Hmmm, How Does This Work?!

Solution: Virtual Memory (today and next lecture)

Today

Address spaces	CSAPP 9.1-9.2
VM as a tool for caching	CSAPP 9.3
VM as a tool for memory management	CSAPP 9.4
VM as a tool for memory protection	CSAPP 9.5
Address translation	CSAPP 9.6

A System Using Physical Addressing

 Used in "simple" systems like embedded microcontrollers in devices like cars, elevators, and digital picture frames

A System Using Virtual Addressing

- Used in all modern servers, laptops, and smart phones
- One of the great ideas in computer science

Address Spaces

■ Linear address space: Ordered set of contiguous non-negative integer addresses:

$$\{0, 1, 2, 3 \dots \}$$

- Virtual address space: Set of N = 2ⁿ virtual addresses {0, 1, 2, 3, ..., N-1}
- Physical address space: Set of $M = 2^m$ physical addresses $\{0, 1, 2, 3, ..., M-1\}$

Why Virtual Memory (VM)?

- Uses main memory efficiently
 - Use DRAM as a cache for parts of a virtual address space
- Simplifies memory management
 - Each process gets the same uniform linear address space
- Isolates address spaces
 - One process can't interfere with another's memory
 - User program cannot access privileged kernel information and code

Today

- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
- VM as a tool for memory protection
- Address translation

VM as a Tool for Caching

- Conceptually, virtual memory is an array of N contiguous bytes stored on disk.
- The contents of the array on disk are cached in physical memory (DRAM cache)
 - These cache blocks are called pages (size is P = 2^p bytes)

DRAM Cache Organization

DRAM cache organization driven by the enormous miss penalty

- DRAM is about 10x slower than SRAM
- Disk is about 10,000x slower than DRAM
- Time to load block from disk > 1ms (> 1 million clock cycles)
 - CPU can do a lot of computation during that time

Consequences

- Large page (block) size: typically 4 KB
 - Linux "huge pages" are 2 MB (default) to 1 GB
- Fully associative
 - Any VP can be placed in any PP
 - Requires a "large" mapping function different from cache memories
- Highly sophisticated, expensive replacement algorithms
 - Too complicated and open-ended to be implemented in hardware
- Write-back rather than write-through

Enabling Data Structure: Page Table

- A page table is an array of page table entries (PTEs) that maps virtual pages to physical pages.
 - Per-process kernel data structure in DRAM

Page Hit

Page hit: reference to VM word that is in physical memory (DRAM cache hit)

Page Fault

Page fault: reference to VM word that is not in physical memory (DRAM cache miss)

Triggering a Page Fault

User writes to memory location

80483b7: c7 05 10 9d 04 08 0d movl \$0xd,0x8049d10

- That portion (page) of user's memory is currently on disk
- MMU triggers page fault exception
 - (More details in later lecture)
 - Raise privilege level to supervisor mode
 - Causes procedure call to software page fault handler

```
Exception: page fault handler
```

```
int a[1000];
main ()
{
    a[500] = 13;
}
```

Page miss causes page fault (an exception)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)
- Offending instruction is restarted: page hit!

Completing page fault

- Page fault handler executes return from interrupt (iret) instruction
 - Like ret instruction, but also restores privilege level
 - Return to instruction that caused fault
 - But, this time there is no page fault

```
int a[1000];
main ()
{
    a[500] = 13;
}
```

```
80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
```


Allocating Pages

Allocating a new page (VP 5) of virtual memory.

Locality to the Rescue Again!

- Virtual memory seems terribly inefficient, but it works because of locality.
- At any point in time, programs tend to access a set of active virtual pages called the working set
 - Programs with better temporal locality will have smaller working sets
- If (working set size < main memory size)</p>
 - Good performance for one process (after cold misses)
- If (working set size > main memory size)
 - Thrashing: Performance meltdown where pages are swapped (copied) in and out continuously
 - If multiple processes run at the same time, thrashing occurs if their total working set size > main memory size

Today

- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
- VM as a tool for memory protection
- Address translation

VM as a Tool for Memory Management

- Key idea: each process has its own virtual address space
 - It can view memory as a simple linear array
 - Mapping function scatters addresses through physical memory
 - Well-chosen mappings can improve locality

VM as a Tool for Memory Management

- Simplifying memory allocation
 - Each virtual page can be mapped to any physical page
 - A virtual page can be stored in different physical pages at different times
- Sharing code and data among processes
 - Map virtual pages to the same physical page (here: PP 6)

Simplifying Linking and Loading

Linking

- Each program has similar virtual address space
- Code, data, and heap always start at the same addresses.

