High energy astrophysics is one of the most important and exciting areas of contemporary astronomy, involving the most energetic phenomena in the universe. The highly acclaimed first and second editions of Professor Longair's series immediately established themselves as essential text books on high energy astrophysics. In this third edition, the subject matter is brought up to date and consolidated into a single volume covering Galactic, extragalactic and cosmological aspects of High Energy Astrophysics. The material is presented in four parts. The first provides the necessary astronomical background for understanding the context of high energy astrophysical phenomena. The second provides a thorough treatment the physical processes that govern the behaviour of particles and radiation in astrophysical environments such as interstellar gas, neutron stars, and black holes. The third part applies these tools to a wide range of high energy astrophysical phenomena in our own Galaxy, while the fourth and final part deals with extragalactic and cosmological aspects of high energy astrophysics.

This book assumes that readers have some knowledge of physics and mathematics at the undergraduate level, but no prior knowledge of astronomy is required. The new third edition of the book covers all aspects of modern high energy astrophysics to the point at which the key concerns of current research can be understood.

High Energy Astrophysics

Third Edition

Malcolm S. Longair

Emeritus Jacksonian Professor of Natural Philosophy, Cavendish Laboratory, University of Cambridge, Cambridge

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK

40 West 20th Street, New York, NY 10011-4211, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

Ruiz de Alarcón 13, 28014 Madrid, Spain

Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 1981, 1992, 1994, 1997, 2000, 2002, 2004

First published 1981

Second edition in two volumes 1992, 1994, reprinted with corrections 1997, 2000, 2002, 2004

British Library cataloguing in publication data

Longair, M. S. (Malcolm S.)

High energy astrophysics.

I. Title

XXX.YYYYY

ISBN 0 XXX YYYYY Z hardback

Transferred to digital printing 2004

For Deborah

Contents

Prefa	ace	page ii
Ackn	owledgements	v
Figur	re credits	vii
Part I	I. Astronomical background	1
1	High energy astrophysics – an introduction	3
1.1	High energy astrophysics and modern physics and astronomy	3
1.2	The sky in different astronomical wavebands	5
1.3	Optical waveband	7
1.4	Infrared waveband	10
1.5	Millimetre and submillimetre waveband	14
1.6	Radio waveband	19
1.7	Ultraviolet waveband	23
1.8	X-ray waveband	25
1.9	γ -ray waveband	27
1.10	Cosmic ray astrophysics	29
1.11	Other non-electromagnetic astronomies	34
1.12	Concluding remarks	36
2	The stars and stellar evolution	39
2.1	Introduction	39
2.2	Basic observations	39
2.3	Stellar structure	43
2.4	The equations of energy generation and energy transport	48
2.5	The equations of stellar structure	53
2.6	The Sun as a star	56
2.7	Evolution of high and low mass stars	66
2.8	Stellar evolution on the colour-magnitude diagram	76
2.9	Mass loss	77

viii		Contents
V111		Contents

2.10	Conclusion	84
3	The galaxies	85
3.1	Introduction	85
3.2	The Hubble sequence	86
3.3	The red and blue sequences	89
3.4	Further correlations among the properties of galaxies	95
3.5	The masses of galaxies	98
4	Clusters of galaxies	109
4.1	The morphologies of rich clusters of galaxies	109
4.2	Clusters of galaxies and isothermal gas spheres	113
4.3	The Coma cluster of galaxies	117
4.4	Mass distribution of hot gas and dark matter in clusters	119
4.5	Cooling flows in clusters of galaxies	123
4.6	The Sunyaev-Zeldovich effect in hot intracluster gas	125
4.7	Gravitational lensing by galaxies and clusters of galaxies	129
4.8	Dark matter in galaxies and clusters of galaxies	135
Part I	I. Physical processes	141
5	Ionisation losses	143
5.1	Introduction	143
5.2	Ionisation losses – non-relativistic treatment	144
5.3	The relativistic case	149
5.4	Practical forms of the ionisation loss formulae	154
5.5	Ionisation losses of electrons	158
5.6	Nuclear emulsions, plastics and meteorites	159
5.7	Dynamical friction	165
6	Radiation of accelerated charged particles and bremsstrahlung of electrons	169
6.1	Introduction	169
6.2	The radiation of accelerated charged particles	169
6.3	Bremsstrahlung	178
6.4	Non-relativistic bremsstrahlung energy loss rate	182
6.5	Thermal bremsstrahlung	183
6.6	Relativistic bremsstrahlung	189
7	The dynamics of charged particles in magnetic fields	195
7.1	A uniform static magnetic field	195
7.2	A time-varying magnetic field	197
7.3	The scattering of charged particles by irregularities in the magnetic field	202
7.4	The scattering of high energy particles by Alfvén and hydromagnetic waves	205
7.5	The diffusion-loss equation for high energy particles	207

Contents		i
Contients		

8	Synchrotron radiation	213
8.1	The total energy loss rate	213
8.2	Non-relativistic gyroradiation and cyclotron radiation	216
8.3	The spectrum of synchrotron radiation – physical arguments	219
8.4	The spectrum of synchrotron radiation - a fuller version	223
8.5	The synchrotron radiation of a power law distribution of electron energies	233
8.6	The polarisation of synchrotron radiation	235
8.7	Synchrotron self-absorption	239
8.8	Useful numerical results	244
8.9	The radio emission of the Galaxy	246
9	Interactions of high energy photons	251
9.1	Photoelectric absorption	251
9.2	Thomson and Compton scattering	255
9.3	Inverse Compton scattering	261
9.4	Comptonisation	267
9.5	The Sunyaev-Zeldovich effect	282
9.6	Synchrotron–self Compton radiation	286
9.7	Cherenkov radiation	291
9.8	Electron–positron pair production	297
9.9	Electromagnetic showers	299
9.10	Electron-positron annihilation and positron production mechanisms	302
10	Nuclear interactions	307
10.1	Nuclear interactions and high energy astrophysics	307
10.2	Spallation cross-sections	310
10.3	Nuclear emission lines	315
10.4	Cosmic rays in the atmosphere	321
11	Aspects of plasma physics and magnetohydrodynamics	327
11.1	Elementary concepts in plasma physics	327
11.2	Magnetic flux freezing	334
11.3	Shock waves	344
11.4	The Earth's magnetosphere	349
11.5	Magnetic buoyancy	352
11.6	Reconnection of magnetic lines of force	354
Part I	II. High Energy Astrophysics in our Galaxy	361
12	Interstellar gas and magnetic fields	363
12.1	The interstellar medium in the life cycle of stars	363
12.2	Diagnostic tools - neutral interstellar gas	363
12.3	Ionised interstellar gas	370
12.4	Interstellar dust	378

x Contents

12.5	An overall picture of the interstellar gas	387
12.6	Star formation	393
12.7	The Galactic magnetic field	402
13	Dead stars	413
13.1	Supernovae	414
13.2	White dwarfs, neutron stars and the Chandrasekhar limit	431
13.3	White dwarfs	438
13.4	Neutron stars	439
13.5	The discovery of neutron stars	444
13.6	The galactic population of neutron stars	458
13.7	Thermal emission of neutron stars	460
13.8	Pulsar glitches	461
13.9	The pulsar magnetosphere	464
13.10	The radio and high energy emission of pulsars	467
13.11	Black holes	469
14	Accretion power in astrophysics	483
14.1	Introduction	483
14.2	Accretion - general considerations	483
14.3	Thin accretion discs	491
14.4	Thick discs and advective flows	504
14.5	Accretion in binary systems	506
14.6	Accreting binary systems	516
14.7	Black holes in X-ray binaries	531
14.8	Final thoughts	537
15	Cosmic rays	539
15.1	The energy spectra of cosmic ray protons and nuclei	539
15.2	The abundances of the elements in the cosmic rays	543
15.3	The isotropy and energy density of cosmic rays	549
15.4	Gamma ray observations of the Galaxy	550
15.5	The origin of the light elements in the cosmic rays	554
15.6	The confinement time of cosmic rays in the Galaxy and cosmic ray clocks	563
15.7	The confinement volume for cosmic rays	565
15.8	The Galactic halo	568
15.9	The highest energy cosmic rays and extensive air-showers	571
15.10	Observations of the highest energy cosmic rays	573
15.11	The isotropy of ultra-high energy cosmic rays	578
15.12	The Greisen-Kuzmin-Zatsepin (GKZ) cut-off	581
16	The origin of cosmic rays in our Galaxy	585
16.1	Introduction	585
16.2	Energy loss processes for high energy electrons	585

Contents		X

	Contouto		
	Contents	Χĺ	
16.3	diffusion-loss equation for high energy electrons	590	
16.4	Supernova remnants as sources of high energy particles	594	
16.5	The minimum energy requirements for synchrotron radiation	599	
16.6	Supernova remnants as sources of high energy electrons	603	
16.7	The evolution of supernova remnants	604	
16.8	The adiabatic loss problem and the acceleration of high energy particles	607	
17	The acceleration of high energy particles	613	
17.1	General principles of acceleration	613	
17.2	The acceleration of particles in solar flares	614	
17.3	Fermi acceleration - original version	616	
17.4	Diffusive shock acceleration in strong shock waves	621	
17.5	Beyond the standard model	627	
17.6	The highest energy cosmic rays	635	
Part I	V. Extragalactic High Energy Astrophysics	637	
18	Active galaxies	639	
18.1	Introduction	639	
18.2	Radio galaxies and high energy astrophysics	639	
18.3	The quasars	641	
18.4	Seyfert galaxies	648	
18.5	Blazars, superluminal sources and γ -ray sources	651	
18.6	Low Ionisation Nuclear Emission Regions (LINERS)	653	
18.7	Ultra-Luminous Infrared Galaxies (ULIRGs)	654	
18.8	X-ray Surveys of Active Galaxies	656	
18.9	Unification Schemes for Active Galaxies	658	
19	Black Holes in the Nuclei of Galaxies	667	
19.1	The Properties of Black Holes	667	
19.2	Elementary Considerations	669	
19.3	Dynamical evidence for supermassive black holes in galactic nuclei	670	
19.4	The Soltan Argument	681	
19.5	Black holes and spheroid masses	683	
19.6	X-ray observations of fluorescence lines in active galactic nuclei	685	
19.7	The Growth of Black Holes in the Nuclei of Galaxies	693	
20	The Vicinity of the Black Hole	697	
20.1	The prime ingredients of active galactic nuclei	697	
20.2	The continuum spectrum	697	
20.3	The emission line regions – the overall picture	701	
20.4	The narrow-line regions – the example of Cygnus A	702	
20.5	The broad-line regions and reverberation mapping	707	
20.6	The alignment effect and shock excitation of emission line regions	715	

20.7	Accretion discs about supermassive black holes	718
21	Extragalactic Radio Sources	723
21.1	Extended Radio Sources – Fanaroff-Riley types	723
21.2	The astrophysics of FR2 radio sources	730
21.3	The FR1 radio sources	738
21.4	The microquasars	740
21.5	Jet physics	742
22	Compact extragalactic sources and superluminal motions	745
22.1	Compact radio sources	745
22.2	Superluminal motions	747
22.3	Relativistic beaming	750
22.4	The superluminal source population	759
22.5	Synchro-Compton Radiation and the Inverse Compton Catastrophe	763
22.6	γ -ray Sources in Active Galactic Nuclei	764
22.7	γ -ray bursts	771
23	Cosmological aspects of high energy astrophysics	781
23.1	The cosmic evolution of galaxies and active galaxies	781
23.2	The essential theoretical tools	783
23.3	The Evolution of non-thermal sources with cosmic epoch	787
23.4	The Evolution of thermal sources with cosmic epoch	798
23.5	Mid and far-infrared number counts	807
23.6	Submillimetre Number Counts	810
23.7	The global star formation rate	813
23.8	The Old Red Galaxies	817
23.9	Putting It All Together	819
A1	Astronomical conventions and nomenclature	825
A1.1	Galactic coordinates and projections of the celestial sphere onto a plane	825
A1.2	Distances in astronomy	829
A1.3	Masses in astronomy	832
A1.4	Flux densities, luminosities, magnitudes and colours	833
A1.5	Diffraction-limited telescopes	838
A1.6	Interferometry and synthesis imaging	845
A1.7	The sensitivities of astronomical detectors	848
A1.8	Units and relativistic notation	854
Refere	ences	858

Preface

Ancient history

It was a challenge to write this third edition of *High Energy Astrophysics*. Writing the first edition was great fun and that rather slim volume reflected rather closely the lecturing style I adopted in presenting high energy astrophysics to final-year undergraduates in the period 1973–7. Although the material was updated when the manuscript was sent to the press in 1980, the book remained in essence a lecture course (Longair, 1981). The reception of the book was encouraging and in due course a second edition was needed. The subject had advanced so rapidly during the 1980s and early 1990s that the material could not be comfortably contained within one volume. The aim was originally to complete the task in two volumes, but by the time the Volumes 1 and 2 were completed, I had only reached the edge of our own Galaxy (Longair, 1997b,c)†. Volume 3 was begun, but for various reasons, was not completed – the whole project was becoming somewhat unwieldy.

In the meantime, I completed three other major book-writing projects. The first of these was a new edition of *Theoretical Concepts in Physics* (Longair, 2003). Then, I completed *The Cosmic Century: A History of Astrophysics and Cosmology* (Longair, 2006). Finally, in 2008, the new edition of *Galaxy Formation* was published (Longair, 2008).

The new edition

Since the second edition of *High Energy Astrophysics*, many of the subject areas have changed out of all recognition and new areas of astrophysical research have been opened up, for example, ultra-high energy γ -ray astronomy. The publication of *Theoretical Concepts in Physics*, *The Cosmic Century* and *Galaxy Formation* have made it feasible to condense the original plan of a three volume work into a single volume. In reorganising

[†] The original volumes of the second edition were first published in 1992 (Volume 1) and 1994 (Volume 2). Major revisions and corrections were included in the 1997 reprints of both volumes. I regard the 1997 reissues as the definite versions of the second edition.

Preface iii

the material, some hard decisions had to be taken, but the convenience of including everything in one volume is worth the sacrifice of some of the material from the second edition. The principal decisions were as follows:

- Much of the relevant historical material has been included in *The Cosmic Century* and so that material will not be repeated here. I make references to the appropriate sections of *The Cosmic Century* and other historical texts. I do this with considerable reluctance since the historical development of High Energy Astrophysics has influenced strongly the way in which the astrophysics has developed intellectually. History will not disappear completely, but it will not be as prominent as in the earlier editions.
- Much of the necessary material needed to obtain a modern view of galaxies and the large scale structure of the Universe is included in *Galaxy Formation*. In particular, there is no need to repeat much of the detailed discussion of galaxies and clusters, or the large scale structure and dynamics of the Universe. These topics are, however, central to many of the topics in this book and so summaries of the most important topics needed to understand the astronomical context of high energy astrophysics are provided in Part 1.
- There was a strong emphasis upon the origin of cosmic rays in the first two editions. I still consider this to be excellent material, particularly in the area of ultra-high energy cosmic rays, but it has been somewhat abbreviated in the new edition.
- There was also a considerable amount of material on detectors and telescopes in the earlier edition. I believe this material is of the greatest interest and importance in understanding our ability of make observations in different wavebands. This aspect of the subject has been strongly moderated in the new edition. These are fascinating topics, but modern telescopes and detectors have become increasingly complex and sophisticated. Summaries of a number of important topics in the physics of astronomical detectors and telescopes are included as an Appendix.
- In the second edition, I devoted some space to high energy astrophysics in the Solar System. This material has been abbreviated, but important topics such as the diffusion of energetic charged particles in the Solar Wind and the acceleration of charged particles in solar flares have been preserved.
- The opportunity has been taken to rationalise the presentation of the physical and astrophysical processes so that duplication of material is avoided.
- The writing has been very considerably tightened up so that the discussion is less discursive than in the earlier editions. Again, I regret the necessity of doing this since often these asides provide valuable physical insights for the reader new to the subject.

The aims of the present edition are the same as the earlier editions. A very wide range of physical processes relevant for high energy astrophysics is discussed, the emphasis being strongly upon the understanding of the underlying physics. I aim to maintain the informal style of the earlier editions and have no hesitation about using the first person singular

iv Preface

or expressing my personal opinion about the material under discussion. The emphasis is strongly upon physical principles and the discussion of general results rather than particular models which may have only ephemeral appeal.

As I learned during the writing of *The Cosmic Century*, physics and astrophysics have a symbiotic relation. On the one hand, the astrophysical sciences are concerned with the application of the laws of physics to phenomena on a large-scale in a Universe. On the other hand, new laws of physics are discovered and tested through astronomical observations and their astrophysical interpretation. In these ways, the new astrophysics, of which high energy astrophysics is one of the most important ingredients, is just as much a part of modern physics as laboratory physics.

Although there is limited scope for deviation from the central theme in this new edition, one of my original aims was to give the reader a feeling of what it is like to undertake research at the limits of present understanding. Astrophysics is fortunate in that many of the fundamental problems can be understood without a great deal of new physics or new physical concepts. Thus, the text may also be considered as introduction to the way in which research is carried out in the astrophysical context.

Above all, however, this material is not only mind-stretching, but also great fun. I have no intention of inhibiting my enthusiasm and enormous enjoyment of the physics and astrophysics for its own sake.

Malcolm Longair Cambridge and Venice January 2010.

Acknowledgements

There are many people whom it is a pleasure to thank for help and advice during the preparation of this volume. Just as the first edition was begun during a visit to the Osservatorio Astronomico di Arcetri in Florence in April 1980, so the second edition could not have been completed without the Regents' Fellowship of the Smithsonian Institution which I held at the Harvard-Smithsonian Astrophysical Observatory during the period April–June 1990. I am particularly grateful to Professors Irwin Shapiro and Giovanni Fazio for sponsoring this visit to Harvard during which time the final drafts of Chapters 1–10 of the first volume of the second edition were completed. During that period, I had particularly helpful discussions with Drs Eugene Avrett, George Rybicki, Giovanni Fazio, Margaret Geller and many others. I am particularly grateful to them for their advice.

Much of the preliminary rewriting was completed while I was at the Royal Observatory, Edinburgh. Among the many colleagues with whom I discussed the contents of this volume, I must single out Dr John Peacock who provided deep insights into many topics. In completing the final chapter on the high energy astrophysics of the Solar System, I greatly benefitted from the advice of Professors John Brown, Carole Jordan and Eric Priest. Not only did they point me in the correct directions but they also reviewed my first drafts of that chapter. I am especially grateful to them for this laborious task. Many colleagues made helpful suggestions about corrections and additions to the first addition among whom Dr Roger Chevalier provided an especially useful list.

Coincidentally, the writing of the third edition began while I was a visitor at the Osservatorio Astronomico di Arcetri in Florence during the period April to June 2007. I thank Professor Francesco Palla and his colleagues for their hospitality during that visit. The catalogue of friends and colleagues who have continued to contribute to my understanding of high energy astrophysics and astrophysical cosmology since the publication of the second edition is enormous. Many of them are acknowledged in my recent books, but the list is so long that I would be bound to miss someone out. I acknowledge particular insights from my colleagues in the course of the book. Special thanks are due to Dr. David Green for his

expert advice, not only on supernova remnants, but also on the more arcane idiosyncracies of LaTeX.

To all of these friends and colleagues I make the usual disclaimer that any misrepresentations of the material presented in this book is entirely my responsibility and not theirs. Finally, I acknowledge the unfailing support and love of my family, Deborah, Mark and Sarah who have contributed much more than they will ever know to the completion of this book.

Figure credits

I am most grateful to the authors of the papers which include the figures reproduced in this book for permission to reproduce them. The publishers have been equally helpful in allowing use of the figures. Each publisher has a specific form of acknowledgement requested and I include them all in the following list of the source of the figures. In the text itself, the usual abbreviated form of reference is used and full details of the publications are included in the bibliography. The sources of the figures used are as follows:

Academic Press. Reproduced by permission of Academic Press. Figs. A1.10 and A1.12.

Addison-Wesley. Reproduced by permission of Pearson Eduction Addison-Wesley Figs. 6.5 and 9.18.

Advances in Space Research. Reproduced by permission of Advances in Space Research and Elsevier B.V. Figs. 4.8 and 14.26.

Annual Review of Astronomy and Astrophysics. Reproduced by permission of Annual Reviews, Inc. Figs. 4.7, 7.4, 12.4, 12.7, 12.8, 14.25, 14.27, 15.7, 17.10, 22.18, 22.19, 22.21, 23.7, 23.8, 23.18(a) and A1.11.

Annual Review of Nuclear and Particle Physics. Reproduced by permission of Annual Reviews, Inc. Figs. 1.16, 5.8 and 5.9.

Astronomical Journal. Reproduced by permission of the American Astronomical Society. Figs. 4.4, 18.3, 22.10, 22.11, 23.6, 23.12, 23.15 and 23.19.

Astronomical Society of the Pacific Conference Series. Reproduced by permission of the Astronomical Society of the Pacific. Fig. 21.4.

Astronomy and Astrophysics. Reproduced with permission ©ESO. Figs. 2.25, 4.6, 9.10, 12.14(a), 13.18, 14.9, 14.21, 14.23, 15.8, 15.15, 18.8, 22.12, 23.9, 23.16 and A1.6.

Astronomy and Astrophysics Reviews. Reproduced with permission of Springer-Verlag. Figs. 4.13, 21.9 and 23.2.

Astronomy and Astrophysics Supplement Series. Reproduced with permission ©ESO. Fig. 2.29.

Astronomy and Geophysics. Reproduced with permission of Astronomy and Geophysics. Fig. 23.3.

Astroparticle Physics. Reproduced by permission of Astroparticle Physics and Elsevier B.V. Fig. 17.8.

Astrophysical Journal. Reproduced by permission of the American Astronomical Society. Figs. 2.2, 2.4(a), 2.24, 2.26, 3.4, 3.5, 3.8, 3.10, 3.12, 3.13, 8.3, 9.1, 9.2, 9.13, 9.14, 9.15, 11.13, 12.5, 12.6, 12.11, 12.19, 12.20, 13.17, 13.23, 14.2, 14.4, 14.5, 14.18, 15.9, 15.14, 15.24, 16.4(b), 16.5, 16.6, 17.5, 18.1, 18.5(b), 18.14, 18.15, 19.1, 19.3, 20.8, 21.10, 21.5, 21.6, 22.13, 22.15, 22.7, 22.8, 22.20 and 23.22.

Astrophysical Journal Letters. Reproduced by permission of the American Astronomical Society. Figs. 10.8, 13.6(b), 17.6, 17.7, 19.7, 21.8, 21.13, 22.9 and 22.14.

Astrophysical Journal Supplement Series. Reproduced by permission of the American Astronomical Society. Figs. 12.10, 14.15, 15.13(a) and 18.11.

Astrophysics and Space Science Reviews. Reproduced by permission of Cambridge Scientific Publishers Ltd. Fig. 9.9.

Australian Astronomical Observatory (AAO). Reproduced by permission of the Australian Astronomical Observatory (AAO). Figs. 4.2, 13.4 and 18.2.

Australian Telescope National Facility (ATNF). Reproduced by permission of the Australian Telescope National Facility (ATNF). Figs. 13.8(b) and 13.16.

Cambridge University. Reproduced by permission of Cambridge University. Fig. 16.2.

Cambridge University Press. Reproduced by permission of Cambridge University Press. Figs. 1.1(a) and(b), 2.3, 2.6, 2.7, 2.12, 2.18, 2.19, 10.7, 11.10, 11.11, 11.12, 13.13, 13.15, 13.20, 13.21, 14.1, 14.3(b), 14.8, 14.10, 14.14, 14.16, 14.19, 14.22, 19.8, 20.1, 20.5, 20.6, 20.11, 21.1(b), 22.3, 23.13, 23.23, A1.8 and A1.9.

European Southern Observatory. Reproduced courtesy of the European Southern Observatory. Figs. 12.13, 12.14(b) and 13.5.

European Space Agency. Reproduced courtesy of the European Space Agency. Figs. 2.1, 2.9(b), 2.10, 2.11(a) and (b) and 10.5. (see also *NASA*, *ESA* and the *STScI*)

European Space Agency and NASA. Reproduced courtesy of the European Space Agency (ESA) and the US National Aeronautics and Space Administration (NASA). Fig. 11.5.

Freeman and Co.. Reproduced courtesy of W.H. Freeman and Company, New York. Fig. A1.4.

Hanlon, William. Reproduced courtesy of Dr. William Hanlon. http://www.physics.utah.edu/whanlon/spectrum.html. Fig. 15.1.

Institut d'Astrophysique Publications. Reproduced courtesy of the Institut d'Astrophysique, Paris. Fig. 14.20.

International Cosmic Ray Conference Series. Reproduced courtesy of the International Cosmic Ray Conference Series (ICRC). Figs. 15.6, 15.21, 15.22 and 15.23.

Journal of Physics: Conference Series. Reproduced courtesy of the Institute of Physics. Fig. 15.17.

LAMBDA programme of Goddard Space Flight Center (GSFC) of NASA. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. Figs. 1.8 and 1.11. 4.12

Living Reviews in Relativity. Reproduced courtesy of Living Reviews. Fig. 4.12.

Max-Planck-Institut für Extraterrestrische Physik. Reproduced courtesy of Professor J. Trümper and the Max-Planck-Institut für Extraterrestrische Physik. Figs. 1.13(b), 4.5 and 13.9(b).

Max-Planck-Institut für Radioastronomie. Reproduced courtesy of Professor R. Wielebinski and the Max-Planck-Institut für Radioastronomie. Figs. 1.9 and 12.17.

Mellinger, Axel. Reproduced courtesy of Dr. Axel Mellinger. http://home.arcor-online.de/axel.mellinger/. Figs. 1.2(a) and (b).

Memoirs of the Royal Astronomical Society (MemRAS). Reproduced by permission of Memoirs of the Royal Astronomical Society. Fig. 12.18.

Monthly Notices of the Royal Astronomical Society (MNRAS). Reproduced by permission of Monthly Notices of the Royal Astronomical Society. Figs. 3.6, 3.7, 3.9, 3.14, 4.9, 8.13, 13.7, 16.8, 16.9, 16.10, 18.4, 18.6, 19.7, 19.9, 19.11, 20.9, 20.10, 21.11, 21.14, 23.5, 23.10, 23.14, 23.17, 23.18(b) and (c).

NASA. Reproduced courtesy of the US National Aeronautics and Space Administration (NASA). Figs. 1.4(a), 1.5, 1.6, 1.7, 1.12, 1.13(a), 1.14, 11.4, 14.3(a), 16.4(a), 21.1(c), 22.16 and 22.17.

NASA, ESA and the STScI. Reproduced courtesy of the US National Aeronautics and Space Administration (NASA), the European Space Agency (ESA) and Space Telescope Science Institute (STScI). Figs. 1.10, 2.22, 2.28, 2.29, 3.2(a)-(d), 3.3(a) and (b), 4.1, 12.14(c), 13.8(a), 13.8(b), 18.10, 18.13, 19.1 and 19.2.

NASA, ESA, STScI and Chandra Science Team. Reproduced courtesy of the US National Aeronautics and Space Administration (NASA), the European Space Agency (ESA),

Space Telescope Science Institute (STScI) and the Chandra Science Team. Figs. 13.1 and 13.3.

National Radio Astronomy Observatory (NRAO). Reproduced by permission of the National Radio Astronomy Observatory (NRAO) and the Associated Universities Inc. (AUI). Figs. 16.3, 21.2, 21.3 and 22.2.

Nature. Reproduced courtesy of the Nature Publishing Group. Figs. 2.23, 3.1, 4.14, 8.4, 10.9, 13.6(a), 13.28, 13.29, 16.5, 19.4, 19.5, 19.6, 22.2, 21.12, 22.20, 23.11 and 23.24.

Nature Reference Publishing and the Institute of Physics. Reproduced courtesy of the Nature Publishing Group and the Institute of Physics. Fig. 2.30.

Nobeyama Radio Observatory. Reproduced courtesy of Professor R. Tatematsu and the Nobeyama Radio Observatory. Fig. 12.12(b).

Orosz, Jerome. Reproduced courtesy of Professor Jerome Orosz. http://mintaka.sdsu.edu/faculty/orosz/web/. Figs. 13.27 and 13.30.

Nuclear Physics A. Reproduced courtesy of Nuclear Physics A and Elsevier B.V. Fig. 10.6.

Palomar Observatories. Reproduced courtesy of the Palomar Observatories. Figs. 4.1 and 13.9(a).

Particle Data Group. C. Amsler et al. (Particle Data Group), Physics Letters B667, 1 (2008) and 2009 partial update for the 2010 edition. Figs. 5.6, 5.7, 9.20, 10.11, 15.2, 15.3 and 15.19.

Pergamon Press. Reproduced courtesy of Pergamon Press and Elsevier B.V.. Fig. 10.2.

Physica Scripta. Reproduced courtesy of Physica Scripta. Figs. 4.11 and 18.5(a).

Physical Review C and D. Reproduced courtesy of Physical Review and American Institute of Physics. C: Fig. 10.4(a) and (b) and D: Fig. 2.13.

Physical Review Letters. Reproduced courtesy of Physical Review Letters. Figs. 2.14(a) and (b), 2.15 and 15.21.

Physics Letters B. Reproduced courtesy of Physics Letters B and Elsevier B.V.. Fig. 15.20.

Physics Today. Reproduced courtesy of Physics Today and the American Institute of Physics. Fig. 13.2.

Pierre Auger Observatory. Reproduced courtesy of Professor Alan Watson and the Pierre Auger Observatory. Fig. 15.18.

Princeton University Press. Reproduced courtesy of Princeton University Press. Fig. 12.9.

Publications of the Astronomical Society of Japan. Reproduced courtesy of the Astronomical Society of Japan. Fig. 23.21.

Publications of the Astronomical Society of the Pacific. Reproduced courtesy of the Astronomical Society of the Pacific. Fig. 2.4(b).

Quarterly Journal of the Royal Astronomical Society (QJRAS). Reproduced by permission of Quarterly Journal of the Royal Astronomical Society. Figs. 4.3 and 13.14.

Radiocarbon. Reproduced courtesy of Radiocarbon. Fig. 10.12.

Reviews of Modern Physics. Reproduced by permission of Reviews of Modern Physics. Figs. 9.2(a) and 9.20(a).

Rubin, Vera. Reproduced courtesy of Professor Vera Rubin. Fig. 3.11.

Springer-Verlag. With kind permission of Springer Science+Business Media. Figs. 1.15(a) and (b), 2.8, 2.16, 2.17, 2.20, 2.21, 5.10(b), 6.3, 9.11, 9.12, 10.3(c), 12.2, 12.16(a), 12.16(b), 13.10, 13.11, 14.12, 14.17, 15.4, 15.5, 15.11, 15.12, 15.13(b), 15.23, 18.9, 23.20, 23.4 and A1.5.

Two Micron All Sky Survey. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. Fig. 1.4(b).

University of Arizona Press. Reproduced courtesy of University of Arizona Press. Fig. 5.10(a).

University Science Books . Reproduced courtesy of University Science Books. Figs. 20.3, 20.4 and 20.7.

Wiley. Reproduced courtesy of John Wiley and Sons, Inc. Figs. 5.4, 6.2, 8.2, 8.6, 8.7, 13.12, 13.22, 14.11, 14.13, 18.7 and 19.12.

Yale University Press. Reproduced courtesy of Yale University Press. Fig. 13.26.

- Aaronson, M. & Mould, J. (1983). A Distance Scale from the Infrared Magnitude/H I Velocity-width Relation. IV The Morphological Type Dependence and Scatter in the Relation; the Distances to Nearby Groups, *Astrophysical Journal*, **265**, 1–17.
- Abdo, A. A., Ackermann, M., Ajello, M., et al. (2009a). Early Fermi Gamma-ray Space Telescope Observations of the Quasar 3C 454.3, *Astrophysical Journal*, **699**, 817–823.
- Abdo, A. A., Ackermann, M., Ajello, M., et al. (2009b). Bright Active Galactic Nuclei Source List from the First Three Months of the Fermi Large Area Telescope All-Sky Survey, *Astrophysical Journal*, **700**, 597–622.
- Abdurashitov, J. N., Bowles, T. J., Cleveland, B. T., et al. (2003). Measurement of the Solar Neutrino Capture Rate in Sage, *Nuclear Physics B Proceedings Supplements*, **118**, 39–46.
- Abdurashitov, J. N., Veretenkin, E. P., Vermul, V. M., et al. (2002). Solar neutrino flux measurements by the Soviet-American gallium experiment (SAGE) for half the 22-year solar cycle, *Soviet Journal of Experimental and Theoretical Physics*, **95**, 181–193.
- Abell, G. O. (1958). The Distribution of Rich Clusters of Galaxies, Astrophysical Journal Supplement, 3, 221–288.
- Abell, G. O., Corwin Jr, H. G., & Olowin, R. P. (1989). A Catalogue of Rich Clusters of Galaxies, *Astrophysical Journal Supplement*, **70**, 1–138.
- Abraham, J., Abreu, P., Aglietta, M., & Pierre Auger Consortium (2010a). Measurement of the depth of maximum of extensive air showers above 10¹⁸ eV, *Physical Review Letters*, **104**, 091101(1–7).
- Abraham, J., Abreu, P., Aglietta, M., & Pierre Auger Consortium (2010b). Measurement of the energy spectrum of cosmic rays above 10¹⁸ eV using the Pierre Auger Array, *Physics Letters*, **B685**, 239–246.
- Abraham, R. G., Tanvir, N. R., Santiago, B., et al. (1996). Galaxy morphology to *I* = 25 mag in the Hubble Deep Field, *Monthly Notices of the Royal Astronomical Society*, **279**, L47–L52.
- Abramovitz, M. & Stegun, I. A. (1965). *Handbook of mathematical functions*. New York: Dover Publications.
- Abramowicz, M. A., Jaroszyński, M., & Sikora, M. (1978). Relativistic, Accreting Disks, *Astronomy and Astrophysics*, **63**, 221–224.
- Adams, F. C., Lada, C. J., & Shu, F. H. (1987). Spectral evolution of young stellar objects, Astrophysical Journal, 312, 788–806.
- Adams, F. C. & Shu, F. H. (1985). Infrared emission from protostars, *Astrophysical Journal*, **296**, 655–669.
- Afonso, C., Albert, J. N., Andersen, J., et al. (2003). Limits on Galactic Dark Matter with 5 years of EROS SMC data, *Astronomy and Astrophysics*, **400**, 951–956.
- Aharonian, F., Akhperjanian, A. G., Anton, G., et al. (2009). Simultaneous Observations of PKS

- 2155-304 with HESS, Fermi, RXTE, and Atom: Spectral Energy Distributions and Variability in a Low State, *Astrophysical Journal Letters*, **696**, L150–L155.
- Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. (2007a). An Exceptional Very High Energy Gamma-Ray Flare of PKS 2155-304, *Astrophysical Journal Letters*, **664**, L71–L74.
- Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. (2006). A low level of extragalactic background light as revealed by γ -rays from blazars, *Nature*, **440**, 1018–1021.
- Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. (2007b). H.E.S.S. Observations of the Supernova Remnant RX J0852.0-4622: Shell-Type Morphology and Spectrum of a Widely Extended Very High Energy Gamma-Ray Source, *Astrophysical Journal*, **661**, 236–249.
- Aharonian, F. A., Akhperjanian, A. G., Aye, K.-M., et al. (2004). High-energy particle acceleration in the shell of a supernova remnant, *Nature*, **432**, 75–77.
- Ahmad, Q. R., Allen, R. C., Andersen, T. C., et al. (2002). Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory, *Physical Review Letters*, **89**, 011301–(1–5).
- Aitken, D. K., Smith, C. H., James, S. D., et al. (1988). 10 Micron Spectral Observations of SN 1987A The First Year, *Monthly Notices of the Royal Astronomical Society*, **235**, 19P–31P.
- Akerib, D. S., Attisha, M. J., Bailey, C. N., et al. (2006). Limits on Spin-Independent Interactions of Weakly Interacting Massive Particles with Nucleons from the Two-Tower Run of the Cryogenic Dark Matter Search, *Physical Review Letters*, **96**, 011302–+.
- Alcock, C., Akerlof, C. W., Allsman, R. A., et al. (1993a). Possible Gravitational Microlensing of a Star in the Large Magellanic Cloud, *Nature*, **365**, 621–623.
- Alcock, C., Allsman, R. A., Alves, D. R., et al. (2000). The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations, *Astrophysical Journal*, **542**, 281–307.
- Alcock, C., Allsman, R. A., Axelrod, T. S., et al. (1993b). The MACHO Project a Search for the Dark Matter in the Milky-Way, in *Sky Surveys: Protostars to Protogalaxies*, ed. Soifer, T., pp. 291–296. San Francisco: Astronomical Society of the Pacific Conference Series.
- Alexander, P. (2006). Models of young powerful radio sources, *Monthly Notices of the Royal Astronomical Society*, **368**, 1404–1410.
- Alexander, P., Brown, M. T., & Scott, P. F. (1984). A multi-frequency radio study of Cygnus A, *Monthly Notices of the Royal Astronomical Society*, **209**, 851–868.
- Alfvén, H. & Herlofson, N. (1950). Cosmic Radiation and Radio Stars, *Physical Review*, **78**, 616.
- Aliu, E., Andringa, S., Aoki, S., et al. (2005). Evidence for Muon Neutrino Oscillation in an Accelerator-Based Experiment, *Physical Review Letters*, **94**(8), 081802–+.
- Aloisio, R., Berezinsky, V., & Gazizov, A. (2009). Ultra high energy cosmic rays: the disappointing model, in *Proceedings of the 31st International Cosmic Ray Conference (Lodz, Poland)*, ed. XX, pp. XX–XX. XX.
- Amsler, C., Doser, M., Antonelli, M., et al. (2008). Review of Particle Physics, *Physics Letters B*, **667**, 1–5. These data can be found at http://pdg.lbl.gov.
- Anderson, C. (1932). The Apparent Existence of Easily Deflected Positives, *Science*, **76**, 238–239. Anderson, C. & Neddermeyer, S. (1936). Cloud Chamber Observations of Cosmic Rays at 4300
- Metres Elevation and Near Sea-Level, *Physical Review*, **50**, 263–271.
- Antoni, T., Apel, W. D., Badea, A. F., et al. (2005). KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems, *Astroparticle Physics*, **24**, 1–25.
- Antonucci, R. R. (1993). Unified Models for Active Galactic Nuclei and Quasars, Annual Review of Astronomy and Astrophysics, 31, 473–521.
- Antonucci, R. R. & Miller, J. S. (1985). Spectropolarimetry and the Nature of NGC 1068, *Astrophysical Journal*, **297**, 621–632.
- Arnett, D. (2004). Stellar Nucleosynthesis: A Status Report 2003, in *Origin and Evolution of the Elements*, eds McWilliam, A. & Rauch, M., pp. 12–26. Cambridge: Cambridge University Press.
- Arnett, W. D. & Clayton, D. D. (1970). Explosive Nucleosynthesis in Stars, Nature, 227, 780-784.

- Arzoumanian, Z., Chernoff, D. F., & Cordes, J. M. (2002). The Velocity Distribution of Isolated Radio Pulsars, Astrophysical Journal, 568, 289–301.
- Ashie, Y., Hosaka, J., Ishihara, K., et al. (2005). Measurement of atmospheric neutrino oscillation parameters by Super-Kamiokande I, *Physical Review D*, **71**, 112005–+.
- Aublin, J. D. (2009). Disciminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory, in *Proceedings of the 31st International Cosmic Ray Conference (Lodz, Poland)*, ed. XX, pp. XX–XX. XX.
- Auger, P., Ehrenfest Jr., P., Maze, R., et al. (1939). Extensive Air Showers, *Reviews of Modern Physics*, **11**, 288–291.
- Axford, W. I., Leer, E., & Skadron, G. (1977). The Acceleration of Cosmic Rays by Shock Waves, Proceedings of the 15th International Cosmic Ray Conference, 11, 132–135.
- Baade, W. & Minkowski, R. (1954). Identification of the Radio Sources in Cassiopeia, Cygnus A, and Puppis A, *Astrophysical Journal*, **119**, 206–214.
- Babbedge, T. S. R., Rowan-Robinson, M., Vaccari, M., et al. (2006). Luminosity functions for galaxies and quasars in the Spitzer Wide-area Infrared Extragalactic Legacy Survey, *Monthly Notices of the Royal Astronomical Society*, **370**, 1159–1180.
- Backer, D. C., Kulkarni, S. R., Heiles, C., Davis, M. M., & Goss, W. M. (1982). A millisecond pulsar, *Nature*, **300**, 615–618.
- Bahcall, J. N. (1989). Neutrino Astrophysics. Cambridge: Cambridge University Press.
- Bahcall, J. N. & Bethe, H. (1990). A Solution of the Solar Neutrino Problem, *Physical Review Letters*, **65**, 2233–2235.
- Bahcall, J. N., Kirhakos, S., Saxe, D. H., & Schneider, D. P. (1997a). Hubble Space Telescope Images of a Sample of 20 Nearby Luminous Quasars, *Astrophysical Journal*, **479**, 642–658.
- Bahcall, J. N., Pinsonneault, M. H., Basu, S., & Christensen-Dalsgaard, J. (1997b). Are Standard Solar Models Reliable?, *Physical Review Letters*, **78**, 171–174.
- Bahcall, N. A. (1977). Clusters of galaxies, Annual Review of Astronomy and Astrophysics, 15, 505–540.
- Bahcall, N. A., Dong, F., Hao, L., et al. (2003a). The Richness-dependent Cluster Correlation Function: Early Sloan Digital Sky Survey Data, *Astrophysical Journal*, **599**, 814–819.
- Bahcall, N. A., McKay, T. A., Annis, J., et al. (2003b). A Merged Catalog of Clusters of Galaxies from Early Sloan Digital Sky Survey Data, *Astrophysical Journal Supplement*, **148**, 243–274.
- Balbus, S. A. & Hawley, J. F. (1991). A Powerful Local Shear Instability in Weakly Magnetized Disks. I Linear Analysis. II Nonlinear Evolution, *Astrophysical Journal*, **376**, 214–233.
- Baldry, I. K., Glazebrook, K., Brinkmann, J., et al. (2004). Quantifying the Bimodal Color-Magnitude Distribution of Galaxies, *Astrophysical Journal*, **600**, 681–694.
- Ballard, K. R. & Heavens, A. F. (1992). Shock acceleration and steep-spectrum synchrotron sources, Monthly Notices of the Royal Astronomical Society, 259, 89–94.
- Band, D. L. & Grindlay, J. E. (1985). The Synchrotron-self Compton process in spherical geometries. I. Theoretical framework, *Astrophysical Journal*, 298, 128–146.
- Barthel, P. D. (1989). Is Every Quasar Beamed?, Astrophysical Journal, 336, 606-611.
- Barthel, P. D. (1994). Unified Schemes of FR2 Radio Galaxies and Quasars, in *First Stromlo Symposium: Physics of Active Galactic Nuclei*, eds Bicknell, G. V., Dopita, M. A., & Quinn, P. J., pp. 175–186. San Francisco: ASP Conference Series, Vol. 54.
- Batchelor, G. (1970). *An introduction to fluid dynamics*. Cambridge: Cambridge University Press. Bearden, J. A. & Burr, A. F. (1967). Reevaluation of X-ray Atomic Energy Levels, *Reviews of Modern Physics*, **39**, 125–142.
- Beck, R., Brandenburg, A., Moss, D., Shukurov, A., & Sokoloff, D. (1996). Galactic Magnetism: Recent Developments and Perspectives, *Annual Review of Astronomy and Astrophysics*, **34**, 155–206.
- Beck, R., Carilli, C. L., Holdaway, M. A., & Klein, U. (1994). Multifrequency observations of the radio continuum emission from NGC 253. 1: Magnetic fields and rotation measures in the bar

- and halo, Astronomy and Astrophysics, 292, 409-424.
- Beckwith, S. V. W., Stiavelli, M., Koekemoer, A. M., et al. (2006). The Hubble Ultra Deep Field, *Astronomical Journal*, **132**, 1729–1755.
- Begelman, M. C. (1996). Baby Cygnus As, pp. 209-214.
- Bekefi, G. (1966). Radiation Processes in Plasmas. New York: John Wiley and Sons.
- Bell, A. R. (1978). The Acceleration of Cosmic Rays in Shock Fronts. I, *Monthly Notices of the Royal Astronomical Society*, **182**, 147–156.
- Bell, A. R. (2004). Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays, *Monthly Notices of the Royal Astronomical Society*, **353**, 550–558.
- Bell, A. R. (2005). The interaction of cosmic rays and magnetized plasma, *Monthly Notices of the Royal Astronomical Society*, **358**, 181–187.
- Bell, A. R. & Lucek, S. G. (2001). Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field, *Monthly Notices of the Royal Astronomical Society*, **321**, 433–438.
- Bell, E. F., McIntosh, D. H., Katz, N., & Weinberg, M. D. (2003). The Optical and Near-Infrared Properties of Galaxies: I. Luminosity and Stellar Mass Functions, *Astrophysical Journal Supplement Series*, **149**, 289–312.
- Bell-Burnell, J. (1983). The discovery of pulsars, in *Serendipitous discoveries in radio astronomy*, eds Kellermann, K. & Sheets, B., pp. 160–170. Green Bank, West Virginia: National Radio Astornomy Publications.
- Bender, R., Burstein, D., & Faber, S. M. (1993). Dynamically Hot Galaxies II. Global Stellar Populations, *Astrophysical Journal*, **411**, 153–169.
- Bennett, C., Halpern, M., Hinshaw, G., et al. (2003). First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results, *Astrophysical Journal Supplement Series*, **148**, 1–27.
- Bennett, C. L., Banday, A. J., Gorski, K. M., et al. (1996). Four-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results, *Astrophysical Journal*, 464, L1–L4.
- Benson, B. A., Church, S. E., Ade, P. A. R., et al. (2004). Measurements of Sunyaev-Zel'dovich Effect Scaling Relations for Clusters of Galaxies, *Astrophysical Journal*, **617**, 829–846.
- Beresnyak, A., Jones, T. W., & Lazarian, A. (2009). Turbulence-induced magnetic fields and the structure of Cosmic Ray modified shocks, *ArXiv e-prints*.
- Berezhko, E. G. & Völk, H. J. (2007). Spectrum of Cosmic Rays Produced in Supernova Remnants, *Astrophysical Journal Letters*, **661**, L175–L178.
- Berezinsky, V. (2007). On origin of ultra high energy cosmic rays, *Astrophysics and Space Science*, **309**, 453–463.
- Berger, K., Majumdar, P., Lindfors, E., et al. (2009). MAGIC observations of the distant quasar 3C279 during an optical outburst in 2007, *ArXiv e-prints*.
- Best, P. N., Bailer, D. M., Longair, M. S., & Riley, J. M. (1995). Radio source asymmetries and unified schemes, *Monthly Notices of the Royal Astronomical Society*, **275**, 1171–1184.
- Best, P. N., Longair, M. S., & Röttring, H. J. A. (1996). Evolution of the Aligned Structures in $z \sim 1$ Radio Galaxies, *Monthly Notices of the Royal Astronomical Society*, **280**, L9–L12.
- Best, P. N., Longair, M. S., & Röttring, H. J. A. (1997). HST, Radio and Infrared Observations of 28 3CR Radio Galaxies at Redshift $z \sim 1$. I The Observations, *Monthly Notices of the Royal Astronomical Society*, **292**, 758–794.
- Best, P. N., Longair, M. S., & Röttring, H. J. A. (1998). HST, Radio and Infrared Observations of 28 3CR Radio Galaxies at Redshift *z* approximately equal to 1. II Old Stellar Populations in Central Cluster Galaxies, *Monthly Notices of the Royal Astronomical Society*, **295**, 549–567.
- Best, P. N., Longair, M. S., & Röttring, H. J. A. (2000). Ionization, Shocks and Evolution of the Emission-Line Gas of Distant 3CR Radio Galaxies, *Monthly Notices of the Royal Astronomical Society*, 311, 23–36.

