Introducción matemática a DESCARTES

Departamento de GEOMETRÍA Y TOPOLOGÍA

Universidad Complutense de Madrid

Objetivos del trabajo

- ...
 - ...
 - ...

Descartes y la Unificación del Álgebra y la Geometría

- 1.1 La Geometría de Descartes
- 1.2 Problemas clásicos de Apolonio y Pappus
- 1.3 Generalizaciones
- 1.4 Algebraización del problema geométrico
- 1.5 Lugares geométricos
- 1.6 Introducción a las curvas algebraicas planas
- 1.7 Cónicas y cúbicas
- 1.8 Propiedades fundamentales y clasificación
- 1.9 Nacimiento de la geometría analítica

1.1 La Geometría de Descartes

Consideremos la ecuación algebraica de grado *n*:

$$P(x) \equiv a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = 0$$

donde los coeficientes a_k son reales y $a_n \neq 0$

1.1 La Geometría de Descartes

Consideremos la ecuación algebraica de grado *n*:

$$P(x) \equiv a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = 0$$

donde los coeficientes a_k son reales y $a_n \neq 0$

Teorema Fundamental del Álgebra Toda ecuación algebraica de grado n tiene n raíces reales o complejas, contadas según su multiplicidad

Una raíz ξ de la ecuación P(x) = 0 tiene multiplicidad s cuando

$$P(\xi) = P'(\xi) = P''(\xi) = \dots = P^{s-1}(\xi) = 0$$

 $P^{s}(\xi) \neq 0$

Teorema Si los coeficientes de la ecuación algebraica son reales, sus raíces son reales o conjugadas a pares, es decir, si $\xi=\alpha+\mathrm{i}\beta$, $\alpha,\beta\in\mathbb{R}$ es raíz de P(x), también lo es $\bar{\xi}=\alpha-\mathrm{i}\beta$

Teorema Si los coeficientes de la ecuación algebraica son reales, sus raíces son reales o conjugadas a pares, es decir, si $\xi = \alpha + \mathrm{i}\beta$, $\alpha, \beta \in \mathbb{R}$ es raíz de P(x), también lo es $\bar{\xi} = \alpha - \mathrm{i}\beta$

Corolario Una ecuación algebraica de grado impar con coeficientes reales tiene al menos una raíz real

Teorema de Newton Si para x=c>0 el polinomio P(x) y todas sus derivadas P'(x), P''(x), ..., $P^{n)}(x)$ son no negativas

$$P^{k)}(c) \geqslant 0 \quad (k = 0, 1, 2, \dots, n)$$

y $P^{n)}(c)=n!a_n>0$, entonces R=c puede tomarse como frontera superior de las raíces positivas de la ecuación P(x)=0

Teorema de Newton Si para x=c>0 el polinomio P(x) y todas sus derivadas P'(x), P''(x), ... , $P^{n)}(x)$ son no negativas

$$P^{k)}(c) \geqslant 0 \quad (k = 0, 1, 2, \dots, n)$$

y $P^{n)}(c)=n!a_n>0$, entonces R=c puede tomarse como frontera superior de las raíces positivas de la ecuación P(x)=0

Demostración Si x>c, por la fórmula de Taylor, $P(x)=P(c)+P'(c)(x-c)+\cdots+\frac{P^n}{n!}(x-c)^n>0$ y así todas las raíces positivas x^+ satisfacen $x^+\leqslant c$

