Kapitola 1

(draft) Nerozhodnutelnost a neúplnost

V této, závěrečné kapitole se budeme zabývat tím, jak lze s teoriemi pracovat algoritmicky. Zlatým hřebem budou *Gödelovy věty o neúplnosti* z roku 1930, které ukazují limity formálního přístupu, a které zastavily desetiletí trvající program formalizace matematiky. Nemáme zde dostatek prostoru k uvedení formálních definic a úplných důkazů, proto se místy budeme pohybovat na poněkud intuitivní úrovni. Zaměříme se na pochopení smyslu tvrzení a myšlenek důkazů.

Pojem *algoritmu* budeme chápat také jen intuitivně. Pokud bychom ho chtěli formalizovat, potom nejběžnější (ale zdaleka ne jedinou) volbou je koncept *Turingova stroje*.¹

1.1 Rekurzivní axiomatizace a rozhodnutelnost

V důkazových systémech, kterými jsme se zabývali (tablo metoda, rezoluce, hilbertův kalkulus) jsme povolili, aby teorie T, ve které dokazujeme, byla nekonečná. Vůbec jsem se ale zatím nezabývali tím, jak je zadaná. Pokud chceme ověřit, že je daný objekt (tablo, rezoluční strom, posloupnost formulí) korektním důkazem, potřebujeme nějaký algoritmický přístup ke všem axiomům T.

Jednou z možností by bylo požadovat enumerátor T, tj. algoritmus, který vypisuje na výstup axiomy z T, a každý axiom někdy vypíše. Potom by bylo snadné potvrdit, že je daný důkaz korektní. Pokud bychom ale dostali důkaz, který použil chybný axiom, který v T není, nikdy bychom se to nedozvěděli: nekonečně dlouho bychom čekali, zda jej enumerátor přeci jen nevypíše. Požadujeme proto silnější vlastnost, která umožňuje rozpoznat i chybné důkazy rekurzivní axiomatizaci:

Definice 1.1.1 (Rekurzivní axiomatizace). Teorie T je rekurzivně axiomatizovaná, pokud existuje algoritmus, který pro každou vstupní formuli φ doběhne a odpoví, zda $\varphi \in T$.

¹Viz přednáška NTIN090 Základy složitosti a vyčíslitelnosti.

 $^{^2}$ Nutným předpokladem je, aby Tbyla spočetná. K tomu stačí předpokladat, že jazyk je spočetný.

³Slovo rekurzivní zde neznamená běžně známou rekurzi, ale odkazuje na formalizaci algoritmu pomocí 'rekurzivních funkcí' od Gödela. Rekurzivní funkce zde znamená totéž, co vyčíslitelná nějakým Turingovým strojem, a teorii vyčíslitelnosti (computability theory) se někdy také říká recursion theory.

Poznámka 1.1.2. Ve skutečnosti by nám stačil enumerátor pro T, pokud by bylo garantováno, že vypisuje axiomy v lexikografickém uspořádání. To už je ekvivalentní rekurzivní axiomatizaci. (Rozmyslete si proč.)

Zaměříme se na otázku, zda můžeme v dané teorii T 'algoritmicky rozhodovat pravdu' (tj. platnost vstupní formule). Pokud ano, říkáme, že je teorie rozhodnutelná. To je ale poměrně silná vlastnost, definujeme proto také \check{c} ástečnou rozhodnutelnost, která znamená, že pokud formule platí, algoritmus nám to řekne, ale pokud neplatí, nikdy se nemusíme dočkat odpovědi.

Definice 1.1.3 (Rozhodnutelnost). O teorii T říkáme, že je

- $rozhodnuteln\acute{a}$, pokud existuje algoritmus, který pro každou vstupní formuli φ doběhne a odpoví, zda $T \models \varphi$,
- *částečně rozhodnutelná*, pokud existuje algoritmus, který pro každou vstupní formuli:
 - pokud $T \models \varphi$, doběhne a odpoví 'ano',
 - pokud $T \not\models \varphi$, buď nedoběhne, nebo doběhne a odpoví 'ne'.

Můžeme jako obvykle předpokládat, že φ v definici je sentence. Ukážeme si jednoduché tvrzení:

Tvrzení 1.1.4. Nechť T je rekurzivně axiomatizovaná. Potom:

- (i) T je částečně rozhodnutelná,
- (ii) je-li T navíc kompletní, potom je rozhodnutelná.

