Notas de Análisis Matemático IV

Cristo Daniel Alvarado

24 de mayo de 2024

Índice general

1.	Trai	Transformación de Fourier 1.1. Conceptos Fundamentales	2
	1.1.	Conceptos Fundamentales	2
	1.2.	Teoremas de Transferencia e Inversión	13

Capítulo 1

Transformación de Fourier

La transformada de Fourier de una función de \mathbb{R}^n en \mathbb{C} generaliza en cierta forma la noción de coeficietes de Fourier de funciones periódicas

1.1. Conceptos Fundamentales

Definición 1.1.1

Sea $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. Se definen $\mathcal{F}f, \mathcal{F}^*f : \mathbb{R}^n \to \mathbb{C}$ como

$$\mathcal{F}f(x) = \int_{\mathbb{R}^n} e^{-i\left(x\big|y\right)} f(y) \, dy \quad \text{y} \quad \mathcal{F}^*f(x) = \int_{\mathbb{R}^n} e^{i\left(x\big|y\right)} f(y) \, dy$$

para todo $x \in \mathbb{R}^n$. Las funciones $\mathcal{F}f$ y \mathcal{F}^*f se llaman las **transformaciones de Fourier de** f. Las aplicaciones \mathcal{F} y \mathcal{F}^* de $\mathcal{L}_1(\mathbb{R}^n,\mathbb{C})$ en el conjunto de funciones de \mathbb{R}^n en \mathbb{C} se llaman las **transformaciones de Fourier**.

Observación 1.1.1

Se tiene lo siguiente:

- I. Los operadores \mathcal{F} y \mathcal{F}^* son lineales de $\mathcal{L}_1(\mathbb{R}^n,\mathbb{C})$ en el espacio de funciones de \mathbb{R}^n en \mathbb{C} .
- II. Las funciones $\mathcal{F}f(x)$ y $\mathcal{F}^*f(x)$ están definidas para todo $x \in \mathbb{R}^n$ si y sólo si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$.
- III. En caso de existir, se tiene que $\mathcal{F}f(x) = \mathcal{F}^*f(-x)$.

Demostración:

De (i): Es claro que si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$ entonces $\mathcal{F}f(x)$ y $\mathcal{F}^*f(x)$ están definidas para todo $x \in \mathbb{R}^n$. Para la recíproca, en particular están definidas para $x = \vec{0}$, es decir que

$$\mathcal{F}f\left(\vec{0}\right) = \int_{\mathbb{R}^n} e^{-i\left(\vec{0}\,\middle|\,y\right)} f(y) \, dy = \int_{\mathbb{R}^n} e^0 f(y) \, dy = \int_{\mathbb{R}^n} f(y) \, dy < \infty$$

luego $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$.

De (ii): Es inmediata.

Definición 1.1.2

Sea $f \in \mathcal{L}_1([0,\infty[,\mathbb{C})]$. Se definen

$$\mathcal{F}_c f(x) = \int_0^\infty f(y) \cos xy \, dy$$
 y $\mathcal{F}_s f(x) = \int_0^\infty f(y) \sin xy \, dy$

para todo $x \in \mathbb{R}$. Las funciones $\mathcal{F}_c f$ y $\mathcal{F}_s f$ se llaman las trasnformadas coseno y seno de Fourier de f.

Definición 1.1.3

Sea $f:[0,\infty[\to \mathbb{C}$ una función. Se definen las funciones f^P y f^I de \mathbb{R} en \mathbb{C} como

$$f^{P}(x) = \begin{cases} f(x) & \text{si} \quad x \geqslant 0\\ f(-x) & \text{si} \quad x < 0 \end{cases}$$

y,

$$f^{I}(x) = \begin{cases} f(x) & \text{si} \quad x \geqslant 0\\ -f(-x) & \text{si} \quad x < 0 \end{cases}$$

Proposición 1.1.1

Sea $f \in \mathcal{L}_1([0,\infty[,\mathbb{C})]$. Se tiene

$$\mathcal{F}f^P(x) = 2\mathcal{F}_c f(x)$$
 y $\mathcal{F}f^I(x) = -2i\mathcal{F}_2 f(x)$

para todo $x \in \mathbb{R}$.

Demostración:

Sea $x \in \mathbb{R}$, entonces

$$\mathcal{F}f^{P}(x) = \int_{\mathbb{R}} f^{P}(y)e^{-i\left(x|y\right)} dy$$

$$= \int_{-\infty}^{\infty} f^{P}(y)e^{-ixy} dy$$

$$= \int_{-\infty}^{0} f^{P}(y)e^{-ixy} dy + \int_{0}^{\infty} f^{P}(y)e^{-ixy} dy$$

$$= \int_{-\infty}^{0} f(-y)e^{-ixy} dy + \int_{0}^{\infty} f(y)e^{-ixy} dy$$

$$= \int_{0}^{\infty} f(y)e^{ixy} dy + \int_{0}^{\infty} f(y)e^{-ixy} dy$$

$$= \int_{0}^{\infty} f(y)\left[e^{ixy} + \overline{e^{ixy}}\right] dy$$

$$= \int_{0}^{\infty} f(y)\left[2\Re(e^{ixy})\right] dy$$

$$= \int_{0}^{\infty} 2f(y)\cos xy dy$$

$$= 2\int_{0}^{\infty} f(y)\cos xy dy$$

$$= 2\mathcal{F}_{c}f(x)$$

$$\mathcal{F}f^{I}(x) = \int_{\mathbb{R}} f^{I}(y)e^{-ixy} dy$$

$$= \int_{-\infty}^{0} f^{I}(y)e^{-ixy} dy + \int_{0}^{\infty} f^{I}(y)e^{-ixy} dy$$

$$= \int_{-\infty}^{0} (-f(-y))e^{-ixy} dy + \int_{0}^{\infty} f(y)e^{-ixy} dy$$

$$= -\int_{0}^{\infty} f(y)e^{ixy} dy + \int_{0}^{\infty} f(y)e^{-ixy} dy$$

$$= \int_{0}^{\infty} f(y) \left[-e^{ixy} + e^{-ixy} \right] dy$$

$$= \int_{0}^{\infty} f(y) \left[-\cos xy - i\sin xy + \cos(-xy) + i\sin(-xy) \right] dy$$

$$= \int_{0}^{\infty} f(y) \left[-2i\sin xy \right] dy$$

$$= -2i \int_{0}^{\infty} f(y)\sin xy dy$$

$$= -2i \mathcal{F}_{s}f(x)$$

lo que prueba el resultado.

Corolario 1.1.1

Sea $f \in \mathcal{L}_1(\mathbb{R}, \mathbb{C})$.

- I. Si f es par, entonces $\mathcal{F}f(x) = 2\int_0^\infty f(y)\cos xy \,dy$ para todo $x \in \mathbb{R}$.
- II. Si f es impar, entonces $\mathcal{F}f(x) = -2i\int_0^\infty f(y)\sin xy\,dy$ para todo $x \in \mathbb{R}$.

Ejemplo 1.1.1

Se tiene lo siguiente:

I. Sea $f: \mathbb{R} \to \mathbb{R}$ la función $f = \chi_I$ donde I es un intervalo con extremos a < b en \mathbb{R} . Entonces,

$$\mathcal{F}f(x) = \int_{-\infty}^{\infty} \chi_I(y)e^{-ixy} dy$$

$$= \int_a^b e^{-ixy} dy$$

$$= \begin{cases} \frac{e^{-ixb} - e^{-ixa}}{-ix} & \text{si} \quad x \neq 0 \\ b - a & \text{si} \quad x = 0 \end{cases}$$

En particular, si a > 0 se tiene que

$$\mathcal{F}\chi_{[}-a,a](x) = \begin{cases} \frac{2\sin ax}{x} & \text{si} \quad x \neq 0\\ 2a & \text{si} \quad x = 0 \end{cases}$$

Como $\mathcal{F}\chi_{[}-a,a]$ no es integrable en \mathbb{R} se concluye que, en general, la transformada de Fourier de una función integrable no necesariamente es integrable.

II. Sea $f: \mathbb{R} \to \mathbb{R}$ la función

$$f(x) = e^{-k|x|}, \quad \forall x \in \mathbb{R}$$

donde k > 0. Como f es integrable, entonces

$$\mathcal{F}f(x) = \int_{-\infty}^{\infty} e^{-k|y|} e^{-ixy} \, dy$$

$$= \int_{-\infty}^{0} e^{ky} e^{-ixy} \, dy + \int_{0}^{\infty} e^{-ky} e^{-ixy} \, dy$$

$$= \int_{0}^{\infty} e^{-ky} e^{ixy} \, dy + \int_{0}^{\infty} e^{-ky} e^{-ixy} \, dy$$

$$= \int_{0}^{\infty} e^{-ky} e^{(-k+ix)y} \, dy + \int_{0}^{\infty} e^{-ky} e^{(-k-ix)y} \, dy$$

$$= \frac{-1}{-k+ix} + \frac{-1}{-k-ix}$$

$$= \frac{k+ix+k-ix}{k^2+x^2}$$

$$= \frac{2k}{k^2+x^2}$$

Ejemplo 1.1.2

Sea $f: \mathbb{R} \to \mathbb{R}$ la función

$$f(x) = e^{-kx^2}, \quad \forall x \in \mathbb{R}$$

donde k > 0. Como f es par se tiene que

$$\mathcal{F}f(x) = 2 \int_0^\infty e^{-ky^2} \cos xy \, dy$$

Sea $g(x) = \int_0^\infty e^{-ky^2} \cos xy \, dy$ para todo $x \in \mathbb{R}$. Se afirma que

$$g'(x) = -\int_0^\infty y e^{-ky^2} \sin xy \, dy, \quad \forall x \in \mathbb{R}$$

En efecto, observemos que

$$\left| ye^{-ky^2} \sin xy \right| \leqslant ye^{-ky^2}, \quad \forall y \geqslant 0$$

donde la función de la derecha es integrable e independiente de x (se nota fácilmente que una de sus antiderivadas es $y\mapsto -\frac{1}{2k}e^{-ky^2}$, por el T.F.C. II evaluando en 0 e ∞ se obtiene que la función original es integrable en $[0,\infty[)$. Por el Teorema de derivación se sigue que

$$g'(x) = -\int_0^\infty y e^{-ky^2} \sin xy \, dy, \quad \forall x \in \mathbb{R}$$

Veamos ahora que

$$g'(x) = \int_0^\infty y e^{-ky^2} \sin xy \, dy$$

$$= -\left[-\frac{1}{2k} e^{-ky^2} \sin xy \Big|_0^\infty + \frac{1}{2k} \int_0^\infty x e^{-ky^2} \cos xy \, dy \right]$$

$$= -\left[0 - 0 + \frac{x}{2k} \int_0^\infty e^{-ky^2} \cos xy \, dy \right]$$

$$= -\frac{x}{2k} \int_0^\infty e^{-ky^2} \cos xy \, dy$$

$$= -\frac{x}{2k} g(x), \quad \forall x \in \mathbb{R}$$

Luego,

$$g'(x) + \frac{x}{2k}g(x) = 0, \quad \forall x \in \mathbb{R}$$

$$\Rightarrow e^{\frac{x^2}{4k}} \left(g'(x) + \frac{x}{2k}g(x) \right) = 0, \quad \forall x \in \mathbb{R}$$

$$\Rightarrow \frac{d}{dx} \left(e^{\frac{x^2}{4k}}g(x) \right) (x_0) = 0, \quad \forall x_0 \in \mathbb{R}$$

$$\Rightarrow e^{\frac{x^2}{4k}}g(x) = c, \quad \forall x \in \mathbb{R}$$

En particular,

$$c = g(0)$$

$$= \int_0^\infty e^{-ky^2} dy$$

$$= \frac{1}{\sqrt{k}} \int_0^\infty e^{-u^2} du$$

$$= \frac{1}{2} \cdot \sqrt{\frac{\pi}{k}}$$

Por ende,

$$g(x) = \frac{1}{2} \sqrt{\frac{\pi}{k}} e^{-\frac{x^2}{4k}}, \quad \forall x \in \mathbb{R}$$

De donde se sigue que

$$\mathcal{F}f(x) = \sqrt{\frac{\pi}{k}}e^{-\frac{x^2}{4k}}, \quad \forall x \in \mathbb{R}$$

En particular, si $k = \frac{1}{2}$ entonces $f(x) = e^{-\frac{x^2}{2}}$ para todo $x \in \mathbb{R}$ y,

$$\mathcal{F}f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}} = \sqrt{2\pi}f(x)$$

es decir que f es un vector propio del operador transformada de Fourier.

Proposición 1.1.2

Sea $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$.

I. Si $g(x) = e^{i(a|y)} f(x)$ para todo $x \in \mathbb{R}^n$, entonces

$$\mathcal{F}g(x) = \mathcal{F}f(x-a), \quad \forall x \in \mathbb{R}^n$$

II. Si g(x) = f(x - a) para todo $x \in \mathbb{R}^n$, entonces

$$\mathcal{F}g(x) = e^{-i\left(x\,\middle|\,a\right)} \mathcal{F}f(x), \quad \forall x \in \mathbb{R}^n$$

III. Si $g(x) = \overline{f(-x)}$ para todo $x \in \mathbb{R}^n$, entonces

$$\mathcal{F}g(x) = \overline{\mathcal{F}f(x)}, \quad \forall x \in \mathbb{R}^n$$

IV. Sea $\lambda \in \mathbb{R} \setminus \{0\}$. Si $g(x) = f(\frac{x}{\lambda})$ para todo $x \in \mathbb{R}^n$, entonces

$$\mathcal{F}g(x) = |\lambda|^n \mathcal{F}f(\lambda x), \quad \forall x \in \mathbb{R}^n$$

Demostración:

De (i): Veamos que

$$\mathcal{F}g(x) = \int_{\mathbb{R}^n} e^{-i\left(x\big|y\right)} g(y) \, dy$$

$$= \int_{\mathbb{R}^n} e^{-i\left(x\big|y\right)} e^{i\left(a\big|y\right)} f(y) \, dy$$

$$= \int_{\mathbb{R}^n} e^{-i\left(x-a\big|y\right)} f(y) \, dy$$

$$= \mathcal{F}f(x-a)$$

para todo $x \in \mathbb{R}^n$.

De (ii): Veamos que

$$\mathcal{F}g(x) = \int_{\mathbb{R}^n} e^{-i\left(x\big|y\right)} g(y) \, dy$$

$$= \int_{\mathbb{R}^n} e^{-i\left(x\big|y\right)} f(y-a) \, dy$$

$$= \int_{\mathbb{R}^n} e^{-i\left(x\big|u+a\right)} f(u) \, du$$

$$= e^{-i\left(x\big|a\right)} \mathcal{F}f(x)$$

para todo $x \in \mathbb{R}^n$.

De (iii): Veamos que

$$\mathcal{F}g(x) = \int_{\mathbb{R}^n} e^{-i\left(x\big|y\right)} \overline{f(-y)} \, dy$$
$$= \int_{\mathbb{R}^n} e^{i\left(x\big|y\right)} \overline{f(y)} \, dy$$
$$= \int_{\mathbb{R}^n} e^{-i\left(x\big|y\right)} f(y) \, dy$$
$$= \overline{\mathcal{F}f(x)}$$

para todo $x \in \mathbb{R}^n$.

