CS 6505 - Homework 7

Caitlin Beecham (Worked with Qiaomei Li)

3

- 1. Label all vertices from 1 to n. Construct a directed graph, G, from our undirected graph by orienting each edge both ways and allowing the capacity each direction to be the capacity of the underlying undirected edge.
- 2. For all pairs of vertices, (i,j), with i < j:
 - (a) Let the current residual graph be G.
 - (b) While there exists an augmenting path in the residual graph:
 - i. Find an augmenting path.
 - ii. Augment it and update the current residual graph.
 - (c) Breadth First Search from i in the residual graph to mark the component containing i.
 - (d) Identify the set, $S_{i,j}$, of all edges from the component containing i to the component containing j (everything which is not marked).
 - (e) Store the pair $(S_{i,j}, \sum_{e \in S_{i,j}} c_e)$.
- 3. Identify a pair $(S_{i,j}, \sum_{e \in S_{i,j}} c_e)$ such that $\sum_{e \in S_{i,j}} c_e$ is minimized.
- 4. Return $S_{i,j}$.

The runtime of this algorithm is $O(n^2((nm) + (n+m)) + n^2)$ because Ford Fulkerson runs in O(nm) time and BFS runs in O(n+m) time (we do these $n^2/2$ times) then finding the running min of $n^2/2$ elements takes $O(n^2)$ time.