

Motivation

- Increasing demand for bandwidth in automotive communication
- Close gap between CAN (max. 1 MBit/s) and FlexRay (10 MBit/s)
- Time-triggered communication not flexible enough
- High effort for migration to FlexRay / Ethernet
 - Hardware costs
 - Software changes

→ Make CAN faster!

Speeding up CAN

Unchanged

- CAN arbitration
- CAN acknowledge mechanism

New

- switch to higher bit rate for transmission of
 - Data Length Code
 - Data Field
 - Frame CRC
- data fields with more than eight bytes possible
 - configured by unused DLC codes "1001" to "1111"
 - 12, 16, 20, 24, 32, 48, 64 bytes
- → new CRC polynomials for longer data fields, HD=6
 - 17 bit: up to 16 byte data fields, 21 bit: up to 64 byte data fields

Speeding up CAN

- well known technology, minimized risk
- changes limited to HW: protocol controller
 - for bit rates up 1 Mbit/s standard CAN transceivers usable
- no changes to SW: with 8 bytes data field (legacy SW fully compatible)
 - even higher data rate possible by data fields >8 bytes and SW change
- Costs similar to CAN

Average CAN FD Bit Rate

Frame ID: 11 bit, Bit Rate Arbitration: 1Mbit

Net CAN FD Bit Rate

Automotive Electronics

CAN FD with Bit Rates below 1 MBit/s

- Application:
- → Long bus line limits bit rate for arbitration
- → Arbitrate with e.g. 125 kbit/s
- Transmission of data field with e.g 500 kbit/s

No requalification or redesign of transceivers necessary!

- Option:
- Transmission of long frames with up 64 bytes payload
- Increase of net data rate
- Handling of large data packets w/o segmentation

Synchronous Switching of Bit Rate

Example: CAN_0 wins arbitration at reserved/SRR bit

Phase-shift before synchronization:
 ①←② - 350 ns

Phase-shift after synchronization:
 ③→④ + 433 ns

Phase-shift at beginning of Data Phase:
 ⑤→⑥ + 433 ns

CAN FD Standard Frame

	Arbitration Field	Control Field	Data Field	CRC Field	ACK	EOF	Int.	Bus Idle
	S 11 bit Identifier r D 1 E	B E A bit DLC	0-64 bytes	21* bit CRC		7	3	
CAN FD Arbitration			CAN FD Data			CAN FD Arbitration		

* 17 bit CRC for data fields with up to 16 bytes

CAN FD Arbitration Phase

length: 30 bit times*

data rate: max. 1 MBit/s

CAN FD Data Phase

length: 86 bit times* (8 data bytes)

data rate: > 1 MBit/s

Remote Frames always in CAN Format

RTR bit replaced by reserved bit r1

r1 takes part in CAN arbitration

reserved for protocol expansion

EDL - Extended Data Length

Substitutes first reserved bit in standard frames

EDL = recessive indicates CAN FD frame format (new DLC-coding and CRC)

EDL = dominant indicates standard CAN frame format

r1, r0 - reserved bits

Transmitted dominant, reserved for future protocol variants

BRS - Bit Rate Switch

BRS = recessive: switch to alternate bit rate

BRS = dominant: do not switch bit rate

ESI - Error State Indicator

ESI = recessive: transmitting node is error passive

ESI = dominant: transmitting node is error active

^{*} bit stuffing not considered

CAN FD Extended Frame

	Arbitration Field Con	ntrol Field Data Field	CRC Field	ACK	EOF	Int.	Bus Idle
	S 11 bit Identifier R D R E Extension Extension	B E 4 bit DLC 0-64 bytes	21* bit CRC 1	1 1	7	3	
,	CAN FD Arbitration	CAN FD Data			CAN FD Arbitration	า	

* 17 bit CRC for data fields with up to 16 bytes

CAN FD Arbitration Phase

length: 49 bit times*

data rate: max. 1 MBit/s

→ CAN FD Data Phase

length: 86 bit times* (8 data bytes)

data rate: > 1 MBit/s

Remote Frames always in CAN Format

RTR bit replaced by reserved bit r1

r1 takes part in CAN arbitration

reserved for protocol expansion

EDL - Extended Data Length

Substitutes first reserved bit in standard frames

EDL = recessive indicates CAN FD frame format

(new DLC-coding and CRC)

EDL = dominant indicates standard CAN frame format

r1, r0 - reserved bits

Transmitted dominant, reserved for future protocol variants

BRS - Bit Rate Switch

BRS = recessive: switch to alternate bit rate

BRS = dominant: do not switch bit rate

ESI - Error State Indicator

ESI = recessive: transmitting node is error passive

ESI = dominant: transmitting node is error active

^{*} bit stuffing not considered

Structure of CAN FD Nodes

- Physical Layer
 - unchanged for CAN FD
 - same CAN transceivers
- → CAN FD Protocol Controller
 - two sets of timing configuration
- BTL and BRP control bit timing
 - BTL and BRP switch between two sets
- BSP controls frame (de)coding
 - BSP defines Arbitration and Data Phase
- CAN Message Handling
 - shift register as (de)serializer
 - BSP does not limit data field length

CAN FD Bit Rate Switching

Example: (Bit rate in Data Phase) = $4 \cdot$ (Bit rate in Arbitration Phase)

- → Different length of time quanta, no Prop_Seg in Data Phase
- → BRS bit with timing of Arbitration Phase until Sample Point
- → CRC Delimiter with timing of Data Phase until Sample Point

CAN FD Demonstrator

CAN FD Communication CAN FD Network

Arbitration Phase 1 Mbit/s Bus Line 42 m

Data Phase 12 Mbit/s CAN FD nodes 7

Data Field 64 Byte CAN Transceiver NXP TJA 1040

Transceiver Delay and Bus Line Delay

CAN FD Communication

Arbitration Phase 1 Mbit/s

Data Phase 15 Mbit/s

Bus Line 42 m

Delays in the CAN FD Network

measured at edge from BRS to ESI

Transceiver Loop Delay 126 ns

Bus Line Delay 163 ns

Transceiver Delay Compensation

- > Transceiver Loop Delay is measured for each frame at the falling edge of bit EDL
 - Delay compensation independent of transceiver characteristics

- Transceiver delay measured in system clock periods
- Configurable offset added to adjust Secondary Sample Point SSP inside bit time
 - SSP position rounded down to next integer number of time quanta tq
- Delayed transmit data compared against received data at SSP
 - check for bit errors

Oscillator Tolerance – Rules

Rules Arbitration Phase

Rule 1	Resynchronization	$df < \frac{sjw_A}{2 \cdot 10bt_A}$
Rule 2	Sampling of Bit after Error Flag	$df < \frac{\min(pb1_A, pb2_A)}{2 \cdot \left[13bt_A - pb2_A\right]}$

Rules Data Phase (when Bit Rate is switched)

Rule 3	Resynchronization	$df < \frac{sjw_D}{2 \cdot 10bt_D}$
Rule 4	Sampling of Bit after Error Flag	$df < \frac{\min(pb1_A, pb2_A)}{2 \cdot \left[(6bt_D - pb2_D) \cdot \frac{BRP_D}{BRP_A} + 7bt_A \right]}$
Rule 5	Bit Rate Switch	$df < \frac{sjw_D - \left(\frac{BRP_A}{BRP_D} - 1\right)}{2 \cdot \left[\left(2bt_A - pb2_A\right)\frac{BRP_A}{BRP_D} + pb2_D + 4bt_D\right]}$

Lab Validation – Exemplary Results

Network Topology	Termin. Resist.	Bus Length	Max. Bit Rate*	Bus Signal (CANL–CANH)		
ISO Bus Topology	2x120Ω	42m	15,0 Mbit/s			
Passive Star	1x 60Ω	16m	3,5 Mbit/s			
Passive Star	2x120Ω	16m	7,5 Mbit/s			
Term. resistor CAN FD node *CAN Transceiver: NXP TJA 104						

Conclusion

- Gradual introduction of CAN FD nodes into CAN networks possible
- Bosch CAN IPs currently upgraded to CAN FD (M_CAN, C_CAN)
 - will be integrated into μCs, first samples E2012
 - upgrade of Bosch VHDL Reference CAN Model to CAN FD
 - integration on µCs of other major manufacturers planned
- Tool support for CAN FD started
 - Vector and ETAS integrate CAN FD into their tool chain
- Development of vehicle demonstrator with CAN FD network
 - Joint project with automotive and semiconductor companies started
- Check EMC issues
 - Emission, Susceptibility / Immunity
- Impact on different network topologies under investigation
 - line, star, position of termination, different transceivers
- Standardization as ISO 11898-7
- Assure support in Higher Layer Protocols (e.g. AUTOSAR, CANopen)

Backup

Physical Layer

- CAN Physical Layer
 - Transceiver loop delay CAN_Tx → CAN_Rx: up to 240ns
 - delay on CAN bus line: ~5ns/m
- → CAN FD Arbitration Phase: arbitrate with remote nodes
 - Limitation: delay[A→B] + delay[B→A] <TSEG1*
- CAN FD Data Phase: transceiver delay compensation for bit monitoring
 - Limitation: filter characteristics of input comparator and bus topology
 - independent of length of CAN bus line

^{*}TSEG1 = Time Segment before Sample Point

Remote Frames and CAN FD

- → There are no remote frames in CAN FD format
 - RTR bit is replaced by dominant reserved bit r1
 - The reserved bit r1 takes part in CAN bit arbitration
 - Bit r1 reserved for future protocol expansions,
 e.g. using r1 as additional identifier bit
 - Receivers ignore the actual value of bits r1, r0 in CAN FD frames
- → CAN FD controllers are able to handle remote frames in standard CAN format

Lab Validation – Setup

CAN Case XL | CAN Transceiver | CAN cable | 120 Ohm | Sub-D Connector | Sub-D Connector | Sub-D Connector | CAN cable | 120 Ohm | Sub-D Connector | CAN cable | C

Monitoring (CANoe)

Automotive Electronics

