

REPASO DE PROBABILIDAD Y ESTADÍSTICA II

Alan Reyes-Figueroa Introducción a la Ciencia de Datos

(AULA 03) 17.ENERO.2022

Conceptos derivados: Probabilidad condicional

Se elige una persona al azar. ¿Cuál es la probabilidad que sea una persona con lentes? $\frac{6}{13}$.

Alguien dice que es un hombre: ¿cuál es ahora la probabilidad que sea una persona con lentes? $\frac{2}{3}$.

Definición

Si $\mathbb{P}(B) > o$, entonces la probabilidad condicional de A dado B se define como

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Probabilidad condicional

Observaciones:

- $\mathbb{P}(\cdot|B)$ define una nueva función de probabilidad sobre el espacio $\Omega' = B$.
- En consecuencia, $\mathbb{P}(A^c|B) = 1 \mathbb{P}(A|B)$.
- Observar que no hay ninguna relación directa entre $\mathbb{P}(A|B)$ y $\mathbb{P}(A|B^c)$.
- Siempre podemos escribir $\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \mathbb{P}(B)$. (Esto no requiere el supuesto que $\mathbb{P}(B) > 0$) ¿Por qué?

Experimento: Elegir al azar dos letras consecutivas de alguna palabra con alfabeto $T = \{a, b, c, d, e\}$.

Suponemos la siguiente distribución:

		b	•	d	_
a	0.10	0.05	0.10	0.04	0
b	0.10 0.01 0.02 0.04 0	0.01	0.10	0.01	0.04
С	0.02	0.05	0.05	0.10	0.01
d	0.04	0.10	0.01	0.01	0.02
e	0	0.10	0	0.01	0.02

¿Cuál es la probabilidad que la segunda letra seleccionada sea la "b" dado que sabemos que la anterior fue una vocal?

Solución: Queremos calcular $\mathbb{P}(B|A)$, donde $B = \{primera \ letra \ es \ vocal\}$ y $A = \{ letra \ es \ b \}.$

Entonces, de la definición de probabilidad condicional, tenemos

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(B\cap A)}{\mathbb{P}(A)}.$$

Pero,
$$\mathbb{P}(B \cap A) = \mathbb{P}(\{ab, eb\}) = \mathbb{P}(ab) + \mathbb{P}(eb) = 0.05 + 0.10 = 0.15$$
, y $\mathbb{P}(A) = \mathbb{P}(\{ab, bb, cb, db, eb\}) = 0.05 + 0.01 + 0.05 + 0.10 + 0.10 = 0.31$.

De allí que

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(B)} = \frac{0.15}{0.31} = 0.48387$$

Ley de la probabilidad total

Teorema (Ley de la probabilidad total, caso finito)

Dada una partición $\{B_i\}_{i=1}^n$ de Ω , tal que $\mathbb{P}(B_i) > 0$, $\forall i$, entonces

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A|B_i) \, \mathbb{P}(B_i).$$

<u>Prueba</u>: $\Omega = \bigcup B_i$, ya que es una partición. Luego

$$A = A \cap \Omega = A \cap \bigcup B_i = \bigcup (A \cap B_i),$$

y los $A \cap B_i$ forman una partición de A. Por el axioma de aditividad, y la definición de probabilidad condicional

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A \cap B_i) = \sum_{i=1}^{n} \mathbb{P}(A|B_i) \, \mathbb{P}(B_i).$$

Se tienen tres cajas, cada una conteniendo 100 cartas: La caja 1 contiene 75 cartas rojas, y 25 cartas azules, la caja 2 contiene 60 cartas rojas, y 40 cartas azules, la caja 3 contiene 55 cartas rojas, y 45 cartas azules.

Se elige una de las cajas al azar, y luego se elige una carta dentro de la caja seleccionada.

¿Cuál es la probabilidad de elegir una carta roja?

<u>Solución</u>: Considere los eventos A = elegir carta roja, y

 $E_1 = \text{elegir caja 1}, E_2 = \text{elegir caja 2}, E_3 = \text{elegir caja 3}.$

Sabemos que
$$\mathbb{P}(A|E_1) = \frac{75}{100}$$
, $\mathbb{P}(A|E_2) = \frac{60}{100}$ y $\mathbb{P}(A|E_3) = \frac{45}{100}$.

