Ex. 1 La grenouille

Une grenouille est cachée dans l'eau sous le centre d'un nénuphar de rayon r = 5 cm.

Quelle est la hauteur h de la grenouille si on ne peut la voir depuis l'air ?

Ex. 11 Observation d'un thermomètre à mercure

Un thermomètre à mercure est constitué d'un cylindre de verre creux contenant du mercure.

R_e et R_i sont les rayons extérieur et intérieur de ce cylindre. Un observateur O placé à la distance d de l'axe du cylindre regarde ce thermomètre. On raisonnera dans le plan qui contient O et perpendiculaire à l'axe du cylindre.

- a) Sous quel angle α_M l'observateur voit-il le thermomètre à mercure ?
- b) Sous quel angle α l'observateur voit-il la colonne de mercure ?
- c) Le mercure peut-il sembler occuper tout le diamètre du tube ?
- d) A.N. Calculer α_M et α lorsque n = 1,5;
- $R_i = 0.4 \text{ mm}$; $R_i = 3 \text{ mm}$ et d = 25 cm.
- e) Quelle doit être la valeur du rayon extérieur pour que le mercure semble occuper tout le tube ?

5.5 Incidence de Brewster (*)

Un rayon lumineux arrive à l'interface plane séparant l'air d'un milieu d'indice n. Il se scinde en un rayon réfléchi et un rayon réfracté.

- 1. Trouver l'angle d'incidence i_B , appelé angle de Brewster, pour lequel ces deux rayons sont perpendiculaires entre eux. Faire l'application numérique dans le cas de l'eau d'indice n = 1,33, puis d'un verre d'indice 1,5.
- 2. Lorsque l'angle d'incidence est i_B , la lumière réfléchie est polarisée rectilignement selon la direction perpendiculaire au plan d'incidence. Quelle application du polariseur pouvez-vous imaginer en photographie à partir de cette propriété?

Ex. 13 Étude simplifiée de l'arc-en-ciel

Soit la figure 1 qui donne la coupe d'une goutte d'eau dans un plan méridien où arrive un rayon incident monochromatique sur la goutte d'eau d'indice n = 1.33

a) Étude géométrique

- Tracer le parcours du rayon incident dans la goutte d'eau en admettant que ce rayon ne subit qu'une seule réflexion interne.
- ii) Pour le rayon sorti de la goutte, déterminer la déviation D en fonction de i₁ et n.
- iii) Montrer que la déviation D passe par extremum D_m pour une valeur i_{1m} de i_1 que l'on calculera. On rappelle que la dérivée de la fonction :

$$f(x) = \text{Arc sin } (x) \text{ est } : f'(x) = \frac{1}{\sqrt{1 - x^2}}.$$

- iv) Montrer que cet extremum est un minimum. Le modèle de l'arc-en-ciel est maintenant introduit à partir du concept de la goutte d'eau sphérique de rayon R, d'indice n, recevant des rayons lumineux provenant du soleil supposé ponctuel et à l'infini. Le rayon lumineux pénètre dans la goutte, y subit une réflexion et en ressort.
- v) Pourquoi observe-t-on un arc de cercle ? On s'aidera d'un schéma de la situation pour se rendre compte de la symétrie du phénomène.
- vi) Pourquoi l'observation du phénomène est-elle impossible à midi?
- vii) Deux observateurs distants de quelques mètres voient-ils la même image du phénomène?

b) Étude de la dispersion

Dans cette partie on travaille en lumière blanche.

- i) Quelle est l'étendue du spectre visible dans le domaine des longueurs d'onde?
- ii) Pourquoi observe-t-on des couleurs dans l'arc-enciel ?
- iii) On donne les indices de l'eau pour les radiations bleue et rouge du spectre de la lumière blanche : $n_{\rm B}=1,3371$; $n_{\rm R}=1,3311$. Calculer les angles d'incidence correspondant à la déviation minimale pour chacune de ces radiations, puis les déviations minimales correspondantes.
- iv) Quel est l'ordre des couleurs vues par l'observateur?

5.3 Détection de pluie sur un pare-brise (\star)

On modélise un pare-brise par une lame de verre à faces parallèles, d'épaisseur e=5 mm, d'indice $n_v=1,5$. Un fin pinceau lumineux issu d'un émetteur situé en E arrive de l'intérieur du verre sur le dioptre verre/air en I avec un angle d'incidence $i=60^\circ$.

- Montrer que le flux lumineux revient intégralement sur le détecteur situé en D et déterminer la distance ED.
- 2. Lorsqu'il pleut, une lame d'eau d'indice $n_e = 1,33$ et d'épaisseur e' = 1 mm se dépose sur le pare-brise. Représenter le rayon lumineux dans ce cas. À quelle distance du détecteur arrive-t-il?

Ex. 9 Profondeur apparente

On trempe un crayon dans l'eau, orthogonalement à la surface de l'eau supposée plane.

L'extrémité A₁ du crayon immergé est repérable par une petite tache de couleur. Ce point envoie de la lumière vers un observateur qui la reçoit dans la direction IO proche de la verticale.

- a) Exprimer la profondeur apparente HA₂ en fonction de n₁, n₂ et HA₁.
- b) Application : un observateur estime le fond de la rivière, situé à l'aplomb d'un pont, à 2 m sous la surface. Quelle est la profondeur réelle de la rivière ?
- c) À partir des questions précédentes, expliquer l'observation faite à la figure 5 du cours.
- d) Dans l'air, la couleur rouge de la tache correspond à une lumière de longueur d'onde λ = 633 nm.
- Quelle est la longueur d'onde λ₀ de cette lumière dans l'eau?
- 2. À quelle couleur correspondrait dans l'air la longueur d'onde précédemment calculée ?
- 3. Quelle serait la couleur de la tache si on la regardait dans l'eau en supposant que la lumière n'est pas absorbée par l'eau?

4. Comment se voir en entier dans un miroir

On considère un miroir plan de hauteur h accroché à un mur vertical. Une personne de taille t a ses yeux à une hauteur o du sol et se trouve à une distance d du miroir. On suppose que le bord supérieur du miroir est à la hauteur $\frac{t+o}{2}$, c'est-à-dire à mi-hauteur entre le sommet de la tête de la personne et de ses yeux.

- 1. a) Déterminer graphiquement la partie de son corps que la personne voit d'elle-même dans le miroir.
- **b)** Est-ce que la partie visible du corps dans le miroir dépend de la distance *d*?
- **2.** Quelle est la hauteur minimale h du miroir permettant à une personne de se voir entièrement?
- **3.** Pourquoi a-t-on accroché la bord supérieur du miroir à mi-distance entre le sommet de la tête et les yeux?