Matrix Decomposition Proofs

Gene Yang

May 22, 2024

Contents

1	Intr	roduction	2
2	$\mathbf{L}\mathbf{U}$	Decomposition	2
	2.1	If $A = LU$, A is invertible if diagonals of L and U are nonzero	2
	2.2	If $A = LU$, principal minors of A are nonzero	3
	2.3	If principal minors of A are nonzero, $A = LU$	3
	2.4	Result	5
3	QR	Decomposition	5
4	\mathbf{Spe}	ctral Decomposition	6
	4.1	Spectral Theorem	6
		4.1.1 An eigenvector exists for a $n \times n$ symmetrical matrix $A \dots \dots$	7
		4.1.2 n eigenvectors exist for a $n \times n$ symmetrical matrix $A \dots \dots$	7
	4.2	Matrix Decomposition with the Spectral Theorem	8
5	Pola	ar Decomposition	9

1 Introduction

Matrix decomposition is a way of representing one matrix as the product of several matrices with special properties. For example, factoring a matrix into two triangular matrices L and U makes it easier to solve complicated systems of equations. Spectral decomposition gives a way to look at matrices in terms of their eigenvectors and eigenvalues, but also makes it easier to raise matrices to a power. Matrix decomposition is widely used in machine learning, quantum gates, statistics, and more.

This paper covers LU decomposition, QR decomposition, spectral decomposition (with the spectral theorem), and polar decomposition.

2 LU Decomposition

Theorem 22.2.1: "Most" $n \times n$ matrices A have the form A = LU for $n \times n$ lower triangular matrix L and $n \times n$ upper triangular matrix U. The matrix A is invertible precisely when the diagonal entries of L and U are nonzero. [1, p. 405]

First we prove that a $n \times n$ matrix A with an LU decomposition is only invertible when the diagonals of L and U are nonzero. Then we prove that an invertible square matrix A has an LU decomposition if and only if its leading principal minors are nonzero.

2.1 If A = LU, A is invertible if diagonals of L and U are nonzero

For a $n \times n$ matrix A, if an LU decomposition exists, then [1, p. 570]

$$det(A) = det(LU)$$
$$= det(L)det(U)$$

A is invertible when $det(A) \neq 0$, or $det(L), det(U) \neq 0$. The determinant of a triangular matrix is the product of its diagonal entries [1, p. 561]. Therefore, if a $n \times n$ matrix A has an LU decomposition, the diagonals of L and U must be nonzero.

2.2 If A = LU, principal minors of A are nonzero

Using block matrix notation,

$$A = \begin{bmatrix} A' & \dots \\ \vdots & \ddots \end{bmatrix} = \begin{bmatrix} L' & \mathbf{0} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} U' & \dots \\ \mathbf{0} & \ddots \end{bmatrix}$$

for some leading submatrix A' of A, a lower triangular L', and an upper triangular U'. Using the rules of block matrix multiplication,

$$det(A') = det(L'U')$$
$$= det(L')det(U')$$

Since A is invertible, L and U have nonzero diagonals from 2.1. L' and U' also have nonzero diagonals. The determinant of a triangular matrix is the product of its diagonal entries, so

$$det(L'), det(U') \neq 0$$

 $det(A') \neq 0$

This applies to all leading principal submatrices of A. If LU decomposition exists for an invertible $n \times n$ matrix A, then all its principal minors are nonzero.

2.3 If principal minors of A are nonzero, A = LU

Induction is used to prove this for the 1×1 case and generalize it to an invertible $n \times n$ matrix.

For the 1×1 case, the matrix $\begin{bmatrix} A \end{bmatrix}$ can be factored with $L = \begin{bmatrix} 1 \end{bmatrix}$, $U = \begin{bmatrix} A \end{bmatrix}$ [2, p. 17].

