Wyszukiwanie wzorców

IIUWr. II rok informatyki.

1 Notacja

- $\bullet~\Sigma$ ustalony alfabet
- T[1..n] i P[1..m] ciągi symboli z Σ
- \bullet T nazywamy tekstem a P wzorcem
- Mówimy, że P występuje z przesunięciem s w tekście T jeśli $0 \le s \le n-m$ oraz T[s+1..s+m] = P[1..m].
- $w \sqsubset x$ w jest prefiksem x-a $(tzn. <math>\exists_{y \in \Sigma^*} wy = x)$
- $w \supset x$ w jest sufiksem x-a (tzn. $\exists_{y \in \Sigma^*} yw = x$)
- P_k k-elementowy prefiksP[1..k]wzorca P[1..m]
- T_k k-elementowy prefiks T[1..k] tekstu T[1..m]

Fakt 1 Niech x, y i z będą takie, że $x \supset z$ i $y \supset z$. Wówczas

- $|x| \le |y| \Rightarrow x \supset y$,
- $|x| \ge |y| \Rightarrow y \supset x$,
- $-|x|=|y| \Rightarrow x=y,$

2 Definicja problemu

Dane: wzorzec P[1..m] oraz tekst T[1..n]

 $Zadanie:\;\;$ znaleźć wszystkie wystąpienia $P\le T$ (tj. znaleźć wszystkie sz przedziału

 $\langle 0, n-m \rangle$ takie, że $P \supset T_{s+m}$).

3 Algorytmy

3.1 Algorytm naiwny

```
\begin{array}{l} \textbf{procedure} \ \ Naive-string-matcher(T,P) \\ n \leftarrow length(T) \\ m \leftarrow length(P) \\ \textbf{for} \ s \leftarrow 0 \ \textbf{to} \ n-m \ \textbf{do} \\ \text{if} \ P[1..m] = T[s+1..s+m] \ \ \textbf{then} \ \text{write}(\text{"wzorzec występuje z przesunięciem", s}) \end{array}
```

Koszt: $\Theta((n-m+1)m)$ w najgorszym przypadku.

3.2 Algorytm Karpa-Rabina

IDEA:

Słowa nad d-literowym alfabetem Σ traktujemy jako liczby d-arne. Jeśli p oznacza liczbę odpowiadającą T[s+1..s+m+1] (s=0,..n-m), to wzorzec występuje z przesunięciem s iff $p=t_s$. Gdy m jest duże, to p oraz t_i są duże i ich porównywanie jest kosztowne. Dlatego wybieramy liczbę q (zwykle jest to liczba pierwsza) taką, że dq mieści się w słowie maszynowym i liczby p oraz t_i obliczamy modulo q. Wówczas

- (1) $p \neq t_s \Rightarrow P$ nie występuje w T z przesunięciem s,
- (2) $p = t_s \Rightarrow P$ może występować w T z przesunięciem s.

```
\begin{aligned} & \mathbf{procedure} \ Karp - Rabin - matcher(T, P, d, q) \\ & n \leftarrow length(T) \\ & m \leftarrow length(P) \\ & h \leftarrow d^{m-1} \mod q \\ & p \leftarrow 0; \ t_0 \leftarrow 0 \\ & \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ m \ \mathbf{do} \\ & p \leftarrow (dp + P[i]) \ \mathrm{mod} \ q \\ & t_0 \leftarrow (dt_0 + T[i]) \ \mathrm{mod} \ q \\ & \mathbf{for} \ s \leftarrow 0 \ \mathbf{to} \ n - m \ \mathbf{do} \\ & \mathbf{if} \ p = t_s \ \mathbf{then} \\ & \mathbf{if} \ P[1..m] = T[s + 1..s + m] \ \ \mathbf{then} \ \mathrm{write}(\text{"wzorzec występuje z przesunięciem", s)} \\ & \mathbf{if} \ s < n - m \ \mathbf{then} \ t_{s+1} \leftarrow (d(t_s - T[s+1]h) + T[s+m+1]) \ \mathrm{mod} \ q \end{aligned}
```

Koszt: $\Theta((n-m+1)m)$ w najgorszym przypadku. Gdy wzorzec występuje w tekście niewiele razy oraz gdy t_i przyjmują wartości $\{0,..,q-1\}$ z równym prawdopodobieństwem, to wybierając q większe od m koszt powyższej procedury można oszacować przez O(m+n).

