## 1 Predictors

With knowledge of the dataset's characteristics, different types of predictors were built to help determine whether a visitor will generate Revenue by making a purchase at Nozama's website. Three predictors, namely Random Forest (RF), Support Vector Machine (SVM), and k-nearest neighbours (k-NN).

## 1.1 Random Forests

A RF predictor was built first, as seen in fig. 1.1, since its reliability gives a good baseline to evaluate other predictors on.



Figure 1.1: KNIME workflow used to build the RF predictor.

| Revenue \ Prediction (Revenue) | FALSE                 | TRUE |
|--------------------------------|-----------------------|------|
| FALSE                          | 1996                  | 88   |
| TRUE                           | 160                   | 222  |
| Correct classified: 2,218      | Wrong classified: 248 |      |
| Accuracy: 89.943 %             | Error: 10.057 %       |      |
| Cohen's kappa (κ) 0.584        |                       |      |

Figure 1.2: Confusion matrix of the RF predictor built.

The prediction accuracy of 89.9% seen from the confusion matrix shown in fig. 1.2 is greater than the minimum prediction accuracy of 84.5% determined in chapter 1. Then the RF predictor does provide value as an improvement over naively guessing that no visitor will generate Revenue.

## 1.2 Support Vector Machines

An SVM predictor was built next, as seen in fig. 1.3, since the prediction attribute has two classes. But using any of the 3 kernel functions (polynomial, hypertangent, radial basis), results in a predictor that's less accurate than the RF predictor and sometimes doesn't meet the 84.5 % threshold of naively guessing. This may be due to the lack of separation between the classes seen in fig. 1.1a, resulting in the difficulty of a kernel function to map the data points into a space where there is sufficient separation between the classes.



Figure 1.3: KNIME workflow used to build the SVM predictor.

## 1.3 k-nearest neighbours

k-NN was the last prediction method to consider, as built in fig. 1.4, since cluster results from chapter 1 indicated that it might be feasible to for a k-NN to have a higher prediction accuracy than the RF predictor.



Figure 1.4: KNIME workflow used to build the k-NN predictor.

| Revenue \ Class [kNN]                           | FALSE | TRUE     |
|-------------------------------------------------|-------|----------|
| FALSE                                           | 2043  | 41       |
| TRUE                                            | 279   | 103      |
| Correct classified: 2,146 Wrong classified: 320 |       |          |
| Accuracy: 87.024 % Error: 12.976 %              |       | 12.976 % |

Cohen's kappa (k) 0.335

Figure 1.5: Confusion matrix of the k-NN predictor built.

The prediction accuracy of 87.0% observed in the confusion matrix shown in fig. 1.2 is better than naively guessing all FALSE, but doesn't improve in the RF predictor. In retrospect, the non-existent separation between the blue and red data points in fig. 1.1a imply that that the k-NN predictor would have a difficult time dealing with data points close tho the boundary between the two revenue classes.