S.2 Solutions to Exercises Marked with (🔊) of Chapter 2

- 2.1 (The plane in \mathbb{R}^3 which passes through the points (0,0,0), (1,1,1) and (0,0,2). Explicitly, the plane is the set $\{x_1,x_2,x_3\} \in \mathbb{R}^3 : x_1 = x_2\}$.
- 2.2 (Since $x \in X \setminus \{0\}$, we see that $||x|| \neq 0$. Let c = r/||x||, then ||cx|| = c||x|| = r.
- 2.3 () It is a consequence of the definition of a bounded set in a metric space since we can find an open ball $B(x_0,r)$ such that $M \subset B(x_0,r)$, that is, $d(x,x_0) = \|x-x_0\| < r$ for all $x \in M$. Let $c = r + \|x_0\|$, then for all $x \in M$ we have

$$||x|| = d(x,0) \le d(x,x_0) + d(x_0,0) = ||x - x_0|| + ||x_0|| < c.$$

- $2.4 \ (2)$
 - (i) For every $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in X \times Y$ and $\alpha, \beta \in \mathbb{F}$ we have
 - (a) $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ $= (x_2 + x_1, y_2 + y_1)$ $= (x_2, y_2) + (x_1, y_1),$ $(x_1, y_1) + ((x_2, y_2) + (x_2, y_2)) = (x_1, y_1) + (x_2 + x_3, y_2 + y_3)$ $= (x_1 + x_2 + x_3, y_1 + y_2 + y_3)$ $= ((x_1, y_1) + (x_2, y_2)) + (x_3, y_3);$
 - (b) $(x_1, y_1) + (0, 0) = (x_1 + 0, y_1 + 0) = (x_1, y_1);$
 - (c) $(x_1, y_1) + (-x_1, -y_1) = (x_1 + (-x_1), y_1 + (-y_1) = (0, 0);$
 - (d) $1(x_1, y_1) = (1x_1, 1y_1) = (x_1, y_1),$ $\alpha(\beta(x_1, y_1)) = \alpha(\beta x_1, \beta y_1) = (\alpha \beta x_1, \alpha \beta y_1) = (\alpha \beta)(x_1, y_1);$

(e)

$$\alpha((x_1, y_1) + (x_2, y_2)) = \alpha(x_1 + x_2, y_1 + y_2)$$

$$= (\alpha x_1 + \alpha x_2, \alpha y_1 + \alpha y_2)$$

$$= \alpha(x_1, y_1) + \alpha(x_2, y_2),$$

$$(\alpha + \beta)(x_1, y_1) = ((\alpha + \beta)x_1, (\alpha + \beta)y_1)$$

$$= (\alpha x_1 + \beta x_1, \alpha y_1 + \beta y_1)$$

$$= (\alpha x_1, \alpha y_1) + (\beta x_1, \beta y_1)$$

$$= \alpha(x_1, y_1) + \beta(x_1, y_1).$$

Hence $X \times Y$ is a linear space over \mathbb{F} .

(ii) We will show $\|\cdot\|$ satisfies the axioms 1°-3° for a norm. For every $(x_1, y_1), (x_2, y_2) \in X \times Y$ and $\alpha \in \mathbb{F}$ we have

(1°) $\|(x_1, y_1)\| = \|x_1\|_X + \|y_1\|_Y \ge 0$, and $\|(x_1, y_1)\| = 0$ if and only if $\|x_1\|_X = 0$ and $\|y_1\|_Y = 0$ if and only if $x_1 = y_1 = 0$, i.e., $(x_1, y_1) = (0, 0)$,

 (2°)

$$\|\alpha(x_1, y_1)\| = \|(\alpha x_1, \alpha y_1)\| = \|\alpha x_1\|_X + \|\alpha y_1\|_Y$$

= $\alpha \|x_1\|_X + \alpha \|y_1\|_Y = \alpha(\|x_1\|_X + \|y_1\|_Y)$
= $\alpha \|(x_1, y_1)\|,$

 (3°)

$$\begin{aligned} \|(x_1, y_1) + (x_2, y_2)\| &= \|(x_1 + x_2, y_1 + y_2)\| \\ &= \|x_1 + x_2\|_X + \|y_1 + y_2\|_Y \\ &\leqslant \|x_1\|_X + \|x_2\|_X + \|y_1\|_Y + \|y_2\|_Y \\ &= \|(x_1, y_1)\| + \|(x_2, y_2)\|, \end{aligned}$$

it follows that $\|\cdot\|$ is a norm on $X \times Y$.

