Coeficientes de Angström-Prescott para os climas brasileiros, de acordo com a classificação climática de Köppen

PAULO HORTELAN RIBEIRO
Orientador: Prof. Dr. João Eduardo Machado Perea Martins

INTRODUÇÃO

RADIAÇÃO SOLAR

A energia solar está diretamente relacionada com os processos químicos, físicos e biológicos, ou seja, está associada com a vida na Terra. As variações dessa energia têm impacto na atmosfera e no clima da Terra em largas escalas de tempo.

(GÓMEZ et al., 2018)

(SOUZA et al., 2018)

INTRODUÇÃO

PROBLEMA

- Diversas localizações e regiões não possuem estações meteorológicas
- Alto custo da manutenção e instalação dessas estações

JUSTIFICATIVA

- Diversidade de tipos climáticos no Brasil
- Modelos matemáticos capazes de estimar a radiação solar

INTRODUÇÃO

OBJETIVOS

- Desenvolver um software capaz de simular um modelo de estimativa da radiação solar
- Aplicar o software desenvolvido nas cidades determinadas
- Determinar os coeficientes empíricos
- Realizar uma estimativa a partir dos resultados obtidos
- Comparar e discutir os resultados finais

CLASSIFICAÇÃO CLIMÁTICA

- Köppen-Geiger
- "Os tipos de climas anuais no Brasil: uma aplicação da classificação de Köppen de 1961 a 2015." (DUBREUIL et al 2017)
- Variedade climática
- Classificação estática e dinâmica

(DUBREUIL et al., 2017)

EQUAÇÃO DE ANGSTRÖM-PRESCOTT

$$\frac{H}{H_0} = a + b \left(\frac{n}{N}\right)$$

onde, H e H_0 são, respectivamente, a radiação solar global (MJ m⁻² dia⁻¹) e a radiação solar extraterrestre (MJ m⁻² dia⁻¹); a e b são os coeficientes empíricos determinados através da regressão linear; n e N são, respectivamente, a insolação observada (h d⁻¹) e a insolação máxima ou fotoperíodo (h d⁻¹).

RADIAÇÃO SOLAR EXTRATERRESTRE

$$H_0 = \frac{24 \cdot 3600 \cdot I_{sc}}{\pi} \cdot \left[1 + 0.033 \cdot \cos \left(\frac{360 \cdot d}{365} \right) \right] \cdot \left[\cos\phi \cdot \cos\delta \cdot \sin\omega + \left(\frac{\pi \cdot \omega}{180} \right) \cdot \sin\phi \cdot \sin\delta \right]$$

onde, I_{sc} é a constante solar de valor 1367 W m⁻²; d é o dia sequencial do ano ou dia Juliano, associando o valor um ao dia 1 de janeiro e seguindo assim sucessivamente com valores até 366; ϕ é a latitude da localização (em graus decimais); δ é o ângulo de declinação ou declinação solar (°); ω é ângulo horário do pôr-do-Sol ou *sunset hour angle* (°).

INSOLAÇÃO MÁXIMA

- Calculada ou estimada
- Valor teórico

- Varia em torno de 12h
- Varia de acordo com a latitude da localização e com o ângulo de declinação da data

$$N = \left(\frac{2 \cdot \omega}{15}\right)$$

onde, N é a insolação máxima; ω é ângulo horário do pôr do sol (°)

MODELOS ESTATÍSTICOS

- Regressão linear
 - Coeficiente de determinação R² $R^2 = \left(\frac{\sum_{i=1}^n (x_i \overline{x}) \cdot (y_i \overline{y})}{\sqrt{\sum_{i=1}^n (x_i \overline{x})^2 \cdot \sum_{i=1}^n (y_i \overline{y})^2}}\right)$
- Radiação solar estimada
 - Coeficiente de relação r
 - Índice de concordância de Willmott d
 - Índice de confiança ou desempenho c
 - RMSE
 - MBE
 - t-statistic

