801391

METEOROLOGICAL DATA REPORT

NIKE-HYDAC MK 12 STV (SR-038) (20 September 1966)

BY

JOHN M. SHARPE

ATMOSPHERIC SCIENCES LABORATORY WHITE SANDS MISSILE RANGE, NEW MEXICO

METEOROLOGICAL DATA REPORT

NIKE-HYDAC MK 12 STV (SR-038) (20 September 1966)

Ву

John M. Sharpe

DR-99

November 1966

DA Task IV650212A127-02

ATMOSPHERIC SCIENCES LABORATORY WHITE SANDS MISSILE RANGE, NEW MEXICO

Distribution and this income at it unlimited.

ABSTRACT

Meteorological data gathered for the launching of Wike-Hydac, MK 12 STV (SR-038) are presented for the Air Force Ballistic Missile Re-entry Systems Office, the General Electric Company and for ballistic studies.

The data appear, along with calculated ballistic data, in tabular form.

CONTENTS

		PAGE
ABSTRAC	· P	îii
INTRODU	CTION	1
DISCUSS	ION	1
TABLES		· · · ·
I.	Theoretical Rocket Per ormance Values	2
II,	Ballistic Factors	3_
III.	Anemometer Wind Speed and Direction	4.
IV.	Pilot-Balloon-Measured Wind Data	<u> </u>
V.	Rawinsonde-Measured Wind Data	7
VI.	Computer-Calculated Upper Air Data (Release Time: 0615 MST)	. 8
VII.	Computer-Calculated Upper Air Data (Release Time: 0955 MST)	1 6
VIII.	Impact Prediction Data	2կ

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

OR are
Blank-pgs.
that have
Been Removes

BEST AVAILABLE COPY

INTRODUCTION

Nike-Hydac, MX 12 STV (SR-038) was launched from Launch Complex 33, L-31h, White Sands Missile Range (WSMR), New Mexico, at 0913 hours MST, 20 September 1966.

Meteorological data used in conjunction with theoretical calculations to predict rocket impact were collected by the Meteorological Support Division, Atmospheric Sciences Laboratory (ASL), WSMR, New Mexico. The Ballistic Meteorologists for this firing were John M. Sharpe and SFC Leon H. Allen.

DISCUSSION

Wind data for the first 216 feet above the Surface were obtained from a system composed of 5 Aerovanes mounted on a 200-foot tower and cabled to component indicators.

From 216 to 4,000 feet above the surface, wind data were obtained from double-theodolite-observed balloon ascents.

Temperature, pressure, and humidity data, along with upper wind data from 4,000 to 80,738 feet above the surface, were obtained from standard rawinsonde observations.

Mean wind component values in each ballistic zone were determined from vertical cross sections by the equal-area method.

Theoretical rocket performance values and ballistic factors as a function of altitude were provided by ASL, and are the basis for data appearing in Table VIII.

BAYTOAN		Ole	Pounds
TALLOAD	,	04.2	· Antimo v
CORIOLIS DISPLACEMENT	WEST	5,0	Miles
	TIME	20.2	Seconds
SECOND-STAGE LGNITTON	ALTITUDE	35,975	Feet MSL
	TIME	236.2	Seconds
PEAK	ALTITUDE	723,966	Feet MSI.
	RANGE	2.295	Miles/MPA
UNIT WIND EFFECT	CROSS	2.211	Miles/MMI
		-	M11es/MPH
TOWER TILL EFFECT		T1, 2	Miles/Degree

TABLE I. THEORETICAL ROCKET PERFORMANCE VALUES NIKE-HYDAC, MK 12 STV (SR-038)

BALLISTIC FACTORS	.033	.036	.013	900.	,00å	.003	200.	, 001	, 000		000	
LAYERS IN FEET ABOVE GROUND	34000-36000	36000-41000	00097-000LH	146000-51000	31000-56000	56000-61000	00099~00019	66000-72738	72738~76000	76000-86000	86000-96000	
					*:		5					
TORS	35	, TZ	177	දුර	. 100	1.5	18	. 910	1,1,1	አዕ	020	

TABLE II. BALLISTIC FACTORS
NIKE-HYDAC, MK 12 STV (SR-038)

. \$

5 # 200 Peet
3 = 128 Feet 4 = 168 Feet
1 = 35 Feet 2 = 88 Feet

* Heights corresponding to Aerovane Numbers:

ARBO			MEAN W	IND COM	FONEWES	MEAN WIND COMPONENTS IN MILES PER HOUR	SS PER	TOUR		
VANE		,-		,						٠,٠
** .01	0020	O700 MST	0730 MST	MST	080 MST	MST	081,5 MST	MST	0830	วยู่ 30 พรษ
	S-N	E-W	S-N	E-W	N-S	E-W	N-S	E-W	N-S	E-W
н	0.0	0.0	3.0M	1.0E	2,0N	1.0W	1.08	30.1	1.0s 1.0e	. 1.0E
α	J. ON	0.0	1.0	1.0	2.0	0,1	0 0 0	J.OW	٥٠٢	٥.٢
m	2.0	0.0	3.0	1.0	2.0	2,0	0.0	2.0	9.0	٥٠٢
7	3.0	0,0	4.0	7,0	3.0	0.0	J.ON	0.0	2,0	Ď,Ľ
ᡗ	4.0	0,0	3.0	0.0	0.0	0.0	1.0	1.0 3.0W 1.0	1.0	1,0

į.			MEAN WIND	OND COM	PONENTS	COMPONENTS IN MILES PER HOUR	i you se	iour	دا ر ق	
AERO- VAIE NO. *	0480	6 0840 MST	7 U850 MST	? MST	9580	8 0856 MST	0913	9 0913 MST	10 0919, MST	o , mst.
	N-S	M-A	N-S	E-W	N-S	E-W	N-S	W-a	N-S	E-W
Н	5.08	30°Z	7.05	5, OE	S0.3	MO'T	5,03	1,0E	5,05	7.0E
2	3.0	3.0	8.0	3,0	2,0	1,0	4,0	0.0	0,9	0.9
m	5.0	5,0	7.0	2,0	6.0	1,0	0,4	1,08	0.9	0.4
4	0.4	2.0	6.0	o,	7.0	30.5	3.0	3,0	0.9	0.6
Ŋ	1,0	1,0	4.0	5.0	5,0	1,0E	٥٠١	1.0	ν, O	5.0

TABLE III, ANEXOMETER WIND SPEED AND DIRECTION NIKE-HYDAG, MK 12 STV (SR-058)

-			MEAN 1	WIND CO	MPONENT	MEAN WIND COMPONENTS IN MILES PER HOUR	res per	HOUR		,
LAYERS LN FEE'S ABOVE	T. TSW 0020	ı MST	2 0730 MST	2 MST	3 0800 MST) MST	0815	MST	robso Mst	MST
GROUND	N-S	E-W	N-S	E-W	N-S	H-W	N-S	H-H	N-S	H-E
216- 300	3.5N	1.0E	3.0N	1.0E	岳"0	1,0E	1, ON	1.5W	1,58	2.5距
300- 100	2.0	3.0	ري بر	3,5	1,0	ر. بر	0.0	2.0瓦	7,5	. O. U.
100- 600	0.0	5.5	2.0	3.0	0.0	3,0	o.53	3.0	1.0	6.5
008 -009	0.53	6.0	2,0	2,0	1,08	ις Σ	1,0	3,0	1,0	2,3
800-1000	r. Z.	2.0	2.03	3,0	2,5	Ò.4	2.5	5.0	r, r	7:0
1000-1400	1.0	0.9	3,0	2.0	i, o	у, У,	0,4	ານ, ໝໍ	15 E.	3,0
11,00-2000	2.0N	3.0	0,0	8,0	ı,ı X	0,0	०११	2.0	2,0	0,8
-2000-2500	1,5	3.0	7.0N	Ď	2,0	1,0E	S S	0,4	٠ 0 1	ν. Ο
2500-3000	1,53	, N	2.58	1,0	० १ र). .0	5,0	3.0	0,4	ب 0.0
3000'-1'000	6.5	1,0	0,6	2,5		\$,0	6,0	3,0	7.5	2,0
	*	,		;		· :	- ;	;		· .

