Езици и автомати

Иво Стратев

24 ноември 2017 г.

Регулярни езици

Основни

Нека Σ е азбука. Тогава \emptyset , $\{\varepsilon\}$, \forall $a\in\Sigma$ $\{a\}$ - са регурлярни езици

Операции

Обединение

Ако L_1, L_2 са регулярни, то и $L_1 \cup L_2 = \{\omega \mid \omega \in L_1 \lor \omega \in L_2\}$ е регулярен.

Конкатенация

Ако $L_1,\ L_2$ са регулярни, то и L_1 . $L_2 = \{\omega_1.\omega_2 \mid \omega_1 \in L_1 \land \omega_2 \in L_2\}$ е регулярен.

$$L^0 = \{\varepsilon\}$$

$$\forall n \in \mathbb{N} \ L^{n+1} = L^n \ . \ L$$

Звезда на Клини

Ако L е регулярен, то и $L^* = \bigcup_{n \in \mathbb{N}} L^n$ е регулярен.

Дефиниция

Един език е регулярен, ако се получава от основните с помощта на краен брой прилагания на операциите: обединение, конкатенация и звезда на Клини.

Регулярни изрази

Базови

Символите \emptyset , ε , a са регулярни изрази $(\forall \ a \in \Sigma)$

"Производни"

Ако r_1 и r_2 са регулярни изрази, то и $r_1+r_2,\ r_1$. r_2 и r_1^* също са регулярни изрази.

Език на регулярен израз

$$\mathcal{L}(\emptyset) = \emptyset$$

$$\mathcal{L}(\varepsilon) = \{\varepsilon\}$$

$$\forall a \in \Sigma \ \mathcal{L}(a) = \{a\}$$

Нека r_1 и r_2 са регулярни изрази и $L_1=\mathcal{L}(r_1),\ L_2=\mathcal{L}(r_2).$ Тогава:

$$L_1 \cup L_2 = \mathcal{L}(r_1) \cup \mathcal{L}(r_2) = \mathcal{L}(r_1 + r_2)$$

$$L_1 . L_2 = \mathcal{L}(r_1) . \mathcal{L}(r_2) = \mathcal{L}(r_1 . r_2)$$

$$L_1^* = \mathcal{L}(r_1)^* = \mathcal{L}(r_1^*)$$

Недетерминирани крайни автомати

Определение

Недермининар краен автомат представлява:

$$N=(\Sigma,\ Q,\ s,\ \Delta,\ F)$$
, където:

 Σ - крайно множество от букви (азбука)

 ${\cal Q}$ - крайно множество от състояния

 $s \in Q$ - начално състояние

 $\Delta: Q \times \Sigma \to 2^Q$ - функция на преходите. Тя е тотална. Ако за някоя двойка $(q,\ a)$ няма преход в автомата, то $\Delta(q,\ a)=\emptyset;$

 $F\subseteq Q$ - множество от финални състояния

Дефиниция за Δ^*

$$\Delta^* \; : \; Q \times \Sigma^* \to 2^Q \; : \;$$

$$\Delta^*(q,\ \varepsilon) = q$$

$$\Delta^*(q, a\alpha) = \bigcup_{p \in \Delta(q, a)} \Delta^*(p, \alpha)$$

Език на недетерминирания автомат Δ^* , $\mathcal{L}(N)$

$$\mathcal{L}(N) = \{ \omega \in \Sigma^* \mid \Delta^*(s, \ \omega) \in F \}$$

"Действия" с недетерминирани автомати

Нека Σ е азбука.

