# $12a_{0745} (K12a_{0745})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$I_1^u = \langle u^{29} - u^{28} + \dots + u + 1 \rangle$$

\* 1 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 29 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle u^{29} - u^{28} + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} + u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{10} - 7u^{8} - 16u^{6} - 13u^{4} - u^{2} + 1 \\ u^{12} + 8u^{10} + 22u^{8} + 24u^{6} + 9u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{10} - 7u^{8} - 16u^{6} - 13u^{4} - u^{2} + 1 \\ -u^{10} - 6u^{8} - 11u^{6} - 8u^{4} - 3u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{25} - 18u^{23} + \dots + 4u^{3} - 3u \\ -u^{25} - 17u^{23} + \dots + 6u^{3} + u \end{pmatrix}$$

#### (ii) Obstruction class = -1

(iii) Cusp Shapes

$$=4u^{27}-4u^{26}+84u^{25}-80u^{24}+772u^{23}-696u^{22}+4080u^{21}-3456u^{20}+13704u^{19}-10804u^{18}+30524u^{17}-22128u^{16}+45668u^{15}-29956u^{14}+45508u^{13}-26404u^{12}+29320u^{11}-14528u^{10}+11444u^{9}-4548u^{8}+2216u^{7}-600u^{6}-40u^{5}+40u^{4}-80u^{3}+12u^{2}-8u-6$$

### (iv) u-Polynomials at the component

| Crossings                                        | u-Polynomials at each crossing       |
|--------------------------------------------------|--------------------------------------|
| $c_1$                                            | $u^{29} + 15u^{28} + \dots - u - 1$  |
| $c_{2}, c_{8}$                                   | $u^{29} - u^{28} + \dots - u + 1$    |
| $c_3, c_7$                                       | $u^{29} + u^{28} + \dots + 17u + 13$ |
| $c_4, c_5, c_6 \\ c_9, c_{10}, c_{11} \\ c_{12}$ | $u^{29} - u^{28} + \dots + u + 1$    |

# (v) Riley Polynomials at the component

| Crossings                                        | Riley Polynomials at each crossing       |
|--------------------------------------------------|------------------------------------------|
| $c_1$                                            | $y^{29} - y^{28} + \dots + 15y - 1$      |
| $c_2, c_8$                                       | $y^{29} + 15y^{28} + \dots - y - 1$      |
| $c_{3}, c_{7}$                                   | $y^{29} - 17y^{28} + \dots - 413y - 169$ |
| $c_4, c_5, c_6 \\ c_9, c_{10}, c_{11} \\ c_{12}$ | $y^{29} + 43y^{28} + \dots - y - 1$      |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = -0.086935 + 0.771881I | 2.65370 + 1.94307I                    | 0.30745 - 4.96256I   |
| u = -0.086935 - 0.771881I | 2.65370 - 1.94307I                    | 0.30745 + 4.96256I   |
| u = 0.343908 + 0.675511I  | -1.94705 - 6.69256I                   | -6.07203 + 8.22032I  |
| u = 0.343908 - 0.675511I  | -1.94705 + 6.69256I                   | -6.07203 - 8.22032I  |
| u = 0.117032 + 1.271630I  | 3.27147 - 0.27468I                    | -5.60472 + 0.I       |
| u = 0.117032 - 1.271630I  | 3.27147 + 0.27468I                    | -5.60472 + 0.I       |
| u = -0.275093 + 0.647551I | 0.83720 + 2.24471I                    | -2.33349 - 5.12953I  |
| u = -0.275093 - 0.647551I | 0.83720 - 2.24471I                    | -2.33349 + 5.12953I  |
| u = -0.118947 + 1.334990I | 7.41974 + 3.62310I                    | -0.42057 - 2.79694I  |
| u = -0.118947 - 1.334990I | 7.41974 - 3.62310I                    | -0.42057 + 2.79694I  |
| u = 0.153448 + 1.339520I  | 4.70534 - 8.45308I                    | -3.72441 + 6.33593I  |
| u = 0.153448 - 1.339520I  | 4.70534 + 8.45308I                    | -3.72441 - 6.33593I  |
| u = 0.343286 + 0.551515I  | -2.65978 + 1.25239I                   | -7.88493 + 1.60855I  |
| u = 0.343286 - 0.551515I  | -2.65978 - 1.25239I                   | -7.88493 - 1.60855I  |
| u = -0.027427 + 1.381600I | 9.86986 + 2.32396I                    | 0.90036 - 3.48123I   |
| u = -0.027427 - 1.381600I | 9.86986 - 2.32396I                    | 0.90036 + 3.48123I   |
| u = 0.476875 + 0.053551I  | -4.16020 - 3.97971I                   | -12.35931 + 4.50350I |
| u = 0.476875 - 0.053551I  | -4.16020 + 3.97971I                   | -12.35931 - 4.50350I |
| u = -0.400192             | -1.12072                              | -10.0910             |
| u = -0.254330 + 0.235384I | -0.470239 + 0.884635I                 | -8.64771 - 7.43488I  |
| u = -0.254330 - 0.235384I | -0.470239 - 0.884635I                 | -8.64771 + 7.43488I  |
| u = 0.02575 + 1.81070I    | 14.7006 - 0.9082I                     | 0                    |
| u = 0.02575 - 1.81070I    | 14.7006 + 0.9082I                     | 0                    |
| u = -0.02952 + 1.82505I   | 19.2009 + 4.3355I                     | 0                    |
| u = -0.02952 - 1.82505I   | 19.2009 - 4.3355I                     | 0                    |
| u = 0.03812 + 1.82544I    | 16.4863 - 9.3726I                     | 0                    |
| u = 0.03812 - 1.82544I    | 16.4863 + 9.3726I                     | 0                    |
| u = -0.00607 + 1.83542I   | -17.5321 + 2.4840I                    | 0                    |
| u = -0.00607 - 1.83542I   | -17.5321 - 2.4840I                    | 0                    |

II. u-Polynomials

| Crossings                                      | u-Polynomials at each crossing       |
|------------------------------------------------|--------------------------------------|
| $c_1$                                          | $u^{29} + 15u^{28} + \dots - u - 1$  |
| $c_2, c_8$                                     | $u^{29} - u^{28} + \dots - u + 1$    |
| $c_3, c_7$                                     | $u^{29} + u^{28} + \dots + 17u + 13$ |
| $c_4, c_5, c_6$ $c_9, c_{10}, c_{11}$ $c_{12}$ | $u^{29} - u^{28} + \dots + u + 1$    |

III. Riley Polynomials

| Crossings                                      | Riley Polynomials at each crossing       |
|------------------------------------------------|------------------------------------------|
| $c_1$                                          | $y^{29} - y^{28} + \dots + 15y - 1$      |
| $c_2,c_8$                                      | $y^{29} + 15y^{28} + \dots - y - 1$      |
| $c_3, c_7$                                     | $y^{29} - 17y^{28} + \dots - 413y - 169$ |
| $c_4, c_5, c_6$ $c_9, c_{10}, c_{11}$ $c_{12}$ | $y^{29} + 43y^{28} + \dots - y - 1$      |