1 Метрические пространства. Примеры.

Опр

$$X$$
 - мн-во $(X \neq \varnothing)$ $\rho: X \times X \to \mathbb{R}$ (метрика)

Пара (X, ρ) назыв. метр. пр-вом, если:

1.
$$\rho(x,y) \geqslant 0$$
 и $\rho(x,y) = 0 \Leftrightarrow x = y$

2.
$$\rho(x, y) = \rho(y, x)$$

3. нер-во
$$\triangle$$
 $\rho(x,z) \leqslant \rho(x,y) + \rho(y,z)$

Примеры

- 1. $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$ со станд. ρ
- 2. Ha \mathbb{R}^2
 - (a) $\rho_1((x_1,y_1),(x_2,y_2))=|x_1-x_2|+|y_1-y_2|$ манхэттенская метрика
 - (b) $\rho_{\infty} = \max\{|x_1 x_2|, |y_1 y_2|\}$
 - (c) $\rho_p = (|x_1 x_2|^p + |y_1 y_2|^p)^{\frac{1}{p}}$
 - (d) ρ_2 евклидова метрика
- 3. X город без односторонних дорог, $\rho(A,B)$ min время, за которое можно добраться от A до B
- 4. Х мн-во

$$\rho(a,b) = \begin{cases} 0, & a=b \\ 1, & a \neq b \end{cases}$$
 - дискретная метрика

Упр

Доказать, что это метрики

2 Открытые и замкнутые множества. Свойства

Опр

Открытый шар с центром в x_0 и радиусом \mathcal{E} (окр. x_0):

$$B(x_0, \mathcal{E}) = \{ x \in X \mid \rho(x, x_0) < \mathcal{E} \}$$

Опр

 $U \subset X$, U - открыто, если:

$$\forall x \in U \quad \exists \mathcal{E} : B(x, \mathcal{E}) \subset U$$

Опр

 $Z \subset X$ Z— замкнуто, если:

 $X \setminus Z$ - открытое мн-во

Теорема (св-ва откр. мн-в)

1. $\{U_{\alpha}\}_{\alpha\in A}$ - семейство откр. мн-в

$$\Rightarrow \bigcup_{\alpha \in A} U_{\alpha} - \text{откр.}$$

2. $U_1,...,U_n$ - откр.(конеч. число)

$$\Rightarrow \bigcap_{i=1}^n U_i - \text{откр.}$$

3. \emptyset , X – откр.

Док-во

1.
$$\forall x \in \bigcup_{\alpha \in A} U_{\alpha} \Rightarrow \exists \alpha_0 : x \in U_{\alpha_0}$$

$$U_{\alpha_0}$$
 – otkp. $\Rightarrow \exists \mathcal{E} \colon B(x, \mathcal{E}) \subset U_{\alpha_0}$

$$B(x,\mathcal{E}) \subset \bigcup_{\alpha \in A} U_{\alpha} \Rightarrow \bigcup_{\alpha \in A} U_{\alpha} - \text{откр.}$$

2.
$$\forall x \in \bigcap_{i=1}^{n} U_i \Rightarrow \forall i \quad x \in U_i$$

$$\exists \mathcal{E}_i : B(x, \mathcal{E}_i) \subset U_i$$

$$\mathcal{E} = \min_{i=1,\dots,n} \{\mathcal{E}_i\} \quad B(x,\mathcal{E}) \subset B(x,\mathcal{E}_i) \subset U_i$$

$$B(x,\mathcal{E}) \subset \bigcap_{i=1}^{n} U_i \Rightarrow \bigcap_{i=1}^{n} U_i - \text{откр}$$

Пример

$$U_i = \left(-\frac{1}{i}, \frac{1}{i}\right)$$

 $\bigcap_{i=1}^{\infty} U_i = \{0\}$ - объясняет, почему должно быть конечное число в пересеч.

Лемма

$$B(x_0,r)$$
— открыто \forall метр. пр-ва $X \quad \forall x_0 \quad \forall r>0$

Док-во

$$x \in B(x_0, r) \Rightarrow \rho(x_0, x) = d < r$$

Возьмём $\mathcal{E} = \frac{r - d}{2}$
 $B(x, \mathcal{E}) \subset B(x_0, r)$?

