Documentation for the pyroll-thermal-2d Plugin

Max Weiner

January 17, 2023

1 Model Description

1.1 Ring Model

The following derivations are based on the ring model approach. For details on this approach read also the respective documentation¹.

1.2 Heat Flow Balance

see Figure 1, i index of layer in radial direction, k index of disk element in x-direction

$$0 = \dot{q}_1 - \dot{q}_2 - \dot{q}_3 + \dot{q}_4 + \dot{q}_S \tag{1}$$

heat flow contributions

$$\dot{q}_1 = \varrho c_{\rm p} \dot{V}_i T_i^k \tag{2}$$

$$\dot{q}_2 = \varrho c_{\rm p} \dot{V}_i T_i^{k+1} \tag{3}$$

$$\dot{q}_3 = -\lambda \frac{T_{i+1}^k - T_i^k}{r_{i+1} - r_i} \times 2\pi R_{i+1} \Delta x \tag{4}$$

$$\dot{q}_4 = -\lambda \frac{T_i^k - T_{i-1}^k}{r_i - r_{i-1}} \times 2\pi R_i \Delta x \tag{5}$$

$$\dot{q}_{\rm S} = \eta_{\rm S} \frac{k_{\rm f}}{\eta_{\varphi}} \dot{\varphi} V \tag{6}$$

where the volume flow \dot{V}

¹https://github.com/pyroll-project/pyroll-ring-model

Figure 1: Heat Flows on a Disk Element Ring

$$\dot{V}_i = A_i \frac{\Delta x}{\Delta t} \tag{7}$$

$$A_i = \pi \left(R_{i+1}^2 - R_i^2 \right) \tag{8}$$

at surface different $\dot{q}_3,$ with surface temperature $T_{\rm S}$

$$\dot{q}_3 = \left[-\alpha \left(T_{\infty} - T_{\rm S} \right) - \epsilon_0 \epsilon_{\rm r} \left(T_{\infty}^4 - T_{\rm S}^4 \right) \right] \times 2\pi R_{\hat{\imath}+1} \Delta x \tag{9}$$

surface temperature estimation as stationary state between environment and outer layer, numerical solution

$$\lambda \frac{T_{\rm S} - T_{\hat{\imath}}^k}{R_{\hat{\imath}+1} - r_{\hat{\imath}}} = \alpha \left(T_{\infty} - T_{\rm S} \right) + \epsilon_0 \epsilon_{\rm r} \left(T_{\infty}^4 - T_{\rm S}^4 \right) \tag{10}$$

1.3 Temperature Increment Functions

for core layer $\dot{q}_4 = 0$

$$\Delta T_0 = \frac{\Delta t}{\varrho c_p A_0} \left[\pi \lambda \left(T_1^k - T_0^k \right) + \eta_S \frac{k_f}{\eta_\varphi} \dot{\varphi} A_0 \right]$$
 (11)

for intermediate layers with Equation 4

$$\Delta T_{i} = \frac{\Delta t}{\varrho c_{p} A_{i}} \left[2\pi \lambda \left[\frac{T_{i+1}^{k} - T_{i}^{k}}{r_{i+1} - r_{i}} R_{i+1} - \frac{T_{i}^{k} - T_{i-1}^{k}}{r_{i} - r_{i-1}} R_{i} \right] + \eta_{S} \frac{k_{f}}{\eta_{\varphi}} \dot{\varphi} A_{i} \right]$$
(12)

for surface layer with Equation 9

$$\Delta T_{\hat{\imath}} = \frac{\Delta t}{\varrho c_{\mathrm{p}} A_{\hat{\imath}}} \left[2\pi \left[\left[\alpha \left(T_{\infty} - T_{\mathrm{S}} \right) + \epsilon_{0} \epsilon_{\mathrm{r}} \left(T_{\infty}^{4} - T_{\mathrm{S}}^{4} \right) \right] R_{\hat{\imath}+1} - \lambda \frac{T_{\hat{\imath}}^{k} - T_{\hat{\imath}-1}^{k}}{r_{\hat{\imath}} - r_{\hat{\imath}-1}} R_{\hat{\imath}} \right] + \eta_{\mathrm{S}} \frac{k_{\mathrm{f}}}{\eta_{\varphi}} \dot{\varphi} A_{\hat{\imath}} \right]$$

$$\tag{13}$$

2 Plugin Usage

Unit.OutProfile.temperature and Unit.OutProfile.ring_temperatures are added to root_hooks.

2.1 Roll Passes

2.1.1 Additional Hooks

RollPass.heat_transfer_coefficient represents the heat transfer coefficient α for the contact of workpiece and rolls, implemented with default value 6000 W² m⁻¹ K⁻¹

RollPass.deformation_heat_efficiency represents the efficiency of heat generation by deformation η_S , implemented with default value 0.95

2.1.2 Provided Implementations

RollPass.OutProfile.ring_temperatures

RollPass.DiskElement.OutProfile.ring_temperatures calculates the temperature evolution according to the equations Equation 11, Equation 12 and Equation 13 as described above

RollPass.Profile.surface_temperature

RollPass.DiskElement.Profile.surface_temperature calculates the surface temperature by solving Equation 10 as described above

2.2 Transports

2.2.1 Additional Hooks

Transport.heat_transfer_coefficient represents the heat transfer coefficient α for convection transfer to the atmosphere, implemented with default value 15 W² m⁻¹ K⁻¹

Transport.relative_radiation_coefficient the relative radiation coefficient ϵ_r , implemented with default value 0.8

2.2.2 Provided Implementations

Transport.OutProfile.ring_temperatures

Transport.DiskElement.OutProfile.ring_temperatures calculates the temperature evolution according to the equations Equation 11, Equation 12 and Equation 13 as described above

 ${\tt Transport.Profile.surface_temperature}$

Transport.DiskElement.Profile.surface_temperature calculates the surface temperature by solving Equation 10 as described above

Symbols

Symbol	Description
$\frac{\partial f \Pi \partial \partial f}{A}$	Cross section
α	Heat transfer coefficient
	Thermal Capacity
$c_{ m p}$	2 0
ϵ_0	Radiation coefficient of black radiator
$\epsilon_{ m r}$	Relative radiation coefficient
$\eta_{ m S}$	Efficiency of heat source by deformation
η_{arphi}	Efficiency of deformation
i	Index of the ring
$\hat{\imath}$	Maximum index of the ring
j	Index of the ring boundary
$\hat{\jmath}$	Maximum index of the ring boundary
k	Index of the disk element
$k_{ m f}$	Flow stress
λ	Thermal conductivity
\dot{m}	Mass flow in x-direction
φ	Equivalent strain
\dot{arphi}	Equivalent strain rate
\dot{q}	Heat flow
$\dot{q}_{ m S}$	Heat source (generation)
r	Radius coordinate of a ring's center line

Continued on next page

Table 0: (Continued)

R	Radius coordinate of a ring's boundary line
Δr	Discretization width in radius
ϱ	Density
t	Time
Δt	Discretization width in time
T	Absolute temperature
ΔT	Increment of temperature
T_{∞}	Environemnt temperature
$T_{ m S}$	Absolute surface temperature
V	Volume of the disk element rep. layer
\dot{V}	Volume flow
x	X Coordinate
Δx	Discretization width in x