函数图形的描绘

王二民(■wagermn@126.com)

2019 至 2020 学年

郑州工业应用技术学院·基础教学部

描绘函数图形的基本步骤

- ① 确定函数 y = f(x) 的定义域,考察函数的奇偶性、周期性;
- ② 考察函数的一阶可导性(假设仅有有限个不可导点),求 出函数的一阶导数 f'(x) 及其零点(假设仅有有限个),并 得到函数的单调区间;
- 考察函数的二阶可导性(假设仅有有限个不可导点),求出函数的二阶导数 f''(x) 及其零点(假设仅有有限个),并得到函数的凹凸区间;
- ⑤ 以函数 f 的一阶、二阶不可导点和零点为分割点,把函数的定义域分成一个个开区间 I,则 f' 和 f'' 在 I 符号不变,有单调性和凹凸性。
- 求函数在每个开区间 / 的端点处的函数值(有定义的话) 和单侧极限(依据第 2 步必存在或趋于 +∞ 或 -∞),并画 出对应的点;

描绘函数图形的基本步骤(续)

- 参 若可能的话,求出函数的斜渐近线(水平和竖直渐近线在 第5步中已经求出);
- ⑥ 依据已画出的点、函数在每个区间/上的单调性和凹凸性 以及函数的渐近线,画出函数在每个开区间/内的图形。

图象	增区间	减区间		
凸区间				
凹区间				

函数图形描绘举例

例 1. 画出函数 $f(x) = x^3 - 6x^2 + 9x + 1$ 的图形。

 \mathbf{M} . 计算可得,函数 f 在 \mathbb{R} 上二阶可导,且

$$f'(x) = 3x^2 - 12x + 9 = 3(x - 1)(x - 3),$$

 $f''(x) = 6x - 12 = 6(x - 2).$

解 f'(x) = 0 可得 x = 1 或 x = 3, 解 f''(x) = 0 可得 x = 2, 从而

Х	(-∞,1)	1	(1, 2)	2	(2,3)	3	(3,+∞)
f(x)		5		3		5	
f'(x)	+	0	-	-	-	0	+
f''(x)	-	-	-	0	+	+	+
图象							

再由 f(0) = 1, $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to +\infty} f(x) = +\infty$, 可做函数的图象。

画函数图象举例

例 2. 画函数 $f(x) = x^4 - 4x^3$ 的示意图象。

 \mathbf{M} . 易知 f 在 \mathbb{R} 上二阶可导,计算可得

$$f'(x) = 4x^3 - 12x^2 = 4x^2(x-3),$$

 $f''(x) = 12x^2 - 24x = 12x(x-2).$

从而

Х	(-∞, 0)	0	(0,2)	2	(2,3)	3	(3,+∞)
f(x)		0		-16		-27	
f'(x)	-	0	-	-	_	0	+
f''(x)	+	0	-	0	+	+	+
图象							

再由 $\lim_{x \to \infty} f(x) = +\infty$ 可做函数图象。

函数图形描绘举例

例 3. 画出函数 $f(x) = 1 + \frac{36x}{(x+3)^2}$ 的图形。

 \mathbf{M} . 函数 f 的定义域为 $(-\infty, -3) \cup (-3, +\infty)$, 二阶可导且

$$f'(x) = \frac{36(3-x)}{(x+3)^3}, \qquad \qquad f''(x) = \frac{72(x-6)}{(x+3)^4},$$

解 f'(x) = 0 可得 x = 3, 解 f''(x) = 0 可得 x = 6, 从而

x
 (-∞, -3)
 (-3,3)
 3
 (3,6)
 6
 (6,+∞)

$$f(x)$$
 4
 $\frac{11}{3}$
 $f'(x)$
 -
 +
 0
 -
 -

 $f''(x)$
 -
 -
 -
 0
 +

 图象

再由 f(0) = 1, $\lim_{x \to \infty} f(x) = 1$, $\lim_{x \to -3} f(x) = -\infty$ 可做函数的图象。

