1 BeschreibendeStatistik

1.1 Begriffe

Beschreibende/Deskriptive Statistik

Beobachtete Daten werden durch geeignete statistische Kennzahlen charakterisiert und durch geeignete Grafiken anschaulich gemacht.

1.1.2 Schließende/Induktive Sta-

Aus beobachtete Daten werden Schlüsse gezogen und diese im Rahmen vorgegebener Modelle der Wahrscheinlichkeitstheorie bewertet.

1.1.3 Grundgesamtheit

 Ω : Grundgesamtheit ω :Element oder Objekt der Grundgesamtheit diskret(<30 Ausprägungen), stetig(≥30 Ausprägungen), univariat(p=1), mulivariat(p>1)

1.2 Lagemaße

1.2.1 Modalwerte x_{mod}

Am häufigsten auftretende Ausprägungen (insbesondere bei qualitativen Merkmalen)

1.2.2 Mittelwert

R:mean(x)

Schwerpunkt der ten.Empfindlichgegemüber Ausreißern. $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$

1.3 Median

R:median(x)

Liegt in der Mitt der sortierten Daten x_i . Unempfindlich gegenüber Ausreißern.

$$x_{0.5} = \begin{cases} x_{\frac{n+1}{2}}, \text{ falls n ungerade} \\ \frac{1}{2} (x_{\frac{n}{2}} + x_{\frac{n}{2} + 1}), \text{ falls n gerade} \end{cases}$$

1.4 Streuungsmaße 1.4.1 Spannweite

 $\max x_i$ - $\min x_i$

1.4.2 Stichprbenverians s^2

R:var(x)

Verschiebungssatz:

$$c^{2} = \frac{1}{11} \sum_{i=1}^{n} (x_{i} - \overline{x}^{2}) = \frac{1}{11} (\sum_{i=1}^{n} x_{i}^{2})$$

 $n\bar{x}^2$) Gemittelte Summe der quadrati- 2 Wahrscheinlichkeitsrechnung schen Abweichung vom Mittelwert

1.4.3 Stichprobenstandardabweichunggebnisraum Ω : Menge aller möglichen

R:sd(x)

 $s = \sqrt{s}$ Streuungsmaß mit gleicher Einheit wie beobachteten Daten $x_i.\bar{x}$ minimiert die "quadratische Verlustfunktionöder die Varianz gibt das Minimum der Fehlerquadrate an.

1.5 p-Quantile

R:quantile(x, p). Teilt die **sortierten** Daten x_i ca. im Verhältnis p: (1-p) d.h. $\hat{F}(x_p) \approx p$ 1. Quartil = 0.25-Quantil; Median = 0.5-Quantil; 3. Quartil = 0.75-Ouartil;

1.6 Interquartilsabstand I

ungsparameter.

1.7 Chebyshev

 $\frac{N(S_k)}{n} > 1 - \frac{1}{k^2}$, für alle $k \ge 1 \overline{x}$ der Durchschnitt, s > 0 die Stichproben-Standardabweichung von Beobachtungswerten $x_1,...,x_n$. Sei $S_k = \{i, 1 \le i \le n :$ $|x_i - \overline{x}| < k \cdot s$; Für eine beliebige Zahl $k \ge 1$ liegen mehr als $100 \cdot (1 - \frac{1}{k^2})$ Pro- $0 \le P(E) \le 1$; $P(\Omega) = 1$; $\overline{x} + ks$. Speziell: Für k = 2 liegen mehr als für $i \neq j$ 75% der Daten im 2s-Bereich um \bar{x} . Für k=3 liegen mehr als 89% der Daten im 3s-Bereich um \overline{x} . **Komplement Formulie**-

rung: $\overline{S}_k = \{i | |x_i - \overline{x}| \ge k \cdot s\}; \frac{N(S_k)}{n} \le \frac{1}{k^2};$ Die Ungleichheit lifert nur eine sehr grobe Abschätzung, ist aber unabhängig von der Verteilung der Daten. Empirische Regeln 68% der Daten im Bereich

1.8 Korrelation

Grafische Zusammenhang zwischen mul- $P(E \cup F) = P(E) + P(F) - P(E \cap F)$ tivariaten Daten y und y durch ein Streudiagramm. Kennzahlen zur Untersuchung des Zusammenhangs:

um $\overline{x} \pm s$. 95% um $\overline{x} \pm 2s$. 99.7% um $\overline{x} \pm 3s$.

