Abstract Harmonic Analysis

Ikhan Choi

January 19, 2025

Contents

Ι	Loc	cally compact groups	2
1	Loca	ally compact groups	3
	1.1	Haar measures	3
	1.2	Convolution algebras	3
	1.3	Fourier and Fourier-Stieltjes algebras	5
	1.4	Pontryagin duality	6
2	Ame	enability	8
3			9
II	Re	epresentation categories	10
4	Representations of compact groups		11
	4.1	Peter-Weyl theorem	11
	4.2	Tannaka-Krein duality	12
	4.3	Mackey machine	12
II	T T	opological quantum groups	13
5	Con	Compact quantum groups	
	5.1	Algebraic compact quantum groups	14
	5.2	Woronowicz compact quantum groups	14
	5.3	Kac algebras	15
6		ally compact quantum groups	16
	6.1	Locally compact quantum groups	
	6.2	Dual quantum groups	17
	6.3	Crossed products	17

Part I Locally compact groups

Locally compact groups

1.1 Haar measures

- 1.1 (Existence of the Haar measure).
- 1.2 (Left and right uniformities).
- 1.3 (Modular functions).
- **1.4** (Uniformly continuous functions). G acts on $C_u(G)$ and $L^1(G)$ continuously with respect to the point-norm topology. A function on G is left uniformly continuous if and only if it is written as f * x for some $f \in L^1(G)$ and $x \in L^{\infty}(G)$. $g \in C_c(G)$ is two-sided uniformly continuous.

1.2 Convolution algebras

We use the notation $L^p(G)$ for the non-commutative L^p -spaces constructed with the left Haar measure on G, which is a faithful semi-finite normal weight of $L^\infty(G)$. The predual of $L^\infty(G)$ can be identified with $L^1(G)$. The regular representation on $L^2(G)$ is the Gelfand-Naimark-Segal representation associated with the left Haar measure.

1.5 (Convolution algebras of integrable functions). Let G be a locally compact group. Then, $L^1(G)$ is a hermitian Banach *-algebra such that

$$(f * g)(x) := (f \otimes g)\Delta(x), \qquad f, g \in L^1(G), \ x \in L^\infty(G).$$

- (a) $L^1(G)$ has a two-sided approximate unit in $C_c(G)$.
- (b) $\alpha: G \to \operatorname{Aut}(L^1(G))$ is point-norm continuous.
- (c) $\lambda: G \to U(L^2(G))$ and $\lambda: L^1(G) \to B(L^2(G))$ are strongly continuous.
- (d) Convolution inequalities.
- (e) Representation theory equivalence.

Proof. Let U_i be a net of open neighborhoods of the identity e of G. By the Urysohn lemma, there is $e_i \in C_c(U_i)^+$ such that $\|e_i\|_1 = 1$ for each i. We claim that e_i is a two-sided approximate unit for $L^1(G)$. Suppose $g \in C_c(G)$, which is two-sided uniformly continuous. For any $\varepsilon > 0$, choose i_0 such that $\|g - \lambda_s g\| < \varepsilon$ and $\|g - \rho_s g\| < \varepsilon$

for all $s \in U_i$ for $i \succ i_0$. Then, we have

$$\begin{split} \|e_{i} * g - g\|_{1} &= \int |e_{i} * g(t) - g(t)| \, dt \leq \iint e_{i}(s) |g(s^{-1}t) - g(t)| \, ds \, dt \\ &= \int_{U_{i}} e_{i}(s) \|\lambda_{s} g - g\|_{1} \, ds < \varepsilon \int e_{i}(s) \, ds \leq \varepsilon, \end{split}$$

and

$$\begin{split} \|g * e_i - g\|_1 &= \int |g * e_i(s) - g(s)| \, ds \leq \int \int |g(t) - g(s)| e_i(t^{-1}s) \, dt \, ds \\ &= \int \int |g(t) - g(ts)| e_i(s) \, dt \, ds = \int \|g - \rho_s g\|_1 e_i(s) \, ds < \varepsilon \int e_i(s) \, ds \leq \varepsilon, \end{split}$$

and they imply $\lim_i \|e_i * g - g\|_1 = \lim_i \|g * e_i - g\|_1 = 0$. We can approximate $f \in L^1(G)$ with compactly supported continuous functions by the $\varepsilon/3$ argument.

- 1.6 (Measure algebras).
- 1.7 (Group C*-algebras).
- **1.8** (Group von Neumann algebras). Let G be a locally compact group. Since G is a locally compact Hausdorff space and the left Haar measure is a faithful semi-finite lower semi-continuous weight on the commutative C^* -algebra $C_0(G)$, we have a corresponding semi-cyclic representation $m: C_0(G) \to B(L^2(G))$ which is normally extended to a von Neumann algebra $L^\infty(G)$ with $m(L^\infty(G)) = m(C_0(G))''$, and $L^1(G)$ is identified with the predual $L^\infty(G)_*$.

By the left Haar measure, $C_c(G)$ has a natural non-commutative left Hilbert algebra structure

$$(f*g)(s) := \int f(t)g(t^{-1}s) dt, \qquad \langle f,g \rangle := \int \overline{g(s)}f(s) ds, \qquad f^{\sharp}(s) := \nabla(s^{-1})\overline{f(s^{-1})},$$

where ∇ is the modular function for G, and it induces the regular representation $\lambda: C_c(G) \to B(L^2(G))$. By the group structure of G, the Hilbert algebra $C_c(G)$ is also a commutative counital multiplier Hopf *-algebra

$$(fg)(s) := f(s)g(s), \qquad \Delta f(s,t) = f(st), \qquad f^*(s) := \overline{f(s)}, \qquad \kappa f(s) = f(s^{-1}).$$

We start from this structures.

They satisfy a compatibility condition $\langle f g, h \rangle = \langle f, g^*h \rangle$.

With the integral notation $\lambda(f) = \int \lambda_s f(s) ds$, we can write

From now on, we are going to exclude any measure theory and the theory of non-commutative L^p spaces. First, we have the completion $H =: L^2(G)$. Consider two representations

$$\lambda: (C_c(G), *, ^{\sharp}) \rightarrow B(L^2(G)), \quad m: (C_c(G), \cdot, ^{\ast}) \rightarrow B(L^2(G)).$$

- (a) λ is well-defined.
- (b) m is well-defined.

Proof. The multiplication representation m is well-defined because for $f \in C_c(G)$ we have $f^*f \in C_c(G) \subset L^2(G)$ so

$$||m(f)g||^2 = \langle fg, fg \rangle = \langle f^*fg, g \rangle, \qquad g \in C_c(G).$$

blabla

Note that we have

$$\begin{aligned} |\langle \lambda(\xi)\eta, \zeta \rangle|^2 &= |\int \int \xi(t)\eta(t^{-1}s)\overline{\zeta(s)} \, ds \, dt|^2 \\ &\leq \int \int |\xi(t)||\eta(t^{-1}s)|^2 \, ds \, dt \cdot \int \int |\xi(t)||\zeta(s)|^2 \, ds \, dt \\ &= ||\xi||_1^2 ||\eta||_2^2 ||\zeta||_2^2 \end{aligned}$$

and

$$\begin{split} |\langle \rho(\xi)\eta, \zeta \rangle|^2 &= | \iint \eta(t)\xi(t^{-1}s)\overline{\zeta(s)} \, ds \, dt |^2 \\ &\leq \iint |\xi(t^{-1}s)||\eta(t)|^2 \, ds \, dt \cdot \iint |\xi(t^{-1}s)||\zeta(s)|^2 \, ds \, dt \\ &= \|\xi\|_1 \|F\xi\|_1 \|\eta\|_2^2 \|\zeta\|_2^2 \end{split}$$

imply

$$\|\lambda(\xi)\|_{2\to 2} \le \|\xi\|_1, \qquad \|\rho(\xi)\|_{2\to 2} \le \sqrt{\|\xi\|_1 \|F\xi\|_1}.$$

The equalities do not hold, consider $\|\lambda(\xi)\| = \|\hat{\xi}\|_{\infty}$ if $G = \mathbb{R}$.

1.9 (Absorption principle). Let *G* be a locally compact group.

The structure operator of G is an operator $w \in U(L^2(G \times G))$ defined such that $w\xi(s,t) := \xi(s,st)$, or $w \in L^{\infty}(G) \otimes W_r^*(G)$ such that $\operatorname{Ad} w(\lambda_s \otimes \lambda_s) := \lambda_s \otimes 1$. If $w(x \otimes x)w^* = x \otimes 1$, then $x = \lambda_s$ for some $s \in G$.

(a) $\lambda \otimes u$ and $\lambda \otimes 1$ are unitarily equivalent. It is called the *Fell absorption principle*.

Proof. The Fell absorption principle states that the composition of equivariant operators

$$L^{2}(G) \otimes H \xrightarrow{\Delta \otimes 1} L^{2}(G) \otimes L^{2}(G) \otimes H \xrightarrow{1 \otimes ?} L^{2}(G) \otimes H$$

$$\lambda \otimes 1 \longmapsto \lambda \otimes \lambda \otimes 1 \longmapsto \lambda \otimes u$$

is unitary.

The structure operator is a special case of the Fell absorption operator

$$L^{2}(G) \otimes L^{2}(G) \xrightarrow{\Delta \otimes 1} L^{2}(G) \otimes L^{2}(G) \otimes L^{2}(G) \xrightarrow{1 \otimes ?} L^{2}(G) \otimes L^{2}(G)$$

$$\lambda \otimes 1 \longmapsto \lambda \otimes \lambda \otimes 1 \longmapsto \lambda \otimes \lambda$$

Fourier and Fourier-Stieltjes algebras

- **1.10** (Fourier algebras). Let *G* be a locally compact group. We define the *Fourier algebra* by $A(G) := W_r^*(G)_*$.
 - (a) A(G) is the set of matrix coefficients of the regular representation $\lambda: G \to U(L^2(G))$, that is, the functions $s \mapsto \langle \lambda(s)\xi, \eta \rangle$ for $\xi, \eta \in L^2(G)$.
 - (b) A(G) is a dense Banach subalgebra of $C_0(G)$. In particular, $M(G) \to W_r^*(G)$ is a dense embedding.

Proof.

- **1.11** (Fourier-Stieltjes algebras). Let G be a locally compact group. We define the *Fourier Stieltjes algebra* by $B(G) := C^*(G)^*$.
 - (a) B(G) is the linear span of continuous positive definite functions.
 - (b) On $B(G)_1$, the compact open topology is stronger than the weak* topology.
 - (c) On $B(G)_1$, the strict topology with respect to A(G) is equivalent to the weak* topology.

Proof.

dense embeddings among non-commutative algebras and commutative algebras:

$$L^{1}(G) \longrightarrow C^{*}(G)$$
 $A(G) \longrightarrow C_{0}(G)$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$M(G) \longrightarrow W_{r}^{*}(G). \qquad B(G) \longrightarrow L^{\infty}(G).$$

