math50 q5

Definition 11.2.1

If T is a function with domain \mathbb{R}^n and codomain \mathbb{R}^m , we say that T is a **transformation** from \mathbb{R}^n to \mathbb{R}^m , or that T maps from \mathbb{R}^n to \mathbb{R}^m , denoted by

$$T: \mathbb{R}^n \to \mathbb{R}^m$$
.

In the special case where m = n, a transformation is sometimes called an **operator** on \mathbb{R}^n .

Transformations $T:\mathbb{R}^n\to\mathbb{R}^m$ often arise from linear systems. Suppose we have the linear system

$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ y_m = a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{cases} \Leftrightarrow \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & \dots & a_{2,n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m,1} & a_{m,2} & a_{m,3} & \dots & a_{m,n} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

or, as a matrix equation,

$$y = Ax$$
.

We have previously viewed this as a problem where we are given A and y, and we are to solve for x. But an equation of this form looks like a regular function (such as y = 2x).

If $A \in \mathbb{R}^{m \times n}$, we can think of the equation $\mathbf{y} = A\mathbf{x}$ as a function that maps an input vector $\mathbf{x} \in \mathbb{R}^n$ to an output vector $\mathbf{y} \in \mathbb{R}^m$.

Definition 11.2.2

Let A be an $m \times n$ matrix. Then we denote with T_A the function or transformation

$$T_A: \mathbb{R}^n \to \mathbb{R}^m$$

where

$$T_A(\mathbf{x}) = A\mathbf{x}$$

for all $\mathbf{x} \in \mathbb{R}^n$. The matrix A is called the **standard matrix** for T_A . If $\mathbf{x} = (x_1, x_2, ..., x_n)$, we may alternatively write

$$T_A(\mathbf{x}) = T_A(x_1, x_2, ..., x_n)$$

The functions above are called **linear transformations** because of the following properties:

Theorem 11.2.3

Let $T_A: \mathbb{R}^n \to \mathbb{R}^m$. Then for any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and $k \in \mathbb{R}$,

- (a) $T_A(\mathbf{u} + \mathbf{v}) = T_A(\mathbf{u}) + T_A(\mathbf{v})$
- (b) $T_A(k\mathbf{u}) = kT_A(\mathbf{u})$

Example. Let $A = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$. Then, T_A is a function from \mathbb{R}^2 to \mathbb{R}^2 . Describe the output of T_A with respect to its input algebraically.

Solution.

The value of
$$T_A(x, y)$$
 is $\begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x \\ -y \end{bmatrix}$.

Therefore, we can describe T_A by $T_A(x,y) = (2x, -y)$.

Example. Let $A = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$. Then, T_A is a function from \mathbb{R}^3 to \mathbb{R}^2 . Describe the output of T_A with respect to its input algebraically.

Solution.

The value of
$$T_A(x, y, z)$$
 is $\begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -y + z \\ x + 2z \end{bmatrix}$.

Therefore, we can describe T_A by $T_A(x, y, z) = (z - y, x + 2z)$.

To see why, consider $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

Notice what happens if we multiply A to the standard basis vectors.

$$A\mathbf{e_1} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \qquad A\mathbf{e_2} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

In general, multiplying A by the standard basis vector \mathbf{e}_i will yield the ith column of A.

Since matrix multiplication by A is the same as applying the transformation T_A , we now have a procedure for obtaining the matrix for a given transformation.

Theorem 11.2.4

Let A be an $m \times n$ matrix, and consider $T_A : \mathbb{R}^n \to \mathbb{R}^m$. Then,

$$A = [T_A(\mathbf{e}_1) \mid T_A(\mathbf{e}_2) \mid \cdots \mid T_A(\mathbf{e}_n)]$$

Theorem 11.2.5

A function $f: \mathbb{R}^n \to \mathbb{R}^m$ has a standard matrix if and only if f is a linear transformation, i.e. it satisfies

(a)
$$f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$$

(b)
$$f(k\mathbf{u}) = kf(\mathbf{u})$$

Operator	Illustration	Images of e ₁ and e ₂	Standard Matrix
Reflection about the <i>x</i> -axis $T(x,y) = (x, -y)$	$T(\mathbf{x})$ (x, y) $(x, -y)$	$T(\mathbf{e}_1) = T(1,0) = (1,0)$ $T(\mathbf{e}_2) = T(0,1) = (0,-1)$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Reflection about the y-axis $T(x,y) = (-x,y)$	(-x,y) (x,y) (x,y)	$T(\mathbf{e}_1) = T(1,0) = (-1,0)$ $T(\mathbf{e}_2) = T(0,1) = (0,1)$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Reflection about the line $y = x$ T(x,y) = (y,x)	$y = x$ (y, x) $x \Rightarrow (x, y)$	$T(\mathbf{e}_1) = T(1,0) = (0,1)$ $T(\mathbf{e}_2) = T(0,1) = (1,0)$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Operator	Illustration	Images of e ₁ and e ₂	Standard Matrix
Orthogonal projection onto the <i>x</i> -axis $T(x,y) = (x,0)$	x (x, y) $T(x)$	$T(\mathbf{e}_1) = T(1,0) = (1,0)$ $T(\mathbf{e}_2) = T(0,1) = (0,0)$	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
Orthogonal projection onto the y-axis $T(x,y) = (0,y)$	$(0,y)$ $T(\mathbf{x})$ \mathbf{x} (x,y)	$T(\mathbf{e}_1) = T(1,0) = (0,0)$ $T(\mathbf{e}_2) = T(0,1) = (0,1)$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Operator	Illustration	Images of e ₁ and e ₂	Standard Matrix
Counterclockwise rotation about the origin through an angle θ	(w_1, w_2) (x, y)	$T(\mathbf{e}_1) = T(1,0) = (\cos \theta, \sin \theta)$ $T(\mathbf{e}_2) = T(0,1) = (-\sin \theta, \cos \theta)$	$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

Definition 11.5.1

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r\}$ be a subset of \mathbb{R}^n . We say that S spans \mathbb{R}^n if every vector in \mathbb{R}^n can be expressed as a linear combination of vectors in S.