De (iv): Veamos que

$$\mathcal{F}g(x) = \int_{\mathbb{R}^n} e^{-i\left(x\big|y\right)} g(y) \, dy$$

$$= \int_{\mathbb{R}^n} e^{-i\left(x\big|y\right)} f\left(\frac{y}{\lambda}\right) \, dy, \text{ haciendo el cambio de variable } u = \frac{y}{\lambda}$$

$$= \int_{\mathbb{R}^n} e^{-i\left(x\big|\lambda u\right)} f(u) \, |\lambda|^n \, du$$

$$= |\lambda|^n \int_{\mathbb{R}^n} e^{-i\left(\lambda x\big|u\right)} f(u) \, du$$

$$= |\lambda|^n \mathcal{F}f(\lambda x)$$

para todo $x \in \mathbb{R}^n$.

Teorema 1.1.1

Si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$, entonces,

$$|\mathcal{F}f(x)| \leqslant \mathcal{N}_1(f), \quad \forall x \in \mathbb{R}^n$$

Así pues, $\mathcal{F}f:\mathbb{R}^n\to\mathbb{C}$ es una función acotada. Si $\mathcal{B}(\mathbb{R}^n,\mathbb{C})$ denota al espacio de funciones acotadas de \mathbb{R}^n en \mathbb{C} provisto de la norma uniforme, entonces $\mathcal{F}\cdot$ es una aplicación lineal continua de $L_1(\mathbb{R}^n,\mathbb{C})$ en $\mathcal{B}(\mathbb{R}^n,\mathbb{C})$ tal que $\|\mathcal{F}\cdot\|=1$.

Demostración:

Para todo $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$, se tiene que

$$|\mathcal{F}f(x)| = \left| \int_{\mathbb{R}^n} e^{-i\left(x \mid y\right)} f(y) \, dy \right|$$

$$\leq \int_{\mathbb{R}^n} |f(y)| \, dy$$

$$= \mathcal{N}_1(f), \quad \forall x \in \mathbb{R}^n$$

Notemos también que $\|\mathcal{F} \cdot \| \leq 1$.

Para probar la otra desiguladad se busca una función $P \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$ tal que $\mathcal{N}_{\infty}(\mathcal{F}P) = \mathcal{N}_1(P) > 0$. Por ejemplo, la función $P : \mathbb{R}^n \to \mathbb{C}$ dada por:

$$P(x) = e^{-\sum_{k=1}^{n} |x_k|}, \quad \forall x \in \mathbb{R}^n$$

satisface

$$\mathcal{F}P(x) = \int_{\mathbb{R}^n} e^{-i\left(x\big|y\right)} P(y) \, dy$$

$$= \int_{\mathbb{R}^n} e^{-i\left(x\big|y\right)} P(y) \, dy$$

$$= \int_{\mathbb{R}^n} e^{-|y_1| - ix_1 y_1} \cdots e^{-|y_n| - ix_n y_n} \, dy_1 \cdots dy_n$$

$$= \left(\int_{-\infty}^{\infty} e^{-|y_1| - ix_1 y_1} \, dy_1\right) \cdots \left(\int_{-\infty}^{\infty} e^{-|y_n| - ix_n y_n} \, dy_n\right)$$

Se sabe por ejemplos anteriores que la transformada de $t\mapsto e^{-|t|}$ es $\frac{2}{1+t^2}$, para todo $t\in\mathbb{R}$, así pues,

$$\mathcal{F}P(x) = \frac{2^n}{(1+x_2^2)\cdots(1+x_n^2)}, \quad \forall x \in \mathbb{R}^n$$

de donde,

$$\mathcal{N}_{\infty}\left(\mathcal{F}P\right)=2^{n}$$

Por otra parte,

$$\mathcal{N}_1(P) = \int_{\mathbb{R}^n} e^{-\sum_{k=1}^n |x_k|} dx_1 \cdots dx_n$$

$$= \left[\int_{-\infty}^{\infty} e^{-|t|} dt \right]^n$$

$$= 2^n \left[\int_0^{\infty} e^{-|t|} dt \right]$$

$$= 2^n$$

Por tanto,

$$\mathcal{N}_{1}(P) = \mathcal{N}_{\infty}(\mathcal{F}P)$$

$$\leq \|\mathcal{F} \cdot \|\mathcal{N}_{1}(P)\|$$

$$\Rightarrow 1 \leq \|\mathcal{F} \cdot \|$$

por tanto, de lo anterior se deduce que $\|\mathcal{F} \cdot \| = 1$.

Proposición 1.1.3

Si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$, entonces $\mathcal{F}f$ es uniformemente continua en \mathbb{R}^n .