TABLE IV. PIIÖT-BALLON-MEASURED WIND DATA NIKE-HYDAG, MK 12 STV (SR-038)

	_		HEAN !	ATTEN CO	HIONUM.	mean with comfonding in Miles fer look	LESS THER	EQUE.		â
ru sugar		9				0	T-TTHE	TTME	11	Ġ
ABOVE	OBIO MET	Men	OBYO MUT	MOT	0057	MOJ	0919	MST		137
GNOOND	N-8	E-W	D. N	E-W	S-N	II-W	N-13	K-1	N.S	7-17
216-300	3.08	2.5年	1,00	5,013	g, 03	11.5%	7.03	6.50	. : .	
300- 400	0,0	0 vi	ນ :÷	0,7	بر 0	0,0	0'0	0,0		 - -
1,00- 600	ห	6.5	0, 24	ລຸນ	, i.o	3,0	0,0	01%		
600- 800	0.1	8.5	ง	ห	n n	0,1	23 6-	6.0	· •	-
800-1000	ห ต	6.0	ဝ ห	ų n	0.9	- - - - -	0.0	0.9	· · · · ·	
.000T-000T	0.10	0:≅	บ พ	4.0	6.0	0,0	25.5	ห		
1,000-2000	7.0	ห	6.0	0,4	0'9	0'6	ಬ ಬ	ų ų		: :
2000-2500	7.0	0.%	หฺง๋	r =	0.0	6.0	0.3	3,0		- -
2500-3000	0 vi	ห	6,5	٦, بر	2.0	พ	2.0	ນ ຕໍ		<u> </u>
3000-1,000	6.5	3.0	7.0	8.0	10,0	พ	0.5	1.0	-	
						-				

table iv. Pitot-dallkon-measured mind data (vons) nike-likdag, nk la siv (sp.-638)

ł	~	MEAN WIND		COMPONENTS	IN KNOTE	5
LAYERS IN FRET ADOVE	OGLS MST	MST	OVES NOT	2 YOT		
GNOOND	N-6	M-M	H-3	B-W	N-8	K-3
1,0001 1,31,5	g0'5	1,05	go '0	0'0		
1,315- 9000	6.0	2.0	3.0	1, OE		
9000-12000	6,0	D.	%, ON	2.0		
1,5000.21.000	0.5N	3.0W	6,0	0.0		
21000-26000	27,5	2,0	10,5	%0.℃		
26000-31975	7.5	20.5	10.5	18.0		
31975-34000	0,0	31,0	r, q	26.0	-	-
31,000-36000	0,0	33.0	10.0	27.0		
36000-41000	% %	36,5	ખે	32,5	-	
71,000~46000	10.0	28,0	10,0	28.0		
16000-51.000	18.0	ů,	0,0	17,0	-	=
5,1000-56000	1,53	G.OE	1,53	3.58	_	
26000-61000	2. 5N	0,1/1.	 O'O'	18,0	9 ₂	-
00099-00019	0,0	17.0	0,0	13.0	ŝ	
66000-72738	, O. 4	23.53	3.0N°	16.5		-

Table v. Raminsonde-Meashined wind dai'n nike-Iiydag, mk 12 stv (sr-038)

		`
FEET MSL	HRS MST	
3989.0	0615	726
STATION ALTITUDE	20 SEPT.66	ASCENSION NO. 72

5 _	s	-
UPPER AIR DATA	WHITE SANDS SITE	TARRES A P

### PERSONE TEMPERATURE RELATIVE DENSITY SPEED OF WIND DAYA DINEGRIDON SPEED OF DENEOTING ADDRESSION SPEED OF DENEOTING ADDR																				-													
EGNETRIC PRESSURE TEMPERATURE RELATIVE DENSITY SPEED OF WIND DATA. LITTUDE SL FEET MILLIBARS DEGREES CENTIGRADE PERCENT HUMDITY GM/CUBIG SQUND DIRECTION SPEED OF CONTIGRADE PERCENT HUMDITY GM/CUBIG SQUND DIRECTION SPEED OF CONTIGRADE PERCENT HUMDITY GM/CUBIG SQUND DIRECTION SPEED OF CONTIGRADE PERCENT HUMDITY GM/CUBIG SQUAD DIRECTION SPEED OF CONTIGRADE PERCENT HUMDITY GM/CUBIG SQUAD S	1 0	Da m	FRACT 10	16000*	.0000	.00030	.00029	.00028	00027	000026	00025	00025	00024	.00024	.00024	.00023	.00023	.00023	.00022	00021	.00021	.00020	000050	.00020	.000 F9	.00018	00018	00018	00017	.00016	00016	91000	0015
EDMETRIC PRESSURE TEMPERATURE RELATIVE DENSITY SPEED OF DIRECTION OF THE PRODUCT	:	ر الا	22		•		•	.4	. 3	•	, e ,		. 9	•	ŧ	ə	.,₩	•	•	•	•		₩,	9	ċ	-	-	ċ		•	•	•	
SL FEET MILLIBARS DEGREES CENTIGRADE PERCENT METER KNUTS 3989.0 881.8 16.3 14.8 90.0 1053.1 665.0 4000.0 881.5 16.4 14.8 89.5 1053.1 665.0 5500.0 866.0 19.3 14.4 69.5 1053.1 665.0 5500.0 821.0 17.3 18.9 11.7 65.2 668.3 5500.0 821.0 17.3 18.9 11.7 65.2 668.3 5500.0 821.0 17.3 18.9 11.7 65.2 668.3 5500.0 821.0 17.3 8.9 51.6 992.9 665.8 5500.0 821.0 17.3 8.9 51.6 992.9 665.8 5500.0 778.4 16.3 7.4 6.2 53.0 977.5 665.8 8000.0 778.4 16.3 6.3 51.4 992.9 665.8 8000.0 724.2 12.1 5.8 6.3 51.4 992.9 663.4 8000.0 724.2 12.1 5.8 6.0 60.4 882.8 657.6 11500.0 685.8 7.8 1.6 65.0 847.3 653.9 11500.0 685.8 7.8 1.8 65.0 847.3 653.9 11500.0 685.8 7.8 1.8 1.8 653.9 11500.0 685.8 7.8 1.8 823.0 651.0 11500.0 685.8 7.8 1.8 823.0 651.0 11500.0 636.6 5.4 6.3 882.2 647.8 11500.0 636.6 5.4 61.3 776.5 643.8 11500.0 636.6 5.4 61.3 776.9 643.8 11500.0 636.0 63.3 -0.9 64.1 776.9 641.7 11500.0 658.2 -0.9 1 70.7 755.9 641.7 11500.0 557.3 -2.1 778.9 641.7 11500.0 557.3 -3.4 -20.5 25.5 777.6 639.8 1700.0 557.3 -3.4 -20.5 25.5 777.6 639.8		VO QUEN	EGREES (T			*	8	020	35.	58	74.	81.	87°	91.	89.	8.1.8	65	13.	29.	15.	13.	15.	14.	13.	16.	19.	19,	23°	30.	46.	65.	02.	40.
EDMETRIC PRESSURE TEMPERATURE RELATIVE DENSITY CALITUDE AIR DENPOINT HUNIDITY GH/CUBIC 4000.0 881.5 16.3 14.8 90.5 1053.1 1053.1 69.0 1053.1 1053.1 69.0 1053.1 1053.1 69.0 1053.1 1053.1 69.0 1053.1		PEED 0		640	65%	68,	67.	.99	900	65	64.	63.	63	62,	60.	59.	57.	56.	53.	52.	51.	49,	48.	470	45.	440	43.	41.	40.	39°	39°	38.	370
EDMETRIC PRESSURE TEMPERATURE RELATIVE LITTUDE S. FEET MILLIBARS DEGREES CENTIGRADE PERCENT 3989.0 881.8 16.3 14.8 89.5.4 4000.0 881.5 16.4 14.4 72.8 5500.0 881.5 16.4 14.4 72.8 5500.0 881.5 16.4 14.4 72.8 5500.0 881.5 16.4 14.4 72.8 5500.0 881.5 16.4 14.4 72.8 5500.0 881.5 16.4 14.4 72.8 5500.0 881.5 16.4 14.4 72.8 5500.0 882.0 17.3 10.4 61.4 5500.0 821.0 17.3 10.4 61.4 8000.0 792.4 16.3 12.1 653.8 5000.0 724.2 12.1 6.3 53.8 5000.0 724.2 12.1 5.8 65.0 10000.0 724.2 12.1 5.8 65.0 10000.0 724.2 12.1 5.8 65.0 11500.0 685.8 73.8 65.0 11500.0 650.8 5.4 -0.1 67.8 12500.0 654.8 7 4.2 -1.5 66.3 14.000.0 654.8 7 4.2 -1.5 66.3 14.000.0 654.8 7 -2.2 72.9 15000.0 556.3 -2.1 -2.1 75.0 15500.0 556.3 -2.1 -2.1 75.0 15500.0 556.3 -2.1 -2.1 75.0		ENSI TY	METER	0534	053.	0240	000	992°	770	629	47.	33	170	04.	92°	80.	68.	57	47.	35°	230	12.	00	88	76.	65.	54.	423	31.	19.	07.	95	840
SL FEET MILLIBARS DEGREES CENTIGRADINT SL FEET MILLIBARS DEGREES CENTIGRADINT SL FEET MILLIBARS DEGREES CENTIGRADINT S989.0 881.8 16.3 14.8 14.4 4.8 16.00.0 850.7 18.8 13.1 1.7 6000.0 825.7 18.8 13.1 1.7 6000.0 825.7 18.8 13.1 1.7 8 10.4 6500.0 724.2 12.1 8.8 13.1 1.7 8 6.2 8500.0 724.2 12.1 8.8 13.1 1.000.0 724.2 12.1 8.8 10.000.0 724.2 12.1 8.8 10.000.0 724.2 12.1 8.8 10.000.0 724.2 12.1 8.8 10.000.0 724.2 12.1 8.8 10.000.0 724.2 12.1 7.8 1.6 11.000.0 658.8 7.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2		ELATIV	ERCENT	ĉ	, C	2	6	T.	-	-	w	-	60	ي	ċ	เก	6	4	ŝ	9		ģ	\$	5	-	9°	ς,	•	3	Š	ò	•	ທໍ
SL FEET MILLIBARS DEGRE 3989.0 881.8 16.000.0 866.0 17.000.0 821.0 18.000.0 825.7 18.000.0 820.0 17.000.0 724.2 11.2 10.000.0 724.2 11.2 10.000.0 724.2 11.2 10.000.0 724.2 11.2 10.000.0 660.8 4 711.2 10.000.0 660.8 4 711.2 10.000.0 650.0 650.8 12500.0 650.8 6 12500.0 650.0 650.8 12500.0 650.0 650.0 17.000.0 650.0 650.0 17.000.0 650.0 17.000.0 550.3 12500.0 550.0 550.0 550.0 550.0 550.0 550.0 550.0 550.0 5		ERATURE	GRAD	0				-	ô	3	5	۰	E	•		•	•	•	•	0	ô	ļ	?	2	ຜ	6	6	6	13,	20°	31.	•	å
SL FEET MI 3989.0 45000.0 6500		~ 6	EGRE	9	•	6	æ	8	-	2	•	9	ູ່	÷	ຕ	Ś	ô	6	•	•		•		•	0	•	°	ċ	2	w	*	•	15.4
LTITUM 3 4000 40000 40000 40000 40000 100000 112500 112500 112500 112500 115500 115500 115500 115500 115500 115500			ILLIBAR	81.	81.	66.	50.	35	21.	06.	92°	78,	64.	51,	37.	24.	11,	98.	85.	73°	60°	48°	36.	240	13。	01.	90.	79.	683	57.	46.	36.	260
		EOMETRI	LIIIUD SL FEE	989	000	500	000	500°	000	500°	000	500°	000°	500°	9000°	500°	0000	0500°	1000	1500.	2000.	2500.	3000°	3500°	4000°	4500°	5000°	5500°	6000°	6500°	000	500°	000

