラーコードを引用した。

表1

22 1	
培地	コロニーの肉眼的観察結果
PDA * -1	生育及び胞子形成は比較的良好、コロニー径は23-28mm。コロニーは 羊毛状、中心付近がフェルト状、やや盛り上がり、わずかに放射状のしわを生じる。 周縁(コロニー先端部) はやや不規則となる。 培地中にわずかに淡黄色(light yellow[3A6])の色素を分泌する。コロニー表面の色調は周縁付近で 白色(white[1A1])、中心付近は淡黄色(pale yellow[4A3])を呈する。 裏面は周縁付近が赤黄色(reddish yellow[4A6])、中心付近は黄褐色(Yellowish brown[5D8])を呈し、放射状または不規則に寒天培地が裂ける。
OMA * -2	生育及び胞子形成は良好、コロニー径は48-50mm。コロニーの中心付近と中間部分が盛り上がり、やや希薄な羊毛状を呈する。 周縁は比較的整い、色素の分泌は認められない。コロニー表面の色調は周縁付近で白色(white[1A1])、中心付近は淡黄色(light yellow[3A4])を呈する。 裏面は表面と同じ淡黄色(light yellow[3A4])を呈する。
CMA * -3	生育は良好だが胞子形成は中程度、コロニー径は47-51mm。コロニーは希薄なフェルト状を呈する。 周縁は比較的整い、 培地中への色素分泌は認められない。 コロニーの色調は表裏共、 白色(white[1A1])から黄白色(yellowish white[1A2])を呈する。
MA * -4	生育及び胞子形成は比較的良好、コロニー径は26-27mm。コロニーの中心付近は盛り上がり、厚みのある羊毛状を呈する。 周縁は比較的整い、培地中にわずかに赤黄色(reddish yellow[4A7])の色素を分泌する。コロニー表面の色調は周縁付近で白色(white[1A1])、中心付近は淡黄色(pale yellow[4A3])を呈する。 裏面は周縁付近が淡オレンジ色(light orange[5A4])、中心付近は褐色(brown[7E8])、中間部分がオレンジ色(orange[6B7])を呈する。
SA * -5	生育及び胞子形成は比較的良好、コロニー径は23-28mm。コロニーの中心付近が盛り上がり、厚みのある羊毛状を呈する。 周縁はやや不規則、わずかに放射状のしわを生じる。 培地中に赤黄色(reddish yellow[4A7]) の色素を分泌する。コロニー表面の色調は周縁付近で白色(white[1A1])、他はオレンジ白色(orange white[5A2])を呈する。 裏面は周縁および中心付近が淡オレンジ色(light orange[5A4])、中間部分が褐色(brown[7E8])を呈し、放射状に寒天培地が裂ける。
LCA * -6	生育は良好だが胞子形成は中程度、コロニー径は42-44mm。コロニーは希薄なフェルト状からわずかに羊毛状を呈する。 周縁は比較的整い、 培地中への色素分泌は認められない。 コロニーの色調は表裏共、白色(white[1A1])を呈する。

- *-1:ポテト・デキストロース寒天培地(栄研化学(株製、E-MF21)
- *-2:1/2希釈オートミール寒天培地(ディフコ社製、バクトオートミール寒天を1/2希釈で調製し、最終寒天濃度が2%になるように寒天を追加)
 - *-3:コーンミール寒天培地(ディフコ社製、コーンミール寒天)
- *-4: 麦芽エキス寒天培地(Nakase, T., 6th ed., pp.617, Japan Collection of Microorganisms, the Institute of Physical and Chemical Research, Saitama, 1995)
 - *-5: サブロー寒天培地(栄研化学㈱製、E-MFO3)
 - *-6:三浦寒天培地(Miura, K. and M.Kudo, Trans. Mycol. Soc. Japan, 11:116-118, 1970)

2) 形態

本菌がコーンミール寒天平板上、26 C、14 日間の培養で形成したコロニーを、光学顕微鏡にて観察した結果、分生子形成様式はフィアロ型であった。分生子形成細胞(フィアライド)は菌糸上に直接単生又は $2\sim4$ 個が輪生状に生じる、分生子柄は栄養菌糸との区別が不明瞭であった。分生子はフィアライドの先端で複数個形成され、粘塊状となる。フィアライドは先端部分が先細りの円筒形で、表面は平滑、無色、長さは $13-35\,\mu{\rm m}$ 、太さは基部で $0.8-1.7\,\mu{\rm m}$ 、先端付近では $0.5-0.8\,\mu{\rm m}$ である。分生子は、楕円形から、まれに亜球形で、多くは基部がわずかに突出する。表面は平滑、無色、大きさは $2.2-5.0\times1.8-2.8\,\mu{\rm m}$ である。また、培地表面や培地上の菌糸から生じた短い柄の先端に淡黄色、多細胞、網状隔壁を有する厚膜胞子(ディクティオクラミドスポア)を単生する。わずかではあるが厚膜胞子は培地中でも形成される。厚膜胞子の大きさは、 $14-20\times12-22\,\mu{\rm m}$ である。なお、培養を1 カ月以上延長してもテレオモルフの形態は認められなかった。

3) 生理的性質

①生育温度範囲及び最適温度

本菌株はpH6.0のサブロー液体培地において、15~31℃の範囲で生育し、最 適温度は25~27℃である。

②生育pH範囲及び最適pH

本菌株は YpSs液体培地中26℃においてpH3~10の範囲で生育し、最適pHは5~7である。

4) 好気性、嫌気性の区別 ; 好気性

上記の形態的特徴及び培養上の性状から、① K.H.Domschら著『 Compendium of soil fungi Vol.1』IHW-Verlag (1980年)、及び② G.L.Barron著『 The Genera of Hyphoomycetes from soil』Williams & Wilkins (1968年)等に記載された多くの既知種と本菌の特徴を比較検討した結果、Verticillium chlamydosporiaやDiheterospora chlamydosporiaの分類名称で知られる不完全菌の一菌種と極めて良く一致しており、同一種であることが示唆された。なお、本菌種は、③

R. Zare, W. Gams and H. C. Evans 『A revision of Verticillium section Prostrata. V. The genus Pochonia, with notes on Rotiferophthora 』73,1-2,p51-86 (2001年) により分子系統学的な再検討が行われ、Pochonia属を正式属名として再記載されており、さらに本菌のようにVerticillium型分生子が連鎖しない菌種に対し、Pochonia chlamydosporia var. chlamydosporiaなる変種名が提唱されている。

以上のことから、本菌株を「ポコニア クラミドスポリア バラエティー クラミドスポリア TF-0480 (Pochonia chlamydosporia var. chlamydosporia TF-0480)」と命名した。

<毛乳頭細胞増殖促進剤>

本発明において「毛乳頭細胞増殖促進剤」とは、毛乳頭細胞の数を増加させる作用を有する医薬又は試薬を意味する。

本発明の毛乳頭細胞増殖促進剤は、WNT-5A機能の阻害作用に基づくことを特徴とする。WNT-5Aは、WNT/ β -catenin経路が活性化するWNT-1 classのWNTs (1、8など)の機能を抑制することから、WNT-5Aの機能の調整あるいはWNT-5Aの発現を調整することにより毛乳頭細胞の増殖を制御する。したがって、優れたWNT-5A機能の阻害作用を有すれば、全く構造の異なる化合物(例えば、化合物24、化合物79、化合物 7 など)であっても、優れた毛乳頭細胞増殖促進作用を有する。

細胞の増殖は、当業者に公知の方法により測定することが可能であり、例えば 適当な発色基質を用いた生細胞数計測、[3H]-チミジン取り込み法等を挙げるこ とができる。発色基質としては、MTT、MTS、XTT等のテトラゾリウム塩やアラマ ーブルーを用いることが好ましい。

〈発毛剤/育毛剤〉

本発明において「発毛剤又は育毛剤」とは、発毛誘導、毛成長促進、脱毛予防などの目的で使用されるものである。本発明の発毛剤/育毛剤を医薬として用いる場合、適用対象としては、例えば円形脱毛症や男性型脱毛症の改善あるいは予防などを挙げることができる。

また、本発明の発毛剤/育毛剤の効果は、WNT-5A機能の抑制に基づく毛乳頭細胞増殖促進作用によるものである。かかる作用機序により脱毛部毛乳頭において低下している細胞増殖能を亢進し、発達した毛乳頭組織を形成するため、これまでの育毛剤/発毛剤では効果がえられなかった症状にも有効であることが予想される。

さらに他の作用点を有する発毛剤、育毛剤との組み合わせにより相乗的な効果 を期待できる。

本発明の発毛剤/育毛剤は、それぞれの化合物に基づき、種々の投与量及び投与形態で投与することができる。

投与量は、育毛剤の種類、投与形態により異なるが、例えば、式(IX)で表される化合物を塗布投与(ローション剤、軟膏剤、ゲル剤等)する場合、0.0001 ~10 重量%で投与することができ、好ましくは0.001 ~5 重量%、更に好ましくは0.001 ~1 重量%である。また、式(IX)で表される化合物を成人男性に経口投与(散剤、錠剤又はカプセル剤)する場合は、1 ~100 mg/kg/日とすることが好ましい。

本発明の発毛剤/育毛剤の投与形態は特に限定されるものではないが、外用での使用では、WNT-5A産生抑制剤、例えば式(IX)で表される化合物、を有効成分とする発毛剤/育毛剤は、水溶性組成物の形態で提供されることが好ましい。このような水溶性組成物の製造には、本発明の効果を損なわない限り医薬品、医薬部外品又は化粧品の製造に用いられる各種の添加物(保湿剤、増粘剤、防腐剤、酸化防止剤、香料、色剤等)を配合することができる。本発明の発毛剤/育毛剤は、例えばヘアトニック、ヘアオイル、ヘアムース、ゲルなどの調髪用組成物、軟膏などとして提供することが可能である。

本発明の発毛剤及び育毛剤を液剤とする場合には、WNT-5A産生抑制剤、例えば式(IX)で表される化合物、を精製水、リン酸緩衝液等の適当な緩衝液、生理的食塩水、リンガー溶液、ロック溶液等の生理的塩類溶液、エタノール、グリセリン及び慣用される界面活性剤等と適当に組み合わせた滅菌された水溶液、非水溶液、懸濁液、リポソーム又はエマルジョンとして調製され、頭皮用液状製剤として局所的に投与される。またその際、液状製剤を直接頭皮に塗布してもよく、スプレー等の射出ノズルを用いて塗布してもよい。

本発明の発毛剤及び育毛剤を半固形製剤とする場合には、WNT-5A産生抑制剤、例えば式(IX)で表される化合物を脂肪、脂肪油、ラノリン、ワセリン、パラフィン、蝋、硬膏剤、樹脂、プラスチック、グリコール類、高級アルコール、グリセリン、水、乳化剤、縣濁化剤等と混和して軟膏、クリーム等の外用として局所投与できる。

本発明の発毛剤及び育毛剤を固形製剤とする場合には、WNT-5A産生抑制剤、 例えば式(IX)で表される化合物、を適当な添加剤と適宜混合して、散剤、粉剤 等の外用剤として、又は、溶剤に用時溶解又は懸濁して頭皮に塗布するための固 形製剤としてもよい。

また、経口での使用する場合には、WNT-5A産生抑制剤、例えば式(IX)で表される化合物、を製剤上許容しうる担体(賦形剤、結合剤、崩壊剤、矯味剤、矯臭剤、乳化剤など)、希釈剤、溶解補助剤などと配合して得られる医薬組成物を通常の方法に従って製剤して得られる錠剤、カプセル剤、顆粒剤、散剤、シロッ

プ剤、懸濁剤、溶液剤などの形態で提供されることが望ましい。 なお、これらの製剤化は、通常の製剤化技術を使用することができる

<スクリーニング方法>

本発明はまた、WNT-5Aの機能を阻害する化合物を選択することを特徴とする 、毛乳頭細胞増殖促進剤のスクリーニング方法である。

WNT-5Aの機能を阻害する化合物(以下、「WNT-5A機能阻害剤」ということがある。)を選択するとは、例えば、WNT-5A産生抑制剤を選択、即ちスクリーニングすることでもよく、また、WNT-5A受容体アンタゴニストを選択することでもよい。

本発明のスクリーニング方法に供される被検物質としては、任意の物質を使用することができる。被検物質の種類は特に限定されず、個々の低分子化合物でよいし、天然物抽出物中に存在する化合物でもよく、合成ペプチドでもよい。また、化合物ライブラリー、コンビナトリアルライブラリーであってもよい。化合物ライブラリーの構築は当業者に公知であり、また市販の化合物ライブラリーを使用することもできる。スクリーニングの対象とする化合物は、医薬品として用いる観点から分子量3000以下であることが好ましく、塗布/経口投与を可能とする観点から、分子量600以下の低分子化合物であることが好ましい。

①WNT-5A受容体アンタゴニストのスクリーニング方法

WNT-5A受容体アンタゴニストのスクリーニング方法において、標識したWNT-5 A蛋白質及びWNT-5A受容体を用いて、該標識を検出又は測定することにより、WN T-5A蛋白質とWNT-5A受容体の結合の形成の有無を調べてもよい。標識としては、放射性同位元素(32P、33P、131 I、125 I、3H、14C、35 S等)、酵素(アルカリフォスファターゼ、ホースラディシュパーオキシターゼ等)、蛍光物質(フルオロセインイソチオシアネート等)等を挙げることができる。これらは市販のものを入手することができ、公知の方法によって標識される。

in vitroのアッセイ系の1つの具体例は、非細胞系において行われる。具体的にはWNT-5A蛋白質又はWNT-5A受容体のいずれか一方を支持体に結合させ、ここにもう一方と被検物質を加え、インキュベートした後洗浄して支持体に結合した

蛋白質に対するもう一方の蛋白質の結合を検出又は測定すればよい。

蛋白質を結合させる支持体としては、例えば不溶性の多糖類、例えば、アガロース、デキストラン、セルロース、合成樹脂、例えばポリスチレン、ポリアクリルアミド、シリコン等が挙げられる。より具体的にはそれらを原料として製造される市販のビーズ、プレートが用いられる。

②WNT-5A産生抑制化合物のスクリーニング方法

WNT-5A産生抑制化合物のスクリーニングは、WNT-5A mRNA量又はWNT-5A蛋白質量を指標として行うことができる。また、WNT-5A遺伝子のプロモーター領域にレポーター遺伝子を連結して発現量を検出することもできる。WNT-5A遺伝子のプロモーターとしては、配列番号3を使用することが好ましい。

レポーター遺伝子としては、例えば、GFP遺伝子 (Green Fluorescent Protein)、GUS遺伝子 (β-Glucuronidase)、LUC遺伝子 (Luciferase)、CAT (Chloram phenical acetyltransferase) 遺伝子 を挙げることができる。

WNT-5A mRNA量を指標とした場合としては、例えば、ヒトWNT-5A発現細胞を用い、被検物質を添加し、37℃、5%CO₂-95%airのインキュベータ内で数時間培養後、細胞を溶解してRNAを抽出し、RT-PCRなどを用いてWNT-5A mRNA量を測定することにより、WNT-5A mRNA量を減少させる活性を有する物質を探索することができる。PCRに用いるプライマーとしては、WNT-5A mRNAに特異的なものであれば特に制限はなく、WNT-5A mRNAの配列から設計することができるが、好ましくは、Forward Primer AATGTCTTCCAAGTTCTTCCTAGTGGC(配列番号 8)及び Reverse Primer GATGTCGGAATTGATACTGGCA(配列番号 9)である。

WNT-5A 蛋白質量を指標とした場合としては、例えば、ヒトWNT-5A発現細胞を用い、被検物質を添加し、37℃、 $5\,\%$ CO $_2$ -95%airのインキュベータ内で数時間培養後、培養培地を用いて又は細胞を溶解して蛋白質を抽出し、ELISA(enzyme-linked immunosorbent assay)等を用いてWNT-5A 蛋白質量を測定することにより、WNT-5A 蛋白質発現量を減少させる活性を有する物質を探索することができる。

以下、実験例に基づき本発明を更に説明するが、本発明はこれらにより何ら限定されるものではない。

実施例1(化合物3、4)

ラディシコール(化合物 1:10.8g)を酢酸エチル(140ml)に溶解し、5%パラジウム炭素(ウェットタイプ)(255mg)を加え、水素置換(1気圧)し室温で3時間撹拌した。パラジウム炭素を濾過後、濾液を減圧留去した。得られた残渣をシリカゲルクロマトグラフィーにて精製し、n-ヘキサン:酢酸エチル=2:1で溶出させることで、目的化合物 4(3.43g)を得、n-ヘキサン:酢酸エチル=3:2で溶出させることで、目的化合物 3(4.14g)を得た。

実施例2(化合物7、8)

化合物 3 (602.5mg) をメタノール(13ml) に溶解し、塩化セリウム (III) 7水和物(2.14g) を加え、室温で30分間撹拌した。この溶液に水素化ホウ素ナトリウム(180mg) を氷冷しながら徐々に加えた後、室温で5分間撹拌した。反応液に飽和リン酸水素ニナトリウム(40ml) を加え水(40ml) で希釈した後、有機溶媒を減圧留去した。残った水層を酢酸エチル(300ml×2) で抽出し、得られた酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。残渣をシリカゲル分取薄層クロマトグラフィー (20cm×20cm, 1.0mm厚、クロロホルム:メタノール=93:7で展開、酢酸エチルで溶出)により粗精製した。得られた粗精製物を高速液体クロマトグラフィー (20φ×250mm, YMC-Pack Pro C18, 水(酢酸添加、pH3.5):アセトニトリル=65:35で溶出)により精製し、目的化合物(化合物7:144.9mg、化合物8:13.8mg)を得た。

実施例3 (化合物9,10)

化合物 4 (26.5mg) をメタノール(5ml) に溶解し、塩化セリウム (III) 7水和物 (100mg) を加え、室温で30分間撹拌した。この溶液に水素化ホウ素ナトリウム(60mg) を氷冷しながら徐々に加えた後、室温で30分間撹拌した。反応液に飽和リン酸水素二ナトリウム(12ml) を加え水(20ml)で希釈した後、有機溶媒を減圧留去した。残った水層を酢酸エチル(30ml×2)で抽出し、得られた酢酸エチル層を無水

硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。残渣をシリカゲル分取薄層クロマトグラフィー($20\,\mathrm{cm} \times 20\,\mathrm{cm}$, $0.25\,\mathrm{mm}$ 厚、クロロホルム:メタノール=94:6 で展開、酢酸エチルで溶出)により精製し、目的化合物(化合物 9:5.7 $\,\mathrm{mg}$ 、化合物10:8.8 $\,\mathrm{mg}$)を得た。

実施例4(化合物5)

ラディシコール(91.5mg)をメタノール(5ml)に溶解し、塩化セリウム(III) 7水和物(88mg)を加え、室温で10分間撹拌した。この溶液に水素化ホウ素ナトリウム(60mg)を氷冷しながら徐々に加えた後、室温で30分間撹拌した。反応液に飽和リン酸水素二ナトリウム(20ml)を加え水(20ml)で希釈した後、有機溶媒を減圧留去した。残った水層を酢酸エチル(50ml×3)で抽出し、得られた酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。残渣をシリカゲル分取薄層クロマトグラフィー(20cm×20cm, 0.5mm厚、クロロホルム:メタノール=9:1で展開、酢酸エチルで溶出)により精製し、目的化合物 5(27.2mg)を得た。

実施例5(化合物2)

ラディシコール(15.3mg)をピリジン(1.5ml)に溶解し、無水酢酸(4ml)を加え室温で6.5時間撹拌した後、反応液に氷水(20ml)を加え酢酸エチル(20ml)で抽出した。酢酸エチル層を水(20ml×2)で洗浄し、無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(20cm×20cm, 0.5mm厚、クロロホルム:メタノール=95:5で展開、酢酸エチルで溶出)により精製し、目的化合物 2 (18.5mg)を得た。

実施例6(化合物11)

ラディシコール(19.0mg)をジメチルスルホキシド(1ml)に溶解し、炭酸カリウム(3mg)とヨウ化メチル(4ml)を加え室温で6.5時間撹拌した。反応液に水(20ml)を加え酢酸エチル(20ml)で抽出し、酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。得られた残渣をシリカゲル分取薄層クロマトグラ

フィー (20cm×20cm, 0.5mm厚、クロロホルム:メタノール=95:5で展開、酢酸エチルで溶出) により精製し、目的化合物11(15.3mg)を得た。

実施例7(化合物16、17、19、23)

ラディシコール (930mg) を1, 4-ジオキサン (14ml) に溶解し、1 規定塩酸 (12ml) を加え室温で2時間撹拌した後、水 (40ml) で希釈し酢酸エチル (100ml) で抽出した。酢酸エチルを無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。得られた残渣をシリカゲル分取薄層クロマトグラフィー (20cm×20cm, 1.0mm厚、クロロホルム:メタノール:n-ヘキサン=5:1:5で展開、酢酸エチルで溶出)により粗精製した。得られた粗精製物を高速液体クロマトグラフィー (20Φ×250mm, YMC-Pack Pro C18, 水 (酢酸添加、pH3.5):アセトニトリル=70:30~40:60、グラジエントで溶出)により精製し、目的化合物 (化合物16:11.4mg、化合物17:19.4mg、化合物19:32.6mg、化合物23:103.7mg) を得た。

実施例8 (化合物12、13)

ラディシコール(232.6mg)を1,4-ジオキサン(4ml)に溶解し、1規定塩酸(1ml)を加え室温で30分間撹拌した後、1規定水酸化ナトリウムで中和した。溶媒を減圧濃縮後メタノールを20ml加えて溶解させ、綿栓濾過後メタノールを減圧留去した。得られた残渣を高速液体クロマトグラフィー(20 Φ×250mm, YMC-Pack Pro C18,水(酢酸添加、pH3.5):アセトニトリル=65:35で溶出)により精製し、目的化合物(化合物12:42.6mg、化合物13:10.4mg)を得た。

実施例9 (化合物18)

5mlのジメチルホルムアミドに1mlのオキシ塩化リンを氷冷しながら滴下した後、室温で30分間撹拌した。この溶液をラディシコール(98.5mg)のジメチルホルムアミド溶液(4ml)に氷冷しながら徐々に加えた後、室温で24時間撹拌した。反応液を酢酸エチル(100ml)で希釈した後、水(100ml×3)で洗浄し、酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(20cm×20cm, 0.5mm厚、クロロホルム:

メタノール=94:6で展開、酢酸エチルで溶出)により精製し、目的化合物(化合物18)(61.8mg)を得た。

実施例10(化合物14、15)

ラディシコール(378mg)を1,4-ジオキサン(4ml)に溶解し、1規定塩酸(1ml)を加え室温で20分間撹拌した後、1規定水酸化ナトリウムで中和した。溶媒を減圧濃縮後メタノールを20ml加えて溶解させ、綿栓濾過後メタノールを減圧留去した。得られた残渣を高速液体クロマトグラフィー(20 Φ×250mm, YMC-Pack Pro C1 8,水(酢酸添加、pH3.5):アセトニトリル=70:30で溶出)により精製し、目的化合物(化合物14:10.7mg、化合物15:9.9mg)を得、同時に化合物12(40.6mg)も得られた。

実施例11(化合物20、21、22)

化合物 3 (96.3mg) を1,4-ジオキサン(2ml)に溶解し、1規定塩酸(2.5ml)を加え 室温で16時間撹拌した後、1規定水酸化ナトリウムで中和した。溶媒を減圧濃縮 後メタノールを20ml加えて溶解させ、綿栓濾過後メタノールを減圧留去した。得 られた残渣を高速液体クロマトグラフィー(20 Φ×250mm, YMC-Pack Pro C18, 水 (酢酸添加、pH3.5):アセトニトリル=45:55で溶出)により精製し、目的化 合物(化合物20:9.3mg、化合物21:22.0mg、化合物22:26.2mg)を得た。

実施例12(化合物25、 26)

化合物7(34mg)をN, Nージメチルホルムアミド(2ml)に溶解し、水酸化カリウム (3mg)とヨウ化メチル(500 μ l)を加え室温で4.5時間撹拌した。反応液に水(20ml)を加え酢酸エチル(20ml)で抽出し、酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。得られた残渣を少量のアセトンに溶解し、アセトニトリルー水(p H3.5、酢酸)(38:62)を移動層とした分取高速液体クロマトグラフィー [カラム:YMC-Pack Pro C18 AS-343(20 ϕ ×250mm)、検出UV吸収254nm、流速10ml/min]にて精製し、2つの画分を分取し各画分を減圧濃縮して、化合物25(6.4mg, 39min)、化合物26(14.5mg, 29min)を得た。

実施例13(化合物27)

化合物7(55mg)をピリジン(1ml)に溶解し、無水酢酸(3ml)を加えた後、室温で17時間撹拌した。反応液に水(50ml)を加え酢酸エチル(50ml)で抽出した。酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。得られた残渣を少量のアセトンに溶解し、アセトニトリルー水(p H3.5、酢酸)(60:40)を移動層とした分取高速液体クロマトグラフィー[カラム:YMC-Pack Pro C18 AS-343(20 Φ×250mm)、検出UV吸収254nm、流速10ml/min]にて精製し、得られた画分を減圧濃縮して、化合物27(64.7mg, 18min)を得た。

実施例14(化合物28、29)

化合物8(131mg)をN, Nージメチルホルムアミド(2ml)に溶解し、水酸化カリウム(3mg)とヨウ化メチル(2ml)を加え室温で7時間撹拌した。反応液に水(40ml)を加え酢酸エチル(40ml)で抽出し、酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。得られた残渣を少量のアセトンに溶解し、アセトニトリルー水(pH3.5、酢酸)(38:62)を移動層とした分取高速液体クロマトグラフィー[カラム:YMC-Pack Pro C18 AS-343(20 Φ×250mm)、検出UV吸収254nm、流速10ml/min]にて精製し、2つの画分を分取し各画分を減圧濃縮して、化合物28(14.2mg,52min)、化合物29(31.7mg,37min)を得た。

実施例15(化合物30)

化合物8(72mg)をピリジン(2ml)に溶解し、無水酢酸(2ml)を加えた後、室温で17時間撹拌した。反応液に水(50ml)を加え酢酸エチル(50ml)で抽出した。酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。得られた残渣を少量のアセトンに溶解し、アセトニトリルー水(pH3.5、酢酸)(53:47)を移動層とした分取高速液体クロマトグラフィー[カラム:YMC-Pack Pro C18 AS-343(20 Φ×250mm)、検出UV吸収254 nm、流速10ml/min]にて精製し、得られた画分を減圧濃縮して、化合物30(45.5mg, 30min)を得た。

