Guarantee of Service (GoS) support over MPLS Using Active Techniques

A M. DOMINGUEZ-DORADO, F. J. RODRÍGUEZ-PÉREZ, J. L. GONZÁLEZ-SÁNCHEZ

Computer Science Department

University of Extremadura

Avda. de la Universidad s/n, E-10071 Cáceres

SPAIN

ingeniero@manolodominguez.com, fjrodri@unex.es, jlgs@unex.es

Abstract: - MPLS (Multiprotocol Label Switching) technology provides powerful mechanisms to integrate network technologies like ATM and IP with Quality of Service. Although this technology is becoming mature, there are still some aspects to be solved, such as offering guaranteed services to privileged sources that can require GoS (Guarantee of Service). To do so, on the one hand a mechanism of local recovering or packets retransmission requiring Guarantee of Service is analysed; on the other hand the implementation of a local LSP recovering system is studied.

Key-Words: - MPLS, Guarantee of Service, local retransmission, Active Methods

1 Introduction and related works

Nowadays the data communications networks are taking a very important summit; the increasing number of users, the increase of the application for which the data interchange is needed, and the migration from traditional telephony to IP telephony, video on demand, etc, have several effects on the network technological infrastructure providers, leaded to carry out a very hard transformation to be able to response to the modern society demands.

Simultaneously, the emergence of the optical switching technology, capable of managing large volumes of information, requires the design of new signalling methods and new communication protocols that allow to make good use of its advantages and transform the network into an intelligent entity; a resilient network that provides not only the simply passive information transport but also the resources management and reliability on the information and on the network infrastructure itself [1]. A parameterized network that, furthermore, achieves the target of reducing the network services provider's costs and unifying the maelstrom of actually deployed technologies whose maintenance is not only a technical problem but also an economic one due to the difficulty of offering broadband services with an acceptable quality of service [2].

In this scene we can find, among others, some technologies related to this research: Generalized Multiprotocol Lambda Switching (GMPLS), Dense Wavelength Division Multiplexing (DWDM), Active Nets or Multi Agent System (MAS).

At the present time MPLS provides fast networks that make good use of optical technologies [3], [4]. This is done at the expense of relying vastly on the fact that network is not going to fail. The problem arises when that remote possibility happens, because this is the moment when great part of the traffic will be lost [5], [6], [7]; high level protocols will take charge of requesting the retransmission, but the time lag it can involve is high. For some type of applications sensitive to the reliability, MPLS should be able to assure that the traffic will not be affected or that it will be significantly lesser, but it is not able to assure this [8]. MPLS has two main problems in order to be able to guarantee to some kind of traffic that they will arrive without problems:

- What to do and how to act when a physic path becomes down and it transports packets belonging to a flow that must be prioritized.
- How to response in view of nodes congestion when discarded packets do belong to this kind of traffic.

This work presents a technique that brings guarantee of service (GoS) to privileged information flows, allowing discarded frames to be recovered and LSP to be rearmed in a local environment, avoiding in this way, as far as possible, end to end retransmissions requested by transport layer [9].

The following section will deal with the subject of what is GoS and how it can be applied to privileged flows in a MPLS environment; In the third paragraph we will study the structure and functioning of the elements responsible of providing GoS in a MPLS domain and finally, this article concludes indicating the contributions of this research.

2 Guarantee of service over MPLS

The GoS requirements contribution for a MPLS flow can be understood as the capacity of discarded frame local recovering as well as local LSP recovering [10]. In this way, this work proposes the use of four GoS levels, beside the existence or not of a backup LSP (Label Switched Path), so each packet can be marked with these attributes from initial node to end node. Each one of these four levels must be understood like a grade of probability that a frame can be localized in any of the active nodes it has been passing through. So the need of end to end retransmissions is avoided, solving it in a much rather local environment.

The need or not of a backup LSP creation will come specified by a parameter of Boolean type included in a three control bit codification. Through the decodification of these three values the packet will be retained and processed in the node with regard to the necessities that these bits show. In table 1 the use of these three bits to obtain every possible option, is shown.

