Problema 2-01 Expresiones de circuitos

A partir de las tablas de verdad de las siguientes funciones, obtenga las expresiones algebraicas de dichas funciones y los circuitos lógicos que las realizan:

XY	F1	F2	F3
00	1	0	1
01	0	1	1
10	1	1	1
11	0	0	0

XYZ	F4	F5	F6	F7	F8	F9
000	0	1	0	1	1	1
001	1	0	0	1	0	0
010	0	0	0	1	1	1
011	0	1	0	0	0	0
100	0	1	1	1	1	1
101	1	1	1	1	1	0
110	0	0	0	1	1	1
111	0	0	0	1	1	0
	000 001 010 011 100 101 110	000 0 001 1 010 0 011 0 100 0 101 1 110 0	000 0 1 001 1 0 010 0 0 011 0 1 100 0 1 101 1 1 110 0 0	000 0 1 0 001 1 0 0 010 0 0 0 011 0 1 0 100 0 1 1 101 1 1 1 110 0 0 0	000 0 1 0 1 001 1 0 0 1 010 0 0 0 1 011 0 1 0 0 100 0 1 1 1 101 1 1 1 1 110 0 0 0 1	000 0 1 0 1 1 001 1 0 0 1 0 010 0 0 0 1 1 011 0 1 0 0 0 100 0 1 1 1 1 101 1 1 1 1 1 110 0 0 0 1 1

F4 =
$$\Sigma(1, 5)$$
 = X'Y'Z + XY'Z = Y'Z(X' + X) = Y'Z
F5 = $\Sigma(0, 3, 4, 5)$ = ...
F6 = $\Sigma(4, 5)$ = XY'Z' + XY'Z = XY'(Z' + Z) = XY'
F7 = $\Pi(3)$ = (X + Y' + Z')
F8 = $\Pi(1, 3)$ = (X + Y + Z')(X + Y' + Z') = (X + Z') + $\frac{YY'}{Y}$
F9 = Z'

 $F5 = \sum (0, 3, 4, 5)$ F = Y'Z' + XY' + X'YZ10

Problema 2-02 Análisis

a)

$$F = P4 = P1 \cdot P2 \cdot P3 = (X + P2) \cdot P2 \cdot Z' = X \cdot P2 \cdot Z' + P2 \cdot Z' = P2 \cdot Z' = (Y + Z)Z' = YZ' + ZZ' = YZ'$$

C) X P2 P4 P4 P3

d)

Problema 2-03 Azares

a)

$$F = P5 = (P3 \cdot P4)' = P3' + P4' = A \cdot B \cdot P1 + P2 \cdot D =$$

= $AB(BC)' + P1'D = AB(B' + C') + BCD =$
= $ABB' + ABC' + BCD = ABC' + BCD$


```
b)
module prob203b(input A, B, C, D, output F);
  wire w1, w2, w3, w4;
  nand #2 p1(w1, B, C);
  nand \#2 p2(w2, w1, 1);
  nand #2 p3(w3, A, B, w1);
  nand #2 p4(w4, w2, D);
  nand \#2 pF(F, w3, w4);
endmodule
```

```
c)
module prob203c;
  reg A, B, C, D;
  wire F;
  prob203b dut(A, B, C, D, F);
  initial begin
    $dumpfile("prob203c.vcd");
    $dumpvars;
    \{A, B, C, D\} = 0;
    #170 $finish;
  end
  always #10 \{A, B, C, D\} = \{A, B, C, D\} + 1;
endmodule
```



```
d)
module prob203d;
  reg A, B, C, D;
  wire F;
  prob203b dut(A, B, C, D, F);
  initial begin
    $dumpfile("prob203d.vcd");
    $dumpvars;
    \{A, B, C, D\} = 4'b1101;
    #200 $finish;
  end
  always #50 C = \sim C;
endmodule
```



```
module prob203e;
  reg A, B, C, D;
  wire F;
  prob203b dut(A, B, C, D, F);
  initial begin
    $dumpfile("prob203e.vcd");
    $dumpvars;
    \{A, B, C, D\} = 4'b1011;
    #200 $finish;
  end
  always #50 B = \sim B;
endmodule
```


$$F = ABC' + BCD = 1 \cdot 1 \cdot C' + 1 \cdot C \cdot 1 = C' + C = 1$$

c)
$$A = C = D = 1$$

$$F = ABC' + BCD = 1 \cdot B \cdot 0 + B \cdot 1 \cdot 1 = B$$

Problema 2-04 Relaciones mínimas

$$F = XU'+YZ'U'+X'ZU+XY'Z+XYZ'$$
 $F = (X+Y+U)(X+Z+U')(Y+Z+U')\cdot (X+Z'+U)(X'+Y'+Z'+U')$

g) Suma de Productos: F = C'E + CE' + A'BE' + BD'E' + AB'CDE BC A = 0DE

Problema 2-05 Valor absoluto

$$X = \sum (4) = AB'C'$$

 $Y = \sum (2,3,5,6)$
 $Z = C$


```
b)
module prob205b(input A, B, C, output X, Y, Z);
  assign X = A \& \sim B \& \sim C;
  assign Y = \sim A \& B \mid B \& \sim C \mid A \& \sim B \& C;
  assign Z = C;
endmodule
```

```
c)
module prob205c;
  reg A, B, C;
  wire X, Y, Z;
  prob205b dut(A, B, C, X, Y, Z);
  initial begin
    $dumpfile("prob205c.vcd");
    $dumpvars;
    \{A, B, C\} = 0;
    #90 $finish;
  end
  always #10 \{A, B, C\} = \{A, B, C\} + 1;
endmodule
```


Problema 2-06 Circuito votador


```
b)
module votador (
    input a,
    input b,
    input c,
    output f
 assign f = b & c | a & c | a & b;
endmodule
```

```
c)
module votador_tb;
  reg a, b, c;
  wire f;
  votador dut (
      a,
      b,
      С,
  initial begin
    $dumpfile("sim.vcd");
    $dumpvars;
    {a, b, c} = 0;
    #80 $finish;
  end
  always #10 \{a, b, c\} = \{a, b, c\} + 1;
endmodule
```


Problema 2-07 Función a partir de BCD

Posición	ХА	F	Posición	ХА	F
0	0 0000	0	16	1 0000	0
1	0 0001	1	17	1 0001	0
2	0 0010	1	18	1 0010	0
3	0 0011	0	19	1 0011	1
4	0 0100	1	20	1 0100	0
5	0 0101	0	21	1 0101	0
6	0 0110	0	22	1 0110	1
7	0 0111	1	23	1 0111	0
8	0 1000	1	24	1 1000	0
9	0 1001	0	25	1 1001	1

$$F = \sum (1,2,4,7,8,19,22,25) + d(10,11,12,13,14,15,26,27,28,29,30,31)$$

$$F = \sum (1,2,4,7,8,19,22,25) + d(10,11,12,13,14,15,26,27,28,29,30,31)$$

F(X, A3, A2, A1, A0) = X'A3'A2'A1'A0 + X'A2'A1A0' + X'A2A1'A0' + X'A2A1A0 + X'A3A0' + XA2'A1A0 + XA2A1A0' + XA3A0


```
b)
module prob207b(input X, input [3:0] A, output F);
  assign F = (\sim X \& \sim A[3] \& \sim A[2] \& \sim A[1] \& A[0])
             | (\sim X \& \sim A[2] \& A[1] \& \sim A[0]
             | (\sim X \& A[2] \& \sim A[1] \& \sim A[0]
            | (~X & A[2] & A[1] & A[0]
            | (~X \& A[3] \& ~A[0]
             | (X \& \sim A[2] \& A[1] \& A[0]
             | (X \& A[2] \& A[1] \& \sim A[0]
             | ( X & A[3] & A[0]
endmodule
```

```
module prob207c;
  reg X;
  reg [3:0] A;
  wire F;
  prob207b dut(X, A, F);
  initial begin
    $dumpfile("sim.vcd"); $dumpvars;
    X = 0; A = 0;
    #110 X = 1; A = 0;
    #110 $finish;
  end
  always #10 A = A + 1;
endmodule
```


Problema 2-08 División BCD

X3X2X1X0	Z	Z1Z0
0000	0	00
0001	0	00
0010	0	00
0011	1	01
0100	1	01
0101	1	01
0110	2	10
0111	2	10
1000	2	10
1001	3	11
en otro caso		**
	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001	0000 0 0001 0 0010 0 0011 1 0100 1 0110 2 0111 2 1000 2 1001 3

Z1 =
$$\Sigma$$
(6,7,8,9) + d(10,11,12,13,14,15)
Z0 = Σ (3,4,5,9) + d(10,11,12,13,14,15)

$$Z1 = X2X1 + X3$$

$$Z1 = (X3 + X2)(X2' + X1)$$

Z0 = X2'X1X0 + X2X1' + X3X0

$$Z0 = (X3 + X2 + X1)$$
· $(X2' + X1')(X2 + X0)$

D)		
Z1 = X2X1 + X3	Z0 = X2'X1X0 + X2X1' + X3X0	
= [X2X1 + X3]"	= [X2'X1X0 + X2X1' + X3X0]"	
= [(X2X1)'(1·X3)']'	= [(X2'X1X0)'(X2X1')'(X3X0)']'	
Z1 = (X3 + X2)(X2' + X1)	Z0 = (X3 + X2 + X1)·	
= [(X3 + X2)(X2' + X1)]''	(X2' + X1')(X2 + X0)	
= [(X3 + X2)' + (X2' + X1)']'	= [(X3 + X2 + X1)]	
	(X2' + X1')(X2 + X0)]"	
	= [(X3 + X2 + X1)' +	
	(X2' + X1')' + (X2 + X0)']'	


```
module prob208c(input [3:0] X, output [1:0] Z);
  assign Z[1] = (X[2] \& X[1]) | (X[3]);
  assign Z[0] = (\sim X[2] \& X[1] \& X[0])
               | (X[2] \& \sim X[1]) | (X[3] \& X[0]);
endmodule
```

```
d)
module prob208d;
  reg [3:0] X;
 wire [1:0] Z;
  prob208c dut(X, Z);
  initial begin
    $dumpfile("sim.vcd"); $dumpvars;
    X = 0;
    #160 $finish;
  end
  always #10 X = X + 1;
endmodule
```


Problema 2-09 Descripción estructural

```
a)
```

```
module prob209a(input x, y, z, output f);
  wire w1, w2, w3;
  or p1(w1, x, w2);
  or p2(w2, y, z);
  not p3(w3, z);
  and pF(f, w1, w2, w3);
endmodule
```



```
b)
```

```
module prob209b(input x, y, z, output f);
  wire w1, w2, w3, w4, w5;
  not p1(w1, y);
  and p2(w2, x, y);
  and p3(w3, w1, x);
  or p4(w4, w2, w3);
  and pF(f, w4, w5);
endmodule
```



```
module prob209c(input x, y, z, output f);
wire w1, w2, w3;
not p1(w1, z);
nand p2(w2, x, y);
or p3(w3, x, w1);
xor pF(f, w2, w3);
endmodule
```



```
d)
```

```
module prob209d(input x, y, z, output f);
  wire w1, w2, w3;
  not p1(w1, y);
  nor p2(w2, x, y);
  nand p3(w3, w2, w1);
  nand pF(f, w3, w1);
endmodule
```


Problema 2-18 Directiva de fútbol

F = A'C'DE' + A'CD'E' + A'B'CDE + A'C'D'E + ACDE' + ABC'D'E' + AC'DE + ACD'E + A'BDE' + B'C'D'E

Problema 2-20 BCD x5

A3-A0	X3-X0	Y3-Y0	X3 = 0
0000	0000	0000	X2 = A3
0001	0000	0101	X1 = A2
0010	0001	0000	X0 = A1
0011	0001	0101	λ0 - Α1
0100	0010	0000	\/O O
0101	0010	0101	Y3 = 0
0110	0011	0000	Y2 = A0
0111	0011	0101	Y1 = 0
1000	0100	0000	Y0 = A0
1001	0100	0101	
en otro caso			

-