実施例16(化合物31)

ラディシコール(10.8g)を酢酸エチル(140ml)に溶解し、5%パラジウム炭素(ウェットタイプ) (255mg)を加え、水素置換(1気圧)し室温で3時間撹拌した。パラジウム炭素を濾過後、濾液を減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー [Silica Gel 60 (商品名、Merck社製)] にて精製し、nーヘキサン:酢酸エチル(2:1)で溶出させることで、化合物4(3.43g)を得、またnーヘキサン:酢酸エチル(3:2)で溶出させることで、化合物3(4.14g)を得た。化合物3と化合物4の間の画分(3.08g)の一部(500mg)を少量のN, Nージメチルホルムアミドに溶解し、アセトニトリルー水(pH3.5、酢酸)(38:62)を移動層とした分取高速液体クロマトグラフィー [カラム:YMC-Pack Pro C18 AS-343 (20 Φ×250mm)、検出UV吸収254nm、流速10ml/min] にて精製し、2つの画分を分取し各画分を減圧濃縮して、化合物3(177.8mg)とともに化合物31(20.7mg, 23min)を得た。

実施例17(化合物32,33,34)

ラディシコール(11.9g)を酢酸エチル(160ml)に溶解し、5%パラジウム炭素(ウェットタイプ)(300mg)を加え、水素置換(1気圧)し室温で3時間撹拌した。パラジウム炭素を濾過後、濾液を減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー [Silica Gel 60 (商品名、Merck社製)]にて精製し、nーへキサン:酢酸エチル(2:1)で化合物4を溶出させ、nーへキサン:酢酸エチル(3:2)で化合物3を溶出させた。さらにnーへキサン:酢酸エチル(1:1)で溶出した画分を減圧濃縮し、粗精製物(936mg)を得た。得られた粗精製物を少量のアセトンに溶解し、、アセトニトリルー水(pH3.5、酢酸)(34:66)を移動層とした分取高速液体クロマトグラフィー [カラム:YMC-Pack Pro C18 AS-343(20Φ×250mm)、検出UV吸収254nm、流速10ml/min]にて精製し、3つの画分を分取し各画分を減圧濃縮して、化合物32(17.4mg, 17min)、化合物33(49.4mg, 18min)及び化合物34(347.4mg, 21min)を得た。

実施例18(化合物35)

ラディシコール(210mg)をピリジン(4ml)に溶解し、室温でヒドロキシルアミン塩

酸塩(180mg)を加えた後、40℃に昇温し2.5時間撹拌した。室温に戻した後、水(100ml)を加え酢酸エチル(80ml)で抽出した。酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。得られた残渣を分取薄層クロマトグラフィー [Silica Gel 60 F254 (商品名、Merck社製)、厚さ0.5mm] にてクロロホルムーメタノール (90:10) を展開溶媒として精製し、Rf値が0.65の部分を回収して酢酸エチルで抽出、減圧濃縮して化合物35(40.0mg)を得た。

実施例19(化合物36,37,38,39)

ラディシコール(11.9g)を酢酸エチル(160ml)に溶解し、5%パラジウム炭素(ウェ ットタイプ) (300mg)を加え、水素置換(1気圧)し室温で3時間撹拌した。パ ラジウム炭素を濾過後、濾液を減圧濃縮した。得られた残渣をシリカゲルクロマ トグラフィー「Silica Gel 60 (商品名、Merck社製)] にて精製し、n-ヘキサ ン:酢酸エチル(2:1)で溶出した画分を減圧濃縮し、化合物4を主成分とす る画分(1537mg)を得た。この画分をメタノール(21ml)/テトラヒドロフラン(7ml) に溶解し、塩化セリウム(Ⅲ) 7水和物(2130mg)を加え、室温で30分間撹拌した 。この溶液に水素化ホウ素ナトリウム(790mg)を氷冷しながら徐々に加えた後、 室温で10分間撹拌した。反応液を水(30ml)で希釈した後1規定塩酸水溶液を加え p Hを中性にした後、さらに水(30ml)で希釈する。水層を酢酸エチル(100ml×2) で抽出し、得られた酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを 減圧留去し、ガム状物質(1.46g)を得た。得られた物質をクロロホルムーメタノ ール(4:1)の混合溶媒に溶解し、n-ヘキサンで湿潤させて調製したシリカ ゲル [Silica Gel 60 (商品名、Merck社製)] のカラム (400ml) に吸着させた 。n-ヘキサンー酢酸エチルの混合溶媒で順次溶出し、n-ヘキサンー酢酸エチ $\mathcal{W}(2:1)$ で化合物4を溶出させた後、n-ヘキサンー酢酸エチ $\mathcal{W}(3:2)$ で溶出し、画分(1)(190mg)、画分(2)(398mg)をそれぞれ減圧濃縮す ることで得た。 画分(1)を少量のテトラヒドロフランで溶解し、アセトニト リル-水(pH3.5、酢酸) (35:65) を移動層とした分取高速液体クロマトグラ フィー [カラム: YMC-Pack Pro C18 AS-343 (20φ×250mm) 、検出UV吸収25 4nm、流速10ml/min] にて精製し、3つの画分を分取し各画分を減圧濃縮して

、化合物9(87.2mg)とともに化合物36(11.3mg, 20min)、化合物38(10.1mg, 25min)を得た。 また画分(2)を少量のテトラヒドロフランで溶解し、画分(1)と同条件で分取高速液体クロマトグラフィーにて精製し、2つの画分を分取し各画分を減圧濃縮して、化合物37(19.8mg, 25min)、化合物39(23.2mg, 27min)を得た。

実施例20(化合物40,41)

化合物7(61mg)をN, Nージメチルホルムアミド(3ml)に溶解し、水酸化カリウム(5mg)と1-ブロモブタン(1ml)を加え室温で3.5時間撹拌した。反応液に水(20ml)を加え酢酸エチル(30ml)で抽出し、酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。得られた残渣を少量のアセトンに溶解し、アセトニトリルー水(p H3.5、酢酸)を移動層として(60:40)~(90:10)のグラジエントをかけ、分取高速液体クロマトグラフィー [カラム:YMC-Pack Pro C18 AS-343($20\phi \times 250$ mm)、検出UV吸収254 nm、流速10ml/min]にて精製し、2つの画分を分取し各画分を減圧濃縮して、化合物40(25.6mg, 33min)、化合物41(21.4mg, 40min)を得た。

実施例21(化合物42,43)

化合物7(67mg)をN, Nージメチルホルムアミド(3m1)に溶解し、水酸化カリウム (5mg)と1-ブロモヘキサン(1ml)を加え室温で3.5時間撹拌した。反応液に水(20ml)を加え酢酸エチル(30ml)で抽出し、酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。得られた残渣を少量のアセトンに溶解し、アセトニトリルー水(pH3.5、酢酸)を移動層として $(60:40)\sim(90:10)$ のグラジエントをかけ、分取高速液体クロマトグラフィー $[カラム:YMC-Pack\ Pro\ C18\ AS-343(20<math>\phi \times 250$ mm)、検出UV吸収254nm、流速10ml/min]にて精製し、2つの画分を分取し各画分を減圧濃縮して、化合物42(24.9mg,38min)、化合物43(32.9mg,53min)を得た。

実施例22(化合物44)

化合物7(62mg)をN, N-ジメチルホルムアミド(3ml)に溶解し、水酸化カリウム(5mg)と1-ブロモプロパン(1ml)を加え室温で1.5時間撹拌した。反応液に水(20ml)を加え酢酸エチル(30ml)で抽出し、酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。得られた残渣を少量のアセトンに溶解し、アセトニトリルー水(pH3.5、酢酸)を移動層として(45:55)~(85:15)のグラジエントをかけ、分取高速液体クロマトグラフィー[カラム:YMC-Pack Pro C18 AS-343(20 Φ×250mm)、検出UV吸収254nm、流速10ml/min]にて精製し、得られた画分を減圧濃縮して、化合物44(45.3mg, 38min)を得た。

実施例23(化合物45)

化合物7(64mg)をN, Nージメチルホルムアミド(3ml)に溶解し、水酸化カリウム (5mg)と2 - (プロモメチル)シクロヘキサン(2ml)を加え室温で7時間撹拌した。反応液に水(20ml)を加え酢酸エチル(30ml)で抽出し、酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。得られた残渣を少量のアセトンに溶解し、アセトニトリルー水(pH3.5、酢酸)を移動層として(65:35)~(85:15)のグラジエントをかけ、分取高速液体クロマトグラフィー $[カラム:YMC-Pack\ Pro\ C18\ AS-343\ (20<math>\phi \times 250mm)$ 、検出UV吸収254nm、流速10ml/min]にて精製し、得られた画分を減圧濃縮して、化合物45(24.7mg, 70min)を得た。

実施例24(化合物46)

化合物7(200mg)をN, N-ジメチルホルムアミド(10ml)に溶解し、臭化水素酸(5ml)を加え110℃で6時間撹拌した。反応液に酢酸エチル(150ml)を加え炭酸水素ナトリウム(150ml×2)で洗浄し、酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。得られた残渣を少量のメタノールに溶解し、アセトニトリルー水(p H3.5、酢酸)を移動層として(38:62)~(50:50)のグラジエントをかけ、分取高速液体クロマトグラフィー [カラム:YMC-Pack Pro C18 AS-343(20Φ×250mm)、検出UV吸収254nm、流速10ml/min]にて精製し、得られた画分を分取し減圧濃縮して、化合物46(17.0mg, 18min)を得た。

実施例25 (化合物47)

化合物62(154mg)を酢酸エチル(5ml)に溶解し、5%パラジウム炭素(ウェットタイプ)(30mg)を加え、水素置換(1気圧)し室温で90分間撹拌した。パラジウム炭素を濾過後、濾液を減圧濃縮して、化合物47(134.8mg)を得た。

実施例26(化合物48)

化合物61 (211mg) を酢酸エチル(11ml) に溶解し、5%パラジウム炭素(ウェットタイプ)(42mg) を加え、水素置換(1気圧)し室温で90分間撹拌した。パラジウム炭素を濾過後、濾液を減圧濃縮した。得られた残渣(184mg) を分取薄層クロマトグラフィー [Silica Gel 60 F254 (商品名、Merck社製)、20cm×20cm、厚さ0.5mm] にてクロロホルムーメタノール (95:5) を展開溶媒として精製し、Rf値が0.5の部分を回収して酢酸エチルで抽出した後、減圧濃縮して化合物48(159.7mg)を得た。

実施例27(化合物49,50)

化合物61 (233mg) をメタノール(10ml)/テトラヒドロフラン(2ml) に溶解し、塩化セリウム (Ⅲ) 7水和物(754mg) を加え、室温で30分間撹拌した。この溶液に水素化ホウ素ナトリウム(236mg) を氷冷しながら徐々に加えた後、室温で10分間撹拌した。反応液を水(30ml) で希釈した後 1 規定塩酸水溶液(3ml) を加えり日を中性にした後、さらに水(30ml) で希釈する。水層を酢酸エチル(100ml×2) で抽出し、得られた酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去し、白色粉末(267mg) を得た。得られた粉末を少量のメタノールで溶解し、アセトニトリルー水(p H3.5、酢酸) (45:55) を移動層とした分取高速液体クロマトグラフィー [カラム:YMC-Pack Pro C18 AS-343 (20 Φ×250mm)、検出UV吸収254nm、流速10ml/min] にて精製し、2つの画分を分取し各画分を減圧濃縮して、化合物49(49.3mg, 19min)、化合物50(184.6mg, 21min)を得た。

実施例28(化合物51)

化合物62(191mg)をメタノール(10ml)/テトラヒドロフラン(4ml)に溶解し、塩化

セリウム (Ⅲ) 7水和物 (641mg) を加え、室温で30分間撹拌した。この溶液に水素化ホウ素ナトリウム (216mg) を氷冷しながら徐々に加えた後、室温で10分間撹拌した。反応液を水 (30ml) で希釈した後 1 規定塩酸水溶液 (3ml) を加え p Hを中性にした後、さらに水 (30ml) で希釈する。水層を酢酸エチル (100ml×2) で抽出し、得られた酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去し、無色油状物質 (182mg) を得た。得られたオイルを少量のメタノールで溶解し、アセトニトリルー水 (p H3.5、酢酸) (30:70) を移動層とした分取高速液体クロマトグラフィー [カラム:YMC-Pack Pro C18 AS-343 (20 ϕ ×250mm)、検出UV吸収254nm、流速10ml/min] にて精製し、得られた画分を減圧濃縮して、化合物51 (137.3mg, 29min)を得た。

実施例29(化合物52)

ラディシコール (205 mg)をアセトン (10 ml)に溶解し、Sークロロアセチルチオフェノール (330 mg)及び炭酸カリウム (310 mg)を加え、室温で1.5時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した後、減圧乾固させた。残渣をシリカゲルカラムクロマトグラフィー (20 g、酢酸エチル:n-ヘキサン=1:2) により粗精製した。得られた粗精製物を高速液体クロマトグラフィー (20 Φ×250mm, YMC-Pack Pro C18,水(酢酸添加、pH3.5):アセトニトリル=65:35で溶出)により精製し、化合物52(105 mg)を得た。

実施例30(化合物53)

ラディシコール (406 mg) をN, N-ジメチルホルムアミド (6 ml)に溶かし、氷冷下トリエチルアミン (57.6 mg)及びチオフェノール (260 mg)を加え、引き続き氷冷下一晩攪拌した。反応液に希塩酸を加え、酢酸エチルで抽出し、水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムで乾燥した後、減圧乾固させた。得られた残渣のうちの238 mgを高速液体クロマトグラフィー (20 Φ×250mm, YMC-Pack Pro C18, 水 (酢酸添加、pH3.5):アセトニトリル= 65:35で溶出)により精製し、化合物53(46.0 mg)を得た。

実施例31 (化合物54,55)

ラディシコール (378 mg)をN, N-ジメチルホルムアミド (6 ml)に溶かし、氷冷下トリエチルアミン (56.4 mg)及びチオ酢酸 (163 mg)を加え、引き続き氷冷下一晩攪拌した。反応液に希塩酸を加え、酢酸エチルで抽出し、水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムで乾燥した後、減圧乾固させた。得られた残渣のうちの238 mgを高速液体クロマトグラフィー (20 Φ×250mm, YMC-Pack Pro C1 8, 水(酢酸添加、pH3.5):アセトニトリル= 65:35で溶出)により精製し、化合物54(49.0 mg)、化合物55(15.7 mg)を得た。

実施例32(化合物56)

ラディシコール (131 mg)をアセトン (10 ml)に溶解し、ブロモ酢酸メチル (219 mg)及び炭酸カリウム (183 mg)を加え、室温で3時間攪拌した。反応液に希塩酸を加え、酢酸エチルで抽出した。飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥して、減圧乾固させた。得られた残渣を酢酸エチルより再結晶して化合物56 (81.8 mg)を得た。

実施例33(化合物57)

化合物7 (116 mg)をアセトン (10 ml)に溶解し、プロモ酢酸メチル (330 mg)及び炭酸カリウム (276 mg)を加え、室温で3日間攪拌した。反応液に希塩酸を加え、酢酸エチルで抽出した。飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した後、減圧乾固させた。得られた残渣を酢酸エチルより再結晶して化合物 57(27 mg)を得た。

実施例34(化合物58)

ラディシコール (103 mg)をN,N-ジメチルホルムアミド (6 ml)に溶解し、ニコチン酸 (190 mg)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩 (270 mg)及び4-ジメチルアミノピリジン(37.7 mg)を加え、室温で3.5時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した後、減圧乾固させた。得られた残渣をアセトン-水よ

り再結晶して化合物 58(94.5 mg)を得た。

実施例35(化合物59)

化合物56 (312 mg)をメタノール (60 ml)に懸濁し、水酸化カリウム (206 mg)-水 (20 ml)を加え室温で15分攪拌した。反応液に希塩酸を加え、酢酸エチルで抽出した。飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した後、減圧乾固させた。得られた残渣を高速液体クロマトグラフィー (20 Φ×250mm, YMC-Pack Pr 0 C18,水 (酢酸添加、pH3.5):アセトニトリル= 65:35で溶出)により精製し、化合物59(10.6 mg)を得た。

実施例36(化合物60,61,62,63,68,70)

グルコース2.0%、マンニトール4.0%、オートミール2.0%、酵母エキス0.4%、硫酸 鉄 (II)・7水和物0.001%、硫酸亜鉛 (II) 7水和物0.001%、硫酸マンガン (II) 4-5水和物0.001%、硫酸銅 (II) 5水和物0.0005%からなるpH6の無菌液体 培地にPochonia chlamydosporia var. chlamydosporia TF-0480株を接種し、26℃、72時間振盪培養した。次に50L容ジャー1基を用いて、種培養と同じ組成の 無菌培地30Lに前記種培養液300mlを接種し、26℃、144時間撹拌通気培養した。 培養終了後培養液を遠心分離し、菌体と上清に分離した。上清を1.5LのHPー20(商品名、三菱化学社製)に吸着させ、水で洗浄した後3Lのメタノールで 溶出した。この溶出液を減圧濃縮後、得られた水層を酢酸エチルで抽出した。酢酸エチル層を無水硫酸ナトリウムで脱水後、減圧濃縮し褐色シロップ状物質60gを得た。

培養エキスの一部 (30g) をクロロホルムーメタノール (4:1) の混合溶媒に溶解し、n-ヘキサンで湿潤させて調製したシリカゲル [Silica Gel 60 (商品名、Merck社製)] のカラム (1600ml) に吸着させた。n-ヘキサン-酢酸エチルの混合溶媒で順次溶出し、n-ヘキサン-酢酸エチル (4:1) 溶出画分 (130mg)、(2:1) 溶出画分 (1) (1.88g)、(2) (780mg)、(1:2) 溶出画分 (3.56g) を得た。n-ヘキサン-酢酸エチル (4:1) 溶出画分 (130mg) を少量のアセトンに溶解し、アセトニトリルー水(pH3.5、酢酸) (55:45)

を移動層とした分取高速液体クロマトグラフィー [カラム:YMC-Pack Pro C18 A S-343 (20 φ×250mm)、検出UV吸収254nm、流速10ml/min] にて精製し、 2つの画分を分取し各画分を減圧濃縮して、化合物63(23.5mg, 20min)、化合物7 0(4.8mg, 24min)を得た。 またn-ヘキサンー酢酸エチル(2:1)溶出画分 (1) (1.88g) をアセトン (30ml) で再結晶し、化合物61(277mg)を得、溶出画 分 (2) (780mg) を分取薄層クロマトグラフィー [Silica Gel 60 F254 (商品 名、Merck社製)、20cm×20cm、厚さ1mm]にてn-ヘキサンーアセトン(3: 2) を展開溶媒として精製し、Rf値が0.4の部分を回収して酢酸エチルで抽出し た後、減圧濃縮して化合物60(80.3mg)を得た。次にn-ヘキサンー酢酸エチル(1:2) 溶出画分(3.56g) をクロロホルムーメタノール(4:1) の混合溶媒 に溶解し、クロロホルムで湿潤させて調製したシリカゲル [Silica Gel 60 (商 品名、Merck社製)] のカラム (880ml) に吸着させた。クロロホルム-メタノー ルの混合溶媒で順次溶出し、クロロホルムーメタノール(98:2)溶出画分(92 6mg) を得、アセトンーメタノール (1ml/3ml) で再結晶することで化合物62(339mg)を得た。またクロロホルムーメタノール(97:3) 溶出画分(1.42g) を セファデックスLH-20(商品名、アマシャムファルマシアバイオテク社製) (メタノール、900ml) のカラムクロマトグラフィー、続いてアセトニトリルー 水(pH3.5、酢酸)(30:70)を移動層とした分取高速液体クロマトグラフィー [カラム: YMC-Pack Pro C18 AS-343 (20φ×250mm) 、検出UV吸収254nm 、流速10ml/min] にて精製し、得られた画分を減圧濃縮して、化合物68(4.5mg, 21min)を得た。

実施例37(化合物64,65,71,72,76)

実施例36と同様にして得た培養エキスの一部 (30g) をクロロホルムーメタノール (4:1) の混合溶媒に溶解し、クロロホルムで湿潤させて調製したシリカゲル [Silica Gel 60 (商品名、Merck社製)] のカラム (700ml) に吸着させた。クロロホルムーメタノールの混合溶媒で順次溶出し、クロロホルムーメタノール (93:7) 溶出画分を2つに分け、画分 (1) (156mg)、(2) (164mg) とした。画分 (1) を少量のメタノールに溶解し、アセトニトリルー水(p H3.5、酢

酸) (30:70) を移動層とした分取高速液体クロマトグラフィー [カラム:YMC-P ack Pro C18 AS-343 (20 Φ×250mm)、検出UV吸収254nm、流速10ml/min] にて精製し、4つの画分を分取し各画分を減圧濃縮して、化合物64(35.4mg, 21m in)、化合物72(13.7mg, 27min)、化合物71(6.6mg, 29min)、化合物65(4.1mg, 33 min)を得た。また画分(2) を同条件の分取高速液体クロマトグラフィーにて精製し、得られた画分を分取し減圧濃縮して、化合物71(3.7mg)とともに化合物76(4.5mg, 20min)を得た。

実施例38(化合物69,74)

実施例36と同様にして得た培養エキス(39.5g) を n - へキサン (300ml×2) で溶解し、生成する沈殿を濾過し溶媒を除去した。得られた沈殿(8.1g) をクロロホルムーメタノール(4:1)の混合溶媒に溶解し、クロロホルムで湿潤させて調製したシリカゲル [Silica Gel 60 (商品名、Merck社製)] のカラム(650ml)に吸着させた。クロロホルムーメタノールの混合溶媒で順次溶出し、クロロホルムーメタノールの混合溶媒で順次溶出し、クロロホルムーメタノール(88:12) 溶出画分(318mg) を得た。得られた画分を少量のメタノールに溶解し、アセトニトリルー水(p H3.5、酢酸)(30:70) を移動層とした分取高速液体クロマトグラフィー [カラム:YMC-Pack Pro C18 AS-343(200×250mm)、検出UV吸収254nm、流速10ml/min] にて精製し、2つの画分を分取し各画分を減圧濃縮して、化合物74(15.3mg, 19min)、化合物69(8.0mg, 38min)を得た。

実施例39(化合物66)

実施例36と同様にして得た培養エキス(39.5g) をn-ヘキサン(300ml×2)で溶解し、生成する沈殿を濾過し溶媒を除去した。得られた沈殿(8.1g)をクロロホルムーメタノール(4:1)の混合溶媒に溶解し、クロロホルムで湿潤させて調製したシリカゲル[Silica Gel 60 (商品名、Merck社製)]のカラム(650ml)に吸着させた。クロロホルムーメタノールの混合溶媒で順次溶出し、クロロホルムーメタノール(100:0)溶出画分(1.5g)を得た。続いてn-ヘキサンー酢酸エチルの混合溶媒でシリカゲルカラム(620ml)を行い、n-ヘキサンー

酢酸エチル (2:1) 溶出画分 (321mg) を得た。得られた画分を少量のアセトンに溶解し、アセトニトリルー水(pH3.5、酢酸) (45:55~70:30、グラジエント) を移動層とした分取高速液体クロマトグラフィー [カラム:YMC-Pack ProC18 AS-343 (20φ×250mm)、検出UV吸収254nm、流速10ml/min] にて精製し、化合物66(14.4mg, 34min)を得た。

実施例40(化合物73,77,78)

実施例36と同様にして得た培養エキス (500g) をクロロホルムーメタノール (4:1) の混合溶媒に溶解し、クロロホルムで湿潤させて調製したシリカゲル [Silica Gel 60 (商品名、Merck社製)] のカラム (6000ml) に吸着させた。クロロホルムーメタノールの混合溶媒で順次溶出し、クロロホルムーメタノール (95:5) 溶出画分 (57g) を得、その一部 (18g) をさらに nーヘキサンー酢酸エチルの混合溶媒でシリカゲルカラム (800ml) を行い、nーヘキサンー酢酸エチル (2:1) 溶出画分を 2 つに分け、画分 (1) (126mg)、(2) (985mg) とした。画分 (1) を少量のアセトンに溶解し、アセトニトリルー水 (p H3.5、酢酸) (55:45) を移動層とした分取高速液体クロマトグラフィー [カラム:YMC-Pack Pro C18 AS-343 (20 Φ×250mm)、検出 U V 吸収254 n m、流速10ml/min]にて精製し、得られた画分を減圧濃縮して、化合物78 (13.4mg, 26min)を得た。また画分 (2) を移動層をアセトニトリルー水 (p H3.5、酢酸) (45:55) とした分取高速液体クロマトグラフィーにて精製し、2 つの画分を分取しそれぞれ減圧濃縮して、化合物73 (38.1mg, 10min)、化合物77 (67.2mg, 26min)を得た。

実施例41(化合物67,75)

実施例36と同様にして得た培養エキス(500g)をクロロホルムーメタノール(4:1)の混合溶媒に溶解し、クロロホルムで湿潤させて調製したシリカゲル [Silica Gel 60 (商品名、Merck社製)]のカラム(6000ml)に吸着させた。クロロホルムーメタノールの混合溶媒で順次溶出し、クロロホルムーメタノール(95:5)溶出画分(57g)を得、その一部(18g)をさらにnーヘキサンー酢酸エチルの混合溶媒でシリカゲルカラム(800ml)を行い、nーヘキサンー酢酸エ

チル (1:2) 溶出画分 (890mg) を得た。得られた画分を少量のアセトンに溶解し、アセトニトリルー水(pH3.5、酢酸) (40:60) を移動層とした分取高速液体クロマトグラフィー [カラム:YMC-Pack Pro C18 AS-343 (20 Φ×250mm)、検出UV吸収254nm、流速10ml/min] にて精製し、2つの画分を分取し得られた画分を減圧濃縮して、化合物67(17.4mg, 11min)とともにセミピュアサンプル(23.9mg)を得た。セミピュアサンプルを 分取薄層クロマトグラフィー [Silica Gel 60 F254 (商品名、Merck社製)、20cm×20cm、厚さ0.5mm] にてクロロホルムーメタノール (90:10) を展開溶媒として精製し、Rf値が0.5の部分を回収して酢酸エチルで抽出後、減圧濃縮して化合物75(4.3mg)を得た。

