Kristy Buzard and Ben Horne kbuzard@syr.edu

October 25, 2019

Inefficient Concessions and Mediation

In conflict scenarios, concessions are sometimes inefficient

▶ We show inefficient concessions may be preferable if efficient concessions have potential future cost

- ► We show inefficient concessions may be preferable if efficient concessions have potential future cost
- ► Cost: concessions used against you by negotiating partner who violates agreement

- ▶ We show inefficient concessions may be preferable if efficient concessions have potential future cost
- ► Cost: concessions used against you by negotiating partner who violates agreement
- ► Can you trust that partner will make peace?

- ▶ We show inefficient concessions may be preferable if efficient concessions have potential future cost
- ► Cost: concessions used against you by negotiating partner who violates agreement
- ► Can you trust that partner will make peace?

In conflict scenarios, concessions are sometimes inefficient

- ▶ We show inefficient concessions may be preferable if efficient concessions have potential future cost
- ► Cost: concessions used against you by negotiating partner who violates agreement
- ► Can you trust that partner will make peace?

New explanation for mediation

In conflict scenarios, concessions are sometimes inefficient

- ► We show inefficient concessions may be preferable if efficient concessions have potential future cost
- ► Cost: concessions used against you by negotiating partner who violates agreement
- ► Can you trust that partner will make peace?

New explanation for mediation

► Can remove uncertainty about ability of negotiating partner to commit to peace

In conflict scenarios, concessions are sometimes inefficient

- ▶ We show inefficient concessions may be preferable if efficient concessions have potential future cost
- ► Cost: concessions used against you by negotiating partner who violates agreement
- ► Can you trust that partner will make peace?

New explanation for mediation

- ► Can remove uncertainty about ability of negotiating partner to commit to peace
- ▶ Removes need for inefficient concessions

What we do

Preview

Overview

What we do

Start with simple, two-player repeated Prisoners' Dilemma

What we do

Start with simple, two-player repeated Prisoners' Dilemma

 \blacktriangleright Asymmetric information about partner's discount factor δ_i : can partner commit to peace?

What we do

Start with simple, two-player repeated Prisoners' Dilemma

Asymmetric information about partner's discount factor δ_i : can partner commit to peace?

What we do

Start with simple, two-player repeated Prisoners' Dilemma

Asymmetric information about partner's discount factor δ_i : can partner commit to peace?

Add time zero: let partners give concessions with both signaling and material value

Preview

Overview

What we do

Start with simple, two-player repeated Prisoners' Dilemma

 \blacktriangleright Asymmetric information about partner's discount factor δ_i : can partner commit to peace?

Add time zero: let partners give concessions with both signaling and material value

▶ Let material value provide help/harm to the giver

What we do

Start with simple, two-player repeated Prisoners' Dilemma

Asymmetric information about partner's discount factor δ_i : can partner commit to peace?

Add time zero: let partners give concessions with both signaling and material value

- ► Let material value provide help/harm to the giver
- ▶ Let partners destroy some/all of the material value

What we do

Start with simple, two-player repeated Prisoners' Dilemma

Asymmetric information about partner's discount factor δ_i : can partner commit to peace?

Add time zero: let partners give concessions with both signaling and material value

- ▶ Let material value provide help/harm to the giver
- ▶ Let partners destroy some/all of the material value

What we do

Start with simple, two-player repeated Prisoners' Dilemma

Asymmetric information about partner's discount factor δ_i : can partner commit to peace?

Add time zero: let partners give concessions with both signaling and material value

- ► Let material value provide help/harm to the giver
- ► Let partners destroy some/all of the material value

Mediator removes uncertainty about partner's δ

Literature

Preview

Overview

Literature

Signaling: Spence (1973), but signal has potential future cost

Literature

Signaling: Spence (1973), but signal has potential future cost

▶ cost/benefit tradeoff b/c of δ_i , $C_i(g)$

Literature

Signaling: Spence (1973), but signal has potential future cost

 \triangleright cost/benefit tradeoff b/c of δ_i , $C_i(q)$

Preview

Literature

Signaling: Spence (1973), but signal has potential future cost

ightharpoonup cost/benefit tradeoff b/c of δ_i , $C_i(g)$

Gift-Giving: Camerer (1988), Prendergast & Stole (2001)

