1 Отчет анализа стоимости ювелирных изделий у Эгэлгэ, дата парсинга - 20 апреля 2022

1.1 Парсинг

С сайта https://egelge.com/ (https://egelge.com/ (https://egelge.com/) были спарсены данные ювелирных издели предлагаемых на интернет магазине

Процесс парсинга, реализован в файле ParsingEgelge.ipynb, процесс очистки и расчет прейскуратной стоимости бриллиантов в файле Egelge_1after_parsing.ipynb

Всего колец с фильтром бриллиант на сайте более 145 изделий,

1.2 Информация о спарсенных данных

Ввод [61]:

1 svod_0

Out[61]:

	изделий	price_old	price	weight	ШТУК бриллиантов	price_old_cpeд_за_грамм	priceсред_за_грамм
nomenklatura							
без вставок	23	792305	554611	83.55	0.00	9483.00	6638.07
бриллианты и ПДК	6	368250	147301	13.70	0.00	26879.56	10751.90
только ПДК	11	845063	591543	75.50	0.00	11192.89	7835.01
только с бриллиантами	105	7704990	3081987	226.80	588.00	33972.62	13589.01

1.3 Анализ датасета визуализация, определение коэфициентов

1.3.1 Считывание данных с файла

Для этого устанавливаем необходимые модули.

- загружаем данные с файла
- оставлены поля price : цена изделя, weight: масса изделия в граммах, prcost: прейскурант в долларах

```
Ввод [2]:
            1 import numpy as np
            2 import pandas as pd
            3 import re
              import os
            5 import matplotlib.pvplot as plt
            6 #%matplotlib inline
            7 %matplotlib notebook
            8 filename = 'jewels/egelge/ брилл суммированы эгэлгеЭг 14520-04-2022.xlsx'
            9 #'jewels/muiz04-2022/ брилл суммированы mius140422 0-4431.xlsx'#'jewels/miuz/ брилл суммированы mius161121 (
Ввод [46]:
            1 pd.options.display.float format = '{:.2f}'.format
Ввод [3]:
            1 filename
           'jewels/egelge/ брилл суммированы эгэлгеЭг 14520-04-2022.xlsx'
  Out[3]:
            1 raw = pd.read excel('jewels/egelge/ брилл суммированы эгэлгеЭг 14520-04-2022.xlsx')#filenamemiuz, sheet name
Ввод [4]:
Ввод [5]:
            1 raw.rename(columns={ 'price':'price old', 'Средний вес':'weight'}, inplace=True)
            1 raw.rename(columns={ 'disc price':'price', 'Unnamed: 1':'Номенклатура'}, inplace=True)
Ввод [17]:
            1 raw['изделий'] = 1
Ввод [26]:
Ввод [57]:
            1 | svod 0 = raw[['nomenklatura','изделий','price old','price','weight','ШТУК']].groupby(
                   ['nomenklatura']).sum().rename(columns = {'ШТУК':'ШТУК бриллиантов'})
Ввод [58]:
            1 svod 0['price old сред за грамм'] = svod 0['price old']/svod 0['weight']
Ввод [59]:
            1 svod 0['price сред за грамм'] = svod 0['price']/svod 0['weight']
```

Ввод [60]: 1 svod_0

Out[60]:

	изделий	price_old	price	weight	ШТУК бриллиантов	price_old_cpeд_за_грамм	priceсред_за_грамм
nomenklatura							
без вставок	23	792305	554611	83.55	0.00	9483.00	6638.07
бриллианты и ПДК	6	368250	147301	13.70	0.00	26879.56	10751.90
только ПДК	11	845063	591543	75.50	0.00	11192.89	7835.01
только с бриллиантами	105	7704990	3081987	226.80	588.00	33972.62	13589.01

```
Ввод [62]:

1 data = raw.loc[~raw.prcost.isna(),['price','weight','prcost']]

2 #data = raw.loc[(raw.gold.str.contains('585') ),['price','weight','prcost']].loc[(raw.price<500000),:].loc[
3 data.head()
```

Out[62]:

	price	weight	prcost
0	8594	1.10	10.27
1	8594	1.10	10.27
2	9829	1.20	7.00
3	10258	1.20	6.57
4	11251	1.40	14.07

Ввод [63]: | 1 #raw.loc[~raw.prcost.isna(),['price','weight','prcost']]

