## Recurrent Neural Networks Stock Price Prediction

presented by

Cecilia Tipping



## Project Overview

- Goal: Compare LSTM and GRU for predicting AAPI stock prices
- Ivestigate how additional factors (Volume, OHLC) impact prediction performance
- Experiment with activation functions in GRU (ReLU, LeakyReLU, ELU)
- Evaluate models based on RMSE and behavior during training





## Model Observations

- LSTM struggled → produced flat and non-informative predictions
- Close-only dataset too limited → LSTM failed to converge meaningfully
- GRU handled limited data better → followed price trends, though accuracy was modest
- Reinforced need for more context (features) for models like LSTM



LMST (Close only)



# Model Observations



GRU (Close only)



LMST (Close only)



- \* Adding Volume adjusted prediction quality for both models
- # GRU seemed to slightly increase the performance gap
- LSTM greatly improved, possibly matching or slightly outperforming GRU at this stage.





GRU (Close + Volume)

LSMT (Close + Volume)







Adding OHLC introduced richer feature set → LSMT handled this complexity better



LSMT(Volume + OHLC)



LSTM was still competitive, but GRU showed its scaling advantage



GRU(Volume + OHLC)





Adding OHLC introduced richer feature set → LSMT handled this complexity better



LSMT(Volume + OHLC)

LSTM was still competitive, but GRU showed its scaling advantage as it was less eractic and more stable



GRU(Volume + OHLC)



## GRUACTIVATION \* Conclusion -> Function Experiments

### \* ReLU

Tracked overall trend but consistently underpredicted stock prices.

### \* LeakyReLU

Slightly improved tracking over ReLU but still fell short of actual prices.

### **ELU**

Best performer, closely following actual prices with smaller gaps.

ELU activation offered the most accurate and stable predictions overall.





ReLU



# GRU Activation Function Experiments



LeakyReLU

**ELU** 



## Challenges Encountered

- Input shape management became more difficult as features were added
- LSTM's inability to handle Close-only highlighted risks of underfitting with limited data
- Activation experiments → small tweaks had large effects on training stability
- psutil + TensorBoard helped monitor efficiency during experiments

### **\*** LSTM

better suited for more complex patterns, but requires sufficient input data

### **#GRU**

more flexible and adaptable, especially as input complexity increases

### \* LeakyReLU

best activation function tested → stable, fast, and consistent

# Key Insights and Takeaways



Feature selection
 was critical → more
 data helped, but
 only when used
 thoughtfully

## Future Directions



\* Test models on other stocks for generalization

\* Add external market indicators (ex: sentiment analysis, macroeconomic signals)

Explore alternative architectures like Transformers for further improvements



# Final Reflection and Questions

- Subtle, but important differences emerged across experiments
- LSTM and GRU both viable, but GRU proved more flexible overall
- Future modeling success depends on carefully balancing architecture, features, and tuning

## Thank you!

CS5393 Cecilia Tipping

