

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Rahmad Mahendra

Revised by:

Maya Retno Ayu S Suryana Setiawan

Definisi Formal Nondeterministic FSM (DFSM)

Nondeterministc FSM M adalah kuintupel (K, Σ , Δ , s, A) dengan:

- *K* adalah himpunan berhingga status-status.
- Σ : alfabet input
- $s \in K$, adalah status mulai (*start state*)
- $A \subseteq K$, adalah himpunan status menerima (*accepting states*)
- Δ : relasi transisi yang merupakan subset dari

$$(K \times (\Sigma \cup \{\varepsilon\})) \times K$$

Setiap elemen Δ berisikan pasangan (status, simbol masukan atau ϵ), serta satu status baru.

Nondeterminisme dengan NDFSM

- Pada setiap konfigurasi
 - DFSM memiliki tepat satu pilihan transisi selama masih ada simbol masukan, tetapi
 - NDFSM bisa **0, 1, atau lebih kemungkinan pilihan transisi**.
 - Jika 0 pilihan, maka NDFSM halt walau input belum habis.
 - NDFSM memungkinkan pendefinisian transisi tanpa membaca symbol input ($transisi \epsilon$).
 - Jika terdapat **transisi ε** sebagai self-loop dapat menyebabkan mesin tidak pernah halt!
- Hasil NDFSM mengikuti prinsip nondeterminisme:
 - Dari suatu konfigurasi yang sama komputasi dapat bercabang ke lebih dari satu konfigurasi yang berbeda dengan input yang sama atau tidak ada sama sekali walau input belum habis.

- Mesin menerima aa atau aaa, kemudian diikuti sederetan symbol b dengan panjang 0 atau lebih.
- Input aaab akan menghasilkan dua pilihan konfigurasi berikutnya: $(q_0, \text{aaab}) \vdash^*_{M} (q_1, \text{aaab}) \vdash^*_{M} (q_2, \text{aab}) \vdash^*_{M} (q_3, \text{ab}) \text{ gagal}$ $(q_0, \text{aaab}) \vdash^*_{M} (q_1, \text{aab}) \vdash^*_{M} (q_2, \text{ab}) \vdash^*_{M} (q_3, \text{b}) \vdash^*_{M} (q_3, \epsilon) \text{ sukses}$
- Pilihan pertama dengan transisis ε berakhir tanpa berhasil mencapai accepting configuration (q_3, ε) sementara pilihan kedua berhasil.
- Karena ada satu yang sukses maka mesin menerima string aaab.

Membandingkan DFSM dan NDFSM

- $L = \{w \in \{a, b, c\}^* : \exists x, y \in \{a, b, c\}^* (w = xabcabby)\}$
- Dua FSM berbeda yang menerima L

• Rancangan kedua lebih intuitif (menggambarkan bahasa *L*) di banding yang pertama tapi yang pertama lebih implementable.

Substring Searching

- Ilustrasi sebelumnya adalah contoh substring searching yang dengan NDFSM jadi lebih mudah dirancang.
- Dengan cara yang sama bisa dirancang substring searching lain, misalnya untuk mencari string yang berisi substring abbaa **atau** baba (salah satu atau keduanya)

DFSM vs NDFSM

- Perancangan NDFSM lebih bersifat intuitif (lebih mudah) dibanding DFSM.
- DFSM memungkinkan implementasi mesin real sementara NDFSM hanya bersifat simulatif (karena semua kemungkinan pilihan harus dicoba secara simultan).
- Pertanyaan: apakah mungkin merancang seintuitif NDFSM tetapi dapat diimplementasikan seperti DFSM?
- Jawab: mungkin!
- Dalam bagian selanjutnya akan dibahas teorema ekivalensi dan algoritma konversi NDFSM menjadi DFSM.
 - Perancangan dapat dilakukan di versi NDFSM kemudian dikonversi menjadi DFSM.

Teorema Ekivalensi DFSM dan NDFSM

- Teorema ekivalensi:
 - Untuk setiap DFSM *M*, terdapat NDFSM *M*' yang menerima bahasa yang diterima oleh *M*.
 - Untuk setiap NDFSM *M*, terdapat DFSM *M*' yang menerima bahasa yang diterima oleh *M*.
- Manfaat teorema ekivalensi.
 - Manfaat teoritis: jaminan akan kesamaan lingkupan bahasa yang dapat dikenali kedua versi mesin FSM (tidak ada Bahasa yang hanya dapat dikenali oleh salah satu saja sementara yang lain tidak).
 - Manfaat praktis: rancangan suatu FSM bisa dibuat secara nondeterministik, kemudian dicarikan padanannya yang deterministic.