UWAGA: Algorytm ten łatwo uogólnia się na problem szukania wzorców dwuwymiarowych.

3.3 Wyszukiwanie wzorców automatami skończonymi.

3.3.1 Konstrukcja automatu

IDEA:

Dla danego wzorca P skonstruujemy automat skończony M_P o stanach ze zbioru $\{0,..m\}$. Automat, czytając tekst T, będzie znajdować się w stanie d, jeśli ostatnich d liter tekstu może rozpoczynać wzorzec i dla żadnego e > d, e ostatnio wczytanych liter nie może rozpoczynać wzorca. W szczególności dojście do stanu m będzie oznaczać, że m ostatnio wczytanych liter tekstu tworzy wzorzec.

 $\textbf{Definicja 1} \ \ \textit{Dla automatu skończonego} \ \ M = (Q, q_0, A, \Sigma, \delta), \ \ \textit{określamy funkcję} \ \ \phi : \Sigma^* \rightarrow Q :$

$$\phi(\varepsilon) = q_0
\phi(wa) = \delta(\phi(w), a),$$

Innymi słowy $\phi(w)$ ="stan, w którym znajdzie się M po przeczytaniu w".

Definicja 2 Dla wzorca P definiujemy funkcję $\sigma: \Sigma^* \to \{0, \dots, m\}$:

$$\sigma(x) = \max\{k \mid P_k \supset x\}$$

Czyli $\sigma(x)$ = "długość najdłuższego prefiksu P, który jest sufiksem x-a".

Fakt 2 (Własności funkcji σ)

(a)
$$\sigma(x) = |P|$$
 iff $P \supset x$

(b)
$$x \supset y \Rightarrow \sigma(x) \leq \sigma(y)$$

Definicja 3 (Automatu skończonego M_P dla wzorca P)

- $zbi\acute{o}r\ stan\acute{o}w$: $Q = \{0, 1, \dots, m\},$
- $stan\ początkowy:\ q_0=0,$
- $zbi\acute{o}r\ stan\acute{o}w\ ko\acute{n}cowych$: $A = \{m\},$
- funkcja przejścia: $\forall_{q \in Q, a \in \Sigma} \ \delta(q, a) = \sigma(P_q a)$.

3.3.2 Program symulujący automat M_P .

```
\begin{array}{l} \textbf{procedure } Finite-automaton-matcher(T,\delta,m) \\ n\leftarrow length(T) \\ q\leftarrow 0 \\ \textbf{for } i\leftarrow 1 \textbf{ to } n \textbf{ do} \\ q\leftarrow \delta(q,T[i]) \\ \textbf{ if } q=m \textbf{ then } write(\text{ "wzorzec występuje z przesunięciem" },i-m) \end{array}
```

Koszt procedury: O(n) (koszt ten nie obejmuje kosztu obliczenia funkcji δ).

3.3.3 Analiza poprawności

Poniższe lematy i twierdzenie pokazują, że jeśli po wczytaniu *i*-tej litery tekstu M_P jest w stanie q (= $\phi(T_i)$), to q jest długością najdłuższego sufiksu T_i , który jest prefiksem P (= $\sigma(T_i)$). Ponieważ $\sigma(T_i) = m$ iff $P \supset T_i$, więc stan akceptujący będzie osiągany wtedy i tylko wtedy, gdy m ostatnio przeczytanych znaków tworzy wzorzec.

- Lemat 1 $\forall_{x \in \Sigma^*} \forall_{a \in \Sigma} \quad \sigma(xa) \leq \sigma(x) + 1$,
- Lemat 2 $\forall_{x \in \Sigma^*} \forall_{a \in \Sigma} \quad q = \sigma(x) \Rightarrow \sigma(xa) = \sigma(P_q a)$
- Twierdzenie 1 $\forall_{i=0,1,...,n}$ $\phi(T_i) = \sigma(T_i)$.