(iii) Clearly, a sequence $\{(x_n, y_n)\}$ of $X \times Y$ converges to $(x, y) \in X \times Y$ as $n \to \infty$ if and only if both $||x_n - x||_X \to 0$ and $||y_n - y||_Y \to 0$ as $n \to \infty$, since

$$||(x_n, y_n) - (x, y)|| = ||(x_n - x, y_n - y)|| = ||x_n - x||_X + ||y_n - y||_Y.$$

Which implies that the sequence $\{(x_n, y_n)\}$ converges to $(x, y) \in X \times Y$ as $n \to \infty$ if and only if $\{x_n\}$ converges to $x \in X$ and $\{y_n\}$ converges to $y \in Y$ as $n \to \infty$.

(iv) Let $\{(x_n, y_n)\}$ be a sequence in $X \times Y$, then $\{(x_n, y_n)\}$ is Cauchy in $X \times Y$ if and only if $\|(x_n, y_n) - (x_m, y_m)\| \to 0$ as $n, m \to \infty$ if and only if both $\|x_n - x_m\|_X \to 0$ and $\|y_n - y_m\|_Y \to 0$ as $n, m \to \infty$ since

$$||(x_n, y_n) - (x_m, y_m)|| = ||(x_n - x_m, y_n - y_m)||$$

= $||x_n - x_m||_X + ||y_n - y_m||_Y$.

Equivalently, $\{x_n\}$ is Cauchy in X and $\{y_n\}$ is Cauchy in Y by the definition.

 $2.5 \ (2.5)$

- (i) Since the absolute value $|\cdot|$ is the usual norm on \mathbb{R} , by Exercise 2.4 we see that $|\cdot|_1$ is a norm on \mathbb{R}^2
- (ii) The unit circle $\{x \in \mathbb{R}^2 : ||x||_1 = 1\}$ is the parallelogram or rhombus in the plane \mathbb{R}^2 , with vertices (0,1), (1,0), (-1,0) and (0,-1) as the following figure:

- 2.6 (Suppose that X is a vector space on \mathbb{F} and that d is the discrete metric on X. Since $X \neq \{0\}$, there exists a vector v such that $v \neq 0$. And this v satisfies that $d(2v,0) = 1 \neq 2 = 2d(v,0)$, so that d cannot be obtained from a norm by Remark 2.2.2.
- 2.7 (Clearly, \tilde{d} satisfies the axioms (M1) and (M2) for a metric. To show that \tilde{d} satisfies the triangle inequality (M3), we let $x, y, z \in X$ be arbitrary and we have

$$\tilde{d}(x,y) = ||x - y|| + 1 \le ||x - z|| + 1 + ||y - z||$$

$$\le \tilde{d}(x,z) + \tilde{d}(y,z)$$

if $x \neq y$. Also the above inequality obviously holds for x = y, hence \tilde{d} is a metric on X. Since $\tilde{d}(\alpha x, 0) \neq |\alpha|\tilde{d}(x, 0)$ in general, we see that \tilde{d} is not the metric induced by the norm $\|\cdot\|$.

2.12 (Let $x, y \in L^p(E)$ $(1 \le p < \infty)$, then both

$$\int_{E} |x(t)|^{p} dt < \infty \quad \text{and} \quad \int_{E} |y(t)|^{p} dt < \infty.$$

We will show that $x + y \in L^p(E)$ and $\alpha x \in L^p(E)$ for all $\alpha \in \mathbb{F}$, where the sum of x and y and the product α and x are defined like (2.5). Obviously, $\alpha x \in L^p(E)$ for all $\alpha \in \mathbb{F}$ since

$$\int_{E} |\alpha x(t)|^{p} dt = |\alpha|^{p} \int_{E} |x(t)|^{p} dt < \infty.$$

Obverse that

$$\begin{split} \int_E |x(t)+y(t)|^p \,\mathrm{d}t &\leqslant \int_E (|x(t)|+|y(t)|)^p \,\mathrm{d}t \\ &\leqslant 2^p \int_E (\max\{|x(t)|,|y(t)|\})^p \,\mathrm{d}t \\ &\leqslant 2^p \left(\int_E |x(t)|^p \,\mathrm{d}t + \int_E |y(t)|^p \,\mathrm{d}t\right) < \infty, \end{split}$$

we see that $x + y \in L^p(E)$, so that $L^p(E)$ is a linear space.

