Урок 6. Компактність в топологічних просторах

Задача 6.1. Доведіть, що тривіальний простір завжди ϵ компактним.

Розв'язок. Тривіальна топологія має вигляд $\tau = \{\emptyset, X\}$. Отже, єдиним відкритим покриттям множини-носія X є вона сама. Таким чином, в довільному відкритому покритті (що складається із одного елемента — самої множини X) існує скінченне підпокриття (що складається із одного елемента — самої множини X). ■

Задача 6.2. Доведіть, що дискретний простір ϵ компактним тоді і лише тоді, коли він складається із скінченної кількості точок.

Розв'язок. Необхідність. Дискретний простір має вигляд $(X,2^x)$. Припустимо, що простір компактний, а $S = \{G_i, i \in I\}$ — його *довільне* відкрите покриття. Оскільки простір компактний, існує скінченне підпокриття $P = \{G_k, k = 1, ..., n\} \subset S$. Одним із відкритих покриттів дискретного топологічного простору є база, яка складається із одноточкових множин. Якби простір складався б із нескінченної кількості точок, то в базі ми не змогли б виділити скінченну підсистему, яка сама була б покриттям. Отже, компактний дискретний простір повинен містити лише скінченну кількість точок.

Достатність. Якщо множина X містить скінченну кількість точок, то сукупність всіх підмножин множини X є скінченною. Інакше кажучи, яке б відкрите покриття ми не взяли, будь-яке підпокриття буде складатися із скінченної кількості множин. Отже, простір $(X, 2^X)$, що складається із скінченної кількості точок, є компактним.

Задача 6.3. Доведіть, що простір Зариського ϵ компактним.

Розв'язок. Носієм простору Зариського є незлічена множина X, а топологія складається із множин, доповнення яких є скінченними. Нехай $S = \left\{G_i, i \in I\right\}$ — довільне відкрите покриття множини X, що містить нескінченну кількість точок. Виберемо деяку множину $G_{i_0} \neq X$, тоді $F_{i_0} = X \setminus G_{i_0}$ містить скінченну кількість точок: $x_1, x_2, ..., x_n$. Інакше кажучи, множина G_{i_0} містить майже всі точки множини X, за винятком точок $x_1, x_2, ..., x_n$. Виберемо в покритті S множини G_i , що містять ці точки: $x_1 \in G_1, x_2 \in G_2, ..., x_n \in G_n$. Отже, сукупність $G_{i_0}, G_{i_1}, ..., G_{i_n}$ утворить покриття всього простору. Це означає, що простір Зариського є компактним. ■

Задача 6.4. Доведіть, що простір \mathbb{R}^n , $n \ge 1$ не є компактним.

Poзв'язок. Щоб довести, що простір \mathbb{R}^n , $n \geq 1$ не є компактним, достатньо указати деяке відкрите покриття, із якого неможливо виділити скінченне підпокриття. Прикладом такого покриття є система $P = \left\{ S\left(0,n\right) = \left\{x \in \mathbb{R}^n : \sqrt{\sum_{i=1}^n x^2} < n \right\}, n \in \mathbb{N} \right\},$ яка складається із відкритих куль с центром в початку координат і радіусами, що дорівнюють n. Будь-яка скінченна підсистема $P_m = \left\{S_i\left(0,i\right), i = 1,...,m\right\}$ сукупності P не може бути покриттям простору, адже об'єднанням цих множин була б куля

 $S_m(0,m)$. В цю кулю не потрапить жодна точка, відстань від якої до початку координат перевищує m. Отже, простори \mathbb{R}^n , $n \ge 1$ не є компактними.

Задача 6.5. Доведіть, що для того, щоб множина $M \subset X$ була компактною необхідно і достатньо, щоб довільне відкрите в X покриття множини M містило скінченне підпокриття.