1.4 Pontryagin duality

- **1.12** (Locally compact abelian groups). Let G be a locally compact abelian group.
 - (a) Every irreducible representation of G is one-dimensional, and \hat{G} is an abelian group.
 - (b) The compact open topology of C(G) and the weak* topology of $L^{\infty}(G)$ coincide on \hat{G} , and \hat{G} is locally compact Hausdorff with this topology.
- **1.13** (Fourier transforms). Let G be a locally compact abelian group. We introduce the notation $\langle s,p\rangle:=p^{-1}(s)\in\mathbb{T}$ for $p\in \hat{G}$ and $s\in G$. The Fourier transform and the Fourier-Stieltjes transform of an integrable function $f\in L^1(G)$ and a finite Radon measure $\mu\in M(G)$ are defined by

$$\mathcal{F}f(p) := \int_{G} \langle s, p \rangle f(s) \, ds, \qquad \mathcal{F}\mu(p) := \int_{G} \langle s, p \rangle \, d\mu(s) \qquad p \in \widehat{G}.$$

- (a) The Fourier transform is restricted to a linear operator $B(G) \cap L^1(G) \to B(\widehat{G}) \cap L^1(\widehat{G})$.
- (b) The Fourier transform is uniquely extended to a continuous dense *-homomorphism $L^1(G) \to C_0(\widehat{G})$.
- (c) The Fourier transform is uniquely extended to a continuous dense *-homomorphism $L^1(G) \to B(\widehat{G})$.
- (d) The Fourier transform uniquely defines a unitary operator $L^2(G) \to L^2(G)$.
- (e) The Fourier-Stietjes transform $M(G) \to L^{\infty}(G)$ is injective.

Proof. (a) Let $f \in B(G) \cap L^1(G)$.

- (b)
- (c)
- (d) We prove the identity $||f||_{L^2(G)} = ||\mathcal{F}f||_{L^2(\widehat{G})}$ for $f \in B(G) \cap L^1(G)$ and the density of $B(G) \cap L^1(G)$ in $L^2(G)$.
 - (e) Consider a commutative diagram of Banach *-algebras

$$L^{1}(G) \xrightarrow{(1)} C^{*}(G) \xrightarrow{(3)} C_{0}(\widehat{G})$$

$$\downarrow \qquad \qquad \downarrow$$

$$M(G) \xrightarrow{(2)} W_{r}^{*}(G) \xrightarrow{(4)} L^{\infty}(\widehat{G})$$

The dense injection (1) is by definition of the group C^* -algebra. The dense injection (2) is by the dense inclusion $A(G) \to C_0(G)$. The isomorphism (3) is due to the equivalence between representation theories of

G and $C^*(G)$ and the Gelfand duality. The isomorphism (4) is constructed by taking double commutant of $L^1(G)$ in the Plancherel isomorphism $B(L^2(G)) \to B(L^2(\widehat{G}))$. Since the first and third rows are respectively the Fourier transform and Fourier-Stieltjes transform, we are done.

the decomposition of the regular representation and the Plancherel theorem....

- **1.14** (Pontryagin duality). Let G be a locally compact abelian group.
 - (a) The canonical homomorphism $\Phi: G \to \hat{G}$ defined such that $\Phi(s)(p) = \langle s, p \rangle$ for $s \in G$ and $p \in \hat{G}$ is a topological isomorphism.

Proof. It suffices to prove that the natural *-homomorphisms $C_0(\widehat{G}) \to C_0(G)$ and $M(G) \to M(\widehat{G})$ have dense images. Since the Fourier transform $L^1(G) \to B(\widehat{G})$ is dense, and it factors through $M(G) \to M(\widehat{G})$ with an embedding $M(\widehat{G}) \to B(\widehat{G})$, so $M(G) \to M(\widehat{G})$ is dense. Since the injectivity of the Fourier-Stieltjes transform $M(G) \to L^\infty(\widehat{G})$ implies that its dual $L^1(\widehat{G}) \to C_0(G)$ is dense, and it factors through $C_0(\widehat{G}) \to C_0(G)$ by the Fourier transform, so $C_0(\widehat{G}) \to C_0(G)$ is dense. Therefore, $M(G) \to M(\widehat{G})$ is a *-isomorphism.

Amenability

Part II Representation categories

Representations of compact groups

4.1 Peter-Weyl theorem

Let *G* be a compact group. Every representation will assume the strong continuity and the unitarity.

