Package 'BSPBSS'

November 25, 2022

Version 1.0.5
Description Gibbs sampling for Bayesian spatial blind source separation (BSP-BSS). BSP-BSS is de
signed for spatially dependent signals in high dimensional and large-scale data, such as neu-
roimaging. The method assumes the expectation of the observed images as a linear mix-
ture of multiple sparse and piece-wise smooth latent source signals, and con-
structs a Bayesian nonparametric prior by thresholding Gaussian processes. De-
tails can be found in our paper: Wu et al. (2022+) "Bayesian Spatial Blind Source Separa-
tion via the Thresholded Gaussian Process" <doi:10.1080 01621459.2022.2123336="">.</doi:10.1080>
Donards D (>= 3.4.0) mayME

Depends R (\geq 3.4.0), movMF
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.2.1
LinkingTo Rcpp, RcppArmadillo
Imports rstiefel, Rcpp, ica, glmnet, gplots, BayesGPfit, svd, neurobase, oro.nifti, gridExtra, ggplot2, gtools
SystemRequirements GNU make
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation yes
Author Ben Wu [aut, cre], Ying Guo [aut], Jian Kang [aut]
Maintainer Ben Wu <wuben@ruc.edu.cn></wuben@ruc.edu.cn>
Repository CRAN
Date/Publication 2022-11-25 07:20:06 UTC
R topics documented:

Title Bayesian Spatial Blind Source Separation

2 init_bspbss

	levelplot2D mcmc_bspbss output_nii pre_nii sim_2Dimage sum_mcmc_bspbss	4 5 6 7
Index		9

init_bspbss

Initial values

Description

Generate initial values, set up priors and perform kernel decomposition for the MCMC algorithm.

Usage

```
init_bspbss(
   X,
   coords,
   rescale = TRUE,
   center = FALSE,
   q = 2,
   dens = 0.5,
   ker_par = c(0.05, 20),
   num_eigen = 500,
   noise = 0
)
```

Arguments

Χ	Data matrix with n rows (sample) and p columns (voxel).
coords	Cordinate matrix with p rows (voxel) and d columns (dimension).
rescale	If TRUE, rows of X are rescaled to have unit variance.
center	If TRUE, rows of X are mean-centered.
q	Number of latent sources.
dens	The initial density level (between 0 and 1) of the latent sources.
ker_par	2-dimensional vector (a,b) with a>0, b>0, specifing the parameters in the modified exponetial squared kernel.
num_eigen	Number of eigen functions.
noise	Gaussian noise added to the initial latent sources, with mean 0 and standard deviation being noise $*$ sd(S0), where sd(S0) is the standard deviation of the initial latent sources.

levelplot2D 3

Value

List containing initial values, priors and eigen functions/eigen values of the kernel of the Gaussian process.

Examples

```
sim = sim_2Dimage(length = 30, sigma = 5e-4, n = 30, smooth = 6)
ini = init_bspbss(sim$X, sim$coords, q = 3, ker_par = c(0.1,50), num_eigen = 50)
```

levelplot2D

levelplot for 2D images.

Description

The function plots 2D images for a data matrix.

Usage

```
levelplot2D(
    S,
    coords,
    lim = c(min(S), max(S)),
    xlim = c(0, max(coords[, 1])),
    ylim = c(0, max(coords[, 2])),
    color = bluered(100),
    layout = c(1, nrow(S)),
    file = NULL
)
```

Arguments

S	Data matrix with q rows (sample) and p colums (pixel).
coords	Coordinates matrix with p rows (pixel) and 2 columns (dimension), specifying the coordinates of the data points.
lim	2-dimensional numeric vector, specifying the limits for the data.
xlim	2-dimensional numeric vector, specifying the lower and upper limits of x.
ylim	2-dimensional numeric vector, specifying the lower and upper limits of y.
color	Colorbar.
layout	2-dimensional numeric vector, specifying the number of rows and number of columns for the layout of components.
file	Name of the file to be saved.

4 mcmc_bspbss

Value

No return value.

Examples

```
sim = sim_2Dimage(length = 30, sigma = 5e-4, n = 30, smooth = 6)
levelplot2D(sim$S,lim = c(-0.04,0.04), sim$coords)
```

mcmc_bspbss

MCMC algorithm for Bayesian spatial blind source separation with the thresholded Gaussian Process prior.

Description

Performan MCMC algorithm to draw samples from a Bayesian spatial blind source separation model.

Usage

```
mcmc_bspbss(
 Χ,
  init,
  prior,
  kernel,
  n.iter,
  n.burn_in,
  thin = 1,
  show_step,
  ep = 0.01,
  lr = 0.01,
  decay = 0.01,
  num_leapfrog = 5,
  subsample_n = 0.5,
  subsample_p = 0.5
)
```

Arguments

Data matrix with n rows (sample) and p columns (voxel).