上記実施例にて合成した化合物及び精製した化合物並びにそのデータを表 2 に 示す。

130-NMR	(CD3OD,125MHz) δppm: 20.5(q), 23.5(t), 24.6(t), 30.2(t), 35.1(t), 37.8(t), 39.2(t), 57.1(d), 59.1(d), 72.2(d), 72.3(d), 102.9(d), 114.6(s), 115.9(s), 138.5(s), 156.6(s), 156.8(s), 169.8(s)	(CDCI3,125MHz) δppm: 18.6(q), 37.3(t), 45.2(t), 55.5(d), 55.6(d), 56.3(q), 56.4(q), 70.2(d), 95.5(d), 115.5(s), 117.9(s), 130.2(d), 131.0(d), 132.4(s), 135.6(d), 138.6(d), 156.3(s), 156.9(s), 166.0(s), 196.4(s)	(CD3OD,125MHz) 5ppm: 19.3(q), 38.2(t), 45.7(t), 60.6(d), 70.9(d), 72.6(d), 103.9(d), 114.3(s), 116.3(s), 130.8(d), 132.6(d), 134.6(s), 138.1(d), 141.1(d), 156.9(s), 157.0(s), 168.1(s), 199.8(s)	(CD3OD,125MHz) δppm: 20.8(q), 40.6(t), 44.5(t), 60.4(d), 71.0(d), 72.1(d), 104.1(d), 113.8(s), 115.7(s), 127.6(d), 131.7(d), 135.4(s), 138.6(d), 139.1(d), 157.8(s), 158.6(s), 168.5(s), 198.7(s)
1H-NMR	(CD3OD,500MHz) δppm: 1.29(m,1H), 1.35(m,2H), 1.38(m,2H), (1.40(d,J=6.1Hz,3H), 1.50(m,1H), 1.57(m,1H), 1.94(m,1H), 2.37(m,1H), 2.81(dt,J=7.3,2.4Hz,1H), 2.88(dt,J=7.3,2.4Hz,1H), 2.98(dd,J=13.4,5.5Hz,1H), 3.15(dd,J=13.4,7.2Hz,1H), 3.82(qui,J=6.1Hz,1H), 5.12(d'sxt,J=6.1,2.4Hz,1H), 6.39(s,1H)	(CDCI3,500MHz) δppm: 1.50(d,J=6.7Hz,3H), 1.61(ddd,J=14.6,8.6,3.7Hz,1H), 2.40(dt,J=14.6,3.7Hz,1H), 3.02(dt,J=8.6,1.8Hz,1H), 3.40(br.t,J=1.8Hz,1H), 3.75(d,J=15.9Hz,1H), 3.83(s,3H), 3.89(s,3H), 3.95(d,J=15.9Hz,1H), 5.35(dq,J=6.7,3.7Hz,1H), 5.69(dd,J=10.4Hz,1H), 6.45(s,1H), 7.48(dd,J=15.9,10.4Hz,1H)	(CD3OD,500MHz) δppm: 1.42(d,J=6.4Hz,3H), 1.89(ddd,J=15.2,9.1,3.6Hz,1H), 2.03(dd,J=15.2,7.0Hz,1H), 3.66(d,J=16.2Hz,1H), 3.99(dd,J=9.1,5.8Hz,1H), 4.21(d,J=16.2Hz,1H), 5.12(dd,J=10.0,5.8Hz,1H), 5.38(dq,J=6.4,3.6Hz,1H), 5.75(t,J=10.0Hz,1H), 5.95(d,J=16.1Hz,1H), 6.17(t,J=11.0Hz,1H), 6.46(s,1H), 7.21(dd,J=16.1,11.0Hz,1H),	(CD3OD,500MHz) 8ppm: 1.46(d,J=6.1Hz,3H), 1.96(ddd,J=14.0,9.8,3.0Hz,1H), 2.12(ddd,J=14.0,9.8,3.0Hz,1H), 44.5(t), 60.4(d), 71.0(d), 72.1(d), 104.1(d), 3.76(d,J=15.3Hz,1H), 3.88(dt,J=9.8,3.0Hz,1H), 44.5(t), 60.4(d), 71.0(d), 72.1(d), 104.1(d), 113.8(s), 115.7(s), 127.6(d), 131.7(d), 137.3(d,J=15.9Hz,1H), 5.00(dd,J=9.8Hz,1H), 6.14(t,J=9.8Hz,1H), 6.00(d,J=15.9Hz,1H), 6.02(t,J=9.8Hz,1H), 6.14(t,J=9.8Hz,1H), 6
構造	HO H		HO HO CL	HO HO ID
化合物 番号	10	Έ	12	. 27

	化合物 番号物	構造	1H-NMR	13C-NMR
	14	HO HO HO HO	(CD3OD,500MHz) δppm: 1.42(d,J=6.7Hz,3H), 1.87(ddd,J=15.3,9.2,3.7Hz,1H), 1.95(dd,J=15.3,6.7Hz,1H), 3.63(d,J=15.9Hz,1H), 3.80(m,1H), 4.18(d,J=15.9Hz,1H), 4.78(dd,J=8.5,6.1Hz,1H), 5.40(m,1H), 5.73(dd,J=11.0,8.5Hz,1H), 5.90(d,J=15.9Hz,1H), 6.44(t,J=11.0Hz,1H), 6.41(s,1H), 7.30(dd,J=15.9,11.0Hz,1H)	(CD3OD,125MHz) δppm: 19.4(q), 37.8(t), 45.8(t), 71.2(d), 71.9(d), 72.0(d), 103.8(d), 114.3(s), 116.6(s), 130.0(d), 131.5(d), 134.7(s), 142.4(d), 142.9(d), 156.7(s), 156.9(s), 168.4(s), 200.2(s)
4	15	HO HO HO	(CD3OD,500MHz) 8ppm: 1.44(d,J=6.1Hz,3H), 1.83(ddd,J=14.6,9.8,3.0Hz,1H), 2.10(ddd,J=14.6,9.8,3.0Hz,1H), 3.64(dt,J=9.8,3.0Hz,1H), 3.87(d,J=15.9Hz,1H), 4.53(d,J=15.9Hz,1H), 4.56(m,1H), 5.45(m,1H), 5.94(dd,J=10.4,7.3Hz,1H), 5.96(d,J=15.9Hz,1H), 6.12(t,J=10.4Hz,1H), 6.44(s,1H), 7.36(dd,J=15.9,10.4Hz,1H)	(CD3OD,125MHz) 8ppm: 21.0(q), 39.3(t), 44.5(t), 69.5(d), 71.2(d), 72.7(d), 104.0(d), 113.0(s), 115.9(s), 127.2(d), 131.3(d), 135.8(s), 140.6(d), 143.7(d), 158.2(s), 158.9(s), 168.7(s), 199.5(s)
	16	HO 13 OH	(CD3OD,500MHz) δppm: 1.29(d,J=6.1Hz,3H), 1.70(ddd,J=11.6,10.4,2.4Hz,1H), 2.17(dt,J=11.6,6.1Hz,1H), 4.01(d,J=18.9Hz,1H), 4.05(m,1H), 4.34(d,J=18.9Hz,1H), 5.01(m,1H), 5.46(d,J=9.8Hz,1H), 5.82(dd,J=15.3,9.8Hz,1H), 6.02(t,J=11.0Hz,1H), 6.10(dd,J=15.3,11.0Hz,1H), 6.30(t,J=11.0Hz,1H), 6.45(s,1H)	(CD3OD,125MHz) δppm: 20.6(q), 42.3(t), 42.4(t), 62.9(d), 70.4(d), 71.5(d), 103.8(d), 115.0(s), 116.4(s), 126.2(d), 127.6(d), 133.4(s), 134.8(d), 140.8(d), 156.5(s), 156.6(s), 169.4(s), 201.0(s)
	17	HO HO I I I I I I I I I I I I I I I I I	(CD3OD,500MHz) δppm: 1.38(s,3H), 1.39(s,3H); 1.46(d,J=6.4Hz,3H), 1.87(dd,J=16.1,9.1Hz,1H), 2.08(ddd,J=16.1,5.8,1.8Hz,1H), 3.73(dd,J=9.1,5.8Hz,1H), 3.85(d,J=16.4Hz,1H), 4.38(d,J=16.4Hz,1H), 4.71(t,J=9.1Hz,1H), 5.65(m,1H), 5.78(dd,J=11.3,9.1Hz,1H), 6.03(d,J=16.1Hz,1H), 6.32(t,J=11.3Hz,1H), 6.47(s,1H), 7.83(dd,J=16.1,11.3Hz,1H)	(CD3OD,125MHz) δppm: 21.8(q), 27.2(q), 27.3(q), 34.5(t), 45.9(t), 70.3(d), 75.9(d), 78.9(d), 103.8(d), 110.1(s), 111.0(s), 116.2(s), 130.3(d), 131.3(d), 136.8(s), 138.7(d), 142.2(d), 158.8(s), 160.3(s), 169.1(s), 200.4(s)

13C-NMR	(CDCl3/CD3OD,125MHz) δppm: 19.0(q), 35.4(t), 45.4(t), 56.8(d), 70.0(d), 73.3(d), 103.6(d), 114.0(s), 115.1(s), 130.9(d), 133.1(d), 133.6(s), 135.6(d), 139.2(d), 156.3(s), 156.4(s), 160.6(d), 167.3(s), 198.8(s)	(DMSO-d6,125MHz) δppm: 20.8(q), 37.8(t), 43.3(t), 46.0(t), 56.1(d), 69.2(d), 72.1(d), 72.6(d), 102.2(d), 112.3(s), 115.0(s), 126.9(d), 131.6(d), 131.8(s), 154.0(s), 154.7(s), 167.2(s), 202.8(s)	(CDCl3,125MHz) δppm: 20.6(q), 27.2(t), 28.7(t), 42.5(t), 45.3(t), 50.4(t), 58.6(d), 72.3(d), 78.1(d), 81.3(d), 103.8(d), 107.4(s), 114.5(s), 135.8(s), 156.3(s), 164.1(s), 170.3(s), 206.1(s)	(CDCi3/CD3OD,125MHz) δppm: 20.8(q), 32.4(t), 34.1(t), 37.9(t), 47.3(t), 47.9(t), 57.5(d), 74.4(d), 76.2(d), 81.7(d), 102.8(d), 107.6(s), 115.0(s), 134.7(s), 157.3(s), 161.3(s), 170.5(s), 207.0(s)
1H-NMR	(CDCi3/CD30D,500MHz) δppm: 1.52(d,J=6.4Hz,3H), 2.02(ddd,J=14.9,9.1,4.0Hz,1H), 2.09(dd,J=14.9,6.4Hz,1H), 3.79(d,J=16.1Hz,1H), 4.20(d,J=16.1Hz,1H), 5.23(dd,J=10.0,5.8Hz,1H), 5.34(dt,J=6.4,4.0Hz,1H), 5.39(dd,J=8.8,5.8Hz,1H), 5.34(dt,J=10.0Hz,1H), 6.00(d,J=16.1Hz,1H), 6.16(t,J=11.0Hz,1H), 6.48(s,1H), 7.18(dd,J=16.1,11.0Hz,1H), 8.02(s,1H)	(DMSO-d6,500MHz) δppm: 1.25(d,J=6.1Hz,3H), 1.74(ddd,J=15.3,10.4,7.9Hz,1H), 2.01(d,J=15.3Hz,1H), 2.49(dd,J=15.3,10.4,7.9Hz,1H), 3.11(dd,J=14.6,12.2Hz,1H), 3.81(t,J=7.9Hz,1H), 3.92(d,J=17.7Hz,1H), 3.91(t,J=7.9Hz,1H), 3.92(d,J=17.7Hz,1H), 3.92(dd,J=7.9,1.8Hz,1H), 4.61(d,J=12.2Hz,1H), 5.83(dt,J=10.4,1.8Hz,1H), 5.91(dt,J=10.4,1.8Hz,1H), 6.47(s,1H), 9.97(br.s,1H), 10.35(br.s,1H)	(CDCi3,500MHz) δppm: 1.40(d,J=6.4Hz,3H), 1.77(ddd,J=10.4,7.9,1.5Hz,1H), 1.91(m,1H), 2.04(m,1H), 2.13(m,1H), 2.23(dd,J=12.5,7.3Hz,1H), 2.42(dd,J=14.6,4.9Hz,1H), 2.73(dd,J=15.5,11.3Hz,1H), 3.04(dd,J=14.6,4.6Hz,1H), 3.30(t,J=10.0Hz,1H), 3.91(ddd,J=10.4,7.9,1.5Hz,1H), 4.13(d,J=18.3Hz,1H), 4.42(sxt,J=4.6Hz,1H), 6.60(s,1H), 11.9(br.s,1H)	(GDCi3/CD3OD,500MHz) δppm: 1.20(d,J=8.1Hz,3H), 1.41(m,1H), 1.66(m,1H), 1.70(m,1H), 1.75(m,1H), 2.13(d,J=13.4Hz,1H), 2.16(dd, J=11.0,2.7Hz,1H), 2.22(m,1H), 2.57(t,J=11.0Hz,1H), 3.28(t,J=9.8Hz,1H), 3.42(ddd,J=11.6,9.8,4.6Hz,1H), 3.51(dt,J=11.0,2.7Hz,1H), 4.13(d,J=19.2Hz,1H), 5.05(d'sxt,J=6.1,1.8Hz,1H), 5.31(br.d,J=19.2Hz,1H), 6.33(s,1H)
構造	0H0 0H	0 0 0 0 13	H. 12	H 0 H
化合物 番号物	18	19	50	22

13O-NMR	(CDCi3/CD3OD,125MHz) δppm: 21.4(q), 27.0(t), 28.7(t), 35.8(t), 46.9(t), 46.9(t), 58.6(d), 68.2(d), 74.1(d), 77.0(d), 103.2(d), 107.0(s), 115.5(s), 134.8(s), 158.0(s), 162.1(s), 170.9(s), 205.0(s)	(DMSO-d6,125MHz) δppm: 19.2(q), 37.6(t), 45.1(t), 48.3(t), 69.7(d), 70.3(d), 83.3(d), 88.4(d), 102.4(d), 111.7(s), 115.3(s), 129.3(d), 130.0(d), 130.2(s), 154.4(s), 154.7(s), 166.4(s), 203.8(s)	(Acetone-d6,125MHz) δppm: 20.2(q), 29.3(t), 31.1(t), 36.5(t), 40.3(t), 56.9(q), 57.2(d), 58.3(d), 70.6(d), 70.7(d), 100.2(d), 108.0(s), 116.4(s), 127.9(d), 133.4(d), 140.4(s), 160.4(s), 164.5(s), 171.8(s)	(Acetone-d6,125MHz) δppm: 19.8(q), 28.7(t), 33.3(t), 39.0(t), 40.8(t), 56.1(d), 56.7(q), 56.8(q), 58.0(d), 71.5(d), 73.0(d), 96.5(d), 115.1(s), 119.9(s), 130.2(d), 135.7(d), 136.1(s), 156.9(s), 157.4(s), 167.2(s)
1H-NMR	(CDCl3/CD3OD,500MHz) δppm: 1.30(d,J=6.1Hz,3H), 1.75(dd,J=11.6,5.5Hz,1H), 1.80(d,J=14.6Hz,1H), 1.99(m,1H), 2.18(m,2H), 2.54(br.s,2H), 2.85(br.s,2H), 3.82(m,1H), 3.91(br.s,1H), 4.42(br.s,1H), 5.15(m,1H), 6.43(s,1H)	(DMSO-d6,500MHz) δppm: 1.26(d,J=6,7Hz,3H), 1.44(ddd,J=14.6,7.9,3.0Hz,1H), 2.16(d,J=12.8Hz,1H), 2.37(dd,J=14.6,5.5Hz,1H), 2.76(dd,J=14.6,4.9Hz,1H), 3.20(m,1H), 3.71(d,J=18.3Hz,1H), 3.90(d,J=18.3Hz,1H), 4.21(dt,J=9.8,1.8Hz,1H), 4.88(d,J=6.7Hz,1H), 5.01(br.s,1H), 5.20(sep,J=3.7Hz,1H), 5.89(dt,J=6.1,1.8Hz,1H), 6.00(dt,J=6.1,1.8Hz,1H), 6.50(s,1H), 9.97(s,1H), 10.47(br.s,1H)	(Acetone-d6,500MHz) δppm: 1.22(dt,J=17.0,9.1Hz,1H), 1.43(d,J=6.7Hz,3H), 1.98(m,1H), 2.00(m,1H), 2.06(m,1H), 2.21(m,1H), 2.33(ddd,J=15.8,7.0,3.0Hz,1H), 2.50(dt,J=9.4,1.8Hz,1H), 2.83(m,1H), 3.35(dd,J=12.5,6.1Hz,1H), 3.89(dd,J=12.5,9.8Hz,1H), 3.94(s,3H), 4.43(m,1H), 5.16(d-qui,J=6.7,2.4Hz,1H), 5.36(dd,J=15.2,4.3Hz,1H), 5.53(dddd,J=15.2,6.7,4.3,1.8Hz,1H), 6.58(s,1H)	(Acetone-d6,500MHz) δppm: 1.09(m,1H), 1.40(ddd,J=14.6,8.6,3.0Hz,1H), 1.46(d,J=6.7Hz,3H), 2.10– 2.20(m,3H), 2.31(ddd,J=14.6,6.7,3.7Hz,1H), 2.69(dt,J=9.2,1.8Hz,1H), 2.73(dd,J=13.4,5.5Hz,1H), 2.83(ddd,J=8.6,3.7,1.8Hz,1H), 3.28(dd,J=13.4,6.7Hz,1H), 3.84(s,3H), 3.94(s,3H), 4.49(dd,J=13.4,6.7Hz,1H), 5.18(d-qui,J=6.7,3.0Hz,1H), 5.52(dd,J=15.9,6.7Hz,1H), 5.58(m,1H), 6.75(s,1H)
知静	HO H	0 0 H0 0 15	OHO HO	
名 一 一 一 一 一 一 一	22	23	25	26

Robert Robert	14-NMR		(Acetone-d6,500MHz) δppm: 1.15(m,1H), 1.47(d,J=6.7Hz,3H), (Acetone-d5,123MHz) oppm: 19.0kg, 1.48(ddd,J=15.3,7.9,3.0Hz,1H), 1.94(s,3H), 2.13-2.23(m,3H), 2.04(q), 20.6(q), 20.6(q), 28.0(t), 32.9(t), 32.9(t), 2.23(s,3H), 2.30(ddd,J=15.3,7.9,4.3Hz,1H), 2.34(s,3H), 2.34(s,3H), 2.30(ddd,J=15.3,7.9,4.3Hz,1H), 2.34(s,3H), 2.34(dd,J=14.0,4.9Hz,1H), 3.51(dd,J=14.0,7.9Hz,1H), 5.55(m,1H), 1.95(dt,J=14.6,7.1Hz,1H), 7.16(s,1H), 1.16(s,1H), 1.16(s,1	(Acetone-d6,500MHz) δppm: 1.17(d,J=6.1Hz,3H), 1.53(dt,J=14.0,5.5Hz,1H), 1.62(m,2H), 1.62(m,2H), 1.63(dt,J=14.0,5.5Hz,1H), 1.62(m,2H), 1.66(dd,J=14.0,6.7Hz,1H), 2.25(m,2H), 2.68(dt,J=5.5,2.4Hz,1H), 102.9(s), 112.0(s), 128.2(d), 79.3(d), 99.9(d), 132.8(dd,J=17.1,3.7Hz,1H), 3.92(qui,J=6.1Hz,1H), 3.98(s,3H), 138.9(s), 162.1(s), 164.0(s), 170.0(s) 6.02(dt,J=15.3,6.7Hz,1H), 6.60(s,1H)		(Acetone-d6,500MHz) δppm: 1.27(m,1H), 1.40(d,J=6.7Hz,3H), (Acetone-d6,125MHz) δppm: 19.8(q), 1.96(m,1H), 1.98(s,3H), 2.03-2.10(m,3H), 2.11(m,1H), 20.4(q), 20.9(q), 20.9(q), 20.9(q), 27.5(t), 30.9(t), 2.27(s,3H), 2.34(s,3H), 2.05(dt,J=7.9,2.4Hz,1H), 2.15(dt,J=14.0,8.7Hz,1H), 3.55(dd,J=14.0,8.7Hz,1H), 5.69(dd,J=15.9,4.9Hz,1H), 149.7(s), 165.2(s), 168.3(s), 169.0(s), 169.7(s)
82 88 89 89 89		一种		HO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 0 0 H	

13C-NMR	(CDCl3/CD3OD,125MHz) δppm: 18.9(q), 33.8(t), 36.2(t), 45.4(t), 45.8(t), 53.7(d), 58.2(d), 71.5(d), 103.1(d), 107.6(s), 115.6(s), 125.9(d), 129.2(d), 135.2(s), 157.8(s), 161.0(s), 169.1(s), 205.6(s)	(CDCl3,125MHz) bppm: 20.6(q), 28.0(t), 35.3(t), 42.1(t), 45.1(t), 46.4(t), 66.4(d), 71.7(d), 103.7(d), 108.5(s), 115.2(s), 123.5(d), 135.2(d), 135.8(s), 156.0(s), 161.2(s), 168.0(s), 205.0(s)	(CDCl3,125MHz) δppm: 20.3(q), 22.4(t), 34.6(t), 41.1(t), 41.4(t), 47.4(t), 69.3(d), 71.2(d), 103.8(d), 107.8(s), 115.1(s), 126.5(d), 131.1(d), 136.1(s), 156.7(s), 161.9(s), 168.8(s), 207.8(s)	(CDCI3,125MHz) δppm: 20.3(q), 22.0(t), 22.8(t), 25.2(t), 34.9(t), 40.6(t), 42.3(t), 46.5(t), 66.4(d), 71.4(d), 103.8(d), 107.9(s), 115.3(s), 136.2(s), 156.3(s), 161.7(s), 168.3(s), 207.9(s)
1H-NMR	(CDCI3/CD3OD,500MHz) &ppm: 1.31(d,J=6.7Hz,3H), 1.66(m,2H), 2.10(dddd,J=14.6,4.9,3.7,3.0Hz,1H), 2.53(ddd,J=14.0,6.7,3.7Hz,1H), 2.60(dt,J=7.9,3.0Hz,1H), 2.69(dt,J=9.2,3.0Hz,1H), 2.81(dd,J=12.2,7.3Hz,1H), 3.14(dd,J=12.2,7.9Hz,1H), 4.06(d,J=18.3Hz,1H), 4.22(d,J=18.3Hz,1H), 5.18(m,1H), 5.28(ddd,J=15.3,7.3,6.7Hz,1H), 5.40(ddd,J=15.3,7.9,7.3Hz,1H), 6.38(s,1H)	(CDCi3,500MHz) &ppm: 1.40(d,J=6.4Hz,3H), 1.63(m,2H), 1.79(ddd,J=14.9,7.6,6.4Hz,1H), 1.79(ddd,J=14.9,7.6,6.4Hz,1H), 2.20(m,2H), 3.04(dd,J=12.5,7.6Hz,1H), 3.16(dd,J=12.5,7.6Hz,1H), 3.78(ddd,J=6.7,6.4,5.2Hz,1H), 4.48(d,J=18.3Hz,1H), 4.59(d,J=18.3Hz,1H), 5.33(d-qui,J=6.4,3.0Hz,1H), 5.47(dt,J=15.2,7.6Hz,1H), 5.35(d-gui,J=6.4,3.0Hz,1H), 6.53(s,1H)	(CDCl3,500MHz) δppm: 1.42(d,J=6.4Hz,3H), 1.86(m,2H), 2.04(m,1H), 2.20(m,1H), 2.29(m,1H), 2.32(m,1H), 2.40(m,1H), 2.73(ddd,J=13.4,8.8,3.0Hz,1H), 3.60(ddd,J=6.7,6.4,5.8Hz,1H), 4.24(d,J=17.7Hz,1H), 4.38(d,J=17.7Hz,1H), 5.41–5.50(m,3H), 6.50(s,1H)	(CDCI3,500MHz) &ppm: 1.24(m,2H), 1.32(m,1H), 1.44(d,J=6.7Hz,3H), 1.46(m,2H), 1.60(m,2H), 1.69(m,1H), 1.84(ddd,J=15.3,6.7,3.0Hz,1H), 1.95(ddd,J=15.3,7.3,5.5Hz,1H), 2.32(ddd,J=15.9,9.2,3.7Hz,1H), 2.58(ddd,J=15.9,8.5,3.0Hz,1H), 3.71(ddd,J=6.7,6.1,5.5Hz,1H), 4.33(d,J=17.7Hz,1H), 4.51(d,J=17.7Hz,1H), 5.47(d-qui,6.7,2.4Hz,1H), 6.54(s,1H)
構造	HO H	HO HO I I	HO HO 13	HO HO HO HO
化合物	# E	32	83	34

