CSE 327 Microprocessor Interfacing and Embedded System

Farhin Farhad Riya Lecturer Primeasia University

Electronic Prototyping Platform

What is an Arduino?

Introduction

Arduino is an open-source platform used for building electronics projects. Arduino consists of both a physical programmable circuit board (often referred to as a microcontroller) and a piece of software, or IDE (Integrated Development Environment) that runs on your computer, used to write and upload computer code to the physical board.

The Arduino platform has become quite popular with people just starting out with electronics, and for good reason. Unlike most previous programmable circuit boards, the Arduino does not need a separate piece of hardware (called a programmer) in order to load new code onto the board -- you can simply use a USB cable. Additionally, the Arduino IDE uses a simplified version of C++, making it easier to learn to program. Finally, Arduino provides a standard form factor that breaks out the functions of the micro-controller into a more accessible package.

This is an Arduino Uno

```
Blink | Arduino 1.0.3
 Blink
 Turns on an LED on for one second, then off for one second, repeatedly.
 This example code is in the public domain.
8/
// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;
// the setup routine runs once when you press reset:
void setup() {
 // initialize the digital pin as an output.
 pinMode(led, OUTPUT);
}
// the loop routine runs over and over again forever:
void loop() {
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000);
                         // wait for a second
}
                                        Arduino Mega (ATmega1280) on /dev/tty.usbserial-A600enbz
```

This is a screenshot of the Arduino IDE.

What Does it Do?

The Arduino hardware and software was designed for artists, designers, hobbyists, hackers, newbies, and anyone interested in creating interactive objects or environments. Arduino can interact with buttons, LEDs, motors, speakers, GPS units, cameras, the internet, and even your smart-phone or your TV! This flexibility combined with the fact that the Arduino software is free, the hardware boards are pretty cheap, and both the software and hardware are easy to learn has led to a large community of users who have contributed code and released instructions for a **huge** variety of Arduino-based projects.

For everything from robots and a heating pad hand warming blanket to honest fortune-telling machines, and even a Dungeons and Dragons dice-throwing gauntlet, the Arduino can be used as the brains behind almost any electronics project.

What's on the board?

There are many varieties of Arduino boards that can be used for different purposes. Some boards look a bit different from the one below, but most Arduinos have the majority of these components in common:

Power (USB / Barrel Jack)

Every Arduino board needs a way to be connected to a power source. The Arduino UNO can be powered from a USB cable coming from your computer or a wall power supply that is terminated in a barrel jack. In the picture above the USB connection is labeled (1) and the barrel jack is labeled (2).

The USB connection is also how you will load code onto your Arduino board. **NOTE:** Do NOT use a power supply greater than 20 Volts as you will overpower (and thereby destroy) your Arduino. The recommended voltage for most Arduino models is between 6 and 12 Volts.

Pins (5V, 3.3V, GND, Analog, Digital, PWM, AREF)

The pins on your Arduino are the places where you connect wires to construct a circuit (probably in conjunction with a breadboard and some wire. They usually have black plastic 'headers' that allow you to just plug a wire right into the board. The Arduino has several different kinds of pins, each of which is labeled on the board and used for different functions.

- GND (3): Short for 'Ground'. There are several GND pins on the Arduino, any of which can be used to ground your circuit.
- **5V (4) & 3.3V (5)**: As you might guess, the 5V pin supplies 5 volts of power, and the 3.3V pin supplies 3.3 volts of power. Most of the simple components used with the Arduino run happily off of 5 or 3.3 volts.
- Analog (6): The area of pins under the 'Analog In' label (A0 through A5 on the UNO) are Analog In pins. These pins can read the signal from an analog sensor (like a temperature sensor) and convert it into a digital value that we can read.
- **Digital (7)**: Across from the analog pins are the digital pins (0 through 13 on the UNO). These pins can be used for both digital input (like telling if a button is pushed) and digital output (like powering an LED).
- **PWM (8)**: You may have noticed the tilde (~) next to some of the digital pins (3, 5, 6, 9, 10, and 11 on the UNO). These pins act as normal digital pins, but can also be used for something called Pulse-Width Modulation (PWM). For now, think of these pins as being able to simulate analog output (like fading an LED in and out).
- **AREF (9)**: Stands for Analog Reference. Most of the time you can leave this pin alone. It is sometimes used to set an external reference voltage (between 0 and 5 Volts) as the upper limit for the analog input pins.

Reset Button

The Arduino has a reset button (10). Pushing it will temporarily connect the reset pin to ground and restart any code that is loaded on the Arduino. This can be very useful if your code doesn't repeat, but you want to test it multiple times.

Power LED Indicator

Just beneath and to the right of the word "UNO" on your circuit board, there's a tiny LED next to the word 'ON' (11). This LED should light up whenever you plug your Arduino into a power source. If this light doesn't turn on, there's a good chance something is wrong. Time to re-check your circuit!

TX and RX LEDs

TX is short for transmit, RX is short for receive. There are two places on the Arduino UNO where TX and RX appear - once by digital pins 0 and 1, and a second time next to the TX and RX indicator LEDs (12). These LEDs will give us some nice visual indications whenever our Arduino is receiving or transmitting data (like when we're loading a new program onto the board).

Main IC

The black thing with all the metal legs is an IC, or Integrated Circuit (13). Think of it as the brains of our Arduino. The main IC on the Arduino is slightly different from board type to board type, but is usually from the ATmega line of IC's from the ATMEL company. This can be important, as you may need to know the IC type (along with your board type) before loading up a new program from the Arduino software. This information can usually be found in writing on the top side of the IC. If you want to know more about the difference between various IC's, reading the data sheets is often a good idea.

Voltage Regulator

The voltage regulator (14) is not actually something you can (or should) interact with on the Arduino. But it is potentially useful to know that it is there and what it's for. The voltage regulator does exactly what it says - it controls the amount of voltage that is let into the Arduino board. Think of it as a kind of gatekeeper; it will turn away an extra voltage that might harm the circuit. Of course, it has its limits, so don't hook up your Arduino to anything greater than 20 volts.

The Arduino Family

Arduino makes several different boards, each with different capabilities. In addition, part of being open source hardware means that others can modify and produce derivatives of Arduino boards that provide even more form factors and functionality.

- Arduino Uno (R3)
- LilyPad Arduino
- RedBoard
- Arduino Mega (R3)
- Arduino Leonardo

The Extended Family

While your Arduino board sure is pretty, it can't do a whole lot on its own -- you've got to hook it up to something.

37 IN 1 Sensors kit for Arduino

Sensors

With some simple code, the Arduino can control and interact with a wide variety of **sensors** - things that can measure light, temperature, degree of flex, pressure, proximity, acceleration, carbon monoxide, radioactivity, humidity, barometric pressure, you name it, you can sense it!

Just a few of the sensors that are easily compatible with Arduino

Shields

Additionally, there are these things called **shields** -- basically they are prebuilt circuit boards that fit on top of your Arduino and provide additional capabilities -- controlling motors, connecting to the internet, providing cellular or other wireless communication, controlling an LCD screen, and much more.

A partial selection of available shields to extend the power of your Arduino