Aditya Khanna

10 November 2019

Software Architecture – Business Blueprint (BB)

Business Blu	eprint To	opic: (Climate	Change	Data A	Aggregation	Web	Application

Table of Contents:

Part 1	2
Part 2	10
Part 3	29

Part 1: Prioritize Stakeholder Qualities/Constraints and Associated Quality Categories

Table 1. Stakeholder Qualities/Constraints – Climate Change Data Web Application Domain

Quality/Constraint	Description
Flexibility	The climate app is used by a wide variety of people with different
	goals. It is necessary for it to be flexible enough for different
	people to use. It is critical for the climate app to attract a large
	number of users because the service is free, so all funds come
	from advertising. It should include many features and
	functionalities that allow the different target markets
	(environmentalists and real-estate investors) to see environmental
	conditions and reach their end goals.
Reliability	Software reliability is the probability of failure free software
	operations for a specific time in an environment. Failures are due
	to inadequate testing, human error, and unexpected use. In the
	case of this application, reliability also refers to how reliable and
	accurate the data presented by the application is. Because of the
	potential for use in a scientific context, it is important for the data
	presented by the application to come from reliable sources. The
	information must be reliable and come from a verified source so
	that the target audiences (environmentalists and real-estate
	investors) can create safe as well as substantiated projects.
Availability	This website is used to show raw data in a more filtered way. Any
	down time of this website would not cause critical concern as this
	data is public information. In other words, availability is not one
	of the main concerns for this application. If a web page were to
	crash or become unavailable, there may be an issue with the
	server provider as this website will be hosted with a cloud
	provider.
Usability	The ease at which an individual is able to learn and use an
	application or product is known as usability. Our application will
	be structured in such a way to encourage user learning and
	ameliorate the application's usability. It will have an easily
	accessible home page that does not require the user to create
	an account or store information. It will also have an accessible list
	of tabs that enumerate the application's main functionalities (such
	as environmental information for an area and a recycling

	1 . 1 . 1 . 1
	database) and organizes each function in an efficient way.
	Although these tabs should be able to link to information and
	access all content, they should be separate entities that allow the
	user to transition between them easily and return to the home
	page if necessary.
Maintainability	It is important for the sanity of the development team to keep the
	code understandable and easy to maintain. Therefore, we will
	require our programmers to maintain high standards and use best
	coding practices. The climate app will use servers provided by a
	3rd party, like Amazon Web Services, so server maintenance will
	be an indirect concern since it is contractually placed with a third-
	party.
Scalability	Our application should be able to scale as users and data sources
	increase in size and complexity. As the number of users increase,
	our application should be able to handle increased traffic and
	latency. We should be able to ensure that the user experience is
	preserved as the number of users grow. Additionally, we should
	implement scalable modules and components in our application
	that can be restructured to be more complex as the sources that
	we draw information from increase in number. As our application
	grows over time, we hope to include more environmental
	information from a growing number of sources.
Compatibility	Compatibility is the property that the website will be available
	regardless of entry point or technology. The website will be
	accessible from any device and any browser. This will require
	more testing to ensure the website works for all browsers and
	platforms. Additionally, a mobile version of the website will need
	to be designed that could have a significantly different front-end
	compared to the main web application.
Time Delivery	The website must be deployed and live by the expected time and
	date.
Cost	As the website generates traffic, there will be a cost to maintain
	and run the website on an accessible infrastructure such as the
	Amazon Web Services (AWS) Platform. In order to address this
	constraint, advertisements will generate passive income; this
	income will then be reinvested into the website for maintenance
	and scalability.
Extensibility	This is the ability to add new features with ease. This website
Zatonoromity	should allow for new features and modules without an extensive
	amount of effort. Bad site design can ruin this feature. This
	amount of chort. Day site design can full this feature. This

requires an accessible, flexible, and effective framework for both
the back-end and front-end. This impacts the application
developers more than any other stakeholder.

Table 2. Prioritized Stakeholder Needs

Priority	Stakeholder Need/Quality	Classification	Priority Justification
1	The stakeholders of our	Reliability	Reliability is our first priority
	climate change data		because the information from
	aggregation web application		our application will be used in
	require that the		important decisions, products,
	environmental information		and studies. Since our primary
	provided is reliable and		users include
	accurate. The information		environmentalists (activists as
	that we present within the		well as scientists) and real-
	application must be accurate		estate investors (construction
	and must come from verified		companies as well as
	sources so that the decisions,		homeowners), the information
	products, and studies created		that we present within the
	by our primary stakeholders		application must be accurate
	are reliable and safe.		and come from verified
			sources. Since this data has the
			potential to be used in a
			scientific context, it is
			important that the data is
			accurate and reliable. This
			ensures that the studies
			produced from it are accurate,
			not misleading, and are safe.
			Additionally, studies pulled
			from accurate and reliable data
			only serve to encourage
			climate change activism.
			Additionally, construction
			companies that use our
			application must construct safe
			and reliable structures, which
			means that the information

