CSEM REL 1.0.0

Generated by Doxygen 1.9.1

1 CSEM Documentation	1
2 Model Setup	3
3 CRTM-CSEM Integration	5
4 Modules Index	7
4.1 Modules List	7
5 Data Type Index	13
5.1 Data Types List	13
6 File Index	15
6.1 File List	15
7 Module Documentation	17
7.1 azimuth_emissivity_f6_module Module Reference	17
7.1.1 Detailed Description	17
7.1.2 Function/Subroutine Documentation	
7.1.2.1 azimuth_emissivity_f6_ad()	18
7.1.2.2 azimuth_emissivity_f6_tl()	18
7.2 azimuth_emissivity_module Module Reference	18
7.2.1 Detailed Description	
7.2.2 Function/Subroutine Documentation	19
7.2.2.1 azimuth_emissivity()	19
7.2.2.2 azimuth_emissivity_ad()	
7.2.2.3 azimuth_emissivity_tl()	
7.3 cnrm_amsua_reader Module Reference	
7.3.1 Detailed Description	
7.4 cnrm_atlas_module Module Reference	
7.4.1 Detailed Description	
7.5 crtm_fastem1 Module Reference	
7.5.1 Detailed Description	
7.6 crtm_fastem_module Module Reference	
7.6.1 Detailed Description	
7.6.2 Function/Subroutine Documentation	
7.6.2.1 compute_fastem_sfcoptics()	
7.6.2.2 compute_fastem_sfcoptics_ad()	
7.6.2.3 compute_fastem_sfcoptics_tl()	
7.6.2.4 crtm_fastem_emiss()	
7.6.2.5 crtm_fastem_init()	
7.7 crtm_fastemxx Module Reference	
7.7.1 Detailed Description	
7.7.2 Function/Subroutine Documentation	

26
26
27
28
28
28
29
29
29
29
30
30
30
30
30
31
31
31
32
32
32
32
33
33
33
33
33
34
35
35
35
36
36
37
37
38
38
38
39
39
40
40

7.18.1 Detailed Description	41
7.18.2 Function/Subroutine Documentation	41
7.18.2.1 csem_compute_landir_sfcoptics()	41
7.18.2.2 csem_compute_landir_sfcoptics_ad()	42
7.18.2.3 csem_compute_landir_sfcoptics_tl()	42
7.19 csem_landmw_sfcoptics Module Reference	43
7.19.1 Detailed Description	43
7.19.2 Function/Subroutine Documentation	43
7.19.2.1 csem_compute_landmw_sfcoptics()	43
7.19.2.2 csem_compute_landmw_sfcoptics_ad()	44
7.19.2.3 csem_compute_landmw_sfcoptics_tl()	45
7.20 csem_landvis_sfcoptics Module Reference	46
7.20.1 Detailed Description	47
7.20.2 Function/Subroutine Documentation	47
7.20.2.1 csem_compute_landvis_sfcoptics()	47
7.20.2.2 csem_compute_landvis_sfcoptics_ad()	48
7.20.2.3 csem_compute_landvis_sfcoptics_tl()	48
7.21 csem_lifecycle Module Reference	49
7.21.1 Detailed Description	49
7.22 csem_model_manager Module Reference	49
7.22.1 Detailed Description	49
7.23 csem_snowir_sfcoptics Module Reference	49
7.23.1 Detailed Description	50
7.23.2 Function/Subroutine Documentation	50
7.23.2.1 csem_compute_snowir_sfcoptics()	50
7.23.2.2 csem_compute_snowir_sfcoptics_ad()	51
7.23.2.3 csem_compute_snowir_sfcoptics_tl()	51
7.24 csem_snowmw_sfcoptics Module Reference	52
7.24.1 Detailed Description	52
7.24.2 Function/Subroutine Documentation	52
7.24.2.1 csem_compute_snowmw_sfcoptics()	52
7.24.2.2 csem_compute_snowmw_sfcoptics_ad()	53
7.24.2.3 csem_compute_snowmw_sfcoptics_tl()	54
7.25 csem_snowvis_sfcoptics Module Reference	54
7.25.1 Detailed Description	55
7.25.2 Function/Subroutine Documentation	55
7.25.2.1 csem_compute_snowvis_sfcoptics()	55
7.25.2.2 csem_compute_snowvis_sfcoptics_ad()	56
7.25.2.3 csem_compute_snowvis_sfcoptics_tl()	56
7.26 csem_waterir_sfcoptics Module Reference	57
7.26.1 Detailed Description	57
7.26.2 Function/Subroutine Documentation	57

7.26.2.1 csem_compute_waterir_sfcoptics()	57
7.26.2.2 csem_compute_waterir_sfcoptics_ad()	58
7.26.2.3 csem_compute_waterir_sfcoptics_tl()	59
7.27 csem_watermw_sfcoptics Module Reference	60
7.27.1 Detailed Description	60
7.27.2 Function/Subroutine Documentation	60
7.27.2.1 csem_compute_watermw_sfcoptics()	60
7.27.2.2 csem_compute_watermw_sfcoptics_ad()	62
7.27.2.3 csem_compute_watermw_sfcoptics_tl()	63
7.28 csem_watervis_sfcoptics Module Reference	64
7.28.1 Detailed Description	64
7.28.2 Function/Subroutine Documentation	64
7.28.2.1 csem_compute_watervis_sfcoptics()	64
7.28.2.2 csem_compute_watervis_sfcoptics_ad()	65
7.28.2.3 csem_compute_watervis_sfcoptics_tl()	66
7.29 ellison Module Reference	66
7.29.1 Detailed Description	66
7.30 fastem_coeff_reader Module Reference	67
7.30.1 Detailed Description	67
7.31 fastem_fresnel Module Reference	67
7.31.1 Detailed Description	67
7.32 foam_utility_module Module Reference	67
7.32.1 Detailed Description	68
7.32.2 Function/Subroutine Documentation	68
7.32.2.1 foam_coverage()	68
7.32.2.2 foam_reflectivity()	68
7.33 guillou Module Reference	69
7.33.1 Detailed Description	69
7.34 irssem_emiscoeff_define Module Reference	69
7.34.1 Detailed Description	69
7.35 irssem_emiscoeff_reader Module Reference	70
7.35.1 Detailed Description	70
7.36 large_scale_correction_module Module Reference	70
7.36.1 Detailed Description	70
7.36.2 Function/Subroutine Documentation	70
7.36.2.1 large_scale_correction()	71
7.36.2.2 large_scale_correction_ad()	71
7.36.2.3 large_scale_correction_tl()	71
7.37 liu Module Reference	72
7.37.1 Detailed Description	72
7.37.2 Function/Subroutine Documentation	72
7.37.2.1 liu_ocean_permittivity()	72

7.37.2.2 liu_ocean_permittivity_ad()	73
7.37.2.3 liu_ocean_permittivity_tl()	74
7.38 mod_rttov_fastem5r1_coef Module Reference	75
7.38.1 Detailed Description	77
7.39 mw_canopy_optics Module Reference	77
7.39.1 Detailed Description	77
7.39.2 Function/Subroutine Documentation	77
7.39.2.1 crtm_canopymw_optics()	77
7.39.2.2 crtm_canopymw_optics_ad()	78
7.39.2.3 crtm_canopymw_optics_tl()	79
7.40 mw_leaf_optics Module Reference	80
7.40.1 Detailed Description	80
7.40.2 Function/Subroutine Documentation	80
7.40.2.1 crtm_leafmw_optics()	80
7.40.2.2 mean_leafmw_optics()	82
7.41 mw_soil_optics Module Reference	83
7.41.1 Detailed Description	83
7.41.2 Function/Subroutine Documentation	83
7.41.2.1 csem_soilmw_optics()	84
7.41.2.2 csem_soilmw_optics_ad()	86
7.41.2.3 csem_soilmw_optics_tl()	87
7.42 mw_soil_permittivity Module Reference	88
7.42.1 Detailed Description	88
7.43 nesdis_amsre_iceem_module Module Reference	89
7.43.1 Detailed Description	90
7.44 nesdis_amsre_snowem_module Module Reference	90
7.44.1 Detailed Description	91
7.45 nesdis_amsu_iceem_module Module Reference	91
7.45.1 Detailed Description	91
7.46 nesdis_amsu_snowem_module Module Reference	91
7.46.1 Detailed Description	91
7.47 nesdis_atms_iceem_module Module Reference	91
7.47.1 Detailed Description	92
7.48 nesdis_atms_seaice_lib Module Reference	92
7.48.1 Detailed Description	93
7.49 nesdis_atms_snowem_module Module Reference	93
7.49.1 Detailed Description	93
7.50 nesdis_iceir_phymodel Module Reference	93
7.50.1 Detailed Description	93
7.51 nesdis_icemw_phymodel Module Reference	94
7.51.1 Detailed Description	94
7.52 nesdis_icevis_phymodel Module Reference	94

7.52.1 Detailed Description
7.53 nesdis_landem_module Module Reference
7.53.1 Detailed Description
7.53.2 Function/Subroutine Documentation
7.53.2.1 nesdis_landem_213()
7.54 nesdis_landir_phymodel Module Reference
7.54.1 Detailed Description
7.55 nesdis_landmw_phymodel Module Reference
7.55.1 Detailed Description
7.55.2 Function/Subroutine Documentation
7.55.2.1 nesdis_landmw_emiss()
7.55.2.2 nesdis_landmw_emiss_ad()
7.55.2.3 nesdis_landmw_emiss_tl()
7.55.2.4 two_stream_solution()
7.55.2.5 two_stream_solution_ad()
7.55.2.6 two_stream_solution_tl()
7.56 nesdis_landvis_phymodel Module Reference
7.56.1 Detailed Description
7.57 nesdis_mhs_iceem_module Module Reference
7.57.1 Detailed Description
7.58 nesdis_mhs_snowem_module Module Reference
7.58.1 Detailed Description
7.59 nesdis_mw_iceem_lut Module Reference
7.59.1 Detailed Description
7.60 nesdis_mw_iceemiss_util Module Reference
7.60.1 Detailed Description
7.61 nesdis_mw_snowem_lut Module Reference
7.61.1 Detailed Description
7.62 nesdis_mw_snowemiss_util Module Reference
7.62.1 Detailed Description
7.63 nesdis_sensors_icemw_modules Module Reference
7.63.1 Detailed Description
7.64 nesdis_sensors_snowmw_modules Module Reference
7.64.1 Detailed Description
7.65 nesdis_snowem_atms_parameters Module Reference
7.65.1 Detailed Description
7.66 nesdis_snowem_parameters Module Reference
7.66.1 Detailed Description
7.67 nesdis_snowir_phymodel Module Reference
7.67.1 Detailed Description
7.68 nesdis_snowmw_phymodel Module Reference
7.68.1 Detailed Description

7.69 nesdis_snowvis_phymodel Module Reference
7.69.1 Detailed Description
7.70 nesdis_ssmi_iceem_module Module Reference
7.70.1 Detailed Description
7.71 nesdis_ssmi_snowem_module Module Reference
7.71.1 Detailed Description
7.72 nesdis_ssmis_iceem_module Module Reference
7.72.1 Detailed Description
7.73 nesdis_waterir_brdf_module Module Reference
7.73.1 Detailed Description
7.74 nesdis_waterir_emiss_module Module Reference
7.74.1 Detailed Description
7.75 nesdis_waterir_emiss_v2_module Module Reference
7.75.1 Detailed Description
7.76 nesdis_waterir_phymodel Module Reference
7.76.1 Detailed Description
7.77 nesdis_waterir_phymodel_v2 Module Reference
7.77.1 Detailed Description
7.78 nesdis_watervis_brdf_module Module Reference
7.78.1 Detailed Description
7.79 nesdis_watervis_phymodel Module Reference
7.79.1 Detailed Description
7.80 npoess_lut_module Module Reference
7.80.1 Detailed Description
7.81 npoess_lut_reader Module Reference
7.81.1 Detailed Description
7.82 ocean_permittivity Module Reference
7.82.1 Detailed Description
7.83 reflection_correction_module Module Reference
7.83.1 Detailed Description
7.84 rttov_fastem5r1_ad_module Module Reference
7.84.1 Detailed Description
7.85 rttov_fastem5r1_module Module Reference
7.85.1 Detailed Description
7.85.2 Function/Subroutine Documentation
7.85.2.1 rttov_fastem5r1()
7.86 rttov_fastem5r1_tl_module Module Reference
7.86.1 Detailed Description
7.86.2 Function/Subroutine Documentation
7.86.2.1 rttov_fastem5r1_tl()
7.87 rttov_fastem_module Module Reference
7.87.1 Detailed Description

8

7.88 rttov_tessem_mod Module Reference
7.88.1 Detailed Description
7.89 slope_variance Module Reference
7.89.1 Detailed Description
7.90 small_scale_correction_module Module Reference
7.90.1 Detailed Description
7.90.2 Function/Subroutine Documentation
7.90.2.1 small_scale_correction()
7.90.2.2 small_scale_correction_ad()
7.90.2.3 small_scale_correction_tl()
7.91 snowmw_optical_model Module Reference
7.91.1 Detailed Description
7.92 telsem2_atlas_module Module Reference
7.92.1 Detailed Description
7.93 telsem2_atlas_reader Module Reference
7.93.1 Detailed Description
7.93.2 Function/Subroutine Documentation
7.93.2.1 emis_interp_ind_mult()
7.93.2.2 emis_interp_ind_sing()
7.93.2.3 emis_interp_int_mult()
7.93.2.4 emis_interp_int_sing()
7.93.2.5 rttov_closemw_atlas()
7.93.2.6 rttov_readmw_atlas()
7.93.2.7 test_inputs()
7.94 telsem_atlas_module Module Reference
7.94.1 Detailed Description
7.95 telsem_atlas_reader Module Reference
7.95.1 Detailed Description
7.96 uwir_atlas_module Module Reference
7.96.1 Detailed Description
7.97 uwir_atlas_reader Module Reference
7.97.1 Detailed Description
Data Type Documentation 135
8.1 csem_define::csem_atmosphere_parameters Type Reference
8.2 csem_define::csem_geoinfo_struct Type Reference
8.3 csem_define::csem_ice_surface Type Reference
8.4 csem_define::csem_land_surface Type Reference
8.5 csem_define::csem_options_type Type Reference
8.6 csem_define::csem_sensorobs_struct Type Reference
8.7 csem_define::csem_sfcoptics_type Type Reference
8.8 csem_define::csem_snow_surface Type Reference

	8.9 csem_define::csem_water_surface Type Reference	139
	8.10 csem_fresnel::fresnel_reflectance Interface Reference	139
	8.11 csem_fresnel::fresnel_reflectance_ad Interface Reference	139
	8.12 csem_fresnel::fresnel_reflectance_tl Interface Reference	139
	8.13 rttov_tessem_mod::tessem_net Type Reference	140
9 I	File Documentation	141
	9.1 src/MW/lce/CSEM_lceMW_SfcOptics.f90 File Reference	141
	9.1.1 Detailed Description	141
	9.2 src/MW/Land/CSEM_LandMW_SfcOptics.f90 File Reference	141
	9.2.1 Detailed Description	142
	9.3 src/MW/Land/MW_Canopy_Optics.f90 File Reference	142
	9.3.1 Detailed Description	142
	9.4 src/MW/Land/MW_Leaf_Optics.f90 File Reference	142
	9.4.1 Detailed Description	143
	9.5 src/MW/Land/NESDIS_LandEM_Module.f90 File Reference	143
	9.5.1 Detailed Description	143
	9.6 src/MW/Land/NESDIS_LandMW_PhyModel.f90 File Reference	143
	9.6.1 Detailed Description	144
	9.7 src/MW/LUT_Atlas/CNRM_Atlas_Module.f90 File Reference	144
	9.7.1 Detailed Description	145
	9.8 src/MW/LUT_Atlas/CNRM_Atlas_Reader.f90 File Reference	145
	9.8.1 Detailed Description	145
	9.9 src/MW/LUT_Atlas/TELSEM2_Atlas_Reader.f90 File Reference	145
	9.9.1 Detailed Description	146
	9.10 src/MW/LUT_Atlas/TELSEM_Atlas_Module.f90 File Reference	146
	9.10.1 Detailed Description	147
	9.11 src/MW/LUT_Atlas/TELSEM_Atlas_Reader.f90 File Reference	147
	9.11.1 Detailed Description	147
	9.12 src/MW/Snow/CSEM_SnowMW_SfcOptics.f90 File Reference	147
	9.12.1 Detailed Description	148
	9.13 src/MW/Soil/MW_Soil_Optics.f90 File Reference	148
	9.13.1 Detailed Description	148
	9.14 src/MW/Water/CRTM_FASTEM/Azimuth_Emissivity_F6_Module.f90 File Reference	149
	9.14.1 Detailed Description	149
	9.15 src/MW/Water/CRTM_FASTEM/Azimuth_Emissivity_Module.f90 File Reference	149
	9.15.1 Detailed Description	150
	9.16 src/MW/Water/CRTM_FASTEM/CRTM_Fastem1.f90 File Reference	150
	9.16.1 Detailed Description	150
	9.17 src/MW/Water/CRTM_FASTEM/CRTM_FASTEM_MODULE.f90 File Reference	150
	9.17.1 Detailed Description	151
	9.18 src/MW/Water/CRTM_FASTEM/CRTM_FastemXX.f90 File Reference	151

9.18.1 Detailed Description	151
9.19 src/MW/Water/CRTM_FASTEM/CRTM_LowFrequency_MWSSEM.f90 File Reference	151
9.19.1 Detailed Description	152
9.20 src/MW/Water/CRTM_FASTEM/CRTM_MWwaterCoeff_Define.f90 File Reference	152
9.20.1 Detailed Description	152
9.21 src/MW/Water/CRTM_FASTEM/CRTM_MWwaterLUT_Define.f90 File Reference	152
9.21.1 Detailed Description	153
9.22 src/MW/Water/CRTM_FASTEM/Foam_Utility_Module.f90 File Reference	153
9.22.1 Detailed Description	153
9.23 src/MW/Water/CRTM_FASTEM/Large_Scale_Correction_Module.f90 File Reference	154
9.23.1 Detailed Description	154
9.24 src/MW/Water/CRTM_FASTEM/Liu.f90 File Reference	154
9.24.1 Detailed Description	155
9.25 src/MW/Water/CRTM_FASTEM/Ocean_Permittivity.f90 File Reference	155
9.25.1 Detailed Description	155
9.26 src/MW/Water/CRTM_FASTEM/Small_Scale_Correction_Module.f90 File Reference	155
9.26.1 Detailed Description	155
9.27 src/MW/Water/CSEM_WaterMW_SfcOptics.f90 File Reference	156
9.27.1 Detailed Description	156
9.28 src/MW/Water/RTTOV_FASTEM/rttov_fastem5r1.F90 File Reference	156
9.28.1 Detailed Description	156
9.29 src/MW/Water/RTTOV_FASTEM/rttov_fastem5r1_ad.F90 File Reference	157
9.29.1 Detailed Description	157
9.30 src/MW/Water/RTTOV_FASTEM/rttov_fastem5r1_coef.F90 File Reference	157
9.30.1 Detailed Description	159
9.31 src/MW/Water/RTTOV_FASTEM/rttov_fastem5r1_tl.F90 File Reference	159
9.31.1 Detailed Description	160
9.32 src/MW/Water/RTTOV_FASTEM/rttov_tessem_mod.F90 File Reference	160
9.32.1 Detailed Description	160
9.33 src/VisIR/Ice/CSEM_IceIR_SfcOptics.f90 File Reference	160
9.33.1 Detailed Description	161
9.34 src/VisIR/Ice/CSEM_IceVIS_SfcOptics.f90 File Reference	161
9.34.1 Detailed Description	161
9.35 src/VisIR/Land/CSEM_LandIR_SfcOptics.f90 File Reference	161
9.35.1 Detailed Description	162
9.36 src/VisIR/Land/CSEM_LandVIS_SfcOptics.f90 File Reference	162
9.36.1 Detailed Description	162
9.37 src/VisIR/Snow/CSEM_SnowIR_SfcOptics.f90 File Reference	162
9.37.1 Detailed Description	163
9.38 src/VisIR/Snow/CSEM_SnowVIS_SfcOptics.f90 File Reference	163
9.38.1 Detailed Description	163
9.39 src/VisIR/Water/CSEM_WaterIR_SfcOptics.f90 File Reference	164

0.004 Detelled Decembring	101
9.39.1 Detailed Description	
9.40 src/VisIR/Water/CSEM_WaterVIS_SfcOptics.f90 File Reference	164
9.40.1 Detailed Description	164
Index	165

CSEM Documentation

Community Surface Emissivity Model (CSEM)

The Community Surface Emissivity Model (CSEM) is a highly modularized Earth's surface RT modeling system based on Object-Oriented Programming (OOP) design. It evolved from the surface modules of the Community Radiative Transfer Model (CRTM), but with completely redesigned model structure to facilitate the implementation of various surface RT models. CSEM provides the surface emissivity and reflectivity simulations of diverse surface types in the spectral range from the ultraviolet, visible to microwave bands.

Enclosed in CSEM are not only the physical models based on sound radiative transfer equations, but also a variety of empirical and semi-empirical models, type-based emissivity lookup tables (LUT), and global emissivity atlases from satellite retrievals. The object-oriented design provides very flexible software interfaces for implementing and

2 CSEM Documentation

testing new model components. Multiple model options of the same kind (e.g., microwave land models) may be easily implemented and accommodated in the CSEM framework.

In practical applications, CSEM may be used as a standalone surface RT research tool, or used as a sub-system to provide the surface radiative conditions for CRTM, significantly leveraging the development and improvement efforts of CRTM.

Version

1.0.0

Author

STAR/NESDIS CRTM Team

Date

August 2022

Model Setup

```
Version 1.0.0 is the current version.
Downloading:
CSEM is available from two GitHub sites:
NOAA-STAR domain: https://github.com/NOAA-STAR/CSEM1.0.0 JCSDA: https://github.com/JCSDA-i
The JCSDA CSEM repository is forked from the NOAA-STAR repository.
git clone https://github.com/NOAA-STAR/CSEM1.0.0, or
git clone https://github.com/JCSDA-internal/CSEM1.0.0
Installing:
1) Go to Build/env.setup and source the specific compiler configuration file.
e.g., source gfortran.setup
note: make sure the following three environment variables are already defined or included in the setup file.
B-shell (sh, bash)
export NETCDF_HOME=path to the netcdf
export HDF5_HOME=path to the hdf5
C-shell (csh)
setenv NETCDF_HOME path to the netcdf
setenv HDF5_HOME path to the hdf5
This step is needed for the first-time fresh installation.
2) Generate the file "configure" ./autogen.sh
This step is needed as long as the three ENV variables have been changed.
3) Generate the file "Makefile", you may specify where the CSEM library will be installed. The default is the current
directory ./configure -prefix=path for the CSEM library to be installed 4) make
5) make install
```

CSEM site https://github.com/NOAA-STAR/CSEM1.0.0/

See also

4 Model Setup

CRTM-CSEM Integration

The integration of CSEM with CRTM is only needed to perfrom one time. CSEM will replace the exisitng CRTM surface modules in the integrated CRTM-CSEM package, providing the exisitng default and the expanded surface functionality for the upper-tier RT solvers.

A shell script has been created to automate the integration. It is available at interfacing/CRTM/Setup_CSEM_
Library.sh. This script includes all the necessary steps to merge the CSEM codes into the general CRTM framework, and to build the integrated package. In short:

1) replace CSEM-related the source files and configuration files 2) set_CRTM_Environment.sh 3) export CRTM — _SOURCE_ROOT= 4) export PATH=~/bin:\$PATH 5) cd "src" and type make 6) cd "Build" 7) source ifort.setup 8) autogen.sh 9) CSEM_HOME=PATH-of-CSEM-library ./configure -prefix=path-to-install-CRTM-library 10) make 11) make install

The CSEM library needs to be built first, will be used as the external library for CRTM.

Modules Index

4.1 Modules List

Here is a list of all documented modules with brief descriptions:

azimuth_emissivity_f6_module	
Azimuthal functions of the FASTEM-6 model	
17	
azimuth_emissivity_module	
Azimuthal emissivity subroutines of old FASTEM versons	18
cnrm_amsua_reader	
Module containing Data and routines for MW emissivity atlas METEO-FRANCE CNRM	
20	
cnrm_atlas_module	
Module for users to use CNRM land surface emissivity data sets by CSEM interfaces	20
crtm_fastem1	
Module with the old Fastem procedures	21
crtm_fastem_module	
Container module with all the existing CRTM FASTEM versions	21
crtm_fastemxx	
Container Module for the Fastem4/5/6 models	25
crtm_lowfrequency_mwssem	
Module containg subroutines to compute microwave ocean emissivity components (FWD, TL,	
and AD) for low frequencies	28
crtm_mwwatercoeff_define	
Module defining the MWwaterCoeff object	29
crtm_mwwaterlut_define	
Module defining the MWwaterLUT object containing the Look-Up Table (LUT) for the microWave	
(MW) sea surface emissivity model	30
csem_define	- 4
Module to define the general CSEM data structures	31
csem_exception_handler Madula suggestive and to define simple array/oxit and as and author manages.	0.1
Module currently used to define simple error/exit codes and output messages	31
csem_fitcoeff_define Madula defining the FitCoeff chicate	32
Module defining the FitCoeff objects	32
csem_fresnel Module containing several algorithms for the calculation of Fresnel Reflectance and transmit-	
	32
tance	32
Container module with all the IR ICE models available in the CSEM model repository	33
Container module with all the In_IOE models available in the OSEIN model repository	JJ

8 Modules Index

csem_icemw_sfcoptics	
Container module for all the MW_ICE models available in the CSEM model repository	. 35
csem_icevis_sfcoptics Container module with all the VIS_ICE models available in the CSEM model repository	. 38
csem_landir_sfcoptics Container module with all the IR_LAND models available in the CSEM model repository	. 40
csem_landmw_sfcoptics Container module with all the MW_LAND models available in the CSEM model repository	. 43
csem_landvis_sfcoptics	
Container module with all the VIS_LAND models available in the CSEM model repository csem_lifecycle	. 46
Module with the CSEM life cycle functions to initialize and destroy the CSEM space csem model manager	. 49
Module containing functions to manage the all model options already implemented in CSEM and registered in the Model_Registor_File. 49	t
csem_snowir_sfcoptics	. 49
Container module with all the IR_SNOW models available in the CSEM model repository csem_snowmw_sfcoptics	. 49
This module provides a generic interface for the upper-level applications to access all the MW— _SNOW models available in the CSEM model repository	
Container module of all the VIS_SNOW models available in the CSEM model repository	. 54
csem_waterir_sfcoptics Container module with all the IR_WATER models available in the CSEM model repository	. 57
csem_watermw_sfcoptics Container module with all the MWWater models available in the CSEM model repository	. 60
csem_watervis_sfcoptics	
Container module with all the VIS_WATER models available in the CSEM model repository . ellison	. 64
Ellison Ocean Permittivity module	. 66
Module containing the load/destruction routines to handel the shared CSEM microwave wate surface emissivity model data in NetCDF format	
fastem_fresnel Module containing routines to compute Fresnel reflectivities	. 67
foam_utility_module	£
Helper module containing the foam-related utility routines for the CRTM implementation o FASTEM4 and FASTEM5	
guillou Guillou Ocean Permittivity module	. 69
irssem_emiscoeff_define	
Module defining the EmisCoeff data structure and containing routines to manipulate it irssem emiscoeff reader	. 69
Module containing routines to read the netCDF format EmisCoeff files of the NESDIS physica Infrared ocean surface models	
large_scale_correction_module Module containing the large-scale correction procedures for the CRTM implementations o FASTEM4 and FASTEM5	
liu	
Liu Ocean Permittivity module	. 72
Contains data for the FASTEM-4,5,6 MW sea surface emissivity models	. 75
Container Module to compute the canopy optical properties at microwave frequencies	. 77
mw_leaf_optics Container Module to compute the leaf optical properties of LAND surfaces at microwave frequen cies	

4.1 Modules List

mw_soil_optics	
Container module with all the MW soil models available in the CSEM model repository	83
mw_soil_permittivity Module to compute the soil dielectric properties for LAND surfaces at microwave frequencies .	88
nesdis_amsre_iceem_module	00
Module containing the AMSR-E microwave sea ice emissivity model	89
nesdis_amsre_snowem_module Module containing the AMSR E migroupsy angly amigripity model	00
Module containing the AMSR-E microwave snow emissivity model nesdis_amsu_iceem_module	90
Module containing the AMSU microwave sea ice emissivity model	91
nesdis_amsu_snowem_module	91
Module containing the AMSU microwave snow emissivity model	91
nesdis_atms_iceem_module	
NESDIS_ATMS_SeaICE_LIB Module to implement the library-based sealce emissivity model .	91
nesdis_atms_seaice_lib	
Module containing the snow emissivity library ATMS channels	92
nesdis_atms_snowem_module NESDIS_SnowEM_ATMS_Parameters Module to implement the library-based snow emissivity	
model	93
nesdis iceir phymodel	
Module containing the NESDIS physical Ice emissivity model of infrared Channels	93
nesdis_icemw_phymodel	
Module containing the NESDIS physical Ice emissivity model of microwave Channels	94
nesdis_icevis_phymodel	
Module containing the NESDIS physical Ice emissivity model of visible channels	94
nesdis_landem_module	
Module containing the old-version NESDIS microwave land emissivity model	94
nesdis_landir_phymodel	
Module containing the NESDIS infrared non-snow land emissivity model	95
nesdis_landmw_phymodel	95
Module of the physics-based microwave land surface emissivity model nesdis_landvis_phymodel	95
Module containing the NESDIS visible non-snow land emissivity model	105
nesdis_mhs_iceem_module	100
Module containing the MHS microwave sea ice emissivity model	105
nesdis_mhs_snowem_module	
Module containing the MHS microwave snow emissivity model	105
nesdis_mw_iceem_lut	
Module containing the parameters related to microwave Ice emissivity model	106
nesdis_mw_iceemiss_util	
Module containing a simplfied NESDIS physical microwave emissivity model to be used by em-	
pirical models in angle dependence estimation	106
nesdis_mw_snowem_lut	
Module containing the parameters related to microwave snow emissivity model	106
nesdis_mw_snowemiss_util	
Module containing a simplfied NESDIS physical microwave emissivity model to be used by em-	407
pirical models in angle dependence estimation	107
nesdis_sensors_icemw_modules	
Container Module to wrap all the microwave sensor-based ice surface emissivity regression models with a generic interface	108
nesdis_sensors_snowmw_modules	100
Module to wrap the microwave sensor-based snow-surface regression models with a generic	
interface	108
nesdis_snowem_atms_parameters	. 00
Module containing the snow emissivity library ATMS channels. The library contain 16	108
nesdis_snowem_parameters	
Module containing the parameters related to microwave snow emissivity model	110

10 Modules Index

nesdis_snowir_phymodel	
,	113
nesdis_snowmw_phymodel	
9 · · · · · · · · · · · · · · · · ·	114
nesdis_snowvis_phymodel Module containing the NESDIS Snow emissivity model of visible bands	114
nesdis ssmi iceem module	114
	114
nesdis_ssmi_snowem_module	
	115
nesdis_ssmis_iceem_module	
,	115
nesdis_waterir_brdf_module	
	115
nesdis_waterir_emiss_module Module containing function to involve the CSEM Infrared See Surface Emissivity Model (IDSSEM)	116
Module containing function to invoke the CSEM Infrared Sea Surface Emissivity Model (IRSSEM) nesdis waterir emiss v2 module	116
Module containing function to invoke the Ver-2 CSEM Infrared Sea Surface Emissivity Model	
	116
nesdis_waterir_phymodel	
	116
nesdis_waterir_phymodel_v2	
	117
nesdis_watervis_brdf_module	
	117
nesdis_watervis_phymodel Module containing the NESDIS physical Water emissivity model of visibal bands	118
npoess lut module	110
Module for users to use the LUT of the land IR-VIS surface emissivity/reflectivity spectrum with	
·	118
npoess_lut_reader	
	118
ocean_permittivity	
	119
reflection_correction_module Helper module conmtaining the reflection correction routines for the CRTM implementation of	
	119
rttov_fastem5r1_ad_module	113
	119
rttov_fastem5r1_module	
Compute RTTOV FASTEM-4,5,6 emissivity and reflectance for a single channel	120
rttov_fastem5r1_tl_module	
•	121
rttov_fastem_module	400
	122
rttov_tessem_mod Subroutines for TESSEM2 MW sea surface emissivity model	123
slope_variance	120
Helper module containing the slope variance routines for the CRTM implementation of FASTEM4	124
small_scale_correction_module	
Module containing the small-scale correction procedures for the CRTM implementations of	
	124
snowmw_optical_model	
	126
telsem2_atlas_module Module for users to use TELSEM2 land surface emissivity data sets by CSEM interfaces	126
telsem2_atlas_reader	120
	126
11.7.777	_

4.1 Modules List

telsem_atlas_module	
Module for users to use TELSEM land surface emissivity data sets by CSEM interfaces	131
telsem_atlas_reader	
Data and routines for MW emissivity atlas	
132	
uwir_atlas_module	
Module for users to use UWIR land surface emissivity data sets by CSEM interfaces	132
uwir_atlas_reader	
Data and routines for UWIR emissivity atlas	132

12 Modules Index

Data Type Index

5.1 Data Types List

Here are the data types with brief descriptions:

csem_define::csem_atmosphere_parameters	135
csem_define::csem_geoinfo_struct	135
csem_define::csem_ice_surface	136
csem_define::csem_land_surface	136
csem_define::csem_options_type	137
csem_define::csem_sensorobs_struct	137
csem_define::csem_sfcoptics_type	138
csem_define::csem_snow_surface	138
csem_define::csem_water_surface	139
csem_fresnel::fresnel_reflectance	139
csem_fresnel::fresnel_reflectance_ad	139
csem_fresnel::fresnel_reflectance_tl	139
rttov_tessem_mod::tessem_net	140

14 Data Type Index

File Index

6.1 File List

Here is a list of all documented files with brief descriptions:

src/MW/Ice/CSEM_IceMW_SfcOptics.f90
CSEM_IceMW_SfcOptics.f90
src/MW/Land/CSEM_LandMW_SfcOptics.f90
CSEM_LandMW_SfcOptics.f90
src/MW/Land/MW_Canopy_Optics.f90
MW_Canopy_Optics.f90
src/MW/Land/MW_Leaf_Optics.f90
MW_Leaf_Optics.f90
src/MW/Land/NESDIS_LandEM_Module.f90
NESDIS_LandEM_Module.f90
src/MW/Land/NESDIS_LandMW_PhyModel.f90
NESDIS_LandMW_PhyModel.f90
src/MW/LUT_Atlas/CNRM_Atlas_Module.f90
CSEM_CNRM_Atlas.f90
src/MW/LUT_Atlas/CNRM_Atlas_Reader.f90
CNRM_Atlas_Reader.f90
src/MW/LUT_Atlas/TELSEM2_Atlas_Reader.f90
Subroutines for TELSEM2 MW emissivity atlas and interpolator
src/MW/LUT_Atlas/TELSEM_Atlas_Module.f90
TELSEM_Atlas_Module.f90
src/MW/LUT_Atlas/TELSEM_Atlas_Reader.f90
TELSEM_Atlas_Reader.f90
src/MW/Snow/CSEM_SnowMW_SfcOptics.f90
CSEM_SnowMW_SfcOptics.f90
src/MW/Soil/MW_Soil_Optics.f90
MW_Soil_Optics.f90
src/MW/Water/CSEM_WaterMW_SfcOptics.f90
CSEM_WaterMW_SfcOptics.f90
src/MW/Water/CRTM_FASTEM/Azimuth_Emissivity_F6_Module.f90
Azimuth_Emissivity_F6_Module.f90
src/MW/Water/CRTM_FASTEM/Azimuth_Emissivity_Module.f90
Azimuth_Emissivity_Module.f90
src/MW/Water/CRTM_FASTEM/CRTM_Fastem1.f90
CRTM_Fastem1.f90
src/MW/Water/CRTM_FASTEM/CRTM_FASTEM_MODULE.f90
CRTM_FASTEM_MODULE.f90

16 File Index

src/MW/Water/CRTM_FASTEM/CRTM_FastemXX.f90	
CRTM_FastemXX.f90	151
src/MW/Water/CRTM_FASTEM/CRTM_LowFrequency_MWSSEM.f90	
CRTM_LowFrequency_MWSSEM.f90	151
src/MW/Water/CRTM_FASTEM/CRTM_MWwaterCoeff_Define.f90	
CRTM_MWwaterCoeff_Define.f90	152
src/MW/Water/CRTM_FASTEM/CRTM_MWwaterLUT_Define.f90	
CRTM_MWwaterLUT_Define.f90	152
src/MW/Water/CRTM_FASTEM/Foam_Utility_Module.f90	
Foam_Utility_Module.f90	153
src/MW/Water/CRTM_FASTEM/Large_Scale_Correction_Module.f90	
Large_Scale_Correction_Module.f90	154
src/MW/Water/CRTM_FASTEM/Liu.f90	
Liu.f90	154
src/MW/Water/CRTM_FASTEM/Ocean_Permittivity.f90	
Ocean_Permittivity.f90	155
src/MW/Water/CRTM_FASTEM/Small_Scale_Correction_Module.f90	
Small_Scale_Correction_Module.f90	155
src/MW/Water/RTTOV_FASTEM/rttov_fastem5r1.F90	
Compute FASTEM-4,5,6 emissivity and reflectance for a single channel	156
src/MW/Water/RTTOV_FASTEM/rttov_fastem5r1_ad.F90	
AD of FASTEM-4,5,6 emissivity and reflectance calculation	157
src/MW/Water/RTTOV_FASTEM/rttov_fastem5r1_coef.F90	
Contains data for the FASTEM-4,5,6 MW sea surface emissivity models	157
src/MW/Water/RTTOV_FASTEM/rttov_fastem5r1_tl.F90	
TL of FASTEM-4,5,6 emissivity and reflectance calculation	159
src/MW/Water/RTTOV_FASTEM/rttov_tessem_mod.F90	
Subroutines for TESSEM2 MW sea surface emissivity model	160
src/VisIR/Ice/CSEM_IceIR_SfcOptics.f90	
CSEM_lceIR_SfcOptics.f90	160
src/VisIR/Ice/CSEM_IceVIS_SfcOptics.f90	
CSEM_lceVIS_SfcOptics.f90	161
src/VisIR/Land/CSEM_LandIR_SfcOptics.f90	
CSEM_LandIR_SfcOptics.f90	161
src/VisIR/Land/CSEM_LandVIS_SfcOptics.f90	
CSEM_LandVIS_SfcOptics.f90	162
src/VisIR/Snow/CSEM_SnowIR_SfcOptics.f90	
CSEM_SnowIR_SfcOptics.f90	162
src/VisIR/Snow/CSEM_SnowVIS_SfcOptics.f90	
CSEM_SnowVIS_SfcOptics.f90	163
src/VisIR/Water/CSEM_WaterIR_SfcOptics.f90	
CSEM_WaterIR_SfcOptics.f90	164
src/VisIR/Water/CSEM_WaterVIS_SfcOptics.f90	
CSEM_WaterVIS_SfcOntics f90	164

Module Documentation

7.1 azimuth_emissivity_f6_module Module Reference

Azimuthal functions of the FASTEM-6 model

Functions/Subroutines

- subroutine, public **azimuth_emissivity_f6** (AZCoeff, Wind_Speed, Azimuth_Angle, Frequency, Zenith_← Angle, e_Azimuth, iVar)
- subroutine, public azimuth_emissivity_f6_tl (AZCoeff, Wind_Speed_TL, Azimuth_Angle_TL, e_Azimuth_TL, iVar)
- subroutine, public azimuth_emissivity_f6_ad (AZCoeff, e_Azimuth_AD, Wind_Speed_AD, Azimuth_Angle_
 — AD, iVar)

7.1.1 Detailed Description

Azimuthal functions of the FASTEM-6 model

Helper module containing the azimuth-dependency routines for the CRTM FASTEM-6

7.1.2 Function/Subroutine Documentation

18 Module Documentation

7.1.2.1 azimuth_emissivity_f6_ad()

Adjoint model Here is the caller graph for this function:

7.1.2.2 azimuth_emissivity_f6_tl()

Tangent-linear model Here is the caller graph for this function:

7.2 azimuth emissivity module Module Reference

Azimuthal emissivity subroutines of old FASTEM versons.

Functions/Subroutines

- subroutine, public azimuth_emissivity (AZCoeff, Wind_Speed, Azimuth_Angle, Frequency, cos_z, e_Azimuth, iVar)
- subroutine, public azimuth_emissivity_tl (AZCoeff, Wind_Speed_TL, Azimuth_Angle_TL, e_Azimuth_TL, i ← Var)
- subroutine, public azimuth_emissivity_ad (AZCoeff, e_Azimuth_AD, Wind_Speed_AD, Azimuth_Angle_AD, iVar)

7.2.1 Detailed Description

Azimuthal emissivity subroutines of old FASTEM versons.

