НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО Факультет систем управления и робототехники

Теория автономного управления

Лабораторная работа №5

«Критерий Найквиста и системы с запаздыванием»

Выполнил студент:

Мысов М.С. (В-11)

Группа № R33372

Руководитель:

Перегудин А.А.

СОДЕРЖАНИЕ

Задание 1	3
1.1 Мой алгоритм	3
1.2 Моделирование переходных функций	4
1.3 Годограф Найквиста	6
Задание 2	8
Задание 3	14
Задание 4	19
4.1 Система, имеющая бесконечный запас устойчивости по амплитуде	19
4.2 Система, имеющая бесконечный запас устойчивости по фазе	21
4.3 Система, которая теряет устойчивость при появлении любого	
запаздывания	22
Выводы	

Задание 1

Придумаем три передаточные функции, которые подходят под условия:

$$\begin{split} W_1(s) &= \frac{11s^4 + 75s^3 + 98s^2 - 404s - 360}{s^5 + 2s^4 - 17s^3 - 38s^2 + 172s - 120} \\ W_2(s) &= \frac{-15s^4 - 105s^3 - 210s^2 + 60s - 600}{s^5 + 14s^4 + 79s^3 + 214s^2 + 268s + 120} \\ W_3(s) &= \frac{9s^4 + 105s^3 + 474s^2 + 900s + 600}{s^5 + 8s^4 + 13s^3 - 62s^2 - 188s - 120} \end{split}$$

Мой алгоритм

Чтобы задать пять полюсов передаточной функции, я записал произведение пяти корней, трех вещественных и двух комплексно-сопряженных.

Первая передаточная функция:

Для разомкнутой $(p-1)\cdot(p-2)\cdot(p-3)\cdot(p-(-4+2\cdot j))\cdot(p-(-4-2\cdot j))=p^5+2p^4-17p^3-38p^2+172p-120$. Здесь мы имеем три неустойчивых вещественных полюса и два устойчивых комплексно-сопряжённых.

Для замкнутой нам необходимо воспользоваться влиянием регулятора, и для удобства его нахождения можно сразу записать желаемую замкнутую функцию $(p-2)\cdot(p+3)\cdot(p+4)\cdot(p-(-4+2\cdot j))\cdot(p-(-4-2\cdot j))=p^5+13p^4+58p^3+60p^2-232p-480$, где имеется один неустойчивый полюс.

Найдем регулятор, вычитая замкнутую из разомкнутой, и получим передаточную функцию 1. Дальнейший процесс аналогичен.

Рисунок 1 — схема замкнутой системы

Рисунок 2 — схема разомкнутой системы

Моделирование переходных функций

$$W_1(s) = \frac{11s^4 + 75s^3 + 98s^2 - 404s - 360}{s^5 + 2s^4 - 17s^3 - 38s^2 + 172s - 120}$$

Рисунок 3 — переходная функция замкнутой системы W1

Рисунок 4 — переходная функция разомкнутой системы W1

$$W_2(s) = \frac{-15s^4 - 105s^3 - 210s^2 + 60s - 600}{s^5 + 14s^4 + 79s^3 + 214s^2 + 268s + 120}$$

Рисунок 5— переходная функция замкнутой системы W2

Рисунок 6 — переходная функция разомкнутой системы W2

$$W_3(s) = \frac{9s^4 + 105s^3 + 474s^2 + 900s + 600}{s^5 + 8s^4 + 13s^3 - 62s^2 - 188s - 120}$$

Рисунок 7 — переходная функция замкнутой системы W3

Рисунок 8 — переходная функция разомкнутой системы W3

Годограф Найквиста

Формулировка критерия Найквиста

Число неустойчивых полюсов замкнутой системы = Число неустойчивых полюсов разомкнутой системы + Число оборотов годографа по часовой стрелке вокруг точки (-1,0)

Рисунок 9 — годограф Найквиста W1

1 полюс замкнутой = 3 полюса разомкнутой - 2 оборота по часовой. Критерий выполняется.

Рисунок 10 — годограф Найквиста W2

3 полюса замкнутой = 0 полюсов разомкнутой + 3 оборота по часовой. Критерий выполняется.

Рисунок 11 — годограф Найквиста W3

0 полюсов замкнутой = 1 полюс разомкнутой - 1 оборота по часовой. Критерий выполняется.

Задание 2

Рисунок 12 — схема разомкнутой системы с коэффициентом усиления k

$$W_1(s) = \frac{s-2}{s^2+2s+4}$$

Рисунок 13 — годограф Найквиста при k = 1

Коэффициент к растягивает граф, увеличивает амплитуду АФЧХ.

При увеличении k количество неустойчивых полюсов увеличивается до одного. Запас устойчивости по амплитуде = 2. При k < 2 замкнутая система будет устойчивой.

Рисунок 14 — годограф Найквиста W1 при k = 2. Замкнутая система неустойчива

Найдем передаточную функцию замкнутой системы и построим её график.