2.13 (Suppose that $\{x_i\} \subset L^{\infty}(E)$ such that $\sum_{i=1}^{\infty} \|x_i\|_{L^{\infty}(E)} < \infty$. By the Example 2.3.7 we see that for each $i \in \mathbb{N}$ there exists a set $E_i \subset E$ such that $\|x_i\|_{L^{\infty}(E)} = \sup_{E \setminus E_i} |x_i(t)|$ and $\max(E_i) = 0$. Let $E_0 = \bigcup_{i \in \mathbb{N}} E_i$, then $E_0 \subset E$ and $\max(E_0) = 0$. By the definition of $\|\cdot\|_{L^{\infty}(E)}$ we have

$$\left\| \sum_{i=1}^{\infty} x_i \right\|_{L^{\infty}(E)} \leqslant \sup_{t \in E \setminus E_0} \left| \sum_{i=1}^{\infty} x_i(t) \right| \leqslant \sum_{i=1}^{\infty} \sup_{t \in E \setminus E_0} |x_i(t)|$$
$$\leqslant \sum_{i=1}^{\infty} \sup_{t \in E \setminus E_i} |x_i(t)| = \sum_{i=1}^{\infty} \|x_i\|_{L^{\infty}(E)} < \infty,$$

which means that the series $\sum_{i=1}^{\infty} x_i$ is convergent in $L^{\infty}(E)$. Thus $L^{\infty}(E)$ is complete by Theorem 2.2.2, and then it is a Banach space.

Another Proof. Suppose $\{f_n\}$ is a Cauchy sequence in $L^{\infty}(E)$. By

the definition of the norm $\|\cdot\|_{L^{\infty}(E)}$ we see that there exist subsets A_k and $B_{m,n}$ of E, with meas $(A_k) = 0 = \text{meas}(B_{m,n})$, such that $|f_k(x)| > \|f_k\|_{L^{\infty}(E)}$ for all $x \in A_k$ and $|f_n(x) - f_m(x)| > \|f_n - f_m\|_{L^{\infty}(E)}$ for all $x \in B_{m,n}$, $k, m, n = 1, 2, \cdots$ Let E_0 be the union of these sets, for $k, m, n = 1, 2, \cdots$. Then $E_0 \subset E$ with $\mu(E_0) = 0$, and on the complement of E the sequence $\{f_n(x)\}$ converges uniformly to a bounded function f since

$$\sup_{x \in E \setminus E_0} |f_n(x) - f_m(x)| \leqslant ||f_n - f_m||_{L^{\infty}(E)} \to 0 \quad \text{as } m, n \to \infty$$

by the preassumption that $\{f_n\}$ is Cauchy in $L^{\infty}(E)$, it follows that $\{f_n(x)\}$ converges uniformly to a function f(x) for all $x \in E \setminus E_0$, this function f must satisfy $\sup_{x \in E \setminus E_0} |f(x)| \leq \sup_{n \in \mathbb{N}} ||f_n||_{L^{\infty}(E)} < \infty$ by the boundedness of the Cauchy sequence. Define f(x) = 0 for $x \in E_0$. Then $f \in L^{\infty}(E)$ and $||f_n - f||_{L^{\infty}(E)} \to 0$ as $n \to \infty$.

2.15 (p must satisfy that $1/\beta . Since$

$$\int_0^\infty \frac{dx}{|x^\alpha + x^\beta|^p} = \int_0^1 \frac{dx}{|x^\alpha + x^\beta|^p} + \int_1^\infty \frac{dx}{|x^\alpha + x^\beta|^p}$$
$$= \int_0^1 \frac{dx}{x^{\alpha p} (1 + x^{\beta - \alpha})^p} + \int_1^\infty \frac{dx}{x^{\beta p} (1 + x^{\alpha - \beta})^p},$$

both integrals in the right-hand side converge if and only if $\beta p > 1$ and $\alpha p < 1$, equivalently, $1/\beta .$

2.16 () The famous Riemann function g defined on [a,b]=[0,1] is essentially bounded on [0,1] since it is Riemann integrable on [a,b], that is, $g\in L^\infty[0,1]$, but it is discontinuous at each rational point of [0,1], which means that $g\notin C[0,1]$. Hence $C[0,1]\subsetneq L^\infty[0,1]$.

Clearly, every $h \in L^{\infty}[0,1]$ infers $h \in L^p[0,1]$ for all $1 \leq p < \infty$ since

$$\int_0^1 |h(t)|^p \, \mathrm{d} \leqslant \int_0^1 \underset{t \in [0,1]}{\mathrm{ess}} \sup_{|h(t)|^p} \, \mathrm{d}t = \|h\|_{L^\infty[0,1]}^p < \infty.$$

Let
$$f(t) = \begin{cases} \ln(1/t), & \text{if } t \in (0,1] \\ 0, & \text{if } t = 0, \end{cases}$$
 then $\int_0^1 (f(t))^p \, \mathrm{d}t < \infty$ since for any

given 0 < q < 1

$$\lim_{t \to 0^+} \frac{(f(t))^p}{(1/t)^q} = \lim_{t \to 0^+} \frac{(\ln(1/t))^p}{(1/t)^q} = \lim_{s \to +\infty} \frac{(\ln s)^p}{s^p} = 0,$$

which means that $f \in L^p[0,1]$. For an arbitrary M > 0 we see that

$$\begin{split} \operatorname{meas}(\{t \in [0,1]: |f(t)| > M\}) &= \operatorname{meas}(\{t \in (0,1): |\ln(1/t)| > M\}) \\ &= \operatorname{meas}(\{t \in (0,1): 0 < t < e^{-M}\}) \\ &= e^{-M} > 0. \end{split}$$

which means that $f \notin L^{\infty}[0,1]$, so that $L^{\infty}[0,1] \subseteq L^{p}[0,1]$.

