Pontificia Universidad Católica de Chile Bastián Mora - bmor@uc.cl Matías Fernández - matias.fernandez@uc.cl

MAT1107 - Introducción al Cálculo

Ayudantía 08 - Jueves 12 de mayo del 2022

Problema 1. Sea $x \in \mathbb{R}$. Demuestre que $e^x + e^{-x} \ge 2$.

Solución.

Como $e^x > 0$, la desigualdad es equivalente a

$$e^{2x} + 1 \ge 2e^x,$$

y, por lo tanto, equivalente a

$$e^{2x} - 2e^x + 1 > 0.$$

Esto último es equivalente a

$$(e^x - 1)^2 \ge 0$$

que es verdadero.

Problema 2. Usando la desigualdad de Bernoulli deduzca que

$$c^n \ge c$$
 para todo $n \in \mathbb{N}, c > 1$

Solución.

Veamos que $1 + n(c-1) \ge c$ ya que $(n-1)(c-1) \ge 0$. Luego usando la desigualdad de Bernoulli con el cambio de variable x = c-1 tenemos que $(1+x)^n \ge 1 + nx \Leftrightarrow c^n \ge 1 + n(c-1) \ge c$.

Problema 3. Resuelva la ecuación $(2x)^{\ln(2x)} = e^3(2x)^2$.

Solución.

Aplicamos logaritmo natural a ambos lados de la ecuación y por las propiedades del logaritmo obtenemos

$$(\ln(2x))(\ln(2x)) = 3\ln(e) + 2(\ln(2))$$

Esto nos da

$$(\ln(2x))^2 = 3 + 2\ln(2x)$$

Y esto es una ecuación cuadrática en $\ln(2x)$ así que con el cambio de variable $y = \ln(2x)$ nos queda la ecuación $y^2 - 2y - 3 = 0$ que tiene soluciones 3 y -1. Esto nos da las soluciones para x:

$$\ln(2x) = 3 \implies x = \frac{1}{2}e^3$$

$$\ln(2x) = -1 \implies x = \frac{1}{2e}$$

Problema 4. Considere la función

$$f(x) = \begin{cases} |x| & x < 3\\ x^2 + 1 & x \ge 3 \end{cases}$$

Determine un conjunto $A \subset Dom(f)$, lo más mayor posible, de modo que f sea inyectiva. Determine $f^{-1}: B \to A$, identificando B.

Solución.

Una forma de entender esta función es graficarla. Una vez hecho eso, nos damos cuenta de que hay más de una forma de elegir A. La más simple es $A=(-\infty,0]$, donde la función vale f(x)=|x|=-x y tiene recorrido $B=[0,\infty)$, la inversa en este caso sería $f^{-1}(x)=-x$. Una de las otras opciones es elegir $A=(-10,0]\cup[3,\infty)$ que tiene recorrido $B=[0,10)\cup[10,\infty)=[0,\infty)$. La inversa en este caso estaría dada por

$$f^{-1}(x) = \begin{cases} -x & x \in [0, 10) \\ \sqrt{x - 1} & x \in [10, \infty) \end{cases}$$

Problema 5. Sea $f:(-1,1)\to\mathbb{R}$ dada por

$$f(x) = \frac{x}{x+1}.$$

Asuma que f es estrictamente creciente (lo debe demostrar en la tarea). determine f^{-1} (incluyendo su dominio).

Solución.

Primero notemos que como f es estrictamente creciente, es inyectiva y por tanto podemos calcular una inversa sobre su recorrido. Para calcular el recorrido de f usemos que f es estrictamente creciente, y que cuando x se acerca a -1 por la derecha, f(x) se acerca a $-\infty$ (puede verlo con la asíntota vertical que hay en x=-1) y cuando x se acerca a 1, f(x) se acerca a $\frac{1}{2}$, por lo que el recorrido de f es $(-\infty, \frac{1}{2})$. La inversa la calculamos haciendo $y=\frac{x}{x+1}$ y despejando x. Haciendo esto obtenemos $f^{-1}: (-\infty, \frac{1}{2}) \to (-1, 1), f^{-1}(x) = \frac{x}{x-1}$.

Problema 6. Encuentre la inversa de $f: \mathbb{Z}^2 \to \mathbb{Z}^2$, f(m,n) = (m+n, m+2n).

Solución.

Para obtener la inversa hacemos el siguiente procedimiento: Tomamos $(a,b) \in \mathbb{Z}^2$ y asumimos que (a,b)=f(m,n), es decir, (a,b)=(m+n,m+2n) y tratando esto como un sistema de ecuaciones, despejamos m y n, obteniendo m=2a-b, n=b-a. Con esto, tomamos $f^{-1}(a,b)=(2a-b,b-a)$, que está bien definida pues si a,b son enteros, 2a-b,b-a también lo son. Y verificamos que efectivamente es la inversa de f. Por un lado

$$f(f^{-1}(a,b)) = f(2a-b,b-a)$$

$$= ((2a-b) + (b-a), (2a-b) + 2(b-a))$$

$$= (a,b)$$

Y por otro

$$f^{-1}(f(m,n)) = f^{-1}(m+n, m+2n)$$

$$= (2(m+n) - (m+2n), (m+2n) - (m+n))$$

$$= (2m+2n-m-2n, m+2n-m-n)$$

$$= (m,n)$$

Con lo que se concluye que $f^{-1}: \mathbb{Z}^2 \to \mathbb{Z}^2$ con $f^{-1}(a,b) = (2a-b,b-a)$ es la inversa de f.