Let π_1 and π_2 be representations, and suppose π_1 is irreducible. If there is a non-zero intertwiner $\nu \in B(H_1, H_2)$, normalized to have norm one, then $\nu^*\nu \in \pi_1(G)' = \mathbb{C}1$ implies that ν is an isometry, so π_1 is isomorphic to a subrepresentation of π_2 . If π_2 is irreducible, then the existence of non-zero intertwiner is equivalent to that π_1 and π_2 are isomorphic.

Let π_1 and π_2 be representations. Then, any bounded linear operator $w: H_1 \to H_2$ induces an intertwiner $v:=\int_G \pi_2(s)w\pi_1(s)^*ds: H_1 \to H_2$. For $\xi_1,\eta_1 \in H_1$ and $\xi_2,\eta_2 \in H_2$, if we let $w:=\theta_{\xi_1,\xi_2}=\langle \cdot,\xi_1\rangle \xi_2$, then

$$\langle v\eta_1, \eta_2 \rangle = \int_G \langle \pi_2(s)w\pi_1(s)^*\eta_1, \eta_2 \rangle \, ds$$

$$= \int_G \langle \pi_2(s)\langle \pi_1(s)^*\eta_1, \xi_1 \rangle \xi_2, \eta_2 \rangle \, ds$$

$$= \int_G \overline{\langle \pi_1(s)\xi_1, \eta_1 \rangle} \langle \pi_2(s)\xi_2, \eta_2 \rangle \, ds.$$

This implies that matrix coefficients come from non-isomorphic irreducible representations are orthogonal.

For a representation π of G, denote by $A(\pi)$ the linear span of matrix coefficients for π . We prove $\mathcal{O}(G) := \bigcup_{\pi} A(\pi)$ is dense in C(G), where π runs through all the finite-dimensional irreducible representations of G. Here the irreducibility is redundant because every finite-dimensional representation is decomposed into the direct sum of finite-dimensional irreducible representations.

Note that for the left regular representation $\lambda: G \to U(L^2(G))$ we have $\lambda: L^1(G) \to K(L^2(G))$ and its restriction $\lambda: L^2(G) \to L^2(L^2(G))$ because G is compact. Fix $f \in C(G)$ and let V be an eigenspace of the Hilbert-Schmidt operator $\lambda_f \in L^2(L^2(G))$, which is a finite-dimensional subrepresentation of λ and satisfies $V \subset C(G)$. Let $\{e_i\}$ be an orthonormal basis of V. If $\xi \in V$, then since the contragradient representation λ^* can be defined on V and it is finite-dimensional, we have $\xi \in \mathcal{O}(G)$ by

$$\xi(s) = (\lambda_s^* \xi)(e) = (\sum_i \langle \lambda_s^* \xi, e_i \rangle e_i)(e) = \sum_i e_i(e) \langle \lambda_s^* \xi, e_i \rangle,$$

so $V \in \mathcal{O}(G)$.

For $f \in C(G)$ and $\xi \in L^2(G)$, we can see $\lambda_f \xi$ is uniformly approximated by $\mathcal{O}(G)$ by the spectral truncation of λ_f . Since $C(G) * L^2(G)$ is dense in C(G), the density of $\mathcal{O}(G)$ in C(G) follows.

4.2 Tannaka-Krein duality

4.3 Mackey machine

Example of non-compact Lie groups, Wigner classification

Part III

Topological quantum groups

Compact quantum groups

5.1 Algebraic compact quantum groups

Multiplier Hopf *-algebras

Algebraic quantum groups

idempotent ring assumption

For a monoid, we can associate a bialgebra called the convolution algebra. If the monoid is a group, then the convolution algebra becomes a Hopf algebra.

universal enveloping algebra. q-deformations of the coordinate Hopf algebras $\mathcal{O}(G)$ of a semi-simple complex Lie group, and the universal enveloping algebra $U(\mathfrak{g})$ of a semi-simple complex Lie algebra.

