NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WARTIME REPORT

ORIGINALLY ISSUED

April 1944 as Advance Restricted Report No. 4D29

WIND-TUNNEL PROCEDURE FOR DETERMINATION

OF CRITICAL STABILITY AND CONTROL

CHARACTERISTICS OF AIRPLANES

By Harry J. Goett, Roy P. Jackson, and Steven E. Belsley

Ames Aeronautical Laboratory Moffett Field, Calif.

FILE COPY

To be returned to the files of the National Advisory Committee for Aeronautics Washington, D. C.

WASHINGTON

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution.

" NATIONAL ADVISORY: COMMITTEE FOR AERONAUTICS

ADVANCE RESTRICTED REPORT

WIND-TUNNEL PROCEDURE FOR DETERMINATION

OF CRITICAL STABILITY AND CONTROL

CHARACTERISTICS OF AIRPLANES

By Harry J. Goett, Roy P. Jackson, and Steven E. Belsley

SUMMARY FRANCISCO STATE

This report outlines the flight conditions that are usually critical in determining the design of components of an airplane which affect its stability and control characteristics. The wind-tunnel tests necessary to determine the pertinent data for these conditions are indicated, and the methods of computation used to translate these data into characteristics which define the flying qualities of the airplane are illustrated.

INTRODUCTION

The development of flying-qualities specifications (references 1, 2, and 3) has established specific criteria with which the characteristics of an airplane normally will be compared. The problems posed in the preliminary design of an airplane is the determination of which of these criteria will influence the design of the various components of the airplane that affect the stability and control characteristics, and the magnitude of the effect. As an aid in this design problem, methods have been developed by which the data, obtained from wind-tunnel tests of powered models, can be translated into flying-qualities characteristics observable in flight tests (in the terms in which the flying-qualities specifications are written). Application of these methods to six different airplanes has indicated that the same requirements represent the critical conditions on all conventional airplanes, and that if these conditions are met,

it will follow that the remainder of the specifications will be satisfied. By permitting concentration on these few conditions, a considerable simplification of the design process results.

It is the purpose of this report to outline the critical conditions for each component of the airplane, to indicate the wind-tunnel tests necessary to determine the pertinent data, and to illustrate the methods of computation used to translate these data into characteristics which define the flying qualities of an airplane.

DISCUSSION

The flying-qualities requirements can be stated under three major headings:

- 1. Stability shall exist under specified conditions.
- 2. Control shall exist under specified conditions.
- 3. Control forces shall be kept within specified limits.

Each of these requirements is, to some extent, contradictory to the other two and, furthermore, airplanes now have been developed to such sizes and powers that the attainment of all three requirements is quite difficult. Hence, despite the fact that from the ultimate flying-qualities standpoint it is desirable to satisfy some of the requirements by as ample a margin as possible, the designer normally will find it expedient to base his original design on small margins, in order to minimize the difficulty of compromising conflicting requirements. If this is not done for one requirement, the attainment of the other two by normal means may be impossible.

To illustrate this point, the horizontal tail on a typical high-powered, single-engine airplane must be the smallest which will give the required stability in a rated-power climb, and the elevator must be the smallest which will give the required control in landing, in order to keep the balance requirements for low control forces in accelerated maneuvers within reasonable limits. With regard to wing dihedral, care must be taken not to exceed the amount required for the maintenance of lateral stability in the low-speed, high-power condition where the dihedral effect will be

minimum, or excessive dihedral effect will result at high speeds. The size of the rudder must be limited to the <u>smallest</u> that will give adequate control in order to keep the rudder-pedal forces within the required limits.

If it is assumed that the preliminary design has been completed on the above basis, it will be the function of the first wind-tunnel tests to obtain data from which any readjustments of the airplane components, necessary to secure satisfactory characteristics, can be determined. As conceived herein, the first series of wind-tunnel tests would be restricted to the critical conditions with regard to each characteristic. A series of tests sufficiently complete to form a basis for a more general flying-qualities prediction, or an analysis of secondary effects, would not be made until the changes shown to be necessary by the first series of tests had been incorporated in the model. An outline for such a preliminary series of tests as just discussed is given in tables I, II, and III for a singleengine airplane and in tables I, II, and IV for a twinengine airplane. An attempt has been made to make these tables self-explanatory when considered in the light of a flying-qualities specification (references 1, 2, and 3). Figures 1 to 16 present a typical set of results. The method of translating the wind-tunnel results into the terms of the flying-qualities specification is outlined on these figures.

The choice of critical conditions and the tables have been made after a detailed study of the characteristics of 3 typical single-engine airplanes and 3 twin-engine airplanes with right-hand rotating propellers. In each case it was found that if the 10 major points as outlined were satisfied, the other characteristics called for in the flying-qualities specifications would be met. It is believed that this conclusion will be similar for other conventional airplanes.

Each of the 10 items listed in the tables is directed toward 1 major variable in the airplane design. Thus, in the usual case

Horizontal tail size will be determined by item I.

Elevator size will be determined by item II.

Elevator balance will be determined by item III.

Minimum dihedral will be determined by item IV.

Maximum dihedral will be determined by item V.

Aileron size will be determined by item VI.

Aileron balance will be determined by item VII.

Vertical tail size will be determined by item VIII.

Rudder size will be determined by item IX.

Rudder balance will be determined by Item X.

Obviously there is a closer interrelation among the characteristics than the above listing implies, and important changes can be required after consideration of "secondary" variables. However, to a first approximation the variables listed will establish the airplane stability and control characteristics after the first basic arrangement of wing and fuselage is established. Changes in other features of the airplane components will normally be in the nature of refinements, rather than major changes.

The surface deflections given in the text are only representative values corresponding to the range of deflections needed in ascertaining the flying qualities of the airplanes upon which the study has been based. An optimum selection can be best determined from a cursory examination of the basic runs with control surfaces neutral, with due regard for the maximum deflections upon which the design is based. It will be noted that tail-off runs are called for in the tables only when they are necessary for the computation of the flying qualities. However, in order to provide data, which will aid in any necessary redesign, the addition of a tail-off run for other test conditions is considered desirable.

A typical set of data as obtained from the runs called for on the tables is shown in the figures, and the cross plots and computation methods necessary to reduce these data to the form of the flying-qualities characteristics are outlined. As in the table, these figures are intended to be in such detail as to require no further explanation. In the computation procedure certain simplifications and assumptions have been made, but it is believed that all factors which will bear an important influence on the final result have been included.

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif.,

APPENDIX

SYMBOLS

δ deflection of control surface

 $\Delta\alpha$ change in angle of attack at wing due to ground effect or change in angle of attack (over aileron station) due to roll

 $\Delta\varepsilon_1$ change in downwash at tail due to ground effect

 $\Delta\alpha t_1$ change in angle of attack of tail due to ground effect

 $\Delta\alpha_{\mbox{\scriptsize ta}}$ change in angle of attack of tail due to induced angle in accelerated flight

 $\mathtt{C}_{\mathtt{L}_{W}}$ lift coefficient of wing and fuselage (exclusive of tail)

it angle of incidence of tail

Ch hinge-moment coefficient

Ψ angle of yaw

β angle of sideslip

 T_c propeller thrust coefficient = $\frac{Thrust}{\rho V^2 D^2}$

 $c_{n_{oldsymbol{eta}}}$ yawing moment due to sideslip

Cla rolling moment due to sideslip

 ${
m Cl}_{
m p}$ rolling moment due to rolling

 ${\tt C_{l_a}}$ rolling moment due to alleron deflection

F stick force, pounds

V_i indicated airspeed

lH length from center of gravity to 25 percent M.A.C. of horizontal tail

n normal acceleration

- g acceleration due to gravity
- p rolling velocity, radians per second
- b wing span, feet

Subscripts

- e elevator
- r rudder
- a_I left aileron
- a_R right aileron
- t tail

NOTE: Stability axes have been used in the presentation of the data.

