(19) 日本国特許庁(JP)

(12)公開特許公報 (A) (11)特許出願公開番号

特開平9-199009

(43)公開日 平成9年(1997)7月31日

(51) Int. Cl. 6	識別	記号	庁内整理番号	FΙ			;	技術表示箇所
H01J	9/02			H01J	9/02		В	
HOIJ	1/30				1/30		В	
	9/39				9/39		Α	
					29/94			•
	29/94				31/12		С	
	31/12 審査請求 未請求	文 請求項	頁の数7 C	L		(全1	7頁)	
(21)出願番号	特願平8-7	349		(71)出願人	0000010	007		
(21) 山嶼省方	10 2004 1 10 10				キヤノン	ン株式会社	<u>.</u>	
(22) 山麓日	平成8年(1996)1月19日				東京都ス	大田区下丸	上子3丁目30	番2号
	(22) 出願日 平成8年(1996) 1月19日		(72)発明者	宮▲崎▼	▼ 俊彦			
						大田区下す	上子3丁目30	番2号 キヤノ
					ン株式会			
				(74)代理人			3	

(54) 【発明の名称】画像形成装置、及びその製造方法

(57)【要約】

【課題】 画像形成装置の組み立て、封着の際の構成部 品の位置あわせを簡単にする。

【解決手段】 電子放出素子部80を持つリアプレート 8と、画像形成部60を有するフェースプレート6と、 これらの間にある支持枠7とを封着材で気密に封着した 外囲器内に、大気圧を支持するスペーサ31と、外囲器 内の真空度を保つゲッタ4と、ゲッタ4から放出される ゲッタ材が電子放出素子部80に飛散することを防止す るゲッタ材飛散防止部材2を組み込む際、予めゲッタ材 飛散防止部材2とスペーサ31とゲッタ4とを一体に固 定したスペーサユニット1を用いる。

【特許請求の範囲】

【請求項1】 電子放出素子を搭載したリアプレートと 該リアプレートと対向して配置された画像形成部を有す るフェースプレートと該リアプレートと該フェースプレ ートとの間にあってこれらの周縁部を包囲する支持枠と を封着材で気密に封着した外囲器と、該外囲器内に配置 されて大気圧を支持するスペーサと、該外囲器内の真空 度を保つゲッタと、該ゲッタからのゲッタ材が該電子放 出素子に飛散することを防止するゲッタ材飛散防止部材 を有する画像形成装置であって、

該ゲッタ材飛散防止部材と該スペーサとが所定の角度をなして固定されてなることを特徴とする画像形成装置。

【請求項2】 前記スペーサが平板形状である請求項1 に記載の画像形成装置。

【請求項3】 前記スペーサが開口部を有する請求項2 に記載の画像形成装置。

【請求項4】 前記ゲッタ材飛散防止部材にゲッタが固定されている請求項1万至3のいずれかに記載の画像形成装置。

【請求項5】 前記電子放出素子が表面伝導型電子放出 20 素子である請求項1乃至4のいずれかに記載の画像形成 装置。

【請求項6】 電子放出素子を搭載したリアプレートと該リアプレートと対向して配置された画像形成部を有するフェースプレートと該リアプレートと該フェースプレートとの間にあってこれらの周縁部を包囲する支持枠とを封着材で気密に封着した外囲器と、該外囲器内に配置されて大気圧を支持するスペーサと、該外囲器内の真空度を保つゲッタと、該ゲッタからのゲッタ材が該電子放出素子に飛散することを防止するゲッタ材飛散防止部材と該スペーサとが予め所定の角度をなして固定されてなるスペーサユニットを用いて画像形成装置を製造することを特徴とする画像形成装置の製造方法。

【請求項7】 前記ゲッタ材飛散防止部材に前記ゲッタ が固定されている請求項6に記載の画像形成装置の製造 方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は画像形成装置に関し、更に詳述すれば電子放出素子を用いる画像形成装置の構造、及びその製造方法に関する。

[0002]

【従来の技術】従来、電子放出素子としては、熱電子源と冷陰極電子源の2種類が知られている。冷陰極電子源には、電界放出型(以下、FEと記す)、金属/絶縁層/金属型(以下、MIMと記す)や表面伝導型電子放出素子等がある。

【0003】FE型の例としては、W.P.Dyke & W.W.Dol ている。多数の表面伝導型放出素子を形成した例としてan, "Field emission", Advancein Electron Physici 50 は、後述する様に梯型配置と呼ぶ並列に表面伝導型電子

s, 8, 89 (1956)或いはC.A. Spindt, "Physical Proper ties of thin-film field emission cathodes with molybdenium", J. Appl. Phys., 47, 5248 (1976) 等が知られている。

【0004】MIM型の例としては、C.A.Mead, "The tunnel-emission amplifier, J. Appl. Phys., 32, 646 (1961) が知られている。

【0005】表面伝導型電子放出素子の例としては、M. I. Elinson, Radio Eng. Electron Phys., 10, (1965)]
10 等がある。

【0006】表面伝導型電子放出素子は基板上に形成さ れた小面積の薄膜に、膜面に平行に電流を流すことによ り、電子放出が生ずる現象を利用するものである。この 表面伝導型電子放出素子としては、前記Elinson 等によ るSnOz薄膜を用いたもの、Au薄膜によるもの[G. Dittmer: "Thin Solid Films", 9, 317 (1972)], I n2 O₃ /SnO₂ 薄膜によるもの [M. Hartwell and C.G. Fonstad: "IEEE Trans. ED Conf.",519 (1975)]、カ ーボン薄膜によるもの [荒木久他:真空、第26巻、第 1号、22ページ(1983)] 等が報告されている。 【0007】これらの表面伝導型電子放出素子の典型的 な素子構成として、前述のM. Hartwellの素子構成を図1 5に示す。同図において1は、基板である。4は導伝性 薄膜で、スパッタリングで形成されたH型形状の金属酸 化物薄膜等からなり、後述するフォーミングと呼ばれる 通電処理により電子放出部5が形成される。なお、図中 の素子電極間隔Lは、0.5~1.0mm、W'は、 0. 1mmで設定されている。又、電子放出部5の位置 及び形状については、不明であるので模式図として表わ した。

【0008】従来、これらの表面伝導型電子放出素子においては、電子放出を行う前に導伝性薄膜4を予めフォーミングと呼ばれる通電処理することによって、電子放出部5を形成するのが一般的であった。すなわち、通電フォーミングとは、前記導伝性薄膜4の両端に直流電圧、或いは非常にゆっくりとした昇電圧、例えば1V/分程度を印加通電し、導電性薄膜を局所的に破壊、変形もしくは変質せしめ、電気的に高抵抗な状態にした電子放出部5を形成することである。なお電子放出部5は部5を形成することである。なお電子放出部5は部5な出部5は高低導型電子放出素子は、上記導電性薄膜4に電圧を印加し、素子に電流を流すことにより上記電子放出部5より電子を放出せしめるものである。

【0009】上述の表面伝導型電子放出素子は構造が単純で製造も容易であることから、大面積にわったて多数素子を配列形成できる利点がある。そこで、この特徴を生かした荷電ビーム源、表示装置等の応用研究がなされている。多数の表面伝導型放出素子を形成した例としては、後述する様に梯型配置と呼ぶ並列に表面伝導型電子

放出素子を配列し、個々の素子の両端を配線(共通配線 とも呼ぶ) でそれぞれ結線した行を多数配列した電子源 があげられる(例えば、特開昭64-031332、特 開平1-283749、2-257552等)。また、 特に表示装置等の画像形成装置においては、近年、液品 を用いた平板型表示装置がCRTに替わって普及してき たが、自発光型でないためバックライトを持たねばなら ない等の問題点があり、自発光型の表示装置の開発が望 まれてきた。自発光型表示装置としては表面伝導型電子 放出素子を多数配置した電子源と、電子源より放出され 10 た電子によって、可視光を発光せしめる蛍光体とを組み 合わせた表示装置である画像形成装置があげられる(例 えば、USP5066883)。