13C-NMR	(CD3OD,125MHz) δppm: 18.6(q), 36.2(t), 38.1(t), 56.6(d), 57.0(d), 72.3(d), 103.4(d), 114.6(s), 116.2(s), 121.9(d), 130.8(d), 132.5(d), 132.5(s), 154.8(s), 156.7(s), 157.1(s), 169.0(s)	(CDCI3/CD3OD,125MHz) δppm: 19.3(q), 33.1(t), 36.4(t), 37.1(t), 39.4(t), 54.6(d), 59.4(d), 70.1(d), 70.5(d), 102.0(d), 111.8(s), 113.7(s), 127.6(d), 129.8(d), 138.1(s), 155.8(s), 157.7(s), 169.4(s)	<u> </u>	(CDCl3/CD3OD,125MHz) δppm: 18.6(q), 30.1(t), 36.4(t), 36.6(t), 38.8(t), 55.4(d), 56.8(d), 71.2(d), 72.1(d), 102.6(d), 107.4(s), 115.6(s), 124.2(d), 130.7(d), 138.8(s), 157.3(s), 161.7(s), 170.2(s)
1H-NMR	(CD3OD,500MHz) &ppm: 1.52(d,J=6.7Hz,3H), 1.57(m,1H), 2.41(m,1H), 3.01(ddd,J=9.2,3.7,1.8Hz,1H), 3.34(m,1H), 3.79(d,J=15.9Hz,1H), 5.29(d-qui,J=6.7,3.7Hz,1H), 5.56(dd,J=15.9Hz,1H), 6.16(m,1H), 6.43(s,1H), 6.83(d,J=15.9Hz,1H), 7.22(dd,J=15.9,11.0Hz,1H)	(GDCi3/CD3OD,500MHz) δppm: 1.29(d,J=6.7Hz,3H), 1.37(ddd,J=14.6,9.2.2.4Hz,1H), 2.01(m,1H), 2.16(m,2H), 2.19(dd,J=14.0,3.3.0Hz,1H), 2.85(ddd,J=5.5,3.0.2.4Hz,1H), 3.01(dt,J=9.2,2.4Hz,1H), 3.23(dd,J=14.0,10.4Hz,1H), 3.23(dd,J=14.0,10.4Hz,1H), 3.23(dd,J=14.0,10.4Hz,1H), 3.23(dt,J=15.3,7.3Hz,1H), 5.52(d-sxt,J=6.7.2.4Hz,1H), 5.52(dt,J=15.3,7.3Hz,1H), 6.26(s,1H)	(CDCI3/CD3OD,500MHz) δppm: 1.22(d,J=6.7Hz,3H), 1.27(ddd,J=14.0,6.7,1.8Hz,1H), 1.90(dd,J=12.2,11.6Hz,1H), 2.07(ddd,J=14.0,11.0,3.0Hz,1H), 2.40(m,2H), 2.45(dd,J=14.6,3.0Hz,1H), 2.66(dd,J=14.0,11.0Hz,1H), 2.81(m,1H), 2.88(q,J=2.4Hz,1H), 4.05(m,1H), 5.17(ddd,J=15.3,9.8,4.9Hz,1H), 5.53(ddd,J=15.3,10.4,4.9Hz,1H), 6.21(s,1H)	(CDCI3/CD3OD,500MHz) δppm: 1.44(d,J=6.1Hz,3H), (CDCI3/CD3OD,125MHz) δppm: 18.6(q), 1.84(dt,J=15.9,4.9Hz,1H), 1.96(m,1H), 2.18(m,1H), 2.18(m,1H), 2.18(m,1H), 2.55(ddd,J=14.0,7.3,2.4Hz,1H), 1.56(s), 124.2(d), 72.1(d), 102.6(d), 107.4(s), 2.74(dt,J=9.2,2.4Hz,1H), 2.96(m,1H), 3.30(dd,J=13.4,9.8Hz,1H), 157.3(s), 161.7(s), 170.2(s) 3.39(dd,J=10.4,5.5,4.9Hz,1H), 6.38(s,1H)
横		HO H	HO H	0 HO 0 HO 0 HO 0 HO 0 HO 0 HO 0 HO 0 HO
尼 哈物	施 25	36	37	88

	•		
化合物番号	構造:	1H-NMR	13C-NMR
68	но С! НО	(CDCi3/CD3OD,500MHz) δppm: 1.08(d,J=6.1Hz,3H), 1.52(dd,J=14.2,6.7Hz,1H), 1.57(ddd,J=14.2,5.5,4.9Hz,1H), 2.18(t like,J=4.9Hz,2H), 2.42(m,2H), 2.66(m,1H), 2.68(m,1H), 2.75(ddt,J=14.0,5.5.2.4Hz,1H), 3.05(ddd,J=17.1,9.2,3.0Hz,1H), 3.84(sxt,J=6.1Hz,1H), 4.40(ddq,J=6.1,5.5,3.7Hz,1H), 5.49(m,2H), 6.28(s,1H)	(CDCI3/CD30D,125MHz) δppm: 22.7(q), 29.7(t), 34.6(t), 37.5(t), 40.5(t), 55.9(d), 57.4(d), 65.5(d), 77.7(d), 101.1(s), 102.0(d), 110.8(s), 126.4(d), 129.0(d), 137.9(s), 160.1(s), 162.0(s), 169.4(s)
40	OH OH OH OH	(Acetone-d6,500MHz) δppm: 0.98(t,J=7.3Hz,3H), 1.21(m,1H), 1.42(d,J=6.7Hz,3H), 1.54(dt,J=15.3,7.3Hz,2H), 1.21(m,1H), 1.81(dt,J=15.3,6.7Hz,2H), 2.00(m,2H), 2.05(m,1H), 2.21(m,1H), 2.34(ddd,J=15.9,6.7,3.0Hz,1H), 2.50(dt,J=9.8,1.8Hz,1H), 2.85(m,1H), 3.35(dd,J=12.8,6.1Hz,1H), 3.35(dd,J=12.8,9.8Hz,1H), 4.12(t,J=6.7Hz,2H), 4.44(m,1H), 5.15(d-qui,J=6.7,2.4Hz,1H), 5.35(dd,J=15.9,4.3Hz,1H), 5.53(ddd,J=15.9,4.3,1.8Hz,1H), 6.55(s,1H), 11.9(br.s,1H)	(Acetone-d6,125MHz) δppm: 14.0(q), 19.8(t), 20.3(q), 29.3(t), 31.1(t), 31.7(t), 36.5(t), 40.3(t), 57.2(d), 58.3(d), 69.7(t), 70.5(d), 70.6(d), 100.8(d), 107.8(s), 116.7(s), 127.8(d), 133.4(d), 140.4(s), 159.9(s), 164.5(s), 171.8(s)
41	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(Acetone-d6,500MHz) δppm: 0.92(t,J=7.3Hz,3H), (Acetone-d6,125MHz) δppm: 14.0(q 0.97(t,J=7.3Hz,3H), 1.07(m,1H), 1.38(dd,J=14.6,9.2,3.0Hz,1H), 19.8(t*2), 19.9(q), 28.6(t), 31.9(t*2), 14.5(d,J=6.1Hz,2H), 1.46(d,J=7.3Hz,3H), 1.53(dt,J=15.3,7.3Hz,2H), 1.68(dt,J=14.6,7.12,2H), 1.68(dt,J=14.6,7.12,2H), 1.68(dt,J=14.6,7.12,20(m,3H), 1.73(dt,J=15.3,5.1Hz,1H), 2.73(m,1H), 2.73(dd,J=9.2,6.1Hz,1H), 2.83(m,1H), 3.29(dd,J=13.4,7.3Hz,1H), 4.04(t,J=6.1Hz,2H), 4.12(t,J=6.1Hz,2H), 4.18(qui,J=6.1Hz,1H), 5.54(dd,J=15.9,6.1Hz,1H), 5.59(dd,J=15.9,11.0Hz,1H), 6.71(s,1H)	(Acetone-d6,125MHz) δppm: 14.0(q*2), 19.8(‡*2), 19.9(q), 28.6(t), 31.9(‡*2), 33.6(t), 39.1(t), 41.0(t), 56.1(d), 57.9(d), 69.3(t), 69.6(t), 71.5(d), 73.3(d), 98.1(d), 115.3(s), 120.1(s), 130.2(d), 136.0(d), 136.0(s), 156.2(s), 156.8(s), 167.4(s)

布印物	構造		13C-NMR
42	HO HO O	(Acetone-d6,500MHz) δppm: 0.90(t,J=7.3Hz,3H), 1.22(m,1H), 1.33–1.39(m,4H), 1.42(d,J=6.7Hz,3H), 1.52(m,2H), 1.83(dt,J=15.3,6.7Hz,2H), 1.99(m,2H), 2.05(m,1H), 2.21(m,1H), 2.33(ddd,J=16.5,7.3,3.7Hz,1H), 2.50(dt,J=9.2,1.8Hz,1H), 2.83(m,1H), 3.36(dd,J=12.2,6.1Hz,1H), 3.36(dd,J=12.2,6.1Hz,1H), 3.36(dd,J=12.2,9.8Hz,1H), 4.12(t,J=7.9Hz,2H), 4.55(m,1H), 5.15(d-qui,J=6.7,1.8Hz,1H), 5.35(dd,J=15.3,3.7Hz,1H), 5.53(ddd,J=15.3,4.3,1.8Hz,1H), 6.55(s,1H), 11.90(s,1H)	(Acetone-d6,125MHz) δppm: 14.2(q), 20.3(q), 23.2(t), 26.3(t), 29.3(t), 29.5(t), 31.1(t), 32.2(t), 36.5(t), 40.3(t), 57.2(d), 58.3(d), 70.0(t), 70.5(d), 70.6(d), 100.9(d), 107.8(s), 116.7(s), 127.8(d), 133.4(d), 140.4(s), 159.9(s), 164.5(s), 171.8(s)
£		(Acetone-d6,500MHz) δppm: 0.88(t,J=7.3Hz,3H), 0.90(t,J=7.3Hz,3H), 1.07(m,1H), 1.31(m,4H), 1.35(m,4H), 1.35(m,4H), 1.43(m,2H), 1.43(m,2H), 1.46(d,J=6.1Hz,3H), 1.51(m,2H), 1.43(m,2H), 1.43(m,2H), 1.46(d,J=6.1Hz,2H), 1.51(m,2H), 2.34(dd,J=15.26.1Hz,2H), 2.11-169(dt,J=14.8,6.7Hz,2H), 1.81(dt,J=15.26.1Hz,2H), 2.14(dd,J=7.3,3.7Hz,1H), 2.34(dd,J=13.4,7.3Hz,1H), 4.03(t,J=6.1Hz,2H), 1.36.0(d), 136.0(d), 136.0(d), 136.0(d), 136.0(s), 156.2(s), 156.8(s), 167.4(s) 1.259(dd,J=15.9,4.9Hz,1H), 6.71(s,1H), 1.40(d,J=15.9,4.9Hz,1H), 6.71(s,1H)	(Acetone-d6,125MHz) δppm: 14.2(q×2), 19.9(q), 23.2(t×2), 26.3(t), 26.4(t), 28.6(t), 29.8(t), 29.9(t), 32.2(t×2), 33.6(t), 39.1(t), 41.0(t), 56.1(d), 57.9(d), 69.6(t), 69.9(t), 71.5(d), 73.3(d), 98.1(d), 115.3(s), 120.1(s), 130.2(d), 136.0(d), 136.0(s), 156.2(s), 156.8(s), 167.4(s)
4	IIIIIII O O O O O O O O O O O O O O O O	(Acetone-d6,500MHz) δppm: 0.97(t,J=7.3Hz,3H), 1.05(t,J=7.3Hz,3H), 1.05(t,J=7.3Hz,3H), 1.05(t,J=7.3Hz,3H), 1.05(t,J=7.3Hz,3H), 1.05(t,J=13.4,7.3Hz,2H), 1.46(d,J=6.1Hz,3H), 1.71(dt,J=13.4,7.3Hz,2H), 1.71(dt,J=13.4,7.3Hz,2H), 2.71(dt,J=7.9,2.4Hz,1H), 2.33(ddd,J=13.4,5.5Hz,1H), 2.82(ddd,J=8.5,3.6.2.4Hz,1H), 2.33(dd,J=13.4,7.3Hz,2H), 2.90(t,J=6.1Hz,2H), 3.99(t,J=6.1Hz,2H), 3.99(t,J=6.1Hz,1H), 5.18(d-qui,J=6.1,2.4Hz,1H), 5.54(dd,J=15.9,6.1Hz,1H), 5.59(dd,J=15.9,5.5Hz,1H), 6.70(s,1H)	(Acetone-d6,125MHz) δppm: 10.8(q × 2), 19.9(q), 23.2(t × 2), 28.6(t), 33.6(t), 39.1(t), 41.0(t), 56.1(d), 57.9(d), 71.1(t), 71.3(t), 71.5(d), 73.3(d), 98.1(d), 115.4(s), 120.1(s), 130.2(d), 136.0(d), 136.0(s), 156.2(s), 156.7(s), 167.4(s)

構造	(Acetone-d6,500MHz) δppm: 1.06(m,1H), 1.07 1.39(ddd,J=14,6,8.6,2.4Hz,1H), 1.47(d,J=6.1Hz 1.85(m,10H), 1.90(m,2H), 2.11-2.21(m,3H), 2.34(ddd,J=14.6,7.9,4.3Hz,1H), 2.70(m,1H), 2.73(dd,J=13.4,5.5Hz,1H), 2.83(ddd,J=8.6,3.7,1 3.30(dd,J=13.4,7.3Hz,1H), 3.84(d,J=6.1Hz,2H), 3.91(d,J=6.7Hz,2H), 4.48(dd,J=6.1Hz,2H), qui,J=6.1,2.4Hz,1H), 5.53(dd,J=15.9,6.7Hz,1H), 5.55(dd,J=15.9,5.5Hz,1H), 6.70(s,1H)	(CD3OD,500MHz) δppm: 1.38(d,J=6.7Hz,3H), 2.05(m,1H), 2.18(dd,J=14.6,9.2,3.7Hz,1H), 2.05(m,1H), 2.18(ddd,J=14.6,9.8,3.0Hz,1H), 2.28(m,1H), 2.30(m,1H), 3.45(dd,J=12.2,9.2Hz,1H), 4.10(dd,4.2), 4.25(dd,J=12.3,7Hz,1H), 4.37(m,1H), 5.30(m,1H), 5.30(m,1H), 5.30(m,1H), 5.30(m,1H), 6.43(s,1H)	(Acetone–d6,500MHz) δppm: 1.08(m,1H), 1.49(m,2H), 1.52(m,1H), 1.62(m,1H), 1.87(ddd,J=15.5,5.2.4Hz,1H), 1.96(m,1H), 2.14(ddd,J=15.5,6.4,4.0Hz,1H), 2.49(m,2H), 2.59(dt,J=9.1,2.4Hz,1H), 2.78(ddd,J=5.5,4.0 a.70(d,J=17.4Hz,1H), 4.32(d,J=2.4Hz,1H), qui,J=6.4,2.4Hz,1H), 6.24(d,J=2.4Hz,1H), 6.	(Acetone-d6,500MHz) 8ppm: 1.31(m,1H), 1.33 1.32-1.36(m,7H), 1.43(m,1H), 1.53(ddd,J=9.2,7 1.80(m,1H), 1.85(m,1H), 2.54(ddd,J=18.3,5.5,3 2.77(ddd,J=18.3,11.0,3.7Hz,1H), 3.79(d,J=17.7 4.61(d,J=17.7Hz,1H), 5.15(dq,J=6.7,3.7Hz,1H) 6.19(d,J=2.4Hz,1H), 6.30(d,J=2.4Hz,1H)
1H-NMR	-1.34(m,10H), 3H), 1.63- .8Hz,1H), 5.19(d-	08(m,1H), 38(m,1H), d,J=9.2,3.7Hz,1H), iH), 5.31(m,1H),	1.40(d,J=6.4Hz,3H), 1.2.4Hz,1H), 5.21(d- 28(d,J=2.4Hz,1H)	(Acetone-d6,500MHz)
130-NMR	(Acetone-d6,125MHz) δppm: 20.0(q), 26.5(t × 2), 27.2(t × 2), 28.5(t), 30.2(t × 2), 30.3(t × 2), 30.4(t × 2), 33.6(t), 38.6(d), 38.7(d), 39.1(t), 41.0(t), 56.2(d), 57.9(d), 71.6(d), 73.3(d), 74.8(t), 75.1(t), 97.9(d), 115.3(s), 119.9(s), 130.1(d), 136.0(d), 136.0(s), 156.3(s), 156.9(s), 167.5(s)	(CD3OD,125MHz) δppm: 20.7(q), 32.9(t), 32.2(t), 40.0(t), 42.9(t), 61.4(d), 67.8(d), 71.4(d), 71.6(d), 103.5(d), 111.5(s), 115.6(s), 129.6(d), 133.6(d), 138.3(s), 158.5(s), 160.8(s), 171.0(s)	(Acetone-d6,125MHz) δppm: 19.4(q), 22.8(t), 24.2(t), 31.8(t), 37.0(t), 40.8(t), 50.5(t), 55.4(d), 57.7(d), 71.2(d), 102.8(d), 106.4(s), 113.6(d), 140.7(s), 163.2(s), 166.1(s) 171.5(s), 207.7(s)	(Acetone-d6,125MHz) δppm: 21.2(q), 22.4(t), 23.3(t), 23.8(t), 24.6(t), 27.4(t), 35.2(t), 39.4(t), 50.5(t), 74.4(d), 102.6(d), 106.3(s), 113.8(d), 140.9(s), 163.0(s), 166.4(s), 172.2(s), 207.0(s)

	- G	ું છે	(d), (d),
œ	(Acetone-d6,125MHz) δppm: 19.5(q), 31.1(t), 32.2(t), 38.3(t), 42.4(t), 72.8(d), 73.4(d), 102.0(d), 107.4(s), 112.6(d), 127.0(d), 130.6(d), 133.3(d), 134.5(d), 144.4(s), 162.2(s), 164.6(s), 171.2(s)	(Acetone–d6,125MHz) δppm: 19.5(q), 31.0(t), 31.9(t), 37.8(t), 43.4(t), 73.3(d), 75.0(d), 102.0(d), 105.9(s), 112.1(d), 126.4(d), 128.3(d), 133.8(d), 135.0(d), 145.5(s), 162.8(s), 166.2(s), 172.4(s)	(CD3OD,125MHz) δppm: 19.9(q), 29.4(t), 31.8(t), 36.9(t), 43.2(t), 58.2(d), 58.9(d), 70.5(d), 74.9(d), 102.5(d), 106.2(s), 113.3(d), 129.7(d), 133.3(d), 144.6(s), 163.5(s), 166.4(s), 172.6(s)
13C-NMR	5MHz) δp 8.3(t), 42. 7.107.4(s), 1), 133.3(d) 1), 164.6(s)	5MHz) δp 37.8(t), 43 37.8(s), 105.9(s) d), 133.8(c) s), 166.2(s	(2) Sppm: 12.2(t), 56 (10.2.5(d), 133.3(c), 172.6(c), 172.6(c)
-	(Acetone-d6,125MHz) δppm: 19.5(c 31.1(t), 32.2(t), 38.3(t), 42.4(t), 72.8(73.4(d), 102.0(d), 107.4(s), 112.6(d), 127.0(d), 130.6(d), 133.3(d), 134.5(d 144.4(s), 162.2(s), 164.6(s), 171.2(s)	one-d6,12 3, 31.9(t), 3), 102.0(d), 128.3(d), 128.3((s), 162.8(CD3OD,125MHz) δppm: 1 31.8(t), 36.9(t), 43.2(t), 58.3 70.5(d), 74.9(d), 102.5(d), 1 113.3(d), 129.7(d), 133.3(d) 163.5(s), 166.4(s), 172.6(s)
	(Aceta 31.1(t) 73.4(d) 127.0((CD3 31.8(31.8(113.3 163.5
1H-NMR	(Acetone-d6,1250MHz) δppm: 1.37(d,J=6.1Hz,3H), 2.02(m,2H), (Acetone-d6,125MHz) δppm: 19.5(q), 2.12(m,2H), 2.29(ddd,J=14.0,7.3,6.1Hz,1H), 2.56(ddd,J=14.0,6.1,3.7Hz,1H), 3.23(dd,J=15.3,5.5Hz,1H), 3.23(dd,J=15.3,5.5Hz,1H), 4.25(q,J=6.1Hz,1H), 5.23(d-17.23), 13.3(d), 133.3(d), 13	(Acetone-d6,500MHz) δppm: 1.39(d,J=6.7Hz,3H), 1.94(m,1H), 2.09(m,1H), 2.12(m,2H), 2.29(dt,J=15.3,6.7Hz,1H), 2.67(ddd,J=15.3,7.3,3.7Hz,1H), 2.85(dd,J=13.4,6.1Hz,1H), 3.72(dd,J=13.4,7.3Hz,1H), 4.17(dd,J=11.0,7.3Hz,1H), 5.20(ddd,J=15.3,6.1,3.7Hz,1H), 5.22(q,J=6.7Hz,1H), 5.33(dd,J=15.3,4.3Hz,1H), 5.35(ddd,J=15.3,11.0,5.5Hz,1H), 5.43(ddd,J=15.3,9.2,7.3Hz,1H), 6.23(d,J=2.4Hz,1H), 6.50(d,J=2.4Hz,1H), 9.05(br.s,1H), 11.87(br.s,1H)	(CD3OD,500MHz) δppm: 1.23(ddt,J=14.0,9.2,3.7Hz,1H), 1.40(d,J=6.1Hz,3H), 2.05(m,1H), 2.15(m,2H), 2.13(m,1H), 2.13(m,1H), 2.13(m,1H), 2.13(m,1H), 2.13(m,1H), 2.13(m,1H), 2.13(m,1H), 2.13(m,1H), 2.13(m,1H), 2.14(m,1H), 2.14(m
製製	0 H0 0H	HO HO OH	E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
化合物	49	20	52

		(DMSO-d6,500MHz) (約1:1の回車悪程体) δppm: 139(d,J=6.7Hz,1.5H), 1.41(d,J=6.7Hz,1.5H), 1.41(d,J=6.7Hz,1.5H	(DMSO-d6,500MHz) δppm: 1.22(d,J=6.7Hz,3H), 1.31(ddd,J=14.0,8.5,2.4Hz,1H), 2.24(ddd,J=14.0,9.8,3.7Hz,1H), 2.94(ddd,J=8.5,2.4Hz,1H), 2.99(d,J=7.9Hz,2H), 115.0(s), 102.2(d), 102.2(d), 112.0(s), 105(dd,J=8.5,2.4Hz,1H), 3.61(t,J=8.5Hz,1H), 3.61(t,J=8.5Hz,1H), 3.61(t,J=8.5Hz,1H), 3.61(t,J=8.5Hz,1H), 3.61(t,J=8.5Hz,1H), 3.61(t,J=15.3,7.9Hz,1H), 6.48(s,1H), 154.0(s), 154.6(s), 166.9(s), 203.1(s), 125(t,J=7.3Hz,1H), 7.40(t,J=7.3Hz,2H), 7.40(t,J=7.3Hz,2H), 10.39(s,1H)	[DMSO-d6,500MHz) δppm: 1.22(d,J=6.1Hz,3H), (DMSO-d6,125MHz) δppm: 20.1(q), 1.30(ddd,J=14.6,10.4,3.7Hz,1H), 30.6(q), 37.3(t), 43.4(t), 45.2(t), 48.1(d), 2.23(ddd,J=15.3,7.3Hz,1H), 3.07(dd,J=15.3,7.9,7.3Hz,1H), 3.00(m,2H), 3.07(dd,J=15.3,7.9Hz,1H), 3.87(s,2H), 5.10(dq,J=6.1,3.7Hz,1H), 5.63(dd,J=15.3,7.9,7.3Hz,1H), 6.48(s,1H), 9.91(s,1H), 203.0(s)
	1H-NMR	(DMSO-d6,500MHz) ((DMSO-d6,500MHz) δppm: 1.22(d,J=6.7Hz,3H), 1.31(ddd,J=14.0,8.5,2.4Hz,1H), 2.24(ddd,J=14.0,9.8,3.7Hz,1H), 2.94(ddd,J=8.5,4.3,2.4Hz,1H), 2.99(d,J=7.9Hz,2H), 3.05(dd,J=8.5,2.4Hz,1H), 3.61(t,J=8.5Hz,1H), 3.84(d,J=1.8Hz,2H), 5.08(dq,J=6.7,2.4Hz,1H), 5.55(dd,J=15.3,8.5Hz,1H), 5.84(dt,J=15.3,7.9Hz,1H), 6.48(s,1H 7.25(t,J=7.3Hz,1H), 7.31(t,J=7.3Hz,2H), 7.40(t,J=7.3Hz,2H), 9.91(s,1H), 10.39(s,1H)	(DMSO-d6,500MHz) δppm: 1.22(d,J=6.1Hz,3H), 1.30(ddd,J=14.6,8.5,2.3Hz,1H), 2.23(ddd,J=14.6,10.4,3.7H 2.35(s,3H), 3.00(m,2H), 3.07(dd,J=15.3,7.3Hz,1H), 3.11(dd,J=7.9,1.8Hz,1H), 3.76(t,J=7.9Hz,1H), 3.87(s,2H), 5.10(dq,J=6.1,3.7Hz,1H), 5.63(dd,J=15.3,7.9Hz,1H), 5.91(ddd,J=15.3,7.9,7.3Hz,1H), 6.48(s,1H), 9.91(s,1H), 10.37(s,1H)
	構造	(DMS) 1.39(1.39) 1.39(1.39) 3.35(1.39) 3.35(1.39) 3.35(1.39) 3.35(1.39) 6.04(1.39) 6.22(1.39)	H0 (DMS) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	H0 (DMS) 1103 (DMS) 11
- ;	先 一 一 一 一 一 一	52	53	4 5.

41.4		CHA	13C-NMR
大加	構定		()000
55	HO HO OH	(DMSO-d6,500MHz) 8ppm: 1.22(d,J=5,5Hz,3H), 1.30(m,1H), 2.08(m,1H), 2.38(s,3H), 2.58(m,1H), 3.06(br.s,1H), 3.20(dd,J=18.3,4.9Hz,1H), 3.71(dd,J=18.3,11.0Hz,1H), 3.398(br.d,J=3.7Hz,2H), 4.80(d,J=10.4Hz,1H), 5.13(q like,J=5.5Hz,1H), 5.17(dd,J=11.0,10.4Hz,1H), 5.67(dt,J=11.0,4.9Hz,1H), 6.49(s,1H), 9.87(s,1H), 10.39(s,1H)	(DMSO-d6,125MHz) bppm: 20.3(q), 30.6(q), 37.8(t), 40.4(t), 40.8(d), 44.2(t), 52.9(d), 58.8(d), 70.2(d), 102.3(d), 112.0(s), 114.6(s), 126.1(d), 126.7(d), 132.5(s), 154.4(s), 154.7(s), 167.2(s), 193.9(s), 203.8(s)
26		(DMSO-d6,500MHz) &ppm: 1.10(d,J=6.7Hz,3H), 1.15-1.24(m,1H), 2.04(dt,J=14.0,3.1Hz,1H), 2.79(dt,J=6.1,2.4Hz,1H), 2.97(s,1H), 3.10-3.20(m,1H), 3.33(s,3H), 3.35(s,3H), 3.56(d,J=15.9Hz,1H), 4.55(d,J=11.6Hz,1H), 4.63(d,J=11.6Hz,1H), 4.60-4.68 (m,2H), 4.86-4.92(m,1H), 5.38(dd,J=10.4,4.9Hz,1H), 5.75(d,J=15.9Hz,1H), 5.89(t,J=10.4Hz,1H), 6.46(s,1H),	(DMSO-d6,125MHz) δppm: 18.1(q), 36.4(t), 44.7(t), 51.8(q), 51.9(q), 54.8(d), 54.9(d), 65.3(t), 65.4(t), 70.4(d), 98.6(d), 114.6(s), 118.6(s), 129.7(d), 130.4(d), 131.7(s), 136.4(d), 138.3(d), 154.2(s), 154.6(s), 165.0(s), 168.3(s), 168.4(s), 195.0(s)
27		(DMSO-d6,500MHz) δppm: 0.66-0.73(m,1H), 1.02(ddd,J=14.7,9.2,2.4Hz,1H), 1.11(d,J=6.1Hz,3H), 1.73,4.3Hz,1H), 1.11(d,J=6.1Hz,3H), 1.16-1.84(m,3H), 1.98(ddd,J=1.7,7.3,4.3Hz,1H), 1.28(dd,J=13.4,6.1,2.4Hz,1H), 2.86(dd,J=13.4,6.7,2.4Hz,1H), 2.86(dd,J=13.4,6.7,2.4Hz,1H), 2.86(dd,J=13.4,6.7,2.4Hz,1H), 5.08-5.18(m,2H), 6.36(s,1H)	(DMSO-d6,125MHz) δppm: 19.1(q), 27.5(t), 32.1(t), 37.6(t), 39.0(t), 51.8(q), 51.9(q), 55.0(d), 56.8(d), 65.4(t), 65.5(t), 70.9(d), 71.5(d), 97.8(d), 114.5(s), 119.3(s), 128.9(d), 134.9(s), 135.2(d), 153.4(s), 154.2(s), 165.9(s), 168.4(s), 168.5(s).