Розв'язок. Необхідність. Нехай M — компактна підмножина простору X , а $S = \left\{G_i, i \in I\right\}$ — його довільне відкрите покриття. Розглянемо слід $\tilde{S} = \left\{\tilde{G}_i = G_i \cap M, i \in I\right\}$ покриття S на множині M . Цей слід також є відкритим в M покриттям множини M . Оскільки, за припущенням, підпростір $\left(M, \mathcal{T}_M\right)$ є компактним, то із відкритого покриття \tilde{S} можна вибрати скінченне підпокриття $\left\{\tilde{G}_{i_1}, \tilde{G}_{i_2}, ..., \tilde{G}_{i_n}\right\}$. Зважаючи на те, що множини $\tilde{G}_{i_1}, \tilde{G}_{i_2}, ..., \tilde{G}_{i_n}$ є частинами множини M , доходимо висновку, що множина $G_{i_1}, G_{i_2}, ..., G_{i_n}$ також утворюють відкрите в покриття X множини M .

Достатність. Нехай довільне відкрите покриття множини M містить скінченне підпокриття, а $\tilde{T} = \left\{ \tilde{V}_i, i \in I \right\}$ — довільне відкрите в M покриття простору $\left(M, \tau_M \right)$. Нехай V_i ϵ такою відкритою в X множиною, що $V_i \cap M = \tilde{V}_i$. З цього випливає, що система $T = \left\{ V_i, i \in I \right\}$ утворює покриття множини M відкритими в X множинами. За умовою, існує скінченне підпокриття $V_{i_1}, V_{i_2}, ..., V_{i_n}$ покриття T. Отже, система $\left\{ \tilde{V}_{i_1}, \tilde{V}_{i_2}, ..., \tilde{V}_{i_n} \right\}$ ϵ скінченним підпокриттям покриття T. Це означає, що простір $\left(M, \tau_M \right)$ ϵ компактним. \blacksquare

Задача 6.6. Доведіть, що замкнений відрізок числової прямої \mathbb{R} є компактним.

Pозв'язок. Розглянемо довільне покриття $S = \{G_i, i \in I\}$ відрізка [a,b], що складається із відкритих в $\mathbb R$ множин. Доведемо, що воно містить скінченне підпокриття. З цього випливатиме, що відрізок [a,b] є компактною множиною (див. задачу 6.5). Умовимось називати точку $x_0 \in [a,b]$ позначеною, якщо існує скінченна підсистема системи S, яка покриває замкнений відрізок $[a,x_0]$. Оскільки точка x=a є позначеною, то множина M усіх позначених точок є непорожньою.

Покажемо, що точка $\eta=\sup M$ також є позначеною. Нехай $\eta\in G_{i_0}$. В такому випадку, оскільки множина G_{i_0} є відкритою, існує точка $\xi\in M$, така що $a<\xi<\eta$ і відрізок $\left[\xi,\eta\right]$ цілком міститься в G_{i_0} . Оскільки ξ — позначена точка, то існує скінченна система $G_{i_1},G_{i_2},...,G_{i_n}$ системи S , що покриває відрізок $\left[a,\xi\right]$. Отже, система $G_{i_0},G_{i_1},G_{i_2},...,G_{i_n}$ покриває відрізок $\left[a,\eta\right]$, тобто $\eta\in M$. Покажемо тепер, що $\eta=b$. Припустимо, що $\eta< b$. Тоді, оскільки множина G_{i_0} є відкритою, існує таке число $\eta'\in (\eta,b)$ таке, що $\left[\eta,\eta'\right]\subset G_{i_0}$. Отже, підсистема $G_{i_0},G_{i_1},G_{i_2},...,G_{i_n}$ є покриттям відрізку $\left[a,\eta'\right]$, тобто $\eta'\in M$. Це суперечить тому, що $\eta=\sup M$. Отже,

точка b є позначеною, а значить, існує скінченна підсистема системи S, яка покриває замкнений відрізок [a,b].

Задача 6.7. Доведіть, що замкнена підмножина компактного простору ϵ компактною множиною.