Loading

- execve allocates virtual pages for .text and .data sections & creates PTEs marked as invalid
- The .text and .data sections are copied, page by page, on demand by the virtual memory system

0x400000

Today

- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
- VM as a tool for memory protection
- Address translation

VM as a Tool for Memory Protection

- Extend PTEs with permission bits
- MMU checks these bits on each access

Today

- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
- VM as a tool for memory protection
- Address translation

VM Address Translation

- Virtual Address Space
 - *V* = {0, 1, ..., N−1}
- Physical Address Space
 - $P = \{0, 1, ..., M-1\}$
- Address Translation
 - MAP: $V \rightarrow P \cup \{\emptyset\}$
 - For virtual address a:
 - MAP(a) = a' if data at virtual address a is at physical address a' in P
 - $MAP(a) = \emptyset$ if data at virtual address a is not in physical memory
 - Either invalid or stored on disk

Summary of Address Translation Symbols

Basic Parameters

- N = 2ⁿ: Number of addresses in virtual address space
- M = 2^m: Number of addresses in physical address space
- P = 2^p : Page size (bytes)

Components of the virtual address (VA)

- VPO: Virtual page offset
- VPN: Virtual page number

Components of the physical address (PA)

- PPO: Physical page offset (same as VPO)
- PPN: Physical page number

Address Translation With a Page Table

Address Translation: Page Hit

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory
- 4) MMU sends physical address to cache/memory
- 5) Cache/memory sends data word to processor

Address Translation: Page Fault

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory
- 4) Valid bit is zero, so MMU triggers page fault exception
- 5) Handler identifies victim (and, if dirty, pages it out to disk)
- 6) Handler pages in new page and updates PTE in memory
- 7) Handler returns to original process, restarting faulting instruction

Integrating VM and Cache

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Speeding up Translation with a TLB

- Page table entries (PTEs) are cached in L1 like any other memory word
 - PTEs may be evicted by other data references
 - PTE hit still requires a small L1 delay
- Solution: Translation Lookaside Buffer (TLB)
 - Small set-associative hardware cache in MMU
 - Maps virtual page numbers to physical page numbers
 - Contains complete page table entries for small number of pages

Summary of Address Translation Symbols

Basic Parameters

- N = 2ⁿ: Number of addresses in virtual address space
- M = 2^m: Number of addresses in physical address space
- P = 2^p : Page size (bytes)

Components of the virtual address (VA)

- TLBI: TLB index
- TLBT: TLB tag
- VPO: Virtual page offset
- VPN: Virtual page number

Components of the physical address (PA)

- PPO: Physical page offset (same as VPO)
- PPN: Physical page number

Accessing the TLB

MMU uses the VPN portion of the virtual address to access the TLB:

TLB Hit

A TLB hit eliminates a cache/memory access

TLB Miss

A TLB miss incurs an additional cache/memory access (the PTE)

Fortunately, TLB misses are rare. Why?

Level 2

Multi-Level Page Tables

- Suppose:
 - 4KB (2¹²) page size, 48-bit address space, 8-byte PTE
- Problem:
 - Would need a 512 GB page table!
 - $2^{48} * 2^{-12} * 2^3 = 2^{39}$ bytes
- Common solution: Multi-level page table
- Example: 2-level page table
 - Level 1 table: each PTE points to a page table (always memory resident)
 - Level 2 table: each PTE points to a page (paged in and out like any other data)

A Two-Level Page Table Hierarchy

Translating with a k-level Page Table

Today

- Simple memory system example CSAPP 9.6.4
- Memory mapping CSAPP 9.8

s bits b bits

index offset

Address of word:

data begins at this offset

CŤ

taa

Review of Symbols

Basic Parameters

- N = 2ⁿ: Number of addresses in virtual address space
- M = 2^m: Number of addresses in physical address space
- **P = 2**^p : Page size (bytes)

Components of the virtual address (VA)

TLBI: TLB index

TLBT: TLB tag

VPO: Virtual page offset

VPN: Virtual page number

0 1 2

E = 2^e lines per set

S = 2s sets

valid bit

Components of the physical address (PA)

PPO: Physical page offset (same as VPO)

PPN: Physical page number

CO: Byte offset within cache line

CI: Cache index

CT: Cache tag

(bits per field for our simple example)

B = 2^b bytes per cache block (the data)

Simple Memory System Example

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes

Simple Memory System TLB

- 16 entries
- 4-way associative

$$VPN = 0b1101 = 0x0D$$

Translation Lookaside Buffer (TLB)

Set	Tag	PPN	Valid									
0	03	-	0	09	0D	1	00	-	0	07	02	1
1	03	2D	1	02	_	0	04	_	0	0A	_	0
2	02	-	0	08	_	0	06	-	0	03	_	0
3	07	_	0	03	0D	1	0A	34	1	02	-	0

Simple Memory System Page Table

Only showing the first 16 entries (out of 256)

