Find K_c for the reaction:
$$2NH_3(g) + 3I_2(g) = 6HI(g) + N_2(g)$$
, given the information below.
$$H_2(g) + I_2(g) = 2HI(g) \qquad K = 54 \qquad \times 3$$

$$N_2(g) + 3H_2(g) = 2NH_3(g) \quad K = 1.04 \times 10^4 - \text{fig}$$

$$3H_2 + 3I_2 = 6HI$$
 $K = (54)^3$
 $2NH_3 = N_2 + 3H_2$ $K = (1.04 \times 10^{-4})^{-1}$
 $2NH_3 + 3I_2 = 6HI + N_2$ $K = (5H)^3(1/1.04 \times 10^{-4})$

2. Write an expression for the equilibrium constant of each of the following reactions:

a.
$$2C_2H_4(g) + 2H_2O(g) = 2C_2H_6(g) + O_2(g)$$
 (Write K_c and K_p)
$$K_c = \frac{[C_2H_6]^2[O_2]}{[C_2H_4]^2[H_2O]^2}$$

$$K_p = \frac{(P_{C_2H_6})^2 P_{O_2}}{(P_{C_2H_6})^2 P_{O_2}}$$

c.
$$NH_3(aq) + H2O(I) = NH_4^+(aq) + OH^-(aq)$$

d. HCOOH (aq) = H^+ (aq) + $HCOO^-$ (aq)

e. $2HgO(s) = 2Hg(1) + O_2(g)$

3. The following equilibrium constants were determined at 1123 K:

$$C(s) + CO_2(g) = 2CO(g) K_1=1.3 \times 10^{14}$$

 $CO(g) + Cl_2(g) = COCl_2(g) K_2 = 6.0 \times 10^{-3}$

Calculate the equilibrium constant for the following reaction at 1123 K:

$$C(s) + CO_2(g) + 2Cl_2(g) = 2COCl_2(g) K_3 = ???$$

$$K_1 = \frac{[CO]^2}{[CO2]} = 1.3 \times 10^{14}$$
 $K_2 = \frac{[COC12]}{[CO][CI2]} = 6.0 \times 10^{-3}$

$$K_3 = \frac{[COCl_2]^2}{[CO2][Cl_2]^2} = K_1(K_2)^2$$

The equilibrium constant, K_c , for the reaction $H_2(g) + F_2(g) = 2HF(g)$ has the value 2.1×10^3 at a particular temperature. When the system is analyzed at equilibrium at this temperature, the concentrations of $H_2(g)$ and $F_2(g)$ are both found to be 0.0021 M. What is the concentration of HF(g) in the equilibrium system under these conditions?

$$K_c = \frac{(HF)^2}{(H2)(F_2)} = 72.1 \times 10^3 = \frac{(HF)^2}{(.0021)(0.0021)}$$

[HF] . 0.096 M

At 25°C, $K_p = 5.3 \times 10^5$ for the reaction

 $N_2(g) + 3H_2(g) = 2NH_3(g)$

When a certain partial pressure of NH_3 (g) is put into an otherwise empty rigid vessel at 25°C, equilibrium is reached when 50.0% of the original ammonia has decomposed. What was the original partial pressure of ammonia before any decomposition occurred?

 $K_{p} = \frac{(P_{NH_{5}})^{2}}{(P_{N_{2}})(P_{H_{2}})^{3}}$

initial presence:

: reaction proceeds

 $N_2 + 3H_2 = 2NH_3$ C + y + 3y - 2y X - 2y = 0.5X X - 2y = 0.5X X - 2y = 0.5X X - 2y = 0.5X

* X = 2.1 × 10 -3 atm = PNH3 (initial)

For the following reaction:

 $CO(g) + Cl_2(g) \neq COCl_2(g)$

the equilibrium constant, K_C , has been determined to be $6.0 \cdot 10^{-3}$ at 1123 K. If a mixture of 3.0 M CO, 2.0 M Cl₂ and 0.25 M COCl₂ is put in a vessel, which way will the reaction proceed to reach equilibrium?

Q>K = reaction proceeds left

7.	A mixture of 0.500 mol H ₂ and 0.500 mol I ₂ was placed in a 1.00 L steel container at 430°C. The equilibrium constant. K for the reaction
• •	equilibrium constant, K, for the reaction

 $H_2(g) + I_2(g) = 2HI(g)$

is 5,43 x 10⁻⁵. Calculate the equilibrium concentrations of all components.

initial conc:

[Ha] = 0.5M

.: reaction proceeds right

Ha +
$$I_2 \longrightarrow 2HI$$

 $1 \text{ 0.5} \mid 0.5 \mid 0$
 $C - X \mid - X \mid + 2X$
 $E \cdot S - X \mid .S - X \mid 2X$

* take square root of both sides

 $H^{+}(aq) + HC_{2}O_{4}^{-}(aq) = H_{2}C_{2}O_{4}(aq)$

 $K_1 = 15.384$

 $3HC_2O_4^*(aq) \neq 3H^*(aq) + 3C_2O_4^2^*(aq)$

 $K_2 = 2.27 \times 10^{-13}$

Calculate the equilibrium constant for the following reaction at the same temperature: $K_3 = ???$ $H_2C_2O_4$ (aq) = 2H° (aq) + $C_2O_4^{2-}$ (aq)

flip equation 1: $H_2C_2O_4 = H^+ \cdot HC_2O_4^-$

divide equation 2: HC204° ⇌ H'·C2042-

9. For the following reaction:

 $PCl_5(g) \neq PCl_3(g) + Cl_2(g)$

The initial concentration of PCI₅ is 0.200 moles per liter and there are no products in the system when the reaction starts. If the equilibrium constant is 0.030, calculate all the concentrations at equilibrium.

$$K_{0} = \frac{[PU3](U2)}{[PU5]}$$
 $PU_{0} = PU_{3} + U_{2}$
 $PU_{5} = 0$
 $PU_{5} = 0$

: proceeds right
$$0.030 = \frac{x^2}{0.2-x}$$

$$0.006-0.03x=\chi^{2}$$

$$0 = \chi^{2} + 0.03x - 0.006$$

using quadratic formula...

COCI2 = CO + CI2

2.00g of COCI₂ and 5.00 g of CI₂ are placed in a 2.50 £ flask. Calculate all three equilibrium partial pressures when $K_{\rm p}=0.680$. $\alpha E=2.50$

Unitial Pressures:

$$CO(Q_2 = CO + Q_2$$

1 .1987 | O | .694

C -X +X +X

E .1987-X X .694+x

$$0 = \chi^2 + 1.378\chi - 0.1351$$

(W2)= 0.786M MP1PO.0 = [W) (CO(U2)= 0.107 M