ALGEBRA e LOGICA

CdL in Ingegneria Informatica

prof. Fabio GAVARINI

a.a.	2016–2017 — Sessione Autunnale, I appello	
Esame	scritto del 5 Settembre 2017 — Testo e Soluzioni	

N.B.: compilare il compito in modo <u>sintetico</u> ma **esauriente**, spiegando chiaramente quanto si fa, e scrivendo in corsivo con grafia leggibile.

[1] Si consideri il polinomio booleano (nelle quattro variabili a, c, e, s) dato da $P(a, c, e, s) := \left(\left(e'' \lor 0 \lor s \right) \land \left(c \land a \right) \right) \lor \left(\left(s \lor c \right)' \land a \right)'' \lor \\ \lor \left(\left(e' \lor s \right)' \land \left(c \lor 1' \lor c'' \right) \right)$

- (a) Determinare la forma normale disgiuntiva di P.
- (b) Determinare la somma di tutti gli implicanti primi di P.
- (c) Determinare una $forma\ minimale\ di\ P$.
- [2] (a) Determinare se esistano le classi inverse $\overline{9}^{-1}$, $\overline{5}^{-1}$, $\overline{7}^{-1}$, $(\overline{9} \cdot \overline{7})^{-1}$ e $(\overline{5} \cdot \overline{7})^{-1}$ nell'anello \mathbb{Z}_{20} degli interi modulo 20. In caso negativo, si spieghi perché tale classe inversa non esista; in caso affermativo, si calcoli esplicitamente la suddetta classe inversa.
- (b) Calcolare tutte le soluzioni dell'equazione modulare $\overline{647}\,\overline{x} = \overline{-516}\,$ nell'anello $\mathbb{Z}_{20}\,$ delle classi resto modulo 20;
- (c) Calcolare tutte le soluzioni dell'equazione congruenziale $436 x \equiv 92 \pmod{20}$ nell'anello \mathbb{Z} dei numeri interi.
- [3] (a) Scrivere in base b' := DUE il numero L che in base b := OTTO è espresso dalla scrittura posizionale $L := (5034)_b$.
- (b) Scrivere in base b'' := QUATTRO il numero M che in base b' := DUE è espresso dalla scrittura posizionale $M := (110001101)_{b'}$.
- (c) Utilizzando la notazione posizionale in base $\beta:=$ CINQUE , calcolare la somma $A+B\,$ dove A e B sono i due numeri naturali espressi in base β da

$$A := (31042)_{\beta}$$
 e $B := (24304)_{\beta}$

esprimendo a sua volta la suddetta somma con la scrittura posizionale in base $\beta := \text{CINQUE}$.

(continua...)

[4] Dimostrare che per ogni
$$n \in \mathbb{N}$$
 con $n \ge 2$ si ha $\sum_{s=2}^{n} \frac{1}{s(s-1)} = \frac{n-1}{n}$.

[5] Si considerino gli insiemi delle parti $\mathcal{P}(\{\heartsuit, \spadesuit, \clubsuit\})$ e $\mathcal{P}(\{\spadesuit, \clubsuit, \diamondsuit\})$ rispettivamente dell'insieme $\{\heartsuit, \spadesuit, \clubsuit\}$ e dell'insieme $\{\spadesuit, \clubsuit, \diamondsuit\}$. Si considerino poi la funzione

$$\begin{split} f: \mathcal{P}\big(\{\heartsuit, \spadesuit, \clubsuit\}\big) & \longrightarrow \mathcal{P}\big(\{\spadesuit, \clubsuit, \diamondsuit\}\big) \quad, \qquad X \mapsto f(X) := X \cap \{\spadesuit, \clubsuit, \diamondsuit\} \\ & - \text{per ogni } X \in \mathcal{P}\big(\{\heartsuit, \spadesuit, \clubsuit\}\big) \quad - \text{e la relazione } \rho_f \text{ in } \mathcal{P}\big(\{\heartsuit, \spadesuit, \clubsuit\}\big) \text{ definita da} \\ & X' \, \rho_f \, X'' \quad \Longleftrightarrow \quad f\big(X'\big) = f\big(X''\big) \qquad \forall \quad X', X'' \in \mathcal{P}\big(\{\heartsuit, \spadesuit, \clubsuit\}\big) \end{split}$$

- (a) Verificare se la funzione f è iniettiva oppure no.
- (b) Verificare se la funzione f è suriettiva oppure no.
- (c) Dimostrare che la relazione $\rho_{\scriptscriptstyle f}$ è di equivalenza.
- (d) Dimostrare che la relazione $\rho_{\scriptscriptstyle f}$ non è d'ordine.
- (e) Descrivere esplicitamente tutte le classi di ρ_f equivalenza.

SOLUZIONI

[1] — (a) F.N.D. =
$$(a \land c \land e \land s) \lor (a \land c \land e \land s') \lor (a \land c \land e' \land s) \lor \lor (a \land c' \land e \land s') \lor (a \land c' \land e' \land s') \lor (a' \land c \land e \land s')$$

(b) s.t.i.p. = $(a \land c \land e) \lor (a \land e \land s') \lor (a \land c \land s) \lor (c \land e \land s') \lor (a \land c' \land s')$

- (c) f.m. = $(a \wedge c \wedge s) \vee (a \wedge c' \wedge s') \vee (c \wedge e \wedge s')$, e questa in effetti è *l'unica* forma minimale possibile.
- [2] (a) Esistono le classi inverse $\overline{9}^{-1}$, $\overline{7}^{-1}$ e $(\overline{9} \cdot \overline{7})^{-1}$, perché abbiamo M.C.D.(9,20)=1, M.C.D.(7,20)=1 e (in conseguenza) anche M.C.D. $(9 \cdot 7,20)=1$: esplicitamente, tali classi inverse sono

$$\overline{9}^{-1} = \overline{9}$$
 , $\overline{7}^{-1} = \overline{3}$, $(\overline{9} \cdot \overline{7})^{-1} = \overline{7}^{-1} \cdot \overline{9}^{-1} = \overline{3} \cdot \overline{9} = \overline{27} = \overline{7}$

Invece non esistono le classi inverse $\overline{5}^{-1}$ e $(\overline{5}\cdot\overline{7})^{-1}$, perché M.C.D. $(5,20)=5\neq 1$ e M.C.D. $(5\cdot7,20)=5\neq 1$.

- (b) Osserviamo che, siccome $\overline{647} = \overline{20 \cdot 32 + 7} = \overline{7}$ e $\overline{-516} = \overline{-26 \cdot 20 + 4} = \overline{4}$, l'equazione modulare $\overline{647}\,\overline{x} = \overline{-516}$ in \mathbb{Z}_{20} si può riscrivere nella forma $\overline{7}\,\overline{x} = \overline{4}$. A questo punto, poiché esiste $\overline{7}^{-1} = \overline{3} \in \mathbb{Z}_{20}$, l'equazione $\overline{647}\,\overline{x} = \overline{-516}$ ha esattamente una e una sola soluzione, data da $\overline{x} = \overline{7}^{-1} \cdot \overline{4} = \overline{3} \cdot \overline{4} = \overline{12}$.
- (c) Osserviamo che, siccome $436 \equiv 440 4 \equiv 20 \cdot 22 4 \equiv -4 \pmod{7}$ e $92 \equiv 5 \cdot 20 8 \equiv -8 \pmod{20}$, l'equazione congruenziale di partenza, cioè a dire $436 x \equiv 92 \pmod{20}$, è equivalente all'analoga equazione $-4 x \equiv -8 \pmod{20}$.

