This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 96/15272
C12Q 1/68, G01N 33/53, C12P 21/06, C12N 5/00, 15/00, A61K 31/70, 49/00, C07K 1/00, C07H 21/02, 21/04	A1	(43) International Publication Date: 23 May 1996 (23.05.96)
(21) International Application Number: PCT/USS (22) International Filing Date: 14 November 1995 ((AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC,
(30) Priority Data: 08/340,426 14 November 1994 (14.11.9 (71) Applicant: THE GENERAL HOSPITAL CORPORATION (US/US): Fruit Street, Boston, MA 02114 (US).	,	Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.
(72) Inventors: DE LA MONTE, Suzanne; 42 Middlese Cambridge, MA 02140 (US). WANDS, Jack, Varick Road, Waban, MA 02168 (US).	R.; 2	10
(74) Agents: GOLDSTEIN, Jorge, A. et al., Sterne, Goldstein & Fox P.L.L.C., Suite 600, 1100 N. Avenue N.W., Washington, DC 20005-3934 (US).	ew Yo	rk

(54) Title: NEURAL THREAD PROTEIN GENE EXPRESSION AND DETECTION OF ALZHEIMER'S DISEASE

(57) Abstract

The present invention is directed to recombinant hosts expressing novel proteins associated with Alzheimer's Disease, neuroectodermal tumors, malignant astrocytomas, and glioblastomas. This invention is specifically directed to the recombinant hosts and vectors which contain the genes coding for the neuronal thread proteins. This invention is also directed to substantially pure neural thread protein, immunodiagnostic and molecular diagnostic methods to detect the presence of neural thread proteins, and the use of nucleic acid sequences which code for neural thread proteins in gene therapy.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	AT	Austria	GB	United Kingdom	MR	Mauritania	
	AU	Australia	CE	Georgia	MW	Malawi	
	BB	Barbados	GN	Guinea	NE	Niger	
	BE	Belgium	GR	Greece	NL	Netherlands	
	BF	Burkina Paso	HU	Hungary	NO	Norway	
	BG	Bulgaria	IE	Ireland	NZ	New Zealand	
	BJ	Benin	IT	Italy .	PL.	Poland	
	BR	Brazil	JP	Japan	PT	Portugal	
	BY	Belarus	KE	Kenya	RO	Romania	
	CA	Canada	KG	Kyrgystan	RU	Russian Federation	
	CF	Central African Republic	KP	Democratic People's Republic	SID	Sudan	
	CG	Congo		_of Kores	SE	Sweden	
-	CH	Switzerland	KR	Republic of Kores	SI	Slovenia	
	Ct	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia	
	CM	Cameroon	ш	Liechtenstein	SN	Senegal	
	CN	China	LK	Sri Lanks	170	Chad	
	CS	Czechoslovskia	LU	Luxembourg	TG	Togo	
	cz	Czech Republic	LV	Larvis	TJ	Tajikistan	
	DE	Germany	MC	Monaco	TT	Trinidad and Tobago	
	DK	Denmark	MD	Republic of Moldova	UA	Ukraine	
	ES	Spain	MG	Madagascar	US	United States of America	
	FI	Finland	ML	Mali	UZ	Uzbekistan	
	FR	France	MN	Mongolia	VN	Viet Nam	
	GA	Gabon		-			

WO 96/15272 PCT/US95/17111

Neural Thread Protein Gene Expression and Detection of Alzheimer's Disease

5

10

Field of the Invention

The present invention is in the field of genetic engineering and molecular biology. This invention is directed to recombinant hosts expressing novel proteins associated with Alzheimer's Disease, neuroectodermal tumors, malignant astrocytomas, and glioblastomas. This invention is specifically directed to the recombinant hosts and vectors which contain the genes coding for the neuronal thread proteins. This invention is also directed to substantially pure neural thread proteins, immunodiagnostic and molecular diagnostic methods to detect the presence of neural thread proteins, and the use of nucleic acid sequences which code for neural thread proteins in gene therapy.

20

- 2 -

Background of the Invention

Alzheimer's Disease

Alzheimer's Disease (AD) is the most frequent cause of dementia in the United States, affecting over two million individuals each year. It is a degenerative brain disorder characterized clinically by loss of memory, confusion, and gradual physical deterioration. It is the fourth most common cause of death. The etiology of the disease is virtually unknown but has been attributed to various viruses, toxins, heavy metals, as well as genetic defects. The disease is at present incurable.

10

5

Until quite recently, AD was thought to account for relatively few of the cases generally classified as senile dementia. Other factors can lead to such a condition, including repetitious mild strokes, thyroid disorders, alcoholism, and deficiencies of certain vitamins, many of which are potentially treatable. It can be appreciated, then, that a diagnostic test specific for AD would be very useful for the clinical diagnosis and proper clinical treatment of subjects presenting with symptoms common to all of these conditions.

15

20

The brains of individuals with AD exhibit characteristic pathological accumulations of congophilic fibrous material which occurs as neurofibrillary tangles within neuronal cell bodies, and neuritic (or senile) plaques. Neurofibrillary tangles may also be found in the walls of certain cerebral blood vessels. The major organized structural components of neurofibrillary tangles are paired helical filaments. Qualitatively indistinguishable amyloid deposits also occur in normal aged brains but in much smaller numbers with restricted topographical distribution.

25

There has been considerable recent investigative activity regarding the characterization of proteins found in neuritic plaques and neurofibrillary tangles of AD and other neurologic diseases. One of the amyloid proteins initially described by Glenner et al. has been cloned and sequenced (Glenner et al., Biochem. Biophys. Res. Commun. 120:1131-1135 (1984); U.S. Patent

10

15

20

25

30

No. 4,666,829). The A4 amyloid protein found in neuritic plaques and blood vessels has been determined to be a component of a 695 amino acid precursor; a protein postulated to function as a glycosylated cell surface receptor (Masters et al., Proc. Natl. Acad. Sci. USA 82:4245-4249 (1985), Kang et al., Nature 325:733-736 (1987)). In addition, the amyloid protein has been postulated to function as a cell adhesion molecule and as a calcium ion channel protein (Hooper, J. NIH Res. 4: 48-54 (1992); Rensberger, Wayward Protein Molecule May Be Elusive Killer of Brain Cells, The Washington Post, January 25, 1993, §1, at A3 (1993)). The gene coding for A4 is located on chromosome 21 (Kang et al., ibid.; Goldgaber et al., Science 235:877-880 (1987); Tanzi et al., Science 235:880-885 (1987); St. George-Hyslop et al., Science 235:885-889 (1987)) but apparently is not linked to the familial form of the disease (Van Broekhoven et al., Nature 329:153-155 (1987)). There appears to be little, if any, protein sequence homology between amyloid A4 and ß protein, their higher molecular weight precursor, and pancreatic thread protein (PTP) (Gross et al., J. Clin. Invest. 76:2115-2126 (1985)).

A number of other proteins thought to be associated with the disease have been described, including Ubiquitin, ALZ-50, microtubular-associated proteins τ and MAP2, and neurofilament protein (see, for example, Manetto et al., Proc. Natl. Acad. Sci. USA 85:4502-4505 (1988); Wolozin et al., Science 232:648-651 (1986); Selkoe, Neurobiol. Aging 7:425-432 (1986); Perry et al., in: Alterations of the Neuronal Cytoskeleton in Alzheimer's Disease, Plenum, New York, pp 137-149 (1987)). More recently, a serine protease inhibitor called α_1 -anti-chymotrypsin has been found in AD amyloid deposits (Abraham et al., Cell 52:487-501 (1988)).

There is currently no useful diagnostic test for AD being practiced clinically. A definitive diagnosis is possible only postmortem, or during life through a brain biopsy, to reveal the presence of the characteristic plaques, tangles, paired helical filaments, and other cerebrovascular deposits which characterize the disorder. Such an invasive surgical procedure is inherently

dangerous and is therefore rarely utilized. As a result, the clinical misdiagnosis of AD is estimated to be approximately 20%-30%.

Thread Proteins

5

10

15

20

25

The prototype thread protein molecule is pancreatic thread protein (PTP) which bears the unusual physical property of forming insoluble fibrils at neutral pH, but is highly soluble at acid or alkaline pH (Gross et al., supra). PTP is highly abundant, synthesized by pancreatic acinar cells, and secreted into pancreatic juice in concentrations exceeding 1 mg/ml (Id.). An increased thread protein immunoreactivity has been demonstrated in brains with AD lesions, using monoclonal antibodies to PTP (Ozturk et al., Proc. Natl. Acad. Sci. USA 86:419-423 (1989)). In addition, a highly sensitive forward sandwich immunoradiometric assay was used to demonstrate that at least three distinct antigenic epitopes were shared between PTP and the related protein in the brain (Id.) Despite similarities, the pancreatic and neuronal forms of the thread protein are almost certainly distinct since the mRNA molecules and proteins differ in size, and many of the antigenic epitopes which are present in the pancreatic thread protein are not detectable in brain tissue (de la Monte et. al., J. Clin. Invest. 86:1004-1013 (1990); de la Monte et. al., J. Neurol. Sci. 113:152-164 (1992); de la Monte et al., Ann. Neurol. *32*:733-742 (1992)).

The central nervous system form of the thread protein, designated hereafter as "neural thread protein" (NTP), has been identified in AD and Down's Syndrome brain tissue (Wands et al., International Application Publication No. WO 90/06993). NTP has been found in all AD brains studied where characteristic neuropathologic changes of the disease exist (Id.). The saline-extractable soluble immunoreactivity shares has a molecular weight of approximately 17 to 20 kD (Id.).

Quantitative measurements of NTP immunoreactivity in various regions of AD brains revealed levels varying from 12 to 295 ng/gm tissue (Mean =

10

15

20

25

116 ng/gm tissue) compared to 1-11 ng/gm tissue (Mean = 5 ng/gm tissue) in comparable ares of control brains (Id.).

Immunocytochemistry performed with monoclonal antibodies directed against the pancreatic form of PTP demonstrated that NTP is localized within cells, within fine processes within the neuropil, or is extracellular in both AD and Down's Syndrome brains (Id.). Two types of cell contain NTP: neurons and astrocytes (Id.). The affected neurons are the large pyramidal type which typically contain the neurofibrillary tangles well known in AD brain (Id.).

That NTP accumulation within neurons is intrinsically important or integrally related to the evolution of AD lesions is corroborated by the presence of identical patterns of immunolabeling for NTP in Down's Syndrome brains, but not in control brains (Id.). It is important to note that the same structural abnormalities of AD occur in brains of all middle-age individuals with Down's syndrome, whether or not they are demented. There is also a higher incidence of AD in family members of Down's Syndrome patients. Moreover, the regional differences in the densities of NTP-containing neurons parallels the density distributions of neurofibrillary tangles in both AD and Down's Syndrome. This provides further evidence that NTP is germane to the pathophysiology of AD. Whether NTP accumulates within neuronal perikarya, as a result of aberrant cellular metabolism or transport is not yet known.

Summary of the Invention

A need exists for a definitive diagnostic test which can be performed on individuals suspected of having, or being at risk for AD. The present invention satisfies such needs and provides further advantages.

The manner in which these and other objects are realized by the present invention will be apparent from the summary and detailed description set forth below.

Unless defined otherwise, various terms used herein have the same meaning as is well understood in the art to which the invention belongs. All cited publications are incorporated herein by reference.

This invention is directed to recombinant hosts expressing novel proteins associated with Alzheimer's Disease, neuroectodermal tumors, malignant astrocytomas, and glioblastomas. This invention is specifically directed to the recombinant hosts and vectors which contain the genes coding for the neuronal thread proteins (NTP) having molecular weights of about 8 kDa, 14 kDa, 17 kDa, 21 kDa, 26 kDa or 42 kDa. This invention is also directed to the substantially pure neural thread proteins, immunodiagnostic and molecular diagnostic methods to detect the presence of neural thread proteins, and the use of nucleic acid sequences which code for neural thread proteins in gene therapy.

In particular, the invention includes a method for detecting and quantitating an NTP in a human subject, comprising:

- (a) contacting a biological sample from a human subject that is suspected of containing detectable levels of an NTP with a molecule capable of binding to the NTP; and
 - (b) detecting the molecule bound to the NTP.

The invention additionally includes the method as above, wherein the binding molecule is selected from the group consisting of:

- (a) an antibody substantially free of natural impurities;
- (b) a monoclonal antibody; and
- (c) a fragment of (a) or (b).

The invention additionally includes the method as above, wherein the detecting-molecule is detectably labeled and where a combination of such binding molecules is used.

The invention additionally includes a method for detecting the presence of a genetic sequence coding for an NTP in a biological sample using a polynucleotide probe derived from a recombinant human NTP of this invention.

5

10

15

20

25

10

15

20

25

The invention additionally includes a method for determining the presence of a condition in a human subject, said condition including, but not limited to, the group consisting of Alzheimer's Disease, the presence of neuroectodermal tumors, the presence of malignant astrocytomas, and the presence of gliomas.

The invention additionally includes a method of diagnosing the presence of AD in a human subject suspected of having AD which comprises:

- (a) incubating a biological sample from said subject suspected of containing an NTP with a molecule capable of identifying an NTP; and
- (b) detecting the molecule which is bound in the sample, wherein the detection indicates that the subject has AD.

The invention additionally includes a method of diagnosing the presence of neuroectodermal tumors in a human subject suspected of having neuroectodermal tumors which comprises:

- (a) incubating a biological sample from said subject suspected of containing an NTP with a molecule capable of identifying an NTP; and
- (b) detecting the molecule which is bound in the sample, wherein the detection indicates that the subject has neuroectodermal tumors.

The invention additionally includes a method of diagnosing the presence of a malignant astrocytoma in a human subject suspected of having a malignant astrocytoma which comprises:

- (a) incubating a biological sample from said subject, which is suspected of containing an NTP, in the presence of a binding molecule capable of identifying an NTP; and
- (b) detecting molecule which is bound in the sample, wherein the detection indicates that the subject-has-a-malignant astrocytoma.

The invention additionally includes a method of diagnosing the presence of a glioblastoma in a human subject suspected of having a glioblastoma which comprises:

- (a) incubating a biological sample from said subject, which is suspected of containing an NTP, in the presence of a binding molecule capable of identifying an NTP; and
- (b) detecting molecule which is bound in the sample, wherein the detection indicates that the subject has a glioblastoma.

The invention additionally includes the methods as above, wherein a biological sample is removed a human subject prior to contacting the sample with the molecule.

The invention additionally includes the methods as above, wherein detecting any of the molecules bound to the protein is performed by *in situ* imaging.

The invention additionally includes the methods as above, wherein detecting of any of the molecule bound to the protein is performed by *in vivo* imaging.

The invention additionally includes the methods as above, wherein the biological sample is reacted with the binding molecule in a manner and under such conditions sufficient to determine the presence and the distribution of the protein.

The invention additionally includes the methods as above, wherein a detectably labeled binding molecule of an NTP is administered to a human subject.

The invention additionally includes the methods as above, wherein the binding molecule is bound to the protein in vivo.

The invention additionally involves an NTP substantially free of any natural impurities and having a molecular weight of about 42 kDa.

The invention additionally involves an NTP substantially free of any natural impurities and having a molecular weight of about 26 kDa.

The invention additionally includes an NTP substantially free of any natural impurities and having a molecular weight of about 21 kDa.

10

5

15

20

The invention additionally includes an NTP substantially free of any natural impurities and having a molecular weight of about 17 kDa.

The invention additionally includes an NTP substantially free of any natural impurities and having a molecular weight of about 14 kDa.

The invention additionally includes an NTP substantially free of any natural impurities and having a molecular weight of about 8 kDa.

The present invention also particularly relates to the diagnostic methods recited above, wherein the immunoassay comprises two different antibodies bound to a solid phase support combined with a third different detectably labeled antibody in solution.

The invention is also directed to a method of producing an NTP, said method comprising:

- (a) culturing a recombinant host comprising a human gene coding for said NTP; and
 - (b) isolating said NTP from said host.

Additionally, the invention is directed to a substantially pure NTP obtained by the such a process.

The invention is also directed to an 15- to 30-mer antisense oligonucleotide which is complementary to an NTP nucleic acid sequence and which is nonhomologous to PTP nucleic acid sequences, as well as pharmaceutical compositions comprising such oligonucleotides and a pharmaceutically acceptable carrier.

The invention is also directed to ribozymes comprising a target sequence which is complementary to an NTP sequence and nonhomologous to PTP nucleic acid sequences, as well as pharmaceutical compositions comprising such ribozymes and a pharmaceutically acceptable carrier.

The invention is also directed to a method of achieving pharmaceutical delivery of NTP molecules to the brain through acceptable carriers or expression vectors.

The invention is also directed to oligodeoxynucleotides that form triple stranded regions with the various NTP genes (nucleic acid sequences) and

5

10

15

20

25

which are nonhomologous to PTP nucleic acid sequences, as well as pharmaceutical compositions comprising such oligodeoxynucleotides and a pharmaceutically acceptable carrier.

The invention is also directed to the therapeutic use of NTP-derived molecules or fragments thereof to modify or improve dementias of the Alzheimer's type of neuronal degeneration.

The invention is also directed to methods for the differential diagnosis of sporadic and familial Alzheimer's disease.

Brief Description of the Drawings

10

5

Figures 1A-1J show neural thread protein immunoreactivity in CNS-derived tumors.

Figure 2 depicts a graph showing neural thread protein levels in PNET1, PNET2, A172, C6, and Huh7 hepatocellular carcinoma cells measured by a forward sandwich monoclonal antibody-based immunoradiometric assay (M-IRMA).

15

Figure 3 shows molecular size of neural thread proteins in SH-Sy5y, A172, and C6 cells demonstrated by immunoprecipitation and Western blot analysis using the Th9 monoclonal antibody.

20

Figure 4 shows molecular sizes of neural thread proteins in PNET1 cells (a) and C6 glioblastoma cells (b) demonstrated by pulse-chase metabolic labeling with ³⁵S-methionine, and immunoprecipitation with Th9 monoclonal antibody (Figure 4A). The molecular weights are 8, 14, 17, 21, 26 and 42 kDa (arrows).

25

Figures 5A-5E depict a series of five graphs showing the 21 kDa and 17 kDa neural thread proteins in SH-Sy5y, PNET1, A172, and C6 cells and the absence thereof in Huh7 cells by SDS-PAGE/M-IRMA.

Figure 6 depicts a gel showing that the 21 kDa neural thread protein in C6 glioblastoma cells is phosphorylated.

- 11 -

Figure 7 depicts a bar graph showing altered neural thread protein expression in PNET1 cells with growth phase.

Figures 8A-8F show altered phenotype of PNET1 cells with cessation of cell growth and overnight serum starvation.

5

Figure 9 shows the 1-9a partial cDNA sequence, and Figure 9A shows a partial sequence of the second 5' anchor PCR product corresponding to the 5' region of the 1-9a cDNA (WP5' Sequence).

Figure 10 shows alignment of partial sequences between 1-9a and human PTP and the Reg gene (the nucleic acid sequence corresponding to the genomic clone of human PTP).

10

Figure 10A shows alignment between 1-9a and Exon 2 of the human Reg gene, and between the first 5' anchor PCR product of 1-9a (WP03-417) and Exon 2 and Reg.

15

Figure 10B shows alignment between the 1-9a and its second 5' anchor PCR product (WP5') and AD 3-4 and AD 2-2 cDNAs.

Figure 11A shows the partial nucleic acid and deduced amino acid sequences of the HB4 cDNA. Figures 11B and 11C show a protein hydrophilicity window plot. Hydrophilicity Window Size = 7; scale = Kyte-Doolittle.

20

Figure 11D shows alignment between HB4 and human PTP.

Figure 11E shows alignment between HB4 and human Reg gene.

Figures 12A-12C show the expression of mRNA molecules corresponding to the 1-9a CNS neural thread protein cDNA sequence in neuroectodermal tumor cell lines and in rat pancreas.

25

30

Figures 13A and 13B show mRNA transcripts corresponding to the 1-9a CNS neural thread protein cDNA sequence in human brain. This figure also demonstrates higher levels of 1-9a CNS neural thread protein-related mRNAs in AD brains compared with aged-matched controls (Figure 13A). Figure 13B demonstrates four different transcripts with greater abundance of the lower molecular size mRNAs in AD compared with aged controls.

10

15

20

25

30

- 12 -

Figures 14A-14C show 1-9a Southern blot analysis of RT/PCR-derived cDNAs in neuroectodermal cell lines. A- and B-PCR amplification of 1-9a mRNA sequences in neuroectodermal cell lines, and using mRNA from newborn rat (NB) brain, AD brain, and aged control brain. Figure 14A is a longer exposure of Figure 14B. Figure 14C shows hybridization of the same blot using the O18 rat PTP probe.

Figures 15A and 15B (SE-RT/PCR) show hybridization of the 1-9a and O18 probes with several clones isolated from SH-Sy5y cells by reverse transcribing mRNA and amplifying with primers corresponding to the known sequence of the 1-9a partial cDNA.

Figures 16A, 16D and 16E show the partial nucleic acid sequences of the AD 2-2 cDNAs isolated from the AD brain library. Figures 16B and 16C show a hydrophilicity window plot of AD2-2 T7. Hydrophilicity Window Size = 7; scale = Kyte-Doolittle.

Figures 16F, 16I, 16J and 16K show the partial nucleic acid sequences of the AD 3-4 cDNAs isolated from the AD brain library. Figures 16G and 16H show a hydrophilicity window plot of AD3-4. Hydrophilicity Window Size = 7; scale = Kyte-Doolittle.

Figures 16L, 16M and 16N show the partial nucleic acid sequences of the AD 4-4 cDNAs isolated from the AD brain library.

Figure 16O shows the partial nucleic acid sequences of the AD 16c (also called AD 10-7) cDNAs isolated from the AD brain library. Figures 16P and 16Q show a hydrophilicity window plot of AD16c-T7. Hydrophilicity Window Size = 7; scale = Kyte-Doolittle.

Figure 16R shows the complete nucleotide sequence of the AD10-7 cDNA clone that was isolated from an AD library.

Figure 16S shows the complete nucleotide sequence of the AD16c cDNA clone that was isolated from the AD-brain-library.

Figure 17 shows alignment of partial sequences between AD 2-2 and human Reg gene.

- 13 -

Figure 17A shows alignment of partial sequences between AD 2-2 and Exon 1 of Reg and rat PTP.

Figure 17B shows alignment of partial sequences between AD 2-2 and 1-9a.

Figure 17C shows alignment of partial sequences between AD 2-2 and AD 16c.

Figure 18 shows alignment of partial sequences between AD 3-4 (also called AD 5-3) and the Reg gene.

Figure 18A shows alignment of partial sequences between AD 3-4 and the 5' anchor PCR products of the 1-9a mRNA, termed WPO3-5 and 18-4.

Figure 18B shows alignment of partial sequences between AD 3-4 and the G2a-a *EcoRI/PstI* genomic clone.

Figure 19 shows alignment of partial sequences between AD 4-4 and AD 2-2 and 1-9a (also called SE-4 corresponding to the PCR clone which is identical to 1-9a).

Figure 20 shows alignment of partial sequences between AD 16c and Reg gene.

Figure 20A shows alignment of partial sequences between AD 16c and human PTP.

Figure 20B shows alignment of partial sequences between AD 16c and AD 2-2.

Figures 21A-21D show a genomic Southern blot analysis using the AD 3-4 as a probe; Figure 21B shows a similar pattern of hybridization on a genomic Southern using AD 2-2 as a probe. Figures 21A-21D show a Northern blot analysis of neuroectodermal tumor cell lines using AD 3-4 as a probe. The four cell lines that exhibit AD 3-4 transcripts are neuronal in phenotype; C6 glioma cell mRNA did not hybridize with the AD 3-4 probe. Figure 21D shows a Northern analysis of human AD and aged control brain temporal lobe tissue using the AD 3-4 probe, and demonstrates over-expression of the corresponding gene in AD (lanes labeled A) compared with aged control brains (lanes labeled C).

5

10

15

20

25

10

15

20

25

Figures 22, 22A, 22B, 22C, 22D, 22E, 22F, 22G and 22H show partial sequences of four genomic clones (isolated using both the 1-9a cDNA and rat PTP O-18 cDNA as probes.

- 14 -

Figures 23 and 23A show the alignment of the G2a-2 PstI partial sequence with the Reg gene.

Figure 23B shows alignment of the G2a-2 PstI-EcoRI sequence and the Reg gene and the rat PTP.

Figures 23C and 23D show the alignment of the G5d-1 PstI sequence and the Reg gene.

Figures 24A-24D show neural thread protein expression by the 1-9a cDNA (Figure 24A) and the G2a-2 PstI genomic clone (Figure 24B). Figures 24C and 24D show negative expression by the G5d-1 EcoRI/PstI genomic clone, and pBluescript which lacks a cloned insert, respectively.

Figures 25A and 25B depict a Northern blot analysis of AD16c mRNA in AD and aged control brains. The data shows elevated levels of AD16c mRNA expression in 6 of 9 AD compared to 1 of 6 age-matched controls.

Figure 26 depicts a Western blot analysis of AD10-7 fusion proteins using monoclonal antibodies against the expressed tag protein (T7-tag mouse monoclonal antibodies.

Figures 27A and 27B depict brightfield and darkfield microscopic analysis of the *in situ* hybridization of sense and antisense cRNA probes to human brain tissue sections of early AD.

Definitions

In the description that follows, a number of terms used in recombinant DNA technology are utilized extensively. In order to provide a clear and consistent understanding of the specification and claims, including the scope to be given such terms, the following definitions are provided.

Cloning vector. A plasmid or phage DNA or other DNA sequence which is able to replicate autonomously in a host cell, and which is

characterized by one or a small number of restriction endonuclease recognition sites at which such DNA sequences may be cut in a determinable fashion without loss of an essential biological function of the vector, and into which a DNA fragment may be spliced in order to bring about its replication and cloning. The cloning vector may further contain a marker suitable for use in the identification of cells transformed with the cloning vector. Markers, for example, provide tetracycline resistance or ampicillin resistance.

5

10

15

20

25

30

Expression vector. A vector similar to a cloning vector but which is capable of enhancing the expression of a gene which has been cloned into it, after transformation into a host. The cloned gene is usually placed under the control of (i.e., operably linked to) certain control sequences such as promoter sequences. Promoter sequences may be either constitutive or inducible.

Substantially pure. As used herein means that the desired purified protein is essentially free from contaminating cellular components, said components being associated with the desired protein in nature, as evidenced by a single band following polyacrylamide-sodium dodecyl sulfate gel electrophoresis. Contaminating cellular components may include, but are not limited to, proteinaceous, carbohydrate, or lipid impurities.

The term "substantially pure" is further meant to describe a molecule which is homogeneous by one or more purity or homogeneity characteristics used by those of skill in the art. For example, a substantially pure NTP will show constant and reproducible characteristics within standard experimental deviations for parameters such as the following: molecular weight, chromatographic migration, amino acid composition, amino acid sequence, blocked or unblocked N-terminus, HPLC elution profile, biological activity, and other such parameters. The term, however, is not meant to exclude artificial or synthetic mixtures of the factor with other compounds. In addition, the term is not meant to exclude NTP fusion proteins isolated from a recombinant host.

Recombinant Host. According to the invention, a recombinant host may be any prokaryotic or eukaryotic cell which contains the desired cloned

WO 96/15272 PCT/US95/17111

- 16 -

genes on an expression vector or cloning vector. This term is also meant to include those prokaryotic or eukaryotic cells that have been genetically engineered to contain the desired gene(s) in the chromosome or genome of that organism.

5

Recombinant vector. Any cloning vector or expression vector which contains the desired cloned gene(s).

Host. Any prokaryotic or eukaryotic cell that is the recipient of a replicable expression vector or cloning vector. A "host," as the term is used herein, also includes prokaryotic or eukaryotic cells that can be genetically engineered by well known techniques to contain desired gene(s) on its chromosome or genome. For examples of such hosts, see Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1989).

15

10

Promoter. A DNA sequence generally described as the 5' region of a gene, located proximal to the start codon. The transcription of an adjacent gene(s) is initiated at the promoter region. If a promoter is an inducible promoter, then the rate of transcription increases in response to an inducing agent. In contrast, the rate of transcription is not regulated by an inducing agent if the promoter is a constitutive promoter.

20

Gene. A DNA sequence that contains information needed for expressing a polypeptide or protein.

Structural gene. A DNA sequence that is transcribed into messenger RNA (mRNA) that is then translated into a sequence of amino acids characteristic of a specific polypeptide.

25

30

Antisense RNA gene/Antisense RNA. In eukaryotes, mRNA is transcribed by RNA polymerase II. However, it is also known that one may construct a gene containing a RNA polymerase II template wherein a RNA sequence is transcribed which has a sequence complementary to that of a specific mRNA but is not normally translated. Such a gene construct is herein termed an "antisense RNA gene" and such a RNA transcript is termed an

"antisense RNA." Antisense RNAs are not normally translatable due to the presence of translation stop codons in the antisense RNA sequence.

Antisense oligonucleotide. A DNA or RNA molecule containing a nucleotide sequence which is complementary to that of a specific mRNA. An antisense oligonucleotide binds to the complementary sequence in a specific mRNA and inhibits translation of the mRNA.

Antisense Therapy. A method of treatment wherein antisense oligonucleotides are administered to a patient in order to inhibit the expression of the corresponding protein.

Complementary DNA (cDNA). A "complementary DNA," or "cDNA" gene includes recombinant genes synthesized by reverse transcription of mRNA and from which intervening sequences (introns) have been removed.

Expression. Expression is the process by which a polypeptide is produced from a structural gene. The process involves transcription of the gene into mRNA and the translation of such mRNA into polypeptide(s).

Homologous/Nonhomologous Two nucleic acid molecules are considered to be "homologous" if their nucleotide sequences share a similarity of greater than 50%, as determined by HASH-coding algorithms (Wilber, W.J. and Lipman, D.J., Proc. Natl. Acad. Sci. 80:726-730 (1983)). Two nucleic acid molecules are considered to be "nonhomologous" if their nucleotide sequences share a similarity of less than 50%.

Ribozyme. A ribozyme is an RNA molecule that contains a catalytic center. The term includes RNA enzymes, self-splicing RNAs, and self-cleaving RNAs.

Ribozyme Therapy. A method of treatment wherein ribozyme is administered to a patient in order to inhibit the translation of the target mRNA.

Fragment. A "fragment" of a molecule such as NTP is meant to refer to any polypeptide subset of that molecule.

Functional Derivative. The term "functional derivatives" is intended to include the "variants," "analogues," or "chemical derivatives" of the

10

5

15

20

25

molecule. A "variant" of a molecule such as NTP is meant to refer to a naturally occurring molecule substantially similar to either the entire molecule, or a fragment thereof. An "analogue" of a molecule such as NTP is meant to refer to a non-natural molecule substantially similar to either the entire molecule or a fragment thereof.

A molecule is said to be "substantially similar" to another molecule if the sequence of amino acids in both molecules is substantially the same, and if both molecules possess a similar biological activity. Thus, provided that two molecules possess a similar activity, they are considered variants as that term is used herein even if one of the molecules contains additional amino acid residues not found in the other, or if the sequence of amino acid residues is not identical.

As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half-life, etc. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, etc. Examples of moieties capable of mediating such effects are disclosed in *Remington's Pharmaceutical Sciences* (1980) and will be apparent to those of ordinary skill in the art.

NTP. The term "NTP" refers to a family of neural thread proteins. The NTP family includes proteins with molecular weights of about 8 kDa, 14 kDa, 17 kDa, 21 kDa, 26 kDa and 42 kDa, as described herein.

Immuno-Polymerase Chain Reaction. A method for the detection of antigens using specific antibody-DNA conjugates. According to this method, a linker molecule with bispecific binding affinity for DNA and antibodies is used to attach a DNA molecule specifically to an antigen-antibody complex. As a result, a specific antigen-antibody-DNA conjugate is formed. The attached DNA can be amplified by the polymerase chain reaction (PCR) using appropriate oligonucleotide primers. The presence of specific PCR products demonstrates that DNA molecules are attached specifically to antigen-antibody

25

5

10

15

20

complexes, thus indicating the presence of antigen. (Sano et al., Science 258:120-122 (1992)).

For example, Sano et al., supra, constructed a streptavidin-protein A chimera that possesses specific binding affinity for biotin and immunoglobulin G. This chimera (i.e., the "linker molecule") was used to attach a biotinylated DNA specifically to antigen-monoclonal antibody complexes that had been immobilized on microtiter plate wells. A segment of the attached DNA was subsequently amplified by PCR.

Detailed Description of the Invention

10

15

5

This invention is directed to neural thread proteins (NTP), genetic sequences coding for an NTP mRNA or antisense mRNA, expression vectors containing the genetic sequences, recombinant hosts transformed therewith, and NTP and antisense RNA produced by such transformed recombinant host expression. This invention further relates to NTP ribozymes, and recombinant DNA molecules which code for NTP ribozymes and NTP antisense oligonucleotides. This invention further relates to antibodies directed against an NTP, as well as the use of NTP antibodies and NTP nucleic acid sequences for detection of the presence of an NTP in biological samples. The invention further relates to the use of NTP coding sequences in gene therapy.

20

I. Isolation of DNA Sequences Coding for Neuronal Thread Proteins

DNA sequences coding for an NTP are derived from a variety of sources. These sources include genomic DNA, cDNA, synthetic DNA, and combinations thereof.

25

Human NTP genomic DNA can be extracted and purified from any human cell or tissue, by means well known in the art (for example, see Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, 1989). The NTP genomic DNA of the

10

15

20

25

30

invention may or may not include naturally occurring introns. Moreover, such genomic DNA may be obtained in association with the 5' promoter region of the NTP gene sequences and/or with the 3' translational termination region. Further, such genomic DNA may be obtained in association with DNA sequences which encode the 5' nontranslated region of the NTP mRNA and/or with the genetic sequences which encode the 3' nontranslated region. To the extent that a host cell can recognize the transcriptional and/or translational regulatory signals associated with the expression of the mRNA and protein, then the 5' and/or 3' nontranscribed regions of the native gene, and/or, the 5' and/or 3' nontranslated regions of the mRNA, may be retained and employed for transcriptional and translational regulation.

Alternatively, an NTP mRNA can be isolated from any cell which expresses an NTP, and used to produce cDNA by means well known in the art (for example, see Sambrook et al., supra). Preferably, the mRNA preparation used will be enriched in mRNA coding for an NTP, either naturally, by isolation from cells which produce large amounts of an NTP, or in vitro, by techniques commonly used to enrich mRNA preparations for specific sequences, such as sucrose gradient centrifugation, or both. An NTP mRNA may be obtained from mammalian neuronal tissue, or from cell lines derived therefrom. Preferably, human cDNA libraries are constructed from 17-18 week old fetal brain, 2 year old temporal lobe neocortex, end-stage AD cerebral cortex, or from cell lines derived from human neuronal tissue. Such cell lines may include, but are not limited to, central nervous system primitive neuroectodermal tumor cells (such as PNET1 or PNET2, as described herein), neuroblastoma cells (such as SH-Sy5y, as described herein), or human glioma cells (such as A172; ATCC CRL 1620). Alternatively, a rat cDNA library can be prepared from mRNA isolated from rat glioma cells, for example, C6 rat glioma cells (ATCC CCL107).

For cloning into a vector, suitable DNA preparations (either genomic or cDNA) are randomly sheared or enzymatically cleaved, respectively, and ligated into appropriate vectors to form a recombinant gene (either genomic

WO 96/15272 PCT/US95/17111

- 21 -

or cDNA) library. A DNA sequence encoding an NTP may be inserted into a vector in accordance with conventional techniques, including blunt-ending or staggered-ending termini for ligation, restriction enzyme digestion to provide appropriate termini, filling in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and ligation with appropriate ligases. Techniques for such manipulation are disclosed by Sambrook et al., supra, and are well known in the art.

5

10

15

20

25

30

Libraries containing NTP clones may be screened and the NTP clones identified by any means which specifically selects for NTP DNA such as, for example: 1) by hybridization with an appropriate nucleic acid probe(s) containing a sequence specific for the DNA of this protein; or, 2) by hybridization-selected translational analysis in which native mRNA hybridizes to the clone in question, is translated *in vitro*, and the translation products are further characterized; or, 3) if the cloned DNA sequences are themselves capable of expressing mRNA, by immunoprecipitation of a translated NTP product produced by the host containing the clone.

Oligonucleotide probes specific for an NTP which can be used to identify clones to this protein can be designed from knowledge of the amino acid sequence of the corresponding NTP, or homologous regions of the PTP. Alternatively, oligonucleotide probes can be designed from knowledge of the nucleotide sequence of PTP (de la Monte et al., J. Clin. Invest. 86:1004-1013 (1990)).

The suitable oligonucleotide, or set of oligonucleotides, which is capable of encoding a fragment of the NTP gene (or which is complementary to such an oligonucleotide, or set of oligonucleotides) may be synthesized by means well known in the art (for example, see Sambrook et al., supra). Techniques of nucleic acid hybridization and clone identification are disclosed by Sambrook et al., supra. Those members of the above-described gene library which are found to be capable of such hybridization are then analyzed to determine the extent and nature of the NTP encoding sequences which they contain.

To facilitate the detection of the desired NTP coding sequence, the above-described DNA probe is labeled with a detectable group. Such detectable group can be any material having a detectable physical or chemical property. Such materials have been well-developed in the field of nucleic acid hybridization and in general most any label useful in such methods can be applied to the present invention. Particularly useful are radioactive labels including ³²P, ³H, ¹⁴C, ¹²⁵I, or the like. Any radioactive label may be employed which provides for an adequate signal and has sufficient half-life. The DNA probe may be labeled, for example, by nick-translation, by T4 DNA polymerase replacement synthesis, or by random priming, among other methods well known in the art (see Sambrook et al. supra).

Alternatively, DNA probes can be labeled with non-radioactive markers such as biotin, an enzyme, or fluorescent group.

In an alternative method of cloning NTP DNA sequences, NTP cDNAs are obtained by direct cloning of cDNAs from cell lines and brain tissue, using the 3'- and 5'-RACE methods, as described herein. Preferably, a human neuroectodermal tumor cell line or AD brain tissue is used as a source of mRNA.

II. Expressing the Gene Coding for NTP

20

5

10

15

The above-discussed methods are, therefore, capable of identifying DNA sequences which are code for an NTP or fragments thereof. In order to further characterize such DNA sequences, and in order to produce the recombinant protein, it is desirable to express the proteins which the DNA sequences encode.

25

To express an NTP, transcriptional and translational signals recognizable by an appropriate host are necessary. The cloned NTP DNA sequences, obtained through the methods described above, and preferably in double-stranded form, may be "operably linked" to sequences controlling transcriptional expression in an expression vector, and introduced into a host

- 23 -

cell, either prokaryotic or eukaryotic, to produce recombinant NTP. Depending upon which strand of the NTP coding sequence is operably linked to the sequences controlling transcriptional expression, it is also possible to express an NTP antisense RNA.

5

Expression of the NTP in different hosts may result in different post-translational modifications which may alter the properties of the NTP. Preferably, the present invention encompasses the expression of an NTP in eukaryotic cells, and especially mammalian, insect, and yeast cells. Especially preferred eukaryotic hosts are mammalian cells. Mammalian cells provide post-translational modifications to recombinant NTP which include folding and/or phosphorylation. Most preferably, mammalian host cells include human CNS primitive neuroectodermal tumor cells, human neuroblastoma cells, human glioma cells, or rat glioma cells. Especially preferred primitive neuroectodermal tumor cells include PNET1 and PNET2, especially preferred human glioma cells include Hg16 and Hg17, especially preferred human glioma cells include A172, and especially preferred rat glioma cells include C6 (see Example 1).

15

10

Alternatively, an NTP may be expressed by prokaryotic host cells. Preferably, a recombinant NTP is expressed by such cells as a fusion protein, as described herein. An especially preferred prokaryotic host is *E. coli*. Preferred strains of *E. coli* include Y1088, Y1089, CSH18, ER1451, and ER1647 (see, for example, Molecular Biology LabFax, Brown, T.A., Ed., Academic Press, New York (1991)). An alternative preferred host is Bacillus subtilus, including such strains as BR151, YB886, MI119, MI120, and B170 (see, for example, Hardy, "Bacillus Cloning Methods," in DNA Cloning: A Practical Approach, IRL Press, Washington, D.C. (1985)).

25

30

20

A nucleic acid molecule, such as DNA, is said to be "capable of expressing" a polypeptide if it contains expression control sequences which in turn contain transcriptional regulatory information and such sequences are "operably linked" to the nucleotide sequence which encodes the protein.

Two sequences of a nucleic acid molecule are said to be operably linked when they are linked to each other in a manner which either permits both sequences to be transcribed onto the same RNA transcript, or permits an RNA transcript, begun in one sequence to be extended into the second sequence. Thus, two sequences, such as a promoter sequence and any other "second" sequence of DNA or RNA are operably linked if transcription commencing in the promoter sequence will produce an RNA transcript of the operably linked second sequence. In order to be operably linked it is not necessary that two sequences be immediately adjacent to one another.

10

15

20

25

5

The promoter sequences of the present invention may be either prokaryotic, eukaryotic or viral. Suitable promoters are repressible. constitutive, or inducible. Examples of suitable prokaryotic promoters include promoters capable of recognizing the T4 polymerases (Malik et al., J. Biol. Chem. 263:1174-1181 (1984); Rosenberg et al., Gene 59:191-200 (1987); Shinedling et al., J. Molec. Biol. 195:471-480 (1987); Hu et al., Gene 42:21-30 (1986)), T3, Sp6, and T7 (Chamberlin et al., Nature 228:227-231 (1970); Bailey et al., Proc. Natl. Acad. Sci. (U.S.A.) 80:2814-2818 (1983); Davanloo et al., Proc. Natl. Acad. Sci. (U.S.A.) 81:2035-2039 (1984)); the P_R and P_L promoters of bacteriophage lambda (The Bacteriophage Lambda, Hershey, A.D., Ed., Cold Spring Harbor Press, Cold Spring Harbor, NY (1973); Lambda II, Hendrix, R.W., Ed., Cold Spring Harbor Press, Cold Spring Harbor, NY (1980)); the trp, recA, heat shock, and lacZ promoters of E. coli; the α -amylase (Ulmanen et al., J. Bacteriol. 162:176-182 (1985)) and the delta-28-specific promoters of B. subtilis (Gilman et al., Gene 32:11-20 (1984)); the promoters of the bacteriophages of Bacillus (Gryczan, In: The Molecular Biology of the Bacilli, Academic Press, Inc., NY (1982)); Streptomyces promoters (Ward et al., Mol. Gen. Genet. 203:468-478 (1986)); the int promoter of bacteriophage lambda; the bla promoter of the B-lactamase gene of pBR322, and the CAT promoter of the chloramphenical acetyl transferase gene of pBR325, etc. Prokaryotic promoters are reviewed by Glick, J. Ind. Microbiol. 1:277-282 (1987); Cenatiempo, Biochimie 68:505-516

(1986); Watson et al., In: Molecular Biology of the Gene, Fourth Edition, Benjamin Cummins, Menlo Park, CA (1987); Gottesman, Ann. Rev. Genet. 18:415-442 (1984); and Sambrook et al., supra.

Preferred eukaryotic promoters include the promoter of the mouse metallothionein I gene (Hamer et al., J. Mol. Appl. Gen. 1:273-288 (1982)); the TK promoter of Herpes virus (McKnight, Cell 31:355-365 (1982)); the SV40 early promoter (Benoist, et al., Nature (London) 290:304-310 (1981)); and the yeast gal4 gene promoter (Johnston, et al., Proc. Natl. Acad. Sci. (USA) 79:6971-6975 (1982); Silver, et al., Proc. Natl. Acad. Sci. (USA) 81:5951-5955 (1984)). All of the above listed references are incorporated by reference herein.

Strong promoters are the most preferred promoters of the present invention. Examples of such preferred promoters are those which recognize the T3, SP6 and T7 polymerase promoters; the P_L promoter of bacteriophage lambda; the *recA* promoter and the promoter of the mouse metallothionein I gene. The most preferred promoter for expression in prokaryotic cells is one which is capable of recognizing the T7 polymerase promoter. The sequences of such polymerase recognition sequences are disclosed by Watson, *et al.* (In: *Molecular Biology of the Gene*, Fourth Edition, Benjamin Cummins, Menlo Park, CA, (1987)). The most preferred promoter for expression in mammalian cells is SV40 (Gorman, "High Efficiency Gene Transfer into Mammalian cells," in *DNA Cloning: A Practical Approach*, Volume II, IRL Press, Washington, D.C., pp. 143-190 (1985)).

III. Methods of Detecting NTP

25

5

10

15

20

This invention is directed towards methods of detecting neurological disease in a human subject, utilizing the nucleic acid probes hybridizable to NTP genes or transcripts, or antibodies specific for an NTP. By "neurological disease" is meant Alzheimer's Disease (AD), or other neurodegenerative disorders with the Alzheimer's type pathogenic changes (for example,

PCT/US95/17111

5

10

15

20

25

Parkinson's disease with AD-type neurodegeneration), as well as neuroectodermal tumors, malignant astrocytomas, and glioblastomas. By "human subject" is meant any human being or any developmental form thereof, such as a human embryo or fetus, prior to birth. The diagnostic methods of the present invention do not require invasive removal of neural tissue.

The present invention additionally pertains to assays, both nucleic acid hybridization assays and immunoassays, for detecting the presence of NTP in cells or in the biological fluids of a human subject using light or electron microscopic histology, imaging, radioactive or enzyme based assays, and the like.

A. Nucleic Acid Hybridization Assays

In testing a tissue sample for an NTP using a nucleic acid hybridization assay, RNA can be isolated from tissue by sectioning on a cryostat and lysing the sections with a detergent such as SDS and a chelating agent such as EDTA, optionally with overnight digestion with proteinase K (50 μ g/ml). Such tissue is obtained by autopsy and biopsy. A preferred quantity of tissue is in the range of 1-10 milligrams. Protein is removed by phenol and chloroform extractions, and nucleic acids are precipitated with ethanol. RNA is isolated by chromatography on an oligo dT column and then eluted therefrom. Further fractionation can also be carried out, according to methods well known to those of ordinary skill in the art.

