MTXQCvX - Part1: pSIRM *

test test

Contents

MTXQC Heatmap compilation: Quantifitation and stable isotope incorporation	18
MTXQC - Stable isotope incorporation NA count	16 16
MTXQC - GC-MS perfomance Alkane standards Data normalization Derivatization check HeatMap - GC-MS performance MTXQC - Quantitative metabolomics Generation of ManualQuantTable: Quant-Standards (Qstd) Generation of ManualQuantTable: Additional calibration curves (Qadd) Determination of calibration curves Evaluation of experimental data HeatMap - Quantification	2 5 6 6 11
MTXQCvX part1 Summary	1

This document provides an evaluation of GC-MS derived metabolomics data. It assesses GC-MS performance, the absolute quantification and the stable isotope incorporation. ADD HERE FURTHER PROJECT RELEVANT FACTS.

Keywords: MTXQCvX, GC-MS, metabolomics, data analysis and processing

MTXQCvX part1

Summary

** Summarise your major findings and important details. DO NOT skip this part.**

General project settings

##

Attaching package: 'gplots'

^{*}Kempa Lab - Template MTXQCvX part1 - processed 'September 19, 2018'

```
## The following object is masked from 'package:stats':
##
##
       lowess
Data import
## MTXQCparams.csv imported!
## Maui_params.csv imported.
## Required table containing additional Quant1-values detected!
## File imported! Annotation_allbatches.csv
## File imported! sample_extract_allbatches.csv
## File imported! InternalStandard.csv
## File imported! Alcane_intensities.csv
## File imported! MassSum-73.csv
## File imported! PeakDensities-Chroma.csv
## File imported! quantMassAreasMatrix_manVal.csv
## File imported! pSIRM_SpectraData.csv
## File imported! DataMatrix.csv
## Correct column names in file sample_extracts.csv
## Correct column names in sample annotation
## Input files checked!
## Annotation and Sample_extract.csv correctly imported!
MTXQC - GC-MS perfomance
Alkane standards
## QC-metric successfully exported: alkanes
Data normalization
Internal standard cinnamic acid
## QC-metric successfully exported: cinacid
Sum of Area of annotated metabolites per file
## Files with less than 50% of max(N) should be excluded from SumofArea normalisation.
## QC-metric successfully exported: sumofarea
```


Figure 1: Alkane intensities summarised per each file. Drop of intensities shows questionable files.

Figure 2: Quantification of internal extraction standard

Count: Annotated metabolites per file

Figure 3: Count N: Annotated intermediates per file. Evaluate careful for SumOfArea normalisation.

Batch_Id	n_50
e18057cz	39.0
e18060cz	44.0
e18061cz	37.5

Derivatization check

QC-metric successfully exported: mz73

HeatMap - GC-MS performance

Table 2: Summary of parameter evaluating GC-Performance

Batch_Id	qc_metric	title
e18057cz e18060cz	0.9371664 0.9104125	alkanes alkanes
e18061cz	0.9104123	alkanes

Batch_Id	qc_metric	title
e18057cz	0.3914688	cinacid
e18060cz	0.6531375	cinacid
e18061cz	0.6563009	cinacid
e18057cz	0.6818946	mz73
e18060cz	0.8585613	mz73
e18061cz	0.7720460	mz73
e18057cz	0.6512975	sumofarea
e18060cz	0.7576846	sumofarea
e18061cz	0.6644690	sumofarea

Export of GC-Performance values done!

MTXQC - Quantitative metabolomics

```
## File imported! quant1_values.csv

## Correct matching of ManualQuantTable files and annotation file content!

## ManualQuantTable for standard calibration curves has been generated. Quant1_v3

## ManualQuantTable generated and exported!

## Additional quant1-values imported for metabolites: 3

## Additional calibration curves have been not defined for all batches included in the annotation file!

## Batch Id containing additional calibration curves: e18060cz

## Additional calibration curves have been duplicated and added for all batches!

## ManualQuantTable for additional calibration curves has been generated. Quant1-values: Quant_ext

## Additional Quant-Standards have been added to MQT_integrated.csv
```

