Course Introduction

Introduction to BI229F

Course structure

- A weekly mixture of lectures and practicals
 - Tuesday lecture
 - Thursday practical
- Extended practical sessions
 - 3-4 hours
 - prelim. dates set
- Mandatory project
 - Coding or data analysis
 - Designed with your input

Introductory course

Introduction to:

- Databases
- Tools
- Resources

Details:

- some Algorithms (eg. sequence alignment)
- some Statistical methods
- Practical skills (writing code)
 - Data mangling
 - Statistical analysis
 - Project management

Content and schedule may be adjusted as we progress Suggestions for changes are welcomed

Reference material

Good book, but not that necessary: almost everything can be found on the web

There is a book

Bioinformatics? Genomics?

What are these things and why do we care?

- Bioinformatics
 - Development of computational methods for biological data analysis
 - Computational analysis of biological data
- Genomics
 - The study of genomes
 - Structure
 - Evolution
 - ...
 - The use of genomics scale data
 - Genome wide gene expression data (transcriptomics)
 - Population genomics (eg. identification of selected loci)
 - ...

We care because data is cheap

Lots of data

Advances in technology allow us to define complete genome sequences and to measure the activities of 1000s of genes without spending large amounts of money or time

This makes genomics useful, and bioinformatics essential for almost all biological questions

How much data?

http://www.ncbi.nlm.nih.gov/

Has the answer

How much data?

http://www.ncbi.nlm.nih.gov/
Has the answer

How much data?

http://www.ncbi.nlm.nih.gov/

Has the answer

Change over time

A bit of R:

```
## prepare some publication trends data:
py.range <- 1990:2024
ncbi.url <- urlInfo()</pre>
py.counts <- cbind('year'=py.range, 'nucleotide'=NA)</pre>
for(i in 1:length(py.range)){
    tmp <- search.ncbi.py(ncbi.url, py.range[i], db='nucleotide', "")
py.counts[i,2] <- extract.count( tmp[[1]] )</pre>
urlInfo <- function(){</pre>
    list(base="https://eutils.ncbi.nlm.nih.gov/entrez/eutils/",
         search_suffix = "esearch.fcgi?",
         summary_suffix = "esummary.fcgi?",
         data_suffix = "efetch.fcgi?")
## other functions to take this list as a an argument
## terms is a character vector that will be combined
## into a single string
search.ncbi <- function(url, db="pubmed", terms, type="id", max=0){</pre>
    query=paste(url$base, url$search_suffix, "db=", db, "&", sep="")
   query=paste( query, "term=", paste(terms, collapse="+"),
                 "&rettype=", type, sep="")
    if(max \&\& max > 0)
        query = paste(query, "&retmax=", max, sep="")
    readLines(query)
search.ncbi.py <- function(url, years, db="pubmed", terms, type="id", max=0){</pre>
    terms.list <- paste( paste(terms, collapse="+"),</pre>
                          paste(years, "[pdat]", sep=""), sep="+AND+" )
    lapply(terms.list, function(x){
        search.ncbi(url, db=db, terms=x, type=type, max=max )
extract.ids <- function(lines){</pre>
    gsub("[^0-9]", "", grep("^1Id>([^0-9]+)^1Id>$", lines, value=TRUE))
extract.count <- function(lines){</pre>
   as.numeric( sub(".+?<Count>([0-9]+)</Count>.+", "\\1"
                     grep("<Count>[0-9]+</Count>", tmp[[1]], value=TRUE))[1] )
```

Course topics

Molecular Biology	Information storage (DNA), transmission (RNA), functional molecules (RNA & proteins)			
Practical bioinformatics	Resources and tools for looking at sequences and other data			
Algorithms	Sequence alignment, database search			
Computers	Hardware, operating systems, networks, applications			
Big(ish) data analysis	Visualisation and analysis of large data sets			
Statistics	Derivation of p-values and multiple testing			
Doing the above	i.e. Programming			
Genomes & Structure and other properties transcriptomes				

