Groundwork for Inference

Research Design & Analysis I

Name:

Please complete the following exercises. Feel free to work with classmates, but each student must turn in **UNIQUE** work, not photocopies or identical replicates. When applicable, use **APA format** in communicating your results in text. **Show your work!** If any question involves any math at all, show your work. When it doubt, write it out. Always show more than you think you need.

1) V	1) WRITE-UP - Textbook Problems										
	Cohen Chap		Exercises	Pts	Off						
_		Α	*1, 2, *5, 6, 7, 9, 10	6							
	5	В	*1, *8, 9, *10	6							
_		С	3, 4	2							
	6	Α	*1, 2, 4, *5, 6	6							
		В	*1, 2, *4, 5, 8	5							
_		С	1, 2, 3	2							
		Α	*7, 8	2							
	7	В	*3, *4, 6	3							
_		С	1, 5	2							
_		Α	3, 9, *10	3							
	8	В	6	1							
		С	2 (altered) (Use G-Power, no syntax or code)	1							

2) 5	2) SUMMARY – Supplementary Reading									
	The ASA's Stat	ement on p-Values: Context, Process, and Purpose	Pts	Off						
	Half Page	Read the article and summarize the main points for future reference.	5							

3) R	R SYNTA	X – Sec	ction C: Ihno's data set - add to the skeleton R notebook and knit to .pdf	& uploa	ıd
	Coher	n Chap	Exercises	Pts	Off
-	5	С	3, 4	2	
•	6	С	1, 2, 3	2	
•	7	С	1, 5	2	

Grad	ding		Earned	Possible
	CORRECTNESS	a subset of spot-checked items: must show work, especially items from back of book or done in class		50
_	COMPLETENESS	more than one item is missing or skipped: 25/50 roughly half the assignment is completed: 10/50		50
_				100

5 A *1. Calculated z-value → p-value ... 1-tailed & 2-tailed

- a) If the **calculated z** for an experiment equals **1.35**, what is the corresponding **p-value**?
- 1-tail: p = _____ 2-tail: p = _____
- b) If the **calculated z** for an experiment equals **0.7**, what is the corresponding **p-value**?
- 1-tail: p = _____ 2-tail: p = ____
- c) If the **calculated z** for an experiment equals **2.2**, what is the corresponding **p-value**?
- 1-tail: p = _____ 2-tail: p = _____

5 A 2. alpha → critical z-value ... 1-tailed & 2-tailed

- a) If **alpha** were set to the unusual value of .08, what would be the magnitude of the <u>critical z</u>?
- 1-tail: z_{cv} = _____ 2-tail: z_{cv} = _____
- b) If **alpha** were set to the unusual value of .03, what would be the magnitude of the **critical z**?
- 1-tail: z_{cv} = _____ 2-tail: z_{cv} = _____
- c) If alpha were set to the unusual value of .007, what would be the magnitude of the <u>critical z</u>?
- 1-tail: z_{cv} = _____ 2-tail: z_{cv} = _____

5 A *5. sample mean → p-value (2-tailed)

An English professor suspects that her <u>current class</u> of 36 students is unusually good at verbal skills. She looks up the verbal SAT score for each student and is pleased to find that the **mean for the class is 540**.

Assuming that the <u>general population</u> of students has a **mean verbal SAT score of 500** with a **standard deviation of 100**, what is the **two-tailed** p value corresponding to this class?

n =

POPULATION PARAMETERS

SAMPLE STATISTICS

$$\overline{X}$$
 =

$$\sigma_{\bar{X}}$$
 = ____

2-tail: p = _____

5 A 0. Very large 2-score
Consider a situation in which you have calculated the z score for a group of participants and have obtained the unusually high value of 20 .
Which of the following statements would be true , and which would be false ? Explain your answer in each case.
a.) You must have made a calculation error because z scores cannot get so high.
☐ TRUE ☐ FALSE EXPLAIN .
b.) The null hypothesis cannot be true.
☐ TRUE ☐ FALSE EXPLAIN .
c.) The null hypothesis can be rejected, even if a very small alpha is used. 7
☐ TRUE ☐ FALSE EXPLAIN .
d.) The difference between the sample mean and the hypothesized population mean must have been quite large.
☐ TRUE ☐ FALSE EXPLAIN .