A number of techniques for molecular hybridization are used for the detection of DNA or RNA sequences in tissues; each has certain advantages and disadvantages. When large amounts of tissue are available, analysis of hybridization kinetics provides the opportunity to accurately quantitate the amount of DNA or RNA present, as well as to distinguish sequences that are closely related but not identical to the probe, and determine the percent homology.

10

15

20

25

30

Reactions are run under conditions of hybridization (Tm-25°C) in which the rate of reassociation of the probe is optimal (Wetmur et al., J. Mol. Biol. 31:349-370 (1968)). The kinetics of the reaction are second-order when the sequences in the tissue are identical to those of the probe; however, the reaction exhibits complex kinetics when probe sequences have partial homology to those in the tissue (Sharp et al., J. Mol. Biol. 86:709-726 (1974)).

The ratio of probe to cell RNA is determined by the sensitivity desired. To detect one transcript per cell would require about 100 pg of probe per μ g of total cellular DNA or RNA. The nucleic acids are mixed, denatured, brought to the appropriate salt concentration and temperature, and allowed to hybridize for various periods of time. The rate of reassociation can be determined by quantitating the amount of probe hybridized either by hydroxy apatite chromatography (Britten et al., Science 161:529-540 (1968)) or S1 nuclease digestion (Sutton, Biochim. Biophys. Acta 240:522-531 (1971)).

A more flexible method of hybridization is the northern blot technique. This technique offers variability in the stringency of the hybridization reaction, as well as determination of the state of the retroviral sequences in the specimen under analysis. Northern analysis can be performed as described herein.

A major consideration associated with hybridization analysis of DNA or RNA sequences is the degree of relatedness the probe has with the sequences present in the specimen under study. This is important with the blotting technique, since a moderate degree of sequence homology under nonstringent conditions of hybridization can yield a strong signal even though the probe and sequences in the sample represent non-homologous genes.

The particular hybridization technique is not essential to the invention, any technique commonly used in the art being within the scope of the present invention. Typical probe technology is described in United States Patent 4,358,535 to Falkow et al., incorporated by reference herein. For example, hybridization can be carried out in a solution containing 6 x SSC (10 x SSC:

1.5 M sodium chloride, 0.15 M sodium citrate, pH 7.0), 5 x Denhardt's (1 x Denhardt's: 0.2% bovine serum albumin, 0.2% polyvinylpyrrolidone, 0.02% Ficoll 400), 10 mM EDTA, 0.5% SDS and about 10⁷ cpm of nick-translated DNA for 16 hours at 65°C.

5

The labeled probes, as described above, provide a general diagnostic method for detection of an NTP in tissue. The method is reasonably rapid, has a simple protocol, has reagents which can be standardized and provided as commercial kits, and allows for rapid screening of large numbers of samples.

10

In one method for carrying out the procedure, a clinical isolate containing RNA transcripts is fixed to a support. The affixed nucleic acid is contacted with a labeled polynucleotide having a base sequence complementary or homologous to the coding strand of the NTP gene.

15

The hybridization assays of the present invention are particularly well suited for preparation and commercialization in kit form, the kit comprising a carrier means compartmentalized to receive one or more container means (vial, test tube, etc.) in close confinement, each of said container means comprising one of the separate elements to be used in hybridization assay.

20

For example, there may be a container means containing NTP cDNA molecules suitable for labeling by "nick translation" (see, for example, Sambrook et al., supra, for standard methodology), or labeled NTP cDNA or RNA molecules. Further container means may contain standard solutions for nick translation of NTP cDNA comprising DNA polymerase I/DNase I and unlabeled deoxyribonucleotides (i.e., dCTP, dTTP, dGTP, and dATP).

25

30

The presence of NTP RNA is determined by the variation in the appearance and/or quantity of probe-related RNA in tested tissue.

The DNA probes of this invention can also be used for differential diagnosis of hereditary or familial AD and non-hereditary or sporadic AD. The familial form of AD often occurs at an earlier age and is associated with Down's syndrome in the family. Thus, a genetic test for familial AD allows for genetic counseling of families. While much effort has been directed

10

15

20

25

30

toward characterizing a genetic marker for familial AD (Gusella, FASEB J 3:2036-2041 (1989); Hooper, J NIH Res. 4:48-54 (1992)), genetic linkage analysis only identifies a genetic marker sequence without providing the knowledge of the function of the genomic sequence. In contrast, the cDNA probes described herein and obtained from individuals with sporatic AD encode a known protein of known function which is over-expressed in brain tissue of patients with AD.

Most cases of the AD disorder appear to be the sporadic form, although there are well-documented familial cases (Gusella, supra; Harrison's Principles of Internal Medicine, Braunwald et al., Eds., Eleventh Edition, McGraw-Hill Book Company, New York, pp. 2012-2013 (1987)). A patient with familial AD, unlike a patient with sporadic AD, inherited the predisposing mutation through the germ cells. Some of the familial cases have been shown to follow an autosomal dominant pattern of inheritance (Id.). Thus, the DNA of a patient with familial AD will contain the inherited genetic alteration which is absent from the DNA of a patient with sporadic AD.

A method of differentiating between sporadic and familial AD in a human subject involves obtaining a biological sample from the human subject who is suspected of having Alzheimer's Disease. Then, DNA is purified from the biological sample. Finally, the DNA is contacted with a NTP DNA probe under conditions of hybridization. Familial AD is indicated by the detection of a hybrid of the probe and the DNA, whereas sporadic AD is indicated by the absence of detection of hybridization.

For example, the biological sample can be a blood sample which is subjected to differential centrifugation to enrich for white blood cells within three days of collection (Park, "PCR in the Diagnosis of Retinoblastoma," in PCR Protocols, Innis et al., Eds., Academic Press, Inc., New York, pp. 407-415 (1990)). The DNA sample can be prepared using the sodium N-lauroylsarcosine-Proteinase K, phenol, and RNase method (Sambrook et al., supra). DNA analysis can be performed by digesting the DNA sample, preferably 5 micrograms, with a restriction endonuclease (such as HindIII).

WO 96/15272 PCT/US95/17111

Digested DNA is then fractionated using agarose gel electrophoresis, preferably, a 1% horizontal agarose gel, for 18 hours in a buffer preferably containing 89 mM Tris-Hcl (pH 8), 89 mM sodium borate and 2 mM EDTA (Gusella et al., Nature 306:234-238 (1983)). Southern analysis can be performed using conventional techniques (Sambrook et al., supra), and the labelled AD cDNA probes can be hybridized under conditions described above. The preferred DNA probes for this differential diagnosis method include 1-9a, AD3-4, AD4-4 and G2-2 PstI.

B. Immunoassays

10

15

5

Antibodies directed against an NTP can be used, as taught by the present invention, to detect and diagnose AD. Various histological staining methods, including immunohistochemical staining methods, may also be used effectively according to the teaching of the invention. Silver stain is but one method of visualizing NTP. Other staining methods useful in the present invention will be obvious to the artisan, the determination of which would not involve undue experimentation (see generally, for example, A Textbook of Histology, Eds. Bloom and Fawcett, W.B. Saunders Co., Philadelphia (1964)).

20

25

One screening method for determining whether a given compound is an NTP functional derivative comprises, for example, immunoassays employing radioimmunoassay (RIA) or enzyme-linked immunosorbant assay (ELISA) methodologies, based on the production of specific antibodies (monoclonal or polyclonal) to an NTP. For these assays, biological samples are obtained by venepuncture (blood), spinal tap (cerebral spinal fluid (CSF)), urine and other body secretions such as sweat and tears. For example, in one form of RIA, the substance under test is mixed with diluted antiserum in the presence of radiolabeled antigen. In this method, the concentration of the test substance will be inversely proportional to the amount of labeled antigen bound to the specific antibody and directly related to the amount of free

labeled antigen. Other suitable screening methods will be readily apparent to those of skill in the art.

The present invention also relates to methods of detecting an NTP or functional derivatives in a sample or subject. For example, antibodies specific for an NTP, or a functional derivative, may be detectably labeled with any appropriate marker, for example, a radioisotope, an enzyme, a fluorescent label, a paramagnetic label, or a free radical.

Alternatively, antibodies specific for an NTP, or a functional derivative, may be detectably labeled with DNA by the technique of immunopolymerase chain reaction (Sano et al., Science 258: 120-122 (1992)). The polymerase chain reaction (PCR) procedure amplifies specific nucleic acid sequences through a series of manipulations including denaturation, annealing of oligonucleotide primers, and extension of the primers with DNA polymerase (see, for example, Mullis et al., U.S. Patent No. 4,683,202; Mullis et al., U.S. Patent No. 4,683,195; Loh et al., Science 243:217 The steps can be repeated many times, resulting in a large amplification of the number of copies of the original specific sequence. As little as a single copy of a DNA sequence can be amplified to produce hundreds of nanograms of product (Li et al., Nature 335:414 (1988)). Other known nucleic acid amplification procedures include transcription-based amplification systems (Kwoh et al., Proc. Natl. Acad. Sci. USA 86:1173 (1989); Gingeras et al., WO 88/10315), and the "ligase chain reaction" in which two (or more) oligonucleotides are ligated in the presence of a nucleic acid target having the sequence of the resulting "di-oligonucleotide" thereby amplifying the di-oligonucleotide (Wu et al., Genomics 4:560 (1989); Backman et al., EP 320,308; Wallace, EP 336,731; Orgel, WO 89/09835).

For example, the immuno-PCR assay can be carried out by immobilizing various amounts of the test material on the surface of microtiter wells (see Sanzo et al., supra, page 122, footnote 7). The wells are subsequently incubated with an NTP monoclonal antibody, washed, and then incubated with biotinylated NTP DNA molecules which have been conjugated

25

5

10

15

20

WO 96/15272 PCT/US95/17111

- 32 -

to streptavidin-protein chimera (Id.). This chimera binds biotin (via the streptavidin moiety) and the Fc portion of an immunoglobulin G molecule (via the protein A moiety) (Id., at 120; Sanzo et al., Bio/Technology 9:1378 (1991)). The wells are then washed to remove unbound conjugates. Any NTP present in the test material will be bound by the NTP monoclonal antibody, which in turn, is bound by the protein A moiety of the biotinylated NTP DNA - streptavidin-protein A conjugate. Then, the NTP DNA sequences are amplified using PCR. Briefly, the microtiter wells are incubated with deoxyribonucleoside triphosphates, NTP oligonucleotide primers, and Taq DNA polymerase (see Sanzo et al., supra, page 122, footnote 11). An automated thermal cycler (such as the PTC-100-96 Thermal Cycler, MJ Research, Inc.) can be used to perform PCR under standard conditions (Id.). The PCR products are then analyzed by agarose gel electrophoresis after staining with ethidium bromide.

15

10

5

Methods of making and detecting such detectably labeled antibodies or their functional derivatives are well known to those of ordinary skill in the art, and are described in more detail below. Standard reference works setting forth the general principles of immunology include the work of Klein (Immunology: The Science of Self-Nonself Discrimination, John Wiley & Sons, New York (1982)); Kennett et al. (Monoclonal Antibodies and Hybridomas: A New Dimension in Biological Analyses, Plenum Press, New York (1980)); Campbell ("Monoclonal Antibody Technology," In: Laboratory Techniques in Biochemistry and Molecular Biology, Volume 13 (Burdon, R., et al., eds.), Elsevier, Amsterdam (1984)); and Eisen (In: Microbiology, 3rd Ed. (Davis, et al., Harper & Row, Philadelphia (1980)).

25

30

20

The term "antibody" refers both to monoclonal antibodies which are a substantially homogeneous population and to polyclonal antibodies which are heterogeneous populations. Polyclonal antibodies are derived from the sera of animals immunized with an antigen. Monoclonal antibodies (mAbs) to specific antigens may be obtained by methods known to those skilled in the art. See, for example, Kohler and Milstein, Nature 256:495-497 (1975) and

10

15

20

25

30

U.S. Patent No. 4,376,110. Such antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof.

The monoclonal antibodies, particularly mAbs Th7, Th9, and Th10 used in the present invention, may be prepared as previously described (Gross et al., J. Clin. Invest. 76:2115-2126 (1985); Ozturk et al., Proc. Natl. Acad. Sci. USA 86:419-423 (1989); de la Monte et. al., J. Clin. Invest. 86:1004-1013 (1990); de la Monte et. al., J. Neurol. Sci. 113:152-164 (1992); de la Monte et al., Ann. Neurol. 32:733-742 (1992)). The Th monoclonal antibodies were generated against the purified pancreatic form of thread protein (Id.). NTP-specific polyclonal and monoclonal antibodies can also be generated against a substantially pure NTP isolated from recombinant hosts (for example, see Carroll et al., "Production and Purification of Polyclonal Antibodies to the Foreign Segment of B-Galactosidase Fusion Proteins," in DNA Cloning: A Practical Approach, Volume III, IRL Press, Washington, D.C., pp. 89-111 (1987); Mole et al., "Production of Monoclonal Antibodies Against Fusion Proteins Produced in Escherichia coli," in DNA Cloning: A Practical Approach, Volume III, IRL Press, Washington, D.C., pp. 113-1139 (1987)). Alternatively, NTP-specific polyclonal and monoclonal antibodies can be generated against a substantially pure NTP isolated from biological material such as brain tissue and cell lines, by using well known techniques.

For example, monoclonal antibodies specific for the various NTP molecules of approximately, 8, 14, 17, 21, 26 kDa and 42 kDa molecular weights may be prepared from recombinant-derived proteins, which are expressed, isolated and purified from the cDNA (i.e., 1-9a), genomic clones (G2-2 PstI) and AD-NTP 3-4 cDNA clones. These NTP molecules are derived from the above cDNA's and genomic clones, inserted and produced in suitable expression vectors (see Figures 2A and 2B). Since there are regions of 60-70% homology in the 5' ends of the 1-9a NTP cDNA and PTP, one can obtain monoclonal antibodies that bind specifically to the NTP recombinant proteins and not to the pancreatic form by performing routine differential screening (see, for example, de la Monte et al., J. Clin. Invest.

10

15

20

25

30

86: 1004-1013 (1990)). Although there will be monoclonal antibodies that bind to both NTP and PTP, it will be possible to generate NTP-specific monoclonal antibodies because there is a substantial sequence divergence between NTP molecules of various forms (e.g., 8, 14, 17, 21, 26 and 42 kDa) and because an epitope may be defined by as few as 6-8 amino acids.

The term "antibody" is also meant to include both intact molecules as well as fragments thereof, such as, for example, Fab and F(ab')₂, which are capable of binding antigen. Fab and F(ab')₂ fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody (Wahl et al., J. Nucl. Med. 24:316-325 (1983)).

It will be appreciated that Fab and F(ab')₂ and other fragments of the antibodies useful in the present invention may be used for the detection and quantitation of an NTP according to the methods disclosed herein in order to detect and diagnose AD in the same manner as an intact antibody. Such fragments are typically produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')₂ fragments).

An antibody is said to be "capable of binding" a molecule if it is capable of specifically reacting with the molecule to thereby bind the molecule to the antibody. The term "epitope" is meant to refer to that portion of any molecule capable of being bound by an antibody which can also be recognized by that antibody. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and have specific three dimensional structural characteristics as well as specific charge characteristics.

An "antigen" is a molecule capable of being bound by an antibody which is additionally capable of inducing an animal to produce antibody-capable of binding to an epitope of that antigen. An antigen may have one, or more than one epitope. The specific reaction referred to above is meant to indicate that the antigen will react, in a highly selective manner, with its

WO 96/15272 PCT/US95/17111

- 35 -

corresponding antibody and not with the multitude of other antibodies which may be evoked by other antigens.

The antibodies, or fragments of antibodies, useful in the present invention may be used to quantitatively or qualitatively detect the presence of cells which contain the NTP antigens. Thus, the antibodies (or fragments thereof) useful in the present invention may be employed histologically to detect or visualize the presence of an NTP.

Such an assay for an NTP typically comprises incubating a biological sample from said subject suspected of having such a condition in the presence of a detectably labeled binding molecule (e.g., antibody) capable of identifying an NTP, and detecting said binding molecule which is bound in a sample.

Thus, in this aspect of the invention, a biological sample may be treated with nitrocellulose, or other solid support which is capable of immobilizing cells, cell particles or soluble proteins. The support may then be washed with suitable buffers followed by treatment with the detectably labeled NTP-specific antibody. The solid phase support may then be washed with the buffer a second time to remove unbound antibody. The amount of bound label on said solid support may then be detected by conventional means.

By "solid phase support" is intended any support capable of binding antigen or antibodies. Well-known supports, or carriers, include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, agaroses, and magnetite. The nature of the carrier can be either soluble to some extent or insoluble for the purposes of the present invention. The support material may have virtually any possible structural configuration so long as the coupled molecule is capable of binding to an antigen or antibody. Thus, the support configuration may be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube, or the external surface of a rod. Alternatively, the surface may be flat such as a sheet, test strip, etc. Preferred supports include polystyrene beads. Those skilled in the art will note many other suitable carriers for binding

20

5

10

15

25

10

15

20

25

30

monoclonal antibody or antigen, or will be able to ascertain the same by use of routine experimentation.

One embodiment for carrying out the diagnostic assay of the present invention on a biological sample containing an NTP, comprises:

(a) contacting a detectably labeled NTP-specific antibody
 with a solid support to effect immobilization of said NTP-specific antibody or
 a fragment thereof;

(b) contacting a sample suspected of containing an NTP with said solid support;

(c) incubating said detectably labeled NTP-specific antibody with said support for a time sufficient to allow the immobilized NTP-specific antibody to bind to the NTP;

(d) separating the solid phase support from the incubation mixture obtained in step (c); and

(e) detecting the bound label and thereby detecting and quantifying NTP.

Alternatively, labeled NTP-specific antibody/NTP complexes in a sample may be separated from a reaction mixture by contacting the complex with an immobilized antibody or protein which is specific for an immunoglobulin, e.g., Staphylococcus protein A, Staphylococcus protein G, anti-IgM or anti-IgG antibodies. Such anti-immunoglobulin antibodies may be polyclonal, but are preferably monoclonal. The solid support may then be washed with a suitable buffer to give an immobilized NTP/labeled NTP-specific antibody complex. The label may then be detected to give a measure of an NTP.

This aspect of the invention relates to a method for detecting an NTP or a fragment thereof in a sample comprising:

- (a) contacting a sample suspected of containing an NTP with an NTP-specific antibody or fragment thereof which binds to NTP; and
 - (b) detecting whether a complex is formed.

10

15

20

25

30

The invention also relates to a method of detecting an NTP in a sample, further comprising:

- (c) contacting the mixture obtained in step (a) with an Fc binding molecule, such as an antibody, *Staphylococcus* protein A, or *Staphylococcus* protein G, which is immobilized on a solid phase support and is specific for the NTP-specific antibody to give a NTP/NTP-specific antibody immobilized antibody complex;
- (d) washing the solid phase support obtained in step (c) to remove unbound NTP/NTP-specific antibody complex;
 - (e) and detecting the label bound to said solid support.

Of course, the specific concentrations of detectably labeled antibody and NTP, the temperature and time of incubation, as well as other assay conditions may be varied, depending on various factors including the concentration of an NTP in the sample, the nature of the sample, and the like. The binding activity of a given lot of anti-NTP antibody may be determined according to well known methods. Those skilled in the art will be able to determine operative and optimal assay conditions for each determination by employing routine experimentation.

Other such steps as washing, stirring, shaking, filtering and the like may be added to the assays as is customary or necessary for the particular situation.

One of the ways in which the NTP-specific antibody can be detectably labeled is by linking the same to an enzyme. This enzyme, in turn, when later exposed to its substrate, will react with the substrate in such a manner as to produce a chemical moiety which can be detected, for example, by spectrophotometric, fluorometric or by visual means. Enzymes which can be used to detectably label the NTP-specific antibody include, but are not limited to, malate dehydrogenase, staphylococcal nuclease, delta-V-steroid isomerase, yeast alcohol dehydrogenase, α -glycerophosphate dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase,

10

15

20

25

30

asparaginase, glucose oxidase, ß-galactosidase, ribonuclease, urease, catalase, glucose-VI-phosphate dehydrogenase, glucoamylase and acetylcholinesterase.

Detection may be accomplished using any of a variety of immuno-assays. For example, by radioactively labeling the NTP-specific antibodies or antibody fragments, it is possible to detect NTP through the use of radioimmune assays. A good description of a radioimmune assay may be found in Laboratory Techniques and Biochemistry in Molecular Biology, by Work, et al., North Holland Publishing Company, NY (1978), with particular reference to the chapter entitled "An Introduction to Radioimmune Assay and Related Techniques" by Chard, incorporated by reference herein.

The radioactive isotope can be detected by such means as the use of a gamma counter or a scintillation counter or by autoradiography. Isotopes which are particularly useful for the purpose of the present invention are: ³H, ¹²⁵I, ¹³¹I, ³⁵S, ¹⁴C, and preferably ¹²⁵I.

It is also possible to label the NTP-specific antibody with a fluorescent compound. When the fluorescently labeled antibody is exposed to light of the proper wave length, its presence can then be detected due to fluorescence. Among the most commonly used fluorescent labelling compounds are fluorescein isothiocyanate, rhodamine, phycocyatin, phycocyanin, allophycocyanin, o-phthaldehyde and fluorescamine.

The NTP-specific antibody can also be detectably labeled using fluorescence emitting metals such as ¹⁵²Eu, or others of the lanthanide series. These metals can be attached to the NTP-specific antibody using such metal chelating groups as diethylenetriaminepentaacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA).

The NTP-specific antibody also can be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged NTP-specific antibody is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of particularly useful chemiluminescent labeling compounds are luminol,

WO 96/15272 PCT/US95/17111

- 39 -

isoluminol, theromatic acridinium ester, imidazole, acridinium salt and oxalate ester.

The NTP-specific antibody may also be labeled with biotin and then reacted with avidin. A biotin-labeled DNA fragment will be linked to the NTP-biotinylated monoclonal antibody by an avidin bridge. NTP molecules are then detected by polymerase chain reaction (PCR) amplification of the DNA fragment with specific primers (Sano et al., Science 258: 120-122 (1992)).

5

10

15

20

25

30

Likewise, a bioluminescent compound may be used to label the NTP-specific antibody of the present invention. Bioluminescence is a type of chemiluminescence found in biological systems in which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of luminescence. Important bioluminescent compounds for purposes of labeling are luciferin, luciferase and aequorin.

Detection of the NTP-specific antibody may be accomplished by a scintillation counter, for example, if the detectable label is a radioactive gamma emitter, or by a fluorometer, for example, if the label is a fluorescent material. In the case of an enzyme label, the detection can be accomplished by colorimetric methods which employ a substrate for the enzyme. Detection may also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate in comparison with similarly prepared standards.

The detection of foci of such detectably labeled antibodies is indicative of a disease or dysfunctional state as previously described. For the purposes of the present invention, the NTP which is detected by this assay may be present in a biological sample. Any sample containing an NTP can be used. However, one of the benefits of the present diagnostic invention is that invasive tissue removal may be avoided. Therefore, preferably, the sample is a biological solution such as, for example, cerebrospinal fluid, amniotic fluid, blood, serum, urine and the like. However, the invention is not limited to assays using only these samples, it being possible for one of ordinary skill

10

15

20

25

30

in the art to determine suitable conditions which allow the use of other samples.

For example, the three-site monoclonal antibody-based immunoradiometric assays (M-IRMA) may be used to measure NTP levels in a biological fluid, such as CSF. It is possible to obtain, by spinal tap, on a routine basis, CSF from individuals suspected of having AD. Thus, the diagnosis of AD can be established by a simple, non-invasive immunoassay which reveals NTP levels greatly increased over normal levels.

In one embodiment, as described above, this examination for AD is accomplished by removing samples of biological fluid and incubating such samples in the presence of detectably labeled antibodies (or antibody fragments). In a preferred embodiment, this technique is accomplished in a non-invasive manner through the use of magnetic imaging, fluorography, etc.

Preferably, the detection of cells which express an NTP may be accomplished by in vivo imaging techniques, in which the labeled antibodies (or fragments thereof) are provided to a subject, and the presence of the NTP is detected without the prior removal of any tissue sample. Such in vivo detection procedures have the advantage of being less invasive than other detection methods, and are, moreover, capable of detecting the presence of NTP in tissue which cannot be easily removed from the patient, such as brain tissue.

Using in vivo imaging techniques, it will be possible to differentiate between AD and a brain tumor because NTP will be detected throughout the brain in an AD patient, while NTP will be localized in discrete deposits in the case of brain tumors. For example, in brains of AD patients, NTP will be found in the temporal, parietal and frontal cortices as well as the amygdala and hippocampus. Favored cites for astrocytomas include the cerebrum, cerebellum, thalamus, optic chiasma, and pons (Harrison's Principles of Internal Medicine, Petersdorf et al., Eds., Tenth Edition, McGraw-Hill Book Company, New York, p.2076 (1983)), and glioblastoma multiforme is predominantly cerebral in location (Id. at 2075).

WO 96/15272 PCT/US95/17111

- 41 -

There are many different in vivo labels and methods of labeling known to those of ordinary skill in the art. Examples of the types of labels which can be used in the present invention include radioactive isotopes and paramagnetic isotopes. Those of ordinary skill in the art will know of other suitable labels for binding to the antibodies used in the invention, or will be able to ascertain such, using routine experimentation. Furthermore, the binding of these labels to the antibodies can be done using standard techniques common to those of ordinary skill in the art.

5

10

15

20

25

30

An important factor in selecting a radionuclide for in vivo diagnosis is that the half-life of a radionuclide be long enough so that it is still detectable at the time of maximum uptake by the target, but short enough so that deleterious radiation upon the host is minimized. Ideally, a radionuclide used for in vivo imaging will lack a particulate emission, but produce a large number of photons in the 140-200 keV range, which maybe readily detected by conventional gamma cameras.

For *in vivo* diagnosis radionuclides may be bound to antibody either directly or indirectly by using an intermediary functional group. Intermediary functional groups which are often used in binding radioisotopes which exist as metallic ions to immunoglobulins are DTPA and EDTA. Typical examples of ions which can be bound to immunoglobulins are ^{99m}Tc, ¹²³I, ¹¹¹In, ¹³¹I, ⁹⁷Ru, ⁶⁷Cu, ⁶⁷Ga, ¹²⁵I, ⁶⁴Ga, ⁷²As, ⁸⁹Zr, and ²⁰¹Tl.

For diagnostic in vivo imaging, the type of detection instrument available is a major factor in selecting a given radionuclide. The radionuclide chosen must have a type of decay which is detectable for a given type of instrument. In general, any conventional method for visualizing diagnostic imaging can be utilized in accordance with this invention. For example, PET, gamma, beta, and MRI detectors can be used to visualize diagnostic imagining.

The antibodies useful in the invention can also be labeled with paramagnetic isotopes for purposes of in vivo diagnosis. Elements which are

CT/US95/17111

WO 96/15272

5

10

15

20

25

30

particularly useful, as in Magnetic Resonance Imaging (MRI), include ¹⁵⁷Gd, ⁵⁵Mn, ¹⁶²Dy, and ⁵⁶Fe.

The antibodies (or fragments thereof) useful in the present invention are also particularly suited for use in *in vitro* immunoassays to detect the presence of an NTP in body tissue, fluids (such as CSF), or cellular extracts. In such immunoassays, the antibodies (or antibody fragments) may be utilized in liquid phase or, preferably, bound to a solid-phase carrier, as described above.

Those of ordinary skill in the art will know of other suitable labels which may be employed in accordance with the present invention. The binding of these labels to antibodies or fragments thereof can be accomplished using standard techniques commonly known to those of ordinary skill in the art. Typical techniques are described by Kennedy, et al. (Clin. Chim. Acta 70:1-31 (1976)) and Schurs, et al. (Clin. Chim. Acta 81:1-40 (1977)). Coupling techniques mentioned in the latter are the glutaraldehyde method, the periodate method, the dimaleimide method, the m-maleimidobenzyl-N-hydroxy-succinimide ester method, all of which methods are incorporated by reference herein.

In situ detection may be accomplished by removing a histological specimen from a patient, and providing the combination of labeled antibodies of the present invention to such a specimen. The antibody (or fragment) is preferably provided by applying or by overlaying the labeled antibody (or fragment) to a biological sample. Through the use of such a procedure, it is possible to determine not only the presence of an NTP, but also the distribution of an NTP on the examined tissue. Using the present invention, those of ordinary skill will readily perceive that any of a wide variety of histological methods (such as staining procedures) can be modified in order to achieve such in situ detection.

The binding molecules of the present invention may be adapted for utilization in an immunometric assay, also known as a "two-site" or "sandwich" assay. In a typical immunometric assay, a quantity of unlabeled

antibody (or fragment of antibody) is bound to a solid support that is insoluble in the fluid being tested (i.e., CSF) and a quantity of detectably labeled soluble antibody is added to permit detection and/or quantitation of the ternary complex formed between solid-phase antibody, antigen, and labeled antibody.

5

10

Typical, and preferred, immunometric assays include "forward" assays in which the antibody bound to the solid phase is first contacted with the sample being tested to extract the antigen from the sample by formation of a binary solid phase antibody-antigen complex. After a suitable incubation period, the solid support is washed to remove the residue of the fluid sample, including unreacted antigen, if any, and then contacted with the solution containing an unknown quantity of labeled antibody (which functions as a "reporter molecule"). After a second incubation period to permit the labeled antibody to complex with the antigen bound to the solid support through the unlabeled antibody, the solid support is washed a second time to remove the unreacted labeled antibody. This type of forward sandwich assay may be a simple "yes/no" assay to determine whether antigen is present or may be made quantitative by comparing the measure of labeled antibody with that obtained for a standard sample containing known quantities of antigen. Such "two-site" or "sandwich" assays are described by Wide at pages 199-206 of Radioimmune Assay Method, edited by Kirkham and Hunter, E. & S. Livingstone, Edinburgh, 1970.

20

15

In another type of "sandwich" assay, which may also be useful with the antigens of the present invention, the so-called "simultaneous" and "reverse" assays are used. A simultaneous assay involves a single incubation step as the antibody bound to the solid support and labeled antibody are both added to the sample being tested at the same time. After the incubation is completed, the solid support is washed to remove the residue of fluid sample and uncomplexed labeled antibody. The presence of labeled antibody associated with the solid support is then determined as it would be in a conventional "forward" sandwich assay.

25

5 ·

10

15

20

25

30

In the "reverse" assay, stepwise addition first of a solution of labeled antibody to the fluid sample followed by the addition of unlabeled antibody bound to a solid support after a suitable incubation period is utilized. After a second incubation, the solid phase is washed in conventional fashion to free it of the residue of the sample being tested and the solution of unreacted labeled antibody. The determination of labeled antibody associated with a solid support is then determined as in the "simultaneous" and "forward" assays.

The above-described in vitro or in vivo detection methods may be used in the detection and diagnosis of AD without the necessity of removing tissue. Such detection methods may be used to assist in the determination of the stage of neurological deterioration in AD by evaluating and comparing the concentration of an NTP in the biological sample.

As used herein, an effective amount of a diagnostic reagent (such as an antibody or antibody fragment) is one capable of achieving the desired diagnostic discrimination and will vary depending on such factors as age, condition, sex, the extent of disease of the subject, counterindications, if any, and other variables to be adjusted by the physician. The amount of such materials which are typically used in a diagnostic test are generally between 0.1 to 5 mg, and preferably between 0.1 to 0.5 mg.

The assay of the present invention is also ideally suited for the preparation of a kit. Such a kit may comprise a carrier means being compartmentalized to receive in close confinement therewith one or more container means such as vials, tubes and the like, each of said container means comprising the separate elements of the immunoassay.

For example, there may be a container means containing a first antibody immobilized on a solid phase support, and a further container means containing a second detectably labeled antibody in solution. Further container means may contain standard solutions comprising serial dilutions of the NTP to be detected. The standard solutions of an NTP may be used to prepare a standard curve with the concentration of NTP plotted on the abscissa and the

- 45 -

detection signal on the ordinate. The results obtained from a sample containing an NTP may be interpolated from such a plot to give the concentration of the NTP.

IV. Isolation of NTP

5

The NTP proteins or fragments of this invention may be obtained by expression from recombinant DNA as described above. Alternatively, an NTP may be purified from biological material.

For purposes of the present invention, one method of purification which is illustrative, without being limiting, consists of the following steps.

10

A first step in the purification of an NTP includes extraction of the NTP fraction from a biological sample, such as brain tissue or CSF, in buffers, with or without solubilizing agents such as urea, formic acid, detergent, or thiocyanate.

15

A second step includes subjecting the solubilized material to ion-exchange chromatography on Mono-Q or Mono-S columns (Pharmacia LKB Biotechnology, Inc; Piscataway, NJ). Similarly, the solubilized material may be separated by any other process wherein molecules can be separated according to charge density, charge distribution and molecular size, for example. Elution of the NTP from the ion-exchange resin are monitored by an immunoassay, such as M-IRMA, on each fraction. Immunoreactive peaks would are then dialyzed, lyophilized, and subjected to molecular sieve, or gel chromatography.

20

25

Molecular sieve or gel chromatography is a type of partition chromatography in which separation is based on molecular size. Dextran, polyacrylamide, and agarose gels are commonly used for this type of separation. One useful gel for the present invention is Sepharose 12 (Pharmacia LKB Biotechnology, Inc.). However, other methods, known to those of skill in the art may be used to effectively separate molecules based on size.

10

15

20

25

A fourth step in a purification protocol for an NTP includes analyzing the immunoreactive peaks by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), a further gel chromatographic purification step, and staining, such as, for example, silver staining.

A fifth step in a purification method includes subjecting the NTP obtained after SDS-PAGE to affinity chromatography, or any other procedure based upon affinity between a substance to be isolated and a molecule to which it can specifically bind. For further purification of an NTP, affinity chromatography on Sepharose conjugated to anti-NTP mAbs (such as Th9, or specific mABs generated against substantially pure NTP) can be used. Alternative methods, such as reverse-phase HPLC, or any other method characterized by rapid separation with good peak resolution are useful.

Another method to purify an NTP is to use concentrated CSF obtained from patients with AD. For this procedure, 30-40 milliliters are concentrated by lyophilization or Amicon filtration or the like, and subjected to two dimensional gel electrophoresis. Proteins are separated in one direction by charge in a pH gradient and then, subjected to molecular sieve chromatography in the other direction by polyacrylamide gel electrophoresis. NTP-immunoreactive proteins are identified as spots by the Th monoclonal antibodies (for example, Th 9) using Western blot analysis. The gel is cut and NTP proteins are eluted from the gel. NTP purified in this manner can be sequenced or used to make new monoclonal antibodies.

It will be appreciated that other purification steps may be substituted for the preferred method described above. Those of skill in the art will be able to devise alternate purification schemes without undue experimentation.

V. Gene Therapy Using Antisense Oligonucleotides and Ribozymes

Antisense oligonucleotides have been described as naturally occurring biological inhibitors of gene expression in both prokaryotes (Mizuno et al., Proc. Natl. Acad. Sci. USA 81:1966-1970 (1984)) and eukaryotes (Heywood,

PCT/US95/17111

Nucleic Acids Res. 14:6771-6772 (1986)), and these sequences presumably function by hybridizing to complementary mRNA sequences, resulting in hybridization arrest of translation (Paterson, et al., Proc. Natl. Acad. Sci. USA, 74:4370-4374 (1987)).

5

Antisense oligonucleotides are short synthetic DNA or RNA nucleotide molecules formulated to be complementary to a specific gene or RNA message. Through the binding of these oligomers to a target DNA or mRNA sequence, transcription or translation of the gene can be selectively blocked and the disease process generated by that gene can be halted (see, for example, Jack Cohen, Oligodeoxynucleotides, Antisense Inhibitors of Gene Expression, CRC Press (1989)). The cytoplasmic location of mRNA provides a target considered to be readily accessible to antisense oligodeoxynucleotides entering the cell; hence much of the work in the field has focused on RNA as a target. Currently, the use of antisense oligodeoxynucleotides provides a useful tool for exploring regulation of gene expression in vitro and in tissue culture (Rothenberg, et al., J. Natl. Cancer Inst. 81:1539-1544 (1989)).

15

10

Antisense therapy is the administration of exogenous oligonucleotides which bind to a target polynucleotide located within the cells. For example, antisense oligonucleotides may be administered systemically for anticancer therapy (Smith, International Application Publication No. WO 90/09180). As described herein, NTP-related proteins are produced by neuroectodermal tumor cells, malignant astrocytoma cells, glioblastoma cells, and in relatively high concentrations (i.e., relative to controls) in brain tissue of AD patients. Thus, NTP antisense oligonucleotides of the present invention may be active in treatment against AD, as well as neuroectodermal tumors, malignant astrocytomas, and glioblastomas.

25

20

The NTP antisense oligonucleotides of the present invention include derivatives such as S-oligonucleotides (phosphorothioate derivatives or S-oligos, see, Jack Cohen, supra). S-oligos (nucleoside phosphorothioates) are isoelectronic analogs of an oligonucleotide (O-oligo) in which a nonbridging oxygen atom of the phosphate group is replaced by a sulfur atom. The S-

10

15

20

25

30

oligos of the present invention may be prepared by treatment of the corresponding O-oligos with 3H-1,2-benzodithiol-3-one-1,1-dioxide which is a sulfur transfer reagent. See Iyer et al., J. Org. Chem. 55:4693-4698 (1990); and Iyer et al., J. Am. Chem. Soc. 112:1253-1254 (1990), the disclosures of which are fully incorporated by reference herein.

As described herein, sequence analysis of an NTP cDNA clone shows that NTP contains sequences which are nonhomologous to PTP DNA sequences (see Figure 9). Thus, the NTP antisense oligonucleotides of the present invention may be RNA or DNA which is complementary to and stably hybridizes with such sequences which are specific for an NTP. Use of an oligonucleotide complementary to this region allows for the selective hybridization to NTP mRNA and not to mRNA specifying PTP. Preferably, the NTP antisense oligonucleotides of the present invention are a 15 to 30-mer fragment of the antisense DNA molecule coding for the nonhomologous sequences of the AD 3-4 cDNA, such as:

- 5'-CCGATTCCAACAGACCATCAT-3' [SEQ ID NO: 1];
- 2. 5'-CCAACAGACCATCATTCCACC-3' [SEQ ID NO: 2]; and
- 3. 5'-CCAAACCGATTCCAACAGACC-3' [SEQ ID NO: 3].

Preferred antisense oligonucleotides bind to the 5'-end of the AD10-7 mRNA. Such antisense oligonucleotides may be used to down regulate or inhibit expression of the NTP gene. Examples of such antisense oligonucleotides (30-mers) include:

- 1. 5'-CCTGGGCAACAAGAGCGAAAACTCCATCTC-3' [SEQ ID NO: 4];
- 2. 5'-ATCGCTTGAACCCGGGAGGCGGAGGTTGCG-3' [SEQ
- 3. 5'-GGGGAGGCTGAGGCAGGAGAATCGCTTGAA-3'[SEQ ID NO: 6].

Included as well in the present invention are pharmaceutical compositions comprising an effective amount of at least one of the NTP antisense oligonucleotides of the invention in combination with a pharma-

WO 96/15272 PCT/US95/17111

- 49 -

ceutically acceptable carrier. In one embodiment, a single NTP antisense oligonucleotide is utilized. In another embodiment, two NTP antisense oligonucleotides are utilized which are complementary to adjacent regions of the NTP genome. Administration of two NTP antisense oligonucleotides which are complementary to adjacent regions of the genome or corresponding mRNA may allow for more efficient inhibition of NTP genomic transcription or mRNA translation, resulting in more effective inhibition of NTP production.

5

10

15

20

25

30

Preferably, the NTP antisense oligonucleotide is coadministered with an agent which enhances the uptake of the antisense molecule by the cells. For example, the NTP antisense oligonucleotide may be combined with a lipophilic cationic compound which may be in the form of liposomes. The use of liposomes to introduce nucleotides into cells is taught, for example, in U.S. Patent Nos. 4,897,355 and 4,394,448, the disclosures of which are incorporated by reference in their entirety. See also U.S. Patent Nos. 4,235,871, 4,231,877, 4,224,179, 4,753,788, 4,673,567, 4,247,411, 4,814,270 for general methods of preparing liposomes comprising biological materials.

Alternatively, the NTP antisense oligonucleotide may be combined with a lipophilic carrier such as any one of a number of sterols including cholesterol, cholate and deoxycholic acid. A preferred sterol is cholesterol.

In addition, the NTP antisense oligonucleotide may be conjugated to a peptide that is ingested by cells. Examples of useful peptides include peptide hormones, antigens or antibodies, and peptide toxins. By choosing a peptide that is selectively taken up by the neoplastic cells, specific delivery of the antisense agent may be effected. The NTP antisense oligonucleotide may be covalently bound via the 5'OH group by formation of an activated aminoalkyl derivative. The peptide of choice may then be covalently attached to the activated NTP antisense oligonucleotide via an amino and sulfhydryl reactive hetero bifunctional reagent. The latter is bound to a cysteine residue present in the peptide. Upon exposure of cells to the NTP antisense

WO 96/15272 PCT/US95/17111

oligonucleotide bound to the peptide, the peptidyl antisense agent is endocytosed and the NTP antisense oligonucleotide binds to the target NTP mRNA to inhibit translation (Haralambid et al., WO 8903849; Lebleu et al., EP 0263740).

5

The NTP antisense oligonucleotides and the pharmaceutical compositions of the present invention may be administered by any means that achieve their intended purpose. For example, administration may be by parenteral, subcutaneous, intravenous, intramuscular, intra-peritoneal, or transdermal routes. The dosage administered will be dependent upon the age, health, and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment, and the nature of the effect desired.

10

15

Compositions within the scope of this invention include all compositions wherein the NTP antisense oligonucleotide is contained in an amount effective to achieve inhibition of proliferation and/or stimulate differentiation of the subject cancer cells, or alleviate AD. While individual needs vary, determination of optimal ranges of effective amounts of each component is with the skill of the art. Typically, the NTP antisense oligonucleotide may be administered to mammals, e.g. humans, at a dose of 0.005 to 1 mg/kg/day, or an equivalent amount of the pharmaceutically acceptable salt thereof, per day of the body weight of the mammal being treated.

20

Alternatively, antisense oligonucleotides can be prepared which are designed to interfere with transcription of the NTP gene by binding transcribed regions of duplex DNA (including introns, exons, or both) and forming triple helices (Froehler et al., WO 91/06626; Toole, WO 92/10590). Preferred oligonucleotides for triple helix formation are oligonucleotides which have inverted polarities for at least two regions of the oligonucleotide (Id.). Such oligonucleotides comprise tandem sequences of opposite polarity such as 3'--5'-L-5'--3', or 5'--3'-L-3'--5', wherein L represents a 0-10 base oligonucleotide linkage between oligonucleotides. The inverted polarity form stabilizes single-stranded oligonucleotides to exonuclease degradation

25

and

5

10

15

20

25

30

(Froehler et al., supra). Preferred triple helix-forming oligonucleotides are based upon SEQ ID NOs 1-3:

- 1. 3'-TACTACCAGACAACCTTAGCC-5'-L-5'-CCGATTCCAACAGACCATCAT-3' [SEQ ID NO: 7];
- 2. 5'-CCGATTCCAACAGACCATCAT-3'-L3'-TACTACCAGACAACCTTAGCC-5' [SEQ ID NO: 8];
- 3'-CCACCTTACTACCAGACAACC-5'-L5'-CCAACAGACCATCATTCCACC-3' [SEQ ID NO: 9];
- 4. 5'-CCAACAGACCATCATTCCACC-3'-L3'-CCACCTTACTACCAGACAACC-5' [SEQ ID NO: 10];
- 5. 3'-CCAGACAACCTTAGCCAAACC-5'-L-5'-CCAAACCGATTCCAACAGACC-3' [SEQ ID NO: 11];
- 6. 5'-CCAAACCGATTCCAACAGACC-3'-L3'-CCAGACAACCTTAGCCAAACC-5' [SEQ ID NO: 12].

Thus, triple helix-forming oligonucleotides 1 and 2 are represented as 3'[SEQ ID NO: 1]5'-L-5'[SEQ ID NO: 1]3' and 5'[SEQ ID NO: 1]3'-L-3'[SEQ ID NO: 1]5', respectively. Triple helix-forming oligonucleotides 3 and 4 are represented as 3'[SEQ ID NO: 2]5'-L-5'[SEQ ID NO: 2]3' and 5'[SEQ ID NO: 2]3'-L-3'[SEQ ID NO: 2]5', respectively. Triple helix-forming oligonucleotides 5 and 6 are represented as 3'[SEQ ID NO: 3]5'-L-5'[SEQ ID NO: 3]3' and 5'[SEQ ID NO: 3]3'-L-3'[SEQ ID NO: 3]5', respectively. Of course, similar triple helix-forming oligonucleotide may be prepared with SEQ ID NOs. 4-6, or fragments thereof.

In therapeutic application, the triple helix-forming oligonucleotides can be formulated in pharmaceutical preparations for a variety of modes of administration, including systemic or localized administration, as described above.

The antisense oligonucleotides of the present invention may be prepared according to any of the methods that are well known to those of ordinary skill in the art, as described above.

WO 96/15272 PCT/US95/17111

Ribozymes provide an alternative method to inhibit mRNA function. Ribozymes may be RNA enzymes, self-splicing RNAs, and self-cleaving RNAs (Cech et al., Journal of Biological Chemistry 267:17479-17482 (1992)). It is possible to construct de novo ribozymes which have an endonuclease activity directed in trans to a certain target sequence. Since these ribozymes can act on various sequences, ribozymes can be designed for virtually any RNA substrate. Thus, ribozymes are very flexible tools for inhibiting the expression of specific genes and provide an alternative to antisense constructs.

5

10

15

20

25

30

A ribozyme against chloramphenicol acetyltransferase mRNA has been successfully constructed (Haseloff et al., Nature 334:585-591 (1988); Uhlenbeck et al., Nature 328:596-600 (1987)). The ribozyme contains three structural domains: 1) a highly conserved region of nucleotides which flank the cleavage site in the 5' direction; 2) the highly conserved sequences contained in naturally occurring cleavage domains of ribozymes, forming a base-paired stem; and 3) the regions which flank the cleavage site on both sides and ensure the exact arrangement of the ribozyme in relation to the cleavage site and the cohesion of the substrate and enzyme. RNA enzymes constructed according to this model have already proved suitable in vitro for the specific cleaving of RNA sequences (Haseloff et al., supra).

