

Métodos Numéricos para Geração de Malhas – SME0250

Complexos Simpliciais e Estruturas de Dados

Afonso Paiva

19 de agosto de 2016

Qualidade da malha importa

Dois parabolóides: $z=x^2+y^2$ com $(x,y)\in [-1,1]^2$ com 400 triângulos.

Qualidade da malha importa

Dois parabolóides: $z = x^2 + y^2$ com $(x, y) \in [-1, 1]^2$ com 400 triângulos.

Triângulos finos causam erro de discretização e de interpolação de derivadas.

Definição (célula)

Dado um conjunto de pontos $\{\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k\} \subset \mathbb{R}^n$, a célula gerada por estes pontos é o conjunto (combinação convexa):

$$[\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k] = \left\{ \mathbf{v} = \sum_{i=0}^k \lambda_i \mathbf{v}_i ; \ \lambda_i \ge 0 ; \ \sum_{i=0}^k \lambda_i = 1 \right\}$$

Definição (célula)

Dado um conjunto de pontos $\{\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k\} \subset \mathbb{R}^n$, a célula gerada por estes pontos é o conjunto (combinação convexa):

$$[\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k] = \left\{ \mathbf{v} = \sum_{i=0}^k \lambda_i \mathbf{v}_i ; \ \lambda_i \ge 0 ; \ \sum_{i=0}^k \lambda_i = 1 \right\}$$

Exemplo

A célula gerada por $[\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2]$ pode ser um ponto, um segmento de reta ou um triângulo, de acordo com a relação de dependência linear dos vetores $\mathbf{v}_1 - \mathbf{v}_0$ e $\mathbf{v}_2 - \mathbf{v}_0$.

Definição (posição geral)

Dado um conjunto de pontos $\{\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_m\} \subset \mathbb{R}^n$, dizemos que eles estão em posição geral, se para qualquer subconjunto $\{\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k\}$, com $k \leq n$, os vetores $\mathbf{v}_1 - \mathbf{v}_0, \mathbf{v}_2 - \mathbf{v}_0, \dots, \mathbf{v}_k - \mathbf{v}_0$ são LI.

Definição (posição geral)

Dado um conjunto de pontos $\{\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_m\} \subset \mathbb{R}^n$, dizemos que eles estão em posição geral, se para qualquer subconjunto $\{\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k\}$, com $k \leq n$, os vetores $\mathbf{v}_1 - \mathbf{v}_0, \mathbf{v}_2 - \mathbf{v}_0, \dots, \mathbf{v}_k - \mathbf{v}_0$ são LI.

Definição (k-simplexo)

Quando $\{\mathbf v_0, \mathbf v_1, \dots, \mathbf v_k\} \subset \mathbb R^n$ estão em posição geral, a célula por eles gerada é chamada de simplexo de dimensão k ou k-simplexo. Denotaremos tal simplexo por $\langle \mathbf v_0, \mathbf v_1, \dots, \mathbf v_k \rangle$.

Definição (k-simplexo)

Quando $\{\mathbf v_0, \mathbf v_1, \dots, \mathbf v_k\} \subset \mathbb R^n$ estão em posição geral, a célula por eles gerada é chamada de simplexo de dimensão k ou k-simplexo. Denotaremos tal simplexo por $\langle \mathbf v_0, \mathbf v_1, \dots, \mathbf v_k \rangle$.

Definição (k-simplexo)

Quando $\{\mathbf v_0, \mathbf v_1, \dots, \mathbf v_k\} \subset \mathbb R^n$ estão em posição geral, a célula por eles gerada é chamada de simplexo de dimensão k ou k-simplexo. Denotaremos tal simplexo por $\langle \mathbf v_0, \mathbf v_1, \dots, \mathbf v_k \rangle$.

Dado $\sigma = \langle \mathbf{v}_0, \dots, \mathbf{v}_k \rangle$, cada ponto \mathbf{v}_i é chamado de vértice (ou 0-faces). Os 1-simplexos gerados pelo par $\langle \mathbf{v}_i, \mathbf{v}_j \rangle$, com $i \neq j$, são chamados de arestas (1-faces). Os 2-simplexos gerados por $\langle \mathbf{v}_i, \mathbf{v}_j, \mathbf{v}_k \rangle$, com $i \neq j \neq k$, são chamados de faces (2-faces) de σ .