Нека
$$N_1=(\Sigma,\ Q_1,\ s_1,\ \Delta_1,\ F_1)$$
 и $N_2=(\Sigma,\ Q_2,\ s_2,\ \Delta_2,\ F_2)$ - К.Н.А и $Q_1\cap Q_2=\emptyset$

Нека
$$N = (\Sigma, Q, s, \Delta, F)$$

Конкатенация, $\mathcal{L}(N) = \mathcal{L}(N_1)$. $\mathcal{L}(N_2)$

$$Q = Q_1 \cup Q_2$$

$$s = s_1$$

$$\Delta(q, a) = \begin{cases} \Delta_1(q, a), & q \in Q_1 \backslash F_1 \\ \Delta_2(q, a), & q \in Q_2 \\ \Delta_1(q, a) \cup \Delta_2(s_2, a), & q \in F_1 \end{cases}$$

$$F = \begin{cases} F_1 \cup F_2, & s_2 \in F_2 \\ F_2, & s_2 \notin F_2 \end{cases}$$

Обединение, $\mathcal{L}(N) = \mathcal{L}(N_1) \cup \mathcal{L}(N_2)$

$$s \notin Q_1 \cup Q_2$$

$$Q = Q_1 \cup Q_2 \cup \{s\}$$

$$\Delta(q, a) = \begin{cases} \Delta_1(q, a), & q \in Q_1 \\ \Delta_2(q, a), & q \in Q_2 \\ \Delta_1(s_1, a) \cup \Delta_2(s_2, a), & q = s \end{cases}$$

$$F = \begin{cases} F_1 \cup F_2 \cup \{s\}, & s_1 \in F_1 \lor s_2 \in F_2 \\ F_1 \cup F_2, & s_1 \notin F_1 \land s_2 \notin F_2 \end{cases}$$

Позитивна обвивка, $\mathcal{L}(N) = \mathcal{L}(N_1)^+$

$$Q = Q_1$$

$$s = s_1$$

$$\Delta(q, a) = \begin{cases} \Delta_1(q, a), & q \in Q_1 \backslash F_1 \\ \Delta_1(q, a) \cup \Delta_1(s, a), & q \in F_1 \end{cases}$$

$$F = F_1$$

Звезда на Клини,
$$\mathcal{L}(N) = \mathcal{L}(N_1)^* = \{\varepsilon\} \cup \mathcal{L}(N_1)^+$$

$$E = (\Sigma, \{s_{\varepsilon}\}, s_{\varepsilon}, \Delta_{\varepsilon}, \{s_{\varepsilon}\})$$

$$s_{\varepsilon} \notin Q_1$$

$$\Delta_{\varepsilon}(s_{\varepsilon}, \ \varepsilon) = \{s_{\varepsilon}\}\$$

$$\forall a \in \Sigma \quad \Delta_{\varepsilon}(s_{\varepsilon}, a) = \emptyset$$

$$Q = Q_1 \cup \{s_{\varepsilon}\}$$

$$s = s_{\varepsilon}$$

$$\Delta(q, a) = \begin{cases} \Delta_1(q, a), & q \in Q_1 \backslash F_1 \\ \Delta_1(q, a) \cup \Delta_1(s, a), & q \in F_1 \\ \Delta_1(s, a), & q = s_{\varepsilon} \end{cases}$$

$$F = F_1 \cup \{s_{\varepsilon}\}$$

Лема за покачването (Pumping Lemma)

Нека $L\subseteq \Sigma^*$ е безкраен регулярен език.

$$\exists p \in \mathbb{N}^+ : \forall \omega \in L : |\omega| \ge p, \exists x, y, z \in \Sigma^* :$$

$$\omega = xyz \ \land \ |xy| \le p \ \land \ |y| \ge 1 \ \land \ (\forall \ i \in \mathbb{N} \ xy^iz \in L)$$

Следствие (Контрапозиция на лемата за покачването)

Нека $L\subseteq \Sigma^*$ е безкраен език.

Ако е изпълнено, че:

$$\forall \ p \in \mathbb{N}^+ \ \exists \ \omega \in L \ : \ |\omega| \geq p, \ \forall x, \ y, \ z \in \Sigma^* \ :$$

$$\omega = xyz \ \land \ |xy| \le p \ \land \ |y| \ge 1 \ \land \ (\exists \ i \in \mathbb{N} \ xy^iz \notin L).$$

Тогава L не е регулярен.

