3. Symmetric Markov Diffusion Operators

3.1. Markov Triples

3.1.1. Initial Structure

Definition) A Markov triple (E, μ, Γ) , relative to an algebra \mathcal{A}_0 . Usually, it is reasonable to assume that \mathcal{A}_0 is stable under composition with a smooth function vanishing at 0.

3.1.2. Diffusion Property

Definition) (Diffusion property) A Markvo triple (E, μ, Γ) has diffusion property if

$$\Gamma(\Psi(f_1,\dots,f_k),g) = \sum_{i=1}^k \partial_i \Psi(f_1,\dots,f_k) \Gamma(f_k,g)$$

3.1.3. Diffusion Operators

Given triple (E, μ, Γ) , L is the diffusion operator if

$$\int_E gLfd\mu = -\int_E \Gamma(f,g)d\mu$$

Then, we have $\int_E Lf\mu = 0$, i.e. the invariance of measure μ . Moreover, for any smooth function $\Psi : \mathbb{R}^k \to \mathbb{R}$ with $\Psi(0) = 0$, has

$$L(\Psi(f_1,\dots,f_k)) = \sum_{i=1}^k \partial_i \Psi(f_1,\dots,f_k) L f_i + \sum_{i,j=1}^k \partial_{ij} \Psi(f_1,\dots,f_k) \Gamma(f_i,f_j)$$

3.1.4. Dirichlet Form and Domains

The next step is to understand to which natural domain the diffusion operator L is extended. First we will construct $D(\mathcal{E})$ and next construct D(L).

Recall, we defined

$$\mathcal{E}(f,g) = \int_{E} \Gamma(f,g) d\mu = -\int_{E} f Lg d\mu, \quad f,g \in \mathcal{A}_{0}$$

Then we have Cauchy-Schwarz inequality, $|\mathcal{E}(f,g)| \leq \mathcal{E}(f)^{1/2}\mathcal{E}(g)^{1/2}$.