

Содержание

- □ Понятие целостности данных
- □ Средства контроля целостности данных
 - □ Ограничения целостности
 - □ Утверждения
 - □ Триггеры

Целостность базы данных

- Целостность (data integrity) означает точность, корректность и непротиворечивость данных, хранящихся в базе данных.
 Целостность часто определяют как защиту данных от санкционированных пользователей.
- □ Примеры ограничений целостности
 - □ Ограничения первичных и внешних ключей
 - □ Ограничения доменов

 - Цена детали >0
 Цвет детали только "белый", "черный" или "серый"

 - Бизнес-правила
 Суммарный вес деталей в поставке <1500
 - Поставщик с рейтингом <5 не может поставлять детали ценой >100
- от Отсутствие поддержки целостности на уровне СУБД приводит к необходимости контролировать целостность на уровне приложения.

Технологии баз данных © М.Л. Цымблер

Средства контроля целостности

- Ограничения целостности предикаты для проверки целостности.
 - □ Ограничения целостности ключей
 - □ Ограничения целостности атрибута
 - □ Ограничения целостности кортежа
 - □ Утверждения
- □ Триггеры хранимые процедуры, автоматически выполняемые СУБД при наступлении определенного пользователем события (удаление/вставка/обновление кортежа, создание пользователем сессии и др.).

Технологии баз данных © М.Л. Цымблер

Ограничения целостности

- □ *Щелостность* (data integrity) означает точность и корректность данных, хранящихся в базе данных. Целостность часто определяют как защиту данных от санкционированных пользователей.
- □ Примеры ограничений целостности
- □ Ограничения первичных и внешних ключей
- □ Ограничения доменов и атрибутов
 - Цена детали >0
 - Цвет детали только "белый", "черный" или "серый"
- Бизнес-правила
 - Суммарный вес деталей в поставке < 1500
 - Поставщик с рейтингом <5 не может поставлять детали ценой > 100
- Отсутствие поддержки целостности на уровне СУБД приводит к необходимости контролировать целостность на уровне приложения.

Технологии баз данных

○ М.Л. Цымбле

Целостность первичных ключей

□ create table S (
SID char(4) primary key,
Name char(10),
City char(10),
Rating int);
□ create table S (
SID char(4),
Name char(10),
City char(10),
Rating int
primary key (SID));

Стеаte table S (SID char(4), Name char(10), City char(10), Rating int, primary key (SID), unique (Name); □ create table Emp (EmpID int, Name char(20), AreaCode char(4), PhoneNo char(7), unique (AreaCode, PhoneNo)); Texhonorum баз данных СМЛІ Цьмблер

Целостность внешних ключей				
8				
create table SP (SID char(4), PID char(4), Qty int not null, primary key (SID, PID), foreign key (SID) references S (on delete cascade* on update cascade*, foreign key (PID) references P (on delete cascade* on update cascade*);				
*Допустимы режимы cascade, set null, se				

Ограничения доменов create domain EmpID as integer check (value between 1 and 100000); create domain Salary as numeric(9,2) default 0,00 check ((value between 0,00 and 100000,00) and (value is not null)); alter domain Salary set default 1000,00; alter domain EmpID add check (value<>13 and value<>666); drop domain Salary restrict; drop domain EmpID cascade;

Ограничения атрибутов			
create table S (SID char(4) primary key, Name char(10) default n/a', City char(10) default h/a', Rating int default (1);			
Технологии баз данных © М.Л. Цымблер			

Ограничения атрибутов create table S (SID char(4) primary key, Name char(10) check (Name not like 'Mr.%' and Name not like 'Ms.%'), City char(10) check (City in ('Москва', 'Челябинск', 'Одесса')), Rating int check (Rating>=0)); Ограничение целостности СНЕСК Технологии баз данных СМЛ. Цымбаер