En las aplicaciones prácticas del Teorema de Newton se utiliza el sistema de tanteo (por ejemplo, mediante el esquema de Hörner) para hallar una secuencia monótona creciente de números positivos

$$0 < c_1 \leqslant c_2 \leqslant \dots \leqslant c_{n-1} \leqslant c_n$$

para los cuales se cumplan las desigualdades

$$P^{n-1}(c_1) \ge 0$$

$$P^{n-2}(c_2) \ge 0$$

$$\cdots$$

$$P'(c_{n-1}) \ge 0$$

$$P(c_n) \geqslant 0$$

Tales números existen siempre, pues si $a_n > 0$,

$$P^{(k)}(x) \xrightarrow{x \to \infty} \infty \quad (k = 0, 1, 2, \cdots, n - 1)$$

y podemos tomar $c = c_n$

En efecto, como $P^{n)}(x)=n!a_n>0$, la función $P^{n-1)}(x)$ es creciente, y así

$$P^{n-1}(x) > P^{n-1}(c_1) \ge 0$$

En efecto, como $P^{n)}(x)=n!a_n>0$, la función $P^{n-1)}(x)$ es creciente, y así

$$P^{n-1}(x) > P^{n-1}(c_1) \ge 0$$

Así de nuevo, $P^{n-2)}(x)$ es creciente en el intervalo $[c_1,\infty)$, y por tanto, para $x>c_2\geqslant c_1$,

$$P^{n-2}(x) > P^{n-2}(c_2) \ge 0$$

En efecto, como $P^{n)}(x)=n!a_n>0$, la función $P^{n-1)}(x)$ es creciente, y así

$$P^{n-1}(x) > P^{n-1}(c_1) \ge 0$$

Así de nuevo, $P^{n-2)}(x)$ es creciente en el intervalo $[c_1,\infty)$, y por tanto, para $x>c_2\geqslant c_1$,

$$P^{n-2}(x) > P^{n-2}(c_2) \ge 0$$

Iterando este razonamiento, llegamos a que P(x) es creciente en el intervalo $[c_{n-1},\infty)$, y para $x>c_n\geqslant c_{n_1}$

$$P(x) > P(c_n) \geqslant 0$$

con lo que $x^+ \leqslant c_n$

Ejemplo Sea

$$P(x) = 2x^5 - 100x^2 + 2x - 1$$

Ejemplo Sea

$$P(x) = 2x^5 - 100x^2 + 2x - 1$$

En este caso,

$$P'(x) = 10x^{4} - 200x + 2$$

$$P''(x) = 40x^{3} - 200$$

$$P'''(x) = 120x^{2}$$

$$P^{4}(x) = 240x$$

$$P^{5} = 240$$

$$P'''(x) > 0$$
, $P^{4)}(x) > 0$, $P^{5)}(x) > 0$ para $x > 0$

También

$$P''(x) = 40(x^3 - 5) > 0$$
 para $x \ge 2$

Supondremos $c_1 = c_2 = c_3 = 2$

$$P'''(x) > 0$$
, $P^{4)}(x) > 0$, $P^{5)}(x) > 0$ para $x > 0$

También

$$P''(x) = 40(x^3 - 5) > 0$$
 para $x \ge 2$

Supondremos $c_1 = c_2 = c_3 = 2$

$$P'(2) = -238 < 0$$
, pero $P'(3) = 212 > 0$ así que tomamos $c_4 = 3$

$$P'''(x) > 0$$
, $P^{4)}(x) > 0$, $P^{5)}(x) > 0$ para $x > 0$

También

$$P''(x) = 40(x^3 - 5) > 0$$
 para $x \ge 2$

Supondremos $c_1 = c_2 = c_3 = 2$

$$P'(2) = -238 < 0$$
, pero $P'(3) = 212 > 0$ así que tomamos $c_4 = 3$

P(3)=-409<0, pero P(4)=455>0 así que tomamos $c_5=4$, y R=4 es frontera superior de las raíces positivas de esta ecuación [Espirales Clásicas]

¿Cómo hallar el número total de raíces positivas de una ecuación algebraica? Recordemos

- Si P(a)P(b) < 0, en el intervalo (a,b) existe un número impar de raíces de P(x) (contando multiplicidades)
- Si P(a)P(b) > 0, en el intervalo (a,b) existe un número par (o nulo) de raíces de P(x)