3.3.4 Obliczanie funkcji δ

• Sposób naiwny.

```
\begin{aligned} & \mathbf{procedure} \ Compute - Transition - Function(P, \Sigma) \\ & m \leftarrow length(P) \\ & \mathbf{for} \ q \leftarrow 0 \ \mathbf{to} \ m \ \mathbf{do} \\ & \mathbf{for} \ \mathbf{each} \ a \in \Sigma \ \mathbf{do} \\ & k \leftarrow \min(m+1,q+2) \\ & \mathbf{repeat} \ k \leftarrow k-1 \ \mathbf{until} \ P_k \ \square \ P_q a \\ & \delta(q,a) \leftarrow k \end{aligned}
```

Koszt: $O(m^3 |\Sigma|)$

• Sposób zdecydowanie mniej naiwny (będzie przedmiotem ćwiczeń). Wykorzystuje funkcję prefiksową, którą zdefiniujemy opisując algorytm Knutha-Morrisa-Pratta. Czas jego działania wynosi $O(m|\Sigma|)$.

3.4 Algorytm Knutha-Morrisa-Pratta.

3.4.1 Idea

Zasada podobna jak poprzednio: po przeczytaniu T_i chcemy wiedzieć jak długi prefiks P jest sufiksem T_i . Załóżmy, że długość tego prefiksu wynosi k. Jeśli T[i+1] = P[k+1], to wiemy, że teraz ta długość wynosi k+1. Gorzej jeśli $T[i+1] \neq P[k+1]$. Funkcja δ pozwalała nam tę dlugość określić w jednym kroku. Pociągało to jednak za sobą konieczność wstępnego obliczenia wartości δ dla wszystkich par (k,a). To jest kosztowne! Teraz unikamy tego, pozwalając, by algorytm poświęcił więcej czasu na określenie długości prefiksu w trakcie czytania tekstu. Algorytm korzysta przy tym z pomocniczej funkcji π , którą oblicza wstępnie na podstawie wzorca w czasie O(m).

Definicja 4 Dla wzorca P definiujemy funkcję prefiksową $\pi: \{1,..,m\} \rightarrow \{0,..,m-1\}$

$$\pi(q) = \max\{k \mid k < q \ i \ P_k \supset P_q\}$$

KOMENTARZ: W sytuacji gdy k ostatnich znaków tekstu tworzy prefiks P, a kolejny znak tekstu jest niezgodny z k+1-szym znakiem P, algorytm może sprawdzać czy znak ten jest zgodny z krótszymi prefiksami P, będącymi jednocześnie sufiksami wczytanego tekstu. Jako kandydatów na te prefiksy algorytm próbuje te prefiksy wzorca, które są sufiksami P_k . O tym, które są to prefiksy mówi funkcja π .

3.4.2 Algorytm

```
\begin{aligned} & \textbf{procedure} \ KMP - Matcher(T, P) \\ & n \leftarrow length(T); \ m \leftarrow length(P) \\ & \pi \leftarrow Compute - Prefix - Function(P) \\ & q \leftarrow 0 \\ & \textbf{for} \ i \leftarrow 1 \ \textbf{to} \ n \ \textbf{do} \\ & \textbf{while} \ q > 0 \ \textbf{and} \ P[q+1] \neq T[i] \ \textbf{do} \ q \leftarrow \pi(q) \\ & \textbf{if} \ P[q+1] = T[i] \ \textbf{then} \ q \leftarrow q+1 \\ & \textbf{if} \ q = m \ \textbf{then} \ write( \text{``wzorzec występuje z przesunięciem''}, i-m) \\ & q \leftarrow \pi(q) \end{aligned}
```

3.4.3 Obliczanie funkcji prefiksowej

```
\begin{aligned} & \textbf{procedure} \ Compute - Prefix - Function(P) \\ & m \leftarrow length(P) \\ & \pi(1) \leftarrow 0; \ k \leftarrow 0 \\ & \textbf{for} \ q \leftarrow 2 \ \textbf{to} \ \textbf{m} \ \textbf{do} \\ & \textbf{while} \ k > 0 \ \textbf{and} \ P[k+1] \neq P[q] \ \textbf{do} \ k \leftarrow \pi(k) \\ & \textbf{if} \ P[k+1] = P[q] \ \textbf{then} \ k \leftarrow k+1 \\ & \pi(q) \leftarrow k \end{aligned}
```

Koszt: Procedura Compute - Prefix - Function działa w czasie O(m), a procedura KMP - Matcher w czasie O(n+m).

3.5 Algorytm Boyera-Moore'a

IDEA:

Metoda podobna do metody naiwnej: sprawdzamy kolejne przesunięcia s, ale dla danego s tekst sprawdzamy począwszy od końca wzorca. Gdy napotkamy niezgodność korzystamy z dwóch heurystyk do zwiększenia s (stosujemy tę, która proponuje większe przesunięcie):

- heurystyka "zły znak",
- heurystyka "dobry sufiks".

