Deterministic Optimization

Outcomes of Optimization

Shabbir Ahmed

Anderson-Interface Chair and Professor School of Industrial and Systems Engineering

Existence of Optimal Solutions

Existence of optimal solutions

Learning objective:

 Identify a sufficient condition for the existence of optimal solutions

Possible outcomes of optimization

$$(P): \begin{array}{cc} \min & f(\mathbf{x}) \\ \text{s.t.} & \mathbf{x} \in X \end{array}$$

- 1. Infeasible: $X = \emptyset$
- 2. Unbounded: $f(\mathbf{x}^i) \to -\infty$ for some $\{\mathbf{x}^i\} \in X$
- 3. Optimal solution exists: There is $\mathbf{x}^* \in X$ such that $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in X$
- 4. None of the above

No optimal solution

No Optimal solution

min x

s.t. $1 < x \le 3$

No Optimal solution

$$f(x) = \begin{cases} 2 - x & \text{if } x < 2\\ x - 1 & \text{if } x \ge 2 \end{cases}$$

$$min f(x)$$

s.t.
$$1 \le x \le 3$$

Weierstrass's Theorem

$$(P): \quad \min_{\mathbf{s.t.}} f(\mathbf{x})$$

If f is a continuous function and X is a nonempty, closed and bounded set, then (P) has an optimal solution, i.e. there exists $x^* \in X$ such that $f(x^*) \leq f(x)$ for all $x \in X$

Remarks

- \bullet X is not empty, thus (P) cannot be infeasible
- \bullet X is bounded, this (P) cannot be unbounded
- Then continuity and closedness guarantees an optimal solution exists

Sufficient but not necessary

Summary

- If the objective function is continuous, and the feasible region is nonempty, closed and bounded, then the problem must have an optimal solution
- When modeling use continuous objective functions and closed sets