Arquitetura e Projeto de Sistemas

Objetivos da Disciplina

A disciplina de **Arquitetura e Projeto de Sistemas** tem como finalidade preparar o aluno para:

- Compreender a estrutura e funcionamento de sistemas de informação;
- Projetar soluções tecnológicas baseadas em requisitos reais;
- Aplicar modelos arquiteturais adequados a diferentes cenários;
- Desenvolver diagramas e artefatos de projeto como UML, DFDs e ERs;
- Avaliar decisões arquiteturais quanto a desempenho, segurança e escalabilidade.

Exemplos

1 - Sistema de e-commerce

- **Arquitetura**: Microsserviços com APIs REST, autenticação OAuth2, banco NoSQL (MongoDB), frontend em React.
- Projeto: Diagrama de caso de uso e de classes com entidades como Produto, Cliente, Pedido. Fluxograma de checkout com etapas de pagamento e confirmação.

2 - Sistema Acadêmico

- Arquitetura: Camadas (apresentação, lógica e dados) com MVC.
- **Projeto**: Diagrama de caso de uso, classes, sequência e componentes.

Profissão após conclusão da Disciplina

Ao concluir esta disciplina, o(a) estudante)a) estará apto(a) a exercer funções como:

Cargo	Atividades Relacionadas
Analista de Sistemas	Levantamento de requisitos, modelagem, especificação de sistemas
Arquiteto de Software Júnior	Definição de padrões, estruturas e tecnologias de sistema
Desenvolvedor de Sistemas	Implementação com base nos modelos arquiteturais e de projeto
Analista de Requisitos/Negócios	Comunicação entre áreas técnicas e de negócio, com foco em projeto

Arquitetura de Sistemas

Conceito

Arquitetura de sistemas é a **estrutura organizacional** de um sistema de informação. Ela define os componentes do sistema, suas funções, interações, interfaces, além das restrições impostas por requisitos funcionais e não funcionais.

Definições

"A arquitetura de um sistema é a organização fundamental de um sistema, incorporando seus componentes, seus relacionamentos e os princípios que orientam seu projeto e evolução." (ISO/IEC/IEEE 42010:2011)

"Arquitetura de sistemas envolve decisões estruturais e tecnológicas que definem como os componentes do sistema são organizados e como se comunicam." (SOMMERVILLE, 2019)

Objetivos

- Proporcionar visão macro do sistema;
- Apoiar decisões sobre tecnologia e infraestrutura;
- Identificar pontos de acoplamento, segurança e escalabilidade;
- Alinhar o desenvolvimento com os requisitos de negócio.

Exemplos

1 – Sistema de votação eletrônica

Componentes: urnas, banco de dados central, aplicativo de apuração, painel de resultados.

Estilo arquitetural: Cliente-servidor e Camadas.

2 – Aplicativo de Delivery

Componentes: app do usuário, app do entregador, backend, banco de dados, gateway de pagamento.

Estilo arquitetural: Microsserviços e API REST.

3 – Sistema Acadêmico Universitário

Componentes: portal web, módulos de matrícula, financeiro, biblioteca. Estilo arquitetural: Arquitetura modular com camadas.

Estilos Arquiteturais

Estilo	Características	Exemplo
Monolítico	Única aplicação	Sistema legado
Camadas	Separação lógica (UI, lógica, dados)	Sistemas web MVC
Cliente-servidor	servidor central	Aplicações desktop conectadas
Microsserviços	Componentes independentes com APIs	Netflix, Uber
Orientada a Eventos (EDA)	Comunicação por eventos assíncronos	Sistemas IoT e pagamentos

Sistema legado é um sistema de informação desenvolvido com tecnologias, arquiteturas ou linguagens antigas, que continua em uso porque ainda atende a processos críticos de negócio, apesar de ser difícil de manter ou integrar com novas tecnologias, (SOMMERVILLE, 2019)

A UI (Interface do Usuário) é a camada responsável pela interação entre o usuário e o sistema. Em uma arquitetura lógica em camadas, a UI não contém regras de negócio nem acesso a dados, apenas apresenta informações e coleta comandos do usuário.

Projeto de Sistemas

Conceito

Projeto de sistemas consiste na especificação detalhada de **como** um sistema de informação será construído, a partir de seus requisitos definidos na fase de análise de sistemas. Envolve a definição da estrutura, das tecnologias e dos componentes que permitirão a construção, integração e operação do sistema.

Definições

"Projeto de sistemas é o processo de definir a arquitetura, os componentes, as interfaces e outras características de um sistema." (PRESSMAN, 2016)

"Projeto é uma atividade de engenharia que se concentra em uma solução de software que atenda aos requisitos estabelecidos durante a análise." (SOMMERVILLE, 2019)

Objetivos

Transformar os requisitos em soluções técnicas concretas;

- Definir a estrutura lógica e física do sistema;
- Permitir que programadores implementem a solução com base nas especificações.