The different GoS level implementation has been realized by means of two aspects: on the one hand, in the MPLS packet header and, on the other hand, in the network level header.

To show in MPLS that a packet is marked with any level of GoS, we have decided to use the 1 value as label field because this value has been defined as a special one for MPLS labels [11]. In the EXP field of the same label (see figure 1) we have introduced the three bits we need. This mark will be able to be set by ingress LER (Layer Edge Router), a node that allows the entrance to the MPLS domain, using the information kept in the IP header to do it.

In a primary survey we could have used the ToS (Type of Service) field, which is eight bits size. However, its use has been modified sometimes until its disappearance [12].

LSP	GoS1	GoSo	Meaning
0	0	0	Not marked with GoS. A traditional packet.
0	0	I	Level 1 of GoS and without backup LSP.
0	1	0	Level 2 of GoS and without backup LSP.
0	1	1	Level 3 of GoS and without backup LSP.
1	0	0	Not marked with GoS but with backup LSP.
I	0	1	Level 1 of GoS and with backup LSP.
I	1	0	Level 2 of GoS and with backup LSP.
1	1	1	Level 3 of GoS and with backup LSP.

Table 1. Codification of guarantee of service levels.

Fig. 1. MPLS packet header structure.

The possibility of a reinterpretation of this field has been discarded because ToS field is used now to specify different DiFFServ levels and to notify about nodes congestion. The idea of incorporate differentiated services together with our proposal of GoS can result attractive; that is why we do not aim to limit the system having to decide between one option and another one, only because ToS serves for both. Because of this, the GoS codification has been implemented over the options field, which has a variable size, at most 40 octets. However we will only need the use of the first byte to codify the three bits that specify our strategy for requirement or not of backup LSP and the different guarantee of service

3 Path marking and lost recovering

During the transfer, data packets will have some information attached to themselves about how they must be handled by the nodes. Thus the functioning of the node, an active node, would be dynamic, it would not act always in the same form. Its operation will depend on the traffic that passes through it.

Let us suppose a scene formed by 4 nodes A, B, C and D (see figure 2), among them A and D are active nodes and B and C are MPLS nodes. Packets coming from A or B can arrive to D, but there are undistinguishable for it because it only has knowledge about the incoming label and the incoming port of these packets. And it only recognizes that C is the sender. It could distinguish their provenance based on the label but it would not be reliable enough because C could incorporate aggregation mechanism that merges both flows, coming from A and B, into a unique flow. If at this point D loses a packet due to saturation, it must find out to which it has to request the retransmission. It could not request to C because that is not an active node and so it could not understand it.

Fig. 2. An example MPLS scene in which traditional nodes and actives nodes coexist.

Therefore a fundamental aspect in our system is to know the set of nodes by which a concrete packet marked with GoS has passed through because, in case of loss, retransmission could be requested to them, without need of doing it to the message source node. That is why we have assigned more capacity to the LSR (Label Switch Routers), since it is going to be able to watch further than the MPLS header. Moreover, it is needed that the nodes considered active mark its network level address on the packets. We have decided to perform this marked at network level as due to the fact of using, for example, some bits from the MPLS label would end up with the transparency principle of MPLS, so that classic nodes, non-active, that exist in a network have not difficulties to handle the traffic marked with GoS.

On the other hand, we have decided to transform the option field in a stack of network level address to store the addresses of the active nodes that the traffic has been passing through. So we always know the last n nodes by which the packet has passed through. Firstly, it could be n = (40 - 1) / 4 = 9 addresses of active nodes, what we think is suitable, because we do not propose the replacement of all the nodes in a domain but so the incorporation of some active MPLS nodes. In this way, in the case that a retransmission was necessary, we backwards towards the source at most 9 active nodes, increasing thus the possibilities of finding the lost packet.