*/ Здесь очень внимательно надо смотреть на предположение, x_1 лежит в предполагаемой области за пределами шарика $B(x_0,r)$ */

$$\exists x_1 \in B(x, \mathcal{E}) \setminus B(x_0, r)$$

$$\rho(x_1, x) < \mathcal{E} = r - d$$

$$\rho(x_0, x) = d$$

$$\rho(x_1, x_0) \geqslant r$$

$$rho(x_1, x_0) \geqslant \rho(x_1, x) + \rho(x, x_0)$$

$$\rho(x_1, x_0) \geqslant r \quad \text{if} \quad \rho(x_1, x) + \rho(x, x_0) < r$$

противореч. нер-ву \triangle

Теорема (св-ва замк. мн-в)

1.
$$\{F_i\}_{i \in A}$$
 — Замкн.
$$\Rightarrow \bigcap_{i \in A} F_i$$
 — Замк.

2.
$$F_1, ..., F_n$$
— замк.
$$\Rightarrow \bigcup_{i=1}^n F_i - \text{замк}.$$

 $3. \varnothing$ и X замк.

$$F_i = X \setminus U_i, \quad U_i$$
 - откр.
$$\bigcap F_i = \bigcap (X \setminus U_i) = X \setminus \bigcup U_i$$

3 Внутренность и вшеность множества.

Опр

X - метр. про-во, $A\subset X,\quad x_0\in X$ x_0 - назыв. внутреней относительно A (в X), если:

$$\exists \mathcal{E} > 0 : B(x_0, \mathcal{E}) \subset A$$

Опр

 x_0 - назыв. внешней, если x_0 - внутр. для $\overline{A} = X \setminus A$

$$\exists \mathcal{E} > 0 : B(x_0, \mathcal{E}) \cap A = \emptyset$$

Опр

Остальные точки - граничные x_0 - граничная, если:

$$\forall \mathcal{E} > 0 \ B(x_0, \mathcal{E}) \ \cap \ A \neq \emptyset$$
 и $B(x_0, \mathcal{E}) \not\subset A$

A - внутренность A - мн-во внутр. точек

A - внешность A - мн-во внешних точек

 $\partial A = A$ - граница A - мн-во гр. точек

Теорема

Следующие описания Int эквививалентны

- 1. A мн-во внутр. т.
- 2. Наибольшее (по включению) откр. мн-во, содерж. в А
- 3. тах (по включению) откр. мн-во, содерж. в А
- 4. $A = \bigcup U_i$, $U_i \text{откр.}$ $U_i \subset A$
- 5. $A = (X \setminus A) \setminus \partial A$

Док-во

- $(2)\Leftrightarrow (4)\Leftrightarrow (3)$ т.к объед. откр. откр.
- $(1) \Leftrightarrow (4)$:
- (\Rightarrow) :

 $x_0\in \mbox{ мн-во внутр. т. }\subset \bigcup U_i,\quad U_i\mbox{- откр. }\ U_i\subset A$

 $\exists \ \mathcal{E} > 0 : B(x_0, \mathcal{E})$ - откр. $\subset A$ (по определению A)

 (\Leftarrow) :

$$\exists \ i: x_0 \in U_i \subset A \quad x_0 \in \bigcup U_i$$
 $\exists \ \mathcal{E}: B(x_0, \mathcal{E}) \subset U_i \subset A \Rightarrow x_0$ - внутр. т. А

Теорема (равносильные определения внешности)

- 1. A мн-во внеш. т.
- $2. \ A = (X \setminus A)$
- 3. А тах (по вкл.) откр. мн-во, не пересек. с А
- 4. $A = \bigcup U_i$, $U_i \text{откр.}$ $U_i \cap A = \emptyset$

Относительно внутр.

$$A\subset X\Rightarrow (A,\rho)$$
 — метр. пр-во
$$B\subset A\quad {}_AB\neq_X B$$

Пример

$$X=\mathbb{R},\quad
ho-$$
станд.
$$A=[0,1]\quad B=[0,rac{1}{2})$$
 $_{X}B=(0,rac{1}{2})\quad _{A}B=[0,rac{1}{2})$

4 Замыкание множества.

