MP3: Pattern Recognition
Abhi Kamboj
Hockenmaier
4/1/2019

Table of Contents:

Contents

Table Of Contents:	
Section I:	
Part 1.1: Naïve Bayes Model	
Results	
Optimizations	
Part 1.2: Perceptron Model	
Results	
Optimizations	
Section II:	
Unigram Model:	
Results:	
Extra Credit:	13
Bigram Model:	13
Mixture Model:	14
Results	14

Section I:

Part 1.1: Naïve Bayes Model

Results

Overview Screenshot:

```
C:\Users\Abhi Kamboj\ECE-448-Intro-to-AI\MP3 pattern recognition\mp3-code\part1>image_main.py
highest log probabilities: [-2129.09086194 -1139.03812197 -2267.58209501 -1250.77229853
 -2020.27436206 -819.3329071 -2207.7717257 -1141.78450757
-2003.99323831 -1612.71877855]
lowest log probabilities: [-4062.29499162 -2335.64414529 -4081.80869228 -2948.25022535
-3592.91335072 -3669.03271733 -5010.60099152 -2401.16866074
-4543.87070131 -3954.27894561]
classification rates: [0.762 0.894 0.455 0.842 0.634 0.765 0.445 0.905 0.885 0.883]
accuracy: 0.747
Normalized confusion matrix
[[0.762 0.001 0.01 0.11 0.016 0.
                                     0.083 0.
                                                 0.018 0.
[0.006 0.894 0.014 0.045 0.023 0.
                                     0.018 0.
                                                       0.
[0.006 0.
                                     0.221 0.
           0.455 0.012 0.292 0.
                                                 0.014 0.
                  0.842 0.038 0.
 [0.049 0.006 0.
                                     0.065 0.
                                                 0.
 [0.001 0.001 0.104 0.096 0.634 0.001 0.153 0.
                                                 0.01 0.
                               0.765 0.004 0.184 0.005 0.042]
             0.
                   0.
                         0.
 [0.158 0.
             0.098 0.059 0.213 0.001 0.445 0.
                                                 0.026 0.
                        0.
                               0.03 0.
                                           0.905 0.
             0.
                   0.
                                                       0.0651
 [0.
       0.001 0.002 0.031 0.01 0.022 0.025 0.023 0.885 0.001]
 [0.
       0.
                   0.006 0.
                               0.033 0.
                                           0.075 0.003 0.883]]
:\Users\Abhi Kamboj\ECE-448-Intro-to-AI\MP3 pattern recognition\mp3-code\part1>
```

Average Classification Rate:

Average Classification Rate: 0.747

Classification Rate for Each Class:

classification rates: [0.762 0.894 0.455 0.842 0.634 0.765 0.445 0.905 0.885 0.883]

Indices in the array shown above correspond to classes

Confusion Matrix:

Highest Posterior Probabilities:

highest log probabilities: [-2129.09086194 -1139.03812197 -2267.58209501 -1250.77229853 -2020.27436206 -819.3329071 -2207.7717257 -1141.78450757 -2003.99323831 -1612.71877855]

Lowest Posterior Probabilities:

lowest log probabilities: [-4062.29499162 -2335.64414529 -4081.80869228 -2948.25022535 -3592.91335072 -3669.03271733 -5010.60099152 -2401.16866074 -4543.87070131 -3954.27894561]

Visualization Plots for Feature Likelihood:

Optimizations

A program was written testing K values (k used in Laplace smoothing) from .1 through 10 to determine which one produced the highest accuracy and it was determined that a K value of .1 gives the highest accuracy.

