

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

по лабораторной работе № 4

Название: Исследование способов организации оперативной памяти и взаимодействия процессов										
Дисциплина: <u>Операционные системы</u>										
Студент	ИУ6-52Б		С.В. Астахов							
	(Группа)	(Подпись, дата)	(И.О. Фамилия)							
Преподавате	ЛЬ	(Подпись, дата)	А.М. Суровов (И.О. Фамилия)							

Цель работы: получение теоретических и практических сведений об управлении процессами, потоками и оперативной памятью в UNIX-подобных системах и в Linux в частности.

Задание:

- 1. В текстовом браузере некую страницу и перевести его в фоновый режим.
- 2. Запустить ещё два экземпляра текстового браузера в фоновом режиме.

Практическая часть: Откроем в w3m произвольную веб-страницу и переведем его в фоновый режим нажатием "Ctrl+Z". Повторим эти действия еще 2 раза.

Рисунок 1 - перевод w3m в фоновый режим

Задание:

3. Найти процесс, максимально нагружающий процессор.

Практическая часть: воспользуемся командой "top". Как видно, больше всего процессор нагружает conky.

Рисунок 2 - утилита "top"

Задание:

- 4. Вывести список процессов текущего пользователя
- 5. «Убить» первый процесс браузера в котором открыта 1 страница

Практическая часть: для просмотра процессов воспользуемся командой "ps" и убьем процесс с помощью "kill -9".

```
Терминал Вкладки Справка

РПО ТТУ ТІМЕ СМО

1626 рts/0 00:00:00 w3m

1635 рts/0 00:00:00 w3mingdisplay

1637 рts/0 00:00:00 w3mingdisplay

1645 рts/0 00:00:00 w3mingdisplay

1647 рts/0 00:00:00 w3mingdisplay

1656 рts/0 00:00:00 w3mingdisplay

1656 рts/0 00:00:00 w3mingdisplay

1656 рts/0 00:00:00 w3mingdisplay

1656 рts/0 00:00:00 w3mingdisplay

1660 рts/0 00:00:00 w3mingdisplay

1660 pts/0 00:00:00 w3mingdisplay

1660 pts/0 00:00:00 w3mingdisplay

1667 pts/0 00:00:00 w3mingdisplay

1668 pts/0 00:00:00 w3mingdisplay

1670 pts/0 00:00:00 pts/0 w3mingdisplay
```

Рисунок 3 - просмотр процессов

Задание:

- 6. Вывести список всех процессов всех пользователей
- 7. Просмотреть список процессов постранично

Практическая часть: Для того чтобы посмотреть список всех процессов постранично введем команду "ps axu | more"

root@astakl	10V:-	-# ps	axu	more					
USER	PID	%CPU	%MEM	VSZ	RSS	TTY	STAT	START	TIME COMMAND
root	1	0.0	0.2	36416	9128	?	Ss	15:58	0:01 /sbin/init
root	2	0.0	0.0	Θ	0	?	S	15:58	0:00 [kthreadd]
root	3	0.0	0.0	Θ	0	?	I<	15:58	0:00 [rcu_gp]
root	4	0.0	0.0	Θ	0	?	I<	15:58	0:00 [rcu_par_gp]
root	6	0.0	0.0	Θ	0	?	I<	15:58	0:00 [kworker/0:0H-k
root	7	0.0	0.0	Θ	0	?	I	15:58	0:00 [kworker/u2:0-€
root	8	0.0	0.0	Θ	0	?	I<	15:58	0:00 [mm_percpu_wq]
root	9	0.0	0.0	Θ	0	?	S	15:58	0:00 [ksoftirqd/0]
root	10	0.0	0.0	Θ	0	?	I	15:58	0:00 [rcu_sched]
	9 9	0 0	0 0	•	•	~	_	15 50	0 00 5 117

Рисунок 4 - постраничный список всех процессов

Задание:

8. Отобрать из вывода команды рѕ строку, соответствующую процессу «dbus-daemon», определить, где лежит её выполняемый файл и с какими параметрами он запущен.

Практическая часть: для поиска информации о процессе "dbus-daemon" воспользуемся командой "ps axu | grep dbus-daemon"

```
root@astakhov:~# ps axu | grep dbus-daemon
message+ 376 0.0 0.0 6872 3624 ? Ss 15:58 0:00 /usr/bin/dbus-daemon --syste
m --address=systemd: --nofork --nopidfile --systemd-activation --syslog-only
```

Рисунок 5 - информация о процессе "dbus-daemon"

Задание:

9. Записать в файл с именем, содержащим текущее время, строку «-----»и список процессов.

