II. MKP v dynamice konstrukcí

- 1. Princip virtuálních prací
- 2. Metoda konečných prvků
- 3. Prutový prvek v rovině

1. Princip virtuálních prací

Princip virtuálních prací - PVP - 2 základní verze:

- princip virtuálních posunutí PVp
 - práce skutečných sil na virtuálních posunutích
 - deformační (posunová) varianta řešení MKP
- princip virtuálních sil PVs
 - práce virtuálních sil na skutečných posunutích
 - silová varianta řešení MKP

1. Princip virtuálních prací

Princip virtuálních posunutí

Virtuální pole $\delta \epsilon$ a δu nesmějí narušovat vazby v tělese, tj. musí platit:

virtuální posuny $\delta_{\mathbf{u}}$ musí splňovat geometrické okrajové podmínky

$$\delta \mathbf{u} = \mathbf{0}$$
 (na části hranice $\Gamma_{\mathbf{u}}$)

 virtuální deformace δε musí být svázány s virtuálními posuny geometrickými rovnicemi

$$\varepsilon = \partial^T \mathbf{u}$$
 resp. $\delta \varepsilon = \partial^T \delta \mathbf{u}$

Podmínky rovnováhy a statické okrajové podmínky jsou <u>důsledkem</u> PVp

ρ – objemová hmotnost

Setrvačné síly (na jedn. objemu)
$$\hat{\mathbf{f}}_i = -\rho \ddot{\mathbf{u}} \implies \mathbf{f}_i = \int_V -\rho \ddot{\mathbf{u}} dV$$
 ρ – objemová hmotnost

Tlumicí síly (na jednotku objemu) c – součinitel útlumu

$$\hat{\mathbf{f}}_d = -c\dot{\mathbf{u}} \quad \Longrightarrow \quad \mathbf{f}_d = \int_V -c\dot{\mathbf{u}}dV$$

Princip virtuálních posunutí

$$\rightarrow \delta W_I = \delta W_E$$

virtuální práce vnitřních sil = virtuální práce vnějších sil

Virtuální práce vnitřních sil

$$\rightarrow \delta W_I = \int_V \delta \mathbf{\epsilon}^T \mathbf{\sigma} \, dV$$

 σ – vektor napětí ϵ – vektor deformace

Virtuální práce vnějších sil

$$\rightarrow \delta W_E = \int_V \delta \mathbf{u}^T \hat{\mathbf{f}}_i \ dV + \int_V \delta \mathbf{u}^T \hat{\mathbf{f}}_d \ dV$$

u – vektor posunutí

$$\hat{\mathbf{f}}_i$$
 – vektor setrvačných sil $\hat{\mathbf{f}}_d$ – vektor tlumicích sil

$$\rightarrow$$
 $\mathbf{u} = \mathbf{Nr}$ $\dot{\mathbf{u}} = \mathbf{N\dot{r}}$ $\ddot{\mathbf{u}} = \mathbf{N\ddot{r}}$

$$\mathbf{u}^T = \mathbf{r}^T \mathbf{N}^T \quad \delta \mathbf{u}^T = \delta \mathbf{r}^T \mathbf{N}^T$$

r – vektor uzlových posunutí (vektor neznámých)

N – matice interpolačních (bázových, aproximačních) funkcí

Geometrické rovnice

$$\bullet \quad \mathbf{\varepsilon} = \partial^T \mathbf{u} = \partial^T \mathbf{N} \mathbf{r} = \mathbf{B} \mathbf{r}$$

$$\delta \mathbf{\epsilon}^T = \delta \mathbf{r}^T \mathbf{B}^T$$

Fyzikální rovnice

(konstitutivní vztahy) lineárně elastický materiál

$$\rightarrow$$
 $\sigma = D\varepsilon = DBr$

D – matice tuhosti materiálu

$$\rightarrow \delta W_{I} = \int_{V} \delta \mathbf{e}^{T} \mathbf{\sigma} \, dV = \delta \mathbf{r}^{T} \int_{V} \mathbf{B}^{T} \mathbf{D} \mathbf{B} \, dV \mathbf{r}$$

$$\rightarrow \delta W_{E} = \int_{V} \delta \mathbf{u}^{T} \hat{\mathbf{f}}_{i} \, dV + \int_{V} \delta \mathbf{u}^{T} \hat{\mathbf{f}}_{d} \, dV$$

$$= -\delta \mathbf{u}^{T} \int_{V} \rho \mathbf{\ddot{u}} \, dV - \delta \mathbf{u}^{T} \int_{V} c \mathbf{\dot{u}} \, dV$$