► Source of inefficiency differs: gifts can be used against giver

Signaling: Spence (1973), but signal has potential future cost

▶ cost/benefit tradeoff b/c of δ_i , $C_i(g)$

Gift-Giving: Camerer (1988), Prendergast & Stole (2001)

▶ Source of inefficiency differs: gifts can be used against giver

Conflict: Slantchev (2011), Arena (2013)

Signaling: Spence (1973), but signal has potential future cost

ightharpoonup cost/benefit tradeoff b/c of δ_i , $C_i(g)$

Gift-Giving: Camerer (1988), Prendergast & Stole (2001)

► Source of inefficiency differs: gifts can be used against giver

Conflict: Slantchev (2011), Arena (2013)

► Concessions are costly signals instead of bargaining chip

Signaling: Spence (1973), but signal has potential future cost

▶ cost/benefit tradeoff b/c of δ_i , $C_i(g)$

- ► Source of inefficiency differs: gifts can be used against giver
- Conflict: Slantchev (2011), Arena (2013)
 - ► Concessions are costly signals instead of bargaining chip
 - ▶ Commitment to peace, not resolve to fight

Literature

Signaling: Spence (1973), but signal has potential future cost

ightharpoonup cost/benefit tradeoff b/c of δ_i , $C_i(g)$

- ► Source of inefficiency differs: gifts can be used against giver Conflict: Slantchev (2011), Arena (2013)
- ► Concessions are costly signals instead of bargaining chip
 - ► Commitment to peace, not resolve to fight
 - ► Costly signals are concessions instead of proof of resolve

Literature

Signaling: Spence (1973), but signal has potential future cost

ightharpoonup cost/benefit tradeoff b/c of δ_i , $C_i(g)$

- ► Source of inefficiency differs: gifts can be used against giver Conflict: Slantchev (2011), Arena (2013)
- ► Concessions are costly signals instead of bargaining chip
 - ► Commitment to peace, not resolve to fight
 - ► Costly signals are concessions instead of proof of resolve

Signaling: Spence (1973), but signal has potential future cost

ightharpoonup cost/benefit tradeoff b/c of δ_i , $C_i(g)$

Gift-Giving: Camerer (1988), Prendergast & Stole (2001)

- ► Source of inefficiency differs: gifts can be used against giver Conflict: Slantchev (2011), Arena (2013)
 - ► Concessions are costly signals instead of bargaining chip
 - ► Commitment to peace, not resolve to fight
 - ► Costly signals are concessions instead of proof of resolve

Mediation: Fey and Ramsay (2008, 2011), Horner et al. (2010)

Signaling: Spence (1973), but signal has potential future cost

 \triangleright cost/benefit tradeoff b/c of δ_i , $C_i(q)$

Gift-Giving: Camerer (1988), Prendergast & Stole (2001)

- ► Source of inefficiency differs: gifts can be used against giver Conflict: Slantchev (2011), Arena (2013)
 - ► Concessions are costly signals instead of bargaining chip
 - ► Commitment to peace, not resolve to fight
 - ► Costly signals are concessions instead of proof of resolve

Mediation: Fey and Ramsay (2008, 2011), Horner et al. (2010)

▶ Information is about ability to commit, not resolve

Timeline

-1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in \{\delta_h, \delta_l\}$

- -1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in {\delta_h, \delta_l}$
 - 0. Countries simultaneously give costly concessions: $q_i \in \mathbb{R}_+$

- -1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in {\delta_h, \delta_l}$
 - 0. Countries simultaneously give costly concessions: $g_i \in \mathbb{R}_+$
- 1-∞. Countries engage in a simultaneous Prisoners' Dilemma interaction

	Trust	Fight
Trust	Т, Т	-D, T+W
Fight	T+W,-D	W-D, W-D

where

- $ightharpoonup T \geqslant 0$: Benefit from the other country playing Trust
- $ightharpoonup W \geqslant 0$: Additional benefit from playing Fight
- ▶ $D \ge 0$: Damages due to the other country playing Fight

	Trust	Fight
Trust	Т, Т	-D, T+W
Fight	T+W,-D	W-D, W-D

where

- $ightharpoonup T \geqslant 0$: Benefit from the other country playing Trust
- $ightharpoonup W \geqslant 0$: Additional benefit from playing Fight
- ▶ $D \ge 0$: Damages due to the other country playing Fight