【0010】上記画像形成装置などでは外囲器と称する 外部構造体を有しており、真空中の外囲器内で電子放出 素子を動作させることから、真空度を保つためにゲッタ 及び耐大気圧構造が必要になる。特に、近年需要の高く なってきている大型薄型の画像形成装置は、耐大気圧構 造として外囲器の内側に大気圧を支持するスペーサを配 置する構造がある。また、外囲器内にはゲッタからのゲ 20 いて図1乃至図3を用いて説明する。 ッタ材が画像形成部分に飛放しないようにするためにゲ ッタ材飛散防止部材が設けられている。

[0011]

【発明が解決しようとする課題】しかしながら、外囲器 を各構成部材から組み立てる際に、(1)複数のスペー サを配置し、位置決め固定するのに煩雑な工程が必要で ある、(2) また、外囲器を気密封止する際にスペーサ が斜めになる、或いは倒れる場合がある、(3)ゲッタ やゲッタ材飛散防止部材を配置し、位置決め固定する工 程が煩雑である、などの問題点がある。

【0012】本発明は上記の間題点を解決した画像形成 装置及びその製造方法を提供することを目的とする。

[0013]

【課題を解決するための手段】上記問題を解決するため 本発明は、電子放出素子を搭載したリアプレートと該リ アプレートと対向して配置された画像形成部を有するフ ェースプレートと該リアプレートと該フェースプレート との間にあってこれらの周縁部を包囲する支持枠とを封 着材で気密に封着した外囲器と、該外囲器内に配置され て大気圧を支持するスペーサと、該外囲器内の真空度を 40 保つゲッタと、該ゲッタからのゲッタ材が該電子放出素 子に飛散することを防止するゲッタ材飛散防止部材を有 する画像形成装置であって、該ゲッタ材飛散防止部材と 該スペーサとが所定の角度をなして固定されてなること を特徴とする画像形成装置を提案するもので、前記スペ ーサが平板形状であること、前記スペーサが開口部を有 すること、前記ゲッタ材飛散防止部材にゲッタが固定さ れていること、前記電子放出素子が表面伝導型電子放出 素子であることを含む。

【0014】また本発明は、電子放出素子を搭載したり 50

アプレートと該リアプレートと対向して配置された画像 形成部を有するフェースプレートと該リアプレートと該 フェースプレートとの間にあってこれらの周縁部を包囲 する支持枠とを封着材で気密に封着した外囲器と、該外 囲器内に配置されて大気圧を支持するスペーサと、該外 囲器内の真空度を保つゲッタと、該ゲッタからのゲッタ 材が該電子放出素子に飛散することを防止するゲッタ材 飛散防止部材を有する画像形成装置の製造方法であっ て、該ゲッタ材飛散防止部材と該スペーサとが予め所定 の角度をなして固定されてなるスペーサユニットを用い て画像形成装置を製造することを特徴とする画像形成装 置の製造方法で、前記ゲッタ材飛散防止部材に前記ゲッ タが固定されていることを含む。

【0015】本発明によれば、外囲器の組み立てが容易 に行なえるようになる。特にスペーサを位置決めし、固 定する際の簡易化が図れる。また、ゲッタの組み立ても 容易に行なえるようになる。

[0016]

【発明の実施の形態】以下、本発明の画像形成装置につ

【0017】図1は本発明において用いるスペーサユニ ットの位置例を示す斜視図である。

【0018】スペーサユニット1は、ゲッタ材飛散防止 部材2、スペーサ3、ゲッタ4から構成されている。ゲ ッタ材飛散防止部材2に所望の間隔、角度でスペーサ3 を接着し、スペーサ3と反対側にゲッタ4を接着するこ とで、スペーサユニット1が形成される。接着するスペ ーサ3の数は任意に選択できる。スペーサ3には開口部 5を適宜設けることが好ましい。

【0019】スペーサ3の材料としては、ガラス、セラ 30 ミック等が好ましい。

【0020】ゲッタ材飛散防止材2の材質としては、前 記スペーサ3と同様のものが好ましい。

【0021】スペーサとゲッタ材飛散防止材との接着は フリットガラスによる接着、無機接着剤による接着等の 方法が好ましい。

【0022】次に、このスペーサユニット1を外囲器へ 組み込む際の様子を図2を参照しながら説明する。

【0023】図2は外囲器の構成部材を示す展開斜視図 である。外囲器は、フェースプレート6、スペーサユニ ット1、支持枠7、リアプレート8から構成されてい る。フェースプレート6の下部には画像形成部60があ り、この画像形成部に対してスペーサユニット1を位置 決め接着し、これに更に支持枠7と電子放出素子部80 とを搭載したリアプレート8を位置決め接着することで 外囲器が形成される。

【0024】図3は上記外囲器内でのスペーサユニット 1の位置関係を示す図である。

【0025】図3(a)は外囲器の平面図、図3(b) は外囲器のAーA線に沿った断面図である。同図におい

も良い。

て、2はゲッタ材飛散防止部材、3はスペーサ、4はゲッタ、6はフェースプレート、60は画像形成部、7は支持枠、8はリアプレート、80は電子放出素子部、9は外囲器である。外囲器9はフェースプレート6とリアプレート8と支持枠7から構成され、密閉容器をなしている。その内部には大気圧支持構造としてスペーサ3が設けられている。真空度を保つためにゲッタ4とゲッタ材飛散防止部材2がある。

【0026】本発明で用いる電子源としては、単純な構 ついて通電処理を例に挙げて説明するが、フォーミング 成であり製法が容易な表面伝導型電子放出素子が好適で 10 処理はこれに限られるものではなく、膜に亀裂を生じさ せて高抵抗状態を形成する方法であればいかなる方法で

【0027】本発明の表面伝導型電子放出素子の基本的な構成には大別して、平面型及び垂直型の2つがある。

【0028】まず、平面型表面伝導型電子放出素子について説明する。

【0029】図6は、本発明の平面型表面伝導型電子放出素子の構成を示す模式図であり、図6(a)は平面図、図6(b)は断面図である。

【0030】図6において101は基板、102と10 3は素子電極、104は導電性薄膜、105は電子放出 20 部である。

【0031】基板101としては、石英ガラス、Na等の不純物含有量を低減させたガラス、青板ガラス、スパッタ法等によりSiO2を堆積させたガラス基板及びアルミナ等のセラミックス基板等を用いることができる。【0032】対向する素子電極102、103の材料としては、一般的な導電材料を用いることができ、Ni,Cr,Au,Mo,W,Pt,Ti,Al,Cu,Pd等の金属あるいはそれらの合金;Pd,As,Ag,Au,RuO2,Pd-Ag等の金属あるいは金属酸化物とガラス等から構成される印刷導体;In2O3-SnO2等の透明導電体及びポリシリコン等の半導体材料等から選択することができる。

【0033】素子電極間隔L、素子電極長さW、導電性薄膜104の形状等は、応用される形態等を考慮して設計される。素子電極間隔Lは、好ましくは数千Aから数百 μ mの範囲であり、より好ましくは素子電極間に印加する電圧等を考慮して 1μ mから 100μ mの範囲である。

【0034】素子電極長さWは、電極の抵抗値、電子放 40 いて説明する。 出特性を考慮して、数 μ mから数百 μ mの範囲である。 【0041】 数素子電極102、103の膜厚 d は、100 Åから 1μ のうちの垂直型 mの範囲である。 式図である。

