Graphs

Graphs

- Non linear Data structures
- Represent many to many relationship among elements, adjacency relation
- Each element has many successors and predecessors

Graphs

- \bullet G = (V,E)
- V is the vertex set.
- Vertices are also called nodes and points.
- E is the edge set.
- Each edge connects two different vertices.
- Edges are also called arcs and lines.

Graph – Adjacency representation

Orientation of edges

Directed edge has an orientation (u,v)

$$u \longrightarrow v$$

• Undirected edge has no orientation (u,v).

Types

- Directed Graph
- Undirected Graph
- Weighted Graph

Directed and undirected graph

- •Undirected graph => no oriented edge.
- Directed graph => every edge has an orientation.

Undirected Graph

Directed Graph (Digraph)

Applications

Vertex	Edge	
City	Road	
Computer	Communication Link	
Railway Station	Tracks	
Bus Station	Road Route	
Social connect - User	Friendship	

Terminology

- Loop: an edge that connects a vertex to itself.
- Path: a sequence of vertices, $p_0, p_1, ..., p_m$, such that each adjacent pair of vertices p_i and p_{i+1} are connected by an edge.
- Cycle: a simple path with no repeated vertices or edges other than the starting and ending vertices. A cycle in a directed graph is called a directed cycle.
- Multiple edges: in principle, a graph can have two or more edges connecting the same two vertices in the same direction.
- Simple graphs: the graphs that have no loops and no multiple edges.
- **Directed acyclic graphs**: A directed graph with no cycles is a directed acyclic graph (DAG).

Representation of Graphs

- Adjacency matrix
- Adjacency List

Adjacency Matrix

- 0/1 n x n matrix, where n = # of vertices
- A(i,j) = 1 iff (i,j) is an edge

Adjacency Matrix Properties

- •Diagonal entries are zero.
- •Adjacency matrix of an undirected graph is symmetric.
 - -A(i,j) = A(j,i) for all i and j.

Adjacency Matrix (Digraph)

- •Diagonal entries are zero.
- Adjacency matrix of a digraph need not be symmetric.

Adjacency Matrix

- n² bits of space
- For an undirected graph, may store only lower or upper triangle (exclude diagonal).
 - \bullet (n-1)n/2 bits
- O(n) time to find vertex degree and/or vertices adjacent to a given vertex.

Adjacency List Representation

- Adjacency list for vertex i is a linear list of vertices adjacent from vertex i
- An array of n adjacency lists

Adjacency List Representation

Array Length = n

of chain nodes = 2e (undirected graph)

of chain nodes = e (digraph)

Driving Distance/Time Map

 Vertex = city, edge weight = driving distance/time.

Which Representation is Best?

•If space is available, then an adjacency matrix is easier to implement and is generally easier to use than edge lists

Other operations

- 1. Adding or removing edges
- 2. Checking whether a particular edge is present
- Iterating a loop that executes one time for each edge with a particular source vertex

Choice of representation for efficient implementation of these operations?

Which Representation is Best?

- Operations
 - 1. Adding or removing edges
 - 2. Checking whether a particular edge is present
 - 3. Iterating a loop that executes one time for each edge with a particular source vertex

Choice

- Both (1) and (2) require only a small constant amount of time with the adjacency matrices.
- Both (1) and (2) require O(n) operations with the adjacency list representation in the worst case
- With (3), edge lists (O(e), where e is the number of edges that have vertex i as their source) are more efficient than adjacency matrix (O(n)).
 - If each vertex has only a few edges (sparse graph), then an adjacency matrix will waste space, with many 0

Complete Undirected Graph

Has all possible edges.

Number Of Edges—Undirected Graph

- Each edge is of the form (u,v), u != v.
- Number of such pairs in an n vertex graph is n(n-1).
- Since edge (u,v) is the same as edge (v,u), the number of edges in a complete undirected graph is n(n-1)/2.
- Number of edges in an undirected graph is
 <= n(n-1)/2.

Number Of Edges—Directed Graph

- Each edge is of the form (u,v), u != v.
- Number of such pairs in an n vertex graph is n(n-1).
- Since edge (u,v) is not the same as edge (v,u), the number of edges in a complete directed graph is n(n-1).
- Number of edges in a directed graph is <= n(n-1).

