Devoir Surveillé n°3

Préliminaires

- 1. (Question de cours) Théorème de Bolzano-Weierstraß (énoncé, démonstration dans le cas complexe en admettant le cas réel).
- 2. (Question de cours) Soit $f: \mathbb{R} \to \mathbb{R}$ (on a donc $D = \mathbb{R}$). Écrire avec des quantificateurs les limites suivantes :

•
$$f(x) \xrightarrow[x \to 2023]{} 1$$

•
$$f(x) \xrightarrow[x \to 2023]{} +\infty$$

•
$$f(x) \xrightarrow[x \to -\infty]{} +\infty$$

- 3. Donner une primitive de 1/ch.
- 4. On considère l'équation différentielle (E): $x^3y'' 2xy + 3 = 0$, à résoudre sur \mathbb{R}_+^* . Dans cette question, on cherche les solutions réelles.
 - (a) On se donne une fonction y dérivable deux fois sur \mathbb{R}_+^* et on pose $z: x \mapsto xy'(x) + y(x)$. Montrer que y est solution de (E) si et seulement si z est solution d'une équation différentielle du premier ordre à préciser.
 - (b) Déterminer les fonctions z solutions.
 - (c) En déduire les solutions de $x^3y'' 2xy + 3 = 0$.
- 5. Soient a et b deux complexes, m et n deux entiers supérieurs ou égaux à 1. Montrer que :

$$\frac{1}{m} \sum_{j=0}^{m-1} \left(a e^{\frac{2i\pi j}{m}} + b \right)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Exercice 2 - Irrationnalité de π (et plus encore!).

On se donne dans cet exercice un rationnel $r=\frac{a}{b}\not\equiv 0\left[\frac{\pi}{2}\right]$ (en particulier non nul, et $\tan(r)$ est bien défini). Puisque la tangente est une fonction impaire, on peut supposer r>0 et donc que a et $b\in\mathbb{N}^*$. Le but de cet exercice est de montrer que $\tan(r)$ est irrationnel et d'en déduire que π l'est également. Pour tout $n\in\mathbb{N}$ on pose

$$f_n: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \frac{(2ax - bx^2)^n}{n!} \end{cases} \text{ et } I_n = \int_0^{2r} f_n(x) \sin(x) \, \mathrm{d}x$$

- 1. Exprimer I_0 en fonction de $\sin(r)$ et expliquer pourquoi $I_0 \neq 0$.
- 2. (a) Calculer les intégrales

$$A = \int_0^{2r} x \sin x \, dx \qquad \text{et} \qquad B = \int_0^{2r} x^2 \sin(x) \, dx$$

(b) En déduire que $I_1 = (-2a\cos(r) + 2b\sin(r)) \times 2\sin(r)$. On rappelle que r = a/b.

On se donne dans la suite $n \geq 2$.

- 3. (a) Donner les valeurs de $f_n(2r)$ et de $f_n'(2r)$.
 - (b) En déduire que

$$I_n = -\int_0^{2r} f_n''(t)\sin(t)\,\mathrm{d}t$$

- 4. (a) Soit $x \in \mathbb{R}$. On admet (les sceptiques pourront le vérifier chez eux, cela résulte d'un calcul simple mais un peu long...) que $4a^2f_n(x) (4n+6)bf_{n+1}(x) = f_{n+2}''(x)$. Exprimer I_{n+2} en fonction de I_{n+1} et de I_n .
 - (b) Montrer que pour tout $n \in \mathbb{N}$, il existe $(a_n, b_n) \in \mathbb{Z}^2$ tels que $I_n = (a_n \cos(r) + b_n \sin(r)) \times 2\sin(r)$.

Page 1/3 2023/2024

MP2I Lycée Faidherbe

5. On suppose à présent que $\tan(r) \in \mathbb{Q}$, c'est-à-dire qu'il existe $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$ tels que $\tan(r) = \frac{p}{q}$, et on veut aboutir à une absurdité.

