An Introduction to TikZ

Wesley T. Honeycutt

University of Oklahoma

August 26, 2020

Sources and Background

The Environment

Basic Tools

Libraries

Examples

Learning More

What Are We Doing Here?

► This workshop assumes you have some LATEX competency.

•0

What Are We Doing Here?

- ► This workshop assumes you have some LATEX competency.
- ► You can code along with a computer using your favorite editor. Overleaf will be used for examples.

What Are We Doing Here?

- ► This workshop assumes you have some LATEX competency.
- ➤ You can code along with a computer using your favorite editor. Overleaf will be used for examples.
- This workshop covers concepts, full lists of tools are available online:
 - ► The Official Manual
 - A Very Minimal lintroduction to TikZ
 - Overleaf's TikZ Manual
 - ► The TikZ Wikibook

► TikZ is a language to control PGF (Portable Graphics Format).

- ► TikZ is a language to control PGF (Portable Graphics Format).
- ▶ TikZ is an acronym for "TikZ ist kein Zeichenprogramm".

- ► TikZ is a language to control PGF (Portable Graphics Format).
- ▶ TikZ is an acronym for "TikZ ist kein Zeichenprogramm".
- ► TikZ is interpreted by TEXderivative compilers and some graphics programs.

- ► TikZ is a language to control PGF (Portable Graphics Format).
- ightharpoonup TikZ ist kein Zeichenprogramm".
- ► TikZ is interpreted by TEXderivative compilers and some graphics programs.
- ► Lazy people (like me) can export TikZ code directly from many programs (e.g. Inkscape, Blender, Python, Gnuplot, R)

Summon TikZ Environment

The TikZ framework is contained in the tikz package.

The minimum for this environment would be:

```
0 \documentclass{minimal}
\usepackage{tikz}
2 \begin{document}
    content
4 \end{document}
```

Summon TikZ Environment

The TikZ framework is contained in the tikz package.

TikZ is called using the tikzpicture environment in \LaTeX

The minimum for this environment would be:

```
0 \documentclass{minimal}
\usepackage{tikz}
2 \begin{document}
  \begin{tikzpicture}
4 tikz content
  \end{tikzpicture}
6 \end{document}
```


Controlling the Environment

The tikzpicture environment is controlled like other LATEX frames.

```
o \documentclass{article}
\usepackage{tikz}

begin{document}
    \begin{figure}[t]

    \centering
    \begin{tikzpicture}
    content here
    \end{tikzpicture}

caption{Info about picture}
    \label{fig:my_label}

end{figure}
\end{document}
```


Controlling the Picture

The tikzpicture size should be controlled directly.

```
documentclass{article}
\usepackage{tikz}

begin{document}
\begin{tikzpicture}[scale=3]

content here
\end{tikzpicture}

\"\\
\begin{tikzpicture}[xscale=3, yscale=2]

more content here
\end{tikzpicture}

end{tikzpicture}

end{tikzpicture}

\end{document}
```

ightharpoonup TikZ is high level abstraction of vector art commands

- ► TikZ is high level abstraction of vector art commands
- ► TikZ is 2D

- ► TikZ is high level abstraction of vector art commands
- ightharpoonup TikZ is 2D
- ▶ 2D Vector = points, curves, and simple operations

- ► TikZ is high level abstraction of vector art commands
- ightharpoonup TikZ is 2D
- ▶ 2D Vector = points, curves, and simple operations
- Size matters, reference doesn't

- ► TikZ is high level abstraction of vector art commands
- ightharpoonup TikZ is 2D
- ▶ 2D Vector = points, curves, and simple operations
- Size matters, reference doesn't
- ► TikZ is ridiculously powerful. The manual is 1000+ pages for a reason.

The General Case

```
0 \command[options, options, options] node connection;
```

► Within a TikZ picture environment, each part of a drawing gets a semicolon (;) terminated line.

Arbitrary Reference 1

```
0 \begin{tikzpicture}
    \draw (0,0) -- (0,1) -- (1,1) -- cycle;
2 \end{tikzpicture}
```


Arbitrary Reference 11

Size and Reference

```
0 \begin{tikzpicture}
  \draw (0,10) -- (0,10) -- (10,10) -- cycle;
2 \end{tikzpicture}
```


Default Unit = 1cm

```
0 \begin{tikzpicture}[x=1cm,y=2cm]
     \draw (0,0) -- (0,1) -- (1,1) -- cycle;
2 \end{tikzpicture}
```


Drawings are Altered When Called by draw

```
0  \begin{tikzpicture}
  \draw[red, very thick, rounded corners=9pt] (0,0) -- (0,1)
  -- (1,1) -- cycle;
2  \end{tikzpicture}
```


Altering Connections with Circles

```
0 \begin{tikzpicture}
  \draw (0,0) circle [radius=.5cm] (0,1) circle [x radius=.5
     cm, y radius=1cm] (1,1) arc (120:180:1) -- cycle;
2 \end{tikzpicture}
```


How did those Arcs work?

```
0 \begin{tikzpicture}
  \draw (0,0) circle [radius=.5cm] (0,1) circle [x radius=.5
     cm, y radius=1cm] (1,1) arc (120:180:1) -- cycle;
2 \draw[red] (0,0) -- (0,1) -- (1,1) -- cycle;
  \end{tikzpicture}
```


Grids with Defined Steps

Coordinate Labels, Simple Arrows

```
0 \begin{tikzpicture}
  \draw[step=.5cm, gray, very thin] (-1.2,-1.2) grid
      (1.2,1.2);
2 \draw[->] (-1.25,0) -- (1.25,0) coordinate (x axis);
  \draw[->] (0,-1.25) -- (0,1.25) coordinate (y axis);
4 \end{tikzpicture}
```


Right Angle Connections, Using Coordinate Labels

Nodes as Text Labels

Node Syntax:

node[anchor, options] {contents}

Nodes as Text Labels - Result

Custom Colors, Filled Areas

```
0 \begin{tikzpicture}[scale=3]
   \draw[step=.5cm, gray, very thin] (-1.2,-1.2) grid
     (1.2.1.2):
   draw[->](-1.25,0) -- (1.25,0) coordinate (x axis);
   \draw[->] (0,-1.25) -- (0,1.25) coordinate (y axis);
   \draw (0.0) circle (1cm):
   \draw[very thick, red] (30:1cm) -- node[left,fill=white]
     { \sin \alpha } (30:1cm - x axis);
   \draw[very thick,blue] (30:1cm |- x axis) -- node[below=2
6
     pt,fill=white] {$\cos \alpha$} (0,0);
   \draw (0,0) -- (30:1cm);
8
   \filldraw[fill=green!20,draw=green!50!black] (0,0) -- (3mm
      ,0mm) arc (0:30:3mm) -- cycle;
 \end{tikzpicture}
```


Custom Colors, Filled Areas - Result

Loops

```
0 \begin{tikzpicture}[scale=3]
    \draw[step=.5cm, gray, very thin] (-1.2,-1.2) grid
      (1.2.1.2):
    draw[->](-1.25,0) -- (1.25,0) coordinate (x axis);
2
    \draw[->] (0,-1.25) -- (0,1.25) coordinate (y axis);
    \draw (0,0) circle (1cm);
4
    \draw[very thick,red] (30:1cm) -- node[left,fill=white]
      {$\sin \alpha$} (30:1cm |- x axis);
    \draw[very thick,blue] (30:1cm |- x axis) -- node[below=2
6
      pt,fill=white] {$\cos \alpha$} (0,0);
    \draw (0.0) -- (30:1cm):
    \filldraw[fill=green!20,draw=green!50!black] (0,0) -- (3mm
8
      ,0mm) arc (0:30:3mm) -- cycle;
    \foreach \x/\xtext in {-1, -0.5/-\frac{1}{2}, 1}
    \draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north,fill=
10
      whitel {$\xtext$}:
    \int \int \frac{1}{2}, 0.5/\frac{1}{2}, 0.5/\frac{1}{2}
      {1}{2}, 1}
    \draw (1pt.\v cm) -- (-1pt.\v cm) node [anchor=east.fill=
```

Loop - Syntax

TikZ

content...

(

```
\begin{tikzpicture}[scale=3]
0
   \draw[step=.5cm, gray, very thin] (-1.2,-1.2) grid
     (1.2,1.2);
   \draw[->] (-1.25,0) -- (1.25,0) coordinate (x axis);
   \draw[->] (0,-1.25) -- (0,1.25) coordinate (y axis);
   \draw (0,0) circle (1cm);
   \draw[very thick,red] (30:1cm) -- node[left,fill=white]
     { \sin \lambda } (30:1cm - x axis);
   \draw[very thick,blue] (30:1cm |- x axis) -- node[below=2
6
     pt,fill=white] {$\cos \alpha$} (0,0);
   \draw (0,0) -- (30:1cm);
8
   \filldraw[fill=green!20,draw=green!50!black] (0,0) -- (3mm
     ,0mm) arc (0:30:3mm) -- cycle;
```

Loops - Result

Libraries and How to Summon Them

Syntax in Preamble:

0 \usetikzlibrary{library}

- ▶ I can list all of the libraries with a minimal description, but there will not be time to give examples of each.
- ► I recommend this comprehensive Stack Overflow thread which attempts to provide an introduction for each library with examples.
- Official documentation in Part V of the manual.