5 A 7. Very large z-score

Suppose the z score mentioned in Exercise 6 involved the measurement of height for a group of men. If μ = 69 inches and σ = 3 inches, <u>how</u> can a group of men have a z score equal to 20?

Give a **numerical example** illustrating how this can occur.

5 A 9. One-tail vs. Two-tails

Describe a situation in which a **one-tailed** hypothesis test seems justified.

Describe a situation in which a **two-tailed** test is clearly called for.

5 A 10. One-tail vs. Two-tails

Describe a case in which it would probably be appropriate to use an **alpha smaller** than the conventional .05 (e.g., .01).

Describe a case in which it might be appropriate to use an unusually **large alpha** (e.g., .1).

5 B *1. Hypothesis test: Mean (z-score)

A psychiatrist is testing a new antianxiety drug, which seems to have the potentially harmful side effect of lowering the heart rate. For a **sample of 50** medical students whose pulse was measured after 6 weeks of taking the drug, the **mean heart rate was 70 beats per minute** (bpm).

If the mean heart rate for the <u>population</u> is **72 bpm** with a **standard deviation of 12**, can the psychiatrist conclude that the new drug lowers heart rate significantly? (Set alpha = .05 and perform a one-tailed test.)

n = __

POPULATION PARAMETERS

SAMPLE STATISTICS

$$\sigma_{ar{v}}$$
 =

H₀:_____

H_a:__

z = _____

1-tail: p = _____

- ☐ Provides evidence that new drug lowers heart rate
- lacktriangle No evidence that the new drug lowers heart rate

5 B *8. sample mean → p-value (2-taile	5	В	B *8.	sample	mean	\rightarrow	p-value	(2-tailed
--	---	---	-------	--------	------	---------------	---------	-----------

Imagine that you are testing a new drug that seems to <u>raise</u> the number of T cells in the blood and therefore has enormous potential for the treatment of disease. After treating **100 patients**, you find that their **mean T cell count is 29.1**. Assume that μ and σ (hypothetically) are **28 and 6**, respectively.

n=

POPULATION PARAMETERS

SAMPLE STATISTICS

$$\overline{X}$$
 = _____

$$\sigma_{\bar{X}}$$
 = _____

H₀:_____

 $H_a:____$

z = _____

2-tail: p = _____

- a.) Test the null hypothesis at the .05 level, two-tailed.
- □ Provides evidence that new drug increases T cells□ No evidence that the new drug increases T cells
- b.) Test the same hypothesis at the .10 level, two-tailed.
- □ Provides evidence that new drug increases T cells□ No evidence that the new drug increases T cells
- c.) **Describe** in practical terms what it would mean to **commit a Type I error** in this example.
- d.) **Describe** in practical terms what it would mean to **commit a Type II error** in this example.
- e.) How might you justify the use of .10 for alpha in similar experiments?

B 9. Effect of the Population SD on the z-score a) Assuming everything else in the previous problem stayed the same, what would happen to your calculated z if the population standard deviation (σ) were 3 instead of 6?

z = ______ → _____

b) What **general statement** can you make about how changes in σ affect the calculated value of z?

5 B *10. Sample size requirements

Referring to Exercise 8, suppose that **mean** (\overline{X}) is equal to 29.1 regardless of the sample size.

How large would $\bf n$ have to be for the calculated $\bf z$ to be statistically significant at the .01 level (two-tailed)?

n = _____

5	В	11. Define	'alpha'							
Alpha	stand	s for which of the	e following?							
a)	The _l	proportion of exp	eriments that will attain statistical significance	□ TRUE						
b)		proportion of exp ortain statistical si	eriments for which the null hypothesis is true that gnificance	□ TRUE						
c)	The proportion of statistically significant results for which the null hypothesis is true									
d)	d) The proportion of experiments for which the null hypothesis is true									
5	В	12. Errors	in hypothesis testing							
Supportant Supportant Reports of the support of the	se, ho eveale If alp i nany c	drugs. wever, that all of ed to have been se na = .05 was used		which was						
5	В	13. Errors	in hypothesis testing							
			ersity, Dr. Pine has been very productive and successful. She has a nat have each attained the . 05 level of statistical significance.	already						
What i	s you	best guess for th	ne number of Type I errors she has made so far?							
For the	e num	ber of Type II err e	ors?							

