EPRST: Probability and Statistics Problem set 5

- 1. Suppose that you buy a lottery ticket in each of 50 lotteries. In every lottery probability of winning is $\frac{1}{100}$. Using Poisson approximation, compute the probability that you win:
 - (a) at least once,
 - (b) exactly once,
 - (c) at least twice.
- 2. A message is sent over a noisy channel. The message is a sequence x_1, x_2, \ldots, x_n of n bits $(x_i \in \{0, 1\})$. Since the channel is noisy, there is a chance that any bit might be corrupted, resulting in an error (a 0 becomes a 1 or vice versa). Assume that the error events are independent. Let p be the probability that an individual bit has an error $(0 . Let <math>y_1, y_2, \ldots, y_n$ be the received message (so $y_i = x_i$ if there is no error in that bit, but $y_i = 1 x_i$ if there is an error there).

To help detect errors, the *n*th bit is reserved for the parity check: x_n is defined to be 0 if $x_1 + x_2 + \ldots + x_{n-1}$ is even, and 1 if $x_1 + x_2 + \ldots + x_n$ is odd. When the message is received, the recipient checks whether y_n has the same parity as $y_1 + y_2 + \ldots + y_{n-1}$. If the parity is wrong, the recipient knows that at least one error occurred; otherwise, the recipient assumes that there were no errors.

- (a) For n=3 and p=0.1, what is the probability that the received message has errors which go undetected?
- (b) For general n and p, determine the probability that the received message has errors which go undetected.
- 3. Find the value
 - (a) $\mathbb{P}(X \ge 3.5)$ if $X \sim \mathcal{N}(2, 4)$,
 - (b) $\mathbb{P}(X \ge -4)$ if $X \sim \mathcal{N}(-5, 1)$.
- 4. The weight of any person in a group of people is described (in kgs) by the normal distribution $\mathcal{N}(75, 16)$.
 - (a) What is the probability that a randomly picked person from the group weighs more than 83 kgs?
 - (b) What is the probability that a randomly picked person from the group weighs no more than 79 kgs?
 - (c) What is the fraction of people with the weight between 71 and 80 kgs?
 - (d) Find such value of weight that is not exceeded by 80% of people from the group.
- 5. If $X \sim \mathcal{N}(-1, 9)$ then (answer *yes* or *no*):
 - (a) $\mathbb{P}(|X+1| > 3) = 1 2\Phi(1)$,
 - (b) $\mathbb{P}(X > 2) = \mathbb{P}(X < -4)$,
 - (c) $F_X(-6) + F_X(3) < 1$,
 - (d) $\mathbb{P}(-2 < X < 0) > \mathbb{P}(10 < X < 12)$.
- 6. Assume that supp $X = \{-2, -1, 0, 1, 3\}$ and $\mathbb{P}(X = -2) = \mathbb{P}(X = -1) = \mathbb{P}(X = 0) = \mathbb{P}(X = 1) = \mathbb{P}(X = 3)$. Let $Y = X^4$. Find the distribution of Y.
- 7. Let X be uniformly distributed on [-1,3]. Determine the distribution of
 - (a) $Y = X^2$,
 - (b) $Y = \max(0, X)$.
- 8. Our aim now is to compute the integral

$$I := \int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{2}\right) \mathrm{d}x.$$

(a) Write I^2 as a double integral over the real plane *Hint*:

$$I^{2} = \left(\int_{-\infty}^{\infty} \exp\left(-\frac{x^{2}}{2}\right) dx\right)^{2} = \left(\int_{-\infty}^{\infty} \exp\left(-\frac{x^{2}}{2}\right) dx\right) \left(\int_{-\infty}^{\infty} \exp\left(-\frac{y^{2}}{2}\right) dy\right)$$

- (b) Compute I^2 using the polar coordinates. What is the value of I?
- 9. Let $g(x) = x^2$. Find the distribution of Y = g(X) if X is uniformly distributed on [-1,3].
- 10. Random variable X has a continuous distribution with the density $f(x) = \frac{1}{x^2} \mathbb{1}_{(1,\infty)}(x)$. Find the distribution of
 - (a) Y = 2X + 1,
 - (b) $Z = X^2 + X$.