Positive deflection of control surface is in the direction which will produce a positive force (not necessarily a positive moment).

REFERENCES

- 1. Gilruth, R. R.: Requirements for Satisfactory Flying Qualities of Airplanes. NACA ACR, April 1941. (Classification changed to "restricted" Oct. 1943).
- 2. Anon.: Stability and Control Characteristics for Air-planes. Spec. No. C-1815, Army Air Forces, Aug. 31, 1943.
- 3. Anon.: Specification for Stability and Control Characteristics of Airplanes. Spec. No. SR-119, Bur. of Aero., Navy Dept., Oct. 1, 1942.
- 4. Katzoff, S., and Sweberg, Harold H.: Ground Effect on Downwash Angles and Wake Location. Rep. No. 738, NACA, 1943.
- 5. Recant, Isidore G.: Wind-Tunnel Investigation of Ground Effect on Wings with Flaps. T.N. No. 705, NACA, May 1939.
- 6. Pearson, Henry A., and Jones, Robert T.: Theoretical Stability and Control Characteristics of Wings with Various Amounts of Tapor and Twist. Rep. No. 635, NACA. 1938.

rable i

Pig.		Ruso (An,b.e) with increased incidence are for the purpose of determining &C_dit, and dC_b/dit, accountry for application of method of reference of act, chould be selected as change in might of attack of the tail in the minima speed landing attitude, computed by nethod of reference &. Rum 5, with tail removed, required for determination of Cl_d, used to compute &c and &c by method of reference &c.	Run 7, with increased incidonco, mader for the purpos of determining deviate and deby disk nonconsary for accolerated flight calculations. Value of Act, should be determined no maximum induced angle at tail in accoelerated flight.
п	Polare with rated peror, flap and genr up. \$ \begin{align*} \theta & \cdot &	Polara arith pro- polara arith pro- polara arith pro- So	Landing: Duth required to sume as for II above. Assolerated Flight: Polars with proposition with proposition wind. and ling, flaps and gear up.
Lugitudieni Characteristioo (Similo- and Trim-Arphono) (Similo- and Trim-Arphono) Critisol seedition	Critical condition will be in a mice-perce of the word describilistic effects of perce of the word describing effects of perce for many ever which crability to required to to be determined from particular specifical cuties being fellered. Or Critical condition my ever in the appreciation with flaps and gene demand 60-percent meets!	Critical condition will be in landing where forturement conter-of-gravity leantion and ground office will require maximum up elevator to accure landing attitude.	Critical condition will either be in landing or in accolorated flight with propollers windmilling where stability will be greatest and consequently the stick force per g the highest. In landing, a maximum force of 35 pounds for stok-type control and 50 pounds for wheeltype control is permissible (with trim tab set at 1.4Vstall, propeller windmilling). The required stick-force gradient in accelerated flight varies with type of airplane and must be determined from flying-qualities ge specifications being followed.
Perposo and	I To deforming if the horizontal tail is large enough to most regularizate of other fined othershing observed for many in the electron or one on the free othershing who es to mintal other free othershing the enoughton othershing the endition of fight emiliary under the opposition fight	II fo deterrine if clowiter to large cacagh for necessary seated under all nerel flight conditions.	III fo dotornino if olovoter bolomeo in animaleont to maintain control feroco within required limite.

Lateral Characteristics (Single and Twin-engine Airplanes)

TABLE II

It en	Purpose and requirement	Gritical condition	Run No.	Description Fig. of Run No.	S. Remarks
AI	To determine if the wing dihedral is great enough to provide at least neutral dihedral effect for the conditions of flight specified.	The critical condition will be in the approach with flaps down and with power on where power and flap effects combine to reduce the dihedral effect. (This condition will normally be worse with allerons free, but it can be checked to a very good first approximation with allerons fixed)	.	Yaw run at approach 5 attitude with flaps and gear down and 50 percent normal rated power. \$ 100 \text{vm - 300 to 300 } \$ 100 \text{vm - 200 to 300 } \$ 10	Army calls for stability at 1,2Vstall (propeller windmilling) with 50 percent rated power. Navy calls for stability in "the approach with considerable power". This condition will normally coincide with the condition outlined for the Army above.
	•			`	The angle of attack for these tests should be chosen on the basis of C _{Lmax} obtained in the wind tunnel (used in computing 1.2V _{stell}) but the power (T _o) should be set in accordance with the estimated speed under full scale conditions.
>	To determine if proper belance exists between dihedral effect and directional stability to avoid oscillatory divergence.	Critical condition will be the high speed (clean) condition where dihedral effect will be maximum and directional stability minimum (due to small power effects)	on .	Yaw run at high 6 speed attitude, flaps and gear up, propeller windmilling (or high-speed To) \$ = 00, \$ = 300 to 300	Some doubt exists as to whether or not this criterion expresses a true maximum limit for dihedral. It is believed that an airplene can have dihedral under this limit and yet have an undesirably large roll due to sideslip, and that the tolerable amount actually varies with the type of airplane. However no specific characteristic expressing such a criterion exists.
F	To determine if silerons are sufficiently effective to furnish minimum (Pb) max required.	Gritical condition will be at low speed (flaps up or down) where alleron effectiveness is usually lowest and reduction in $(\frac{p_0}{2V})$ due to yawing is greatest.	100 100 100 111 110	Polar with wind- milling propeller. Flaps and gear retracted \$a_1=0, \$a_m=0 \$a_1=3,4 up \$a_1=8ull Down, \$a_m=3/4 up \$a_1=8ull Down, \$a_m=8ull up Flaps and gear extended \$a_1=0, \$a_m=0 \$a_1=8ull Down, \$a_m=3/4 up \$a_1=8ull Down, \$a_m=8ull up \$a_1=8ull Down, \$a_m=8ull up	For a single-engine airplane runs ile, b, and c are needed for computations of necessary rudder balance. See Table No. III.
	To determine if allerons are closely enough belenced to furnish required (2V) max with low enough control forces.	Critical condition will be at highest speed at which requirement applies, normally .8V max . Required force and rate of roll varies with type of airplane.		Deta required will be 8 funcioned by runs 10s, b, end o, supplemented by two-dimensional hinge moment data.	For conventional-type allerous there are normally sufficient two-dimensional data at high Reynolds number which will form a reliable basis for stick-force computations.

Directional Characteristics (Single-engine Airplane)