化合物	構造	1H-NMR	13C-NMR
海		(DMSO-d6,500MHz) δppm:0.86-0.95(m,1H), 0.93(d,J=6.1Hz,3H), 1.84(dt,J=14.7,3.7Hz,1H), 2.73(dt,J=7.9,3.1Hz,1H), 2.97(e,1H), 3.60(d,J=15.9Hz,1H), 3.87(d,J=15.9Hz,1H), 4.76-4.83(m,1H), 5.74(dd,J=10.4Hz,1H), 5.78(d,J=15.9Hz,1H), 5.78(d,J=15.9Hz,1H), 7.00(dd,J=15.9,10.4Hz,1H), 7.35(dt,J=7.9,4.9Hz,2H), 7.54(s,1H), 8.10(dt,J=7.9,1.8Hz,1H), 8.60(dt,J=4.3,1.2Hz,2H), 8.88(d,J=2.4Hz,1H), 8.94(d,J=2.4Hz,1H)	(DMSO-d6,125MHz) δppm: 18.1(q), 36.2(t), 44.5(t), 54.3(d), 54.8(d), 71.7(d), 119.0(d), 123.8(s), 124.0(s), 124.3(d), 124.4(d), 126.0(s), 127.3(s), 129.6(d), 130.4(d), 133.6(s), 136.5(d), 137.6(d), 138.5(d), 146.5(s), 148.1(s), 150.5(d), 150.7(d), 154.8(d), 154.9(d), 162.2(s), 163.0(s), 163.2(s), 194.7(s)
. 28	HO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(DMSO-d6,500MHz) 8ppm:0.93(d,J= 6.7Hz,3H), 1.42–1.50(m,1H), 2.23–2.40(m,1H), 2.79–2.84(m,1H), 2.94(s,1H), 3.26–3.33(m,2H), 4.32(s,2H), 4.48(s,2H), 4.86–4.94(m,1H), 5.34–5.46(m,1H), 5.65(d,J=16.5Hz,1H), 6.06(t,J=10.4Hz,1H), 6.37(s,1H), 6.70(dd,J= 16.5,11.0Hz,1H), 12.60(brs,2H)	(DMSO-d6,125MHz) δppm: 19.7(q), 36.0(t), 44.1(t), 59.6(d), 59.7(d), 65.7(t), 65.9(t), 70.8(d), 99.8(d), 115.1(s), 118.6(s), 130.1(d), 130.8(s), 131.7(d), 132.0(d), 132.8(d), 154.1(s), 166.2(s), 169.0(s), 169.1(s), 169.3(s), 199.0(s).
09	HO HO OH	(Acetone-d6,500MHz) &ppm: 1.60(d,J=6.7Hz,3H), 1.85(ddd,J=14.9,8.5,3.7Hz,1H), 2.44(dt,J=14.9,3.7Hz,1H), 3.12(dt,J=8.5,2.7Hz,1H), 3.32(qui,J=2.7Hz,1H), 3.56(d,J=14.0Hz,1H), 4.97(d,J=14.0Hz,1H), 5.83(dd,J=10.7,2.7Hz,1H), 5.97(d,J=16.1Hz,1H), 6.28(d,J=2.7Hz,1H), 6.29(d,J=2.7Hz,1H), 6.30(ddd,J=11.3,10.7,1.5Hz,1H), 7.83(ddd,J=16.1,11.3,1.5Hz,1H), 9.16(br.s,1H), 10.94(br.s,1H)	(Acetone-d6,125MHz) δppm: 18.9(q), 36.9(t), 43.9(t), 55.7(d), 56.0(d), 72.0(d), 102.8(d), 106.0(s), 110.1(d), 130.6(d), 131.7(d), 137.2(d), 140.3(s), 141.6(d), 162.9(s), 165.5(s), 170.4(s), 198.9(s)

13C-NMR	(Acetone-d6,125MHz) δppm: 19.2(q), 30.3(t), 30.4(t), 37.9(t), 45.2(t), 71.0(d), 101.4(d), 108.8(d), 110.3(s), 128.3(d), 129.7(d), 131.2(d), 136.6(s), 148.2(d), 159.5(s), 160.2(s), 168.4(s), 196.6(s)	(Acetone-d6,125MHz) δppm: 18.1(q), 29.8(t), 31.8(t), 37.0(t), 48.2(t), 55.7(d), 57.0(d), 72.5(d), 102.8(d), 105.9(s), 113.9(d), 131.9(d), 141.3(s), 148.6(d), 163.4(s), 167.1(s), 171.9(s), 196.9(s)	(Acetone-d6,125MHz) δppm: 19.1(q), 22.9(t), 26.0(t), 33.0(t), 38.1(t), 41.1(t), 50.4(t), 73.5(d), 102.7(d), 106.2(s), 113.2(d), 125.8(d), 135.2(d), 140.9(s), 163.1(s), 166.4(s), 171.8(s), 207.3(s)
1H-NMR	(Acetone-d6,500MHz) δppm: 1.23(d,J=6.4Hz,3H), 2.04(m,1H), 2.12(m,1H), 2.12-2.25(m,3H), 2.39(dt,J=10.4,3.0Hz,1H), 3.50(d,J=15.2Hz,1H), 5.90(d,J=15.2Hz,1H), 5.09(d-sxt,J=6.4,3.0Hz,1H), 5.29(ddd,J=15.2,7.0,4.3Hz,1H), 5.31(ddd,J=15.2,7.6,4.9Hz,1H), 5.86(d,J=16.1Hz,1H), 6.09(d,J=2.4Hz,1H), 6.20(d,J=2.4Hz,1H), 6.64(ddd,J=16.1,7.6,6.4Hz,1H), 9.92(br.s,1H), 10.27(br.s,1H)	(Acetone-d6,500MHz) bppm: 1.19(m,1H), 1.37(d,J=6.7Hz,3H), 1.63(ddd,J=16.1,52,4.0Hz,1H), 2.06(dt,J=16.1,4.0Hz,1H), 2.27(m,1H), 2.27(m,1H), 2.47(dd,J=8.8,4.6Hz,1H), 2.51(dt,J=9.4,2.7Hz,1H), 2.80(ddd,J=5.5,4.0,2.7Hz,1H), 3.65(d,J=17.7Hz,1H), 4.65(d,J=17.7Hz,1H), 6.24(d,J=2.4Hz,1H), 6.27(d,J=2.4Hz,1H), 6.21(ddd,J=15.8,11.0,4.6Hz,1H), 9.23(br.s,1H), 11.91(br.s,1H)	(Acetone-d6,500MHz) δppm: 1.36(d,J=6.7Hz,3H), 1.50(m,2H), 1.50(m,2H), 1.50(m,2H), 2.03(m,1H), 2.10(m,1H), 2.30(dt,J=14.0,5.5Hz,1H), 2.29(t), 2.60(t), 33.0(t), 38.1(t), 41.1(t), 2.49(m,2H), 2.56(ddd,J=14.0,3.7,3.0Hz,1H), 5.28(d-17.1Hz,1H), 4.36(d,J=17.1Hz,1H), 5.45(dd,J=15.9,5.5Hz,1H), 5.45(dd,J=15.9,5.5Hz,1H), 6.24(d,J=2.4Hz,1H), 6.24(d,J=2.4Hz,1H), 6.24(d,J=2.4Hz,1H), 9.19(br.s,1H), 11.76(br.s,1H)
構造	O HO OH	0 HO 0 HO 0 HO	0 HO 0 HO 0 HO 0 HO 0 HO 0 HO 0 HO 0 HO
化合物	2	62	8

	(CD3OD,125MHz) 8ppm: 1.26(dd,J=12.2,9.2Hz,1H), 1.44(d,J=6.1Hz,3H), 1.76(d,J=15.9Hz,1H), 2.54(d,J=12.2Hz,1H), 41.2(t), 45.7(t), 55.4(d), 56.8(d), 70.5(d), 2.61(d,J=9.2Hz,1H), 2.87(br.s,1H), 4.53(d,J=18.3Hz,1H), 4.53(d,J=18.3Hz,1H), 6.82(dd,J=15.9Hz,1H), 6.46(s,1H), 6.82(dd,J=15.9,2.Hz,1H) 164.2(s), 171.3(s), 198.5(s)	,1H), H),	8(d,J=6.4Hz,3H), 2.15(m,2H), (Acetone–d6,125MHz) δppm: 18:1(q). 1.3=14.6,8.2,4.3Hz,1H), 31.8(t × 2), 37.3(t), 46.2(t), 73.4(d), 17.7(d), 103.8(d), 108.4(s), 116.1(s), 127.7(d), 115.2,8.8,5.8Hz,1H), 131.0(d), 133.0(d), 138.0(s), 147.3(d), 155.75.1H), 6.57(s,1H), 158.8(s), 163.5(s), 170.7(s), 195.2(s), 1.s,1H), 11.46(s,1H)	J=6.4Hz,3H), 1.85(m,2H), (CD3OD,125MHz) δppm: 19.4(q), 37.9(t), 3.86(m,1H), 45.8(t), 57.4(q), 70.1(d), 71.0(d), 82.0(d), 10.4.6Hz,1H), 10.6,9.7Hz,1H), 132.5(d), 135.1(s), 168.1(s), 200.2(s), 11.3,10.0Hz,1H), 6.43(s,1H), 157.0(s), 157.2(s), 168.1(s), 200.2(s)
1H-NMR	(CD3OD,500MHz) 8ppm: 1.26(dd,J=12.2,9.2Hz,1H), 1.44(d,J=6.1Hz,3H), 1.76(d,J=15.9Hz,1H), 2.54(d,J=12.2Hz,1 2.61(d,J=9.2Hz,1H), 2.87(br.s,1H), 4.36(d,J=18.3Hz,1H), 4.36(m,1H), 4.53(d,J=18.3Hz,1H), 5.21(br.s,1H), 6.14(d,J=15.9Hz,1H), 6.46(s,1H), 6.82(dd,J=15.9,9.2Hz,1H)	(CD3OD,500MHz) &ppm: 1.19(d,J=6.4Hz,3H), 2.16(ddd,J=14.3,7.6,6.7Hz,1H), 2.25(dt,J=12.8,8.2Hz,1H), 2.36(ddd,J=12.8,7.3,3.4Hz,1H), 2.47(ddd,J=14.3,6.7,3.7Hz,1H), 4.10(d,J=17.7Hz,1H), 4.14(d,J=17.7Hz,1H), 4.24(m,1H), 5.20(m,1H), 5.23(dd,J=15.5,6.1Hz,1H), 5.38(dt,J=15.5,7.6Hz,1H), 5.80(d,J=15.8Hz,1H), 6.69(dt,J=15.8,8.2Hz,1H)	(Acetone-d6,500MHz) δppm: 1.28(d,J=6.4Hz,3H), 2.15(m,2H), 2.24(m,1H), 2.28(m,2H), 2.57(ddd,J=14.6,8.2,4.3Hz,1H), 4.10(d,J=17.7Hz,1H), 5.23(dd like,J=15.2,7.3Hz,1H), 5.36(ddd,J=15.2,8.8,5.8Hz,1H), 5.37(dq,J=6.4,3.7Hz,1H), 5.81(d,J=15.5Hz,1H), 6.65(dt,J=15.5,7.3Hz,1H), 9.85(br.s,1H), 11.46(s,1H)	(CD3OD,500MHz) δppm: 1.42(d,J=6.4Hz,3H), 1.85(m,2H), 3.12(s,3H), 3.70(d,J=16.4Hz,1H), 3.86(m,1H), 4.20(d,J=16.4Hz,1H), 4.41(dd,J=7.9,4.6Hz,1H), 5.36(sxt,J=6.4Hz,1H), 5.70(dd,J=10.0,9.7Hz,1H), 5.90(d,J=16.4Hz,1H), 6.29(dd,J=11.3,10.0Hz,1H), 6.43(s,1H), 7.29(dd,J=16.4,11.3Hz,1H)
構造	HO H	HO H	0 H 0 10 0H	0H 0
化合物 番号	49	89	. 99	67

	-	· · ·			
13C-NMR	(Acetone-d6 125MHz) & DDm: 18.7(a).	37.2(t), 40.7(t), 43.3(t), 72.1(d), 72.8(d), 102.8(d), 106.6(s), 113.2(d), 125.2(d), 132.5(d), 137.6(d), 141.2(s), 144.9(d), 163.0(s), 165.8(s), 171.0(s), 196.8(s)	(CD3OD,125MHz) δppm: 20.5(q), 21.0(t), 32.4(t), 40.2(t), 43.1(t), 47.3(t), 71.2(d), 71.8(d), 104.0(d), 109.0(s), 116.6(s), 133.0(d), 134.4(d), 137.2(s), 159.8(s), 163.4(s), 171.5(s), 208.5(s)	(Acetone-d6,125MHz) δppm: 19.1(a), 23.0(t), 26.3(t), 32.8(t), 38.3(t), 41.4(t), 46.9(t), 73.8(d), 103.7(d), 108.4(s), 115.9(s), 125.8(d), 135.4(d), 137.9(s), 158.8(s), 163.3(s), 171.0(s), 206.0(s)	(CD3OD,125MHz) δppm: 20.6(q), 44.0(t), 44.6(t), 45.2(t), 65.4(d), 71.6(d), 104.0(d), 114.3(s), 115.9(s), 128.4(d), 129.0(d), 130.5(d), 133.9(d), 135.1(s), 157.3(s), 157.7(s), 168.7(s), 206.3(s)
1H-NMR		(Acetone-d6,500MHz) bppm: 1.28(d,J=0.1nz,31), 2.24(ddd,J=12.8,7.3,4.3Hz,1H), 2.34(dt,J=14.0,8.5Hz,1H), 2.34(dt,J=14.0,7.3,4.3Hz,1H), 2.65(ddd,J=14.0,7.3,4.3Hz,1H), 102.8(d), 106.6(s), 113.2(d), 125.2(d), 2.48(ddd,J=14.0,7.3,4.3Hz,1H), 132.5(d), 137.6(d), 141.2(s), 144.9(d), 4.41(qui,J=4.9Hz,1H), 5.37(m,1H), 5.38(m,1H), 5.52(dt,J=15.3,7.9Hz,1H), 6.31(d,J=2.4Hz,1H), 6.31(d,J=2.4Hz,1H), 6.31(d,J=2.4Hz,1H), 6.31(d,J=2.4Hz,1H), 6.31(d,J=2.4Hz,1H), 6.31(d,J=2.4Hz,1H), 6.31(d,J=2.4Hz,1H), 6.31(d,J=3.4Hz,1H),	(CD3OD,500MHz) δppm: 1.37(d,J=6.7Hz,3H), 1.65(m,1H), 1.91(m,1H), 2.00(dd,J=15.3,7.9Hz,1H), 2.10(ddd,J=15.3,7.9Hz,1H), 2.18(m,1H), 2.18(m,1H), 2.18(m,1H), 2.18(m,1H), 2.18(m,1H), 2.18(m,1H), 2.10(ddd,J=15.3,7.9Hz,1H), 2.10(ddd,J=19.5,6.7,3.0Hz,1H), 2.58(ddd,J=19.5,10.4,3.0Hz,1H), 133.0(d), 134.4(d), 137.2(s), 159.8(s), 4.12(d,J=18.3Hz,1H), 5.24(dd,J=15.3,7.9Hz,1H), 5.50(ddd,J=15.3,7.9Hz,1H), 5.50(ddd,J=15.3,10.4,4.3Hz,1H), 6.45(s,1H)	(Acetone-d6,500MHz) δppm: 1.38(d,J=6.7Hz,3H), 1.46(m,1H), 1.59(m,2H), 1.65(m,1H), 2.02(m,1H), 2.10(m,1H), 2.34(dt,J=14.6,6.1Hz,1H), 2.52(m,1H), 2.56(m,2H), 4.09(d,J=17.7Hz,1H), 4.48(d,J=17.7Hz,1H), 5.34(dqui,J=6.7,3.0Hz,1H), 5.49(d,J=15.3,5.5Hz,1H), 5.50(dd,J=15.3,5.5Hz,1H), 6.54(s,1H)	(CD3OD,500MHz) &ppm: 1.34(d,J=6.1Hz,3H), 1.56(dt,J=13.4,1.8Hz,1H), 2.15(dt,J=12.1,4.3Hz,1H), 2.96(dd,J=14.0,5.5Hz,1H), 3.27(dd,J=14.0,6.1Hz,1H), 3.81(d,J=18.3Hz,1H), 4.65(dt,J=11.0,4.3Hz,1H), 4.68(d,J=18.3Hz,1H), 4.78(ddd,J=12.1,6.1,1.8Hz,1H), 5.26(t,J=11.0Hz,1H), 5.78(dt,J=15.3,6.1Hz,1H), 6.04(dd,J=15.3,11.0Hz,1H), 6.15(t,J=11.0Hz,1H),
47 # 1	構定	0 0 0 0 0 0 0 0 0 0 0 0	HO HO OH	H-0-12	HO HO HO
での数	番号	89	. 69	70	F

1			CPAN
完 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	構造	1H-NMR	I 3C-NMIK
72	HO HO OH	(CD3OD,500MHz) δppm: 1.34(d,J=6.1Hz,3H), 1.73(ddd,J=14.0,10.0,3.4Hz,1H), 2.20(ddd,J=14.0,11.6,5.5Hz,1H), 3.06(dd,J=15.5,8.2Hz,1H), 3.29(ddd,J=15.5,6.7,1.8Hz,1H), 3.91(d,J=18.3Hz,1H), 4.14(sxt,J=5.5Hz,1H), 4.48(d,J=18.3Hz,1H), 5.03(dq,J=6.1,3.4Hz,1H), 5.64(m,1H), 5.65(m,1H), 6.10(dd,J=14.9,10.7Hz,1H), 6.18(t,J=10.7Hz,1H), 6.47(s,1H)	(CD3OD,125MHz) bppm: 20.6(q), 42.5(t), 42.7(t), 45.0(t), 71.3(d), 71.8(d), 104.1(d), 113.4(s), 116.0(s), 124.9(d), 128.2(d), 132.1(d), 135.8(s), 136.9(d), 157.9(s), 158.5(s), 168.9(s), 208.3(s)
73	HO 0 10 10 10 10 10 10 10 10 10 10 10 10 1	(CD3OD,500MHz) δppm: 1,40(d,J=6.7Hz,3H), 1,43(m,1H), 1,60(m,1H), 1,77(m,1H), 1,80(m,1H), 1,89(m,1H), 2,43(m,1H), 2,69(m,1H), 2,83(m,1H), 3,75(m,1H), 4,17(d,J=18,3Hz,1H), 4,25(d,J=18,3Hz,1H), 5,25(d-qui,J=6,7,3,0Hz,1H), 6,42(s,1H)	(CD3OD,125MHz) δppm: 19.2(q), 31.5(t), 37.8(t), 38.3(t), 39.6(t), 47.5(t), 55.2(d), 55.7(d), 68.2(d), 72.6(d), 104.0(d), 110.0(s), 116.1(s), 136.5(s), 159.2(s), 162.4(s), 170.8(s), 209.2(s)
47	HO 0H 0H 0H	(CD3OD,500MHz) δppm: 1.36(d,J=6.7Hz,3H), 1.75–1.84(m,2H), (CD3OD,125MHz) δppm: 20.6(q), 29.3(t), 2.03(ddd,J=15.3,7.3,1.8Hz,1H), 2.10(ddd,J=15.9,7.9,3.0Hz,1H), 38.0(t), 43.2(t), 47.4(t), 70.9(d), 71.7(d), 2.29(ddd,J=19.5,6.7,3.0Hz,1H), 2.54(ddd,J=19.5,9.8,3.0Hz,1H), 73.7(d), 104.1(d), 108.1(s), 116.6(s), 3.92(sxt,J=4.9Hz,1H), 4.08(d,J=17.7Hz,1H), 4.27(dt,J=9.8,2.4Hz,1H), 4.37(d,J=17.7Hz,1H), 5.33(dd,J=15.3,8.5Hz,1H), 5.49(qui,J=6.7Hz,1H), 6.47(s,1H)	(CD3OD,125MHz) δppm: 20.6(q), 29.3(t), 38.0(t), 43.2(t), 47.4(t), 70.9(d), 71.7(d), 73.7(d), 104.1(d), 108.1(s), 116.6(s), 134.6(d), 135.1(d), 137.3(s), 159.9(s), 163.9(s), 171.6(s), 207.7(s)

化合物番号	構造	1H-NMR	13C-NMR
75	HO HO OH	(CD3OD,500MHz) δppm: 1.34(d,J=6.7Hz,3H), 1.58(ddd,J=15.5,7.3,4.3Hz,1H), 1.74(m,1H), 1.91(m,1H), 1.94(m,1H), 2.05(m,1H), 2.18(dt,J=15.5,2.4Hz,1H), 2.40(dd,J=15.5,4.0Hz,1H), 2.65(dd,J=15.5,10.0Hz,1H), 3.42(ddd,J=10.0,7.3,2.4Hz,1H), 3.58(m,1H), 3.85(d,J=18.3Hz,1H), 4.27(d,J=18.3Hz,1H), 4.38(ddd,J=13.4,6.7,3.0Hz,1H), 5.32(m,1H), 5.98(d,J=2.4Hz,1H), 6.14(d,J=2.4Hz,1H)	(CD3OD,125MHz) δppm: 19.0(q), 29.2(t), 31.5(t), 41.1(t), 47.9(t), 52.7(t), 72.9(d), 73.0(d), 77.2(d), 83.0(d), 102.9(d), 108.2(s), 113.0(d), 139.2(s), 163.2(s), 165.1(s), 171.8(s), 208.6(s)
76	0 H0 0 H0 0 H0 0 H0 0 H0 0 H	(CD3OD,500MHz) δppm: 1.52(d,J=6.1Hz,3H), 1.65(ddd,J=14.6,8.5,3.7Hz,1H), 2.43(dt,J=14.6,3.7Hz,1H), 3.05(dt,J=8.5,2.4Hz,1H), 3.35(m,1H), 3.05(dt,J=8.5,2.4Hz,1H), 3.35(m,1H), 3.05(dt,J=12.2,3.7Hz,1H), 3.92(d,J=16.5Hz,1H), 4.01(d,J=16.5Hz,1H), 4.08(dd,J=6.7,3.0Hz,1H), 4.08(dd,J=6.7,3.0Hz,1H), 4.22(dd,J=6.7,3.0Hz,1H), 4.22(dd,J=6.7,3.0Hz,1H), 5.38(m,1H), 5.	(CD3OD,125MHz) δppm: 18.7(q), 37.9(t), 46.3(t), 56.5(d), 56.8(d), 63.1(t), 71.0(d), 72.3(d), 73.5(d), 88.4(d), 103.3(d), 105.3(d), 117.1(s), 117.2(s), 130.9(d), 131.7(d), 134.4(s), 137.2(d), 140.7(d), 156.6(s), 157.8(s), 168.4(s), 199.1(s)
	0 0 0 0 0 0 0 0 0 0 0 0	(Acetone-d6,500MHz) bppm: 1.38(ddd,J=14.0,92,3.7Hz,1H), 1.40(d,J=6.1Hz,1H), 2.13(dd,J=15.3,7.9Hz,1H), 2.38(ddd,J=6.1Hz,1H), 2.38(ddd,J=8.5,3.7,1.8Hz,1H), 2.94(ddd,J=8.5,3.7,2.4Hz,1H), 3.24(dd,J=15.3,3.7Hz,1H), 4.24(d,J=15.3Hz,1H), 5.15(d-sxt,J=6.1,3.7Hz,1H), 5.50(br.d,J=2.4Hz,1H), 6.52(s,1H)	(Acetone-d6,125MHz) δppm: 20.5(q), 28.6(t), 32.1(t), 38.3(t), 54.9(d), 56.5(d), 72.3(d), 103.6(d), 107.3(d), 108.3(d), 113.7(s), 114.7(s), 137.6(s), 150.4(s), 151.7(s), 156.4(s), 156.9(s), 168.3(s)

	構治	1H-NMR	13O-NMR
梅尔		V. (0 1170-1 1700) 3 V 111000 3 V 1	() () () () () () () () () ()
	o=	Acetone=db,5UUMHz oppm: 1.38(d,J=b.1 Hz,3H), 2.25(dt,J=13.7,10.7Hz,1H), 2.39(dd,J=13.7,4.6Hz,1H),	(Acetone-do, 123MHz) oppm: 21.1(q), 27.9(t), 31.4(t), 39.9(t), 71.7(d), 103.2(d),
		3.18(d,J=7.3Hz,ZH), 4.17(d,J=14.3Hz,1H), 4.58(d,J=14.3Hz,1H), 106.4(d), 107.1(d), 113.5(s), 114.4(s),	106.4(d), 107.1(d), 113.5(s), 114.4(s),
α,		5.4U(m,1H), 5.42(d~qui,J=6.1,1.8Hz,1H), 5.61(ddd. =15.2 10.4.4.6Hz,1H), 5.86(d.J=3.0Hz,1H)	128.3(d), 131.7(d), 138.8(s), 131.7(s), 151.9(s), 156.2(s), 156.7(s), 167.0(s)
2	PH NOTE OF THE PARTY OF THE PAR	6.08(d,J=3.0Hz,1H), 6.47(s,1H)	
	<u></u>		