【0035】尚、図6に示した構成だけでなく、基板101上に、導電性薄膜104、対向する素子電極102、103の順に積層した構成とすることもできる。

【0036】導電性薄膜104には良好な電子放出特性を得るために、微粒子で構成された微粒子膜を用いることが好ましい。その膜厚は素子電極102、103件の抵抗50

【0037】導電性薄膜104を構成する材料はPd,Pt,Ru,Ag,Au,Ti,In,Cu,Cr,Fe,Zn,Sn,Ta,W,Pb等の金属;PdO,SnO₂,In₂O₃,PbO,Sb₂O₃等の酸化物;HfB₂,ZrB₂,LaB₆,CeB₆,YB₄,GdB₄等の硼化物;TiC,ZrC,HfC,TaC,SiC,WC等の炭化物、TiN,ZrN,HfN等の窒化物、Si,Ge等の半導体、カーボン等の中から適宜選択される。

【0038】ここで述べる微粒子膜とは複数の微粒子が 集合した膜であり、その微細構造は、微粒子が個々に分 散配置した状態あるいは微粒子が互いに隣接、あるいは 重なり合った状態(いくつかの微粒子が集合し、全体と して島状構造を形成している場合も含む)をとってい る。微粒子の粒径は、数Åから1μmの範囲、好ましく は10Åから200Åの範囲である。

【0039】電子放出部105は、導電性薄膜104の 30 一部に形成された高抵抗の亀裂により構成され、導電性 薄膜104の膜厚、膜質、材料及び後述する通電フォー ミング等の手法等に依存したものとなる。電子放出部1 05の内部には、1000A以下の粒径の導電性微粒子 が含まれる場合もある。この導電性微粒子は、導電性薄 膜104を構成する材料の元素の一部、あるいは全ての 元素を含有するものとなる。電子放出部105及びその 近傍の導電性薄膜104には、炭素あるいは炭素化合物 が含まれる場合もある。

【0040】次に、垂直型表面伝導型電子放出素子について説明する。

【0041】図7は、本発明の表面伝導型電子放出素子のうちの垂直型表面伝導型電子放出素子の一例を示す模式図である。

【0042】図7においては、図6に示した部位と同じ部位には図6に付した符号と同一の符号を付している。106は段差形成部である。基板101、素子電極102及び103、導電性薄膜104、電子放出部105は、前述した平面型表面伝導型電子放出素子の場合と同様の材料で構成することができる。段差形成部106は、真空蒸着法、印刷法、スパッタ法等で形成されたS

е

 iO_2 等の絶縁性材料で構成することができる。段差形成部 $1O_6$ の膜厚は、先に述べた平面型表面伝導型電子放出素子の素子電極間隔Lに対応し、数百Aから数 $+\mu$ mの範囲とすることができる。この膜厚は、段差形成部の製法及び素子電極間に印加する電圧を考慮して設定されるが、数千Aから数 μ mの範囲が好ましい。

【0043】導電性薄膜104は、素子電極102及び103と段差形成部106作製後に、その素子電極102、103の上に積層される。電子放出部105は、図7においては、段差形成部106に形成されているが、作製条件、フォーミング条件等に依存し、形状、位置ともこれに限られるものでない。

【0044】上述の表面伝導型電子放出素子の製造方法 としては様々な方法があるが、その一例を図8に模式的 に示す。

【0045】以下、図6及び図8を参照しながら製造方法の一例について説明する。図8においても、図6に示した部位と同じ部位には図6に付した符号と同一の符号を付している。

【0046】1)基板101を洗剤、純水および有機溶 20 剤等を用いて十分に洗浄し、真空蒸着法、スパッタ法等 により素子電極材料を堆積後、例えばフォトリソグラフ ィー技術を用いて基板101上に素子電極102、10 3を形成する(図8(a))。

【0047】2)素子電極102、103を設けた基板101に、有機金属溶液を塗布して、有機金属溶膜を形成する。有機金属溶液には、前述の導電性膜104の材料の金属を主元素とする有機金属化合物の溶液を用いることができる。有機金属薄膜を加熱焼成処理し、リフトオフ、エッチング等によりパターニングし、導電性薄膜30104を形成する(図8(b))。ここでは有機金属溶液の塗布法を挙げて説明したが、導電性薄膜104の形成法はこれに限られるものでなく、真空蒸着法、スパッタ法、化学的気相堆積法、分散塗布法、ディッピング法、スピンナー法等を用いることもできる。

【0048】3)つづいて、フォーミング処理を施す。このフォーミング処理方法の一例として通電処理による方法を説明する。素子電極102、103間に、不図示の電源を用いて通電を行うと、導電性薄膜104の部位に、構造の変化した電子放出部105が形成される(図 408(c))。通電フォーミングによれば導電性薄膜104に局所的に破壊、変形もしくは変質等の構造変化した部位が形成される。その部位が電子放出部105となる。通電フォーミングの電圧波形の例を図9に示す。

【0049】電圧波形は、パルス波形が好ましい。これには、パルス波高値を定電圧としたパルスを連続的に印加する図9(a)に示した手法と、パルス波高値を増加させながら電圧パルスを印加する図9(b)に示した手法がある。

【0050】図9(a)におけるT1及びT2は電圧波形 50

のパルス幅とパルス間隔である。通常T1は $1 \mu s \sim 1$ 0 m s、T2は、 $1 0 \mu s \sim 1 0 0 m s$ の範囲で設定される。三角波の波高値(通電フォーミング時のピーク電圧)は、表面伝導型電子放出素子の形態に応じて適宜選択される。このような条件のもと、例えば、数秒から数十分間電圧を印加する。パルス波形は三角波に限定されるものではなく、矩形波など所望の波形を採用することができる。

【0051】図9(b)におけるT1及びT2は、図9(a)に示したものと同様とすることができる。三角波の波高値(通電フォーミング時のピーク電圧)は、例えば0.1 Vステップ程度ずつ増加させることができる。【0052】通電フォーミング処理の終了は、パルス間隔T2中に、導電性薄膜104を局所的に破壊、変形しない程度の電圧を印加し、電流を測定して検知することができる。例えば0.1 V程度の電圧印加により流れる素子電流を測定し、抵抗値を求めて、1 M Ω 以上の抵抗を示した時、通電フォーミングを終了させる。

【0053】4)フォーミングを終えた素子には活性化 処理を施すのが好ましい。活性化処理を施すことによ り、素子電流 If、放出電流 Ieが著しく変化する。

【0054】活性化処理は、例えば有機物質のガスを含 有する雰囲気下で、通電フォーミングと同様に、パルス の印加を繰り返すことで行うことができる。この雰囲気 は、例えば油拡散ポンプやロータリーポンプなどを用い て真空容器内を排気した場合に雰囲気内に残留する有機 ガスを利用して形成することができる他、イオンポンプ などにより一旦十分に排気した真空中に適当な有機物質 のガスを導入することによっても得られる。このときの 好ましい有機物質のガス圧は、前述の応用の形態、真空 容器の形状や、有機物質の種類などにより異なるため、 場合に応じ適宜設定される。適当な有機物質としては、 アルカン、アルケン、アルキンの脂肪族炭化水素類、芳 香族炭化水素類、アルコール類、アルデヒド類、ケトン 類、アミン類、フェノール、カルボン酸、スルホン酸等 の有機酸類等を挙げることができ、具体的には、メタ ン、エタン、プロパンなどCnH2n+2で表される飽和炭 化水素、エチレン、プロピレンなどCnH2n等の組成式 で表される不飽和炭化水素、ベンゼン、トルエン、メタ ノール、エタノール、ホルムアルデヒド、アセトアルデ ヒド、アセトン、メチルエチルケトン、メチルアミン、 エチルアミン、フェノール、蟻酸、酢酸、プロピオン酸 等が使用できる。この処理により、雰囲気中に存在する 有機物質から炭素あるいは炭素化合物が素子上に堆積 し、素子電流Ifおよび放出電流Ieが著しく変化する。 【0055】活性化工程の終了判定は、素子電流Ⅰfと 放出電流Ieを測定しながら行う。なおパルス幅、パル ス間隔、パルス波高値などは適宜設定される。