1.8.1 Empirische Kovarians

R:
$$cov(x, y)$$
; $s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \frac{1}{n-1} (\sum_{i=1}^{n} (x_i y_i - n \overline{xy})$

1.8.2 Empirische Korrellationsko- $\frac{MchtigkeitvonE}{Mchtigkeitvon\Omega} = \frac{|E|}{\Omega}$ text

R:cor(x,x); $r = \frac{s_{xy}}{s_x x_y}$; Näherungsweise lin. **2.5** Kombinatorik Zusammenhang zw. x und y, falls $|\mathbf{r}| \approx 1$.

1.8.3 Regressionsgerade y

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x}^{2}) = \frac{1}{n-1} (\sum_{i=1}^{n} x_{i}^{2} - y = mx + t \text{ mit } m = r \cdot \frac{s_{y}}{s} \text{ und } t = \overline{y} - m \cdot \overline{x}$$

2.1 Begriffe

Ergebnisse eines Experiments **Elementarereignis** $\omega \in \Omega$: einzelnes Element von Ω **Ereignis** $E \subseteq \Omega$: beliebige Teilmenge des Ergebnisraums Ω heißt sicheres Ereignis, Ø heißt unmögliches Ereignis **Vereinigung** $E \cup F$: Ereignis E oder Ereignis F treten ein. $\bigcup_{i=1}^{n} E_i$: mindestens ein Ereignis E_i tritt ein. **Schnitt** $E \cap F$: Ereignis E und Ereignis F $\bigcap_{i=1}^{n} E_i$ alle Ereignisse E_i treten ein. **Gegenereignis** $E = \Omega / E$: Ereignis E tritt nicht ein (Komplement von E) $I = x_{0.75} - x_{0.25}$. Ist ein weiterer Streu- **Disjunkte Ereignisse**E und F: $E \cap F = \emptyset$

2.2 De Morgan'schen Regeln

$$\frac{\overline{E_1 \cup E_2}}{\overline{E_1 \cap E_2}} = \frac{\overline{E}_1 \cap \overline{E}_2}{\overline{E}_1 \cup \overline{E}_2}$$

2.3 Wahrscheinlichkeit

k
$$\geq 1$$
 liegen mehr als $100 \cdot (1 - \frac{1}{k^2})$ Pro- $0 \leq P(E) \leq 1$; $P(\Omega) = 1$; zent der Daten im Intervall von $\overline{x} - ks$ bis $\overline{x} + ks$. **Speziell:**Für $k = 2$ liegen mehr als $F(U) = \sum_{i=1}^{\infty} P(E_i)$, falls $F(U) = 0$ für $i \neq j$

2.3.1 Satz 2.1

$$P(\overline{E}) = 1 - P(E)$$

 $P(E \cup F) = P(E) + P(F) - P(E \cap F)$
(Übungsaufgabe!!! Ergänzen)

2.4 Laplace-Experiment

Zufallsexperimente mit n gleich wahrscheinlichen Elementarereignissen. Dann berechnet sich die Wahrscheinlichkeit P(E) für $E \subseteq \Omega$ aus:

$$P(E) = \frac{AnzahlderfrEgnstigenEreignisse}{AnzahldermglichenEreignisse} = \frac{MchtigkeitvonE}{MchtigkeitvonE} = \frac{|E|}{|E|} text$$

mit Beachtung der Reihenfolge ohne Beachtung der Reihenfolge