STATION ALTITUDE 3989.0 FEET MSL 20 SEPT.66 0615 HRS MST ASCENSION NO. 726

UPPER AIR DATA 0890003902 WHITE SANDS SITE TABLE VI (Cont)

WSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

INDEX	REFRACTION	3015	00015	2000	00015	• 00014	*00014	.00013	.00013	• 000 T3	.00013	.00012	.00012	.00012	·00012	.00012	10000	.0001	.00011	.00011	11000.	.00010	01000	.00010	.00010	.00010	.00010	60000 .	1.000097	60000°	600
TA SPEED	NOT	æ	•	•	•	•	Ġ	•	Ö.	ċ	ô	•	Ġ.	-	m	<u>.</u>	3	å	4,	'n	æ	;	Ŗ	'n	•	•	•		19.0	ô	<u></u>
WIND DAT	GREES (T	76,	04.	13,	21.	•	39.	48.	53.	56.	55.	53°	4 9°	•	ŝ	÷	46.	33.	27.	87°	69	94.	03.	02.	07.	000	99	98°	296*3	93	91.
PEED OF SOUND	NOT	36.	35.	340	33°	632	630.	29°	28.	27.	25°	24.	25°	21.	20%	19.	17.	16,	15.	140	123	11,	10:	08.	07.	05	93.	02.	600.7	66	97
DENSITY S	ETE	73。	62,	51.	410	30.8	20°	100	000	91.	82.	73°	640	56°	47.	370	29°	20.	110	03.	94.	86.	78.	70.	62.6	55.	47.	400	4000 1000 1000 1000	26.	18°
RELATIVE HUMIDITY	ERCEN	6	2	å	ę	39.9	ထံ	ဆီ	ö	ë	ນໍ	2	ċ	2	Ġ	4	0	ċ	င်	ċ	ċ	ċ	ó	ċ	4	•		*	**0°5		2.9**
RATURE	NTIG	ů	•	9	8		ភ	-	c	•	ເດ	ŝ	S	ŝ	٢	å	ຜູ້	Š		2°	å	ç	0	ó	S	4.	\$	ε	يخ	\$	6
TEMPEI AIR	DEGREES	9	ð	•	•		ċ	÷	2,	3,	4.	•	-	8	ŝ	ċ	21.	22.	S	24.	25°	26.	-	8	ö	-	~	3.	-35.2	ŝ	-
PRESSURE	MILLIBARS	15.	050	96	86.	77.	67.	58.	49.	40.	310	23.	14.	06.	98°	°06	82°	74.	56.	59°	51°	440	37°	30°	23.	16,	960	02°	296°1	.68	8
GEOMETRIC ALTITUDE	SL FEE	3500.	9000e	9500°	3000	0500°	1000.	1500.	2000°	2500°	3000°	23500。	4000	4500°	5000,	5500°	60000	6500°	7000°	7500.	8000°	8500°	9000	9500°	0000	0500-	1000	5000	N	2500°	

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

الإنوالية فالمسترقي فكالأح وتزوج والدسائي والدائو المع

The second secon

INDEX OF REFRACTION	.0000	60000	1.000089	.0000	.0000	.0000	.00008	.00008	.00008	-00007	-00007	20000	-00007	.00007	-00000	£0000°	90000	• 00000	.00000	.00000	•000Q.	.0000	.0000	.00006	50000°	• 00000	€0000D.	.00005	.00005	.0000
ATA SPEED KNOTS	. 10	. 4	25.7	Ġ	٦	&	Ó	Ň	'n		ຜູ	•9	9		ŝ	æ	8	ø	.	8	œ	္တစ		9	4	%	ە ب	ó	8	
WIND DA DIRECTION DEGREES (TN)	- 88 88	85.		80.	79.	77.	75.	74,	730	738	72.	73.	75.	76.	77.	79.	81.	82°	83。	85	85.	85.	85.	85.	84.	84.	84.	85,	86.	88.
SPEED OF SOUND KNOTS	95.	940	592.4	90°	89°	87.	86.	85°	83°	82,	87,	80°	78°	77.	76.	740	73.	720	70°	•69	673	66°	640	63°	619	61°	610	60%	58,	57°
DENSITY S GM/CUBIC METER	1,2,0	06,	399.7	92.	38	79.	72°	65,	58°	52,5	45°	38,	32,	26°	20.	140	08.	02°	96°	91°	85°	80°	740	69°	640	အ အ	51,	46°	420	37°
RELATIVE HUMIDITY PERCENT	Ġ			** *0-	** °0-	** °0-	** *0	** °0-	** *0-	** .0-	** *0-	** *0I	** 0-	** *0-	** °0-	** *0=	** °0-	** *0-	** •01	** *0-	** °0-	** *0-	** 0-	** 0-1	** °0-	** 30-	** °0-	** °0 -	** °0-	** 0-1
TEMPERATURE DEWPOINT SES CENTIGRADE	71,		ဝံ											°O																•0
TEMPI AIR DEGREES (-39.1	Ö	-41.7	•	•				å	Ç	ó	-	2	9	40	ŝ	\$	2	æ	6	0	-4		÷	5	Š	ŝ	Ĝ	2°	9
PRESSURE MILLIBARS	77°	710	65	59.	53,	4B°	42.	36.	31.	25.	20.	15°	10.	90	01.	96.	92.	87°	82°	78.	740	70°	65 °	61.	58°	540	50°	46.	420	0
GEOMETRIC ALTITUDE MSL FEET	3500.	40004	34500.0	5000°	5500°	6000°	6500.	7000°	7500°	8000°	8500°	9000°	39500°	0000	0500°	1000.	1500.	2000.	2500°	3000	3500°	4000\$	4500°	5000°	5500°	6000°	6560°	7000°	7500°	000

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. *

STATION ALTITUDE 3989.0 FEET MSL 20 SEPT.66 0615 HRS MST ASCENSION NO. 726

UPPER AIR DATA 0890003902 WHITE SANDS SITE TABLE VI (Cont)

WSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

INDEX OF REFRACTION	1.000052	\$0000°	-00004	• 0000 •	• 00004	• 00000	\$0000	.00004	*0000°	*00000	.0000	.0000	.00000	£0000 •	00 *	.0000	.00003	.0000	.00003	.0000	.00000	. 00003.	4.0000S	• 00005 • 00002	.00002	.0000°	*0000	.00002	.0000	.0000
SPEED KNOTS		2	_;	ċ	ó	Ó	8	5	\$	*		` ⊕		•	8.0	•	- 6	Ġ	ģ	٠	ġ.	Ö	_	Ñ	خ پنج	ô	ە بىخ	Š	*	16.2
WIND DATE DIRECTION DEGREES(TN)	6	90	91.	95.	02.	60	16.	26 °	38.	55°	•	-	ć	'n.	1.06	+	18.	27.	30.	23.	12:	00	å	-	4	0	œ.	ė	'n	'n
SPEED OF SOUND KNOTS	50	5.	54.	53.	53.	51.	50°	49.	49.	51°	53.	54.	53.	54.		5.7 %	580	60.	61.	61.	615	61.	61.	62.	62.	62.4	62.	63.	64.	64.
DENSITY S GM/CUBIC METER	CC.	270	22°	٥ ٢-	120	07.0	03.	98,	93.	876	81.	76.	77.	67.	Š	57.	50.00	48.	430	40.	36,	330	29.	26.	23.	20.	170	40		80
RELATIVE HUMIDITY PERCENT	** •0-	** *0-	** 0-	** °0-	** *0-	** °0-	** *0-	** "0"	** *0-	** *0-	** *0-	** °0-	** *0-	** *0-	***	** 00-	** *0-	** *0-	***	****0-	** *0-	** *0-	****	** .0-	** *0	** *0-	** *0-	** *0-1	***	**
ERATURE DEWPOINT CENTIGRADE	°			°	ċ	ဝ	0		6	°	ó	-	. •	ő	å	° 0 .	Ö	ဝံ		o o	Ö.	°		°		ဝှံ		o		? • • • • • • • • • • • • • • • • • • •
TEMPI AIR : DEGREES (6	70.	0	710	•	2	S	73.	6	720	1°	70.	Ö	0	9.69-	68°		6	S	ŝ	ń	ŝ	في	4	4	4	4.	63,	3	`2
PRESSURE MILLIBARS	35.	320	29.	25.	22.	6	16.	13.	100	07.	050	02.	666	-	6°46	ě	•	8	'n	ິ		6	!	Ŋ	'n	2	Ö	ထိ	~	
GEOMETRIC ALTITUDE MSL FEET	8500。	90000	9500	0000	0500	1000.	1500.	2000°	2500°	3000	3500°	4000	54500	5000	55500.0	6000°	6500.	7000	7500.	8000°	8500°	9000°	9500°	°0000	0500	10001	1500,	2000	2500°	3000°

	F-0-2	U 7 7 C	
7 (114.3 7	+ 23 2 23	2 F 7 C	
F 1 14 3	+ 2 3 4 5 5		
	30:33:-		100
	TUE SECTION SE	3989,0	STATION ALTITUDE
5	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		
3			

JPPER AIR DATA 0890003902 HITE SANDS SITE TABLE 71 (COURT)

INDEX OF REFRACTION	0000	1.00002	0000°	0000	0000	0000	.0000	000000	.0000	0000*	0000	.0000	00000°	0000	* 0000	0000	0000	0000	00000	• 0000	0000	0000	,0000	• 0000	0000	00000	0000	0000,	00000	0000"
SPEED KNOTS	27.4	. 5	•	Ø₩	5 €	•	è				-\$	13.4	*		Ð		3	•	9	•	•	•	•	*	9		Ĩ.	0		9
HIND DA DIRECTION DEGREES(TN)	÷ 🔑	79.5	6	3	٠ ج	64	-	5	ડું	المسير	8	ċ	ŏ	ທໍ	ç	غ م	50	_=	9	6	เก	á	લં	٠. د	ŝ	ą	ŝ	ó	å	'n
SPEED OF SOUND KNOTS	53	566.2	66.	£ 7.5	68	68.	69	2	70°	77.	72.	72.	73	73.	730	73.	73.	73.	730	73.	73,	73.	74.	75,	76.	77.	78,	78.	78.	78.
DENSITY S GM/CUBIC METER	ູ້ທີ່	102,6	ç	÷	4°	2	ç	70	'n	ကိ	å	ထိ	ŝ	4	a	ä	6	8	ŝ	40	÷	ļ	ဝံ	ဆိ	7°	ໝໍ	40	200	<u>, 1</u>	c
RELATIVE HUMIDITY PERCENT	** 0-	O	** *0"	** °0=	** *0-	** **	** 0-	** °O-	***0-	** *0-	** °0-	** •0-	** *0-	** *0-	** *01	** *0!	* * * 0	** *0-	** 0-	* * ° O -	* * * 0 =	* °01	** *0	** *0 -	** *0-	** *0-	******	** 00=	** 00.	***
'EMPERATURE L DEWPOINT EES CENTIGRAGE		°																												
TEMP AIR DEGREES	2	-61.7	-4	•	0	G	•	8	8		-	•	ŝ	ŝ	•	Š	9	ç	ŝ	ŝ	ŝ	9	10	\$		60	٠ د	Š	° 2	2
PRESSURE MILLIBARS	G	62.3	Ö	6	2	9	ņ	s.	2:	ů	ô	8	7°	ę	S	4°	3	Š	1,	ô	ô	ထိ	7°	ş	សំ	ຜູ	4°	က	2	, L
GEOMETRIC ALTITUDE MSL FEET	3500°	0*00079	45000	5000°	5500°	6000°	6500°	7000°	7500°	8000°	68500	9000°	69500°	0000	0500°	1000.	1500.	20002	2500°	3000°	3500°	4000%	4500°	5000,	5500°	6000°	6500°	7000°	7500°	8000°

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. *

STATION ALTITUDE 3989.0 FEET MSL 20 SEPT.66 0615 HRS MST ASCENSION NO. 726

UPPER AIR DATA 0890003902 WHITE SANDS SITE TABLE VI (Cont)

WSTM SITE CODROINATES E 488,580 FEET N 185,045 FEET

INDEX OF REFRACTION	1.000011	.0000	.00001	.00001	10000	000003	00000	00000	00000	00000	00000	00000	000007	00000	00006°	000000	00000	000009	00000	00000	00000	00000	00000	000000	000000	.00000	° 00000	000000	0000
SPEED. KNOTS	14°4 17°5	Š	å	(4:	ę	\$	4	'n	ķ	\$	•	-		ş	ถ่	+	3	N.	2	÷	ċ		9		. ¢	•		•	ě
WIND DAT	37.6	Š	-4	.	ห	e en	ţ	'n	;	æ	6	÷	ŭ	\$	Ö	-	•	ġ.	o.	02.	05.	98	6	029	เก	1	0		÷.
SPEED OF SOUND KNOTS	578.6 578.6	438	78,	79°	80.	80.	81°	82°	82.	83.	84.	84.	65	86.	87,	87.	87,	87.	87.	87.	8.7	87.	87.	87.	87.8	87.	37.8	87.	87,
DENSITY S GM/CUBIC METER	49.1	ŝ		40	3.	Š	Ļ	ဝိ	ŝ	8	*	ę	ŝ	\$	3	က	%	• •4	ċ	ô	õ	8	ဆို	~	ŝ	.0	ry.	Ç,	*
RELATIVE HUMIDITY PERCENT	**	** *0-	** *0-	** °0-	** *0-	** *0	** .001	** °0-	** °0-	** *0-	** °0-	***	** °0-	** *0-	** °0-	** *0-	** *()-	** °0=	** 0-	** *0-	** *0-	** *0-	** °0-	** °0-	** °O	** 70-	** 00-	-0° **	** 01
ERATURE DEWPGINT CENTIGRADE	ôô		ô	ဝိ	ဝံ	ဝ	•	ဝိ	ဝံ	°	•	၀	ó	•	ဝံ	ဝိ	°°	o	ဝ <mark>ိ</mark>	o ,		ဝံ	ီဝ	ဝီ	ő	ဝီ		ő	
TEMPEI AIR DEGREES C	-52°4	52.3	-52.2	-51.7	-51.2	-50.6	-50°1	-49.6	-49.1	48.5	-48.0	-47.05	~	-46.4	10	-45.9	-45.9	-45.9	-45.9	-45.9	6454-	-45.9	145.9	-45.9	-45.9	-45.9	-45.9	-45.9	-45.9
PRESSURE MILLIBARS	31. 30.	ô	6	å	, o •	-	ę	ŝ	ວ	•	4	ů	ŝ	2°	2	~	-4	ċ	င်	ŝ	ŝ	å	8	6		7°	6.	Ś	
GEOMETRIC ALTITUDE MSL FEET	78500°0 79000°0	9500°	0000	3500°	1000°	1500°	20002	2500°	3000°	3500°	4000°	84500	5000°	5500°	60000	6500°	7000°	7500°	8000°	8500°	9000	9500°	0000	0500°	1000	15000	2000°	2500°	9000 è