For the $n \times n$ case, let A_n be an invertible $n \times n$ matrix with a $(n-1) \times (n-1)$ leading principal submatrix. Assume that this submatrix A_{n-1} has an LU decomposition $A_{n-1} = L_{n-1}U_{n-1}$. Then A_n can be factored as [2, p. 17]

$$A_n = \begin{bmatrix} A_{n-1} & \mathbf{a}_1 \\ \mathbf{a}_2^T & a_3 \end{bmatrix} = \begin{bmatrix} L_{n-1} & \mathbf{0} \\ \mathbf{l}_1^T & l_2 \end{bmatrix} \begin{bmatrix} U_{n-1} & \mathbf{u}_1 \\ \mathbf{0}^T & u_2 \end{bmatrix}$$

$$A_{n-1} = L_{n-1}U_{n-1}$$

$$\mathbf{a}_1 = L_{n-1}\mathbf{u}_1$$

$$\mathbf{a}_2^T = \mathbf{l}_1^T U_{n-1}$$

$$a_3 = \mathbf{l}_1^T \mathbf{u}_1 + l_2 u_2$$

The block matrix determinant formula gives $det(A_n) = det(A_{n-1})det(a_3 - \mathbf{a}_2^T A_{n-1}^{-1} \mathbf{a}_1)$ [2, p. 17]. Plugging in values for $a_3 - \mathbf{a}_2^T A_{n-1}^{-1} \mathbf{a}_1$, we get

$$a_{3} - \mathbf{a}_{2}^{T} A_{n-1}^{-1} \mathbf{a}_{1} = (\mathbf{l}_{1}^{T} \mathbf{u}_{1} + l_{2} u_{2}) - (\mathbf{l}_{1}^{T} U_{n-1}) (A_{n-1}^{-1}) (L_{n-1} \mathbf{u}_{1})$$

$$= (\mathbf{l}_{1}^{T} \mathbf{u}_{1} + l_{2} u_{2}) - (\mathbf{l}_{1}^{T} U_{n-1}) (U_{n-1}^{-1} L_{n-1}^{-1}) (L_{n-1} \mathbf{u}_{1})$$

$$= (\mathbf{l}_{1}^{T} \mathbf{u}_{1} + l_{2} u_{2}) - \mathbf{l}_{1}^{T} \mathbf{u}_{1}$$

$$= l_{2} u_{2}$$

 A_n is invertible, so L_n and U_n have nonzero diagonals by 2.1 and $l_2u_2 \neq 0$. By 2.2, $det(A_{n-1})$ is nonzero because the assumption was that it has an LU decomposition. Therefore,

$$det(A_n) = det(A_{n-1})det(a_3 - \mathbf{a}_2^T A_{n-1}^{-1} \mathbf{a}_1)$$
$$det(A_n) \neq 0$$

If an invertible $n \times n$ matrix A has nonzero principal minors, then it has an LU decomposition.

2.4 Result

- 1. If an LU decomposition exists for A, its principal minors are nonzero. (2.2)
- 2. If the principal minors of A are nonzero, an LU decomposition exists for A. (2.3)

Invertible $n \times n$ matrices have LU decomposition if and only if their principal minors are nonzero.

3 QR Decomposition

Theorem 22.2.1: An invertible $n \times n$ matrix A can be written as A = QR where Q is an $n \times n$ orthogonal matrix and R is an $n \times n$ upper triangular matrix.

Rewrite A in terms of its column vectors, so that

$$A = \begin{bmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \\ | & | & | \end{bmatrix}$$

Carrying out the Gram-Schmidt process on the columns of A,

$$\begin{split} \mathbf{q}_1 &= \mathbf{a}_1/\|\mathbf{a}_1\| \\ \mathbf{q}_2 &= (\mathbf{a}_2 - \frac{\mathbf{q}_1 \cdot \mathbf{a}_2}{\mathbf{q}_1 \cdot \mathbf{q}_1} \mathbf{q}_1)/\|\mathbf{a}_2 - \frac{\mathbf{q}_1 \cdot \mathbf{a}_2}{\mathbf{q}_1 \cdot \mathbf{q}_1} \mathbf{q}_1\| \\ &\vdots \end{split}$$

$$\mathbf{q}_n = (\mathbf{a}_n - \sum_{i=1}^{n-1} rac{\mathbf{q}_i \cdot \mathbf{a}_n}{\mathbf{q}_i \cdot \mathbf{q}_i} \mathbf{q}_i) / \|\mathbf{a}_n - \sum_{i=1}^{n-1} rac{\mathbf{q}_i \cdot \mathbf{a}_n}{\mathbf{q}_i \cdot \mathbf{q}_i} \mathbf{q}_i \|$$

