FIRST and FOLLOW

Lecture 8 Mon, Feb 7, 2005

Left Factoring

- A problem occurs when two productions for the same nonterminal begin with the same token.
- We cannot decide which production to use.
- This is not necessarily a problem since we could process the part they have in common, then make a decision based on what follows.

Left Factoring

Consider the grammar

$$A \rightarrow \alpha \beta \mid \alpha \gamma$$
.

 We use left factorization to transform it into the form

$$A \rightarrow \alpha A'$$

 $A' \rightarrow \beta \mid \gamma$.

 Now we can apply the productions immediately and unambiguously.

Example: Left Factoring

In the earlier example, we had the productions

$$C \rightarrow id == num \mid id != num \mid id < num$$

 To perform left factoring, introduce a nonterminal C':

$$C \rightarrow id C'$$

$$C' \rightarrow == \text{num} \mid != \text{num} \mid < \text{num}$$

Example: Left Factoring

Consider the grammar of if statements.

$$S \rightarrow \text{if } C \text{ then } S \text{ else } S$$

| if $C \text{ then } S$

We rewrite it as

$$S \rightarrow$$
 if C then $S S'$
 $S' \rightarrow$ else $S \mid \varepsilon$.

LL Parsing Methods

 LL parsing methods read the tokens from Left to right and parse them top-down according to a Leftmost derivation.

Table-Driven LL Parsing

- To build the parsing table, we need the notion of nullability and the two functions
 - FIRST
 - FOLLOW

Nullability

A nonterminal A is nullable if

$$A \Rightarrow^* \epsilon$$
.

Clearly, A is nullable if it has a production

$$A \rightarrow \epsilon$$
.

 But A is also nullable if there are, for example, productions

$$A \rightarrow BC$$
.

$$B \rightarrow A \mid aC \mid \varepsilon$$
.

$$C \rightarrow aB \mid Cb \mid \epsilon$$
.

Nullability

 In other words, A is nullable if there is a production

$$A \rightarrow \varepsilon$$
,

or there is a production

$$A \rightarrow B_1 B_2 \dots B_n$$

where B_1 , B_2 , ..., B_n are nullable.

Nullability

In the grammar

$$E \rightarrow T E'$$

 $E' \rightarrow + T E' \mid \varepsilon$.
 $T \rightarrow F T'$
 $T' \rightarrow * F T' \mid \varepsilon$.
 $F \rightarrow (E) \mid \text{id} \mid \text{num}$
 $E' \text{ and } T' \text{ are nullable.}$

• E, T, and F are not nullable.

Summary

Nonterminal	Nullable	
E	No	
E'	Yes	
T	No	
T'	Yes	
F	No	

FIRST and FOLLOW

- Given a grammar G, we may define the functions FIRST and FOLLOW on the strings of symbols of G.
 - FIRST(α) is the set of all terminals that may appear as the *first* symbol in a replacement string of α .
 - FOLLOW(α) is the set of all terminals that may follow α in a derivation.

FIRST

- For a grammar symbol X, FIRST(X) is defined as follows.
 - For every terminal X, FIRST(X) = {X}.
 - For every nonterminal X, if $X \rightarrow Y_1 Y_2 ... Y_n$ is a production, then
 - FIRST(Y_1) \subseteq FIRST(X).
 - Furthermore, if $Y_1, Y_2, ..., Y_k$ are nullable, then FIRST(Y_{k+1}) \subseteq FIRST(X).

FIRST

- We are concerned with FIRST(X) only for the nonterminals of the grammar.
- FIRST(X) for terminals is trivial.
- According to the definition, to determine FIRST(A), we must inspect all productions that have A on the left.

• Let the grammar be

$$E \rightarrow T E'$$

 $E' \rightarrow + T E' \mid \varepsilon$.
 $T \rightarrow F T'$
 $T' \rightarrow * F T' \mid \varepsilon$.
 $F \rightarrow (E) \mid id \mid num$

- Find FIRST(E).
 - E occurs on the left in only one production $E \rightarrow T E'$.
 - Therefore, $FIRST(T) \subseteq FIRST(E)$.
 - Furthermore, T is not nullable.
 - Therefore, FIRST(*E*) = FIRST(*T*).
 - We have yet to determine FIRST(*T*).