			from our site must be reliable
			and verified. This ensures that
			design decisions by
			construction companies will be
			safe since they are based on
			reliable information. Finally,
			homeowners must use the
			information on this application
			in order to make informed
			purchase and relocation
			decisions. They require that the
			environmental information
			provided by our application is
			reliable so that they can live in
			safe areas and avoid
			potentially environmentally
			dangerous locations.
2	Our application should be	Scalability	Scalability is the second most
	accessible to any stakeholder		prioritized quality because the
	concerned with		goal of our application is to
	environmental conditions.		make environmental
	This means that our		information more accessible.
	application should be able to		That means that our
	scale as the data sources and		application (both front-end and
	users increase in size and		back-end) should be able to
	complexity. As the number		scale as the number of users
	of users increases, our		increases. To ensure this, we
	application should be able to		must implement scalable
	handle increased traffic yet		modules and components in
	keep latency minimized (in		our application that can be
	order to ensure that the		restructured to be more
	quality of the user experience		complex as the sources that we
	is preserved). Additionally,		draw information from
	as the number of		increase in number. This
	environmentalists and real-		means that our website will be
	estate investors that use our		able to achieve its goal of
	application increases, the		providing reliable
	quality of our application		environmental information to
	must be maintained or		its users even if the complexity
	increase. This means that as		of the accesses and accounts

	our application grows over		increases. Constructing a
	time, we should aim to		scalable application is
	include more environmental		imperative, for we will be able
	information from a growing		to achieve our goals even as
	number of sources.		we scale up.
3	Our application will be	Usability	Usability is our third priority
	structured in such a way to		because it is important to the
	encourage user learning and		vision of our application. We
	ameliorate the application's		aim to create an application
	usability. Our target		that makes environmental
	audiences (environmental		information accessible to
	activists and scientists as		everyone. By making our
	well as real-estate investors)		application functionally usable
	should be able to navigate		and increasing its accessibility,
	through our application with		we will be able to share this
	ease and be able to access all		information with anyone
	of the functionalities easily.		interested in environmental
	Our website should improve		data. This also ensures that
	their experience and allow		environmentalists and real-
	the users to efficiently access		estate investors are able to
	environmental information.		create the most effective
			studies, products, and
			decisions because they are able
			to access the information
			easily.
4	Stakeholders should be able	Compatibility	This increased compatibility
	to access our application		will increase the accessibility
	through all technological		of environmental information
	entry points. Our application		and data – which is the
	should be able to be		primary goal of our
	compatible with different		application. We aim to make
	browsers and even different		verified environmental
	devices. Compatibility is also		information and the
	similar to usability in that it		functionalities of our website
	makes our application and its		accessible to anyone interested
	environmental information		(specifically environmentalists
	more accessible.		and real-estate investors). By
	Stakeholders should be able		creating modules and
	to use our application from		components that are
	any platform and still be able		compatible with any

	to conduct their work		technological platform, we are
	efficiently.		able to encourage the
			compositions of more effective
			studies, products, and
			decisions.
5	The stakeholders of our	Flexibility	Flexibility is our fifth priority
	application require a robust	-	because our application should
	set of functionalities that are		be able to meet the needs of
	flexible. Since our target		many different users. Since the
	demographic includes both		vision of our application is to
	environmentalists as well as		make environmental data more
	real-estate investors, the		accessible, we need to create
	functionalities of our		modules and components with
	application should be		functionalities that address all
	flexible enough to include		of the issues of our different
	both of their needs. The		users. This means that we must
	functions should be able to		create flexible modules and
	provide information for		components that can be
	scientific studies, activist		accessed by users to provide
	agendas, design decisions for		different sets of information –
	construction, real-estate		which is a necessity of the
	investment, and more.		system in terms of flexibility.
6	The stakeholders of our	Time Delivery	Time delivery is our sixth
	application require the		priority because the release
	application to be released on		date of our application directly
	time so that they are able to		impacts our stakeholders. Our
	organize their activities		primary audiences
	around it. The stakeholders		(environmentalists and real-
	need to know when our		estate investors) will benefit
	application is released so that		from knowing when our
	they can plan on when to		application is released because
	start implementing the use of		they can start planning how
	our application into their		and when to iterate its
	schedule and plan how they		functionalities into their
	are going to use the		schedule. Time delivery is at a
	application's functionalities		lower priority than the other
	to ameliorate their activities.		stakeholder needs, however,
			because the developers and the
			stakeholders are able to plan

			around a modified or delayed
7	TEL (1111 C	<i>C</i> 1	deployment schedule.
7	The stakeholders of our	Cost	Cost is our seventh priority.
	application want to a		The cost of use for our website
	minimized cost of use for the		is important to users. It also
	application. The budget for		directly affects the
	the application will collected		accessibility to environmental
	from advertisement revenue.		information. The funding for
	This money will then be		the website, however, can be
	reinvested into the web		changed to a different model
	application for maintenance		and modified if we the
	and scalability.		application were to be
			sponsored or invested in. That
			is why cost, although
			important, is placed lower on
			the list of priorities.
8	The stakeholders of our	Maintainability	Maintainability is our eight
	application would want an	3	priority because of our planned
	application that is up to date		implementation for the
	and maintained. This ensures		application. Although the
	that the information that they		accuracy and currency of the
	use for scientific studies,		information in our application
	investment, construction, and		is important, this information
	important design decisions is		will be drawn from
	current and accurate.		independent third-party
			sources. The third-party
			sources that we pull
			_
			environmental data from will
			be maintained and kept up-to- date on their end. In a
			structural sense, this means
			that maintainability is ensured
			by the external sources and can
			be placed lower on our list of
			priorities.
9	Stakeholder want our	Availability	Availability is our ninth
	application to be available at		priority. Although our
	all times so that they can		application consolidates all
	structure and organize their		important environmental
	activities around it. Target		information into one easily

	audiences such as		accessible location, the
	environmentalists and real-		information itself is still
	estate investors want this		always available. That means
	application and its		that while availability s
	environmental information to		important for our application,
	by reachable and perpetually		it is prioritized lower because
	hosted.		our users are able to access this
	nosted.		information elsewhere.
10	Stakeholders want our	Extensibility	Extensibility is our last
10		Extensionity	
	application to grow and		priority. Although it is
	include more features over		important to add more features
	time. Stakeholders such as		and functionalities over time, it
	environmentalists and real-		is the last priority for our
	estate investors want our		application because of its
	application to add		structure. Since our application
	functionalities when they		pulls verified environmental
	become more pertinent over		data, our functionalities mostly
	time.		consist of comparisons and
			projections. That means that
			any new features that we add
			will be based on analyzing
			public information. This can
			be completed by other
			applications and users
			provided they have the
			required amount of time.
			Additionally, the addition of
			new features does not affect
			the client as heavily as the
			developers. Since extensibility
			for our application is primarily
			server-side rather than client-
			side, it is our last priority.
			,rr

Part 2: Derive a Business Blueprint (BB)

The following UML diagram represents the relationships between application modules enumerated within the Business Blueprint. It specifies components (as well as their respective functions and data) as well as connectors (which are I/O dependencies between components).

External Components User Map Tool Data Analysis Tool + searchLocation() + displayCurrentSoilData() + zoomln() + displayCurrentWaterData() + zoomOut() + displayCurrentAirData() + clear() + displayCurrentTemperatureData() + filterAreaBasedOnSoilData() + displayCurrentWindSpeedData() + filterAreaBasedOnWaterData() + displayCurrentHumidityData() + filterAreaBasedOnAirData() + displayCurrentPrecipitationData() + filterAreaBasedOnTemperatureData() + displaySoilDataForTimeFrame() + filterAreaBasedOnWindSpeedData() + displayWaterDataForTimeFrame() + filterAreaBasedOnHumidityData() + displayAirDataForTimeFrame() + filterAreaBasedOnPrecipitationData() + displayTemperatureDataForTimeFrame() + displayWindSpeedDataForTimeFrame() + displayHumidityDataForTimeFrame() + displayPrecipitationDataForTimeFrame() 0 0 External Data Sources Compare Data Tool Database + compareSoilData() + pullSoilData() + compareWaterData() + pullWaterData() + compareAirData() + pullAirData() + compareTemperatureData() + pullTemperatureData() + compareWindSpeedData() + pullWindSpeedData() + compareHumidityData() + pullHumidityData() + comparePrecipitationData() + pullPrecipitationData()

