An Autonomous Institute Affiliated to Savitribal Phule Pune University Approved by AICTE, New Delhi and Recognised by Govt. of Maharashtra Accredited by NAAC with "A+" Grade | NBA - 5 UG Programmee

A

Report on

"CNN-Based Object Detection for Pneumonia Detection in Chest X-ray Image"

--Vaishnav Tanaji Kokate---

[Roll No : A-53]

Under the Guidance of

Ms.S.A.BAGAL

Assistant Professor, AI & DS Department

[TY BTech. Artificial Intelligence & Data Science]

AY (2024-2025)

At

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE AISSMS IOIT Pune

Affiliated to

SPPU

CERTIFICATE

This is to certify that the report entitled "_" submitted by stu	dentis a
record of work carried out by him/her, in partial fulfillment of re-	equirement for Third Year of
Engineering AI-DS at AISSMS IOIT Pune 411001. This work is de	one during the academic year
2024-2025, under our guidance.	
Date: Place: Pune	
Guide [Ms.S.A.Bagal]	OD, AI-DS [Dr.R.A.Jamadar]

Flow of Report

Title page/Certificate/Acknowledgement
Index
Abstract
Hardware /Software Requirement
Methodology
Modules
Working
Features
Test Cases
Advantages/Limitation
Future Scope
Conclusion
References

ABSTRACT

Pneumonia is a serious lung infection that can lead to severe health complications if not diagnosed and treated on time. Chest X-ray analysis is one of the primary diagnostic tools used by radiologists to detect pneumonia. However, manual interpretation of X-rays can be subjective and prone to errors.

This project aims to develop a deep learning-based Convolutional Neural Network (CNN) model to automatically detect pneumonia from chest X-ray images. By leveraging CNN architectures, the model efficiently extracts meaningful features from medical images and classifies them as normal or pneumonia-affected. The project makes use of the Chest X-ray Pneumonia dataset from Kaggle to train and evaluate the model.

Using data augmentation, transfer learning techniques, and fine-tuning, we optimize the CNN model to improve classification accuracy. The final model can be integrated into a web or mobile-based healthcare application, assisting medical professionals in faster and more accurate diagnosis of pneumonia.

Hardware /Software Requirement

Hardware Requirements:

- Processor: Intel Core i5/i7 or higher (for better processing speed)
- RAM: Minimum 8GB (Recommended 16GB)
- GPU: NVIDIA GPU with CUDA support (for accelerated deep learning training)
- Storage: Minimum 10GB free space for dataset and model storage

Software Requirements:

- Operating System: Windows, Linux, or macOS
- Programming Language: Python 3.x
- Libraries Used: TensorFlow, Keras, OpenCV, Matplotlib, Seaborn, NumPy, Pandas
- IDE: Google Colab / Jupyter Notebook
- Dataset: Kaggle's Chest X-ray Pneumonia Dataset

Methodology

The project follows a structured **deep learning pipeline** to achieve pneumonia detection:

- 1. **Data Collection:** The dataset is downloaded from Kaggle and consists of labeled chest X-ray images classified into two categories:
 - Normal (Healthy Lungs)
 - Pneumonia (Infected Lungs)

2. Data Preprocessing:

- Images are **resized to 150x150 pixels** for consistency.
- **Normalization** is applied by scaling pixel values between 0 and 1.
- **Data Augmentation** techniques (rotation, flipping, zooming) are used to enhance model generalization.

3. CNN Model Design:

- A Convolutional Neural Network (CNN) with multiple layers of convolution, max pooling, dropout, and dense layers is built.
- The model is trained using binary cross-entropy loss and Adam optimizer.

4. Model Training & Evaluation:

- The dataset is split into **training**, **validation**, **and testing sets**.
- The model's performance is evaluated using accuracy, precision, recall, F1-score, and confusion matrix.

Modules

The project is divided into several key modules:

1. Data Loading and Preprocessing Module:

- Reads the dataset from the directory.
- o Resizes, normalizes, and augments the images.

2. CNN Model Training Module:

- Defines the architecture of the CNN.
- o Trains the model on the dataset using TensorFlow/Keras.

3. Evaluation Module:

- o Tests the model using unseen data.
- Generates evaluation metrics to assess performance.

4. Prediction Module:

- Takes an input chest X-ray image.
- Outputs a classification result: **Normal or Pneumonia**.

Working

- 1. The dataset is downloaded and extracted from Kaggle.
- 2. The images are preprocessed (resized, normalized, and augmented).
- 3. A CNN model is designed with convolutional, pooling, and fully connected layers.
- 4. The model is trained using training and validation data.
- 5. The trained model is evaluated on a test dataset.
- 6. A new chest X-ray image is given to the model, which predicts whether the patient has pneumonia or not.

Features

- ✓ Automated Pneumonia Detection Reduces dependency on manual interpretation.
- ✓ Deep Learning-Based Approach More accurate than traditional methods.
- ✓ Data Augmentation Improves model generalization on unseen images.
- ✓ Transfer Learning Support Can integrate with pretrained models like VGG16 or ResNet.
- ✓ Scalability Can be extended for use in hospitals and healthcare applications.

Test Cases

Test Case	Input	Expected Output	Actual Output
Normal Chest X-ray	Healthy X-ray	"Normal"	"Normal"
Pneumonia Chest X-ray	Infected X-ray	"Pneumonia"	"Pneumonia"
Non-X-ray Image	Random Image	Error Message	Error Message

Advantages & Limitation

Advantages -

- Automates pneumonia detection and assists medical professionals.
- Deep learning-based approach provides high accuracy.
- Scalable for mobile and cloud deployment.

Limitations -

- High dependency on dataset quality for reliable performance.
- Requires GPU for faster training.

Future Scope

- Pretrained Models: Improve accuracy using VGG16, ResNet, or Inception.
- Multi-Class Classification: Extend to detect other lung diseases.
- Mobile Integration: Develop an AI-powered healthcare mobile app.
- Cloud Deployment: Make the model accessible on Google Cloud or AWS.

Conclusion

This project successfully demonstrates how CNN-based deep learning models can be leveraged for pneumonia detection using chest X-ray images. The model achieves high accuracy through data augmentation and fine-tuning. Future advancements could integrate mobile-based AI diagnostics and real-time cloud processing, making AI-driven pneumonia detection more accessible to healthcare professionals worldwide.

References

- Kaggle Dataset: Chest X-ray Pneumonia
- TensorFlow & Keras Documentation
- Research papers on AI in Medical Imaging