Solving for $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$ gives

$$\mathbf{a}_1 = \|\mathbf{a}_1\|\mathbf{q}_1$$

$$\mathbf{a}_2 = \|\mathbf{a}_2 - \frac{\mathbf{q}_1 \cdot \mathbf{a}_2}{\mathbf{q}_1 \cdot \mathbf{q}_1}\mathbf{q}_1\|\mathbf{q}_2 + \frac{\mathbf{q}_1 \cdot \mathbf{a}_2}{\mathbf{q}_1 \cdot \mathbf{q}_1}\mathbf{q}_1$$

$$\vdots$$

$$\mathbf{a}_n = \|\mathbf{a}_n - \sum_{i=1}^{n-1} \operatorname{proj}_{\mathbf{q}_i} \mathbf{a}_n\|\mathbf{q}_n + \sum_{i=1}^{n-1} \operatorname{proj}_{\mathbf{q}_i} \mathbf{a}_n$$

A can now be factored as QR, with [3, p. 3]

$$\begin{bmatrix} | & | & | & | \\ | & | & | & | \\ | \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ | \mathbf{q}_1 & \mathbf{q}_2 & \dots & \mathbf{q}_n \\ | & | & | & | \end{bmatrix} \begin{bmatrix} \|\mathbf{a}_1\| & \frac{\mathbf{q}_1 \cdot \mathbf{a}_2}{\mathbf{q}_1 \cdot \mathbf{q}_1} & \dots & \frac{\mathbf{q}_1 \cdot \mathbf{a}_n}{\mathbf{q}_1 \cdot \mathbf{q}_1} \\ 0 & \|\mathbf{a}_2 - \frac{\mathbf{q}_1 \cdot \mathbf{a}_2}{\mathbf{q}_1 \cdot \mathbf{q}_1} \mathbf{q}_1\| & \dots & \frac{\mathbf{q}_2 \cdot \mathbf{a}_n}{\mathbf{q}_2 \cdot \mathbf{q}_2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \|\mathbf{a}_n - \sum_{i=1}^{n-1} \operatorname{proj}_{\mathbf{q}_i} \mathbf{a}_n\| \end{bmatrix}$$

Any invertible $n \times n$ matrix A can be factored as A = QR. Q is an orthogonal matrix, since its columns were found using the Gram-Schmidt process. R is an upper triangular matrix.

4 Spectral Decomposition

First the Spectral Theorem is proven, then the existence of matrix decomposition with the Spectral Theorem is proven.

4.1 Spectral Theorem

Theorem 24.1.4: Let A be a *symmetric* $n \times n$ matrix. There is an orthogonal basis \mathbf{w}_1 , \mathbf{w}_2 , ..., \mathbf{w}_n consisting of eigenvectors for A. The corresponding eigenvalues are all of the eigenvalues for A: if \mathbf{w}_j has eigenvalue λ_j then any eigenvalue of A equals some λ_j . [1, p. 446]

4.1.1 An eigenvector exists for a $n \times n$ symmetrical matrix A

We can prove that an eigenvector of A exists at a maximum of the Rayleigh quotient $\frac{q_A(\mathbf{v})}{\|\mathbf{v}\|^2}$ [1, p. 543]. Lagrange multipliers can be used to maximize $f(\mathbf{v}) = q_A(\mathbf{v})$ with constraint $g(\mathbf{v}) = \|\mathbf{v}\|^2 = 1$.

$$(\nabla f)(\mathbf{v}) = \nabla(\mathbf{v}^T A \mathbf{v}) = 2A\mathbf{v}$$

$$(\nabla g)(\mathbf{v}) = \nabla(\mathbf{v} \cdot \mathbf{v}) = 2\mathbf{v}$$

 $2\mathbf{v} \neq 0$, because \mathbf{v} is an eigenvector of A, and eigenvectors are nonzero. Then $2A\mathbf{v} = \lambda 2\mathbf{v}$, or $A\mathbf{v} = \lambda \mathbf{v}$, which is the definition of an eigenvector [1, p. 545]. Therefore, an eigenvector exists for any $n \times n$ symmetrical matrix A.

4.1.2 n eigenvectors exist for a $n \times n$ symmetrical matrix A

From the last section, a symmetric $n \times n$ matrix A has at least 1 eigenvector. Let $\mathbf{v} \in \mathbf{R}^n$ be an eigenvector of A. An orthonormal basis \mathbf{h}_1 , \mathbf{h}_2 , ..., \mathbf{h}_{n-1} for \mathbf{v}^{\perp} can be made using the Gram-Schmidt process [1, p. 542]. Vectors in \mathbf{v}^{\perp} are represented as $\mathbf{h} = \sum_{i=1}^{n-1} c_i \mathbf{h}_i$ for some constants c_i .

