

Tobacco Rattle Virus Silencing Vector

RNA-1: LSB-1

FIG. 1A

RNA-2: PpK20

FIG. 1B

FIG. 2

ATAAAACATTCAATCCTTGAACCGGGTAGAACGTGCTAATTGGATTTGGTGAGAA
CGCGGTAGAACGTACTTATCACCTACAGTTTATTTGTTTCTTTGGTTAAC
TCCAGCTTAGTACCGAGTGGGGAAAGTGACTGGTGTGCCTAAACCTTTCTTGAT
ACTTTGAAAAATACATACAGATAACATGGCGAACGTAACCTCAAGTTGTCTCAATT
GCTCAATGTGGACGAGATGTCTGCTGAGCAGAGGAGTCATTCTTGACTTGATGCTG
ACTAAACCTGATTGTGAGATCGGGCAAATGATGCAAAGAGTTGTTGATAAGTCG
ATGACATGATTAGAGAAAGAAAGACTAAAGATCCAGTGATTGTTCATGAAGTTCTTC
TCAGAAGGAACAGAACAGTTGATGGAATTATCCTGAATTCAATATCGTGTAA
GACGACAAAAACATGGTTCATGGGTTGCGGCTGCTGAGCAGAAACTACAAGCTTAT
TGCTTTAGATAGAGTCCTGCTCTGCAAGAGGTGGATGACATCGGTGGTCAATGGTC
GTTTGGTAACTAGAGGTGAGAAAGGATTCTCCTGTTGTCAAATCTAGATATT
CGGGATGATCAGAGAGAAATTCTGACAGATAATTCTACTGCTATTGGTGTCAAG
CTAGAAAGTGGTAAGAGACAGATGTCGGAGAATGAGCTGTTGATGTGACCAATT
GTGAAAATATTGCTGCGCTAACGCGGTTAGGTGCAATAATACATATCAGGGTTG
ATGTAGGGTTTCTGATGGTAAGAAGAAAGGCGCGAGTATGCGATAGCTTAC
AGCCTGTATGACTCAAGTGAAAGACTTGATGGCTACTATGGTTGAGAAGAAA
AAAGTGGTTCATGCTGCTATGCTTTGCTCCTGAAAGTATGTTAGTGGACGAAGGT
ATTACCTTCTGTTGACGGTTACTACATGAAGAAGAACGGGAAGATCTATT
GAGAAAGATCCTCCTTCTTACATTGACTGGGAAGAGTACAAGAAGTATCTAC
TGGGGAAGCCAGTGAGTTACCAAGGGATGTTCTACTCGAACCGTGGCAGGTGA
GAGGAGACACAATGCTTTTCGATCTACAGGATAGCTGGAGTTCCGAGGAGGTCT
ATCATCGCAAGAGTACTACCGAAGAATATATTCAGTAGATGGAAAACATGGTT
TGTCCCATTTCGATCTGGTCAATCACGCGAGAGTTGTCAGAAAGACCTGTT
GTAGAGAAACAATTGACAAGTGTGTTGATTACATAGCTAGTTATCTGACCAGC
AGCTGACCATAAGCAATGTTAAATCATACTTGAGTTCAAATAATTGGGTTATT
AAACGGGGCGCGCGTGAAGAACAAAGCAAGTGTAGATTCTCGAGATTACAGTT
GGCTCAAACTTGCTAGTGAAGGAACAAGTGGCGAGACCTGTCATGAGGGAGTT
TGAAGCAATTCTGACTGAGACGAAACCTATCACGTATTGACTGATGTGCTGGTT
ATATCAAGAAAATGTGGAAGCAGTTGCTAACAGATCGCAGTCGGCGATT
GGCATGGTTGTTACTCTAATTGGATTCTATCCAAAGAAGGTACTAAC
ACACACCAAATGGTCCAGAAACTATGTTACGAGAACCTCGCACAAA
ACAGGTGATAGTATTCTGAGTGTTGATGCCATTGGAGGAATC
AGATGGACTGGTGAACAAACTATGTGATATGTTGATATCAA
CTTAGACGTTGAGAATCCGTGCCGCTATTATGAAATCAACGATT
CTTAGCAGTCTGT

