MATH2988 - Number Theory and Cryptography

Definitions

1 Divisibility

Let $a,b\in\mathbb{Z}$. We say that a divides b if there exists $d\in\mathbb{Z}$ such that:

$$b = d \cdot a$$

Notation: a divides b, a|b

2 Greatest Common Divisor

Let $a, b \in \mathbb{Z}$. An integer d is called a common divisor of a and b if d|a and d|b. An integer g is called the greatest common divisor if it is the greatest integer with this property, ie:

$$\gcd(a,b) := \max \{ d \in \mathbb{Z} : d|a, \ d|b \}$$

By convention, gcd(0,0) = 0

3 Coprime

If gcd(a, b) = 1 then a and b are called coprime or relatively prime numbers.

4 Prime and Composite

Let $n \in \mathbb{Z}$, n > 1, n is called prime if all of its divisors are 1 and n. Otherwise it is called composite.

Remark: 0 and 1 are neither prime nor composite.

Notation: The set of primes is \mathbb{P}

5 The Modulus

Let $m \in \mathbb{Z}$. We say that a is congruent to b modulo m if:

$$m|b-a$$

or b=a+km for some $k\in\mathbb{Z}$

or a and b have the same residues (remainders) modulo m.

Notation: $a \equiv b \pmod{m}$

6 Congruence Classes

Let $m \in \mathbb{Z}, a \in \mathbb{Z}^+$. The congruence class of $a \equiv b \pmod{m}$ is the set of integers which are congruent to a modulo m. There are always m congruence classes.

7 Complete System

A complete system of residues modulo m is a set of integers containting exactly one representative from each congruence class modulo m.

The standard complete system is:

$$\{0, 1, 2, ..., m-1\}$$

8 Reduced System

A reduced set of residues modulo m is a set of integers containing exactly one element from each invertible congruence class modulo m. (Congruence class of a with gcd(a, m) = 1).

The standard reduced set is:

$$\{a \in \mathbb{Z} \mid 0 \le a \le m - 1, \ \gcd(a, m) = 1\}$$

9 Euler's Phi-Function

The size of a reduced set of residues is called Euler's phi-function of m, $\varphi(m)$.

10 Order

Let $m \in \mathbb{Z}^+$, $a \in \mathbb{Z}$ with $\gcd(a, m) = 1$. The order of $a \equiv b \pmod{m}$ is the smallest $j \in \mathbb{Z}^+$ such that:

$$a^j \equiv 1 \pmod{m}$$

Notation: $ord_m(a)$

11 Multiplicative Functions

A function $f:\mathbb{Z}^+\to\mathbb{Z}$ is called multiplicative if for all $n,m\in\mathbb{Z}^+$ with $\gcd(n,m)=1$, $f(mn)=f(m)\cdot f(n)$.

f is called completely multiplicative if it holds for all pairs m and n.

12 Liouville Function

$$\lambda(n) := (-1)^{\# \text{of primes in the factorisation of n}}$$

 $\lambda(n)$ is completely multiplicative.

n	1	2	3	4	5	6	7	8	9	10
factorisation of n	1	2	3	2^{2}	5	2 · 3	7	2^3	3^2	2 · 5
$\lambda(n)$	1	-1	-1	1	-1	1	-1	-1	1	1

13 Möbius Function

$$\mu(n) := \begin{cases} \lambda(n) & \text{if } n \text{ is square-free} \\ 0 & \text{otherwise} \end{cases}$$

 $\mu(n)$ is completely multiplicative

n	1	2	3	4	5	6	7	8	9	10
factorisation of n	1	2	3	2^{2}	5	2 · 3	7	2^3	3^{2}	2 · 5
$\lambda(n)$	1	-1	-1	0	-1	1	-1	0	0	1

14 Square Free

 $n \in \mathbb{Z}^+$ is called square-free if for any prime $p, \ p^2 \nmid n$

15 Tau Function

au(n) is the number of positive integer divisors of n.

$$\tau(n) = \sum_{d|n} 1$$

2

16 Sigma Function

 $\sigma(n)$ is the sum of positive integer divisors of n.

$$\sigma(n) = \sum_{d|n} d$$

17 Perfect Numbers

n is called perfect if it equals the sum of all its proper divisors (all divisors except n), ie:

$$n = \sigma(n) - n$$
 or $2n = \sigma(n)$

18 Mersenne Primes

Primes of the form $2^k - 1$ are called Mersenne Primes.

19 Multiplicative Functions at Powers of Primes

$$\varphi(p^k) = p^k - p^{k-1}$$

$$\tau(p^k) = k+1$$

$$\sigma(p^k) = \frac{p^{k+1} - 1}{p-1}$$

$$\lambda(p^k) = (-1)^k$$

20 Big O Notation

Let f(k), g(k) be two positive valued functions over positive (integer) numbers.

We say that " f(k) is $\mathrm{O}(g(k))$ " if:

There are positive numbers N, C such that

$$f(k) \le C(g(k))$$
 for all $k \ge n$

21 Polynomial Time

An algorithm is said to be of polynomial time if there exists positive a such that the number of bit operations required for the algorithm with the length of input $\leq k$ is $O(k^a)$.