ÉCOLES NORMALES SUPÉRIEURES

CONCOURS D'ADMISSION 2018

FILIÈRE MPI

COMPOSITION DE MATHÉMATIQUES – C – (ULCR)

Corrigé par: SABIR ILYASS.*

★NB: si vous trouvez des erreurs de français, et / ou de mathématiques, ou bien si vous avez des questions et/ou des suggestions, envoyez-moi un mail à:

ilvasssabir7@gmail.com

Les parties I et II sont indépendantes.

1. Partie I

Dans cette partie, E est un ensemble fini ou dénombrable. L'ensemble des probabilités sur E est l'ensemble

$$\mathcal{P}(E) = \left\{ \mu \colon E \to [0,1] | \sum_{x \in E} \mu(x) = 1 \right\}$$

Une matrice de transition sur E est une application $P: E \times E \rightarrow [0, 1]$ telle que pour tout $x \in E$, on a

$$\sum_{y \in E} P(x, y) = 1$$

Le produit PQ de deux matrices de transition P et Q est défini par

$$\forall (x,z) \in E \times E(PQ)(x,z) = \sum_{y \in E} P(x,y)Q(y,z)$$

On notera I la matrice de transition définie par $I(x,y) = \begin{cases} 1 \sin x = y \\ 0 \sin x \neq y \end{cases}$

1.1. (a) Vérifier que si P et Q sont des matrices de transition, PQ est aussi une matrice de transition.

Soient P, Q deux matrices de transition, on a pour tout $x \in E$

$$\sum_{y \in E} (PQ)(x, y) = \sum_{y \in E} \sum_{z \in E} P(x, z)Q(z, y)$$

Avec la famille $(P(x,z)Q(z,y))_{(y,z)\in E\times E}$ est à terme positifs, donc via le théorème de Fubini-Tonelli on a:

$$\sum_{y \in E} (PQ)(x, y) = \sum_{z \in E} \sum_{y \in E} P(x, z) Q(z, y)$$
$$= \sum_{z \in E} P(x, z) \sum_{y \in E} Q(z, y)$$

Puisque Q est une matrice de transition, alors $\sum\limits_{y\in E}Q(z,y)=1,$

Ensuite $\sum_{y \in E} (PQ)(x, y) = \sum_{z \in E} P(x, z) = 1$, car P est une matrice de transition, d'où le résultat.

(b) Vérifier que si P, Q et R sont des matrices de transition, on a (PQ)R = P(QR).

On a pour tout $(x, y) \in E \times E$

$$\begin{aligned} (PQ)R(x,y) &=& \sum_{z \in E} (PQ)(x,z)R(z,y) \\ &=& \sum_{z \in E} \sum_{t \in E} P\left(x,t\right)Q(t,z)R(z,y) \end{aligned}$$

La famille $(P(x,t)Q(t,z)R(z,y))_{(z,t)\in E\times E}$ est à terme positifs, donc d'après le théorème de Fubini-Tonelli on a:

$$(PQ)R(x,y) = \sum_{t \in E} \sum_{z \in E} P(x,t)Q(t,z)R(z,y)$$
$$= \sum_{t \in E} P(x,t) \sum_{z \in E} Q(t,z)R(z,y)$$
$$= \sum_{t \in E} P(x,t)(QR)(t,y)$$
$$= P(QR)(x,y)$$

Et ça pour tout $(x, y) \in E \times E$, donc (PQ)R = P(QR).

(c) Pour tout entier $n \ge 0$ et toute matrice de transition P, on définit P^n par $P^0 = I$ et la relation de récurrence $P^{n+1} = P^n P$ si $n \ge 0$. Vérifier que P^n est bien une matrice de transition.

Par récurrence sur $n \in \mathbb{N}$, on a pour n = 0, $P^0 = I$ est une matrice de transition.

Soit $n \in \mathbb{N}$, supposons que P^n est une matrice de transition, et puisque P est une matrice de transition, alors via la question **1.1.a** le produit $P^{n+1} = P^n P$ est une matrice de transition, d'où le résultat.

Étant données $\mu \in \mathcal{P}(E)$, une matrice de transition P et des fonctions bornées $f: E \to \mathbb{R}$ et $g: E \to \mathbb{R}$, on définit les nombres réels suivants

$$\begin{split} \mu[f] &= \sum_{x \in E} \mu(x) f(x). \\ \mu P(y) &= \sum_{x \in E} \mu(x) P(x,y), \text{où } y \in E. \\ Pf(x) &= \sum_{y \in E} P(x,y) f(y), \text{où } x \in E. \\ \langle f,g \rangle_{\mu} &= \mu \, [fg]. \end{split}$$

- **1.2.** Soit $\mu \in \mathcal{P}(E)$, soient P et Q des matrices de transition et soit $f: E \to \mathbb{R}$ une fonction bornée
 - (a) Montrer que $\mu P \in \mathcal{P}(E)$ et que $(\mu P)Q = \mu(PQ)$.

Montrons d'abord que $\mu P \in \mathcal{P}(E)$.

On a pour tout $x \in E$

$$\sum_{x \in E} \mu P(x) = \sum_{x \in E} \sum_{y \in E} \mu(y) P(y, x)$$

La famille $(\mu(y)P(y,x))_{(x,y)\in E\times E}$ est à terme positifs, donc via le théorème de Fubini-Tonelli on a:

$$\begin{split} \sum_{x \in E} \mu P(x) &= \sum_{y \in E} \sum_{x \in E} \mu(y) P(y,x) \\ &= \sum_{y \in E} \mu(y) \bigg(\sum_{x \in E} P(y,x) \bigg) \\ &= \sum_{y \in E} \mu(y) \left(\operatorname{car} P \operatorname{est une matrice de transition} \right) \\ &= 1 \left(\operatorname{car} \mu \in \mathcal{P}(E) \right) \end{split}$$

De plus pour tout $x \in E$ on a $0 \le \mu P(x) \le \sum_{x \in E} \mu P(x) = 1$. Donc $\mu P \in \mathcal{P}(E)$

Montrons maintenant que $(\mu P)Q = \mu(PQ)$.