- Bethe, H. & Heitler, W. (1934). On the Stopping of Fast Particles and on the Creation of Positive Electrons, *Proceedings of the Royal Society of London*, **A146**, 83–112.
- Béthermin, M., Dole, H., Beelen, A., & Aussel, H. (2010). Spitzer Deep and Wide Legacy Mid- and Far-Infrared Number Counts and Lower Limits of Cosmic Infrared Background, *ArXiv e-prints*.
- Bignami, G. F., Caraveo, P. A., Luca, A. D., & Mereghetti, S. (2003). The magnetic field of an isolated neutron star from X-ray cyclotron absorption lines, *Nature*, **423**, 725–727.
- Bildsten, L., Chakrabarty, D., Chiu, J., et al. (1997). Observations of Accreting Pulsars, *Astrophysical Journal Supplement Series*, **113**, 367–408.
- Binney, J. (1978). On the Rotation of Elliptical Galaxies, *Monthly Notices of the Royal Astronomical Society*, **183**, 501–514.
- Binney, J. & Merrifield, M. (1998). Galactic Astronomy. Princeton: Princeton University Press.
- Binney, J. & Tremaine, S. (2008). Galactic Dynamics. Princeton: Princeton University Press.
- Biretta, J. A., Sparks, W. B., & Macchetto, F. (1999). Hubble Space Telescope Observations of Superluminal Motion in the M87 Jet, *Astrophysical Journal*, **520**, 621–626.
- Biretta, J. A., Zhou, F., & Owen, F. N. (1995). Detection of Proper Motions in the M87 Jet, Astrophysical Journal, 447.
- Blaauw, A., Gum, C. S., Pawsey, J. L., & Westerhout, G. (1959). Note: Definition of the New I.A.U. System of Galactic Co-Ordinates, *Astrophysical Journal*, **130**, 702–703.
- Blackett, P. & Occhialini, G. (1933). Some Photographics of the Tracks of Penetrating Radiation, *Proceedings of the Royal Society of London*, **A139**, 699–722.
- Blain, A. W. & Longair, M. S. (1993). Sub-Millimetre Cosmology, *Monthly Notices of the Royal Astronomical Society*, **264**, 509–521.
- Blain, A. W. & Longair, M. S. (1996). Observing Strategies for Blank-field Surveys in the Sub-Millimetre Waveband, *Monthly Notices of the Royal Astronomical Society*, **279**, 847–858.
- Blandford, R. & Eichler, D. (1987). Particle Acceleration at Astrophysical Shocks a Theory of Cosmic-Ray Origin, *Physics Reports*, **154**, 1–75.
- Blandford, R. D. (1990). Physical processes in active galactic nuclei., in *Active Galactic Nuclei*, eds Blandford, R. D., Netzer, H., Woltjer, L., Courvoisier, T. J.-L., & Mayor, M., pp. 161–275.
- Blandford, R. D. (1994). Holes, Disks, Stars and Jets in Active Galactic Nuclei, in *The Physics of Active Galaxies*, ed. G. V. Bicknell, M. A. Dopita, P. J. Q., volume 54 of *Astronomical Society of the Pacific Conference Series*, pp. 23–32.
- Blandford, R. D. & Begelman, M. C. (1999). On the fate of gas accreting at a low rate onto a black hole, *Monthly Notices of the Royal Astronomical Society*, **303**, L1–L5.
- Blandford, R. D. & McKee, C. F. (1982). Reverberation mapping of the emission line regions of Seyfert galaxies and quasars, *Astrophysical Journal*, **255**, 419–439.
- Blandford, R. D. & Narayan, R. (1992). Cosmological Applications of Gravitational Lensing, *Annual Review of Astronomy and Astrophysics*, **30**, 311–358.
- Blandford, R. D. & Ostriker, J. P. (1978). Particle Acceleration by Astrophysical Shocks, Astrophysical Journal, 221, L29–L32.
- Blandford, R. D. & Rees, M. J. (1974). A 'twin-exhaust' model for double radio sources, Monthly Notices of the Royal Astronomical Society, 169, 395–415.
- Blandford, R. D. & Znajek, R. L. (1977). Electromagnetic Extraction of Energy from Kerr Black Holes, *Monthly Notices of the Royal Astronomical Society*, **179**, 433–456.
- Blanton, M. R., Hogg, D. W., Bahcall, N. A., et al. (2003). The Broadband Optical Properties of Galaxies with Redshifts $0.02 \le z \le 0.22$, *Astrophysical Journal*, **594**, 186–207.
- Blumenthal, G. R. & Gould, R. J. (1970). Bremsstrahlung, Synchrotron Radiation, and Compton Scattering of High-Energy Electrons Traversing Dilute Gases, *Reviews of Modern Physics*, **42**, 237–271.
- Bolton, C. T. (1972). Identifications of CYG X-1 with HDE 226868, Nature, 235, 271-273.
- Bondi, H. (1952). On spherically symmetrical accretion, Monthly Notices of the Royal

- Astronomical Society, 112, 195–204.
- Bondi, H. & Hoyle, F. (1944). On the mechanism of accretion by stars, *Monthly Notices of the Royal Astronomical Society*, **104**, 273–282.
- Born, M. & Wolf, E. (1999). Principles of Optics, 7th edition. Cambridge: Cambridge University Press.
- Bosma, A. (1981). 21-cm Line Studies of Spiral Galaxies. II. The Distribution and Kinematics of Neutral Hydrogen in Spiral Galaxies of Various Morphological Types., *Astronomical Journal*, **86**, 1825–1846.
- Bothe, W. & Kolhörster, W. (1929). The Nature of the High-altitude Radiation, *Zeitschrift für Physik*, **56**, 751–777.
- Bouwens, R. J., Illingworth, G. D., Blakeslee, J. P., & Franx, M. (2006). Galaxies at $z \sim 6$: The UV Luminosity Function and Luminosity Density from 506 HUDF, HUDF Parallel ACS Field, and GOODS i-Dropouts, *Astrophysical Journal*, **653**, 53–85.
- Boyle, B. J., Griffiths, R. E., Shanks, T., Stewart, G. C., & Georgantopoulos, I. (1993). A deep ROSAT survey. I - The QSO X-ray luminosity function, *Monthly Notices of the Royal Astronomical Society*, 260, 49–58.
- Boyle, B. J., Shanks, T., Croom, S. M., et al. (2000). The 2dF QSO Redshift Survey I. The Optical Luminosity Function of Quasi-Stellar Objects, *Monthly Notices of the Royal Astronomical Society*, **317**, 1014–1022.
- Bracessi, A., Formiggini, L., & Gandolfi, E. (1970). Magnitudes, Colours and Coordinates of 175 Ultraviolet Excess Objects in the Field 13^h, +36°, *Astronomy and Astrophysics*, **5**, 264–279. Erratum: *Astronomy and Astrophysics*, **23**, 159.
- Bracewell, R. (1986). *The Fourier Transform and its Applications*. New York: McGraw–Hill Book Company.
- Brandt, W. N. & Hasinger, G. (2005). Deep Extragalactic X-Ray Surveys, Annual Review of Astronomy and Astrophysics, 43, 827–859.
- Browne, I. W. A. & Murphy, D. W. (1987). Beaming and the X-ray, optical and radio properties of quasars, *Monthly Notices of the Royal Astronomical Society*, **226**, 601–627.
- Bruzual, G. & Charlot, S. (2003). Stellar Population Synthesis at the Resolution of 2003, *Monthly Notices of the Royal Astronomical Society*, **344**, 1000–1028.
- Burbidge, E. M., Burbidge, G. R., & Sandage, A. R. (1963). Evidence for the Occurence of Violent Events in the Nuclei of Galaxies, *Reviews of Modern Physics*, **35**, 947–972.
- Burbidge, G. R. (1956). On Synchrotron Radiation from Messier 87, Astrophysical Journal, 124,
- Burbidge, G. R. (1959). Estimates of the Total Energy in Particles and Magnetic Field in the Non-Thermal Radio Sources, *Astrophysical Journal*, **129**, 849–851.
- Caffee, M. W., Reedy, R. C., Goswami, J. N., Hohenberg, C. M., & Marti, K. (1988). Irradiation records in meteorites, in *Meteorites and the Early Solar System*, eds Kerridge, J. & Matthews, M., pp. 205–245. Tuscon: University of Arizona Press.
- Calabretta, M. R. & Greisen, E. W. (2002). Representations of celestial coordinates in FITS, Astronomy and Astrophysics, 395, 1077–1122.
- Camenzind, M. (2007). Compact objects in astrophysics –white dwarfs, neutron stars and black holes. Berlin: Springer-Verlag.
- Cameron, A. G. W. (1973). Abundances of the Elements in the Solar System, *Space Science Reviews*, **15**, 121–146.
- Cappelluti, N., Hasinger, G., Brusa, M., et al. (2007). The XMM-Newton wide-field survey in the COSMOS field II: X-ray data and the log N-log S, *ArXiv Astrophysics e-prints*.
- Carilli, C. L. & Barthel, P. D. (1996). Cygnus A, Astronomy and Astrophysics Reviews, 7, 1-54.
- Carilli, C. L., Perley, R. A., Dreher, J. W., & Leahy, J. P. (1991). Multifrequency radio observations of Cygnus A Spectral aging in powerful radio galaxies, *Astrophysical Journal*, **383**, 554–573.
- Carlstrom, J. E., Joy, M. K., Grego, L., et al. (2000). Imaging the Sunyaev-Zel'dovich Effect, in

- Particle Physics and the Universe: Proceedings of Nobel Symposium 198, eds Bergström, L., Carlson, P., & and Fransson, C., pp. 148–155. Stockholm: Physica Scripta.
- Carron, N. (2007). An introduction to the passage of energetic particles through matter. : Taylor and Francis Group.
- Carter, B. (1971). Axisymmetric Black Hole Has Only Two Degrees of Freedom, *Physical Review Letters*, **26**, 331–333.
- Casandjian, J. & Grenier, I. A. (2008). A revised catalogue of EGRET γ -ray sources, *Astronomy and Astrophysics*, **489**, 849–883.
- Caswell, J. L. (1976). A map of the northern sky at 10 MHz, *Monthly Notices of the Royal Astronomical Society*, **177**, 601–616.
- Cavaliere, A. (1980). Models of X-ray Emission from Clusters of Galaxies, in *X-ray Astronomy*, eds Giacconi, R. & Setti, G., pp. 217–237. Dordrecht: D. Reidel Publishing Company.
- Cesarsky, C. J. (1980). Cosmic-ray confinement in the galaxy, Annual Review of Astronomy and Astrophysics, 18, 289–319.
- Challinor, A. & Lasenby, A. (1998). Relativistic Corrections to the Sunyaev-Zeldovich Effect, Astrophysical Journal, 499, 1–6.
- Chambers, K. C., Miley, G. K., & van Breugel, W. J. M. (1987). Alignment of Radio and Optical Orientations in High-Redshift Radio Galaxies, *Nature*, **329**, 604–606.
- Chandrasekhar, S. (1981). Hydrodynamic and hydromagnetic stability. New York: Dover Publications.
- Chandrasekhar, S. (1983). *The mathematical theory of black holes*. Oxford and New York: Clarendon Press/Oxford University Press.
- Charbonneau, D., Brown, T. M., Latham, D. W., & Mayor, M. (2000). Detection of Planetary Transits Across a Sun-like Star, *Astrophysical Journal*, **529**, L45–L48.
- Charlot, S. & Longhetti, M. (2001). Nebular Emission from Star-forming Galaxies, Monthly Notices of the Royal Astronomical Society, 323, 887–903.
- Chevalier, R. A. (1998). Synchrotron Self-Absorption in Radio Supernovae, *Astrophysical Journal*, **499**, 810–819.
- Christensen-Dalsgaard, J. (2002). Helioseismology, Reviews of Modern Physics, 74, 1073-1129.
- Christian, D. J. (2002). The Third Extreme Ultraviolet Explorer Right Angle Program Catalog: The Last Years, *Astronomical Journal*, **124**, 3478–3484.
- Chupp, E. L. (1976). *Gamma-ray astronomy: Nuclear transition region*. Dordrecht, D. Reidel Publishing Co.(Geophysics and Astrophysics Monographs. Volume 14).
- Chwolson, O. (1924). Über eine mögliche Form fiktiver Doppelsterne, *Astronomische Nachrichten*, **221**, 329–.
- Cimatti, A., Daddi, E., Renzini, A., et al. (2004). Old galaxies in the young Universe, *Nature*, **430**, 184–187.
- Clark, J. S., Goodwin, S. P., Crowther, P. A., et al. (2002). Physical parameters of the high-mass X-ray binary 4U1700-37, *Astronomy and Astrophysics*, **392**, 909–920.
- Clavel, J., Reichert, G. A., & 56 authors (1991). Steps toward Determination of the Size and Structure of the Broad-line Region in Active Galactic Nuclei. I An 8 Month Campaign of Monitoring NGC 5548 with IUE, *Astrophysical Journal*, **366**, 64–81.
- Clemmow, P. C. W. & Dougherty, J. P. (1969). Electrodynamics of Particles and Plasmas. Reading, Massachusetts: Addison-Wesley Publishing Company.
- Coburn, W., Kretschmar, P., Kreykenbohm, I., et al. (2006). Cyclotron features in X-ray spectra of accreting pulsars, *Advances in Space Research*, **38**, 2747–2751.
- Cohen, M. H., Lister, M. L., Homan, D. C., et al. (2007). Relativistic Beaming and the Intrinsic Properties of Extragalactic Radio Jets, *Astrophysical Journal*, **658**, 232–244.
- Colless, M., Dalton, G., Maddox, S., et al. (2001). The 2dF Galaxy Redshift Survey: Spectra and Redshifts, Monthly Notices of the Royal Astronomical Society, 328, 1039–1063.
- Colless, M. & Dunn, A. M. (1996). Structure and Dynamics of the Coma Cluster, Astrophysical

- Journal, 458, 435-454.
- Compton, A. H. (1923). The spectrum of scattered X-rays, *Physical Review*, 22, 409–413.
- Condon, J. J. (1989). The 1.4 gigahertz luminosity function and its evolution, *Astrophysical Journal*, **338**, 13–23.
- Condon, J. J. (1992). Radio emission from normal galaxies, Annual Review of Astronomy and Astrophysics, 30, 575–611.
- Cordes, J. M. & Lazio, T. J. W. (2002). NE2001.I. A New Model for the Galactic Distribution of Free Electrons and its Fluctuations, *ArXiv Astrophysics e-prints*.
- Cordes, J. M. & Lazio, T. J. W. (2003). NE2001. II. Using Radio Propagation Data to Construct a Model for the Galactic Distribution of Free Electrons, *ArXiv Astrophysics e-prints*.
- Costa, E., Frontera, F., Heise, J., et al. (1997). Discovery of an X-ray afterglow associated with the gamma-ray burst of 28 February 1997, *Nature*, **387**, 783–785.
- Cowie, L. (1988). Protogalaxies, in *The Post-Recombination Universe*, eds Kaiser, N. & Lasenby, A. N., pp. 1–18. Dordrecht: Kluwer Academic Publishers.
- Cowie, L., Lilly, S., Gardner, J., & McLean, I. (1988). A Cosmologically Significant Population of Galaxies Dominated by Very Young Star Formation, *Astrophysical Journal*, **332**, L29–L32.
- Cowie, L. L., Barger, A. J., & Kneib, J.-P. (2002). Faint Submillimeter Counts from Deep 850 Micron Observations of the Lensing Clusters A370, A851, and A2390, Astronomical Journal, 123, 2197–2205.
- Cowie, L. L., Songaila, A., Hu, E. M., & Cohen, J. D. (1996). New Insight on Galaxy Formation and Evolution From Keck Spectroscopy of the Hawaii Deep Fields, *Astronomical Journal*, 112, 839–864.
- Cox, D. P. & Smith, B. W. (1974). Large-Scale Effects of Supernova Remnants on the Galaxy: Generation and Maintenance of a Hot Network of Tunnels, Astrophysical Journal Letters, 189, L 105-L 108
- Cristiani, S. (1986). Optical variability in quasars, in *Structure and evolution of active galactic nuclei*, eds Giuricin, G., Mardirossian, F., Mezzetti, M., & Ramella, M., pp. 83–91. Dordrecht: D. Reidel Publishing Company.
- Cruddace, R., Paresce, F., Bowyer, S., & Lampton, M. (1974). On the opacity of the interstellar medium to ultrasoft X-rays and extreme-ultraviolet radiation., *Astrophysical Journal*, **187**, 497–504.
- Dabrowski, Y., Fabian, A. C., Iwasawa, K., Lasenby, A. N., & Reynolds, C. S. (1997). The profile and equivalent width of the X-ray iron emission line from a disc around a Kerr black hole, *Monthly Notices of the Royal Astronomical Society*, **288**, L11–L15.
- Damon, P. E., Kaimei, D., Kocharov, G. E., Mikheeva, I. B., & Peristykh, A. N. (1995).
 Radiocarbon production by the gamma-ray component of supernova explosions, *Radiocarbon*, 37, 599–604.
- Damon, P. E., Lerman, J. C., & Long, A. (1978). Temporal fluctuations of atmospheric ¹⁴C: causal factors and implications, *Annual Review of Earth and Planetary Science*, **6**, 457–494.
- Davidson, W. & Davies, M. (1964). Interpretation of the Counts of Radio Sources in Terms of a 4-parameter Family of Evolutionary Universes, *Monthly Notices of the Royal Astronomical Society*, **127**, 241–255.
- Davies, R. D. (2006). An anomalous dust emission component? the observations, in *CMB and Physics of the Early Universe*, pp. 1–8. Proceedings of Science on-line journal.
- Davis, L. & Greenstein, J. L. (1951). The Polarization of Starlight by Aligned Dust Grains, *Astrophysical Journal*, **114**, 206–240.
- de Plaa, J., Kaastra, J. S., Méndez, M., et al. (2005). The temperature structure in the core of Sérsic 159-03, *Advances in Space Research*, **36**, 601-604.
- de Vaucouleurs, G., de Vaucouleurs, A., Corwin Jr., H. G., et al. (1991). *Third Reference Catalogue of Bright Galaxies: Containing Information on 23,024 Galaxies With Reference to Papers Published Between 1913 and 1988*. Berlin: Springer-Verlag.

- Dermer, C. D. (1986). Secondary production of neutral pi-mesons and the diffuse galactic gamma radiation, *Astronomy and Astrophysics*, **157**, 223–229.
- Deubner, F.-L. & Gough, D. (1984). Helioseismology: Oscillations as a Daignostic of the Solar Interior, *Annual Review of Astronomy and Astrophysics*, **22**, 593–619.
- Dey, A. (1997). The Host Galaxies of Distant Radio Sources, in *The Hubble Space Telescope and the High Redshift Universe*, eds Tanvir, N. R., Aragón-Salamanca, A., & Wall, J. V., pp. 373–376. Singapore: World Scientific Publishing Company.
- Diehl, R., Halloin, H., Kretschmer, K., et al. (2006a). Radioactive ²⁶Al from massive stars in the Galaxy, *Nature*, **439**, 45–47.
- Diehl, R., Prantzos, N., & von Ballmoos, P. (2006b). Astrophysical constraints from gamma-ray spectroscopy, *Nuclear Physics A*, 777, 70–97.
- Dirac, P. (1928a). The Quantum Theory of the Electron, *Proceedings of the Royal Society of London*, **A117**, 610–624.
- Dirac, P. (1928b). The Quantum Theory of the Electron II, *Proceedings of the Royal Society of London*, **A118**, 351–361.
- Djorgovski, S. G. & Davis, M. (1987). Fundamental Properties of Elliptical Galaxies, *Astrophysical Journal*, **313**, 59–68.
- Doeleman, S. S., Weintroub, J., Rogers, A. E. E., et al. (2008). Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre, *Nature*, **455**, 78–80.
- Dombrovski, V. A. (1954). On the Nature of the Radiation from the Crab Nebula, *Dokladi Akademiya Nauk SSSR*, **94**, 1021–1024.
- Dopita, M. A. & Sutherland, R. S. (1996). Spectral Signatures of Fast Shocks. I. Low-Density Model Grid, *Astrophysical Journal Supplement*, **102**, 161–188.
- Draine, B. T. (2003). Interstellar Dust Grains, *Annual Reviews of Astronomy and Astrophysics*, **41**, 241–289.
- Draine, B. T. (2004). Astrophysics of dust in cold clouds, in *The Cold Universe*, *Saas-Fee Advanced Course 32*, eds Blain, A. W., Combes, F., Draine, B. T., Pfenniger, D., & Revaz, Y., pp. 213–XXX. Berlin: Springer-Verlag.
- Draine, B. T. & Lazarian, A. (1998). Electric dipole radiation from spinning dust grains, Astrophysical Journal, 508, 157–179.
- Dreher, J. W., Carilli, C. L., & Perley, R. A. (1987). The Faraday rotation of Cygnus A Magnetic fields in cluster gas, *Astrophysical Journal*, **316**, 611–625.
- Dressler, A. (1980). Galaxy Morphology in Rich Clusters Implications for the Formation and Evolution of Galaxies, *Astrophysical Journal*, **236**, 351–365.
- Dressler, A., Lynden-Bell, D., Burstein, D., et al. (1987). Spectroscopy and Photometry of Elliptical Galaxies. I A New Distance Estimator, *Astrophysical Journal*, **313**, 42–58.
- Driver, S. P., Allen, P. D., Graham, A. W., et al. (2006). The Millennium Galaxy Catalogue: Morphological Classification and Bimodality in the Colour-Concentration Plane, *Monthly Notices of the Royal Astronomical Society*, **368**, 414–434.
- Drury, L. O., Duffy, P., Eichler, D., & Mastichiadis, A. (1999). On "box" models of shock acceleration and electron synchrotron spectra, *Astronomy and Astrophysics*, **347**, 370–374.
- Drury, L. O. & Falle, S. A. E. G. (1986). On the Stability of Shocks Modified by Particle Acceleration, *Monthly Notices of the Royal Astronomical Society*, **223**, 353–376.
- Dunlop, J. S. (1998). Cosmic Star-Formation and Radio Source Evolution, in ASSL Vol. 226: Observational Cosmology with the New Radio Surveys, eds Bremer, M. N., Jackson, N., & Perez-Fournon, I., pp. 157–164.
- Dunlop, J. S. & Peacock, J. A. (1990). The Redshift Cut-off in the Luminosity Function of Radio Galaxies and Quasars, *Monthly Notices of the Royal Astronomical Society*, **247**, 19–42.
- Dunlop, J. S., Peacock, J. A., Spinrad, H., et al. (1996). A 3.5-Gyr-old Galaxy at Redshift 1.55, Nature, 381, 581–584.
- Edelson, R., Vaughan, S., Warwick, R., Puchnarewicz, E., & George, I. (1999). The ROSAT Wide

- Field Camera Extragalactic Survey, *Monthly Notices of the Royal Astronomical Society*, **307**, 91–98.
- Efstathiou, G. (1990). Cosmological Perturbations, in *Physics of the Early Universe*, eds Peacock, J. A., Heavens, A. F., & Davies, A. T., pp. 361–463. Edinburgh: SUSSP Publications.
- Eguchi, K., Enomoto, S., & 97 authors (2003). First Results from Kamland: Evidence for Reactor Anti-neutrino Disappearance, *Physical Review Letters*, **90**, id. 021802(1–6).
- Einstein, A. (1905). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, *Annalen der Physik*, **322**, 132–148.
- Einstein, A. (1915). Die Feldgleichung der Gravitation (The Field Equations of Gravitation), Sitzungsberichte, Königlich Preussische Akademie der Wissenschaften (Berlin), II, 844–847.
- Einstein, A. (1936). Lens-Like Action of a Star by the Deviation of Light in the Gravitational Field, *Science*, **84**, 506–507.
- Ellis, G. R. A. (1982). Galactic radio emission below 16.5 MHz and the galactic emission measure, *Australian Journal of Physics*, **35**, 91–104.
- Ellis, R. G. (1997). Faint Blue Galaxies, *Annual Review of Astronomy and Astrophysics*, **35**, 389–443.
- Ellis, S. C. & Bland-Hawthorn, J. (2006). GalaxyCount: a JAVA calculator of galaxy counts and variances in multiband wide-field surveys to 28 AB mag, *ArXiv Astrophysics e-prints*.
- Enge, H. A. (1966). Introduction to nuclear physics. London: Addison-Wesley.
- Erber, T. (1966). High-Energy Electromagnetic Conversion Processes in Intense Magnetic Fields, *Reviews of modern physics*, **38**, 626–659.
- Eugster, O., Herzog, G. F., Marti, K., & Caffee, M. W. (2006). *Irradiation Records, Cosmic-Ray Exposure Ages, and Transfer Times of Meteorites*, pp. 829–851. Meteorites and the Early Solar System II.
- Fabbiano, G., Trinchieri, G., Elvis, M., Miller, L., & Longair, M. (1984). An X-ray survey of a complete sample of 3CR radio galaxies, *Astrophysical Journal*, 277, 115–131.
- Faber, S. M. (1973). Variations in Spectral-Energy Distributions and Absorption-Line Strengths among Elliptical Galaxies, *Astrophysical Journal*, **179**, 731–754.
- Faber, S. M. (1999). Black holes in galaxy centers, in Formation of Structure in the Universe, eds A. Dekel, A. & Ostriker, J. P., pp. 337–359.
- Faber, S. M. & Jackson, R. E. (1976). Velocity Dispersions and Mass-to-light Ratios for Elliptical Galaxies, *Astrophysical Journal*, **204**, 668–683.
- Fabian, A. C. (1994). Cooling Flows in Clusters of Galaxies, *Annual Review of Astronomy and Astrophysics*, **32**, 277–318.
- Fabian, A. C. (1998). Emission lines: signatures of relativistic rotation, in *Theory of Black Hole Accretion Disks*, eds Abramowicz, M. A., Bjornsson, G., & Pringle, J. E., pp. 123–133. Cambridge: Cambridge University Press.
- Fabian, A. C. (2009). Black holes at work, Astronomy and Geophysics, 30, 3.18-3.24.
- Fabian, A. C. & Rees, M. J. (1995). The accretion luminosity of a massive black hole in an elliptical galaxy, *Monthly Notices of the Royal Astronomical Society*, **277**, L55–L58.
- Fabian, A. C., Sanders, J. S., Ettori, S., et al. (2000). Chandra Imaging of the Complex X-ray Core of the Perseus Cluster, *Monthly Notices of the Royal Astronomical Society*, **318**, L65–L68.
- Fabian, A. C., Sanders, J. S., Taylor, G. B., et al. (2006). A Very Deep Chandra Observation of the Perseus Cluster: Shocks, Ripples and Conduction, *Monthly Notices of the Royal Astronomical Society*, 366, 417–428.
- Fabian, A. C., Vaughan, S., Nandra, K., et al. (2002). A long hard look at MCG-6-30-15 with XMM-Newton, *Monthly Notices of the Royal Astronomical Society*, **335**, L1–L5.
- Fabricant, D. G., Lecar, M., & Gorenstein, P. (1980). X-ray Measurements of the Mass of M87, *Astrophysical Journal*, **241**, 552–560.
- Fan, X., Hennawi, J. F., Richards, G. T., et al. (2004). A Survey of $z \ge 5.7$ Quasars in the Sloan Digital Sky Survey. III. Discovery of Five Additional Quasars, *Astronomical Journal*, **128**,

- 515-522.
- Fan, X., Narayanan, V. K., Lupton, R. H., et al. (2001). A Survey of $z \ge 5.8$ Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at $z \sim 6$, Astronomical Journal, 122, 2833–2849.
- Fanaroff, B. L. & Riley, J. M. (1974). The Morphology of Extragalactic Radio Sources of High and Low Luminosity, *Monthly Notices of the Royal Astronomical Society*, **167**, 31P–36P.
- Felten, J. (1977). Study of the Luminosity Function for Field Galaxies, *Astronomical Journal*, **82**, 861–878.
- Fermi, E. (1949). On the Origin of the Cosmic Radiation, *Physical Review*, 75, 1169–1174.
- Fernini, I., Burns, J. O., Leahy, J. P., & Basart, J. P. (1991). Depolarization asymmetry in the quasar 3C 47, *Astrophysical Journal*, **381**, 63–71.
- Ferrario, D. T., Wickramsinghe, D. T., Bailey, I. R., Tuohy, I. R., & Hough, J. H. (1989). EXO 033319-2554.2: an eclipsing AM Herculis system showing cyclotron emission features, *Astrophysical Journal*, **337**, 832–842.
- Feynman, R., Leighton, R. B., & Sands, M. L. (1965). *Feynman Lectures on Physics*. Redwood City, California: Addison-Wesley Publishing Company.
- Feynman, R. P. (1972). *Statistical Mechanics: A Set of Lectures*. Reading, Massachusetts: W. A. Benjamin.
- Fich, M. & Tremaine, S. (1991). The mass of the Galaxy, *Annual Review of Astronomy and Astrophysics*, **29**, 409–445.
- Field, G. B. (1965). Thermal Instability, Astrophysical Journal, 142, 531-567.
- Field, G. B., Goldsmith, D. W., & Habing, H. J. (1969). Cosmic-Ray Heating of the Interstellar Gas, *Astrophysical Journal Letters*, **55**, L149–L154.
- Fitch, W. S., Pacholczyk, A. G., & Weymann, R. J. (1967). Light Variations of the Seyfert Galaxy NGC 4151, Astrophysical Journal, 150, L67–L70.
- Fitzpatrick, R. (2008). *The Physics of Plasmas*. Lulu publishers. available at: http://farside.ph.utexas.edu/teaching/plasma/380.pdf.
- Ford, H. C., Harms, R. J., Tsvetanov, Z. I., et al. (1994). Narrowband HST Images of M87: Evidence for a Disk of Ionized Gas around a Massive Black Hole, *Astrophysical Journal Letters*, **435**, L27–L30.
- Forman, W., Jones, C., Cominsky, L., et al. (1978). The fourth UHURU catalog of X-ray sources, *Astrophysical Journal Supplement Series*, **38**, 357–412.
- Fort, B. & Mellier, Y. (1994). Arc(let)s in clusters of galaxies., *Astronomy and Astrophysics Reviews*, 5, 239–292.
- Francis, P. J., Hewett, P. C., Foltz, C. B., et al. (1991). A high signal-to-noise ratio composite quasar spectrum, *Astrophysical Journal*, **373**, 465–470.
- Frank, J., King, A., & Raine, D. J. (2002). *Accretion Power in Astrophysics: Third Edition*. Cambridge: Cambridge University Press.
- Frank, J., King, A. R., & Lasota, J.-P. (1987). The light curves of low-mass X-ray binaries, *Astronomy and Astrophysics*, **178**, 137–142.
- Frolov, V. P. & Novikov, I. D. (1998). *Black hole physics: basic concepts and new developments*. Dordrecht: Kluwer Academic Publishing Company.
- Fukuda, S., Fukuda, Y., & 117 authors (2001). Solar ⁸B and hep Neutrino Measurements from 1258 Days of Super-Kamiokande Data, *Physical Review Letters*, **86**, 5651–5655.
- Galama, T. J., Vreeswijk, P. M., van Paradijs, J., et al. (1998). An unusual supernova in the error box of the γ-ray burst of 25 April 1998, *Nature*, **395**, 670–672.
- Garcia-Munoz, M., Simpson, J. A., Guzik, T. G., Wefel, J. P., & Margolis, S. H. (1987). Cosmic-ray propagation in the Galaxy and in the heliosphere The path-length distribution at low energy, *Astrophysical Journal Supplement*, **64**, 269–304.
- Garrington, S. T., Leahy, J. P., Conway, R. G., & Laing, R. A. (1988). A systematic asymmetry in the polarization properties of double radio sources with one jet, *Nature*, **331**, 147–149.

- Gavazzi, R., Treu, T., Rhodes, J. D., et al. (2007). The Sloan Lens ACS Survey. IV: the mass density profile of early-type galaxies out to 100 effective radii, *Astrophysical Journal*, **667**, 176–190.
- Gehrels, N., Ramirez-Ruiz, E., & Fox, D. B. (2009). Gamma-Ray Bursts in the Swift Era, *Annual Review of Astronomy and Astrophysics*, **47**, 567–617.
- Geiger, H. & Müller, W. (1928). Das Electronenzählrohr (The Electron-Counting Tube), Physicalische Zeitschrift, 29, 839–841.
- Geiger, H. & Müller, W. (1929). Technische Bemerkungen zum Electronenzählrohr (Technical Remarks on the Electron Counting Tube), *Physicalische Zeitschrift*, **30**, 489–493.
- Genzel, R., Schödel, R., Ott, T., et al. (2003). Near-infrared Flares from Accreting Gas around the Supermassive Black hole at the Galactic Centre, *Nature*, 425, 934–937.
- Ghez, A. M., Morris, M., Becklin, E. E., Tanner, A., & Krememek, T. (2000). The Accelerations of Stars Orbiting the Milky Way's Central Black Hole, *Nature*, 407, 349–351.
- Giacalone, J. & Jokipii, J. R. (2007). Magnetic Field Amplification by Shocks in Turbulent Fluids, Astrophysical Journal Letters, 663, L41–L44.
- Giacconi, R., Gursky, H., Kellogg, E., Schreier, E., & Tananbaum, H. (1971). Discovery of Periodic X-Ray Pulsations in Centaurus X-3 from UHURU, *Astrophysical Journal*, **167**, L67–L73.
- Giacconi, R., Gursky, H., & van Speybroeck, L. P. (1968). Observational Techniques in X-Ray Astronomy, *Annual Review of Astronomy and Astrophysics*, **6**, 373–416.
- Giavalisco, M., Dickinson, M., Ferguson, H. C., et al. (2004). The Rest-Frame Ultraviolet Luminosity Density of Star-forming Galaxies at Redshifts $z \ge 3.5$, *Astrophysical Journal Letters*, **600**, L103–L106.
- Gilli, R., Comastri, A., & Hasinger, G. (2007). The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era, *Astronomy and Astrophysics*, **463**, 79–96.
- Ginzburg, V. L. (1951). Cosmic Rays as a Source of Galactic Radio-radiation, *Doklady Akademiya Nauk SSSR*, 76, 377–380.
- Ginzburg, V. L., Sazonov, V. N., & Syrovatskii, S. I. (1968). Synchrotron Radiation and its Reabsorption, *Soviet Physics Uspekhi*, **11**, 34–+.
- Ginzburg, V. L. & Syrovatskii, S. I. (1964). The origin of cosmic rays. Oxford: Pergamon Press.
- Ginzburg, V. L. & Syrovatskii, S. I. (1965). Cosmic magnetobremsstrahlung (synchrotron radiation), *Annual Review of Astronomy and Astrophysics*, **3**, 297–350.
- Ginzburg, V. L. & Syrovatskii, S. I. (1969). Developments in the Theory of Synchrotron Radiation and its Reabsorption, *Annual Review of Astronomy and Astrophysics*, 7, 375–420.
- Glazebrook, K., Abraham, R. G., McCarthy, P. J., et al. (2004). A High Abundance of Massive Galaxies 3-6 Billion Years after the Big Bang, *Nature*, **430**, 181–184.
- Glazebrook, K., Ellis, R. S., Colless, M., et al. (1995). The Morphological Identification of the Rapidly Evolving Population of Faint Galaxies, *Monthly Notices of the Royal Astronomical Society*, **275**, L19–L22.
- Gold, T. (1968). Rotating Neutron Stars as the Origin of Pulsating Radio Sources, *Nature*, 218, 731–732.
- Goldreich, P. & Julian, W. H. (1969). Pulsar Electrodynamics, Astrophysical Journal, 157, 869–880.
 Goodrich, R. W. & Osterbrock, D. E. (1983). MRK 744 and MRK 1066 Two Seyfert galaxies with strong absorption-line spectra, Astrophysical Journal, 269, 416–422.
- Gould, R. J. (2005). Electromagnetic Processes. Princeton: Princeton University Press.
- Gradshteyn, I. S. & Ryzhik, I. M. (1980). *Tables of integrals, series and products*. New York: Dover Publications.
- Granot, J. (2008). Critical Review of Basic Afterglow Concepts, ArXiv e-prints.
- Granot, J. & Sari, R. (2002). The Shape of Spectral Breaks in Gamma-Ray Burst Afterglows, *Astrophysical Journal*, **568**, 820–829.
- Green, D. A., Reynolds, S. P., Borkowski, K. J., et al. (2008). The radio expansion and brightening of the very young supernova remnant G1.9+0.3, Monthly Notices of the Royal Astronomical Society, 387, L54–L58.

- Greenhill, L. J., Henkel, C., Becker, R., Wilson, T. L., & Wouterloot, J. G. A. (1995a). Centripetal acceleration within the subparsec nuclear maser disk of NGC 4258., Astronomy and Astrophysics, 304, 21–33.
- Greenhill, L. J., Jiang, D. R., Moran, J. M., et al. (1995b). Detection of a Subparsec Diameter Disk in the Nucleus of NGC 4258, *Astrophysical Journal*, **440**, 619–627.
- Greiner, J., Cuby, J. G., & McCaughrean, M. J. (2001). An unusually massive stellar black hole in the Galaxy, *Nature*, **414**, 522–525.
- Greisen, K. (1966). End to the Cosmic-Ray Spectrum?, Physical Review Letters, 16, 748-750.
- Griffin, R. F. (1985). The distributions of periods and amplitudes of late-type spectroscopic binaries, in *Interacting Binaries*, eds Eggleton, P. P. & Pringle, J. E., pp. 1–12.
- Gueth, F. & Guilloteau, S. (1999). The jet-driven molecular outflow of HH 211, *Astronomy and Astrophysics*, **343**, 571–584.
- Gugliucci, N. E., Taylor, G. B., Peck, A. B., & Giroletti, M. (2005). Dating COINS: kinematic ages for compact symmetric objects, Astrophysical Journal, 622, 136–148.
- Gull, S. F. (1975). The X-ray, Optical and Radio Properties of Young Supernova Remnants, Monthly Notices of the Royal Astronomical Society, 171, 263–278.
- Gull, S. F. & Northover, K. J. E. (1973). Bubble Model of Extragalactic Radio Sources, *Nature*, 244, 80–83.
- Gunn, J. E. (1978). The Friedmann Models and Optical Observations in Cosmology, in Observational Cosmology: 8th Advanced Course, Swiss Society of Astronomy and Astrophysics, Saas-Fee 1978, eds Maeder, A., Martinet, L., & Tammann, G., pp. 1–121.
 Geneva: Geneva Observatory Publications.
- Gunn, J. E. & Ostriker, J. P. (1970). On the nature of pulsars. III. Analysis of observations, Astrophysical Journal, 160, 979–.
- Haberl, F. (2007). The magnificent seven: magnetic fields and surface temperature distributions, *Astrophysics and Space Science*, **308**, 181–190.
- Hague, J. D. (2009). Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data, in *Proceedings of the 31st International Cosmic Ray Conference (Lodz, Poland)*, ed. XX, pp. XX–XX. XX.
- Hampel, W., Handt, J., Heusser, G., et al. (1999). GALLEX Solar Neutrino Observations: Results for GALLEX IV, *Physics Letters B*, **447**, 127–133.
- Häring, N. & Rix, H. (2004). On the Black Hole Mass-Bulge Mass Relation, *Astrophysical Journal Letters*, **604**, L89–L92.
- Harms, R. J., Ford, H. C., Tsvetanov, Z. I., et al. (1994). HST FOS Spectroscopy of M87: Evidence for a Disk of Ionized Gas around a Massive Black Hole, *Astrophysical Journal Letters*, 435, 1.35–1.38.
- Hasinger, G., Burg, R., Giacconi, R., et al. (1993). A Deep X-ray Survey in the Lockman Hole and the soft X-ray Log *N*-Log *S*, *Astronomy and Astrophysics*, **275**, 1–15.
- Hasinger, G. & van der Klis, M. (1989). Two patterns of correlated X-ray timing and spectral behaviour in low-mass X-ray binaries, *Astronomy and Astrophysics*, **225**, 79–96.
- Hauser, M. G., Arendt, R. G., Kelsall, T., et al. (1998). The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. I. Limits and Detections, Astrophysical Journal, 508, 25–43.
- Hauser, M. G. & Dwek, E. (2001). The Cosmic Infrared Background: Measurements and Implications, *Annual Review of Astronomy and Astrophysics*, **39**, 249–307.
- Hawking, S. W. (1972). Black Holes in General Relativity, *Communications in Mathematical Physics*, **25**, 152–166.
- Hawking, S. W. (1975). Particle Creation by Black Holes, in *Quantum gravity; Proceedings of the Oxford Symposium*, eds Isham, C. J., Penrose, R., & Sciama, D. W., pp. 219–267. Oxford: Clarendon Press.
- Hawking, S. W. & Ellis, G. R. (1973). The Large Scale Structure of Space-Time. Cambridge:

- Cambridge University Press.
- Hawkins, M. R. S. (1986). On the nature of objects detected as faint long-term variables, *Monthly Notices of the Royal Astronomical Society*, **219**, 417–426.
- Hayashi, C. (1961). Stellar Evolution in Early Phases of Gravitational Contraction, *Publications of the Astronomical Society of Japan*, 13, 450–452.
- Hazard, C., Mackey, M. B., & Shimmins, A. J. (1963). Investigation of the Radio Source 3C 273 by the Method of Lunar Occultations, *Nature*, **197**, 1037–1039.
- Heckman, T. M. (1980). An optical and radio survey of the nuclei of bright galaxies Activity in normal galactic nuclei, *Astronomy and Astrophysics*, **87**, 152–164.
- Heiles, C. (1976). The interstellar magnetic field, *Annual Review of Astronomy and Astrophysics*, **14**, 1–22.
- Heitler, W. (1954). The Quantum Theory of Radiation. Oxford: Oxford University Press.
- Hess, V. (1912). Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten, (Concerning Observations of Penetrating Radiation on Seven Free Balloon Flights), Physikalische Zeitschrift, 13, 1084–1091.
- Hesser, J. E., Harris, W. E., VandenBerg, D. A., et al. (1987). A CCD Color-magnitude Study of 47 Tucanae, *Publications of the Astronomical Society of the Pacific*, **99**, 739–808.
- Hewish, A. (1986). The pulsar era, *Quarterly Journal of the Royal Astronomical Society*, 27, 548–558.
- Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., & Collins, R. A. (1968). Observations of a Rapidly Pulsating Radio Source, *Nature*, **217**, 709–713.
- Hewitt, J. N., Turner, E. L., Burke, B. F., Lawrence, C. R., & Bennett, C. L. (1987). A VLA gravitational lens survey, in *Observational Cosmology: IAU Symposium No. 124*, eds Hewitt, A., Burbidge, G., & Fang, L. Z., pp. 747–750. Dordrecht: D. Reidel Publishing Company.
- Heyvaerts, J. (1981). Particle acceleration in solar flares., in *Solar flare magnetohydrodynamics*, ed. Priest, E. R., pp. 429–555. London: Gordon and Breach.
- Hildebrand, R. H. (1983). The Determination of Cloud Masses and Dust Characteristics from Submillimetre Thermal Emission, *Quarterly Journal of the Royal Astronomical Society*, 24, 267–282.
- Hillas, A. M. (1984). The Origin of Ultra-High-Energy Cosmic Rays, Annual Review of Astronomy and Astrophysics, 22, 425–444.
- Hillebrandt, W. & Niemeyer, J. C. (2000). Type IA Supernova Explosion Models, Annual Review of Astronomy and Astrophysics, 38, 191–230.
- Hillenbrand, L. A. (1997). On the Stellar Population and Star-Forming History of the Orion Nebula Cluster, *Astronomical Journal*, **113**, 1733–1768.
- Hinton, J. (2009). Ground-based gamma-ray astronomy with Cherenkov telescopes, *New Journal of Physics*, **11**(5), 055005–+.
- Hirata, K. S., Inoue, K., Kajita, T., Kifune, T., & Kihara, K. (1990). Results from One Thousand Days of Real-time, Directional Solar-Neutrino Data, *Physical Review Letters*, **65**, 1297–1300.
- Hjellming, R. M. & Johnston, K. J. (1981). An analysis of the proper motions of SS 433 radio jets, *Astrophysical Journal Letters*, **246**, L141–L145.
- Hjorth, J., Sollerman, J., Møller, P., et al. (2003). A Very Energetic Supernova Associated with the γ -ray burst of 29 March 2003, *Nature*, **423**, 847–850.
- Hoekstra, H., Yee, H. K. C., & Gladders, M. D. (2004). Properties of Galaxy Dark Matter Halos from Weak Lensing, *Astrophysical Journal*, **606**, 67–77.
- Hogg, D. W., Blanton, M. R., Brinchmann, J., et al. (2004). The Dependence on Environment of the Color-Magnitude Relation of Galaxies, *Astrophysical Journal*, **601**, L29–L32.
- Holloway, N. J. & Pryce, M. H. L. (1981). Properties of gaps in pulsar magnetospheres, Monthly Notices of the Royal Astronomical Society, 194, 95–110.
- Homan, D. C., Kadler, M., Kellermann, K. I., et al. (2009). MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. VII. Blazar Jet Acceleration, *Astrophysical Journal*,

- 706, 1253-1268.
- Hook, I. M., McMahon, R. G., Boyle, B. J., & Irwin, M. J. (1991). The variability of a large sample of quasars, in *The Space Distribution of Quasars*, ed. Crampton, D., volume 21, pp. 67–75. San Francisco: Astronomical Society of the Pacific Conference Series.
- Horne, K. & Marsh, T. R. (1986). Indirect Imaging of Accretion Disks in Binaries, in *The Physics of Accretion onto Compact Objects*, eds Mason, K. O., Watson, M. G., & White, N. E., pp. 1–13. Berlin: Springer Verlag.
- Hosaka, J., Ishihara, K., Kameda, J., et al. (2006). Solar neutrino measurements in Super-Kamiokande-I, *Physical Review D*, **73**, 112001–+.
- Hoyle, F. & Fowler, W. A. (1963). On the Nature of Strong Radio Sources, Monthly Notices of the Royal Astronomical Society, 125, 169–176. Also, Nature of Strong Radio Sources, (1963), Nature, 197, 533–535.
- Hoyle, F. & Lyttleton, R. A. (1939). The effect of interstellar matter on climatic variation, *Proceedings of the Cambridge Philosophical Society*, **35**, 405–XXX.
- Hubble, E. P. (1929). A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae, *Proceedings of the National Academy of Sciences*, **15**, 168–173.
- Hubble, E. P. (1936). The Realm of the Nebulae. New Haven: Yale University Press.
- Huchra, J., Jarrett, T., Skrutskie, M., et al. (2005). The 2MASS Redshift Survey and Low Galactic Latitude Large-Scale Structure, in *Nearby Large-Scale Structures and the Zone of Avoidance*, ed. Woudt, A. P. F. . P. A., volume 329 of *Astronomical Society of the Pacific Conference Series*, pp. 135–146.
- Hughes, P. A. (1991). Beams and jets in astrophysics.
- Hulse, R. A. & Taylor, J. H. (1975). Discovery of a Pulsar in a Binary System, Astrophysical Journal Letters, 195, L51–L53.
- Illingworth, G. (1977). Rotation (?) in 13 Elliptical Galaxies, *Astrophysical Journal Letters*, **218**, L43–L47.
- Inskip, K. J., Best, P. N., Longair, M. S., & MacKay, D. J. C. (2002). Infrared Magnitude-redshift Relations for Luminous Radio Galaxies, *Monthly Notices of the Royal Astronomical Society*, 329, 277–289.
- Irwin, M., McMahon, R. G., & Hazard, C. (1991). APM optical surveys for high redshift quasars, in *ASP Conf. Ser. 21: The Space Distribution of Quasars*, ed. Crampton, D., pp. 117–126.
- Iyudin, A. F., Diehl, R., Bloemen, H., et al. (1994). COMPTEL observations of Ti-44 gamma-ray line emission from CAS A, *Astronomy and Astrophysics*, **284**, L1–L4.
- Jackson, J. D. (1999). Classical Electrodynamics. New York: John Wiley and Sons.
- Jenkins, E. B. (1987). Observations of absorption lines from highly ionized atoms, in *Exploring the Universe with the IUE Satellite*, ed. Kondo, Y., volume 129 of *Astrophysics and Space Science Library*, pp. 531–548.
- Jennison, R. C. & Das Gupta, M. K. (1953). Fine Structure of the Extra-Terrestrial Radio Source Cygnus 1, Nature, 172, 996–997.
- Jokipii, J. R. (1973). Turbulence and scintillations in the interplanetary plasma, *Annual Review of Astronomy and Astrophysics*, **11**, 1–28.
- Kaastra, J. S., Tamura, T., Peterson, J. R., et al. (2004). Spatially Resolved X-ray Spectroscopy of Cooling Clusters of Galaxies, *Astronomy and Astrophysics*, **413**, 415–439.
- Kaiser, C. R. & Alexander, P. (1997). A self-similar model for extragalactic radio sources, Monthly Notices of the Royal Astronomical Society, 286, 215–222.
- Kaler, J. (2001). Planetary Nebulae, Encyclopedia of Astronomy and Astrophysics, 3, 2066–2074.
- Kang, H. & Jones, T. W. (2006). Numerical studies of diffusive shock acceleration at spherical shocks, *Astroparticle Physics*, **25**, 246–258.
- Kang, H., Ryu, D., & Jones, T. W. (2009). Self-Similar Evolution of Cosmic-Ray Modified Shocks: The Cosmic-Ray Spectrum, *Astrophysical Journal*, **695**, 1273–1288.
- Kapahi, V. K. & Saikia, D. J. (1982). Relativistic beaming in the central components of double

- radio quasars, Journal of Astrophysics and Astronomy, 3, 465-483.
- Karttunen, H., Kroger, P., Oja, H., Pountanen, M., & Donner, K. (2007). *Fundamental Astronomy*. Heidelberg: Springer-Verlag.
- Karzas, W. J. & Latter, R. (1961). Electron Radiative Transitions in a Coulomb Field., Astrophysical Journal Supplement, pp. 167–212.
- Katz-Stone, D. M., Kassim, N. E., Lazio, T. J. W., & O'Donnell, R. (2000). Spatial Variations of the Synchrotron Spectrum within Tycho's Supernova Remnant (3C 10): A Spectral Tomography Analysis of Radio Observations at 20 and 90 Centimeter Wavelengths, *Astrophysical Journal*, 529, 453–462.
- Kauffmann, G., Heckman, T. M., White, S. D. M., et al. (2003). The Dependence of Star Formation History and Internal Structure on Stellar Mass for 10⁵ low-redshift Galaxies, *Monthly Notices of the Royal Astronomical Society*, **341**, 54–69.
- Kellermann, K. I., Vermeulen, R. C., Zensus, J. A., & Cohen, M. H. (1998). Sub-Milliarcsecond Imaging of Quasars and Active Galactic Nuclei, *Astronomical Journal*, **115**, 1295–1318.
- Kembhavi, A., Feigelson, E. D., & Singh, K. P. (1986). X-ray and radio core emission in radio quasars, *Monthly Notices of the Royal Astronomical Society*, **220**, 51–67.
- Kembhavi, A. K. & Narlikar, J. V. (1999). *Quasars and active galactic nuclei an introduction*. Cambridge: Cambridge University Press.
- Kennicutt, R. (1989). The Star Formation Law in Galactic Discs, Astrophysical Journal, 344, 685–703.
- Kennicutt, R. (2006). Young Spirals Get Older, Nature, 442, 753-754.
- Kennicutt, R. C., Edgar, B. K., & Hodge, P. W. (1989). Properties of H II Region Populations in Galaxies. II The H II Region Luminosity Function, *Astrophysical Journal*, 337, 761–781.
- Kennicutt, Jr., R. C. (1998). The Global Schmidt Law in Star-forming Galaxies, Astrophysical Journal, 498, 541–552.
- Kent, S. M. & Gunn, J. E. (1982). The Dynamics of Rich Clusters of Galaxies. I The Coma Cluster, *Astronomical Journal*, **87**, 945–971.
- Kerr, R. P. (1963). Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics, *Physical Review Letters*, 11, 237–238.
- Khachikian, E. Y. & Weedman, D. W. (1971). A Spectroscopic Study of Luminous Galactic Nuclei, Astrofizika, 7, 389–406.
- Khachikian, E. Y. & Weedman, D. W. (1974). An Atlas of Seyfert Galaxies, *Astrophysical Journal*, **192**, 581–589.
- Kiepenheuer, K. O. (1950). Cosmic Rays as the Source of General Galactic Radio Emission, *Physical Review*, **79**, 738–739.
- King, I. R. (1966). The Structure of Star Clusters. III. Some Simple Dynamical Models, Astronomical Journal, 71, 64–75.
- King, I. R. (1981). The Dynamics of Globular Clusters, *Quarterly Journal of the Royal Astronomical Society*, **22**, 227–243.
- Kippenhahn, R. & Weigert, A. (1990). *Stellar Structure and Evolution*. Berlin and Heidelberg: Springer-Verlag.
- Klebesadel, R. W., Strong, I. B., & Olson, R. A. (1973). Observations of Gamma-Ray Bursts of Cosmic Origin, *Astrophysical Journal Letters*, **182**, L85–L88.
- Klochkov, D., Staubert, R., Postnov, K., et al. (2008). INTEGRAL observations of Hercules X-1, Astronomy abd Astrophysics, 482, 907–915.
- Kneib, J. P. (1993). Ph.D Dissertation. Universit Paul Sabatier, Toulouse.
- Koch, H. W. & Motz, J. W. (1959). Bremsstrahlung cross-section formulas and related data, Reviews of modern physics, 31, 920–955.
- Kolb, E. W. & Turner, M. S. (1990). *The Early Universe*. Redwood City, California: Addison–Wesley Publishing Co.
- Kolhörster, W. (1913). Messungen der Durchdringenden Strahlung im Freiballon in Grösseren

- Höhen, Physikalische Zeitschrift, 14, 1153-1156.
- Kompaneets, A. (1956). The Establishment of Thermal Equilibrium between Quanta and Electrons, *Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki*, **31**, 876–885. (English translation: 1957, Soviet Physics, 4, 730–737).
- Koo, D. C. & Kron, R. (1982). QSO Counts A Complete Survey of Stellar Objects to *B* = 23, *Astronomy and Astrophysics*, **105**, 107–119.
- Kormendy, J. & Bender, R. (1999). The Double Nucleus and Central Black Hole of M31, *Astrophysical Journal*, **522**, 772–792.
- Kormendy, J. & Richstone, D. O. (1995). Inward Bound The Search For Supermassive Black Holes In Galactic Nuclei, *Annual Review of Astronomy and Astrophysics*, **33**, 581–624.
- Kovalev, Y. Y., Aller, H. D., Aller, M. F., et al. (2009). The Relation Between AGN Gamma-Ray Emission and Parsec-Scale Radio Jets, *Astrophysical Journal Letters*, **696**, L17–L21.
- Kovalev, Y. Y., Kellermann, K. I., Lister, M. L., et al. (2005). Sub-Milliarcsecond Imaging of Quasars and Active Galactic Nuclei. IV. Fine-Scale Structure, *Astronomical Journal*, 130, 2473–2505.
- Kowal, G., Lazarian, A., Vishniac, E. T., & Otmianowska-Mazur, K. (2009). Numerical Tests of Fast Reconnection in Weakly Stochastic Magnetic Fields, *Astrophysical Journal*, **700**, 63–85.
- Kramer, M., Stairs, I. H., Manchester, R. N., et al. (2006). Tests of General Relativity from Timing the Double Pulsar, *Science*, **314**, 97–102.
- Krause, O., Birkmann, S. M., Usuda, T., et al. (2008a). The Cassiopeia A supernova was of Type IIb, *Science*, **320**, 1195–1197.
- Krause, O., Tanaka, M., Usuda, T., et al. (2008b). Tycho Brahe's 1572 supernova as a standard type Ia as revealed by its light-echo spectrum, *Nature*, **456**, 617–619.
- Krolik, J. H. (1999). Active galactic nuclei from the central black hole to the galactic environment. Princeton, NJ: Princeton University Press.
- Krymsky, G. F. (1977). A Regular Mechanism for the Acceleration of Charged Particles on the Front of a Shock Wave, *Doklady Akademiya Nauk SSSR*, **234**, 1306–08.
- Krzeminski, W. (1974). The Identification and UBV Photometry of the Visible Component of the Centaurus X-3 Binary System, *Astrophysical Journal Letters*, **192**, L135–L138.
- Ku, W., Helfand, D. J., & Lucy, L. B. (1980). X-ray properties of quasars, Nature, 288, 323-328.
- Kubota, A. & Makishima, K. (2005). Observational studies of stellar black hole binaries and ULXs, *ArXiv Astrophysics e-prints*. See also: Advances in Space Research, Special Issue Proceedings of 35th COSPAR Conference, Paris, France, 18-25 July 2004.
- Kulsrud, R. & Pearce, W. P. (1969). The effect of wave-particle interactions on the propagation of cosmic rays, *Astrophysical Journal*, **156**, 445–469.
- Kulsrud, R. M. (2005). Plasma Physics for Astrophysics. Princeton, NJ: Princeton University Press. Labeyrie, A. (1978). Stellar interferometry methods, Annual Review of Astronomy and Astrophysics, 16, 77–102.
- Lacy, M., Miley, G., Rawlings, S., et al. (1994). 8C 1435+635: a Radio Galaxy at z = 4.25, *Monthly Notices of the Royal Astronomical Society*, **271**, 504–512.
- Lagache, G., Dole, H., & Puget, J.-L. (2003). Modelling infrared galaxy evolution using a phenomenological approach, *Monthly Notices of the Royal Astronomical Society*, 338, 555–571.
- Lagache, G., Dole, H., Puget, J.-L., et al. (2004). Polycyclic Aromatic Hydrocarbon Contribution to the Infrared Output Energy of the Universe at z ~= 2, *Astrophysical Journal Supplement*, **154**, 112–117.
- Lagage, P. O. & Cesarsky, C. J. (1983). The maximum energy of cosmic rays accelerated by supernova shocks, astronomy and Astrophysics, 125, 249–257.
- Laing, R. A. (1988). The sidedness of jets and depolarization in powerful extragalactic radio sources, *Nature*, 331, 149–151.
- Laing, R. A. (1993). Radio observations of jets: large scales., in Astrophysical Jets, eds Burgarella,

- D., Livio, M., & O'Dea, C., volume 103, pp. 95–119. Cambridge: Cambridge University Press. Laing, R. A. & Bridle, A. H. (2002). Dynamical models for jet deceleration in the radio galaxy 3C 31, *Monthly Notices of the Royal Astronomical Society*, **336**, 1161–1180.
- Laing, R. A., Riley, J. M., & Longair, M. S. (1983). Bright radio sources at 178 MHz Flux densities, optical identifications and the cosmological evolution of powerful radio galaxies, *Monthly Notices of the Royal Astronomical Society*, 204, 151–187.
- Lal, D. (1972). Hard Rock Cosmic Ray Archaeology, Space Science Reviews, 14, 3–102.
- Lamb, H. (1932). Hydrodynamics (6th edition). Cambridge: Cambridge University Press.
- Landau, L. D. & Lifshitz, E. M. (1987). Fluid Mechanics (2nd edition). Oxford: Butterworth-Heinemann.
- Larmor, J. (1884). Electromagnetic induction in conducting sheets and solid bodies, *Philosophical Magazine, Series* 5, **17**, 1–23.
- Lattes, C., Occhialini, G., & Powell, C. (1947). Observations on the Tracks of Slow Mesons in Photographic Emulsions, *Nature*, **160**, 453–456.
- Lawson, K. D., Mayer, C. J., Osborne, J. L., & Parkinson, M. L. (1987). Variations in the Spectral Index of the Galactic Radio Continuum Emission in the Northern Hemisphere, *Monthly Notices of the Royal Astronomical Society*, 225, 307–327.
- Lazarian, A. & Vishniac, E. T. (1999). Reconnection in a Weakly Stochastic Field, *Astrophysical Journal*, **517**, 700–718.
- Le Borgne, D., Elbaz, D., Ocvirk, P., & Pichon, C. (2009). Cosmic star-formation history from a non-parametric inversion of infrared galaxy counts, *Astronomy and Astrophysics*, **504**, 727–740.
- Le Roux, E. (1961). Étude théorique du rayonnement synchrotron des radiosources, *Annales d'Astrophysique*, **24**, 71–85.
- Leavitt, H. S. (1912). Periods of 25 Variable Stars in the Small Magellanic Cloud, *Harvard College Observatory Circular*, **No. 173**, 1–2.
- Leger, A. & Puget, J. L. (1984). Identification of the 'Unidentified' IR Emission Features of Interstellar Dust?, *Astronomy and Astrophysics*, **137**, L5–L8.
- Legg, M. P. C. & Westfold, K. C. (1968). Elliptic Polarization of Synchrotron Radiation, Astrophysical Journal, 154, 499–514.
- Leibundgut, B. (2000). Type Ia Supernovae, Astronomy and Astrophysics Reviews, 10, 179-209.
- Leighton, R. (1959). Introduction to Modern Physics. San Francisco: Addison-Wesley Publications.
- Lequeux, J., Peimbert, M., Rayo, J. F., Serrano, A., & Torres-Peimbert, S. (1979). Chemical Composition and Evolution of Irregular and Blue Compact Galaxies, *Astronomy and Astrophysics*, 80, 155–166.
- eds Lewin, W. H. G. & van der Klis, M. (2006).
- Liedahl, D. A. (1999). The X-Ray Spectral Properties of Photoionized Plasma and Transient Plasmas, in *X-Ray Spectroscopy in Astrophysics*, eds van Paradijs, J. & Bleeker, J. A. M., volume 520 of *Lecture Notes in Physics, Berlin Springer Verlag*, pp. 189–+.
- Lightman, A. P. & Eardley, D. M. (1974). Black holes in binary systems: instability of disk accretion, Astrophysical Journal, 187, L1–L3.
- Lilly, S. & Cowie, L. (1987). Deep Infrared Surveys, in *Infrared Astronomy with Arrays*, eds Wynn-Williams, C. & Becklin, E., pp. 473–482. Honolulu: Institute for Astronomy, University of Hawaii Publications.
- Lilly, S. J. (1988). Discovery of a Radio Galaxy at a Redshift of 3.395, *Astrophysical Journal*, **333**, L161–L167.
- Lilly, S. J., Tresse, L., Hammer, F., Crampton, D., & LeFevre, O. (1995). The Canada-France Redshift Survey. VI. Evolution of the Galaxy Luminosity Function to $z \sim 1$, *Astrophysical Journal*, **455**, 108–124.
- Lin, R. P., Krucker, S., Hurford, G. J., et al. (2003). RHESSI Observations of Particle Acceleration and Energy Release in an Intense Solar Gamma-Ray Line Flare, *Astrophysical Journal Letters*,

- 595, L69-L76.
- Liu, Q. Z., van Paradijs, J., & van den Heuvel, E. P. J. (2006). Catalogue of high-mass X-ray binaries in the Galaxy (4th edition), *astronomy and Astrophysics*, **455**, 1165–1168.
- Longair, M. S. (1966). On the Interpretation of Radio Source Counts, *Monthly Notices of the Royal Astronomical Society*, **133**, 421–436.
- Longair, M. S. (1978). Radio Astronomy and Cosmology, in *Observational Cosmology: 8th Advanced Course, Swiss Society of Astronomy and Astrophysics, Saas-Fee 1978*, eds Maeder, A., Martinet, L., & Tammann, G., pp. 125–257. Geneva: Geneva Observatory Publications.
- Longair, M. S. (1981). High Energy Astrophysics, first edition. Cambridge: Cambridge University Press
- Longair, M. S. (1988). The New Astrophysics, in *The New Physics*, ed. Davies, P., pp. 94–208. Cambridge: Cambridge University Press.
- Longair, M. S. (1995). The Physics of Background Radiation, in *The Deep Universe, by Sandage, A.R., Kron, R.G. and Longair, M.S.*, eds Binggeli, B. & Buser, R., pp. 317–514.
- Longair, M. S. (1997a). Active Galactic Nuclei The Redshift One 3CR galaxies, *Astronomy and Geophysics*, **38**, 10–15.
- Longair, M. S. (1997b). *High Energy Astrophysics, Volume 1 (revised second edition)*. Cambridge: Cambridge University Press.
- Longair, M. S. (1997c). *High Energy Astrophysics, Volume 2 (revised second edition)*. Cambridge: Cambridge University Press.
- Longair, M. S. (2003). Theoretical Concepts in Physics: An Alternative View of Theoretical Reasoning in Physics. Cambridge: Cambridge University Press.
- Longair, M. S. (2006). The Cosmic Century: A History of Astrophysics and Cosmology. Cambridge: Cambridge University Press.
- Longair, M. S. (2008). Galaxy Formation, second edition. Berlin and Heidelberg: Springer-Verlag. Longair, M. S. & Riley, J. M. (1979). Statistical evidence on the dynamical evolution of extended radio sources, Monthly Notices of the Royal Astronomical Society, 188, 625–635.
- Longair, M. S., Ryle, M., & Scheuer, P. A. G. (1973). Models of extended radiosources, Monthly Notices of the Royal Astronomical Society, 164, 243–270.
- Lorimer, D. & Kramer, M. (2005). *Handbook of pulsar astronomy*. Cambridge University Press.
- Lotz, J. M., Madau, P., Giavalisco, M., Primack, J., & Ferguson, H. C. (2006). The Rest-Frame Far-Ultraviolet Morphologies of Star-forming Galaxies at $z \sim 1.5$ and 4, *Astrophysical Journal*, **636**, 592–609.
- Lovelace, R. V. E. & Romanova, M. M. (2003). Relativistic Poynting Jets from Accretion Disks, **596**, L159–L162.
- Lucek, S. G. & Bell, A. R. (2000). Non-linear amplification of a magnetic field driven by cosmic ray streaming, *Monthly Notices of the Royal Astronomical Society*, **314**, 65–74.
- Lund, N. (1984). Cosmic Ray Abundances, Elemental and Isotopic, in *Cosmic Radiation in Contemporary Astrophysics*, ed. Shapiro, M. M., pp. 1–26. Dordrecht: D. Reidel Publishing Company.
- Luo, D., McCray, D., & Slavin, J. (1994). The impact of SN1987A with its interstellar ring, Astrophysical Journal, 430, 264–276.
- Lyne, A. G., Burgay, M., Kramer, M., et al. (2004). A Double-Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics, *Science*, **303**, 1153–1157.
- Lyne, A. G. & Graham-Smith, F. (2006). *Pulsar astronomy, 3rd edition*. Cambridge: Cambridge University Press.
- Madau, P., Ferguson, H., Dickinson, M., et al. (1996). High-redshift Galaxies in the *Hubble Deep Field*: Colour Selection and Star Formation History to z 4, *Monthly Notices of the Royal Astronomical Society*, **283**, 1388–1404.
- Magorrian, J., Tremaine, S., Richstone, D., et al. (1998). The Demography of Massive Dark Objects

- in Galaxy Centers, Astronomical Journal, 115, 2285-2305.
- Mahoney, W. A., Varnell, L. S., Jacobson, A. S., et al. (1988). Gamma-ray observations of Co-56 in SN 1987A, *Astrophysical Journal Letters*, **334**, L81–L85.
- Majewski, S. R., Munn, J. A., Kron, R. G., et al. (1991). A proper motion and variability QSO survey to B = 22.5, in *The Space Distribution of Quasars*, ed. Crampton, D., volume 21, pp. 55–65. San Francisco: Astronomical Society of the Pacific Conference Series.
- Malkan, M. & Sargent, W. L. (1982). The Ultraviolet Excess of Seyfert 1 Galaxies and Quasars, Astrophysical Journal, 254, 22–37.
- Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M. (2005). ATNF Pulsar Catalog, *VizieR Online Data Catalog*, **7245**, 0–+.
- Manchester, R. N. & Taylor, J. H. (1977). *Pulsars*. San Francisco: W. H. Freeman and Company Ltd.
- Margon, B. & Ostriker, J. P. (1973). The Luminosity Function of Galactic X-Ray Sources a Cutoff and a "standard Candle"?, *Astrophysical Journal*, **186**, 91–96.
- Markarian, B. E. (1967). Galaxies with an Ultraviolet Continuum., Astrofizica, 3, 24–38.
- Markarian, B. E., Lipovetsky, V. A., & Stepanian, D. A. (1981). Galaxies with Ultraviolet Continuum XV, *Astrofizica*, 17, 619–627. Translation: (1982), *Astrophysics*, 17, 321–332.
- Marscher, A. P. (1993). Compact extragalactic radio jets., in *Astrophysical Jets*, ed. D. Burgarella, M. Livio, . C. O., volume 103 of *Astrophysics and Space Science Library*, pp. 73–94. Cambridge: Cambridge University Press.
- Marscher, A. P., Jorstad, S. G., Gómez, J., et al. (2002). Observational evidence for the accretion-disk origin for a radio jet in an active galaxy, *Nature*, **417**, 625–627.
- Marsh, T. R., Horne, K., Schlegel, E. M., Honeycutt, R. K., & Kaitchuck, R. H. (1990). Doppler imaging of the dwarf nova U Geminorum, *Astrophysical Journal*, **364**, 637–646.
- Matt, G., Fabian, A. C., & Reynolds, C. S. (1997). Geometrical and chemical dependence of K-shell X-ray features, Monthly Notices of the Royal Astronomical Society, 289, 175–184.
- Matthews, T. A., Morgan, W. W., & Schmidt, M. (1964). A Discussion of Galaxies Identified with Radio Sources, *Astrophysical Journal*, **140**, 35–49.
- Matthews, T. A. & Sandage, A. R. (1963). Optical Identification of 3C 48, 3C 196 and 3C 286 with Stellar Objects, *Astrophysical Journal*, **138**, 30–56.
- Matthewson, D. S. & Ford, V. L. (1970). Polarization Observations of 1800 Stars, Memoirs of the Royal Astronomical Society, 74, 139–182.
- Matz, S. M., Share, G. H., Leising, M. D., Chupp, E. L., & Vestrand, W. T. (1988). Gamma-ray line emission from SN1987A, *Nature*, 331, 416–418.
- Mayor, M. & Queloz, D. (1995). A Jupiter-mass Companion to a Solar-type Star, *Nature*, **378**, 355–359.
- McCarthy, P. J. (2006). Galaxy Formation and Cosmology in the ELT Era, in *Scientific Requirements for Extremely Large Telescopes: IAU Symposium No. 232*, eds Whitelock, P., Dennefeld, M., & Leibundgut, B., pp. 119–129. Cambridge: Cambridge University Press.
- McCarthy, P. J., Le Borgne, D., Crampton, D., et al. (2004). Evolved Galaxies at $z \ge 1.5$ from the Gemini Deep Deep Survey: The Formation Epoch of Massive Stellar Systems, *Astrophysical Journal Letters*, **614**, L9–L12.
- McCarthy, P. J., van Breugel, W. J. M., Spinrad, H., & Djorgovski, G. (1987). A Correlation between the Radio and Optical Morphologies of Distant 3CR Radio Galaxies, *Astrophysical Journal*, **321**, L29–L33.
- McClintock, J. E. & Remillard, R. A. (2006). Black hole binaries, pp. 157-213.
- McLeod, J. M. & Andrew, B. H. (1968). The Radio Source VRO 42.22.01, *Astrophysical Letters*, 1, 243.
- McLure, R. J., Jarvis, M. J., Targett, T. A., Dunlop, J. S., & Best, P. N. (2006). On the Evolution of the Black Hole:Spheroid Mass Ratio, *Monthly Notices of the Royal Astronomical Society*, **368**, 1395–1403.

- Melia, F. & Falcke, H. (2001). The Supermassive Black Hole at the Galactic Center, *Annual Review of Astronomy and Astrophysics*, **39**, 309–352.
- Mellinger, A. (2007). Web-address: http://home.arcor-online.de/axel.mellinger/.
- Menjo, H., Miyahara, H., Kuwana, K., et al. (2005). Possibility of the detection of past supernova explosions by radiocarbon measurement, in *International Cosmic Ray Conference, Pune 2005*, volume 2, pp. 357–360. Mumbai: Tata Institute of Fundamental Research.
- Merritt, D. (1987). The Distribution of Dark Matter in the Coma Cluster, *Astrophysical Journal*, **313**, 121–135.
- Mestel, L. (1999). Stellar magnetism. Oxford: Clarendon Press.
- Mészáros, P. (2002). Theories of Gamma-Ray Bursts, *Annual Review of Astronomy and Astrophysics*, **40**, 137–169.
- Mészáros, P. & Rees, M. J. (1993). Gamma-Ray Bursts: Multiwaveband Spectral Predictions for Blast Wave Models, *Astrophysical Journal*, **418**, L59–L62.
- Metcalfe, N., Shanks, T., Campos, A., Fong, R., & Gardner, J. P. (1996). Galaxy Formation at High Redshifts, *Nature*, **383**, 236–237.
- Mewaldt, A. R. & Webber, R. W. (1990). Cosmic Ray Source Abundances Derived from High Energy Measurements of Fe-group Nuclei, in *International Cosmic Ray Conference*, volume 3 of *International Cosmic Ray Conference*, pp. 432–435.
- Meyer, P. (1979). Cosmic rays, in *Proceedings of the 16th International Conference on Cosmic Rays*, volume 2 of *International Cosmic Ray Conference*, pp. 115–XXX.
- Michell, J. (1784). On the Means of Discovering the Distance, Magnitude, etc. of the Fixed Stars, in Consequence of the Diminution of the Velocity of Their Light, in Case Such a Diminution Should be Found to Take Place in any of Them, and Such Other Data Should be Procured from Observations, as Would be Farther Necessary for That Purpose, *Philosophical Transactions of the Royal Society*, **74**, 35–57.
- Michelson, P. (1994). High Energy Gamma Ray Emission from Active Galaxies: EGRET Observations and Implications, in *The Physics of Active Galaxies*, ed. G. V. Bicknell, M. A. Dopita, . P. J. Q., volume 54 of *Astronomical Society of the Pacific Conference Series*, pp. 13–21.
- Mihos, J. C. & Hernquist, L. (1994). Triggering of Starbursts in Galaxies by Minor Mergers, *Astrophysical Journal*, **425**, L13–L16.
- Mihos, J. C. & Hernquist, L. (1996). Gasdynamics and Starbursts in Major Mergers, *Astrophysical Journal*, **464**, 641–663.
- Mikheyev, S. P. & Smirnov, A. Y. (1985). Resonance Enhancement of Oscillations in Matter and Solar Neutrino Spectroscopy, *Soviet Journal Nuclear Physics*, **42**, 913–917.
- Miller, G. E. & Scalo, J. M. (1979). The initial mass function and stellar birthrate in the solar neighborhood, *Astrophysical Journal Supplement Series*, **41**, 513–547.
- Miller, J. M., Fabian, A. C., Wijnands, R., et al. (2002). Evidence of Spin and Energy Extraction in a Galactic Black Hole Candidate: The XMM-Newton/EPIC-pn Spectrum of XTE J1650-500, *Astrophysical Journal Letters*, **570**, L69–L73.
- Miller, J. S. (1994). The Unification of Active Galaxies: Seyferts and Beyond, in *The Physics of Active Galaxies*, eds Bicknell, G, V., Dopita, M. A., & Quinn, P. J., volume 54 of *Astronomical Society of the Pacific Conference Series*, pp. 149–157.
- Minkowski, R. (1960). A New Distant Cluster of Galaxies, Astrophysical Journal, 132, 908–908.
- Mioduszewski, A. J., Rupen, M. P., Walker, R. C., Schillemat, K. M., & Taylor, G. B. (2004). A Summer of SS433: Forty Days of VLBA Imaging, in *Bulletin of the American Astronomical Society*, volume 36 of *Bulletin of the American Astronomical Society*, p. 967.
- Mirabel, I. F. & Rodrigues, L. F. (1994). A Superluminal Source in the Galaxy, Nature, 371, 46-48.
- Mirabel, I. F. & Rodrigues, L. F. (1998). Microquasars in our Galaxy, Nature, 392, 673-676.
- Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973). *Gravitation*. San Francisco: W.H. Freeman and Co.

- Mitchell, R. J., Culhane, J. L., Davison, P. J. N., & Ives, J. C. (1976). Ariel 5 Observations of the X-ray Spectrum of the Perseus Cluster, *Monthly Notices of the Royal Astronomical Society*, 175, 29P–34P.
- Miyoshi, M., Moran, J., Herrnstein, J., et al. (1995). Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC 4258, *Nature*, **373**, 127–129.
- Moore, C. E. & Merrill, P. W. (1968). *Partial Grotrian diagrams of astrophysical interest*. Washington: US Department of Commerce, National Bureau of Standards.
- Morgan, W. W. (1958). A Preliminary Classification of the Forms of Galaxies According to Their Stellar Population, *Publications of the Astronomical Society of the Pacific*, **70**, 364–391.
- Mukai, K., Wood, J. H., Naylor, T., Schlegel, E. M., & Swank, J. H. (1997). The X-Ray Eclipse of the Dwarf Nova HT Cassiopeiae: Results from ASCA and ROSAT HRI Observations, Astrophysical Journal, 475, 812–822.
- Murray, C. A. (1983). Vectorial Astrometry. Bristol: Adam Hilger.
- Mushotzky, R. (1980). The X-ray spectra of clusters of galaxies, in *X-ray Astronomy*, eds Giacconi, R. & Setti, G., pp. 171–179. Dordrecht: D. Reidel Publishing Company.
- Nagano, M. & Watson, A. A. (2000). Observations and implications of the ultrahigh-energy cosmic rays, Reviews of Modern Physics, 72, 689–732.
- Nakajima, T., Oppenheimer, B. R., Kulkarni, S. R., et al. (1995). Discovery of a Cool Brown Dwarf, *Nature*, **378**, 463–465.
- Narayan, R. (1991). Non-axisymmetric shear instabilities in thick accretion disks, in *Structure and properties of accretion discs*, eds Meyer, X. & XXX, X., pp. 231–247.
- Narayan, R. & Goodman, J. (1991). Non-axisymmetric shear instabilities in thick accretion disks, in *Theory of accretion discs*, eds Bertout, S., Copllin-Souffrin, S., Lasota, J.-P., & Van, T. T., pp. 231–247. XXX: Éditions frontières.
- Narayan, R., Igumenshev, I. V., & Abramowicz, M. A. (2000). Self-similar accretion flows with accretion, *Astrophysical Journal*, **539**, 798–808.
- Narayan, R. & Yi, I. (1994). Advection-dominated accretion: a self-similar solution, Astrophysical Journal Letters, 428, L13–L16.
- Neininger, N. (1992). The magnetic field structure of M51, *Astronomy and Astrophysics*, **263**, 30–36.
- Newman, E. T., Couch, K., Chinnapared, K., et al. (1965). Metric of a Rotating Charged Mass, *Journal of Mathematical Physics*, **6**, 918–919.
- Nicolet, B. (1980). A Plot of UBV Diagram, *Astronomy and Astrophysics Supplement*, **42**, 283–284. Northrop, T. G. (1963). *The Adiabtic Motion of Charged Particles*. New York: Interscience
- Publishing Company.
- Novikov, I. D. & Thorne, K. S. (1973). Astrophysics of black holes., in *Black holes*, eds DeWitt, C. & DeWitt, B. S., pp. 343–450. New York: Gordon and Breach Science Publishers.
- Oemler, A. J. (1974). The Systematic Properties of Clusters of Galaxies. Photometry of 15 Clusters, *Astrophysical Journal*, **194**, 1–20.
- Ohira, Y., Terasawa, T., & Takahara, F. (2009). Plasma Instabilities as a Result of Charge Exchange in the Downstream Region of Supernova Remnant Shocks, *Astrophysical Journal Letters*, **703**, L59–L62.
- Oliver, S. J., Rowan-Robinson, M., & Saunders, W. (1992). Infrared Background Constraints on the Evolution of IRAS Galaxies, *Monthly Notices of the Royal Astronomical Society*, **256**, 15P–22P.
- Oort, J. H. & Walraven, T. (1956). Polarization and Composition of the Crab Nebula, *Bulletin of the Astronomical Institutes of the Netherlands*, **12**, 285–311.
- Orosz, J. A. (2007). Home-page of Jerome A. Orosz. http://mintaka.sdsu.edu/faculty/orosz/web/.
- Orosz, J. A., McClintock, J. E., Narayan, R., et al. (2007). A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33, *Nature*, **449**, 872–875.

- Orr, M. J. L. & Browne, I. W. A. (1982). Relativistic beaming and quasar statistics, *Montjly Notices of the Royal Astronomical Society*, **200**, 1067–1080.
- Osmer, P. S. (1982). Evidence for a Decrease in the Space Density of Quasars at *z* more than about 3.5, *Astrophysical Journal*, **253**, 28–37.
- Osterbrock, D. E. (1978). Optical emission-line spectra of Seyfert galaxies and radio galaxies, *Physica Scripta*, **17**, 137–143.
- Osterbrock, D. E. & Ferland, G. J. (2005). *Astrophysics of gaseous nebulae and active galactic nuclei*. Mill Valley, California: University Science Books.
- Ostriker, J. P. & Peebles, P. J. E. (1973). A Numerical Study of the Stability of Flattened Galaxies: or, Can Cold Galaxies Survive?, *Astrophysical Journal*, **186**, 467–480.
- Owen, F. N. & Ledlow, M. J. (1994). The FR I/II break and the Bivariate Luminosity Function in Abell Clusters of Galaxies, in *First Stromlo Symposium: Physics of Active Galactic Nuclei*, eds Bicknell, G. V., Dopita, M. A., & Quinn, P. J., pp. 319–323. San Francisco: Astronomical Society of the Pacific Conference Series, Volume 34.
- Owen, F. N., Ledlow, M. J., Morrison, G. E., & Hill, J. M. (1997). The Cluster of Galaxies Surrounding Cygnus A, *Astrophysical Journal Letters*, **488**, L15–L17.
- Pachoczyk, A. G. (1970). *Radio Astrophysics*. San Francisco: W.H.Freeman and Company Ltd. Pacini, F. (1967). Energy Emission from a Neutron Star, *Nature*, **216**, 567–568.
- Pacini, F. (1968). Rotating Neutron Stars, Pulsars and Supernova Remnants, *Nature*, **219**, 145–146. Page, L. (1997). Review of Observations of the Cosmic Microwave Background, in *Critical*
- Page, L. (1997). Review of Observations of the Cosmic Microwave Background, in *Critical Dialogues in Cosmology*, ed. Turok, N., pp. 343–362. Singapore: World Scientific.
- Pagel, B. (1997). Nucleosynthesis and Chemical Evolution of Galaxies. Cambridge: Cambridge University Press.
- Panagia, N., Gilmozzi, R., Macchetto, F., Adorf, H.-M., & Kirshner, R. P. (1991). Properties of the SN 1987A Circumstellar Ring and the Distance to the Large Magellanic Cloud, *Astrophysical Journal*, 380, L23–L26.
- Papaloizou, J. C. B. & Pringle, J. E. (1984). The Dynamical Stability of Differentially Rotating Discs with Constant Specific Angular Momentum, *Monthly Notices of the Royal Astronomical Society*, 208, 721–750.
- Parker, E. N. (1957). Sweet's Mechanism for Merging Magnetic Fields in Conducting Fluids, Journal of Geophysical Research, 62, 509–520.
- Parker, E. N. (1965). Cosmic rays and their formation of a Galactic halo., *Astrophysical Journal*, **142**, 584–590.
- Parker, E. N. (1979). Cosmical magnetic fields. Oxford: Clarendon Press.
- Pearson, T. J., Unwin, S. C., Cohen, M. H., et al. (1981). Superluminal Expansion of Quasar 3C273, *Nature*, **290**, 365–368.
- Pearson, T. J., Unwin, S. C., Cohen, M. H., et al. (1982). Superluminal Expansion of 3C273, in *Extragalactic Radio Sources*, eds Heeschen, D. S. & Wade, C. M., pp. 355–356. Dordrecht: D. Reidel Publishing Company.
- Pengelly, R. M. (1964). Recombination spectra, I, *Monthly Notices of the Royal Astronomical Society*, **127**, 145–163.
- Penrose, R. (1969). Gravitational Collapse: the Role of General Relativity, *Rivista Nuovo Cimento*, **1**, 252–276.
- Penzias, A. A. & Wilson, R. W. (1965). A Measurement of Excess Antenna Temperature at 4080 MHz, Astrophysical Journal, 142, 419–421.
- Perley, R. A., Dreher, J. W., & Cowan, J. J. (1984). The Jet and Filaments in Cygnus A, Astrophysical Journal, 285, L35–L38.
- Perlmutter, S., Gabi, S., Goldhaber, G., et al. (1997). Measurements of the Cosmological Parameters Omega and Lambda from the First Seven Supernovae at z > 0.35, *Astrophysical Journal*, **483**, 565–581.
- Peterson, B. M. (1997). An introduction to active galactic nuclei. Cambridge: Cambridge

- University Press.
- Peterson, B. M., Balonek, T. J., & 63 authors (1991). Steps toward Determination of the Size and Structure of the Broad-line Region in Active Galactic Nuclei. II An Intensive Study of NGC 5548 at Optical Wavelengths, *Astrophysical Journal*, **368**, 119–137.
- Petschek, H. E. (1964). Magnetic Field Annihilation, NASA Special Publication, 50, 425-+.
- Phillips, M. M. (1993). The absolute magnitudes of Type IA supernovae, *Astrophysical Journal*, **413**, L105–L108.
- Pierre Auger Collaboration (2007). Correlation of the highest-energy cosmic rays with nearby extragalactic objects, *Science*, **318**, 938–943.
- Plüschke, S., Diehl, R., Schönfelder, V., et al. (2001). The COMPTEL 1.809 MeV survey, in *Exploring the Gamma-Ray Universe*, eds Gimenez, A., Reglero, V., & Winkler, C., volume 459 of *ESA Special Publication*, pp. 55–58.
- Powell, C. F., Fowler, P., & Perkins, D. (1959). *The study of elementary particles by the photographic method*. Oxford: Pergamon Press.
- Pozdnyakov, L. A., Sobol, I. M., & Sunyaev, R. A. (1983). Comptonization and the Shaping of X-ray Source Spectra - Monte Carlo Calculations, Soviet Scientific Reviews, Section E: Astrophysics and Space Physics Reviews, 2, 189–331.
- Pratt, G. W. & Arnaud, M. (2002). The mass profile of A1413 observed with XMM-Newton: Implications for the M-T relation, *Astronomy and Astrophysics*, **394**, 375–393.
- Price, P. & Fleischer, R. (1971). Identification of energetic heavy nuclei with solid dielectric track detectors: Applications to astrophysical and planetary studies, *Annual Review of Nuclear Science*, 21, 295–334.
- Priest, E. & Forbes, T. (2000). Magnetic reconnection. Cambridge: Cambridge University Press.Priest, E. R. (1982). Solar magneto-hydrodynamics. Dordrecht: D. Reidel Publishing Company,Geophysics and Astrophysics Monographs, Volume 21.
- Priest, E. R. & Forbes, T. G. (1986). New models for fast steady state magnetic reconnection, *Journal of Geophysical Research*, **91**, 5579–5588.
- Pringle, J. E. & King, A. R. (2007). *Astrophysical flows*. Cambridge; Cambridge University Press. Puget, J.-L., Abergel, A., Bernard, J.-P., et al. (1996). Tentative detection of a cosmic far-infrared background with COBE., *Astronomy and Astrophysics*, **308**, L5–L8.
- Pye, J. P., McGale, P. A., Allan, D. J., et al. (1995). The ROSAT Wide Field Camera all-sky survey of extreme-ultraviolet sources II. The 2RE Source Catalogue, *Monthly Notices of the Royal Astronomical Society*, **274**, 1165–1193.
- Quest, K. B. & Shapiro, V. D. (1996). Evolution of the fire-hose instability: Linear theory and wave-wave coupling, *Journal of Geophysical Research*, 101, 24457–24470.
- Ramana Murthy, P. V. & Wolfendale, A. W. (1993). *Gamma-ray astronomy, 2nd edition*. Cambridge: University Press.
- Ramaty, R. & Lingenfelter, R. E. (1979). Gamma-ray line astronomy, Nature, 278, 127–132.
- Ratcliffe, J. A. (1972). An introduction to the ionosphere and magnetosphere. Cambridge: Cambridge University Press.
- Reedy, R., Arnold, J., & Lal, D. (1983). Cosmic-ray record in Solar System matter, *Annual Review of Nuclear Science*, **33**, 505–537.
- Rees, M. J. (1967). Studies in Radio Source Structure I. A Relativistically Expanding Model for Variable Quasi-Stellar Radio Sources, *Monthly Notices of the Royal Astronomical Society*, **135**, 345–360.
- Rees, M. J. (1984). Black Hole Models for Active Galactic Nuclei, *Annual review of astronomy and astrophysics*, **22**, 471–506.
- Reimer, P. J., Baillie, M. G. L., Bard, E., et al. (2004). IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP, *Radiocarbon*, **46**, 1029–1058.
- Remillard, R. A. & McClintock, J. E. (2006). X-Ray Properties of Black-Hole Binaries, *Annual Review of Astronomy and Astrophysics*, **44**, 49–92.