Alternatively, hairpin ribozymes may be used in which the active site is derived from the minus strand of the satellite RNA of tobacco ring spot virus (Hampel et al., Biochemistry 28:4929-4933 (1989)). Recently, a hairpin ribozyme was designed which cleaves human immunodeficiency virus type 1 RNA (Ojwang et al., Proc. Natl. Acad. Sci. USA 89:10802-10806 (1992)). Other self-cleaving RNA activities are associated with hepatitis delta virus (Kuo et al., J. Virol. 62:4429-4444 (1988)).

As discussed above, preferred targets for NTP ribozymes are the nucleotide sequences which are not homologous with PTP sequences. Preferably, the NTP ribozyme molecule of the present invention is designed based upon the chloramphenical acetyltransferase ribozyme or hairpin ribozymes, described above. Alternatively, NTP ribozyme molecules are

designed as described by Eckstein et al. (International Publication No. WO 92/07065) who disclose catalytically active ribozyme constructions which have increased stability against chemical and enzymatic degradation, and thus are useful as therapeutic agents.

5

In an alternative approach, an external guide sequence (EGS) can be constructed for directing the endogenous ribozyme, RNase P, to intracellular NTP mRNA, which is subsequently cleaved by the cellular ribozyme (Altman et al., U.S. Patent No. 5,168,053). Preferably, the NTP EGS comprises a ten to fifteen nucleotide sequence complementary to an NTP mRNA and a 3'-NCCA nucleotide sequence, wherein N is preferably a purine (Id.). After NTP EGS molecules are delivered to cells, as described below, the molecules bind to the targeted NTP mRNA species by forming base pairs between the NTP mRNA and the complementary NTP EGS sequences, thus promoting cleavage of NTP mRNA by RNase P at the nucleotide at the 5'side of the base-paired region (Id.).

15

20

10

Included as well in the present invention are pharmaceutical compositions comprising an effective amount of at least one NTP ribozyme or NTP EGS of the invention in combination with a pharmaceutically acceptable carrier. Preferably, the NTP ribozyme or NTP EGS is coadministered with an agent which enhances the uptake of the ribozyme or NTP EGS molecule by the cells. For example, the NTP ribozyme or NTP EGS may be combined with a lipophilic cationic compound which may be in the form of liposomes, as described above. Alternatively, the NTP ribozyme or NTP EGS may be combined with a lipophilic carrier such as any one of a number of sterols including cholesterol, cholate and deoxycholic acid. A preferred sterol is cholesterol.

25

The NTP ribozyme or NTP EGS, and the pharmaceutical compositions of the present invention may be administered by any means that achieve their intended purpose. For example, administration may be by parenteral, subcutaneous, intravenous, intramuscular, intra-peritoneal, or transdermal routes. The dosage administered will be dependent upon the age, health, and

weight of the recipient, kind of concurrent treatment, if any, frequency of treatment, and the nature of the effect desired. For example, as much as 700 milligrams of antisense oligodeoxynucleotide has been administered intravenously to a patient over a course of 10 days (i.e., 0.05 mg/kg/hour) without signs of toxicity (Sterling, "Systemic Antisense Treatment Reported," Genetic Engineering News 12(12):1, 28 (1992)).

Compositions within the scope of this invention include all compositions wherein the NTP ribozyme or NTP EGS is contained in an amount which is effective to achieve inhibition of proliferation and/or stimulate differentiation of the subject cancer cells, or alleviate AD. While individual needs vary, determination of optimal ranges of effective amounts of each component is with the skill of the art.

In addition to administering the NTP antisense oligonucleotides, ribozymes, or NTP EGS as a raw chemical in solution, the therapeutic molecules may be administered as part of a pharmaceutical preparation containing suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the NTP antisense oligonucleotide, ribozyme, or NTP EGS into preparations which can be used pharmaceutically.

Suitable formulations for parenteral administration include aqueous solutions of the NTP antisense oligonucleotides, ribozymes, NTP EGS in water-soluble form, for example, water-soluble salts. In addition, suspensions of the active compounds as appropriate oily injection suspensions may be administered. Suitable lipophilic solvents or vehicles include fatty oils, for example, sesame oil, or synthetic fatty acid esters, for example, ethyl oleate or triglycerides. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension include, for example, sodium carboxymethyl cellulose, sorbitol, and/or dextran. Optionally, the suspension may also contain stabilizers.

Alternatively, NTP antisense RNA molecules, NTP ribozymes, and NTP EGS can be coded by DNA constructs which are administered in the

20

15

5

10

25

form of virions, which are preferably incapable of replicating in vivo (see, for example, Taylor, WO 92/06693). For example, such DNA constructs may be administered using herpes-based viruses (Gage et al., U.S. Patent No. 5,082,670). Alternatively, NTP antisense RNA sequences, NTP ribozymes, and NTP EGS can be coded by RNA constructs which are administered in the form of virions, such as retroviruses. The preparation of retroviral vectors is well known in the art (see, for example, Brown et al., "Retroviral Vectors," in DNA Cloning: A Practical Approach, Volume 3, IRL Press, Washington, D.C. (1987)).

10

5

Specificity for gene expression in the central nervous system can be conferred by using appropriate cell-specific regulatory sequences, such as cell-specific enhancers and promoters. For example, such sequences include the sequences that regulate the oligodendroglial-specific expression of JC virus, glial-specific expression of the proteolipid protein, and the glial fibrillary acidic protein genes (Gage et al., supra). Since protein phosphorylation is critical for neuronal regulation (Kennedy, "Second Messengers and Neuronal Function," in An Introduction to Molecular Neurobiology, Hall, Ed., Sinauer Associates, Inc. (1992)), protein kinase promoter sequences can be used to achieve sufficient levels of NTP gene expression.

20

15

Thus, gene therapy can be used to alleviate AD by inhibiting the inappropriate expression of a particular form of NTP. Moreover, gene therapy can be used to alleviate AD by providing the appropriate expression level of a particular form of NTP. In this case, particular NTP nucleic acid sequences may be coded by DNA or RNA constructs which are administered in the form of viruses, as described above. Alternatively, "donor cells" may be modified in vitro using viral or retroviral vectors containing NTP sequences, or using other well known techniques of introducing foreign DNA into cells (see, for example, Sambrook et al., supra). Such donor cells include fibroblast cells, neuronal cells, glial cells, and connective tissue cells (Gage et al., supra). Following genetic manipulation, the donor cells are

25

10

15

25

grafted into the central nervous system and thus, the genetically-modified cells provide the therapeutic form of NTP (Id.).

Moreover, such virions may be introduced into the blood stream for delivery to the brain. This is accomplished through the osmotic disruption of the blood brain barrier prior to administration of the virions (see, for example, Neuwelt, United States Patent No. 4,866,042). The blood brain barrier may be disrupted by administration of a pharmaceutically effective, nontoxic hypertonic solution, such as mannitol, arabinose, or glycerol (Id.).

The following clones in *E. coli* were deposited according to the Budapest Treaty with the American Type Culture Collection (12301 Parklawn Drive, Rockville, Maryland, 20852): G2-2 PstI-DH5 (ATCC No. 69257); G5d-PstI-DH5 (ATCC No. 69258); 1-9a-LX-1 blue (ATCC No. 69259); AD3-4-DH1 (ATCC No. 69260); HB4-XL-blue (ATCC No. 69261); AD10-7-DH1 (ATCC No. 69262); AD2-2-DH1- (ATCC No. 69263); G5d-1PstI-EcoRI-DH5 (ATCC No. 69264); and G2-2PstI-EcoRI-DH5 (ATCC No. 69265).

Having now generally described the invention, the same will be more readily understood through reference to the following Examples which are provided by way of illustration, and are not intended to be limiting of the present invention, unless specified.

20 present invention, unless specified.

Example 1

Expression of NTP Immunoreactivity in Cell Lines

Seven cell lines of central nervous system origin were identified that express thread protein immunoreactivity using the Th9 monoclonal antibody which was generated to the pancreatic form of the protein (Gross et al., J. Clin. Invest. 76:2115-2126 (1985)), but cross-reacts with thread proteins present in brain tissue and cerebrospinal fluid (Ozturk et al., Proc. Natl. Acad. Sci. USA 86:419-423 (1989); de la Monte et. al., J. Clin. Invest.

10

15

20

25

30

PCT/US95/17111

86:1004-1013 (1990); de la Monte et. al., J. Neurol. Sci. 113:152-164 (1992); de la Monte et al., Ann. Neurol. 32:733-742 (1992)). Among them were the following: two primitive neuroectodermal tumor (PNET) cell lines designated PNET1 and PNET2; three glioblastoma cell lines Hgl 16, Hg1 17, and C6; the A172 glial cell line; and the SH-Sy5y neuroblastoma cell line. The glioblastoma cell lines and the A172 cells were obtained from the American Type Culture Collection (ATCC). SH-Sy5y cells were obtained from Dr. Biedler at Sloan-Kettering Memorial Hospital. The PNET cell lines have been described previously (The et al., Nature genetics 3:62-66 (1993)), and were obtained from Dr. Rene' Bernards at the MGH Cancer Center. All cell lines were maintained in Earl's Modified Eagle Medium supplemented with 10% fetal calf serum, and without antibiotics.

To examine the cells for thread protein and other immunoreactivities, the cultures were harvested in phosphate buffered saline (PBS) (137 mM NaCl, 2.7 mM KCl, 4.3 mM Na₂HPO4, 1.4 mM KH₂PO₄, pH 7.3) containing 2 mM EDTA, and cytospin preparations were made using 10⁵ cells per slide. The cytospin preparations were fixed immediately in 100% methanol (-20°C), air-dried, and then stored at -80°C until used. Prior to immunostaining, the slides were equilibrated to room temperature and hydrated in PBS. Nonspecific antibody binding was blocked with 3% nonimmune horse serum. Replicate cytospin preparations from the same cultures were incubated overnight at 4°C with 5 or 10 μ g/ml of primary antibody. Immunoreactivity was revealed by the avidin-biotin horseradish peroxidase method using the Vectastain Elite kit (Vector Laboratories, Burlingame, CA) according to the manufacturer's protocol, and with 3-3' diaminobenzidine (0.5 mg/ml plus The cells then were 0.03% hydrogen peroxide) as the chromogen. counterstained with hematoxylin, dehydrated in graded alcohol solutions, cleared in xylenes, and preserved under coverglass with Permount (Fisher Scientific).

Cytospin preparations of each cell line were immunostained with the thread protein monoclonal antibodies Th9, Th7, Th10, Th29, Th34, TH46,

10

15

20

25

30

Th67, and Th90. In addition, replicate slides were immunostained with positive (neurofilament, glial fibrillary acidic protein (GFAP), and vimentin) and negative (desmin, Hepatitis B surface antigen-5C3) control monoclonal antibodies. Except for 5C3 which was generated in the inventor's laboratory (Fujita et al., Gastroenterology 91:1357-1363 (1986)), the control antibodies were purchased (Boehringer-Mannheim). All serological reagents were diluted in PBS containing 1% bovine serum albumin (BSA), and all incubations except the one with primary antibody were carried out at room temperature in humidified chambers. The slides were washed in 3 changes of PBS between each step.

Both PNET1 and PNET2 cells expressed high and middle molecular weight neurofilament proteins and little or no glial fibrillary acidic protein or vimentin. The PNET1, PNET2, and SH-Sy5y cells expressed GAP-43, an abundant calmodulin-binding phosphoprotein that is highly expressed in immature neurons and in neurons undergoing regenerative cell growth (Benowitz et al., J. Neurosci. 3:2153-2163 (1983); DeGraan et al., Neurosci. Lett. 61:235-241 (1985); Kalil et al., J. Neurosci. 6:2563-2570 (1986)). The A172 and C6 cells expressed GFAP and vimentin. However, A172 also exhibited neurofilament immunoreactivity, raising doubt about its purely glial None of the cell lines manifested immunoreactivity with monoclonal antibodies to desmin or to Hepatitis B surface antigen. As a negative control cell line, the Huh7 hepatocellular carcinoma cell line was similarly immunostained, and found not to exhibit any immunoreactivity with the above antibodies. However, the Huh cells were immunoreactive with monoclonal antibodies to the insulin receptor substrate protein, IRS-1 (data not shown) which was used as a positive control for this cell-line (Sasaki et al., J. Biol. Chem. 268:1-4 (1993)).

Using the Th9 monoclonal antibody, thread protein immunoreactivity was detected in primary PNET (A), primary glioblastoma (F), PNET1 (B), and C6 cells (G), but not in hepatocellular carcinoma cell lines (Figures 1A-1J). In addition, Th9 immunoreactivity was detected in histological sections

10

15

20

25

from 8 of the 9 primary human CNS PNETs, and from all 5 of the primary human glioblastomas studied (Figures 1A-1J). Although all 5 cell lines exhibited intense immunoreactivity with the Th9 monoclonal antibody, they differed with respect to immunoreactivity for other Th monoclonal antibodies. The immunostaining reaction generated with the Th10 (C,H), Th7 (D,I), or Th46 monoclonal antibodies was either low-level (C,D) or absent (H,I,E,J) in PNET1 (C-E) and C6 (H-J). PNET2 cells exhibited only low levels of immunoreactivity with Th7 and Th29, and they manifested no immunostaining with the other Th monoclonal antibodies. A172, C6, and SH-Sy5y cells displayed little or no immunoreactivity with Th monoclonal antibodies other than Th9. Huh7 cells exhibited no immunoreactivity with any of the thread protein monoclonal antibodies employed, whereas human pancreatic tissue was immunoreactive with all of the Th antibodies, which had been generated against the purified pancreatic form of thread protein (Gross et al., J. Clin. Invest. 76:2115-2126 (1985)).

Example 2

Analysis of Thread Proteins by Monoclonal Antibody-Based Immunoradiometric Assay (M-IRMA)

Cultured cells were washed in PBS and recovered in PBS containing 2 mM EDTA. The cells were pelleted by centrifugation at 1000 x g for 15 min, and then resuspended in lysis buffer containing 50 mM Tris-HCl (pH 7.5), 1% Triton X-100, 2 mM EGTA, 10 mM EDTA, 100 mM NaF, 1 mM Na₄P₂O₇, 2 mM Na₃VO₄, 100 μ g/ml phenylmethylsulfonyl fluoride, 1 μ g/ml aprotinin, 1 μ g/ml pepstatin A, and 1 μ g/ml leupeptin. The supernatant fractions obtained by centrifugation of the lysates at 14,000 x g for 10 min were used for the Western blot analysis, immunoprecipitation studies, and M-IRMA. Protein concentration was determined by the Lowry colorimetric assay. The samples were stored at -40°C.

10

15

20

25

30

M-IRMA is a highly sensitive two- or three-site forward sandwich assay which permits quantitation of picomolar NTP in cell lysates, tissue culture medium, tissue homogenates, and body fluids (Ozturk et al., Proc. Natl. Acad. Sci. USA 86:419-423 (1989); de la Monte et. al., J. Clin. Invest. 86:1004-1013 (1990); de la Monte et. al., J. Neurol. Sci. 113:152-164 (1992); de la Monte et al., Ann. Neurol. 32:733-742 (1992); Gross et al., J. Clin. Invest. 76:2115-2126 (1985)). In addition, when combined with SDS-PAGE, M-IRMA can be used to determine molecular size of thread proteins and related species (Ozturk et al., Proc. Natl. Acad. Sci. USA 86:419-423 (1989); de la Monte et. al., J. Clin. Invest. 86:1004-1013 (1990); de la Monte et. al., J. Neurol. Sci. 113:152-164 (1992); de la Monte et al., Ann. Neurol. 32:733-742 (1992)). M-IRMA involves capturing the immunoreactive thread proteins present in biological samples using monoclonal antibodies Th7 and Th10 affixed to a solid-phase matrix, and then detecting the captured antigen with a third radiolabeled tracer monoclonal antibody (Th9) to the same protein. Briefly, 1/4" polystyrene beads (Precision Ball, Inc) were coated with one or two monoclonal antibodies to thread proteins (usually Th7 + Th10). Cell lysates or supernatant fractions of tissue homogenates (Ozturk et al., Proc. Natl. Acad. Sci. USA 86:419-423 (1989); de la Monte et. al., J. Clin. Invest. 86:1004-1013 (1990); de la Monte et. al., J. Neurol. Sci. 113:152-164 (1992); de la Monte et al., Ann. Neurol. 32:733-742 (1992)) were incubated over night with the coated beads to capture thread proteins present in the samples. The beads were washed 5x in PBS, and then incubated with 125-I labeled Th9 as a tracer to detect the captured thread proteins. The concentration of thread protein in the lysate or tissue homogenate was determined from a standard curve generated with known quantities of purified thread protein. This highly sensitive assay can detect as little as 10 pmol of thread protein in solution. To assay for thread proteins fractionated by SDS-PAGE, the wet gels were sliced at 2 mm intervals, and the proteins were eluted from each fraction into 0.5 ml of PBS by shaking for 24 hours at room temperature. The eluates were assayed directly for thread proteins by M-IRMA.

Corresponding with the widespread immunocytochemical staining of PNET1 cells with Th7, Th10, Th34, and Th29, thread protein immunoreactivity was readily measured in these cells by M-IRMA. In other words, with Th7, Th10, Th34, and Th29 monoclonal antibodies (MoAb) used as capture antibodies, either singularly or with two of them together, and 125-I labeled Th9 was used as the tracer, similarly high levels of thread protein were measured (Figure 2). In contrast, in PNET2, C6, and A172 cells, which exhibited intense immunoreactivity with Th9, but little or no immunocytochemical staining with the Th monoclonal antibodies that were used to capture antigen, the levels of thread protein detected by M-IRMA were much lower than those measured in the PNET1 cells (Figure 2). Similarly, Huh7 cells, which manifested no immunocytochemical staining with any of the thread protein monoclonal antibodies, had virtually nondetectable levels of thread proteins in the cellular lysates by M-IRMA. The concentrations of thread protein in the cell lysates were computed from a standard curve generated with purified PTP using Th7 and Th10 as capture antibodies. The results expressed as mean S.D. pg/mg of total protein were as follows: PNET1-13.1 \pm 0.39; PNET2-2.06 \pm 0.10; A172-3.38 \pm 0.37; C6-2.52 \pm 0.22; and Huh7-0.34 \pm 0.05.

20

25

5

10

15

Example 3

Characterization of Neural Thread Proteins in Tumor Cell Lines

In Western Blot analysis, samples containing 100 µg of protein were fractionated by SDS-PAGE, along with pre-labeled molecular weight standards. The proteins were blotted onto nylon membranes (Immobilon-P transfer membrane, Millipore) using a semi-dry transfer apparatus (Integrated Systems). The membranes were washed in Tris buffered saline (TBS; 10 mM Tris, 0.85% sodium chloride, pH 7.5), and then blocked with TBS containing 3% BSA. The blots were incubated overnight at 4°C with ¹²⁵-I labeled Th9

10

15

20

25

30

monoclonal antibody. Unspecifically bound probe was removed by washing the membranes at room temperature in TBS-BSA 3 x 15 min, and 1 x 30 min. The results were analyzed by autoradiography using Kodak XAR film.

- 62 -

To prepare samples for immunoprecipitation studies, one milliliter samples of cell lysate containing approximately 1 mg/ml of protein were used for immunoprecipitation studies. The lysates were initially pre-cleared with non-relevant antibody (5C3 or antidesmin), and then with Protein A sepharose. Thread proteins were immunoprecipitated using 5-10 μ g of Th9 and Protein A sepharose (Sasaki et al., J. Biol. Chem. 268:1-4 (1993)). The immune complexes collected by centrifugation were resuspended in buffer containing 2% SDS and 10 mM β -mercaptoethanol, and then subjected to SDS-PAGE under denaturing and reducing conditions (Id.). Crude cellular lysates (100 μ g protein) were analyzed simultaneously. The proteins were blotted onto Immobilon-P membranes and probed with ¹²⁵-I labeled (Id.) Th9 to detect thread proteins and related molecules. Negative control experiments were performed simultaneously using either monoclonal antibodies to Hepatitis B surface antigen (5C3) or to desmin.

Metabolic labeling experiments were performed using monolayers of cells cultured in 100 mm² petri dishes. Prior to labeling, the cells were exposed to methionine- and cysteine-free medium for 2 h. The medium was then replaced with 3 ml of DMEM containing 300 μ Ci each of [35 S] methionine or [35 S] cysteine. After labeling for 3 hours, the cells were incubated for various intervals with complete medium devoid radiolabeled amino acids and supplemented with 10 mM methionine. Cell lysates were prepared as described above. Thread proteins were immunoprecipitated using the Th9 monoclonal antibody and protein A sepharose, and the immunoprecipitation products were analyzed by SDS-PAGE and film autoradiography.

For the *in vivo* phosphorylation studies, cells cultured as described for metabolic labeling studies were washed twice with TBS and incubated for 2 h with phosphate-free Dulbecco's MEM containing 10% dialyzed fetal calf

serum. Then the cells were washed with TBS and incubated for 3 h with the same medium containing 400 μ Ci/ml of [32 P] orthophosphoric acid. The cell lysates were analyzed by immunoprecipitation with thread protein, and both positive (p36) and negative (desmin) control monoclonal antibodies, followed by SDS-PAGE.

In order to study the glycosylation state of neural thread proteins, cell culture lysates containing approximately $100~\mu g$ or protein were subjected to SDS-PAGE, and the fractionated proteins were transferred to Immobilon-P membranes (Millipore). O- and N-glycans were detected by periodate oxidation followed by biotinylation, and then Western blot analysis with a Streptavidin-alkaline phosphatase probe and NBT/BCIP as the colorimetric substrate. The assays were performed using the GlycoTrack Kit (Oxford Glycosystems, Rosedale, NY) according to the protocol provided by the manufacturer.

15

20

25

30

5

10

Th9-immunoreactive proteins were detected in lysates of PNET1, PNET2, SH-Sy5y, C6, and A172 cells by four different methods: Western blot analysis, immunoprecipitation followed by Western blot analysis, metabolic labeling followed by immunoprecipitation, and SDS-PAGE combined with M-IRMA. Western blot analysis of crude cellular lysates using ¹²⁵I-labeled Th9 demonstrated ~21 kDa bands in the above cell lines (as indicated by the arrow in Figure 3), but the signal intensity was low. In contrast, in lysates of human pancreatic tissue, the expected 17 kDa uncleaved and 14 kDa cleaved forms of pancreatic thread protein were readily detected by Western blot analysis (Figure 3). Thread proteins were not detected in lysates of human hepatocellular carcinoma cell lines. The strikingly greater abundance of thread proteins in pancreatic tissue compared with neuronal and glial cell lines is consistent with a previous finding of 106-fold higher levels of thread proteins in pancreas and pancreatic juice compared with brain tissue and cerebrospinal fluid (Ozturk et al., Proc. Natl. Acad. Sci. USA 86:419-423 (1989); de la Monte et. al., J. Clin. Invest. 86:1004-1013 (1990); de la Monte et. al., J. Neurol. Sci. 113:152-164 (1992); de la Monte et al., Ann. Neurol.

10

15

20

25

30

32:733-742 (1992)). Although one would expect that thread proteins synthesized by PNET and glial cells are secreted as is the case for PTP and NTP, thread proteins were not detected in the tissue culture medium by Western blot analysis, even after concentrating the medium four- or five-fold by lyophilization.

Th9-immunoreactive thread proteins were more readily detected in PNET and glial cell lines by first immunoprecipitating from the lysates with either Th7+Th10 or Th9, and then performing Western blot analysis using ¹²⁵I-labeled Th9 (direct) (Figure 3), or unlabeled Th9 with ¹²⁵I-labeled Protein A (indirect). Both methods demonstrated 21 kDa thread protein-related species, similar to those detected by Western blot analysis. In addition, ~17 kDa bands were also observed in both PNET and glial cells, but the signal was inconsistent and low-level, as determined by Western blot analysis. As negative controls, the Huh7, HepG2, and FOCUS (Lun et al., In Vitro (Rockville) 20:493-504 (1984)) human hepatocellular carcinoma cell lines were studied simultaneously under identical conditions, and Th9-immunoreactive proteins were not detected in the cellular lysates.

The molecular sizes of thread proteins present in PNET and glial cells were most prominently demonstrated by metabolical labeling with ³⁵S-methionine or ³⁵S-cysteine, followed by immunoprecipitation using Th9 monoclonal antibody. Monoclonal antibodies to desmin or to hepatitis B surface antigen (5C3) were used as negative controls for immunoprecipitation. In both PNET and glial cell lines, ~26 and ~21 kDa Th9-immunoreactive proteins were detected by SDS-PAGE analysis of the immunoprecipitated products (Figure 4B). In PNET1 cells, the 21 kDa band appeared as a doublet (Figure 4A); the accompanying slightly higher molecular weight species appeared to be less abundant than the dominant band at ~21 kDa. In addition, in both PNET and glial cell lines, there were also ~17 kDa Th9-immunoreactive proteins associated with bands of nearly the same intensity as the ~21 kDa bands. In C6 cells, there were also ~26 kDa, ~14-15 kDa

PCT/US95/17111

WO 96/15272

5

10

15

20

25

30

and ~8 kDa Th9-immunoreactive proteins which were not detected in PNET cells (Figures 4A and 4B, arrows).

The 21 kDa and 17 kDa thread proteins in SH-Sy5y, PNET1, A172, and C6 cells, and their absence in hepatocellular carcinoma cells were also demonstrated by SDS-PAGE/M-IRMA (Figures 5A-5E). Cellular proteins fractionated by SDS-PAGE were eluted from the gels sliced at 2 mm intervals, and assayed directly for thread protein immunoreactivity by M-IRMA using Th7+Th10 as capture antibodies, and ¹²⁵I-labeled Th9 as the tracer. Despite low levels, two distinct peaks were evident in all neuroectodermal cell lines, but not in Huh7 hepatocellular carcinoma cells assayed simultaneously and in the same manner. The resolution of these gels did not permit distinction of -17 kDa from ~14-15 kDa proteins which might have been present.

PNET1 and C6 cells were metabolically labeled with 32P or 35Smethionine, and thread proteins were immunoprecipitated from the lysates As a negative control. using Th9 monoclonal antibody (Figure 6). immunoprecipitation studies were conducted using an equal portion of the cellular lysate and monoclonal antibodies to desmin protein (Figure 6, right panel). In the cells labeled with 35S methionine, Th9-immunoreactive bands were detected at ~26 kDa and ~21 kDa (upper arrows), ~17 kDa (lower arrows), and also at -14-15 kDa (Figure 6). After ³²P labeling, only the 21 kDa band was observed by immunoprecipitation with Th9 monoclonal antibody; the other molecular weight species did not appear to be phosphorylated (Figure 6). Phosphorylated Th9-immunoreactive proteins were detected in C6 cells, but not in PNET1 cells, but this might be due to less efficient labeling since PNET1 cells grow slower than C6 cells. No bands in the 14 kDa to 26 kDa range were detected using monoclonal antibodies to desmin for immunoprecipitation (Figure 6). Carbohydrate moieties were not detected in Th9 immunoprecipitated proteins (data not shown).

The highest concentrations of thread protein were measured in subconfluent cultures of PNET1 cells, i.e. during the log phase of growth, and the lowest concentrations in overnight serum-starved cultures (growth arrest)

PCT/US95/17111

(Figure 7). Cultures that were 100% confluent also had lower levels of thread protein expression compared with proliferating cultures. Huh7 hepatocellular carcinoma cells (negative control) were simultaneously studied using identical culture conditions, but the levels of thread protein remained low throughout.

5

10

15

20

Surprisingly, there was no change in the degree of thread protein immunocytochemical staining of PNET cells cultured under these various conditions. However, the degree to which the levels of thread proteins changed by M-IRMA measurement may not have been detectable by immunocytochemistry. Nevertheless, the reduction in cellular thread protein content induced by serum starvation was associated with a change in the phenotype of the cells. When the cells achieved 100% confluence or after they had been subjected to overnight serum starvation, the cell bodies reduced in size, and they exhibited striking changes in the degree and distribution of immunoreactivity for neurofilament protein, GAP-43, and GFAP (Figure 8). In PNET cultures that were 50% confluent, the cells exhibited punctate and often a polar distribution of neurofilament and GAP-43 immunoreactivity, whereas 100% confluent and serum-starved PNET cultures exhibited diffuse perikaryal immunoreactivity for both neurofilament and GAP-43. punctate immunoreactivity may have corresponded with distribution of neurofilament and GAP-43 in neurites. In contrast, 50% confluent PNET cultures were devoid of GFAP immunoreactivity, while 100% confluent and serum-starved cultures contained conspicuous proportions of GFAP-positive cells. Moreover, the proportion of GFAP-immunoreactive cells was greatest in 100% confluent serum-starved cultures, followed by 50% confluent serumstarved cultures, and then 100% confluent cultures with medium containing 10% fetal calf serum. Therefore, the reduction in thread protein-levels measured in PNET cells subjected to overnight serum starvation may have been due to differentiation of the cells toward an astrocytic phenotype. C6 cells and other glioblastoma cell lines exhibited intense immunoreactivity with the Th9 monoclonal antibody, but the levels of thread protein measured by M-

25

IRMA were often low, possibly due to low-level immunoreactivity with other thread protein antibodies, including Th7 and TH10 (see Figures 1A-1J).

Example 4

Cloning of Thread Proteins from Human cDNA Libraries

5

10

15

20

25

Human brain cDNA libraries made from 17-18 week old fetal brain (Stratagene, Inc., La Jolla, CA), 2 year-old temporal lobe neocortex (Stratagene), and end-stage Alzheimer's disease cerebral cortex (In Vitrogen; San Diego, CA) were screened using probes generated from a 416 bp DNA fragment corresponding to nucleotides 235-650 of the rat PTP cDNA. The rat PTP cDNA, designated O18, was isolated from a rat pancreatic cDNA library using synthetic 60mer DNA probes corresponding to nucleotides 45-104 and 345-404 of the published sequence (Terazono et al., J. Biol. Chem. 263:2111-2114 (1988); Watanabe et al., J. Biol. Chem. 265:7432-7439 (1990)). Approximately 2 x 106 plaques or colonies from each library were screened with low-stringency hybridization using standard techniques (see Sambrook et al., supra). Putative clones were plaque/colony purified, and the DNA inserts were sequenced by the dideoxynucleotide chain termination method using T7 polymerase (USB Sequenase; United States Biochemical Corp., Cleveland, OH). The sequences were compared with the Genebank database, and aligned with the nucleic acid sequences of other thread protein cDNAs.

CNS-Neural-Thread-Protein-cDNA-Isolated from Human Fetal Brain Library

A 1.35 kilobase (kb) 1-9a CNS thread protein partial cDNA was isolated in which only a small segment corresponds to an open reading frame, and the remainder, to a 3' untranslated region (Figure 9). The sequence of

10

15

20

an additional 150 nucleotides was obtained from 5' anchor PCR amplification products. A second round of 5' anchor PCR amplification yielded a further upstream 600 bp product (Figure 9A). A portion of the 1-9a cDNA sequence shares significant homology with the 5' end of the human PTP cDNA and the Reg gene (Figure 10). In addition, the initial 5' anchor PCR product has 60% homology with the 5' end of the Reg gene, and 63% homology with Exon 2 of the human Reg gene (Figure 10A). Moreover, probes generated from the 590 bp 5'-end fragment of 1-9a cDNA hybridized with human brain and pancreas mRNA (Figures 12A-12C). The 1-9a sequence is also homologous with the AD2-2 and AD3-4 cDNAs in that at one end of their completed sequences, the overlaps are substantial (Figure 10B).

b. CNS Neural Thread Protein cDNA Isolated from a Two-Year Old Temporal Cortex Library

The HB4 clone is a 593 base pair partial cDNA that was isolated from a 2-year old temporal cortex library. This cDNA contains an open reading frame at its 5' end and terminates at nucleotide 275. There is a polyadenylation signal beginning at nucleotide 475, and the sequence ends with a poly-A tail (Figure 11A). The deduced amino acid sequence of the partial HB4 clone predicts a protein with a molecular weight of 10.4 kDa, and a pI of 12.1. The HB4 cDNA exhibits 50% overall nucleic acid homology with the human PTP cDNA (Figure 11D), a segment of the human Reg gene (Figure 11E).

c. Isolation of Neural Thread Protein cDNAs from an Alzheimer's ——Disease Library

Using the O18 rat PTP cDNA probe, four related cDNAs were isolated from an AD brain library. These clones were designated: AD 2-2, AD 3-4, AD 4-4 and AD 16c (also called AD 10-7) (Figures 16A-16S).

The AD 2-2 cDNA is approximately 1.2 kb and it shares significant homology with the 1-9a cDNA, AD 16c, rat PTP cDNA, and Exon 1 of the human Reg gene (Figure 17). The AD 2-2 probe generates a genomic Southern blot pattern similar to that obtained with the AD 3-4 probe. Figure 16E depicts the complete nucleotide sequence of the AD2-2 cDNA clone that was isolated from an AD brain library. Random primer generated probes based on this sequence hybridized with human brain and neuronal samples but not with glial cell lines of with pancreatic RNA.

Figures 16F, 16I, 16J and 16K depict partial nucleotide sequences of the AD3-4 cDNA clones that were isolated from an AD brain library. Rnadom primer generated AD3-4 probes yielded two mRNA transcripts, 1.6 kB and 3.4 kB. These mRNA species are over-expressed in AD brains, with an average of two-fold elevation compared with aged matched controls (N=8).

The AD 3-4 cDNA 1.6 kb clone is identical to another clone isolated at the same time (AD 5-3) (Figure 18A). The AD 3-4/AD 5-3 cDNA exhibits substantial homology with the 1-9a 5' anchor PCR products (Figure 18B), as well as with the human Reg gene and the Gen2a-EP genomic clone (Figure 18B). Southern blot analysis of human genomic DNA with the AD 3-4 probe revealed a pattern similar to that obtained with the AD 2-2 probe.

Figures 16L and 16M depict the partial nucleotide sequence of AD 4-4 which is a 0.8 kb partial cDNA clone which is identical to another cDNA isolated at the same time (AD 3-5). This AD 4-4 clone shares substantial sequence homology with AD 2-2 and 1-9a cDNAs (Figure 19). Figure 16N depicts the complete nucleotide sequence of a partial cDNA clone isolated from an AD brain-library. This-cDNA-hybridized with brain and neuronal cell line mRNA, yielding a single 1.4 kB transcript.

Figure 16O depicts the nucleotide sequence of the 0.5 kb partial cDNA clone AD 16c (also called AD 10-7) that is 72% homologous with AD 2-2, and also aligns with human PTP and the human Reg gene sequences (Figures 20A and 20B).

10

5

15

20

25

Figure 16R depicts the complete nucleotide sequence of the AD10-7 clone that was isolated from an AD brain library. Hybridization of Northern blots using either antisense cRNA probes or random primer generated DNA probes detected 2.6, 1.9. 1.4 and 0.9 kB mRNA transcripts in neuronal cells. Neuronal cell lines expressed only the two largest transcripts, while mature adult human brains expressed predominantly the two smallest transcripts, and either very low or nondetectable levels of the 2.6 kB and 1.9 kB transcripts. Using an AD10-7 probe, Northern blot analysis of RNA obtained from human liver, ovary, fallopian tube, colon, stomach, spleen, rectum, thyroid, 12 week placenta and kidney was negative.

Figure 16S depicts the complete nucleotide sequence of the AD16c cDNA clone that was isolated from an AD brain library. Hybridization of Northern blots using random primer generated DNA probes yielded the same results as obtained with the AD10-7 cDNA clone. The AD16c clone shares a 650 bp segment of near identity with AD10-7. In addition, elevated levels of AD16c mRNA were detected in AD brains compared with aged control brains by Northern blot analysis.

Example 5

Analysis of Brain Thread Protein Gene Expression

20

25

5

10

15

Thread protein mRNA expression was examined in the following neuroectodermal tumor derived cell lines: central nervous system primitive neuroectodermal tumor cells designated PNET1 and PNET2; HGL-16 and HGL-17 human glioblastoma cells; A172 human glioma cells; C6 rat glioma cells; and SH-Sy5y neuroblastoma cells. In addition, human brain tissue from patients with Alzheimer's disease or no neurological disease (aged controls), and embryonic and postnatally developing rat brain were assayed for thread protein mRNA expression. RNA extracted from human and rat pancreas served as positive controls.

WO 96/15272 PCT/US95/17111

- 71 -

5

10

15

20

25

30

RNA was extracted in 5 M guanidinium isothiocyanate, and then isolated by centrifugation through a cesium chloride step gradient (see Sambrook et al., supra). RNA was quantified by measuring the absorbance at 260 nm and 280 nm. The thread protein mRNA transcript sizes were assessed by northern blot analysis, and the levels of expression were evaluated by RNA dot blot hybridization. Northern blot analysis was performed by electrophoresing samples containing 15 μg of total cellular RNA through 1% agarose-formaldehyde gels. The RNA was transferred to nylon membrane. cross-linked with ultraviolet light, and hybridized with probes generated from a 600 bp fragment of the 1-9A cDNA clone. The fragment used for hybridization studies contained the regions most homologous with the human PTP cDNA. The probes were labeled with [12P] α-dCTP by the random primer method (Amersham Corporation; Arlington Heights, IL). The blots were hybridized overnight at 42°C with 2 x 106 dpm /ml of probe in buffer containing 50% formamide, 5x SSPE, 10x Denhardt's (100x Denhardt's is 2% Ficoll, 2% bovine serum albumin, 2% polyvinylpyrollidine), 0.5% SDS (sodium dodecyl sulfate), and 100 $\mu g/ml$ of sheared denatured salmon sperm DNA. The membranes were washed in SSPE containing 0.25% SDS using Autoradiograms were generated by exposing the standard methods. membranes to Kodak XAR film at -80°C. The membranes were subsequently stripped of probe and then rehybridized with a synthetic 30mer corresponding to 18s RNA to evaluate sample loading.

Northern analysis of total cellular RNA using probes made from the 1-9a cDNA disclosed two dominant transcripts in central nervous system (CNS) tumor cell lines: one transcript was 1.6 kb, and the other was 0.9 kb (Figure 12A).—In addition, in the SH-Sy5y neuroblastoma and PNET1 cell lines, a larger 4.2 kb mRNA transcript was also detected. The 4.2 kb transcript may represent preprocessed mRNA. The same size transcripts were detected in adult (R. Brain) and newborn (NB) rat, but the 0.9 kb transcript was more abundant in the adult brain whereas the 1.6 kb transcript was more abundant in the newborn rat brain. In rat pancreas (R. Panc.), only a 0.9 kB

transcript was detected, corresponding to the size of rat PTP mRNA (Terazono et al., J. Biol. Chem. 263:2111-2114 (1988); Watanabe et al., J. Biol. Chem. 265:7432-7439 (1990)). mRNA transcripts were not detected in normal liver (NI Liver). Using a probe generated from the 3' region of the 1-9a cDNA, the 1.6 kb, but not the 0.9 kb transcript was revealed (Figure 12B). Using a 30-mer probe corresponding to the most 5'-end of the 1-9a cDNA, the higher molecular weight mRNA transcripts were detected (Figure 12C). The 0.9 kb transcript was also evident with longer exposure of the blot.

10

5

Northern analysis of human brain RNA disclosed a dominant 1.6 kb transcript, but also two and sometimes three smaller transcripts of 1.2 kb, 0.9 kb, and 0.8 kb (Figure 13B). In contrast to the findings in cell lines, the 4.2 kb mRNA transcript was seldom observed in adult human brain. Hybridization with human pancreas disclosed a 0.8 kb transcript, corresponding with the size of PTP mRNA. The transcripts detected in human brain and pancreas using 1-9a probes were identical in size to the transcripts observed using PTP cDNA probes.

20

15

Dot blot RNA hybridization to 5 μ g of total RNA using the 600 bp fragment of the 1-9a cDNA (NTP) demonstrated higher levels of expression in AD, compared with aged control brains (Figure 13A). Rehybridization of the same membrane with a cDNA corresponding to β -actin demonstrated similar loading of RNA in each dot. The observation of elevated levels of 1-9a-related mRNA in AD brain tissue is similar to that reported previously using 60mer probes corresponding to human PTP cDNA (de la Monte et. al., J. Clin. Invest. 86:1004-1013 (1990)). The differences between AD and control brains appeared to be due to differences in the levels of the 1.6 kb, 0.9 kb and 0.8 kb transcripts, as shown in Figures 13A and 13B.

25

30

The AD-NTP 3-4 cDNA, isolated from the AD library, hybridizes with RNA from neuronal-derived neuroectodermal tumor cell lines, and human brain tissue. In the cell lines, 1.6 kb and 0.9 kb transcripts as observed with the 1-9a probe were detected (Figure 21C). However, in human brain, ~4

kb, 1.6 kb, and 0.9 kb transcripts were detected, and the levels of expression for all three transcripts were higher in AD compared with aged control brains (Figure 21D).

AD 4-4 cDNA probe hybridized only with a 0.9 kb transcript, and only in neuronal cell lines.

5

10

15

20

25

Example 6

Direct Cloning and Sequencing of Thread Protein cDNAs from Neuroectodermal Tumor Cell Lines and Alzheimer's Disease Brain

Thread protein cDNAs were cloned directly from PNET1, PNET2, SH-Sy5y, and A172 cells, and from Alzheimer's disease and aged control brain RNA using the 3'- and 5'-RACE methods (Frohman et al., Proc. Natl. Acad. Sci. USA 85:8998 (1988); Ohara et al., Proc. Natl. Acad. Sci. USA 86:5673 (1989); Loh et al., Science 243:217 (1989)). Briefly, RNA was reverse transcribed using oligo-dT primers. For the 5'-RACE reaction, the cDNAs were amplified by polymerase chain reaction (PCR) using a specific 17-mer corresponding to a 5'-region of the 1-9a sequence, and a 17 dT primer. The resulting PCR products were subjected to another round of amplification using another internal but overlapping 5'-end primer, and a specific 3'-17-mer corresponding to a 3' region of the 1-9a sequence. For the 3'-RACE reactions, the cDNAs were first tailed with dCTP using terminal deoxynucleotide transferase, and then they were amplified using a specific 17-mer corresponding to nucleotides 781-797 of the 1-9a clone and dG (17mer). A second nested PCR amplification was performed using a specific 17mer corresponding to nucleotides 766-792 at the 3' end, and dGTP (17mer) for the 5' end. The PCR products were subjected to Southern blot analysis using probes generated from an internal DNA fragment of the 1-9a cDNA clone, and from the O18 rat PTP cDNA clone. The PCR products were gel purified and ligated into pAmpl vectors using uracil deoxytransferase. The

10

15

20

25

subcloned DNA inserts were sequenced by the dideoxynucleotide chain termination method using T7 DNA polymerase.

CNS thread protein transcripts were detected in neuroectodermal tumor cell lines and in AD human brain tissue by reverse transcription followed by PCR using specific primers corresponding to the 5' and 3' regions of the 1-9a cDNA sequence. Southern blot analysis of the PCR products demonstrated two dominant cross-hybridizing species, 0.8 kb and 1.0 kb (Figures 14A and 14B). In addition, in the SH-Sy5y cells, a larger 1.8 kb PCR product was also detected. In the PNET1, PNET2, SH-Sy5y, and Al72 cells, a 0.4 kb PCR product that hybridized with the 1-9a probe was observed. Corresponding with the higher levels of thread protein mRNAs in Alzheimer's disease brains, the hybridization signal was more intense in AD samples compared with aged control samples.

The PCR products generated from the SH-Sy5y cells were subcloned and sequenced. Southern analysis of the cloned fragments exhibited intense hybridization with the 1-9a cDNA, and less intense but definite hybridization with the O18 cDNA (rat PTP) (Figure 14C). The nucleic acid sequence of the SH-Sy5y PCR clone (Sy-NTP) was identical to the 1-9a cDNA sequence.

Example 7

Isolation of Genomic Clones Coding for Human Brain Thread Proteins

A human genomic DNA library was screened using probes made with a 600 bp fragment of the 1-9a human brain thread protein cDNA that was isolated from the two year-old temporal cortex library. The 1-9a cDNA fragment contained a region with 60% nucleic acid sequence homology with human PTP. After colony purification, the putative genomic clones were checked for cross-hybridization with the O18 rat PTP cDNA fragment. EcoRI, PstI, and EcoRI/PstI restriction fragments that hybridized with both the 1-9a and O18 probes were subcloned into pBluescript II vectors (Promega,

10

15

20

25

Inc., Madison, WI) and then sequenced by the dideoxynucleotide chain termination method using either T7 polymerase (USB Sequenase) or polymerase chain reaction amplification and Vent polymerase.

Four genomic fragments designated G2-2 PstI, G2-2 PstI-EcoRI, G5d-1 PstI, and G5d-1 PstI-EcoRI were isolated from a human genomic DNA library (Figures 22A-22D). These genomic fragments all hybridized with both the 1-9a and O18 cDNA probes, and they ranged in size between 1.5 kb and 3 kb. Partial nucleic acid sequence information demonstrated homology between G2-2PstI and the human Reg gene and human and rat PTP cDNAs (Figure 23A); between G2-2 PstI-EcoRI and both the Reg gene and rat PTP cDNA (Figure 23B), and also with AD 2-2, AD 3-4, and the 1-9a cDNAs (data not shown); between G5d-1 PstI and the Reg gene and human PTP (Figure 23C); and between G5d-1 PstI-EcoRI and Reg gene, human PTP, 1-9a, and AD 4-4.

Example 8

In vitro Expression of the LacZ Fusion Protein and Demonstration of its Relatedness to Thread Proteins

Fusion protein expression in bacteria containing the 1-9a cDNA clone, or one of the four genomic clones was induced with isopropylthio-\(\textit{B}\)-D-galactoside (IPTG) using standard techniques (Sambrook et al., supra). Crude bacterial lysates from induced and uninduced cultures were subjected to SDS-PAGE and Western blot analysis using the Th9 monoclonal antibody to thread protein (Sasaki et al., J. Biol. Chem. 268:1-4 (1993)), and \(^{125}\)-I labeled protein A to detect the bound antibody. In addition, bacterial lawns containing cloned DNA were induced to express the fusion protein with IPTG, and replica filters were probed directly with Th9 monoclonal antibody followed by \(^{125}\)-I labeled protein A.