Decomposição Celular

Definição (decomposição celular)

Uma decomposição celular de um subconjunto $D \subset \mathbb{R}^n$ é um conjunto finito de células $\mathcal{C} = \{c_i\}$ que satisfazem às seguintes propriedades:

- 1. $D = \cup_i c_i$ e
- 2. Se $c_i, c_j \in \mathcal{C}$ então $c_i \cap c_j \in \mathcal{C}$.

Decomposição Celular

Definição (decomposição celular)

Uma decomposição celular de um subconjunto $D \subset \mathbb{R}^n$ é um conjunto finito de células $\mathcal{C} = \{c_i\}$ que satisfazem às seguintes propriedades:

- 1. $D = \cup_i c_i$ e
- 2. Se $c_i, c_j \in \mathcal{C}$ então $c_i \cap c_j \in \mathcal{C}$.

Decomposição celular do quadrado unitário que possui células de 0, 1 e 2 dimensões:

- ightharpoonup dimensão 0: $\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$
- ▶ dimensão 1: $[\mathbf{v}_0, \mathbf{v}_1], [\mathbf{v}_1, \mathbf{v}_2], [\mathbf{v}_2, \mathbf{v}_3], [\mathbf{v}_3, \mathbf{v}_0]$
- b dimensão 2: $[\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$

Complexo Simplicial

Definição (complexo simplicial)

Quando todos os elementos de uma decomposição celular de uma região D são simplexos dizemos que ela é um complexo simplicial (ou triangulação) de D e denotaremos por $\mathcal{T}(D)$.

Complexo Simplicial

Definição (complexo simplicial)

Quando todos os elementos de uma decomposição celular de uma região D são simplexos dizemos que ela é um complexo simplicial (ou triangulação) de D e denotaremos por $\mathcal{T}(D)$.

A triangulação de um quadrado é formada pelos simplexos:

 \triangleright 0-simplexos: $\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$

A triangulação de um quadrado é formada pelos simplexos:

- 0-simplexos: $\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$
- ▶ 1-simplexos: $\langle \mathbf{v}_0, \mathbf{v}_1 \rangle, \langle \mathbf{v}_1, \mathbf{v}_2 \rangle, \langle \mathbf{v}_2, \mathbf{v}_3 \rangle, \langle \mathbf{v}_3, \mathbf{v}_0 \rangle, \langle \mathbf{v}_0, \mathbf{v}_2 \rangle$

A triangulação de um quadrado é formada pelos simplexos:

- 0-simplexos: $\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$
- ▶ 1-simplexos: $\langle \mathbf{v}_0, \mathbf{v}_1 \rangle, \langle \mathbf{v}_1, \mathbf{v}_2 \rangle, \langle \mathbf{v}_2, \mathbf{v}_3 \rangle, \langle \mathbf{v}_3, \mathbf{v}_0 \rangle, \langle \mathbf{v}_0, \mathbf{v}_2 \rangle$
- ▶ 2-simplexos: $\langle \mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2 \rangle, \langle \mathbf{v}_0, \mathbf{v}_2, \mathbf{v}_3 \rangle$

Usando a diagonal do cubo, podemos decompô-lo em 6 tetraedros (3-simplexos).

Fecho

Definição (fecho)

Seja Σ uma coleção de simplexos em $\mathcal{T}(D)$. O fecho de Σ , denotado por $\operatorname{close}(\Sigma)$, é o menor subconjunto de $\mathcal{T}(D)$ que contém todas faces de Σ .

Fecho

Definição (fecho)

Seja Σ uma coleção de simplexos em $\mathcal{T}(D)$. O fecho de Σ , denotado por $\operatorname{close}(\Sigma)$, é o menor subconjunto de $\mathcal{T}(D)$ que contém todas faces de Σ .

O fecho $close(\sigma)$ pode ser obtido adicionando a σ todas as suas faces.