Teorema de Sturm Si un polinomio P(x) no tiene raíces múltiples y P(a) $P(b) \neq 0$, el número de sus raíces reales en el intervalo a < x < b es exactamente igual al número de cambios de signo perdidos en la secuencia de Sturm del polinomio P(x) yendo de x = a a x = b, es decir

$$N(a,b) = N(a) - N(b)$$

Teorema de Sturm Si un polinomio P(x) no tiene raíces múltiples y P(a) $P(b) \neq 0$, el número de sus raíces reales en el intervalo a < x < b es exactamente igual al número de cambios de signo perdidos en la secuencia de Sturm del polinomio P(x) yendo de x = a a x = b, es decir

$$N(a,b) = N(a) - N(b)$$

Corolario 1 Si $P(0) \neq 0$, los números N_+ y N_- de raíces positivas y negativas del polinomio P(x) son

$$N_{+} = N(0) - N(+\infty)$$
 $N_{-} = N(-\infty) - N(0)$

Corolario 2 Un polinomio P(x) de grado n (sin raíces múltiples) tiene todas sus raíces reales si y sólo si

$$N(-\infty) - N(+\infty) = n$$

De este modo, si $a_n > 0$, todas la raíces serán reales si y sólo si

- la secuencia de Sturm tiene un número máximo de elementos n+1, esto es, m=n
- $oldsymbol{2}$ son ciertas las desigualdades $P_k(+\infty)>0$, es decir, los coeficientes dominantes de todas las funciones de Sturm $P_k(x)$ son positivos

Ejemplo Determinar el número de raíces positivas y negativas de la ecuación

$$x^4 - 4x + 1 = 0$$

Ejemplo Determinar el número de raíces positivas y negativas de la ecuación

$$x^4 - 4x + 1 = 0$$

Solución La secuencia de Sturm es de la forma

$$P(x) = x^4 - 4x + 1$$

$$P_1(x) = x^3 - 1$$

$$P_2(x) = 3x - 1$$

$$P_3(x) = 1$$

de donde

$$N(-\infty) = 2$$
 $N(0) = 2$ $N(+\infty) = 0$
 $N_{+} = 2 - 0 = 2$ $N_{-} = 2 - 2 = 0$

con lo que P(x) tiene dos raíces positivas y ninguna negativa (y por tanto dos raíces complejas)

Teorema de Budan-Fourier Si los números a < b no son raíces de un polinomio P(x) de grado n, el número N(a,b) de raíces reales de la ecuación P(x) = 0 que caen entre a y b es igual al número mínimo ΔN de pérdidas de cambio de signo en la secuencia de derivadas sucesivas

$$P(x), P'(x), \dots, P^{n-1}(x), P^{n}(x)$$

yendo de x=a a x=b, o menor que ΔN por un número par

$$N(a,b) = \Delta N - 2k$$

donde

$$\Delta N = \underline{N}(a) - \overline{N}(b)$$

y $\bar{N}(a)$, $\bar{N}(b)$ son los números inferior y superior de variaciones de signo en la secuencia anterior en $x=a,\,b$

Teorema de Hua Si una ecuación

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = 0$$

tiene coeficientes reales y todas sus raíces son reales, el cuadrado de cada coeficiente no extremo de la ecuación es mayor que el producto de los dos coeficientes adyacentes

$$a_k^2 > a_{k-1} a_{k+1}$$

Teorema de Hua Si una ecuación

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = 0$$

tiene coeficientes reales y todas sus raíces son reales, el cuadrado de cada coeficiente no extremo de la ecuación es mayor que el producto de los dos coeficientes adyacentes

