КОМП'ЮТЕРНИЙ ПРАКТИКУМ № 3

ПОБУДОВА ЦИКЛУ ШТУЧНОЇ ЕЛЕКТРОКАРДІОГРАМИ

Мета роботи: програмно реалізувати процедуру побудови циклу штучної електрокардіограми (ЕКГ).

Основні задачі роботи:

- 1. Освоїти технологію моделювання штучних сигналів складної форми.
- 2. Визначити значення параметрів моделі циклу штучної ЕКГ.
- 3. Програмно реалізувати модель побудови циклу штучної ЕКГ
- 4. Оцінити можливі обмеження форм реалістичного циклу штучної ЕКГ.

Теоретичні відомості

1. Модель циклу штучної ЕКГ має вигляд суми гаусівських функцій:

$$\varphi(t) = \sum_{i \in \{P,Q,R,S,ST,T\}} A_i \exp\left[-\frac{(t - \mu_i)^2}{2[b_i(t)]^2}\right]. \tag{1}$$

2. Параметри A_i та μ_i визначають значення амплітуди та моменти часу, коли i-й інформативний фрагмент, $i \in \{P,Q,R,S,ST,T\}$, приймає максимальне значення при умові $A_i > 0$ або мінімальне значення, якщо $A_i < 0$, а параметри:

$$b_i(t) = \begin{cases} b_i^{(1)} & \forall t \leq \mu_i, \\ b_i^{(2)} & \forall t > \mu_i, \end{cases}$$
 (2)

де $b_i^{(1)} \neq b_i^{(2)}$ та дозволяють моделювати несиметричні фрагменти.

Завдання до комп'ютерного практикуму

1. Для спрощення виконання поставленої задачі припустимо, що всі зубці ЕКГ симетричні за виключенням зубця T, тобто:

$$b_T^{(1)} \neq b_T^{(2)} \tag{3}.$$

2. Беручи до уваги властивості гаусівської функції будемо вважати, що моменти початку $t_i^{(1)}$ та завершення $t_i^{(2)}$ кожного i-го фрагменту, $i \in \{P,Q,R,S,ST,T\}$, пов'язані з параметрами $b_i^{(1)}$, $b_i^{(2)}$ та μ_i наступним чином:

$$t_i^{(1)} = \mu_i - 3b_i^{(1)}, \tag{4}$$

$$t_i^{(2)} = \mu_i + 3b_i^{(2)}. {5}$$

3. Для забезпечення реалістичності форми циклу штучної ЕКГ мають бути дотримані наступні обмеження:

$$0 \le t_P^{(1)} < t_P^{(2)} \le t_Q^{(1)} < t_Q^{(2)} = t_R^{(1)} < t_R^{(2)} = t_S^{(1)} < t_S^{(2)} = t_{ST}^{(1)} \le t_{ST}^{(2)} \le t_T^{(1)} < t_T^{(2)} \le t_0$$
 (6)

де t_0 — загальна тривалість циклу (мс), яка пов'язана з частотою F_H серцевих скорочень (уд/хв) наступним співвідношенням:

$$t_0 = \frac{60 \cdot 1000}{F_H}. (7)$$

- 4. Вихідними даними для реалізації програми мають бути параметри моделі (1).
- 5. Користувачем в діалоговому вікні задаються такі параметри:
 - частота серцевих скорочень F_{H} ;
 - амплітуда A_T зубця T;
 - момент часу, коли зубець зубець T прийма ϵ ектремальне значенния;
 - параметри $b_T^{(1)}$ та $b_T^{(2)}$, що визначають симетрію зубця T,

а інши параметри моделі задаються константами в тексті програми

6. Результатом роботи програми мають бути графіки циклів штучної ЕКГ, що реалізують такі варіанти форми:

Рис. 1. Нормальний цикл

Рис. 2. Негативний Т

Рис. 3. Асиметричний Т

7. Інтерфейс програми може бути подібним до наведеного:

