MP*: Compacoté, Connexité et EVN

Coralie RENAULT

22 février 2015

Exercice

Montrer que toute partie fermée d'une partie compacte est elle-même compacte.

Exercice

Soit E un espace normé et f une application vérifiant

$$\forall x, y \in E, ||f(x) - f(y)|| = ||x - y||$$

Soit K une partie compacte de E telle que $f(K) \subset K$.

a) Pour $x \in K$ on considère la suite récurrente (x_n) donnée par

$$x_0 = x \text{ et } \forall n \in \mathbb{N}, x_{n+1} = f(x_n)$$

Montrer que x est valeur d'adhérence de la suite (x_n) .

b) En déduire que f(K) = K.

Exercice

Soit $f:[0,1]\mapsto [0,1]$ continue, $(u_n)_{n\in\mathbb{N}}\in [0,1]^{\mathbb{N}}$ tel que $f(u_n)=u_{n+1}$. Montrer l'équivalence :

$$(u_n)_{n\in\mathbb{N}}$$
 converge $\Leftrightarrow \lim_{n\to+\infty} (u_{n+1}-u_n)=0$

Exercice

Soit E un evn de dimension $n \ge 1$ et A une partie compacte de E. On pose $L_A = \{f \in \mathcal{L}(E), f(A) \subset A\}$.

- Montrer que si A contient une boule ouverte alors L_A est une partie compacte de $\mathcal{L}(E)$.
- Caractériser les parties compactes de A telles que L_A soit une partie compacte de $\mathcal{L}(E)$.

Exercice

Soit E un espace vectoriel normé réel de dimension $n \ge 2$.

- a) Soit H un hyperplan de E. L'ensemble $E \setminus H$ est-il connexe par arcs?
- b) Soit F un sous-espace vectoriel de dimension $p \leq n-2$. L'ensemble $E \setminus F$ est-il connexe par arcs?

Exercice

Le sous-ensemble de $\mathcal{M}_n(\mathbb{R})$ formé des matrices diagonalisables est-il connexe par arcs?

Exercice

Exercice

Soit I un segment de \mathbb{R} et $f: I \to I$ une application continue. Si $x \in I$ vérifie $f^n(x) = x$ et $f^k(x) \neq x$ pour $k \in \{1, ..., n-1\}$, on dit que x est un point n-périodique.

Notation : Si I_1 et I_2 sont deux segments tels que $I_2 \subset f(I_1)$, on note $I_1 \to I_2$.

Exercice (Théorème de Sarkowski)

Soit I un segment de \mathbb{R} et $f:I\to I$ une application continue. Si il existe un point 3-périodique pour f, alors il existe un point n-périodique pour f pour tout $n\in\mathbb{N}^*$.

Commencer par montrer que : Si K est un segment inclus dans f(I), alors il existe un segment L inclus dans I tel que K = f(L). Puis : Supposons qu'il existe n segments $I_0, ..., I_{n-1}$ tels que l'on ait le cycle

$$I_0 \rightarrow I_1 \rightarrow \dots \rightarrow I_{n-1} \rightarrow I_0$$

Alors, f^n admet un point fixe $x_0 \in I_0$ tel que, pour tout $k \in \{0, ..., n-1\}, f^k(x_0) \in I_k$.

Exercice

a) Chercher les fonctions $f:[0,1]\to [0,1]$ continues vérifiant

$$f \circ f = f$$

b) Même question avec les fonctions dérivables.

Exercice

Soient E un \mathbb{R} -espace vectoriel de dimension finie, u dans $\mathcal{L}(E)$ et C un compact convexe non vide de E stable par u.

Si $n \in \mathbb{N}^*$, soit

$$u_n = \frac{1}{n} \sum_{i=0}^{n-1} u^i$$

a) Montrer que :

$$\forall n \in \mathbb{N}, u_n(C) \subset C$$

b) Soit $x \in u_n(C)$. Proposer un majorant de N(x - u(x))

c) Montrer que

$$\bigcap_{n\in\mathbb{N}^*} u_n(C) \neq \emptyset$$

d) Montrer que u possède un point fixe dans K.

Exercice

Soient f une fonction de \mathbb{R} dans \mathbb{R} et

$$\Gamma_f = \{(x, f(x))/x \in \mathbb{R}\}$$

son graphe.

- a) On suppose f continue. Montrer que Γ_f est fermé.
- b) On suppose f bornée et Γ_f est fermé dans \mathbb{R}^2 . Montrer que f est continue.
- c) Le résultat précédent subsiste-t-il si l'on ne suppose plus f bornée?

Exercice

Soit Γ le sous ensemble de \mathbb{R}^2 défini par :

$$\Gamma = \left[\bigcup_{x \in \mathbb{Q}} (\{x\} \times \mathbb{R}^+) \right] \cup \left[\bigcup_{x \in \mathbb{R} \setminus \mathbb{Q}} (\{x\} \times \mathbb{R}_-^*) \right]$$

 Γ est-il connexe par arc?