Course objectives (1)

- Data handling (genomics / bioinformatics data types)
 - General data formats (eg. text / binary)
 - Specific data formats (sequences, alignments, etc)
 - Import / parsing of data
- Selected bioinformatics algorithms
- Sources of information (databases)
- Data visualisation
- Data analysis (statistical tests)

Course objectives (2)

- Computational skills
 - File systems
 - General purpose programming (R!?*^%\$)
 - Data extraction and munging
 - Method implementation

Learnt from programming exercises

Course objectives (3)

- Genomes
 - Anatomy (content)
 - Genes
 - Evolution of
 - Types (nuclear, organellular)
- Transcriptomes
 - Structure of (distribution)
 - Differential expression

A practical approach

- Sequence origin?
- Functional roles?
- Orthology?
- Set properties

Analysis of sequences in R

week	month	date	day	start	end	Topic
34	8	19	Mon	12:15	14:00	Lecture: course introduction
	8	23	Fri	10:15	12:00	Lecture: Essential molecular biology
35	8	26	Mon	12:15	14:00	Lecture: Introduction to R
	8	27	Tue	14:15	16:00	Practical: R exercises
36	9	2	Mon	12:15	14:00	Lecture: Pairwise sequence alignment
	9	3	Tue	14:15	16:00	Practical: Implementing pairwise sequence alignment in R
37	9	9	Mon	12:15	14:00	Lecture: Project description
	9	10	Tue	14:15	16:00	Practical and group work: Choosing your projects
	9	13	Fri	12:15	15:00	project
38	9	17	Tue	14:15	16:00	Lecture: Multiple sequence alignment
	9	19	Thu	12:15	14:00	Practical: Doing multiple sequence alignment in R
39	9	23	Mon	12:15	14:00	Lecture: Genome structure
	9	24	Tue	14:15	16:00	Practical: Exploring genome structures in R
	9	27	Fri	12:15	15:00	project
40	9	30	Mon	12:15	14:00	Lecture: Programs and scripts
	10	1	Tue	14:15	16:00	Practical: General programming challenges in R
41	10	8	Tue	14:15	16:00	Lecture: Biological databases and online tools
	10	9	Wed	12:15	14:00	Practical: Identifying sequences
	10	11	Fri	12:15	15:00	project
42	10	14	Mon	12:15	14:00	Lecture: Random numbers to p-values
	10	15	Tue	14:15	16:00	Practical: Making statistical tests
44	10	28	Mon	12:15	14:00	Lecture: Statistics for large data sets
	10	29	Tue	14:15	16:00	Practical: Analysing large-ish data
45	11	4	Mon	12:15	14:00	Lecture: Sequencing technologies
	11	5	Tue	14:15	16:00	TBA

Some questions for you

Molecular biology questions

- What is the most common type of RNA molecule?
- How many different ways can you translate ATGGTACTATAA?
- And how about AUGGUACUAUAA?
- What is the difference between RNA and DNA?
- What is a gene?
- Name an important consequence of double-strandedness?
- How many different codons are there?
- What are histones?
- What is gene expression?

Bioinformatics experience

- What is global and local alignment?
- How many of you have used BLAST?
- What is the problem with multiple sequence alignment?
- How do we estimate gene expression from RNA sequencing data?
- Are you familiar with: fasta, fastq, sam and bam files?
- Why is the following funny?
 - There are 10 types of people in the world
 - Those who understand binary
 - And those who don't
- How many of you have written shell scripts?

Distributions

What are these?

What kind of processes give rise to them?

```
for(i in 1:10){
   cat(paste(i, i^2, sep='\t'), '\n')
f1 <- function(x){</pre>
    sum(x) / length(x)
f2 <- function(x){
   sort(x)[length(x) / 2]</pre>
```

Main questions

- Why have you selected this course?
- What do you hope to get out of it?
- Do you care about the 'Learning Outcome Description'?