Notas de aulas da disciplina de Lógica, primeira parte

Steffen Lewitzka

O seguinte script aborda alguns dos assuntos da primeira parte da disciplina de Lógica. O script está em fase de preparação e a versão atual provavelmente contém ainda vários erros e imperfeições. Em caso de dúvidas favor entrar em contato com o autor. Qualquer sugestão é bem-vinda.

1 A Lógica Proposicional

1.1 Sintaxe da Lógica Proposicional

O alfabeto da linguagem da Lógica Proposicinal contém os seguintes símbolos:

- (i) Um conjunto infinito (e contável) de variáveis de proposições $P = \{p_0, p_1, ...\}$. Usamos letras p, q, r, s, ... para nos referir a variáveis de proposições.
- (ii) Conectivos: $\neg, \lor, \land, \rightarrow, \leftrightarrow, \top, \bot$.
- (iii) Parênteses: (e).

Definição 1.1 O conjunto FORM das fórmulas é o menor conjunto que satisfaz as condições seguintes:

- (i) $P \cup \{\top, \bot\} \subseteq FORM$, isto é, variáveis de proposições e os conectivos \top , \bot são fórmulas. Essas fórmulas são ditas atômicas.
- (ii) Se $\varphi, \psi \in FORM$, então $\neg \varphi, (\varphi \lor \psi), (\varphi \land \psi), (\varphi \rightarrow \psi), (\varphi \leftrightarrow \psi) \in FORM$.

Os conectivos são lidos da seguinte maneira:

```
\neg\varphi \dots \operatorname{nega\~{c}\~{a}\~{o}} \operatorname{de}\varphi, \text{``n\~{a}\~{o}}\varphi'' \varphi \lor \psi \dots \operatorname{disjun\~{c}\~{a}\~{o}} \operatorname{de}\varphi \operatorname{e}\psi, \text{``}\varphi \operatorname{ou}\psi'' \varphi \land \psi \dots \operatorname{conjun\~{c}\~{a}\~{o}} \operatorname{de}\varphi \operatorname{e}\psi, \text{``}\varphi \operatorname{e}\psi'' \varphi \to \psi \dots \operatorname{implica\~{c}\~{a}\~{o}} \operatorname{de}\varphi \operatorname{para}\psi, \text{``}\varphi \operatorname{implica}\psi'' \varphi \leftrightarrow \psi \dots \operatorname{equival\~{e}ncia} \operatorname{ou}\operatorname{bicondicional}\operatorname{entre}\varphi \operatorname{e}\psi, \text{``}\varphi \operatorname{se}\operatorname{e}\operatorname{somente}\operatorname{se}\psi'' \top \dots \operatorname{o}\operatorname{verum} (\operatorname{o}\operatorname{verdadeiro}) \bot \dots \operatorname{o}\operatorname{falsum} (\operatorname{o}\operatorname{falso})
```

Os conectivos \bot e \top são chamadas de constantes proposicionais já que suas interpretações nunca mudam: representam sempre uma proposição falsa ou verdadeira, respectivamente. Note que \bot e \top são ao mesmo tempo conectivos e fórmulas (atômicas). Estes conectivos não são essenciais para o desenvolvimento da lógica proposicional e alguns autores não fazem uso deles.

Os parênteses garantem a legibilidade correta das fórmulas. Por exemplo, não fica claro como ler $\varphi \lor \psi \to \chi$. Porém, em muitos casos podemos omitir parênteses. Para isso, vamos introduzir certas regras que explicamos informalmente no seguinte:

- Parênteses mais externos podem ser omitidos. Ex.: $\varphi \lor \psi$ representa a fórmula $(\varphi \lor \psi)$.
- No uso repetido da conjunção ou da disjunção os parênteses aninham-se à esquerda. Ex.: $\varphi_1 \lor \varphi_2 \lor \varphi_3 \lor \varphi_4$ representa a fórmula $((\varphi_1 \lor \varphi_2) \lor \varphi_3) \lor \varphi_4)$.
- No uso repetido da implicação os parênteses aninham-se à direita. Ex. $p \to q \to r$ representa $(p \to (q \to s))$.
- Consideramos a seguinte precedência dos conectivos (em ordem decrescente): $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$. Ex: $p \vee q \wedge r$ representa $(p \vee (q \wedge r)), p \vee \neg q \rightarrow r$ representa $((p \vee \neg q) \rightarrow r), p \vee \neg q \rightarrow r$ e $p \vee \neg (q \rightarrow r)$ e $p \vee (\neg q \rightarrow r)$ representam três fórmulas diferentes.

Definição 1.2 Seja $\varphi \in FORM$. O conjunto $sub(\varphi)$ das subformulas de φ é definido recursivamente como segue:

• $sub(\varphi) = \{\varphi\}$, se φ é atômica.

- $sub(\varphi) = sub(\psi) \cup \{\varphi\}$, se $\varphi = \neg \psi$.
- $sub(\varphi) = sub(\psi) \cup sub(\chi) \cup \{\varphi\}$, se $\varphi = \psi \Box \chi$, $\Box \in \{\lor, \land, \rightarrow, \leftrightarrow\}$.

