### Next Senate Elections Predictions in GA





# Next Senate Elections Predictions in OH Next Election Pred Votes Last Elecction Votes Predict SENATE DEMOCRAT will win in OH State Last Election Next Election Pred 4410898 OH 4480159



# Next Senate Elections Predictions in PA Next Election Pred Votes Last Elecction Votes Predict SENATE REPUBLICAN will win in PA State Last Election Next Election Pred 4994643 PA 5035268

### Next Senate Elections Predictions in AZ



## Next Senate Elections Predictions in CA **Next Election Pred Votes** Last Elecction Votes





#### Predict Top Ten VEP Turnout By State NM Actual Prediction IN UT NV AR TX TN OK WV HI 0.50% 1.00% 1.50% 2.00% 3.00% 0.00% 2.50%

**VEP Turnout Rate** 





Georgia vs South Carolina & Florida' ' 2020 swing states total\_votes





#### House winner vs. Senate winner Spending 2020 2018 2016 2014 2012 2008 J 2006 2004 2002 House winner spending 2000 Senate winner spending 1998 0.0 0.5 1.0 2.0 2.5 Spending 1e7

#### Democrats vs. Republican Spending 2020 2018 2016 2014 2012 2010 × 2008 2010 2006 2004 2002 **Democrats** 2000 Republicans 1998 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Spending 1e10



















#### y = df['totalvotes'].values

```
Output Shape
Laver (type)
______
        (None, 5344)
dense 1 (Dense)
       (None, 1)
_____
Total params: 14,289,857
                  Training the model with 1 hidden layer
Trainable params: 14,289,857
                     Total Time: 15 mins
Non-trainable params: 0
Train on 2721 samples
Fnoch 1/100
Epoch 2/100
Epoch 3/100
Enoch 4/100
Epoch 5/100
Fpoch 95/100
Epoch 96/100
Epoch 97/100
Epoch 98/100
Fnoch 99/100
Fnoch 100/100
r2 score of v train: 0.1872076104671837
r2 score of v test: 0.18492524187504644
neural network model with 1 hidden layer is done!
```

#### y = df['totalvotes'].values

| Layer (type)                                                                  | Output Shape              | Param #                |                                                             |  |
|-------------------------------------------------------------------------------|---------------------------|------------------------|-------------------------------------------------------------|--|
| dense_2 (Dense)                                                               |                           |                        |                                                             |  |
| dense_3 (Dense)                                                               | (None, 5344)<br>(None, 1) | 28563680<br><br>5345   |                                                             |  |
| dense_4 (Dense)                                                               |                           |                        |                                                             |  |
| Total params: 42,853,537 Trainable params: 42,853,537 Non-trainable params: 0 |                           |                        | Training the model with 2 hidden layers Total Time: 45 mins |  |
| None                                                                          |                           |                        |                                                             |  |
| Train on 2721 samples<br>Epoch 1/100<br>2721/2721 [=========                  | ======] -                 | 25s 9ms/sample - loss: | 9183323850049.3867 - mse: 9183323750400.0000                |  |
| Epoch 2/100<br>2721/2721 [=========<br>Epoch 3/100                            |                           | 25s 9ms/sample – loss: | 6133273795376.6406 - mse: 6133274640384.0000                |  |
|                                                                               |                           | 25s 9ms/sample - loss: | 3453539358362.4844 - mse: 3453539581952.0000                |  |
|                                                                               |                           | 25s 9ms/sample - loss: | 2582551219638.4268 - mse: 2582551199744.0000                |  |
| Epoch 95/100                                                                  | 1 -                       | 29s 11ms/sample – loss | :: 8880102119.6090 - mse: 8880103424.0000                   |  |
| Epoch 96/100                                                                  |                           |                        | :: 8369913704.3381 - mse: 8369913856.0000                   |  |
| Epoch 97/100                                                                  |                           |                        | :: 8420966648.1793 - mse: 8420965376.0000                   |  |
| Epoch 98/100                                                                  |                           | •                      | : 7633665933.8773 - mse: 763366560.0000                     |  |
| Epoch 99/100                                                                  |                           |                        | : 7245674765.5362 - mse: 7245673472.0000                    |  |
| Epoch 100/100<br>2721/2721 [====================================              | 985429061527269           |                        | : 7042875558.2683 - mse: 7042875392.0000                    |  |
| r2_score of y_test: 0.98<br>neural network model wit                          |                           | done!                  |                                                             |  |

```
Model: "sequential"
 Laver (type)
          Output Shape
                 Param #
 dense (Dense)
          (None, 9665)
                 93421890
 dense 1 (Dense)
                 93421890
          (None, 9665)
 dense 2 (Dense)
          (None, 1)
                 9666
 Total params: 186.853.446
 Trainable params: 186,853,446
 Non-trainable params: 0
  model = nn.fit(X train scaled, v train, epochs=50)
 Epoch 36/50
 Epoch 37/50
 Epoch 38/50
 Epoch 39/50
 Epoch 40/56
 Epoch 41/50
 Epoch 42/50
 Epoch 43/50
 Epoch 44/50
 Epoch 45/56
 Enoch 46/50
 Epoch 47/50
 Epoch 48/50
 Epoch 49/50
 [19] ▶ ►  MI
  y_train_pred = nn.predict(X_train_scaled)
  v test pred = nn.predict(X test scaled)
[20] Þ ►≡ M
  r2_score(y_train, y_train_pred)
                y = df['expenditure_amount'].values
Total time: 2 days
 0.9991990876693556
  # score the test predictions with r2 score()
```

r2\_score(y\_test, y\_test\_pred)

0.8145582287092288