Estrela

Definição (estrela)

Seja Σ uma coleção de simplexos em $\mathcal{T}(D)$. Uma estrela de Σ , denotada por $\operatorname{star}(\Sigma)$, é o conjunto de todos os simplexos em $\mathcal{T}(D)$ que tenham uma face em Σ .

Estrela

Definição (estrela)

Seja Σ uma coleção de simplexos em $\mathcal{T}(D)$. Uma estrela de Σ , denotada por $\operatorname{star}(\Sigma)$, é o conjunto de todos os simplexos em $\mathcal{T}(D)$ que tenham uma face em Σ .

Geralmente $\mathrm{star}(\Sigma)$ não é um complexo simplicial!

Link & 1-anel

Definição (link)

Seja Σ uma coleção de simplexos em $\mathcal{T}(D)$. O link de Σ , denotado por $\operatorname{link}(\Sigma)$, é definido por $\operatorname{close}(\operatorname{star}(\Sigma)) \setminus \operatorname{star}(\operatorname{close}(\Sigma))$.

Link & 1-anel

Definição (link)

Seja Σ uma coleção de simplexos em $\mathcal{T}(D)$. O link de Σ , denotado por $\operatorname{link}(\Sigma)$, é definido por $\operatorname{close}(\operatorname{star}(\Sigma)) \setminus \operatorname{star}(\operatorname{close}(\Sigma))$.

Link & 1-anel

Definição (link)

Seja Σ uma coleção de simplexos em $\mathcal{T}(D)$. O link de Σ , denotado por $\operatorname{link}(\Sigma)$, é definido por $\operatorname{close}(\operatorname{star}(\Sigma)) \setminus \operatorname{star}(\operatorname{close}(\Sigma))$.

Definição (1-anel)

O 1-anel de um vértice \mathbf{v} é o conjunto de vértices de link(\mathbf{v}).

O que armazenar na ED?

► Geometria:

- Geometria:
 - coordenadas 2D ou 3D;

- Geometria:
 - coordenadas 2D ou 3D;
- Atributos de vértice ou face:

- Geometria:
 - coordenadas 2D ou 3D;
- Atributos de vértice ou face:
 - normal, cor, coordenada de textura;

- Geometria:
 - coordenadas 2D ou 3D;
- Atributos de vértice ou face:
 - normal, cor, coordenada de textura;
- ► Topologia:

- Geometria:
 - coordenadas 2D ou 3D;
- Atributos de vértice ou face:
 - normal, cor, coordenada de textura;
- ► Topologia:
 - relações de adjacência (conectividade).

O que a ED deve suportar?

O que a ED deve suportar?

Rendering;

O que a ED deve suportar?

- Rendering;
- Consultas geométricas:

- Rendering;
- Consultas geométricas:
 - Quais são os vértices da face i?

- Rendering;
- Consultas geométricas:
 - ▶ Quais são os vértices da face *i*?
 - Qual são os vértices do 1-anel do vértice j?

- Rendering;
- Consultas geométricas:
 - ▶ Quais são os vértices da face *i*?
 - Qual são os vértices do 1-anel do vértice j?
 - Quais são as faces adjacentes a face k?

- Rendering;
- Consultas geométricas:
 - Quais são os vértices da face i?
 - Qual são os vértices do 1-anel do vértice j?
 - Quais são as faces adjacentes a face k?
- Modificações:

- Rendering;
- Consultas geométricas:
 - Quais são os vértices da face i?
 - Qual são os vértices do 1-anel do vértice j?
 - Quais são as faces adjacentes a face k?
- Modificações:
 - Remover ou adicionar um vértice/face;

- Rendering;
- Consultas geométricas:
 - Quais são os vértices da face i?
 - Qual são os vértices do 1-anel do vértice j?
 - Quais são as faces adjacentes a face k?
- Modificações:
 - Remover ou adicionar um vértice/face;
 - edge-flip, edge collapse, vertex split

O quão eficiente é a ED?

Tempo de construção (pré-processamento);

- Tempo de construção (pré-processamento);
- ► Tempo de resposta de uma consulta;

- Tempo de construção (pré-processamento);
- Tempo de resposta de uma consulta;
- Tempo para realizar uma operação;

- Tempo de construção (pré-processamento);
- Tempo de resposta de uma consulta;
- Tempo para realizar uma operação;
- Consumo de memória RAM.

