Environmental Data Acquisition and Processing

Water Resource Monitoring and Catchment Analysis

By Jason Kabi

Centre for Data and Artificial Intelligence
DSAIL

Session breakdown

Session Break Down

- a) Motivation The main goal
- b) What water parameters are being monitored?
- c) How are the parameters monitored?
- d) Hardware development
- e) Data acquisition
- f) Data analysis Anomaly detection

Motivation

Main goal: River catchment analysis using water-level data by leveraging loT and machine learning

Takeaways

 Water level data can be used to "diagnose" a river catchment by watching the trends over some time.

 Question: How long does a spike in water level take to occur after a spike in rain.

Catchment under study

Muringato Water shed – Nyeri - Kenya

Deployment location (catchment under study)

Water level monitoring setup (Flow Chart)

Hardware setup

Ready for deployment

Deployed

UPNEXT

ANOMALY DETECTION ON TIME SERIES WATER LEVEL DATA

