PARALLELOGRAM

VUNNAVA SRAVANI

sravani21vunnava@gmail.com

1

2

FWC22012 IITH Future Wireless Communication (FWC)

ASSIGN-5

Contents

- **Problem**
- Solution
- Construction

To Prove: AP = CQ

- Points P and Q are drawn from the vertices A and C to the diagonal BD respectively
 - The line equation for diagonal BD is mx-y+c=0

where
$$m = \frac{b}{c-a}$$

$$s = -(c+a+mb)$$

1 Problem

ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD . Show that

- (i) $\triangle APB \cong \triangle CQD$
- (ii) AP = CQ

2 Solution

Theory:

In parallelogram $AB \mid\mid CD$ and $AD \mid\mid BC$

BD and AC are diagonals of the parallelogram which are also the transversals for $AB \parallel CD$

To Prove: $\Delta APB \cong \Delta \mathsf{CQD}$

 $\angle ABD$ and $\angle CDB$ are equal since they are alternate inte-

rior angles

so $\angle ABP$ and $\angle CDQ$ are equal

 $\angle APB$ and $\angle CQD$ are perpendicular angles

... due to AAS (angle angle side) rule
$$\Delta APB \cong \Delta \ \mathsf{CQD}$$

To Prove: AP = CQ $\Delta APB \cong \Delta CQD$

$$\therefore$$
 AP = CQ Hence, Proved

The input parameters for this construction are

Symbol	Value
а	1
b	2
С	3
А	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
В	$\begin{pmatrix} c \\ 0 \end{pmatrix}$
С	$\begin{pmatrix} c+a \\ b \end{pmatrix}$
D	$\begin{pmatrix} a \\ b \end{pmatrix}$

then,
$$\mathsf{P} = \begin{pmatrix} \frac{m^2c}{1+m^2} \\ \frac{-mc}{1+m^2} \end{pmatrix}$$

$$Q = \begin{pmatrix} \frac{mc-s}{1+m^2} \\ \frac{-m(c+s)}{1+m^2} \end{pmatrix}$$

distance between A and P is ||A - P||distance between C and Q is $\|C - Q\|$

if
$$||A - P|| = ||C - Q||$$

then AP = CQ.....(1)

To Prove: $\triangle APB \cong \triangle$ CQD

to prove $\angle APD$ and $\angle CQD$ are 90°

$$m1 = A-P$$

$$m2 = P-B$$

if $\boldsymbol{\theta}$ is the angle

then
$$\cos\theta = \frac{m1^{\mathsf{T}}m2}{\|\mathbf{m1}\|\|\mathbf{m2}\|}$$

for
$$\theta = 90^{\circ}$$
, $\cos \theta = 0$

$$\therefore m1^{\mathsf{T}} \text{ m2} = 0$$

$$n1 = C-Q$$

$$\mathsf{n2} = \mathsf{Q-D}$$

if θ is the angle

then
$$\cos\theta = \frac{n1^{\mathsf{T}}n2}{\|\mathbf{n1}\|\|\mathbf{n2}\|}$$

for
$$\theta = 90^{\circ}$$
, $\cos\theta = 0$

$$\therefore n1^{\mathsf{T}} \ \mathsf{n2} = \mathsf{0}$$

if
$$m1^{\rm T}m2=0$$
 and $n1^{\rm T}n2=0$ then, $\angle APD=\angle CQD=90^{\circ}......(2)$

to prove $\angle ABP$ and $\angle CDQ$ are equal

$$m2 = P-B$$

$$m3 = A-B$$

let $\theta 1$ be the $\angle ABP$

then
$$\theta 1 = \cos^- 1 \frac{\mathbf{m2 \cdot m3}}{\|\mathbf{m2}\| \|\mathbf{m3}\|}$$

$$n2 = C-D$$

$$n3 = Q-D$$

let
$$\theta 2$$
 be the $\angle CDQ$ then $\theta 2 = \cos^- 1 \frac{\mathbf{n2} \cdot \mathbf{n3}}{\|\mathbf{n2}\| \|\mathbf{n3}\|}$

if
$$\theta 1 = \theta 2$$

then
$$\angle ABP = \angle CQD$$
.....(3)
 \therefore from (1),(2) and (3) $\triangle APB \cong \triangle$ CQD

The below python code realizes the above construction:

 $https://github.com/sravani21vunnava/sravani21vunnava/\\blob/main/Matrices_line/codes/matrix_line.py$

3 Construction