MODELOS ESTATÍSTICOS

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \cdot \sum_{i=1}^{n} (y_i - \overline{y})^2}} \qquad d = 1 - \left[\frac{\sum_{i=1}^{n} (P_i - O_i)^2}{\sum_{i=1}^{n} (|P_i - O| - |O_i - O|)^2} \right]$$

$$c = r * d$$

$$RMSE = \left(\frac{1}{n} \cdot \sum_{i=1}^{n} d_i^2\right)^{\frac{1}{2}} \qquad MBE = \frac{1}{n} \cdot \sum_{i=1}^{n} d_i$$

$$t = \left[\frac{(n-1) \cdot MBE^2}{RMSE^2 - MBE^2}\right]^{\frac{1}{2}}$$

MÉTODO DE PESQUISA

- Pesquisas e estudos
- Base de dados INMET
- Processamento de dados realizado em três etapas
- Software interativo de alta performance MATLAB (*Matrix Laboratory*)
- Editor de planilhas Microsoft Excel

DADOS E TABELAS

INSTITUTO NACIONAL DE METEOROLOGIA - INMET ESTAÇÃO METEOROLÓGICA AUTOMATICA DE ARAGARÇAS/GO														
2 ANOS 44 1411111111														
11-2111														
Alt.	347m													
Lat.	15°54'S													
Lon.	52°14'W													
	RADIACAO GLOBAL (KJ/M²)	RADIACAO	RADIACAO GLOBAL (KJ/M²)	RADIACAO GLOBAL (KJ/M²										
HORA UTC	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200
01-jan-2008	NULL	84,0	287,9	941,2	853,3	1703,3	2900,9	2638,9	3498,8	3383,0	2764,5	1995,2	1023,2	238,7
02-jan-2008	NULL	238.8	1017.7	1956,5	2512,4	3329,9	3739.6	3771,5	2400,3	3583,4	2031,7	1222,9	835.9	179,8
03-jan-2008	NULL	92,4	1049,0	2137,8	2441,6	2700,7	3006,6	3425,6	2324,2	1299,8	994,3	963,0	618,1	215,8
04-jan-2008	NULL	193,8	946,9	1526,6	2768,5	3349,2	3249,7	3452,2	2803,9	3467,1	2883,4	1960,0	702,5	210,2
05-jan-2008	NULL	200,8	1122,8	1865,1	2565,5	2786,4	3470,6	4028,0	3970,0	1437,0	1352,8	2242,7	899,3	130,1
06-jan-2008	NULL	86,9	847,6	1861,3	2698,9	3268,7	3714,6	3892,7	3569,8	2803,7	2140,2	1470,6	499,4	89,5
07-jan-2008	NULL	30,1	225,0	533,8	1343,2	1956,8	1223,5	702,5	1050,9	1666,2	2180,5	1904,8	902,6	97,9
08-jan-2008	NULL	37,6	530,6	977,8	2275,7	1809,9	2411,0	3962,2	4091,7	3568,0	3135,9	687,9	281,6	55,9
09-jan-2008	NULL	165,1	917,9	1373,8	2128,8	3270,6	2461,3	2483,1	909,2	1518,9	2911,7	1409,4	503,0	78,8
10-jan-2008	NULL	218,2	501,1	619,5	1473,6	3209,4	2728,4	2368,5	352,4	1433,4	2981,3	2193,3	641,0	243,7
11-jan-2008	NULL	154,4	659,3	902,4	1771,5	2340,6	3439,3	3732,1	3834,6	1352,2	276,4	1484,9	1188,3	137,9
12-jan-2008	NULL	76,4	360,6	943,4	1360,3	2751,0	1947,8	2854,4	3248,3	1695,4	2375,9	2178,3	676,9	203,1
13-jan-2008	NULL	92,9	594,5	1917,3	1529,5	2296,0	2877,9	3212,1	2502,9	2424,9	1417,3	1007,5	600,5	159,1
14-jan-2008	NULL	52,4	462,6	864,2	1565,6	1912,2	2288,6	2945,1	2993,7	3423,6	2767,1	2062,4	1152,9	82,4
15-jan-2008	NULL	14,7	290,6	641,5	1166,3	1263,6	1036,5	686,3	358,6	523,7	1223,7	1586,3	1239,9	206,6
16-jan-2008	NULL	199,3	437,5	1281,0	1965,4	3129,2	3583,8	3413,1	3218,4	1152,3	312,8	242,9	624,7	420,3
17-jan-2008	NULL	62,7	431,4	1082,2	1241,2	1776,1	1600,7	1993,1	775,7	2205,1	934,7	1571,8	979,2	232,0
18-jan-2008	NULL	133,5	886,5	1741,6	2656,5	3168,8	1110,2	425,5	848,3	2733,4	2958,8	2207,3	634,3	125,2
19-jan-2008	NULL	68,5	368,2	693,3	1147,2	1643,5	2828,8	2411,7	3213,7	2737,5	2710,7	610,5	171,5	63,2
20-jan-2008	NULL	168,1	594,4	1736,9	2754,6	2357,3	3243,9	927,3	1337,1	353,0	314,5	417,9	371,9	131,5