【0056】炭素あるいは炭素化合物とは、HOPG (Highly Oriented Pyrolytic Graphite) 、PG (Pyro

共通に接続するものが挙げられる。このようなものは所 謂単純マトリクス配置である。まず単純マトリクス配置 について以下に詳述する。

10

lytic Graphite)、GC(Glassy Carbon)などのグラ ファイト(HOPGはほぼ完全な結晶構造をもつグラフ ァイト、PGは結晶粒が200A程度で結晶構造がやや 乱れたグラファイト、GCは結晶粒が20A程度で結晶 構造の乱れがさらに大きくなったものを指す)、非晶質 カーボン(アモルファスカーボン及びアモルファスカー ボンと前記グラファイトの微結晶の混合物を含むカーボ ン)などであり、その膜厚は500Å以下にするのが好 ましく、300Å以下であればより好ましい。

【0063】本発明において、電子放出素子を複数個マ トリクス状に配して得られる電子源基板について、図1 0を用いて説明する。図10において、111は電子源 基板、112はX方向配線、113はY方向配線であ る。114は表面伝導型電子放出素子、115は結線で ある。尚、表面伝導型電子放出素子114は、前述した 平面型あるいは垂直型のどちらであってもよい。

【0057】5)活性化工程を経て得られた電子放出素 10 子は、安定化処理を行うことが好ましい。この処理は真 空容器内の有機物質の分圧が、1×10⁻⁸Torr以 下、望ましくは1×10⁻¹⁰Torr以下で行なうのが 良い。真空容器内の圧力は、10^{-6.5}~10⁻⁷Torr が好ましく、特に1×10⁻⁸Torr以下が好ましい。 【0058】真空容器を排気する真空排気装置は、装置 から発生するオイルが素子の特性に影響を与えないよう に、オイルを使用しないものを用いるのが好ましい。具 体的にはソープションポンプ、イオンポンプ等の真空排 気装置を挙げることができる。さらに真空容器内を排気 20 するときには、真空容器全体を加熱して真空容器内壁や 電子放出素子に吸着した有機物質分子を排気しやすくす ることが好ましい。このときの加熱した状態での真空排 気条件は、80~200℃で5時間以上が望ましいが、 特にこの条件に限るものではなく、真空容器の大きさや 形状、電子放出素子の構成などの諸条件により変わり得 る。なお、上記有機物質の分圧測定は質量分析装置によ り質量数が10~200の炭素と水素を主成分とする有 機分子の分圧を測定し、それらの分圧を積算することに より求める。

【0064】m本のX方向配線112は、Dx1、Dx 2、・・・、Dxmからなり、真空蒸着法、印刷法、ス パッタ法等を用いて形成された導電性金属等で構成する ことができる。配線の材料、膜厚、巾は、適宜設計され る。Y方向配線113は、Dy1、Dy2、・・・、Dy nのn本の配線よりなり、X方向配線112と同様に形 成される。これらm本のX方向配線112とn本のY方 向配線113との間には、不図示の層間絶縁層が設けら れており、両者を電気的に分離している(m、nは共に 正の整数)。

【0059】安定化工程を経た後の、駆動時の雰囲気 は、上記安定化処理終了時の雰囲気を維持するのが好ま しいが、これに限るものではなく、有機物質が十分除去 されていれば、真空度自体は多少低下しても十分安定な 特性を維持することができる。

【0065】不図示の層間絶縁層は、真空蒸着法,印刷 法,スパッタ法等を用いて形成されたSiО₂等で構成 される。例えば、X方向配線112を形成した基板11 1の全面或は一部に所望の形状で形成され、特にX方向 配線112とY方向配線113の交差部の電位差に耐え 得るように膜厚、材料、製法が設定される。X方向配線 112とY方向配線113は、それぞれ外部端子として 引き出されている。

【0060】このような真空雰囲気を採用することによ り、新たな炭素あるいは炭素化合物の堆積を抑制でき、 結果として素子電流Ifおよび放出電流Ieが安定する。 【0061】電子放出素子の配列については種々のもの が採用できる。

【0066】表面伝導型放出素子114を構成する一対 30 の電極 (不図示) は、m本のX方向配線112とn本の Y方向配線113と導電性金属等からなる結線115に よって電気的に接続されている。

【0062】一例として、並列に配置した多数の電子放 出素子の個々を両端で接続し、電子放出素子の行を多数 個配し(行方向と呼ぶ)、この配線と直交する方向(列 方向と呼ぶ) でその電子放出素子の上方に配した制御電 極(グリッドとも呼ぶ)により、電子放出素子からの電 子を制御駆動するはしご状配置のものがある。これとは 別に、電子放出素子をX方向及びY方向に行列状に複数 個配し、同じ行に配された複数の電子放出素子の電極の 一方を、X方向の配線に共通に接続し、同じ列に配され た複数の電子放出素子の電極の他方を、Y方向の配線に 50 線を用いて個別の素子を選択し、独立に駆動可能とする

【0067】配線112と配線113を構成する材料、 結線115を構成する材料及び一対の素子電極を構成す る材料は、その構成元素の一部あるいは全部が同一であ っても、またそれぞれ異なってもよい。これら材料は、 例えば前述の素子電極の材料より適宜選択される。素子 電極を構成する材料と配線材料が同一である場合には、 素子電極に接続した配線は素子電極ということもでき 40 る。

【0068】X方向配線112には、X方向に配列した 表面伝導型放出素子114の行を選択するための走査信 号を印加する不図示の走査信号印加手段が接続される。 一方、Y方向配線113にはY方向に配列した表面伝導 型放出素子114の各列を入力信号に応じて、変調する ための不図示の変調信号発生手段が接続される。各電子 放出素子に印加される駆動電圧は、その素子に印加され る走査信号と変調信号の差電圧として供給される。

【0069】上記構成においては、単純なマトリクス配

12

ことができる。

【0070】このような単純マトリクス配置の電子源を 用いて構成した画像形成装置について、図11、図12 及び図13を用いて説明する。図11は画像形成装置の 表示パネルの1例を示す模式図であり、図12は、図1 1の画像形成装置に使用される蛍光膜の模式図である。 図13はNTSC方式のテレビ信号に応じて表示を行な うための駆動回路の一例を示すブロック図である。

【0071】図11において111は電子放出素子を複 したリアプレート、126はガラス基板123の内面に 蛍光膜124とメタルバック125等が形成されたフェ ースプレートである。122は支持枠であり、その支持 枠122には、リアプレート121、フェースプレート 126がフリットガラス等を用いて接続されている。1 28は外囲器であり、例えば大気中あるいは窒素中で4 00~500度の温度範囲で10分以上焼成され、封着 される。

【0072】114は、図6における電子放出部に相当 する。112、113は、表面伝導型電子放出素子の一 20 対の素子電極と接続されたX方向配線及びY方向配線で ある。

【0073】外囲器128は、上述の如く、フェースー プレート126、支持枠122、リアプレート121で 構成される。リアプレート121は主に電子源基板11 1の強度を補強する目的で設けられるため、電子源基板 111自体で十分な強度を持つ場合は別体のリアプレー ト121は不要とすることができる。即ち、基板111 に直接支持枠122を封着し、フェースプレート12 6、支持枠122及び基板111で外囲器128を構成 30 しても良い。一方、フェースープレート126、リアプ レート121間に、スペーサー(耐大気圧支持部材)と よばれる不図示の支持体を設置することにより、大気圧 に対して十分な強度をもつ外囲器128を構成すること もできる。

