CEG ZOGBO/COTONOU 03 BP 1026 COTONOU

TEL: 229 21 38 05 52

ANNEE SCOLAIRE: 2018-2019

Epreuve; P.C.T.

Durée: 2heures Coef: 2

Classe: 4^{ème}

PREMIER SERIE DE DEVOIR SURVEILLE DU DEUXIEME SEMESTRE

Compétences disciplinaires évaluées

CD1 : Elaborer une explication d'un fait ou d'un phénomène de son environnement naturel ou construit en utilisant les modes de raisonnement propres à la physique, la chimie et à la technologie.

Critère de perfectionnement : Ta copie sera jugée par rapport à la capacité à présenter une copie claire sans fautes avec des réponses précises.

Contexte:

Pour préparer la première évaluation sommative du second semestre, des élèves d'une classe de 4^{ème} s'auto- exercent sur les documents du support ci-dessous.

Support

Document 1: $\overrightarrow{F_2}$ $\overrightarrow{F_1}$ $\overrightarrow{F_1}$ $\overrightarrow{F_2}$ $\overrightarrow{F_4}$ (Fig b)

- Intensité des forces : $F_1 = F_3 = 30 N$; $F_2 = F_4 = 45 N$
- Toutes les forces sont représentées à l'échelle de 1cm pour10 N.
- $mes(F_3\widehat{O_2}F_4)=60^\circ$

Document 2:

Une boule de masse **m** suspendue à un ressort est plongée dans l'eau.

- Le dynamomètre (1) indique l'intensité P du poids de la boule hors de l'eau
- Le dynamomètre $\binom{2}{2}$ indique que le poids de la boule dans l'eau est Pa = 10 N
- L'intensité de la force exercée par l'eau sur la boule est F = 5 N

Document 3:

Masse	0	0.1	0.2	0,3	0.4	0.6
m (Kg)						
Longueur du	30	31	32	33	34	36
ressort $m{l}$ (cm)						
Poids (N)						
Allongement						
a (m)						
$\frac{P}{a}$ (N/m)						

On accroche des corps de masses différentes à un ressort et on constate que le ressort s'allonge différemment. Les résultats sont consignés dans le tableau des mesures ci-contre.

1cm \longrightarrow 0.01 m (sur l'axe horizontal) 1cm \longrightarrow 1 N (sur l'axe vertical) g = 10 N/Kg **<u>Tâche</u>**: Pour ton évaluation, tu es invité(e) à répondre aux consignes suivantes :

Consignes:

1/ (**Document 1**)

- 1-1 Définis une force et donne ses effets mécaniques.
- 1-2 Donne un nom à chacun des ensembles de forces $(\overrightarrow{F_1}; \overrightarrow{F_2})$ dans le cas de la **figure (a)** et $(\overrightarrow{F_3}; \overrightarrow{F_4})$ dans le cas de la **figure (b)**
- 1-3 a- Construis la résultante \vec{R} des forces $\overrightarrow{F_1}$ et $\overrightarrow{F_2}$ et la résultante \vec{R}' des forces $\overrightarrow{F_3}$ et $\overrightarrow{F_4}$
 - b- Précise les caractéristiques de \vec{R} et \vec{R}'

2/ (Document2)

- 2-1 Définis le poids d'un corps puis donne ses caractéristiques.
- 2-2 Exprime l'intensité P du poids d'un corps en fonction de sa masse \mathbf{m} et de l'intensité de pesanteur \mathbf{g} .
 - Propose un nom à la force \overrightarrow{F} exercée par l'eau sur la boule immergée.
- 2-3 a- Détermine la valeur de l'intensité **P** du poids de la boule hors de l'eau et déduis-en la valeur de la masse **m** de la boule.
- b- Donne les caractéristiques de la force \vec{F} exercée par l'eau sur la boule puis précise si le corps flotte ou coule en justifiant ta réponse .

3/ (**Document 3**)

- 3-1 Propose un nom à l'opération réalisée ayant permis de dresser le tableau des mesures.
 - Quelle est la longueur à vide lo de ce ressort ?
- 3-2 Reproduis et complète le tableau des mesures.
- 3-3 Exploite les données du tableau du document 3 pour construire la courbe de la tension T en fonction de l'allongement T = f(a).
 - Détermine la constante de raideur k du ressort.
 - Détermine graphiquement la longueur du ressort lorsqu'on lui accroche un corps de masse m=700g.