2.17 () For simplicity we shall consider the case of $E \subset \mathbb{R}$ with meas $(E) = \infty$. For example, let $E = (0, +\infty)$ and 1/p > k > 1/q. Then kp < 1 and kq > 1. Set

$$x_q(t) = \begin{cases} t^{-k}, & \text{if } t \geqslant 1, \\ 0, & \text{if } 0 < t < 1. \end{cases}$$

We have $\int_0^{+\infty} |x_q(t)|^q dt = \int_1^{+\infty} \frac{dt}{t^{kq}} < \infty$, hence $x_q \in L^q(0, +\infty)$, but $x_q \notin L^p(0, +\infty)$ since $\int_0^{+\infty} |x_q(t)|^p dt = \int_1^{+\infty} \frac{dt}{t^{kp}} = \infty$. A similar function

$$x_p(t) = \begin{cases} t^{-k}, & \text{if } 0 < t \leq 1, \\ 0, & \text{if } t > 1 \end{cases}$$

also shows that $x_p \in L^p(0, +\infty)$ but $x_p \notin L^q(0, \infty)$.

2.19 (Let $x \in L^{\infty}(E)$ be arbitrary, then we have

$$\|x\|_{L^{\infty}(E)} = \operatorname*{ess\,sup}_{t \in E} |x(t)| = \inf_{\substack{\mathrm{meas}(E_0) = 0 \\ E_0 \subset E}} \sup_{t \in E \backslash E_0} |x(t)| < \infty.$$

Hence, for all $p \ge 1$ we get that

$$\int_{E} |x(t)|^{p} dt \leq \int_{E} \underset{t \in E}{\operatorname{ess \, sup}} |x(t)|^{p} dt = \left(\underset{t \in E}{\operatorname{ess \, sup}} |x(t)| \right)^{p} \int_{E} dt$$
$$= ||x||_{L^{\infty}(E)}^{p} \operatorname{meas}(E) < \infty$$

which means that $x \in L^p(E)$, so that $L^{\infty}(E) \subset L^p(E)$ and

$$||x||_{L^p(E)} \le ||x||_{L^{\infty}(E)} (\text{meas}(E))^{1/p}.$$
 (E2-6)

For every $0 < \varepsilon < ||x||_{L^{\infty}(E)}$, we claim that the measure of subset $A = \{t \in E : |x(t)| > ||x||_{L^{\infty}(E)} - \varepsilon\}$ of E is positive, i.e. $\operatorname{meas}(A) > 0$. Indeed, if $\operatorname{meas}(A) = 0$ for some $0 < \varepsilon_0 < ||x||_{L^{\infty}(E)}$, then by the definition of the infimum in $||x||_{L^{\infty}(E)}$ we see that

$$||x||_{L^{\infty}(E)} = \inf_{\substack{\text{meas}(E_0) = 0 \\ E_0 \subset E}} \sup_{t \in E \setminus E_0} |x(t)| \leqslant \sup_{t \in E \setminus A} |x(t)|$$
$$\leqslant ||x||_{L^{\infty}(E)} - \varepsilon_0 < ||x||_{L^{\infty}(E)},$$

since $\varepsilon_0 > 0$, this contradiction leads that meas(A) > 0. Thus, for every p > 1 we obtain that

$$||x||_{L^p(E)} = \left(\int_E |x(t)|^p dt\right)^{1/p} \geqslant \left(\int_A |x(t)|^p dt\right)^{1/p}$$
$$\geqslant \left(||x||_{L^{\infty}(E)} - \varepsilon\right) \left(\operatorname{meas}(A)\right)^{1/p},$$

which deduces that $\liminf_{p\to\infty}\|x\|_{L^p(E)}\geqslant \|x\|_{L^\infty(E)}-\varepsilon$. Letting $\varepsilon\to 0^+,$ we have $\liminf_{p\to\infty}\|x\|_{L^p(E)}\geqslant \|x\|_{L^\infty(E)}.$ On the other hand, it follows from (E2-6) that $\limsup_{p\to\infty}\|x\|_{L^p(E)}\leqslant \|x\|_{L^\infty(E)},$ so that

$$\lim_{p \to \infty} ||x||_{L^p(E)} = ||x||_{L^\infty(E)}.$$

2.21 () if $n \ge 2$, then the triangle inequality 3° for a norm may not hold. For example, let $x = (1,0,0,\cdots,0)$ and $y = (0,1,0,\cdots,0)$, then $x + y = (1,1,0,\cdots,0)$. Now $||x||_p = 1 = ||y||_p$ and

$$||x+y||_p = 2^{1/p} > 2 = ||x||_p + ||y||_p$$

since 1/p > 1.