Теорема

Следующие определения замыкания А эквивалентны:

1.
$$ClA = \{x \in X \mid \forall \mathcal{E} > 0 \mid B(x, \mathcal{E}) \cap A \neq \emptyset\}$$

2.
$$ClA = IntA \cup \partial A$$

3.
$$ClA = \cap F_i$$
, $F_i - \text{замк}$ $F_i \supset A$

4.
$$ClA = min($$
по вкл.) замк. $\supset A$

Док-во

$$(3) \Leftrightarrow (4)$$
 - пересеч. замкн. - замкн.

$$(1) \Leftrightarrow (2)$$
 - очевидно

$$(1) \Rightarrow (3)$$
:

$$\forall \mathcal{E} > 0 \quad x : B(x, \mathcal{E}) \cap A \neq \emptyset$$

$$\exists x \notin F$$
- замк. $F \supset A$ $x \in X \setminus F$ - откр.

$$\exists \; \mathcal{E} > 0 : \; B(x,\mathcal{E}) \; \subset \; X \setminus F \; \subset \; X \setminus A$$

$$\Rightarrow x$$
 - внеш. противореч.

$$(3) \Leftarrow (1)$$
:

$$x \in \cap F_i$$

$$\exists \mathcal{E} > 0 : B(x, \mathcal{E}) \cap A = \emptyset$$

$$B(x,\mathcal{E})$$
 - откр. (по л.) — замк - $F=X\setminus B(x,\mathcal{E})$ — $F\supset A$

$$x \not\in F$$
 - противореч.

Замечание

1. A - откр.
$$\Leftrightarrow A = IntA$$

2. A - замк.
$$\Leftrightarrow A = ClA$$

3.
$$IntA \subset A \subset ClA$$

 $\partial A = ClA \setminus IntA$

Пример

$$X = \mathbb{R}; \quad A = \varnothing$$

 $IntA = \varnothing \quad ExA = \varnothing \quad \partial A = \mathbb{R}$

Пример

Кантор. мн-во - замк.

5 Топологические пространства. Примеры.

Опр

$${
m X}$$
 - мн-во ${\Omega}\subset 2^X=\{A\subset X\}$ - мн-во подмн. ${
m X}$ (X,Ω) - назыв. тополог. пр-вом, если

1.

$$\forall \{U_i\}_{i\in I} \in \Omega \Rightarrow \bigcup_{i\in I} U_i \in \Omega$$

- 2. $U_1, U_2, ..., U_n \Rightarrow U_1 \cap U_2 \cap ... \cap U_n \in \Omega$
- 3. \varnothing ; $X \in \Omega$

 Ω - тополог. на X $U \in \Omega$ - назыв. открытым мн-вом

Опр

$$(X,\Omega)$$
 - топ. пр-во; $F\subset X$ F - назыв. замк., если $X\setminus F\in\Omega$

Теорема

1.

$$\bigcap_{i \in I} F_i$$
- замк, если F_i – замк

- 2. $F_1 \cup F_2$ замк $(F_1, F_2$ замк.)
- $3. \varnothing, X$ замк.

Примеры

- 1. (X, ρ) топ. пр-во
- 2. дискр. пр-во: $\Omega = 2^X$
- 3. антидискр. пр-во: $\Omega = \{\varnothing, X\}$

Опр

$$(X,\Omega)$$
 - метризуемо, если \exists метрика $\rho: X \times X \to \mathbb{R}_X$ $\Omega=$ мн-во откр. подмн. в ρ Антидискр. - не метризуемо, если $|\mathbf{X}|>1$

4. Стрелка

$$X=\mathbb{R}$$
 или $\mathbb{R}_+=\{x\geqslant 0\}$ $\Omega=\{(a,+\infty)\}\cup\{\varnothing\}\cup\{X\}$

5. Связное двоеточие

$$\begin{split} X &= \{a,b\} \\ \Omega &= \{\varnothing, X, \{a\}\} \end{split}$$

6. Топология конечных дополнений (Зариского)

$$\Omega = \{A \mid X \setminus A \text{ конечно}\}$$

6 База топологии. Критерий базы.