On a pour tout $y \in E$, on a

$$\begin{array}{ll} (\mu P)Q(x) & = & \displaystyle\sum_{x\in E} (\mu P)(x)Q(x,y) \\ \\ & = & \displaystyle\sum_{x\in Ez\in E} \mu(z)P(z,x)Q(x,y) \end{array}$$

Avec la famille $(\mu(z)P(z,x)Q(x,y))_{(x,z)\in E\times E}$ est à termes positifs, donc on a via le théorème de Fubini-Tonelli

$$\begin{split} (\mu P)Q(x) &= \sum_{z \in E} \sum_{x \in E} \mu(z) P(z,x) Q(x,y) \\ &= \sum_{z \in E} \mu(z) \Biggl(\sum_{x \in E} P(z,x) Q(x,y) \Biggr) \\ &= \sum_{z \in E} \mu(z) (PQ)(z,y) \\ &= \mu(PQ)(y) \end{split}$$

D'où le résultat.

(b) Montrer que $Pf: E \to \mathbb{R}$ est une fonction bornée et que $\mu P[f] = \mu[Pf]$. On a pour tout $x \in E$

$$|Pf(x)| = \left| \sum_{y \in E} P(x, y) f(y) \right|$$

$$\leqslant \sum_{y \in E} P(x, y) |f(y)|$$

$$\leqslant \max_{z \in E} |f(z)| \sum_{y \in E} P(x, y)$$

$$\leqslant \max_{z \in E} |f(z)|$$

$$< +\infty (\operatorname{car} f \operatorname{est born\'ee})$$

D'où Pf est bornée. Montrons maintenant que $\mu P[f] = \mu [Pf]$

On a

$$\begin{split} \mu P[f] &= \sum_{x \in E} \mu P(x) f(x) \\ &= \sum_{x \in E} \sum_{y \in E} \mu(y) P(y,x) f(x) \end{split}$$

La famille $(\mu(y)P(y,x)f(x))_{(x,y)\in E\times E}$ est sommable, en effet on a

$$\begin{split} \sum_{y \in Ex \in E} |\mu(y)P(y,x)f(x)| &= \sum_{y \in E} \mu(y) \sum_{x \in E} P(y,x) |f(x)| \\ &\leqslant \|f\|_{\infty} \sum_{y \in E} \mu(y) \sum_{x \in E} P(y,x) \\ &= \|f\|_{\infty} \sum_{y \in E} \mu(y) \\ &= \|f\|_{\infty} \\ &< +\infty \end{split}$$

Donc d'après le théorème Fubini-Tonelli la famille $(\mu(y)P(y,x)f(x))_{(x,y)\in E\times E}$ est sommable.

Et on a

$$\begin{split} \mu P[f] &= \sum_{x \in E} \sum_{y \in E} \mu(y) P(y,x) f(x) \\ &= \sum_{y \in E} \mu(y) \Biggl(\sum_{x \in E} P(y,x) f(x) \Biggr) \\ &= \sum_{y \in E} \mu(y) Pf(y) \\ &= \mu[Pf] \end{split}$$

(c) Montrer que (PQ)f = P(Qf).

Pour tout $x \in E$, on a

$$(PQ)f(x) = \sum_{y \in E} (PQ)(x, y)f(y)$$
$$= \sum_{y \in E} \sum_{z \in E} P(x, z)Q(z, y)f(y)$$

La famille $(P(x,z)Q(z,y)f(y))_{(y,z)\in E\times E}$ est sommable, en effet

$$\begin{split} \sum_{z \in E} \sum_{y \in E} |P(x,z)Q(z,y)f(y)| &= \sum_{z \in E} \sum_{y \in E} P(x,z)Q(z,y)|f(y)| \\ &\leqslant \|f\|_{\infty} \sum_{z \in E} P(x,z) \Biggl(\sum_{y \in E} Q(z,y) \Biggr) \\ &= \|f\|_{\infty} \sum_{z \in E} P(x,z) \\ &= \|f\|_{\infty} \\ &< +\infty \end{split}$$

Et donc via le thèoréme de Fubini-Tonelli, on a

$$\begin{split} (PQ)f(x) &= \sum_{z \in E} \sum_{y \in E} P(x,z)Q(z,y)f(y) \\ &= \sum_{z \in E} P(x,z) \Biggl(\sum_{y \in E} Q(z,y)f(y) \Biggr) \\ &= \sum_{z \in E} P(x,z)(Qf)(z) \\ &= P(Qf)(x) \end{split}$$

Et ça pour tout $x \in E$. d'où (PQ) f = P(Qf).

Une matrice de transition P sera dite **réversible** par rapport à un élément π de $\mathcal{P}(E)$ si pour tout $(x,y) \in E^2$, on a

$$\pi(x)P(x,y) = \pi(y)P(y,x).$$

Une matrice de transition P sera dite **irréductible** si pour tout $(x,y) \in E^2$, il existe un entier $n \ge 1$ tel que $P^n(x,y) > 0$.

On se donne, sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, une suite $(U_n)_{n\geqslant 1}$ de variables aléatoires réelles indépendantes et identiquement distribuées, et une variable aléatoire X_0 à valeurs dans E, indépendante de la suite $(U_n)_{n\geqslant 1}$. On se donne une fonction $F: E \times \mathbb{R} \to E$ et on définit une suite $(X_n)_{n\geqslant 1}$ de variables aléatoires à valeurs dans E en posant, pour tout entier $n\geqslant 1$,

$$X_n = F(X_{n-1}, U_n)$$

La loi de X_n est notée μ_n . On rappelle que c'est l'élément de $\mathcal{P}(E)$ défini par $\mu_n(x) = \mathbb{P}[X_n = x]$ pour tout $x \in E$.

L'espérance d'une variable aléatoire réelle bornée X sera notée $\mathbb{E}[X]$.

Pour tout $(x, y) \in E^2$, on pose $P(x, y) = \mathbb{P}[F(x, U_1) = y]$.

1.3. (a) Vérifier que P est une matrice de transition et que, pour tout entier $n \ge 0$ et tout $(x_0, ..., x_n) \in E^{n+1}$, on a

$$\mathbb{P}[X_0 = x_0, \dots, X_n = x_n] = \mu_0(x_0) \prod_{i=1}^n P(x_{i-1}, x_i).$$

Vérifiant d'abord que P est une matrice de transition, on a pour tout $x \in E$:

$$\sum_{y \in E} P(x, y) = \sum_{y \in E} \mathbb{P}[F(x, U_1) = y]$$

$$= 1$$

D'où P est une matrice de transition.

