

人工智能技术及应用

Artificial Intelligence and Application

Optimization Fails because

Small Gradient ... Loss Very slow at the plateau Stuck at saddle point W_1^{30} W_2 Stuck at local minima $\partial L / \partial w$ $\partial L / \partial w$ $\partial L / \partial w$ ≈ 0 The value of the parameter w

Learning Rate

$$\theta^{i} = \theta^{i-1} - \eta \nabla L(\theta^{i-1})$$

Set the learning rate η carefully

Error surface is rugged ...

Tips for training: Adaptive Learning Rate

Training stuck \neq Small Gradient

 People believe training stuck because the parameters are around a critical point ...

Wait a minute ...

Training can be difficult even without critical points.

This error surface is convex.

Learning rate cannot be one-size-fits-all

$$\eta$$
 = 10^{-2}

$$\eta = 10^{-7}$$

Different parameters needs different learning rate

Formulation for **one** parameter:

$$m{ heta}_i^{t+1} \leftarrow m{ heta}_i^t - m{\eta} m{g}_i^t$$

$$m{g}_i^t = \frac{\partial L}{\partial m{ heta}_i}|_{m{ heta} = m{ heta}^t}$$
 $m{ heta}_i^{t+1} \leftarrow m{ heta}_i^t - m{m{ heta}_i^t} m{g}_i^t$ Parameter dependent

Adaptive Learning Rates

- Popular & Simple Idea: Reduce the learning rate by some factor every few epochs.
 - At the beginning, we are far from the destination, so we use larger learning rate
 - After several epochs, we are close to the destination, so we reduce the learning rate
 - E.g. 1/t decay: $\eta^t = \eta/\sqrt{t+1}$
- Learning rate cannot be one-size-fits-all
 - Giving different parameters different learning rates

Root Mean Square $\theta_i^{t+1} \leftarrow \theta_i^t - \left| \frac{\eta}{\sigma_i^t} \right| g_i^t$

$$oldsymbol{ heta}_i^{t+1} \leftarrow oldsymbol{ heta}_i^t - \frac{\eta}{\sigma_i^t} oldsymbol{g}_i^t$$

$$\boldsymbol{\theta}_i^1 \leftarrow \boldsymbol{\theta}_i^0 - \frac{\eta}{\sigma_i^0} \boldsymbol{g}_i^0 \qquad \sigma_i^0 = \sqrt{\left(\boldsymbol{g}_i^0\right)^2} = \left|\boldsymbol{g}_i^0\right|$$

$$\boldsymbol{\theta}_i^2 \leftarrow \boldsymbol{\theta}_i^1 - \frac{\eta}{\sigma_i^1} \boldsymbol{g}_i^1 \qquad \sigma_i^1 = \sqrt{\frac{1}{2} \left[\left(\boldsymbol{g}_i^0 \right)^2 + \left(\boldsymbol{g}_i^1 \right)^2 \right]}$$

$$\boldsymbol{\theta_i^3} \leftarrow \boldsymbol{\theta_i^2} - \frac{\eta}{\sigma_i^2} \boldsymbol{g_i^2} \qquad \sigma_i^2 = \sqrt{\frac{1}{3} \left[\left(\boldsymbol{g_i^0} \right)^2 + \left(\boldsymbol{g_i^1} \right)^2 + \left(\boldsymbol{g_i^2} \right)^2 \right]}$$

$$\vdots$$

$$\boldsymbol{\theta}_{i}^{t+1} \leftarrow \boldsymbol{\theta}_{i}^{t} - \frac{\eta}{\sigma_{i}^{t}} \boldsymbol{g}_{i}^{t} \quad \sigma_{i}^{t} = \sqrt{\frac{1}{t+1} \sum_{i=0}^{t} (\boldsymbol{g}_{i}^{t})^{2}}$$

Root Mean Square

$$oldsymbol{ heta}_i^{t+1} \leftarrow oldsymbol{ heta}_i^t - \overline{egin{bmatrix} \eta \ \sigma_i^t \end{bmatrix}} oldsymbol{g}_i^t$$

$$\sigma_i^t = \sqrt{\frac{1}{t+1} \sum_{i=0}^t (\boldsymbol{g}_i^t)^2}$$

Used in **Adagrad**

$$\eta^t = \frac{\eta}{\sqrt{t+1}}$$
 $g^t = \frac{\partial L(\theta^t)}{\partial w}$

 Divide the learning rate of each parameter by the root mean square of its previous derivatives

Vanilla Gradient descent

$$w^{t+1} \leftarrow w^t - \eta^t g^t$$

w is one parameters

Adagrad

$$w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t$$

 σ^t : **root mean square** of $w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t$ the previous derivatives of parameter w

Parameter dependent

Adagrad

 σ^t : **root mean square** of the previous derivatives of parameter w

$$w^{1} \leftarrow w^{0} - \frac{\eta^{0}}{\sigma^{0}} g^{0} \qquad \sigma^{0} = \sqrt{(g^{0})^{2}}$$

$$w^{2} \leftarrow w^{1} - \frac{\eta^{1}}{\sigma^{1}} g^{1} \qquad \sigma^{1} = \sqrt{\frac{1}{2} [(g^{0})^{2} + (g^{1})^{2}]}$$

$$w^{3} \leftarrow w^{2} - \frac{\eta^{2}}{\sigma^{2}} g^{2} \qquad \sigma^{2} = \sqrt{\frac{1}{3} [(g^{0})^{2} + (g^{1})^{2} + (g^{2})^{2}]}$$

$$\vdots$$

$$w^{t+1} \leftarrow w^{t} - \frac{\eta^{t}}{\sigma^{t}} g^{t} \qquad \sigma^{t} = \sqrt{\frac{1}{t+1} \sum_{i=0}^{t} (g^{i})^{2}}$$

Adagrad

 Divide the learning rate of each parameter by the root mean square of its previous derivatives

Contradiction?
$$\eta^t = \frac{\eta}{\sqrt{t+1}}$$
 $g^t = \frac{\partial L(\theta^t)}{\partial w}$

Vanilla Gradient descent

$$w^{t+1} \leftarrow w^t - \eta^t \underline{g}^t \longrightarrow \text{Large}$$

Larger gradient, larger step

Adagrad

$$w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} \underline{g^t}$$

Larger gradient, larger step

Larger gradient, smaller step

Intuitive Reason

$$\eta^t = \frac{\eta}{\sqrt{t+1}} \ g^t = \frac{\partial L(\theta^t)}{\partial w}$$

• How surprise it is 反差

特別大

g ⁰	g ¹	g ²	g ³	g ⁴	•••••
0.001	0.001	0.003	0.002	0.1	•••••
0	1	_2	2	Л	
g ⁰	g¹	g ²	g ³	g	•••••

特別小

$$w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} g^t$$
 造成反差的效果

Larger gradient, larger steps?

Comparison between different parameters

Larger 1st order derivative means far from the minima

Do not cross parameters

Second Derivative

$$\frac{\partial^2 y}{\partial x^2} = 2a$$
 The best step is

|First derivative|

Second derivative

Comparison between different parameters

Larger 1st order derivative means far from the minima

Do not cross parameters

Use first derivative to estimate second derivative

Learning rate adapts dynamically

RMSProp

$$oldsymbol{ heta}_i^{t+1} \leftarrow oldsymbol{ heta}_i^t - \overline{egin{bmatrix} \eta \\ \sigma_i^t \end{bmatrix}} oldsymbol{g}_i^t$$

$$\boldsymbol{\theta_i^1} \leftarrow \boldsymbol{\theta_i^0} - \frac{\eta}{\sigma_i^0} \boldsymbol{g_i^0}$$

$$\sigma_i^0 = \sqrt{\left(\boldsymbol{g}_i^0\right)^2}$$

$$0 < \alpha < 1$$

$$\boldsymbol{\theta}_i^2 \leftarrow \boldsymbol{\theta}_i^1 - \frac{\eta}{\sigma_i^1} \boldsymbol{g}_i^1$$

$$\sigma_i^1 = \sqrt{\alpha (\sigma_i^0)^2 + (1 - \alpha) (\boldsymbol{g}_i^1)^2}$$

$$\boldsymbol{\theta}_i^3 \leftarrow \boldsymbol{\theta}_i^2 - \frac{\eta}{\sigma_i^2} \boldsymbol{g}_i^2$$

$$\boldsymbol{\theta}_i^3 \leftarrow \boldsymbol{\theta}_i^2 - \frac{\eta}{\sigma_i^2} \boldsymbol{g}_i^2 \qquad \sigma_i^2 = \sqrt{\alpha (\sigma_i^1)^2 + (1 - \alpha) (\boldsymbol{g}_i^2)^2}$$

$$oldsymbol{ heta}_i^{t+1} \leftarrow oldsymbol{ heta}_i^t - rac{\eta}{\sigma_i^t} oldsymbol{g}_i^t$$

$$\boldsymbol{\theta}_i^{t+1} \leftarrow \boldsymbol{\theta}_i^t - \frac{\eta}{\sigma_i^t} \boldsymbol{g}_i^t \quad \sigma_i^t = \sqrt{\alpha (\sigma_i^{t-1})^2 + (1-\alpha) (\boldsymbol{g}_i^t)^2}$$

RMSProp

$$\boldsymbol{\theta}_{i}^{t+1} \leftarrow \boldsymbol{\theta}_{i}^{t} - \boxed{\frac{\eta}{\sigma_{i}^{t}}} \boldsymbol{g}_{i}^{t}$$

The recent gradient has larger influence, and the past gradients have less influence.

Adam: RMSProp + Momentum

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

```
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
   m_0 \leftarrow 0 (Initialize 1<sup>st</sup> moment vector) \longrightarrow for momentum
   v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
                                                      for RMSprop
   t \leftarrow 0 (Initialize timestep)
   while \theta_t not converged do
      t \leftarrow t + 1
      g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
      m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate)
      v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
      \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
      \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
      \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
   end while
   return \theta_t (Resulting parameters)
```

Without Adaptive Learning Rate

Learning Rate Scheduling

$$oldsymbol{ heta}_i^{t+1} \leftarrow oldsymbol{ heta}_i^t - rac{oldsymbol{\eta}^t}{\sigma_i^t} oldsymbol{g}_i^t$$

Learning Rate Decay

As the training goes, we are closer to the destination, so we reduce the learning rate.

Learning Rate Scheduling

$$oldsymbol{ heta}_i^{t+1} \leftarrow oldsymbol{ heta}_i^t - rac{oldsymbol{\eta}^t}{\sigma_i^t} oldsymbol{g}_i^t$$

Learning Rate Decay

As the training goes, we are closer to the destination, so we reduce the learning rate.

Warm Up

Increase and then decrease?

We further explore n=18 that leads to a 110-layer ResNet. In this case, we find that the initial learning rate of 0.1 is slightly too large to start converging⁵. So we use 0.01 to warm up the training until the training error is below 80% (about 400 iterations), and then go back to 0.1 and continue training. The rest of the learning schedule is as done previously. This 110-layer network converges well (Fig. 6, middle). It has *fewer* parameters than other deep and thin

Residual Network

https://arxiv.org/abs/1512.03385

5.3 Optimizer

We used the Adam optimizer [17] with $\beta_1 = 0.9$, $\beta_2 = 0.98$ and $\epsilon = 10^{-9}$. We varied the learning rate over the course of training, according to the formula:

$$lrate = d_{\text{model}}^{-0.5} \cdot \min(step_num^{-0.5}, step_num \cdot warmup_steps^{-1.5})$$
 (3)

This corresponds to increasing the learning rate linearly for the first $warmup_steps$ training steps, and decreasing it thereafter proportionally to the inverse square root of the step number. We used $warmup_steps = 4000$.

Transformer

https://arxiv.org/abs/1706.03762

⁵With an initial learning rate of 0.1, it starts converging (<90% error) after several epochs, but still reaches similar accuracy.

Learning Rate Scheduling

$$m{ heta}_i^{t+1} \leftarrow m{ heta}_i^t - \frac{m{\eta}^t}{\sigma_i^t} m{g}_i^t$$

Learning Rate Decay

After the training goes, we are close to the destination, so we reduce the learning rate.

Warm Up

Increase and then decrease?

At the beginning, the estimate of σ_i^t has large variance.

Please refer to RAdam

https://arxiv.org/abs/1908.03265

Summary of Optimization

(Vanilla) Gradient Descent

$$\boldsymbol{\theta}_i^{t+1} \leftarrow \boldsymbol{\theta}_i^t - \eta \boldsymbol{g}_i^t$$

Various Improvements

$$\boldsymbol{\theta_i^{t+1}} \leftarrow \boldsymbol{\theta_i^t} - \frac{\eta^t}{\sigma_i^t} \overset{\longleftarrow}{\boldsymbol{m_i^t}} \overset{\text{Learning rate scheduling}}{\text{Momentum: weighted sum of the previous gradients}} \quad \begin{array}{c} \text{Consider direction} \end{array}$$

root mean square of the gradients

only magnitude

Next

Better optimization strategies: If the mountain won't move, build a road around it.

Can we change the error surface?
Directly move the mountain!

Changing Landscape

Feature Scaling

Source of figure: http://cs231n.github.io/neural-networks-2/

$$y = b + w_1 x_1 + w_2 x_2$$

Make different features have the same scaling

Changing Landscape

Feature Normalization

In general, feature normalization makes gradient descent converge faster.

Gradient Descent Theory

Question

When solving:

$$\theta^* = \arg \min_{\theta} L(\theta)$$
 by gradient descent

• Each time we update the parameters, we obtain θ that makes $L(\theta)$ smaller.

$$L(\theta^0) > L(\theta^1) > L(\theta^2) > \cdots$$

Is this statement correct?

