LABORATOR#4

EX#1 Scrieți o funcție în Python care are ca date de intrare matricea $\mathbf{L} \in \mathscr{M}_n(\mathbb{R})$ și vectorul $\mathbf{b} \in \mathbb{R}^n$ corespunzători sistemului inferior triunghiular de ecuații liniare

$$\mathbf{L}\,\mathbf{x} = \mathbf{b}\,,\tag{1}$$

iar ca dată de ieșire soluția numerică, $\mathbf{x} \in \mathbb{R}^n$, a sistemului (1), obținută prin metoda substituției ascendente.

Rulați funcția de mai sus pentru:

(a)
$$\mathbf{L} = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 4 & 0 \end{bmatrix}$$
 şi $\mathbf{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$;

(b)
$$\mathbf{L} = \begin{bmatrix} 2 & 1 & 0 \\ -1 & 4 & 0 \\ -2 & 4 & 1 \end{bmatrix}$$
 şi $\mathbf{b} = \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}$;

(c)
$$\mathbf{L} = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 4 & 0 \\ -2 & 4 & 1 \end{bmatrix}$$
 şi $\mathbf{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$;

(d)
$$\mathbf{L} = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 0 & 0 \\ -2 & 4 & 1 \end{bmatrix}$$
 şi $\mathbf{b} = \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}$;

(e)
$$\mathbf{L} = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 4 & 0 \\ -2 & 4 & 1 \end{bmatrix}$$
 şi $\mathbf{b} = \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}$.

<u>Precizări suplimentare:</u> Înainte de a aplica efectiv metoda substituției ascendente, trebuie verificate următoarele condiții necesare:

- (i) matricea L este pătratică;
- (ii) matricea L este inferior triunghiulară;
- (iii) matricea \mathbf{L} și vectorul \mathbf{b} sunt compatibili;
- (iv) matricea L este inversabilă.

EX#2 Scrieţi o funcţie în Python care are ca date de intrare matricea $\mathbf{U} \in \mathscr{M}_n(\mathbb{R})$ şi vectorul $\mathbf{b} \in \mathbb{R}^n$ corespunzători sistemului superior triunghiular de ecuații liniare

$$\mathbf{U}\,\mathbf{x} = \mathbf{b}\,,\tag{2}$$

iar ca dată de ieșire soluția numerică, $\mathbf{x} \in \mathbb{R}^n$, a sistemului (1), obținută prin metoda substituției descendente.

Rulați funcția de mai sus pentru:

(a)
$$\mathbf{U} = \begin{bmatrix} 2 & -1 & -2 \\ 0 & 4 & 4 \end{bmatrix}$$
 şi $\mathbf{b} = \begin{bmatrix} -1 \\ 8 \end{bmatrix}$;

(b)
$$\mathbf{U} = \begin{bmatrix} 2 & -1 & -2 \\ 0 & 4 & 4 \\ 1 & 0 & 1 \end{bmatrix}$$
 şi $\mathbf{b} = \begin{bmatrix} -1 \\ 8 \\ 1 \end{bmatrix}$;

(c)
$$\mathbf{U} = \begin{bmatrix} 2 & -1 & -2 \\ 0 & 4 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$
 şi $\mathbf{b} = \begin{bmatrix} -1 \\ 8 \end{bmatrix}$;

(d)
$$\mathbf{U} = \begin{bmatrix} 2 & -1 & -2 \\ 0 & 0 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$
 şi $\mathbf{b} = \begin{bmatrix} -1 \\ 8 \\ 1 \end{bmatrix}$;

(e)
$$\mathbf{U} = \begin{bmatrix} 2 & -1 & -2 \\ 0 & 4 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$
 şi $\mathbf{b} = \begin{bmatrix} -1 \\ 8 \\ 1 \end{bmatrix}$.

<u>Precizări suplimentare</u>: Înainte de a aplica efectiv metoda substituției descendente, trebuie verificate condițiile necesare corespunzătoare.

EX#3 Scrieți un program/o funcție în Python care calculează, cu acuratețe cât mai mare, $\cos(x), x \in [0, \pi]$, folosind seria

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} \, x^{2k} \,. \tag{3}$$

Testați programul pentru $x \in \left\{0, \pi/6, \pi/4, \pi/3, \pi/2, 2\pi/3, 3\pi/4, 5\pi/6, \pi\right\}$ și comparați rezultatele obținute cu funcția predefinită Python cos, listând într-un tabel valorile lui $x, \cos(x)$ calculat de programul de mai sus, respectiv dat de funcția predefinită Python cos, precum și erorile absolute și relative corespunzătoare.