DADOS E TABELAS

- Padronização
- Formatação das tabelas

- Exemplo: Aragarças/GO
- Latitude: 15°54'S; Radiação (KJ/M²)

LAT	DATA	RADIACAO	MEDIA_RAD	INSOLACAO	MEDIA_INS
15,0	01-01-2008	24029	19754,68	5,9	4,88
54,0	02-01-2008	28885	21507,11	8,5	4,99
	03-01-2008	22906	21033,68	5,7	5,75
	04-01-2008	29630	19976,69	9,4	6,80
	05-01-2008	28076	21528,70	9,6	8,43
	06-01-2008	29019	20545,31	9,3	9,13
	07-01-2008	14882	21726,00	2,1	9,00
	08-01-2008	25661	23240,97	5,9	10,15
	09-01-2008	21681	22402,38	2,8	8,86
	10-01-2008	20421	22176,97	6,7	7,28
	11-01-2008	22908	22147,38	5,1	5,90
	12-01-2008	22260	21498,13	4,8	6,48
	13-01-2008	22218	21945,13	3,8	4,68

SOFTWARE DESENVOLVIDO

- MATLAB R2018a
- Entrada de dados
- Scripts e funções
- Orientações para adaptação do programa
- Saída de dados

ARACAJÚ/SE

- Clima As (quente com chuva de inverno)
- Latitude 10°57'S
- Altitude 4.72m
- Período: 2004 2018
- Dados úteis: 72.99%
- Melhor método: diário
- a = 0.3012 e b = 0.3732

(DUBREUIL et al., 2017)

Tabela 1 – Resultados da regressão linear para Aracajú/SE (2004-2018)

Período/método	a	b	a + b	R ²	
Outono	0.7655	-0.0632	0.7023	0.0074	
Primavera	-0.2308	1.1474	0.9166	0.4799	
Verão	-0.2155	1.1445	0.929	0.8495	
Inverno	0.1755	0.5497	0.7252	0.5929	
Diário	0.3012	0.3732	0.6744	0.577	
Mensal	0.0439	0.7689	0.8128	0.525	
Anual	2.08	-2.2239	-0.1439	0.3352	

Tabela 2 – Resultados da comparação entre a radiação solar medida e a estimada para Aracajú/SE (2004-2018)

Método	r	d	С	RMSE (MJ m ⁻² m ⁻¹)	MBE (MJ m ⁻² m ⁻¹)	t
Diário	0.8454	0.9067	0.7665	2.6432	0.0346	0.8278
Mensal	0.8145	0.8702	0.7088	4.1686	-0.4558	6.9553
Anual	-0.6722	0.0491	-0.033	21.2789	-0.0462	0.1373
Estacional	0.6495	0.7429	0.4825	6.3015	-2.0347	21.5718

 $t_{crit} \ a \ 5\% = 1.96.$

ARAGARÇAS/GO

- Clima Aw (quente com chuvas de verão)
- Latitude 15°54'S
- Altitude 347m
- Período: 2008 2018
- Dados úteis: 82.02%
- Melhor método: diário
- a = 0.3325 e b = 0.4967

(DUBREUIL et al., 2017)

BAGÉ/RS

- Clima Cfa (temperado, sem estação seca e verão quente)
- Latitude 31°20'S
- Altitude 230m
- Período: 2008 2018
- Dados úteis: 85.16%
- Melhor método: diário
- a = 0.2920 e b = 0.5859