- Find FIRST(*T*).
 - T occurs on the left in only one production $T \rightarrow F T'$.
 - Therefore, $FIRST(F) \subseteq FIRST(T)$.
 - Furthermore, F is not nullable.
 - Therefore, FIRST(*T*) = FIRST(*F*).
 - We have yet to determine FIRST(F).

- Find FIRST(F).
 - FIRST(*F*) = {(, id, num}.
- Therefore,
 - FIRST(*E*) = {(, id, num}.
 - FIRST(*T*) = {(, **id**, **num**}.

- Find FIRST(E').
 - FIRST(*E*') = {+}.
- Find FIRST(*T'*).
 - FIRST(*T'*) = {*}.

Nonterminal	Nullable	FIRST	
E	No	{(, id, num}	
E'	Yes	{+}	
T	No	{(, id, num}	
T'	Yes	{*}	
F	No	{(, id, num}	

FOLLOW

- For a grammar symbol X, FOLLOW(X) is defined as follows.
 - If S is the start symbol, then \$ ∈ FOLLOW(S).
 - If $A \to \alpha B\beta$ is a production, then FIRST(β) \subseteq FOLLOW(B).
 - If $A \to \alpha B$ is a production, or $A \to \alpha B\beta$ is a production and β is nullable, then FOLLOW(A) \subseteq FOLLOW(B).

FOLLOW

- We are concerned about FOLLOW(X) only for the nonterminals of the grammar.
- According to the definition, to determine FOLLOW(A), we must inspect all productions that have A on the right.

Let the grammar be

$$E \rightarrow T E'$$

 $E' \rightarrow + T E' \mid \varepsilon$.
 $T \rightarrow F T'$
 $T' \rightarrow * F T' \mid \varepsilon$.
 $F \rightarrow (E) \mid id \mid num$

- Find FOLLOW(E).
 - E is the start symbol, therefore \$ ∈ FOLLOW(E).
 - E occurs on the right in only one production.

$$F \rightarrow (E)$$
.

• Therefore $FOLLOW(E) = \{\$, \}$.

- Find FOLLOW(E').
 - E'occurs on the right in two productions.

$$E \rightarrow T E'$$

 $E' \rightarrow + T E'$.

• Therefore, $FOLLOW(E') = FOLLOW(E) = \{\$, \}$.

- Find FOLLOW(T).
 - Toccurs on the right in two productions.

$$E \rightarrow T E'$$

 $E' \rightarrow + T E'$.

- Therefore, FOLLOW(*T*) contains FIRST(*E'*) = {+}.
- However, E' is nullable, therefore it also contains
 FOLLOW(E) = {\$, }} and FOLLOW(E') = {\$, }}.
- Therefore, FOLLOW(*T*) = {+, \$,)}.

- Find FOLLOW(T').
 - T' occurs on the right in two productions.

$$T \rightarrow F T'$$
 $T' \rightarrow * F T'$

• Therefore, $FOLLOW(T) = FOLLOW(T) = \{\$, \}, +\}.$

- Find FOLLOW(F).
 - Foccurs on the right in two productions.

$$T \rightarrow F T'$$
 $T' \rightarrow * F T'$.

- Therefore, FOLLOW(F) contains FIRST(T') = {*}.
- However, T' is nullable, therefore it also contains FOLLOW(T) = {+, \$, }} and FOLLOW(T) = {\$, }, +}.
- Therefore, FOLLOW(*F*) = {*, \$,), +}.

Summary

Nonterminal	Nullable	FIRST	FOLLOW
E	No	{(, id, num}	{\$,)}
E'	Yes	{+}	{\$,)}
T	No	{(, id, num}	{\$,), +}
T'	Yes	{*}	{\$,), +}
F	No	{(, id, num}	{*, \$,), +}

Exercise

The grammar

$$R \rightarrow R \cup R \mid RR \mid R^* \mid (R) \mid \mathbf{a} \mid \mathbf{b}$$
 generates all regular expressions on the alphabet $\{\mathbf{a}, \mathbf{b}\}$.

 Using the result of the exercise from the previous lecture, find FIRST(X) and FOLLOW(X) for each nonterminal X in the grammar.