

**Prodn. of methyl ester(s) of fatty acids - by esterification of corresp. fatty acids with methanol,
at elevated temp. and pressure**

Patent Number : SU-671223

International patents classification : C07C-069/24 C07C-067/08

Abstract :

SU-671223 A Esterification of 7-9C fraction or 10-16C fraction of fatty acids with methanol, at elevated temp. and pressure, is conducted at 125-135 deg.C and pressure 7-10 at. and at molar ratio of fatty acids to methanol as 1:2, with subsequent removal of water and additional esterification of remaining reaction mixt. with methanol, at temp. 125-135 deg.C and pressure 7-10 at., and at the molar ratio of reaction mass to methanol as 1:1. The mixt. of methanol and synthetic fatty acids at ratio as above, is supplied into 1st esterification reactor and esterified under conditions as above for 6 hrs., then the prods. pass to distn. column, where water and methanol are sepd. at atmos. pressure and temp. at the bottom of column 120-130 deg.C, and sepd. methyl ester(s) are mixed with equimolar amt. of methanol, heated to reaction temp. and supplied to 2nd esterification reactor, where they are again esterified for 6 hrs.

The method simplifies process technology owing to use of reduced temp. and pressure, elimination of need for use of acid-resistant equipment and redn. of number of side reactions.

USE/ADVANTAGE - As improved method of prodn. of methyl esters of fatty acids, used in synthesis of primary alcohols, alkylamides, plasticisers etc. The method simplifies process technology. Bul.39/23.10.9 (Dwg. 0/0)

Publication data :

Patent Family : SU-671223 AI 19921023 DW1993-39 C07C-069/24 4p * AP: 1976SU-2430950 19761215

Priority n° : 1976SU-2430950 19761215

Covered countries : 1

Publications count : 1

Patentee & Inventor(s) :

Patent assignee : (DYSH) DYSHLOVOI VI

Inventor(s) : DYSHLOVOI VI; LOGVINOVA NI; MAKAROV SV

Accession codes :

Accession N° : 1993-309881 [39]

Sec. Acc. n° CPI : C1993-138140

Derwent codes :

Manual code : CPI: A08-P04 E10-G02H

Derwent Classes : A60 E19

Compound Numbers : 9339-E4101-P

Update codes :

Basic update code : 1993-39

Others :

API Access. Nbr

API 9354788

THIS PAGE BLANK (USPTO)

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (11) 671223 A1

(51) S C 07 C 69/24, C 07 C 67/08

ГОСУДАРСТВЕННОЕ ПАТЕНТНОЕ
ВЕДОМСТВО СССР
(ГОСПАТЕНТ СССР)

ВСЕСОЮЗНАЯ
ПАТЕНТНО-ТЕХНИЧЕСКАЯ
БИБЛИОТЕКА

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

1

(21) 2430950/04
(22) 15.12.76
(46) 23.10.92. Бюл. № 39
(72) В.И.Дышловой, С.В.Макаров,
В.И.Бавика, Р.А.Горбачева, Н.И.Лог-
винова, В.Ф.Смолов, Е.С.Карюкин,
А.Ш.Юсупов и А.С.Садыков
(53) 547.458.82.07(088.8)

(56) СПОСОБ ПОЛУЧЕНИЯ МЕТИЛОВЫХ
ЭФИРОВ ЖИРНЫХ КИСЛОТ путем этерифика-
ции фракции жирных кислот, содер-
жащей С₇-С₉ или С₁₀-С₁₆ метанолом

2

при нагревании и повышенном давле-
нии, отличающемся тем,
что, с целью упрощения технологии
процесса, этерификацию проводят при
температуре 125-135°C и давлении
7-10 ати, при мольном соотношении
жирные кислоты : метанол - 1:2 с по-
следующим удалением воды и доэтери-
фикацией оставшейся реакционной
массы метанолом при температуре
125-135°C и давлении 7-10 ати, при
мольном соотношении реакционная
масса : метанол 1:1.

Изобретение относится к улучшен-
ному способу получения метиловых
эфиров жирных кислот, применяемых
для производства первичных спиртов,
алкиламидов, пластификаторов и т.д.

Известны способы этерификации
жирных кислот метиловым спиртом в
присутствии серной кислоты или дру-
гих кислых катализаторов.