FIG. 3A

ATTCGGCATCTGAGTCGGTGAGACCGTTTACAGATTATCCGAGGTAAAAGCCAA
GTCTGATAAGCTATTGCAGCAGAAGAAAGAAATCGCTGACGAGTTCTAAGTGCAAA
ATTCTCTAACTATTCTGGCAGTCGGTGAGAACCTCTCCACCATCGTGCGTCCGGTCAT
CTCGAAGCGGACTGGGTCTGTTGGAAGACAGTAACGTGCTGACCCAAGCTAGAG
TTGGAGTTCAAGAAAGGTAGACGATGAGGAGATCATGGAGCAGTTCTGAGTGGTC
TTATTGACACTGAAGCAGAAATTGACGAGGTTGTTCAGCCTTTCAGCTGAATGTGA
AAGAGGGAAACAAGCGGTACAAAGGTGTTGTAACCTTAACGCCACCAGGATT
TGAGAACGTGTTGCCAGCTGTCAAACCTTGGTCAGCAAAGGAAAACGGTCAAACG
TGTGATTACTTCCAAGTGTGAGGAGATTACCAAAAGGCCGGTGTCAAGT
GGAGACGATTCTGTGGACCGCTAGAACAGAGAGTTCTGTACTACTAGATGCCAGAGA
GTCGCTCAAAATGATGAAATTATGTCTCTGTACTGACTATTGAGAGGAGTTATTC
GAACCTGGAGGTAGAACATTACCGCACGGACTGGAGTGTGGATGTGGAGATGAAGA
ACTGGTGCATACGTCCAGTGGTCACTGAACATGCTTATGTGTTCCAACCAGACAAACG
TATGGATGATTGGTCGGGAACTTAGAAGTGGCTGTTGGAACGAGGTATGTTGGTC
AACGACTTCGCGGTGAAAGGATGAGTGTGATTATGTCAAGTGTGCGATCAGACGTATC
TTTGCAATAACAGGTTGATCTGGACAATTAAAGTGCCCTGGATCTAGGACCAAGTTAA
CTGTTCTTGAATTAGTTGACGGTGACCTGGTGTGGTAAGTCGACAATGATTGTCA
ACTCAGCTAACCTTGTCGATGTGGTCTCTACTGGAGAGCAGCAACCGACGA
CTTGATCGAGAGATTCGCGAGCAAAGGTTCCATGCAAATTGAAAAGGAGAGTGAA
GACGGTTGATTCTTTGATGCATTGTGTCGATGGTCTTAACCGGAGACGTGTTGC
ATTCGACGAAGCTCTCATGGCCCATGCTGGTATGGTACTTTGCGCTCAGATAGCT
GGTGCTAAACGATGTATCTGTCAAGGAGATCAGAACATCAAATTCTTCAGCCTAGGG
TATCTCAAGTTGATTGAGGTTCTAGTCTGGTGGAAAGTTGACATTGTTACAGAA
AAAAGAGAAACTTACAGAACAGTCCAGCAGATGTGGCTGCCGTATTGAACAAAGTACTAT
ACTGGAGATGTCAGAACACATAACCGCAGTCTAACGATGACGGTGGAGAAGATT
GTGTCTAAAGAACAGGTTCTTGAGGCCGGTCTCAGTACATAACCTTCAGTC
TGAGAAGAAGGAGTTGTTAAATTGTTGGCATTGAGGAAAGTGGCAGCTAAAGTGAG
TACAGTACACGAGTCGCAAGGAGAGACATTCAAAGATGTAGTCTAGTCAGGACGAA
ACCTACGGATGACTCAATCGCTAGAGGTGGAGTACTTAATCGTGGCGTTGCGCT
CACACACAATCACTGTGATGAAACTGTGAAAGAGGACGATGAAAGAGATC
AGGGAAAGTGCCCGCTTACGAAGGGGGCTTGGCAAGATTGTTACTGAGACCG
TCTTATGACGGTTCGGTCTAGGTTGATGTCTTAGACATCATGAAGGGCCTGCGCC
GTTCCAGATTCAAGGTACGATTACGGACTTGGAGATGTGGTACGACGCTTGTGTTCCGG
GAAATTCGTTAAGAGACTCAAGCCTAGACGGTATTGGCAACGACTGATTGCA

