PROBA

David Wiedemann

Table des matières

1	Son	ne historical models 3	
	1.1	Laplace Model	
2	Basic Formalism		
	2.1	Measure spaces: A notion of area	
	2.2	Probability spaces	
	2.3	Basic properties	
	2.4	Measurable and measure preserving maps 6	
3	Pro	bability spaces 6	
	3.1	Discrete probability spaces	
		3.1.1 Symmetric simple random walk	
	3.2	Continuous probability spaces	
	3.3	Borel σ -algebra	
	3.4	Probability Measures on \mathbb{R}^n	
	3.5	Probability measures on $(\mathbb{R}, \mathcal{F}_E)$	
\mathbf{L}	ist	of Theorems	
	1	Definition (Laplace Model)	
	1	Proposition	
	2	Proposition	
	2	Definition (Intermediate model)	
	3	Definition (Geometric probability)	
	4	Definition (Measure space)	
	5	Definition (Probability space)	
	3	Lemme	
	6	Definition	
	4	Lemme (Push-Forward measure)	
	5	Proposition	
	6	Lemme	

7	Proposition	7
7	Definition (Borel sigma-algebra)	7
8	Theorème (Existence of Lebesgue-measure)	8
9	Theorème (Uniforme Measure)	8
8	Definition (Cumulative distribution function)	8
10	Theorème	8

Lecture 1: Introduction

Wed 22 Sep

1 Some historical models

1.1 Laplace Model

Definition 1 (Laplace Model)

 Ω finite set, $|\Omega| = n$ is the set of outcomes.

We can observe whether $E \subset \Omega$ happens, and we define it's probability

$$\mathbb{P}(E) = \frac{|E|}{|\Omega|}$$

Question

Why should this have any meaning/content?

Proposition 1

Consider laplace model for n coint tosses \Rightarrow every sequence has probability 2^{-n}

Denote by H_n the number of heads in n tosses

$$\mathbb{P}(|\frac{H_n}{n} - \frac{1}{2}| > \epsilon) \to 0$$

More generally

Proposition 2

If you have a laplace model for some event E, and look at n repetitions, then

$$\forall \epsilon > 0 \mathbb{P}(|\frac{E_n}{n} - \mathbb{P}(E)| > \epsilon) \to 0$$

Limitations of Laplace Model

- All outcomes have equal probability?
- Need $|\Omega| < \infty$, so what about infinite sets?

What next?

Definition 2 (Intermediate model)

Let Ω to be any set and $P:\Omega\to[0,1], s.t.$ $\sum_{\omega\in\Omega}p(\omega)=1$

Event : $E \subset \Omega$ and

$$\mathbb{P}(E) \coloneqq \sum_{\omega \in E} p(\omega)$$

- More freedom
- If you take Ω finite, $p(\omega) = \frac{1}{|\Omega|} \Rightarrow$ Laplace model
- Price? How to choose $p:\Omega\to[0,1]\to \text{collect data, do statistics}$
- keeps many nice properties

- For contable sets, this is equivalent to the standard model.
- For uncountable Ω ?
- Problem 1: There is no function s.t.

$$p(\omega) > 0 \forall \omega \in \Omega \text{ and } \sum p(\omega) = 1$$

This intermediate model is in essence only for countable sets.

What about uncountable sets?

— What about a random point int [0,1] or $[0,1]^n$? Intuitively, consider [0,1], then we can set

$$\mathbb{P}(A) = \text{length}(A)$$

Definition 3 (Geometric probability)

Take $f: \mathbb{R} \to (0, \infty)$ to be a riemann-integrable function with total mass 1. For any $A \subset \mathbb{R}$, s.t. 1_A riemann-integrable, we set $\mathbb{P}(A) = \int_A f(x) dx$

- In general quite \underline{ok} BUT
- You would expect there is one framework for uncountable and countable sets.
- What about more complicated spaces (eg. space of continuous functions)
- $\mathbb{P}(\mathbb{Q})$ is undefined

2 Basic Formalism

2.1 Measure spaces: A notion of area

- Set + structure
- General setting to talk about area

Definition 4 (Measure space)

 $(\Omega, \mathcal{F}, \mu)$ is called a measure space if :

- Ω is some set
- $\mathcal{F} \subset P(\Omega)$ called a σ -algebra
 - $-\emptyset \in \mathcal{F}$
 - $F \in \mathcal{F} \Rightarrow F^c \in \mathcal{F}$
 - $-F_1, F_2, \ldots, \in \mathcal{F}$, then $\bigcup_{i>1} F_i \in \mathcal{F}$ each F is called a measurable set.
- $-\mu: \mathcal{F} \to [0,\infty)$ called the measure

$$-\mu(\emptyset) = 0$$

— If F_1, \ldots , are disjoints sets of the σ -algebra, then

$$\mu(\bigcup_{i\geq 1} F_i) = \sum_{i\geq 1} \mu(F_i)$$

— Defined by Borel 1898 and Lebesgue 1901-1903

Probability spaces 2.2

Given by Kolmogorov in 1933

Definition 5 (Probability space)

A triple $(\Omega, \mathcal{F}, \mathbb{P})$ is called a probability space if it is a measure space and $\mathbb{P}(\Omega) =$ 1

Interpretation

- Ω state space/universe
- ${\mathcal F}$ is the set of events you can observe/have access to
- $\mathbb{P}(E)$ is the probability of E

Lemme 3

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space

- $-F_1, F_2 \in \mathcal{F} \Rightarrow F_1 \setminus F_2 \in \mathcal{F}$
- $-F_1,\ldots\in\mathcal{F}\Rightarrow\bigcap F_i\in\mathcal{F}$
- $-F_1, F_2, \ldots \in \mathcal{F} \Rightarrow \bigcap_{i \geq 1} F_i$

Let us compare this definition with the prior ones

- Ω finite set, $\mathcal{F} = \mathcal{P}(\Omega), \mathbb{P}(F) = \frac{|F|}{|\Omega|}$ this is a probability space and a laplace model.
- For Ω countable, $\mathcal{F} = \mathcal{P}(\Omega), \mathbb{P}(E) = \sum_{\omega \in E} \mathbb{P}(\omega)$
- The really new part is \mathcal{F} which restricts the sets we can measure

Lecture 2: ...

Wed 29 Sep

2.3 Basic properties

 $-F_1, F_2, \ldots, \in \mathcal{F}$ disjoint

$$\mu(\bigcup F_i) = \sum \mu(F_i)$$

$$-F_1 \subset F_2 \in \mathcal{F} \ \mu(F_1) \le \mu(F_2)$$
$$-F_1 \subset F_2 \ldots \in \mathcal{F}$$

$$-F_1 \subset F_2 \ldots \in \mathcal{F}$$

$$\mu(F_n) \to \mu(\bigcup F_i)$$

$$-F_1, F_2, \ldots, \mathcal{F}$$

$$\mu(\bigcup F_i) \leq \sum \mu(F_i)$$

In addition, in probability spaces

$$--\mathcal{P}(F^c) = 1 - \mathcal{P}(F)$$

$$-F_1 \supset F_2 \supset \ldots \Rightarrow \mathcal{P}(F_n) \to \mathcal{P}(\bigcap F_i)$$

2.4 Measurable and measure preserving maps

Definition 6

Let $(\Omega_1, \mathcal{F}_1, \mu_1), (\Omega_2, \mathcal{F}_2, \mu_2)$ two measure spaces.

 $f: \Omega_1 \to \Omega_2$ is called measurable if for every $F \in \mathcal{F}_2$, $f^{-1}(F) \in \mathcal{F}_1$

A measurable function $f:(\Omega_1,\mathcal{F}_1)\to(\Omega_2,\mathcal{F}_2)$ is called measure preserving if $\forall F\in\mathcal{F}_2\ \mu_1(f^{-1}(F))=\mu_2(F)$.

Lemme 4 (Push-Forward measure)

Let $(\Omega_1, \mathcal{F}_1, \mathbb{P}_1), (\Omega_2, \mathcal{F}_2)$ be two measure spaces, and f measurable, then $\mathbb{P}_2(F) = \mathbb{P}_1(f^{-1}(F))$ is a probability measure.

3 Probability spaces

- Discrete probability spaces : Ω countable
- Continuous probability spaces : Ω uncountable.

3.1 Discrete probability spaces

Does introducing a σ -algebra \mathcal{F} enlargen the generality?

Proposition 5

If $(\Omega, \mathcal{F}, \mathbb{P})$ is a discret probability space, $\exists \Omega_2 \text{ countable}, \mathbb{P}_2 : \mathcal{P}(\Omega_2) \to [0, 1]$ s.t. $(\Omega_2, P(\Omega_2), \mathbb{P}_2)$ is a probability space and $\exists f : (\Omega_1, \mathcal{F}_1) \to (\Omega_2, \mathcal{F}_2)$ is measure preserving

Still \mathcal{F} is useful:

— can sequentially study a model/situation by taking $\mathcal{F}_1 \subset \mathcal{F}_2 \dots$

Lemme 6

There is no shift-invariant probability measure on $(\mathbb{Z}, P(\mathbb{Z}))$

Preuve

$$\mathbb{P}(\mathbb{Z}) = \mathbb{P}(\bigcup_n \left\{n\right\}) = \sum \mathbb{P}(\left\{n\right\}) = \infty$$

 \Rightarrow cannot treat everyone on an equal ground!

3.1.1 Symmetric simple random walk

A simple walk of length n s.t. $|s_n - s_{n-1}| = 1$.

Let Ω be the set of all walks of length n, and consider $(\Omega, P(\Omega), \mathbb{P})$.

What is the probability that S hits 0?

What does it look like, what is it's max?