DFSM -> NDFSM

- Pembuktian ekivalensi dengan menunjukkan setiap DFSM adalah juga NDFSM karena untuk setiap fungsi $((q,c),p) \in \delta$ maka juga $(q,c,p) \in \Delta$.
- Misalkan M adalah sebuah DFSM yang menerima (accept) bahasa L.
- *M* juga merupakan sebuah NDFSM yang tidak mengandung transisi ε dan seluruh relasi transisi merupakan fungsi (Fungsi transisi DFSM adalah bentuk khusus dari relasi transisi NDFSM)

NDFSM → DFSM

- Pembuktian teorema adalah dengan menunjukkan adanya algoritma konversi NDFSM menjadi DFSM.
- Diberikan sebuah NDFSM $M = (K, \Sigma, \Delta, s, A)$ yang menerima (*accept*) bahasa L, terdapat DFSM yang ekuivalen yang juga menerima L.
- Kontruksi DFSM $M' = (K', \Sigma, \delta', s', A')$ di mana:
 - K' mengandung sebuah status untuk setiap elemen $\wp(K)$
 - \circ s' = eps(s)
 - $A' = \{Q \subseteq K : Q \cap A \neq \emptyset\}$
 - $\delta'(Q, c) = U \{eps(p) : \exists q \in Q((q, c, p) \in \Delta)\}$

Algoritma

Input: NDFSM $M = (K, \Sigma, \Delta, s, A)$

- 1. Untuk setiap state q pada K: tentukan eps(q)
- 2. s' = eps(s)
- 3. Tentukan δ ' (lihat halaman selanjutnya pada slide ini)
- 4. K' = state aktif
- 5. $A' = \{Q \subseteq K : Q \cap A \neq \emptyset\}$

Output: DFSM $M' = (K', \Sigma, \delta', s', A')$

Fungsi $eps(q_i)$

- Himpunan status yang reachable dari q_i akibat transisi ϵ .
 - ° Reachablility: Jika mesin mencapai q_i , tanpa membaca symbol input mesin tapi melalui satu atau beberapa transisi ε , mesin dapat berada di sejumlah kemungkinan status: $\{q_j, q_k, \ldots\}$ (termasuk juga yang tidak langsung dari q_i).
 - Jika konfigurasi saat ini adalah (q_i, w_i) , yield berikut berangkat dari setiap status di dalam kelompok tersebut.
- Secara formal didefinisikan sbb. $eps(q) = \{p \in K : (q, w) \vdash^*_{M}(p, w)\}$
- Secara algoritma:
 - fungsi eps(q):
 result = {q}
 Untuk setiap p∈ result, dan terdapat transisi (p, ε, r),
 result += {r}
 Return result

$$eps(q_0) = \{q_0, q_1, q_2\}$$

 $eps(q_1) = \{q_0, q_1, q_2\}$
 $eps(q_2) = \{q_0, q_1, q_2\}$
 $eps(q_3) = \{q_3\}$

Algoritma Penentuan δ'

- 3.1 var stateAktif = $\{s'\}$
- $3.2 \text{ var } \delta' = \emptyset$
- 3.3 while (masih ada $Q \in \text{stateAktif yang belum ditentukan fungsi } \delta'$ nya) do:
 - 3.3.1 for (setiap simbol $c \in \Sigma$) do:

```
var stateBaru = \emptyset
```

3.3.1.1 for (setiap *state* $q \in Q$) do:

for (setiap *state* $p \in K$, sehingga $((q, c), p) \in \Delta$) do:

StateBaru = state
$$B$$
aru $\cup eps(p)$

- 3.3.1.2 Tambahkan transisi ((Q, c), stateBaru) ke δ '
- 3.3.2 stateAktif = stateAktif \cup {stateBaru}