 ψ é subfórmula própria de φ , se $\psi \in sub(\varphi) \setminus \{\varphi\}$. ψ é dita subfórmula imediata de φ , se é subfórmula própria de φ e não existe nenhuma subfórmula própria χ de φ tal que ψ é subfórmula própria de χ .

Exercício 1.3 Ache o conjunto de todas as subfórmulas de $\varphi = (p \to q \to r) \land (s \lor s \to r)$. Dê exemplos de subfórmulas próprias e imediatas. Fórmulas podem ser representadas por árvores onde cada vértice é dado por uma subfórmula, e os filhos de um vértice são dados pelas subfórmulas imediatas. Sendo assim, as folhas da árvore são as subfórmulas atômicas. Apresente a árvore ligada à fórmula φ .

1.2 Semântica da Lógica Proposicional

Definição 1.4 Uma valoração é uma função $v:P \to \{0,1\}$. Os elementos 0,1 são interpretados como valores verdade, onde 1 corresponde ao valor "verdadeiro" e 0 ao valor "falso". Estendemos uma valoração v para a uma função $v^*:FORM \to \{0,1\}$ de forma seguinte:

$$\begin{split} v^*(p) &= v(p), \ para \ p \in P \\ v^*(\top) &= 1 \\ v^*(\bot) &= 0 \\ \\ v^*(\neg \varphi) &= \left\{ \begin{array}{c} 1, \ se \ v^*(\varphi) &= 0 \\ 0, \ caso \ contr\'{a}rio \end{array} \right. \\ v^*(\varphi \lor \psi) &= \left\{ \begin{array}{c} 1, \ se \ v^*(\varphi) &= 1 \ ou \ v^*(\psi) &= 1 \\ 0, \ c.c. \end{array} \right. \\ v^*(\varphi \land \psi) &= \left\{ \begin{array}{c} 1, \ se \ v^*(\varphi) &= v^*(\psi) &= 1 \\ 0, \ c.c. \end{array} \right. \\ v^*(\varphi \to \psi) &= \left\{ \begin{array}{c} 0, \ se \ v^*(\varphi) &= 1 \ e \ v^*(\psi) &= 0 \\ 1, \ c.c. \end{array} \right. \end{split}$$

$$v^*(\varphi \leftrightarrow \psi) = \begin{cases} 1, \text{ se } v^*(\varphi) = v^*(\psi) \\ 0, \text{ c.c.} \end{cases}$$

Para simplificar a notação denotamos a extensão de v também por v, ou seja, escrevemos v em lugar de v^* .

 $2^P = \{v \mid v : P \to \{0,1\}\}\$ é o conjunto de todas as valorações.

Exemplo 1.5 Seja a valoração v dada por $p \mapsto 0$, $q \mapsto 1$, $r \mapsto 1$, $s \mapsto 0$, $e \ u \mapsto 0$ para $u \notin \{p, q, r, s, \bot, \top\}$. Então, $v(\neg p) = 1$, $v(p \lor \neg p) = 1$, $v((p \to (q \to r)) \land s) = 0$.

Definição 1.6 Seja φ uma fórmula e $v \in 2^P$. Dizemos que v satisfaz φ , se $v(\varphi) = 1$. A relação de satisfatibilidade \vDash é definida como segue.

$$v \vDash \varphi : \iff v(\varphi) = 1.$$

Se $v \vDash \varphi$, então dizemos que v é um modelo de φ . Se v não é modelo de φ (ou seja, $v(\varphi) = 0$), então escrevemos $v \nvDash \varphi$. Estas noções podem ser generalizadas para conjuntos de fórmulas $\Phi \subseteq FORM$. Dizemos que v satisfaz Φ ou v é modelo do conjunto Φ de fórmulas, notação: $v \vDash \Phi$, se $v \vDash \varphi$ para todo $\varphi \in \Phi$.

Exemplo 1.7 Seja v(p) = 0 = v(q), v(r) = 1, e seja $\varphi := p \rightarrow q$, $\psi := r \rightarrow q$. Então, $v \models \varphi \ e \ v \not\models \psi$.

A fórmula $\varphi := p \vee \neg p$ é satisfeita por todas as valorações. Ou seja, toda valoração é modelo de φ .

O conjunto $\Phi := \{p, \neg p\}$ não possui nenhum modelo.

A semântica (o significado) dos conectivos pode ser dada por funções booleanas sobre valores de verdade. Para isto atribuímos a cada conectivo c uma função booleana $f_c:\{0,1\}^n \to \{0,1\}$ (onde n é a aridade do conectivo c) de acordo com a Definição 1.4. Por exemplo, a definição 1.4 nos dá para o conectivo \vee a seguinte função booleana:

 $f_{\vee}:\{0,1\}\times\{0,1\}\to\{0,1\}$ definida por $f_{\vee}(1,1)=1, f_{\vee}(1,0)=1, f_{\vee}(0,1)=1, f_{\vee}(0,0)=0.$

 \perp e \top são conectivos de aridade 0. Estes geram funções booleanas de aridade 0, ou seja, constantes: $f_{\top} = 1$, $f_{\perp} = 0$.