FIG. 3B

ATTTGCGATTAGACAATGTTACGATCAAAGTGGAACTGGAAAGACAAGTTGCTG
AAAAAGAACGTTCTGAAACCGTTATCGTACTGCTATGCCTGACAAAAGGAAGA
CTACTCAGTTGGAGAGTTGTTAGCATTCGAGAAAAGGAACCAAGCGGCACCCGATCT
ACAAGAAAATGTGCACGCGACAGTCTAATCGAAGAGACGATGAAGAAGCTGAAATC
TGTTGTCTACGATGTGGAAAAATCGGGCTGATCCTATTGTCAATAGAGCTCAAATG
GAGAGATGGTGGAGAAATCAAAGCACAGCGTACAGGCTAAGGTAGTAGCAGATGT
GAGAGAGTTACATGAAATAGACTATTGCTTACATGTATATGATCAAATCTGACGTG
AACACCTAACAGACTGATTTAACACCGCAATTGAATACTCAGCTCTACAGACTGTTGTG
ATCACGAGAAGTTGATCAACTCGTTGTCGGTCCAATTTCAAAGAAATTAATGAACG
CAAGTTGGATGCTATGCAACCACATTTGTTCAACACGAGAATGACATCGAGTGAT
TTAACCGATCGAGTGAAGTTCTAAATCGGAAGCGGCTTACGACTTGTGAGATAG
ACATGTCCTAAATCGACAAGTCGGCAAATCGCTCCATTACAAC TGCA GCTGGAGAT
TTACAGGTTATTGGGCTGGATGAGTGGCGGCCCTCCTTGGGAGGTGTCGCACACT
CAAACACTGTGAGAGATATTCAAATGGTATGATGGCGCATATTGGTACCAACAAA
AGAGTGGAGATGCTGATACTTATAATGCAAATTCAAGATAGAACACTGTGTCGCTT
GTCTGAATTACCATTGGAGAAAGCAGTCATGGTTACATATGGAGGAGATGACTCACTG
ATTGCGTTCTAGAGGAACGCAGTTGTTGATCCGTGCCAAAGTTGGCTACTAAGT
GGAATTTCGAGTGCAAGATTTTAAGTACGATGTCCAAATGTTGTGGAAAGTTCTT
GCTTAAGACGTATCGTGTACGAGTCGTGCCAGATCCGGTAAAGTTCTGACGAAG
TTGGGAAAAAGAGTATAAAGGATGTGCAACATTGGCCGAGATCTACATCTGCTG
AATGATTCCAATAGAGCTTGGGAACTACATGGTGTATCCAAACTGTCCGAGTCTG
TTTCAGACCGGTATTGTACAAAGGTGATTCTGTTATCGCCTTGTGCGCTATGGAAG
CATATTAAGAGTTTACAGCTCTGTGTACATTTCGAGACGAAAAGATAAGGAAT
TGAACCCGGCTAAGGTGATTGGAAGAAGGCACAGAGAGCTGTCAAACATTTCAGT
ACTGGTAATATGGAAGACAAGTCATTGGTCACCTGAAGAAGAAGACTTTCAAGTCT
CAAATTCTCAAATCTAGGGGCCATTGAATTGTTGTGGACGGTAGGAGGAAGAGAC
CGAAGTATTTCACAGAAGAAGAGAAACTGTCTAAATCATGTTGGTGGAAAGAAGA
GTGAACACAAGTTAGACGTTTGACCAAGGGATTACAAATGATTAATCTACGC
GTTTCTAAAGATAGTAGGGTGTACAACATAGTTGTAACATCACATCTACCTGCAAGATACG
CCTGGGTTCATCCTAAATCGATCTGTTGGATTGAGACTTACTGAGAAAAGAAAGAGAG
GAAAGACTATTCAAGAGATTCAAAGCTCGAGCTGCGATAACTGTTCAGTTGCGCAGTA
CAAGGTTGAATACAGTATTCCACACAGGAGAACGTAATTGATGTCTGGAAGGTGGGT
TGTATTCTGAGGGCGTTCCGGTCTGTGACGGTACATACCCCTTCAGTATCGAAGTGTG
GCTAATATGGGTTGCTACTGATTGACTAGGCCCTCAATGTGGAAGAACTGAACAGT

