Решения

Задача 1. Пусть ν_i — мера i-го игрока. После первого разреза образуются куски S_1, S_2 , для которых $\nu_1(S_1)$: $\nu_1(S_2)=1$: 2. Пусть второй и третий игроки указывают на тот кусок из S_1, S_2 , который есть хотя бы половина пирога для них. Возможны два случая:

Случай 1: они указали на один и тот же кусок $T_1 \in \{S_1, S_2\}$. Тогда второй делит T_1 на равные (с его точки зрения) части T_{11} , T_{12} , третий выбирает, например, T_{11} из этих двух частей, второй получает другой из них (в данном случае T_{12}), а первый получает T_2 , где $\{T_1, T_2\} = \{S_1, S_2\}$. Тогда $v_1(T_2) \ge \frac{1}{3} > \frac{1}{4}$, $v_2(T_{12}) = \frac{1}{2}v_2(T_1) \ge \frac{1}{4}$ и $v_3(T_{11}) \ge \frac{1}{2}v_3(T_1) \ge \frac{1}{4}$ (т.к. третий выбирал до второго).

Случай 2: они указали на разные куски, например второй на S_1 , третий — на S_2 . Тогда третий делит S_2 пополам на куски S_{21} , S_{22} , первый выберет свой кусок из этих двух (например, S_{21}), третий получит другой из них (S_{22}) , а второй получит S_1 . Тогда $\nu_1(S_{21}) \geq \frac{1}{2} \nu_1(S_2) = \frac{1}{2} \cdot \frac{2}{3} > \frac{1}{4}$ (т.к. первый выбирал до третьего), $\nu_2(S_1) \geq \frac{1}{2}$ и $\nu_3(S_{22}) = \frac{1}{2} \nu_3(S_2) \geq \frac{1}{4}$.

Задача 2. а) Крикнувший, например, Б, выбирает себе либо $Y \sqcup X_1$, либо $Z \sqcup X_2$, другой из них достается A, а X_R достается B. Поскольку X_R уменьшается, а другие два куска становятся больше, то Б (или же B) должен крикнуть в момент, когда $\max(Y \sqcup X_1, Z \sqcup X_2) \sim X_R$.

Тогда так как $\nu_1(Y \sqcup X_1) = \nu_1(Z \sqcup X_2) \ge \nu_1(X_R)$, то A не завидует никому не завидует, Б не завидует никому, так как он первым выбирает из $Y \sqcup X_1$ и $Z \sqcup X_2$, а B не завидует никому, так как в противном случае он бы заранее крикнул и ему достался бы кусок побольше.

б) Крикнувший, например, Б, выбирает себе один кусок из Y,Z и один кусок из X_1,X_2 , другие два достаются A, а X_R достается B. Тогда правильный момент крика тогда, когда $\max(Y,Z) \sqcup \max(X_1,X_2) \sim X_R$.

Снова, Б не завидует никому, поскольку он выбирает первым, В не завидует никому в силу равенства в момент крика, а А не завидует никому, поскольку ее кусок равен куску Б и не меньше куска В.

- в) Для A нет разницы между вариациями a) и б), поскольку ей все равно достается кусок той же меры u+v, где $u=v_1(X_1)=v_1(X_2)$ и $v=v_1(Y)=v_1(Z)$.
- **Задача 3**. а) A делит пирог на 4 равные части. Каждый из B, C, D указывает на наименьшие для него три куска. Куски указанные B и куски, указанные C имеют пересечение хотя бы два, а вот один из этих двух кусков был указан D. Этот кусок достается A, а остальные (не важно как) распределяются между B, C, D. Тогда между A и B, C, D нет зависти, т.к. A получил ровно четверть пирога, а каждый из B, C, D считает, что получил не меньше A.
- б) B делит пирог на 4 равные части $S_1, ..., S_4$. Каждый из A, C, D указывает на наибольшую часть.

Случай 1: все указали на разные куски. Все получают соответствующие куски, а остаток достается B.

Случай 2: на какой-то кусок указали двое, а другой указал на другой кусок. Есть 3 подслучая:

- **2.1**. A, C указали на S_1, D указал на S_2 . Тогда C достается $S_1, D S_2, A \max(S_3, S_4), B остаток.$
- **2.2**. A, D указали на S_1 , C указал на S_2 . Тогда C достается S_2 , D S_1 , A $\max(S_3, S_4)$, B остаток.
- **2.3**. C, D указали на S_1 , A указал на S_2 . Тогда A достается S_2 , а на остальном пироге совершается протокол Селфриджа-Конвея: B уже делил оставшийся пирог на три равные части S_1 , S_3 , S_4 . Без ограничения общности $S_1 \gtrsim S_3 \gtrsim S_4$ для C. Пусть $S_1 = S_1' \sqcup R$, где $S_1' \sim S_2$ для C. D выбирает из S_1' , S_2 , S_3 . Если D не взял S_1' , то C берет S_1' , иначе берет S_3 . B берет остаток S_4 . Затем тот из C, D, кто не получил S_1' , делит R на R части. Выбирают в порядке получивший R, R, деливший R. Пирог так будет раздаваться протоколом Селфриджа-Конвея, но в отличии от него на последнем шаге то, что выбрал R делится на две равные части (с точки зрения R) и R выбирает себе большую половину, а остальная половина достается R. Таким образом R не завидует R и обратно, а также никто из R, R, R, R не завидует друг R (R) не может завидовать ни R, ни R, поскольку ему и так досталась четверть пирога R, который не меньше кусков R0 и R1, в другие стороны отсутствие зависти было доказано в лекции).
- **Случай 3**: A, C, D указали на один и тот же кусок. Тогда A достается максимальный из оставшихся трех кусков, а после этого раздаем остаток пирога B, C, D как в случае C. C и C не завидуют друг другу, а между C, C зависть вообще отсутствует.
- в) Для удобства заменим имена агентов из D, A, B, C на A, B, C, D (похоже пункту б). Решение этого пункта совпадает с решением пункта б.