$$= -\delta \mathbf{r}^{T} \int_{V} \mathbf{N}^{T} \rho \mathbf{N} \, dV \ddot{\mathbf{r}} - \delta \mathbf{r}^{T} \int_{V} \mathbf{N}^{T} c \mathbf{N} \, dV \dot{\mathbf{r}}$$

$$= V \mathbf{p} \qquad \rightarrow -\delta W_{E} + \delta W_{I} = 0$$

$$\delta \mathbf{r}^{T} \left(\int_{V} \mathbf{N}^{T} \rho \mathbf{N} \, dV \ddot{\mathbf{r}} + \int_{V} \mathbf{N}^{T} c \mathbf{N} \, dV \dot{\mathbf{r}} + \int_{V} \mathbf{B}^{T} \mathbf{D} \mathbf{B} \, dV \mathbf{r} \right) = 0$$

$$\rightarrow \overline{\mathbf{M}} \ddot{\mathbf{r}} + \mathbf{C} \ddot{\mathbf{r}} + \overline{\mathbf{K}} \mathbf{r} = \mathbf{0}$$

(konzistentní formulace)

$$\rightarrow \mathbf{M} = \int_{V} \mathbf{N}^{T} \rho \mathbf{N} \, dV$$

Matice útlumu

Matice tuhosti

$$\rightarrow \mathbf{K} = \int_{V} \mathbf{B}^{T} \mathbf{D} \mathbf{B} \, dV$$

Matice hmotnosti – jiné možné formulace Diagonální matice = matice soustředěných hmotností 2 varianty:

- rovnoměrné rozdělení hmotnosti do všech uzlů
- speciální rozdělení hmotnosti (prvky jsou úměrné diagonálním prvkům konzistentní matice)

Charakteristiky: *E* - modul pružnosti

A - průřezová plocha

 I_{v} - moment setrvačnosti k vodor. ose

Í - délka prutu

Výchozím krokem je aproximace pole posunutí $\mathbf{u} = \{u, w\}^T$

Za přijatých předpokladů je *přesným* řešením úlohy:

- aproximace osových posunů

$$\longrightarrow u = \left(1 - \frac{x}{l}\right)u_1 + \frac{x}{l}u_2 = h_1u_1 + h_2u_2$$

 u_1 – osový posun vlevo u_2 – osový posun vpravo

- aproximace průhybů

$$\longrightarrow w = \left[1 - 3\left(\frac{x}{l}\right)^2 + 2\left(\frac{x}{l}\right)^3\right] w_1 + \left[-\left(\frac{x}{l}\right) + 2\left(\frac{x}{l}\right)^2 - \left(\frac{x}{l}\right)^3\right] l \varphi_1$$

$$+ \left[3\left(\frac{x}{l}\right)^2 - 2\left(\frac{x}{l}\right)^3\right] w_2 + \left[\left(\frac{x}{l}\right)^2 - \left(\frac{x}{l}\right)^3\right] l \varphi_2$$

$$= h_3 w_1 + h_4 \varphi_1 + h_5 w_2 + h_6 \varphi_2$$

Vektor uzlových posunutí Matice interpolačních funkcí

$$\mathbf{r} = \{u_1, w_1, \varphi_1, u_2, w_2, \varphi_2\}^T$$

$$\mathbf{N} = \begin{bmatrix} h_1 & 0 & 0 & h_2 & 0 & 0 \\ 0 & h_3 & h_4 & 0 & h_5 & h_6 \end{bmatrix}$$

$$\mathbf{u} = \mathbf{Nr}$$

Fyzikální rovnice

$$\begin{cases}
N_x \\
M_y
\end{cases} = \begin{bmatrix}
EA & 0 \\
0 & EI_y
\end{bmatrix} \begin{cases}
\frac{du}{dx} \\
-\frac{d^2w}{dx^2}
\end{cases}$$

 $\sigma = D\epsilon$

Geometrické rovnice

$$\mathbf{\varepsilon} = \partial^T \mathbf{u} = \partial^T \mathbf{N} \mathbf{r} = \mathbf{B} \mathbf{r}$$

$$\mathbf{B} = \begin{bmatrix} \frac{dh_1}{dx} & 0 & 0 & \frac{dh_2}{dx} & 0 & 0 \\ 0 & -\frac{d^2h_3}{dx^2} & -\frac{d^2h_4}{dx^2} & 0 & -\frac{d^2h_5}{dx^2} & -\frac{d^2h_6}{dx^2} \end{bmatrix}$$