On a pour tout $n \in \mathbb{N}$

$$\mathbb{P}[X_0 = x_0, \dots, X_n = x_n] = \mathbb{P}[X_0 = x_0, \dots, X_{n-1} = x_{n-1}, X_n = x_n] \\
= \mathbb{P}[X_0 = x_0, \dots, X_{n-1} = x_{n-1}, F(X_{n-1}, U_n) = x_n] \\
= \mathbb{P}[X_0 = x_0, \dots, X_{n-1} = x_{n-1}, F(x_{n-1}, U_n) = x_n]$$

Par itération, on obtient

$$\mathbb{P}[X_0 = x_0, \dots, X_n = x_n] = \mathbb{P}[X_0 = x_0, F(x_0, U_n) = x_1, \dots, F(x_{n-1}, U_n) = x_n]$$

Avec $(U_n)_{n\geqslant 1}$ est une suite de variables aléatoires réelles indépendantes et identiquement distribuées, alors pour tout $x\in\mathbb{R}$ $(F(x,U_k))_{k\geqslant 1}$ est une suite de variables aléatoires indépendantes et identiquement distribuées, et X_0 est indépendante de la suite $(U_n)_{n\geqslant 1}$, donc X_0 est indépendante de la suite $(F(x,U_k))_{k\geqslant 1}$ où $x\in E$, on a alors

$$\mathbb{P}[X_0 = x_0, \dots, X_n = x_n] = \mathbb{P}[X_0 = x_0] \prod_{k=1}^n \mathbb{P}[F(x_{k-1}, U_n) = x_k]
= \mathbb{P}[X_0 = x_0] \prod_{k=1}^n \mathbb{P}[F(x_{k-1}, U_1) = x_k]
= \mu_0(x_0) \prod_{k=1}^n P(x_{k-1}, x_k)$$

(b)Montrer que pour tout entier $n \geqslant 0$ et tout $(x_0, ..., x_n) \in E^{n+1}$ tel que $\mathbb{P}[X_0 = x_0, ..., X_n = x_n] > 0$, on a, pour tout $x \in E$,

$$\mathbb{P}[X_{n+1} = x | X_0 = x_0, \dots, X_n = x_n] = P(x_n, x)$$

Soit $n \in \mathbb{N}$, $x \in E$ et soit $(x_0, \dots, x_n) \in E^{n+1}$ tel que $\mathbb{P}[X_0 = x_0, \dots, X_n = x_n] > 0$.

Posons $x_{n+1} = x$. En utilisant la question précédente, on a

$$\mathbb{P}[X_{n+1} = x_{n+1} | X_0 = x_0, \dots, X_n = x_n] = \frac{\mathbb{P}[X_0 = x_0, \dots, X_n = x_n, X_{n+1} = x_{n+1}]}{\mathbb{P}[X_0 = x_0, \dots, X_n = x_n]}$$

$$= \frac{\mu_0(x_0) \prod_{k=1}^{n+1} P(x_{k-1}, x_k)}{\mu_0(x_0) \prod_{k=1}^{n} P(x_{k-1}, x_k)}$$

$$= P(x_n, x_{n+1})$$

$$= P(x_n, x)$$

D'où le résultat.

(c) Montrer que pour tout $n \ge 0$, on a $\mu_n = \mu_0 P^n$ et que si $\mu_0 P = \mu_0$, alors $\mu_n = \mu_0$ pour tout $n \ge 0$.

Soit $n \in \mathbb{N}$, on a pour tout $x \in E$, on a par formule de probabilité totale, en utilisant la question 1.3.a, et en posant $x_n = x$:

$$\mu_{n}(x) = \mathbb{P}[X_{n} = x]$$

$$= \sum_{x_{0} \in E} \sum_{x_{1} \in E} \dots \sum_{x_{n-1} \in E} \mathbb{P}[X_{n} = x, X_{0} = x_{0}, \dots, X_{n-1} = x_{n-1}]$$

$$= \sum_{x_{0} \in E} \sum_{x_{1} \in E} \dots \sum_{x_{n-1} \in E} \mathbb{P}[X_{0} = x_{0}, \dots, X_{n-1} = x_{n-1}, X_{n} = x]$$

$$= \sum_{x_{0} \in E} \sum_{x_{1} \in E} \dots \sum_{x_{n-1} \in E} \mu_{0}(x_{0}) \prod_{k=1}^{n} P(x_{k-1}, x_{k})$$

$$= \sum_{x_{0} \in E} \mu_{0}(x_{0}) \sum_{x_{1} \in E} \dots \sum_{x_{n-1} \in E} \prod_{k=1}^{n} P(x_{k-1}, x_{k})$$

Par une simple récurrence, on peut montrer facilement la formule qui donne le produit fini de plusieurs matrices de transitions:

$$\sum_{x_1 \in E} \dots \sum_{x_{n-1} \in E} \prod_{k=1}^n P(x_{k-1}, x_k) = P^n(x_0, x_n)$$

D'où

$$\mu_n(x) = \sum_{x_0 \in E} \mu_0(x_0) P^n(x_0, x_n)$$
$$= \mu_0 P^n(x_n)$$
$$= \mu_0 P^n(x)$$

Et ça pour tout $x \in E$, alors $\mu_n = \mu_0 P^n$.

Supposons que $\mu_0 P = \mu_0$, Et montrons par récurrence que $\mu_n = \mu_0$ pour tout $n \ge 0$ Pour n=0, on a bien $\mu_0 P^0 = \mu_0 I = \mu_0$

Soit $n \in \mathbb{N}$, supposons que $\mu_n = \mu_0 P^n$ et montrons que $\mu_n = \mu_0 P^{n+1}$ On a par hypothèse de récurrence $\mu_n P^{n+1} = (\mu_0 P^n)P = \mu_0 P = \mu_0$ D'où le résultat.

(d) Montrer que pour tout $n \ge 0$ et tout $x \in E$ tel que $\mu_0(x) > 0$, on a $\mathbb{P}[X_n=y | X_0=x]=P^n(x,y)$ pour tout $y \in E$.