Релация на Майхил-Нероуд и минимален автомат

Релация на Майхил-Нероуд

Нека Σ е азбука и $L\subseteq \Sigma^*$

$$R_L = \{(x, y) \in \Sigma^* \times \Sigma^* \mid \forall z \in \Sigma^* \ xz \in L \iff yz \in L\}$$

$$\Sigma^*/R_L = \{ [\alpha]_{R_L} \mid \alpha \in \Sigma^* \}$$

Теорема за съществуване на минимален автомат

Ако съществува $n \in \mathbb{N}$: $n = |\Sigma^*/R_L|$. Тогава L е регулярен и съществува минимален Д.К.А $M = (\Sigma, Q_M, s_M, \delta_M, F_M)$, такъв че $\mathcal{L}(M) = L$.

$$Q_M = \Sigma^* / R_L$$

$$s_M = [\varepsilon]_L$$

$$\delta_M([\alpha]_{R_L}, a) = [\alpha.a]_L$$

$$F_M = \{ [\alpha]_{R_L} \mid \alpha \in L \} = \{ q \in Q_M \mid q \subseteq L \}$$

Лема δ_M е коректно дефинирана (δ_M задава функция)

Лема
$$\delta_M^*([\varepsilon]_{R_L},\ \omega)=[\omega]_{R_L}$$

Лема
$$\mathcal{L}(M) = L$$

Еквивалетност на състояния на автомат и минимален автомат

Нека Σ е азбука и $A=(\Sigma,\ Q,\ s,\ \delta,\ F)$ е свързан, тотален Д.К.А

Еквивалетност на състояния на автомат

$$R_{\equiv} = \{ (p, q) \in Q \mid \forall \omega \in \Sigma^* \ \delta^*(p, \omega) \in F \iff \delta^*(q, \omega) \in F \}$$

Минимален Д.К.А построен по състояния на класовете на еквивалентност на R_{\equiv}

Нека
$$A_{\equiv}=(\Sigma,\ Q_{\equiv},\ s_{\equiv},\ \delta_{\equiv},\ F_{\equiv})$$

$$Q_\equiv = Q/R_\equiv = \{[q]_{R_\equiv} \mid q \in Q\}$$

$$s_{\equiv} = [s]_{R_{\equiv}}$$

$$\delta_{\equiv}([q]_{R_{\equiv}}, a) = [\delta(q, a)]_{R_{\equiv}}$$

$$F_{\equiv} = \{[q]_{R_{\equiv}} \mid q \in Q, \ [q]_{R_{\equiv}} \subseteq F\} = \{[q]_{R_{\equiv}} \mid q \in Q, \ [q]_{R_{\equiv}} \cap F \neq \emptyset\}$$

Лема δ_{\equiv} е коректно дефинирана (δ_{\equiv} задава функция)

Лема
$$\delta^*_\equiv([s]_{R_\equiv},\;\omega)=[\delta^*(s,\;\omega)]_{R_\equiv}\implies \mathcal{L}(A_\equiv)=L$$

Лема A_{\equiv} е с минимален брой състояния

Задачи:

Ако $L \subseteq \{a, b\}^*$ е регулярен език.

То езикът $\{(ab)^n(ba)^k \mid n, k \in \mathbb{N}\}$ е регулярен, защото очевидно се описва от регулярния израз $(ab)^*(ba)^*$.

Ако D е краен език над $\{a, b\}^*$, то $L \cup \overline{D}$ винаги е регулярен, защото щом D е регулярен, то и \overline{D} е регулярен, следователно и $L \cup \overline{D}$ е регулярен.

Ако $K \subseteq \{a, b\}^*$ не е регулярен. То $L \cap K$ може да е не регулярен, но може и да е регулярен, например ако $L \cap K = \emptyset$ то той ще е регулярен.

Използвана литература

Записки по "Езици, автомати, изчислимост" на главен асистент д-р Стефан Вътев от Факултет по Математика и Информатика на Софийски университет "Св. Климент Охридски"

Уводни записки от курса по Езици, автомати и изчислимост четен на спец. Информатика през зимния семстър на 2017г във ФМИ на СУ "Св. Климент Охридски" от доц. д-р Александра Соскова

Записки по темата "Регулярни езици" от курса по Езици, автомати и изчислимост четен на спец. Информатика през зимния семстър на 2017г във ФМИ на СУ "Св. Климент Охридски" от доц. д-р Александра Соскова