Part 1.2: Perceptron Model

Results

Overview Screenshot:

```
C:\Users\Abhi Kamboj\ECE-448-Intro-to-AI\MP3 pattern recognition\mp3-code\part1>image main.py
highest perceptron scores: [34838585.65912683 30045408.56150796 21326682.09801592 30363093.39365072
36533512.42142881 41763258.75873019 39561245.86150788 29116503.5349206
42694675.96031752 48832292.84047616]
lowest perceptron scores: [3025541.93293648 3809036.85912699 3851418.87658732 4729209.13650789
4624707.40793655 2902097.65793652 3150409.59166664 3713386.76071428
3317798.31071429 3549814.20079362]
classification rates: [0.322 0.933 0.018 0.782 0.8 0.894 0.83 0.942 0.882 0.818]
accuracy: 0.7221
Normalized confusion matrix
[[0.322 0.005 0.003 0.046 0.026 0.
                                     0.587 0.
                                                 0.009 0.002]
       0.933 0.
                 0.036 0.011 0.
                                     0.02 0.
                                                 0.
                                                       0.
       0.001 0.018 0.007 0.292 0.
                                     0.678 0.
                                                 0.004 0.
 [0.008 0.011 0.001 0.782 0.087 0.
                                     0.108 0.
                                                 0.003 0.
                   0.012 0.8 0.
                                     0.185 0.
                                                 0.003 0.
                   0. 0.001 0.894 0.005 0.048 0.019 0.031]
 [0.001 0.001 0.
 [0.014 0.004 0.005 0.017 0.121 0. 0.83 0.
                                                 0.009 0.
                   0. 0. 0.043 0.
                                          0.942 0.006 0.0091
       0.
           0.
 [0.005 0.002 0.
                   0.004 0.026 0.011 0.065 0.004 0.882 0.001]
                   0.001 0.
                               0.065 0.
                                           0.115 0.001 0.818]]
 [0.
       0.
             0.
C:\Users\Abhi Kamboj\ECE-448-Intro-to-AI\MP3 pattern recognition\mp3-code\part1>
```

Average Classification Rate:

Average Classification Rate: 0.7221

Classification Rate for Each Class:

classification rates: [0.322 0.933 0.018 0.782 0.8 0.894 0.83 0.942 0.882 0.818]

Indices in the array shown above correspond to classes

Confusion Matrix:

Highest Perceptron Scores:

highest perceptron scores: [34838585.65912683 30045408.56150796 21326682.09801592 30363093.39365072 36533512.42142881 41763258.75873019 39561245.86150788 29116503.5349206 42694675.96031752 48832292.84047616]

Lowest Perceptron Scores:

lowest perceptron scores: [3025541.93293648 3809036.85912699 3851418.87658732 4729209.13650789 4624707.40793655 2902097.65793652 3150409.59166664 3713386.76071428 3317798.31071429 3549814.20079362]

Visualization Plots for Perceptron Weights:

After running through data once:

Average classification rate is .6881

Perceptron weights:

After running through training data 10 times:

Average classification rate is .7221

Perceptron weights:

Optimizations

Initially the perceptron weights were trained by running through the training dataset once and updating the weights accordingly. The perceptron visualizations looked accurate, however the average classification rate was below 70%. The perceptron weights were then trained by running through the data set 10 times each time with a decreasing learning 1/n applied to the weight updates, where n is the trail run the set is on. This increased the accuracy to about 72% however made the perceptron weights a little less visually clear (see <u>Visualization Plots</u> above). This could be because the perceptron weights captured higher dimensional specific features that aren't as visual for us to see.

Section II:

Unigram Model:

Results:

Confusion matrix:

True Label x Predicted Label

Class Labels	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	0	0.02439	0	0	0.04878	0.17073	0.04878	0.04878	0.02439	0.02439	0.04878	0.17073	0.07317	0.31707
2	0	0.8913	0	0	0.02174	0	0.04348	0	0	0	0.02174	0	0	0.02174
3	0	0	0.42857	0.09524	0.04762	0	0.04762	0	0	0	0	0.2381	0.04762	0.09524
4	0	0	0	1	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0.95455	0	0	0	0	0	0	0.04545	0	0
6	0	0	0	0	0.02083	0.77083	0.02083	0.0625	0	0	0	0.08333	0.02083	0.02083
7	0	0.03333	0	0.03333	0	0	0.76667	0.06667	0	0	0	0.06667	0	0.03333
8	0	0	0	0	0	0.05882	0.02941	0.82353	0	0.02941	0	0.05882	0	0

9	0	0	0	0	0	0	0	0.125	0.75	0	0	0.125	0	0
10	0	0	0	0	0	0	0	0.02	0	0.84	0.14	0	0	0
11	0	0	0	0	0	0	0	0	0	0.04444	0.95556	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0.97619	0.02381	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0.97368	0.02632
14	0	0	0	0	0	0	0	0	0	0	0	0.05714	0	0.94286

Accuracy:

Accuracy: 0.7909812877026547

Classification Rate, Recall, Precession, F1:

Class:	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Classification Rate:	0	0.8913 04	0.4285 71	1	0.9545 45	0.7708 33	0.7666 67	0.8235 29	0.75	0.84	0.9555 56	0.9761 9	0.9736 84	0.9428 57
Precision:	0	0.9534 88	1	0.8846 15	0.8076 92	0.8043 48	0.7666 67	0.7567 57	0.8571 43	0.9130 43	0.8113 21	0.6307 69	0.8604 65	0.6346 15
Recall:	0	0.8913 04	0.4285 71	1	0.9545 45	0.7708 33	0.7666 67	0.8235 29	0.75	0.84	0.9555 56	0.9761 9	0.9736 84	0.9428 57
F1 Score:	0	0.9213 48	0.6	0.9387 76	0.875	0.7872 34	0.7666 67	0.7887 32	0.8	0.875	0.8775 51	0.7663 55	0.9135 8	0.7586 21

