BIOCHEM Carbohydrates VSAQS:

1. Epimers

- Epimers are stereoisomers that differ in configuration at only one specific carbon atom.
- Glucose and galactose are C-4 epimers; glucose and mannose are C-2 epimers.
- They have the same molecular formula and belong to the same sugar series (aldose or ketose).

2. Enantiomers

- Enantiomers are mirror-image isomers that are non-superimposable.
- They rotate plane-polarized light in opposite directions (D- and L-forms).
- Example: D-glucose and L-glucose.

3. Anomers

- Anomers differ in configuration at the anomeric carbon (carbon 1 in aldoses, carbon 2 in ketoses).
- α-anomer: –OH on anomeric carbon is opposite to CH₂OH group; β-anomer: same side.
- Example: α-D-glucose and β-D-glucose.

4. Optical Isomerism

- Molecules with chiral centers exhibit optical isomerism.
- They rotate polarized light: dextrorotatory (+) or levorotatory (–).
- Occurs in sugars and amino acids.

5. Glycosides

- Glycosides are formed when a sugar binds to another molecule via a glycosidic bond.
- The anomeric –OH group is replaced by –OR or –NR group.
- They are stable and do not reduce Benedict's reagent.

6. Benedict's Test

- A chemical test to detect reducing sugars.
- Positive test gives a brick-red precipitate due to cuprous oxide.
- Glucose, fructose, lactose are positive; sucrose is negative.

7. Bond in Maltose, Sucrose & Lactose

- Maltose: α-1,4-glycosidic bond (glucose + glucose).
- Sucrose: $\alpha 1 \rightarrow \beta 2$ -glycosidic bond (glucose + fructose).
- Lactose: β-1,4-glycosidic bond (galactose + glucose).

8. PDH Complex

- Pyruvate Dehydrogenase converts pyruvate to acetyl-CoA.
- Requires 5 cofactors: TPP, lipoic acid, CoA, FAD, NAD+.
- Links glycolysis and TCA cycle; inhibited by acetyl-CoA and NADH.

9. Lactose Intolerance

- Caused by lactase enzyme deficiency.
- Leads to bloating, diarrhea, and gas after consuming milk.
- Undigested lactose is fermented by colonic bacteria.

10. Alpha-Ketoglutarate Complex

- Converts α-ketoglutarate to succinyl-CoA in TCA cycle.
- Requires same 5 cofactors as PDH: TPP, CoA, NAD+, FAD, lipoic acid.
- Generates NADH and releases CO₂.

11. Vitamins in TCA Cycle

- Vitamin B1 (Thiamine) coenzyme TPP in PDH & α-KG complex.
- Vitamin B2 (Riboflavin) forms FAD.
- Vitamin B3 (Niacin) forms NAD+; B5 (Pantothenic acid) part of CoA.

12. Cahill's Cycle & Cori's Cycle

- Cahill's: Alanine cycle transfers nitrogen to liver.
- Cori's: Lactate from muscles converted to glucose in liver.
- Both support gluconeogenesis during fasting/exercise.

13. UDP Glucuronate Cycle

- Produces UDP-glucuronic acid from glucose.
- Important for detoxification (bilirubin, drugs) via glucuronidation.
- Defect causes Crigler-Najjar or Gilbert's syndrome.

14. Polyol Pathway

- Converts glucose to sorbitol (aldose reductase), then to fructose.
- Active in lens, retina, nerves; excess sorbitol causes osmotic damage.
- Linked to diabetic complications.

15. Essential Pentosuria

- Benign condition due to deficiency of L-xylulose reductase.
- Causes excretion of L-xylulose in urine.
- Common in Ashkenazi Jews; does not cause hyperglycemia.

16. Galactosemia

- Genetic disorder due to GALT deficiency (classical type).
- Causes hepatomegaly, jaundice, cataracts, mental retardation.
- Managed by excluding galactose/lactose from diet.

17. Galactokinase vs Hexokinase

Feature Galactokinase Hexokinase

Substrat Galactose Glucose

е

Product Galactose-1-phosphat Glucose-6-phosphat

Km Low (high affinity) Low (high affinity)

18. G6PD Deficiency

X-linked enzyme deficiency in pentose phosphate pathway.

- Leads to hemolytic anemia after oxidative stress (e.g., fava beans, drugs).
- Protects against malaria.

19. Fructosuria & Fructosemia

- Fructosuria: Benign; deficiency of fructokinase.
- Hereditary Fructose Intolerance (fructosemia): Aldolase B deficiency; causes hypoglycemia, vomiting.
- Managed by avoiding fructose.

20. HbA1c & Its Importance

- Glycated hemoglobin indicates average blood glucose over 2–3 months.
- Normal <5.7%; diabetic >6.5%.
- Useful for monitoring long-term glucose control.

21. Sucrose Intolerance

- Caused by sucrase-isomaltase deficiency.
- Leads to diarrhea, gas, and abdominal discomfort after sucrose intake.
- Managed by avoiding sucrose.

22. Invert Sugar

- Mixture of glucose and fructose from hydrolyzed sucrose.
- Sweeter than sucrose; used in candies, jams.
- Prepared using acid or invertase enzyme.

23. Glucokinase vs Hexokinase

Feature	Glucokinase	Hexokinase
Location	Liver, pancreas	All tissues
Km	High (low affinity)	Low (high affinity)
Regulation	Induced by insulin	Inhibited by G6P

24. Cori Cycle

- Transfers lactate from muscle to liver.
- Liver converts lactate to glucose via gluconeogenesis.
- Helps maintain blood glucose and reduces muscle fatigue.

25. GLUT2 vs GLUT4

Feature GLUT2 GLUT4

Location Liver, β -cells, intestine Muscle & adipose

tissue

Insulin Independent Insulin-dependent

Km value High Km (low affinity) Low Km (high affinity)