LOQ4073 - Química Geral II

General Chemistry II

Créditos-aula: 4 Créditos-trabalho: 0 Carga horária: 60 h Ativação: 01/01/2018

Departamento: Engenharia Química

Curso (semestre ideal): EM (2), EA (2), EB (2), EQD (2), EQN (2)

Objetivos

Fazer previsões e explicar acerca dos efeitos sobre as velocidades das reações em vista de: catálise, variação da temperatura, geometria de colisão e concentração dos reagentes. Sugerir leis de velocidade de reação de posse de dados apropriados acerca dos efeitos de concentração, estudar as reações de ordens zero, um e dois. Estudar a aplicação da equação de Arrhenius. Ampliar o entendimento do sentido espontâneo das reações químicas. Entender a função termodinâmica entropia e sua relação com as três leis da termodinâmica. Entender o sentido de energia livre como uma referência para o grau de afastamento entre o sistema e seu estado de equilíbrio. Utilizar a variação da energia livre padrão como uma ferramenta para calcular a constante de equilíbrio para determinado processo. Examinar o conceito de equilíbrio e definir a constante de equilíbrio. Aprender a escrever as expressões das constantes de equilíbrio para reações homogêneas e heterogêneas e interpretar o sentido do quociente reacional. Dar a expressão do produto de solubilidade para um sal e calcular os produtos de solubilidade a partir de solubilidades determinadas experimentalmente e prever se deve ou não ocorrer precipitação. Aplicar os critérios de precipitação. Determinar os efeitos do íon comum. Calcular o pH de uma solução aquosa para sistemas envolvendo ácido ou base fortes ou pelo menos um ácido fraco ou uma base fraca. Entender o funcionamento de soluções-tampão. Estudar as reações envolvendo a formação de íons complexos a partir de espécies muito solúveis e muito pouco solúveis. Realizar uma representação simples para um sistema químico de uma pilha eletrolítica ou "galvânica" observando as convenções-padrão para identificar os eletrodos. Aplicar os princípios de esteguiometria aos processos eletroquímicos usando equações balanceadas de semi-reações e o valor da constante de Faraday. Calcular potenciais-padrão de pilhas usando valores tabelados. Utilização da equação de Nernst.

Make predictions and explain about the effects on rates of reactions in view of: catalysis, temperature variation, collision geometry and concentration of reactants. Suggesting laws of rate using data concerning the effects of concentration. Studying the reactions of order zero, one and two. Considering the application of the Arrhenius equation. Understanding the meaning of spontaneous directions of chemical reactions. Understanding the entropy and its relationship with the three laws of thermodynamics. Understanding the free energy as a reference to the degree of separation between the system and its state of equilibrium. Using the variation of standard free energy as a tool to calculate the equilibrium constant for a given process. Examining the concept of balance and define the equilibrium constant. Learning how to write the expressions of equilibrium constants for homogeneous and heterogeneous reactions. Interpreting the meaning of the reaction quotient. Giving the solubility product expression for a salt, calculate the solubility

products from experimentally determined solubilities and predict whether precipitation occurs or not. Applying the precipitation criterion. Determining the effects of the common ion. Calculate the pH of an aqueous solution for systems involving strong acid or base or at least a weak acid or a weak base. Understanding the behavior of buffer solutions. Studying the reactions involving the formation of complex ions from high soluble and poor soluble species. Performing a simple representation of a chemical system of an electrolytic or galvanic cell observing the standard conventions to identify the electrodes. Applying the principles of stoichiometry to electrochemical processes using balanced equations of half-reactions and the constant value of Faraday. Calculate potentials- standard cells using tabulated values. Utilization of Nernst equation.

Docente(s) Responsável(eis)

5817330 - Larissa de Freitas 1506103 - Pedro Carlos de Oliveira

Programa resumido

Cinética Química, Termodinâmica e Equilíbrio, Equilíbrio Químico, Eletroquímica.

Chemical Kinetics, Thermodynamics and Equilibrium, Chemical Equilibrium, Eletrochemistry.

