

Arbres binaires de recherche AVL / Équilibrage des arbres / Arbres rouges et noirs

2) Arbres AVL

Un arbre binaire de recherche est un **arbre AVL** si pour chaque nœud, la différence de hauteur de chacun de ses fils n'excède pas 1

An algorithm for the organisation of information, G. Adelson-Velsky and E. Landis, 1962

2

Exemple: un arbre AVL

1

3

Arbres AVL

- Nécessité d'équilibrer l'arbre en permanence
- Ex : arbre créé avec les valeurs suivantes :
 - 13, 83, 53, 73 et 63

Construction classique

5

Équilibrage des arbres

- Est effectué par rotations
- Deux types de rotations

Problème

 Les **rotations** ne préservent pas la propriété AVL

Solution: double rotation!

Ex:

- 1. Rotation gauche du SA gauche
- 2. Rotation droite de l'arbre

Construction avec équilibrage

9

Rééquilibrage arbre AVL

- o après une insertion
 - Une rotation ou double rotation suffit.
- o après une suppression
 - jusqu'à h rotations ou double rotations
 - h est la hauteur de l'arbre

10

Rééquilibrage – Algorithme 1/1

- o Soit A un arbre, G et D ses sous arbres gauche et droit tel que
 - |h(G) h(D)| = 2
- \circ Si h(G) h(D) = 2
 - rotation droite de A

Rééquilibrage – Algorithme 2/2

- o g et d : les sous-arbres gauche et droit de G.
- o Si h(g) < h(d)</p>
 - rotation gauche de G.
 - Rotation droite de A
- \circ Si h(G) h(D) = -2
 - opérations symétriques.

Suppression / variation de la hauteur

○ Variation = -1 ssi équilibre = 0 après retrait

13

Suppression d'un nœud – algo 2/3

Suppression d'un nœud – algo 1/3

Suppression d'un nœud – algo 3/3

```
(arbre,int) OTERMIN(arbre A) {
      si (A->fg == NULL) {
                                  /* free */
             min = A->val;
             return (A->fd,-1);
      } sinon
             (A->fg,h) = OTERMIN(A->fg); h = -h;
      si (h == 0)
             return (A,0);
      sinon {
             A->bal = A->bal + h;
             A = EQUILIBRER(A);
             si (A->bal == 0) return (A,-1);
             sinon return (A,0);
                                                   16
      }
```


Remarque

- ENLEVER et OTERMIN peuvent exécuter une rotation sur chaque ancêtre du nœud supprimé
 - Maximum h rotations

Question

- Pourrait-on s'affranchir des multiples rotations à effectuer après suppression dans un arbre AVL ?
- > Arbres rouges et noirs

17

Arbre rouge et noir / ARN

- o C'est un arbre binaire de recherche
- o Chaque nœud est soit rouge, soit noir
- o Avec les règles suivantes:
 - les nœuds externes (= pointeurs NULL des feuilles) sont noirs
 - 2. les fils d'un nœud rouge sont noirs
 - 3. Le nombre de nœuds noirs traversés par un chemin allant de la racine à une feuille est indépendant de ce chemin.
 - Autrement dit : pour tout nœud de l'arbre, les chemins de ce nœud vers les feuilles possèdent le même nombre de nœuds noirs.

Arbre rouge et noir - exemple 27 33 33 33 33 33 Nœuds externes : soit NULL, ou alors nœud sans valeur

19

Arbre rouge et noir – contre exemple

Arbre rouge

Arbre rouge et noir - règles

- o Règle 1: justification technique
- Règle 2 : les nœuds rouges seront peu nombreux
- Règle 3 : si on enlève les nœuds rouges, on obtient un arbre binaire de recherche parfaitement équilibré

22

21

Hauteur et hauteur noire

- On appelle hauteur noire hn(a) d'un arbre a le nombre de nœuds internes noirs le long d'une branche de la racine de a à une feuille
- o **a** possède au moins **2**^{hn(a)}-**1** nœuds internes
 - Si hn(a) == 0 alors a est une feuille
 - Si hn(a) > 0, alors la hn de ses fils vaut :
 - o hn(a) si le fils est rouge
 - o hn(a)-1 si le fils est noir
 - Donc : a contient au moins $2(2^{hn(a)-1}-1)+1 = 2^{hn(a)}-1$ nœuds internes