Entonces, por la ley de probabilidad total

$$\mathbb{P}(A) = \mathbb{P}(A|E_1) \mathbb{P}(E_1) + \mathbb{P}(A|E_2) \mathbb{P}(E_2) + \mathbb{P}(A|E_3) \mathbb{P}(E_3)
= \frac{75}{100} \cdot \frac{1}{3} + \frac{60}{100} \cdot \frac{1}{3} + \frac{55}{100} \cdot \frac{1}{3}
= \frac{190}{300} = 0.6333$$

Regla de Bayes

Teorema (Regla de Bayes)

 $Si \mathbb{P}(A), \mathbb{P}(B) > o$, entonces

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\,\mathbb{P}(A)}{\mathbb{P}(B)}.$$

<u>Prueba</u>: Por hipótesis, $\mathbb{P}(A)$, $\mathbb{P}(B) > 0$, entonces

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$
 y $\mathbb{P}(B|A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$.

Despejando $\mathbb{P}(A \cap B)$ de la segunda ecuación, $\mathbb{P}(A \cap B) = \mathbb{P}(B|A) \mathbb{P}(A)$, y sustituyendo en la primera

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B|A)\,\mathbb{P}(A))}{\mathbb{P}(B)}.$$

Una companía ha desarrollado una prueba para detectar la presencia de SARS-CoV-2 (Covid-19). Se pretende que $\mathbb{P}(\text{prueba es positiva}|\text{tiene covid}) = 0.97 \text{ y}$ $\mathbb{P}(\text{prueba es negativa}|\text{no tiene covid}) = 0.98.$

Si el 1% de la población tiene Covid, calcular la probabilidad de que la persona sí tiene Covid, cuando el test da negativo.

Solución:

y: Test x: Real	No = o	Si = 1
No = o		
Sí = 1		

Datos:
$$\mathbb{P}(x = 1) = 1/100$$
, $\mathbb{P}(y = 1|x = 1) = 0.97$, $\mathbb{P}(y = 0|x = 0) = 0.98$. Queremos calcular $\mathbb{P}(x = 1|y = 0)$.

$$\mathbb{P}(x = 1|y = 0) = \frac{\mathbb{P}(y = 0|x = 1) \mathbb{P}(x = 1)}{\mathbb{P}(y = 0)} \\
= \frac{(1 - \mathbb{P}(y = 1|x = 1)) \mathbb{P}(x = 1)}{\mathbb{P}(y = 0|x = 0) \mathbb{P}(x = 0) + \mathbb{P}(y = 0|x = 1) \mathbb{P}(x = 1)} \\
= \frac{0.03(0.01)}{0.02(0.99) + 0.03(0.01)} = 0.01492$$

Conceptos derivados: Independencia

La idea de **independencia** es determinar si hay o no relación entre dos eventos *A* y *B*.

En otras palabra, si al conocer A, cambia nuestro conocimiento sobre B (o al conocer B cambia nuestro conocimiento sobre A).

¿Cómo determinar esta relación? Comparar $\mathbb{P}(A|B)$ con $\mathbb{P}(A)$.

Definición

 $Si \mathbb{P}(B) > 0$, decimos que A y B son **independientes** $Si \mathbb{P}(A|B) = \mathbb{P}(A)$.

Definición

Dos eventos A y B son **independientes** si, y sólo si,

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\,\mathbb{P}(B).$$

Lanzamiento de dos dados D_1 y D_2 . Consideremos los eventos

$$A = \{D_1 + D_2 \text{ es par}\}, B = \{D_1 < 5\}, C = \{D_1 \le 3, D_2 \le 3\}.$$
 Sabemos que $\mathbb{P}(A) = \frac{1}{2}$, $\mathbb{P}(A \cap B) = \frac{1}{2}$, $\mathbb{P}(A \cap C) = \frac{5}{2}$.

