Lecture - 7A

Energy Resources, Economics and Environment

Energy Resources

Rangan Banerjee
Department of Energy Science and Engineering

IIT Bombay

Some questions

- What is peak oil?
- Do you believe in peak oil, peak coal? Peak natural gas?
- Are fossil fuels depletable?
- Will their consumption decline?
- How long will they last?

End of Oil age?

The Stone Age didn't end for lack of stone, and the oil age will end long before the world runs out of oil.

- Sheik Ahmed Zaki Yamani

Saudi Arabian Oil Minister

McKelvey Diagram

Source: GEA Chapter 7

McKelvey Diagram

https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/thumbnails/image/1450_F1.gif

Issues / Questions

- Energy Resources- Cornucopia or Empty Barrel? (Mc Cabe, 1998)
- Estimates of time period till shortage
- Classification Renewable/ Depletable (Exhaustible)

Estimates of time

- Static R/P ratio
- Exponential growth
- Logistic growth curve area under curve bounded – finite resource
- Adelmans model

Resource and Reserve

- Reserve Identified Accumulations that can be extracted profitably under present economic conditions
- Resource reserves plus all accumulations that may eventually may become available (yet undiscovered, or discovered but currently not technically or economically viable)

Coal Production in India

India

Coal Reserves

India - Fossil Fuel reserves

Fuel	Reserves	Prodn	R/P
		2003-4	ratio
Coal +Lignite	34000	414	~83 (P)
(Million Tonnes)			140 P+I
Oil	760	33	23 (7)
(Million Tonnes)		(117)	
N.Gas	920	32	29
Billion m3			
Uranium	61000	PHWR	~50
Tonnes			10G W

India - Fossil Fuel reserves

Fuel	Reserves	Prodn	R/P
		2013-14	ratio
Coal	132090	571	
+ _{Lignite(Millio} n Tonnes)			
Oil	763	38	
(Million Tonnes)			
N.Gas	1427	41/35	
Billion m3			
Uranium	61000	PHWR	~50
Tonnes			10GW

India Coal Reserves

	Geological Resources of Coal				
As on	Proved	Indicated	Inferred	Total	
1.4.2009	105820	123470	37920	267210	
1.4.2010	109798	130654	36358	276810	
1.4.2011	114002	137471	34390	285862	
1.4.2012	118145	142169	33183	293497	
1.4.2013	123182	142632	33101	298914	

	Geological Resources of Coal			
	Proved	Indicated	Inferred	Total
1.4.2014	125909	142506	33149	301564

Finite Resource constraint?

'The total mineral in the earth is an irrelevant nonbinding constraint. If expected finding-development costs exceed the expected net revenues, investment dries up and the industry disappears. Whatever is left in the

ground is unknown, probably unknowable, but surely unimportant: a geological fact of no economic interest 'Adelman, 1990

References

- GEA, 2012: Global Energy Assessment Toward a Sustainable Future, Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria. Chapter 7
- http://www.energypost.eu/wp-content/uploads/2015/01/yamani-quote.png
- https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/thumbnails/image/1450_F1.gif
- Maps of India: https://www.mapsofindia.com/
- Planning Commission, IEPC, 2006
- Global Survey of India: (https://www.gsi.gov.in)

Lecture -7B

Energy Resources, Economics and Environment

Energy Resources

Rangan Banerjee
Department of Energy Science and Engineering

IIT Bombay

Finite Resource constraint?

'The total mineral in the earth is an irrelevant nonbinding constraint. If expected finding-development costs exceed the expected net revenues, investment dries up and the industry disappears. Whatever is left in the

ground is unknown, probably unknowable, but surely unimportant: a geological fact of no economic interest 'Adelman, 1990

World production of Coal

World production of Oil

US production of crude Oil

Production trend for exhaustible resource

Ultimate World Coal Production

US production of coal

Ultimate World Oil Production

1250 Billion barrels

Ultimate US Oil Production

http://www.geologydata.info/images/mineral_fuel/petroleum_05.jpg

Global oil supply

Coal Price Trend UK

Price Variations (Germany)

Price Variations (Ngas- Germany)

https://www.destatis.de/DE/Publikationen/Thematisch/Preise/Energiepreise/EnergyPriceTrendsPDF_5619002.pdf?__blob=publicationFile

Henry Hub N Gas prices

\$/MMBTU

https://www.quandl.com/collections/markets/natural-gas

US Coal Prices

tonne

https://www.quandl.com/collections/markets/coal

Australian coal Price

\$/ metric tonne

https://www.quandl.com/collections/markets/coal

https://tradingeconomics.com/commodity/coal

Coal - Hubbert Analysis - India

- ▲ 267210 mt
- × 105820 mt
- × 61000 mt
- 30000 mt
- ----Actual production mt

Imported Coal Price

http://www.indexmundi.com/commodities/?commodity=coal-ustralian&months=120¤cy=inr

Hubbert

Source: MIT OCW

Comparison of an estimated Hubbert production curve for crude oil in the US with actual crude oil production data for the period 1900-1983

Source: Sustainable Energy (Tester et al, 2005)

Hubbert US estimate

McCabe 1998

Comparison of an estimated Hubbert production curve for natural gas in the US with actual natural gas production data for the period 1900
Source: Sustainable Energy (Tester et al, 2005)

RESOURCE BEHAVIOR UNDER "HUBBERT" ASSUMPTIONS

Timing:

Source: www.eia.doe.gov Wood and Long,2000

Source: www.eia.doe.gov Wood and Long,2000

http://en.wikipedia.org/wiki/Image:Crude_NGPL_IEAtotal_1960-2004.png

Peak Oil Projections

Proiected Date	Source of Projection	Background & Reference
2006-2007	Bakhitari, A.M.S.	Oil Executive (Iran)¹
2007-2009	Simmons, M.R.	Investment banker (U.S.) ²
After 2007	Skrebowski, C.	Petroleum journal editor (U.K.) ³
Before 2009	Deffeyes, K.S.	Oil company geologist (ret., U.S.)4
Before 2010	Goodstein, D.	Vice Provost, Cal Tech (U.S.) ⁵
Around 2010	Campbell, C.J.	Oil geologist (ret., Ireland) ⁶
After 2010	World Energy Council	World Non-Government Org. ⁷
2012	Pang Xiongqi	Petroleum Executive (China)8
2010-2020	Laherrere, J.	Oil geologist (ret., France) ⁹
2016	EIA nominal case	DOE analysis/ information (U.S.)¹º
After 2020	CERA	Energy consultants (U.S.) 11
2025 or later	Shell	Major oil company (U.K.) 12

Source: Hirsch (2005)

World Oil Production

Cumulative Production

Proven Reserves

Logistic Model

$$Q_{P} = \frac{Q_{\infty}}{1 + Ae^{-BQ_{\infty}t}}$$

$$\ln\left(\frac{Q_{\infty}}{Q_{P}} - 1\right) = \ln A - bt$$

$$b = BQ_{\infty}$$

$$\begin{split} \mathbf{P} &= \frac{d\mathbf{Q}_{\mathbf{P}}}{dt} = \mathbf{B}\mathbf{Q}_{\mathbf{P}}(\mathbf{Q}_{\infty} - \mathbf{Q}_{\mathbf{P}}) \\ &\frac{dP}{dt} = 0, \text{ point of inflection } \frac{d^{2}\mathbf{Q}_{\mathbf{P}}}{dt^{2}} = 0 \\ &\frac{d^{2}\mathbf{Q}_{\mathbf{P}}}{dt^{2}} = \mathbf{B}\frac{d\mathbf{Q}_{\mathbf{P}}}{dt}(\mathbf{Q}_{\infty} - \mathbf{Q}_{\mathbf{P}}) + \mathbf{B}\mathbf{Q}_{\mathbf{P}}\left(\frac{-d\mathbf{Q}_{\mathbf{P}}}{dt}\right) = 0 \\ &\mathbf{B} \neq 0, \frac{d\mathbf{Q}_{\mathbf{P}}}{dt} = \mathbf{P}_{\mathbf{m}} \neq 0 \\ &\mathbf{Q}_{\infty} - \mathbf{Q}_{\mathbf{P}} - \mathbf{Q}_{\mathbf{P}} = 0 \\ &\mathbf{Q}_{\mathbf{P}} = \frac{\mathbf{Q}_{\infty}}{2} \end{split}$$

$$\frac{Q_{\infty}}{2} = \frac{Q}{1 + Ae^{-BQ_{\infty}t_{m}}}$$

$$2 = 1 + Ae^{-BQ_{\infty}t_{m}}$$

$$1 = Ae^{-BQ_{\infty}t_{m}}$$

$$\frac{1}{A} = e^{-BQ_{\infty}t_{m}}$$

$$-\ln A = -BQ_{\infty}t_{m}$$

$$t_{m} = \frac{\ln A}{BQ_{\infty}} = \frac{\ln A}{b}$$

Method

- Get time series data P(t)
- Assume starting value Q_p(Ts)
- $Q_p(t) = Q_p(t-1) + P(t)$ from Ts till recent
- Obtain estimate of Q_{∞} from resource estimate
- Linear regression of ln (Q_{∞}/Q_{p} -1) against time get coefficients A, B
- Find year of peaking

Hubbert Model – form

$$P = \frac{2P_M}{1 + \cosh[b(t - t_M)]}$$

$$U = 4P_M/b$$

Multi-Hubbert model

$$P = \sum_{i=1}^{N} \frac{2P_{M_i}}{1 + \cosh[b_i(t - t_{M_i})]}$$

N being the number of cycles, P_{M_i} for i = 1, ..., N the peak production of each cycle, and t_{M_i} the corresponding peak year.

$$U_i = 4P_{M_i}/b_i$$

where b_i for i = 1, ..., N are the slope of each cycle.

Fitting Multi-Hubbert Model

G. Maggio, G. Cacciola/Fuel 98 (2012)

Peak oil?

Source: GEA Chapter 7

Brazil – Oil Production

Brazil- Multi Hubbert curves

Fossil fuel reserves

G. Maggio, G. Cacciola/Fuel 98 (2012)

Oil Drilling Technology

Reaching Deeper

Some of the innovations that have enabled oil output to increase almost continuously since the industry's dawn

1909 ▲ | Roller-cone drill bits are introduced, shortening time required to drill a well.

1929 | Directional drilling creates ability to point wells in a general direction.

1941 A horizontal well, which begins vertically and then turns to run horizontally underground, is drilled in Azerbaijan.

1946 | Researchers successfully "frack" a well in southwestern Kansas. Within a few years, hydraulic-fracturing technology will be commercially available.

1949 ▲ | Offshore drilling begins in the shallows of the Gulf of Mexico.

1959 | Halliburton invents hightemperature cement, allowing wells to reach deeper.

1970 ▲ | Seismic imaging technology is used by Shell and Mobil to find "bright spots" deep under the Gulf of Mexico that indicate oil deposits.

1982 | 3-D seismic imaging is introduced, vastly improving the industry's ability to locate oil deposits.

1984 ▲ | The first "steerable" drilling system is introduced, allowing for far more precision than older directional drilling.

1998 | BP drills a horizontal well that extends more than six miles in southern England. In 2011, Exxon will beat the record with a 7.7 mile "extended reach" well off Sakhalin Island, Russia.

Sources: Society of Petroleum Engineers; "The Boom" (1946 item); Photos from left: Getty Images, Corbis, Statoil, Schlumberger

http://www.wsj.com/articles/why-peak-oil-predictions-haven-t-come-true-1411937788

Oil Production

Scaling New Heights

World oil production, million barrels a day 20

1970 1990

Note: Figures include crude oil, shale oil, oil sands and natural-gas liquids.

Sources: 1950-64, compiled by Worldwatch Institute from U.S. Department of Defense and U.S. Department of Energy data; 1965-79, British Petroleum, Statistical Review of World Energy 2014; 1980-2013, Energy Information Administration

The Wall Street Journal

GEA – Reserve estimate

	Historical production through 2005	Production 2005	Reserves	Resources	Additional occurrence:	
	[EJ]	[EJ]	[EJ]	[EJ]	[EJ]	
Conventional oil	6069	147.9	4900-7610	4170-6150		
Unconventional oil	513	20.2	3750-5600	11,280-14,800	> 40,000	
Conventional gas	3087	89.8	5000-7100	7200-8900		
Unconventional gas	113	9.6	20,100-67,100	40,200-121,900	> 1,000,000	
Coal	6712	123.8	17,300-21,000	291,000-435,000		
Conventional uranium ^b	1218	24.7	2400	7400	v	
Unconventional uranium	34	n.a.		7100	> 2,600,000	

World Oil Resources

Oil Discoveries and Production

Table 7.6 | Conventional oil reserves and resources.a

Region Oil production 2009	production	ction production	Reserves BP	Reserves BGR	Reserves USGS	Resources BGR	Resources USGS	Reserves + Resources BGR	Reserves + Resources USGS
] [EJ]	[EJ]	[EJ]	[EJ]	[EJ]	[EJ]	[EJ]	[EJ]	
USA	15.00	1246	162	162	183	420	476	582	659
CAN	6.70	200	189	28	36	101	21	129	57
WEU	8. <mark>9</mark> 8	329	74	88	179	186	492	275	671
EEU	0.28	47	4	6	15	13	11	19	26
FSU	27.64	1017	704	735	953	1008	952	1743	1906
NAF	10.38	336	389	388	252	184	158	573	410
EAF	0.00	0	0	4	0	13	7	17	7
WCA	6.07	214	263	254	142	302	375	556	517
SAF	3.78	48	77	77	24	150	97	227	121
MEE	50.78	1823	4308	4286	2967	889	1654	5175	4621
CHN	7.90	220	85	84	142	97	95	181	237
OEA	1.02	11	26	26	0	32	1	58	1
IND	1.57	46	33	33	40	17	18	50	58
OSA	0.14	4	4	2	3	13	11	15	13
JPN	0.01	2	0	.0	0	0	0	1	0
OCN	1.20	41	25	24	94	44	108	69	202
PAS	4.90	203	68	65	22	88	63	153	86
LAC	20.30	862	1203	479	426	614	853	1093	1279
Circum-Arc	tic						768		768
Total	166.68	6647	7615	6742	5477	4172	6161	10914	11,638

