北京邮电大学 2017 年硕士研究生入学考试试题

考试科目: 概率论

请考生注意: ①所有答案(包括选择题和填空题)一律写在答题纸上,否则不计成绩。

② 不允许使用计算器。

一、填空题(每小题5分,共50分)

- 1. 假设随机事件 A, B 满足 P(A) = 0.7, P(B) = 0.4, $P(A\overline{B}) = 0.5$,则 $P(B | A \cup \overline{B}) = \underline{\hspace{1cm}}$.
- 2. 假设随机变量 X 的分布函数为 $F(x) = \begin{cases} 0, & x < 0, \\ \frac{1}{2}(x+1), & 0 \le x < 1, \\ 1, & x \ge 1, \end{cases}$

则概率 $P\{0 < X < \frac{1}{2}\} = _____.$

3. 设随机变量 X 的概率密度函数为 $f(x) = \begin{cases} \frac{1}{3}, & 0 \le x \le 1, \\ \frac{2}{9}, & 3 \le x \le 6, 若 0, \end{cases}$ 其他,

 $P\{X \ge k\} = \frac{2}{3}$,则 k 的取值范围是 ______.

4. 设随机变量 X 服从 (0,1) 上的均匀分布,即 $X \sim U(0,1)$,令 $Y = |\ln X|$,则当 y > 0 时,随机变量 Y 的概率密度函数 $f(y) = ______.$

5. 设 $0 < y \le 1$, 在Y = y的条件下, 随机变量X的条件概率密度函数

$$f_{X|Y}(x|y) = \begin{cases} \frac{3}{2}x^2y^{-3/2}, & -\sqrt{y} \le x \le \sqrt{y}, \\ 0, & 其他, \end{cases}$$

则 $P\{X \ge 0 \mid Y = 1/2\} =$ _____.

- 6. 独立地投掷一枚均匀的骰子 n 次,令 X_i 为点 i 出现的次数,i=1,2,...,6,则协方差 $Cov(X_1,X_6)=$ ______.
- 7. 设随机变量 X,Y 独立同分布,都服从正态分布 N(1,1),则 $D(|X-Y|) = ______.$
- 8. 设二维随机变量(X,Y)服从正态分布N(1,-1,9,4,-1),即E(X)=1,

$$E(Y) = -1$$
, $D(X) = 9$, $D(Y) = 9$, $\rho(X, Y) = -1$, $\bigcup E(X + Y)^2 = \underline{\hspace{1cm}}$.

- 9. 设随机变量 X 的特征函数为 $\phi(t) = e^{\alpha(e^t 1)}$, $\alpha > 0$ 为一常数,则 $E(X^2) = _____.$
- 10. 设随机变量序列 $\{X_n, n=1,2,...\}$ 独立同分布,均服从参数为 p 的几何分 布 , 即 分 布 律 为 $P(X=k)=(1-p)^{k-1}p, k=1,2,...$,则 $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^nX_k=$ ____.
- 二. **(20 分)** 设随机变量序列 $X_1, X_2, ..., X_{10}$ 独立同分布,具有密度函数 f(x) 和分布函数 F(x),定义

$$Y_1 = \min\{X_1, X_2, \dots, X_{10}\}\$$
, $Y_{10} = \max\{X_1, X_2, \dots, X_{10}\}\$, $Z = Y_{10} - Y_1$.

- (1) 设 Y_i 的分布函数为 $G_i(y_i)$, i = 1, 10, 试用分布函数 F(x) 表示 $G_i(y_i)$, i = 1, 10;
- (2)设 (Y_1,Y_{10}) 的分布函数为 $G(y_1,y_{10})$,试用分布函数F(x)表示 $G(y_1,y_{10})$;

- **三**. **(20 分)** 设随机变量 ξ , η 相互独立, 且服从均匀分布, 具体为 $\xi \sim U(-2,2)$, $\eta \sim U(-9,9)$,
- (1) 求方程 $x^2 + 2\xi x + \eta = 0$ 有实根的概率;
- (2) 求方程 $x^2 + 2\xi x + \eta = 0$ 有实根的条件下, $2\eta > |\xi|$ 的条件概率,即 $P\{2\eta > |\xi| |x^2 + 2\xi x + \eta = 0$ 有实根}.
- 四. (20 分) 设二维随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} 8xy, & 0 \le x \le y \le 1, \\ 0, & 其他, \end{cases}$$

若记
$$U = \frac{X}{Y}$$
, $V = Y$,

- (1) 求(U,V)的概率密度函数;
- (2) 随机变量 X 和 Y 是否相互独立? 为什么?
- (3) 随机变量U 和V 是否相互独立? 为什么?
- 五. (20 分) 设随机变量 X_i (i = 1, 2, 3, 4) 相互独立同二项分布 B(1, 0.4),

- 求: (1) X_1, X_2, X_3, X_4 的协方差矩阵;
 - (2) 行列式 $X = \begin{vmatrix} X_1 & X_2 \\ X_3 & X_4 \end{vmatrix}$ 的概率分布;
 - (3) E(X), D(X).
- **六. (20 分)** 设随机变量 X, Y 独立,分别服从参数为 $\lambda_1 > 0, \lambda_2 > 0$ 的泊 松分布,即 $X \sim \pi(\lambda_1), Y \sim \pi(\lambda_2)$,
 - (1) 证明: X+Y服从参数为 $\lambda_1+\lambda_2$ 的泊松分布;
 - (2) 求概率P(X=k|X+Y=n), 其中 $n \ge k$, 都为正整数;
- (3)定义Z = X + Y,若Z表示从零时刻起单位时间内某放射性物质放射的粒子数,且放射时刻依次为 $T_1, T_2, ...$,即 T_i 表示第i个放射的粒子的放射时刻,求概率 $P\{T_1 \leq 1\}$.