【0074】図12は、蛍光膜を示す模式図である。蛍 光膜124はモノクロームの場合は蛍光体のみから構成 することができる。カラーの蛍光膜の場合は蛍光体の配 列によりブラックストライプあるいはブラックマトリク スなどと呼ばれる黒色部材131と蛍光体132とから 40 143は制御回路、144はシフトレジスタである。1 構成することができる。ブラックストライプ、ブラック マトリクスを設ける目的は、カラー表示の場合、必要と なる三原色蛍光体の各蛍光体132間の塗り分け部を黒 "くすることで混色等を目立たなくすることと、外光反射 によるコントラストの低下を抑制することにある。ブラ ックストライプの材料としては、通常用いられている黒 鉛を主成分とする材料の他、光の透過及び反射が少ない 材料であれば、これを用いることができる。

【0075】ガラス基板123に蛍光体を塗布する方法 は、モノクローム、カラーによらず、沈澱法、印刷法等 50 めの走査信号が印加される。

が採用できる。蛍光膜124の内面側には、通常メタル バック125が設けられる。メタルバックを設ける目的 は、蛍光体の発光のうち内面側への光をフェースプレー ト126側へ鏡面反射させることにより輝度を向上させ ること、電子ビーム加速電圧を印加するための電極とし て作用させること、外囲器内で発生した負イオンの衝突 によるダメージから蛍光体を保護すること等である。メ タルバックは、蛍光膜作製後、蛍光膜の内面側表面の平 滑化処理(通常、「フィルミング」と呼ばれる。)を行 数配した電子源基板、121は電子源基板111を固定 10 い、その後Alを真空蒸着等を用いて堆積させることで 作製できる。

【0076】フェースプレート126には、更に蛍光膜 124の導電性を高めるため、蛍光膜124の外面側 (ガラス基板123側) に透明電極(不図示)を設けて もよい。

【0077】前述の封着を行う際には、カラーの場合は 各色蛍光体と電子放出素子とを対応させる必要があり、 十分な位置合わせが不可欠となる。

【0078】図11に示した画像形成装置は、例えば以 下のようにして製造される。

【0079】外囲器128は、前述の安定化工程と同様 に、適宜加熱しながら、イオンポンプ、ソープションポ ンプなどのオイルを使用しない排気装置により不図示の 排気管を通じて排気し、1×10⁻⁷Torr程度の真空 度の有機物質の十分少ない雰囲気にした後、封止され る。外囲器128の封止後の真空度を維持するために、 ゲッター処理を行なうこともできる。これは、外囲器 1 28の封止を行う直前あるいは封止後に、抵抗加熱ある いは高周波加熱等を用いた加熱により、外囲器128内 の所定の位置 (不図示) に配置されたゲッターを加熱 し、蒸着膜を形成する処理である。ゲッターは通常Ba 等が主成分であり、その蒸着膜の吸着作用により、たと えば1×10⁻⁵ないしは1×10⁻⁷Torrの真空度を 維持するものである。

【0080】次に、単純マトリクス配置の電子源を用い て構成した表示パネルに、NTSC方式のテレビ信号に 基づいたテレビジョン表示を行うための駆動回路の構成 例について、図13を用いて説明する。図13におい て、141は画像表示表示パネル、142は走査回路、 45はラインメモリ、146は同期信号分離回路、14 7は変調信号発生器、VxおよびVaは直流電圧源であ る。

【0081】表示パネル141は、端子Dox1ないしD oxm、端子Doy1ないしDoyn、及び高圧端子H v を介 して外部の電気回路と接続している。端子Dox1ないし Doxmには、表示パネル内に設けられている電子源、即 ち、m行n列の行列状にマトリクス配線された表面伝導 型電子放出素子群を一行(n素子)ずつ順次駆動するた

データを必要時間の間だけ記憶するための記憶装置であ り、制御回路143より送られる制御信号Tmryに従っ て適宜Idl~Idnの内容を記憶する。記憶された内容 は、I'd1~I'dnとして出力され、変調信号発生器1 47に入力される。

【0082】端子Doy1ないしDoynには、前記走査信 号により選択された一行の表面伝導型電子放出素子の各 素子の出力電子ビームを制御するための変調信号が印加 される。髙圧端子Hvには、直流電圧源Vaより、例えば 10kVの直流電圧が供給されるが、これは表面伝導型 電子放出素子から放出される電子ビームに蛍光体を励起 するのに十分なエネルギーを付与するための加速電圧で ある。

【0089】変調信号発生器147は、画像データI'd 1~Ⅰ'dnの各々に応じて表面伝導型電子放出素子の各 々を適切に駆動変調するための信号源であり、その出力 信号は、端子Doy1~Doynを通じて表示パネル141 内の表面伝導型電子放出素子に印加される。

【0083】走査回路142について説明する。同回路 は、内部にm個のスイッチング素子を備えたものである 10 (図中、S1ないしSmで模式的に示している)。各ス イッチング素子は、直流電圧源Vxの出力電圧もしくは 0 V (グランドレベル) のいずれか一方を選択し、表示 パネル141の端子Dox1~Doxmと電気的に接続され る。S1乃至Smの各スイッチング素子は、制御回路1 43が出力する制御信号Tscanに基づいて動作するもの であり、例えばFETのようなスイッチング案子を組み 合わせることにより構成することができる。

【0090】本発明の電子放出素子は放出電流Ieに対 して以下の基本特性を有している。即ち、電子放出には 明確な閾値電圧Vthがあり、Vth以上の電圧を印加され た時のみ電子放出が生じる。電子放出閾値以上の電圧に 対しては、素子への印加電圧の変化に応じて放出電流も 変化する。このことから、本素子にパルス状の電圧を印 加する場合、例えば電子放出闘値以下の電圧を印加して も電子放出は生じないが、電子放出闘値以上の電圧を印 加する場合には電子ビームが出力される。その際、パル スの波高値Vmを変化させることにより、出力電子ビー ムの強度を制御することが可能である。また、パルスの 幅Pwを変化させることにより出力される電子ビームの 電荷の総量を制御することが可能である。

【0084】直流電圧源Vxは、本例の場合には表面伝 導型電子放出素子の特性(電子放出閾値電圧)に基づき 20 走査されていない素子に印加される駆動電圧が電子放出 閾値電圧以下となるような一定電圧を出力するよう設定 されている。

【0091】従って、入力信号に応じて電子放出素子を 変調する方式としては、電圧変調方式、パルス幅変調方 式等が採用できる。電圧変調方式を実施するに際して は、変調信号発生器147として、一定長さの電圧パル スを発生し、入力されるデータに応じて適宜パルスの波 高値を変調するような電圧変調方式の回路を用いること ができる。

【0085】制御回路143は、外部より入力する画像 信号に基づいて適切な表示が行なわれるように各部の動 作を整合させる機能を有する。制御回路143は、同期 信号分離回路146より送られる同期信号Tsyncに基づ いて、各部に対してTscanおよびTsftおよTmryの各制 御信号を発生する。

> 【0092】パルス幅変調方式を実施するに際しては、 変調信号発生器147として、一定の波高値の電圧パル スを発生し、入力されるデータに応じて適宜電圧パルス の幅を変調するようなパルス幅変調方式の回路を用いる ことができる。

【0086】同期信号分離回路146は、外部から入力 30 されるNTSC方式のテレビ信号から同期信号成分と輝 度信号成分とを分離するための回路で、一般的な周波数 分離(フィルター)回路等を用いて構成できる。同期信 号分離回路146により分離された同期信号は、垂直同 期信号と水平同期信号より成るが、ここでは説明の便宜 上Tsync信号として図示した。前記テレビ信号から分離 された画像の輝度信号成分は便宜上DATA信号と表し た。そのDATA信号はシフトレジスタ144に入力さ れる。

