

Published in Data Hackers

Vinícius Figueiredo Follow

May 30, 2018 · 12 min read

Seus primeiros passos como Data Scientist: Introdução ao Pandas!

performance e fáceis de usar.

Por ser a principal e mais completa biblioteca para estes objetivos, **Pandas** é fundamental para Análise de Dados.

Disclaimer

Esse guia foi escrito como uma alternativa em português às introduções já existentes e à introdução de 10 minutos apresentada na documentação oficial, e tem por objetivo fornecer de forma enxuta e simplificada uma apresentação básica às principais ferramentas fornecidas pelo pandas, cobrindo:

- Manipulação,
- Leitura,
- Visualização de dados.

A introdução pressupõe apenas conhecimento básico em Python.

Como o **Medium** não disponibiliza highlight de sintaxe para gente, há **duas** outras excelentes opções de acessar esta introdução:

1. Você pode acessar o <u>MyBinder deste arquivo</u>, que cria um ambiente interativo Jupyter rodando Python com todas as dependências necessárias automaticamente, onde você pode testar e executar por si mesmo as linhas de código deste tutorial direto do seu navegador sem precisar configurar nada.

Mãos à obra!

Vamos começar com as importações, usaremos além do pandas, o <u>numpy</u>, biblioteca para **computação científica** e o <u>matplotlib</u>, biblioteca principal para **visualização de dados**, entretanto, como veremos mais adiante, o próprio pandas nos fornece facilidades em relação à visualização de dados, com métodos construídos com base no matplotlib, também importamos esta biblioteca para, além de poder modificar esteticamente nossos gráficos, facilitar a exibição dos gráficos. A linha <code>%matplotlib</code> inline faz parte da mágica do Jupyter e você não deve rodá-la caso esteja em outra IDE/Ambiente.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

Existem dois tipos principais de estruturas de dados no pandas:

Series

Uma Series é como um array unidimensional, uma lista de valores. Toda Series possui um índice, o index, que dá rótulos a cada elemento da lista. Abaixo criamos uma Series notas, o index desta Series é a coluna à esquerda, que vai de 0 a 4 neste caso, que o pandas criou automaticamente, já que não especificamos uma lista de rótulos.

Já podemos aqui verificar os atributos da nossa Series, comecemos pelos valores e o índice, os dois atributos *fundamentais* nesta estrutura:

```
notas.values
array([ 2,  7,  5, 10, 6])
notas.index
RangeIndex(start=0, stop=5, step=1)
```

Como ao criar a Series não demos um índice específico o pandas usou os inteiros positivos crescentes como padrão. Pode ser conveniente atribuirmos um índice diferente do padrão, supondo que essas sejam notas de uma turma, poderíamos atribuir nomes ao index:

```
notas = pd.Series([2,7,5,10,6], index=["Wilfred", "Abbie", "Harry",
"Julia", "Carrie"])
notas

Wilfred   2
Abbie   7
Harry   5
Julia   10
Carrie   6
dtype: int64
```

O index nos ajuda para referenciar um determinado valor, ele nos permite acessar os valores pelo seu rótulo:

```
notas["Julia"]
10
```


da estrutura usando o TAB para auto-completação na shell do Python, ou simplesmente checar a completíssima documentação oficial deste objeto.

```
print("Média:", notas.mean())
print("Desvio padrão:", notas.std())
Média: 6.0
Desvio padrão: 2.9154759474226504
```

Geralmente para resumir brevemente as estatísticas dos dados se usa o .describe()

```
notas.describe()
          5.000000
count
          6.000000
mean
          2.915476
std
min
          2.000000
25%
          5.000000
50%
          6.000000
75%
          7.000000
          10.000000
max
dtype: float64
```

A estrutura é flexível o suficiente pra aplicarmos algumas expressões matemáticas e funções matemáticas do numpy diretamente:

```
notas**2

Wilfred 4
Abbie 49
Harry 25
Julia 100
Carrie 36
dtype: int64
```

Ín

Get started

Carrie 1.791759 dtype: float64

DataFrame

Já um DataFrame é uma estrutura bidimensional de dados, como uma planilha. Abaixo criaremos um DataFrame que possui valores de diferentes tipos, usando um dicionário como entrada dos dados:

	Aluno	Faltas	Prova	Seminário
0	Wilfred	3	2	8.5
1	Abbie	4	7	7.5
2	Harry	2	5	9.0
3	Julia	1,	10	7.5
4	Carrie	4	6	8.0

Os tipos de dados que compõe as colunas podem ser verificados por um método próprio:

df.dtypes

Aluno object
Faltas int64
Prova int64
Seminário float64

dtyne · object


```
df.columns
Index(['Aluno', 'Faltas', 'Prova', 'Seminário'], dtype='object')
```

Os nomes das colunas podem ser usadas pra acessar seus valores:

```
df["Seminário"]

0    8.5
1    7.5
2    9.0
3    7.5
4    8.0
Name: Seminário, dtype: float64
```

Para DataFrames, .describe() também é uma boa forma de verificar resumidamente a disposição estatística dos dados numéricos:

df.describe()

	Faltas	Prova	Seminário
count	5.00000	5.000000	5.00000
mean	2.80000	6.000000	8.10000
std	1.30384	2.915476	0.65192
min	1.00000	2.000000	7.50000
25%	2.00000	5.000000	7.50000
50%	3.00000	6.000000	8.00000
75%	4.00000	7.000000	8.50000
max	4.00000	10.000000	9.00000

	Aluno	Faltas	Prova	Seminário
1	Abbie	4	7	7.5
3	Julia	1	10	7.5
4	Carrie	4	6	8.0
0	Wilfred	3	2	8.5
2	Harry	2	5	9.0

Note que simplesmente usar o método sort_values não modifica o nosso DataFrame original:

df

	Aluno	Faltas	Prova	Seminário
0	Wilfred	3	2	8.5
1	Abbie	4	7	7.5
2	Harry	2	5	9.0
3	Julia	1	10	7.5
4	Carrie	4	6	8.0

Muitas vezes é necessário selecionarmos valores específicos de um DataFrame, seja uma linha ou uma célula específica, e isso pode ser feito de diversas formas. A documentação oficial contém <u>vasta informação</u> para esse tipo de tarefa, aqui nos concentraremos nas formas mais comuns de selecionarmos dados.

Para selecionar pelo index ou rótulo usamos o atributo .loc:

df.loc[3]

Para selecionar de acordo com critérios condicionais, se usa o que se chama de **Boolean Indexing**.

Suponha que queiramos selecionar apenas as linhas em que o valor da coluna *Seminário* seja acima de 8.0, podemos realizar esta tarefa passando a condição diretamente como índice:

	Aluno	Faltas	Prova	Seminário
0	Wilfred	3	2	8.5
2	Harry	2	5	9.0

Este tipo de indexação também possibilita checar condições de múltiplas colunas. Diferentemente do que estamos habituados em Python, aqui se usam operadores bitwise, ou seja, &, |, ~ ao invés de and, or, not, respectivamente. Suponha que além de df["Seminário"] > 8.0 queiramos que o valor da coluna Prova não seja menor que 3:

$$df[(df["Seminário"] > 8.0) & (df["Prova"] > 3)]$$

	Aluno	Faltas	Prova	Seminário	
2	Harry	2	5	9.0	

Por enquanto é isso para manipulação de Series e DataFrames, conforme a seção de

Leitura de Dados

Na seção anterior vimos como manipular dados que foram criados durante esta apresentação, acontece que, na maioria das vezes, queremos analisar dados que já estão prontos. O pandas nos fornece uma série de funcionalidades de leitura de dados, pros mais diversos formatos estruturais de dados, experimente a autocompletação de pd.read_<TAB>, entre eles estão:

- 1. pd.read_csv, para ler arquivos .csv, formato comum de armazenar dados de tabelas
- 2. pd.read_xlsx, para ler arquivos Excel .xlsx, é necessário instalar uma biblioteca adicional pra esta funcionalidade.
- 3. pd.read_html, para ler tabelas diretamente de um website

Usaremos para analisar dados externos nesta introdução o .read_csv , pois é neste formato que se encontram nossos dados. CSV, ou comma-separated values é um formato muito comum de dados abertos, trata-se, como a sigla sugere, de valores divididos por vírgula, apesar de o caracter separador poder ser o ponto-e-vírgula ou outro.