- (a) Rappeler pourquoi $\sin(r)$ et $\cos(r)$ sont non nuls. En déduire que $\sin(2r) \neq 0$.
- (b) À l'aide de la question 4.(b), montrer que $\frac{q \times I_n}{\sin(2r)} \in \mathbb{Z}$.
- (c) Donner le tableau de variations de la fonction $g: x \mapsto 2ax bx^2$ sur [0; 2r].
- (d) On rappelle que si f et g sont continues sur un segment [a;b] avec $f \leq g$, alors:

$$\int_{a}^{b} f(t) dt \le \int_{a}^{b} g(t) dt$$

Montrer que, si f est continue sur [a;b], alors :

$$\left| \int_{a}^{b} f(t) \, \mathrm{d}t \right| \le \int_{a}^{b} |f(t)| \, \mathrm{d}t$$

Ce résultat est connu sous le nom d'inégalité triangulaire.

- (e) Montrer que $|I_n| \le \left(\frac{a^2}{b}\right)^n \times \frac{2r}{n!}$ et en déduire la limite de I_n .
- (f) Déduire des questions précédentes qu'il existe n_0 tel que pour tout $n \ge n_0, I_n = 0$.
- (g) Montrer que l'ensemble $E = \{n \in \mathbb{N} \mid I_n \neq 0\}$ admet un plus grand élément, qu'on notera n_1 , et conclure à une absurdité à l'aide de la question 4.(a).
- 6. Montrer que π est irrationnel.

Problème - Théorème de Morley

Les trisectrices ¹ d'un angle sont les droites qui découpent cet angle en trois angles égaux.

On souhaite dans cet exercice démontrer le théorème de Morley : les trisectrices d'un triangle se coupent en trois points formant un triangle équilatéral.

Le plan est muni d'un repère orthonormé et on identifie $\mathbb C$ et ce plan par la bijection habituelle. On se donne trois points A,B et C deux à deux distincts, on suppose que ABC est un triangle direct, et on appelle $a,b,c\in\mathbb C$ les affixes de ces trois points.

Les nombres α , β et γ sont dans $\left]0; \frac{\pi}{3}\right[$ et vérifient :

- 3α est une mesure de l'angle orienté $(\overrightarrow{AB}, \overrightarrow{AC})$ (c'est-à-dire l'angle orienté allant de \overrightarrow{AB} à \overrightarrow{AC} , c'est-à-dire une mesure de l'angle du sommet A dans le triangle ABC)
- 3β est une mesure de l'angle orienté $(\overrightarrow{BC}, \overrightarrow{BA})$.
- 3γ est une mesure de l'angle orienté $(\overrightarrow{CA}, \overrightarrow{CB})$.

On définit $u = e^{2i\alpha}$, $v = e^{2i\beta}$ et $w = e^{2i\gamma}$.

On appelle R_a , R_b et R_c les fonctions de $\mathbb C$ dans $\mathbb C$ définies, pour $z \in \mathbb C$, par :

$$R_a(z) = u(z-a) + a$$
, $R_b(z) = v(z-b) + b$, $R_c(z) = w(z-c) + c$

- 1. Calculs préliminaires
 - (a) Soient Z_1 , Z_2 et Z_3 trois points deux à deux distincts d'affixes z_1 , z_2 et z_3 tels que $z_1 + jz_2 + j^2z_3 = 0$. Mettre sous forme trigonométrique le complexe $\frac{z_1 z_2}{z_3 z_2}$.

