Unit 7.2 Roots of Polynomials

Numerical Analysis

May 14, 2015

Numerical Analysis

Unit 7.2 Roots of Polynomials

May 14, 2015

/ 18

Polynomials

- Polynomials of degree greater than one are nonlinear functions.
- The solution methods described in the previous section can be applied in finding roots of polynomials.
- ullet A polynomial of degree n is usually written as

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
 (7.2.1)

$$=\sum_{k=0}^{n}a_{k}x^{k}. (7.2.2)$$

- In this course we assume all coefficients, a_k , are real.
 - But, the roots are not necessarily real.
 - Since all a_k are real, if a complex number z is a root to $P_n(x)$ then so is its complex conjugate \overline{z} .
- Evaluation of $P_n(x)$ can be done more efficiently by the following

$$P_n(x) = a_0 + x(a_1 + x(a_2 + \dots + x(a_{n-1} + xa_n))). \tag{7.2.3}$$

- n multiplications and n additions are needed to evaluate $P_n(x)$.
- Derivative of $P_n(x)$ is

$$P'(x) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1}.$$
 (7.2.4)

Roots of Polynomials

• Some useful theorems for roots of polynomials.

Theorem 7.2.1. Descartes' rule of signs.

Given a polynomial $P_n(x)$ of degree n, let ν be the number of sign changes in the set of coefficients $\{a_j\}$ and k be the number of positive roots (counting with its multiplicity), then $k \leq \nu$ and $\nu - k$ is an even number.

Theorem 7.2.2. Cauchy's Theorem.

All zeros of $P_n(x)$ are contained in the circle Γ in the complex plane

$$\Gamma = \{ z \in \mathbb{C} : |z| \le 1 + \eta_k \}, \qquad \eta_k = \max_{0 \le k \le n-1} \left| \frac{a_k}{a_n} \right|.$$
 (7.2.5)

Theorem 7.2.3.

Let $P_n(x)$, $n \ge 2$, be a polynomial of degree n with real coefficients. If all roots, z_i , are real and

$$z_1 > z_2 > \cdots > z_n$$

then Newton's method yields a strictly decreasing sequence $x^{(k)}$ converging to z_1 for any initial guess $x^{(0)} > z_1$.

Numerical Analysis (Nonlinear systems)

Unit 7.2 Roots of Polynomials

May 14, 2015

3 / 18

Roots of Polynomials, II

Theorem 7.2.4.

Let $P_n(x)$, $n \ge 2$, be a polynomial of degree n with real coefficients and all roots are real. Assuming $a_n > 0$ and z_1 is the largest root of $P'_n(x)$, then $P'''_n(x) \ge 0$ for $x \ge z_1$, i.e., $P'_n(x)$ is a convex function for $x \ge z_1$.

- From the above, with a real $P_n(x)$, $n \ge 2$, assuming all roots are real, then one is able to use Newton's method to find the largest root z_1 .
- If $P_n(x)$ has all real coefficients, then Newton's method is able to find a complex root if complex operations are employed in Newton's method.

Newton's method applied on $f(x) = 4 + 5x^2 + x^4$. Iteration \boldsymbol{x} 1+i1 0.4512 + 0.9390i3.1076 2 0.0819 + 0.9763i0.5160 3 0.0012 + 1.0004i0.0073 4 -1.3969e-07+i1.478e-06 9.4506e-15+i6.089e-14

Finding the First Root

• To find the first root of $P_n(x)$, let $x^{(0)}$ be an initial guess. Note that Eq. (7.2.3) can be rewritten as

$$P_n(x) = (((a_n x + a_{n-1})x + a_{n-2})x + \cdots)x + a_0$$
 (7.2.6)

And the first derivative, function Eq. (7.2.4), as

$$P'_n(x) = (((n \ a_n x + (n-1)a_{n-1})x + (n-2)a_{n-2})x + \cdots)x + a_1$$
 (7.2.7)

Then Newton's iteration is

$$x^{(k+1)} = x^{(k)} - \frac{P_n(x^{(k)})}{P'_n(x^{(k)})}$$
(7.2.8)

- Note that for polynomial functions, the Newton's method is robust for most initial guesses with $P'(x^{(0)}) > 0$.
- Each iteration requires 2n multiplications, 1 division, 2n additions and 1 subtraction.
- If these operations are carried out using complex numbers then complex roots can also be found.
- Newton's iteration has the convergence rate of order 2.

Numerical Analysis (Nonlinear systems)

May 14, 2015

5 / 18

Finding All roots

• Once a root, z_1 , of $P_n(x)$ has been found, we can rewrite $P_n(x)$ as

$$P_n(x) = (x - z_1)P_{n-1}(x)$$
(7.2.9)

- Then to proceed to using Newton's method on $P_{n-1}(x)$ to find the rest of the roots.
- This process is called deflation.
- Note that

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Let

$$P_{n-1}(x) = b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \dots + b_1x + b_0$$
 (7.2.10)

From Eq. (7.2.9), we have

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

= $(x - z_1)(b_{n-1} x^{n-1} + b_{n-2} x^{n-2} + \dots + b_1 x + b_0)$

And

$$a_{n} = b_{n-1},$$
 $a_{n-1} = b_{n-2} - b_{n-1}z_{1},$
 $a_{n-2} = b_{n-3} - b_{n-2}z_{1},$
 $a_{1} = b_{0} - b_{1}z_{1}$
 $a_{0} = -b_{0}z_{1}.$

$$b_{n-1} = a_{n},$$

$$b_{n-2} = a_{n-1} + b_{n-1}z_{1},$$

$$b_{n-3} = a_{n-2} + b_{n-2}z_{1},$$

$$\vdots$$

$$b_{n-3} = a_{n-2} + b_{n-2}z_{1},$$

$$\vdots$$

Numerical Analysis (Nonlinear systems)

Unit 7.2 Roots of Polynomials

May 14, 2015

Finding All roots, II

 Thus, the coefficients of the deflated polynomial can be calculated using the recursive formulas

$$b_{n-1} = a_n, (7.2.11)$$

$$b_j = a_{j+1} + z_1 b_{j+1}, \qquad j = n-2, \cdots, 0.$$
 (7.2.12)

- Once the deflated polynomial $P_{n-1}(x)$ is found, then Newton's algorithm can be applied to find the next root.
- Note also that if we define

$$b_{-1} = a_0 + z_1 b_0$$

$$= a_0 + z_1 (a_1 + z_1 b_1)$$

$$= a_0 + z_1 (a_1 + z_1 (a_2 + z_1 b_2))$$

$$= a_0 + z_1 (a_1 + z_1 (a_2 + z_1 (a_3 + z_1 (\cdots z_1 (a_{n-1} + z_1 a_n)))))$$

$$= P_n(z_1)$$
(7.2.13)

And when z_1 is a root of $P_n(x)$ then $b_{-1} = 0$.

• Thus, the value of the polynomial $P_n(x)$ can be calculated when deflation process in on going.

Numerical Analysis (Nonlinear systems)

Unit 7.2 Roots of Polynomials

May 14, 2015

7 / 18

Finding All roots, III

- We need the derivative, P'(x), when using Newton's method to find a root.
- Note that in Eq. (7.2.9) we define

$$P_n(x) = (x - z_1)P_{n-1}(x)$$

Then

$$\frac{\mathrm{d}P_n(x)}{\mathrm{d}x} = P_{n-1}(x) + (x - z_1) \frac{\mathrm{d}P_{n-1}(x)}{\mathrm{d}x}
P'_n(z_1) = P_{n-1}(z_1)
= b_{n-1} z_1^{n-1} + b_{n-2} z_1^{n-2} + \dots + b_1 z_1 + b_0$$
(7.2.14)

- Therefore, the derivative of $P_n(z_1)$ can be obtained by evaluating the polynomial $P_{n-1}(z_1)$.
- Since $P_{n-1}(x)$ is also a polynomial (of degree n-1), the same deflation process to get the coefficients b_i 's can be carried out to find its value.
 - Thus, another deflation process is carried out for $P_{n-2}(x)$ to get $c_{n-2}, c_{n-3}, \ldots, c_0, c_{-1}$, where c_{-1} is the value of the derivative.

