Untroduction
Why Reinforcement Learning
Why Causality
Causal Reinforcement Learning
Conclusion

Meta-Reinforcement Learning and Causality for Multi-tasking in Robots with Redundant Kinematics 1st Year Update

Joel Baptista

11/04/2024

Table of Contents

- Introduction
 - Focus
 - Motivation
- 2 Why Reinforcement Learning?
 - Reinforcement Learning
 - RL vs Traditional Control
- 3 Why Causality?
 - Intuition
 - Correlation vs Causation
 - Interventions
- 4 Causal Reinforcement Learning
 - Synergies
 - The Field
- 5 Conclusion

Focus

Meta-Reinforcement Learning and Causality for Multi-tasking in Robots with Redundant Kinematics

Focus

Meta-Reinforcement Learning and Causality for Multi-tasking in Robots with Redundant Kinematics

Translation: Explore different learning methodologies to create intelligent agents that can control robots in difficult tasks

Focus

Meta-Reinforcement Learning and Causality for Multi-tasking in Robots with Redundant Kinematics

Translation: Explore different learning methodologies to create intelligent agents that can control robots in difficult tasks

Figure: Collaborative and traditional industrial robots' growth¹

¹Source: World Robotics Report 2023 - Press Conference

Figure: Job vacancy and service robots' growth¹

Job vacancy is rising and the field of service robots is growing in response

¹Source: World Robotics Report 2023 - Press Conference

Cobots and Service Robots interact in more complex and uncontrolled environments, \dots

Cobots and Service Robots interact in more complex and uncontrolled environments, ...

 \dots therefore, they need to be more $\underline{\text{flexible and adaptable}}$ to different tasks.

Table of Contents

- 1 Introduction
 - Focus
 - Motivation
- 2 Why Reinforcement Learning?
 - Reinforcement Learning
 - RL vs Traditional Control
- 3 Why Causality?
 - Intuition
 - Correlation vs Causation
 - Interventions
- 4 Causal Reinforcement Learning
 - Synergies
 - The Field
- 5 Conclusion

Reinforcement Learning

Learns to accomplish a goal by $\underline{\text{interacting}}$ with an environment, receiving rewards and penalties.

Figure: Reinforcement Learning Cycle

Figure: Model Predictive Control Cycle

Just to mention that there are other methods to control robots, such as MDP, but they are not as flexible as RL.

²Source: Robotics Systems Lab: Legged Robotics at ETH Zurich

- Traditional Control: Robust and predictable, but not scalable.
- Reinforcement Learning: Scalable and flexible, but not robust.

RL vs Optimal Control

- Traditional Control: Robust and predictable, but not scalable.
- Reinforcement Learning: Scalable and flexible, but not robust.

Table of Contents

- 1 Introduction
 - Focus
 - Motivation
- 2 Why Reinforcement Learning?
 - Reinforcement Learning
 - RL vs Traditional Control
- Why Causality?
 - Intuition
 - Correlation vs Causation
 - Interventions
- 4 Causal Reinforcement Learning
 - Synergies
 - The Field
- 5 Conclusion

Intuition

- Fast Thinking: Correlation, pattern recognition, subconscious, ...
- Slow Thinking: Logical (causal), calculating, conscious, ...

Many researchers believe that AI can only utilize "fast thinking" (System I). They propose causality to reach "slow thinking" (System II).

Correlation vs Causation

Does ice cream consumption cause drowning? Does the number of drownings cause ice cream cravings from the population?

Correlation vs Causation

Does ice cream consumption cause drowning? Does the number of drownings cause ice cream cravings from the population?

Of course not, but there is a **third variable** that causes both: the month of the year.

Interventions

But how can we know if two correlated events have a cause-effect structure?

Interventions

But how can we know if two correlated events have a cause-effect structure?

By using interventions!

(e.g. If we force people to randomly eat ice cream, we will see that the number of drownings stays the same.)

Table of Contents

- 1 Introduction
 - o Focus
- Motivation
- 2 Why Reinforcement Learning?
 - Reinforcement Learning
 - RL vs Traditional Control
- 3 Why Causality?
 - Intuition
 - Correlation vs Causation
 - Interventions
- 4 Causal Reinforcement Learning
 - Synergies
 - The Field
- 5 Conclusion

Synergies

- Reinforcement Learning: Learning to achieve a goal with interventions.
- Causal Learning: Learning how the world works with interventions.

Synergies

- Reinforcement Learning: Learning to achieve a goal with interventions.
- Causal Learning: Learning how the world works with interventions.

It looks like both of these learning methodologies revolve around interventional data

Additionally, learning a more descriptive representation of the world (through causal learning) can help Reinforcement Learning.

The Field

The idea of joining Causality with Reinforcement Learning is called recently began to be explored and is called **Causal Reinforcement Learning**.

Elias Bareinboim

Associate Professor, Department of Computer Science Director, Causal Artificial Intelligence Lab Columbia University

³Source: https://causalai.net/

Table of Contents

- 1 Introduction
 - Focus
 - Motivation
- 2 Why Reinforcement Learning?
 - Reinforcement Learning
 - RL vs Traditional Control
- 3 Why Causality?
 - Intuition
 - Correlation vs Causation
 - Interventions
- 4 Causal Reinforcement Learning
 - Synergies
 - The Field
- 5 Conclusion

Introduction
Why Reinforcement Learning?
Why Causality?
Causal Reinforcement Learning
Conclusion

Conclusion

- What?: ✓
- Why?: ✓
- How?: X
- Where?: X

I'm still working on the **How** and **Where** parts, which correspond to the **implementation** and **robotics use case**, respectively.