Опр

X - топ. пр-во; $A\subset X$ $IntA=\cup U, \quad U\in \Omega \quad U\subset A$ $ClA=\cap F, \quad F-$ замк. $F\supset A$ $\partial A=ClA\setminus IntA$

Опр

 $x_0 \in X$ окр. x_0 назыв. $\forall U \in \Omega : x_0 \in U$

Опр

 x_0 назыв. внутр. т. A, если $\exists U_{x_0} \subset A$ x_0 назыв. внеш. т. A, если $\exists U_{x_0} \cap A = \varnothing$ x_0 назыв. граничной, если $\forall U_{x_0} \quad (U_{x_0} \not\subset A)$ и $(U_{x_0} \cap A \neq \varnothing)$

Опр

 (X,Ω) - топ. пр-во $\mathcal{B}\subset\Omega$ \mathcal{B} назыв. базой топологии, если

$$\forall U \in \Omega \quad \exists \{V_i\} \in \mathcal{B}: \quad U = \bigcup_{i \in I} V_i$$

Пример

 $X=\mathbb{R}^n$ или другое метр. пр-во $\mathcal{B}=\{B(x_0,\mathcal{E})|x_0\in X,\mathcal{E}>0\}$ - база топологии $\forall U$ - откр. $\forall x_0\in U$ $\exists \mathcal{E}:B(x_0,\mathcal{E})\subset U$

$$\bigcup_{x_0 \in U} B(x_0, \mathcal{E}) = U$$

Теорема (Критерий базы)

X - мн-во $\mathcal B$ - нек. совокупность подмн-в X $\mathcal B$ - база $\Omega \Leftrightarrow$

1.

$$\bigcup_{U_i \in \mathcal{B}} U_i = X$$

2. $\forall U, V \in \mathcal{B} \quad \forall x \in U \cap V \quad \exists W \in \mathcal{B} : x \in W; W \subset U \cap V$

Док-во

 \rightarrow очев

$$\leftarrow \Omega = \{ \bigcup_{i \in I} U_i | U_i \in \mathcal{B} \}$$

1.

$$\bigcup_{j \in J} (\bigcup_{i \in I_j}) = \bigcup_{i,j} U_i$$

2.

$$(\bigcup_{j} U_{j}) \cap (\bigcup_{i} U_{i}) = \bigcup_{i,j} (U_{i} \cap U_{j}) = \bigcup_{i,j} (\bigcup_{x \in U_{i} \cap U_{j}} W_{x})$$

$$x \in W_x \subset U_i \cap U_j$$

$$\bigcup_{x \in U_i \cap U_j} W_x = U_i \cap U_j \quad W_x \in \mathcal{B}$$

3.

$$\varnothing = \bigcup_{i \in \varnothing} U_i \quad X = \bigcup_{U_i \in \mathcal{B}} U_i$$

Теорема (База окр. точки)

X - мн-во $\forall x \in X \quad \exists \mathcal{B}_x \subset 2^x$

1.
$$x \in U \quad \forall U \in \mathcal{B}_x$$

2.
$$U, V \in \mathcal{B}_r \to \exists W \in \mathcal{B}_r : W \subset U \cap V$$

3.
$$y \in U \quad (U \in \mathcal{B}_x) \to \exists V \in \mathcal{B}_y : V \subset U$$

0.

$$\mathcal{B}_x
eq \varnothing o \bigcup_{x \in X} \mathcal{B}_x$$
 — база нек. топологии

7 Топология произведения пространств.

