$f_{1^-}^{\#2}\alpha$	0	0	0	0	0	0	0
$f_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	0	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$-k^2 r_1$	0	0	0
$f_{1}^{\#1}{}_{lphaeta}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	t 2 3	$-\frac{1}{3}\bar{l}kt_2$	0	0	0	0
$\omega_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{2t_2}{3}$	$\frac{\sqrt{2}t_2}{3}$	$-\frac{1}{3}i\sqrt{2}kt_2$	0	0	0	0
	$\omega_{1}^{\#1} +^{lphaeta}$	$\omega_{1}^{\#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1}^{#1} \dagger^{lpha}$	$f_1^{#2} + \alpha$

$\tau_{1}^{\#2}\alpha$	0	0	0	0	0	0	0
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1^{ ext{-}}\alpha}^{\#2}$	0	0	0	0	0	0	0
$\sigma_{1^{ ext{-}}lpha}^{\#1}$	0	0	0	$-\frac{1}{k^2 r_1}$	0	0	0
$\tau_{1}^{\#1}_{+}\alpha\beta$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
,	$\sigma_{1}^{\#1} + \alpha^{\beta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

 $\sigma_{1}^{\#2\alpha} == 0$

 $\tau_{2}^{\#1}{}^{\alpha\beta}==0$

 $\sigma_{2^{+}}^{\#1\,\alpha\beta}=0$

Total #:

 $\overline{\sigma_{1}^{\#1}{}^{\alpha\beta}} = \sigma_{1}^{\#2}{}^{\alpha\beta}$

 $\tau_{1+}^{\#1\,\alpha\beta} + i\,k\,\,\sigma_{1+}^{\#1\,\alpha\beta} == 0 \,\, 3$

5

5

27

U							. 0	0		~
$f_{0+}^{#2}\dagger$	0	0	0	()		$\omega_{2}^{\#1}$			<i>k</i> ²
$\omega_{0}^{#1}$ †	0	0	0	$k^2 r_2$	+ t2	$oxed{ig }$	$f_{2}^{\#1}$	0	0	0
	e constraints		_				$\omega_{2}^{\#1}{}_{\alpha\beta} f$		0	0
SO(3)	irreps	#	_					$-\alpha\beta$	$-\alpha\beta$	×
$\tau_{0}^{\#2} == 0$	0	1							$f_2^{#1} + c$	$_{1}$ $_{\uparrow}^{\alpha\beta\chi}$
$\tau_{0}^{\#1} == 0$	0	1						$\omega_2^{\#1}$	f.	$\omega_2^{\#1}$
$\tau_1^{\#2\alpha} =$	= 0	3								
$\tau_1^{\#_1\alpha} =$	= 0	3		$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{r_2+t_2}$		$\alpha eta \chi$
								42		α

$\sigma_{2+}^{\#1}$ $\sigma_{2+}^{\#1}$ $\sigma_{2}^{\#1}$ $\sigma_{2}^{\#1}$	0	0	$\frac{1}{k^2 r_1}$
$\tau_{2}^{\#1}_{\alpha\beta}$	0	0	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	0	0	0
	$\sigma_2^{\#1} + \alpha \beta$	$\tau_2^{\#1} + \alpha^{\beta}$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$

	Massive particle				
?	Pole residue:	$-\frac{1}{r_2}$ >			
$J^P = 0^-$	Polarisations:	1			
k^{μ}	Square mass:	$-\frac{t_2}{r_2}$ >			
?	Spin:	0			
	Parity:	Odd			

(No massless particles)