If *A* is a coalgebra and *B* is an algebra, then $\operatorname{Hom}_{\mathbb{C}}(A,B)$ becomes an algebra with convolution. If *A* is a coalgebra, then A^* is an algebra. If *A* is a bialgebra, then *A* is a bimodule over A^* .

Duality for finite-dimensional Hopf (*-)algebras. dual pairing

5.1 (Algebraic compact quantum groups). Recall that a Hopf algebra A has five linear structure maps the multiplication μ , unit η , comultiplication δ , counit ε , and antipode κ . A Hopf *-algebra is a Hopf algebra A together with an conjugate-linear involution $*:A \rightarrow A$ such that there are commutative diagrams

where $\sigma_A: A\otimes A\to A\otimes A$ is the swap map. An *algebraic compact quantum group* is defined as a complex Hopf *-algebra A together with a unital positive linear functional $h:A\to\mathbb{C}$ satisfying $(h\otimes \mathrm{id})\delta=\eta h=(\mathrm{id}\otimes h)\delta$. It is conventional to use \mathbb{G} to denote a compact quantum group, and we will usually write the underlying Hopf *-algebra A as $\mathcal{O}(\mathbb{G})$.

(a) There is a categorical equivalence between commutative compact quantum groups and compact groups.

5.2 Woronowicz compact quantum groups

5.2 (Woronowicz compact quantum groups). From now on, the tensor product of C*-algebras will always be assumed to be the minimal one, if not particularly mentioned. In the sense of Woronowicz, a *compact quantum group* is defined as a unital C*-algebra A together with a coassociative unital *-homomorphism $\delta: A \to A \otimes A$ and a state $h: A \to \mathbb{C}$ such that $(1 \otimes h)\delta = \eta h = (h \otimes 1)\delta$, where $\eta: \mathbb{C} \to A$ is the unit map. The state h is called the *Haar state*. When we write \mathbb{G} to mean a compact quantum group, then the underlying C*-algebra A is denoted by $C(\mathbb{G})$.

(a) For a C*-algebra A with a coassociative unital *-homomorphism $\delta: A \to A \otimes A$, the existence of the Haar state is equivalent to the cancellation property in the sense that the linear spans of the sets $\delta(A)(A \otimes 1)$ and $\delta(A)(1 \otimes A)$ are respectively dense in $A \otimes A$.

$$C_0(G)$$
, $L^{\infty}(G)$, $C^*(G)$, $C^*_r(F)$, $W^*_r(G)$
 $A(G), B(G)$

For a compact group G, C(G) has a coalgebra structure induced from $C(G) \subset L^1(G)$.

- **5.3** (Peter-Weyl theorem). The *-subalgebra of matrix coefficients is a Hopf *-algebra.
- **5.4.** A compact algebraic quantum group is a Hopf *-algebra with a positive integral. For a compact quantum group \mathbb{G} , the subspace $\mathbb{C}(\mathbb{G})$ spanned by the matrix coefficients of corepresentations is an algebraic quantum group.
- **5.5.** Let \mathbb{G} be a compact quantum group. A *representation* of \mathbb{G} is a corepresentation of $C(\mathbb{G})$.

5.3 Kac algebras

5.6 (Kac algebras). If the Haar state is a trace, then we say the compact quantum group is a *Kac algebra* or is of *Kac type*.

Locally compact quantum groups

6.1 Locally compact quantum groups

Probably, a Hopf-von Neumann algebra in Enock-Schwartz is just a von Neumann bialgebra in Timmerman, a coinvolutive Hopf-von Neumann algebra in Enock-Schwartz is just a Hopf-von Neumann algebra in Timmerman. Since a locally compact quantum group has counit and antipode as unbounded operators, I do not know if I can say there is a Hopf algebra structure.

