# Machine Learning Feature Selection and Regularization



Kevin Moon (kevin.moon@usu.edu)
STAT/CS 5810/6655



#### Feature Selection



- **Feature selection** is the problem of selecting a subset of features of a feature vector  $\mathbf{x} = \begin{bmatrix} x^{(1)}, \dots, x^{(d)} \end{bmatrix}^T$  that are most relevant for a machine learning task (e.g. classification or regression)
- Motivations for feature selection:
  - Understanding/interpreting data
  - Improving computational efficiency
  - Improving performance (curse of dimensionality)
- Primary types of feature selection methods:
  - Filter methods
  - Wrapper methods
  - Embedded methods

### Curse of dimensionality



- Data analysis becomes more difficult (statistically and computationally) as the dimension increases
- Example: a classification problem where

$$X|Y = 1 \sim \mathcal{N}(\mu_1, I), \qquad \mu_1 = [1, 0, ..., 0]^T$$
  
 $X|Y = -1 \sim \mathcal{N}(\mu_{-1}, I), \qquad \mu_{-1} = [-1, 0, ..., 0]^T$ 

- Only the first feature is relevant for classification
- As  $d \to \infty$ , the distance between two random points in the <u>same</u> class has the <u>same</u> distribution as the distance between two random points in <u>opposite</u> classes
- Feature selection can significantly improve performance when only a few features are relevant

# Curse of dimensionality





Figure 1: "Within Class" and "Between Class" distances as the dimension increases .

#### Filter Methods



- Basic idea: sort features by estimated relevance, take the top k features (k is the desired number)
- Consider a supervised learning problem with data  $(x_1, y_1), ..., (x_n, y_n)$ 
  - Common relevance measure for classification:

$$\left|t^{(j)}\right| = \frac{\left|\overline{x_1}^{(j)} - \overline{x_{-1}}^{(j)}\right|}{s_j/\sqrt{n}}$$

Where  $\overline{x_m}^{(j)} = \text{sample mean of } \left\{ x_i^{(j)} \middle| y_i = m \right\}$ 

and  $s_j$  = pooled sample standard deviation of  $\{x_i^{(j)}\}$ .

• Common relevance measure for <u>regression</u> is the correlation coefficient between Y and  $X^{(j)}$ 

#### Filter Methods



• Advantage: Fast

• **Disadvantage**: the individually top k features are generally not the best collective k features



 Each feature is useless individually, but collectively they can perfectly classify the data

### Wrapper Methods



#### Three basic ingredients:

- 1. A machine learning algorithm
  - Examples: LDA, logistic regression, SVM, kernel ridge regression
- 2. A method for evaluating the performance of the algorithm when trained on a subset of features
  - Examples: Holdout, cross-validation
- 3. A strategy for searching through subsets of features
  - Examples: forward selection, backward elimination
- Wrapper methods derive their name from the fact that they wrap around the basic ML algorithm running it many times on different subsets of features

#### Forward selection and backward elimination



#### Both methods are greedy

- Forward selection
  - Start with  $S = \{\}$
  - Given a subset S, increase the subset to  $S \cup \{j\}$  where j gives the biggest increase in performance
- Backward elimination
  - Start with  $S = \{1, 2, ..., d\}$
  - Given a subset S, decrease the subset to  $S \setminus \{j\}$ , where  $j \in S$  gives the smallest decrease in performance

# Wrapper methods



- Advantage: Captures feature interactions
- **Disadvantages**: slow, not necessarily optimal (generally ok for just prediction, but less ok for interpretation)

 Can also modify the wrapper approach to use <u>mutual</u> <u>information</u> as the measure of performance (no training required)

#### **Embedded Methods**



- Embedded methods perform feature selection and function estimation (e.g. classification or regression) simultaneously
- We'll focus on the Lasso (least absolute shrinkage and selection operator)



A regression method that solves:

$$\min_{\mathbf{w}, b} \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i - b)^2 + \lambda ||\mathbf{w}||_1$$

- $\|\mathbf{w}\|_1 = \sum_{j=1}^d |\mathbf{w}^{(j)}|$  is called the  $\ell_1$  norm
- This is least squares linear regression with  $\ell_1$  regularization
- Can generalize to 0 :

$$\|\mathbf{w}\|_{p} = \left(\sum_{j=1}^{d} |w^{(j)}|^{p}\right)^{\frac{1}{p}}$$

• This is a true norm for  $p \ge 1$  (triangle inequality fails for p < 1)



From previous lectures, the optimal b is

$$\hat{b} = \dot{\overline{y}} - \hat{\boldsymbol{w}}^T \overline{\boldsymbol{x}}$$

$$\widehat{w} = \arg\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (\widetilde{y}_i - \mathbf{w}^T \widetilde{\mathbf{x}}_i)^2 + \lambda \|\mathbf{w}\|_1$$

$$\widetilde{y}_i = y_i - \overline{y}, \qquad \widetilde{x}_i = x_i - \overline{x}$$

• Matrix-vector form:

$$\widehat{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} \frac{1}{n} \| \widetilde{\boldsymbol{y}} - \widetilde{\boldsymbol{X}} \boldsymbol{w} \|_{2}^{2} + \lambda \| \boldsymbol{w} \|_{1}$$

or (from Lagrange multiplier theory):

$$\widehat{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} \frac{1}{n} \left\| \widetilde{\boldsymbol{y}} - \widetilde{\boldsymbol{X}} \boldsymbol{w} \right\|_{2}^{2}$$

$$s.t. \|w\|_1 \leq s$$



- Key observation:  $\hat{w}$  is sparse
  - ⇒ Lasso automatically selects the relevant features
- One explanation: shape of the  $\ell_1$  ball  $\{w | ||w||_1 \le s\}$





- Meanwhile, the set  $\left\{ m{w} \middle| \left\| \tilde{y} \tilde{X} m{w} \right\|_2^2 = c \right\}$  is an ellipse
- The minimum c value, subject to the constraint  $\|w\|_1 \leq s$ , typically occurs along the w axes (thus some/many of the components will be zero)
- Smaller s is equivalent to larger  $\lambda$  and results in sparser w



 $\ell_1$  norm and elliptical contours



Difference between  $\ell_1$  and  $\ell_2$  regularization:





### More on Regularization



- A significant disadvantage of the  $\ell_1$  penalty relative to  $\ell_2$  is that the problem cannot be kernelized
- In  $\ell_2$  regularization, all the coefficients are zero when  $\lambda = \infty$  (s = 0). But for any finite values of  $\lambda$ , all coefficients are nonzero and increase in magnitude as  $\lambda$  decreases (s increases; (a))
- In  $\ell_1$  regularization, all the coefficients are zero when  $\lambda = \infty$  (s = 0). As we decrease  $\lambda$  (increase s), the w's gradually <u>turn on</u>. If s is sufficiently small, the solution is sparse (b).





# Further Reading



- ISL Chapter 6
- ESL Sections 3.4