Assume T > W - D

▶ Payoffs: sum the discounted stage game payoffs plus any concessions given or received

- ► Payoffs: sum the discounted stage game payoffs plus any concessions given or received
 - ▶ e.g. player's i's payoff if both parties give no concession and play "Fight" in every period:

$$\sum_{t=1}^{\infty} \delta_i^{t-1}(W-D) = \frac{W-D}{1-\delta_i}$$

- ▶ Payoffs: sum the discounted stage game payoffs plus any concessions given or received
 - ▶ e.g. player's i's payoff if both parties give no concession and play "Fight" in every period:

$$\sum_{t=1}^{\infty} \delta_i^{t-1}(W-D) = \frac{W-D}{1-\delta_i}$$

▶ Parameters are common knowledge with the exception of δ_i , which is country i's private information

- ▶ Payoffs: sum the discounted stage game payoffs plus any concessions given or received
 - ▶ e.g. player's i's payoff if both parties give no concession and play "Fight" in every period:

$$\sum_{t=1}^{\infty} \delta_i^{t-1}(W-D) = \frac{W-D}{1-\delta_i}$$

- ▶ Parameters are common knowledge with the exception of δ_i , which is country i's private information
- ► Social welfare measured as sum of high types' expected utilities

Benchmark Model

Benchmark Model

Assume two types: δ_h and δ_l

• $\delta_h > \delta^* > \delta_l$ where $\delta^* = \frac{W}{T+D}$ is the cutoff for sustaining (Trust,Trust) eqm

Benchmark Model

Assume two types: δ_h and δ_l

- ▶ $\delta_h > \delta^* > \delta_l$ where $\delta^* = \frac{W}{T+D}$ is the cutoff for sustaining (Trust,Trust) eqm
- ▶ p: probability of high type

Benchmark Model

Assume two types: δ_h and δ_l

- lacktriangleright $\delta_h > \delta^* > \delta_l$ where $\delta^* = \frac{W}{T+D}$ is the cutoff for sustaining (Trust, Trust) eqm
- ▶ p: probability of high type
- ▶ Cost of giving concessions q: $q = c_l(q) \ge c_h(q) = q$

Benchmark Model

Assume two types: δ_h and δ_l

- lacktriangleright $\delta_h > \delta^* > \delta_l$ where $\delta^* = \frac{W}{T+D}$ is the cutoff for sustaining (Trust, Trust) eqm
- ▶ p: probability of high type
- ▶ Cost of giving concessions q: $q = c_l(q) \ge c_h(q) = q$

Benchmark Model

Assume two types: δ_h and δ_l

- lacktriangleright $\delta_h > \delta^* > \delta_l$ where $\delta^* = \frac{W}{T+D}$ is the cutoff for sustaining (Trust, Trust) eqm
- ▶ p: probability of high type
- ▶ Cost of giving concessions q: $q = c_l(q) \ge c_h(q) = q$

Some equilibria of interest

Benchmark Model

Assume two types: δ_h and δ_l

- ▶ $\delta_h > \delta^* > \delta_l$ where $\delta^* = \frac{W}{T+D}$ is the cutoff for sustaining (Trust,Trust) eqm
- ▶ p: probability of high type
- ▶ Cost of giving concessions $g: g = c_l(g) \geqslant c_h(g) = g$

Some equilibria of interest

▶ Pool on 'Fight'

Benchmark Model

Assume two types: δ_h and δ_l

- ▶ $\delta_h > \delta^* > \delta_l$ where $\delta^* = \frac{W}{T+D}$ is the cutoff for sustaining (Trust,Trust) eqm
- ▶ p: probability of high type
- ▶ Cost of giving concessions g: $g = c_l(g) \geqslant c_h(g) = g$

Some equilibria of interest

- ▶ Pool on 'Fight'
- ► Separating through concessions

Benchmark Model

Assume two types: δ_h and δ_l

- lacktriangleright $\delta_h > \delta^* > \delta_l$ where $\delta^* = \frac{W}{T+D}$ is the cutoff for sustaining (Trust, Trust) eqm
- ▶ p: probability of high type
- ▶ Cost of giving concessions q: $q = c_l(q) \ge c_h(q) = q$

Some equilibria of interest

- ► Pool on 'Fight'
- Separating through concessions
- ► Separating without concessions

Pooling Equilibrium

Pooling Equilibrium

Lemma 4

From period 1 on, playing fight in all periods is the only sequentially rational strategy for low types regardless of their beliefs of the other country's type and strategy.