Componentes do projeto de sistemas

Componente	Descrição
Projeto lógico	Modelagem da lógica do sistema (como fluxogramas, DFDs, diagramas UML)
Projeto físico	Escolha de plataformas, bancos de dados, infraestrutura e tecnologias
Interfaces	Especificação das entradas, saídas e comunicação entre os módulos
Segurança	Regras de controle de acesso, criptografia, integridade
Desempenho	Especificações para garantir tempo de resposta, disponibilidade

Exemplos

- 1 Sistema de Agendamento Médico
 - Projeto lógico: diagrama de casos de uso e de classes (paciente, consulta, médico).
 - Projeto físico: uso de banco de dados MySQL, API em Node.js, frontend em React.

2 – Aplicativo de Gestão de Estoque

- Projeto lógico: diagrama de casos de uso, classes, sequência e de atividades.
- Projeto físico: arquitetura em três camadas com Java e PostgreSQL.

Conceitos Arquiteturais em Sistemas de Software

Conceitos

A arquitetura de software é o conjunto de estruturas necessárias para raciocinar sobre o sistema, que compreende elementos de software, as relações entre eles e as propriedades de ambos.

Definição

"A arquitetura de software é um conjunto de estruturas de um sistema, composta por elementos de software, as propriedades externamente visíveis desses elementos e os relacionamentos entre eles." (Bass, Clements e Kazman, 2012)

Importância da Arquitetura

- Facilita a manutenção e evolução do sistema;
- Suporta decisões de desempenho, escalabilidade, segurança e reutilização;
- Permite a comunicação entre stakeholders (desenvolvedores, arquitetos, analistas, clientes).

Estilos Arquiteturais

1. Arquitetura em Camadas (Layered)

Divide o sistema em camadas horizontais, como:

- Apresentação (UI)
- Lógica de Negócio
- Acesso a Dados

Vantagens: separação de responsabilidades, fácil manutenção.

Exemplo: sistemas Web MVC (Model-View-Controller).

2. Cliente-Servidor

Componentes divididos em cliente (requisita serviços) e servidor (responde aos serviços).

Exemplo: Aplicações web tradicionais.

Vantagens: centralização do controle, escalabilidade.

3. Microsserviços

O sistema é dividido em pequenos serviços independentes, que se comunicam por APIs.

Exemplo: Netflix, Amazon.

Vantagens: alta escalabilidade, manutenção independente de módulos.

Desvantagem: complexidade de orquestração.

4. Event-Driven Architecture (EDA)

Baseia-se em eventos para comunicação entre componentes.

Exemplo: sistemas de pagamento, sensores IoT.

Vantagens: desacoplamento, reação em tempo real.

5. Arquitetura Monolítica

Aplicação única onde todas as funcionalidades estão agrupadas.

Vantagens: simplicidade inicial.

Desvantagens: difícil manutenção e escalabilidade.

Relação com Requisitos Não Funcionais (RNF)

Requisito não funcional	Impacto na arquitetura
Escalabilidade	Microsserviços, EDA
Manutenibilidade	Camadas, Microsserviços
Desempenho	Cliente-servidor, EDA
Segurança	Camadas, autenticação em microsserviços

Exemplo

Sistema de e-commerce:

Camada de apresentação: React (Frontend)

Camada de negócio: API em Node.js

Camada de persistência: MongoDB

• Estilo: Arquitetura em camadas e microsserviços (pagamento, estoque, usuários)

Referências

ABNT. NBR ISO/IEC/IEEE 42010:2013 – **Engenharia de Software** – Arquitetura de Sistemas e Software – Documentação de Arquitetura. Rio de Janeiro: ABNT, 2013.

ABNT. NBR ISO/IEC/IEEE 12207:2017 – **Engenharia de Software** – Processos do ciclo de vida de software. Rio de Janeiro: ABNT, 2017.

BASS, Len; CLEMENTS, Paul; KAZMAN, Rick. **Software Architecture in Practice.** 3. ed. Boston: Addison-Wesley, 2012.

ISO. ISO/IEC/IEEE 42010:2011 – **Engenharia de sistemas e software** — Descrição de arquitetura. Genebra: International Organization for Standardization, 2011.

LARMAN, Craig. **Utilizando UML e Padrões:** uma introdução à análise e ao projeto orientado a objetos. 3. ed. Porto Alegre: Bookman, 2007.

NBR 6023:2018. **Informação e documentação** – Referências – Elaboração. Rio de Janeiro: ABNT, 2018.

PRESSMAN, Roger S. **Engenharia de Software:** uma abordagem profissional. 8. ed. São Paulo: McGraw-Hill, 2016.

RICHARDS, Mark; FORD, Neal. **Fundamentals of Software Architecture:** An Engineering Approach. Boston: O'Reilly Media, 2020.

SOMMERVILLE, Ian. **Engenharia de Software.** 10. ed. São Paulo: Pearson, 2019.