DM6

Copie acceptée jusqu'au mercredi 17 Novembre

A faire avant le vendredi 19 novembre

Exercice 1. Soit $\lambda \in \mathbb{R}$. On considère le système suivant

$$(S_{\lambda}) \quad \left\{ \begin{array}{rcl} 2x + 2y & = & \lambda x \\ x + 3y & = & \lambda y \end{array} \right.$$

- 1. Déterminer Σ l'ensemble des réels λ pour lequel ce système n'est pas de Cramer.
- 2. Pour $\lambda \in \Sigma$, résoudre S_{λ}
- 3. Quelle est la solution si $\lambda \notin \Sigma$.

Exercice 2. Résoudre le système suivant où x, y, z sont des réels positifs (on pourra utiliser une fonction qui transforme les \times en +....):

$$\begin{cases} x^2y^2z^6 &= 1\\ x^4y^5z^{13} &= 2\\ x^2yz^7 &= 3 \end{cases}$$

Exercice 3. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles définies par

$$\left\{ \begin{array}{rrr} u_0 &= 0 \\ \forall n \geq 0, \ u_{n+1} &= 2u_n + v_n \end{array} \right. \quad \left\{ \begin{array}{rrr} v_0 &= 1 \\ \forall n \geq 0, \ v_{n+1} &= u_n + v_n \end{array} \right.$$

- 1. Ecrire une fonction Python qui prend en argument n et retourne la valeur de u_n et v_n .
- 2. Montrer que pour tout $n \in \mathbb{N}$:

$$u_{n+2} = 3u_{n+1} - u_n$$

3. En déduire la valeur de u_n en fonction de $n \in \mathbb{N}$. (Il va y avoir des $\frac{3\pm\sqrt{5}}{2}$ qui trainent mais c'est faisable)