【0093】シフトレジスタ144やラインメモリ14 5は、デジタル信号式のものもアナログ信号式のものも 採用できる。画像信号のシリアル/パラレル変換や記憶 が所定の速度で行なわれれば良いからである。

【0087】シフトレジスタ144は、時系列的にシリ 40 アルに入力される前記DATA信号を、画像の1ライン 毎にシリアル/パラレル変換するためのもので、前記制 御回路143より送られる制御信号Tsftに基づいて動 作する(即ち、制御信号Tsftは、シフトレジスタ14 4のシフトクロックであるということもできる)。シリ アル/パラレル変換された画像1ライン分(電子放出素 子n素子分の駆動データに相当)のデータは、Id1な いしIdnのn個の並列信号として前記シフトレジスタ 144より出力される。

【0094】デジタル信号式を用いる場合には、同期信 号分離回路146の出力信号DATAをデジタル信号化 する必要があるが、これには分離回路146の出力部に A/D変換器を設ければ良い。これに関連してラインメ モリ145の出力信号がデジタル信号かアナログ信号か により、変調信号発生器147に用いられる回路が若干 異なったものとなる。即ち、デジタル信号を用いた電圧 変調方式の場合、変調信号発生器147には、例えばD /A変換回路を用い、必要に応じて増幅回路などを付加 する。パルス幅変調方式の場合、変調信号発生器147 【0088】ラインメモリ145は、画像1ライン分の 50 には、例えば高速の発振器および発振器の出力する波数

を計数する計数器 (カウンタ) 及び計数器の出力値と前記メモリの出力値を比較する比較器 (コンパレータ) を組み合せた回路を用いる。必要に応じて、比較器の出力するパルス幅変調された変調信号を表面伝導型電子放出素子の駆動電圧にまで電圧増幅するための増幅器を付加することもできる。

【0095】アナログ信号を用いた電圧変調方式の場合、変調信号発生器147には、例えばオペアンプなどを用いた増幅回路を採用でき、必要に応じてレベルシフト回路などを付加することもできる。パルス幅変調方式 10の場合には、例えば、電圧制御型発振回路(VCO)を採用でき、必要に応じて表面伝導型電子放出素子の駆動電圧まで電圧増幅するための増幅器を付加することもできる。

【0096】このような構成をとり得る本発明の画像表示装置においては、各電子放出素子に、容器外端子Dox 1乃至Doxm、Doy1乃至Doynを介して電圧を印加することにより、電子放出が生ずる。高圧端子Hvを介してメタルバック125あるいは透明電極(不図示)に高圧を印加し、電子ビームを加速する。加速された電子は、蛍光膜124に衝突し、発光が生じて画像が形成される。

【0097】ここで述べた画像形成装置の構成は1例であり、本発明の技術思想に基づいて種々の変形が可能である。入力信号については、NTSC方式を挙げたが入力信号はこれに限られるものではなく、PAL、SECAM方式などのほか、それよりも多数の走査線からなるTV信号(例えば、MUSE方式をはじめとする高品位TV)方式をも採用できる。

【0098】次に、はしご型配置の電子源及び画像形成 30 装置について図14および図15を用いて説明する。

【0099】図14は、はしご型配置の電子源の1例を示す模式図である。図14において、150は電子源基板、151は電子放出素子である。152、Dx1~Dx10は、電子放出素子151を接続するための共通配線である。電子放出素子151は、基板150上に、X方向に並列に複数個配されている(これを素子行と呼ぶ)。この素子行が複数個配されて、電子源を構成している。各素子行の共通配線間に駆動電圧を印加することで、各素子行を独立に駆動させることができる。即ち、電子ビームを放出させたい素子行には、電子放出関値以下の電圧を、電子ビームを放出しない素子行には、電子放出関値以下の電圧を印加する。各素子行間の共通配線Dx2~Dx9は、例えばDx2とDx3を同一配線とする

【0100】図15は、はしご型配置の電子源を備えた 画像形成装置におけるパネル構造の1例を示す模式図で ある。160はグリッド電極、161は電子が通過する ための開口、162はDox1、Dox2、... Doxmよ りなる容器外端子である。163は、グリッド電極1650

こともできる。

16

0と接続されたG1、G2、... Gn からなる容器外端子、150 は各素子行間の共通配線を同一配線とした電子源基板である。図15 においては、図11、図14 に示した部位と同じ部位には、これらの図に付したのと同一の符号を付している。ここに示した画像形成装置と、図11に示した単純マトリクス配置の画像形成装置との大きな違いは、電子源基板150とフェースプレート126の間にグリッド電極160を備えているか否かである。

10 【0101】図15においては、基板150とフェースプレート126の間には、グリッド電極160が設けられている。グリッド電極160は、表面伝導型放出素子から放出された電子ビームを変調するためのものであり、はしご型配置の素子行と直交して設けられたストライプ状の電極に電子ビームを通過させるため、各素子に対応して1個ずつ円形の開口161が設けられている。グリッドの形状や設置位置は図15に示したものに限定されるものではない。例えば、開口としてメッシュ状に多数の通過口を設けることもでき、グリッドを表面伝導20 型放出素子の周囲や近傍に設けることもできる。

【0102】容器外端子162およびグリッド容器外端子163は、不図示の制御回路と電気的に接続されている。

【0103】本例の画像形成装置では、素子行を1列ずつ順次駆動(走査)していくのと同期してグリッド電極列に画像1ライン分の変調信号を同時に印加する。これにより、各電子ビームの蛍光体への照射を制御し、画像を1ラインずつ表示すことができる。

【0104】本発明の画像形成装置は、テレビジョン放送の表示装置、テレビ会議システムやコンピューター等の表示装置の他、感光性ドラム等を用いて構成された光プリンターとしての画像形成装置等としても用いることができる。

[0105]

【実施例】以下、本発明を具体的に説明する。

【0106】以下の実施例において、特に画像形成装置に用いるスペーサユニット部分に関して詳細に述べ、画像形成装置の他の構成については説明を省略するが、いずれの実施例も、上述した画像形成装置、及びそれに類似する装置に関するものである。

【0107】 [実施例1] 図1乃至図3は本発明の特徴を良く表わす図面である。

【0108】図1はスペーサユニットの斜視図であり、 2は青板ガラスからなるゲッタ材飛散防止板、3は薄い 青板ガラスからなるスペーサ、4はゲッタ、5はスペー サ3に設けられている開口部であり、以上からスペーサ ユニット1が構成されている。

【0109】スペーサユニット1の組み立て順は、まず、ゲッタ材飛散防止板2にリング状のゲッタ4をフリットガラスで接着固定する。ゲッタ材飛散防止板2とゲ

18

ッタ4の位置関係は、ゲッタ材が画像形成装置内に蒸着 される際に、画像形成部領域に飛散することを妨げる位 置関係になっている。次いで、ゲッタ材飛散防止板2に スペーサ3を接着固定する。詳述すれば、スペーサ3

(本例においては3個のスペーサ31,32,33)を ゲッタ材飛散防止板 2 に対して、画像形成装置に組み込 んだ場合に画像形成部60中のブラックストライプと対 応する位置であって、かつゲッタ材飛散防止板上端面2 1と垂直に、治具を用いてフリットガラスで接着固定す る。このようにして、スペーサユニット1が形成され る。次に、あらかじめ製作しておいたスペーサユニット 1を外囲器へ組み込む際の説明を図2を用いて行なう。