O arquivo dados.csv está na mesma pasta do nosso script, então podemos passar como argumento do .read_csv apenas o seu nome. Outro argumento interessante da função é o sep, que por padrão é a vírgula, mas que pode ser definido como outro caractere caso seu dado esteja usando outro separador.

Estes dados que usaremos como exemplo são dados sobre preços de apartamentos em 7 bairros da cidade do Rio de Janeiro: Botafogo, Copacabana, Gávea, Grajaú, Ipanema, Leblon, Tijuca. Os dados podem ser encontrados <u>aqui</u> (*Basta baixar diretamente ou copiar o texto pro seu editor preferido e salvar como dados.csv*).

df = nd.read csv("dados.csv")

10 of 26

	0.74					and and a		2020.01
3	700	1	1.0	1.0	70	Botafogo	700000	10000.00
4	440	1	0.0	1.0	44	Botafogo	515000	11704.55
5	917	1	1.0	1.0	60	Botatogo	630000	10500.00
6	850	1.	1.0	1.0	65	Botafogo	740000	11384.62
7	350	1	1.0	1.0	43	Botafogo	570000	13255.81
8	440	1	1.0	1.0	26	Botafogo	430000	16538.46
9	510	1	1.0	1.0	42	Botatogo	500000	11904.76
10	200	1.	0.0	1.0	35	Botafogo	500000	14285.71
11	552	1	1.0	1.0	67	Botafogo	790000	11791.04
12	495	1	1.0	1.0	54	Botafogo	515000	9537.04
13	340	1	1.0	1.0	40	Botatogo	410000	10250.00
14	800	1.	1.0	1.0	60	Botatogo	625000	10416.67
15	530	1	0.0	1.0	40	Botatogo	360000	9000.00
16	500	1	0.0	1.0	47	Botafogo	670000	14255.32
17	600	1	1.0	1.0	45	Botalogo	500000	11111.11
18	465	1.	0.0	1.0	50	Botafogo	570000	11400.00
19	1400	1	1.0	1.0	50	Botatogo	570000	11400.00
20	700	1	1.0	1.0	58	Botalogo	630000	10862.07
21	250	1	0.0	1.0	40	Botatogo	400000	10000.00
22	1000	1,	1.0	1.0	54	Botatogo	750000	13888.89
23	280	1	0.0	1.0	65	Botafogo	578000	8892.31
24	481	1	1.0	1.0	28	Botatogo	350000	12500.00
25	150	1	0.0	1.0	40	Botafogo	130000	3250.00
26	1071	1,	1.0	1.0	44	Botafogo	597000	13568.18
27	750	2	1.0	1.0	70	Botatogo	995000	14214.29
28	992	2	1.0	1.0	105	Botatogo	1150000	10952.38
29	990	2	1.0	1.0	100	Botatogo	1200000	12000.00
-	-	_	-	-	-	-	Ť	_
1967	600	3	1.0	1.0	99	Tijuca	780000	7878.79
1968	780	3	1.0	1.0	120	Tijuca	780000	6500.00
1969	1068	3	1.0	1.0	95	Tijuca	795000	8368.42
1970	900	3	1.0	1.0	92	Tijuca	680000	7391.30
1971	480	3	1.0	3.0	142	Tijuca	600000	4225.35
1972	588	3	1.0	1.0	98	Tijuca	1100000	11224.49
1973	210	3	1.0	1.0	95	Tijuca	440000	4631.58
1974	1370	3	1.0	2.0	130	Tijuca	1050000	8076.92
1975	500	3	1.0	1.0	102	Tijuca	955000	9362.75
1976	670	3	2.0	1.0	139	Tijuca	878000	6316.55
1977		3	0.0	1.0	90	Tijuca	550000	6111.11
1978	1000	3	1.0	2.0	125	Tijuca	825000	6600.00
1979	1050	3	1.0	2.0	95	Tijuca	899000	9463.16
1980	1100	3	1.0	2.0	110	Tijuca	850000	7727.27
1981	850	3	1.0	2.0	118	Tijuca	850000	7203.39
1982	1100	3	1.0	1.0	110	Tijuca	750000	6818.18
1983	950	3	1.0	1.0	105	Tijuca	730000	6952.38
1984	970	3	1.0	1.0	110	Tijuca	650000	5909.09
1985	1336	3	2.0	1.0	120	Tijuca	850000	7083.33
1986	880	3	1.0	1.0	100	Tijuca	800000	9555.56
1988	870	3	1.0	1.0	100	Tijuca	580000	5800.00
1989	400	3	1.0	1.0	92		480000	5217.39
					105	Tijuca		
1990	686 450	3	1.0	1.0	72	Tijuca	490000	4666.67 6041.67
1992	1080	3	1.0	1.0	80	Tijuca	680000	15 7017
1993	750	3	0.0	1.0	82	Tijuca	650000	7926.83
1994	700	3	1.0	1.0	100	Tijuca	629900	6299.00
	1.50			-		Manage		

