International Rectifier

Data Sheet No. PD-6.043C

IR2101

HIGH AND LOW SIDE DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +600V

 Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout
- 5V Schmitt-triggered input logic
- Matched propagation delay for both channels
- Outputs in phase with inputs

Product Summary

Voffset	600V max.
I _O +/-	100 mA / 210 mA
V _{OUT}	10 - 20V
t _{on/off} (typ.)	130 & 90 ns
Delay Matching	30 ns

Description

The IR2101 is a high voltage, high speed power MOSFET and IGBT driver with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable rugge-dized monolithic construction. The logic input is compatible with standard CMOS or LSTTL outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.

Packages

Typical Connection

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.

Parameter			Va		
Symbol	Definition		Min.	Max.	Units
V _B	High Side Floating Supply Voltage		-0.3	625	
Vs	High Side Floating Supply Offset Voltage		V _B - 25	V _B + 0.3	
V _{HO}	High Side Floating Output Voltage		V _S - 0.3	V _B + 0.3	v
V _{CC}	Low Side and Logic Fixed Supply Voltage		-0.3	25	V
V _{LO}	Low Side Output Voltage		-0.3	V _{CC} + 0.3	
V _{IN}	Logic Input Voltage (HIN & LIN)		-0.3	V _{CC} + 0.3	
dV _S /dt	Allowable Offset Supply Voltage Transient		-/	50	V/ns
PD	Package Power Dissipation @ T _A ≤ +25°C	(8 Lead DIP)	F /	1.0	W
		(8 Lead SOIC)	7-//	0.625	VV
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(8 Lead DIP)	7	125	°C/W
		(8 Lead SOIC)	_	200	C/ VV
TJ	Junction Temperature		_	150	
T _S	Storage Temperature		-55	150	°C
TL	Lead Temperature (Soldering, 10 seconds)		_	300	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

	Parameter		Value		
Symbol	Definition	Min.	Max.	Units	
V _B	High Side Floating Supply Absolute Voltage	V _S + 10	V _S + 20		
Vs	V _S High Side Floating Supply Offset Voltage		600		
V _{HO}	High Side Floating Output Voltage	٧s	V _B	V	
V _{CC}	Low Side and Logic Fixed Supply Voltage		20	\ \ \	
V_{LO}	V _{LO} Low Side Output Voltage 0		V _{CC}		
V _{IN}	V _{IN} Logic Input Voltage (HIN & LIN)		V _{CC}		
TA	Ambient Temperature	-40	125	°C	

Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}.

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15V, C_L = 1000 pF and T_A = 25°C unless otherwise specified.

	Parameter		Value			
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-On Propagation Delay	_	130	200		V _S =0V
t _{off}	Turn-Off Propagation Delay	_	90	200		V _S = 600V
t _r	Turn-On Rise Time	_	80	120	ns	
t _f	Turn-Off Fall Time	_	40	70		
MT	Delay Matching, HS & LS Turn-On/Off	_	30	\mathcal{H}		

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

	Parameter		Value			
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VIH	Logic"1" Input Voltage	2.7	_	_	V	V _{CC} = 10V to 20V
VIL	Logic"0" Input Voltage	_	_	0.8	V	V _{CC} = 10V to 20V
V _{OH}	High Level Output Voltage, V _{BIAS} - V _O	_	_	100	mV	I _O = 0A
V _{OL}	Low Level Output Voltage, VO	_	_	100	1110	I _O = 0A
I _{LK}	Offset Supply Leakage Current	- 1	_	50	_	$V_{B} = V_{S} = 600V$
I _{QBS}	Quiescent V _{BS} Supply Current	\neg	20	50		$V_{IN} = 0V \text{ or } 5V$
lacc	QuiescentV _{CC} Supply Current	qÆI	140	240	μA	V _{IN} = 0V or 5V
I _{IN+}	Logic "1" Input Bias Current	_	20	40		V _{IN} = 5V
I _{IN} -	I _{IN-} Logic "0" Input Bias Current		_	1.0		V _{IN} =0V
V _{CCUV+}	V _{CC} Supply Undervoltage Positive Going Threshold	8.8	9.3	9.8	V	
V _{CCUV} -	V _{CCUV-} V _{CC} Supply Undervoltage Negative Going Threshold		8.2	8.6	V	
I _{O+}	Output High Short Circuit Pulsed Current	100	125		mA.	V _O = 0V,V _{IN} =5V PW ≤10 µs
I _O -	Output Low Short Circuit Pulsed Current	210	250	_	IIIA	V _O =15V,V _{IN} =0V PW≤10 µs

Functional Block Diagram

Lead Definitions

Le	ad
Symbol	Description
HIN	Logic input for high side gate driver output (HO), in phase
LIN	Logic input for low side gate driver output (LO), in phase
VB	High side floating supply
НО	High side gate drive output
Vs	High side floating supply return
Vcc	Low side and logic fixed supply
LO	Low side gate drive output
СОМ	Low side return

Lead Assignments

Device Information

Process & Design Rule		HVDCMOS 4.0 µm				
Transistor Count		168				
Die Size		67 X 91 X 26 (mil)				
Die Outline						
Thickness of Gate Oxide		800Å				
Connections	Material	Poly Silicon				
First	Width	4 µm				
Layer	Spacing	6 µm				
	Thickness	5000Å				
	Material	AI - Si (Si: 1.0% ±0.1%)				
Second	Width	6 µm				
Layer	Spacing	9 µm				
E11 /	Thickness	20,000Å				
Contact Hole Dimension	mini	5 μm X 5 μm				
Insulation Layer	Material	PSG (SiO ₂)				
	Thickness	1.5 µm				
Passivation	Material	PSG (SiO ₂)				
	Thickness	1.5 µm				
Method of Saw		Full Cut				
Method of Die Bond		Ablebond 84 - 1				
Wire Bond	Method	Thermo Sonic				
	Material	Au (1.0 mil / 1.3 mil)				
Leadframe	Material	Cu				
	Die Area	Ag				
	Lead Plating	Pb : Sn (37 : 63)				
Package	Types	8 Lead PDIP / SO-8				
-	Materials	EME6300 / MP150 / MP190				
Remarks:						

<u>IR2101</u>