Face Set

- ► Face: 3 posições;
- Não possui conectividade;
- Arquivos do formato STL;
- ► Simples e redundante.

Triângulos					
$ \begin{array}{c} (x_1^1, y_1^1, z_1^1) \\ (x_1^2, y_1^2, z_1^2) \\ (x_1^3, y_1^3, z_1^3) \\ & \cdot \end{array} $	$ \begin{array}{c} (x_2^1, y_2^1, z_2^1) \\ (x_2^2, y_2^2, z_2^2) \\ (x_2^3, y_2^3, z_2^3) \\ & \cdot \end{array} $	$ \begin{array}{c} (x_3^1, y_3^1, z_3^1) \\ (x_3^2, y_3^2, z_3^2) \\ (x_3^3, y_3^3, z_3^3) \\ & \cdot \end{array} $			
(x_1^f, y_1^f, z_1^f)	(x_2^f, y_2^f, z_2^f)	(x_3^f, y_3^f, z_3^f)			

- Vértice: posição;
- Face: índices dos vértices;
- Não possui informação de vizinhança;
- Arquivos dos formatos OBJ, OFF e PLY;

Vértices					
x^1 x^2 x^3	y^1 y^2 y^3	z^1 z^2 z^3			
: x ^v	: v ^v	: z ^v			

Triângulos					
$v_1^1 \\ v_1^2 \\ v_1^3 \\ v_1^3$	v ₃ ¹ v ₃ ² v ₃ ³				
:	:	:			
v_1^f	\mathbf{v}_2^f	\mathbf{v}_3^f			

Como representar e desenhar um tetraedro no MATLAB?

Como representar e desenhar um tetraedro no MATLAB?

\	Vértices					
1.0	0.0	0.0				
0.0	1.0	0.0				
0.0	0.0	1.0				
0.0	0.0	0.0				

Como representar e desenhar um tetraedro no MATLAB?

Vértices					
1.0	0.0	0.0			
0.0	1.0	0.0			
0.0	0.0	1.0			
0.0	0.0	0.0			

Triângulos						
v ₂	v ₂ v ₄ v ₃					
V 4	\mathbf{v}_2	v_1				
v ₃	v_1	\mathbf{v}_2				
v_1	v ₃	V 4				

Atenção: impor orientação nas faces (regra da mão direita).

Como representar e desenhar um tetraedro no MATLAB?

Vértices					
1.0	0.0	0.0			
0.0	1.0	0.0			
0.0	0.0	1.0			
0.0	0.0	0.0			

Triângulos					
v ₂	V 4	v ₃			
V 4	\mathbf{v}_2	v_1			
v ₃	v_1	\mathbf{v}_2			
v_1	v ₃	V 4			

Atenção: impor orientação nas faces (regra da mão direita).

trimesh(trigs,X,Y,Z)

% trigs: lista de triângulos (índices)

% X,Y,Z: coordenadas dos vértices

Exemplo: arquivos .OBJ

Tetraedro

```
# OBJ file format with ext .obj
v 1.0 0.0 0.0
v 0.0 1.0 0.0
v 0.0 0.0 1.0
v 0.0 0.0 0.0
f 2 4 3
f 4 2 1
f 3 1 2
f 1 3 4
```


Quem são os vértices da face f₁?;

- Quem são os vértices da face f₁?;
 - ightharpoonup O(1) basta consultar a lista de faces;

- Quem são os vértices da face f₁?;
 - ► O(1) basta consultar a lista de faces;
- Quem são os vértices do 1-anel do vértice v₃?;

- Quem são os vértices da face f₁?;
 - ► O(1) basta consultar a lista de faces;
- Quem são os vértices do 1-anel do vértice v₃?;
 - busca completa em todos os vértices;

- Quem são os vértices da face f₁?;
 - ► O(1) basta consultar a lista de faces;
- Quem são os vértices do 1-anel do vértice v₃?;
 - busca completa em todos os vértices;
- Os vértices v₂ e v₆ são adjacentes?;

- Quem são os vértices da face f₁?;
 - ► O(1) basta consultar a lista de faces;
- Quem são os vértices do 1-anel do vértice v₃?;
 - busca completa em todos os vértices;
- Os vértices v₂ e v₆ são adjacentes?;
 - busca completa em todas as faces.

