

专业: 计算机应用技术,精密仪器及机械

姓名: 杜沈达, 王晨

学号: SA18168163, SA18168095

日期: 2019年1月4日

地点: 物理楼

课程名称: 光信息科学与技术实验 实验名称: Nd:YAG 激光放大器特性研究 成绩:

1 实验目的

- 1. 了解固体激光器的自由振荡输出特性
- 2. 了解固体激光器的应用
- 3. 掌握固体激光器的光路调整

2 实验原理

2.1 自由振荡激光输出特性

自由振荡固体激光器输出激光脉冲特点是具有尖峰结构,即由许多振幅,脉宽和间隔作随机变化的尖峰脉冲组成,每个尖峰的宽度为 $0.1~1\mu s$,间隔为数微秒,脉冲序列的时间长度大致等于闪光灯泵浦持续时间,这种现象称为激光的弛豫振荡。

图 1: 激光自由振荡特性

产生弛豫振荡的主要原因是: 当激光器的工作物质被泵浦,上能级的粒子反转数超过阈值条件时,即产生激光振荡,使腔内光子数密度增加而发射激光。随着激光的发射,上能级粒子数大量被消耗,导致粒子反转数目降低,当低于阈值时又产生第二个脉冲,如此重复上述过程,知道泵浦停止才结束。可见每个尖峰脉冲都是在阈值附近产生的,因此脉冲的峰值功率水平较低,即增大泵浦能量也无助于峰值功率的提高,而只会使小尖峰的个数增加。

2.2 自由振荡激光器的组成

固体激光器是由三个主要部分组成的:工作物质,泵浦能源以及光学谐振腔。

工作物质: 掺钕钇铝石榴石 $(Nd^{3+}:YAG)$ $(Y_3Al_5O_{12})$

泵浦能源: 由双椭圆聚光腔,泵浦脉冲氙灯,激光电源组成

光学谐振腔: 两个相互平行的平面镜组成

3 实验内容

- 1. 调整激光光路
- 2. 测量自由振荡激光的输出特性
- 3. 自由振荡及挂钩器的实际应用举例

3.1 实验步骤

- 1. 调整激光光路
 - (a) 先将准直光源 He-Ne 激光器对准 YAG 激光放大棒中心,固定不动。, 如图 2

图 2: 第一次调整激光光路

- (b) 放入输出镜 M_2 , 调整 M_2 , 使其反射光沿着原路返回至小孔。
- (c) 放入全反镜 M_1 , 调整 M_1 , 使其反射光沿着原路返回至小孔, 如图 3 所示。

图 3: 第二次调整光路

- 2. 接通电源,调整出振荡器激光
 - (a) 开启激光电源开关,冷却水泵启动;
 - (b) 按下预燃 (Simmer) 按钮, 泵浦氙灯点亮;
 - (c) 按下振荡器电源工作按钮,调节泵浦电压,仔细反复调整反射镜 M_1 , M_2 , 使其激光振荡器能输出稳定、均匀的激光

3. 调整出放大器激光

按下放大器电源工作按钮,调节泵浦电压,在调整出振荡器激光后,仔细调整放大器,使其振荡器激光能够全部通过激光放大器,得到整个激光装置的激光输出,其激光光斑是个上下左右都对称的均匀圆形光斑。

3.2 实验数据

1. 按照图 4 光路排布,将示波器接入打印机,输出其自由振荡激光波形。分析其波形形成原理。

图 4: 光路排布

- 2. 将透镜放在激光放大器后,仔细调整透镜方向,测量出透镜焦距,把实验卡片夹在靶架上,测量好时机焦距
- 3. 同时打开激光振荡器和激光放大器,调整适合的泵浦电压,使其高功率激光作用在实验卡片上,卡片上会出现一个针眼大的小孔。

测量得到的实验数据如下:

表 1: 原始数据记录

电压 (V)	本底能量 (mJ)	本底加激光能量 (mJ)	电压 (V)	本底能量 (mJ)	本底加激光能量 (mJ)
放大前	373	480	750	408	611
	373	455		409	679
	382	462		409	634
0	402	467	800	406	627
	423	506		421	751
	416	470		412	761
650	411	577	850	410	761
	412	567		396	753
	412	576		405	794
700	411	599	900	400	880
	410	557		392	870
	414	591		394	954