 $D\mathring{u}kaz$. Algoritmem ukazujícím částečnou rozhodnutelnost je konstrukce systematického tabla pro F φ .⁴ Pokud φ v T platí, konstrukce skončí v konečně mnoha krocích a snadno ověříme, že je tablo sporné, jinak ale skončit nemusí.

Je-li T kompletní, víme, že $T \vdash \varphi$ právě když $T \not\vdash \varphi$. Budeme tedy paralelně konstruovat tablo pro F φ a tablo pro T φ (důkaz a zamítnutí φ z T): jedna z konstrukcí po konečně mnoha krocích skončí.

1.1.1 Rekurzivně spočetná kompletace

Požadavek kompletnosti je příliš silný, ukážeme, že stačí pokud jsme schopni efektivně popsat všechny kompletní jednoduché extenze.⁵

Definice 1.1.5 (Rekurzivně spočetná kompletace). Řekneme, že teorie T má rekurzivně spočetnou kompletaci, pokud (nějaká) množina až na ekvivalenci všech jednoduchých kompletních extenzí teorie T je rekurzivně spočetná, tj. existuje algoritmus, který pro danou vstupní dvojici přirozených čísel (i,j) vypíše na výstup i-tý axiom j-té extenze (v nějakém pevně daném uspořádání 6), nebo odpoví, že takový axiom už neexistuje.

 $^{^4}$ Zde nám stačí enumerátor axiomů T, nebo postupně generujeme všechny sentence (např. v lexikografickém pořadí) a pro každou testujeme, zda je axiomem.

⁵Tj. 'všechny modely až na elementární ekvivalenci'.

⁶Zde potřebujeme, aby byl jazyk spočetný.

 $^{^{7}}$ Jeli extenzí méně než j, nebo má-li j-tá extenze méně než i axiomů.

Tvrzení 1.1.6. Pokud je teorie T rekurzivně axiomatizovaná a má rekurzivně spočetnou kompletaci, potom je T rozhodnutelná.

 $D\mathring{u}kaz$. Pro danou sentenci φ buď $T \vdash \varphi$, nebo existuje protipříklad $\mathcal{A} \not\models \varphi$, tedy kompletní jednoduchá extenze T_i teorie T taková, že $T_i \not\vdash \varphi$. Z kompletnosti ale plyne, že $T_i \vdash \neg \varphi$. Náš algoritmus bude paralelně konstruovat tablo důkaz φ z T a (postupně) tablo důkazy $\neg \varphi$ ze všech kompletních jednoduchých extenzí T_1, T_2, \ldots teorie T. Víme, že alespoň jedno z paralelně konstruovaných tabel je sporné, a můžeme předpokládat, že konečné (neprodlužujeme-li sporné větve tabla), tedy algoritmus ho po konečně mnoha krocích zkonstruuje.

Cvičení 1.1. Ukažte, že následující teorie mají rekurzivně spočetnou kompletaci:

- Teorie čisté rovnosti (prázdná teorie v jazyce $L = \langle \rangle$ s rovností),
- Teorie unárního predikátu (prázdná teorie v jazyce $L = \langle U \rangle$ s rovností, kde U je unární relační symbol),
- Teorie hustých lineárních uspořádání DeLO* (kompletní jednoduché extenze jsou popsané v Důsledku ??),

Jde o rekurzivně axiomatizované teorie (neboť jsou konečné), jsou tedy rozhodnutelné.

Příklad 1.1.7. Na závěr uveď me bez důkazu několik dalších příkladů rozhodnutelných teorií:

- Teorie Booleových algeber (Alfred Tarski 1940),
- Teorie algebraicky uzavřených těles (Tarski 1949),
- Teorie komutativních grup (Wanda Szmielew 1955).

Tyto teorie jsou také nekompletní, ale rekurzivně axiomatizované a mají rekurzivně spočetnou kompletaci.

1.1.2 Rekurzivní axiomatizovatelnost

V předchozí kapitole, konkrétně v Sekci ??, jsme se zabývali otázkou, kdy lze popsat nějakou třídu struktur [resp. teorii] pomocí axiomů [určitého tvaru]. Nyní se zaměřme na otázku, kdy to lze udělat *algoritmicky*.

