Installation

Loading and Viewing Data

Dasic Flottini

Log Transformation

How would you transform the

Polynomial Regression

ECONOMETRICS I

Lecture 2

Basic R: data visualization, transformation, & estimation

Matías Cabello matias.cabello@wiwi.uni-halle.de

October 16, 2025

Introductio to R

Some basics

Loading and Viewing Data

Basic Plotting

Log Transformation

How would you

transform the following data?

Polynomial Regression

Introduction to R

Installation

Installation

Data

Log Transformatio

Linear Regressio

How would you transform the following data

Polynomia

- Get Rstudio from
 https://rstudio.com/products/rstudio/download/
- 2 If you have it already, make sure to upgrade to the latest version (4.5.0).

It may take a while, better do it at home!

Typing version in the console you should get minor = 5.0 (see next page):

Installation

Installation

Typing version in the console you should get minor = 5.0:

If this is not the case, try this:

```
install.packages("installr")
library(installr)
updateR()
```

Does it work now?

Does it work now:

Installation

Loading and Viewi Data

Log Transformat

Linear Regression

transform the following data

Polynomia Regression

Basic definitions

- Many windows:
 - The **console** (and output)
 - The **script**: a set of instructions
 - The **data** in memory
 - Others: viewer, help, etc
- Working with R is basically about writing scripts.
- Scripts are typically structured as follows:
 - Preamble: clean memory, call packages, define working directory
 - Call external datasource
 - Statistical analysis (graphs, regressions, etc.)

Commands vs comments in the script.You can write comments after the #-symbol

```
install.packages("installr") # here we are installing
    a package
library(installr) # here we are asking R to call that
    package
updateR() # here we are executing a command (it
    wouldn't work without calling the package in the
    first place)
```

Select and execute line by line (or all in once) with CTRL+Enter

transform the

Some basics

Before we start:

Installation Some basics

Loading and Viewi Data Basic Plotting Log Transformatio

Linear Regressio How would you transform the following data?

following dat Polynomial Regression Download the files "tech_adoption.xlsx" and "yield_curve.xlsx" save them in a specific working directory (you may create a folder for this lecture)

Now open a script in R. (File \rightarrow New file \rightarrow R Script)

Save it in your working directory. (e.g. IEEA Code 1.R) (remember to save your work regularly!)

We usually start R-scripts with a preamble that cleans the workspace, determines the working directory, and calls packages.

```
Preamble
rm(list=ls()) # This command deletes everything from your
    workspace.
setwd("G:/My_Drive/UniHalle/Courses/Empirical_Econ_
    Analysis/") # Working directory (of YOUR computer!)
#install.packages("openxlsx") # installing the package
   for reading excel files (uncomment the first time)
library(openxlsx) # we are telling R to use it
#install.packages("stargazer") # installing the package (
   uncomment the first time)
library(stargazer) # For regression tables
```

Installation
Some basics

Loading and Viewing Data Basic Plotting Log Transformation

Linear Regression

How would you transform the

following data? Polynomial Installation Some basics

Basic R: da visualizatio transformation, &

Loading and Viewin

Basic Plottin

. .

Linear Regress

How would you transform the

Polynomia

Basic R: data visualization, transformation, & estimation

Loading and Viewing Data

Load the required packages and view the tech adoption data:

```
# Load packages
library(openxlsx)
# Read Excel file
tech <- read.xlsx("tech_adoption.xlsx")</pre>
# View first few rows
head(tech)
```

Loading and Viewing Data

```
The console will show:
```

```
> # View first few rows
> head(tech)
  Year Users
1 2005
2 2006
          55
3 2007
         253
4 2008
         128
5 2009
        163
6 2010
         359
```

Basic Plotting

Create a simple scatter plot of tech users over time:

```
# Basic scatter plot
plot(tech$Year, tech$Users,
    main = "TechuAdoptionuOveruTime",
    xlab = "Year", ylab = "Users")
```

Tech Adoption Over Time

Installation

Loading and Viewin Data

Basic Plotting

Log Transformati

How would you transform the

Polynomia

Log Transformation

Plotting log-transformed data:

```
# Plot log-transformed users
plot(tech$Year, log(tech$Users),
    main = "Log-Transformed_Tech_Adoption",
    xlab = "Year", ylab = "log(Users)")
```

Log-Transformed Tech Adoption

Installation Some basics

Loading and Viewin

Basic Plotting

Log Transformation

Linear Regression

How would yo transform the following data

Polynom Regression

Linear Regression

Run simple linear and log-linear regressions:

```
# Run linear regression
model_linear <- lm(Users ~ Year, data = tech)

# Show results
summary(model_linear)

# Run log-linear model
model_log <- lm(log(Users) ~ Year, data = tech)

# Show results
summary(model_log)</pre>
```

Display and compare results:

tion, & estimation

Log Transformation

Linear Regression How would you transform the

following data Polynomial Regression

Linear Regression

Console output:

Tech Adoption: Linear vs Log-Linear Models

	Dependent variable:	
	Users	log(Users)
	Linear	Log-Linear
	(1)	(2)
Year	200.094***	0.241***
	(25.205)	(0.022)
Constant	-401,968.400***	-479.229***
	(50,787.630)	(44.104)

Log Transformation Linear Regression

> Observations 21 21 R.2 0.768 0.864

*p<0.1; **p<0.05; ***p<0.01 Note:

Notice difference in R^2 .

How would you transform the following data?

Installation Some basics

Loading and Viewin Data Basic Plotting

Log Transformati

How would you transform the following data?

Polynomial Regression

4) d (4

How would you transform the following data?

Installation

Loading and Viewin Data

Log Transformation

How would you transform the following data?

Polynomial Regression

Polynomial Regression

Working with polynomial relationships:

Yield Curve by Maturity

tion, & estimation

Data
Basic Plotting

Linear Regression

How would you transform the following data?

Polynomial Regression

Polynomial Regression

Polynomial regression:

```
# Cubic polynomial model
model_poly <- lm(Yield ~ Maturity + I(Maturity^2) + I(</pre>
    Maturity<sup>3</sup>),
                  data = yield)
# Show results
summary(model_poly)
```

Comparing linear and polynomial models:

```
# Linear model for yield
model_linear_yield <- lm(Yield ~ Maturity, data = yield)</pre>
stargazer(yield_lm_linear, yield_lm,
          type = "text",
          title = "Yield Curve: Linear vs Polynomial"
              Models",
          column.labels = c("Linear", "Cubic"),
          dep.var.labels = c("Yield", "Yield"))
```

Polynomial

Regression

Polynomial Regression

Basic Plotting Log Transforma

Polynomial Regression

	Linear	Cubic
Maturity	0.005***	0.041***
	(0.001)	(0.001)
I(Maturity2)		-0.003***
		(0.0001)
I(Maturity3)		0.0001***
v		(0.0000)
Constant	0.131***	0.018***
	(0.011)	(0.004)
 Observations	30	30
R2	0.715	0.993