1 Binárna klasifikácia solventnosti klientov

Minimalizáciou funkcie $\ref{eq:constrain}$ sme našli taký vektor koeficientov x, aby čo najkonzistentnejšie platilo, že po dosadení do logistickej funkcie bola hodnota $g(x^Tu^i) \geq 0.5$ pre $v^i=1$, inak chceme, aby platilo $g(x^Tu^i) < 0.5$. Vektory u^i a hodnoty v^i , podľa ktorých bola funkcia $\ref{eq:constrain}$? vytvorená a podľa ktorých sme našli vektor x, sú uložené v súbore $\operatorname{credit_risk_train.csv}$.

Chceli by sme zistiť, či nájdený vektor x bude spĺňať vlastnosť popísanú vyššie aj pre také vektory $u^{i'}$ (i' značí, že sa už nejedná o vektory z credit_risk_train.csv), ktoré neboli zahrnuté v účelovej funkcii, teda neboli zohľadňované pri minimalizácii. Na to nám poslúžia dáta credit_risk_test.csv. Budeme postupne počítať hodnoty $q(x^Tu^{i'}) =: p$, pričom ak p > 0.5, tak povieme, že náš odhad $v^{i'}$ je 1, inak 0.

Pre nájdené aproximácie miním všetkými 6 metódami (pri gradientnej metóde s konštantným krokom použijeme aproximáciu minima po 10000 iteráciách) vypíšeme podiel správnych predikcií hodnôt $v^{i'}$.

	podiel správnych predikcií v^{i^\prime}
BFGS s optimálnym krokom	0.7209
BFGS s približne optimálnym krokom	0.7209
DFP s optimálnym krokom	0.7209
DFP s približne optimálnym krokom	0.7209
GM s optimálnym krokom	0.7209
GM s konštantným krokom	0.7176

Vidíme, že všetky metódy až na gradientnú s konštantným krokom majú zhodný podiel správnych predikcií $v^{i'}$. Je to pravdepodobne spôsobené tým, že ich aproximácie minima sú si navzájom veľmi blízke, čiže tento rozdiel sa nemusí prejaviť na pomerne malom množstve dát v $credit_{risk_{test.csv}}$. Môžeme teda zhodnotiť, že náš model na binárnu klasifikáciu mal pre tieto dáta 72% úspešnosť a vzhľadom na časovú efektivitu (spomenutú vyššie) je najvýhodnejšia implementácia pomocou jednej z kvázinewtonovských metód s približne optimálnym krokom.