После урезания получен датасет с 105 данными общая масса изделий 0.23 кг на сумму 3 млн рублей с прейскурантной стоимостью 7 тыс долл

Ввод [65]:

1 #cymma ∂amacema
2 data.describe()

Out[65]:

	price	weight	prcost
count	count 105.00		105.00
mean	29352.26	2.16	64.91
std	18704.53	1.08	70.61
min	3766.00	0.30	1.00
25%	15878.00	1.40	21.76
50%	23893.00	2.10	39.60
75%	38491.00	2.70	82.40
max	101385.00	5.60	449.86

Ввод [66]: 1 data.describe().loc['min','price']

Out[66]: 3766.0

1.3.2 Визуализиация данных

Построим облако точек в трехмерной плоскости

• х вес золота в граммах

- у стоимость прейскурантная бриллиантов
- z стоимость изделия в тысячах рублей

Если покрутить график, то видно что точки стремятся к плоскости

Ввод [67]:

1 %matplotlib notebook

```
BBOД [68]: 1 #
    fig = plt.figure(figsize=(7,7))
        ax = fig.gca(projection = "3d")
        ax.scatter3D(data.weight,data.prcost,data.price/1000,s=1,c='#1f77b4')
        ax.set_xlabel('вес изделия, \n грамм')
        ax.set_ylabel('прейск ст-ть \n брилл, долл')
        ax.set_zlabel('ст-ть изделия,\n тыс.руб')
        ax.view_init(45,0)
        #
        # todo 3 projection need
```


1.3.3 Подготовка данных для определения коэффициентов

Для того чтобы полученные коэффициенты имели интерпретируемый смысл, предлагается прейскурантную стоимость бриллиантов перевести в рубли, граммы золота перевести в биржевую стоимость золота, данного веса изделия в рублях.

```
Ввод [69]:

1 #Курс доллара и биржевая цена золота на 03-12-2021
2 #dollar_rate = 73.66
3 #gold_rate = 4191.05
4 #Курс доллара и биржевая цена золота на 19-04-2022
5 dollar_rate = 80.36
6 gold_rate = 5015.06
7 data['prcost_rub'] = data.prcost*dollar_rate
8 data['gold_rub'] = data.weight*0.585*gold_rate
9 pd.options.display.float_format ="{:.2f}".format
data
```

Out[69]:

	price	weight	prcost	prcost_rub	gold_rub
0	8594	1.10	10.27	825.30	3227.19
1	8594	1.10	10.27	825.30	3227.19
2	9829	1.20	7.00	562.52	3520.57
3	10258	1.20	6.57	527.97	3520.57
4	11251	1.40	14.07	1130.67	4107.33
139	11393	0.50	23.46	1885.25	1466.91
140	12577	1.60	9.36	752.17	4694.10
141	15795	1.80	37.64	3024.75	5280.86
143	21744	2.00	44.26	3556.73	5867.62
144	22734	2.90	30.10	2418.84	8508.05

105 rows × 5 columns

```
Ввод [70]:

1 #новое графическое представление будеть иметь вид
fig2 = plt.figure(figsize=(7,7))
ax = plt.gca(projection = "3d")
4 ax.scatter3D(data.gold_rub/1000,data.prcost_rub/1000,data.price/1000,s=1,c='#1f77b4')
5 ax.set_xlabel('цена золота, \n тыс.py6')
6 ax.set_ylabel('прейск ст-ть \n тыс.py6')
7 ax.set_zlabel('ст-ть изделия,\n тыс.py6')
8 ax.view_init(45,0)
```

4

Цена ювелирного изделия в первом приближении формируется линейной зависимостью, если обозначить за Z - цену издели, X - масса золота, Y - прейскурнтная стоимость бриллианов то можно записть закономерностю вида:

$$Z = f(X,Y) = HДС * СКИДКА * НАЦЕНКА *$$
 (ПРОБА * БИРЖЕВАЯСТОИМОСТ * НАЦЕНКАЗОЛОТА * СЛОЖНОСТЬ * X + НАЦЕНКАПРЕЙСКУРАНТ * СЛОЖНОСТЬ * Y + НАЦЕНКАБЕЗДКДМ)

можно раскрыть скобки, перемножить множители и мы получим уравнение вида:

$$Z = A * X + B * Y + C$$

линейное уравнение такого вида в трехмерной плоскости является плоскостью, поэтому необходимо усредненную плоскость и найти эти три коэффициента.

