



i@northeastern Seaman  $\Delta$ <u>| ri</u>S seama

Meent de -Willem ndem Jan

edu Wingate **wingated@** David



# Chaser-Runne

evasion games using agents about the plans of other ncertainty pursuitsimulations in the form of probabilistic programs to reasoning can be implemented on high-u mind We explore how theory of nested



Outer -  $(x_{\bar{1}:t-1})$ - VISIBLE  $(x_{t:T}^{R,l})$  $x_{\mathrm{J}}\})$  $\mathbf{RUNNER}(x_{1:t}^{\mathsf{C}}$  $^{\mathsf{C},l}_{\mathsf{VISIBLE}})$ RRT-PLAN $(x_t^{
m C}$  $\cdot \left(\frac{1}{L}\right)$  $\operatorname{Uniform}(\{i)$ TIME  $\exp(\alpha$  $x_{1:t}^{\mathrm{c}}, w^{\mathrm{c}}$  $\mathsf{CHASER}(x_1^\mathsf{C}$  $1 \dots$ VISIBLE ,R,l retur  $\mathfrak{A}$ 

Model Middle RUNNER $(x_{1:t-1}^{\text{C}})$   $_{\text{ART}} \sim \text{Uniform}(\{x_{\text{A}}, \dots, x_{\text{J}}\})$   $_{\text{CAL}} \sim \text{Uniform}(\{x_{\text{A}}, \dots, x_{\text{J}}\})$   $_{\text{CAL}} \sim \text{Uniform}(\{x_{\text{A}}, \dots, x_{\text{J}}\})$   $_{\text{CAL}} \sim \text{RRT-PLAN}(x_{\text{START}}^{\text{R}}, x_{\text{GOAL}}^{\text{R}})$   $_{T}, \tilde{w}^{\text{C}} \leftarrow \text{NAIVE-CHASER}(x_{t-1}^{\text{C}})$   $_{\text{CHRLR}} = \text{TIME-VISIBLE}(x_{1:T}^{\text{R}}, \{x_{\text{CL}}^{\text{R}}\})$  $T_{
m VI}^{
m R}$  $w^{\mathrm{R}} = \exp(-\frac{1}{2}x)$ query RUNN  $x_{\text{START}}^{R} \sim x_{\text{GOAL}}^{R} \sim x_{\text{GOAL}}^{R} \sim 1$   $x_{1:T}^{R} \sim 1$   $\tilde{x}_{t:T}^{C}, \tilde{w}^{C}$   $T_{\text{VISIBLE}}^{R}$   $w^{R} = \exp$ 

> Episode model

query EPISODE( $x_{\text{START}}^{\text{C}}$ ) for k in  $1 \dots K$  do

scenarios

to model quasi-realistic

ns

enable

Our probabilistic programs incorporate

view calculations and path planners,

a computationally tractable manner.

Inner  $x_{\mathtt{J}}\})$ 1'E-CHASER $(x_{t-}^{\text{C}}$ ' Uniform $(\{x_{\text{A}},$ NAIVEquery NA  $\tilde{x}_{\text{GOAL}}^{\text{C}}$  $x_{t:T}$ 



and the Oľ behavior runner model to chaser-runner the rates detection C's Infer | Starting | C's Plan t Infer R infer R' C's C's

Next

R's Infer

(p)

# ditioning

Budget

Sample

0

Chaser

10

Fractional

and

weights, log

g mean  $\log \bar{Z}$ , and  $\bar{Z}$ 

as a function of time for

sample budget.

each

7

 $\mathcal{C}_{\mathbf{I}}$ 

0



outermost model show posterior ngle a sir experime and 128, 16 for We innermost, middlemost, agent. goal locations in this circled in red are the starting locations for each L runner and naive chaser paths, when (K,L) = and in the start runner trajectories the condition We sample Chase where locations distributions of resampled Figure

# $ar{Z}$ gol the middle nd $\log \bar{Z}^{\rm C}$ the outermost model, (right) and L and log The fractional varying K $\sum_{k=1}^K \sum_{l=1}^L$ $ar{Z}^{ m R}$ for most model (left), $\log$ $\mathbf{Row}\log$ **Bottom Row** each for $ar{Z}_t^{ m R}$ ESS ESS Top







10

Log Weights

0

10

three

in

detection rates

models

**Smart Chaser** 

51

20

detection

compare

full chaser

the

rates in

0.36

(18/50)

Runner

Smarter

Naive

nodel to

runnerm

Figure 4 Box plots showing quantiles

with respect to restarts for log mean

and L

for varying K

show higher median log weights



10

Log Weights

0

10

evades

deeply, he

more

when the runner reasons

scenarios illustrate that

These

ion

20

samples.

draw less

We

robust when



**\*\*\*\*** 

10

Log Weights

0

he intercepts

deeply,

fectively.

eff

more

**Smartest Chaser** 

chaser reasons more

conversly when the

effectively

more

(28/50)

(q)

10

20

show

Futhermore, we

unified

single,

that a

algorithm

inference

10

Log Weights

10

variety

0

20

10

chaser.

both the

rational

intuitive,

Log Weights

0

20







nested Bayesian reasoning leads non-nested models, and nested reasoning results in of mind variance estimate to rational behaviors, utility. expected

5





\_\_\_\_\_\_

variety of complex primitives such as field-of

 $,w_T^K)$  $(\sum_k w_t^k)$ ,  $\frac{1}{K} \sum_k w_t^k$ ,  $(x_{1:T}^{\text{C},K}, w_T^K)$  $\mathsf{ASER}(x_{1:t-}^{\mathtt{C},k}$ Categorical  $x_{1:t}^{\mathrm{C},a}$ q0  $,w_t^k$ 

q0

for k in 1

 $x_{ ext{START}}^{ ext{C}}$  ... T do

t in 2.

for

# a S S 0 Plannin

 $_1)\,p(x_{1:T}^{\scriptscriptstyle \mathrm{C}})$  $(1) p( ilde{x}_{t:T}^{\scriptscriptstyle ext{C}}|x_{t}^{\scriptscriptstyle ext{C}})$  $\exp(R(x))p(x)$  $\mathbb{E}[\exp(R(x))]$  $\lambda(x)$ )]  $p(x_{t:T}^{\scriptscriptstyle \mathrm{C}}|x_{t}^{\scriptscriptstyle \mathrm{C}}$  $\pi(x)$  $\mid x_{t}^{ ext{R}}$ (x) $,x_{1}^{\mathrm{R}}$  $\exp[lpha(T_{
m \scriptscriptstyle VIS}^{
m \scriptscriptstyle C}]$  $\gamma_t(x_{t:T}^{\scriptscriptstyle \mathrm{C}}, \tilde{x}_{t:T}^{\scriptscriptstyle \mathrm{C}})$ 

 $R(x_{1:T}^{\scriptscriptstyle \mathrm{C},k},x_{1:T}^{\scriptscriptstyle \mathrm{R},k,l})$ exp Sampling Nested Importance