- Rest, A., Welch, D. L., Suntzeff, N. B., et al. (2008). Scattered-light echoes from the historical galactic supernovae Cassiopeia A and Tycho (SN 1572), Astrophysical Journal Letters, 681, 181–184
- Reynolds, R. J. (1990). The low density ionized component of the interstellar medium and free-free absorption at high galactic latitudes, in *Low Frequency Astrophysics from Space*, eds Kassim, N. E. & Weiler, K. W., volume 362 of *Lecture Notes in Physics, Berlin Springer Verlag*, pp. 121–129.
- Richards, G. T., Strauss, M. A., Fan, X., et al. (2006). The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3, *Astronomical Journal*, **131**, 2766–2787.
- Rindler, W. (2001). *Relativity: Special, General and Cosmological*. Oxford: Oxford University Press.
- Roberts, M. S. & Haynes, M. P. (1994). Physical Parameters along the Hubble Sequence, *Annual Review of Astronomy and Astrophysics*, **26**, 115–152.
- eds Robinson, I., Schild, A., & Schucking, E. L. (1965). Chicago: University of Chicago Press. Robson, I. E. (1999). *Active galactic nuclei*. Chichester: John Wiley and Sons, in association with Praxis Pubishing, Chichester.
- Rochester, G. & Bulter, C. (1947). Evidence for the Existence of New Unstable Elementary Particles, *Nature*, **160**, 855–857.
- Rossi, B. & Greisen, K. (1941). Cosmic-Ray Theory, *Reviews of Modern Physics*, 13, 240–309.Rowan-Robinson, M. (1968). The Determination of the Evolutionary Properties of Quasars by Means of the Luminosity-Volume Test, *Monthly Notices of the Royal Astronomical Society*, 141, 445–458.
- Rowan-Robinson, M. (1985). *The Cosmological Distance Ladder*. New York: W. H. Freeman and Company.
- Rowan-Robinson, M. (1988). The extragalactic distance scale, *Space Science Reviews*, **48**, 1–71. Ruderman, M. A. & Sutherland, P. G. (1975). Theory of pulsars polar caps, sparks, and coherent microwave radiation, *Astrophysical Journal*, **196**, 51–72.
- Rybicki, G. B. & Lightman, A. P. (1979). *Radiative Processes in Astrophysics*. New York: John Wiley and Sons.
- Sahu, K. C., Livio, M., Petro, L., et al. (1997). The Optical Counterpart to Gamma-ray Burst GRB 970228 Observed using the Hubble Space Telescope, *Nature*, **387**, 476–478.
- Sajina, A., Scott, D., Dennefeld, M., et al. (2006). The 1-1000μm spectral energy distributions of far-infrared galaxies, *Monthly Notices of the Royal Astronomical Society*, **369**, 939–957.
- Salpeter, E. E. (1955). The Luminosity Function and Stellar Evolution., *Astrophysical Journal*, **121**, 161–167.
- Salpeter, E. E. (1964). Accretion of Interstellar Matter by Massive Objects, *Astrophysical Journal*, **140**, 796–800.
- Sandage, A. (1957). Observational Approach to Evolution. II. a Computed Luminosity Function for K0-K2 Stars from $M_{v} = +5$ to $M_{v} = -4.5$, *Astrophysical Journal*, **125**, 435–444.
- Sandage, A. R. (1965). The Existence of a Major New Constituent of the Universe: the Quasistellar Galaxies, *Astrophysical Journal*, **141**, 1560–1578.
- Sanders, D. B. & Mirabel, I. F. (1996). Luminous Infrared Galaxies, Annual Review of Astronomy and Astrophysics, 34, 749–792.
- Sanders, D. B., Soifer, B. T., Elias, J. H., et al. (1988). Ultraluminous infrared galaxies and the origin of quasars, *Astrophysical Journal*, **325**, 74–91.
- Sargent, W. L. W. (1970). A Spectroscopic Survey of Compact and Peculiar Galaxies, *Astrophysical Journal*, **160**, 405–427.
- Sargent, W. L. W., Young, P. J., Lynds, C. R., et al. (1978). Dynamical Evidence for a Central Mass Concentration in the Galaxy M87, *Astrophysical Journal*, **221**, 731–744.
- Saunders, W., Rowan-Robinson, M., Lawrence, A., et al. (1990). The 60-micron and far-infrared luminosity functions of IRAS galaxies, *Monthly Notices of the Royal Astronomical Society*,

- **242**, 318–337.
- Savage, B. D. & de Boer, K. S. (1979). Observational evidence for a hot gaseous Galactic corona, *Astrophysical Journal Letters*, **230**, L77–L82.
- Scheuer, P. A. G. (1966). Radiation processes in radio astronomy, in *Plasma astrophysics: Proceedings of the International School of Physics 'Enrico Fermi'*, ed. Sturrock, P. A., volume 39, pp. 289–XXX. New York and London: Academic Press.
- Scheuer, P. A. G. (1974). Models of extragalactic radio sources with a continuous energy supply from a central object, *Monthly Notices of the Royal Astronomical Society*, **166**, 513–528.
- Scheuer, P. A. G. (1982). Morphology and power of radio sources, in *Extragalactic Radio Sources*, ed. Wade, D. S. H. C. M., volume 97 of *IAU Symposium*, pp. 163–165.
- Scheuer, P. A. G. & Readhead, A. C. S. (1979). Superluminally expanding radio sources and the radio-quiet QSOs, *Nature*, 277, 182–185.
- Schmidt, B. P., Kirshner, R. P., & Eastman, R. G. (1992). Expanding Photospheres of Type II Supernovae and the Extragalactic Distance Scale, *Astrophysical Journal*, **395**, 366–386.
- Schmidt, M. (1959). The Rate of Star Formation., Astrophysical Journal, 129, 243–258.
- Schmidt, M. (1963). 3C 273: a Star-Like Object with Large Red-Shift, Nature, 197, 1040–1040.
- Schmidt, M. (1965). Large Redshifts of Five Quasi-Stellar Sources, *Astrophysical Journal*, **141**, 1295–1300.
- Schmidt, M. (1968). Space Distribution and Luminosity Functions of Quasi-stellar Sources, Astrophysical Journal, 151, 393–409.
- Schmidt, M. & Green, R. F. (1983). Quasar Evolution Derived from the Palomar Bright Quasar Survey and Other Complete Quasar Surveys, *Astrophysical Journal*, **269**, 352–374.
- Schmidt, M., Schneider, D. P., & Gunn, J. E. (1995). Spectroscopic CCD Surveys for Quasars at Large Redshift. IV. Evolution of the Luminosity Function from Quasars Detected by Their Lyman-Alpha Emission, *Astronomical Journal*, **110**, 68–77.
- Schneider, D., Schmidt, M., & Gunn, J. E. (1991). PC 1247 + 3406 an Optically Selected Quasar with a Redshift of 4.897, *Astronomical Journal*, **102**, 837–840.
- Schneider, P. (2006). Extragalactic Astronomy and Cosmology. Berlin: Springer-Verlag.
- Schneider, P., Kochanek, C. S., & Wambsganss, J. (2006). *Gravitational Lensing: Strong, Weak and Micro*. Berlin: Springer–Verlag. Saas-Fee Advanced Course 33: eds. Meylan, G. and Jetzer, P. and North, P.
- Schödel, R., Ott, T., Genzel, R., et al. (2002). A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way, *Nature*, **419**, 694–696.
- Schönberg, M. & Chandrasekhar, S. (1942). On the Evolution of the Main-Sequence Stars, *Astrophysical Journal*, **96**, 161–171.
- Schreier, E., Levinson, R., Gursky, H., et al. (1972). Evidence for the Binary Nature of Centaurus X-3 from UHURU X-Ray Observations, *Astrophysical Journal*, **172**, L79–L89.
- Schroeder, D. (1987). Astronomical Optics. San Diego: Academic Press, Inc.
- Schwarzschild, K. (1916). Über das Gravitationsfeld einis Massenpunktes nach der Einsteinschen Theorie (On the Gravitational Field of a Point Mass according to Einsteinian Theory), Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, 1, 189–196.
- Sedov, L. I. (1959). Similarity and Dimensional Methods in Mechanics. New York: Academic Press, 1959.
- Sekido, Y. & Elliot, H. (1985). *Early History of Cosmic Ray Studies*. Dordrecht: D. Reidel Publishing Company.
- Sellgren, K. (1984). The Near-Infrared Continuum Emission of Visual Reflection Nebulae, *Astrophysical Journal*, **277**, 623–633.
- Serkowski, K. (1973). Interstellar polarization, in *Interstellar Dust and Related Topics, IAU Symposium No. 52*, eds Greenberg, J. M. & van der Hulst, H. C., pp. 145–152. Dordrecht: D. Reidel Publishing Company.

- Serkowski, K., Mathewson, D. S., & Ford, V. L. (1975). Wavelength dependence of interstellar polarization and ratio of total to selective extinction, *Astrophysical Journal*, **196**, 261–290.
- Sérsic, J. L. (1968). Atlas de galaxias australes. Cordoba, Argentina: Observatorio Astronomico.
- Seward, F. D. & Charles, P. A. (1995). *Exploring the X-Ray Universe*. Cambridge University Press.
- Shakura, N. & Sunyaev, R. A. (1973). Black Holes in Binary Systems. Observational Appearance, Astronomy and Astrophysics, 24, 337–355.
- Shapiro, M. M. (1991). A Brief Introduction to the Cosmic Radiation, in *Cosmic Rays, Supernovae* and the Interstellar Medium, eds Shapiro, M. M., Silberberg, R., & Wefel, J. P., pp. 1–28. Dordrecht: Kluwer Academic Publishers.
- Shapiro, P. R. & Field, G. B. (1976). Consequences of a New Hot Component of the Interstellar Medium, Astrophysical Journal, 205, 762–765.
- Shapiro, S. L. & Teukolsky, S. A. (1983). *Black holes, white dwarfs, and neutron stars: The physics of compact objects*. New York: Wiley-Interscience.
- Shimasaku, K., Ouchi, M., Furusawa, H., et al. (2005). Number Density of Bright Lyman-Break Galaxies at $z \sim 6$ in the Subaru Deep Field, *Publications of the Astronomical Society of Japan*, **57**, 447–458.
- Shklovsky, I. S. (1953). On the Nature of the Radiation from the Crab Nebula, *Dokladi Akademiya Nauk SSSR*, **90**, 983–986.
- Shu, F. H. (1992). Physics of Astrophysics, Vol. II. Mill Valley, California: University Science Books.
- Shu, F. H., Adams, F. C., & Lizano, S. (1987). Star formation in molecular clouds Observation and theory, *Annual Review of Astronomy and Astrophysics*, **25**, 23–81.
- Silberberg, R., Tsao, C. H., & Letaw, J. R. (1988). Recent improvement of spallation cross section calculations, applicable to cosmic ray physics, in *NATO ASIC Proc. 220: Genesis and Propagation of Cosmic Rays*, eds Shapiro, M. M. & Wefel, J. P., pp. 357–374.
- Silva, D. R. & Cornell, M. E. (1992). A new library of stellar optical spectra, Astrophysical Journal Supplement Series, 81, 865–881.
- Simpson, J. (1983). Elemental and Isotopic Composition of Galactic Cosmic Rays, Annual Reviews of Nuclear and Particle Science, 33, 323–381.
- Skilling, J. (1971). Cosmic Rays in the Galaxy: Convection or Diffusion?, Astrophysical Journal, 170, 265–273.
- Skobelzyn, D. (1929). Über eine neue Art sehr schneller β -strahlen (On a New Type of Very Fast β -rays), Zeitschrift für Physik, **54**, 686–702.
- Smail, I., Ivison, R. J., & Blain, A. W. (1997). A Deep Sub-millimeter Survey of Lensing Clusters: A New Window on Galaxy Formation and Evolution, *Astrophysical Journal Letters*, **490**, L5–L8.
- Smart, W. (1977). *Textbook on Spherical Astronomy*. Cambridge: Cambridge University Press. Sixth edition, with revisions by R.M. Green.
- Smith, H. J. & Hoffleit, D. (1963). Light Variations in the Superluminous Radio Galaxy 3C 273, *Nature*, **198**, 650–651.
- Snellen, I. A. G., Mack, K., Schilizzi, R. T., & Tschager, W. (2004). The CORALZ sample I. Young radio-loud active galactic nuclei at low redshift, *Monthly Notices of the Royal Astronomical Society*, 348, 227–234.
- Soifer, B. T., Sanders, D. B., Madore, B. F., et al. (1987). The IRAS bright galaxy sample. II The sample and luminosity function, *Astrophysical Journal*, **320**, 238–257.
- Soltan, A. (1982). Masses of quasars, Monthly Notices of the Royal Astronomical Society, 200, 115–122.
- Sparke, L. & Gallagher, J. (2000). *Galaxies in the Universe: an Introduction*. Cambridge: Cambridge University Press.
- Spinrad, H., Dey, A., & Graham, J. R. (1995). Keck Observations of the Most Distant Galaxy: 8C

- 1435+63 at z = 4.25, Astrophysical Journal, **438**, L51–L54.
- Spitzer, L. (1962). *Physics of Fully Ionized Gases, 2nd edition*. New York: Interscience Publishers, John Wiley and Sons.
- Spitzer, L. (1968). Diffuse matter in space. New York: Interscience Publication.
- Spitzer, L. & Härm, R. (1953). Transport phenomena in a completely ionized gas, *Physical Review*, **89**, 977–981.
- Spitzer, L. J. & Hart, M. H. (1971). Random Gravitational Encounters and the Evolution of Spherical Systems. I. Method, *Astrophysical Journal*, **164**, 399–409.
- Springel, V., White, S. D. M., Jenkins, A., et al. (2005). Simulations of the formation, evolution and clustering of galaxies and quasars, *Nature*, **435**, 629–636.
- Stahler, S. W. & Palla, F. (2005). *The formation of stars*. New York: Interscience Publishers, John Wiley and Sons.
- Stahler, S. W., Shu, F. H., & Taam, R. E. (1980). The evolution of protostars. I Global formulation and results, Astrophysical Journal, 241, 637–654.
- Stairs, I. H. (2004). Pulsars in Binary Systems: Probing Binary Stellar Evolution and General Relativity, *Science*, **304**, 547–552.
- Starrfield, S. (1988). The classical nova outburst, in *Multiwavelength Astrophysics*, ed. Cordova, F. A., pp. 159–188.
- Stecker, F. W. (1975). Gamma ray astrophysics, in *Origin of Cosmic Rays*, eds Osborne, J. L. & Wolfendale, A. W., pp. 267–334.
- Stecker, F. W. & Salamon, M. H. (1999). Photodisintegration of Ultra-High-Energy Cosmic Rays: A New Determination, *Astrophysical Journal*, **512**, 521–526.
- Steidel, C. (1998). Galaxy Evolution: Has the "Epoch of Galaxy Formation" Been Found?, in *Eighteenth Texas Symposium on Relativistic Astrophysics and Cosmology*, eds Olinto, A., Frieman, J., & Schramm, D., pp. 124–135. River Edge, N.J.: World Scientific Publishing Company.
- Steidel, C. C., Adelberger, K. L., Giavalisco, M., Dickinson, M., & Pettini, M. (1999). Lyman-Break Galaxies at $z \ge 4$ and the Evolution of the Ultraviolet Luminosity Density at High Redshift, *Astrophysical Journal*, **519**, 1–17.
- Steigman, G. (2004). Big Bang Nucleosynthesis: Probing the First 20 Minutes, in *Measuring and Modeling the Universe*, ed. Freedman, W. L., pp. 169–195. Cambridge: Cambridge University Press.
- Stephenson, F. R. & Green, D. A. (2002). *Historical supernovae and their remnants*. Oxford: Clarendon Press.
- Stockton, A. & Ridgway, S. (1996). Optical and near IR observations of Cygnus A, in *Cygnus A Studay of a Radio Galaxy*, ed. Carilli, C. L. & Harris, D. E., pp. 1–4.
- Strong, A. W., Moskalenko, I. V., & Reimer, O. (2000). Diffuse Continuum Gamma Rays from the Galaxy, *Astrophysical Journal*, **537**, 763–784.
- Strong, A. W., Moskalenko, I. V., & Reimer, O. (2004). Diffuse Galactic Continuum Gamma Rays: A Model Compatible with EGRET Data and Cosmic-Ray Measurements, *Astrophysical Journal*, **613**, 962–976.
- Stuiver, M., Reimer, P. J., & Braziunas, T. F. (1998). Radiocarbon age calibration for terrestrial and marine samples, *Radiocarbon*, **40**, 1127–1151.
- Suganuma, M., Yoshii, Y., Kobayashi, Y., et al. (2006). Reverberation Measurements of the Inner Radius of the Dust Torus in Nearby Seyfert 1 Galaxies, *Astrophysical Journal*. **639**, 46–63.
- Sunyaev, R. A. (1980). The microwave background radiation in the direction toward clusters of galaxies, *Soviet Astronomy Letters*, **6**, 213–216.
- Sunyaev, R. A. & Titarchuk, L. G. (1980). Comptonization of X-rays in plasma clouds Typical radiation spectra, *Astronomy and Astrophysics*, **86**, 121–138.
- Sunyaev, R. A. & Zeldovich, Y. B. (1980). Microwave Background Radiation as a Probe of the Contemporary Structure and History of the Universe, *Annual Review of Astronomy and*

- Astrophysics, 18, 537-560.
- Sutherland, R. S. (1998). Accurate freefree Gaunt factors for astrophysical plasmas, *Monthly Notices of the Royal Astronomical Society*, **300**, 321–330.
- Sweet, P. A. (1958). The Neutral Point Theory of Solar Flares, in *Electromagnetic Phenomena in Cosmical Physics*, ed. Lehnert, B., volume 6 of *IAU Symposium*, pp. 123–134.
- Tananbaum, H., Gursky, H., Kellogg, E. M., et al. (1972). Discovery of a Periodic Binary X-ray Source in Hercules from UHURU, *Astrophysical Journal*, **174**, L144–L149.
- Tandberg-Hanssen, E. & Emslie, A. G. (1988). *The physics of solar flares*. Cambridge and New York, Cambridge University Press.
- Tanvir, N. R., Fox, D. B., Levan, A. J., et al. (2009). A γ -ray burst at a redshift of $z^{-}8.2$, *Nature*, **461**, 1254–1257.
- Tayler, R. J. (1972). *The origin of the chemical elements*. The Wykeham Science Series, London: Wykeham Publications.
- Tayler, R. J. (1994). The Stars: their Structure and Evolution. Cambridge: Cambridge University Press
- Taylor, G. (1950a). The Formation of a Blast Wave by a Very Intense Explosion. I. Theoretical Discussion, volume 201.
- Taylor, G. (1950b). The Formation of a Blast Wave by a Very Intense Explosion. II. The Atomic Explosion of 1945, volume 201.
- Taylor, J. H. & Cordes, J. M. (1993). Pulsar Distances and the Galactic Distribution of Free Electrons, Astrophysical Journal, 411, 674–684.
- Thompson, C. & Duncan, R. C. (1995). The soft gamma repeaters as very strongly magnetized neutron stars I. Radiative mechanism for outbursts, *Monthly Notices of the Royal Astronomical Society*, **275**, 255–300.
- Thompson, C. & Duncan, R. C. (1996). The soft gamma repeaters as very strongly magnetized neutron stars II. Quiescent neutrino, X-Ray, and Alfven wave emission, *Astrophysical Journal*, **473**, 322–342.
- Thomson, J. J. (1906). *Conduction of Electricity through Gases*. Cambridge: Cambridge University Press
- Thorne, K., Price, R., & Macdonald, D. (1986). *Black Holes: The Membrane Paradigm*. New Haven: Yale University Press.
- Toller, G. N. (1990). Optical Observations of Galactic and Extragalactic Light Implications for Galactic Structure, in *The Galactic and Extragalactic Background Radiation*, eds Bowyer, S. & Leinert, C., IAU Symposium No. 139, pp. 21–34. Dordrecht: Kluwer Academic Publishers.
- Toomre, A. & Toomre, J. (1972). Galactic Bridges and Tails, *Astrophysical Journal*, **178**, 623–666. Tremaine, S. & Gunn, J. (1979). Dynamical Role of Light Neutral Leptons in Cosmology, *Physical Review Letters*, **42**, 407–410.
- Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al. (2004). The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey, *Astrophysical Journal*, **613**, 898–913.
- Trodden, M. (2006). Physics of the Very Early Universe: What can we learn from Particle Collider Experiments?, *Proceedings of Science*, **CMB2006**, 1–9. This electronic publication can be found at http://pos.sissa.it/archive/conferences/027/003/CMB2006-003.pdf.
- Tsao, C. H. & Silberberg, R. (1979). Improved Semiempirical Estimates of Cross Sections, in International Cosmic Ray Conference, volume 2 of International Cosmic Ray Conference, pp. 202–205.
- Tully, R. B. & Fisher, J. R. (1977). A New Method of Determining Distances to Galaxies, *Astronomy and Astrophysics*, **54**, 661–673.
- Turland, B. D. & Scheuer, P. A. G. (1976). Instabilities of Kelvin-Helmholtz type for relativistic streaming, *Monthly Notices of the Royal Astronomical Society*, **176**, 421–441.
- Ulrich, M. H., Boksenberg, A., Bromage, G. E., et al. (1984a). Detailed Observations of NGC 4151

- with IUE III. Variability of the Strong Emission Lines from 1978 February to 1980 May, *Monthly Notices of the Royal Astronomical Society*, **206**, 221–238.
- Ulrich, M. H., Boksenberg, A., Bromage, G. E., et al. (1984b). Detailed Observations of NGC 4151 with IUE III. Variability of the Strong Emission Lines from 1978 February to 1980 May, Monthly Notices of the Royal Astronomical Society, 209, 479.
- van den Heuvel, E. P. J. (1987). Millisecond pulsar formation and evolution, in *The Origin and Evolution of Neutron Stars, IAU Symposium No. 125*, eds Helfand, D. J. & Huang, J.-H., pp. 393–404.
- van der Klis, M. (2000). Millisecond Oscillations in X-ray Binaries, *Annual Review of Astronomy and Astrophysics*, **38**, 717–760.
- Vashakidze, M. A. (1954). On the Degree of Polarization of the Light near Extragalactic Nebulae and the Crab Nebula, *Astronomicheskikh Tsirkular*, **No. 147**, 11–13.
- Veilleux, S. (1999). Spectroscopy of Luminous Infrared Galaxies, in *Galaxy Interactions at Low and High Redshift*, eds Barnes, J. E. & Sanders, D. B., volume 186 of *IAU Symposium*, pp. 295–301.
- Velikhov, E. P. (1959). Stability of an Ideally Conducting Liquid Flowing between Cylinders Rotating in a Magnetic Field, *Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki*, 36, 1398–1404. Translation: (1959), *Soviet Physics – JETP*, 9, 995–998.
- Venturi, T., Cotton, W. D., Feretti, L., et al. (1996). VLBI Observations of FRI Radio Galaxies, in Extragalactic Radio Sources, ed. R. D. Ekers, C. Fanti, & L. Padrielli, volume 175 of IAU Symposium, pp. 124–126.
- Véron-Cetty, M.-P. & Véron, P. (2006). A catalogue of quasars and active nuclei: 12th edition, *Astronomy and Astrophysics*, **455**, 773–777.
- Vink, J. & Laming, J. M. (2003). On the Magnetic Fields and Particle Acceleration in Cassiopeia A, Astrophysical Journal, 584, 758–769.
- Visvanathan, N. & Sandage, A. R. (1977). The Color-Absolute Magnitude Relation for E and S0 Galaxies. I Calibration and Tests for Universality using Virgo and Eight Other Nearby Clusters, *Astrophysical Journal*, **216**, 214–226.
- Völk, H. J., Berezhko, E. G., & Ksenofontov, L. T. (2005). Magnetic field amplification in Tycho and other shell-type supernova remnants, *Astronomy and Astrophysics*, **433**, 229–240.
- Waddington, I., Dunlop, J. S., Peacock, J. A., & Windhorst, R. A. (2001). The LBDS Hercules sample of mJy radio sources at 1.4 GHz II. Redshift distribution, radio luminosity function, and the high-redshift cut-off, *Monthly Notices of the Royal Astronomical Society*, **328**, 882–896
- Wall, J. V. (1996). Space Distribution of Radio Source Populations, in Extragalactic Radio Sources, IAU Symposium No. 175, eds Ekers, R., Fanti, C., & Padrielli, L., pp. 547–552. Dordrecht: Kluwer Academic Publishers.
- Wall, J. V. & Peacock, J. A. (1985). Bright extragalactic radio sources at 2.7 GHz. III The all-sky catalogue, *Monthly Notices of the Royal Astronomical Society*, **216**, 173–192.
- Wambsganss, J. (1998). Gravitational Lensing in Astronomy, *Living Review in Relativity*, **1**. Online article: accepted 28 August 1998; last amended 31 August 2001 http://www.livingreviews.org/lrr-1998-12.
- Wandel, A. & Mushotzky, R. F. (1986). Observational determination of the masses of active galactic nuclei, *Astrophysical Journal*, **306**, L61–L66.
- Wang, W., Harris, M. J., Diehl, R., et al. (2007). SPI observations of the diffuse ⁶⁰Fe emission in the Galaxy, *Astronomy and Astrophysics*, **469**, 1005–1012.
- Wang, W.-H., Cowie, L. L., & Barger, A. J. (2006). A Near-Infrared Analysis of the Submillimeter Background and the Cosmic Star-Formation History, *Astrophysical Journal*, **647**, 74–85.
- Warner, B. (1995). Cataclysmic variable stars. Cambridge, New York: Cambridge University Press.
- Warren, S. J., Hewett, P. C., Irwin, M. J., McMahon, R. G., & Bridgeland, M. T. (1987). First Observation of a Quasar with a Redshift of 4, *Nature*, **325**, 131–133.

- Wasson, J. (1985). *Meteorites: Their record of early Solar System history*. W.H. Freeman and Company.
- Watson, M. G. & King, A. R. (1991). Accretion discs in low-mass X-ray binaries., in *IAU Colloq.* 129: The 6th Institute d'Astrophysique de Paris (IAP) Meeting: Structure and Emission Properties of Accretion Disks, pp. 19-+.
- Wdowczyk, J. & Wolfendale, A. W. (1984). Galactic cosmic rays above 10¹⁸ eV, *Journal of Physics G Nuclear Physics*, **10**, 1453–1463.
- Wdowczyk, J. & Wolfendale, A. W. (1989). Highest energy cosmic rays., *Annual Review of Nuclear and Particle Science*, **39**, 43–71.
- Webber, W. R. (1983). Cosmic ray electrons and positrons A review of current measurements and some implications, in NATO ASIC Proc. 107: Composition and Origin of Cosmic Rays, ed. Shapiro, M. M., pp. 83–100.
- Webber, W. R., Kish, J. C., & Schrier, D. A. (1990a). Formula for calculating partial cross sections for nuclear reactions of nuclei with $E \gtrsim 200$ MeV/nucleon in hydrogen targets, *Physical Review C*, **41**, 566–571.
- Webber, W. R., Kish, J. C., & Schrier, D. A. (1990b). Individual charge changing fragmentation cross sections of relativistic nuclei in hydrogen, helium, and carbon targets, *Physical Review C*, **41**, 533–546.
- Webber, W. R., Kish, J. C., & Schrier, D. A. (1990c). Individual isotopic fragmentation cross sections of relativistic nuclei in hydrogen, helium, and carbon targets, *Physical Review C*, **41**, 547–565.
- Webber, W. R., Kish, J. C., & Schrier, D. A. (1990d). Total charge and mass changing cross sections of relativistic nuclei in hydrogen, helium, and carbon targets, *Physical Review C*, **41**, 520–532.
- Weber, J. (1969). Evidence for Discovery of Gravitational Radiation, *Physical Review Letters*, **22**, 1320–1324.
- Weber, J. (1970). Anisotropy and Polarization in the Gravitational-Radiation Experiments, *Physical Review Letters*, **25**, 180–184.
- Webster, A. S. (1970). On the Diffusion-Loss Model of Cosmic Ray Electron Propagation in the Galaxy, *Astrophysical Letters*, **5**, 189–192.
- Webster, A. S. (1971). Cosmic ray electrons and Galactic radio emission. Cambridge: Cambridge University Ph.D dIssertation.
- Webster, A. S. (1974). The spectrum of the galactic non-thermal background radiational Observations at 408, 610 and 1407 MHz, *Monthly Notices of the Royal Astronomical Society*, **166.** 355–372.
- Webster, B. L. & Murdin, P. (1972). Cygnus X-1: A Spectroscopic Binary with a Heavy Companion?, *Nature*, **235**, 37–38.
- Wefel, J. P. (1988). An overview of cosmic ray research Composition, acceleration and propagation, in *Genesis and Propagation of Cosmic Rays*, eds Shapiro, M. M. & Wefel, J. P., pp. 1–9.
- Wefel, J. P. (1991). The Composition of the Cosmic Rays: an Update, in *NATO ASIC Proc. 337: Cosmic Rays, Supernovae and the Interstellar Medium*, eds Shapiro, M. M., Silberberg, R., & Wefel, J. P., pp. 29–56.
- Weinheimer, C. (2001). Neutrino Mass from Tritium *β*-Decay, in *Dark Matter in Astro- and Particle Physics, Proceedings of the International Conference DARK 2000*, ed. Klapdor-Kleingrothaus, H. V., pp. 513–519. Berlin: Springer-Verlag.
- Weisskopf, V. F. (1981). The Formation of Cooper Pairs and the Nature of Superconducting Currents, *Contemporary Physics*, **22**, 375–395.
- Wentzel, D. G. (1974). Cosmic-ray propagation in the galaxy collective effects, *Annual Review of Astronomy and Astrophysics*, **12**, 71–96.
- Westfold, K. C. (1959). The polarisation of synchrotron radiation, *Astrophysical Journal*, **130**, 241–258.

- Wheeler, J. A. (1968). Our Universe: the Known and the Unknown, *American Scientist*, 56, 1–20.
 White, D. A., Fabian, A. C., Allen, S. W., et al. (1994). A ROSAT HRI Observation of the ABELL:478 Cluster of Galaxies, *Monthly Notices of the Royal Astronomical Society*, 269, 589–606.
- White, S. D. (1989). Observable Signatures of Young Galaxies, in *The Epoch of Galaxy Formation*, eds Frenk, C. S., Ellis, R. S., Shanks, T., Heavens, A. F., & Peacock, J. A., pp. 15–30. Dordrecht: Kluwer Academic Publishers.
- Whiteoak, J. B. (1974). The Observed Characteristics of the Local Magnetic Field, in *Galactic Radio Astronomy*, eds Kerr, F. J. & Simonson, S. C., volume 60 of *IAU Symposium*, pp. 137–150.
- Wielebinski, R. (1993). Radio Astronomy Techniques of Observing Magnetic Fields: The Galaxy, in *The Cosmic Dynamo*, eds Krause, F., Radler, K. H., & Rudiger, G., volume 157 of *IAU Symposium*, pp. 271–277.
- Wilkes, B. (1999). The Spectral Energy Distributions of Active Galactic Nuclei, in *Quasars and Cosmology*, eds Ferland, G. & Baldwin, J., volume 162 of *Astronomical Society of the Pacific Conference Series*, pp. 15–42.
- Wilkes, B. J., Tananbaum, H., Worrall, D. M., et al. (1994). The Einstein database of IPC x-ray observations of optically selected and radio-selected quasars, 1., *Astrophysical Journal Supplement*, **92**, 53–109.
- Wilkinson, P. N., Henstock, D. R., Browne, I. W., et al. (2001). Limits on the Cosmological Abundance of Supermassive Compact Objects from a Search for Multiple Imaging in Compact Radio Sources, *Physical Review Letters*, **86**, 584–587.
- Wilkinson, P. N., Polatidis, A. G., Readhead, A. C. S., Xu, W., & Pearson, T. J. (1994). Two-sided ejection in powerful radio sources: The compact symmetric objects, *Astrophysical Journal Letters*, 432, L87–L90.
- Willingale, R., Bleeker, J. A. M., van der Heyden, K. J., & Kaastra, J. S. (2003). The mass and energy budget of Cassiopeia A, *Astronomy and Astrophysics*, **398**, 1021–1028.
- Willis, A. J., van der Hucht, K. A., Conti, P. S., & Garmany, D. (1986). An atlas of high resolution IUE ultraviolet spectra of 14 Wolf-Rayet stars, *Astronomy and Astrophysics Supplement Series*, 63, 417–599.
- Wilson, A. S., Arnaud, K. A., Smith, D. A., Terashima, Y., & Young, A. J. (2002). Cygnus A, in New Visions of the Universe in the XMM-Newton and Chandra Era, ed. Jansen, F., pp. XX–XX. European Space Agency ESA SP-488.
- Wilson, A. S., Young, A. J., & Shopbell, P. L. (2000). Chandra Observations of Cygnus A: Magnetic Field Strengths in the Hot Spots of a Radio Galaxy, *Astrophysical Journal Letters*, 544, L27–L30.
- Wolfenstein, L. (1978). Neutrino Oscillations in Matter, *Physical Review D*, 17, 2369–2374.
- Woltjer, L. (1990). Phenomenology of Active Galactic Nuclei, in *Saas-Fee Advanced Course 20*. *Active Galactic Nuclei*, eds Courvoisier, T. J.-L. & Mayor, M., pp. 1–55. Berlin: Springer-Verlag.
- Woosley, S. & Janka, T. (2005). The physics of core-collapse supernovae, *Nature Physics*, 1, 147–154.
- Woosley, S. E. (1986). Nucleosynthesis and Stellar Evolution, in *Saas-Fee Advanced Course 16: Nucleosynthesis and Chemical Evolution*, eds Audouze, J., Chiosi, C., & Woosley, S. E., pp. 1–XX.
- Woosley, S. E. & Weaver, T. A. (1986). The physics of supernova explosions, Annual Review of Astronomy and Astrophysics, 24, 205–253.
- Wrobel, J. M. & Lind, K. R. (1990). The double-lobed blazar 3C 371, Astrophysical Journal, 348, 135–140.
- Yanasak, N. E., Wiedenbeck, M. E., Mewaldt, R. A., et al. (2001). Measurement of the secondary radionuclides ¹⁰Be, ²⁶Al, ³⁶Cl, ⁵⁴Mn, and ¹⁴C and implications for the Galactic cosmic-ray age,

- Astrophysical Journal, 563, 768-792.
- Young, P. J., Westphal, J. A., Kristian, J., Wilson, C. P., & Landauer, F. P. (1978). Evidence for a Supermassive Object in the Nucleus of the Galaxy M87 from SIT and CCD Area Photometry, Astrophysical Journal, 221, 721–730.
- Yukawa, H. (1935). On the Interaction of Elementary Particles. I., *Proceedings of the Physical-Mathematical Society of Japan*, **17**, 48–57.
- Zamorani, G., Henry, J. P., Maccacaro, T., et al. (1981). X-ray studies of quasars with the Einstein Observatory. II, *Astrophysical Journal*, **245**, 357–374.
- Zaritsky, D., Kennicutt, R. C., & Huchra, J. P. (1994). H II Regions and the Abundance Properties of Spiral Galaxies, *Astrophysical Journal*, **420**, 87–109.
- Zatsepin, G. T. & Kuz'min, V. A. (1966). Upper Limit of the Spectrum of Cosmic Rays, *Soviet Journal of Experimental and Theoretical Physics Letters*, **4**, 78–80.
- Zavlin, V. E. (2009). Thermal emission from isolated neutron stars: theoretical and observational aspects, in *Neutron stars and pulsars*, ed. Becker, W., volume 357 of *Astronomy and Space Science Library*. Berlin: Springer–Verlag.
- Zeldovich, Y. & Sunyaev, R. (1969). The Interaction of Matter and Radiation in a Hot-model Universe, *Astrophysics and Space Science*, **4**, 301–316.
- Zeldovich, Y. B. & Raizer, Y. P. (2002). *Physics of shock waves and high-temperature hydrodynamic phenomena*. Mineola, New York: Dover Publications. Originally published in English by Academic Press, New York in two volumes, 1966, 1967.
- Zombeck, M. V. (2006). *Handbook of Space Astronomy and Astrophysics, 3rd edition*. Cambridge: Cambridge University Press.
- Zwicky, F. & Zwicky, M. A. (1971). Catalogue of selected compact galaxies and of post-eruptive galaxies. Guemligen: Zwicky.

Name Index

Abell, George, 109, 111 Abraham, Robert, 805 Abramovitz, Milton, 227, 231 Abramowicz, Marek, 718 Adams, Fred, 384, 401 Aharonian, Felix, 598, 770, 771 Alexander, Paul, 731, 736, 738 Alfvèn, Hannes, 639 Amsler, Claude, 300 Anderson, Carl, 31, 32, 178 Antonucci, Roberto, 658-660 Arnaud, Monique, 121 Arnett, David, 422 Arp, Halton, 642 Arzoumanian, Zaven, 459 Auger, Pierre, 31, 571 Axford, Ian, 611, 622, 627

Babbedge, Thomas, 809, 810 Backer, Donald, 456, 457 Bahcall, John, 61, 63, 65, 655 Bahcall, Neta, 116 Balbus, Steven, 496 Ballard, K.R., 629 Band, David, 290, 733, 769 Barger, Amy, 815 Barthel, Peter, 660, 662, 723 Beck, Rainer, 568 Beckwith, Steven, 806, 807, 814 Becquerel, Henri, 159 Begelman, Mitchell, 736 Bekefi, George, 213 Bell(-Burnell), Jocelyn, 20, 444 Bell, Anthony, 611, 622, 624, 625, 628, 629 Bender, Ralf, 673 Bennett, Charles, 17 Berezhko, Evgeny, 631, 632

Berezinsky, Venyamin, 583, 584 Best, Philip, 716 Bethe, Hans, 63, 179, 182, 191 Bignami, Giovanni, 218 Binney, James, 117, 167, 671, 673 Biretta, John, 758 Blaauw, Adriaan, 826 Blackett, Patrick, 32 Blain, Andrew, 812 Bland-Hawthorn, Jonathan, 803 Blandford, Roger, 276, 611, 620-622, 627, 712, 722, 742–744, 761, 767, 768 Blumenthal, George, 179, 191, 266 Bondi, Hermann, 483 Bothe, Walter, 31 Boyle, Brian, 647, 792 Bracessi, Alessandro, 643 Brandt, W., 794, 795 Bridle, Alan, 739, 740 Browne, Iain, 664, 665 Bruzual, Gustavo, 798, 799, 813, 814, 817 Burbidge, Geoffrey, 603, 640, 642, 648 Burbidge, Margaret, 648 Butler, Clifford, 32

Côté, Patrick, 104
Calabretta, Mark, 827
Camenzind, Max, 441, 442
Cameron, Alistair, 67, 544
Campbell, William, 648
Cannon, Annie, 41
Cappelluti, Nico, 798
Carilli, Christopher, 723
Carter, Brandon, 474
Casandjian, J.-A., 764
Caswell, James, 248
Cavaliere, Alfonso, 121

Cesarsky, Catherine, 205, 207, 568, 626, 627, 629, 631

Challinor, Anthony, 127, 286 Chambers, Kenneth, 715

Chandrasekhar, Subrahmanyan, 331, 469, 474,

Charlot, Stéphane, 798, 799, 817

Chevalier, Roger, 747 Chwolson, O., 129 Cimatti, Andrea, 806, 818 Clayton, Donald, 422 Clemmow, Phillip, 293

Cohen, Marshall, 747, 749, 759, 761

Colless, Matthew, 119 Compton, Arthur, 255 Condon, James, 728 Cordes, James, 459

Cowie, Lennox, 806, 813, 815

Cox, Donald, 389

Dabrowski, Youri, 690 Damon, Paul, 326 Das Gupta, Mrindal, 640 Davies, Rodney, 410 Davis, Leverett, 407 Davis, Raymond, 34, 61 de Boer, Klaas, 568

de Vaucouleurs, Gérard, 85, 86

Dermer, Charles, 552 Deubner, Franz-Ludwig, 57 Diehl, Roland, 315 Dirac, Adrian, 32 Djorgovski, George, 97 Dombrovski, V.A., 640 Dopita, Michael, 718 Dougherty, John, 293

Draine, Bruce, 383, 405-407, 409, 410

Dressler, Alan, 92, 97 Drury, Luke, 626 Dunlop, James, 790, 818 Dunn, Andrew, 119 Dyakov, Sergei, 275

Eardley, Douglas, 722 Eastman, Ronald, 430 Efstathiou, George, 138 Eichler, David, 620, 621

Einstein, Albert, 129, 188, 255, 271

Ellis, George, 473

Ellis, Richard, 131, 800, 805, 806

Ellis, Simon, 803

Emslie, Gordon, 353, 355

Ewen, Harold, 21 Ezer, D., 67

Faber, Sandra, 96, 97, 671, 678

Fabian, Andrew, 123, 125, 686, 687, 692

Falcke, Heino, 679 Fan, Xiaohui, 645, 793 Fanaroff, Bernard, 727

Fath, , 648

Felten, James, 106, 107, 787

 $Ferland,\ Gary,\ 371,\ 375,\ 650,\ 701-703,\ 705,$

707, 708

Fermi, Enrico, 154, 616, 618, 619 Feynman, Richard, 272, 274, 463 Field, George, 392, 393, 569

Fisher, Richard, 96

Fitzpatrick, Richard, 327, 328 Forbes, Terry, 355, 358, 360

Ford, Holland, 673 Ford, Vincent, 407 Fort, Bernard, 133 Fowler, William, 695 Francis, P.J., 643

Frank, Juhan, 491, 496, 497, 501, 502, 504, 505, 513, 518, 520, 525, 719, 721, 722

Frolov, Valery, 469

Galama, T.J., 773 Garcia-Munoz, M., 561 Garrington, Simon, 663 Gavazzi, Raphaël, 135

Gehrels, Neil, 773, 774, 776, 779

Gel'fand, Israil, 275 Genzel, Reinhard, 681 Ghez, Andrea, 679 Gilli, R., 658, 794, 797

Ginzburg Vitaly, 579

Ginzburg, Vitali L., 213, 239, 242

Ginzburg, Vitaly, 639 Glazebrook, Karl, 818 Gold, Thomas, 444 Goldreich, Peter, 464, 466 Goldsmith, Donald, 392, 393 Gough, Douglas, 57

Gould, Robert, 169, 179, 191, 266

Graham Smith, Francis, 444, 454, 457, 460, 461, 464, 468

461, 464, 468 Granot, J., 777–779 Green, David, 609

Green, Richard, 644, 647, 792

Greenstein, Jesse, 407

Greisen, Eric, 827 Greisen, Kenneth, 300, 582 Grenier, I.M., 764 Grindlay, Jonathan, 290, 733, 769 Gugliucci, N.E., 738 Gull, Stephen, 609, 738 Gunn, James, 117, 118, 139, 459

Häring, N., 683, 684 Habing, Harm, 392, 393 Hall, John, 405 Harms, Richard, 673 Hasinger, Günther, 528, 794, 795 Hauser, Michael, 813 Hawking, Stephen, 473, 474, 478 Hawkins, Michael, 646 Hawley, John, 496 Haynes, Martha, 95, 96 Hazard, Cyril, 641 Heavens, Alan, 629 Heckman, Timothy, 653 Heitler, Wilhelm, 179, 182, 191 Herlofson, N., 639 Hess, Victor, 30, 639 Hewish, Antony, 20, 444 Hewitt, Jacqueline, 136 Heyvaerts, Jean, 615, 616 Hildebrand, Roger, 383 Hillas, Michael, 549, 578, 579, 635, 636 Hillebrandt, Wolfgang, 416, 418, 419 Hiltner, William, 405 Hinton, J., 770 Holloway, Nigel, 468 Hoyle, Fred, 483, 642, 695

Illingworth, Garth, 673 Irwin, Michael, 645

Hulse, Russell, 454

Härm, Richard, 334

Hubble, Edwin, 85, 86, 648, 830

Jackson, John, 293
Jackson, John D., 151, 154
Jackson, Robert, 96
Janka, Hans-Thomas, 419, 420, 422, 424, 459
Jansky, Karl, 19, 639
Jenkins, Edward, 568
Jennison, Roger, 640
Jokipii, Randy, 204, 205
Jones, Thomas, 630
Julian, William, 464, 466

Kaiser, Christian, 736 Kang, Hyesung, 630, 634 Kapahi, Vijay, 665 Karttunen, Hannu, 39 Karzas, William, 185, 252 Kauffmann, Guinevere, 93, 94 Kellermann, Kenneth, 747, 759 Kembhavi, Ajit, 639 Kennicutt, Robert, 96, 395, 820 Kent, Stephen, 117, 118 Kerr, Roy, 474 Khachikian, Edward, 649 Kiepenheuer, K.O., 639 King, Andrew, 491, 492, 497, 501, 502, 504, 505, 513, 518, 521, 525, 719, 722 King, Ivan, 116 Kippenhahn, Rudolf, 432, 435, 436 Kippenhahn, Rudolph, 39, 54, 67, 70 Kirshner, Robert, 430 Klebesadel, Ray, 771 Kneib, Jean-Pierre, 131 Koch, H. William, 179, 191 Kochanek, Christopher, 131 Kolb, Rocky, 138 Kolhörster, Werner, 30, 31 Kompaneets, Aleksander, 275 Koo, David, 645 Kormendy, John, 85, 670-673, 683 Kovalev, Y.Y., 763-766 Kramer, Michael, 444 Krause, Oliver, 417 Krolik, Julian, 639, 683, 695, 700 Kron, Richard, 645 Krymsky, Germogen, 611, 622, 627 Kulsrud, Russell, 207, 327, 338, 340, 355, 360, 567