Matice tuhosti

$$\mathbf{K} = \int_{0}^{l} \mathbf{B}^{T} \mathbf{D} \mathbf{B} dl$$

$$\mathbf{K} = \begin{bmatrix} \frac{EA}{l} & 0 & 0 & -\frac{EA}{l} & 0 & 0 \\ 0 & \frac{12EI_{y}}{l^{3}} & -\frac{6EI_{y}}{l^{2}} & 0 & -\frac{12EI_{y}}{l^{3}} & -\frac{6EI_{y}}{l^{2}} \\ 0 & -\frac{6EI_{y}}{l^{2}} & \frac{4EI_{y}}{l} & 0 & \frac{6EI_{y}}{l^{2}} & \frac{2EI_{y}}{l} \\ -\frac{EA}{l} & 0 & 0 & \frac{EA}{l} & 0 & 0 \\ 0 & -\frac{12EI_{y}}{l^{3}} & \frac{6EI_{y}}{l^{2}} & 0 & \frac{12EI_{y}}{l^{3}} & \frac{6EI_{y}}{l^{2}} \\ 0 & -\frac{6EI_{y}}{l^{2}} & \frac{2EI_{y}}{l} & 0 & \frac{6EI_{y}}{l^{2}} & \frac{4EI_{y}}{l} \end{bmatrix}$$

Matice hmotnosti

(konzistentní)

$$\mathbf{M} = \int_{0}^{l} \mathbf{N}^{T} \mu \; \mathbf{N} \; dl$$

$$\mathbf{M} = \frac{\mu \, l}{420}$$

 μ – hmotnost na jednotku délky l – délka prutu

$$\begin{bmatrix} 140 & 0 & 0 & 70 & 0 & 0 \\ 156 & -22l & 0 & 54 & 13l \\ 4l^2 & 0 & -13l & -3l^2 \\ & 140 & 0 & 0 \\ & & 156 & 22l \\ sym & & 4l^2 \end{bmatrix}$$

Jiná možná aproximace průhybů:

$$w = \left(1 - \frac{x}{l}\right)w_1 + \frac{x}{l} w_2$$
$$= h_1 w_1 + h_2 w_2$$

$$\mathbf{M} = \frac{\mu l}{420} \begin{bmatrix} 140 & 0 & 0 & 70 & 0 & 0 \\ & 140 & 0 & 0 & 70 & 0 \\ & & 0 & 0 & 0 & 0 \\ & & & 140 & 0 & 0 \\ sym & & & & 0 \end{bmatrix}$$

Diagonální matice hmotnosti

Je-li
$$h_1 = 1$$
 pro $x \le l/2$
 $h_1 = 0$ pro $x > l/2$

$$h_2 = 0 \text{ pro } x < l/2$$

 $h_2 = 1 \text{ pro } x \ge l/2$

$$\mathbf{M} = \frac{\mu l}{2} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ & 1 & 0 & 0 & 0 & 0 \\ & & 0 & 0 & 0 & 0 \\ & & & 1 & 0 & 0 \\ sym & & & & 0 \end{bmatrix}$$

Porovnání MKP s přesným řešením

TABLE 17.10.1 NATURAL FREQUENCIES OF A UNIFORM CANTILEVER BEAM: CONSISTENT-MASS FINITE ELEMENT AND EXACT SOLUTIONS

Mode	1	2	3	4	5	Exact
1	3.53273	3.51772	3.51637	3.51613	3.51606	3.51602
2	34.8069	22.2215	22.1069	22.0602	22.0455	22.0345
3		75.1571	62.4659	62.1749	61.9188	61.6972
4		218.138	140.671	122.657	122.320	120.902
5			264.743	228.137	203.020	199.860
6			527.796	366.390	337.273	298.556
7				580.849	493.264	416.991
8				953.051	715.341	555.165
9					1016.20	713.079
10					1494.88	890.732

Source: R. R. Craig, Jr., Structural Dynamics, Wiley, New York, 1981.

Porovnání MKP s přesným řešením

TABLE 17.10.2 NATURAL FREQUENCIES OF A UNIFORM CANTILEVER BEAM: LUMPED-MASS FINITE ELEMENT AND EXACT SOLUTIONS

Mode	1	2	3	4	5	Exact
1	2.44949	3.15623	3.34568	3.41804	3.45266	3.51602
2		16.2580	18.8859	20.0904	20.7335	22.0345
3			47.0284	53.2017	55.9529	61.6972
4				92.7302	104.436	120.902
5					153.017	199.860

Source: R. R. Craig, Jr., Structural Dynamics, Wiley, New York, 1981.

Přesnost analýzy konstrukcí pomocí MKP se zvyšuje s rostoucím počtem stupňů volnosti