It turns out that in order to determine if a set of vectors S spans \mathbb{R}^n , we simply need to solve a linear system.

Example. Show that the set
$$S = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \begin{bmatrix} -2\\0\\1 \end{bmatrix} \right\}$$
 spans \mathbb{R}^3 .

Solution. Let $\mathbf{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ be a vector in \mathbb{R}^3 . We want to find constants k_1, k_2, k_3 such that

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = k_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + k_2 \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + k_3 \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$

which gives a linear system in terms of k_1, k_2, k_3 .

$$\begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

We can verify that the coefficient matrix is invertible, hence the system has a unique solution. Since the system has a solution, we can say that S spans \mathbb{R}^3 .

Example. Show that the set
$$S = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \end{bmatrix} \right\}$$
 does not span \mathbb{R}^2 .

Solution. To show that a set does not span \mathbb{R}^2 , we just need to find one vector \mathbf{v} which cannot be expressed as a linear combination of the vectors in S. You can verify that the vector (-1,0) cannot be expressed as a linear combination of the vectors in S.

"Is \boldsymbol{b} in Span $\{\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_p\}$?"

- 1. Set up the vector equation $x_1 v_1 + x_2 v_2 + \cdots + x_p v_p = b$
- 2. Construct and row-reduce the augmented matrix corresponding to this vector equation
- 3. If the vector equation is consistent, then **yes**, **b** is in $\mathrm{Span}\{v_1,v_2,...,v_p\}$. If the vector equation is inconsistent, then **no**, **b** is **not** in $\mathrm{Span}\{v_1,v_2,...,v_p\}$

"Does the set $\{oldsymbol{v}_1,oldsymbol{v}_2,...,oldsymbol{v}_p\}$ span \mathbb{R}^n ?"

- 1. Using the Spanning Columns Theorem, we need to know whether the matrix whose columns are $v_1, v_2, ..., v_p$ has a pivot in every row
- 2. Construct and row-reduce this matrix
- 3. If there is a pivot in every row, then **yes**, $\{v_1, v_2, ..., v_p\}$ spans \mathbb{R}^n . If there is not a pivot in every row, then **no**, $\{v_1, v_2, ..., v_p\}$ does not span \mathbb{R}^n .

Definition 11.6.1

Let $S = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r}$ be a subset of \mathbb{R}^n . We say that S is **linearly independent** when the vector equation

$$k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + \dots + k_r\mathbf{v}_r = \mathbf{0}$$

has only the trivial solution

$$k_1 = 0, k_2 = 0, ..., k_r = 0.$$

If there are other solutions, then S is linearly dependent.

Checking if a set of vectors is linearly independent amounts to setting up a *homogeneous linear* system and checking if the solution is unique. If the system has a unique solution, then the set is linearly independent.

Example. Determine if the set
$$S = \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} \right\}$$
 is linearly independent.

Solution.

We set up the vector equation

$$k_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + k_2 \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + k_3 \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

This gives the linear system

$$\begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Applying Gauss-Jordan or attempting to find the inverse of the coefficient matrix shows that the system has a unique solution, so S is linearly independent.

Definition 11.6.3

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r\}$ be a subset of \mathbb{R}^n . We say S is a **basis** for \mathbb{R}^n if S is a linearly independent set which spans \mathbb{R}^n .

Let S is a basis whose vectors are ordered $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r$. If a vector $\mathbf{w} \in \mathbb{R}^n$ is written as a linear combination

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \cdots k_r \mathbf{v}_r$$

then $k_1, k_2, ..., k_r$ are called the **coordinates** of **w** relative to the basis S. We can represent **w** with a **coordinate vector relative to S**:

$$[\mathbf{w}]_S = \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_r \end{bmatrix}$$

Theorem 11.6.4

Let $S = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r}$ be a subset of \mathbb{R}^n . S is a basis for \mathbb{R}^n if <u>at least two</u> of the following conditions hold.

- 1. |S| = n.
- 2. S spans \mathbb{R}^n .
- 3. S is linearly independent.

Furthermore, if any of the above conditions do not hold, S is not a basis for \mathbb{R}^n .

Solution.

Note that S contains 2 vectors.

We now show S is linearly independent. We set up the vector equation

$$k_1 \begin{bmatrix} -1 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

which gives the linear system

$$\begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Since the coefficient matrix is invertible, this system has a unique solution. Therefore S is linearly independent.

Since S contains 2 linearly independent vectors in \mathbb{R}^2 , it forms a basis for \mathbb{R}^2 .

To find the coordinates of $\mathbf{w} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$ relative to S, we set up the vector equation

$$k_1 \begin{bmatrix} -1 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

which gives the linear system

$$\begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

This system has the solution

$$\begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

Therefore, $[\mathbf{w}]_S = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.