Case #3—Adenocarcinoma With *ALK* Rearrangement: Selecting Optimal Approach

Natasha Leighl, MD, MMSc, FRCPC

Princess Margaret Hospital

Toronto, Canada

EML4-ALK Fusion Oncogene Key Driver in 2% to 7% NSCLC

ALK, anaplastic lymphoma kinase; EML4, echinoderm microtubule-associated protein like 4

KIF5b

KLC1

Coiled-coil Domains

ALK Tyrosine Kinase Domain

Soda M, et al. *Nature*. 2007;448(7153):561-566. Kwak EL, et al. *N Engl J Med*. 2010;363(18):1693-1703.

ALK-Positive NSCLC: Clinical Characteristics

- Higher prevalence of EML4-ALK fusion in patients with:
 - Adenocarcinoma histology
 - Never/light smoking history
 - Younger
- Incidence similar: Europe (3.7%), US (8% ADC), Asia (5.8% ADC)

Example: Lung Cancer Mutation Consortium Analysis of Adenocarcinomas					
N = 643	ALK-positive	ALK-negative	P		
Mean age	52.3 years	59.9 years	<.0001		
Smoking history					
Current	3%	8%	0001		
Former	33%	61%	.0001		
Never	64%	31%			

Rodig SJ, et al. *Clin Cancer Res.* 2009;15(16):5216-5223. Shaw AT, et al. *J Clin Oncol.* 2009;27(26):4247-4253. Varella Garcia M, et al. *J Thorac Oncol.* 2011;6(Suppl 2): Abstract O05.01. Barlesi F, et al. *J Clin Oncol.* 2013;31(Suppl): Abstract 8000. Kris MG, et al. *JAMA*. 2014;311(19):1998-2006. Sun Y, et al. *J Clin Oncol.* 2010;28(30):4616-4620.

Which Is Best First-Line? Crizotinib vs Chemotherapy

PROFILE 1014

Key entry criteria

- ALK-positive by central FISH testing^a
- Locally advanced, recurrent, or metastatic non-squamous NSCLC
- No prior systemic treatment for advanced disease
- ECOG PS 0-2
- Measurable disease
- Stable treated brain metastases allowed

Endpoints

- Primary
 - PFS (RECIST 1.1, independent radiologic review [IRR])
- Secondary
 - ORR
 - OS
 - Safety
 - Patient-reported outcomes (EORTC QLQ-C30, LC13)

^aALK status determined using standard ALK break-apart FISH assay ^bStratification factors: ECOG PS (0/1 vs. 2), Asian vs non-Asian race, and brain metastases (present vs absent) ^cAssessed by IRR

Mok T, et al. *J Clin Oncol.* 2014;32(5s): Abstract 8002.

PROFILE 1014 Primary Endpoint Met: Crizotinib Superior to 1L Pemetrexed-Based Chemotherapy in Prolonging PFS^a

Data cutoff: November 30, 2013 ^aAssessed by IRR ^b1-sided stratified log-rank test

Mok T, et al. J Clin Oncol. 2014;32(5s): Abstract 8002.

PROFILE 1014 Secondary Endpoints: ORR^a and OS

	Crizotinib (N = 172)	Chemotherapy ^b (N = 171)	
ORR, % (n)	74 (128)	45 (77)	
95% exact CI of ORR	67-81	37-53	
Treatment difference, % (95% CIc)	29 (20-39)		
P ^c	<.	0001	
Median time to response,d weeks	6.1	12.1	
Range	2.7-41.4	5.1-36.7	
Median duration of response, d,e weeks	49.0	22.9	
95% CI ^f	35.1-60.0	18.0-25.1	

- Objective responses with crizotinib were rapid and durable
- With 68% of patients still in follow-up, median OS was not reached in either arm
 - A significant difference was not demonstrated (HR: 0.82; 95% CI: 0.54-1.26;
 P = .180)
 - Analysis was not adjusted for the potentially confounding effects of crossover
 - 120/171 chemotherapy patients (70%) received crizotinib after progression

^aBy IRR; ^bbefore crossover to crizotinib; ^cPearson χ² test; ^din patients with an objective response ^eKaplan–Meier method; ^fBrookmeyer–Crowley method

Crizotinib improves quality of life and cancer-related symptoms over first-line chemotherapy

Chemotherapy in ALK-Positive NSCLC

	Line	N	ORR	PFS
Platinum/pemetrexed ¹	1st	171	45%	7.0
≤6 cycles				months
Crizotinib ¹	1st	172	74%	10.9 months
Pemetrexed ²	2nd	99	29%	4.2 months
Docetaxel ²	2nd	72	7%	2.6 months
Crizotinib ²	2nd	172	65%	7.7 months

^{1.} Mok T, et al. J Clin Oncol. 2014;32(5s): Abstract 8002. 2. Shaw AT, et al. N Engl J Med. 2013;368(25):2385-2394.

