CPE348: Introduction to Computer Networks

Lecture #6: Chapter 2.4

Jianqing Liu Assistant Professor of Electrical and Computer Engineering, University of Alabama in Huntsville

jianqing.liu@uah.edu http://jianqingliu.net

Ethernet – history

- Most successful networking technology of last 20 years.
- Developed in the mid-1970s by Palo Alto Research Centers (PARC), 10-Mbps Ethernet standard in 1978.
- Now, it has been extended to 100-Mbps version called Fast Ethernet, 1000-Mbps version called Gigabit Ethernet, 10 Gbps,100Gbps and more.

Ethernet – key technology

- Uses CSMA/CD technology
 - Carrier Sense Multiple Access with Collision Detection.
 - MA: A set of nodes send and receive frames over a shared link.
 - CS: all nodes can distinguish between an idle and a busy link.
 - CD: a node listens as it transmits and can therefore detect when a frame it is transmitting has collided with a frame transmitted by another node.
- Uses ALOHA (packet radio network) as the root protocol
 - Developed at the University of Hawaii to support communication across the Hawaiian Islands.
 - If link is idle, transmit the packet

Ethernet - adaptor

- A classical Ethernet segment is implemented on a coaxial cable of up to 500 m.
- A transceiver tapes the cable, transmits and receives signal.
- The transceiver is connected to an Ethernet adaptor which is plugged into the host.
- The protocol is implemented on the adaptor.

Ethernet - adaptor

Ethernet transceiver and adaptor

Ethernet – repeater

- Multiple Ethernet segments can be joined together by repeaters.
- A repeater is a device that relays digital signals.
- No more than four repeaters may be positioned between any pair of hosts.
 - A classical Ethernet has a total reach of only 2500 m.
 - Maximum of 1024 hosts
- Modern Ethernets
 - use category 5 twisted copper pair (cat 6 or cat 7 for 10Gbps)
 - Use optical fibers
 - Can be longer than 500 meters between repeaters

Ethernet – repeater

Ethernet repeater

Ethernet - cont'

- Any signal placed on the Ethernet by a host is broadcast over the entire network
 - Signal is propagated in both directions.
 - Hosts can detect the signal from the cable.

 Classical Ethernet uses Manchester encoding scheme.

Higher speed Ethernets use 4B/5B or 8B/10B encoding

Ethernet - cont'

- New Technologies in Ethernet
 - Instead of using coax cable, an Ethernet can be constructed from a thinner cable known as 10Base2
 - 10 means the network operates at 10 Mbps
 - Base means the cable is used in a baseband system
 - 2 means that a given segment can be no longer than 200 m

Ethernet - cont'

- New Technologies in Ethernet
 - Another cable technology is 10BaseT
 - T stands for twisted pair
 - Limited to 100 m in length
 - With 10BaseT, the repeater has multiple outputs, called Hub

Ethernet – cont'

Ethernet Hub

Ethernet – frame

- Frame format
 - Preamble (64bit or 8 Bytes): allows rcvr to synchronize.
 - Src and Dst Address (48bit or 6 Bytes each).
 - Packet type (16bit or 2 Bytes): acts as demux key to identify the higher level protocol.
 - Data (up to 1500 bytes)
 - Minimally a frame must contain at least 46 bytes of data. WHY?
 - Frame must be long enough to detect collision, but no more than 1,500 bytes to avoid always occupying the line.
 - CRC (32bit or 4 Bytes)

Ethernet – frame

Link to Slide 22

- Each host on an Ethernet has a unique Ethernet Address (e.g., IP, MAC address).
- The address belongs to the adaptor, not the host.

- MAC address is typically printed in a human readable format
 - As a sequence of six numbers separated by colons.
 - Each number is given by a pair of hexadecimal digits, one for each of the 4-bit nibbles in the byte
 - For example, 8:0:2b:e4:b1:2 is

- MAC-48 is now being called EUI-48 (Extended Unique Identifier)
- 48 bits, so number of addresses: 2⁴⁸ = 281.47E12!
- It is projected to be exhausted in 2100!

IP address:

- Unicast address one-to-one addressing
- broadcast address one-to-all addressing
- multicast address one-to-many addressing

We will elaborate on next chapter

network layer technology

- It transmits the frame immediately when the line is idle.
- It holds the transmission when the line is busy.

- No coordination, so it is possible for two (or more) adaptors far-away to transmit at the same time,
- When this happens, the two (or more) frames are said to collide on the network.

How does CSMA/CD come into play?

- When an adaptor detects its frame colliding with another,
 - it first transmits a frame of 32-bit jamming sequence.
 - it then stops transmission.

 Worst case collision: two hosts are at opposite ends of the Ethernet.

- Let's first put the design rule here:
 - Every Ethernet frame must be at least 512 bits (64 bytes) long.
 - 14 bytes of header + 46 bytes of data + 4 bytes of CRC
 - Not include the preamble of 8 Bytes otherwise minimum frame is 576 bits

Why 512 bits? Why is its length limited to 2500 m?

 The farther apart, the longer it takes for transmitting a frame.

- On 10 Mbps Ethernet,
 - Round trip delay of transmitting 512-bit frame is 51.2 uS for 2500 meter length and 4 repeaters

Worst-case scenario: (a) A sends a frame at time t; (b) A's frame arrives at B at time t + d; (c) B begins transmitting at time t + d and collides with A's frame; (d) B's runt (32-bit) frame arrives at A at time t + 2d.

- Once detecting a collision,
 - transmission is stopped,
 - wait a certain amount of time,
 - try again.
- After several trials,
 - double waiting time,
 - try again

Exponential Backoff

- At first collision,
 - the adaptor delays either 0 or 51.2 μs, selected at random.
- At second collision,
 - it waits 0, 51.2, 102.4, 153.6 μs (selected randomly);
 - This is k * 51.2 for k = 0, 1, 2, 3.
- At third collision,
 - it waits k * 51.2 for $k = 0...2^3 1$ (selected at random).

- In general, the algorithm
 - randomly selects a k between 0 and 2ⁿ 1;
 - and waits for k * 51.2 μs;
 - n is the number of collisions experienced so far.

- After a successful transmission,
 - n may be reset to 0
 - or reduced by some factor (1, ½, ¼, etc)

Ethernet – some experience

- Ethernets work best under lightly loaded conditions.
 - Under heavy loads (typically >30% utilization), too much of the network's capacity is wasted by collisions.
- Most Ethernets are used in a conservative way.
 - Have fewer than 200 hosts connected to them which is far fewer than the maximum of 1024.
- Hosts can plug-and-play.

