1B Descriptive Stats

Contents

1BDes	criptive Statistics
B.1	Univariate, bivariate, and multivariate data
B.2	Speed of Light Data
B.3	Population vs Sample
B.4	Histogram
B.5	Frequency vs Relative Frequency
B.6	Sample Mean, Sample Variance and Sample SD
B.7	Five Number Summary of Data
B.8	Sample median
B.9	Get quartiles by INCLUDING median
B.10	Inter-Quartile Range is $(Q3$ - $Q1)$:
B.11	Use 5 number summary to draw a box-plot
B.12	Outlier
B.13	Relate Histogram and Boxplot 1
B.14	Relate Histogram and Boxplot 2
B.15	Be able to calculate variance by hand
B.16	Mean is larger than Median for right skewed data
B.17	Mean is much more sensitive than Median
B.18	Can you get quantiles by looking at Histogram

1B Descriptive Statistics

[ToC]

B.1 Univariate, bivariate, and multivariate data

- Univariate
- Bivariate
- Multivariate

B.2 Speed of Light Data

```
Light
[1] 299.85 299.74 299.90 300.07 299.93 299.85 299.95 299.98 299.98
[10] 299.88 300.00 299.98 299.93 299.65 299.76 299.81 300.00 300.00
[19] 299.96 299.96 299.96 299.94 299.96 299.94 299.88 299.80 299.85
[28] 299.88 299.90 299.84 299.83 299.79 299.81 299.88 299.88 299.83
[37] 299.80 299.79 299.76 299.80 299.88 299.88 299.88 299.86 299.72
[46] 299.72 299.62 299.86 299.97 299.95 299.88 299.91 299.85 299.87
[55] 299.84 299.84 299.85 299.84 299.84 299.84 299.89 299.81 299.81
[64] 299.82 299.80 299.77 299.76 299.74 299.75 299.76 299.91 299.92
[73] 299.89 299.86 299.88 299.72 299.84 299.85 299.85 299.78 299.89
[82] 299.84 299.78 299.81 299.76 299.81 299.79 299.81 299.82 299.85
[91] 299.87 299.87 299.81 299.74 299.81 299.94 299.95 299.80 299.81
[100] 299.87
```

```
mean(Light)
[1] 299.8524
var(Light)
[1] 0.006242667
sd(Light)
[1] 0.07901055
summary(Light)
                      Mean 3rd Qu.
 Min. 1st Qu. Median
                                       Max.
299.6
       299.8 299.9
                       299.9
                              299.9
                                      300.1
```

Speed of Light

B.3 Population vs Sample

Population

 ${\bf Sample}$

B.4 Histogram

• Unimodal, Bimodal (Multimodal), Left and right skewed.

B.5 Frequency vs Relative Frequency

Data: 1, 2, 4, 5, 3, 2, 4, 5, 1, 6

B.6 Sample Mean, Sample Variance and Sample SD

Let $X_1, X_2, X_3, \ldots, X_n$, be a random sample of size n. Then,

Sample mean is

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}.$$

Sample vaiance is

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n - 1}$$

Notice that we are dividing by n-1 instead of n.

Sample Standard Deviation is defined as

$$s = \sqrt{s^2}.$$

B.7 Five Number Summary of Data

is consisted of minimum observation, lower fourth, median, upper fourth, Maximum observation Boxplot

Min	Q1	Median	Q3	Max
	1st quartile	2nd quartile	3rd quartile	
	25th percentile	50th percentile	75th percentile	100th percentile

is drawn using these five numbers.

B.8 Sample median

$$\widetilde{x} = \begin{cases} \frac{n+1}{2} & \text{th ordered observations} & \text{if n is odd} \\ \text{average of } \left(\frac{n}{2}\right) & \text{th and } \left(\frac{n}{2}+1\right) & \text{th ordered observations} & \text{if n is even} \end{cases}$$

B.9 Get quartiles by INCLUDING median

• If Data were: $\{1, 2, 3, 4, 5, 6, 7, 8\}$

• If Data were: $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

B.10 Inter-Quartile Range is (Q3 - Q1):

B.11 Use 5 number summary to draw a box-plot.

B.12 Outlier

Observations farther than 1.5 box width away from the closest fourth is an outlier. If it is more than 3 box width away from the nearest fourth, it's called extreme outlier. Otherwise it is called an mild outlier.

B.13 Relate Histogram and Boxplot 1

B.14 Relate Histogram and Boxplot 2

B.15 Be able to calculate variance by hand

Data: $\{2, 3, 6, 8, 9, 13\}$

- $\bar{X} = 6.83$
- Var(X) =

B.16 Mean is larger than Median for right skewed data

- Mean is
- Median is

B.17 Mean is much more sensitive than Median

- $\begin{array}{ccc}
 i & X_i \\
 1 & 3 \\
 2 & 5 \\
 3 & 10 \\
 4 & 22 \\
 5 & 35 \\
 \hline
 Sum & 75
 \end{array}$
- Mean =
- \bullet Median =

B.18 Can you get quantiles by looking at Histogram

- If n = 19, 1st quartile =
- \bullet Median =
- 3rd quartile =