A The Details of Proofs

A.1 Proof of Proposition 1

Proof. According to Proposition 18 in [25], if Σ is a finite alphabet of n alphabet symbols, the number of pairwise non-equivalent SOREs over Σ is s(n) with $n!2^{3n-r\log n} \leq s(n) \leq n!2^{7n}$, where r is a constant. It implies that there is a finite number of non-equivalent SOREs.

For k-OREs, every symbol in Σ occurs at most k times, we treat the same symbol in a k-ORE as distinct. Then, let $\Sigma(k)$ for k-OREs be a finite alphabet of nk alphabet symbols, the number of pairwise non-equivalent k-OREs over $\Sigma(k)$ is s(nk) with $(nk)!2^{3nk-r\log(nk)} \leq s(nk) \leq (nk)!2^{7nk}$. It implies that there is a finite number of non-equivalent k-OREs over $\Sigma(k)$. According to the definition 1, k-REs $(k \geq n)$ is a subclass of k-OREs. The number of non-equivalent k-REs over $\Sigma(k)$ is also finite.

Let \mathcal{D} denote the class of k-REs. Assume that there is a language $L \subseteq \Sigma_k^*$ such that no expression $\alpha \in \mathcal{D}$ is a descriptive generalization of L (w.r.t. the class \mathcal{D}). If an expression $\alpha_1 \in \mathcal{D} : \mathcal{L}(\alpha_1) \supseteq L$, then there is an expression $\alpha_2 \in \mathcal{D} : \mathcal{L}(\alpha_1) \supset \mathcal{L}(\alpha_2) \supseteq L$. There are infinite expressions $\alpha_1, \alpha_2, \cdots, \alpha_i, \cdots \in \mathcal{D}$ such that $\mathcal{L}(\alpha_1) \supset \mathcal{L}(\alpha_2) \supset \cdots \supset \mathcal{L}(\alpha_i) \supset \cdots \supseteq L$. This contradicts the fact that there is only a finite number of non-equivalent k-REs over $\mathcal{L}(k)$. Hence, for every language L, there exists a k-RE r that is a descriptive generalization of L (w.r.t. the class of k-REs).

A.2 Proof of Theorem 1

Proof. In algorithm 1, a GA \mathcal{A} is obtained by deleting nodes and the corresponsding edges in the given directed graph G. The rule R_1 working on G corresponds the operations in lines $13 \sim 14$. The rules R_2 and R_3 work on G in line 21 and line 11, repectively. It implies that the finally obtained GA \mathcal{A} is reducible. SCCs are searched in G in a recusive way in line 4, and the characters about stable and transverse are added into \mathcal{A} for each SCC in line 7. Actually, the algorithm Trans2GA is a variant of algorithm Soa2Sore [25]. Then, according to Theorem 27 in [25], for any given directed graph G, G can be correctly transformed into an expression. In this paper, each unit able to be transformed into an expression has been processed by $Trans(G, \mathcal{A})$ until |G.V| = 2. The finally obtained GA \mathcal{A} has the glushkov characters: HM, SS, ST and RD. According to Theorem 5.1 in [19], a directed graph is a glushkov graph if and only if the directed graph satisfies characteristics of glushkov graph (glushkov characters) [19]. Hence, \mathcal{A} is a glushkov graph.

A.3 Proof of Theorem 2

Proof. For any given finite sample S and the directed graph G obtained by using PSO algorithm, there does not exits another directed graph G' such that $\mathcal{L}(G) \supset \mathcal{L}(G') \supseteq S$; otherwise, G is not the optimal result of PSO algorithm.

The directed graph G obtained by using PSO algorithm is then transformed into a GA \mathcal{A} . Let f denote the function used to transform G into \mathcal{A} (i.e., $f(G) = \mathcal{A}$). \mathcal{A} must satisfy glushkov characters and any character is unambiguous. f is unique, there does not exist another function f' such that $f'(G) = \mathcal{A}$. It is implies that there does not exist another GA \mathcal{A}' such that G can be transformed into \mathcal{A}' .

For any given finite sample S, $\mathcal{L}(A) \supseteq \mathcal{L}(G) \supseteq S$. There does not exist another GA A' such that $\mathcal{L}(A) \supset \mathcal{L}(A') \supseteq S$. The constructed GA A is a descriptive generalization of S.