Demostración:

Basta probar que si $\{x_{\nu}\}_{\nu=1}^{\infty}$ y $\{y_{\nu}\}_{\nu=1}^{\infty}$ son dos sucesiones en \mathbb{R}^n tales que $\lim_{\nu\to\infty} \|x_{\nu}-y_{\nu}\|=0$, entonces

$$\lim_{\nu \to \infty} |\mathcal{F}f(x_{\nu}) - \mathcal{F}f(y_{\nu})| = 0$$

Considere entonces dos sucesiones que cumplan lo anterior. Se tiene

$$|\mathcal{F}f(x_{\nu}) - \mathcal{F}f(y_{\nu})| = \left| \int_{\mathbb{R}^{n}} \left(e^{-i\left(x_{\nu}|z\right)} - e^{-i\left(y_{\nu}|z\right)} \right) f(z) dz \right|$$

$$= \left| \int_{\mathbb{R}^{n}} e^{-i\left(x_{\nu}|z\right)} \left(1 - e^{-i\left(y_{\nu} - x_{\nu}|z\right)} \right) f(z) dz \right|$$

$$\leq \int_{\mathbb{R}^{n}} \left| \left(1 - e^{-i\left(y_{\nu} - x_{\nu}|z\right)} \right) \right| |f(z)| dz$$

donde

$$\lim_{\nu \to \infty} \left| 1 - e^{-i\left(y_{\nu} - x\nu \mid z\right)} \right| |f(z)| = 0, \quad \forall z \in \mathbb{R}^n$$

y, además

$$\left|1 - e^{-i\left(y_{\nu} - x\nu \mid z\right)}\right| |f(z)| \leqslant 2 |f(z)|, \quad \forall z \in \mathbb{R}^n$$

donde la función de la derecha es integrable e independiente de ν . Por Lebesgue se sigue que

$$\lim_{\nu \to \infty} |\mathcal{F}f(x_{\nu}) - \mathcal{F}f(y_{\nu})| = 0$$

así, $\mathcal{F}f:\mathbb{R}^n\to\mathbb{C}$ es una función uniformemente continua.

Observación 1.1.2

 $\mathcal{F}f$ es una función uniformemente continua acotada en \mathbb{R}^n si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$.

Teorema 1.1.2 (Teorema de Riemman-Lebesgue)

Si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$, entonces

$$\lim_{|x| \to \infty} \mathcal{F}f(x) = 0$$

Demostración:

Se probará por casos:

I. Sea $P = I_1 \times \cdots \times I_n \subseteq \mathbb{R}^n$ un rectángulo acotado en \mathbb{R}^n donde I_k es un intervalo de extremos $a_k \leq b_k$ para todo $k \in [1, n]$. Se considera el caso en que $f = \chi_P$. En particular, notemos que

$$f(x) = \chi_{I_1}(x_1) \cdots \chi_{I_n}(x_n), \quad \forall x \in \mathbb{R}^n$$

Entonces,

$$\mathcal{F}f(x) = \int_{\mathbb{R}^n} e^{-i\left(x\,\middle|\,z\right)} f(z) \, dz$$

$$= \int_{\mathbb{R}^n} e^{-ix_1 z_1} \chi_{I_1}(z_1) \cdots e^{-ix_n z_n} \chi_{I_n}(z_n) \, dz_1 \cdots dz_n$$

$$= \left(\int_{-\infty}^{\infty} e^{-ix_1 z_1} \chi_{I_1}(z_1) \, dz_1\right) \cdots \left(\int_{-\infty}^{\infty} e^{-ix_n z_n} \chi_{I_n}(z_n) \, dz_n\right)$$

luego,

$$\mathcal{F}f(x) = \varphi_1(x_1) \cdots \varphi_n(x_n), \quad \forall x \in \mathbb{R}^n$$

donde

$$\varphi_k(x_k) = \begin{cases} \frac{e^{-ix_k b_k - e^{-ix_k a_k}}}{-ik}, & \text{si} \quad x_k \neq 0\\ b_k - a_k & \text{si} \quad x_k = 0 \end{cases}$$

para $k \in [1, n]$. Es claro que $\lim_{x_k \to \infty} \varphi_k(x_k) = 0$ para todo $k \in [1, n]$. Por otra parte,

$$|\varphi_k(x_k)| \leqslant |\mathcal{F}\chi_{I_k}(x_k)|$$

$$\leqslant \mathcal{N}_1(\chi_{I_k})$$

$$= b_k - a_k$$

para $k \in [1, n]$. Sea

$$c = \max_{1 \le k \le n} \left\{ b_k - a_k \right\}$$

Dado $\varepsilon > 0$ existe R > 0 tal que para todo $k \in [1, n]$ es tiene

$$|x_k| > R \Rightarrow |\varphi_k(x_k)| < \varepsilon$$

Si se toma la norma cúbica $\|\cdot\|$ de \mathbb{R}^n , al suponer que $\|x\| > R$ se tendrá que $|x_k| > R$ para algún $k \in [1, n]$, luego

$$||x|| > R \Rightarrow |\mathcal{F}\chi_P(x)| = |\varphi_1(x_1) \cdots \varphi_n(x_n)| \leqslant c^{n-1}\varepsilon$$

Así pues, el Teorema es cierto para $f = \chi_P$. Claramente por linealidad de la transformación de Fourier el Teorema sigue siendo cierto si f es una función escalonada en \mathbb{R}^n .

II. Sea $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$ y tomemos $\varepsilon > 0$. Por la densidad de $\mathcal{E}(\mathbb{R}^n, \mathbb{C})$ en $\mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$, existe $\varphi \in \mathcal{E}(\mathbb{R}^n, \mathbb{C})$ tal que

$$\mathcal{N}_1(f-\varphi) < \frac{\varepsilon}{2}$$

Entonces,

$$|\mathcal{F}f(x)| = |\mathcal{F}f(x) - \mathcal{F}\varphi(x)| + |\mathcal{F}\varphi(x)|$$

$$= |\mathcal{F}(f - \varphi)(x)| + |\mathcal{F}\varphi(x)|$$

$$\leq \mathcal{N}_1 (f - \varphi) + |\mathcal{F}\varphi(x)|, \quad \forall x \in \mathbb{R}^n$$

$$< \frac{\varepsilon}{2} + |\mathcal{F}\varphi(x)|, \quad \forall x \in \mathbb{R}^n$$

Por tanto, de (i) existe R > 0 tal que

$$||x|| > R \Rightarrow |\mathcal{F}\varphi(x)| < \frac{\varepsilon}{2}$$

de donde se sigue que

$$||x|| > R \Rightarrow |\mathcal{F}f(x)| < \frac{\varepsilon}{2} + |\mathcal{F}\varphi(x)| < \varepsilon$$

lo que prueba el resultado.

Teorema 1.1.3

Si $f, g \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$, entonces $\mathcal{F}(f * g) = (\mathcal{F}f)(\mathcal{F}g)$.

Demostración:

Sean $f, g \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. Se tiene que

$$\mathcal{F}(f * g)(x) = \int_{\mathbb{R}^n} e^{-i\left(x\big|y\right)} f * g(y) \, dy$$
$$= \int_{\mathbb{R}^n} e^{-i\left(x\big|y\right)} \, dy \int_{\mathbb{R}^n} f(z)g(y-z) \, dz$$

ya se sabe que $(y,z)\mapsto f(z)g(y-z)e^{-i\left(x\,\middle|\,y\right)}$ es integrable en $\mathbb{R}^n\times\mathbb{R}^n$ para todo $x\in\mathbb{R}^n$. Por Fubini:

$$\mathcal{F}(f*g)(x) = \int_{\mathbb{R}^n} f(z) \, dz \int_{\mathbb{R}^n} e^{-i\left(x\big|y\right)} g(y-z) \, dy, \text{ haciendo el cambio de variable } y = u+z$$

$$= \int_{\mathbb{R}^n} f(z) \, dz \int_{\mathbb{R}^n} e^{-i\left(x\big|u+z\right)} g(u) \, du$$

$$= \left(\int_{\mathbb{R}^n} e^{-i\left(x\big|z\right)} f(z) \, dz\right) \left(\int_{\mathbb{R}^n} e^{-i\left(x\big|y\right)} g(y) \, dy\right)$$

$$= (\mathcal{F}f(x))(\mathcal{F}g(x))$$

lo que prueba el resultado.

Teorema 1.1.4

Sea $C_0(\mathbb{R}^n, \mathbb{C})$ el álgebra de Banach de las funciones de \mathbb{R}^n en \mathbb{C} continuas y nulas en el infinito provisto de la norma uniforme. Entonces la aplicación $\mathcal{F} \cdot : L_1(\mathbb{R}^n, \mathbb{C}) \to C_0(\mathbb{R}^n, \mathbb{C})$ es un homomorfismo continuo entre ambas álgebras de Banach.

La norma de \mathcal{F} considerada como aplicación lineal es $\|\mathcal{F} \cdot \| = 1$.

Demostración:

Es un resumen de las propiedades anteriores.

Observación 1.1.3

Más adelante se verá que \mathcal{F} · es inyectia pero no es suprayectiva.

Proposición 1.1.4

Sea $f: \mathbb{R}^n \to \mathbb{C}$ y $r \in \mathbb{N}$. Se supone que $x \mapsto x_1^{m_1} \cdots x_m^{m_n} f(x)$ e sintegrable en \mathbb{R}^n para toda colección $m_1, ..., m_n \in \mathbb{N}$ tales que $m_1 + \cdots + m_n \leq r$. Entonces, $\mathcal{F}f$ es de clase \mathbb{C}^r en \mathbb{R}^n . Si $k \in [1, k]$ y $\alpha_1, ..., \alpha_k \in [1, n]$ se tiene que

$$\partial_{\alpha_1} \cdots \partial_{\alpha_k} \mathcal{F} f = \mathcal{F} g$$

donde $g(x) = (-ix_{\alpha_1})(-ix_{\alpha_2})\cdots(-ix_{\alpha_k})f(x)$.

Demostración:

Se tiene

$$\mathcal{F}f(x) = \int_{\mathbb{R}^n} e^{-i(x_1y_1 + \dots + x_ny_n)} f(y) \, dy$$

Al aplicar el operador $\partial_{\alpha_1} \cdots \partial_{\alpha_k}$ a $x \mapsto e^{-i(x_1y_1 + \cdots + x_ny_n)} f(y)$ se tiene

$$(-iy_{\alpha_i})\cdots(-iy_{\alpha_k})f(y)$$

Esta función en valor absoulto es menor o igual a

$$|y_{\alpha_1}\cdots y_{\alpha_k}f(y)|$$

la cual por hipótesis es integrable en \mathbb{R}^n e independiente de x. Por el Teorema de derivación parcial de funciones definidas por integrales, $\mathcal{F}f$ es de clase C^r .

Observación 1.1.4

Si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$ y existe $\lim_{x \to \infty} f(x)$, necesariamente

$$\lim_{x \to \infty} f(x) = 0$$

Proposición 1.1.5

Sea $f : \mathbb{R} \to \mathbb{C}$ función de clase C^r en \mathbb{R}^n . Se supone que f y todas sus derivadas parciales hasta el orden r (inclusive) son integrables. Si $k \in [1, r]$ y $\alpha_1, ..., \alpha_k \in [1, n]$, entonces

$$\mathcal{F}(\partial_{\alpha_1}\cdots\partial_{\alpha_k}f)(x) = (ix_{\alpha_1})\cdots(ix_{\alpha_k})\mathcal{F}f(x)$$

Demostración:

Basta probar que

$$\mathcal{F}(\partial_j f)(x) = (ix_j)\mathcal{F}f(x)$$

con $j \in [1, n]$ pues el resto se sigue por inducción. Se tiene

$$\mathcal{F}(\partial_j f)(x) - (ix_j)\mathcal{F}f(x) = \int_{\mathbb{R}^n} e^{-i\left(x\big|y\right)} \left[\partial_j f(y) - ix_j f(y)\right] dy$$
$$= \int_{\mathbb{R}^n} \frac{\partial}{\partial y_j} \left[e^{-i\left(x\big|y\right)} f(y)\right] dy$$

de donde, por el Teorema de Fubini

$$\mathcal{F}(\partial_j f)(x) - (ix_j)\mathcal{F}f(x) = \int_{\mathbb{R}^{n-1}} dy_1 \cdots dy_{j-1} dy_{j+1} \cdots dy_n \int_{-\infty}^{\infty} \frac{\partial}{\partial y_j} \left[e^{-i\left(x \mid y\right)} f(y) \right] dy_j$$

El Teorema de Fubini asegura que existe un conjunto despreciable $Z_1 \subseteq \mathbb{R}^{n-1}$ tal que para todo $y' = (y_1, ..., y_{j-1}, y_{j+1}, ..., y_n) \in \mathbb{R}^{n-1} \setminus Z_1$ existe la integral

$$\int_{-\infty}^{\infty} \frac{\partial}{\partial y_j} \left[e^{-i\left(x\big|y\right)} f(y) \right] dy_j$$

o sea que $y_j \mapsto \frac{\partial}{\partial y_j} \left[e^{-i\left(x \mid y\right)} f(y) \right]$ es integrable en \mathbb{R} . Por el 2° T.F.C. para intervalos abiertos

$$\int_{-\infty}^{\infty} \frac{\partial}{\partial y_j} \left[e^{-i\left(x\big|y\right)} f(y) \right] dy_j = \lim_{y_j \to \infty} e^{-i\left(x\big|y\right)} f(y) - \lim_{y_j \to -\infty} e^{-i\left(x\big|y\right)} f(y)$$
 (1.1)

puesto que la función $y \mapsto e^{-i\left(x \mid y\right)} f(y)$ es integrable en \mathbb{R}^n , por el Teorema de Fubini existe un conjunto $Z_2 \subseteq \mathbb{R}^{n-1}$ tal que para todo $y' = (y_1, ..., y_{j-1}, y_{j+1}, ..., y_n) \in \mathbb{R}^{n-1} \setminus Z_2$, la función $y_j \mapsto e^{-i\left(x \mid y\right)} f(y)$ es integable en \mathbb{R} . Sea $Z = Z_1 \cup Z_2 \subseteq \mathbb{R}^{n-1}$. Por la última observación, los límites a la derecha de la ecuación anterior deben ser 0 para todo $y' = (y_1, ..., y_{j-1}, y_{j+1}, ..., y_n) \in \mathbb{R}^{n-1} \setminus Z$. Por tanto,

$$\int_{-\infty}^{\infty} \frac{\partial}{\partial y_j} \left[e^{-i\left(x \mid y\right)} f(y) \right] dy_j = 0$$

para todo $y'=(y_1,...,y_{j-1},y_{j+1},...,y_n)\in\mathbb{R}^{n-1}\backslash Z.$ Por tanto

$$\mathcal{F}(\partial_j f)(x) - (ix_j)\mathcal{F}f(x) = 0$$

lo que prueba el resultado.

1.2. Teoremas de Transferencia e Inversión

Teorema 1.2.1 (Teorema de Transferencia)

Sean $f, g \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$. Entonces

$$\int_{\mathbb{R}^n} f \cdot \mathcal{F}g = \int_{\mathbb{R}^n} \mathcal{F}f \cdot g$$

y,

$$\int_{\mathbb{R}^n} f \cdot \mathcal{F}^* g = \int_{\mathbb{R}^n} \mathcal{F}^* f \cdot g$$

Demostración:

Como $\mathcal{F}f$ y $\mathcal{F}g$ son continuas acotadas en \mathbb{R}^n y $f,g\in\mathcal{L}_1(\mathbb{R}^n,\mathbb{K})$, ambas integrales existen. Se tiene

$$\int_{\mathbb{R}^n} \mathcal{F}f(x) \cdot g(x) \, dx = \int_{\mathbb{R}^n} g(x) \, dx \int_{\mathbb{R}^n} e^{-i\left(x \mid y\right)} f(y) \, dy$$

ya se sabe que $(x,y)\mapsto e^{-i\left(x\Big|y\right)}g(x)f(y)$ es integrable en $\mathbb{R}^n\times\mathbb{R}^n$. Por Fubini podemos invertir el orden de integración

$$\int_{\mathbb{R}^n} \mathcal{F}f(x) \cdot g(x) \, dx = \int_{\mathbb{R}^n} f(y) \, dy \int_{\mathbb{R}^n} e^{-i\left(x\big|y\right)} g(x) \, dx$$

$$= \int_{\mathbb{R}^n} f(y) \, dy \int_{\mathbb{R}^n} e^{-i\left(y\big|x\right)} g(x) \, dx$$

$$= \int_{\mathbb{R}^n} f(y) \cdot \mathcal{F}g(y) \, dy$$

$$\Rightarrow \int_{\mathbb{R}^n} f \cdot \mathcal{F}g = \int_{\mathbb{R}^n} \mathcal{F}f \cdot g$$

para la \mathcal{F}^* · el procedimiento es análogo.

Lema 1.2.1 (Efecto de la transformación de Fourier sobre sucesiones de Dirac) Sea $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ una sucesión de Dirac en $\mathcal{L}_{1}(\mathbb{R}^{n},\mathbb{C})$. Defina

$$h_{\nu} = \mathcal{F}\rho_{\nu}, \quad \forall \nu \in \mathbb{N}$$

Entonces.

- I. $|h_{\nu}(x)| \leq 1$ para todo $x \in \mathbb{R}^n$.
- II. $\lim_{\nu\to\infty} h_{\nu}(x) = 1$, para todo $x \in \mathbb{R}^n$.

Demostración:

De (i): Se tiene

$$|h_{\nu}(x)| = |\mathcal{F}\rho_{\nu}(x)|$$

$$\leq \mathcal{N}_{1}(\rho_{\nu})$$

$$= \int_{\mathbb{R}^{n}} \rho_{\nu}$$

$$= 1$$

para todo $x \in \mathbb{R}^n$.

De (ii): Sea $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$. Entonces $\{f * \rho_{\nu}\}_{\nu=1}^{\infty}$ es una sucesión en $\mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$ que converge en promedio a f. Como la transformación de Fourier es un homomorfismo continuo del álgebra de Banach $L_1(\mathbb{R}^n, \mathbb{K})$ en $\mathcal{C}_0(\mathbb{R}^n, \mathbb{K})$, se debe tener que

 $\lim_{\nu \to \infty} \mathcal{F}(f * \rho_{\nu}) = \mathcal{F}f \text{ uniformemente en } \mathbb{R}^n$

pero,

$$\mathcal{F}f * \rho_{\nu} = \mathcal{F}f \cdot \mathcal{F}\rho_{\nu} = h_{\nu}\mathcal{F}f$$

es decir,

$$\lim_{\nu \to \infty} h_{\nu} \mathcal{F} f = \mathcal{F} f \text{ uniformemente en } \mathbb{R}^n$$

$$\Rightarrow \mathcal{F} f \lim_{\nu \to \infty} h_{\nu} = \mathcal{F} f \text{ uniformemente en } \mathbb{R}^n$$

Fijando f de tal suerte que $\mathcal{F}f(x)\neq 0$ para todo $x\in\mathbb{R}^n$ se concluye que

$$\lim_{\nu \to \infty} h_{\nu}(x) = 1$$

(por ejemplo, tome $f(x) = e^{-\frac{x^2}{2}}$).

Observación 1.2.1

Si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$, entonces no necesariamente su transformada de Fourier es integrable. Por ejemplo

$$\mathcal{F}\chi_{[-1,1]} = \begin{cases} \frac{2\sin x}{x} & \text{si} \quad x \neq 0\\ 2 & \text{si} \quad x = 0 \end{cases}$$

es continua, nula en el infinito pero no es integrable en \mathbb{R} .

Teorema 1.2.2 (Teorema de Inversión de Fourier)

Si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$ es tal que $\mathcal{F}f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$, entonces

$$\mathcal{F}^*(\mathcal{F}f) = \mathcal{F}(\mathcal{F}^*f) = (2\pi)^n f$$
 c.t.p. en \mathbb{R}^n

Si además f es continua en \mathbb{R}^n , la fórmula es válida en todo punto de \mathbb{R}^n .

Demostración:

Proposición 1.2.1

La transformación de Fourier \mathcal{F} · es un homomorfismo inyectivo del álgebra de Banach $L_1(\mathbb{R}^n, \mathbb{C})$ en el álgebra de Banach $\mathcal{C}_0(\mathbb{R}^n, \mathbb{C})$.

Demostración:

Basta probar que el kernel de \mathcal{F} · se reduce a 0. En efecto, sea $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$ tal que $\mathcal{F}f = 0$ en \mathbb{R}^n , luego $\mathcal{F}f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. Así se puede aplicar el Teorema anterior, que resulta en que

$$0=\mathcal{F}^*0=\mathcal{F}^*(\mathcal{F}f)=(2\pi)^n f$$
c.t.p. en \mathbb{R}^n

en \mathbb{R}^n . Por tanto, f = 0 c.t.p. en \mathbb{R}^n .