4 实验注意事项

- 1. 不要用眼睛直射准直光源 He Ne 光;
- 2. 开启激光电源钱, 戴上激光防护镜;
- 3. 泵浦氙灯易破碎,不要碰及。

5 实验数据处理

5.1 实验数据处理方法

1. 求出激光能量

$$E_{\text{\tiny \bar{B}},\text{\tiny \bar{B}}} = E_{\text{\tiny \bar{A}},\text{\tiny \bar{B}},\text{\tiny \bar{B}},\text{\tiny \bar{B}}} - E_{\text{\tiny \bar{A}},\text{\tiny \bar{K}}} \tag{1}$$

$$E_{mean} = \frac{\sum_{1}^{3} E_i}{3} \tag{2}$$

2. 计算功率的放大倍数

$$G_p = \frac{I_{\dot{n}\dot{k}}}{I_{\rm Hi}} = G_e \tag{3}$$

3. 以 E_{mean} 为纵坐标,电压 U 为横坐标,作拟合曲线,如图 5 所示,之后我们发现由于实验过程中测量误差的存在,直线的拟合情况并不是很好,所以我们设计去除实验中的一些误差较大的点再进行绘图, 如图 6 所示,我们选择了存在的数和平均数的差值作为判断依据,如果大于某一个数,就将其舍去,再进行直线拟合,发现确实由于实验的误差存在,误差取小之后直线的拟合后的参数也反应的比之前的好。

5.2 实验处理结果

图 5: 数据点绘制

图 6: 取平均再拟合

图 7: 不同误差范围再拟合

5.3 实验结果分析

可以看到,实验得到的点的线性程度并不是很高,只是在大致上看起来呈线性关系,我们分析了如下原因:

- 1. 热电偶测量时候的误差,在等待热电偶冷却至与环境的温度平衡的过程中,我们的用时并没有花费很多,这也就是说,很有可能在未平衡时候就进行测量,下次测量也会在本底上产生误差;
- 2. 档纸的拿出和插入时候的误差,可能由于拿出插入时间过快,或者在拿出的时候未完全拿出造成一部分的能量的损耗;
- 3. 仪器老旧,造成部分误差。

5.4 实验代码

实验代码大体上如下,从 Excel 中导入数据,将其作差,再计算平均值,再根据公式计算功率放大倍数,计算得到之后作图分析,总共绘制三个图,一个是测量得到的所有数据,一个是直接求平均得到的拟合图,一个是限定误差得到的拟合图。

主函数如下:

```
%参数解释:
1
  %E1, E2分别代表本底和激光加本底的能量值
2
  |%E3代表激光的能量值
3
  |%EE3代表8次测量的平均值
4
   clear; clc;
5
   data = xlsread('C:\Users\dushenda\Desktop\光信息实验.xlsx','激光放大器特性研乳');
6
   [row, col] = size(data);
   x = [0,650,700,750,800,850,900];
8
   E1 = data(:,2);
9
   E2 = data(:,3);
10
   E3 = E2 - E1;
11
                                      %计算平均,后同
  EE3 = mean3(E3);
12
13
  EE3 8 = EE3;
   plotep6(x, EE3);
                                      %绘图拟合
14
   print('Nd AllFitCurve', '-depsc');
15
16
   figure (2)
17
  %计算一下每个数和平均值之间的差值
18
   subplot 221
19
   [EEE3, \sim] = errorc(30, E3, EE3);
20
   EE3 2 = \text{mean3}(\text{EEE3});
21
   plotep6 (x, EE3_2);
                                      %第二次绘图拟合,误差30
22
   title('误差取30');
23
24
  subplot 222
   [EEE3_2, \sim] = errorc(35, E3, EE3);
25
26 \mid EE3_3 = mean3(EEE3_2);
```

```
plotep6(x,EE3_3);
                                         %第3次绘图拟合,误差35
27
   title('误差取35');
28
29
   subplot 223
   [EEE3, \sim] = errorc(40, E3, EE3);
30
   EE3_3 = mean3(EEE3);
31
32
   plotep6 (x, EE3_3);
                                         %第二次绘图拟合,误差40
   title('误差取40');
33
   subplot 224
34
35
   [EEE3, \sim] = errorc(50, E3, EE3);
   EE3 4 = \text{mean3}(\text{EEE3});
36
37
   plotep6 (x, EE3_4);
                                         %第二次绘图拟合,误差50
   title('误差取50');
38
   print('Nd_DiffErr', '-depsc');
39
40
   figure(3)
41
   for i = 1:3
42
   E3(1,:) = [];
43
   \mathbf{end}
44
45
   y = E3/EE3(1);
   xx = repmat(x, [3, 1]);
46
   for i = 1:(row - 3)
47
48
   scatter(xx(i),y(i), '*');
   hold on;
49
   end
50
   xlabel('电压'); ylabel('功率放大倍数G_{e}');
51
   title('Nd:YAG激光放大器实验的测量点');
52
53
   print('Nd_AllPoints', '-depsc');
```

mean3 函数如下:

```
function X = mean3(Y)
1
2
  \%Y = mean3(X, row)
  |%函数输出隔三次求均值的矩阵, 当然, 里面不能有0, 有0就跳过舍去
3
  %输入需要计算的矩阵行数 row
4
  %输入需要计算的矩阵X
5
6
   [row, \sim] = size(Y);
  j = 1;
7
  X(j) = 0;
8
   for i=1:row
9
      X(j) = X(j) + Y(i);
10
      if(rem(i,3) = 0)
11
              switch ((Y(i)==0)+(Y(i-1)==0)+(Y(i-2)==0))
12
13
                  case 0
                     X(j) = X(j)/3;
14
```

```
15
                        case 1
16
                            X(j) = X(j)/2;
17
                        case \{2,3\}
                            X(j) = X(j);
18
19
                  end
20
              if(i == row)
21
                  break;
22
             end
23
              j = j+1;
            X(j) = 0;
24
25
         end
   end
26
   \mathbf{end}
27
```

errorc 函数如下:

```
function [T,K] = errorc(p,X,Y)
1
2
  |%函数 [T,Y]=error30(X,Y), 每三次计算一次
  %输入你需要的插值的范围p, 取大于30,否则少点
3
  %输入需要计算的矩阵X
4
  %输入平均值矩阵Y
5
  %输出原值和平均值之间的差值K
  %把差值大于30的去掉之后的T,在T里面也就是全部设置为0
7
   [row, \sim] = size(X);
   j=1;
9
10
   for i=1:row
       K(i) = X(i) - Y(j);
11
       if ( i == row )
12
           break;
13
       end
14
15
       \mathbf{if}(\mathbf{rem}(i,3) == 0)
16
           j=j+1;
       end
17
   \mathbf{end}
18
   %把误差大于p的都去掉
19
20
   T = X;
   for i=1:row
21
22
       if (abs (K( i)>=p ))
          T(i,:) = 0;
23
       end
24
25
   \mathbf{end}
26
27
   end
```

plotep6 函数如下:

```
function [] = plotep6(X,Y)
1
2
  |%函数 plotep6(X,Y)
  |%输入需要计算的横坐标X
3
  %输入需要计算的全部数据Y
4
  X0 = Y(1);
5
  Y(:,1) = [];
  Y = Y/X0;
                            %根据公式计算纵坐标
7
  scatter (X,Y, '*');
                             %画散点图
8
  hold on;
9
  p = polyfit(X,Y,1);
                            %做拟合曲线再画图
10
  yy = polyval(p,X);
11
12
   \mathbf{plot}(X, yy);
   xlabel('电压(V)'); ylabel('功率放大倍数G_{e}');
13
  \mathbf{end}
14
```

6 思考题与讨论

1. 由于光学介质有色散,当 He-Ne 光入射时,透镜的焦距 $f=16\mathrm{cm}$,当激光 ($\lambda=1064\mathrm{nm}$) 入射时, f=?

透镜的焦距是其固有属性,所以焦距 f = 16cm。

2. 根据打印的激光自由震荡的波形,分析其尖峰的形成过程

尖峰脉冲形成的原因及过程是脉冲氙灯开始闪光后约 0.5 ms 开始发出激光,一经发光就迅速消耗掉上能级的粒子数,使 ΔN 降到阈值之下。这样激光发射大约维持 $1 \mu m$ 被迫停止。由于闪光灯继续抽运,上能级粒子数迅速积累, ΔN 大于阈值后,又再次发射一个激光脉冲,如此继续。所以在氙灯 1 ms 的闪光时间内,输出一系列小的激光尖峰脉冲,每个尖峰脉冲的持续时间约 $1 \mu s$ 。