Figure 1. UML Diagram of Business Blueprint

Table 3. Allocation of Functions and Data to Components

Component	Functions and Data
Map Tool	Functions:
T	• searchLocation()
	• zoomIn()
	• zoomOut()
	• clear()
	filterAreaBasedOnSoilData()
	• filterAreaBasedOnWaterData()
	• filterAreaBasedOnAirData()
	• filterAreaBasedOnTemperatureData()
	• filterAreaBasedOnWindSpeedData()
	• filterAreaBasedOnHumidityData()
	• filterAreaBasedOnPrecipitationData()
	interAreabasedOni recipitationData()
	Data:
	Primary Location Data
	Filtered Area Data – Soil
	Filtered Area Data – Water
	Filtered Area Data – Air
	Filtered Area Data – Temperature
	Filtered Area Data – Wind
	Filtered Area Data – Humidity
	Filtered Area Data – Precipitation
Data Analysis Tool	Functions:
	displayCurrentSoilData()
	• displayCurrentWaterData()
	• displayCurrentAirData()
	• displayCurrentTemperatureData()
	• displayCurrentWindSpeedData()
	displayCurrentHumidityData() displayCurrentHumidityData()
	displayCurrentPrecipitationData()displaySoilDataForTimeFrame()
	displaySonDataForTimeFrame()displayWaterDataForTimeFrame()
	display Water Data of Time Traine()display Air Data For Time Frame()
	 displayTemperatureDataForTimeFrame()
	• displayWindSpeedDataForTimeFrame()
	displayHumidityDataForTimeFrame()

	• displayPrecipitationDataForTimeFrame()
	Data:
	Specified Time Frame
Compare Data Tool	Functions:
	• compareSoilData()
	• compareWaterData()
	• compareAirData()
	• compareTemperatureData()
	• compareWindSpeedData()
	• compareHumidityData()
	• comparePrecipitationData()
	Data:
	Secondary Location Data
	• Comparison Data – Soil
	Comparison Data – Water
	Comparison Data – Air
	Comparison Data – Temperature
	Comparison Data – Wind Speed
	Comparison Data – Humidity
	Comparison Data – Precipitation
Database	Functions:
	• pullSoilData()
	• pullWaterData()
	• pullAirData()
	• pullTemperatureData()
	• pullWindSpeedData()
	• pullHumidityData()
	• pullPrecipitationData()
	Data:
	Soil Data
	Water Data
	Air Data
	Temperature Data
	Wind Speed Data
	Humidity Data
	Precipitation Data

Table 4. Component-to-Component I/O Dependencies

Component	Functions and Data
From: Map Tool	pullSoilData() requires Primary Location Pata which was allocated to the Man Tool
To: Database	Data, which was allocated to the Map Tool component
	• pullWaterData() requires Primary Location
	Data, which was allocated to the Map Tool component
	• pullAirData() requires Primary Location
	Data, which was allocated to the Map Tool component
	• pullTemperatureData() requires Primary
	Location Data, which was allocated to the
	Map Tool component
	• pullWindSpeedData() requires Primary
	Location Data, which was allocated to the
	Map Tool component
	• pullHumidityData() requires Primary
	Location Data, which was allocated to the
	Map Tool component
	• pullPrecipitationData() requires Primary
	Location Data, which was allocated to the
	Map Tool component
From: Compare Data Tool	• pullSoilData() requires Secondary Location
T. D. I	Data, which was allocated to the Compare
To: Database	Data Tool component
	• pullWaterData() requires Secondary Location
	Data, which was allocated to the Compare
	Data Tool component
	• pullAirData() requires Secondary Location
	Data, which was allocated to the Compare
	Data Tool component
	• pullTemperatureData() requires Secondary
	Location Data, which was allocated to the
	Compare Data Tool component

	HILL IG ID () C I
	• pullWindSpeedData() requires Secondary
	Location Data, which was allocated to the
	Compare Data Tool component
	• pullHumidityData() requires Secondary
	Location Data, which was allocated to the
	Compare Data Tool component
	• pullPrecipitationData() requires Secondary
	Location Data, which was allocated to the
	Compare Data Tool component
From: Database	• filterAreaBasedOnSoilData() requires Soil
	Data from pullSoilData(), which was
To: Map Tool	allocated in the <i>Database</i> component
	• filterAreaBasedOnWaterData() requires
	Water Data from pullWaterData(), which
	was allocated in the <i>Database</i> component
	• filterAreaBasedOnAirData() requires Air
	Data from pullAirData(), which was
	allocated in the <i>Database</i> component
	• filterAreaBasedOnTemperatureData()
	requires Temperature Data from
	pullTemperatureData(), which was allocated
	in the <i>Database</i> component
	• filterAreaBasedOnWindSpeedData() requires
	Wind Speed Data from pullWind
	SpeedData(), which was allocated in the
	Database component
	• filterAreaBasedOnHumidityData() requires
	Humidity Data from pullHumidityData(),
	which was allocated in the <i>Database</i>
	component • Filter Anna Page of On Proprint at in Page ()
	• filterAreaBasedOnPrecipitationData()
	requires <i>Precipitation Data</i> from
	pullPrecipitationData(), which was allocated
Francis Man Taul	in the <i>Database</i> component
From: Map Tool	• displayCurrentSoilData() requires Primary
To: Data Analysis Tool	Location Data, which was allocated in the Map Tool component
10. Data i iliaiyoto 1001	 displayCurrentWaterData() requires Primary
	Location Data, which was allocated in the
	Map Tool component
<u> </u>	