【0110】図2は外囲器の構成部材を示す斜視図であ る。外囲器は、フェースプレート6、スペーサユニット 1、支持枠7、リアプレート8から構成されている。ま た、フェースプレート6のリアプレート8側(本図にお いては下側)には画像形成部60が形成されている。リ アプレート8のフェースプレート6側(本図においては 上側)には電子放出素子部80が形成されている。

プレート6の画像形成部60に形成されたブラックスト ライプ (不図示) に対してスペーサユニット1のスペー サが重なるように位置決めし、フリットガラスで接着固 定する。次に、スペーサユニット1が固定されたフェー スプレート6と、支持枠7と電子放出素子部80を搭載 したリアプレート8とを位置決めし、これらをフリット ガラスで密封封着する。これにより、真空容器としての 外囲器が形成される。

【0112】このようにして製作した外囲器内の配置 を、図3を参照して説明する。

【0113】図3は外囲器内でのスペーサユニット1の 位置関係を示すものであり、図3(a)は外囲器の平面 図(正面左側はフェースプレートを透視した状態を示し ている)、図3(b)は外囲器のA-A線に沿う断面図 である。

【0114】同図において、2はゲッタ材飛散防止板、 3はスペーサ、4はゲッタ、5はスペーサに設けられた 開口部、6はフェースプレート、60は画像形成部、7 は支持枠、8はリアプレート、80は電子放出素子部、 9は外囲器である。外囲器9は、フェースプレート6と 40 ぼ垂直に治具を用いてフリットガラスで接着固定する。 リアプレート8と支持枠7とで密閉容器を形成してお り、その内部の、フェースプレート6とリアプレート8 との間には大気圧支持構造としてスペーサ3があり、真 空度を保つためのゲッタ4とゲッタ材飛散防止板2があ り、フェースプレート6の下部に画像形成部60が設け られており、リアプレート8上部には電子放出素子部8 0が設けられている。

【0115】図から明らかなようにゲッタ材飛散防止板 2とゲッタ4の位置関係は、ゲッタ材が蒸着される際に 画像形成領域である画像形成部60や電子放出素子部8 50

0にゲッタ材が飛散しない関係になっている。

【0116】このように作成した外囲器に前述の工程処 理を施すことで、表示パネルとして機能するようにな り、画像形成装置が完成される。

【0117】以上述べたように、本実施例による画像形 成装置は、外囲器の中に設置する部材を自立可能なスペ ーサユニットの形であらかじめ作製してあるので、即ち ゲッタ材飛散防止板とスペーサとゲッタを一体に作製し てあるので、これらの相対的な位置決め、及びスペーサ 10 単体でのフェースプレートへの設置を外囲器組み立て工 程で行なう必要が無く、組み立て工程の簡易化が図れ た。また、組み立て中にスペーサが斜めになったり、倒 れたりすることもない。

【0118】なお、スペーサユニットの形態は本実施例 に限定されるものではない。例えばスペーサの数、スペ ーサ開口部の数、大きさ、配置、ゲッタの数、形、配置 などは、外囲器内の画像形成部や電子放出素子部などに 応じて適宜選択できる。また、組み立て工程についても 限定するものではない。例えば本例では、最初にスペー 【0111】外囲器の組み立ての順序は、まずフェース 20 サユニットとフェースプレートとを位置決めし、接着固 定したが、まず最初にスペーサユニットとリアプレート とを固定しても良い。

> 【0119】 [実施例2] 図4は本発明第2の実施例の 特徴を良く表わす図面である。図4(a)はスペーサユ ニットの斜視図、図4(b)は外囲器内でのスペーサユ ニットの配置を示す平面図である。

【0120】図4(a) はスペーサユニットの斜視図で あり、24は青板ガラスからなるゲッタ材飛散防止板、 34は薄い青板ガラスからなるスペーサ、44はゲッタ 30 であり、これらからスペーサユニット14が構成されて いる。

【0121】スペーサユニット14の組み立て順序は、 以下のものである。まず、ゲッタ材飛放防止板24にリ ング状のゲッタ44をフリットガラスで接着固定する。 ゲッタ材飛散防止板24とゲッタ44の位置関係は、ゲ ッタ材が蒸着される際に画像形成領域にゲッタ材が飛散 しない位置関係になっている。次いで、ゲッタ材飛散防 止板24にスペーサ34を接着固定する。更に詳述すれ ば、スペーサ34をゲッタ材飛散防止板24に対してほ このようにして、スペーサユニット14が形成される。 このスペーサユニットはあらかじめ多数製作しておく。 次に、スペーサユニット14を外囲器へ組み込む場合に ついて説明を行なう。

【0122】上述の実施例1(図2参照)と同様に、外 囲器の組み立て順序は、まずフェースプレート6の画像 形成部60のブラックストライプ(不図示)に対してス ペーサユニット14のスペーサを位置決めし、フリット ガラスで接着固定する。次に、スペーサユニット14が 固定されたフェースプレート6と、支持枠7と電子放出 フリットガラスで密封封着することで真空容器としての

外囲器が形成される。このように製作した外囲器内の配

ニツトの斜視図、図5 (b) は外囲器内でのスペーサユ ニットの配置を示す平面図、図5 (c) はスペーサユニ ットとゲッタの位置関係を示す外囲器の部分断面図であ

20

置の説明を図4(b)で行なう。 【0123】図4(b)は外囲器内における複数のスペ ーサユニット14の位置関係を示す図であり、外囲器9 の平面図 (向かって上側はフェースプレートの透視状態 を示している) である。

【0130】図5(a)中、25は青板ガラスからなる ゲッタ材飛散防止板、35は薄い青板ガラスからなるス ペーサであり、これらからスペーサユニット15が構成 されている。

【0124】同図において、24はゲッタ材飛散防止 放防止板24とスベーサ34とゲッタ44とからなるス ペーサユニット、11はジグザグに多数配列したスペー サユニットのゲッタ材飛散防止板24同士の隙間、6は フェースプレート、60は画像形成部、7は支持枠、8 はリアプレート、80は電子放出素子部、9は外囲器で ある。スペーサユニット14は、外囲器9内に千鳥(2 列にジグザグ) に配置されており、即ちゲッタ材飛散防 止板24が千鳥に配置され、隣接するゲッタ材飛散防止 板24同士の間には隙間11がある。

【0131】スペーサユニット15は、ゲッタ材飛散防 板、34はスペーサ、44はゲッタ、14はゲツタ材飛 10 止板25にスペーサ35を接着固定して組み立てる。更 に詳述すると、スペーサ35をゲッタ材飛散防止板25 に対してほぼ垂直に治具を用いてフリットガラスで接着 固定する。このようにして、スペーサユニット15が形 成される。このスペーサユニットは予め多数製作してお く。また、予めゲッタユニットとして、ゲッタ45をゲ ッタ固定板46に接着固定しておく。次に、スペーサユ ニット15を外囲器へ組み込む説明を行なう。

【0125】外囲器9は、フェースプレート6とリアプ 20 レート8と支持枠7とで密閉容器を構成しており、その 内部のフェースプレート6とリアプレート8の間には大 気圧支持構造としてスペーサ34があり、真空度を保つ ためのゲッタ44とゲッタ材飛散防止板24があり、フ ェースプレート6の下部に画像形成部60が設けられて おり、リアプレート8上部には電子放出素子部80が設 けられている。図から明らかな様に、ゲッタ材飛散防止 板24とゲッタ44の位置関係は、ゲッタ材が蒸着され る際に画像形成領域である画像形成部60や電子放出素 子部80に飛散しない関係になっている。

【0132】上述の実施例1(図2参照)と同様に、外 囲器の組み立て順序は、まずフェースプレート6の画像 形成部60のブラックストライプ(不図示)に対してス ペーサユニット15のスペーサを位置決めし、フリット ガラスで接着固定する。また、リアプレート8にゲッタ ユニットを位置決めし、フリットガラスで接着固定す

