Definition 1 (cosimplicial object). $X : \Delta \to \mathcal{C}$.

Denote the category of cosimplicial objects in C as cC.

Theorem 2 (Dold-Kan again). $cC \simeq cochain \ complexes \ over \ C$

Remark 3. $cC = s(C^{op})$

Definition 4. For $X \in s\mathcal{C}$ define $kX \in C_*(\mathcal{C})$, $(kX)_n = X_n$, $d = \sum_{i=0}^n (-1)^i d_i$.

Theorem 5. The natural embedding $NX \hookrightarrow kX$ is a chain homotopy equivalence.

Remark 6. •
$$NX = kX/DX$$
, where $(DX)_n = \bigcup_{i=0}^{n-1} \operatorname{im}(s_i : X_{n-1} \to X_n) = \operatorname{im}\left(\prod X_{n-1} \xrightarrow{\prod s_i} X_n\right)$

- $kX = NX \oplus DX$,
- \bullet *DX* is contractible.

Remark 7. One can get NX using $(-1)^n d_n$ instead of d_0 .

Remark 8. Observe that if $\tau_n : [n] \to [n], i \mapsto n - i$, and $\alpha^* = \tau_n \alpha \tau_m$ for $\alpha : [m] \to [n]$, then we get an involution of the category Δ , $\alpha \to \alpha^*$.

Hence we get an involution of $s\mathcal{C}$, $X \to X^*$, $(X^*)_n = X_n$, $X^*(\alpha) = X(\alpha^*)$, d_i goes to d_{n-i} .

We can define $N^*X = N(X^*)$, $K^*C = (KC)^*$, getting $N^*K^* = NK$, $K^*N^* = \text{Id}$.

Theorem 9. 1. $f_1, f_2 : X \to Y$ homotopic in sC iff Nf_1, Nf_2 are chain homotopic in $C_*(C)$,

2. $\varphi_1, \varphi_2 : C \to D$ are chain homotopic in $C_*(\mathcal{C})$ iff $K\varphi_1, K\varphi_2$ are homotopic in $s\mathcal{C}$.

Definition 10 (simplicial resolution). Let $T: \mathcal{C} \to \mathcal{C}'$ functor between abelian categories, \mathcal{C} has enough projective objects, $A \in \mathrm{Ob}(\mathcal{C})$ and $n \in \mathbb{N}$.

Then a pair (X_{\bullet}, ξ) is called a siplicial resolution of A of degree n (simplicial resolution of (A, n)) if $X_{\bullet} \in s\mathcal{C}$, $X_i = 0$ for i < n, $H_j(X) := H_j(kX) = 0$ for j > n and $\xi : H_n(X) \to A$ is an isomorphism.

If $\forall_i X_i$ is projective, then X is a projective resolution of (A, n). Usually we will remove ξ from notation and say that $H_n(X) = A$.

- **Remark 11.** 1. If X_{\bullet} is a simplicial resolution of (A, n), then NX is a resolution of A shifted up by n. If X_{\bullet} is projective, then NX is a projective resolution.
 - 2. If $P \in C_*(\mathcal{C})$ is a projective resolution of A shifted by n, then KP is a simplicial projective resolution of (A, n).
 - 3. If $\alpha: A \to B$ in \mathcal{C} and X, Y are projective resolutions of (A, n) and (B, n), then there exists a simplicial morphism $f: X \to Y$ which induces $\alpha = H_n(f)$.

Moreover, f is unique up to homotopy.

Definition 12 (derived functor). Fuctor $L_qT(\bullet, n): \mathcal{C} \to \mathcal{C}'$ defined below is called q-th left derived functor of T of degree n, where $L_qT(\bullet, n)(A) = H_q(T(X))$, where X is any simplicial resolution of A.

Remark 13. If T is additive, then k(T(X)) = T(kX), so $L_qT(A,n) = L_{q-n}T(A)$ (L_{q-n} from ordinary homotopy category).

Remark 14. When T is not additive, then $\sum_{i=0}^{n} (-1)^{i} T(d_{i})$ is usually not equal $T(\sum (-1)^{i} d_{i})$, so k(TX) and T(kX) may have different homology.

Let $T: \mathcal{C} \to \mathcal{C}'$ functor of abelian categories. Assume T(0) = 0 (if T(0) = A, then take $T' = \ker(T \to T(0) = A)$).

Definition 15 (cross effect). For any $k \in \mathbb{N}$ we define the k-th cross-effect of T as a functor $T_k : \mathcal{C}^k \to \mathcal{C}'$ such that we get a functorial decomposition $T(A_1 \oplus \ldots \oplus A_k) = \bigoplus_{i=1}^k T(A_i) \oplus \bigoplus_{i_1 < i_2} T_2(A_{i_1}, A_{i_2}) \oplus \ldots \oplus T_k(A_1, \ldots, A_k)$.

We can define T_k inductively,

- $T_1 = T$,
- $T_2(A_1, A_2) = \ker(T(A_1 \oplus A_2) \to T(A_1) \oplus T(A_2)),$
- ...,
- $T_k(A_1, \ldots, A_k) = \ker(T(A_1 \oplus \ldots \oplus A_n) \xrightarrow{\prod_i} \prod_i T(A_1 \oplus \ldots \oplus \hat{A}_i \oplus \ldots \oplus A_k)).$

Definition 16 (functor degree). We say that T is of degree $\leq k$ if $T_{k+1} = 0$. We say that T is of degree k if T is of degree $\leq k$ and $T_k \neq 0$.

Theorem 17 (properties of cross-effects). • If for some $i, A_i = 0$, then $T_k(A_1, \ldots, A_n) = 0$.

- T_k is symmetric in its variables.
- If we define $s^{(1)}(A) = T_2(A, A_2)$, $s^{(2)}(A) = T_2(A_1, A)$, then $s_2^{(1)}(A_1, A_2; A_3) = s_2^{(2)}(A_1; A_2, A_3) = T_3(A_1, A_2, A_3)$.

Example 18. deg $T \leq 1$ iff T is additive.

Example 19. $T(A) = A^{\otimes 2}$, then $T_2(A, B) = (A \otimes B) \oplus (B \otimes A)$ and it is linear in A, B, so T is of degree 2.