

受	験	番	号	志望学科・コース
				学 科
				コース

[数学-1]

問題 1

- (1) 空間上の直交座標 (x,y,z) を極座標 (r,θ,φ) : $x=r\sin\theta\cos\varphi,\ y=r\sin\theta\sin\varphi,\ z=r\cos\theta\quad (r>0,\ 0\le\theta\le\pi,\ 0\le\varphi<2\pi)$ に変換するとき、そのヤコビアン (関数行列式)を計算しなさい。
- (2) 広義積分

$$I(\alpha) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{e^{-(x^2 + y^2 + z^2)}}{(x^2 + y^2 + z^2)^{\alpha}} dx \, dy \, dz$$

について, $\alpha = \frac{1}{2}$ のときの値 $I(\frac{1}{2})$ を求めなさい.

- (3) $I(\alpha)$ が収束する α の範囲を求めなさい.
- (4) 広義積分

$$J(\alpha, \beta) = \iint_{B} \frac{1}{(x^2 + y^2 + z^2)^{\alpha} |\log(x^2 + y^2 + z^2)|^{\beta}} dx \ dy \ dz$$

が収束するような α , β の満たすべき条件を求めなさい. ただし,

$$B = \{(x, y, z); x^2 + y^2 + z^2 < \frac{1}{4}\}.$$

平成19年度 大阪大学基礎工学部編入学試験 [数 学]試験問題

受	験	番	号	志望学科・コース
		5		学 科
				コース

[数学-2]

問題 2

行列
$$A=\begin{pmatrix} a&1&1\\1&a&1\\a^2&1&a \end{pmatrix}$$
 について、以下の設問に答えよ、ただし、 a は実数とする.

(1) A の行列式の値を求めよ.

$$(2)$$
 $\begin{pmatrix} a \\ 1 \\ a^2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ a \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ a \end{pmatrix}$ が 1 次独立となるときの a の条件を求めよ.

- (3) A の固有値の一つが 0 であるとき, a の値を求めよ. また, その場合のすべての固有値と固有ベクトルを求めよ.
- (4) A の固有値の一つが 1 であるとき, A^n を求めよ. ただし, a < 0 とする.

平成19年度 大阪大学基礎工学部編入学試験

[数学]試験問題

受	験	番	号	志望学科・コース
				学 彩
				コース

[数学一3]

問題3

あるパーティで、n人の参加者が1つずつプレゼントを持ち寄り、主催者がこれを集めて、帰りにn人の参加者に1つずつランダムに配るものとする。このとき、自分が持ってきたプレゼントを持って帰る人が少なくとも1人出る確率をQ(1,n)とする。参加者に1番からn番までの番号をつける。i番の参加者が自分のプレゼントを持ち帰るという事象を M_i とする。

- (1) M_i が起こる確率をn の式で表せ.
- (2) i_1, i_2, \cdots, i_m をそれぞれ 1 以上 n 以下の相異なる m 個の整数とする.事象 $M_{i_1}, M_{i_2}, \cdots, M_{i_m}$ が同時に起こる確率を n と m の式で表せ.
- (3) 事象 E が起こる確率を P(E) と書く、2つの事象 A_1 と A_2 が同時に起こる確率を $P(A_1\cap A_2)$, A_1 と A_2 のうち少なくとも 1 つが起こる確率を $P(A_1\cup A_2)$ と書く、このとき $P(A_1\cup A_2)=P(A_1)+P(A_2)-P(A_1\cap A_2)$ である。一般に $N(\ge 1)$ 個の事象 A_1,A_2,\cdots,A_N のうち少なくとも 1 つが起こる確率 $P(A_1\cup A_2\cup\cdots\cup A_N)$ は

$$P(A_1 \cup A_2 \cup \dots \cup A_N) = \sum_{l=1}^{N} (-1)^{l-1} S_l$$
 (i)

$$\Box \Box \overrightarrow{c} S_l = \sum_{k_1 < k_2 < \dots < k_l} P(A_{k_1} \cap A_{k_2} \cap \dots \cap A_{k_l})$$
 (ii)

である。ただし式 (ii) の右辺の \sum は、N 個の整数 $1,2,\cdots,N$ の中から相異なる l 個の整数 k_1,k_2,\cdots,k_l を選ぶあらゆる組み合わせについて和をとることを意味する。特に l=1 のときは $S_1=\sum_{i=1}^{N}P(A_j)$ である。

式(i)を数学的帰納法で示せ.

(4)
$$Q(1,n) = \sum_{i=1}^{n} (-1)^{j-1} \frac{1}{j!}$$
を示せ.

(5) $\lim_{n\to\infty} Q(1,n)$ を求めよ.