PLSC 504 – Fall 2017 Introduction to Panel/TSCS Data

October 17, 2017

Starting Points

- "Longitudinal" ≠ "Time Series"
- Terminology:
 - "Unit" / "Units" / "Units of observation" / "Panels" = Things we observe repeatedly
 - "Observations" = Each (one) measurement of a unit
 - "Time points" = When each observation on a unit is made
 - $i \in \{1...N\}$ indexes units
 - $t \in \{1...T\}$ or $\{1...T_i\}$ indexes observations / time points
 - If $T_i = T \ \forall i$ then we have "balanced" panels / units
 - NT = Total number of observations (if balanced)
- Averages:
 - \bullet Y_{it} indicates a variable that varies over both units and time,
 - $\bar{Y}_i = \frac{1}{T} \sum_{t=1}^{T} Y_{it}$ = the over-time mean of Y,
 - $\bar{Y}_t = \frac{1}{N} \sum_{i=1}^{N} Y_{it}$ = the across-unit mean of Y, and
 - $\bar{Y} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} Y_{it} = \text{the grand mean of } Y.$

More Terminology

- $N >> T \rightarrow$ "panel" data
 - NES panel studies (N = 2000, T = 3)
 - Panel Study of Income Dynamics ($N = \text{large}, T \approx 12$)
- T >> N or $T \approx N \rightarrow$ "time-series cross-sectional" ("TSCS") data
- $N=1 \rightarrow$ "time series" data

${\sf Panel/TSCS}\ {\sf Data}\ {\sf Structure}$

id	t	Y	X_1	
1	1	250	3.4	
1	2	290	3.3	
:	:	:	:	
2	1	160	4.7	
2	2	150	4.9	
:	:	:	:	

Variation: A Tiny (Fake) Example

id	year	gender	pres	pid	approve
1	1998	female	clinton	dem	3
1	2000	female	clinton	dem	3
1	2002	female	bush	dem	5
1	2004	female	bush	dem	3
2	1998	male	clinton	gop	2
2	2000	male	clinton	gop	1
2	2002	male	bush	gop	4
2	2004	male	bush	gop	3
3	1998	male	clinton	gop	2
3	2000	male	clinton	gop	2
3	2002	male	bush	gop	4
3	2004	male	bush	dem	1

Aggregation: Cross-Sectional

id	gender	pres	pid	approve	
1 2 3	female male male	? ? ?	dem gop ?	3.50 2.50 2.25	_
					•

Aggregation: Temporal

year	female	pres	pid	approve
1998	0.33	clinton	0.66(?)	2.33
2000	0.33	clinton	0.66(?)	2.00
2002	0.33	bush	0.66(?)	4.33
2004	0.33	bush	0.33(?)	2.33

The Point

Aggregation:

- Loses information
- Distorts relationships
- Forces arbitrary decisions

If you have variation in multiple dimensions, use it.

Within- and Between-Unit Variation

Define:

$$\bar{Y}_i = \frac{1}{T_i} \sum_{t=1}^{T_i} Y_{it}$$

Then:

$$Y_{it} = \bar{Y}_i + (Y_{it} - \bar{Y}_i).$$

- The total variation in Y_{it} can be decomposed into
- The between-unit variation in the \bar{Y}_i s, and
- The within-unit variation around \bar{Y}_i (that is, $Y_{it} \bar{Y}_i$).

Variation (SCOTUS Tenure Remix)

"Total" Variation:

```
> with(scotus, describe(service))
                    sd median trimmed mad min max range skew kurtosis
   1 1765 11 74 8 34 10 10 93 8 9 1 37
                                                    36 0.73
                                                               -0.28
    se
X1 0.2
"Between" Variation:
> scmeans <- ddplv(scotus..(justice).summarise.
                  service = mean(service))
> with(scmeans, describe(service))
         n mean sd median trimmed mad min max range skew kurtosis
   1 107 8.87 4.99 8.5 8.59 5.93 1.5 21 19.5 0.4
                                                              -0.92
    se
X1 0.48
"Within" Variation:
> scotus <- ddply(scotus, .(justice), mutate,
                 servmean = mean(service))
> scotus$within <- with(scotus, service-servmean)
> with(scotus, describe(within))
                   sd median trimmed mad min max range skew kurtosis
    1 1765
               0 6 92
                           0
                                  0 6 67 -18 18
                                                    36
                                                               -0.36
    se
X1 0.16
```

Regression!

