Supplementary Materials for "Machine Learning Application to Two-Dimensional Dzyaloshinskii-Moriya Ferromagnets"

Vinit Kumar Singh^{1,*} and Jung Hoon Han^{2,†}

¹Department of Physics, Indian Institute of Technology, Kharagpur 732102, India ²Department of Physics, Sungkyunkwan University, Suwon 16419, Korea (Dated: January 12, 2019)

We detail the results of error analyses for various machine-learning predictions mentioned in the main text.

XYZ-type	$\Delta \chi$	Δm	ΔB	ΔT
$H_{ m HDMZ}$	5.82	3.79	4.91	5.32
$H_{ m HDMZ} + H_1$	5.83	3.85	5.49	5.62
$H_{ m HDMZ} + H_2$	6.01	3.77	7.22	6.75
H_{HDMZ} $(b=2)$	7.05	4.15	10.1	4.66
$H_{\rm HDMZ} \ (b=3)$	6.46	3.69	11.7	4.93
$H_{\rm HDMZ}$ $(b=4)$	6.61	4.07	12.2	5.89
XY-type	$\Delta \chi$	Δm	ΔB	ΔT
$H_{ m HDMZ}$	7.15	5.4	7.28	5.23
$H_{ m HDMZ} + H_1$	7.52	6.2	8.5	5.42
$H_{ m HDMZ} + H_2$	8.25	7.76	11.8	6.37
Z-type	$\Delta \chi$	Δm	ΔB	ΔT
$H_{ m HDMZ}$	5.98	3.28	5.14	6.33
$H_{ m HDMZ} + H_1$	6.09	3.2	5.56	6.48
$H_{ m HDMZ} + H_2$	5.65	3	7.2	6.66

TABLE I: Averaged variance between predicted and actual values of (χ, m, B, T) .

Listed in Table 1 are the errors in the machinepredicted values of (χ, m, B, T) . The error estimation is done by the formula

$$\Delta X = \sqrt{\frac{\sum_{i} (X_{\text{predicted},i} - X_{\text{actual},i})^{2}}{N}}.$$
 (1)

Here $X=\chi,m,B,T$ and $1\leq i\leq N$ ranges over all the test configurations. Input data types are classified as xyz, xy, and z, according to all three components, only xy-component, and only z-component of the local magnetization vector \mathbf{n}_i being used for training and testing. The pure case H_{HDMZ} refers to the choice $D/J=\sqrt{6}$ corresponding to the spiral period $\lambda=6$. The two disordered Hamiltonians we considered in the main text are shown in the rows with $H_{\text{HDMZ}}+H_1$ and $H_{\text{HDMZ}}+H_2$. The sample size is $N=20\times20\times100$.

For b=2,3,4, only the pure Hamiltonian $H_{\rm HDMZ}$ was used with D/J values corresponding to $\lambda=12,18,24$, respectively. The resulting raw data is compressed according to the block-spin rule (mentioned in the text) before being subject to machine prediction. The predicted values of χ, m, b, T are then compared to χ', m', B', T' , which is related to the raw value through the scaling relation $\chi'/\chi=b^{\#}$. The exponents used are 0,0,2.32, and 0.73, respectively. For example, the variance ΔB in the case of b=2 is obtained from

$$\Delta B = \sqrt{\frac{\sum_{i} (B_{\text{predicted},i} - B_{\text{actual},i} 2^{2.32})^{2}}{N}}$$
 (2)

where $B_{\text{actual},i}$ is the magnetic field used in the generation of the $\lambda=12$ Monte Carlo configuration. The sample size was $N=14\times 11$ $(b=2),\ N=14\times 9$ $(b=3),\ \text{and}\ N=15\times 7$ (b=4).

 $^{^{*}}$ Electronic address: vinitsingh911@gmail.com

[†] Electronic address: hanjemme@gmail.com