Розв'язок. Нехай M — замкнена підмножина компактного простору X, а $\{F_{\alpha}, \alpha \in A\}$ — довільна центрована система замкнених в M множин. Оскільки M є замкненою в X множиною, то ця сукупність буде також центрованою системою замкнених в X множин. Оскільки X — компактний простір, то, за другим критерієм компактності, $\bigcap_{\alpha \in A} F_{\alpha} \neq \emptyset$. Отже, (M, τ_{M}) — компактний простір (з тієї ж причини). ■

Задача 6.8. Доведіть, що компактна підмножина хаусдорфова простору ϵ замкненою.

Poзв'язок. Нехай M — довільна компактна підмножина хаусдорфова простору X . Розглянемо довільну точку $x_0 \in X \setminus M$ (якщо M = X або $M = \emptyset$, то доведення є тривіальним). Оскільки X — хаусдорфів простір, то для кожної точки $x \in M$ існують окіл U_x точки x і окіл V_x точки x_0 , такі що $U_x \cap V_x = \emptyset$.

Очевидно, що система околів $\{U_x, x \in M\}$ утворює покриття компактної множини M відкритими в X множинами. Отже, (див. задачу 6.7) в цій системі існує скінченне підпокриття $\{U_{x_i}, i=1,2,...,n\}$. Перетин $V_0 = \bigcap_{i=1}^n V_{x_i}$ є околом точки x_0 і не перетинається с об'єднанням $\bigcup_{i=1}^n U_{x_i}$, а значить, він не перетинається із множиною M . Отже, у кожної точки x_0 існує окіл V_0 , що не містить точок множини M , тобто $M = \overline{M}$. \blacksquare

Задача 6.9. Доведіть, що будь-який компакт є нормальним простором.

Pозв'язок. Нехай топологічний простір X — компакт, тобто є хаусдорфовим і компактним. Доведемо, що довільні непорожні диз'юнктні множини замкнені в X множини M і N мають відкриті околи, що не перетинаються.

3 одного боку, оскільки M і N — замкнені підмножини компактного простору, то внаслідок задачі 6.7 вони є компактними. З іншого боку, оскільки X — хаусдорфів простір, то для довільної точки $x \in M$ і довільної точки $y \in N$ існують околи O_x і O_y , що не перетинаються. Зафіксуємо деяку точку $y \in N$. Введемо множини $V_y = \bigcap_{y \in N} O_y$ і $U_y = \bigcup_{x \in M} O_x$ окіл об'єднаємо всі відповідні околи всіх точок множини M. Множина U_y містить множину M (оскільки вона є об'єднанням околів всіх точок множини M), а множина V_y є околом точки $y \in N$ (оскільки вона є перетином всіх околів точки y). Отже, для довільної точки $y \in N$ існує відкрита множина U_y , що містить множину M, і відкритий окіл V_y , такі що $U_y \cap V_y = \emptyset$. Об'єднання околів V_y

всіх точок $y\in N$ утворює покриття множини N , тобто $\left\{V_y,\,y\in N\right\}$ — відкрите покриття множини N . Оскільки N — компактна множина, то в покритті $\left\{V_y,\,y\in N\right\}$ існує скінченне підпокриття $\left\{V_{y_i},\,i=1,...,n\right\}$ множини N . Покладемо

$$U = \bigcap_{i=1}^n V_{y_i}, V = \bigcup_{i=1}^n V_{y_i}.$$

Оскільки всі множини U_{y_i} і V_{y_i} попарно не перетинаються, множини U і V є відкритими диз'юнктними множинами, що містять множини M і N. Отже, простір X — нормальний простір.

Задача 6.10 (перший критерій зліченної компактності). Доведіть, що для того щоб простір (X, τ) був зліченно компактним необхідно і достатньо, щоб кожна його нескінченна підмножина має принаймні одну граничну точку.