Pooling Equilibrium

Lemma 4

From period 1 on, playing fight in all periods is the only sequentially rational strategy for low types regardless of their beliefs of the other country's type and strategy.

► This equilibrium can always be chosen by both types

Separating through concessions

Separating through concessions

Theorem 2

In the best concessions separating equilibrium, high types give the smallest concession necessary to separate. Low types do not give a concession.

Separating through concessions

Theorem 2

In the best concessions separating equilibrium, high types give the smallest concession necessary to separate. Low types do not give a concession.

If p is low enough, high types are better off in the 'fight' pooling equilibrium

Separating through concessions

Theorem 2

In the best concessions separating equilibrium, high types give the smallest concession necessary to separate. Low types do not give a concession.

If p is low enough, high types are better off in the 'fight' pooling equilibrium

$$U_h(\mathit{CSE}) = pg - g + rac{1}{(1 - \delta_h)} \left[p\, T + (1 - p)(W - D)
ight]$$

Separating through concessions

Theorem 2

In the best concessions separating equilibrium, high types give the smallest concession necessary to separate. Low types do not give a concession.

If p is low enough, high types are better off in the 'fight' pooling equilibrium

$$U_h(\mathit{CSE}) = pg - g + rac{1}{(1-\delta_h)}\left[p\,T + (1-p)(\,W - D)
ight]$$

$$U_h(POOL) = \frac{1}{(1-\delta_h)} (W - D)$$

Smallest Separating Concession

Smallest Separating Concession

$$pg + X_{FF}^l \geqslant -g + pg + pX_{FT}^l + (1-p)X_{FF}^l$$

Smallest Separating Concession

$$pg + X_{FF}^l \geqslant -g + pg + pX_{FT}^l + (1-p)X_{FF}^l$$

$$pg + \frac{W-D}{1-\delta_l} \geqslant -g + pg + p \left[T + W + \frac{\delta\left(W-D\right)}{1-\delta_l}\right] + (1-p)\frac{W-D}{1-\delta_l}$$

Smallest Separating Concession

$$pg + X_{FF}^l \geqslant -g + pg + pX_{FT}^l + (1-p)X_{FF}^l$$

$$pg + rac{W-D}{1-\delta_l} \geqslant -g + pg + p\left[T + W + rac{\delta\left(W-D
ight)}{1-\delta_l}
ight] + (1-p)rac{W-D}{1-\delta_l}$$
 $g \geqslant p\left[T + W + rac{\delta\left(W-D
ight)}{1-\delta_l}
ight] - prac{\left(W-D
ight)}{1-\delta_l}$

Smallest Separating Concession

$$pg + X_{FF}^l \geqslant -g + pg + pX_{FT}^l + (1-p)X_{FF}^l$$

$$pg + \frac{W - D}{1 - \delta_l} \geqslant -g + pg + p\left[T + W + \frac{\delta\left(W - D\right)}{1 - \delta_l}\right] + (1 - p)\frac{W - D}{1 - \delta_l}$$

$$|g\geqslant p \left|T+W+rac{\delta \left(W-D
ight)}{1-\delta _{l}}
ight|-prac{\left(W-D
ight)}{1-\delta _{l}}$$

$$g \geqslant p \, T + p \, W - p \, W - p \, D + p \, rac{(\, W - D\,)}{1 - \delta_I} - p \, rac{(\, W - D\,)}{1 - \delta_I}$$

Timeline

Timeline

-1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in {\delta_h, \delta_l}$

Timeline

- -1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in \{\delta_h, \delta_l\}$
 - 0. Concessions

Timeline

- -1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in \{\delta_h, \delta_l\}$
 - 0. Concessions
 - 0a. Countries decide what proportion of a received concession to invest in civil society (vs. military capabilities):

$$\alpha_i \in [0, 1]$$

Modified Payoffs

Timeline

-1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in \{\delta_h, \delta_l\}$