Definice 1.1.8 (Rekurzivní axiomatizovatelnost). Třída L-struktur $K \subseteq M_L$ je rekurzivně axiomatizovatelná, pokud existuje rekurzivně axiomatizovaná L-teorie T taková, že $K = M_L(T)$. Teorie T' je rekurzivně axiomatizovatelná, pokud je rekurzivně axiomatizovatelná třída jejích modelů, neboli pokud je T' ekvivalentní nějaké rekurzivně axiomatizované teorii.

Poznámka 1.1.9. Podobně bychom mohli definovat rekurzivně spočetnou axiomatizovatelnost. Ukažme si následující jednoduché tvrzení:

Tvrzení 1.1.10. Je-li \mathcal{A} konečná struktura v konečném jazyce s rovností, potom je teorie $\operatorname{Th}(\mathcal{A})$ rekurzivně axiomatizovatelná.

⁸Nevadí, že je jich nekonečně mnoho, můžeme využít tzv. *dovetailing*: Provedeme 1. krok konstrukce 1. tabla, potom 2. krok 1. tabla a 1. krok 2. tabla, 3. krok 1. tabla, 2. krok 2. tabla, 1. krok 3. tabla, atd.

Poznámka 1.1.11. Z toho plyne i že Th(\mathcal{A}) je rozhodnutelná, což ale není překvapivé: platnost sentence φ v konečné struktuře \mathcal{A} můžeme snadno ověřit.

 $D\mathring{u}kaz$. Očíslujme prvky domény jako $A = \{a_1, \ldots, a_n\}$. Teorii Th(\mathcal{A}) lze axiomatizovat jedinou sentencí, která je tvaru 'existuje právě n prvků a_1, \ldots, a_n splňujících právě ty $z\acute{a}kladn\acute{i}$ vztahy o funkčních hodnotách a relacích, které platí ve struktuře \mathcal{A} '. 9

Uveď me několik standardních příkladů struktur, které lze 'algoritmicky popsat':

 $P\check{r}\hat{u}klad$ 1.1.12. Pro následující struktury je Th(\mathcal{A}) rekurzivně axiomatizovatelná, a tedy i rozhodnutelná:

- $\langle \mathbb{Z}, \leq \rangle$, jde o tzv.teorii diskrétních lineárních uspořádání,
- $\langle \mathbb{Q}, \leq \rangle$, jde o teorii DeLO,
- $\langle \mathbb{N}, S, 0 \rangle$, teorie následníka s nulou,
- $\langle \mathbb{N}, S, +, 0 \rangle$, Presburgerova aritmetika,
- $\langle \mathbb{R}, +, -, \cdot, 0, 1 \rangle$, teorie reálně uzavřených těles, ¹⁰
- $\langle \mathbb{C}, +, -, \cdot, 0, 1 \rangle$, teorie algebraicky uzavřených těles charakteristiky 0.

Důsledek 1.1.13. Pro struktury uvedené v Příkladu 1.1.12 platí, že Th(A) je rozhodnutelná.

Poznámka 1.1.14. Jak ale vyplývá z První Gödelovy věty o neúplnosti (viz níže), teorie $standardního\ modelu\ aritmetiky$, tj. struktury $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle\ nemá\ rekurzivně\ axiomatizovatelnou\ teorii.$

1.2 Aritmetika

Vlastnosti přirozených čísel hrají důležitou roli nejen v matematice, ale například také v kryptografii. Připomeňme, že jazyk aritmetiky je jazyk $L = \langle S, +, \cdot, 0, \leq \rangle$ s rovností. Jak jsme zmínili v Poznámce 1.1.14, tzv. standardní model aritmetiky $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ nemá rekurzivně axiomatizovatelnou teorii. Proto používáme rekurzivně axiomatizované teorie, které se snaží vlastnosti \mathbb{N} popsat částečně; těmto teoriím říkáme aritmetiky.

1.2.1 Robinsonova a Peanova aritmetika

Uvedeme jen dva nejdůležitější příklady aritmetik: Robinsonovu a Peanovu.