Page 2/3 2023/2024

 $^{1. \ \} On \ \acute{e}crit \ aussi \ \it{ \ \ } \ mais \ trisectrice \ reste \ la \ norme... \ sans \ pour \ autant \ se \ prononcer \ \it{ \ \ } \ trizectrice \ \it{ \ \ } \ .$

MP2I Lycée Faidherbe

- (b) En déduire que le triangle $Z_1Z_2Z_3$ est équilatéral.
- (c) Montrer que uv, vw et wu sont différents de 1 et que uvw = j.
- (d) Mettre sous forme exponentielle les deux nombres complexes $\frac{u(1-v)}{1-uv}$ et $\frac{1-u}{1-uv}$. On justifiera bien que la quantité devant l'exponentielle est strictement positive.
- 2. On considère trois nombres complexes p, q et r vérifiant les relations suivantes :

•
$$(1-v)b + v(1-w)c = p(1-vw)$$
 • $(1-w)c + w(1-u)a = q(1-wu)$ • $(1-u)a + u(1-v)b = r(1-uv)$

On pose $E = (1 - uv)(1 - vw)(1 - wu)(p + jq + j^2r)$.

(a) Justifier qu'il existe $(\lambda, \mu, \nu) \in \mathbb{C}^3$ que l'on explicitera tels que $E = \lambda a + \mu b + \nu c$. Vérifier en particulier que

$$\lambda = j(1 - u)(1 - vw) \left[w(1 - uv) + j(1 - wu) \right]$$

Question longue et calculatoire, certes, mais pas si difficile que cela!

(b) À l'aide de la question 1.(c), justifier que :

$$\lambda = -\frac{w}{u}j^2(1-u)(j^2u - 1)(1-ju)$$

(c) Montrer finalement que $\lambda = \frac{w}{u}j^2(u^3 - 1)$. On trouverait de même (et donc on l'admettra) que $\mu = \frac{u}{v}(v^3 - 1)$ et que $\nu = \frac{v}{w}j(w^3 - 1)$ si bien que :

$$E = \frac{w}{u}j^{2}(u^{3} - 1)a + \frac{u}{v}(v^{3} - 1)b + \frac{v}{w}j(w^{3} - 1)c$$

- 3. Caractériser géométriquement (sans démonstration) les fonctions R_a, R_b, R_c .
- 4. (a) Expliciter la fonction $R_a \circ R_b$.
 - (b) Montrer que $R_a \circ R_b$ a un unique point fixe r (on appellera R le point d'affixe r) et que celui-ci vérifie :

$$(1-u)a + u(1-v)b = r(1-uv)$$

- (c) En soustrayant (1 uv)a de chaque côté de la relation précédente, préciser l'angle $(\overrightarrow{AB}, \overrightarrow{AR})$. On prouverait de même (et donc on l'admettra) que l'angle $(\overrightarrow{BA}, \overrightarrow{BR})$ vaut $-\beta$.
- (d) Justifier que R est bien le point placé sur la figure ci-dessus. On définit de même p, P, q et Q à partir de $R_b \circ R_c(p) = p$ et $R_c \circ R_a(q) = q$, et on admet que P et Q sont bien les points sur la figure ci-dessus.
- 5. (a) On note $R_c^3 = R_c \circ R_c \circ R_c$. Montrer que le point d'affixe $R_c^3(a)$ est le symétrique de A par rapport à la droite (BC).
 - (b) Montrer que $R_a{}^3 \circ R_b{}^3 \circ R_c{}^3$ est de la forme $z \mapsto \lambda z + \mu$ avec un λ que l'on explicitera. Montrer que A est laissé fixe par cette fonction. Que peut-on en déduire?
 - (c) Si $z\in\mathbb{C},$ développer ${R_a}^3\circ{R_b}^3\circ{R_c}^3(z).$ En déduire que

$$(1-u^3)a + u^3(1-v^3)b + u^3v^3(1-w^3)c = 0$$

- (d) En se souvenant que j = uvw, montrer que le complexe E défini à la question 2 (puisqu'on a vu à la question 4 que p, q, r vérifient les relations voulues 2) est nul.
- (e) Montrer que PQR est un triangle équilatéral.

^{2.} Bon, on ne l'a montré que pour r, mais le raisonnement est analogue pour p et q.

Page 3/3 2023/2024