Mathematics Department

Course Methods Test 1 Year 12

Formula sheet provided:	no but formulae listed on next page.						
Task weighting:	%81						
Marks available:	34 marks						
:sməfi İsisəqē	Drawing instruments, templates, notes on one unfolded sheet of $^{ m A4}$ paper,						
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters						
Materials required:	No Cals allowed at all!						
Number of questions:	9						
Working time allowed for	this task: 40 mins						
Reading time for this test	snim 5 : test sidt for this						
Task type:	Kesponse						
Student name:	Теасher пате:						

Note: All part questions worth more than 2 marks require working to obtain full marks.

1 Page

Useful formulae

$\frac{d}{dx}x^n = nx^{n-1}$		$\int x^n dx = \frac{x^{n+1}}{n+1} + c, \qquad n \neq -1$			
$\frac{d}{dx}e^{ax-b} = ae^{ax-b}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$			
$\frac{d}{dx} \ln x = \frac{1}{x}$		$\int \frac{1}{x} dx = \ln x + c, x > 0$			
$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)}$		$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c, f(x) > 0$			
$\frac{d}{dx}\sin(ax-b) = a\cos(ax-b)$		$\int \sin(ax-b) dx = -\frac{1}{a}\cos(ax-b) + c$			
$\frac{d}{dx}\cos(ax-b) = -a\sin^2\theta$	n (ax-b)	$\int \cos(ax-b) dx = \frac{1}{a} \sin(ax-b) + c$			
Product rule	If $y = uv$		If $y = f(x) g(x)$		
	then	or	then		
	$\frac{d}{dx}(uv) = v\frac{du}{dx} + u\frac{dv}{dx}$		$y'=f'(x)\ g(x)+f(x)\ g'(x)$		
Quotient rule	If $y = \frac{u}{v}$		If $y = \frac{f(x)}{g(x)}$		
	then	or	then		
	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$		$y' = \frac{f'(x) g(x) - f(x) g'(x)}{(g(x))^2}$		
	If $y = f(u)$ and $u = g(x)$)	If $y = f(g(x))$		
Chain rule	then	or	then		
	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$		y' = f'(g(x)) g'(x)		
Fundamental theorem	$\frac{d}{dx} \left(\int_{a}^{x} f(t) dt \right) = f(x)$	and	$\int_{a}^{b} f'(x) dx = f(b) - f(a)$		
Increments formula	$\delta y \approx \frac{dy}{dx} \times \delta x$				
Exponential growth and decay	$\frac{dP}{dt} = kP \iff P = P_0 e^{kt}$	98			

Perth Modern

No calculators allowed!!!

Q1 (2, 2 & 2 = 6 marks)

Mathematics Department

Determine the gradient function $\frac{dy}{dx}$ for each of the following.

(i $\lambda = x_3 + \frac{z^X}{I}$

 $\frac{z^X}{1} + \varepsilon x = x$

mrət terif effin 🗸 Specific behaviours $\lambda_1 = 3x_2 - 5x_{-3}$

mrət bnoose effib 🔻

 $\frac{x}{x_{S-r}x_{8}} = x$

 $\lambda_{x} = 54x^{2}$ $\lambda_{y} = 54x^{2}$ $\lambda_{y} = 54x^{2}$ $\lambda_{y} = 54x^{2}$

rearranges y or uses quotient rule Specific behaviours

◆ states derivative

 $(\overline{x} + 1)(1 - x) = y$

✓ diffs all terms correctly (no need to simplify) w uses product rule Specific behaviours $y' = (\overline{x}) + \overline{\zeta} + \overline{\zeta} + \overline{\zeta} = \sqrt{\chi} = -\chi$ $(\overline{x} \lor + \overline{c})(1 - \varepsilon_X) = \chi$ Э

Э

3 | b a g e

Q2 (4 marks)

Determine the equation of the tangent to the curve
$$y = \frac{5x-7}{3x+2}$$
 at the point $\left(1, \frac{-2}{5}\right)$

C $y' = \frac{(3x+2)5 - (5x-7)3}{(3x+2)^2} = \frac{15x+10-15x+21}{(3x+2)^2} = \frac{31}{(3x+2)^2}$ $x = 1, y' = \frac{31}{25}$ $y = \frac{31}{25}x + c$ $-\frac{2}{5} = \frac{31}{25} + c$ $c = \frac{-10}{25} - \frac{31}{25} = -\frac{41}{25}$ $y = \frac{31}{25}x - \frac{41}{25}$

Specific behaviours

✓ uses quotient rule

 \checkmark determines gradient at x=1

✓ solves for constant of tangent equation

✓ states equation

Q3 (2, 2, 2 & 4= 10 marks)

The table below contains the values of the polynomial function f(x) and its first and second derivatives for x = 0, 1, 2, 3, 4, 5, 6.