【0126】このようにして作成した外囲器を前述の工 程処理することで、表示パネルとして機能するように し、画像形成装置を完成させた。

【0133】次に、スペーサユニット15が固定された フェースプレート6と、支持枠7とゲッタユニットが固 定された電子放出素子部80を搭載したリアプレート8 を位置決めし、フリットガラスで密封封着することで真 空容器としての外囲器が形成される。このように製作し 30 た外囲器内の配置を図5(b)、(c)を参照して説明 する。

【0127】以上述べたように本実施例による画像形成 装置は、スペーサユニットとしてあらかじめゲッタ材飛 散防止板とスペーサとゲッタとを一体に作製してあるの で、これらの相対的な位置決め、及びスペーサ単体での フェースプレートへの設置を外囲器組み立て工程で行う 必要が無くなり、組み立て工程の簡易化が図れた。

【0134】図5 (b) は外囲器内での複数のスペーサ ユニット15の位置関係を示す図であり、外囲器9の平 面図(向かって上側はフェースプレートを透視した状態 を示している)、図5 (c)は外囲器9の部分断面図で ある。

【0128】なお、スペーサユニットの形態は本実施例 40 に限定されるものではない。例えばスペーサの数、スペ 一サ開口部の数、大きさ、配置、ゲッタの数、形、配置 などは、外囲器内の画像形成部や電子放出素子部などに 応じて適宜選択できる。また、組み立て工程についても 限定するものではない。例えば本例では、最初にスペー サユニットとフェースプレートとを位置決めし、接着固 定したが、まず最初にスペーサユニットとリアプレート とを固定しても良い。

【0135】同図において、25はゲッタ材飛散防止 板、35はスペーサ、45はゲッタ、46はゲツタ固定 板、15はゲッタ材飛散防止板25とスペーサ35から なるスペーサユニット、6はフェースプレート、60は 画像形成部、7は支持枠、8はリアプレート、80は電 子放出素子部である。スペーサユニット15は、外囲器 9内に配置されている。外囲器9は、フェースプレート 6とリアプレート8と支持枠7とで密閉容器を形成して おり、その内部のフェースプレート6とリアプレート8 の間には大気圧支持構造としてスペーサ35がある。ま た、その内部には、真空度を保つためのゲッタ45と、 ゲッタ45を取り付けるゲッタ固定板46と、ゲッタ材 飛散防止板25があり、更にフェースプレート6上に画 像形成部60が設けられており、リアプレート8上には

【0129】 [実施例3] 図5は本発明第三の実施例の 特徴を良く表わす図面である。図5 (a) はスペーサユ 50

電子放出素子部80が設けられている。

【0136】図5から分かるようにゲッタ材飛散防止板25とゲッタ45とゲッタ固定板46の位置関係は、ゲッタ材が蒸着される際に画像形成領域である画像形成部60や電子放出素子部80に飛散しない関係になっている。

21

【0137】このように作成した外囲器を前述の工程処理することで、表示パネルとして機能するようになり、 画像形成装置が完成された。

【0138】以上述べたように本実施例による画像形成 10 装置は、スペーサユニットとして予めゲッタ材飛散防止板とスペーサとを一体に作製してあるので、これらの相対的な位置決め、及びスペーサ単体でのフェースプレートへの設置を外囲器組み立て工程で行う必要が無くなり、組み立て工程の簡易化が図れた。

【0139】なお、スペーサユニットの形態は本実施例に限定されるものではない。例えばスペーサユニットの配置、スペーサの数、配置、ゲッタの数、形、配置などは、外囲器内の画像形成部や電子放出素子部などに応じて適宜選択できる。

【0140】各構成部品の材料は、上記3つの実施例に限定されるものではなく、リアプレートにはガラスやゼラミックス等、フェースプレートにはガラス等、支持枠にはガラスやセラミックス等、その機能に応じて適宜選択できる。

[0141]

【発明の効果】以上説明したように、スペーサとゲッタ 2、2 材飛散防止板(とゲッタ)を位置決めして一体化したス 3、3 ペーサユニットの形で予め作製しておくので、これらの 4、4 相対的な位置決めやスペーサ単体での位置決めを外囲器 30 46組み立て工程で行なわなくて済む。このため、工程が簡 5 易化され、製造コストの低い、信頼性の高い画像形成装 6 電を提供することができる。 60

【図面の簡単な説明】

【図1】本発明に実施に用いるスペーサユニットの一例 を示す斜視図である。

【図2】図1のスペーサユニットを組み込んだ外囲器内の構成関係を示す分解斜視図である。

【図3】 (a) は本発明の第一の実施例を示すの外囲器 102、の一部透視平面図、(b) は同外囲器の断面図である。 40 104

【図4】(a)は本発明の第二の実施例に用いるスペーサユニットの斜視図、(b)は本発明の第二の実施例におけるスペーサユニットの配置を示す外囲器の一部透視平面図である。

【図5】(a)は本発明の第三の実施例に用いるスペーサユニットの斜視図、(b)は本発明の第三の実施例におけるスペーサユニットの配置を示す外囲器の一部透視平面図、(c)は同外囲器の部分断面側面図である。

【図6】本発明の実施に用いる平面型表面伝導型電子放 122 出素子の構成を示す模式的(a)は平面図、(b)は側 50 123

面断面図である。

【図7】本発明の実施に用いる垂直型表面伝導型電子放 出素子の構成を示す模式的側面図である。

22

【図8】 (a), (b), (c) は本発明の実施に用いる表面伝導型電子放出素子の各製造工程を示す説明図である。

【図9】 (a), (b) はそれぞれ本発明の実施に用いる表面伝導型電子放出素子の通電フォーミング処理における電圧波形例を示す模式図である。

【図10】本発明の実施に用いるマトリクス配置型電子 源基板の一例を示す模式的平面図である。

【図11】本発明の画像形成装置の外囲器の一例を示す 模式的斜視図である。

【図12】(a), (b)はそれぞれ蛍光膜の構成例を示す模式図である。

【図13】画像形成装置にNTSC方式のテレビ信号に 応じて表示を行なわせる駆動回路の一例を示すブロック 図である。

【図14】本発明の実施に用いる、はしご配置型電子源 20 基板の一例を示す模式的平面図である。

【図15】本発明の画像形成装置の外囲器の他の例を示す模式斜視図である。

【図16】従来の表面伝導型電子放出素子の構成例を示す模式的平面図である。

【符号の説明】

1、14、15 スペーサユニット

2、24、25 ゲッタ材飛散防止板

3、31、32、33、34、35 スペーサ

4、44、4 ゲッタ

0 46 ゲッタ固定板

5 開口部

6 フェースプレート

60 画像形成部

7 支持枠

8 リアプレート

80 電子放出素子部

9 外囲器

101 基板

102、103 素子電極

10 104 導記性薄膜

105 電子放出部

106 段差形成部

111 電子源基板

112 x 方向配線

113 y方向配線

1 1 4 表面伝導型電子放出素子

115 結線

121 リアプレート

122 支持枠

123 ガラス基板

23

	23		
124	蛍光膜		145
1 2 5	メタルバック		146
1 2 6	フェースプレート		147
127	高圧端子		Vx.
128	外囲器		150
131	黒色部材		151
132	蛍光体		152
141	表示パネル		160
142	走査回路		161
1 4 3	制御回路	10	162

ラ・	インメ	モリ
同	期信号	分離回路

١,

【図1】

シフトレジスタ

144

【図3】

(a)

【図2】

24

【図7】

(a)
(a)
(b)
80 8 7

【図11】

[図13]

【図15】

【図16】