Top Feature words:

Each entry is: "word" | probability

Cla			ss 1		ss 2	Clas		Clas	
company'	0.007325	"school"	0.040849	"born"	0.01215	"born"	0.01835	"born"	0.011535
'based"	0.002634	"high"	0.016811	"american	0.006537	"football"	0.011548	"member"	0.010757
'business"	0.002374	"located"	0.009387	"known"	0.005089	"played"	0.010366	"district"	0.0078
'founded"			0.006736	"new"	0.004003	"league"	0.009479	"politician	
"bergen"	0.001853	"college"	0.006383	"band"	0.003098	"footballe		"state"	0.005309
"record"	0.001853	"schools"	0.005675	"best"	0.002917	"plays"	0.005339	"senate"	0.004998
"records"	0.001853	"public"	0.005675	"writer"	0.002917	"player"	0.005339	"democrat	
"services"	0.001592		0.004261	"rock"	0.002736	"professio		"house"	0.004998
"systems"	0.001592	"education	0.003908	"work"	0.002554	"former"	0.005043	"party"	0.004842
•	0.001332	"county"	0.003378	"musician"	0.002554	"national"	0.0046	"served"	0.004687
"office"	0.001332	"district"	0.003378	"music"	0.002554	"american		"former"	0.004531
"college"	0.001071	"new"	0.002671	"singer"	0.002192	"hockey"	0.003565	"county"	0.004064
	0.001071	"one"	0.002671	"also"	0.002192	"currently"	0.003565	"since"	0.003908
"buses"	0.001071	"founded"		"york"	0.002011	"also"	0.003565	"represent	0.003753
"pierce"	0.001071	"independ	0.002494	"author"	0.00183	"rugby"	0.003417	"republica	0.003286
"life"	0.001071	"establishe	0.002494	"books"	0.00183	"team"	0.003269	"elected"	0.00313
establishe"	0.001071	"united"	0.002494	"album"	0.00183	"australiar	0.003121	"united"	0.00313
"including"	0.001071	"city"	0.002494	"member"	0.001649	"novembe	0.002973	"american	0.002974
"national"	0.001071	"part"	0.002494	"series"	0.001649	"world"	0.002825	"represent	0.002819
"located"	0.001071	"private"	0.002317	"united"	0.001649	"new"	0.002678	"national"	0.002819
Cla	ss 5	Cla	ss 6	Cla	ss 7	Clas	ss 8	Clas	ss 9
"navy"	0.012553	"historic"	0.017234	"river"	0.025204	"village"	0.023521	"family"	0.03054
"built"	0.010856	"house"	0.01337	"lake"	0.015084	"district"	0.008188	"species"	0.02653
"war"	0.007744	"built"	0.012807	"mountain	0.009809	"populatio	0.005715	"found"	0.015503
"ship"	0.006706	"located"	0.010392	"located"	0.008624	"province"	0.005468	"genus"	0.014956
"uss"	0.006046	"church"	0.010231	"south"	0.006687	"located"	0.005221	"moth"	0.008941
"united"	0.005574	"building"	0.009426	"km"	0.00561	"census"	0.004973	"gastropo	0.00566
"aircraft"	0.00548	"national"	0.009346	"north"	0.005395	"nepal"	0.003984	"sea"	0.005478
"class"	0.00548	"register"	0.007736	"county"	0.004211	"municipal	0.003984	"known"	0.005296
"world"	0.005386	"places"	0.006931	"near"	0.004103	"state"	0.003489	"marine"	0.004931
"states"	0.005197	"listed"	0.005563	"tributary"		"india"	0.003489	"described	
	0.005103	"street"	0.004999	"range"	0.003888	"county"	0.002995	"tropical"	0.004567
"service"	0.003877	"county"	0.004999	"west"	0.003888	"km"	0.002748	"snail"	0.004202
	0.003783	"united"	0.004194	"lies"	0.00378	"people"	0.002748	"mollusk"	0.004111
"named"	0.003783	"known"	0.004033	"creek"	0.003672	"within"	0.002253	"endemic"	0.00402
"first"	0.003783	"museum"		"crater"	0.003565	"1991"	0.002006	"subtropic	
"royal"	0.003594	"also"	0.003872	"east"	0.003565	"2010"	0.002006	"habitat"	0.003564
•	0.003311	"states"	0.00355	"state"	0.003457	"southern'		"forests"	0.0032
	0.003217	"designed"		"ft"	0.003457	"kerala"	0.001758	"natural"	0.0032
"ii"	0.003123	"hospital"	0.003223	"flows"	0.003437	"road"	0.001758	"snails"	0.0032
	0.003123	"added"	0.003148	"pass"	0.003134	"time"	0.001758	"moist"	0.003010
Company	0.002934	auueu	0.003148	pass	0.003134	tille	0.001738	IIIOISt	0.002320
Clas	c 10	Clas	c 11	Class	s 12	Clas	c 12		
		"album"	0.050413	"film"	0.05129	"published			
"species"	0.029372					1			
"family"	0.019659		0.028552	"directed"		"book"	0.013071		
"plant"	0.017268	"band"	0.009291	"starring"	0.0082	"novel"	0.012913		
"genus"	0.016446	"records"	0.009185		0.007728	"first"	0.008926		
"native"	0.0089	"first"	0.007965	"stars"	0.006078	"journal"	0.008401		
"endemic"		"studio"	0.007646	"released"		"written"	0.006932		
	0.008676		0.005683	"written"	0.005547	"series"	0.00562		
"known"	0.008451	"songs"	0.005418	"based"	0.005135	"newspape			
'found"	0.006509	"music"	0.005365	"drama"	0.005017	"story"	0.004098		
	0.005612	"second"	0.005259	"comedy"	0.004899	"american			
"leaves"	0.005164	"release"	0.0051	"also"	0.004781	"author"	0.003521		
"plants"	0.005164		0.004834		0.004781	"new"	0.003101		
"habitat"	0.00494	"rock"	0.004728	"films"	0.003366	"magazine			
"tree"	0.004417	"live"	0.004251	"silent"	0.003072	"fiction"	0.002787		
"grows"	0.003894	"debut"	0.004251	"first"	0.003072	"books"	0.002734		
"name"	0.003894	"tracks"	0.004091	"movie"	0.003013	"peerrevie	0.002629		
"orchid"	0.003669	"label"	0.003932	"roles"	0.002541	"also"	0.002524		
'south"	0.003595	"albums"	0.003773	"novel"	0.002482	"publicatio	0.002419		
"bulbophy	0.003296	"new"	0.003667	"name"	0.002482	"science"	0.002419		
	0.003146	"ep"	0.003455	"documen	0.002423	"life"	0.002314		