TABLE III

Kamarks .		It should be noted that the condition for which the rudder is trimmed will bear an important influence on the rudder reversal characteristics. It is assumed that the incremental tab offects can be detimated and applied to tab-mero date.	It whould be noted that the condition for which the rudder is trimmed will beer as important influence on the radder reversal characteristics. It is assumed that the incremental tab offects can be estimated and applied to tab-sero data. For airplane being tested for compliance with Army opecifications only, the To and attitude requirements are less server and iny be changed to the following:	It should be noted that the condition for which the rudder is trimmed will beer as important influence on the rudder reversal characteristics. It is essumed that the incremental tab effect can date, and estimated and applied to tab-sero date. For airplane being tested for compliance with Army openifications only, the T _o and attitude requirements are less severe and may be changed to the following: Flaps up - T _o of power for lavel flight Plaps down - attitude of 1.2Vstall (propeller windmilling); T _o of 50 percent normal rated power. The above remark also applies to any airplane on which low-speed extreme power handling characteristics.	It should be noted that the condition for which the rudder is trimmed will beer an important influence on the rudder reversal characteristics. It is assumed that the incremental tab effects can be estimated and applied to tab-mer data. For airplane being tested for compliance with Army opecifications only, the T _c and attitude requirements are less sewere and may be changed to the following: Flaps up - T _c of power fur lawel flight Plaps down - attitude of laverall (propeller windmilling); T _c of 50 percent normal rated power. The above remark also applies to any airplane on which low-speed extreme power handling characteristics are considered of secondary importance. It should be noted that in computation of rudder required to hold steady sidensity, C _n due to alleron has been magnitoted (figs. 9, 10, 13, 14, and 16).	It should be noted that the condition for whole he rudder is trimmed will beer an important influence on the rudder reversal characteristics. It is assumed that the incremental tab effects con be estimated and applied to tab-mere data, shoremental tab effects con be estimated and applied to tab-mere data, dray opecifications only, the To and attitude requirements are less sewere and may be changed to the following: Flaps up - To of power fur lawel flight Plaps up - To of power fur lawel flight operand rated power. The above remark also applies to any airplane on which low-speed extreme power handling characteristics are considered of secondary importance. It should be noted that in computation of rudder required to hold steady sidelieved (figs. 9, 10, 13, 14, and 16). The data required to deformine actual powers allers your same estimed from hems il a, b, and s.	It should be noted that the condition for which the rudder is trimmed will bear an important influence on the radder reversal characteristics. It is assumed that the incremental tab effects can be estimated and applied to tab-mero data. For airplane being tested for compliance with Army opecifications only, the T ₀ and attitude requirements are less severe and ray be changed to the following: Flaps up - T ₀ of power fur lavel flight Plaps up - T ₀ of power fur lavel flight propeller windmilling); T ₀ of 50 percent normal rated power. The above remark also applies to any airplane on which low-speed extreme power handling characteristics are considered of secondary importance. It should be noted that in computation of rudder required to deformine actually C, due to allern has been ng-lected (figs. 9, 10, 13, 14, and 16). The data required to deformine actually data years alleren was exclinated to manifest of the figs. 9, 10, 13, 14, and 16). For airplanes boing tested for compliance with Army specifications only, analysis may be confined to condition (b), and attitude changed to large for power for level flight.	tr t	occupition med will med will med will when the tios. It nial tab d spplied d spplied d spplied d spplied d spplied or com- tions only, streme stoedy side- been neg- been neg- condi- tions only, condi- tions only, ocndi- ti
	It should be noted the for which the rudder i bear as important infl radder reversal characts assumed that the ineffects can be estimated that the ineffects can be estimated that the the tablacers of the same o	******	For airplane being tes plance with Army opeo the To and attitude re loss severe and my be following:	For eirplane being tes plance with Aray opeo the To and attitude re less severe and may be following: Flaps up - To of power Plaps down - attitude (propeller windmilling normal rated power. The above remark also airplane on which low-power handling character considered of secondary	For airplane being tes pliance with Army opeo the 7 and attitude releas severe and ray be following: Flaps up - To of power Plaps down - attitude (propeller windmilling normal rated power. The above remark also airplane on which low-power handling charact considered of seconds: It should be noted the of rudder required to slip, C _n dum to ailer to salero leeted (figs. 9, 10,	For airplane being tes pliance with Army opeo the 7 and attitude releas severe and ray bee following: Flaps up - To of power Plaps up - To of power Plaps down - attitude (propeller windmilling normal rated power. The above remark also airplane on which low-power handling character considered of secondary of rudder required to ails, C, dum to ailsrole sails, C, dum to ailsrole sails dum a li a, b, and e. For airplanes hoher tes	For airplane being tes pliance with Army opeo the To and attitude releas severe and may be following: Flaps up - To of power Flaps down - attitude (propeller windmilling normal rated power. The above remark also airplane on which low-power handling charact considered of seconds: It should be noted the of rudder required to aligh, C _n dum to allero aligh, C _n dum to allero leeted (figs. 9, 10, also data required to aligh, C _n dum to allero also dum allowed the bolds and attitude analysis may be confilm tion (b), and attitude lagest analysis may be confilm to for power for level	For airplane being tes pliance with Army oper the To and attitude releas severe and may be following: Flaps up - To of power Plaps up - To of power Plaps down - attitude (propeller windmilling normal rated power. The above remark also airplane on which low-power handling charact considered of seconds: It should be noted the of runder required to ally, Cn dum to allere to allere leeted (figs. 9, 10, 10, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	For airplane being tested for airplane with Army openition the To and attitude required less severe and may be obadited the To and attitude of in. Flaps up - To of power fur Plaps down - attitude of in. (propeller windmilling), To normal rated power attitude of in. The above remark also applia airplane on which low-speed power handling characterist; considered of secondary implied to required to hold alip. C, dus to alleron has list, C, dus to alleron has lected (figs. 9, 10, 13, 1). The data required to deverme were alleron years alleron years and e. For airplanes boing tested pliance with Army specificat to the above remark also applie analysis may be confined to the above remark also applie airplane on which low-speed power handling characterietic considered of secondary impromediated of secondary impromediated the rudder is to be enfammed for high-speed
rehould be noted or which the rudd ser as important adder reversal oh	orrects can be est to tab-sero date.	or airplane being	liance with Army to To and attitud ass severe and in	ilance with Army is a Severe and incidential incidenti	lance with Army is To and attitud is Severe and IN, illowing: i possible windmil propeller windmil in a bove remark a le above remark a le above remark a le above handling cha one handling cha one i chould be noted fruder required fig. Ch dus to a leoted (figs. 9, other or other contents of the conte	lance with Army is To and attitudes as severe and my illowing: i possible windmil propeller windmil rated power as above remark a second my wer handling character and be noted fruit of dus to a second (figs. 9, cutder required (igs. 10, cutder required (igs. 11, cutder required (igs.	lance with Army is fo and attitud is fewere and in illowing: illowing: in of period in above remark a re	lance with Army is a form on this are and in its in the first of a fig. and attitud is a severe and in its in the fig. a	lance with Army is To and attitudes seever and in illowing: inpediate and attitudes again to read the red power attitudes to be above remark a lippane on which maidered of secon in though the required if the cape at a required (figs. 9, oted figs. 9, oted (figs. 9, oted figs. 9, oted fig
o It should for which been so Fradder Pradder Pradder Pradder Pradder Pradder Pradder Prader for tabes		For airp pliance the To a less sev	folloging	9	9	on Indiana	o de la companya de l	of the state of th	t t d d d d d d d d d d d d d d d d d d
1	0 300 30°	4	o* *	itude 10 o oller laps T _o corre-	1tude 10 0 0 10 1 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15			· · · · · · · · · · · · · · · · · · ·	in diameter in the state of the
THE BEST OF THE STREET	50 t= 0. to 30° 50 t= 0. to 30° 00 t= 0. to -30°		F= ±259 Taw runs at attitude corresponding to [1.1V	windmilling), flaps and gear down, To corresponding to take-off power.	liling), flaps ear down, To col ing to take-off e = 00 to -500 e = 150 e = 150 e = 250 e = 250 e = 250	windmilling), flaps and gear down, To corre sponding to take-off power. Wrange = 0° to -50° 6 r = 15° 6 r = 25° 7 r = 25° 7 r = 25° 8 r = 25° 1.1V ₅ tall (propaller windmilling), flaps and	windmilling), flaps and gear down, To cou sponding to take-off power. \$\begin{align*} \begin{align*} al	liling, flaps est down, To cou ing to take-off est 00 to -500 est 00 to 500 est 00 to 500	windmilling), flaps and gear down, To con appending to take-off power. Vrange = 0° to -50° Ör = 1°° Ör = 1°° Ör = 2°° Ör = 2°° Ör = 2°° Ör = 2°° Ör = 1°° Wrange = -1°° Orresponding to take-off power. Vrange = -1°° Ör = -1°° Ör = -1°° Ör = -2°°
			_	sponding power.	sponding powert.	sponding power. Vrange = 6 F = 6 F = 1	# power.	wrange = 6 r = 6 r = 6 r = 6 r = 11.1Vst.]] 1.1Vst.]] wandmilliligeer downing wandmilliligeer downing wandmilliligeer downing wandmillililigeer downing wandmillililililililililililililililililili	aponding to tal power. \$\psi \text{Tange} = 0^0 to \\ 6 \text{F} = 15^0 \\ 6 \text{F} = 25^0 \\ 5 \text{F} = 25^0 \\ 5 \text{F} = 25^0 \\ 5 \text{F} = 25^0 \\ 1.1\text{Vetall} \text{(property)}, \\ 1.1\text{Vetall} \text{(property)}, \\ 1.2\text{Vetall} \text{(property)}, \\ 1.2\text{(property)}, \\ 1.2\text
		12 p c c c c c c c c c c c c c c c c c c	12 £, g		2 0 0 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				· _ · _ · _ · _ · _ · _ · _ · _ ·
b highest s when high	ity char-	o or s should			,	th con- maid-	th com- maid- p- slip	th com- com- ed to p- p- slip 1- by	th oon- maid- od to p- ti- by
ondition will be at highest sideslip attainable when is operating at a high	thrust coefficient. Dependent upon the airplane configuration and power-off stability characteristics, this condition may be	oritical with flaps either up or down. Both flight conditions should therefore be checked.				Critical condition will be (a) Maintenance of flight with wing level under high thrust conditions of wave-off, where consid-	Critical condition will be (a) Maintenance of flight with winge level under high thrust comeristum of wave-off, where considered to neutralise effects due to slipstream twist (b) Maintenance of zero sideslip for above condition with suffi-	Critical condition will be (a) Maintenance of flight with winge level under high thrust o dittoms of wave-off is required neutralise effects due to slip- stream twist (b) Maintenance of zero sides] for above condition with suffi- otent reserve rudder to compen- sate for adverse yew induced by full right ailerom deflection.	Critical condition will be wings level under high thrust of ditions of wave-off, where come erable right rudder is required neutralise effects due to slipmentant wist or above condition with suffice above condition with sufficient reserve rudder to compensate for adverse yaw induced by full right alleron deflection. Critical condition will cocur when attempt is made to perform amonavers' listed under IX above (without aid of a trim-tab additutement) after an extreme
Mitton wil	operating of the state of the s	th flaps of flight cor o checked.				ition will nos of fl	ition willition will interpretation will ition will it interpretation or	ition will nos of floots due of floots due of zee of zee ditton willow will rudder v.	ition will nee of fl nder high ve-off, w rudder is feots due or or trudder v rudder v rudder v se made v is made v se made v is made v se muther or an ostin-
-	Angles or sideship propeller is operat thrust coefficient, Dependent upon the uration and power-o	oritical with down. Both fl therefore be o		·	,	Critical condition will be (a) Maintenance of flight wrings level under high thriditions of wave-off, where	Critical condi- (a) Maintenan winge level un ditions of way erable right restream twist (b) Maintenan for above cond	Critical condi- (a) Maintenan wings level un ditigns of wave erable right reutralise eff stream twist for above cond otent reserve sate for adverfull right all right all	Critical condition will be winge level under high thrust ditions of wave-off, where constrains effects due to slight stream twist or above condition with suff for above condition with suff color teserve rudder to compensate for adverse yaw induced full right allerom deflection. Critical condition will occur when attempt is made to perform when attempt as the rim-tab additistment) after an extreme
	properthrus Depen	down.				Critical (a) 1 winge	(a) winge ditting erabling erabling stream stream (b) b for all	(a) minge ditting erable meutra stream (b) h for all for all full a	Critical (a) Maint wings last on orable rigeneutralises stream twift or above olent research for above olent research full right (without a justment)
lffiolent	lity is rudder rudder rudder ; large					e rudder F nsc- er all	e rudder F nss- er all	e rudder F nse- er all itions,	r radder fr nes- er all ltions.
	ine if sui al stabili o avoid ru sreal or z zotion at sideslip.	•				no 1f the nough for trol under	no if the nough for trol under	no if the nough for trol under	no if the nough for trol under ght condition is if the int balance is required ilmit.
To determine if sufficient	directional stability is present to avoid rudder force reversal or rudder force reduction at large angles of sideslip.					To determine if the rudder is large enough for nseessary control under all normal flight conditions.	o determin s large en seary com	o determine s large en seary conformal fili	To determine if the rudder is large enough for nseessary control under all normal flight conditions. To determine if the rudder has sufficient balance to keep the pedal forces within the required 180-pound limit.
	VIII V								H H H H H H H H H H H H H H H H H H H

Directional Characteristics

TABLE IV

Gritical condition No. (a) Critical condition (b) The ortical condition (c) Fur run at spread with the stability will be at highest and the ortical condition will be at highest at a highest the there are at a highest the stability at a same of the stable of the stability at a same of the stable of the stability at a same of the stable of the stabl	Purpose and	pue		Run	Ulfectional Unaracteristics (Twin-engine Airplanes) Description Fig.	F. 0	
(a) Critical condition (b) The ortical condition (c) The virtual condition (d) The virtual condition (e) The range and for a calculating are set as a colled for an initial was a condition (e) The ortical condition will be remained by the critical condition will be a therefore taken a condition will be a therefore taken a condition will be a therefore the range a condition will be a the range a condition (a) The range a condition will be a condition will be a the range a condition (b) Each of the condition will be a condition will be a the range a condition (c) Hold at least 100 condition (d) The range a condition will be condition (e) Hold at least 100 condition (b) The range a condition will be condition. (c) Hold at least 100 condition will be condition. (d) The range a condition will be condition. (e) Hold at least 100 condition will be condition. (e) Hold at least 100 condition will be condition. (b) The range a condition will be condition. (c) Hold at least 100 condition will be condition. (d) The range a condition will be condition. (e) Hold at least 100 condition will be condition. (e) Hold at least 100 condition will be condition. (e) Hold at least 100 condition will be condition. (b) The range a condition will be condition. (c) Hold at least 100 condition will be condition. (d) Mar range a condition will be condition. (e) Hold at least 100 condition will be condition. (e) Hold at least 100 condition will be condition. (f) Hold at least 100 condition. (grandom: The condition will be condition. (d) Deta required is obtained from will be condition. (e) Bear a condition will be condition. (f) Bear a condition will be condition. (h) Hold at least 100 condition will be condition. (e) Hold at least 100 condition will be condition. (f) Hold at least 100 con	requirement	ont.	Critical condition	Š			Remarks
ta a high-thrust 12b 12b 12b 12c 12c 12c 12c 12c	To determine if sufficient directional stability is present	e if direc- llity	(a) Critical condition will be at highest anglesof right sideslip attainable when the			2	(a) Army calls for rudder-free directional stability at 1.2V _{stall} (propeller wind-milling) with 50 percent rated power and tab set for trim at zero sideslip. C _{h.} for tab
(b) The orition of the corresponding to articles of condition will be condition as with the ruded free and the condition in direction to bring wing with dead engine of the after cake. Critical condition will another the ruder free and the condition will condition will condition. Critical condition will condition will condition will condition. Critical condition will condition will condition will condition. Critical condition will condition will condition. (b) Kold at least 100 percent of the stalling condition. (c) Kold at least 100 percent of the stalling condition. (b) Kold at least 100 percent of the stalling condition. (c) May range = -20 to 100 condition. (d) May range = -20 to 100 condition. (e) Kold at least 100 percent of the stalling condition. (e) May range = -20 to 100 condition. (b) May range = -20 to 100 condition. (c) May range = -20 to 100 condition. (d) May range = -20 to 100 condition. (e) May range = -20 to 100 condition. (e) May range = -20 to 100 condition. (f) May range = -20 to 100 condition. (h) May range + fo20 condition. (h) May	(a) to avoid rudder pedal force reversels or	d 1 force r	propeller is operating at a high-thrust coefficient.	126 126	Yew renge = 0 to -300 \$r = 00 \$r = 100 \$r = 200		rean be estimated. Navy calls for no reduction of rudder pedal force as the angle of sideslip is increased,
off. Signification of the capture o	reduction at large angles of sideslip.	t large ideslip.	(b) The oritical condition will be represented by the	P21	6' = 250 (b) Yew run at attitude corresponding to 1.2V stall, flaps at take-off setting,		with take-off power and neutral trim tab. As the Navy does not give a definite minimum speed, l.ul $V_{\rm stall}$ (propeller windmilling) is assumed to be the lowest speed at which
Right engine operating the Army. \[\psi \) \text{This r} \\ \text{The Derivation will be power} \\ \text{This roll condition will be power} \\ Thi	(b) To permit the airplane to be balanced directionally in a steady flight, with rudder free and assummetric	ut the be rection- ady h rudder	salure of one engine shortly after take- off.	- 4	genr downake-or power on one engine, other engine, propeller windmilling. Meke runs with the rudder free and the ailerons set with full deflection in direction to bring wing with dead engine up.		this requirement need be met. Runs in right sideslip are called for since normally this will represent a more extreme condition than left sideslip.
Critical condition will be after single-engine falure where the rudder control should be power- ful enough to (a) hold zero sideslip at all speeds down to 120 per- speeds down to 120 per- speed down to 120 per- cont of the stalling speed down to 120 per- speed down to 120 per- condition. (b) Hold at least 10° of sideslip at 120 per- cent of the stalling speed in the take-off (b) Hold at least 10° of sideslip at 120 per- cent of the stalling speed in the take-off (c) Hold at least 10° of sideslip at 120 per- cent of the stalling speed in the take-off (a) Data required is obtained from shove.	power by banking to a moderate angle.	nking to		13a 13b	operating 30° operating 30°	. 14	(b) This requirement is not called for by the Army. Mavy specifications require engle of bank to be limited to 15°, 25°, or 35° depending on type of airplane.
(b) Hold at least 10° (1.2V _{gtall}) flaps in take-off position, of sideally at 120 per- ognition. left engine, propeller windmilling. speed in the take-off 15a (1.2V _{gtall}) flaps in take-off position. left engine, propeller windmilling. Yew range + 5 to -25° 15b (1.2V _{gtall}) flaps in take-off position. Incomplete of the stalling of the stalling of the take-off position. Incomplete of the	To determine if the rudder is capable of main-taining the required control under all conditions of steady flight.	is if is main-roll roll condi-	Gritical condition will be after single-engine failure where the rudder control should be power- ful enough to (a) hold zero sideslip at all speeds down to 120 per- cent of the stalling speed in the olean condition.	148 146 146	ting to	18	(a) This requirement applies only to Navy sirplenes.
Critical condition will (a) Data required is obtained from 15 be in the flight condi- tion (a) and (b) listed (b) Data required is obtained from 16 above.			or (b) Hold at least 10° of sideslip at 120 per- cent of the stalling speed in the take-off condition.	15m 15b 15c	flaps in take-off attitude flaps in take-off position, Take-off power on right engine; propeller windmilling. aw range + 5 to -25° br = 0° cr = 10° dr = -20° dr = -25°	91	(b) This requirement applies only for Army airplanes.
	To determine if the rudder has enough balance to keep the rudder pedal forces within the 180-pound limit.	e if the enough keep pedal in the imit.	Critical condition will be in the flight condi- tion (e) and (b) listed above.			5 B 5	(a) Most severe requirement applied by the Mary. (with respect to rudder pedal forces) (b) Requirement (b) is usually less severe than (a) but is the most severe applied by the Army.

ã 9

RUN RUN

0 4

÷

ō

9630

Ö

CONFIDENTIAL

4 60 4

ď

Ó

9

Fig. 1

	NACA ARR No. 4D	29	C
9	FICK FORCE FROM	7. 5 (PULL) 7. 7 (PULL) 7. 1. 7 (PULL) 7. 1. 7 (PULL) 7. 1. 7 (PULL)	
0	Che WITH TRIM	-0075 -0035 -0007 +0007 +0019 TAIL Y	
9	TAB C _{he} With tab Set for trim At la Vatall	16	
ଡ	Che FOR (3) AT 14 VERRIL (C. = 92) FROM CROSS RIOT	FOR FOR STEURE	
•	FROM CROSSPLOT	N. S.	N TABLE
©	FROM CROSSFILDT RES	1 178 1.5° -0.70 1 46 6 -0.30 1 126 0° -0.030 1 13 -4° -0.030 1 13 -4° -0.030 1 14 -4° -0.030 1 14 -4° -0.030 1 14 -4° -0.030 1 15 -4° -0.030 1 16 -4° -0.030 1 17 -4° -0.030	COMPUTATION
0	y y y	178 146 1/3 1/3 94 94 7HE	δ
0	G	4 6 8 6 4 4 5 E E	B

CONFID	EN	TIAL							_
								÷.	
								:	
	,		9	1.1.	:: .		٥		
			mph.	::::- :::	Krau		aby udu		57/CS
			× 2	.: .	4				CZERA
			8 2		W W		<i>8</i> —		MARA
			Seuza Neura		8		9	/	71/3
Ų.					7 735		9		Y FUK
AABLE.			\$		7.88		/ &		HIRPLANE STEADY FLIGHT CHARACTERISTICS
		0	,			5	,		ANE
<u> </u>		ò	9			9	0		AIRPL.
COMPUTATION) (8)	2	1	8 8		Q
ð J	77	anv s	WWOOT WMOOT	17 <i>3</i>		בסצכו בסצכו	HSTH GTICK		
D)				:: :	141 <u>,</u> .				

(A) MODEL CHARACTERISTICS DETERMINED FROM MINDTUNNEL Q (C) MODEL CHARACTERISTICS CROSSINGTIED -02 -0/Cheo C.9. AT 26-PERCENT WAC **60** 18 a Þ ٥. 0 4 Se = -10° Se = 5. و. و C. Ó O RUN ZO 75575 D RUN ZC ú o CONFIDENTIAL 9000 Ò

FIGURE 2.-VARIATION OF FLEVATOR ANGLE AND STICK FORCE WITH SOFED. STEADY FLIGHT WITH FLADS AND GEAR DOWN, 30 DERCENT NORMAL RITED DOWER.

(A) MODEL CHARACTERISTICS DETERMINED, FROM WIND TUNNEL TESTS - C.g. AT 16-PERCENT MAC

00	3	●	③ :	6	0	®	9	00	<i>:</i> ② .	(B) (B) (G) (G)	0
			774	B NEUTR	94					TAB. G. TO TRIM (9)	90
G, angle of attack of Reference line C., in Presence of Ground Corresponding TO G of O from Partia	E, DOWNWASH ANGLE 12. PRESENCE OF GROUND CORRESPONDING TO CW. OF © AND (OF O. OBTAIN ED FROM REF. 4.	THE OFF OF WITH MY GROWNING TO G., OF B.	G, DOWNNASH ANGLE WITH NO SROUND GFEELT COR- RESPONDING TO GW, OF AND K OR GR GO BERM.	∆€, INCREMENT OF DOWN WASH ANGLE AT TAIL DUE TO GROUND EFFECT FOWALS € OF ® MINUS © OF ®.	AG DUE TO GROUND EFFEC EQUALS & MINUS & AS OBTAINED FROM REF.4	LOGE, THE TOTAL CHANGE IN TAIL ANGLE OF ATTACK FEFECT GOUND BFFECT GOUND AG OF (O)	& FOR C, O, WITH 7911 MCIOENCE INGREASED BY INCREMENT EQUAL TO DOL, IOF ® AND WITH ANGLE OF ATTACK EQUAL TO G O O O O O O	C CORRESPONDING TO CORVE OF RART (A). KFOR C OF (D). WING. LOADING - 23 LB / 59, FT.	Che CORRESPONDING TO CA OF Q. DCL, OF Q., AND Se OF Q. FROM PART (C).	Ge FOR Cm = C, 100 SROUND, AT (4 King), FROM BAPTCH, (2, -5, 0) ROOM BAPTCH, (2, -5, 0) FROM BAPTCH, (2, -5, 0) FROM BAPTCH, (2, -5, 0) FROM BAPTCH, (2, 0) TAB Ge EQUALS TAB Ge EQUALS Che OF GE	STICK FORCE . F./99 = 83
//° 1.59	3. 3°	/2.9°	11.2°	-7.9°	-/.9°	6.0	-25*	1.48 814 mph	.105	-8.0° .005-005-100	AI.4 PULL

THE ABOVE COMPUTATIONS ARE FOR THE THREE POINT ATTITUDE. COMPUTATIONS FOR LANDING AT GREATER SPEEDS ARE MADE BY INTERPOLATING BETWEEN THE L. LIMITS OF PART (A).

THE RESULTS OF REFERENCE 5 INDICATE A SMALLER INCREASE IN C., AT A CONSTANT ATTITUDE DUE TO GROUND EFFECT, THAN THAT COMPUTED BY REFERENCE 4. REFERENCE 5 ALSO INDICATES A RITCHING MOMENT INCREMENT ON THE WING, DUE TO GROUND EFFECT THAT TENDS TO STALL THE AIRPLANE. THE COMPUTATIONS ABOVE DO NOT ALLOW FOR THE GROUND EFFECTS NOTED IN REFERENCE 5. THIS PROCEDURE RESULTS IN A CONSERVATIVE ESTIMATE OF S. AND STICK FORCE TO LAND (WITH RESPECT TO REF. 5).

(B) COMPUTATION TABLE.

(D) AIRPLANE LANDING CHARACTERISTICS

FIGURE 3.-VARIATION OF ELEVATOR ANGLE AND STICK FORCE IN LANDING.
FLAPS AND GEAR DOWN, PROPELLOR WINDMILLING.
SINGLE-ENGINE AIRPLANE.

CONFIDENTIAL

AILERON FIXED

dr.20.

RUN 86 AWN BC

D O

EQUALS

FOR Ch

SINGLE-ENGINE AIR DLANE. FLADS AND

AIGUREG.-LATERAL-STABILITY CHARACTERISTICS AT 4164.
SPEED, FLADS AND GEAR UP, RATED DOWER.

GEAR DOWN, SO PERCENT NORMAL RATED DOWER FIBURES .- DIMEDRAL CHARACTERISTICS AT LOW SOFFO. CONFIDENTIAL

DEFLECTION,

	0	TOTAL AILERON DEFLECTIO	30°	40°	30°	400	M REF 6) RMANCE		
	(9)	(Pb) RUDDER- LOCKED. @ש	660	811	820:		PEED (FRO) 116H PERFC	-	
	9	(Pb) max (PeV) max REDUCTION FRETOR— OUB TO SIDESLIP	/6.	16.	.80	.80	$C_{2\rho} = -0.47\pi$ High Speed and -0.43 at low speed (FROM REF 6). Believed to be representative of Modern High Performance Arranges. (Assumes a Rigid Wing)		
	Ø	CONDITION ALLERON MOMENT (PD) ($\frac{PD}{EV}$) $\frac{PD}{EV}$) ALLERONS EQUALS FROME TO ZERO SIDESLIP FROME FOR $\frac{PD}{PR}$ $\frac{PD}{$	60/	06/	.260	9//	-0.4747 HIGH SPEED AND -0.43 AT LOI FUED TO BE REPRESENTATIVE OF MODER AIRPLANES. (ASSUMES A RIGID WING)	(B) COMPUTATION TABLE, FLARS-UP	-
•	9	ROLLING MOMENT OUE TO AILERONS FROM	.05/	190	.042	090	THIGH SP BE REPR VES. (AS	N TABLE	-
	0	AILERON THROW	**	FULL	4%	FULL	= -0.474 EVED TO AIRPLA	PUTATIO	-
	0	CONDITION	HIGH-SPEED V:=0.8 Vmx	# 266 mph CL= 0.18 d = 0.2°	LOW-SPEED 1.2 Vsm.11	C _{L=} 0.86 α= 10.4°	2. BELL	(B) (Q)	Ĺ
					•		·		
								:	
25			9			.	:		
7m2	الم ا		1) FLAPS UP		9		9 .		
S. S	0	4 8	1/6	F*;	9	اري	FULL	1 3 9	
	9				79		Cax a	3%	
A. FULL DOWN; Sax = FULL UP] (Jane Jane		11	* MEUTRA	8	FULL DOWN; Sar = FULL UP	9	K
a a		VmoQ	0 = 0	9	X	8	מור ב	' A NMOX	
	V a 41	Sa_ = 34 DOWN; Sag= 34	ر م	, —	601 = 60R = NEUTRAL	84	ا وق	E. = 34 DOWN : 60 = 94 UP	٠
	/	y	00	გ	1	1 ¹ [1 \\ d	A ce	ſ.

ġ.

ô

0;

ġ

CONFIDENTIAL

O. RUN 100, &= 0°, &= 0° A RUN 100, " 15°, " -15° B RUN 100, " 20°, " -20°

.0

\$ 2.5 \$ 5.0 \$ 5.0 \$ 5.0

9

ġ

FLAPS DOWN 500

છે

RUN 110 RUN 11C

. ⊙ ∢ ⊡

ģ

g

\$ 2. \$=0,

Say = Sag = NEUTRAL

04 Ó

10

2 th 12 th

(C) AIRPLANE ROLLING CHARACTERISTICS WITH FLAFS UP (POS/2V US ALLERON DEFLECTION).

FIGURE 7. - ALLERON CONTROL CHARACTERISTICS FLAPS AND GEAR UP. SINGLE-ENGINE AIRDEANE (A) MODEL CHAKACTERISTICS DETERMINED FROM WIND TUNNEL TESTS

AILERON DEFLECTION, Sa

(A) HINGE MOMENT CHARACTERISTICS DETERMINED FROM WIND TUNNEL TESTS

0	2	3	@	⑤	6	3 .	0	9	0	0	-@
AILERON POSITION	LEFT AILERON DEFLECTION SOL	RIGHT ALLERON DEFLECTION OUR	(<u>PV</u>)max, FROM F16.7	NOVED ANGLE DUE TO ROLLING DA= 40.x @	4-0x ATTACK	RIGHT OVER EACH GR= A+CR A+CR A+CR A+CR	Cha FOR Ga, AND Of FROM (A) ABOVE	Gar FOR Gar AND GR FROMA) ABONE	SUMMATION Cha	STICK PORCE	AILERON CONTROL FORCE IN LAS F = @x f x @
0	0	0	0	0	0	0	-002	7002	0	12.3	0
1/4 THROW	5°	-5°	.035	/4°	-/4°	1.40	-005	0	.005		//
1/2 THROW	100	-100	.068	2.7°	-2.7°	2.7°	-015	.006	7021		47
3/4 THROW	/5°	-/5°	.089	3.6	-36°	36°	-044	.021	-065	-	123
FULL THROW	200	-20°	118	4.7°	-4.7°	4.7°	-/18	.041	7/59		354

 $\Delta \alpha = 40.4 \frac{Pb}{2V}_{max} = l_1 + l_2 \times \frac{Pb}{2V}_{max} \times 57.3$ WHERE l_1 AND l_2 ARE DISTANCES FROM PLANE OF SYMMETRY TO INBOARD AND OUTBOARD ENDS OF THE AILERON. 2 d = 0.2 AT 0.8 Vmax = 266mph ; q = 18148/sqfT

(B) COMPUTATION TABLE

-200

CONFIDENTIAL

AILERON STICK FORCE CHARACTERISTICS IN STEADY ROLLS.

(C) AIRPLANE STEADY SIDESLIP CHARACTERISTICS.