Modified Payoffs

Concessions

 $\alpha_i \in [0,1]$

- 0a. Countries decide what proportion of a received concession to invest in civil society (vs. military capabilities):
- 0b. Countries simultaneously give costly concessions and decide on the efficiency of the concessions: $(g_i, e_i) \in \mathbb{R}_+ \times [0, 1]$

Timeline

- -1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in {\{\delta_h, \delta_l\}}$
 - 0. Concessions
 - 0a. Countries decide what proportion of a received concession to invest in civil society (vs. military capabilities): $\alpha_i \in [0,1] \qquad \qquad \text{Modified Payoffs}$
 - **0b.** Countries simultaneously give costly concessions and decide on the efficiency of the concessions: $(g_i, e_i) \in \mathbb{R}_+ \times [0, 1]$
- 1-∞. Countries engage in a simultaneous Prisoners' Dilemma interaction

Peace not possible in some scenarios

Peace not possible in some scenarios

Theorem 3

When concessions impact the giver's future welfare, peace becomes unachievable for some parameters under which it is achievable when concessions do not impact the giver's future welfare.

Peace not possible in some scenarios

Theorem 3

When concessions impact the giver's future welfare, peace becomes unachievable for some parameters under which it is achievable when concessions do not impact the giver's future welfare.

► Effect comes in part through change in minimum separating concession

Add Impact of Concessions on Giver (Still no money burning)

Peace not possible in some scenarios

Theorem 3

When concessions impact the giver's future welfare, peace becomes unachievable for some parameters under which it is achievable when concessions do not impact the giver's future welfare.

- ▶ Effect comes in part through change in minimum separating concession
- ► High-type utility may increase or decrease from the benchmark case

00 ●00

Add Money Burning

○ ○○ ○

Add Money Burning

Timeline

-1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in {\delta_h, \delta_l}$

- -1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in \{\delta_h, \delta_l\}$
 - 0. Concessions

- -1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in {\{\delta_h, \delta_l\}}$
 - 0. Concessions
 - 0a. Countries decide what proportion of a received concession to invest in civil society (vs. military capabilities): $\alpha_i \in [0, 1]$

- -1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in {\{\delta_h, \delta_l\}}$
 - Concessions
 - 0a. Countries decide what proportion of a received concession to invest in civil society (vs. military capabilities): $\alpha_i \in [0, 1]$
 - 0b. Countries simultaneously give costly concessions and decide on the efficiency of the concessions: $(g_i, e_i) \in \mathbb{R}_+ \times [0, 1]$

Timeline

- -1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in {\delta_h, \delta_l}$
 - 0. Concessions
 - 0a. Countries decide what proportion of a received concession to invest in civil society (vs. military capabilities): $\alpha_i \in [0, 1]$

Inefficient Concessions

000

- 0b. Countries simultaneously give costly concessions and decide on the efficiency of the concessions: $(g_i, e_i) \in \mathbb{R}_+ \times [0, 1]$
- 1-∞. Countries engage in a simultaneous Prisoners' Dilemma interaction

000

Add Money Burning

Burning money is (obviously) unattractive...

Burning money is (obviously) unattractive...

Now benefit of concession is eq

000

Add Money Burning

Burning money is (obviously) unattractive...

Now benefit of concession is eq

Lemma 2

If a concessions separating equilibrium exists under no money burning, it is optimal to give efficient gifts (e = 1) in a concessions separating equilibrium with money burning.

Burning money is (obviously) unattractive...

Now benefit of concession is eq

Lemma 2

If a concessions separating equilibrium exists under no money burning, it is optimal to give efficient gifts (e = 1) in a concessions separating equilibrium with money burning.

▶ The benefit of the gift appears on both sides of the incentive constraint for both individuals, so cancels out

Burning money is (obviously) unattractive...

Now benefit of concession is eq

Lemma 2

If a concessions separating equilibrium exists under no money burning, it is optimal to give efficient gifts (e = 1) in a concessions separating equilibrium with money burning.

- ▶ The benefit of the gift appears on both sides of the incentive constraint for both individuals, so cancels out
- ► Costs of giving a concession don't change

Burning money is (obviously) unattractive...

Now benefit of concession is eq

Lemma 2

If a concessions separating equilibrium exists under no money burning, it is optimal to give efficient gifts (e = 1) in a concessions separating equilibrium with money burning.