Soit $n \in \mathbb{N}$. On a pour tout $x, y \in E$, tel que $\mu_0(x) > 0$

$$\mathbb{P}[X_n = y \mid X_0 = x] = \frac{\mathbb{P}[X_n = y, X_0 = x]}{\mathbb{P}[X_0 = x]} \\
= \frac{1}{\mu_0(x)} \mathbb{P}[X_n = y, X_0 = x]$$

Notons $x_0 = x, x_n = y$, on a

$$\mathbb{P}[X_n = y \mid X_0 = x] = \frac{1}{\mu_0(x)} \sum_{x_1 \in E} \dots \sum_{x_{n-1} \in E} \mathbb{P}[X_0 = x_0, \dots, X_{n-1} = x_{n-1}, X_n = x]$$

$$= \frac{1}{\mu_0(x)} \sum_{x_1 \in E} \dots \sum_{x_{n-1} \in E} \mu_0(x_0) \prod_{k=1}^n P(x_{k-1}, x_k)$$

$$= \sum_{x_1 \in E} \dots \sum_{x_{n-1} \in E} \prod_{k=1}^n P(x_{k-1}, x_k)$$

$$= P^n(x_0, x_n)$$

$$= P^n(x, y)$$

D'où le résultat.

(e) Montrer que pour toute fonction $f: E \to \mathbb{R}$ bornée, on a

$$\mathbb{E}[f(X_n)] = \mu_0[P^n f].$$

On a

$$\mathbb{E}[f(X_n)] = \sum_{x \in E} f(x) \mathbb{P}[X_n = x]$$

$$= \sum_{x \in E} f(x) \mu_n(x)$$

$$= \sum_{x \in E} \mu_0 P^n(x) f(x)$$

$$= \mu_0 P^n[f]$$

$$= \mu_0 [P^n f] \quad (d' \text{après la question 1.2.c})$$

À partir de maintenant, on supposera que

- P est réversible par rapport à une probabilité $\pi \in \mathcal{P}(E)$,
- il existe $a \in E$ tel que $\pi(a) > 0$ et tel que, pour tout $x \in E$, il existe un entier $n \ge 1$ pour lequel $P^n(a, x) > 0$.

1.4. Montrer que $\pi P = \pi$.

On a pour tout $x \in E$

$$\pi P(x) = \sum_{y \in E} \pi(y) P(y, x)$$

$$= \sum_{y \in E} \pi(x) P(x, y)$$

$$= \pi(x) \sum_{y \in E} P(x, y)$$

$$= \pi(x)$$

Et ça pour tout $x \in E$, alors $\pi P = \pi$.

1.5. (a) Montrer que pour tout $n \geqslant 1$, la matrice de transition P^n est réversible par rapport à π .

Essayons de montrer le résultat par récurrence sur $n \in \mathbb{N}^*$

Pour n=1, on a par définition de $P,\,P$ est réversible par rapport à $\pi.$

Soit $n \in \mathbb{N}^*$, supposons que P^n est réversible par rapport à π , et montrons que P^{n+1} est réversible par rapport à π

On a

$$\begin{split} \pi(x)P^{n+1}(x,y) &= \pi(x)(P^nP)(x,y) \\ &= \sum_{z \in E} \pi(x)P^n(x,z)P(z,y) \\ &= \sum_{z \in E} \pi(z)P^n(z,x)P(z,y) \\ &= \sum_{z \in E} \pi(z)P(z,y)P^n(z,x) \\ &= \sum_{z \in E} \pi(y)P(y,z)P^n(z,x) \\ &= \pi(y)\sum_{z \in E} P(y,z)P^n(z,x) \\ &= \pi(y)(PP^n)(y,x) \\ &= \pi(y)P^{n+1}(y,x) \end{split}$$

Ainsi P^{n+1} est réversible par rapport à π , d'où le résultat par récurrence sur $n \ge 1$.

(b) Soit $n \geqslant 1$ et soit $x \in E$. Montrer que si $P^n(a,x) > 0$, on a $P^n(x,a) > 0$ et $\pi(x) > 0$.

On a d'après la question précédente.

$$\pi(a)P^n(a,x) = \pi(x)P^n(x,a)$$

Avec $\pi(a) > 0$, et $P^n(a, x) > 0$, alors $\pi(x) P^n(x, a) > 0$, avec $\pi(x) \ge 0$, alors $P^n(x, a) > 0$ et $\pi(x) > 0$.

(c) Montrer que $\pi(x) > 0$ pour tout $x \in E$.

On a pour tout $x \in E$, il existe un entier $n \ge 1$ pour lequel $P^n(a, x) > 0$. donc d'après la question précédente on a $\pi(x) > 0$.

(d) Montrer que P est irréductible.

Soit $(x, y) \in E^2$, on a l'existance de $n_1, n_2 > 0$ tel que $P^{n_1}(a, x), P^{n_2}(a, y) > 0$. Et d'après la question précédente $\pi(x), \pi(y) > 0$. On a alors

$$P^{n_1+n_2}(x,y) = (P^{n_1} \times P^{n_2})(x,y)$$

$$= \sum_{z \in E} P^{n_1}(x,z)P^{n_2}(z,x)$$

$$\geqslant P^{n_1}(x,a)P^{n_2}(a,x)$$

Or, d'après la question 1.5.a on a est P^{n_1} réversible par rapport à π , donc

$$P^{n_1}(x,a) = \frac{\pi(a)}{\pi(x)} P^{n_1}(a,x) > 0$$

Ainsi $P^{n_1+n_2}(x,y) > 0$, et ça pour tout $(x,y) \in E^2$, donc par définition P est irréductible.

1.6. Pour toute fonction $f: E \to \mathbb{R}$ bornée et tout entier $n \ge 1$, on pose

$$\mathcal{E}_n(f) = \frac{1}{2} \sum_{(x,y) \in E^2} [f(x) - f(y)]^2 \pi(x) P^n(x,y)$$

(a) Montrer que $\mathcal{E}_n(f) = \langle f - P^n f, f \rangle_{\pi}$.

On a

$$\begin{split} \langle f - P^n f, f \rangle_\pi &= \pi[(f - P^n f) f] \\ &= \sum_{x \in E} \pi(x) (f(x) - P^n f(x)) f(x) \\ &= \sum_{x \in E} \pi(x) \bigg(f(x) - \sum_{y \in E} P^n(x, y) f(y) \bigg) f(x) \end{split}$$

Montrons que la famille $(\pi(x)(f(x)-f(y))f(x)P^n(x,y))_{(x,y)\in E^2}$ est sommable

Puisque P est réversible par rapport à π , alors on a:

$$\begin{split} \sum_{(x,y)\in E^2} &|\pi(x)(f(x)-f(y))f(x)P^n(x,y)| \; = \; \sum_{(x,y)\in E^2} &|\pi(y)(f(y)-f(x))f(y)P^n(y,x)| \\ &= \; \sum_{y\in E} &\pi(y)|f(y)|\sum_{x\in E} |f(y)-f(x)|P^n(y,x) \\ &\leqslant \; 2\|f\|_{\infty} \sum_{y\in E} &\pi(y)|f(y)|\sum_{x\in E} P^n(y,x) \\ &= \; 2\|f\|_{\infty} \sum_{y\in E} &\pi(y)|f(y)| \end{split}$$

Car $\sum_{x \in E} P^n(y, x) = 1$ pour tout $y \in E$, puisque P^n est une matrice de transition. On a alors

$$\sum_{(x,y)\in E^2} |\pi(x)(f(x) - f(y))f(x)P^n(x,y)| \leq 2||f||_{\infty}^2 \sum_{y\in E} \pi(y)$$

$$= 2||f||_{\infty}^2$$

$$< +\infty$$

Donc la famille $(\pi(x)(f(x)-f(y))f(x)P^n(x,y))_{(x,y)\in E^2}$ est sommable, et on a

$$\langle f - P^{n} f, f \rangle_{\pi} = \sum_{x \in E} \pi(x) \left(f(x) \sum_{y \in E} P^{n}(x, y) - \sum_{y \in E} P^{n}(x, y) f(y) \right) f(x) \qquad (*)$$

$$= \sum_{(x, y) \in E^{2}} \pi(x) (f(x) - f(y)) f(x) P^{n}(x, y)$$

Et puisque P est réversible par rapport à π , alors

$$\sum_{(x,y)\in E^2} \pi(x)(f(x) - f(y))f(x)P^n(x,y) = \sum_{(x,y)\in E^2} \pi(y)(f(y) - f(x))f(y)P^n(y,x)$$
$$= \sum_{(x,y)\in E^2} \pi(x)(f(y) - f(x))f(y)P^n(x,y)$$

Ainsi

$$\begin{split} \sum_{(x,y)\in E^2} \pi(x)(f(x)-f(y))f(x)P^n(x,y) &= \frac{1}{2}\sum_{(x,y)\in E^2} \pi(x)(f(x)-f(y))f(x)P^n(x,y) \\ &+ \frac{1}{2}\sum_{(x,y)\in E^2} \pi(x)(f(y)-f(x))f(y)P^n(x,y) \\ &= \frac{1}{2}\sum_{(x,y)\in E^2} \pi(x)(f(x)^2 - 2f(y)f(x) + f(y)^2)P^n(x,y) \\ &= \frac{1}{2}\sum_{(x,y)\in E^2} \pi(x)(f(x)-f(y))^2P^n(x,y) \\ &= \mathcal{E}_n(f) \end{split}$$

(b) Montrer que si Pf = f, la fonction est f est constante.

Supposons que Pf = f, et montrons que f est constante.

Puisque Pf = f, alors par récurrence simple sur $k \in \mathbb{N}$, on a $P^k f = f$ pour tout $k \in \mathbb{N}$ Et on a d'après la question précédente pour tout $k \in \mathbb{N}$

$$\mathcal{E}_k(f) = \langle f - P^k f, f \rangle_{\pi}$$
$$= 0$$

Donc
$$\frac{1}{2} \sum_{(x,y) \in E^2} \pi(x) (f(x) - f(y))^2 P^k(x,y) = 0$$

Or la somme est à termes positifs,

En particulier pour tout $(x, y) \in E^2 \pi(x) (f(x) - f(y))^2 P^k(x, y) = 0$

Et puisque on a l'existence d'un entier $n \ge 1$ pour lequel $P^n(a, x) > 0$, et $\pi(a) > 0$, alors en particulier pour x = a, et k = n, pour tout $y \in E$ $(f(x) - f(y))^2 = 0$.

Donc f est une fonction constante.

(c) Soit μ un élément de $\mathcal{P}(E)$ tel que $\mu P = \mu$. En posant $f(x) = \frac{\mu(x)}{\pi(x)}$, montrer que Pf = f, puis que $\mu = \pi$.

On a pour tout $x \in E$.

$$Pf(x) = \sum_{y \in E} P(x, y) f(y)$$

$$= \sum_{y \in E} P(x, y) \frac{\mu(y)}{\pi(y)}$$

$$= \sum_{y \in E} P(y, x) \frac{\mu(y)}{\pi(x)}$$

$$= \frac{1}{\pi(x)} \sum_{y \in E} P(y, x) \mu(y)$$

$$= \frac{1}{\pi(x)} \mu P(x)$$

$$= \frac{1}{\pi(x)} \mu(x)$$

$$= f(x)$$

On a alors Pf = f,

Supposons que $\frac{\mu}{\pi}$ est bornée, Donc d'après la question précédente f est constante, posons pour tout $x \in E, \ f(x) = C^{\text{st}} \in \mathbb{R}$, on a alors

$$\mu(x) \ = \ \pi(x)C^{\rm st}$$

Et
$$1 = \sum_{x \in E} \mu(x) = C^{\text{st}} \sum_{x \in E} \pi(x) = C^{\text{st}}$$
, d'où $f(x) = \frac{\mu(x)}{\pi(x)} = 1$, pour tout $x \in E$.
D'où $\mu(x) = \pi(x)$, pour tout $x \in E$, ainsi $\pi = \mu$.

À partir de maintenant, on supposera également qu'il existe un élément b de E tel que P(b,b)>0.

1.7. (a) Montrer que pour tous entiers positifs k, l, n, on a $P^n(b, b) > 0$ et

$$P^{k+n+l}(x,y) \ge P^k(x,b)P^n(b,b)P^l(b,y)$$
 pour tout $(x,y) \in E^2$.

Montrons par récurrence sur $n \in \mathbb{N}$, qu'on a $P^n(b,b) > 0$.

Pour n=0, on a $P^0(b,b)=1>0$? Soit $n\in\mathbb{N}$, supposons que $P^n(b,b)>0$, et montrons que $P^{n+1}(b,b)>0$.