$D_1 D_2$	1	2	3	4	5	6
1	Х		Х			
2		Х				
3	Х		Х			
4						
5						
6						

Luego, A y B son independientes; mientras que A y C no lo son.

Definición

Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio de probabilidad. Una **variable aleatoria** (v.a.) es una función mesurable $X : \Omega \to \mathbb{R}$.

Aquí mesurable significa que si $X: (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$, entonces la preimagen de cualquier elemento en $\mathcal{B}(\mathbb{R})$ es un elemento de \mathcal{F} . Esto es, X^{-1} lleva conjuntos mesurables de \mathbb{R} (bajo la medida de Lebesgue μ), a conjuntos mesurables en \mathcal{F} (bajo la probabilidad \mathbb{P}).

A los elementos de $\mathcal{B}(\mathbb{R})$ se les llama los borelianos de \mathbb{R} .

Ejemplo

Elegimos al azar una persona de un grupo. De cada persona tenemos un registro de su edad, altura, peso, . . .

Mapeamos cada persona ω a $X(\omega) = (X_1(\omega), \ldots, X_d(\omega))$, donde por ejemplo $X_1(\omega)$ representa su edad, $X_2(\omega)$ su altura, etc.

Si el grupo de personas corresponde a una base de datos, entonces X regresa los campos de interés de cada registro. Las variables X_1, \ldots, X_d son variables aleatorias.

En este ejemplo llamaremos a X como una variable aleatoria (en realidad X es un vector aleatorio).

Observaciones:

- una variable aleatoria determina una relación determinística.
- una variable aleatoria induce una función de probabilidad.

Definimos $\mathbb{P}_X(\cdot)$ como

$$\mathbb{P}_{X}(A) = P(\{\omega \in \Omega : X(\omega) \in A\}).$$

Escribimos $\mathbb{P}_X(\cdot)$ como $\mathbb{P}(\cdot)$.

Por ejemplo,
$$\mathbb{P}(X = x)$$
 denota $\mathbb{P}_X(X = x) = \mathbb{P}(\{\omega : X(\omega) = x\})$.

$$\mathbb{P}(X < a)$$
 denota $\mathbb{P}_X(X < a) = \mathbb{P}(\omega : X(\omega) < a)$.

Caso discreto:

Definición

Diremos que X es una variable aleatoria **discreta** si su contradominio $I = X(\Omega)$ es enumerable y $\mathbb{P}_X(i) = \mathbb{P}(X = i)$ existe para cada $i \in I$. (Comunmente se identifica el contradominio I con los naturales \mathbb{N}).

Definición

Al conjunto de probabilidades $\{\mathbb{P}_X(i)\}_{i\in I}$ le llamamos la **distribución** de X. (En general, a \mathbb{P}_X se le llama la **función de masa de probabilidad**).

Definición

Si $X \in \mathbb{R}$, llamamos a $F_X(x) = \mathbb{P}(X \le x)$ la **función de distribución** (acumulativa) de X.

Caso continuo:

Definición

Considere la función $F: \mathbb{R} \to \mathbb{R}$, dada por

$$F_X(t) = \mathbb{P}(X \leq t).$$

Diremos que X es una variable aleatoria **continua** si existe una función no-negativa $f_X: \mathbb{R} \to \mathbb{R}$, tal que

$$F_X(t) = \mathbb{P}(X \leq t) = \int_{-\infty}^t f_X(x) dx.$$

Definición

En ese caso, a la función f_X le llamamos la **densidad de probabilidad** de X.

Propiedades

Obs! La función de densidad f_X no tiene por qué ser continua.

Ya sea en el caso discreto o continuo,

Definición

Si $x \in \mathbb{R}$, llamamos a $F_X(x) = \mathbb{P}(X \le x)$ la **función de distribución** (acumulativa) de X.

En general, definimos la función de distribución para un vector aleatorio $X = (X_1, \dots, X_d)$ como

$$F_X(X_1,\ldots,X_d)=\mathbb{P}(X_1\leq X_1,\ldots,X_d\leq X_d),\ \ \forall (X_1,\ldots,X_d)\in\mathbb{R}^d.$$

En este caso, llamamos a F_X la función de distribución conjunta de X_1, \ldots, X_d .

