영화 흥행은 어디에서 오는가

감독인가?

김지운 감독

배우인가?

아니면 재밌는 스토리인가?

6월 9일 IMAX 3D대개봉

영화 흥행은 어디에서 오는가

인공신경망, K-NN군집, 의사결정나무 알고리즘을 통한 영화 관객수 예측모델 구축

> GROUP : TEAMSIX 이종범, 장재원, 김익환, 박창영, 김도은, 송준영

이 연구가 왜 중요한가?

문제 의식 제고

누구도 건드릴 수 없는 놈이 북에서 넘어왔다

흥행 Risk를 크게 느낄수록 해마다 관객수가 늘어가더라도

'새로움'에 대한 시도와 투자는 점점 없어지고 한국 영화는 안전하게 흥행한 전작을 답습하고 있다.

> 《신세계》 박훈정 감독 작품 장동건 김명민 박희순 이종석

어떤 데이터, 어떻게 모았는가

데이터 수집 및 전처리 과정

프로젝트 사용 변수

변수	변수명	출처	비고
종속 변수	전국 관객수	www.kobis.or.kr	
	전국 매출액	www.kobis.or.kr	전국 관객수와 1의 상관관계 (정비례)
독립 변수	상영 스크린 수	www.kobis.or.kr	
	개봉 전, 후 평점	movie.naver.com	기술적 제한
	개봉 전, 후 뉴스빈도	www.bigkinds.or.kr	기술적 제한
	개봉 1주차 관객수	www.kobis.or.kr	상영일과 개봉일의 차가 7일인 데이터만 정제
	제작비 및 마케팅비	영화별 검색	비공개인 영화가 다수이므로 손익분기점 손수 검색
	국적	www.kobis.or.kr	국적 중에서도 대표국적만을 사용
	장르	www.kobis.or.kr	장르 중에서도 대표장르만을 사용
	배우 및 감독 (스타파워)	www.cine21.com	최근 2년 활동한 배우 300명 대상 배우지수를 정규화
	배급사 및 제작사	www.kofic.or.kr	상영 스크린수와 다중공선성문제로 인하여 배제
	SNS빈도(Instagram, facebook, twitter)	Startag.io, fb.com twitter.com	R프로그램 패키지: Rfacebook ::, twitterR ::
	주별 종합 데이터	kofic.co.kr	시계열분석을 위하여 수집

<u>z5</u>

데이터 수집 및 전처리 과정

개봉후 1주일 데이터

영화별 주간 데이터 수집(www.kofic.or.kr)

- 1. 상영일과 개봉일 차이 비교
- 2. 엑셀 함수를 사용하여 상영일과 개봉일의 차를 ±7로 두고 결과값 출력

~	영화명	누적관객수 🔻	기간 🔻	개봉일 ▽	상영일	날짜차이다
65	팔로우	32567	15.04.09-04.15	2015-04-02	2015-04-09	7
138	파울볼	29232	15.04.09-04.15	2015-04-02	2015-04-09	7
129	윈드랜드	23432	15.04.09-04.15	2015-04-02	2015-04-09	7
29	모스트 바이어런트	9272	15.04.09-04.15	2015-04-02	2015-04-09	7
53	맛있는 택배	6276	15.04.09-04.15	2015-04-02	2015-04-09	7
81	맵 투 더 스타	6199	15.01.01-01.07	2014-12-25	2015-01-01	7
53	화이트 갓	2345	15.04.09-04.15	2015-04-02	2015-04-09	7
162	원령	912	15.08.20-08.26	2015-08-13	2015-08-20	7

MIHI2/

데이터 수집 및 전처리 과정

배우 및 감독 (스타파워)

1. 영화별 배우/감독 데이터 크롤링

- ■(OFIC 영화관입장권통합전산망오픈API
- 2. 배우지수 (스타파워)로 환산(Frequency / Performance)
- 3. 배우지수 데이터 정규화 후 영화별 배우 데이터에 병합

데이터 수집 및 전처리 과정

손익분기점 = 제작비용 + 마케팅비용

- 한국영화 손익분기점 : 목표 관객 수
- 외국영화 손익분기점 : 최소목표 매출액(달러)

Α	В	S	Т
순위	영화명	손익분기점	
19	어벤져스:	6E+08	
37	캡틴 아메리	리카: 시빌 유	1
29	쥬라기 월드	3.4E+08	
1	미션 임파/	3.56E+08	
22	신과함께-9	70000000	
16	어벤져스:	에이지 오브	울트론
91	검사외전		
170	부산행		
5	앤트맨과 9	3.24E+08	
3	트랜스포마	4.34E+08	
4.5		ᄉᆔᄜᆞᄑᆚᇫ	ELA OL LITE

데이터 수집 및 전처리 과정

주별 종합 시계열 데이터

* 2015년부터 2018년 까지 주단위로 나누어 팀원 6명이 데이터 전처리

데이터 정제

- 재개봉작 제거
- 스크린 수, 총 관객수가 0 또는 1 데이터 제거
- 개봉일과 상영일이 과도하게 차이나는 데이터 제거(예: 1960년대 이벤트성 재개봉 영화

순번	영화명	· 감독 ▼	제작사	수입사	배급사	개봉일	영화유형	영화형태	국적▼	전국스크린수	전국매출액 ▼	전국관객수
1	명량	김한민	(주)빅스톤픽쳐스		씨제이이앤엠(주)	2014-07-30	개봉영화	장편	한국	1,587	1.35748E+11	17,613,682
2	신과함께-죄와 벌	김용화	리얼라이즈픽쳐스(주),(주)덱스터스튜디오		롯데쇼핑㈜롯데엔터테인먼트	2017-12-20	개봉영화	장편	한국	1,912	1.157E+11	14,410,931
3	국제시장	윤제균	(주)제이케이필름,씨제이이앤엠(주)		씨제이이앤엠(주)	2014-12-17	개봉영화	장편	한국	966	1.10828E+11	14,245,998
4	베테랑	류승완	(주)외유내강,(주)필름케이		씨제이이앤엠(주)	2015-08-05	개봉영화	장편	한국	1,064	1.05025E+11	13,395,400

예측 모델 생성 및 실험 결과

본론

1. Artificial Neural Network

1. 데이터 클랜징

→ ANN 알고리즘은 임의의 두 변수 간의 편차가 클 경우 제대로 학습되지 않는 특징이 있기 때문에 변수간 normalization 함: function(x) { (x-min(x))/(max(x)-min(x)) }

attend	deadline	show_freq	screen	ac_attend	ac_sales	actor_2	actor_1	dir_score	name	X	
0.054543	0.033285	0.0002	0.589838	0.490753	0.487931	0.14972	0.031759	0	내부자들	57	1
0.005822	0.029951	8.59E-05	0.337873	0.142492	0.138793	0.303428	0.03228	0	뷰티 인사(78	2
0.076167	0.054953	0.000687	0.422211	0.058074	0.054052	0.079919	0.02997	0	대립군	11	3
0.107568	0.024951	1	0.614458	0.101136	0.096552	0.077888	0.046733	0.165522	박열	33	4
0.075314	0.049952	0.000115	0.491881	0.14233	0.139655	0.347884	0.024849	0	봉이 김선	79	5
0.75038	0.054953	5.73E-05	0.935045	0.802542	0.803448	0.247765	0.038118	0.045808	부산행	50	6
0.001773	0.021618	2.86E-05	0.227344	0.068212	0.063448	0	0	0	미쓰 와이:	99	7
0.114736	0.033285	0.000229	0.569932	0.179583	0.17931	0.175775	0.100443	0	보안관	22	8
0.00164	0.016617	0.000745	0.171818	0.008381	0.008207	0.009574	0.000736	0	퇴마: 무녀	155	9
0.203118	0.019951	0.000659	0.477737	0.083589	0.085431	0.239957	0.079986	0	해빙	88	10
0.15816	0.063953	0.000458	0.684652	0.36889	0.375	0.069547	0.021399	0	더 킹	63	11
1	0.021618	0.000745	0.000524	0.056478	0.051034	0.203736	0.040747	0	카트	105	12
0.005225	0.00745	0.000115	0.24044	0.006598	0.006103	.0	0	0	걷기왕	161	13
0.054162	0.049952	0.00063	0.136721	0.054831	0.053448	0.029543	0.003476	0	상의원	106	14
0.002074	0.058286	0	0.298062	0.029923	0.028965	0.148099	0.037025	0	협녀, 칼의	125	15
0.053333	0.019951	0.000859	0.35516	0.072586	0.069827	0.366079	0.061013	0	그놈이다	98	16