Hauteur noire et nœuds internes

- Soit h la hauteur d'un ARN a, la moitié des nœuds sur le chemin vers une feuille sont noirs.
- o Donc hn(a) vaut au moins h/2
- o Donc
 - $n >= 2^{hn(a)}-1$
 - $\log_2(n+1) >= hn(a) >= h/2$
 - $h \le 2.\log_2(n+1)$

ARN - Insertion

- o Étape 1 : insertion classique dans un ABR
 - Le nouveau nœud est rouge -> règle 3 vérifiée
- o Étape 2 : règle 2 peut ne plus être vérifiée
 - Si le père du nouveau nœud est rouge
 - -> faire des rotations
 - 3 cas possibles :
 - o le père est la racine
 - o le frère du père est rouge
 - o le frère du père est noir

ARN - insertion - cas 1

o Cas 1 : le père est la racine

La père devient noir

• Seul cas où la hauteur noire augmente

o pour tous les chemins!

26

ARN - insertion - cas 2

- o Cas 2 : le frère **f** du père **p** est rouge
 - Le père et son frère deviennent noir
 - Le grand père gp devient rouge

o gp et son père peuvent être rouges

ARN - insertion - cas 3

- o Cas 3 : le frère **f** du père **p** est noir
 - Cas 3a : **n** est le fils gauche
 - o rotation droite de **gp**, **gp** devient rouge
 - o **p** devient noir

o Symétrie si p est le fils droit

28

ARN – insertion – cas 3

o Cas 3 : le frère **f** du père **p** est noir

• Cas 3a : n est le fils gauche

• Cas 3b : **n** est le fils droit

 \circ double rotation gauche droite de ${m p}$

ogp devient rouge, n devient noir

29

ARN – insertion - recap

- o Cas 1 : le père est la racine
 - le père devient noir
- o Cas 2 : le frère **f** du père **p** est rouge
 - le père et son frère deviennent noir
 - le grand père **gp** devient rouge
- o Cas 3 : le frère **f** du père **p** est noir
 - Cas 3a : **n** est le fils gauche
 - o rotation droite de gp, gp devient rouge
 - o **p** devient noir
 - Cas 3b : n est le fils droit
 - o double rotation gauche droite de ${\it p}$
 - o gp devient rouge, n devient noir

30

ARN – insertion - exemple

 Créer un arbre avec les nœuds suivants : A L G O R I T H M F

ARN - suppression

- o Idem arbre binaire de recherche
 - Si le nœud possède 0 ou 1 fils
 - o Ce nœud est supprimé
 - o Son éventuel fils le remplace
 - Si le nœud a 2 fils
 - Le nœud prend la valeur strictement supérieure, c'est le nœud correspondant qui est supprimé
 - Si le nœud supprimé est rouge, les règles sont vérifiées
 - Si le nœud supprimé est noir, la hauteur noire est modifiée
 - Il faut faire les modifications nécessaires

- o On considère que le nœud **s** à supprimer porte une couleur noire supplémentaire
 - S'il est rouge, il devient noir
 - S'il est noir, il devient doublement noir
 - > Il faut supprimer le nœud doublement noir
- Plusieurs cas
 - Cas 1 : **s** est la racine de l'arbre
 - Cas 2 : le frère f de s est noir
 - Cas 3 : le frère **f** de **s** est rouge

ARN - suppression

- o Cas 1 : s est la racine de l'arbre
 - **s** devient simplement noir
 - Toutes les contraintes sont alors respectées

33

35

ARN - suppression

- o Cas 2 : le frère **f** de **s** est noir
 - Cas 2a : les fils de f sont noirs
 - o **s** devient simplement noir, **f** devient rouge
 - p devient noir s'il était rouge, doublement noir s'il était noir

• Symétrie si **s** est le fils droit de **p**

ARN - suppression

- o Cas 2 : le frère **f** de **s** est noir
 - Cas 2b : le fils droit **d** de **f** est rouge
 - o rotation gauche sur **p**
 - o **f** prend la couleur de **p**
 - o s, p et d deviennent noirs

