Autonomous Vehicles Impact on Ride-hailing

a project in mobile data management

Vehicle motion-categories

Origin->destination

Stationary (Parked)

• Resource-search

Benefits of pooling ride-requests (customers) and ride-offers (vehicles)

t1 \(\frac{1}{2}\)

cus₁

Benefits of pooling ride-requests (customers) and ride-offers (vehicles)

 $t1 \quad v_1 \quad cus_1$

t2 cus_2 v_2

Each time period

Matching in a bi-partite graph

Utility metrics

- Benefit of resources to vehicles
 - Longer trip preferable to shorter one

- Benefit of vehicles to resources (customers)
 - Travel-time between from AV to resource

Each pair (v_i, s_j) has a travel-time $t(v_i, s_j)$ and a benefit $b(v_i, s_j)$

Matching in a bi-partite graph

Is the benefit an attribute of the customer or edge (between vehicle and customer)?

Is the benefit an attribute of the customer or edge (between vehicle and customer)?

- Benefit of resources to vehicles
 - Benefit of a resource may depend on vehicle
 - Distance between vehicle and customer
 - Benefit = \$/TraveledMile

Next destination (or depo) of vehicle

Possible objective functions in matching

Maximize total benefits of vehicles

Minimize total wait time of passengers

Optimum assignment: max benefit

Assign resources to vehicles such that total benefit is maximized

Max weighted bipartite matching

Minimum Total Wait time

BY: reduction to minimum cost network flow problem.

Customer wait times, 1/benefit Crowdsourced (fair) vs Autonomous Vehicles(owned)

Resource assignment: Fairness vs. optimality

Optimum

V₁->S₁ and V₂->S₂ at total-benefit 9; Total time always 15 but V₁ and S₁ can improve benefit/time

Fair

V₁->S₂ and V₂->S₁ at total-benefit 7; V₁ and V₂ cannot improve S₁ and S₂ cannot improve

Project objective

 Compare total customer wait times, customer search time, average taxi profit, for autonomous and crowdsourced vehicles

Plot as a function of assignment period

Air Pollution Personalization

Topics:

Data Fusion and Integration Mobile Data Management

Background

- World Health Organization (WHO): air pollution the world's largest environmental health risk
- China: over 1 million deaths attributable to air pollution in 2012
- India: pollution levels exceeding 20 times the maximum indicated by the WHO
- U.S.: 166 million people live in areas with unhealthy air
- Health Effects Institute: for each 10 µg·m⁻³ increase in PM₁₀
 - an approximate 1% increase in hospital admissions for cardiovascular disease
 - a 2% increase in admissions for lung diseases in vulnerable population
- each 10 μg·m⁻³ elevation in PM_{2.5} air pollution, approximately a
 - 4% increased risk of mortality
 - 6% increased risk of mortality due to cardiopulmonary disease,
 - 8% increased risk of mortality due to lung cancer

EPA Airnow stations in Chicago

Color code

PM _{2.5}	Air Quality Index	PM _{2.5} Health Effects	Precautionary Actions
0 to 12.0	Good 0 to 50	Little to no risk.	None.
12.1 to 35.4	Moderate 51 to 100	Unusually sensitive individuals may experience respiratory symptoms.	Unusually sensitive people should consider reducing prolonged or heavy exertion.
35.5 to 55.4	for Sensitive Groups 101 to 150	Increasing likelihood of respiratory symptoms in sensitive individuals, aggravation of heart or lung disease and premature mortality in persons with cardiopulmonary disease and the elderly.	People with respiratory or heart disease, the elderly and children should limit prolonged exertion.
55.5 to 150.4	Unhealthy 151 to 200	Increased aggravation of heart or lung disease and premature mortality in persons with cardiopulmonary disease and the elderly; increased respiratory effects in	People with respiratory or heart disease, the elderly and children should avoid prolonged
		general population.	exertion; everyone else should limit prolonged exertion.
150.5 to 250.4	Very Unhealthy 201 to 300		

Personalization of EPA data

- physiology (age, gender, health condition)
- activity (still, running, walking, biking etc.),
 - Its Intensity

Project Objective

- Integrate following data sources
 - ios/android activity recognition
 - Smartphone sensors (GPS, accelerometer, compass)
 - meteorological features, e.g. wind speed and direction
 - Physiology
- To <u>automatically</u>, <u>seamlessly</u> determine heart rate (tightly correlated with breathing rate)

Possible approach

- Machine learn the heart rate using examples
- Examples can be generated by people wearing a heart rate monitor.

Project result:

- Accuracy of the heart-rate prediction
- app that answers continuous query:
 - What is my current level of pollution inhalation?

Desired (but not strictly necessary) qualifications of team

Familiarity with machine learning