	Χ	name	dir_score	actor_1	actor_2	ac_sales	ac_attend	screen	show_freq	deadline	attend
1	1 2	리얼	0.007134	0.044614	0.111534	0.026465	0.029596	0.506548	0.516398	0.116622	0.042013
- 2	2 3	신과함께-	1	0.35699	0.35699	1	1	1	0.004153	0.113289	1
	3 6	인랑	0	0.010671	0.042682	0.050862	0.052694	0.566789	0.532552	0.099955	0.213014
1	4 12	곡성	0	0.02027	0.253381	0.481897	0.477418	0.776323	0.000544	0.049952	0.048514
	5 16	임금님의	0	0	0	0.108621	0.113417	0.55055	0.000831	0.049952	0.032799
(5 18	골든슬럼비	0.095505	0.088009	0.176018	0.098276	0.096287	0.434783	0.000659	0.044952	0.27507
7	7 24	미옥	0.009239	0.021335	0.064006	0.016638	0.016844	0.331063	0.000401	0.033285	0.053975
8	3 27	석조저택 :	0	0.082519	0.103148	0.02431	0.024422	0.280775	2.86E-05	0.031618	0.031631
1.5	9 29	꾼	0.285194	0.153957	0.153957	0.269828	0.278826	0.686747	0.001031	0.029951	0.466468
10	32	재심	0	0.124598	0.249197	0.166379	0.167983	0.488214	0.000601	0.026618	0.035342
11	1 41	카이: 거울	0	0	0	0.00156	0.00169	0.088528	0.001604	0.003283	0.00063
12	2 43	마리안느의	0	0	0	0.001672	0.00192	0.031954	0.000344	0.000783	0.002901
13	3 44	피의 연대	0	0	0	0.000659	0.000678	0.012048	0.000372	0.000783	0.0001
14	4 51	검사외전	0	0.019866	0.205287	0.666379	0.673606	0.947617	8.59E-05	0.044952	0.150843
15	5 52	공조	0	0.161838	0.377622	0.55	0.542482	0.727606	0.000659	0.049952	0.044708
16	5 53	히말라야	0	0.02953	0.472483	0.518965	0.538458	0.572027	0	0.069953	0.062552
17	7 59	럭키	0	0.054298	0.705878	0.486207	0.483978	0.64484	0.001919	0.033285	0.037847
18	3 60	연평해전	0	0	0	0,393103	0.419457	0.529073	8.59E-05	0.039952	0.043716
19	61	덕혜용주	0	0.000982	0.015215	0.382759	0.388409	0.503405	8.59E-05	0.058286	0.078701

2. 변수 간의 상관관계 분석

```
> Train<-read.csv("Train2.csv",header = TRUE)
> Test<-read.csv("Test2.csv",header = TRUE)</pre>
```

```
> cor(Train$ac_attend,Train$dir_score) # 누적 판매량과 감독점수
[1] 0.32543548
> cor(Train$ac_attend,Train$actor_2) # 누적 판매량 과 배우점수
[1] 0.3104214129
> cor(Train$ac_attend,Train$screen) # 누적 판매량 과 스크신
[1] 0.7097708609
> cor(Train$ac_attend,Train$deadline) # 누적 판매량 과 손의 분기점
[1] 0.3116334713
> cor(Train$ac_attend,Train$attend) #누적 판매량과 개봉후 1주일 관람객수
[1] 0.4459931448
```

위는 Train셋의 누적 관객수와의 상관계수

- 1. screen 2. attend 3. dir_score 4. deadline 5. actor_2 순으로 상관계수가 높음
- → 독립변수에 대한 insight 획득

3. 예측 모델링(1차 실험)

```
model <- neuralnet(ac_attend ~ screen + attend ,</pre>
                 data = Train , hidden=c(5,3))
       분류한 Train에서 모델링될 ac_attend(누적 관람객) 를 사용한다.
# 인공신경망에 screen + attend 를 학습시킨다.
# 데이터는 사전에 분류한 Train을 이용하며. 은닉층은 5.3 개 를 사용한다.
model_result <- compute(model,Test[, c("screen","attend")])</pre>
 screen.attend 변수를 이용해 예측한다.
predict_attend <- model_result$net.result</pre>
# Test의 attend 예측값을 predict_attend 변수에 대입.
cor(predict_attend, Test$ac_attend)
# predict_attend 예측값 과 실제 값 사이의 상관계수
|plot(Test$ac_attend,predict_attend,xlab = "실제 값",ylab="예측 값",)
abline(a=0, b=1, col="red")
```

→ 가장 유의미한 상관관계가 보였던 독립 변수를 ANN 모델링에 넣는 실험을 함.