Ограничения UNIQUE и not NULL			
13			
create table Emp (EmpID int, Name char(20), AreaCode char(4) not null, PhoneNo char(7) not null, unique (AreaCode, PhoneNo));	create table Emp (EmpID int, Name char(20), AreaCode char(4), PhoneNo char(7), unique (AreaCode, PhoneNo));		
 Вставка кортежей ✓ п (1, 'Иванов', '351', '2420409') × п (2, 'Петров', '351', NULL) × п (21, 'Петров', '351', NULL) × п (31, 'Сидоров', NULL, '2420409') × п (31, 'Сидоров', NULL, '2420409') × п (4, 'Коньков', NULL, NULL) × п (41, 'Конькова', NULL, NULL) × п (5, 'Егоров', '351', '2420409') 	□ Вставка кортежей □ (1, 'Иванов', '351', '2420409') □ (2, 'Петров', '351', NULL) □ (21, 'Петрова', '351', NULL) □ (3, 'Сидоров', NULL, '2420409') □ (31, 'Сидорова', NULL, '2420409') □ (4, 'Коньков', NULL, NULL) □ (41, 'Конькова', NULL, NULL) □ (5, 'Егоров', '351', '2420409')		

Ограничения кортежеи
14
create table S (
SID char(4) primary key,
Name char(10) not null default 'n/a',
City char(10) not null default 'n/a',
Rating int default 0,
check (City in ('Москва', 'Челябинск', 'Одесса', 'n/a')
and (Rating between 0 and 30)
and (Name not like 'Mr.%' or Name not like 'Ms.%'));
0

Ограничения кортежей create table SP (SID char(4), PID char(4), create table SP (SID char(4), PID char(4), Qty int not null, Qty int not null, primary key (SID, PID), foreign key (SID) references S (SID) primary key (SID, PID), check (SID in (select SID from S) and on delete cascade PID in (select PID from P)) on update cascade, foreign key (PID) references P (PID) on delete cascade on update cascade););

	4		$\overline{}$
17		ограничени	IЛ
v	IIVICHOBAHVIC	ограниясни	νı

16

□ create table S (
SID char(4) constraint pk_SID primary key,
Name char(10) constraint unq_Name unique,
City char(10) constraint chk_City check (City in
('Москва', 'Одесса', 'Челябинск', 'n/a')),
Rating int constraint chk_Rating (check (Rating>=0));

- □ alter table S **drop constraint** unq_Name;
- □ alter table S **add constraint** unq_Name unique (Name) exceptions into S_badrecords;

Технологии баз данных © М.Л. Цымблер

Проверка ограничений целостности

17

- 1. Выполнить оператор SQL*.
- Проверить результат выполнения на соответствие всем ограничениям целостности.
 Если хотя бы одно из них не выполняется, произвести откат.
- При вставке строк пропущенные поля заменяются препроцессором на DEFAULT-значения.

Каскадные действия рассматриваются как неотъемлемая часть выполняемого оператора.

Утверждения целостности

18

- □ *Утверждение* (assertion) задаваемый отдельной командой предикат целостности атрибута/кортежа/отношения/базы данных.
- create assertion asrt_BadSuppliers2 check (
 not exists (select * from S, SP
 where S.Rating<10 and S.SID=SP.SID
 and SP.Qty > 500));

Технологии баз данных \mathbb{O} М.Л. Цымблер

Немедленная и отложенная проверка ограничений

create table Emp (
 EmpID int primary key,
 Name char(20),
 Dept int foreign key references Dept (DeptID));

create table Dept (
DeptID int primary key,
Name char(15),
EmpQty int,

check (EmpQty=(select count(*) from Emp) where DeptID=Emp.Dept));

 Как вставить новую запись в Етр, не нарушив ограничений целостности?

Технологии баз данных © М.Л. Цымблер

Немедленная и отложенная проверка ограничений

- ☐ Немедленная проверка (immediate) выполняется непосредственно после выполнения операции, изменяющей состояние базы данных.
- Отложенная проверка (deferred) выполняется после завершения транзакции (набора операций, которые рассматриваются как атомарная операция).
- □ Режимы проверки ограничения
 - □ initially immediate/deferred
 - □ initially immediate deferrable/not deferrable
- □ Режимы проверки ограничений в составе транзакции
 - set constraints список/all deferred/immediate