Activity of Other ALK TKIs

ALK TKI	RR, % (n) Crizotinib Naïve	RR, % (n) Crizotinib Resistant	mPFS, m
Ceritinib LDK378 (Novartis)	72% (83)	56% (163)	9.0 (6.9-18.4)
Alectinib CH5425802 (Roche)	93.5% (46)	60% (47)	>14
AP26113 (Araid)	100% (7)	69% (45/65)	13

Felipe E, et al. *Ann Oncol.* 2014; Abstract 4380. Shaw AT, et al. *N Engl J Med.* 2014;370(26):2537-2539. Gadgeel SM, et al. *Lancet Oncol.* 2014;15(10):1119-1128. Nakagawa K, et al. *J Clin Oncol.* 2013;31(Suppl): Abstract 8033; Gettinger, S, et al. ESMO 2014: Abstract 5146

Alectinib and Ceritinib: First-Line Phase III Studies

Eligibility criteria:

- ALK-positive locally advanced/metastatic NSCLC
- No prior treatment for advanced disease

Primary endpoint = PFS*

*Determined by investigators, based on RECIST v1.1

Ceritinib² Ceritinib 750 mg **Eligibility criteria:** • ALK-positive locally (n = 174)advanced/metastatic D O nonsquamous NSCLC Pemetrexed/cisplatin No prior treatment for **Pemetrexed** advanced disease pemetrexed/carboplatin q3w a3w F (n = 174)**Primary endpoint: PFS**

1. National Institutes of Health. Available at: http://clinicaltrials.gov/ct2/show/NCT02075840. Accessed 12 December 2014. 2. National Institutes of Health. Available at: http://clinicaltrials.gov/ct2/show/NCT01828099. Accessed 12 December 2014

Case 3—Optimal First-Line

- 1. Cisplatin + Pemetrexed
- 2. Crizotinib
- 3. Clinical trial: Ceritinib vs chemotherapy
- 4. Clinical trial: Alectinib vs crizotinib

Common Crizotinib Toxicities (PROFILE 1014)

	Crizotinib (n = 171), n (%)		
	Any Grade	Grade 3/4	
Vision disorder ^c	122 (71)	1 (1)	
Diarrhea	105 (61)	4 (2)	
Edema ^c	83 (49)	1 (1)	
Vomiting	78 (46)	3 (2)	
Constipation	74 (43)	3 (2)	
Elevated transaminases ^c	61 (36)	24 (14)	
Abdominal pain ^c	45 (26)	0	
Dysgeusia	45 (26)	0	
Headache	37 (22)	2 (1)	

- Permanent treatment discontinuations due to treatment-related AEs: 5% and 8%, respectively^b
- No grade 5 AEs were reported to be related to treatment; 1 patient in the chemotherapy arm had grade 5 pneumonitis after crossover to crizotinib, considered to be treatment-related

^aNot adjusted for differential treatment duration; ^bBefore crossover to crizotinib; ^cclustered term Solomon BJ, et al. *N Engl J Med.* 2014;371(23):2167-2177.

Dose Modification Scheme

CTCAE ^b Grade	Crizotinib Dosing			
	Hematologic Toxicities ^a			
Grade 3	Withhold until recovery to grade ≤2, then resume at the same dose schedule			
Grade 4	Withhold until recovery to grade ≤2, then resume at 200 mg twice daily ^c			
Nonhematologic Toxicities				
Grade 3 or 4 ALT or AST elevation with grade ≤1 total bilirubin	Withhold until recovery to grade ≤1 or baseline, then resume at 200 mg twice daily ^d			
Grade 2, 3 or 4 ALT or AST elevation with grade 2, 3 or 4 total bilirubin elevation	Permanently discontinue			
Any Grade pneumonitise	Permanently discontinue			
Grade 3 QTc prolongation	Withhold until recovery to grade ≤1, then resume at 200 mg twice daily ^d			
Grade 4 QTc prolongation	Permanently discontinue			

^a Except lymphopenia (unless associated with clinical events, eg, opportunistic infections); ^b NCI Common Terminology Criteria for Adverse Events; ^c In case of recurrence, withhold until recovery to grade ≤2, then resume at 250 mg once daily. Permanently discontinue in case of grade 4 recurrence; ^d In case of recurrence, withhold until recovery to grade ≤1, then resume at 250 mg once daily. Permanently; discontinue in case of further grade 3 or 4 recurrence; ^e Not attributable to NSCLC progression, other pulmonary disease, infection, or radiation effect.

