

Physique pour l'ingénieur

TD 2: Système à deux niveaux

Exercice 1

Soit un système physique à deux niveaux d'énergie dont l'espace des états admet comme base orthonormée les vecteurs propres $|1\rangle$ et $|2\rangle$ de l'hamiltonien H_0 , associés respectivement aux énergies propres E_1 et E_2 .

$$H_0 = \begin{pmatrix} E_1 & 0 \\ 0 & E_2 \end{pmatrix}$$
 , $|1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $|2\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Comme $\{|1\rangle, |2\rangle\}$ est une base complète de l'espace des états, un état possible $|\Psi(t)\rangle$ du système à l'instant t peut être représenté par : $|\Psi(t)\rangle = c_1(t)|1\rangle + c_2(t)|2\rangle$, où toute la dépendance temporelle de $|\Psi(t)\rangle$ est contenue dans les coefficients $c_n(t)$.

- 1- Quelle relation doivent satisfaire $c_1(t)$ et $c_2(t)$ pour que $|\Psi(t)\rangle$ soit normé ?
- 2- Ecrire l'équation de Schrödinger et donner l'équation d'évolution du coefficient $c_n(t)$, n = 1,2.

3- Déterminer
$$c_1(t)$$
 et $c_2(t)$ et réécrire $|\Psi(t)\rangle$.
4- Supposons qu'à l'uisfaut $t=0$, l'état du système est $|\Psi(0)\rangle = 1/2$
Exercice 2' Déterminer la Probabilité $P_2(t)$ de trouver le système dans l'état $|2\rangle$

Soit un système physique dont l'espace des états à deux dimensions admet comme base orthonormée les vecteurs propres $|\varphi_1\rangle$ et $|\varphi_2\rangle$ de l'hamiltonien H_0 , associés aux valeurs propres $E_1 = E_2 = E$, avec E est une constante positive.

$$H_0|\varphi_1\rangle = E_1|\varphi_1\rangle$$
 et $H_0|\varphi_2\rangle = E_2|\varphi_2\rangle$

 $H_0|\varphi_1\rangle=E_1|\varphi_1\rangle$ et $H_0|\varphi_2\rangle=E_2|\varphi_2\rangle$ Le système est soumis à une perturbation extérieure décrite par l'opérateur indépendant du temps W, de sorte que l'hamiltonien total du système s'écrit : $H = H_0 + W$. On désigne par $|\Phi_1\rangle$ et $|\Phi_2\rangle$ les états propres de H et par ε_1 et $\varepsilon_2<\varepsilon_1$ ses valeurs propres.

$$H|\Phi_1\rangle = \varepsilon_1|\Phi_1\rangle$$
 et $H|\Phi_2\rangle = \varepsilon_2|\Phi_2\rangle$

Dans la base $\{|\varphi_1\rangle, |\varphi_2\rangle\}$, H_0 et W s'écrivent :

$$H_0 = \begin{pmatrix} E & 0 \\ 0 & E \end{pmatrix}, W = \begin{pmatrix} 0 & -A \\ -A & 0 \end{pmatrix}, |\varphi_1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |\varphi_2\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

où A est une constante positive.

- 1- Déterminer les valeurs propres ε_1 et ε_2 de H.
- 2- Déterminer les vecteurs propres normés $|\Phi_1\rangle$ et $|\Phi_2\rangle$ de H.

Supposons qu'à l'instant t = 0, l'état du système est $|\Psi(0)\rangle = |\varphi_1\rangle$:

- 3- Exprimer $|\Psi(0)\rangle$ dans la base $\{|\Phi_1\rangle, |\Phi_2\rangle\}$.
- 4- Déterminer le vecteur d'état $|\Psi(t)\rangle$ à l'instant t.
- 5- Déterminer la probabilité $P_2(t)$ de trouver le système à l'instant t dans l'état $|\varphi_2\rangle$.