Lacy, Mark, 818
Lagache, Guilaine, 809, 810
Lagage, P.O., 626, 627, 629, 631
Laing, Robert, 663, 739, 740
Laming, Martin, 628
Landau, Lev, 275, 344, 346, 348, 493, 498
Larmor, Joseph, 464
Lasenby, Anthony, 127, 286
Lasota, Jean-Pierre, 525
Latter, Richard, 185, 252
Lawson, K.D., 594
Lazarian, Alexander, 409
Le Roux, Edouard, 228

Kuz'min, Vadim, 582

Lear, Egil, 611, 622, 627 Leavitt, Henrietta, 830 Ledlow, Michael, 727 Lee, Jae-Joon), 633 Leger, Alain, 382, 383 Legg, , 239 Leibundgut, Bruno, 416 Lequeuex, James, 97 Liedahl, Duane, 267, 269, 270, 275, 276, 278, Lifshitz, Evgenii, 344, 346, 348, 493, 498 Lightman, Alan, 213, 223, 231, 267, 275, 722 Lilly, Simon, 813, 818 Lingenfelter, Richard, 319 Liu, Q.Z., 529 Lizano, Susana, 401 Lochner, James, 489 Longair, Malcolm, 812 Lorimer, Duncan, 444 Lotz, Jennifer, 806 Lovelace, Roger, 761-763 Lucek, S.G., 628 Lyne, Andrew, 444, 454, 457, 460, 461, 464, 468 Lyttleton, Raymond, 483

Mészáros, Peter, 771, 776, 780 MacDonald, Douglas, 478 Mack, Julian, 606 Mackey, M.B., 641 Madau, Piero, 813, 815 Magorrian, John, 683 Majewski, Steven, 646 Malin, David, 425 Manchester, Richard, 448 Markarian, Benyamin, 648 Marscher, Alan, 757 Marsh, Thomas, 517 Mathewson, Donald, 407 Matt, G., 686, 687 Matthews, Thomas, 641 Mayor, Michel, 74 McCarthy, Patrick, 715, 817, 818 McCaughrean, Mark, 397 McClintock, Jeffrey, 531, 532, 534 McCray, Richard, 430 McKee, Christopher, 712 Melia, Fulvio, 679 Mellier, Yannick, 133 Mellinger, Axel, 7-9, 827 Menjo, Hiroaki, 326

Merritt, David, 118, 119 Mestel, Leon, 464, 467 Metcalfe, Nigel, 800 Mewaldt, Richard, 562 Meyer, Peter, 543 Michell, John, 469, 471 Miller, Joseph, 658–660 Millikan, Robert, 31 Minkowski, Rudolph, 641 Mirabel, Felix, 482, 654, 740, 741 Misner, Charles, 474, 475 Miyoshi, Makoto, 675, 678 Moore, XX, 648 Morgan, W.W., 641 Motz, J., 179, 191 Murphy, D.W., 665 Murray, Andrew, 825 Mushotzky, Richard, 489, 490, 670

Nagano, M., 634 Narayan, Ramesh, 722 Narlikar, Jayant, 639 Neddermeyer, Seth, 32 Neininger, N., 402 Newman, Ted, 474 Niemeyer, Jens, 416, 418, 419 Nikolic, Bojan, 380 Northover, Kevin, 738 Northrop, Theodore, 201 Novikov, Igor, 469

Occhialini, Giuseppe, 32 Olson, Roy, 771 Oort, Jan, 20, 640 Orosz, Jerome, 482 Orr, M.J.L, 664 Osmer, Patrick, 645 Osterbrock, Donald, 371, 375, 650, 701–703, 705, 707, 708 Ostriker, Jeremiah, 102, 459, 611, 622, 627 Owen, Fraser, 727

Pacholczyk, Andrej, 213
Pacini, Franco, 444, 464
Pagel, Bernard, 543
Palla, Francesco, 393
Panagia, Nino, 430
Parker, Eugene, 354, 355, 569, 570
Peacock, John, 293, 790
Pearce, W. P, 207
Pearce, William, 567
Peebles, James, 102

Pengelly, R.M., 372 Sajina, Anna, 807 Salaman, M. H., 583 Penrose, Roger, 473, 477 Penzias, Arno, 15 Salpeter, Edwin, 693 Peterson, Bradley, 639, 709-713 Sandage, Allan, 85, 97, 642, 648 Petschek, Harry, 358 Sanders, David, 654 Pogson, Norman, 833 Sargent, Wallace, 648, 673, 675 Pozdnyakov, L., 267, 278, 281, 282 Sari, R., 777, 778 Pratt, Gabriel, 121 Savage, Blair, 568 Price, Richard, 478 Sazonov, V. N., 239 Priest, Eric, 353-355, 358, 360 Scheuer, Peter, 232, 665, 742 Pringle, James, 492 Schmidt, Brian, 430 Pryce, M.H.L, 468 Schmidt, Maarten, 394, 641, 642, 644, 645, Puget, Jean-Loup, 382, 383, 813 647, 650, 789, 792, 793 Purcell, Edward, 21 Schneider, Peter, 131, 135 Schroeder, Daniel, 843 Queloz, Didier, 74 Schwarzschild, Karl, 469 Schwarzschild, Martin, 104 Röntgen, Wilhelm, 159 Sedov, Leonid, 606 Röttgering, Huub, 716 Seyfert, Carl, 648 Raine, Derek, 491, 497, 501, 502, 504, 505, Shakura, Nicolai, 496, 501 513, 518, 521, 719, 722 Shapiro, Paul, 569 Raizer, Yuri, 344 Shapiro, Stuart, 437, 440, 462, 473, 475 Ramaty, Reuven, 319 Shimmins, John, 641 Readhead, Anthony, 665 Shklovsky, Iosef, 640 Rees, Martin, 694, 743, 744, 750, 771 Shu, Frank, 384, 393, 401 Reimer, Paula, 326 Silberberg, Rein, 310, 313, 314 Remillard, Ronald, 531, 532, 534 Simpson, John, 544, 545, 558 Rest, Armin, 417 Skadron, George, 611, 622, 627 Reynolds, Christopher, 686, 687 Skilling, John, 568 Reynolds, R.J., 372 Skobeltsyn, Dmitri, 30, 32 Richards, Gordon, 793 Slipher, Vesto, 648 Richer, John, 392 Smart, William, 825 Richstone, Douglas, 670-672, 683 Smith, Barham, 389 Ridgway, Susan, 702 Sobol, I., 267 Riley, Julia, 727 Soifer, Thomas, 654 Rindler, Wolfgang, 473, 752 Soltan, Andrzej, 681-683 Rix, Hans-Martin, 683, 684 Spinrad, Hyron, 818 Roberts, Morton, 95, 96 Spitzer, Lyman, 327, 331, 333, 334 Robson, Ian, 639 Springel, Volker, 820 Rochester, George, 32 Stahler, Steven, 393 Rodrigues, Juan, 482 Starrfield, Sumner, 521, 522 Rodrigues, Luis, 740, 741 Stecker, Floyd, 552, 583, 584 Romanova, M., 762, 763 Stegun, Irene, 227, 231 Rossi, Bruno, 300 Steidel, Charles, 813 Rowan-Robinson, Michael, 789, 830, 831 Steigman, Gary, 136 Rubin, Vera, 101 Stockton, Alan, 702, 724 Ruderman, Malvin, 468 Strong, Andrew, 191, 552, 553 Rybicki, George, 213, 223, 231, 267, 275 Strong, Ian, 771 Ryu, Dongsu., 634 Suganuma, Masahiro, 713, 715 Sunyaev, Rashid, 165, 267, 282, 283, 496, Sérsic, José Luis, 91

501

Saikia, D.J., 665

896

Sutherland, Peter, 468 Sutherland, Ralph, 185, 718 Sweet, Peter, 355 Syrovatskii, Sergei, 213, 239, 242, 579, 626

Tandberg-Hanssen, Einar, 353
Tayler, Roger, 39, 52, 53, 543
Taylor, Geoffrey, 606
Taylor, Joseph, 454
Tesla, Nikola, 178
Teukolsky, Saul, 437, 440, 462, 473, 475
Thomson, John Joseph (J.J.), 170, 171, 255
Thorne, Kip, 474, 475, 478
Tremaine, Scott, 117, 139, 167, 671
Trodden, Mark, 139
Tsao, Chen-Hsiang, 310, 313, 314
Tully, Brent, 96
Turner, Michael, 138

Ulrich, Marie-Hélene, 709 Ulrich, Roger, 61

Völk, Heinz, 628, 631, 632 Véron
Phillippe, 580
Véron-Cetty
Marie-Paule, 580
van de Hulst, Henk, 20
van den Bergh, Sidney, 85, 805
van den Heuvel, Edward, 449, 515
van der Kris, Michiel, 528
VandenBerg, Donald, 44
Vashakidze, M.A., 640
Veilleux, Sylvain, 654, 655
Velikhov, E.P., 496
Vink, Jacco, 628
Visvanathan, N., 97

Waddington, Ian, 792
Wall, Jasper, 788
Walraven, Theodore, 640
Wambsganss, Joachim, 131
Wandel, Amri, 489, 490, 670
Wang, Wei-Hao, 815
Warren, Stephen, 645
Wasson, John, 162
Watson, Alan, 634
Wdowczyk, Jerzy, 550
Weaver, Thomas, 418
Webber, William, 542, 562
Weber, Joseph, 35
Weber, William, 313

Webster, Adrian, 568, 569, 594 Weedman, Daniel, 649 Wefel, John, 563 Weigert, Alfred, 39, 54, 67, 432, 435, 436 Weisskopf, Victor, 442 Wentzel, Donat, 205 Westfold, Kevin, 228, 239 Wheeler, John, 474, 475 White, Simon, 813 Wilkes, Belinda, 656 Wilkinson, Peter, 136, 737 Willingale, Richard, 421 Wilson, Andrew, 732, 735 Wilson, Robert, 15 Wolfendale, Arnold, 550 Woltjer, Lo, 643 Woon, David, 367 Woosley, Stan, 418-420, 422-424, 459, 521

Yanasak, N.E., 565 Yi, Insu, 722 Young, Peter, 673 Yukawa, Hideki, 32

Zanstra, Herman, 705 Zatsepin, Georgiy, 582 Zavlin, Vyacheslav, 460 Zeldovich, Yakov, 275, 282, 283, 344 Znajek, Ramon, 742, 761 Zwicky, Fritz, 111, 648

Object Index

0902+34, 818	A0535+262, 514, 515
14016+2610, 385	Abell 400, 727
1E1207.4-5209, 218, 219	Abell 478, 123
3C 9, 642	Abell 1413, 121
3C 31, 725–727, 739, 747	Abell 2218, 110, 131
3C 47, 662, 663	Antennae, 88, 655, 695
3C 48, 641, 642	, , ,
3C 58, 414	B1937+21, 456
3C 65, 716	B2334+61, 461
3C 66B, 725–727	Becklin-Neugabauer (B-N) object, 397, 398
3C 75, 727	Betelgeuse, 845
3C 83.1B, 727	BL-Lacertae objects (BL-Lac objects), 651
3C 120, 747, 748	
3C 196, 641, 642	Cartwheel galaxy, 88
3C 227, 641	Cassiopeia A (Cas A), see Subject Index
3C 234, 641	Centaurus A, 765
3C 266, 716	Centaurus X-3 (Cen X-3), 450
3C 270 (NGC 4261), 660, 661	Coma cluster of galaxies (Abell 1656), see
3C 273, see Subject Index	Subject Index
3C 274 (Virgo A), 725, 726, 747	Crab Nebula (M1, NGC 1952), see Subject
3C 279, 669, 747, 748, 771	Index
3C 280, 716	CSO 2352+495, 737
3C 286, 641, 642	Cygnus A, see Subject Index
3C 295, 641	Cygnus Loop, 596, 607
3C 324, 716	Cygnus X-1 (Cyg X-1), 26, 281, 282, 452,
3C 345, 652, 669, 757	479, 482, 489, 531
3C 368, 716	Cygnus X-2 (Cyg X-2), 527, 528
3C 371, 663, 664, 757	Cygnus X-3 (Cyg X-3), 26
3C 390.3, 713, 714	G : 70.00
3C 445, 641	η -Carinae, 79, 80
3C 454.3, 766, 767	mass loss rate of, 79
47 Tucanae (47 Tuc), 43, 44, 73, 76, 81, 457	EXO 033319-2554.2, 218
4C 21.53, 456, 457	C1 0 + 0 2 415 600
4U 1700-37, 452	G1.9+0.3, 415, 609
51 Peg, 74	Galactic Centre, see Subject Index
31105, 17	'Geminga', 461 Gliese 229B, 73, 74
A 0620 00 531	
A 0620-00, 531	GRB 030329, 773

NGC 253, 568, 569

898	OBJECT INDE	ΞX
GRB 090423, 773	N	GC 383, 739
GRB 970228, 773		GC 1068, 648, 658, 660, 661, 706
GRB 980425, 773		GC 1128, 727
GRO 1744-28, 527		GC 1265, 727
GRO J1655-40, 532		GC 1275, 765
GRO J1744-28, 514		GC 1300, 87, 88
GRS 1915+105, 481, 740		GC 2362, 44
GRS1915+105, 481		GC 2787, 87
Guitar Nebula, 459		GC 3227, 713, 714
GX5-1, 527, 528		GC 4051, 648, 713, 714
GA3-1, 321, 326		GC 4151, 648, 650, 701, 709
HD 209458, 75		GC 4736, 649
HD 93131, 79		GC 4730, 049 GC 4839, 119, 120
Hercules X-1 (Her X-1), see Subject Inc		GC 5195, 87
HH 30, 398, 399		GC 5236, 648
HH 34, 398, 399		
HH 211, 398, 399		GC 5506, 489 GC 5548, 710, 711, 712, 715
Homunculus Nebula (η-Carinae), 80		GC 5548, 710, 711, 713–715
HT Cas, 521		GC 7023, 382 GC 7460, 713, 715
111 Cas, 321		GC 7469, 713–715
III Zw 2, 649		orth Pole star, 8
IRAS04505-2958, 655	IN.	RAO 140, 757
IK/1504505-2750, 055	0	J 287, 651, 652, 697
Kepler's supernova, 414		phiuchus molecular cloud, 385
Kleinmann-Low Nebula, 397, 398		rion Molecular Clouds, 14, 396, 397
Kienmann Bow Neodia, 377, 370	O.	
Large Magellanic Cloud (LMC), 8, 9, 1	3 29	Cloud A, 396 rion Nebula, 14, 18, 396–398
35, 415, 425, 426		
LBDS 53W069, 818		rion star cluster, 73, 76, 78
LBDS 53W091, 818	O.	rion, constellation of, 396, 397
LMC X-1, 482	Da	erseus cluster of galaxies, see Subject Index
LMC X-3, 482, 531, 534		G 0052+251, 655
ENIC IX 3, 102, 331, 331		HL 909, 655
M1, see Crab Nebula (M1, NGC 1952)		KS 2155-304, 769
M3, 44		ough or Great Bear, 8
M33, 480, 481		SR 1919+21 (CP 1919), 444, 445
M33 X-7, 480		SR B0540-69, 447
M49 (NGC 4472), 104, 105		
M51 (NGC 5194), 87, 402, 404		SR B0656+14, 461
M67, 44		SR B1055-52, 461
M81, 827		SR B1509-58, 447
M87 (NGC 4486), see Subject Index		SR B1913+16, 454, 455
M106 (NGC 4258), see Subject Index		SR J0538+2817, 461
M31 (Andromeda Nebula), see Subject	Y 1	SR J0737-3039, 454–456
Magellanic Clouds, 370	maca Po	SR J1119-6127, 447
MCG -6-30-15, see Subject Index	0	SO 0316-346, 655
Milky Way, 8, 9	Q	30 0310-340, 033
Mkn 0744, 649	D.	X J0852.0 – 4622, 597, 598
Mkn 1066, 649		X J0832.0 = 4022, 397, 398 X J1713.7 = 3946 (G347.3 = 0.5), 597
MXB 1730-335, 527	K.	(GJ+1.J - J)+0 (GJ+1.J - 0.J), J71
1120-333, 321	Sé	Freic 159-03 123 124

Sérsic 159-03, 123, 124 Sagittarius A, 826 Sagittarius A* (Sgr A*), see Subject Index Sanduleak –69 202, 35, 425, 426 Scorpius X-1 (Sco X-1), 26, 527, 741 Small Magellanic Cloud (SMC), 8, 9, 13 SN 1006, 326, 414 SN 1054, see Crab Nebula (M1, NGC 1952) SN 1181, 414 SN 1572, see Tycho's supernova SN 1604, see Kepler's supernova SN 1987A, 35, 81, 307, 317, 415, 425–430 SN1998bw, 773 SS 433, 741, 742, 749 SU Aur, 385

Taurus molecular cloud, 385 Trapezium stars in Orion Nebula, 397 Tycho's supernova, 414, 417, 596 Tycho's supernova remnant, 417, 595, 596, 607, 609, 627, 628, 632, 633

U Gem, 517, 519

Vega (α-Lyrae), 833, 834 Vela supernova remnant, 28 pulsar in, 444, 461, 463 Vela X-1, 452 Virgo A, *see* 3C 274 (Virgo A) Virgo cluster of galaxies, 26, 110, 725, 726 VRO 42.22.01, 651 VSSG 23, 385

W50, 742

X1822-371, 523 XBT0748-676, 523 XTE J1650-500, 536

Z Cha, 517, 518

Index

Abell Catalogues of rich clusters of galaxies selection criteria of clusters in, 111 space density of clusters in, 111	features of their properties to be explained, 613 Fermi acceleration - original version, 621
Abell clusters of galaxies, 109–112	first order Fermi acceleration, 597
spatial correlations with clusters and galax-	general principles of acceleration, 613–614
ies. 111	dynamic, 613, 614
aberration formula, relativistic, 262	electromagnetic, 613–614
absolute magnitude, 836	hydrodynamic, 613, 614
absorption coefficient χ_{ν} , 186	highest energy cosmic rays, 635–636
	Hillas diagram, 635, 636
for thermal bremsstrahlung, 186, 187 corrected for stimulated emission, 188	in solar flares, 614–616
· · · · · · · · · · · · · · · · · · ·	*
uncorrected for stimulated emission, 188	magnetic fields in supernova shock fronts, 628–629
absorption edges at X-ray energies, 251–255	
K-edges, 253	neutral sheets and, 614
accelerated charged particles	importance of induced return currents, 616
polar diagram of radiation of, 171	2-2
acceleration four-vector A, 177	importance of streaming instabilities, 616
acceleration of an electron in the electrostatic	non-linear diffuse shock acceleration, 629–
field of a proton or nucleus, 179	000
acceleration of high energy particles, 613–636	reconnection of magnetic field lines and,
acceleration of charged particle in electric	614
and magnetic fields, 614	accretion
acceleration of charged particle in time-varying	as an energy source for X-ray sources, 25
magnetic fields, 614	in X-ray binary systems, 450
beyond the standard model, 627–635	maximum energy release for Schwarzschild
critical velocity v_c for electrostatic acceler-	black hole, 450
ation, 615	accretion columns in magnetic cataclysmic vari-
diffusive shock acceleration	ables, 519–521
acceleration to same energy per nucleon,	emission of far ultraviolet and soft X-ray
633	emission from, 520
in strong shock waves, 621–627	shock fronts in, 520
electron runaway for electrostatic acceler-	temperature of shocked gas in, 520
ation, 615, 616	accretion disc, thick, 477, 478
energy spectrum of cosmic rays at and above	accretion discs, see thin accretion discs
the 'knee', 633–635	boundary layer
for protons, helium nuclei, carbon, sili-	emission from, in cataclysmic variables,
con and iron, 634	518

luminosity of, 499	photoexcitation and photoionisation of gas
boundary layer at inner edge of, 497	clouds in, 699
energy flow in, 499	ratio of black hole to spheroid masses, 819,
formation of, 485	821
luminosities of, 498, 499	reprocessing of the X-ray emission, 700
outward transfer of angular momentum, 485	Type 1, 657, 794
viscous dissipation of energy in, 485	unobscured, 657, 794
accretion discs about supermassive black holes,	active galactic nucleus
718–722	model for, 701
accretion luminosity, 484	active galaxies, 639–665
Accretion Power in Astrophysics (Frank, King	blazars
and Raine, 491, 719	superluminal sources and γ -ray sources,
accretion power in astrophysics, 483–537	651–653
accreting binary systems, 516–531	Low Ionisation Nuclear Emission Regions
accretion in binary systems, 506–515	(LINERS), 653
black holes in X-ray binaries, 531–537	lower limit to size from time variability,
Eddington limiting luminosity, 486–488	669
efficiency of the accretion process, 483–	mass-to-luminosity ratio M/L in central re-
486	gions, 670
for neutron stars, 484	quasars, 641–647
for white dwarfs, 484	radio galaxies
onto black holes, 484	high energy astrophysics and, 639-640
general considerations, 483–491	Seyfert galaxies, 648–651
thick discs and advective flows, 504–505	Ultra-Luminous Infrared Galaxies (ULIRGs),
thin accretion discs, 491–504	654–656
accretion radius, see capture, or accretion, ra-	unification schemes for active galaxies, 658–
dius	665
action integral in Lagrangian mechanics, 200,	X-ray surveys of active galaxies, 656–658
201	adaptive optics, 7, 844
Active Galactic Nuclei (Krolik), 639	adiabatic changes in classical mechanics, 200
Active Galactic Nuclei (Robson), 639	adiabatic expansion
active galactic nuclei, 648	of a magnetic field, 337
'blue-bump' component in spectra of, 491	adiabatic inflow-outflow solutions (ADIOS),
broad-line emission from, 701	722
absence of forbidden lines in, 701	adiabatic invariance, 203
broadening of, 701	principle of, 199
collisional de-excitation and, 701	adiabatic invariants, 570
filling factors for, 701	conservation of, in a time-varying magnetic
number densities in, 701	field, 614
Thomson scattering in, 701	adiabatic loss problem and the acceleration of
continuum radiation	high energy particles, 607–611 adiabatic losses, 587–588
polarisation of, 700	· · · · · · · · · · · · · · · · · · ·
emission line regions in, 701–715	condition for importance of, 588 instantaneous dynamics of the expansion
high excitation lines in spectra of, 700	and, 588
model for, 698	non-relativisitic
narrow- and broad-line emission in spectra	in an expanding flow, 587
of, 702	in terms of momentum, 588
narrow-line emission from, 702	velocity distribution inside expanding sphere,
particle densities in, 702	588
permitted and forbidden lines from, 702	adiabatic motion of charged particle, 146
r, voz	motion of changes paracio, 110

Adiabatic Motion of Charged Particles (Northrop), 201	Anglo-Australian Telescope 2dF survey (AAT 2dF), 4, 85, 89, 111, 112
Advanced Camera for Surveys (ACS), 135,	angular cyclotron frequency, 196
801	angular diameter distance, 130
advection, 718–720	in general relativity, 470–472
advection dominated accretion flows (ADAFs),	angular frequency ω_0 of electron in atom, 147
718, 719, 721, 722	angular gyrofrequency, 196, 201, 207
equations of conservation of mass, angular	non-relativistic, 221
momentum and energy, 720	relativistic, 222, 233
plot of the accretion rate against the surface	angular momentum transport by viscosity, 497,
density, 720, 721	498
radiative efficiency η of, 718	angular plasma frequency, 486
super-Eddington accretion in, 722	angular resolving power, 838
thermal stability of, 721, 722	anomalous resistivity of a plasma, 359
viscous stability of, 721, 722	anomalous X-ray pulsars, 458
advective transport of mass and energy, 504-	location on $P - \dot{P}$ diagram, 458
505	antenna temperature, 854
supermassive black holes and, 505	minimum detectable, 854
through black hole horizon, 505	aperture grading, 844
Airy diffraction pattern, 841, 843, 844	aperture synthesis, 845–848
Airy disc, 841, 844	Earth-rotation, 848
Aitoff projection, 828	principles of, 23
Akeno Giant Air Shower Array (AGASA),	apodisation, 844
571, 575	Apollo 12 and the Surveyor satellite, 161
Alfvén and hydromagnetic waves in interstel-	Apollo 14, 162
lar medium, 205–207	Apollo 17, 161
damping rate by neutral particles, 207	apparent magnitude
energy density of, 206	bolometric, 834
growth rate of, 206	definition of, 833
momentum density of, 206	Archimedean spiral, 343
Alfvén radius, 511–513	Ariel-V satellite, 794
for white dwarfs, 512	ASCA V my sharmstory 507, 660, 705
Alfvén speed, 206, 207, 352, 354, 357, 358, 567, 568, 622	ASCA X-ray observatory, 597, 660, 795
alignment effect in radio galaxies, 651, 716,	associated Legendre functions, 58 asteroids
717	asteroids asteroid belt and, 162
shock excitation of emission line regions,	parent bodies of meteorites, 162
715–718	astronomical seeing, 844, 845
alignment of interstellar grains, 405–407	astronomical unit (AU), 829
magnetic field parallel to optical polarisa-	astronomical units, 829
tion, 407	astroparticle physics, 140
physical mechanisms for, 406	Astrophysical Flows (Pringle and King), 492
Barnett effect, 406	Astrophysics of Gaseous Nebulae and Active
paramagnetic dissipation, 407	Galactic Nuclei, The (Osterbrock and Fer-
Rowland effect, 406	land), 371, 701, 702
suprathermal processes, 406	asymptotic giant branch stars, 316
α -discs, 496, 501, 502, 720	Atacama Large Millimetre Array (ALMA),
AM Herculis binaries, 218	15
ambipolar diffusion, 341	atmosphere as convertor for cosmic rays, 549
Ampère's theorem, 355	atmospheric turbulence and astronomical see-
Anglo-Australian Telescope, 644, 647	ing, 844, 845

atomic binding energy, 147 Auger air-shower array, 34 Auger electrons, 687 Auger ultra-high energy cosmic ray observatory, 300 aurorae, 351 green and red lines of oxygen in, 351 auroral zone, 351 Australia Telescope Compact Array, 429, 430 Australia Telescope Compact Array, 429, 430 Australia Telescope National Facility (ATNF), 23 Avogadro's number, 192, 298 Baade-Wesselink method, 430, 830 background intensities in ground-based observations, 835, 850 background radiation submillimetre and far-infrared contribution of active galactic nuclei, 815 main contributors to, 816 ultraviolet decrease at large redshifts, 814, 815 decrease in intensity from z = 1 to present epoch, 815 Baksan Neutrino Observatory in the northern Caucasus mountains, 63 Balmer absorption line index Hδ _A as age indicator, 94 Balmer break, or discontinuity, D _n (4000) as age indicator, 94 Balmer series of hydrogen, 491, 642, 649, 699, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium-10 ¹⁰ Be cosmic ray clock, 564 production ratio of, 564 Bessel functions J _o (c), J ₁ (c), 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 contano newelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating system, 506, 507	ATOM telescope, 769	evolution of stars in, 507, 508
Auger electrons, 687 Auger electrons, 687 Auger electrons, 687 Auger ultra-high energy cosmic ray observatory, 300 aurorae, 351 green and red lines of oxygen in, 351 auroral zone, 507 periods of, 506 role of magnetic fields, 511–515 accretion cloums and, 512 magnetic pressure of, 511 mass flow onto magnetic poles, 506 symbiotic stars and, 509, 516 visual binaries, 506 symbiotic stars and, 509, 516 visual binaries, 506 bipolar outflows, 386, 388 magnetic fields, 511–515 accretion cloums and, 512 magnetic pressure of, 511 mass flow onto magnetic fields, 511–515 accretion cloums, 351 sack and winds, 509, 507 role of magnetic fields, 511–515 accretion cloums and, 512 magnetic pressure of, 511 mass flow onto magnetic poles, 506 statistics of, 506 symbi	atomic binding energy, 147	feeding the accretion disc, 509–511
Auger ultra-high energy cosmic ray observatory, 300 aurorae, 351 green and red lines of oxygen in, 351 auroral zone, 351 Australia Telescope Compact Array, 429, 430 Australia Telescope National Facility (ATNF), 23 Avogadro's number, 192, 298 Baade-Wesselink method, 430, 830 background intensities in ground-based observations, 835, 850 background radiation submillimetre and far-infrared contribution of active galactic nuclei, 815 main contributors to, 816 ultraviolet decrease at large redshifts, 814, 815 decrease in intensity from $z=1$ to present epoch, 815 Baksan Neutrino Observatory in the northern Caucasus mountains, 63 Balmer absorption line index $H\delta_A$ as age indicator, 94 Balmer break, or discontinuity, $D_n(4000)$ as age indicator, 94 Balmer continuum absoption, 837 Balmer decrement, 372, 703, 708 Balmer series of hydrogen, 491, 642, 649, 6699, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 betself production ratio of, 564 production ratio of, 564 production ratio of, 564 production ratio of, 564 bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 contact binaries, 506 contact binaries, 507 equipotential surfaces in the rotating systems, 506 contact binaries, 507 equipotential surfaces in the rotating sys-		_
Auger ultra-high energy cosmic ray observatory, 300 aurorae, 351 green and red lines of oxygen in, 351 auroral zone, 351 Australia Telescope Compact Array, 429, 430 Australia Telescope National Facility (ATNF), 23 Avogadro's number, 192, 298 Baade-Wesselink method, 430, 830 background intensities in ground-based observations, 835, 850 background radiation submillimetre and far-infrared contribution of active galactic nuclei, 815 main contributors to, 816 ultraviolet decrease at large redshifts, 814, 815 decrease in intensity from $z=1$ to present epoch, 815 Baksan Neutrino Observatory in the northern Caucasus mountains, 63 Balmer absorption line index $H\delta_A$ as age indicator, 94 Balmer break, or discontinuity, $D_n(4000)$ as age indicator, 94 Balmer continuum absoption, 837 Balmer decrement, 372, 703, 708 Balmer series of hydrogen, 491, 642, 649, 6699, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 betself production ratio of, 564 production ratio of, 564 production ratio of, 564 production ratio of, 564 bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 contact binaries, 506 contact binaries, 507 equipotential surfaces in the rotating systems, 506 contact binaries, 507 equipotential surfaces in the rotating sys-	Auger electrons, 687	stellar mass loss and winds, 509, 510
aurorae, 351 green and red lines of oxygen in, 351 auroral zone, 351 delescope Compact Array, 429, 430 Australia Telescope National Facility (ATNF), 23 accretion columns and, 512 magnetic pressure of, 511 mass flow onto magnetic poles, 511, 512 ram pressure and, 511 spectroscopic binaries, 506 statistics of, 506 symbiotic stars and, 509, 516 visual binaries, 506 statistics of, 506 symbiotic stars and, 509, 516 visual binaries, 506 statistics of, 506 symbiotic stars and, 509, 516 visual binaries, 506 statistics of, 506 symbiotic stars and, 509, 516 visual binaries, 506 statistics of, 506 symbiotic stars and, 509, 516 visual binaries, 506 statistics of, 506 symbiotic stars and, 509, 516 visual binaries, 506 statistics of, 506 symbiotic stars and, 509, 516 visual binaries, 506 statistics of, 506 symbiotic stars and, 509, 516 visual binaries, 506 statistics of, 506 symbiotic stars and, 509, 516 visual binaries, 506 statistics of, 506 symbiotic stars and, 509, 516 visual binaries, 506 statistics of, 506 symbiotic stars and, 509, 516 visual binaries, 506 statistics of, 506 symbiotic stars and, 509, 516 visual binaries, 506 statistics of, 506 symbiotic stars and, 509, 516 visual binaries, 506 statistics of, 506 symbiotic stars and, 509, 516 visual binaries, 506 statistics of, 506 symbiotic stars and, 509, 516 visual binaries, 506 statistics of, 506 symbiotic stars and, 509, 516 visual binaries, 506 statistics of, 506 symbiotic stars and, 509, 516 visual binaries, 506 statistics of, 506 symbiotic stars and, 509, 516 visual binaries, 506 statistics of, 506 symbiotic stars and, 509, 516 visual binaries, 506 statistics of, 506 s		mass transfer in, 507, 508
aurorae, 351 green and red lines of oxygen in, 351 auroral zone, 351 Australia Telescope Compact Array, 429, 430 Australia Telescope National Facility (ATNF), 23 Avogadro's number, 192, 298 Baade-Wesselink method, 430, 830 background intensities in ground-based observations, 835, 850 background radiation submillimetre and far-infrared contribution of active galactic nuclei, 815 main contributors to, 816 ultraviolet decrease at large redshifts, 814, 815 decrease in intensity from $z=1$ to present epoch, 815 Baksan Neutrino Observatory in the northern Caucasus mountains, 63 Balmer absorption line index H δ_A as age indicator, 94 Balmer continuum absoption, 837 Balmer decrement, 372, 703, 708 BeappoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium-10 "Be cosmic ray clock, 564 production ratio of, 564 Bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 BiMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-		
green and red lines of oxygen in, 351 auroral zone, 351 Australia Telescope Compact Array, 429, 430 Australia Telescope National Facility (ATNF), 23 Avogadro's number, 192, 298 Baade-Wesselink method, 430, 830 background intensities in ground-based observations, 835, 850 background radiation submillimetre and far-infrared contribution of active galactic nuclei, 815 main contributors to, 816 ultraviolet decrease in intensity from $z=1$ to present epoch, 815 Baksan Neutrino Observatory in the northern Caucasus mountains, 63 Balmer absorption line index $H\delta_A$ as age indicator, 94 Balmer break, or discontinuity, D_n (4000) as age indicator, 94 Balmer decrement, 372, 703, 708 Balmer series of hydrogen, 491, 642, 649, 699, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium-10 "Be cosmic ray clock, 564 production ratio of, 564 Bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 BiMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-	aurorae, 351	,
auroral zone, 351 Australia Telescope Compact Array, 429, 430 Australia Telescope National Facility (ATNF), 23 Avogadro's number, 192, 298 Baade-Wesselink method, 430, 830 background intensities in ground-based observations, 835, 850 background intensities in ground-based observations of active galactic nuclei, 815 main contribution of active galactic nuclei, 815 main contributors to, 816 ultraviolet decrease at large redshifts, 814, 815 decrease in intensity from $z=1$ to present epoch, 815 Baksan Neutrino Observatory in the northern Caucasus mountains, 63 Balmer absorption line index $H\delta_A$ as age indicator, 94 Balmer break, or discontinuity, $D_n(4000)$ as age indicator, 94 Balmer decrement, 372, 703, 708 Balmer decrement, 372, 703, 708 Balmer series of hydrogen, 491, 642, 649, 699, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium-10 10 Be cosmic ray clock, 564 production ratio of, 564 Bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary ystar systems, 506–509 close, 506 contact binaries, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-	*	
Australia Telescope Compact Array, 429, 430 Australia Telescope National Facility (ATNF), 23 Avogadro's number, 192, 298 Baade-Wesselink method, 430, 830 background intensities in ground-based observations, 835, 850 background radiation submillimetre and far-infrared contribution of active galactic nuclei, 815 main contributors to, 816 ultraviolet decrease at large redshifts, 814, 815 decrease in intensity from z = 1 to present epoch, 815 Baksan Neutrino Observatory in the northern Caucasus mountains, 63 Balmer absorption line index Hδ _A as age indicator, 94 Balmer break, or discontinuity, D _n (4000) as age indicator, 94 Balmer break, or discontinuity, D _n (4000) as age indicator, 94 Balmer decrement, 372, 703, 708 Balmer decrement, 372, 703, 708 Balmer series of hydrogen, 491, 642, 649, 699, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 Bersel functions Jo(z), J₁(z), 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-	auroral zone, 351	
Australia Telescope National Facility (ATNF), 23 Avogadro's number, 192, 298 Baade-Wesselink method, 430, 830 background intensities in ground-based observations, 835, 850 background radiation submillimetre and far-infrared contribution of active galactic nuclei, 815 main contributors to, 816 ultraviolet decrease at large redshifts, 814, 815 decrease in intensity from z = 1 to present epoch, 815 Baksan Neutrino Observatory in the northern Caucasus mountains, 63 Balmer absorption line index H6A as age indicator, 94 Balmer break, or discontinuity, Dn(4000) as age indicator, 94 Balmer continuum absoption, 837 Balmer decrement, 372, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium-10 ¹⁰ Be cosmic ray clock, 564 production ratio of, 564 Bessel functions Jo(z), J ₁ (z), 841 betatron, 213 BiMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-		
23 Avogadro's number, 192, 298 Baade-Wesselink method, 430, 830 background intensities in ground-based observations, 835, 850 background radiation submillimetre and far-infrared contribution of active galactic nuclei, 815 main contributors to, 816 ultraviolet decrease in intensity from $z = 1$ to present epoch, 815 Baksan Neutrino Observatory in the northern Caucasus mountains, 63 Balmer absorption line index $Hδ_A$ as age indicator, 94 Balmer break, or discontinuity, $D_n(4000)$ as age indicator, 94 Balmer decrement, 372, 703, 708 Balmer series of hydrogen, 491, 642, 649, 669, 703, 708 Balmer series of hydrogen, 491, 642, 649, 669, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium-10 ¹0Be cosmic ray clock, 564 production ratio of, 564 Bessel functions $Jo(z)$, $J_1(z)$, 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 contact binaries, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-		
Avogadro's number, 192, 298 Baade-Wesselink method, 430, 830 background intensities in ground-based observations, 835, 850 background radiation submillimetre and far-infrared contribution of active galactic nuclei, 815 main contributors to, 816 ultraviolet decrease at large redshifts, 814, 815 decrease in intensity from $z=1$ to present epoch, 815 Baksan Neutrino Observatory in the northern Caucaus mountains, 63 Balmer absorption line index $H\delta_A$ as age indicator, 94 Balmer break, or discontinuity, $D_n(4000)$ as age indicator, 94 Balmer continuum absoption, 837 Balmer decrement, 372, 703, 708 Balmer decrement, 372, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium- 10^{10} Be cosmic ray clock, 564 production ratio of, 564 Bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 contact binaries, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-		
Baade-Wesselink method, 430, 830 background intensities in ground-based observations, 835, 850 background radiation submillimetre and far-infrared contribution of active galactic nuclei, 815 main contributors to, 816 ultraviolet decrease at large redshifts, 814, 815 decrease in intensity from z = 1 to present epoch, 815 Baksan Neutrino Observatory in the northern Caucasus mountains, 63 Balmer absorption line index Hδ _A as age indicator, 94 Balmer break, or discontinuity, D _n (4000) as age indicator, 94 Balmer econtinuum absoption, 837 Balmer decrement, 372, 703, 708 Balmer series of hydrogen, 491, 642, 649, 699, 703, 708 BerpoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 Bersel functions J ₀ (z), J ₁ (z), 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 contact binaries, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-	Avogadro's number, 192, 298	
Baade-Wesselink method, 450 , 830 background intensities in ground-based observations, 835 , 850 background radiation submillimetre and far-infrared contribution of active galactic nuclei, 815 main contributors to, 816 ultraviolet decrease at large redshifts, 814 , 815 decrease in intensity from $z=1$ to present epoch, 815 baksan Neutrino Observatory in the northern Caucasus mountains, 63 Balmer absorption line index $H\delta_A$ as age indicator, 94 Balmer break, or discontinuity, $D_n(4000)$ as age indicator, 94 Balmer ecrement, 372 , 703 , 708 Balmer series of hydrogen, 491 , 642 , 649 , 699 , 703 , 708 BeppoSAX gamma-ray telescope, 317 , 318 Bernoulli's equation, 346 beryllium- 10^{10} Be cosmic ray clock, 564 production ratio of, 564 beryllium- 10^{10} Be cosmic ray clock, 564 production ratio of, 506 binary star systems, 506 - 509 close, 506 contact binaries, 506 contact binaries, 506 common envelope of, 506 common envelope of, 506 contact binaries, 506 common envelope of, 506 contact binaries, 506 binary star systems, 506 - 509 close, 506 contact binaries, 506 bipolar outflows, 386 , 398 magnetic fields and, 402 polarisation observations of, 402 binary star systems, 506 - 509 close, 506 contact binaries, 506 bipolar outflows, 386 , 398 magnetic fields and, 309 origin of, 401 magnetic fields and, 402 polarisation observations of, 598 similarity to extragalactic radio sources, 651		
background radiation servations, 835, 850 background radiation submillimetre and far-infrared contribution of active galactic nuclei, 815 main contributors to, 816 ultraviolet decrease at large redshifts, 814, 815 decrease in intensity from $z=1$ to present epoch, 815 baksan Neutrino Observatory in the northern Caucasus mountains, 63 Balmer absorption line index $H\delta_A$ as age indicator, 94 balmer break, or discontinuity, $D_n(4000)$ as age indicator, 94 balmer decrement, 372, 703, 708 balmer series of hydrogen, 491, 642, 649, 699, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 bernoulli's equation, 346 beryllium- 10^{10} Be cosmic ray clock, 564 production ratio of, 564 bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 contact binaries, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-	· · · · · · · · · · · · · · · · · · ·	•
bipolar outflows, 386, 398 magnetic fields in, 398 model for, 398, 400 molecular beams in, 398 origin of, 401 magnetic fields and, 402 polarisation observations of, 398 similarity to extragalactic radio sources, 398, 402 magnetic fields and, 402 polarisation observations of, 398 similarity to extragalactic radio sources, 398, 402 magnetic fields and, 402 polarisation observations of, 398 similarity to extragalactic radio sources, 398, 402 magnetic fields and, 402 polarisation observations of, 398 similarity to extragalactic radio sources, 398, 402 magnetic fields and, 402 polarisation observations of, 398 similarity to extragalactic radio sources, 398, 402 magnetic fields and, 402 polarisation observations of, 398 similarity to extragalactic radio sources, 398, 402 magnetic fields in, 398 model for, 398, 400 molecular beams in, 398 origin of, 401 magnetic fields and, 402 polarisation observations of, 398 similarity to extragalactic radio sources, 398, 402 magnetic fields in, 398 model for, 398, 400 molecular beams in, 398 origin of, 401 magnetic fields in, 398 model for, 398, 400 molecular beams in, 398 origin of, 401 magnetic fields in, 398 model for, 398, 400 molecular beams in, 398 origin of, 401 magnetic fields and, 402 polarisation observations of, 398 similarity to extragalactic radio sources, 652, 663, 664, 745 associated with FR1 radio sources, 651 low-redshift sources, 651 low-redshift sources, 651 observation of, underlying FR 1 radio sources, 663 polarisation of, 700 rapid deceleration of radio jets in, 664 superluminal motions in, 653 molecular beams in, 398 origin of, 401 magnetic fields and, 402 polarisation observations of, 398 similarity to extragalactic radio sources, 652, 663, 664, 745 associated with FR1 radio sources, 651 low-redshift sources, 651 observation of, 400ule-sided radio jets in, 664 superluminal motions in, 653 molecular beams in, 398 origin of, 401 magnetic fields and, 402 polarisation of, 402 magnetic fields and, 402 polarisation observations of, 398 similarity to extragalacti		
submillimetre and far-infrared contribution of active galactic nuclei, 815 main contributors to, 816 ultraviolet decrease at large redshifts, 814, 815 decrease in intensity from z = 1 to present epoch, 815 Baksan Neutrino Observatory in the northern Caucasus mountains, 63 Balmer absorption line index Hδ _A as age indicator, 94 Balmer break, or discontinuity, D _n (4000) as age indicator, 94 Balmer continuum absoption, 837 Balmer decrement, 372, 703, 708 Balmer series of hydrogen, 491, 642, 649, 699, 703, 708 BerpoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium-10 ¹⁰ Be cosmic ray clock, 564 production ratio of, 564 Bessel functions J ₀ (z), J ₁ (z), 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 contact binaries, 506 conmon envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-	· · · · · · · · · · · · · · · · · · ·	
contribution of active galactic nuclei, 815 main contributors to, 816 ultraviolet decrease at large redshifts, 814, 815 decrease in intensity from $z=1$ to present epoch, 815 Baksan Neutrino Observatory in the northern Caucasus mountains, 63 Balmer absorption line index $H\delta_A$ as age indicator, 94 Balmer break, or discontinuity, $D_n(4000)$ as age indicator, 94 Balmer continuum absoption, 837 Balmer decrement, 372, 703, 708 Balmer series of hydrogen, 491, 642, 649, 699, 703, 708 BerposAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium- 10^{-10} Be cosmic ray clock, 564 production ratio of, 564 Bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-	background radiation	*
contributors to, 816 ultraviolet decrease at large redshifts, 814, 815 decrease in intensity from $z=1$ to present epoch, 815 Baksan Neutrino Observatory in the northern Caucasus mountains, 63 Balmer absorption line index $H\delta_A$ as age indicator, 94 Balmer break, or discontinuity, $D_n(4000)$ as age indicator, 94 Balmer continuum absoption, 837 Balmer decrement, 372, 703, 708 Balmer series of hydrogen, 491, 642, 649, 699, 703, 708 BerposAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium-10 10 Be cosmic ray clock, 564 production ratio of, 564 Bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-	submillimetre and far-infrared	
minari contributions to, 816 ultraviolet decrease at large redshifts, 814, 815 decrease in intensity from $z=1$ to present epoch, 815 Baksan Neutrino Observatory in the northern Caucasus mountains, 63 Balmer absorption line index $H\delta_A$ as age indicator, 94 Balmer break, or discontinuity, $D_n(4000)$ as age indicator, 94 Balmer continuum absoption, 837 Balmer decrement, 372, 703, 708 Balmer series of hydrogen, 491, 642, 649, 699, 703, 708 BerpoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium-10 10 Be cosmic ray clock, 564 production ratio of, 564 Bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-	contribution of active galactic nuclei, 815	
magnetic fields and, 402 polarisation observations of, 398 similarity to extragalactic radio sources, 398, 402 BL-Lacertae objects (BL-Lac objects), 20, 651, 652, 663, 664, 745 associated with FR1 radio sources, 653 double-sided radio jets in, 664 highly variable radio sources, 651 low-redshift sources, 651 observation of, 100 rapid deceleration of radio jets in, 664 superluminal motions in, 653 Black hole physics: basic concepts and new developments (Frolov and Novikov), 469 black holes, 84, 136, 413, 469–482 accretion luminosity of, 500 angular momentum on last stable orbit, 500 characteristic growth rate by accretion, 693 circular velocities about, 688–692 condition for matter to fall into, 499 dragging of inertial frames, 475 electrodynamics of, 478 enementary considerations, 669–670 ergospheres of rotation, 478 evaporation of, rotational energy from rotat-	main contributors to, 816	•
decrease in intensity from $z=1$ to present epoch, 815 Baksan Neutrino Observatory in the northern Caucasus mountains, 63 Balmer absorption line index $H\delta_A$ as age indicator, 94 Balmer break, or discontinuity, $D_n(4000)$ as age indicator, 94 Balmer continuum absoption, 837 Balmer cerement, 372, 703, 708 Balmer series of hydrogen, 491, 642, 649, 699, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium-10 10 Be cosmic ray clock, 564 production ratio of, 564 Bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-	ultraviolet	
similarity to extragalactic radio sources, 398, 402 Baksan Neutrino Observatory in the northern Caucasus mountains, 63 Balmer absorption line index Hδ _A as age indicator, 94 Balmer break, or discontinuity, D _n (4000) as age indicator, 94 Balmer continuum absoption, 837 Balmer decrement, 372, 703, 708 Balmer series of hydrogen, 491, 642, 649, 699, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium-10 10 Be cosmic ray clock, 564 production ratio of, 564 Bessel functions J ₀ (z), J ₁ (z), 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 contact binaries, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-	decrease at large redshifts, 814, 815	
Baksan Neutrino Observatory in the northern Caucasus mountains, 63 Balmer absorption line index Hδ _A as age indicator, 94 Balmer break, or discontinuity, D _n (4000) as age indicator, 94 Balmer continuum absoption, 837 Balmer decrement, 372, 703, 708 Balmer series of hydrogen, 491, 642, 649, 699, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium-10 10 Be cosmic ray clock, 564 production ratio of, 564 Bessel functions J ₀ (z), J ₁ (z), 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 contact binaries, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-	decrease in intensity from $z = 1$ to present	•
Caucasus mountains, 63 Balmer absorption line index Hδ _A as age indicator, 94 Balmer break, or discontinuity, D _n (4000) as age indicator, 94 Balmer continuum absoption, 837 Balmer decrement, 372, 703, 708 Balmer series of hydrogen, 491, 642, 649, 699, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 Bersel functions J ₀ (z), J ₁ (z), 841 Betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 contact binaries, 506 contact binaries, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-		
Balmer absorption line index $H\delta_A$ as age indicator, 94 Balmer break, or discontinuity, $D_n(4000)$ as age indicator, 94 Balmer continuum absoption, 837 Balmer decrement, 372, 703, 708 Balmer series of hydrogen, 491, 642, 649, 699, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium-10 10 Be cosmic ray clock, 564 production ratio of, 564 Bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 contact binaries, 506 contact binaries, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-	Baksan Neutrino Observatory in the northern	
associated with FR1 radio sources, 653 double-sided radio jets in, 664 highly variable radio sources, 651 low-redshift sources, 651 low-redshift sources, 651 low-redshift sources, 651 observation of, underlying FR 1 radio sources, 651 observation of, 700 rapid deceleration of radio jets in, 664 superly in observation of, 200 angular in other in observation of, 200 angular momentum on last stable orbit, 500 observation of, 200 angular momentum on last stable orbit, 500 characteristic growth rate by accretion, 693 circular velocities about, 688–692 condition for matter to fall into, 499 dragging of inertial frames, 475 elementary considerations, 669–670 ergospheres of rotating, 477 evaporation of, 478 evaporation of, 478 extraction of radio jets in, 664 highly variable radio sources, 651 observation of, 200 observatio	Caucasus mountains, 63	
Balmer break, or discontinuity, D _n (4000) as age indicator, 94 Balmer continuum absoption, 837 Balmer decrement, 372, 703, 708 Balmer series of hydrogen, 491, 642, 649, 699, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium-10 10 Be cosmic ray clock, 564 production ratio of, 564 Bessel functions J ₀ (z), J ₁ (z), 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-	Balmer absorption line index $H\delta_A$ as age in-	
age indicator, 94 Balmer continuum absoption, 837 Balmer decrement, 372, 703, 708 Balmer series of hydrogen, 491, 642, 649, 699, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium-10 10 Be cosmic ray clock, 564 production ratio of, 564 Bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-		
Balmer continuum absoption, 837 Balmer decrement, 372, 703, 708 Balmer series of hydrogen, 491, 642, 649, 699, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium-10 10 Be cosmic ray clock, 564 production ratio of, 564 Bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-	Balmer break, or discontinuity, $D_n(4000)$ as	
Balmer decrement, 372, 703, 708 Balmer series of hydrogen, 491, 642, 649, 699, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium-10 10 Be cosmic ray clock, 564 production ratio of, 564 Bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-	age indicator, 94	
Balmer series of hydrogen, 491, 642, 649, 699, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium-10 10 Be cosmic ray clock, 564 production ratio of, 564 Bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-		
699, 703, 708 BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium-10 ¹⁰ Be cosmic ray clock, 564 production ratio of, 564 Bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-	Balmer decrement, 372, 703, 708	
BeppoSAX gamma-ray telescope, 317, 318 Bernoulli's equation, 346 beryllium- 10^{10} Be cosmic ray clock, 564 production ratio of, 564 Bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-	Balmer series of hydrogen, 491, 642, 649,	
Bernoulli's equation, 346 beryllium- 10^{10} Be cosmic ray clock, 564 production ratio of, 564 Bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 contact binaries, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-	699, 703, 708	
beryllium- 10^{10} Be cosmic ray clock, 564 production ratio of, 564 production ratio of, 564 production $J_0(z)$, $J_1(z)$, 841 black holes, 84, 136, 413, 469–482 accretion luminosity of, 500 angular momentum on last stable orbit, 500 characteristic growth rate by accretion, 693 binary pulsars, 454–456 contact binaries, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-		-
production ratio of, 564 Bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 contact binaries, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys- dlack holes, 84, 136, 413, 469–482 accretion luminosity of, 500 angular momentum on last stable orbit, 500 characteristic growth rate by accretion, 693 circular velocities about, 688–692 condition for matter to fall into, 499 dragging of inertial frames, 475 electrodynamics of, 478 elementary considerations, 669–670 ergospheres of rotating, 477 evaporation of, 478 extraction of rotational energy from rotat-	Bernoulli's equation, 346	
production ratio of, 564 Bessel functions $J_0(z)$, $J_1(z)$, 841 betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 contact binaries, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys- dlack holes, 84, 136, 413, 469–482 accretion luminosity of, 500 angular momentum on last stable orbit, 500 characteristic growth rate by accretion, 693 circular velocities about, 688–692 condition for matter to fall into, 499 dragging of inertial frames, 475 electrodynamics of, 478 elementary considerations, 669–670 ergospheres of rotating, 477 evaporation of, 478 extraction of rotational energy from rotat-	beryllium-10 ¹⁰ Be cosmic ray clock, 564	
betatron, 213 Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 contact binaries, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys- accretion luminosity of, 500 angular momentum on last stable orbit, 500 characteristic growth rate by accretion, 693 circular velocities about, 688–692 condition for matter to fall into, 499 dragging of inertial frames, 475 electrodynamics of, 478 elementary considerations, 669–670 ergospheres of rotating, 477 evaporation of, 478 evaporation of rotational energy from rotat-	production ratio of, 564	
Bethe-Bloch formula, 153–154, 178, 183 bias parameter, 133 BIMA Millimetre Array, 127, 128 binary pulsars, 454–456 binary star systems, 506–509 close, 506 contact binaries, 506 common envelope of, 506 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys- angular momentum on last stable orbit, 500 characteristic growth rate by accretion, 693 circular velocities about, 688–692 condition for matter to fall into, 499 dragging of inertial frames, 475 electrodynamics of, 478 elementary considerations, 669–670 ergospheres of rotating, 477 evaporation of, 478 evaporation of rotational energy from rotat-	Bessel functions $J_0(z)$, $J_1(z)$, 841	
bias parameter, 133 characteristic growth rate by accretion, 693 BIMA Millimetre Array, 127, 128 circular velocities about, 688–692 binary pulsars, 454–456 condition for matter to fall into, 499 binary star systems, 506–509 dragging of inertial frames, 475 close, 506 electrodynamics of, 478 contact binaries, 506 elementary considerations, 669–670 common envelope of, 506 ergospheres of rotating, 477 equipotential surfaces in the rotating sys-		-
BIMA Millimetre Array, 127, 128 circular velocities about, 688–692 binary pulsars, 454–456 condition for matter to fall into, 499 binary star systems, 506–509 dragging of inertial frames, 475 close, 506 electrodynamics of, 478 contact binaries, 506 elementary considerations, 669–670 common envelope of, 506 ergospheres of rotating, 477 evaporation of, 478 equipotential surfaces in the rotating sys-	Bethe-Bloch formula, 153–154, 178, 183	
binary pulsars, 454–456 condition for matter to fall into, 499 dragging of inertial frames, 475 close, 506 electrodynamics of, 478 contact binaries, 506 elementary considerations, 669–670 common envelope of, 506 ergospheres of rotating, 477 evaporation of, 478 equipotential surfaces in the rotating sys-	bias parameter, 133	•
binary star systems, 506–509 dragging of inertial frames, 475 close, 506 electrodynamics of, 478 contact binaries, 506 elementary considerations, 669–670 common envelope of, 506 ergospheres of rotating, 477 mass-to-luminosity relation, 507 equipotential surfaces in the rotating sys-	BIMA Millimetre Array, 127, 128	· · · · · · · · · · · · · · · · · · ·
close, 506 electrodynamics of, 478 contact binaries, 506 elementary considerations, 669–670 common envelope of, 506 ergospheres of rotating, 477 mass-to-luminosity relation, 507 evaporation of, 478 equipotential surfaces in the rotating sys-	binary pulsars, 454–456	· · · · · · · · · · · · · · · · · · ·
contact binaries, 506 elementary considerations, 669–670 ergospheres of rotating, 477 evaporation of, 478 equipotential surfaces in the rotating sys-	binary star systems, 506–509	
common envelope of, 506 ergospheres of rotating, 477 mass-to-luminosity relation, 507 evaporation of, 478 equipotential surfaces in the rotating sys-	close, 506	
mass-to-luminosity relation, 507 evaporation of, 478 equipotential surfaces in the rotating sys-		
mass-to-luminosity relation, 507 evaporation of, 478 equipotential surfaces in the rotating sys-		ergospheres of rotating, 477
		evaporation of, 478
tem, 506, 507 ing, 477	equipotential surfaces in the rotating sys-	extraction of rotational energy from rotat-
	tem, 506, 507	ing, 477

