Osnovni koncepti operativnih sistema

Definicija operativnog sistema

- Računarstvo se razvija velikom brzinom, ali su osnovni principi funkcionisanja zajednički za sve generacije računarskih sistema.
- Osnovni zadaci operativnih sistema su da omoguće što efikasnije:
 - 1. Upravljanje procesima
 - 2. Upravljanje memorijom
 - 3. Upravljanje U/I uređajima (HDD, VM, miš...)
 - 4. Upravljanje podacima
 - Upravljanje mrežama

Definicija operativnog sistema (2)

- Upravljanje procesima, odnosno programima u izvršavanju, podrazumeva njihovo kreiranje, izvršavanje, dodeljivanje resursa procesima, sinhronizaciju, donošenje odluka o tome koji proces će imati priliku da se izvršava na procesoru u određenom trenutku, itd.
- Upravljanje memorijom se odnosi na raspoređivanje procesa u okviru radne memorije.
- Upravljanje ulazno-izlaznim uređajima se odnosi na kontrolu i transfer podataka između uređaja i ostatka sistema.

Definicija operativnog sistema (3)

- Upravljanje podacima podrazumeva njihovo čuvanje, vođenje evidencije o njima, manipulaciju sa njima, itd.
- 5. Upravljanje mrežama podrazumeva podršku za umrežavanje i komunikaciju između računara.

Jezgro operativnog sistema

- Jezgro (kernel) je deo operativnog sistema u koji su smeštene najvažnije funkcije - one koje obezbeđuju osnovne servise operativnog sistema.
- Jezgro je odgovorno za funkcionisanje sistema i ima zadatak da upravlja hardverskim i softverskim resursima na najnižem nivou.
- Jezgro se prvo učita u radnu memoriju, odmah pri pokretanju računarskog sistema, i ostaje u njoj do završetka rada odnosno isključivanja sistema.
- Jezgro se obično nalazi u posebnom delu radne memorije i stalno se izvršava.

Jezgro operativnog sistema (2)

- Jezgro je srce operativnog sistema i najniži sloj u hijerarhiji računarskog sistema koji nije hardverski (ili apstrakcija hardvera).
- U jezgru se definišu pravila i dozvole kojima se reguliše funkcionisanje celokupnog sistema.

Aplikativni i sistemski programi

- U računarskom sistemu se, osim jezgra, mogu izvršavati aplikativni i sistemski programi.
- Sistemski programi ne moraju biti deo jezgra operativnog sistema.
- Svi programi, uključujući i sistemske, funkcionišu na nivou iznad kernela.
- To se naziva korisnički režim rada (user mode), dok se sistemske aktivnosti poput pristupa hardveru obavljaju na nivou kernela, odnosno u sistemskom režimu rada (supervisory mode).

Sistemski pozivi

- Usluge koje operativni sistem može da pruži aplikativnim programima ostvaruju se uz pomoć sistemskih poziva.
- Programi pomoću sistemskih poziva komuniciraju sa jezgrom i na taj način dobijaju mogućnost da izvrše osetljive operacije nad sistemom.
- Sistemski pozivi su skup funkcija koji predstavlja interfejs ka operativnom sistemu.

Sistemski pozivi (2)

Aplikativni program može pristupiti hardveru ili uraditi neku operaciju sa procesima jedino korišćenjem odgovarajućeg

sistemskog poziva.

Sistemski pozivi (3)

- Sistemski pozivi su implementirani tako da dozvole samo operacije koje ne mogu biti štetne po računarski sistem.
- Sistemskim pozivom se jasno definiše koje su dozvoljene operacije kada je odgovarajuća usluga operativnog sistema u pitanju.
- Na ovakav način se i pristup hardveru štiti od neželjenih operacija korisnika.

Korisnički i sistemski režim rada

Procesori savremenih računarskih sistema imaju mogućnost rada u bar dva različita režima rada:

- korisničkom (user mod) i
- sistemskom (supervisor, kernel mod).

U sistemskom režimu moguće je izvršiti sve instrukcije, dok je broj instrukcija koje je dozvoljeno izvršiti u korisničkom režimu redukovan.