5	C	3.	Hypothesis	test:	Mean	(z-score)
9	C	J •	TIAPOCTICATA	CEBC.	mean	(<u>4</u> - 5 C C L C)

a) In the past 10 years, previous stats classes who took the same mathquiz that Ihno's students took averaged 28 with a standard deviation of 8.5. What is the two-tailed p value for Ihno's students with respect to that past population? (Don't forget that the N for mathquiz is not 100.)

write code to find mean & n in your R syntax file

n=

POPULATION PARAMETERS

μ = _____

o = ____

SAMPLE STATISTICS

 \bar{X} = _____

 $\sigma_{\bar{X}}$ = _____

H₀:_____

H_a:_____

z = _____

2-tail: p = _____

Would you say that Ihno's class performed significantly better than previous classes?

- ☐ Provides evidence Ihno's class performed significantly better than previous classes
- ☐ **No evidence** that Ihno's class performed any differently than previous classes

EXPLAIN.

5	C	3	Hypothesis	tagt.	Mean	(z-gcore)
O	L	.	пуроспевтв	Lest:	mean	(Z-SCOLE)

b) In the past 10 years, previous stats classes who took the same **Statquiz** that Ihno's students took averaged 6.1 with a standard deviation of 2.5. What is the two-tailed p value for Ihno's students with respect to that past population?

n =

write code to find mean & n in your R syntax file

POPULATION PARAMETERS

μ=

σ = ____

SAMPLE STATISTICS

X = _____

 $\sigma_{ar{X}}$ = _____

H₀:_____

H_a:_____

z = ____

2-tail: p = _____

Would you say that Ihno's class performed **significantly better** than previous classes?

- □ Provides evidence Ihno's class performed significantly better than previous classes
- ☐ No evidence that Ihno's class performed any differently than previous classes

EXPLAIN.

Test both the <u>mathquiz</u> and <u>statquiz</u> variables for their resemblance to **normal distributions**.

Based on **skewness**, **kurtosis**, and the **Shapiro-Wilk statisti**c, which variable has a sample distribution that is **not** very consistent with the *assumption of normality in the population*?

Skewness

Kurtosis

Shapiro-Wilk

stat = _____ p = _____ <-- Type **R code** into Skeleton and Knit to get **pdf** including output

□ NORMAL (or normal'ish) □ NOT NORMAL

Sketch a plot you made in R by hand (histogram &/or qq plot)

STATQUIZ

MATHQUIZ

Skewness

Kurtosis

Shapiro-Wilk

stat = _____

<-- Type R code into Skeleton and Knit to get pdf including output

□ NORMAL (or normal'ish) □ NOT NORMAL

Sketch a plot you made in R by hand (histogram &/or qq plot)

6 A *1. Standard Error for the Mean

The unbiased variance (s²) 200 participants is 55.

a) What is the value of the estimated standard error of the mean $(s_{\bar{X}})$?

b) If the variance were the same but the sample were increased to **1800** participants, what would be the new value of $s_{\bar{X}}$?

6 A 2. Sample Mean: z-score and p-value

A survey of **144 college students** reveals a mean beer consumption **rate of 8.4** beers per week, with a **standard deviation of 5.6**.

a) If the **national average is seven** beers per week, what is **the z score** for the college students? What **p value** does this correspond to?

 H_0 : $\mu =$

n = ____

SAMPLE STATISTICS

$$\overline{X}$$
 = _____

 $SD: S_X = \longrightarrow SE: S_{\bar{X}} = \longrightarrow$

b) If the **national average were four** beers per week, what would the **z score** be? What can you say about the **p value** in this case?

- 6 A 4. One Sample Mean: df and Critical Values of t
 - a.) In a one-group t test based on a sample of 20 participants, what is the value for df?

b.) What are the **two-tailed critical t** values for alpha = .05? For alpha = .01?

$$\alpha$$
 =.05: t_{cv} = _____ α =.01: t_{cv} = _____

c.) What is the **one-tailed critical t** for alpha = .05? For alpha = .01?

$$\alpha$$
 =.05: t_{cv} = _____ α =.01: t_{cv} = _____

6	Α	*5.	One	Sample	Mean:	t-score	and	Critical	Values	of	t	(change	n)
•				~							_	,	

Twenty-two stroke patients performed a maze task. The mean number of trials (\bar{X}) for success was **14.7** with s = 6.2. If the population mean (μ) for this task is **6.5...**

n = ___

a.) What is the calculated value for t? What is the critical t for a .05, two-tailed test?

