2. Yöntem

Topun yukarı yönde atılması durumunda takip ettiği yol boyunca hızı ve konumu şekilde gösterilmiştir. Top atıldığı yükseklikten maksimum konuma 1 s'de çıkar. Maksimum yükseklikten 1,1 s sonra yere çarpar. Bu durumda $\Delta t = 1,1-1=0,1$ olduğundan h yüksekliği

$$h = \vartheta_0 \cdot t + \frac{1}{2} \cdot g \cdot t^2$$

$$h = 10 \cdot 0.1 + \frac{1}{2} \cdot 10 \cdot (0.1)^2$$

h = 1,05 m bulunur.

3. Yöntem

Top, 10 m/s hızla yukarı yönde atıldığında 1 s'de en üst noktaya ulaşır ve hızı sıfır olduktan sonra 1. s'de atıldığı noktaya geri gelir (toplam 2 s). Bu noktadan itibaren 0,1 s sonra yere çarpar. Buna göre topun hız-zaman grafiği şekildeki gibi olur.

Topun yerden yüksekliği, (2-2,1) s zaman aralığında aldığı yola eşittir. Buna göre (2-2,1) s zaman aralığında grafiğin yatay eksenle arasında kalan alan hesaplanarak

$$h = \frac{(10+11)\cdot 0,1}{2} = 1,05 \text{ m bulunur.}$$

1.19. Soru

Öykü ile Berra özdeş su balonlarıyla oynamaktadır. Öykü, balonunu Şekil 1'deki gibi h_1 yüksekliğinden ϑ hız büyüklüğü ile düşey aşağı doğru attığı anda Berra da balonunu Şekil 2'deki gibi ϑ ilk hız büyüklüğü ile düşey yukarı doğru fırlatarak balonun h kadar yüksekliğe çıkmasını sağlamaktadır. Her iki balon da 2t süre sonra yere çarpmaktadır.

Buna göre

a) Su balonlarının hız büyüklüklerini hesaplayarak tabloyu doldurunuz.

Zaman	1. Balonun Hız Büyüklüğü	2. Balonun Hız Büyüklüğü
0		
t		
2 <i>t</i>		

- b) Öykü'nün su balonunu bıraktığı yüksekliği h cinsinden bulunuz.
- c) Balonların yere çarptığında patladığı kabul edilirse hangi balon daha fazla su sıçratır? Açıklayınız. (Hava sürtünmesini ihmal ediniz.)