Übungsblatt 2

Felix Kleine Bösing

October 23, 2024

Aufgabe 1

Zeigen Sie: Für alle $n\in\mathbb{N}$ gilt

$$\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2$$

Beweis durch vollständige Induktion

Induktionsanfang: Für n = 1 gilt:

$$\sum_{k=1}^{1} k^3 = 1^3 = 1$$

und

$$\left(\sum_{k=1}^{1} k\right)^2 = (1)^2 = 1.$$

Also gilt die Aussage für n = 1.

Induktionsvoraussetzung: Angenommen, die Aussage gilt für ein $n \in \mathbb{N},$ d.h.

$$\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2.$$

Induktionsschritt: Es ist zu zeigen, dass die Aussage auch für n+1 gilt:

$$\sum_{k=1}^{n+1} k^3 = \left(\sum_{k=1}^{n+1} k\right)^2.$$

Die linke Seite der Gleichung ist:

$$\sum_{k=1}^{n+1} k^3 = \sum_{k=1}^{n} k^3 + (n+1)^3.$$

Nach Induktionsvoraussetzung gilt:

$$\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2.$$

Daher folgt:

$$\sum_{k=1}^{n+1} k^3 = \left(\sum_{k=1}^n k\right)^2 + (n+1)^3.$$

Nun betrachten wir die rechte Seite der Gleichung:

$$\left(\sum_{k=1}^{n+1} k\right)^2 = \left(\sum_{k=1}^{n} k + (n+1)\right)^2 = \left(S_n + (n+1)\right)^2,$$

wobei $S_n = \sum_{k=1}^n k$ ist.

Erweitern wir den Term:

$$(S_n + (n+1))^2 = S_n^2 + 2S_n(n+1) + (n+1)^2.$$

Vergleichen wir dies mit der linken Seite:

$$S_n^2 + (n+1)^3 = S_n^2 + 2S_n(n+1) + (n+1)^2.$$

Beide Seiten stimmen überein, also gilt die Aussage auch für n + 1.

Schluss: Da die Aussage für n=1 gilt und der Induktionsschritt erfolgreich durchgeführt wurde, folgt aus der vollständigen Induktion, dass die Gleichung für alle $n \in \mathbb{N}$ gilt:

$$\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2.$$

Aufgabe 2

Geben Sie je ein Beispiel für eine Abbildung von \mathbb{R} nach \mathbb{R} , welche

- a) injektiv und surjektiv ist,
- b) injektiv, aber nicht surjektiv ist,
- c) surjektiv, aber nicht injektiv ist,
- d) weder injektiv noch surjektiv ist.

Lösung

(a) Injektiv und sujektiv (bijektiv)

Ein Beispiel für eine bijektive Abbildung ist:

$$f(x) = x$$

Begründung:

- Injektivität: Wenn $f(x_1) = f(x_2)$, dann folgt sofort $x_1 = x_2$. Also ist f injektiv.
- Surjektivität: Für jedes $y \in \mathbb{R}$ gibt es ein $x \in \mathbb{R}$ mit f(x) = y, nämlich x = y. Also ist f auch surjektiv.

(b) Injektiv, aber nicht surjektiv

Ein Beispiel für eine injektive, aber nicht surjektive Abbildung ist:

$$f(x) = e^x$$

Begründung:

- Injektivität: Wenn $e^{x_1} = e^{x_2}$, folgt $x_1 = x_2$, also ist f injektiv.
- Nicht surjektiv: Es gibt kein $x \in \mathbb{R}$, für das f(x) = -1 gilt, da der Wertebereich von e^x nur positive Werte annimmt. Daher ist f nicht surjektiv.