	displayCurrentAirData() requires Drive are
	• displayCurrentAirData() requires Primary
	Location Data, which was allocated in the
	Map Tool component
	• displayCurrentTemperatureData() requires
	Primary Location Data, which was allocated
	in the Map Tool component
	• displayCurrentWindSpeedData() requires
	Primary Location Data, which was allocated
	in the Map Tool component
	• displayCurrentHumidityData() requires
	Primary Location Data, which was allocated
	in the Map Tool component
	• displayCurrentPrecipitationData() requires
	Primary Location Data, which was allocated
	in the Map Tool component
	• displaySoilDataForTimeFrame() requires
	Primary Location Data, which was allocated
	in the Map Tool component
	• displayWaterDataForTimeFrame() requires
	Primary Location Data, which was allocated
	in the Map Tool component
	• displayAirDataForTimeFrame() requires
	Primary Location Data, which was allocated
	in the Map Tool component
	 displayTemperatureDataForTimeFrame()
	requires Primary Location Data, which was
	allocated in the <i>Map Tool</i> component
	• displayWindSpeedDataForTimeFrame()
	requires Primary Location Data, which was
	allocated in the <i>Map Tool</i> component
	• displayHumidityDataForTimeFrame()
	requires Primary Location Data, which was
	allocated in the <i>Map Tool</i> component
	• displayPrecipitationDataForTimeFrame()
	requires <i>Primary Location Data</i> , which was
	allocated in the <i>Map Tool</i> component
From: Database	displayCurrentSoilData() requires Soil Data
	from pullSoilData(), which was allocated in
To: Data Analysis Tool	the Database component
	• displayCurrentWaterData() requires Water
	Data from pullWaterData(), which was
	allocated in the <i>Database</i> component
	• displayCurrentAirData() requires Air Data
	from <i>pullAirData()</i> , which was allocated in
	the <i>Database</i> component

displayCurrentTemperatureData() requires *Temperature Data* from pullTemperatureData(), which was allocated in the *Database* component displayCurrentWindSpeedData() requires Wind Speed Data from pullWindSpeedData(), which was allocated in the *Database* component • *displayCurrentHumidityData()* requires *Humidity Data* from *pullHumidityData()*, which was allocated in the Database component displayCurrentPrecipitationData() requires Precipitation Data from pullPrecipitationData(), which was allocated in the *Database* component • displaySoilDataForTimeFrame() requires Soil Data from pullSoilData(), which was allocated in the Database component • *displayWaterDataForTimeFrame()* requires Water Data from pullWaterData(), which was allocated in the *Database* component • displayAirDataForTimeFrame() requires Air Data from pullAirData(), which was allocated in the *Database* component displayTemperatureDataForTimeFrame() requires Temperature Data from pullTemperatureData(), which was allocated in the *Database* component displayWindSpeedDataForTimeFrame() requires Wind Speed Data from pullWindSpeedData(), which was allocated in the *Database* component displayHumidityDataForTimeFrame() requires Humidity Data from pullHumidityData(), which was allocated in the *Database* component displayPrecipitationDataForTimeFrame() requires Precipitation Data from pullPrecipitationData(), which was allocated in the *Database* component From: Map Tool compareSoilData() requires Primary Location Data, which was allocated in the To: Compare Data Tool Map Tool component

	 compareWaterData() requires Primary Location Data, which was allocated in the Map Tool component compareAirData() requires Primary Location Data, which was allocated in the Map Tool component compareTemperatureData() requires Primary Location Data, which was allocated in the Map Tool component compareWindSpeedData() requires Primary Location Data, which was allocated in the Map Tool component compareHumidityData() requires Primary Location Data, which was allocated in the Map Tool component comparePrecipitationData() requires Primary Location Data, which was allocated in the Map Tool component
Eromi Dotohoso	
From: Database To: Compare Data Tool	 compareSoilData() requires Soil Data from pullSoilData(), which was allocated in the Database component compareWaterData() requires Water Data from pullWaterData(), which was allocated in the Database component cmopareAirData() requires Air Data from pullAirData(), which was allocated in the Database component compareTemperatureData() requires Temperature Data from pullTemperatureData from pullTemperatureData(), which was allocated in the Database component compareWindSpeedData() requires Wind Speed Data from pullWindSpeedData(), which was allocated in the Database component compareHumidityData() requires Humidity Data from pullHumidityData(), which was allocated in the Database component comparePrecipitationData() requires Precipitation Data from pullPrecipitationData(), which was allocated in the Database component