O conectivo da negação tem aridade 1 e sua semântica é uma função $f_{\neg}: \{0,1\} \rightarrow \{0,1\}$ definida por $0 \mapsto 1$, $1 \mapsto 0$. Deixamos como exercício encontrar as funções booleanas que representam a semântica dos conectivos restantes.

Definição 1.8 Seja $\varphi \in FORM$. O conjunto $var(\varphi)$ das variáveis de proposições de φ é definido como segue:

- $var(p) = \{p\}$, $para p \in P$,
- $var(\top) = var(\bot) = \varnothing$,
- $var(\neg \psi) = var(\psi)$,
- $var(\psi \Box \chi) = var(\varphi) \cup var(\chi)$, onde $\Box \in \{\lor, \land, \rightarrow, \leftrightarrow\}$.

Se A é uma propriedade de fórmulas (isto é, uma afirmação que envolve fórmulas), então expressamos o fato que uma fórmula φ tem a propriedade A (isto é, a afirmação A é verdadeira para a fórmula φ) por $A(\varphi)$. Frequentemente estamos na situação de ter que demonstrar que todas as fórmulas satisfazem uma dada propriedade A. Como o conjunto FORM é infinito, não podemos provar $A(\varphi)$ para cada fórmula φ separadamente. Aqui, o seguinte princípio de prova nos ajuda.

Teorema 1.9 (Prova por indução na construção das fórmulas) Seja A uma propriedade de (ou uma afirmação sobre) fórmulas. Para provar $A(\varphi)$ para todo $\varphi \in FORM$ é suficiente provar os dois itens seguintes:

- (i) $A(\varphi)$ para toda fórmula atômica φ .
- (ii) Se $A(\psi)$ e $A(\chi)$, então $A(\neg \psi)$ e $A(\psi \Box \chi)$, onde $\Box \in \{ \lor, \land, \rightarrow, \leftrightarrow \}$.

Demonstração. Seja $X = \{ \varphi \in FORM \mid A(\varphi) \}$. Obviamente, $X \subseteq FORM$. Para provar o Teorema temos que mostrar que X = FORM, se (i) e (ii) são satisfeitos. Sejam (i) e (ii) verdadeiros. Então X satisfaz os itens (i) e (ii) da Definição 1.1. Ou seja, toda fórmula atômica pertence a X, e se φ e ψ pertencem a X, então também $\varphi \Box \psi \in X$. Conforme a Definição 1.1, FORM é o menor conjunto que satisfaz essas duas propriedades. Por conseguinte, $FORM \subseteq X$. Logo, X = FORM. Q.E.D

Vamos apresentar uma prova alternativa do Teorema 1.9. Para isto introduzimos a seguinte função $compl: FORM \to (N)$ que atribui a cada fórmula φ um número natural conforme sua "complexidade".

$$compl(\bot) = compl(\top) = compl(p) = 0, \text{ para } p \in P$$

 $compl(\neg \psi) = compl(\psi) + 1$
 $compl(\psi \Box \chi) = max(compl(\psi), compl(\chi)) + 1$

A função max(n,m) retorna o maior dos números n e m. A seguir usaremos o "Axioma da Indução" que diz que todo conjunto não vazio de números naturais tem um elemento minimal. Seja A alguma afirmação sobre fórmulas e suponhamos que (i) e (ii) do Teorema sejam verdadeiras. Para chegar a uma contradição supomos que exista alguma fórmula ψ tal que $A(\psi)$ é falso. Então o conjunto $M=\{\psi\mid \text{não }A(\psi)\}$ é não-vazio. Portanto podemos escolher um elemento $\psi\in M$ tal que $compl(\psi)=n$ é minimal, ou seja, o menor elemento de $\{compl(\psi)\mid \psi\in M\}$. Isto é, para toda fórmula φ com $compl(\varphi)< n$ temos que $A(\varphi)$ é verdadeiro. Por (i), ψ não pode ser fórmula atômica. Então ψ tem a forma ou $\neg\chi$ ou $\chi_1\square\chi_2, \square\in\{\vee,\wedge,\rightarrow,\leftrightarrow\}$, para fórmulas χ,χ_1,χ_2 . Seja $\psi=\chi_1\vee\chi_2$. Isto implica que $compl(\chi_1),compl(\chi_2)< n$. Portanto $A(\chi_1)$ e $A(\chi_1)$. Por (ii), $A(\psi)$, ou seja, $\psi\notin M$. Uma contradição! Analogamente obtemos contradições supondo que ψ tem a forma $\neg\chi$ ou $\chi_1\square\chi_2, \square\in\{\wedge,\rightarrow,\leftrightarrow\}$. Logo, a suposição que exista alguma fórmula ψ tal que "não $A(\psi)$ " é falsa. Isto é, $M=\varnothing$ e $A(\varphi)$ para toda fórmula φ . Q.E.D.

