

planetmath.org

Math for the people, by the people.

proof of delta system lemma

Canonical name ProofOfDeltaSystemLemma

Date of creation 2013-03-22 12:55:03 Last modified on 2013-03-22 12:55:03

Owner Henry (455) Last modified by Henry (455)

Numerical id 5

Author Henry (455)

Entry type Proof Classification msc 03E99 Since there are only \aleph_0 possible cardinalities for any element of S, there must be some n such that there are an uncountable number of elements of S with cardinality n. Let $S^* = \{a \in S \mid |a| = n\}$ for this n. By induction, the lemma holds:

If n = 1 then there each element of S^* is distinct, and has no intersection with the others, so $X = \emptyset$ and $S' = S^*$.

Suppose n > 1. If there is some x which is in an uncountable number of elements of S^* then take $S^{**} = \{a \setminus \{x\} \mid x \in a \in S^*\}$. Obviously this is uncountable and every element has n-1 elements, so by the induction hypothesis there is some $S' \subseteq S^{**}$ of uncountable cardinality such that the intersection of any two elements is X. Obviously $\{a \cup \{x\} \mid a \in S'\}$ satisfies the lemma, since the intersection of any two elements is $X \cup \{x\}$.

On the other hand, if there is no such x then we can construct a sequence $\langle a_i \rangle_{i < \omega_1}$ such that each $a_i \in S^*$ and for any $i \neq j$, $a_i \cap a_j = \emptyset$ by induction. Take any element for a_0 , and given $\langle a_i \rangle_{i < \alpha}$, since α is countable, $A = \bigcup_{i < \alpha} a_i$ is countable. Obviously each element of A is in only a countable number of elements of S^* , so there are an uncountable number of elements of S^* which are candidates for a_α . Then this sequence satisfies the lemma, since the intersection of any two elements is \emptyset .