Helper module containing the azimuth emissivity routines for the CRTM implementation of FASTEM4 and FASTEM5

7.2.2 Function/Subroutine Documentation

7.2.2.1 azimuth emissivity()

Compute emissivity as a function of relative azimuth angle. Here is the caller graph for this function:

7.2.2.2 azimuth_emissivity_ad()

Adjoint model Here is the caller graph for this function:

20 Module Documentation

7.2.2.3 azimuth_emissivity_tl()

Tangent-linear model Here is the caller graph for this function:

7.3 cnrm_amsua_reader Module Reference

Module containing Data and routines for MW emissivity atlas METEO-FRANCE CNRM

Functions/Subroutines

- integer function, public cnrm_amsua_setup (path, imonth)
- integer function, public cnrm_amsua_emiss (latitude, longitude_in, frequency, zenangle, emissivity_
 v, emissivity_h, pbats_veg)
- integer function, public **cnrm_amsua_emiss_multi** (latitude, longitude_in, frequency, zenangle, n_Channel, emissivity, pbats_veg)

Variables

• integer, public cnrm_amsua_version = 200

7.3.1 Detailed Description

Module containing Data and routines for MW emissivity atlas METEO-FRANCE CNRM

7.4 cnrm_atlas_module Module Reference

Module for users to use CNRM land surface emissivity data sets by CSEM interfaces.

Functions/Subroutines

- integer function, public **cnrm_atlas_setup** (imonth, path, Atlas_ID, mw_atlas_ver)
- integer function, public **cnrm_atlas_emiss** (Frequency, Angle, Latitude, Longitude, imonth, Emissivity_H, Emissivity_V, stype)
- integer function, public cnrm_atlas_emiss_nchannels (Frequency, Angle, Latitude, Longitude, imonth, n

 _Channel, emissivity, stype)
- · logical function, public cnrm_atlas_initialized (imonth)
- subroutine, public cnrm_atlas_close ()

7.4.1 Detailed Description

Module for users to use CNRM land surface emissivity data sets by CSEM interfaces.

CNRM data includes the monthly land surface emissivity atlas retrieved from AMSU-A, AMSU-B, SSMI, SSMIS, TMI and AMSRE (http://www.cnrm.meteo.fr/gmap/mwemis/get_data.html). Only the interfaces for the monthly AMSU-A atlas are implemented in this module. Similar interfces may be implemented for the atlas retrieved from other sensors.

7.5 crtm_fastem1 Module Reference

Module with the old Fastem procedures.

Functions/Subroutines

subroutine, public fastem1 (Frequency, Sat_Zenith_Angle, SST, Wind_Speed, Emissivity, dEH_dWind

 Speed, dEV_dWindSpeed)

7.5.1 Detailed Description

Module with the old Fastem procedures.

PURPOSE: This module computes ocean emissivity and its jacobian over water. The code is adopted from RTTOV Fastem version 1.

Method: FASTEM-1 English and Hewison 1998. http://www.metoffice.com/research/interproj/nwpsaf/rtm

7.6 crtm_fastem_module Module Reference

Container module with all the existing CRTM FASTEM versions.

22 Module Documentation

Functions/Subroutines

• integer function, public crtm_fastem_emiss (Frequency, Angle, Water_Temperature, Salinity, Wind_Speed, Wind_Direction, Emissivity, Reflectivity, FASTEM_Version, Sensor_Azimuth_Angle, Transmittance)

- integer function, public compute_fastem_sfcoptics (Frequency, Angles, Water_Temperature, Salinity, Wind
 — Speed, Wind_Direction, iVar, Emissivity, Reflectivity, FASTEM_Version, Sensor_Azimuth_Angle, Transmittance)
- integer function, public compute_fastem_sfcoptics_tl (Water_Temperature_TL, Salinity_TL, Wind_Speed_TL, Wind Direction TL, Transmittance TL, iVar, Emissivity TL, Reflectivity TL, FASTEM Version)
- integer function, public compute_fastem_sfcoptics_ad (Emissivity_AD, Reflectivity_AD, Water_
 —
 Temperature_AD, Salinity_AD, Wind_Speed_AD, Wind_Direction_AD, Transmittance_AD, iVar, FASTEM_
 —
 Version)
- integer function, public crtm fastem init (MWwaterCoeff File, Version)
- integer function, public crtm_fastem_destroy ()

Variables

• logical, save, public csem_mwwatercoeff_init = .FALSE.

7.6.1 Detailed Description

Container module with all the existing CRTM FASTEM versions.

This module is provided to "wrap" all the existing CRTM FASTEM versions and provide a general interface to simplify integration into the main CRTM_SfcOptics module.

7.6.2 Function/Subroutine Documentation

7.6.2.1 compute_fastem_sfcoptics()

PURPOSE: Function to compute the surface emissivity and reflectivity at microwave frequencies over a water surface and at SINGLE frequency channel and MULTIPLE receiving angle

This function is a wrapper of different FASTEM versions Here is the call graph for this function:

Here is the caller graph for this function:

7.6.2.2 compute_fastem_sfcoptics_ad()

PURPOSE: Function to compute the adjoint surface emissivity and reflectivity at microwave frequencies over a water surface.

This function is a wrapper of different FASTEM versions Here is the caller graph for this function:

```
csem_watermw_sfcoptics
::csem_compute_watermw
_sfcoptics_ad

crtm_fastem_module
::compute_fastem_sfcoptics_ad
```

7.6.2.3 compute_fastem_sfcoptics_tl()

```
real(fp), intent(in) Transmittance_TL,
type(ivar_type), intent(in) iVar,
real(fp), dimension(:,:), intent(out) Emissivity_TL,
real(fp), dimension(:,:), intent(out) Reflectivity_TL,
integer, intent(in) FASTEM_Version)
```

PURPOSE: Function to compute the tangent-linear surface emissivity and reflectivity at microwave frequencies over a water surface.

This function is a wrapper of different FASTEM versions Here is the caller graph for this function:

7.6.2.4 crtm fastem emiss()

PURPOSE: Function to compute the surface emissivity and reflectivity at microwave frequencies over a water surface and at SINGLE frequency channel and SINGLE receiving angle

This function is a wrapper of different FASTEM versions Here is the call graph for this function:

```
crtm_fastem_module ::crtm_fastem_emiss crtm_lowfrequency_mwssem ::lowfrequency_mwssem
```

7.6.2.5 crtm_fastem_init()

PURPOSE: Function to load FASTEM coefficient NETDCF files

This function must be called before calling other FASTEM functions Here is the caller graph for this function:

7.7 crtm_fastemxx Module Reference

Container Module for the Fastem4/5/6 models.

Functions/Subroutines

- subroutine, public compute_fastemxx (MWwaterCoeff, Frequency, n_Angles, Zenith_Angle, Temperature, Salinity, Wind_Speed, iVar, Emissivity, Reflectivity, Azimuth_Angle, Transmittance)
- subroutine, public compute_fastemxx_tl (MWwaterCoeff, Temperature_TL, Salinity_TL, Wind_Speed_TL, i ← Var, Emissivity_TL, Reflectivity_TL, Azimuth_Angle_TL, Transmittance_TL)
- subroutine, public compute_fastemxx_ad (MWwaterCoeff, Emissivity_AD, Reflectivity_AD, iVar, Temperature ← AD, Salinity_AD, Wind_Speed_AD, Azimuth_Angle_AD, Transmittance_AD)

7.7.1 Detailed Description

Container Module for the Fastem4/5/6 models.

The difference between the Fastem4 and Fastem5 models is realised purely through the coefficients read during CRTM initialisation. For Fastem6, a different azimuth emissivity model is used.

7.7.2 Function/Subroutine Documentation

7.7.2.1 compute_fastemxx()

PURPOSE: Subroutine to compute the Fastem4 or Fastem5 microwave sea surface emissivity and reflectivity. Here is the call graph for this function:

7.7.2.2 compute fastemxx ad()

```
real(fp), intent(inout), optional Azimuth_Angle_AD,
real(fp), intent(inout), optional Transmittance_AD)
```

PURPOSE: Subroutine to compute the adjoint Fastem4 or Fastem5 microwave sea surface emissivity and reflectivity.

NOTE: The forward model must be called first to fill the internal variable argument with the intermediate forward calculations. Here is the call graph for this function:

7.7.2.3 compute_fastemxx_tl()

PURPOSE: Subroutine to compute the tangent-linear Fastem4 or Fastem5 microwave sea surface emissivity and reflectivity.

NOTE: The forward model must be called first to fill the internal variable argument with the intermediate forward

calculations. Here is the call graph for this function:

7.8 crtm_lowfrequency_mwssem Module Reference

Module containg subroutines to compute microwave ocean emissivity components (FWD, TL, and AD) for low frequencies.

Functions/Subroutines

- subroutine, public lowfrequency_mwssem (Frequency, Zenith_Angle, Temperature, Salinity, Wind_Speed, Emissivity, iVar)
- subroutine, public lowfrequency_mwssem_tl (Temperature_TL, Salinity_TL, Wind_Speed_TL, Emissivity ← _TL, iVar)
- subroutine, public **lowfrequency_mwssem_ad** (Emissivity_AD, Temperature_AD, Salinity_AD, Wind_← Speed_AD, iVar)

7.8.1 Detailed Description

Module containg subroutines to compute microwave ocean emissivity components (FWD, TL, and AD) for low frequencies.

7.8.2 Function/Subroutine Documentation

7.8.2.1 lowfrequency_mwssem()

PURPOSE: Subroutine to compute microwave sea surface emissivity for the frequency range 5GHz < f < 20GHz Here is the caller graph for this function:

7.9 crtm mwwatercoeff define Module Reference

Module defining the MWwaterCoeff object.

Functions/Subroutines

- pure logical function, public crtm_mwwatercoeff_associated (self)
- pure subroutine, public crtm_mwwatercoeff_destroy (self)
- pure subroutine, public crtm_mwwatercoeff_create (self, ndim_subgrp, dims_subgrp)
- subroutine, public crtm_mwwatercoeff_inspect (self, pause)
- logical function, public crtm_mwwatercoeff_validrelease (self)
- subroutine, public crtm_mwwatercoeff_info (self, Info)
- subroutine, public crtm_mwwatercoeff_defineversion (Id)

7.9.1 Detailed Description

Module defining the MWwaterCoeff object.

7.9.2 Function/Subroutine Documentation

7.9.2.1 crtm_mwwatercoeff_associated()

```
pure logical function, public crtm_mwwatercoeff_define::crtm_mwwatercoeff_associated ( type(crtm_mwwatercoeff\_type) \text{, intent(in) } self \text{ )}
```

PURPOSE: Pure function to test the status of the allocatable components of the MWwaterCoeff structure. Here is the call graph for this function:

```
crtm_mwwatercoeff_define crtm_mwwaterlut_define ::crtm_mwwatercoeff_associated ::mwwaterlut_associated
```

7.10 crtm_mwwaterlut_define Module Reference

Module defining the MWwaterLUT object containing the Look-Up Table (LUT) for the microWave (MW) sea surface emissivity model.

Functions/Subroutines

- · pure logical function, public mwwaterlut associated (self)
- pure subroutine, public mwwaterlut_destroy (self)
- pure subroutine, public mwwaterlut_create (self, n_Angles, n_Frequencies, n_Temperatures, n_Wind_←
 Speeds)
- subroutine, public mwwaterlut_inspect (self, pause)
- logical function, public mwwaterlut_validrelease (self)
- subroutine, public mwwaterlut_info (self, Info)
- subroutine, public mwwaterlut_defineversion (Id)

7.10.1 Detailed Description

Module defining the MWwaterLUT object containing the Look-Up Table (LUT) for the microWave (MW) sea surface emissivity model.

7.10.2 Function/Subroutine Documentation

7.10.2.1 mwwaterlut_associated()

PURPOSE: Pure function to test the status of the allocatable components of the MWwaterLUT structure. Here is the caller graph for this function:

7.11 csem define Module Reference

Module to define the general CSEM data structures.

Data Types

- · type csem land surface
- type csem_water_surface
- type csem_snow_surface
- · type csem ice surface
- · type csem_sfcoptics_type
- type csem_sensorobs_struct
- type csem_geoinfo_struct
- type csem_atmosphere_parameters
- · type csem options type

Functions/Subroutines

- subroutine alloc_soil_profile (land, n_Layers)
- elemental subroutine clean_land (land)
- subroutine init_sfcoptics (self, n_Angles)
- subroutine alloc_sensorobs (self, n_Channels)
- elemental subroutine clean sensorobs (sensor)
- elemental subroutine clean_sfcoptics (sfcOptics)

7.11.1 Detailed Description

Module to define the general CSEM data structures.

7.12 csem_exception_handler Module Reference

Module currently used to define simple error/exit codes and output messages.

Functions/Subroutines

- recursive subroutine, public **display_message** (Routine_Name, Message, Error_State, Message_Log)
- integer function, public open_message_log (Message_Log, File_ID)

Variables

- integer, parameter, public success = 0
- integer, parameter, public information = 1
- integer, parameter, public warning = 2
- integer, parameter, public failure = 3
- integer, parameter, public **eof** = 4
- integer, parameter, public **undefined** = 5

7.12.1 Detailed Description

Module currently used to define simple error/exit codes and output messages.

7.13 csem_fitcoeff_define Module Reference

Module defining the FitCoeff objects.

Functions/Subroutines

• subroutine, public csem_fitcoeff_defineversion (Id)

Variables

• integer, parameter, public fitcoeff_max_n_dimensions = 3

7.13.1 Detailed Description

Module defining the FitCoeff objects.

7.14 csem_fresnel Module Reference

Module containing several algorithms for the calculation of Fresnel Reflectance and transmittance.

Data Types

- · interface fresnel reflectance
- interface fresnel_reflectance_tl
- · interface fresnel reflectance ad

Functions/Subroutines

- subroutine **fresnel reflectance 1** (em1, em2, theta i, theta t, rv, rh)
- subroutine fresnel reflectance tl_1 (em1, em2, theta i, theta t, em1 TL, em2 TL, rv TL, rh TL)
- subroutine fresnel_reflectance_ad_1 (em1, em2, theta_i, theta_t, em1_AD, em2_AD, rv_AD, rh_AD)
- subroutine fresnel_reflectance_2 (em1, em2, theta_i, rv, rh)
- subroutine fresnel_reflectance_tl_2 (em1, em2, theta_i, em1_TL, em2_TL, rv_TL, rh_TL)
- subroutine fresnel reflectance ad 2 (em1, em2, theta i, em1 AD, em2 AD, rv AD, rh AD)
- subroutine fresnel_transmittance (em1, em2, theta_i, theta_t, tv, th)
- subroutine fresnel_reflectance_liou (theta_i, em1, em2, rv, rh)
- subroutine dispersion (theta_i, emc, k_real, k_img)

7.14.1 Detailed Description

Module containing several algorithms for the calculation of Fresnel Reflectance and transmittance.

7.15 csem_iceir_sfcoptics Module Reference

Container module with all the IR_ICE models available in the CSEM model repository.

Functions/Subroutines

- integer function, public csem_compute_iceir_sfcoptics (Surface, SfcOptics, Options)
 PURPOSE: Function to compute the ice surface emissivity and reflectivity at infrared wavelength.
- integer function, public csem_compute_iceir_sfcoptics_tl (SfcOptics_TL)

 PURPOSE: Function to compute the ice surface emissivity and reflectivity tangent-linear at infrared wavelength.
- integer function, public csem_compute_iceir_sfcoptics_ad (Surface_AD)

 PURPOSE: Function to compute the ice surface emissivity and reflectivity adjoint at infrared wavelength.

7.15.1 Detailed Description

Container module with all the IR_ICE models available in the CSEM model repository.

The surface emissivity and reflectivity are required to determine the surface radiative contribution to the overall atmosphere radiative transfer system. This module is designed as a container to implement different ice surface radiative transfer models of infrared bands in the CSEM package. It also provides a generic interface for the upper-level applications to access all the available IR_ICE models. Each individual model has the FWD(Forward), TL(Tangent-linear) and AD(Adjoint) functions for the variational data assimilation and the surface parameter retrieval applications.

It replaces the similar functionality of the original CRTM surface module "CRTM_IceIR_SfcOptics", which was written by Paul van Delst, 23-Jun-2005

7.15.2 Function/Subroutine Documentation

7.15.2.1 csem_compute_iceir_sfcoptics()

PURPOSE: Function to compute the ice surface emissivity and reflectivity at infrared wavelength.

It encapsulates all available IR_ICE RT models in the CSEM package, and provides the genereic interface for the upper-level user applications.

Parameters

in	Surface	CSEM Ice surface derived-type input
		UNITS: N/A TYPE: CSEM_Ice_Surface DIMENSION: Scalar
in	Options	CSEM derived-type for optional inputs, e.g., Gelocation & Time metadata, sensor observations which are needed by emprirical and semi-empirical models.
		UNITS: N/A TYPE: CSEM_Options_Type DIMENSION: Scalar
in,out	SfcOptics	CSEM SfcOptics derived-type, containing the in&out surface optical property variables in the radiative transfer calculation, e.g., the wavelength input and the surface emissivity/reflectivity outputs.
		UNITS: N/A TYPE: CSEM_SfcOptics_Type DIMENSION: Scalar

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.15.2.2 csem_compute_iceir_sfcoptics_ad()

PURPOSE: Function to compute the ice surface emissivity and reflectivity adjoint at infrared wavelength.

Parameters

in,out	Surface	CSEM_Ice_Surface adjoint	
		UNITS: TYPE: DIMENSION:	N/A CSEM_Ice_Surface Scalar

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM Exception Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.15.2.3 csem_compute_iceir_sfcoptics_tl()

PURPOSE: Function to compute the ice surface emissivity and reflectivity tangent-linear at infrared wavelength.

Parameters

in,out	SfcOptics_TL	CSEM SfcOptics tangent-linear output	
		UNITS: TYPE: DIMENSION:	N/A CSEM_SfcOptics_Type Scalar

Returns

IO_Status: The return value is an integer defining the error status. The error codes are defined in the CSEM Exception Handler module.

== SUCCESS the computation was sucessful

== FAILURE an unrecoverable error occurred

7.16 csem icemw sfcoptics Module Reference

Container module for all the MW_ICE models available in the CSEM model repository.

Functions/Subroutines

- integer function, public csem_compute_icemw_sfcoptics (Surface, SfcOptics, Options)

 PURPOSE: Function to compute the sea-ice surface emissivity and reflectivity at microwave frequencies.
- integer function, public csem_compute_icemw_sfcoptics_tl (CSEM_SfcOptics_TL)

 PURPOSE: Function to compute the ice surface emissivity and reflectivity tangent-linear at microwave frequencies.
- integer function, public csem_compute_icemw_sfcoptics_ad (CSEM_Surface_AD)

PURPOSE: Function to compute the ice surface emissivity and reflectivity adjoint at microwave frequencies.

7.16.1 Detailed Description

Container module for all the MW ICE models available in the CSEM model repository.

The surface emissivity and reflectivity are required to determine the surface radiative contribution to the overall atmosphere radiative transfer system. This module is designed as a container to implement different sea-ice surface radiative transfer models of microwave frequencies in the CSEM package. It also provides a generic interface for the upper-level applications to access all the available MW_ICE models. Each individual model has the FWD(Forward), TL(Tangent-linear) and AD(Adjoint) functions for the variational data assimilation and the surface parameter retrieval applications.

It replaces the similar functionality of the original CRTM surface module "CRTM_IceMW_SfcOptics", which was written by Paul van Delst, 23-Jun-2005

7.16.2 Function/Subroutine Documentation

7.16.2.1 csem_compute_icemw_sfcoptics()

PURPOSE: Function to compute the sea-ice surface emissivity and reflectivity at microwave frequencies.

It encapsulates all available MW_ICE emissivity models in the CSEM package, and provides the genereic interface for the upper-level user applications.

Parameters

in	Surface	CSEM Ice surface derived-type input
		UNITS: N/A TYPE: CSEM_Ice_Surface DIMENSION: Scalar
in	Options	CSEM derived-type for optional inputs, e.g., Gelocation & Time metadata, sensor observations which are needed by emprirical and semi-empirical models.
		UNITS: N/A TYPE: CSEM_Options_Type DIMENSION: Scalar
in,out	SfcOptics SfcOptics	CSEM SfcOptics derived-type, containing the in&out surface optical property variables in the radiative transfer calculation, e.g., the wavelength input and the surface emissivity/reflectivity outputs.
		UNITS: N/A TYPE: CSEM_SfcOptics_Type DIMENSION: Scalar
out	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.
		UNITS: N/A TYPE: iVar_type DIMENSION: Scalar
out	IO_Status	The return value is an integer defining the error status. The error codes are defined in the CSEM_Exception_Handler module. == SUCCESS the computation was successful == FAILURE an unrecoverable error occurred
		UNITS: N/A TYPE: INTEGER DIMENSION: Scalar

Returns

IO_Status: The return value is an integer defining the error status. The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.16.2.2 csem_compute_icemw_sfcoptics_ad()

PURPOSE: Function to compute the ice surface emissivity and reflectivity adjoint at microwave frequencies.

Parameters

in,out	Surface	CSEM_Ice_Surface adjoint	
		UNITS: N/A TYPE: CSEM_Ice_Surface DIMENSION: Scalar	
out	IO_Status	The return value is an integer defining the error status. The error codes are defined in the CSEM_Exception_Handler module. == SUCCESS the computation was sucessful == FAILURE an unrecoverable error occurred	
		UNITS: N/A TYPE: INTEGER DIMENSION: Scalar	

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.16.2.3 csem_compute_icemw_sfcoptics_tl()

PURPOSE: Function to compute the ice surface emissivity and reflectivity tangent-linear at microwave frequencies.

in,out	SfcOptics_TL	CSEM SfcOptics tangent-linear output	
		UNITS: TYPE: DIMENSION:	N/A CSEM_SfcOptics_Type Scalar

Parameters

out	IO_Status	The return value is an integer defining the error status. The error codes are defined in the CSEM_Exception_Handler module. == SUCCESS the computation was successful == FAILURE an unrecoverable error occurred	
		UNITS: TYPE: DIMENSION:	N/A INTEGER Scalar

Returns

IO_Status: The return value is an integer defining the error status. The error codes are defined in the CSEM Exception Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.17 csem_icevis_sfcoptics Module Reference

Container module with all the VIS ICE models available in the CSEM model repository.

Functions/Subroutines

- integer function, public csem_compute_icevis_sfcoptics (Surface, SfcOptics, Options)

 PURPOSE: Function to compute the ice surface emissivity and reflectivity at visible wavelength.
- integer function, public csem_compute_icevis_sfcoptics_tl (SfcOptics_TL)

PURPOSE: Function to compute the ice surface emissivity and reflectivity tangent-linear at visible wavelength.

integer function, public csem_compute_icevis_sfcoptics_ad (Surface_AD)

PURPOSE: Function to compute the ice surface emissivity and reflectivity adjoint at visible wavelength.

7.17.1 Detailed Description

Container module with all the VIS_ICE models available in the CSEM model repository.

The surface emissivity and reflectivity are required to determine the surface radiative contribution to the overall atmosphere radiative transfer system. This module is designed as a container to implement different ice surface radiative transfer models of visible bands in the CSEM package. It also provides a generic interface for the upper-level applications to access all the available VIS_ICE models. Each individual model has the FWD(Forward), TL(Tangent-linear) and AD(Adjoint) functions for the variational data assimilation and the surface parameter retrieval applications.

It replaces the similar functionality of the original CRTM surface module "CRTM_IceVIS_SfcOptics", which was written by Paul van Delst, 23-Jun-2005

7.17.2 Function/Subroutine Documentation

7.17.2.1 csem_compute_icevis_sfcoptics()

PURPOSE: Function to compute the ice surface emissivity and reflectivity at visible wavelength.

It encapsulates all available VIS_ICE emissivity models in the CSEM package, and provides the genereic interface for the upper-level user applications.

Parameters

in	Surface	CSEM Ice surface derived-type input	
		UNITS: N/A TYPE: CSEM_Ice_Surface DIMENSION: Scalar	
in	Options	CSEM derived-type for optional inputs, e.g., Gelocation & Time metadata, sensor observations which are needed by emprirical and semi-empirical models.	
		UNITS: N/A TYPE: CSEM_Options_Type DIMENSION: Scalar	
in,out	SfcOptics	CSEM SfcOptics derived-type, containing the in&out surface optical property variables in the radiative transfer calculation, e.g., the wavelength input and the surface emissivity/reflectivity outputs.	
		UNITS: N/A TYPE: CSEM_SfcOptics_Type DIMENSION: Scalar	

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.17.2.2 csem_compute_icevis_sfcoptics_ad()

PURPOSE: Function to compute the ice surface emissivity and reflectivity adjoint at visible wavelength.

Parameters

in,out	Surface	CSEM_Ice_Surface adjoint	
		UNITS: TYPE: DIMENSION:	N/A CSEM_Ice_Surface Scalar

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.17.2.3 csem_compute_icevis_sfcoptics_tl()

PURPOSE: Function to compute the ice surface emissivity and reflectivity tangent-linear at visible wavelength.

Parameters

in,out	SfcOptics_TL	CSEM SfcOptics tangent-linear output	
		UNITS: TYPE: DIMENSION:	N/A CSEM_SfcOptics_Type Scalar

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.18 csem_landir_sfcoptics Module Reference

Container module with all the IR_LAND models available in the CSEM model repository.

Functions/Subroutines

- integer function, public csem_compute_landir_sfcoptics (Surface, SfcOptics, Options)

 PURPOSE: Function to compute the land surface emissivity and reflectivity at infrared wavelength.
- integer function, public csem_compute_landir_sfcoptics_tl (SfcOptics_TL)

PURPOSE: Function to compute the land surface emissivity and reflectivity tangent-linear at infrared wavelength.

• integer function, public csem_compute_landir_sfcoptics_ad (Surface_AD)

PURPOSE: Function to compute the Snowsurface emissivity and reflectivity adjoint at infrared wavelength.

7.18.1 Detailed Description

Container module with all the IR LAND models available in the CSEM model repository.

The surface emissivity and reflectivity are required to determine the surface radiative contribution to the overall atmosphere radiative transfer system. This module is designed as a container to implement different land surface radiative transfer models of infrared bands in the CSEM package. It also provides a generic interface for the upper-level applications to access all the available IR_LAND models. Each individual model has the FWD(Forward), TL(Tangent-linear) and AD(Adjoint) functions for the variational data assimilation and the surface parameter retrieval applications.

It replaces the similar functionality of the original CRTM surface module "CRTM_LandIR_SfcOptics", which was written by Paul van Delst, 23-Jun-2005

7.18.2 Function/Subroutine Documentation

7.18.2.1 csem_compute_landir_sfcoptics()

PURPOSE: Function to compute the land surface emissivity and reflectivity at infrared wavelength.

This function encapsulates all the available CSEM IR_LAND RT models, and provides a genereic interface for the upper-level user applications.

in	Surface	CSEM land surface derived-type input
		UNITS: N/A TYPE: CSEM_Land_Surface DIMENSION: Scalar
in	Options	CSEM derived-type for optional inputs, e.g., Gelocation & Time metadata, sensor observations which are needed by emprirical and semi-empirical models.
		UNITS: N/A TYPE: CSEM_Options_Type DIMENSION: Scalar
in,out	SfcOptics	CSEM SfcOptics derived-type, containing the in&out surface optical property variables in the radiative transfer calculation, e.g., the wavelength input and the surface emissivity/reflectivity outputs.
		UNITS: N/A TYPE: CSEM_SfcOptics_Type DIMENSION: Scalar

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.18.2.2 csem_compute_landir_sfcoptics_ad()

PURPOSE: Function to compute the Snowsurface emissivity and reflectivity adjoint at infrared wavelength.

Parameters

in,out	Surface	CSEM_Land_Surface adjoint	
		UNITS: TYPE: DIMENSION:	N/A CSEM_Land_Surface Scalar

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.18.2.3 csem_compute_landir_sfcoptics_tl()

```
integer function, public csem_landir_sfcoptics::csem_compute_landir_sfcoptics_tl ( type(csem\_sfcoptics\_type), \ intent(inout) \ \textit{SfcOptics\_TL} \ )
```

PURPOSE: Function to compute the land surface emissivity and reflectivity tangent-linear at infrared wavelength.

in,out	SfcOptics_TL	CSEM SfcOptics tangent-linear output	
		UNITS: TYPE: DIMENSION:	N/A CSEM_SfcOptics_Type Scalar

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

== SUCCESS the computation was successful

== FAILURE an unrecoverable error occurred

7.19 csem_landmw_sfcoptics Module Reference

Container module with all the MW_LAND models available in the CSEM model repository.

Functions/Subroutines

- integer function, public csem_compute_landmw_sfcoptics (Surface, SfcOptics, Options, iVar)
 PURPOSE: Function to compute the land surface emissivity and reflectivity at microwave frequencies.
- subroutine, public get_ref_index (Frequency, Polarization, i_ref_h, i_ref_v)
- integer function, public csem_compute_landmw_sfcoptics_tl (Surface_TL, SfcOptics_TL, iVar)
 PURPOSE: Function to compute the land surface emissivity and reflectivity tangent-linear at microwave frequencies.
- integer function, public csem_compute_landmw_sfcoptics_ad (SfcOptics_AD, Surface_AD, iVar)

 PURPOSE: Function to compute the land surface emissivity and reflectivity adjoint at microwave frequencies.

7.19.1 Detailed Description

Container module with all the MW LAND models available in the CSEM model repository.

The surface emissivity and reflectivity are required to determine the surface radiative contribution to the overall atmosphere radiative transfer system. This module is designed as a container to implement different land surface radiative transfer models of microwave frequencies in the CSEM package. It also provides a generic interface for the upper-level applications to access all the available MW_LAND models. Each individual model has the FWD(Forward), TL(Tangent-linear) and AD(Adjoint) functions for the variational data assimilation and the surface parameter retrieval applications.

It replaces the similar functionality of the original CRTM surface module "CRTM_LandMW_SfcOptics", which was written by Paul van Delst, 23-Jun-2005

7.19.2 Function/Subroutine Documentation

7.19.2.1 csem compute landmw sfcoptics()

PURPOSE: Function to compute the land surface emissivity and reflectivity at microwave frequencies.

It encapsulates all available MW_LAND RT models in the CSEM package, and provides the genereic interface for the upper-level user applications.

Parameters

in	Surface	CSEM land surface derived-type input	
		UNITS: N/A TYPE: CSEM_Land_Surface DIMENSION: Scalar	
in	Options	CSEM derived-type for optional inputs, e.g., Gelocation & Time metadata, sensor observations which are needed by emprirical and semi-empirical models.	
		UNITS: N/A TYPE: CSEM_Options_Type DIMENSION: Scalar	
in,out	SfcOptics	CSEM SfcOptics derived-type, containing the in&out surface optical property variables in the radiative transfer calculation, e.g., the wavelength input and the surface emissivity/reflectivity outputs.	
		UNITS: N/A TYPE: CSEM_SfcOptics_Type DIMENSION: Scalar	
out	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.	
		UNITS: N/A TYPE: iVar_type DIMENSION: Scalar	

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

Here is the call graph for this function:

7.19.2.2 csem_compute_landmw_sfcoptics_ad()

PURPOSE: Function to compute the land surface emissivity and reflectivity adjoint at microwave frequencies.

Parameters

in,out	Surface_AD	CSEM_Land_Surface adjoint outputs
		UNITS: N/A TYPE: CSEM_Land_Surface DIMENSION: Scalar
in,out	SfcOptics_AD	CSEM SfcOptics adjoint inputs
		UNITS: N/A TYPE: CSEM_SfcOptics_Type DIMENSION: Scalar
in	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.
		UNITS: N/A TYPE: iVar_type DIMENSION: Scalar

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

Here is the call graph for this function:

7.19.2.3 csem_compute_landmw_sfcoptics_tl()

PURPOSE: Function to compute the land surface emissivity and reflectivity tangent-linear at microwave frequencies.

Parameters

in	Surface_TL	CSEM_Land_Surface tangent-linear inputs		
		UNITS: N/A TYPE: CSEM_Land_Surface DIMENSION: Scalar		
in,out	SfcOptics_TL	CSEM SfcOptics tangent-linear output		
		UNITS: N/A TYPE: CSEM_SfcOptics_Type DIMENSION: Scalar		
in	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.		
		UNITS: N/A TYPE: iVar type		
		DIMENSION: Scalar		

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

Here is the call graph for this function:

7.20 csem landvis sfcoptics Module Reference

Container module with all the VIS_LAND models available in the CSEM model repository.

Functions/Subroutines

- integer function, public csem_compute_landvis_sfcoptics (Surface, SfcOptics, Options)

 PURPOSE: Function to compute the land surface emissivity and reflectivity at visible wavelength.
- integer function, public csem_compute_landvis_sfcoptics_tl (SfcOptics_TL)

 PURPOSE: Function to compute the land surface emissivity and reflectivity tangent-linear at visible wavelength.
- integer function, public csem_compute_landvis_sfcoptics_ad (Surface_AD)

 PURPOSE: Function to compute the Snowsurface emissivity and reflectivity adjoint at visible wavelength.

7.20.1 Detailed Description

Container module with all the VIS LAND models available in the CSEM model repository.

The surface emissivity and reflectivity are required to determine the surface radiative contribution to the overall atmosphere radiative transfer system. This module is designed as a container to implement different land surface radiative transfer models of visible bands in the CSEM package. It also provides a generic interface for the upper-level applications to access all the available VIS_LAND models. Each individual model has the FWD(Forward), TL(Tangent-linear) and AD(Adjoint) functions for the variational data assimilation and the surface parameter retrieval applications.

It replaces the similar functionality of the original CRTM surface module "CRTM_LandVIS_SfcOptics", which was written by Paul van Delst, 23-Jun-2005

7.20.2 Function/Subroutine Documentation

7.20.2.1 csem compute landvis sfcoptics()

PURPOSE: Function to compute the land surface emissivity and reflectivity at visible wavelength.

This function encapsulates all the available CSEM VIS_LAND RT models, and provides a genereic interface for the upper-level user applications.

in	Surface	CSEM Land surface derived-type input
		UNITS: N/A TYPE: CSEM_Land_Surface DIMENSION: Scalar
in	Options	CSEM derived-type for optional inputs, e.g., Gelocation & Time metadata, sensor observations which are needed by emprirical and semi-empirical models.
		UNITS: N/A TYPE: CSEM_Options_Type DIMENSION: Scalar
in,out	SfcOptics	CSEM SfcOptics derived-type, containing the in&out surface optical property variables in the radiative transfer calculation, e.g., the wavelength input and the surface emissivity/reflectivity outputs.
		UNITS: N/A TYPE: CSEM_SfcOptics_Type DIMENSION: Scalar
in,out	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.
		UNITS: N/A TYPE: iVar type
Generated by Dox	ygen	DIMENSION: Scalar

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.20.2.2 csem_compute_landvis_sfcoptics_ad()

PURPOSE: Function to compute the Snowsurface emissivity and reflectivity adjoint at visible wavelength.

Parameters

in,out	Surface	CSEM_Land_Surface adjoint	
		UNITS: TYPE: DIMENSION:	N/A CSEM_Land_Surface Scalar

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.20.2.3 csem_compute_landvis_sfcoptics_tl()

```
\label{lem:compute_landvis_scoptics::csem_compute_landvis_scoptics_tl ( \\ type(csem\_sfcoptics\_type), intent(inout) \ \textit{SfcOptics\_TL} \ )
```

PURPOSE: Function to compute the land surface emissivity and reflectivity tangent-linear at visible wavelength.

in,out	SfcOptics_TL	CSEM SfcOptics adjoint output	
		UNITS: TYPE: DIMENSION:	N/A CSEM_SfcOptics_Type Scalar

Returns

IO_Status: The return value is an integer defining the error status. The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.21 csem_lifecycle Module Reference

Module with the CSEM life cycle functions to initialize and destroy the CSEM space.

Functions/Subroutines

- integer function, public csem_init (Model_Registor_File)
- subroutine, public csem_destroy ()

7.21.1 Detailed Description

Module with the CSEM life cycle functions to initialize and destroy the CSEM space.

7.22 csem_model_manager Module Reference

Module containing functions to manage the all model options already implemented in CSEM and registered in the Model_Registor_File.

Functions/Subroutines

- integer function, public **load_model_repo** (Model_Registor_File)
- subroutine, public set_model_option (Model, verbose)
- type(csem model id) function, public inq model option (ModelClass)
- character(len=256) function, public **get_data_path** (ModelClass, ModelName)

7.22.1 Detailed Description

Module containing functions to manage the all model options already implemented in CSEM and registered in the Model_Registor_File.

7.23 csem_snowir_sfcoptics Module Reference

Container module with all the IR_SNOW models available in the CSEM model repository.

Functions/Subroutines

- integer function, public csem_compute_snowir_sfcoptics (Surface, SfcOptics, Options)
 PURPOSE: Function to compute the snow surface emissivity and reflectivity at infrared wavelength.
- integer function, public csem_compute_snowir_sfcoptics_tl (SfcOptics_TL)

 PURPOSE: Function to compute the snow surface emissivity and reflectivity tangent-linear at infrared wavelength.
- integer function, public csem_compute_snowir_sfcoptics_ad (Surface_AD)

 PURPOSE: Function to compute the Snow surface emissivity and reflectivity adjoint at infrared wavelength.

7.23.1 Detailed Description

Container module with all the IR SNOW models available in the CSEM model repository.

The surface emissivity and reflectivity are required to determine the surface radiative contribution to the overall atmosphere radiative transfer system. This module is designed as a container to implement different infrared snow surface radiative transfer models in the CSEM package. It also provides a generic interface for the upper-level applications to access all the available IR_SNOW models. Each individual model has the FWD(Forward), TL(Tangent-linear) and AD(Adjoint) functions for the variational data assimilation and the surface parameter retrieval applications.

It replaces the similar functionality of the original CRTM surface module "CRTM_SnowIR_SfcOptics", which was written by Paul van Delst, 23-Jun-2005

7.23.2 Function/Subroutine Documentation

7.23.2.1 csem_compute_snowir_sfcoptics()

PURPOSE: Function to compute the snow surface emissivity and reflectivity at infrared wavelength.

It encapsulates all available IR_SNOW emissivity models in the CSEM package, and provides the genereic interface for the upper-level user applications.

in	Surface	CSEM Snow surface derived-type input	
		UNITS: N/A TYPE: CSEM_Snow_Surface DIMENSION: Scalar	
in	Options	CSEM derived-type for optional inputs, e.g., Gelocation & Time metadata, sensor observations which are needed by emprirical and semi-empirical models.	
		UNITS: N/A TYPE: CSEM_Options_Type DIMENSION: Scalar	
in,out	SfcOptics	CSEM SfcOptics derived-type, containing the in&out surface optical property variables in the radiative transfer calculation, e.g., the wavelength input and the surface emissivity/reflectivity outputs.	

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.23.2.2 csem_compute_snowir_sfcoptics_ad()

PURPOSE: Function to compute the Snow surface emissivity and reflectivity adjoint at infrared wavelength.

Parameters

in,out	Surface	CSEM_Snow_Surface adjoint	
		UNITS: TYPE: DIMENSION:	N/A CSEM_Snow_Surface Scalar

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.23.2.3 csem_compute_snowir_sfcoptics_tl()

PURPOSE: Function to compute the snow surface emissivity and reflectivity tangent-linear at infrared wavelength.

in,out	SfcOptics_TL	CSEM SfcOptics tangent-linear output	
		UNITS: TYPE: DIMENSION:	N/A CSEM_SfcOptics_Type Scalar

Returns

IO_Status: The return value is an integer defining the error status. The error codes are defined in the CSEM_Exception_Handler module.

== SUCCESS the computation was sucessful

== FAILURE an unrecoverable error occurred

7.24 csem_snowmw_sfcoptics Module Reference

This module provides a generic interface for the upper-level applications to access all the MW_SNOW models available in the CSEM model repository.

Functions/Subroutines

- integer function, public csem_compute_snowmw_sfcoptics (Surface, SfcOptics, Options)
 PURPOSE: Function to compute the snow surface emissivity and reflectivity at microwave frequencies.
- integer function, public csem_compute_snowmw_sfcoptics_tl (CSEM_SfcOptics_TL)

 PURPOSE: Function to compute the snow surface emissivity and reflectivity tangent-linear at microwave frequencies.
- integer function, public csem_compute_snowmw_sfcoptics_ad (CSEM_Surface_AD)

 PURPOSE: Function to compute the Snowsurface emissivity and reflectivity adjoint at microwave frequencies.

