HW#8 (CSC 390): SOLUTION

Q1. The following Circuit performs the division of two 32-bit unsigned binary numbers and produces the Quotient and Remainder in the respective registers. Figure 1 shows the three steps division algorithm that the circuit performs to produce the result. Suppose, you are assigned to design a 5-bit division circuit that will perform the division of the two 5-bit unsigned numbers $A=(11011)_2$ and $B=(00101)_2$ and produce the Quotient and Remainder of the division. Draw the necessary hardware and show the results produced in each iteration of your algorithm. Hints: see figure 3.10 (page 192) of our text book.

Iteration	Step	Quotient	Divisor	Remainder	
0	Initial Value	00000	0010100000	0000011011	
1	1: Rem = Rem - Div	00000	0010100000 1101111011		
	2b : Rem < 0 => +Div, sll Q, Q0 = 0	00000	0010100000	0000011011	
	3: Shift Div right	00000	0001010000	0000011011	
2	1: Rem = Rem - Div	00000	0001010000 1111001011		
	2b : Rem < 0 => +Div, sll Q, Q0 = 0	00000	0001010000	0000011011	
	3: Shift Div right	00000	0000101000	0000011011	
3	1: Rem = Rem - Div	00000	0000101000	1111110011	
	2b : Rem < 0 => +Div, sll Q, Q0 = 0	00000	0000101000	0000011011	
	3: Shift Div right	00000	0000010100	0000011011	
4	1: Rem = Rem - Div	00000	0000010100	000000111	
	2a : Rem ≥ 0 => sll Q, Q0 = 1	00001	0000010100	000000111	
	3: Shift Div right	00001	000001010	000000111	
5	1: Rem = Rem - Div	00001	000001010	1111111101	
	2b : Rem < 0 => +Div, sll Q, Q0 = 0	00010	000001010	000000111	
	3: Shift Div right	00010	000000101	000000111	
6	1: Rem = Rem - Div	00010	000000101	000000010	
	2a : Rem ≥ 0 => sll Q, Q0 = 1	00101	000000101	000000010	
	3: Shift Div right	00101	000000010	000000010	

 $A=(11011)_2 \rightarrow 27$; $B=(00101)_2 = 5$; $A/B = 27/5 \rightarrow$

Quotient = $5 \rightarrow 000101$ and

Remainder = 2 → **00010**

Interation	Divisor	Hardware design		
		Step	Remainder	
0	00101	Initial value	00000 11011	
		Shift remainder left by 1	00001 10110	
1	00101	Remainder = remainder -division	11100 10110	
		Remainder < 0 => +division, shift left; r0 = 0	00011 01100	
2	00101	Remainder = remainder -division	11110 01100	
		Remainder < 0 => +division, shift left; r0 = 0	00110 11000	
3	00101	Remainder = remainder -division	00001 11000	
		Remainder > 0 => shift left; r0 = 1	00011 10001	
4	00101	Remainder = remainder -division	11110 10001	
		Remainder < 0 => +division, shift left; r0 = 0	00111 00010	
5	00101	Remainder = remainder -division	00010 00010	
		Remainder > 0 => shift left; r0 = 1	00100 00101	
Done	00101	Shift "left half of remainder" right by 1	00010 00101	

Q3.

• $(6.725)_{10} = 110.101110011001100110011_2 = 1.10101110011001100110011_2 \times 2^2$

So, we represent (6.725)₁₀ as

 $(-1)^0$ x $(1+10101110011001100110011_2)$ x $(2)^2$

S = 0

fraction = 1010111001100110011exponent = $2 + bias = 2 + 127 = 129_{10} = 10000001_2$

=> Floating point format:

• $-0.3125_{10} = 0.0101_2 = 1.01_2 \times 2^{-2}$ So, we represent -0.3125_{10} as

(-1)-1 x (1+ 0.01₂) x 2-2

S = 1

Address	Value (+0)	Value (+4)	Value (+8)	Value (+c)	Value (+10)	Value (+14)	Value (+18)	Value (+1c)
0×10010000	0x40d73333	0xbea00000	0×00000000	0×00000000	0×00000000	0x00000000	0×00000000	0x00000000