A $(n-1) \times (n-1)$ matrix B that uses the vectors \mathbf{h}_1 , \mathbf{h}_2 , ..., \mathbf{h}_{n-1} as its columns can be constructed. Then the column space of B is \mathbf{v}^{\perp} .

B is symmetric if $(B\mathbf{v}) \cdot \mathbf{w} = \mathbf{v} \cdot (B\mathbf{w})$ for all $\mathbf{v}, \mathbf{w} \in \mathbf{R}^{n-1}$ [1, p. 541]. This is a special case of $(A\mathbf{v}) \cdot \mathbf{w} = \mathbf{v} \cdot (A\mathbf{w})$ for all $\mathbf{v}, \mathbf{w} \in \mathbf{R}^{n-1}$ [1, p. 542]. $(A\mathbf{v}) \cdot \mathbf{w}$ is equal to $\mathbf{v} \cdot (A\mathbf{w})$ because A is symmetric, so B is also symmetric and it has at least 1 eigenvector.

Similarly, $B\mathbf{x} \in \mathbf{R}^{n-1}$ is a special case of $A\mathbf{h} \in \mathbf{R}^{n-1}$, where $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_{n-1} \end{bmatrix}$ and $\mathbf{h} = \sum_{i=1}^{n-1} x_i \mathbf{h}_i$ [1, p. 542]. Based on this, $B\mathbf{x} = \lambda \mathbf{x}$ is equivalent to $A\mathbf{h} = \lambda \mathbf{h}$ for some λ [1, p. 542]. The eigenvectors of B are also the eigenvectors of A. B's eigenvectors are orthogonal to A's eigenvector \mathbf{v} , because $\mathbf{x} \in \mathbf{v}^{\perp}$.

The process of finding eigenvalues can be continued from B to a $(n-2) \times (n-2)$ matrix, $(n-3) \times (n-3)$ matrix, and so on. In total, there are n eigenvectors of A, and since they're orthogonal to each other, they form a basis.

4.2 Matrix Decomposition with the Spectral Theorem

Theorem 24.4.1: Let A be a symmetric $n \times n$ matrix with orthogonal eigenvectors \mathbf{w}_1 , \mathbf{w}_2 , ..., \mathbf{w}_n , having corresponding eigenvalues λ_1 , λ_2 , ..., λ_n . Let W be the $n \times n$ matrix whose columns are the respective unit eigenvectors

$$\frac{\mathbf{w}_1}{\|\mathbf{w}_1\|}, \frac{\mathbf{w}_2}{\|\mathbf{w}_2\|}, \dots, \frac{\mathbf{w}_n}{\|\mathbf{w}_n\|}$$

Then W is an orthogonal matrix and $A=WDW^T=WDW^{-1}$ for the diagonal matrix

$$D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

whose entries are the corresponding eigenvalues. [1, p. 454]

For the matrix W and D,

$$AW = A \begin{bmatrix} | & | & | & | \\ \frac{\mathbf{w}_1}{\|\mathbf{w}_1\|} & \frac{\mathbf{w}_2}{\|\mathbf{w}_2\|} & \dots & \frac{\mathbf{w}_n}{\|\mathbf{w}_n\|} \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ A(\frac{\mathbf{w}_1}{\|\mathbf{w}_1\|}) & A(\frac{\mathbf{w}_2}{\|\mathbf{w}_2\|}) & \dots & A(\frac{\mathbf{w}_n}{\|\mathbf{w}_n\|}) \end{bmatrix}$$

$$WD = \begin{bmatrix} | & | & | & | \\ \frac{\mathbf{w}_1}{\|\mathbf{w}_1\|} & \frac{\mathbf{w}_2}{\|\mathbf{w}_2\|} & \dots & \frac{\mathbf{w}_n}{\|\mathbf{w}_n\|} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \lambda_1(\frac{\mathbf{w}_1}{\|\mathbf{w}_1\|}) & \lambda_2(\frac{\mathbf{w}_2}{\|\mathbf{w}_2\|}) & \dots & \lambda_n(\frac{\mathbf{w}_n}{\|\mathbf{w}_n\|}) \end{bmatrix}$$

AW = WD, since for all i, $A\mathbf{w}_i = \lambda_i \mathbf{w}_i$ by definition of eigenvectors and eigenvalues, so $A(\frac{\mathbf{w}_i}{\|\mathbf{w}_i\|}) = \lambda_i(\frac{\mathbf{w}_i}{\|\mathbf{w}_i\|})$.