7.24.1 Detailed Description

This module provides a generic interface for the upper-level applications to access all the MW_SNOW models available in the CSEM model repository.

The surface emissivity and reflectivity are required to determine the surface radiative contribution to the overall atmosphere radiative transfer system. This module is designed as a container to implement different snow surface radiative transfer models of microwave frequencies in the CSEM package. It also provides a generic interface for the upper-level applications to access all the available MW_SNOW models. Each individual model has the FWD(Forward), TL(Tangent-linear) and AD(Adjoint) functions for the variational data assimilation and the surface parameter retrieval applications.

It replaces the similar functionality of the original CRTM surface module "CRTM_SnowMW_SfcOptics", which was written by Paul van Delst, 23-Jun-2005

7.24.2 Function/Subroutine Documentation

7.24.2.1 csem_compute_snowmw_sfcoptics()

PURPOSE: Function to compute the snow surface emissivity and reflectivity at microwave frequencies.

It encapsulates all available MW_SNOW emissivity models in the CSEM package, and provides the genereic interface for the upper-level user applications.

Parameters

in	Surface	CSEM Snow surface derived-type input		
		UNITS: N/A TYPE: CSEM_Snow_Surface DIMENSION: Scalar		
in	Options	CSEM derived-type for optional inputs, e.g., Gelocation & Time metadata, sensor observations which are needed by emprirical and semi-empirical models.		
		UNITS: N/A TYPE: CSEM_Options_Type DIMENSION: Scalar		
in,out	SfcOptics	CSEM SfcOptics derived-type, containing the in&out surface optical property variables in the radiative transfer calculation, e.g., the wavelength input and the surface emissivity/reflectivity outputs.		
		UNITS: N/A TYPE: CSEM_SfcOptics_Type DIMENSION: Scalar		
out	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.		
		UNITS: N/A TYPE: iVar_type DIMENSION: Scalar		

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.24.2.2 csem_compute_snowmw_sfcoptics_ad()

PURPOSE: Function to compute the Snowsurface emissivity and reflectivity adjoint at microwave frequencies.

in,out	Surface	CSEM_Snow_Surface adjoint	
		UNITS: TYPE: DIMENSION:	N/A CSEM_Ice_Surface Scalar

Returns

IO_Status: The return value is an integer defining the error status. The error codes are defined in the CSEM Exception Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.24.2.3 csem_compute_snowmw_sfcoptics_tl()

PURPOSE: Function to compute the snow surface emissivity and reflectivity tangent-linear at microwave frequencies

Parameters

in,out	SfcOptics_TL	CSEM SfcOptics tangent-linear output		
		UNITS: TYPE: DIMENSION:	N/A CSEM_SfcOptics_Type Scalar	

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.25 csem_snowvis_sfcoptics Module Reference

Container module of all the VIS_SNOW models available in the CSEM model repository.

Functions/Subroutines

- integer function, public csem_compute_snowvis_sfcoptics (Surface, SfcOptics, Options)

 PURPOSE: Function to compute the snow surface emissivity and reflectivity at visible wavelength.
- integer function, public csem_compute_snowvis_sfcoptics_tl (SfcOptics_TL)

 PURPOSE: Function to compute the snow surface emissivity and reflectivity tangent-linear at visible wavelength.
- integer function, public csem_compute_snowvis_sfcoptics_ad (Surface_AD)

PURPOSE: Function to compute the Snowsurface emissivity and reflectivity adjoint at visible wavelength.

7.25.1 Detailed Description

Container module of all the VIS SNOW models available in the CSEM model repository.

The surface emissivity and reflectivity are required to determine the surface radiative contribution to the overall atmosphere radiative transfer system. This module is designed as a container to implement different visible snow surface radiative transfer models in the CSEM package. It also provides a generic interface for the upper-level applications to access all the available VIS_SNOW models. Each individual model has the FWD(Forward), TL(Tangent-linear) and AD(Adjoint) functions for the variational data assimilation and the surface parameter retrieval applications.

It replaces the similar functionality of the original CRTM surface module "CRTM_SnowIR_SfcOptics", which was written by Paul van Delst, 23-Jun-2005

7.25.2 Function/Subroutine Documentation

7.25.2.1 csem_compute_snowvis_sfcoptics()

PURPOSE: Function to compute the snow surface emissivity and reflectivity at visible wavelength.

It encapsulates all available IR_SNOW emissivity models in the CSEM package, and provides the genereic interface for the upper-level user applications.

in	Surface	CSEM Snow surface derived-type input	
		UNITS: N/A TYPE: CSEM_Snow_Surface DIMENSION: Scalar	
in	Options	CSEM derived-type for optional inputs, e.g., Gelocation & Time metadata, sensor observations which are needed by emprirical and semi-empirical models.	
		UNITS: N/A TYPE: CSEM_Options_Type DIMENSION: Scalar	
in,out	SfcOptics	CSEM SfcOptics derived-type, containing the in&out surface optical property variables in the radiative transfer calculation, e.g., the wavelength input and the surface emissivity/reflectivity outputs.	
		UNITS: N/A TYPE: CSEM_SfcOptics_Type DIMENSION: Scalar	

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.25.2.2 csem_compute_snowvis_sfcoptics_ad()

PURPOSE: Function to compute the Snowsurface emissivity and reflectivity adjoint at visible wavelength.

Parameters

in,out	Surface	CSEM_Snow_Surface adjoint	
		UNITS: TYPE: DIMENSION:	N/A CSEM_Ice_Surface Scalar

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.25.2.3 csem_compute_snowvis_sfcoptics_tl()

```
\label{lem:compute_snow} integer \ function, \ public \ csem\_snowvis\_sfcoptics::csem\_compute\_snowvis\_sfcoptics\_tl \ ( \\ type(csem\_sfcoptics\_type), \ intent(inout) \ \textit{SfcOptics\_TL} \ )
```

PURPOSE: Function to compute the snow surface emissivity and reflectivity tangent-linear at visible wavelength.

in,out	SfcOptics_TL	CSEM SfcOptics tangent-linear output	
		UNITS: TYPE: DIMENSION:	N/A CSEM_SfcOptics_Type Scalar

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

== SUCCESS the computation was successful

== FAILURE an unrecoverable error occurred

7.26 csem waterir sfcoptics Module Reference

Container module with all the IR WATER models available in the CSEM model repository.

Functions/Subroutines

- integer function, public csem_compute_waterir_sfcoptics (Surface, SfcOptics, Options, iVar)

 PURPOSE: Function to compute the ocean surface emissivity and reflectivity at infrared wavelength.
- integer function, public csem_compute_waterir_sfcoptics_tl (Surface_TL, SfcOptics_TL, iVar)

 PURPOSE: Function to compute the ocean surface emissivity and reflectivity tangent-linear at infrared wavelength.
- integer function, public csem_compute_waterir_sfcoptics_ad (SfcOptics_AD, Surface_AD, iVar)

 PURPOSE: Function to compute the ocean surface emissivity and reflectivity adjoint at infrared wavelength.

7.26.1 Detailed Description

Container module with all the IR_WATER models available in the CSEM model repository.

The surface emissivity and reflectivity are required to determine the surface radiative contribution to the overall atmosphere radiative transfer system. This module is designed as a container to implement different water surface radiative transfer models of infrared bandsin the CSEM package. It also provides a generic interface for the upper-level applications to access all the available IR_WATER models. Each individual model has the FWD(Forward), TL(Tangent-linear) and AD(Adjoint) functions for the variational data assimilation and the surface parameter retrieval applications.

It replaces the similar functionality of the original CRTM surface module "CRTM_WaterIR_SfcOptics", which was written by Paul van Delst, 23-Jun-2005

7.26.2 Function/Subroutine Documentation

7.26.2.1 csem compute waterir sfcoptics()

PURPOSE: Function to compute the ocean surface emissivity and reflectivity at infrared wavelength.

This function encapsulates all the available CSEM IR_WATER RT models, and provides a genereic interface for the upper-level user applications.

Parameters

in	Surface	CSEM water surface derived-type input	
		UNITS: N/A TYPE: CSEM_Water_Surface DIMENSION: Scalar	
in	Options	CSEM derived-type for optional inputs, e.g., Gelocation & Time metadata, sensor observations which are needed by emprirical and semi-empirical models. UNITS: N/A TYPE: CSEM_Options_Type	
		DIMENSION: Scalar	
in	Options	CSEM derived-type for optional inputs, e.g., Gelocation & Time metadata, sensor observations which are needed by emprirical and semi-empirical models. UNITS: N/A TYPE: CSEM_Options_Type	
		DIMENSION: Scalar	
in,out	SfcOptics	CSEM SfcOptics derived-type, containing the in&out surface optical property variables in the radiative transfer calculation, e.g., the wavelength input and the surface emissivity/reflectivity outputs.	
		UNITS: N/A TYPE: CSEM_SfcOptics_Type DIMENSION: Scalar	
in,out	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.	
		UNITS: N/A TYPE: iVar_type DIMENSION: Scalar	

Returns

 $\ensuremath{\mathsf{IO}}\xspace_{\ensuremath{\mathsf{S}}\xspace}$ Tatus: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.26.2.2 csem_compute_waterir_sfcoptics_ad()

PURPOSE: Function to compute the ocean surface emissivity and reflectivity adjoint at infrared wavelength.

in,out	Surface_AD	CSEM_Water_Surface adjoint outputs	
		UNITS: N/A TYPE: CSEM_Water_Surface DIMENSION: Scalar	
in,out	SfcOptics_AD	CSEM SfcOptics adjoint inputs	
		UNITS: N/A TYPE: CSEM_SfcOptics_Type DIMENSION: Scalar	
in,out	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.	
		UNITS: N/A TYPE: iVar_type DIMENSION: Scalar	

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.26.2.3 csem_compute_waterir_sfcoptics_tl()

PURPOSE: Function to compute the ocean surface emissivity and reflectivity tangent-linear at infrared wavelength.

in	Surface_TL	CSEM_Water_Surface tangent-linear inputs	
		UNITS: N/A TYPE: CSEM_Water_Surface DIMENSION: Scalar	
in,out	SfcOptics_TL	CSEM SfcOptics tangent-linear output	
		UNITS: N/A TYPE: CSEM_SfcOptics_Type DIMENSION: Scalar	
in	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.	
		UNITS: N/A	
Generated by Dox	ygen	TYPE: iVar_type	

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

== SUCCESS the computation was successful

== FAILURE an unrecoverable error occurred

7.27 csem_watermw_sfcoptics Module Reference

Container module with all the MWWater models available in the CSEM model repository.

Functions/Subroutines

- integer function, public csem_compute_watermw_sfcoptics (Surface, SfcOptics, Options, iVar)

 PURPOSE: Function to compute the ocean surface emissivity and reflectivity at microwave frequencies.
- integer function, public csem_compute_watermw_sfcoptics_tl (Surface_TL, Atmos_TL, SfcOptics_TL, iVar)

 PURPOSE: Function to compute the ocean surface emissivity and reflectivity tangent-linear at microwave frequencies.
- integer function, public csem_compute_watermw_sfcoptics_ad (SfcOptics_AD, Surface_AD, Atmos_AD, iVar)

 PURPOSE: Function to compute the ocean surface emissivity and reflectivity adjoint at microwave frequencies.

7.27.1 Detailed Description

Container module with all the MWWater models available in the CSEM model repository.

The surface emissivity and reflectivity are required to determine the surface radiative contribution to the overall atmosphere radiative transfer system. This module is designed as a container to implement different microwave ocean surface radiative transfer models in the CSEM package. It also provides a generic interface for the upper-level applications to access all the available MWWater models. Each individual model has the FWD(Forward), TL(Tangent-linear) and AD(Adjoint) functions for the variational data assimilation applications and the surface parameter retrieval applications.

It replaces the similar functionality of the original CRTM surface module "CRTM_WaterMW_SfcOptics", which was written by Paul van Delst, 23-Jun-2005

7.27.2 Function/Subroutine Documentation

7.27.2.1 csem compute watermw sfcoptics()

PURPOSE: Function to compute the ocean surface emissivity and reflectivity at microwave frequencies.

This function encapsulates all the available CSEM WaterMW emissivity models, and provides a genereic interface for the upper-level user applications.

in	Surface	CSEM water surface derived-type input
		UNITS: N/A TYPE: CSEM_Water_Surface DIMENSION: Scalar
in	Options	CSEM derived-type for optional inputs, e.g., Gelocation & Time metadata, sensor observations which are needed by emprirical and semi-empirical models.
		UNITS: N/A TYPE: CSEM_Options_Type DIMENSION: Scalar
in,out	SfcOptics	CSEM SfcOptics derived-type, containing the in&out surface optical property variables in the radiative transfer calculation, e.g., the wavelength input and the surface emissivity/reflectivity outputs. UNITS: N/A TYPE: CSEM_SfcOptics_Type DIMENSION: Scalar
in,out	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module. UNITS: N/A TYPE: iVar_type DIMENSION: Scalar
out	IO_Status	The return value is an integer defining the error status. The error codes are defined in the CSEM_Exception_Handler module. == SUCCESS the computation was sucessful == FAILURE an unrecoverable error occurred UNITS: N/A TYPE: INTEGER DIMENSION: Scalar

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

Here is the call graph for this function:

7.27.2.2 csem_compute_watermw_sfcoptics_ad()

PURPOSE: Function to compute the ocean surface emissivity and reflectivity adjoint at microwave frequencies.

Parameters

in,out	Surface_AD	CSEM_Water_Surface adjoint outputs
		UNITS: N/A TYPE: CSEM_Water_Surface DIMENSION: Scalar
in,out	Atmos_TL	CSEM_Atmosphere_Parameters Adjoint output
		UNITS: N/A TYPE: CSEM_Atmosphere_Parameters DIMENSION: Scalar
in,out	SfcOptics_AD	CSEM SfcOptics adjoint inputs
		UNITS: N/A TYPE: CSEM_SfcOptics_Type DIMENSION: Scalar
in	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.
		UNITS: N/A TYPE: iVar_type DIMENSION: Scalar
out	IO_Status	The return value is an integer defining the error status. The error codes are defined in the CSEM_Exception_Handler module. == SUCCESS the computation was successful == FAILURE an unrecoverable error occurred UNITS: N/A
		TYPE: INTEGER DIMENSION: Scalar

Returns

 $\ensuremath{\mathsf{IO}}\xspace_{\ensuremath{\mathsf{S}}\xspace}$ tatus: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

Here is the call graph for this function:

7.27.2.3 csem_compute_watermw_sfcoptics_tl()

PURPOSE: Function to compute the ocean surface emissivity and reflectivity tangent-linear at microwave frequencies.

Parameters

in	Surface_TL	CSEM_Water_Surface tangent-linear inputs
		UNITS: N/A TYPE: CSEM_Water_Surface DIMENSION: Scalar
in	Atmos_TL	CSEM_Atmosphere_Parameters tangent-linear inputs
		UNITS: N/A TYPE: CSEM_Atmosphere_Parameters DIMENSION: Scalar
in,out	SfcOptics_TL	CSEM SfcOptics tangent-linear output
		UNITS: N/A TYPE: CSEM_SfcOptics_Type DIMENSION: Scalar
in,out	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.
		UNITS: N/A TYPE: iVar_type DIMENSION: Scalar
out	IO_Status	The return value is an integer defining the error status. The error codes are defined in the CSEM_Exception_Handler module. == SUCCESS the computation was sucessful == FAILURE an unrecoverable error occurred UNITS: N/A TYPE: INTEGER DIMENSION: Scalar

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

Here is the call graph for this function:

7.28 csem_watervis_sfcoptics Module Reference

Container module with all the VIS WATER models available in the CSEM model repository.

Functions/Subroutines

- integer function, public csem_compute_watervis_sfcoptics (Surface, SfcOptics, Options, iVar)

 PURPOSE: Function to compute the ocean surface emissivity and reflectivity at visible wavelength.
- integer function, public csem_compute_watervis_sfcoptics_tl (SfcOptics_TL)
 PURPOSE: Function to compute the ocean surface emissivity and reflectivity tangent-linear at visible wavelength.
- integer function, public csem_compute_watervis_sfcoptics_ad (Surface_AD)
 PURPOSE: Function to compute the ocean surface emissivity and reflectivity adjoint at visible wavelength.

7.28.1 Detailed Description

Container module with all the VIS_WATER models available in the CSEM model repository.

The surface emissivity and reflectivity are required to determine the surface radiative contribution to the overall atmosphere radiative transfer system. This module is designed as a container to implement different water surface radiative transfer models of visible bands in the CSEM package. It also provides a generic interface for the upper-level applications to access all the available VIS_WATER models. Each individual model has the FWD(Forward), TL(Tangent-linear) and AD(Adjoint) functions for the variational data assimilation and the surface parameter retrieval applications.

It replaces the similar functionality of the original CRTM surface module "CRTM_WaterVIS_SfcOptics", which was written by Paul van Delst, 23-Jun-2005

7.28.2 Function/Subroutine Documentation

7.28.2.1 csem_compute_watervis_sfcoptics()

PURPOSE: Function to compute the ocean surface emissivity and reflectivity at visible wavelength.

This function encapsulates all the available CSEM VIS_WATER RT models, and provides a genereic interface for the upper-level user applications.

in	Surface	CSEM water surface derived-type input	
		UNITS: N/A TYPE: CSEM_Water_Surface DIMENSION: Scalar	
in	Options	CSEM derived-type for optional inputs, e.g., Gelocation & Time metadata, sensor observations which are needed by emprirical and semi-empirical models.	
		UNITS: N/A TYPE: CSEM_Options_Type DIMENSION: Scalar	
in,out	SfcOptics	CSEM SfcOptics derived-type, containing the in&out surface optical property variables in the radiative transfer calculation, e.g., the wavelength input and the surface emissivity/reflectivity outputs.	
		UNITS: N/A TYPE: CSEM_SfcOptics_Type DIMENSION: Scalar	
in,out	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.	
		UNITS: N/A TYPE: iVar_type DIMENSION: Scalar	

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.28.2.2 csem_compute_watervis_sfcoptics_ad()

```
integer function, public csem_watervis_sfcoptics::csem_compute_watervis_sfcoptics_ad ( type(csem_water_surface), intent(inout) \ \textit{Surface\_AD} \ )
```

PURPOSE: Function to compute the ocean surface emissivity and reflectivity adjoint at visible wavelength.

in,out	Surface_AD	CSEM_Water_Surface adjoint outputs	
		UNITS: TYPE: DIMENSION:	N/A CSEM_Water_Surface Scalar

Returns

IO_Status: The return value is an integer defining the error status. The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.28.2.3 csem_compute_watervis_sfcoptics_tl()

PURPOSE: Function to compute the ocean surface emissivity and reflectivity tangent-linear at visible wavelength.

Parameters

in,out	SfcOptics_TL	CSEM SfcOptics tangent-linear output	
		UNITS: TYPE: DIMENSION:	N/A CSEM_SfcOptics_Type Scalar

Returns

IO_Status: The return value is an integer defining the error status.

The error codes are defined in the CSEM_Exception_Handler module.

- == SUCCESS the computation was sucessful
- == FAILURE an unrecoverable error occurred

7.29 ellison Module Reference

Ellison Ocean Permittivity module.

Functions/Subroutines

- subroutine, public ellison ocean permittivity (Temperature, Frequency, Permittivity, iVar)
- subroutine, public ellison_ocean_permittivity_tl (Temperature_TL, Permittivity_TL, iVar)
- subroutine, public ellison_ocean_permittivity_ad (Permittivity_AD, Temperature_AD, iVar)

7.29.1 Detailed Description

Ellison Ocean Permittivity module.

7.30 fastem coeff reader Module Reference

Module containing the load/destruction routines to handel the shared CSEM microwave water surface emissivity model data in NetCDF format.

Functions/Subroutines

- integer function, public **csem_mwwatercoeff_load** (Filename, File_Path, Quiet, Version, Process_ID, Output Process ID)
- integer function, public csem mwwatercoeff cleanup (Process ID)
- logical function, public csem_mwwatercoeff_isloaded ()

Variables

· type(crtm mwwatercoeff type), save, public csem_mwwaterc

7.30.1 Detailed Description

Module containing the load/destruction routines to handel the shared CSEM microwave water surface emissivity model data in NetCDF format.

7.31 fastem fresnel Module Reference

Module containing routines to compute Fresnel reflectivities.

Functions/Subroutines

- subroutine, public fastem_fresnel_reflectivity (permittivity, cos_i, Rv, Rh, iVar)
- subroutine, public fastem_fresnel_reflectivity_tl (permittivity_TL, cos_i, Rv_TL, Rh_TL, iVar)
- subroutine, public fastem fresnel reflectivity ad (Rv AD, Rh AD, cos i, permittivity AD, iVar)

7.31.1 Detailed Description

Module containing routines to compute Fresnel reflectivities.

7.32 foam utility module Module Reference

Helper module containing the foam-related utility routines for the CRTM implementation of FASTEM4 and FASTEM5.

Functions/Subroutines

- subroutine, public foam coverage (FCCoeff, wind speed, coverage)
- subroutine, public foam_coverage_tl (FCCoeff, wind_speed, wind_speed_TL, coverage_TL)
- subroutine, public **foam_coverage_ad** (FCCoeff, wind_speed, coverage_AD, wind_speed_AD)
- subroutine, public foam_reflectivity (FRCoeff, Zenith_Angle, Frequency, Rv, Rh)

7.32.1 Detailed Description

Helper module containing the foam-related utility routines for the CRTM implementation of FASTEM4 and FASTEM5.

7.32.2 Function/Subroutine Documentation

7.32.2.1 foam_coverage()

Foam coverage.

Monahan, E.C., and O'Muircheartaigh, I.G., (1986) Whitecaps and the passive remote sensing of the ocean surface, International Journal of Remote Sensing, 7, pp627-642.

The neutral stability condition is used here (i.e. the difference between the skin and air temperature is assumed to be zero) so that the form of the foam coverage equation is the same as in Tang (1974) and Liu et al. (1998)..

Liu, Q. et al. (1998) Monte Carlo simulations of the microwave emissivity of the sea surface. JGR, 103(C11), pp24983-24989

Tang, C. (1974) The effect of droplets in the air-sea transition zone on the sea brightness temperature. J. Phys. Oceanography, 4, pp579-593. Here is the caller graph for this function:

7.32.2.2 foam_reflectivity()

Foam reflectivity

See section d in

Kazumori, M. et al. (2008) Impact Study of AMSR-E Radiances in the NCEP Global Data Assimilation System, Monthly Weather Review, 136, pp541-559

Function dependence is on zenith angle only so no TL or AD routine. Here is the caller graph for this function:

7.33 guillou Module Reference

Guillou Ocean Permittivity module.

Functions/Subroutines

- subroutine, public guillou ocean permittivity (Temperature, Salinity, Frequency, Permittivity, iVar)
- subroutine, public **guillou_ocean_permittivity_tl** (Temperature_TL, Salinity_TL, Frequency, Permittivity_TL, iVar)
- subroutine, public guillou_ocean_permittivity_ad (Permittivity_AD, Frequency, Temperature_AD, Salinity
 — AD, iVar)

7.33.1 Detailed Description

Guillou Ocean Permittivity module.

7.34 irssem_emiscoeff_define Module Reference

Module defining the EmisCoeff data structure and containing routines to manipulate it.

Functions/Subroutines

- logical function, public associated_emiscoeff (EmisCoeff, ANY_Test)
- integer function, public destroy_emiscoeff (EmisCoeff, No_Clear, RCS_Id, Message_Log)
- integer function, public allocate_emiscoeff (n_Angles, n_Frequencies, n_Wind_Speeds, EmisCoeff, RCS
 —Id, Message_Log)
- integer function, public assign_emiscoeff (EmisCoeff_in, EmisCoeff_out, RCS_Id, Message_Log)
- integer function, public **equal_emiscoeff** (EmisCoeff_LHS, EmisCoeff_RHS, ULP_Scale, Check_All, RCS ← _ Id, Message_Log)
- integer function, public check_emiscoeff_release (EmisCoeff, RCS_Id, Message_Log)
- subroutine, public info emiscoeff (EmisCoeff, Info, RCS Id)

Variables

- integer(long), parameter, public spectral emiscoeff type = 1
- integer(long), parameter, public sensor emiscoeff type = 2
- integer(long), parameter, public **n_emiscoeff_items** = 4_Long
- integer(long), dimension(n_emiscoeff_items), parameter, public emiscoeff_data_type = (/ DOUBLE_TYPE, DOUBLE_TYPE, DOUBLE_TYPE, DOUBLE_TYPE /)
- character(*), dimension(n_emiscoeff_items), parameter, public emiscoeff_data_name = (/ 'Angle ', 'Frequency ', 'Wind speed', 'Emissivity' /)

7.34.1 Detailed Description

Module defining the EmisCoeff data structure and containing routines to manipulate it.

7.35 irssem emiscoeff reader Module Reference

Module containing routines to read the netCDF format EmisCoeff files of the NESDIS physical Infrared ocean surface models.

Functions/Subroutines

- integer function, public load_irssem_lut (NC_Filename)
- integer function, public close irssem lut ()

Variables

· type(emiscoeff_type), save, public irwaterc

7.35.1 Detailed Description

Module containing routines to read the netCDF format EmisCoeff files of the NESDIS physical Infrared ocean surface models.

7.36 large scale correction module Module Reference

Module containing the large-scale correction procedures for the CRTM implementations of FASTEM4 and FASTEM5.

Functions/Subroutines

- subroutine, public large_scale_correction (LSCCoeff, Frequency, cos_Z, Wind_Speed, Rv_Large, Rh_Large, iVar)
- subroutine, public large_scale_correction_tl (Wind_Speed_TL, Rv_Large_TL, Rh_Large_TL, iVar)
- subroutine, public large_scale_correction_ad (Rv_Large_AD, Rh_Large_AD, Wind_Speed_AD, iVar)

7.36.1 Detailed Description

Module containing the large-scale correction procedures for the CRTM implementations of FASTEM4 and FASTEM5.

Equations (A5a) and (A5b) of

Liu, Q. et al. (2011) An Improved Fast Microwave Water Emissivity Model, TGRSS, 49, pp1238-1250

describes the fitting of the large-scale correction formulation. No explicit description of the data that was fitted is given.

7.36.2 Function/Subroutine Documentation

7.36.2.1 large_scale_correction()

Procedures to compute the reflectivity large scale correction Here is the caller graph for this function:

7.36.2.2 large_scale_correction_ad()

Adjoint model of Large_Scale_Correction Here is the caller graph for this function:

```
crtm_fastemxx::compute _____ large_scale_correction _____ module::large_scale_correction_ad
```

7.36.2.3 large scale correction tl()

Tangent-linear model of Large_Scale_Correction Here is the caller graph for this function:

7.37 liu Module Reference

Liu Ocean Permittivity module.

Functions/Subroutines

- subroutine, public liu_ocean_permittivity (Temperature, Salinity, Frequency, Permittivity, iVar)

 PURPOSE: Subroutine to compute ocean permittivity according to the reference, Liu, Q. et al. (2010) An improved fast microwave water emissivity model. IEEE Trans. Geosci. Remote Sensing, accepted June 25, 2010.
- subroutine, public liu_ocean_permittivity_tl (Temperature_TL, Salinity_TL, Frequency, Permittivity_TL, iVar)

 PURPOSE: Subroutine to compute ocean permittivity according to the reference, Liu, Q. et al. (2010) An improved fast microwave water emissivity model. IEEE Trans. Geosci. Remote Sensing, accepted June 25, 2010.
- subroutine, public liu_ocean_permittivity_ad (Permittivity_AD, Frequency, Temperature_AD, Salinity_AD, iVar)

 PURPOSE: Subroutine to compute ocean permittivity according to the reference, Liu, Q. et al. (2010) An improved fast microwave water emissivity model. IEEE Trans. Geosci. Remote Sensing, accepted June 25, 2010.

7.37.1 Detailed Description

Liu Ocean Permittivity module.

Module containing routines to compute the complex permittivities for sea water based on

Liu, Q. et al. (2010) An improved fast microwave water emissivity model. IEEE Trans. Geosci. Remote Sensing, accepted June 25, 2010

7.37.2 Function/Subroutine Documentation

7.37.2.1 liu ocean permittivity()

PURPOSE: Subroutine to compute ocean permittivity according to the reference, Liu, Q. et al. (2010) An improved fast microwave water emissivity model. IEEE Trans. Geosci. Remote Sensing, accepted June 25, 2010.

in	Temperature	Sea surface temperature	
		UNITS: TYPE: DIMENSION:	Kelvin (K) REAL Scalar

7.37 liu Module Reference 73

Parameters

in	Salinity	Ocean Water Salinity	
		UNITS: ppt (parts per thousand) TYPE: REAL DIMENSION: Scalar	
in	Frequency	Frequency	
		UNITS: GHZ TYPE: REAL DIMENSION: Scalar	
out	Permittivity	Ocean permittivity	
		UNITS: N/A TYPE: COMPLEX DIMENSION: Scalar	
in	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.	
		UNITS: N/A TYPE: iVar_type DIMENSION: Scalar	

7.37.2.2 liu_ocean_permittivity_ad()

PURPOSE: Subroutine to compute ocean permittivity according to the reference, Liu, Q. et al. (2010) An improved fast microwave water emissivity model. IEEE Trans. Geosci. Remote Sensing, accepted June 25, 2010.

in,out	Temperature_AD	Adjoint sea surface temperature	
		UNITS: Kelvin(K) TYPE: REAL DIMENSION: Scalar	
in,out	Salinity_AD	Adjoint water salinity	
		UNITS: ppt (parts per thousand) TYPE: REAL DIMENSION: Scalar	

Parameters

in	Frequency	Frequency	
		UNITS:	•
		TYPE: DIMENSION:	
		DITIBINGTON:	ocarar
in,out	Permittivity_AD	Adjoint permit	ttivity
		UNITS:	·
		· ·	COMPLEX
		DIMENSION:	Scalar
in	iVar	subsequent ta	ata structure containing internal variables required for the angent-linear and adjoint model calls. The contents of this NOT accessible outside of this module.
		UNITS: TYPE: DIMENSION:	iVar_type

7.37.2.3 liu_ocean_permittivity_tl()

```
subroutine, public liu::liu_ocean_permittivity_tl (
    real(fp), intent(in) Temperature_TL,
    real(fp), intent(in) Salinity_TL,
    real(fp), intent(in) Frequency,
    complex(fp), intent(out) Permittivity_TL,
    type(ivar_type), intent(in) iVar)
```

PURPOSE: Subroutine to compute ocean permittivity according to the reference, Liu, Q. et al. (2010) An improved fast microwave water emissivity model. IEEE Trans. Geosci. Remote Sensing, accepted June 25, 2010.

in	Temperature TL	Tangent-linear sea surface temperature		
	, –			
		UNITS: Kelvin(K) TYPE: REAL DIMENSION: Scalar		
in	Salinity_TL	Tangent-linear water salinity		
		UNITS: ppt (parts per thousand) TYPE: REAL DIMENSION: Scalar		
in	Frequency	Frequency		
		UNITS: N/A TYPE: REAL DIMENSION: Scalar		

out	Permittivity_TL	Tangent-linear permittivity	
		UNITS: N/A TYPE: COMPLEX DIMENSION: Scalar	
in	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.	
		UNITS: N/A TYPE: iVar_type DIMENSION: Scalar	

7.38 mod_rttov_fastem5r1_coef Module Reference

Contains data for the FASTEM-4,5,6 MW sea surface emissivity models.

Variables

- real(fp), parameter, public zero = 0.0 fp
- real(fp), parameter, public **point_5** = 0.5_fp
- real(fp), parameter, public **one** = 1.0_fp
- real(fp), parameter, public **two** = 2.0 fp
- real(fp), parameter, public three = 3.0 fp
- real(fp), parameter, public pi = 3.141592653589793238462643383279 fp
- real(fp), parameter, public degrees_to_radians = PI/180.0_fp
- real(fp), parameter, public transmittance limit lower = 0.00001 fp
- real(fp), parameter, public transmittance limit upper = 0.9999 fp
- real(fp), parameter, public **e0_4** = 0.0088419 fp
- real(fp), parameter, public e0_5 = 0.00885418781762_fp
- real(fp), parameter, public min_f = 1.4 fp
- real(fp), parameter, public max_f = 200.0_fp
- real(fp), parameter, public min_wind = 0.3 fp
- real(fp), parameter, public **max_wind** = 35.0_fp
- real(fp), dimension(0:38), parameter, public **a_coef** = (/ 3.8_fp, 0.0248033_fp, 87.9181727_fp, -0. \leftrightarrow 4031592248_fp, 0.0009493088010_fp, -0.1930858348E-05_fp, -0.002697_fp, -7.3E-06_fp, -8.9E-06_fp, 5. \leftrightarrow 723_fp, 0.022379_fp, -0.00071237_fp, -6.28908E-03_fp, 1.76032E-04_fp, -9.22144E-05_fp, 0.1124465_fp, -0.0039815727_fp, 0.00008113381_fp, -0.00000071824242_fp, -2.39357E-03_fp, 3.1353E-05_fp, -2.52477E-07_fp, 0.003049979018_fp, -3.010041629E-05_fp, 0.4811910733E-05_fp, -0.4259775841E-07_fp, 0.149_fp, -8.8E-04_fp, -1.05E-04_fp, 2.033E-02_fp, 1.266E-04_fp, 2.464E-06_fp, -1.849E-05_fp, 2.551E-07_fp, -2. \leftrightarrow 551E-08_fp, 0.182521_fp, -1.46192E-03_fp, 2.09324E-05_fp, -1.28205E-07_fp/)
- real(fp), dimension(36), parameter, public Icoef5 = (/-5.994667E-02_fp, 9.341346E-04_fp,-9.566110E-07_← fp, 8.360313E-02_fp,-1.085991E-03_fp, 6.735338E-07_fp,-2.617296E-02_fp, 2.864495E-04_fp,-1.429979E-07_fp,-5.265879E-04_fp, 6.880275E-05_fp,-2.916657E-07_fp,-1.671574E-05_fp, 1.086405E-06_fp,-3.← 632227E-09_fp, 1.161940E-04_fp,-6.349418E-05_fp, 2.466556E-07_fp,-2.431811E-02_fp,-1.031810E-03_fp, 4.519513E-06_fp, 2.868236E-02_fp, 1.186478E-03_fp,-5.257096E-06_fp,-7.933390E-03_fp, -2.← 422303E-04_fp, 1.089605E-06_fp,-1.083452E-03_fp,-1.788509E-05_fp, 5.464239E-09_fp, -3.855673E-05← fp, 9.360072E-07_fp,-2.639362E-09_fp, 1.101309E-03_fp, 3.599147E-05_fp, -1.043146E-07_fp /)

real(fp), dimension(36), parameter, public lcoef4 = (/-9.197134E-02_fp, 8.310678E-04_fp,-6.065411E-07_← fp, 1.350073E-01_fp,-1.032096E-03_fp, 4.259935E-07_fp,-4.373322E-02_fp, 2.545863E-04_fp, 9.835554E-08_fp,-1.199751E-03_fp, 1.360423E-05_fp,-2.088404E-08_fp,-2.201640E-05_fp, 1.951581E-07_fp,-2.← 599185E-10_fp, 4.477322E-04_fp,-2.986217E-05_fp, 9.406466E-08_fp,-7.103127E-02_fp,-4.713113E-05_fp, 1.754742E-06_fp, 9.720859E-02_fp, 1.374668E-04_fp,-2.591771E-06_fp,-2.687455E-02_fp, -3.← 677779E-05_fp, 7.548377E-07_fp,-3.049506E-03_fp,-5.412826E-05_fp, 2.285387E-07_fp,-2.201640E-05← _fp, 1.951581E-07_fp,-2.599185E-10_fp, 2.297488E-03_fp, 3.787032E-05_fp, -1.553581E-07_fp/)

- real(fp), dimension(8), parameter, public **scoef** = (/ -5.0208480E-06_fp, 2.3297951E-08_fp, 4.6625726E-08_fp, -1.9765665E-09_fp, -7.0469823E-04_fp, 7.5061193E-04_fp, 9.8103876E-04_fp, 1.5489504E-04_fp /)
- real(fp), dimension(45), parameter, public \mathbf{t} _c5 = (/ 0.199277E+00_fp, 0.166155E+00_fp, 0. \leftrightarrow 153272E-01_fp, 0.399234E+01_fp,-0.130968E+01_fp, -0.874716E+00_fp,-0.169403E+01_fp,-0.260998E-01_fp, 0.540443E+00_fp,-0.282483E+00_fp, -0.219994E+00_fp,-0.203438E-01_fp, 0.351731E+00_ \leftrightarrow fp, 0.208641E+01_fp,-0.693299E+00_fp, 0.867861E-01_fp, 0.619020E-01_fp, 0.595251E-02_fp,-0. \leftrightarrow 475191E+01_fp,-0.430134E-01_fp, 0.248524E+01_fp, 0.388242E-01_fp, 0.194901E+00_fp,-0.425093E-01_fp, 0.607698E+01_fp, -0.313861E+01_fp,-0.103383E+01_fp,-0.377867E+01_fp, 0.180284E+01_fp, 0.699556E+00_fp, -0.506455E-01_fp,-0.262822E+00_fp, 0.703056E-01_fp, 0.362055E+01_ \leftrightarrow fp,-0.120318E+01_fp, -0.124971E+01_fp, 0.154014E-01_fp, 0.759848E-01_fp,-0.268604E-01_fp,-0. \leftrightarrow 802073E+01_fp, 0.324658E+01_fp, 0.304165E+01_fp, 0.100000E+01_fp, 0.200000E-01_fp, 0. \leftrightarrow 300000E+00_fp/)
- real(fp), dimension(45), parameter, public $\mathbf{t_c4} = (/-0.675700E-01_{fp}, 0.214600E+00_{fp}, -0.363000E-02_{fp}, 0.636730E+01_{fp}, 0.900610E+00_{fp}, -0.524880E+00_{fp}, -0.370920E+01_{fp}, -0.143310E+01 \leftarrow _fp, 0.397450E+00_{fp}, 0.823100E-01_{fp}, -0.255980E+00_{fp}, 0.552000E-02_{fp}, 0.208000E+01_{\leftarrow} fp, 0.244920E+01_{fp}, -0.456420E+00_{fp}, -0.224900E-01_{fp}, 0.616900E-01_{fp}, -0.344000E-02_{fp}, -0.507570E+01_{fp}, -0.360670E+01_{fp}, 0.118750E+01_{fp}, 0.124950E+00_{fp}, 0.121270E+00_{fp}, 0.714000E-02_{fp}, 0.736620E+01_{fp}, -0.114060E+00_{fp}, -0.272910E+00_{fp}, -0.504350E+01_{fp}, -0.336450E+00_{\leftarrow} fp, 0.161260E+00_{fp}, -0.154290E+00_{fp}, -0.141070E+00_{fp}, -0.809000E-02_{fp}, 0.395290E+01_{\leftarrow} fp, 0.958580E+00_{fp}, -0.159080E+00_{fp}, 0.368500E-01_{fp}, 0.307100E-01_{fp}, 0.810000E-03_{fp}, -0.504300E+01_{fp}, 0.200000E-01_{fp}, 0.641360E+00_{fp}, 0.100000E+01_{fp}, 0.200000E+01_{fp}, 0.641360E+00_{fp}, 0.100000E+01_{fp}, 0.200000E+01_{fp}, 0.641360E+00_{fp}, 0.100000E+01_{fp}, 0.200000E+01_{fp}, 0.200000E+01_{fp}, 0.641360E+00_{fp}, 0.100000E+01_{fp}, 0.200000E+01_{fp}, 0.2$
- real(fp), dimension(120), parameter, public b coef = (/ 3.307255E-04 fp,-2.901276E-06 fp,-1.475497E-04 fp, 1.288152E-06 fp, 1.004010E-04 fp, -2.671158E-07 fp, 4.363154E-06 fp,-9.817795E-09 fp,-4.↔ $777876E-05_fp, \quad 3.051852E-08_fp, \quad 1.369383E-03_fp, -2.215847E-05_fp, -8.099833E-04_fp, \quad 1.767702E-12.215847E-05_fp, \quad 1.767702E-12.215847E-12.215847E-12.215847E-12.215847E-12.215847E-12.215847E-12.215847E-12.215847E-12.215847E-12.215847E-12.215847E-12.215847E-12.215847E-12.215847E-12.215847E-12.215847E-12.215847E-12.215847E-12.21$ $05_fp, -5.977649E-06_fp, -1.784656E-07_fp, -9.355531E-07_fp, \quad 5.495131E-08_fp, -3.479300E-05_fp, -3.47930E-05_fp, -3.47930E-05_fp, -3.47930E-05_fp, -3.47930E-05_fp, -3.47930E-05_fp, -3.47930E-05_fp, -3.47930E-05_fp, -3.47950E-05_fp, -3.4$ 751652E-07 fp, 2.673536E-04 fp,-1.378890E-06 fp,-8.660113E-05 fp, 2.871488E-07 fp, 1.361118E-05 fp, -1.622586E-08 fp,-1.232439E-07 fp,-3.067416E-09 fp,-1.835366E-06 fp, 8.098728E-09 fp, 1.↔ 255415E-04 fp,-5.145201E-07 fp,-8.832514E-06 fp,-5.105879E-09 fp, 2.734041E-05 fp, -3.398604E- 07_{fp} , $3.417435E-06_{fp}$, $-7.043251E-09_{fp}$, $1.497222E-05_{fp}$, $-6.832110E-09_{fp}$, $-2.315959E-03_{fp}$, $-1.497222E-05_{fp}$ 023585E-06_fp, 5.154471E-05_fp, 9.534546E-06_fp,-6.306568E-05_fp, -4.378498E-07_fp,-2.132017E-06 fp, 1.612415E-08 fp, -1.929693E-06 fp, -6.217311E-09 fp, -1.656672E-04 fp, 6.385099E-07 fp, 2.290074E-06_fp, 1.103787E-07_fp,-5.548757E-06_fp, 5.275966E-08_fp,-4.653774E-07_fp, 1.427566E- $09_{p,-3.197232E-06_{p,-4.048557E-09_{p,}}$ -1.909801E-04_fp,-3.387963E-07_fp, 4.641319E-05_fp, 4. \leftrightarrow $502372E-07_{fp,-5.055813E-05_{fp}}$, $2.104201E-07_{fp,-4.121861E-06_{fp,-1.633057E-08_{fp,-2.469888E-05}}$ _fp, 4.492103E-08_fp, -4.582853E-03_fp,-5.373940E-06_fp, 9.713047E-04_fp, 1.783009E-05_fp,-4. ↔ $539091E-04_fp, \quad 7.652954E-07_fp, -6.708905E-06_fp, \quad 2.148401E-08_fp, \quad 8.054350E-05_fp, \quad 3.069258E-06_fp, \quad 2.148401E-08_fp, \quad 3.069258E-06_fp, \quad 3.069256E-06_fp, \quad 3.069256E-06_fp, \quad 3.069256E-06_fp, \quad 3.069256E-06_fp, \quad 3.069256E-06_f$ 07 fp, -6.405746E-05 fp, -9.694284E-08 fp, 1.914498E-05 fp, 1.336975E-07 fp, -4.561696E-06 fp, 3.769169E-08 fp,-6.105244E-07 fp, 2.433761E-10 fp,-3.961735E-06 fp, 1.995636E-08 fp, 1.350148E-06 fp, 3.678149E-07 fp, 1.261701E-05 fp, -2.011440E-07 fp, -2.361347E-05 fp, 2.943147E-08 fp, -1.304551E-07_fp,-1.119368E-09_fp, 8.469458E-06_fp,-2.292171E-09_fp, 1.419156E-03_fp,-3.838338E- $06_fp, \quad 8.222562E-05_fp, -1.106098E-06_fp, -5.482327E-05_fp, \quad 3.083137E-07_fp, \quad 4.418828E-06_fp, -1. \\ \hookleftarrow 1.085648 + 1.08568 + 1.085$ 302562E-08 fp, 3.768883E-05 fp,-5.012753E-08 fp, -9.396649E-06 fp, 2.764698E-07 fp, 1.745336E-05 fp,-1.427031E-07 fp,-3.879930E-06 fp, -1.117458E-08 fp, 5.688281E-08 fp, 1.513582E-09 fp, 6.4778764E-06_fp,-7.691286E-09_fp /)
- real(fp), dimension(9), parameter, public $\mathbf{x} = (/\ 0.0_{fp},\ 1.4_{fp},\ 6.8_{fp},\ 10.7_{fp},\ 19.35_{fp},\ 37._{fp},\ 89._{fp},\ 150._{fp},\ 200._{fp}/)$
- real(fp), dimension(9), parameter, public **y** = (/ 0.0_fp, 0.1_fp, 0.6_fp, 0.9_fp, 1._fp, 1.0_fp, 0.4_fp, 0.2_fp, 0.0_fp/)
- real(fp), dimension(6, 6, 2), parameter, public **coef_mk_azi** = RESHAPE((/ 4.401E-02, -1.636E+01, 1. ← 478E+00, -4.800E-02, 3.202E-06, -6.002E-05, 4.379E-02, -1.633E+01, 1.453E+00, -4.176E-02, 5.561E-06, -

 $4.644E-05, 5.009E-02, -1.638E+01, 1.520E+00, -3.994E-02, 1.330E-05, 1.113E-05, 5.165E-02, -1.638E+01, \\ 1.543E+00, -4.066E-02, 1.494E-05, 1.010E-05, 5.553E-02, -1.638E+01, 1.602E+00, -4.246E-02, 1.903E-05, \\ 7.524E-06, -9.131E-05, 1.251E+00, 6.769E-01, -2.913E-02, 1.092E+00, -1.806E-04, -1.234E-07, -8.179E-03, -1.040E+01, 4.477E-01, 0.000E+00, 3.390E-05, -1.938E-05, -8.007E-03, -1.039E+01, 4.610E-01, 0.600E+00, 4.419E-05, 1.362E-04, -1.013E-03, -9.235E+00, 3.844E-01, 0.000E+00, 2.891E-04, 1.519E-04, -7.865E-04, -9.234E+00, 3.884E-01, 0.000E+00, 6.856E-04, 1.910E-04, -2.224E-04, -9.232E+00, 3.982E-01, 0.000E+00, 1.673E-03, 3.554E-04, 5.226E-04, 9.816E-01, -7.783E-03, 0.000E+00, 2.437E+01 /), (/6,6,2/))$

• real(fp), dimension(5), parameter, public **fr_coeff** = (/ 0.07_fp, -1.748e-3_fp, -7.336e-5_fp, 1.044e-7_fp, -0. ← 93 fp /)

7.38.1 Detailed Description

Contains data for the FASTEM-4,5,6 MW sea surface emissivity models.

