CS2842 Computer Systems – Lecture III

Number Systems

Dr. Sapumal Ahangama Department of Computer Science and Engineering

COUNTING AND ARITHMETIC

- Decimal or base 10 number system
 - Origin: counting on the fingers
 - "Digit" from the Latin word digitus meaning "finger"
- Base: The number of different digits including zero in the number system
 - Decimal (Base 10) 10 digits, 0 through 9
 - Binary (Base2) 2 digits, 0 and 1
 - Octal (Base8) 8 digits, 0 through 7
 - Hexadecimal (Base 16)-16 digits, 0 through F
 - ▶ Examples:1010=A; 1110=D

WHY BINARY?

- SV Binary.

 Decimal
- Early computer design was decimal
 - Mark I and ENIAC
- ▶ John von Neumann proposed binary data processing (1945)
 - Simplified computer design
 - Used for both instructions and data
- Natural relationship between on/off switches and calculation using Boolean logic

KEEPING TRACK OF THE BITS

- Bits commonly stored and manipulated in groups
 - ▶ 8 bits = I byte
 - ▶ 4 bytes = I word (in many systems -32 bit word size)
- Number of bits used in calculations
 - Affects accuracy of results
 - Limits size of numbers manipulated by the computer

NUMBERS: PHYSICAL REPRESENTATION

- Consider you want to represent value "5".
 - Different numerals and number systems
 - Roman:V
 - Arabic: 5
- Different bases to represent the same number
 - **▶** 5₁₀
 - ▶ 101₂
 - ▶ 12₃

NUMBERS

► Example 527₁₀

NUMBERS

► Example 624₈

NUMBERS

Example 101111₂

CONVERSION BETWEEN DIFFERENT BASES

Convert from Base 10 to Other Bases:

- ▶ Base 10 to Base 2
- Base 10 to Base 8
- Base 10 to Base 16

$$42_{10} = 101010_2$$

Power Base	6	5	4	3	2	1	0
2	64	32	16	8	4	2	1
×		1	0	1	0	1	0
Integer		42/32	10/16	10/8 = 1	2/4 = 0	2/2 = 1	0/1 = 0
Remainder		10	10	2	2	0	0

CONVERSION BETWEEN DIFFERENT BASES

- Convert Between Different Bases
 - If not base 10
 - Convert to decimal
 - Convert back to needed base
 - If base 10
 - Conversion in previous step
 - But, Conversion between base 2 and 8 and 16?
 - ▶ ||0|0|||0||000 to base | 6 → 4 godawal walata kadagena hex walin liyanna
 - 27533 I₈ to base 2

BASE OR RADIX

- Base: The number of different symbols required to represent any given number
- The larger the base, the more numerals are required
 - Base 10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - ▶ Base 2: 0, I
 - Base 8: 0, 1, 2, 3, 4, 5, 6, 7
 - Base 16: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- For a given number, the larger the base the more symbols required, but the fewer digits needed
 - \triangleright 65₁₆ to base $|0| = |0|_{10}$
 - \triangleright 65₁₆ to base 8 = 145₈

BINARY ADDITION AND BOOLEAN LOGIC

- Adds two one-bit binary numbers (A and B)
- The output is the sum of the two bits (S) and the carry (C)

A	В	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

BINARY ADDITION AND BOOLEAN LOGIC

Half Adder

A	В	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

BINARY ADDITION AND BOOLEAN LOGIC

Explain the Full Adder

home work widihata balanna

BINARY MULTIPLICATION

A	В	M
0	0	0
0	1	0
1	0	0
1	1	1

AND

BINARY MULTIPLICATION

Example

1010
× 1011
1010
1010
0000
1010
1101110

BINARY MULTIPLICATION

- Multiply the multiplicand by one bit of the multiplier at a time
- Result of the partial product for each bit is placed in such a manner that the LSB is under the corresponding multiplier bit.
- Then add partial products are added to get the complete product

		10	10
8	X	10	11
		10	10
	1	01	0
	0 0	0 0	
1	01	0	
ĺ	10	11	10

1s & 2S COMPLEMENT

- I's complement:
 - Another binary number obtained by toggling all bits in it.
- ▶ 2's complement:
 - I added to the I's complement of the binary number.

Negative Numbers

- Use a sign bit
 - 0 for positive, I for negative

- Using 2's complement:
 - **+**5 = 00000101
 - **→** -5 = |||||0||

Fractions

• Example: 0.2589₁₀

.258910

Place	10-1	10-2	10 ⁻³	10-4
Value	1/10	1/100	1/1000	1/10000
Evaluate	2 x 1/10	5 x 1/100	8 x 1/1000	9 x1/1000
Sum	.2	.05	.008	.0009

 $.101011_2 = 0.671875_{10}$

Place	2-1	2-2	2 -3	2-4	2 -5	2 -6
Value	1/2	1/4	1/8	1/16	1/32	1/64
Evaluate	1 x 1/2	0 x 1/4	1x 1/8	0 x 1/16	1 x 1/32	1 x 1/64
Sum	.5		0.125		0.03125	0.015625

Fractions

- A fractional number that can be represented exactly in one number base may be impossible to be exactly represented in another base
- 0.1₁₀ in binary?
 - ▶ =0.000||00||00||₂...
- ▶ 0.33333₁₀ ... in base 3?
 - ► =0.1₃

THANK YOU