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

STATION ALTITUDE 3989.0 FEET MSL 20 SEPT.66 0615 HRS MST ASCENSION NO. 726

UPPER AIR DAYA 0890003902 WHITE SANDS SITE TABLE VI (Gont)

NSIM SITE COORDINATES E SES SEO FEET N 165 045 FEET

INDEX OF REFRACT 1	0000	0000	0000	0000	0000	.0000	0000	0000	0000	0000	0000	0000	0000	.0000	0000	.0000	0000	0000	0000	0000	.0000	0000	000	0000	.0000	0000	0000	.0000		000
SPEED "		~ °€	9.0	્ર 🛊	0	. ~``	, Q	i N	6	9	'n	9	ģ		:6·	8	6		0	-	٠	6	å	0	ô	·	Ċ		21.2	6
WIND DA	55.7	-	é	e,	0		2	'n	•	4	ŝ	6	7.	6	Ċ		'n	Š	3	å		S.	-	8		5	6	+	59.3	ç
SPEED OF SOUND KNOTS	87.	87.	8	88	89	89.	90°	90%	91.	91.	92.	92°	93.	93.	940	940	95°	95°	96°	96.	96.	97.	ۍ ٍ6	98°	98°	66	66°	000		0
DENSITY GM/CUBIC METER	*	Š	•	2	~	-4	ó	ô	ŝ	Ġ,	å	ø	æ	-	7°	6,	9	9	Ę,	Ŋ	4	*	4.	m	ຕິ	'n	2	2	12,3	ę
174 174 174	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	**	*	*	*	*	*	*	車字	*	*	*	*	* *
RELATI HUMIDI PERCEN	* 0-	0-	0	0	0-	0	01	0	0	-0-	ာ	-0-	00	-0	-0	-0-	0	1	Ŷ	ô	0	-0-	0	0	-0-	0.	0	-0-	0	ဝို
RATURE RELAT DEWPOINT HUMID ENTIGRADE PERCE	!	,	1	1	!	•	1	1	•		1	1		1		1			•	•	1	i	i	•	ı	•	•	1		•
RATURE RELAT DEWPOINT HUMID ENTIGRADE PERCE	٠٥ .	.2 0	.0 8	.0 . 4.	.1 0.	3.7 0.	D. D	0.0	2.8 0	2.2 0	1.8 0. –	1.5 0	- 0 0	0°7 0°	- °0 \$*0	- 0.0	- °0 9•6	4°3 0° E*6	8.9 0.	8.5 O	8.1 0.	7.8 0	7.4 0	7.0 0.	6°7 0° 1	6.3 0	5.9 0.	5,6 0, -	1	4°8 0°
TEMPERATURE RELAT AIR DEWPOINT HUMID EGREES CENTIGRADE PERCE	5.7 -45.5 0	5.3 -45.2 0	.0 -44.8 0.	4.7 -44.4 0.	4.344.1 0	4.0 -43.7 0.	3.7 -43.3 0.	3.4 -43.0 0	3.1 -42.6 0.	2.8 -42.2 0	2.6 -41.8 0	2.3 -41.5 0	2.0 -41.1 0	1.8 -40.7 0	1.540.4 0	1.2 -40.0 0	1.0 -39.6 0	0°8 =39°3 0° =	0.538.9 0	0.3 -38.5 0	0.138.1 0	.837.8 0	.6 -37.4 0	.437.0 0	.2 -36.7 0°	.0 -36.3 0.	.8 .35,9 0.	.6 -35.6 0.	4 -35,2 0	•2 -34 _° 8 0 _°

و بها في

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. *

N ALTITUDE 3989.0 FEET MSL	,66	ION NO. 726
STATION AL	20 SEPT.66	ASCENSION

UPPER AIR DATA 0890003902 WHITE SANDS SITE TABLE VI (Gont)

WSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

INDEX	PO	REFRACTION	1.000003	1.000003	1.000003	1.000002	1.000002	1.000002	1,000002	1.000002	1.000002	1.000002	1.00002	1.000002	1.000002	1.000002
DATA	SPEED	KNOTS	19.4	18.4	17.5	17.1	16.8	16.4	16,1			-				
S	DIRECTION	DEGREES (TN)	74.3	81.8	89.04	97.1	104.8	112.5	120.2		-					
PEED OF	SOUND	KNOTS	601.6	601.9	602.0	602.1	602°2	602.3	&02°5	602.6	602.7	602.8	603.0	603.1	603.2	603.3
٧.	CUBIC		11.8	11,5	11,3	1100	10.8	10.5	10,3	10.1	6.56	2°6	9°,51	9.5	0°6	8°9
TIVE	IDITY	-	•	*		_	_									
RELAT	HUMID	PERCENT	* 0-	*	-0.	** °0-	* °0-	-0°	** °0-	** 0-	** •0-	** 0-	** 0 -	** °0-	** "0"	-0°
	NT HUM	: PERCE		* °0										0-		0° -0°
	NT HUM	: PERCE		°2 0° -0° *	1 0°	.0	.0 6.	.0 6.	°O		3.6 0.		.0 0.	3°3 0° -0°	.2 0.	3,1 0°
	AIR DEWPOINT HUM	S CENTIGRADE PERCE	1 -34.4 0.	9 −34°2 0° −0° *	7 -34.1 0.	6 -34.0 0.	4 -33.9 0.	2 -33.9 0.	1 -33,8 0.	9 -33.7 0.	33.6 0.	-33.5 0.	5 -33.4 0.	-33.3 0° -0°	33.2 0.	-33.1 0°

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE "INTERPOLATION" # *

FEET MSL	HRS MST	
E 3989.0	0955	728
STATION ALTITUDE	20 SEPT.66	ASCENSION NO.

UPPER AIR DATA 0890003903 WHITE SANDS SITE

INDEX OF REFRACTION	*00030	.00030	.00027	×00027	500027	£0000°	1.000267	• 00056	4.0005¢	.00025	.00024	.00023	.00023	.00023	-00022	.00022	1.00021	.00021	.00020	00000	.00019	.00018	.00018	.0001B	. 00017	.00016	\$ 0000°	.00016	.00016	.00015
SPEED KNOTS				•				•	●`	•		•	•	Ş	~•		•	3	æ	•	. •	8	è	•	•	, e	ø	•		, ₽
HIND DA DIRECTION DEGREESATN)	20.	20.	26.	33,	40	46.	153.4	68.	85.	87	90	88.	69	43.	18.	6	N	ċ	Ŗ	000	•	12.	7	6	8	ů		44.	ě	58
SPEED OF SOUND KNOTS	76.	ģ	71.	70.	69	670	666.0	64ª	62°	60,	60,	59°	59°	570	'n	540	53,	53.	50	48°	47 a	46.	440	43.	42°	42.	40.	39°	38°	37°
DENSITY GM/CUBIC METER	019.	19,	015.	0016	988%	750	962.9	510	40°	26°	10,	96	82.	71.	,09	48°	340	22.	110	000	88°	77.	65.	540	41°	29°	18°	070	96	85.
RELATIVE HUMIDITY PERCENT	2	-	3	6.	ô	40	57.6	2°	8	Ş	40	ô,	ස	, i	4°	4	ထ်	9.	-4	2	ô	æ	ċ	2°	ທໍ	ċ	2	ы •	4	Ŋ
FEMPERATURE K DEWPOINT EES CENTIGRADE	Ŋ		6	•	•		9.4	9°1	•	•			9	0	2.8	0	0	0	•	9	9	-11,0			ည်	-21,1	ļ	~~	<u>,</u>	c,
TEMP AIR DEGREES	ŝ	9	ů	-4	ô	6	17.8	•	4°	8	ŝ	•	2	ဝိ		•	•		٥		•	0		9		-1.5	Ü	G	¢	٠
PRESSURE MILLIBARS	83.	82,	67.	52.	370	22°	808.4	94.	80°	99	50.00	39°	25°	12,	96°	87.	740	62°	49.	370	26.	14.	02°	91°	80.	69°	58°	47.	37.	27°
GEOMETRIC ALTITUDE MSL FEET	989°	000°	500°	ô	500°	000	6500.0	000	500°	000	8500°	000	9500°	0000	ô	1000	1500.	20002	2500°	000	500°	ဝိ	4500°	ô	5500°	60009	500°	ő	500°	ô

STATION ALTITUDE 3989.0 FEET MSL 20 SEPT.66 0955 HRS MST ASCENSION NO. 728

UPPER AIR DATA 0890003903 WHITE SANDS SITE TABLE VII (Cont)