Oil Reserve Supply Curves

Source: Watkins, 2006

Reserves and Production - Oil US

Mc Cabe, 1998

	Term	Definition	Physical properties
Oil type	Conventional oil	Oil that is mobile in situ and can be produced economically using conventional methods	μ < 100 mPas ^a Low S content
	Viscous oil	Inclusive term for the next three categories below	μ > 100 mPas
	Heavy oil	Oil that is only slightly mobile in situ, usually requiring stimulation techniques to improve mobility	μ 100–10,000 mPas S content <1%
	Extra-heavy oil	Oil of exceptionally high gravity ($\rho > 1.0$) that has some mobility because of high in situ temperatures (particularly used to refer to Orinoco, Venezuela oils)	μ <10,000 mPa·s, ρ >1.0 S content >1%
	Bitumen	Oil that is immobile in situ so that large viscosity reductions or mining methods are needed	μ >10,000 mPa·s ρ >1.0° S content >1%
Rock strata	Oil sands	Sand strata > 25% porosity, containing extra-heavy oil or bitumen, more viscous than heavy oil	k >0.5 Darcy, usually μ > 1000 mPas
	Heavy-oil NFCRs	Naturally fractured carbonate reservoirs (NFCRs) containing viscous oil	μ >100 mPa·s Porosity 10–20%
	Oil shale	Kerogenous shales and marls that produce more than 50 l/t of product during Fischer Assay tests	Porosity >15-20%

Source: GEA Chapter 7

Liquid fuel Supply curve

Fossil and Uranium reserves

	Historical production through 2005	Production 2005	Reserves	Resources	Additional occurrences	
	[EJ]	[EJ]	[EJ]	[EJ]	[EJ]	
Conventional oil	6069	147.9	4900-7610	4170-6150		
Unconventional oil	513	20.2	3750-5600	11,280-14,800	> 40,000	
Conventional gas	3087	89.8	5000-7100	7200-8900		
Unconventional gas	113	9.6	20,100-67,100	40,200-121,900	>1,000,000	
Coal	6712	123.8	17,300-21,000	291,000-435,000		
Conventional uranium ^b	1218	24.7	2400	7400		
Unconventional uranium	34	n.a.		7100	> 2,600,000	

Source: GEA Chapter 7

Natural Gas Reserves/ Production

Gas Supply curve

Supply Curves for Coal

Oil Supply Curve

References

- GEA, 2012: Global Energy Assessment Toward a Sustainable Future, Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria. Chapter 7
- Wood J, Long G (2000) EIA, Long Term World Oil Supply (A Resource Base/ Production Path Analysis). http://www.eia.doe.gov/pub/oil/gas/petroleum/presentations/2000/long term supply/index.htm.
- Sustainable Energy (Tester et al, 2005) http://en.wikipedia.org/wiki/Image:Crude_NGPL_IEAtotal_1960-2004.png
- Hirsch, Robert (2005) The inevitable peaking of world oil production, Volume 16, The Atlantic Council of the United States.
- http://www.geologydata.info/images/mineral_fuel/petroleum_05.jpg
- https://www.destatis.de/DE/Publikationen/Thematisch/Preise/Energiepreise/
- EnergyPriceTrendsPDF_5619002.pdf?__blob=publicationFile
- https://www.destatis.de/DE/Publikationen/Thematisch/Preise/Energiepreise/
- EnergyPriceTrendsPDF_5619002.pdf?__blob=publicationFile
- https://www.quandl.com/collections/markets/natural-gas
- https://www.quandl.com/collections/markets/coal
- https://www.quandl.com/collections/markets/coal
- https://tradingeconomics.com/commodity/coal
- http://www.indexmundi.com/commodities/?commodity=coal-ustralian&months=120¤cy=inr
- http://en.wikipedia.org/wiki/Image:Crude_NGPL_IEAtotal_1960-2004.png
- Saraiva et al, 2014, Fuel
- http://www.wsj.com/articles/why-peak-oil-predictions-haven-t-come-true-1411937788