10

15

20

25

Thread protein immunoreactivity was demonstrated in the bacterial fusion proteins by direct antibody binding to the IPTG-induced colonies (Figures 24A-24D). Thread protein immunoreactivity was detected using a cocktail of Th9, Th7, and Th10 monoclonal antibodies to PTP (Sasaki et al., J. Biol. Chem. 268:1-4 (1993), and ¹²⁵-I labeled Protein A.

Example 9

Relative Levels of AD16c mRNA in AD and Aged Control Brains

Northern blot analysis was performed using an AD16 cDNA probe. The blots were re-probed to detect 18s ribosomal RNA to evaluate loading of RNA in each lane. The unsaturated autoradiograms were subjected to densitometric analysis using a Molecular Dynamics Image Analyzer. The ratios of the AD16c and 18s RNA hybridization signals were plotted for each case, and the results are depicted graphically in Figures 25A and 25B. The mean ratios (relative levels of AD16c) with standard errors are depicted in the smaller right hand graph. The findings confirm that there are elevated levels of AD16c mRNA expression in 6 of 9 AD brains compared to 1 of 6 agematched controls. The difference between the mean levels is highly statistically significant (P<0.005). Similar results were obtained using AD10-7 probes. Theses results demonstrate that there is a statistically significant increase in levels of expression in AD brains compared to control brains.

Example 10

Preparation of Recombinant AD10-7 Fusion Protein and Detection Thereof With Monoclonal Antibodies

AD10-7 cDNA was ligated into pTrcHIS vectors (In Vitrogen, San Diego) in three different reading frames (two incorrect-A and B, and one correct-C). Bacteria transformed with one of the three plasmids were induced

10

15

20

25

with IPTG and bacterial lysates were examined for protein expression 0, 1 and 5 hours later. The proteins were fractionated by SDS-PAGE, and Western blot analysis was performed using monoclonal antibodies against the expressed tag protein (T7-tag mouse monoclonal antibodies; Novogen). The blots were developed using the avidin-biotin, horseradish peroxidase method, with diaminobenzidine as the chromogen (Figure 26). A band corresponding to ~45 kDA was detected in bacteria that had been transformed with plasmid DNA which contained AD10-7 ligated only in the correct reading frame (C) (arrow). The same size protein was observed by in vitro translation of the AD10-7 cDNA in a rabbit reticulocyte lysate assay system. In both systems, the fusion partner peptide was ~3 kDA, indicating that the cDNA encodes a protein of about ~42 kDA. A ~42 kDA NPT species is routinely detected by Western Blot analysis of neuronal cell lines and of human brain tissue.

Example 11

Demonstration of Neuronal Localization of AD10-7 mRNA Expression by In Situ Hybridization

Sense and antisense cRNA probes were generated from linearized AD10-7 plasmid DNA using SP6 or T7 DNA-dependent RNA polymerase, respectively. The antisense probes hybridized with neuronal cell line mRNA as described above for this clone. The cRNA sense probes, on the other hand, failed to hybridize with RNA by Northern blot analysis. cRNA probes labeled with digoxigenin-UTP were hybridized with human brain tissue sections from early AD. After washing the sections extensively (de la Monte et al., J. Clin. Invest. 86:1004-1013 (1990)), the hybridized probes were detected using peroxidase or alkaline phosphatase conjugated monoclonal antibodies to digoxigenin, and the colorimetric reactions were revealed using standard methods. Examination of the sections by brightfield and darkfield microscopy demonstrated hybridization of AD10-7 only in neurons (Fig. 27;

10

15

20

25

dense aggregates of white grains over cell bodies in (Fig. 27A)). In contrast, and similar to the findings by Northern blot analysis, the sense AD10-7 cRNA probes failed to hybridize with brain tissue (Fig. 27B).

Although the foregoing refers to particular preferred embodiments, it will be understood that the present invention is not so limited. It will occur to those of ordinary skill in the art that various modifications may be made to the disclosed embodiments and that such modifications are intended to be within the scope of the present invention, which is defined by the following Claims.

Example 12

Levels of NTP Expression in AD and Other Neurodegenerative Diseases

a. Cellular localization and accumulation of NTP immunoreactivity in AD brains demonstrated by immunohistochemistry

NTP immunoreactivity was detected in histological sections with the high affinity Th9 monoclonal antibody to PTP, the pancreatic form of thread protein. Although the PTP MoAbs cross-react with NTP, NTP is distinct since it differs in molecular mass, and many antigenic epitopes present in PTP are not shared with NTP. Moreover, hybridization studies demonstrated NTP mRNA transcripts in neurons, indicating that NTP is synthesized in brain. NTP immunoreactivity is localized in neuronal perikarya, and in neuropil and white matter fibers. In AD, the density of NTP immunoreactive neurons, and intensity of immunoreactive staining are increased relative to intact aged control brains. Increased neuronal labeling in AD was detected in the cerebral cortex and subcortical nuclei. Within the neocortex, NTP immunoreactivity was primarily distributed in Layers III, V, and VI. Although NTP immunoreactivity was detected in neurons with neurofibrillary tangles or granuole vacuolar degeneration, numerous neurons without overt

neurodegenerative changes also expressed high levels of NTP. NTP immunoreactivity was not distributed in plaques or extracellular neurofibrillary tangles, and dystrophic neurites were not selectively labeled (de la Monte & Wands, J. Neurol. Sci. 113:152-164 (1992); Ozturk, M. et al., Proc. Natl. Acad. Sci. 82:5627-5631 (1985)).

5

10

15

20

25

b. Semiquantitative estimates of NTP expression in AD and other neurodegenerative diseases

A detailed quantitative immunohistochemical analysis of NTP expression was performed using matched paraffin-embedded blocks of different brain regions from patients with AD (N=25), AD plus Parkinson's disease (PD) (N=8), PD, AD plus Down's syndrome (AD+DS) (N=6), or no neurological disease (aged controls) (N=21). In addition, brains with Huntington's disease (N=5) and multi-infarct dementia (N=2) were studied as disease controls. The highest mean densities of NTP immunoreactive neurons were observed in AD and AD+DS, followed by AD+PD, then PD. The AD+PD brains had less severe AD lesions compared with AD, and PD had relatively few AD lesions. In contrast to neurofibrillary tangles and plaques which showed striking regional variation, the densities of NTP immunoreactive neurons were relatively uniform in different neocortical regions. Elevated levels of NTP immunoreactive expression were detected in PD dementia, but the levels were much lower than in AD or AD+PD (de la Monte & Wands, J. Neurol. Sci. 113:152-164 (1992)). The finding of high densities of neurofilament immunoreactive dystrophic dendrites in PD dementia, similar to AD, suggested that AD histopathological lesions may have been evolving at the time of death, and thus account for the modestly elevated levels of NTP in these cases. Specificity of the elevated NTP gene expression in AD was corroborated by the absence of increased NTP immunoreactivity in brains with Huntington's disease or multi-infarct dementia. However, in the vicinity of subacute cerebral infarction in both

10

15

20

25

control and diseased brains, NTP immunoreactivity was strikingly increased in viable appearing neurons, while in the setting of healed infarction, NTP immunoreactive expression was not elevated. Thus, NTP gene expression can be modulated by neuronal injury with attendant reparative or regenerative sprouting.

c. Demonstration of elevated NTP levels in AD brain tissue by a quantitative radioimmunoassay

A highly sensitive three-site monoclonal antibody-based immunoradiometric assay (M-IRMA) was developed to measure NTP concentrations in biological fluids and tissue homogenates. The M-IRMA was developed using the Th7, Th9, and Th10 MoAbs to PTP, which are cross-reactive with NTP in tissue sections and brain homogenates. Briefly, the Th7 and Th10 antibodies, bound to polystyrene beads, were used to capture NTP in brain homogenates or biological fluids. The captured antigens were detected using ¹²⁵I-labeled Th9 high affinity MoAb. The concentrations of NTP present in the samples were computed from a standard curve generated with different amounts of purified PTP. This highly sensitive assay detected as little as 10 pmol of thread proteins.

Homogenates of fresh frozen brain tissue sampled immediately adjacent to the blocks taken for histological and immunohistochemical staining, were used to measure NTP concentrations. The tissue was homogenized in phosphate buffered saline (0.85% NaCl, 10 mM phosphate, pH 7.4) plus protease inhibitors. The supernatant fractions obtained after centrifugation at 12,000 x g was used to measure NTP concentration by M-IRMA. Note that this gentle extraction procedure excluded membrane bound and insoluble NTP which may have been present in the tissue. However, the Th MoAbs bind to conformational rather than linear epitopes, and immunoreactivity was lost to unpredictable degrees in specimens that had been extracted with denaturing or reducing reagents. Using M-IRMA, significantly high levels of NTP were

10

15

20

25

detected in AD cerebral tissue compared with corresponding regions of intact aged control brains. In addition, the concentrations of NTP in AD+DS and AD+PD were significantly elevated relative to control and PD. In AD, elevated levels of NTP were detected in all regions of cerebral cortex and in subcortical nuclei, and the degree of increased expression was correlated more with the patterns of NTP immunohistochemical staining in neurons than with the distribution of neurofibrillary tangles and plaques (de la Monte & Wands, J. Neurol. Sci. 113:152-164 (1992)).

d. Detection of NTP in cerebrospinal fluid

NTP immunoreactivity was also detected in choroid plexus and ependymal epithelial cells, although corresponding mRNA expression has not been observed. NTP was assayed directly in cerebrospinal fluid (CSF) samples using M-IRMA. To determine the molecular mass of NTP present in CSF and demonstrate its distinctiveness from PTP, which is present in high concentrations in blood, CSF samples containing 100 μ g of protein were fractionated by SDS-PAGE, and proteins eluted from the gel fractions were assayed for NTP by M-IRMA as described above. Unlike brain tissue in which several different size NTP-related molecules may be expressed, the only species of NTP detected in clear CSF samples had an Mr of ~21 kD. In contrast, hemorrhagic samples contained a dominant 21 kD peak, and another 14 kD peak, probably corresponding to PTP. In several samples of AD CSF or ventricular fluid, 21 kD NTP molecules could also be detected by immunoprecipitation followed by Western blot analysis using monoclonal or polyclonal-Th-antibodies.

e. Demonstration of elevated levels of NTP in AD CSF

NTP concentrations were measured in paired postmortem samples of clear ventricular fluid (VF) and temporal lobe neocortex using M-IRMA. The

10

15

20

25

concentrations of NTP in postmortem ventricular fluid from patients with histopathologically proven AD were significantly elevated compared with the levels in similar specimens from aged control patients. In addition, the concentrations of NTP measured in ventricular fluid were positively correlated with the levels of NTP in cerebral tissue, such that the mean values were nearly identical. Intact aged control and PD brain and VF samples contained low levels of NTP. As observed in histological sections, in the setting of subacute cerebral infarction or non-specific injury, during an interval when regenerative neuronal sprouting would be expected, the levels of NTP measured in both cerebral tissue and VF were also elevated. However, in specimens from patients with remote cerebral infarcts and multi-infarct dementia, no elevation of NTP was detected in either brain tissue homogenates or VF samples (de la Monte, S.M. et al., Ann. Neurol. 32:733-742 (1992)).

f. Detection of elevated levels of NTP early in the course of AD dementia

A large clinically-based study was conducted to determine whether the concentrations of NTP in CSF of patients with early manifestations of AD were significantly elevated compared with neurological disease (PD, Multiple sclerosis-MS) and non-demented control patients (back pain, cervical spondylosis, depression, headache, psychosis). NTP concentrations were measured by M-IRMA, and the assays and data analysis were conducted under code. In patients with clinically diagnosed AD, with confirmed follow-up 6 to 10 years later, the concentrations of NTP were significantly elevated compared with both the non-demented and neurological disease control patients (Table 1) (de la Monte, S.M. et al., Ann. Neurol. 32:733-742 (1992)). Comparison of antemortem early AD CSF levels with postmortem temporal neocortex and ventricular fluid end-stage AD levels demonstrated striking increases in mean NTP concentration with progression of disease, as opposed to no significant change over the same intervals in aged control

samples. Moreover, in paired samples from 9 patients with AD, the concentrations of NTP in postmortem brain and CSF were 5- to 50-fold higher than in corresponding antemortem CSF samples obtained approximately 6 years earlier. These findings demonstrated that NTP levels were significantly elevated in CSF of individuals with AD, and that NTP levels in CSF may increase strikingly with progression of dementia and neuronal degeneration. Thus, elevated concentrations of NTP in CSF can serve as an in vivo marker for AD neuronal degeneration.

TABLE 1: Elevated NTP Levels in Antemortem CSF in Early AD Dementia

_	AD_	PD	MS	Control	P-value
No. of Patients	84	45	73	73	
Age (years)	76	61	41	55	< 0.01
Blessed Score	15	5	ND	ND	< 0.001
CSF NTP (ng/ml)	4.2	1.9	. 1.6	1.3	< 0.001

Example 13

Cloning of the human brain cDNA encoding NTP

a. Strategy for Isolating NTP cDNAs

Using probes prepared with a rat PTP cDNA, a single 1.4 kB mRNA transcript was detected in AD and DS brains (de la Monte, S.M. et al., J. Clin. Invest. 86:1004-1013 (1990)). However, low stringency hybridization with either rat or bovine PTP cDNA probes revealed 4 distinct cross-hybridizing NTP transcripts in human brain. To isolate NTP cDNAs, several human brain cDNA libraries were screened using probes derived from the 3' half of the rat PTP cDNA. Clones were selected for further study

10

15

20

5

based upon positive Southern blot analysis with probes derived from the 5' half of rat PTP. In addition to nucleic acid sequence analysis, final clone selection was based upon detection of the appropriate size mRNA transcripts in pancreas and human brain. An incomplete probable NTP cDNA initially isolated from an AD brain library, was then used to re-screen the AD brain, as well as a 17 week human fetal brain library to obtain full-length and other related cDNA clones.

b. Characteristics of the AD7c-NTP cDNA isolated from an AD brain library

10

15

20

5

The AD7C-NTP clone is a 1.39 kB complete cDNA that encodes a protein with a predicted Mr of 39 kDa (SEQ ID NO:120 and 121, nucleotide and amino acid sequence, respectively). The cDNA contains an AUG start codon, 1140 bp of continuous open reading frame, and a 250 bp 3' untranslated segment, followed by an AATAAA poly adenylation signal. One unusual feature of the AD7c-NTP cDNA is that it contains a tandemly repeated head-to-tail dimer of a 570 bp sequence within the coding region. The deduced amino acid sequence of the 570 bp sequence is 45% homologous with human PTP. Importantly, there is conservation of the positions of 5 of the 7 Cys residues, a feature that appears to be characteristic of thread proteins (Lasserre, C. et al., Cancer Res. 52:5089-5095 (1992)). The AD7c-NTP protein contains a hydrophobic leader sequence with a potential cleavage at amino acid residue #15, and multiple Ser and Thr phosphorylation motifs. Correspondingly, several NTP molecules expressed in primitive neuroectodermal tumor cell lines (PNET1 and PNET2), and in SH-Sy5y neuroblastoma cells are phosphorylated by insulin stimulation or by activation protein kinase C (see below). The translated AD7c-NTP protein also has numerous hydrophilic domains.

25

10

15

20

25

c. Tissue distribution of AD7c-NTP mRNA by Northern blot analysis

Northern blot analysis was performed using 15 µg samples of total RNA extracted from adult human brain, kidney, liver, spleen, gastrointestinal tract (various regions) ovaries, fallopian tubes, uterus, thyroid, lung, skeletal muscle, and pancreas, and from adult rat brain, kidney, liver, spleen, gastrointestinal tract (various regions), testis, thymus, lung, skeletal muscle, and pancreas. Random primer generated [32P]dCTP-labeled DNA probes, prepared with the AD7c-NTP cloned insert as the template, hybridized under highly stringent conditions with RNA from human and rat brain and pancreas. Cross-hybridization signals were not detected in the other organs and tissues. In the pancreas, the AD7c-NTP probes hybridized with 0.9 kB transcripts, corresponding with the size of PTP. In adult human brain, the AD7c-NTP hybridized with 1.4 kB and 0.9 kB mRNA transcripts. In adult rat brain, the AD7c-NTP probes hybridized with 0.8 kB transcripts.

d. Expression of mature and fetal brain forms of AD7c-NTP-related mRNA transcripts

Northern blot analysis demonstrated 5 distinct AD7c-NTP-related mRNA transcripts. Two of the mRNA transcripts (3.2 kB and 1.9 kB) were mainly expressed in fetal brain and neoplastic neuronal cells, e.g. primitive neuroectodermal tumors cell lines, while the other three (1.4 kB, 1.2 kB, and 0.8 kB) were primarily expressed in postnatal developing and mature brains. With increasing age, there was a progressive decline in the steady-state levels of all AD7c-NTP-related mRNA transcripts, and a shift toward exclusive, very low-level expression of the 0.8 kB transcript in the adult rat brain. The major decline in postnatal NTP gene expression was between days 1 and 8, coincident with the reduction in development-associated cortical neuritic sprouting.

10

15

20

25

e. Demonstration of AD7c-NTP mRNA up-regulated expression in AD brains

AD7c-NTP mRNA expression was examined in AD and aged control brains by Northern blot analysis. RNA was extracted from matched samples of frontal lobe neocortex (Brodmann Area 11), and 15 μ g of total RNA were Using random primer generated DNA probes, two fractionated. AD7c-NTP-related mRNA transcripts, 1.4 kB and 0.9 kB were detected in both AD and control brains. Quantitative assessment of the levels of expression was made by volume densitometric analysis of unsaturated autoradiograms. After correcting for differences in sample loading, based upon corresponding 18s ribosomal RNA hybridization signals (obtained by re-probing the blots with a 30mer corresponding to 18s RNA), it was determined that the steady state levels of both the 0.9 kB and 1.4 kB AD7C-NTP mRNA transcripts were elevated in most of the AD brain samples. In addition, the mean level of AD7c-NTP mRNA in AD brains was two-fold higher than in aged control brains (P < 0.01).

f. Cellular localization of AD7c-NTP mRNA expression by in situ hybridization

In situ hybridization was used to demonstrate cellular localization of AD7c-NTP-related mRNA transcripts. Antisense and sense cRNA probes were prepared from linearized AD7c-NTP cDNA template, and purified from polyacrylamide gel. cRNA probes labeled with [32P]-UTP were used in Northern blot analysis to demonstrate specificity of hybridization with antisense, and absence of hybridization with sense probes. In situ cRNA probes were labeled with digoxigenin-UTP. Hybridized probes were detected with alkaline phosphatase- or horseradish peroxidase-conjugated anti-digoxigenin antibodies, and BCIP/NBT substrate. AD7c-NTP gene expression was detected in cortical neurons of both AD and control frontal (Brodmann Area 11) and temporal (Area 21) neocortex using antisense cRNA

probes. Hybridization signals were not detected in white matter or glial cells, nor in tissue hybridized with sense cRNA probes (negative control).

g. In vitro translation and expression of the AD7c-NTP clone

Sense and antisense RNA transcripts were incorporated into rabbit reticulocyte lysate in vitro translation assays, and the products analyzed by SDS-PAGE. A single 39 kD protein was generated by translation of sense strand cRNAs. SDS-PAGE analysis of AD7c-NTP recombinant fusion proteins generated in a pTrcHis expression vector (InVitrogen) also demonstrated the translated product to be ~39 kD. Western blot analysis of AD7c-NTP recombinant proteins demonstrated positive immunoreactivity with polyclonal antibodies to PTP, under non-reducing conditions.

h. Polyclonal antibodies to AD7c-NTP are immunoreactive with PTP, and polyclonal anti-PTP is immunoreactive with recombinant AD7c-NTP protein

15

20

5

10

Rabbit polyclonal antibodies were generated to the AD7c-NTP-pTrcHis recombinant protein. The immunoglobulin fraction was precipitated with ammonium sulfate and dialyzed against PBS. In a radioimmunoassay, the polyclonal antibodies were specifically immunoreactive with the recombinant AD7c-NTP at greater than a 1:100,000 dilution of serum. Western blot analysis was performed under non-reducing conditions since the antibodies may recognize both conformational and linear epitopes. Both anti-AD7c-NTP and anti-PTP exhibited positive immunoreactivity with recombinant AD7c-NTP protein and purified PTP. However, the intensity of cross-reactivity was comparatively low-level for each antibody.

i. Tissue and cellular distribution of anti-AD7c-NTP immunoreactivity

Western blot analysis demonstrated binding of anti-AD7c-NTP with pancreas and brain. The protein recognized in the rat pancreas was 17 kD, the same as detected with anti-PTP. Several low intensity AD7c-NTP-immunoreactive bands were detected in adult rat brain, but the dominant species was ~39 kD. All other rat organs were negative. The same distribution of immunoreactivity was observed with polyclonal anti-PTP, but with brain, the binding intensity was low-level, and most of the bands detected with the AD7c-NTP antibodies were not observed with the PTP antibodies. Immunocytochemical staining demonstrated positive immunoreactivity in PNET cells of neuronal phenotype, and in neurons, neuropil fibers, and axons of mature human brain. Glial cells were not immunoreactive with anti-AD7c-NTP.

j. AD7c-NTP immunoreactivity in AD brain

15

20

25

5

10

Studies using postmortem brain tissue demonstrated more abundant and greater intensities of cortical neuron labeling in AD (N=5) compared with intact aged control (N=5) brains. Studies were conducted to examine the molecular sizes of AD7c-NTP-related proteins expressed in AD and aged control brains by either direct Western blot analysis, and by immunoprecipitation followed by Western blot analysis with the same antibodies. 21 kD, 26 kD, and 39 kD AD7c-NTP-related molecules were found in AD (N=6), control (N=7), and infant Down' syndrome (N=1) brains, but higher-levels of the 21 kD NTP protein were found in AD relative to control. Although the same size bands were detected with polyclonal anti-PTP, the sensitivity was low, and the relative intensities of the bands were different. For example, the 21 kD and 39 kD NTP molecules were more clearly detected with the AD7c-NTP antibodies. In addition, these

studies demonstrated abnormal size AD7c-NTP-related bands in several AD brains.

k. Characteristics of the large library of MoAbs generated to recombinant AD7c-NTP protein

5

10

15

20

150 mouse MoAbs were generated to the AD7c-NTP recombinant protein. The hybridoma supernatants were screened by western blot analysis and immunohistochemistry using AD and control brain, and radioimmunoassay of recombinant AD7c-NTP. With another radioimmunoassay, the MoAbs were also screened against PTP. The objectives of these studies were to do the following: 1) select high affinity antibodies that recognize AD7c-NTP-related proteins (NTP), but not PTP; 2) identify antibodies that recognize or bind to neurons in AD brains to a greater extent than in control brains; and 3) determine which antibodies bind to molecules in brain tissue or CSF that are the same size as recombinant AD7c-NTP. These reagents enable specific detection of elevated levels of NTP in brain tissue, and also in CSF. Analysis of 25 representative MoAbs demonstrated several with cross-reactivity between PTP and AD7c-NTP, but most with strong binding only to AD7c-NTP. Western blot analysis confirmed high level binding of all 25 MoAbs with recombinant AD7c-NTP. In addition, 6 antibodies were identified that recognized precisely the same size molecules in brain as detected in the fusion protein, 6 others that recognized slightly high molecular weight molecules in brain, and 10 with low-level or absent binding in brain. The three remaining antibodies recognized completely different size bands in brain compared with AD7c-NTP itself. Immunohistochemical staining studies demonstrated 5 MoAbs with similar high-level binding in AD and control brains, 3 with more intense and widely distributed immunoreactivity in AD brains, 6 with low-level binding in both AD and control brains, and 11 with little or no binding to histological sections of brain. The degree of binding by immunohistochemistry correlated with the findings by Western blot analysis.

25

10

15

20

25

l. A radioimmunoassay to measure levels of AD7c-NTP-related proteins in brain tissue and biological fluids (CSF, serum, urine)

A M-IRMA has been developed to specifically measure AD7c-NTP concentrations in brain, CSF, and blood. Empirical studies have been performed with a large matrix of MoAbs linked to a solid phase support to determine which antibodies were suitable for capture of AD7c-NTP antigen in biological fluids. MoAbs were then selected for their high binding capability to recombinant AD7c-NTP bound to a solid phase support after labeling with ¹²⁵I. MoAbs #2 and #5, used in the M-IRMA, were selected from a panel of 25 MoAbs because of the following characteristics: 1) the antibodies were highly reactive to recombinant AD7c-NTP and not PTP when bound to a solid phase support; 2) the MoAbs specifically stained neurons in AD brains; 3) the MoAbs reacted with a 42 kD species in cell lysates of AD brain by Western blot analysis; and 4) the MoAbs were of the IgG1 isotype, and therefore suitable for labeling with ¹²⁵I. Finally, competitive inhibition experiments were performed to demonstrate that the MoAbs recognized separate and distinct antigenic determinants on AD7c-NTP molecules.

m. Isolation of AD7c-related cDNAs from an AD brain library

In addition to the AD7c-NTP clone, five related but distinct cDNAs (AD12-1, AD16b, AD19-1, AD11D, AD16c) were isolated from the AD brain library. All 5 cDNAs share either an identical or nearly identical 570 bp sequence with the AD7c-NTP clone. Each of the cDNAs has been subcloned into pTrc-His expression vectors for analysis of the corresponding fusion proteins by SDS-PAGE, Western blot, and M-IRMA. Each of these fusion proteins was immunoreactive with polyclonal AD7c-NTP antibodies. Unique DNA and antibody reagents are made to distinguish expression of the corresponding mRNAs and proteins in neuronal cells and brain tissue. The

same reagents are used to analyze function and evaluate expression of distinct NTP genes in normal and pathological states.

n. Isolation of AD7c-NTP-related cDNAs from a human fetal brain library

5

10

15

Five AD7c-NTP-related cDNA clones (FB1-3c, FB1-6C1, FB2-3C2, FB2-6C1, FB8-3B2) were isolated from a 17 week human fetal brain library. These cDNAs have been partially characterized, and like the AD clones, they also contain an identical or nearly identical 570 bp sequence as described for AD7c-NTP. The 5 FB cDNAs all hybridized to 3.2 kB and 1.9 kB mRNA transcripts in developing rat brains and PNET cell lines. However, the cDNAs exhibited different degrees (intensities) of hybridization with mature brain, and variability with respect to the number (between 1 and 3) of low molecular weight (0.8-1.2 kB) mRNA transcripts detected in immature brain and PNET cells. Sequence data analysis suggests that each of the five FB clones corresponds with at least one of the cDNAs isolated from the AD brain library.

Example 14

The biological functions of NTP with respect to developmental regulation and cell growth in the CNS

a. NTP expression is developmentally regulated

20

25

Studies with human brain tissue suggested that NTP expression was developmentally regulated. Using the Th9 MoAb to PTP, and [35S]UTP-labeled cRNA probes generated with the rat PTP cDNA, NTP gene expression was examined in developing and mature rat brains. By in situ hybridization, NTP mRNA expression was detected throughout the CNS at embryonic day 13 (E13). The density of hybridization grains (levels of mRNA expression)

10

15

20

25

increased throughout development and peaked on postnatal day 8 (P8). By P16, NTP mRNA expression was low-level and similar to adult brains. With regard to NTP immunoreactivity, faint widespread labeling of neuropil fibers, and intense focal labeling of ependymal lining cells were observed in E13 brains. Thereafter, was a rostral-to-caudal wave of neuronal perikaryal NTP gene expression, such that olfactory structures were mainly labeled in E15 and E17 brains, while cerebellar cortical neurons were primarily labeled in P8 and P16 brains. Young adult and aged (>15 mos.) rat brains exhibited low, virtually non-detectable levels of NTP immunoreactivity in scattered cerebral cortex neurons.

b. Quantitative assessment of NTP expression in developing rat brain using AD7c-NTP polyclonal antibodies

Immunohistochemical staining studies using AD7c-NTP polyclonal antibodies yielded results similar to those obtained with PTP polyclonal antibodies. The greater specificity of AD7c-NTP antibodies for brain permitted Western blot analysis and quantitation of NTP expression. Western blot analysis disclosed 6 different size NTP-related proteins in rat brain: 15 kD, 17 kD, 21 kD, 26 kD, 39 kD, and 42 kD. Densitometric scanning of the autoradiographs revealed progressive declines in the levels of several NTP proteins with increasing age. Importantly, like human brain, the 21 kD NTP molecules were expressed at high levels during development, and at low levels in the mature brain. The same was true for the 17 kD and 39 kD species. In contrast, levels of the 26 kD NTP molecules increased with age, while expression of the 42 kD species did not appear to be developmentally regulated.

WO 96/15272 PCT/US95/17111

- 93 -

c. Aberrantly increased NTP expression in Down syndrome occurs prior to the establishment of AD histopathology and dementia

In both control and Down syndrome 19-36 week fetus and infant brains, NTP immunoreactivity was widely distributed in neurons, neuropil fibers, and axons. In control brains, the density of NTP-immunoreactive neurons and the intensity of neuropil fiber labeling reduced substantially within the first decade, generally by 5 or 6 years of age. Thereafter, NTP immunoreactive expression remained low-level in all age groups. Adjacent histological sections were immunostained with a cocktail of MoAbs to neurofilament (SMI31+ SMI32 + SMI34) to delineate the frequency of AD lesions. None of the control brains had neurofibrillary tangles or dystrophic dendrites, but one elderly control had scattered neurofilament immunoreactive In Down syndrome, neurofilament immunoreactive superficial cortical dystrophic neurites (dendrites) developed and proliferated during early childhood, probably representing one of the earliest histopathological manifestations of AD neuronal degeneration. Neurofibrillary tangles were while 10 and 20 between ages detected neurofilament-immunoreactive plaques were initially detected in the fourth decade of life.

In developing Down syndrome brains, NTP immunoreactive expression in neuronal perikarya and neuropil fibers increased along with the large-scale

5

10

15

20

25

30

proliferation of superficial neurofilament-immunoreactive dystrophic dendrites, and the appearance of neurofibrillary tangles. With increasing age and evolution of AD lesions, NTP expression further increased in Down syndrome. The increased NTP immunoreactivity was not restricted to neurons

with neurofibrillary tangles or granuole vacuolar degeneration, nor was it localized in plaques. Increased NTP gene expression in Down syndrome brains begins at least two decades prior to the establishment of clinical and

histopathological AD. Thus NTP up-regulated gene expression is an early

marker of AD neuronal degeneration, age and development of AD lesions.

10

15

20

25

d. Demonstration of distinct NTP molecules in developing and mature human brains

The molecular sizes of the NTP molecules expressed in brain were determined by SDS-PAGE fractionation of 100 μ g samples of protein, followed by radioimmunoassay (M-IRMA) of proteins eluted from gel slices. The results were graphed with respect to distances migrated by simultaneously analyzed molecular weight standards. Regardless of age, the dominant NTP species detected in brain was 21 kDa. In AD, with or without underlying Down syndrome, small 39 kDa and 26 kDa NTP peaks were also detected. In both control and Down syndrome infant brains, a prominent 17 kD NTP peak was also detected.

e. Development of an in vitro model to examine NTP expression during growth and differentiation

Of the human primitive neuroectodermal tumor (PNET) cell lines-PNET1, PNET2, and SH-Sy5y-PNET1 and PNET2 were of CNS PNET origin, while SH-Sy5y cells were derived from a neuroblastoma. All primary human PNET brain tumors have been found to express NTP. The 3 PNET cell lines used were demonstrated to have neurofilament, synaptophysin, and GAP-43 immunoreactivities, confirming their neuronal phenotypes. In addition, PNET2 and SH-Sy5y cells undergo neuronal differentiation with neuritic sprouting, increased synaptophysin expression, and decreased vimentin expression following treatment with retinoic acid, insulin, or phorbol esther myristate (PMA). In contrast, the PNET1 cells are highly primitive, and fail to exhibit growth factor mediated cell growth or differentiation.

f. Characterization of NTP expression in PNET cells

In all three PNET cell lines, five different NTP species with Mr's of 39-42 kD, 26 kD, 21 kD, 18 kD, and 15 kD were detected by (1) direct

metabolic labeling followed Western blot analysis. (2) immunoprecipitation, or (3) radioimmunoassay (M-IRMA). NTP gene expression was detected using Th polyclonal or monoclonal antibodies to PTP. Unlike adult human brain where the dominant NTP species detected was 21 kD, in PNET cells, the 39 kD, 18 kD, and 15 kD NTP molecules were most abundant, while the 21 kD and 26 kD were expressed at low or non-detectable levels. Pulse-chase and metabolic labeling studies demonstrated that the 18 kD and 26 kD species were probably derived from other NTP molecules. Additional studies demonstrated phosphorylation of the 39 kD, 26 kD, 21 kD, and 18 kD NTP molecules. Moreover, tyrosyl phosphorylated residues were detected in the 39 kD and 18 kD NTP molecules by Western blot analysis of the immunoprecipitated proteins. Finally, after stimulation with either PMA or insulin, a rapid supershifts in NTP molecular mass from 15 kD to 18 kD with incorporation of [32P] orthophosphate as observed in SH-Sy5y and PNET2 cells. Glycosylation of NTP has not been detected. Therefore, at least some of the NTP molecules are likely to be phosphoproteins.

³⁵S-Met-labeled NTP molecules were immunoprecipitated using PTP Th MoAbs. Rapid labeling of the 39 kD, 21 kD, and 15 kD proteins, with subsequent appearance (within 10-30 min) of 26 kD, and 18 kD NTP species occurred. Thus some NTP molecules can be derived rather than synthesized de novo.

g. Insulin modulation of NTP expression

5

10

15

20

25

Insulin is an important mediator of growth and differentiation in CNS neurons. Insulin stimulated differentiation of PNET2 cells was associated with rapid (within 10 minutes) but transient increases in the levels of the 39 kD, 18 kD and 15 kD NTP species, followed by sustained increases in synthesis and steady state levels of all five NTP species. In contrast, the failure of insulin to induce differentiation of PNET1 cells was associated with absent insulin modulation of NTP. Analysis of the signal transduction pathways

10

15

20

25

demonstrated that the insulin-induced up-regulation of NTP molecules in PNET2 cells was mediated through phosphorylation of the insulin receptor substrate-1 (IRS-1) and the insulin receptor β subunit (IR β s) itself. In PNET1 cells, the lack of insulin responsiveness was associated with impaired insulin-mediated tyrosyl phosphorylation of IRS-1, but normal insulin receptor phosphorylation. Correspondingly, the insulin-stimulated association between PI3 kinase and phosphorylated IRS-1 was also impaired in PNET1 cells. In essence, impaired insulin-mediated tyrosyl phosphorylation of IRS-1 in PNET1 cells halted activation of the insulin signal transduction cascade, and subsequent events leading to modulated gene (NTP) expression. PNET1 cells lacked insulin responsiveness and failed to phosphorylate IRS-1, but insulin receptor levels and tyrosyl phosphorylation (PY) of the β -subunit were intact. PNET2 cells responded to insulin stimulation with phosphorylation of IRS-1. up-regulation of NTP, and neuronal differentiation. The results were confirmed by absent association between PI3 kinase and IRS-1-PY in PNET1 cells after insulin stimulation.

h. Phorbol esther myristate (PMA) and retinoic acid (RA) modulate NTP expression and neuronal differentiation

PMA and RA induced PNET2 and SH-Sy5y cells to differentiate into neurofilament-positive, GAP-43-positive, vimentin-negative cells with fine interconnecting neuritic processes. Following PMA stimulation, there was immediate phosphorylation of the 15 kD NTP species, with a supershift in molecular mass to 18 kD. After 12 hours of PMA or RA stimulation, synthesis of the 21 kD and 26 kD NTP species increased four- to five-fold, followed by intracellular accumulation of these same molecules. At the same time, housekeeping gene expression, e.g. GAPDH, was not affected. PMA and RA treatment also resulted in a shift from the perikarya to neuritic process localization of NTP immunoreactivity. Since the effects of PMA stimulation were mimicked by phosphatidylserine plus diolein treatment, and blocked by

inhibitors of protein kinase C, expression of the 21 kD and 26 kD NTP species can be modulated through the protein kinase C cascade.

i. In vitro stimulation studies

5

10

15

25

Neuritic sprouting and neuronal differentiation were induced in PNET2 and SH-Sy5y cells by insulin, PMA, or RA stimulation. Insulin-mediated neuritic growth was associated with increased expression of the fetal brain and PNET-dominant forms of NTP (15 kD and 18 kD). In contrast, the PMA-and RA-induced neuritic sprouting modulated expression of the 21 kD and 26 kD NTP species, which are primarily expressed in the mature brain, and accumulated in AD brains. Thus, expression of the immature or fetal forms of NTP are regulated by mechanisms and growth factors distinct from those involved in modulating expression of the 21 kD and 26 kD NTP molecules. Therefore, expression of fetal NTP molecules/genes can be mediated through the IRS-1 cascade, whereas expression of adult brain/AD-associated NTP genes can be regulated mainly through protein kinase C pathways.

Example 15

AD7c-NTP gene expression in postmortem brain tissue from a large number of patients with AD, other neurodegenerative diseases, e.g. Parkinson's Disease, and no neurological disease (aged controls)

20 a. Source of tissue

Matched snap-frozen, and adjacent formalin-fixed paraffin-embedded blocks of cerebral tissue from different brain regions (Table 2) is used to analyze AD7c-NTP gene expression. All specimens are obtained from the Alzheimer's Disease Research Center (ADRC) Brain Bank located at the Massachusetts General Hospital (MGH). Additional fresh tissue is continually harvested by the ADRC Brain Bank. The histopathological sections are

20

reviewed for all cases. Routine neuropathological evaluation includes luxol fast blue-hematoxylin and eosin, Bielchowsky silver, and Congo red staining, and ubiquitin and neurofilament immunostaining to detect neurodegenerative lesions in paraffin-embedded sections.

TABLE 2: Postmortem Samples for AD7c-NTP Gene Expression Studies

		Total Number of Cases			
	Diagnosis	Frozen Tissue*	Paraffin Blocks**	Ventricular Fluid	
	AD	50	50	50	
	PD	10	10	5	
	DLBD	8	10	0	
10	Pick's	4	8	2	
	ALS	0	4	0	
	Down + AD	7	8	4	
	Aged control	50	50	50	

Frozen Tissue Ventricular Fluid
Assays Paraffin Tissue Section Studies

RNAse Protection or RT/PCR In situ hybridization
Western blot analysis Immunohistochemistry
M-IRMA

- * Brodmann Areas: 21, 11, 40, 17; amydgala; midbrain, striatum, cerebellar cortex, s. cord.
- ** Brodmann Areas: 21, 11, 24, 40, 17; amygdala, hippocampus, midbrain, cerebellum, s. cord.

b. Tissue Processing

Frozen tissue blocks (approximately 2 x 2 x 0.5 cm) are divided for RNA and protein extraction. RNA is extracted by the Chomczynski-Sacchi one-step guanidinium isothiocyanate/phenol method (Chomczynski & Sacchi,

10

15

20

25

Anal. Biochem. 162:156-159 (1987)) using a commercially available reagents. e.g. RNAzol or TRIzol. The integrity of RNA is assessed by Northern blot analysis using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) cDNA, and 18s synthetic 30mer (Enoch, T. et al., Mol. Cell. Biol. 6:801810 (1986)) probes. Completely degraded samples are not used. Protein assays are performed with tissue homogenates prepared in 5 volumes of PBS plus protease inhibitors (Sasaki, Y. et al., J. Biol. Chem. 268:3805-3808 (1993)). The supernatant fractions obtained by centrifugation at 12,000 x g for 30 minutes at 4°C, and pelleted proteins solubilized in 1% SDS-containing buffer are used for Western blot analysis and M-IRMA. Previous studies demonstrated that a substantial portion of thread proteins can be contained in the pellet fractions due to reduced solubility, particularly in AD brains. Protein content is determined by the Lowry (Lowry, O.H. et al., J. Biol. Chem. 193:265-275 (1951)) or BioRad colorimetric assay. Paraffin-embedded histological sections of tissue adjacent to the blocks processed for the quantitative RNA and protein studies, are used for immunohistochemistry and in situ hybridization studies.

c. Western blot analysis

Western blot analysis is employed to determine the size and relative abundance of the AD7c-NTP proteins present in brain homogenates. Polyclonal AD7c-NTP antibodies is utilized in these studies in order to simultaneously detect all NTP species. Both supernatant (soluble) and pellet (insoluble) fractions are analyzed. 100 µg samples of protein is fractionated in Laemmli SDS-PAGE gels, transferred to Imobilon (nylon) or ECL Hybond-membranes, and probed for AD7c-NTP expression using rabbit polyclonal antibodies generated to the recombinant fusion protein (Harlow & Lane, Antibodies. A Laboratory Manual, Cold Spring Harbor Laboratory (1988) Cold Spring Harbor, NY). Antibody binding is detected with horseradish peroxidase conjugated goat anti-rabbit IgG, and enhanced chemiluminescence

reagents (Amersham). Pre-stained molecular weight standards is included on each gel. In addition, Western blots generated with different amounts (between 0.1 μ g and 10 μ g) of purified recombinant AD7c-NTP protein in each lane, is probed simultaneously to provide a basis for normalizing data among different experiments. The autoradiograms are subjected to volume densitometric scanning to quantitate the steady-state levels of AD7c-NTP protein expressed.

d. Immunohistochemical Staining

5

10

15

20

25

Paraffin sections (Table 2) are de-waxed in xylenes and re-hydrated through graded alcohol solutions. AD7c-NTP immunoreactivity is assessed using rabbit polyclonal antibodies generated to the recombinant fusion protein. Antibody binding is detected by the avidin-biotin horseradish peroxidase complex (ABC) method using the Vectastain-Elite kit according to the manufacturer's protocol. Immunoreactivity is revealed with diaminobenzidine. The sections are counterstained with hematoxylin, dehydrated through graded alcohols, cleared in xylenes, and preserved under coverglass with permount. The sections are processed in large groups, adhering rigidly to the incubation conditions. The results are analyzed under code to determine the presence and distribution of AD7c-NTP immunoreactivity.

e. In situ hybridization

Cellular localization of AD7c-NTP gene expression is assessed by in situ-hybridization using paraffin-embedded tissue (Table 2). The sections are prepared and prehybridized. Antisense and sense (negative control) digoxigenin-UTP labeled cRNA probes are generated from AD7c-NTP plasmid linearized with Kpn1 or Xho1, using T7 or SP6 DNA-dependent RNA polymerase, respectively. The probes are gel purified to remove free nucleotides. The sections are hybridized overnight at 50°C with 200 ng/ml

10

15

20

25

of probe (Lee, M.-E. et al., J. Clin. Invest. 86:141-147 (1990). After extensive washing and RNAse A digestion to destroy single-stranded RNA, hybridized probes are detected with alkaline phosphatase conjugated anti-digoxigenin, and the antibody binding are revealed with a suitable chromogen, e.g. BCIP/NBT. Sections counterstained with hematoxylin and preserved with aqueous mounting medium are examined and photographed by brightfield and darkfield microscopy. Adjacent sections are evaluated for intactness of RNA by performing in situ hybridization with cRNA probes corresponding to GAPDH.

f. RNAse Profection Assay

RNAse protection assays are used to examine levels of AD7c-NTP mRNA expression because, compared with Northern blot analysis, this technique is relatively insensitive to the small degrees of RNA degradation which frequently exist in postmortem tissue. Samples of 5 or 10 μ g of total RNA are hybridized with gel purified antisense [32P]UTP-labeled cRNA probes (Current Protocols in Molecular Biology. Ausubel et al. Eds., John Wiley & Sons, New York, 1994) corresponding to nucleotides 670 to 910 of the AD7c-NTP cDNA. As a positive control, the same samples are simultaneous hybridized (in the same assay tubes) with identically labeled 316 bp antisense cRNA probes corresponding to exons 5-8 of the GAPDH gene (Sabath, D. et al., Gene 91:185-191 (1990)). After hybridization, single-stranded RNA are digested with RNAse A and RNAse T1 (Current Protocols in Molecular Biology. Ausubel et al. Eds., John Wiley & Sons, New York, 1994, and the protected probe fragments analyzed on denaturing polyacrylamide gels. tRNA and human infant brain RNA are used as negative Non-saturated autoradiograms are and positive controls, respectively. subjected to volume densitometric analysis to quantitate the hybridization signals.

10

15

20

25

g. Alternative method for examining levels of AD7c-NTP mRNA Expression

Reverse transcription/polymerase chain reaction amplification of RNA has been successfully used to study gene expression. The advantage of RT/PCR over RNAse protection is that multiple genes can be studied simultaneously, utilizing only 1 μ g of total RNA as starting material. Low yields of RNA have been problematic in the past, particularly with respect to AD brain tissue. RNAse protection assays are performed on samples with abundant RNA yields, and RT/PCR are performed with all samples. Messenger RNA are reverse transcribed using oligo-dT and random oligonucleotide primers. The cDNAs are amplified with primers that flank the sequences contained between nucleotides 670 and 910 of AD7c-NTP. The results are analyzed using 1-3% Nusieve agarose gels and ethidium bromide staining. In addition, to confirm the authenticity of PCR products, Southern blot analysis is performed using either [32P]dATP or [fluorescein]dATP end-labeled oligonucleotide probes corresponding to internal sequences of the amplified DNA segment. The minimum number of PCR cycles required to detect AD7c-NTP is determined to ensure the amplified products do not reach saturation.

h. Construction of a two- or three-site monoclonal antibody based immunoradiometric assay (M-IRMA) to measure AD7c-NTP concentration

Two- or three-site forward sandwich M-IRMAs are used to measure AD7c-NTP concentrations. An assay using the #5 and #2 antibodies which specifically recognize NTP (not PTP) exhibits greater degrees of binding to AD compared with aged control brains by immunohistochemical staining. The configuration of the prototype two-site M-IRMA is as follows: the #2 MoAb serves as the capture antibody bound to a solid-phase support (0.25" polystyrene beads). After incubating the coated beads with brain tissue

homogenates or CSF, the captured AD7c-NTP proteins are detected with 125 I-labeled #5 MoAb, which serves as a tracer. The radioactivity remaining on the beads after extensive washing is measured in a gamma counter. The signal-to-noise ratios are calculated, and the concentrations of AD7c-NTP in the samples, determined from a linear standard curve constructed with different amounts of recombinant AD7c-NTP protein. Immunoreactivity is measured in 200 μ l volumes of diluted tissue extract, CSF, or serum. The lower limit of sensitivity is between 1 and 10 pg per ml of purified recombinant AD7c-NTP protein.

