CXK581001P/M -70L/85L

131,072-word × 8-bit High Speed CMOS Static RAM

Description

CXK551001P/M is a 1,048,576 bits high speed CMOS static RAMs organized as 131,072 words by 8-bit and operates from a single 5V supply. This IC is suitable for use in high speed and low power applications in which battery back up for nonvolatility is required.

Features

• Fast access time: (Access time)
CXK581001P/M-70L/70LL
CXK581001P/M-85L/85LL
85ns (Max.)

• Low power operation :

CXK581001P/M Standby/Operation

Single + 5V supply : +5V ± 10%

Fully static memory... No clock or timing strobe required.

Equal access and cycle time.

Common data input and output: three state output.

Directly TTL compatible : All inputs and outputs.

• Low voltage data retention : 2.0V (Min.)

CXK581001PCXK581001M

600mil 32 pin DIP package 525mil 32 pin SOP package

Function

131,072-word × 8-bit static RAM

Structure

Silicon gate CMOS IC

Block diagram

Pin Configuration

Pin Description

Symbol	Description
Ao to A16	Address input
I/O1 to I/O8	Data input/output
CE1, CE2	Chip enable 1, 2 input
WE	Write enable input
ŌĒ	Output enable input
Vα	+5V power supply
GND	Ground
NC	No connection

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application or circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

243

E89Y03B08 - ST

Absolute Maximum Ratings

/T- 0E	۰۰	CND	Δ\ Λ
(Ta=25	١.	GNU=	:UV)

Item	Symbol		Rating	Unit				
Supply voltage	Vcc		Vcc		upply voltage Vcc		- 0.5 to +7.0	V
Input voltage	Vin		Vin		Vin		- 0.5 * to Vcc+0.5	V
Input and output voltage	V _{I/O}		- 0.5 * to Vcc +0.5	V				
All	_	CXK581001P	1.0	w				
Allowable power dissipation	Ро	CXK581001M	0.7	7 **				
Operating temperature	Topr		Topr		0 to +70	ొ		
Storage temperature	Tstg		Tstg		Tstg		- 55 to +150	ో
Soldering temperature • time	Tsolder		260 • 10	°C • sec				

^{*} V_{IN} , $V_{I/O}$ = - 3.0V Min. for pulse width less than 50ns.

Truth Table

CE1	CE2	ŌĒ	WE	Mode	I/O1 to I/O8	Vcc Current
Н	×	×	×	Not selected	High Z	Isaı, Isa2
×	L	×	×	Not selected	High Z	ISB1, ISB2
L	Н	Н	Н	Output disable	High Z	Icc
L	Н	L	Н	Read	Read Data out	
L	Н	×	L	Write	Data in	lcc

^{×: &}quot;H" or "L"

DC Recommended Operating Conditions (Ta=0 to +70 °C, GND=0V)

ltem	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	Vcc	4.5	5.0	5.5	٧
Input high voltage	ViH	2.2		Vcc+0.3	٧
Input low voltage	VIL	- 0.3 *		0.8	٧

^{*} V_{IL} = -3.0V Min. for pulse width less than 50ns.

Electrical Characteristics

• DC and operating characteristics

(Vcc=5V ± 10%, GND=0V, Ta=0 to +70 °C)

Do and opera					(,			
		T4		70L/85L			- 70LL/85LL			Unit
Item Symbol		Test conditions		Min.	Тур. *	Max.	Min.	Typ.*	Max.	Unit
Input leakage current	lu	Vin=GND to Vcc		- 1	_	1	- 1		1	μΑ
Output leakage current	lıo	CE1=ViH or CE2=ViL or OE=ViH or WE=ViL Vi/o=GND to Vcc		- 1	_	1	- 1		1	μА
Average operating current	lcc	Cycle=Min, Duty=100% lout=0mA			47.5	80		47.5	80	mA
		$ SB1 \qquad \frac{CE2}{CE1} \le 0.2V \text{ or } \\ CE2 \le Vcc - 0.2V$ $CE2 \ge Vcc - 0.2V$	0 to 70 ℃			100			20	
0	IsB1		0 to 40 ℃			20			4	μА
Standby current	1		+25℃		2	8		0.7	2	1
	IsB2	CE1=Vih or CE2=Vil			1.2	3		1.2	3	mA
Output high voltage	Voн	loн= — 1.0mA		2.4			2.4			٧
Output low voltage	Vol	loL=2.1mA				0.4			0.4	٧

^{*} Vcc=5V, Ta=25 ℃

I/O capacitance

(Ta=25°C, f=1MHz)

Item	Symbol	Test conditions	Min.	Max.	Unit
Input capacitance	Cin	Vin=0V		6	рF
I/O capacitance	Ci/o	VI/0=0V		8	pF

Note) This parameter is sampled and is not 100% tested.