Therefore, in order to control the store, search and retransmission tasks, it is necessary the definition of a retransmission protocol, we have called GPSRP (GoS PDU Store and Retransmit Protocol). Moreover, the fact of permitting local retransmissions implies the need of having an intermediate, temporal memory in the active nodes. In such buffer the localized packets

needed for a possible retransmission can be found. This memory is named DMGP (Dynamic Memory for GoS PDU). In the figure 3 the architecture of the proposed nodes can be appreciated.

The buffers in this node accept incoming traffic that must be served by a Prioritized Round Robin algorithm; so we assure that the most important traffic will be attended to faster, according to the priority scale previously defined, independently of the arriving moment to the buffer. Same kind of traffic will be served by a traditional Round Robin algorithm until the appearance of most prioritized traffic.

When the packet has been read from the buffer, it is automatically attended to by the appropriated protocol module. If the packet is TLDP (Tiny Label Distribution Protocol), the TLDP module will attend to it and, as it is a signalling packet, it will possibly modify the values in the switching array (formed by ILM, FTN and NHLFE) if required. If the packet is a packet packet, in charge of GoS GPSRP retransmissions, the corresponding modules will attend to it and in order to do it, it must access to DMGP where the packets marked with some GoS level are stored. GPSRP starts to work also when EPCD, always monitoring the incoming buffer, notifies it that a GoS packet has been discarded. In this case, in addition to the notification, EPCD gives the MPLS/IP header of the packet to the GPSRP module in order to carry out the retransmission request.

Fig. 3. Internal architecture of an active node with routing features.

If the packet is a RLPRP packet, whose task is to keep backup LSPs for the flows that require it, it would be this protocol which attends to the packet, notifying the new situation to the involved active nodes and switching to the new path as fast as possible if necessary. After this, it must establish a new LSP that will become the backup LSP one. If the packet is MPLS, the MPLS module will seek an item in the switching array according to the incoming packet label; if it does not exist, TLDP will become active requesting a label and the packet will return to the buffer again until the adjacent node respond. Eventually, if the incoming packet is IPv4, it is classified and checked if there is a coincidental FEC for the packet in the switching array. If it is not, a label will be requested for this packet, it will return to the buffer again and we will wait for a response.

In any case, routing algorithm will be available for the protocols that need it at every time, helping to set a switching array according to the routing policy and the protocols over IP to select the adequate route to go to the target node. When the active node is handling non-active packets, it will use a routing algorithm based on the links delay. When these packets are active, that is, they are marked with some GoS level, the routing algorithm used will be RABAN (Routing Algorithm for Balanced Active Networks), that will try to select a route not only with few delay but also with few traffic, enough resources and passing through active nodes when necessary.

3.1 High level layers protocols

In a MPLS communication the implied levels are those of network, link and level 2+ or MPLS. However, we have to bear in mind the possibility of marking the whished GoS level in the transport layer for the application level packets. Thus, following the TCP/IP model, we would find that data would be marked at application level directly by users and after the network application would mark the TCP segments that, being encapsulated over IP packets, would results in processed packets.

At application level, the user can start a session for the GoS packets retransmission; the user indicates this option by selecting the receiver port when opening TCP socket (when accessing to the transport layer). In the same way that, for instance, in order to make use of an electronic mail service we access to the port 110 or to use a SSH services, to port 22, we will dedicate seven concrete ports to open TCP sessions with each one of the seven GoS available levels (GoS + backup LSP). This will cause the transport level to be marked with the three bits Y needed to include in this level.

Fig. 4. Some bits unused in the TCP header.

In the TCP header there are six bit reserved since the initial development of TCP. For a long time that field has remained intact, but in the recent years, some of its bits have started to be used, concretely two of them, to be able to mark some of the differentiated services options [13], [12]. We have still four available bits, from which we would use three and there would still be one left for other uses (see figure 4). In this form, we can specify the order of prioritizing the packet from the application level to the network level passing by the transport level, without any problem.

3.2 The temporal DMGP memories

The analysis of the DMGP memory size (see figure 3) requires a detailed study. The variable size of IP frames implies to realise complex calculations to obtain the optimum size for the DMGP in the active nodes. On the other hand, we must take into account the distribution of the memory between the different kinds of incoming flows, so we always can assure that a concrete number of packets belonging to a privileged flow can be stored in the memory for its likely local retransmission. This circumstance limits the maximum number of packets that can be referenced in memory as the use of a fixed identifier can suppose a disadvantage for a network in which a lot of prioritized flows has been marked (with GoS). Summarizing, in addition to take into account the possible packets size, some aspects such as kinds of traffics, transfer rates, etc, of the traffic that is really passing round Internet, must be borne in mind [14], [15].

3.3 Global packets identifying

During a retransmission, the identification of each packet stored on the intermediate DMGP memories is necessary. In order to achieve it, the PDU marked with guarantee of service must be indexed on these memories. In that form we will have each one of the globally sent and received packets identified in the

MPLS domain. So, we need an identifier that permits to recognize each packet whose retransmission is desired, from the source side as well as from the side of the node that stores in its DMGP buffer the GoS marked packets.

The IP address from network layer allows identifying each node in a network topology. However, it can not identify unmistakeably by itself each packet generated by a concrete node. This is why we will need an *id* identifier that will go with each GoS marked packet and that will be assigned by the node that generates it. In short, we will consider as unique identifier for a GoS marked packet to the pair of values formed by the *network address* of the packet sender together with the *id* identifier with which such node marks each packet.

A 4 octets id identifier allows us to recognize at most $2^{32} = 4.294.967.296$ packets generated by the same node. From this moment on it would start to assign ids from the beginning, allowing the existence of two packets carrying out the same identifier. However it is likely that before starting to repeat identifiers, the supposed "repeated" packets, have abandoned the MPLS domain, what is less likely if the addressing is lesser than 2³², because we are planning an architecture suitable for using in backbones networks in which the information volume will be predictably high. This four bytes value will be also stored on the options field, after the octet concerning the GoS levels and before the stack of addresses of actives nodes passed through. Thus, in order to support GoS, IP options field will be formatted like it is shown in figure 5.

3.4 Packets discard in the buffers of an active node

In order to attain a fair treatment of the packet that come in to a concrete buffer, the use of a scheduling algorithm is needed. So, we will use a circular Prioritized Round Robin in such a way that in case of the existence of some packets with the same priority, those indicated by Round Robin will be processed and in the opposite case, packets marked with more priority will receive a preferential treatment.

Fig. 5. Proposed format for the IP options field.

```
TLDP packet
PRIORITY 10
PRIORITY 9
                  GPSRP packet
PRIORITY &
                  RLPRP packet
                  MPLS packet with GoS 3 and backup LSP
PRIORITY 7
                  MPLS packet with GoS 3 and not backup LSP
PRIORITY 6
PRIORITY 5
                  MPLS packet with GoS 2 and backup LSP
                  MPLS packet with GoS 2 and not backup LSP
PRIORITY 4
PRIORITY 3
                  MPLS packet with GoS 1 and backup LSP
PRIORITY 2
              4
                  MPLS packet with GoS 1 and not backup LSP
PRIORITY 1
                  MPLS packet without GoS and with backup LSP
PRIORITY 0
                  Traditional MPLS packet.
```

Fig. 6. Packets classification according to its priority.

In the figure 6 the different considered priorities are shown.

The different priority levels have been assigned depending on the importance that the loss of such kind of packets would have for the whole communication or for the well network functioning. In this way, when saturation exists in the buffer of a determined node, some packets will be able to be discarded. But in this circumstance traditional MPLS packets have higher probability of being discarded whereas those belonging to TLDP traffic (LDP protocol reduced subset at functional level) will be only discarded if there is no other option.

In the case of a packet being discarded and in order to avoid requesting its end to end retransmission, GoS marked packets are stored for some time in the active nodes in order to be recovered inside the MPLS domain, avoiding in this way a higher global traffic. Nevertheless, to request a local retransmission to an active node, we need to recover at least the IP header from the discarded packet, where its identification as well as the last n active nodes the packet has passed through, are stored. We need to use a special buffering management algorithm, to recover this information from packets discarded due to saturation and that will be named EPCD (Early Packet catch and Discard).