Пример (- конструкция)

$$X,Y$$
 - топ. пр-ва $(X,\Omega_X); \quad (Y,\Omega_Y)$ Введем базу топ. на $X\times Y$ $\mathcal{B}=\{U\times V|\quad U\in\Omega_X;\quad V\in\Omega_Y\}$
$$\Omega_{X\times Y}=\{\bigcup_{i\in I}U_i\times V_i|\quad U_i\in\Omega_X;\quad V_i\in\Omega_Y\}$$

$$(\bigcup_{i\in I}U_i\times V_i)\cap(\bigcup_{j\in J}S_j\times T_j)=\bigcup_{i\in I}((U_i\cap S_j)\times (V_i\cap T_j)$$
 $(U_i\cap S_j)\in\Omega_X\quad (V_i\cap T_j)\in\Omega_Y$

8 Равносильные определения непрерывности.

Опр

```
(X, \rho); (Y, d) - метр. пр-ва f: X \to Y f - назыв. непр. в т. x_0, если \forall \mathcal{E} > 0 \quad \exists \ \delta > 0: Если \rho(x, x_0) < \delta \to d(f(x), f(x_0)) < \mathcal{E} f - непр, если она непр. в каждой точке
```

Теорема

f - непр в
$$x_0 \Leftrightarrow \forall U - \text{откр.} \subset Y : U \ni f(x_0)$$

 $\exists V - \text{откр.} \subset X \quad x_0 \in V \text{ и } f(V) \subset U$

Док-во

f - непр. в
$$x_0 \Leftrightarrow \forall \mathcal{E} > 0 \quad \exists \delta > 0$$

$$f(B(x_0, \delta)) \subset B(f(x_0), \mathcal{E})$$

$$\to \forall U - \text{откр.} \subset Y: \quad f(x_0) \in U \to \exists \mathcal{E} > 0:$$

$$f(x_0) \in B(f(x_0), \mathcal{E}) \subset U \to \exists \delta > 0$$

$$f(B(x_0, \delta)) \subset B(f(x_0), \mathcal{E}) \subset U \quad B(x_0, \delta) = V$$

$$\leftarrow \forall \text{ обрывается}$$

9 Прообраз топологии. Индуцированная топология.

Опр

 $f: X \to Y$ - отобр. мн-в (Y, Ω_Y) - топ. пр-во Ω_X - самая слабая топ. f - непр. $\forall U \in \Omega_Y \quad f^{-1}(U)$ должен быть открытым в X

Теорема

 $\{f^{-1}(U)\}$ - топология на X и она назыв. прообразом Ω_Y

Док-во

1.
$$f^{-1}(\bigcup_{i \in I} U_i) = \bigcup_{i \in I} f^{-1}(U_i)$$
 (*)

2.
$$f^{-1}(U_1 \cap U_2) = f^{-1}(U_1) \cap f^{-1}(U_2)$$

3.
$$f^{-1}(\varnothing) = \varnothing$$
 $f^{-1}(Y) = X$

$$(*): \quad f^{-1}(\bigcup_{i \in I} U_i) = \{x | f(x) \in \bigcup_{i \in I} U_i\} = \{x | \exists i \in I : f(x) \in U_i\}$$

Опр

$$(X,\Omega_X)$$
 - топ. пр-во $A\subset X$ $\Omega_A=\{U\cap A|\ U\in\Omega_X\}$ - индуцированная топология на A

10 Инициальная топология. Топология произведения как инициальная.

Опр

$$\forall i \in I \quad f_i: X \to Y_i$$
 (Y_i, Ω_i) - топ. пр-во

$$\{f_{i1}^{-1}(U_1)\cap f_{i2}^{-1}(U_2)\cap\ldots\cap f_{ik}^{-1}(U_k)|\ U_j\in\Omega_{ij}\}$$
 - база нек. топологии $j=1,\ldots,k\in\mathbb{N}$

 Ω_X - соотв. топология (инициальная топология)

Опр

$$\{f_i^{-1}(U)\}$$
 - предбаза топологии

Теорема

Топология произведения совпадает с инициальной

Опр

$$\prod_{i \in I} x_i = \{ f : I \to \bigcup_{i \in I} x_i \mid f(i) \in X_i \}$$

$$p_k: \prod_{i\in I} x_i \to X_k \quad k\in I$$

$$p_k(f) = f(k) o$$
 если x_i - топ. $o \prod_{i \in I} x_i$ – топ.

11 Финальная топология. Фактортопология. Приклеивание.