- ▶ The benefit of the gift appears on both sides of the incentive constraint for both individuals, so cancels out
- ► Costs of giving a concession don't change
- ▶ The benefit appears in the high type's expected utility

...but in some cases countries will burn money

Inefficient Concessions

000

...but in some cases countries will burn money

Theorem 4

When concessions affect the future welfare of the giver and their value can be destroyed, there are parameters under which the optimal equilibrium is a separating equilibrium in which concessions are inefficient.

...but in some cases countries will burn money

Theorem 4

When concessions affect the future welfare of the giver and their value can be destroyed, there are parameters under which the optimal equilibrium is a separating equilibrium in which concessions are inefficient.

$$U_h = peg - c_h(g) + rac{1}{1 - \delta_h} \left[p \, T (1 + eg) + (1 - p) (\, W - D (1 + eg))
ight]$$

...but in some cases countries will burn money

Theorem 4

When concessions affect the future welfare of the giver and their value can be destroyed, there are parameters under which the optimal equilibrium is a separating equilibrium in which concessions are inefficient.

$$U_h = peg - c_h(g) + rac{1}{1 - \delta_h} \left[p \, T (1 + eg) + (1 - p) (\, W - D (1 + eg))
ight]$$

 \triangleright If p is low, concessions likely to be used against you

...but in some cases countries will burn money

Theorem 4

When concessions affect the future welfare of the giver and their value can be destroyed, there are parameters under which the optimal equilibrium is a separating equilibrium in which concessions are inefficient.

$$U_h = peg - c_h(g) + rac{1}{1 - \delta_h} \left[p \, T (1 + eg) + (1 - p) (\, W - D (1 + eg))
ight]$$

- \triangleright If p is low, concessions likely to be used against you
- \triangleright If δ_l is low, concession has to be large to deter low type from from mimicking high type

Mediator as mechanism designer

'Manipulative' mediator: parties report their types, must deliver the stipulated concessions

'Manipulative' mediator: parties report their types, must deliver the stipulated concessions

► Mechanism: if two high types, give concession and play 'Trust'; Otherwise, no concession and 'Fight'

Mediator as mechanism designer

'Manipulative' mediator: parties report their types, must deliver the stipulated concessions

- ▶ Mechanism: if two high types, give concession and play 'Trust'; Otherwise, no concession and 'Fight'
- ► Concession is necessary to get truthful revelation, but only to high type

'Manipulative' mediator: parties report their types, must deliver the stipulated concessions

- ► Mechanism: if two high types, give concession and play 'Trust'; Otherwise, no concession and 'Fight'
- ► Concession is necessary to get truthful revelation, but only to high type
- ► Need cost of concession for low type to be not too large relative to cost for high type

'Manipulative' mediator: parties report their types, must deliver the stipulated concessions

- ► Mechanism: if two high types, give concession and play 'Trust'; Otherwise, no concession and 'Fight'
- ► Concession is necessary to get truthful revelation, but only to high type
- ► Need cost of concession for low type to be not too large relative to cost for high type

Mediator as mechanism designer

'Manipulative' mediator: parties report their types, must deliver the stipulated concessions

- ► Mechanism: if two high types, give concession and play 'Trust'; Otherwise, no concession and 'Fight'
- ► Concession is necessary to get truthful revelation, but only to high type
- ► Need cost of concession for low type to be not too large relative to cost for high type

Theorem 5

A mediator restores peace where concessions' future welfare impact destroys it and eliminates inefficient concessions elsewhere.

Modified Stage Game Payoffs

	, _	
	Trust	Fight
Trust	$T(s_2+lpha_2g_1),$	$-D(m_2+(1-\alpha_2)g_1),$
	$T(s_1+lpha_1g_2)$	$T(s_1+lpha_1g_2)$
		$+W(m_2+(1-\alpha_2)g_1)$
Fight	$T(s_2+lpha_2g_1)$	$W(m_1+(1-\alpha_1)g_2)$
	$+W(m_1+(1-\alpha_1)g_2),$	$-D(m_2+(1-\alpha_2)g_1),$
	$-D(m_1+(1-\alpha_1)g_2)$	$W(m_2+(1-\alpha_2)g_1)$
		$-D(m_1+(1-\alpha_1)g_2)$

Back to (Burning money unattractive).