AC characteristics

• AC test conditions (Vcc=5V ± 10%, Ta=0 to +70 °C)

Item	Conditions
Input pulse high level	VIH=2.2V
Input pulse low level	VIL=0.8V
Input rise time	tr=5ns
Input fall time	tf=5ns
Input and output reference level	1.5V
Output load conditions	CL*=100pF, 1TTL

• Read cycle (WE="H")

Item	Symbol	- 701	_/70LL	- 851	Limit	
item	Symbol	Min.	Max.	Min.	Max.	Unit
Read cycle time	tec	70		85		ns
Address access time	taa		70		85	ns
Chip enable access time (CE1)	tco1		70		85	ns
Chip enable access time (CE2)	tco2		70		85	ns
Output enable to output valid	toE		40		45	ns
Output hold from address change	tон	10		10		ns
Chip enable to output in low Z (CE1, CE2)	tLZ1, tLZ2	10		10		ns
Output enable to output in low Z (OE)	toLZ	5	—	5		ns
Chip disable to output in high Z (CE1, CE2)	tHZ1, tHZ2*		25		25	ns
Chip disable to output in high Z (OE)	tonz*		25		25	ns

^{*} tuz1, tuz2 and touz are defined as the time at which the outputs become the high impedance state and are not referred to output voltage levels.

• Write cycle

ltem	Symbol	70	L/70LL	- 851	11-14	
	Symbol	Min.	Max.	Min.	Max.	Unit
Write cycle time	twc	70		85		ns
Address valid to end of write	taw	60		75		ns
Chip enable to end of write	tcw	60		75		ns
Data to write time overlap	tow	25		30		ns
Data hold from write time	toн	0	 —	0		ns
Write pulse width	twp	50		60		ns
Address set up time	tas	0		0		ns
Write recovery time (WE, CE1)	twn	5		5		ns
Write recovery time (CE2)	twn	10		10		ns
Output active from end of write	tow	5		5		ns
Write to output in high Z	twnz *		25		30	ns

^{*} twnz is defined as the time at which the outputs become the high impedance state and are not referred to output voltage levels.

Timing Waveform

● Read cycle (1): CE1=OE=VIL, CE2=VIH, WE=VIH

• Read cycle (2): WE=VIH

• Write cycle (1): WE control

• Write cycle (2): CE1 control

• Write cycle (3): CE2 control

- *1. Write is executed when both CE1 and WE are at low and CE2 is at high simultaneously.
- *2. Do not apply the data input voltage of the opposite phase to the output while I/O pin is in output condition.
- *3. twn is tested from the rising edge of WE or CE1, whichever comes earlier, until the end of the write cycle.

Data Retention Characteristics

(Ta=0 to 70 °C)

		Test conditions		- 70L/85L			- 70LL/85LL			Limit
Item	Symbol			Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Data retention voltage	VDR			2.0	_	5.5	2.0		5.5	V
Data retention Iccors		Vcc=0.3V*1	0 to 70 ℃			50		-	12	
	ICCDR1		0 to 40 ℃			10			2.4	μΑ
current			+25 °C	_	1	4	—	0.4	1.2]
	ICCDR2	Vcc=2.0 to 5.5V * 1			2	100		0.7	20	μΑ
Data retention setup time	tons	Chip disable to data retention mode		0			0			ns
Recovery time	tr			trc * 2	_		trc * 2			ns

- * 1. $\overline{\text{CE1}} \ge \text{Vcc} 0.2\text{V}$, $\text{CE2} \ge \text{Vcc} 0.2\text{V}$ ($\overline{\text{CE1}}$ control) or $\text{CE2} \le 0.2\text{V}$ (CE2 control)
- *2. trc: Read cycle time

Data retention waveform

• Low supply voltage data retention waveform (1) (CE1 control)

• Low supply voltage data retention waveform (2) (CE2 control)

Example of Representative Characteristics