Poзв'язок. Heoбxiднicmь. $Hexaй <math>(X,\tau)$ — зліченно компактний простір, а M — довільна нескінченна множина в X . Припустимо, усупереч твердженню, що M не має жодної граничної точки (має, не значить містить!). Це означає, що в множині M існує нескінченна послідовність різних точок $x_1, x_2, ..., x_n, ...$, що не має граничних точок. Побудуємо скінченну систему підмножин $\{F_n, n \in \mathbb{N}\}$, поклавши $F_n = \{x_n, x_{n+1}, ..., ...\}$. Із структури цих множин випливає, що будь-яка скінченна сукупність точок F_n має непорожній перетин, всі множини F_n є замкненими, але $\bigcap_{n \in \mathbb{N}} F_n = \emptyset$.

- 1). $\forall m \in \mathbb{N} \bigcap_{n=1}^{m} F_n = F_m \neq \emptyset$.
- 2). Якщо припустити, що $F_n = \{x_n, x_{n+1}, ..., ...\}$ є не замкненою, то повинна існувати її точка дотику x, яка не належить F_n . В такому випадку в довільному околі цієї точки буде міститись хоча одна точка із F_n і вона не буде співпадати з x. Отже, точка x гранична точка множини F_n , що суперечить припущенню про те, що послідовність $x_1, x_2, ..., x_n, ...$ не має граничних точок.
- 3). Якщо припустити, що $\bigcap_{n\in\mathbb{N}}F_n\neq\varnothing$, то має існувати точка x_m , яка належить всім множинам F_n . З іншого боку, за конструкцією множин F_n , точка x_m не може належати множинам F_n для n>m . Ця суперечність доводить, що $\bigcap_{n\in\mathbb{N}}F_n=\varnothing$.

Отже, ми побудували зліченну центровану систему замкнених множин, перетин яких порожній, що суперечить припущенню, що простір (X, τ) зліченно компактним.

Достатнью. Нехай в просторі (X,τ) кожна нескінченна множина M має граничну точку. Доведемо, що простір (X,τ) є зліченно компактним. Для цього достатнью перевірити, що будь-яка зліченна центрована система $\{F_n\}$ замкнених множин має непорожній перетин. Побудуємо множини $\hat{F}_m = \bigcap_{k=1}^m F_k$. Оскільки система $\{F_n\}$ є центрованою, то замкнені непорожні множини \hat{F}_m утворюють послідовність

 $\hat{F}_1, \hat{F}_2, ..., \hat{F}_m, ...$, що не зростає. Очевидно, що $\bigcap_{n \in \mathbb{N}} F_n = \bigcap_{m \in \mathbb{N}} \hat{F}_m$. Можливі два варіанти: серед множин \hat{F}_m є лише скінченна кількість попарно різних множин, або нескінченна кількість таких множин. Розглянемо ці варіанти окремо.

- 1). Якщо серед множин \hat{F}_m ϵ лише скінченна кількість попарно різних множин, то починаючи з деякого номера m_0 виконується умова $F_{m_0} = F_{m_0+1} = \dots$. Тоді твердження доведено, оскільки $\bigcap_{n=1}^\infty \hat{F}_m = \hat{F}_{m_0} \neq \emptyset$.
- 2). Якщо серед множин \hat{F}_m ϵ лише нескінченна кількість попарно різних множин, то можна вважати, що $\hat{F}_m \setminus \hat{F}_{m+1} \neq \emptyset$. Оберемо по одній точці з кожної множини $\hat{F}_m \setminus \hat{F}_{m+1}$. Отже, ми побудували нескінченну множину різних точок, яка, за умовою, має граничну точку x^* . Всі точки x_m, x_{m+1}, \ldots належать множинам \hat{F}_m . Отже, $x^* \in \hat{F}_m$ $\forall m \in \mathbb{N}$. З цього випливає, що $\bigcap_{m \in \mathbb{N}} \hat{F}_m \neq \emptyset$.