06/12/2022 14:05

df.head()

	condominio	quartos	suites	vagas	area	bairro	preco	pm2
0	350	1.	0.0	1.0	21	Botafogo	340000	16190.48
1	800	1,	0.0	1.0	64	Botafogo	770000	12031.25
2	674	1	0.0	1.0	61	Botafogo	600000	9836.07
3	700	1	1.0	1.0	70	Botafogo	700000	10000.00
4	440	1	0.0	1.0	44	Botafogo	515000	11704.55

Por padrão .head() exibe as 5 primeiras linhas, mas isso pode ser alterado:

df.head(n=10)

	condominio	quartos	suites	vagas	area	bairro	preco	pm2
0	350	1	0.0	1.0	21	Botafogo	340000	16190.48
1	800	1	0.0	1.0	64	Botafogo	770000	12031.25
2	674	1	0.0	1.0	61	Botafogo	600000	9836.07
3	700	1	1.0	1.0	70	Botafogo	700000	10000.00
4	440	1	0.0	1.0	44	Botafogo	515000	11704.55
5	917	1	1.0	1.0	60	Botafogo	630000	10500.00
6	850	1	1.0	1.0	65	Botafogo	740000	11384.62
7	350	1	1.0	1.0	43	Botafogo	570000	13255.81
8	440	1	1.0	1.0	26	Botafogo	430000	16538.46
9	510	1	1.0	1.0	42	Botafogo	500000	11904.76

Similarmente existe o .tail(), que exibe por padrão as últimas 5 linhas do

	condominio	quartos	suites	vagas	area	bairro	preco	pm2
1992	1080	3	1.0	1.0	80	Tijuca	680000	8500.00
1993	750	3	0.0	1.0	82	Tijuca	650000	7926.83
1994	700	3	1.0	1.0	100	Tijuca	629900	6299.00
1995	1850	3	1.0	2.0	166	Tijuca	1600000	9638.55
1996	800	3	1.0	1.0	107	Tijuca	540000	5046.73

Manipulação de Dados

Além de confiar em mim, quando mencionei os bairros que continham no nosso conjunto de dados, você pode verificar a informação usando um método que lista os valores únicos numa coluna:

Também parece interessante verificarmos a hegemoneidade da nossa amostra em relação aos bairros. Pra tarefas de contar valores podemos sempre aproveitar de outro método disponível, o .value_counts(), também veremos um pouco mais abaixo como visualizar estes valores em forma de gráfico de barras.

G


```
Copacabana 346
Tijuca 341
Botafogo 307
Ipanema 281
Leblon 280
Grajaú 237
Gávea 205
Name: bairro, dtype: int64
```

Os valores contados também podem ser normalizados para expressar porcentagens:

```
df["bairro"].value_counts(normalize=True)
Copacabana
              0.173260
Tijuca
              0.170756
Botafogo
              0.153731
Ipanema
              0.140711
Leblon
              0.140210
Grajaú
              0.118678
Gávea
              0.102654
Name: bairro, dtype: float64
```

Agrupar os dados se baseando em certos critérios é outro processo que o pandas facilita bastante com o .groupby(). Esse método pode ser usado para resolver os mais **amplos** dos problemas, aqui abordarei apenas o agrupamento simples, a divisão de um DataFrame em grupos.

