Introduction to Machine Learning

Evaluation: Introduction and Remarks

Learning goals

- Understand the goal of performance estimation
- Know the definition of generalization error
- Understand the difference between outer and inner loss

EXAMPLE PRACTICAL METHOD

Given: 20 training observations, 12 negative and 8 positive

#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
С	N	N	N	N	N	N	N	N	N	N	N	N	Р	Р	Р	Р	Р	Р	Р	Р
Score	.18	.24	.32	.33	.4	.53	.58	.59	.6	.7	.75	.85	.52	.72	.73	.79	.82	.88	.9	.92

 \Rightarrow sort by score and draw the curves:

#	20	19	18	12	17	16	11	15	14	1 10	Ιq	8	7	6	13	5	I 4 I	3	2	1
" C												N			P	-		N	N	N
Score	.92	.9	.88	.85	.82	.79	.75	.73	.72	.7	.6	.59	.58	.53	.52	.4	.33	.32	.24	.18

EXAMPLE PRACTICAL METHOD

- Best accuracy achieved with observation # 18.
- Setting $\theta = 0.88 \Rightarrow$ accuracy of $15/20 \stackrel{.}{=} 75\%$.

EXPLANATION MANN-WHITNEY-U TEST

- First we plot the ranks of all the scores as a stack of horizontal bars, and color them by the labels.
- Stack the green bars on top of one another, and slide them horizontally as needed to get a nice even stairstep on the right edge (See: practical method example for ROC curves):

EXPLANATION MANN-WHITNEY-U TEST

- Definition of the U statistic: $U = R_1 \frac{n_1(n_1 + 1)}{2}$
 - R₁ is the sum of ranks of positive cases (the area of the green bars)
 - n₁ is the number of positive cases
- The area of the green bars on the right side is equal to $\frac{n_1(n_1+1)}{2}$.

EXPLANATION MANN-WHITNEY-U TEST

- U = area of the green bars on left side
- area of dashed rectangle = $n_1 \cdot n_2$
- AUC is U normalized to the unit square,

$$\implies$$
 AUC = $\frac{U}{n_1 \cdot n_2}$

with $n_1 = POS$ and $n_2 = NEG$.

PARTIAL AUC

- Sometimes it can be useful to look at a specific region under the ROC curve ⇒ partial AUC (pAUC).
- Let $0 \le c_1 < c_2 \le 1$ define a region.
- For example, one could focus on a region with low fpr $(c_1 = 0, c_2 = 0.2)$ or a region with high tpr $(c_1 = 0.8, c_2 = 1)$:

PARTIAL AUC

- pAUC $\in [0, c_2 c_1].$
- The partial AUC can be corrected (see McClish), to have values between 0 and 1, where 0.5 is non discriminant and 1 is maximal:

$$pAUC_{corrected} = \frac{1 + \frac{pAUC - min}{max - min}}{2}$$

- min is the value of the non-discriminant AUC in the region
- max is the maximum possible AUC in the region

MULTICLASS AUC

- Consider multiclass classification, where a classifier predicts the probability p_k of belonging to class k for each class.
- Hand and Till (2001) proposed to average the AUC of pairwise comparisons (1 vs. 1) of a multiclass classifier.
 - estimate AUC(i, j) for each pair of class i and j
 - AUC(i, j) is the probability that a randomly drawn member of class i has a lower probability of belonging to class j than a randomly drawn member of class j.
 - for K classes, we have $\binom{K}{2} = \frac{K(K-1)}{2}$ values of AUC(i,j) that are then averaged to compute the Multiclass AUC.

CALIBRATION AND DISCRIMINATION

We consider data with a binary outcome *y*.

- Calibration: When the predicted probabilities closely agree with the observed outcome (for any reasonable grouping).
 - Calibration in the large is a property of the *full sample*. It compares the observed probability in the full sample (e.g. proportion of observations for which y=1) with the average predicted probability in the full sample.
 - Calibration in the small is a property of *subsets* of the sample. It compares the observed probability in each subset with the average predicted probability in that subset.
- Discrimination: Ability to perfectly separate the population into y = 0 and y = 1. Measures of discrimination are, for example, AUC, sensitivity, specificity.

CALIBRATION AND DISCRIMINATION

A well calibrated classifier can be poorly discriminating, e.g.

Obs. Nr.	truth	Pred Rule 1	Pred Rule 2		
1	1	1	0		
2	1	1	0		
3	0	0	1		
4	0	0	1		
Avg Prob	50%	50%	50%		

• Both prediction rules have identical calibration in the large (50%), however, rule 1 is better than rule 2.

CALIBRATION AND DISCRIMINATION

A well discriminating classifier can have a bad calibration, e.g.

Obs. Nr.	truth	Pred Rule 1	Pred Rule 2		
1	1	0.9	0.9		
2	1	0.9	0.9		
3	0	0.1	0.7		
4	0	0.1	0.7		
Avg Prob	50%	50%	80%		

- Both prediction rules are well discriminating (e.g., setting thresholds $\theta_1 = 0.5$, $\theta_2 = 0.8$)
- Prediction rule 2 is rather poorly calibrated. The proportion of observations for which y = 1 would be estimated with 80%.

ROC ANALYSIS IN R

- generateThreshVsPerfData calculates one or several performance measures for a sequence of decision thresholds from 0 to 1.
- It provides S3 methods for objects of class Prediction,
 ResampleResult and BenchmarkResult (resulting from predict.WrappedModel, resample or benchmark).
- plotROCCurves plots the result of generateThreshVsPerfData using ggplot2.
- More infos http://mlr-org.github.io/mlr-tutorial/ release/html/roc_analysis/index.html

small code chunk

We calculate fpr, tpr and compute error rates:

one line of code

- generateThreshVsPerfData returns an object of class
 ThreshVsPerfData, which contains the performance values in the \$data slot.
- By default, plotROCCurves plots the performance values of the first two measures passed to generateThreshVsPerfData.
- The first is shown on the x-axis, the second on the y-axis.

one line of code + figure

The corresponding area under curve auc can be calculated by one line of code

plotROCCurves always requires a pair of performance measures that are plotted against each other.

If you want to plot individual measures vs. the decision threshold, use one line of code + figure

EXAMPLE 2: BENCHMARK EXPERIMENT

small code chunk

Calling generateThreshVsPerfData and plotROCCurves on the BenchmarkResult produces a plot with ROC curves for all learners in the experiment.

EXAMPLE 2: BENCHMARK EXPERIMENT

one line of code + figure

EXAMPLE 2: BENCHMARK EXPERIMENT

one line of code + figure