Symétrie si s est le fils droit de p

ARN - suppression

- o Cas 2 : le frère **f** de **s** est noir
 - Cas 2c : le fils droit **d** de **f** est noir, **q** est rouge
 - o rotation droite sur **f**, et **f** devient rouge
 - o On se retrouve dans le cas précédent

• Symétrie si s est le fils droit de p

ARN - suppression

- o Cas 3 : le frère **f** de **s** est rouge
 - rotation gauche sur p
 - **p** devient rouge, **f** devient noir
 - on revient au cas 2

o Symétrie si **s** est le fils droit de **p**

ARN – suppression - recap

- o Cas 1 : **s** est la racine de l'arbre
 - **s** devient simplement noir
- o Cas 2 : le frère **f** de **s** est noir
 - Cas 2a : les fils de f sont noirs
 - o s devient noir, f devient rouge
 - o p devient noir si rouge, doublement noir si noir
 - Cas 2b : le fils droit d de f est rouge
 - rotation gauche sur p
 - o f prend la couleur de p, s, p et d deviennent noirs
 - Cas 2c : le fils droit **d** de **f** est noir, **g** est rouge
 - o rotation droite sur f. et f devient rouge
 - o on se retrouve dans le cas précédent (2b)
- o Cas 3 : le frère f de s est rouge
 - rotation gauche sur p
 - **p** devient rouge, **f** devient noir
 - on revient au cas 2

ARN – suppression

- Approche «bottom-up»
 - On fait remonter le problème vers la racine jusqu'à résolution
- On peut montrer que la suppression peut se faire en maximum:
 - 1 rotation
 - 2 changements de couleur

ARN – suppression - exercice

Soir l'ARN suivant :

o Supprimer A L G O R I T H M E

41

Aujourd'hui : exercices

- o AVL d'entiers
- Mise en œuvre par pointeurs
- 1. Rotation droite
- 2. Rotation gauche
- 3. Equilibrage
- 4. Insertion
- 5. Bonus: suppression

42

Algorithme	Test	h	τ_0 (s)	τ_1 (s)	τ_2 (s)	τ_3 (s)
Naïf	1	41	19,73	0,08	0,04	0,04
AVL	1	18	19,71	0,08	0,05	0,08
Rouge-Noir	1	19	20,09	0,08	0,05	0,06
Naïf	2	45	47,02	0,20	0,13	0,07
AVL	2	19	46,03	0,20	0.14	0.17
Rouge-Noir	2	20	47,05	0.20	0.14	0.13
Naïf	3	42	109,81	0,44	0,36	0,15
AVL	3	20	107,30	0.47	0.26	0,38
Rouge-Noir	3	21	108,79	0,49	0,33	0,27

Test 1: $m=1\,000\,000$, $n=64\,000$ et $p=4\,000$ Test 2: $m=2\,000\,000$, $n=128\,000$ et $p=8\,000$ Test 3: $m=4\,000\,000$, $n=256\,000$ et $p=16\,000$

n : nombre de nœuds de l'arbre

h : hauteur de l'arbre

 au_0 : insertion/recherche de m clés aléatoires

 au_1 : suppression de p clés aléatoires

 au_2 : insertion de p clés aléatoires

 au_3 : suppression des n clés dans l'ordre croissant

Dans un des cas les pires

Algorithme	Test	h	$\frac{h}{\log_2 n}$	$ au_0$ (s)	$\frac{ au_0}{n\log_2 n}$ (μ s)
Naïf	1	31 999	2 138	614	1 383
AVL	1	14	0,9	0,06	0,13
AVL	2	18	0.9	1,31	0.14
AVL	3	20	1,0	5,51	0,14
Rouge-Noir	1	26	1.7	0.08	0.17
Rouge-Noir	2	34	1,8	1,79	0.19
Rouge-Noir	3	38	1,8	9,76	0,24

Test 1: n = 32000Test 2: n = 512000Test 3: n = 2000000

n : nombre de nœuds de l'arbre

h: hauteur de l'arbre

 au_0 : insertion des n clés dans l'ordre croissant

43