[4]

Q.S		Attempt any two:				
	i.	Explain learning algorithm of perception.				
	ii.	How recurrent neural network perform training? Also draw architecture.	5			
	iii.	Write short note on:	5			
		(a) Keras (b) TensorFlow				
Q.6		Attempt any two:				
	i.	Explain advantages of deep learning over machine learning.				
	ii.	What is reinforcement learning? How it improves learning process?	5			
	iii.	Explain semi-supervised learning. How it differentiates with supervised and unsupervised learning?	5			

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

1. 0.

Faculty of Engineering End Sem (Odd) Examination Dec-2019

CS3EA07 / IT3EA07 Machine Learning

Programme: B.Tech. Branch/Specialisation: CS/IT

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

• 1 (1,	10Q5)	should be written in run instead of only a, o, e of a.
Q .1	i.	Bayes theorem is:
		(a) $P(A/B) = (P(BA)*P(A))/P(B)$
		(b) $P(A/B) = (P(B/A)*P(B))/P(A)$
		(c) $P(A/B) = (P(B/A) * P(A))/P(B)$
		(d) $P(A/B) = (P(BA)*P(B))/P(A)$
	ii.	Below are the 8 actual values of target variable in the train file.
		[0,0,0,1,1,1,1,1]
		What is the entropy of the target variable?
		(a) $-(5/8 \log(5/8) + 3/8 \log(3/8))$
		(b) $5/8 \log(5/8) + 3/8 \log(3/8)$
		(c) $3/8 \log(5/8) + 5/8 \log(3/8)$
		(d) $5/8 \log(3/8) - 3/8 \log(5/8)$
	iii.	The SVM's are less effective when:
		(a) The data is linearly separable
		(b) The data is clean and ready to use
		(c) The data is noisy and contains overlapping points
		(d) None of these
	iv.	The cost parameter in the SVM means:
		(a) The number of cross-validations to be made
		(b) The kernel to be used
		(c) The trade-off between misclassification and simplicity of the
		model
		(d) None of these

P.T.O.

1

v.	Which of the following is true about PCA?	1				
••	(a) PCA is an unsupervised method.					
	(a) I CA is an unsupervised method.(b) Maximum number of principal components <= number of features.					
(c) All principal components are orthogonal to each other.						
	(d) All of these					
vi.	Which of the following can act as possible termination conditions	1				
	in K-Means?					
	(a) For a fixed number of iterations.					
	(b) Assignment of observations to clusters does not change					
	between iterations. Except for cases with a bad local minimum.					
	(c) Centroids do not change between successive iterations.					
	(d) All of these					
vii.	Which of the following is not library of Keras?	1				
	(a) CNTK (b) TensorFlow					
	(c) Theano (d) NLTK					
viii.	Which of the following is recurrent neural network?					
	(a) Perception (b) Back propagation					
	(c) Adaline (d) Madaline	1				
ix.	In which of the following applications can we use deep learning					
	to solve the problem?					
	(a) Protein structure prediction					
	(b) Prediction of chemical reactions					
	(c) Detection of exotic particles					
**	(d) All of these Statement 1. It is possible to train a naturally well by initializing	1				
х.	Statement 1: It is possible to train a network well by initializing all the weights as 0					
	Statement 2: It is possible to train a network well by initializing					
	biases as 0					
	Which of the statements given above is true?					
	(a) Statement 1 is true while Statement 2 is false (b) Statement 2 is true while statement 1 is false					
	(b) Statement 2 is true while statement 1 is false					
	(c) Both statements are true					
	(d) Both statements are false					

