ECUACIONES:

RESOLUCIÓN Y APLICACIONES

GRADO 9

CONTENIDOS

- 1 Sección 1: introducción
- 2 Sección 2: aplicaciones de las ecuaciones
- 3 Sección 3: Partes y clases
- 4 Sección 4: solución de una ecuación
- 5 Sección 5: Propiedades de las igualdades en ecuaciones y consecuencias
- 6 Sección 6: Resolución de una ecuación de grado uno

SECCIÓN 1: INTRODUCCIÓN

PARA PENSAR!

¿Cuál es el peso de un cubo azul para mantener la balanza en equilibrio?

Una forma de resolver...

El lado izquierdo numéricamente es igual al lado derecho.

DEFINICIÓN: QUÉ ES UNA ECUACIÓN?

$$2 \times 2 = 3X$$

 $X =$ Peso de un cubo azul

- Una <u>ecuación</u> es una expresión que representa <u>una igualdad</u> entre valores conocidos y desconocidos.
- Las ecuaciones son de uso (muy) frecuente en ciencias y matemáticas.
- Los valores desconocidos se denomina incógnitas, usualmente representado por letras.

SECCIÓN 2: APLICACIONES DE LAS ECUACIONES

¿...Donde aparecen las ecuaciones?

¿...Donde aparecen las ecuaciones?

El **propósito** de una ecuación es encontrar los valores que satisfacen la igualdad.

■ Un simple problema de astronomía

2'

■ Un simple problema de astronomía

■ Un simple problema de astronomía

$$r^2 - 2r + 0.999721 = 0$$

 $(r - 1.0167)(r - 0.9833) = 0$

Perihelio: 0.9833 UA Afelio: 1.0167 UA

■ Movimiento de las ondas en una cuerda ¿Cuál es la rapidez de la onda viajera?

■ Movimiento de las ondas en una cuerda ¿Cuál es la rapidez de la onda viajera?

$$v = \frac{\lambda}{T}, \Rightarrow \frac{\text{Distancia}}{\text{Tiempo}}$$

Casaián a Diamas y si isa

SECCIÓN 3: PARTES Y CLASES

PARTES Y CLASES

Ecuación numérica

$$\underbrace{2X+3}_{\text{1er miembro}} = \underbrace{8+5X}_{\text{2do miembro}}$$

Partes

- Miembros: expresiones algebraicas a la izquierda o derecha del "=".
- Términos: cantidades conectadas por un signo.

Ecuación literal

$$E = \frac{L^2}{2mr^2} - \frac{GMm}{r}$$

Clases

Según su forma y grado:

- Numérica: aparecen una(s) letra(s) cuyo resultado es numérico.
- Literal: aparecen de forma mixta (letras y números) cuyo resultado es una expresión.

El grado es determinado por el grado mayor de la incógnita.

Ejemplo 1

$$5x^3 - 8x^2 + 2x - 2 = 0$$

grado 3, numérica

Ejemplo 2

$$x = \frac{1}{2}at^2 + vt + s$$

respecto a t: grado 2, literal

Ejemplo 3

$$3q^{2} - 4q - 5q^{2} + 7q + 2q^{2} = 3q^{3} - 5 - 2q^{3} + 12 - q^{3}$$
$$3q^{2} - 4q - 5q^{2} + 7q + 2q^{2} = 3q^{3} - 5 - 2q^{3} + 12 - q^{3}$$
$$3q = 7$$

grado 1, numérica

SECCIÓN 4: SOLUCIÓN DE UNA ECUA-CIÓN

SOLUCIÓN DE UNA ECUACIÓN

La solución de una(s) ecuación(es) consiste en hallar el(los) valor(es) numérico(s) de la(s) incógnita(s) que verifican y hacen verdadera la igualdad. En resumen, los miembros de la ecuación deben ser idénticamente iguales.

Ejemplo inicial: la balanza

$$3x = 4$$
, solución: $x = \frac{4}{3}$ porque $3 \times \frac{4}{3} = 4$

La solución de una ecuación también es llamada raíz[1].

SECCIÓN 5: PROPIEDADES DE LAS IGUALDADES EN ECUACIONES Y CON-SECUENCIAS

PROPIEDADES

I. Si a los dos miembros de una ecuación se suma o se resta una cantidad positiva o negativa, la igualdad se mantiene.

Ejemplo

$$X + 8 = 10$$
, $X + 8 - 8 = 10 - 8$, $X = 10 - 8 = 2$

II. Si a los dos miembros de una ecuación se multiplica o se divide una cantidad positiva o negativa, la igualdad se mantiene.