• Tentukan *DFSM* yang ekuivalen dengan *NDFSM* di atas

1. Untuk setiap state q pada K: Tentukan eps(q)

$$\circ eps(q_1) = \{q_1, q_2, q_7\}$$

$$\circ eps(q_2) = \{q_2, q_2\}$$

•
$$eps(q_3) = \{q_3\}$$

•
$$eps(q_4) = \{q_4\}$$

•
$$eps(q_5) = \{q_5\}$$

$$\circ eps(q_6) = \{q_2, q_6, q_7\}$$

$$\circ eps(q_7) = \{q_7\}$$

•
$$eps(q_8) = \{q_8\}$$

2. Tentukan start state

$$s' = eps(s) = eps(q_1) = \{q_1, q_2, q_7\}$$

```
Tentukan transisi \delta'
3.1 stateAktif = \{\{q_1, q_2, q_7\}\}
3.3 Menghasilkan \delta' dari Q = \{q_1, q_2, q_7\}
      ((\{q_1, q_2, q_7\}, a), \emptyset)
      ((\{q_1, q_2, q_7\}, b), \{q_1, q_2, q_3, q_5, q_7, q_8\})
      ((\{q_1, q_2, q_7\}, c), \emptyset)
stateAktif = {\{q_1, q_2, q_7\}, Ø, {q_1, q_2, q_3, q_5, q_7, q_8}}
Tinjau transisi dari state Ø
      ((\emptyset, a), \emptyset)
      ((\emptyset,b),\emptyset)
      ((\emptyset, c), \emptyset)
```

Tentukan δ' (lanjutan) State aktif = $\{\{q_1, q_2, q_7\}, \emptyset, \{q_1, q_2, q_3, q_5, q_7, q_8\}\}$ Tinjau transisi dari *state* $\{q_1, q_2, q_3, q_5, q_7, q_8\}$ $((\{q_1, q_2, q_3, q_5, q_7, q_8\}, a), \{q_2, q_4, q_6, q_7\})$ $((\{q_1, q_2, q_3, q_5, q_7, q_8\}, b), \{q_1, q_2, q_3, q_5, q_6, q_7, q_8\})$ $((\{q_1, q_2, q_3, q_5, q_7, q_8\}, c), \{q_4\})$ State aktif = $\{\{q_1, q_2, q_7\}, \emptyset, \{q_1, q_2, q_3, q_5, q_7, q_8\}, \{q_2, q_4, q_6, q_7\},$ $\{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, \{q_4\}\}$ Tinjau transisi dari state Ø $((\{q_2, q_4, q_6, q_7\}, a), \emptyset)$ $((\{q_2, q_4, q_6, q_7\}, b), \{q_3, q_5, q_8\})$ $((\{q_2, q_4, q_6, q_7\}, c), \{q_2, q_7\})$

3. Tentukan δ' (lanjutan) State aktif = $\{\{q_1, q_2, q_7\}, \emptyset, \{q_1, q_2, q_3, q_5, q_7, q_8\}, \{q_2, q_4, q_6, q_7\},$ $\{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, \{q_4\}, \{q_3, q_5, q_8\}, \{q_2, q_7\}\}$ Tinjau transisi dari state $\{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}$ $((\{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, a), \{q_2, q_4, q_6, q_7\})$ $((\{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, b), \{q_1, q_2, q_3, q_5, q_6, q_7, q_8\})$ $((\{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, c), \{q_2, q_4, q_7\})$ State aktif = $\{\{q_1, q_2, q_7\}, \emptyset, \{q_1, q_2, q_3, q_5, q_7, q_8\}, \{q_2, q_4, q_6, q_7\}, \{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, \{q_4\}, \{q_3, q_5, q_8\}, \{q_2, q_7\}, \{q_2, q_4, q_7\}\}$ Tinjau transisi dari *state* $\{q_4\}$ $((\{q_{\Delta}\},a),\emptyset)$ $((\lbrace q_{4}\rbrace,b),\emptyset)$ $((\{q_4\},c),\{q_2,q_7\})$