6.1 (Locally compact quantum groups). In the sense of Kustermans-Vaes, a locally compact quantum group is defined as a von Neumann algebra M together with a coassociative unital normal *-homomorphism $\delta: M \to M \otimes M$ and faithful semi-finite normal weights φ and ψ such that $(1 \otimes \varphi)\delta = \eta \varphi$ on \mathfrak{M}_{φ} and $(\psi \otimes 1)\delta = \eta \psi$ on \mathfrak{M}_{ψ} , where $\eta: \mathbb{C} \to M$ is the unit map. The weight φ and ψ are called the *left* and *right Haar weights* respectively. When we write \mathbb{G} for a locally compact quantum group, the underlying von Neumann algebra is denoted by $L^{\infty}(\mathbb{G})$.

Recall that
$$\mathfrak{M}_{\varphi}$$
, \mathfrak{A}_{φ} , \mathfrak{N}_{φ} , $H_{\varphi}=:L^{2}(\mathbb{G})$, Λ_{φ} , Δ_{φ} , J_{φ} . $\mathfrak{N}_{\varphi}^{*}\mathfrak{N}_{\psi}$

6.2 (Fundamental multiplicative unitaries). A multiplicative unitary on a Hilbert space H is a unitary operator $W \in B(H \otimes H)$ satisfying the pentagonal identity $W_{12}W_{13}W_{23} = W_{23}W_{12}$ in $B(H \otimes H \otimes H)$, written in the leg numbering notation. It defines a comultiplication $\delta: H \to H \otimes H$ such that $\delta(\xi) := W(\xi \otimes 1)W^*$ for $\xi \in H$.

Let \mathbb{G} be a locally compact quantum group. Then, there is a unique multiplicative unitary W on $L^2(\mathbb{G})$, called the *fundamental multiplicative unitary*, such that

$$\begin{split} W^*(\Lambda_{\varphi}(x) \otimes \Lambda_{\varphi}(y)) &= (\Lambda_{\varphi} \otimes \Lambda_{\varphi})(\delta(x)(y \otimes 1)), \qquad x, y \in \mathfrak{N}_{\varphi}. \\ \\ \mathfrak{N}_{\varphi} \otimes \mathfrak{N}_{\varphi} & \xrightarrow{\Lambda_{\varphi} \otimes \Lambda_{\varphi}} L^2(\mathbb{G}) \otimes L^2(\mathbb{G}) \\ & \qquad \qquad \downarrow \\ \mathfrak{N}_{\varphi} \otimes \mathfrak{N}_{\varphi} & \xrightarrow{\Lambda_{\varphi} \otimes \Lambda_{\varphi}} L^2(\mathbb{G}) \otimes L^2(\mathbb{G}) \end{split}$$

6.3 (Fundamental involutions). Let \mathbb{G} be a locally compact quantum group. Then, there is a closed densely defined conjugate-linear involution $G : \text{dom } G \subset L^2(\mathbb{G}) \to L^2(\mathbb{G})$ such that

$$G\Lambda_{\varphi}((\psi \otimes \mathrm{id})(\delta(x^*)(y \otimes 1))) = \Lambda_{\varphi}((\psi \otimes \mathrm{id})(\delta(y^*)(x \otimes 1))), \qquad x, y \in \mathfrak{N}_{\varphi}^*\mathfrak{N}_{\psi}.$$

6.4 (Antipode). $\tau_t := \operatorname{Ad} |G|^{-2it}$, $(\sigma_t^{\psi} \otimes \tau_{-t})\delta = \delta \sigma_t^{\psi}$, $\delta \tau_t = (\tau_t \otimes \tau_t)\delta$,

For the polar decomposition G = I|G|, the *unitary antipode* is defined by $R : \text{dom} R \subset L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) : x \mapsto Ix^*I$. The *antipode* or *coinverse* is $S := R\tau_{-\frac{i}{2}}$

Kac type: trivial scaling group.

- 6.2 Dual quantum groups
- 6.3 Crossed products