Programa

Cinética Química: Efeito da concentração dos reagentes sobre a velocidade de reações químicas. Equações diferenciais de velocidade de reação. Leis de velocidade para reações de 1ª e 2ª ordens. Energia de ativação e catalisadores. Equação de Arrhenius. Termodinâmica e equilíbrio: Primeira Lei da Termodinâmica. Calor de reação e energia interna. Entalpia e variação de Entalpia. Entropia. Segunda Lei da Termodinâmica. Entropia e Desordem. Terceira Lei da Termodinâmica. Variação de Entropia numa reação. Energia Livre Padrões e Critério de Espontaneidade. Relação entre variação de energia livre padrão e a constante de Equilíbrio. Equilíbrio Químico: Natureza do equilíbrio químico. Quociente de reação e constante de equilíbrio. Efeito da concentração de reagentes e temperatura sobre o equilíbrio (princípio de Le Chatelier). Equilíbrio ácido-base. Equilíbrios em solução aquosa: solubilidade e íons complexos. Eletroquímica: Semi-reações. Potenciais de eletrodo padrão. Potencial de células galvânicas. Relação entre variação de energia livre padrão e potencial de célula. Equação de Nernst. Eletrólise e leis de Faraday.

Chemical Kinetics: Effect of concentration of reactants on the rate of chemical reactions. Equations reaction speed differentials. Rate laws for 1st and 2nd order reactions. Activation energy and catalysts. Arrhenius equation. Thermodynamics and equilibrium: First Law of Thermodynamics. Reaction heat and internal energy. Variation of enthalpy and enthalpy. Entropy. Second Law of Thermodynamics. Entropy and disorder. Third Law of Thermodynamics. Entropy variation of a reaction. The Standard Free Energy and spontaneity criterion. Relationship between standard free energy change and equilibrium constant. Chemical Equilibrium: Nature's chemical balance. Quotient reaction and equilibrium constant. Effect of reagent concentration and temperature on the equilibrium (Le Chatelier's principle). Equilibrium Acid-base. Equilibria in solution: solubility and complex ions. Electrochemistry: Semi-reactions. Standard electrode potential. Potential galvanic cells. Relationship between standard free energy change and cell potential. Nernst equation. Electrolysis and Faraday laws.

Avaliação

Método: Serão realizadas duas provas escritas

Critério: NF = (P1 + P2*2)/3

Norma de recuperação: As aulas na primeira semana do período de recuperação serão dedicadas à solução das dúvidas e resolução de exercícios. Na semana seguinte será realizada uma avaliação (P3) englobando toda a ementa. A média final será obtida conforme equação abaixo: MF= (NF+P3)/2.

Bibliografia

1) ATIKNS, P.; JONES, L. Princípios de Química, 5ªEdição, Ed. Bookman, 2012.2)BRADY, J.; HUMISTON, G.E. Química Geral Volume II, 2ª Edição, Ed. LTC, 2005.3) BRADY, J.E.; RUSSELL, J.W.; HOLUM, J.R. Química a matéria e suas transformações Volume II 3ª Edição, Ed. LTC, 2010.4) BRADY, J.E.; SENESE, F., Química – A matéria e suas transformações Volume II, Ed. LTC, 5ªEdição, 2010.5) BROWNN, S.L.; HOLME, T.A. Química geral aplicada à engenharia. São Paulo: Ed. Cengage Learning, 2010.6) BROWN, T. L.; LEMAY, H.E.L.; Jr BURSTEN, B.E.; BURDGE, J.R. Química a ciência central. 9ª Edição, Ed. Pearson Prentice Hall, 2005.7) CHANG, R.; GOLDSBY, K.A., Química, 11ª Edição, Ed. AMGH Editora Ltda, 20138) KOTZ, J.C.; TREICHEL, P.M.; WEAVER, G.C., Química Geral e Reações Químicas, Volume II, 6ª Edição, Ed. Cengage Learning, 2009.9) KOTZ, J.C.; TREICHEL, P.M.; TOWNSEND, J. R.; TREICHEL, D.A., Química Geral e Reações Químicas, Volume II, 9ª Edição, Ed. Cengage Learning, 2016.

Requisitos

LOQ4031 - Química Geral I (Requisito fraco)