Опр

$$\forall i \in I \quad f_i: \ X_i \to Y$$
 - отобр. (X_i, Ω_i) Хотим завести на Y топологию: $\forall f_i$ - непр. Топ на Y самая сильная $U \subset Y \quad \forall i \in I \quad f_i^{-1}(U) \in \Omega_i$ $\Omega_Y = \{U \mid \forall i \ f_i^{-1}(U) \in \Omega_i\}$ $\varnothing, Y \in \Omega_Y$ $f_i^{-1}(U_1 \cap U_2) = f_i^{-1}(U_1) \cap f_i^{-1}(U_2)$ $f_i^{-1}(\bigcup_{k \in K} U_k) = \bigcup_{k \in K} f_i^{-1}(U_k)$

Пример

Приклеивание

X,Y - пр-ва

 $A\subset X$ f:A o Y - отобр.

Хотим получить $X \cup_f Y$ - приклеивание

 $X \cup_f Y = X \cup Y / \sim \forall a \ a \sim f(a)$

U - откр. в $X \cup_f Y$, если $U \cap X$ - откр. в X и

 $U\cap Y$ - откр. в Y (если f - инъект.)

12 Гомеоморфизм.

Опр

$$f:X o Y$$
 - гомеоморфизм, если

- 1. f непр.
- 2. f биекция
- 3. f^{-1} непр.

Предположение

 \simeq - отношение эквив.

Теорема

Если
$$(X,\Omega_X)\simeq (Y,\Omega_Y)$$
, то $f_*:\Omega_X\to\Omega_Y$ - биекция $f_*(U)=f(U)$

13	Связность	топологического	пространства	и множества.

14 Связность отрезка.

15 Связность замыкания. Связность объединения.

Теорема

 (X,Ω) - топ. пр-во $A\subseteq X$ - связно $A\subseteq B\subseteq ClA$ $\to B$ - связно

Теорема

Если А - связ., то ClA - связ.

Теорема

 (X,Ω) - топ. пр-во $A,B\subseteq X$ - связны $A\cap B\neq\varnothing$ $\to A\cup B$ - связно

16 Связность и непрерывные отображения.

Теорема

$$(X,\Omega_X),(Y,\Omega_Y)$$
 - топ. пр-ва $f:X o Y$ - непр. X - связно \to $\mathrm{f}(\mathrm{x})$ - связно

17 Связность произведения пространств

Теорема

$$X, Y$$
 - топ. пр-ва $X \times Y$ - связн. $\Leftrightarrow X, Y$ - связн.

Замечание

Любое конечное произведение связных топ. пр-в связно

Теорема

$$\prod_{i \in I} X_i$$
 - связно $\Leftrightarrow \forall i \in I \quad X_i$ - связно

18 Компоненты Связности.

Опр

Х - топ. пр-во

Компонентой связности т. $x_0 \in X$ назыв. наиб. по включению связное множество, ее содерж.

$$K_{x_0} = \bigcup \{ M \in 2^X \mid x_0 \in M \text{ - связ.} \}$$

Теорема

- 1. $\forall x, y \in X \quad K_x = K_y$ или $K_x \cap K_y = \emptyset$
- 2. компоненты связности замк.
- 3. Для любого связ. мн-ва ∃ компонента связности, в которой оно целиком содержится

$$\forall M \subseteq X \ (M - \text{связ.} \to \exists x \in X : M \subseteq K_x)$$

4.
$$\forall x,y,z\in X\ (x,y\in K_z\Leftrightarrow \exists M$$
 - связ. $:x,y\in M$ и $z\in M)$

Опр

X - топ. пр-во назыв. вполне несвязным, если $\forall x \in X : K_x = \{x\}$

19 Линейная связность

Опр

Линейно связное пр-во - топ. пр-во, в котором любые две точки можно соединить непр. кривой

$$(X,\Omega)$$
 - лин. св., если $\exists f:$ $f:[0,1] \to X$ (путь в X) | $f(0)=x$ (нач. пути); $f(1)=y$ (кон. пути), $\forall x,y \in X$

Теорема

X - топ. пр-во

X - лин.св. $\rightarrow X$ - св.