	•							COI	VFIDENTIAL .
9	17 N 1-0KCE 1-0HT	i. I	34 K	B R	426	704	32.5 18 Karn		CUBDER PEDAL FORCE
9	-47 · b	26.6	"	"	"		1 11		
(b)	Chr FOR	.030	070	0/0.	- 050	- 055	LB /SQ.FT., WING LOADING	YON TABLE	Sipestip, A
<u></u>	-1/2 LOK C" = 0 EDNALS B FOR C" = 0	7.82-	-70.5.7	6.7°R	17.2°R	25.0'R	31.5 18 /50	COMPUTATION	S1.E
0	EGUALS ZERO		3 0	-6.7°	-17.2°	-250	6	(8) Cc	THE
0	HUDDER ANGLE	-25° R	-15° R	ů	7,2,7	25.7	1 = 111 mph.		STEEL BICHLES ON OF E
			8	O S C S C S C S C S C S C S C S C S C S	124			, , , , , , , , , , , , , , , , , , ,	
8									
								CONFIDE	NTIAL

FROURE 9.-VARIATION OF AUDDER ANGLE AND DEDAL LORCE WITH SIDESLID AT LOW SDEAD. FLADS AND GEAR UP, NORMAL RATED DOWER. SINGLE-ENGINE AIRDIANE.

(A) MODEL CHARACTERISTICS DETERMINED FROM WINDTWNNEL TESTS.

	NACA ARR No.	4D	29	,		·····
©	PEDAL PORCE	60	704	789	785	18/89.57
9	PEDAL FORCE	26.6	77	11	11	DING = 32.648
Ð	@ and @	.036	080-	- 6//-	-,/30	- , WING LOADING -
©	-1/2 12018 (P=0 EGUALS B 1=018 (P=0	2016	J.6.4°P1	18.4°R	30.9%	16.848 /SaFT
0	EGUALS ZERO	- 9.70	-16.40	-18.40	-20.9°	=81mph,9=1
0	RVODER ANGLE	0	7,5/	7,02	7,52	1/2 = 81

CONFIDEN	TIAL		,			
3280-	 760	87 73d	א או איז או	 		
00 1H	1918) <u>/</u>	137	2		
						0
	ORE	JEJ	7			8
	- V	Y		٠,		2,011
	<u> </u>	3	ANGLE			RIGHT 10°
			AN		•	10 M
						275
	:.					ANSI
% 1H:	R AN	100n	75 TE	} : .::		×
		. ,				

(C) AIRPRANE STEADY SIDESLID CHARACTERISTICS (B) COMPUTATION TABLE 2º ø 0 Ø 4 ů. 0 8 E 8 3 Ó (A) MOREL CHARACTERISTICS DETERMINED FROM WIND-TUNNEL TESTS 1: . .<u>.</u>. 52,

" 136 " 150 0 RW 13a, 8,=00

4 0

- 40

1880

;

FIGURE 10.-VARIATION OF AUDUSA AND DEDAL FORCE WITH SIDE-SLID IN WAVE-OFF.
FLAPS AND GEAR DOWN, TAKE-OFF DOWER.
SINGLE-FNGINE AIRDLANE.

FOR Ch=0

CONFIDENTIAL

r.

ò

ģ

ANGLE OF SIDESLIP, B

S.

NACA ARR NO		CON	FIDEN	TIAL											
17/2/ ₁₋₁ / 1/2 /	1	10 1	4.4° R	28°R	1.2° F	16 LB /50F)						d'4	Nug.	 20 37	3NY
SO 3 NA	DAY DAY	-, 325	/50	-,096	-040	W6 = 32.		S S		87 1 134 8	11 13001	Y_	3		912
N NAC FORCE O	PED PED	17 8	38R	121.8	1218	WING LOADING		8	3	``) 1#3)		
* CHE		26.6	"	"	~	16.8-18 150FT ,	E			FORKE	Y /		3	3	
B 307	10 W	+040	.222	172.	.272		١.					ANGLE /	١	ar BANK	व
0=4780= 6 97400 8 97400	3 >	9.0°P	2,61	7,50	7,62	81 mph, 9=	COMPUTATION							ANGLE	
MIS ZEBO	St.	-9.0	├		2.9°	= 3/	Com			00	2 14	א צופ	5		
DOER ANGLE	1 7	Ô	-15° R	-20°R	-25°P		(8)		<i>a</i>	7914				·	

/Esrs
WIND-TUNNEL
FROM
DETERMINED
CHARACTERISTICS
(A) MODEL

	9	0 412				°e_	FIGIZ, PARTA)						
			44	- · - ·		ů_	FROM FIGILS,	1,50	\$ °				
			9	1		\$ - \$	<u> </u>	14a, Sp=	, , , , , , , , , , , , , , , , , , ,				
				9	1		-y FOR Cha	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	 6 6				
					9/) — 					-	
9		<i>y</i> : 3		y .	(19/			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	t :	,	9	
						\$ —	9 8		\ = \				
				· · · · ·		<u>,</u>				40			

(C) AIRPLANE STEADY SIDESLIP CHARACTERISTICS FIGURE II.-RUDOER ANGLE AND DEDAL FORCE NECESSARY TO HOLD WINGS LEVEL IN WAVE-OFF. FLADS AND GEAR DOWN, TAKE-OFF DOWER. SINGLE-FNGINE AIRDLANE.

CONFIDENTIAL

	NACA ARE	N	o. 4 D2 9
Ø	Cho Ch DUE TO Ch TO BE FROM ROLLING OVERCOME FROM REF. EQUALS BY RUDDER FROM COMPAND BY RUDDER FROM COMPAND CO	6010-	ENT - AILERON
9	C, DUE TO ROLLING FQUALS Ø×Ø	-047 -0059	ING MOM. M RIGHT
3	Cip FROM PEFF	-047	XAN. XIMU
Ø	FROM FRUMES WAS A COURT S	./23	TABLE - YA DUE TO MAXIM
0	Sport REF.	E#'-	77 / 200
0	Grokful Grokful Gp pb/24 G_{p} Gp Chokful Grow Rolling OVERCOME $\frac{\pi}{5}$ SEE Fig. 7 Ref. $-0/3$ Ref. $60 \times 3 = 0+3$ Ref. $0 \times 3 = 0+3$	0050	COMPUTATION TABLE - YAWING MOMENT COEFFICIENT DUE TO MAXIMUM RIGHT AILERON
0	C, FOR FULL RIGHT AILERD SEE FIG. 7 $\alpha = 6$.053	(B) CO COE

-500 -/2

4

- -٥

RUN 140

V TABLE - YAWING MOMENT DUE TO MAXIMUM RIGHT AILERON DEFLECTION. COMPUTATION TABLE \mathscr{B}

4	 <u> </u>	,) S	0	55 -
					ġ
			አ		E
	7		ريد ا		CHARACTERISTICS OF PART (A) CROSS-
			ģ. -		Ø,
1	,	:	· χ		Ò
					776
8 0) ^ ^	. 6	\$	7	18/8
	.,		;		74C7
	8	: /			HAR
	—α }:				7
	\$ <u></u>				(C) MODEL
ر ا	<i>'</i> Y'				S

100

9

6-04

¥

Ü	
E	
OF PART (A)	°O II
 MODEL CHARACTERISTICS OF PART (A) C	PLOTTED AT W = 0.
MODEL	

90

©	N 7 8 EOSCE DEDUT	26.6 150 R	/50.FT
(HOKCE HOKCE HEDYT	26.6	32.6 18
©	C _n TO BE PRO- O' CORRESPOND- C _n CORRESPOND- 144 COUCED BY RUD- ING TO O. FROM ING TO O. FROM OC CROSS PLOT (C) CROSS PLOT (C) 144 COF (B) ABOVE. ABOVE.	.335	(=81 mph q=16.8 LB /sa.FT., WING LOADING=32.6 LB /sa.FT
0	Gr CORRES POND- Chr. CORRES POND- ING TO Q. FROM ING TO Q. FROI CROSS PLOT (C) CROSS PLOT (C) ABOVE.	-23.5° R	6.8 LB /SQ. FT.,
0	C, TO BE PRO- DUCED BY RUD- DER. FROM () OF (B) ABOVE.	60/0	1=6 4dm 18=1

FORCE ON AIRPLANE TO HOLD ZERO COMPUTATION TABLE - RUDDER ANGLE AND SIDESLIP WITH MAXIMUM RIGHT AILERON PEDAL Q

FIGURÈ 12. - RUDDER ANGLE AND DEDAL FORCE NECESSARY TO HOLD ZERO SIDESLID IN WAVE-OFF. FLADS AND GEAR DOWN, TAKE-OFF DOWER. SINGLE-ENGINE AIRDLANE.

