Отчёт по лабораторной работе №4

Создание и процесс обработки программ на языке ассемблера NASM

Югай Александр Витальевич

Содержание

1	Цел	ь работы	5
2	Зада	ание	6
3	Вып	олнение лабораторной работы	7
	3.1	Программа Hello World!	7
	3.2	Транслятор NASM	8
	3.3	Расширенный синтаксис командной строки NASM	9
	3.4	Компоновщик LD	9
	3.5	Запуск исполняемого файла	10
	3.6	Задание для самостоятельной работы	10
4	Выв	ОДЫ	13

Список иллюстраций

3.1	Создание каталога
3.2	Переходим в созданный каталог
3.3	Создание текстового файла
3.4	Открываем файл с помощью gedit и вводим программу
3.5	Используем команду nasm
3.6	Используем команду ls
3.7	Преобразуем файл hello.asm в obj.o
3.8	Используем команду ls
	Используем команду ld
	Используем команду ls
	Используем команду ld для создания файла main
	Используем команду ls
3.13	Используем команду ./hello
	Используем команду ср
	Используем gedit и редактируем
	Используем команды для работы файла и запускаем программу . 12
3.17	Копируем файлы в каталог lab04
3 18	Загружаем файды 12

Список таблиц

1 Цель работы

Освоение процедуры компиляции и сборки программ, написанных на ассемблере NASM.

2 Задание

Написать программу на Ассемблере с выводом "Hello World!" и своего ФИО

3 Выполнение лабораторной работы

3.1 Программа Hello World!

Создайте каталог для работы с программами на языке ассемблера NASM

```
avyugayj@ubuntu:~$ mkdir -p ~/work/arch-pc/lab04
avyugayj@ubuntu:~$
```

Рис. 3.1: Создание каталога

Перейдите в созданный каталог

```
avyugayj@ubuntu:~$ cd work/arch-pc/lab04/
avyugayj@ubuntu:~/work/arch-pc/lab04$
```

Рис. 3.2: Переходим в созданный каталог

Создайте текстовый файл с именем hello.asm

```
avyugayj@ubuntu:~/work/arch-pc/lab04$ touch hello.asm
```

Рис. 3.3: Создание текстового файла

Откройте этот файл с помощью любого текстового редактора, например, gedit и введите в него следующий текст:

```
1; hello.asm
2 SECTION .data
3 hello: DB 'Hello world!',10
4; символ перевода строки
5 helloLen: EQU $-hello
6 SECTION .text
7 GLOBAL _start
8 _start:
9 mov eax,4
10 mov ebx,1
11 mov ecx, hello
12 mov edx, helloLen
13 int 80h
14 mov eax,1
15 mov ebx,0
16 int 80h
```

Рис. 3.4: Открываем файл с помощью gedit и вводим программу

3.2 Транслятор NASM

Преобразуем текстовый файл в объектный код

```
avyugayj@ubuntu:~/work/arch-pc/lab04$ nasm -f elf hello.asm
```

Рис. 3.5: Используем команду nasm

Проверяем правильность выполнения команды

```
avyugayj@ubuntu:~/work/arch-pc/lab04$ ls
hello.asm hello.o
avyugayj@ubuntu:~/work/arch-pc/lab04$
```

Рис. 3.6: Используем команду ls

3.3 Расширенный синтаксис командной строки NASM

Компилируем исходный файл

```
avyugayj@ubuntu:~/work/arch-pc/lab04$ nasm -o obj.o -f elf -g -l list.lst hello.asm
```

Рис. 3.7: Преобразуем файл hello.asm в obj.o

Проверяем правильность выполнения команды

```
avyugayj@ubuntu:~/work/arch-pc/lab04$ ls
hello.asm hello.o list.lst obj.o
avyugayj@ubuntu:~/work/arch-pc/lab04$
```

Рис. 3.8: Используем команду ls

3.4 Компоновщик LD

Передаем объектный файл на обработку компоновщику

```
avyugayj@ubuntu:~/work/arch-pc/lab04$ ld -m elf_i386 hello.o -o hello
```