Instrukcije za osetljive operacije poput pristupa ulazno-izlaznim uređajima, zaštićenim delovima memorije, itd. moguće je izvršiti samo u sistemskom režimu rada procesora.

Korisnički i sistemski režim rada (2)

Poziv funkcije za čitanje (read) iz C biblioteke koja se sistemskim pozivom (sys_read) iz sistemskog moda obraća hardveru.

Promena režima rada

Korisnički i sistemski režim rada (3)

- Aplikativni programi se veći deo vremena izvršavaju u korisničkom režimu.
- Sistemski režim predviđen za posebno osetljive operacije koje izvodi operativni sistem.
- Pri korišćenju sistemskog poziva se iz korisničkog prelazi u sistemski režim i dalju kontrolu preuzima operativni sistem. Ključni deo operativnog sistema koji reaguje u ovakvim situacijama je jezgro.
- Sistemski pozivi koriste jezgro da bi omogućili različite servise operativnog sistema.

Korisnički i sistemski režim rada (4)

- Svi programi, često uključujući i sistemske, funkcionišu na nivou iznad jezgra u korisničkom režimu rada.
- Sistemske aktivnosti, koje se pokreću sistemskim pozivima poput pristupa hardveru, obavljaju se na nivou jezgra, odnosno u sistemskom režimu rada.
- Pri dizajniranju operativnih sistemima često se teži da se više aktivnosti odvija u korisničkom režimu umesto u sistemskom jer se na taj način povećava stabilnost sistema.

Korisnički i sistemski režim rada (5)

- Kada aplikativni programi izvrše sistemski poziv, parametri sistemskog poziva se postave na predviđene memorijske lokacije, a zatim se menja režim rada u sistemski u kojem su dozvoljene sve operacije koje procesor može da uradi.
- Tada jezgro preuzima kontrolu i na osnovu parametara sistemskog poziva izvršava željenu operaciju.
- Po završetku operacije režim rada se ponovo prebacuje u korisnički, a rezultati se vraćaju programu koji je izvršio sistemski poziv.

Korisnički i sistemski režim rada (6)

Realizacija sistemskog poziva iz korisničkog programa.

Korisnički program

Korisnički i sistemski režim rada

Korisničko okruženje

- Korisničko okruženje ima zadatak da olakša korišćenje ostalih delova operativnog sistema, a i celokupnog računarskog sistema.
- Korisnička okruženja se mogu podeliti na tekstualna i grafička.
- Pošto se uz pomoć znakova (tj. teksta) mogu improvizovati grafički elementi u okviru ekrana, ispravnija podela bi bila na linijska i ekranska.

Korisničko okruženje (2)

- Pod linijskim korisničkim okruženjima podrazumevaju se konzole, terminali, komandne linije, itd. koje omogućavaju da se operativnom sistemu upravlja kucanjem tekstualnih komandi linija teksta.
- Ovakva okruženja su se među prvima pojavila u računarstvu.
- Komandni interpretator je najvažniji deo linijskog korisničkog okruženja i njegova uloga je da naredbe i podatke koje korisnik unese u tekstualnom obliku prepozna i naloži operativnom sistemu izvršavanje odgovarajućih operacija.

Korisničko okruženje (3)