Table 5. External-to-Component I/O Dependencies

Component	Functions and Data
From: User To: Map Tool	The <i>User</i> allocates the <i>Primary Location</i> Data to the Map Tool
From: User To: Compare Data Tool	The <i>User</i> allocates the <i>Secondary Location</i> Data to the Compare Data Tool
From: External Data Sources To: Database	 The External Data Sources allocate the Soil Data, Water Data, Air Data, Temperature Data, Wind Speed Data, Humidity Data, and Precipitation Data to the Database pullSoilData() acquires Soil Data from the External Data Sources pullWaterData() acquires Water Data from the External Data Sources pullAirData() acquires Air Data from the External Data Sources pullTemperatureData() acquires Temperature Data from the External Data Sources pullWindSpeedData() acquires Wind Sped Data from the External Data Sources pullHumidityData() acquires Humidity Data from the External Data Sources pullPrecipitationData() acquires Precipitation Data from the External Data Sources pullAirData() acquires Air Data from the External Data Sources pullAirData() acquires Air Data from the External Data Sources

Table 6. Derivation Plan

1	Goal: Reliability	
1.1	BB Heuristic: Isolate Risk - Data	Why: Isolating risk from data elements
		within the components of our web
		application increases reliability. We

isolate risk by maintaining pull functions in our Database component that acquire accurate data from verified third-party sources. This ensures that the data we display is always accurate. Additionally, this decreases risk, for the information is always maintained to a certain standard by a third-party source. Decreasing risk results in an increase in reliability, which ensures that our users able to produce safe and reliable studies, investments, and design decisions. Priority Justification: This is the most important heuristic for our top priority (reliability) because it isolates and decreases risk for our web application. This means that we ensure that our application is reliable (because as risks decrease, reliability increases). It is also imperative that we provide accurate and reliable environmental data, since our primary audience (environmentalists and real-estate investors) rely on such information to produce reliable and safe scientific studies, activities, construction decisions, and investments. This is the most important quality of our application, which is why this heuristic is the highest priority. 1.2 BB Heuristic: Group Based on Task Why: By grouping components based on **Similarity** similar tasks, we create a system that is

able to be modified and changed easily. This allows us to maintain a reliable web application. If any component of our web application was unreliable or inaccurate, we could swiftly and efficiently modify it. This is only possible because our system components are grouped by task similarity. Thus, this heuristic ensures reliability. Priority Justification: Although this heuristic is important for the maintenance of reliability for our system, it is not as important as reducing risks associated with data. Reducing risks ensure that our application will have an increase reliability. By reducing risks, we are able to prevent problems (which increase reliability from the beginning). On the other hand, when we group components by task, we are able to address existing problems (which increases reliability down the line). With easily accessible components that can be modified efficiently, we are able to address problems and bugs as soon as they are discovered and increase the reliability of our system. 2 **Goal: Scalability** 2.1 BB Heuristic: Group Based on Task Why: By grouping system components by Similarity task similarity, we are able to create scalable components within our system

			that are easily accessible. Additionally,
			these components are able to be
			efficiently modified due to their
			groupings – which is a direct influencer
			of scalability. By adhering to this
			heuristic, we will be able to create a
			solution with components that are
			scalable according to task similarity.
		•	Priority Justification: This is the most
			important heuristic for scalability
			because it directly influences the
			grouping and structure of our
			application's components. By organizing
			our system with components that are
			scalable according to their groupings for
			similar tasks, we are able to create a
			development environment in which
			modifying and updating components is
			efficient and accessible. This grouping is
			imperative for the composition of a
			scalable system.
2.2	BB Heuristic: Group Based on	•	Why: By grouping the components within
	Resource Demand		our system by resource demand, we are
			able to create a scalable application. By
			placing functions that have similar
			resource requirements and constraints,
			we are able to decrease coupling. This
			means that whenever we need to modify
			a component or change the source for
			these methods, we would only need to
1	1		

modify a specific component rather than the entire system. Priority Justification: This heuristic is at a lower priority than the previous heuristic (grouping components based on task similarity) because this is a subset of that for our application in the context of scalability. By grouping components based on similar tasks, we are able to ensure the composition of a scalable system that is easily accessible and able to be efficiently modified. Since the components are grouped by task, they will inherently be grouped by resource demand. 3 **Goal: Usability** 3.1 BB Heuristic: Reduce Class Why: By reducing class complexity, we Complexity – Size are able to create more simple technologies and interfaces. That means that we will be able to ameliorate the user experience by interfacing simple technologies that are easily accessible, easy to use, and easy to learn from. This is important for achieving our goal regarding usability. Priority Justification: This heuristic is the most important for this goal because it ensures that components will divided and made more simple. This ensures that our user interface and associated

