Machine Learning HW9

Explainable Al

ML TAs ntu-ml-2021spring-ta@googlegroups.com

Outline

- Topic I: CNN
 - Model & dataset
 - Task
 - o Lime
 - Saliency Map
 - Smooth Grad
 - Filter Visualization
 - Integrated Gradient
- Topic II: BERT
 - Attention Visualization
 - Embedding Visualization
 - Embedding Analysis

Topic I: CNN explanation

Model: food classification

- We use a trained classifier model to do some explanations
- The classifier model is a CNN model, aim to classify different kinds of food
- Dataset: 11 categories of food (same dataset in HW3)
- Bread, Dairy product, Dessert, Egg, Fried food, Meat, Noodles/Pasta, Rice,
 Seafood, Soup, and Vegetable/Fruit
- We only pick up 10 images in trainset for observation

Task

- Run the sample code and finish 20 questions (all multiple choice form)
- We'll cover 5 explanation approaches
 - Lime package
 - Saliency map
 - Smooth Grad
 - Filter Visualization
 - Integrated Gradients
- You need to:
 - Know the basic idea of each method
 - Run the code and observe the results
 - For some case you may need to modify a little part of the code

Task: observation

- To finish this homework, you only need to observe these ten images.
- Please make sure you got these 10 images in your code.
- We encourage you to observe other images!

Lime

Question 1 to 4

• Install the Lime package > pip install lime==0.1.1.37

GitHub Repo: https://github.com/marcotcr/lime

Ref: https://goo.gl/anaxvD

Saliency Map

Question 5 to 9

Compute the gradient of output category with respect to input image.

Ref:

https://medium.com/datadriveninvestor/visualizing-neural-networks-using-saliency-maps-in-pytorch-289d8e244ab4

Smooth Grad

Question 10 to 13

 Randomly add noise to the input image, and get the heatmap. Just like what we did in the saliency method.

Ref:

https://arxiv.org/pdf/1706.03825.pdf

Filter Visualization

Question 14 to 17

 Use Gradient Ascent method to find the image that activates the selected filter the most and plot them (start from white noise).

Integrated Gradients

Question 18 to 20

Flexible baseline

$$(x_i - \bar{x_i}) \cdot \int_{\alpha=0}^{1} \frac{\partial S_c(\tilde{x})}{\partial (\tilde{x_i})} \bigg|_{\tilde{x}=\bar{x}+\alpha(x-\bar{x})} d\alpha$$

Ref:

https://arxiv.org/pdf/1703.01365.pdf

Topic II: BERT explanation

Attention Visualization

Question 21 to 24

Visualize attention mechanism of bert using

https://exbert.net/exBERT.html

Objective:

- (1) What are the functions of different attention heads?
- (2) How does the model predict masked words?

Alternative Link

https://huggingface.co/exbert

Paper: https://arxiv.org/abs/1910.05276

Tutorial: https://youtu.be/e31oyfo_thY

Embedding Visualization

Question 25 to 27

Visualize embedding across layers of bert using PCA (Principal Component Analysis)

Objective:

- (1) How does bert solve question answering?
- (2) Change of embedding before and after fine-tuning

You only need to change code in the section "TODO"!

Embedding Analysis

Question 28 to 30

Compare output embedding of bert

using (1) Euclidean distance

(2) Cosine similarity

Objective:

- (1) Observe different meanings for the same word
- (2) Observe representation in different layers

You only need to change code in the section "TODO"!

Grading

- 30 multiple choice questions
- CNN: 20 questions
 - o 0.3 pt for each question
- BERT: 10 questions
 - o 0.4 pt for each question
- You have to choose ALL the correct answers for each question

Submission

- No late submission!
- Deadline: 2021/5/28 23:59

Reminder

- Please don't change the original code, unless the question request you to do so.
- If there is any confusion, email the TA with the subject "[HW9] ..."

Links

• Code:

[Colab]

• Questions:

[NTU COOL]

If any questions, you can ask us via...

- NTU COOL (recommended)
 - https://cool.ntu.edu.tw/courses/4793
- Email
 - ntu-ml-2021spring-ta@googlegroups.com
 - The title must begin with "[hw9]"
- TA hours
 - Each Monday 19:00~21:00 @Room 101, EE2 (電機二館101)
 - Each Friday 13:30~14:20 Before Class @Lecture Hall (綜合大講堂)
 - Each Friday During Class