3. 예측 모델링(1차 실험): 시각화

3. 예측 모델링(1차 실험) : 시각화

→ y=x 지점: 예측값과 실제값이 일치하는 지점

3. 예측 모델링(2차 실험)

```
model <- neuralnet(ac_attend ~ screen + attend + dir_score ,</pre>
                data = Train , hidden=c(5,3))
# 사전에 분류한 Train에서 모델링될 ac_attend(누적 관람객) 를 사용한다.
# 인공신경망에 screen + attend + dir_score를 학습시킨다.
# 데이터는 사전에 분류한 Train을 이용하며, 은닉층은 5,3 개 를 사용한다.
model_result <- compute(model,Test[, c("screen","attend","dir_score")])</pre>
# model_result 에는 사전에 학습된 model을 이용해 Test파일에 있는
#screen,attend,dir_score 변수를 이용해 예측한다.
predict_attend <- model_result$net.result</pre>
#Test의 attend 예측값을 predict_attend 변수에 대입.
cor(predict_attend, Test$ac_attend)
# predict_attend 예측값 과 실제 값 사이의 상관계수
plot(Test$ac_attend,predict_attend,xlab = "실제 값",ylab="예측 값",)
abline(a=0, b=1, col="red")
```

→ 독립 변수 수정하여 2차 실험 실시

3. 예측 모델링(2차 실험): 시각화

3. 예측 모델링(2차 실험): 시각화

3. 예측 모델링(3차 실험)

```
model <- neuralnet(ac_attend ~ screen + attend + dir_score + deadline ,
                data = Train , hidden=c(5,3))
 '사전에 분류한 Train에서 모델링될 ac_attend(누적 관람객) 를 사용한다.
 인공신경망에 screen + attend + dir_score + deadline + actor_2 를 학습시킨다.
 데이터는 사전에 분류한 Train을 이용하며, 은닉층은 5,3 개 를 사용한다.
model_result <- compute(model,Test[, c("screen","attend","dir_score","deadline")])</pre>
# model_result 에는 사전에 학습된 model을 이용해 Test파일에 있는
#screen,attend,dir_score,deadline,actor_2 변수를 이용해 예측한다.
predict_attend <- model_result$net.result
#Test의 attend 예측값을 predict_attend 변수에 대입.
cor(predict_attend, Test$ac_attend)
# predict_attend 예측값 과 실제 값 사이의 상관계수
plot(Test$ac_attend,predict_attend,xlab = "실제 값",ylab="예측 값",)
# x축을 예측값, y축을 실제값을 넣어 그래프를 그린다.
abline(a=0, b=1, col="red")
  v=x의 그래프를 그린다.
```

→ 독립 변수 수정하여 3차 실험 실시

3. 예측 모델링(3차 실험): 시각화

3. 예측 모델링(3차 실험): 시각화

→ 에러값은 상당히 감소하였으나, 여전히 Outlier값 존재

3. 예측 모델링(4차 실험)

→ 독립변수 수정하여 4차 실험 실시

```
model <- neuralnet(ac_attend ~ screen + attend + dir_score + deadline + actor_2 ,
                data = Train , hidden=c(5,3))
# 사전에 문류한 Train에서 모델링될 ac_attend(누석 관담객) 를 사용한나.
# 인공신경망에 screen + attend + dir_score + deadline + actor_2 를 학습시킨다.
# 데이터는 사전에 분류한 Train을 이용하며, 은닉층은 5,3 개 를 사용한다.
model_result <- compute(model,Test[, c("screen","attend","dir_score","deadline","actor_2")])</pre>
# model_result 에는 사전에 학습된 model을 이용해 Test파일에 있는
#screen,attend,dir_score,deadline,actor_2 변수를 이용해 예측한다.
predict_attend <- model_result$net.result</pre>
#Test의 attend 예측값을 predict_attend 변수에 대입.
cor(predict_attend, Test$ac_attend)
# predict_attend 예측값 과 실제 값 사이의 상관계수
plot(Test$ac_attend,predict_attend,xlab = "실제 값",ylab="예측 값",)
abline(a=0, b=1, col="red")
|# v=x의 그래프를 그린다.
```