FIG. 3C

TCGGATTACATTGAAGGCATTTACCGATCAAGAGGTTTCGGTGAGTCATGTCTT
GAAACAAGTGGAGATGAAGACGATTGAGGCAGACTACGATGGCCTTACAGACCAGC
TACTACTAGACCTAAGTCATTATTGTCAAGTGAAGATGTTAAGAGAGCGTCTAATAAG
AAAAACTCGTCTTAATGCATAAAGAAATTATTGTCAATATGACGTGTACTCAAGG
GTTGTGAATGAAGTCACTGTTCTGGTCACGAGACGTGAGTATCGGTATGCTAA
CAAATTGCGAAAGCAAGTTGCTGACATGGTTGGTGTACACGTAGGTGTGCGGAAAA
TAATTGTGGATGGTTGTCTGTGTTATCAATGATTTACTTTGATGTGTATAATTG
TTGTGGCCGTAGTCACCTGAAAAGTGTGTAACGTGTTGAAACAAGAAATCGAGA
AATTGGAACAAATTGACGAAATCAAGCTGAAACATGTCTGCGACAGCTAAAAA
GTCTCATAATTGAAGACCTCTAACAGAGAAATTCAAAGAGGGACAGAGAATTGGGAC
ACCAAAAAGATTTAAGAGATGATGTTCTTCGGGATTGATCGTTGTTGCTTT
GATTTATTTATATTGTTATCTGTTCTGTGTATAGACTGTTGAGATTGGCGCTTGGC
CGACTCATTGTCTTACCATAGGGAACGGACTTGTGTTGTTGTTATTTATTGTAT
TTTATTAAAATTCTCAATGATCTGAAAAGGCCTCGAGGCTAACAGAGATTATTGGGGGT
GAGTAAGTACTTTAAAGTGTGATGTTACAAAGGCAAAAGGGTAAAACCCCTCG
CCTACGTAAGCGTTATTACGCC-3' (SEQ ID NO: X).

FIG. 3D

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

16 K ORF Polylinker Start Codon of PDS
 TTT GCT TTT TGA TTAATTACCTGCAT ATG CCC CAA ATT GGA CTT GTT
 phe ala phe Stop met pro gln ile gly leu val

FIG. 10

FIG. 11

FIG. 12

FIG. 13

```

740 AT #120 27 TCCGAAACATTCTGTAGTGAAGCAAAATGGGTTGAGTTTCGCCAAGCTGGTTAGCAG
||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| AA042085
TCCGAAACATTCTGTAGTGAAGCAAAATGGGTTGAGTTTCGCCAAGCTGGTTAGCAG

740 AT #120 27 GCTTTTGCCTAAGAAGGAGATGCGAATTCTGATGGTTGGCTTGATGCTGGTAAGAC
||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| AA042085
GCTTTTGCCTAAGAAGGAGATGCGAATTCTGATGGTTGGCTTGATGCTGGTAAGAC

740 AT #120 27 CACAATCTTGTACAAGCTCAAGCTCGGAGAGATTGTCAACCACCATCCCTACTATTGGTT
||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| AA042085
CACAATCTTGTACAAGCTCAAGCTCGGAGAGATTGTCAACCACCATCCCTACTATTGGTT

740 AT #120 27 CAATGTGAAACTGTGGAATAACAAGAACATTAGTTCACCGTGTGGGATGTCGGGGTCA
||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| AA042085
CAATGTGAAACTGTGGAATAACAAGAACATTAGTTCACCGTGTGGGATGTCGGGGTCA

740 AT #120 27 GGACAAGATCCGTCCCTTGTGGAGACACTACTTCCAGAACACTCAAGGTCTAATCTTGT
||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| AA042085
GGACAAGATCCGTCCCTTGTGGAGACACTACTTCCAGAACACTCAAGGTCTAATCTTGT

740 AT #120 27 TGTTGATAGCAATGACAGAGACAGAGTTGTGAGGCTCGAGATGAACTCCA.CAGGATGCT
||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| AA042085
TGTTGATAGCAATGACAGAGACAGAGTTGTGAGGCTCGAGATGAACTCCA.CAGGATGCT

740 AT #120 27 GAATGAGGACGAGCTGCGTGAATGGCTGCTGGTTGCTGTGTT
||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| AA042085
GNATGAGNACGAGCTGCGTGAATGGCTGCTGTGTTGCTGTGTT