7.39 mw canopy optics Module Reference

Container Module to compute the canopy optical properties at microwave frequencies.

Functions/Subroutines

- subroutine, public crtm_canopymw_optics (lai, leaf_refl, leaf_trans, g, ssalb, tau, iVar)
 PURPOSE: Subroutine to compute the canopy optical properties of land surface at microwave frequencies.
- subroutine, public crtm_canopymw_optics_tl (LAI_TL, ssalb_TL, tau_TL, iVar)

PURPOSE: Tangent-linear mode of CRTM_CanopyMW_Optics.

subroutine, public crtm_canopymw_optics_ad (LAI_AD, ssalb_AD, tau_AD, iVar)

PURPOSE: Adjoint mode of CRTM_CanopyMW_Optics.

7.39.1 Detailed Description

Container Module to compute the canopy optical properties at microwave frequencies.

The canopy optical parametrs are used by the land surface physics-based radiative models to calculate the LAND surface emissivity and reflectivity.

This module is provided to faciliate the integration of canopy optical model codes into the model repository.

7.39.2 Function/Subroutine Documentation

7.39.2.1 crtm_canopymw_optics()

PURPOSE: Subroutine to compute the canopy optical properties of land surface at microwave frequencies.

This subroutine is the canopy optical model currently used in the NOAA CRTM

Parameters

	la:	last area index
in	lai	leaf area index
		UNITS: N/A
		TYPE: REAL
		DIMENSION: Scalar
in	leaf_refl	Leaf reflectance
		UNITS: N/A
		TYPE: REAL
		DIMENSION: Rank-1
		1
in	leaf_trans	Leaf Transmittance
		UNITS: N/A
		TYPE: REAL
		DIMENSION: Rank-1
out	ssalb	Canopy Single scattering albedo
		UNITS: N/A
		TYPE: REAL
		DIMENSION: Rank-1
	4	O-many anti-all density
out	tau	Canopy optical depth
		UNITS: N/A
		TYPE: REAL
		DIMENSION: Rank-1
out	g	symetric parameter
		UNITS: N/A
		TYPE: REAL
		DIMENSION: Rank-1
in out	iVar	Composite data structure containing internal variables required for the
in,out	Ivai	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this
		structure are NOT accessible outside of this module.
		שונים מוכיניוס מוכינים מוכינים שונים של מוכינים מוכינים מוכינים מוכינים מוכינים מוכינים של מוכינים מוכ
		UNITS: N/A
		TYPE: iVar_type
		DIMENSION: Scalar
ı		

7.39.2.2 crtm_canopymw_optics_ad()

PURPOSE: Adjoint mode of CRTM_CanopyMW_Optics.

in,out	lai_ad	leaf area index adjoint	
		UNITS: N/A TYPE: REAL DIMENSION: Scalar	
in,out	ssalb_ad	Canopy Single scattering albedo adjoint	
		UNITS: N/A TYPE: REAL DIMENSION: Rank-1	
in,out	tau_ad	Canopy optical depth adjoint	
		UNITS: N/A TYPE: REAL DIMENSION: Rank-1	
in,out	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.	
		UNITS: N/A TYPE: iVar_type DIMENSION: Scalar	

7.39.2.3 crtm_canopymw_optics_tl()

PURPOSE: Tangent-linear mode of CRTM_CanopyMW_Optics.

Parameters

in	lai_TL	leaf area index tangent-linear
		UNITS: N/A TYPE: REAL DIMENSION: Scalar
out	ssalb_TL	Canopy Single scattering albedo tangent-linear
		UNITS: N/A TYPE: REAL DIMENSION: Rank-1
out	tau_TL	Canopy optical depth tangent-linear
		UNITS: N/A TYPE: REAL DIMENSION: Rank-1

Generated by Doxygen

Parameters

in,out	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.	
		UNITS: TYPE: DIMENSION:	N/A iVar_type Scalar

7.40 mw leaf optics Module Reference

Container Module to compute the leaf optical properties of LAND surfaces at microwave frequencies.

Functions/Subroutines

- subroutine, public csem leafmw optics (frequency, angle, mge, refl, trans, eveg, iVar)
- subroutine, public crtm_leafmw_optics (frequency, theta, esv, d, rh, rv, th, tv)
 PURPOSE: Function to calculate v-pol and h-pol refelectance and trasmittance of one single leaf at microwave frequency.
- subroutine, public mean_leafmw_optics (frequency, eveg, leaf_thick, rh, rv, th, tv)

PURPOSE: Function to calculate averaged refelectance and trasmittance of one single leaf at microwave frequency. Leaves are taken as individual scatters of a canopy. The averaged refelectance and trasmittance is used by canopy-level scattering model.

7.40.1 Detailed Description

Container Module to compute the leaf optical properties of LAND surfaces at microwave frequencies.

The leaf optical parametrs are used by the canopy radiative models to calculate the canopy optical parameters.

This module is provided to faciliate the integration of leaf optical model codes into the model repository.

7.40.2 Function/Subroutine Documentation

7.40.2.1 crtm_leafmw_optics()

```
subroutine, public mw_leaf_optics::crtm_leafmw_optics (
    real(fp), intent(in) frequency,
    real(fp), intent(in) theta,
    complex(fp), intent(in) esv,
    real(fp), intent(in) d,
    real(fp), intent(out) rh,
    real(fp), intent(out) rv,
    real(fp), intent(out) th,
    real(fp), intent(out) tv)
```

PURPOSE: Function to calculate v-pol and h-pol refelectance and trasmittance of one single leaf at microwave frequency.

This function is the default leaf optic model currently used by NOAA CRTM

in	frequency	frequency	
		UNITS: TYPE: DIMENSION:	
in	theta	incident angle	e in degree
		UNITS: TYPE: DIMENSION:	N/A REAL Scalar
in	d	leaf thickness	SS
		UNITS: TYPE: DIMENSION:	mm REAL Scalar
in	esv	leaf bulk diele	ectric constant
		UNITS: TYPE: DIMENSION:	COMPLEX
out	rh	leaf refelecta	nce of h-pol
		UNITS: TYPE: DIMENSION:	N/A REAL Scalar
out	rv	leaf refelecta	nce of v-pol
		UNITS: TYPE: DIMENSION:	N/A REAL Scalar
out	th	leaf trasmitta	nce of h-pol
		UNITS: TYPE: DIMENSION:	REAL
out	tv	leaf trasmitta	nce of v-pol
		UNITS: TYPE: DIMENSION:	N/A REAL Scalar

Here is the caller graph for this function:

7.40.2.2 mean_leafmw_optics()

```
subroutine, public mw_leaf_optics::mean_leafmw_optics (
    real(fp), intent(in) frequency,
    complex(fp), intent(in) eveg,
    real(fp), intent(in) leaf_thick,
    real(fp), intent(out) rh,
    real(fp), intent(out) rv,
    real(fp), intent(out) th,
    real(fp), intent(out) tv)
```

PURPOSE: Function to calculate averaged refelectance and trasmittance of one single leaf at microwave frequency. Leaves are taken as individual scatters of a canopy. The averaged refelectance and trasmittance is used by canopylevel scattering model.

in	freauencv	frequency	1
		,	
		UNITS: TYPE: DIMENSION:	REAL
in	leaf_thick	leaf thickness	SS
		UNITS: TYPE: DIMENSION:	mm REAL Scalar
in	eveg	leaf bulk diele	ectric constant
		UNITS: TYPE: DIMENSION:	N/A COMPLEX Scalar
out	rh	leaf refelecta	nce of h-pol
		UNITS: TYPE: DIMENSION:	N/A REAL Scalar
out	rv	leaf refelecta	nce of v-pol
		UNITS: TYPE: DIMENSION:	REAL
out	th	leaf trasmitta	nce of h-pol
		UNITS: TYPE: DIMENSION:	N/A REAL Scalar
out	tv	leaf trasmitta	nce of v-pol
		UNITS: TYPE: DIMENSION:	N/A REAL Scalar

Here is the call graph for this function:

7.41 mw_soil_optics Module Reference

Container module with all the MW soil models available in the CSEM model repository.

Functions/Subroutines

- subroutine, public csem_soilmw_optics (frequency, theta, Tskin, Tsoil, smc, sand, clay, refl_smooth, teff, iVar) PURPOSE: Evaluation of the bare-soil optical parameters at microwave frequencies.
- subroutine, public csem_soilmw_optics_tl (Tskin_TL, Tsoil_TL, smc_TL, refl_h_TL, refl_v_TL, teff_TL, iVar) PURPOSE: Tangent-linear mode of CSEM_SoilMW_Optics.
- subroutine, public csem_soilmw_optics_ad (Tskin_AD, Tsoil_AD, smc_AD, refl_h_AD, refl_v_AD, teff_AD, i ← Var)

PURPOSE: Tangent-linear mode of CSEM_SoilMW_Optics.

Variables

• integer, parameter, public max_soil_layers = 1

7.41.1 Detailed Description

Container module with all the MW soil models available in the CSEM model repository.

The surface emissivity and reflectivity are required to determine the surface radiative contribution to the overall atmosphere radiative transfer system. This module is designed as a container to implement different microwave bare soil surface radiative transfer models in the CSEM package. It also provides a generic interface for the upper-level applications to access all the available MW soil models. Each individual model has the FWD(Forward), TL(Tangent-linear) and AD(Adjoint) functions for the variational data assimilation and the surface parameter retrieval applications.

7.41.2 Function/Subroutine Documentation

7.41.2.1 csem_soilmw_optics()

```
subroutine, public mw_soil_optics::csem_soilmw_optics (
    real(fp), intent(in) frequency,
    real(fp), intent(in) theta,
    real(fp), intent(in) Tskin,
    real(fp), dimension(:), intent(in) Tsoil,
    real(fp), dimension(:), intent(in) smc,
    real(fp), intent(in) sand,
    real(fp), intent(in) clay,
    real(fp), dimension(2), intent(out) refl_smooth,
    real(fp), intent(out) teff,
    type(ivar_type) iVar )
```

PURPOSE: Evaluation of the bare-soil optical parameters at microwave frequencies.

in	frequency	frequency
		UNITS: GHz TYPE: REAL
		DIMENSION: Scalar
in	theta	Angle in degree
		UNITS: Degree TYPE: REAL
		DIMENSION: Scalar
in	tskin	soil surface temperature
		UNITS: Kelvin, K TYPE: REAL
		DIMENSION: Scalar
in	tsoil	soil temperature profile
		UNITS: Kelvin, K
		TYPE: REAL DIMENSION: Rank-1
in	smc	soil moisture content
111	om o	Son Holder Sonton
		UNITS: N/A
		TYPE: REAL DIMENSION: Rank-1
in	sand	soil texture sand fraction
111	Sand	Son texture sand fraction
		UNITS: N/A
		TYPE: REAL DIMENSION: Scalar
in	clay	soil texture clay fraction
T11	Clay	Soli texture day fraction
		UNITS: N/A
		TYPE: REAL DIMENSION: Scalar
	roft amouth	soil surface reflectance
out	refl_smooth	Soil Surface reflectance
		UNITS: N/A
		TYPE: REAL DIMENSION: Rank-1
	. "	
out	teff	soil layer effective temperature
		UNITS: N/A
		TYPE: REAL
		DIMENSION: Scalar

Parameters

in,out	iVar	Composite data structure containing internal variables required for th subsequent tangent-linear and adjoint model calls. The contents of the structure are NOT accessible outside of this module.	
		UNITS: N/A TYPE: iVar_type DIMENSION: Scalar	

Here is the caller graph for this function:

7.41.2.2 csem_soilmw_optics_ad()

PURPOSE: Tangent-linear mode of CSEM_SoilMW_Optics.

Parameters

in,out	tskin_AD	soil surface to	emperature adjoint
	_		•
		UNITS:	Kelvin, K
		TYPE:	REAL
		DIMENSION:	Scalar
in,out	tsoil_AD	soil temperati	ure profile adjoint
,	_		
		UNITS:	Kelvin, K
		TYPE:	REAL
		DIMENSION:	Scalar
in,out	smc AD	soil moisture	content adjoint
in,out	smc_AD	soil moisture	content adjoint
in,out	smc_AD		
in,out	smc_AD	soil moisture	
in,out	smc_AD		N/A
in,out	smc_AD	UNITS:	N/A REAL
in,out	smc_AD	UNITS: TYPE:	N/A REAL
in, out	smc_AD refl_h_AD	UNITS: TYPE: DIMENSION:	N/A REAL
		UNITS: TYPE: DIMENSION:	N/A REAL Scalar
		UNITS: TYPE: DIMENSION: H-pol soil sur	N/A REAL Scalar face reflectance adjoint
		UNITS: TYPE: DIMENSION:	N/A REAL Scalar face reflectance adjoint
		UNITS: TYPE: DIMENSION: H-pol soil sur	N/A REAL Scalar face reflectance adjoint N/A
		UNITS: TYPE: DIMENSION: H-pol soil sur UNITS:	N/A REAL Scalar face reflectance adjoint N/A REAL

Generated by Doxygen

in,out	refl_v_AD	V-pol soil surface reflectance adjoint	
		UNITS: N/A TYPE: REAL DIMENSION: Scalar	
in,out	teff_AD	Effective soil layer temperature adjoint	
		UNITS: Kelvin, K TYPE: REAL DIMENSION: Scalar	
in,out	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.	
		UNITS: N/A TYPE: iVar_type DIMENSION: Scalar	

Here is the caller graph for this function:

7.41.2.3 csem_soilmw_optics_tl()

PURPOSE: Tangent-linear mode of CSEM_SoilMW_Optics.

Parameters

in	tskin_TL	soil surface temperature tangent-linear
		UNITS: Kelvin, K TYPE: REAL DIMENSION: Scalar
in	tsoil_TL	soil temperature profile tangent-linear
		UNITS: Kelvin,K TYPE: REAL DIMENSION: Scalar

Generated by Doxygen

Parameters

in	smc_TL	soil moisture content tangent-linear
		UNITS: N/A TYPE: REAL DIMENSION: Scalar
out	refl_h_TL	H-pol soil surface reflectance tangent-linear
		UNITS: N/A TYPE: REAL DIMENSION: Scalar
out	refl_v_TL	V-pol soil surface reflectance tangent-linear
		UNITS: N/A TYPE: REAL DIMENSION: Scalar
out	teff_TL	Effective soil layer temperature tangent-linear
		UNITS: Kelvin,K TYPE: REAL DIMENSION: Scalar
in,out	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.
		UNITS: N/A TYPE: iVar_type DIMENSION: Scalar

Here is the caller graph for this function:

7.42 mw_soil_permittivity Module Reference

Module to compute the soil dielectric properties for LAND surfaces at microwave frequencies.

Functions/Subroutines

- subroutine, public csem_soilmw_permittivity (frequency, tsoil, smc, sand, clay, eps, ivar)
- subroutine, public **csem_soilmw_permittivity_tl** (tsoil_TL, smc_TL, eps_TL, iVar)
- subroutine, public **csem_soilmw_permittivity_ad** (tsoil_AD, smc_AD, eps_AD, iVar)

7.42.1 Detailed Description

Module to compute the soil dielectric properties for LAND surfaces at microwave frequencies.

7.43 nesdis amsre iceem module Module Reference

Module containing the AMSR-E microwave sea ice emissivity model.

Functions/Subroutines

subroutine, public nesdis_amsre_iceem (frequency, User_Angle, tv, th, Ts, Tice, Emissivity_H, Emissivity ← V)

Variables

- integer, parameter, public **n_freq** = 7
- real(fp), dimension(n_freq), parameter, public **frequency_amsrealg** = (/ 6.925_fp, 10.65_fp, 18.7_fp,23.8_fp, 36.5_fp, 89.0_fp,157._fp/)
- real(fp), dimension(n_freq), parameter, public rs_ice_a_emiss =(/0.93_fp, 0.94_fp, 0.96_fp, 0.97_fp, 0.97_fp, 0.94_fp, 0.94_fp, 0.93_fp/)
- real(fp), dimension(n_freq), parameter, public rs_ice_b_emiss =(/0.86_fp, 0.87_fp, 0.90_fp, 0.91_fp, 0.90←
 _fp, 0.90_fp, 0.89_fp/)
- real(fp), dimension(n_freq), parameter, public **mixed_newice_snow_emiss** =(/0.88_fp, 0.88_fp, 0.89_fp, 0.88 fp, 0.87 fp, 0.84 fp, 0.82 fp/)
- real(fp), dimension(n_freq), parameter, public **nare_newice_emiss** =(/0.80_fp, 0.81_fp, 0.81_fp, 0.81_fp, 0.81_fp, 0.80_fp, 0.79_fp, 0.79_fp/)
- real(fp), dimension(n_freq), parameter, public **broken_ice_emiss** =(/0.75_fp, 0.78_fp, 0.80_fp, 0.81_fp, 0. ← 80_fp, 0.77_fp, 0.74_fp/)
- real(fp), dimension(n_freq), parameter, public **first_year_ice_emiss** =(/0.93_fp, 0.93_fp, 0.92_fp, 0.89_fp, 0.78_fp, 0.69_fp/)
- real(fp), dimension(n_freq), parameter, public **composite_pack_ice_emiss** =(/0.89_fp, 0.88_fp, 0.87_fp, 0.85_fp, 0.82_fp, 0.69_fp, 0.59_fp/)
- real(fp), dimension(n_freq), parameter, public rs_ice_c_emiss =(/0.92_fp, 0.90_fp, 0.83_fp, 0.78_fp, 0.73
 _fp, 0.62_fp, 0.58_fp/)
- real(fp), dimension(n_freq), parameter, public **fast_ice_emiss** =(/0.85_fp, 0.85_fp, 0.84_fp, 0.81_fp, 0.78_fp, 0.63_fp, 0.56_fp/)
- real(fp), dimension(n_freq), parameter, public rs_ice_d_emiss =(/0.76_fp, 0.76_fp, 0.76_fp, 0.76_fp, 0.76_fp, 0.74_p, 0.65_fp, 0.60_fp/)
- real(fp), dimension(n_freq), parameter, public rs_ice_e_emiss =(/0.63_fp, 0.65_fp, 0.65_fp, 0.66_fp, 0.70←
 _fp, 0.74_fp, 0.75_fp/)
- real(fp), dimension(n_freq), parameter, public **rs_ice_f_emiss** =(/0.54_fp, 0.60_fp, 0.64_fp, 0.67_fp, 0.70_fp, 0.71_fp, 0.72_fp/)
- real(fp), dimension(n_freq), parameter, public **grease_ice_emiss** =(/0.49_fp, 0.51_fp, 0.53_fp, 0.55_fp, 0.55_fp, 0.55_fp, 0.65_fp, 0.65_fp, 0.67_fp/)
- real(fp), dimension(n_freq), parameter, public rs_ice_a_ev =(/ 0.96_fp, 0.97_fp, 0.99_fp, 0.99_fp, 0.99_fp, 0.98_fp, 0.97_fp/)
- real(fp), dimension(n_freq), parameter, public **rs_ice_b_ev** =(/0.95_fp, 0.96_fp, 0.99_fp, 0.98_fp, 0.97_fp, 0.94_fp, 0.93_fp/)
- real(fp), dimension(n_freq), parameter, public mixed_newice_snow_ev = (/0.96_fp, 0.96_fp, 0.95_fp, 0.94
 _fp, 0.93_fp, 0.88_fp, 0.86_fp/)
- real(fp), dimension(n_freq), parameter, public **nare_newice_ev** =(/0.88_fp, 0.89_fp, 0.91_fp, 0.91_fp, 0.91 ← _ _fp, 0.88_fp, 0.88_fp/)
- real(fp), dimension(n_freq), parameter, public **broken_ice_ev** =(/0.85_fp, 0.87_fp, 0.91_fp, 0.91_fp, 0.91_fp, 0.87_fp, 0.84_fp/)
- real(fp), dimension(n_freq), parameter, public **first_year_ice_ev** =(/0.98_fp, 0.98_fp, 0.98_fp, 0.97_fp, 0.40 95_fp, 0.84_fp, 0.75_fp/)

- real(fp), dimension(n_freq), parameter, public **rs_ice_c_ev** =(/0.99_fp, 0.96_fp, 0.90_fp, 0.86_fp, 0.75_fp, 0.66_fp, 0.62_fp/)
- real(fp), dimension(n_freq), parameter, public **fast_ice_ev** =(/0.95_fp, 0.95_fp, 0.94_fp, 0.91_fp, 0.85_fp, 0.69_fp, 0.62_fp/)
- real(fp), dimension(n_freq), parameter, public rs_ice_d_ev = (/0.87_fp, 0.87_fp, 0.88_fp, 0.88_fp, 0.88_fp, 0.77_fp, 0.72_fp/)
- real(fp), dimension(n_freq), parameter, public **rs_ice_e_ev** =(/0.77_fp, 0.78_fp, 0.81_fp, 0.82_fp, 0.84_fp, 0.86 fp, 0.88 fp/)
- real(fp), dimension(n_freq), parameter, public **rs_ice_f_ev** =(/0.71_fp, 0.73_fp, 0.77_fp, 0.78_fp, 0.81_fp, 0.86 fp, 0.87 fp/)
- real(fp), dimension(n_freq), parameter, public **grease_ice_ev** =(/0.66_fp, 0.67_fp, 0.70_fp, 0.72_fp, 0.76_fp, 0.82 fp, 0.84 fp/)
- real(fp), dimension(n_freq), parameter, public rs_ice_a_eh = (/ 0.88_fp, 0.92_fp, 0.94_fp, 0.94_fp, 0.95_fp, 0.92_fp, 0.91_fp/)
- real(fp), dimension(n_freq), parameter, public **rs_ice_b_eh** =(/0.81_fp, 0.82_fp, 0.85_fp, 0.86_fp, 0.87_fp, 0.88_fp, 0.87_fp/)
- real(fp), dimension(n_freq), parameter, public **mixed_newice_snow_eh** =(/0.83_fp, 0.84_fp, 0.86_fp, 0.← 85_fp, 0.84_fp, 0.82_fp, 0.80_fp/)
- real(fp), dimension(n_freq), parameter, public **nare_newice_eh** =(/0.74_fp, 0.75_fp, 0.76_fp, 0.76_fp, 0.76_fp, 0.76_fp, 0.75_fp, 0.73_fp, 0.73_fp, 0.73_fp/)
- real(fp), dimension(n_freq), parameter, public broken_ice_eh = (/0.71_fp, 0.73_fp, 0.76_fp, 0.77_fp, 0.80_fp, 0.72_fp, 0.69_fp/)
- real(fp), dimension(n_freq), parameter, public **first_year_ice_eh** =(/0.91_fp, 0.90_fp, 0.89_fp, 0.88_fp, 0. ← 86_fp, 0.76_fp, 0.67_fp/)
- real(fp), dimension(n_freq), parameter, public composite_pack_ice_eh = (/0.85_fp, 0.84_fp, 0.83_fp, 0.82←
 _fp, 0.79_fp, 0.67_fp, 0.57_fp/)
- real(fp), dimension(n_freq), parameter, public **rs_ice_c_eh** =(/0.90_fp, 0.87_fp, 0.81_fp, 0.78_fp, 0.69_fp, 0.60_fp, 0.56_fp/)
- real(fp), dimension(n_freq), parameter, public **fast_ice_eh** =(/0.80_fp, 0.80_fp, 0.78_fp, 0.76_fp, 0.72_fp, 0.60 fp, 0.53 fp/)
- real(fp), dimension(n_freq), parameter, public **rs_ice_d_eh** =(/0.71_fp, 0.71_fp, 0.70_fp, 0.70_fp, 0.70_fp, 0.59_fp, 0.54_fp/)
- real(fp), dimension(n_freq), parameter, public **rs_ice_e_eh** =(/0.55_fp, 0.59_fp, 0.60_fp, 0.61_fp, 0.62_fp, 0.67_fp, 0.69_fp/)
- real(fp), dimension(n_freq), parameter, public **rs_ice_f_eh** =(/0.48_fp, 0.51_fp, 0.56_fp, 0.57_fp, 0.60_fp, 0.64_fp, 0.65_fp/)
- real(fp), dimension(n_freq), parameter, public **grease_ice_eh** =(/0.42_fp, 0.42_fp, 0.43_fp, 0.45_fp, 0.49_fp, 0.54_fp, 0.56_fp/)

7.43.1 Detailed Description

Module containing the AMSR-E microwave sea ice emissivity model.

7.44 nesdis_amsre_snowem_module Module Reference

Module containing the AMSR-E microwave snow emissivity model.

Functions/Subroutines

• subroutine, public **nesdis_amsre_snowem** (Frequency, User_Angle, tv, th, Ts, Tsnow, Emissivity_H, Emissivity_V)

7.44.1 Detailed Description

Module containing the AMSR-E microwave snow emissivity model.

7.45 nesdis_amsu_iceem_module Module Reference

Module containing the AMSU microwave sea ice emissivity model.

Functions/Subroutines

• subroutine, public **nesdis_amsu_iceem** (Satellite_Angle, User_Angle, frequency, Ts, tba, tbb, Emissivity_H, Emissivity_V)

7.45.1 Detailed Description

Module containing the AMSU microwave sea ice emissivity model.

7.46 nesdis_amsu_snowem_module Module Reference

Module containing the AMSU microwave snow emissivity model.

Functions/Subroutines

• subroutine, public **nesdis_amsu_snowem** (Satellite_Angle, User_Angle, frequency, Snow_Depth, Ts, tba, tbb, Emissivity_H, Emissivity_V)

7.46.1 Detailed Description

Module containing the AMSU microwave snow emissivity model.

7.47 nesdis_atms_iceem_module Module Reference

NESDIS_ATMS_SeaICE_LIB Module to implement the library-based sealce emissivity model.

Functions/Subroutines

• subroutine, public **nesdis_atms_seaice** (Satellite_Angle, User_Angle, frequency, Ts, Tbs, Emissivity_H, Emissivity_V)

7.47.1 Detailed Description

NESDIS_ATMS_SeaICE_LIB Module to implement the library-based seaIce emissivity model.

7.48 nesdis atms seaice lib Module Reference

Module containing the snow emissivity library ATMS channels.

Functions/Subroutines

- integer function seaicetype_name2index (sname)
- character(len=100) function seaicetype_index2name (sindex)

Variables

- integer(ip), parameter, public **n_freq_atms** = 13
- integer(ip), parameter, public n seaice types = 13
- integer(ip), parameter, public n_freq_amsre = 7
- integer(ip), parameter, public invalid_seaice_type = -1
- character(len=20), dimension(n_seaice_types), parameter, public seaice_type_names =(/ 'RS_ICE_A ← _ EMISS ', 'RS_ICE_B_EMISS ', 'MIXED_NEWICE_SNOW_EM', 'NARE_NEWICE_EMISS ', 'BROKEN_← ICE_EMISS ', 'FIRST_YEAR_ICE_EMISS', 'COMPOSITE_PACK_ICE ', 'RS_ICE_C_EMISS ', 'FAST_ICE ← EMISS ', 'RS_ICE_D_EMISS', 'RS_ICE_EMISS', 'R
- real(fp), dimension(n_freq_atms), parameter, public frequency_atms = (/23.80_fp,31.40_fp,50.30_fp,51.← 76_fp,52.80_fp,53.60_fp,54.40_fp, 54.90_fp,55.50_fp,57.30_fp,88.20_fp,165.50_fp,183.30_fp/)
- real(fp), dimension(n_freq_atms, n_seaice_types), parameter, public **seaice_emiss_atms_h** = RESHAPE((/ 0.94_fp,0.95_fp,0.94_fp,0.94_fp,0.94_fp,0.94_fp,0.94_fp,0.94_fp,0.94_fp,0.92_fp,0.91_fp,0.91_fp, 0.86_fp,0.87_fp,0.77_fp,0.77_fp,0.75_fp,0.75_fp,0.73_fp,0.77_fp,0.66
- real(fp), dimension(n_freq_atms, n_seaice_types), parameter, public seaice_emiss_atms_v = RESHAPE((/ 0.99_fp,0.90_fp,0.80_fp,

• real(fp), dimension(n_freq_atms, n_seaice_types), parameter, public **seaice_emiss_atms_lib** = RE-SHAPE((/ 0.97_fp,0.97_fp,0.96_fp,0.92_fp,0.87_fp,0.87_fp,0.87_fp,0.87_fp,0.87_fp,0.87_fp,0.87_fp,0.87_fp,0.87_fp,0.87_fp,0.87_fp,0.87_fp,0.87_fp,0.83_fp,0.83_fp,0.83_fp,0.83_fp,0.83_fp,0.83_fp,0.83_fp,0.83_fp,0.81_fp,0.80_ep,0.76_ep,0.75_fp,0.93_fp,0.91_fp,0.88_fp,0.87_fp,0.86_fp,0.80_fp,0.70_ep,0.68_fp,0.68_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.79_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0.69_fp,0

7.48.1 Detailed Description

Module containing the snow emissivity library ATMS channels.

7.49 nesdis_atms_snowem_module Module Reference

NESDIS SnowEM ATMS Parameters Module to implement the library-based snow emissivity model.

Functions/Subroutines

• subroutine, public **nesdis_atms_snowem** (Satellite_Angle, User_Angle, Frequency, Tbs, Tss, Snow_Depth, Emissivity H, Emissivity V)

7.49.1 Detailed Description

NESDIS_SnowEM_ATMS_Parameters Module to implement the library-based snow emissivity model.

7.50 nesdis iceir phymodel Module Reference

Module containing the NESDIS physical Ice emissivity model of infrared Channels.

Functions/Subroutines

integer function, public nesdis_iceir_emiss (Frequency, Angle, Ice_Temperature, Emissivity_H, Emissivity ← _ _ V)

7.50.1 Detailed Description

Module containing the NESDIS physical Ice emissivity model of infrared Channels.

7.51 nesdis icemw phymodel Module Reference

Module containing the NESDIS physical Ice emissivity model of microwave Channels.

Functions/Subroutines

• integer function, public **nesdis_icemw_emiss** (Frequency, Angle, Ice_Temperature, Salinity, Emissivity_H, Emissivity_V)

7.51.1 Detailed Description

Module containing the NESDIS physical Ice emissivity model of microwave Channels.

7.52 nesdis_icevis_phymodel Module Reference

Module containing the NESDIS physical Ice emissivity model of visible channels.

Functions/Subroutines

• integer function, public **nesdis_icevis_emiss** (Frequency, Angle, Ice_Temperature, Emissivity_H, Emissivity_V)

7.52.1 Detailed Description

Module containing the NESDIS physical Ice emissivity model of visible channels.

7.53 nesdis_landem_module Module Reference

Module containing the old-version NESDIS microwave land emissivity model.

Functions/Subroutines

- subroutine, public nesdis_landem_213 (Angle, Frequency, Soil_Moisture_Content, Vegetation_Fraction, Soil_Temperature, t_skin, Lai, Soil_Type, Vegetation_Type, Emissivity_H, Emissivity_V)
- subroutine, public **nesdis_landem_old** (Angle, Frequency, Soil_Moisture_Content, Vegetation_Fraction, Soil_Temperature, t_skin, Lai, Soil_Type, Vegetation_Type, Emissivity_H, Emissivity_V)

7.53.1 Detailed Description

Module containing the old-version NESDIS microwave land emissivity model.

7.53.2 Function/Subroutine Documentation

7.53.2.1 nesdis_landem_213()

PURPOSE: Subroutine to simulate microwave emissivity over land conditions.

REFERENCES: Weng, F., B. Yan, and N. Grody, 2001: "A microwave land emissivity model", J. Geophys. Res., 106, 20, 115-20, 123 Here is the caller graph for this function:

7.54 nesdis_landir_phymodel Module Reference

Module containing the NESDIS infrared non-snow land emissivity model.

Functions/Subroutines

integer function, public nesdis_landir_emiss (Wavenumber, Angle, Land_Skin_Temperature, Soil_←
Temperature, Soil_Moisture_Content, Vegetation_Fraction, LAI, Vegetation_Type, Soil_Type, Emissivity_H,
Emissivity_V)

7.54.1 Detailed Description

Module containing the NESDIS infrared non-snow land emissivity model.

7.55 nesdis_landmw_phymodel Module Reference

Module of the physics-based microwave land surface emissivity model.

Functions/Subroutines

• integer function, public nesdis_landmw_emiss (Frequency, Angle, Land_Skin_Temperature, Soil_← Temperature, Soil_Moisture_Content, Vegetation_Fraction, LAI, Vegetation_Type, Soil_Type, Emissivity_H, Emissivity_V, iVar)

PURPOSE: Tangent-linear mode of NESDIS_LandMW_Emiss.

• integer function, public nesdis_landmw_emiss_ad (Land_Skin_Temperature_AD, Soil_Temperature_AD, Soil_Moisture_Content_AD, Vegetation_Fraction_AD, Emissivity_H_AD, Emissivity_V_AD, iVar)

PURPOSE: Adjoint mode of NESDIS_LandMW_Emiss.

• subroutine, public two stream solution (emiss, iVar)

Two stream RT solver of three-layer MW land surface physical model.

- subroutine, public two_stream_solution_tl (ssalb_TL, tau_TL, r23_TL, Tskin_TL, Tsoil_TL, emiss_TL, iVar) PURPOSE: Tangent-linear mode of the Two_Stream_Solution.
- subroutine, public two_stream_solution_ad (ssalb_AD, tau_AD, r23_AD, Tskin_AD, Tsoil_AD, emiss_AD, i ← Var)

PURPOSE: Adjoint mode of the Two_Stream_Solution.

7.55.1 Detailed Description

Module of the physics-based microwave land surface emissivity model.

This module contains the NON-SNOW (bare soil, desert, vegetation-covered) physics-based land surface emissivity model of microwave channels. It wraps all the available versions, and provide a general interface for the upper-level applications.

Unlike its counterpart in the ealier CRTM releases, the emissivity and reflectivity models of Snow and Sea ice are not enclosed in this module. Dedicated modules are created for the Snow and sea ice models, separately. Tangent-linear and adjoint modes are implemented to support the variational data assimilation applications.

Soil and canopy models are also implemented in their respective individual modules. The soil and canopy modules provide the soil and canopy optical parameters. Since different model options are available in the soil module (MW—Soil_Optics) and the canopy module (MW_Canopy_Optics), users need to specify the soil model and the canopy model to be used.

Non-isothermal two-stream model is enclosed in this module to account for the temperature difference between the canopy and the underlying soil.

Tangent-linear and adjoint functions are developed for the applications in data assimilation and surface property retrieval systems.