SITE COORDINATES E 48%+580 FEET N 1854045 FEET HSTM

INDEX	EFRACTION	.00015	000	00015	71000	71000	400014	0001	000	.00013	. 0000	£1000°	00012	00012	.00012	.00017	.0001	.0001/1	.000	.00011	.00011	.00010	.00010	00010	000010	000010	0000	00000	00000	00000	1.000034	
: : : • ∀	KNOTS				, ,	, ,	, ,	, ,	4 00				59				N	4		Š	, and	'n	'n	ء ف:	ş	1	~	. 8	:0	ô	21.0	
	DEGREES (TN)				(4)		Ŋ	in	N. 50	5	41.	25	15.	7	0	21.	17.	E K	•	ğ. Oğ	08,	°60	7	-	.60	S. C.	900	7	36.	9		
SPEED OF) Z	E S	34.	33,	3.	30	29.	29.	$\boldsymbol{\sigma}$	26,	25.5	240	o M VL	<u>ئ</u> ر 2	20%	20°	61	E8.	.91	5.	<u> 1</u> 3.	Ñ	0	960	770	99	74%	220	7,7	5	•	
SITY	MEVER	76.	85	55 59	ž,	340	23	33,	ń	ğ	84,	74°	55°	56.	. 6	36,	27.0	18,	ŝ	22:	940	36.	8,	2	S	55°	ď,	ہے ہے	*	5	0	
RELATIVE	ERCENT	Ö	'n	Ÿ	ō	'n	ŝ	Ġ.	18.0	Ä	'n	'n	'n	~	ထိ	S.	ô.		ô	ð	ċ	ئے	Ç	ċ	å	•		•		-	-	-
ERATURE	CENTIGRADE	ဆိ	21.4	ř	9	4,	۲	~	-32.6	ä	င်	, ,	å	ທີ	70	å	ij	4°	a	ŝ	<u>-</u>	ထိ	ထိ	9	~	•	ç	ģ	Ų.		4	
TEMP	DEGREES	ŝ		ó	ဝ်	ô	~	÷	-13°5	4	เก	જું	۴	ဆို	ģ	6	20°	21.	25	ຕໍ	.	12 15 15	•	e O	e O	ô	oj CNI∧	ຕ	*	Š	1	
PRESSURE	MILLIBARS	517.1	~	3	2	m	m	້	0	<u>.</u>	۰ ما	٠,	۰	٠.	~	2°	Q.	•		٥.	٥	•	•	٥	ć	٥	٥		•	•	•	
GEOMETRIC ALTITUDE	Z.	18500.0	000	200	000	500°	900	200	000	S C	000	300°	24000	င်္ဂ ဂိုင်္ဂ	300°	200°	000	300	000	ခိုင် ရ	000	000	200	000	000	000	000	000	000	200	9	

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

**

UPPER AIR DATA 0890003903 WHITE SANDS SITE (ABLE VII (Cent) STATION ALTITUDE 3989.0 FEET MSL 20 SEPT.66 0955 HRS MST ASCENSION NO.

CHIPTIONS BY SELECTION TO SELECTION OF SELECTION SELECTI

INDEX OF REFRACTION	000	60000*	* 0000 E	# 0000 °	80000	.0000	.0000	40000	.0000	.0000	.0000	*0000	00	.0000	.0000	.0000°	90000	90000 9	90000	.0000	• 00000	• 0000	•0000	.0000	# 0000 #	£00000 *	.0000	*O000°	.0000	• 0000
A SPEED KNOTS	-	ż	20	÷		8	30	ċ	5	6	Š	Š	₹	£13	÷		+	4	*	e.	rů,	ë	ij	m	6		4	Ņ	-	•
WIND DA DIRECTION DEGREES (TN)	297.1	93	9	92.	906	89	89,	89.	600	6.00	88.	86.	84.	83	æ m	æ3.	84,	82	& \$	86,	86.	86.	87.	87.	87.	89.	90.	91.	92	94.
SPEED OF SDUND KNOTS		94.	938	25	90°	89.	88.	86.	853	0 3 8	200	81.	49.	78°	, <u>'</u> ,	3.	4.	33,	720	70 °	68.	°,∠9	66°	ć,	63	62.	61.	59°	200	57.
DENSITY S GM/CUBIC METER	136	90	•66	92.	85,	780	77.	659	3 0 0 0	510	440	30°	3320	25°	19,	- 3	070	0,10	96	90.	బ్రి	79.	740	59.	64,	580	Sy,	48.	43	38°
出 > ト ト				_	•	*	*	_		_	_	_		_			*	•	•											
RELATIV HUMIDIT	** *0-		** **	** *0:	ž .01	* 01			* °0"		-		** *0-	** .0-	** 01	** *0-	* 0-	* 0-	• 0-		** °O=		** *0-	** *0-	** "()-	** *0-			** *0-1	
ERATURE RELATI DEWPOINT HUMIDI CENTIGRADE PERCEN	0:	0-	0-1	:	•	i	}	į	01	•	i	•	1	•	ı	!	i	1	i	i	i	I	!	!	1	!	i	i	1	•
RATURE RELATI DEWPOINT HUMIDI ENTIGRADE PERCEN	.7 00	9.7 00	0.8 0.8	. 0 6.	.0 0.	4.1 0,	5°1 0° "	.2 0	.3 00	8.3 0.	9.3 0° -	0.4	1 0 0 4	2.4 0°	3,5 0. 1	4.5 0	N° N	6.6 0° -	7.6 0° -	8.6 0.	0° 1.6	- 0° L	1.7 0	2.8 0	٥,0 8.	. 0 0.	00	6.4 0.	7.3 0.	.2 0.
TEMPERATURE RELATI AIR DEWPOINT HUMIDI EGREES CENTIGRADE PERCEN	78.4 -38.7 00.	72.2 -39.7 00	66.2 -40.8 01	60.2 -41.9 0	54.5 -43.0 0	48.844.1 0,	43.3 -45.1 0	37.9 -45.2 0	32.4 -47.3 00.	26.9 -48.3 0.	21.6 -49.3 0	16.4 -50.4 0	51.04 0	06.352.4 0	01.5 -53.5 0	96.8 -54.5 0	92.1 -55.5 0	87,656,6 0	83.2 -57.6 0	78°9 -58.6 0	74°759.7 0°	70°6 -60.7 0° -	00 e1°1	62.762.8 0	58.863.8 0. 1	54.964.7 0°	51.0 -65.5 0	47.2 -66.4 0	43.6 -67.3 0	40.0 -68.2 0

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

UPPER AIR DATA 0890003903 WHITE SANDS SITE TABLE VIT (Cont)

WSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

INDEX OF REFRACTION	00000	.0000s	* 0000G	\$0000¢	*00000*	\$0000°	,0000¢	. 00004	*0000°	,0000°	40000	€0000°	0000	* 00003	£00000 a	• 00003	,00000°	.00000	£0000°	& DCCC	.0000°	£00000 *	• 00005	.0000	* 0000°	200000	£0000°	20000°	00002	* 0000 °
ATA SPEEU KNOTS	ć	3 ©	Ĵ	ņ	æ FÖ	=	<u>.</u>	6	•	¢	•	•	•	•	=	•	-	3	=	5	Č	-	e G	ผ	ž	æ	6	ç	5,01	C
WIND D/ DIRECTION DEORGES(TN)	94.	60	S. S.	93	96	00	90	12.	99.	0%	79.	453	9	30	6 7.	26,	16,	10,	010	90.	ć	*	:	ت ہے	3	-	8	ê N	8.00 8.00	3
SPEED OF SOUND KNOTS	56.	3 13 13	53 53	523	51.	52.5	525	12 22	್ಷ ಕ್ಷಾ	i G	54.5	54.	ii N	Sign	56.	\$6 °	57.	38	S S S	SO SO	900	60.9	919	624	629	Ć.	63.8	54.	565.	653
DENSITY GM/CUBIC METER	33	20°	÷	18	140	08	62,0	97,	92,	57.0	92°	770	72°	67,	ŝ	ຜູ້	Š	50%	460	42°	38,	SS.	37°	2.3	24.5	21.	7.4	240	111.6	08°
RELATIVE HUMIDITY PERCENT	-0.	** O	** *0:	*******		-10° ##	** 001	4 ° 0 -	** *0	** °0~	** 0.	** 0-	** *0:-	** 0-	** **	** ·0-	***********	•	** °0 ·	** *0"	•	** 01		Ċ	** "0"	** 001	* * O i		***	***
JRE RELATIV POINT HUMIDIT IGRADE PERCENT	;	, O.	0	*O1	, O	. O	301	* "O-	0:-	0,1	0	0:	.0.	°01	°O I	•0-	01	0,	°01	0,1	* *0-	01	0	* 0.0	01	01	, o O	0	0	01
RELATIV NT HUMIDIT &DE PERCENT	9.1 0.	70.0 00	°0° 6°0	1.8 00.	2,4 000.	2.1 0.5 -0.0	1.8 00.	1.5 00. +	1.2 00.	0 0 6.0	0.6 00.	0.3 00	70.0 00.	9.5 0° -0°	9.1 0.	58°6 0°0•	8.1 00.	7.7	7.2 0° -0°	0" "0" 2"9	6.2 OO. +	5.8 0. 10.	5.3 0, "0."	4.8 0° -0° *	°4 0° 10°	°0,1 °0 6°	3.4 0.5 -10.	00	2.5 0. 0.	0. 0.
TEMPERATURE RELATIV AIR DEWPOINT HUMIDIT EGREES CENTIGRADE PERCENT	36.569.1 0.	33,1 -70,0 00.	29.8 -70.9 00.	26.5 -71.8 00.	23.4 -72.4 00.	0.3 -72.1 0D.	17.2 -71.8 00.	14.2 -71.5 00. *	11.04 -71.02 00.	08.5 -70.9 00	05.8 -70.6 00.	03.1 -70.3 00	.00.5 -70.0 00.	8°069°5 0°0°8	5.6 -69.1 O0.	3.3 -68.6 00.	1.0 -68.1 00.	8.7 -67.7 00.	6.567.2 00.	40466.7 004	2.366.2 00. *	0.3 -65.8 0. 10.	8.3 -65.3 0, -0.	6.464.8 00.0 *	4°564°4 0°0°	2.7 -63.9 00.	0.9 -63.4 0.5 -0.0	9.263.0 00	5 -62.5 00	5.8 -62.0 00

