Math 357 Long quiz 03A

2024-02-05 (M)

Your name:	

Let R be an integral domain, and let t be an indeterminate. Consider the polynomial ring R[t].

(a) Prove that $(R[t])^{\times} \cong R^{\times}$. That is, we may view the units of R[t] to be exactly the units of R. *Hint:* $deg(pq) = \dots$

Solution: For the isomorphism (of R as a subring of R[t] more generally), identify each $r \in R$ with the constant polynomial $r \in R[t]$. This identification allows us to view the given isomorphism as an equality $(R[t])^{\times} = R^{\times}$. We prove set containment in both directions.¹

 $((R[t])^{\times} \supseteq R^{\times})$ Immediate. (Why?)

 $((R[t])^{\times} \subseteq R^{\times})$ We have seen that if R is an integral domain, then for all p, $q \in R[t]$,

$$deg(pq) = deg p + deg q \tag{1}$$

Let $p \in (R[t])^{\times}$. By definition of unit, there exists a $q \in R[t]$ such that

$$pq = 1$$

Applying the degree function to this equation and using (1), we have

$$0 = \deg 1 = \deg(pq) = \deg p + \deg q \tag{2}$$

Because $p, q \in (R[t])^{\times}$, it follows that $p, q \neq 0$, and therefore deg p, deg $q \geqslant 0$. Hence (2) implies that deg p, deg q = 0; that is, p and q are constant polynomials; that is, $p, q \in R$. Thus $(R[t])^{\times} \subseteq R^{\times}$, as desired.

(b) Now let R be a commutative ring with a $1 \neq 0$. Give an example to show that the isomorphism in part (a) can fail.

Solution: Let $R = \mathbb{Z}/2\mathbb{Z}$, and let $f = 2t + 1 \in R[t]$. We compute

$$f^2 = (2t+1)^2 = 4t^2 + 4t + 1 \equiv 1$$

because $4 \equiv 0$ in the ring $\mathbb{Z}/4\mathbb{Z}$ of coefficients. Thus $f \in (R[t])^{\times}$. However, f does not correspond to a unit in R, whose two units 1,3 correspond to the constant polynomials (with the same constant terms) in R[t].

In fact, for each $n \in \mathbb{Z}_{\geqslant 0}$, we may define

$$f_n = 2t^n + 1$$

An analogous computation to the one above shows that $f_n \in (R[t])^\times$. Thus $(R[t])^\times$ has infinitely many elements, whereas $R^\times = \{1,3\}$ has only two. Thus they cannot even be isomorphic as sets.

¹The isomorphism as groups follows from the fact that multiplication on R[t] is defined, in part, using the multiplication on R.