2.23 () The proof of $\ell^r \subset \ell^p$ is similar to Example 2.3.8. Also, for each $x = \{x_n\} \in \ell^p \ (p > 1)$ we see that $\{x_n\}$ is bounded since the series $\sum\limits_{n=1}^{\infty} |x_n|^p$ is convergent, which means that $x \in \ell^{\infty}$. Moreover, $||x||_{\ell^{\infty}} = \sup\limits_{n \geqslant 1} |x_n| = |x_{n_0}|$ for some $n_0 \in \mathbb{N}$ since $|x_n| \to 0$ as $n \to \infty$. Hence

$$||x||_{\ell^p} = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} \geqslant |x_{n_0}| = ||x||_{\ell^{\infty}},$$

which yields that $\liminf_{p\to\infty} \|x\|_{\ell^p} \geqslant \|x\|_{\ell^\infty}$. On the other hand, for each fixed p>1, by the convergence of the series $\sum_{n=1}^{\infty} |x_n|^p$ we see that there exists $N\in\mathbb{N}$ such that $\sum_{n=N+1}^{\infty} |x_n|^p < \|x\|_{\ell^\infty}^p$. So,

$$||x||_{\ell^p} = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} = \left(\sum_{n=1}^{N} |x_n|^p + \sum_{n=N+1}^{\infty} |x_n|^p\right)^{1/p}$$

$$\leq \left(N|x_{n_0}|^p + ||x||_{\ell^{\infty}}^p\right)^{1/p} = (N+1)^{1/p} ||x||_{\ell^{\infty}},$$

this infers that $\limsup_{p\to\infty}\|x\|_{\ell^p}\leqslant \|x\|_{\ell^\infty}.$ In summary, we get the conclusion.

Remark. Let p > 1. As a consequence of Example 2.3.8 we have $\ell^p \subsetneq \ell^q$ if and only if p < q. In fact, if p < q, then $\ell^p \subsetneq \ell^q$ holds by Example 2.3.8. Conversely, if $\ell^p \subsetneq \ell^q$, then we must have p < q since otherwise we obtain $\ell^q \subset \ell^p$, which leads a contradiction $\ell^p = \ell^q$.

- 2.26 () Let $1 \leq p < \infty$ and $x = \{x_n\} \in \ell^p$, i.e., $\sum_{n=1}^{\infty} |x_n|^p$ converges. Then $|x_n| \to 0$ as $n \to \infty$ and therefore $x = \{x_n\} \in c_0$. Choose $x = (1, 1/\ln 2, \cdots, 1/\ln n, \cdots)$. Obviously, $x \in c_0$ since $1/\ln n \to 0$ as $n \to \infty$. We claim that this x does not belong any ℓ^p for $1 \leq p < \infty$. Indeed, if there would exist $1 \leq p < \infty$ such that $x \in \ell^p$, then we could have $1 + \sum_{n=2}^{\infty} 1/(\ln n)^p < \infty$. From the well-known Cauchy test we could obtain that the series $\sum_{n=2}^{\infty} 2^n/(\ln 2^n)^p = \sum_{n=2}^{\infty} 2^n/(n \ln 2)^p$ converges, which is false, since $\lim_{n \to \infty} 2^n/n^p = \infty$ if $1 \leq p < \infty$.
- 2.30 (By the Exercise 2.4, $(Z, \|\cdot\|)$ is a normed linear space. For every Cauchy sequence $\{(x_n, y_n)\}$ in Z, it is easy to see that $\{x_n\}$ is Cauchy in X and $\{y_n\}$ is Cauchy in Y by the definition of the norm $\|\cdot\|$. Since $(X, \|\cdot\|_1)$ and $(Y, \|\cdot\|_2)$ are Banach spaces, we have $\{x_n\}$ and $\{y_n\}$ are convergent to some $x \in X$ and some $y \in Y$ as $n \to \infty$, respectively. Hence $\{(x_n, y_n)\}$ is convergent to (x, y) again by the definition of the

norm $\|\cdot\|$, so that Z is a Banach space.