1.3.4 Вычисление коэффициентов усредненой по облаку данных плоскости

Для этого мы устанавливаем модуль отвечающий за расчеты линейной алгебры, и загружаем наши данные для расчета коэффициентов, и получаем коэффициенты

```
Ввод [71]:

1 from sklearn import linear_model
2 #noдготовка данных
3 miuz = linear_model.LinearRegression()
4 X_train = data.iloc[:,:].loc[:,['gold_rub','prcost_rub']].to_numpy()
5 Y_train = data.iloc[:,:].loc[:,'price'].to_numpy()
6 miuz.fit(X_train,Y_train)
7 A,B = miuz.coef_
8 C = miuz.intercept_
9 A,B,C
```

Out[71]: (2.0239842264446803, 2.720397086093228, 2336.7445761091694)

1.3.5 Визуальная проверка полученных коэффициентов

```
BBOД [72]: 1 #npoδepκα
2 data['predict'] = miuz.predict(X_train)
3 data['bycoef'] = data.gold_rub*miuz.coef_[0] + data.prcost_rub*miuz.coef_[1]+miuz.intercept_
4 data['diff'] = data.predict-data.bycoef
5 data.head()
```

Out[72]:

	price	weight	prcost	prcost_rub	gold_rub	predict	bycoef	diff
0	8594	1.10	10.27	825.30	3227.19	11113.66	11113.66	0.00
1	8594	1.10	10.27	825.30	3227.19	11113.66	11113.66	0.00
2	9829	1.20	7.00	562.52	3520.57	10992.60	10992.60	0.00
3	10258	1.20	6.57	527.97	3520.57	10898.60	10898.60	0.00
4	11251	1.40	14.07	1130.67	4107.33	13725.78	13725.78	0.00

Усредненная по нашим данным плоскость и коэффициенты посчитаны модулем по методу наименьних квадратов, постороим на плоскость построенной плоскости для проверки

Out[73]: Text(0.5, 0, 'ст-ть изделия,\n тыс.руб')

```
1 fig = plt.figure(figsize=plt.figaspect(0.5))
Ввод [74]:
            3 ax = fig.add subplot(1, 2, 1, projection='3d')
              ax.plot wireframe(xx/1000, yy/1000, zz/1000, linewidth=0.2)
            5 ax.scatter3D(data.gold_rub/1000,data.prcost_rub/1000,data.price/1000,s=1,c='red')
            6 ax.set xlabel('цена золота, \n тыс.руб')
            7 ax.set ylabel('прейск ст-ть \n тыс,руб')
            8 ax.set zlabel('ст-ть изделия,\n тыс.руб')
            9 ax.view init(-7,4)
           10
           11 ax = fig.add subplot(1, 2, 2, projection='3d')
           12 ax.plot wireframe(xx/1000, yy/1000, zz/1000, linewidth=0.2)
           13 ax.scatter3D(data.gold rub/1000,data.prcost rub/1000,data.price/1000,s=1,c='red')
           14 ax.set xlabel('цена золота, \n тыс.руб')
           15 ax.set ylabel('прейск ст-ть \n тыс,руб')
           16 ax.set zlabel('ст-ть изделия,\n тыс.руб')
           17 ax.view init(-66,-166)
           18
```


2 Выводы

Реализованная модель анализа цен ювелирных изделий с бриллиантами позволяет получить усредненную информацию по ценообразованию. В анализируемой партии изделий получены следующие коэффициенты цены изделия

Ввод [75]: 1 print(f''' A = {A:2.2f} B = {B:2.2f} C = {C:2.2f}''')

A = 2.02 B = 2.72C = 2336.74

где формула -

$$Z = A * X + B * Y + C$$

Z - стоимость изделия в рублях со всеми накрутками с учетом ндс и скидки X - биржевая стоимость золота, данного веса изделия в рублях Y - прейскурантная стоимость бриллиантов в рублях C - наценка в рублях не зависящая от граммов изделия и вставок

Для сравнения в прошлом анализе, подобной партии МЮЗ в (ноябрь 2021) были получены следующие коэффициенты:

$$A = 3.3$$

 $B = 4.0$
 $C = 2205$

Ввод []: 3