Lema 1.10 (Lema de Coincidência) Seja $\varphi \in FORM$. Se v_1 e v_2 são duas valorações tais que $v_1(p) = v_2(p)$ para todo $p \in var(\varphi)$, então $v_1(\varphi) = v_2(\varphi)$.

Demonstração. Base da indução. Se $\varphi=p\in P$, então a afirmação é trivial. Seja $\varphi=\bot$. Então, $v(\varphi)=0$, para qualquer valoração v. Analogamente para o caso $\varphi=\top$. Logo, a afirmação é verdadeira para todas as fórmulas atômicas. Passo de indução. Seja $\varphi=\neg\psi$ e $v_1(p)=v_2(p)$ para todo $p\in var(\varphi)$. Como $var(\varphi)=var(\psi)$, temos que $v_1(p)=v_2(p)$ para todo $p\in var(\psi)$. Aplicando a hipótese da indução obtemos: $v_1(\psi)=v_2(\psi)$. Da definição de uma valoração segue $v_1(\neg\psi)=v_2(\neg\psi)$.

Ainda falta provar a afirmação para os casos $\varphi = \psi \Box \chi$, onde $\Box \in \{ \lor, \land, \to, \leftrightarrow \}$, assumindo a afirmação para ψ e χ (hípotese da indução). Deixamos isto como exercício. Q.E.D.

O Lema da Coincidência diz que o valor de verdade de uma fórmula φ depende apenas dos valores de verdade das variáveis que ocorrem na fórmula.

Definição 1.11 *Seja* $\varphi \in FORM$.

- (i) φ é válida (ou uma tautologia), se toda valoração é modelo de φ .
- (ii) φ é contraditória (ou uma contradição), se nenhuma valoração é modelo de φ .
- (iii) φ é satisfatiível, se φ tem um modelo.

Analogamente definimos essas noções para conjuntos Φ de fórmulas.

Lema 1.12 *Uma fórmula* φ *é válida se e somente se* $\neg \varphi$ *é contraditória.*

Demonstração. φ é tautologia sse toda valoração v é modelo de φ sse toda valoração v não é modelo de $\neg \varphi$ sse $\neg \varphi$ não tem nenhum modelo sse $\neg \varphi$ é uma fórmula contraditória. \square

Exemplo 1.13 $((p \rightarrow q) \land p) \rightarrow q$ é tautologia.

 $((p \to q) \land q) \to p$ nem é tautologia nem contradição.

Se φ é contradição ou ψ tautologia, então $\varphi \to \psi$ é válida.

O seguinte é falso. Se φ é contradição e $\varphi \to \psi$ é tautologia, então ψ é tautologia. Prove estas afirmações (sem o uso de tabelas de verdade)! Dica: A falsidade de uma afirmação se prova dando um contra-exemplo.

Os conceitos "contraditório", "satisfatível" e "válido" são decidíveis (ou computáveis). Isto é, existe um algoritmo (um procedimento efetivo) que dá uma resposta "sim" ou "não" à respectiva pergunta "Uma dada fórmula φ pertence ao conjunto das fórmulas contraditórias (satisfatíveis, válidas) ?". Um algoritmo bem conhecido é o método das tabelas de verdade. Seja $\varphi \in Form$ e n o número de variáveis que ocorrem em φ . Então existem 2^n possibilidades de atribuir valores de verdade aos n variáveis. Pelo Lema 1.10, é suficiente considerar apenas as valorações que atribuem valores diferentes às variáveis de φ , ou seja, 2^n valorações. Essas valorações podem ser listadas numa tabela de verdade que tem 2^n linhas (uma para cada valoração). As colunas contêm os valores das subfórmulas de φ , a última coluna o valor da própria fórmula φ .

Exercício: Apresente a tabela de verdade para $p \to (q \lor r) \to (q \land r)$.

1.2.1 Consequência Lógica

Intuitivamente, uma proposição B segue de uma conjunto M de proposições, se em cada "mundo possível" (modelo) em que M é verdadeiro B também é verdadeiro. Na Lógica Proposicional os "mundos possíves" são valorações, e proposições são representadas por fórmulas. Exemplo:

"Ou chove ou o céu está azul. Se chove, então não faz sol. Logo, se faz sol, então o céu está azul."

Vamos formalizar este argumento na Lógica Proposicional. Seja p a variável que representa a proposição "Chove." (mais preciso, p é a variável de proposição que contém o valor de verdade da proposição "Chove."), q a variável que representa "O céu está azul.", e r a variável que contém o valor da proposição "Faz sol.". Então, das premissas $(p \lor q) \land \neg (p \land q)$ e $p \to \neg r$ podemos tirar a conclusão $r \to q$. A corretude deste raciocínio (desta consequência lógica) é justificada pelo fato que cada valoração que é modelo de $(p \lor q) \land \neg (p \land q)$ e $p \to \neg r$ também é modelo de $r \to q$. Expressamos este fato pela notação: $\{(p \lor q) \land \neg (p \land q), p \to \neg r\} \Vdash r \to q$. \Vdash é um símbolo da nossa metalinguagem e representa a relação da consequência lógica.