VPN	PPN	Valid
00	28	1
01	ı	0
02	33	1
03	02	1
04	_	0
05	16	1
06	-	0
07	_	0

VPN	PPN	Valid
08	13	1
09	17	1
0A	09	1
0B	1	0
OC	1	0
0D	2D	1
0E	11	1
OF	0D	1

 $0x0D \rightarrow 0x2D$

PPO

Simple Memory System Cache

- 16 lines, 4-byte cache line size
- Physically addressed

Direct mapped

V[0b00001101101001] = V[0x369]P[0b101101101001] = P[0xB69] = 0x15

ldx	Tag	Valid	В0	B1	B2	В3
0	19	1	99	11	23	11
1	15	0	-	_	-	_
2	1B	1	00	02	04	08
3	36	0	_	-	_	_
4	32	1	43	6D	8F	09
5	0D	1	36	72	F0	1D
6	31	0		-	_	
7	16	1	11	C2	DF	03

ldx	Tag	Valid	<i>B0</i>	B1	B2	В3
8	24	1	3A	00	51	89
9	2D	0	-	-	_	_
Α	2D	1	93	15	DA	3B
В	0B	0	-	-	-	_
С	12	0	-	-	-	_
D	16	1	04	96	34	15
Е	13	1	83	77	1B	D3
F	14	0	_	_	_	_

12

Address Translation Example

Virtual Address: 0x03D4

VPN **0x0F**

TLBI 0x3 TLBT 0x03 TLB Hit? Y Page Fault? N PPN: 0x0D

TLB

3	Set	Tag	PPN	Valid									
	0	03	_	0	09	0D	1	00	_	0	07	02	1
	1	03	2D	1	02	-	0	04	_	0	0A	-	0
	2	02	_	0	08	_	0	06	_	0	03	-	0
	3	07	-	0	03	0D	1	0A	34	1	02	1	0

Physical Address

Address Translation Example

Physical Address

Cache

CO <u>0</u>

ldx	Tag	Valid	В0	B1	B2	В3
0	19	1	99	11	23	11
1	15	0	_	-	-	_
2	1B	1	00	02	04	08
3	36	0	_	_	_	_
4	32	1	43	6D	8F	09
5	0D	1	36	72	F0	1D
6	31	0	_	_	_	_
7	16	1	11	C2	DF	03

Idx	Tag	Valid	В0	B1	B2	В3
8	24	1	3A	00	51	89
9	2D	0	-	_	_	_
Α	2D	1	93	15	DA	3B
В	0B	0	_	_	_	-
С	12	0	_	_	_	_
D	16	1	04	96	34	15
E	13	1	83	77	1B	D3
F	14	0	_	_	_	_

Address Translation Example: TLB/Cache Miss

Virtual Address: 0x0020

Physical Address

Page table

rage	abic	
VPN	PPN	Valid
00	28	1
01	_	0
02	33	1
03	02	1
04	_	0
05	16	1
06	-	0
07	_	0

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Address Translation Example: TLB/Cache Miss

Cache

ldx	Tag	Valid	В0	B1	B2	В3
0	19	1	99	11	23	11
1	15	0	_	-	_	-
2	1B	1	00	02	04	08
3	36	0	_	-	_	_
4	32	1	43	6D	8F	09
5	0D	1	36	72	F0	1D
6	31	0	_	_	_	_
7	16	1	11	C2	DF	03

-						
ldx	Tag	Valid	<i>B0</i>	B1	B2	B3
8	24	1	3A	00	51	89
9	2D	0	_	_	_	_
Α	2D	1	93	15	DA	3B
В	0B	0	_	_	_	_
С	12	0	-	_	-	-
D	16	1	04	96	34	15
Е	13	1	83	77	1B	D3
F	14	0	_	_	_	_

Physical Address

Today

- Simple memory system example
- Case study: Core i7/Linux memory system
- Memory mapping

Intel Core i7 Memory System

End-to-end Core i7 Address Translation

Core i7 Level 1-3 Page Table Entries

Each entry references a 4K child page table. Significant fields:

P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.

U/S: user or supervisor (kernel) mode access permission for all reachable pages.

WT: Write-through or write-back cache policy for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

Page table physical base address: 40 most significant bits of physical page table address (forces page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this PTE.

Core i7 Level 4 Page Table Entries

Each entry references a 4K child page. Significant fields:

P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)

D: Dirty bit (set by MMU on writes, cleared by software)

G: Global page (don't evict from TLB on task switch)

Page physical base address: 40 most significant bits of physical page address (forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

Core i7 Page Table Translation

Cute Trick for Speeding Up L1 Access

Observation

- Bits that determine CI identical in virtual and physical address
- Can index into cache while address translation taking place
- Generally we hit in TLB, so PPN bits (CT bits) available quickly
- "Virtually indexed, physically tagged"
- Cache carefully sized to make this possible

Summary

Programmer's view of virtual memory

- Each process has its own private linear address space
- Cannot be corrupted by other processes

System view of virtual memory

- Uses memory efficiently by caching virtual memory pages
 - Efficient only because of locality
- Simplifies memory management and programming
- Simplifies protection by providing a convenient interpositioning point to check permissions

Implemented via combination of hardware & software

- MMU, TLB, exception handling mechanisms part of hardware
- Page fault handlers, TLB management performed in software