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

* *

F MSL MST	
FEET HRS 1	
3989.0 0955	
	728
rube	
ALTITUDE 66	SON.
	NOI
STATION 20 SEPT	ASCENSION
STA 20	Š

UPPER AIR DATA 0890003903 WHITE SANDS SITE TABLE VII (Nort)

METR COOKDINATES TREET TOO TOO TREET N 180,048 FREET

INDEX OF FERNACTOON	1.000024	0000	.0000	400002	.0000	20000°	.00002	*00001	.0000	.0000	10000.	000000	.0000t	.0000	.0000	.0000	.00001	.0000 L	.0000	.0000	1000D+	1.0000	.0000	.00001	.0000	.0000	10000	.00001	.00001
ATA SPEED KNOTS	18.7		~	o	6	3	Č	-	N		÷	4	*	ສຸ	S.	3	•	٠		£	:	·	8	8	80	-	9	ะ	•
WIND DA	0.40	000	77	08.	96.	ج	ë	Ļ	*	ě	6	ທ່	<u>.</u>	8	<i>z</i> .	ċ	O	6	ż	សុ	*	ċ	**	r.	8.	-	ń	ស់	6
SOUND KNOTS	566.4 4.94	67.	\$ 85°	68.	689	.69	69	70.	70°	70.	71.	71.	72.	72.	72.	730	73.	74.	74.	74.	73.	75	76.	76.	76.	770	77.	78.	78.
DENSITY S GM/CUBIC METER	105.7		97.	เร	2	ô	8	ŝ	ų,	-	6	۴	ស	e G	ຂໍ	ċ	8	•	ស្ន	å	ż	ô	8	۴	ş	4	es.	ء منہ	ò
RELATIVE HUMIDITY PERCENT	***		**	**	** •0-	********	** * 0-	** *0-	** 701	** *0-	** .01	** •0-	** 0-	** *0-	** .0-	** •0-	** *0-	** 0-	** °0-	** *0-	** *0-	** *0	** 0-	** *0-	** •0-	** *0-	** **	** °0-	** •0-
TEMPERATURE R DEWPOINT EES CENTIGRADE	ó	ÖÖ	ဝိ	_	ဝ	• •	ဝိ	·	ဝႆ	°	ဝီ	°	•	0	င	°	•	0	၀	•	°O	•	•0	°	ဝံ	•	၀	ဝိ	•
TEMP AIR Degrees	-61.6	y vo	0	0	6	6	ô	ф Ф	8	æ	-	-	-	7	÷	9	-56.1	5°	Š	ις.	4.	-54.6	4	e Θ	3.	3	ë	۰	8
PRESSURE MILLIBARS	64.2	0 1				Ģ	0	E	•	0	0	9	0		٥	c	2.	~	°	ô	æ	70	^	9	ທິ	•	S	2°	2.
GEOMETRIC ALTITUDE MSL FEET	63500.0	5005	°	500°	66000. 0	66500°0	۵	67500.0	0.00089	0		٥	•	۰	٥	٥	72000,0	72500.0	0	73500.0	٥	74500.0	7500000		60	76500.0	0	0	78000.0

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE HAS USED IN THE INFERPOLATION. *

STATION ALTITUDE 3989.0 FEET MSL. 20 SEPT.66 0955 HRS MST ASCENSION NO. 728

UPPER AIR DAIA OSGUCO3903 WHITE SANDS SIFE TABLE VII (Gort)

WSTM SITE COURDINATES E 488,580 FEET N 185,045 FEET

IND EX	REFRACTION	.0000	10000	* (0000)	10000	00000	10000	00000	000000	000007	00000°	00000	00000	00000	000000	* COCOO	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	8	00000.
< U	NOT	40	å	a	e FJ	ผู้	e e	ŝ	ę	Č M	g	en.	4	*		ş	ะ	r,	Š.	S.	ทั	ໝໍ	ร์.	3	m.		٥	<u>ء</u>	erd ,	0"1	*
MIND	EES (0	~	3	c N	္ခံ	င်	ç	ō	õ	Ó	ċ	Ġ	ő	٠. دع	*	\$	30	•	-4	e.	÷	ġ.	S,	÷	ų.	:	Ĉ,	نان: •	0	*
SPEED OF SOUND	KNOTS	19.	80°	80%	818	820	83°	84.	840	659	e S	85.	S S S S	840	\$ 6.0	34.	840	6	833	83	83	83°	82.	32.	833	84.	34,	852	86,	586.8	87.
DENSITY S	METE	90	ထိ	ŝ	ผู้	÷	é	Ą	<u>ئ</u>	ဝံ	ŝ	ఐ	۲	3	<u>.</u> دی	ຜູ້	4	<u>س</u>	Č.	ณ์	<u>۽ .</u>	ö	Ö.	9	æ	æ	5	ŝ	ŝ	250	40
RELATIVE HUMIDITY	RCEN	** °0-		** *0-	** °0-	** °O-	** 01	** 00:	** "0"	** °0"	** 001	** *01	*# °0 i	** * Q-	** "0"	** **	** 30-	*** °O-	** °O-1	** °01	** °0"	** "0"-	** °Q-	** •01	***	** 00-	** °01	** 501	*****	** °O i	**
URE	98.				0°	°O	ငံ	ဝိ		ဝိ	ဝ	ő	ဝိ						ဝိ					o	ဝိ	တိ	ŏ	0		ö́	
- II.	DEGREES	بسر	-	ô	9	ô	-48.8	-48.2		-47.0	-47 al	-47.2	6	-47.06	0	•		c	-48.5	•	٠	0	۰	°	å	8	٩	કે	ę,	-46.1	, t
PRESSURE	MILLIBARS		ô	6	ő	ထိ	-	9	ę	9	Ŝ	4	۰	ŝ	3	Š	ů		ب	ô	ċ	9	6	ဆိ	å	8	!	٠	ŝ	16.5	6,
u	L FEE	500°	000	500°	ô	500°	000	500°	000	500°	000	500°	N 84000°0	84500°	000	500°	000	500°	000	500°	000	500°	89000°0	8950000	0000	0500°	00	1500.	2000s	92500°0	300

** AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

UPPER AIR DATA	WHITE SANDS SITE
STATION ALTITUDE 3989.0 FEET MSL	20 SEPT.66 0955 HRS MST ASCENSION NO. 728

INDEX	00000	100000 T	00000	00000	000000	00000	00000	.00000	00000	00000	00000	00000	.00000	00000	00000*	• 00000	00000	00000	• 000000	00000	000000	00000	00000*	00000	• 00000	.00000	.00000	• 00000
SPEED KNOTS			*	5 1.	4 0 4 0	<u>بر</u> د	, 3	8		جر	-	•	Š.	5	-	۲	Š	8	Œ.	9	œ.	ô	8	6	Š	ö	0	ò
MIND DA	0.4	6.00 6.00 6.00 6.00		n	-		O	8		0	Ü	•	Ġ.	Š	ب مبد	ċ	98.	50	∴	15.	79.	÷ € ₹	21.	21.	23.	28.	32.	
SPEED OF SOUND KNOTS	800	0000 0000 0000	90.	306	₩ ₩ 0	22	933	93.	93	93.	93	93.	93.	92	92,	92,	92	92.	92°	92°	92.	93.	93,	93.	94°	940	940	950
DENSITY S GM/CUBIC METER	40	2 K	Š		֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	ò	6	6	ဆ	8	æ	-	ç	ç	ę	\$	ທີ	ຜູ້	ໝໍ	4.	*	÷	3	ကိ	6	23	Š	%
RELATIVE HUMIDITY PERCENT	* 1	**	** *01	** *0-	* * *		** *01	** *01	** · O-	** *0-	** *0-1	** "01	** *0-	** *0-	** *0-	** *0-	** 001	** *0-	** *0-	** °0-	** 01	** *0-	** *0-	** *0-	** *0=	** *0	** *0-	** °O :-
EMPERATURE DEWPOINT ES CENTIGRADE				Ö	o c	. 0	o	•	ဝ	•	ò	ဝိ	ô	•	ဝ	" 0	ċ	.	ဝီ	ဝီ	•	°	ဝိ	°O	°	°	ő	
TEMP AIR Degrees	មាន	144.0		•					7.04-	-40.8	-	1.	7.	-	-		-41.6	•	•	÷	•	-41.1	Q	-40.6	•		ŝ	
PRESSURE MILLIBARS	in u	15.1	4	*	4 4	ຸຕ	'n	2°	Š	Š	2.0	۳,	 i	-	ن سر	ô	ô	ဝံ	ô	0	٥	e	•	0	0	0	•	•
GEOMETRIC ALTITUDE MSL FEET	500°	94500.0	000°	500°	0000	7000°	500°	000	500°	000	99500°	00000	500°	01000°	01500°	02000°	02500°	03000°	03500°	040000	04500°	05000°	05500°	.00090	0	07000°	07500°	08000°

