

DESPREG5.pdf

Anónimo

Álgebra I

2º Doble Grado en Ingeniería Informática y Matemáticas

Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación Universidad de Granada

Ahora, aprovecha el CUPÓN **WUOCLEVEREA** y ¡consigue un 5€ de descuento en tu seguro!

DESARROLLO DE LA PREGUNTA 5:

Autor: Daniel Pérez Ruiz

5. Sea un dominio de integridad. ¿Qué afirmación es correcta?

- En cualquier caso D es un cuerpo: [FALSO]
 - \circ DEMOSTRACIÓN: $\mathbb Z$ es un dominio de integridad y no es un cuerpo.
- Nunca D puede ser un cuerpo: [FALSO]
 - DEMOSTRACIÓN: \mathbb{R} es un dominio de integridad y es un cuerpo.
- Es un cuerpo si tiene infinitos elementos: [FALSO]
 - $\circ \;\;$ DEMOSTRACIÓN: $\mathbb Z$ tiene infinitos elementos, es dominio de integridad y no es un cuerpo.
- Es un cuerpo si tiene cardinal finito. [VERDAD]
 - DEMOSTRACIÓN:
 - lacksquare Sean $a,b,c\in A$, a
 eq 0.
 - $ab = bc \Rightarrow a(b-c) = 0 \Rightarrow b-c = 0 \Rightarrow b = c$
 - Por tanto $(A \setminus \{0\}, \cdot)$ es cancelativo y monoide. Y como es finito, obtenemos que es grupo y por tanto cuerpo.