Рисунок 15 — переходная функция W1 при k = 2. Замкнутая система неустойчива

Рисунок 16 — годограф Найквиста W1 при k=1.5 Замкнутая система устойчива

Рисунок 17 — переходная функция W1 при k = 1.5 Замкнутая система устойчива

Рисунок 18 — годограф Найквиста W1 при k=5. Замкнутая система неустойчива

Рисунок 19 — переходная функция W1 при k = 5. Замкнутая система неустойчива

$$W_2(s) \, = \, \frac{10s^3 - 2s^2 + 15s - 23}{10s^3 + 12s^2 + 20s + 58}$$

Рисунок 20 — годограф Найквиста W2 при k = 1. Замкнутая система неустойчива

Коэффициент к растягивает граф, увеличивает амплитуду АФЧХ.

Так как направление годографа против часовой стрелки, то при охвате точки (-1, 0) количество неустойчивых полюсов уменьшается.

Система имеет запас устойчивости по амплитуде.

При $k > \frac{1}{A_3} = 1.93$ количество неустойчивых корней снижается на 2. Замкнутая система будет устойчива.

При $k > \frac{1}{A_3} = 2.52$ количество неустойчивых корней снижается на 1 (от начального значения). Система становится опять неусточивой.

Рисунок 21 — годограф Найквиста W2 при k = 2. Замкнутая система неустойчива

Рисунок 22 — переходная функция W2 при k = 2. Замкнутая система устойчива

Рисунок 23 — годограф Найквиста W2 при k = 3. Замкнутая система неустойчива

Рисунок 24 — переходная функция W2 при k = 3. Замкнутая система неустойчива

Рисунок 25 — схема разомкнутой системы со звеном чистого запаздывания

$$W_3(s)\,=\,\frac{9s^2+2}{s^2+6s+1}$$

Рисунок 26 — годограф Найквиста W3 при $\tau = 0$

Рисунок 27 — годограф Найквиста W3 при $\tau = 0.5$

Величина запаздывания влияет на закручивание годографа.

Запас устойчивости по фазе = 180° - 43° = 137° . $\tau_{max}~=~0.34$

Рисунок 28 — годограф Найквиста W3 при $\tau = 0.3$. Замкнутая система устойчива

Рисунок 29 — переходная функция W3 при τ = 0.3. Замкнутая система устойчива

Рисунок 30 — годограф Найквиста W3 при τ = 1.5. Замкнутая система неустойчива

Рисунок 31 — переходная функция W3 при $\tau = 1.5$. Замкнутая система неустойчива

$$W_4(s) \, = \, \frac{8s^2 + 2s \, + \, 2.4}{10s^2 - 5s + 1}$$

Nyquist Diagram 0.5 Imaginary Axis -0.5 -1 -1.5 -2 L -1.5

Рисунок 32 — годограф Найквиста W4 при $\tau = 0$

0.5

-0.5

Рисунок 33 — годограф Найквиста W4 при $\tau = 0.5$

Величина запаздывания влияет на закручивание годографа.

Так как направление годографа против часовой стрелки, то при охвате точки (-1, 0) количество неустойчивых полюсов уменьшается.

При $\tau > 0.278$ система становится устойчивой, точка (-1,0) охватывается, количество неустойчивых полюсов уменьшается на два. При $\tau > 1.28$ система становится снова неустойчивой.

Рисунок 34 — годограф Найквиста W4 при τ = 1. Замкнутая система устойчива

Рисунок 35 — переходная функция W4 при τ = 1. Замкнутая система устойчива

Рисунок 36 — годограф Найквиста W4 при τ = 1.5. Замкнутая система неустойчива

Рисунок 37 — переходная функция W4 при $\tau = 1.5$. Замкнутая система неустойчива

Задание 4

4.1 Система, имеющая бесконечный запас устойчивости по амплитуде

Для выполнения данного условия необходимо, чтобы годограф лежал в правой полуплоскости, значит невозможно растянуть граф, чтобы он коснулся критической точки (-1, 0), следовательно запас будет равен бесконечности.

$$W(s) = \frac{s+3}{s^2+6s+7}$$

Рисунок 38 — годограф Найквиста при k=1. Замкнутая система устойчива

Рисунок 39 — годограф Найквиста при k = 1000. Замкнутая система устойчива

Рисунок 40 — переходная функция замкнутой системы при k = 1000

4.2 Система, имеющая бесконечный запас устойчивости по фазе

Рисунок 41 — годограф Найквиста при $\tau = 0.5$. Замкнутая система устойчива

Рисунок 42 — годограф Найквиста при $\tau = 500$. Замкнутая система устойчива

Рисунок 43 — переходная функция замкнутой системы при $\tau = 500$

4.3 Система, которая теряет устойчивость при появлении любого запаздывания

$$W(s) = \frac{2}{3s^2 + 3}$$

Это консервативное звено, система устойчива по Ляпунову.

Рисунок 44 — годограф Найквиста при $\tau = 0$. Замкнутая система устойчива по Ляпунову

Рисунок 45 — годограф Найквиста при τ = 0.01. Замкнутая система неустойчива

Рисунок 46 — переходная функция замкнутой системы при $\tau = 0$

Рисунок 47 — переходная функция замкнутой системы при $\tau = 0.01$

Выводы

В данной лабораторной работе исследовались коэффициенты усиления и критические значения запаздывания, их зависимость. Были найдены запасы устойчивости по амплитуде и фазе при различных значениях k и τ . По приближенно вычисленным критическим значениям были построены переходные характеристики системы, которые были проверкой найденного значения. Переходная характеристика системы со значением большим критическому становилась расходящейся из-за добавления неустойчивого полюса у передаточной функции по критерию Найквиста.