Definice 1.2.1 (Robinsonova aritmetika). $Robinsonova \ aritmetika$ je teorie Q v jazyce aritmetiky sestávající z následujících (konečně mnoha) axiomů:

$$\neg S(x) = 0 \qquad x \cdot 0 = 0
S(x) = S(y) \to x = y \qquad x \cdot S(y) = x \cdot y + x
x + 0 = x \qquad \neg x = 0 \to (\exists y)(x = S(y))
x + S(y) = S(x + y) \qquad x \le y \leftrightarrow (\exists z)(z + x = y)$$

⁹Například, pokud $f^{\mathcal{A}}(a_4, a_2) = a_{17}$, přidáme do konjunkce atomickou formuli $f(x_{a_4}, x_{a_2}) = x_{a_{17}}$ (kde x_{a_i} jsou proměnné odpovídající jednotlivým prvkům). A pokud $(a_3, a_3, a_1) \in \mathbb{R}^{\mathcal{A}}$, přidáme $R(x_{a_3}, x_{a_3}, x_{a_1})$.

¹⁰Tento významný výsledek A. Tarského (1949) také znamená, že lze algoritmicky rozhodovat, které vlastnosti platí v Euklidovské geometrii.

Robinsonova aritmetika je velmi slabá, nelze v ní dokázat například komutativitu ani asociativitu sčítání či násobení, nebo tranzitivitu uspořádání.

Na druhou stranu v ní lze dokázat všechna existenční tvrzení o numerálech, která jsou pravdivá v $\underline{\mathbb{N}}$. Tím myslíme formule, které v prenexním tvaru mají pouze existenční kvantifikátory, a do kterých jsme za volné proměnné substituovali numerály $\underline{n} = S(\dots S(0) \dots)$. Například, pro formuli $\varphi(x,y)$ tvaru $(\exists z)(x+z=y)$ je $Q \vdash \varphi(\underline{1},\underline{2})$, kde $\underline{1} = S(0)$ a $\underline{2} = S(S(0))$.

Definice 1.2.2 (Peanova aritmetika). *Peanova aritmetika PA* je extenze Robinsonovy aritmetiky Q o schéma indukce, tj. pro každou formuli $\varphi(x, \overline{y})$ jazyka L axiom

$$(\varphi(0,\overline{y}) \land (\forall x)(\varphi(x,\overline{y}) \to \varphi(S(x),\overline{y}))) \to (\forall x)\varphi(x,\overline{y}).$$

[TODO]

Poznámka PA je poměrně dobrou aproximací $\operatorname{Th}(\underline{\mathbb{N}})$, dokazuje všechny základní vlastnosti platné v $\underline{\mathbb{N}}$ (např. komutativitu +). Na druhou stranu existují sentence pravdivé v $\underline{\mathbb{N}}$ ale nezávislé v PA.

Poznámka V jazyce 2. řádu lze axiomatizovat $\underline{\mathbb{N}}$ (až na izomorfismus), vezmeme-li místo schéma indukce přímo axiom indukce (2. řádu)

$$(\forall X) ((X(0) \land (\forall x)(X(x) \rightarrow X(S(x)))) \rightarrow (\forall x) X(x)).$$

1.2.2 Hilbertův desátý problém

[TODO]

Hilbertův 10. problém

- Nechť $p(x_1, ..., x_n)$ je polynom s celočíselnými koeficienty. Má *Diofantická rovnice* $p(x_1, ..., x_n) = 0$ celočíselné řešení?
- Hilbert (1900) "Nalezněte algoritmus, který po konečně mnoha krocích určí, zda daná Diofantická rovnice s libovolným počtem proměnných a celočíselnými koeficienty má celočíselné řešení."

Poznámka Ekvivalentně lze požadovat algoritmus rozhodující, zda existuje řešení v přirozených číslech.

Věta (DPRM, 1970) Problém existence celočíselného řešení dané Diofantické rovnice s celočíselnými koeficienty je alq. nerozhodnutelný.

Důsledek Neexistuje algoritmus rozhodující pro dané polynomy $p(x_1, ..., x_n)$, $q(x_1, ..., x_n)$ s přirozenými koeficienty, zda

$$\mathbb{N} \models (\exists x_1) \dots (\exists x_n) (p(x_1, \dots, x_n) = q(x_1, \dots, x_n)).$$

1.3 Nerozhodnutelnost predikátové logiky

[TODO]

Nerozhodutelnost predikátové logiky

Existuje algoritmus, rozhodující o dané sentenci, zda je logicky pravdivá?