$$a_k^2 > a_{k-1} a_{k+1}$$

Corolario Si para cierto k tenemos la desigualdad

$$a_k^2 \leqslant a_{k-1} a_{k+1}$$

entonces la ecuación tiene al menos un par de raíces complejas

Ejemplo Determínese la composición de las raíces de la ecuación

$$x^4 + 8x^3 - 12x^2 + 104x - 20 = 0$$

Ejemplo Determínese la composición de las raíces de la ecuación

$$x^4 + 8x^3 - 12x^2 + 104x - 20 = 0$$

Solución Como

$$(-12)^2 < 8 \cdot 104$$

la ecuación tiene raíces complejas, y el número de raíces reales no excede de 2. En la secuencia de coeficientes de la ecuación hay $\Delta N=3$ variaciones de signo y $\Delta P=1$ no variaciones de signo. Así, en base a la regla de Descartes y a sus corolarios, nuestra ecuación tiene una raíz positiva, una negativa y un par de raíces complejas

Método de Bernouilli Supongamos que se tiene una ecuación algebraica

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = 0$$

cuyas raíces $x_1, x_2, \cdots x_n$ son distintas

Método de Bernouilli Supongamos que se tiene una ecuación algebraica

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = 0$$

cuyas raíces $x_1, x_2, \cdots x_n$ son distintas

En base a los coeficientes a_k formamos la relación de recurrencia

$$a_n y_{n+i} + a_{n-1} y_{n-1+i} + \dots + a_0 y_i = 0$$
 $(i = 0, 1, 2, \dots)$

1.2 Problemas clásicos de Apolonio y Pappus

La teoría general de segundo grado (enfoque clásico)

$$F(x,y) = a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}x + 2a_{23}y + a_{33} = 0$$

Comprende las cónicas en un sistema de referencia cartesiana

Invariantes por semejanza

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{vmatrix}$$

$$\delta = \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix}$$

$$\Delta \neq 0 \quad \leadsto$$
 curva no degenerada $\Delta = 0 \quad \leadsto$ curva degenerada

CASO I: $\delta \neq 0$

Se toma la transformación de coordenadas

$$\begin{cases} x = x' + u \\ y = y' + v \end{cases} \iff \begin{cases} x' = x - u \\ y' = y - v \end{cases}$$
$$\frac{\partial F}{\partial x} = 2a_{11}x + 2a_{12}y + 2a_{13} = 0$$
$$\frac{\partial F}{\partial y} = 2a_{12}x + 2a_{22}y + 2a_{23} = 0$$

Tomamos
$$x' = y' = 0$$

$$\begin{cases} a_{11}u + a_{12}v + a_{13} = 0 \\ a_{12}u + a_{22}v + a_{23} = 0 \end{cases}$$

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = - \begin{pmatrix} a_{13} \\ a_{23} \end{pmatrix}$$

$$\begin{pmatrix} u \\ v \end{pmatrix} = -\frac{1}{\delta} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{12} & a_{11} \end{pmatrix} \begin{pmatrix} a_{13} \\ a_{23} \end{pmatrix}$$

Al insertar en la ecuación inicial nos queda

$$F(x',y') = a_{11}x'^2 + 2a_{12}x'y' + a_{22}y'^2 + \frac{\Delta}{\delta} = 0$$

obs: (u,v) corresponde al centro de la cónica

Rotación de la referencia (x', y')

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix}$$

En la referencia (ξ, η) , nuestra ecuación toma la forma

$$F(\xi, \eta) = b_{11}\xi^2 + b_{22}\eta^2 + \frac{\Delta}{\delta} = 0$$

donde

$$b_{11} = \frac{1}{2} \left(a_{11} + a_{22} \pm \sqrt{(a_{11} - a_{22})^2 + 4a_{12}^2} \right)$$

$$b_{11} = \frac{1}{2} \left(a_{11} + a_{22} \mp \sqrt{(a_{11} - a_{22})^2 + 4a_{12}^2} \right)$$

obs:

 $a_{12} > 0 \sim$ los signos de la raíz son $(b_{11} \rightarrow +, b_{22} \rightarrow -)$ $a_{12} < 0 \sim$ los signos de la raíz son $(b_{11} \rightarrow -, b_{22} \rightarrow +)$ $\delta = b_{11}b_{22}$, $b_{11} + b_{22} = a_{11} + a_{22}$

a)
$$\delta > 0$$
, $\Delta \neq 0$

$$\begin{array}{lll} \text{elipse real} \left\{ \begin{array}{ll} b_{11} &> 0 \\ b_{22} &> 0 \\ \Delta &< 0 \end{array} \right. & \text{elipse imaginaria} \left\{ \begin{array}{ll} b_{11} &> 0 \\ b_{22} &> 0 \\ \Delta &> 0 \end{array} \right. \end{array}$$

b) $\delta > 0$, $\Delta = 0$ rectas coincidentes imaginarias

c)
$$\delta < 0$$
, $\Delta \neq 0$

hipérbola
$$\left\{ egin{array}{ll} b_{11} &> 0 \ b_{22} &< 0 \ \Delta &
eq 0 \end{array}
ight.$$

d) $\delta < 0$, $\Delta = 0$ rectas coincidentes reales

CASO II: $\delta = 0$

Rotación de la referencia (x, y)

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

En la referencia (x', y') la ecuación toma la forma

$$F(x',y') = b_{11}x'^2 + 2b_{13}x' + 2b_{23}y' + a_{33} = 0$$

con

$$b_{11} = \text{tr, } b_{13} = \frac{a_{13}\sqrt{a_{11}} + a_{23}\sqrt{a_{22}}}{\sqrt{\text{tr}}}, b_{23} = \frac{a_{23}\sqrt{a_{11}} + a_{13}\sqrt{a_{22}}}{\sqrt{\text{tr}}}$$

Tomamos el cambio de referencia

$$x' = \xi - \frac{b_{13}}{b_{11}}$$
 $y' = \eta - \frac{b_{11}a_{33} - b_{13}^2}{b_{11}}$

y llegamos a

$$F(\xi,\eta) = \xi^2 + 2\frac{b_{23}}{b_{11}}\eta = 0$$

- **a)** $\Delta \neq 0$ parábola
- **b)** $\Delta = 0$

rectas reales paralelas si
$$a_{13}^2-a_{11}a_{33}>0$$
 recta doble si $a_{13}^2-a_{11}a_{33}=0$ rectas imaginarias paralelas si $a_{13}^2-a_{11}a_{33}<0$

	$\delta eq 0$ cónica con centro		$\delta=0$ cónica sin centro		
	$\delta > 0$	$\delta < 0$	0 = 0 conica sin centro		
$\Delta \neq 0$	$\Delta - \mathrm{tr} < 0$ elipse real	hipérbola	parábola		
cónica propia	$\begin{array}{c} \Delta - \mathrm{tr} > 0 \\ \mathrm{elipse} \\ \mathrm{imaginaria} \end{array}$	Прегроіа	parabola		
	par de rectas coincidentes		par de rectas paralelas		
$\Delta=0$ cónica degenerada	reales	imaginarias	$\begin{vmatrix} a_{13}^2 - a_{11}a_{33} \\ 0 & = 0 \\ 0 & < 0 \end{vmatrix}$		
			reales	doble	imaginarias

Ejemplo
$$F(x,y) = x^2 + 2xy + y^2 + 1 = 0$$

$$\Delta = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 0$$

$$\delta = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 0$$

$$a_{13}^2 - a_{11}a_{33} = -1 < 0$$

par de rectas paralelas imaginarias

Ejemplo
$$F(x,y) = 5x^2 + 4xy + 2y^2 - 18x - 12y + 15 = 0$$

elipse, centro (1,2) en la referencia original

$$F(x', y') = 5x'^2 + 4x'y' + 2y'^2 - 6 = 0$$

ángulo de giro:
$$\tan(2\alpha) = \frac{4}{3}$$