Deep CNNs

Matthew Engelhard

Many slides created by Tim Dunn

Low-level structure: lines, curves

Mid-level structure: shapes

High-level structure: groups of shapes

High-level structure: groups of shapes \rightarrow objects

Deep Learning for Image Analysis

Diabetic Retinopathy Classification

Healthy Retina

Unhealthy Retina

Consider a Set of "Toy" Images, for illustration of how this structure can be extracted by an algorithm

High-Level Motifs/Structure

Hierarchical Representation of Images

Recall the Data/Images

Convolutional Filter

Convolutional Filter

Convolutional Filter

Multiple Filters, One for Each Building Block

Deep CNN Architecture

Advantage of Hierarchical Features?

- By learning and sharing statistical similarities within high-level motifs, we better leverage all training data
- If we do not use such a hierarchy, top-level motifs would be learned in isolation of each other

Convolved Image (Feature Map)

Filters Operate Over Input Volumes

Filters Operate Over Input Volumes

Filters Operate Over Input

Given Labeled Training Images, How do we <u>Learn</u> the Parameters of the CNN?

Training Set

$$p_i = \sigma(b_0 + b_1 x_{i1} + b_2 x_{i2} + \dots + b_M x_{iM})$$

Untrained Logistic Regression Model (or "Network")

Trained Model (with learned parameters)

Given Labeled Training Images, How do we <u>Learn</u> the Parameters of the CNN?

<u>Architecture (specified)</u> vs <u>Parameters (learned)</u>

Architecture:

- Number of layers
- Layer types (e.g. convolutional, pooling, fully connected)
- Number of filters in each layer
- Shape and size of filters

Use 3x3 filters In layer 1

Parameters:

- Individual Elements of each filter
- Parameters of other layers

Learn values of Each layer 1 filter

-1	1	-1
1	-1	1
-1	1	-1

Layer 2 Feature "Maps"
$$L_n = f(M_n; \psi_1, ..., \psi_K)$$

$$\psi_1 \psi_2 \psi_K$$

$$Layer 2 Feature "Maps"
$$L_n = f(I_n; \psi_1, ..., \psi_K)$$$$

Input Image I_n \rightarrow $O \leftarrow O$ $O \leftarrow O$ $O \leftarrow O$ Layer-1 Filters

Layer 3 Feature "Maps"
$$G_n = f(L_n; \omega_1, ..., \omega_K)$$

$$L_{n} = f(M_n; \psi_1, ..., \psi_K)$$

$$L_{n} = f(M_n; \psi_1, ..., \psi_K)$$

$$L_{n} = f(I_n; \phi_1, ..., \phi_K)$$

Layer 3 Feature "Maps"
$$G_n = f(L_n; \omega_1, ..., \omega_K)$$

$$C_n = f(L_n$$

Layer 3
Feature "Maps"
$$C_n = f(L_n; \omega_1, \dots, \omega_K)$$

$$U(G_n; W) = \ell_n$$

$$U(G_n; W) = \ell$$

- Assume we have labeled images $\{I_n, y_n\}_{n=1,N}$
- I_n is image $n, y_n \in \{+1, -1\}$ is associated label
- Average loss, which depends on model parameters:

$$1/N \sum_{n=1}^{N} loss(y_n, \ell_n)$$

 Find specific parameters that minimize the average loss

Summary

- Convolutional neural networks learn to recognize **high-level structure** in images by building **hierarchical representations of features**
- Features are extracted via spatial convolutions with **filters**
- Filters are learned via iterative minimization of a loss function
- Convolutional neural networks have shown capabilities beyond human performance for image analysis