Example

- Example: $f(x) = x^3 6x^2 + 11x 6$
- All roots are located in the circles: $|z| \le 1 + \eta_k$, $\eta_k = \max\{6, 11, 6\} = 11$.
- Thus to find the largest root, we can start from $z_1^{(0)}=12.$
- The first 2 iterations to find the largest root

	$z_1^{(0)} = 12$		$z_1^{(1)} = 8.689$	
a_i	b_i	c_i	b_i	c_i
1				
-6	1		1	
11	6	1	2.689	1
-6	83	18	34.364	11.378
	990	299	292.590	133.227
		$z_1^{(1)} = 8.689$		$z_1^{(2)} = 6.493$

Note that the updated solution is

$$z_1^{(k+1)} = z_1^{(k)} - b_{-1}/c_{-1}$$

Numerical Analysis (Nonlinear systems)

Unit 7.2 Roots of Polynomials

May 14, 2015

9 / 18

Finding All roots, IV

Algorithm 7.2.5. Polynomial Roots.

Given an n-degree polynomial with coefficients a_0, a_1, \cdots, a_n , an initial guess $x^{(0)}$, a small number ϵ and an integer maxiter,

```
 \begin{aligned} &\text{while } (n \geq 1) \{ \\ &err = 1 + \epsilon; \quad k = 0; \\ &\text{while } ((err > = \epsilon) \text{ and } (k < maxiter)) \{ \\ &b_{n-1} = a_n; \quad c_{n-2} = b_{n-1}; \\ &\text{for } (j = n - 2; j > = -1; j = j - 1) \quad b_j = a_{j+1} + x^{(k)} b_{j+1}; \\ &\text{for } (j = n - 3; j > = -1; j = j - 1) \quad c_j = b_{j+1} + x^{(k)} c_{j+1}; \\ &f = b_{-1}; \quad f' = c_{-1}; \\ &x^{(k+1)} = x^{(k)} - \frac{f}{f'}; \\ &err = |f|; \quad k = k+1; \\ \} \\ &z_n = x^{(k)}; \\ &\text{for } (j = 0; j < n; j = j+1) \quad a_j = b_j; \\ &x^{(0)} = z_n; \quad n = n-1; \\ \} \end{aligned}
```

Finding All roots, V

- \bullet The preceding algorithm finds all roots of a polynomial of degree n_i assuming
 - The coefficients of the polynomial are a_0, a_1, \dots, a_n ,
 - Initial guess is given to be $x^{(0)}$,
 - All roots are real
- The roots found are z_1, z_2, \cdots, z_n .
- In the algorithm, the polynomial deflation process are repeated twice
 - From a_j to b_j to find $P_n(x^{(k)})$,
 - From b_j to c_j to find $P'_n(x^{(k)})$.
- The inner while loop is simply the Newton's method
- Once a root is found, deflated coefficients, b_j , are copied to a_j and the degree is reduced by 1, then the Newton's method is repeated to find the next root with the initial guess of z_n .
- This algorithm works well if all roots are simple (multiplicity of 1)
 - For any root, z_j , with multiplicity greater than one then $f'(z_j) \to 0$ and Newton's method can be slow or the solution accuracy is low
- This algorithm can find complex roots if it is implemented with complex arithmetic operations

Numerical Analysis (Nonlinear systems)

Unit 7.2 Roots of Polynomials

May 14, 2015

11 / 18

Multiple Roots Example

Quadratic Method

- The Newton-Horner deflation process is convergent and can find all roots of a polynomial.
- If the polynomial has double roots, then the deflation process can be slow linear convergence.
- To find complex roots, the algorithm needs to be implemented using complex arithmetic.
- A different approach, Lin's quadratic method, can be applied to get complex conjugate solutions without using complex arithmetic.
- Given the polynomial as before

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$
 (7.2.15)

• We assume $P_n(x)$ can be factorized as

$$P_n(x) = (x^2 + px + q)(b_{n-2}x^{n-2} + b_{n-3}x^{n-3} + \dots + b_1x + b_0) + Rx + S.$$
 (7.2.16)

In case that $x^2 + px + q$ is a factor of P(x), then

$$R = 0,$$
 $S = 0.$ (7.2.17)

Numerical Analysis (Nonlinear systems)