Da questo, osservando che M.C.D.(-4,-8)=4 | $4\cdot 5=20$, possiamo dedurre che l'equazione ammette soluzioni, e — in aggiunta — essa è equivalente all'equazione $(-1)\,x\equiv -2\pmod 5$ ottenuta dalla precedente dividendo tutto — coefficiente, termine noto e modulo — per M.C.D.(-4,-8)=4. Quest'ultima equazione congruenziale ovviamente ha una soluzione data da x=2, e allora l'insieme di tutte le sue soluzioni — che è anche l'insieme di tutte le soluzioni dell'equazione congruenziale di partenza — è dato da $\{x=2+5z\mid z\in\mathbb{Z}\}$.

$$\begin{split} & [\mathbf{3}] \ - \quad (a) \quad L := \big(5034\big)_{b \,=\, \text{OTTO}} = \big(101000011100\big)_{b' \,=\, \text{DUE}} \,. \\ & (b) \quad M := \big(110001101\big)_{b' \,=\, \text{DUE}} = \big(12031\big)_{b'' \,=\, \text{QUATTRO}} \,. \\ & (c) \quad A + B \,=\, \big(31042\big)_{\beta \,=\, \text{CINQUE}} + \big(24304\big)_{\beta \,=\, \text{CINQUE}} = \big(110401\big)_{\beta \,=\, \text{CINQUE}} \,. \end{split}$$

<u>N.B.</u>: incidentalmente (ma non è richiesto per l'esercizio), per d := DIECI si ha $L := (5034)_b = (2588)_d$, $M := (110001101)_{b'} = (397)_d$ $A := (31042)_{\beta} = (2022)_d$, $B := (24304)_{\beta} = (1829)_d$, $A + B = (3851)_d$

- [4] (non c'è da dare una soluzione, bisogna dimostrarlo e basta...)
- [5] (a) La funzione f non è iniettiva, perché abbiamo ad esempio $\{\heartsuit, \clubsuit\} \neq \{\clubsuit\}$ ma $f(\{\heartsuit, \clubsuit\}) = \{\clubsuit\} = f(\{\clubsuit\})$.
- (b) La funzione f non è suriettiva, perché abbiamo ad esempio che per $\{ \spadesuit, \diamondsuit \} \in \mathcal{P}(\{ \spadesuit, \clubsuit, \diamondsuit \})$ si ha $\{ \spadesuit, \diamondsuit \} \not\in Im(f)$.
 - (c) (qui non c'è da dare una soluzione, bisogna dimostrarlo e basta...)
- $\begin{array}{lll} (d) & \text{La relazione} \ \rho_{\scriptscriptstyle f} \ \text{non \`e d'ordine perch\'e non \`e antisimmetrica: infatti abbiamo ad esempio che } \{\heartsuit, \clubsuit\} \ \rho_{\scriptscriptstyle f} \, \{\clubsuit\} \ \ \text{e anche } \ \{\heartsuit, \clubsuit\} \ \rho_{\scriptscriptstyle f} \, \{\clubsuit\} \ \ \text{— perch\'e } \\ f\big(\{\heartsuit, \clubsuit\}\big) = f\big(\{\clubsuit\}\big) \ \ \text{e quindi anche } \ f\big(\{\clubsuit\}\big) = f\big(\{\heartsuit, \clubsuit\}\big) \ \ \text{— ma} \ \ \{\heartsuit, \clubsuit\} \neq \{\clubsuit\} \ . \end{array}$
- (e) Le classi di ρ_f equivalenza sono tutti e soli i sottoinsiemi di $\mathcal{P}(\{\heartsuit, \spadesuit, \clubsuit\})$ dati da $C_1 := \{\emptyset, \{\heartsuit\}\}$, $C_2 := \{\{\spadesuit\}, \{\heartsuit, \spadesuit\}\}$

$$C_3 := \{\{\clubsuit\}, \{\heartsuit, \clubsuit\}\} \qquad , \qquad C_3 := \{\{\spadesuit, \clubsuit\}, \{\heartsuit, \spadesuit, \clubsuit\}\}$$