Quantização da luz e a dualidade onda-partícula

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

7 de Julho de 2022

Prof. Flaviano W. Fernandes IFPR-Irati

Sumário

- Quantização da luz
- Comportamento ondulatório da matéria
- Apêndice

Efeito fotoelétrico

Vamos considerar um equipamento por onde incide uma luz de determinada frequência no alvo T de um metal específico. A experiência mostra que os elétrons são ejetados do material gerando uma corrente i que pode ser registrada pelo amperímetro A.

Uma diferença de potencial V é ajustada entre os terminais do aparelho com a intenção de frear os elétrons até pararem, registrando assim uma corrente zero no amperímetro. Dessa maneira, a energia cinética máxima K deve ser igual a eV_F .

Montagem usada para o estudo do efeito fotoelétrico.

Prof. Flaviano W. Fernandes

O que era esperado pela teoria clássica

De acordo com a teoria do eletromagnetismo, a intensidade da onda I eletromagnética é dado por $I=\frac{E_m^2}{2\mu_0c}$, ou seja, depende somente da amplitude do campo elétrico E_m e não da frequência da luz. Além do mais, como a intensidade é potência por área, era de se esperar que o metal absorvesse cada vez ao longo do tempo. Assim o elétron teria energia cinética o suficiente para escapar do material. Portanto, era de se esperar que

- ✓ a energia cinética dos elétrons deveria depender da intensidade da onda;
- ✓ o efeito fotoelétrico deveria ocorrer com a luz de qualquer frequência;
- ✓ deveria haver um retardo de tempo, de modo que o elétron absorvesse energia do feixe continuamente.

Prof. Flaviano W. Fernandes IFPR-Irati

O que foi observado experimentalmente

Foi observado que a energia cinética K, onde

$$K = eV_F$$

independe da luz incidente. Aumentando a intensidade, apenas aumenta a corrente no circuito, mas o potencial de corte V_F permanece o mesmo.

Variação da corrente com o potencial.

Corollary

O efeito fotoelétrico independe da intensidade da luz incidente.

O que foi observado experimentalmente

Foi observado que para cada material existe um limiar de frequência ν_0 . Caso a frequência da luz incidente for menor que ν_0 , o efeito fotoelétrico não ocorre para aquele material. A figura apresenta um metal alcalino, onde para cada luz incidente, existe um potencial de corte. Nesse caso, o efeito fotoelétrico deixaria de ocorrer para a luz vermelha, que possui frequência menor que a amarela ($\nu_{verm}=0.4\times10^{15}\,{\rm s}^{-1}$).

Variação da corrente para diversos valores da frequência da luz.

Corollary

Para frequências menores que ν_0 o efeito fotoelétrico não ocorre, qualquer que seja a intensidade da iluminação.

Hipótese de Einstein

Para explicar as divergências observadas no efeito fotoelétrico, Einstein propôs que a luz é constituídas por pacotes de energia chamada fóton, onde cada fóton carrega a quantidade de energia

$$E = h\nu$$
.

Assim, a energia cinética K dos elétrons que saem do material é dado por

$$K = eV_F = h\nu - \phi.$$

 ϕ é denominado função trabalho, que representa a energia necessária para remover o elétron do material.

Explicações plausíveis para o efeito fotoelétrico

- ✓ O efeito fotoelétrico independe da intensidade da luz incidente. Um aumento na intensidade significa mais fótons com a mesma energia hv colidindo com elétrons diferentes, o que justifica o aumento na corrente elétrica. Mas se a energia de cada fóton não equivaler a função trabalho, os elétrons não conseguem escapar do material independente da quantidade fótons.
- ✓ Para frequências menores que ν_0 o efeito fotoelétrico não ocorre, qualquer que seja a intensidade da iluminação. Na colisão dos fótons com os elétrons, uma energia equivalente a $h\nu$ é absorvida pelo elétron. Se essa energia não equivaler a função trabalho, o elétron não consegue escapar do material.
- ✓ Assim que a luz incide no metal, os elétrons são imediatamente removidos, não havendo um retardo de tempo. Na colisão, a energia dos fótons é imediatamente absorvida, não havendo a necessidade de mais colisões.

Prof. Flaviano W. Fernandes IFPR-Irati

Como obter a constante de Planck e o limiar de frequência?

Isolando o potencial de corte V_F anteriormente teremos

$$eV_F = h\nu - \phi,$$
 $V_F = rac{h}{e}\nu - rac{\phi}{e}.$

Considerando V_F como função da frequência da luz incidente, podemos representá-la em um gráfico V_F versus ν , onde o coeficiente angular da reta representa o valor da constante de Planck.

$$h = 6.57 \times 10^{-34} \,\mathrm{J\,s.}$$

Representação de h a partir do gráfico potencial de corte

Prof. Flaviano W. Fernandes

Hipótese de de Broglie

Devido a simetria da natureza, o dualismo ondapartícula é um fenômeno absolutamente geral, ou seja, assim como foi observado que a luz possui comportamento corpuscular, é esperado que a partícula também possua comportamento ondulatório. De forma geral, podemos resumir

$$\nu = \frac{E}{h}$$

$$\lambda = \frac{h}{p}$$

Fenômeno de interferência ondulatória envolvendo um feixo de elétrons.

Apêndice A - Observações¹

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

Prof. Flaviano W. Fernandes

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.

Referências

- D. Halliday, R. Resnick, J. Walker, Fundamentos de física. Eletromagnetismo, v.4, 10. ed., Rio de Janeiro, LTC (2016)
- R. D. Knight, Física: Uma abordagem estratégica, v.3, 2nd ed., Porto Alegre, Bookman (2009)
- H. M. Nussenzveig, Curso de física básica. Eletromagnetismo, v.4, 5. ed., São Paulo, Blucher (2014)