NOT	5A
'flickering' of the X-ray intensity and, 488,	primordial, 478
489	properties of, 667–668
formation and evolution of galaxies and,	resistivity of, 478
685	Schwarzschild, 476, 667
general case in general relativity, 474–479	efficiency of energy conversion, 681
Hawking radiation from very low mass, 478	gravitational and Doppler shifts on last
horizon of rotating black hole, 475	stable circular orbit, 688
in X-ray binaries, 25, 531–537	gravitational redshift from, 667
different active states of, 531, 532	last stable circular orbit, 667, 668, 691
disc fraction f , 531	maximum binding energy on last stable
hard state, 531, 534	orbit, 668
hard state, 551, 554 hard state and presence of radio jets, 534	maximum redshift on last stable circular
	orbit, 692
high frequency quasi-periodic oscillations	,
(QPOs), 535	predicted line shapes of fluorescent 6.4 keV line, 690
hot corona in, 535, 537	red and blue shifts on last stable circular
increase in frequency of QPOs with luminosity, 535	orbit, 690
iron fluorescence lines, 532, 536–537	surface of infinite redshift, 667
luminosity of accretion disc, 533, 534	trajectories of light rays from, 690
power density spectrum of the variabil-	velocity on last stable circular orbit, 667,
ity, 531	688, 690
quasi-periodic oscillations (QPOs), 531,	sketches of, in X-ray binaries, 482
532, 534–536	specific angular momentum of, 499
steep power-law, 531	static radius about rotating, 475
steep power-law state, 534–535	supermassive, 136, 782
temperature distribution in accretion disc	epoch of maximum quasar activity, 792
about, 533	non-thermal radiation processes and, 782
thermal state, 531, 533	temperature of, 478
last stable orbit, 485, 488, 491, 499, 500,	temperature of gas at last stable orbit, 491
505, 536, 537, 668, 688–692, 718	Black Holes – the Membrane Paradigm, 478
binding energies of particles on, 668	black holes in our Galaxy
evidence for, 533	X-ray spectra of, 692
light-travel time across the last stable orbit, 488	black holes in the nuclei of galaxies, 667–696 circular velocities about, 688–692
magnetic fields threading, 477, 478	dynamical estimates of masses of, 670-672
mass estimates for, in X-ray binaries, 479,	dynamical evidence for, 670–681
480	elementary considerations, 669–670
mass from kinematics of nuclear gas clouds,	examples of dynamical estimates of masses
490	of, 672–681
masses from time variability, 490	growth of, 693–696
maximally rotating, 476	accretion and, 693
maximum angular momenta of, 475	advective transport of matter and, 694
maximum energy release of Schwarzschild,	compact star clusters and, 695
476, 485	dissipation processes and, 695
most compact objects of mass M , 668	feedback mechanisms and, 695
most powerful energy sources in astrophysics,	Rees diagram, 694–696
668	Salpeter time-scale, 693–694
observational evidence for, 479–482	star formation and evolution and, 695
predicted line shapes of the fluorescent 6.4	transfer of angular momentum and, 695
keV line, 690, 691	ULIRGs and, 695
double-horned appearance, 691–692	properties of, 667–668

INDEX 905
'braking radiation', see bremsstrahlung

braking radiation, see bremsstrantung
bremsstrahlung, 109, 119, 127, 145, 169, 178–194, 330, 831
collision parameters b_{max} and b_{min} for, 179, 182, 587
cooling rate, 123
emissivity of, 129
hot intracluster gas, 735
low frequency spectrum of, 181, 182
non-relativistic energy loss rate, 182–183
non-thermal, 318
relativistic, 189–194
average energy of photons emitted in, 194
catastrophic losses in the atmosphere, 193
collision parameters b_{max} and b_{min} for, 189–191
correction for electron-electron interac-
tions, 191
critical energy, 193
in terms of the photon number flux den-
sity, 193
radiation length X_0 for, 191
radiation lengths for hydrogen, air and
lead, 193
the low energy γ -ray emission of the in-
terstellar medium and, 194
total energy loss rate, 191–193
total stopping power in different materi-
als, 191, 193
spectral emissivity of, 121
spectrum of, 121, 129
thermal, 183–189, 724, 725
absorption, 186–189
Gaunt factors for, 184
Gaunt factors for radio wavelengths, 184
Gaunt factors for X-ray energies, 184
mass of gas and dark matter in clusters
of galaxies and, 186 spectral emissivity of, 183–186
total energy loss rate of, 184
X-ray, 431
bremsstrahlung absorption in stars, 52
brightness temperature, 240, 241, 651, 745,
853
Rayleigh-Jeans approximation for, 853
broad-line regions, 707–709
absence of forbidden lines, 707
evidence for photoexcitation and ionisation,
•
709
•

opacity of Lyman- α lines, 708 photoexcitation and ionisation in, 708 physical properties of, 708 presence of singly-ionised iron, 708 reverberation mapping of, 708 semi-forbidden lines, 707 variability of, 708 brown dwarfs, 73, 74, 136 discovered in 2MASS survey, 74 discovered in Pleiades, Orion and ρ Ophiuchus clusters, 74 discovered in Sloan Digital Sky Survey (SDSS), 74	classical novae, 516, 521, 522 event rate in our Galaxy and M31, 521 thermonuclear runaway and, 516, 522 dwarf novae, 516, 518, 519, 521 eclipse mapping of, 517, 518 temperature mapping, 517, 518 intermediate polars, 516 magnetic, 516 novae-like stars, 516 polars, 516, 517 recurrent novae, 516 strong emitters in the 1 – 10 keV X-ray wavebands, 519
Buckingham Π theorem, 606	strong emitters in the EUV and soft X-ray
BUGS experiment of Ariel-VI mission, 546, 547	wavebands, 519
buoyancy	strong winds from, 521
hot gas bubble in the Galactic plane and,	symbiotic stars, 516
569	Catalogue of selected compact galaxies and
Byurakan Observatory, 648	of post-eruptive galaxies (Zwicky), 648 causality relation, 669
	cD galaxies, 641, 651
Calar Alto telescope, 596	celestial equator, 825, 827
CalTech Submillimetre Observatory (CSO),	celestial hemisphere
15, 127, 286	north, 827
Canada-France Redshift Survey, 813	south, 827
canonical coordinates, 200	celestial sphere, 828
canonical momentum, 200	central limit theorem, 577, 787, 849
of particle in a magnetic field, 200	Gaussian statistics and, 849
capture, or accretion, radius, 529, 530 carbon burning, 71	Cepheid variables, 830
carbon burning, 71 carbon monoxide (CO) map of Galaxy, 18	luminosity-period relation for, 830
carbon recombination lines in gaseous nebu-	Cerro Tololo InterAmerican Observatory, 13
lae	ChaMP study, 794
very high order transitions, 373	Chandra Deep Fields, 794
carbon-nitrogen-oxygen (CNO) cycle, 49, 50, 53, 55, 69, 80, 81, 521, 522	Chandra X-ray Observatory, 27, 124, 125, 414, 421, 429, 595, 596, 723–725, 732, 781, 794
Cassegrain telescope, 843, 845 Cassiopeia A (Cas A), 317, 318, 365, 415,	Chandrasekhar limit, or mass, 417–419, 435–
421, 422, 595, 602–604, 607, 608, 610,	443, 508
627, 628, 640	for neutron stars, 437
as a type IIb supernova, 421	for white dwarfs, 437
decrease in flux density of, 746	charge exchange current-driven instabilities,
equipartition magnetic flux density, 603	629
kinetic energy of optical filaments, 603	charge-coupled devices (CCD), 7, 850
minimum energy requirements for synchrotron	charged particles in magnetic fields
radiation, 603	dynamics in time-varying field, 197–201
Type IIb supernova, 596	adiabatic invariant approach to, 200–201
cataclysmic variables, 419, 483, 488, 509, 511,	physical approach to, 197–200
516–522	dynamics of, 195–207
accretion columns in magnetic, 519–521 AM Herculis stars, 516, 517	in static uniform field, 195–197, 213–214

scattering by Alfvén and hydromagnetic waves,	colour-colour diagram for stars, 837
205–207	colour-magnitude diagram for stars, see Hertzsprung-
scattering by irregularities in the field, 202-	Russell diagram
205	colours
spiral motion in uniform field, 196	definition of, 836
chemical potential μ , 270, 271, 282	Coma cluster of galaxies (Abell 1656), 26,
Cherenkov radiation, 291–297	117–120
Cherenkov cone, 296	core radius of, 116
condition for, 293	mass of, 118, 832
energy loss rate per unit bandwidth, 297	mass-to-luminosity ratio, 119
'shock wave' interpretation of, 292	X-ray image of, 119
circumstellar disc, 386	comoving coordinates, 682
Classical Electrodynamics (Jackson), 141	comoving radial distance coordinate, 682, 786
classical electron radius, 257	comoving volume
classical novae, see cataclysmic variables, clas-	variation with redshift, 784
sical novae	compact extragalactic sources and superlumi-
clusters of galaxies, 109–140	nal motions, 745–780
Bautz-Morgan classification, 112, 113	compact radio sources, 745–747
central concentration of galaxies and cen-	γ -ray bursts, 771–780
tral profile, 112, 113	γ -ray sources in active galactic nuclei, 764–
central mass density of, 116	771
core radius, 113, 115	relativistic beaming, 750–758
crossing time, 118	superluminal motions, 747–750
dark matter in, 135–140	superluminal source population, 759–763
galaxy content, 112, 113	synchro-Compton radiation and the inverse
isothermal gas spheres and, 113–117	Compton catastrophe, 763–764
mass segregation, 112, 113	
morphologies of, 109–112	compact HII region spectrum at radio wavelengths of, 188, 189
	compact radio sources, 745–747
most massive galaxies in, 167	
regular, intermediate and irregular, 111–113	evidence for relativistic particles in, 745 relativistic bulk motion in, 291
symmetry, 112, 113	*
X-ray emission of, 27	variability of, 289
clusters of stars, 42	Compton effect, 260
coincidence counting, 31	Compton Gamma-Ray Observatory (CGRO),
collision frequency for electrostatic collisions	316–318, 320, 653, 669, 764, 765
between particles v_c , 614	Burst and Transient Source Experiment (BATSE),
collision of high energy particle with station-	514, 771, 772
ary electron	EGRET instrument of, 28, 29, 551, 552,
duration of, 146	764
limits to collision parameters, 145–148	Compton optical depth, 269, 270, 276, 280,
relativistic case, 152–153	283, 284
non-relativistic treatment, 144–145	Compton scattering, 125, 259–261
maximum energy loss, 144	average energy change of photon in, 269
relativistic treatment, 152–153	average energy gain of photons by, 268
collision parameters, 144	derivation of formulae for, 259–261
maximum and minimum for electrostatic	exchange of energy between electrons and
scattering, 331	radiation field, 260
collision time of particles in a plasma, 330	inverse, 782
collisionless plasma, 335	Klein–Nishina cross-section, 260–261
colour index	probability distribution for a single scatter-
definition of, 836	ing, 285

recoil effect, 260	coordinate time in general relativity, 470, 688
Compton scattering optical depth, 126	coordinate-space diagram for diffusion-loss equa-
Comptonisation, 267–282, 535, 620	tion, 209
basic physics of, 267–271	Copernicus satellite, 368, 369
Bose-Einstein distribution	coronal loops, 338, 339, 342, 353
formation of, 270, 271	coronal mass ejection events, 344
with finite chemical potential μ , 271	coronene, 383
Compton optical depth, 269, 270	correlation between far-infrared luminosity and
condition for significant distortions of pho-	radio luminosity of galaxies, 728, 730
ton spectrum, 269	interpretation in terms of starbursts, 729
examples of astrophysical applications, 268	COS-B satellite, 28
interchange of energy between matter and	Cosmic Background Explorer (COBE), 16, 17,
radiation and, 268–270	410
differential equation for, 269	DIRBE instrument of, 12–14
Kompaneets equation, 275–282	FIRAS instrument of, 283
number of scatterings to approach satura-	The Cosmic Century: A History of Astrophysics
tion, 270	and Cosmology (Longair), ii–iv, 3, 5, 53,
occupation number, 272–275	213, 639
recoil effect in, 268	Cosmic Microwave Background Radiation, 15–
computer simulations	18, 109, 125, 126, 410, 589, 731, 733,
hydrodynamical simulations of galaxy col-	755, 831
lisions, 820	cosmological fluctuations in, 17
origin and evolution of cosmic structures	dipole component of, 15–17
and, 820	dipole temperature distribution from mov-
concentration index $C = (R90/R50)$, 94	ing reference frame, 755
conductivity of a plasma, 145, 464	distortions from a perfect black-body spec-
cone diagram of the distribution of galaxies,	trum, 282
conservation of angular momentum, 471, 484	due to energy injection after the recom-
conservation of energy for Newtonian grav-	bination era, 283
ity, 471, 472, 484	due to energy injection prior to the re-
conservation of energy in general relativity,	combination era, 282
472, 484	limits to, 284
conservation of mass, 53	fluctuations in, 820
convection dominated accretion flows (CDAFs),	motion of the Solar System relative to, 16,
722	17
convective transport of energy in stars, 50, 54	radiation temperature of, 15
condition for, 50, 66	Sunyaev-Zeldovich distortions of, 125–127,
in main sequence stars, 67	286
in pre-main sequence stars, 67	cosmic ray astrophysics, 29–34
in red giant stars, 67	extensive air showers, 31
of different masses on the main sequence,	from space and from the ground, 32–34
68	history of, 29–32
convective transport of mass and energy, 505	ionisation of the atmosphere with increas-
cooling flows in clusters of galaxies, 123–125	ing altitude, 30, 31
cooling function	cosmic ray clocks, 548
generalised, 719	cosmic ray electrons
Cooper pairs, 442	spectrum of, 233, 247, 248
coordinate systems and projections used in	cosmic ray protons and nuclei
astronomy, 8	solar modulation of, 204, 205
coordinate systems in astronomy, 825–829	cosmic rays, 539–584, 639

INDE	EX 909
abundances of the elements in the cosmic rays, 543–549	differences from cosmic abundances, 548 isotropy and energy density of, 549–550
air shower technique at energies $E \gtrsim 10^{15}$	isotropy of, 566
eV, 539, 541	as a function of energy, 549
antiparticles in the flux of, 543	Compton-Getting effect, 567
chemical abundances of, 34, 544–547	diffusion model for, 566–568
features of, 545–546	leaky box model for, 566
confinement time in the Galaxy and cosmic	net stream of cosmic rays and, 549
ray clocks, 563–565	predicted anisotropy in diffusion model,
confinement volume for, 565–568	567
cosmic ray clocks	underground muons and, 549
observed abundances of radioactive spal- lation products, 565, 566	isotropy of ultra-high energy cosmic rays, 578–581
radioactive spallation products and, 563,	local energy density of, 550
564	compared with other local energy densi-
differential energy spectra for different species,	ties, 550
540-542	mean free path for scattering in the inter-
differential energy spectra for electrons, 542–	stellar medium, 567
543	mean spallation path length of 50 kg m ⁻² ,
differential energy spectrum of	565
'ankle' in, 539, 540	observation of the highest energy, 573–578
'bump' in, 575	origin of the light elements in, 554–563
'knee' in, 539, 540, 575, 578, 629, 630,	abundance differences compared with cos-
633–635	mic abundances, 554
overall, 539, 540	overall statistics for, 539
energy density of, 390	particle detectors in space observatories, 539
energy spectra of cosmic ray protons and	residence time in the Galaxy, 579
nuclei, 33, 539–543	dependence upon particle energy, 579
solar modulation and, 539	Solar System abundances of the elements,
energy spectrum of cosmic ray protons and	543–545
nuclei, 233	source abundances compared with the lo-
escape time τ_e from our vicinity in the Galaxy,	cal Galactic abundances, 558–560
563, 566	correlation with first ionisation potential, 560
derived from mean spallation path length, 563	first ionisation potential and, 558
derived from radioactive spallation prod-	streaming instability due to excitation of
ucts. 565	Alfvén and hydromagnetic waves, 567
escape time from the Galaxy, 604	transfer equation for light nuclei, 554–561
Galactic halo, 568–571	ultra-high energy, 34
Greisen-Kuzmin-Zatsepin (GKZ) cut-off, 581–	anisotropies in distribution of, 34
584	cutoff at very high energies, 34
gyroradius of, 549	variations in the chemical composition of
high energy electrons and the Galactic ra-	cosmic rays with energy, 561–563
dio emission, 585, 593	boron-to-carbon ratio, 561, 562
high energy protons and the Galactic γ -ray	chromium-to-iron ratio, 561, 562
emission, 585	cosmic rays and the discovery of new parti-
highest energy cosmic rays and extensive	cles, 31–32
air-showers, 571–573	charged and neutral kaons, 32
isotopic abundance anomalies in	mesotron, 32
origin of, 563	muon, 32
isotopic abundances of, 547–549	pion, 32
	r->, 0=

910	INDEX
positron, 32 strange particles, 32 cosmic rays in the atmosphere, 321–326 electromagnetic cascades, 321–323 formation rate and half-life of ¹⁴ C, 324 formation rate and half-life of ³ H, 325 nucleonic cascades, 321–323 path-length for nuclear interaction, 323 pion production, 321–323 radioactive nuclei produced by cosmic ray in the atmosphere, 324–326 formation of carbon-14 ¹⁴ C, 324 formation of tritium ³ H, 324 residence time in atmosphere, 325 secondary fluxes of relativistic electrons 323 vertical fluxes of, 324 vertical fluxes of at different heights, 323 cosmic rays, solar underabundances correlated with first ion isation potential, 559 cosmic star formation rate maximum at redshifts z ~ 1 – 2, 819 problem of dust extinction, 815 submillimetre determinations of as a function of redshift, 816 cosmic web, 111, 112 Cosmic-Ray Isotope Spectrometer (CRIS) of the Advanced Composition Explorer (A 565, 566 cosmological aspects of high energy astrophy 781–823 cosmological distance ladder, 831, 832 Coulomb's law of electrostatics, 172 relativistic transformation of, 149–151 counts of active galaxies evolution in infrared waveband, 809 counts of extragalactic radio sources, 787 evidence for strong cosmological evolution, 789 counts of galaxies, 800–807 excess of faint blue galaxies, 801, 804 and starburst galaxies, 806	in U, B, R, I and K wavebands, 803 problems of determining, 800–804 counts of galaxies and active galaxies, predicted, 783–793 at submillimetre wavelengths, 810–812 normalised differential counts, 810, 811 Euclidean, 783 differential, 783 integral, 783 s for standard world models, 783–800 for sources with power-law spectra, 783–784 infrared counts for galaxies, 798–800 normalised, differential, 783–784 optical counts for galaxies, 798–800 slopes of integral and differential, 784 counts of infrared and submillimetre sources convergence of, at mid-infrared wavelengths, 810 IRAS galaxies excess of faint sources, 807 Spitzer Survey excess of faint sources, 807 submillimetre wavelengths, 812 excess of faint sources, 812 counts of mid and far-infrared sources, 810 counts of radio quiet quasars, 646, 647, 792 counts of X-ray sources, 794–798 evidence for evolution of the source populations, 794 hard X-ray energies, 2 – 10 keV, 657, 794, 796 history of, 794 problems of interpretation, 794 soft X-ray energies, 0.5 – 2 keV, 794, 796 and the integrated X-ray background emission, 794 Crab Nebula (M1, NGC 1952), 25, 26, 28, 213, 414, 447, 599, 640, 705, 770 continuous injection of energy into, 448 energy requirements of, 448 pulsar in, 414, 444, 447, 448, 456, 457, 461, 463, 465, 467 critial density for degenerate gas, 433
evidence for strong cosmological evolution, 789	continuous injection of energy into, 448 energy requirements of, 448
excess of faint blue galaxies, 801, 804	461, 463, 465, 467 critial density for degenerate gas, 433 critical angular frequency for synchrotron radiation, 229, 230 critical brightness temperature, 289, 290
in infrared K-waveband, 804, 806	critical density

	INDEX	911
for common ions, 373, 375 critical density for stabilisation in degenerate neutron gas, 440 critical density for star formation, 820 critical Fermi momentum $p_{\rm F}$, 440 critical frequency for synchrotron radiation, 222, 232–234, 240, 245 crossing time, 118 crossing time $\tau_{\rm cr}$ of star or galaxy in a cluster, 166, 167 Cryogenic Dark Matter Search (CDMS II), 140 current sheets, 354 curvature of space-time in general relativity, 470 curvature radiation, 222, 468 cusp catatrophe, 133 cyclotron absorption features, 443 cyclotron absorption features in accreting X-	ting estimate: of e influence origin of origin of other Ty photoion physical sibl wide ran rotation me shocks and intract typical of lu D galaxies, 64 damping of A	s the element abundances in emit- g line regions, 705 s the temperatures and densities emitting line regions, 705 e of dust extinction on, 703 f continuum radiation, 705 f dust extinction in, 703 pe 2 systems and, 707 nisation models for, 705 properties of the clouds respon- le for, 705, 706 age of ionisation states in, 703 easure distribution, 735 d cooling flows in surrounding luster gas, 735 uminous FR2 radio sources, 735 41, 651 Ifvén and hydromagnetic waves,
ray sources, 217–219 magentic field estimates from, 218 cyclotron absorption features in isolated neutron star, 218 cyclotron absorption features in isolated neutron stars magentic field estimates from, 219 cyclotron radiation, 216–219 broadening of spectral lines of, 217 circular polarisation of, 217, 218 geometry of magnetic field configuration and, 218 magentic field estimates from, 218 harmonics of gyrofrequency, 216, 217 mildly relativistic, 216 cyclotron radius of charged particle in mag-	dark energy, 4 dark matter, 1 astrophysic 140 axions and baryonic, 1 black holes limits to lens brown dwa forms of, 1 in clusters in early typ in galaxies, MACHOs	417 135–140 cal and experimental limits, 139– , 138 35–138 s and, 136 mass density from gravitational sing, 136 urfs and baryonic, 136 35–140 of galaxies, 109, 119, 121 be galaxies, 135 , 85
netic field, 196 Cygnus A, 26, 288, 534, 603, 640, 702–707, 723–725, 727, 731–734, 736, 747, 848 abnormally nearby, 702 absence of internal depolarision, 735 intergalactic magnetic flux density in surrounding intracluster gas, 735 mass of associated cluster and intracluster gas, 735 minimum energy requirements for, 603 optical spectrum of, 702–707 comparison of theoretical and observed spectrum, 703 comparison with the spectrum of the Cralnebula, 705	masses of c neutrinos w non-baryor searches fo structure of WIMPs and dark matter h 133 Davis-Greens de Broglie wa de Vaucouleu ness, 91, dead stars, 41 Debye length	dark matter particles, 140 with finite rest mass and, 138 nic, 138–139 or dark matter particles, 140 f, 133 d, 138 naloes of galaxies and clusters, stein alignment mechanism, 407 avelength, 307 ars $r^{1/4}$ law for surface bright, 116

912 <i>IND</i>	EX
decay of binary orbits and gravitational waves,	including term for diffusion of particles in
35	momentum space, 620
declination (Dec or δ), 825, 826	source term, 278
deflagrations, 419	statistical acceleration and, 277
degeneracy pressure, 431 condition for use of relativistic equation of	steady-state solutions for particle acceleration, 618
state, 433, 434 conditions under which important, 431, 433,	diffusion-loss equation for high energy elec- trons, 590–594
434 degenerate gas	distortions of the injection energy spectrum, 590–591
non-relativistic equation of state for, 432,	steady-state solutions for, 590–591
433	under synchrotron and inverse Compton
	losses, 591, 592
relativistic equation of state for, 433 of electrons, 433	time evolution
· · · · · · · · · · · · · · · · · · ·	under synchrotron and inverse Compton
of neutrons, 434	losses, 591, 592
degenerate stars	diffusion-loss equation for high energy parti-
internal structure of, 431–434	cles, 207–211
dendrochronology, see tree-ring-dating	coordinate-space approach, 209–211
density wave theory of spiral structure, 388,	elementary approach, 208–209
504	including spallation gains and losses, catas-
forcing mechanisms and, 389	trophic loss of particles, radioactive
dentist's drill model for jets in FR2 radio sources,	decay, 210
742	diffusive shock acceleration, 621–635, 730
depolarisation of polarised radio signals, see	advection of particles from shock acceler-
Faraday depolarisation	ation region, 625
detection of ultra-high energy γ -rays, 292	average energy gain on crossing shock wave,
detonations, 419	624
deuterium formation in stars, 49, 60	average energy gain per cycle of accelera-
neutrinos from, 49	tion, 625
diagnostic diagram	box-model of, 626
alignment effect and, 717	
diagnostic diagram for emission line galaxies, 706, 707	differential power-law energy spectrum from, 625
distinguishing photoionisation by hot stars	efficiency of conversion of kinetic energy
from non-thermal radiation, 707	to particle energy, 628, 633
differential rotation of Galactic disc, 387	first-order Fermi acceleration, 622
diffraction optics, 838	for shock waves with different compression
diffraction-limited telescopes, 838–845	ratios, 627, 631
diffusion coefficient D, scalar, 208	fraction of particles lost per cycle, 625
diffusion coefficients for high energy parti-	non-linear features of, 628 overcoming the adiabatic loss problem, 627
cles in fluctuations in magnetic field, 204	
physical model for, 204–205	scattering by Alfvén and hydromagnetic waves 626
diffusion of charged particles, 329–332 mean free path and, 330	scattering by streaming instabilities or tur- bulent motions, 622, 623
diffusion time for magnetic field in a plasma, 340, 342, 355	symmetry of acceleration process in cross- ing of shock front, 624
diffusion-loss equation, 278, 586, 594, 608	upper limit to particle energy, 626
escape time, 278	diffusive shock acceleration in strong shocks,
including radioactive decay, 564–565	616
solution of, 564	diffusive velocity, 357

dimensional analysis, 606	eclipsing X-ray binary with stellar mass black
dipole radiation, 173, 220, 221	hole, 481
Dirac δ -function, 176, 181, 329	eddies, turbulent, 496
Fourier transform of, 181	Eddington limiting luminosity, 79, 452, 486–
dispersion measure, 459	488, 490, 491, 495, 502–504, 511, 512,
dispersion measure of pulsars, 375–377	515, 521, 527, 535, 669, 670, 693, 696,
dispersion prism, or grating, 645	718, 720, 721, 734
displacement four-vector R , 149, 169, 170,	effective aperture of an antenna, 849, 854
856	effective temperature $T_{\rm eff}$, 39, 53
dissipation time-scale, 355	effective temperature of relativistic gas, 240
distance indicators, 830	Effelsberg 100-m radio telescope, 404, 569,
problems of using, 830	677
distance measure D , 784	EGRET source catalogue in Galactic coordi-
distances in astronomy, 10, 829-832	nates, 766
astrophysical methods, 830, 832	8-10 metre optical-infrared telescopes, 7
Baade-Wesselink method, 830	Einstein angle, 130, 133
gravitational lenses, 832	Einstein coefficients for spontaneous and stim-
Sunyaev-Zeldovich effect, 831	ulated emission and stimulated absorp-
using distance indicators, 830	tion, 187, 242
distribution of mass in clusters	relations between, 274
bremsstrahlung X-ray emission and, 671	Einstein radius, 130, 133
Doppler shift formula, relativistic, 262	Einstein ring, 129–131
Dreicer field, 615	Einstein X-ray Observatory, 27, 78, 123, 656
'drop-out' galaxies, 806, 814	Einstein-de Sitter world model, 800
Drude model, see electrical conductivity of a	electric dipole moment, 172
fully ionised plasma, Drude model for	electrical conductivity of a fully ionised plasma
Drury instability, 629	333–334, 338, 354, 355
dust, see interstellar dust	dissipation of energy and, 354
sublimation temperature of, 714	Drude model for, 330, 333
dust emission in millimetre and submillime-	including effect of electron-electron colli-
tre waveband, 17	sions, 334
dust extinction of galaxy spectral energy dis-	Lorentz approximation for, 333
tribution, 807, 809	electrical conductivity of metals
dust shells about giant stars, 83	typical values for, 334
dwarf novae, see cataclysmic variables, dwarf	electromagnetic field
novae	energy density of, in a medium, 294
dynamical friction, 143, 165-167, 678	Electromagnetic Processes (Gould), 141
clusters of galaxies and, 167	electromagnetic showers, 292, 299–302
galaxies and, 167	critical energy E_c for, 300, 301
globular clusters and, 167	degradation of energy by ionisation losses
limits to collision parameters and, 166	at low energies, 300
regular clusters of galaxies and, 167	degradation of energy through the atmo-
dynamical timescale of a star, 46	sphere, 300
dynamics of a charged particle in a magnetic	properties of, 300, 302
field	simple model for, 299
with small scale fluctuations, 203	total number of particles with depth through
	a medium, 301
early-type galaxies, 87, 89	electromotive force, 198, 334–336
mass distribution in, 135	electron cyclotron radiation features in the X-
Earth's magnetosphere, see magnetosphere of	ray spectra, 511
Earth	electron degeneracy pressure, 76, 84, 413

inverse Compton scattering, 589-591, 593, electron scattering, see Thomson scattering, 502, 503, 721 594 electron-photon cascades, see electromagnetic ionisation losses, 586, 590, 591, 593 showers maximum lifetime of high energy electrons electron-positron annihilation line from the anywhere in the Universe, 589 direction of the Galactic Centre, 304, 305 relative imporance of inverse Compton scatelectron-positron pair production, 297-299 tering and synchrotron losses, 589 cross-section at intermediate photon enersynchrotron radiation, 542, 588, 590, 591, gies, 297 593, 594 cross-section in the ultrarelativistic limit, under interstellar conditions, 590 298 energy transport in stars, 50-53 impossibility in free space, 297 enthalpy per unit mass, 346 radiation length for, 298 for perfect gas, 346 similarity of radiation length for bremsstrahlung entropy of plasma and for, 298, 299 conservation of, 338 electron-positron annihilation, 302-305 equation of continuity, 622 annihilation at rest or in flight, 303 equation of hydrostatic support, 113, 492 broadening of γ -ray lines, 304 equation of mass conservation, 113 cross-section for equation of state of stellar material, 44, 53, in extreme relativistic limit, 305 thermal electrons and positrons, 305 equations of stellar structure, 53-56, 435 maximum and minimum energies of phoequidistant azimuthal polar projection, 7, 827, tons, 304 828 of positronium atoms, 304 equipartition theorem, 672 electron-positron annihilation line, 318, 320 equivalent current loop for particle gyrating electron-positron, or electromagnetic, cascades, in magnetic field, 197-199 571 equivalent noise temperature $T_{\rm n}$, 852 electrostatic encounters between charged par-EROS project, 138 ticles, 614 escape time of high energy particles in the emission from the Earth's atmosphere T_{atm} , Galaxy, 592, 593 854 ESO 3.5 m New Technology Telescope, 680 emissivity κ_{ν} , 186 ESO-SERC Southern Sky Survey, 110 in terms of elementary atomic processes, Euler's constant, 184 188 Euler-Lagrange equations, 689 emissivity of telescope in infrared waveband, European VLBI network, 747 850 encircled energy fraction, 842, 843 evaporation time for a cluster of stars, 678 Evidence for the occurrence of violent events for circular mirror with central hole, 846 in the nuclei of galaxies (Burbidge, Burwith varying wavefront errors, 843 end-points of stellar evolution, 84 bidge and Sandage), 648 evolution of active galaxies with cosmic epoch, energies, useful conversion formulae, 855 787-798 energy densities in high energy particles and extragalactic radio sources, 787-792 magnetic fields in the Galaxy 'luminosity evolution', 790 roughly equality of, 570, 571 cut-off of strong evolution beyond redenergy density of starlight in our Galaxy, 589 shift $z \sim 2 - 3,791,792$ energy dissipation rate by viscous forces, 498 energy generation, 53 for sources with steep and flat radio specenergy loss processes for high energy electra, 790 luminosity-dependent density evolution, trons, 585–590 791, 792 adiabatic losses, 587-588, 590, 591 bremsstrahlung, 586-587, 590, 591 radio quiet quasars, 792-793

evolution of galaxies and active galaxies with	young FR2 radio sources, 737–738
cosmic epoch, 781–813	extended radio sources – Fanaroff-Riley types,
mid and far-infrared number counts, 807-	662, 723–729
810	extended sources
active galaxies, 782, 787–798	Fanaroff-Riley types, see also Fanaroff-
extragalactic radio sources, 787–792	Riley Type 1 (FR1) and Type 2 (FR2)
radio quiet quasars, 792–793	radio sources
X-ray clusters of galaxies, 798	FR1 radio sources, 740
X-ray sources, 794–798	jet physics, 742–744
brief history of evidence for, 781–782	electromagnetic processes in black holes
co-evolution of stellar and black hole prop-	and, 742, 743
erties of galaxies, 782	gas dynamical processes and, 743
counts of galaxies, 800–807	magnetic instabilities and, 743
counts of galaxies and active galaxies, 783–	rotation of black holes and, 742
793	twin-exhaust model for, 743, 744
euclidean source counts, 783	luminosity function of
for standard world models, 800	evolution with cosmic epoch, 789–792
predicted, for standard world models, 783–	microquasars, 740–742
784	properties of, 723–729
submillimetre counts of dusty galaxies,	classical double radio sources, 727
810–812	compact nuclear radio sources, 723, 725
stellar and gaseous components of galax-	hot spots, 723, 725
ies, 782	members of rich clusters of galaxies, 725
submillimetre number counts, 810–813	radio jets, 723
$V/V_{\rm max}$ or luminosity-volume test, 786–787	radio lobes of, 723
excess of faint blue galaxies	radio-trail radio sources, 727
irregular nature of, 806	self-similar structure of FR2 radio sources,
exoplanets, 74–76	725
Doppler technique for discovering, 74	spectra of, 723
highly elliptical orbits of, 75	surrounded by hot intergalactic gas, 723,
Jupiter mass planets very close to parent	725
stars, 75	radio emission of spiral galaxies, 728
occultation technique for discovering, 75	radio emission of starburst galaxies, 728
problems of accounting for orbits of, 75	radio luminosity function of, at present epoch,
EXOSAT X-ray telescope, 489, 523, 527	728, 729
explosive nucleosynthesis, 73	relativistic jets in, 723
extensive air-showers, 323, 571	Extreme Ultraviolet Explorer (EUVE), 24
extinction	Faber-Jackson relation and fundamental plane,
role of absorption and scattering, 378–381	96–97
extinction by interstellar dust grains, 8, 10	and the distances of galaxies, 97
extinction coefficient, 10	Fanaroff-Riley Classes, 729
extinction curves, 378	dividing radio luminosity as a function of
extinction efficiency Q , 380, 381	absolute optical magnitude of host galaxy,
extragalactic radio sources, 723–744	728
astrophysics of FR2 radio sources, 730–738	radio luminosities of Types 1 and 2, 727,
energetics and energy densities, 731–733	728
gas dynamics of FR2 radio sources, 736–	Fanaroff-Riley Type 1 (FR1) radio sources,
737	726, 727, 738–740
synchrotron losses and time-scales, 733-	asymmetric structures on small scales, 739
735	deceleration of relativistic beams in cores
synchrotron radiation and, 730-735	of, 739, 740, 758