- Víme, že Robinsonova aritmetika Q má konečně axiomů, má za model $\underline{\mathbb{N}}$ a stačí k důkazu existenčních tvrzení o numerálech, která platí v $\underline{\mathbb{N}}$.
- Přesněji, pro každou existenční formuli $\varphi(x_1,\ldots,x_n)$ jazyka aritmetiky

$$Q \vdash \varphi(x_1/a_1, \dots, x_n/a_n) \Leftrightarrow \underline{\mathbb{N}} \models \varphi[e(x_1/a_1, \dots, x_n/a_n)]$$

pro každé $a_1, \ldots, a_n \in \mathbb{N}$, kde $\underline{a_i}$ značí a_i -tý numerál.

• Speciálně, pro φ tvaru $(\exists x_1) \dots (\exists x_n) (p(x_1, \dots, x_n) = q(x_1, \dots, x_n))$, kde p, q jsou polynomy s přirozenými koeficienty (numerály), platí

$$\underline{\mathbb{N}} \models \varphi \quad \Leftrightarrow \quad Q \vdash \varphi \quad \Leftrightarrow \quad \vdash \psi \to \varphi \quad \Leftrightarrow \quad \models \psi \to \varphi,$$

kde ψ je konjunkce (uzávěrů) všech axiomů Q.

• Tedy, pokud by existoval algoritmus rozhodující logickou pravdivost, existoval by i algoritmus rozhodující, zda $\underline{\mathbb{N}} \models \varphi$, což není možné.

1.4 Gödelovy věty

[TODO]

1.4.1 První věta o neúplnosti

[TODO]

Gödelova 1. věta o neúplnosti

Věta (Gödel) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Robinsonovy aritmetiky existuje sentence pravdivá v № a nedokazatelná v T. Poznámky

- "Rekurzivně axiomatizovaná" znamená, že je "efektivně zadaná".
- "Extenze R. aritmetiky" znamená, že je "základní aritmetické síly".

- Je-li navíc $\underline{\mathbb{N}} \models T$, je teorie T nekompletní.
- ullet V důkazu sestrojená sentence vyjadřuje "nejsem dokazatelná v T".
- Důkaz je založen na dvou principech:
 - (a) aritmetizaci syntaxe,
 - (b) self-referenci.

Aritmetizace dokazatelnosti

Aritmetizace - predikát dokazatelnosti

- Konečné objekty syntaxe (symboly jazyka, termy, formule, konečná tabla, tablo důkazy) lze vhodně zakódovat přirozenými čísly.
- Nechť $\lceil \varphi \rceil$ značí kód formule φ a nechť $\underline{\varphi}$ značí numerál (term jazyka aritmetiky) reprezentující $\lceil \varphi \rceil$.
- Je-li Trekurzivně axiomatizovaná, je relace $\mathrm{Prf}_T\subseteq \mathbb{N}^2$ rekurzivní.

$$\operatorname{Prf}_T(x,y) \Leftrightarrow (tablo) \ y \ je \ d\mathring{u}kazem \ (sentence) \ x \ v \ T.$$

• Je-li T navíc extenze Robinsonovy aritmetiky Q, dá se dokázat, že $\Pr T_T$ je reprezentovatelná nějakou formulí $\Pr T_T(x,y)$ tak, že pro každé $x,y\in\mathbb{N}$

$$Q \vdash Prf_T(\underline{x}, \underline{y}), \quad \textit{je-li} \quad \Prf_T(x, y),$$

 $Q \vdash \neg Prf_T(\underline{x}, y), \quad \textit{jinak}.$

- $Prf_T(x, y)$ vyjadřuje "y je důkaz $x \ v \ T$ ".
- $(\exists y) Prf_T(x, y)$ vyjadřuje "x je dokazatelná v T".
- Je-li $T \vdash \varphi$, pak $\underline{\mathbb{N}} \models (\exists y) Prf_T(\varphi, y)$ a navíc $T \vdash (\exists y) Prf_T(\varphi, y)$.

Self-reference

Princip self-reference

• Tato věta má 16 písmen.

Self-reference ve formálních systémech většinou není přímo k dispozici.

