Ques 1. det E>0, Le any guven positive neal no.

RTP: Fou this given E>0, 7 No EIN 1. t

RTP: Four this given $\varepsilon > 0$, $\int N_{\varepsilon} \in IN s \cdot t \left| \frac{b}{m^2} - 0 \right| < \varepsilon$ $\forall m > N_{\varepsilon}$.

(i.e we have to identify that $N_{\epsilon} \in \mathbb{N}$, for which $|b/m^2 - 0| < \epsilon + m > N_{\epsilon}$)

By ARCHIMEDEAN PROPERTY (x=8>0, y=161) \exists Ne \exists Ne

Hence, ferom 2 me can write,

$$\left|\frac{b}{m^2} - 0\right| = \frac{1b1}{m^2} < \frac{1b1}{m} < \varepsilon \quad \forall \quad m \geqslant N_{\varepsilon}$$

$$\left|\frac{b}{m^2} - 0\right| = \frac{1b1}{m^2} < \frac{1b1}{m} < \varepsilon \quad \forall \quad m \geqslant N_{\varepsilon}$$

$$\left[n^2 \geqslant n \Rightarrow \frac{1}{n^2} \leqslant \frac{1}{n}\right]$$

$$\left[.n > N_{\varepsilon} \Rightarrow \frac{1}{m} \leq \frac{1}{N_{\varepsilon}} \right]$$

so, we have identified N_8 , courseponding to given $\varepsilon>0$, by Aeich peroperty s.t $\left|\frac{b}{n^2}-0\right| < \varepsilon + n > N_{\varepsilon}$

As $\varepsilon>0$ is aubitary positive real no. so, lt b/nz=0 [by definition]

Ques 2.
$$TP: \lim_{n\to\infty} (\sqrt{n+1} - \sqrt{n}) = 0$$

rationalise
$$(\sqrt{n+1} - \sqrt{n})$$

So,
$$(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n}) = (\sqrt{n+1})(\sqrt{n+1}$$

Let E>0, be any guien positive usal no.

Let
$$\varepsilon>0$$
, be any given $positive xeeds$
RTP: Four enis given $\varepsilon>0$, $\exists N_{\varepsilon} \in \mathbb{N}$ s.t $|(\sqrt{n+1} - \sqrt{n}) - 0| < \varepsilon$
 $\forall n \ge N_{\varepsilon}$
(i.e. we have to identify that $N_{\varepsilon} \in \mathbb{N}$ sow which

By ARCHIMEDEAN PROPERTY
$$(x=\xi^{2}>0, y=1) \exists N_{\xi} \in \mathbb{N} \lambda.t N_{\xi} \in \mathbb{V}^{2}>1$$

$$\Rightarrow \xi^{2}>\frac{1}{N_{\xi}} \Rightarrow \xi>\frac{1}{\sqrt{N_{\xi}}} - (2)$$

Hence from ② we can write,
$$|(\sqrt{m+1} - \sqrt{n}) - 0| = \sqrt{m+1} - \sqrt{n} \le \frac{1}{\sqrt{n}} \le \frac{1}{\sqrt{N_E}} \le \frac{1}{\sqrt{N_E}}$$
by ① (as NE)
$$|(\sqrt{m+1} - \sqrt{n}) - 0| = \sqrt{m+1} - \sqrt{n} \le \frac{1}{\sqrt{N_E}} \le \frac{1}{\sqrt{N_E}}$$

01 1810/110

So, we have identified Ne, converponding to given $\epsilon > 0$ by Auch purposety s.t $[(\sqrt{n+1} - \sqrt{n}) - 0] < \epsilon + n > N_{\epsilon}$

As $\varepsilon > 0$ is aubitacy positive meal no. so, lim $(\sqrt{n+1} - \sqrt{n}) = 0$

[by definition]

Ques 3. As we know him $x_n = x > 0$ $n \rightarrow \infty$

So, By Defn it is known that four every $\varepsilon > 0$ F $N_{\varepsilon} \in \mathbb{N}$ set $|x_n - x| < \varepsilon$ $\forall n > N_{\varepsilon}$.

In pauticular take $\varepsilon = \frac{2}{2} > 0$; so four this particular $\varepsilon = \frac{2}{2} > 0$ $\exists N_{x/2} \in \mathbb{N}$ s.t

$$\Rightarrow -x/2 < xn - x < x/2$$

$$\Rightarrow \frac{1}{2} < \frac{1}{2} < \frac{2}{2} < \frac{2}{2}$$

So, we can conclude by choosing $K=N_{E}$, we get that for every $n \geq K^{\circ}$,

Let $\epsilon>0$, be any given positive weal no. RTP: Four this given $\epsilon>0$, $\neq N_{\epsilon} \in N$ & .t $\left|\left(\frac{n}{n+1}\right)-1\right|<\epsilon$ \forall $n>N_{\epsilon}$ our

 $\left|\frac{1}{n+1}\right| < \varepsilon + m > N_{\varepsilon}$

(i.e we have to Edentify that $N \in E \setminus N$, for which $\left| \frac{1}{n+1} \right| < E + n \ge N_E$)

By ARCH. PROPERTY, $(x=\epsilon, y=1) \neq N_{\epsilon} \in \mathbb{N} \text{ s.t. } N_{\epsilon} \epsilon > 1$ $\Rightarrow \epsilon > 1/N_{\epsilon} - 0$

From (1) we can get, $\left|\frac{1}{n+1}\right| < \left|\frac{1}{n}\right| < \frac{1}{N_{e}} < \varepsilon + n > N_{\varepsilon}$

so, we have identified N_{ϵ} , coveresponding to given $\epsilon>0$, by Auch property s.t. $\left|\frac{n}{n+1}\right|-1$ $<\epsilon+n>N_{\epsilon}$

As $\varepsilon > 0$ is aubitary positive real no. 80, $\lim_{n \to \infty} \frac{n}{n+1} = 1$ (by def.)

95)

an = (-1)"n2; nen

suppose this sequence convenges to L.

(H.W

This sequence doesn't converge to +00 on -00.

[Truy to persue this statement _____ [b]
on your own]

Hence; by @ f b) me get that the sequence neither convenges nou divenges.

Hence it is OSCILLATORY.