Model

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

assumes:

- All the usual OLS assumptions, plus
- $\beta_{0i} = \beta_0 \forall is$
- $\beta_{1i} = \beta_1 \ \forall is$

$$Y_{it} = \beta_0 + \beta_1 X_{it} + u_{it}$$

(same)

Variable Intercepts

$$Y_{it} = \beta_{0i} + \beta_1 X_{it} + u_{it}$$

$$Y_{it} = \beta_{0t} + \beta_1 X_{it} + u_{it}$$

$$Y_{it} = \beta_{0it} + \beta_1 X_{it} + u_{it}$$

Varying Intercepts

Varying Intercepts

Varying Slopes (+ Intercepts)

$$Y_{it} = \beta_0 + \beta_{1i} X_{it} + u_{it}$$

$$Y_{it} = \beta_{0i} + \beta_{1i}X_{it} + u_{it}$$

$$Y_{it} = \beta_{0t} + \beta_{1t} X_{it} + u_{it}$$

$$Y_{it} = \beta_{0it} + \beta_{1it}X_{it} + u_{it}$$

${\sf Varying\ Slopes}\,+\,{\sf Intercepts}$

The Error

$$u_{it} \sim \text{i.i.d.} N(0, \sigma^2) \ \forall \ i, t$$

$$Var(u_{it}) = Var(u_{jt}) \ \forall \ i \neq j \ (i.e., no cross-unit heteroscedasticity)$$

 $Var(u_{it}) = Var(u_{is}) \ \forall \ t \neq s \ (i.e., no temporal heteroscedasticity)$
 $Cov(u_{it}, u_{js}) = 0 \ \forall \ i \neq j, \ \forall \ t \neq s \ (i.e., no auto- or spatial correlation)$

Pooling

- Adds data
- Generalizability

$$Y_{it} = \beta_0 + \beta_1 X_{it} + u_{it}$$

Implies

- that the process governing the relationship between X and Y
 is exactly the same for each i,
- that the process governing the relationship between X and Y is the same for all t,
- that the process governing the us is the same $\forall i$ and t as well.

"Partial" Pooling

Two regimes:

$$Y_A = \beta_A' \mathbf{X}_A + u_A$$

$$Y_B = \beta_B' \mathbf{X}_B + u_B$$

with $\sigma_A^2 = \sigma_B^2$, and $Cov(u_A, u_B) = 0$.

Estimators:

$$\hat{\beta}_{A,B} = (\mathbf{X}_{A,B}^{\prime}\mathbf{X}_{A,B})^{-1}\mathbf{X}_{A,B}^{\prime}Y_{A,B}$$

and

$$\widehat{\mathsf{Var}(eta_{A,B})} = \hat{\sigma}_{A,B}^2(\mathbf{X}_{A,B}'\mathbf{X}_{A,B})^{-1},$$

A Pooled Estimator

$$\hat{\beta}_{P} = (\mathbf{X}'_{A}\mathbf{X}_{A} + \mathbf{X}'_{B}\mathbf{X}_{B})^{-1}(\mathbf{X}'_{A}Y_{A} + \mathbf{X}'_{B}Y_{B})
= (\mathbf{X}'_{A}\mathbf{X}_{A} + \mathbf{X}'_{B}\mathbf{X}_{B})^{-1}[\beta_{A}(\mathbf{X}'_{A}\mathbf{X}_{A}) + \beta_{B}(\mathbf{X}'_{B}\mathbf{X}_{B})],$$

$$E(\hat{\beta}_P) = \beta_A + (\mathbf{X}_A'\mathbf{X}_A + \mathbf{X}_B'\mathbf{X}_B)^{-1}\mathbf{X}_B'\mathbf{X}_B(\beta_B - \beta_A)$$
$$= \beta_B + (\mathbf{X}_A'\mathbf{X}_A + \mathbf{X}_B'\mathbf{X}_B)^{-1}\mathbf{X}_A'\mathbf{X}_A(\beta_A - \beta_B)$$

Pooling: Tests

$$F = \frac{\frac{\hat{\mathbf{u}}_{P}'\hat{\mathbf{u}}_{P} - (\hat{\mathbf{u}}_{A}'\hat{\mathbf{u}}_{A} + \hat{\mathbf{u}}_{B}'\hat{\mathbf{u}}_{B})}{K}}{\frac{(\hat{\mathbf{u}}_{A}'\hat{\mathbf{u}}_{A} + \hat{\mathbf{u}}_{B}'\hat{\mathbf{u}}_{B})}{(N_{A} + N_{B} - 2K)}} \sim F_{[K,(N_{A} + N_{B} - 2K)]}$$

Fractional Pooling

$$\hat{\boldsymbol{\beta}}_{\lambda} = (\lambda^2 \mathbf{X}_A' \mathbf{X}_A + \mathbf{X}_B' \mathbf{X}_B)^{-1} (\lambda^2 \mathbf{X}_A' Y_A + \mathbf{X}_B' Y_B)$$

with $\lambda \in [0,1]$:

- $\lambda=0$ \to separate estimators for $\hat{\beta}_A$ and $\hat{\beta}_B$,
- $\lambda=1$ o "fully pooled" estimator \hat{eta}_P ,
- $0 < \lambda < 1 \rightarrow$ a regression where data in regime A are given some "partial" weighting in their contribution towards an estimate of β .

Pooling, Summarized

"(R)oughly speaking, it makes sense to pool disparate observations if the underlying parameters governing those observations are sufficiently similar, but not otherwise."