Exercice 3

Soit un système physique à deux niveaux d'énergie dont l'espace des états admet comme base orthonormée les vecteurs propres $|0\rangle$ et $|1\rangle$ de l'hamiltonien non perturbé H_0 , associés respectivement aux valeurs propres $\varepsilon_0=0$ et $\varepsilon_1=\hbar\Delta$.

$$H_0 = \begin{pmatrix} 0 & 0 \\ 0 & \hbar \Delta \end{pmatrix}$$
 , $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

où Δ est une constante réelle et positive. On cherche à évaluer les modifications qui apparaissent lorsqu'on introduit un terme de couplage W qui permettra au système de passer d'un état à l'autre. Dans la base $\{|0\rangle, |1\rangle\}$, W s'écrit :

$$W = \frac{\hbar\Omega}{2} \begin{pmatrix} 0 & e^{-i\varphi} \\ e^{i\varphi} & 0 \end{pmatrix}$$

Le système présente donc un hamiltonien total $H = H_0 + W$. Les paramètres Ω et φ sont des constantes réelles et positives.

1- Déterminer les énergies propres E_1 et $E_2 < E_1$ de H.

Les vecteurs propres $|\varphi_1\rangle$ et $|\varphi_2\rangle$ de H associés respectivement aux énergies propres E_1 et E_2 s'écrivent :

$$\begin{split} |\varphi_1\rangle &= \sin(\theta)\,|0\rangle + \cos(\theta)\,e^{i\varphi}|1\rangle \quad \text{et} \quad |\varphi_2\rangle = \cos(\theta)\,|0\rangle - \sin(\theta)\,e^{i\varphi}|1\rangle \\ &\cos(2\theta) = \frac{\Delta}{\eta} \quad , \quad \sin(2\theta) = \frac{\Omega}{\eta} \quad , \quad \eta = \sqrt{\Delta^2 + \Omega^2} \end{split}$$

2- Vérifier que la base $\{|\varphi_1\rangle, |\varphi_2\rangle\}$ est orthonormée.

L'état du système à l'instant t = 0 est décrit par le ket $|\Psi(0)\rangle = |0\rangle$.

- 3- Exprimer $|\Psi(0)\rangle$ dans la base $\{|\varphi_1\rangle, |\varphi_2\rangle\}$.
- 4- Déterminer l'état du système $|\Psi(t)\rangle$ à l'instant t.
- 5- Déterminer la probabilité $P_1(t)$ de trouver le système à l'instant t dans l'état $|1\rangle$ en fonction de Ω et Δ .
- 6- Tracer $P_1(t)$ en fonction de t. Commenter l'amplitude de $P_1(t)$.

Exercice uo1:

$$H_{o} = \begin{pmatrix} E_{\Lambda} & 0 \\ 0 & E_{2} \end{pmatrix} \qquad ; \qquad |A\rangle = \begin{pmatrix} A \\ 0 \end{pmatrix} \qquad ; \qquad |2\rangle = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \qquad \langle A| = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle \qquad \langle A| = \begin{pmatrix} 2 \\$$

$$|\Psi(t)\rangle = C_{\Lambda}(t) |\Lambda\rangle + C_{2}(t) |2\rangle$$

$$|\Psi(t)\rangle = c_{\Lambda}(t) |11\rangle + c_{\omega}(t) |2\rangle = \begin{pmatrix} c_{\Lambda}(t) \\ c_{\omega}(t) \end{pmatrix}$$

$$\langle \Psi(t)| = \langle \Lambda | C_{\lambda}(t)^{*} + \langle 2 | C_{2}^{*}(t) = (C_{\lambda}^{*}(t) C_{2}^{*}(t))$$

$$= C_{1}^{*}C_{1} < 1111 + C_{1}^{*}C_{2} < 112 > + C_{2}^{*}C_{1} < 111 > + C_{2}^{*}C_{2} < 112 > + C_{2}^{*}C_{1} < 111 > + C_{2}^{*}C_{2} < 112 > + C_{2}^{*}C_{1} < 111 > + C_{2}^{*}C_{2} < 112 > + C_{2}^{*}C_{1} < 111 > + C_{2}^{*}C_{2} < 112 > + C_{2}^{*}C_{1} < 111 > + C_{2}^{*}C_{2} < 112 > + C_{2}^{*}C_{1} < 112 > + C_{2}^{*}C_{2} < 112 > + C_{2}^{*}C_{1} < 112 > + C_{2}^{*}C_{2} < 1$$

