CMSC204 Kartchner

V(StateGraph) = {Oregon, Alaska, Texas, Hawaii, Vermont, NewYork, California} E(StateGraph) = {(Alaska, Oregon), (Hawaii, Alaska), (Hawaii, Texas), (Texas, Hawaii), (Hawaii, California), (Hawaii, New York), (Texas, Vermont), (Vermont, California), (Vermont, Alaska)}

1. Draw the StateGraph

1. Describe the graph pictured above, using the formal graph notation.

V(StateGraph) = {Oregon, Alaska, Texas, Hawaii, Vermont, New York, California}

E(StateGraph) ={(Oregon, Alaska), (Hawaii, Alaska), (Hawaii, Texas), (Texas, Hawaii), (Hawaii, California),(Hawaii, New York), (Texas, Vermont), (Vermont, California), (Vermont, Alaska)}

- 2. a. Is there a path from Oregon to any other state in the graph? No
 - b. Is there a path from Hawaii to every other state in the graph? Yes
 - c. From which state(s) in the graph is there a path to Hawaii? **Texas**

3. a. Show the adjacency matrix that would describe the edges in the graph. Store the vertices in alphabetical order

States	Alaska	Californi	ia Hawaii	New York	Oregon	Texas	Vermont
Alaska	0	0	0	0	1	0	0
California	0	0	0	0	0	0	0
Hawaii	1	1	0	1	0	1	0
New York	0	0	0	0	0	0	0
Oregon	0	0	0	0	0	0	0
Texas	0	0	1	0	0	0	1
Vermont	1	1	0	0	0	0	0

3. b. Show the adjacency lists that would describe the edges in the graph

- 4 a. Which of the following lists the graph nodes in depth first order beginning with E?
- A) E, G, F, C, D, B, A
- B) G, A, E, C, B, F, D
- (C) E, G, A, D, F, C, B
- E, C, F, B, A, D, G
- 4 b. Which of the following lists the graph nodes in breadth first order beginning at F?
 - A) F, C, D, A, B, E, G
 - B) F, D, C, A, B, C, G
 - C) F, C, D, B, G, A, E
 - D) a, b, and c are all breadth first traversals

5. Find the shortest distance from Atlanta to every other city

```
(Atlanta to Washington) – Atlanta , Washington
(Atlanta to Houston) – Atlanta, Houston
(Atlanta to Dallas) – Atlanta, Washington, Dallas
(Atlanta to Denver) – Atlanta, Washington, Dallas, Denver
(Atlanta to Chicago) – Atlanta, Washington, Dallas, Chicago
(Atlanta to Austin) – Atlanta, Washington, Dallas, Austin
```

6. Find the minimal spanning tree using Prim's algorithm. Use 0 as the source vertex . Show the steps.

7. Find the minimal spanning tree using Kruskal's algorithm. Show the weights in order and the steps.

8. Find the minimal spanning tree using the algorithm you prefer. Use Minneapolis/St. Paul as the source vertex

9. List the nodes of the graph in a breadth first topological ordering. Show the steps using arrays predCount, topologicalOrder and a queue

10. List the nodes of the graph in a breadth first topological ordering.

Discrete Math, Programming 1, Programming 2, computer organization, Algorithms, High-Level Languages, Operating Systems, Theory of Computation, Compliers, Senior Seminar