Abaixo agrupamos o nosso DataFrame pelos valores da coluna "bairro", e em seguida aplicamos o .mean() para termos um objeto GroupBy com informação das médias agrupadas pelos valores da coluna bairros.

```
df.groupby("bairro").mean()
```


Botafogo	914.475570	2.107492	1.048860	1.159609	83.837134	1.010614e+06	12034.486189
Copacabana	991.861272	2.101156	1.034682	1.080925	101.855491	1.216344e+06	11965.298699
Grajaú	619.940928	2.097046	0.970464	1.130802	79.949367	4.788869e+05	6145.624473
Gávea	985.234146	2.058537	1.029268	1.200000	88.497561	1.454571e+06	16511.582780
Ipanema	1357.120996	2.181495	1.192171	1.220641	100.615658	2.033096e+06	19738.407794
Lebion	1260.010714	2.207143	1.064286	1.164286	91.832143	1.946193e+06	20761.351036
Tijuca	681.175953	2.131965	0.944282	1.143695	81.457478	5.750780e+05	7149.804985

Para extrairmos dados de uma coluna deste objeto basta acessá-lo convencionalmente, para obtermos os valores da média do preço do metro quadrado em ordem crescente, por exemplo:

```
df.groupby("bairro").mean()["pm2"].sort_values()
bairro
Grajaú
               6145.624473
Tijuca
               7149.804985
Copacabana
              11965.298699
Botafogo
              12034.486189
Gávea
              16511.582780
Ipanema
              19738.407794
Leblon
              20761.351036
Name: pm2, dtype: float64
```

É comum queremos aplicar uma função qualquer aos dados, ou à parte deles, neste caso o pandas fornece o método .apply . Por exemplo, para deixar os nomes dos bairros como apenas as suas três primeiras letras:

```
def truncar(bairro):
    return bairro[:3]
df["bairro"].apply(truncar)
```

 \bigcirc

Ou de um jeito mais prático, usando uma função lambda:

```
df["bairro"].apply(lambda x: x[:3])
0
         Bot
1
         Bot
2
         Bot
3
         Bot
4
         Bot
5
         Bot
6
         Bot
7
         Bot
8
         Bot
9
         Bot
10
         Bot
        . . .
1986
         Tij
         Tij
1987
         Tij
1988
         Tij
1989
         Tij
1990
1001
                                                                     1
```


Open in app Ge

Name: bairro, Length: 1997, dtype: object

Uma das tarefas na qual o pandas é reconhecidamente poderoso é a habilidade de tratar dados incompletos. Por muitos motivos pode haver incompletude no dataset, o np.nan é um valor especial definido no **Numpy**, sigla para **Not a Number**, o pandas preenche células sem valores em um DataFrame lido com np.nan.

Vamos criar um novo dataframe usando as 5 primeiras linhas do nosso original, usando o já visto .head(). Abaixo é usado o .replace para substituir um valor específico por um NaN.

```
df2 = df.head()
df2 = df2.replace({"pm2": {12031.25: np.nan}})
df2
```

	condominio	quartos	suites	vagas	area	bairro	preco	pm2
0	350	1	0.0	1.0	21	Botafogo	340000	16190.48
1	800	1	0.0	1.0	64	Botafogo	770000	NaN
2	674	1	0.0	1.0	61	Botafogo	600000	9836.07
3	700	1	1.0	1.0	70	Botafogo	700000	10000.00
4	440	1	0.0	1.0	44	Botafogo	515000	11704.55

O pandas simplifica a remoção de quaiquer linhas ou colunas que possuem um np.nan, por padrão o .dropna() retorna as linhas que não contém um NaN:

df2.dropna()

1

Preencher todos os valores NaN por um outro específico também é bastante simples:

df2.fillna(99)

	condominio	quartos	suites	vagas	area	bairro	preco	pm2
0	350	1	0.0	1.0	21	Botafogo	340000	16190.48
1	800	1	0.0	1.0	64	Botafogo	770000	99.00
2	674	1	0.0	1.0	61	Botafogo	600000	9836.07
3	700	1	1.0	1.0	70	Botafogo	700000	10000.00
4	440	1	0.0	1.0	44	Botafogo	515000	11704.55

Acaba sendo muitas vezes conveniente termos um método que indica quais valores de um dataframe são NaN e quais não são:

df2.isna()

	condominio	quartos	suites	vagas	area	bairro	preco	pm2
0	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	True
2	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False

visualização do pandas são construídos com base no matplotlib para exploração rápida dos dados. Para se ter mais liberdade no conteúdo e possibilidades de visualização se recomenda usar diretamente o matplotlib ou ainda, para visualização estatística, o seaborn. Nesta introdução tratarei apenas dos métodos de visualização incluídos no pandas, que por outro lado, oferece uma sintaxe bastante simples para realizar a tarefa.