TikZ Libraries in Brief (1/6)

How to read this list:

Descriptive Name (Library command) - One line description

- Three Dimensions (3D) Produce plots using cylindrical or spherical coordinate systems with predefined planes.
 - Angles (angle) Draw angles between nodes and connections.
 - Arrow Tip (arrows.meta) Add arrowheads and special dots to your node connections.
 - Automata (automata) Draw finite automata and Turing machines.
 - Babel (babel) Helps TikZ behave better with non-standard characters like ø.

TikZ Libraries in Brief (2/6)

Backgrounds (background) - Put a background behind your drawing.

Calculator (calc) - Uses TEXto calculate values.

Calendar calendar) - Draw a calendar.

Chains (chains) - Enable more complex connection between nodes.

Circuits (circuits) - Draw electronic circuits.

Decorations (decoration) - Fancy connections like squiggles, zig-zags, text, and shapes.

Entity-Relationship (er) - Tools for drawing entity-relationship coded diagrams.

Externalization (external) - Semi-automatic export of TikZ pictures.

TikZ Libraries in Brief (3/6)

- Fading (fadings) Create gradients between color and transparency.
- Fitting (fit) Fit a bounding box or circle around all the nodes you list in the command.
- Fixed Points (fixedpointarithmetic) Allow big numbers in calculations.
- Floating Points (fpu) Allow precise numbers in calculations.
- Lindenmayer Systems (lindenmayersystems) Draw branching and fractal designs.
 - Math (math) Perform calculations in a user-friendly way.
 - Matrix (matrix) Draw matrices and operations on them.
 - Mindmap (mindmap) Draw mindmap style relationship trees.

TikZ Libraries in Brief (4/6)

- Paper Folding (folding) Draw objects which may be printed, cut, and then assembled into 3D objects.
 - Patterns (patterns]) Hatches, lines, dots, and other fill patterns.
- Three Point Perspective (perspective) Draw with up to 3 vanishing points for a 3D effect.
 - Petri-Net (petri) Draw Petri-Net style logic diagrams
- Plot Extension (plothandlers) Adds even more ways you can use connections (partial lines, splines, gaps)
 - Plot Marks (plotmarks) More shapes for your nodes.
 - Profiler (profiler) Debugging tools and timers for compiling.

TikZ Libraries in Brief (5/6)

- Resource Description (rdf) Output files with more descriptive comments to make them human-readable.
 - Shading (shadings) Creates color gradients.
 - Shadow (shadows) Create drop shadows behind nodes and connections.
 - Shapes (shapes) Add pre-defined common shapes.
 - Multipart (shapes.multipart) Shapes with dividing lines.
 - Callouts (shapes.callouts) Create callouts (speech bubbles).
 - Misc (shapes.misc) More pre-defined shapes.
 - Spy (spy) Spy on or zoom in on part of your drawing like an inset map.

TikZ Libraries in Brief (6/6)

- SVG Path (svg.path) Create your own connection paths using SVG rules.
 - To Path (topaths) Treat your connections as a "path" for vector outputs.
- Through Points (through) Make your connections go through a node rather than to a point.
 - Tree (trees) Create complex tree connections.
- Turtle Graphics (turtle) Draw using "turtle graphics" commands rather than pre-defined nodes.
 - Views (views) Define special rules for the box that contains a TikZ graphic.

Some Practical Examples

You can do nigh-infinite things with TikZ

Here are some examples which touch on useful concepts:

- ► MOSFET Using simple nodes to create diagrams.
- Amplitude and Frequency
- and more...

MOSFET (1/5)

We can use the LATEX definitions to define parts of our drawing in the preamble of our document.

Custom Colors

For this example, I have defined: metalone, metaltwo, metalthree, poly, pdiff, ndiff, pwell, nwell, oxide, and silicon.