A.4 Proof of Theorem 3

Proof. According to Theorem 2, for any given finite sample S, the obtained S A is a descriptive generalization of S. A is a precise representation for S. In algorithm LearnRE, the algorithm Soa2Sore is used to transform S into an expression. For any given finite sample S', since Soa2Sore can transform a directed graph S which is a descriptive generalization of S' into an expression that is also a descriptive generalization of S' (Theorem 27 in [25]), Soa2Sore can also transform S S into a S-RE that is also a descriptive generalization of S (w.r.t. the class of S-REs). Hence, the S-RE S-REs returned by S-LearnRE is a descriptive generalization of S (w.r.t. the class of S-REs).

A.5 Proof of Corollary 1

Proof. For any k-RE r_k , we can construct an equivalent GA A_k , i.e., $\mathcal{L}(A_k) = \mathcal{L}(r_k)$. The GA A_k is also a directed graph, we can obtain a finite sample S by traversing A_k . For a string $s \in S$, s is a path from A_k . Then, there exist a finite sample S that can be obtained from A_k such that A_k is a descriptive generalization of S. When S is as input of algorithm LearnRE, the obtained GA A is also a descriptive generalization of S according to Theorem 2. There is $\mathcal{L}(A) = \mathcal{L}(A_k) = \mathcal{L}(r_k)$. A equivalent to r_k is then transformed into an expression r in LearnRE, r is also a descriptive generalization of S, it implies that $\mathcal{L}(r) = \mathcal{L}(A) \supseteq S$. Hence, there exists a expression r can be generated by LearnRE such that $\mathcal{L}(r_k) = \mathcal{L}(r)$. r_k can be successfully derived by LearnRE.

B The Pseudo-code of *PSO* Algorithm

Algorithm 3 PSO

22: Next generation;

23: **return** $(b_i, min_SumPath, G_0)$;

Input: A directed graph G_0 , Dimension d, the size of particles Size, The Number of iterations Time;

Output: A triple $(X_m, min_SumPath, G)$ where X_m denotes the optimal position such that PSO algorithm can obtain the minimum of SumPath, $min_SumPath$ denotes the minimum of SumPath, and G denotes the directed graph obtained by merging nodes in G_0 ;

- 1: Define particles $X_i \in M^d$ $(i \in [1, Size])$ where $M \in \{0, 1\}^{\leq k_m}$ and k_m denotes the maximal number of the nodes where the labels removed subscripts are the same symbol;
- symbol; 2: Define velocity vector v_i , $(i \in [1, Size])$; 3: Define the neighborhood size $\delta < Size$; 4: Define the maximum influence values $\phi_{1,max} = \phi_{2,max} = 2$; 5: Define the maximum velocity $v_{max} = k_m$; 6: Initialize a random population of individuals $\{x_i\}$ for each $i \in [1, Size]$; 7: Initialize each individual's k_m -element velocity vector v_i for each $i \in [1, Size]$; 8: Initialize the best-so-far position of each individual: $b_i = x_i$ for each $i \in [1, Size]$; 9: While $\neg(\text{iter} \ge Time \text{ and } ND(b_i) \supseteq OS)//ND(b_i) = \{a_{p_q} : X(a_p)(a_{p_q}) = 1, a_p \in \Sigma\}$ For each individual x_i $(i \in [1, Size])$ 10: $H_i = \{\delta \text{ nearest neighbors of } x_i\};$ 11: 12: $h_i = \arg\min_x \{SumPath(G_0, x) : x \in H_i\};$ Generate a random vector ϕ_1 with $\phi_1(k) \sim U[0, \phi_{1,max}]$ for $k \in [1, k_m]$; 13: Generate a random vector ϕ_2 with $\phi_2(k) \sim U[0, \phi_{2,max}]$ for $k \in [1, k_m]$; 14: $v_i = v_i + \phi_1(b_i - x_i) + \phi_2(h_i - x_i);$ 15: If $v_i > v_{max}$ then 16: $v_i = v_i v_{max} / |v_i|;$ 17: 18: $x_i = x_i + v_i;$ 19: $b_i = \arg\min\{SumPath(G_0, x_i), SumPath(G_0, b_i)\};$ 20: $min_SumPath = min\{SumPath(G_0, x_i), SumPath(G_0, b_i)\};$ 21: Next individual;