Lista de Exercícios 3.1

Gustavo L. Gilardoni

Os exercícios numerados em verde são optativos.

- 1. Seja x_1, x_2, \ldots, x_n uma amostra da distribuição de Poisson com média θ , e considere a priori que θ tem uma distribuição Gama com parâmetros α e β (isto é com média $\alpha\beta^{-1}$ e variância $\alpha\beta^{-2}$). (i) Ache a distribuição a posteriori de θ e a sua média e variância. (ii) Mostre que é possível expressar a esperança a posteriori de θ da forma $w\bar{x} + (1-w)\alpha\beta^{-1}$, e interprete este resultado. (iii) O que acontece na parte (ii) quando β e grande com $\alpha\beta^{-1}$ fixo? Interprete! (iv) Mostre que existe um número c tal que a variância a posteriori é maior do que a variância a priori sempre que $\bar{x} > c$, ache c e interprete este resultado.
- 2. Considere a seguinte generalização do Exercício 1. Sejam y_1, y_2, \ldots, y_n observações independentes com $y_i | \theta \sim \text{Poisson}(\theta x_i)$, onde as exposições x_i são fixas (não aleatórias). A taxa θ segue a priori uma distribuição $\text{Gama}(\alpha,\beta)$. (i) Ache a distribuição a posteriori de θ e a sua média e variância. (ii) Mostre que é possível expressar a esperança a posteriori de θ da forma $(1-w)E(\theta)+w\hat{\theta}$, onde $E(\theta)$ e $\hat{\theta}$ são respectivamente a esperança a priori e a estimativa máximo verossímil de θ , e interprete este resultado. (iii) O que acontece na parte (ii) quando β e grande com $\alpha\beta^{-1}$ fixo? Interprete!
- 3. Seja x_1, x_2, \ldots, x_n uma amostra da distribuição de Poisson com média θ , e considere a priori que θ tem uma distribuição Gama com parâmetros $\alpha = 1$ e $\beta = 1$. Ache:
- (a) a estimativa bayesiana de θ no caso de perda quadrática (b) o limite do estimativa bayesiana sob perda zero-um quando $\epsilon \to 0$.

Para o caso n = 10 e $\bar{x} = 1.55$, ache:

- (c) a estimativa bayesiana sob perda absoluta e (d) o intervalo HPD para θ com nível 95%.
- **4.** No Exercício 3, calcule o estimador bayesiano para $\eta = P(x_1 = 0 \mid \theta) = e^{-\theta}$. Compare esse estimador com o estimador não-viesado de variância mínima $\tilde{\eta} = (1 1/n)^{n\bar{x}}$.
- 5. Seja x_1, x_2, \ldots, x_n uma amostra da distribuição Normal com média μ e variância ϕ^{-1} conhecida, e considere a distribuição a priori $\mu \sim \mathrm{N}(\mu_0, \tau^{-1})$. (i) Ache a distribuição a posteriori de μ . (ii) Mostre que é possível expressar a esperança a posteriori de μ da forma $w\bar{x} + (1-w)\mu_0$, e interprete este resultado. (iii) Se \bar{x}_m é a média de m observações futuras x_{n+1}, \ldots, x_{n+m} , condicionalmente independentes de x_1, \ldots, x_n , ache a distribuição preditiva $p(\bar{x}_m|x_1,\ldots,x_n)$. (iv) Discuta o que acontece com os resultados anteriores quando a distribuição a priori $p(\mu) \propto 1$ (i.é. o caso limite quando $\tau \to 0$).
- **6**. Seja x_1, x_2, \ldots, x_n uma amostra da distribuição Normal com média μ e variância ϕ^{-1} conhecida, e considere a distribuição a priori $\mu \sim N(\mu_0, \tau^{-1})$.
- (a): Ache o estimador bayesiano de μ no caso de (i) perda quadrática $(L(\hat{\mu}, \mu) = (\hat{\mu} \mu)^2)$, (ii) perda absoluta $(L(\hat{\mu}, \mu) = |\hat{\mu} \mu|)$ e (iii) perda zero-um $(L(\hat{\mu}, \mu) = I(|\hat{\mu} \mu| \ge \epsilon)$. (b): Ache o intervalo HPD para μ com nível $100(1 - \alpha)\%$.
- 7. Seja y_1, y_2, \dots, y_n uma amostra da distribuição Exponencial com risco λ e densidade

