Introducción al aprendizaje automatizado

Teoría:
Pablo Granitto
granitto@cifasis-conicet.gov.ar

Hoy

- Introducción a ML
- Contenidos Método
- Problemas

Qué es Machine Learning?

- Hay problemas en Informática que se pueden "definir" concretamente y son simples de convertir en un algoritmo
 - Ejemplo: Ordenar alfabéticamente una lista, calcular el balance de una cuenta.
- Hay otros que son simples de "entender" pero muy difíciles de "definir" y convertir en algoritmo
 - Ejemplo: Detectar una sonrisa en una cara, interpretar un sonido para traducirlo en palabras

- Hay problemas en Informática que se pueden "definir" concretamente y son simples de convertir en un algoritmo
 - Ejemplo: Ordenar alfabéticamente una lista, calcular el balance de una cuenta.
- Hay otros que son simples de "entender" pero muy difíciles de "definir" y convertir en algoritmo
 - Ejemplo: Detectar una sonrisa en una cara, interpretar un sonido para traducirlo en palabras

El Aprendizaje Automatizado introduce métodos que pueden resolver esas tareas "aprendiendo" la solución a partir de ejemplos de cómo se realiza la misma

ML en IA

- IA se concentra en resolver problemas que requieren "inteligencia"
- En muchos casos tenemos dos aproximaciones:
 - Knowledge-based: un programa que utiliza conocimiento explícito para resolver un problema, típicamente aportado por un experto
 - Machine Leaning: un programa que utiliza ejemplos (conocimiento implícito), para aprender cómo resolver un problema

ML en IA

¿Por qué nos interesaría tener programas que aprenden?

ML en IA

- ¿Por qué nos interesaría tener programas que aprenden?
 - Para automatizar tareas humanas
 - Para reemplazar expertos (pocos)
 - Para hacer tareas mejor que los humanos
 - Para hacer tareas que no pueden hacer los humanos

Programas que aprenden?

"Se dice que un programa aprende si mejora su performance en una cierta tarea al incorporar experiencia"

Programas que aprenden?

Memorizar no es aprender

Generalizar es aprender

Tengo estos datos:

8 - T

2-T

5 - F

9 - F

4-T

13 - F

Tengo estos datos:

8 - T

2-T

5 - F

9 - F

4-T

13 - F

Cual es la respuesta para 12?

Tengo estos datos:

$$8 - T$$

$$2-T$$

$$5 - F$$

$$9 - F$$

$$4-T$$

$$13 - F$$

Cual es la respuesta para 12?

Y si agrego los datos:

$$14 - F$$

Para generalizar incorporamos "algo" a los datos: un bias.

En general usamos la "navaja de Occam": La respuesta más simple que explica las observaciones es la válida

Distintos métodos de ML usan distintos bias

Ejemplo: aprender de un conjunto de datos

- Ejemplo: aprender de un conjunto de datos
- Qué familia de funciones?

- Ejemplo: aprender de un conjunto de datos
- Qué familia de funciones?
- Cómo lo ajusto?

- Ejemplo: aprender de un conjunto de datos
- Qué familia de funciones?
- Cómo lo ajusto?
- De qué orden?

Como se trabaja en ML?

- Ciencia empírica
 - Probar ideas prácticas
 - Entender sus propiedades → experimentar
 - Mejorarlas
- No se usan prácticamente desarrollos teóricos
- Limitada por los datos y la capacidad de cálculo

Programa del curso

- Aprendizaje de conceptos
- Evaluación de modelos + Arboles de decisión – TP 1
- Redes neuronales (+DL) TP 2
- Métodos Bayesianos TP 3
- Métodos locales TP 4 (puede cambiar)
- Redes profundas o SVM TF

Resultado del curso

- Comprender las bases de ML.
- Comprender las limitaciones actuales de ML.
- Entender los resultados de un método de ML.
- Adquirir conocimiento sobre cómo aplicar ML a un problema propio.

Bibliografía

- Machine Learning, Tom Mitchell, 1997
- Pattern Recognition and Machine Learning, Christopher Bishop, 2006
- The Elements of Statistical Learning, Hastie, Tibshirani & Friedman, 2008

- Presentación y discusión del método (clase teórica presencial, video de apoyo).
- Desarrollo de un trabajo práctico (TP) individual.
- Discusión grupal de los resultados del TP –
 Cierre del tema.
- Parcial y examen final teórico: conceptual.

Método de aprobación

- Todos los TP se califican de 1 a 10
- Cada TP tiene dos consignas opcionales que valen un punto cada una.
- Entregar fuera de término implica perder 1
 (2 días) o 2 puntos en la calificación del TP.
- La nota de la materia sale de promediar todos los TPs y las teorías con igual peso estadístico