Izvršenje naredbe u komandnom interpretatoru.

```
geogebra@alas:~$ top
top - 00:47:16 up 52 days, 7:48, 3 users, load average: 0.00, 0.01, 0.05
Tasks: 174 total, 1 running, 170 sleeping, 0 stopped,
                                                  3 zombie
Cpu(s): 1.6%us, 0.2%sy, 0.0%ni, 98.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 32895892k total, 7698136k used, 25197756k free, 2254120k buffers
Swap: 16000736k total, 530444k used, 15470292k free, 4063052k cached
 PID USER
                        RES SHR S %CPU %MEM
                                             TIME+ COMMAND
2068 apache
                 0 2047m 106m 4836 S
                                       0.3 109:13.35 httpd
             20
2066 apache
             20 0 2047m 107m 4864 S 3 0.3 32:31.14 httpd
             20  0 20280 1736 1316 S  2 0.0 0:00.08 auth
21397 root
                               0 S 0 0.0 16:58.24 rcu sched
   9 root
             20 0
10912 dovecot
             20 0 9456 576 268 S 0 0.0 1:10.32 anvil
             20 0 20232 5872 3692 S 0 0.0
                                            0:00.37 nano
21165 mr13049
             20 0 11844 1356 1008 S 0 0.0
21267 dovecot
                                            0:00.03 auth
21395 root
             20 0 18756 2240 1172 S 0 0.0
                                            0:00.02 config
   1 root 20 0 4352
                          28
                               0 S 0 0.0
                                            0:56.40 init
   2 root 20 0
                         0 0 S 0 0.0
                                             0:01.12 kthreadd
   3 root 20 0 0 0 S 0 0.0 19:17.77 ksoftirqd/0
          0 -20 0 0 0 S 0 0.0
                                            0:00.00 kworker/0:0H
   5 root
  7 root RT 0 0 0 0 S 0 0.0 1:23.66 migration/0 8 root 20 0 0 0 S 0 0.0 0:00.00 rcu_bh
  10 root RT 0 0 0 0 S 0 0.0
                                            0:50.09 migration/1
  11 root 20 0 0 0 0 S 0 0.0
                                            5:41.71 ksoftirgd/1
                      0 0 0 5 0 0.0
  12 root
                                             0:00.00 kworker/1:0
             20 0
geogebra@alas:~$
```

Korisničko okruženje (4)

- Za razliku od linijskih, ekranska korisnička okruženja pružaju mogućnost da se operativnim sistemom upravlja korišćenjem cele površine ekrana.
- Osim uz pomoć tastature, komande i manipulacije sa podacima se mogu izvoditi uz pomoć miša i sličnih ulaznih uređaja (npr. ekrani osetljivi na dodir).
- Radna površina je osnovni deo ekranskog korisničkog okruženja na kojoj su aplikacije i podaci predstavljeni vizuelnim elementima.

21/27

Korisničko okruženje (5)

 Ideja je razvijena na Stanford univerzitetu (tekstualni linkovi).

Xerox – Alto računar.

 Apple – Mac-ovi (nije potrebna tastatura za obavljanje aktivnosti).

Windows.

Korisničko okruženje (6)

Korisničko okruženje (7)

Savremeni operativni sistemi, obično pružaju mogućnost da koriste obe vrste okruženja.

Ekransko i linijsko korisničko okruženje u istom sistemu

- Ulazno-izlazni uređaji imaju svoje kontrolere koji se koriste pri komunikaciji sa ostalim delovima sistema.
- Sa druge (softverske) strane nalaze se upravljački programi (drajveri) koji se nadograđuju na kontrolere i omogućavaju komunikaciju, odnosno upravljanje ulazno-izlaznim uređajima.
- Drajveri se programiraju tako da za različite tipove iste vrste uređaja (štampača, hard diskova, tastatura, itd.) definišu jedinstven skup dozvoljenih instrukcija.

Drajveri (2)

- Naime, različiti tipovi iste vrste uređaja (npr. različiti tipovi štampača) mogu zahtevati posebne naredbe ili parametre za izvršavanje, a zadatak drajvera je da apstrahuju ove razlike i naprave uniformni interfejs.
- Na taj način se rad sa ulazno-izlaznim uređajima dosta olakšava jer se izbegava pisanje posebnih programa za svaki tip uređaja, već se jasno definisanim skupom funkcija omogućava pisanje univerzalnih programa za uređaje iste vrste.

Drajveri (3)

Ilustracija pozicije drajvera u računarskom sistemu.

Drajveri

Zahvalnica

Najveći deo materijala iz ove prezentacije je preuzet iz knjige "Operativni sistemi" autora dr Miroslava Marića i iz slajdova sa predavanja koje je držao dr Marić.

Hvala dr Mariću na datoj saglasnosti za korišćenje tih materijala.