試験例1 毛乳頭細胞におけるWNT-5A mRNAの発現

ヒト毛乳頭細胞は、東洋紡から購入し、12%FBSを添加したMEM(インビトロジェン)を用いて培養した。ヒト毛包角化細胞は、荒瀬らの方法(J. Dermatol. Sci. 2,66-70(1991))に従って、抜毛髪から分離しKGM-2(三光純薬)を用いて培養した。

継代5回目の毛乳頭細胞及び継代2回目の毛包角化細胞を、2×10⁶ cells/we 11となるように10cmシャーレに播種し、二晩培養した。培地を除去し、細胞をPB S (一)で洗浄後、TRIzol試薬(インビトロジェン)を用いてtotal RNAを抽出した。各total RNA 50ng、WNT-5A又は glyceraldehyde-3-phosphate dehydro genase (GAPDH) 特異的なプライマー(WNT-5A forward:AATGTCTTCCAAGTTCTTC CTAGTGGC(配列番号8)、WNT-5A reverse:GATGTCGGAATTGATACTGGCA(配列番号9)、GAPDH forward:ACCACAGTCCATGCCATCAC(配列番号10)、GAPDH rever se:TCCACCACCCTGTTGCTGTA(配列番号11))各0.4μM、及びSUPERSCRIPT One-Step RT-PCR with PLATINUM Taq(インビトロジェン)を用いて、SUPERSCRIPT One-Step RT-PCR with PLATINUM Taq添付のプロトコールに従い、全量25μlの反応系で、50℃で30分間first strand合成を行った後、94℃で2分間加熱、その後、94℃で30秒、55℃で30秒、72℃で30秒を23又は20サイクル繰り返し、各cDNA断片を増幅した。

この反応液を、1.5%アガロースゲルを用いて電気泳動し、エチジウムブロマイドにて染色した。結果を図1に示す。

毛乳頭細胞(DPC)由来のRNAを用いた場合は、WNT-5A特異的なプライマーを用いた23サイクルのPCRにおいて、顕著なcDNA断片の増幅が認められた。一方、毛包角化細胞(HFC)由来のRNAを用いた場合は、同条件において、増幅産物は認められなかった。

試験例2 WNT-5A mRNA量減少活性の測定

ヒト毛乳頭細胞は、東洋紡から購入し、12%FBSを添加したMEM(インビトロジェン)を用いて培養した。

継代5回目の毛乳頭細胞を、1. 6×10^5 cells/wellとなるように12穴プレート

に播種し、一晩培養した。化合物無添加培地、又は化合物1、2、3、4、5、7、9又は24添加培地と交換し、更に24時間、培養を行った。培養終了時、培地を除去し、細胞をPBS(一)で洗浄後、TRIzol試薬(インビトロジェン)を用いてtotal RNAを抽出した。各total RNA 50ng、WNT-5A又はGAPDH特異的なプライマー(WNT-5A forward:AATGTCTTCCAAGTTCTTCCTAGTGGC(配列番号8)、WNT-5A reverse:GATGTCGGAATTGATACTGGCA(配列番号9)、GAPDH forward:ACCAC AGTCCATCAC(配列番号10)、GAPDH reverse:TCCACCACCCTGTTGCTGTA(配列番号11))各0.4 μM、及びSUPERSCRIPT One-Step RT-PCR with PLATINUM Taq (インピトロジェン)を用いて、SUPERSCRIPT One-Step RT-PCR with PLAT INUM Taq添付のプロトコールに従い、全量25 μ1の反応系で、50℃で30分間first strand合成を行った後、94℃で2分間加熱、その後、94℃で30秒,55℃で30秒,72℃で30秒を23又は20サイクル繰り返し、WNT-5A又はGAPDHのcDNA断片を増幅した。

この反応液を、1.5%アガロースゲルを用いて電気泳動し、エチジウムブロマイドにて染色した。結果を図2に示す。

WNT-5A特異的なプライマーを用いた23サイクルのPCRにおいて、化合物無添加で培養した場合と比較して、化合物を添加した培養では、WNT-5A cDNA断片の増幅が顕著に減少した。

一方、GAPDH特異的なプライマーを用いた20サイクルのPCRにおいて、GAPDH c DNA断片の増幅は、化合物の添加の有無に関わらず、変動が認められなかった。

試験例3 毛乳頭細胞増殖促進活性試験

ヒト毛乳頭細胞は、東洋紡から購入し、12%FBSを添加したMEM(インビトロジェン)を用いて培養した。

継代5回目の毛乳頭細胞を、1.5×10⁴ cells/wellとなるようにスフェロイド 培養用96穴プレートに播種し、一晩培養した。化合物無添加培地、又は化合物 1、2、3、4、5、7、9又は24添加培地と交換し、更に72時間培養を行った。 培養終了時の細胞数をCell counting kit (和光純薬)を用いて測定した。即ち、培養終了5時間前に培地の1/10量のWST-1試薬を培地に添加し、培養終了時

、培地の吸光度(0.D.~450nm/620nm)を測定した。細胞数と吸光度は、細胞数 $0.~25\sim4\times10^4$ cells/wellの範囲で正の相関関係が認められた。

その結果、WNT-5A mRNA量減少活性を有する化合物が、毛乳頭細胞の増殖を促進する活性を有することが明らかになった(図3)。図中の値は、対照群6well、化合物添加群3wellの平均値である。対照群と化合物添加群との比較にはスチューデントのt検定を用いた。

*: P < 0.05, **: P < 0.01, ***: P < 0.001

上記実験例により、WNT-5Aがヒト毛乳頭細胞に発現していること、ヒト毛乳頭細胞のWNT-5A mRNA量が本発明に係る化合物により減少すること、更に、WNT-5A mRNA量減少活性を有する化合物が、毛乳頭細胞の増殖を促進する活性を有することが示された。

試験例4:化合物(表2)のWNT-5A mRNA量減少活性(QuantiGene法によるmRNAの定量)

ヒト毛乳頭細胞は、東洋紡から購入し、12%FBSを添加したMEM(インビトロジェン)を用いて培養した。

継代5回目の毛乳頭細胞を、1×10⁴ cells/wellとなるように96穴プレートに播種し、一晩培養した。化合物無添加培地、又は化合物添加培地と培地交換し、更に24時間、培養を行った。培養終了後、QuantiGene High Volume Kit (バイエルメディカル)を用いて、Branched DNA(bDNA) Signal Amplification法(Drug Metabolism and Disposition 28(5),608-616(2000)) により、WNT-5A又はGAPDHのmRNA量を定量した。即ち、QuantiGene High Volume Kit添付のプロトコールに従い、Lysis Mixtureを用いて細胞を溶解し、溶解液をCapture plateに添加した。更に、WNT-5A又はGAPDH特異的なプローブセットを添加し、53℃で20時間、反応させた。0.03% Lauryl Sulfateを含む0.1×SSCを用いてプレートを洗浄後、bDNAからなる増幅プローブを添加し、46℃で1時間反応させた。プレートを洗浄後、続いてAlkaline Phosphatase標識した標識プローブを添加し、46℃で1時間反応させた。プレートを洗浄後、基質Lumi-Phos Plusを添加し、46℃で30分間反応後、化学発光量をWALLAC 1420ARVOsx を用いて測定した。

WNT-5A特異的なプローブセットは、ヒトWNT-5A mRNAの蛋白質翻訳領域の塩基配列に基づいて設計した。Capture Extender(CE)として10本のプローブ(配列番号12-21)を、Label Extender(LE)として31本のプローブ(配列番号22-52)を、Blockerとして9本のプローブ(配列番号53-60)を使用した。

また、GAPDH特異的なプローブセットとして、bDNA probe set for human GAPD H (XenoTech LLC, B0960)を使用した。

WNT-5A及びGAPDHのmRNA量は、化合物無添加対照に対する相対値(%)として表し、mRNA量を50%に減少させる化合物濃度(IC_{50} 値)を算出して、化合物によるmRNA減少活性の指標とした。

WNT-5A及びGAPDHのmRNA量に及ぼす化合物の影響を表 3 に示す。表中の値は 2 w ellの平均値である。これらの化合物は、毛乳頭細胞において、WNT-5A mRNA量を減少させた。最も活性の強い化合物の IC_{50} 値は $0.12\,\mu$ Mであった。WNT-5A mRNA量減少の IC_{50} 値においては、同時に測定したGAPDH mRNA量には減少が認められなかった。

表3

	IC ₅₀	(μM)
化合物番号	WNT-5A	GAPDH
1	0.20	28.25
2	0.39	26.41
3	3.16	57.95
4	3.46	>30
5	3.47	>30
7	4.07	>120
18	0.63	6.58
24	4.74	21.07
35	0.46	4.29
38	6.42	>120
52	0.12	13.47
53	0.12	45.45
54	2.37	>30
55	0.74	>30
58	0.50	79.95 _.
65	8.28	109.16
68	10.69	50.63
73	9.37	>120
76	8.56	55.94
77	8.13	>120
79	0.90	38.16

試験例5:化合物(表2)の毛乳頭細胞増殖促進活性

ヒト毛乳頭細胞は、東洋紡から購入し、12%FBSを添加したMEM(インビトロジェン)を用いて培養した。

継代5回目の毛乳頭細胞を、 1.5×10⁴ cells/wellとなるようにスフェロイド培養用96穴プレートに播種し、一晩培養した。化合物無添加培地、又は化合物添加培地と交換し、更に72時間、培養を行った。培養終了時の細胞数を Cell counting kit (和光純薬)を用いて測定した。即ち、培養終了5時間前に培地の1/10量のWST-1試薬を培地に添加し、培養終了時、培地の吸光度 (O.D. 450nm/620nm)を測定した。細胞数と吸光度は、細胞数0.25~4×10⁴ cells/wellの範囲で正の相関関係が認められた。

WNT-5A mRNA量減少活性を有する化合物が、毛乳頭細胞の増殖に及ぼす影響を、表4に示す。表中の値は、対照群6well、化合物添加群3wellの平均値である。対照群と化合物添加群との比較にはスチューデントのt検定を用いた。

*:P<0.05, **:P<0.01, ***:P<0.001

WNT-5A mRNA量減少活性を有する化合物はいずれも、 $16\,\mu$ Mにおいて顕著な毛乳頭細胞増殖促進活性を示した。 $IC_{5\,0}$ 値が $1\,\mu$ M未満の、強いWNT-5A mRNA減少活性を示す化合物 1, 2, 18, 35, 52, 53, 及び58については、 $1\,\mu$ Mにおいても有意な増殖促進活性を示した。

表4

		۸٥	.D. 450nm/620nm (% o	f control)
化合物番号		1	4	16 (μM)
1	132.9	± 11.6 ***	183.7 ± 12.1 ***	144.7 ± 13.0 ***
2	142.6	± 10.1 ***	167.3 ± 8.5 ***	241.0 ± 25.3 ***
3	92.9	± 1.6	92.9 ± 9.9	244.2 ± 33.4 ***
4	97.4	± 24.4	148.2 ± 4.9 ***	180.2 ± 6.9 ***
5	110.2	± 45.0	174.7 ± 29.2 ***	$236.4 \pm 26.4 ****$
7	82.6	± 3.9	169.7 ± 10.4 ***	194.8 ± 12.7 ***
18	115.6	± 9.0 *	147.1 ± 11.3 ***	210.9 ± 25.9 ***
24	108.2	± 6.9	104.3 ± 10.5	119.7 ± 3.7 **
35	160.8	± 3.5 ***	181.6 ± 3.7 ***	158.6 ± 18.3 ***
38	103.5	± 2.6	89.6 ± 7.3	124.9 ± 5.1 **
52	124.5	土 1.0 ***	143.2 ± 9.5 ***	197.0 ± 5.4 ***
53	126.6	± 14.3 **	149.5 ± 12.8 ***	184.4 ± 3.6 ***
54	80.0	± 2.4	97.1 ± 5.6	135.0 ± 0.9 ***
55	89.0	± 1.8	126.9 ± 7.2 ***	175.6 ± 9.8 ***
58	123.3	± 1.8 ***	150.4 ± 9.4 ***	217.4 ± 14.5 ***
65	92.1	± 6.7	87.6 ± 8.7	141.0 ± 5.3 ***
73	91.7	± 5.7	81.2 ± 7.8	205.6 ± 9.2 ***
76	80.0	± 5.6	77.1 ± 7.0	120.7 \pm 6.3 *
77	81.6	± 4.4	86.3 ± 5.0	180.8 ± 21.7 ***
79	87.5	± 9.9	98.6 ± 3.6	120.0 ± 4.1 **

*: p<0.05, **: p<0.01, ***: p<0.001

試験例6:サル皮膚器官培養におけるWNT-5A mRNAの減少

カニクイザル(オス、6年齢)の背部皮膚を採取し、実体顕微鏡下で $5mm\times8$ mmに分割後、各皮膚組織片を、化合物無添加又は化合物 7 若しくは化合物 3 を添加した、 10μ g/mlのInsulin(シグマ)、10ng/mlのHydrocortisone(クラボウ)を含むWilliams' MediumE(インビトロジェン)を用いて培養した。

培養11日目に皮膚組織片から毛包を分離し、TRIzol試薬(インビトロジェン)を用いてtotal RNAを抽出した。各total RNA200ng、WNT-5A又はGAPDH特異的なプライマー(WNT-5A sense:AATGTCTTCCAAGTTCTTCCTAGTGGC(配列番号8)、WNT-5A antisense:GATGTCGGAATTGATACTGGCA(配列番号9)、GAPDH sense:ACCACAGTCCATGCCATCAC(配列番号10)、GAPDH antisense:TCCACCACCCTGTTGCTGTA(配列番号11))各0.4μ M、及びSUPERSCRIPT One-Step RT-PCR with PLATINUM Taq(インビトロジェン)を用いて、SUPERSCRIPT One-Step RT-PCR with PLATINU M Taq添付のプロトコールに従い、全量25μ1の反応系で、50℃で30分間first strand合成を行った後、94℃で2分間加熱、その後、94℃で30秒,55℃で30秒,72℃で30秒を40又は30サイクル繰り返し、WNT-5A又はGAPDHのcDNA断片を増幅した。

この反応液を、1.5%アガロースゲルを用いて電気泳動し、サイバーグリーン I (タカラ) にて染色した。結果を図4に示す。

WNT-5A特異的なプライマーを用いた40サイクルのPCRにおいて、化合物無添加で培養した場合と比較して、化合物7又は化合物3を添加した培養においては、WNT-5AcDNA断片の増幅が顕著に減少した。

一方、GAPDH特異的なプライマーを用いた30サイクルのPCRにおいて、GAPDH cD NA断片の増幅は、化合物の添加の有無に関わらず、変動が認められなかった。

試験例7:サル皮膚器官培養におけるProliferating Cell Nuclear Antigen (PC NA) 陽性細胞の増加

カニクイザル(オス、6年齢)の背部皮膚を採取し、実体顕微鏡下で5mm×8 mmに分割後、各皮膚組織片を、化合物無添加又は化合物7若しくは化合物3を

添加した、 10μ g/mlのInsulin(シグマ)、10ng/mlのHydrocortisone(クラボウ)を含むWilliams' MediumE(インビトロジェン)を用いて培養した。

培養30日目に、皮膚組織片を10%中性ホルマリンを用いて室温で固定した。パラフィン切片を作製し、1%BSA添加PBSを加え室温で30分間放置し、更に0.1Mのクエン酸緩衝液で煮沸処理を行った。抗PCNA抗体(ダコジャパン、200倍希釈)と4℃で一晩反応させ、続いてビオチン化抗マウスIgG抗体を反応させた後、ABC standard kit(ベクター)と反応させ、AEC substarate(シグマ)を用いて発色させた。

その結果、毛包及び表皮基底層の細胞において、特異的なポジティブ反応が認められた。毛包においては、休止期毛包、成長期毛包のいずれにおいても、毛乳頭及びダーマルシーズにおけるPCNA陽性細胞数が、化合物7又は化合物3の添加培養により顕著に増加した(図5)。

試験例8:サル皮膚器官培養における毛球部径の増大

カニクイザル(オス、6年齢)の背部皮膚を採取し、実体顕微鏡下で $5\text{mm}\times8\text{m}$ mに分割後、各皮膚組織片を、化合物無添加又は化合物 7 若しくは化合物 3 を添加した、 10μ g/mlのInsulin(シグマ)、10ng/mlのHydrocortisone(クラボウ)を含むWilliams' MediumE(インビトロジェン)を用いて培養した。

培養30日目に、各皮膚組織片に含まれる全ての毛包を分離し、毛球部の直径 を実体顕微鏡下で測定した。

結果を図6及び7に示す。表中の数値は、各皮膚組織片に含まれる全ての毛包の毛球部径の平均値±s.e.である。対照群と化合物添加群との比較にはスチューデントのt検定を用いた。*:P<0.05

また、図は毛球部径の分布を示すヒストグラムである。各皮膚組織片に含まれる全ての毛包を、図中に示した毛球部径のグループに各々分類し、各グループに分類された毛包の数を、組織片から分離した毛包総数に対する相対値(%)で表した。図6は化合物7添加培養の影響を示す。化合物7の存在下で30日間培養した皮膚片に含まれる毛包の毛球部径の平均値は、化合物無添加対照と比較して有意に高値であった。分布をみると、化合物無添加対照においては140μm以上

 $170\,\mu\,\mathrm{m}$ 未満の毛球部径を有する毛包が最も多かったが、化合物 7 添加においては $170\,\mu\,\mathrm{m}$ 以上 $200\,\mu\,\mathrm{m}$ 未満の毛球部径を有する毛包の割合が最大であった。 $170\,\mu\,\mathrm{m}$ 以上の毛球部径を有する毛包の割合は、化合物無添加対照では57.6%であったが、化合物 7 添加では82.4%に増加した。

一方、図7は化合物3添加培養の影響を示す。化合物7の場合と同様に、化合物3存在下で30日間培養した皮膚片に含まれる毛包の毛球部径の平均値は、化合物無添加対照と比較して有意に高値であった。分布は、化合物無添加対照においては170μm以上200μm未満の毛球部径を有する毛包が最も多かったが、化合物3添加においては200μm以上230μm未満の毛球部径を有する毛包の割合が最大であった。170μm以上の毛球部径を有する毛包の割合は、化合物無添加対照では55.8%であったが、化合物3添加では74.5%に増加していた。

実験例9:ベニガオザル発毛試験

脱毛症状が認められるベニガオザル(雄、14年齢)の前頭部に、化合物7を0.3%含むローション1 LLを、1日1回、週5回、6ヶ月間、塗布投与した。塗布開始前に、前頭脱毛部にタトゥーによるマーキングを行い、タトゥーを含む同部位の皮膚拡大写真を、塗布開始前及び6ヶ月間塗布後に撮影した。

化合物7を含むローションの6ヶ月間塗布前後の皮膚拡大写真を、図8に示す。塗布前は、細い軟毛が多いのに対し、6ヶ月間塗布後の同部位では、軟毛の数が減少し、太い硬毛の数の増加が認められた。化合物7を含むローションの6ヶ月間の塗布により、ベニガオザルの前頭部における脱毛症状に明らかな改善が認められた。

上記の実験例により、WNT-5Aがヒト毛乳頭細胞に発現していること、ヒト毛乳頭細胞のWNT-5A mRNA量が本発明に係る化合物により減少すること、更に、WNT-5 A mRNA量減少活性を有する化合物が、毛乳頭細胞の増殖を促進する活性を有することが示された。

また、本発明に係る化合物は、サル皮膚器官培養においても、毛包のWNT-5AmRNA量を減少させること、休止期毛包、成長期毛包のいずれにおいてもPCNA

染色陽性の増殖性細胞を顕著に増加させること、更に、毛包の毛球部径を増大させることが示された。

更に、本発明に係る化合物は、男性型脱毛症のモデル動物であるベニガオザル において、脱毛症状の改善作用を有することが示された。

したがって、毛乳頭細胞の増殖を促進する化合物は、脱毛部毛包の毛乳頭において低下している細胞増殖能を亢進させることにより、発達した毛乳頭組織の形成に寄与し、その結果として発毛が促進される。

産業上の利用可能性

WNT-5A機能阻害剤、例えば、WNT-5A mRNA量を減少させる活性を有する化合物 又はその医薬上許容される塩は、毛乳頭細胞増殖活性を有し、新規な作用機序に よる発毛剤/育毛剤として有用である。

本発明は、WNT-5Aの機能を阻害する化合物が、脱毛症の改善剤若しくは予防剤になるという、今までにない全く新しい概念を提供するものであり、WNT-5Aの機能を阻害する化合物のスクリーニングは、新規な発毛剤/育毛剤の開発に有用である。

請求の範囲

- 1. WNT-5Aの機能阻害活性を有する化合物を含有する毛乳頭細胞増殖促進剤。
- 2. WNT-5Aの機能を阻害する化合物がWNT-5A産生抑制剤である、請求項1に記載の毛乳頭細胞増殖促進剤。

3. 式(1)

$$\begin{array}{c|c}
 & OR^1 & O & \\
\hline
 & OR^1 & OR & \\
\hline
 & OR & OR & \\
\hline
 & O$$

(式中、 R^1 及び R^2 は 同一又は異なって水素原子、 C_{1-6} アルキル基又は C_{2-6} アルカノイル基を示し、

Xは水素原子又はハロゲン原子を示し、

R³®及びR³®は異なって水素原子又は水酸基を示し、

 R^4 、 R^5 、 R^6 、 R^7 、 R^8 及び R^9 は同一又は異なって水素原子、水酸基、ハロゲン原子、 C_{2-6} アルカノイルオキシ基を示すか、又は隣り合う基が一緒になってパイ結合又はエーテル結合を形成するか、あるいは R^5 と R^8 若しくは R^5 と R^9 が一緒になってエーテル結合を形成する。)で表される化合物。

4. 式(II)

$$\begin{array}{c|c}
 & OR^1 & O & \\
\hline
 & P^2 & P^3 \\
\hline
 & R^3 & R^4 & R^6
\end{array}$$
(II)

(式中、 R^1 及び R^2 は 同一又は異なって水素原子、 C_{1-6} アルキル基又は C_{2-6} アルカノイル基を示し、Xは水素原子又はハロゲン原子を示し、

 R^{3} 。及び R^{3} 。は同一又は異なって水素原子、水酸基又は C_{1-6} アルコキシ基を示すか、あるいは R^{3} 。及び R^{3} 。が一緒になってオキソ基、ヒドロキシイミノ基又は C_{1-6} アルコキシイミノ基を形成し、

 R^4 、 R^5 、 R^6 、 R^7 、 R^8 及び R^9 は同一又は異なって水素原子、水酸基、ハロゲン原子、 C_{2-6} アルカノイルオキシ基を示すか、又は隣り合う基が一緒になってパイ結合又はエーテル結合を形成するか、あるいは R^5 と R^8 若しくは R^5 と R^9 が一緒になってエーテル結合を形成する。)で表される化合物を含有する毛乳頭細胞増殖促進剤。

5. 式(IX)

$$R^{2a}$$
 0 R^{5a} R^{9a} R^{8a} R^{3e} R^{3e} R^{3f} R^{4a} R^{6a} R^{6b} R^{7a}

[式中、 R^{1} 及び R^{2} は 同一又は異なって水素原子、 C_{1-6} アルキル基、 C_{1-6} アルカノイル基、

 $(CH_2)_p$ $CO-Y-R^{10}$ (式中、Yは酸素原子又は硫黄原子を示し、 R^{10} は水素原子、 C_{1-6} アルキル基又は置換若しくは無置換のアリール基を示し、P は 0 又は1 を示す。)で表される基、

 $(CH_2)_q$ R^{11} (式中、 R^{11} は置換若しくは無置換のシクロアルキル基又は置換若しくは無置換の C_{2-10} へテロ環を示し、qは0又は1を示す。)で表される基、又は COR^{12} (式中、 R^{12} は置換若しくは無置換のアリール基又は置換若しくは無置換の C_{2-10} へテロ環を示す。)で表される基を示し、

Xは水素原子又はハロゲン原子を示し、

 R^{3} ⁶ 及び R^{3} ⁷ は同一又は異なって水素原子、水酸基、 C_{1-6} アルコキシ基又は C_{1-6} アルカノイルオキシ基を示すか、又は R^{3} ⁶ 及び R^{3} ⁷ が一緒になってオキソ基、ヒドロキシイミノ基又は C_{1-6} アルコキシイミノ基を形成し、

 R^{4a} 、 R^{5a} 、 R^{7a} 、 R^{8a} 及び R^{9a} は同一又は異なって水素原子、水酸基、ハロゲン原子又は

 $Z-R^{13}$ (式中、Zは酸素原子又は硫黄原子を示し、 R^{13} は C_{1-6} アルキル基、 C_{1-6} アルカノイル基又は置換若しくは無置換のアリール基を示す。)で表される基を示すか、

又は隣り合う基が一緒になってパイ結合又はエーテル結合を形成するか、 あるいは R^{5a} と R^{8a} 若しくは R^{5a} と R^{9a} が一緒になってエーテル結合を形成し、 R^{6b} は水素原子を示すか、あるいは R^{3c} 若しくは R^{31} と一緒になってエーテル結合を形成する。] で表される化合物を含有する毛乳頭細胞増殖促進剤。

- 6. 請求項1、2、4又は5に記載の毛乳頭細胞増殖促進剤を有効成分とする発 毛剤又は育毛剤。
- 7. 薬学的に有効量のWNT-5Aの機能阻害活性を有する化合物をヒトに投与することを特徴とする、発毛又は育毛方法。
- 8. 発毛剤又は育毛剤の製造における、WNT-5Aの機能阻害活性を有する化合物

の使用。

- 9. WNT-5Aの機能を阻害する化合物を選択することを特徴とする、毛乳頭細胞 増殖促進剤のスクリーニング方法。
- 10. 下記(a)~(c)の工程を含むことを特徴とする請求項9記載の方法。
- (a)ヒトWNT-5A発現細胞を化合物を添加した培地を用いて培養する工程:
- (b) 工程(a) で培養したヒトWNT-5A発現細胞を溶解してRNAを抽出し、WNT-5A mR NA量を測定する工程:及び
- (c)工程(b)で測定したWNT-5A mRNA量を比較する工程。

図1

~	2.0			4	2.0		
化合物 4	1.25	k.		化合物 24	1.25		A Commission of the state of th
	0			72	0		
_	5.0			6	5.0	#: - 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
化合物 3	1.25	₩ 12		化合物 9	1.25	- M	
121	0			. 5	0		
21	2.0				2.0		
化合物 2	1.25			化合物 7	1.25	No.	
5	0			र्	0	***	Accused the Control of the Control o
	2.0				2.0		The state of the s
化合物 1	1.25			化合物 5	1.25		
\$	0	Carried States		充	0		
	(m/g n/)	WNT-5A	GAPDH		$(\mu g/m]$	WNT-5A	GAPDH

図

<u>図</u>

図4

PCT/JP03/04884

図7平均 **毛球部径** (μm) 177 ± 8 化合物 3 195 ± 5 * *: <0.05

図8

塗布前

6ヶ月間塗布後

8/8

SEQUENCE LISTING

<110>TAISHO PHARMACEUTICAL CO., LTD.

