'Bad' Infrastructure

Which would result in:

Building Web Apps on Google's Infrastrucutre

Presented by

Eric Jiang

This presentation's code/slides can be found on https://github.com/lorderikir/googlecloud-techtalk

Talk Summary

- 1. Introduction to Google Cloud
- 2. What is Google App Engine
 - a. GAE Environments
 - b. What is Scaling and Why is it Important?
- 3. Deep-Dive
 - a. Setting up Google SDK tools
- 4. Other Tools

[NOTE]: You can play with Google Cloud Platform off your student accounts

Introduction

What is Google Cloud Platform?

Google Cloud Platform lets you build and host applications and websites, store data, and analyze data on Google's scalable infrastructure.

Composes of many applications, such as:

- Google App Engine (GAE)
- Google Container Engine (GCE)
- Google DataStore
- Cloud ML (built off TensorFlow)
- and much more

Did you know that Firebase and API.AI are both on GCP

Compute

App Engine

Compute Engine

Container Engine

Storage

Cloud Storage

Cloud Datastore

Cloud SQL

Cloud Bigtable

Big Data

BigQuery

Cloud Dataflow

Cloud Dataproc

Cloud Pub/Sub

Services

Cloud Endpoints

Translate API

Prediction API

Google App Engine

- designed around the fact that Google just can't send everyone into their datacentre(s) and update applications across their many datacenters
- Built off Remote Deployments

Language	Environment
Java 7 (Kotlin)	Standard
Java 8	Standard (Beta)/Flexible
Node.js	Flexible
Python 2.7	Standard
Python 3.5	Flexible

Standard Environments run in a specialised envrionment. Though building the application is more constrained then other environments, it means scaling up is faster.

Flexible Environment applications run off a Docker container, it is designed for applications that recieve constant traffic. They run off Google Compute Engine (or Google VMs)

Horizontal vs Veritcal Scaling

Me when I look at Scaling:

Benefits of Horizontal Scaling

- Dynamic scaling allows spinning up more instances and nodes faster, i.e. if you suddenly get a influx of traffic
- Vertical Scaling is limited to capacity of resources, simply adding more resources
- Good examples include Niantic (PokemonGo) and Australian Census 2016

Demo Section

Installing the SDK

- 1. Install the SDK over https://cloud.google.com/sdk/downloads
- 2. Authenticate Using gcloud init (login using your Monash Student Account)
- 3. You may need Java (JDK 1.8) and Maven (MVN) Installed if you are using the package provided.

If you are interested in developing on the framework provided I strongly suggest for you to read the docs.

Framework: https://github.com/MonashUnitPlanner/springbootbase-gae-java8

Deploying the App

Other Available Tools

- Cloud ML (Google Cloud Machine Learning): built off TensorFlow
- Compute Engine
- Container Engine
- Cloud Storage
- Network Balancer
- Cloud APIs such as NLP, Sentiment Analysis, DLP, etc.
- and Much more

Questions