2.33 () If y=0, then $\varphi(t)=\|x\|$ for all $t\in\mathbb{R}$ and $\inf_{t\in\mathbb{R}}\varphi(t)=\varphi(0)$. We now assume that $y\neq 0$. Let $m=\inf_{t\in\mathbb{R}}\varphi(t)$, then $m\in[0,\infty)$. By the definition of the infimum we obtain a sequence $\{t_n\}\subset\mathbb{R}$ of real numbers such that $\varphi(t_n)\to m$ as $n\to\infty$. Then, for all $n\in\mathbb{N}$

$$||t_n y|| \le ||x - t_n y|| + ||x|| = \varphi(t_n) + ||x|| \le 2m + ||x||,$$

which gives that $|t_n| \leq (2m + ||x||)/||y||$ for all $n \in \mathbb{N}$, i.e., $\{t_n\}$ is bounded in \mathbb{R} . Consequently, by the Balzano-Weierstrass theorem, $\{t_n\}$ has a convergent subsequence $\{t_{n_j}\}$, say, $t_{n_j} \to t_0$ for some $t_0 \in \mathbb{R}$, as $j \to \infty$. Hence $\varphi(t_{n_j}) \to \varphi(t_0)$ as $j \to \infty$ since φ is clearly continuous, so that $m = \varphi(t_0)$.

2.34 (For every $x = (x_1, \ldots, x_n) \in \mathbb{F}^n$, since

$$||x||_{\infty} = \max_{1 \le i \le n} \{|x_i|\} \le n \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} = n||x||_2$$

and

$$||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} \leqslant n^{1/2} \max_{1 \leqslant i \leqslant n} \{|x_i|\} \leqslant n||x||_{\infty},$$

we get that $(1/n)\|x\|_2 \leq \|x\|_{\infty} \leq n\|x\|_2$, which shows that $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$ are equivalent.

 $2.35 \ (2.35)$

(i) Consider $f_n(t) = t^n$ for all $t \in [0,1]$ and $n \in \mathbb{N}$. Clearly each $f_n \in P[0,1]$ and

$$||f_n||_{\infty} = \sup_{t \in [0,1]} |f_n(t)| = 1, \quad ||f_n||_1 = \int_0^1 |f_n(t)| \, \mathrm{d}t = 1/(n+1),$$

we see that $\inf_{n\in\mathbb{N}}(\|f_n\|_1/\|f_n\|_\infty)=0$ since

$$\frac{\|f_n\|_1}{\|f_n\|_{\infty}} = \|f_n\|_1 = \frac{1}{n+1}$$
 for all $n \in \mathbb{N}$.

Which means that there is no positive constant k such that

$$||f_n||_1/||f_n||_\infty \geqslant k$$
, or $||f_n||_1 \geqslant k||f_n||_\infty$ for all $n \in \mathbb{N}$.

Hence, $||f||_{\infty}$ and $||f||_{1}$ are not equivalent.

(ii) By Theorem 2.4.3 we know that all norms on a finite-dimensional linear space are equivalent. Hence, P[0,1] must be infinite-dimensional since otherwise the above norms $\|\cdot\|_1$ and $\|\cdot\|_\infty$ would be equivalent.

2.36 (Clearly, the set $Z = \{A = (a_{jk}) : j = 1, \cdots, m, k = 1, \cdots, n\}$ constitute a linear space under the two algebraic operations of matrix addition and matrix multiplication by scalars. For $j = 1, \cdots, m, k = 1, \cdots, n$ let $E_{jk} = (\xi_{jk})$ with ξ_{jk} having 1 in the place of jth row and kth column and zeros elsewhere. Clearly, these mn matrices E_{jk} are linearly independent in Z, hence $\dim(Z) \geqslant mn$. Since any matrix $A = (a_{jk})_{m \times n}$ in Z has a unique representation as a linear combination of the matrices E_{jk} : $A = \sum_{j=1}^{m} \sum_{k=1}^{n} a_{jk} E_{jk}$ by the linear independence of E_{jk} 's, we see that any set of mn+1 or more matrices of Z is linearly dependent. Therefore, $\dim(Z) \leqslant mn$, so that $\dim(Z) = mn$, thus Z is an mn-dimensional linear space with a basis $\{E_{jk} : j = 1, \cdots, m, k = 1, \cdots, n\}$.

