Условные операторы

Понятие логического выражения

Логическое выражение (тип *boolean*) принимает всего два значения: false (ложь) и true (истина).

Пример:

$$(x>10) && (y< x+2)$$

Группы операций для логических выражений (в порядке уменьшения приоритета):

- 1) арифметические операции и функции
- 2) операции сравнения:

- 3) логические операции:
- двухместные: &&, ||, ^
- одноместные: !

Логическое выражение вычисляется слева направо с учетом приоритетов.

&& (AND) – логическое «и» (логическое умножение). Принимает значение true, если <u>оба</u> операнда имеют это значение.

Пример:

$$(2>3) \&\& (3<5) => false$$

false true

 \parallel (OR) — логическое «или» (логическое сложение). Принимает значение true, если значение хотя бы одного операнда истина.

Пример:

$$(2>3) \parallel (3<5) => true$$

^ (XOR) – исключающее «или» (сложение по модулю 2). Принимает значение true, если значения ее операндов различны (только один операнд имеет значение true)

Таблица истинности AND, OR, XOR

О1, О2 – операнды

0 - false

1 - true

01	O2	&&		۸
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

! (NOT) — логическое «не» (операция отрицания). Принимает значение true, если значение ее операнда ложно.

Пример:

$$!(3>5) => true$$

Таблица истинности NOT

Операнд	!
0	1
1	0

Приоритеты операций

В порядке уменьшения приоритета

	Высший	Комментарий
1	()[]	Группирующие скобки, обращение к элементу по индексу
2	! ++	
3	* / %	
4	+ -	
5	>> <<	
6	>= > <= <	
7	== !=	
8	&	Побитовое И
9	^	
10		Побитовое ИЛИ
11	&&	
12		
13	?:	Тернарный оператор
14	= += -= *= /= %=	
	Низший	

Примеры:

1) Принадлежность интервалу

$$(x>=10) && (x<=20)$$

2) Принадлежность интервалу

$$(x < = -10) \parallel (x > = 100)$$

3) Принадлежность интервалу

	10 1	5 100	1 000	10 000
	///////////////////////////////////////	////	///////////////////////////////////////	///////////////////////////////////////
X				

$$((x>=10) \&\& (x<=15)) \parallel ((x>100) \&\& (x<=1000)) \parallel (x>=10\ 000)$$

4) Побитовое операции

1.
$$156_{10} = 128 + 16 + 8 + 4 = 2^7 + 2^4 + 2^3 + 2^2 = 1001\ 1100_2$$

 $1001\ 1100_2 << 4 = 1001\ 1100\ 0000$

2.
$$11_{10} = 8 + 2 + 1 = 2^3 + 2^1 + 2^0 = 1011_2$$

 $1011_2 >> 3 = 1$

3.
$$120_{10} = 64 + 32 + 16 + 8 = 2^6 + 2^5 + 2^4 + 2^3 = 111 \ 1000_2$$

&

1001 1100 0000

0000 0111 1000

0000 0100 0000

4. |

100 0000

000 0001

100 0001

$$100\ 0001_2 = 2^6 + 2^1 = 64 + 1 = 65$$

Примечание:

&& и \parallel вычисляют выражение до получения результата: вычисления прекращаются, когда результат становится очевидным. Например:

a=10; b=20;

Т.к. первая часть выражения ложна, то результат тоже ложь, независимо от значения второй части.

& и | - вычисляют выражение до конца. Поэтому их нужно использовать только для побитовых операций.

Условный оператор if

if (<логическое выражение>) <oneparop1>;

[else

<оператор2>;]

Алгоритм выполнения:

- 1. Вычисление значения логического выражения
- 2. Если оно истинно, то выполняется оператор после логического выражения
- 3. Если оно ложно и в операторе есть else, то выполняется оператор после else

Примеры

1) if
$$(x > 10)$$

$$y=15;$$

2) if
$$((x<7) || (x>1000))$$

$$y=15;$$

else

$$y=20;$$

3)
$$x=7$$
;

$$y=20;$$

$$\int -20$$
, if (x<3)

$$x=-5$$
;

y=12; // не зависит от if

Результат: x=7 y=12

```
4) x=7;
y=20;
if (x<3) {
      x = -5:
      y=12; // зависит от if, т.к. стоят фигурные скобки.
Результат: x=7 y=20
                        Тернарный (троичный) условный оператор
      (условие)? выражение1: выражение2
      Если условие истинно, то возвращается выражение 1, иначе выражение 2.
Выражение
if ((x>=10) & (x<=20))
      y=0;
else
      y=8;
можно записать компактнее:
y = ((x \ge 10) \&\& (x \le 20)) ? 0 : 8;
                                  Оператор выбора switch
switch ( <выражение> ) {
      case <константа1>:
             <операторы>;
      case <константа2>:
             <операторы>;
```

Значение выражения последовательно сравнивается с константами, указанными после case. Если выражение совпадает с константой некоторого блока, то выполняется оператор этого блока. При наличии в блоке оператора break выполняется выход из оператора выбора. Если выражение не совпадает ни с одной из констант, выполняется раздел default.

Выражение и константы должны быть целочисленными или строковыми.

При записи вариантов выбора могут использоваться только константы и константные выражения (использовать переменные нельзя).

```
Пример 1: по номеру дня недели напечатать название switch (day) {
    case 1: System.out.println("понедельник"); break;
    case 2: System.out.println("вторник"); break;
    case 3: System.out.println("среда"); break;
    ...
    case 7: System.out.println("воскресенье"); break;
    default: System.out.println("ошибка");
}
```

... [default:

}

<операторы>;]

Пример 2: