Course (Code	18CSE448T	Course Name	ENERGY MANAGEMENT FOR INTERNET OF THINGS DEVI	CES		urse egory	Е				Pr	ofess	ional E	Electiv	/e				L 3	T 0	P 0	C 3
Pre-req Cours Course O	ses	Nil Department	Co-requisite Courses Comp	Nil uter Science and Engineering Data Book / Codes/Stan	dards		gressiv	е						Nil		Nil							
Course L (CLR):	earning	Rationale	The purpose of lea	arning this course is to:		_earni	ng					F	Progr	am Le	arnir	ıg Ou	come	es (PC)				
CLR-1:	Underst	tand the rudiment	s of energy conserv	ration and IoT	1	2	3		1	2 3	4	5	6	7	8	9 1	0 1	1 12	13	14	15		
CLR-2:	Gain the	e knowledge on v	arious energy cons	ervation schemes in IoT																			
CLR-3:	Utilize t	he conventional a	nd optimization algo	orithms for conserving energy in IoT devices																			
CLR-4:	Underst	tand the various te	echniques of green	IoT and impact of conventional techniques of IoT	ĺ į	(%)	(%		Φ								වු	5	[
CLR-5:	Gain the	e knowledge on e	xisting energy effici	ent architecture for energy conservation and harvesting	Bloom) S	nt (edg		ng Ing			Б		ing .	etel	Ž.	5				
Course L (CLO):	earning	Outcomes	At the end of this	course, learners will be able to:	evel of Thinking	ted Proficie	Expected Attainment (%)		Disciplinary Knowledge	Critical Thinking Problem Solving	Analytical Reasoning	Research Skills	Team Work	Scientific Reasoning	Reflective Thinking	Self-Directed Learning	Multicultural Competence	Etnical Reasoning	ICT Skills	Leadership Skills	Life Long Leaming	PSO - 1	PSO - 2 PSO - 3
CO-1:	Acquire	the knowledge o	n IoT and energy co	nservation approaches in IoT	2	85	80		2	1 2	1	-	-	-	-		- -		3	-	3	1	1 2
CO-2:	Identify	and choose appr	opriate energy cons	servation component for real world problems	2	80	75		2	1 2	1	-	-	-	-	-			3	-	3	1	1 2
CO-3:	Design	and develop ener	gy conservation alg	orithms for improving the lifetime of IoT devices	3	80	75		2	3 3	1	3	1	-	-	-			3	-	3	1	1 2
CO-4:	Compa	re and contrast of	various green IoT t	echniques and able to design green IoT for real world problems	2	80	70		2	2 2	1	-	-	-	-	-			3	-	3	1	1 2
CO-5:	Design	and develop ener	gy efficient archited	ture for real world problems	3	75	70		2	3 3	1	3	1	-	-	-		-	3	-	3	1	1 2