3. 예측 모델링(4차 실험) : 시각화

3. 예측 모델링(4차 실험) : 시각화

→ 예측값이 실제값에 수렴하는 추세를 보임

4. 결론

Error: 0.276973 Steps: 776

4. 결론

Error: 0.276973 Steps: 776

2. Decision Tree / Random Forest

Decision Tree / Random Forest

데이터셋 분리 → 모델 설계 → 최적 독립변수 발견 작업 → 결과 시각화 → RMSE 분석

[분석 모델 정의]

Decision tree (의사결정 나무) 분석은 이상치와 노이즈에 큰 영향을 받지 않으며 모델의 간편한 시각화로 모델을 이해하고 분석하는데 큰 장점이 있는 분석법

[관련 패키지]

Rpart, party 등 여러 패키지를 사용하여 분석 가능 Rpart, party 패키지는 의사결정 나무를 그리는 논리, 시각화 형태에 따른 차이가 존재

1. Party 패키지: 데이터 클랜징

- 1. 소스코드 화면
- → 모델링 전 데이터 정리 작업

```
library(caret)
library(randomForest)
library(party)
library(datasets)
librarv(data.table)
# test. train 데이터
Train<-read.csv("Train_korea.csv")
Test<-read.csv("Test_korea.csv")
Train<-Train[,c(7,8,16,17)]
Test<-Test[,c(7,8,16,17)]
str(Test)
str(Train)
#1. 모델 결측치 처리
Train2 <- Train
Test2 <- Test
rain2$ac_attend[is.na(Train2$ac_attend)] <-0
Train2$attend[is.na(Train2$attend)] <-0
Train2$screen[is.na(Train2$screen)] <-0
Train2$act_point[is.na(Train2$act_point)] <-0</pre>
Train2$profit_line[is.na(Train2$profit_line)] <-0
Test2$ac_attend[is.na(Test2$ac_attend)] <-0
Test2$attend[is.na(Test2$attend)] <-0
Test2$screen[is.na(Test2$screen)] <-0
Test2$act_point[is.na(Test2$act_point)] <-0
rest2$profit_line[is.na(Test2$profit_line)] <-0
```

1. Party 패키지 : 모델링

1. 소스코드 화면(전체)

```
formula 생성 : Y변수 연속령
party_tree <- ctree(ac_attend~screen+attend+act_point,Train2)</pre>
plot(party_tree)
#3. 모델 그래프 시각화
party_pred <- predict(party_tree,Test2,type="response")
party_pred
#관객 예측 정확를 : 예측결과/실제결과
party_pred_per <-(1-(abs(party_pred - Testa)/Testa))*100
party_pred_per
#4. 모델링과 RMSE 지수
model<-randomForest(ac_attend~attend+screen,data=Train2,importance=TR
randomforest_pred<-predict(model, Test3) #x 정의역 변수를 넣으면
RMSE<-sqrt(mean(Test3$ac_attend - randomforest_pred)^2)
RMSE
```

→ 1-1) 의사결정 나무 모델 생성

- → 1-2) 관객 예측 정확률 : 예측 결과 / 실재결과
- → 2-1) 랜덤 포레스트 모델 생성
- → 2-2) RMSE 계산

* 시각화

→ 1-1) 의사결정 나무 모델 생성

* RMSE 계산의 의미

1. Party 패키지 : 결론

→ 2-2) RMSE 계산 결과

[출력 결과]

```
> Test3
    ac_attend screen act_point attend
[1,] 2675618 1124     0 1299451
> Test3<-as.data.table(Test3)
> randomforest_pred<-predict(model, Test3)
> randomforest_pred
          1
4315304
> RMSE<-sqrt(mean(Test3$ac_attend - randomforest_pred)^2)
> RMSE
[1] 1639686
```

