Tugas Materi 8

Zul Fauzi Oktaviansyah

2110181056

3 - D4 IT - B

```
In [2]: dataset = pd.read_csv('titanic.csv')
     dataset
```

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

Membaca data csv titanic

```
In [3]: data = dataset[['Sex', 'Age', 'Pclass', 'Fare', 'Survived']]
         data
Out[3]:
                Sex Age Pclass
                                   Fare Survived
               male 22.0
                              3 7.2500
                                              0
           1 female 38.0
                              1 71.2833
           2 female 26.0
                              3 7.9250
           3 female 35.0
                              1 53.1000
               male 35.0
                              3 8.0500
               male 27.0
                              2 13.0000
              female 19.0
                              1 30.0000
              female NaN
                              3 23.4500
                                              0
                    26.0
                              1 30.0000
          889
               male
               male 32.0
                              3 7.7500
                                              0
          890
```

891 rows × 5 columns

Mengambil dataset fitur sex, age, pclass, fare, survived

```
In [4]: temp_data = data.isna()
         temp_data
Out[4]:
                           Pclass Fare Survived
            0 False False
                             False False
                                             False
            1 False False
                             False False
                                             False
            2 False False
                             False False
                                             False
            3 False False
                             False False
                                             False
            4 False False
                             False False
                                             False
               False False
                             False False
                                             False
               False False
                             False False
                                             False
          888 False
                             False False
                      True
                                             False
          889 False False
                             False False
                                             False
          890 False False
                             False False
                                             False
```

891 rows × 5 columns

Membuat value missing menjadi true dan not missing menjadi false

Mengambil posisi index dari data fitur age yang missing dan yang tidak

```
In [7]: train_data = data.drop(pos_missing_test)
        train_data = train_data[['Sex', 'Pclass', 'Fare', 'Survived']]
        train_data
Out[7]:
                Sex Pclass
                              Fare Survived
                         3 7.2500
               male
           1 female
                         1 71.2833
                         3 7.9250
            2 female
                         1 53.1000
            3 female
                         3 8.0500
               male
                         3 29.1250
          885 female
          886
               male
                         2 13.0000
          887 female
                         1 30.0000
                         1 30.0000
          889
               male
                         3 7.7500
                                         0
          890
               male
```

714 rows × 4 columns

Data yang tidak missing pada fitur age dijadikan sebagai train data Terdiri atas fitur selain age

```
In [8]: train_label = data.drop(pos_missing_test)
        train_label = train_label['Age']
        train_label
Out[8]: 0
               22.0
               38.0
               26.0
               35.0
               35.0
                . . .
        885
               39.0
        886
               27.0
        887
               19.0
        889
               26.0
               32.0
        890
        Name: Age, Length: 714, dtype: float64
```

Data fitur age yang tidak missing dijadikan train label

```
In [9]: test_data = data.drop(pos_not_missing)
        test_data = test_data[['Sex', 'Pclass', 'Fare', 'Survived']]
        test_data
Out[9]:
                Sex Pclass
                              Fare Survived
           5 male
                         3 8.4583
                                         0
          17
               male
                         2 13.0000
           19 female
                         3 7.2250
           26
               male
                         3 7.2250
                         3 7.8792
           28 female
          859
               male
                         3 7.2292
                                         0
          863 female
                         3 69.5500
                         3 9.5000
               male
               male
                         3 7.8958
                         3 23.4500
          888 female
                                         0
```

177 rows × 4 columns

Data yang memiliki missing pada fitur age dijadikan test_data Nantinya hasil age akan diprediksi

```
In [10]: test_data= test_data.replace('male', 1)
  test_data = test_data.replace('female', 0)
  test_data
```

Out[10]:

	Sex	Pclass	Fare	Survived
5	1	3	8.4583	0
17	1	2	13.0000	1
19	0	3	7.2250	1
26	1	3	7.2250	0
28	0	3	7.8792	1
859	1	3	7.2292	0
863	0	3	69.5500	0
868	1	3	9.5000	0
878	1	3	7.8958	0
888	0	3	23.4500	0