Propiedades

Propiedades de \mathbb{P}_X y f_X :

Propiedad	X discreta	X continua
no-negativa	$\mathbb{P}_X(A) \geq o$	$f_X(x) \geq 0$
suma total	$\sum_{x} \mathbb{P}_{X}(x) = 1$	$\int_{\mathbb{R}} f_X(x) dx = 1$
relación entre f_X y F_X	$ \mathbb{P}(X=x) = F_X(x) - F_X(x^-) $	$f_X(x)=\frac{d}{dx}F_X(x)$
relación entre f_X y F_X	$F_X(x) = \sum_{t \leq x} \mathbb{P}(X = t)$	$F_X(x) = \int_{-\infty}^x f_X(t) dt$

Propiedades

Propiedades de F_X :

Propiedad	X discreta	X continua	
limitada	$0 \le F_X(x) \le 1$	$0 \le F_X(x) \le 1$	
monotonía	F _X no-decreciente	F _X no-decreciente	
límite inferior	$F_X(t) = 0$, $orall t < \min_{\mathbf{x} \in I(\Omega)}$	$ \lim_{x\to-\infty}F_X(x)=0$	
límite superior	$F_X(t)=$ 1, $orall t\geq max_{X\in I(\Omega)}$	$ \lim_{x\to+\infty}F_X(x)=1$	
I			

Además, F_X tiene la propiedad de semi-continuidad inferior: F_X es continua por la derecha, con límites por la izquierda.

Distribuciones conjuntas

Cuando tenemos varias variables aleatorias (definida sobre el mismo espacio $(\Omega, \mathcal{F}, \mathbb{P})$, podemos estudiar la distribución conjunta de dichas variables, esto es, la distribución de (X, Y).

Definición

La distribución conjunta de las v.a. X y Y se define por

$$F_{X,Y}(X=x,Y=y)=\mathbb{P}(X\leq x,Y\leq y),\ \ \forall\ x,y\in\mathbb{R}.$$

En el caso que X y Y son v.a. discretas, su **probabilidad conjunta** es

$$\mathbb{P}_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y), \ \forall \ x,y \in \mathbb{R}.$$

En el caso en que X y Y son continuas, su **densidad conjunta** es

$$f_{X,Y}(x,y) = rac{\partial^2 F_{X,Y}(x,y)}{\partial v \partial x}, \ \ \forall \ x,y \in \mathbb{R}.$$

La normal bivariada es la distribución conjunta entre dos normales.

Distribuciones marginales

Cuando tenemos varias variables aleatorias y su distribución conjunta, podemos "regresar" a las distribuciones originales.

Definición

Dadas X y Y v.a. discretas y su distribución conjunta $\mathbb{P}_{X,Y}$, la **distribución** marginal para X y para Y son

$$\mathbb{P}_X(x) = \sum_{y} \mathbb{P}(x, y), \quad \mathbb{P}_Y(y) = \sum_{x} \mathbb{P}(x, y).$$

En el caso que X y Y son v.a. continuas, y $f_{x,y}$ es su densidad conjunta, la **densidad marginal** de X y de Y son

$$f_X(x) = \int_{\mathbb{R}} f(x,y) \, dy, \quad f_Y(y) = \int_{\mathbb{R}} f(x,y) \, dx.$$

Distribuciones marginales

Ahora, si X, Y toman valores en $[a,b] \times [c,d]$, la **distribución marginal** se calcula como

$$F_{X,Y}(x,y) = \mathbb{P}(X \leq x, Y \leq y) = \int_a^x \int_b^y f_{X,Y}(s,t) \, ds \, dt.$$

luego
$$F_X(x) = F_{X,Y}(x,d), \quad F_Y(y) = F_{X,Y}(b,y),$$
 y en el caso $b = \infty$ ó $d = \infty$

$$F_X(x) = \lim_{d \to \infty} F_{X,Y}(x,d), \quad F_Y(y) = \lim_{b \to \infty} F_{X,Y}(b,y).$$