Aquecimento MATLAB

Exercício

Plote no MATLAB um parabolóide usando os comandos meshgrid e surf .

Aquecimento MATLAB

Exercício

Plote no MATLAB um parabolóide usando os comandos meshgrid e surf.

Exercício

Faça uma função que gere uma malha triangular do parabolóide do exercício anterior. Para plotar use o comando trimesh do MATLAB.

Half-Edge (HE)

- Vértice:
 - posição
 - 1 HE que sai do vértice

Half-Edge (HE)

- Vértice:
 - posição
 - ▶ 1 HE que sai do vértice
- ► Half-Edge:
 - orientação consistente
 - 1 índice do vértice de origem
 - ▶ 1 índice da face incidente
 - 1, 2, ou 3 índices de HEs (próxima, anterior e oposta)

Half-Edge (HE)

- Vértice:
 - posição
 - 1 HE que sai do vértice
- ► Half-Edge:
 - orientação consistente
 - 1 índice do vértice de origem
 - ▶ 1 índice da face incidente
 - 1, 2, ou 3 índices de HEs (próxima, anterior e oposta)
- ► Face:
 - 1 índice da HE adjacente

1. Comece em um vértice

- 1. Comece em um vértice
- 2. HE que sai do vértice

- 1. Comece em um vértice
- 2. HE que sai do vértice
- 3. HE oposta

- 1. Comece em um vértice
- 2. HE que sai do vértice
- 3. HE oposta
- 4. Próxima HE

- 1. Comece em um vértice
- 2. HE que sai do vértice
- 3. HE oposta
- 4. Próxima HE
- 5. HE oposta

- 1. Comece em um vértice
- 2. HE que sai do vértice
- 3. HE oposta
- 4. Próxima HE
- 5. HE oposta
- 6. Próxima HE
- 7. . .

Matriz de Adjacência

	v_1	v ₂	v ₃	V 4	v ₅	v ₆
v_1	0	1	1	0	0	0
v ₂	1	0	1	1	0	0
V 3	1	1	0	1	0	1
V 4	0	1	1	0	1	1
v ₅	0	0	0	1	0	1
v ₆	0	0	1	1	1	0

$$a_{ij} = \left\{ egin{array}{ll} 1 & ext{se os v\'ertices } \mathbf{v}_i \ ext{e} \ \mathbf{v}_j \end{array}
ight. ext{formam uma aresta} \ 0 & ext{caso contr\'ario} \end{array}
ight.$$

Matriz de Adjacência

	v_1	v ₂	v ₃	V 4	v ₅	v ₆
v_1	0	1	1	0	0	0
v ₂	1	0	1	1	0	0
v ₃	1	1	0	1	0	1
V 4	0	1	1	0	1	1
v ₅	0	0	0	1	0	1
v ₆	0	0	1	1	1	0

$$a_{ij} = \left\{ egin{array}{ll} 1 & ext{se os v\'ertices } \mathbf{v}_i \ ext{e} \ \mathbf{v}_j \end{array}
ight. ext{formam uma aresta} \ 0 & ext{caso contr\'ario} \end{array}
ight.$$

 Nenhuma informação de conectividade entre um vértice e suas faces adjacentes;

Matriz de Adjacência

	v_1	v ₂	v ₃	V 4	v ₅	v ₆
v_1	0	1	1	0	0	0
v ₂	1	0	1	1	0	0
v ₃	1	1	0	1	0	1
V 4	0	1	1	0	1	1
v ₅	0	0	0	1	0	1
v ₆	0	0	1	1	1	0

$$a_{ij} = \left\{ egin{array}{ll} 1 & ext{se os v\'ertices } \mathbf{v}_i \ ext{e} \ \mathbf{v}_j \end{array}
ight. ext{formam uma aresta} \ 0 & ext{caso contr\'ario} \end{array}
ight.$$