	ration hour)	9	9	9	9	9
S-1	SLO-1	Introduction to IoT	Energy conservation schemes	Static energy efficient algorithms	Green IoT an Overview	Designing energy efficient IoT based Intelligent Transport System
	SLO-2	Architecture of IoT	Sleep/wakeup scheme	Exact allocation algorithm	Smart Homes, Smart Cities	Intelligent Transport System
	SLO-1	Components of IoT	Data driven scheme	Best Fit Heuristic Algorithm	Energy Efficient smart health care	Motivations for IoT in Transportation
S-2	SLO-2	Applications of IoT	Mobility based scheme	Dynamic energy efficient algorithms	Importance of Green IOT	Communication Technology and Related Power Issues
	SLO-1	Challenges in IOT	Load balancing	Hardware Level Solution	Taxonomy of green IoT techniques	Information Extraction and Underlying Power Issues
S-3	SLO-2	Energy Management in IoT	Working of load balancing	Dynamic Voltage Frequency Scaling (DVFS)	Various Approaches to Achieve Green IoT	Energy Efficiency Challenges and Corresponding Solutions, Further Challenges and Opportunities
S-4	SLO-1	Energy harvesting	Hardware based load balancing	Software Level Solution	software based green IoT techniques	Capacity Estimation of Electric Vehicle Aggregator for Ancillary Services
	SLO-2	Block diagram of energy harvesting	Software Based Load Balancing	First Fit Decreasing algorithm (FFD)	Hardware based green IoT techniques	Development of Electric Vehicles
S-5	SLO-1	Various ambient energies	Compare hardware and software based load balancing techniques	Modified Best Fit Decreasing algorithm (MBFD)	Policy based techniques	Motivation for Vehicle to Everything (V2X) and V2G Technology
3-5	SLO-2	Energy harvesting schemes	Load balancing algorithms	Genetic Algorithm (GA)	Awareness based Approach - Toward Green IoT, Energy Awareness	Electric Vehicles and Solar Power Plants in Smart Grid Environment
	SLO-1	Harvesting modules		Particle Swarm Optimization (PSO)	IoT Based Smart Metering	Potential of EV to Grid Connection, Capacity Estimation of Aggregator
S-6	SLO-2	Rectenna Model	Static Algorithms, Dynamic Algorithms	Ant Colony Optimization (ACO)	Communication Technology Creating Awareness About Green Information, PromotingRecycling	Battery Management System, Grid Connection and Performance Testing of V2G
S-7	SLO-1	Sensing antenna	Issues of energy conservation in IoT	Simulated Annealing (SA)	Habitual Based Techniques	Weather monitoring using Bluetooth Low Energy (BLE) in warehouses

	SLO-2	DC-DC Converter			Comparative analysis of different green IoT approaches	
	SLO-1	Wireless energy harvesting		Hybrid Genetic Algorithm and Cat Swarm Optimization (HGACSO)	Case study: impact of smart phones on the environment in present and future trends	BLE importance
S-8	SLO-2	Near Field Communication, Inductive coupling	Energy Conservation in Smart Home and	Optimization and Simulated	Reduce the environmental impact life cycle assesment of smatphones, smart phone emission and selling rate	
S-9	SLO-1	Paradigmatic view of energy efficient IoT	TAUTOMATION AND SENSORS IN SMART HOME		Promoting the Usage of Sensor Cloud: a step toward green IoT.	Design weather monitoring using BLE
5-9	SLO-2				Creating Awareness Through Prototyping: A Green IoT-Based Smart	

Learning Resources	"EnergyConservationforIoTDevicesConcepts,ParadigmsandSolutions",MamtaMittal,Sudeep Tanwar,BasantAgarwal,LalitMohanGoyal,StudiesinSystems,DecisionandControl 206,2019. "IOTprojectswithBluetoothLowEnergy-Hamessthepowerofconnectedthings",Madhur	1Green IoT: An Investigation on Energy Saving Practices for 2020 and Beyond, Rushan Arshad, Saman Zahoor, Munam Ali Shah , Abdul Wahid, and Hongnian Yu, special section on future networks: architectures, protocols, and applications, 2017.
-----------------------	--	--

	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examinati	ion (50% weightage)
	Level of	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA -	4 (10%)		
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	-	15%	-	15%	-	15%	-	15%	-
Level 2	Understand	20%	-	15%	-	15%	-	15%	-	20%	-
Level 3	Apply	45%	-	40%	-	40%	-	20%	-	30%	-
Level 4	Analyze	15%	-	15%	-	15%	-	25%	-	20%	-
Level 5	Evaluate	-	-	15%	-	15%	-	25%	-	15%	-
Level 6	Create	-	-	-	-	-	-	-	-	-	-
	Total	100 %		100 %	100 %	100 %	100 %	100 %		20%	

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1.Mr.Anantha Velavan , Principal Validation Engineer, Micro chip	Dr. Divya Udayan J, PhD(S.Korea) MIEEE MACM MIDF, Associate Professor, VIT	Dr.T.Sujithra,SRMIST
	University, Vellore	
2.Mr.GaneshSKandha, Senior Applications Engineer, Micro chip	Dr. Masoodhu Banu, Professor/Head of Bio Medical, Veltech University,	Dr.Kayalvizhi Jayavel, SRMIST
		Mrs.Anitha,SRMIST