Практическая часть: Воспользуемся командой "bash -c 'echo "- - - - -" && ps' > \$(date +%H:%M%S).txt".

```
root@astakhov:~# bash -c 'echo "-----" && ps' > $(date +%H:%M:%S).txt
(root@astakhov:~# ls
 17:31:37.txt
 17:32:52.txt
                                          leafpad-0.8.18.1
 2021-09-16-205849 1920x925 scrot.png
                                          leafpad 0.8.18.1.orig.tar.gz
 2021-09-17.txt
                                          log.txt
                                         Видео
 date
 idesktop
                                         Документы
root@astakhov:~# cat 17*37.txt
  PID TTY
                    TIME CMD
 1626 pts/0
               00:00:00 bash
 1637 pts/0
               00:00:00 w3m
 1645 pts/0
               00:00:00 sh
 1646 pts/0
               00:00:00 w3mimgdisplay
 1647 pts/0
               00:00:00 w3m
 1655 pts/0
               00:00:00 sh
               00:00:00 w3mimgdisplay
 1656 pts/0
               00:00:00 ps
 1687 pts/0
 oot@astakhov:~#
```

Рисунок 6 - запись списка процессов в файл

Задание:

9. Выполнить команду в фоновом режиме с отсрочкой запуска на 1 минуту.

Практическая часть: Воспользуемся командной "(sleep 60 && screenfetch)&".

```
root@astakhov:~# (sleep 60 && screenfetch)&
[5] 1842
     ,g$$$$$$$$$$,
,g$$P""""""
root@astakhov:~#
                                 _,met$$$$$g.
                                                               root@astakhov
                                         OS: Debian 10 buster
                          'Y$$.".
                                         Kernel: i686 Linux 4.19.0-14-686-pae Uptime: 1h 39m
    ,$$P'
                             $$$.
                                          Packages: 868
Shell: bash
                               $$b:
                  ags.
                               $$$
                                          Resolution: 1600x900
WM: OpenBox
                             , d$$ '
                 "Y$$$$P" '
                                         GTK Theme: Adwaita [GTK3]
Icon Theme: Tango
Disk: 2,4G / 7,8G (32%)
                                          CPU: Intel Core i3-10110U @ 2.592GHz
                                          GPU: InnoTek Systemberatung GmbH Virtu
         $$b.
                                          RAM: 463MiB / 3974MiB
            Y$$b.
                "Y$b.____
```

Рисунок 7 - запуск команды с отсрочкой в фоновом режиме

Задание:

10. Отобрать из одного из сформированных файлов строки, относящиеся к одному из процессов.

Практическая часть: Для выполнения этой задачи воспользуемся командами "cat" и "grep".

Рисунок 8 - поиск информации о процессе в файле

Задание:

11. Вывести результаты работы произвольной команды в один файл, а сообщения об ошибках в другой. Продемонстрировать правильность работы.

Практическая часть: Воспользуемся перенаправлением потоков.

```
root@astakhov:~# (echo "task for std streams" && tar -zcvx archive.tar.gz ~/.idesktop/) > log.tx
t 2>err.txt
root@astakhov:~# cat log.txt
task for std streams
root@astakhov:~# cat err.txt
tar: Указать можно только один из параметров «-Acdtrux», «--delete» или «--test-label»
Попробуйте «tar --help» или «tar --usage» для
получения более подробного описания.
[root@astakhov:~#
```

Рисунок 9 - перенаправление потоков

Задание:

12. Выполнить произвольную команду с ограничением использования процессорного времени 300 секунд и выводом результатов и сообщений об ошибках в один файл.

Практическая часть: воспользуемся командой "ulimit" для ограничения ресурсов.

```
root@astakhov:~# bash -c 'ulimit -t 300 && screenfetch' &>log.txt
root@astakhov:~# cat log.txt
__,met$$$$gg.
root@astakhov
,g$$$$$$$$$$$
__,g$$$$""""Y$$.". Kernel: i686 Linux 4.19.0-14-686-page
```

Рисунок 10 - выполнение команды с ограничением ресурсов

Задание:

13. Настроить cron на выполнение команды ежедневно в заданное время. Продемонстрировать правильность работы.

Практическая часть:

```
# m h dom mon dow command
0 12 * * * screenfetch

root@astakhov:~# history 2
  286 crontab -l
  287 history 2
root@astakhov:~#
```

Рисунок 11 - просмотр содержимого crontab

Вывод: в ходе данной лабораторной работы были получены базовые навыки работы с процессами и потоками в ОС Debian.