DM LYCÉE - CPGE

Antoine Becquet, Thomas Cometx

Préambule

Public Ce devoir s'adresse aux futur-e-s élèves de GPGE des filières MP2I ou MPSI : les exercices proposés visent à préparer spécifiquement le premier semestre de celles-ci. Cependant, les élèves des autres filières de classes préparatoires ainsi que celles et ceux poursuivant des études de mathématiques en général y trouverons également matière à apprendre et progresser.

Objectifs Trois objectifs majeurs:

- 1. Revenir avec un peu de recul sur les points importants de l'enseignement des mathématiques au lycée en insistant sur ceux qui posent le plus problème dans le supérieur.
- 2. Proposer quelques notions et techniques peu voire jamais abordées au lycée mais qu'il est bon d'avoir rencontrées au moins une fois avant la prépa.
- 3. Prendre de bonnes habitudes de rédaction. C'est sans doute le point le plus important : que ce soit en devoir, pour les concours ou pour la rédaction de textes mathématiques en général, une mauvaise rédaction sera toujours extrêmement pénalisante. À partir de maintenant, vos lecteurs et lectrices passerons moins de temps à essayer de comprendre ce que vous avez maladroitement cherché à dire qu'à évaluer ce que vous avez vraiment dit et comment.

Avant de commencer Téléchargez, imprimez, lisez, apprenez par coeur et encadrez le <u>Petit manuel de bonne rédaction</u> de Christophe Bertault. Considérez que vous n'aurez répondu à un exercice de ce devoir que si votre rédaction suit toutes les règles énoncées dans ce petit manuel.

* *

1 Raisonnement et vocabulaire ensembliste

Exercice 1 Écriture d'assertions quantifiées

- 1. Écrire les assertions suivantes à l'aide des quantificateurs et symboles logiques présentés ci-dessus.
 - (a) Pour tout $y \in \mathbb{R}$, il existe $x \in \mathbb{R}$ tel que $y = x^3$.
 - (b) Pour tout $\epsilon > 0$, il existe $\eta > 0$ tel que pour tout $x \in I$, $|x x_0| \le \eta$ alors $|f(x) f(x_0)| \le \epsilon$.
 - (c) Tout intervalle ouvert de \mathbb{R} contient un rationnel.
- 2. Écrire les définitions suivantes avec quantificateurs et symboles logiques.
 - (a) $n \in \mathbb{N}$ est impair.
 - (b) $p: \mathbb{R} \longrightarrow \mathbb{R}$ est paire.
 - (c) $f: \mathbb{R} \longrightarrow \mathbb{R}$ est périodique.

Exercice 2 Démonstrations d'assertions quantifiés

- 1. Démontrer les assertions suivantes.
 - (a) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y > x.$
 - (b) $\forall (x, y) \in \mathbb{R}^2, \ x < y \Rightarrow \exists z \in \mathbb{R}, \ x < z < y.$
 - (c) $\exists n \in \mathbb{N}, \forall k \in \mathbb{N}, k > n$.
- 2. Montrer que les assertions suivantes sont fausses.
 - (a) $\exists x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ e^x < e^y$.
 - (b) $\exists N \in \mathbb{N}, \ \forall k \in \mathbb{N}, \ \ln(k+1) \le e^N$.
 - (c) $\forall n \in \mathbb{N}, \exists x \in \mathbb{R}, \cos(x) = N.$

Exercice 3 Démonstration d'implications

- 1. Soit $x \in \mathbb{R}$. Démontrer que si 0 < x < 1, alors $x^2 < x$.
- 2. Soient $n, m \in \mathbb{Z}$ tels que $n \mid m$ et $x \in \mathbb{R}$. Démontrer que si $x^n 1 = 0$, alors $x^m 1 = 0$.
- 3. Soient (u_n) géométrique de raison $q \in \mathbb{R}$ et $S_n = \sum_{i=0}^n u_i$. Démontrer que si -1 < q < 1, alors (S_n) est convergente.
- 4. Soient \mathcal{P} et \mathcal{Q} deux propriétés portant sur les éléments d'un ensemble E. Démontrer que :

$$(\exists x \in E, \ \mathcal{P}(x) \text{ et } \mathcal{Q}(x)) \Rightarrow (\exists x \in E, \ \mathcal{P}(x)) \text{ et } (\exists x \in E, \ \mathcal{Q}(x))$$

Exercice 4 Réciproques et équivalences

- 1. Énoncer les réciproques des propositions de l'exercice précédent.
- 2. Pour chacune d'elles, démontrer leur véracité ou fausseté.
- 3. Énoncer les équivalences éventuelles.