Ejemplo

$$3x = 4$$
, $\frac{3x}{3} = \frac{4}{3}$, $x = \frac{4}{3}$

CONSECUENCIAS: TRANSPOSICIÓN DE TÉRMINOS

De lo anterior se obtiene como consecuencia:

 Cualquier término puede cambiar de miembro, cambiando el signo.

$$X+8=10 \Rightarrow X=10-8$$

II. Cualquier término que multiplique (divida) la incógnita, cambia de miembro a dividir (a multiplicar).

$$3X = 4$$
 \Rightarrow $X = \frac{4}{3}$; $\frac{y}{8} = 5$ \Rightarrow $y = 5 \cdot 8 = 40$

Estas consecuencias sencillas permiten resolver una ecuación.

SECCIÓN 6: RESOLUCIÓN DE UNA ECUACIÓN DE GRADO UNO

RESOLUCIÓN DE UNA ECUACIÓN GRADO 1

Procedimiento para resolver una ec. de grado 1 y una incógnita:

- Realizar operaciones, si las hay (productos, eliminar paréntesis, etc.).
- Realizar transposición de términos reuniendo en un miembro las cantidades incógnitas y en el otro las cantidades conocidas.
- III) Reducir términos semejantes.
- IV) Aislar la incógnita mediante división o multiplicación (consecuencia II).
- v) Verificar la solución reemplazando el valor hallado en la ecuación.

Resolver la ecuación

$$10X - 90 - 45 + 54X = 8X - 2 + 5 + 10X$$

Resolver la ecuación

$$10X - 90 - 45 + 54X = 8X - 2 + 5 + 10X$$

paso ii)
$$10x-10x-8x+54x=-2+5+90+45$$

Resolver la ecuación

$$10x - 90 - 45 + 54x = 8x - 2 + 5 + 10x$$

paso ii) $10x - 10x - 8x + 54x = -2 + 5 + 90 + 45$

paso iii) $46x = 138$

Resolver la ecuación

10x - 90 - 45 + 54x = 8x - 2 + 5 + 10x

paso ii) 10x-10x-8x + 54x = -2 + 5+90 + 45

paso iii) 46x = 138

paso iv)
$$x = \frac{138}{46} = 3$$

Resolver la ecuación

10x - 90 - 45 + 54x = 8x - 2 + 5 + 10x

paso ii) 10x-10x-8x + 54x = -2 + 5+90 + 45

paso iii) 46x = 138

paso iv)
$$x = \frac{138}{46} = 3$$

paso v) 10(3) - 90 - 45 + 54(3) = 8(3) - 2 + 5 + 10(3)

Ejemplos

ACTIVIDAD 2

Resolver las ecuaciones:

1.
$$5x=8x-15, x\rightarrow 5$$

2.
$$4X+1=2$$
, $X \rightarrow \frac{1}{4}$

3. y-5=3y-25,
$$y\rightarrow$$
 10

4.
$$5X+6=10X+5$$
, $X \rightarrow \frac{1}{5}$

5. 9y-11=-10+12y,
$$y \rightarrow -\frac{1}{3}$$

6. 21-6x=27-8x,
$$x \rightarrow 3$$

7. 11x+5x-1=65x-36,
$$x \rightarrow \frac{5}{7}$$

8.
$$8x-4+3x=7x+x+14$$
, $x\rightarrow 6$

9.
$$8x+9-12x=4x-13-5x$$
, $x \rightarrow \frac{22}{3}$

10. 5y+6y-81=7y+102+65y,
$$y \rightarrow -3$$

11. 16+7x-5+x=11x-3-x,
$$x \rightarrow 7$$

13. 14-12X+39X-18X=256-6OX-657X,

$$X \rightarrow \frac{1}{3}$$

LISTS

Items:

- Item 1
 - ► Subitem 1.1
 - ► Subitem 1.2
- Item 2
- Item 3

Enumerations:

- 1. First
- 2. Second
 - 2.1 Sub-first
 - 2.2 Sub-second
- 3. Third

Descriptions:

First Yes.

Second No.

FIGURES AND TABLES

Figura 1: Figure caption.

	Heading 1	Heading 2
Row 1	V ₁₁	V ₁₂
Row 2	V ₂₁	V_{22}
Row 3	V ₃₁	V ₃₂

Cuadro 1: Table caption.

REFERENCIAS

J.A. BALDOR.

ALGEBRA.

Grupo Editorial Patria, 1983.

BACKUP FRAME

This is a backup frame, useful to include additional material for questions from the audience.