Definição 1.14 Para um conjunto $\Psi \subseteq FORM$ de fórmulas definimos $Mod(\Psi) = \{v \in 2^P \mid v \models \Psi\}$, o conjunto dos modelos de Ψ . Uma fórmula ψ segue de um conjunto Φ de fórmulas (ψ é consequência lógica de Φ , notação: $\Phi \Vdash \psi$), se $Mod(\Phi) \subseteq Mod(\{\psi\})$, isto é, $v \models \Phi$ implica em $v \models \psi$, para toda valoração v. Se $\Phi \Vdash \psi$, então Φ é dito conjunto de premisas e ψ é a conlusão. Em vez de $\varnothing \Vdash \psi$ escrevemos $\Vdash \psi$. $\varphi_1, ..., \varphi_n \Vdash \psi$ é o mesmo que $\{\varphi_1, ..., \varphi_n\} \Vdash \psi$, e $\Phi, \varphi \Vdash \psi$ é uma abreviatura de $\Phi \cup \{\varphi\} \Vdash \psi$.

Se ψ não é consequência lógica de Φ , então escrevemos $\Phi \nVdash \psi$.

A prova da seguinte observação é um simples exercício.

Lema 1.15 $\Vdash \varphi \Leftrightarrow \varphi \not\in v\'{a}lida$.

Exemplo 1.16 (i) $\varphi \Vdash \varphi \lor \psi$

(ii)
$$\varphi \to \psi \Vdash (\chi \lor \varphi) \to (\chi \lor \psi)$$

(iii)
$$\varphi, \varphi \to \psi \Vdash \psi$$

Prove a validade dos argumentos acima!

Temos agora três símbolos para implicação: \rightarrow , \Vdash e \Rightarrow . O primeiro é um símbolo da linguagem objeto, os dois restantes são símbolos da nossa metalinguagem. O seguinte teorema mostra que existe uma íntima ligação entre \Vdash e \rightarrow .

Teorema 1.17 (Teorema de Dedução) Sejam $\psi, \varphi_i \in FORM, 1 \leq i \leq n$, $e \in FORM$. Então

$$\Phi, \varphi_1, ..., \varphi_n \Vdash \psi \iff \Phi \Vdash \varphi_1 \wedge ... \wedge \varphi_n \to \psi.$$

Deixamos a demonstração do teorema como exercício.

Um importante caso especial do teorema é $\Phi = \varnothing$. Neste caso o teorema diz que $\varphi_1,...,\varphi_n \Vdash \psi$ sse a fórmula $\varphi_1 \land ... \land \varphi_n \to \psi$ é válida. Como a validez de uma fórmula é decidível segue que a relação de conseqüência é decidível para conjuntos finítos de premissas. Isto é, existe um algoritmo que para quaisquer fórmulas $\varphi_1,...,\varphi_n,\psi$ computa a resposta para a pergunta: $\varphi_1,...,\varphi_n \Vdash \psi$? O caso $\Phi = \varnothing$ também revela uma ligação íntima entre \to e \Vdash : neste caso a relação de consequência pode ser formalizada na linguagem de objeto.

Exemplo 1.18 Prove o seguinte.

$$(\varphi \wedge \psi) \to \chi, \vartheta \to \psi \Vdash (\varphi \wedge \vartheta) \to \chi.$$

A relação de consequência tem as seguintes propriedades que seguem imediatamente da definição.

Teorema 1.19 Para todos os Φ , $\Phi' \subseteq Form(P)$, φ , $\psi \in Form(P)$ o seguinte é verdadeiro.

- $\Phi \Vdash \psi$, para todo $\psi \in \Phi$. (Extensividade ou Reflexividade)
- Se $\Phi \subset \Phi'$ e $\Phi \Vdash \psi$, então $\Phi' \Vdash \psi$. (Monotonicidade)
- Se $\Phi' \Vdash \psi$, e $\Phi \Vdash \varphi$ para todo $\varphi \in \Phi'$, então $\Phi \Vdash \psi$. (Idempotência)

A demonstração do teorema é um fácil exercício. Demonstre também que a monotonicidade já segue da idempotência e da reflexividade.

Existe uma ligação entre as noções da satisfatibilidade e da consequência lógica. Uma pode ser caracaterizada pela outra:

Proposição 1.20 • Para cada conjunto de fórmulas Φ os enunciados seguintes são equivalentes:

- (i) Φ é satisfatível.
- (ii) Para qualquer fórmula contraditória φ , $\Phi \nVdash \varphi$.
- (iii) Existe uma fórmula ψ tal que $\Phi \nVdash \psi$
- Para cada conjunto de fórmulas Φ e cada fórmula φ os enunciados seguintes são equivalentes:
 - (i) $\Phi \Vdash \varphi$
 - (ii) O conjunto $\Phi \cup \{\neg \varphi\}$ não é satisfatível (ou seja, contraditório).

Demonstração. Para provar o primeiro item se pode mostrar $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i)$. Deixamos isto como exercício.

Segundo item. $(i) \Rightarrow (ii)$. Seja $\Phi \Vdash \varphi$ e seja v alguma valorização. Temos que mostrar que $v \not\models \Phi \cup \{\neg \varphi\}$. Distinguimos dois casos.