(DUBREUIL et al., 2017)

BARBACENA/MG

- Clima Cwb (temperado com verão fresco e úmido)
- Latitude 21°13'S
- Altitude 1155m
- Período: 2003 2018
- Dados úteis: 78.42%
- Melhor método: diário
- a = 0.3300 e b = 0.4674

(DUBREUIL et al., 2017)

BELÉM/PA

- Clima Af (quente sem estação seca)
- Latitude 01°24'S
- Altitude 24m
- Período: 2004 2018
- Dados úteis: 66.18%
- Melhor método: diário
- a = 0.263 e b = 0.3405

(DUBREUIL et al., 2017)

CAMPOS SALES/CE

- Clima BSh (semi-árido e quente)
- Latitude 15°54'S
- Altitude 572m
- Período: 2009 2018
- Dados úteis: 86.77%
- Melhor método: diário
- a = 0.3219 e b = 0.4414

(DUBREUIL et al., 2017)

CURITIBA/PR

- Clima Cfb (temperado, sem estação seca e verão quente)
- Latitude 25°26'S
- Altitude 923.5m
- Período: 2004 2018
- Dados úteis: 73.31%
- Melhor método: diário
- a = 0.2702 e b = 0.563

(DUBREUIL et al., 2017)

JUIZ DE FORA/MG

- Clima Cwa (temperado, com verão quente e úmido)
- Latitude 21°46'S
- Altitude 950m
- Período: 2008 2018
- Dados úteis: 85.61%
- Melhor método: diário
- a = 0.2872 e b = 0.5180

(DUBREUIL et al., 2017)

MANAUS/AM

- Clima Am (quente de monção)
- Latitude 03°07'S
- Altitude 67m
- Período: 2001 2018
- Dados úteis: 78.29%
- Melhor método: diário
- a = 0.2868 e b = 0.4914

(DUBREUIL et al., 2017)

Cidade	Melhor método	Dados totais	Dados úteis	R ²	с	t
Aracajú/SE	Diário	5479	72.99%	0.577	0.7665	0.8278
Aragarças/GO	Diário	4018	82.02%	0.7713	0.752	1.8953
Bagé/RS	Diário	4018	85.16%	0.7843	0.9165	8.1467
Barbacena/MG	Diário	5844	78.42%	0.7229	0.8172	4.0144
Belém/PA	Diário	5479	66.18%	0.4406	0.5091	0.2253
Campos Sales/CE	Diário	3652	86.77%	0.7701	0.8225	0.4012
Curitiba/PR	Diário	5479	73.31%	0.8087	0.8736	6.6474
Juiz de Fora/MG	Diário	4018	85.61%	0.7936	0.865	3.3869
Manaus/AM	Diário	6574	78.29%	0.6437	0.702	0.118

 t_{crit} a 5% = Arredondado para 1.96.

- **Bom:** quando as três comparações são verdadeiras: $R^2 \ge 0.7$; $c \ge 0.7$; $t < t_{crit}$.
- Mediano: quando duas das três comparações são verdadeiras: R² ≥ 0.7; c ≥ 0.7; t <
 t_{crit}.
- Ruim: quando uma ou nenhuma das três comparações são verdadeiras: $R^2 \ge 0.7$; $c \ge 0.7$; $t < t_{crit}$.

Desempenho	Cidade	Clima	Equação
Bom	Campos Sales	BSh	$H/H_0 = 0.3219 + 0.4414(n/N)$
Dom	Aragarças	Aw	$H/H_0 = 0.3325 + 0.4967(n/N)$
	Manaus	Am	$H/H_0 = 0.2868 + 0.4914(n/N)$
	Aracajú	As	$H/H_0 = 0.3012 + 0.3732(n/N)$
Mediano	Juiz de Fora	Cwa	$H/H_0 = 0.2872 + 0.5180(n/N)$
iviediano	Barbacena	Cwb	$H/H_0 = 0.3300 + 0.4674(n/N)$
	Curitiba	Cfb	$H/H_0 = 0.2702 + 0.5630(n/N)$
	Bagé	Cfa	$H/H_0 = 0.2920 + 0.5859(n/N)$
Ruim	Belém	Af	$H/H_0 = 0.2630 + 0.3405(n/N)$

