Definition: Inverse Element

An **inverse element** of an element under a Binary Operation is another element that, when combined with the original, yields the Identity Element.

Formal Definition

Let (S, *) be a set with a binary operation * and identity element e. For an element $a \in S$:

Left Inverse

An element $b \in S$ is a **left inverse** of a if:

$$b * a = e$$

Right Inverse

An element $b \in S$ is a **right inverse** of a if:

$$a * b = e$$

Two-Sided Inverse (or simply Inverse)

An element b is an **inverse** of a if it is both a left and right inverse:

$$b * a = a * b = e$$

We denote the inverse of a as a^{-1} .

Uniqueness in Groups

In a Group (where the operation is associative), if an element has both a left inverse and a right inverse, they are equal and unique.

Proof: Let l be a left inverse and r be a right inverse of a: - l = l * e = l * (a * r) = (l * a) * r = e * r = r

Examples

Arithmetic

• Addition on \mathbb{R} : The inverse of a is -a

$$-a + (-a) = (-a) + a = 0$$

• Multiplication on $\mathbb{R} \setminus \{0\}$: The inverse of a is $\frac{1}{a}$

$$-a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$$

Matrices

- Addition: The inverse of matrix A is -A
- Multiplication: For invertible matrix A, the inverse is A^{-1} $-AA^{-1} = A^{-1}A = I$

Functions

- For bijective function $f: X \to Y$, the inverse is $f^{-1}: Y \to X$
- $(f \circ f^{-1})(y) = y$ and $(f^{-1} \circ f)(x) = x$

Modular Arithmetic

- In \mathbb{Z}_n under addition: inverse of a is n-a
- In \mathbb{Z}_n^* under multiplication: inverse exists iff $\gcd(a,n)=1$

Properties

- 1. **Involution**: $(a^{-1})^{-1} = a$
- 2. **Anti-homomorphism**: $(a * b)^{-1} = b^{-1} * a^{-1}$ (note the order reversal)
- 3. Identity is self-inverse: $e^{-1} = e$

Non-Examples

- In (\mathbb{Z},\cdot) : Only 1 and -1 have multiplicative inverses
- In $(\mathbb{N}, +)$: No element except 0 has an additive inverse
- Zero has no multiplicative inverse in any ring

Related Concepts

- Invertible element: An element that has an inverse
- Unit: In ring theory, an element with multiplicative inverse
- Group: A monoid where every element has an inverse
- Quasi-inverse: Weaker notions in semigroup theory

Dependency Graph

Local dependency graph