POPULATION PARAMETERS

SAMPLE STATISTICS

$$\bar{X}$$
 = _____

$$SD: s_X = \longrightarrow SE: s_{\bar{X}} = \longrightarrow$$

b.) If only **11 patients** had been run but the data were the same as in part a, what would be the calculated value for t?

How does this value compare with the t value calculated in part a?

6 A 6. One Sample Mean: t-score and Critical Values of t (change n)

a.) Referring to part a of Exercise 5, what would the calculated t value be if s = 3.1 (all else remaining the same)?

b.) Comparing the t values you calculated for Exercises 5a and 6a, what can you say about the relation between t and the sample standard deviation?

6 B *1. One Sample Mean: t-test

A high school is proud of its advanced chemistry class, in which its **16 students** scored an **average of 89.3** on the statewide exam, with s = 9.

a.) Test the null hypothesis that the advanced class is just a random selection from the state population ($\mu = 84.7$), using alpha = .05 (two-tailed).

n =

POPULATION PARAMETERS

SAMPLE STATISTICS

$$\overline{X}$$
 = _____

$$SD: s_X = \longrightarrow SE: s_{\bar{X}} = \longrightarrow$$

- **Provides evidence** the advanced chemistry class at this school is not a random selection from the state.
- **No evidence** that the advanced chemistry class at this school is not a random selection from the state.
 - b.) Test the same hypothesis at the .01 level (two-tailed).
- □ **Provides evidence** the advanced chemistry class at this school is not a random selection from the state.
- □ No evidence that the advanced chemistry class at this school is not a random selection from the state

Considering your decision with respect to the null hypothesis, what type of error (Type I or Type II) **could you be making**?

- **□** Type I
- Type II

6 B 2. One Sample: t-test for Mean

Are serial killers more introverted than the general population?

A sample of **14 serial killers** serving life sentences was tested and found to have a **mean** introversion score (\bar{X}) of **42** with $\mathbf{s} = \mathbf{6.8}$. If the **population mean (\mu) is 36**, are the serial killers significantly more introverted at the .05 level? (Perform the appropriate <u>one-tailed test</u>, although normally it would not be justified.)

n = ___

POPULATION PARAMETERS

SAMPLE STATISTICS

$$SD: s_X = \longrightarrow SE: s_{\bar{X}} = \longrightarrow$$

EXPLAIN CONCLUSION: Are serial killers more introverted than the general population?

■ Yes

■ NO

6 B *4. One Sample: Confidence Interval for the Mean

A psychologist studying the dynamics of marriage wanted to know how many hours per week the average American couple spends discussing marital problems. The sample **mean** (\bar{X}) of **155 randomly selected** couples turned out to be **2.6 hours**, with **s = 1.8**.

n =

a.) Find the **95% confidence interval for the mean (** μ) of the population.

POPULATION PARAMETERS

 $\mu \leftarrow 95\%$ CI for

SAMPLE STATISTICS

$$\bar{X}$$
 = _____

 $SD: s_X = \longrightarrow SE: s_{\bar{X}} = \longrightarrow$

t_{CV} = _____

95% CI: (______ , _____)

b.) A European study had already estimated the population mean to be 3 hours per week for European couples. Are the American couples significantly different from the European couples at the .05 level?

■ Yes

■ NO

Show how your answer to part a makes it easy to answer part b.

6 B 5. Sample Size ← wideth of CI

If the psychologist in exercise 4 wanted the width of the confidence interval to be only half an hour, how many couples would have to be sampled?

n = _____

6 B 8. One Sample: Confidence Interval for the Mean

A psychologist would like to know how many casual friends are in the average person's social network. She interviews a random sample of people and determines for each the **number of friends** or social acquaintances they see or talk to at least once a year. The data are as follows:

5, 11, 15, 9, 7, 13, 23, 8, 12, 7, 10, 11, 21, 20, 13

a.) Find the 90% confidence interval for the mean number of friends for the entire population.