Технологии баз данных © М.Л. Цымбло

Триггеры □ Триггеры – хранимые процедуры, которые СУБД автоматически выполняет при наступлении события, определенного пользователем. Особенности: □ Триггер не может быть выполнен явно (как хранимая процедура). ■ Триггер может быть реализован на языках SQL/PSM, Java, C. UPDATE Trigger update T .. begin INSERT Trigger insert into T ... begin DELETE Trigger delete from T .. begin

Типы триггеров

- □ *Триггер строки* запускается каждый раз при наступлении указанного события.
- □ Триггер события запускается один раз при наступлении указанного события.
- □ *Триггер BEFORE/AFTER* запускается до/после наступления события триггера.
- □ *Триггер комбинированного типа* триггер строки BEFORE, триггер события AFTER и др.
- □ Триггер INSTEAD-OF запускается вместо стандартной операции обработки указанного события.

Триггеры строки и события Триггер строки запускается каждый раз при наступлении указанного события. Триггер строки запускается каждый раз при наступлении указанного события. Триггеры строки и события раз при наступлении указанного события.

Триггеры строки и события Триггер события запускается один раз при наступлении указанного события. Технологии баз данных С М.Л. Цымблер

Триггер INSTEAD-OF □ create view ChelyabinskS as select SID, Name, Rating from S where City='Челябинск'; □ create trigger ChelInsert instead of insert on ChelyabinskS referencing new row as NewR for each row begin insert into S values (NewR.SID, NewR.Name, 'Челябинск', NewR.Rating); end; □ create view ChelyabinskS as select SID, NewR. NewR. SID, NewR. NewR. SiD, NewR. Name, 'Челябинск', NewR. Rating); end;

П	ทพต	иенение	тригге	DOB
---	-----	---------	--------	-----

- 31
- □ Реализация сложных ограничений целостности (бизнес-правил) предметной области.
- □ Аудит, сбор и публикация статистики (о выполнении операторов SQL, доступе к таблицам и др.).
- □ Синхронная репликация таблиц.
- □ Модификация данных в базовых таблицах необновляемых представлений.

Технологии баз ланных С М Л Пымблег

Выполнение триггеров

32

- 1. Выполнить все BEFORE-триггеры события.
- 2. Для каждой изменяемой триггером строки
 - Выполнить все BEFORE-триггеры строки.
 - 2. Заблокировать и изменить строку, выполнить проверку ограничений целостности.
 - 3. Выполнить все AFTER-триггеры строки.
- Выполнить отложенную проверку декларативных ограничений целостности.
- 4. Выполнить все AFTER-триггеры события.

Разработка триггеров

- 33
- □ Не создавать триггеры, которые
 - дублируют функциональность СУБД (декларативные ограничения целостности и др.).
 - являются рекурсивными (например, тригтер AFTER INSERT выполняет оператор INSERT над той же таблицей).
 - относятся к одному событию одной и той же таблицы (порядок их выполнения неизвестен).
- Использовать хранимые процедуры для уменьшения размера триггеров.

Технологии баз данных \mathbb{O} М.Л. Цымблер

Ограничения целостности vs триггеры

- □ Недостатки триггеров:
 - \blacksquare Не действует на данные, помещенные в таблицу ∂o его создания
 - □ Может неявно запустить другие триггеры
 - Бесконечный вызов триггера: триггер AFTER INSERT выполняет оператор INSERT над той же таблицей.
- □ Недостатки ограничений целостности:
 - □ Не может реализовать сложные правила целостности.
- □ Резюме:

Если правило целостности не удается реализовать при помощи ограничений целостности, нужно реализовать его при помощи триггеров.

Технологии баз данных
© М.Л. Цымблер

Заключение

- 36
- □ Целостность точность, корректность и непротиворечивость данных, хранящихся в базе данных.
- □ Средства СУБД для контроля целостности:
 - Ограничения целостности предикаты для проверки целостности:
 - Ограничения целостности ключей
 - Ограничения целостности атрибута
 - Ограничения целостности кортежа
 - Утверждения.
 - □ Триггеры хранимые процедуры, автоматически выполняемые СУБД при наступлении определенного пользователем события.

Технологии баз данных © М.Л. Цымблер