

SMV Outlet Fixed Blockage Comparison

End-of-Line Test Results

Fixed Blockage - Outlet

Blockage Matrix

port diameter in mm	inner hole diameter in mm	sectional area in mm ₂	area ratio	diameter ratio	flow rate SLPM @ 100psi	flow blockage ZF NA	Calculated flow blockage	ZF FD-VD	ZF NA	D
3.3	3.30	8.55	0%	0%	332			Х		
3.3	2.33	4.28	50%	29%			-3%	x		
3.3	2.09	3.42	60%	37%			18%	x		
3.3	1.81	2.57	70%	45%			39%	x		
3.3	1.65	2.14	75%	50%	167	50%	49%	X	X	
3.3	1.48	1.71	80%	55%			59%	х		
3.3	1.28	1.28	85%	61%	120	64%	69%	х	х	
3.3	1.04	0.86	90%	68%	65	80%	79%	х	х	
3.3	0.74	0.43	95%	78%			88%	х		
3.3	0.66	0.34	96%	80%	30	91%	90%		х	
3.3	0.50	0.20	97.7%	85%			93%	х		
3.3	0.33	0.09	99.0%	90%	22	93%	94%		х	
ormula to calc	ulate the inner hol	e diameter from	the flow blocka	ge:						
$d_{inner} = 2 *$	$\sqrt{\pi (\frac{d_{port}}{2})^2 * \frac{(100)}{2}}$	% — X _{FlowBlocka} π	_{ge} %)	150%						
	$\pi (\frac{d_{port}}{2})^2 * \frac{(100)^2}{2}$ culate the sectional			100%						
	culate the sectional			100%						
Formula to calc $A_{Flow}=\pi*($	culate the sectional	area from the in		100% ter: 50%	0.00 0.50	1.00 1.5	50 2.00	2:50 3	.00 3.	50
Formula to calc $A_{Flow}=\pi*6$	culate the sectional $\frac{d_{inner}}{2}$)2	area from the in		100% ter: 50%			50 2.00	2:50 3	.00 3.5	50