List of initial values, see init_bspbss.

prior List of priors, see init_bspbss.

kernel List including eigenvalues and eigenfunctions of the kernel, see init_bspbss.

n.iter Total iterations in MCMC.

n.burn_in Number of burn-in.

output_nii 5

thin	Thining interval.
show_step	Frequency for printing the current number of iterations.
ер	Approximation parameter.
lr	Per-batch learning rate in SGHMC.
decay	Decay parameter in SGHMC.
num_leapfrog	Number of leapfrog steps in SGHMC.
subsample_n	Mini-batch size of samples.
subsample_p	Mini-batch size of voxels.

Value

List containing MCMC samples of: A, b, sigma, and zeta.

Examples

output_nii

Write a NIfTI file.

Description

This function saves a data matrix into a NIfTI file.

Usage

```
output_nii(X, nii, xgrid, file = NULL, std = TRUE, thres = 0)
```

pre_nii

Arguments

Χ	Data matrix with n rows (sample) and p colums (pixel).
nii	a reference NIfTI-class object, representing a image with p voxels.
xgrid	Cordinate matrix with p rows (voxel) and d columns (dimension).
file	The name of the file to be saved.
std	If TRUE, standarize each row of X.
thres	Quantile to threshold each row of X.

Value

NIfTI-class object.

pre_nii	Transforms NIfTI to matrix	

Description

This function transforms a NIfTI-class object into a matrix.

Usage

```
pre_nii(nii, mask)
```

Arguments

m::	4D MIFTI along	abiaat with	dimonoione v v	and t Con	be read from NIfTI file
nii	4D MILL-CIASS	object with	difficustions x.v	.z and t. Can	be read from Nil I I life

with readNIfTI function from the package oro.nifti.

mask Mask variable, also in NIfTI format.

Value

List containing the data matrix with t rows and x^*y^*z colums (voxels), and the coordinates of the voxels.

sim_2Dimage 7

sim_2Dimage

Simulate image data using ICA

Description

The function simulates image data using a probabilistic ICA model whose latent components have specific spatial patterns.

Usage

```
sim_2Dimage(length = 20, n = 50, sigma = 0.002, smooth = 6)
```

Arguments

length The length of the image.

n sample size.

sigma variance of the noise.

smooth smoothness of the latent components.

Details

The observations are generated using probabilistic ICA:

$$X_i(v) = \sum_{j=1}^q A_{i,j} S_j(v) + \epsilon_i(v),$$

where S_j , j=1,...,q are the latent components, $A_{i,j}$ is the mixing coeffecient and ϵ_i is the noise term. Specifically, the number of components in this function is q=3, with each of them being a specific geometric shape. The mixing coefficient matrix is generated with a von Mises-Fisher distribution with the concentration parameter being zero, which means it is uniformly distributed on the sphere. ϵ_i is a i.i.d. Gaussian noise term with 0 mean and user-specified variance.

Value

List that contains the following terms:

X Data matrix with n rows (sample) and p columns (pixel).

coords Cordinate matrix with p rows (pixel) and d columns (dimension)

S Latent components.

A Mixing coefficent matrix.

snr Signal-to-noise ratio.

Examples

```
sim = sim_2Dimage(length = 30, sigma = 5e-4, n = 30, smooth = 6)
```

8 sum_mcmc_bspbss

sum_mcmc_bspbss	Summarization of the MCMC result.	

Description

The function summarizes the MCMC results obtained from mcmc_bspbss.

Usage

```
sum_mcmc_bspbss(res, X, kernel, start = 1, end = 100, select_prob = 0.8)
```

Arguments

res	List including MCMC samples, which can be obtained from function mcmc_bspbss

X Original data matrix.

kernel List including eigenvalues and eigenfunctions of the kernel, see init_bspbss.

start Start point of the iterations being summarized. end End point of the iterations being summarized.

select_prob Lower bound of the posterior inclusion probability required when summarizing

the samples of latent sources.

Value

List that contains the following terms:

S Estimated latent sources.

pip Voxel-wise posterior inclusion probability for the latent sources.

A Estimated mixing coefficent matrix.

zeta Estimated zeta.

sigma Estimated sigma.

logLik Trace of log-likelihood.

Slist MCMC samples of S.

Examples

```
sim = sim_2Dimage(length = 30, sigma = 5e-4, n = 30, smooth = 6)
ini = init_bspbss(sim$X, sim$coords, q = 3, ker_par = c(0.1,50), num_eigen = 50)
res = mcmc_bspbss(ini$X,ini$init,ini$prior,ini$kernel,n.iter=200,n.burn_in=100,thin=10,show_step=50)
res_sum = sum_mcmc_bspbss(res, ini$X, ini$kernel, start = 11, end = 20, select_p = 0.5)
```

Index

```
init_bspbss, 2
levelplot2D, 3
mcmc_bspbss, 4
output_nii, 5
pre_nii, 6
sim_2Dimage, 7
sum_mcmc_bspbss, 8
```