3.5.1 Heurystyka "zły znak"

Jeśli niezgodność wystąpiła dla $P[j] \neq T[s+j]$ $(1 \leq j \leq m)$, to niech

$$k = \left\{ \begin{array}{ll} \max \ \{z \ | \ P[z] = T[s+j]\} & \text{ jeśli takie } z \text{ istnieje,} \\ 0 & \text{w p.p.} \end{array} \right.$$

Jeśli k=0 lub k< j, to ta heurystyka proponuje przesunąć s o j-k znaków. Gdy k>j, to heurystyka nic nie proponuje.

3.5.2 Heurystyka "dobry sufiks"

Definicja 5 Mówimy, że Q jest podobne do R (i piszemy $Q \sim R$) iff $Q \supset R$ lub $R \supset Q$.

Heurystyka "dobry sufiks" mówi, że gdy napotkamy niezgodność $P[j] \neq T[s+j]$ $(1 \leq j \leq m)$, to s możemy zwiększyć o $m-\max\{k \mid 0 \leq k < m \& P[j+1..m] \sim P_k\}$.

3.6 Algorytm Shift-AND

IDEA ALGORYTMU:

- W trakcie czytania tekstu pamiętamy informację o wszystkich prefiksach wzorca, które są sufiksami przeczytanego fragmentu tekstu.
- Algorytm ten przeznaczony jest do wyszukiwania krótkich wzorców, więc powyższa informacja może być przechowywana w jednym słowie maszynowym i w prosty sposób, kilkoma rozkazami, uaktualniana po wczytania kolejnego znaku.

Niech $C_j[0..m]$ będzie wektorem charakterystycznym zbioru prefiksów wzorca, które są sufiksami $t_1...t_j$, tj. $C_j[k] = true$ iff $P_k \supset T_j$.

Obserwacje:

O1. Wektor C_j można w prosty sposób wyznaczyć na podstawie wektora C_{j-1} , wzorca oraz j-tego znaku tekstu.

Mamy bowiem:

$$C_j[k] = \begin{cases} true & \text{dla } k = 0\\ C_{j-1}[k-1] \land (p_k = t_j) & \text{dla } k > 0 \end{cases}$$

O2. Wzorzec występuje z przesunięciem j-m wtedy i tylko wtedy, gdy $C_i[m]=true$.

UWAGI IMPLEMENTACYJNE:

• Jeśli wzorzec jest krótki (m < długość słowa maszynowego), do uaktualnienia wektora charakterystycznego możemy wykorzystać długie operacje logiczne. W tym celu dla każdej litery d alfabetu tworzymy wektor R_d taki, że $R_d[i] \equiv (p_i = d)$. Wówczas

$$C_j = Shift(C_{j-1}) \ AND \ R_{p_j},$$

gdzie operacja Shift oznacza przesunięcie w prawo o jeden bit z ustawieniem skrajnie lewego bitu na 1.

 Wystarczy pamiętać jeden (bieżący) wektor charakterystyczny i uaktualniać go po każdym przeczytanym znaku.

4 Algorytm Karpa-Millera-Rosenberga (KMR)

IDEA ALGORYTMU:

- Niech w = PT, a więc w jest konkatenacją wzorca P i tekstu T.
- \bullet Numerujemy wszystkie podsłowa słowa w o długości m w jednoznaczny sposób, tj. taki, że takie same podsłowa otrzymują ten sam numer, a różne podsłowa różne numery.
- Wypisujemy wszystkie pozycje większe od m, na których zaczynają się podsłowa o takim samym numerze co podsłowo zaczynające się na pozycji 1 (a więc wzorzec).

Numerowanie podsłów

- Do numerowania wykorzystujemy kolejne liczby naturalne. W ten sposób zawsze będziemy mieli do czynienia z numerami nie większymi od n (bo różnych podsłów danej długości jest nie więcej niż pozycji, na których mogą się one zaczynać).
- Startujemy od ponumerowania podsłów długości 1. W tym celu sortujemy w czasie liniowym litery występujące w słowie.
- Jeśli mamy ustaloną numerację słów długości k, możemy w prosty sposób znaleźć numerację podsłów długości k' dla dowolnego $k' \in \{k+1, \ldots, 2k\}$:
 - Dla każdego $i=1,\ldots,|PT|-k'$ tworzymy parę $\langle nr_k(i),nr_k(i+k'-k+1)\rangle$, gdzie $nr_s(j)$ jest numerem s-literowego podsłowa zaczynającego się od pozycji j (w obliczonej przez nas numeracji podsłów s-literowych).
 - Sortujemy leksykograficznie utworzone pary. Przeglądając ciąg par z lewa na prawo nadajemy im numery = " liczba różnych par na lewo".

