Esercizi

Algebra e Geometria Corso di Laurea in Informatica 14 Aprile 2016

Esercizio 1. Sia $k \in \mathbb{R}$. Si consideri la funzione $f_k : \mathbb{R}^3 \to \mathbb{R}^3$ definita da:

$$f_k(x, y, z) = (x + y + z, x - y + k, kx + ky + (k - 1)z).$$

Stabilire per quali valori di $k \in \mathbb{R}$ l'applicazione f_k è lineare. Per i valori di k trovati:

- a) determinare una base di $\operatorname{Ker} f_k$ e una di $\operatorname{Im} f_k$;
- b) stabilire se f_k è iniettiva e/o suriettiva;
- c) stabilire se il vettore (1,2,3) appartiene a $\text{Im} f_k$ e, in caso affermativo, determinare le sue coordinate rispetto alla base trovata nel punto a);
- d) stabilire se il vettore (1,2,3) appartiene a $\operatorname{Ker} f_k$ e trovare la sua immagine $\mathbf{w} \in \mathbb{R}^3$ tramite f_k . Esiste un altro vettore di \mathbb{R}^3 che ha immagine \mathbf{w} tramite f_k ?

Esercizio 2. Sia $k \in \mathbb{R}$. Si consideri l'applicazione lineare $f_k : \mathbb{R}^3 \to \mathbb{R}^3$ definita da:

$$f_k(x, y, z) = (kx + y - z, ky + (k+1)z, ky + 2z).$$

- a) Scrivere la matrice associata a f_k rispetto alla base canonica di \mathbb{R}^3 in dominio e codominio.
- b) Determinare per quali valori di k l'applicazione f_k è iniettiva.
- c) Determinare per quali valori di k l'applicazione f_k non è suriettiva. Scelto uno dei valori di k trovati, determinare un vettore $\mathbf{v} \in \mathbb{R}^3$ che non appartiene a $\mathrm{Im} f_k$.

Esercizio 3. Stabilire se è possibile costruire una applicazione lineare $f: \mathbb{R}^3 \to M_2(\mathbb{R})$ tale che:

- a) f è iniettiva;
- b) $\operatorname{Im} f = \langle \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \rangle.$

Esercizio 4.

- a) Stabilire per quali valori di $k \in \mathbb{R}$ l'applicazione $f : \mathbb{R}^2 \to \mathbb{R}^2$ tale che $f(\mathbf{e_1}) = \mathbf{e_2} \mathbf{e_1}, f(\mathbf{e_2}) = 2\mathbf{e_1} \mathbf{e_2}, f(\mathbf{e_1} + \mathbf{e_2}) = \mathbf{e_1} + k\mathbf{e_2}$ è lineare.
- b) Stabilire per quali valori di $k \in \mathbb{R}$ l'applicazione lineare $f : \mathbb{R}^3 \to \mathbb{R}^2$ tale che $f(\mathbf{e_1}) = \mathbf{e_2}, f(\mathbf{e_2}) = \mathbf{e_1}, f(\mathbf{e_1} + \mathbf{e_2} + k\mathbf{e_3}) = \mathbf{e_1} + \mathbf{e_2}$ è unica.
- c) Stabilire se le applicazioni lineari $f,g:\mathbb{R}^2\to\mathbb{R}^3$ tali che $f(\mathbf{e_1})=\mathbf{e_1}+\mathbf{e_2},\ f(\mathbf{e_2})=\mathbf{e_2}$ e $g(\mathbf{e_1}-\mathbf{e_2})=\mathbf{e_1},\ g(2\mathbf{e_1}-\mathbf{e_2})=2\mathbf{e_1}+\mathbf{e_2}$ coincidono.

Esercizio 5. Sia $k \in \mathbb{R}$. Si consideri l'applicazione lineare $f_k : \mathbb{R}^4 \to \mathbb{R}^3$ tale che $f_k(\mathbf{e_1}) = k\mathbf{e_1} + \mathbf{e_3}$, $f_k(\mathbf{e_2}) = 2\mathbf{e_2}$, $f_k(\mathbf{e_3}) = k\mathbf{e_3}$, $f_k(\mathbf{e_4}) = -\mathbf{e_2}$. Sia inoltre $g : \mathbb{R}^3 \to \mathbb{R}^2$ l'applicazione lineare associata alla matrice

$$\left(\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 1 & 2 \end{array}\right)$$

rispetto alle basi canoniche di \mathbb{R}^3 e \mathbb{R}^2 .

- a) Scrivere la matrice associata a f_k rispetto alle basi canoniche di \mathbb{R}^4 e \mathbb{R}^3 .
- b) Stabilire per quali valori di k l'applicazione f_k è iniettiva.
- c) Stabilire per quali valori di k la dimensione di $\operatorname{Ker} f_k$ è 2.
- d) Stabilire se g è iniettiva o suriettiva.
- e) Stabilire se esistono $g \circ f_k$ e $f_k \circ g$ e, in caso affermativo, determinarle.