From the Spectral Theorem, eigenvectors \mathbf{w}_1 , \mathbf{w}_2 , ..., \mathbf{w}_n of A are orthogonal to each other. Therefore, W must be an orthogonal matrix, since its columns $\frac{\mathbf{w}_1}{\|\mathbf{w}_1\|}$, $\frac{\mathbf{w}_2}{\|\mathbf{w}_2\|}$, ..., $\frac{\mathbf{w}_n}{\|\mathbf{w}_n\|}$ are an orthonormal basis [1, p. 359]. The inverse and transpose of orthogonal matrices are equal.

$$AW = WD$$

$$A = WDW^{-1} \text{ or } A = WDW^T$$

A symmetric $n \times n$ matrix has orthogonal eigenvectors from the Spectral Theorem, and can be factored as $A = WDW^{-1}$ or $A = WDW^{T}$. W is the orthogonal matrix with unit eigenvectors as its columns, and D is the diagonal matrix with eigenvalues in its diagonal.

5 Polar Decomposition

Theorem B.4.2: If A is an invertible $n \times n$ matrix, then we can uniquely write A = QS where Q is an orthogonal $n \times n$ matrix and S is a positive-definite symmetric $n \times n$ matrix. [1, p. 550]

Singular Value Decomposition says that a $n \times n$ matrix can be factored as $A = QDQ'^T$. D is a diagonal matrix with a positive diagonal. Q and Q'^T are orthogonal matrices [1, p. 510].

$$A = Q_0 D_0 Q_0^{\prime T}$$

$$A = Q_0 (Q_0^{\prime -1} Q_0^{\prime}) D_0 Q_0^{\prime T}$$

$$A = (Q_0 Q_0^{\prime -1}) (Q_0^{\prime} D_0 Q_0^{\prime T})$$

 Q'_0 is an orthogonal matrix, so its inverse ${Q'_0}^{-1}$ is also orthogonal [1, p. 551]. A product of orthogonal matrices is orthogonal, so $(Q_0 {Q'_0}^{-1})$ is also orthogonal [1, p. 359].

Writing out $Q_0' D_0 Q_0'^T$,

$$Q'_{0}D_{0}Q'_{0}^{T} = \begin{bmatrix} q_{11} & q_{12} & \dots & q_{1n} \\ q_{21} & q_{22} & \dots & q_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ q_{n1} & q_{n2} & \dots & q_{nn} \end{bmatrix} \begin{bmatrix} d_{11} & 0 & \dots & 0 \\ 0 & d_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_{nn} \end{bmatrix} \begin{bmatrix} q_{11} & q_{21} & \dots & q_{n1} \\ q_{12} & q_{22} & \dots & q_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ q_{1n} & q_{2n} & \dots & q_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} q_{11}^{2}d_{11} & 0 & \dots & 0 \\ 0 & q_{22}^{2}d_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q_{nn}^{2}d_{nn} \end{bmatrix}$$

The diagonal entries d_{11} , d_{22} , ..., d_{nn} of D_0 are positive, so $Q'_0D_0Q'^T_0$ is a diagonal matrix with positive diagonal entries, or a positive-definite symmetric matrix.

An invertible $n \times n$ matrix A can be factored as A = QS, where Q is an orthogonal $n \times n$ matrix and S is a positive-definite symmetric $n \times n$ matrix.

References

- [1] Stanford University Math Department. Linear Algebra, Multivariable Calculus, and Modern Applications. 2023.
- [2] Jun Lu. Matrix Decomposition and Applications. URL: https://arxiv.org/pdf/2201.00145. (accessed: 5.18.2024).
- [3] Padraic Bartlett. Applications of Orthogonality: QR Decompositions. URL: https://web.math.ucsb.edu/~padraic/ucsb_2013_14/math108b_w2014/math108b_w2014_lecture4.pdf. (accessed: 5.19.2024).