(c) Surjektiv, aber nicht injektiv

Ein Beispiel für eine surjektive, aber nicht injektive Abbildung ist:

$$f(x) = x^3$$

Begründung:

- Surjektivität: Für jedes $y \in \mathbb{R}$ gibt es ein $x \in \mathbb{R}$, für das f(x) = y, nämlich $x = \sqrt[3]{y}$. Also ist f surjektiv.
- Nicht injektiv: Es gibt verschiedene Werte x, die denselben Funktionswert haben, zum Beispiel $f(-1) = (-1)^3 = -1$ und $f(1) = 1^3 = 1$. Also ist f nicht injektiv.

(d) Weder injektiv noch surjektiv

Ein Beispiel fpr eine Abbildung, die weder injektiv noch surjektiv ist:

$$f(x) = \sin(x)$$

Begründung:

- Nicht injektiv: $\sin(x)$ ist nicht injektiv, da $\sin(0) = \sin(2\pi) = 0$. Es gibt also mehrere Werte x, die denselben Funktionswert haben.
- Nicht surjektiv: $\sin(x)$ nimmt nur Werte im Intervall [-1,1] an, also gibt es kein $x \in \mathbb{R}$, für das f(x) = 2 gilt. Daher ist f nicht surjektiv.

Aufgabe 3

Sei $(K, +, \cdot, \leq)$ ein angeordneter Körper und $A \subseteq K$ eine nach oben beschränkte Teilmenge.

(a) Besitzt A ein Supremum s, so ist s eindeutig bestimmt.

Beweis: Das Supremum einer Menge A ist das kleinste Element, das eine obere Schranke für A ist. Angenommen, es gäbe zwei Suprema s_1 und s_2 . Da beide Suprema obere Schranken sind, gilt für alle $a \in A$:

$$a \le s_1$$
 und $a \le s_2$.

Da s_1 und s_2 Suprema sind, gilt $s_1 \leq s_2$ und $s_2 \leq s_1$, also $s_1 = s_2$. Daher ist das Supremum eindeutig bestimmt.

(b) Besitzt A ein Maximum $m \in A$, so ist m eindeutig bestimmt.

Beweis: Ein Maximum $m \in A$ ist das größte Element in A. Angenommen, m_1 und m_2 seien zwei Maxima. Dann gilt:

$$a \le m_1$$
 und $a \le m_2$.

Da beide Maxima sind, folgt $m_1 \leq m_2$ und $m_2 \leq m_1$, also $m_1 = m_2$. Daher ist das Maximum eindeutig bestimmt.

Aufgabe 4

Seien $A:=[0,1],\, B:=(-\infty,0)$ und $M:=(-\infty,0)\cup(0,\infty)$ Teilmengen von $\mathbb{R}.$

(a) Es gilt $\sup(A) = 1 \in \mathbb{R}$.

Begründung: Die Menge A = [0, 1] ist eine beschränkte Teilmenge von \mathbb{R} . Da 1 das größte Element in A ist, ist 1 das Supremum von A:

$$\sup(A) = 1.$$

(b) Es gilt $\sup(B) = 0 \in \mathbb{R}$.

Begründung: Die Menge $B = (-\infty, 0)$ ist nach oben beschränkt, aber 0 selbst ist nicht in B enthalten. Da 0 die kleinste obere Schranke von B ist:

$$\sup(B) = 0.$$

(c) Die Ordnung \leq auf \mathbb{R} induziert eine Ordnung \leq_M auf M.

Begründung: Da $M = (-\infty, 0) \cup (0, \infty) \subset \mathbb{R}$, wird die Ordnung \leq auf \mathbb{R} auch auf M übertragen. Für alle $x, y \in M$ gilt:

$$x \le y \implies x \le_M y$$
.

Die Ordnung \leq_M ist also durch die Ordnung auf $\mathbb R$ induziert.

(d) B besitzt kein Supremum in M.

Begründung: Da $M = (-\infty, 0) \cup (0, \infty)$ an der Stelle 0 getrennt" ist, gehört 0 nicht zu M. Daher kann 0 nicht das Supremum von B in M sein, und keine andere Zahl in M erfüllt diese Rolle. Also besitzt B kein Supremum in M.