Distribuciones condicionales

Definición

Sean X, Y v.a. discretas tales que $\mathbb{P}(X = x) > 0$. La **probabilidad condicional** de Y dado X = x es $\mathbb{P}(Y = v, X = x)$ $\mathbb{P}_{X, V}(x, v)$

$$\mathbb{P}_{\mathsf{Y}|\mathsf{X}}(\mathsf{y}|\mathsf{x}) = \mathbb{P}(\mathsf{Y} = \mathsf{y} \mid \mathsf{X} = \mathsf{x}) = \frac{\mathbb{P}(\mathsf{Y} = \mathsf{y}, \mathsf{X} = \mathsf{x})}{\mathbb{P}(\mathsf{X} = \mathsf{x})} = \frac{\mathbb{P}_{\mathsf{X},\mathsf{Y}}(\mathsf{x},\mathsf{y})}{\mathbb{P}_{\mathsf{X}}(\mathsf{x})}.$$

En el caso continuo, la **densidad condicional** de Y dado X es

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(y \mid x)}{f_X(x)}.$$

Podemos escribir

•
$$\mathbb{P}_{X}(x) = \sum_{y} \mathbb{P}_{X|Y}(x \mid y) \mathbb{P}_{Y}(y).$$

•
$$f_X(x) = \int_{\mathbb{D}} f_{X|Y}(x \mid y) f_Y(y) dy$$
.

Independencia

Definimos la independencia de variables aleatorias de la siguiente manera:

Definición

Dos variables aleatorias discretas X y Y definidas sobre el mismo espacio Ω son **independientes** si

$$\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x) \mathbb{P}(Y = y), \ \forall x, y \in \mathbb{R}.$$

o equivalentemente, $\mathbb{P}_{X,Y} = \mathbb{P}_X \cdot \mathbb{P}_Y$.

En general, las v.a. discretas X_1, \ldots, X_n son **mutuamente independientes** si

$$\mathbb{P}(X_1=X_1,\ldots,X_n=X_n)=\prod_{i=1}^n\mathbb{P}(X_i=X_i),\ \forall X_1,X_2,\ldots,X_n\in\mathbb{R}.$$

o equivalentemente, $\mathbb{P}_{X_1,...,X_n} = \mathbb{P}_{X_1} \cdot \mathbb{P}_{X_2} \cdot ... \cdot \mathbb{P}_{X_n}$.

Independencia

Definición

Dos variables aleatorias continuas X y Y definidas sobre el mismo espacio Ω son **independientes** si

$$F_{X,Y}(x,y) = F_X(x) F_Y(y), \ \forall x,y \in \mathbb{R}.$$

En general, las v.a. continuas X_1, \ldots, X_n son mutuamente independientes si

$$F_{X_1,X_2,\ldots,X_n}(X_1,\ldots,X_n)=\prod_{i=1}^n F_{X_i}(X_i), \ \forall X_1,X_2,\ldots,X_n\in\mathbb{R}.$$

Se puede mostrar que esto es equivalente a

$$f_{X,Y}(x,y) = f_X(x) f_Y(y), \ \forall x,y \in \mathbb{R},$$

$$f_{X_1,X_2,...,X_n}(x_1,...,x_n) = \prod_{i=1}^n f_{X_i}(x_i), \ \forall x_1,x_2,...,x_n \in \mathbb{R}.$$

Referencias

Tarea para el próximo día (pensar, no para entregar).

- Pensar en 2 ejemplos simples de v.a. discretas, y 2 continuas. Para cada uno, graficar su función de masa de probabilida (o densidad), y su función de distribución.
- Pensar en un ejemplo de vector aleatorio discreto y uno continuo.
 ¿Cómo se ve la función de distribución conjunta en el caso discreto?
- Leer Capítulos 2 y 3 del libro de Lefebvre, hasta la página 60 (antes de comenzar con las distribuciones).
- Se puede leer también los capítulos 1 y 2 en el libro de Chung. El enfoque es mucho más teórico. Les puede servir más para su curso de medida.

Referencia: M. Lefebvre. Basic Probability Theory with Applications.

