Subgradient Descent

He He

CDS, NYU

Feb 23, 2021

Subgradient Descent

He He

CDS, NYU

Feb 23, 2021

SVM Optimization Problem (no intercept)

SVM objective function:

$$J(w) = \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i w^T x_i) + \lambda ||w||^2.$$

- Not differentiable... but let's think about gradient descent anyway.
- Hinge loss: $\ell(m) = \max(0, 1-m)$

$$\nabla_{w}J(w) = \nabla_{w}\left(\frac{1}{n}\sum_{i=1}^{n}\ell(y_{i}w^{T}x_{i}) + \lambda||w||^{2}\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}\nabla_{w}\ell(y_{i}w^{T}x_{i}) + 2\lambda w$$

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021

"Gradient" of SVM Objective

• Derivative of hinge loss $\ell(m) = \max(0, 1-m)$:

• By chain rule, we have

$$\nabla_{w}\ell(y_{i}w^{T}x_{i}) = \ell'(\underbrace{y_{i}w^{T}x_{i}}_{m})y_{i}x_{i}$$

$$= \begin{cases} 0 & w \\ -y_{i}w^{T}x_{i} > 1 \\ -y_{i}x_{i} & y_{i}w^{T}x_{i} < 1 \\ \text{undefined} & y_{i}w^{T}x_{i} = 1 \end{cases}$$

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 3 / 20

$$\nabla_{w}\ell(y_{i}w^{T}x_{i}) = \begin{cases} 0 & y_{i}w^{T}x_{i} > 1 \\ -y_{i}x_{i} & y_{i}w^{T}x_{i} < 1 \\ \text{undefined} & y_{i}w^{T}x_{i} = 1 \end{cases}$$

So

$$\nabla_{w}J(w) = \nabla_{w}\left(\frac{1}{n}\sum_{i=1}^{n}\ell\left(y_{i}w^{T}x_{i}\right) + \lambda||w||^{2}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}\nabla_{w}\ell\left(y_{i}w^{T}x_{i}\right) + 2\lambda w$$

$$= \begin{cases} \frac{1}{n}\sum_{i:y_{i}w^{T}x_{i}<1}\left(-y_{i}x_{i}\right) + 2\lambda w & \text{all } y_{i}w^{T}x_{i} \neq 1\\ \text{undefined} & \text{otherwise} \end{cases}$$

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021

Gradient Descent on SVM Objective?

• The gradient of the SVM objective is

$$\nabla_w J(w) = \frac{1}{n} \sum_{i: y_i w^T x_i < 1} (-y_i x_i) + 2\lambda w$$

when $y_i w^T x_i \neq 1$ for all i, and otherwise is undefined.

Potential arguments for why we shouldn't care about the points of nondifferentiability:

- If we start with a random w, will we ever hit exactly $y_i w^T x_i = 1$?
- If we did, could we perturb the step size by ε to miss such a point?
- Does it even make sense to check $y_i w^T x_i = 1$ with floating point numbers?

However, would gradient descent work if the objective is not differentiable?

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 5 / 20

Subgradient

First-Order Condition for Convex, Differentiable Function

• Suppose $f: \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable Then for any $x, y \in \mathbb{R}^d$

$$f(y) \geqslant f(x) + \nabla f(x)^T (y - x)$$

• The linear approximation to f at x is a global underestimator of f:

7 / 20

• This implies that if $\nabla f(x) = 0$ then x is a global minimizer of f.

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3

Subgradients

Definition

A vector $g \in \mathbb{R}^d$ is a subgradient of a *convex* function $f : \mathbb{R}^d \to \mathbb{R}$ at x if for all z,

$$f(z) \geqslant f(x) + g^{T}(z-x).$$

Blue is a graph of f(x).

Each red line $x \mapsto f(x_0) + g^T(x - x_0)$ is a global lower bound on f(x).

He He (CDS, NYU) DS-GA 1003

Feb 23, 2021

Properties

Definitions

- The set of all subgradients at x is called the **subdifferential**: $\partial f(x)$
- f is subdifferentiable at x if \exists at least one subgradient at x.

For convex functions:

- f is differentiable at x iff $\partial f(x) = {\nabla f(x)}.$
- Subdifferential is always non-empty ($\partial f(x) = \emptyset \implies f$ is not convex)
- x is the global optimum iff $0 \in \partial f(x)$.

For non-convex functions:

• The subdifferential may be an empty set (no global underestimator).