- $p(y|\lambda) = \lambda e^{-\lambda y} \ (y > 0)$ e considere uma distribuição a priori Gama para λ . (i) Ache a distribuição a posteriori de λ e a sua média e variância. (ii) Considere $\eta = E(y|\lambda) = \lambda^{-1}$. Ache a média e a variância a posteriori de η . (iii) Discuta se é possível expressar a esperança a posteriori de λ da forma $(1 w)E(\lambda) + w\hat{\lambda}$, onde $E(\lambda)$ e $\hat{\lambda}$ são respectivamente a esperança a priori e a estimativa máximo verossímil de λ , e os pesos w e 1 w são independentes da amostra. Repita esse estudo para η . (iv) Se y_{n+1} é uma observação futura condicionalmente independente de y_1, \ldots, y_n , ache a distribuição preditiva $p(y_{n+1}|y_1, \ldots y_n)$
- 8. Repita o Exercício 7 mas supondo agora que. além das n observações sem censura, existem m observações que foram censuradas nos momentos c_i . Isto é, foram observados os tempos de sobrevivência y_1, \ldots, y_n sem censura e, para $i = n+1, \ldots, n+m$ foi somente observado que $Y_i > c_i$. (Pode ser útil revisar o Exercício 2 da lista 1).
- 9. Suponha uma amostra x_1, \ldots, x_n da distribuição Normal com média zero e variância $\sigma^2 = 1/\tau$. Considere que a priori a precisão τ segue uma distribuição Gama com media α/β e variância α/β^2 . (i) Ache a distribuição a posteriori de τ . (ii) Mostre que a esperança a posteriori de $\sigma^2 = 1/\tau$ pode ser escrita da forma $wE(\sigma^2) + (1-w)\hat{\sigma}^2$, onde $E(\sigma^2)$ e o valor esperado a priori e $\hat{\sigma}^2$ é o estimador de máxima verossimilhança. Ache w e interprete. (iii) Se x_{n+1} é uma observação futura da mesma distribuição normal, condicionalmente independente da amostra original, ache a densidade preditiva $p(x_{n+1}|x_1,\ldots,x_n)$.
- 10. Seja y_1, y_2, \ldots, y_n uma amostra da distribuição Exponencial com risco λ e densidade $p(y|\lambda) = \lambda e^{-\lambda y} \ (y > 0)$ e considere uma distribuição a priori Gama($\alpha = 0.1, \beta = 0.1$). para λ . Ache
- (a): a estimativa bayesiana para λ sob perda quadrática; (b) o limite da estimativa bayesiana sob perda zero-um quando $\epsilon \to 0$.
- No caso n = 10, $\bar{y} = 2.4$, ache:
- (c) a estimativa bayesiana de λ sob perda absoluta e (d) o intervalo HPD para λ com nível 95%.
- 11. Repita os cálculos do Exercício 10 mas agora para o estimando $\mu = E(y_1 \mid \lambda) = \lambda^{-1}$.

Algumas Soluções

- 1. Denote $D = \{x_1, ..., x_n\}$ e $s = x_1 + \cdots + x_n$. (i) $\theta | D \sim \text{Gama}(\alpha_*, \beta_*) \text{ com } \alpha_* = \alpha + s \text{ e } \beta_* = \beta + n; \ E(\theta | D) = \alpha_* / \beta_* \text{ e } \text{Var}(\theta | D) = \alpha_* / \beta_*^2; \text{ (ii) } w = n/(\beta + n); \text{ (iv) } c = (\alpha/\beta) (2 + n/\beta) = (2 + n/\beta) E(\theta).$
- 2. Denote $D = \{y_1, \ldots, y_n\}$, $s_x = x_1 + \cdots + x_n$ e $s_y = y_1 + \cdots + y_n$. Logo a verossimilhança é $p(D|\theta) \propto e^{-\theta s_x} \theta^{s_y}$ e portanto $\theta|D \sim \text{Gama}(\alpha_*, \beta_*)$ com $\alpha_* = \alpha + s_y$ e $\beta_* = \beta + s_x$. O resto é semelhante ao exercício 1.
- 3. Seja $s = \sum_{i=1}^{n} x_i$. Temos a posteriori que $\theta|D \sim \text{Gama}(\alpha_* = \alpha + s = 1 + s, \beta_* = \beta + n = 1 + n)$. Logo (a) a estimativa sob PQ é $E(\theta|D) = \alpha_*/\beta_* = (s+1)/(n+1)$, enquanto (b) o limite da estimativa sob perda zero-um é a moda da distribuição a posteriori, que nesse caso é $(\alpha_* 1)/\beta_* = s/(n+1)$. Agora, quando n = 10 e $\bar{x} = 1.55$ temos que $\alpha_* = 16.50$ e $\beta_* = 11$, de forma que a estimativa sob PA é a mediana $\text{med}(\theta|D) \doteq 1.470$; (d) O intervalo HPD de nível 95% é $0.816 \doteq \theta_I < \theta < \theta_S \doteq 2.237$ e precisa ser calculado numericamente. Seguem dois códigos \mathbf{R} , o primeiro minimiza diretamente o comprimento do intervalo HPD, enquanto o segundo procura que os extremos do intervalo tenham a mesma densidade a posteriori.