On a par positivité des termes:

$$P^{n+1}(b,b) = P^n \times P(b,b)$$

$$= \sum_{x \in E} P^n(b,x)P(x,b)$$

$$\geqslant P^n(b,b)P(b,b)$$

$$> 0$$

D'où le résultat par récurrence sur $n \in \mathbb{N}$.

Soient $k, l, n \in \mathbb{N}$, et soit $(x, y) \in E^2$, montrons que $P^{k+n+l}(x, y) \ge P^k(x, b) P^n(b, b) P^l(b, y)$ On a

$$P^{k+n+l}(x,y) = \sum_{z \in E} \sum_{t \in E} P^k(x,t) P^n(t,z) P^l(z,y)$$

$$\geqslant P^k(x,b) P^n(b,b) P^l(b,y)$$

D'où le résultat.

(b) Montrer que P^2 est irréductible. On rappelle (cf. la question 5(a)) que P^2 est réversible par rapport à π .

On a d'après la question 1.5.d, P est irréductible, donc on a l'existence de $n_1, n_2 > 0$ tel que $P^{n_1}(b, x) > 0$ et $P^{n_2}(b, y) > 0$.

On a de plus $\pi(y), \pi(a) > 0$, donc via la question précédente, on a

$$(P^{2})^{n_{1}+n_{2}}(x,y) = P^{n_{1}+(n_{1}+n_{2})+n_{2}}(x,y)$$

$$\geqslant P^{n_{1}}(x,b)P^{n_{1}+n_{2}}(b,b)P^{n_{2}}(b,y)$$

$$= \frac{\pi(b)}{\pi(x)}P^{n_{1}}(b,x)P^{n_{1}+n_{2}}(b,b)P^{n_{2}}(b,y)$$

$$> 0$$

D'où le résultat.

(c) Montrer que si une fonction bornée $f: E \to \mathbb{R}$ vérifie Pf = -f, alors f(x) = 0 pour tout $x \in E$.

Soit $f: E \to \mathbb{R}$ une fonction bornée tel que Pf = -f.

On a par récurrence simple sur $n \in \mathbb{N}$, $P^n f = (-1)^n f$, en particulier pour tout $n \in \mathbb{N}$ $P^{2n} f - f = 0$, ensuite en utilisant la question 1.6.a on a pour tout $n \ge 1$ $\mathcal{E}_{2n}(f) = 0$

Ainsi pour tout $n \ge 1$ on a

$$\forall n \in \mathbb{N} \ \frac{1}{2} \sum_{(x,y) \in E^2} [f(x) - f(y)]^2 \pi(x) P^{2n}(x,y) = 0$$

Avec pour tout $(x, y) \in E^2$, on a $[f(x) - f(y)]^2 \pi(x) P^{2n}(x, y) \ge 0$, donc pour tout $(x, y) \in E^2$, on a $[f(x) - f(y)]^2 \pi(x) P^{2n}(x, y) = 0$ (\P)

Soit $(x, y) \in E^2$, on a montré dans la question précédente que P^2 est irréductible Donc par définition, il existe $n_{x,b}, n_{b,y} \ge 1$ tel que $P^{n_{x,b}}(x,b) > 0$ et $P^{n_{b,y}}(b,y) > 0$ Or il existe un entier $n \in \mathbb{N}$ tel que $n_{x,b} + n_{b,y} + n_b$ soit pair, notons par 2k ce nombre. On a via la question 1.7.a

$$P^{2k}(x,y) \geqslant P^{n_{x,b}}(x,b)P^{n_b}(b,b)P^{n_{b,y}}(b,y)$$

Or P(b,b) > 0, donc pour tout $n \in \mathbb{N}$, on a $P^n(b,b) \ge (P(b,b))^n > 0$. Par suite

$$P^{2k}(x,y) > 0$$

Ainsi via (\maltese) , on a $[f(x)-f(y)]^2\pi(x)P^{2k}(x,y)=0$, avec $\pi(x),P^{2k}(x,y)>0$ Donc f(x)=f(y), ainsi f est constante. Ainsi pour tout $x\in E$, on a

$$f(x) = -\sum_{x \in E} P(x, y) f(y)$$
$$= -f(x) \sum_{x \in E} P(x, y)$$
$$= -f(x)$$

Ainsi f(x) = 0, et ça pour tout $x \in E$. D'où le résultat.

- 1.8. Dans cette question, on prend $E = \{1, ..., d\}$, où d est un entier. Une fonction $f: E \to \mathbb{R}$ peut être alors vue comme un élément de \mathbb{R}^d .
- (a) Montrer que $\langle .,. \rangle_{\pi}$ définit un produit scalaire sur \mathbb{R}^d . On note $\|.\|_{\pi}$ la norme associée.

On a pour tout $f, g, h \in \mathbb{R}^d$, et $\lambda \in \mathbb{R}$, on a

$$\begin{split} \langle f, g \rangle_{\pi} &= \pi [fg] \\ &= \sum_{x \in E} \pi(x) f(x) g(x) \\ &= \sum_{x \in E} \pi(x) g(x) f(x) \\ &= \langle g, f \rangle_{\pi} \end{split}$$

Donc $\langle .,. \rangle_{\pi}$ est symétrique. Montrons que $\langle .,. \rangle_{\pi}$ est bilinéaire: On a

$$\begin{split} \langle f,g+\lambda h\rangle_\pi &=& \pi[f(g+\lambda h)] \\ &=& \sum_{x\in E}\pi(x)f(x)(g(x)+\lambda h(x)) \\ &=& \sum_{x\in E}\pi(x)f(x)g(x)+\lambda\sum_{x\in E}\pi(x)f(x)h(x) \\ &=& \langle f,g\rangle_\pi+\lambda\langle f,h\rangle_\pi \end{split}$$

Par symétrie, $\langle ., . \rangle_{\pi}$ est bilinéaire.

Il reste à montrer que $\langle .,. \rangle_{\pi}$ est définie, positif

On a pour f non nul, alors il existe $x_0 \in E$ tel que $f(x_0) \neq 0$

$$\langle f, f \rangle_{\pi} = \pi[f^2]$$

= $\sum_{x \in E} \pi(x) f^2(x)$
= $\sum_{x \in E \setminus \{x_0\}} \pi(x) f^2(x) + \pi(x_0) f^2(x_0)$
> 0

Car
$$\pi(x_0)f^2(x_0) > 0$$
, et $\sum_{x \in E \setminus \{x_0\}} \pi(x)f^2(x) \ge 0$.
D'où le résultat.

