Week 2

Relational Database Concepts

IBM Corporation. All rights reserved.

Relational Model

- Most used data model
- Allows for data independence
- Data is stored in a tables.

logical data independence - physical data independence - physical storage independence

Entity-Relationship Model

Used as a tool to design relational databases

Mapping Entity Diagrams to Tables

- Entities become tables
- Attributes get translated into columns

Table: Book

Title	Edition	Year	Price	ISBN	Pages	Aisle	Description
Database Fundamentals	1	2010	24.99	978-0- 98662 83-1-1	300	DB- A02	Teaches you the fundamentals of databases
Getting started with DB2 Express-C	1	2010	24.99	978- 0- 9866 283- 5-1	280	DB- A01	Teaches you the essentials of DB2 using DB2 Express-C, the free version of DB2

Primary Keys and Foreign Keys

Summary

Now you know:

- The key advantage of the relational model is data independence
- Entities are independent objects which have Attributes
- Entities map to Tables in a Relational Database
- Attributes map to Columns in a Table
- Common data types include characters, numbers, and dates/times
- · A Primary Key uniquely identifies a specific row in a table

How to create a Database instance on cloud

In this video...

- Cloud Database Basics
- List some Cloud Databases
- Describe a Database Instance
- Create an instance of IBM Db2 on Cloud

Cloud databases

- ✓ Ease of Use and Access
 - API
 - Web Interface
 - Cloud or Remote Applications
- ✓ Scalability & Economics
 - Expand/Shrink Storage & Compute Resources
 - Pay per use
- ✓ Disaster Recovery
 - Cloud Backups and Geographical Distribution

Examples of Cloud databases

- IBM Db2
- Databases for PostgreSQL
- Oracle Database Cloud Service
- Microsoft Azure SQL Database
- Amazon Relational Database Services (RDS)

Available as:

- VMs or Managed Service
- Single or Multi-tenant

Database service instances

- DBaaS provides users with access to Database resources in cloud without setting up hardware and installing software.
- Database service instance holds data in data objects / tables

Once data is loaded, it can be queried using web interfaces and applications

Creating a database instance on IBM Db2 on Cloud

What are the advantages of using cloud databases

- Ease of Use and Management
- Scalability
- O Disaster Recovery
- All of the above

✓ Correct

Correct! All of the above are advantages of using cloud databases. Cost and paying for only the resources you utilize may be another advantage.

Skip

Continue

Deploy an instance of Db2 on Cloud Service

Create a new service

View the newly created service

Manage the database instance

Create new service credentials

Service credentials

Service credentials

```
Date created
        Key name
        Service credentials-1
                                                 MAY 4, 2020 - 04:29:29 PM
 "db": "BLUDB",
 "dsm": "DATABASE=BLUDB; HDSTNAME=dashdb-txm-sbox-yp-dal09-04.services.dal.bluemix.met; PDRT=50000; PROTOCOL=
TCPIP:UID=lct12338;PWD=zgzvrlmlmbzv+pgg;".
  "host": "dashdb-txn-shox-yp-da169-64.services.dal.blusmix.net",
 "hostname": "dashdb-txn-sbox-ye-dal09-04.services.dal.bluemix.met",
 "https.url": "https://dashdb-txn-sbox-yg-dal09-04.services.dal.bluemix.net",
  "idbcurl": "jdbc:db2://dashdb-txn-sbox-yp-dal99-84.services.dal.bluemix.net:58888/8LUDB",
  "parameters": [].
  "password": "
  "port": 50000;
 "saldan"; "OATABASE-BLUOB; HOSTRAME-dashdb-txn-sbox-vp-dal09-84.services.dal.bluemix.net; PORT-50001; PROTOC
OL=TCPIP;UID=Ict12330;PW0=zgzvrlml=bzv+pzg;Security=SSL;".
  "sslidbcurl": "idbc:db2://dashdb-txn-sbox-yp-da169-84.services.dal.bluemix.net:50001/BLUDE:sslConnection=
true: ".
  "uri": "db2://lct12336:zgzvrImlmbzvm28pgg8dasbdb-txn-sbox-yp-dal09-84.services.dal.nlucmix.net:50006/BLUD
  "username": "lct12330"
```

Types of SQL statements

DDL vs. DML

IBM Corporation. All rights reserved.

Objectives

At the end of this video, you will be able to:

 Distinguish between Data Definition Language statements and Data **Manipulation Language statements**

Types of SQL Statements - DDL

- SQL Statement types: DDL and DML
- DDL (Data Definition Language) statements:
 - · Define, change, or drop data
- Common DDL:
 - CREATE
 - ALTER
 - TRUNCATE
 - DROP

Types of SQL Statements - DML

- DML (Data Manipulation Language) statements:
 - · Read and modify data
 - CRUD operations (Create, Read, Update & Delete rows)
- Common DML:
 - INSERT
 - SELECT
 - UPDATE
 - DELETE

Summary

Now you know that:

- DDL used for defining objects (tables)
- DML used for manipulating data in tables

CREATE TABLE Statement

IBM Corporation. All rights reserved.

Objectives

At the end of this video, you will be able to:

· Create a Table in a relational database using Entity Name, Attributes and the **CREATE TABLE statement**

CREATE table

Syntax:

```
CREATE TABLE table name
   column_name_1 datatype optional_parameters,
   column name 2 datatype,
   column name n datatype
```

EXAMPLE

Create a table for Canadian provinces

```
CREATE TABLE provinces (
   id char (2) PRIMARY KEY NOT NULL,
   name varchar(24)
```

id char(2)	name varchar(24)
AB	ALBERTA
BC	BRITISH COLUMBIA
***	***

Create a table

Primary Key: Uniquely Identifies each Row in a Table

CREATE TABLE Statement

To create the Author table, use the following columns and datatypes:

AUTHOR(Author_ID:char, Lastname:varchar, Firstname:varchar, Email:varchar, City:varchar, Country:char)

```
CREATE TABLE author (

author_id CHAR(2) PRIMARY KEY NOT NULL,

lastname VARCHAR(15) NOT NULL,

firstname VARCHAR(15) NOT NULL,

email VARCHAR(40),

city VARCHAR(15),

country CHAR(2)
```

CREATE TABLE Statement

To create the Author table, use the following columns and datatypes:

AUTHOR(Author_ID:char, Lastname:varchar, Firstname:varchar, Email:varchar, City:varchar, Country:char)

```
CREATE TABLE author (
author_id CHAR(2) PRIMARY KEY NOT NULL,
lastname VARCHAR(15) NOT NULL,
firstname VARCHAR(15) NOT NULL,
email VARCHAR(40),
city VARCHAR(15),
country CHAR(2)
```

Summary

Now you know that:

- CREATE used for creating entities (tables) in a relational database
- CREATE TABLE statement includes definition of attributes (columns):
 - Names of columns
 - Datatypes of columns
 - · Constraints (e.g. Primary Key)

ALTER, DROP, and TRUNCATE Tables

IBM Corporation. All rights reserved.

Objectives

After watching this video, you will be able to:

- · Describe the ALTER TABLE, DROP TABLE, and TRUNCATE statements
- Explain the syntax
- · Use the statement in queries

ALTER TABLE ... ADD COLUMN

- Add or remove columns
- Modify the data type of columns
- Add or remove keys
- Add or remove constraints

```
ALTER TABLE <table_name>
  ADD COLUMN <column_name_1> datatype
  ADD COLUMN <column_name_n> datatype;
```

ALTER TABLE ... ADD COLUMN

```
ALTER TABLE author
 ADD COLUMN telephone_number BIGINT;
```

author_id	lastna me	firstna me	email	city	country	telepho ne_numb er
1001	Thomas	John	johnt@	New York	USA	5551111
1002	James	Alice	alicej@	Seattle	USA	5551112
1003	Wells	Steve	stevew:@	Montreal	Canada	5552222
1004	Kumar	Santosh	kumars@	London	UK	5553333

ALTER TABLE ... ALTER COLUMN

ALTER TABLE author ALTER COLUMN telephone_number SET DATA TYPE CHAR(20);

author_id	lastna me	firstna me	email	city	country	telepho ne_numb er
1001	Thomas	John	johnt@	New York	USA	555-1111
1002	James	Alice	alicej@	Seattle	USA	555-1112
1003	Wells	Steve	stevew@	Montreal	Canada	555-2222
1004	Kumar	Santosh	kumars@	London	UK	555-3333

ALTER TABLE ... DROP COLUMN

ALTER TABLE author DROP COLUMN telephone_number;

author_id	lastna me	firstna me	email	city	country
1001	Thomas	John	johnt@	New York	USA
1002	James	Alice	alicej@	Seattle	USA
1003	Wells	Steve	stevew:@	Montreal	Canada
1004	Kumar	Santosh	kumars@	London	UK

DROP TABLE

TRUNCATE TABLE

TRUNCATE TABLE author IMMEDIATE;

author_id	lastna me	firstna me	email	city	country

Summary

In this video, you learned that:

- The ALTER TABLE statement changes the structure of an existing table, for example to add, modify, or drop columns
- · The DROP TABLE statement deletes an existing table
- The TRUNCATE TABLE statement deletes all rows of data in a table