Рис. 3.9: Используем команду ld

Проверяем создался ли исполняемый файл

avyugayj@ubuntu:~/work/arch-pc/lab04\$ ls
hello hello.asm hello.o list.lst obj.o

Рис. 3.10: Используем команду ls

Передаем объектный файл obj.o на обработку компоновщику

```
avyugayj@ubuntu:~/work/arch-pc/lab04$ ld -m elf_i386 obj.o -o main
```

Рис. 3.11: Используем команду ld для создания файла main

Проверяем правильно выполнения команды

```
avyugayj@ubuntu:~/work/arch-pc/lab04$ ls
hello hello.asm hello.o list.lst main obj.o
```

Рис. 3.12: Используем команду ls

3.5 Запуск исполняемого файла

Запускаем выполняемый файл

```
avyugayj@ubuntu:~/work/arch-pc/lab04$ ./hello
Hello world!
```

Рис. 3.13: Используем команду ./hello

3.6 Задание для самостоятельной работы

Копируем файл hello.asm

Рис. 3.14: Используем команду ср

Открываем файл и меняем Hello World на свое имя и фамилию

```
1; hello.asm
2 SECTION .data
3 hello: DB 'Югай Александр',10
4 helloLen: EQU $-hello
5 SECTION .text
6 GLOBAL _start
7 _start:
8 mov eax,4
9 mov ebx,1
10 mov ecx,hello
11 mov edx,helloLen
12 int 80h
13 mov eax,1
14 mov ebx,0
15 int 80h
```

Рис. 3.15: Используем gedit и редактируем

Прописываем те же команды, что и с первой программой

```
avyugayj@ubuntu:~/work/arch-pc/lab04$ nasm -f elf lab4.asm avyugayj@ubuntu:~/work/arch-pc/lab04$ nasm -o obj.o -f elf -g -l list.lst lab4.asm avyugayj@ubuntu:~/work/arch-pc/lab04$ ld -m elf_i386 lab4.o -o hello avyugayj@ubuntu:~/work/arch-pc/lab04$ ld -m elf_i386 obj.o -o main avyugayj@ubuntu:~/work/arch-pc/lab04$ ./hello Югай Александр
```

Рис. 3.16: Используем команды для работы файла и запускаем программу

Копируем файлы в локальный репозиторий

```
avyugayj@ubuntu:~/work/arch-pc/lab04$ cp hello.asm ~/work/study/2023-2024/Архитектура\ Компьютера/arch-pc/labs/lab04/avyugayj@ubuntu:~/work/arch-pc/lab04$ cp lab4.asm ~/work/study/2023-2024/Архитектура\ Компьютера/arch-pc/labs/lab04/
```

Рис. 3.17: Копируем файлы в каталог lab04

Переходим в каталог лабораторных работ и загружаем файлы на github

```
avyugayj@ubuntu:~/work/study/2023-2024/Apxитектура Komnьютерa/arch-pc$ git commit -a [master a177d15] feat(main): add lab4
2 files changed, 31 insertions(+)
create mode 100644 labs/lab04/hello.asm
create mode 100644 labs/lab04/lab4.asm
avyugayj@ubuntu:~/work/study/2023-2024/Apxитектура Komnьютерa/arch-pc$ git push
Перечисление объектов: 9, готово.
Подсчет объектов: 100% (9/9), готово.
При сжатии изменений используется до 4 потоков
Сжатие объектов: 100% (6/6), готово.
Запись объектов: 100% (6/6), 835 байтов | 835.00 КиБ/с, готово.
Всего 6 (изменений 2), повторно использовано 0 (изменений 0), повторно использовано remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
To github.com:4heavensake/study_2023-2024_arch-pc.git
41e4e37..a177d15 master -> master
```

Рис. 3.18: Загружаем файлы

4 Выводы

Мы освоили процедуры компиляции и сборки программ, написанных на ассемблере NASM