10

5

Brain protein extracts corresponding to the supernatant (soluble) and pellet (insoluble) fractions, and samples of postmortem ventricular fluid are assayed in quadruplicate at 1:10, 1:50, and 1:100 dilutions to generate S:N ratios within the linear range of the standard curve. The AD7c-NTP protein concentrations are measured in brain tissue by M-IRMA, using the forward sandwich assay described. Other configurations with one- or two-site MoAb capture are also used.

15

i. Characterization of additional anti-AD7c-NTP MoAbs

20

25

The M-IRMA is optimized in terms of sensitivity and specificity for detecting NTP molecules that accumulate in AD brain tissue. The hybridomas are screened by evaluating the extent of immunoreactive binding in solid phase support immunoassays, Western blot analysis, immunohistochemical staining, as described above with the first 25 AD7c-NTP MoAbs. For the solid phase support immunoassay, 50 ng of recombinant AD7c-NTP protein are bound to polypropylene surfaces in 96-well plates. Hybridoma supernatant are reacted, and antibody binding detected using ¹²⁵I-labeled goat anti-mouse IgG. Specificity for AD7c-NTP is assessed by demonstrating absent binding to purified PTP, and significant binding above background levels generated with nonrelevant hybridoma supernatant. Indirect Western blot analysis are performed using recombinant AD7c-NTP protein and human AD brain

10

15

20

25

homogenates, and immunoreactivity is detected with ECL reagents. Western blot analysis permits rapid comparison of the relative sizes of the recombinant protein with the AD7c-NTP-related molecules expressed in brain. Immunohistochemical staining of Brodmann Area 11 in the frontal lobe using neet hybridoma supernatant is performed to demonstrate the distributions and relative levels of AD7c-NTP MoAb immunoreactivity in corresponding sections of AD and control brains. Immunohistochemical screening permits the identification of AD7c-NTP MoAbs with specific immunoreactivity in neurons, and greater degrees of binding in AD compared with aged control brains.

Example 16

Use of M-IRMA to compare the levels of AD7c-NTP protein in AD, aged control, and neurological disease control samples of postmortem ventricular fluid and antemortem CSF

a. Source of specimens

Postmortem ventricular fluid samples from patients with AD, PD, Down syndrome, and normal aging have been obtained from the ADRC-MGH brain bank (Table 2). Approximately 400 clinical cerebrospinal fluid (CSF) samples (Table 3) from patients with AD, PD, multiple sclerosis, non-dementing psychiatric disease (controls), minor neurological ailments, e.g. back pain (controls), or multi-infarct dementia have also been banked. These samples represent discarded clinical material from previously approved studies, or samples obtained for diagnostic purposes.—The AD and PD samples were obtained from patients enrolled in the ADRC, and therefore long-term clinical follow-up, including autopsy in many instances, is available. The psychiatric case samples were obtained from patients hospitalized at the Bedford VA Hospital. These samples also represent discarded specimens

from previously approved clinical studies, and long-term clinical follow-up data has already been obtained and incorporated into a computerized database.

TABLE 3: Clinical CSF Samples for M-IRMA

	Diagnosis	No. of Cases	Dementia
5	AD	154	Yes
	PD	56	Yes
	Multiple Sclerosis	75	No
	Multi-infarct dementia	5	Yes
	Psychiatric	28	No
10	Control	94	No

15

20

25

b. M-IRMA Assay to measure AD7c-NTP in ventricular fluid and CSF samples

The samples are diluted 1:10, 1:50, and 1:100 in PBS/BSA, and assayed in quadruplicate for AD7c-NTP as described above. Samples yielding results with signal:noise (S:N) ratios that do not fall within the linear range of the standard curve generated with purified recombinant AD7c-NTP protein are re-assayed at higher or lower dilutions as required. Results are expressed with respect to volume and protein concentration.

c. Analysis of the size of AD7c-NTP present in ventricular fluid and CSF

The molecular size of the AD7c-NTP molecules present in CSF or ventricular fluid is determined by Western blot analysis. These studies determine whether the levels of the 21 kD or another NTP species are increased in AD compared with aged control CSF and ventricular fluid specimens. Samples containing $100 \, \mu g$ of protein are fractionated in Laemmli

5

10

15

20

25

SDS-PAGE gels with molecular weight standards. For comparison with results obtained using polyclonal antibodies, the Western blots are re-probed with the tracer (detection) AD7c-NTP MoAb used in the M-IRMA. Additional planned efforts to generate MoAbs that bind to specific and unique NTP molecules will abrogate the need to perform Western blot analysis, in order to interpret abnormally elevated levels of AD7c-NTP. Complete analysis of samples will be possible with a series of rapid and simple M-IRMAs.

Example 17

Analysis of levels of AD7c-NTP in serum of AD

Approximately 100 AD antemortem serum samples, representing discarded specimens from previously approved clinical studies, are available. In addition, approximately 250 samples of serum from normal individuals, obtained from previously approved, unrelated studies are also available. Finally, postmortem serum from patients with confirmed AD has been banked by the ADRC-MGH, and is available. Studies are conducted to determine whether AD7c-NTP molecules are detectable in serum by Western blot analysis. Although some of MoAbs generated to recombinant AD7c-NTP cross-react with PTP, which is abundantly present in serum, the antibodies selected for M-IRMA exhibit no detectable binding to purified PTP at concentrations as high as 1 mg/ml. The objective is to determine whether AD7c-NTP can be measured in serum samples, and whether elevated levels of AD7c-NTP detected in postmortem ventricular fluid, brain tissue, or CSF are detectable in paired serum samples from the same individuals. Another objective is to determine whether the levels of AD7c-NTP are elevated in sera from probable and definite AD patients for whom CSF samples are not available. Sera diluted 1:10, 1:50, 1:100, and 1:250 in PBS/BSA are assayed for AD7c-NTP by M-IRMA.

- 107 -

Example 18

Additional AD and fetal brain NTP cDNAs

Data suggest that the NTP molecules expressed in such non-AD related diseases, are 15 kD or 17 kD, rather than 21 kD in size. A family of NTP cDNAs was isolated from AD brain, and 17 week human fetal brain (FB) libraries. Analysis of the nucleic acid sequences indicates clear regions of extreme homology or identity, as well as unique domains in each clone.

Both strands of each clone are sequenced by the dideoxynucleotide chain termination method using T7 polymerase and custom oligonucleotide primers, with incorporation of deazo-G analogue nucleotides to help circumvent compression artifacts. The nucleic acid and amino acid sequences are compared with the AD7c-NTP cDNA, and with the published sequences of non-neural thread proteins (PTP and HIP).

mRNA expression of the different NTP cDNAs is examined using RT/PCR technology with primers designed to amplify 200 to 500 bp unique sequences contained within each cDNA. cDNA fragments amplified from plasmid templates are directionally subcloned into pGEM vectors to generate digoxigenin-labeled cRNA probes for in situ hybridization studies. To quickly assess potential function, RT/PCR and in situ hybridizations are conducted on a battery of test samples (Table 4). NTP gene expression is quantitated by Southern blot analysis of PCR products, relative to the levels of simultaneously amplified GAPDH.

15

10

5

20

TABLE 4: Samples for Surveying Expression of Different NTP Genes

Mature Brain	Developing Brain	PNET2 and SH-Sy5y cells
1. AD (N=4)	1. 2nd trimester fetus (N=2)	1. overnight serum starved
2. normal aging (N=4)	2. 3rd trimester fetus (N=2)	2. proliferating
3. Acute stroke + intact tissue (N=3)	3. infant (N=2)	3. retinoic acid-induced differential
4. Remote stroke + intact tissue (N=2)	4. 5 year old (N=2)	4. vehicle-treated negative control
` -/	5. 16 year old (N=1)	

Methods to Examine NTP Gene Expression:

10 RNA Studies

5

15

20

25_

30

In situ hybridization RT-PCR or RNAse Protection

Protein Methods

Immunocytochemistry Western Blot analysis

Metabolic Labeling/Immunoprecipitation (cell culture studies only)

The PCR amplified cDNA fragments are subcloned into pTrc-His vectors (InVitrogen) to generate recombinant proteins for immunization and analysis of immunoreactivity. The recombinant proteins are purified by metal chelate affinity chromatography. The purified and concentrated (Centricon filter) recombinant fusion proteins are used to generate monoclonal and polyclonal antibodies for examining protein expression in brain and PNET cell lines.

DNA sequence analysis suggests a need to generate polyclonal and MoAbs to 3 or 4 distinct recombinant truncated fusion proteins to distinguish among the different NTP molecules expressed in brain and PNET cell lines. Polyclonal antibodies are generated first and used to study gene expression. Rabbits are immunized with purified AD-NTP or FB-NTP truncated proteins (described above) (Harlow & Lane, Antibodies. A Laboratory Manual, Cold Spring Harbor Laboratory (1988) Cold Spring Harbor, NY). Pre-immune

5

10

serum, and serum obtained after the second boost are assayed for NTP-specific immunoreactivity by Western blot analysis and solid phase immunoassay using different amounts of recombinant protein, and with AD7c-NTP, as well as the other NTP truncated proteins as negative controls. The resulting polyclonal antibodies are used to examine the levels and cellular and tissue distributions of immunoreactivity by Western blot analysis and immunocytochemistry using a battery of testing materials (Table 4).

All publications and patent applications mentioned in this specification are indicative of the level of skill of those in the art to which the invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference in their entirety.

-110-

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: The General Hospital Corporation
 - (ii) TITLE OF INVENTION: Neural Thread Protein Gene Expression and Detection of Alzheimer's Disease
 - (iii) NUMBER OF SEQUENCES: 121
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Sterne, Kessler, Goldstein & Fox P.L.L.C.
 - (B) STREET: 1100 New York Avenue, Suite 600
 - (C) CITY: Washington
 - (D) STATE: D.C.
 - (E) COUNTRY: U.S.A.
 - (F) ZIP: 20005-3934
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: (to be assigned)
 - (B) FILING DATE: 14-NOV-1995
 - (C) CLASSIFICATION:
 - (vii) PRIORITY APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/340,426
 - (B) FILING DATE: 14-NOV-1994
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Jorge A. Goldstein
 - (B) REGISTRATION NUMBER: 29,021
 - (C) REFERENCE/DOCKET NUMBER: 0609.384PC02
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (202) 371-2600
 - (B) TELEFAX: (202) 371-2540
- (2) INFORMATION FOR SEQ ID NO:1:

-111-

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
CCGATTCCAA CAGACCATCA T	21
(2) INFORMATION FOR SEQ ID NO:2:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both 	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
CCAACAGACC ATCATTCCAC C	21
(2) INFORMATION FOR SEQ ID NO:3:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
CCARACCGAT TCCARCAGAC C	21

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

30

-112-

	(A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both	
(xi	x1) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
CCTGGGG	GCAAC AAGAGCGAAA ACTCCATCTC	30
(2) IN	VFORMATION FOR SEQ ID NO:5:	
. (3	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both	·
(xi	ci) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
ATCGCTT	TIGAA CCCGGGAGGC GGAGGTTGCG	30
(2) INF	FORMATION FOR SEQ ID NO:6:	
(i	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both	
(xi	d) SEQUENCE DESCRIPTION: SEQ ID NO:6:	•

(2) INFORMATION FOR SEQ ID NO:7:

GGGGAGGCTG AGGCAGGAGA-ATCGCTTGAA

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 43 base pairs.

PCT/US95/17111

-113-

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: both
- (D) TOPOLOGY: both

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (C) OTHER INFORMATION: /label= misc_feature
 /note= "N" represents a nucleotide linkage of 0-10 bases which
 links nucleotide "C" at position 21 and nucleotide "C" at position 23.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

TACTACCAGA CAACCTTAGC CNCCGATTCC AACAGACCAT CAT

43

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 43 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (C) OTHER INFORMATION: /label= misc_feature
 /note= "N" represents a nucleotide linkage of 0-10 bases which
 links nucleotide "T" at position 21 and nucleotide "T" at position 23.
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

CCGATTCCAA CAGACCATCA THTACTACCA GACAACCTTA GCC

43

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 43 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both

-114-

(D) TOPOLOGY: both

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (C) OTHER INFORMATION: /label= misc_feature

 /note= "N" represents a nucleotide linkage of 0-10 bases which
 links nucleotide "C" at position 21 and nucleotide "C" at position
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

CCACCTTACT ACCAGACAAC CNCCAACAGA CCATCATTCC ACC

43

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 43 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (C) OTHER INFORMATION: /label= misc_feature

/note= "N" represents a nucleotide linkage of 0-10 bases whic links nucleotide "C" at position 21 and nucleotide "C" at position

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CCAACAGACC ATCATTCCAC CNCCACCTTA CTACCAGACA ACC

43

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - ----(A)--LENGTH:-43-base-pairs-
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (C) OTHER INFORMATION: /label= misc_feature

PCT/US95/17111

-115-

/note= "N" represents a nucleotide linkage of 0-10 bases which links nucleotide "C" at position 21 and nucleotide "C" at position 23.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

CCAGACAACC TTAGCCAAAC CNCCAAACCG ATTCCAACAG ACC

43

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 43 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (C) OTHER INFORMATION: /label= misc_feature
 /note= "N" represents a nucleotide linkage of 0-10 bases which

links nucleotide "C" at position 21 and nucleotide "C" at position 23.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

CCARACOGAT TCCAACAGAC CNCCAGACAA CCTTAGCCAA ACC

43

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1443 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

CGCTGCGCCC AGGCTGGCTC TGGRAAGCCT GTGCGGTCCT GGCAGGAAGC CCGGCCCGTG

120

GAGCAGGTTT TCGTTCTGCT TCAGCAATAA ATAAGGGTGA CCACAGGGAC TTTGCTTTTG

GITTCCITT	CTGTGAAAA	GIIGGIIII	A AAGTGAGAT	A CACTTTTCC	G TAGAACAAGT	18
GTTCTATCT	TAAAAACCC	AATTGCAGC	CCGTGGATT	A CTGGTCTCA	3 AACAACTCAT	24
TGCGCÀTCAG	ATTTGACTCT	CTGATTTC	GTCTATTGG	CAAATTGCC	TITAACTGCA	30
CCTGAATCCT	TTGTGTACTG	ATGCCTTTGA	GCTGGGCAC	TTGGGAGAG1	GTTGTGTTGC	36
TGTTTACGGT	TCTTCCTTCC	CCTTGCTAAT	TACAGTCTCT	r ggtgcccago	AAGCCCCTTT	426
GGCTTCCTTC	CGTGACTGGT	CACGTTGTCT	GCCTGGGCTC	: AGCGTGGACC	TGCCCCATGC	480
TGCAGAACCT	GGCCTCACCT	GGACTTTTAC	TAGAATTGCC	: AGCTTCTCAA	CTTAGCAGAT	540
CATCACTCAT	GCGGGCACAA	GCAAAGATCA	ACACTTTCTT	TTTTGGTAAG	CTTGAGTTTT	600
ACAAGTTATT	TTTTGGTGAT	GCGTAAGACA	TTGCAGTGGG	AAACCATTCA	ACTIGAGTTT	660
ATTGGAGTTT	GCTGTTGTAG	CAGGTTTTAA	CTCAGGAACA	ACTCTTGTCT	GATCTCTCGC	720
CCCTCTGCCG	GGACTACATT	ACTGTCTCTC	GGAGCCGGTA	GCGTTGCTGT	CGAGTCCCAG	780
GACTATCTCT	GCAGACTGCT	ATGCTCAGAT	CGAAGTATTT	CACAAGAATA	CTTGTGTTTT	840
TAACAGCCCT	TCCCCTGGAC	GGTGCGCCAT	GAGGGCCTCA	TGTTACGCAT	TGCCTTTTCT	900
TTCTGTGGAT	CCAGTATCTT	CCTCGGCTTT	TTAGGGAGCA	GGAAAAATGC	GTCTGAGAGC	960
AACTCTTTTT	AAAAACCTGC	CCTGTTGTAT	ATAACTGTGT	CTGTTTCACC	GTGTGACCTC	1020
CAAGGGGGTG	GGAACTTGAT	ATAAACGTTT	AAAGGGGCCA	CGATTTGCCC	GAGGGTTACT	1080
CCTTTGCTCT	CACCTTGTAT	GGATGAGGAG	ATGAAGCCAT	TTCTTATCCT	GTAGATGTGA	1140
AGCACTITCA	GTTTTCAGCG	ATGTTGGAAT	GTAGCATCAG	AAGCTCGTTC	CTTCACACTC	1200
AGTGGCGTCT	GTGCTTGTCC	ACATGCGCTG	GGCGTCTGGA	CCTTGAATGC	CTGCCCTGGT	1260
TGTGTGGACT	CCTTAATGCC	aatcatttct	TCACTTCTCT	GGACACCCAG	GGCGCCTGTT	1320
GACAAGTGTG	GAGAAACTCC	TAATTTAAAT	GTCACAGACA	ATGTCCTAGT	GTTGACTACT	1380

-117-

111	
ACAATGITGA TGCTACACTG TTGTAATTAT TAAACTGATT ATTTTTCTTA TGTCAAAAA	1440
AAA	1443
•	
(2) INFORMATION FOR SEQ ID NO:14:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 213 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
GATCCCGTTT GACAGGTGTA CCGCCCCAGT CAAACTCCCC ACCTGGCACT GTCCCCGGAG	60
CGGTCGCGCC CGCGCGACCA CGGAGCTCTG GGCGCCAGAA GCGAGAGCCC CTCGCTGCCC	120
CCCGCCTCAC CGGGTAGTGA AAAAACGATG AGAGTAGTGG TATTTCACCG GCGGCCCGCG	180
AGGACCCCG CCCGACCCAG TGCGGAACGG GGG	213
(2) INFORMATION FOR SEQ ID NO:15:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 358 base pairs	
(B) TYPE: nucleic acid (C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
CACCGTGGAT TACTGGTCTC AGAACAACTC ATTGCGCATC AGATTTACTC TCTGANTTTC	60-
TGTCTATTGG CCATTGCCCT TTAACTGCAC CTGAATCCTT TGTGTACTGA TCCTTTGAGC	120
TGGGCACCTT GGGAGAGTGT TGTGTTGCTG TTTACGGTTC TTCCTTCCCC TTGCTAATTA	180
THE PROPERTY OF THE PROPERTY O	240

-118-

TGGGCCAGCG TGGCCCCATG CTGCAGAACC TGGCCTCAGG ACTTTTCACT AGAATTGCCC	30
TTCCTCARCT TAGCAGATCA TTCACTCATG CGGGCACAAG CAAAGATCAA CACTTTCT	35
(2) INFORMATION FOR SEQ ID NO:16:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 378 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: both

(D) TOPOLOGY: both

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CATTGCAGCT CAGCATGGCT CAGACCAGCT CATACTTCAT GCTGATCTC TGCCTGATGT 60

TTCTGTCTCA GAGCCAAGGC CAAGAGGCCC AGACAGAGTT GCCCCAGGCC CGGATCAGCT 120

GCCCAGAAGG CACCAATGCC TATCGCTCCT ACTGCTACTA CTTTAATGAA GACCGTGAGA 180

CCTGGGTTGA TGCAGATCTC TATTGCCAGA ACATGAATTC GGGCAACCTG GTGTCTGTGC 240

TNCCCAGGCC GAGGGTGCCT TTGTGGCCTC ACTGATTAAG GAGAGTGGCA CTGATGACTT 300

CAATGTCTGG ATTGGCCTCC ATGACCCCAA AAAGAACCGC CGCTGGCACT GGAGCAGTGG 360

GTCCCTGGTC TCCTACAA 378

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 142 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: both
- (D) TOPOLOGY: both

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

-119-

•	
ACARCTCATT GCGCATCAGA TITACTCTCT GATTTTTCTG TCTATTTGGC CAAATTGCCC	120
TITTAACTGC ACCTGAATCT TT	142
(2) INFORMATION FOR SEQ ID NO:18:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 151 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
TTCTCCTATA GAGATTGTTG ATTTGCCTCT TAGCAAGAGA TTCATTGCAG CTCAGCATGG	60
CTCAGACCAG CTCATACTTC ATGCTGATCT CCTGCCTGAT GTTTCTGTCT CAGAGCCAAG	120
GTANGATCTC TTTTCCACCA ACCAACTCTT T	151
(2) INFORMATION FOR SEQ ID NO:19:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 75 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
CACCGTGGAT TACTGGTCTC AGAACAACTC ATTGCGCATC AGATTTACTC TCTGATTTTT	60
CTGTCTATTG GCCAA	75

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 77 base pairs

60

-120-

(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
CATTGCAGCT CAGCATGGCT CAGACCAGCT CATACTTCAT GCTGATCTCC TGCCTGATGT	6
	J
TTCTGTCTCA GAGCCAA	7
(2) INFORMATION FOR SEQ ID NO:21:	
(*)	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 130 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(5) 10102001 2001	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
GAATTCCTGG GCTCAAGTGA TCCTCTCATG CAGTCTCCCA AAGTGCTGGG ATGACAGGCT	60
TGAGCCACCA CACCAGGCCC ATCATCAGTT TATATAAAGA AAAAAAAACC TTAAAATTGT	120
micconnam.	• • •
TAGGCAAATA	130
(2) INFORMATION FOR SEQ ID NO:22:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 144 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY; both	
•	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:22:	

PCT/US95/17111

-121-

CAGGTTCAGT GCTCACCGAA AGTAAAATCC CCTCCTTCAG CAAGAATAAA GCAATATACA	120
CCTTAGGTTC CACTAAGTAA CATA	144
(2) INFORMATION FOR SEQ ID NO:23:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 96 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
GTTCTGTGAG TCTCAATTTG TTCCTTCTTG GAAGCTGTCT GGTGAATCTG TTGGTCCCTC	60
TGTCTGCTAT TCTGTCTGTC TGTATGTCTG TCCATG	96
(2) INFORMATION FOR SEQ ID NO:24:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 105 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
GTTGATTTGC CTCTTAAGCA AGAGATTCAT TGCAGCTCAG CATGGCTCAG ACCAGCTCAT	60
ACTICATGCI GATCICCIGC CIGATGTITC IGTCICAGAG CCAAG	105

- (2) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 215 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both

-122-

(D) TOPOLOGY: both

	(xi) Si	EQUENCE DES	CRIPTION: SI	EQ ID NO:25	:		
acta	CCAAAC	CTGCATTAAA	AAATTTCGGT	TGGTCGACCT	CGGAGCAGAA	CCCAACCTCC	6
GAGC	agtaca	TGCTAAGACT	TCACCAGTCA	AAGCGAACGT	ACTATACTCA	ATTGATCCAA	· 12
TAAC	TTGACC	AACGGAACAA	GTTACCCTAT	AACAGCGCAA	TCCTATTCTA	GAGTCCATAT	180
CAAC	AGGGTT	TACGACCTCG	ATGTTGGATC	AGGAC		•	219
						•	

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 232 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: both

(D) TOPOLOGY: both

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

ACCACGGAGC	TCTGGGCGCC	AGAAGCGAGA	GCCCTCGCT	GCCCCCGCC	TCACCGGGTA	60
GTGAAAAAAC	GATGAGAGTA	GTGGTATTTC	ACCGGCGGCC	CGCGAGGACC	CCCGCCCGAC	120
CCAGTGCGGA	ACGGGGGAGT	AGTCCCGGGG	GCTCACTTAT	TCTACATTAG	TCTCACGTGC	180
AGACTAGAGT	CAAGCTCAAC	AGGGTCTTCT	TTCCCGCTGA	TTCCGCCAAG	TC	232

(2) INFORMATION FOR SEQ ID NO:27:

(i)—sequence-characteristics:———

- (A) LENGTH: 112 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: both
- (D) TOPOLOGY: both

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

-123-

AGTITCACTC TGTTGCCCAG GCTGGAGTGC AATGGCACAA TCCTGGCTCA CTGCAACCTC	60
CGCCTCCCGA GCTCAAGCAA TTCTCCTGCC TCAGCCTCGT GAGCCGCTGG GA	112
(2) INFORMATION FOR SEQ ID NO:28:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 120 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
o (D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
	•
AGATCTCGCT CTGTCACCCA GGCTGAAGTG CAGTGGCCCA ATCTCGGCTC ACTGCGAGCT	60
CCACCTCCCG GGTTCACTTC ATTCTCCTGC CTCACTGCCT CAGCCTCTGA GTAGCTGGGA	120
(2) INFORMATION FOR SEQ ID NO:29:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 594 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
GAGGCGTATT ATACCATGCT CCATCTGCCT ACGACAAACA GACCTAAAAT CGCTCATTGC	60
ATACTCTTCA ATCAGCCACA TAGCCCTCGT AGTAACAGCC ATTCTCATCC AAACCCCCTG	120
AAGCTTCACC GGCGCAGTCA TTCTCATAAT CGCCCACGGG CTTACATCCT CATTACTATT	180
CTGCCTAGCA AACTCAAACT ACGAACGCAC TCACAGTCGC ATCATAATCC TCTCTCAAGG	240
THE PROPERTY OF THE PROPERTY O	240
ACTICARACT CTACTCCCAC TARTAGCTTT TTGATGACTT CTAGCAAGCC TCGCTAACCT	300
CGCCTTACCC CCCACTATTA ACCTACTGGG AGAACTCTCT GTGCTAGTAA CCACGTTCTC	360

-124-

CTGATCA	AAT A	TCAC	TCTC	C TA	CTTA	.CAGG	ACI	CAAC	LATA	CTAC	TCAC	CAG C	CCT	TACT	rc	420
CCTCTAC	ATA I	TTAC	:CACA	A CA	CAAT	GGGG	CTC	ACTO	ACC	CACC	ACAT	TA A	CAAC	CATA	L A	480
ACCCTCA:	FTC 2	יבו כני	ממח!	R 20	יאררר	ጥ ሮ አጥ	- दिवस	מידמי	CA C	ר מידים		ירא ז	-1414-	~~~~	~ n	
ACCCICA.		LACE	MGAA	A AC	ACCC	ı	GII	<u></u>	CAC	CIAI	cccc		.1010	-6166	.1	540
ATCCCTC	AC C	CCGA	CATC	A TI	ACCG	GGTT	TIC	CTCI	TAA	AAAA	AAA	AA A	AAA			594
(2) INFO				-												
(i)	SEQ (A		E CH NGTH											٠		
	-		PE:	-			-143									
•	(D) TO	POLO	GY:	line	ar										
(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:30:							
Glu	Ala	Тут	Tyr	Thr	Met	Leu	His	Leu	Pro	Thr	Thr	Asn	Arg	Pro	Lys	
1				5					10					15		
Ile	Ala	His	Cys	Ile	Leu	Phe	Asn	Gln	Pro	His	Ser	Pro	Arg	Ser	Asn	
			20					25					30			
Ser	His	Ser	His	Pro	Asn	Pro	Leu	Lys	Leu	His	Arg	Arg	Ser	His	Ser	
		35					40					45				
His	Asn	Ara	Pro	Ara	Ala	Tvr	Ile	Leu	Ile	Thr	Ile	Leu	Pro	Ser	Ivs	
	50					55					60				-2-	
Leu	Lys	Leu	Arg	Thr	His	Ser	Gln	Ser	His	His	neA	Pro	Leu	Ser	Arg	•
65			-		70					75					80	

Thr Ser Asn Ser Thr Pro Thr Asn Ser Phe Leu Met Thr Ser Ser Lys

90

95

Pro Arg

-125-

(2) 1	NFORMATION	FOR	SEQ	ID	NO:31	L:
-------	------------	-----	-----	----	-------	----

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 554 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: both

(D) TOPOLOGY: both

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

ATACCATGCT	CCATCTGCCT	ACGACAAACA	GACCTAAAAT	CGCTCATTGC	ATACTCTTCA	60
ATCAGCACAT	AGCCCTCGTA	GTAACAGCCA	TTCTCATCCA	AACCCCCTGA	AGCTTCACCG	120
GCGCAGTCAT	TCTCATAATC	GCCCACGGGC	TTACATCCTC	ATTACTATTC	TGCCANCAAA	180
CTCAAACTAC	GAACGCACTC	ACAGTCGCAT	CATAATCTCT	CTCAAGGACT	TCAAACTCTA	240
CTCCCAAGCT	TTGTGACTTC	TAGCAACCTC	GCTAACCTCG	CCTTACCCCC	ACTATTAACT	300
ACTGGGAGAA	TGTGCTAGTA	ACCACGTTCT	CCTTCAAATA	TCACTCTCCT	ACTTACAGGA	360
CTCAACATAC	TAGTCCAGCC	CTATACTCCC	TCTACATATT	TACCACAACA	CAATGGGCTC	420
ACTCACCCAC	CACATTAACC	ATAAAACCCT	CATTCACACG	AGAAAACACC	CTCATGTTCA	480
PACACCTATC	CCCCATTCTT	CCTATCCCTC	AACCCCGACA	TCAACCGGGT	TTCCTCTTAA	540
**************	AAAA					554

(2) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 590 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: both
- (D) TOPOLOGY: both

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

-126-

PCT/US95/17111

ATG	CCTATCG	CTCCTACTGC	TACTACTTTA	ATGAAGACCG	TGAGACCTGG	GTTGATGCAG	6
ATC:	TCTATTG	CCAGAACATG	AATTCGGGCA	ACCTGGTGTC	TGTGCTCACC	CAGGCCGAGG	120
GTG	ccirrgr	GGCCTCACTG	ATTAAGGAGA	GTGGCACTGA	TGACTTCAAT	GTCTGGATTG	180
GCC:	ICCATGA	CCCCAAAAAG	AACCGCCGCT	GGCACTGGAG	CAGTGGGTCC	CTGGTCTCCT	240
ACAJ	AGTCCTG	GGGCATTGGA	GCCCCAAGCA	GTGTTAATCC	TGGCTACTGT	GTGAGCCTGA	300
CCT	CAAGCAC	AGGATTCCAG	AAATGGAAGG	ATGTGCCTTG	TGAAGACAAG	TTCTCCTTTG	360
rcro	CAAGTT	CAAAAACTAG	AGGCAGCTGG	AAAATACATG	TCTAGAACTG	ATCCAGCAAT	420
TAC	ACGGAG	TCAAAAATTA	AACCGGACCA	TCTCTCCAAC	TCAACTCAAC	CTGGACACTC	480
rcii	CTCTGC	TGAGTTTGCC	TTGTTAATCT	TCAATAGTTT	TACCTACCCC	AGTCTTTGGA	540
ACCI	TAAATA	ATAAAAATAA	ACATGTTTCC	АСТАВАВАВА	AAAAAAAAA		590

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 466 base pairs
- (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

CITCITITIC	AGGCCAAGAG	GCCCAGACAG	AGTTGCCCCA	GGCCCGGATC	AGCTGCCCAG	60
AAGGCACCAA	CCTATCGCTC	CTACTGCTAC	TACTTTAATG	AAGACCGCGA	GACCTGGGTT	120
GATGCAGTGT	GAGTGAGGAG	-AGCGTGTGGG-	-AAGGGAGACT-	-CATGAAGGGA	-GGGGAAGCTG	_180-
CCACTCTCCA	GTGTTCAGTG	GCGCAATGAG	ATGAGACTGA	ACCCCTTTAT	ACTATCATCA	240
GCCCCAAACT	TTCCAATCTA	CTTTATCCCA	TTATTCAGCA	CATTCCCAGC	ACAAAGAACC	300
TGGTGGGTGA	CAGCATCATC	ACGGACATTA	CTCTGCTGTC	CTTTTTCACC	CTCCTCTTGG	360

-127-

420

AGGACTCAGT ATATCCGTCA CAACCCTCCA CTGAGTCTCC ATTTTCTTCT GCAACAGCTC

TATTGCCAGA ACATGAATTC GGGCAACCTG GTGTCTGTGC TCACCC	466
(2) INFORMATION FOR SEQ ID NO:34:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 501 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
CGTATTATAC CATGCTCCAT CTGCCTACGA CAAACAGACC TAAAATCGCT CATTGCATAC	60
ICITCARTCA GCCACATAGC CCTCGTAGTA ACAGCCATTC TCATCCAAAC CCCCTGAAGC	120
TINCEGGEGE AGTEATTETE ATAATEGEEE ACGGGETTAE ATECTEATTA CTATTETGEE	180
PAGCARACTC ARACTACGAR CGCACTCACA GTCGCATCAT RATCCTCTCT CRAGGACTTC	240
AACTCTACT CCCACTAATA GCTTTTTGAT GACTTCTAGC AAGCCTCGCT AACCTCGCCT	300
PACCCCCCAC TATTAACCTA CTGGGAGAAC TCTCTGTGCT AGTAACCACG TTCTCCTGAT	360
CARATATCAC TCTCCTACTT ACAGGACTCA ACATACTAGT CACAGCCCTA TACTCCCTCT	420
CATATITAC CACAACACAA TGGGGCTCAC TCACCCACCA CATTAACAAC ATAAAACCCT	480
RITCACACG AGAAAACACC C	501

(2) INFORMATION FOR SEQ ID NO:35:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 372 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both

-128-

(xi)	SEQUENCE	DESCRIPTION:	SEO	TD	NO.35.

GTTCTTAGTC	TATCTCTTGT	ACAAACGATG	TGCTTTGAAG	ATGTTAGTGT	ATAACAATTG	60
AIGITTGTTT	TCTGTTTGAT	TTTAAACAGA	GAAAAAATAA	AAGGGGGTAA	TAGCTCCTTT	120
TTTCTTCTTT	СТТТТТТТТ	TTCATTTCAA	AATTGCTGCC	AGTGTTTTCA	ATGTAGGACA	180
ACAGAGGGAT	ATGCTGTAGA	GTGTTTTAT	TGCCTAGTTG	ACAAAGCTGC	TTTTGAATGC	240
TGGTGGTTCT	ATTCCTTTGC	ACATCACGAC	ATTTTATAAT	CATAGTTAAA	TCGTATATGA	300
Caaaaatgct	CTGATCTGAT	GCCAAAGGTC	AATTCAGTGT	ATATAACCTG	AACACACTCA	360
TCCATTGCGT	TT					372

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 68 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

Met Phe Val Phe Cys Leu Ile Leu Asn Arg Glu Lys Ile Lys Gly Gly

1 10 15

Asn Ser Ser Phe Phe Leu Leu Ser Phe Phe Phe Ser Phe Gln Asn Cys 20 25 30

Cys Gln Cys Phe Gln Cys Arg Thr Thr Glu Gly Tyr Ala Val Glu Cys 35 40 45

Phe Tyr Cys Leu Val Asp Lys Ala Ala Phe Glu Cys Trp Trp Phe Tyr
50 55 60

Ser Phe Asp Thr

65

PCT/US95/17111

-129-

(2)	Information	FOR	SEQ	ID	NO:	37	:
-----	-------------	-----	-----	----	-----	----	---

(:	il	SEQUENCE	CHARACTERISTICS:

- (A) LENGTH: 377 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: both
- (D) TOPOLOGY: both

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

ACTGTCTCCC	CCTTTGATAG	GGACACTAAA	GTGGTCTGTA	CTTGGGTAGA	GGATGGCANG	60
TTAAGAATTA	AAATCGTCTG	GGTGCGGTCT	GCACGCTTGT	AATCCCAGCA	CTTTGGGAGG	120
CTGAGGCGGG	CGGATCACCT	GAGGTCAGGA	GTTCGACACC	AGCCTGATGA	ACATGGAGAA	180
ACCCCATCTC	TACTAAAAAT	ACAAATATTA	GCTGGGCGTT	GTCGCGCGCC	TGTAATCCCA	240
GCGGCTCACG	AGGCTGAGGC	AGGAGAATTG	CTTGAGCTCG	GGATGGCGGA	GGTTGCAGTG	300
AGCCAGGATT	GTGCCATTGC	ACTCCAGCCT	GGGCAACAAG	AGTGAAACTC	TGTCTCAAAA	360
AAAAAAAA	AAAAAA					377

(2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1480 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

GCGTAAACAC A	TTTTTGTTC	TTAGTCTATC	TCTTGTACAA	ACGATGTGCT	TTGAAGATGT	60
TAGTGTATAA C	Aattgatgt	TIGITITCIG	TTTGATTTTA	AACAGAGAAA	AAATAAAAGG	120
GGGTAATAGC TO	CCTTTTTC	TTCTTTCTTT	GATTTTAAAC	AGAGAAAAA	TAAAAGGGGG	180

TAAT	PAGCTCC	TITTITCTTC	TTTCTTTTT	TTTTTTCATT	TCAAAATTGC	TGCCAGTGTT	24
TTC	AATGATG	GACAACAGAG	GGATATGCTG	TAGAGTGTTT	TATTGCCTAG	TTGACAAAGC	30
TGCT	ettgaat	GCTGGTGGTT	CTATTCCTTT	GACACTACGC	ACTTTTATAA	TACATGTTAA	36
TGC	eatagga	CAAGATGCTC	TGATTCCTGA	GTGCCAGAGG	TTCAATTCAG	TGTATATAAC	42
TGAZ	ACACACT	CATCCATTTG	TGCTTTTGTT	TTTTTTATGG	TGGCTTAAAG	GTAAAGAGCC	48
CATO	CTTTGC	AAGTCATCCA	TGTTGTTACT	TAGGCATTTT	ATCTTGGCTC	AAATTGTTGG	54
ĄAGA	NATGGTG	GCTTGTTTCA	TGGTTTTTGT	ATTTGTGTCT	AATGCACGTT	TTAACATGAT	600
AGAC	GCAATG	CATTGTGTAG	CTAGTTTTCT	GGAAAAGTCA	ACTCTTTTAG	GAATTGTTTT	660
TCAG	ATCTTC	AATAAATTTT	TTCTTTAAAT	TTCAAAGAAC	AATGTGCTTG	TGTTGATGCC	720
TTAC	'AAAAAC	CATTGTATAT	TTGTGTATTC	CTTCTTGTAT	TTAGACAGTG	GTTTTTCAGG	780
TGCG	TGCTTT	GTTTTCTGGT	ATGGCCTTTA	TGGAATGAGA	CGCTTTAGCT	TTGGTACGTA	840
GCGC	TAATCC	ATAGCAGCTT	TGGCAGTTTC	GTGTCTTGAG	TCTTAGCTAA	AAAGTTAGAA	900
GTTT	ACATGA	CTGTTTTTT	TATTTTCCCT	AAATTATTAC	TTACTCTGAG	CATTAATTAA	960
GGGC	ATTITC	ACCTGTGTAA	AATTATGGTC	AGCTTTTTTC	TGTCTATAAT	TGTTTACTTT	1020
TGTG	GGTTTA	CTCTAGAAAC	ATGAGCCAAA	AATGTCAATA	GACAACACAG	TATTAAAATA	1080
ACCC	aaaagt	TGTAAAGGGC	AACGTTTCTC	CCCTTTGATA	GGGACACTAA	AGTGGTCTGT	1140
ACTT	GGGTAG	AGGATGGCAG	ACGTTAAGAA	TTAAAATGCG	TCTGGGTGCG	GTCTCACGCT	1200
TGTA	ATCCCA	GCACTTTGGG	AGGCTGAGGC	GGGCGGATCA	CCTGAGGTCA	GGAGTTCGAC	1260
ACCA	GCCTGA	TGAACATGGA	GAAACCCCAT	CTCTACTAAA	AATACAAATA	TTAGCTGGGC	1320
GITG	TCGCGC	GCCTGTAATC	CCAGCGGCTC	ACGAGGCTGA	GGCAGGAGAA	TTGCTTGAGC	1380
TCGG	GATGGC	GGAGGTTGCA	GTGAGCCAGG	ATTGTGCCAT	TGCACTCCAG	CCTGGGCAAC	1440
AAGA	GTGAAA	CTCTGTCTCA	AAAAAAAA	AAAAAAAA			1480

-131-

(i')	SECTIENCE	CHARACTERISTICS	٠.

- (A) LENGTH: 381 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: both
- (D) TOPOLOGY: both

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

TTGGGTGAGG	TGGAATGATG	GTCTGTTGGA	ATCGGTTTGG	TAAATGGGTT	TATTTCATAT	60
CCGCTATCTT	TAACTTTGGA	CCGCGTTATC	TATATCATGG	CGTTCCTTTC	TACTTTTTĀA	120
TATTGGTTCG	TATTATATCG	TTCCTGATTG	GGGATATGGA	AGACGTATTA	CTTAATTGTA	180
CTTTATTGAA	ACGTTCCTCT	CGGTTTCGAT	TCTGGGGGCT	TTGGTCTGCT	CGATGGATTC	240
TTGTCGATTT	TCTCGTGTGG	CAGTAACATA	CCGTTTTATC	ACCCTTCTAA	ATATCCCATC	300
TCCCGCTGTT	TGGTAGGCTC	GGAACACTAT	CGACCAACAG	GTTCTATCTA	GAATCAAGTT	360
GGAAATTAAA	CGGTGTCTTG	G .				381

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 122 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

Met Met Val Cys Trp Asn Arg Phe Gly Lys Trp Val Tyr Phe Ile Ser 1 5 10 15

Ala Ile Phe Asn Phe Gly Pro Arg Tyr Leu Tyr His Gly Val Pro Phe 20 25 30

-132-

Tyr	Phe	Leu 35	Ile	Leu	Val	Arg	Ile 40	Ile	Ser	Phe	Leu	Ile 45	Gly	Asp	Mei
Glu •	Asp 50	Val	Leu	Leu	Asn	Сув 55	Thr	Leu	Leu	Lys	Arg 60	Ser	Ser	Arg	Phe
Arg 65	Phe	Trp	Gly	Ala	Leu 70	Val	Cys	Ser	Met	Asp 75	Ser	Cys	Arg	Phe	Se1

Arg Val Ala Val Thr Tyr Arg Phe Ile Thr Leu Leu Asn Ile Pro Ser 85 90 95.