(b) Montrer que l'application $f \longmapsto Pf$ est un endomorphisme de \mathbb{R}^d symétrique pour le produit scalaire $\langle .,. \rangle_{\pi}$.

Soit $f, g \in \mathbb{R}^d$ et $\lambda \in \mathbb{R}$, on a pour tout $x \in E$

$$\begin{split} P(f+\lambda g)(x) &= \sum_{y\in E} P(x,y)(f(y)+\lambda g(y)) \\ &= \sum_{y\in E} P(x,y)f(y) + \lambda \sum_{y\in E} P(x,y)g(y) \\ &= Pf(x) + \lambda Pg(x) \\ &= (Pf+\lambda Pg)(x) \end{split}$$

Et ça pour tout $x \in E$, alors $P(f + \lambda g) = Pf + \lambda Pg$, donc $f \longmapsto Pf$ est un endomorphisme de \mathbb{R}^d .

Montrons qu'il est symétrique pour le produit scalaire $\langle .,. \rangle_{\pi}$

On a pour tout $f, g \in \mathbb{R}^d$

$$\langle Pf, g \rangle_{\pi} = \pi[gPf]$$

$$= \sum_{x \in E} \pi(x)g(x)Pf(x)$$

$$= \sum_{x \in E} \pi(x)g(x)\sum_{y \in E} P(x, y)f(y)$$

$$= \sum_{y \in E} \sum_{x \in E} \pi(x)P(x, y)g(x)f(y)$$

$$= \sum_{y \in E} \sum_{x \in E} \pi(y)P(y, x)g(x)f(y)$$

$$= \sum_{y \in E} f(y)\pi(y)\sum_{x \in E} P(y, x)g(x)$$

$$= \sum_{y \in E} f(y)\pi(y)Pg(y)$$

$$= \pi[fPg]$$

$$= \langle f, Pg \rangle_{\pi}$$

D'où le résultat.

(c) Montrer que si $\lambda \in \mathbb{C}$ est une valeur propre de P, alors λ est réelle et vérifie $-1 < \lambda \leqslant 1$.

Puisque $P \longmapsto Pf$ est symétrique pour le produit scalaire $\langle .,. \rangle_{\pi}$, alors P est une matrice réelle symétrique, donc d'après le théorème spectral, P est diagonalisable sur une base orthonormale de \mathbb{R}^d pour le produit scalaire $\langle .,. \rangle_{\pi}$.

Donc λ est réelle, il reste à vérifie que $-1 < \lambda \leq 1$

Soit $e \in \mathbb{R}^d$ un vecteur propre de P associée à λ , alors $Pe = \lambda e$

Notons $P = (p_{i,j})_{1 \le i,j \le d}$, et $e = (e_1, \dots, e_d)$, on a alors pour tout $i \in [1, d]$

$$\sum_{j=1}^{d} p_{i,j} e_j = \lambda e_j$$

Soit $i_0 \in [1, d]$ qui vérifie $|e_{i_0}| = \max_{1 \le i \le d} |e_i|$, puisque e est non nul, alors $|e_{i_0}| > 0$, et on a

$$|\lambda| = \frac{1}{|e_{i0}|} \left| \sum_{j=1}^{d} p_{i,j} e_j \right|$$

$$\leqslant \sum_{j=1}^{d} p_{i,j} \frac{|e_j|}{|e_{i0}|}$$

$$\leqslant \sum_{j=1}^{d} p_{i,j}$$

$$= 1$$

D'après la question 1.7.c, $\lambda \neq 0$ (-1 n'est pas valeur propre de P, le seul vecteur f qui vérifie Pf = -f est f = 0).

D'où $-1 < \lambda \leq 1$.

D'où le résultat.

(d) On note b_1 le vecteur de \mathbb{R}^d dont toutes les composantes valent 1. Montrer que b_1 est un vecteur propre de P associé à la valeur propre 1, qui est une valeur propre de multiplicité 1 pour P.

On a

$$Pb_{1} = \begin{pmatrix} \sum_{y \in E} P(1, y) \\ \vdots \\ \sum_{y \in E} P(d, y) \end{pmatrix}$$
$$= b_{1}$$

Ainsi b_1 est un vecteur propre de P associée à 1, de plus d'après la question 1.6.b, on a pour tout $f \in \mathbb{R}^d$ tel que Pf = f, alors f est constante donc, elle est proportionnelle à b_1 . D'où 1 est une valeur propre de multiplicité 1 pour P.

(e) Montrer qu'il existe $\lambda \in [0,1[$ tel que, pour tout $n \geqslant 1$ et toute fonction $f: E \to \mathbb{R}$, on a

$$\|P^nf - \pi[f]b_1\|_{\pi} \leqslant \lambda^n \|f - \pi[f]b_1\|_{\pi}$$

Si f est une fonction constante, on a pour tout $n \in \mathbb{N}$, $P^n f - \pi[f] b_1 = 0$ et $f - \pi[f] b_1 = 0$, donc tout $\lambda \in [0, 1[$ convient

Dans la suite on suppose que f est non constante.

Montrons d'abord que b_1 est un vecteur normal pour la norme $\|.\|_{\pi}$. Pour cela on a

$$||b_1||_{\pi}^2 = \langle b_1, b_1 \rangle_{\pi}$$

$$= \pi [b_1 b_1]$$

$$= \sum_{x \in E} \pi(x) b_1(x) b_1(x)$$

$$= \sum_{x \in E} \pi(x)$$

$$= 1$$

Complètant b_1 en une base orthonormée de \mathbb{R}^d pour le produit scalaire $\langle .,. \rangle_{\pi}$ $(b_1,...,b_d)$ formée par les vecteurs propres de P

On a l'existence de $x_1, \ldots, x_n \in \mathbb{R}$ tel que $f = \sum_{k=1}^d x_k b_k$

Notons $\lambda_k \in \mathbb{R}$ la valeur propre associée à b_k ($\lambda_1 = 1$) $\forall k \in [1, d]$.