- Nenhuma informação de conectividade entre um vértice e suas faces adjacentes;
- Esparsa e simétrica (grafos simples não orientados);

Matriz de Adjacência

	v_1	v ₂	v ₃	V 4	v ₅	v ₆
v_1	0	1	1	0	0	0
\mathbf{v}_2	1	0	1	1	0	0
v ₃	1	1	0	1	0	1
V 4	0	1	1	0	1	1
v ₅	0	0	0	1	0	1
v ₆	0	0	1	1	1	0

$$a_{ij} = \left\{ egin{array}{ll} 1 & ext{se os v\'ertices } \mathbf{v}_i \ ext{e} \ \mathbf{v}_j \end{array}
ight. ext{formam uma aresta} \ 0 & ext{caso contr\'ario} \end{array}
ight.$$

- Nenhuma informação de conectividade entre um vértice e suas faces adjacentes;
- Esparsa e simétrica (grafos simples não orientados);
- ▶ Pode representar malhas non-manifold.

Corner é um vértice com um dos seus triângulos incidentes

► Corner – c

- ▶ Corner c
- ► Triângulo c.t

- ► Corner c
- ► Triângulo c.t
- ► Vértice c.v

- Corner c
- ► Triângulo c.t
- ▶ Vértice c.v
- ► Corner próximo em c.t c.n (sentido anti-horário)

- Corner c
- ► Triângulo c.t
- ▶ Vértice c.v
- ► Corner próximo em c.t c.n (sentido anti-horário)
- ► Corner anterior em c.t c.p (\equiv c.n.n)

- ▶ Corner c
- ► Triângulo c.t
- ▶ Vértice c.v
- ► Corner próximo em c.t c.n (sentido anti-horário)
- ► Corner anterior em c.t c.p (\equiv c.n.n)
- ► Corner oposto c.o

- ▶ Corner c
- ▶ Triângulo c.t
- ▶ Vértice c.v
- Corner próximo em c.t c.n (sentido anti-horário)
- ► Corner anterior em c.t c.p (\equiv c.n.n)
- ► Corner oposto c.o
- Corner direito c.r (≡ c.n.o)
- ► Corner esquerdo c.l (\equiv c.p.o)

Armazenamento

para cada vértice uma lista de todos os seus corners

Armazenamento

para cada vértice uma lista de todos os seus corners

corner	C.V	c.t	c.n	c.p	C.0	c.l	c.r
c ₁	v ₁	f_1	c ₂	C ₃	C 6	Ø	Ø
c ₂	V 2	f ₁	c ₃	$\mathbf{c_1}$	Ø	Ø	c ₆
c ₃	V 3	f_1	C ₁	c ₂	Ø	c ₆	Ø
C 4	V 3	f ₂	C 5	C 6	Ø	C 7	C ₁
C 5	V 2	f ₂	C 6	C 4	C 7	C ₁	Ø
c ₆	V 4	f ₂	C 4	C ₅	C ₁	Ø	C 7
:	:	:	:	:	:	:	:

Armazenamento

para cada vértice uma lista de todos os seus corners

corner	C.V	c.t	c.n	c.p	C.O	c.l	c.r
c ₁	v ₁	f_1	c ₂	C ₃	C ₆	Ø	Ø
c ₂	v ₂	f_1	c ₃	$\mathbf{c_1}$	Ø	Ø	c ₆
c ₃	V 3	f ₁	C ₁	c ₂	Ø	c ₆	Ø
C 4	V 3	f ₂	C 5	C 6	Ø	C ₇	C ₁
C 5	V 2	f ₂	C 6	C 4	C ₇	C 1	Ø
c ₆	V 4	f ₂	C ₄	C ₅	C ₁	Ø	C ₇
:	:	:	:	:	:	:	:
	•	•	•	•		•	•

Dada uma face j os corners são enumerados da forma: 3j, 3j-1 e 3j-2

Quais são os vértices da face f₃?