Pro Ala Val Trp Met Ala Arg Asn Thr Ile Asp Gln Gln Val Leu Ser 100 105 110

Arg Ile Lys Leu Glu Ile Lys Arg Cys Leu 115 . 120

(2) INFORMATION FOR SEQ ID NO:41:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 420 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: both

(D) TOPOLOGY: both

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

CC	CACAGGTC	CTAAACTACC	AAACCTGCAT	TAAAAAATTT	CCGTTCGTCG	ACCTCGGAGC	60
AG	AACCCAAC	CTCCGAGCAG	TACATGCTAA	GACTTCACCA	GTCAAAGCGA	ACGTACTATA	120
CI	Caattgat	CCARTAACTT	GACCAACGGA	ACAAGTTACC	CTAGGGATAA	CAGCGCAATC	180
CG	ATGGTGCA	GCCGCTATTA	AAGGTTCGTT	TGTTCAAACG	ATTAAAGTCC	TCGTGTCTGA	240
GT	TCAGACCG	AAGTAATCCA	GGTCGGTTTC	TATCTTCTTC	AAATTCCTCC	CTGTACCGAA	300
AG	Gactaatg	AGAAATAAGG	CCTACTTCAC	AAAGCGGCCT	TCCCCCGTAA	TGATATCATC	360

-133-

TCARCTTAGT ATTATACCCA CACCCACCCA AGAACAGGTT TGTTAAAAAA AAAAAAAAA	42
(2) INFORMATION FOR SEQ ID NO:42:	
//> 	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 381 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
AACCCACTCC ACCTTACTAC CAGACAACCT TAGCCAAACC ATTTACCCAA ATAAAGTATA	60
GGCGATAGAA ATTGAAACCT GGCGCAATAG ATATAGTACC GCAAGGAAAG ATGAAAAATT	120
ATAACCAAGC ATAATATAGC AAGGACTAAC CCCTATACCT TCTGCATAAT GAATTAACAT	180
GAAATAACTT TGCAAGGAGA GCCAAAGCTA AGACCCCCGA AACCAGACGA GCTACCTAAG	240
AACAGCTAAA AGAGCACACC GTCATTGTAT GGCAAAATAG TGGGAAGATT TATAGGGTAG	300
AGGGCGACAA ACCATCCGAG CCTTGTGATA GCTGGTTGTC CAAGATAGAT CTTAGTTCAA	360
CCTTTAATTT GCCACAGAAC C	381
(2) INFORMATION FOR SEQ ID NO:43:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 629 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:43:

TTTTTTTTT TTTTTACAA ACCCTGTTCT TGGGTGGGTG TGGGTATAAT ACTAAGTTGA 60

GATGATATCA TTACGGGGGA AGGCCGCTTT GTGAAGTAGG CCTTATTTCT CATTAGTCCT 120

PCT/US95/17111

-134-

TTCGGTACAG	GGAGGAATTT	GAAGAAGATA	GARACCGACC	TGGATTACTT	CGGTCTGAAC	180
TCAGACACGA	GGACTTTAAT	CGTTTGAACA	AACGAACCTT	TAATAGCGGC	TGCACCATCG	240
GGATGTCCTG	ATCCAACATC	GAGGTCGTAA	ACCCTATTGT	TGATATGGAC	TCTAGAATAG	300
GATTGCGCTG	TTATCCCTAG	GGTAACTTGT	TCCGTTGGTC	AAGTTATTGG	ATCAATTGAG	360
TTTAGTAGTC	CGCTTGGAGT	GGTGAAGTCT	AGAATGTCCT	GTTCGGGGGT	TGGTTTCTGC	420
TCCCAGGTCG	CCCCAACCGA	ATTTTTTTATT	GAAGGTTGGG	TAGTTTAGCA	CCTGTGGGTT	480
GGTAAGGTAC	TGTTGGAATT	AATAAATTAA	AGCTCCATAG	GGTCTCCTCG	TCTTGTTGTG	540
TAATGCCCCC	CTCTCCACGG	GAAGGTCAAT	TCCACTGGTT	AAAAGTAAGA	GAAAGCTGAA	600
CCCTCGGGGA	GCCATCCATA	CAGGTCCCC				629

(2) INFORMATION FOR SEQ ID NO:44:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 256 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: both

(D) TOPOLOGY: both

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

٠.	GCGGGTAAAT	TGGTTTGTTA	TTTTTTAAAA	AAAACTTGCA	TGTTTAAAAA	AAAGTTGATT	60
	GCTTCAAATT	TCTGCTACTA	ACTTCAAGCT	ATGGGAGTTT	GGCAGTAGTC	ACTTGAGGAT	120
	TTTTTTTCCA	ATTCTTTTCT	TTTTGTTGTT	AAAGCTGTAC	TTCAGTGAAC	AGAAAATTG	180
	CCARGCARAC	TANTGGACTA	TAAAGCGTAA.	_TTTGACTGTG	TGGGACTAAA	CTACAGAGCC.	_240_
,	TACTTGACCA	GTGGAT					256

(2) INFORMATION FOR SEQ ID NO:45:

-135-

(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 270 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:	
CATGITIANA ANANGITGA TIGCTICANA TIACTGCIAC TAACTICANG CTATGGGAGT	60
TTGGCAGTAG TCACTTGAGG ATTITITITC CAATTCGTTT TCATTTTTGT TGTTAAAGCT	120
CGTACTTCAG TGAGACAGAA AAATTGCCAA GCTAAACTAA TGGTCTATAA AAGCGTAATT	180
TGCATGTGTG GGCAAAAACT ACAGAGCCTC AATTGCCACT GAGGTATAGT ACAAAGTTTT	240
ANTACATTTT GTAAATCAAA TTGAAAGAAA	270
(2) INFORMATION FOR SEQ ID NO:46:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 270 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:	
CATGITTAAA AAAAAGTTGA TIGCITCAAA TIACIGCTAC TAACITCAAG CTATGGGAGT	60
TTGGCAGTAG TCACTTGAGG ATTTTTTTC CAATTCGTTT, TCATTTTTGT TGTTAAAGCT	120
CGTACTTCAG TGAGACAGAA AAATTGCCAA GCTAAACTAA TGGTCTATAA AAGCGTAATT	180
TGCATGTGTG GGCAAAAACT ACAGAGCCTC AATTGCCACT GAGGTATAGT ACAAAGTTTT	240
AATACATTIT GTAAATCAAA TIGAAAGAAA	270
(2) INFORMATION FOR SEQ ID NO:47:	

-136-

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 184 Base pair (B) TYPE: nucleic acid	<i>a</i>
(B) TYPE: nucleic acid (C) STRANDEDNESS: both	
(C) STRANDEDNESS: BOTH (D) TOPOLOGY: both	
(b) lorozogi: both	•
(xi) SEQUENCE DESCRIPTION: SEQ	ID NO:47:
TCTGCCCAGG CTGGTCTGAA ATTCCTGGGC TG	AAGTGATC CTCCAGTCTT GGCCTCCCAA 60
AGTGCTGGGA TTACAGGCAT GAGCTACTGA GC	CTAGCCTT AATGATTAAT TTTAGAGTGA 120
TGGCTTGTAC CTTCAAGACA CATATAGATT GA	GACAGAAA ATTTCCATCG TCCCCGAGAA 180
AACT	184
(2) INFORMATION FOR SEQ ID NO:48:	
(i) appropriate annual company and a	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 75 amino acid:	-
(B) TYPE: amino acid	•
(D) TOPOLOGY: linear	
(2) 10102001. 111001	
(xi) SEQUENCE DESCRIPTION: SEQ	ID NO:48:
Ser Ser Ser Leu Gly Leu Pro Ly	G Cys Trp Asp Tyr Arg His Glu Leu
1 5	10 15
	n Phe Arg Val Met Ala Cys Thr Phe
20	25 30
lys Gla Wis The Glu Leu Arg Ch	Lys Ile Ser Ile Val Pro Arg Lys
35 40	45
Leu Cys Cys Met Gly Pro Val Cy	s Pro Val Lys Ile Ala Leu Leu Thr
50 55	60 .
Ile Asn Gly His Cys Thr Trp Let	
65 70	75

-137-

PCT/US95/17111

(2) INFORMATION FOR SEQ ID NO:49:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1381 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: both
- (D) TOPOLOGY: both

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:49:

60	ATGGCGCAAT	CTGGAGTGCA	GTTGCCCAGG	TTTCGCTCTT	GAGATGGAGT	TTTTTTTTT
120	CAGCCTCCCC	TCTCCTGCCT	TTCAAGCGAT	GCCTCCCGGG	CGCAACCTCC	CTCAGCTCAC
180	TTTTTTAGTA	TTTTGTATTT	GCTCGGCTAA	TGTGCACCAC	ATTACAGGCA	AGTAGCTGGG
240	TCAGATGATC	ACTCCCGACC	CTGGTCTCGA	GTTGGTCAGG	TTAACTCCAT	GAGATGGAGT
300	GCCCGGCCTC	GAGCCACCAT	TTACAGGCAT	AGTGCTGAGA	GCCTGCCCAA	TCCCGTCTCG
360	GCTGGTCTCC	TGTTGCCCAA	GTTTCACTGA	TAGAAACAGG	ATTTTTGTGG	TGCCTGGCTA
420	GGCGTCAGCC	TGGGATTACA	CCCAAAGTGC	GCCTCAGCCT	CAGTCCACCT	TGAGCTCAAG
480	TACCCAGGAT	GTACCACTCT	AGACACAGGT	ATTTTTTTTA	TTTTTATTTT	GTGCCTGGCC
540	CAAGCAATCC	CTCCTGAGAT	CAGCCTTCAA	CAGCTCACTG	GGTGTGATCA	GAAGTGCAGT
600	CCTGGTAATT	CACCACTACA	CAAAGACATG	TAGCTGGGAC	GCCTCCCAAG	TCCTGCCTCA
660	GCTGGAGTGC	TGTCACCCAG	AGTCTCACTC	TTTGAGACAG	TTTTTAATTT	ATTITITA
720	TTCTCCTGCC	GTTCAAGTTA	TGCCTCCCGG	CTGCAACCTC	TCTTGGCTCA	agtggcgcaa
780	TTTTTTGTAT	CCTAGCTAAT	GCCCACCACG	GACTACAGGC	GAGTAGCTGG	CCAGCCTCCT
840	TTGACCTTGT	TCTTGATCTC	GCCAGGTTGA	CACCATGTTC	GATGGGGTTT	TTTTAGTAGA
900	CCACGCCGGC	GGTCGTGACT	TGGGATTACA	CCCAAAGTGC	CCTCGGCCTA	CATCTGCCTG
960	GTCGGAGTGC	TGTTACCCAG	AATCTCACTC	TTTGAAATGG	TTTTTGTTTG	CTATTTTTAA

-138-

ARTGGCARAT CTCGGCTACT CGCARCCTCT GCCTCCCGGG TCARGCGATT CTCCTGTCTC 1020

AGCCTCCCAR GCAGCTGGGA TTACGGGACC TGCACCACAC CCCGCTAATT TTTGTATTTT 1080

CATTAGAGGC GGGTTTACCA TATTTGTCAG GCTGGGTCTC ARACTCCTGA CCTCAGGTGA 1140

CCCACCTGCC TCAGCCTTCC ARAGTGCTGG GATTACAGGC GTGAGCCACC TCACCCAGCC 1200

GGCTARTTTG GAATAAAAAA TATGTAGCAA TGGGGGTCTG CTATGTTGCC CAGGCTGGTC 1260

TCARACTTCT GGCTTCAGTC ARTCCTTCCA ARTGAGCCAC ARCACCCAGC CAGTCACATT 1320

TTTTAAACAG TTACATCTTT ATTTTAGTAT ACTAGAAAGT AATACAATAA ACATGTCAAA 1380

C

(2) INFORMATION FOR SEQ ID NO:50:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2520 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: both

(D) TOPOLOGY: both

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

CCATTGTTAG GTTGTCTCTT ACCTGTTAAA ATCAGGAGCT GACAAGAAAT GCTTACCACA 60 AAAGGAGAAA TGCCAGTCTA GTTAACAGTC AAGGAGAAA ATCAGGAAGA TTATGTGGGT 120 GGAAGAAGTA GATGATGTGG CTGATGAGTG AGTGAGTGAG CAAGCCTCCG CCCAGCTGAA 180 GAAGGAGTCA GAACTGCCCT TTGTTCCCAA CTATTTGGCG AACCCCAGCC TTCCCTTTTA 240 TCTATACACC-CACAGCAGAG-GATTCAGCCC-AGATGCAGAA-TGGGGGCCCC-TCCACACCCC 300 CTGCATCACC CCCTGCAGAT GGCTCACCTC CATTGCTTCC CCCTGGGAAC CTCCCCTGTT 360 AGGGACCTTT CCCCGGGACC ACACCTCTTT GGCACTAGTT CAGAATGGTG ATGTGTCGGC 420 CCCTCTGCCA TACTAGAACA CCAGAAAGAC AAACGGGTGA TGTTTGTCAG CTACAGTGAG 480

TCTAGAGCCC	TCCTGTTTT(TTCTGTCCCG	TCCCAAGCC	A CCATGTCTCT	TCGAGCCTCA	54
AAATGGGACG	TATGCAGGAG	CAGCGCCCAG	ATTCCAAGC	ATTTTTCTTC	ACTGGAGCAT	600
TTCCATTTAX	TATGCAAGAG	CTGGTACTCA	AGGTGAGAA1	TCAGAACCCA	TCTCTTCGAG	660
· AAAATGATTT	CATTGAAATI	GAACTGGACC	GACAGAGCTO	: ACCTACCAAG	AGTTGCTCAG	720
AGTGTGTTGC	: TGTGAGCTGG	GTGTTAATCC	AGATCAAGTG	GAGAAGATCA	GAAAGTTACC	780
CANTACTCTG	TTAAGGAAGG	ACAAGGATGT	TGCTCGACTC	: AAGATTTCAG	GAGCTGGAAC	840
TGGTTCTGAT	GATAGTGAAA	ATAATTTTCT	GTTCAGAAAT	GĊTGCATCAC	ACTGACTGAA	900
AGGCCTTGCT	ATACAGGAGA	GCTTCAAAAC	TGACTTACTA	. ATGCAGCAGG	GACTTTTATA	960
CTGAGTATAT	GACAGTGTGC	ATCACCTCTG	GGCCAAGGAC	AAGCCATGAT	CTAAATGCCT	1020
CAGATGCCCG	GGCCAGTCTG	GTGCACTGCA	TAGTATATAC	GAACATCATT	CTGCCCAAGG	1080
TAGGAAGCCC	CATGACCCCC	AAGCAGTGGT	GTCCACTCTT	CCAAGCCTCT	TGGTGCACAA	1140
TARACCTTAT	TGCTTGAAGC	TTTGAACGAC	TGTGAGAATG	GTCTGGCGAG	GACGAGAACG	1200
TGGAATTATA	TGAGTGTCTT	TTGTATCCGA	GAATGTAGAG	AGTTCTCTGA	AGACGACGAC	1260
TGAGAGAGAG	CGGACGCTAT	TTCTAGCCAC	TCCTGTTGAC	AGTGCACCTG	AAGGGCTGGG	1320
ATGCGTTTTT	CTTGGTGTTG	CATGCTCACA	ACTCTGCTGA	CATTGGGAAC	TTATGAGAGA	1380
GGAAGACTCG	GGAAAGCACA	GATACTGGAC	AGATGGATTC	TCGTGTGGGG	AAAGCACAGA	1440
TACTGGACAG	ATGGTTCTAG	TGTGACTTGT	GACTGTGAGG	TTTCCTATAA	CATATTTATA	1500
AATGTTCATC	AGGTTCAAAA	GTCTATAAGA	ATACAGTTCG	AGACTGAATT	GCTTCGARAT	1560
ACTTCGATGT	-TGGGAACCAA-	-AAGAGCTTTC	CCTCCCTCAC	TITTTCCITT	GTAACACTCA	1620
TGACTGCTTC	TCTGTCTCGA	GTCATCTCTG	CATTAACTCC	CCTTCGTGGT	CACTAGAGGG	1680
CTCTCTGATG	CTTCTAAGAC	ACTGCTTTTT	ACATGCCACA	CCCACCGCGT	AGAGACAGGG	1740
TCTCACTATG	TGGCCCAGGC	TGGTCTCAAA	CITCTGGCCT	TAAGTGATCG	TCCTGTCCTT	1800

-140-

ccccc	CGGA	AGAAAGTCGT	GGGGATTACA	GGTGTGAGCC	ACCCGCCCAG	CCCCTCCCTT	1860
GIGITI	CAAC	CAATCGGAAG	GAATTTAAC	TAGATGTAGT	AACCTTTTT	TTCTTTGACT	1920
TCTARA	JAAA G	TTACAGTTTA	CTARTARAGT	TAAGTCTGGT	TCTGTCCTAG	AGGAAATAAA	1980
TTCACT	ATTA	ATTCATGTCT	TAAGTTACTT	GGGTTAAAAC	ACTITCAGCC	ACCCAGATTA	2040
AAATTA	GTGG	AGCAGTGGAG	CCCCTGGCTG	GGGAGATGGG	CCTCCAGAGG	AGCAGCTGCA	2100
GGCATG	TTCT	GGCTACACAG	AGGCAAGCAA	GGGACTGGTG	TCTCTGGTGA	GAGGTGGGTT	2160
TGATGT	ATCT	CTGTCCTATG	CTGGTCTCTC	TTCTCCTTTA	TARATCCTCC	TGTGGTCACT	2220
GACTAT	CGTA	TCGCAGTGAT	CAGACTGCAC	ATAGTACGGT	TAGGCTGAGC	TTAATGTCTT	2280
AATCAT	GTCA	TTCGAGAGAA	GACACGTTTT	GATTCATGCT	TTGTGTAATT	AATCAATCAA	2340
GGATTC	TTTT	TTTAGCTTTG	TTGACGTGTA	ATTCACCCCT	CCTCCTCCAC	TGCATATTTA	2400
AAGCAT	GTGT	TCACACTGTG	TGTATACATT	CACTGCGATT	TTTTCGTTTG	CTGCATTGCT	2460
rggacty	STTC	ATAACATCAC	AAGTATTATT	САААТААААТ	ATTAACTGAC	ССБАЛАЛАЛА	2520

(2) INFORMATION FOR SEQ ID NO:51:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 141 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

GAATTCCTGG	GCTCAAGTGA	TCCTCTCATG	TCAGTCTCCC	AAAGTGCTGG	_gatgacaggc	6(
TTGAGCCACC	ACACCAGGCC	CATCATCAGT	TTTTATATAA	AGAAAAAAA	ACCTTAAAAT	120
TGTTAGCAAA	ATACTATGAC	A				141

PCT/US95/17111

-141-

(2) INFORMATION FOR SEQ ID NO:52:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 151 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:	
GAACTECTGA CCTCAGGTGA TCCGCCCGCC TCAGCCTCCC AAAGTGCTGG GATTACAAGC	60
GTGCAGACCG CACCCAGACG ATTTTAATTC TTAACNTGCC ATCCTCTACC CAAGTACAGA	120
CCACTITAGT GTCCCTATCA AAGGGGAGAC A	151
(2) INFORMATION FOR SEQ ID NO:53:	
(2) INFORMATION FOR SEQ ID NO:53:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 43 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:	
NATICICCIG CCTCAGCCTC GTGAGCCGCT GGGATTACAG GCG	43
2) INFORMATION FOR SEQ ID NO:54:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 45 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

(D) TOPOLOGY: both

-142-

AAGCCAACTC AGACTCAGCC AACAGGTAAG TGGGCATTAC AGGAG	45
(2) INFORMATION FOR SEQ ID NO:55:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 143 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:	
CTCAGTTTTC ACTTTGATCT GGTAGATAGT TTTCGTTTCA GTTGGGGGAG AAGGATCTGT	60
TTGTAAGAAC GGAGTGACGG GATACCATAA AAATAGAGGT AATAACATAC ATTGGGACGT	120
GTAAATTTAT TITTATGGAA GTG	143
(2) INFORMATION FOR SEQ ID NO:56:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 157 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:	
CTCACAGTIT CCTTATCTTG GTGGTCGTAA GTTTTCGTCG AAACAGTTGA TCGTTATTTG	60
TGAGATTGTC GTATAGGGAG ACTAACAGGT AGTAACTTTT GTGACCGTCG TTAAAACTTT	120
ACTITITIT TICTITCITC TITTITCCTT CATAATG	157
•	

- (2) INFORMATION FOR SEQ ID NO:57:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 60 base pairs

PCT/US95/17111

-143-

(B)	TYPE:	nucleic	acid
(C)	STRANI	DEDNESS:	both

(D) TOPOLOGY: both

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

ACCACGCCCC GCTAATITIT GTATTTTTAG TAGAGACAGG GTTTCACCGT GTTGGCCAGG 60

(2) INFORMATION FOR SEO ID NO:58:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 60 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: both
- (D) TOPOLOGY: both
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

ACAACGCCCA GCTAATATTT GTATTTTTAG TAGAGATGGG GTTTCTCCAT GTTCATCAGG

(2) INFORMATION FOR SEQ ID NO:59:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 60 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: both
- (D) TOPOLOGY: both
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

CTGGTCTGAA ATTCCTGGGC TGAAGTGATC CTCCAGTCTT GGCCTCCCAA AGTGCTGGGA

60

- (2) INFORMATION FOR SEQ ID NO:60:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 60 base pairs
 - (B) TYPE: nucleic acid

-144-	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:	
CTGGTGTCGA ACTCCTGACC TCAGGTGATC CGCCCGCCTC AGCCTCCCAA AGTGCTGGGA	60
(2) INFORMATION FOR SEQ ID NO:61:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 26 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:	
AGACACATAT AGATTGAGAC AGAAAA	26
(2) INFORMATION FOR SEQ ID NO:62:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 30 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:	
AGTACAGACC ACTITAGTGT CCCTATCAAA	30
_(2)_INFORMATION_FOR_SEO_ID_NO:63:	

(2)--INFORMATION-FOR-SEQ_ID_NO:63:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 31 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: both
- (D) TOPOLOGY: both

PCT/US95/17111

-145-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:	
AGATCTCGCT CTGTCACCCA GGCTGAAGTG C	31
(2) INFORMATION FOR SEQ ID NO:64:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64: AGAGTITCAC TCTTGCTTGC CCAGGCTGGA GTGC	34

- (2) INFORMATION FOR SEQ ID NO:65:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 59 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

AGTGGCCCAA TCTCGGCTCA CTGCGAGCTC CACCTCCCGG GTTCACTTCA TTCTCCTGC

59

- (2) INFORMATION FOR SEQ ID NO:66:
 - (i) SEQUENCE CHARACTERISTICS:
 - ——(A)—LENGTH:—60_base_pairs_
 (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

PCT/US95/17111

-146-

(i) SEQUENCE CHARACTERISTICS:	
(2) INFORMATION FOR SEQ ID NO:69:	
TTTGTAG	67
CTCAGCCTCG TGAGCCGCTG GGATTACAGG CGCGCGCCAC AAGCGACTAA TATTT	GTATT 60
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:	
(D) TOPOLOGY: both	
(C) STRANDEDNESS: both	
(B) TYPE: nucleic acid	
(A) LENGTH: 67 base pairs	*
(i) SEQUENCE CHARACTERISTICS:	
(2) INFORMATION FOR SEQ ID NO:68:	
TTGTAG	66
CTCAGCCTCT GAGTAGCTGG GACTACAGGC GCCCACCACA AGCCGCTAAT TTTTC	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:	
(D) TOPOLOGY: both	
(C) STRANDEDNESS: both	
(B) TYPE: nucleic acid	
(A) LENGTH: 66 base pairs	
(i) SEQUENCE CHARACTERISTICS:	
(2) INFORMATION FOR SEQ ID NO:67:	
AATGGCACAA TCCTGGCTCA CTGCAACCTC CGCCCTCCCG AGCTCAAGAA CTTC	TCCTGC 60

(A) LENGTH: 76 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: both(D) TOPOLOGY: both

PCT/US95/17111

-147-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:	
ACCACGCCCC GCTAATTITT GTATTTTTAG TAGAGACAGG GTTTCACCGT GTTGGCCAGG	60
ATGCTCGATC TCCTGA	76
(2) INFORMATION FOR SEQ ID NO:70:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 78 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:	
ACAACGCCCA GCTAATATTT GTATTTTTAG TAGAGATGGG GTTTCTCCAT GTTCATCAGG	60
CTGGTGTCGA ACTCCTGA	78
(2) INFORMATION FOR SEQ ID NO:71:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 159 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:	
CCCCAAGCAG TGTTAATCCT GGCTACTGTG TGAGCTGACC TCAAGCACAG GTGAAGGCAG	60
AGAATCCATC CACCTGTTTC TGTTCTCCCT GCTTAGCTCC AGGGATGGAA CTGGGACTGG	120
GATAGAGGAA AGGTGAACTC CTCATTAAGG AAATGGATG	159
(2) INFORMATION FOR SEQ ID NO:72:	

WO 96/15272 PCT/US95/17111

-148-

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 170 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:	
. , .	
CCCTGTTCT TGGGTGGGTT TGGGTATATT CTGGTTGAGA TGATATCATT TACGGGGGAA	60
GCGCTTTGT GAAGTAGGCC TTATTTCTCT TGTCCTTTCG TACAGGGAGG ATTTGAAGTA	120
TAGAACGCT GTTACTCCGG TCTGAACTCA GTCACGTGGC TTTATCGTTG	170
2) INFORMATION FOR SEQ ID NO:73:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 52 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:	
RICCAAGCT ACGTACGCGT GCATGCACGT CATAGCTCTT CTATAGTGTC AC	52
2) INFORMATION FOR SEQ ID NO:74:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 53 base pairs	
(B) TYPB: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(x1) SEQUENCE DESCRIPTION: SEO ID NO:74:	

GATCCGAGCT CGGTACCAAG TTGATGCATA GCTTGAGTAT TCTATAGTGT CAC

-149-

(2) INFORMATION FOR SEQ ID NO:75:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 115 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:	
GTATGGGCCC GATAGCTTAT TTAGCCTTTA GAGCACACTG GCGGCCGTTA CTAGTGGATC	6
CGAGCTCGGT ACCAACTTGA TGCATAGCTT GAGTATTCTA TAGTGTCACC TAAAT	11
(2) INFORMATION FOR SEQ ID NO:76:	•
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 120 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both (D) TOPOLOGY: both	
(D) TOPOLOGI. BOCH	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:	
ATATAGACAA TATAACAATA TATTGTATAC TTTAGAGCAC ACTGGCAGCC GTTACTAGTG	60
GATCCGAGCT CGGTACCAAG TTGATGCATA GCTTGAGTAT TCTATAGTGT CACTAATAGT	120
(2) INFORMATION FOR SEQ ID NO:77:	
(1) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 117 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	

WO 96/15272 PCT/US95/17111

-150-

GATCAGACAT AGTATTGARA CCRATGARTA CATTATATAR AGTARAGGAR AGGAGAR	117
(2) INFORMATION FOR SEQ ID NO:78:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 137 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:	
CTTACTACCA GACAACCTTA GCCAAACCAT TTACCCAAAT AAAGTATAGG CGATAGAAAT	60
TGAAACCTGG CGCAATAGAT ATAGTACCGC AAGGAAAGAT GAAAAATTAT AACCAAGCAT	120
ARTATAGCAA GGACTAA	137
(2) INFORMATION FOR SEQ ID NO:79:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 198 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:	
(MI) DINGER DIDUCTION DIN IN NOTE IN NOTE IN	
CTATAAAGGT CGTTGTCAAC GATAAAGCAC GTGACTGAGT TCAGACCGGA GTAACAGCGT	60
TCTACTACTT CAAATCCTCC CTGCGAAAGG CAAGAGAAAT AAGGCCTACT TAAGCGCCTT	120
CCCCCGTAAA TGATATCATC TCAACCAGAA TATACCCAAA CCCCCCAAGA ACAGGGGAGG	180
AAAAGAAAAA AAAAAAAA	198
	-

- (2) INFORMATION FOR SEQ ID NO:80:
 - (i) SEQUENCE CHARACTERISTICS:

WO 96/15272	PCT/US95/1711
	FC1/US95/1711

-151-

(A) LENGTH: 200 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:	
CTATAGAGAT TGTTGATTTG CCTCTTAAGC AAGAGATTCA TTGCAGCTCA GCATGGCTCA	6
GACCAGCTCA TACTTCATGC TGATCTCCTG CCTGATGTTT CTGTCTCAGA GCCAAGGTAA	12
GATCTCTTTT CCAACTCTTT CTAGCCCTGA AGACTTCACT CTATCCCCAA GCATACGGGT	• •
and the control of the control of the country of th	18
CTACTTGAAA AAAAAAAAA	20
(2) INFORMATION FOR SEQ ID NO:81:	
(1)	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 82 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:	
CAGAAAACTA GCTACACAAT GCATTGGTCT ATCATGTTAA AACGTGCATT AGACACAAAT	60
ACARARACCA TGARACARGO CA	82
(2) INFORMATION FOR SEQ ID NO:82:	
(1) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 90 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
4.40	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:	
CAGAAAAATT GCCAAGCTAA ACTAATGGTC TATAAAAGCG TAATTTGCAT GTGTGGGCAT	60

-152-

ARACTACAGA GCTCATGCTA GAGTATGCAA	90
(2) INFORMATION FOR SEQ ID NO:83:	
· · · · · · · · · · · · · · · · · · ·	
(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 141 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	•
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:	
AATTGGGTAC CGGGCCCCCC CTAGAGGTCG ACGGTATCGA TAAGCTTGTA TCGAATTCCG	60
GACTTTGCTT TTGGTTTTCC TTTCCTGTGA AAAGGTTGGT TTTAAAGTGA GATACACTTT	. 120
TCCGTAGAAC AAGTGTTCTA T	141
(2) INFORMATION FOR SEQ ID NO:84:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 155 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:	
AAGTTGATTG CTTCAAATTT CTGCTACTAA CTTCAAGCTA TGGGAGTTTG GCAGTAGTCA	. 60
CTTGAGGATT TTTTTTCCAA TTCGTTTTCA TTTTTGTTGT TAAAGCTCGT ACTTCAGTGA	120
GACAGARAAA TTGCCRAGCT AAACTAATGG TCTAT	155

(2) INFORMATION FOR SEQ ID NO:85:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 232 base pairs
 - (B) TYPE: nucleic acid

PCT/US95/17111

-153-

(C)	STRANDEDNE	:SS:	both
(D)	TOPOLOGY:	both	ı

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

GAATTCCTGG	GCTCAAGTGA	TCCTCTCATG	TCAGTCTCCC	AAAGTGCTGG	GATGACAGGC	60
TTGAGCCACC	ACACCAGCCC	ATCATCAGTT	AAATATATT	GAAAAAAAA	CCTTAAAATT	120
GTTAGGCAAA	TAATGACAAA	TTGTAATATA	TATTCTTACA	TITCAGATTT	TTATTTTTTA	180
AACTGATAAG	AATTGATTAA	TAAATAAAT	TTAGTATTAA	TCTGTCTTTT	AA	232

(2) INFORMATION FOR SEQ ID NO:86:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 245 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: both
- (D) TOPOLOGY: both

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

AAATTCCTGG	GCTGAAGTGA	TCCTCCAGTC	TTGGCCTCCC	AAAGTGCTGG	GATTACAGGC	60
ATGAGCTACT	GAGCCTAGCC	ATTADTAATT	ATTITAGAGT	GATGGCTTGT	ACCTTCAAGC	120
aacatataga	GTTGAGACAG	AAAATTTCCA	TCGTCCCGAG	AAAACTGTGC	TGCATGGGCC	180
CCGTGTGCCC	TGTGAAGATC	GCCCTATTAA	CTATAAATGG	GCATTGCACA	TGGTTGCCAG	240
CITCA						245

(2) INFORMATION FOR SEQ ID NO:87:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 239 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: both
- (D) TOPOLOGY: both

260

-154-

(xi) SEQUENCE DESCRIPTION: SEQ I	D NO:87:
AACGTITCGA ACCTATCGTG AAGCCCGATT TTA	GAGTTAA TACGGGTGCT TCAAGGGAAC
GGGGCTATGA GAAGTTTTCT ACGGGGAGCA TGG	AAATTTT CTGTCTCAAT ATGTGCTTGA 12
AGGTACAACC GTATCTAAAA TTAATCATTA AGG	CTAGGCT CAGTAGCTCT GCCTGTAATC 18
CCAGCACTIT CGGGAGGCCA AGACTGGAGG ATC	ACTICAG CCCAGGAATT TCAGACGCC 23
(2) INFORMATION FOR SEQ ID NO:88:	•
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 260 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ II) NO:88:
FACTGTGTGA GCCTGACCTC AAGCACAGGA TTCC	CAGAAAT GGAAGGATGT GCCTTGTGAA 6
GACAAGTTCT CCTTTGTCTG CAAGTTCAAA AACT	PAGAGGC AGCTGGAAAA TACATGTCTA 12
GAACTGATCC AGCAATTACA ACGGAGTCAA AAAT	TTARACC GGACCATCTC TCCAACTCAA 180
TICAACCIEG ACACTETETT CTCTECTEAG TITT	SCCTTGT TAATCTTCAA TAGTTTTACC 24

(2) INFORMATION FOR SEQ ID NO:89:

TACCCCAGTC TTTGGAACCT

- ----(1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 149 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both

WO 96/15272 PCT/US95/17111

-155-

-137-	
	•
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:	
CTTGCTTGCC CAGGCTGGAG TGCAATGGCA CAATCCTGGC TCACTGCAAC CTCCCCCTCC	60
CGAGCTCAAG AACTTCTCCT GCCTCAGCCT CGTGAGCCGC TGGGATTACA GGCGCGCGCC	120
ACAAGCGACT AATATTYGTA TITTTGTAG	149
(2) INFORMATION FOR SEQ ID NO:90:	
(i) analysis and analysis and a	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 167 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:	
CTCGCTCTGT CACCCAGGCT GAAGTGCAGT GGCCCAATCT CGGCTCACTG CGAGCTCCAC	60
CTCCCGGGTT CACTTCATTC TCCTGCCTCA CTGCCTCAGC CTCTGAGTAG CTGGGACTAC	120
AGGCGCCCAC CACCACGTCC CCTGCTAATT TTTTGTATTT TTAGTAG	167
(2) INFORMATION FOR SEQ ID NO:91:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 84 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOFOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:	
CCATGTTCAT CAGGCTGGTG TCGAACTCCT GACCTCGTGA TCCGCCCGCC TCAGCCTCCC	60
AAAGTGCTGG GATTACAAGC GTGC	84
paratacian autivament alac	

(2) INFORMATION FOR SEQ ID NO:92:

-156-

(1) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 85 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:	
CCGTGTTGGC CAGGATGGTC TCGATCTCCT GACCTCGTGA TCCGCCCGCC TTGGCCACCC	60
AAAGAGTTTG GGATTACAGG CGTGC	85
(2) INFORMATION FOR SEQ ID NO:93:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 251 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
·	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:	
TGCAGCAATG GCAACAACGT CTGCAAACTA TTAACTGGCG AACTACTTAC TCTAGCTTCC	60
CGGCAACAAT TAATAGACTG GATGGAGGCG GATAAAGTTG CAGGACCACT TCTGCGCTCG	120
GCCCTTCCGG CTGGCTGGTT TATTGCTGAT AAATCTGGAG CCGGTCGAGC GTGGGTCTCG	180
CGTATCATTC GAGCACTGGG GCCAGATGGT AAGCCCTCCG TATCGTAGTT ATCTCACAGC	240
AGGGAGTCAG G	251
(2) INFORMATION FOR SEQ ID NO:94:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 242 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: both

(D) TOPOLOGY: both

PCT/US95/17111

-157-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:	
TGCAGGAGCG GGGAGGCACG ATGGCCGCTT TGGTCCGGAT CTTTGTGAGG AACCTTACTT	6
CTGTGGTGTG ACATAATTGG ACAAACTACC TACAGAGATT TAAAGCTCTA AGGAAATATA	12
ARATTITIAN GIGININNIG IGITARACTA CIGNITCIAN IIGITIGIGI ATTITAGAIT	18
CCAACCCTAT GGAACCTGAT GAATGGGAGC CAGTGGTGGA ATGCCTTTAA TGAGGAAACC	24
TG	24:
(2) INFORMATION FOR SEQ ID NO:95:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 208 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:	
TGCAGCAATC TITCTTATAT ACATGCTTAA TAGATAGCTA CTTGAAATAA CTTACACACG	60
TTTTAGAGTT GCTTGAAAAC TATCT ITCA AGACATAGTA ATTGAAACCA ATGAATACAT	120
TATATAAAGT AAAGGAAAGG AGAAGAGAGG AAAGGGAGGG	180
AGCGAGARAG GARAGGGRARA	208

- (2) INFORMATION FOR SEQ ID NO:96:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 152 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

WO 96/15272 PCT/US95/17111

-158-

CTCACTAAAG GGATCAAGGA ATAATTITGA ATTTCAAGTC TTACATTTAA TAAATACATT	6
CRIARGECTA TARCTACCAT ACGITGIGAT ITCTCTGATT ARTITARARA TARATTARARA	12
CCTGGAAGA ATTITACCAT TCTAGGAAGC CA	15
(2) INFORMATION FOR SEQ ID NO:97:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 338 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:	
ANTCTATCIT ATATACATGC TTANTAGATA GCTACTTAAA ATAACTTACA CACGTTTTAG	6
AGTTGCTTGA ARACTATCTG ATCAAGACAT AGTAATTGAA ACCAATGAAT ACATTATATA	120
AAGTAAAGGA AAGGAGAAGA GAGGAAAGGA GGGGAGGAGA AGCGAGAAAA	180
GGAAGGGAAG GGAGAAAAG GGGGAAAGGG AGGTAGAGAG AGAGAGAAAA AGTGCTGGTC	240
ATATAGTAAG TGTACATTTT AACTTTTTAA GAAACTACCC TACTCTATTC CAGAGTGATT	300
GTACATGTGC ATTITACTGC ATTATAGAGA TCATTTTC	338
(2) INFORMATION FOR SEQ ID NO:98:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 169 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
 (D) TOPOLOGY: both	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

W 96/15272 PCT/US95/17111

-159-

-107	
TCTGTGTGTG ACATAATTGG ACAAACTACC TACAGAGATT TAAACGTCTA AGGTAAATAT	120
AAAATTITTA GTGTATAGGT TAAACTACTG ATTCTAATGT TGTGTATTT	169
(2) INFORMATION FOR SEQ ID NO:99:	
(1) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 209 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both (D) TOPOLOGY: both	
(at) another programmer, CEO ID NO.99.	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:	
CCCCGGGCTG CAGCAATGGC AACAACGTCT GCAAACTATT AACTGGCGAA CTCATTCATC	60
TAGCTTCCCG GCAACAATTA ATGACTGGAT GGAGGCGGAT AAAGTTGCAG GACCACTTCT	120
CGCGTGGCCC TTCCGGCTGG CTGGTTTATT GCTGATAATT GAGCGTGCGA GTGGCTCGCG	180
TATCATTCGC GACATGGGCC AGTAGGTAC	209
(2) INFORMATION FOR SEQ ID NO:100:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 272 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both (D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:	
CTTGCCCTTC ATGGAGTCAT ACAGCCGATC AGCAAAATGC AGGGGCTTGT TCTGAATGCA	60
CIGAACCAGG ITCAGGAAAG CATTITCCAG GTCTCCTTTA ACCTCTTTCC TGATGCTTTC	120
CAACATGTCA TAAGGGCTGT AACTCTTGTA CCTATCAAAT ACTTTCTGGA GGTGGGGACA	180
CGCTCGCGTC GGTCATGATG CTGATCCACT TGGGAACATC AGTTCTTTCC TCTTCACTCC	240

-160-

AGCTGCATAG AGATCCGAGG ACTCTTGGTC AA	272
	•
(4)	
(2) INFORMATION FOR SEQ ID NO:101:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 278 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:	
ACGGCCCAGC TTCCTTCAAA ATGTCTACTG TTCACGAAAT CCTGTGCAAG CTCAGCTTGG	60
AGGGTGATCA CTCTACACCC CCAAGTGCAT ATGGGTCTGT CAAAGCCTAT ACTAACTTTG	120
ATGCTGAGCG GGATGCTTTG AACATTGAAA CAGCCATCAA GACCAAAGGT GTGGATGAGG	180
TCACCATTGT CAACATTITG ACCAACCGCA GCAATGACAC GAGACAGGAT ATTGCCTTCG	
TEACEATION CARCATTING ACCAACCGCA GCAATGACAC GAGACAGGAN ATTGCCTTCG	240
CCTACCAGAG AAGGACCAAA AAAGGAACTT GCATCACA	278
· · · · · · · · · · · · · · · · · · ·	276
(2) INFORMATION FOR SEQ ID NO:102:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 228 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:102:	
ACCIATICCA ARCONAGO ARCHARINE ACCIACOM ACCIACIONE ACCIACIONE	
AGCAATAGCA AAGGAAAGGA AACAATATIT AGCAAGGTTT ATTCTTCCTT TGTGTCAGCA	60
TTTCTGAGTG TGCACACAGG CCCAGTGATT CCATGTATTT TTGAGTGACC ACTGCCTCTG	120
	120
TCTGGCCCTT CCCCATAGAA CCGCCGCTGG TGGAGCGTGG GTCCCTGGTC TCCTACAAGT	180
	100
CCTGGGGCAT TGGAGCCCCA AGCAGTGTTA ATCCTGGCAC TGTGTNAG	226

(2) INFORMATION FOR SEQ ID NO:103:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 154 base pairs

-161-

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 246 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:	
AGCAATGGCA ACAACGTCTG CAAACTATTA ACTGGCGAAC TACTTACTCT TAGCTTCCGG	60
CAACAATTAA TAGACTGGAT GGAGGCGGAT AAAGTTGCAG GACCACTTCT GCGCTCGGCC	120
CITECGGCTG GCTGGTTTAT TGCTGATAAA TCTGGAGCCG GTCGAGCGTG GGTCTCGCGT	180
ATCATTCGAG NCTGGGGCCA GATGGTAAGC CCTCCGTATC GTAGTTATCT CACAGCAGGG	240
AGTCAG	246
(2) INFORMATION FOR SEQ ID NO:104:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 86 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
• • • • • • • • • • • • • • • • • • •	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:	
CTGGCACTGG AGCAGTGGGT CCCTGGTCTC CTACAAGTCC TGGGGCATTG GAGCCCCAAG	60
CAGTGTTAAT CCTGGCACTG TGTGAG	86_
(2) INFORMATION FOR SEQ ID NO:105:	

PCT/US95/17111

-162-

(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:	
10001	
CTGGAGCCGG TCGAGCGTGG GTCTCGCGTA TCATTCGAGN CTGGGGCCAG ATGGTAAGCC	6
LIBERSCEED TEARSCOTOG OFFICIALIST CONTROL CONT	
CTCCGTATCG TAGTTATCTC ACAGCCGTAT CATTCGAGNC TGGGGCCAGA TGGTAAGCCC	12
CTCCGTATCG TAGTTATCTC ACAGCCGTAT CATTCGAGAC TGGGGCCTAA TOGTAGCCC	
	15
TCCGTATCGT AGTTATCTCA CAGCAGGGAG TCAG	13
(2) INFORMATION FOR SEQ ID NO:106:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 221 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:	
AGGAGACTTG TGGTAAAAAT CTGCTGCTGT ACTGCTCATT TGGGAACCTT AGTATACTAA	6
ATARTATAT ATATCAACAA CTARTGGTCA GCCAATGCTA TGCTGGATAT GAGGGTCCTG	12
GGCCACAAAG ACAAAAAAC AGGAACCACT TTTTAAGTGA GATACTTTGG GTCTCTGTCA	18
ARTTCATARC ACTITATITCT TGGTGGARTA CAGTTAATGA G	22
į	
(2) INFORMATION FOR SEO ID NO:107:	
(%) THEOLOGYTICAL ROK SEG IN MOSTALS	
(i) CHATTANAN AND DECEMBER AND	

(A) LENGTH: 231 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: both(D) TOPOLOGY: both

WO 96/15272 PCT/US95/17111

-163-

·	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:	
AGGAGCGGGG AGGCACGATG GCCGCTTTGG TCCGGATCTT TGTGAGGAAC CTTACTTCTG	60
TGGTGTGACA TAATTGGACA AACTACCTAC AGAGATTTAA AGCTCTAAGG AAATATAAAA	120
TTTTTAAGTG TATAATGTGT TAAACTACTG ATTCTAATTG TTTGTGTATT TTAGATTCCA	180
ACCCTATGGA ACCTGATGAA TGGGAGCCAG TGGTGGAATG CCTTTAATGA G	231
(2) INFORMATION FOR SEQ ID NO:108:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 102 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:	
PARATCTGGA GCCGGTCGAG CGTGGGTCTC GCGTATCATT CGAGCACTGG GGCCAGATGG	60
CAAGCCCTCC GTATCGTAGT TATCTCACAG CAGGGAGTCA GG	102
2) INFORMATION FOR SEQ ID NO:109:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 110 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:109:	
AGAACCGCC GCTGGCACTG GAGCAGTGGG TCCCTGGTCT CCTACAAGTC CTGGGGCATT	60
GAGCCCCAA GCAGTGTTAA TCCTGGCTAC TGTGTGAGCC TGACCTCAAG	110

(2) INFORMATION FOR SEQ ID NO:110:

PCT/US95/17111

-164-

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 85 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:	
ATAGATATCT ACTITATICG ATTTAAATTC TGTTTAGTAT TTTATTATAT TTTGTTAATC	60
CATTTGTCCC AATTCATATA CTTAT	85
(2) INFORMATION FOR SEQ ID NO:111:	
(2) INFORMATION FOR SEQ ID NO:III:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 95 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:	
ATAGATAGCT ACTTARARTA ACTTACACAC TGTTTTAGAG TGCTTGAAAA CTATCTGATC	60
AGACATAGTA ATTGAAACCA ATGAATACAT TATAT	95
(2) INFORMATION FOR SEQ ID NO:112:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 90 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:	
GAAGGATCTG TTTGTAAGAA CGGAGCGGGA TACCATAAAA ATAGAGGTAA TAACATACAT	60
TGGGACGTGT AAATTTATTT TTATNNAANT	90

-165-

(2) INFORMATION FOR SEQ ID NO:113:	
(i) SEQUENCE CHARACTERISTICS:	
' (A) LENGTH: 94 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:	
GAAGGATCIT ACCATTITAA GAAAGGTCCA AAATTAAATA AAAATTTAAT TAGTCTCTTT	60
AGTGTTGCAT ACCATCAATA TCGGAATACT AAAT	94
(2) INFORMATION FOR SEQ ID NO:114:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 200 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:	
ACCTGGTGCT GTGCTCACCC AGGCCGAGGG TGCCTTTGTG GCCTCACTGA TTAAGGAGAG	60
TGGCATGATG ACTTCAATGT CTGGATTGGC CTCCATGACC CCAAAAAGAA CCGCCGCTGG	120
GGAGCGTGGG TCCCTGGTCT CCTACAAGTC CTGGGGCATT GGAGCCCCAA GCAGTGTTAA	180
TCCTGGCTAC TGTGTGAGCC	200
(2) INFORMATION FOR SEQ ID NO:115:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 218 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: both(D) TOPOLOGY: both

WO 96/15272 PCT/US95/17111

-166-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:	
AACTGGCGAA CTACTTACTC TAGCTTCCGG CAACAATTAA TAGACTGGAT GGAGGCGGAT	60
AAAGTTGCAG GACCACTTCT GCGCTCGGCC CTTCCGGCTG GCTGGTTTAT TGCTGATAAA	120
TCTGGAGCCG GTGAGCGTGG GTCTCGCGTA TCATTGCAGC ACTGGGGCCA GATGGTAAGC	180
CCTCCGTATC GTGGTTATCT ACACGACGGG GAGTACGC	218
(2) INFORMATION FOR SEQ ID NO:116:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 146 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:	
AGGCCCATCA TCAGTTTTTA TATAAAGAAA AAAAAACCTT AAAATTGTTA GGCAAATACT	60
ATGACAAATT GTAATATATA TTCTTACATT TCAGATTTTT ATTTTTTAAA CTGTATAGAA	120
TTGATTAATA AATAAAATTT AGTATT	146
(2) INFORMATION FOR SEQ ID NO:117:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 155 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both	

AGGCACGATG GCCGCTTTGG TCCGGATCTT TGTGAAGGAA CCTTACTTCT GTGTGTGACA 60
TAATTGGACA AACTACCTAC AGAGATTTAA ACGTCTAAGG TAAATATAAA ATTTTTAGTG 120

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:

PCT/US95/17111

-167-

TATAGGITAA ACTACIGATI CTAATGITGI GTATI	15
(2) DNFORMATION FOR SEQ ID NO:118:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 102 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:	
TARATCTGGA GCCGGTGAGC GTGGGTCTCG CGTATCATTG CAGCACTGGG GCCAGATGGT	60
AAGCCCTCCG TATĆGTGGTT ATCTACACGA CGGGGAGTAC GG	102
(2) INFORMATION FOR SEQ ID NO:119:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 116 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: both	
(D) TOPOLOGY: both	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:	
TAGARCCGCC GCTGGCACTG GAGCAGTGGG TCCCTGGTCT CCTACAAGTC CTGGGGCATT	60
GEAGCCCCAA GCAGTGTTAA TCCTGGCTAC TGTGTGAGCC TGACCTCAAG CACAGG	116
(2) INFORMATION FOR SEQ ID NO:120:	
	

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1418 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: both
- (D) TOPOLOGY: both

(ix) FEATURE:

-168-

	(A) NAME/REY: CDS (B) LOCATION: 141418															
	•															
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:																
TTT	TTTTTTTTTT GAG ATG GAG TTT TCG CTC TTG TTG CCC AGG CTG GAG TG Met Glu Phe Ser Leu Leu Pro Arg Leu Glu Cyr															4
				1	GIU	rne (SEL	5	Deu	Deu	PLU .	ALY .	10	31 u	Cyb	
AAT	GGC	GCA	ATC	TCA	GCT	CAC	CGC	AAC	CTC	CGC	CTC	CCG	GGT	TCA	AGC	. 97
Asn	Gly	Ala 15	Ile	Ser	Ala	His	Arg 20	Asn	Leu	Arg	Leu	Pro 25	Gly	Ser	Ser	
GAT	TCT	CCT	GCC	TCA	GCC	TCC	CCA	GTA	GGC	TGG	GAT	TAC	AGG	CAT	GTG	149
Asp	Ser 30	Pro	Ala	Ser	Ala	Ser 35	Pro	Val	Gly	Trp	Asp 40	Tyr	Arg	His	Val	
c » c	CAC	com	CCC	~~~ N	N T-T	شاملمة	TNT	- Talak	بلملمك	ጥጥል	СТА	GAG	ATC	GAG	TTT	193
					Ile											1,7,3
45					50					55					60	
					GCT											241
Leu	H1S	Val	GIÀ	61n 65	Ala	GIÀ	Leu	GIU	70	Arg	Pro	GIN	met	75	reg	
															ccc	289
Pro	Ser	Arg	Pro 80	Pro	Lys	Val	Leu	Asp 85	Thr	Gly	Leu	Ser	Thr 90	Met	Pro	
GGC	CTC	TGC	CTG	GCT	aat	TTT	TGT	GGT	AGA	AAC	AGG	GTT	TCA	CTG	ATG	337
Gly	Leu	Cys 95	Leu	Ala	Asn	Phe	_	Gly	Arg	Asn	Arg	Val 105	Ser	Leu	Met	
							100									
					-CCT Pro										_CTC_ Leu	3.85
-	110					115		-4-			120	•				
															ATT	433
Pro 125	Lys	Сув	Trp	Asp	Tyr 130	Arg	Arg	Ala	Ala	Val 135	Pro	Gly	Leu	Phe	11e	
		_														

-169-

TTA	111	111	TTA	AGA	CAC	AGG	TGT	CCC	ACT	CII	ACC	CAG	GAT	GAA	GTG	481
Leu	Phe	Phe	Leu	Arg	His	Arg	Сув	Pro	Thr	Leu	Thr	Gln	Asp	Glu	Val	
				145					150					155		
	•															
		TGT														529
Gln	Trp	Сув	Asp	His	Ser	Ser	Leu	Gln	Pro	Ser	Thr	Leu	Arg	Ser	Ser	
			160					165					170			
		CIG														577
Ile	Leu	Leu	Pro	Gln	Pro	Pro		Val	Ala	Gly	Thr		Asp	Met	His	
		175				•	160					185				
		ACC														625
Hls		Thr	Trp	Leu	116		TTE	Pne	116	Pne		Pne	rea	Arg	GIN	
	190					195					200					
אבטא	بابيت	AAC		CTC	D.C.C	CNG	مس	CCA	GTG	CNG	ጥርር	CGC	ה ממ	سست	GGC	673
		Asn					-	_	_	_					_	073
205	De u	7211	SEI	141	210	G111	~	G ₂ ,	-	215		9			220	
TCA	CTG	CAA	CCT	CTG	CCT	CCC	GGG	TTC	AAG	TTA	TTC	TCC	TGC	ccc	AGC	721
		Gln														
				225			•		230				•	235		
CTC	CTG	AGT	AGC	TGG	GAC	TAC	AGG	CGC	CCA	CCA	CGC	CTA	GCT	AAT	TTT	769
Leu	Leu	Ser	Ser	Trp	Asp	Tyr	Arg	Arg	Pro	Pro	Arg	Leu	Ala	Asn	Phe	
			240					245					250			
TIT	GTA	TTT	TTA	GTA	GAG	ATG	GGG	TTT	CAC	CAT	GTT	CGC	CAG	GTT	GAT	817
Phe	Val	Phe	Leu	Val	Glu	Met	Gly	Phe	His	His	Val	Arg	Gln	Val	Asp	
		255					260					265				
		TCT														865
Ala		Ser	Leu	Asp	Leu	Val	Ile	Cys	Leu	Pro	Arg	Pro	Pro	Lys	Val	
	270					275					280					
	-															
															TTT	313
	GIY	Leu	GID	_		TAF	PIO	THE	ALE	_	Pro	TTE	PAG	ASI		
285					290					295					300	
L(ži	والملمة	TTT	GDA.	ATYZ	GDB	ىتىكى	ርኔሮ	طمك	ىلحلىت	אכיכ	CNG	الاست	CCF	CTC	CAA	961
		Phe				_										,,,
-,, -		- 46	44 4	305	JIU	Set	4115	JEL	310	* HTE	2111	~~a	y	315	3211	
		,		505					4							

-170-

TGG CCA AAT CTC GGC TCA CTG CAA CCT CTG CCT CCC GGG CTC AAG CGA 1009
Trp Pro Asn Leu Gly Ser Leu Gln Pro Leu Pro Pro Gly Leu Lys Arg
320 325 330

TTC TCC TGT CTC AGC CTC CCA AGC AGC TGG GAT TAC GGG CAC CTG CAC 1057

Phe Ser Cys Leu Ser Leu Pro Ser Ser Trp Asp Tyr Gly His Leu His

335

340

345

CAC ACC CCG CTA ATT TIT GTA TIT TCA TTA GAG GCG GGG TIT CAC CAT 1105 His Thr Pro Leu Ile Phe Val Phe Ser Leu Glu Ala Gly Phe His His 350 355 360

ATT TGT CAG GCT GGT CTC AAA CTC CTG ACC TCA GGT GAC CCA CCT GCC 1153

Ile Cys Gln Ala Gly Leu Lys Leu Leu Thr Ser Gly Asp Pro Pro Ala

365 370 375 380

TCA GCC TTC CAA AGT GCT GGG ATT ACA GGC GTG ACG CCT CAC CCA GCC 1201 Ser Ala Phe Gln Ser Ala Gly Ile Thr Gly Val Thr Pro His Pro Ala 385 390 395

GGC TAA TTT AGA TAA AAA AAT ATG TAG CAA TGG GGG GTC TTG CTA TGT 1249 Gly

TGC CCA GGC TGG TCT CAA ACT TCT GGC TTC ATG CAA TCC TTC CAA ATG 1297

AGC CAC AAC ACC CAG CCA GTC ACA TTT TTA AAC AGT TAC ATC TTT ATT 1345

TTA GTA TAC TAG AAA GTG ATA CGA TAA CAT GGC GGA ACC TGC AAA TTC 1393

GAG TAG TAC AGA GTC TTT TAT AAC T

1418

(2) INFORMATION FOR SEQ ID NO:121:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 402 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:

-171-

	Glu	Phe	ser			Leu	Pro	Arg			Сув	Asn	Gly		
1				5					10					15	
Ser	Ala	His	Arg 20	Asn	Leu	Arg	Leu	Pro 25	_	Ser	Ser	Asp	Ser 30	Pro	Ala
Ser	Ala	Ser 35	Pro	Val	Gly	Trp	Asp 40	Tyr	Arg	His	Val	H18 45	His	Ala	Arg
Leu	Ile 50	Leu	Tyr	Phe	Phe	Leu 55	Val	Glu	Met	Glu	Phe 60	Leu	His	Val	Gly
Gln 65		Gly	Leu	Glu	Leu 70	Arg	Pro	Gln	Met	Ile 75	Leu	Pro	Ser	Arg	Pro 80
Pro	Lys	Val	Leu	Asp 85	Thr	Gly	Leu	Ser	Thr 90	Met	Pro	Gly	Leu	Сув 95	Leu
Ala	Asn	Phe	Cys 100	Gly	Arg	Asn	Arg	Val 105	Ser	Leu	Met	Cys	Pro 110	Ser	Trp
Ser	Pro	Glu 115	Leu	Lys	Gln	Ser	Thr 120	Суз	Leu	Ser	Leu	Pro 125	Lys	Cys	Trp
_	Tyr 130	Arg	Arg	Ala	Ala	Val 135	Pro	Gly	Leu	Phe	Ile 140	Leu	Phe	Phe	Leu
Arg 145	His	Arg	Cys	Pro	Thr 150	Leu	Thr	Gln	qaA	Glu 155	Val	Gln	Trp	Сув	Asp 160
His	Ser	Ser	Leu	Gln 165	Pro	Ser	Thr	Leu	Arg 170	Ser	Ser	Ile	Leu	Leu 175	Pro
Gln	Pro	Pro	Lys 180	Val	Ala	Gly	Thr	Lys 185	qaA	Met	His	His	Tyr 190	Thr	Trp
Leu -	Ile	Phe 195	Ile	Phe ⁻	Ile	Phe	As n 200	Phe	Leu	Arg	Gln	Ser 205	Leu-	Asn	Ser
	Thr 210	Gln	Ala	Gly		Gln 215	Trp	Arg	Asn	Leu	Gly 220	Ser	Leu	Gln	Pro

Leu 225	Pro	Pro	Gly	Phe	Lys 230	Leu	Phe	Ser	Cys	Pro 235	Ser	Leu	Leu	Ser	Ser 240
Trp	Asp •	Tyr	Arg	Arg 245	Pro	·Pro	Arg	Leu	Ala 250	Asn	Phe	Phe	Val	Phe 255	Leu
Val	Glu	Met	Gly 260	Phe	His	His	Val	Arg 265	Gln	Val	Asp	Ala	Arg 270	Ser	Leu
Asp	Leu	Val 275	Ile	Cys	Leu	Pro	Arg 280	Pro	Pro	Lys	Val	Leu 285	Gly	Leu	Gln
Asp	Val 290	Thr	Pro	Thr	Ala	Arg 295	Pro	Ile	Phe	Asn	Phe 300	Cys	Leu	Phe	Glu
Met 305	Glu	Ser	His	Ser	Val 310	Thr	Gln	Ala	Gly	Val 315	Gln	Trp	Pro	Asn	Leu 320
Gly	Ser	Leu	Gln	Pro 325	Leu	Pro	Pro	Gly	Leu 330	Lys	Arg	Phe	Ser	Суs 335	Leu
Ser	Leu	Pro	Ser 340	Ser	Trp	Asp	Tyr	Gly 345	His	Leu	His	His	Thr 350	Pro	Leu
Ile	Phe	Val 355	Phe	Ser	Leu	Glu	Ala 360	Gly	Phe	His	His	Ile 365	Cys	Gln	Ala
Gly	Leu 370	Lys	Leu	Leu	Thr	Ser 375	Gly	Asp	Pro	Pro	Ala 380	Ser	Ala	Phe	Gln
Ser 390	Ala	Gly	Ile	Thr	Gly 395	Val	Thr	Pro	His	Pro 400	Ala	Gly			

What Is Claimed Is:

- 1. A method for detecting the presence of Neural Thread Protein (NTP) having a molecular weight of about 8 kDa, about 14 kDa, about 17 kDa, about 21 kDa, about 26 kDa or about 42 kDa, in a human subject, said method comprising:
- (a) contacting a biological sample from said human subject that is suspected of containing said NTP with at least one molecule capable of binding to said protein; and
 - (b) detecting any of said molecule bound to said protein.
- 2. The method of claim 1, wherein said molecule is selected from the group consisting of:
 - (a) an antibody substantially free of natural impurities;
 - (b) a monoclonal antibody; and
 - (c) a binding fragment of (a) or (b).
- 3. The method of claim 1, wherein the detecting of any of said molecule bound to said protein is performed by in situ imaging.
- 4. The method of claim 1, wherein the detecting of any of said molecule bound to said protein is performed by in vitro imaging.
- 5. The method of claim 1, wherein said molecule is administered to said human subject.
- 6. The method of claim 1, wherein said molecule is bound to said protein *in vivo*.

- 7. A method of diagnosing the presence of Alzheimer's Disease in a human subject suspected of having Alzheimer's Disease which comprises:
- (a) incubating a biological sample from said subject which is suspected of containing NTP having a molecular weight of about 8 kDa, about 14 kDa, about 17 kDa, about 21 kDa, about 26 kDa or about 42 kDa, in the presence of at least one binding molecule capable of identifying said NTP; and
- (b) detecting said binding molecule which is bound in said sample, wherein said detection indicates that said subject has Alzheimer's Disease.
- 8. The diagnostic method of claim 7, wherein said detection is by immunometric assay.
- 9. The diagnostic method of claim 8, wherein said immunometric assay is a monoclonal antibody-based immunometric assay.
- 10. The diagnostic method of claim 7, wherein said method comprises:
- (a) incubating said biological sample with two different NTP monoclonal antibodies bound to a solid phase support; and
- (b) detecting NTP bound to said monoclonal antibodies with a third different detectably labeled NTP monoclonal antibody in solution.
- 11. The diagnostic method of claim 7, wherein said incubating step further includes adding a known quantity of labeled Neural Thread Protein whereby a competitive immunoassay is established.
- 12. The diagnostic method of claim 7, wherein said detection is by immuno-polymerase chain reaction.

- 13. A method of diagnosing the presence of neuroectodermal tumors in a human subject suspected of having a neuroectodermal tumor which comprises:
- (a) incubating a biological sample from said subject which is suspected of containing NTP having a molecular weight of about 8 kDa, about 14 kDa, about 17 kDa, about 21 kDa, about 26 kDa or about 42 kDa, in the presence of at least one binding molecule capable of identifying said NTP; and
- (b) detecting said binding molecule which is bound in said sample, wherein said detection indicates that said subject has a neuroectodermal tumor.
- 14. The diagnostic method of claim 13, wherein said detection is by an immunometric assay.
- 15. The diagnostic method of claim 14, wherein said immunometric assay is a monoclonal antibody-based immunometric assay.
- 16. The diagnostic method of claim 13, wherein said method comprises:
- (a) incubating said biological sample with two different NTP monoclonal antibodies bound to a solid phase support; and
- (b) detecting NTP bound to said monoclonal antibodies with a third different detectably labeled NTP monoclonal antibody in solution.
- 17. The diagnostic method of claim 13, wherein said incubating step further includes adding a known quantity of the corresponding labeled NTP whereby a competitive immunoassay is established.
- 18. The diagnostic method of claim 13, wherein said detection is by immuno-polymerase chain reaction.

- 19. A method of diagnosing the presence of a malignant astrocytoma in a human subject suspected of having a malignant astrocytoma which comprises:
- (a) incubating a biological sample from said subject which is suspected of containing NTP having a molecular weight of about 8 kDa, about 14 kDa, about 17 kDa, about 21 kDa, about 26 kDa or about 42 kDa, in the presence of at least one binding molecule capable of identifying said NTP; and
- (b) detecting said binding molecule which is bound in said sample, wherein said detection indicates that said subject has a malignant astrocytoma.
- 20. A method of diagnosing the presence of a glioblastoma in a human subject suspected of having glioblastomas which comprises:
- (a) incubating a biological sample from said subject suspected of containing NTP having a molecular weight of about 8 kDa, about 14 kDa, about 17 kDa, about 21 kDa, about 26 kDa or about 42 kDa, in the presence of at least one binding molecule capable of identifying said NTP; and
- (b) detecting said binding molecule which is bound in said sample, wherein said detection indicates that said subject suffers from a glioblastoma.
- 21. A Neural Thread Protein (NTP) substantially free of any natural impurities and having a molecular weight of about 42 kDa, 26 kDa, 21 kDa, 17 kDa, 14 kDa, or 8 kDa.
- 22. The NTP according to claim 21, wherein the protein comprises the amino acid sequence set forth in SEQ ID NO:121.
- 23. An isolated nucleic acid molecule coding for the NTP according to Claim 21.

- 24. The nucleic acid molecule according to claim 23, wherein the molecule comprises the nucleic acid sequence set forth in SEQ ID NO:120 which encodes the amino acid sequence set forth in SEQ ID NO:121.
- 25. The nucleic acid molecule according to claim 23, wherein the molecule encodes the amino acid sequence set forth in SEQ ID NO:121.
 - 26. The nucleic acid molecule of claim 23 which is a plasmid.
- 27. An expression vector comprising the nucleic acid molecule of claim 23.
 - 28. A host cell transformed with the plasmid of claim 26.
- 29. A method of using the plasmid of claim 26 to prepare an NTP, said method comprising:
 - (a) introducing said plasmid into a host cell to produce a recombinant host cell;
 - (b) culturing said recombinant host cell; and
 - (c) isolating said NTP from said recombinant host cell.
- 30. A nucleic acid probe for the detection of the presence of NTP in a DNA sample from an individual comprising a nucleic acid molecule sufficient to specifically detect under stringent hybridization conditions the presence of the molecule according to claim 23 in said sample, wherein said probe is nonhomologous to a PTP nucleic acid sequence.
- 31. The probe according to claim 30, wherein said probe is a 15-to 30-mer antisense oligonucleotide which is complementary to an NTP nucleic acid sequence and which is nonhomologous to a PTP nucleic acid sequence.

WO 96/15272 PCT/US95/17111

- 178 -

- 32. A method of detecting the presence of a genetic sequence coding for NTP having a molecular weight of about 8 kDa, about 14 kDa, about 17 kDa, about 21 kDa, about 26 kDa or about 42 kDa, in a sample, which comprises:
- (a) contacting said sample with the probe of claim 30 under conditions of hybridization; and
- (b) detecting the formation of a hybrid of said probe and said sequence.
- 33. A method of producing an NTP having a molecular weight of about 8 kDa, about 14 kDa, about 17 kDa, about 21 kDa, about 26 kDa or about 42 kDa, said method comprising:
 - (a) culturing a recombinant host comprising a human gene coding for said NTP; and
 - (b) isolating said NTP from said host.
 - 34. The method of claim 33, wherein said host is E. coli.
- 35. The method of claim 33, wherein said gene is contained by a vector.
- 36. A substantially pure NTP having a molecular weight of about 42 kDa, about 26 kDa, about 21 kDa, about 17 kDa, about 14 kDa, or about 8 kDa obtained by the process of claim 33.
- 37. A pharmaceutical composition comprising the probe according to claim 31 and a pharmaceutically acceptable carrier.
- 38. A ribozyme comprising a target sequence which is complementary to an NTP sequence and nonhomologous to a PTP nucleic acid sequence.

- 39. A nucleic acid molecule which codes for the ribozyme of claim 38.
- 40. A pharmaceutical composition comprising the NTP ribozyme of claim 38 and a pharmaceutically acceptable carrier.
- 41. A method for inhibiting the expression of an NTP in a patient, said method comprising administering to said patient an effective amount of the antisense oligonucleotide of claim 31.
- 42. A method for inhibiting the expression of NTP in a patient, said method comprising administering to said patient an effective amount of the ribozyme of claim 38.
- 43. A method for inhibiting the expression of an NTP in a patient, said method comprising administering to said patient an effective amount of the DNA molecule of claim 39.
- 44. An oligonucleotide comprising the sequence 3'X5'-L-5'X3', wherein X comprises an NTP nucleic acid sequence which is nonhomologous to the PTP nucleic acid sequence, and wherein L represents an oligonucleotide linkage.
- 45. An oligonucleotide comprising the sequence 5'X3'-L-3'X5', wherein X comprises an NTP nucleic acid sequence which is nonhomologous to the PTP nucleic acid sequence, and wherein L represents an oligonucleotide linkage.
- 46. A method to treat diseases or conditions mediated by the presence of an NTP having a molecular weight of about 8 kDa, 14 kDa, 17 kDa, about 21 kDa, about 26 kDa or about 42 kDa, which method comprises

administering to a patient in need of such treatment an effective amount of the oligonucleotide of claims 44 or 45, or a pharmaceutical composition thereof.

- 47. A ribonucleotide NTP external guide nucleic acid comprising:
- (a) a 10-15 nucleotide sequence which is complementary to an NTP nucleic acid sequence and which is nonhomologous to the PTP nucleic acid sequence; and
 - (b) a 3'-NCCA nucleotide sequence, wherein N is a purine.
- 48. A method to treat diseases or conditions mediated by the presence of an NTP having a molecular weight of about 8 kDa, about 14 kDa, about 17 kDa, about 21 kDa, about 26 kDa or about 42 kDa, which method comprises administering to a patient in need of such treatment an effective amount of the ribonucleotide NTP external guide nucleic acid according to claim 47, or a pharmaceutical composition thereof.
 - 49. A virion comprising the expression vector of claim 27.
- 50. A method to treat diseases or conditions mediated by the abnormally low level of expression of an NTP having a molecular weight of about 8 kDa, 14 kDa, 17 kDa, about 21 kDa, about 26 kDa or about 42 kDa, which method comprises administering to a patient in need of such treatment an effective amount of the virion of claim 49.

- 51. A method of differentiating between sporadic and familial Alzheimer's Disease in a human subject, said method comprising:
 - (a) obtaining a biological sample from said human subject who is suspected of having Alzheimer's Disease;
 - (b) purifying DNA from said biological sample; and
 - (c) contacting said DNA with the probe of claim 30 under conditions of hybridization;

wherein familial Alzheimer's Disease is indicated by the detection of a hybrid of said probe and said DNA, and wherein sporadic Alzheimer's Disease is indicated by the absence of detection of hybridization.

- 52. An antibody having binding affinity to the NTP of claim 21 but not to a PTP.
- 53. A hybridoma which produces the monoclonal antibody according to claim 52.

FIG.5B

FIG.5E

FIG. 6

FIG.8A

FIG. 8B

FIG.8C

FIG. 8D

FIG.8E

FIG.8F

1-90 T7 SEQUENCE

Sequence Range: 1 to 1442

COCTG COCCC ACCCT GCCTC TOCAA ACCCT GTGCG GTCCT GCCAG GAAGC CCCGC CCCTG	_
GAGCA GGTTT TOGTF CTGCT TCAGC AATAA ATAAG GGTGA CCACA GGGAC TTTGC TTTTG	60
GTITIC CITIC CTGTG AAAAG GTTGG TTTTA AAGTG AGATA CACTT TTCCG TAGAA CAAGT	120
GITCE ATCIT TAAAA ACCCA AATTC CACCA COOTO CATTA CACIT ITCCG TAGAA CAAGT	180
GITCT ATCIT TAAAA ACCCA AATTG CAGCA CCGTG GATTA CIGGT CTCAG AACAA CTCAT	240
TGCGC ATCAG ATTIG ACTOT CIGAT TITCT GTCTA TIGGC CAAAT TGCCC TTTAA CTGCA	300
CCTGA ATCCT TIGTG TACTG ATGCC TTIGA GCTGG GCACC TIGGG AGAGT GTTGT GTTGC	360
TOTAL MODE ICTIC CITIC CELLS CIANT TAPAS TETET CETES COMES AND CORRE	420
SOUTH WITH WITH LIGHT LACT TIGHT LIGHT COURSE TAKEN ALTON	480
THE TACAL TICH ACCUMENTS OF THE COLOR OF THE	540
STORY CHANGE COULD CALLAR GLARA GAILA ACACT TICTL TITTL CTARA CTTO.	
TOTAL TITLE CICAL GLUIA AGACA LIGITA CICCO AAACC ATTCA ACTTO ACTTO	600
THE POTT OF THE PARTY AND THE PARTY OF THE P	660
TOUGO GOALL AUALL ALIGE CICIC GEACH META MONTE COTOT AGAIN -	720
TOTAL TOTAL DUMBA CITAL ATTAL PART TATTE AAALA AASTA ABBON	780
TAACA GOCCT TOCCC TEGAC GGTGC GCCAT GAGGG CCTCA TGTTA CCCAT TGCCT TTTCT 9	340
TICTG TGGAT CCACT ATCIT CCTCC CCTT TILCS CLOCK IGITA CGCAT TGCCT TTTCT 9	100
TICTG TGGAT CCAGT ATCTI CCTCG GCTTT TTAGG GAGCA GGAAA AATGC GTCTG AGAGC 9	60
AACTC TITIT AAAAA CCTGC CCTGT TGTAT ATAAC TGTGT CTGTT TCACC GTGTG ACCTC 10	20
THE TOTAL COUNTY HIGH HIGH HIGH BARCE COOKS MATT TOOMS ALONG THE	80
TOTAL MINOR WINDS AND	
THE THE COURT WILL IN THE PROPERTY OF THE PROP	
TO THE PARTY OF THE PARTY AND THE PARTY AND ADDRESS AND	
TOTAL STATE OF THE PART OF THE	
TO THE TOTAL COURSE TO THE PART OF THE PAR	W
AAA	U

FIG.9

WP5' SEQUENCE

Sequence Range: 1 to 313

GATCC CGTTT GACAG GTGTA CCGCC CCAGT CAAAC TCCCC ACCTG GCACT GTCCC CGGAG CGGTC GCGCC CGCGC GACCA CGGAG CTCTG GGCGC CAGAA GCGAG AGCCC CTCGC TGCCC CCCGC CTCAC CGGGT AGTGA AAAAA CGATG AGAGT AGTGG TATTT CACCG GCGGC CCGCG AGGAC CCCCG CCCGA CCCAG TGCCG AACCG GGG

FIG.9A

9A+1-T7 [386] Human-PTI	<u> —</u>								<u> —</u> с	Acc Gl	gGo Ti	20 A-C tgGt(VGC ATGG(
9A+1-T7 [386] Humari-PTF	ILAG	A OCAO	C ICAT	it acaC	`A T-Co	C ATI	<u>የ</u> ፈ የፓራ	IC TO	III TTT	CT CTC) 75 CTa ttg CTC AGA	
9A•1–T7 [386] Human–PTP	ucti	LOOU	ו מכמכו	C IGA-	a laci	t tall	: (1)	CA TCc	II TCo	~ IC_	-C CC4	M 170
9A+1-T7 [386] Humon-PTP	aaAaa	(J-)-(1 11011	: A(`)		A cal.	1 1-11	C -T.	~ ^1	'I C.T.	- 17 /) 195 (A G-TCT) (A GATCT
9A+1-17 [386] Humon-PTP	CTaaT	205 GCCAG GCCAG	cA-An	ccccT	11177.	******	[+ ~~C	T ccaT	~ _ T^A	V -110	1 010	0 255 c tGgGC> AG GGTGC
9A+1-T7 [386] Humon-PIP	CagcG	ICCC	cca-i	GcTac	A-GAo	ccTCC	C-CT	- ArCAI	305 C TTUG C TTCAA	oct-	D 31: GGATT	GCCCT>
9A+1-T7 { 386 } Human-PTP	325 tCcTc CCATG	A-aCl	ł AncA	GAICO	HILA	Trata	Carra	- 47-		370 gaTca CCTCC	375 oCoCt	TIC-L> TACAA
90-17 [180] H REG GENE			TT TT (lict.	Aqa-a (cA-oG	-oGiT	cTatC	0 T-TTA TCTTA	AAA	-Acce	45 ggATT> TCATT
90-17 [180] (H REG GENE (GCAGC d	CcGC 1	loGIC	ICAGA 1	oCAoC 1	CATI	Δωνη	1_C_C	95 ATLTo ATCTC	CTAIC	TOATS	TTTATA
9a–17 1: [180] (1 REG GENE (15 12 GTCTo t GTCTC A	0 12 ttGg C GAGC C	25 1 CcAoo 1 CAAGG T	130 1 I-tGc o IAAGA 1	135 :CT-T T [CTCT T	140 TooC TICC /	145 LgCAc NCCAA	150 ClgAo CCAAC	155 TCTTT> TCTTT			

9A+1-T7 [130] Exon2	CA	10 15 20 25 30 c cGlgG otla- ClgGl ctcag accac>
9A+1-T7 [130] EXON2	35 40 45 50 55 60 65 CTCAT EgggC AT-Co GATET actic CTCAT LITTE 1	70 75 80
H REG GE [136] WPO3-4 17	G gALIC CIGno cTCAn Close COTC	COLT - La LA - TOT OTTON DIO
H REG CENE [136] WP03-4 17	E 50 55 60 65 70 75 tg-gg otgoC Aggct -tgog C-CAC C-AcA —ccA gg cgtag ccagc aggtt cagtg ctcac cgaaa gtaaa atg	MM -1 0- TOLOL LL LL
H REG GENE [136] WPO3-4 17	E 105 110 115 120 125 130 GAAGA GAGAC CITAG GGT-1 GITAG CCAA- ATAS	
WP03 8SP [108] EXON2		AC CT. C Laton T 4 44040
1903 8SP [108] XON2	70 65 60 55 50 45 40 35 <tiggt actic="" atgct="" ccctc="" cctgc="" ctcat="" ctg-t="" ctgat="" ctgtg="" gatct="" gctgt="" gtttc="" lctgl="" lgtct="" td="" tgtg="" tgtg<=""><td>T - C + COHO</td></tiggt>	T - C + COHO

AD3-4-296 [112] WP5'4/93		KACIA	Ccala (:-CTGCa	245 2 1 1A-AA C CAGAA GO	aAa tttCa	230 gTIGGICg CTCCC TGCCC
AD3 -4- 296 [112] HP5' 4/93	225 220 2 <accic (<br="" -ggag="">CCCCC CTCAC (</accic>	-OUO ACCCA	Accte (CCGAoc AGFa	oc A-TGc T/	laca CHIC	2 4C4C1 CC
AD3-4-296 [112] WP5' 4/93	165 160 <-cGA- aCgta Ct AGGAC CCCCC CC	ata CtCAa	T—IG AI	lCca olaAr	TIGGC Con	of Conce	120 115 Agtta ccCta Actta ticta
AD3-4-296 [112] WP5* 4/93	105 100 <laca ad<br="" g-cgc="">Catta Gtctc Acc</laca>	CC TATEC I	IAKAK IC	'CAT OTCAA	CACCC TIT	·^^1	M.TO TT
AD3-4-296 [112] WP5' 4/93	45 40 <otcag goc<br="">GCCAA GTC</otcag>						
AD2 SP6F [504] 1-9AT7-3 3	10 15 AG-TI TCaCT CTG AGATC TCGCT CTG	IL aCCCA G	GCTG aAG	TG CANTO I	TOTA ATO	COOTO A	CTCC -4-CTS
AD2 SP6F [504] 1-9AT7-3 3	70 75 80 CCgCC TCCCC oGc1 CCACC TCCCC CGT1) 85 IC Aagco A1 IC ACTIC A1	TCT CCT	GC CTCA	CCCT C_C_	TCA C	115 CGC TGGGA> TAGC TGGGA

FIG.10B

HB4-SEQ SEQUENCE

CACC	CTATT	ATAC	ATOM	CAT/	TOOM	1001						
ATANT	OTTO	ninu	MIGG	WAIL	الللاا	ALLAL	; MANU	A GACC	i aaaa	i cecti	CATTGC	60
AIACI	CHICA	AICAC	3 CCACA	A TAGOO	: ctct	' agtaa	CAGO	CATTC	CATC	CAAAC	COCTG	120
AAGCT	TCACC	CCCC	: AGTCA	I TTCTC	TAATA	CCCC	ACCCC	CTTAC	ATOC	CATTA	CTATT	180
CTGCC	TAGCA	AACTO	: AAACT	ACCAA	CCAC	TCACA	CTCCC	ATCAT	AATO	TOTO	CAAGG	
ACTIC	AAACT	CTACT	COCAC	TAATA	^^TT	TTOAT	01000	ATION	MILL	10101	CANOC	240
~~T	TARRA	CIACI	uunu	IAAIA	GUIII	HIGAI	GACII	CIAGO	AAGC	: ICCCT	AACCT	300
wui	IALL	CULAC	IAIIA	ACCTA	CICCC	AGAAC	TCTCT	GTCCT	AGTAA	CCACG	TTCTC	360
CTGAT	CAAAT	ATCAC	TCTCC	TACTT	ACAGG	ACTCA	ACATA	CTAGE	CACAG	CCTA	TACTO	420
CCTCT	ACATA	TTTAC	CACAA	CACAA	TOTAL	CTCAC	TCACC	CACCA	CATTA	40440	INCIC	
TYYA	CATTC	ACACC	40444	10100	07047	CILAL	TUNC	LALLA	LATIA	ALAAL	AIAAA	480
47000	CATTC	MUMU	AUAAA	ALAUL	CICAI	GHICA	IACAC	CIATC	CCCCA	TICIC	CTCCT	540
AILL	TCAAC	CCCCA	CATCA	TTACC	CCCTT	TICCT	CTTAA		AAAAA	AAAA		590
					HB4 PI	ROTEIN						
EAYYT I	MLHLP	TTNRP	KTAHC.	II FNO	PHCDD	CYICHC	LIDAIDI	VI UDO	CICINI	DODIA	** ***	
PSKI	KI PTH	CUCHI	NO! CO	TOUCT		SIGN	ITITL	WINK	3U2UN	NOTAT	ILIII	60
LI JINL	KLRTH !	וחכאכ	WLT2K	12/01	LIN2	FWI 22	KPR					95

FIG.11A

HB4-SEQ 15 20 25 30 35 40 45 50 55 60 65 [440] C-AT- GCTCC atCTG C-CT ACGGC AA-GC AGACC -T-A- AGGTC GCTCG LIGCA tA-CT> Human-PIP CTATC GCTCC TACTG CTACT ACTIT AATGA AGACC GTGAG ACCTG GGTTG ATGCA GATCT

HB4-SEQ 70 75 80 85 90 95 100 105 110 115 120 [440] CTica atCAG cACAT -Agec CtcG- tAgta acaG- CcaTt CTCAt CCAGa CCccc tGaag> Human-PTP CTATT GCCAG AACAT GAATT CGGGC AACCT GGTGT CTGTG CTCAC CCAGG CGGAG GGTGC

HB4-SEQ 125 130 135 140 145 150 155 160 165 170 175 [440] CTTca ccGgC gCAgT cATT- ctcAt AgTcG C-Cca cgGgC TTacA T-cCT -cATT actaT> Human-PTP CTTTG TGGCC TCACT GATTA AGGAG AGTCG CACTG ATGAC TTCAA TGTCT GGATT GGCCT

HB4-SEQ 180 185 190 195 200 205 210 215 220 225 230 235 [440] tC-TG cCaqC AAAct cAAaC taCGa acGCA CT-cA -CAGT cGcat CaTao TCTCL ctCAA> Human-PTP CCATG ACCCC AAAAA GAACC GCCGC TGCCA CTGGA GCAGT GGGTC CCTGG TCTCC TACAA

HB4-SEQ 240 245 250 255 265 270 275 280 285 290 295 300 305 [440] GgoCT -tead AcTet ActCC CAAGC LLIGT GACTL CTGGC dACct cGctA dCCTc gCCTt> Human-PTP GTCCT GGGGC ATTGG AGCCC CAAGC AGTGT TAATC CTGGC TACTG TGTGA GCCTG ACCTC

HB4-SEQ 310 315 320 325 330 340 345 350 355 360365 370 [440] AccCc Cacta TTooc clact GGGAG GATGT G-CTo GT-AA -cCAc GTTCT CCTTc gggTab Human-PTP AAGCA CAGGA TTCCA GAAAT GGAAG GATGT GCCTT GTGAA GACAA GTTCT ccTTT GTCTG

HB4-SEQ 375 380 385 390 395 400 405 410 415 420 425 [440] tcAcT ctcct ActTA cAGG- A-CT- CAACA TACLG GTCCA GCCCT -ATGC tcCct cTACA> Human-PTP CAAGT TCAAA AACTA GAGGC AGCTG GAAAA TACAT GTCTA GAACT GATCC AGCAA TTACA

HB4-SEQ 430 435 440 445 450 455 460 465 470 475 480 485 [440] tall accac Aacac Aatg GGclC A-CTC accac C-Cac atlaa ccata Aaacc CTCaT> Human-PTP ACGGA GTCAA AAATT AAACC GGACC ATCTC TCCAA CTCAA CTCAA CCTGG ACACT CTCTT

HB4-SEQ 490 495 500 505 510 515 520 525 530 540 545 [440] -TCac acGAG -adda Cacce TeATg TIC-A TACGE cTA- Tecce CALTE TICEL ALCCe> Human-PTP CTCTG CTGAG TTTGC CTTGT TAATC TTCAA TAGTT TTACC TACCE CAGTE TTTGG AACCT

H REG GEN2310 2315 2320 2322330 2335 2340 2345 2350 2355 2360 2365 2370 [284] cTgCc Cagaa ggCac Caacc TatCg Cicct Act-g Ctact Actt aatga Agacc gCgaG> HB4-SEQ ATACT CTICA ATCAG CCACA TAGCC CICGT AGTAA CAGCC ATTCT CATCC AAACC CCCTG

H REG GBNE 2375 2380 23852390 2395 2400 2405 2410 2415 2420 2425 2430 [284] —Acct gggtt GotGC AGTGt gggTg AggAg oGCgt gtGGG ogggg AgoCT CATGA —oggg>
HB4—SEQ AAGCT I QCC GGCGC AGTCA ITCTC ATAAT CGCCC ACGGG CTTAC ATCCT CATTA CTATT

H REG GENE 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 [284] agGgg aAGC- tgC-C ActCT -CcAg tGtgt TCAgt GgCGC Aatga gAT-g agaCT gAAcc> HB4-SEQ CTGCC TAGCA AACTC AAACT ACGAA CGCAC TCACA GTCGC ATCAT AATCC TCTCT CAAGC

H REG GENE 24902495 2500 2505 2510 2515 2520 2525 2530 2535 2540 [284] CCTIT ALACT OTGOT COGC CCA-A OCITI CCOAT —CTO CT—t LALCC —COLT ALLCO> HB4—SEQ ACTIC AAACT CTACT CCCAC TAATA GCTIT TIGAT GACTT CTAGC AAGCC TCGCT AACCT

H REG GENE2545 2550 2555 2560 2565 2570 2580 2585 2590 2595 2600 [284] gcgCg Teccc ggCAC gaga accig gigg ig-ac ggcgt colc- acgga Collo etcig> HB4-SEQ CGCCT TACCC CCCAC TATTA ACCTA CIGGG AGAAC ICICI GIGCI AGTAA CCACG TICIC

H REG GEN2605 2610 2612620 2625 2630 2635 2640 2645 2650 2655 2665 2670 [284] CTG-T CCLLT LTCAC CCTCC T-CTT GGAGG ACTCA GLATA LCCGT CACAG CCCTC CACTG> HB4-SEQ CTGAT CAAAT ATCAC TCTCC TACTT ACAGG ACTCA ACATA CTAGT CACAG CCCTA TACTC

H REG GENE 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 [284] ogTCT cCAT- TTT-C ttC-- tgCAA co--G CTCto T-tgC CAGGA CATGA A-ttC gggcA> HB4-SEQ CCTCT ACATA TTTAC CACAA CACAA TGGGG CTCAC TCACC CACCA CATTA ACAAC ATAAA

H REG GENE 2725 2730 2735 2740
[284] A-CCT -ggTg tC-tG tG--c tCACC C>
HB4-SEQ ACCCT CATTC ACACG AGAAA ACACC C

FIG.12B

FIG.12C

FIG. 13A

FIG.13B

FIG. 14A

1-9a

FIG. 14B 1-9a

FIG.14C

1-90

FIG. 15A

SW 151

O18-3-1 UPPER PROBE
O/N EXPOSURE 1-27-93

SE SE SE SE SE
(3) (4) (5) (6) (7)

0 - 18

FIG. 15B

AD2-2 T7

ATGIT TAGTC TATCT CTTGT ACAAA CGATG TGCTT TGAAG ATGIT AGTGT AT ATGIT TGTTT TCTGT TTGAT TTTAA ACAGA GAAAA AATAA AAGGG GGTAA TA TTTCT TCTTT CTTTT TTTTT TTCAT TTCAA AATTG CTGCC AGTGT TTTCA ATGACAGA GGGAT ATGCT GTAGA GTGTT TTTAT TGCCT AGTTG ACAAA GCTGC TT TGGTG GTTCT ATTCC TTTGC ACATC ACGAC ATTTT ATAAT CATAG TTAAA TCCAAAA ATGCT CTGAT CTGAT GCCAA AGGTC AATTC AGTGT ATATA ACCTG AAGTCCAT TGCGT TT	GCT CCTTT 120 GTA GGACA 180 TTG AATGC 240
---	---

AD2-2 T7 PEP

MFVFC LILNR EKIKG GNSSF FLLSF FFSFQ NCCQC FQCRT TEGYA VECFY CLVDK AAFEC 60 WWFYS FDT

FIG.16A

AD2 SP6F

ACTGT CTCCC CCTTT GATAG GGACA CTAAA GTGGT CTGTA CTTGG GTAGA GGATG GCANG 60 TTAAG AATTA AAATC GTCTG GGTGC GGTCT GCACG CTTGT AATCC CAGCA CTTTG GGAGG 12/ CTGAG GCGGC CGGAT CACCT GAGGT CAGGA GTTCG ACACC AGCCT GATGA ACATG GAGAA 18/ ACCCC ATCTC TACTA AAAAT ACAAA TATTA GCTGG GCGTT GTCGC GCGCC TGTAA TCCCA 24/ GCGGC TCACG AGGCT GAGGC AGGAG AATTG CTTGA GCTCG GGATG GCGGA GGTTG CAGTG 30/ AGCCA GGATT GTGCC ATTGC ACTCC AGCCT GCGCA ACAAG AGTGA AACTC TGTCT CAAAA 3AAAA AAAAA AAAAA AAAAA AAAAA AAAAA AAAAA	0 0 0
--	-------

FIG.16D

AD2-2 SEQUENCE

GOGTAMACAC ATTITIGTIC TIAGTCTATC TCTTGTACAA ACGATGTGCT TTGAAGATC	
TAGIGTATAA CAATTGATGT TIGTTTTCIG TTIGATTTTA AACAGAGAAA AAATAAAAG	-
GGGTAATAGC TCCTTTTTC TICTTCTTT GATTTAAAC AGAGAAAAA TAAAAGGGG	_
TAATAGCTCC TTTTTCTTC TTTCTTTTTT TTTTTTCATT TCAAAATTGC TGCCAGTGT	
TTCAATGATG GACAACAGAG GGATATGCTG TAGAGTGTTT TATTGCCTAG TTGACAAAG	T 240
TGCTTTGAAT GCTGGTGGTT CTATTCCTTT GACACTACGC ACTTTTATAA TACATGTTA	C 300
TGCTATAGGA CAAGATGCTC TGATTCCTGA GTGCCAGAGG TTCAATTCAG TGTATATAAA	A 360
TGAACACACT CATCCATTIC TCCTTTTCTT TTTTTTTTCC TAGATICAG TGTATATAA	C 420
TGAACACACT CATCCATTTG TGCTTTTGTT TTTTTTATGG TGGCTTAAAG GTAAAGAGCC	480
CATCCTITICC AAGTCATCCA TIGTTGTTACT TAGGCATTTI ATCTTGGCTC AAATTGTTGC	540
AAGAATGGTG GCTTGTTTCA TGGTTTTTGT ATTTGTGTCT AATGCACGTT TTAACATGAT	600
AGACGCAATG CATTGTGTAG CTAGTTTTCT GGAAAAGTCA ACTCTTTTAG GAATTGTTTT	660
TCAGATCTIC AATAAATTIT TTCTTTAAAT TTCAAAGAAC AATGTGCTTG TGTTGATGCC	720
TIACAAAAAC CATIGTATAT TIGTGTATIC CTICTIGTAT TIAGACAGTG GTTTTTCAGG	780
TGCGTGCTTT GTTTTCTGGT ATGGCCTTTA TGGAATGAGA CGCTTTAGCT TTGGTACGTA	840
TOURS OF THE PROPERTY OF THE PROPERTY AND THE PROPERTY OF THE	900
GITTACATGA CIGITITITI TATTITICCI AAATTATTAC TTACTCIGAG CATTAATTAA	960
TOTAL TOTAL TOTAL TOTAL AND	1020
TOTOGOTTO CICINDAVAL RIBALIZADA BATCTUBATA CACACACACA TATTALALA.	1080
TO TO TO TO TO TO TO THE PARTY OF THE PARTY	1140
TO TOO THE PROPERTY ALL LANGUE HEALTH TO TOTOCOTOCO OF THE PROPERTY OF THE PRO	1200
TO THE TATE AND ANTACTICES SELECTION OF THE PARTY OF THE	1260
TO THE TOTAL MICHAEL THE TARTER AND THE TELEPOOR	
THE PROPERTY OF THE PROPERTY O	
TOTAL TOTAL ALICE TO THE PARTY OF THE PARTY	1440
TO THE OLD ICICAL MANAGED DO DO DARRAMANA	480
•	

FIG, 16E

PCT/US95/17111

25/52

ADJ-4 SEQUENCE

ATOAT	~		4.500						tt	ggglga	gglgga	
AIGAI	<u> </u>	GIIGG	AAICG	GITIG	GTAAA	TGGGT	TTATT	TCATA	TOTAL	TATCT	TTAAC	60
11166	AUUC	GHAI	CTATA	TCATG	CCCTT	α	CTACT	TTTTA	TTATA	CCTTC	CTATT	120
ATATC	GTTCC	TGATT	GGGGA	TATCC	AAGAC	GTATT	ACTTA	ATTGT	ACTTT	ATTGA	AACCT	180
TCCTC	TOGGT	TTCGA	TTCTG	GCCCC	THIC	TCTGC	TOGAT	CCATT	CTTCT	CATT		240
GTGTG	GCAGT	AACAT	ACCCT	TTTAT	CACC	TTCTA	TATAL	TXY	CTCC	COTOT	TTOOT	
AGGCT	CCCAA	CACTA	TOGAC	CAACA	CCTTC	TATCE	ACAAT	CLACT	TOOL	47744	11661	300
GTCTT	CC	GUIN	TOOL	which	00110	INICI	AUAAI	CAAGI	IGGAA	ALIAA	ACCGI	360
01011	50											367

AD3-4 PROTEIN

MANYOW NRFGK WWYFI SAIFN FGPRY LYHOV PFYFL ILVRI ISFLI GOMED VLLNC TLLKR 60 SSRFR FWGAL VCSMD SCRFS RVAVI YRFIT LLNIP SPAVW MARNT IDQQV LSRIK LEIKR 120 CL 122