- Následující věta má 24 písmen "Následující věta má 24 písmen".
 Přímá reference obvykle je k dispozici, stačí, když umíme "mluvit" o posloupnostech symbolů. Uvedená věta ale není self-referenční.
- Následující věta zapsaná jednou a ještě jednou v uvozovkách má 116
 písmen "Následující věta zapsaná jednou a ještě jednou v uvozovkách
 má 116 písmen".

Pomocí přímé reference lze dosáhnout self-reference. Namísto " $m\acute{a}~x~p\acute{i}smen$ " může být jiná vlastnost.

main(){char *c="main(){char *c=%c%s%c; printf(c,34, c,34);}"; printf(c,34,c,34);}

Věta o pevném bodě

Věta Nechť T je bezesporné rozšíření Robinsonovy aritmetiky. Pro každou formuli $\varphi(x)$ jazyka teorie T existuje sentence ψ taková, že $T \vdash \psi \leftrightarrow \varphi(\underline{\psi})$.

Poznámka Sentence ψ je self-referenční, říká "splňuji podmínku φ ".

Důkaz (idea) Uvažme zdvojující funkci d takovou, že pro každou formuli $\chi(x)$

$$d(\lceil \chi(x) \rceil) = \lceil \chi(\chi(x)) \rceil$$

- Platí, že d je reprezentovatelná v T. Předpokládejme (pro jednoduchost),
 že nějakým termem, který si označme d, stejně jako funkci d.
- Pak pro každou formuli $\chi(x)$ jazyka teorie T platí

$$T \vdash d(\chi(x)) = \chi(\chi(x)) \tag{1.1}$$

- Za ψ vezměme sentenci $\varphi(d(\varphi(d(x))))$. Stačí ověřit $T \vdash d(\varphi(d(x))) = \underline{\psi}$.
- To plyne z (1.1) pro $\chi(x)$ tvaru $\varphi(d(x))$, neboť v tom případě

$$T \vdash d(\varphi(d(x))) = \varphi(d(\varphi(d(x)))) \quad \Box$$

Nedefinovatelnost pravdy

Nedefinovatelnost pravdy

Řekneme, že formule $\tau(x)$ definuje pravdu v aritmetické teorii T, pokud pro každou sentenci φ platí $T \vdash \varphi \leftrightarrow \tau(\varphi)$.

Věta V žádném bezesporném rozšíření Robinsonovy aritmetiky neexistuje definice pravdy.

 $D\mathring{u}kaz$ Dle věty o pevném bodě pro $\neg \tau(x)$ existuje sentence φ taková, že

$$T \vdash \varphi \leftrightarrow \neg \tau(\varphi).$$

Kdyby formule $\tau(x)$ definovala pravdu v T, bylo by

$$T \vdash \varphi \leftrightarrow \neg \varphi$$
,

což v bezesporné teorii není možné.

Poznámka Důkaz je založen na paradoxu lháře, sentence φ by vyjadřovala "nejsem pravdivá v T".

1. věta o neúplnosti

Důkaz 1. věty o neúplnosti

Věta (Gödel) Pro každou bezespornou rekurzivně axiomatizovanou extenzi TRobinsonovy aritmetiky existuje sentence pravdivá v $\underline{\mathbb{N}}$ a nedokazatelná v T.

 $D\mathring{u}kaz$ Nechť $\varphi(x)$ je $\neg(\exists y)Prf_T(x,y)$, vyjadřuje "x není dokazatelná v T".

• Dle věty o pevném bodě pro $\varphi(x)$ existuje sentence ψ_T taková, že

$$T \vdash \psi_T \leftrightarrow \neg(\exists y) Prf_T(\psi_T, y).$$
 (1.2)

 ψ_T říká "nejsem dokazatelná v T". Přesněji, ψ_T je ekvivalentní sentenci vyjadřující, že ψ_T není dokazatelná v T. (Ekvivalence platí v $\underline{\mathbb{N}}$ i v T).