```

FIG. 14

Nucleotide sequence alignment of 740 AT #120 to *Oryza sativa* D17760

740	AT	120	27	AAATGGGGTTGAGTTTGCCTAACAGCTGTTAGCAGGCTTTGCCAAGAAGGAGATGCCAA	86
D17760		166		AGATGGGCTCACGTTAACGGCTTCAACGGCTCCAGGCCCTCTTGCCCAAGAAGGAGATGAGGA	225
740	AT	120	87	TTCCTGATGGTTGGTCTTGATGGCTGGTAAGGACCAAAATCTTGTACAAGCTCAAGCTCG	146
D17760		226		TCCTCATGGTCGGTCTCGATGGGGGGTAAACCCATTCTACAAGCTCAAGCTCG	285
740	AT	120	147	GAGAGATGGTACCCACCATCCCTACTATTGGTTCAATATGGAAACTGTGGAAATAACAAGA	206
D17760		286		GGGAGATGGTACCCACTATCCCCACCATCGGTTTAATGTCGAAACACTGTGAGTACAAGA	345
740	AT	120	207	ACATTAGTTTCACCCGTGTTGGATGTCGGGATCAGGACAAAGATCCGTCCCTTGAGGAGAC	266
D17760		346		ACATTAGCTTCACCGGTTGGATGGTGGTCAGGACAAAGATCAGGCCCTGTGGAGGGC	405
740	AT	120	267	ACTACTCCAGAACACTCAAGGTCTAATCTTGTGATAGCAATGACAGAGACAGAG	326
D17760		406		ACTATTCCAGAACCCAGGGCCTCATTTGTGGACAGCAATGACAGAGCCGTG	465
740	AT	120	327	TTGTTGAGGGCTCGAGATGAACACTCCACAGGATGCTGAATGAGGAGCTGCCATGCTG	386
D17760		466		TTGTTGAGGGCCAGGGATGAGCTCCACCGTATGCTGAATGAGGATGAGCTACGTGATGCTG	525

FIG. 15A

740	AT	120	387	TGTTGCTTGTGTTTGCCAAACAAAGCAAGATCTTCCAATGCTATGAACGCTGCTGAAATCA	446
D17760			526	TGCTGCTGGTGGTTTGCAAACAAAGATCTTCCAATGCCATATGCCATGAAACGCTGCTGAGATCA	585
740	AT	120	447	CAGATAAAGCTTGGCCTTCACTCCCTCGTCAGCGTCATTGGTATATCCAGAGCACATGTG	506
D17760			586	CCGACAAGCTTGGTCTGCACCTTGCCAGGGCACTGGTACATGGTACATCCAGAGCACATGTG	645
740	AT	120	507	CCACTTCAGGTGAAGGGCTTATGAAGGGCTGGACTGGCTCTCCAAACAAACATCGCTGGCA	566
D17760			646	CTACCTCTGGTGAAGGGGTTGGTATGAGGGCTTGACTGGCTTCCAAACAAACATTGCCAACCA	705
740	AT	120	567	AGGCATGATG	576
D17760			706	AGGCTTGAAAG	715

FIG. 15B

FIG. 16

740	AT #120	TGGTCTTGATGCTGGTAAGACCACAATCTGTACAAGCTCAAGCTCGGAGAGATTGT
Nb	ARF #3	CGGTCTTGATGCAGCTGGTAAAACCACCATATTGTACAAGCTCAAGCTGGGAGAGATAGT
740	AT #120	CACCACCATCCCTACTATTGGTTCAATGTGGAAACTGTGGAATACAAGAACATTAGTT
Nb	ARF #3	TACCACTATTCCCTACCATTGGATTCAATGTGGAGACTGTTGAATACAAGAACATAAGCTT
740	AT #120	CACCGTGTGGATGTCGGGGTCAGGACAAGATCCGCCCTGTGGAGACACTACTTCCA
Nb	ARF #3	CACGGTCTGGATGTTGGTGGTCAGGACAAGATCCGACCATTGTGGAGGCATTACTTCCA
740	AT #120	GAACACTCAAGGTCTAATCTTGTGTTGATAGCAATGACAGAGACAGAGTTGTTGAGGC
Nb	ARF #3	AAACACACAAGGACTTATCTTGTGGTCAGTAGTAATGATCGTATCGTGTGTTGAGGC
740	AT #120	TCGAGATGAACTCCACAGGATGCTGAATGAGGACGAGCTCGTGATGCTGTGTTGCTGT
Nb	ARF #3	TAGAGATGAGCTGCACCGATGTTGAATGAGGATGAAGCTGAGGGATGCTGTGCTGTTG
740	AT #120	GTTTGCCAACAAGCAAGATCTTCAAATGCTATGAACGCTGCTGAAATCACAGATAAGCT
Nb	ARF #3	GTTTGCTAACAAAGCAAGATCTTCAAATGCTATGAATGCTGCTGAGATTACTGACAAGCT
740	AT #120	TGGCCTTCACTCCCTCCGTCAAGCGTCATTGG
Nb	ARF #3	TGGTCTTCATTCTCCGTCAACGTCACTGG