→ Party 패키지에서 RMSE가 16만에서 최소값을 보임

1. Party 패키지 : 결론

→ 실제 데이터로 예측 시뮬레이션 완성된 모델을 평가하기 위해 영화_곤지암 데이터를 대입

[출력 결과]

→ 영화 '곤지암 ' 의 실제 데이터 대입 결과, ac_attend(누적관객수)를 오차 1639686명으로 예측함 이는 실제값의 61.2%의 예측을 보임

충분한 예측률을 보이지 않아 다른 패키지로 2차 실험 진행

2. Rpart 패키지: 데이터 클랜징

```
Train<-read.csv("Train_korea.csv")
Test<-read.csv("Test_korea.csv")
Train<-Train[,c(7,8,16,17)]
                                         #<< 사용할 변수만 불러온다.
Test<-Test[,c(7,8,16,17)]
str(Test)
str(Train)
 library(caret)
 library(rpart)
 library(rpart.plot)
 library(randomForest)
#4. 모델링과 RMSE 지수
#결축치 처리
Train2 <- Train
Test2 <- Test
 rain2$ac_attend[is.na(Train2$ac_attend)] <-0
Train2$attend[is.na(Train2$attend)] <-0
Train2$screen[is.na(Train2$screen)] <-0
Train2$act_point[is.na(Train2$act_point)] <-0</pre>
Train2$profit_line[is.na(Train2$profit_line)] <-0
Test2$ac_attend[is.na(Test2$ac_attend)] <-0
Test2$attend[is.na(Test2$attend)] <-0</pre>
Test2$screen[is.na(Test2$screen)] <-0
Test2$act_point[is.na(Test2$act_point)] <-0</pre>
Test2$profit_line[is.na(Test2$profit_line)] <-0
model<-randomForest(ac_attend~.,data=Train2,importance=TRUE)
randomforest_pred<-predict(model, Test2)</pre>
 MSE<-sqrt(mean(Test2$ac_attend - randomforest_pred)^2)
```

→ 모델링 전 데이터 정리 작업

2. Rpart 패키지 : 모델링

1. 소스코드 화면(계속)

```
# 1. 모델링
m.rpart <- rpart(ac_attend~screen+act_point+attend,data=Train)

# 2. 시작화 model design
rpart.plot(m.rpart, digits=3)
#----digits는 숫자의 자리 수 fallen.leves는 및 노드의 정렬, type과 extra는 결정과 노드가 레이를
rpart.plot(m.rpart, digits=4, fallen.leaves = T, type=3, extra =101)

# 3. 상관 관계 평가
p.rpart <-predict(m.rpart, Test)
summary(p.rpart)
cor(p.rpart, Test$ac_attend)

> cor(p.rpart, Test$ac_attend)
[1] 0.8417104
```

2. Rpart 패키지 : 시각화

→ Rpart 패키지를 이용한 의사결정 나무에서는 이 분법적 해석으로 데이터를 분류해서 나아간다.

변수로는 act_point, screen, attend 를 사용하였다.

2. Rpart 패키지 : RMSE 계산 모델링

```
#5. 모델 평가 작업 - 정의역 변수 1개 데이터 값 대입 후 실제 누적관객수와 비교
# ex. 실제 영화인 검은사제들의 데이터값을 대입
Test3 <-cind(Test3,1124)
Test3 <-cbind(Test3,0)
Test3 <-cbind(Test3,2675618)
colnames(Test3)<-c("ac_attend","screen","act_point","attend")
Test3
Test3<-as.data.table(Test3)
randomforest_pred<-predict(model, Test3)
randomforest_pred

RMSE<-sqrt(mean(Test3$ac_attend - randomforest_pred)^2)
RMSE
```

→ RMSE 계산

2. Rpart 패키지 : 결론

→ RMSE 계산 결과

```
> Test3
      ac_attend screen act_point attend
[1,] 2675618 1124     0 1299451
> Test3<-as.data.table(Test3)
> randomforest_pred<-predict(model, Test3)
> randomforest_pred
      1
3230677
> RMSE<-sqrt(mean(Test3$ac_attend - randomforest_pred)^2)
> RMSE
[1] 555059.1
```