<120>HAIR GROWTH PREPARATION

<130>P600

<160>61

<150>JP 2002-115529

<151>2002-04-17

<210>1

<211>365

<212>PROTEIN

<213>HOMO SAPIENS

<400>1

Met Ala Gly Ser Ala Met Ser Ser Lys Phe Phe Leu Val Ala Leu

10

Ala Ile Phe Phe Ser Phe Ala Gln Val Val Ile Glu Ala Asn Ser

20 25 . 30

Trp Trp Ser Leu Gly Met Asn Asn Pro Val Gln Met Ser Glu Val

35 40 45

Tyr Ile Ile Gly Ala Gln Pro Leu Cys Ser Gln Leu Ala Gly Leu

50 55 60

Ser Gln Gly Gln Lys Lys Leu Cys His Leu Tyr Gln Asp His Met

65 70 . 75

Gln Tyr Ile Gly Glu Gly Ala Lys Thr Gly Ile Lys Glu Cys Gln

80 85 90

Tyr Gln Phe Arg His Arg Arg Trp Asn Cys Ser Thr Val Asp Asn

95 100 105

Thr Ser Val Phe Gly Arg Val Met Gln Ile Gly Ser Arg Glu Thr

110 115 120

Ala	Phe	Tl	hr	Tyr	Ala	Val	Ser	Ala	Ala	Gly	Val	Val	Asn	Ala	Met
					125					130					135
Ser	Arg	A	l a	Cys	Arg	Glu	Gly	Glu	Leu	Ser	Thr	Cys	Gly	Cys	Ser
					140					145					150
Arg	Ala	A	l a	Arg	Pro	Lys	Asp	Leu	Pro	Arg	Asp	Trp	Leu	Trp	Gly
					155					160					165
Gly	Cys	G	ly	Asp	Asn	Ile	Asp	Tyr	Gly	Tyr	Arg	Phe	Ala	Lys	Glu
					170					175					180
Phe	Val	. A	sp	Ala	Arg	Glu	Arg	Glu	Arg	He	His	Ala	Lys	Gly	Ser
					185					190					195
Tyr	Glu	1 S	Ser	Ala	Arg	Ile	Leu	Met	Asn	Leu	His	Asn	Asn	Glu	Ala
					200					205					210
Gly	Ar	g A	Arg	Thr	Val	Tyr	Asn	Leu	Ala	Asp	Val	Ala	ı Cys	Lys	Cys
					215					220	1				225
His	s G1	у '	Val	Ser	Gly	Ser	Cys	Ser	Leu	Lys	Thr	Суя	Trp	Lei	Gln
					230					235					240
Le	u Al	a.	Asp	Phe	Arg	g Lys	val Val	Gly	Asp	Ala	ı Let	ı Ly:	s Glu	ı Ly:	s Tyr
					248					250					255
As	p Se	r	Ala	a Ala	a Ala	a Me	t Arg	g Let	ı Ası	ı Se	r Arg	g Gl	у Ly:	s Le	u Val
					260					26					270
Gl	n Va	i	Ası	ı Se	r Ar	g Ph	e Ası	n Se	r Pro			r Gl	n As	p Le	u Val
					27					28			.		285
Ту	r I	le	As	p Pr	o Se	r Pr	o As	р Ту	г Су			g As	n Gi	u Se	r Thr
					29					29			m)		300
Gl	y S	er	Le	u Gl			n Gl	y Ar	g Le			n Ly	s in	.r 5e	r Glu
					30					31			01	Tr⊢	315
G!	ly M	et	As	p Gl			u Le	u Me	t Cy			у А1	rg Gl	y 13	r Asp
					32	0				32	b				330

Gln Phe Lys Thr Val Gln Thr Glu Arg Cys His Cys Lys Phe His

335 340 345

Trp Cys Cys Tyr Val Lys Cys Lys Lys Cys Thr Glu Ile Val Asp
350 355 360

Gln Phe Val Cys Lys

365

<210>2

<211>4428

<212>DNA

<213>HOMO SAPIENS

<400>2

ttaaggaaat ccgggctgct cttccccatc tggaagtggc tttccccaca tcggctcgta 60 aactgattat gaaacatacg atgttaattc ggagctgcat ttcccagctg ggcactctcg 120 cgcgctggtc cccggggcct cgcccccac ccctgccct tccctcccgc gtcctgcccc 180 catcctccac ccccgcgct ggccaccccg cctccttggc agcctctggc ggcagcgcgc 240 tecactegee tecegtgete etetegecea tggaattaat tetggeteea ettgttgete 300 ggcccaggtt ggggagagga cggagggtgg ccgcagcggg ttcctgagtg aattacccag 360 gagggactga gcacagcacc aactagagag gggtcagggg gtgcgggact cgagcgagca 420 ggaaggaggc agcgcctggc accagggctt tgactcaaca gaattgagac acgtttgtaa 480 tcgctggcgt gccccgcgca caggatccca gcgaaaatca gatttcctgg tgaggttgcg 540 tgggtggatt aatttggaaa aagaaactgc ctatatcttg ccatcaaaaa actcacggag 600 gagaagcgca gicaaicaac agtaaactta agagaccccc gaigcicccc iggiitaact 660 tgtatgcttg aaaattatct gagagggaat aaacatcttt tccttcttcc ctctccagaa 720 gtccattgga atattaagcc caggagttgc tttggggatg gctggaagtg caatgtcttc 780 caagttette etagtggett tggccatatt ttteteette geccaggttg taattgaage 840 caattettgg tggtcgctag gtatgaataa ccctgttcag atgtcagaag tatatattat 900 aggagcacag cctctctgca gccaactggc aggactttct caaggacaga agaaactgtg 960 ccactigiai caggaccaca tgcagtacat cggagaaggc gcgaagacag gcatcaaaga 1020

atgccagtat caattccgac atcgacggtg gaactgcagc actgtggata acacctctgt 1080 ttttggcagg gtgatgcaga taggcagccg cgagacggcc ttcacatacg ccgtgagcgc 1140 agcaggggtg gtgaacgcca tgagccgggc gtgccgcgag ggcgagctgt ccacctgcgg 1200 ctgcagccgc gccgcgccc ccaaggacct gccgcgggac tggctctggg gcggctgcgg 1260 cgacaacatc gactatggct accgctttgc caaggagttc gtggacgccc gcgagcggga 1320 gcgcatccac gccaagggct cctacgagag tgctcgcatc ctcatgaacc tgcacaacaa 1380 cgaggccggc cgcaggacgg tgtacaacct ggctgatgtg gcctgcaagt gccatggggt 1440 gtccggctca tgtagcctga agacatgctg gctgcagctg gcagacttcc gcaaggtggg 1500 tgatgccctg aaggagaagt acgacagcgc ggcggccatg cggctcaaca gccggggcaa 1560 gttggtacag gtcaacagcc gcttcaactc gcccaccaca caagaccigg tctacatcga 1620 ccccagccct gactactgcg tgcgcaatga gagcaccggc tcgctgggca cgcagggccg 1680 cctgtgcaac aagacgtcgg agggcatgga tggctgcgag ctcatgtgct gcggccgtgg 1740 gtacgaccag ttcaagaccg tgcagacgga gcgctgccac tgcaagttcc actggtgctg 1800 ctacgicaag tgcaagaagt gcacggagat cgtggaccag tttgtgtgca agtagtgggt 1860 gccacccagc actcagccc gctcccagga cccgcttatt tatagaaagt acagtgattc 1920 tggtttttgg tttttagaaa tatttttat ttttccccaa gaattgcaac cggaaccatt 1980 ttttttcctg ttaccatcta agaactctgt ggtttattat taatattata attattattt 2040 ggcaataatg ggggtgggaa ccacgaaaaa tatttatttt gtggatcttt gaaaaggtaa 2100 tacaagactt cttttggata gtatagaatg aagggggaaa taacacatac cctaacttag 2160 ctgtgtggga catggtacac atccagaagg taaagaaata cattttcttt ttctcaaata 2220 tgccatcata tgggatgggt aggttccagt tgaaagaggg tggtagaaat ctattcacaa 2280 ttcagcttct atgaccaaaa tgagttgtaa attctctggt gcaagataaa aggtcttggg 2340 aaaacaaaac aaaacaaaac aaacctccct tccccagcag ggctgctagc ttgctttctg 2400 cattttcaaa atgataattt acaatggaag gacaagaatg tcatattctc aaggaaaaaa 2460 ggtatatcac atgicicatt ciccicaaat attccatitg cagacagacc gicatatict 2520 aatageteat gaaatttggg cageagggag gaaagteece agaaattaaa aaatttaaaa 2580 ctcttatgtc aagatgttga tttgaagctg ttataagaat tgggattcca gatttgtaaa 2640 aagaccccca atgattctgg acactagatt ttttgtttgg ggaggttggc ttgaacataa 2700

atgaaatate etgtattite ttagggatae ttggttagta aattataata gtagaaataa 2760 tacatgaatc ccattcacag gtttctcagc ccaagcaaca aggtaattgc gtgccattca 2820 gcactgcacc agagcagaca acctatttga ggaaaaacag tgaaatccac cttcctcttc 2880 gcagctccac tgggtcccct ttggttgtag gacaggaaat gaaacattag gagctctgct 3000 tggaaaacag ttcactactt agggattttt gtttcctaaa acttttattt tgaggagcag 3060 tagttttcta tgttttaatg acagaacttg gctaatggaa ttcacagagg tgttgcagcg 3120 tatcactgtt atgatcctgt gtttagatta tccactcatg cttctcctat tgtactgcag 3180 gtgtacctta aaactgttcc cagtgtactt gaacagttgc atttataagg ggggaaatgt 3240 ggtttaatgg tgcctgatat ctcaaagtct tttgtacata acatatatat atatacat 3300 atatataaat ataaatataa atatatctca ttgcagccag tgatttagat ttacagctta 3360 ctctggggtt atctctctgt ctagagcatt gttgtccttc actgcagtcc agttgggatt 3420 attccaaaag ttttttgagt cttgagcttg ggctgtggcc ccgctgtgat cataccctga 3480 gcacgacgaa gcaacctcgt ttctgaggaa gaagcttgag ttctgactca ctgaaatgcg 3540 tgttgggttg aagatatett tttttetttt etgeeteace eetttgtete caaceteeat 3600 ttctgttcac tttgtggaga gggcattact tgttcgttat agacatggac gttaagagat 3660 attcaaaact cagaagcatc agcaatgttt ctcttttctt agttcattct gcagaatgga 3720 aacccatgcc tattagaaat gacagtactt attaattgag tccctaagga atattcagcc 3780 cactacatag atagcttttt ttttttttt tttttttaa taaggacacc tctttccaaa 3840 caggccatca aatatgttct tatctcagac ttacgttgtt ttaaaaagttt ggaaagatac 3900 acatetttte ataccecce ttaggaggtt gggettteat ateaceteag ceaactgtgg 3960 ctcttaattt attgcataat gatatccaca tcagccaact gtggctcttt aatttattgc 4020 ataatgatat tcacatcccc tcagttgcag tgaattgtga gcaaaagatc ttgaaagcaa 4080 aaagcactaa ttagtttaaa atgtcacttt tttggttttt attatacaaa aaccatgaag 4140 tacittttit attigctaaa tcagattgtt ccittttagt gactcatgtt tatgaagaga 4200 gttgagttta acaatcctag cttttaaaag aaactattta atgtaaaata tictacatgt 4260 cattcagata ttatgtatat cttctagcct ttattctgta cttttaatgt acatatttct 4320 gtcttgcgtg atttgtatat ttcactggtt taaaaaacaa acatcgaaag gcttattcca 4380 aatggaagat agaatataaa ataaaacgtt acttgtaaaa aaaaaaaa

4428

<210>3

<211>2460

<212>DNA

<213>HOMO SAPIENS

<400>3

cgtggcacgc gcggaagatt ctcagtgtcc ttacagagtc atcttccctg agccccggaa 60 gtgttggaaa acatttagcc ccttctttgg gaaactcagt ttctgatcag aatttttgtt 120 ttaccctggg gttgacagtc tcgccagagg tctcattica tactgtcitt tcggatctga 180 tcctcttggt aaacaggcgg ggatgtttta ccctacagag ccgatgtatg tgtgagttcg 240 ctgtgagttc tttgagtgtc tcaaacttgt ggggcctttt ctcggttgca ctgggattga 300 360 agagggaaga ggcccaaggt gtttccgggc aagcggcggg gttaagtgga gatgcgactc gtgaggetet cettteegat ecceetttgg gacaccetet geetacetet accetggage 420 cagggagacc caagtettgg tgaccggatg ggcccgctct cagttggcct gggctctggg 480 aactggtgga ctctccctgg gggcttcggg ctgggagtgg gttcggtttg tgtggcttcg gctctaacaa agagatccgc tgtaatccgc cgaatctgtt atcaatttct ctgctgcttg 600 agccccgccc cacgcgcccc gcccgccgcg aagcttggaa agtgcacgcg gccagcacca 660 atctgggccg ctgactcgga aacatgtcgc agcgtgtgtg tctatggacg cgtgtgagtg 720 tgtaaatgtg cacgagtgtg aatgtgtatg atgtgtgtgc acgcggcatc ggctgccctt 780 ggggagagtt gactttgcag cctgggctgc gcgagaagca gactttgcag cccactccct 840 cccctggagg aaatttgaca cttagggcgg gggtggggag atagccggag ccttctctct 900 cctagctggg gaaaccccag atttccattc tccaggatgc gcccccagc tttgcagcgt cttggggaca actggcctgg tgttggagcc ctgcttagca ggcgctgggg accacataag 1020 cattcctctt tggagaagcc ccgaagcgtc caggccaaag ggggcggttc acggaagaaa 1080 aaccttgcac gcccttgagc gcatagcttt accagggctg cctaggtccc gcctcttgcc 1140 cttttacggc acaggttcca agccaggctc ttcccaccgc cttaaagagg ctcacctttc 1200 ttttcttttc tgtggaaggg gctccttcag gggctatggg cgatgcagtg cggcagggtt 1260

agacttacgt gtaaggggat ttttaaaacc cgctcctccc acccgcaccc gccacctact 1320 cgctccgccg ccgcctacag gtggagaagt caccagtggg gaggaacggc agcggaagct 1380 tccaaggcca actcctaccc ctgaaattct tcaggaaggg aaccttcgcc gctggggggc 1440 tctttggcct ggaatcgatg cgcccagctg cggctcggaa gccagcgcct ctggcccgt 1500 ctggactcat ctgcaagggc tctggcctcg ccccgcaccc ccacctttcg ggactgaccg 1560 aaccaagtot gagttgggct ggagaggcta gactggaggc agggtggcag agttccaacg 1620 acaggetege agtgeegega atggeaaagt gggeeacaac eccagateag gaeecagaga 1680 aactggagtc tctctctggg cctcccatct cctccctccc tggcaactac caggttgtgg 1740 ggtgggaggg agagtgaaaa atcaagaatt tgggagaaag ctgtggggag ggcagggaag 1800 ggatccttct ccccggggaa gcgagaccca gactcccttc tttcctctag ggttccatcc 1860 cttctctcag tccgtggaag aggccacagg cgacgcgggc gagggtggca ctcttttcca 1920 gtttccttgg ttgggagacc cgacctctct ctccattatc ccctagggcc cccatctcct 1980 tctccctcc ctagtctggc tgaagaacgt ccttaaggaa atccgggctg ctcttcccca 2040 totggaagtg gotttcccca catcggotcg taaactgatt atgaaacata cgatgttaat 2100 tcggagctgc atttcccagc tgggcactct cgcgcgctgg tccccggggc ctcgccccc 2160 acccctgcc cttccctccc gcgtcctgcc cccatcctcc acccccgcg ctggccaccc 2220 cgcctccttg gcagcctctg gcggcagcgc gctccactcg cctcccgtgc tcctctcgcc 2280 catggaatta attctggctc cacttgttgc tcggcccagg ttggtgagag gacggagggt 2340 gcccacagcg ggttcctgag tgaattaccc aggagggact gagcacagca ccaactagag 2400 gggggccagg gggtgcggga ctcgagcgag caggaaggag gcagcgcctg gcaccagggc 2460.

<210>4

<211>585

<212>PROTEIN

<213>HOMO SAPIENS

<400>4

Met Ala Arg Pro Asp Pro Ser Ala Pro Pro Ser Leu Leu Leu

5 10 15

Leu Leu Ala Gln Leu Val Gly Arg Ala Ala Ala Ser Lys Ala

				20					25					30
Pro	Val	Cys	Gln	Glu	Ile	Thr	Val	Pro	Met	Cys	Arg	Gly	Ile	Gly
				35					40					45
Tyr	Asn	Leu	Thr	His	Met	Pro	Asn	Gln	Phe	Asn	His	Asp	Thr	Gln
				50					55					60
Asp	Glu	Ala	Gly	Leu	Glu	Val	His	Gln	Phe	Trp	Pro	Leu	Val	Glu
				65					70					75
Ile	Gln	Cys	Ser	Pro	Asp	Leu	Arg	Phe	Phe	Leu	Cys	Thr	Met	Tyr
				80					85					90
Thr	Pro	Ile	Cys	Leu	Pro	Asp	Tyr	His	Lys	Pro	Leu	Pro	Pro	Cys
				95					100					105
Arg	Ser	Val	Cys	Glu	Arg	Ala	Lys	Ala	Gly	Cys	Ser	Pro	Leu	Met
				110					115					120
Arg	Gln	Tyr	Gly	Phe	Ala	Trp	Pro	Glu	Arg	Met	Ser	Cys	Asp	Arg
				125					130					135
Leu	Pro	Val	Leu	Gly	Arg	Asp	Ala	Glu	Val	Leu	Cys	Met	Asp	
	·			140					145					150
Asn	Arg	Ser	Glu	Ala	Thr	Thr	Ala	Pro		Arg	Pro	Phe	Pro	
				155					160			_		165
Lys	Pro	Thr	Leu			Pro	Pro	Gly			Ala	Ser	Gly	
				170		_			175		_		0.1	180
Glu	Cys	Pro	Ala			Pro	Phe	Val			Cys	Arg	Glu	
		_		185		0.1			190			۸	T	195
Phe	Val	Pro	Ile			Glu	Ser	His			Tyr	ASII	Lys	
				200		•			205		0	T	C1-	210
Arg	Thr	Gly	Gln			Asn	. Cys	Ala			Cys	ıyr	GIN	
				215			m.	.	220		nt.	т	T 1 -	225
Ser	Phe	e Ser	Ala	. Asp	Glu	l Arg	Int	rne	Ala	. inr	LUE	: TLD	116	σĮÿ

				230					235					240
Leu	Trp	Ser	Val	Leu	Cys	Phe	Ile	Ser	Thr	Ser	Thr	Thr	Val	Ala
				245					250					255
Thr	Phe	Leu	Ile	Asp	Met	Asp	Thr	Phe	Arg	Tyr	Pro	Glu	Arg	Pro
				260					265					270
Ile	Ile	Phe	Leu	Ser	Ala	Cys	Tyr	Leu	Cys	Val	Ser	Leu	Gly	Phe
				275					280					285
Leu	Val	Arg	Leu	Val	Val	Gly	His	Ala	Ser	Val	Ala	Cys	Ser	Arg
				290					295					300
Glu	His	Asn	His	Ile	His	Tyr	Glu	Thr	Thr	Gly	Pro	Ala	Leu	Cys
				305					310					315
Thr	Ile	Val	Phe	Leu	Leu	Val	Tyr	Phe	Phe	Gly	Met	Ala	Ser	Ser
				320					325					330
Ile	Trp	Trp	Val	Ile	Leu	Ser	Leu	Thr	Trp	Phe	Leu	Ala	Ala	Ala
				335					340					345
Met	Lys	Trp	Gly	Asn	Glu	Ala	Ile	Ala	Gly	Tyr	Gly	Gln	Tyr	Phe
				350					355					360
His	Leu	Ala	Ala	Trp	Leu	Ile	Pro	Ser	Val	Lys	Ser	Ile	Thr	Ala
				365					370					375
Leu	Ala	. Leu	Ser	Ser	Val	Asp	Gly	Asp	Pro	Val	Ala	. Gly	Ile	
				380					385					390
Tyr	Val	Gly	Asn	Gln	Asn	l Leu	Asn	Ser			Arg	Phe	· Val	
				395					400				_	405
Gly	Pro	Leu	ı Val	Leu	Туі	Leu	Leu	Val			Leu	ı Phe	e Leu	
				410					415				_	420
Ala	e Gly	y Phe	e Val	Ser	Leu	ı Phe	e Arg	Ile			· Val	l Ile	e Lys	
				425					430				. 1.2000	435
Gly	Gl:	y Thi	r Lys	Thi	: Ası	Lys	Leu	Glu	Lys	Let	ı Me	t Ile	e Arg	g Ile

				440					445					450
Gly	Ile	Phe	Thr	Leu	Leu	Tyr	Thr	Val	Pro	Ala	Ser	Ile	Val	Val
				455					460					465
Ala	Cys	Tyr	Leu	Tyr	Glu	Gln	His	Tyr	Arg	Glu	Ser	Trp	Glu	Ala
				470					475					480
Ala	Leu	Thr	Cys	Ala	Cys	Pro	Gly	His	Asp	Thr	Gly	Gln	Pro	Arg
				485					490					495
Ala	Lys	Pro	Glu	Tyr	Trp	Val	Leu	Met	Leu	Lys	Tyr	Phe	Met	Cys
				500					505					510
Leu	Val	Val	Gly	Ile	Thr	Ser	Gly	Val	Trp	Ile	Trp	Ser	Gly	Lys
				515					520					525
Thr	Val	Glu	Ser	Trp	Arg	Arg	Phe	Thr	Ser	Arg	Cys	Cys	Cys	Arg
				530					535					540
Pro	Arg	Arg	Gly	His	Lys	Ser	Gly	Gly	Ala	Met	Ala	Ala	Gly	Asp
				545					550					555
Tyr	Pro	Glu	Ala	Ser	Ala	Ala	Leu	Thr	Gly	Arg	Thr	Gly	Pro	Pro
				560					565					570
Gly	Pro	Ala	Ala	Thr	Tyr	His	Lys	Gln	Val	Ser	Leu	Ser	His	Val
				575					580					585

<210>5

<211>2334

<212>DNA

<213>HOMO SAPIENS

<400>5

acccaggac ggaggaccca ggctggcttg gggactgtct gctcttctcg gcggagccg 60
tggaggtcc tttccctgga atccgagccc taaccgtctc tccccagccc tatccggcga 120
ggagcggagc gctgccagcg gaggcagcgc cttcccgaag cagtttatct ttggacggtt 180
ttctttaaag gaaaaacgaa ccaacaggtt gccagccccg gcgccacaca cgagacgccg 240

gagggagaag ccccggcccg gattcctctg cctgtgtgcg tccctcgcgg gctgctggag 300 gcgaggggag ggaggggcg atggctcggc ctgacccatc cgcgccgccc tcgctgttgc 360 tgctgctcct ggcgcagctg gtgggccggg cggccgccgc gtccaaggcc ccggtgtgcc 420 aggaaatcac ggtgcccatg tgccgcggca tcggctacaa cctgacgcac atgcccaacc 480 540 agttcaacca cgacacgcag gacgaggcgg gcctggaggt gcaccagttc tggccgctgg tggagatcca atgctcgccg gacctgcgct tcttcctatg cactatgtac acgcccatct 600 gtctgcccga ctaccacaag ccgctgccgc cctgccgctc ggtgtgcgag cgcgccaagg 660 ccggctgctc gccgctgatg cgccagtacg gcttcgcctg gcccgagcgc atgagctgcg 720 780 accgcctccc ggtgctgggc cgcgacgccg aggtcctctg catggattac aaccgcagcg 840 aggccaccac ggcgcccccc aggcctttcc cagccaagcc cacccttcca ggcccgccag 900 gggcgccggc ctcggggggc gaatgccccg ctgggggccc gttcgtgtgc aagtgtcgcg agcccttcgt gcccattctg aaggagtcac acccgctcta caacaaggtg cggacgggcc 960 aggigeceaa eigegeggia eccigetace ageegieeti eagigeegae gagegeaegi 1020 tcgccacctt ctggataggc ctgtggtcgg tgctgtgctt catctccacg tccaccacag 1080 tggccacctt cctcatcgac atggacacgt tccgctatcc tgagcgcccc atcatcttcc 1140 tgtcagcctg ctacctgtgc gtgtcgctgg gcttcctggt gcgtctggtc gtgggccatg 1200 ccagcgtggc ctgcagccgc gagcacaacc acatccacta cgagaccacg ggccctgcac 1260 tgtgcaccat cgtcttcctc ctggtctact tcttcggcat ggccagctcc atctggtggg 1320 tcatcctgtc gctcacctgg ttcctggccg ccgcgatgaa gtggggcaac gaggccatcg 1380 cgggctacgg ccagtacttc cacctggctg cgtggctcat ccccagcgtc aagtccatca 1440 cggcactggc gctgagctcc gtggacgggg acccagtggc cggcatctgc tacgtgggca 1500 accagaacct gaactcgctg cggcgcttcg tgctgggccc gctggtgctc tacctgctgg 1560 tgggcacgct cttcctgctg gcgggcttcg tgtcgctctt ccgcatccgc agcgtcatca 1620 agcagggcgg caccaagacg gacaagctgg agaagctcat gatccgcatc ggcatcttca 1680 cgctgctcta cacggtcccc gccagcattg tggtggcctg ctacctgtac gagcagcact 1740 accgcgagag ctgggaggcg gcgctcacct gcgcctgccc gggccacgac accggccagc 1800 cgcgcgccaa gcccgagtac tgggtgctca tgctcaagta cttcatgtgc ctggtggtgg 1860 gcatcacgtc gggcgtctgg atctggtcgg gcaagacggt ggagtcgtgg cggcgtttca 1920

ccagccgctg ctgctgccgc ccgcggcgcg gccacaagag cggggggcgcc atggccgcag 1980 gggactaccc cgaggcgagc gccgcgctca caggcaggac cgggccgccg ggccccgccg 2040 ccacctacca caagcaggtg tccctgtcgc acgtgtagga ggctgccgcc gagggactcg 2100 gccggagagc tgaggggagg ggggcgtttt gtttggtagt tttgccaagg tcacttccgt 2160 ttaccttcat ggtgctgttg cccctcccg cggcgacttg gagagaggga agaggggcgt 2220 tttcgaggaa gaacctgtcc caggtcttct ccaaggggcc cagctcacgt gtattctatt 2280 ttgcgtttct tacctgcctt ctttatggga accctctttt taatttatat gtat 2334

<210>6

<211>570

<212>PROTEIN

<213>RATTUS SP.

<400>6

Met Arg Ala Arg Ser Ala Leu Pro Arg Ser Ala Leu Pro Arg Leu 5 10 15 Leu Leu Pro Leu Leu Leu Pro Ala Ala Gly Pro Ala Gln Phe 25 30 20 His Gly Glu Lys Gly Ile Ser Ile Pro Asp His Gly Phe Cys Gln 35 40 45 Pro Ile Ser Ile Pro Leu Cys Thr Asp Ile Ala Tyr Asn Gln Thr 60 50 ·55 lle Met Pro Asn Leu Leu Gly His Thr Asn Gln Glu Asp Ala Gly 70 75 65

Leu Glu Val His Gln Phe Tyr Pro Leu Val Lys Val Gln Cys Ser 90 80 85 Pro Glu Leu Arg Phe Phe Leu Cys Ser Met Tyr Ala Pro Val Cys 105 95 100 Thr Val Leu Glu Gln Ala Ile Pro Pro Cys Arg Ser Ile Cys Glu

120 110 115

Arg	Ala	Arg	Gln	Gly	Cys	Glu	Ala	Leu	Met	Asn	Lys	Phe	Gly	Phe
				125					130					135
Gln	Trp	Pro	Glu	Arg	Leu	Arg	Cys	Glu	His	Phe	Pro	Arg	His	Gly
				140					145					150
Ala	Glu	Gln	Ile	Cys	Val	Gly	Gln	Asn	His	Ser	Glu	Asp	Gly	Thr
				155					160					165
Pro	Ala	Leu	Leu	Thr	Thr	Ala	Pro	Pro	Ser	Gly	Leu	Gln	Pro	Gly
				170					175					180
Ala	Gly	Gly	Thr	Pro	Gly	Gly	Pro	Gly	Gly	Gly	Gly	Ala	Pro	Pro
				185					190					195
Arg	Tyr	Ala	Thr	Leu	Glu	His	Pro	Phe	His	Cys	Pro	Arg	Val	Leu
				200					205					210
Lys	Val	Pro	Ser	Tyr	Leu	Ser	Tyr	Lys	Phe	Leu	Gly	Glu	Arg	Asp
				215			•		220					225
Cys	Ala	Ala	Pro	Cys	Glu	Pro	Ala	Arg	Pro	Asp	Gly	Ser	Met	Phe
				230					235					240
Phe	Ser	His	His	His	Thr	Arg	Phe	Ala	Arg	Leu	Trp	Ile	Leu	
				245					250					255
Trp	Ser	Val	Let	ı Cys	Cys	Ala	Ser	Thr	Phe	Phe	Thr	Val	Thr	Thr
				260					265					270
Ser	Let	ı Val	Ala	a Met	Gln	Arg	Phe	e Arg	у Туг	Pro	Glu	Arg	Pro	Ile
				275					280					285
He	Phe Phe	e Lei	ı Se	r Gly	Cys	Tyr	Thi	Me	t Val	l Ser	· Val	Ala	ту1	Ile
				290					298					300
Ala	a Gly	y Pho	e Va	l Leı	ı Glr	Glu	ı Arş	g Va	l Va	l Cys	s Asr	ı Glu	ı Arg	g Phe
				308					310					315
Se	r Gl	u Ası	p Gl	у Ту	r Arg	g Thi	r Va	l Gl			Thi	Lys	S Ly:	s Glu
				320)				32	5				330

Gly	Cys	Thr	He	Leu	Phe	Met	Met	Leu	Tyr	Phe	Phe	Ser	met	Ala
				335					340					345
Ser	Ser	Ile	Trp	Trp	Val	Ile	Leu	Ser	Leu	Thr	Trp	Phe	Leu	Ala
				350					355					360
Ala	Gly	Met	Lys	Trp	Gly	His	Ala	Ala	Ile	Glu	Ala	Asn	Ser	Gln
				365					370					375
Tyr	Phe	His	Leu	Ala	Ala	Trp	Ala	Val	Pro	Ala	Val	Lys	Thr	Ile
				380					385					390
Thr	Ile	Leu	Ala	Met	Gly	Gln	Ile	Asp	Gly	Asp	Leu	Leu	Ser	Gly
				395					400					405
Val	Cys	Phe	Val	Gly	Leu	Asn	Arg	Leu	Asp	Pro	Leu	Arg	Gly	Phe
				410					415					420
Val	Leu	Ala	Pro	Leu	Phe	Val	Tyr	Leu	Phe	Ile	Gly	Thr	Ser	Phe
				425					430					435
Leu	Leu	Ala	Gly	Phe	Val	Ser	Leu	Phe	Arg	Ile	Arg	Thr	Ile	Met
				440					445					450
Lys	His	Asp	Gly	Thr	Lys	Thr	Glu	Pro	Leu	Glu	Arg	Leu	Met	Val
				455					460					465
Arg	Ile	Gly	Val	Phe	Ser	Val	Leu	Tyr	Thr	Val	Pro	Ala	Thr	Ile
				470	•				475					480
Val	Ile	Ala	. Cys	Tyr	Phe	e Tyr	Glu	Gln	Ala	Phe	Arg	Glu	His	Trp
				485	i				490)				495
Glu	ı Arg	g Ser	Trp	Val	Se	Gln	His	Cys	Lys	Ser	Leu	Ala	Ile	Pro
				500)				505	5				510
Cys	Pro	Ala	ı His	ту1	Th	r Pro	Arg	thr	Ser	Pro	Asp	Phe	Thr	Val
				515	5				520)				528
Ty	r Me	t Ile	e Lys	з Туі	r Le	u Met	Thr	Let	ı Ile	e Val	Gly	Ile	Thr	Se
				530)				535	5				540

Gly Phe Trp Ile Trp Ser Gly Lys Thr Leu His Ser Trp Arg Lys 545 Fhe Tyr Thr Arg Leu Thr Asn Ser Arg His Gly Glu Thr Thr Val 560 From 560 From 565 From 565 From 565 From 565 From 560 From 565 From 565

<210>7

<211>1912

<212>DNA

<213>RATTUS SP.

<400>7

aggggaaggc gcgcggtctc tgggttgggg gcgggggttg ggggggcgccc aggagccgag 60 tggggggcgg cggccagcat gcgggcccgc agcgccctgc cccgcagcgc cctgcccgc 120 180 ggcatctcca tcccggacca cggcttctgc cagcccatct ccatcccgct gtgcacggac 240 atcgcctaca accagaccat catgcccaac cttcttgggc acacgaacca agaggacgcg 300 ggcctggagg tgcatcaatt ctacccgctg gtgaaggtgc agtgctcgcc cgagctgcgc 360 ttcttcctgt gctccatgta cgctccggtg tgcacggtgc tggagcaggc catcccgccg 420 tgccgctcca tctgcgaacg cgcgcgccaa ggctgcgagg cgctcatgaa caagitcggc 480 ttccagtggc ccgagcgcct ccgctgcgag catttcccgc gtcacggcgc ggagcagatc 540 tgcgtgggcc agaaccactc cgaggacgga actcctgcgc tactcaccac cgcgccaccg 600 tctgggctgc agcctggcgc tggtggcacc ccgggcggcc ctggcggtgg tggcgcccc 660 ccgcgctacg ccactctgga gcaccctttc cactgtcccc gcgtcctcaa ggtgccgtcc 720 tatctcagct ataagtttct gggtgagcgc gattgtgccg cgccctgcga gcctgcacgg 780 cccgacgct ccatgttctt ctcgcaccac cacactcgtt ttgcccgtct ctggatcctc 840 acatggtcgg tgctgtgctg cgcttctact ttcttcacgg tcaccacctc tttagtggcc 900 atgcagcgat tccgctaccc agagcggccc atcatcttcc tgtccggttg ctacaccatg gtgtcagtgg cctacattgc gggcttcgtg ctccaggagc gcgtggtgtg caacgagcgc 1020 ttctctgagg acggttatcg cacggtgggg cagggcacta agaaagaagg ctgtactata 1080 ctcttcatga tgctctactt cttcagtatg gccagctcca tctggtgggt gattctgtcc 1140

ctcacctggt tcctggcagc cggtatgaag tggggccacg cggccatcga ggccaattcg 1200 cagtactice acciggeege ciggeegitg eeggeegica aaaccateae cateeiggee 1260 atgggccaga tcgacggcga cctgctgagc ggcgtgtgct tcgtgggcct caacaggctg 1320 gacccgctgc gaggcttcgt gctggcgccg ctcttcgtgt acctgttcat cggcacatcc 1380 ttcctgctgg cgggcttcgt gtcactcttc cgcatccgca ccatcatgaa gcacgacggc 1440 accaagacgg agccgctgga gaggctcatg gtgcgtatcg gcgtcttctc cgtgctctac 1500 accgtaccgg ccaccatcgt catcgcctgc tacttctatg agcaggcctt ccgcgagcac 1560 tgggagcgct cgtgggtaag ccagcactgc aagagcctag ccatcccctg cccggcccac 1620 tacacgcccc gcacgtcgcc cgacttcaca gtctacatga tcaaatacct catgacgctc 1680 atcgtgggca tcacgtcggg cttctggatc tggtccggca agacgctgca ctcgtggagg 1740 aagttctaca cgcgtctcac caacagccgg catggagaga ccaccgtgtg aagcggtctc 1800 gctgctgggc gccccctct cccaggtccg gactgcaacc gtgccctcct tcactcggga 1860 1912 ggggggtgca ccctacggac tcctatttta ttttttaaa taaagaacag tg <210>8

<211>27

<212>DNA

<213>Artificial Sequence

<220>

<223>Designed nucleotide to act as a primer

<400>8

aatgtcttcc aagttcttcc tagtggc

27

<210>9

<211>22

<212>DNA

<213>Artificial Sequence

<220>

<223>Designed nucleotide to act as a primer

<400>9

22 gatgtcggaa ttgatactgg ca <210>10 <211>20 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a primer <400>10 20 accacagtcc atgccatcac <210>11 <211>20 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a primer <400>11 20 tccaccaccc tgttgctgta <210>12 <211>38 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a probe <400>12 38 gtcctgggag cggggctttt ttctcttgga aagaaagt <210>13 <211>46 <212>DNA

PCT/JP03/04884

WO 03/086334

<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>13	
agagttetta gatggtaaca ggaaattttt etettggaaa gaaagt	46
<210>14	
<211>47	
<212>DNA	
<213>Artificial Sequence	
<220≻	
<223>Designed nucleotide to act as a probe	
<400>14	
tatttccccc ttcattctat actatctttt tctcttggaa agaaagt	47
<210>15	
<211>48	
<212>DNA	
<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>15	
catagaaget gaattgtgaa tagattttt ttetettgga aagaaagt	48
<210>16	
<211>38	
<212>DNA	
<213>Artificial Sequence	
<220> ·	
<223>Designed nucleotide to act as a probe	
<400>16	

38 gccctgctgg ggaagggttt ttctcttgga aagaaagt <210>17 <211>40 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a probe <400>17 40 cctccctgct gcccaaattt ttttctcttg gaaagaaagt <210>18 <211>44 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a probe <400>18 44 atcccaattc ttataacagc ttctttttct cttggaaaga aagt <210>19 <211>43 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a probe <400>19 43 cttgttgctt gggctgagaa actttttctc ttggaaagaa agt <210>20 <211>44 <212>DNA

WO 03/086334

PCT/JP03/04884

<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>20	
ggctcagtgt gaagaggaag gtttttctc ttggaaagaa agt	43
<210>21	
<211>40	
<212>DNA	
<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>21	
ccagtggagc tgccgtttgt ttttctcttg gaaagaaagt	40
<210>22	
<211>49	
<212>DNA	
<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>22	
cactgtactt tctataaata agcggttttt aggcatagga cccgtgtct	49
<210>23	
<211>48	
<212>DNA	
<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>23	

WO 03/086334 PCT/JP03/04884 48 tttctaaaaa ccaaaaacca gaattttta ggcataggac ccgtgtct <210>24 <211>43 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a probe <400>24 43 aaaaatggtt ccggttgcat ttttaggcat aggacccgtg tct <210>25 <211>57 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a probe <400>25 caaataataa ttataatatt aataataaac cactttttag gcataggacc cgtgtct 57 <210>26 <211>51 <212>DNA

<220>

<223>Designed nucleotide to act as a probe

<213>Artificial Sequence

<400>26

agatccacaa aataaatatt tttcgtgttt ttaggcatag gacccgtgtc t 51

<210>27

<211>50

<212>DNA

<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>27	
ccacacagct aagttagggt atgtgttttt taggcatagg acccgtgtct	50
<210>28	
<211>49	
<212>DNA	
<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>28	
ttaccttctg gatgtgtacc atgtcttttt aggcatagga cccgtgtct	49
<210>29	
<211>47	
<212>DNA	
<213>Artificial Sequence	
⟨220⟩	
<223>Designed nucleotide to act as a probe	
<400>29	
aacctaccca tcccatatga tggtttttag gcataggacc cgtgtct	47
<210>30	
<211>45	
<212>DNA	
<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>30	

45 ctaccaccct ctttcaactg gtttttaggc ataggacccg tgtct <210>31 <211>47 <212>DNA <213 Artificial Sequence **<220>** <223>Designed nucleotide to act as a probe <400>31 50 ccagagaatt tacaactcat tttggttttt taggcatagg acccgtgtct <210>32 <211>47 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a probe <400>32 46 tcccaagacc ttttatcttg catttttagg cataggaccc gtgtct <210>33 <211>49 <212>DNA <213>Artificial Sequence ⟨220⟩ <223>Designed nucleotide to act as a probe <400>33 aggtitgttt tgttttgttt tgtttttttt aggcatagga cccgtgtct 49 <210>34 <211>47

WO 03/086334

<212>DNA

<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>34	
gtccttccat tgtaaattat cattttgttt ttaggcatag gacccgtgtc t	51
<210>35	
<211>49	
<212>DNA	
<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>35	
ttttccttga gaatatgaca ttctttttt aggcatagga cccgtgtct	49
<210>36	
<211>50	
<212>DNA	
<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>36	
ggagaatgag acatgtgata taccttttt taggcatagg acccgtgtct	50
<210>37	
<211>47	
<212>DNA	
<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>37	

WO 03/086334 PCT/JP03/04884 48 tctgtctgca aatggaatat ttgattttta ggcataggac ccgtgtct <210>38 <211>48 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a probe <400>38 tcatgagcta ttagaatatg acggttttta ggcataggac ccgtgtct 48 <210>39 <211>48 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a probe <400>39 aattitttaa titcigggga ciittitta ggcataggac ccgigici 48 <210>40 <211>52 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a probe <400>40 aaatcaacat cttgacataa gagttttatt tttaggcata ggacccgtgt ct 52 <210>41 <211>46

<212>DNA

<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>41	
ggggtctttt tacaaatctg gatttttagg cataggaccc gtgtct	46
<210>42	
<211>51	
<212>DNA	
<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>42	
agaaaataca ggatatttca tttatgtttt ttaggcatag gacccgtgtc t	51
<210>43	
<211>56	
<212>DNA	
<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>43	
tactattata atttactaac caagtateee tatttttagg cataggaeee gigtet	56
<210>44	
<211>51	
<212>DNA	
<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>44	

ctgtgaatgg gattcatgta ttatttcttt ttaggcatag gacccgtgtc t 51 <210>45 <211>44 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a probe <400>45 44 gctgaatggc acgcaattac tttttaggca taggacccgt gtct <210>46 <211>46 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a probe <400>46 46 aggttgtctg ctctggtgca gttttttagg cataggaccc gtgtct <210>47 <211>47 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a probe <400>47 cacaacacgg aggaatcaga gagtttttag gcataggacc cgtgtct 47 <210>48 <211>45

WO 03/086334

<212>DNA

<213>Artificial Sequence	
<220 >	
<223>Designed nucleotide to act as a probe	
<400>48	
gaaacgtggc cagcatcaca ttttttaggc ataggacccg tgtct	45
<210>49	
<211>45	
<212>DNA	
<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>49	
tgtcctacaa ccaaagggga ctttttaggc ataggacccg tgtct	45
<210>50	
<211>46	
<212>DNA	
<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>50	
gagetectaa tgttteattt eetttttagg cataggaece gtgtet	46
<210>51	
<211>46	
<212>DNA	
<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	•
<400>51	

46 agttttagga aacaaaaatc cctttttagg cataggaccc gtgtct <210>52 <211>49 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a probe <400>52 gaaaactact gctcctcaaa ataaattttt aggcatagga cccgtgtct 49 <210>53 <211>24 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a probe <400>53 24 attcttgggg aaaaataaaa aata <210>54 <211>20 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a probe <400>54 20 gttcccaccc ccattattgc <210>55 <211>28 <212>DNA

WO 03/086334

<213>Artificial Sequence <220> <223>Designed nucleotide to act as a probe <400>55 28 caaaagaagt cttgtattac cttttcaa <210>56 <211>29 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a probe <400>56 29 catatttgag aaaaagaaaa tgtatttct <210>57 <211>23 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a probe <400>57 23 aaaatgcaga aagcaagcta gca <210>58 <211>23 <212>DNA <213>Artificial Sequence <220> <223>Designed nucleotide to act as a probe <400>58

PCT/JP03/04884

WO 03/086334

caaaaaatct agtgtccaga atcattg	27
<210>59	
<211>19	
<212>DNA	
<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>59	
tcaagccaac ctccccaaa	19
<210>60	
<211>24	
<212>DNA	
<213>Artificial Sequence	
<220>	
<223>Designed nucleotide to act as a probe	
<400>60	
ggatttcact gtttttcctc aaat	24
<210>61	
<211>25	
<212>DNA	
<213>Artificial Sequence	
⟨220⟩	
<223>Designed nucleotide to act as a probe	
<400>61	
taagtagtga actgttttcc aagca	25

WO 03/086334

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/04884

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ A61K7/06, 45/00, A61P17/14, C07D271/08, 313/00, 493/04, 493/06, 493/08, 493/16				
According to	o International Patent Classification (IPC) or to both na	ational classification and IPC		
	SEARCHED			
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ A61K7/06-155, 45/00, C07D271/08, 313/00, 493/02-22				
Documentat	ion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched	
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CA (STN)				
	ÆNTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap		Relevant to claim No.	
A	WO 01/74164 Al (THE GENERAL 11 October, 2001 (11.10.01), Full text	HOSPITAL CORP.),	1-6,8-10	
X A	EP 606044 A1 (SANDOZ LTD.), 13 July, 1994 (13.07.94), Examples 8, 10 & JP 6-228122 A			
X A	JP 9-202781 A (Sankyo Co., Ltd.), 05 August, 1997 (05.08.97), Full text (Family: none)		3 1,2,4-6,8-10	
C=1	documents are listed in the continuation of Box C.	See patent family annex.		
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report		
10 July, 2003 (10.07.03)		05 August, 2003 (05	. 08 . 03)	
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer		
Facsimile No	o.	Telephone No.		

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/04884

		·	
C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevan	nt passages	Relevant to claim No.
C (Continual Category* X A			Relevant to claim No. 3 1,2,4-6,8-10

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)			
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:			
1. Claims Nos.: 7			
because they relate to subject matter not required to be searched by this Authority, namely: Claim 7 involves methods for treatment of the human body by therapy and thus relates to a subject matter which this International Searching Authority is not required, under the provisions of Article 17(2)(a)(i) of the PCT and Rule 39.1(iv) of the Regulations under the PCT, to search.			
2. Claims Nos.:			
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:			
3. Claims Nos.:			
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).			
Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)			
This International Searching Authority found multiple inventions in this international application, as follows: See extra sheet.			
I. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.			
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.			
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:			
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:			
Remark on Protest			
No protest accompanied the payment of additional search fees.			

PCT/JP03/04884

Subject of the search

Claim 1 relates to a hair papilla cell growth promoter which contains as the active ingredient a compound defined by a desired property "an activity of inhibiting the function of WNT-5A", while claim 2 relates to a hair papilla cell growth promoter which contains as the active ingredient a compound defined by a desired property "inhibiting the production of WNT-5A". Although claims 1 and 2 involve any compounds having such properties, it is recognized that only parts of the claimed compounds are disclosed in the meaning as described in PCT Article 5 and thus these claims are not supported by the disclosure in the description in the meaning as described in PCT Article 6.

Although the common technical knowledge at the point of the application is taken into consideration, the scopes of the "compound having an activity of inhibiting the function of WNT-5A" and the "WNT-5A production inhibitor" cannot be specified. Thus, claims 1 and 2 also fail to fulfill the requirement of clearness as described in PCT Article 6.

Such being the case, the search was made on the relationship between the inhibition of the function of WNT-5A and the promotion of hair papilla cell growth, the stimulation of hair growth or the hair growth, the compounds specifically presented in the description, and the hair papilla cell growth promoters, hair growth stimulants and hair growth tonics containing as the active ingredient the compounds as set forth in claims 4 to 6. Claims 4 to 6 were completely examined.

The same applies to the search on claims 8 to 10.

発明の属する分野の分類(国際特許分類(IPC)) Int. Cl⁷ A61K7/06, 45/00, A61P17/14, C07D271/08, 313/00, 493/04, 493/06, 493/08, 493/16 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. $C1^7$ A61K 7/06-155, 45/00, C07D271/08, 313/00, 493/02-22最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CA (STN) 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 Α WO 01/74164 A1 (THE GENERAL HOSPITAL CORP.) 2001.10.11 全文 1-6.8-10 X EP 606044 A1 (SANDOZ LTD) 1994.07.13 実施例8及び10 Α & JP 6-228122 A 1,2,4-6,8-10 \mathbf{X} JP 9-202781 A (三共株式会社) 1997.08.05 全文 (ファミリーなし) Α 1, 2, 4-6, 8-10 X US 3687982 A (Commercial Solvents Corp.) 1972.08.29 全文 Α & JP 47-29384 A & FR 2128316 A1 & DE 2210563 A1 1,2,4-6,8-10 C欄の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって ずの 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献 (理由を付す) 上の文献との、当業者にとって自明である組合せに 「〇」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 10.07.03 **0**5.08.03 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4 C 8829 日本国特許庁(ISA/JP) 大宅 郁治 (自有) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3402

*調査の対象について

請求の範囲1は「WNT-5Aの機能阻害活性」という所望の性質により定義された化合物を有効成分とする 毛乳頭細胞増殖促進剤に関するものであり、また、請求の範囲2は「WNT-5A産生抑制」という所望の性質 により定義された化合物を有効成分とする毛乳頭細胞増殖促進剤に関するものである。そして、請求の範 囲1及び2は、そのような性質を有するあらゆる化合物を包含するものであるが、PCT5条の意味において 開示されているのは、クレームされた化合物の一部分にすぎず、PCT6条の意味での明細書の開示による裏 付けを欠くものと認められる。

また、「WNT-5Aの機能阻害活性を有する化合物」及び「WNT-5A産生抑制剤」は、出願時の技術常識を勘案してもそのような性質を有する化合物の範囲を特定できないから、請求の範囲1及び2は、PCT6条における明確性の要件も欠いている。

よって、調査は、WNT-5Aの機能阻害と毛乳頭細胞増殖促進又は発毛若しくは育毛との関係について、並びに、明細書に具体的に記載されている化合物及び請求の範囲4~6に記載されている化合物を有効成分とする毛乳頭細胞増殖促進剤、発毛剤、育毛剤について行った。また、請求の範囲4~6については、完全な調査を行った。

請求の範囲8~10に関しても同旨で調査を行った。

第I欄	闡 請求の範囲の一部の調査ができないときの意り	」(第1ページの2の続き)
		この国際調査報告は次の理由により請求の範囲の一部について作
成しなが	なかった。	
1. x	■ 請求の範囲 7 は、この国 つまり、	際調査機関が調査をすることを要しない対象に係るものである。 ·
	請求の範囲7は、治療による人体の)処置方法を包含するものであって、PCT17条(2)及 この国際調査機関が国際調査をすることを要しない
2.] 請求の範囲 は、有意義ない国際出願の部分に係るものである。つまり	な国際調査をすることができる程度まで所定の要件を満たしてい 、
		·
3.	」 請求の範囲 は、従属請 従って記載されていない。	求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1)	ページの3の続き)
V/+1+>	マン・マーン アース 一日 吹い 一日 マン・マーン・マーン・マーン・マーン・マーン・マーン・マーン・マーン・マーン・マ	
がたに又	こ述べるようにこの国際出願に二以上の発明がある)とこの国际調査機関は認めた。
1.	」 出願人が必要な追加調査手数料をすべて期間P の範囲について作成した。	Nに納付したので、この国際調査報告は、すべての調査可能な請求
2.	」 追加調査手数料を要求するまでもなく、すべて 加調査手数料の納付を求めなかった。	この調査可能な請求の範囲について調査することができたので、追
з. 🗌	」 出願人が必要な追加調査手数料を一部のみした 付のあった次の請求の範囲のみについて作成し	・期間内に納付しなかったので、この国際調査報告は、手数料の納 、た。
4 .] 出願人が必要な追加調査手数料を期間内に納付されている発明に係る次の請求の範囲について	けしなかったので、この国際調査報告は、請求の範囲の最初に記載 「作成した。
追加調金	周 <u>査</u> 手数料の異議の申立てに関する注意	
	□ 追加調査手数料の納付と共に出願人から異語	
	□ 追加調査手数料の納付と共に出願人から異認	襲申立てがなかった。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.