DOC-2

Sai Kavya Gorle

 $4^{\rm th}$ August 2025

Defect Overview Table

Substrate Material	Defect Material	Excel Sheet Extracted	Converted to T and II	Defect / S_{21} Behaviour
Air	Teflon	Yes	Yes	Capacitive
Rogers	Air	Yes	Yes	The size is too small to notice the distor- tion due to defect
Rogers	Glass	Yes	Yes	Capacitive
Rogers	Drilled hole copper patches	No	No	S_{21} is not smooth. There were ridges
Rogers	Drilled a hole through the waveguide and filled it with air	No	No	S_{21} is smooth, acts like a passband with a bandstop filter at some freq.

Rogers with Glass Defect

a=22.86mm,b=10.16mm,t=0.2mm,L=60mm

This defect perturbs the electromagnetic field distribution more significantly than the air-filled case due to the stronger dielectric contrast.

Since the imaginary parts of the extracted T-network impedance parameters are predominantly positive, the defect exhibits an inductive behavior in the equivalent circuit model.

Magnitude of Impedence vs frequeny

WEEK2 fig4

Calculation of Denominator D

Given: $Z_1 = -415.866457 + j \, 196.551810$, $Z_2 = -205.816439 + j \, 94.324658$, $Z_3 = -417.465356 + j \, 196.907062$

$$Z_1 Z_2 = (-415.866457 + j \, 196.551810)(-205.816439 + j \, 94.324658)$$

= 67052.47102175566 - j 79680.05494340131

$$Z_2Z_3 = (-205.816439 + j 94.324658)(-417.465356 + j 196.907062)$$

= 67348.04169685248 - j 79903.98724634046

$$Z_3 Z_1 = (-417.465356 + j \, 196.907062)(-415.866457 + j \, 196.551810)$$

= 134907.39908208148 - j 163940.61356631370

$$\begin{split} D &= Z_1 Z_2 + Z_2 Z_3 + Z_3 Z_1 \\ &= 67052.47102175566 - j79680.05494340131 \\ &+ 67348.04169685248 - j79903.98724634046 \\ &+ 134907.39908208148 - j163940.61356631370 \\ &= 269307.91180068965 - j323524.6557560555 \end{split}$$

$$Y_1 = \frac{Z_2 Z_3}{D} = \frac{67348.04169685248 \ - \ j \ 79903.98724634046}{269307.91180068965 \ - \ j \ 323524.6557560555}$$

 $\approx 0.24824787268459422 \ + \ j \ 0.001523610291923554 \ \mathrm{S}$

$$\mathbf{Y}_2 = \frac{Z_3 Z_1}{D} = \frac{134907.39908208148 - j\,163940.61356631370}{269307.91180068965 - j\,323524.6557560555}$$

 $\approx 0.5043623329162378 \ - \ j \ 0.002847905314547281 \ \mathrm{S}$

$$\mathbf{Y}_{3} = \frac{Z_{1}Z_{2}}{D} = \frac{67052.47102175566 - j\,79680.05494340131}{269307.91180068965 - j\,323524.6557560555}$$

Rogers with Air Drilled Holes

In this case, a hole was drilled through the Rogers waveguide and filled with air, creating a dielectric discontinuity along the propagation path.

The electric field plot revealed that the mode structure was largely preserved, with minor field distortion around the defect region. The field patterns suggest that the defect did not significantly affect the dominant mode propagation due to the small permittivity contrast between air and the surrounding substrate. This explains the minimal impact observed in the S-parameter response.

The S21 response remained relatively smooth, showing minimal reflection and consistent transmission across the frequency band, except for a slight dip at a specific frequency indicating weak bandstop behavior.