177 rows × 4 columns

Mengganti male dan female menjadi 1 dan 0 pada test data

```
In [11]: train_data= train_data.replace('male', 1)
         train_data = train_data.replace('female', 0)
         train_data
Out[11]:
                            Fare Survived
              Sex Pclass
                                       0
            0
                       3 7.2500
                0
                       1 71.2833
            2 0
                       3 7.9250
            3
                0
                       1 53.1000
                       3 8.0500
                       3 29.1250
          885
          886
                       2 13.0000
                                       0
                       1 30.0000
          887
                       1 30.0000
          889
          890
                       3 7.7500
```

714 rows × 4 columns

Mengganti male dan female menjadi 1 dan 0 pada train data

Mendefinisikan fungsi untuk mencari scala minmax

```
In [13]: norm_train_data = min_max_scaling(train_data)
          norm_train_data
Out[13]:
                               Fare Survived
               Sex Pclass
             0 1.0
                       1.0 0.014151
                                         0.0
             1 0.0
                       0.0 0.139136
                                         1.0
             2 0.0
                       1.0 0.015469
                                         1.0
             3 0.0
                       0.0 0.103644
                                         1.0
             4 1.0
                       1.0 0.015713
                                         0.0
                0.0
                       1.0 0.056848
           885
                                         0.0
           886
                1.0
                       0.5 0.025374
                                         0.0
           887
                0.0
                       0.0 0.058556
                                         1.0
           889
                1.0
                       0.0 0.058556
                                         1.0
```

1.0 0.015127

0.0

714 rows × 4 columns

1.0

Mengubah nilai menjadi normalisasi pada train data

Out[14]:

	Sex	Pclass	Fare	Survived
5	1.0	1.0	0.037175	0.0
17	1.0	0.5	0.057137	1.0
19	0.0	1.0	0.031755	1.0
26	1.0	1.0	0.031755	0.0
28	0.0	1.0	0.034630	1.0
859	1.0	1.0	0.031773	0.0
863	0.0	1.0	0.305681	0.0
868	1.0	1.0	0.041754	0.0
878	1.0	1.0	0.034703	0.0
888	0.0	1.0	0.103066	0.0

177 rows × 4 columns

Mengubah nilai menjadi normalisasi pada test data

```
In [15]: from sklearn.neighbors import KNeighborsClassifier
         from sklearn import preprocessing
         from sklearn import utils
In [16]: lab_enc = preprocessing.LabelEncoder()
         encoded = lab_enc.fit_transform(train_label)
         encoded
Out[16]: array([28, 51, 34, 47, 47, 69, 6, 35, 18, 8, 74, 25, 52, 18, 70, 6, 41,
                47, 45, 20, 36, 12, 51, 24, 53, 82, 36, 56, 27, 23, 18, 53, 35, 7,
                24, 23, 11, 27, 64, 38, 81, 27, 37, 9, 15, 28, 51, 59, 8, 38, 24,
                22, 34, 42, 21, 27, 34, 42, 33, 3, 39, 28, 38, 36, 22, 44, 21, 29,
                31, 38, 25, 61, 34, 75, 85, 29, 45, 45, 36, 27, 44, 50, 36, 27, 51,
                62, 19, 28, 25, 22, 27, 84, 38, 31, 6, 27, 43, 43, 69, 16, 31, 59,
                44, 25, 62, 38, 33, 29, 24, 50, 21, 31, 28, 31, 24, 23, 24, 35, 13,
                49, 56, 66, 28, 71, 54, 66, 21, 39, 58, 53, 34, 22, 5, 13, 59, 36,
                77, 8, 5, 27, 72, 23, 65, 39, 48, 13, 5, 8, 59, 53, 48, 42, 24,
                24, 7, 58, 74, 56, 31, 36, 45, 60, 23, 6, 42, 34, 21, 53, 31, 47,
                28, 39, 41, 35, 56, 42, 39, 21, 35, 66, 51, 28, 24, 26, 23, 47, 38,
                75, 9, 31, 58, 12, 24, 44, 38, 28, 39, 58, 33, 31, 50, 69, 38, 78,
                39, 55, 38, 39, 47, 65, 7, 67, 53, 48, 21, 33, 74, 47, 33, 55, 50,
                79, 59, 11, 47, 81, 36, 21, 24, 44, 39, 28, 56, 28, 34, 24, 48, 31,
                31, 30, 6, 65, 24, 4, 22, 39, 39, 31, 23, 34, 36, 57, 34, 31, 69,
                41, 53, 28, 35, 39, 28, 48, 77, 48, 41, 21, 60, 51, 21, 38, 55, 59,
```

