Week 3, lecture 2: Inverses modulo m. Chinese Remainder Theorem

MA180/185/190 Algebra

Angela Carnevale

Division modulo m

Chinese Remainder Theorem

Inverses and division modulo m

Combining Bézout's Theorem (see slides from Lecture 3) and the theory of congruences we get the following result.

Linear congruences and division modulo m

The linear congruence

$$ax \equiv 1 \pmod{m}$$

has a solution if and only if gcd(a, m) = 1.

In practice:

- If gcd(a, m) = 1, we can find one solution to the above equation by using Euclid's algorithm backwards.
- If the result is not one of the numbers in \mathbb{Z}_m , we add/subtract multiples of m until finding an integer in the range $0, 1, \ldots, m-1$.

Example

Example. Find, if it exists, $x \in \mathbb{Z}_{15}$ such that

$$7x \equiv 1 \pmod{15}.$$

· Euclid's algorithm:

· Euclid's algorithm backwards

$$1 = 15 + 7 \cdot (-2)$$

this equation med 15 becomes: 7.(-2)=1 (mod 15)

So
$$X = -2 = 13$$
 (mod 15)

Inverses and division modulo m

The previous result tells us how to define "division" modulo m, and when it is possible to perform it:

Division modulo m

We can make sense of

$$\frac{b}{a}$$
 (mod m) as $b \cdot a^{-1}$ (mod m).

In turn, an integer $a \in \mathbb{Z}_m$ has an inverse a^{-1} (modulo m) **if and only if** $\gcd(a, m) = 1$.

Examples.

ightharpoonup Compute, if it exists, $7^{-1} \pmod{9}$

We can proceed as usual with Euclid's algorithm (backwards) to find 7-1 (mod 9). Alternatively, since the modulus is quite small, we can look for an inverse among the elements of Z9:

0 1 2 3 4 5 6 7 8

The following observation rules out some of the above condidates:

Note. If gcd(a,m)=1 then there exists a number $\bar{a}' \in \mathbb{Z}m$ (we know this....)

Such number \bar{a}' is also COPRIME with m!

This restricts our search: $\times 12 \times 45 \times 78$ We can now easily see that 4 is the number we were booking for: $7.4 = 28 \equiv 1 \pmod{9}$

So 7=4 in Zg.

Inverses and division modulo m

The previous result tells us how to define "division" modulo m, and when it is possible to perform it:

Division modulo m

We can make sense of

$$\frac{b}{a}$$
 (mod m) as $b \cdot a^{-1}$ (mod m).

In turn, an integer $a \in \mathbb{Z}_m$ has an inverse a^{-1} (modulo m) **if and only if** $\gcd(a, m) = 1$.

Examples.

ightharpoonup Compute, if possible, $3 \cdot 5^{-1} \pmod{9}$

Again, since gcd(5,9)=1 we know 5^{-1} exists. We can easily see that $5^{-1}=2$ in \mathbb{Z}_q (since $5\cdot 2=10=1$ (mod 9))

So:
$$3.5 = 3.2 = 6 \pmod{9}$$
.

Division modulo m

Chinese Remainder Theorem

Simultaneous congruences

Recall one of our challenges from the first lectures:

There are certain things whose number is unknown. If we count them by threes, we have two left over; by fives, we have three left over; and by sevens, two are left over. How many things are there?

We now know how to reformulate this problem in the language of congruences: Call the unknown quantity x we are looking for x such that All of the following hold:

$$\begin{cases} X = 2 \pmod{3} \\ X = 3 \pmod{5} \\ X = 1 \pmod{4} \end{cases}$$

A simpler version

Let's take one step back and consider the following two simultaneous congruences: we'd like to find x such that, **both of the following** are satisfied:

$$x \equiv 2 \pmod{3}$$
 and $x \equiv 3 \pmod{5}$. (*)

- Consider the following linear congruence: $5x \equiv 1 \pmod{3}$. We can easily see that 2 is a solution to that.
- Consider the following linear congruence: $3x \equiv 1 \pmod{5}$. Again, 2 is a solution to that.

We can use these facts to construct a number that satisfies both equations in (*):

$$\chi_0 = 5 \cdot 2 \cdot 2 + 3 \cdot 3 \cdot 2$$