Caso 1: $v \nvDash \Phi$. A afirmação é evidente.

Caso 2: $v \models \Phi$. Como $\Phi \Vdash \varphi$, obtemos $v \models \varphi$. Então $v \nvDash \neg \varphi$ e a afirmação segue. $(ii) \Rightarrow (i)$. Seja $\Phi \cup \{\neg \varphi\}$ contraditório. Supomos que $v \models \Phi$ para alguma valorização v. Então $v \nvDash \neg \varphi$, logo $v \models \varphi$. Isto significa que $\Phi \Vdash \varphi$. Q.E.D.

Negando os equivalentes enunciados (i), (ii) e (iii) do primeiro item da proposição anterior obtemos as seguintes caraterizações equivalentes de " Φ é contraditório."

- (i) Φ é contraditório.
- (ii) Existe uma fórmula contraditória φ tal que $\Phi \Vdash \varphi$.
- (iii) Para toda fórmula ψ , $\Phi \Vdash \psi$.

1.2.2 Equivalência lógica

Definição 1.21 Dizemos que duas fórmulas φ, ψ são logicamente equivalentes (notação: $\varphi \equiv \psi$), se para toda valoração $v \in 2^P$, $v \models \varphi \iff v \models \psi$.

Exemplo 1.22 • Para toda fórmula φ , $\varphi \lor \neg \varphi \equiv \top e \varphi \land \neg \varphi \equiv \bot$.

- $\varphi \lor \varphi \equiv \varphi$, $\varphi \land \varphi \equiv \varphi$ (*Idempotência*)
- $\varphi \wedge \psi \equiv \psi \wedge \varphi$, $\varphi \vee \psi \equiv \psi \vee \varphi$ (Comutatividade)
- $\varphi \wedge (\psi \wedge \chi) \equiv (\varphi \wedge \psi) \wedge \chi$, $\varphi \vee (\psi \vee \chi) \equiv (\varphi \vee \psi) \vee \chi$, (Associatividade)

- $\neg(\varphi \land \psi) \equiv \neg \varphi \lor \neg \psi$, $\neg(\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$ (Regras de De-Morgan)
- $(\varphi \wedge \psi) \vee \psi \equiv \psi$, $(\varphi \vee \psi) \wedge \psi \equiv \psi$ (Absorção)
- $\varphi \wedge (\psi \vee \chi) \equiv (\varphi \wedge \psi) \vee (\varphi \wedge \chi), \ \varphi \vee (\psi \wedge \chi) \equiv (\varphi \vee \psi) \wedge (\varphi \vee \chi)$ (Distributividade)
- $\varphi \equiv \neg \neg \varphi$ (Dupla negação)
- $\varphi \lor \psi \equiv \varphi \ e \ \varphi \land \psi \equiv \psi$, se φ é tautologia (Regras de tautologia)
- $\varphi \lor \psi \equiv \psi \ e \ \varphi \land \psi \equiv \varphi$, se $\varphi \ \acute{e} \ contradição (Regras de contradição)$
- $\varphi \to \psi \equiv \neg \psi \to \neg \varphi$ (Contraposição)
- $\neg \varphi \equiv \varphi \rightarrow \bot$
- $\varphi \to \psi \equiv \neg \varphi \lor \psi$ (Eliminação de \to)
- $\varphi \to \psi \to \chi \equiv (\varphi \land \psi) \to \chi$

Exercício: Prove as equivalências acima!

Teorema 1.23 Seja $\varphi \equiv \varphi'$ e $\varphi \in sub(\psi)$. Então $\psi \equiv \psi'$, onde ψ' é a fórmula que obtemos substituindo alguma ocorrência de φ em ψ por φ' .

Demonstração. Por indução na construção de ψ . Exercício!

Lema 1.24 Os enunciados seguintes são equivalentes para todas as fórmulas φ, ψ .

- (i) $\varphi \equiv \psi$.
- (ii) A fórmula $\varphi \leftrightarrow \psi$ é válida.
- (iii) $\varphi \Vdash \psi e \psi \Vdash \varphi$.

Demonstração. Exercício.

Sabemos que a validez de uma fórmula é decidível. Pelo teorema anterior, a equivalência lógica entre duas fórmulas é decidível.

1.2.3 Formas normais

Neste capítulo trabalharemos sem as fórmulas \bot e \top , ou seja, supomos que $\bot, \top \notin FORM$. Podemos fazer isso porque $\bot \equiv p \land \neg p$ e $\top \equiv p \lor \neg p$, para qualquer $p \in P$. Isto é, \bot e \top podem ser representadas por outras fórmulas logicamente equivalentes.

- **Definição 1.25** Uma fórmula $\psi \in FORM$ é dita literal, se $\psi = p$ ou $\psi = \neg p$, para algum $p \in P$. No primeiro caso, ψ é literal positivo, no segundo caso é literal negativo.
 - Para um literal ψ ,

$$\overline{\psi} := \left\{ \begin{array}{c} \neg \psi, \ \textit{se} \ \psi \in P \\ p, \ \textit{se} \ \psi = \neg p \end{array} \right.$$

é o literal inverso.

