Sound event detection with neural networks

Moritz Augustin

NI Group Meeting, 13th July 2018

Introduction

Two!Ears EU project

- Neural Information Processing Group General Sounds Database Earsignals
- sound event database: NIGENS anechoic earsignals
- binaural simulator software: scene mixtures varying noise & sources
- system expertise: Ivo
- Methods relied on
 - linear feedforward models: logistic regression

 Trowitzsch, Mohr, Kashef, Obermayer 2017, IEEE Audio Speech Language Process.
 - engineered features that contained all temporal information
- Extension in progress: nonlinear & temporal models
 - deep neural networks

- Heiner Spieß, NI project
- recurrent networks: long short-term memory Changbin Lu, Master thesis
- feedforward (convolutional) neural networks Alessandro Schneider, Bachelor thesis
- can be directly applied to features with fine temporal resolution
- representations learnt via supervised training
- expectation: improved generalization performance over baseline model

Data: Isolated Sounds

NIGENS: database with human-labeled (on/offsets) stereo recordings (3m head-source distance)

Examples (choose 3 example sounds compatible to mixture below (start with mixture first) and playback them either via vlc/link/embed here s.t. pdf works?)

Add waveform <u>and</u> labels for the 3 examples: should be one labelthrough (e.g. Piano/Caravan.wav) and one with breaks (e.g. Footsteps/*) examples should match to the chosen example mixture on the next slide

Trowitzsch, Taghia, Kashef, Obermayer 2016, Zenodo: https://zenodo.org/record/168042

Class	Waves (count)	min-max (sec)	Total time (min)
Alarm	>=30	fehlt-fehlt	fehlt
Baby	>=30	fehlt-fehlt	fehlt
Crash	>=30	fehlt-fehlt	Fehlt
Dog	>=30	fehlt-fehlt	Fehlt
Engine	>=30	fehlt-fehlt	Fehlt
FemaleScream	>=30	fehlt-fehlt	Fehlt
FemaleSpeech	>=30	fehlt-fehlt	Fehlt
Fire	>=30	fehlt-fehlt	Fehlt
Footsteps	>=30	fehlt-fehlt	Fehlt
Knock	>=30	fehlt-fehlt	Fehlt
MaleScream	>=30	fehlt-fehlt	Fehlt
MaleSpeech	>=30	fehlt-fehlt	Fehlt
Phone	>=30	fehlt-fehlt	Fehlt
Plano	>=30	fehlt-fehlt	Fehlt
Total	758?	fehlt-fehlt	Fehlt
General class	>=30	fehlt-fehlt	Fehlt

Data: Scenes

- Sound mixtures via binaural simulator
- Master source with one (of 758) waves (e.g. piano77 [replace with correct no according to chosen mixtsure])
- 0-3 distractor sources: random waves from any class (incl. general & master)
- Min 30s (repeating short master waves)
- <u>Scene</u>: Fixed scene params (#src, azimuth, SNR)
- <u>Scene instance</u>: Scene with fixed waves (create the wave of the chosen mixture mathcing the example sounds from the previous slide)

Fig 1 here

Dala: realures

Figs 1-5 here

Data: Validation & Testing

Figs 5 & 6 here

Data: implementation

- Should be used also vom convnet and MLP => comparability
- Data standardization

Figs 7-9 here

Model 1: Multilayer Perceptron

Model 2: Convolutional neural net

Model 3: Long short-term memory

- Motivate verbally: simple RNN cannot learn long term relationships due to vanishing gradient
- Inclusive: state transitions, no peepholes (name it)
- i.e. Vanilla LSTM
- Alternative: GRU

(Recurrent) Regularization

- Early stopping
- Inseatd of weight decay/L1 we use dropout... Dropout
 & CuDNN
 - Give weight matrix based recurrent variational dropout idea

Hyperparameter Optimization

 Mention scene subsampling & partial CV here, use fig but not show

Preliminary Results

Issues

 Too limited Computational resources (despite Youssef's effort / NVIDIA's donations / math cluster's some GPUs)

Outlook