MUSA 174 Homework 1

Aniruddh V.

August 2023

1 Problem 1.1.i

Solution Let C be a category, and let $f: x \to y$, $g: y \to x$ and h: be a morphisms such that $gf = 1_x$ and $fh = 1_y$. Then, g = h, since

$$g = g1_y = g(fh) = (gf)h = 1_x h = h$$

Then f is an isomorphism as well, since there is a morphism $f^{-1} = g = h$ such that $f^{-1}f = 1_x$ and $ff^{-1} = 1_y$.

2 Problem 1.1.iii.i

Solution Fixing a category C and an object $c \in C$, define a new category c/C such that:

- Objects in c/C are morphisms in C whose domain is c, or morphisms in C of the form $f:c\to x$
- A morphism in c/C with domain $f:c\to x$ and codomain $g:c\to y$ is another morphism $h:x\to y$ in C such that g=hf, or so that the following diagram commutes:

- Identity elements for each object $f:c\to x$ will be the corresponding identity morphism $1_x:x\to x$ in C
- Given three objects $o_1: c \to x_1, o_2: c \to x_2$, and $o_3: c \to x_3$, with morphisms $m_1: x_1 \to x_2$ and $m_2: x_2 \to x_3$, define the composition

 $m_2 \circ m_1$ so that the following diagram commutes.

By the first diagram, $o_2 = m_1 o_1$ and $o_3 = m_2 o_2$. Combining these gives $o_3 = m_2 m_1 o_1$ or $o_3 = (m_2 \circ m_1) o_1$

• Since all morphisms are some type of mapping, they are assosciative as well

Thus c/C meets all the requirements to be a category.