Теорема

A, B - лин. св.
$$A \cap B \neq \varnothing \rightarrow A \cup B$$
 - лин.св.

Теорема

X, Y - топ. пр-во; $f: X \to Y$ - непр.

X - лин. св. $\rightarrow f(x)$ - лин. св.

20 Компактность. Примеры.

Опр

 $({\rm X},\,\Omega)$ - топ. пр-во

 ${\rm X}$ - компакт, если из любого открытого покрытия ${\rm X}$ можно выбрать конечное подпокрытие

$$\forall \{U_i\}_{i\in I}, \quad U_i \in \Omega$$

$$(\bigcup_{i \in I} U_i = X \to \exists n \in \mathbb{N} \quad \exists \{i_1, ..., i_n\}_{ij \in I} : \bigcup_{k=1}^n U_{ik} = X)$$

Опр

$$(X,\Omega)$$
 - топ. пр-во

 $A \subseteq X$ - комп., если оно комп. в индуц. топ.

Теорема

- 1. конечное топ. пр-во всегда компактно
- 2. дискретное бесконечное множ. не комп.
- 3. антидискр. множ. комп.
- 4. [0, 1] компакт.

Теорема

X - комп.
$$A \subseteq X$$
 - замк. $\to A$ - комп.

Теорема

X - комп
$$f: X \to Y \to f(x)$$
 - комп.

Следствие

Комп. - топ. св-во

21 Простейшие свойства компактности.

22 Компактность произведения пространств.

Теорема

$$X, Y$$
 - комп $\Leftrightarrow X \times Y$ - комп.

Теорема

$$\{X_i\}_{i\in I}$$
 - комп. $\Leftrightarrow \prod_{i\in I} X_i$ - комп.

23 Компактность и хаусдорфовость

Опр

X назыв хаусдорф., если
$$\forall x_1 \neq x_2 \in X \quad \exists U_{x_1}, U_{x_2} : \quad U_{x_1} \cap U_{x_2} = \varnothing$$

Теорема (1)

X - хаусдорф. A - комп \in X \rightarrow A - замк.

Теорема

 $f:X \to Y$ непр., биекция

Х - комп.

Ү - хаусдорф.

 $\rightarrow f$ - гомеоморф.

Док-во (1)

$$X \setminus A$$
 - откр? $x_0 \in X \setminus A$ $\forall x_1 \in A \to \exists U_{x_0} \ni x_0; \ V_{x_1} \ni x_1$

$$\forall x_1 \in A \to \exists U_{x_0} \ni x_0; \ V_{x_1} \ni x_1$$
$$U_{x_0} \cap V_{x_1} = \varnothing$$

$$\bigcup_{x_1 \in A} V_{x_1} \subset A \to x_1, x_2, ..., x_k : \bigcup_{i=1}^k V_{x_i} \supset A$$

$$U_{x_0} = \bigcap_{i=1}^k U_{x_i}$$
 - искомая окр. $U_{x_0} \cap A = \varnothing$

(Иначе $U_{x_0} \cap V_{x_i} \neq \emptyset$, $U_{x_i} \cap V_{x_i} \neq \emptyset$)

24 Лемма Лебега. Компактность отрезка.

Теорема (Лемма Лебега)

$$X = [0,1] \subset \bigcup_{i \in I} U_i \qquad \{U_i\}_{i \in I}$$
 - откр. покр. X

$$\rightarrow \exists \mathcal{E} > 0 : \forall x_0 \; \exists i \in I : B(x_0, \mathcal{E}) \subseteq U_i$$
 (\mathcal{E} зависит от покр. \mathcal{E} - число Лебега)

Следствие

Отрезок - комп.

25 Критерий компактности подмножеств евклидова пространства.

Теорема

$$A\subset \mathbb{R}^n$$
 A - комп. $\Leftrightarrow A$ - замк и огр.

Опр

A - огр., если
$$\exists N:A\subset B(0,N)$$

Док-во

ightarrow A - замк. т.к. \mathbb{R}^n - хаусдорф.

