NANDAN SESHADRI

Mechanical engineer at University of California San Diego

HAPTIC BOXING GLOVE - UCSD

in linkedin.com/in/nandan20

(858) 250-9047

What?

- Design and fabricated a boxing glove simulator that provides haptic feedback when interacting with the virtual environment in team of 3.
- Implemented algorithms to control the position of device in real-time.

How?

- Used SolidWorks to design the components of device and applied GD&T on all the drawings.
- Arduino IDE was used to implement algorithms to control device.
- Processing was used to render and display a boxing glove and punching bag.

Results

 The final product works successfully and rendered gloves works perfectly when tested on 12 different users with various fist sizes.

DESIGN OPTIMIZATION OF GEAR PUMP HOUSING - REXROTH BOSCH

What?

- Optimize the design of a gear pump to reduce the material to make the pump cost effective and lightweight.
- Minimize the annual production cost of the gear pump.

How?

- Used PTC Creo to design 3 different pump housing prototypes pump and assemble it pump housing with various parts of the pump.
- Use **FEA** to understand various fracture points of the pump.
- Test the prototypes on a test bench for 100 hours to obtain the optimal design.

Results

• Implemented **DFM** principles to reduce overall part production cost by **\$1.2M** annually.

STATIC TEST PAD FOR ROCKET MOTOR - STAR

What?

- Designed a Rocket Motor Static Test Pad for testing and acquiring the required data for the performance analysis of the high-powered rocket motors.
- Tested the test pad to understand the behavior of the load cell against various loads.

How?

- Designed the components of the test pad on SolidWorks.
- Used FEA on SolidWorks to realize the maximum load the test pad can handle.

Results

- The test pad can handle up to 150N which displays a good strength to weight ratio.
- The design is ergonomically good enough to transported and reused at ease.

NANDAN SESHADRI

Mechanical engineer at University of California San Diego

VANE DESIGN OF A SPIRAL WATER TURBINE - VTU (CAPSTONE PROJECT)

in linkedin.com/in/nandan20

(858) 250-9047

What?

- Design the vanes for a low-cost spiral water turbine to generate power for household applications in a group of 4.
- Simulated various flow velocities to understand the behavior of the vanes.

How?

- Designed the vanes on Solidworks.
- ANSYS Fluent was to simulate the blades at various flow velocities.

Results

The final design blade design was simulated at 15m/s, 20m/s, and 25m/s to visualize the flow.