Przykład

Załóżmy, że ponumerowaliśmy podsłowa 2 literowe w słowie w=bbaabbaaaabbaa w następujący sposób:

Pozycja	1	2	3	4	5	6	7	8	9	10	11	12	13
Podsłowo	bb	ba	aa	ab	bb	ba	aa	aa	aa	ab	bb	ba	aa
Numer	4	3	1	2	4	3	1	1	1	2	4	3	1

Tworząc numerację podsłów 4 literowych przypisujemy kolejnym pozycjom słowa w następujące pary:

Pozycja	1	2	3	4	5	6	7	8	9	10	11
Podsłowo	bbaa	baab	aabb	abba	bbaa	baaa	aaaa	aaab	aabb	abba	bbaa
Para	4,1	3,2	1,4	2,3	4,1	3,1	1,1	1,2	1,4	2,3	4,1

Po posortowaniu par otrzymujemy ciag:

$$(1,1), (1,2), (1,4), (1,4), (2,3), (2,3), (3,1), (3,2), (4,1), (4,1), (4,1),$$

co umożliwia nam łatwe nadanie numerów parom:

Para	(1,1)	(1,2)	(1,4)	(2,3)	(3,1)	(3,2)	(4,1)
Numer	1	2	3	4	5	6	7

i przypisanie ich podsłowom z kolejnym pozycji słowa w:

Pozycja	1	2	3	4	5	6	7	8	9	10	11
Podsłowo	bbaa	baab	aabb	abba	bbaa	baaa	aaaa	aaab	aabb	abba	bbaa
Numer	7	6	3	4	7	5	1	2	3	4	3

Dowód: Chcąc znaleźć numerację słów m literowych wystarczy obliczyć numerację dla $\lceil \log m \rceil$ różnych długości. Obliczenie numeracji dla każdej z długości może być wykonane w czasie liniowym.

Uwaga: Algorytm KMR może być zastosowany do wielu problemów związanych z wyszukiwaniem takich samych podsłów, w szczególności do problemu znajdowania najdłuższego powtarzającego się podsłowa.

5 Algorytm Fishera-Patersona

Algorytm ten służy do wyszukiwania wzorców w tekście, w których (zarówno we wzorcu jak i w tekście) mogą znajdować się nieznaczące znaki. Znaki takie są zgodne ze wszystkimi znakami alfabetu.

Przykładowo, jeśli przez \diamond oznaczymy znak nieznaczący, to wzorzec $P=a\diamond a$ występuje dwukrotnie w tekście $T=babab\diamond$ (z przesunięciami 1 i 3).

Fakt 4 Każdy algorytm wyszukujący wzorców w tekście, który używa znaków wzorca i tekstu jedynie w porównaniach \equiv ma złożoność $\Omega(nm)$.

Uzasadnienie.

Niech $T=\diamond^n$ i $P=\diamond^m$. Poprawnie działający algorytm (nazwijmy go A) wypisze da tych danych $0,1,\ldots,n-m$. Załóżmy, że taki algorytm nie wykonuje porównania znaków T[i] i P[j]. Niech a i b będą różnymi znakami alfabetu i niech T' będzie tekstem powstałym przez wstawienie a na i-tą pozycję tekstu T a P' będzie wzorcem powstałym przez wstawienie b na j-tą pozycję wzorca.

Algorytm A działając na T' i P' wykona te same porównania \equiv co na danych T i P. W szczególności wypisze taki sam wynik.

Idea rozwiązania.

Definiujemy iloczyn tekstowy dwóch słów $u=u_0\dots u_n$ i $v=v_0\dots v_m$ jako słowo $w=w_0\dots w_{n+m-1}$ takie, że $\forall_{k=0,\dots,n+m-1}$:

$$w_k = \bigwedge_{i,j:i+j=k} u_i \equiv v_j$$