- Quais são os vértices da face f₃?
 - ▶ os c.v de corners 9, 8 e 7

- Quais são os vértices da face f₃?
 - ▶ os c.v de corners 9, 8 e 7
- Os vértices v₂ e v₆ são adjacentes?

- Quais são os vértices da face f₃?
 - ▶ os c.v de corners 9, 8 e 7
- Os vértices v₂ e v₆ são adjacentes?
 - lacktriangle passe pelos corners de $oldsymbol{v}_2$, testando se c.p.v ou c.n.n são $oldsymbol{v}_6$

- Quais são os vértices da face f₃?
 - ▶ os c.v de corners 9, 8 e 7
- Os vértices v₂ e v₆ são adjacentes?
 - ightharpoonup passe pelos corners de \mathbf{v}_2 , testando se c.p.v ou c.n.n são \mathbf{v}_6
- Quais são as faces adjacentes a v₃?

- Quais são os vértices da face f₃?
 - ▶ os c.v de corners 9, 8 e 7
- Os vértices v₂ e v₆ são adjacentes?
 - $lackbox{ passe pelos corners de } \mathbf{v}_2, \ \text{testando se c.p.v ou c.n.n são } \mathbf{v}_6$
- Quais são as faces adjacentes a v₃?
 - verefique c.t de todos os corners de vértice v₃

Cálculo da Normal

Normal por Face (regra da mão direita)

$$n_{\mathcal{T}} = [(b-a)\times(c-a)]/\|(b-a)\times(c-a)\|$$

Cálculo da Normal

Normal por Face (regra da mão direita)

$$n_{\mathcal{T}} = [(b-a)\times(c-a)]/\|(b-a)\times(c-a)\|$$

Cálculo da Normal

Normal por Face (regra da mão direita)

$$n_{\mathcal{T}} = [(b-a)\times(c-a)]/\|(b-a)\times(c-a)\|$$

Normal por Vértice (Gouraud shading)

$$\mathbf{n_a} = \mathbf{v}/\|\mathbf{v}\| \quad \mathsf{com} \quad \mathbf{v} = \sum_{T \in \operatorname{star}(\mathbf{a})} \mathbf{n}_T \operatorname{area}(T)$$

Processamento Geométrico

Suavização de Vértice (Botsch & Kobbelt, 2004)

- Melhora a qualidade dos triângulos
- ▶ Move um vértice v para o baricentro b_v de seu 1-anel

Processamento Geométrico

Suavização de Vértice (Botsch & Kobbelt, 2004)

- Melhora a qualidade dos triângulos
- Move um vértice \mathbf{v} para o baricentro $\mathbf{b}_{\mathbf{v}}$ de seu 1-anel

Processamento Geométrico

Suavização de Vértice (Botsch & Kobbelt, 2004)

- Melhora a qualidade dos triângulos
- Move um vértice \mathbf{v} para o baricentro $\mathbf{b}_{\mathbf{v}}$ de seu 1-anel

$$\mathbf{v} = \mathbf{v} + \alpha \, \left[\mathbf{d}_{\mathbf{v}} - (\mathbf{d}_{\mathbf{v}} \cdot \mathbf{n}_{\mathbf{v}}) \mathbf{n}_{\mathbf{v}} \right] \qquad \mathbf{e} \qquad \mathbf{d}_{\mathbf{v}} = \mathbf{b}_{\mathbf{v}} - \mathbf{v} \,,$$

onde $\mathbf{n_v}$ é a normal do vértice \mathbf{v} e $\alpha \in [0,1]$ é um fator de relaxação.

Qualidade da Malha

Razão de Aspecto dos Triângulos (Desigualdade de Weizenbock)

$$R = \frac{4\sqrt{3}\operatorname{area}(T)}{a^2 + b^2 + c^2}$$

onde a, b e c são os comprimentos dos lados de um triângulo $\mathcal T$ e a área do triângulo pode ser calculada pela fórmula de Heron:

$$\operatorname{area}(T) = \sqrt{s(s-a)(s-b)(s-c)} \quad \operatorname{com} \quad s = \frac{a+b+c}{2}$$

Valores perto de 1 indicam que os \triangle s se aproximam de um \triangle equilátero.

Qualidade da Malha