Ou bien
$$\langle \Psi | \Psi \rangle = (C_1^*(t) C_2^*(t)) (C_3(t)) = C_1^* C_1 + C_2^* C_2 = |C_1|^2 |C_2|^2$$

$$|\Psi\rangle$$
 est normé $\Rightarrow ||\Psi\rangle||^2 = 1$
 $\Rightarrow |C_{\lambda}(H)|^2 + |C_{\lambda}(H)|^2 = 1$

$$i \stackrel{\downarrow}{h} = \begin{pmatrix} C_{\Lambda}(H) \\ C_{2}(H) \end{pmatrix} = \begin{pmatrix} E_{\Lambda} & 0 \\ 0 & E_{2} \end{pmatrix} \begin{pmatrix} C_{\Lambda}(H) \\ C_{2}(H) \end{pmatrix}$$

$$\begin{cases} i \text{ th} \frac{d}{dt} C_{\Lambda}(t) = E_{\Lambda} C_{\Lambda}(t) \\ i \text{ th} \frac{d}{dt} C_{2}(t) = E_{2} C_{2}(t) \end{cases}$$

$$\Rightarrow$$
 it $\frac{1}{dt}C_n(t) = E_n C_n(t)$ $n=1,2$

3) it
$$\frac{d}{dt}C_{n}(t) = E_{n}C_{n}(t)$$

$$\frac{dC_{n}}{dt} = -i\frac{E_{n}}{t}dt$$

$$Ru(c_n(t)) = -i \frac{E_n}{h} t + c\delta t$$

$$C_n(t) = e^{c\delta t} e^{-i \frac{E_n}{h} t}$$

$$C_{n}(t) = e^{-ct}$$

$$C_{n}(0) = e^{-ct}$$

d'où
$$C_n(t) = C_n(0) e^{-i\frac{E_n}{E_n}}$$

en a alors $\int C_n(t) = C_n(0) e^{-i\frac{E_n}{E_n}}$

d'où
$$C_{n}(t) = C_{n}(0) = -i \frac{E_{n}}{E_{n}} + C_{n}(0) = -$$

$$(C_{2}(t) = C_{2}(0) e^{-i\frac{\pi}{4}t} + C_{2$$

interprétation.

Dans la base { 11>, 12>} formée par les vecteurs propres (11>et 12>)

de l'Hamiltonieu, associés aux energies propres Er et Ez.

si l'état du système a' l'instant t = 0 est donnée par . +.

si l'état du système a' l'instant t = 0 est donnée par . +.

alors | \psi(t) > = C_1(0) e^{-i\frac{E_1}{E_1}t} | 11> + C_2(0) e^{-i\frac{E_2}{E_1}t} | 2>

$$| \Psi(0) \rangle = | \Lambda \rangle = | \Lambda \rangle = | \Psi(1) \rangle = | \langle 2 | \Psi(1) \rangle |^{2}$$

$$| \Psi(1) \rangle = | \langle 2 | \Psi(1) \rangle |^{2}$$

$$| \langle 2 | \Psi(1) \rangle = | \langle 2 | \Psi(1) \rangle |^{2}$$

P2(+1=0 l'état 11) est un état stationnain c'està due si le système est dans l'état 11) il reste dans elt état in définement les deux états propres de H sont des état stationnaire.

Exercice u°2:

$$\frac{1}{H} = \frac{H_0 + W}{E}$$

$$H = \begin{pmatrix} E & -A \\ -A & E \end{pmatrix}$$

Pour déterminer les valeurs propres de H, il faut nesoudre l'equation Det (H- 1/L) = 0

$$\begin{vmatrix} E - \lambda & -A \\ -A & E - \lambda \end{vmatrix} = 0$$

$$(E - \lambda)^2 - A^2 = 0$$

$$(E - \lambda)^2 = A^2$$

$$E - \lambda = \pm A$$

$$\lambda = E \pm A$$

$$\mathcal{E}_{\lambda} = E + A$$

$$\mathcal{E}_{\lambda} = E - A$$

$$\lambda = E + A$$

$$\varepsilon_2 = E - A$$

2/ 10,> vecteur propre de Hassocié à la valeur propre E,

$$|\phi_{A}\rangle = x|f_{A}\rangle + y|f_{E}\rangle = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} E & -A \\ -A & E \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (E + A) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{cases} Ex - Ay = (E+A)x \\ -Ax + Ey = (E+A)y \end{cases}$$

$$\begin{cases} Ex - Ay = Ex + Ax \\ -Ax + Ey = Ey + Ay \end{cases} \Rightarrow \begin{cases} -y = x \\ -x = y \end{cases}$$