Subdifferential of Absolute Value

• Consider f(x) = |x|

• Plot on right shows $\{(x,g) \mid x \in R, g \in \partial f(x)\}$

Subgradients of $f(x_1, x_2) = |x_1| + 2|x_2|$

- Let's find the subdifferential of $f(x_1, x_2) = |x_1| + 2|x_2|$ at (3, 0).
- First coordinate of subgradient must be 1, from $|x_1|$ part (at $x_1 = 3$).
- Second coordinate of subgradient can be anything in [-2,2].
- So graph of $h(x_1, x_2) = f(3,0) + g^T(x_1 3, x_2 0)$ is a global underestimate of $f(x_1, x_2)$, for any $g = (g_1, g_2)$, where $g_1 = 1$ and $g_2 \in [-2, 2]$.

Feb 23, 2021

11/20

He He (CDS, NYU) DS-GA 1003

Subdifferential on Contour Plot

Contour plot of $f(x_1, x_2) = |x_1| + 2|x_2|$, with set of subgradients at (3,0).

Plot courtesy of Brett Bernstein.

Basic Rules for Calculating Subdifferential

- Non-negative scaling: $\partial \alpha f(x) = \alpha \partial f(x)$ for $(\alpha > 0)$
- Summation: $\partial(f_1(x) + f_2(x)) = d_1 + d_2$ for any $d_1 \in \partial f_1$ and $d_2 \in \partial f_2$
- Composing with affine functions: $\partial f(Ax+b) = A^T \partial f(z)$ where z = Ax+b
- max: convex combinations of argmax gradients

$$\partial \max(f_1(x), f_2(x)) = \begin{cases} \nabla f_1(x) & \text{if } f_1(x) > f_2(x), \\ \nabla f_2(x) & \text{if } f_1(x) < f_2(x), \\ \nabla \theta f_1(x) + (1 - \theta) f_2(x) & \text{if } f_1(x) = f_2(x), \\ \nabla \nabla \theta f_1(x) + (1 - \theta) f_2(x) & \text{if } f_1(x) = f_2(x), \end{cases}$$

where $\theta \in [0, 1]$.

Subgradient Descent

Gradient orthogonal to level sets

We know that gradient points to the fastest ascent direction. What about subgradients?

Contour Lines and Subgradients

A hyperplane H supports a set S if H intersects S and all of S lies one one side of H.

Claim: If $f: \mathbb{R}^d \to \mathbb{R}$ has subgradient g at x_0 , then the hyperplane H orthogonal to g at x_0 must support the level set $S = \{x \in \mathbb{R}^d \mid f(x) = f(x_0)\}$.

Proof:

- For any y, we have $f(y) \ge f(x_0) + g^T(y x_0)$. (def of subgradient)
- If y is strictly on side of H that g points in,
 - then $g^T(y-x_0) > 0$.
 - So $f(y) > f(x_0)$.
 - So y is not in the level set S.
- ... All elements of S must be on H or on the -g side of H.

Subgradient of $f(x_1, x_2) = |x_1| + 2|x_2|$

17 / 20

- Points on g side of H have larger f-values than $f(x_0)$. (from proof)
- But points on -g side may **not** have smaller f-values.
- So -g may **not** be a descent direction. (shown in figure)

Plot courtesy of Brett Bernstein.

Subgradient Descent

• Move along the negative subgradient:

$$x^{t+1} = x^t - \eta g$$
 where $g \in \partial f(x^t)$ and $\eta > 0$

• This can increase the objective but gets us closer to the minimizer if f is convex and η is small enough:

$$||x^{t+1}-x^*|| < ||x^t-x^*||$$

- Subgradients don't necessarily converge to zero as we get closer to x^* , so we need decreasing step sizes, e.g. O(1/t) or $O(1/\sqrt{t})$.
- Subgradient methods are slower than gradient descent, e.g. $O(1/\epsilon^2)$ vs $O(1/\epsilon)$ for convex functions.

Based on https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S20/S4.pdf

Subgradient descent for SVM (HW3)

SVM objective function:

$$J(w) = \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i w^T x_i) + \lambda ||w||^2.$$

Pegasos: stochastic subgradient descent with step size $\eta_t = 1/(t\lambda)$

```
Input: \lambda > 0. Choose w_1 = 0, t = 0

While termination condition not met

For j = 1, \ldots, n (assumes data is randomly permuted)

t = t + 1

\eta_t = 1/(t\lambda);

If y_j w_t^T x_j < 1

w_{t+1} = (1 - \eta_t \lambda) w_t + \eta_t y_j x_j

Else

w_{t+1} = (1 - \eta_t \lambda) w_t
```

Summary

- Subgradient: generalize gradient for non-differentiable convex functions
- Subgradient "descent":
 - General method for non-smooth functions
 - Simple to implement
 - Slow to converge