MOSFET (2/5)

We can tell connections to make a curve

Angles In and Out

```
0 (1,2.5) to [out=270,in=180] (1.5,2)
```


MOSFET (3/5)

We can connect to a node at certain anchor points and add text.

Anchors and Text

```
0 (0,.25) node [midway,above] {p doped Si}
```


MOSFET (4/5)

```
0 \begin{tikzpicture}
   \draw \pdiff (0,.25) -- (0,3) -- (1,3) -- (1,2.5) to [out=270,in=180] (1.5,2) --
         (3.75,2) to [out=0,in=270] (4.25,2.5) -- (4.25,3) -- (6.75,3) --
        (6.75,2.5) to [out=270,in=180] (7.25,2) -- (9.5,2) to [out=0,in=270]
        (10,2.5) -- (10,3) -- (11,3) -- (11,.25) -- ;
2 \draw \metalthree (0,0) rectangle (11,.25) node [midway, color=white]
   {Si Substrate}:
4 \draw \oxide (4,3) rectangle (7,4) node [pos=.5,font=\bf\Large] {oxide};
   \forall draw \mbox{ } metalone (4,4) rectangle (7,4.5);
6 \draw \ndiff (4.25.3) -- (1.3) -- (1.2.5) to [out=270.in=180] (1.5.2) --
        (3.75.2) to [out=0.in=270] (4.25.2.5) -- (4.25.3) node at (2.625.2.5) [
        align=center] {n-type};
   \draw \ndiff (10,3) -- (6.75,3) -- (6.75,2.5) to [out=270,in=180] (7.25,2) --
        (9.5.2) to [out=0.in=270] (10.2.5) -- (10.3) node at (8.375.2.5) [align=
        center] {n-type};
8 \draw \metalone (1.25,3) rectangle (3,3.5);
   \draw \metalone (8.3) rectangle (9.75.3.5):
10 \draw [->] (1.5) node [above] {Source} -- (2.125.3.5):
   \draw [->] (10,5) node [above] {Drain} -- (8.975,3.5);
12 \draw [->] (5.5.5) node [above] {Gate} -- (5.5.4.5):
   \node at (5.5.-.5) [align=center] {$V {GS} < V {threshold}$}:
14 \end{tikzpicture}
```


MOSFET (5/5)

 $V_{GS} < V_{threshold}$

Amplitude and Frequency (1/5)

Let's change course and render a plot to show how amplitude and period of a trigonometric function is altered:

$$f(x) = A * (\sin(B * \theta))$$

We will use a new library:

o|\usetikzlibrary{datavisualization.formats.functions}

Amplitude and Frequency (2/5)

- We first call Data Visualization.
- We describe the appearance of the plot (axes, grids).
- We describe the lines (smooth, colors, dashes).
- We add legend entries for each plot.
- Finally, we tell it to expect functions.

Amplitude and Frequency (3/5)

- Each function gets a data entry with a set label.
- Variables are defined in an interval.
- Functions are defined with func.
- ► Since we are using radians, we have to tell it r.

```
data [set=sina] {
  var x : interval [-0.5*pi:2*pi];
  func y = sin(\value x r);
  }

data [set=sinb] {
  var x : interval [-0.5*pi:2*pi];
  func y = 3 * sin(\value x r);
  }

data [set=sinc] {
  var x : interval [-0.5*pi:2*pi];
  func y = sin(3 * \value x r);
  };
  };

vend{tikzpicture}
```

Amplitude and Frequency (4/5)

Our complete plot:

Amplitude and Frequency (5/5)

We can add nodes like before:

Where do I find more?

Is there something specific you want to see as an example? https://texample.net/tikz/examples/

RTFM

RTFM

When in doubt: Google

TikZ has rolled into the TFXcommunity.

When in doubt: Google

TikZ has rolled into the T_EX community.

The community loves to help.

When in doubt: Google

TikZ has rolled into the TEXcommunity.

The community loves to help.

https://tex.stackexchange.com/

At your local library

OU libraries has a LATEX expert:

Amanda Schilling

□: amanda.schilling@ou.edu

Office Hours: W/Th 8-9am in DAVIS M 6-8pm in the Learning Lab

At your local library

OU libraries has a LATEX expert:

Mark Laufersweiler

%: Research Data Specialist

\(: (405) 325-3710

□: laufers@ou.edu

Or contact me

I'm just a LATEX junkie:

Wesley T. Honeycutt

S: Personal Site

: I have an office phone?

: honeycutt@ou.edu

O: https://github.com/BlueNalgene