FIG.16F

AD3-417

CCCAC	AGGTC	CTAAA	CTACC	AAACC	TGCAT	TAAAA	AATTT	CCTT	CCTCC	ACCTC	GGAGC	1100
AGAAC	CCAAC	CTCCG	AGCAG	TACAT	CCTAA	GACTT	CACCA	CTCAA	ACCCA	ACCTA	CTATA	_
CTCAA	TTGAT	CCAAT	AACTT	GACCA	ACCCA	ACAAC	TTACC	CTACC	CATAA	CACCO	CAATC	1240
CTATT	CTAGA	GTCCA	TATCA	ACAAT	ACCCT	TTACC	ACCTC	CATCT	TOCAT	CACCA	CATCC	1300
CCATC	GTGCA	CCCCC	TATTA	AACCT	TOTT	TOTTO	AAACC	ATTAA	ACTOO	LAUGA	TCTGA	1360
GTTCA	GACCC	AAGTA.	ATOCA	CCICC	CTTTC	TATOT	TOTTO	ALLET	AUILL	TUTE	ICIGA	1420
ACCAC	TAATC	ACAAA	TAACC	CCTAC	TTCAC	MICI	10110	AAAII Toogg	witt	CIGIA	TCATC	1480
TCAAC	TTACT	ATTAT	ACCCA	CACCC	11CAC	AAAGC	10001	iuu	CUIAA	IGAIA	ICAIC	1540
·	ומחוו	TATTA	ALLLA	CALLL	ALLLA	AGAAC	AUGUI	HIGH	AAAAA	AAAAA	AAAAA	1600

FIG. 161

AD3-4SP SEQUENCE

AACAGCTAAA AGAGCACACC GTCATTGTAT GGCAAAATAG TGGGAAGATT TATAGGGTAG AGGGCGACAA ACCATCCGAG CCTTGTGATA GCTGGTTGTC CAAGATAGAT CTTAGTTCAA CCTTTAATTT GCCACAGAAC C	60 120 180 240 300 360 381
FIG.16J	J01

AD3-417 SEQUENCE

ITITITITIT TITITAACAA ACCCIGTICT TGGGTGGGTG TGGGTATAAT ACTAAGTTGA	
CATCATATCA TTACCOCCA ACCOCCATT CTOLAGE CONTRACT ACTAGE IN	60
GATGATATCA TTACGGGGGA AGGCCGCTTT GTGAAGTAGG CCTTATTTCT CATTAGTCCT	120
TICGGTACAG GGAGGAATTT GAAGAAGATA GAAACOGACC TGGATTACTT CGGTCTGAAC	180
TCAGACACGA GGACTITAAT CGTTTGAACA AACGAACCTT TAATAGCGGC TGCACCATCG	240
GGATGTCCTG ATCCAACATC GAGGTCGTAA ACCCTATTGT TGATATGGAC TCTAGAATAG	300
GATIGOGCIG TTATCCCTAG GGTAACTIGT TOOCTIGGIC AAGTIATIGG ATCAATIGAG	360
TITAGTAGTC CGCTTGGAGT GGTGAAGTCT AGAATGTCCT GTTCGGGGGT TGGTTTCTGC	420
TCCCAGGTCG CCCCAACCGA ATTITITATI GAAGGTTGCG TAGTTTAGCA CCTGTGGGTT	
COTACOTAC TOTTOCATE ANTI-MAIL GOODS INGO INGO INGO INGO INGO INGO INGO INGO	480
GGTAAGGTAC TGTTGGAATT AATAAATTAA AGCTCCATAG GGTCTCCTCG TCTTGTTGTG	540
TAATGCCCCC CTCTCCACGG GAAGGTCAAT TCCACTGGTT AAAAGTAAGA GAAAGCTGAA	600
CCCTCGGGGA GCCATCCATA CAGGTCCCC	
CONTROL OF THE CARLES AND THE CARLES	629

FIG.16K

AD4-4 SP6 SEQUENCE

Sequence Range: 1 to 256

GCCGG TAAAT TCGTT GCTTC AAATT TCTGC TITTT TTCCA ATTCT CCAAG CAAAC TAATG	TACTA ACTTC TITCT TITTG GACTA TAAAG	AAGCT ATGG	G AGTTT GGC/ C TGTAC TTC/	AG TAGTO ACTTO AG TGAAO AGAA	A AATTG 180
TACTT GACCA GTGGA	T	001701 11101	1 01010 1000	on cinno cinci	256

AD4-4 T7F SEQUENCE

28/52

Sequence Range: 1 to 270

CATGT TTAAA AAAAA GTTGA TTGCT TCAAA TTACT GCTAC TAACT TCAAG CTATG GGAGT 60
TTGCC AGTAG TCACT TGAGG ATTTT TTTTC CAATT CGTTT TCATT TTTGT TGTTA AAGCT 120
CGTAC TTCAG TGAGA CAGAA AAATT GCCAA GCTAA ACTAA TGGTC TATAA AAGCG TAATT 180
TGCAT GTGTG GGCAA AAACT ACAGA GCCTC AATTG CCACT GAGGT ATAGT ACAAA GTTTT 240
AATAC ATTTT GTAAA TCAAA TTGAA AGAAA

FIG. 16M

AD4-4 SEQUENCE

CATGTTTAAA AAAAAGTTGA TIGCTTCAAA TTACTGCTAC TAACTTCAAG CTATGGGAGT 60
TTGGCAGTAG TCACTTGAGG ATTTTTTTTC CAATTCGTTT TCATTTTTGT TGTTAAAGCT 120
CGTACTTCAG TGAGACAGAA AAATTGCCAA GCTAAACTAA TGGTCTATAA AAGCGTAATT 180
TGCATGTGTG GGCAAAAACT ACAGAGCCTC AATTGCCACT GAGGTATAGT ACAAAGTTTT 240
AATACATTTT GTAAATCAAA TTGAAAGAAA

FIG.16N

AD16c-T7 SEQUENCE

TCTGC CCAGG CTGGT CTGAA ATTCC TGGGC TGAAG TGATC CTCCA GTCTT GGCCT CCCAA 60
AGTGC TGGGA TTACA GGCAT GAGCT ACTGA GCCTA GCCTT AATGA TTAAT TTTAG AGTGA 120
TGGCT TGTAC CTTCA AGACA CATAT AGATT GAGAC AGAAA ATTTC CATCG TCCCC GAGAA 180
AACT

AD16c-T7 PEP

5 10 15 20 25 30 35 40 45 50 55 60 SSSLG LPKCW DYRHE LLSLA LMINF RVMAC TFKQH IELRQ KISIV PRKLC CMGPV CPVKI

65 70 75 ALLTI NGHCT WLPAS

FIG. 160

AD10-7 SEQUENCE

TITTTITIT GAGATGGAGT TITCGCTCTT GTTGCCCCAGG CTGGAGTGCA ATGGCGCAAT 60 CTCAGCTCAC CGCAACCTCC GCCTCCCGGG TTCAAGCGAT TCTCCTGCCT CAGCCTCCCC 120 AGTAGCTGGG ATTACAGGCA TGTGCACCAC GCTCGGCTAA TTTTGTATTT TTTTTTAGTA 180 GAGATGGAGT TTAACTOCAT GTTGGTCAGG CTGGTCTCGA ACTCCCGACC TCAGATGATC 240 TCCCGTCTCG GCCTGCCCAA AGTGCTGAGA TTACAGGCAT GAGCCACCAT GCCCGGCCTC 300 TGCCTGGCTA ATTITTGTGG TAGAAACAGG GTTTCACTGA TGTTGCCCAA GCTGGTCTCC 360 TGAGCTCAAG CAGTCCACCT GCCTCAGCCT CCCAAAGTGC TGGGATTACA GGCGTCAGCC 420 GTGCCTGGCC TTTTTATTTT ATTTTTTTTA AGACACAGGT GTACCACTCT TACCCAGGAT 480 GAAGTGCAGT GGTGTGATCA CAGCTCACTG CAGCCTTCAA CTCCTGAGAT CAAGCAATCC 540 TCCTGCCTCA GCCTCCCAAG TAGCTGGGAC CAAAGACATG CACCACTACA CCTGGTAATT 600 TITATTITIA TITITAATTI TITGAGACAG AGTCTCACTC TGTCACCCAG GCTGGAGTGC 660 AGTOGOGCAA TOTTGGCTCA CTGCAACCTC TGCCTCCCGG GTTCAAGTTA TTCTCCTGCC 720 CCAGCCTCCT GAGTAGCTGG GACTACAGGC GCCCACCACG CCTAGCTAAT TTTTTTGTAT 780 TITTAGTAGA GATGGGGTTT CACCATGTTC GCCAGGTTGA TCTTGATCTC TTGACCTTGT 840 GATCTGCCTG CCTCGGCCTA CCCAAAGTGC TGGGATTACA GGTCGTGACT CCACGCCGGC 900 CTATTITIAA TITTIGTITG TITGAAATGG AATCTCACTC TGTTACCCAG GTCCGAGTGC 960 AATGGCAAAT CTCCGCTACT CGCAACCTCT GCCTCCCGGG TCAAGCGATT CTCCTGTCTC 1020 AGCCTCCCAA GCAGCTGGGA TTACGGGACC TGCACCACAC CCCGCTAATT TTTGTATTTT 1080 CATTAGAGGC GGGTTTACCA TATTTGTCAG GCTGGGTCTC AAACTCCTGA CCTCAGGTGA 1140 CCCACCTGCC TCAGCCTTCC AAAGTGCTGG GATTACAGGC GTGAGCCACC TCACCCAGCC 1200 GGCTAATTTG GAATAAAAA TATGTAGCAA TGGGGGTCTG CTATGTTGCC CAGGCTGGTC 1260 TCAAACTICI GCCTICAGIC AATCCTTCCA AATGAGCCAC AACACCCAGC CAGTCACATI 1320 TTTTAAACAG TTACATCTTT ATTTTAGTAT ACTAGAAAGT AATACAATAA ACATGTCAAA 1380 1381

FIG. 16R

AD16c-SEQUENCE

MATTETTAL ATTOTACT AGAINST	
CCATTGTTAG GTTGTCTCTT ACCTGTTAAA ATCAGGAGCT GACAAGAAAT GCTTACCACA	60
AAAGAGAAA TGCCAGTCTA GTTAACAGTC AAGGAGAAA ATCAGGAAGA TTATGTGGGT	120
GGAAGAAGTA GATGATGTGG CTGATGAGTG AGTGAGTGAG CAAGCCTCCG CCCAGCTGAA	180
GAAGGAGTCA GAACTGCCCT TIGTTCCCAA CTATTTGGCG AACCCCAGCC TTCCCTTTTA	240
ICIAIACACC CACAGCAGAG GATICAGCIC AGATICAGAA TICCOCCOCCO TICCACACCOC	300
CIGUALLACE CECIGEAGAT GGCTCACCTC CATTOCITOC CONTOCEAR CICCOCTETT	360
AGGRACITI COLORGACO ACACCICTIT GCCACTAGIT CACAATOCTC ATCTCTCCCC	420
COLORDO A LACIAGAACA COAGAAAGAC AAACCOCTGA TOTTTOTOGO OTACACTCAC	480
TOTAL	540
ANNIOUGALU TATGCAGGAC CAGGGCCCAG ATTCCAACCC ATTTTTCTTC ACTCCACCAT	600
TOWATTAA TAIGUAAGAG CIGGTACICA AGGIGAGAAT TOAGAACOCA TOTOTOGAC	660
ADVIONITI CATIGAAATI GAACIGGACE GACAGACETC ACCTACCAAC ACTTCCTCAC	720
ADIGIGIO IGIGAGUIGE GIGITAATOC ACATOAACTO CACACATOA CALACTTACO	780
CONTROLL TRANSPARSE ACARGATGT TECTORACT ARCATTERS CACCTORAGE	840
TOUTION GRIADIGAAA AIAAIIIICI GTICACAAAT CCTCCATCAC ACTCACTCAA	900
ASSOCIATED A ALABOAGA GOTTCAAAAC TGACTTACTA ATCCACCACC CACTTTTATA	960
CIGHOININI GHURBIGIGG AICACTICIG GGCCAACCAC AACCCATCAT CTAAATCCCT	1020
CHARLICIE GIGLACIGCA TACTATATAC CAACATCATT CTCCCCAACC	1080
TABOARDOOL CAIDACCOLL AAGCAGIRGI GICCACTCII CCAACCCICII TOCICAAA	1140
TOTAL TOUR TOURS OF THE TARGET TO THE TARGET	1200
TOOM TOTAL IGHT I LIGITATION CANTESTAGE ACTIVITIES ACACCACO	1260
TOTAL TOTAL TOTAL TOTAL ACTOR ACTOR ACTOR ACCORDED TO TAKE	1320
A TOWN THE CHICAGO CALCALOR ACTOTOM CATTOMAN TEATOMON	1380
CONTROL OF THE PROPERTY OF THE	1440
THE TOTAL A TOUT I LIAB I LIGACIET GACTETEANS TITLE AT A CATATTERA	1500
TOTION MODITIONAR GICIALAGA ATACACTTCC ACACTCAATT CCTTCCAAAT	1560
TOTAL TELEFORM OF THE CONTRACTOR AND ACTOR OF THE CONTRACTOR OF TH	1620
TORCIOCITO TOTOTOGA GICATCICIG CATTANCTOC COTTOCTOCT CACTANANA	1680
CICIONIO CITCIANDAC ACIGCITTI ACATGORARA OCCARRACARA	1740
TOTAL TO TOULUAUGE TOUT TAKE TO TAKE TO TAKE TO THE TA	1800
CONCLINION ADARAGIQUI GUIGALIACA CCITCICACCO ACCOCCACO COCCIONATA	1860
OTOTIONAL CARLUGAAG IGAATITAAC TAGATCTACT AACCTTTTTT TTCTTCACT	1920
- IOINNOONU IIALAUIIIA CIAAIAAAGI TAACTCICCI TCICTCCTAC ACCAALTAAA	1980
TOO TO A TURBUILL TARGUACH COSTANAN ACTITION ACCOUNTS	2040
THE TOTAL CONTROL CONTROL CONTROL ACCRECATOR	2100
SUCHICITO GUIACACAG AGGCAAGCAA COCANTOCTO TOTOTOCTOA CACCTOCCTT	2160
IONIDIAICI CIGIULIAIG CIGGICICIC TICICCITTA TAAATOOTOO TOTOOTOAOT	2220
ONLINIO IN INCLADIDAL CAGACIGCAC ATACTACCT TACCCTCACC TEATCTCTT	2280
MICHIGICA I LUMBAGAA GACACTITII CATTOATOOT TICTOTAATT AATOAATOAA	2340
OUNTIED TO THE TOTAL TO A STATE AND A STAT	2400
AND CONTROL TO THE PROPERTY OF	2460
TOURCH ATRACATCAC ANGIATTATT CAAATAAAAT ATTAACTGAC CGAAAAAAAA	2520
FIG. 4.00	

FIG. 16S

H REG GENE 10 15 20 25 30 35 40 50 [220] -GA ALTCC TGggC TCAGG TGATC CLCLC GLGTC AGLCT CCCAA AGTGC TGGGAS AD2-283 GA ACTOC TGACC TCAGG TGATC CGCCC GCCTC AGCCT CCCAA AGTGC TGGGA h reg gene 55 60 65 70 75 80 85 90 95 100 TGACA GCCTT G-AG- CC-A -CCAC ACCAG GCCCA -TC- ALCO- G-LT LETOT A-LOAD 220 TŤACA ÁGOGT GCAGA COCCAG ACGAŤ ŤITAA TTCTT AACNT GCCAT CCTCT ACOCA AD2-283 H REG GENE 110 115 120 125 130 135 140 [220] AGOAO AOAOO ACCTT AOOOT tgtTA gCAAA tocto tGACA> AGTAC AGACC ACTIT AGTGT CCCTA TCAAA GOGGG AGACA AD2-283

FIG. 17

AD2 SP6F 115 120 125 130 135 140 145 150 [62] EXONI AA GCCAA CTCAG ACTCA GCCAA CAGGT AAGTG GGCAT TACAG GAG RAT PTP 605 [144] **CACTC** AD2-2 T7 ACTC RAT PTP 660 650 645 640 635 630 625 620 615 610 <tcT-o ggaAg aGggg GTTGA C--- t tTGCT TTTGA taGaT GGT-c TagT- TTCac TTttg</pre> 144 AD2-2 17 AGTGT ŤŤTAŤ TGČŤÁ GTTGA CAAAG CTGCT TTTGA ATGCT GGTGG TTČTA TTCCT TTGAČ RAT PTP 710 705 700 695 690 685 680 675 670 665 144 <oCA-T oCAAL AOTGG oGOLA -oooo ToCcA T-A-G GgCAG T-GA GGCA- AgooT GTTLG</p> TCATT TCAAA ATTGC TGCCA GTGTT TTCAA TGATG GÁCAÁ TCAGA GCGAT ATGCT GTTAG AD2-2 17 RAT PTP 745 740 735 730 725 720 715 [144] ⟨GTg A-Agg taTTT TTatT TaoaT gTgca gggTT AD2-2 T7 GTĂ ATACT CCTTT TITCT TCTTT CTTTT TTTTT

HPTPAA FVA SLIK

1-9at7-3 3 140 145 150 155 160 165 170 175 180 185 190 195 [206] ACEAC GCCCE GCTAA TLTTI GTATT TITAG TAGAG ACOGG GTTTC OCCGT GTTGG CCAGG> AD2-283 ACAAC GCCCA GCTAA TATTT GTATT TITAG TAGAG ATGGG GTTTC TCCAT GTTCA TCAGG

1-90-T72 3 15 20 25 30 35 40 45 50 55 60 65 70 [260] CTGGT CTGGA ALTOC TGGGC TGAGG TGATC CLOCA GLCTL GGCCT COCAA AGTGC TGGGA AD2-283 CTGGT GTGGA ACTCC TGACC TCAGG TGATC CGCCC GCCTC AGCCT CCCAA AGTGC TGGGA

1-90-T72 3 140 145 150 155 160 [260] AG-AC ACA-L A-TOG ALTGO GOC-A GOAAA> AD2-283 AGTAC AGACC ACTIT AGTGT COCTA TCAAA

FIG.17B

AD16c-SP6 5 10 15 20 [344] -AGA- TCTCg CTC-T G-Tcg CCCAG GCTGg AGTGC AD2-2 SP6 AGAG TITICA CTCTT GCTTG CCCAG GCTGG AGTGC AD2-2 SP6 40 45 50 55 60 65 70 75 80 344 AGTGG CCCAA TOLOG GCTCA CTGCG AGCTC C-OCC TCCCG GGLTC ACLLC GTTCT CCTGCD AD2-2 SP6 AATGG CACAA TOCTG GCTCA CTGCA ACCTC CGCCC TCCCC AGCTC AAGAA CTTCT CCTGC AD16c-SP6 100 105 110 115 120 125 130 135 140145 150 155 160 [344] CTCAG OCTC- TGAGE OGCTG GGACT ACAGG CGCcC OCCAC ACGCC GCTAA TETTT GTATT> AD2-2 SP6 CICAG CCICG IGAGC CGCIG GGATT ACAGG CGCGC GCCAC AAGCG ÁCTAA TATTI GTATI AD16c-SP6 [344] TITGT AG> AD2-2 SP6 TITGT AG

AD16c-SP6 140 145 150 155 160 165 170 175 180 185 190 195 [206] ACCAC GCCCC GCTAA TETTI GTATT TITAG TAGAG ACCGG GTTTC CCCGT GTTGG CCAGG> AD2-283 ACAAC GCCCA GCTAA TATTI GTATT TITAG TAGAG ATGGG GTTTC TCCAT GTTCA TCAGG

H REG GENE 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 ---CC CC-ao gC-aG lGTLo aTcct GG-cT A--CT GLgTG AGCTG AccTC AagcA CaGGt> [118] AD3-4 CC CCTGT TCTTG CGTCG GTTTG CGTAT ATTCT CGTTG AGATG ATATC ATTTA CGCCC H REG GENE 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 GAAGG Cagag autec A-Tec aCC-1 gTTTC TgTTc TCCcT gCtTA getec AGGga TgGAA> [118] GAAGG COCTT TGTGA AGTAG GOCTT ÁTTTC TCTTG TOCTT TOGTA CAGGG AGGÁT TTGAA AD3-4 H REG GENE 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 [118] cTgGg Aclgg GaT-a gAgga aaG-g TGAAC TC-cT CA-tT aagga aATgG aTG> AD3-4 CTÁCT AGAÁC CCTCT TACTO COCTÓ TGAAC TOAGT CACCT COCTT TATÓC TTC

FIG.18

WP03-5 T7 15 20 25 30 35 40 GATCC GAGCT GCGTA -CGCG TGCAT GCACG ECGTG GCTCT TCTAT AGTGT CAC 90] AD3-4 221 GATCC GAGCT COGTA CCĂAG TŤGAT GCATÁ GCTTG ÁGTAT TCTAT AGTGT CAC 18-477 155 150 145 140 135 130 125 120 115 110 105 [362] <gTATg GgCcc gATAg —c-l TAT-t TAgeC TITAG AGCAC ACTGG CGCC GITAC TAGTG</pre> AD3-4 221 ATATA GÁCAA TATAÁ CAATA TATTG TATAC TITAG AGCAC ACTOG CÁGCO GTTAC TAGTG 18-477 100 95 90 85 80 75 70 65 60 55 50 [362] CGATCC GAGCT CCGTA CCAAC TIGAT GCATA GCTIG AGTAT TCTAT AGTGT CACCL -QAGT AD3-4 221 GATOC GAGCT COGTA CCAAG TIGAT GCATA GCTTG AGTAT TCTAT AGTGT CACTA ATAGT

FIG.18A

G2A-EP T7 [148] AD3-4 SPF		•	—cii	AoTA-	·gALA	a cla	ct ta-	M	la AcT	50 Ta Coc Ta coc	-A cT_	55 — GTETE> AA GTATA
G2A-EP T7 [148] AD3-4 SPF	անա	- I-G-	· CHGA	AAACT	of Ct o	Alel	C A-A	TA CTA	11 6-4		A	110 N. Acatt> N. Amatt
G2A-EP T7 [148] AD3-4 SPF	AT-A	l aAAG-	-TAA-	A-aGa	AAGGA	-oAA	>					
AD3-4 [182] H REG GENE					CT ATA	loa G	gTcG T	TG— T	caaC a	190: ataa ac ctta ac	CAc GI	GAc
AD3-4 [182] H reg gene	1 Unul	י -טאט	OLCUO A		Y M:-	('n! †('	Incl	CTTC		_TA A	ATAA	
AD3-4 [182] H REG GENE	ITICI	GTCTC #	VGAGC C	AAGG T	AAGA 1	CTCT	TCcCC	cglAA ACCAA	otgat CCAAC	otcoT TCTTT	^-	
AD3-4 [182] H REG GENE	CALA-1	a cco a	occu u	XAA G	nArA n	WY.	nnånn	~CAAA	AAAAA			

FIG.18B

AD2-2 T7 [110] AD4-4 T7F		535 	530 AAcTo AAATT	525 GCLAc GCCAA	oC-AA	515 tgcAt 1 ACTAA 1	TCCTC	TATCA	500 tgtta AAGCG	495 aAAcg TAATT
AD2-2 T7 [110] AD4-4 T7F	490 <tgcat -t-0<br="">TGCAT GIGTG</tgcat>	485 480 Gocac AAA-t Gocat AAAct	ACAgA	ancCA	465 TG—A TGCTA	460 -Aaca o Gagta t	CC-A			•

1-90 [142] AD4-4 T7F			 AA	-TTG	140 g gToC-	Caaa	cccCc	cCTA-	oAgaT	CaAcG	110 gTAT- c CTATG G	CA_T
1-90 [142] AD4-4 T7F	105 <aogct TTGGC</aogct 	LGIAL	caAaT	Tacas	Actit	ncTT_	TT	CITI	TCATT	T4-	TO - 4 4	2.2
1-90 [142] AD4-4 T7F	45 <ggttt CGTAC</ggttt 	TooAG	TGAG-	-At Ac	ActIT	25 LCC— GCCAA	Clock	ACa4a	TOLTO	TAT TAT		

FIG.19

H REG GENE 50 55 60 65 70 75 80 85 90 95 100 105 [278] CTGGG ATGAC AGGCL TGAGC CACCO COCCO GCCCO TCATC AGTLL TTOTA LAGOG -OGGOD AD16C-T7-A CTGGG ATTAC AGGCA TGAGC TACTG AGCCT TAATG ATTAA TITTA GAGTG ATGGC

H REG GENE 110 115 120 125 130 140 145 150 155 160 [278] GOOGA CCT-L A-GA ALLER TA-GG COCAL AGLGA CAAGT TOLAG LO-LO LOLLE LLACO> AD16C-T7-A TIGTA CCTIC AAGCA ACATA TAGAG TIGAG ACAGA AAATT ICCAT CGTCC CGAGA AAACT

H REG GENE 165 170 175 180 185 190 195 200 205 210 215 220 [278] tTtCo -gATL tttot tttt oooct Gotaa Gaott gotta otaao Tagaa tTtoc tat-> AD16C-T7-A GTGCT GCATG GGCCC CGTGT GCCCT GTGAA GATCG CCCTA TTAAC TATAA ATGCG CATIG

H REG GENE 225 230 235 [278] L-0A- -LCTG L-CTL TTGAD AD16C-T7-A CACAT GGTTG CCAGC TTCA

AD16C 10 15 [266] aAcgt TicGA accta (cgtg> Human-PTP TACTG TGTGA GCCTG ACCTC AD16C 30 35 40 50 55 60 AAG-c -ccGA TTitA GAgtT aatAc -ggCT -gC- tTcAA GggA- acggg gCTaT --go-> Human-PTP AAGCA CAGGA TTOCA GAAAT GGAAG GATGT GOCTT GTGAA GACAA GTTCT COTTT GTCTG AD16C **75** 80 85 90 95 100 105 110115120 gAAGT -tttc tACgg GgoGC -oTG GAAAL TttcT GTCTc oAtoT GtgCt tGaAg gTACA> Humon-PTP CAAGT TCAAA AACTA GAGGC AGCTG GAAAA TACAT GTCTA GAACT GATCC AGCAA TTACA AD16C 135 140 145 150 155 160 165 170 175 180 ACCGL aTCLA AAATT AAtCa tt-oo ggCTo ggCtc agtAg CTClg CCTGt -o-aT CcCag> Human-PTP ACGGA GTCAA AAATT AAACC GGACC ATCTC TCCAA CTCAA CCTCG ACACT CTCTT AD16C 195 200 205 210 215 220 225

[266] CoC-t tTcgG gagGC Caa— gAcTg gaggA TcacT TcAg— ccCag gAo-t TTcaG AcgCc> Human-PIP CICTG CIGAG TITGC CITGT TAATC TICAA TAGIT TIACC TACCC CAGIC TITGG AACCT

230

235

240

38/52

AD16C-T7-A 205 [33]-VPCE Dr> HPTPAA VPCE DK

RPTP AA 115 120 [33]SgSLf LyKsW D> Translatio SSSLC LPKCW D

FIG.20A

ALIGNMENT OF AD16C-SP6 cDNA WITH AD2-2 SP6 cDNA

AD2-2 SP6 40 45 50 55 60 65 70 75 80 85 90 [362] CTLGC T-TG- --CCC AGGCT GGAGT GCCGC AATCC LGGCT CACTG CGACC TCCGC AD16C-SP6- CTCGC TCTGT CACCC AGGCT GAAGT GCAGT GCCCC AATCT CGGCT CACTG CGACC TCCAC

AD2-2 SP6 95 100 105 110 115 120 125 130 135 140 145 [362] CTCCC GOGCT CAORD OCTIC TOCTG CCTCA —GCC TC-G——TG AGCCG CTGCG ACTAC AD16C-SP6— CTCCC GCGTT CACTT CATTC TCCTG CCTCA CTGCC TCAGC CTCTG AGTAG CTGCG ACTAC

AD2-283 50 55 60 65 70 75 80 85 90 95 100 105 [374] CCGTG TICGL CAGGC TGGTG TCGAG CTCCT GACCT CGTGA TCCGC CCGCC TCGCC CLCCC> AD16C-SP6- CCGTG TTGGC CAGGA TGGTC TCGAT CTCCT GACCT CGTGA TCCGC CCGCC TTGGC CACCC

AD2-283 110 115 120 125 130 [374] AAAG1 G-cTG GGATT ACAGG CGTGC> AD16C-SP6- AAAGA GTTTG GGATT ACAGG CGTGC

FIG.20B

FIG. 21D

G2-2Ps1-MI3F SEQUENCE

Sequence Range: 1 to 251

TIGCAG CAATG GCAAC AACGT CTGCA AACTA TTAAC TIGCG AACTA CITAC TICTAG CTTCC 60 CGGCA ACAAT TAATA GACTG GATGG AGGCG GATAA AGTTG CAGGA CCACT TICTGC GCTCG 120 GCCCT TICCGG CTGGC TIGGTT TATTG CTGAT AAATC TIGGAG CCGGT CGAGC GTGGG TICTGG 180 CGTAT CATTC GAGCA CTGCG GCCAG ATGGT AAGCC CTCCG TATCG TAGTT ATCTC ACAGC 240 AGGGA GTCAG G

FIG.22

G2-2Pst-M13R SEQUENCE

Sequence Range: 1 to 242

TIGCAG GAGCE GOGAG GCACG ATGGC COCTT TIGGTC COGAT CITTLE TIGAGG AACCT TACTT 60 CTGTG GTGTG ACATA ATTGG ACAAA CTACC TACAG AGATT TAAAG CTCTA AGGAA ATATA 120 AAATT TITAA GTGTA TAATG TIGTTA AACTA CTGAT TCTAA TTGTT TIGTGT ATTTT AGATT 180 CCAAC CCTAT GGAAC CTGAT GAATG GGAGC CAGTG GTGGA ATGCC TITAA TIGAGG AAACC 240 TG

FIG.22A

G2-2Pst1-EcoR1-M13F SEQUENCE

Sequence Range: 1 to 208

TGCAG CAATC TITCT TATAT ACATG CTTAA TAGAT AGCTA CTTAA AATAA CTTAC ACACG 60
TITTA GAGTT GCTTG AAAAC TATCT GATCA AGACA TAGTA ATTGA AACCA ATGAA TACAT 120
TATAT AAAGT AAAGG AAAGG AGAAG AGAGG AAAGG GAGGG GAAGA GGAGA GGAGA GGACA 180
AGCGA GAAAG GAAAG GGAAG GGAGA AAA

208

FIG.22B

Gen2-2Pst1-EcoR1-M13R SEQUENCE

Sequence Range: 1 to 152

CTCAC TAAAG GGATC AAGGA ATAAT TITIGA ATTTC AAGTC TTACA TITTAA TAAAT ACATT 60 CATAA GGCTA TAACT ACCAT ACGTT GTGAT TTCTC TGATT AATTT AAAAA TAAAT TAAAA 120 CCTGG AAAGA ATTTT ACCAT TCTAG GAAGC CA

FIG.22C

G2-2Pst1-EcoR1-T7 SEQUENCE

Sequence Ronge: 1 to 338

AATCT ATCTT ATATA CATGC TTAAT AGATA GCTAC TTAAA ATAAC TTACA CACGT TTTAG 60
AGTTG CTTGA AAACT ATCTG ATCAA GACAT AGTAA TIGAA ACCAA IGAAT ACATT ATATA 120
AAGTA AAGGA AAGGA GAAGA GAGGA AAGGA GGGGA GAGGA GAGGA GGACA AGCGA GAAAA 180
CGAAG CGAAG CGAGA AAAAG GGGGA AAGGG AGCTA GAGAG AGAGA GAAAA AGTGC TGGTC 240
ATATA GTAAG TGTAC ATTTT AACTT TTTAA GAAAC TACCC TACTC TATTC CAGAG IGATT 300
GTACA IGTGC ATTTT ACTGC ATTAT AGAGA TCATT TTC

FIG.22D

G5dPs1-M13R SEQUENCE

-Sequence-Ronge:-1-to-169-

TGCAG GAGTG GCGAG GCACC ATGGC COCTT TGGTC COGAT CTTTG TGAAG GAACC TTACT 60
TCTGT GTGTG ACATA ATTGG ACAAA CTACC TACAG AGATT TAAAC GTCTA AGGTA AATAT 120
AAAAT TTTTA GTGTA TAGGT TAAAC TACTG ATTCT AATGT TGTGT ATTT

169

G5d Pst-T71 SEQUENCE

Sequence Range: 1 to 209

CCCCG GGCTG CAGCA ATGGC AACAA CGTCT GCAAA CTATT AACTG GCGAA CTCAT TCATC 60
TAGCT TCCCG GCAAC AATTA ATGAC TGGAT GGAGG CGGAT AAAGT TGCAG GACCA CTTCT 120
CGCGT GGCCC TTCCG GCTGG CTGCT TTATT GCTGA TAATT GAGCG TGCGA GTGGC TCGCG 180
TATCA TTCCC GACAT GGCCC AGTAG GTAC

FIG.22F

G5dPst1-EcoR1-SP SEQUENCE

Sequence Range: 1 to 272

CTTGC CCTTC ATGGA GTCAT ACAGC CGATC AGCAA AATGC AGGGG CTTGT ICTGA ATGCA 60 CTGAA CCAGG ITCAG GAAAG CATTT TCCAG GTCTC CTTTA ACCTC TTTCC IGATG CTTTC 120 CAACA IGTCA TAAGG GCTGT AACTC TTGTA CCTAT CAAAT ACTTT CTGGA GGTGG GGACA 180 CGCTC CGCTC GGTCA TGATG CTGAT CCACT IGGGA ACATC AGTTC TTTCC TCTTC ACTCC 240 AGCTG CATAG AGATC CGAGG ACTCT IGGTC AA

FIG.22G

G5dPst1-EcoR1-t7 SEQUENCE

Sequence Range: 1 to 278

ACCCC CCAGC TTCCT TCAAA ATGTC TACTG TTCAC GAAAT CCTGT GCAAG CTCAG CTTGG 60
AGGGT GATCA-CTCTA-CACCC CCAAG TGCAT ATGGG TCTGT CAAAG CCTAT ACTAA CTTTG 120
ATGCT GAGCG GGATG CTTTG AACAT TGAAA CAGCC ATCAA GACCA AAGGT GTGGA TGAGG 180
TCACC ATTGT CAACA TTTTG ACCAA CCGCA GCAAT GACAC GAGAC AGGAT ATTGC CTTCG 240
CCTAC CAGAG AAGGA CCAAA AAAGG AACTT GCATC ACA

FIG.22H

44/52 ALIGNMENT OF G2-2Psl1 with HUMAN REG GENE (1)

H REG GENE 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 [228] ——AG CAATO GCAA——AGGO GOGGA AACTA OTALL TOGC— AA—gg LTTAL TCTLC CTTLG> G2—2Pst—M13F AG CAATG GCAAC AACGI CTGCA AACTA TTAAC TGGCG AACTA CTTAC TCTAG CTTCC

H REG GENE 34653470 3475 3480 3485 3490 3495 3500 3505 3510 [228] tGLCA gCALT TetgA GLGTG CACGC CAGGG ACACT TACTA GACTG GATGC AGGCG GATAA AGTTG CAGGA CCACT TCTGC GCTCG

H REG GEN3515 3520 35253530 3535 3540 3550 3555 3563565 3575 3580 [228] aCCac TgCct CTGtC TGG-c ccTTc CccAT AgAoC cGccG CtGGT gGAGC GTGGG TCcCt> G2-2Pst-M13F GCCCT TCCCG CTGGC TGGTT TATTG CTGAT AAATC TGGAG CCGGT CGACC GTGGG TCTCG

H REG GENE 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 [228] gGTcT CcToC aagle CTGGG G-CA- LTGG- -AGCC CcaaG ca—G T-GTT A-aTC clgGC> G2-2Pst-MI3F CGTAT CATIC GAG Q CTGGG GCCAG ATGGT AAGCC CTCCG TATCG TAGTT ATCTC ACAGC

EXONS 45 50 55 60 65 70 75 80 85 90 95 [124] gGTcT CcToC dagle CTGGG G-CA- LTGG- -AGCC CcdoG cA--G T-GTT A-dTC ctgGC> G2-2Pst-M13F CGTAT CATTC GAG Q CTGGG GCCAG ATGCT AAGCC CTCCG TATCG TAGTT ATCTC ACAGC

H REG GENE3535 3640
[228] ActGt GTqAG>
G2-2Pst-M13F AGGGA GTCAG

ALIGNMENT OF G2-2Pst with HUMAN REG GENE (2)

H REG GENE 3155 3160 3165 3170 3175 3180 3185 3195 3200 [194] — AG GAGGC ELGEG GLA-0 AGGEC ELGEG CEGT CEGT CEGT CEGT TG-GC AACCT TA-gT> G2-2Pst-MI3R AG GAGCC GGGAG GCACC ATGGC CEGTT TGGTC CEGAT CITTE TGAGG AACCT TACTT

H REG GEN3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 [194] OTOCL GOOTG ALATA A-TOL ALCAA COACL GALGG LCAGC CAALG CTGTG CLG-9 ATATG> G2-2Pst-M13RCTGTG GTGTG ACATA ATTGG ACAAA CTACC TACAG AGATT TAAAG CTCTA ACGAA ATATA

H REG GENE 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 [194] AgggT ccT-g GgccA cAAGG acooA AAGT- CoGgo oCcAc TI-TI TooGI gagaT ActTI> G2-2Psi-M13RAAATI TITAA GIGTA TAATG TGTTA AACTA CTGAT TCTAA TIGTT TGTGT ATTTI AGATT

H REG GEN3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 [194] ggglC lCTgT -cAAG LTCAT GACGC LLALL LCLTG GTGGA ATGCG GTTAA TGAG> G2-2Ps1-M13RCCAAC CCTAT GGAAC CTGAT GAATG GGAGC CAGTG GTGGA ATGCC TITAA TGAG

G2-2Pst-Ma3F 150 155 160 165 170 175 180 185 190 195 [130] ——TA GALCE GGGGC CGG— -TCGA GC-GT GGGTC CCTGG TCTCC TACAA GTCCT TACAA GTCCT

G2-2pst-MI3F 200 205 210 215 220 225 230 235 240 245 250 [130] GGGGC —coG A-tgg taagc cetec gtatc gtoct ta-tc tooca gcogg gogtc agg> EXON5 GGGGC ATTGG AGCCC CAAGC AGTGT TAATC CTGGC TACTG TGTGA GCCTG ACCTC AAG

46/52 ALIGNMENT OF G2-2PST-ECOR1-T7 WITH HUMAN REG GENE

H REG GENE [132] ———————————————————————————————————	335 -at-agata at agata	340 A LCTAC A GCTAC	TTEAL	tcalt	TTACA	HECTG	-TTTAY
H REG GENE 370 375 380 385 [132] —GTO LITTLA LLA-I ATLIL GIL GZA-EP 17 GAGIG CIIGA AAACI ATCIG ATC	A- AT-	190 39 190 39	35 4	100 4	105	110	415
RAT PTP [82] ——————————————————————————————————					 ≺⊺(740 988q qi T <i>i</i>	
RAT PTP 730 725 720 71 [82] <—Til ollTA -AAlg lgCA- ggG Gen2dEP-Ma CATAA GGCTA TAACT ACCAT ACG	-A-A-	I aCaa	Taat-	- A T		- .	
RAT PTP 68675 670 665 [82] <cgogg aaaga="" acca<="" atgtt="" atttt="" caaga="" cctgg="" g2-2pst-ecor1-mi="" td="" —=""><td>-In TOTAL</td><td>555 Gaag Gaag</td><td></td><td></td><td></td><td></td><td></td></cgogg>	-In TOTAL	555 Gaag Gaag					

Human-PTP 270 280 285 290 295 300 305 315 ACCTG GtGct gTgCT cAC-C cAGgc cgoGG gtgC- cTTtg TgGcC T-cAc tGAtt> [166] AACTG GOGAA ČTÁCT TACTC TAGČT TČOGG ČAĂCA ATTAĂ TĂGAC TGGAT GGAGG G5dPst-t Human-PTP 320 325 330 335 340 345 350 355 360 365 370 [166] adG-g AgAGT gCCAt GAtgA CTTCo olG-T CLG-g aTT- GGC- -CTcc aTgAc ccCoa> G5dPst-t COGAT AAAGT TOCAG GACCA CTICT GOCCT COGCC CTICC COCTG GCTGG TITAT TOCTG Human-PTP 375 380 385 405 410 415 420 425 395 400 430 435 Adaga occos cocto ogoac cotos citos teste tocto coast cotos oc-ca -tios> [166] G5dPst-t ATAÃA TOTGO AGOOG GTGAG OGTGG GTCTC GÓGTA TOATT GCAGO ACTGG GGCCA GATGG Humon-PTP 440 445 450 455 460 465 166 -AGC CCcoo GcA- GTGtT oATCc tggCt ACtGt GtG-A -GcC> G5dPst-t TAAGC CCTCC GTATC GTGGT TATCT ACACG ACCGC GAGTA CGGC

FIG.23C

H REG GENE

[158]

AG GC-Cc ATGOL COGTT T-T- totAT gagga gaAaa gAACC TTAGo>
AG GCACG ATGGC CGCTT TGGTC CGGdT CTTTG TGAAG GAACC TTACT

H REG GENE 120 125 130 135 140 145 150 155 160 165 170 175 [158] OTTGT GGGC AGATA CTOLG ACAAA -TLGL GALAL ALATT CLLAC OTLTC AGOT- -LTLT> G5dPst-M TCTGT GTGTG ACATA ATTGG ACAAA CTACC TACAG AGATT TAAAC GTCTA AGGTA AATAT

H REG GENE 180 185 190 1195 200 205 210 215 220 [158] ALLIT TIGGA CIGTA TAGGO TIGAL TAGTO AGTOD AAT-T T-GGT ATT> G5dPst-N AAAAT TITTA GTGTA TAGGT TAAAC TACTG ATTCT AATGT TGTGT ATT

G5dPst-t [118] EXON5	125 130 135 140 145 TA GAACC GCCCC TGGCA CTGGA GCAGT GGGTC (150 155 160 165 LCgcG TaTCa TtgcA GcoCTX XCTGG TCTCC TACAA GTCCT
G5dPst-t [118] EXON5	170 175 180 185 190 195 200 205 GGGGC —cog A-lgg laage cetec glate gtggt ta—te t—cea GGGGC attigg agence caage agtgt taate etgge tactg tigtga	210 215 220 —cG ACggg gAGta> GCCTG ACCTC AAGCA
G5dPst-t [118] EXON5	C-GG>	

FIG.23D

FIG.24C

FIG.24D

FIG. 27A

FIG. 27B

INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/17111

		T/US95/17111
A. CLASSIFICATION OF SUBJECT MATTE	R	
IPC(6) :Please See Extra Sheet		
US CL :Please See Extra Sheet.		
According to International Patent Classification (IPC)	or to both national classification and I	PC
D. PIELUS SEARCHED		
Minimum documentation searched (classification system)	m followed by classification symbols	
U.S. : 435/6, 7.1, 69.1, 240.1, 320.1; 424/9.1;	520/250 A . 525/20 5 . 0 . 0 . 0 . 0	
Documentation searched other than minimum document	ration to the art was a	
	and the extent that such documents	are included in the fields searched
Electronic data base consulted during the interesting		
Electronic data base consulted during the international APS, Chemical Abstracts	search (name of data base and, where	practicable, search terms used)
o, Chemical Austracts		•
DOCUMENTS CONSIDERED TO DE LA		
TO BE RELE	VANT	
ategory* Citation of document, with indication,	where an experience of the state of	
American Journal of Clinical	Pathology V-tree 100	
July 1993, M. Abe et al, "P	roduction -4:	ssued 1-20
Applications of Antibure	roduction of immunodiage	nostic
~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	e especially page 74, para	graph
1.	,,,	8· -p
		1
Science, Volume 237, issued	03 July 1987 C Bahana	
al, "Localization of Amyloid Brains from Patients with At	Protein Manage	var et 30-31, 37, 41
Brains from Patients with Al	b Lincall Messenger KV	IA in and 44-48
Brains from Patients with Al 80, see especially page 79.	zneimer's Disease", page:	3 77-
907 000 especially page 79.		i i
·		
		j j
1		į l
	•	1 1
		1
		1 1
Further documents are listed in the continuation of	Box C. See patent family an	
Special entegories of cited documents:		nex.
	"T" inter document published after	r the intermelecal filing date or priority
document defining the present state of the art which is not comit to be of particular relevance		the pression of contraction the
earlier decement published on or other the international filling de		tace; the chimal invention course to
document which may throw doubts on priority claim(s) or which the publication date of mother citation or openial reason (so marched)	ch is —————— when the document is taken a	tance; the claimed investion cannot be considered to involve as investive step.
special resease (so specified)		
document referring to an oral discioners, too, exhibition or a	considered to involve as a	mace; the chimnel invention cannot be inventive step when the document is that each document in
		ther such documents, such combination and in the art
document published prior to the international filing date but later the priority date claimed	then "A" decement member of the more	
f the actual completion of the international search		T .
	Date of mailing of the internation	nal search report
ARCH 1996	2 5 MAR 1998	1
and mailing address of the total	7 0 INNO 1930	
and mailing address of the ISA/US nizeioner of Patents and Trademarks	Authorized officer	
ington, D.C. 20231	1 500 15	
•	Deborah Crouch, Ph.D.	abut L
7.27000	Telephone No. (703) 308-019	
CT/ISA/210 (second sheet)(July 1992)*		

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US95/17111

		PCT/US95/17:	
C (Continue	ution). DOCUMENTS CONSIDERED TO BE RELEVANT		·
Category*	Citation of document, with indication, where appropriate, of the releva	nt passages	Relevant to claim N
x	Nucleic Acids Research, Volume 22, No. 12, issued 19. Denman et al, "Ribozyme Mediated Degradation of β -A Peptide Precursor mRNA in COS-7 Cells", pages 2375-especially pages 2380-2381, bridging paragraph.	myloid	38-40,42 and 43
¢ .	Nature, Volume 331, issued 11 February 1988, P. Ponts New A4 Amyloid mRNA Contains a Domain Homologo Serine Proteinase Inhibitors*, pages 525-527, see especia 2, page 526.	us to	21-29,33, 36, 49 and 50

INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/17111

A. CLASSIFICATION	OF SUBJECT MATTER:	
IPC (6):		

C12Q 1/68; G01N 33/53; C12P 21/06; C12N 5/00, 15/00; A61K 31/70, 49/00; C07K 1/00; C07H 21/02, 21/04

A. CLASSIFICATION OF SUBJECT MATTER: US CL :

435/6, 7.1, 69.1, 240.1, 320.1; 424/9.1; 530/350+; 536/23.5, 24.31, 24.5; 514/44

Form PCT/ISA/210 (extra sheet)(July 1992)#