Soit $n \in \mathbb{N}$. On a

$$||P^{n}f - \pi[f]b_{1}||_{\pi}^{2} = \left\| \sum_{k=1}^{d} x_{k} P^{n}b_{k} - \pi[f]b_{1} \right\|_{\pi}^{2}$$

$$= \left\| \sum_{k=1}^{d} x_{k} \lambda_{k}^{n}b_{k} - \pi[f]b_{1} \right\|_{\pi}^{2}$$

$$= \left\| (x_{1} - \pi[f])b_{1} + \sum_{k=2}^{d} x_{k} \lambda_{k}^{n}b_{k} \right\|_{\pi}^{2}$$

$$= (x_{1} - \pi[f])^{2} + \sum_{k=2}^{d} x_{k}^{2} \lambda_{k}^{2}^{n}$$

On définie la fonction $\gamma: \lambda \longmapsto \left((x_1 - \pi[f])^2 + \sum_{k=2}^d x_k^2 \right) \lambda^{2n}$

 γ est une fonction strictement croissante sur \mathbb{R} (car $(x_1 - \pi[f])^2 + \sum_{k=2}^d x_k^2 > 0$, puisque f est non constante).

Et on a

$$\gamma(1) - \|P^n f - \pi[f]b_1\|_{\pi}^2 = \sum_{k=2}^d x_k^2 (1 - \lambda_k^{2^n})$$

Avec 1 est une valeur propre de multiplicité 1 de l'endomorphisme $f \longmapsto Pf$, donc d'après la question 1.8.c, on a pour tout $2 \le k \le d$: $-1 < \lambda_k < 1$,

Par suite
$$\sum_{k=2}^d x_k^2 (1-\lambda_k^{2^n}) \geqslant \min_{2\leqslant k\leqslant d} (1-\lambda_k^{2^n}) \sum_{k=2}^d x_k^2 > 0$$
, car f est non constante.

Ainsi $\gamma(1) > \|P^n f - \pi[f]b_1\|_{\pi}^2$, ainsi puisque γ est strictement croissante, et par caractèrisation de la borne inférieure, il existe $\lambda \in [0, 1[$ tel que $\gamma(\lambda) \ge \|P^n f - \pi[f]b_1\|_{\pi}^2$

Donc pour ce $\lambda \in [0, 1[$, on a

$$\left((x_1 - \pi[f])^2 + \sum_{k=2}^d x_k^2 \right) \lambda^{2n} \ge \|P^n f - \pi[f] b_1\|_{\pi}^2$$

Avec

$$(x_1 - \pi[f])^2 + \sum_{k=2}^{d} x_k^2 = \|f - \pi[f]b_1\|_{\pi}^2$$

Ainsi

$$\lambda^{2n} \| f - \pi[f] b_1 \|_{\pi}^2 \ge \| P^n f - \pi[f] b_1 \|_{\pi}^2$$

D'où

$$\lambda^n \| f - \pi [f] b_1 \|_{\pi} \geqslant \| P^n f - \pi [f] b_1 \|_{\pi}$$

(f) En déduire qu'il existe une constante C telle que

$$orall n \geqslant 1 \sup_{x \in E} |\mu_n(x) - \pi(x)| \leqslant C \lambda^n$$

Soit $n \in \mathbb{N}^*$, et $x \in E$,

D'après la question précédente on a pour $f_x: y \mapsto \mathbf{1}_{x=y}(y) = \begin{cases} 1 \text{ si } x = y \\ 0 \text{ sinon} \end{cases}$

$$\lambda^{2n} \| f_x - \pi[f_x] b_1 \|_{\pi}^2 \ge \| P^n f_x - \pi[f_x] b_1 \|_{\pi}^2$$

Avec:

$$\pi[f_x] = \sum_{y \in E} \pi(y) f_x(y)$$
$$= \pi(x)$$

Avec b_1 a toutes les composantes valent 1.

Ainsi

$$\lambda^{2n} \| f_x - \pi(x) \|_{\pi}^2 \ge \| P^n f_x - \pi(x) \|_{\pi}^2$$

De plus

$$||f_{x} - \pi(x)||_{\pi}^{2} = \langle f_{x} - \pi(x), f_{x} - \pi(x) \rangle_{\pi}$$

$$= \pi[(f_{x} - \pi(x))^{2}]$$

$$= \sum_{y \in E} \pi(y)(f_{x} - \pi(x))^{2}(y)$$

$$= \sum_{y \in E} \pi(y)(f_{x}(y) - \pi(x))^{2}$$

$$= \sum_{y \in E} \pi(y)(f_{x}(y) - \pi(x))^{2}$$

$$= \sum_{y \in E} (\pi(y))^{3} + \pi(x)(1 - \pi(x))^{2}$$

$$= \sum_{y \in E} (\pi(y))^{3} + \pi(x) - 2(\pi(x))^{2}$$

$$\leqslant \sum_{y \in E} (\pi(y))^{3} + 1$$

Posons
$$C^2 = \sum_{y \in E} (\pi(y))^3 + 1$$

Et

$$||P^{n}f_{x} - \pi(x)||_{\pi}^{2} = \langle P^{n}f_{x} - \pi(x), P^{n}f_{x} - \pi(x) \rangle_{\pi}$$

$$= \pi[(P^{n}f_{x} - \pi(x))^{2}]$$

$$= \sum_{y \in E} \pi(y)(P^{n}f_{x} - \pi(x))^{2}(y)$$

$$= \sum_{y \in E} \pi(y)(P^{n}f_{x}(y) - \pi(x))^{2}$$

$$= \sum_{y \in E} \pi(y) \left(\sum_{z \in E} P^{n}(y, z) f_{x}(z) - \pi(x)\right)^{2}$$

$$= \sum_{y \in E} \pi(y)(P^{n}(y, x) - \pi(x))^{2}$$

$$\geqslant \left(\sum_{y \in E} \mu_{0}(y) P^{n}(y, x) - \pi(x)\right)^{2}$$

$$= |\mu_{n}(x) - \pi(x)|^{2}$$

Ainsi

$$|\mu_n(x) - \pi(x)|^2 \leqslant C^2 \lambda^{2n}$$

Et ça pour tout $x \in E$, alors

$$\sup_{x \in E} |\mu_n(x) - \pi(x)| \leqslant C\lambda^n$$