17IT3302

(or)

9. a. Discuss about Lagrange's theorem with an example. **8M**

b. Explain walks, path and circuits with an example graph.

* * *

VR17

7M

Reg. No:

VELAGAPUDI RAMAKRISHNA

SIDDHARTHA ENGINEERING COLLEGE

(AUTONOMOUS)

II/IV B.Tech. DEGREE EXAMINATION, NOVEMBER, 2019

Third Semester

INFORMATION TECHNOLOGY

 $\frac{17IT3302\ DISCRETE\ MATHEMATICS\ FOR\ INFORMATION}{TECHNOLOGY}$

Time: 3hours Max. Marks: 70

Part-A is compulsory

Answer One Question from each Unit of Part-B

Answer to any single question or its part shall be written at one place only

PART-A

 $10 \times 1 = 10M$

- 1. a. Define conditional statement.
 - b. Write about tautology.
 - c. Define onto function.
 - d. State about partial order relations.
 - e. Define sub group of a group.
 - f. What is linear recurrence relation?
 - g. Give the definition for a graph.
 - h. Define permutation group.
 - i. What is the power set of the set $\{0, 1, 2\}$?
 - j. Draw a directed graph.

17IT3302

PART-B

 $4 \times 15 = 60M$

UNIT-I

- a. What are the contrapositive, the converse and the inverse of the conditional statement 7M
 'The home team wins whenever it is raining'?
 - b. Show that following argument is valid. 8M
 If today is Tuesday, I have a test in Mathematics or Economics.
 If my Economics professor is sick, I will not have a test in Economics.

Today is Tuesday and my Economics professor is sick. Therefore I have test in Mathematics.

(or)

- 3. a. Prove that the sum of two rational numbers is rational. **8M**
 - b. How many ways are there to distribute hands of 5 cards to each of four players from the standard deck of 52 cards?
 7M

UNIT-II

- 4. a. Draw the Hasse diagram representing the partial ordering {(a, b)|a divides b} on {1, 2, 3, 4, 6, 8, 12}. 8M
 - b. Find the generating functions for (1+x)⁻ⁿ and (1-x)⁻ⁿ, where n is a positive integer, using the extended Binomial theorem.

 7M

(or)

VR17 17IT3302

5. a. Let $R = \{(1, 1), (2, 1), (3, 2), (4, 3)\}$. Find the powers R^n , n = 2, 3, 4,

b. Let R be the relation on the set of real numbers such that a R b if and only if a-b is an integer. Is R an equivalence relation? Justify.

8M

UNIT-III

- 6. a. Find the solution to the recurrence relation $a_n = 6a_{n-1} 11a_{n-2} + 6a_{n-3}$ with the initial conditions $a_0 = 2$, $a_1 = 5$ and $a_2 = 15$. 7M
 - b. Discuss about a group and its elementary properties. **8M**

(or)

- 7. a. What is group homomorphism and explain with an example? **8M**
 - b. Use generating functions to find the number of ways to select r objects of n different kinds if we must select at least one object of each kind.
 7M

UNIT-IV

- 8. a. State about normal subgroups and quotient groups. 7M
 - b. Consider the following two graphs. Are the graphs G and G' the same? Justify.8M

V2'

V3'