Comecemos verificando que tanto Series como DataFrame possuem um método .plot() que também é um atributo e pode ser encadeado para gerar visualização de diversos tipos, como histograma, área, pizza e dispersão, com respectivamente .hist(), .area(), .pie() e .scatter(), além de vários <u>outros</u>.

Vamos verificar a distribuição dos preços usando o encadeamento .plot.hist(), o eixo x, que é o preço, está numa escala de *10^7, como mostrado na imagem:

df["preco"].plot.hist()

Por padrão esse método usa 10 bins, ou seja, divide os dados em 10 partes, mas é claro que nodemos especificar um valor para a plotagem. Abaixo, além de

df["preco"].plot.hist(bins=30, edgecolor='black')

Podemos usar os valores de contagem de cada bairro como exemplo de dado para um plot tanto de barras verticais quando de barras horizontais, para verificar visualmente esses dados:

df["bairro"].value_counts().plot.barh()

Os métodos são flexíveis o suficiente para aceitarem argumentos como um título para a imagem:

df["bairro"].value_counts().plot.barh(title="Número de apartamentos")

06/12/2022 14:05

Um gráfico de dispersão usando um DataFrame pode ser usado especificando-se quais colunas usar como dados no eixo x e y:

Para fins estéticos, o matplotlib fornece uma série de styles diferentes que podem ser usados, um deles é o ggplot

df.plot.scatter(x='pm2', y='area')

A lista de estilos disponíveis pode ser vista através de um método próprio

```
plt.style.available
['bmh',
 'Solarize_Light2',
 'seaborn-talk',
 'seaborn-bright',
 'seaborn-white',
 'seaborn-pastel',
 'seaborn-ticks',
 'seaborn-dark-palette',
 'seaborn',
 'tableau-colorblind10',
 'seaborn-deep',
 'classic',
 'seaborn-dark',
 'grayscale',
 'seaborn-paper',
 'fivethirtyeight',
 'seaborn-muted',
 ' classic test'.
```

Q


```
'seaborn-whitegrid',
'ggplot',
'fast']
```

A coluna de quartos diz quantos quartos tem um determinado apartamento, também se pode ver a contagem e distribuição usando outros métodos de plotagem oferecidos pelo pandas:

Uma coisa a se notar do gráfico de scatter é a poluição causada pela enorme quantidade de dados agrupadas num dos cantos do gráfico, além de podermos diminuir o tamanho dos pontos passando o argumento s ao método .scatter podemos também usar um método do pandas que cria uma amostragem aleatória dos dados.

O .sample pode receber tanto um argumento frac, que determina uma fração dos itens que o método retornará (no caso abaixo, 10%), ou n, que determina um valor absoluto de itens.

df.sample(frac=.1).plot.scatter(x='preco', y='area')

Finalmente, a tarefa de salvar seu DataFrame externamente para um formato específico é feita com a mesma simplicidade que a leitura de dados é feita no pandas, pode-se usar, por exemplo, o método to_csv, e o arquivo será criado com os

Q

1


```
'Faltas': [3,4,2,1,4],
'Prova'
'Seminá 1.3K | 12 .0,7.5,8.0]})
df.to_csv("aulas.csv")
pd.read_csv("aulas.csv")
```

				Unnamed: 0	Aluno	Faltas	Prova	Seminário
			0	.0	Wilfred	3	2	8.5
About	Help	Terms	1	1	Abbie	4	7	7.5
			Privacy	, 2	Harry	2	5	9.0
			3	3	Julia	1	10	7.5
			4	4	Carrie	4	6	8.0

Get the Medium app

Or Google Play lução você já deve estar apto a fazer exploração o pandas, para aprofundar mais aqui vão algumas referências:

- Documentação oficial
- Coletânea de notebooks Jupyter que abordam profundamente várias ferramentas e casos de uso do Pandas
- Exercícios de Pandas com soluções, separados por temas

Curtiu esse post? Não deixe de compartilhar com seus amigos! Também não se esqueça de se inscrever na nossa **newsletter** no <u>www.datahackers.com.br!</u> Abraço e até a próxima! o/

06/12/2022 14:05