Analysis of Numerical Root-finding methods

Carl De Vries Calculus II – Honors - 2013

Introduction

Objectives

- Understand the theory behind four fundamental methods:
 - Bisection method
 - False Position method
 - Newton-Raphson method
 - Secant method
- Address termination criteria.
- Validate our code.

Background

- Applications of numerical methods
 - Actuarial sciences
 - Plotting spacecraft trajectories
 - Calculating the values of financial instruments

Background

- Find the x values where f(x) = 0.
- Initial guesses and bounds are made by graphing the solution.
- Methods are divided into two families.
 - Bracketing methods
 - Open methods

Bracketing methods

- Bracketing methods require both an upper bound and a lower bound.
- Decrease the width of the interval $[x_1,x_1]$ around the root.
- Find the interval containing the root after each iteration.
- Bracketing methods always converge.

Bisection method

- Decrease the interval by half.
- The approximation has no direct relation to the function.
- Approximations may oscillate about or recede from the root.
- Approximation equation:

False Position method

- A secant line can be visualized between the upper and lower bounds.
- Starting equation:

Approximation equation:

$$x_n = \frac{f(x_l)(x_u) - f(x_u)(x_l)}{f(x_l) - f(x_u)}$$

Open Methods

- Open methods may only require a single initial guess.
- The initial guesses aren't required to surround the root.
- Open methods tend to converge faster than bracketing methods.
- ▶ The approximations may diverge from the root.

Newton-Raphson method

- Newton-Raphson requires an analytical derivative.
- The derivative cannot evaluate to zero.
- The method may give an answer when $|f(x_n)| \le \varepsilon$, but doesn't actually cross the root.
- Starting equation:

$$f'(x_n) = \frac{f(x_n) - 0}{x_n - x_{n+1}}$$

Approximation equation:

Secant method

- Useful when an solving for the analytical derivative is difficult.
- $f'(x_n)$ is approximately equal to a slope approximation of two near points.
- Staring Equation:

$$x_{n+1} = x_n - \frac{f(x_n)}{\frac{f(x_{n-1}) - f(x_n)}{x_{n-1} - x_n}}$$

Approximation Equation:

$$x_{n+1} = x_n - \frac{f(x_n)(x_{n-1} - x_n)}{f(x_{n-1}) - f(x_n)}$$

Divergence

- Open method approximations may diverge from the root completely.
- If multiple roots exist, the approximation may converge on a different root.
- Example using Newton-Raphson
 - Roots at
 - x = -0.419
 - x = 0.388
 - x = 1.230

Stopping Criteria

- Determine when the approximation is accurate enough.
- Truncation error
- Round-off error
- Maximum Iterations
 - Epsilon is too small
 - ▶ The approximation diverges
 - Poor initial guess

Stopping Criteria

Option one

▶ $|f(x_n)| < \varepsilon$

Option two

- $|f(x_n)| < \varepsilon_v \text{ and } x_u x_l < \varepsilon_h$
- \triangleright \mathcal{E}_{v} is a vertical measure
- \triangleright \mathcal{E}_h is a horizontal measure
- The $\Delta x < \mathcal{E}$ condition is useful for functions which approach the x-axis asymptotically.

Stopping Criteria

Option three (approximate error)

$$\left| \frac{x_n - x_{n-1}}{x_n} \right| * 100 = \epsilon_a$$

- $\epsilon_a < \epsilon$
- True error is always less than approximate error.
- If the approximate error dips below tolerance the true error is also within the tolerance.

Code Validation

Known solution

Equation: $x^2+x-30=0$

$$(x+6)(x-5) = 0$$

Roots at x = -6 and x = 5

Variables

Stopping criteria three

$$\epsilon = 0.01\%$$

▶ Max Iterations = 20

Method	× _l	X _u	i	x _n
Bisection	2	7	14	5.000183105
False Position	2	7	6	4.999945306
	X _n	X _{n+1}		
Newton- Raphson	2	N/A	5	5
Secant	6	7	4	5.000000161

Code Validation

Case Study

- When a circuit changes state, the energy storage in capacitors and inductors oscillates.
- Find the resistance required to dissipate the fluctuations in charge.
- Use Bisection method
- Determined initial bounds by graphing the equation

Equation

Charge in the circuit as a function of time:

$$q(t) = q_0 e^{-Rt/2L} \cos(\sqrt{\frac{1}{LC} - (\frac{R}{2L})^2 * t})$$

$$q/q_0 = 0.01\%$$

t = 0.05 seconds

L = 5 Henries

C = 10⁻⁴ Farads

Code Validation

The function rearranged in terms of resistance:

$$f(R) = e^{-0.005R} \cos\left(\sqrt{2000 - 0.01R^2}(0.05)\right) - 0.01$$

X _I	X _u	ϵ	Given x _n	Given Iterations	Calculated x _n	Calculated Iterations
0	400	0.0001%	328.1515	21	328.1515	21

Summary

- These methods are fundamental numerical methods.
- More advanced methods exist, but have their own pros and cons.
- The bracketing methods will always converge.
- Open methods may converge faster, but may also fail in several ways if:
 - $f'(x_n) = 0$
 - The approximations diverge or converge on a different root.
- Approximate error tends to be the best stopping criteria.

