Récapitulatif de Mathématiques

I. Dérivation

$$f'(a) = \lim_{h \to 0} \left(\frac{f(a+h) + f(a)}{h} \right) \qquad \boxed{T_A: y = f(a) + f'(a)(x-a)}$$

II. Exponentielle

$$e^x \cdot e^y = e^{x+y}$$
 $e^{-x} = \frac{1}{e^x}$ $(e^x)^n = e^{nx}$ Limite: e^x l'emporte sur x^n

III. Logarithme népérien

$$\ln(ab) = \ln(a) + \ln(b)$$

$$\ln\left(\frac{1}{b}\right) = -\ln(b)$$

$$\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$$

$$\ln(a^n) = n \ln(a)$$
Limite: xⁿ l'emporte sur ln(x)

Pour x proche de 1: $\ln(x) \approx x - 1$
Pour x proche de 0: $\ln(1+x) \approx x$

IV. Les fonctions puissance

$$\boxed{x^{\alpha} = e^{\alpha \ln x}}$$

$$\boxed{a^x = e^{x \ln a}}$$

V. Équations différentielles

$$y' = ay + b \Leftrightarrow y(x) = ke^{ax} - \frac{b}{a}$$

VI. Nombres complexes

1. Propriétés

$$|z| = \sqrt{a^2 + b^2}$$

$$z = |z|(\cos\theta + i\sin\theta) = |z|e^{i\theta}$$

$$\cos\theta - i\sin\theta = \cos(-\theta) + i\sin(-\theta)$$

$$-Arg(z) = \frac{1}{Arg(z)}$$

2. Transformations complexes

	« Définition »	Écriture simpli	fié	Écriture complète
Translation	$M'(z') = T_{\overrightarrow{AB}(b)}M(z)$	z' = z + b		
	$M'(z') = \mathcal{R}(\Omega(\omega), \alpha)(M(z))$			
Homothétie	$M'(z') = \mathcal{H}(\Omega(\omega), k)(M(z))$	z' = kz + c	$c = \omega(1 - k)$	$z' - \omega = k(z - \omega)$

Récapitulatif de Mathématiques

VII. Suites

			$S_n = \frac{(n+1)(U_0 + U_n)}{2}$	
Géométrique	$V_{n+1} = q \times V_n$	$V_n = V_0 \times q^n$	$S_n = V_0 \times \frac{1 - q^{n+1}}{1 - q}$	$S_n = V_1 \times \frac{1 - q^n}{1 - q}$

1. Suites convergentes

$$(U_n)$$
 converge $\Leftrightarrow \exists \ l \in \mathbb{R}, \lim_{n \to +\infty} (U_n) = l$

$$\lim_{\substack{n \to +\infty \\ f \text{ continue sur } I \\ l \in I}} (U_n) = l$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} f(U_n) = f(l)$$

2. Suites adjacentes

$$(U_n)$$
 et (V_n) sont adjacentes \Leftrightarrow $\begin{cases} l'\text{une est } \nearrow, l'\text{autre est } \searrow \\ \text{leur différence tend vers } 0 \end{cases}$

VIII. Produit scalaire

$$\vec{u}(x,y,z) \quad \vec{v}(x',y',z') \qquad \vec{u} \cdot \vec{v} = ||u|| ||v|| \cos(\vec{u},\vec{v}) = xx' + yy' + zz' \qquad \vec{u} \cdot \vec{v} = 0 \Leftrightarrow \vec{u} \perp \vec{v}$$

	Droite	Plan
Équation paramétrique $A(x_A, y_A, z_A)$; $\vec{u}(a, b, c)$; $\vec{v}(a', b', c')$ $\mathcal{P}(A, \vec{u}, \vec{v})$; $\mathcal{D}(A, \vec{u})$	$\begin{cases} x = x_A + \lambda a \\ y = y_A + \lambda b \\ z = z_A + \lambda c \end{cases}$	$\begin{cases} x = x_A + \alpha a + \beta a' \\ y = y_A + \alpha b + \beta b' \\ z = z_A + \alpha c + \beta c' \end{cases}$
Équation cartésienne	ax + by + c = 0	ax + by + cz + d = 0
Vecteur normal	$\vec{n}(a,b)$	$\vec{n}(a,b,c)$
Vecteur directeur	$\vec{u}(-b,a)$	
Distance au point M ₀	$d = \frac{ ax_0 + by_0 + c }{\sqrt{a^2 + b^2}}$	$d = \frac{ ax_0 + by_0 + cz_0 + d }{\sqrt{a^2 + b^2 + c^2}}$

IX. Intégration et primitives

Formules d'intégration	Fonction	Primitive
$\frac{1}{a} \int_{a}^{b} f(x) dx$	$f(x) = u'u^{\alpha}$ $f(x) = u'\sqrt[n]{u} = u'u^{\alpha} \alpha = \frac{1}{n}$	$F(x) = \frac{u^{\alpha+1}}{\alpha+1}$
$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) dx$	$f(x) = \frac{u'}{u}$	$F(x) = \ln(u(x))$
$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$	$f(x) = u'e^u$	$F(x)=e^u$
$f(x) \le g(x) \Rightarrow \int_a^b f(x) dx \le \int_a^b g(x) dx$	$f(x) = u'g \circ u$	$F(x) = G \circ u$
$\int_{a}^{b} uv' dx = [uv]_a^b - \int_{a}^{b} u'v dx$	$f(x) = u'\cos u$	$F(x) = \sin u$
Ja Ja	$f(x) = u' \sin u$	$F(x) = -\cos u$