Since Z is a finite-dimensional linear space, we see form Theorem 2.4.3 that all norms on Z are equivalent. Moreover,

$$||A||_1 = \sum_{j=1}^m \sum_{k=1}^n |a_{jk}|, \quad ||A||_2 = \left(\sum_{j=1}^m \sum_{k=1}^n |a_{jk}|^2\right)^{1/2}$$

and $||A||_{\infty} = \max\{|a_{jk}| : j = 1, \dots, m, k = 1, \dots, n\}.$

2.37 (🔊)

- i) Let $\delta = d(x,Y) = \inf_{y \in Y} \|x y\|$. Then, by the definition of the infimum we see that there exists a sequence $\{y_n\} \subset Y$ such that $\|x y_n\| \to \delta$ as $n \to \infty$. It follows that the sequence $\{x y_n\}$ is bounded in X, and therefore, $\{y_n\} \subset Y$ is bounded, too, by the triangle inequality for the norm of X, where we recognize the linear space Y as a normed linear subspace of X. Since Y is finite-dimensional, by the Bolzano-Weierstrass theorem, we obtain that there exists a subsequence $\{y_{n_k}\}$ such that $y_{n_k} \to t_0 \in Y$ as $k \to \infty$, thus $\|x y_{n_k}\| \to \|x y_0\|$ as $k \to \infty$. Hence $\delta = \|x y_0\|$.
- ii) The answer is no. Indeed, for every $n \in \mathbb{N}$ set

$$E_n = \operatorname{span}(\{e_1, \cdots, e_n\})$$

where $e_n = \{\delta_{nj}\}$ having 1 in the *n*th place and zeros elsewhere. Let $x_n = e_{n+1}$ for each $n \in \mathbb{N}$, then each $E_n \subset \ell^{\infty}$ and $x_n \in \ell^{\infty}$. For each $n \in \mathbb{N}$ we choose numbers $\alpha_1, \dots, \alpha_n$ such that $|\alpha_i| \leq 1$, $i = 1, 2, \dots, n$, and let $y_n = (\alpha_1, \dots, \alpha_n, 0, 0, \dots)$, then each $y_n \in E_n$. Clearly, the choice of y_n is not unique. However, it is easy to verify that $d(x_n, E_n) = 1 = ||x_n - y_n||_{\ell^{\infty}}$ for each $n \in \mathbb{N}$.

- 2.39 () For every $n \in \mathbb{N}$ we have $x_n \in X$ since $||x_n|| = \left(\int_0^1 |x_n(t)|^2 dt\right)^{1/2} = 1 2/3n < 1$. By the definition we see that, each $x_n(0) = 0$, and so, each $x_n \in S$.
- 2.40 () For each $n \in \mathbb{N}$ we consider $\xi_n = \{x_{n,i}\}$ such that $x_{n,i} = i^{-4}$ for $i \leq n$ and $x_{n,i} = 0$ for i > n. Clearly, each $\xi_n \in \ell_0^2$ and $\xi_n \to \xi = \{i^{-4}\} \in \ell^2$ in the ℓ^2 -norm as $n \to \infty$, but $\xi = \{i^{-4}\} \notin \ell_0^2$, so that ℓ_0^2 is not closed in ℓ^2 .
- 2.41 (This is a consequence of Example 1.5.7 and Theorem 1.5.1.

2.44 (23)

- (i) Since $\|\eta x/2\|x\|\|=\eta/2<\eta,$ it follows that $\eta x/2\|x\|\in\{y\in X:\|y\|<\eta\}\subset Y.$
- (ii) Clearly that $0 \in Y$. Since Y is open in X, we see that there exists a real number $\eta > 0$ such that $B(0,\eta) = \{y \in X : \|y-0\| < \eta\} \subset Y$, so that $\frac{\eta x}{2\|x\|} \in Y$ for every $x \in X \setminus \{0\}$ by (i). Clearly, Hence, for each for every $x \in X \setminus \{0\}$ we have $x \in \text{span}(\{\eta x/2\|x\|\}) \subset \text{span}(Y) = Y$ since Y is a linear space. Trivially, if $x \in X$ with x = 0, then $x \in Y$. Thus, $X \subset Y$, so that X = Y by the assumption that $Y \subset X$.

$2.45 \ (2)$

- (i) Since $\|\cdot\|$ is a continuous mapping on X and [0,1] is closed, we obtain that $T = \{x \in X : \|x\| \le 1\} = \{x \in X : \|x\| \in [0,1]\}$ is closed.
- (ii) Since $||x_n x|| = ||-x/n|| \le 1/n \to 0$ as $n \to \infty$, it follows that $x_n \to x$ as $n \to \infty$. Note that for each $n \in \mathbb{N}$ we have $||x_n|| = ||(1 1/n)x|| \le (1 1/n) < 1$, which means that the sequence $\{x_n\} \subset S$, and the x is a limit point of S. Hence $T \subset \overline{S}$, so that $\overline{S} = T$ since $S \subset T$ and T is closed by (i).

2.46 (\nearrow) Necessity. If X is complete, then the completeness of S follows from the closedness of S in X by Theorem 1.5.1.

