\bigoplus

Credit Card Fraud Detection Building Credit Card Fraud Detection Building Credit Card Fraud Detection Building Credit Card Fraud Detection

By Herman Lin & Mahika Jain

OVERVIEW

INTRODUCTION 01.

The problem and dataset

SUPERVISED ANALYSIS 02.

Logistic Regression, SVM, and Neural Network

RESULTS 03.

Data obtained from model types

CONCLUSION 04.

Experimental findings and conclusions

.

In 2020, the Consumer Sentinel Network took in over 4.7 million reports; 2.2 million (46%) of those were of fraud.

Of the nearly 2.2 million fraud reports, 34% indicated losing money. This totaled to more than \$3.3 billion lost.

 \oplus

From a list of transactions, we want to be able to determine which of those are fraudulent and which are not.

DATASET: CREDIT CARD FRAUD DETECTION

- Transactions made by credit cards in Sept. 2013 by european cardholders
- Timeframe of data collection: 2 days
- 30 features: [Time, V1,..., V28, Amount]
 - PCA transformation applied on features V1-V28
- Target: Class {0: if not fraud, 1: if fraud}
- 492 frauds out of 284,807 transactions
 - Highly imbalanced dataset
 - o Frauds make up 0.172% of all transactions

02.

SUPERVISED LEARNING

Logistic Regression, Support Vector Machine (SVM), Neural Network

Accuracy

The number of correctly predicted data points out of all the data points

Precision

The ratio between the number of true positive results to the number of all positive results

Recall

The ratio
between true
positive
results to the
number of all
samples that
should have
been identified
as positive

F1-Score

The harmonic mean of the precision and recall

Metric Equations

Accuracy	$\frac{TP + TN}{TP + TN + FP + FN}$
Precision	$\frac{TP}{TP + FP}$
Recall	$\frac{TP}{TP + FN}$
F1-Score	$\frac{TP}{TP + 1/2(FP + FN)} = 2 \cdot \frac{precision \cdot recall}{precision + recall}$

More Metrics for Analysis

Precision-Recall Curve

Shows the tradeoff between precision and recall for different thresholds

AP score

Summarizes a precision-recall curve as the weighted mean of precisions achieved at each threshold

Loss Curves

Loss function is used to calculate the cost that is added to gradient calculations

Logistic Regression

Model 1

Support Vector Machines

Model 2

Model 3

Neural Networks

Standardization

Activation Function

Logistic/Sigmoid tanh

ReLU

Hidden Layers

(22)

(22, 22)

(22, 22, 22)

(30)

Alpha

0.01

0.001

0.0001

0.00001

Iterations

10,000

03.

Results

Logistic Regression, Support Vector Machine (SVM), Neural Network

Logistic Regression

Best Performed Models from both sets of transformed data and regularization:

 L1 and L2 Regularization models for the StandardScaler data

StandardScaler

cVal: 1		
	0	1
precision	0.975099	0.983278
recall	0.997106	0.869822
f1-score	0.98598	0.923077

L1 Regularization

L2 Regularization

cVal: 1		
	0	1
precision	0.975085	0.98
recall	0.996528	0.869822
f1-score	0.98569	0.92163

Logistic Regression with StandardScaler Data

L1 Regularization

L2 Regularization

Support Vector Machines

Best Performed Models out of the three kernels:

- Linear Kernel SVM model
- RBF Kernel SVM model

Support Vector Machines

Linear Kernel

Radial Basis Function Kernel

cVal: 1		
	0	1
precision	0.974026	0.989831
recall	0.998264	0.863905
f1-score	0.985996	0.922591

cVal: 100		
	0	1
precision	0.999422	1
recall	1	0.997041
f1-score	0.999711	0.998519

SVM with RBF Kernel

Neural Networks

Best Performed Model for different hidden layers and regularization:

ReLU Activation function NN model

	ReLU Activation	
	0	1
precision	1	1
recall	1	1
f1-score	1	1

Hidden Layers	Alpha Value
(22, 22)	0.01
(22, 22)	0.001
(22, 22, 22)	0.01
(22, 22, 22)	0.0001
(22, 22, 22)	0.00001

NN with ReLU Activation Function

- Hidden Layers: (22), (22, 22), (22, 22), (30)
- Alphas: 0.01, 0.001, 0.0001, 0.00001

05

20 50 80

 \oplus

04.Conclusion

Reasons:

- Lower average cost from the loss curve graph
- Overall high AP score in the precision-recall curve
- Optimal precision, recall, and f1-score
- Range of alphas for regularization term to penalize overfitting

Improvements on Selected Model

Test on different dataset sizes and ratios

Test varying number of neurons and hidden layers or try to use dropout layers

Use cross validation to reduce error and improve model performance

THANK YOU

Questions?