FIG. 17

FIG. 18

. tsp of PEBV coat protein sgp
ataattatactgattgtctcgatagagtatcattgttactaaaaattgacaactcggttgctgaccta

FIG. 19

FIG. 20

GAAACCGGGAGGCAAGCTCAGGGTCACAATTAGCGAGGATGTATCTCCAGTTTA
CATCAATGAGAATGGTGACAAGTACCCACTAAGAAAGAGTCACCACGGGT
TTGGCCACAGAAATCCGCTCACCCAGCCCCGCTTTCGGATGATAAAATATTCAA
GGCAAAGAGGTGCTTCTGAAGAAGCCATTGGTTGCTTCAACCCAAAAGCCACC
TCAAAAGTACTAAAGTTTGCTATGTGTATTGCTACTCATGGTTATTAA
TGTTCCTCTGTCTTGTGCTTGTGACTCTTGACTCTGTATTGCAACTCAAATTGC
ATGGCAGCAATTCAAACCTCATATCTAATTG

FIG. 21

FIG. 22

FIG. 23

GGCCACGGCGTCCGATGAGGCCAAGTTGACCTTCATGGACTTGTACAGCACTACA
TTAAATTGAGTGAAACCGGAAAAACCGGAACCTAAATGATCTGCTGGACGCCTT
AAACTTCAACCAAGTTGTTATATTGTCAGAGTGTAAAGTCTGGCAGCACAGCTG
GATAAATTACTAGTGGAGTGTAAATTTCATCTTAATCTGCACTCTGGCATGA
CGCAGGAAGAAAAGATTGACTCGCTACAAAGGGTTCAAGGAGGGCACAAGAGAAAT
TCTTGTGCGCAACTGATCTGGTTGGTAGGGGCATTGACATCGAAAGGGTCAACATT
GTTATTAAACTATGACATGCCAGATTCAGACACGTTCTTCAGAGCTTCAAGAGTGGTC
GAGCTGGTAGGTTGGAACTAAAGGCCCTGCCATCACATTGTGTTCATCTGCATC
AGATTCTGATGTTCTAAATCAGGTTCAAGAAAGGTTGAAGTAGACATAAAAGAG
CTTCCTGAGCAGATTGATACTTCTACGTTACATGCCATCTTAGGGATCTCGAGAGC
TTCCAGCAATATCAGTCATTAAAGATGGGGGACTGACAGGTGTTGCTA
TTGTTGTTAATTGAGAATTGGGGGCTCTACTATAAGCTCTGGACTGCTGA
GCTGCTGTACCCCTGTTGAACACTCTTCTCCAGTTAACGGAGCACCTA
ACAAATG

FIG. 24

FIG. 25

GGTCAAATTAGCACCTCTCAAGTTCTACAACCTGATATTCAAAAGCA
CCATTTCATTGGCCATCTTGCCTTGCAGAAGTATCGAGTCTTAATCAAGTGAAC
AATGAAACACTGGTGTTACAATCATTGGACCAAGATCGAGTCTTATCAAGTGAAT
AAATAAAGTGAATGCCAACCGATTGTATGAATTCCAGTAGTAATTATCATATAATT
GATTCAACCAATTAGTGTAAATTCTTCTGTGGTGTGTTCATATAAATT
TTCTTGCTGTTGATATGACGTTCAACTCAACGCAAATCATTTCAT
T