При каталитической этерификации
возникает ряд трудностей, связанных с необходимостью применения кис-
лотоупорной аппаратуры. Кроме того,
этот процесс сопровождается побочными
реакциями, приводящими к потере син-
тетических жирных кислот (СЖК) и
ухудшению цвета продуктов этерифи-
кации.

Побочные реакции обусловлены на-
личием в жирных кислотах ненасыщен-
ных кислот, которые взаимодействуют
с серной кислотой по месту двойных

связей. Образующиеся при этом про-
дукты загрязняют эфиры.

Наиболее близким к описываемому
изобретению по технической сущности
и достигаемому результату является
способ термической этерификации
фракции жирных кислот, содержащей
С₇-С₉ или С₁₀-С₁₆ парообразным или
жидким метанолом при температуре
300°C и давлении от 0 до 300 ати.

При парообразном способе этери-
фикации процесс осуществляется при
температуре 300°C и давлении 0-8 ати.
Степень превращения составляет 70,5-
83,1%.

При этерификации в жидкой фазе:
при соотношении жирные кислоты : ме-
танол 1-7 степень превращения сос-
тавляет 93-95%. (T = 200-300°C и P =
= 150-300 ати).

При увеличении соотношения мета-
нол : синтетические жирные кислоты

(19) SU (11)

671223 A1

BEST AVAILABLE COPY

(СЖК) до 33,5 : 1 конверсия достигает 99,5%.

Известный способ характеризуется применением высоких температур и давления, большого избытка метанола, а также низкой степенью этерификации (превращения).

Целью данного изобретения является упрощение технологии процесса.

Поставленная цель достигается описанным способом получения метиловых эфиров жирных кислот этерификацией фракции жирных кислот, содержащей С₇-С₉ или С₁₀-С₁₆ метанолом при температуре 125-135°C и давлении 7-10 ати при мольном соотношении кислоты : метанол 1:2.

Затем воду удаляют, а оставшуюся реакционную массу доэтерифицируют метанолом при тех же условиях, т.е. температуре 125-135°C и давлении 7-10 ати при мольном соотношении реакционная масса : метанол 1:1.

Выход метиловых эфиров составляет 98-98,8%.

Отличительными признаками заявляемого способа является проведение этерификации при температуре 125-135°C и давлении 7-10 ати при соотношении фракция кислот : метанол 1:2 с последующим удалением воды и доэтерификацией оставшейся реакционной массы метанолом в соотношении 1:1 при температуре 125-135°C и давлении 7-10 ати, что позволяет упростить технологию процесса.

Технология способа состоит в следующем.

Смесь метанола и жирных синтетических кислот, взятые в мольном соотношении 2:1, подавали в 1-ый этерификатор и выдерживали в течение 6 ч при температуре 130°C и давлении 8-9 ати. Далее реакционную массу из первого этерификатора через дроссельный вентиль подавали в отгонную колонну, где при атмосферном давлении и температуре низа колонны 120-130°C отгонялись пары метанола и воды. Полученные метиловые эфиры

ратуре низа колонны 120-130°C отгоняли пары реакционной воды и метанола. Полученные метиловые эфиры анализировали на полноту этерификации, затем смешивали с эквимолярным количеством метанола, подогревали до температуры 130°C и подавали во 2-ой этерификатор, где при давлении 8-9 ати выдерживали в течение 6 ч. Полученные эфиры выделяли вышеуказанным способом и анализировали на полноту этерификации.

Пример 1. 10 кг синтетических жирных кислот С₇-С₉, насосом-дозатором подавались на смешение с метанолом, который брался в 2-х кратном молярном избытке от стехиометрического и смесь с заданной производительностью поступала через подогреватель, где подогревалась до 130°C, в первый этерификатор.

Температура в этерификаторе поддерживалась 130±5°C, давление при этом составляло 8-9 ати. Время пребывания реагентов в зоне реакции составляло 6 часов, начиная от момента подогрева в подогревателе.

Из последней секции этерификатора реакционная масса поступала через дроссельный вентиль в отгонную колонну, где при атмосферном давлении и температуре низа колонны 120-130°C отгонялись пары метанола и воды. Полученные метиловые эфиры анализировались на полноту этерификации и затем насосом подавались на смешение с метанолом, количество которого соответствовало кратному количеству по отношению к исходным СЖК С₇-С₉, и далее через подогреватель, температура в котором составляла 130°C, смесь поступала во второй этерификатор. Температура во втором этерификаторе поддерживалась в пределах 130±5°C, давление составляло 8-9 ати. Время пребывания реагентов в зоне реакции от подогревателя до выхода из этерификатора составляло 6 ч.

