EXEMPLE

« 2 est-il racine de $x^2 - 3x + 7$? »

Réponse : On substitue x par 2 dans l'expression donnée :

$$2^{2} - 3 \times 2 + 7 = 4 - 6 + 7$$

= 5
 $\neq 0$

Donc 2 n'est pas racine du polynôme $x^2 - 3x + 7$.

T rouver la forme factorisée à partir d'une racine

Si une racine nous est donnée, on peut trouver la seconde par identification.

Exemple : Factoriser $-4x^2 + 16x + 20$ sachant que -1 est une racine.

On sait d'après l'énoncé que $-4x^2+16x+20=-4(x+1)(x-\alpha)$ où α est la 2nde racine que nous cherchons.

Si nous développons $-4(x+1)(x-\alpha)$ nous obtenons :

$$-4(x+1)(x-\alpha) = -4(x^2 - \alpha x + x - \alpha)$$

= -4(x^2 + x(1 - \alpha) - \alpha)
= -4x^2 - 4x(1 - \alpha) - 4\alpha

Par identification, c'est-à-dire en regardant les coefficients, on s'aperçoit que :

$$\begin{cases} -4(1-\alpha) = 16\\ 4\alpha = -26 \end{cases}$$

On peut prendre l'équation que l'on veut pour trouver α : la seconde par exemple nous donne $\alpha=\frac{20}{-4}=-5$.

On en déduit que la seconde racine est -5.

Représentation graphique

La fonction parabolique

On considère la fonction polynôme du 2^{nd} degré :

$$f(x) = ax^2 + bx + c$$

On appelle la représentation graphique d'une fonction polynôme du 2nd degré une **parabole**.

- Le sens de variation de f dépend uniquement du signe de a.
- Le signe de f dépend du signe de a ainsi que des racines de f.

Sommet et axe de symétrie

La fonction polynôme du 2nd degré admet pour **axe de symétrie** $x=-\frac{b}{2a}$ (forme développée) ou $x=\frac{x_1+x_2}{2}$ (forme factorisée).

Son sommet a pour coordonnées $\left(\frac{-b}{2a}\,;\,f\left(\frac{-b}{2a}\right)\right)$

TABLEAUX DE VARIATIONS

— Si a > 0, la fonction f a pour tableau: