Computer Science 1-Honors	Lab 14C 1-Day Minor Python Assignment
Number Systems – Part II	80, 100 & 110 Point Versions

Assignment Purpose:

The purpose of this lab assignment is to gain more understanding of string processing and "Number Systems"; specifically, by converting binary numbers to decimal.

In this assignment, you will convert provided *binary* numbers into *decimal*. Even though the binary numbers are provided, you need to write your program in such a way that it would work for any numbers, instead of just the ones that are provided.

Lab 14C Student Version Do not copy this file, which is provided. 1 # Lab14Cst.py 2 # "Number Systems - Part II" # This is the student, starting version of Lab 14C. 4 5 6 def heading(): 7 print() 8 9 print("Lab 14C, Number Systems - Part II") 10 print("80 Point Version") 11 print("By: JOHN SMITH") # Substitute your own name here. 12 13 print("\n") 14 15 16 def bin2dec(bin): 17 # precondition: bin is a string storing an 8-bit sequence of 1s & 0s. # postcondition: The decimal equivalent of bin is returned. 18 19 dec = 0if bin[0] == '1': 20 21 dec += 12822 23 24 25 26 return dec 27 28 29

```
30 #########
31 #
      MAIN
32 ##########
33
34 heading()
35 print(bin2dec("11001000"))
36 print(bin2dec("01100100"))
37 print(bin2dec("00110010"))
38 print(bin2dec("00011001"))
39
40 # Required for the 110 Point Version Only:
41 #print(bin2dec("1000000001"))
42 #print(bin2dec("1101"))
43 #print(bin2dec("101"))
44 #print(bin2dec("11"))
45 #print(bin2dec("0"))
46 #print(bin2dec("1100100000000"))
47
```

Specifics and Sample Output for the Student Provided File

You are provided with a complete heading procedure and a partial bin2dec function. This is the function that is supposed to convert a binary number to decimal. Remember, "decimal" is also called "base-10". This is the number system we use which consists of 10 digits (0,1,2,3,4,5,6,7,8,9). Binary is also called "base-2". This is the number system used by computers and consists of 2 digits (1 & 0). Right now, the **dec2bin** function is not complete, so it just returns **128** for 8-bit binary numbers that start with 1 and 0 otherwise.

```
----jGRASP exec: python Lab14Cst.py
*********
Lab 14C, Number Systems - Part II
80 Point Version
By: JOHN SMITH
************
128
()
0
0
----jGRASP: operation complete.
```

NOTE: The **bin2dec** function that you are writing in this lab is the <u>inverse</u> of the **dec2bin** function that you wrote in Lab 12B.

80 and 100 Point Versions Specifics and Output

Both the 80 and 100 Point Versions require that the **dec2bin** function works for any 8-bit number. For the 80 Point Version, you are allowed to use 8 separate **if** statements, one for each bit. For the 100 Point Version, you are required to use a loop to make the function more efficient.

80 and 100 Point Versions Output

Both the 80 and 100 Point Versions have the same output.

110 Point Version Specifics

The 110 Point Version requires everything from the 100 Point Version, except now the **dec2bin** function needs to work for any size binary number, not just the ones that have a fixed size of 8 bits. To properly test the 110 Point Version, you will need to uncomment the 6 **print** commands at the end of the program.

05-19-21

110 Point Version Output

```
----jGRASP exec: python Lab14Cv110.py
**********
Lab 14C, Number Systems - Part II
110 Point Version
By: JOHN SMITH
200
100
50
25
513
13
5
3
()
6400
----jGRASP: operation complete.
```