Class Prior Manipulation:

Results without class prior:

Classification Rates: [0.0, 0.9130434782608695, 0.5714285714285714, 1.0, 1.0, 0.7708333333333334, 0.7666666666666667, 0.8235294117647058, 0.75, 0.84, 0.95555555555555556, 0.9285714285714286, 0.9736842105263158, 0.9428571428571428]

Accuracy: 0.8025835570688992

Results with uniform class priors: (Class prior=1/14)

Classification Rates: [0.0, 0.9130434782608695, 0.5714285714285714, 1.0, 1.0, 0.7708333333333334, 0.7666666666666667, 0.8235294117647058, 0.75, 0.84, 0.9555555555555556, 0.9285714285714286, 0.9736842105263158, 0.9428571428571428]

Accuracy: 0.8025835570688992

Without the class priors or with uniform class priors the results increased by about a percent. Priors don't necessarily help the in testing. Priors help alleviate for when one class is seen more often than others in the training set. They don't make a difference in the case that training doesn't depend on how many examples of each set you saw. For example, you could have seen less examples of class 2 than class 3, but maybe class 2 had much more distinctive words than class 3, so it's easier to classify. In this case adding priors might throw it off and make it seem like class 3 is more likely than it should be, leading to more misclassifications.

Extra Credit:

Bigram Model:

```
:\Users\Abhi Kamboj\ECE-448-Intro-to-AI\MP3 pattern recognition\mp3-code\part2>text_main.py
Confusion Matrix:
0.19512 0.00000 0.04878 0.00000 0.00000 0.00000 0.00000 0.00000 0.73171 0.00000 0.00000 0.00000 0.00000 0.02439
0.15217 0.02174 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82609 0.00000 0.00000 0.00000 0.00000 0.00000
0.14286 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.85714 0.00000 0.00000 0.00000 0.00000 0.00000
0.34783 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.65217 0.00000 0.00000 0.00000 0.00000 0.00000
0.09091 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.90909 0.00000 0.00000 0.00000 0.00000
0.22917 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.77083 0.00000 0.00000 0.00000 0.00000 0.00000
 .13333 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.86667 0.00000 0.00000 0.00000 0.00000 0.00000
0.20588 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.79412 0.00000 0.00000 0.00000 0.00000 0.00000
3.12500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.87500 0.00000 0.00000 0.00000 0.00000 0.00000
 .18000\ 0.00000\ 0.00000\ 0.00000\ 0.00000\ 0.00000\ 0.00000\ 0.82000\ 0.00000\ 0.00000\ 0.00000\ 0.00000\ 0.00000
0.15556 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.84444 0.00000 0.00000 0.00000 0.00000 0.00000
0.23810 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.76190 0.00000 0.00000 0.00000 0.00000 0.00000
0.31579 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.68421 0.00000 0.00000 0.00000 0.00000 0.00000
0.11429 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.85714 0.00000 0.00000 0.00000 0.00000 0.02857
lassification rates: [0.1951219512195122, 0.021739130434782608, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.875, 0.0, 0.0, 0.0, 0.0
 0.02857142857142857]
 0.0, 0.5]
Recall for all classes: [0.1951219512195122, 0.021739130434782608, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.875, 0.0, 0.0, 0
.0, 0.02857142857142857]
0.0, 0.0, 0.0, 0.0, 0.05405405405405405]
Accuracy 0.0800
::\Users\Abhi Kamboj\ECE-448-Intro-to-AI\MP3 pattern recognition\mp3-code\part2>
```

Notice the much lower accuracy of 8% in the fully bigram model. Discussed further in the Results.

Mixture Model:

Lambda	Accuracy	Lambda	Accuracy
0.01	0.790981	0.51	0.082962
0.02	0.55122	0.52	0.081409
0.03	0.355584	0.53	0.081409
0.03	0.257825	0.54	0.081409
0.04	0.209096	0.55	0.081409
0.05	0.209090	0.56	0.081409
0.00	0.161373	0.50	0.081409
0.07	0.103304	0.58	0.081409
	0.147330	0.58	0.081409
0.09	0.144028	0.59	
0.1	0.134669		0.081409
0.11		0.61	0.081409
0.12	0.134669	0.62	0.081409
0.13	0.131415	0.63	0.081409
0.14	0.121779	0.64	0.081409
0.15	0.120226	0.65	0.081409
0.16	0.120226	0.66	0.081409
0.17	0.112462	0.67	0.078162
0.18	0.106614	0.68	0.078162
0.19	0.106614	0.69	0.078162
0.2	0.103509	0.7	0.076575
0.21	0.103509	0.71	0.076575
0.22	0.103509	0.72	0.076575
0.23	0.103509	0.73	0.076575
0.24	0.098709	0.74	0.076575
0.25	0.098709	0.75	0.076575
0.26	0.095242	0.76	0.076575
0.27	0.095242	0.77	0.076575
0.28	0.092137	0.78	0.076575
0.29	0.092137	0.79	0.076575
0.3	0.089031	0.8	0.076575
0.31	0.089031	0.81	0.076575
0.32	0.089031	0.82	0.076575
0.33	0.089031	0.83	0.076575
0.34	0.089031	0.84	0.076575
0.35	0.089031	0.85	0.076575
0.36	0.089031	0.86	0.076575
0.37	0.089031	0.87	0.076575
0.38	0.089031	0.88	0.076575
0.39	0.08693	0.89	0.076575
0.4	0.085343	0.9	0.076575
0.41	0.085343	0.91	0.076575
0.42	0.085343	0.92	0.078317
0.43	0.085343	0.93	0.078317
0.44	0.085343	0.94	0.078317
0.45	0.085343	0.95	0.080059
0.46	0.085343	0.96	0.078507
0.47	0.085343	0.97	0.080249
0.48	0.085343	0.98	0.083733
0.49	0.082962	0.99	0.076547
0.5	0.082962	1	0.078289
0.5	3.002302		3.0.0203

Results

The bigram model decreased the accuracy of the results.

1. Running naive Bayes on the bigram model relaxes the naive assumption of the model a bit. However, is this always a good thing? Why or why not?

Although it does relax the naïve assumption of the model, occasionally that can be a bad thing like in this case since there were not enough training examples. For the bigram model to be successful, it would probably need a robust data set with more possible combinations of 2-word pairs.

2. What would happen if we did an N-gram model where N was a really large number?

The model would fail for very large N, because then you would be looking at almost the entire text sample. In this case, you would be overfitting the data to the text sample, not picking up unique features for the example to work.