References:

```
Weng, F., B. Yan, and N. Grody, 2001: "A microwave land emissivity model", J. Geophys. Res., 106, 20, 115-20, 123
```

7.55.2 Function/Subroutine Documentation

7.55.2.1 nesdis_landmw_emiss()

PURPOSE: Physical simulation of the microwave emissivity over non-snow land surface using non-isothermal two-stream radiative transfer model. This is based on the version in CRTM-REL2.1.3

Parameters

in	Frequency	Frequency
		UNITS: GHZ TYPE: REAL DIMENSION: Scalar
in	Angle	View angle value
		UNITS: Degree TYPE: REAL DIMENSION: Scalar
in	Soil_Moisture_Content	The volumetric water content of the top soil layer (0:1)
		UNITS: cm-3/cm-3 TYPE: REAL DIMENSION: Scalar
in	Vegetation_Fraction	Surface vegetation cover fraction (0:1)
		UNITS: N/A TYPE: REAL DIMENSION: Scalar
in	Soil_Temperature	Top-layer soil temperature
		UNITS: Kevin, K TYPE: REAL DIMENSION: Scalar
in	Land_Skin_Temperature	Land surface skin temperature
		UNITS: Kevin, K TYPE: REAL DIMENSION: Scalar

Parameters

in	LAI	Leaf area index
		UNITS: N/A TYPE: REAL DIMENSION: Scalar
in	Soil_Type	Soil type (1-9)
		UNITS: N/A TYPE: INTEGER DIMENSION: Scalar
in	Vegetation_Type	Land surface vegetation cover type (1-13)
		UNITS: N/A TYPE: INTEGER DIMENSION: Scalar
out	Emissivity_V	Surface emissivity of vertical polarization
		UNITS: N/A TYPE: REAL DIMENSION: Scalar
out	Emissivity_H	Surface emissivity of horizontal polarization
		UNITS: N/A TYPE: REAL DIMENSION: Scalar
in,out	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.
		UNITS: N/A TYPE: iVar_type DIMENSION: Scalar
out	IO_Status	The return value is an integer defining the error status. The error codes are defined in the CSEM_Exception_Handler module. == SUCCESS the computation was sucessful == FAILURE an unrecoverable error occurred UNITS: N/A TYPE: INTEGER DIMENSION: Scalar

Here is the call graph for this function:

Here is the caller graph for this function:

7.55.2.2 nesdis_landmw_emiss_ad()

PURPOSE: Adjoint mode of NESDIS_LandMW_Emiss.

Parameters

in,out	Soil_Moisture_Content_AD	Soil Moisture	Content Adjoint
		UNITS: TYPE: DIMENSION:	REAL
in,out	Vegetation_Fraction_AD	Vegetation Fr	action Adjoint
			N/A REAL Scalar
in,out	Soil_Temperature_AD	Top-layer Soi	l Temperature Adjoint
		UNITS: TYPE: DIMENSION:	Kelvin,K REAL Scalar
in,out	Land_Skin_Temperature_AD	Land Skin Te	mperature Adjoint
		UNITS: TYPE: DIMENSION:	Kelvin, K REAL Scalar
in,out	Emissivity_V_AD	Surface Emis	sivity of V-pol Adjoint
			N/A REAL Scalar

Parameters

in,out	Emissivity_H_AD	Surface Emissivity of H-pol Adjoint
		UNITS: N/A TYPE: REAL DIMENSION: Scalar
in,out	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module. UNITS: N/A TYPE: iVar_type DIMENSION: Scalar
out	IO_Status	The return value is an integer defining the error status. The error codes are defined in the CSEM_Exception_Handler module. == SUCCESS the computation was sucessful == FAILURE an unrecoverable error occurred UNITS: N/A TYPE: INTEGER DIMENSION: Scalar

Here is the call graph for this function:

Here is the caller graph for this function:

7.55.2.3 nesdis_landmw_emiss_tl()

```
real(fp), intent(in) Vegetation_Fraction_TL,
real(fp), intent(out) Emissivity_H_TL,
real(fp), intent(out) Emissivity_V_TL,
type(ivar_type) iVar )
```

PURPOSE: Tangent-linear mode of NESDIS_LandMW_Emiss.

Parameters

in	Soil_Moisture_Content_TL	Soil Moisture Content Tangent-linear
		UNITS: cm-3/cm-3 TYPE: REAL
		DIMENSION: Scalar
in	Vegetation_Fraction_TL	Vegetation Fraction Tangent-linear
		UNITS: N/A TYPE: REAL
		DIMENSION: Scalar
in	Soil_Temperature_TL	Top-layer Soil Temperature Tangent-linear
		UNITS: Kelvin, K
		TYPE: REAL
		DIMENSION: Scalar
in	Land_Skin_Temperature_TL	Land Skin Temperature Tangent-linear
		UNITS: Kelvin,K
		TYPE: REAL DIMENSION: Scalar
out	Emissivity_V_TL	Surface Emissivity of V-pol Tangent-linear
		UNITS: N/A
		TYPE: REAL DIMENSION: Scalar
	F : :: 11 T	0.6 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
out	Emissivity_H_TL	Surface Emissivity of H-pol Tangent-linear
		UNITS: N/A
		TYPE: REAL DIMENSION: Scalar
in,out	iVar	Composite data structure containing internal variables required for the
		subsequent tangent-linear and adjoint model calls. The contents
		of this structure are NOT accessible outside of this module.
		UNITS: N/A
		TYPE: iVar_type DIMENSION: Scalar
out	IO_Status	The return value is an integer defining the error status. The error codes are defined in the CSEM_Exception_Handler
		module.
		== SUCCESS the computation was sucessful == FAILURE an unrecoverable error occurred
		UNITS: N/A
		TYPE: INTEGER
		DIMENSION: Scalar

Here is the call graph for this function:

Here is the caller graph for this function:

7.55.2.4 two_stream_solution()

Two stream RT solver of three-layer MW land surface physical model.

Parameters

out	Emiss	The surface emissivity at a vertical and horizontal polarizations	
		UNITS: N/A DIMENSION: Array(2)	
in,out	iVar	Structure containing internal variables required for subsequent tangent-linear or adjoint model calls. The contents of this structure are NOT accessible outside of this module.	

Here is the caller graph for this function:

7.55.2.5 two_stream_solution_ad()

```
real(fp), dimension(2), intent(inout) tau_AD,
real(fp), dimension(2), intent(inout) r23_AD,
real(fp), intent(inout) Tskin_AD,
real(fp), intent(inout) Tsoil_AD,
real(fp), dimension(2), intent(inout) emiss_AD,
type(ivar_type) iVar)
```

PURPOSE: Adjoint mode of the Two_Stream_Solution.

Parameters

in,out	ssalb_AD	Single scatering albedo of canopy layer AD value (Vertical and horizontal polarizations)
		UNITS: N/A
		TYPE: REAL
		DIMENSION: Rank-1
in,out	tau_AD	Transmittance of the canopy layer AD value
111,000		(Vertical and horizontal polarizations)
		UNITS: N/A
		TYPE: REAL
		DIMENSION: Rank-1
in, out	r23 AD	Intersurface reflectivity between the canopy and soil AD value
III, Out	125_AD	(Vertical and horizontal polarizations)
		UNITS: N/A
		TYPE: REAL
		DIMENSION: Rank-1
in,out	Tskin_AD	Surface skin temperature AD value
		UNITS: Kelvin, K
		TYPE: REAL
		DIMENSION: Scalar
in,out	Tsoil_AD	Top-layer Soil temperature AD value (Vertical and horizontal polarizations)
		UNITS: Kelvin, K
		TYPE: REAL
		DIMENSION: Scalar
in,out	emiss_AD	Surface Emissivity AD
		(Vertical and horizontal polarizations)
		UNITS: N/A
		TYPE: REAL
		DIMENSION: Rank-1
in,out	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.
		IINITEC. NI/A
		UNITS: N/A
		TYPE: iVar_type
		DIMENSION: Scalar
	l	L

Here is the caller graph for this function:

7.55.2.6 two_stream_solution_tl()

PURPOSE: Tangent-linear mode of the Two_Stream_Solution.

Parameters

_	ı	
in,out	ssalb_TL	Single scatering albedo of canopy layer AD value (Vertical and horizontal polarizations)
		UNITS: N/A
		TYPE: REAL
		DIMENSION: Rank-1
in,out	tau_TL	Transmittance of the canopy layer AD value
		(Vertical and horizontal polarizations)
		UNITS: N/A
		TYPE: REAL
		DIMENSION: Rank-1
in,out	r23_TL	Intersurface reflectivity between the canopy and soil AD value (Vertical and horizontal polarizations)
		UNITS: N/A
		TYPE: REAL
		DIMENSION: Rank-1
in,out	Tskin_TL	Surface skin temperature AD value
		·
		UNITS: Kelvin, K
		TYPE: REAL DIMENSION: Scalar
		DIMENSION. SCALAI
in,out	Tsoil_TL	Top-layer Soil temperature AD value (Vertical and horizontal polarizations)
		UNITS: Kelvin, K
		TYPE: REAL
		DIMENSION: Scalar
in,out	emiss_TL	Surface Emissivity AD (Vertical and horizontal polarizations)
		UNITS: N/A
		TYPE: REAL
		DIMENSION: Rank-1
in,out	iVar	Composite data structure containing internal variables required for the subsequent tangent-linear and adjoint model calls. The contents of this structure are NOT accessible outside of this module.
		UNITS: N/A
		TYPE: iVar_type
		DIMENSION: Scalar
		2112101011
	l .	

Here is the caller graph for this function:

7.56 nesdis_landvis_phymodel Module Reference

Module containing the NESDIS visible non-snow land emissivity model.

Functions/Subroutines

integer function, public nesdis_landvis_emiss (Frequency, Angle, Land_Skin_Temperature, Soil_

—
Temperature, Soil_Moisture_Content, Vegetation_Fraction, LAI, Vegetation_Type, Soil_Type, Emissivity_H,

Emissivity_V)

7.56.1 Detailed Description

Module containing the NESDIS visible non-snow land emissivity model.

7.57 nesdis_mhs_iceem_module Module Reference

Module containing the MHS microwave sea ice emissivity model.

Functions/Subroutines

subroutine, public nesdis_mhs_iceem (Satellite_Angle, User_Angle, frequency, Ts, tbb, Emissivity_H, Emissivity_V)

7.57.1 Detailed Description

Module containing the MHS microwave sea ice emissivity model.

7.58 nesdis mhs snowem module Module Reference

Module containing the MHS microwave snow emissivity model.

Functions/Subroutines

• subroutine, public **nesdis_mhs_snowem** (Satellite_Angle, User_Angle, frequency, Ts, tbb, Emissivity_H, Emissivity_V)

7.58.1 Detailed Description

Module containing the MHS microwave snow emissivity model.

7.59 nesdis_mw_iceem_lut Module Reference

Module containing the parameters related to microwave Ice emissivity model.

Variables

- integer, parameter, public n_mwice_types = 13
- character(len=20), dimension(n_mwice_types), parameter, public nesdis_ice_type_list = (/ 'RS_ICE_
 A ', 'RS_ICE_B ', 'MIXED_NEWICE_SNOW ', 'NARE_NEWICE_', 'BROKEN_ICE_', 'FIRST_YEAR_ICE_',
 'COMPOSITE_PACK_ICE', 'RS_ICE_C', 'FAST_ICE', 'RS_ICE_D', 'RS_ICE_E', 'RS_ICE_F', 'GREASE
 ICE'/)
- integer, parameter, public n_mwice_frequency = 7

7.59.1 Detailed Description

Module containing the parameters related to microwave Ice emissivity model.

7.60 nesdis mw iceemiss util Module Reference

Module containing a simplfied NESDIS physical microwave emissivity model to be used by empirical models in angle dependence estimation.

Functions/Subroutines

• subroutine, public **nesdis_mwemiss_ice** (Angle, Frequency, Soil_Moisture_Content, Vegetation_Fraction, Soil Temperature, t skin, Lai, Soil Type, Vegetation Type, Snow depth, Emissivity V)

7.60.1 Detailed Description

Module containing a simplfied NESDIS physical microwave emissivity model to be used by empirical models in angle dependence estimation.

7.61 nesdis mw snowem lut Module Reference

Module containing the parameters related to microwave snow emissivity model.

Variables

- integer, parameter, public n_mwsnow_types = 16
- integer, parameter, public invalid_snow_type = -999
- integer, parameter, public wet_snow = 1
- integer, parameter, public grass_after_snow = 2
- integer, parameter, public rs snow a = 3
- integer, parameter, public powder_snow = 4
- integer, parameter, public rs_snow_b = 5
- integer, parameter, public rs snow c = 6
- integer, parameter, public rs_snow_d = 7
- integer, parameter, public thin crust snow = 8
- integer, parameter, public rs_snow_e = 9
- integer, parameter, public bottom_crust_snow_a = 10
- integer, parameter, public shallow_snow = 11
- integer, parameter, public deep_snow = 12
- integer, parameter, public crust snow = 13
- integer, parameter, public medium_snow = 14
- integer, parameter, public bottom_crust_snow_b = 15
- integer, parameter, public thick crust snow = 16
- character(len=20), dimension(n_mwsnow_types), parameter, public **nesdis_snow_type_list** = (/ 'WET_ SNOW ', 'GRASS AFTER SNOW ', 'RS SNOW A ', 'POWDER SNOW ', 'RS SNOW B ', 'RS SNOW C ', 'RS_SNOW_D ', 'THIN_CRUST_SNOW ', 'RS_SNOW_E ', 'BOTTOM_CRUST_SNOW_A ', 'SHALLOW $_\leftarrow$ SNOW ', 'DEEP_SNOW ', 'CRUST_SNOW ', 'MEDIUM_SNOW ', 'BOTTOM_CRUST_SNOW_B ', 'THICK_ \leftarrow CRUST_SNOW '/)
- integer, parameter, public n_mwsnow_frequency = 10
- integer, parameter, public n_amsre_snow_freq = 7

7.61.1 Detailed Description

Module containing the parameters related to microwave snow emissivity model.

7.62 nesdis_mw_snowemiss_util Module Reference

Module containing a simplfied NESDIS physical microwave emissivity model to be used by empirical models in angle dependence estimation.

Functions/Subroutines

subroutine, public **nesdis mwemiss snow** (Angle, Frequency, Soil Moisture Content, Vegetation ← Fraction, Soil Temperature, t skin, Lai, Soil Type, Vegetation Type, Snow depth, Emissivity ↔ _V)

7.62.1 Detailed Description

Module containing a simplfied NESDIS physical microwave emissivity model to be used by empirical models in angle dependence estimation.

7.63 nesdis sensors icemw modules Module Reference

Container Module to wrap all the microwave sensor-based ice surface emissivity regression models with a generic interface.

Functions/Subroutines

- integer function, public crtm sensors icemw emiss (Surface, SensorObs, SfcOptics)
- character(len(sensor id)) function, public icemw sensorname (sensor id)

7.63.1 Detailed Description

Container Module to wrap all the microwave sensor-based ice surface emissivity regression models with a generic interface.

7.64 nesdis sensors snowmw modules Module Reference

Module to wrap the microwave sensor-based snow-surface regression models with a generic interface.

Functions/Subroutines

- integer function, public crtm_sensors_snowmw_emiss (Surface, SensorObs, SfcOptics)
- character(len(sensor_id)) function, public snowmw_sensorname (sensor_id)

7.64.1 Detailed Description

Module to wrap the microwave sensor-based snow-surface regression models with a generic interface.

7.65 nesdis_snowem_atms_parameters Module Reference

Module containing the snow emissivity library ATMS channels. The library contain 16.

Functions/Subroutines

- integer function snowtype_name2index (sname)
- character(len=100) function snowtype_index2name (sindex)

Variables

- integer, parameter, public n_freq_atms = 13
- integer, parameter, public n_snow_types = 16
- character(len=20), dimension(n_snow_types), parameter, public snow_type_names =(/ 'WET_SNOW ', 'GRASS_AFTER_SNOW ', 'RS_SNOW_A ', 'POWDER_SNOW ', 'RS_SNOW_B ', 'RS_SNOW_C ', 'RS SNOW_D ', 'THIN_CRUST_SNOW ', 'RS_SNOW_E ', 'BOTTOM_CRUST_SNOW_A ', 'SHALLOW_SNOW ', 'DEEP_SNOW ', 'CRUST_SNOW ', 'MEDIUM_SNOW ', 'BOTTOM_CRUST_SNOW_B ', 'THICK_CRUST SNOW '/)
- integer, dimension(n_snow_types), parameter, public **code2excel_idx** = (/2, 1, 4, 11, 14, 12, 8, 16, 10, 15, 13, 5, 6, 3, 7, 9/)
- integer, dimension(n_snow_types), parameter, public **excel2code_idx** = (/2, 1, 14, 3, 12, 13, 15, 7, 16, 9, 4, 6, 11, 5, 10, 8/)
- real(fp), dimension(n_freq_atms), parameter, public **frequency_atms** = (/23.80_fp,31.40_fp,50.30_fp,51. ← 76_fp,52.80_fp,53.60_fp,54.40_fp,54.90_fp,55.50_fp,57.30_fp,88.20_fp,165.50_fp,183.30_fp/)
- real(fp), dimension(n freq atms, n snow types), parameter, public snow emiss atms h = RESHAPE((// 0.94_fp,0.93_f $0.90_fp, 0.91_fp, 0$ 0.84_fp,0.83_fp,0.81_fp,0.81_fp,0.81_fp,0.81_fp,0.81_fp,0.81_fp,0.81_fp,0.81_fp,0.81_fp,0.80_f 0.92_fp,0.91_fp,0.87_fp,0.87_fp,0.87_fp,0.87_fp,0.87_fp,0.86_fp,0.86_fp,0.86_fp,0.80_fp,0.79_fp,0.78_fp, $0.76_{fp}, 0.75_{fp}, 0.74_{fp}, 0.74_{fp}$ 0.78_fp,0.77_fp,0.76_f 0.75 fp,0.74 fp,0.72 fp,0.72 fp,0.72 fp,0.72 fp,0.72 fp,0.72 fp,0.72 fp,0.71 fp,0.72 f 0.94_fp,0.91_fp,0.85_fp,0.85_fp,0.85_fp,0.84_fp,0.84_fp,0.84_fp,0.84_fp,0.83_fp,0.75_fp,0.62_fp,0.60_fp, $0.72 _ fp, 0.71 _ fp, 0.70 _ fp, 0.60 _ fp, 0.70 _ fp$ 0.85 fp,0.82 fp,0.77 fp,0.77 fp,0.76 fp,0.76 fp,0.76 fp,0.76 fp,0.76 fp,0.75 fp,0.68 fp,0.62 fp,0.60 fp, 0.78 fp,0.74 fp,0.69 fp,0.69 fp,0.69 fp,0.69 fp,0.69 fp,0.68 fp,0.68 fp,0.68 fp,0.62 fp,0.56 fp,0.54 fp, $0.80_{\text{fp}}, 0.78_{\text{fp}}, 0.75_{\text{fp}}, 0.74_{\text{fp}}, 0.74_{\text{fp}},$ $0.71_fp, 0.69_fp, 0.66_fp, 0.66_fp, 0.66_fp, 0.66_fp, 0.66_fp, 0.66_fp, 0.66_fp, 0.66_fp, 0.66_fp, 0.64_fp, 0$ 0.88 = fp, 0.85 = fp, 0.75 = fp, 0.74 = fp, 0.74 = fp, 0.73 = fp, 0.73 = fp, 0.72 = fp, 0.71 = fp, 0.53 = fp, 0.47 = fp, 0.45 = fp, 0.85 = fp0.82 = fp, 0.77 = fp, 0.68 = fp, 0.68 = fp, 0.67 = fp, 0.67 = fp, 0.67 = fp, 0.66 = fp, 0.66 = fp, 0.53 = fp, 0.48 = fp, 0.47 = fp, 0.67 = fp, 0.68 = fp $0.81_{p,0.80_{p,0.72_{p,0.71_{p,0.70_{p,0.69_{p,0.69_{p,0.69_{p,0.69_{p,0.68_{p,0.68_{p,0.51_{p,0.45_{p,0.43_{p,0.69$ (/N_FREQ_ATMS,N_SNOW_TYPES/))
- real(fp), dimension(n freq atms, n snow types), parameter, public snow emiss atms v = RESHAPE((// $0.95_fp, 0.94_fp, 0$ 0.96_fp,0.96_fp,0.950.96 fp,0.94 fp,0.91 fp,0.91 fp,0.91 fp,0.91 fp,0.91 fp,0.91 fp,0.91 fp,0.91 fp,0.91 fp,0.87 fp,0.87 fp, $0.98_{\rm fp}, 0.97_{\rm fp}, 0.93_{\rm fp}, 0.93_{\rm fp}, 0.92_{\rm fp}, 0.92_{\rm fp}, 0.92_{\rm fp}, 0.92_{\rm fp}, 0.91_{\rm fp}, 0.84_{\rm fp}, 0.83_{\rm fp}, 0.82_{\rm fp}, 0.90_{\rm fp}, 0.9$ $0.92_fp, 0.90_fp, 0.88_fp, 0.88_fp, 0.87_fp, 0.87_fp, 0.87_fp, 0.87_fp, 0.87_fp, 0.87_fp, 0.84_fp, 0$ 0.94_fp,0.92_fp,0.89_fp,0.89_fp,0.89_fp,0.89_fp,0.89_fp,0.89_fp,0.88_fp,0.88_fp,0.88_fp,0.84_fp,0.76_fp,0.75_fp, 0.90_fp,0.88_fp,0.84_fp,0.84_fp,0.84_fp,0.84_fp,0.84_fp,0.84_fp,0.84_fp,0.84_fp,0.84_fp,0.80_fp,0.80_fp, 0.97 fp,0.94 fp,0.88 fp,0.88 fp,0.87 fp,0.87 fp,0.87 fp,0.87 fp,0.87 fp,0.86 fp,0.77 fp,0.64 fp,0.62 fp, 0.86_fp,0.84_fp,0.80_fp,0.80_fp,0.80_fp,0.79_fp,0.79_fp,0.79_fp,0.79_fp,0.79_fp,0.74_fp,0.73_fp,0.72_fp, 0.93_fp,0.89_fp,0.83_fp,0.82_fp,0.82_fp,0.82_fp,0.82_fp,0.81_fp,0.81_fp,0.81_fp,0.81_fp,0.65_fp,0.63_fp, 0.90 fp,0.86 fp,0.80 fp,0.79 fp,0.79 fp,0.79 fp,0.78 fp,0.78 fp,0.78 fp,0.68 fp,0.62 fp,0.60 fp, $0.90_fp, 0.87_fp, 0.83_fp, 0.83_fp, 0.83_fp, 0.82_fp, 0$ $0.90_fp, 0.85_fp, 0.78_fp, 0.78_fp, 0.78_fp, 0.78_fp, 0.78_fp, 0.77_fp, 0.77_fp, 0.77_fp, 0.77_fp, 0.71_fp, 0$ 0.96_fp,0.94_fp,0.83_fp,0.82_fp,0.81_fp,0.81_fp,0.80_fp,0.80_fp,0.79_fp,0.78_fp,0.58_fp,0.51_fp,0.49_fp, 0.95 fp,0.90 fp,0.79 fp,0.78 fp,0.77 fp,0.77 fp,0.76 fp,0.76 fp,0.76 fp,0.75 fp,0.58 fp,0.53 fp,0.52 fp, $0.94_fp, 0.91_fp, 0.80_fp, 0.79_fp, 0.79_fp, 0.78_fp, 0.77_fp, 0.77_fp, 0.76_fp, 0.57_fp, 0.50_fp, 0.48_fp \ /),$ (/N_FREQ_ATMS,N_SNOW_TYPES/))
- real(fp), dimension(n_freq_atms, n_snow_types), parameter, public $snow_emiss_atms_lib = RESHAPE((/0.94_fp,0.94_fp,0.94_fp,0.93_fp,0.93_fp,0.93_fp,0.93_fp,0.93_fp,0.93_fp,0.93_fp,0.92_fp,0.89_fp,0.89_fp,0.90_fp,0.90_fp,0.91_fp,0.81_fp,$

 $0.78_fp,0.77_fp,0.77_fp,0.76_fp,0.76_fp,0.76_fp,0.76_fp,0.76_fp,0.75_fp,0.72_fp,0.72_fp,0.95_fp,0.93_fp,0.87_fp,0.86_fp,0.86_fp,0.86_fp,0.85_fp,0.85_fp,0.85_fp,0.84_fp,0.74_fp,0.63_fp,0.60_fp,0.76_fp,0.75_fp,0.66_fp,0.66_fp,0.66_fp,0.66_fp,0.66_fp,0.66_fp,0.66_fp,0.66_fp,0.75_fp,0.75_fp,0.75_fp,0.75_fp,0.60_fp,0.61_fp,0.81_fp,0.77_fp,0.74_fp,0.73_fp,0.73_fp,0.73_fp,0.73_fp,0.73_fp,0.73_fp,0.73_fp,0.75_fp,0.69_fp,0.63_fp,0.61_fp,0.82_fp,0.78_fp,0.68_fp,0.68_fp,0.68_fp,0.67_fp,0.67_fp,0.67_fp,0.67_fp,0.65_fp,0.65_fp,0.65_fp,0.64_fp,0.55_fp,0.75_fp,0.70_fp,0.70_fp,0.70_fp,0.70_fp,0.70_fp,0.70_fp,0.70_fp,0.69_fp,0.64_fp,0.59_fp,0.58_fp,0.84_fp,0.76_fp,0.65_fp,0.65_fp,0.63_fp,0.64_fp,0.50_fp,0.44_fp,0.42_fp,0.86_fp,0.63_fp,0.63_fp,0.63_fp,0.63_fp,0.63_fp,0.63_fp,0.63_fp,0.63_fp,0.63_fp,0.63_fp,0.63_fp,0.64_fp,0.50_fp,0.44_fp,0.42_fp,0.86_fp,0.63$

- real(fp), dimension(n frequency, n snow types), parameter, public snow emiss default lib = RE- $SHAPE((/ \ 0.87_fp, 0.89_fp, 0.91_fp, 0.93_fp, 0.94_fp, 0.94_fp, 0.94_fp, 0.93_fp, 0.92_fp, 0.90_fp, \ 0.91_fp, 0.60_fp, 0.90_fp, 0.91_fp, 0.90_fp, 0.90_f$ $91_fp, 0.92_fp, 0.91_fp, 0.90_fp, 0.90_fp, 0.91_fp, 0.91_fp, 0.91_fp, 0.91_fp, 0.80_fp, 0.80_fp, 0.88_fp, 0.87_fp, 0.80_fp, 0.8$ $86_{\text{fp}}, 0.86_{\text{fp}}, 0.85_{\text{fp}}, 0.82_{\text{fp}}, 0.82_{\text{fp}}, 0.91_{\text{fp}}, 0.91_{\text{fp}}, 0.93_{\text{fp}}, 0.93_{\text{fp}}, 0.93_{\text{fp}}, 0.93_{\text{fp}}, 0.89_{\text{fp}}, 0.89_{\text{fp}}$ 88_fp,0.79_fp,0.79_fp, 0.90_fp,0.89_fp,0.88_fp,0.85_fp,0.84_fp,0.83_fp,0.83_fp,0.82_fp,0.79_fp,0.73_fp, 0.90 fp,0.89 fp,0.86 fp,0.82 fp,0.80 fp,0.79 fp,0.78 fp,0.78 fp,0.77 fp,0.77 fp, 0.88 fp,0.86 fp,0.85 \leftrightarrow fp,0.80 - fp,0.78 - fp,0.77 - fp,0.77 - fp,0.76 - fp,0.72 - fp,0.72 - fp,0.93 - fp,0.94 - fp,0.96 - fp,0.96 - fp,0.95 - fp,0.93 - c $fp,0.87 - fp,0.86 - fp,0.74 - fp,0.65 - fp, 0.87 - fp,0.86 - fp,0.84 - fp,0.80 - fp,0.76 - fp,0.75 - fp,0.75 - fp,0.75 - fp,0.70 \leftarrow$ fp,0.69 fp, 0.87 fp,0.86 fp,0.83 fp,0.77 fp,0.73 fp,0.68 fp,0.66 fp,0.66 fp,0.68 fp,0.67 fp, 0.89 fp,0. \leftarrow $89_{fp}, 0.88_{fp}, 0.87_{fp}, 0.86_{fp}, 0.82_{fp}, 0.77_{fp}, 0.76_{fp}, 0.69_{fp}, 0.64_{fp}, 0.88_{fp}, 0.87_{fp}, 0.86_{fp}, 0.83_{fp}, 0.69_{fp}, 0.80_{fp}, 0.80_{fp},$ $81_{\text{fp},0.77_{\text{fp},0.74_{\text{fp},0.73_{\text{fp},0.69_{\text{fp},0.64_{\text{fp},0.86_{\text{fp},0.86_{\text{fp},0.86_{\text{fp},0.85_{\text{fp},0.82_{\text{fp},0.78_{\text{fp},0.69_{\text{fp},0.69_{\text{fp},0.86_{$ 68_fp,0.51_fp,0.47_fp, 0.89_fp,0.88_fp,0.87_fp,0.83_fp,0.80_fp,0.75_fp,0.70_fp,0.70_fp,0.64_fp,0.60_fp, $0.91_{p,0.92_{p,0.93_{p,0.88_{p,0.84_{p,0.76_{p,0.66_{p,0.64_{p,0.48_{p,0.44_{p,0.94_{p,0.95_{p,0.97_{e}}}}}}} 0.94_{p,0.95_{p,0.97_{e}}}$ $fp, 0.91_fp, 0.86_fp, 0.74_fp, 0.63_fp, 0.63_fp, 0.50_fp, 0.45_fp \, /), \, (/N_FREQUENCY, N_SNOW_TYPES/)) + (/N_FREQUENCY, N_SNOW_TYPES/) + (/N_FREQUENCY, N_SNOW_TYPES/) + (/N_FREQUENCY, N_SNOW_TYPES/) + (/N_FREQUENCY, N_SNOW_TYPE$
- real(fp), dimension(n freq atms, n snow types), parameter, public snow emiss atms lib 2 = RE-SHAPE((/ 0.945 fp,0.935 fp,0.935 fp,0.935 fp,0.935 fp,0.935 fp,0.935 fp,0.935 \leftarrow $\mathsf{fp,0.935_fp,0.895_fp,0.885_fp,} \quad 0.930_\mathsf{fp,0.930_f$ fp,0.930 fp,0.925 fp,0.910 fp,0.850 fp,0.830 fp, 0.900 fp,0.885 fp,0.860 fp,0.860 fp,0.860 fp,0.860 \leftarrow fp,0.860 fp,0.860 fp,0.860 fp,0.860 fp,0.835 fp,0.835 fp,0.835 fp, 0.950 fp,0.940 fp,0.900 fp,0.900 \leftarrow fp,0.895 fp,0.895 fp,0.895 fp,0.890 fp,0.890 fp,0.885 fp,0.820 fp,0.810 fp,0.800 fp, 0.840 fp,0.825 \leftarrow $\mathsf{fp}, 0.810_\mathsf{fp}, 0.810_\mathsf{fp}, 0.805_\mathsf{fp}, 0.805_\mathsf{fp}, 0.805_\mathsf{fp}, 0.805_\mathsf{fp}, 0.805_\mathsf{fp}, 0.805_\mathsf{fp}, 0.790_\mathsf{fp}, 0.790_\mathsf{f$ 0.860 fp,0.845 fp,0.825 fp,0.825 fp,0.825 fp,0.825 fp,0.825 fp,0.825 fp,0.820 fp,0.820 fp,0.795 \leftarrow fp,0.715 fp,0.705 fp, 0.825 fp,0.810 fp,0.780 fp,0.780 fp,0.780 fp,0.780 fp,0.780 fp,0.780 fp,0.780 \leftarrow fp,0.780 fp,0.755 fp,0.755 fp,0.755 fp, 0.955 fp,0.925 fp,0.865 fp,0.865 fp,0.860 fp,0.855 fp,0.855 \leftrightarrow fp,0.855 = fp,0.855 = fp,0.845 = fp,0.760 = fp,0.630 = fp,0.610 = fp, 0.790 = fp,0.775 = fp,0.750 = fp,0.750fp,0.745 = fp,0.745 = fp,0.745 = fp,0.745 = fp,0.745 = fp,0.710 = fp,0.700 = fp,0.690 = fp,0.890 = fp,0.855 = fp,0.800 = fp,0.745 = fp,0.745fp,0.795 fp,0.790 fp,0.790 fp,0.790 fp,0.785 fp,0.785 fp,0.780 fp,0.695 fp,0.635 fp,0.615 fp, 0.840 \leftarrow fp,0.800 fp,0.745 fp,0.740 fp,0.740 fp,0.740 fp,0.740 fp,0.730 fp,0.730 fp,0.730 fp,0.650 fp,0.590 \leftarrow $fp,0.570_fp, 0.850_fp,0.825_fp,0.790_fp,0.785_fp,0.785_fp,0.780_fp,0.780_fp,0.780_fp,0.780_fp,0.775_$ fp,0.725 = fp,0.645 = fp,0.635 = fp,0.805 = fp,0.770 = fp,0.720 = fp,0.720fp,0.715 fp,0.715 fp,0.675 fp,0.675 fp,0.675 fp, 0.920 fp,0.895 fp,0.790 fp,0.780 fp,0.775 fp,0.770 \leftrightarrow fp,0.765 = fp,0.760 = fp,0.755 = fp,0.745 = fp,0.555 = fp,0.490 = fp,0.470 = fp, 0.885 = fp,0.835 = fp,0.735 = fp,0.730 = fp,0.735 $\mathsf{fp}, 0.720 - \mathsf{fp}, 0.720 - \mathsf{fp}, 0.715 - \mathsf{fp}, 0.715 - \mathsf{fp}, 0.710 - \mathsf{fp}, 0.705 - \mathsf{fp}, 0.555 - \mathsf{fp}, 0.505 - \mathsf{fp}, 0.495 - \mathsf{fp}, \\ \phantom{\mathsf{fp}, 0.720 - \mathsf{fp}, 0.720 - \mathsf{fp}, 0.715 - \mathsf{fp}, 0.715 - \mathsf{fp}, 0.715 - \mathsf{fp}, 0.705 - \mathsf{fp}, 0.555 - \mathsf{fp}, 0.505 - \mathsf{fp}, 0.495 - \mathsf{fp}, \\ \phantom{\mathsf{fp}, 0.720 - \mathsf{fp}, 0.720 - \mathsf{fp}, 0.715 - \mathsf{fp}, 0.715 - \mathsf{fp}, 0.715 - \mathsf{fp}, 0.705 - \mathsf{fp}, 0.555 - \mathsf{fp}, 0.505 - \mathsf{fp}, 0.495 - \mathsf{fp}, \\ \phantom{\mathsf{fp}, 0.720 - \mathsf{fp}, 0.720 - \mathsf{fp}, 0.715 - \mathsf{fp}, 0.715 - \mathsf{fp}, 0.715 - \mathsf{fp}, 0.705 - \mathsf{fp}, 0.555 - \mathsf{fp}, 0.505 - \mathsf{fp}, 0.495 - \mathsf{fp}, \\ \phantom{\mathsf{fp}, 0.720 - \mathsf{fp}, 0.720 - \mathsf{fp}, 0.715 - \mathsf{fp$ fp,0.760_fp,0.750_fp,0.745_fp,0.745_fp,0.735_fp,0.730_fp,0.730_fp,0.720_fp,0.540_fp,0.475_fp,0.455_fp /), (/N FREQ ATMS,N SNOW TYPES/))

7.65.1 Detailed Description

Module containing the snow emissivity library ATMS channels. The library contain 16.

7.66 nesdis snowem parameters Module Reference

Module containing the parameters related to microwave snow emissivity model.

Variables

- integer, parameter, public invalid_snow_type = -999
- integer, parameter, public wet_snow = 1
- integer, parameter, public grass after snow = 2
- integer, parameter, public rs_snow_a = 3
- integer, parameter, public **powder snow** = 4
- integer, parameter, public rs snow b = 5
- integer, parameter, public rs_snow_c = 6
- integer, parameter, public **rs** snow **d** = 7
- integer, parameter, public thin_crust_snow = 8
- integer, parameter, public **rs_snow_e** = 9
- integer, parameter, public bottom_crust_snow_a = 10
- integer, parameter, public **shallow_snow** = 11
- integer, parameter, public deep_snow = 12
- integer, parameter, public crust_snow = 13
- integer, parameter, public medium snow = 14
- integer, parameter, public bottom_crust_snow_b = 15
- integer, parameter, public thick crust snow = 16
- integer, parameter, public n_frequency = 10
- integer, parameter, public **n freq amsre** = 7
- real(fp), dimension(n_frequency), parameter, public **frequency_default** = (/ 4.9_fp, 6.93_fp, 10.65_fp, 18. ← 7_fp,23.8_fp, 31.4_fp, 50.3_fp, 52.5_fp, 89.0_fp,150._fp/)
- real(fp), dimension(n_frequency), parameter, public **wet_snow_emiss** = (/0.87_fp,0.89_fp,0.91_fp,0.93_column{2}{} fp,0.94_fp,0.94_fp,0.94_fp,0.93_fp,0.92_fp,0.90_fp/)
- real(fp), dimension(n_frequency), parameter, public **grass_after_snow_emiss** = (/0.91_fp,0.9
- real(fp), dimension(n_frequency), parameter, public **rs_snow_a_emiss** = (/0.90_fp,0.89_fp,0.88_fp,0.87_fp, 0.86_fp, 0.86_fp, 0.85_fp,0.85_fp,0.82_fp,0.82_fp/)
- real(fp), dimension(n_frequency), parameter, public **powder_snow_emiss** = (/0.91_fp,0.91_fp,0.93_fp,0.93_fp,0.93_fp,0.93_fp,0.93_fp,0.89_fp,0.89_fp,0.79_fp/)
- real(fp), dimension(n_frequency), parameter, public rs_snow_b_emiss = (/0.90_fp,0.89_fp,0.88_fp,0.85_← fp,0.84_fp, 0.83_fp,0.83_fp,0.82_fp,0.79_fp,0.73_fp/)
- real(fp), dimension(n_frequency), parameter, public **rs_snow_c_emiss** = (/0.90_fp,0.89_fp,0.86_fp,0.82_ fp,0.80 fp, 0.79 fp,0.78 fp,0.78 fp,0.77 fp,0.77 fp/)
- real(fp), dimension(n_frequency), parameter, public $rs_snow_d_emiss = (/0.88_fp, 0.86_fp, 0.85_fp, 0.80_ \leftarrow fp, 0.78_fp, 0.77_fp, 0.77_fp, 0.76_fp, 0.72_fp, 0.72_fp/)$
- real(fp), dimension(n_frequency), parameter, public **thin_crust_snow_emiss** = (/0.93_fp,0.94_fp,0.96_ cmiss), 0.96_fp,0.95_fp, 0.93_fp,0.87_fp,0.86_fp,0.74_fp,0.65_fp/)
- real(fp), dimension(n_frequency), parameter, public rs_snow_e_emiss = (/0.87_fp,0.86_fp,0.84_fp,0.80_← fp,0.76_fp, 0.76_fp, 0.75_fp,0.75_fp,0.70_fp,0.69_fp/)
- real(fp), dimension(n_frequency), parameter, public **bottom_crust_snow_a_emiss** = $(/0.87_fp, 0.86_fp, 0.46_fp, 0.68_fp, 0.68_$
- real(fp), dimension(n_frequency), parameter, public shallow_snow_emiss = (/0.89_fp,0.89_fp,0.88_fp,0. ← 87_fp, 0.86_fp, 0.82_fp,0.77_fp,0.76_fp,0.69_fp,0.64_fp/)
- real(fp), dimension(n_frequency), parameter, public **crust_snow_emiss** = $(/0.86_fp, 0.86_fp, 0.86_fp, 0.85_fp, 0.82_fp, 0.78_fp, 0.68_fp, 0.68_fp, 0.51_fp, 0.47_fp/)$
- real(fp), dimension(n_frequency), parameter, public **medium_snow_emiss** = $(/0.89_fp, 0.88_fp, 0.87_fp, 0.40_fp, 0.75_fp, 0.70_fp, 0.70_fp, 0.64_fp, 0.60_fp/)$

real(fp), dimension(n_freq_amsre), parameter, public frequency_amsre = (/ 6.925_fp, 10.65_fp, 18.7_← fp,23.8_fp, 36.5_fp, 89.0_fp,150._fp/)

- real(fp), dimension(n_freq_amsre), parameter, public **wet_snow_em_amsre** = (/0.91_fp, 0.93_fp, 0.94_fp, 0.95_fp, 0.95_fp, 0.93_fp, 0.93_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **grass_after_snow_em_amsre** = (/0.91_fp, 0.92_fp, 0.91_fp, 0.91_f
- real(fp), dimension(n_freq_amsre), parameter, public **rs_snow_a_em_amsre** = (/0.90_fp, 0.89_fp, 0.88_fp, 0.87_fp, 0.86_fp, 0.82_fp, 0.82_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **powder_snow_em_amsre** = (/0.92_fp, 0.93_fp, 0. ← 94_fp, 0.94_fp, 0.92_fp, 0.80_fp, 0.80_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **rs_snow_b_em_amsre** = (/0.87_fp, 0.86_fp, 0.83_fp, 0.80_fp, 0.79_fp, 0.77_fp, 0.77_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **rs_snow_c_em_amsre** = (/0.89_fp, 0.88_fp, 0.85_fp, 0.84_fp, 0.83_fp, 0.79_fp, 0.79_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **rs_snow_d_em_amsre** = (/0.84_fp, 0.83_fp, 0.82_fp, 0.80_fp, 0.78_fp, 0.72_fp, 0.72_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **thin_crust_snow_em_amsre** = (/0.95_fp, 0.96_fp, 0.96_fp, 0.95_fp, 0.75_fp, 0.75_fp, 0.75_fp)
- real(fp), dimension(n_freq_amsre), parameter, public **rs_snow_e_em_amsre** = (/0.80_fp, 0.80_fp, 0.80_fp, 0.79 fp, 0.75 fp, 0.70 fp, 0.70 fp/)
- real(fp), dimension(n_freq_amsre), parameter, public bottom_crust_snow_a_em_amsre = (/0.91_fp, 0.40 ± 0.00
- real(fp), dimension(n_freq_amsre), parameter, public **shallow_snow_em_amsre** = (/0.90_fp, 0.89_fp, 0. ← 85_fp, 0.82_fp, 0.76_fp, 0.65_fp, 0.65_fp)
- real(fp), dimension(n_freq_amsre), parameter, public **deep_snow_em_amsre** = (/0.89_fp, 0.88_fp, 0.86_fp, 0.83_fp, 0.70_fp, 0.70_fp, 0.70_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **crust_snow_em_amsre** = (/0.88_fp, 0.86_fp, 0.80_fp, 0.75_fp, 0.69_fp, 0.67_fp, 0.67_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **medium_snow_em_amsre** = (/0.96_fp, 0.97_fp, 0. ← 92_fp, 0.87_fp, 0.72_fp, 0.50_fp, 0.50_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **bottom_crust_snow_b_em_amsre** = (/0.93_fp, 0. ← 94_fp, 0.89_fp, 0.85_fp, 0.74_fp, 0.48_fp, 0.48_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **thick_crust_snow_em_amsre** = (/0.88_fp, 0.88_fp, 0.87 fp, 0.85 fp, 0.77 fp, 0.52 fp, 0.52 fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **wet_snow_eh_amsre** = (/0.93_fp, 0.92_fp, 0.93_fp, 0.94 fp, 0.93 fp, 0.93 fp, 0.90 fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **grass_after_snow_eh_amsre** = (/0.91_fp, 0.90_fp, 0.90_fp, 0.90_fp, 0.90_fp, 0.90_fp, 0.85_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **rs_snow_a_eh_amsre** = (/0.85_fp, 0.85_fp, 0.84_fp, 0.84_fp, 0.82_fp, 0.80_fp, 0.80_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **powder_snow_eh_amsre** = (/0.90_fp, 0.90_fp, 0.90_fp, 0.90_fp, 0.79_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **rs_snow_b_eh_amsre** = (/0.82_fp, 0.81_fp, 0.77_fp, 0.76_fp, 0.74_fp, 0.74_fp, 0.74_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **rs_snow_c_eh_amsre** = (/0.84_fp, 0.83_fp, 0.80_fp, 0.78_fp, 0.77_fp, 0.75_fp, 0.69_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public rs_snow_d_eh_amsre = (/0.77_fp, 0.77_fp, 0.76_fp, 0.75_fp, 0.73_fp, 0.71_fp, 0.71_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **thin_crust_snow_eh_amsre** = (/0.95_fp, 0.94_fp, 0. ← 95 fp, 0.94 fp, 0.89 fp, 0.75 fp, 0.65 fp/)
- real(fp), dimension(n_freq_amsre), parameter, public rs_snow_e_eh_amsre = (/0.73_fp, 0.73_fp, 0.74_fp, 0.72_fp, 0.71_fp, 0.68_fp, 0.67_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **bottom_crust_snow_a_eh_amsre** = $(/0.88_{fp}, 0.46_{fp}, 0.86_{fp}, 0.86_{fp}, 0.86_{fp}, 0.86_{fp}, 0.68_{fp}, 0.68_{fp})$
- real(fp), dimension(n_freq_amsre), parameter, public **shallow_snow_eh_amsre** = (/0.86_fp, 0.84_fp, 0. ← 80_fp, 0.78_fp, 0.72_fp, 0.62_fp, 0.57_fp/)

- real(fp), dimension(n_freq_amsre), parameter, public deep_snow_eh_amsre = (/0.87_fp, 0.85_fp, 0.83_fp, 0.80_fp, 0.77_fp, 0.68_fp, 0.62_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public crust_snow_eh_amsre = (/0.82_fp, 0.74_fp, 0.74_fp, 0.67_fp, 0.64_fp, 0.64_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **medium_snow_eh_amsre** = (/0.90_fp, 0.90_fp, 0.40 fp, 0.81 fp, 0.83 fp, 0.83 fp, 0.84 fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **bottom_crust_snow_b_eh_amsre** = (/0.87_fp, 0. ← 85_fp, 0.84_fp, 0.82_fp, 0.74_fp, 0.53_fp, 0.49_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **thick_crust_snow_eh_amsre** = (/0.85_fp, 0.84_fp, 0.83_fp, 0.81_fp, 0.79_fp, 0.51_fp, 0.46_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **wet_snow_ev_amsre** = (/0.96_fp, 0.94_fp, 0.94_fp, 0.94_fp, 0.94_fp, 0.91_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **grass_after_snow_ev_amsre** = (/0.96_fp, 0.94_fp, 0.95_fp, 0.96_fp, 0.96_fp, 0.92_fp, 0.87_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **rs_snow_a_ev_amsre** = (/0.99_fp, 0.97_fp, 0.96_fp, 0.96_fp, 0.93_fp, 0.87_fp, 0.87_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **powder_snow_ev_amsre** = (/0.98_fp, 0.97_fp, 0.000 or .0.98_fp, 0.98_fp, 0.98_fp, 0.84_fp, 0.83_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **rs_snow_b_ev_amsre** = (/0.97_fp, 0.95_fp, 0.93_fp, 0.92 fp, 0.89 fp, 0.84 fp,0.84 fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **rs_snow_c_ev_amsre** = (/1.00_fp, 0.97_fp, 0.96_fp, 0.94 fp, 0.91 fp, 0.84 fp, 0.78 fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **rs_snow_d_ev_amsre** = (/0.99_fp, 0.96_fp, 0.93_fp, 0.90_fp, 0.86_fp, 0.80_fp, 0.80_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **thin_crust_snow_ev_amsre** = (/0.98_fp, 0.97_fp, 0.40 + 0.98_fp, 0.97_fp, 0.92_fp, 0.77_fp, 0.67_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **rs_snow_e_ev_amsre** = (/0.98_fp, 0.95_fp, 0.90_fp, 0.86_fp, 0.82_fp, 0.74_fp, 0.73_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **bottom_crust_snow_a_ev_amsre** = (/0.96_fp, 0. ← 95_fp, 0.95_fp, 0.87_fp, 0.87_fp, 0.66_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **shallow_snow_ev_amsre** = (/0.97_fp, 0.95_fp, 0.40 94_fp, 0.90_fp, 0.84_fp, 0.68_fp, 0.63_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **deep_snow_ev_amsre** = (/0.96_fp, 0.94_fp, 0.92_fp, 0.90 fp, 0.85 fp, 0.77 fp, 0.71 fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **crust_snow_ev_amsre** = (/0.98_fp, 0.96_fp, 0.93_fp, 0.90 fp, 0.81 fp, 0.71 fp, 0.71 fp/)
- real(fp), dimension(n_freq_amsre), parameter, public medium_snow_ev_amsre = (/0.99_fp, 0.97_fp, 0.40 98_fp, 0.96_fp, 0.92_fp, 0.57_fp, 0.52_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **bottom_crust_snow_b_ev_amsre** = (/1.00_fp, 0. ← 97_fp, 0.97_fp, 0.95_fp, 0.86_fp, 0.58_fp, 0.54_fp/)
- real(fp), dimension(n_freq_amsre), parameter, public **thick_crust_snow_ev_amsre** = (/0.98_fp, 0.96_fp, 0.96_fp, 0.94_fp, 0.89_fp, 0.56_fp, 0.51_fp/)

7.66.1 Detailed Description

Module containing the parameters related to microwave snow emissivity model.

7.67 nesdis snowir phymodel Module Reference

Module containing the NESDIS Snow emissivity model of infrared bands.

Functions/Subroutines

• integer function, public **nesdis_snowir_emiss** (Frequency, Angle, Snow_Temperature, Soil_Temperature, Soil_Moisture_Content, Soil_Type, Emissivity_H, Emissivity_V)

7.67.1 Detailed Description

Module containing the NESDIS Snow emissivity model of infrared bands.

7.68 nesdis_snowmw_phymodel Module Reference

Module containing the NESDIS physical snow emissivity model of microwave Channels.

Functions/Subroutines

7.68.1 Detailed Description

Module containing the NESDIS physical snow emissivity model of microwave Channels.

7.69 nesdis_snowvis_phymodel Module Reference

Module containing the NESDIS Snow emissivity model of visible bands.

Functions/Subroutines

• integer function, public **nesdis_snowvis_emiss** (Frequency, Angle, Snow_Temperature, Soil_Temperature, Soil_Moisture_Content, Soil_Type, Emissivity_H, Emissivity_V)

7.69.1 Detailed Description

Module containing the NESDIS Snow emissivity model of visible bands.

7.70 nesdis ssmi iceem module Module Reference

Module containing the SSM/Imicrowave sea ice emissivity model.

Functions/Subroutines

subroutine, public nesdis_ssmi_iceem (frequency, Angle, Ts, tb, Depth, Emissivity_H, Emissivity_V)

7.70.1 Detailed Description

Module containing the SSM/Imicrowave sea ice emissivity model.

7.71 nesdis ssmi snowem module Module Reference

Module containing the SSM/I microwave snow emissivity model.

Functions/Subroutines

• subroutine, public nesdis_ssmi_snowem (frequency, Angle, Ts, tb, Depth, Emissivity_H, Emissivity_V)

7.71.1 Detailed Description

Module containing the SSM/I microwave snow emissivity model.

7.72 nesdis_ssmis_iceem_module Module Reference

Module containing the SSMIS microwave sea ice emissivity model.

Functions/Subroutines

• subroutine, public nesdis ssmis iceem (frequency, Angle, Ts, tb, Depth, Emissivity H, Emissivity V)

7.72.1 Detailed Description

Module containing the SSMIS microwave sea ice emissivity model.

7.73 nesdis waterir brdf module Module Reference

Module to compute the ocean surface BRDF at near-infrared channels.

Functions/Subroutines

- integer function, public nesdis_irwater_brdf (Wavenumber, Wind_Speed, Sensor_Zenith_Radian, Sensor
 —Azimuth_Radian, Source_Zenith_Radian, Source_Azimuth_Radian, Direct_Reflectivity, iVar)
- integer function, public nesdis_irwater_brdf_tl (Wind_Speed_TL, Direct_Reflectivity_TL, iVar)
- integer function, public nesdis_irwater_brdf_ad (Direct_Reflectivity_AD, Wind_Speed_AD, iVar)

7.73.1 Detailed Description

Module to compute the ocean surface BRDF at near-infrared channels.

7.74 nesdis_waterir_emiss_module Module Reference

Module containing function to invoke the CSEM Infrared Sea Surface Emissivity Model (IRSSEM).

Functions/Subroutines

- integer function, public nesdis_waterir_emiss (Wind_Speed, Frequency, Angle, Emissivity, iVar)
- integer function, public nesdis_waterir_emiss_tl (Wind_Speed_TL, Emissivity_TL, iVar)
- integer function, public **nesdis_waterir_emiss_ad** (Emissivity_AD, Wind_Speed_AD, iVar)
- integer function, public irssem_setup (Coeff_File_Name)
- logical function, public irssem_initialized ()
- integer function, public irssem_cleanup ()

7.74.1 Detailed Description

Module containing function to invoke the CSEM Infrared Sea Surface Emissivity Model (IRSSEM).

7.75 nesdis_waterir_emiss_v2_module Module Reference

Module containing function to invoke the Ver-2 CSEM Infrared Sea Surface Emissivity Model (IRSSEM) .

Functions/Subroutines

- integer function, public nesdis_waterir_emiss_v2 (Wind_Speed, Temperature, Frequency, Angle, Emissivity, iVar)
- integer function, public **nesdis_waterir_emiss_v2_tl** (Wind_Speed_TL, Temperature_TL, Emissivity_TL, iVar)
- integer function, public nesdis_waterir_emiss_v2_ad (Emissivity_AD, Wind_Speed_AD, Temperature_AD, iVar)
- integer function, public irssem_v2_setup (Coeff_File_Name)
- logical function, public irssem_v2_initialized ()
- integer function, public irssem_v2_cleanup()

7.75.1 Detailed Description

Module containing function to invoke the Ver-2 CSEM Infrared Sea Surface Emissivity Model (IRSSEM) .

7.76 nesdis waterir phymodel Module Reference

Module containing the NESDIS water emissivity model of infrared channels.

Functions/Subroutines

- integer function, public nesdis_irssem_brdf_tl (Wind_Speed_TL, Emissivity_TL, Reflectivity_TL, Direct_← Reflectivity_TL, iVar)
- integer function, public **nesdis_irssem_brdf_ad** (Emissivity_AD, Reflectivity_AD, Direct_Reflectivity_AD, Wind Speed AD, iVar)
- integer function, public **nesdis** irssem_setup (File Name)
- subroutine, public nesdis irssem close ()
- logical function, public nesdis_irssem_initialized ()

7.76.1 Detailed Description

Module containing the NESDIS water emissivity model of infrared channels.

7.77 nesdis_waterir_phymodel_v2 Module Reference

Module containing the NESDIS water emissivity model of infrared channels.

Functions/Subroutines

- integer function, public **nesdis_irssem_brdf_v2_tl** (Wind_Speed_TL, Temperature_TL, Emissivity_TL, Reflectivity_TL, Direct_Reflectivity_TL, iVar)
- integer function, public nesdis_irssem_brdf_v2_ad (Emissivity_AD, Reflectivity_AD, Direct_Reflectivity_

 AD, Wind_Speed_AD, Temperature_AD, iVar)
- integer function, public nesdis irssem v2 setup (File Name)
- subroutine, public nesdis_irssem_v2_close()
- logical function, public nesdis irssem v2 initialized ()

7.77.1 Detailed Description

Module containing the NESDIS water emissivity model of infrared channels.

7.78 nesdis watervis brdf module Module Reference

Module to compute the ocean surface BRDF at visible wavelength.

Functions/Subroutines

- integer function, public **nesdis_viswater_brdf** (Wavenumber, Wind_Speed, Sensor_Zenith_Radian, Sensor_Azimuth_Radian, Source_Zenith_Radian, Source_Azimuth_Radian, Direct_Reflectivity, iVar)
- integer function, public nesdis_viswater_brdf_tl (Wind_Speed_TL, Direct_Reflectivity_TL, iVar)
- integer function, public nesdis viswater brdf ad (Direct Reflectivity AD, Wind Speed AD, iVar)

7.78.1 Detailed Description

Module to compute the ocean surface BRDF at visible wavelength.

7.79 nesdis_watervis_phymodel Module Reference

Module containing the NESDIS physical Water emissivity model of visibal bands.

Functions/Subroutines

integer function, public nesdis_watervis_emiss (Frequency, Angle, Water_Temperature, Salinity, Wind_←
 Speed, Wind_Direction, Emissivity_H, Emissivity_V)

7.79.1 Detailed Description

Module containing the NESDIS physical Water emissivity model of visibal bands.

7.80 npoess lut module Module Reference

Module for users to use the LUT of the land IR-VIS surface emissivity/reflectivity spectrum with respect to NPOESS surface types.

7.80.1 Detailed Description

Module for users to use the LUT of the land IR-VIS surface emissivity/reflectivity spectrum with respect to NPOESS surface types.

7.81 npoess_lut_reader Module Reference

Module containing the load/destruction routines to handel the shared NPOESS LUT.

Functions/Subroutines

- integer function, public **read_npoess_lut** (wavenumber, emissivity, surface_type)
- integer function, public read_npoess_lut_0 (wavelength, emissivity, surface_type)
- subroutine, public read_stype_map (alat, alon, stype)
- subroutine, public load_npoess_lut ()

7.81.1 Detailed Description

Module containing the load/destruction routines to handel the shared NPOESS LUT.

7.82 ocean permittivity Module Reference

Container module for the sea water complex permittivity model collections.

7.82.1 Detailed Description

Container module for the sea water complex permittivity model collections.

Three models are included in this module; that of

Guillou, C. et al. (1998) Impact of new permittivity measurements on sea surface emissivity modeling in microwaves. Radio Science, Volume 33, Number 3, Pages 649-667

and of

Ellison, W.J. et al. (2003) A comparison of ocean emissivity models using the Advanced Microwave Sounding Unit, the Special Sensor Microwave Imager, the TRMM Microwave Imager, and airborne radiometer observations. Journal of Geophysical Research, v108, D21, Pages ACL 1,1-14 doi:10.1029/2002JD0032132

and of

Liu, Q. et al. (2010) An improved fast microwave water emissivity model. IEEE Trans. Geosci. Remote Sensing, accepted June 25, 2010

7.83 reflection correction module Module Reference

Helper module conmtaining the reflection correction routines for the CRTM implementation of FASTEM4 and FASTEM5.

Functions/Subroutines

- subroutine, public reflection_correction (RCCoeff, Frequency, cos_z, Wind_Speed, Transmittance, Rv_← Mod, Rh_Mod, iVar)
- subroutine, public **reflection_correction_tl** (RCCoeff, Wind_Speed_TL, Transmittance_TL, Rv_Mod_TL, Rh_Mod_TL, iVar)
- subroutine, public reflection_correction_ad (RCCoeff, Rv_Mod_AD, Rh_Mod_AD, Wind_Speed_AD, Transmittance_AD, iVar)

7.83.1 Detailed Description

Helper module conmtaining the reflection correction routines for the CRTM implementation of FASTEM4 and FASTEM5.

7.84 rttov fastem5r1 ad module Module Reference

AD of RTTOV FASTEM-4,5,6 emissivity and reflectance calculation.

Functions/Subroutines

subroutine rttov_fastem5r1_ad (fastem_version, Frequency, Zenith_Angle, Temperature, Salinity, Wind
 _Speed, Emissivity_ad, Reflectivity_ad, Temperature_ad, Salinity_ad, Wind_Speed_ad, Emissivity, Reflectivity, Transmittance, Rel_Azimuth, Transmittance_ad, Rel_Azimuth_ad, Supply_Foam_Fraction, Foam_←
 Fraction, Foam_Fraction_ad)

7.84.1 Detailed Description

AD of RTTOV FASTEM-4,5,6 emissivity and reflectance calculation.

7.85 rttov_fastem5r1_module Module Reference

Compute RTTOV FASTEM-4,5,6 emissivity and reflectance for a single channel.

Functions/Subroutines

subroutine rttov_fastem5r1 (fastem_version, Frequency, Zenith_Angle, Temperature, Salinity, Wind_Speed, Emissivity, Reflectivity, Transmittance, Rel_Azimuth, Supply_Foam_Fraction, Foam_Fraction)
 Compute FASTEM-4,5,6 emissivity and reflectance for a single channel.

7.85.1 Detailed Description

Compute RTTOV FASTEM-4,5,6 emissivity and reflectance for a single channel.

7.85.2 Function/Subroutine Documentation

7.85.2.1 rttov_fastem5r1()

Compute FASTEM-4,5,6 emissivity and reflectance for a single channel.

References for FASTEM are given in the user guide.

Parameters

in	fastem_version	FASTEM version to compute (4, 5 or 6)
in	frequency	channel frequency (GHz)
in	zenith_angle	profile zenith angle (degrees)
in	temperature	profile skin temperature (K)
in	salinity	profile salinity (practical salinity units)
in	wind_speed	profile wind speed (m/s)
out	emissivity	calculated emissivity (4 Stokes components)
out	reflectivity	calculated reflectivity (4 Stokes components)
in	transmittance	surface-to-space transmittance
in	rel_azimuth	relative azimuth angle
in	supply_foam_fraction	flag to indicate user is supplying foam fraction, optional
in	foam_fraction	user supplied foam fraction, optional

7.86 rttov_fastem5r1_tl_module Module Reference

TL of RTTOV FASTEM-4,5,6 emissivity and reflectance calculation.

Functions/Subroutines

• subroutine rttov_fastem5r1_tl (fastem_version, Frequency, Zenith_Angle, Temperature, Salinity, Wind_⇔ Speed, Temperature_tl, Salinity_tl, Wind_Speed_tl, Emissivity, Reflectivity, Emissivity_tl, Reflectivity_⇔ tl, Transmittance, Rel_Azimuth, Transmittance_tl, Rel_Azimuth_tl, Supply_Foam_Fraction, Foam_Fraction, Foam_Fraction_tl)

TL of FASTEM-4,5,6 emissivity and reflectance calculation.

7.86.1 Detailed Description

TL of RTTOV FASTEM-4,5,6 emissivity and reflectance calculation.

7.86.2 Function/Subroutine Documentation

7.86.2.1 rttov_fastem5r1_tl()

```
real(fp), intent(in) Salinity_tl,
real(fp), intent(in) Wind_Speed_tl,
real(fp), dimension(4), intent(out) Emissivity,
real(fp), dimension(4), intent(out) Reflectivity,
real(fp), dimension(4), intent(inout) Emissivity_tl,
real(fp), dimension(4), intent(inout) Reflectivity_tl,
real(fp), intent(in) Transmittance,
real(fp), intent(in) Rel_Azimuth,
real(fp), intent(in), optional Transmittance_tl,
real(fp), intent(in), optional Rel_Azimuth_tl,
logical, intent(in), optional Supply_Foam_Fraction,
real(fp), intent(in), optional Foam_Fraction,
real(fp), intent(in), optional Foam_Fraction_tl)
```

TL of FASTEM-4,5,6 emissivity and reflectance calculation.

Parameters

in	fastem_version	FASTEM version to compute (4, 5 or 6)
in	frequency	channel frequency (GHz)
in	zenith_angle	profile zenith angle (degrees)
in	temperature	profile skin temperature (K)
in	salinity	profile salinity (practical salinity units)
in	wind_speed	profile wind speed (m/s)
in,out	emissivity_tl	emissivity perturbation (4 Stokes components)
in,out	reflectivity_tl	reflectivity perturbation (4 Stokes components)
in	temperature_tl	profile skin temperature perturbation
in	salinity_tl	profile salinity perturbation
in	wind_speed_tl	profile wind speed perturbation
out	emissivity	calculated emissivity (4 Stokes components)
out	reflectivity	calculated reflectivity (4 Stokes components)
in	transmittance	surface-to-space transmittance
in	rel_azimuth	relative azimuth angle
in	transmittance_tl	surface-to-space transmittance perturbation
in	rel_azimuth_tl	relative azimuth angle perturbation
in	supply_foam_fraction	flag to indicate user is supplying foam fraction, optional
in	foam_fraction	user supplied foam fraction, optional
in	foam_fraction_tl	user foam fraction perturbation, optional

7.87 rttov fastem module Module Reference

Module to provide a general interface to RTTOV FASTEM modules.

Functions/Subroutines

- subroutine, public **compute_rttov_fastem** (fastem_version, Frequency, Zenith_Angle, Temperature, Salinity, Wind_Speed, Emissivity, Reflectivity, Transmittance, Rel_Azimuth, Supply_Foam_Fraction, Foam_Fraction, iVar)
- subroutine, public **compute_rttov_fastem_tl** (Temperature_tl, Salinity_tl, Wind_Speed_tl, Emissivity_ tl, Reflectivity tl, Transmittance tl, Rel Azimuth tl, Foam Fraction tl, iVar)
- subroutine, public **compute_rttov_fastem_ad** (Emissivity_ad, Reflectivity_ad, Temperature_ad, Salinity_ad, Wind_Speed_ad, Transmittance_ad, Rel_Azimuth_ad, Foam_Fraction_ad, iVar)

7.87.1 Detailed Description

Module to provide a general interface to RTTOV FASTEM modules.

7.88 rttov_tessem_mod Module Reference

Subroutines for TESSEM2 MW sea surface emissivity model.

Data Types

· type tessem_net

Functions/Subroutines

- subroutine prop_neuralnet (net, x, y)
- subroutine **rttov_tessem** (freq, theta, windspeed, tskin, salinity, emis h, emis v)
- subroutine prop_neuralnet_tl (net, x, x_tl, y_tl)
- subroutine rttov_tessem_tl (freq, theta, windspeed, tskin, salinity, windspeed_tl, tskin_tl, salinity_tl, emis
 —h_tl, emis_v_tl)
- subroutine **prop_neuralnet_ad** (net, x, x_ad, y_ad)
- subroutine rttov_tessem_ad (freq, theta, windspeed, tskin, salinity, windspeed_ad, tskin_ad, salinity_ad, emis_h_ad, emis_v_ad)

Variables

- integer(jpim), parameter tessem_nin = 5
- integer(jpim), parameter tessem_nout = 1
- integer(jpim), parameter tessem_ncache = 15
- type(tessem net) net h
- type(tessem_net) net_v

7.88.1 Detailed Description

Subroutines for TESSEM2 MW sea surface emissivity model.

This contains the code which implements TESSEM2 for the direct, TL, and AD/K models.

TESSEM2 is a neural network-based emissivity model applicable between 10 and 700GHz.

It is recommended to use TESSEM2 for channels above 200GHz.

For frequencies below 200GHz TESSEM2 is based on FASTEM-6, but there is no azimuthal dependence.

Reference: Prigent, C., Aires, F., Wang, D., Fox, S. and Harlow, C. (2016) Sea surface emissivity parameterization from microwaves to millimeter waves. Q.J.R. Meteorol. Soc. Accepted Author Manuscript. doi:10.1002/gj.2953

7.89 slope variance Module Reference

Helper module containing the slope variance routines for the CRTM implementation of FASTEM4.

Functions/Subroutines

- subroutine, public compute_slope_variance (Frequency, Wind_Speed, iVar, Variance)
- subroutine, public compute_slope_variance_tl (Wind_Speed_TL, iVar, Variance_TL)
- subroutine, public compute_slope_variance_ad (Variance_AD, iVar, Wind_Speed_AD)

7.89.1 Detailed Description

Helper module containing the slope variance routines for the CRTM implementation of FASTEM4.

7.90 small_scale_correction_module Module Reference

Module containing the small-scale correction procedures for the CRTM implementations of FASTEM4 and FASTEM5.

Functions/Subroutines

- subroutine, public small scale correction (SSCCoeff, Frequency, cos Z, Wind Speed, Correction, iVar)
- subroutine, public small_scale_correction_tl (SSCCoeff, Wind_Speed_TL, Correction_TL, iVar)
- subroutine, public small scale correction ad (SSCCoeff, Correction AD, Wind Speed AD, iVar)

7.90.1 Detailed Description

Module containing the small-scale correction procedures for the CRTM implementations of FASTEM4 and FASTEM5.

Equation (A4) of

Liu, Q. et al. (2011) An Improved Fast Microwave Water Emissivity Model, TGRSS, 49, pp1238-1250

describes the fitting of the small-scale correction formulation given in equation (17a,b) of

Liu, Q. et al. (1998) Monte Carlo simulations of the microwave emissivity of the sea surface, JGR, 103, pp24983-24989

and originally in equation (30) of

Guissard, A. and P.Sobieski (1987) An approximate model for the microwave brightness temperature of the sea, Int. J. Rem. Sens., 8, pp1607-1627.

7.90.2 Function/Subroutine Documentation

7.90.2.1 small_scale_correction()

Procedures to compute the reflectivity small scale correction Here is the caller graph for this function:

7.90.2.2 small_scale_correction_ad()

Adjoint model of Small_Scale_Correction Here is the caller graph for this function:

7.90.2.3 small_scale_correction_tl()

Tangent-linear model of Small_Scale_Correction Here is the caller graph for this function:

7.91 snowmw optical model Module Reference

Module containing functions to simuate snow optics properties.

Functions/Subroutines

- subroutine snow_diel (frequency, ep_real, ep_imag, rad, frac, ep_eff)
- subroutine snow optic (frequency, a, h, f, ep real, ep imag, gv, gh, ssalb v, ssalb h, tau v, tau h)

7.91.1 Detailed Description

Module containing functions to simuate snow optics properties.

7.92 telsem2 atlas module Module Reference

Module for users to use TELSEM2 land surface emissivity data sets by CSEM interfaces.

Functions/Subroutines

- integer function, public telsem2_atlas_setup (imonth, path, mw_atlas_ver)
- integer function, public **telsem2_atlas_emiss** (Frequency, Angle, Latitude, Longitude, imonth, Emissivity_H, Emissivity_V, resolution, emis_std_v, emis_std_h, emis_cov, stype)
- integer function, public **telsem2_atlas_emiss_nchannels** (Frequency, Angle, Latitude, Longitude, imonth, crtm_polar_idx, n_Channels, emissivity, resolution, emis_std, emis_cov, stype)
- subroutine, public telsem2_atlas_close ()
- logical function, public telsem2_atlas_initialized (imonth)

7.92.1 Detailed Description

Module for users to use TELSEM2 land surface emissivity data sets by CSEM interfaces.

7.93 telsem2_atlas_reader Module Reference

Subroutines for TELSEM2 MW emissivity atlas and interpolator.

Functions/Subroutines

- subroutine, public test inputs (month, lat, lon, theta, freq)
 - Subroutine to check input variables: not used by RTTOV.
- subroutine, public rttov_readmw_atlas (dir, month, atlas, verbose, err, lat1, lat2, lon1, lon2)

Initialise a TELSEM2 atlas data structure. Atlas data may be initialised for a region of the globe defined by the lower and upper lat/lon limits, though this feature is not used by RTTOV.

- integer function, public load_telsem2_atlas (dir, month, lat1, lat2, lon1, lon2)
- subroutine, public rttov_closemw_atlas ()

Deallocate data in TELSEM2 atlas data structure.

subroutine, public emis_interp_ind_sing (lat, lon, theta, freq, ev, eh, stdv, stdh, covvh, verb)

Return emissivities for a single channel at the native atlas resolution.

• subroutine, public emis_interp_ind_mult (lat, lon, theta, freq, n_chan, ev, eh, std, verb)

Return emissivities for multiple channels at the native atlas resolution. Each dimension of the covariance matrix std(:,:) has V-pol values for all channels followed by H-pol values for all channels.

• subroutine, public emis_interp_int_sing (lat, lon, resol, theta, freq, ev, eh, stdv, stdh, covvh, verb)

Return emissivities for a single channel at the user-specified resolution.

• subroutine, public emis interp int mult (lat, lon, resol, theta, freq, n chan, ev, eh, std, verb)

Return emissivities for multiple channels at the user-specified resolution. Each dimension of the covariance matrix std(:,:) has V-pol values for all channels followed by H-pol values for all channels.

Variables

• type(telsem2 atlas data), save, public atlas2

7.93.1 Detailed Description

Subroutines for TELSEM2 MW emissivity atlas and interpolator.

It is intended that this atlas be used via the RTTOV interface rather than by calling these subroutines directly.

Surface emissivity at microwaves to millimeter waves over Polar Regions: parameterization and evaluation with aircraft experiments D. Wang, C. Prigent, L. Kilic, S. Fox, R. C. Harlow, C. Jimenez, F. Aires, C. Grassotti, and F. Karbou Submitted to QJRMS

7.93.2 Function/Subroutine Documentation

7.93.2.1 emis_interp_ind_mult()

Return emissivities for multiple channels at the native atlas resolution. Each dimension of the covariance matrix std(:,:) has V-pol values for all channels followed by H-pol values for all channels.

Parameters

in	lat	latitude
in	lon	longitude
in	theta	zenith angle
in	freq	frequencies
in	n_chan	number of channels
in	atlas	TELSEM2 atlas data
out	ev	V-pol emissivities
out	eh	H-pol emissivities
out	std	Covariance matrix, optional
in	verb	switch for verbose output

7.93.2.2 emis_interp_ind_sing()

```
subroutine, public telsem2_atlas_reader::emis_interp_ind_sing (
    real(jprb), intent(in) lat,
    real(jprb), intent(in) lon,
    real(jprb), intent(in) theta,
    real(jprb), intent(in) freq,
    real(jprb), intent(out) ev,
    real(jprb), intent(out) eh,
    real(jprb), intent(out), optional stdv,
    real(jprb), intent(out), optional stdh,
    real(jprb), intent(out), optional covvh,
    integer, intent(in) verb)
```

Return emissivities for a single channel at the native atlas resolution.

Parameters

in	lat	latitude
in	lon	longitude
in	theta	zenith angle
in	freq	frequency
in	atlas	TELSEM2 atlas data
out	ev	V-pol emissivity
out	eh	H-pol emissivity
out	stdv	V-pol emissivity standard deviation, optional
out	stdh	H-pol emissivity standard deviation, optional
out	covvh	H-/V-pol emissivity covariance, optional
in	verb	switch for verbose output

7.93.2.3 emis_interp_int_mult()

 $\verb|subroutine|, public telsem2_atlas_reader::emis_interp_int_mult (\\$

```
real(jprb), intent(in) lat,
real(jprb), intent(in) lon,
real(jprb), intent(in) resol,
real(jprb), intent(in) theta,
real(jprb), dimension(:), intent(in) freq,
integer, intent(in) n_chan,
real(jprb), dimension(:), intent(out) ev,
real(jprb), dimension(:), intent(out) eh,
real(jprb), dimension(:,:), intent(out), optional std,
integer, intent(in) verb)
```

Return emissivities for multiple channels at the user-specified resolution. Each dimension of the covariance matrix std(:,:) has V-pol values for all channels followed by H-pol values for all channels.

Parameters

in	lat	latitude
in	lon	longitude
in	resol	resolution
in	theta	zenith angle
in	freq	frequencies
in	n_chan	number of channels
in	atlas	TELSEM2 atlas data
out	ev	V-pol emissivities
out	eh	H-pol emissivities
out	std	Covariance matrix, optional
in	verb	switch for verbose output

7.93.2.4 emis_interp_int_sing()

Return emissivities for a single channel at the user-specified resolution.

Parameters

in	lat	latitude
in	lon	longitude
in	resol	resolution
in	theta	zenith angle

Parameters

in	freq	frequency	
in	atlas	TELSEM2 atlas data	
out	ev	V-pol emissivity	
out	eh	H-pol emissivity	
out	stdv	V-pol emissivity standard deviation, optional	
out	stdh	H-pol emissivity standard deviation, optional	
out	covvh	H-/V-pol emissivity covariance, optional	
in	verb	switch for verbose output	

7.93.2.5 rttov_closemw_atlas()

```
subroutine, public telsem2_atlas_reader::rttov_closemw_atlas
```

Deallocate data in TELSEM2 atlas data structure.

Parameters

in,out	atlas	TELSEM2 atlas data structure to deallocate

7.93.2.6 rttov_readmw_atlas()

Initialise a TELSEM2 atlas data structure. Atlas data may be initialised for a region of the globe defined by the lower and upper lat/lon limits, though this feature is not used by RTTOV.

Parameters

in	dir	path to atlas data files
in	month	month of data to read (1-12)
in,out	atlas	TELSEM2 atlas data structure to initialise
in	verbose	flag to turn verbose output on/off
in,out	err	status on exit
in	lat1	latitude lower bound, optional
in	lat2	latitude upper bound, optional
in	lon1	longitude lower bound, optional
in	lon2	longitude upper bound, optional

7.93.2.7 test inputs()

Subroutine to check input variables: not used by RTTOV.

Parameters

in	month	month (1-12)
in	lat	latitude
in	lon	longitude
in	theta	zenith angle
in	freq	channel frequency (GHz)

7.94 telsem atlas module Module Reference

Module for users to use TELSEM land surface emissivity data sets by CSEM interfaces.

Functions/Subroutines

- integer function, public **telsem_atlas_setup** (imonth, path, mw_atlas_ver)
- integer function, public **telsem_atlas_emiss** (Frequency, Angle, Latitude, Longitude, imonth, Emissivity_H, Emissivity_V, resolution, emis_std_v, emis_std_h, emis_cov, stype)
- integer function, public **telsem_atlas_emiss_nchannels** (Frequency, Angle, Latitude, Longitude, imonth, crtm_polar_idx, n_Channels, emissivity, resolution, emis_std, emis_cov, stype)
- subroutine, public telsem_atlas_close ()
- logical function, public telsem atlas initialized (imonth)

7.94.1 Detailed Description

Module for users to use TELSEM land surface emissivity data sets by CSEM interfaces.

TELSEM includes the monthly land surface emissivity atlas based on the multiple-year retrievals from SSMI and some trievals from other sensors. TELSEM is a generalized atlas which means it may be applicable for different sensors besides SSMI.

The interfacing follows the general CSEM design where each emissivity model is required to implement two interfaces with one to provide the h-pol and v-pol emissivity values of a single frequecy and the other to provide the emissivity values of all the channels of a specific sensor.

132 Module Documentation

7.95 telsem atlas reader Module Reference

Data and routines for MW emissivity atlas

Functions/Subroutines

- integer function, public load_telsem_atlas (dir, month, lat1, lat2, lon1, lon2)
- subroutine, public close_telsem_atlas
- subroutine, public emis_interp_ind_sing (lat, lon, theta, freq, ev, eh, stdv, stdh, covvh, verb)
- subroutine, public emis_interp_ind_mult (lat, lon, theta, freq, n_chan, ev, eh, std, verb, stype)
- subroutine, public emis_interp_int_sing (lat, lon, resol, theta, freq, ev, eh, stdv, stdh, covvh, verb)
- subroutine, public emis_interp_int_mult (lat, lon, resol, theta, freq, n_chan, ev, eh, std, verb, stype)

Variables

- type(telsem atlas), save, public atlas
- integer, public telsem atlas version = 100

7.95.1 Detailed Description

Data and routines for MW emissivity atlas

7.96 uwir_atlas_module Module Reference

Module for users to use UWIR land surface emissivity data sets by CSEM interfaces.

Functions/Subroutines

- integer function, public **uwir_atlas_setup** (imonth, path, mw_atlas_ver)
- integer function, public **uwir_atlas_emiss** (Wavenumber, Latitude, Longitude, imonth, Emissivity, emis_cov, stype)
- integer function, public **uwir_atlas_emiss_nchannels** (Wavenumber, Latitude, Longitude, imonth, n_← Channels, emissivity, emis_cov, stype)
- subroutine, public uwir_atlas_close ()
- logical function, public uwir_atlas_initialized (imonth)

7.96.1 Detailed Description

Module for users to use UWIR land surface emissivity data sets by CSEM interfaces.

7.97 uwir atlas reader Module Reference

Data and routines for UWIR emissivity atlas.

Functions/Subroutines

- integer function, public crtm_uwiremis_init (path, imonth)
- subroutine, public crtm_uwiremis (nchs, lat, lon, surfacetype, snowfrac, instr_wavenum, instr_emis, instr
 _emis_cov, instr_emis_flag)
- subroutine, public csem_uwiremis_multi (instr_wavenum, lat, lon, surfacetype, nchs, instr_emis, instr_emis_cov, instr_emis_flag)
- subroutine, public **csem_uwiremis_single** (instr_wavenum, lat, lon, surfacetype, instr_emis, instr_emis_cov, instr_emis_flag)
- subroutine, public crtm_uwiremis_close_atlas ()

Variables

- integer, parameter, public surftype_land = 0
- integer, parameter, public surftype_sea = 1
- integer, parameter, public surftype_seaice = 2
- integer, parameter, public surftype_snow = 4
- integer, public ir_atlas_version = 100

7.97.1 Detailed Description

Data and routines for UWIR emissivity atlas.