POPULATION PARAMETERS		SAMPLE STATISTICS
$\mu \leftarrow CI for$	n = _	$ar{X}$ =
		$SD: S_X = $

90% CI: (_______)

b.) Find the **95%** CI.

t_{cv} = ______)

c.) If a previous researcher had predicted a **population mean of 10** casual friends per person, could that prediction be **rejected as an hypothesis at the .05 level, twotailed**?

☐ Yes☐ NO

EXPLAIN.

6	С	1.	One	Sample:	Confidence	Interval	for	the	Mean		
---	---	----	-----	---------	------------	----------	-----	-----	------	--	--

Perform **one-sample t tests** to determine whether the baseline, pre-, or postquiz **anxiety scores** of Ihno's students differ significantly ($\alpha = .05$, two-tailed) from the mean ($\mu = 18$) found by a very large study of college students across the country. Find the **95% CI for the population mean** for each of the three anxiety measures.

Type R code into Skeleton and Knit to get pdf including output

	Sample Mean	95% CI (71.63, 72.91)	Test value = 18 t(99) = 24.744, p=.013	Ihno's different?
Baseline				☐ Different☐ Same
Pre-quiz				☐ Different☐ Same
Post-Quiz				☐ Different☐ Same
6 C 2. One Sample: Confidence Interval for the Mean				

Perform a one-sample t test to determine whether the average **baseline heart rate** of Ihno's

<u>male</u> students differs significantly from the mean HR ($\mu = 70$) for college-aged men at the .01 level, two-tailed. Find the 99% CI for the population mean represented by Ihno's male students.

	Sample Mean	95% CI (71.63, 72.91)	Test value = 70 t(99) = 24.744, p=.013	Ihno's different?
MALE Baseline				☐ Different☐ Same
6 C 3. One Sample: Confidence Interval for the Mean				

Perform a one-sample t test to determine whether the average **postquiz heart rate** of Ihno's

female students differs significantly ($\alpha = .05$, two-tailed) from the mean resting HR ($\mu = 72$) for collegeaged women. Find the 95% CI for the population mean represented by Ihno's female students.

	Sample Mean	95% CI (71.63, 72.91)	Test value = 72 t(99) = 24.744, p=.013	Ihno's different?
FEMALE Post-Quiz				☐ Different☐ Same

In a study of a new treatment for phobia, the data for the experimental group were $\overline{X_1}=$ 27 . 2 , $S_1=$ 4, and $n_1=$ 15. The data for the control group were $\overline{X_2}=$ 34 . 4 , $S_2=$ 14, and $n_2=$ 15.

a.) Calculate the separate-variances t value.

experimental

$$n_1 = _{___}$$

$$\overline{X_1} = \underline{\hspace{1cm}}$$

$$s_1 =$$

control

$$n_2 = _{---}$$

$$\overline{X_2} = \underline{\hspace{1cm}}$$

$$s_2 = _{___}$$

SAMPLE DIFFERENCE

$$df = \underline{\hspace{1cm}}$$

$$\overline{X_1} - \overline{X_2} =$$

H ₀ :	 	 	

b.) Calculate the **pooled-variance** t value.

SAMPLE DIFFERENCE

$$df = \underline{\hspace{1cm}}$$

$$\overline{X_1} - \overline{X_2} = \underline{\hspace{1cm}}$$

$$s_p^2 =$$

t(____) = _____

7 A 8. Experiment: true or quasi
a.) Design a true experiment involving two groups (i.e., the experimenter decides, at random, in which
group each participant will be placed).
b.) Design a quasi-experiment (i.e., an observational study) involving groups not created, but only
selected, by the experimenter.
How are your conclusions from this experiment limited, even if the results are statistically
significant?

*3. Two Independent Sample Mean Difference: Hypothesis Test

On the first day of class, a third-grade teacher is told that 12 of his students are "gifted," as determined by IQ tests, and the **remaining 12 are not**. In reality, the two groups have been carefully matched on IQ and previous school performance.

At the end of the school year, the gifted students have a grade average of 87.2 with s = 5.3, whereas the other students have an average of 82.9, with s = 4.4.

