:title:

: authors:

:place:

ESCOLA DE MATEMÁTICA APLICADA

Slide Title

Lorem ipsum dolor sit amet.

Block Title

You can use the command highlight to have emphasize some words.

Theorem 1: Weak Law of Large Numbers

Let X_1, X_2, \ldots, X_n be a random sample of size n from a distribution with mean μ and variance σ^2 . Then, for any $\epsilon > 0$,

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right|>\epsilon\right]\to 0 \text{ as } n\to\infty.$$

In other words, $\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{\mathbb{P}} \mu$.

Definition 1: Consistency

Let $\hat{\theta}_n$ be an estimator of θ . We say that $\hat{\theta}_n$ is consistent if $\hat{\theta}_n \stackrel{\mathbb{P}}{\to} \theta$.

Remark 1

Theorem 1 together with Definition 1 implies that the sample mean is a consistent estimator of the population mean.

Proof of Theorem 1

Let $\epsilon > 0$. By Chebyshev's inequality,

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right|>\epsilon\right]\leq\frac{\sigma^{2}}{n\epsilon^{2}}.$$

Since σ^2 is a constant, the result follows.

Other useful envs could be:

Example 1: Example Title

This is an example.

Lemma 1: Lemma Title

This is a lemma.

Coding

Code Listing 1: Example of Code

```
import numpy as np
def f(x):
return x**2
```

Thanks!

Any thoughts?

Special thanks to :special-thanks: