Informática

Victoria Eugenia Torroja Rubio

9/10/2024 -

1. Tema 1

1.1. Hoja 1

Ejercicio 1.1. Escribe un programa en Python que nos diga cuál es el volumen de un cono con un radio de la base de 14,5 y una altura de 26,79. La fórmula que debes usar es:

$$\frac{\pi \times radio^2 \times altura}{3}.$$

Recuerda que el valor (aproximado) de π es 3,141592.

Solución 1.1. La solución es:

```
pi = 3.14159

volume = (pi * 14.5 * 26.79) / 3

print("El volumen (u3) es: ", volume)
```

Ejercicio 1.2. Modifica el programa anterior para que use tres variables: radio, altura y volumen. Las dos primeras se inicializarán a 14,5 y 26,79 respectivamente. La tercera obtendrá el resultado de la fórmula.

Solución 1.2. La solución es:

```
pi = 3.14159

radius = 14.5

height = 26.79

volume = (pi * radius * height) / 3

print("El volumen(u3) es: ", volume)
```

Ejercicio 1.3. Escribe un programa en Python que lea del teclado un número (float) de grados Fahrenheit y lo convierta a Celsius mostrando el resultado en la pantalla.

$$C = \frac{5}{9} \cdot (F - 32).$$

Solución 1.3. La solución es:

```
fahrenheit = float(input("Introduzca una temperatura en fahrenheit: "))

celsius = 5 / 9 * (fahrenheit - 32)

print("La temperatura en celsius es: ", celsius)
```

Ejercicio 1.4. Escribe un programa que lea del teclado un tiempo transcurrido en segundos y muestre en la pantalla las horas, los minutos y los segundos equivalentes.

Solución 1.4. La solución es:

```
tiempo = int(input("Tiempo en segundos: "))

hora = int(tiempo / 3600)
minuto = int((float(tiempo/3600) - hora) * 60)
segundo = int(((float(tiempo/3600) - hora) * 60 - minuto) * 60)

print("Hora: ", hora, "Minutos: ", minuto, "Segundos: ", segundo)
```

Ejercicio 1.5. El área de un triángulo se puede calcular mediante la ley del seno: si se conocen dos lados del triángulo, lado1 y lado2, y el ángulo a existente entre ellos. Dicha ley establece que

$$A = \frac{1}{2} \times \text{lado}1 \times \text{lado}2 \times \sin \alpha.$$

Implementa un programa que calcule el área de un triángulo de esta manera. El programa deberá solicitar al usuario los dos lados y el ángulo que estos forman (en grados). Ten en cuenta que la función $\sin()$ espera que el ángulo se proporcione en radianes. Ángulo en radianes = Ángulo en grados x π / 180.

Solución 1.5. La solución es la siguiente.

```
import math

pi = 3.14159

lado_1 = float(input("Inserte la longitud del primer lado: "))
lado_2 = float(input("Inserte la longitud del segundo lado: "))
alpha = float(input("Inserte el valor del angulo que forman el primer y el segundo lado en grados: "))

# cambiamos los grados a radianes
alpha = alpha * pi / 180

area = 1 / 2 * lado_1 * lado_2 * math.sin(alpha)

print("El area es:", area)
```

Ejercicio 1.6. Escribe un programa en Python que pida al usuario el valor de dos variables reales $x \in y$, y a continuación muestre el resultado de aplicarles la siguiente fórmula:

$$f(x,y) = \sqrt{1,531^{(x+y)} + \frac{|e^x - e^y| \times (\sin(x) - \tan(y))}{\log_{10}(y) \times 3,141592^x}}.$$

Declara constantes para los valores fijos.

Solución 1.6. La solución es la siguiente.

Ejercicio 1.7. Escribe un programa en Python que pida al usuario los datos de un préstamo hipotecario (capital prestado, interés anual y años que dura el préstamo) y le muestre la cuota mensual que habrá de pagar y el total de lo pagado una vez terminado el plazo, distinguiendo la cantidad de amortización y la de intereses.

La fórmula que nos da la cuota mensual es:

$$\mathrm{cuota} = \frac{\mathrm{capital} \times \mathrm{ratio}}{100 \times \left(1 - \left(1 + \frac{\mathrm{ratio}}{100}\right)^{-\mathrm{plazo}}\right)}.$$

Donde el ratio es el interés mensual y el plazo está indicado en meses. La cantidad de amortización es el capital prestado; el resto son intereses.

Solución 1.7. La solución es la siguiente.

```
cap_prestado = float(input("Capital prestado en euros: "))
ratio = float(input("Interes anual: "))
plazo = float(input("Tiempo que dura el prestamo en meses: "))

cuota = (cap_prestado * ratio) / (100 * (1-(1 + ratio / 100)**(- plazo)))

print("La cuota es:", cuota)
```

Ejercicio 1.8. Trabajando con triángulos. Dadas tres cantidades reales positivas, escribe funciones para dilucidar las siguientes situaciones:

- (a) ¿Es un triángulo? Si los valores de dichas cantidades pueden corresponder a las longitudes de los lados de un triángulo. Para ello, tenga en cuenta, el teorema de desigualdad triangular de la geometría euclidiana.
- (b) ¿Es escaleno? En el caso de que las medidas puedan corresponder a las longitudes de los lados de un triángulo, si dicho triángulo es escaleno.
- (c) ¿Es equilátero? En el caso de que las medidas puedan corresponder a las longitudes de los lados de un triángulo, si dicho triángulo es equilátero.
- (d) ¿Es isósceles? En el caso de que las medidas puedan corresponder a las longitudes de los lados de un triángulo, si dicho triángulo es isósceles.

(e) ¿Es rectángulo? En el caso de que las medidas puedan corresponder a las longitudes de los lados de un triángulo, si dicho triángulo es rectángulo.

Solución 1.8. La solución es la siguiente.

```
1 lado_1 = float(input("Lado 1 (numero real positivo): "))
2 lado_2 = float(input("Lado 2 (numero real positivo): "))
3 lado_3 = float(input("Lado 3 (numero real positivo): "))
7 if lado_1 + lado_2 >= lado_3 and lado_1 + lado_3 >= lado_2 and lado_2 + lado_3 >=
      lado_1:
    triangle = True
   print("Es un triangulo")
10 else:
   triangle = False
11
   print("No es un triangulo")
12
13
14 # apartado (b)
15
16 if triangle == True:
   if lado_1 == lado_2 or lado_2 == lado_3 or lado_1 == lado_3:
17
     print("No es escaleno")
18
19
   else:
     print("Es escaleno")
20
21 else:
   print("No se trata de un triangulo")
22
23
24 # apartado (c)
25
26 if triangle == False:
print("No se trata de un triangulo")
28 elif lado_1 == lado_2 and lado_2 == lado_3:
print("Es un triangulo equilatero")
30 else:
   print("No es un triangulo equilatero")
32
33 # apartado (d)
34
35 if triangle == False:
   print("No se trata de un triangulo")
37 elif lado_1 == lado_2 or lado_2 == lado_3 or lado_1 == lado_3:
print("Es un triangulo isosceles")
39 else:
40
   print("No es un triangulo isosceles")
41
42 # apartado (e)
a = 1ado_2 ** 2 + 1ado_3 ** 2
44 b = lado_1 ** 2 + lado_3 ** 2
c = lado_1 ** 2 + lado_2 ** 2
47 if triangle == False:
print("No se trata de un triangulo")
49 elif lado_1 ** 2 == a or lado_2 ** 2 == b or lado_3 ** 2 == c:
print("Es un triangulo rectangulo")
51 else:
print("No es un triangulo rectangulo")
```

1.2. Hoja 2

Ejercicio 1.9. Escribe un programa en Python que pida al usuario tres valores enteros y los muestrede menor a mayor separados por comas. Por ejemplo, si el usuario introduce 10, 4 y 6, el resultado será: 4,6,10.

Solución 1.9. La solución es:

```
val_1 = int(input("Inserte un numero entero: "))
val_2 = int(input("Inserte un numero entero: "))
3 val_3 = int(input("Inserte un numero entero: "))
5 if val_1 <= val_2 and val_2 <= val_3:</pre>
   print(val_1, ",", val_2, ",", val_3)
8 elif val_2 <= val_1 and val_1 <= val_3:</pre>
   print(val_2, ",", val_1, ",", val_3)
10
11 elif val_3 <= val_1 and val_1 <= val_2:</pre>
  print(val_3, ",", val_1, ",", val_2)
13
14 elif val_3 <= val_2 and val_2 <= val_1:</pre>
   print(val_3, ",", val_2, ",", val_1)
15
17 elif val_1 <= val_3 and val_3 <= val_2:</pre>
   print(val_1, ",", val_3, ",", val_2)
18
19
20 else:
print(val_2, ",", val_3, ",", val_1)
```

También se puede hacer de esta manera:

```
# Pedir tres valores enteros al usuario
2 a = int(input("Introduce el primer valor: "))
b = int(input("Introduce el segundo valor: "))
4 c = int(input("Introduce el tercer valor: "))
6 # Comparaciones para encontrar el orden de los tres numeros
7 if a <= b and a <= c:</pre>
      if b <= c:
         print(f"{a},{b},{c}")
9
10
11
          print(f"{a},{c},{b}")
12
13 elif b <= a and b <= c:
     if a <= c:
14
         print(f"{b},{a},{c}")
15
      else:
16
         print(f"{b},{c},{a}")
17
18
19 else: # c es el menor
     if a <= b:
20
         print(f"{c},{a},{b}")
21
22
      else:
23
     print(f"{c},{b},{a}")
  1
```

 $^{^{1}\}mathrm{Esta}$ segunda manera está hecha por el ChatGPT, cuando pone print(), hay que ponerlo como en la primera manera.

Ejercicio 1.10. Escribe una función que permita calcular las soluciones a una ecuación de segundo $Ax^2 + Bx + C = 0$.

Solución 1.10. La solución es la siguiente.

```
1 import math
3 A = float(input("Inserte el primer valor: "))
4 B = float(input("Inserte el segundo valor: "))
5 C = float(input("Inserte el tercer valor: "))
_{7} # definimos el discriminante para averiguar si la ecuacion va a tener solucion o no
B D = B ** 2 - 4 * A * C
10 if A == 0:
   print("El primer valor no puede ser nulo.")
13 elif D == 0:
  sol = -B / (2 * A)
14
   print("Tenemos que x es igual a: ", sol)
16
17 elif D > 0:
   sol_1 = (- B + math.sqrt(B ** 2 - 4 * A * C)) / (2 * A)
   sol_2 = (- B - math.sqrt(B ** 2 - 4 * A * C)) / (2 * A)
19
    print("Tenemos que las soluciones de la ecuacion son ", sol_1, sol_2)
21
22 else: # D < 0
print("Esta ecuacion no tiene soluciones reales.")
```

Ejercicio 1.11. Debido a la escasez de agua se pretende implantar un sistema de tarifas que penalice el consumo excesivo de este recurso, de acuerdo con la siguiente tabla:

Consumo (m3)	euros/m
Primeros 100	0.15
$\mathrm{De}\ 100\ \mathrm{a}\ 500$	0.20
De $500 \text{ a } 1000$	0.35
A partir de 1000	0.80

Implementar una función que tenga como parámetro el consumo de agua en m3 y calcule la factura de acuerdo con la tabla anterior.

Solución 1.11. Entrega 1.

Ejercicio 1.12. Dados dos números enteros n y m, escribe una función en Python que calcule el signo de su producto (+ si el producto es positivo, - si el producto es negativo y 0 si el producto es cero) sin llegar a calcular dicho producto.

Solución 1.12. La solución es la siguiente.

```
1 a = int(input("Insert whole number here: "))
2 b = int(input("Insert another whole number here: "))
3
4 if a == 0 or b == 0:
5  valor = "0"
6
7 elif (a > 0 and b > 0) or (a < 0 and b < 0):</pre>
```

```
8  valor = "positivo"
9
10  else:
11  valor = "negativo"
12
13  print("El producto es", valor)
```

Ejercicio 1.13. Escribe una función que, dada una temperatura, indique la actividad más apropiada para dicha temperatura teniendo en cuenta los siguientes criterios.

Actividad	Temperatura idónea
Natación	temp > 30
Tenis	$20 < \text{temp} \le 30$
Golf	$10 < \text{temp} \le 20$
Esquí	$5 < \text{temp} \le 10$
Parchís	temp < 5

Solución 1.13. La solución es la siguiente.

```
temp = float(input("Temperature in degrees celcius: "))
3 if temp < 0:
   activity = "Error. Can't have negative temperature."
5 elif temp <= 5:</pre>
   activity = "Parchis"
7 elif temp <= 10:</pre>
  activity = "Esqui"
9 elif temp <= 20:</pre>
  activity = "Golf"
11 elif temp <= 30:
12
  activity = "Tenis"
13 else:
  activity = "Natacion"
14
print("Your recommended activity is:", activity)
```

Ejercicio 1.14. Escribe un programa en Python que pida números al usuario, hasta que éste introduzca un 0, y que para cada uno, si es positivo, diga si es par o es impar.

Solución 1.14. La solución es la siguiente.

```
def hoja2_ej6():
    number = int(input("Introduce an integer: "))
    while number != 0:
        decimal = number / 2 - int(number / 2)
        if number > 0:
            if decimal == 0:
                 print("Your number is even.")
        else:
                 print("Your number is odd.")
                 number = int(input("Introduce an integer: "))

hoja2_ej6()
```

Ejercicio 1.15. Escribe un programa en Python que muestre en la pantalla la tabla de multiplicación (de 1 a 10) del número que introduzca el usuario (entre 1 y 100; si no está en ese intervalo volverá a pedir el número).

Solución 1.15. La solución es la siguiente.

```
def hoja2_ej7():
    number = int(input("Introduce an integer: "))
    while 0<= numer and number > 100:
        number = int(input("Introduce an integer: "))
    for i in range (1, 10):
        multiplication = i * number
        print(f"{i} * {number} = {multiplication}")
    hoja2_ej7()
```