A - orp. $\{B(0,n)\}_{n\in\mathbb{N}}$

 $\leftarrow A \subset [-N,N] \times [-N,N] \times ... \times [-N,N] = K$ т.к. огр.

К - комп.

A - замк. в K o A - комп.

26 Теорема Вейерштрасса. Примеры.

Теорема (Вейерштрасса)

$$K$$
 - компакт.
$$f: K \to \mathbb{R} \text{ - непр.} \to \exists x_0 \in K: \\ \forall x \in K \quad f(x) \leqslant f(x_0) \quad (x_0 - max)$$

Док-во

$$f(K)$$
 - комп. $\subset \mathbb{R} \to f(K)$ - замк. и огр \to $\sup f(K) \in f(K)$ (замк.) $\sup f(K) \neq \infty$ (огр.) $\sup f(K) = f(x_0)$

27 Вторая аксиома счётности и сепарабельность.

Опр

X - обл. II А.С., если в X \exists счетная база

Опр

X - назыв сепараб., если
$$\exists \ A \subset X$$
 $|A| \leqslant \aleph_0$ и $ClA = X$

Опр

A - всюду плотно, если ClA=X

Теорема

X - II А.С. \rightarrow X - сепараб.

28 Теорема Линделёфа.

Теорема

X - II A.C. \to из \forall откр. покр. X можно извлечь не более чем счетное подпокрытие

29 Первая аксиома счётности.

Опр

База окр-тей точки $\forall x \quad \exists \{U_{x_i}\}_{i \in I_x}$

- 1. $U_{x_i} \in \Omega$; $x \in U_{x_i}$
- 2. $\forall U \in \Omega : x \in U \quad \exists U_{x_i} : x \in U_{x_i} \subset U$

Опр

Если \exists база окр-тей:

 $\forall x \; \{U_{x_i}\}_{i \in I_x}$ не более чем счетное $\to \mathbf{X}$ удовл. І А.С.

Из компактности следует секвенциальная компактность (с первой AC).

31 Из секвенциальной компактности следует компкатность (со второй AC).

32 Полнота и вполне ограниченность метрических пространств.

Опр

Фунд. послед.

$$\{X_n\}$$
 - фунд., если $orall \mathcal{E}>0$ $\exists N: orall n, m>N:
ho(X_n,X_m)<\mathcal{E}$

Опр

Х назыв. полным, если ∀ фунд. послед. сходится

Опр

$$\{X_i\}_{i\in I}$$
 - \mathcal{E} -сеть, если $\forall x \quad \exists x_i: \rho(x,x_i)<\mathcal{E}$

Опр

X назыв. вполне огранич., если $\forall \mathcal{E} > 0 \quad \exists$ конечная \mathcal{E} -сеть

33 Из полноты и вполне ограниченности следует компактность

Теорема (равносильные)

- 1. Х компактно
- 2. Х секцвенц. комп.
- 3. Х полн. и вполне огр.

34 Аксиомы отделимости.

Теорема (Колмогорова)

$$\forall x,y \in X: x \neq y \ \to \ \exists U \in \Omega$$

Теорема (Тихонова)

$$\forall x, y \in X : x \neq y \rightarrow \exists U \in \Omega$$

Теорема (Хаусдорфа)

$$\forall x, y \in X \quad \exists U_x, U_y : U_x \cap U_y = \varnothing$$

Теорема (3)

$$\forall x \in X$$
 и замкнуто $F \subseteq X, \ x \notin F$ $\exists U_x \text{ и } U_F: \ U_x \cap U_F = \varnothing$

Теорема (4)

$$F_1,F_2$$
 - замк. : $F_1\cap F_2=\varnothing$ $\exists U_{F_1}$ и $U_{F_2}:\ U_{F_1}\cap U_{F_2}=\varnothing$ $T_2\to T_1\to T_0$

35 Нормальность матрического пространства.

Опр

$$(X,\Omega)$$
 - хаусдорф. X - нормально \Leftrightarrow $\forall F$ - замк., $\forall G\in\Omega$ $F\subseteq G o \exists G'\in\Omega$: $F\subseteq G'\subseteq ClG'\subseteq G$