		technologies are not overly complex and
		are easily understood.
4	Goal: Compatibility	
4.1	BB Heuristic: Group Based on	Why: By grouping functions according to
	Implementation Reality	the functionalities of existing
		technologies, we are able ensure that
		existing technologies will match
		component boundaries. This means that
		we are able to increase the compatibility
		within of our system if we group
		according to implementation reality.
		• Priority Justification: This is the most
		important heuristic for compatibility
		because it encourages the composition of
		our system to take existing technologies
		and requirements into account. This will
		increase the compatibility of our system
		and ensure that is able to interface with
		major technologies.
5	Goal: Flexibility	
5.1	BB Heuristic: Reduce Data/Event	Why: By reducing coupling and
	Dependency	increasing cohesion, we are able to make
		a flexible system that can adapt to
		change. We can achieve this by reducing
		data and event dependency – which
		allows our components to be independent
		of one another and be easily accessible or
		modification.
		• Priority Justification: This is the most
		important heuristic for flexibility, for a

		reduction in data and event dependency
		directly correlates with reduced coupling.
		Reduced coupling is also associated with
		increased cohesion. This means that our
		system is able to become more flexibly
		by adhering to this heuristic.
6	Goal: Time Delivery	
6.1	BB Heuristic: Specify Overlapping	Why: By specifying overlapping
	Capabilities	capabilities and shaping our system
		around this heuristic, we are able to
		ensure that our system is integrated and
		deployed in a timely manner. By using
		the inheritance concepts of this heuristic,
		we are able to reduce development time
		through abstraction and information
		sharing (that is associated with class
		relationships).
		Priority Justification: This is the most
		important heuristic for an appropriate
		time delivery, for it reduces development
		time and allows for deployment
		organization. By employing the class
		relationships, inheritance concepts, and
		information sharing of OOP, we are able
		to reduce delivery time.
7	Goal: Cost	
7.1	BB Heuristic: Specify Overlapping	• Why: We are able to reduce the cost of
	Capabilities	developing, integrating, and deploying
		our application by specifying
		overlapping capabilities. By employing
		the inheritance and class distinction
t		

concepts within OOP as stated by this heuristic, we are able to reduce the development phase and reduce the time for delivery – which ultimately reduces the cost of the project (since fewer resources are used over a shorter period of time). Priority Justification: This is the most important heuristic for reducing costs for the project because it reduces delivery time and decreases the number of resources required for development. By organizing the system to OOP concepts under this heuristic, we are able to create robust components that in a very short amount of time. This ultimately reduces costs. 8 **Goal: Maintainability** 8.1 BB Heuristic: Reduce Class Why: By reducing the weighted Complexity – Weights complexity of components and classes, we are able to construct a more maintainable system. By reducing the complexity of components and creating more easily understood classes (that are easily digestible), we are able to increase the maintainability of our system through the perspective of a developer. Priority Justification: This is the most important heuristic for maintainability, for it ensures that our system is composed of simplified components that

		ameliorate the development environment.
		By creating simplified classes and
		following OOP concepts, we are able to
		create a maintainable application that
		developers can modify and update quite
		easily.
9	Goal: Availability	
9.1	BB Heuristic: Isolate Risk -	Why: By isolating the risks associated
	Functions	with functions, we are able to create a
		system that combats change (which
		increases system availability). Isolating
		the risks of functions and placing them in
		independent components, we are able to
		create a scalable solution that can resist
		errors associated with high-volume and
		risky behaviors. This ensures that our
		application is always available.
		Priority Justification: This is the most
		important heuristic for availability, for it
		ensures that functions that contain risks
		are isolated within their own
		components. That means that if the risks
		were to ever occur, only the module with
		that component would be affected, and
		the entire system will still keep running.
		This increases the availability of our
		system.
10	Goal: Extensibility	
10.1	BB Heuristic: Group Based on Task	• Why: By grouping system components by
	Similarity	task similarity, we are able to create an
		extensible system with components that

			are easily accessible and easily
			modifiable. This means that if we ever
			needed to add a new feature to the
			application, we would only need to
			modify the component that dealt with the
			targeted tasks.
		•	Priority Justification: This is the most
			important heuristic for extensibility, for it
			allows for easy and efficient modification
			of components within the system. By
			grouping components according to task
			similarity, we are able to add features (as
			developers) more quickly and efficiently
			by modifying only the required
			components rather than the whole
			system.
10.2	BB Heuristic: Group Based on	•	Why: By grouping the components within
	Resource Demand		our system by resource demand, we are
			able to create an extensible system. That
			means that we would only need to
			modify and update components that have
			similar resource requirements when
			adding a new feature to the application.
		•	Priority Justification: This heuristic is at
			a lower priority than the previous
			heuristic, for it is a product of the
			previous heuristic's implementation. By
			creating components that are grouped by
			task similarity, we will inevitable
			organize these components by resource
			similarity and requirement similarity.

Table 7. Potential Conflicts and Impact on Derivation Plan

Potential Conflict

Possible Resolution

The heuristic in section 1.2 and 2.1 of Table 6 (Group Based on Task Similarity) has the potential to conflict with the heuristic in section 4.1 (Group Based on Implementation *Reality*) since one would influence component groupings based on similar functions and tasks while the other would influence component groupings based on existing technologies. This could increase coupling and decrease cohesion. The first heuristic would impact our system by allocating resources in independent components based on their objectives. The second, heuristic, however, could negatively impact these groupings by creating dependencies between functions that can already be interfaced with technological endpoints – which would create a messy system structure.

Since the heuristic in section 1.2 and 2.1 is used to achieve our goal of reliability (which is our highest priority goal), we should resolve this potential conflict by prioritizing it. We should create a majority of the system according to this heuristic and group components by task similarity. That means that when we bootstrap the blueprint, we implement our solution and define our components according the *Group Based on Task Similarity* heuristic. Then, afterwards, we refine and modify the system to make it more efficient with the other heuristics that are enumerated in our derivation plan for goals that have lower priorities.

The *Reduce Data/Event Dependency* heuristic in section 5.1 could possible conflict with the heuristics that isolate risks in section 1.1 and 9.1 (*Isolate Risk – Data* and *Isolate Risk – Functions*). By isolating the risks, we create dependencies between components and external sources that we rely on to minimize and handle potential risks. These dependencies are contradictory to the heuristic for *Reduce Data/Event Dependency*.

Our solution to this would be to adhere to the heuristics *Isolate Risk* – *Data* and *Isolate Risk* – *Functions* over the heuristic *Reduce* Data/Event Dependency. Since the former heuristics are used to achieve our highest priority goal (reliability), we will implement them and overlook the increase in coupling that results in creating dependencies. The benefits from minimizing and addressing risks for our application far outweigh the negative effects that arise from an increase in dependency as well as coupling. We will first prioritize the heuristic for risk reduction (*Isolate Risk* – Data and *Isolate Risk* – Functions) and then we will implement the

heuristic Reduce Data/Event Dependency for
what is left.

Bootstrap Rationale: I implemented the Usage Cases Bootstrap because I wanted to create an efficient structure for my system that grouped components according to their respective uses, their task similarities, and their resource requirements. This bootstrap was a reasonable starting point for the derivation of the Business Blueprint (BB) because it reduced the complexity of the system and allowed us to create a simple yet effective architecture that consisted of four main components and two external influencers. Finally, this bootstrap aligned with the prioritized needs of the stakeholders; the Usage Cases Bootstrap allowed us to create a system structure that grouped components with similar functions. For example, we grouped functions that acquired environmental data and had certain risks associated with them. This allowed us to adhere to the *Isolate Risk – Data* heuristic and increase the reliability of our application – which was our top priority.

Part 3: Evaluate Business Blueprint Structure

Table 8. Coupling and Cohesion Metrics

Component	Number of	Number of	Number of	Degree of
	Inputs (Data	Outputs (Data	Dependencies	Cohesion
	and Events)	and Events)	Between	
			Components	
Map Tool	7	3	3	4/11 = 0.3636
				36.36%
Data Analysis	8	0	2	0/14 = 0
Tool				0%
Compare Data	8	1	2	0/7 = 0
Tool				0%
Database	2	21	3	0/7 = 0
				0%

Note: Degree of Cohesion = (Number of Functions Without Dependencies / Total Number of Functions)

Table 9. Size and Complexity Metrics

Component	Number of Functions	Number of Data Elements	Number of Inputs and	Component Complexity
			Outputs	
Map Tool	11	8	10	29
Data Analysis Tool	14	1	8	23
Compare Data Tool	7	8	9	24
Database	7	7	23	37

Note: Component Complexity = (Number of Functions + Number of Data Elements + Number of Inputs + Number of Outputs)

Support for Applied Heuristics: The heuristic from section 3.1 of Table 6 (*Reduce Class Complexity – Size*) can be demonstrated by the size and complexity metrics from Table 9. Instead of having 1 large and complex component for the system, my architecture uses four components (the Map Tools component, the Data Analysis component, the Compare Data component, and the Database component) that are grouped by function and task similarity. By adhering to the *Reduce Class Complexity – Size* heuristic, I am able to create a simplified yet effective system that distributes the complexity of the overall system across these four components. Instead of creating a system with a complexity value of 113, I have created four components that have component complexities of 29, 23, 24, and 37. This reduces the class complexity of my system

by size and allows the application to be maintained and scaled as the number of users increases.

Thus, I have used the size and complexity metrics from Table 9 to demonstrate the heuristic from section 3.1 of Table 6 (*Reduce Class Complexity – Size*).