$$| p_{A} \rangle = x (| p_{A} \rangle - | p_{2} \rangle) = (\frac{x}{-x})$$

$$| p_{A} \rangle = x (| p_{A} \rangle - | p_{2} \rangle) = (\frac{x}{-x})$$

$$| p_{A} \rangle = x | | | p_{A} \rangle | |^{2} = \langle p_{A} | p_{2} \rangle = 1$$

$$\langle p_{A} | = x^{*} (\langle p_{A} | - \langle p_{2} | \rangle) = (x^{*}, -x^{*})$$

$$\langle p_{A} | p_{A} \rangle = x^{*} x (\langle p_{A} | - \langle p_{2} | \rangle) (| p_{A} \rangle - | p_{2} \rangle)$$

$$= x^{*} x (\langle p_{A} | p_{A} \rangle + \langle p_{2} | p_{2} \rangle + \langle p_{2} | p_{2} \rangle)$$

$$= x^{*} x (\langle p_{A} | p_{A} \rangle + \langle p_{A} | p_{2} \rangle - \langle p_{2} | p_{A} \rangle + \langle p_{2} | p_{2} \rangle)$$

11 10,>112=21212=1 Pour sumplifier l'éculture on preud toujous x réel et positi $\Rightarrow x = \frac{1}{\sqrt{9}}$

$$|\phi_{1}\rangle = \frac{1}{\sqrt{2}}\left(|\psi_{1}\rangle - |\psi_{2}\rangle\right) = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}$$

102> vecteur propre de Hassocié à la valeur propre E2

$$H \mid \Phi_{2} \rangle = \mathcal{E}_{2} \mid \Phi_{2} \rangle$$
Soit $\mid \Phi_{2} \rangle = \mathcal{I} \mid \mathcal{I}_{n} \rangle + \mathcal{I} \mid \mathcal{I}_{2} \rangle = \begin{pmatrix} \mathcal{I}_{1} \\ \mathcal{I}_{2} \end{pmatrix}$

$$\begin{pmatrix} E & -A \\ -A & E \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (E - A) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{cases} Ex - Ay = (E - A)x \\ -Ax + Ey = (E - A)y \end{cases} \Rightarrow \begin{cases} -Ay = -Ax \\ -Ax = -Ay \end{cases} \Rightarrow \begin{cases} y = x \\ -Ax = -Ay \end{cases}$$

$$|\psi_{2}\rangle = 2\left(|\psi_{1}\rangle + |\psi_{2}\rangle\right) = {2 \choose x}$$

 $|\phi_2\rangle$ est norme => $||\phi_2\rangle||^2 - \langle \phi_2|\phi_2\rangle = 1$

$$\langle \Phi_{2} | = x^{*} (\langle \Psi_{1} | + \langle \Psi_{2} |) = (x^{*}, x^{*})$$

$$\langle \Phi_{2} | \Phi_{2} \rangle = (x^{*}, x^{*}) \begin{pmatrix} x \\ x \end{pmatrix} = x^{*}x + x^{*}x$$

$$\| |\Phi_{2} \rangle \|^{2} = \langle \Phi_{2} | \Phi_{2} \rangle = 2 | x |^{2} = 1$$

$$\text{pour simplifier } |\Phi_{2} \rangle = 2 | x |^{2} = 1$$

$$\text{pour simplifier } |\Phi_{2} \rangle = \frac{1}{\sqrt{2}} (|\Psi_{1} \rangle + |\Psi_{2} \rangle) = \frac{1}{\sqrt{2}} (|\Phi_{2} \rangle)$$

$$|\Phi_{2} \rangle = \frac{1}{\sqrt{2}} (|\Psi_{1} \rangle + |\Psi_{2} \rangle) = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Phi_{1} \rangle = \frac{1}{\sqrt{2}} (|\Psi_{1} \rangle + |\Psi_{2} \rangle)$$

$$|\Phi_{1} \rangle + |\Phi_{2} \rangle = \frac{2}{\sqrt{2}} |\Psi_{1} \rangle + |\Phi_{2} \rangle$$

$$|\Psi_{1} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{1} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{2} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{1} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{2} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{2} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{2} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{2} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{3} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{4} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{5} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{1} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{2} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{3} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{4} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{5} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{5} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{1} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{2} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{3} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{4} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{5} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{5} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{1} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{2} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{3} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{4} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{5} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{5} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{1} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{2} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{3} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{3} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{3} \rangle = \frac{1}{\sqrt{2}} (|\Phi_{1} \rangle + |\Phi_{2} \rangle)$$

$$|\Psi_{3} \rangle = \frac{1}{\sqrt{2$$

1/
$$H = H_0 + W$$
 $H = \begin{pmatrix} 0 & 0 \\ 0 & R\Delta \end{pmatrix} + \begin{pmatrix} 0 & RDU e^{-iP} \\ RDU e^{iP} & 0 \end{pmatrix}$
 $H = \begin{pmatrix} 0 & RDU e^{-iP} \\ RDU e^{-iP} \end{pmatrix}$
 $H = \begin{pmatrix} 0 & RDU e^{-iP} \\ RDU e^{-iP} \end{pmatrix}$

