

IIC2223 - Teoría de Autómatas y Lenguajes Formales

Ayudantía 6

Franco Bruña y Dante Pinto 14 de Octubre, 2021

Pregunta 1

Considere el algoritmo de Knut-Morris-Prat: Dada una palabra w y un documento d:

- Construya el autómata $\mathcal{A}_w^{\text{lazy}}$ desde A_w .
- Ejecute el autómata $\mathcal{A}_{w}^{\text{lazy}}$ sobre d.

Demuestre que la construcción de \mathcal{A}_w^{lazy} puede hacerse en tiempo $\mathcal{O}(|w|)$

Pregunta 2

Sea $\mathcal{A}=(Q,\Sigma,\Delta,q_0,F)$ un NFA. Para un estado $p\in Q$, se define un NFA $\mathcal{A}_p=(Q,\Sigma,\Delta,q_0,\{p\})$ donde el único estado final es p. Decimos que \mathcal{A} es jerárquico si para todo $p,q\in Q$ se cumple que:

$$\mathcal{L}(\mathcal{A}_p) \subseteq \mathcal{L}(\mathcal{A}_q)$$
 o $\mathcal{L}(\mathcal{A}_q) \subseteq \mathcal{L}(\mathcal{A}_p)$ o $\mathcal{L}(\mathcal{A}_p) \cap \mathcal{L}(\mathcal{A}_q) = \emptyset$.

- 1. Dado $w = w_1 \dots w_m \in \Sigma^*$, demuestre que \mathcal{A}_w es un autómata jerárquico.
- 2. Sea $\mathcal{A}^{\text{det}} = (Q^{\text{det}}, \Sigma, \delta^{\text{det}}, \{q_0\}, F^{\text{det}})$ la determinización de \mathcal{A} tal que Q^{det} contiene solo los estados alcanzables desde $\{q_0\}$. Demuestre que si \mathcal{A} es jerárquico, entonces $|Q^{\text{det}}| \leq |Q|$.