Задача 6.11 (другий критерій зліченної компактності). Доведіть що для того щоб досяжний простір (X, τ) був зліченно компактним необхідно і достатньо, щоб кожна нескінченна послідовність точок із X має принаймні одну граничну точку.

Розв'язок. Необхідність. Нехай (X, τ) — зліченно компактний простір, а $\{x_n\}_{n=1}^{\infty}$ — довільна послідовність точок із X. Розглянемо два варіанти.

- 1). Якщо послідовність $\{x_n\}_{n=1}^{\infty}$ містить нескінченну кількість різних точок, то множина $M=\{x_n,x_n\neq x_m\}$ є нескінченною. Із теореми 6.4 випливає, що існує точка x^* , яка є граничною. Оскільки простір (X,τ) є T_1 -простором, то в довільному околі точки x^* існує нескінченна кількість точок множини M. Це означає, що точка x^* є граничною і для послідовності $\{x_n\}_{n=1}^{\infty}$.
- 2). Якщо послідовність $\{x_n\}_{n=1}^{\infty}$ містить скінченну кількість різних точок, то існує стаціонарна послідовність $x_{n_k} = x^*$, k = 1, 2, Таким чином, точка x^* э граничною точкою послідовності $\{x_n\}_{n=1}^{\infty}$.

Отже, в обох випадках послідовність $\{x_n\}_{n=1}^{\infty}$ має граничну точку.

Достатність. Нехай кожна нескінченна послідовність точок має принаймні одну граничну точку. Припустимо, усупереч твердженню, що топологічний простір (X,τ) не є зліченно компактним. Із теореми 6.4 випливає, що в X існує нескінченна множина M, що не має граничних точок. Виділимо в M послідовність попарно різних точок. Ця послідовність також не має граничної точки (інакше її гранична точка була б граничною точкою множини M). Отримане протиріччя з припущенням доводить наше твердження.

Задача 6.12. Для топологічного простору (X, τ) із зліченною базою компактність еквівалентна зліченній компактності.

Розв'язок. Необхідність. Нехай (X,τ) — компактний простір. Тоді із довільного відкритого покриття можна виділити скінченне покриття. Значить, скінченне покриття можна виділити і із зліченного відкритого покриття.

Достатність. Нехай (X,τ) є зліченно компактним простором, а $S = \{U_{\alpha}, \alpha \in A\}$ — його довільне відкрите покриття. Оскільки простори із зліченою базою мають властивість Ліндельофа (теорема 6.1), то покриття S містить підпокриття S', яке, внаслідок, зліченної компактності простору (X,τ) містить скінченне підпокриття S''. Отже, простір (X,τ) є зліченно компактним.

Задача 6.13. Для досяжних просторів із зліченою базою компактність, зліченна і компактність і секвенційна компактність є еквівалентними.

Розв'язок. 1 \Leftrightarrow 2. Для топологічного простору (X, τ) із зліченною базою компактність еквівалентна зліченній компактності (задача 6.12).

 $2\Leftrightarrow 3$. В класі досяжних просторів із секвенційної компактності випливає зліченна компактність. Крім того, оскільки простір має зліченну базу, то із зліченної компактності випливає секвенційна компактність. Дійсно, якщо $x_1, x_2, ..., x_n, ...$ довільна нескінченна послідовність в X, то внаслідок зліченної компактності X вона має граничну точку x^* . Розглянувши зліченну локальну базу $\left\{U_k\left(x^*\right)\right\}_{k=1}^\infty$, таку що $U_{k+1}\left(x\right)\subset U_k\left(x\right)$ (таку локальну базу можна утворити із будь-якої локальної бази $V_k\left(x\right)$, взявши як $U_k\left(x\right)=\bigcap_{n=1}^k V_n\left(x\right)$), можна взяти точки $x_{n_k}\in U_k\setminus U_{k+1}$ і утворити підпослідовність $\left\{x_{n_k}\right\}_{k=1}^\infty$, яка збігається до x^* . Отже, простір X є секвенційно компактним.