- Uma fórmula está em forma normal disjuntiva (FND), se $\varphi = \varphi_1 \vee ... \vee \varphi_n$, onde $n \geq 1$ e $\varphi_i = \psi_{i,1} \wedge ... \wedge \psi_{i,m_i}$ com literais $\psi_{i,j}$, $1 \leq i \leq n$, $1 \leq j \leq m_i$.
- Uma fórmula está em forma normal conjuntiva (FNC), se $\varphi = \varphi_1 \wedge ... \wedge \varphi_n$, onde $n \geq 1$ e $\varphi_i = \psi_{i,1} \vee ... \vee \psi_{i,m_i}$ com literais $\psi_{i,j}$, $1 \leq i \leq n$, $1 \leq j \leq m_i$.

Exemplo 1.26 As fórmulas $p, p_1 \wedge ... \wedge p_n$ e $p_1 \vee ... \vee p_n$ estão em FND e FNC. As fórmulas $(p \wedge q \wedge r) \vee (p \wedge q \wedge \neg r) \vee (\neg p \wedge q \wedge r) \vee (\neg p \wedge \neg q \wedge r), (\neg p \wedge r) \vee q$ estão em FND.

As fórmulas $\neg (p \land r) \lor (p \land q)$, $(p \land (q \lor r)) \lor (\neg p \land q)$ não estão em FND.

Encontre outras fórmulas que estão em FNC e fórmulas que não estão em FNC!

Proposição 1.27 Para toda fórmula φ podem ser construidas fórmulas ψ e ψ' tal que $\varphi \equiv \psi \equiv \psi'$ e ψ está em FND e ψ' está em FNC.

A Proposição pode ser provada, por exemplo, por indução na construção de φ . Em vez de dar esta demonstração apresentamos um algoritmo que produz uma FNC (FND) para toda fórmula φ . A Proposição também vai seguir de um resultado que demonstramos no próximo capitulo.

Input: fórmula φ .

- 1. Substituir todas as subfórmulas $\psi \to \chi$ por $\neg \psi \lor \chi$.
- 2. Substituir todas as subfórmulas $\psi \leftrightarrow \chi$ por $(\neg \psi \lor \chi) \land (\neg \chi \lor \psi)$.
- 3. Substituir todas as subfórmulas $\neg \neg \psi$ por ψ .
- 4. Substituir todas as subfórmulas $\neg(\psi \land \chi)$ por $(\neg \psi \lor \neg \chi)$.
- 5. Substituir todas as subfórmulas $\neg(\psi \lor \chi)$ por $(\neg \psi \land \neg \chi)$.
- 6. Substituir todas as subfórmulas $(\psi \lor (\chi \land \xi))$ por $(\psi \lor \chi) \land (\psi \lor \xi)$.
- 7. Substituir todas as subfórmulas $((\psi \land \chi) \lor \xi)$ por $((\psi \lor \xi) \land (\chi \lor \xi)$.

O algoritmo termina quando não existem mais subfórmulas que possam ser substituidas.

Output: A fórmula resultante (obviamente, essa fórmula está em FNC).

A ordem dessas substituições é irrelevante. Analogamente, obtemos um algoritmo para produzir uma FND de φ . Para isso precisamos modificar apenas os passos 6. e 7. (Exercício!)

Observação 1.28 Para simplificar a apresentação trabalhamos neste capítulo sem os conectivos \bot e \top . Porém, essa restrição é desnecessária. Para $\varphi = \varphi_1 \lor ... \lor \varphi_n$ e $\psi = \psi_1 \land ... \land \psi_n$ podemos considerar o caso n = 0. Então, φ é a disjunção vazia e ψ é a conjunção vazia. Por definição, $\varphi := \bot$ e $\psi := \top$. Essa definição está de acordo com o fato que uma disjunção é verdadeira se pelo menos um membro é verdadeiro, e uma conjunção é verdadeira se qualquer membro é verdadeiro. Sendo assim, a fórmula \bot está em FND, e \top e uma FNC. Uma FNC para \bot é, p. ex., $p_0 \land \neg p_0$. Analogamente, $p_0 \lor \neg p_0$ é uma FND para a fórmula \top . Na verdade, \bot também é uma FNC (considere $\varphi = \varphi_1 \land ... \land \varphi_n$ com n = 1 e $\varphi_1 = \bot$ a disjunção vazia de literais). Analogamente, \top também é uma FND.