Mengubah train label fitur age yang tadinya bertipe float menjadi integer

Membuat model KNN dengan k=3 dan menghasilkan umur yang diprediksi

```
In [18]: index = 0
for i in (pos_missing_test):
    data['Age'][i] = class_result[index]
    index+=1
```

```
In [19]: data
Out[19]:
Sex Age Pclass Fare Survived
```

	Sex	Age	Pclass	Fare	Survived
0	male	22.0	3	7.2500	0
1	female	38.0	1	71.2833	1
2	female	26.0	3	7.9250	1
3	female	35.0	1	53.1000	1
4	male	35.0	3	8.0500	0
886	male	27.0	2	13.0000	0
887	female	19.0	1	30.0000	1
888	female	21.0	3	23.4500	0
889	male	26.0	1	30.0000	1
890	male	32.0	3	7.7500	0

891 rows × 5 columns

Mereplace nilai missing pada fitur age pada data asli

```
In [20]: test_dataset = pd.read_csv('titanic_test.csv')
    test_dataset
```

Out[20]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S
413	1305	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.0500	NaN	S
414	1306	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000	C105	С
415	1307	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	7.2500	NaN	S
416	1308	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8.0500	NaN	S
417	1309	3	Peter, Master. Michael J	male	NaN	1	1	2668	22.3583	NaN	С

418 rows × 11 columns

Membaca titanic_test.csv

418 rows × 2 columns

```
In [21]: test_label = pd.read_csv('titanic_testlabel.csv')
         test_label
Out[21]:
              Passengerld Survived
                               0
                     892
                     893
                     894
            2
                               0
            3
                     895
                               0
                     896
                               1
          413
                     1305
                               0
          414
                     1306
          415
                    1307
          416
                     1308
                               0
          417
                    1309
                               0
```

Membaca titanic_testlabel.csv

418 rows × 4 columns

```
In [22]: test_data = test_dataset[['Sex', 'Age', 'Pclass', 'Fare']]
         test_data
Out[22]:
                Sex Age Pclass
                                    Fare
                                  7.8292
            0 male 34.5
            1 female 47.0
                                  7.0000
            2 male 62.0
                                  9.6875
            3 male 27.0
                                  8.6625
            4 female 22.0
                              3 12.2875
                                  8.0500
                male NaN
          414 female 39.0
                              1 108.9000
                male 38.5
                                  7.2500
                male NaN
                                  8.0500
               male NaN
                              3 22.3583
```

Mengambil test_dataset fitur sex, age, pclass, fare

Mengambil posisi index nilai missing dari fitur age dan fare Pada test data

```
In [24]: test_data = test_data.drop(pos_missing_test2)
   test_data
```

Out[24]:

	Sex	Age	Pclass	Fare
0	male	34.5	3	7.8292
1	female	47.0	3	7.0000
2	male	62.0	2	9.6875
3	male	27.0	3	8.6625
4	female	22.0	3	12.2875
409	female	3.0	3	13.7750
411	female	37.0	1	90.0000
412	female	28.0	3	7.7750
414	female	39.0	1	108.9000
415	male	38.5	3	7.2500

331 rows × 4 columns

Menghapus baris yang memiliki missing value pada test data

Mengambil test label kolom survived

```
In [26]: train_data = data[['Sex', 'Age', 'Pclass', 'Fare']]
         train_data
Out[26]:
                 Sex Age Pclass
                                    Fare
                male 22.0
                               3 7.2500
            1 female 38.0
                               1 71.2833
            2 female 26.0
                               3 7.9250
            3 female 35.0
                               1 53.1000
                male 35.0
                               3 8.0500
                male 27.0
           886
                               2 13.0000
               female 19.0
                               1 30.0000
           888 female 21.0
                               3 23.4500
                male 26.0
                               1 30.0000
           890
                male 32.0
                               3 7.7500
```

891 rows × 4 columns

Mengambil data terbaru dengan fitur sex, age, pclass, fare sebagai train data

Mengambil data fitur survived sebagai train label

```
In [28]: train_data= train_data.replace('male', 1)
         train_data = train_data.replace('female', 0)
         train_data
Out[28]:
               Sex Age Pclass
                                 Fare
                            3 7.2500
            0 1 22.0
                0 38.0
                            1 71.2833
                0 26.0
                            3 7.9250
                0 35.0
                            1 53.1000
                1 35.0
                            3 8.0500
                1 27.0
                            2 13.0000
                0 19.0
                            1 30.0000
          887
          888
                0 21.0
                            3 23.4500
                            1 30.0000
          889
                1 26.0
               1 32.0
                            3 7.7500
```

891 rows × 4 columns

Mengganti male dan female menjadi 1 dan 0 pada train data

```
In [29]: test_data= test_data.replace('male', 1)
         test_data = test_data.replace('female', 0)
         test_data
Out[29]:
              Sex Age Pclass
                                  Fare
            0 1 34.5
                                7.8292
                            3
                0 47.0
                                7.0000
                1 62.0
                                9.6875
                1 27.0
                                8.6625
                0 22.0
                            3 12.2875
                0 3.0
                            3 13.7750
          409
          411
                0 37.0
                               90.0000
                0 28.0
                            3 7.7750
          412
          414
                0 39.0
                            1 108.9000
          415
                1 38.5
                            3 7.2500
```

331 rows × 4 columns

Mengganti male dan female menjadi 1 dan 0 pada test data

```
In [30]: norm_train_data = min_max_scaling(train_data)
          norm_train_data
Out[30]:
                        Age Pclass
                                        Fare
               Sex
             0 1.0 0.261322
                                1.0 0.014151
                0.0 0.455074
                                0.0 0.139136
             2 0.0 0.309760
                                1.0 0.015469
                0.0 0.418745
                                0.0 0.103644
                1.0 0.418745
                                1.0 0.015713
                1.0 0.321870
                                0.5 0.025374
                0.0 0.224994
                                0.0 0.058556
```

1.0 0.045771

0.0 0.0585561.0 0.015127

891 rows × 4 columns

0.0 0.249213

1.0 0.309760

1.0 0.382417

Mengubah train data baru menjadi normalisasi

Out[31]:

	Sex	Age	Pclass	Fare
0	1.0	0.452723	1.0	0.015282
1	0.0	0.617566	1.0	0.013663
2	1.0	0.815377	0.5	0.018909
3	1.0	0.353818	1.0	0.016908
4	0.0	0.287881	1.0	0.023984
409	0.0	0.037320	1.0	0.026887
411	0.0	0.485692	0.0	0.175668
412	0.0	0.367005	1.0	0.015176
414	0.0	0.512066	0.0	0.212559
415	1.0	0.505473	1.0	0.014151

331 rows × 4 columns

Mengubah test data baru menjadi normalisasi

```
In [32]: kNN=KNeighborsClassifier(n neighbors=3, weights='distance')
         kNN.fit(norm train data, train label)
         class_result = kNN.predict(norm_test_data)
         class result
Out[32]: array([0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1,
                1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0,
                1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1,
                0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0,
                0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0,
                0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0,
                1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0,
                1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1,
                1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
                1. 1. 0. 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0,
                0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1,
                0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1,
                0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1,
                1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1,
                0], dtype=int64)
```

Membuat model knn dengan k = 3 untuk memprediksi hasil survived

```
In [33]: totalError = 0
         temp1 = np.array(class_result)
         temp2 = np.array(test_label)
In [34]: for i in range(temp1.size):
             if(temp1[i] != temp2[i]):
                 totalError+=1
In [35]: print('Jumlah Error : ', totalError)
         Jumlah Error: 75
In [36]: err=round((totalError/temp1.size)*100, 2)
         print('\n\nError ratio = ', err, '%')
         Error ratio = 22.66 %
```

Dapat kita ketahui dengan membandingkan class result dan test label Kita peroleh jumlah error = 75 dan ratio error = 22.66%