Отчет по лабораторной работе 5

Модель хищник-жертва

Смирнова Мария Александровна

НФИбд-01-18

Цель работы

Рассмотреть модель Лотки-Вольтерры - простейшую модель взаимодействия двух видов типа "хищник-жертва". Построить график зависимости численности хищников от численности жертв. Построить график изменения численности видов при заданных начальных условиях. Найти стационарное состояние системы.

Краткая теоретическая справка

Простейшая модель взаимодействия двух видов типа «хищник — жертва» - модель Лотки-Вольтерры. Данная двувидовая модель основывается на следующих предположениях: 1. Численность популяции жертв х и хищников у зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории) 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса, при этом число жертв увеличивается, а число хищников падает 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными 4. Эффект насыщения численности обеих популяций не учитывается 5. Скорость роста численности жертв уменьшается пропорционально численности хищников

$$dx/dt = ax(t) - bx(t)y(t)$$

$$dy/dt = -cy(t) - dx(t)y(t) (1)$$

В этой модели x – число жертв, y - число хищников. Коэффициент а описывает скорость естественного прироста числа жертв в отсутствие хищников, с - естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников (ху). Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены -bxy и dxy в правой части уравнения).

Рис.1 Эволюция популяции жертв и хищников в модели Лотки-Вольтерры

Математический анализ этой (жесткой) модели показывает, что имеется стационарное состояние (А на рис.1), всякое же другое начальное состояние (В) приводит к периодическому колебанию численности как жертв, так и хищников, так что по прошествии некоторого времени система возвращается в состояние В.

Стационарное состояние системы (1) (положение равновесия, не зависящее от времени решение) будет в точке: x0 = c/d, y0 = a/b. Если начальные значения задать в стационарном состоянии x(0) = x0, y(0) = y0, то в любой момент времени численность популяций изменяться не будет. При малом отклонении от положения равновесия численности как хищника, так и жертвы с течением времени не возвращаются к равновесным значениям, а совершают периодические колебания вокруг стационарной точки. Амплитуда колебаний и их период определяется начальными значениями численностей x(0), y(0). Колебания совершаются в противофазе.

Задание

Вариант 27

Для модели «хищник-жертва»:

$$\begin{cases} \frac{\partial x}{\partial t} = -0.73x(t) + 0.037x(t)y(t) \frac{\partial y}{\partial t} = 0.52y(t) - 0.039x(t)y(t) \end{cases}$$

Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0 = 7$, $y_0 = 16$. Найдите стационарное состояние системы.

Выполнение лабораторной работы

1. Построим график зависимости численности хищников от численности жертв. Найдем на графике стационарную точку. Код julia:

```
using Plots
using DifferentialEquations
pyplot();
a = 0.73;
b = 0.037;
c = 0.52;
d = 0.039;
t = (0.0, 400.0);
step = 0.01;
p = [a,b,c,d];
x0 = [7,16];
function syst(dx,x,p,t)
a,b,c,d = p;
dx[1] = -a*x[1] + b*x[1] * x[2];
dx[2] = c*x[2] - d*x[1] * x[2];
end
prob = ODEProblem(syst, x0, t, p);
sol = solve(prob, saveat = step);
n = length(sol);
y1 = zeros(n);
y2 = zeros(n);
for i in 1:n
y1[i] = sol.u[i][1];
y2[i] = sol.u[i][2];
end
```

plot(y1,y2, xlabel = "Хищники", ylabel = "Жертвы", label = "Изменение количества жертв от количества хищников")

scatter!([c/d], [a/b], label = "Стационарная точка")

title!("Изменение количества жертв от количества хищников")

Получим следующий график (рис.2)

Рис.2 График зависимости численности хищников от численности жертв

2. Построим график изменения численности хищников и численности жертв при заданных начальных условиях. Код julia:

plot(sol, xlabel = "t", ylabel = "Кол-во", label = ["Хищники" "Жертвы"]) title!("Изменение численности видов")

Получим следующий график (рис.3)

Рис.З График изменения численности хищников и численности жертв

Выводы

В процессе выполнения работы мы рассмотрели модель Лотки-Вольтерры - простейшую модель взаимодействия двух видов типа "хищник-жертва". Построили график зависимости численности хищников от численности жертв. Построили график изменения численности видов при заданных начальных условиях. Нашли стационарное состояние системы.