Integrating MS-based proteomics and RNA-Seq data

March 6, 2016

Use case 1: mapping peptides

Mapping of peptides along protein sequences (although not explicitly considered a mapping exercise) and short reads along genome coordinates.

But...

- coverage
- protein inference
- identifier mapping
- missing values

Coverage

- Coverage in proteomics in %
- Coverage in RNA-Seq in fold X

The following values are higher bounds, without peptide filtering for about 80000 gene groups

And

- the majority of peptides map to a minority of proteins
- different peptides within one protein can differently detectable in an MS

Protein inference

From Qeli and Ahrens (2010). See also Nesvizhskii and Aebersold (2005).

Protein groups

Often, in proteomics experiments, the features represent single proteins and **groups** of indistinguishable or non-differentiable proteins identified by shared (non-unique) peptides.

Caveat: Mapping between protein groups and unique transcripts?

Mapping protein and gene identifers

The protein database and the genome are *independent*, i.e. the proteins do not make explicitly reference to the genome they originate from.

Mapping protein and gene identifers

If we want to map UniProt accession numbers to genomic identifiers (Ensembl transcipt identifiers):

Mapping identifiers

The UniProt human proteome (release 2015_02) has 89796 entries. Using UniProt.ws:

- 23972 have no transcript identifier
- ▶ 51673 have a unique transcript identifier
- ▶ 14151 have more than one transcript identifier

Using biomaRt:

Mapping 18911 identifiers, of which

Caveat: Mapping between single protein and unique transcripts?

Missing values

Options are:

- ► Filtering: Remove missing values, or at least features or samples with excessive number of missing values:
- ▶ Data imputation: infering plausible values for missing data.

Data imputation

There are two types of mechanisms resulting in missing values in LC/MSMS experiments.

- Missing values resulting from absence of detection of a feature, despite ions being present at detectable concentrations. For example in the case of ion suppression or as a result from the stochastic, data-dependent nature of the MS acquisition method. These missing value are expected to be randomly distributed in the data and are defined as missing at random (MAR) or missing completely at random (MCAR).
- ▶ Biologically relevant missing values, resulting from the absence of the low abundance of ions (below the limit of detection of the instrument). These missing values are not expected to be randomly distributed in the data and are defined as **missing not at random** (MNAR).

MNAR features should ideally be imputed with a **left-censor** (minimum value, zero, ...) method. Conversely, it is recommended to use **hot deck** methods (nearest neighbour, maximum likelihood, ...) when data are missing at random.

Mapping peptides to genomic coordinates

The **goal** is to map peptides from protein coordinates (1 to L_p) to genomic coordinates.

Data

Illustration with the Pbase Bioconductor package (devel version).

We have an example data (named p) composed of 9 proteins, with UniProt accession numbers and Ensembl transcipt identifiers and each protein has a set experimentally observed peptides (see table below). This p object is generated from the protein database (fasta file) and the MS identification results (mzIdentML file) against this very same protein database.

Acc	ENST	npep
A4UGR9	ENST00000409195	36
A6H8Y1	ENST00000358731	23
O43707	ENST00000252699	6
O75369	ENST00000295956	13
P00558	ENST00000373316	5
P02545	ENST00000368300	12 👨

Multiple transcipts per protein Data

We use our example data, named p, composed of 9 proteins, with UniProt accession numbers and Ensembl transcipt identifers and each protein has a set experimentally observed peptides:

Acc	ENST	npep
A4UGR9	ENST00000409195	36
A6H8Y1	ENST00000358731	23
O43707	ENST00000252699	6
O75369	ENST00000295956	13
P00558	ENST00000373316	5
P02545	ENST00000368300	12
P04075	ENST00000338110	21
P04075-2	ENST00000395248	- 20 <i>-</i>

Mapping MS peptides and RNA-Seq short reads

The last step of the mapping process is the combine the newly mapped peptides and reads from RNA-Seq experiments. The figures below illustrate this with data from Sheynkman et al. (2013, 2014) from the Jurkat cell line (TIB-152). The mass spectrometry and RNA-Seq (SRR791580) where processed with standard pipelines.

References

Laurent Gatto and Sebastian Gibb (2016). Pbase: Manipulating and exploring protein and proteomics data. R package version 0.11.3. https://github.com/ComputationalProteomicsUnit/Pbase

Bernd Fischer, Steffen Neumann, Laurent Gatto and Qiang Kou. mzR: parser for netCDF, mzXML, mzData and mzML and mzIdentML files (mass spectrometry data). R package version 2.5.3.

Lazar C, Gatto L, Ferro M, Bruley C, and Burger T. Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies.

Publication Date: February 23, 2016

DOI:{[}10.1021/acs.jproteome.5b00981{]}(http://pubs.acs.org/doi/abs/10.1021/acs.jproteome.5b00981).

Pang et al. Tools to covisualize and coanalyze proteomic data with genomes and transcriptomes: validation of genes and alternative mRNA splicing. J Proteome Res. 2014 Jan 3;13(1):84-98. doi: 10.1021/pr400820p. Epub 2013 Nov 12. PubMed PMID: 24152167.

Session information

sessionInfo()

```
## R Under development (unstable) (2016-03-03 r70270)
## Platform: x86 64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 14.04.3 LTS
##
  locale:
    [1] LC_CTYPE=en_GB.UTF-8
##
                                  LC NUMERIC=C
## [3] LC TIME=en GB.UTF-8
                                  LC COLLATE=en GB.UTF-8
                                  LC MESSAGES=en GB.UTF-8
## [5] LC_MONETARY=en_GB.UTF-8
## [7] LC PAPER=en GB.UTF-8
                                  LC NAME=C
## [9] LC ADDRESS=C
                                  LC TELEPHONE=C
   [11] LC MEASUREMENT=en GB.UTF-8 LC IDENTIFICATION=C
##
## attached base packages:
    [1] grid stats4
##
                           parallel stats
                                               graphics
    [8] datasets methods
##
                           base
                                    4□ > 4個 > 4 厘 > 4 厘 > 厘 9 Q @
##
```