(A) MODEL CHARACTERISTICS DETEMINED FROM WIND-

TUNNEL TESTS.

ô

يني

112

0

À

φ

6

Fig. 12

										2224	. 58	77 . 89	2000	Ţ		
Ó	א קשר המשר במגבפ	20 R	646	20R	716					LH	918 S		30002 137		8-	
9	ל כאר: במשר בסשכב	38,5				WING				740					187	
9	9+0 '7412147	+ 020	065	+020	160:-	,	. No			RUDDER PEDAL	-	\		0	ĝ	7, 7,
9	BONA O THORA		- 120:-	+ 5/0;	- 090	5/59 F)	TABLE		; •	oons			4		RIGHT	757
Đ	20× 7442	701 to34	20	3; 550:	7 260-	9=25.6 185/59 FT	1			Nep.	2		- W		0-) —
- 6	0=42 HOH	2.0%	7.ºk	- X,2'E!	13,4°R -				- Januar	EXTRAPOCA)			RUDDER		16.67	75
ر م	B =08 C3=0	<u> </u>	6 012	-/32° /3	-13.40 13	10ADING =	COM		3		912.	1:		\ \ \	<u>\$</u> _	
	10	0 200	00/	3° -23	250 -/3	10401 10401	(8)			<u>.</u> ∋7	9NY.	<i>≥300</i>	<u> </u>		:	
_	HUDDER ANGLE	L:			10	<u> </u>			L:	ļ <u>.</u>	,	L		1 .	<u>L</u>	1
		0						c		1		. :				
		4	17					4-	/ / / / /			- 0e	X	4		
	20 %	200	3) N		, <i>U</i>	2,				ì	, 0c		0		
								<i>\\\\</i>					Ĭ			
		\$ A-	9,	0 %	8.0	<u> </u> 		% —		4	/ _{>}			00		
		/_	//	0, 25:00	200,00	<u></u>		- -		/-/	/-	-/	_			
	1 A	\$0 - <u>5</u>	//	ري د	, ,]]	: 1.	9-4	::9			9			//	-
		//		120	200			H		1				//	-	7
		9		O RUN	- RUN		<i>1</i>		1	107	_			3	9	
	H A 1			0 4	□ ▶	- /	/					1		2	daino.	RUNS
		² / ₂ —				//						4		% —	A 8/ 5	me
		-4						9				H	1::-	2-	RUDDER IS KOUIDPED	FOR
		-60%				/		02-					 	600	FACH K	CJED
		0						0,					:		7.E. K	DEFLECTED FOR THE RUNS
	0 1 0 1	2		#2K-45	10 1	137	1	\$		6 1240	11 20	1913 1913		\$	Nore	

FIGURE TO. -VATIATION OF AUDDER ANGLE AND DEDAL LORGE WITH SIDESLID AT ABPROACH SPEED. FLAPS AND GEAR DOWN, TAKE-OFF DOWER. THIN-FNGINE, THIN-TAIL AIRDLANE.

@	T, COEFFICIENT BANK, CL = W CL = W CL = W	:5,1° RIGHT
8	AIRPLANE LIFT COEFFICIEN $C_L = \frac{W}{4S}$	1.70
Ø	ANGLE OF SOFFICIENT, WHICH C _n C _y , C _z , C _y , C _z	5/:-
Θ	ANGLE OF YAW AT WHICH CA EQUALS ZERO	-12.9°

(B) ANGLE OF BANK COMPUTATION TABLE

,						<u> </u>	,							
	. : .		 		 :_		-							
!: .:	:: :: :: ::	157	1 *	0.		·	:	٠,				0		
	i . ; i;	% . 12		Y		· · -						4 —		
		ى- پا ئ- با		<i>9</i>		y S		3		کن بر	,	3 _	0)
				7				}			9	0-		
		. ;;;		<i>\$</i>		ء				-	É			
				4 -	: -::-	/-		1	: 1 : 1 : 1 : 1		•	1		
	<u>ښ</u>			10 m	19		4.5					$\int_{\mathcal{S}}$		- ; ;
	134, Sp. FREE		202	9	5	: :: :::::::::::::::::::::::::::::::::			. '	;-	• • • •	204		
	18. C		TRIM						:		i	6 -	\.i.	,
	1			9							- I	Ø-	8	
	Rux		7	9_							3	0	þ	
- 17	-0-		þ	122 —		F 1 F 1						9 —	,	
								- :			-		e	

KIGUAE 14. - QUODERFARE TOIM CHAQACTERITICS WITH ASVAMETAIC DOWER AT LOM SOLEDS. FLIPS AND GEIR DOWN, TAKE-OFF DOWER ON RIGHT ENGINE. LEFT ENGINE DRODELLOR WINDMILLING. (A) MODEL CHARACTERISTICS DETERMINED FROM WIND-TUNNEL TESTS

0	87 NI 87 NI 87 NI	768	133R	515R	8% R	3 /SOFT	1 .	BY NI NOSER PEDAL
0	PEDAL FORCE	1/06			-	45 6	4 8	RIGHT 8
0	9+D	900:	£028	ģ	88)	- 9/11/0407	Faece	
(9)	ΔC_{h_p} of trim the set to trim with simplified frome E_{h_p}	800°+		·	-	a Sa	RUDDER PEDAL	
Ø	Chr FOR	-:014	020;	001.	081	3,148/sarr M ITEM 6 W TABLE		40
6	12 - 60 CD = 0 12 - 80 CD = 0	7.1%	1.3°R	7,22	7,94	STIMMTED FROM IN COMPUTATION TA		
0	0=42 K0=1 Sh	062-	-1.30	+2.2°	4.6°	(SOMPH), ESTIVATED (OMPU)	3	S S S S S S S S S S S S S S S S S S S
0	FUDDER ANGLE	00	°01-	-20°	-250	(B)		RICHT &
							· · · · ·	

KN ANGLE OF SIDESLIP, B

F 8 Ó 9 140 °22- « " -25° " -100 5=00 0-0 A RUN 146, 0 RUN 14a, 0 RUN 14c P RUN 194 9 9 ġ -200

FIGURE 15.-RUDDERANGLE AND DEDAL FORCE NECESSARY TO HOLD ZERO SIDESLID WITH ASYMMETRIC DOWER AT LOW SOFED. FLADS AND GEAR UP, TAKE-OFF DOWER ON RIGHT ENGINE, LEFT ENGINE DROPELLOR WINDMILLING. TWIN-ENGINE (C) AIRPLANE STEADY SIDESLIP CHARACTERISTICS (A) MODEL CHARACTERISTICS DEFERMINED FROM WIND-TUNNEL TESTS

NACA ARR'NO. 4D29

87 M

BOBOY TEASY

142

DEDUT LOKKE

(9) + (B)

74101 745

SYMMETRIC POWER'

TRIM WITH

WIZE DE YEW

@ and O

205

0 =47 803

0=47 80 d it

YS GNODEK HARTE

EDNALS BEOR C

Ġ

8

ە, ە 0

0

0

0

0

0

W

4

101

8

1003

11.3°R

0

LIGUAL IG. - RUDOLR ANGLE AND PLOAL FORCE NECESSARY TO HOLD 10° SIDESLID WITH ASYMMETRIC DOWER AT LOW SOLLD. FLADS AND GEAR DOWN, TAKE- OF E DOWER ONRIGHT ENGINE, LEFT ENGINE DROPELLOR WINDMILLING.