Pour déterminer les valeurs propres de H il fant nésoudre. l'équation Det (H - à 1L) = 0

$$\begin{vmatrix} -\lambda & \frac{4}{2}e^{-it} \\ \frac{4}{2}e^{it} & \frac{4}{2}\Delta - \lambda \end{vmatrix} = 0$$

$$-\lambda \left(\frac{\hbar v}{2} \right)^2 = 0$$

$$\lambda^2 - \frac{1}{2} \Delta \lambda - \left(\frac{\frac{1}{2} \partial y}{2}\right)^2 = 0$$

$$S = (\mathbb{R}\Delta)^2 + (\mathbb{R}N)^2 = \mathbb{R}^2(\Delta^2 + N^2)$$

$$\lambda = \frac{\sharp \Delta + \sharp \sqrt{\Delta^2 + \omega^2}}{2}$$

$$\Rightarrow \quad \mathcal{E}_{\Lambda} = \mathbb{R} \left(1 + \sqrt{\Lambda^2 + N^2} \right)$$

$$E_{2} = \frac{h}{2} \left(\Delta - \sqrt{\Delta^{2} + \mathcal{N}^{2}} \right)$$

21
$$|Y_{A}\rangle = \sin(\theta)|0\rangle + \cos(\theta)|e^{i\beta}|1\rangle = (\sin\theta)|\cos\theta|e^{i\beta}|$$

 $\langle Y_{A}\rangle = \sin(\theta)|\cos\theta| + \cos(\theta)|e^{-i\beta}|1\rangle = (\sin\theta)|\cos\theta|e^{-i\beta}|1\rangle$

$$\langle f_{1} \rangle = \sin(\theta) \langle 0| + \cos(\theta) e^{-i} f_{1} \rangle$$

 $\langle f_{1} | f_{2} \rangle = \left(\sin(\theta) \langle 0| + \cos(\theta) e^{-i} f_{1} \right) \left(\sin(\theta) | \theta \rangle + \cos(\theta) e^{-i} f_{1} \right)$

19,7eA uormé

$$|P_{2}\rangle = \cos\theta |O\rangle - \sin(\theta) e^{i\beta} |A\rangle = (\cos(\theta) e^{i\beta})$$

$$|P_{2}\rangle = \cos\theta |O\rangle - \sin(\theta) e^{-i\beta} |A\rangle = (\cos\theta) e^{-i\beta}$$

$$|P_{2}\rangle = (\cos\theta) - \sin(\theta) e^{-i\beta} |A\rangle = (\cos\theta) e^{-i\beta}$$

$$|P_{2}\rangle = (\sin(\theta) |A\rangle) + (\cos(\theta) e^{-i\beta} |A\rangle) = (\cos(\theta) e^{-i\beta} |A\rangle)$$

$$= \cos\theta |A\rangle + \sin\theta$$

$$= \cos\theta |A\rangle + \sin\theta$$

$$= \sin\theta |A\rangle + \cos\theta |A\rangle$$

Scanné avec CamScanner

$$\langle \Lambda | \Psi(t) \rangle = -2i \sin(\frac{\hbar \eta}{2}t) \sin(\theta) \cos(\theta) e^{i \theta} e^{-i \frac{\hbar \Delta}{2}t}$$

 $--i \sin(2\theta) \sin(\frac{\hbar \eta t}{2}) e^{i \theta} e^{-i \frac{\hbar \Delta}{2}t}$

$$P_{\Lambda}(t) = \sin^{2}(20) \sin^{2}(\frac{hyt}{2})$$

$$= \frac{\sigma^{2}}{\Delta^{2} + \sigma^{2}} \sin^{2}(\frac{hyt}{2})$$

 $\frac{N^2}{\Delta^2 + N^2}$ (1 » le transfelt de l'état 10) à 14) n'est pas total.