Test de mathématiques 2 Durée : 1h30, L1

,

La réussite passe par un effort constant.

Exercice 1 Soit

$$V = \{(x, y, z, t) \in \mathbb{R}^4, x - 2y = 0 \text{ } et x + y - t = 0\}$$

- 1. (a) Que signifie $(x, y, z, t) \in V$.
 - (b) Montrer que $0_{\mathbb{R}^4} = (0, 0, 0, 0) \in V$.
 - (c) Soient $(x_1, x_2, x_3, x_4) \in V$, $(y_1, y_2, y_3, y_4) \in V$ et $\alpha \in \mathbb{R}$. Montrer que $(x_1, x_2, x_3, x_4) + \alpha(y_1, y_2, y_3, y_4) \in V$.
 - (d) Que peut-on dire de V.
- 2. Soit $(x, y, z, t) \in V$.
 - (a) Exprimer x et t en fonction de y.
 - (b) Déduire que

$$(x, y, z, t) = y(2, 1, 0, 3) + z(0, 0, 1, 0).$$

(c) Déduire une base de V, puis sa dimension.

Exercice 2 1. $F = \{(x, y) \in \mathbb{R}^2, 3x - 4y = 2\}$ est il un sous-espace vectoriel $de \mathbb{R}^2$?

2. La famille $\{(1,-2,2),(2,5,2),(1,-5,3)\}$ engendre-t-elle \mathbb{R}^3 ?

Exercice 3 On veut étudier la convergence de la suite $(u_n)_n$ définie par $u_{n+1} = f(u_n)$ et $u_0 = 0$ où pour $x \ge 0$, $f(x) = \sqrt{2+x}$.

- 1. Montrer que la suite $(u_n)_n$ est bien définie sur \mathbb{R}_+ .
- 2. Montrer que f est croissante et déduire que la suite $(u_n)_n$ est croissante.
- 3. Montrer par récurrence que pour tout $n \in \mathbb{N}$, $u_n \leq 2$.
- 4. En remarquant que f(2) = 2, déduire de ce qui précède que la suite $(u_n)_n$ converge vers 2.