3.2 Continuous probability spaces

Can we define a probability measure on S^1 s.t. $(S^1, P(S^1))$ that is rotation invariant?

Similarly to the countable case, but not the same as Ω is uncountable and setting $P(\{\omega\}) = 0$ gives no contradiction.

Proposition 7

You can not.

Preuve

Idea: decompose S^1 into countable many sets A_n st $\bigcup A_n = S^1$, they are disjoint and rotations of each other.

$$\forall x \in S^1$$
, define S_x as $\{\ldots, T^{-2}x, T^{-1}x, x, Tx, \ldots\}$.

Note that either $S_x = S_y$ or $S_x \cap S_y = \emptyset$.

Lecture 3: Measurable maps

Wed 06 Oct

3.3 Borel σ -algebra

- Cannot define shift-invariant probability measure on $([0,1], \mathcal{P}([0,1]))$.
- What σ -algebra to choose on (X, τ) ?
- Want to know the siize of all open-sets

Definition 7 (Borel sigma-algebra)

On (X, τ) the borel σ -algebra \mathcal{F}_{τ} is the smallest σ -algebra containing τ .

This is well defined because, given a collection of σ -algebras, their intersection is too.

Two nice properties

— Continuous functions on a Borel σ -algebra are also measurable.

Preuve

Suffices to check that $f^{-1}(U) \in \mathcal{F}_{\tau_1}$ for $U \in \tau_2$ but this is immediate since f is continuous.

In (\mathbb{R}^n, τ_E) , the Borel σ -algebra \mathcal{F}_E is generated by $(a_1, b_1) \times ... \times (a_n, b_n)$. \mathcal{F}_E is the smallest σ -algebra containing open intervalls.

3.4 Probability Measures on \mathbb{R}^n

Theorème 8 (Existence of Lebesgue-measure)

There exists a unique measure λ on $(\mathbb{R}^n, \mathcal{F}_E)$ s.t. $\lambda((a_1 \times b_1) \times \ldots \times (a_n, b_n)) = \prod_i |b_i - a_i|$

Theorème 9 (Uniforme Measure)

There exists a unique \mathbb{P} measure on $([0,1]^n, \mathcal{F}_E)$ with the same property.

Both λ and $\mathbb P$ are shift-invariant in fact only shift invariant measures on $\mathbb R$ (up to a constant)

Preuve

Consider the case of $(\mathbb{R}^n, \mathcal{F}_E)$ and $f_r: x \to x + \tau, \tau \in \mathbb{R}^n$.

- $-f_r \ continuous \Rightarrow measurable$
- $\tilde{\mathbb{P}}(A) = \mathbb{P}(f^{-1}(A))$ is a probability measure
- All boxes have the same measure

3.5 Probability measures on $(\mathbb{R}, \mathcal{F}_E)$

We saw that we can put a uniform measure on [0,1].

All probability measures on $(\mathbb{R}, \mathcal{F}_E)$

- 1. $\mathbb{P}: \mathcal{F}_E \to [0,1]$
- 2. These are actually only characterized by $\mathbb{P}((-\infty, x))$

Definition 8 (Cumulative distribution function)

 $F: \mathbb{R} \to [0,1]$ is called a c.d.f if

- F is non-decreasing
- $-F(x_n) \to 0 \text{ then } x_n \to -\infty$
- $-F(x_n) \rightarrow 1 \text{ if } x_n \rightarrow 1$
- F is right-continuous.

Theorème 10

Given a probability measure \mathbb{P} on $(\mathbb{R}, \mathcal{F}_E)$, then $f(x) \coloneqq \mathbb{P}((-\infty, x))$ is a c.d.f

Given a c.d.f, there exists a unique probability measure s.t. $\mathbb{P}(-\infty, x) = F(x)$

Preuve

Given \mathbb{P} on $(\mathbb{R}, \mathcal{F}_E)$.

Let's show that $F(x) = \mathbb{P}((-\infty, x))$ is a c.d.f.

$$-x < y \quad F(x) = \mathbb{P}((-\infty, x)) \le \mathbb{P}(-\infty, y) = F(y)$$
$$-x_n \to -\infty \quad F(x_n) = \mathbb{P}(-\infty, x_n) \to \mathbb{P}(\bigcap_n (-\infty, x_n)) = 0$$

 $-x_n \to \infty \Rightarrow F(x_n) \to 1 \text{ is similar}$

— Also for right continuous $x_n \to x$, we have that $[x_n, \infty) \subset [x_{n+1}, \infty)$

How do we construct \mathbb{P} given F?

Trick using push-forward measure.

Define $f:(0,1)\to\mathbb{R}$, define

$$f(x) = \inf_{y \in \mathbb{R}} \{ F(y) \ge x \}$$

Define $\mathbb{P}(A) := \mathbb{P}_U(f^{-1}(A)) \forall A \in \mathcal{F}_E$ Why is f measurable? If f is increasing $\Rightarrow f$ is measurable