Determination of calibration curves

top5_QMQcurveInfo.csv generated!

```
if (nrow(qc_calcurve != 0)) {
    ggplot(qc_calcurve, aes(Lettercode, Par_value, color = Parameter)) +
        geom_point(aes(shape = Parameter), size = 3) +
    coord_flip() +
    ggtitle('Calibration curve: adj. R square and nb of data points') +
    ylim(0,1) +
    geom_hline(aes(yintercept = 0.75), linetype = 'dashed', color = 'grey30') +
    scale_color_manual(values = c('tomato3','black')) +
    scale_shape_manual(values = c(17,20)) +
    facet_grid(Origin ~ Batch_Id, scales = "free_y") +
        xlab('Derivate') +
        ylab('Parameter value in (-)') +
    theme(legend.position = "bottom")
}
```

Normalization: SumOfArea

Figure 4: Total peak area of all annotated metabolite per file.

Calibration curves: e18057cz

Figure 5: Additional Calibration curves

Calibration curves: e18060cz Cit Ita PGA6 1.5e+08 4e+07 9e+08 ChromIntensities 3e+07 1.0e+08 6e+08 2e+07 5.0e+07 3e+08 1e+07 0.0e+00 0e+00 5000 10000 1500 Concentration

Figure 6: Additional Calibration curves

Figure 7: Additional Calibration curves

Figure 8: Calibration curves: Nb. of data points.

Figure 9: Limits of quantifiable range per metabolite

Fraction of measurements regarding quantification curve: Qstd Qstd Qstd e18057cz e18060cz e18061cz Ser_3TW Ser_3TW Pyroglut_2TS Pro_5 P Pyrogiut 2+ Bis Pro-500 Pro-500 Pantotherid 100 Lys 4+ Mis Let 1- 4+ Mis LYS_37 Derivate NA NA NA e18057cz e18060cz e18061cz Uridine Urea Urea Uracil Uracil Ribu5P Ribose_2deoxy_BP Ribose_2deoxy_MP Putrescine Putrescine Glut_2oxo Inosine Hypoxanthine Glut_2hydroxy Glut_2oxo GluAcid Glut_2hydroxy Glc6P_MP GluAcid Glc MP Glc MP Glc BP GalAcid GalAcid GA GΑ bAla_2TMS Cysteine Cysteine -bAla_2TMS -3PGA bAla_2TMS -0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 Fraction of data points (%) **Evaluation** NaCal below linear above

Figure 10: Distribution of data points regarding linear range of the calibration curve

Evaluation of experimental data

Determination extraction factor

- ## The sample factor for that experimental setup: 1
- ## The extraction factor for that experimental setup: 0.33333333333333333

Quantification range and limits

Position of data points regarding calibration curves evaluated.

Figure 11: Distribution of data points regarding linear range of the calibration curve

Absolute quantification samples

Calibration curve and samples: e18057cz (samples in red)

Concentration (pmol)

Calibration curve and samples: e18060cz (samples in red)

Concentration (pmol)

Calibration curve and samples: e18061cz (samples in red)

Concentration (pmol)

Normalisation of absolute quantities

Absolute quantification and normalisation have been performed: CalculationFileData.csv

HeatMap - Quantification

Proportion of NA counts (in comparison to Backup MID) Ser_atms Ser_atms Ser_atms Glycap Glycap Glycap Glut_2oxo Glut_2oxo Glut_2oxo Glut_atms Glu_atms Glober BP Frc6P MP Frc1P MP Frc8P MP Frc

Figure 12: Missing values in mass isotopomer distributions (MID).

0.5

0.3

0.7

Proportion

MTXQC - Stable isotope incorporation

NA count

3-Lowest of MID

3-Lowest of MID

¹³C-Isotope incorporation

No data for t=0 in the experimental setup defined!

Proportion MID evaluation | Suc | S

Figure 13: MID quality

Heatmap Isotope incorporation

MTXQC Heatmap compilation: Quantifitation and stable isotope incorporation

End of the document

Absolute quantification and stable isotope incorporation

Figure 14: MTXQCvX - Heatmap overview