- 4. $E(e^{-\theta}|D) = [1 1/(\beta + n + 1)]^{\alpha + n\bar{x}}$.
- 5. Veja a Seção correspondente das notas de aula.
- 6. Como a distribuição a posteriori $\theta|D \sim \text{Normal}(\mu_* = (\lambda \mu_0 + n\tau \bar{y})/(\lambda + n\tau), (\lambda_*)^{-1} = (\lambda + n\tau)^{-1})$ é simétrica com respeito a μ_* , segue que (a) o estimador bayesiano com respeito às perdas quadrática, absoluta e zero-um (para qualquer $\epsilon > 0$) é μ_* e que (b) o intervalo HPD de nível $100(1 \alpha)\%$ é $\mu_* \pm z_{\alpha/2}(\lambda_*)^{-1/2}$.

- 7. Denote $D = \{y_1, \ldots, y_n\}$ e $s = \sum_{i=1}^n y_i$. (i) $\lambda | D \sim \operatorname{Gama}(\alpha_* = \alpha + n, \beta_* = \beta + s)$ de forma que $E(\lambda | D) = \alpha_*/\beta_*$ e $\operatorname{Var}(\lambda | D) = \alpha_*/\beta_*^2$; (ii) mostre primeiro que, se $U \sim \operatorname{Gama}((\alpha, \beta), \text{ então } E(U^r) = \Gamma(\alpha + r) \beta^{-r}/\Gamma(\alpha) \text{ para } \alpha + r > 0$. Com isso, $E(\eta | D) = \beta^*/(\alpha_* 1)$ para $n > 1 \alpha$ e $\operatorname{Var}(\eta | D) = \beta^2_*/[(\alpha_* 1)^2 (\alpha_* 2)]$ para $n > 2 \alpha$; (iii) só é possível na parametrização $\eta = \lambda^{-1}$ e nesse caso $w = n/(\alpha + n 1)$; (iv) $p(y_{n+1}|y_1, \ldots, y_n) = \alpha_* \beta_*^{\alpha_*} (\beta_* + y_{n+1})^{-\alpha_* 1}$ para $y_{n+1} > 0$ (i.é. $(\beta_* + y_{n+1})|D$ segue uma distribuição de Pareto com parâmetros β_* e α_*).
- 8. Defina nesse caso $\alpha_* = \alpha + n$ (somente considera as observações não censuradas) e $\beta_* = \sum_{i=1}^n y_i + \sum_{i=n+1}^{n+m} c_i$ (considera todas as observações). Então $\lambda | D \sim \text{Gama}(\alpha_* = \alpha + n, \beta_* = \beta + s)$. O resto é semelhante ao exercício 8.
- 9. Defina $D = \{x_1, \ldots, x_n\}$ e $s^2 = \sum_{i=1}^n x_i^2$. (i) $\tau | D \sim \operatorname{Gama}(\alpha_* = \alpha + n/2, \beta_* = \beta + s^2/2)$; (ii) semelhante aos exercícios 7 e 8; (iii) Defina $Y_{n+1} = (\alpha_*/\beta_*)^{1/2} X_{n+1}$. Então $Y_{n+1} | D$ segue uma distribuição t de Student com $(2\alpha_*)$ graus de liberdade.
- 10. Semelhante ao exercício 3.