Exercice 5 Contraposées

Démontrer les implications suivantes en utilisant la contraposée.

- 1. Soient x et $y \in \mathbb{N}$. Démontrer que Si $7 \mid (x^2 + y^2)$ alors $7 \mid x$ et $7 \mid y$.
- 2. Soit $n \in \mathbb{N}$. Démontrer que si n^2 est impair, alors n est impair.

Exercice 6 Quelques preuves par récurrence

1. Démontrer par récurrence que

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} k^{3} = \left(\sum_{k=0}^{n} k\right)^{2}.$$

2. Soit $x \in \mathbb{R}$ tel que $x + \frac{1}{x} \in \mathbb{N}$, montrer que pour tout $n \in \mathbb{N}$, $x^n + \frac{1}{n} \in \mathbb{N}$.

Exercice 7 Démonstration du principe de récurrence forte

On se propose dans cet exercice de démontrer le principe de récurrence forte :

Soient $n_0 \in \mathbb{N}$ et \mathcal{P} une proposition portant sur des entiers vérifiant :

- *Initialisation* : $\mathcal{P}(n_0)$ *est vraie*;
- **Hérédité forte :** Pour tout $n \ge n_0$, ($\mathcal{P}(k)$ vraie quelque soit k entre n_0 et n) $\Rightarrow \mathcal{P}(n+1)$ vraie; alors, on a:
 - Conclusion : $\mathcal{P}(n)$ est vraie pour tout $n \geq n_0$.
- $1. \ \, \acute{\rm E}{\rm crire} \ \, le \ \, principe \ \, de \ \, r\acute{\rm e}{\rm currence} \ \, \ll simple \ \, » \ \, avec \ \, la \ \, m\^{\rm e}{\rm me} \ \, pr\acute{\rm e}{\rm sentation} \ \, que \ \, ci-dessus.$
- 2. Soient $n_0 \in \mathbb{N}$ et \mathcal{P} une proposition portant sur des entiers. On définit la propriété \mathcal{Q} par :

$$Q(n): \forall k \in [n_0; n], \mathcal{P}(k)$$

Vérifier que si \mathcal{P} vérifie les hypothèses du principe de récurrence forte, alors \mathcal{Q} vérifie les hypothèses du principe de récurrence simple.

3. Écrire une démonstration par récurrence simple du principe de récurrence forte.

Exercice 8 Application du principe de récurrence forte

Soit (u_n) la suite définie par récurrence par $u_0 = 0$ et :

$$u_{n+1} = \begin{cases} 2u_{n/2} + 1 & \text{si } n \text{ est pair} \\ u_n + 1 & \text{sinon} \end{cases}$$

- 1. Calculer les premiers termes de (u_n) et conjecturer l'expression de u_n en fonction de n.
- 2. Démontrer cette conjecture par récurrence forte.

Exercice 9 Classes d'équivalence modulo n

Soit $n \in \mathbb{N}$, $n \ge 1$. Pour tout $x \in \mathbb{Z}$ on définit \overline{x} la classe d'équivalence de x modulo n par :

$$\overline{x} = \{ k \in \mathbb{Z} \mid k \equiv x \mid [n] \}$$

- 1. Donner les classes d'équivalences modulo 4 de 0, 1, 2, 3, 4 et 5.
- 2. Soient x et y deux entiers distincts entre 0 et n-1. Montrer que \overline{x} et \overline{y} sont disjoints.
- 3. Soit $z \in \mathbb{Z}$. Montrer qu'il existe x entre 0 et n-1 tel que $z \in \overline{x}$.
- 4. En déduire que les classes d'équivalences modulo n de $0, 1, \ldots, n-1$ forment une partition de \mathbb{Z} .

Exercice 10 Domaines des fonctions composées

Pour chacune des expressions de la fonction f suivantes, écrire f comme une fonction composée $f = g \circ h$ et en déduire l'ensemble de définition de la fonction f.

1.
$$f(x) = \ln(1 - x^2)$$
.

2.
$$f(x) = \sqrt{\ln(x)}$$

3.
$$f(x) = \frac{1}{x \ln(x+2)}$$
.

4.
$$f(x) = \frac{\ln(x^2 + x)}{\ln(1 - x)}$$
.

Exercice 11 Calcul de bijections réciproques

Pour chacune des fonctions f suivantes, résoudre l'équation f(x) = y, d'inconnue x, où y est un réel fixé de l'ensemble d'arrivée de f.

1.
$$f: \mathbb{R} \longrightarrow]-1,1[$$
 définie par $f(x) = \frac{e^x - 1}{e^x + 1},$

2.
$$f: \mathbb{R} \setminus \{5\} \longrightarrow \mathbb{R} \setminus \{2\}$$
 définie par $f(x) = \frac{3+2x}{x-5}$,

3.
$$f: \mathbb{R}_+ \longrightarrow [1; +\infty[$$
 définie par $f(x) = \sqrt{x^2 + x + 1}$.

* *

2 Compléments de calcul algébrique et de trigonométrie

Exercice 12 Manipulation de puissances

1. Écrire les expressions suivantes sous la forme $\alpha^n \beta^m$ avec $\alpha, \beta \in \mathbb{R}, n, m \in \mathbb{Z}$.

(a)
$$4^8 \times 2^4 \times 3^7 \times \frac{1}{3^{-4}}$$
.

(b)
$$\frac{\sqrt{2}\sqrt{3}}{2^43^2}$$
.

2. Soient a et b deux entiers non-nuls, p et q deux entiers relatifs. Même question.

(a)
$$\frac{a^7b^{12}}{a^{-2}b^2}$$
.

(b)
$$a^{p-q}(ab)^{p-q}$$
.

(c)
$$(a^2)^q b^q \left(\frac{a}{b}\right)^p$$
.

Exercice 13 Sommes usuelles

Soit $n \in \mathbb{N}$. Démontrer par récurrence les formules suivantes :

1.
$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$$

2.
$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

3.
$$\sum_{k=0}^{n} q^k = \frac{q^{n+1}-1}{q-1}$$
, où $q \neq 1$.

Exercice 14 Somme télescopique

Soit (u_n) une suite. On se propose de démontrer que quelque soit $n \in \mathbb{N}$, on a l'égalité $T_n = \sum_{k=0}^n (u_{k+1} - u_k) = u_{n+1} - u_0$.

- 1. Démonstration impropre : retrouver la propriété en écrivant T_n sans le symbole somme mais avec des « ... ».
- 2. Démonstration par récurrence : en remarquant que $T_{n+1} = T_n + (u_{n+2} u_{n+1})$, démontrer par récurrence la propriété.

3

- 3. Démonstration par changement d'indice :
 - (a) En effectuant un changement d'indice k' = k + 1, démontrer que :

$$T_n = \sum_{k'=1}^{n+1} u_{k'} - \sum_{k=0}^{n} u_k$$

(b) Conclure.

Exercice 15 Un exemple de somme télescopique

On définit une suite $(u_n)_{n\geq 1}$ par $u_n=\frac{1}{n(n+1)}$. Son souhaite calculer la somme $S_n=\sum_{k=1}^n u_k$ pour tout $n\in\mathbb{N}^*$.

- 1. Montrer que pour tout $k \in \mathbb{N}^*$, $u_k = \frac{1}{k} \frac{1}{k+1}$.
- 2. En déduire que pour tout $n \in \mathbb{N}^*$,

$$S_n = \sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n \frac{1}{k+1}.$$

3. En réalisant un changement d'indice k' = k + 1 dans la deuxième somme (comme dans l'exercice précédent), montrer que pour tout $n \in \mathbb{N}^*$,

$$S_n = \sum_{k=1}^n \frac{1}{k} - \sum_{k'=2}^{n+1} \frac{1}{k'}.$$

4. En écrivant

$$S_n = \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) - \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n+1}\right)$$

et en simplifant les formes qui apparaissent des deux côtés, montrer que pour tout $n \in \mathbb{N}^* S_n = 1 - \frac{1}{n+1}$.

5. Déterminer $\lim_{n\to+\infty} S_n$.

Exercice 16 Formule de Pascal

On rappelle la définition des coefficients binomiaux : si $n \in \mathbb{N}$ et $k \in [0; n]$, $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. Démontrer la formule de Pascal :

$$\forall n \in \mathbb{N}, \ \forall k \in \mathbb{N} \mid k < n, \ \binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$$

4

Exercice 17 Application du binôme de Newton

A l'aide de la formule du binôme de Newton, simplifier les expressions suivantes :

- 1. $(1-\sqrt{5})^3$
- 2. $(3+2i)^4$
- 3. $(\sqrt{2} \sqrt[3]{2})^6$

Exercice 18 Somme des coefficients binomiaux

Soit
$$n \in \mathbb{N}$$
. Démontrer que $\sum_{k=0}^{n} \binom{n}{k} = 2^n$.