Crizotinib [prescribing information]. New York, New York: Pfizer, Inc; 2013.

A Common Scenario

Most common site of progression on crizotinib -70%!

Baseline

After 9 months of crizotinib

Intracranial TTP^a by IRR in ITT Population

CNS Relapses Represent Pharmacokinetic Failure Rather Than Biologic Resistance

	Crizotinib	PF-06463922
ALK WT NIH3T3 IC ₅₀ (nM)	80	1.5
ALK L1196M NIH3T3 IC ₅₀ (nM)	843	21
ROS1-CD74 IC ₅₀ (nM)	11	0.24
MDR BA/AB	45	1.5
CSF or free brain:free plasma (rodent)		0.23-0.33
Log D	2.0	2.3

CSF: Plasma ratio 0.0026

Current Recommendations and Guidelines

CNS relapse frequent^{2,3}

ffConsider ROS1 testing; if positive, may treat with crizotinib (Bergethon K, et al. *J Clin Oncol.* 2012;30(8):863-870.); *All recommendations are category 2A unless otherwise indicated

Crizotinib is the only approved ALK inhibitor

in the 1L setting

1. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) – Non-Small Cell Lung Cancer. Version 3.2014. 2. Otterson GA, et al. *J Clin Oncol.* 2012;30(Suppl): Abstract 7600. 3. Weickhardt AJ, et al. *J Clin Oncol.* 2012;30(Suppl): Abstract 7526.

Surveillance Brain MRI?

- 1. No, only if symptoms
- 2. Yes, brain MRI as often as systemic imaging
- 3. Yes, brain MRI every 6 months 9 months

No clear evidence to support

Most experts choose #3 or #1

What About Resistance? Crizotinib RR 65% to 75%; Median PFS 8-11 Months

Next Generation ALK TKIs

50% maximal inhibitory concentration (IC50) values of Ba/F3 cells dependent on expression of EML4-ALK (native) or kinase domain mutated *EML4-ALK* variants (n = 10). Data for each cell line are derived from at least 4 independent experiments (error bars = standard deviation). Dashed horizontal lines indicate the mean steady-state exposure concentrations of each drug corrected for the functional effects of protein binding at the recommended phase 2 doses: ^aCrizotinib: 250 mg BID, 259 nM⁹; AP26113: ^b180 mg QD, 899 nM and ^c90 mg QD, 264 nM¹⁰; ^dCeritinib: 750 mg QD, 456 nM¹¹; ^eAlectinib: 600 mg BID, 277 nM¹²; ^fn = 2

Ou SH. *Drug Des Devel Ther.* 2011;5:471-485. Shaw AT, et al. *N Engl J Med.* 2014;370(13):1189-1197. Ou S, et al. *Eur J Cancer.* 2013;49(Suppl 2): Abstract 44.

Ceritinib Activity in ALK+ NSCLC

Side Effects of Ceritinib

	Ceritinih Dose maldav						
Preferred Term, n (%)	50-300 (n = 10)	400 (n = 14)	5((n =	7	75% at	least 1	
Nausea	5 (50)	10 (71)	9 (interruption			
Diarrhea	3 (30)	9 (64)	7 (62	2% red	uctions	
Vomiting	5 (50)	8 (57)	6 (6				
Fatigue	3 (30)	5 (36)	4 (40)	8 (80)	0	41 (51)	61 (47)
ALT increased	1 (10)	2 (14)	3 (30)	2 (20)	4 (80)	33 (41)	45 (35)
Constipation	1 (10)	3 (21)	3 (30)	4 (40)	2 (40)	29 (36)	42 (32)
Abdominal pain	2 (20)	1 (7)	2 (20)	2 (20)	1 (20)	31 (28)	39 (30)
♦ Appetite	2 (20)	0	3 (30)	4 (40)	3 (60)	26 (32)	38 (29)
AST increased	1 (10)	3 (21)	2 (20)	2 (20)	3 (60)	22 (27)	33 (25)