Formal Derivation

Taylor Series

• **Taylor series**: Let h(x) be any function infinitely differentiable around $x = x_0$.

$$h(x) = \sum_{k=0}^{\infty} \frac{h^{(k)}(x_0)}{k!} (x - x_0)^k$$

$$= h(x_0) + h'(x_0)(x - x_0) + \frac{h''(x_0)}{2!} (x - x_0)^2 + \dots$$

When x is close to $x_0 \Rightarrow h(x) \approx h(x_0) + h'(x_0)(x - x_0)$

E.g. Taylor series for h(x)=sin(x) around $x_0=\pi/4$

$$\sin(x) = \frac{1}{\sqrt{2}} + \frac{x - \frac{\pi}{4}}{\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^2}{2\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^3}{6\sqrt{2}} + \frac{\left(x - \frac{\pi}{4}\right)^4}{24\sqrt{2}} + \frac{\left(x - \frac{\pi}{4}\right)^5}{120\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^6}{720\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^8}{120\sqrt{2}} + \frac{\left(x - \frac{\pi}{4}\right)^8}{40320\sqrt{2}} + \frac{\left(x - \frac{\pi}{4}\right)^9}{362880\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^{10}}{3628800\sqrt{2}} + \dots$$

Multivariable Taylor Series

$$h(x, y) = h(x_0, y_0) + \frac{\partial h(x_0, y_0)}{\partial x} (x - x_0) + \frac{\partial h(x_0, y_0)}{\partial y} (y - y_0)$$

+ something related to $(x-x_0)^2$ and $(y-y_0)^2 +$

When x and y is close to x_0 and y_0

$$h(x, y) \approx h(x_0, y_0) + \frac{\partial h(x_0, y_0)}{\partial x} (x - x_0) + \frac{\partial h(x_0, y_0)}{\partial y} (y - y_0)$$

Back to Formal Derivation

Based on Taylor Series:

If the red circle is small enough, in the red circle

$$L(\theta) \approx L(a,b) + \frac{\partial L(a,b)}{\partial \theta_1} (\theta_1 - a) + \frac{\partial L(a,b)}{\partial \theta_2} (\theta_2 - b)$$

$$s = L(a,b)$$

$$u = \frac{\partial L(a,b)}{\partial \theta_1}, v = \frac{\partial L(a,b)}{\partial \theta_2}$$

$$L(\theta)$$

$$\approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

Back to Formal Derivation

Based on Taylor Series:

If the red circle is *small enough*, in the red circle

$$L(\theta) \approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

Find θ_1 and θ_2 in the <u>red circle</u> **minimizing** L(θ)

$$(\theta_1 - a)^2 + (\theta_2 - b)^2 \le d^2$$

Simple, right?

constant

$$s = L(a,b)$$

$$u = \frac{\partial L(a,b)}{\partial \theta_1}, v = \frac{\partial L(a,b)}{\partial \theta_2}$$

Gradient descent – two variables

Red Circle: (If the radius is small)

$$L(\theta) \approx 3 + u(\underline{\theta_1 - a}) + v(\underline{\theta_2 - b})$$

$$\Delta \theta_1 \qquad \Delta \theta_2$$

Find θ_1 and θ_2 in the red circle **minimizing** L(θ)

$$\frac{\left(\underline{\theta_1} - a\right)^2 + \left(\underline{\theta_2} - b\right)^2 \le d^2}{\Delta \theta_1}$$

$$\Delta \theta_2$$

To minimize $L(\theta)$

$$\begin{bmatrix} \Delta \theta_1 \\ \Delta \theta_2 \end{bmatrix} = -\eta \begin{bmatrix} u \\ v \end{bmatrix} \qquad \qquad \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} u \\ v \end{bmatrix}$$

Back to Formal Derivation

Based on Taylor Series:

If the red circle is **small enough**, in the red circle

$$s = L(a,b)$$

$$L(\theta) \approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

$$L(\theta) \approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

$$u = \frac{\partial L(a, b)}{\partial \theta_1}, v = \frac{\partial L(a, b)}{\partial \theta_2}$$

Find θ_1 and θ_2 yielding the smallest value of $L(\theta)$ in the circle

$$\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial L(a,b)}{\partial \theta_1} \\ \frac{\partial L(a,b)}{\partial \theta_2} \end{bmatrix}$$
 This is gradient descent.

Not satisfied if the red circle (learning rate) is not small enough You can consider the second order term, e.g. Newton's method.