Sufficiency. Suppose that S is complete. Let $\{x_n\}$ be an arbitrary Cauchy sequence of X. Since $|||x_n|| - ||x_m||| < ||x_n - x_m||$ for every $n, m \in \mathbb{N}$, we get that $\{||x_n||\}$ is a Cauchy sequence in \mathbb{R} , hence $\{||x_n||\}$ is convergent to some nonnegative number c as $n \to \infty$.

If c = 0, then $x_n \to 0$ by the continuous of the norm $\|\cdot\|$, so that the Cauchy sequence $\{x_n\}$ converges, and hence X is complete.

If c > 0, then there exists an $N_1 > 0$ such that $c/2 < ||x_n|| < 3c/2$ for all $n > N_1$. Since $\{x_n\}$ is a Cauchy sequence of X, for each $\varepsilon > 0$ there exists an $N > N_1$ such that $||x_n - x_m|| < \varepsilon$ for all m, n > N. Therefore

$$\begin{split} & \left\| \frac{x_n}{\|x_n\|} - \frac{x_m}{\|x_m\|} \right\| = \left\| \frac{\|x_m\|x_n - \|x_n\|x_m}{\|x_n\|\|x_m\|} \right\| \\ &= \frac{4}{c^2} \|(x_n - x_m)\|x_m\| + x_m(\|x_m\| - \|x_n\|)\| \\ &\leq \frac{4}{c^2} \left(\|x_n - x_m\|\|x_m\| + \|x_m\|\|\|x_m\| - \|x_n\| \right) \leq \frac{4}{c^2} \frac{3c}{2} \varepsilon = \frac{6}{c} \varepsilon \end{split}$$

for all m, n > N, which means that $\{x_n/\|x_n\|\}$ is a Cauchy sequence in S, hence it must converge to some $x \in S$ as $n \to \infty$ since S is complete. Equivalently $x_n \to c \, x \in X$ as $n \to \infty$, showing the completeness of X.

2.47 (Suppose that Y is an n-dimensional linear subspace of X, then Y is closed in X by Corollary 2.4.2. Similarly as in the proof of the Riesz lemma, we have an $x \in X \setminus Y$ such that d(x,Y) > 0. By Exercise 2.37 we see that there exists a $y_0 \in Y$ such that $||x - y_0|| = d(x,Y) > 0$. Let $x_1 = \frac{x - y_0}{||x - y_0||}$, then $x_1 \in X$ with $||x_1|| = 1$ and for $y \in Y$ we obtain that

$$||x_1 - y|| = \frac{1}{||x - y_0||} ||x - y_0 - ||x - y_0||y||$$

$$= \frac{1}{d(x, Y)} ||x - (y_0 + d(x, Y)y)|| \ge \frac{1}{d(x, Y)} d(x, Y) = 1$$

since $y_0 + d(x, Y)y \in Y$, that is, $d(x_1, Y) \ge 1$. In particular, $d(x_1, Y) = 1$ since $d(x_1, Y) \le d(x_1, 0) = ||x_1|| = 1$.

2.56 () X/N is set of all lines parallel to the ξ_1 -axis since for every $x = (x_1, x_2, x_3) \in X = \mathbb{R}^3$ we have

$$\pi(x) = x + N = \{x + y : y \in N\} = \{(z_1, x_2, x_3) : z_1 \in \mathbb{R}\},\$$

maening that every element $\pi(x)$ of X/N is a line in \mathbb{R}^3 which passes point (x_1, x_2, x_3) and is parallel to ξ_1 -axis. Similarly, if M is a plane of $X = \mathbb{R}^3$ passing the origin (by the way, a subspace of \mathbb{R}^3 must be one of three cases: a line passing the origin, a plane passing the origin and \mathbb{R}^3 itself), we see that X/M is the set of all planes parallel to the plane M. Therefore, $X/X = \{0\}$ and $X/\{0\} = X$.

- 2.57 (Note that N is itself a linear space, so for example N+N=N and $\alpha N=N$ for all $\alpha \neq 0$. Suppose that $\pi(x)=\pi(x')$ and $\pi(y)=\pi(y')$. Then there are $x_0,y_0\in N$ such that $x-x'=x_0$ and $y-y'=y_0$ by (2) of Remark 2.6.1. Hence, for each $z\in\pi(x)+\pi(y)$ we have a $z_0\in N$ such that $z=x+y+z_0$ since x+N+y+N=x+y+N, which implies that $z=x'+x_0+y'+y_0+z_0\in\pi(x')+\pi(y')$, thus $\pi(x)+\pi(y)\subset\pi(x')+\pi(y')$, and vice versa, of course. Therefore, the first equality in (2.15) holds. Similarly, the second equality also holds since $\alpha N=N$ for all $\alpha \neq 0$.
- 2.58 (The sketch maps are in the following.