Q.2		Attempt any	two:				
	i.	Define mac	hine learning	g. Differenti	ate linear re	egression and	5
		logistic regression.					
	ii.	Define supe	rvised learn	ing techniqu	ie. Also exp	plain gradient	5
		descent.					
	iii.	What is cla	ssification te	chnique in 1	machine lear	ning? Explain	5
ranking method in machine learning.							
Q.3		Attempt any	two:				
	i.	_		the given dat	a set conside	ring CHOICE	5
		as the target f	feature.				
		SIZE	SHAPE	COLOR	CHOICE		
		Medium	Brick	Blue	Yes		
		Small	Wedge	Red	No		
		Large	Wedge	Red	No		
		Small	Sphere	Red	Yes		
		Large	Pillar	Green	Yes		
		Large	Pillar	Red	No		
		Large	Sphere	Green	Yes		
	ii.	Explain support vector machine in detail with example.					5
	iii.	How optimization is performed in support vector machine? Explain				5	
		the role kerne	els in it.				
Q.4		Attempt any two:					
	i.	Explain the working of k-means clustering algorithm with diagram. 5					
	ii.	How principal component analysis reduce dimensions with				5	
	diagram?						

Explain matrix factorization. Calculate covariance matrix for 2D 5

$$A = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 1 \end{vmatrix}$$

input:

P.T.O

Marking Scheme CS3EA07 / IT3EA07 Machine Learning

Q.1	i.	Bayes theorem is:	1
		(c) $P(A/B) = (P(B/A) * P(A))/P(B)$	
	ii.	Below are the 8 actual values of target variable in the train file.	1
		[0,0,0,1,1,1,1,1]	
		What is the entropy of the target variable?	
		(a) $-(5/8 \log(5/8) + 3/8 \log(3/8))$	1
	iii.	The SVM's are less effective when:	
		(c) The data is noisy and contains overlapping points	
	iv.	The cost parameter in the SVM means:	1
		(c) The trade-off between misclassification and simplicity of the model	
	v.	Which of the following is true about PCA?	1
		(d) All of these	
	vi.	Which of the following can act as possible termination conditions	1
		in K-Means?	
		(d) All of these	
	vii.	Which of the following is not library of Keras?	1
		(d) NLTK	
	viii.	Which of the following is recurrent neural network?	1
		(b) Back propagation	
	ix.	In which of the following applications can we use deep learning	1
		to solve the problem?	
		(d) All of these	
	х.	Statement 1: It is possible to train a network well by initializing all the weights as 0	1
		Statement 2: It is possible to train a network well by initializing	
		biases as 0	
	Which of the statements given above is true?		
		(b) Statement 2 is true while statement 1 is false	
Q.2		Attempt any two:	
	i.	Definition machine learning 2 marks	5
		Difference linear and logistic regression. 3 marks	
	ii.	Define supervised learning technique 2 marks	5
		Gradient descent 3 marks	

	iii.	Classification technique in machine learning	2 marks	5			
	1111.	Ranking method in machine learning	3 marks	J			
		Training means in machine rearming	S mans				
Q.3		Attempt any two:					
	i.	Design decision tree for the given data set cons	idering CHOICE	5			
		as the target feature.					
		Stepwise marking					
	ii.	Support vector machine	3 marks	5			
		Example	2 marks				
	iii.	. Optimization is performed in support vector machine					
			3 marks				
		Role kernels	2 marks				
Q.4		Attempt any two:					
	i.	Working of k-means clustering algorithm	3 marks	5			
		Diagram	2 marks				
	ii.	Principal component analysis reduce dimensions	3 marks	5			
		Diagram	2 marks				
	iii.	Matrix factorization	2 marks	5			
		Calculate covariance matrix for 2D input	3 marks				
Q.5		Attempt any two:		_			
	i.	Learning algorithm of perception.		5			
	ii.	Recurrent neural network perform training	3 marks	5			
		Architecture	2 marks	_			
	iii.	Write short note on:		5			
		(a) Keras	2.5 marks				
		(b) TensorFlow	2.5 marks				
0.6		A thomast convertings					
Q.6	:	Attempt any two:					
	i.	Advantages of deep learning over machine learnin	<u> </u>	5			
	ii.	At least five points 1 mark for each	(1 mark * 5) 2 marks	5			
	11.	Reinforcement learning		5			
	iii.	It improves learning process	3 marks 2 marks	5			
	111.	Semi-supervised learning Difference b/w supervised and unsupervised learning		3			
		Difference o/w supervised and unsupervised learns	ing 3 marks				
		atendo atendo atendo	3 marks				