Unit 7.2 Roots of Polynomials

May 14, 2015 13

5 13 / 18

Quadratic Method, II

• By equating the coefficients of the same power of x in Eqs. (7.2.15) and (7.2.16), we have

$$a_{n} = b_{n-2}$$
 $b_{n-2} = a_{n}$
 $a_{n-1} = b_{n-3} + pb_{n-2}$
 $b_{n-3} = a_{n-1} - pb_{n-2}$
 $a_{n-2} = b_{n-4} + pb_{n-3} + qb_{n-2}$
 \cdots
 $a_{2} = b_{0} + pb_{1} + qb_{2}$
 $a_{1} = pb_{0} + qb_{1} + R$
 $a_{0} = qb_{0} + S$
 $b_{n-2} = a_{n}$
 $b_{n-3} = a_{n-1} - pb_{n-2}$
 \cdots
 \cdots

$$\vdots$$

$$b_{n-4} = a_{n-2} - pb_{n-3} - qb_{n-2}$$
 \cdots

$$\vdots$$

$$R = a_{1} - pb_{0} - qb_{1}$$

$$S = a_{0} - qb_{0}$$

Or in recursive form b_i can be found by

$$b_n = 0,$$

 $b_{n-1} = 0,$
 $b_j = a_{j+2} - pb_{j+1} - qb_{j+2}, j = n-2, \dots, 0.$ (7.2.18)

Quadratic Method, III

• Again, $x^2 + px + q$ is a factor of $P_n(x)$ if and only if

$$R = a_1 - pb_0 - qb_1 = 0 (7.2.19)$$

$$S = a_0 - qb_0 = 0 (7.2.20)$$

Lin's quadratic method sets

$$q^{(k+1)} = \frac{a_0}{b_0} \tag{7.2.21}$$

$$p^{(k+1)} = \frac{a_1 - qb_1}{b_0} \tag{7.2.22}$$

Or

$$q^{(k+1)} = \frac{a_0 - b_0 q^{(k)}}{b_0} + q^{(k)} \tag{7.2.23}$$

$$p^{(k+1)} = \frac{a_1 - b_0 p^{(k)} + q b_1}{b_0} + p^{(k)}$$
 (7.2.24)

This leads to the iterations

$$p^{(k+1)} = p^{(k)} + \frac{R}{b_0} \tag{7.2.25}$$

$$q^{(k+1)} = q^{(k)} + \frac{S}{b_0} \tag{7.2.26}$$

Numerical Analysis (Nonlinear systems)

Unit 7.2 Roots of Polynomials

May 14, 2015

15 / 18

Quadratic Method, IV

- If Eqs. (7.2.25) and (7.2.26) converge, then $x^2 + px + q$ is a quadratic factor of $P_n(x)$.
- If $p^{(0)} = q^{(0)} = 0$ then

$$p^{(1)} = \frac{a_1}{a_2},\tag{7.2.27}$$

$$q^{(1)} = \frac{a_0}{a_2}. (7.2.28)$$

- The iterative process using these initial guesses tends to produce the smallest roots of $P_n(x)$ for the quadratic $x^2 + px + q$.
- If one selects the initial guesses: $p^{(0)} = a_{n-1}/a_n$, $q^{(0)} = a_{n-2}/a_n$, then the iterative process tends to find the largest roots of $P_n(x)$ for the quadratic $x^2 + px + q$.
 - The iterative process using these initial guesses is less robust, and more divergence could be observed.
- Once the quadratic factor, $x^2 + px + q$, is found then the real roots or the complex conjugates can be calculated quickly.
- $P_n(x)$ can be deflated again to the n-2 polynomial $P_{n-2}(x)=b_{n-2}x^{n-2}+b_{n-3}x^{n-3}+\cdots+b_1x+b_0.$
- The same process can be carried out on $P_{n-2}(x)$ for the next factor or factors.
- Thus, all the roots for $P_n(x)$ can be found.

Quadratic Method, Example

• Example: factorize

$$P_4(x) = x^4 + 2x^3 + 3x^2 + 2x + 1 = (x^2 + px + q)P_2(x).$$

- Convergence of Lin's quadratic method is observed.
- But, convergence is very slow.
 - This method has the convergence order of 1.

Numerical Analysis (Nonlinear systems)

Unit 7.2 Roots of Polynomials

May 14, 2015

17 / 18

Summary

- Polynomial and evaluating $P_n(x)$
- Location of roots of polynomials
- Finding the first root
- Horner deflation process
- Newton-Horner algorithm
- Lin's quadratic method for double roots or roots of complex conjugates