→ RMSE 값이 Rpart패키지에서 55만에서 최소값을 보임

2. Rpart 패키지 : 결론

→ 실제 데이터로 예측 시뮬레이션 완성된 모델을 평가하기 위해 영화_곤지암들의 데이터를 대입

영화 '곤지암' 의 실제 데이터 대입 결과, ac_attend(누적관객수)를 약 555059명 오차로 예측함 실제값의 82.8% 예측률을 보임

전문가 인터뷰

전문가 인터뷰

"82.8% 예측은 준수하나, 알고리즘의 파라미터를 조정하면 더 높은 예측률을 보일 수 있을 것" "예측모델의 핵심은 사용되는 독립변수" "알고리즘 별 파라미터 선택에 만전을 기해야함"

> 박동연 (2017 빅콘테스트 - 영화 흥행 예측 부분 대상 수상자), 민다빈(서울시 빅데이터 연구소 SBLI 소속 연구원)

3. K-Nearest Neighbor(FNN)

1. FNN 모델을 쓴 이유

데이터셋 분리 → 모델 설계 → 결과 시각화 → RMSE 분석

[분석 모델 정의]

패턴 인식을 위해, 분류나 회귀에 사용되는 KNN(K- 최근접 이웃 알고리즘)은 지역적으로 근처에 다다르고 모든 계산이 분류될 때 까지 연기되는 간단한 기계 학습 알고리즘에 속한다.

데이터를 분류해, 분류된 클러스터만을 출력하는 기능만 수행하는 KNN에서 확장해, k개의 최근접 이웃이 가진 값들의 평균으로, KNN 회귀에서 모델의 예측값 출력

[<mark>관련 패키지]</mark> Knn.reg(FNN) 사용

2. K-Nearest Neighbor(FNN): 모델 설계

```
> Org<-read.csv("Go.csv")
> Data<-Org[c(1,3,4,5,6)]
> str(Data)
'data.frame': 1781 obs. of 5 variables:
$ name : Factor w/ 1780 levels "007 스펙터",
...
$ attend : int 3548260 3255874 2210275 191391
$ ac_attend: int 14410537 3848108 6879822 72311
$ screen : int 1912 232 728 1299 1113 1314 14
$ season : num 1 0.283 0.283 1 0.775 ...
```

→ Fnn 모델은 반드시 인자가 int형이어야함

```
> set.seed(2018) #랜덤 seed 설정
> RandomIndex<-sample(x=1:nrow(Data),size=round(0.7*nrow(Data)),replace=F) # 훈련,테스트 (7:3) 분리
> Train<-Data[RandonIndex,]
Error in `[.data.frame`(Data, RandonIndex, ) :
  object 'RandonIndex' not found
> Train<-Data[RandomIndex,]
> Test<-Data[-RandomIndex,]
```

```
model<-knn.reg(Train,Test,Train$ac_attend,35)
#모델 행정 knn.reg(운던,테스트,Y,k개수 {일만식으로 훈련 데이터 원소의 제곱근} )
```

→ 모델 생성 (최적의 k 포함)

3. 모델 성능향상을 위한 feature 발견

name	month 🔻	attend 🚚	ac_attend 🔻	screen 🔻	season 🔻	post 🔻	like ▼
신과함께-죄와 벌	12	3548260	14410537	1912	1	8,365	156
남한산성	10	3255874	3848108	232	0.2826543	144790	460
범죄도시	10	2210275	6879822	728	0.2826543	117390	445
1987	12	1913914	7231189	1299	1	666831	965
터미네이터 제니시스	7	1894340	3240370	1113	0.7752099	2351	44
꾼	11	1655893	4018035	1314	0.2537844	71877	203
강철비	12	1643489	4452515	1426	1	46596	1845
부산행	7	1436163	11565056	1788	0.7752099	226486	1397
토르: 라그나로크	10	1356454	4853554	1456	0.2826543	32042	915
테이큰 3	1	1196326	2006561	616	0.3185174	3180	33
23 아이덴티티	2	1178815	1675719	952	0.4771435	13378	143
저스티스 리그	11	1141912	1786383	1308	0.2537844	25310	90

KNN 예측 모델 실험에서는 성능을 향상시키기 위해 2가지 feature를 시도

- → { post(인스타그램 게시물 수) , like(인기글 평균 좋아요 수) }
- → Season : 월 별 누적관객수의 총합의 정규화(normalization)