CNS Responses to Ceritinib

CNS Responses With ALK TKIs

Agent	Intracranial RR (n)	Median duration of response
Crizotinib ¹	25% (10/40)	≥ 6.5 months
Ceritinib ²	36% (10/28) pretreated 63% (5/8) crizotinib naive	≥ 7 months
Alectinib ³	52% (11/21) pretreated	Not reported
AP26113 ⁴	43% (6/14)	Not reported

^{1.} Costa D, et al. J Thorac Oncol. 2014; Abstract 2932; 2. Shaw AT, et al. *Ann Oncol.* 2014;25(Suppl 4): Abstract ; 1293P 3. Gadgeel SM, et al. *Lancet Oncol.* 2014;15(10):1119-1128; 4. Gettinger S, et al. *Ann Oncol.* 2014;25(Suppl 4): Abstract 5146

Clinical Activity of Alectinib in Crizotinib-Resistant *ALK*-Positive NSCLC

ORR 54.5% across all cohorts for all patients

% tumor shrinkage

Days on study

ORR 54.5% all cohorts

Dose	300	460	600	760	900
(mg BID)	300	400	000	700	300
RR %	2/7 29%	5/7 71%	7/10 (70%) 3 unconfirmed	2/7 29%	8/13 (62%), 1 CR 4 unconfirmed

Side Effects of Alectinib

Side Effect	N = 47 (%)
Fatigue	14 (30)
Myalgia	8 (17)
Peripheral edema	8 (17)
Increased blood CPK	7 (15)
Nausea	7 (15)
ALT increased	6 (13)
Photosensitivity	6 (13)
Constipation	5 (11)
Rash	5 (11)

Ou S-H, et al. Eur J Cancer. 2013;49(Suppl 3): Abstract 44.

CNS Responses to Alectinib

CNS Responses to Alectinib Leptomeningeal Metastasis

My Opinion: CNS Only Relapse

- 1. Surgical resection of the brain metastases (S) or stereotactic radiosurgery (SRS) + continuation of crizotinib REASONABLE
- 2. S or SRS →WBRT →continue crizotinib
- 3. WBRT →continue crizotinib

- AVOID WBRT
- 4. S or SRS →discontinue crizotinib and start chemotherapy NO
- 5. S or SRS → discontinue crizotinib and start ceritinib NO
- 6. No local therapy for brain mets at this time; discontinue crizotinib and consider clinical trial with alectinib REASONABLE

What About Extracranial Progression?

Continue crizotinib and add chemotherapy

- Stop crizotinib and start cisplatin/pemetrexed **REASONABLE**
- 3. Clinical trial of second generation ALK inhibitor if available 📥
- Rebiopsy for additional mutation testing and clinical trial of targeted therapy
- Ceritinib, if available (eg, compassionate access)

Ceritinib Activity by ALK Gene Alteration

Ceritinib Resistance Is Associated With ALK G1202R

MGH011 Lung CT scan

Baseline

After 8 weeks of crizotinib

After 34 months of crizotinib

After 12 weeks of Ceritinib

After 15 months of Ceritinib

EML4-ALK

sequence: WT

S1206Y

G1202R

Next Generation ALK Inhibitors

Inhibitor	Targets	Development stage	Recent reports
Ceritinib	ALK/ROS	FDA approved	Shaw, <i>NEJM</i> 2014
	ALIVINOS	Phase III/CUP	Kim, ASCO 2014
		Approved in Japan	Seto, Lancet Oncol 2014
Alectinib	ALK	FDA fast-track	Gadgeel, Lancet Oncol 2014
		Phase III/CUP	Nakagawa, ASCO 2014
AP26113	ALK/EGFR/ROS	Phase I/II	Gettinger, ASCO 2104
TSR-011	ALK/TRK	Phase I/II	Weiss, ASCO 2014
X-396	ALK/ROS	Phase I/II	Horn, ASCO 2014
RXDX-101	ALK/ROS/TRK	Phase I/II	De Braud, ASCO 2014
PF-06463922	ALK/ROS/TRK	Phase I/II	Johnson, <i>J Med Chem</i> 2014
CEP-37440	ALK/FAK	Phase I/II	-

prlME POINTS™

- All patients with advanced nonsquamous NSCLC should be assessed for *ALK* rearrangement
- Patients with advanced ALK+ NSCLC should receive crizotinib first-line
- Continuation of TKI beyond progression can often be done, sometimes with the use of local therapy
- Patients who develop resistance to crizotinib can be treated with a second-generation ALK inhibitor (eg, ceritinib) or on clinical trial (alectinib, ceritinib, etc)
- Chemotherapy is always an option