4 Packets routing

The different routing strategies that can be used to make a message go from the source to the receiver node can also contribute to the performance improvement. To do it they must select the most suitable routes for the kind flow being transported as well as the present network status. In this form we will be able to distinguish between normal MPLS traffic or GoS marked MLPS traffic. A traditional MPLS node will implement an algorithm in which any links weight will be simply its delay. Nevertheless, an active node will run an algorithm in which the links weight will represent a weighted calculation of different parameters:

- Link delay.
- Number of LSP supported by the link.
- Number of established backup LSP over the link.
- Saturation state for the nodes connected by the link.
- Packets on-fly estimation.

Through this routing algorithm with weighted values we aim to obtain an equilibrated network in which the load has been balanced. In this way the network resources over-exploitation and under-use are avoided, trying also to reduce the number of collisions. We will call this algorithm RABAN (Routing Algorithm for Balanced Active Networks).

On the other hand, when we need to create a backup LSP, it must comply with some requirements such as to coincide as less as possible with the original LSP route. It is also of great interest that the backup LSP passes through MPLS active nodes because there is more probability that a service requiring backup LSP also requires GoS. RABAN algorithm must determine if some gain will be obtained by passing through active nodes at the expense of accepting possibly slower routes. So, we need a protocol in charge of backup LSP establishment and switch between them when a fail is detected. It is complex to obtain an efficient behaviour that avoids the chained data loss reaction and above all it is complex to maintain the switches and routers label coherence in an adequate time period. The developed protocol in this proposal is RLPRP (Resilient Local Path Recovery Protocol) and it will be deal with the main LSP fail detection, notifying to the active nodes in charge of the backup LSP maintenance and switching to it as soon as possible. After this, it will establish a backup LSP again as the previous one has become the main LSP now.

Eventually, we will opt for the creation of partial backup LSP inside the domain, locally, to solve link fails between active nodes inside the domain. That implies that active LSR must have features typical of LER, since they will function like ends of such path; they will also have to generate labels and possess routing skills. However, this is a faster solution and is lower resource-consumer that the end to end LSP establishment solving, indeed, the problems in a much more local way.

5 Conclusions and future works

This work proposes a local packets recovery mechanism in a MPLS domain environment. Thus, it brings GoS to privileged traffic sources that require reliability.

References:

- 1. L. Yin: "MPLS & GMPLS", CS294 presentation UC Berkeley (2002)
- X. Xiao: "Providing quality of service in the Internet". Michigan State University (2000)
- 3. C. Semeria: "Multiprotocol Label Switching: enhancing routing in the new public network". White paper. Juniper Networks (1999)
- 4. M. Lasserre: "Deply MPLS y MAN's". River Stone Networks (2001). http://www.riverstonenet.com/technology/tls.shtml
- J. L. Marzo and E. Calle, "QoS Online Routing and MPLS Multilevel Protection: A Survey", IEEE Communications Magazine, October 2003.
- R. Jain: "MPLS Traffic Engineering". The Ohio State Univerity (1999). http://www.cis.ohio-state. edu/~jain/talks/mpls_te.htm
- 7. "Traffic Engineering with Multiprotocol Label Switching". Avici Systems (2000)
- P. Bhaniramka, W. Sun, R. Jain: "Quality of Service Using Traffic Engineering over MPLS: an Analysis". The Ohio State University (1999)
- F. Blanchy, L. Mélon, G. Leduc: "Routing in a MPLS Network Featuring Pre-emption Mechanisms". University of Liège (1999)
- J. Gozdecki, A. Jajszczyk, and R. Stankiewicz: "Quality of Service Terminology in IP Networks" AGH University of Technology. IEEE Communications Magazine, March (2003)
- 11. Request For Comments: RFC3031
- 12. Request For Comments: RFC3168
- 13. Request For Comments: RFC793
- Internet Traffic Report web page: http://www.internettrafficreport.com/main.htm
- Abilene Network web page: http://abilene.internet2.edu/