# 3. Regression Fundamentals Part 1: Simple Linear Regression

LPO.7870: Research Design and Data Analysis II

Sean P. Corcoran

LPO.7870 (Corcoran)

Lecture 3

Last update: January 29, 2024

1/50

#### Last time

#### Describing data

- · Quantitative vs. categorical variables; discrete vs. continuous
- Histograms and densities for continuous variables
- Measures of central tendency (mean, median), location (percentiles), variability (variance, standard deviation)

#### Inferential statistics

- The importance of quantifying uncertainty: confidence intervals and significance testing
- Standard error: a measure of variability in the sampling distribution.

#### **Tonight**

Describing the relationship between two variables:

- Scatterplots
- Covariance and correlation
- Linear regression

I PO 7970 (Corcoran)

Lecture 3-1

Last update: January 29, 2024

3/50

## Tonight's sample datasets

We will refer to two datasets tonight (both found on Github):

- caschool.dta: data on test performance, school characteristics, and student demographics for California school districts, 1998-99 (N=420). From Stock & Watson text.
- TN-lettergrades-2022-23.dta: letter grades and component scores for Tennessee schools, 2022-23 (N=1,900)

Source of TN data: https://www.tn.gov/education/districts/federal-programs-and-oversight/data/data-downloads.html

# Scatterplots

## Scatterplots

The easiest way to see how two variables are related is a **scatter diagram** or **scatterplot**. In Stata: scatter *yvar xvar* 



#### Scatterplots

Scatterplots can provide a sense of the *direction* of relationship (if any), *linearity*, and *strength* of association.

Often with scatterplots there are natural **outcome** and **explanatory** variables. We may have in mind a theory in which variation in the outcome is at least in part explained by variation in the explanatory variable.

- ullet Denote the outcome as Y and explanatory variable as X.
- These are also called dependent (Y) and independent (X) variables, although I avoid these terms, since they have other meanings in statistics.

LPO.7870 (Corcoran)

Lecture 3-

Last update: January 29, 2024

7 / 60

## Example 1

From the *caschool* data (California school districts in 1998-99): 5th grade test scores vs. student-teacher ratio



## Example 2

From the *TN-lettergrades* data: overall scores vs. percent economically disadvantaged, Tennessee high schools in 2022-23.



LPO.7870 (Corcoran)

Lecture 3-1

Last update: January 29, 2024

9 / 50

## Example 3

COVID symptom reporting and mask-wearing:



#### Example 4

#### Predictors of college performance (SAT/ACT vs. high school GPA)

#### Test scores are strong predictors of college performance



Note: Data is for students who entered college from 2017 to 2022, excluding 2020. - Source: Opportunity Insights and Friedman, Sacerdote and Tine (2024) - By Ashley Wu

Source: David Leonhardt, "The Misguided War on the SAT," The New York Times, January 7, 2024. Note: these are binned, not raw, data. The data come from highly selective universities.

LPO.7870 (Corcoran) Lecture 3-1 Last update: January 29, 2024 11 /

Covariance and correlation

#### Covariance

A picture can be worth a thousand words, but we might like a summary measure of how two variables are associated.

The **sample covariance** between two variables x and y is:

$$s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{n-1}$$

LPO.7870 (Corcoran)

Lecture 3

Last update: January 29, 2024

13 / 50

#### Covariance

The covariance is an average, where—for each observation—we multiply x's deviation from the mean of x by y's deviation from the mean of y.

- If y tends to be higher than average when x is higher than average, these products will tend to be positive (a positive covariance).
- If y tends to be lower than average when x is higher than average, these products will tend to be negative (a negative covariance).

Like the variance, units of covariance are not easily interpreted.

#### Correlation

The sample correlation coefficient is:

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{s_x s_y (n-1)} = \frac{s_{xy}}{s_x s_y}$$

Correlation is a standardized or unit-free measure of association:

- $\bullet$  It ranges between -1 and +1
  - $r_{xy} = +1$  is a perfect positive correlation
  - $r_{xy} = -1$  is a perfect negative correlation
  - $r_{xy} = 0$  is no correlation
- r is a measure of linear association—it is not appropriate for use with non-linear relationships.

LPO 7870 (Corcoran)

Lecture 3-1

Last update: January 29, 2024

15 / 50

#### Covariance and correlation in Stata

To obtain correlation coefficients in Stata, use corr yvar xvar. You can include a list of variables in this command

- Be aware of how Stata handles missing values:
  - listwise deletion means observations are not used if any of the listed variables in the command are missing.
  - pairwise deletion means correlations of pairs of variables are considered in isolation.
- pwcorr yvar xvar uses pairwise deletion. corr uses listwise deletion.

To obtain the <u>covariance</u> in Stata, use corr with cov option. The result is called a **variance-covariance matrix**. This is used less often.

#### Exercise: California school district data

Open the caschool data and do the following:

- Create scatterplots between district average 5th grade test scores (testscr) and:
  - ► The percent of low-income students (*meal pct*)
  - ► The percent of English language learners (el\_pct)
  - Expenditures per student (expn\_stu)
- Calculate the correlation and covariance between each of the above pairs of variables.

How would you describe the association between these pairs of variables? Positive/negative? Strong/weak? Linear/non-linear?

LPO.7870 (Corcoran)

Lecture 3-

Last update: January 29, 2024

17 / 50

## Strength of correlation

What is a "strong correlation?" It depends on the context. (How strong would you expect the correlation to be? Is there a theoretical reason why the correlation should be particularly strong or weak?)

Rule of thumb ("Cohen's scale") based on the absolute value  $|r_{xy}|$ :

- $|r_{xy}| < 0.1$ : zero to weak correlation
- $0.1 < |r_{xy}| < 0.3$ : weak to moderate correlation
- $0.3 < |r_{xy}| < 0.5$ : moderately strong correlation
- $|r_{xy}| > 0.5$ : strong correlation

Try "guess the correlation:"

https://istats.shinyapps.io/guesscorr/

#### Correlation vs. causation

Important: correlation does not imply causation!

- Correlation means two variables move together.
- Causation means that change in one variable is causing change in the other.



For fun, check out this collection of spurious correlations: https://tylervigen.com/spurious-correlations

LPO.7870 (Corcoran) Lecture 3-1 Last update: January 29, 2024 19/50

## The importance of visualizing your data

Never trust summary statistics alone! All of the datasets used below have the same  $\bar{x}, \bar{y}, s_x, s_y$ , and  $r_{xy}$ .



Source

20 / 50

## Linear regression

#### Regression

Another way to quantify the relationship between two variables Y and X:

- How much does Y change when X changes by one unit?
- How does the average level of Y vary with X?

Why might you want to know this?

- Description: it's a useful way to describe how variables are related.
- Prediction: if you know X, what is your best prediction of Y?
   Examples: SAT and GPA; class size and test scores.
- Causal inference: in some cases, this relationship describes the causal effect of X on Y. Example: class size.

#### Fitting lines using loess

This graph fits a **loess curve** ("locally estimated scatterplot smoothing") to the *caschool* data. In Stata: lowess *yvar xvar*.



This calculates the mean of Y "locally"—at small intervals around each X.

LPO.7870 (Corcoran) Lecture 3-1 Last update: January 29, 2024 23 / 50

## Simple linear regression

This graph is nice, but it's hard to describe the relationship any other way but visually. What if we could approximate it with a line? A line is defined entirely by its slope(b) and intercept(a):

$$y = a + bx$$

The slope of a line tells you how much y changes when x changes by one unit  $\Delta Y/\Delta X$ .

Simple linear regression finds the line of best fit.

#### Finding the best fit line

What makes a particular line the "best fit"? There are many possibilities, with different values of a and b. Which is the "best"?



#### Line of best fit

Stata can provide a line of best fit, using two overlaying graphs (scatter and lfit). Using the *caschool* data:

twoway (scatter testscr str) (lfit testscr str)

It is conventional to put the outcome variable on the vertical (y) axis, and the explanatory variable on the horizontal (x) axis.

#### Line of best fit

#### Overlaid graphs scatter and lfit:



#### Line of best fit

In this case, the best fit line has an intercept of 698.93, and a slope of -2.28:  $\hat{\mathbf{y}} = 698.93 - 2.28\mathbf{x}$ 

- The best fit line is also called a prediction equation
- $\hat{y}$  is the **predicted value** for y, given a value of x.

We can use the prediction equation to predict y for a specific x value (here, the student-teacher ratio):

- Example: suppose x = 20 students
- $\hat{y} = 698.93 (2.28 * 20) = 653.33$
- Predicted 5th grade test score is 653.03 for a class size of 20

#### Line of best fit

Interpreting the prediction equation:  $\hat{y} = 698.93 - 2.28x$ 

- $\bullet$  698.93: the predicted 5th grade test score when student-teacher ratio is x=0
- -2.28: the predicted change in 5th grade test scores when the student-teacher ratio increases by one year.
- Note 5 additional students per teacher would be predicted to change test scores by: -2.28\*5 = -11.4

LPO.7870 (Corcoran)

Lecture 3

ast update: January 29, 2024

29 / 50

## Least squares

How does one determine the line of "best fit"? For a given line, we have a set of predictions for y, one for every value of x in the data:

- $\hat{y}_1$  is the predicted value of y when x is  $x_1$
- $\hat{y}_2$  is the predicted value of y when x is  $x_2$
- ...and so on, up to  $\hat{y}_n$



#### Least squares

For a given line, we have a **residual** (or **prediction error**) for every value of x in the data:  $\hat{u} = y - \hat{y}$ :

- $\hat{u}_1$  is the residual when x is  $x_1$
- $\hat{u}_2$  is the residual when x is  $x_2$
- ...and so on, up to  $\hat{u}_n$



LPO 7870 (Corcoran)

Locturo 2.1

Last update: January 29, 2024

21 / 60

## Least squares

Four candidate lines for the 5th grade test score data:



#### Least squares

The line that minimizes the sum of the squared residuals between the data points y and the line  $\hat{y}$  is the least squares or ordinary least squares (OLS) regression line:

$$a, b \sum_{i=1}^{min} (y_i - \widehat{y_i})^2$$

$$a, b \sum_{i=1}^{n} (y_i - a - bx)^2$$

i.e. choose intercept and slope (a, b) to minimize the sum of the squared residuals  $(\hat{u}_i = y_i - \hat{y_i})$ 

LPO.7870 (Corcoran)

Lecture 3

ast undate: January 29, 2024

33 / 50

#### Least squares

It can be shown that the least squares slope (b) and intercept (a) are as follows:

$$b = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$a = \bar{y} - b\bar{x}$$

#### Least squares

It is easy to show that the slope b can also be written:

$$b=r_{xy}\frac{s_y}{s_x}$$

The slope coefficient has the same sign (+/-) as the correlation coefficient  $r_{xy}$  (re:  $s_y$  and  $s_x$  are both greater than zero)

LPO 7870 (Corcoran)

Lecture 3

ist update: January 29, 2024

35 / 50

#### Regression in practice

To compute the least squares intercept and slope coefficient in Stata use regress or reg yvar xvar (aka "running a regression"). Example using caschool data:

| _cons    | 698.933    | 9.467491  | 73.82     | 0.000   | 680.323          | 1   | 717.5428 |
|----------|------------|-----------|-----------|---------|------------------|-----|----------|
| str      | -2.279808  | .4798256  | -4.75     | 0.000   | -3.2229          |     | -1.33663 |
| testscr  | Coef.      | Std. Err. | t         | P> t    | [95% Cor         | nf. | Interval |
| Total    | 152109.594 | 419       | 363.03005 | 6 Root  | MSE              | -   | 18.58    |
| Residual | 144315.484 | 418       | 345.25235 |         | ared<br>-squared | -   | 0.051    |
| Model    | 7794.11004 | 1         | 7794.1100 | 4 Prob  | > F              | -   | 0.000    |
| Source   | SS         | df        | MS        | - Numbe | r of obs         | -   | 22.5     |

Note: "\_cons" refers to the intercept, or constant term.

LPO.7870 (Corcoran)

Lecture 3

Last update: January 29, 2024

#### Interpreting coefficients

Steps for interpreting a regression slope coefficient—general guidelines:

- Identify the explanatory variable and its units (e.g., height in inches, students per teacher).
- Describe a one-unit increase in the explanatory variable in everyday language (e.g., one additional student per teacher).
- Identify the outcome variable and its units (e.g., weight in pounds, 5th grade test scores).
- Describe the coefficient as the change in the outcome predicted for a one-unit change in the explanatory variable (e.g., an additional student per teacher is predicted to decrease 5th grade test scores by 2.28 points).

Note: be sure your interpretation reflects the appropriate unit of observation (e.g., individual, school, district).

Note: Adapted from Remler & Van Ryzin (2011), chapter 8.

LPO.7870 (Corcoran)

Lecture 3-1

Last update: January 29, 2024

37 / 50

#### Predicted values and residuals

It is possible to have Stata compute the **predicted values** and **residuals** (prediction errors) for each observation after reg:

- predict yhat, xb
- predict uhat, resid

These are called postestimation commands in Stata:

- xb refers to the predicted value  $(\hat{y})$
- resid refers to the residual  $(\hat{u}, \text{ calculated as } y_i \hat{y}_i)$

## Measuring fit

How well does the regression line fit the data?

- Mechanically, the least squares intercept and slope can be calculated for any set of data points (x, y).
- The line of best fit (OLS) is not necessarily a good fit.
- Least squares minimizes the sum of the squared residuals, but performs better with some data than others.

 $R^2$ , the **coefficient of determination**, is a measure of the goodness of fit.

LPO.7870 (Corcoran)

Lecture 3

Last update: January 29, 2024

39 / 50

 $R^2$ 

 $R^2$  is the proportion of the total variation in y from its mean that is "explained" (predicted) by x.

The total variation in y around its mean is the **total sum of squares** (TSS):

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Using the predicted y instead of the actual, the **explained sum of squares (ESS)** is:

$$ESS = \sum_{i=1}^{n} (\widehat{y_i} - \bar{y})^2$$

LPO.7870 (Corcoran)

Lecture 3.

Last update: January 29, 2024

The  $R^2$  is therefore:

$$R^2 = \frac{ESS}{TSS}$$

 $R^2$  is always between 0 and 1

The explained sum of squares (ESS) is sometimes called the "model" sum of squares (see Stata output).

LPO.7870 (Corcoran)

Lecture 3-

ast update: January 29, 2024

41 / 50

 $R^2$ 

The "unexplained" variation in *y* is the **sum of squared residuals (SSR)** (a.k.a. the error sum of squares):

$$SSR = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

It makes sense that the  $R^2$  should be related to the SSR, which we aim to minimize when finding the best fit line. In fact, we can write  $R^2$  as:

$$R^2 = 1 - \frac{SSR}{TSS}$$

## $R^2$ for class size regression

Example using 5th grade test scores and student-teacher ratio:

| reg | testsc | r etr |
|-----|--------|-------|
|     |        |       |

| str<br>cons | -2.279808<br>698.933 | .4798256<br>9.467491 | -4.75<br>73.82 | 0.000              | -3.22<br>680.3 |       | -1.336637<br>717.5428 |
|-------------|----------------------|----------------------|----------------|--------------------|----------------|-------|-----------------------|
| testscr     | Coef.                | Std. Err.            | t              | P> t               | [95%           | Conf. | Interval]             |
| Total       | 152109.594           | 419                  | 363.03005      |                    |                | -     | 18.591                |
| Residual    | 144315.484           | 418                  | 345.25235      |                    | red<br>square  | d =   | 0.0512                |
| Model       | 7794.11004           | 1                    | 7794.1100      |                    |                | =     | 0.000                 |
| Source      | SS                   | df                   | MS             | Number<br>- F(1, 4 | of ob          | s =   | 22.5                  |

$$R^2 = \frac{ESS}{TSS} = 0.0512$$

LPO 7870 (Corcoran)

Lecture 3

Last update: January 29, 2024

43 / 50

#### Mean squared error

A related measure is the mean squared error (MSE):

$$MSE = \frac{\sum_{i=1}^{n} (y_i - \widehat{y_i})^2}{n-2} = \frac{\sum_{i=1}^{n} \widehat{u_i}^2}{n-2} = \frac{SSR}{n-2}$$

The MSE is the *average* squared deviation of the predicted y from the actual y (uses n-2 in the denominator). Note the numerator is the residual sum of squares (SSR).

Note: least squares minimizes SSR so it also minimizes MSE

LPO.7870 (Corcoran)

Lecture 3

Last update: January 29, 2024

44 / 50

## Standard error of the regression

The square root of the MSE is the **standard error of the regression (SER)** a.k.a. root mean squared error (RMSE):

$$\textit{SER} = \sqrt{\frac{\sum_{i=1}^{n} \left(y_{i} - \widehat{y_{i}}\right)^{2}}{n-2}} = \sqrt{\frac{\sum_{i=1}^{n} \widehat{u_{i}}^{2}}{n-2}} = \sqrt{\frac{\textit{RSS}}{n-2}}$$

Just as the standard deviation can be interpreted (intuitively, not literally) as the average deviation of *y* from its mean, the SER can be interpreted (intuitively, not literally) as the average deviation of *y* from its *predicted* value. I.e., "how close," on average, is your prediction?

LPO.7870 (Corcoran)

Lecture 3-1

Last update: January 29, 2024

45 / 50

#### Exercise: Tennessee letter grade data

Open the TN-lettergrades data and do the following:

- Create a scatterplot and best fit line (1fit) between the letter grade score (Ig\_score) and the percent economically disadvantaged.
- Calculate the least squares slope and intercept for the best fit line, and interpret.
- $\odot$  Interpret the  $R^2$  from the above regression line.
- Interpret the SER (aka RMSE) from the above regression line.
- Have Stata save the predicted values and residuals from the above regression. You can view these usingbrowse.

LPO 7870 (Corcoran)

Lecture 3.

Last update: January 29, 2024

#### Moving beyond best fit lines

Finding "best-fit" lines is easy—you could do this all day. Even your TI-84 calculator can do it!



Can we take things a little further?

LPO.7870 (Corcoran) Lecture 3-1 Last update: January 29, 2024 47 / 50

#### Conditional mean interpretation

Suppose we are willing to assume that the relationship between the mean of y in the population is related in a **linear** way to x. That is, the **conditional mean** of y given x is:

$$E(y|x) = \beta_0 + \beta_1 x$$

This is called the **population regression function**. I am switching from a and b to  $\beta_0$  and  $\beta_1$  because they are now unknown population parameters to be estimated. One can use a and b as *estimators* of  $\beta_0$  and  $\beta_1$ .

Note E() refers to the expectation or population mean.

LPO.7870 (Corcoran)

Lecture 3

Last update: January 29, 2024

48 / 50

## Inferences about $\beta_1$

If we are using a sample of y and x to estimate the population intercept and slope coefficients in the population, we need to quantify our uncertainty in the same way we did for  $\bar{x}$ :

- Confidence intervals for  $\beta_1$
- Hypothesis tests about  $\beta_1$

To do so we need to know the *sampling distribution* of the slope estimator (b). As with  $\bar{x}$ , this will require some assumptions (next week).

LPO.7870 (Corcoran)

Lecture 3-1

Last update: January 29, 2024

49 / 50

#### Next time

Inferences about  $\beta_1$ 

- Read: Stock & Watson chapter 4 (sections 4.4-4.5) and 5
- Familiarize yourself with the three sample articles: Magnuson et al. (2004), Gershenson & Holt (2015), and Reber & Smith (2023).