FIG. 26

FIG. 27

GGCCTTTACTTGAACCTGGCTGTCCACTCCTTCAGAATCACCAACGTCGGCATT
CAAGACACCACCCAGATCCACACACATGGTACTCCAACCTCAATGACATTA
TCCACTCTATCATGGACATGGATGCTGATGATCACAAATTGAGAACTCACGGTC
CGATGAGAGAGCTCCTCTCAGTTTCAGGGAGGGAGTTAAGTATGGTGCIGGAATT
GGCCCCGGTGTCTATGATATCCACTCCCTAGAATACCATCAACGGAAAGAGATTG
CTGACAGAGGTTAACAAAGATGCTTGCTGTTCTGACACCCAAACATCTTGTGGTCAA
CCCAGATTGGGTCTCAAGAACCTCGCAAGTACGCTGAGGTAAAGCCAGGCCCTCGAG
AACATGGTTCTGCTGCCAAGGCCATCCGCACCCAACTTGCCAGCACAAGTGAG
TCAGATGAAGGAGTCGGACATATCAAGATTCGCCCTTTCATGAAAACAGAAAATT
CTATGTTGATTTAAATCATGGTTGGCAACAAATAATGTTGTAGGTTAGCT
CTGCCGCTGGCATTTCCTTGTGTTGAGCCATTCCCTTTCGGAAGAAAA
TATATCCAATGTATTATGATGTTATGGGTGAGTTGGTTAC

FIG. 28

FIG. 29

GGATGTTGATCAATGGAAAAGAGCTGGTAGGGAGATGGGTCTGTGAT
GGCAAGAAAATTGCCCTGGATAATCAAACACTCTGTCAATGGACATCCTTACGGAAAT
GTAATGCTGCTCTTCACAGAAAGGAAAGACAGATAACCGGAAACACTGGC
CTCTGTGGATGGCTCTGGAAAGATAACCCAACCTGAATAGTTAATCCTCTTCAAA
ACCAACAAACCTGGTATTGTCTTGGATATTCAATTTCCTAAGGACTTAATTG
CTACTGGTGGTGGTGGTCAATTCAATGGCTGTGGTCTTGATGTCCTTCAGGACAAT
GAGGGTGAACACTAGGGTCTGGCTCAAGCAGATAAGAACAGTTGGTGGCAA
GTTCTGAAAATGGGAACATGACTGTAGGCATGTCTGAAAGATCATACAGCAGA
GGTGCAGGCTGTCACTGTCCATGCAACCAAATAACTATTGTGACTGCTTCTCT
GATAGCACATGGTGTCTTATGATCTGCTTGGCTTATGCCCTGCAAGGTGG
CAGATGCTACAGAATCTGAGGGTTACACATCCGCAAGCTTCCCACCCCTGATTGG
TCTTGATCCCTGGAACACGGACCTCAAGGGTCTGGATTCAGATTGGGATTTG
AAAAAGTCCAGG

FIG. 30

FIG. 31

GCTCCAGAGCCTAATGGGTTAACAAAGTATCATGGACTCGGCCACAAATGTGGTTGAA
TNGGAAATCCCGGTAACTGGAAATCGGAACTCGGCCACAAATGTGGTTGAA
TGATTGATCGAGTTCTCAAGAGGAGGAATCGTATTAAACACATAACAGTC
GGCTTGTAGGAAATAGGTTCCGATAGGGAGGTACCTGGGAAATGGCAAAAGC
CAAGCCTACATGAATTCAGTGGAAATCGGTGGACCACCTGGCATTATTATC
AGGTGCCTCTGCGTCACATCCCTCTGGTTATGATGAGATGAGCTACCAAATGG
TGTCTGAGGCTCAGCCTAAAGGAGACATGCCAGGATAATGGGTGAAAAGT
GTGATGGAGCATTGGATTGTCGCAGGAATTCCCGATTGCATAGGCATAG
GAAATCCACCTGGAACATGGACATGAAGGCATACTCTTACAGAAATTCACTG
TACAGAGCGGAAGCAGGGATGCAGCACTTAATCAAGGAGTTGATGCTG
ACGGTAGTATTGGAAAGGCTTGGTAGTAAATTCACGATTAAATAAGGACAGA
ATAACAAGTATCACAAAGTTGATGAAATTGAATGAAAGGTGTAAGG
GCACGAAGATTACTGATAACTTCAGTCTAAAGTCTAAAGGGTGTAAAGACCC
CAAGG