134 Module Documentation

Chapter 8

Data Type Documentation

8.1 csem_define::csem_atmosphere_parameters Type Reference

Public Attributes

- real(fp) downward_atm_radiance = 0.0_fp
- real(fp) transmittance = 0.0_fp
- real(fp) downward_solar_irradiance = 0.0_fp

The documentation for this type was generated from the following file:

· src/CSEM Define/CSEM Struct Define.f90

8.2 csem_define::csem_geoinfo_struct Type Reference

Public Attributes

- real(fp) **latitude** = 0.0_fp
- real(fp) longitude = 0.0_fp
- integer **year** = 2001
- integer month = 1
- integer **day** = 1
- integer hour = 1

The documentation for this type was generated from the following file:

8.3 csem_define::csem_ice_surface Type Reference

Public Attributes

- integer ice_type = 1
- real(fp) ice_temperature = 263.0_fp
- real(fp) ice_thickness = 10.0_fp
- real(fp) ice_density = 0.9_fp
- real(fp) ice_roughness = 0.0_fp
- real(fp) salinity = 33.0 fp

The documentation for this type was generated from the following file:

• src/CSEM_Define/CSEM_Struct_Define.f90

8.4 csem_define::csem_land_surface Type Reference

Public Member Functions

- PROCEDURE init =>alloc_soil_profile
- · FINAL clean_land

Public Attributes

- integer land_cover_type = 1
- integer vegetation_type = 1
- integer soil type = 1
- real(fp) vegetation_fraction = 0.3_fp
- real(fp) land skin temperature = 283.0 fp
- real(fp) top_soil_temperature = 283.0_fp
- real(fp) top_soil_moisture = 0.05_fp
- real(fp) lai = 3.5
- real(fp) canopy_water_content = 0.05_fp
- integer n_soil_layers = 0
- logical **is_allocated** = .FALSE.
- real(fp), dimension(:), allocatable temperature_profile
- real(fp), dimension(:), allocatable moisture_profile
- real(fp), dimension(:), allocatable soil_depth

The documentation for this type was generated from the following file:

8.5 csem_define::csem_options_type Type Reference

Collaboration diagram for csem_define::csem_options_type:

Public Attributes

- type(csem_sensorobs_struct) sensorobs
- type(csem_atmosphere_parameters) atmos
- type(csem_geoinfo_struct) geoinfo

The documentation for this type was generated from the following file:

• src/CSEM_Define/CSEM_Struct_Define.f90

8.6 csem_define::csem_sensorobs_struct Type Reference

Public Member Functions

- PROCEDURE, pass(self) init => alloc_sensorobs
- FINAL clean_sensorobs

Public Attributes

- character(len=100) sensor_id = ' '
- logical is_allocated = .FALSE.
- integer **n_channels** = 0
- real(fp), dimension(:), allocatable channel frequency
- integer, dimension(:), allocatable channel_polarization
- real(fp), dimension(:), allocatable tb

The documentation for this type was generated from the following file:

8.7 csem_define::csem_sfcoptics_type Type Reference

Public Member Functions

- PROCEDURE, pass(self) init => init sfcoptics
- · FINAL clean_sfcoptics

Public Attributes

- logical is_allocated = .FALSE.
- logical is_solar = .FALSE.
- logical is_spectral = .FALSE.
- real(fp) frequency
- real(fp) wavenumber
- real(fp) source_zenith_angle = 0.0_fp
- real(fp) source_azimuth_angle = 0.0_fp
- real(fp) sensor_zenith_angle = 0.0_fp
- real(fp) sensor_scan_angle = 0.0_fp
- real(fp) sensor_azimuth_angle = 0.0_fp
- real(fp) relative_azimuth_angle = 0.0_fp
- integer n_angles = 1
- integer n_stokes = 4
- integer mth_azi = 0
- real(fp), dimension(:), allocatable angle
- · real(fp), dimension(:), allocatable weight
- real(fp), dimension(:,:), allocatable emissivity
- real(fp), dimension(:,:), allocatable direct_reflectivity
- real(fp), dimension(:,:,:,:), allocatable reflectivity

The documentation for this type was generated from the following file:

• src/CSEM Define/CSEM Struct Define.f90

8.8 csem_define::csem_snow_surface Type Reference

Public Attributes

- integer snow_type = 1
- real(fp) snow_temperature = 263.0_fp
- real(fp) snow_depth = 50.0_fp
- real(fp) snow_density = 0.2_fp
- real(fp) **snow_grain_size** = 2.0_fp
- integer soil_type = 1
- real(fp) top_soil_temperature = 283.0_fp
- real(fp) top_soil_moisture_content = 0.05_fp
- integer vegetation_type = 1
- real(fp) **lai** = 3.5

The documentation for this type was generated from the following file:

8.9 csem define::csem water surface Type Reference

Public Attributes

- integer water_type = 1
- real(fp) water_temperature = 283.0_fp
- real(fp) wind_speed = 5.0 fp
- real(fp) wind_direction = 0.0 fp
- real(fp) salinity = 33.0_fp
- real(fp) foam_fraction = 0.0_fp

The documentation for this type was generated from the following file:

src/CSEM Define/CSEM Struct Define.f90

8.10 csem fresnel::fresnel reflectance Interface Reference

Public Member Functions

- subroutine fresnel_reflectance_1 (em1, em2, theta_i, theta_t, rv, rh)
- subroutine fresnel_reflectance_2 (em1, em2, theta_i, rv, rh)

The documentation for this interface was generated from the following file:

• src/CSEM Utility/CSEM Fresnel.f90

8.11 csem fresnel::fresnel reflectance ad Interface Reference

Public Member Functions

- subroutine fresnel_reflectance_ad_1 (em1, em2, theta_i, theta_t, em1_AD, em2_AD, rv_AD, rh_AD)
- subroutine fresnel_reflectance_ad_2 (em1, em2, theta_i, em1_AD, em2_AD, rv_AD, rh_AD)

The documentation for this interface was generated from the following file:

• src/CSEM Utility/CSEM Fresnel.f90

8.12 csem_fresnel::fresnel_reflectance_tl Interface Reference

Public Member Functions

- subroutine fresnel_reflectance_tl_1 (em1, em2, theta_i, theta_t, em1_TL, em2_TL, rv_TL, rh_TL)
- subroutine fresnel_reflectance_tl_2 (em1, em2, theta_i, em1_TL, em2_TL, rv_TL, rh_TL)

The documentation for this interface was generated from the following file:

src/CSEM_Utility/CSEM_Fresnel.f90

8.13 rttov_tessem_mod::tessem_net Type Reference

Public Attributes

- real(jprb), dimension(tessem_ncache) b1
- real(jprb), dimension(tessem_nout) b2
- real(jprb), dimension(tessem_ncache, tessem_nin) w1
- real(jprb), dimension(tessem_nout, tessem_ncache) w2
- real(jprb), dimension(tessem_nin) x_min
- real(jprb), dimension(tessem_nin) x_max
- real(jprb), dimension(tessem_nout) y_min
- real(jprb), dimension(tessem_nout) y_max

The documentation for this type was generated from the following file:

• src/MW/Water/RTTOV_FASTEM/rttov_tessem_mod.F90

Chapter 9

File Documentation

9.1 src/MW/lce/CSEM lceMW SfcOptics.f90 File Reference

CSEM IceMW SfcOptics.f90.

Modules

· module csem_icemw_sfcoptics

Container module for all the MW_ICE models available in the CSEM model repository.

Functions/Subroutines

- integer function, public csem_icemw_sfcoptics::csem_compute_icemw_sfcoptics (Surface, SfcOptics, Options)
 - PURPOSE: Function to compute the sea-ice surface emissivity and reflectivity at microwave frequencies.
- integer function, public csem_icemw_sfcoptics::csem_compute_icemw_sfcoptics_tl (CSEM_SfcOptics_TL)

 PURPOSE: Function to compute the ice surface emissivity and reflectivity tangent-linear at microwave frequencies.
- integer function, public csem_icemw_sfcoptics::csem_compute_icemw_sfcoptics_ad (CSEM_Surface_AD)

 PURPOSE: Function to compute the ice surface emissivity and reflectivity adjoint at microwave frequencies.

9.1.1 Detailed Description

CSEM_lceMW_SfcOptics.f90.

9.2 src/MW/Land/CSEM_LandMW_SfcOptics.f90 File Reference

CSEM_LandMW_SfcOptics.f90.

Modules

• module csem_landmw_sfcoptics

Container module with all the MW_LAND models available in the CSEM model repository.

Functions/Subroutines

• integer function, public csem_landmw_sfcoptics::csem_compute_landmw_sfcoptics (Surface, SfcOptics, Options, iVar)

PURPOSE: Function to compute the land surface emissivity and reflectivity at microwave frequencies.

- subroutine, public csem_landmw_sfcoptics::get_ref_index (Frequency, Polarization, i_ref_h, i_ref_v)
- integer function, public csem_landmw_sfcoptics::csem_compute_landmw_sfcoptics_tl (Surface_TL, Sfc
 Optics_TL, iVar)

PURPOSE: Function to compute the land surface emissivity and reflectivity tangent-linear at microwave frequencies.

• integer function, public csem_landmw_sfcoptics::csem_compute_landmw_sfcoptics_ad (SfcOptics_AD, Surface AD, iVar)

PURPOSE: Function to compute the land surface emissivity and reflectivity adjoint at microwave frequencies.

9.2.1 Detailed Description

CSEM_LandMW_SfcOptics.f90.

9.3 src/MW/Land/MW_Canopy_Optics.f90 File Reference

MW Canopy Optics.f90.

Modules

· module mw canopy optics

Container Module to compute the canopy optical properties at microwave frequencies.

Functions/Subroutines

- subroutine, public mw_canopy_optics::crtm_canopymw_optics (lai, leaf_refl, leaf_trans, g, ssalb, tau, iVar)

 PURPOSE: Subroutine to compute the canopy optical properties of land surface at microwave frequencies.
- subroutine, public mw_canopy_optics::crtm_canopymw_optics_tl (LAI_TL, ssalb_TL, tau_TL, iVar) PURPOSE: Tangent-linear mode of CRTM_CanopyMW_Optics.
- subroutine, public mw_canopy_optics::crtm_canopymw_optics_ad (LAI_AD, ssalb_AD, tau_AD, iVar) PURPOSE: Adjoint mode of CRTM_CanopyMW_Optics.

9.3.1 Detailed Description

MW_Canopy_Optics.f90.

9.4 src/MW/Land/MW Leaf Optics.f90 File Reference

MW Leaf Optics.f90.

Modules

module mw_leaf_optics

Container Module to compute the leaf optical properties of LAND surfaces at microwave frequencies.

Functions/Subroutines

- subroutine, public mw_leaf_optics::csem_leafmw_optics (frequency, angle, mge, refl, trans, eveg, iVar)
- subroutine, public mw_leaf_optics::crtm_leafmw_optics (frequency, theta, esv, d, rh, rv, th, tv)

 PURPOSE: Function to calculate v-pol and h-pol refelectance and trasmittance of one single leaf at microwave frequency.
- subroutine, public mw_leaf_optics::mean_leafmw_optics (frequency, eveg, leaf_thick, rh, rv, th, tv)

PURPOSE: Function to calculate averaged refelectance and trasmittance of one single leaf at microwave frequency. Leaves are taken as individual scatters of a canopy. The averaged refelectance and trasmittance is used by canopy-level scattering model.

9.4.1 Detailed Description

MW_Leaf_Optics.f90.

9.5 src/MW/Land/NESDIS_LandEM_Module.f90 File Reference

NESDIS LandEM Module.f90.

Modules

• module nesdis_landem_module

Module containing the old-version NESDIS microwave land emissivity model.

Functions/Subroutines

- subroutine, public nesdis_landem_module::nesdis_landem_213 (Angle, Frequency, Soil_Moisture_Content, Vegetation_Fraction, Soil_Temperature, t_skin, Lai, Soil_Type, Vegetation_Type, Emissivity_H, Emissivity_V)
- subroutine, public nesdis_landem_module::nesdis_landem_old (Angle, Frequency, Soil_Moisture_
 —
 Content, Vegetation_Fraction, Soil_Temperature, t_skin, Lai, Soil_Type, Vegetation_Type, Emissivity_H,
 Emissivity_V)

9.5.1 Detailed Description

NESDIS_LandEM_Module.f90.

9.6 src/MW/Land/NESDIS_LandMW_PhyModel.f90 File Reference

NESDIS_LandMW_PhyModel.f90.

Modules

· module nesdis_landmw_phymodel

Module of the physics-based microwave land surface emissivity model.

Functions/Subroutines

integer function, public nesdis_landmw_phymodel::nesdis_landmw_emiss (Frequency, Angle, Land_Skin_

Temperature, Soil_Temperature, Soil_Moisture_Content, Vegetation_Fraction, LAI, Vegetation_Type, Soil_

Type, Emissivity_H, Emissivity_V, iVar)

integer function, public nesdis_landmw_phymodel::nesdis_landmw_emiss_tl (Land_Skin_Temperature_TL, Soil_Temperature_TL, Soil_Moisture_Content_TL, Vegetation_Fraction_TL, Emissivity_L, Emissivity_L
 V TL, iVar)

PURPOSE: Tangent-linear mode of NESDIS_LandMW_Emiss.

integer function, public nesdis_landmw_phymodel::nesdis_landmw_emiss_ad (Land_Skin_Temperature_AD, Soil_Temperature_AD, Soil_Moisture_Content_AD, Vegetation_Fraction_AD, Emissivity_H_AD, Emissivity ← _V_AD, iVar)

PURPOSE: Adjoint mode of NESDIS LandMW Emiss.

• subroutine, public nesdis_landmw_phymodel::two_stream_solution (emiss, iVar)

Two stream RT solver of three-layer MW land surface physical model.

• subroutine, public nesdis_landmw_phymodel::two_stream_solution_tl (ssalb_TL, tau_TL, r23_TL, Tskin_TL, Tsoil_TL, emiss_TL, iVar)

PURPOSE: Tangent-linear mode of the Two_Stream_Solution.

subroutine, public nesdis_landmw_phymodel::two_stream_solution_ad (ssalb_AD, tau_AD, r23_AD, Tskin
 —AD, Tsoil_AD, emiss_AD, iVar)

PURPOSE: Adjoint mode of the Two_Stream_Solution.

9.6.1 Detailed Description

NESDIS LandMW PhyModel.f90.

9.7 src/MW/LUT Atlas/CNRM Atlas Module.f90 File Reference

CSEM_CNRM_Atlas.f90.

Modules

• module cnrm_atlas_module

Module for users to use CNRM land surface emissivity data sets by CSEM interfaces.

Functions/Subroutines

- integer function, public cnrm_atlas_module::cnrm_atlas_setup (imonth, path, Atlas_ID, mw_atlas_ver)
- integer function, public **cnrm_atlas_module::cnrm_atlas_emiss** (Frequency, Angle, Latitude, Longitude, imonth, Emissivity H, Emissivity V, stype)
- integer function, public **cnrm_atlas_module::cnrm_atlas_emiss_nchannels** (Frequency, Angle, Latitude, Longitude, imonth, n_Channel, emissivity, stype)
- logical function, public cnrm atlas module::cnrm atlas initialized (imonth)
- subroutine, public cnrm_atlas_module::cnrm_atlas_close ()

9.7.1 Detailed Description

CSEM CNRM Atlas.f90.

9.8 src/MW/LUT_Atlas/CNRM_Atlas_Reader.f90 File Reference

CNRM_Atlas_Reader.f90.

Modules

• module cnrm_amsua_reader

Module containing Data and routines for MW emissivity atlas METEO-FRANCE CNRM

Functions/Subroutines

- integer function, public cnrm_amsua_reader::cnrm_amsua_setup (path, imonth)
- integer function, public **cnrm_amsua_reader::cnrm_amsua_emiss** (latitude, longitude_in, frequency, zenangle, emissivity_v, emissivity_h, pbats_veg)
- integer function, public **cnrm_amsua_reader::cnrm_amsua_emiss_multi** (latitude, longitude_in, frequency, zenangle, n_Channel, emissivity, pbats_veg)

Variables

• integer, public cnrm amsua reader::cnrm amsua version = 200

9.8.1 Detailed Description

CNRM_Atlas_Reader.f90.

9.9 src/MW/LUT Atlas/TELSEM2 Atlas Reader.f90 File Reference

Subroutines for TELSEM2 MW emissivity atlas and interpolator.

Modules

module telsem2_atlas_reader

Subroutines for TELSEM2 MW emissivity atlas and interpolator.

Functions/Subroutines

- subroutine, public telsem2_atlas_reader::test_inputs (month, lat, lon, theta, freq)
 - Subroutine to check input variables: not used by RTTOV.
- subroutine, public telsem2_atlas_reader::rttov_readmw_atlas (dir, month, atlas, verbose, err, lat1, lat2, lon1, lon2)

Initialise a TELSEM2 atlas data structure. Atlas data may be initialised for a region of the globe defined by the lower and upper lat/lon limits, though this feature is not used by RTTOV.

- integer function, public telsem2 atlas reader::load telsem2 atlas (dir, month, lat1, lat2, lon1, lon2)
- subroutine, public telsem2 atlas reader::rttov closemw atlas ()

Deallocate data in TELSEM2 atlas data structure.

• subroutine, public telsem2_atlas_reader::emis_interp_ind_sing (lat, lon, theta, freq, ev, eh, stdv, stdh, covvh, verb)

Return emissivities for a single channel at the native atlas resolution.

- subroutine, public telsem2_atlas_reader::emis_interp_ind_mult (lat, lon, theta, freq, n_chan, ev, eh, std, verb)

 Return emissivities for multiple channels at the native atlas resolution. Each dimension of the covariance matrix std(:,:) has V-pol values for all channels followed by H-pol values for all channels.
- subroutine, public telsem2_atlas_reader::emis_interp_int_sing (lat, lon, resol, theta, freq, ev, eh, stdv, stdh, covvh, verb)

Return emissivities for a single channel at the user-specified resolution.

• subroutine, public telsem2_atlas_reader::emis_interp_int_mult (lat, lon, resol, theta, freq, n_chan, ev, eh, std, verb)

Return emissivities for multiple channels at the user-specified resolution. Each dimension of the covariance matrix std(:.:) has V-pol values for all channels followed by H-pol values for all channels.

Variables

• type(telsem2 atlas data), save, public telsem2 atlas reader::atlas2

9.9.1 Detailed Description

Subroutines for TELSEM2 MW emissivity atlas and interpolator.

9.10 src/MW/LUT Atlas/TELSEM Atlas Module.f90 File Reference

TELSEM Atlas Module.f90.

Modules

· module telsem atlas module

Module for users to use TELSEM land surface emissivity data sets by CSEM interfaces.

Functions/Subroutines

- integer function, public telsem_atlas_module::telsem_atlas_setup (imonth, path, mw_atlas_ver)
- integer function, public **telsem_atlas_module::telsem_atlas_emiss** (Frequency, Angle, Latitude, Longitude, imonth, Emissivity_H, Emissivity_V, resolution, emis_std_v, emis_std_h, emis_cov, stype)
- integer function, public **telsem_atlas_module::telsem_atlas_emiss_nchannels** (Frequency, Angle, Latitude, Longitude, imonth, crtm_polar_idx, n_Channels, emissivity, resolution, emis_std, emis_cov, stype)
- subroutine, public telsem_atlas_module::telsem_atlas_close ()
- logical function, public telsem_atlas_module::telsem_atlas_initialized (imonth)

9.10.1 Detailed Description

TELSEM Atlas Module.f90.

9.11 src/MW/LUT Atlas/TELSEM Atlas Reader.f90 File Reference

TELSEM Atlas Reader.f90.

Modules

· module telsem atlas reader

Data and routines for MW emissivity atlas

Functions/Subroutines

- integer function, public telsem_atlas_reader::load_telsem_atlas (dir, month, lat1, lat2, lon1, lon2)
- subroutine, public telsem_atlas_reader::close_telsem_atlas
- subroutine, public **telsem_atlas_reader::emis_interp_ind_sing** (lat, lon, theta, freq, ev, eh, stdv, stdh, covvh, verb)
- subroutine, public **telsem_atlas_reader::emis_interp_ind_mult** (lat, lon, theta, freq, n_chan, ev, eh, std, verb, stype)
- subroutine, public **telsem_atlas_reader::emis_interp_int_sing** (lat, lon, resol, theta, freq, ev, eh, stdv, stdh, covvh, verb)
- subroutine, public **telsem_atlas_reader::emis_interp_int_mult** (lat, lon, resol, theta, freq, n_chan, ev, eh, std, verb, stype)

Variables

- type(telsem_atlas), save, public telsem_atlas_reader::atlas
- integer, public telsem_atlas_reader::telsem_atlas_version = 100

9.11.1 Detailed Description

TELSEM Atlas Reader.f90.

9.12 src/MW/Snow/CSEM_SnowMW_SfcOptics.f90 File Reference

CSEM_SnowMW_SfcOptics.f90.

Modules

• module csem_snowmw_sfcoptics

This module provides a generic interface for the upper-level applications to access all the MW_SNOW models available in the CSEM model repository.

Functions/Subroutines

• integer function, public csem_snowmw_sfcoptics::csem_compute_snowmw_sfcoptics (Surface, SfcOptics, Options)

PURPOSE: Function to compute the snow surface emissivity and reflectivity at microwave frequencies.

integer function, public csem_snowmw_sfcoptics::csem_compute_snowmw_sfcoptics_tl (CSEM_Sfc
Optics_TL)

PURPOSE: Function to compute the snow surface emissivity and reflectivity tangent-linear at microwave frequencies.

integer function, public csem_snowmw_sfcoptics::csem_compute_snowmw_sfcoptics_ad (CSEM_Surface ← AD)

PURPOSE: Function to compute the Snowsurface emissivity and reflectivity adjoint at microwave frequencies.

9.12.1 Detailed Description

CSEM SnowMW SfcOptics.f90.

9.13 src/MW/Soil/MW Soil Optics.f90 File Reference

MW_Soil_Optics.f90.

Modules

· module mw soil optics

Container module with all the MW soil models available in the CSEM model repository.

Functions/Subroutines

subroutine, public mw_soil_optics::csem_soilmw_optics (frequency, theta, Tskin, Tsoil, smc, sand, clay, refl
smooth, teff, iVar)

PURPOSE: Evaluation of the bare-soil optical parameters at microwave frequencies.

subroutine, public mw_soil_optics::csem_soilmw_optics_tl (Tskin_TL, Tsoil_TL, smc_TL, refl_h_TL, refl_v←
 _TL, teff_TL, iVar)

PURPOSE: Tangent-linear mode of CSEM_SoilMW_Optics.

subroutine, public mw_soil_optics::csem_soilmw_optics_ad (Tskin_AD, Tsoil_AD, smc_AD, refl_h_AD, refl_
 _v_AD, teff_AD, iVar)

PURPOSE: Tangent-linear mode of CSEM_SoilMW_Optics.

Variables

• integer, parameter, public mw_soil_optics::max_soil_layers = 1

9.13.1 Detailed Description

MW_Soil_Optics.f90.

9.14 src/MW/Water/CRTM_FASTEM/Azimuth_Emissivity_F6_Module.f90 File Reference

Azimuth_Emissivity_F6_Module.f90.

Modules

module azimuth_emissivity_f6_module
 Azimuthal functions of the FASTEM-6 model

Functions/Subroutines

- subroutine, public azimuth_emissivity_f6_module::azimuth_emissivity_f6 (AZCoeff, Wind_Speed, Azimuth Angle, Frequency, Zenith Angle, e Azimuth, iVar)
- subroutine, public azimuth_emissivity_f6_module::azimuth_emissivity_f6_tl (AZCoeff, Wind_Speed_TL, Azimuth_Angle_TL, e_Azimuth_TL, iVar)
- subroutine, public azimuth_emissivity_f6_module::azimuth_emissivity_f6_ad (AZCoeff, e_Azimuth_AD, Wind_Speed_AD, Azimuth_Angle_AD, iVar)

9.14.1 Detailed Description

Azimuth_Emissivity_F6_Module.f90.

9.15 src/MW/Water/CRTM_FASTEM/Azimuth_Emissivity_Module.f90 File Reference

Azimuth Emissivity Module.f90.

Modules

• module azimuth_emissivity_module

Azimuthal emissivity subroutines of old FASTEM versons.

Functions/Subroutines

- subroutine, public azimuth_emissivity_module::azimuth_emissivity (AZCoeff, Wind_Speed, Azimuth_Angle, Frequency, cos_z, e_Azimuth, iVar)
- subroutine, public azimuth_emissivity_module::azimuth_emissivity_tl (AZCoeff, Wind_Speed_TL, Azimuth
 —Angle_TL, e_Azimuth_TL, iVar)

9.15.1 Detailed Description

Azimuth_Emissivity_Module.f90.

9.16 src/MW/Water/CRTM_FASTEM/CRTM_Fastem1.f90 File Reference

CRTM Fastem1.f90.

Modules

· module crtm fastem1

Module with the old Fastem procedures.

Functions/Subroutines

• subroutine, public **crtm_fastem1::fastem1** (Frequency, Sat_Zenith_Angle, SST, Wind_Speed, Emissivity, dEH_dWindSpeed, dEV_dWindSpeed)

9.16.1 Detailed Description

CRTM Fastem1.f90.

9.17 src/MW/Water/CRTM_FASTEM/CRTM_FASTEM_MODULE.f90 File Reference

CRTM_FASTEM_MODULE.f90.

Modules

• module crtm_fastem_module

Container module with all the existing CRTM FASTEM versions.

Functions/Subroutines

- integer function, public crtm_fastem_module::crtm_fastem_emiss (Frequency, Angle, Water_Temperature, Salinity, Wind_Speed, Wind_Direction, Emissivity, Reflectivity, FASTEM_Version, Sensor_Azimuth_Angle, Transmittance)
- integer function, public crtm_fastem_module::compute_fastem_sfcoptics (Frequency, Angles, Water
 — Temperature, Salinity, Wind_Speed, Wind_Direction, iVar, Emissivity, Reflectivity, FASTEM_Version,
 Sensor_Azimuth_Angle, Transmittance)
- integer function, public crtm_fastem_module::compute_fastem_sfcoptics_tl (Water_Temperature_TL, Salinity_TL, Wind_Speed_TL, Wind_Direction_TL, Transmittance_TL, iVar, Emissivity_TL, Reflectivity_

 TL, FASTEM Version)
- integer function, public crtm_fastem_module::compute_fastem_sfcoptics_ad (Emissivity_AD, Reflectivity
 _AD, Water_Temperature_AD, Salinity_AD, Wind_Speed_AD, Wind_Direction_AD, Transmittance_AD, iVar,
 FASTEM_Version)
- integer function, public crtm_fastem_module::crtm_fastem_init (MWwaterCoeff_File, Version)
- integer function, public crtm_fastem_module::crtm_fastem_destroy ()

Variables

• logical, save, public crtm_fastem_module::csem_mwwatercoeff_init = .FALSE.

9.17.1 Detailed Description

CRTM FASTEM MODULE.f90.

9.18 src/MW/Water/CRTM FASTEM/CRTM FastemXX.f90 File Reference

CRTM FastemXX.f90.

Modules

· module crtm fastemxx

Container Module for the Fastem4/5/6 models.

Functions/Subroutines

- subroutine, public crtm_fastemxx::compute_fastemxx (MWwaterCoeff, Frequency, n_Angles, Zenith_Angle, Temperature, Salinity, Wind_Speed, iVar, Emissivity, Reflectivity, Azimuth_Angle, Transmittance)
- subroutine, public crtm_fastemxx::compute_fastemxx_tl (MWwaterCoeff, Temperature_TL, Salinity_TL, Wind_Speed_TL, iVar, Emissivity_TL, Reflectivity_TL, Azimuth_Angle_TL, Transmittance_TL)
- subroutine, public crtm_fastemxx::compute_fastemxx_ad (MWwaterCoeff, Emissivity_AD, Reflectivity_AD, iVar, Temperature_AD, Salinity_AD, Wind_Speed_AD, Azimuth_Angle_AD, Transmittance_AD)

9.18.1 Detailed Description

CRTM FastemXX.f90.

9.19 src/MW/Water/CRTM_FASTEM/CRTM_LowFrequency_MWSSEM.f90 File Reference

CRTM_LowFrequency_MWSSEM.f90.

Modules

• module crtm_lowfrequency_mwssem

Module containg subroutines to compute microwave ocean emissivity components (FWD, TL, and AD) for low frequencies.

Functions/Subroutines

subroutine, public crtm_lowfrequency_mwssem::lowfrequency_mwssem (Frequency, Zenith_Angle, Temper-ature, Salinity, Wind_Speed, Emissivity, iVar)

- subroutine, public **crtm_lowfrequency_mwssem::lowfrequency_mwssem_tl** (Temperature_TL, Salinity ← _TL, Wind_Speed_TL, Emissivity_TL, iVar)
- subroutine, public crtm_lowfrequency_mwssem::lowfrequency_mwssem_ad (Emissivity_AD, Temperature ← AD, Salinity_AD, Wind_Speed_AD, iVar)

9.19.1 Detailed Description

CRTM LowFrequency MWSSEM.f90.

9.20 src/MW/Water/CRTM_FASTEM/CRTM_MWwaterCoeff_Define.f90 File Reference

CRTM MWwaterCoeff Define.f90.

Modules

module crtm_mwwatercoeff_define
 Module defining the MWwaterCoeff object.

Functions/Subroutines

- pure logical function, public crtm mwwatercoeff define::crtm mwwatercoeff associated (self)
- pure subroutine, public crtm_mwwatercoeff_define::crtm_mwwatercoeff_destroy (self)
- pure subroutine, public crtm_mwwatercoeff_define::crtm_mwwatercoeff_create (self, ndim_subgrp, dims_subgrp)
- subroutine, public crtm_mwwatercoeff_define::crtm_mwwatercoeff_inspect (self, pause)
- logical function, public crtm_mwwatercoeff_define::crtm_mwwatercoeff_validrelease (self)
- subroutine, public crtm_mwwatercoeff_define::crtm_mwwatercoeff_info (self, Info)
- subroutine, public crtm_mwwatercoeff_define::crtm_mwwatercoeff_defineversion (Id)

9.20.1 Detailed Description

CRTM_MWwaterCoeff_Define.f90.

9.21 src/MW/Water/CRTM_FASTEM/CRTM_MWwaterLUT_Define.f90 File Reference

CRTM MWwaterLUT Define.f90.

Modules

· module crtm_mwwaterlut_define

Module defining the MWwaterLUT object containing the Look-Up Table (LUT) for the microWave (MW) sea surface emissivity model.

Functions/Subroutines

- pure logical function, public crtm_mwwaterlut_define::mwwaterlut_associated (self)
- pure subroutine, public crtm_mwwaterlut_define::mwwaterlut_destroy (self)
- pure subroutine, public crtm_mwwaterlut_define::mwwaterlut_create (self, n_Angles, n_Frequencies, n ← _ Temperatures, n_Wind_Speeds)
- subroutine, public crtm_mwwaterlut_define::mwwaterlut_inspect (self, pause)
- logical function, public crtm_mwwaterlut_define::mwwaterlut_validrelease (self)
- subroutine, public crtm mwwaterlut define::mwwaterlut info (self, Info)
- subroutine, public crtm_mwwaterlut_define::mwwaterlut_defineversion (Id)

9.21.1 Detailed Description

CRTM MWwaterLUT Define.f90.

9.22 src/MW/Water/CRTM_FASTEM/Foam_Utility_Module.f90 File Reference

Foam_Utility_Module.f90.

Modules

· module foam utility module

Helper module containing the foam-related utility routines for the CRTM implementation of FASTEM4 and FASTEM5.

Functions/Subroutines

- subroutine, public foam_utility_module::foam_coverage (FCCoeff, wind_speed, coverage)
- subroutine, public **foam_utility_module::foam_coverage_tl** (FCCoeff, wind_speed, wind_speed_TL, coverage_TL)
- subroutine, public foam_utility_module::foam_coverage_ad (FCCoeff, wind_speed, coverage_AD, wind
 _speed_AD)
- subroutine, public foam_utility_module::foam_reflectivity (FRCoeff, Zenith_Angle, Frequency, Rv, Rh)

9.22.1 Detailed Description

Foam_Utility_Module.f90.

9.23 src/MW/Water/CRTM_FASTEM/Large_Scale_Correction_Module.f90 File Reference

Large Scale Correction Module.f90.

Modules

· module large scale correction module

Module containing the large-scale correction procedures for the CRTM implementations of FASTEM4 and FASTEM5.

Functions/Subroutines

- subroutine, public large_scale_correction_module::large_scale_correction (LSCCoeff, Frequency, cos_← Z, Wind_Speed, Rv_Large, Rh_Large, iVar)
- subroutine, public large_scale_correction_module::large_scale_correction_tl (Wind_Speed_TL, Rv_Large ←
 _TL, Rh_Large_TL, iVar)
- subroutine, public large_scale_correction_module::large_scale_correction_ad (Rv_Large_AD, Rh_Large_
 —
 AD, Wind_Speed_AD, iVar)

9.23.1 Detailed Description

Large_Scale_Correction_Module.f90.

9.24 src/MW/Water/CRTM FASTEM/Liu.f90 File Reference

Liu.f90.

Modules

module liu

Liu Ocean Permittivity module.

Functions/Subroutines

- subroutine, public liu::liu_ocean_permittivity (Temperature, Salinity, Frequency, Permittivity, iVar)

 PURPOSE: Subroutine to compute ocean permittivity according to the reference, Liu, Q. et al. (2010) An improved fast microwave water emissivity model. IEEE Trans. Geosci. Remote Sensing, accepted June 25, 2010.
- subroutine, public liu::liu_ocean_permittivity_tl (Temperature_TL, Salinity_TL, Frequency, Permittivity_TL, i↔ Var)
 - PURPOSE: Subroutine to compute ocean permittivity according to the reference, Liu, Q. et al. (2010) An improved fast microwave water emissivity model. IEEE Trans. Geosci. Remote Sensing, accepted June 25, 2010.
- subroutine, public liu::liu_ocean_permittivity_ad (Permittivity_AD, Frequency, Temperature_AD, Salinity_AD, iVar)

PURPOSE: Subroutine to compute ocean permittivity according to the reference, Liu, Q. et al. (2010) An improved fast microwave water emissivity model. IEEE Trans. Geosci. Remote Sensing, accepted June 25, 2010.

9.24.1 Detailed Description

Liu.f90.

9.25 src/MW/Water/CRTM_FASTEM/Ocean_Permittivity.f90 File Reference

Ocean_Permittivity.f90.

Modules

· module ocean_permittivity

Container module for the sea water complex permittivity model collections.

9.25.1 Detailed Description

Ocean_Permittivity.f90.

9.26 src/MW/Water/CRTM_FASTEM/Small_Scale_Correction_Module.f90 File Reference

Small_Scale_Correction_Module.f90.

Modules

· module small scale correction module

Module containing the small-scale correction procedures for the CRTM implementations of FASTEM4 and FASTEM5.

Functions/Subroutines

- subroutine, public small_scale_correction_module::small_scale_correction_tl (SSCCoeff, Wind_Speed_TL, Correction_TL, iVar)
- subroutine, public small_scale_correction_module::small_scale_correction_ad (SSCCoeff, Correction_AD, Wind_Speed_AD, iVar)

9.26.1 Detailed Description

Small_Scale_Correction_Module.f90.

9.27 src/MW/Water/CSEM WaterMW SfcOptics.f90 File Reference

CSEM_WaterMW_SfcOptics.f90.

Modules

· module csem_watermw_sfcoptics

Container module with all the MWWater models available in the CSEM model repository.

Functions/Subroutines

• integer function, public csem_watermw_sfcoptics::csem_compute_watermw_sfcoptics (Surface, SfcOptics, Options, iVar)

PURPOSE: Function to compute the ocean surface emissivity and reflectivity at microwave frequencies.

 integer function, public csem_watermw_sfcoptics::csem_compute_watermw_sfcoptics_tl (Surface_TL, Atmos_TL, SfcOptics_TL, iVar)

PURPOSE: Function to compute the ocean surface emissivity and reflectivity tangent-linear at microwave frequencies.

 integer function, public csem_watermw_sfcoptics::csem_compute_watermw_sfcoptics_ad (SfcOptics_AD, Surface AD, Atmos AD, iVar)

PURPOSE: Function to compute the ocean surface emissivity and reflectivity adjoint at microwave frequencies.

9.27.1 Detailed Description

CSEM_WaterMW_SfcOptics.f90.

9.28 src/MW/Water/RTTOV_FASTEM/rttov_fastem5r1.F90 File Reference

Compute FASTEM-4,5,6 emissivity and reflectance for a single channel.

Modules

module rttov_fastem5r1_module

Compute RTTOV FASTEM-4,5,6 emissivity and reflectance for a single channel.

Functions/Subroutines

• subroutine rttov_fastem5r1_module::rttov_fastem5r1 (fastem_version, Frequency, Zenith_Angle, Temperature, Salinity, Wind_Speed, Emissivity, Reflectivity, Transmittance, Rel_Azimuth, Supply_Foam_Fraction, Foam_Fraction)

Compute FASTEM-4,5,6 emissivity and reflectance for a single channel.

9.28.1 Detailed Description

Compute FASTEM-4,5,6 emissivity and reflectance for a single channel.

9.29 src/MW/Water/RTTOV_FASTEM/rttov_fastem5r1_ad.F90 File Reference

AD of FASTEM-4,5,6 emissivity and reflectance calculation.

Modules

• module rttov fastem5r1 ad module

AD of RTTOV FASTEM-4,5,6 emissivity and reflectance calculation.

Functions/Subroutines

subroutine rttov_fastem5r1_ad_module::rttov_fastem5r1_ad (fastem_version, Frequency, Zenith_←
 Angle, Temperature, Salinity, Wind_Speed, Emissivity_ad, Reflectivity_ad, Temperature_ad, Salinity_ad,
 Wind_Speed_ad, Emissivity, Reflectivity, Transmittance, Rel_Azimuth, Transmittance_ad, Rel_Azimuth_ad,
 Supply_Foam_Fraction, Foam_Fraction_ad)

9.29.1 Detailed Description

AD of FASTEM-4,5,6 emissivity and reflectance calculation.

9.30 src/MW/Water/RTTOV_FASTEM/rttov_fastem5r1_coef.F90 File Reference

Contains data for the FASTEM-4,5,6 MW sea surface emissivity models.

Modules

module mod_rttov_fastem5r1_coef

Contains data for the FASTEM-4,5,6 MW sea surface emissivity models.