- Nejprve ukážeme, že ψ_T není dokazatelná v T. Kdyby $T \vdash \psi_T$, tj. ψ_T je lživá v $\underline{\mathbb{N}}$, pak $\underline{\mathbb{N}} \models (\exists y) Prf_T(\underline{\psi_T}, y)$ a navíc $T \vdash (\exists y) Prf_T(\underline{\psi_T}, y)$. Tedy z (1.2) plyne $T \vdash \neg \psi_T$, což ale není možné, neboť T je bezesporná.
- Zbývá dokázat, že ψ_T je pravdivá v $\underline{\mathbb{N}}$. Kdyby ne, tj. $\underline{\mathbb{N}} \models \neg \psi_T$, pak $\underline{\mathbb{N}} \models (\exists y) Prf_T(\psi_T, y)$. Tedy $T \vdash \psi_T$, což jsme již dokázali, že neplatí.

1.4.2 Důsledky první věty

[TODO]

\mathbf{D}	ůs]	ledky	\mathbf{a}	zesílení	1.	věty

Důsledek Je-li navíc $\underline{\mathbb{N}} \models T$, je teorie T nekompletní.

 $D\mathring{u}kaz$ Kdyby byla T kompletní, pak $T \vdash \neg \psi_T$ a tedy $\underline{\mathbb{N}} \models \neg \psi_T$, což je ve sporu s $\underline{\mathbb{N}} \models \psi_T$. \square

Důsledek $Th(\underline{\mathbb{N}})$ není rekurzivně axiomatizovatelná.

 $D\mathring{u}kaz$ Th($\underline{\mathbb{N}}$) je bezesporná extenze Robinsonovy aritmetiky a má model $\underline{\mathbb{N}}$. Kdyby byla rekurzivně axiomatizovatelná, dle předchozího důsledku by byla nekompletní, ale Th($\underline{\mathbb{N}}$) je kompletní. \Box

Gödelovu 1. větu o neúplnosti lze následovně zesílit.

Věta (Rosser) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Robinsonovy aritmetiky existuje nezávislá sentence. Tedy T je nekompletní. Poznámka Tedy předpoklad, že $\mathbb{N} \models T$, je v prvním důsledku nadbytečný.

1.4.3 Druhá věta o neúplnosti

[TODO]

Gödelova 2. věta o neúplnosti

Označme Con_T sentenci $\neg(\exists y)Prf_T(\underline{0=1},y)$. Platí $\underline{\mathbb{N}} \models Con_T \Leftrightarrow T \not\vdash 0 = \underline{1}$. Tedy Con_T vyjadřuje, že "T je bezesporná".

Věta (Gödel) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Peanovy aritmetiky platí, že Con_T není dokazatelná v T.

 $D\mathring{u}kaz$ (náznak) Nechť ψ_T je Gödelova sentence "nejsem dokazatelná v T".

• V první části důkazu 1. věty o neúplnosti jsme ukázali, že

"Je-li
$$T$$
 bezesporná, pak ψ_T není dokazatelná v T ." (1.3)

Jinak vyjádřeno, platí $Con_T \to \psi_T$.

- Je-li T extenze Peanovy aritmetiky, důkaz tvrzení (1.3) lze formalizovat v rámci T. Tedy $T \vdash Con_T \rightarrow \psi_T$.
- Jelikož T je bezesporná dle předpokladu věty, podle (1.3) je $T \not\vdash \psi_T$.
- Z předchozích dvou bodů vyplývá, že $T \not\vdash Con_T$. \square

Poznámka Taková teorie T tedy neumí dokázat vlastní bezespornost.

1.4.4 Důsledky druhé věty

[TODO]

Důsledky 2. věty

Důsledek Existuje model \mathcal{A} Peanovy aritmetiky $t.\check{z}.$ $\mathcal{A} \models (\exists y)Prf_{PA}(\underline{0=1},y).$

Poznámka A musí být nestandardní model PA, svědkem musí být nestandardní prvek (jiný než hodnoty numerálů).

Důsledek Existuje bezesporná rekurzivně axiomatizovaná extenze T Peanovy aritmetiky taková, že $T \vdash \neg Con_T$.

 $D\mathring{u}kaz$ Nechť $T = PA \cup \{\neg Con_{PA}\}$. Pak T je bezesporná, neboť $PA \not\vdash Con_{PA}$. Navíc $T \vdash \neg Con_{PA}$, tj. T dokazuje spornost $PA \subseteq T$, tedy i $T \vdash \neg Con_{T}$. \square Poznámka <math>N nemůže být modelem teorie T.

Důsledek Je-li teorie množin ZFC bezesporná, není Con_{ZFC} dokazatelná v ZFC.