

WEST UNIVERSITY OF TIMISOARA

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

STUDY PROGRAM: COMPUTER SCIENCE IN ENGLISH

MASTER DISSERTATION

COORDINATOR:

Associate Prof. Marc Eduard Frîncu

GRADUATE:

Maria Minerva Vonica

Timişoara 2021

West University of Timişoara

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

STUDY PROGRAM: COMPUTER SCIENCE IN ENGLISH

MASTER DISSERTATION

Name

COORDINATOR:

Associate Prof. Marc Eduard Frâncu

GRADUATE:

Maria-Minerva Vonica

Timişoara 2021

Chapter 1

Application

1.1 Dataset

In order to build the dataset, we made use of the freely available data from the Landsat Archive, specifically from collection 1, level 1. This consists of data products generated from Landsat 8 Operational Land Imager/Thermal Infrared Sensor, Landsat 7 Enhanced Thematic Mapper Plus, Landsat 4-5 Thematic Mapper, and Landsat 1-5 Multispectral Scanner instruments [C1L]. For the purpose of this paper, we will focus only on images collected from the Landsat 8 satellite.

1.1.1 World Glacier Inventory

The World Glacier Inventory (WGI) proves to be a useful resource for building our dataset, since it contains information for over 130,000 glaciers. Inventory parameters include geographic location, area, length, orientation, elevation, and classification. The WGI is based primarily on aerial photographs and maps with most glaciers having one data entry only. Hence, the data set can be viewed as a snapshot of the glacier distribution in the second half of the 20th century. It is based on the original WGI (WGMS 1989) from the World Glacier Monitoring Service [WGI].

There are a number of ways to retrieve data from the inventory:

- download the entire database in a single ASCII text file (wgi_feb2012.csv);
- search by parameter using the Search Inventory interface;
- extract regions through the Extract Selected Regions interface.

The ASCII text file will be used with the purpose to define which are the glaciers to be included in the dataset to be built. An example of how this file looks like can be found in Figure 1.1.

The parameters which will be extracted for the dataset construction are the following:

- wgi_glacier_id: unique id representing one glacier (or part of it, if the coverage area is larger);
- glacier_name: name of the glacier (if it has one);

1	wgi_glacier_id political_unit	continent_code	drainage_code	free_position_code	local_glacier_code glacier_name	lat	lon
2	SU5X14309090 SU	5	X143	9	90 Zyuryuzamin	38.92	71.272
3	AT4J143OE00 AT	4	J143	OE	6 ZWISELBACH W	47.112	11.038
4	AT4J143OE00 AT	4	J143	OE	5 ZWISELBACH	47.11	11.052
5	CH4L01200008 CH	4	L012	0	8 ZWISCHBERGEN GL	46.108	8.041
6	CN5N236I0001 CN	5	N236	10	1 Zuxuehui	31.828	94.675
7	CH4J14304001 CH	4	J143	4	1 ZUORT VADRET DA	46.738	10.271
8	CN5O282B002 CN	5	O282	B0	23 Zuogiupu	29.212	96.893
9	CN5O282A047 CN	5	O282	A0	476 Zuoguzasan	29.958	95.92
10	SU5X14308310 SU	5	X143	8	310 ZULUMART	39.13	72.78
11	CN5N224E001 CN	5	N224	E0	12 Zuima	29.839	96.456
12	SU5X14309489 SU	5	X143	9	489 Zotkin	38.649	71.244
13	SU5X14309490 SU	5	X143	9	490 Zotkin	38.649	71.244
14	SU5X1430932@SU	5	X143	9	326 Zordi-Birauso	38.673	71.664
15	NZ6B868B000>NZ	6	B868	B0	7 ZORA	-43.739	169.823
16	SU5T09106366 SU	5	T091	6	366 ZOPKHITO	42.88	43.43
17	IT4L01104020 IT	4	L011	4	20 ZOCCA S	46.285	9.647
18	IT4L01104021 IT	4	L011	4	21 ZOCCA E	46.292	9.653
19	AQ7SSI000129 AQ	7	SSI0	0	125 Znosko Glacier	-62.1005	-58.4865
20	SU4X0300190> SU	4	X030	1	903 ZNAMENITYY	80.53	61.02

Figure 1.1: WGI ASCII

• *lat*: latitude of the glacier;

• lon: longitude of the glacier.

1.1.2 Download

Through the ASCII WGI text file we can pick which glacier we want to download based on its coordinates, by implementing an endpoint of the the SpatioTemporal Asset Catalog API: http://nsidc.org/data/glacier_inventory/index.html [STA]. We will also specify the maximum allowed cloud coverage and the bounding box for the searched area, which is calculated based on the latitude and longitude values extracted from the ASCII WGI text file.

Chapter 2

Implementation

2.1 Download

Contents

1	$\mathbf{Ap}_{\mathbf{I}}$	plicatio	on	1
	1.1	Datas	et	1
		1.1.1	World Glacier Inventory	1
		1.1.2	Download	2
2	Imp	olemen	tation	3
	2.1	Downl	oad	3
Li	st O	f Figur	es	4
Li	st O	f Table	rs ·	5
3	Glo	ssary		8
	3.1	Acron	yms	8

List of Figures

11	WOLVEOL																		- 6	ç
1.1	WGI ASCII .																			2

List of Tables

3.1	Acronyms table		`
-----	----------------	--	---

Bibliography

- [C1L] Landsat collection 1. https://www.usgs.gov/core-science-systems/nli/landsat/landsat-collection-1?qt-science_support_page_related_con=1#qt-science_support_page_related_con. Accessed: 2021-06-20.
- [STA] Stac. https://stacspec.org/STAC-api.html. Accessed: 2021-06-20.
- [WGI] World glacier inventory. http://nsidc.org/data/glacier_inventory/index.html. Accessed: 2021-06-20.

Chapter 3

Glossary

3.1 Acronyms

	,
WGI	World Glacier Inventory

Table 3.1: Acronyms table