Week 4: STRIPS and Heuristic

COMP90054 – Al Planning for Autonomy

Key concepts

- STRIPS problem
- Heuristic functions

Consider a m x m manhattan grid, and a set of coordinates G' to visit in any order, and a set of inaccessible coordinates (walls) W

a state = <current coordinate, a set of remaining coordinates>

Initial state $s_0 = <(0,0), G' \setminus \{(0,0)\}>$

Goal state
$$S_G = \{ \langle (x, y), \{ \} \rangle \mid x, y \in \{0, ..., m-1 \} \}$$

State
$$S = \{ \langle (x, y), V' \rangle | x, y \in \{0, ..., m-1\} \land V' \subseteq G' \}$$

Action A(
$$<(x,y), V'>$$
) = $\{(dx,dy) \mid dx,dy \in \{-1,0,1\}$
 $\land \mid dx \mid + \mid dy \mid = 1$
 $\land x + dx, y + dy \in \{0,...,m-1\}$
 $\land (x + dx, y + dy) \notin W\}$

Transition
$$f(<(x,y), V'>, (dx,dy)) = <(x+dx,y+dy), V'\setminus\{(x+dx,y+dy)\}>$$

$$\mathsf{Cost}\,\mathsf{c}(a)=\mathbf{1}$$

State-space model

$$P = \langle S, S_0, S_G, A, T, c \rangle$$

$$s_0$$
 = initial state

$$S_G$$
 = goal states

$$c = costs$$

a state = < curr wordinates visited words >

Consider a m x m manhattan grid, and a set of coordinates G' to visit in any order, and a set of inaccessible Thattan gnu, and S.

A problem in STRIPS is a tuple $P = \langle F, O, I, G \rangle$:

F stands for set of all atoms (boolean vars)

O stands for set of all operators (actions) coordinates (walls) W

$$I = \{at(0,0), visited(0,0)\}$$

$$G = \{visited(x, y) | x, y \in G'\}$$

$$F = \{at(x, y), visited(x, y) | x, y \in \{0, ..., m-1\}\}$$

$$O = \{move(x, y, x', y'):$$

- Prec: at(x,y)
- Add: at(x', y'), visited(x',y')
- Del: at(x, y) | for each adjacent (x,y),(x',y'), and $(x',y')\notin W$

- $I \subseteq F$ stands for initial situation
- $G \subseteq F$ stands for goal situation
- Operators $o \in O$ represented by
 - the Add list $Add(o) \subseteq F$
 - the Delete list $Del(o) \subseteq F$
 - the Precondition list $Pre(o) \subseteq F$

Number of node expansion + Calculation time of the heuristic function = Total running time

(search time) (heuristic time).

Tip: If h1 dominates h2 then A* with h1 will expand less or equal node to h2

1. Zero heuristic h = 0 (very had)

Admissible: Yes

Admissible: Yes

Consistent: Yes

Time to calculate h: None

2. Goal-counting heuristic

Admissible: Yes Consistent: Yes

Time to calculate h: Easy

$$h(s) \le h*(s)$$
 $f(s) - h(s') \le c(s,s')$
 $f(s) - h(s') \le c(s,s')$
 $f(s) - h(s') \le c(s,s')$

3. Manhattan Distance to the Closest Goal heuristic

Admissible: Yes

Consistent: Yes

Time to calculate h: Easy

$$f(s_1) = d(s_1, G_1) + d(G_1, G_2)$$

$$= 3 + 6$$

$$= 9$$

4. Manhattan Distance to the Farthest Goal heuristic

Admissible: Yes Consistent: Yes

Time to calculate h: Easy

5. Sum of Manhattan distances of all goals

Admissible: No

Consistent: No

Time to calculate h: Easy

$$f_{1}(s_{1}) = d(s_{1}, G_{1}) + d(s_{1}, G_{2})$$

$$= 7 + 3 = 10$$

$$f_{1} * (s_{1}) = d(s_{1}, G_{2}) + d(G_{2}, G_{1})$$

$$= 3 + 6 = 9$$

$$=$$
 $h(s_1) > h(s_1)$
=) Not admissible

5. Sum of Manhattan distances of all goals

Admissible: No Consistent: No

Time to calculate h: Easy

$$h(s_2) = d(s_2, G_1) + d(s_2, G_2) = 2 + 6 = 8$$

$$h(s_3) = d(s_3, G_1) + d(s_3, G_2) = 1 + 5 = 6$$

$$h(s_2) - h(s_1) > c(s_2, s_3) \Rightarrow Not consistent.$$

$$= 1$$
Parent

Dominate relation

- 1. Zero heuristic: Admissible, Consistent
- 2. Goal-counting heuristic: Admissible, Consistent
- 3. Manhattan Distance to Closest Goal heuristic: Admissible, Consistent
- 4. Manhattan Distance to Farthest Goal heuristic: Admissible, Consistent
- 5. Sum of manhattan distances of all goals: Not admissible Not consistent


```
h(goal counting) > h(zero)
h(closest) > h(zero)
h(farthest) > h(zero)
```

```
h(farthest) > h(closest)
h(farthest) > h(goal counting)
```

$$h(s_2) = ?$$

6. Minimum spanning tree

h(53) = ?

Admissible: Yes Consistent: No

Time to calculate h: Medium

Minimum spanning tree: Only select a subset of edges to connect all vertices and the total cost is minimum

13

6. Minimum spanning tree

Admissible: Yes

Consistent: No

Time to calculate h: Medium

Minimum spanning tree: Only select a subset of edges to connect all vertices and the total cost is minimum

$$k(s_2) - k(s_3) = 2 > c(s_2, s_3)$$