Vertex Degree

Number of edges incident to vertex.

$$degree(2) = 2$$
, $degree(5) = 3$, $degree(3) = 1$

Sum Of Vertex Degrees

Sum of degrees = 2e (e is number of edges)

In-Degree Of A Vertex

in-degree is number of incoming edges indegree(2) = 1, indegree(8) = 0

Out-Degree Of A Vertex

out-degree is number of outbound edges

outdegree(2) = 1, outdegree(8) = 2

Sum Of In- And Out-Degrees

- Each edge contributes 1 to the in-degree of some vertex and 1 to the out-degree of some other vertex
- Sum of in-degrees = sum of out-degrees = e,
 - where e is the number of edges in the digraph

Graph Traversal

- The goal of a graph traversal is to find all nodes reachable from a given set of root nodes.
- In an undirected graph we follow all edges
- In a directed graph we follow only out-edges

Breadth First Traversal

- Explore neighbours first, before moving to the next level of neighbours.
- Repeatedly explore adjacent vertices using Mark each vertex we visit,
 so we don't process each more than once.

BFS pseudo code

```
Algorithm BFS(Node start)
initialize queue q
insert(q, start )
mark start as visited
while(q is not empty) {
    next = delete(q) // and "process"
    for each node u adjacent to next
        if(u is not marked) {
            mark u
            insert (q,u)
       } [end if] [end for]
} [end while]
```

```
Algorithm BFS( start )
initialize queue q
insert(q, start )
mark start as visited
while(q is not empty) {
    next = delete(q) // and "process"
    for each node u adjacent to next
       if(u is not marked) {
            mark u
            insert (q,u)
       } [end if] [end for]
} [end while]
```

start = 0

q

q 0

next = 0 BFS = 0

q

u = 1, 2, 3

 0
 1
 2
 3
 4

 visited
 T
 T
 T
 T

q 1 2 3

```
Algorithm BFS( start )
initialize queue q
insert(q, start )
mark start as visited
while(q is not empty) {
    next = delete(q) // and "process"
    for each node u adjacent to next
       if(u is not marked) {
            mark u
            insert (q,u)
       } [end if] [end for]
} [end while]
```

$$u = 1, 2, 3$$

	0	1	2	3	4
visited	Т	Т	Т	Т	

q 1 2 3

$$u = 4, 3$$

 0
 1
 2
 3
 4

 visited
 T
 T
 T
 T
 T

a)	2	Λ	
Ч	_	5		

```
Algorithm BFS( start )
initialize queue q
insert(q, start )
mark start as visited
while(q is not empty) {
    next = delete(q) // and "process"
    for each node u adjacent to next
       if(u is not marked) {
            mark u
            insert (q,u)
       } [end if] [end for]
} [end while]
```

next = 2 $u = 4$ BFS = 0 1 2

q			3	4	
---	--	--	---	---	--

	0	1	2	3	4
visit ę d	Т	Т	Т	Т	Т

 0
 1
 2
 3
 4

 visited
 T
 T
 T
 T
 T

α			
Ч			

What is one possible order of visiting the nodes of the following graph when using Breadth First Search (BFS)?

A) MNOPQR

C) QMNPRO

B) NQMPOR

D) QMNPOR

Depth First Traversal

- Follow a path until it ends, or until a cycle.
- Use a <u>stack</u>

Depth First Search (DFS)

```
Algorithm DFS(G)
     Initialize all vertices as "unvisited".
     Let S be a stack.
     Push the root on S
     While (S not empty) {
     Let n = Pop(S)
      If ( n is marked as "unvisited" ) {
8.
            Mark n as "visited"
9.
            Print n
 10.
            For each vertex v djacent to n
 11.
                If v is marked as "unvisited"
 12.
                      push v on S.
       end [ end if]
 13.
 14. end [end while]
```

Algorithm DFS(G)

- 1. Initialize all vertices as "unvisited".
- 2. Let S be a stack.
- 3. Push the root on S
- 4. While (S not empty) {
- 5. Let n = Pop(S)
- 7 If (n is marked as "unvisited") {
- 8. Mark n as "visited"
- 9. Print n
- 10. For each vertex v djacent to n
- 11. If v is marked as "unvisited"
- 12. push v on S.
- 13. end [end if]
- 14. end [end while]

Graph Traversal Uses

- In addition to finding paths, we can use graph traversals to answer:
 - What are all the vertices reachable from a starting vertex?
 - Is an graph connected?
- What if we want to actually output the path?
 - Instead of just "marking" a node, store the previous node along the path
 - When you reach the goal, follow path fields back to where you started (and then reverse the answer)
 - If just wanted path length, could put the integer distance at each node instead once

Applications

- Google Maps
- Facebook
- Social networks
- World wide web
- Operating systems resource allocation graph
- Computer games
- Robot planning
- Semantic networks