3. Tentukan δ' (lanjutan) State aktif = $\{\{q_1, q_2, q_7\}, \emptyset, \{q_1, q_2, q_3, q_5, q_7, q_8\}, \{q_2, q_4, q_6, q_7\},$ $\{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, \{q_4\}, \{q_3, q_5, q_8\}, \{q_2, q_7\}, \{q_2, q_4, q_7\}\}$ Tinjau transisi dari *state* $\{q_3, q_5, q_8\}$ $((\{q_3, q_5, q_8\}, a), \{q_2, q_4, q_6, q_7\})$ $((\{q_3, q_5, q_8\}, b), \{q_2, q_6, q_7\})$ $((\{q_3, q_5, q_8\}, c), \{q_4\})$ State aktif = $\{\{q_1, q_2, q_7\}, \emptyset, \{q_1, q_2, q_3, q_5, q_7, q_8\}, \{q_2, q_4, q_6, q_7\},$ $\{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, \{q_4\}, \{q_3, q_5, q_8\}, \{q_2, q_7\}, \{q_2, q_4, q_7\},$ $\{q_2, q_6, q_7\}\}$ Tinjau transisi dari *state* $\{q_2, q_7\}$ $((\{q_2, q_7\}, a), \emptyset)$ $((\{q_2, q_7\}, b), \{q_3, q_5, q_8\})$ $((\{q_2, q_7\}, c), \emptyset)$

```
State aktif = \{\{q_1, q_2, q_7\}, \emptyset, \{q_1, q_2, q_3, q_5, q_7, q_8\}, \{q_2, q_4, q_6, q_7\},
  \{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, \{q_4\}, \{q_3, q_5, q_8\}, \{q_2, q_7\}, \{q_2, q_4, q_7\}, \{q_3, q_5, q_8\}, \{q_4\}, \{q_5, q_8\}, \{q_6, q_7, q_8\}, \{q_6, q_7, q_8\}, \{q_8\}, \{
   \{q_2, q_6, q_7\}\}
Tinjau transisi dari state \{q_2, q_4, q_7\}
                             ((\{q_2, q_4, q_7\}, a), \{\emptyset\})
                              ((\{q_2, q_4, q_7\}, b), \{q_3, q_5, q_8\})
                              ((\{q_2, q_4, q_7\}, c), \{q_2, q_7\})
State aktif = \{\{q_1, q_2, q_7\}, \emptyset, \{q_1, q_2, q_3, q_5, q_7, q_8\}, \{q_2, q_4, q_6, q_7\},
\{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, \{q_4\}, \{q_3, q_5, q_8\}, \{q_2, q_7\}, \{q_2, q_4, q_7\},
\{q_2, q_6, q_7\}\}
Tinjau transisi dari state \{q_2, q_6, q_7\}
                             ((\{q_2, q_6, q_7\}, a), \emptyset)
                              ((\{q_2, q_6, q_7\}, b), \{q_3, q_5, q_8\})
                              ((\{q_2, q_6, q_7\}, c), \{q_2, q_7\})
```

- 4. $K' = \{ \{q_1, q_2, q_7\}, \emptyset, \{q_1, q_2, q_3, q_5, q_7, q_8\}, \{q_2, q_4, q_6, q_7\}, \{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, \{q_4\}, \{q_3, q_5, q_8\}, \{q_2, q_7\}, \{q_2, q_4, q_7\}, \{q_2, q_6, q_7\} \}$
- 5. $A' = \{\{q_1, q_2, q_3, q_5, q_7, q_8\}, \{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, \{q_3, q_5, q_8\}\}$

• Tentukan DFSM yang ekuivalen dengan NDFSM di bawah ini:

1. Untuk setiap state q pada K, tentukan eps(q)

q	eps(q)
1	{1,2}
2	{2}
3	{3}
4	{4,5}
5	{5}

2. Tentukan start state

$$s' = eps(s) = eps(1) = \{1, 2\}$$

3. Tentukan transisi δ '

State aktif =
$$s' = \{1,2\}$$

Tinjau transisi dari state $\{1,2\}$
(($\{1,2\}, a$), $\{1,2\}$)
(($\{1,2\}, b$), $\{1,2,3,5\}$)

State aktif = (
$$\{1,2\}$$
, $\{1,2,3,5\}$)
Tinjau transisi dari state $\{1,2,3,5\}$
(($\{1,2,3,5\}$, a), $\{1,2,4,5\}$)
(($\{1,2,3,5\}$, b), $\{1,2,3,5\}$)

State aktif =
$$(\{1,2\}, \{1,2,3,5\}, \{1,2,4,5\})$$

Tinjau transisi dari state $\{1,2,45\}$
 $((\{1,2,4,5\}, a), \{1,2,4,5\})$
 $((\{1,2,3,5\}, b), \{1,2,3,5\})$

- 4. Tentukan state aktif K' $K' = (\{1,2\}, \{1,2,3,5\}, \{1,2,4,5\})$
- 5. Tentukan accepting state A' A' = ({1,2,3,5}, {1,2,4,5})

Soal Latihan 1

Diberikan sebuah NDFSM $M = (K, \Sigma, \Delta, s, A)$ dan terdapat DFSM ekuivalen $M' = (K', \Sigma, \delta', s', A')$

- Jika *M* memiliki jumlah *state* sebanyak *k*
 - Berapa maksimum jumlah *state* pada M'?
 Jawab: 2^k (Mengapa?)
 - Berapa minimum jumlah *state* pada *M*'?
- Karakteristik *M* seperti apa sehingga *M*'ekuivalen tidak memiliki *dead state*?

Soal Latihan2

 Tunjukkan bahwa NDFSM dan DFSM pada pasangan gambar di atas ekuivalen

Soal Latihan 3

 Carilah DFSM yang ekuivalen dengan masing-masing NDFSM di bawah ini

(i)
$$\Sigma = \{a, b\}$$

(ii)
$$\Sigma = \{p, r\}$$

