ЛАБОРАТОРНА РОБОТА №3

Розроблення цифрової системи керування на основі платформи Arduino

Мета роботи: ознайомитись з основами розробки цифрових систем керування на базі мікроконтролерної платформи типу Arduino та її симуляції в середовищі Wokwi. Освоїти принципи програмування мікроконтролерів, та застосовування модулів та сенсорів для створення функціональних прототипів автоматизованих систем керування з використанням Wokwi для віртуальної розробки та тестування проектів без необхідності використання фізичного обладнання.

1.1 Теоретичні відомості

1.1.1 Wokwi

Wokwi - онлайн-симулятор електроніки. Wokwi можна використовувати для симуляції Arduino, ESP32, STM32 та багатьох інших популярних плат, компонентів та сенсорів.

Рис. 1 Середовище Wokwi

Властивості Wokwi:

- Симуляція Wi-Fi можливість підключити змодельований проект до Інтернету. Також є можливість використовувати MQTT, HTTP, NTP та багато інших мережевих протоколів.
- Віртуальний логічний аналізатор. Захоплює цифрові сигнали у симуляції (наприклад, UART, I2C, SPI) та здійснює їх аналіз.
- Розширене налагодження за допомогою GDB потужний налагоджувач Arduino та Raspberry Pi Pico для досвідчених користувачів.
- Моделювання SD-карти зберігає та вивантажує файли та каталоги з коду.
- API мікросхеми надає можливість створювати власні мікросхеми та деталі та дозволяє ділітись ними зі спільнотою.
- Інтеграція коду Visual Studio можливість моделювати вбудовані проекти безпосередньо з коду VS.

Wokwi моделює широкий спектр апаратних компонентів, включаючи мікроконтролери, сенсори, дисплеї тощо. Він підтримує такі архітектури: ARM, AVR, RISC-V і Xtensa.

Таблиця 1 – Підтримувані мікроконтролери

Family	Microcontrollers
AVR	ATmega328P (Arduino Uno), ATmega2560 (Arduino Mega), ATtiny85
ESP32	Xtensa : ESP32, ESP32-S2, ESP32-S3 RISC-V : ESP32-C3, ESP32-C6, ESP32-H2, ESP32-P4*
STM32	STM32C031, STM32L031
Pi Pico	RP2040 (Raspberry Pi Pico), an dual-core ARM Cortex-M0+ microcontroller

Таблиця 2 – Підтримувані сенсори

Part	Description
HC-SR04	HC-SR04 Ultrasonic Distance Sensor
DHT22	Digital Humidity and Temperature sensor
DS1307 RTC	RTC (Real Time Clock) module with I2C interface and 56 bytes of NV SRAM
PIR Motion Sensor	Passive Infrared (PIR) motion sensor
Analog Temperature Sensor (NTC)	Analog temperature sensor: NTC (negative temperature coefficient) thermistor
DS18B20 Temperature Sensor	One-Wire digital Temperature Sensor
MPU6050	Integrated sensor with 3-axis accelerometer, 3-axis gyroscope and a temperature sensor with I2C interface
Photoresistor	Photoresistor (LDR) Sensor
HX711 Load Cell	HX711 Load Cell Amplifier with 5kg/50kg/gauge load cell

Рис. 2 Приклад симуляції проекту з Arduino

2.2 Завдання до виконання лабораторної роботи

- Ознайомитися з теоретичними відомостями.
- Перейти на офіційний сайт Wokwi (https://wokwi.com)
- Створити проект згідно з варіантом:
 - о термометр з відображенням результатів на LCD-екрані.
 - о система керування кроковим двигуном в залежності від освітлення.
 - о керування світлодіодами за допомогою сенсора руху.
- Оформити звіт до лабораторної роботи.

2.3 Контрольні запитання

- Що таке симуляція і для чого використовується Wokwi?
- Як підключити компоненти (наприклад, світлодіоди, датчики або кнопки) до Arduino у середовищі Wokwi?
- Що таке цифрові та аналогові входи/виходи на платі Arduino, і які завдання вони виконують?
- Що таке цикл **loop()** в Arduino, і яку роль він виконує в програмі?
- Які ключові моменти слід враховувати при проектуванні цифрових систем керування на базі Arduino?

2.4 Зміст звіту

- Мета лабораторної роботи.
- Теоретичні відомості.
- Знімки екрану, які відображають виконане завдання.
- Висновки до роботи.