Perform a t test to decide whether you can conclude from these data that false expectations can affect student performance; use alpha = .05, two-tailed. ← use separate variances (not pooled)

"gifted"

"not gifted" SAMPLE DIFFERENCE $\overline{X_1} - \overline{X_2} = \underline{\hspace{1cm}}$ SE =

H0:

CONCLUSION:

t(____) = ____

t_{CV} = ____

7 B *4. Two Independent Sample Mean Difference: Confidence Interval

A researcher tested the diastolic blood pressure of **60 marathon runners** and **60 nonrunners**. The **mean** for the runners was **75.9** mmHg with s = 10, and the **mean** for the nonrunners was **80.3** mmHg with s = 8.

 "runners"
 "non-runner"
 SAMPLE DIFFERENCE

 $n_1 = \underline{\qquad}$ $df = \underline{\qquad}$
 $\overline{X_1} = \underline{\qquad}$ $\overline{X_2} = \underline{\qquad}$ $\overline{X_1} - \overline{X_2} = \underline{\qquad}$
 $s_1 = \underline{\qquad}$ $s_2 = \underline{\qquad}$ $s_2 = \underline{\qquad}$

a.) Find the 95% confidence interval for the difference of the population means.

← use separate variances (not pooled)

95% CI: (______ , _____)

b.) Find the 99% confidence interval for the difference of the population means.

99% CI: (______ , _____)

c.) Use the confidence intervals you found in parts a and b to test the null hypothesis that running has no effect on blood pressure at the **.05 and .01** levels, **two** tailed.

H₀:_____

H_a:_____

Alpha = .05

☐ Runners are different
☐ no difference

Alpha = .01
☐ Runners are different
☐ no difference

A psychologist is studying the concentration of a certain enzyme in saliva as a possible indicator of chronic anxiety level.

A sample of 12 anxiety neurotics yields a mean enzyme concentration of 3.2 with s = .7. For comparison purposes, a sample of 20 subjects reporting low levels of anxiety is measured and yields a mean enzyme concentration of 2.3, with s = .4.

a.) Perform a t test (alpha = .05, two-tailed) to determine whether the two populations sampled differ with respect to their mean saliva concentration of this enzyme.

use pooled variances (not separate)

H₀:_____

t(___) = ____

t_{CV} = _____

CONCLUSION:

b.) Based on your answer to part a, what type of error (Type I or Type II) might you be making?