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

STATION ALTITUDE 3989.0 FEET MSL 20 SEPT.66 0955 HRS MST 20 SEPT.66 ASCENSION NO.

UPPER AIR DATA O890003903 WHITE SANDS SITE TABLE VII (CORE)

WSTM SITE GOORDINATES E 488,580 FEET N 185,045 FEET

INDEX	REFRACT 10	1,0000	1.0000	1,0000	0000°7	1.0000	1,0000	1.0000
SPEED	KNOTS	<u>-</u>						~
WIND DATA	OFSR							
SPEED OF SOUND	KNOTS	950	595,7	596.0	96	36	6	597.3
DENSITY S		12,0	11,8	20° 17' 17'	11,2	11.0	10,7	10.5
RELATIVE HUMIDITY	SENT	***		++ "0-			** °0:	
T H	CENTIGRADE	•	ဝီ	ဝ	ဝ်	å	ő	°Ç
TEMP AIR	DEGREES	-39.4	-39.1	8	-38.6	c		~
PRESSURE	MILLIBARS	8,1	7.9	707	7.6	7.4	7.2	7.1
GEOMETRIC ALTITUDE		108500.0	109000.0	109500°0	110000.0	110500.0	111000.0	111500.0

WAS USED IN THE INTERPOLATION. LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE

EASE	RELEASE TIME	SEC	NTO-STAG	SECOND-STAGE IMPACT DISPLACEMENT IN MILES DUE TO WIND	DISPLACI	gment tr	MITTES D	UE TO WI	E	YZI	THEORE	THEORETICAL DAPACE	MPAGIT
(MST)		11-21	11-216 FT	216~hooo FT)O FT	T4 00096-0007	300 FT	TYTOL	TÁT	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		(IN MILES)	36
RAWIN-	FIBAL	S-N	M-3	S-N	M-E	N-S	州 田	N-S	7	REES)	RANCE W-S	6 -₩	E-W
0615	0200	1, on	0,0	ц. 7N	5,16	0,8N	12,0W	2,3%°	6.9W	355.14	Marchails hoo. 2N	100, 2N	8.1W
9190	0220	2, 9N	0.7E	æ,′°	η . 8Ε	0,8N	12,0W	3, 9X	6,5k	355.7	102,0	עני לסנ	7.7W
0615	0800	7.5k	0,8W	1,6N	3.45	0,8N	12.0W	No.4	9.4W	354.1	102.5	102.5 101.9N	10.6W
062.5	0815	o.1k	, 0.4W	2,38	1.7E	0.8N	12,0W	1,48	7,6W	354.8	97.7	97.7 96.5W	8.8W
0615	0830	1,18	0.7E	3,13	7.2E	0,8N	1.2, OW	3.38	4,1W 356.8	356.8	8	80.48	S. 3W
0615	01/80	3,38	2.7E	5,95	3.75	0.8N	12.0W	8.38	.v. .‰	355.7	89.9	89. GN	WG .9
0615	0850	5.73	3.3E	6.33	5.38	0, 9N	12,0W	11.28	3.LW	357.0	86.8	86.7N	lı, 617
0615	0857	4.78	o.lw	6.88	5.7E	, 0 , 0	12.0W	10.75	. 6.6W	354.9	87.6	97. 2N	7.8W
0955	0919	3.58	0.8E	8.83	6.85	2.5N	10,8W	9.88	3, 2W	357.1	88.2	88, 1N	11.111

	AZIMUTII MILES FROM LAUNGIER	MILES F	NYI WOU	NOTIBE
	nees)	PANGE	N-8	M-E
LAUNCHER SETTING (ELEVATION 83.1. DECREMS QE)	002,2	ļ	98.0 97.9N 3.8E	3,80
NO WIND IMPACT	359.7	6.76	97.9N 1.2W	1,2W
PREDICTED IMPACT	357.6		69.6 69.6N 2.9W	2.9W
ACTUAL IMPACT	344.5	97.5	97.5 94.0N 26.1W	26. In
PREDICTED BOOSTER IMPACT	005.0	1,1	1.4N 0.0	0.0
ACTUAL BOOSTER IMPACT	N/A	N/A	N/A	N/A

TABLE VIII, IMPACT PREDICTION DATA NIKE-HYDAC, MK 1.2 STV (SR-038)

3 2 2

*Post Shoot Winds

Security Classification			-							
DOCUMENT CO (Security classification of title, body of abotact and index	MTROL DATA - R&D ing annulation must be ente	roé abon i	he everall report is classified)							
U. S. Army Klectronics Command Fort Bonsouth, New Jersey		26. REPORT SECURITY CLASSIFICATION UNCLASSIFIED 28. GROUP								
							3. REPORT TITLE			
							METEOROLOGICAL DATA PEPORT, NIKE-HYI	DAC MK 12 STV (SF	?-038)	
	_		•							
4. DESCRIPTIVE NOTES (Type of report and inclinates delect)		-								
S. AUTHON(3) (Cool name, first name, failful)	•		-							
SHARPE, John H		-	-							
	:									
s. report date November 1966	74. TOTAL NO, OF PAR	BE\$-	74 No. of Refs None							
SE. CONTRACT OR SRANT NO.	SA ORIGINATOR'S REP	ORT HUM	3 ⁶ 12							
	-	. ·								
& PROJECT NO.	DR-99									
6. Di Toek TUCCOM 043 07 00	SA OTHER REPORT N	(3) (A see	other suchers first may be soulfied							
* DA Task IV650212A127-02	file report)									
d.	<u> </u>									
10-AVAILABILITY/LINITATION HOTICES		• •	· ·							
Distribution of this document is unl	inited.	•	, and the second							
11- SUPPLEMENTARY HOTES	U. S. Army Elect onics Command Atmospheric Sciences Laboratory White Sands Missile Range, New Mexico									
· · · · · · · · · · · · · · · · · · ·										
13. ABSTRACT			•							
Meteorological data gathered for										
(SR-038) are presented for the Air F										
Office, the General Electric Company appear, along with calculated ballis										
appear, arong with caroniales partic	, ore dated the date	urei i	O141.							
·			·							
			-							
			•							

DD .5984. 1473

UNCLASSIFIED

Sedvaty Classification

H. Comments	LINK A		LINK &		LINK C			
KEV 90RD3		HOLE NT		HOLE HT		ROLE	WŢ	
			· · .	~~~,				
		. · · · · · · · · · · · · · · · · · · ·						
	Q.			£			6 1	~
1.5 Ballis	Tics		ş					
2. Nateor	ology						[[_
3. Wind		. ^						_
		· ·					-	• • • •
		- 1				and the second]]	
	****				_			
		;] .				1	
	سعي .	· ·				-		-
		· .				-		
ਤ ਭ ਵੀ ਪੜ੍ਹੀ				Î.	-	i i	•	
			1 .	١.] .		•	
	er a estate		1					
:	•	•	ł	İ		l	1 1	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	INSTRUCTION	 	<u></u>	<u> </u>	<u> </u>		

- 1. Officinating activity: Eater the name and address of the contractor, subcontractor, grantes, Department of Defense activity or other organization (corporate author) insuling the recort.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 25. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual, Enter the group number. Also, when applicable, show that optional markings have been used for Group-3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(8): Enter the name(a) of author(a) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7s. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 75. NUMBER OF REFERENCES. Enter the total number of references cited in the recort.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enfer the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
 - (i) "Qualified requesters may obtain copies of this report from DDC"
 - (2) ⁶Foreign assouncement and dissemination of this report by DDC is not authorised.²⁷
 - (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users whall request through
 - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
 - (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce; for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Idenflers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.