710	
relativistic beaming in cores of, 739	average rate of energy gain, 618
relativistic motions in, 757	broadening of energy spectrum by random
role of buoyancy in, 738	colllisions, 620
X-ray images of cavities inflated by buoy-	characteristic loss time $ au_{ m esc}$ from accelera-
ancy, 739	tion region, 616
Fanaroff-Riley Type 2 (FR2) radio sources,	exponential increase in energy, 618
727, 730–738	formation of a power-law energy spectrum,
astrophysics of, 730–738	619
compact symmetric objects (CSO), 731	head-on and following collisions, 617
deviations from symmetry, 757	probabilities of, 617
energetics and energy densities, 731–733	injection problem, 619
Cygnus A, 731–733	ionisation losses and, 619
equipartition magnetic fields in Cygnus	magnetic mirrors and, 616
A, 731–733	modern version including interactions with
minimum energy requirements for syn-	plasma waves, 621
chrotron radiation, 731	problems with, 619–620
minimum pressures in Cygnus A, 732	injection problem, 619
pressure of hot intracluster gas, 732	ionisation losses and, 619
synchro-Compton radiation from hot-spots	slow increase in energy of particles, 619
in Cygnus A, 732	why a standard power spectrum?, 619,
formation of cocoon in, 730	620
formation of hot-spots in, 730	random scattering between cloud collisions,
schematic models for, 730, 731, 735, 736	617
self-collimation of jets in, 731	relation between mean square energy change
synchrotron losses and time-scales, 733–735	and increase in energy per collision, 621
continuous energy supply, 734	second order Fermi acceleration, 622
in Cygnus A, 733	stochastic energy gains and, 616
particle acceleration in hot-spots of Cygnus	Fermi energy, 440
A, 734	Fermi Gamma-ray Space Telescope, 765, 769,
rate of supply of energy, 734	773
speed of advance of hot-spots, 734	Large Area Telescope Bright Active Galac-
variation of spectral index in Cygnus A,	tic Nuclei (AGN) Sample (LBAS), 765
733, 734	Fermi Large Area Telescope, 766
Faraday depolarisation, 377–378	Fermi momentum of a degenerate Fermi gas,
Faraday rotation of linearly polarised radio	433
signals, 376–378, 402–404	Fermi-Dirac distribution, 433
direction of magnetic field and, 377	Fermi-Thomas model of the atom, 190
estimates of the Galactic magnetic field and,	filling factor, 372
377	fine structure constant, 147, 183, 252, 438
refractive indices of elliptically polarised	Finkelstein coordinates, 473
waves, 376	firehose instability, 629
right- and left-handed elliptically polarised	first adiabatic invariant, 199
waves, 376	first point in Aries, 825 first-order Fermi acceleration, <i>see</i> diffusive shock
rotation measure, 377 feedback processes and the masses of giant	acceleration in strong shocks
elliptical galaxies, 685	fluctuations in black body radiation, 852, 853
Fermi acceleration - original version, 616–	fluctuations in the Cosmic Microwave Back-
622, 624, 626	ground Radiation, 820
as a second-order process, 618	Fluid mechanics (Landau and Lifshitz), 344
average energy gain per collision, 618	fluorescent X-ray lines, 686–688
	•

physics of, 686–687	mass of, 680, 681
tracers of velocity field in accretion discs,	infrared flares in, 681
687	mass distribution in, 680, 681
flux densities, luminosity, magnitudes and colours	optical extinction to, 678
in astronomy, 833–837	orbit of star S2 about, 680, 681
flux density, 834	orbits of stars about, 679
bolometric, 834, 836	supermassive black hole in, 13
definition of, 833	galactic coordinates, 826, 827
Fokker–Planck equation for stars in clusters,	Galactic Dynamics (Binney and Tremaine),
116	86
Fokker-Planck equation for the diffusion of	galactic equator, 826, 827
the particles in momentum space, 620,	Galactic halo, 568–571
622, 627	galactic fountains and, 569
fold catastrophe, 133	observed in UV absorption lines of CIV
forbidden transitions in spectra of gaseous neb-	and SiIV, 568
ulae, 372–375	radio, 568
critical density for, 375	galactic latitude (b), 826
metastable energy levels and, 374	galactic longitude (l), 826, 828
radiative de-excitation and, 374	Galactic magnetic field, 248, 402–411
Formation of Stars, The (Stahler and Palla), 393	aligned with local spiral arm, 407
48-inch Schmidt Telescope Palomar Sky Sur-	Faraday rotation in the interstellar medium,
vey (POSS), 109	402–404
four-dimensional momentum space	large fluctuations in, 402, 403
volume element of as a Lorentz invariant,	large-scale order in, 402, 403, 407
274	magnetic flux density from pulsar rotation
Fourier analysis, 845–848	measures, 249
addition theorem, 845	mean magnetic flux density, 411
convolution theorem, 846	North Polar Spur and, 407
Fourier transformation, 178, 179, 203, 221-	optical polarisation of starlight, 404–407
223, 232	radio emission of spinning dust grains and,
Fraunhofer diffraction, 839	408–410
for circular aperture, 840–842	radio emission of the Galaxy and, 411
encircled energy fraction, 843	summary of the information on, 411
for circular mirror or lens, 840	Zeeman splitting of 21-cm line radiation
for rectangular slit, 839	and, 410
for single slit, 839	galactic north pole, 826–828
free-fall velocity in general relativity, 471	Galactic radio emission
free-free emission, see bremsstrahlung	spectrum of, 593
frequencies of galaxies of different types, 803	break in, 593, 594
in different galactic environments, 800	variations with location in Galaxy, 594
frequency four-vector K , 752, 857	galactic south pole, 827, 828
fully convective stars	galaxies, 85
stability criterion for, 66	barred spiral SB, 86
fundamental plane, 96–97	collisions between, 88
	colour-luminosity relation for elliptical galax-
Galactic Astronomy (Binney and Merrifield),	ies, 97
86	correlations among the properties of, 95–
Galactic Centre, 8, 679, 826, 828	98
black hole in nucleus of, 678–681	Faber-Jackson relation and fundamental
mass density close to, 680, 681	plane, 96–97

)10 HVDE	21
mass-metallicity relation for galaxies, 97–98	observed global star formation rate, 813–816
Tully-Fisher relation for spiral galaxies,	star-forming galaxies and, 813
	starburst galaxies at large redshift, 813
elliptical E, 86	star and element formation and, 813–816
ellipticities of, 86	star formation and, 819
gas phase metallicity-luminosity relation for	GALLEX solar neutrino experiment, 34, 63
late-type galaxies, 98	γ -ray background emission
Hubble sequence, 86–88	Comptonisation and, 798
interactions between, 109	spectrum of, 794
irregular, 86	γ-ray bursts, 28, 419, 771–780
large-scale distribution of	afterglows
holes and voids in, 111	discovery of, 773
sheets and filaments in, 111	prediction of, 771
lenticular or S0, 87	afterglows of long and short bursts, 775
mass-metallicity relation for galaxies, 98	anisotropy of emission, 778
masses of, 98	at very large redshifts, 773
normal spiral S, 86	bimodal distribution of burst durations, 771,
old red, see old red galaxies	772,775
passive evolution of, 799	host galaxies of long and short bursts,
importance of red giant branch, 798	cartoons of evolution of, 779
peculiar, 88	causality arguments and size of emission
red and blue sequences, 89–95	regions, 776
ring, 88	collapsar model for, 780
statistics of galaxies belonging to red and	compactness parameter, 776
blue sequences, 95	relativistic beaming and, 777
surface brightness distributions of, 91, 94	discovery of, 771–773
discs, 91, 92	energy releases of, 774
spheroids or bulges, 91, 92	evolution of X-ray afterglows, 775, 776
'tuning fork' diagram for, 86	extragalactic origin of, 773
Galaxies in the Universe: an Introduction (Sparke	isotropy of distribution on sky, 771, 772
and Gallagher), 86	long, 771–774
Galaxy	association with core-collapse supernovae,
dark matter in, 387	775, 779, 780
mass of, 832	relativistic beaming factors for, 780
radio emission of, 246–249	time-lag for, 775
radio disc, 247	Wolf-Rayet stars and, 780
thickness of radio disc, 248	number counts of, 771
rotation curve of, 387	physics of, 776–780
galaxy downsizing, 685	probes of the reionisation era, 773
Galaxy Formation (Longair), ii, iii, 86, 111,	properties of, 774–776
130, 140, 682, 832	relativistic bulk motion and, 776
galaxy formation	relativistic fire-ball model for, 776–777
collisions between galaxies and, 819	first-order Fermi acceleration in, 777
'down-sizing', 819	relativistic shock waves in, 777
feedback mechanisms and, 819	relativistic jets
growth of supermassive black holes and,	break in afterglow light-curve, 779
819	deficiencies of the standard models of,
Lyman-break galaxies	779
multicolour technique for discovering, 813	energetics of models of, 779

evolution of, 778	contact discontinuity and shock structure
short, 771–774	in, 736
correlation with regions of low star for-	ram pressure and, 736
mation, 775	role of cocoon in stabilising jets, 736, 737
gravitational waves and, 780	self-similar solutions and, 736
merger of compact binaries and, 780	speed of advance of hot-spots, 736
spectra of long and short bursts, 775	waste energy problem and, 736
supernova association, 773	gauge selection in electrodynamics, 175
time evolution of synchrotron radiation sources	Gaunt factors, 121, 123, 184, 331, 334
and, 777, 778	bremsstrahlung, 586
γ -ray Cherenkov telescopes, 770	for diffusion of particles in a plasma, 332
γ -ray observations of the Galaxy, 539, 550–	for electrical conductivity of plasma, 332
554	frequency averaged, 185
distribution of cosmic rays in the Galaxy	Gauss's theorem for Newtonian gravity, 131
and, 550–554	Gaussian point-spread function, 844
luminosity of, 552	Gemini Deep Deep Survey, 817, 818
pion production and, 551	Gemini North telescope, 480
cross-section for, 551	general relativity, 469–473
relativistic bremsstrahlung of ultrarelativis-	conservation of angular momentum, 689
tic electrons, 552, 553	dynamics of particles about point mass, 471
spectrum of γ -rays produced by inverse Comp-	radial motion of test particle in, 689
ton scattering of starlight, 552–554	GEO600 gravitational wave experiment, 36
spectrum of γ -rays produced from neutral	geodesic distance, 470
pion decay, 551, 552	giant branch, 41, 43, 44, 55, 69, 77, 81, 82
γ -ray sources in active galactic nuclei, 764–	giant molecular clouds, 341, 396–398
771	formation of, 388
association with blazars and superluminal	in spiral density waves, 389
sources, 653	percolation processes and, 389
compactness parameter and, 767–768, 770	supernova explosions and, 389
relativistic beaming and, 768	gigahertz peaked spectrum objects (GPS), 747
distribution of point γ -ray sources, 764–	Ginga X-ray observatory, 660
765	globular clusters, 44, 76
energy densities of radiation in, 767	oldest, 77
extreme variability of, 770	typical parameters for, 167
γ -ray photosphere, 767, 768	Goldstake solar neutrino experiment, 34
hyperluminous, 669	GOLF experiment of the ESA SOHO mis-
inverse Compton scattering and, 768	sion, 58, 59
luminosities of, 766	Gran Sasso Laboratory, in Central Italy, 63
photon-photon collisions in, 767–768	grating telescope, 848
relativistic beaming factor for, 769, 770	gravitational deflection of light rays, 132, 133
relativistic jet models for, 768–771	by the Sun, 129
superluminal sources and, 765	collision parameter for, 129
synchro-self Compton models for, 769	gravitational fine structure constant, 438
TeV sources, 770	gravitational lensing, 109, 832
types of object associated with, 765, 766	strong, 135
variability of, 766, 767	weak, 133
γ -ray waveband, 27–29, 551	gravitational lensing by galaxies and clusters
γ -ray line emission, 28	of galaxies, 129–135
Cherenkov detection technique, 29	caustics and cusps in, 133
detectors for, 28	cluster masses from, 133
gas dynamics of FR2 radio sources	critical surface density for, 132
Sas dynamics of FRZ radio sources	critical surface delisity 101, 132

distortion of background images by, 133 galaxy-galaxy imaging and, 135 necessary conditions for, 131	primordial nucleosynthesis of, 60 cosmic abundance of, 43 helium burning, 71, 81
Gravitational Lensing: Strong, Weak and Mi-	helium flash, 81, 438
cro (Schneider, Kochanek and Wambs-	helium shell burning, 71
ganss), 131	Herbig-Haro (HH) objects, 398, 399
gravitational redshift, 667, 688, 689, 691, 692	Hercules X-1 (Her X-1), 218, 443, 450, 451
gravitational relaxation time τ_r , 165–167	discovery records of, 451
grazing incidence optics, 23, 25	modulation of light curve, 527
Great Observatories Origins Deep Survey (GOODS), 802, 803, 815	precession of rotation axis of neutron star, 527
grey-body spectrum, 807, 809 Grotrian diagram, 374	unpinning of crust and magentic field from neutron superfluid, 527
group velocity, 375	Hertzsprung-Russell diagram, 39–44, 55, 66,
guiding centre, 214, 229	70, 71, 73, 76–78, 81–83
guiding centre motion, 197, 199, 203, 204	for clusters of stars, 42
gyration radius of cosmic ray protons in mag-	for white dwarfs, 439
netic field, 549	theorist's, 76, 77
gyrofrequency, 196, 375, 376	HESS Cherenkov γ -ray telescope array, 29,
non-relativistic, 197, 216, 222, 229, 230,	597, 769, 770
746	Hess ultra γ -radiation, 30
relativistic, 213, 216, 222, 232, 236 gyroradius, 203	HETE-2 satellite, 773
and rigidity R, 204	hierarchical models of galaxy formation
charged particle in magnetic field, 196	old red galaxies and, 818
gyroscopic precession about rotating black holes,	High Energy Astrophysics (Longair), ii high energy astrophysics
475	definition of, 3
	modern physics and astronomy and, 3–5
Hammer-Aitoff projection, 8, 9, 12, 14, 16, 19, 24, 29, 828	high energy electron energy spectrum in the local interstellar medium, 592–594
Handbook of Space Astronomy and Astrophysics	high-mass X-ray binaries, 529–531
(Zombeck), 141	capture, or accretion, radius for stellar wind,
hard low mass X-ray binary stars, 304, 305	529, 530
Harvard spectral classification system, 41, 42	O and B stars in, 529
spectra of main sequence stars in, 42	properties of, 529
Hawking radiation, 478	X-ray luminosity due to accretion, 530
Hayashi tracks, 66–69, 71	highest energy cosmic rays, 571–584
for fully convective stars, 67	charges and masses of, 636
HEAO-1 X-ray Observatory, 794	chemical composition of, 576–578, 580
HEAO-A2 experiment, 185	correlation with nearby galaxies and active
HEAO-C satellite, 28 HEAO-C2 cosmic ray experiment, 545	galaxies, 579–581 Cosmic Microwave Background Radiation
HEAO-C3 cosmic ray experiment, 546, 547	and, 574, 581, 583
heat diffusion equation, 50	cut-off due to photonuclear interactions for
Heisenberg's uncertainty principle, 147, 152,	nuclei, 583–584
307, 369, 431–433	Monte Carlo calculations for, 584
helioseismology, 56–60	depth through atmosphere of maximum shower
acoustic or <i>p</i> -modes, 58	development X_{max} , 571, 576–578
gravity or g -modes, 58	detection by emission of fluorescent radia-
probing the structure of the Sun and, 58–60	tion, 572
helium	differential energy spectrum of, 573–578

INDE	X 921
distortion of spectrum due to photo-pair production, 582, 583 fly's eye telescopes, 572 Gaisser-Hillas function, 572, 576 Greisen-Kuzmin-Zatsepin (GKZ) cut-off, 581–584 at 5 × 10 ¹⁹ eV for protons, 581 gyroradius of, 578–580 protons and iron nuclei, 579 high energy neutrino production and, 581 HiRes experiments, 572, 575–578, 582–584, 635 largest measured energies, 573 maximum distance from which they originated for protons, 581 modification factor for, 582, 583 photo-pair production dip, 582 Pierre Auger Observatory, 572, 573, 575–580, 583, 584 potential sites for acceleration of, 635, 636 scattering of, by magnetic irregularities, 579 slant path length, 571, 572, 576 spread in depth through atmosphere of maximum shower development RMS(X _{max}), 576–578, 584 superposition principle, 577 upper limit to particle energy, 635 Hipparcos astrometric satellite, 40, 830 Homestake gold-mine, South Dakota, 61 homologous stellar models, 53–54, 76 energy generation rates, 53 inadequacies of, 54 horizontal branch, 43, 44, 77, 81 evolution of stars on, 81 mass loss and, 43 hot gas in clusters of galaxies absence of cool gas in, 124 associated with heating by radio lobes, 124 models to explain the, 124 abundance of iron, 122 characteristic cooling time for, 123	Hubble sequence of galaxies, 85–88, 95 correlations along, 95–98 luminosity function of HII regions, 96 neutral hydrogen, 95 star formation rates and, 96 total surface density and surface density of neutral hydrogen, 95 Hubble Space Telescope, 21, 79, 82, 87, 131, 135, 398, 414, 421, 429, 430, 632, 655, 660, 673–675, 716, 725, 758, 773, 781, 801, 804, 843, 845, 846, 851 Wide Field Camera of, 758 Hubble Ultra Deep Field (HUDF), 781, 801– 803, 806, 813–815, 834 Hubble's constant, 832 from Sunyaev-Zeldovich effect, 129 Hubble Space Telescope Key project, 832 measured from power spectrum of fluctuations in Cosmic Microwave Background Radiation, 832 Huygen's principle, 838 Huygens' construction, 292, 293, 296 Hydrodynamics (Lamb), 57 hydrogen ionisation potential of, 47 hydrogen recombination lines from warm component of the interstellar gas, 372 hydrogen recombination lines in gaseous nebulae, 372–373 Hβ line of the Balmer series, 372 very high order transitions, 372–373 hydrogen shell burning, 71 hydromagnetic waves, circularly polarised, 206 hydrostatic equilibrium, 43, 53, 119, 120 hydrostatic support, equation of, 45, 671 IMB solar neutrino experiment, 35 IMP-7 mission, 565 impedance of free space Z ₀ , 173 Infrared Astronomical Satellite (IRAS), 11, 13, 83
cooling flows and, 123–125 mass inflow rates of, 123 cooling time of, 123	infrared cirrus, 14 infrared luminosity function of galaxies evolution of, 807, 809
distribution of, 119–125 iron line FeXXVI from, 119 sound waves in, 125	Infrared Space Observatory (ISO), 807 infrared waveband, 10–14 all-sky images in, 12–14
HR diagram for stars, <i>see</i> Hertzsprung-Russell diagram Hubble Deep Field, 781, 801, 805, 806, 813	emission by dust grains at thermal infrared wavelengths, 13 near infrared wavelengths in, 11

observing in, 10–11	Mie theory of scattering and absorption, 380,
thermal infrared wavelengths in, 11	381
wavelength windows in, 11	obscuration in our Galaxy and, 378
initial mass function for stars, 393–396	optical depth for, 378
Miller and Scalo, 394	ratio of total to selective absorption R_V , 379
Salpeter, 394	reddening, 379
inner Lagrangian point, 507, 509-511, 517,	reradiation of heated, 383
525, 531	star formation and, 383
instability strip, 81	rotation frequency–grain radius relation
instantaneous rest frame, 173	for different phases of the interstellar medium,
INTEGRAL γ -ray observatory, 28, 218, 282,	408, 409 rotation speed of dust grains, 405–406, 409
304, 305, 316, 317, 320	rotation speed of PAH molecules, 409
intensity of radiation I_{ν} , 186	selective absorption, 379
definition of, 833	shielding of molecules by, 391, 397
interactions of high energy photons, 251–305	silicate absorption features, 379
intercloud medium, 372	at 9.7 and 18 μ m, 381
intercombination lines, 374	size parameter, 380, 381
interferometer	small grains in, 382
eight-element	transient heating of, 382
power polar diagram of, 847	sublimation temperature of, 378, 384
four-element	water ice feature at 3.1 μ m, 381
power polar diagram of, 847, 848	wide range of grain sizes present in, 381
grating telescope, 847, 848	interstellar gas
two-element, 846	average properties of, 363
power polar diagram of, 847	cooling mechanisms, 391
interferometry and synthesis imaging, 845–	bound-bound or bound-free emission, 391
848	bremsstrahlung, 391
internal energy per unit mass, 346	in gaseous nebulae, 391
International Linear Collider (ILC), 139	interstellar dust emission, 391
International Ultraviolet Explorer (IUE), 23,	low lying energy levels of common ele-
78, 369, 430, 650, 699, 709, 711	ments, 391
interplanetary magnetic field, 332	molecular line emission, 391
interstellar chemistry, 22, 158, 368	diagnostic tools
interstellar dust, 378–386	21-cm line emission and absorption, 363-
217.5 nm absorption feature, 381	365
associated with $\pi \to \pi^*$ transitions, 381	column depth from X-ray absorption, 370
condensed matter physics of, 406	dispersion measure of pulsars, 375–376
cross-section for scattering and absorption, 381	Faraday rotation of linearly polarised ra-
diffuse interstellar bands and, 379, 381	dio signals, 376–378
electric charging of, 406	ionised interstellar gas, 370–378
coupling of grains and neutral particles	molecular radio lines, 365–368
through, 406	neutral interstellar gas, 363–370
electric dipole moments of, 409	optical and ultraviolet absorption lines, 369–370
emissivity of heated, 383	permitted and forbidden transitions in gaseous
extinction law for, 378–379	nebula, 371–375
formation of interstellar molecules and, 381	thermal bremsstrahlung, 370–371
graphite grains and, 381	X-ray absorption, 370
heavy elements in the interstellar medium	heating mechanisms, 389–390
and, 378	collisions of old supernova shells, 389
,	*

INDEX 923 inverse square laws of electrostatics and grav-

cosmic rays and, 390	inverse square laws of electrostatics and grav-
ionisation rate by ionisation losses, 390	itation, 165
other types of, 390	ion-acoustic instability, 359
supernova explosions, 389	ionisation loss formula
ultraviolet radiation of hot stars, 390	adapted for radiation damage density, 160
high velocity clouds, 569	ionisation losses of electrons, 158, 159
hot component of, 389, 390	maximum energy transfer per interaction,
overall picture of, 387–393	159
large scale dynamics, 387–389	ionisation losses of protons and nuclei, 143-
overall state of, 392–393	167, 321, 330, 390
thermal instabilities, 393	average energy loss per unit path length,
condition for, 392–393	145
interstellar gas and magnetic fields, 363–411	Bethe-Bloch formula, 153–154
interstellar medium	cancer therapy and, 158
life cycle of stars and, 363	density effect, 154
phases of, 392	effects of polarisation of medium, 154
	energy spectrum of ejected electrons, 148
cold neutral medium, 392	heating of giant molecular clouds and, 143,
coronal gas, 392, 393	158
diffuse clouds, 392	lower limit b_{\min} to collision parameters
giant molecular clouds, 392	classical limit, 146
HI clouds, 392	quantum limit, 147
intercloud medium, 392	mean energy loss rates in different materi-
two-phase model for, 393	als, 155, 156
interstellar molecules, 21	minimum loss rate, 154, 155
hydroxyl molecule OH, 22	non-relativistic treatment, 144–148
line emission of, 18	nuclear emulsions and, 159–160
Introduction to Active Galactic Nuclei (Peter-	number of ion-electron pairs produced, 158
son), 639	particle detectors and, 143
An introduction to the ionosphere and mag-	practical forms of the ionisation loss for-
netosphere (Ratcliffe), 334	mulae, 154–158
invariant four-volume, 264	range <i>R</i> and, 155, 157
invariant four-volume in four-momentum space,	relativistic treatment, 149–154
264, 274, 275	stopping power, 155
inverse β -decay, 421, 440, 441	straggling, 158
inverse Compton scattering, 261–268, 286, 534,	upper limit b_{max} to collision parameters, 145
617	ionisation parameter <i>U</i> , 706, 707
average energy of scattered photons, 267	ionisation potential I, 147, 148, 155
derivation of formulae for, 261–267	IRAM millimetre interferometer, Plateau de
energy density of radiation in moving frame,	Bure, 398
262–264	IRAS galaxies, 810, 811
geometry of, 261, 262	correlation between far-infrared luminos-
maximum energy of scattered photon, 267	ity and radio luminosity, 728, 730
of radio, infrared and optical photons, 267	star formation and, 654
similarity of loss rate to synchrotron loss-	IRAS infrared observatory, 386, 654, 728, 781,
rate, 265, 288	807
spectral index of radiation of a power-law	Irvine-Michigan-Brookhaven (IMB) neutrino
distribution of electron energies, 266	experiment, 426
spectrum of scattered radiation by a single	ISAAC infrared spectrograph of the ESO VLT,
electron, 266	481
total energy loss rate of, 265	isothermal carbon core, 71

,	
isothermal gas spheres, 113–117, 132	predicted line shapes of fluorescent 6.4 keV
core radius, 115	line, 690
projected, 115	surface of infinite redshift, 668
singular, 132, 133	maximally rotating case, 668
structural index, or structural length, 114	Kerr metric, 474, 475
tidal radius of, 116	kinetic energy per nucleon, 198
truncated, 116	ionisation losses and, 154
isothermal helium core, 71	King profiles for mass distribution in clusters,
Italian-Dutch BeppoSAX satellite, 773	116, 117
runan Buten Bepposi ir satemie, 773	
Jacobian for transformation between inertial	Kirchhoff's law, 371
frames of reference, 264	Klein–Nishina cross-section, 260–261, 291
James Clerk Maxwell Telescope (JCMT), 15,	Kompaneets equation, 126, 272, 275–283, 285
812	'current' of photons in phase space and,
	276
James Webb Space Telescope (JWST), 11	diffusion coefficient for photons in phase
Jansky (Jy), 833	space, 277
Jeans' instability, 400–401	diffusion of photons in phase space and,
fragmentation within giant molecular clouds,	277–278
401	expansion to higher orders in $\partial n/\partial x$, 286
time-scale for collapse, 401	formation of power-law spectrum by ther-
Jeans' length, 401	mal processes, 280
Jeans' mass, 401	formation of Wien peak, 278–280
Jet Propulsion Laboratory, 427, 428	
Jupiter, mass of, 74, 832	induced scattering and, 275
vapitoi, illass 61, 7 1, 652	Monte Carlo solutions of, 279
K-correction, 783, 784, 801	photon conservation and, 276
K20 survey of galaxies, 806, 817	power-law solutions of, 280–282
very red galaxies in, 818	recoil effect and, 276, 277, 280
Kamiokande solar neutrino experiment, 34,	recoil effect and induced scattering, 277
35, 426	solutions for $\hbar\omega \gg kT$, 280
	spectra of X-ray sources and solutions of,
KASCADE experiment	278–282
Karlsruhe air-shower array, 633–635	Kramers opacity, 502, 503
SYBILL 2.1 simulations, 634, 635	Kruskal coordinates, 473
Keck 10-metre telescope, 679, 805	Kuiper Airborne Observatory, 15, 391
Kelvin-Helmholtz instability, 351, 737	Kulper Alloothe Observatory, 13, 371
Kelvin-Helmholz time-scale, 48	
Kepler's laws of planetary motion, 387, 681, 713	Lagrangian formulation of classical dynamics, 200
Keplerian orbits, 492, 497, 498, 670, 671,	action integral in, 200
673, 677, 679, 689	Laing-Garrington effect, 663
Keplerian velocity, 495, 498, 505, 513, 515	ACDM model of galaxy and structure forma-
Kerr black holes, 474, 667, 691	tion, 819–823
efficiency of energy conversion, 681	problems with
γ -ray bursts and, 780	accounting for Faber-Jackson relation and
last stable orbit, 668	Tully-Fisher relation, 821
	Lane-Emden equation, 114, 435, 436
maximum angular momentum of, 668	Lanc-Eniden equation, 114, 433, 430 Laplace's equation, 464
maximum energy release, 476, 477, 485,	
668	Large Bright Quasar Survey, 643
maximum redshifts of radiation from last	Large Hadron Collider (LHC), 139
stable orbit, 692	Large Magellanic Cloud, 137
maximum rotational energy which can be	distance from observations of SN 1987A,
extracted from, 668	430

INDE	725
Larmor's formula for radiation of accelerated electron, 173, 255, 408, 410 laser emission, 853 Laser Interferometer Gravitational-Wave Observatory (LIGO), 36 last stable circular orbit, 472, 473, 476, 477 late-type galaxies, 87, 89 'leaky box' model, 592 Lectures on Physics, Vol. III (Feynman), 272 Leiden–Berkeley Deep Survey (LBDS), 791 Lexan polycarbonate, 161 Liénard-Wiechert potentials, 176, 221, 223, 292 doppler shift factor in, 223 lifetimes of stars of different mass, 394 light echo technique, 421, 596 light, L, group of elements, 555	definition of, 836 luminosity classes for stars, 42, 43 luminosity distance, 682 luminosity function of galaxies, 787 luminosity function of stars, 393–394 luminosity indicators for stars, 42, 43 luminosity-temperature diagram for stars, see Hertzsprung-Russell diagram luminous infrared galaxies evolution of, 809 N1-015 spectral energy distribution of, 807 luminous infrared galaxy N1-015 spectral energy distribution of, 809 Lundquist number, 357 Lyman continuum absorption, 24 Lyman limit for hydrogen, 24
light, L, group of elements, 555 light-year, definition, 829 line blanketing, 97 Lockman Hole survey field, 794 long period variables, 82 Lorentz factor, 152, 154, 159, 195, 198, 213, 232, 245, 323, 471, 549, 564, 576, 577, 581, 582, 586, 746, 856 Lorentz force, 195, 200, 465 Lorentz gauge, 175 Lorentz transformations, 170, 624, 855 inverse, 153, 263 Lorentz transforms for electric and magnetic fields, 149–151, 214–215 Los Alamos National Laboratory, 771 Low Ionisation Nuclear Emission Regions (LIN-ERS), 653, 675, 702 low-mass X-ray binaries, 522–529, 535 accretion disc corona, 524 dependence of observed properties on angle of inclination, 523 eclipses and 'dips' in X-ray light curves, 522, 523 quasi-periodic oscillations (QPOs), 527–529 models for, 528–529 thick absorbing screen about accretion disc, 524, 525 X-ray burst sources (bursters), 525 comparison of accretion and thermonu-	
clear runaway luminosities, 525 properties of, 525 Type I, 525–527 Type II, 527 X-ray colour-colour diagram for, 528 luminosity	631, 633, 734 Alfvén, 629 MACHO project, 136, 137 MACHOs, 136 mean mass of, 137 Magellanic Clouds, 487

MAGIC γ -ray telescope, 771	magnetic reconnection, see reconnection of
magnetars, 458	magnetic lines of force
magnetic fields in, 458	magnetic Reynolds' number, 341, 342
magnetic buoyancy, 352–354	'longitudinal', 357
formation of magnetic loops and, 354	Lundquist number and, 357
in a plane-parallel stratified atmosphere, 353	magnetic rigidity, see rigidity R
magnetic dipole radiation, 462, 464, 465	magnetic tubes of force, 352
pulsars and, 446	magnetoactive medium, 376
magnetic field fluctuations in interplanetary	magnetohydrodynamics
medium	aspects of, 327–360
power spectrum of, 202, 203, 205	derivation from microscopic description of
magnetic field, energy density of, 336	particle dynamics in a magnetic field,
magnetic field, Galactic, 248	201
magnetic fields	equations of, 337–338
in extragalactic radio sources, 20	entropy equation, 338
slowly varying, 197, 199, 200	equation of continuity, 337
magnetic fields in our Galaxy, see Galactic	force equation, 337
magnetic field	Maxwell's equation, 337
magnetic fields in supernova shock fronts, 628–	Ohm's law, 337
629 Pall Lyack instability and 629, 620	magnetosphere of Earth, 349–352, 354, 730 collisionless plasmas in, 351
Bell-Lucek instability and, 628, 629 equipartition with energy in high energy par-	collisionless shocks in, 351
ticles, 629	plasma wave interactions in, 352
generation of strong, 628	magnetopause, 350
instability mechanisms for field amplifica-	magnetosheath, 351
tion, 629	magnetosiledali, 351 magnetotail, 351, 354
X-ray emission from supernova shock fronts	neutral sheet, 351
and, 628	plasma sheet, 351
magnetic fluctuations generated by Alfvén and	shock wave discontinuity in, 351
hydromagnetic waves in interstellar medium,	magnitude
205–207	absolute, definition of, 836
physical model for, 205	apparent, definition of, 833
magnetic flux freezing, 334-344, 443, 464,	bolometric absolute, definition of, 836
504, 570, 628	bolometric apparent, definition of, 834
change of magnetic flux density with den-	magnitudes in optical and infrared astronomy,
sity of plasma, 340	833
diffusion time for magnetic field in a plasma	MAGNUM programme, 713
and, 340	main sequence, 41–44, 49, 54–56, 67–70, 76,
magnetohydrodynamic approach, 337–342	78, 79, 837
physical approach, 334–337	main sequence termination point, 42, 76, 81
similarity to adiabatic motion of charged	main-sequence lifetimes of sun and stars, 54–
particles, 201	56 M : 4 202
magnetic lines of force	Mariner 4, 202
Faraday's concept of, 352 magnetic flux freezing and, 334	Markarian galaxies, 648
magnetic lines of force, reconnection of, see	catalogue of, 648 maser action of interstellar molecules, 22
reconnection of magnetic lines of force	maser emission, 853
magnetic mirroring, 199	mass absorption coefficient for high energy
in the Earth's radiation belts, 199	photons, 298, 299
magnetic moment μ of the current loop, 198	mass conservation, equation of, 45
Magnetic reconnection (Priest and Forbes), 360	mass distribution in galaxies
, , , , , , , , , , , , , , , , , , , ,	Č

determination of, 671	correlation with (B - V) colour, 97
tracers of, 672	microquasars, 481, 740–742
mass function of a binary system, 454, 479, 480	relativistic jets in Galactic black hole X- ray binaries, 740
mass loss	Mie theory of scattering and absorption, 380,
formation of white dwarfs and, 413	381
quiescent, 78	Mikheyev-Smirnov-Wolfenstein (MSW) effect,
rates of for massive stars, 79	63, 65
mass-luminosity relation	Milky Way, 828
main sequence stars, 41, 54, 56, 76	Millennium galaxy catalogue, 91, 92
stars, 394, 799	Millennium Simulation, 820–822
mass-metallicity relation for galaxies, 97–98	first quasar candidate, 822
mass-to-luminosity ratio	Miller and Scalo initial mass function, 394
early-type galaxies, 135	millimetre and submillimetre waveband, 14-
masses in astronomy, 10, 832	18
masses of galaxies, 98	all-sky images in, 15–18
rotation curves of spiral galaxies, 101	Cosmic Microwave Background Radiation
virial theorem for galaxies and clusters, 99–	in, 15
101	molecular lines in, 15
massive galaxies in clusters, 821	observing in, 14–15
Mathematical theory of black holes (Chan-	millisecond pulsars, 443, 456–457
drasekhar), 469	as members of old galactic populations, 459
Mauna Kea Observatory, Hawaii, 15	discovery of, 457
Maxwell's equations, 174, 614	distribution in the Galaxy, 459
Maxwellian velocity distribution, 184	in globular clusters, 457
MCG -6-30-15, 489, 669, 685, 687	limit to spin-up of, 457
broad asymmetric X-ray fluorescent line in,	location on $P - \dot{P}$ diagram, 457
687	magnetic fields in, 457
relativistic effects in, 688	space velocities of, 459
McGill pulsar group, 458	spin-up of, 457
mean free path, 495	minimum energy requirements for synchrotron
for pitch angle scattering, 205	radiation, 599–603, 640
of particle in a plasma, 330	as order of magnitude estimates, 602
of a proton in the interplanetary medium,	equipartition and, 601–602
332	limitations of, 601–602
mean free time between particle collisions in	filling factor and, 602
a plasma, 333	minimum energy density in particles and
Medium Deep Survey of galaxies (MDS), 805	magnetic field and, 602
medium, M, group of elements, 555, 564	minimum total energy, 601
megamasers, 675, 676	simplified estimate for, 602
metallicity Z, 76, 77, 97	Minkowski metric, 469
metals, 43 meteorites, 161–164	MKK spectral classification system, 42
constancy of the flux of cosmic rays and,	modified Bessel functions
164	of order 2/3 and 1/3, 227
exposure ages of, 164	asymptotic expressions for, 231
	of order zero and one, 180
fossil tracks of cosmic rays and, 162–163	asymptotic values of, 180
Galactic cosmic rays and, 162, 164 history of Solar System and, 161–164	molecular hydrogen
Solar cosmic rays and, 162, 164	distribution in the Galaxy, 388
Mg ₂ index, 97	molecular radio lines, 365–368
11152 111604, 77	molecular radio fines, 505–500

720	110021	
list of molecules identified by their, 365–367 maser action and, 365 molecular doubling processes and, 367 rotational ladder of, 367, 368 molecules in the interstellar gas, 365–368 acetylenic, 368 CO as a tracer of molecular hydrogen, 368 discovery of, 365 electronic transitions of, 365, 367 glycine, 368 in large redshift quasars, 368 list of known species, 365–367 molecular hydrogen, 368 rotational transitions of, 367 self-shielding, 368 shielding by dust, 367 types of, 368 unsaturated, 368 vibrational transitions of, 367 momentum four-vector P, 152, 153, 169, 170, 857 for electrons, 259 for photons, 259, 302 momentum impulse, 144, 145, 151, 181, 330 morphological classification of galaxies, 85–88 morphologies of clusters of galaxies, 109–112 Mount Hopkins Observatory, Arizona, 13 muons decay of, 322 mean lifetime of, 323 test of relativistic time dilation and length contraction, 323 underground measurements of intensity and isotropy of cosmic rays from, 323		neutrino oscillations, 63, 138 in atmospheric μ neutrinos, 65 in terrestrial neutrino experiments, 66 solar neutrinos and, 63–65 neutrinos laboratory limits to the masses of, 138 laboratory limits to the number of species of, 140 neutrinos, solar, see solar neutrinos, 307 neutron capture γ -ray line at 2.223 MeV, 318, 320 neutron degeneracy pressure, 84, 413 neutron drip, 440 neutron production by (γ, n) interaction, 326 neutron stars, 20, 76, 84, 341, 413, 439–443 binding energy of, 414, 599 cooling by neutrino emission, 460 diffusion time for magnetic field from, 341 discovery of, 444–458 ellipticity ϵ due to rotation, 463 galactic population of, 458–460 in X-ray binary systems, 450–454 internal structure of, 439–443 core region, 442 inner crust, 442 inverse β -decay and, 440 neutron liquid phase, 442 outer crust, 441 superconductivity and superfluidity and, 442–443 surface layers, 441 zones within, with increasing density, 441–442 magnetic dipole moment of, 446 magnetic flux density of, 341 mass estimates in binary star systems, 455, 456, 479, 481
N-galaxies, 641, 649, 650 negative pressure equation of state, 473 neutral hydrogen 21-cm line emission of, 20 21-cm map of the Galaxy, 21, 22 distribution in the Galaxy, 387–388 neutral sheets, 351, 355, 356, 358 thickness of, 357		predicted surface temperatures, 460 rotating neutron superfluid and, 463 pinning of quantised vortices in, 464 quantisation of angular momentum, 463 rotation of, 443 rotational break-up speed, 443 scale height of atmospheres of, 460 thermal emission of, 460–461
Neutrino Astrophysics (Bahcall), 61 neutrino interactions charged current interaction (CC), 64, 65 elastic scattering (ES), 64, 65 neutral current interaction (NC), 64, 65		'truly isolated', 461 X-ray emission from surfaces of, 460, 461 neutronisation, 440 Newton's law of gravity, 832 Newton's laws of motion, 832

INDI	EA 929
Nobeyama Radio Observatory, 45 m millime-	nuclear emulsions, 159, 160
tre telescope, 396	development of, 159
noise power, 853	discovery of elementary particle and, 160
fluctuations of, 853	silver bromide crystals, AgBr, 159
in thermal equilibrium, 852	nuclear energy generation rates in stars, 48-
noise temperature	50
of the receiving system $T_{\rm sys}$, 854	nuclear interaction cross-section, 307, 308
non-electromagnetic astronomies, 34–36	nuclear interactions, 307–326
astroparticle physics, 36	cosmic rays in the atmosphere, 321–326
gravitational waves, 35–36	high energy astrophysics and, 307–310
neutrino astrophysics, 34–35	multiple scattering within nuclei, 308
non-linear diffuse shock acceleration, 629–633	neutron production in, 308
percursor region in, 630–633	nuclear emission lines, 315–320
electron and ion temperatures in, 632	nucleus-nucleus collision, 309-310
$H\alpha$ emission due to charge exchange in-	pion and strange particle production in, 308,
teractions, 632	309
$H\alpha$ emission from, 632, 633	spallation cross-sections, 310–315
self-similar solutions for, 630, 631	spallation fragments, 308
non-relativistic gyroradiation, 216–219	nuclear interactions in the atmosphere
energy loss rate by, 216	mean free path for, 309
linear and circular polarisation of, 216, 235	nuclear interactions of high energy particles
non-thermal radiation, 5, 213	with nuclei of atoms and molecules, 143
non-thermal sources	nucleonic cascades, 571, 577
spectra of, 233	particle detectors and, 323
norm of four-vector, 177, 856	total ionisation as a measure of energy of
north celestial pole (NCP), 825–827	primary cosmic ray, 323
North Polar Spur, 247, 407	nucleosynthesis
northern celestial hemisphere, 826	explosive, 422–424
novae, 419, 521–522	in massive stars, 413
nuclear γ -ray lines	late stages of, in massive stars, 421
important, 319, 320	primordial, 136, 547
nuclear cascades, 302	shell burning, 419
number of particle produce in, 309	steady-state, 422–424
nuclear deflagration, 522	synthesis of isotopes and, 422, 423
nuclear emission lines, 315–320	Nucleosynthesis and chemical evolution of galax-
⁴⁴ Ti from supernova remnant Cas A, 317,	ies (Pagel), 543
318	nucleus, radius of, 307
asymptotic giant branch stars, 316	Nyquist's theorem, 852
collisional excitation of nuclei, 318–320	
cross-sections for, 318, 319	OB supergiant mass-loss rates, 529, 531
in the interstellar medium, 318, 320, 321	observability of the sky in different astronom-
decay of radioactive isotopes, 315–317	ical wavebands, 5, 6
astrophysically important examples of, 315, 316	observations in cosmology for Friedman world models
conditions for observability of, 315-316	flux density-redshift relations
diffuse ²⁶ Al and ⁶⁰ Fe emission from the Galaxy,	for starburst galaxies in the submillime-
316, 317	tre waveband, 810, 811
diffuse ²⁶ Al emission from the Galaxy, 317	occupation number, 264, 272-275
explosive nucleosynthesis and, 316	as a Lorentz invariant, 274, 755
supernovae and, 316	for Bose-Einstein distribution, 273

930 INDE	ZX
in Rayleigh-Jeans region of Planck spec- trum, 273 mean, 273	Orbital Astronomical Observatories II (OAO- II), 369 orbital migration, 75
spontaneous and induced processes and, 272	origin of cosmic rays in our Galaxy, 585–611
OH/IR stars, 82 old red galaxies, 806, 817–819	The origin of the chemical elements (Tayler), 543
constancy of masses with redshift, 818	OSO III satellite, 28
early formation of stellar populations of, 819	overdensity of galaxies about any galaxy, 92, 93
early starbursts, 818	OVRO Millimetre Array, 127, 128
evidence for old stellar populations in, 818 evolving stellar mass density and, 817	oxygen burning, 71
massive, 817–819	P(D) distribution, 787, 794
selected in the K waveband, 817 star-forming galaxies at large redshift and,	P-Cygni profiles, 78–81, 521 mass outflows and, 78, 79
818	p-p chain, see proton-proton chain (p-p chain)
stellar masses as a function of redshift, 817	paleogeomagnetic studies of Earth's magnetic
'onion-skin' chemical structure of massive stars,	field, 326
72	Palomar 200-inch telescope, 7, 645
opacity κ of stellar material, 50–54	parallax-second (or parsec, pc), definition, 829
optical and infrared wavebands used in ground-	parallaxes, 829
based astronomy, 835 optical and ultraviolet absorption lines, 369–	Parker instability, 569–571
370	buoyancy and, 570 Parker's loops, 570
curve of growth of, 369	Parkes Radio Telescope, 448
D lines of sodium, 369	Parkes Selected Region (PSR) sample, 791
deficit of heavy element in the interstellar	Parseval's theorem, 177–178, 295
gas, 370	applied to magnetic field fluctuations in in-
deuterium and, 370	terplanetary medium, 203
Doppler broadening of, 369	spectral distribution of the radiation of an
equivalent width of, 369	accelerated electron and, 177-178
H and K lines of calcium, 369	partial spallation cross-sections, see spallation
highly ionised OVI and, 370	cross-sections, partial
molecular hydrogen and, 369	particle-antiparticle annihilation, 302
radiation or natural broadening of, 369	Pauli exclusion principle, 139
optical depth for radiation τ , 188 optical polarisation of starlight, 404–407	P versus P diagram for pulsars, 448–450
alignment of interstellar grains and, 405–	'graveyard' region of, 450 as an evolutionary sequence for pulsars, 449
407	death line for pulsars on, 450, 457
as a function of galactic coordinates, 407	pulsar equivalent of the Hertzsprung-Russell
degree of polarisation correlated with ex-	diagram, 448
tinction, 405	peculiar galaxies, 88
maximum degree of, 404	strong gravitational encounters or collisions,
parallel to minor axis of grains, 405	88
optical waveband, 7–10	tails associated with prograde encounter be-
all-sky images in, 7–10 observing in, 7	tween galaxies, 88 Penrose process, 477
optically, violently variable (OVV) objects,	perchloroethylene C ₂ Cl ₄ , 61
651	perfect gas law, 120
associated with FR2 radio sources, 653	permitted and forbidden transitions in gaseous
properties of, 652	nebula, 371–375

excitation by ultraviolet emission of hot stars, 371	The physics of fully ionised gases (Spitzer), 327, 331
photoexcitation and photoionisation, 371	The physics of plasmas (Fitzpatrick), 327
temperature of emitting regions, $T_{\text{gas}} \approx T_{\star}$, 371, 390, 391	Physics of shock waves and high-temperature hydrodynamic phenomena (Zeldovich and
permittivity	Raizer), 344
relation to refractive index n , 294	Pioneer missions of NASA, 344
Perseus cluster of galaxies, 26, 125, 727, 739, 821	pionisation, <i>see</i> cosmic rays in the atmosphere, pion production
Ly α and Ly β emission lines of highly ionised	pions
iron, Fe ⁺²⁵ in, 185, 186	decay of, 322
X-ray bremsstrahlung of hot intracluster gas	mean lifetime of, 322
in, 185	pitch angle, 196, 203, 213, 215, 217, 220,
X-ray spectrum of, 185	222, 224, 227–230, 234–236, 245
Petrosian r-band luminosity, 94	isotropic distribution of, 215, 235
Petschek mechanism of magnetic reconnec-	pitch angle scattering, 205
tion, 358	physical model for, 204
phase space	PKS 2155-304, 770
elementary volume of, 273	Planck spectrum of black-body radiation, 5,
photo-pair production, 581–583	186, 187, 270, 272, 273, 383, 500
photo-pion production, 581, 582	as a solution of Kompaneets equation, 278
threshold for, 581	plane of the ecliptic, 825, 826
photodisintegration of iron nuclei, 421	planetary nebulae, 82–83
photoelectric absorption, 251–255	central stars of, 83
cross-sections for, 251–255	evolutionary tracks for, 83
spectra of X-ray sources at energies $\varepsilon \sim 1$	images of, 82
keV, 251–255	mass loss and, 82
photoelectric effect, 251	mass loss events and the structures of, 83
photoionisation	plasma frequency, 327–329, 375, 376
cross-section for hydrogen atoms, 371	angular, 327
photon loss processes	plasma physics
summary of absorption coefficient for, 299	aspects of, 327–360
photon–photon collisions, 302	elementary concepts in, 327–334
as a source of opacity for high-energy γ - rays, 303	Plasma physics for astrophysics (Kulsrud), 327, 360
cross-section for	plasma sheet, 351
in the regime $\bar{\varepsilon} \approx m_{\rm e}c^2$, 303	Plummer model for elliptical galaxies, 116
in ultrarelativistic limit, 303	point-spread function, 844
the shold energy for electron–positron pair	Poisson statistics, 849
production, 302–303	Poisson's equation
examples of, 303	for gravity, 116, 401
photon-photon interactions with extragalactic	in electrostatics, 329
background radiation	polars, 218
cut-off at γ -ray energies, 769, 770 limits to the extragalactic background in-	polycyclic aromatic hydrocarbon (PAH) molecules 381–383, 807, 809
tensity in the optical and infrared re-	planes of hexagonal benzene rings and, 383
gions, 771	unidentified infrared lines and, 382
photonuclear interactions for nuclei	polytropes, 435
disintegration of the nuclei and, 583	polytropic index, 435
giant dipole resonce for, 583	positron production mechanisms, 302–305
physical constants in SI units, 854, 856	positronium atoms, 304

932 INI	DEA
positrons	beaming of radio emission and, 466
sources of, 302	closed field lines in, 465
creation of electron–positron pairs, 302	corotation radius, 465
decay of π^+ pions, 302	critical field line, 466
decay of long-lived radioactive isotopes,	dominated by electromagnetic forces, 465
302	inevitability of fully conducting plasma sur-
Poynting jets, or outflows, 762, 763	rounding, 465
highly relativistic collimated flows and, 763	inner and outer acceleration gaps, 467–469,
plasmoids and, 763	616
velocities of, 762	limited by pair production processes, 616
Poynting vector, 172, 294, 295	radio emission from, 468
Poynting's theorem, 256	light cylinder, 465, 466
precessing jet in SS 433, 741, 742	magnetic field distribution in, 465, 466
principle of detailed balance, 186, 239	open field lines in, 465, 466
Principle of Equivalence, 470	polar cap regions of, 465, 466
principle of jump rate symmetry, 272, 273	potential differences in, 467
Principles of Optics (Born and Wolf), 838	sparks in, 468
probability density function, 849	space charge distribution in, 465
projected surface brightness, 121	strong electric fields in, 465
projections of celestial sphere onto a plane,	zero charge cones, 465, 466, 468
825–829	pulsars, 376
proper acceleration, 173, 177	ages from braking index, 447
proper time	ages of, 447
in general relativity, 470–472	anomalous X-ray, 458
in special relativity, 470	as magnetised, rotating neutron stars, 444,
proton decay, 426	446, 464
proton-proton chain (p-p chain), 49, 53, 55,	as spiral arm populations, 459
56, 60, 63	associated with supernova remnants, 459
pp1, pp2 and pp3 branches, 60, 61	binary, 454–456
protostars, 341, 383–386	dispersion measures of, 459
accretion shock in, 384	high velocities of
as intense far infrared sources, 384	asymmetric supernova explosions and, 509
diffusion time for magnetic field from, 341	disruption of binary systems and, 509
dust photosphere of, 384	incoherent infrared, optical and X-ray emis-
hydrostatic core of, 383, 384	sion from outer gap regions, 468
release of binding energy by far infrared emission, 384	kinematic ages of, 459 large velocities due asymmetric collapse of
spectra of, 384, 385	core-collapse supernovae, 459
structure of, 383–384	large velocities due to disruption of close
pulsar glitches, 447, 461–464	binaries, 459
changes in moment of inertia of neutron	luminosity function of, 460
star and, 461	magnetic flux density from slow-down rate,
glitch function, 462	448–450
healing parameter, 462	millisecond, 443, 456–457
migration of quantised vortices and, 464	normal radio, 444–450
spin-up following, 462	P versus P diagram, 448–450
time constant of τ_c , 462, 463	radio emission of, 443
starquakes and, 463	rate of loss of rotational energy, 448
two-component model of interior of neu-	rates of formation of, 460
tron star and, 461, 463	scale-height in the Galaxy, 459
pulsar magnetosphere, 464–467, 742	space densities of, 460

space velocities of, 459 spin-up, 449, 513, 515	J.J. Thomson's treatment, 170–173 loss rate of, 214
by accretion, 515	non-relativistic, 170–176
maximum rotation rate and, 515	polar diagram of, 173
spin-up rate-luminosity relation, 514, 515	polarisation of, 173
timing noise, 461	properties of, 173
uning noise, 101	relativistic, 176–177
quantisation of rotational angular momentum,	relativistic, 170–177 relativistic invariants, 169–170
367	total energy loss rate, 169, 170, 190
quantum theory of gravity, 473	total energy loss rate of, 173
quark matter, 442	radiation pressure in stars, 51, 54
quasar spectra	Radiation Processes in Astrophysics (Rybicki
blue bump, 698–700	and Lightman), 141
Comptonisation and, 700	radiation resistance, 853
Lyman- α emission line, 643–645	radiation-driven pulsational instability for mas-
Lyman- α forest and, 644	sive stars, 79
optical spectrum of	radiative transport of energy in stars, 50–52
synchrotron radiation and, 700	radio emission of spinning dust grains, 408–
prominent emission lines in, 644	410
quasars, 20, 641–648, 698	Galactic background radiation and, 409-
bolometric luminosities of, 681	410
bolometric luminosity function of, 682	radio emission of the Galaxy, 246-249, 854
composite optical spectrum for, 643, 697 discovery of, 641–642	comparison with predicted emission using
early formation of supermassive black holes	local energy spectrum of cosmic ray
in, 819	electrons, 248
infrared, 699	determination of radio spectrum and radio
interacting galaxies underlying, 655, 656	emissivity, 247–248
low-luminosity, 647, 792	discovery of, 639
luminosity function of, 681	radio emissivity of, 248
number counts of, 682, 683	in direction of opaque regions of ionised
optical-to-X-ray spectra of, 699	hydrogen, 248
radio quiet, see radio quiet quasars	radio spectrum of, 247
ratio of black hole to spheroid masses, 819,	synchrotron radiation and, 640
821	radio galaxies, 640
techniques for discovering radio-quiet, 642–	broad-line (BLRG), 650, 651, 698, 789 differences between broad-line, and Type 1
658	Seyfert galaxies, 650–651
3CR sample of radio, 789	discovery of, 19
Quasars and Active Galactic Nuclei – an In-	emission spectra of
troduction (Kembhavi and Narlikar), 639	large diffuse clouds and, 702
quasi-stellar radio sources, see quasars	energy requirements of, 19
Quasi-stellar Radio Sources and Gravitational	evidence for old stellar populations in, 818
Collapse (Robinson, Schild and Schücking), 642	extended emission line regions in, 651
042	giant elliptical galaxies, 728
radiation damage, 143, 160-164	high energy astrophysics and, 639–640
in plastics and meteorites, 160–164	narrow-line (NLRG), 650, 659, 698
polymers and, 160	properties of, 723–728
radiation damage density J, 160, 161	3CR sample of, 789
radiation of accelerated charged particles, 169-	radio map of the sky, 246
178	radio pulsars, 20, 84
from Maxwell's equations, 174–176	brightness temperatures of, 467

coherent radiation of, 467	range <i>R</i> of high energy particles, 155
maser emission of, 467	in different materials, 157
radio emission of, 467–469	rapid or r-process, 72, 424
curvature radiation and, 468	formation of elements beyond the iron peak
electron/death line and, 468	and, 424
electron/positron-photon cascades and,	proto-neutron stars and, 424
468	ratio of specific heat capacities
radio quasars, 745	for non-relativistic degenerate gas, 432
properties of, 723–728	Rayleigh criterion for resolving two point sources,
radio quiet quasars, 656	843
counts of, 646, 647, 792	Rayleigh scattering, 380, 381, 659
cut-off at large redshifts, 645, 793	Rayleigh-Jeans region of Planck spectrum, 189,
definition of complete samples of, 647	240
completeness of, 647	Rayleigh-Jeans spectrum, 501, 777
dispersion prism-grating techniques, 645	Rayleigh-Taylor instability, 419, 607, 609, 610
multi-colour photometric technique, 644–	recoil effect, 260, 268, 280
645	reconnection of magnetic lines of force, 351,
searches for 'i-band drop-outs', 645, 793	354–360
searches for Lyman- α and CIV emission	diffusive time-scale, 358
lines, 645–646	formation of current filaments by tearing
searches for variability of, 646–647	mode instabilities, 359
ultraviolet excess technique, 643–644	ohmic losses, 355
discovery of, 642, 792	Petschek mechanism, 358
evolution of, with cosmic epoch, 645, 792	reconnection velocity, 357, 358
luminosity function of	self-consistency of models for, 360
'luminosity evolution' of, 792	Sweet–Parker mechanism for, 355–358
evolution of, 647, 792, 793	rectangular one-dimensional aperture
radio sources, compact	diffraction pattern of, 840
flat-spectrum, 651	red and blue sequences of galaxies, 89–95
synchrotron self-absorbed, 651	colour and absolute magnitude, 89–91
synchrotron self-absorbed, and radio quasars,	effect of galaxy environment, 92–93
651	mean stellar age and concentration index
radio waveband, 19–23	C, 93–95
neutral hydrogen and molecular line astron-	Sérsic index and colour, 91–92
omy, 20–22	statistics of galaxies belonging to, 95
observing the sky in, 22–23	red sequence, 89
origin of high energy astrophysics and, 19-	preferentially found in rich cluster environ-
20	ments, 93
Radiocarbon, 325	properties of galaxies of, 89
radiocarbon dating, 324–326	Red-Sequence Cluster Survey, 135
calibration of, 325	redshift
impact of nuclear test explosions, 326	gravitational, 471
influence of Earth's magnetic field, 326	reduced mass of molecule, 367
using coral samples, 326	Rees diagram, see black holes in the nuclei of
using tree ring dating, 325	galaxies, growth of, Rees diagram
detection of supernovae in tree-ring data,	reference frames in standard configuration, 148,
326	149
radionuclides, 307	Reissner-Nordstrøm metric, 474
radius of curvature	relativistic aberration, 220, 754
instantaneous, 222, 224, 225, 229	formulae, 220, 221
ram pressure of the intracluster gas, 727	relativistic beaming, 750–758

distortions of dipole polar diagram, 755	infrared observations of, 713
foreshortening effects, 757	isodelay surface, 710
frequency shift of relativistically moving	lags determined from, 710, 712
source component, 755–756	stratification of ionisation structure from,
relative intensities of identical components	713
ejected in opposite directions, 756	thermal reprocessing of X-ray emission and,
relativistic ballistic model and, 750–756	715
frequency shift of the radiation, 752–753	transfer function for, 712
frequency wavebands, 753	X-ray emission of Seyfert 1 galaxies, 700
kinematics of, 750–752	Reynolds number \mathcal{R} , 494, 495
maximum transverse velocity, 751	Richtmeyer-Meshkov instability, nonlinear,
relativistic beaming effects, 752–755	629
solid angles, 754, 756	right ascension (RA or α), 825, 826
time intervals, 753–754	rigidity, or magnetic rigidity, R, 197, 198, 204,
relativistic jets, 756–757	579
model dependence, 757	ring galaxies, 88
relativistic transformation of	Roche lobe, 502, 506–510, 524
black-body spectrum, 755	overflow, 80, 509, 516, 529, 531
brightness temperature, 755	ROSAT All Sky Survey, 597
intensity of radiation, 754–755	ROSAT X-ray Observatory, 26, 27, 123, 461,
power-law spectrum, 756	597, 657, 781, 794
synchrotron radiation and, 220–222, 226,	ultraviolet Wide Field Camera of, 389
232	Wide Field Camera, 24
synchrotron self-absorption in relativistic	Rosseland mean opacity, 52, 502
jets, 757	Rossi X-ray Timing Explorer (RXTE), 458,
elativistic Doppler shift, 689	489, 527, 531, 533, 692, 715, 749, 769
elativistic invariants, 169–170	rotation curves of spiral galaxies, 101
total energy loss rate, 169, 170, 177, 190,	constancy at large radial distances, 101
215	rotation measure, 377, 402–404
elativistic jets	as a function of galactic latitude, 402, 403
heating of the interstellar gas by, 821	pulsar, 403, 404
elativistic kinetic energy, 857	RR-Lyrae variable stars, 81
elativistic length contraction, 182	masses of, 81
elativistic Maxwellian distribution, 240	Sámio index a 01 02
elativistic plasma, 20	Sérsic index n, 91–93
elativistic three-momentum, 197, 200, 857	SAGE solar neutrino experiment, 34
elativistic total energy, 857	Sagittarius A* (Sgr A*), 678–681, 826
elativistic transformation of an inverse square	angular size of, 679
law Coulomb field, 149–151	at dynamical centre of the Galaxy, 679
Relativity: Special, General and Cosmologi-	infrared couterpart of, 681
cal (Rindler), 855	supermassive black hole in, 826, 827
elaxation time of particles in a plasma, 331–	Salpeter initial mass function, 394, 800, 813, 814
333	
etarded potentials, 294	SAS-2 γ -ray satellite, 28, 552
etarded time, 176, 223	scalar potential ϕ , 174
Reuven Ramaty High Energy Solar Spectro-	scale height of an atmosphere, 353
	scattering of charged particles by irregulari-
scopic Imager (RHESSI), 318, 320	ties in magnetic field, 202–205
everberation mapping, 709–715 cross-correlation functions for, 712–713	scattering of high energy particles by Alfvén
infrared observations	and hydromagnetic waves, 205–207, 567
	Schönberg-Chandrasekhar limit, or mass, 54,
evidence for dusty torus, 714	66, 799

Schechter luminosity function for galaxies turnover luminosity L*, 818	sensitivities of astronomical detectors, 848–854
Schmidt law of star formation, see Schmidt-	in the photon limit, 849–851
Kennicutt law	in the wave limit, 852–854
Schwarzschild black hole, 536	increasing signal-to-noise by increasing
Schwarzschild metric, 469–475	bandwidth and integration time, 853 optical and infrared detectors, 849–851
Schwarzschild radius, 20, 450, 469, 471, 473,	radio and millimetre-wave receivers, 852–
475, 484, 487, 488, 667–669, 681, 688, 745, 770	854
coordinate singularity in, 473	Seyfert galaxies, 648–651, 653, 661
physical singularity at $r = 0$, 473	counts of, 647, 792
X-ray emission from the vicinity of, 26	differences between Type 1, and broad-line
SCUBA submillimetre bolometer array, 15,	radio galaxies, 650–651
812	intermediate types, 649–650
second-order Fermi acceleration, see Fermi	non-thermal spectra of, 697
acceleration - original version	quasars and, 654
Sedov expansion phase of supernova remnant,	spectropolarimetric observations and uni-
605–607, 626	fied schemes, 659
dynamics of, 606	Type 1, 647, 649–651, 655, 656, 658–660, 698, 747, 792
seeing disc, 844	reverberation mapping of, 709–715
variation in size with wavelength, 844	X-ray spectra of, 692
self-collision time of particles in a plasma,	Type 2, 649, 650, 655, 658–661, 663, 698
331	ULIRGs and, 654
semi-analytic models of galaxy formation, 819–823	variability of continuum emission of, 648,
as 'experimental computational astrophysics',	650
820	X-ray variability of, 669
dust extinction and, 821	Shapiro time delay, 456
epoch of maximum quasar activity and, 823	shear stress, 493, 494
formation of massive black holes in the nu-	shock excitation of emission line regions, 715–718
clei of galaxies and, 821	shock waves, 344–349, 389, 622
formation of supermassive black holes and,	basic properties of plane, 345–348
823	collisionless, 352, 627
in centres of rich clusters, 823	conservation relations for, 345
heating of the intergalactic gas in clusters	energy flux conservation, 346
and, 821	mass conservation, 345, 346
nuclear starbursts and, 820, 821	momentum flux conservation, 346
objectives of, 820 quasars at large redshifts and, 822	explosions and, 344
radiative cooling and star formation, 820	heating of gas to high temperatures and,
spectrophotometric properties of galaxies	348 Mach number, <i>M</i> , 347
and, 821	oblique, 349
supernova explosions and, 820	passage of streamlines through, 350
two-point correlation function for galaxies	pussage of streammes amongs, see
	role of atomic or molecular viscosities. 348
and	role of atomic or molecular viscosities, 348 shock conditions, 346
and for different luminosities and colours, 821	shock conditions, 346 speed of sound and, 344, 345
and for different luminosities and colours, 821 semi-forbidden transitions in spectra of gaseous	shock conditions, 346 speed of sound and, 344, 345 stand-off distance, 349
and for different luminosities and colours, 821 semi-forbidden transitions in spectra of gaseous nebulae, 374–375	shock conditions, 346 speed of sound and, 344, 345 stand-off distance, 349 strong, 347–348, 622, 623
and for different luminosities and colours, 821 semi-forbidden transitions in spectra of gaseous	shock conditions, 346 speed of sound and, 344, 345 stand-off distance, 349

SI (Système International) system of units,	Kamiokande II experiment, 62
141	neutrino oscillations and, 63, 65
sidelobes, 844	SAGE experiment, 63
signal-to-noise ratio	solar neutrino problem, 61
background-limited, 851	Sudbury Neutrino Observatory (SNO), On-
dependence on size of telescope for differ-	tario, Canada, 64, 65
ent limiting cases, 851	SuperKamiokande experiment, 62, 63
detector-noise-limited, 851	solar radius, 40
in the presence of other sources of noise,	solar seismology, <i>see</i> helioseismology
850	Solar System abundances of the elements, 543–
background signal from sky and telescope, 850	545
dark current in the detector, 850	local interstellar abundances, 543, 544
read-out noise, 850	meteoritic abundances, 543
•	solar wind, 20, 78, 332, 342–344, 349, 465,
photon statistics and, 850 photon statistics limit, 851	540, 567
	high-speed winds observed in, 343, 344
signature of metric, 856	magnetic field in, 342 magnetosphere and the, 349–352
silicate dust grains complex dielectric constant for, 381	
	drag forces associated with, 351
silicon burning, 72 single-line spectroscopic binaries, 453, 480	rotating garden sprinkler and trajectories of particles in, 342
singularity theorems of Penrose and Hawk-	spiral configuration of magnetic field in,
ing, 473	343
sky in different astronomical wavebands, 5	out to 20–25 AU, 344
Sloan Digital Sky Survey (SDSS), 4, 7, 85,	typical properties of, 342
89, 90, 92, 93, 98, 111, 645, 646, 775,	Soudan Cryogenic Dark Matter Search (CDMS),
782, 793	36
slow or s-process, 72, 73	source function, 244
Smithsonian SubMillimetre Array (SMA), 15	south celestial pole (SCP), 825, 826
Smoluchowski's envelope, 114	South Pole Observatory, 15
soft γ -ray repeaters, 458	Soviet atomic and hydrogen bomb programme,
soft X-ray emission from the Galactic plane,	275
391	spallation, 162-164, 307, 542, 546, 547, 554
Solar and Heliospheric Observatory (SOHO)	formation of L from M elements, 556
of ESA, 58, 59	formation of radioactive isotopes in mete-
solar flares, 353	orites and, 164
γ -ray spectrum of, 318, 320	formation of rare isotopes in meteorites and,
solar luminosity, 40	162, 163
Solar magnetohydrodynamics (Priest), 353	path length distribution for, 557–558
solar mass, 40, 832	characteristic escape time $\tau_{\rm e}$, 557
Solar Maximum Mission, 427, 428	dependence upon cosmic ray energy, 561
solar modulation, 204, 205, 247, 390, 549,	exponential, 557
552	Gaussian, 557, 558
cosmic ray energy spectrum and, 539	isotopic anomalies, 563
diffusive-convective model for, 540	leaky box model for, 558
electron energy spectrum and, 542	truncated exponential, 558
solar neutrinos, 60–66	path length through interstellar gas for, 555
chlorine detector for, 60, 61	production of ³ He from ⁴ He, 556
Davis experiment, 61	products of iron nuclei, 556, 557
GALLEX solar neutrino experiment, 63	radioactive products, 547
gallium experiments, 63	slab model for, 555, 557, 558

938	NDEX
spallation cross-sections, 310–315, 554 dependence upon particle energy, 313–315 for iron nuclei, 315 features of, 313–315 methods of determining experimental, 312 Monte Carlo techniques, 312 semi-empirical relations, 312 partial, 310–315, 554, 555 total inelastic, 310, 313 weighted average total inelastic, 556 spallation fragments, 308 relativistic, 309, 310 special relativity notation, 855–857 specific angular momentum, 471, 473 in general relativity, 474 specific heat capacities, 338 ratio of, for perfect gas, 240 ratio of, for relativistic gas, 240 specific volume, 346 speckles, 845 spectral energy distribution of galaxies evolution of, 798–800 in far infrared and submillimetre wavebands, 810, 811 spectral index, 234, 239 spectrum of radiation of an arbitrarily moving electron, 223–224 spin temperature for 21-cm absorption, 365 spinning dust grains radio emission of, 408–410 spiral arm tracers in the Galaxy, 388 spiral galaxies radio haloes of, 568 Spitzer Space Telescope, 11, 596, 781, 807 spontaneous and induced processes, 272, 274 rules for, 272, 274 stand-off distance in shock waves, 344, 349, 350 standard wavebands used in ground-based astronomy, 834, 835 star clusters ages of, 76	magnetic field problem, 400 model for, 384–386 pre-main sequence evolutionary tracks, 78 pre-main sequence stars and, 385, 386 regions of, 396–398 Schmidt-Kennicutt law, 393–396 star formation in molecular clouds radiation of heated dust grains at infrared wavelengths as a signature of, 383 role of interstellar dust grains, 383 star-forming galaxies, 383 spectrum of, 806 starburst galaxies, 809 ultraviolet spectra of, 813, 814 starquakes, 463 stars and stellar evolution, 39–84 basic observations of, 39–43 equations of energy generation and energy transport, 48–52 equations of stellar structure, 53–56 evolution of high and low mass stars, 66– 76 high-mass stars, 69–73 low mass stars, 69, 73–76 Hayashi tracks, 66–69 helioseismology and the internal structure of the sun, 56–60 importance of mass loss, 79, 80 mass loss, 77–84 horizontal branch, 81 overall mass loss rate, 83–84 P-Cygni profiles and Wolf-Rayet stars, 78–81 planetary nebulae, 82–83 observations of solar neutrinos, 60–66 stellar evolution on the colour-magnitude diagram, 76–77 stellar structure, 43–48 Sun as a star, 56–66 virial theorem for stars, 46–48 statistical equation of motion for mean drift velocity of electrons in electric field, 333
ages of, 76 open, 76 star formation, 84, 393–402	statistical equilibrium, 100, 832 statistical weights, 187, 272
angular momentum problem, 400 energy problem, 400 initial mass function, 393–396	Stefan-Boltzmann law, 39, 41, 51, 500, 830 stellar coronae, 78 stellar evolution
issues in the theory of, 400–402 Jeans' instability, 400–401	formation of isothermal core, 66 growth of central helium core, 68

in Rayleigh-Jeans region of the spectrum, 283 increase in energy density of the background
radiation, 283
physical nature of result in Rayleigh-Jeans spectral region, 284
super-Alfvénic motions, 352
superCDMS experiment, 140
superclustering of galaxies, 111, 112
superconductivity and superfluidity in neutron
stars, 442–443
supergiant stars, 43
superluminal motions, 567, 669, see also rel-
ativistic beaming, 747–750
in microquasars, 481
observed properties of, 749
bends and kinks in jets, 749
core-jet structures of, 749
range of superluminal speeds, 749
streams of components along same axis,
749
pattern speed, 750
shocks in superluminal jets, 750
standard model for, 749, 750
superluminal source population, see also rel-
ativistic beaming, 759–763
plot of $\beta_{app} = v_{app}/c$ against luminosity L , 759–761
92% probability limits for, 761
aspect curves for, 760–761
selection effects and, 759, 760
properties of, 761
maximum intrinsic luminosity, 761
maximum Lorentz factor, 761
supermassive stars, 695
supernova light curve
radioactive origin of, 317
supernova rate in our Galaxy, 604
supernova remnants, 414, 430–431
as X-ray sources, 431
acceleration of the high energy particles and
the generation of strong magnetic fields in, 609
acceleration of the high energy particles in,
610
adiabatic loss problem, 607–611
adiabatic losses and decrease in radio lu-
minosity of, 608
adiabatic losses for relativistic gas, 607
evolution of, 604–607
filled-centre, or Crab-like, 594

γ -ray properties of, 594	as sources of high energy particles, 431
generation of strong magnetic fields in, 609-	classification of, 415
610	core-collapse, 419–422
local energy density of high energy parti-	bounce mechanism for, 422
cles due to, 604	formation of neutron stars and black holes
radio properties of, 594–596	and, 419–422
synchrotron radiation and, 595-596	inhomogeneous expulsion of outer lay-
Sedov expansion phase of, 605–607, 626	ers, 422
shell-like, 594, 604	kinetic energy release, 421
adiabatic expansion of, 604, 605	neutrinos from, 427
contact discontinuity in, 605, 606, 609,	historical, 414–416
610	kinetic energy of ejected material, 430
four stages of evolution of, 604-607	light curves, 416
intense X-ray emission from, 606, 607	rates of occurrence, 417
late cooling by optical emission, 607	Type Ia, 416–419, 508
reheating by reverse shock in, 607	Type II, 509
reverse shock in, 605, 606, 610	Types I and II, 415
snowplough phase of, 607	differences between, 415
strong shocks in, 595	typology, 414–416
supersonic expansion of, 606	supersonic motion, see shock waves
undecelerated expansion phase, 604	supersonic piston, 348–349, 606
X-ray emission of, 595	location of shock front relative to, 349
sources of high energy electrons, 603-604	supernovae and the, 349, 606
sources of high energy particles, 594-599	Suzuka X-ray satellite, 692
γ -ray observations of shell-like, 597–599	Sweet-Parker mechanism of magnetic recon-
radio observations of shell-like, 595–596	nection, 355–358
supersonically expanding spheres of hot gas,	dissipation rate of, 356, 357
610	effects of gas pressure, 356
supernova SN 1987A, 425–430	energy released in, 358
⁴⁴ Ti energy source for light curve, 317, 429	SWIFT satellite, 458, 769, 773, 775, 777, 779
⁵⁶ Co γ -ray emission lines from, 317, 427,	SWIRE Legacy sample, 809
428	symbiotic stars, 419, 502
⁵⁷ Co energy source for light curve, 429	synchro-Compton radiation, see also synchrotron
[CoII] and [NiII] infrared emission lines	self Compton radiation
from, 427, 428	synchro-Compton radiation and the inverse Comp-
collision of envelope with mass-loss ring,	ton catastrophe, 288–290, 590, 745, 763–
429, 430	764
observed at optical, X-ray and radio wave-	from time variability of source components,
lengths, 430	763, 765
distance estimate from [OIII] ring, 430	relativistic beaming and, 763–765
dust formation in, 429	maximum brightness temperatures in com-
light curve of, 425–427, 429	pact sources, 763
limits to neutrino mass, 427	plot of maximum brightness temperature
neutrino luminosity of, 427	against apparent velocity β_{max} , 763, 764
neutrinos from, 307	relativistic beaming and, 763
progenitor of, 425, 426 rings of [OIII] about, 429	synchrotron radiation, 213–249, 411, 448, 534,
	777, 782
stellar mass-loss prior to, 426, 429, 430 Type IIP, 425	as the relativistic limit of cyclotron radia- tion, 217
supernova units (SNu), 417	asymptotic expression for emissivity at high
supernova units (SNu), 417 supernovae, 84, 414–431	and low frequencies, 231
supernovae, 04, 414-431	and low frequencies, 231

critical angular frequency for, 229, 230 critical frequency for, 222, 232–234, 240, 245 high frequency limit, 231–233 loss-time for, 733 map of Galactic, 19 minimum energy requirements for, 585, 599–603 polarisation of, 235–239 circular, 239 fractional, for power-law electron energy spectrum, 238–239 spectra of orthogonal polarisations I_{\perp} and I_{\parallel} , 236 system of coordinates for, 225 total energy in polarisations I_{\perp} and I_{\parallel} , 237 radio emission of the Galaxy and, 246–249 relation between spectral index a and spectral index of electron spectrum a 0, 234 self-absorption of, 239–244 absorption coefficient for, 242–244 physical arguments, 239–241	synchrotron radiation as the scattering of virtual photons, 265 synchrotron radiation facilities, 230 synchrotron self-absorption, 239–244, 288, 289 absorption coefficient for, 242–244 for a randomly oriented magnetic field, 243 two-level system for, 242 evidence for presence of relativistic electrons, 241 evidence for relativistic electron in compact radio sources, 289 flat radio spectra as superposition of such sources, 747 physical arguments, 239–241 polarisation of synchrotron self-absorbed source, 244 spectral evolution of expanding sphere, 746 spectrum of radio source exhibiting, 241 synchrotron-self Compton radiation, 286–291 models of sources of, 290–291 homogeneous, 291 inhomogeneous, 291
spectral emissivity of in orthogonal polarisations, 229 maximum of, 230, 600 total, 229	synchro-Compton catastrophe, 288–290 Système International d'Unités (SI units), 854– 855
spectrum of a power law distribution of electron energies, 233–235 emissivity per unit volume, 235 full analysis, 234 physical arguments, 234 spectrum of, detailed analysis, 223–233 algebra of, 225–229 of radiation of an arbitrarily moving electron, 223–224 results of, 229–233 system of coordinates for, 224–225 spectrum of, physical arguments, 219–222 spontaneous transition probability for, 242 total energy loss rate, 213–215, 231 useful numerical results, 244–246 absorption coefficient χ_v for a random magnetic field, 246 critical frequency v_c , 245 emission spectrum of a single electron, 245 radiation spectrum of a power-law electron energy distribution, 245 total energy loss rate, 244	TAMA gravitational wave experiment, 36 tearing mode instabilities, 359 technetium Tc, 73 telluric absorption, 10 temperature-frequency relation for black-body radiation, 6 term diagram for doubly ionised oxygen OIII, 373, 374 The physics of solar flares (Tandberg-Hanssen and Emslie), 353 Theoretical Concepts in Physics (Longair), ii, 175, 469, 606, 689, 852, 857 thermal bremsstrahlung, see bremsstrahlung, thermal, 370–371, 519 absorption in plane of Galaxy, 371 absorption, at radio wavelengths, 371 at soft X-ray energies from hot component of interstellar gas, 371 at X-ray energies from intracluster gas, 371 and FeXXV emission lines, 371 at X-ray energies from supernova remnants and FeXXV emission lines, 371 thermal energy per unit mass, 47 thermal instabilities, 392–393

thermal paradox for stars, 48	properties of, 257–259
thermal time-scale for stars, 48	total scattering cross-section for, 257
	Thomson scattering cross-section σ_T , 170, 215
thermalisation time of particles in a plasma,	
331–332 thermonyalear rungway 516, 522, 525	3C 273, 21, 26, 28, 491, 641, 642, 698, 699,
thermonuclear runaway, 516, 522, 525	747, 748
stabilisation at about 10 ⁸ K, 522	Balmer series of hydrogen and, 642
thick accretion discs, 504–505, 742	optical luminosity of, 642
funnels along polar directions, 504, 505	optical variability of, 642
Newtonian rotationally supported vorticity-	3CR radio galaxies, 716, 717, 789, 818
free torus, 504, 505	alignment effect and, 715, 717
stability of, 504 thin aggretion dises, 401, 504, 718, 710	photoionisation models for, 717 shock models for, 717
thin accretion discs, 491–504, 718, 719	, , , , , , , , , , , , , , , , , , ,
about black holes, 499–500	early formation of bulk of stellar popula-
inner boundary condition, 499, 500	tion, 819
conditions for, 492–493	stellar masses of large redshift, 818
continuum spectra of, 518	3CR radio sources, 789, 791
detailed models of, 501–504	3CRR catalogue of radio sources, 661, 664
Doppler tomography of, 517, 519	quasars, 684
emission spectra of, 500–501	radio galaxies, 684
in black body approximation, 500	threshold detectors, 291
emission spectrum of, 501, 503	tidal radius of cluster of galaxies, 114
in optically thin region, 504	tidal radius of galaxies, 133, 135
energy equation for, 719	time dilation formula
formation of hot spot, 511, 517, 518 instabilities in, 521	in general relativity, 471
,	time to reach a given signal-to-noise ratio, 851
opacity of material of, 502	tokamaks, 354
role of viscosity - the α parameter, 493–	torque, magnetic, 513, 515
496	torque, viscous, 494, 496, 513
structure of thin discs, 496–499	total depth of the atmosphere in kg m ⁻² , 193
temperature at inner edge of, 685	transfer equation for radiation, 186, 188, 244
temperature distribution in, 500–501	in terms of Einstein coefficients for spon-
thermal emission of, 700	taneous and induced emission, 274
transition from dominance of gas pressure	in terms of occupation numbers, 273, 274
to radiation pressure, 502, 503	Transition Region and Coronal Explorer (TRACE)
X-ray halo about, 685	spacecraft of NASA, 339 $transmission function C(s) of one dimensional$
X-ray reflection spectrum of, 686, 687	transmission function $G(z)$ of one-dimensional
Third Reference Catalogue of Bright Galax-	aperture, 838
ies (de Vaucouleurs et al), 95	Fourier transform of, 839
Thomson and Compton scattering, 255–261 Thomson cross-section, 52, 252, 486	Gaussian, 844 transmission function T_{ν} of astronomical fil-
Thomson scattering, 52, 54, 255–259, 486,	
659	ters, 834, 835
degree of polarisation of, 258	transparency of the atmosphere as a function of wavelength, 5, 6
derivation of formulae for, 255–259	in the infrared and submillimetre wavebands,
differential cross-section for, 257, 266, 275	10, 15
Eddington limiting luminosity and, 452	windows in the submillimetre waveband,
for 100% polarised emission, 257	15
geometry of, 256	tree-ring dating, 325
mean free path for, 258	Trinity atomic bomb test, 606
optical depth for, 258, 269, 278, 279, 282	triple- α process, 71
polarisation of, 258	Tully-Fisher relation for spiral galaxies, 96
polarioación oi, 250	rong 1 ioner relation for spiral galaxies, 70

	INDEX 943
and the distances of galaxies, 96 infrared, 96	unification schemes for active galaxies, 658–665
turbulence	BL-Lac objects and FR1 radio galaxies, 663-
magnetohydrodynamic, 496	664
21-cm line emission and absorption, 363–365	ionisation cones and, 660
absorption coefficient for, 364–365	obscuring torus and, 658
column density of neutral hydrogen from,	polarisation studies of Seyfert 1 and Seyfert
364	2 galaxies and, 658–660
emissivity of, 364 kinematics of gas in galaxies from, 364	projection effects and, 658–663
spin temperature for, 365	radio quasars and radio galaxies, 659–665, 684, 725
spontaneous transition probability of, 363	depolarisation asymmetries and the Laing-
2dF galaxy redshift survey, 644, 782	Garrington effect, 662
2dF quasar redshift survey, 644, 646, 647,	one-sided radio jets and, 662
792, 793	polarised optical emission from, 663
Two Micron All Sky Survey (2MASS), 13	relativistic beaming and, 662
2MRS catalogue, 580	sizes of radio structures of radio quasars
two-colour diagram for stars, 837	and radio galaxies, 663
Type Ia supernovae, 416–419, 521–522 as standard candles, 417	superluminal motions and, 662
evolution of colours of, 418	radio-loud and radio-quiet quasars, 665
formation of ⁵⁶ Ni, 418	different host galaxies for, 665 relativistic beaming and, 658
light curves	relativistic beaming of radio cores and, 664
radioactive decay of ⁵⁶ Co, 418	Seyfert 1 and Seyfert 2 galaxies, 659, 688
light curves of, 416	Seyfert galaxies and ionising photon count-
luminosity-width relation, 416, 417	ing, 660
most luminous supernovae, 417	similarity of X-ray properties of Seyfert 1
rates of occurrence, 417	and 2 galaxies at hard X-ray energies,
redshift-distance relation and, 417	660
thermonuclear explosions and, 415, 417, 418	X-ray absorption properties of Seyfert galax- ies and, 660
UHURU X-ray Observatory, 25, 26, 450, 529,	unstable stars, 82
656, 794	
UK Infrared Telescope, 716	V/V_{max} or luminosity-volume test, 786–787
UK Schmidt Telescope, 644	banded, 787
ultra-high energy γ -ray telescopes, 300	for radio quiet quasars, 792
ultra-high energy γ -rays	space distribution of galaxies, quasars active galaxies, 786–787
detection of, 299–302	variance, 849
Ultra-Luminous Infrared Galaxies (ULIRGs), 654–656, 811	of sum of two quantities, 849
feeding black holes in, 655, 656	total, as the sum of variances, 850
host galaxies of, 654–655	vector potential A, 174, 176, 200, 232
properties of, 654–656	Vela satellites, 28
starbursts and, 655	velocity cone, 236, 239
strongly interacting galaxies and, 655	velocity dispersion in galaxies
ultraviolet waveband, 23-24	triaxial, 671
extreme ultraviolet (EUV), 23	velocity ellipsoid, 671
observations of resonance lines of common	anisotropy of, 672
elements, 23	velocity four-vector <i>U</i> , 689, 857
Ulysses mission of the European Space Agenc	
and NASA, 343, 344	Microwave Background Radiation, 16

velocity-distance relation for galaxies, 830 vernal equinox, 825	VLT Kueyen Telescope, FORS2 instrument of, 398, 399
Very Large Array (VLA), 23, 136, 569, 595,	voids in the distribution of galaxies, 800
596, 609, 664, 716, 723, 724, 726, 727,	Voyager missions of NASA, 344
739, 757, 848	WIDE 11 17 700
Very Long Baseline Array (VLBA), 675, 737,	W UMa-type binaries, 506
742, 747, 760, 765	wave impedance Z_0 , 852 wavebands used in ground-based astronomy,
Very Long Baseline Interferometry (VLBI), 23, 241, 289, 651, 653, 681, 725, 726,	835
737, 739, 745–748, 757, 764, 776	wavefront errors, 843, 844
vicinity of the black hole, 697–722	white dwarfs, 41, 43, 76, 83, 84, 340, 413,
accretion discs about supermassive black	438–439, 483, 644
holes, 718–722	carbon-oxygen, 417, 418 cooling curves for, 439
alignment effect and shock excitation of emis-	cooling times for, 439
sion line regions, 715–718 broad-line regions and reverberation map-	diffusion time for magnetic field from, 341,
ping, 707–715	342
physical properties of the broad-line re-	Hertzsprung-Russell diagram for, 439
gions, 707–709	magnetic flux density of, 341
reverberation mapping, 709–715	ultimate fate of, 439 with carbon-oxygen cores, 438
continuum spectrum, 697–700	white dwarfs, neutron stars and the Chandrasekhar
emission line regions – the overall picture, 701–702	limit, 431–438
narrow-line regions – the example of Cygnus	Wien distribution, 271
A, 702–707	average energy of photons of, 271
prime ingredients of active galactic nuclei,	Wien's displacement law, 5 Wien's law, 280
697	Wilkinson Microwave Anisotropy Probe (WMAP),
fluxes of relativistic material, 697, 698 non-thermal continuum radiation, 697,	17
698	WIMPs
secondary phenomena	astrophysical limits to the masses of, 139
γ -ray emission, 697	candidates for, 138 laboratory detection of, 140
excitation of gas clouds, 697, 698	laboratory limits to the masses of, 140
extended radio sources, 697 violent interstellar medium, 392	suppression mechanisms for, 140
supernova explosions and, 392	Wolf-Rayet stars, 78–81, 316, 508, 509, 563,
VIRGO gravitational wave experiment, 36	780 mass loss rates of, 80
virial theorem, 113, 437	WC and WN types, 80
for galaxies and clusters, 99–101	W^{\pm} and Z^0 bosons, 140
problems of application to observed systems, 100, 101	V C : 01 1 77
for stars, 46–48, 98	X mass fraction of hydrogen, 77 X-ray absorption, 370
galaxies and clusters, 832	X-ray absorption coefficient of interstellar mat-
viscosity, 494, 495, 502, 719	ter, 252, 254
dynamic or shear η , 493, 495, 496, 498	column depth for, 254
effective, in shock fronts, 627	optical depth and, 254
kinematic v, 485, 494, 720	X-ray atomic energy levels, 253
turbulent, 495, 496, 501, 504, 511 viscosity parameter α , 501, 504, 521, 722	X-ray background at soft X-ray energies, 26,
VLT Antu telescope, ISAAC infrared camera	X-ray background emission, 657–658
of, 397	at hard X-ray energies

nature of sources contributing to, 657, 796	template spectra for strongly absorbed sources, 658, 797
at soft X-ray energies	X-ray surveys of active galaxies, 656–658
nature of sources contributing to, 794	X-ray waveband, 25–27
contributions of different classes of source	detectors for, 25
to, 797	observing in, 25
spectrum of, 794	sky in, 25–27
X-ray binary systems, 450–454, 479, 502, 509, 522–537 accretion in, 452	XMM-Newton X-ray Observatory, 27, 119– 121, 123, 219, 282, 421, 461, 692, 781, 794
estimate of mass of neutron stars in, 452–	EPIC instrument of, 687
454	Y mass fraction of helium, 77
estimate of masses of neutron stars and black holes in, 453	year 2000.0 coordinate system, 825, 826
high-mass X-ray binaries, 452, 529–531	YEPUN 8.2-m telescope of the ESO Very Large
late 0 or early B type companion stars,	Telescope, 680
452	Yerkes classification scheme for galaxies, 641
low-mass X-ray binaries, 452, 522–529	Yerkes spectral classification system, 42 young FR2 radio sources, 737–738
Galactic Bulge sources, 522	compact steep spectrum sources (CSS), 737
in globular clusters, 452, 522	compact symmetric objects (CSO), 737, 738
luminosities of, 452	ballistic models for, 738
soft X-ray transients, 452	early evolution of FR2 sources and, 738
symbiotic X-ray binaries, 452 typical temperature of, 450	gigahertz-peaked spectrum sources (GPS),
X-ray bursters, 452	737
X-ray pulsars, 452	
X-ray emission from supernova shock fronts	Z mass fraction of 'metals', 77
synchrotron radiation and, 628	Zeeman splitting
X-ray emission of intracluster gas, 109	of 21-cm line radiation, 410
X-ray nova, 531	circularly polarised components of, 410 of OH absorption lines, 410, 411
X-ray pulsars, 25, 479	zenith equidistant projection, 7, 827, 828
X-ray source spectra and solutions of the Kompaneets equation, 278–282	Zeinin equidistant projection, 7, 027, 020
X-ray sources	
binary pulsating	
as rotating magnetised neutron stars, 488	
Comptonisation and, 657, 658, 797, 798	
evolution of luminosity function of, with	
cosmic epoch, 796 similarity to that of optically selected quasars,	
657	
extragalactic, 656	
correlation between X-ray and optical luminosities, 656	
counts of, 657	
populations at soft and hard X-ray energies, 657, 794, 796	
radio-loud quasars correlation between X-ray and optical lu-	
radio-loud quasars	