□ Type I

■ Type II

7 C 1. Two Independent	dent Sample Mear	n Difference:	Hypothesis Test
Perform a two-sample t test to det	ermine whether there	is a statistically sign	ificant difference in
baseline heart rate between	n the men and the wor	men of Ihno's class.	
Type R cod e	<mark>e</mark> into Skeleton and Kni	t to get pdf including	g output
Do you have homogeneity of varia	nce? Explain.		
			□ yes
			□ no
Report your results as they might a	appear in a journal arti	cle.	
Include the 95% CI for this gender	• •		
7 C 5. Two Independent	dent Sample Mear	Difference:	Hypothesis Test
Perform a two-sample t test to det	and the same of the		
i circim a two sample t test to act	ermine whether coffe	e drinkers exhibited	significantly higher
			significantly higher
postquiz heart rates that	n nondrinkers at the .	05 level.	
postquiz heart rates that	an nondrinkers at the .0 into Skeleton and Kni	05 level. <mark>t to get pdf includin</mark>	
postquiz heart rates that	n nondrinkers at the .	05 level. t to get pdf including □ (g output
Type R code t() =2-t	an nondrinkers at the .(into Skeleton and Kni ail: p =	05 level. t to get pdf including □ (<mark>g output</mark> Coffee drinkers are different
postquiz heart rates that	an nondrinkers at the .(into Skeleton and Kni ail: p =	05 level. t to get pdf including	<mark>g output</mark> Coffee drinkers are different no difference
Type R code t() =2-t	an nondrinkers at the .(into Skeleton and Kni ail: p =	05 level. t to get pdf including	<mark>g output</mark> Coffee drinkers are different
Type R code t() = 2-t Is this t test significant at the .01 le	an nondrinkers at the .0 into Skeleton and Kni ail: p = evel?	05 level. t to get pdf including	g output Coffee drinkers are different no difference Coffee drinkers are different
Type R code t() =2-t	an nondrinkers at the .0 into Skeleton and Kni ail: p = evel?	05 level. t to get pdf including	g output Coffee drinkers are different no difference Coffee drinkers are different
Type R code t() = 2-t Is this t test significant at the .01 le	an nondrinkers at the .0 into Skeleton and Kni ail: p = evel?	os level. to get pdf including	g output Coffee drinkers are different no difference Coffee drinkers are different
Type R code t() = 2-t Is this t test significant at the .01 le	an nondrinkers at the .0 into Skeleton and Kni ail: p = evel?	05 level. t to get pdf including	g output Coffee drinkers are different no difference Coffee drinkers are different
Type R code t() = 2-t Is this t test significant at the .01 le	an nondrinkers at the .0 into Skeleton and Kni rail: p =evel?	os level. t to get pdf including means 99% CI: (g output Coffee drinkers are different no difference Coffee drinkers are different no difference
Type R code t() = 2-t Is this t test significant at the .01 le	an nondrinkers at the .0 into Skeleton and Kni rail: p =evel?	os level. t to get pdf including means 99% CI: (g output Coffee drinkers are different no difference Coffee drinkers are different no difference
Type R code t() = 2-t Is this t test significant at the .01 le	an nondrinkers at the .0 into Skeleton and Kni rail: p =evel?	os level. t to get pdf including means 99% CI: (g output Coffee drinkers are different no difference Coffee drinkers are different no difference
Type R code t() = 2-t Is this t test significant at the .01 le	an nondrinkers at the .0 into Skeleton and Kni rail: p =evel?	os level. t to get pdf including means 99% CI: (g output Coffee drinkers are different no difference Coffee drinkers are different no difference
Type R code t() = 2-t Is this t test significant at the .01 le	an nondrinkers at the .0 into Skeleton and Kni rail: p =evel?	os level. t to get pdf including means 99% CI: (g output Coffee drinkers are different no difference Coffee drinkers are different no difference
Type R code t() = 2-t Is this t test significant at the .01 le	an nondrinkers at the .0 into Skeleton and Kni rail: p =evel?	os level. t to get pdf including means 99% CI: (g output Coffee drinkers are different no difference Coffee drinkers are different no difference
Type R code t() = 2-t Is this t test significant at the .01 le	an nondrinkers at the .0 into Skeleton and Kni rail: p =evel?	os level. t to get pdf including means 99% CI: (g output Coffee drinkers are different no difference Coffee drinkers are different no difference

8 A	3. Cohen's d
If the mear	verbal SAT score is 510 for women and 490 for men, what is the d ?
	d =
8 A	9. Extremely large t-value
The t value	calculated for a particular two group experiment was – 23.
Which of th	ne following can you conclude?
□ a	. A calculation error must have been made.
	. The number of participants must have been large.
	. The effect size must have been large.
	. The expected t was probably large.
□ €	. The alpha level was probably large.
Explain you	ur choice.
8 A	*10. Cohen's d
	ou are in a situation in which it is more important to reduce Type II errors than to worry about
Type I erro	
	ne following could be helpful in reducing Type II errors? . Make alpha unusually large (e.g., .1).
	. Use a larger number of participants.
	. Try to increase the effect size.
	. All of the above.
	. None of the above.
Explain you	
Explain you	in choice.

6. Power & Sample Size 8 В A drug for treating headaches has a side effect of lowering diastolic blood pressure by 8 mmHg compared to a placebo. If the population standard deviation is known to be 6 mmHg, a.) What would be the **power** of an experiment ($\alpha = .01$, two-tailed) comparing the drug to a placebo using 15 participants per group? power = ___ b.) How many participants would you need <u>per group</u> to attain power = .95, with α = .01, two-tailed? 8 2. Power & Sample Size -- USE G*Power SOFTWARE --Given the adjusted effect size from part a of the previous exercise, I am changing this problem! How many participants of each gender (assuming equal sample sizes) would be needed for power to be .8, with alpha = .05, two-tailed test? For a small effect size (d = .2)For a medium effect size (d = .5)For a large effect size (d = .8) n =