There are no stationary points for non-integer values of X.

X	0	1	2	3	4	5	6
f (x)	12	5	-2	-13	-20	-35	-5
f'(x)	-4	-12	-5	0	-11	0	15
f"(x)	-8	0	2	0	-5	7	10

Consider a train moving in a straight line. The displacement, X km, from its starting position at time t

$$x = \frac{t^3}{2} - \frac{3t^2}{2} + 2$$

minutes is given by $x = \frac{t^2}{3} - \frac{3t^2}{2} + 2t$, $t \ge 0$. The train changes direction twice. Determine the distance in km between these two positions on the track.

C $v = t^2 - 3t + 2 = (t - 1)(t - 2) = 0$ $x(1) = \frac{1}{3} - \frac{3}{2} + 2 = \frac{5}{6}$ $x(2) = \frac{8}{3} - 6 + 4 = \frac{2}{3}$ $dis \tan ce = \frac{5}{6} - \frac{2}{3} = \frac{1}{6}km$

Specific behaviours

- ✓ determines velocity function and equates to zero
- ✓ solves for x for one rest stop
- ✓ solves for x for second stop and then subtracts the two
- ✓ simplifies the distance between and gives units

a) Evaluate $\frac{d}{dx} \left[f(x) \right]^2$ when x = 1

 $\frac{d}{dx} \left[\int (x) \right]^2 = 2 \int (x) \int (x)$ $= 2 \int (1) \int (1) = 10(-12) = -120$ Specific behaviours

Specific behaviours

Specific behaviours

Specific behaviours

Values

Values

Note: no follow through if chain not used

b) Evaluate $\frac{d}{dx} \left[f(2x) \right]$ when x = 3

$$\frac{d}{dx} \left[f(2x) \right] = f'(2x) 2$$

$$= f'(6) 2 = 30$$
Specific behaviours

Specific behaviours

Specific behaviours

Specific behaviours

Verse chain rule

Voie: no follow through if chain not used

c) Evaluate $\frac{dx}{dx} \left[\frac{1}{f(x)} \right]$ when x = 2

c
$$\frac{d}{dx} \left[\frac{1}{f(x)} \right] = -f(x)^{-2} f'(x)$$
Specific behaviours

Specific behaviours

✓ correct shape (need not be exact line- but close to it) ✓ correct position of x intercepts on new graph (accept old graph)

√ labels inflection pt

Q5 (4 marks) $C = (3x+5)^1, \quad x>0.$ The cost SC for the production of X thousand units of a certain product is given by

Determine the value of $^{\prime}$ for which the average cost per unit is a minimum and find this minimum average cost. Justify. (No need to simplify)

$$C = (3x+5)^{4}$$

$$A = \frac{C}{x} = \frac{(3x+5)^{4}}{x^{2}}$$

$$A' = \frac{(3x+5)^{4}}{x^{2}} = \frac{A^{2}}{x^{2}}$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' < 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' = 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' = 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' = 0$$

$$A' = 0, 9x - 5 = -5 \therefore A' = 0$$

$$A' = 0, 9x - 5 = -5 \therefore$$

✓ states min av cost, un simplified (no need for units)
 // MOTE max of 1 mark if quotient not used (i.e average cost)

2| b 2 g e

Mathematics Department Perth Modern

✓ uses chain rule

✓ subs correct values

Note: no follow through if chain not used

d) Determine the x-coordinate of any **stationary** points and their nature. Justify your answer.

f'(x) = 0x = 3, 5

x = 3

f''(3) = 0

f''(2) = 2 & f''(4) = -5

Hence horizontal inf lection

x =5

f "(5) = 7

Hence local min

Specific behaviours

✓ states only 2 stationary points only

✓ states nature of both points

✓ states two part argument for inflection (Note may use same first derivatives either side

✓ states argument for local min

Q4 (3 & 3 = 6 marks)

Consider the curve of y = f(x) which is graphed below.

Mathematics Department Perth Modern

a) Sketch below a graph of the first derivative of y = f(x). Label on this new graph stationary points

b) Sketch below a graph of the second derivative of y = f(x). Label on this new graph any inflection points