Variables

- real(fp), parameter, public mod_rttov_fastem5r1_coef::zero = 0.0_fp
- real(fp), parameter, public mod_rttov_fastem5r1_coef::point_5 = 0.5_fp
- real(fp), parameter, public mod rttov_fastem5r1_coef::one = 1.0 fp
- real(fp), parameter, public mod rttov fastem5r1 coef::two = 2.0 fp
- real(fp), parameter, public mod_rttov_fastem5r1_coef::three = 3.0 fp
- real(fp), parameter, public mod rttov fastem5r1 coef::pi = 3.141592653589793238462643383279 fp
- real(fp), parameter, public mod_rttov_fastem5r1_coef::degrees_to_radians = PI/180.0_fp
- real(fp), parameter, public mod_rttov_fastem5r1_coef::transmittance_limit_lower = 0.00001_fp
- real(fp), parameter, public mod rttov fastem5r1 coef::transmittance limit upper = 0.9999 fp
- real(fp), parameter, public mod_rttov_fastem5r1_coef::e0_4 = 0.0088419_fp
- real(fp), parameter, public mod_rttov_fastem5r1_coef::e0_5 = 0.00885418781762_fp
- real(fp), parameter, public mod_rttov_fastem5r1_coef::min_f = 1.4_fp

- real(fp), parameter, public mod_rttov_fastem5r1_coef::max_f = 200.0_fp
- real(fp), parameter, public mod_rttov_fastem5r1_coef::min_wind = 0.3_fp
- real(fp), parameter, public mod_rttov_fastem5r1_coef::max_wind = 35.0_fp
- real(fp), dimension(0:38), parameter, public $mod_rttov_fastem5r1_coef::a_coef = (/ 3.8_fp, 0.0248033 \hookrightarrow fp, 87.9181727_fp, -0.4031592248_fp, 0.0009493088010_fp, -0.1930858348E-05_fp, -0.002697_fp, -7. \hookrightarrow 3E-06_fp, -8.9E-06_fp, 5.723_fp, 0.022379_fp, -0.00071237_fp, -6.28908E-03_fp, 1.76032E-04_fp, -9. \hookrightarrow 22144E-05_fp, 0.1124465_fp, -0.0039815727_fp, 0.00008113381_fp, -0.00000071824242_fp, -2.39357E-03_fp, 3.1353E-05_fp, -2.52477E-07_fp, 0.003049979018_fp, -3.010041629E-05_fp, 0.4811910733E-05_ \hookrightarrow fp, -0.4259775841E-07_fp, 0.149_fp, -8.8E-04_fp, -1.05E-04_fp, 2.033E-02_fp, 1.266E-04_fp, 2.464E-06_fp, -1.849E-05_fp, 2.551E-07_fp, -2.551E-08_fp, 0.182521_fp, -1.46192E-03_fp, 2.09324E-05_fp, -1.28205E-07_fp/)$
- real(fp), dimension(36), parameter, public **mod_rttov_fastem5r1_coef::lcoef5** = (/ -5.994667E-02_fp, 9.341346E-04_fp,-9.566110E-07_fp, 8.360313E-02_fp,-1.085991E-03_fp, 6.735338E-07_fp,-2.617296E-02_fp, 2.864495E-04_fp,-1.429979E-07_fp,-5.265879E-04_fp, 6.880275E-05_fp,-2.916657E-07_fp,-1. ← 671574E-05_fp, 1.086405E-06_fp,-3.632227E-09_fp, 1.161940E-04_fp,-6.349418E-05_fp, 2.466556E-07_fp,-2.431811E-02_fp,-1.031810E-03_fp, 4.519513E-06_fp, 2.868236E-02_fp, 1.186478E-03_fp,-5. ← 257096E-06_fp,-7.933390E-03_fp, -2.422303E-04_fp, 1.089605E-06_fp,-1.083452E-03_fp,-1.788509E-05_fp, 5.464239E-09_fp, -3.855673E-05_fp, 9.360072E-07_fp,-2.639362E-09_fp, 1.101309E-03_fp, 3. ← 599147E-05_fp, -1.043146E-07_fp/)
- real(fp), dimension(36), parameter, public $mod_rttov_fastem5r1_coef::lcoef4 = (/ -9.197134E-02_fp, 8.310678E-04_fp,-6.065411E-07_fp, 1.350073E-01_fp,-1.032096E-03_fp, 4.259935E-07_fp,-4.373322E-02_fp, 2.545863E-04_fp, 9.835554E-08_fp,-1.199751E-03_fp, 1.360423E-05_fp,-2.088404E-08_fp,-2. <math display="inline">\hookleftarrow$ 201640E-05_fp, 1.951581E-07_fp,-2.599185E-10_fp, 4.477322E-04_fp,-2.986217E-05_fp, 9.406466E-08_fp,-7.103127E-02_fp,-4.713113E-05_fp, 1.754742E-06_fp, 9.720859E-02_fp, 1.374668E-04_fp,-2. \hookleftarrow 591771E-06_fp,-2.687455E-02_fp, -3.677779E-05_fp, 7.548377E-07_fp,-3.049506E-03_fp,-5.412826E-05_fp, 2.285387E-07_fp, -2.201640E-05_fp, 1.951581E-07_fp,-2.599185E-10_fp, 2.297488E-03_fp, 3. \hookleftarrow 787032E-05_fp, -1.553581E-07_fp/)
- real(fp), dimension(8), parameter, public **mod_rttov_fastem5r1_coef::scoef** = (/ -5.0208480E-06_ \leftarrow fp, 2.3297951E-08_fp, 4.6625726E-08_fp, -1.9765665E-09_fp, -7.0469823E-04_fp, 7.5061193E-04_fp, 9. \leftarrow 8103876E-04_fp, 1.5489504E-04_fp /)
- real(fp), dimension(45), parameter, public **mod_rttov_fastem5r1_coef::t_c5** = (/ 0.199277E+00 \leftarrow _fp, 0.166155E+00_fp, 0.153272E-01_fp, 0.399234E+01_fp,-0.130968E+01_fp, -0.874716E+00_ \leftarrow fp,-0.169403E+01_fp,-0.260998E-01_fp, 0.540443E+00_fp,-0.282483E+00_fp, -0.219994E+00_fp,-0. \leftarrow 203438E-01_fp, 0.351731E+00_fp, 0.208641E+01_fp,-0.693299E+00_fp, 0.867861E-01_fp, 0.619020E-01_fp, 0.595251E-02_fp,-0.475191E+01_fp,-0.430134E-01_fp, 0.248524E+01_fp, 0.388242E-01_ \leftarrow fp, 0.194901E+00_fp,-0.425093E-01_fp, 0.607698E+01_fp, -0.313861E+01_fp,-0.103383E+01_fp,-0. \leftarrow 377867E+01_fp, 0.180284E+01_fp, 0.699556E+00_fp, -0.506455E-01_fp,-0.262822E+00_fp, 0.703056E-01_fp, 0.362055E+01_fp,-0.120318E+01_fp, -0.124971E+01_fp, 0.154014E-01_fp, 0.759848E-01_fp,-0. \leftarrow 268604E-01_fp,-0.802073E+01_fp, 0.324658E+01_fp, 0.304165E+01_fp, 0.100000E+01_fp, 0.200000E-01_fp, 0.300000E+00_fp/)
- real(fp), dimension(45), parameter, public **mod_rttov_fastem5r1_coef::t_c4** = (/ -0.675700E-01 \leftarrow _fp, 0.214600E+00_fp,-0.363000E-02_fp, 0.636730E+01_fp, 0.900610E+00_fp, -0.524880E+00_ \leftarrow fp,-0.370920E+01_fp,-0.143310E+01_fp, 0.397450E+00_fp, 0.823100E-01_fp, -0.255980E+00_fp, 0. \leftarrow 552000E-02_fp, 0.208000E+01_fp, 0.244920E+01_fp,-0.456420E+00_fp, -0.224900E-01_fp, 0.616900E-01_fp,-0.344000E-02_fp,-0.507570E+01_fp,-0.360670E+01_fp, 0.118750E+01_fp, 0.124950E+00_ \leftarrow fp, 0.121270E+00_fp, 0.714000E-02_fp, 0.736620E+01_fp, -0.114060E+00_fp,-0.272910E+00_fp,-0. \leftarrow 504350E+01_fp,-0.336450E+00_fp, 0.161260E+00_fp, -0.154290E+00_fp,-0.141070E+00_fp,-0.809000E-02_fp, 0.395290E+01_fp, 0.958580E+00_fp, -0.159080E+00_fp, 0.368500E-01_fp, 0.307100E-01_fp, 0.0. \leftarrow 810000E-03_fp,-0.619960E+01_fp, -0.172580E+01_fp, 0.641360E+00_fp, 0.100000E+01_fp, 0.200000E-01_fp, 0.300000E+00_fp/)
- real(fp), dimension(120), parameter, public **mod_rttov_fastem5r1_coef::b_coef** = (/ $3.307255E-04_fp, 2.901276E-06_fp, -1.475497E-04_fp, 1.288152E-06_fp, 1.004010E-04_fp, -2.671158E-07_fp, 4.363154E-06_fp,-9.817795E-09_fp,-4.777876E-05_fp, <math>3.051852E-08_fp, 1.369383E-03_fp,-2.215847E-05_fp,-8.4009833E-04_fp, 1.767702E-05_fp,-5.977649E-06_fp, -1.784656E-07_fp,-9.355531E-07_fp, 5.495131E-08_fp,-3.479300E-05_fp,-3.751652E-07_fp, 2.673536E-04_fp,-1.378890E-06_fp,-8.660113E-05_fp, 2.40871488E-07_fp, 1.361118E-05_fp, -1.622586E-08_fp,-1.232439E-07_fp,-3.067416E-09_fp,-1.835366E-06_fp, 8.098728E-09_fp, 1.255415E-04_fp,-5.145201E-07_fp,-8.832514E-06_fp,-5.105879E-09_fp, 2.408724E-05_fp, -3.398604E-07_fp, 3.417435E-06_fp,-7.043251E-09_fp, 1.497222E-05_fp,-6.832110E-07_fp, -3.398604E-07_fp, 3.417435E-06_fp,-7.043251E-09_fp, 1.497222E-05_fp,-6.832110E-07_fp,-8.832514E-06_fp,-6.832110E-07_fp,-8.832514E-06_fp,-6.832110E-07_fp,-8.832514E-06_fp,-6.832110E-07_fp,-8.832514E-06_fp,-6.832110E-07_fp,-6.832110E-$

 $09_fp, -2.315959E-03_fp, -1.023585E-06_fp, 5.154471E-05_fp, 9.534546E-06_fp, -6.306568E-05_fp, -4. \hookleftarrow 378498E-07_fp, -2.132017E-06_fp, 1.612415E-08_fp, -1.929693E-06_fp, -6.217311E-09_fp, -1.656672E-04_fp, 6.385099E-07_fp, 2.290074E-06_fp, 1.103787E-07_fp, -5.548757E-06_fp, 5.275966E-08_fp, -4. ⇔ 653774E-07_fp, 1.427566E-09_fp, -3.197232E-06_fp, -4.048557E-09_fp, -1.909801E-04_fp, -3.387963E-07_fp, 4.641319E-05_fp, 4.502372E-07_fp, -5.055813E-05_fp, 2.104201E-07_fp, -4.121861E-06_fp, -1. ⇔ 633057E-08_fp, -2.469888E-05_fp, 4.492103E-08_fp, -4.582853E-03_fp, -5.373940E-06_fp, 9.713047E-04_fp, 1.783009E-05_fp, -4.539091E-04_fp, 7.652954E-07_fp, -6.708905E-06_fp, 2.148401E-08_fp, 8. ⇔ 054350E-05_fp, 3.069258E-07_fp, -6.405746E-05_fp, -9.694284E-08_fp, 1.914498E-05_fp, 1.336975E-07_fp, -4.561696E-06_fp, 3.769169E-08_fp, -6.105244E-07_fp, 2.433761E-10_fp, -3.961735E-06_fp, 1. ⇔ 995636E-08_fp, 1.350148E-06_fp, 3.678149E-07_fp, 1.261701E-05_fp, -2.011440E-07_fp, -2.361347E-05_fp, 2.943147E-08_fp, -1.304551E-07_fp, -1.119368E-09_fp, 8.469458E-06_fp, -2.292171E-09_fp, 1. ⇔ 419156E-03_fp, -3.838338E-06_fp, 8.222562E-05_fp, -1.106098E-06_fp, -5.482327E-05_fp, 3.083137E-07_fp, 4.418828E-06_fp, -1.302562E-08_fp, 3.768883E-05_fp, -5.012753E-08_fp, -9.396649E-06_fp, 2. ⇔ 764698E-07_fp, 1.745336E-05_fp, -1.427031E-07_fp, -3.879930E-06_fp, -1.117458E-08_fp, 5.688281E-08_fp, 1.513582E-09_fp, 6.778764E-06_fp, -7.691286E-09_fp /)$

- real(fp), dimension(9), parameter, public **mod_rttov_fastem5r1_coef::x** = (/ 0.0_fp, 1.4_fp, 6.8_fp, 10.7_fp, 19.35_fp, 37. fp, 89. fp, 150. fp, 200. fp/)
- real(fp), dimension(9), parameter, public **mod_rttov_fastem5r1_coef::y** = (/ 0.0_fp, 0.1_fp, 0.6_fp, 0.9_fp, 1._fp, 1.0_fp, 0.4_fp, 0.2_fp, 0.0_fp/)
- real(fp), dimension(6, 6, 2), parameter, public **mod_rttov_fastem5r1_coef::coef_mk_azi** = RESHAPE((/ 4.401E-02, -1.636E+01, 1.478E+00, -4.800E-02, 3.202E-06, -6.002E-05, 4.379E-02, -1.633E+01, 1. ← 453E+00, -4.176E-02, 5.561E-06, -4.644E-05, 5.009E-02, -1.638E+01, 1.520E+00, -3.994E-02, 1.330E-05, 1.113E-05, 5.165E-02, -1.638E+01, 1.543E+00, -4.066E-02, 1.494E-05, 1.010E-05, 5.553E-02, -1.638E+01, 1.602E+00, -4.246E-02, 1.903E-05, 7.524E-06, -9.131E-05, 1.251E+00, 6.769E-01, -2.913E-02, 1.092E+00, -1.806E-04, -1.234E-07, -8.179E-03, -1.040E+01, 4.477E-01, 0.000E+00, 3.390E-05, -1.938E-05, -8.007E-03, -1.039E+01, 4.610E-01, 0.000E+00, 4.419E-05, 1.362E-04, -1.013E-03, -9.235E+00, 3.844E-01, 0. ← 000E+00, 2.891E-04, 1.519E-04, -7.865E-04, -9.234E+00, 3.884E-01, 0.000E+00, 6.856E-04, 1.910E-04, -2.224E-04, -9.232E+00, 3.982E-01, 0.000E+00, 1.673E-03, 3.554E-04, 5.226E-04, 9.816E-01, -7.783E-03, 0.000E+00, 2.437E+01/), (/6,6,2/))
- real(fp), dimension(5), parameter, public **mod_rttov_fastem5r1_coef::fr_coeff** = (/ 0.07_fp, -1.748e-3_fp, -7.336e-5 fp, 1.044e-7 fp, -0.93 fp/)

9.30.1 Detailed Description

Contains data for the FASTEM-4,5,6 MW sea surface emissivity models.

9.31 src/MW/Water/RTTOV_FASTEM/rttov_fastem5r1_tl.F90 File Reference

TL of FASTEM-4,5,6 emissivity and reflectance calculation.

Modules

module rttov_fastem5r1_tl_module

TL of RTTOV FASTEM-4,5,6 emissivity and reflectance calculation.

Functions/Subroutines

subroutine rttov_fastem5r1_tl (fastem_version, Frequency, Zenith_Angle, Temperature, Salinity, Wind_Speed, Temperature_tl, Salinity_tl, Wind_Speed_tl, Emissivity, Reflectivity, Emissivity_tl, Reflectivity_tl, Transmittance, Rel_Azimuth, Transmittance_tl, Rel_Azimuth_tl, Supply_Foam
 __Fraction, Foam_Fraction_tl)

TL of FASTEM-4,5,6 emissivity and reflectance calculation.

9.31.1 Detailed Description

TL of FASTEM-4,5,6 emissivity and reflectance calculation.

9.32 src/MW/Water/RTTOV_FASTEM/rttov_tessem_mod.F90 File Reference

Subroutines for TESSEM2 MW sea surface emissivity model.

Data Types

· type rttov_tessem_mod::tessem_net

Modules

· module rttov tessem mod

Subroutines for TESSEM2 MW sea surface emissivity model.

Functions/Subroutines

- subroutine rttov_tessem_mod::prop_neuralnet (net, x, y)
- subroutine rttov_tessem_mod::rttov_tessem (freq, theta, windspeed, tskin, salinity, emis_h, emis_v)
- subroutine rttov_tessem_mod::prop_neuralnet_tl (net, x, x_tl, y_tl)
- subroutine **rttov_tessem_mod::rttov_tessem_tl** (freq, theta, windspeed, tskin, salinity, windspeed_
 tl, tskin_tl, salinity_tl, emis_h_tl, emis_v_tl)
- subroutine rttov_tessem_mod::prop_neuralnet_ad (net, x, x_ad, y_ad)
- subroutine **rttov_tessem_mod::rttov_tessem_ad** (freq, theta, windspeed, tskin, salinity, windspeed_ad, tskin_ad, salinity_ad, emis_h_ad, emis_v_ad)

Variables

- integer(jpim), parameter rttov_tessem_mod::tessem_nin = 5
- integer(jpim), parameter rttov_tessem_mod::tessem_nout = 1
- integer(jpim), parameter rttov_tessem_mod::tessem_ncache = 15
- type(tessem_net) rttov_tessem_mod::net_h
- type(tessem_net) rttov_tessem_mod::net_v

9.32.1 Detailed Description

Subroutines for TESSEM2 MW sea surface emissivity model.

9.33 src/VisIR/Ice/CSEM IceIR SfcOptics.f90 File Reference

CSEM_lceIR_SfcOptics.f90.

Modules

· module csem_iceir_sfcoptics

Container module with all the IR_ICE models available in the CSEM model repository.

Functions/Subroutines

- integer function, public csem_iceir_sfcoptics::csem_compute_iceir_sfcoptics (Surface, SfcOptics, Options)

 PURPOSE: Function to compute the ice surface emissivity and reflectivity at infrared wavelength.
- integer function, public csem_iceir_sfcoptics::csem_compute_iceir_sfcoptics_tl (SfcOptics_TL)

 PURPOSE: Function to compute the ice surface emissivity and reflectivity tangent-linear at infrared wavelength.
- integer function, public csem_iceir_sfcoptics::csem_compute_iceir_sfcoptics_ad (Surface_AD)

 PURPOSE: Function to compute the ice surface emissivity and reflectivity adjoint at infrared wavelength.

9.33.1 Detailed Description

CSEM_IceIR_SfcOptics.f90.

9.34 src/VisIR/Ice/CSEM_IceVIS_SfcOptics.f90 File Reference

CSEM_IceVIS_SfcOptics.f90.

Modules

· module csem_icevis_sfcoptics

Container module with all the VIS_ICE models available in the CSEM model repository.

Functions/Subroutines

- integer function, public csem_icevis_sfcoptics::csem_compute_icevis_sfcoptics (Surface, SfcOptics, Options)

 PURPOSE: Function to compute the ice surface emissivity and reflectivity at visible wavelength.
- integer function, public csem_icevis_sfcoptics::csem_compute_icevis_sfcoptics_tl (SfcOptics_TL)

 PURPOSE: Function to compute the ice surface emissivity and reflectivity tangent-linear at visible wavelength.
- integer function, public csem_icevis_sfcoptics::csem_compute_icevis_sfcoptics_ad (Surface_AD) PURPOSE: Function to compute the ice surface emissivity and reflectivity adjoint at visible wavelength.

9.34.1 Detailed Description

CSEM IceVIS SfcOptics.f90.

9.35 src/VisIR/Land/CSEM_LandIR_SfcOptics.f90 File Reference

CSEM_LandIR_SfcOptics.f90.

Modules

· module csem_landir_sfcoptics

Container module with all the IR_LAND models available in the CSEM model repository.

Functions/Subroutines

- integer function, public csem_landir_sfcoptics::csem_compute_landir_sfcoptics (Surface, SfcOptics, Options)

 PURPOSE: Function to compute the land surface emissivity and reflectivity at infrared wavelength.
- integer function, public csem_landir_sfcoptics::csem_compute_landir_sfcoptics_tl (SfcOptics_TL)

 PURPOSE: Function to compute the land surface emissivity and reflectivity tangent-linear at infrared wavelength.
- integer function, public csem_landir_sfcoptics::csem_compute_landir_sfcoptics_ad (Surface_AD)

 PURPOSE: Function to compute the Snowsurface emissivity and reflectivity adjoint at infrared wavelength.

9.35.1 Detailed Description

CSEM_LandIR_SfcOptics.f90.

9.36 src/VisIR/Land/CSEM_LandVIS_SfcOptics.f90 File Reference

CSEM_LandVIS_SfcOptics.f90.

Modules

module csem_landvis_sfcoptics

Container module with all the VIS_LAND models available in the CSEM model repository.

Functions/Subroutines

- integer function, public csem_landvis_sfcoptics::csem_compute_landvis_sfcoptics (Surface, SfcOptics, Options)
 - PURPOSE: Function to compute the land surface emissivity and reflectivity at visible wavelength.
- integer function, public csem_landvis_sfcoptics::csem_compute_landvis_sfcoptics_tl (SfcOptics_TL)

 PURPOSE: Function to compute the land surface emissivity and reflectivity tangent-linear at visible wavelength.
- integer function, public csem_landvis_sfcoptics::csem_compute_landvis_sfcoptics_ad (Surface_AD)

 PURPOSE: Function to compute the Snowsurface emissivity and reflectivity adjoint at visible wavelength.

9.36.1 Detailed Description

CSEM_LandVIS_SfcOptics.f90.

9.37 src/VisIR/Snow/CSEM_SnowIR_SfcOptics.f90 File Reference

CSEM_SnowIR_SfcOptics.f90.

Modules

• module csem_snowir_sfcoptics

Container module with all the IR_SNOW models available in the CSEM model repository.

Functions/Subroutines

- integer function, public csem_snowir_sfcoptics::csem_compute_snowir_sfcoptics (Surface, SfcOptics, Options)
 - PURPOSE: Function to compute the snow surface emissivity and reflectivity at infrared wavelength.
- integer function, public csem_snowir_sfcoptics::csem_compute_snowir_sfcoptics_tl (SfcOptics_TL)
 - PURPOSE: Function to compute the snow surface emissivity and reflectivity tangent-linear at infrared wavelength.
- integer function, public csem_snowir_sfcoptics::csem_compute_snowir_sfcoptics_ad (Surface_AD)

 PURPOSE: Function to compute the Snow surface emissivity and reflectivity adjoint at infrared wavelength.

9.37.1 Detailed Description

CSEM_SnowIR_SfcOptics.f90.

9.38 src/VisIR/Snow/CSEM SnowVIS SfcOptics.f90 File Reference

CSEM_SnowVIS_SfcOptics.f90.

Modules

· module csem snowvis sfcoptics

Container module of all the VIS_SNOW models available in the CSEM model repository.

Functions/Subroutines

• integer function, public csem_snowvis_sfcoptics::csem_compute_snowvis_sfcoptics (Surface, SfcOptics, Options)

PURPOSE: Function to compute the snow surface emissivity and reflectivity at visible wavelength.

- integer function, public csem_snowvis_sfcoptics::csem_compute_snowvis_sfcoptics_tl (SfcOptics_TL)

 PURPOSE: Function to compute the snow surface emissivity and reflectivity tangent-linear at visible wavelength.
- integer function, public csem_snowvis_sfcoptics::csem_compute_snowvis_sfcoptics_ad (Surface_AD)

 PURPOSE: Function to compute the Snowsurface emissivity and reflectivity adjoint at visible wavelength.

9.38.1 Detailed Description

CSEM SnowVIS SfcOptics.f90.

9.39 src/VisIR/Water/CSEM WaterIR SfcOptics.f90 File Reference

CSEM WaterIR SfcOptics.f90.

Modules

• module csem_waterir_sfcoptics

Container module with all the IR_WATER models available in the CSEM model repository.

Functions/Subroutines

• integer function, public csem_waterir_sfcoptics::csem_compute_waterir_sfcoptics (Surface, SfcOptics, Options, iVar)

PURPOSE: Function to compute the ocean surface emissivity and reflectivity at infrared wavelength.

integer function, public csem_waterir_sfcoptics::csem_compute_waterir_sfcoptics_tl (Surface_TL, Sfc
 — Optics_TL, iVar)

PURPOSE: Function to compute the ocean surface emissivity and reflectivity tangent-linear at infrared wavelength.

• integer function, public csem_waterir_sfcoptics::csem_compute_waterir_sfcoptics_ad (SfcOptics_AD, Surface_AD, iVar)

PURPOSE: Function to compute the ocean surface emissivity and reflectivity adjoint at infrared wavelength.

9.39.1 Detailed Description

CSEM_WaterIR_SfcOptics.f90.

9.40 src/VisIR/Water/CSEM WaterVIS SfcOptics.f90 File Reference

CSEM WaterVIS SfcOptics.f90.

Modules

module csem_watervis_sfcoptics

Container module with all the VIS_WATER models available in the CSEM model repository.

Functions/Subroutines

• integer function, public csem_watervis_sfcoptics::csem_compute_watervis_sfcoptics (Surface, SfcOptics, Options, iVar)

PURPOSE: Function to compute the ocean surface emissivity and reflectivity at visible wavelength.

- integer function, public csem_watervis_sfcoptics::csem_compute_watervis_sfcoptics_tl (SfcOptics_TL)

 PURPOSE: Function to compute the ocean surface emissivity and reflectivity tangent-linear at visible wavelength.
- integer function, public csem_watervis_sfcoptics::csem_compute_watervis_sfcoptics_ad (Surface_AD)

PURPOSE: Function to compute the ocean surface emissivity and reflectivity adjoint at visible wavelength.

9.40.1 Detailed Description

CSEM_WaterVIS_SfcOptics.f90.

Index

azimuth_emissivity	compute_fastemxx, 25
azimuth_emissivity_module, 19	compute_fastemxx_ad, 26
azimuth_emissivity_ad	compute_fastemxx_tl, 27
azimuth_emissivity_module, 19	crtm_leafmw_optics
azimuth_emissivity_f6_ad	mw_leaf_optics, 80
azimuth_emissivity_f6_module, 17	crtm_lowfrequency_mwssem, 28
azimuth_emissivity_f6_module, 17	lowfrequency_mwssem, 28
azimuth_emissivity_f6_ad, 17	crtm_mwwatercoeff_associated
azimuth_emissivity_f6_tl, 18	crtm_mwwatercoeff_define, 29
azimuth_emissivity_f6_tl	crtm_mwwatercoeff_define, 29
azimuth_emissivity_f6_module, 18	crtm_mwwatercoeff_associated, 29
azimuth_emissivity_module, 18	crtm_mwwaterlut_define, 30
azimuth_emissivity, 19	mwwaterlut_associated, 30
azimuth_emissivity_ad, 19	csem_compute_iceir_sfcoptics
azimuth_emissivity_tl, 19	csem_iceir_sfcoptics, 33
azimuth_emissivity_tl	csem_compute_iceir_sfcoptics_ad
azimuth_emissivity_module, 19	csem_iceir_sfcoptics, 34
_	csem_compute_iceir_sfcoptics_tl
cnrm_amsua_reader, 20	csem iceir sfcoptics, 34
cnrm_atlas_module, 20	csem_compute_icemw_sfcoptics
compute_fastem_sfcoptics	csem_icemw_sfcoptics, 36
crtm_fastem_module, 22	csem compute icemw sfcoptics ad
compute_fastem_sfcoptics_ad	csem icemw sfcoptics, 37
crtm_fastem_module, 23	csem_compute_icemw_sfcoptics_tl
compute_fastem_sfcoptics_tl	csem_icemw_sfcoptics, 37
crtm_fastem_module, 23	csem_compute_icevis_sfcoptics
compute_fastemxx	csem_icevis_sfcoptics, 38
crtm_fastemxx, 25	csem_compute_icevis_sfcoptics_ad
compute_fastemxx_ad	csem_icevis_sfcoptics, 39
crtm_fastemxx, 26	csem_compute_icevis_sfcoptics_tl
compute_fastemxx_tl	csem_icevis_sfcoptics, 40
crtm_fastemxx, 27	csem_compute_landir_sfcoptics
crtm_canopymw_optics	csem_landir_sfcoptics, 41
mw_canopy_optics, 77	csem_compute_landir_sfcoptics_ad
crtm_canopymw_optics_ad	csem_landir_sfcoptics, 42
mw_canopy_optics, 78	csem_compute_landir_sfcoptics_tl
crtm_canopymw_optics_tl	csem_landir_sfcoptics, 42
mw_canopy_optics, 79	csem_compute_landmw_sfcoptics
crtm_fastem1, 21	csem_landmw_sfcoptics, 43
crtm_fastem_emiss	csem_compute_landmw_sfcoptics_ad
crtm_fastem_module, 24	csem_landmw_sfcoptics, 44
crtm_fastem_init	csem_compute_landmw_sfcoptics_tl
crtm_fastem_module, 24	csem_landmw_sfcoptics, 45
crtm_fastem_module, 21	csem_compute_landvis_sfcoptics
compute_fastem_sfcoptics, 22	csem_landvis_sfcoptics, 47
compute fastem sfcoptics ad, 23	csem compute landvis sfcoptics ad
compute fastem sfcoptics tl, 23	csem_landvis_sfcoptics, 48
crtm_fastem_emiss, 24	·
crtm_fastem_init, 24	csem_compute_landvis_sfcoptics_tl
crtm_fastemxx, 25	csem_landvis_sfcoptics, 48

166 INDEX

csem_compute_snowir_sfcoptics	csem_compute_icemw_sfcoptics_ad, 37
csem_snowir_sfcoptics, 50	csem_compute_icemw_sfcoptics_tl, 37
csem_compute_snowir_sfcoptics_ad	csem_icevis_sfcoptics, 38
csem_snowir_sfcoptics, 51	csem_compute_icevis_sfcoptics, 38
csem_compute_snowir_sfcoptics_tl	csem_compute_icevis_sfcoptics_ad, 39
csem_snowir_sfcoptics, 51	csem_compute_icevis_sfcoptics_tl, 40
csem_compute_snowmw_sfcoptics	csem_landir_sfcoptics, 40
csem_snowmw_sfcoptics, 52	csem_compute_landir_sfcoptics, 41
csem_compute_snowmw_sfcoptics_ad	csem_compute_landir_sfcoptics_ad, 42
csem_snowmw_sfcoptics, 53	csem_compute_landir_sfcoptics_tl, 42
csem_compute_snowmw_sfcoptics_tl	csem_landmw_sfcoptics, 43
csem_snowmw_sfcoptics, 54	csem_compute_landmw_sfcoptics, 43
csem_compute_snowvis_sfcoptics	csem_compute_landmw_sfcoptics_ad, 44
csem_snowvis_sfcoptics, 55	csem_compute_landmw_sfcoptics_tl, 45
csem_compute_snowvis_sfcoptics_ad	csem_landvis_sfcoptics, 46
csem_snowvis_sfcoptics, 56	csem_compute_landvis_sfcoptics, 47
csem_compute_snowvis_sfcoptics_tl	csem_compute_landvis_sfcoptics_ad, 48
csem_snowvis_sfcoptics, 56	csem_compute_landvis_sfcoptics_tl, 48
csem_compute_waterir_sfcoptics	csem_lifecycle, 49
csem_waterir_sfcoptics, 57	csem_model_manager, 49
csem_compute_waterir_sfcoptics_ad	csem_snowir_sfcoptics, 49
csem_waterir_sfcoptics, 58	csem_compute_snowir_sfcoptics, 50
csem_compute_waterir_sfcoptics_tl	csem_compute_snowir_sfcoptics_ad, 51
csem_waterir_sfcoptics, 59	csem_compute_snowir_sfcoptics_tl, 51
csem_compute_watermw_sfcoptics	csem_snowmw_sfcoptics, 52
csem_watermw_sfcoptics, 60	csem_compute_snowmw_sfcoptics, 52
csem_compute_watermw_sfcoptics_ad	csem_compute_snowmw_sfcoptics_ad, 53
csem_watermw_sfcoptics, 61	csem_compute_snowmw_sfcoptics_tl, 54
csem_compute_watermw_sfcoptics_tl	csem_snowvis_sfcoptics, 54
csem_watermw_sfcoptics, 63	csem_compute_snowvis_sfcoptics, 55
csem_compute_watervis_sfcoptics	csem_compute_snowvis_sfcoptics_ad, 56
csem_watervis_sfcoptics, 64	csem_compute_snowvis_sfcoptics_tl, 56
csem_compute_watervis_sfcoptics_ad	csem_soilmw_optics
csem_watervis_sfcoptics, 65	mw_soil_optics, 83
csem_compute_watervis_sfcoptics_tl	csem_soilmw_optics_ad
csem_watervis_sfcoptics, 66	mw_soil_optics, 86
csem_define, 31	csem_soilmw_optics_tl
csem_define::csem_atmosphere_parameters, 135	mw_soil_optics, 87
csem_define::csem_geoinfo_struct, 135	csem_waterir_sfcoptics, 57
csem_define::csem_ice_surface, 136	csem_compute_waterir_sfcoptics, 57
csem_define::csem_land_surface, 136	csem_compute_waterir_sfcoptics_ad, 58
csem_define::csem_options_type, 137	csem_compute_waterir_sfcoptics_tl, 59
csem_define::csem_sensorobs_struct, 137	csem_watermw_sfcoptics, 60
csem_define::csem_sfcoptics_type, 138	csem_compute_watermw_sfcoptics, 60
csem_define::csem_snow_surface, 138	csem_compute_watermw_sfcoptics_ad, 61
csem_define::csem_water_surface, 139	csem_compute_watermw_sfcoptics_tl, 63
csem_exception_handler, 31	csem_watervis_sfcoptics, 64
csem_fitcoeff_define, 32	csem_compute_watervis_sfcoptics, 64
csem_fresnel, 32	csem_compute_watervis_sfcoptics_ad, 65
csem_fresnel::fresnel_reflectance, 139	csem_compute_watervis_sfcoptics_tl, 66
csem_fresnel::fresnel_reflectance_ad, 139	
csem_fresnel::fresnel_reflectance_tl, 139	ellison, 66
csem_iceir_sfcoptics, 33	emis_interp_ind_mult
csem_compute_iceir_sfcoptics, 33	telsem2_atlas_reader, 127
csem_compute_iceir_sfcoptics_ad, 34	emis_interp_ind_sing
csem_compute_iceir_sfcoptics_tl, 34	telsem2_atlas_reader, 128
csem_icemw_sfcoptics, 35	emis_interp_int_mult
csem_compute_icemw_sfcoptics, 36	telsem2_atlas_reader, 128
I I	emis_interp_int_sing

INDEX 167

telsem2_atlas_reader, 129	nesdis_amsu_iceem_module, 91
	nesdis_amsu_snowem_module, 91
fastem_coeff_reader, 67	nesdis_atms_iceem_module, 91
fastem_fresnel, 67	nesdis_atms_seaice_lib, 92
foam_coverage	nesdis_atms_snowem_module, 93
foam_utility_module, 68	nesdis_iceir_phymodel, 93
foam_reflectivity	nesdis_icemw_phymodel, 94
foam_utility_module, 68 foam_utility_module, 67	nesdis_icevis_phymodel, 94
foam_coverage, 68	nesdis_landem_213
foam_reflectivity, 68	nesdis_landem_module, 95
loani_renectivity, oo	nesdis_landem_module, 94
guillou, 69	nesdis_landem_213, 95
	nesdis_landir_phymodel, 95
irssem_emiscoeff_define, 69	nesdis_landmw_emiss
irssem_emiscoeff_reader, 70	nesdis_landmw_phymodel, 96 nesdis_landmw_emiss_ad
lawa asala sawastian	nesdis_landmw_phymodel, 99
large_scale_correction	nesdis_landmw_emiss_tl
large_scale_correction_module, 70	nesdis_landmw_phymodel, 100
large_scale_correction_ad large_scale_correction_module, 71	nesdis_landmw_phymodel, 95
large_scale_correction_module, 70	nesdis_landmw_emiss, 96
large_scale_correction, 70	nesdis_landmw_emiss_ad, 99
large_scale_correction_ad, 71	nesdis_landmw_emiss_tl, 100
large_scale_correction_tl, 71	two_stream_solution, 102
large_scale_correction_tl	two_stream_solution_ad, 102
large_scale_correction_module, 71	two_stream_solution_tl, 104
liu, 72	nesdis_landvis_phymodel, 105
liu_ocean_permittivity, 72	nesdis_mhs_iceem_module, 105
liu_ocean_permittivity_ad, 73	nesdis_mhs_snowem_module, 105
liu_ocean_permittivity_tl, 74	nesdis_mw_iceem_lut, 106
liu_ocean_permittivity	nesdis_mw_iceemiss_util, 106
liu, 72	nesdis_mw_snowem_lut, 106
liu_ocean_permittivity_ad	nesdis_mw_snowemiss_util, 107
liu, 73	nesdis_sensors_icemw_modules, 108
liu_ocean_permittivity_tl	nesdis_sensors_snowmw_modules, 108
liu, 74	nesdis_snowem_atms_parameters, 108
lowfrequency_mwssem	nesdis_snowem_parameters, 110
crtm_lowfrequency_mwssem, 28	nesdis_snowir_phymodel, 113
In-form outline	nesdis_snowmw_phymodel, 114
mean_leafmw_optics	nesdis_snowvis_phymodel, 114
mw_leaf_optics, 81	nesdis_ssmi_iceem_module, 114
mod_rttov_fastem5r1_coef, 75 mw_canopy_optics, 77	nesdis_ssmi_snowem_module, 115
crtm_canopymw_optics, 77	nesdis_ssmis_iceem_module, 115 nesdis_waterir_brdf_module, 115
crtm_canopymw_optics_ad, 78	nesdis_waterir_emiss_module, 116
crtm_canopymw_optics_tl, 79	nesdis_waterir_emiss_riodule, 116
mw_leaf_optics, 80	nesdis_waterir_phymodel, 116
crtm_leafmw_optics, 80	nesdis_waterir_phymodel_v2, 117
mean_leafmw_optics, 81	nesdis_watervis_brdf_module, 117
mw_soil_optics, 83	nesdis_watervis_phymodel, 118
csem_soilmw_optics, 83	npoess_lut_module, 118
csem_soilmw_optics_ad, 86	npoess_lut_reader, 118
csem_soilmw_optics_tl, 87	
mw_soil_permittivity, 88	ocean_permittivity, 119
mwwaterlut_associated	
crtm_mwwaterlut_define, 30	reflection_correction_module, 119
	rttov_closemw_atlas
nesdis_amsre_iceem_module, 89	telsem2_atlas_reader, 130
nesdis_amsre_snowem_module, 90	rttov_fastem5r1

168 INDEX

rttov_fastem5r1_module, 120 rttov_fastem5r1_ad_module, 119	src/MW/Water/CRTM_FASTEM/Liu.f90, 154 src/MW/Water/CRTM_FASTEM/Ocean_Permittivity.f90,
rttov fastem5r1 module, 120	155
rttov_fastem5r1, 120	src/MW/Water/CRTM_FASTEM/Small_Scale_Correction_Module.f90,
rttov_fastem5r1_tl	155
rttov_fastem5r1_tl_module, 121	src/MW/Water/CSEM_WaterMW_SfcOptics.f90, 156
rttov_fastem5r1_tl_module, 121	src/MW/Water/RTTOV_FASTEM/rttov_fastem5r1.F90,
rttov_fastem5r1_tl, 121	156
rttov_fastem_module, 122	src/MW/Water/RTTOV_FASTEM/rttov_fastem5r1_ad.F90,
rttov_readmw_atlas	157
telsem2_atlas_reader, 130	src/MW/Water/RTTOV_FASTEM/rttov_fastem5r1_coef.F90,
rttov_tessem_mod, 123	157
rttov_tessem_mod::tessem_net, 140	src/MW/Water/RTTOV_FASTEM/rttov_fastem5r1_tl.F90, 159
slope_variance, 124	src/MW/Water/RTTOV_FASTEM/rttov_tessem_mod.F90,
small_scale_correction	160
small_scale_correction_module, 124	src/VisIR/Ice/CSEM IceIR SfcOptics.f90, 160
small_scale_correction_ad	src/VisIR/Ice/CSEM_IceVIS_SfcOptics.f90, 161
small_scale_correction_module, 125	src/VisIR/Land/CSEM_LandIR_SfcOptics.f90, 161
small_scale_correction_module, 124	src/VisIR/Land/CSEM_LandVIS_SfcOptics.f90, 162
small_scale_correction, 124	src/VisIR/Snow/CSEM_LandVIS_SicOptics.190, 162
small_scale_correction_ad, 125	
small_scale_correction_tl, 125	src/VisIR/Snow/CSEM_SnowVIS_SfcOptics.f90, 163
small_scale_correction_tl	src/VisIR/Water/CSEM_WaterIR_SfcOptics.f90, 164
small_scale_correction_module, 125	src/VisIR/Water/CSEM_WaterVIS_SfcOptics.f90, 164
snowmw_optical_model, 126	telsem2_atlas_module, 126
src/MW/lce/CSEM_lceMW_SfcOptics.f90, 141	telsem2_atlas_reader, 126
src/MW/Land/CSEM_LandMW_SfcOptics.f90, 141	emis_interp_ind_mult, 127
src/MW/Land/MW_Canopy_Optics.f90, 142	emis_interp_ind_sing, 128
src/MW/Land/MW_Leaf_Optics.f90, 142	emis_interp_int_mult, 128
src/MW/Land/NESDIS_LandEM_Module.f90, 143	emis_interp_int_sing, 129
src/MW/Land/NESDIS_LandMW_PhyModel.f90, 143	rttov_closemw_atlas, 130
src/MW/LUT_Atlas/CNRM_Atlas_Module.f90, 144	rttov_readmw_atlas, 130
src/MW/LUT_Atlas/CNRM_Atlas_Reader.f90, 145	test_inputs, 131
src/MW/LUT_Atlas/TELSEM2_Atlas_Reader.f90, 145	telsem_atlas_module, 131
src/MW/LUT_Atlas/TELSEM_Atlas_Module.f90, 146	telsem_atlas_reader, 132
src/MW/LUT_Atlas/TELSEM_Atlas_Reader.f90, 147	test_inputs
src/MW/Snow/CSEM_SnowMW_SfcOptics.f90, 147	telsem2 atlas reader, 131
src/MW/Soil/MW Soil Optics.f90, 148	two_stream_solution
src/MW/Water/CRTM_FASTEM/Azimuth_Emissivity_F6_I	Module #90 is landow phymodel 102
149	two stream solution ad
src/MW/Water/CRTM_FASTEM/Azimuth_Emissivity_Mod	
149	
src/MW/Water/CRTM_FASTEM/CRTM_Fastem1.f90,	two_stream_solution_tl
150	nesdis_landmw_phymodel, 104
src/MW/Water/CRTM_FASTEM/CRTM_FASTEM_MODU	
150	uwir_atlas_reader, 132
src/MW/Water/CRTM_FASTEM/CRTM_FastemXX.f90, 151	
src/MW/Water/CRTM_FASTEM/CRTM_LowFrequency_N 151	IWSSEM.f90,
src/MW/Water/CRTM_FASTEM/CRTM_MWwaterCoeff_D 152	Define.f90,
src/MW/Water/CRTM_FASTEM/CRTM_MWwaterLUT_De 152	efine.f90,
src/MW/Water/CRTM_FASTEM/Foam_Utility_Module.f90	,
src/MW/Water/CRTM_FASTEM/Large_Scale_Correction_ 154	_Module.f90,