3. 모델 성능향상을 위한 feature 발견: (1) 인스타그램

```
for (i in 1:1781) {
      url<-paste(url base1, search[i, 1], url base2)</pre>
      movie <- read html (url)
      content<-html nodes(movie, ".search tag")</pre>
      content1<-html nodes(content,".td col.result td01")</pre>
      title<-c(title,content1) # 제목 뽑기
      content2<-html nodes(content,".td col.result td02")</pre>
      post<-c(post,content2) # 누적게시물 수 뽑기
      content3<-html nodes(content,".td col.result td03")</pre>
      content3<-qsub("<.+?>|\t", "", content3)
      like<-c(like,content3) # 인기글 평균 좋아요 수 뽑기
      print(i)
[1] 1
[1] 2
[1] 3
```

→ 스타태그(startag.io)에서 title을 검색하면 나오는 결과 출력 (누적 게시물 수, 인기글 평균 좋아요 수)

title	post	like
#캡틴아메리카시빌워	14,694	505
#신과함께죄와벌	8,365	156
#검사외전	53,337	190
#부산행	226,486	1,397
#트랜스포머최후의기사	3,528	271
#스파이더맨홈커밍	44,259	1,336
#미녀와야수	158,153	1,158
#암살	55,434	298
#닥터스트레인지	62,530	5,375
#마스터	97,359	241
#곡성	146,277	164
#토르라그나로크	32,042	915

2. 모델 성능향상을 위한 feature 발견: (1) 인스타그램

[한계점 발견]

- 1. 어느 정도 overground인 영화만 검색
- 2. 좋아요수 의도적 조작의 흔적 발견: 영화 시청과 관련 없이 관여 (e.g.아이돌 팬)

→ 파라미터 최종 기각 결정

3. 모델 성능향상을 위한 feature 발견 : (2) season vs 관람객

→ Season 시각화: 월 별 누적관객수를 모두 모아 정규화(normalization) 진행

→ 여름방학시즌과 크리스마스 시즌에 상 당히 편향되어있음을 발견

3. 모델 성능향상을 위한 feature 발견 : (3) 개봉 후 1주일 관람객

→ 예측모델과 실제값과 거의 유사한 형태로 매우 밀접한 feature로 확인

Actual

3. 모델 성능향상을 위한 feature 발견 : (4) screen 수

Pred_Model

- > first<-cbind(Test\$screen, model\$pred)</pre>
- > first<-as.data.table(first)</pre>
- > colnames(first)<-c("screen", "ac attend")</pre>
- > ggplot(data=first,aes(x=screen,y=ac_attend))+geom_line(size=1.5,color="navy"

Actual

- > second<-cbind(Test\$screen,Test\$ac attend)
- > second<-as.data.table(second)
- > colnames(second)<-c("screen", "ac attend"</pre>
- > ggplot(data=second,aes(x=screen,y=ac attend))+geom line(size=1.5,color="red"

3. 모델 성능향상을 위한 feature 발견 : (4) screen 수

4. 결론

1) RMSE 계산 모델과 실제 값의 차이를 비교 (공모전 제출 데이터)

```
> RMSE<-sqrt(mean( (Test$ac_attend-model$pred)^2 ))
> RMSE
[1] 657310.6
```

→ FNN 알고리즘 RMSE 65만에서 최소값을 보임

4. 결론

2) 성능 측정을 위해 2018년 개봉 영화 곤지암 입력.

```
> predict<-knn.reg(Train,gon,Train$ac_attend,35)
> predict
Prediction:
[1] 2578148
> gon$ac_attend
[1] 2675618
> 2675618 - 2578148
[1] 97470

96%의 예측률 기록
```

5. 한계점

"오차의 평균은 65만 수준으로 상당한 예측력"

0.001%의 1500만 이상 메가 히트작의 경우, 테스트 데이터가 매우 희소하기 때문에 예측률이 다소 떨어지는 한계를 보임.

이 결과는 무슨 의미를 가지는가?

KNOWLEDGE

96%의 예측률을 보이게 된 요인 : (1) season

96%의 예측률을 보이게 된 요인: (1) season

96%의 예측률을 보이게 된 요인 : (2) 개봉 후 첫 주 관람객

96%의 예측률을 보이게 된 요인: (3) screen 수