1.2.4 Bases de conectivos

Vimos que a semântica de um conectivo c com aridade n é uma função booleana $f_c: \{0,1\}^n \to \{0,1\}$. A cardinalidade de $\{0,1\}^n$, ou seja, o número de n-uplas com elementos 0,1 é 2^n . Uma função booleana de aridade n atribui a cada elemento de $\{0,1\}^n$ (a cada n-upla) o valor 0 ou 1. Há 2^{2^n} possibilidades de fazer isso. Logo, existem 2^{2^n} funções booleanas de aridade 2^n . No entanto, nem toda

 $^{^1}$ Isto pode ser verificado de forma mais geral. Se A e B são conjuntos finitos, então $|A^B|=|A|^{|B|},$ onde A^B é o conjunto de todas as funções de B para A. Exercício: Prove isso por indução na cardinalidade de B !

função booleana corresponde a um dos nossos conectivos. Por exemplo, existem $2^2 = 4$ funções booleanas de aridade 1, mas nossa linguagem contém apenas um conectivo de aridade 1, a dizer, a negação \neg . Existem $2^{2^2} = 16$ funções booleanas de aridade 2, mas temos apenas 4 conectivos de aridade 2. Não obstante, podemos definir mais conectivos que correspondem às funções booleanas restantes. Por exemplo, sejam \uparrow e \downarrow os conectivos de aridade 2 dados pelas funções

$$f_{\uparrow}(x,y) = \begin{cases} 0, \text{ se } x = y = 1\\ 1, \text{ caso contrário} \end{cases}$$

$$f_{\downarrow}(x,y) = \begin{cases} 1, \text{ se } x = y = 0\\ 0, \text{ caso contrário} \end{cases}$$

Estes conectivos são conhecidos como NAND ("not and") e NOR ("not or"). De forma semelhante podemos definir conectivos de qualquer aridade que correspondem a respectivas funções booleanas. Por exemplo

$$f_c(x, y, z) = \begin{cases} 0, \text{ se } x = y = z = 0 \\ 1, \text{ caso contrário} \end{cases}$$

define um conectivo c de aridade 3. Poderiamos escrever $c(\varphi, \psi, \chi)$ para uma fórmula que é o resultado da aplicação desse conectivo às fórmulas φ, ψ e χ .

Exercício 1.29 Defina os restantes 3 conectivos (fora de \neg) que correspondem às funções booleanas de aridade 1. Para um novo conectivo c de aridade n podemos estender a definição da valoração de maneira seguinte: $v(c(\varphi_1,...,\varphi_n)) = f_c(v(\varphi_1),...,v(\varphi_n))$. Mostre que isto está de acordo com a Definição 1.4. Isto \acute{e} , a Definição 1.4 pode ser dada usando as funções f_c para os respectivos conectivos c.

Problema 1.30 A introdução de novos conectivos aumenta o poder expressivo da nossa linguagem de objeto? Ou seja, introduzindo novos conectivos obtemos fórmulas que não são logicamente equivalentes a fórmulas que contêm somente os conectivos originais $\bot, \top, \neg, \lor, \land, \rightarrow e \leftrightarrow ?$ A resposta é não, como mostraremos mais em diante. Surprendentemente, toda fórmula que é construida mediante conectivos quaisquer (e de qualquer aridade) é logicamente equivalente a uma fórmula que contém apenas os conectivos originais. Na verdade, é possível provar um resultado ainda mais forte como veremos abaixo.

Definição 1.31 Um conjunto $C = \{c_1, ..., c_n\}$ é dito base de conectivos, se toda fórmula é logicamente equivalente a uma fórmula que contém apenas conectivos de C.

Exemplo 1.32 $\{\neg, \lor, \land\}$ é uma base de conectivos. Isto segue, por exemplo, da *Proposição 1.27*.

Disso segue facilmente que $\{\neg, \lor\}$, $\{\neg, \land\}$, $\{\neg, \rightarrow\}$ e $\{\bot, \rightarrow\}$ são bases de conectivos. Mais surprendente é que também $\{\uparrow\}$ e $\{\downarrow\}$ são bases de conectivos.

Vamos provar que $\{\uparrow\}$ é base de conectivos. Usaremos que $\{\neg, \lor, \land\}$ é base. É suficiente mostrar que para todas as fórmulas $\chi, \psi, \neg \chi \equiv \chi \uparrow \chi, \chi \land \psi \equiv (\chi \uparrow \psi) \uparrow (\chi \uparrow \psi)$. $\chi \lor \psi \equiv (\chi \uparrow \chi) \uparrow (\psi \uparrow \psi)$. Exercício!

Vamos mostrar que $\{\rightarrow\}$ não é base de conectivos. Para isso, é suficiente provar que qualquer fórmula φ que é construida apenas sobre os símbolos de proposições e o conectivo \rightarrow é satisfatível. Disso segue que φ não é logicamente equivalente a \bot (ou a qualquer outra fórmula contraditória). Logo, $\{\rightarrow\}$ não pode ser base de conectivos. Provamos a afirmação por indução na construção de φ : Base da indução. Se $\varphi \in P$, então a afirmação é trivial.

Passo de indução. Seja $\varphi = \psi \to \chi$. Temos que encontrar um modelo para φ . Segundo a hipotese da indução, ψ e χ são satisfatíveis. Logo, existe um modelo $v \vDash \chi$. Pela semântica do conectivo \to obtemos $v \vDash \psi \to \chi$. Q.E.D.

Note que na base da indução não precisamos considerar os casos $\varphi \in \{\bot, \top\}$ (relembre que \bot, \top são conectivos), e no passo da indução consideramos apenas o conectivo da implicação.