Расход и выход продуктов, в кг:

По стадии этерификации:

Взято: СЖК С₇-С₉ 10,0 Получено: Метиловые эфиры СЖК
метанол 4,5 С₇-С₉ 9,86

СЖК С ₇ -С ₉	1,02
метанол	2,5
вода	1,12

BEST AVAILABLE COPY

671223

По стадии доэтерификации

Взято:	метиловые эфиры СЖК	Получено:	метиловые эфиры СЖК
СЖК C ₇ -C ₉	9,86	C ₇ -C ₉	10,76
СЖК C ₇ -C ₉	1,02	СЖК C ₇ -C ₉	0,19
метанол	2,28	метанол	2,10

вода 0,12

При мер 2. Для переработки были использованы синтетические жирные кислоты фракции С₁₀-С₁₆. Условия этерификации и установка те же,

что и в примере 1, время этерификации составляло по 4 ч на каждой стадии. Расход и выход продуктов, кг:

Взято:	СЖК C ₁₀ -C ₁₆	10,0	Получено:	метиловые эфиры СЖК
	метанол	3,02		C ₁₀ -C ₁₆ 9,8
				СЖК C ₁₀ -C ₁₆ 0,8
				метанол 1,63
				вода 0,79

По стадии доэтерификации

Взято:	метиловые эфиры СЖК C ₁₀ -C ₁₆	Получено:	метиловые эфиры СЖК C ₁₀ -C ₁₆
	9,8		10,52
	СЖК C ₁₀ -C ₁₆ 0,8		СЖК C ₁₀ -C ₁₆ 0,12
	метанол 1,2		метанол 1,1

вода 0,06

При мер 3. Для переработки использовалась олеиновая кислота. Условия этерификации и установка те же,

что и в примере 1, время этерификации составила по 3 ч на каждой стадии.

30 Расход и выход продуктов, в кг:

Взято:	олеиновая кислота	Получено:	метиловые эфиры олеиновой кислоты
	10,0		9,6
	метанол 2,24		олеиновая кислота 0,85
			метанол 1,21
			вода 0,58

По стадии доэтерификации:

Взято:	метиловые эфиры олеиновой кислоты	Получено:	метиловые эфиры олеиновой кислоты
	9,6		10,28
	олеиновая кислота 0,85		олеиновая кислота 0,2
	метанол 0,96		метанол 0,89
			вода 0,04

В табл. представлены качественные характеристики продуктов этерификации, полученных по предлагаемому способу.

50

Результаты термической этерификации синтетических жирных кислот, фракции C₇-C₉,
C₁₀-C₁₆ и олеиновой кислоты метиловым спиртом

Наименование кислот	Исходные качественные показатели			Качественные показатели продуктов после I-го этерификат.			Качественные показатели продуктов после II этерификат.		
	кислотное число mgKOH/g	эфирное число mgKOH/g	модное число, г T _d /100 г	кислотное число, mgKOH/g	эфирное число, mgKOH/g	степень этерификации, %	кислотное число mgKOH/g	эфирное число mgKOH/g	степень этерификации, %
1. Синтетические жирные кислоты фракции C ₇ -C ₉	392	2,4	-	39,8	322,5	89,8	7,1	352,4	98,1
2. Синтетические жирные кислоты фракции C ₁₀ -C ₁₆	265	3,1	88,6 ^{a)}	21,0	231,2	92,0	3,2	248,1	98,8
3. Олеиновая кислота	196,5	1,9	88,6 ^{a)}	16,3	173,1	91,5	4,0	185,7	98,0

^{a)} Модное число метиловых эфиров олеиновой кислоты после этерификации до глубины 98% было равно 88,0 г. моде/100 г, что близко к теоретическому.

BEST AVAILABLE COPY

Составитель
Редактор Е.Гиринская Техред М.Моргентал Корректор Т.Палий

Заказ 4571 Тираж Подписьное
вНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., д. 4/5

Производственно-издательский комбинат "Патент", г.Ужгород, ул. Гагарина, 101