TRABALHOS SIMILARES

- Parnaíba/PI (JÚNIOR et al., 2012)
 - Clima Aw
 - Análise: período seco e chuvoso, média anual.
 - o a = 0.3207; b = 0.4598; $R^2 = 0.6298$
- Bagé/RS (BEXAIRA et al., 2018)
 - Clima Cfa
 - Melhor método: anual
 - o $a = 0.20 b = 0.59; R^2 = 0.90$
 - Baixos valores de RMSE e MBE

TRABALHOS SIMILARES

- Seropédica/RJ (CARVALHO et al., 2011)
 - Clima Aw
 - Análise: geral, mensal e anual, com resultados similares.
 - o a = 0.282; b = 0.433; $R^2 = 0.82$
- Território indiano (SRIVASTAVA E PANDEY, 2013)
 - o a = 0.1382; b = 0.5564
 - No atual trabalho (aproximadamente e em sua maioria):
 - a = 0.3 e b = 0.5

CONCLUSÃO

CONCLUSÕES E TRABALHOS FUTUROS

- Melhor método de calibração = diário
- Variedade climática brasileira
- Climas quentes e semi-áridos = melhor desempenho
 - Campos Sales/CE (BSh)
 - Aragarças/GO (Aw)
- Belém/PA e clima Af poucos dados úteis
- Relação clima e equação de Angstrom-Prescott
- Mais análises sobre cada tipo climático

REFERÊNCIAS

- GÓMEZ, J. R.; CARLESSO, F.; VIEIRA, L.; SILVA, L. D. A irradiância solar: conceitos básicos. Revista Brasileira de Ensino de Física, scielo, v. 40, 00 2018. ISSN 1806-1117. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172018000300412& nrm=iso>.
- SOUZA, M.; TONOLO, E.; YANG, R. L.; TIEPOLO, G. M.; JR, J. U. Determinação da irradiação difusa a partir da irradiação global horizontal—estudo para a cidade de curitiba. Smart Energy, v. 5, p. 184–190, 2018.
- DUBREUIL, V.; FANTE, K. P.; PLANCHON, O.; NETO, J. L. S. Les types de climats annuels au brésil: une application de la classification de köppen de 1961 à 2015. *EchoGéo*, Pôle de recherche pour l'organisation et la diffusion de l'information . . . , n. 41, 2017.
- JÚNIOR, A. S. de A.; NOLETO, D. H.; SILVA, M. E. da; BRAGA, D. L.; BASTOS, E. A. Coefcientes da equação de Angström-Prescott para Parnaíba, Piauí. *Embrapa Meio-Norte-Artigo em periódico indexado (ALICE)*, Comunicata Scientiae, v. 3, n. 1, p. 50-54, 2012., 2012.

REFERÊNCIAS

- BEXAIRA, K. P.; STRECK, N. A.; CERA, J. C.; PRESTES, S. D. Coeficientes de angströn-prescott para estimar a radiação solar no rio grande do sul. Revista Brasileira de Meteorologia, SciELO Brasil, v. 33, n. 3, p. 401–411, 2018.
- CARVALHO, D. F. de; SILVA, D. G. da; SOUZA, A. P. de; GOMES, D. P.; ROCHA, H. S. da.
 Coeficientes da equação de Angström-Prescott e sua influência na evapotranspiração de
 referência em Seropédica, RJ. Revista Brasileira de Engenharia Agrícola e Ambiental, scielo, v.
 15, p. 838 844, 08 2011. ISSN 1415-4366. Disponível em: http://www.scielo.br/scielo.
 php?script=sci_arttext&pid=S1415-43662011000800011&nrm=iso>.
- SRIVASTAVA, R.; PANDEY, H. Estimating angstrom-prescott coefficients for india and developing a correlation between sunshine hours and global solar radiation for india. *ISRN Renewable Energy*, Hindawi Publishing Corporation, v. 2013, 2013.