Exercice 19 Binône de Newton et matrice nilpotente

Soient
$$N = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \ n \in \mathbb{N}, \ n \geq 2 \text{ et } \lambda \in \mathbb{R}.$$

- 1. Calculer $N^0,\,N^1,\,N^2,\,N^3$ puis N^k pour $k\geq 4.$
- 2. Soit $n \in \mathbb{N}$, $n \ge 2$, calculer $\binom{n}{0}$, $\binom{n}{1}$ et $\binom{n}{2}$.
- 3. À l'aide de la formule du binôme de Newton, calculer $(I_3 + \lambda N)^n$.

Exercice 20 Fonction tangente

On définit sur $\mathcal{D} = \{ x \in \mathbb{R} \mid x \not\equiv \frac{\pi}{2} \mid [\pi] \}$ la fonction tangente par l'expression :

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

- 1. Démontrer que tan est une fonction impaire et π -périodique.
- 2. Étudier les limites de tan(x) en $\frac{\pi}{2}$ et $-\frac{\pi}{2}$.
- 3. Démontrer que tan est dérivable sur $\mathcal D$ et que l'on a pour tout $x\in\mathcal D$:

$$\tan'(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$$

4. Soient a et b deux réels de \mathcal{D} tels que $a+b\in\mathcal{D}$. Démontrer que :

$$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$$

Exercice 21 Une formule de trigonométrie

Soit $x \in \{ x \in \mathbb{R} \mid x \not\equiv \pi \mid [\pi] \}$. On pose $t = \tan(\frac{x}{2})$.

- 1. Justifier que t est bien défini.
- 2. En utilisant les résultats de l'exercice précédent, montrer que

$$\tan(x) = \frac{2t}{1 - t^2}.$$

3. Montrer que

$$\cos(x) = \frac{1 - t^2}{1 + t^2}.$$

4. En déduire que

$$\sin(x) = \frac{2t}{1+t^2}.$$

Exercice 22 Factorisation par l'arc moitié

On considère deux nombres complexes de même module sous forme exponentielle $z_1 = re^{ia}$ et $z_2 = re^{ib}$ avec $a, b \in \mathbb{R}$ et $r \geq 0$. On cherche la forme exponentielle de $z_1 + z_2$.

- 1. En factorisant z_1+z_2 par $e^{i\frac{a+b}{2}}$, démontrer que $z_1+z_2=2r\cos\left(\frac{a-b}{2}\right)e^{i\frac{a+b}{2}}$.
- 2. Cette écriture ne correspond pas toujours à la forme exponentielle de z_1+z_2 , pourquoi?
- 3. Application : Soient $a, b \in]0; \pi[$. Écrire les nombres suivants sous forme exponentielle. Refaire la factorisation plutôt qu'appliquer le résultat.
 - (a) $1 + e^{ia}$
 - (b) $1 e^{ia}$
 - (c) $e^{3ia} + e^{5ia}$
 - (d) $\frac{1 + e^{ia}}{1 + e^{ib}}$

Exercice 23 Le périmètre des polygones réguliers

On appelle P_n le polygone régulier à n cotés inscrit dans le cercle unité. C'est le polygone à n côtés sont les sommets sont les points d'affixes complexes les racines n-ièmes de l'unité : c'est à dire les n points du plans complexe dont les affixes sont solutions de $z^n = 1$.

- 1. Soit $z \in \mathbb{C}$, montrer que $z^n = 1 \Leftrightarrow z \in \{e^{\frac{2ik\pi}{n}}, k \in \{0, 1, \dots n-1\}.$
- 2. On note alors A_k le point d'affixe complexe $e^{\frac{2ik\pi}{n}}$ pour tout $k \in \{0, 1, \dots, n-1\}$. Ainsi P_n est le polygone $A_0A_1 \dots A_{n-1}$. Montrer que pour tout $k \in \{0, \dots, n-2\}$, la distance A_kA_{k+1} vaut $2\sin\left(\frac{\pi}{n}\right)$. Il en est de même pour la distance $A_{n-1}A_0$.

5

3. En déduire que le périmètre de P_n vaut $2n\sin\left(\frac{\pi}{n}\right)$.

- 4. On admet pour cette dernière question que si une suite (u_n) a pour limite 0, alors $\frac{\sin(u_n)}{u_n}$ tend vers 1. Déterminer la limite du périmètre de P_n lorsque n tend vers $+\infty$.
- 5. Le périmètre de quelle figure retrouve-t-on?

* *

3 Techniques fondamentales de calcul différentiel et intégral

Exercice 24 Équations de tangentes

Donner l'équation des de la tangente au point x_0 à la courbe représentative de la fonction f dans les cas suivants.

1.
$$f(x) = \frac{\ln(x)}{1+x}$$
 en $x_0 = 1$.

2.
$$f(x) = \exp(\cos(x))$$
 en $x_0 = \pi$.

3.
$$f(x) = \frac{x^2 + 2x + 1}{x^2 + 1}$$
 en $x_0 = -1$.

Exercice 25 Des primitives

Pour chacune des expressions de la fonction f suivantes, déterminer les primitives de f sur l'intervalle I donné.

1.
$$I =]-\infty, 0[, f(x) = \frac{1}{x}$$

$$2. I = \mathbb{R}, f(x) = x\cos(x^2 + x)$$

3.
$$I =]1, +\infty[, f(x) \frac{1}{x \ln(x)}]$$

4.
$$I =]0, 1[, f(x) \frac{1}{x \ln(x)}]$$

5.
$$I = \mathbb{R}, f(x) = x^2 e^{-x^3}$$

6.
$$I =]0, +\infty[, f(x) = \frac{e^{-\frac{1}{x}}}{x^2}$$

7.
$$I =]-1, +\infty[, f(x) = \frac{x^2}{(x^3+1)\sqrt{x^3+1}}$$

Exercice 26 Intégrations par parties

Soient u et v deux fonctions dérivables sur un intervalle [a;b] telles que u' et v' sont aussi des fonctions continues sur [a;b].

- 1. Rappeler la formule de la dérivée du produit uv.
- 2. En déduire que

$$\int_a^b (uv)'(t)dt = \int_a^b u'(t)v(t)dt + \int_a^b u(t)v'(t)dt.$$

3. En déduire que

$$\int_{a}^{b} u'(t)v(t)dt = u(b)v(b) - u(a)v(a) - \int_{a}^{b} u(t)v'(t)dt.$$

4. **Application :** Soient u et v définies par $u(t) = e^t$ et v(t) = t, montrer que pour tout $x \in \mathbb{R}$,

$$\int_0^x e^t t dt = xe^x - \int_0^x e^t dt.$$

- 5. En déduire la primitive de la fonction $x \mapsto xe^x$ qui s'annule en 0.
- 6. Déterminer toutes les primitives de la fonction $x \mapsto xe^x$.

Exercice 27 Exponentielle : une inégalité de convexité

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par :

$$f(x) = e^x - x - 1$$

- 1. Démontrer que f est deux fois dérivable sur \mathbb{R} et donner des expressions de f' et f''.
- 2. Étudier les variations de f' et en déduire son signe. On pourra remarquer que f'(0) = 0.
- 3. En déduire que quelque soit $x \in \mathbb{R}$:

$$e^x \ge x + 1$$

4. Retrouver ce résultat grâce à la convexité de l'exponentielle.

Exercice 28 Fraction rationnelle

On considère une fonction R d'expression $R(x) = \frac{1}{x^2 - x - 2}$.

- 1. Déterminer \mathcal{D} l'ensemble de définition de R et démontrer que R est intégrable sur \mathcal{D} .
- 2. Démontrer qu'il existe a et $b \in \mathbb{R}$ tels que, quelque soit $x \in \mathcal{D}$:

$$R(x) = \frac{a}{x+1} + \frac{b}{x-2}$$

3. En déduire les primitives de R sur $[2; +\infty[$.

Exercice 29 Suites arithmético-géométriques

Soient a et b deux réels, $a \neq 0$. On considère une suite (u_n) , dite arithmético-géométrique, vérifiant la relation de récurrence :

$$\forall n \in \mathbb{N}, \ u_{n+1} = au_n + b$$

- 1. Démontrer que la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par f(x) = ax + b admet un unique point fixe ℓ à déterminer.
- 2. Pour tout $n \in \mathbb{N}$, on pose $v_n = u_n \ell$. Démontrer que la suite (v_n) ainsi définie est géométrique de raison a.
- 3. En déduire l'expression générale de (v_n) puis celle de (u_n) .
- 4. Étudier la convergence et la monotonie de (u_n) en fonction des valeurs de a, ℓ et u_0 .