EKT-816 Lecture 4

Mechanical Properties of OLS

Jesse Naidoo

University of Pretoria

- let (X_1, X_2) have some joint distribution
- define

$$b = \frac{\operatorname{cov}(X_1, X_2)}{V[X_2]}$$
$$a = E[X_1] - bE[X_2]$$

- and let $X_1^* = X_1 (a + bX_2)$
- what is

- is X_1^* independent of X_2 ?
- we say $a + bX_2$ is the *linear projection* of X_1 onto X_2

• X_1^* is the component of X_1 that is orthogonal to X_1

- let (X_1, X_2) have some joint distribution
- define

$$b = \frac{\text{cov}(X_1, X_2)}{V[X_2]}$$
$$a = E[X_1] - bE[X_2]$$

- and let $X_1^* = X_1 (a + bX_2)$
- what is

- is X_1^* independent of X_2 ?
- we say $a + bX_2$ is the linear projection of X_1 onto X_2

• X_1^* is the component of X_1 that is orthogonal to X_2

- let (X_1, X_2) have some joint distribution
- define

$$b = \frac{\text{cov}(X_1, X_2)}{V[X_2]}$$
$$a = E[X_1] - bE[X_2]$$

- and let $X_1^* = X_1 (a + bX_2)$
- what is

- is X_1^* independent of X_2 ?
- we say $a + bX_2$ is the *linear projection* of X_1 onto X_2

ullet X_1^* is the component of X_1 that is orthogonal to X_2

- let (X_1, X_2) have some joint distribution
- define

$$b = \frac{\text{cov}(X_1, X_2)}{V[X_2]}$$
$$a = E[X_1] - bE[X_2]$$

- and let $X_1^* = X_1 (a + bX_2)$
- what is
 - $cov(X_1^*, X_2)$?
 - $E[X_1^*]$
- is X_1^* independent of X_2 ?
- we say $a + bX_2$ is the linear projection of X_1 onto X_2
 - X_1^* is the component of X_1 that is orthogonal to X_2

- let (X_1, X_2) have some joint distribution
- define

$$b = \frac{\text{cov}(X_1, X_2)}{V[X_2]}$$
$$a = E[X_1] - bE[X_2]$$

- and let $X_1^* = X_1 (a + bX_2)$
- what is
 - $cov(X_1^*, X_2)$?
 - $E[X_1^*]$
- is X_1^* independent of X_2 ?
- we say $a + bX_2$ is the linear projection of X_1 onto X_2
 - X_1^* is the component of X_1 that is orthogonal to X_2

- let (X_1, X_2) have some joint distribution
- define

$$b = \frac{\text{cov}(X_1, X_2)}{V[X_2]}$$
$$a = E[X_1] - bE[X_2]$$

- and let $X_1^* = X_1 (a + bX_2)$
- what is
 - $cov(X_1^*, X_2)$?
 - $E[X_1^*]$
- is X_1^* independent of X_2 ?
- we say $a + bX_2$ is the linear projection of X_1 onto X_2
 - ullet X_1^* is the component of X_1 that is orthogonal to X_2

- let (X_1, X_2) have some joint distribution
- define

$$b = \frac{\text{cov}(X_1, X_2)}{V[X_2]}$$
$$a = E[X_1] - bE[X_2]$$

- and let $X_1^* = X_1 (a + bX_2)$
- what is
 - $cov(X_1^*, X_2)$?
 - $E[X_1^*]$
- is X_1^* independent of X_2 ?
- we say $a + bX_2$ is the *linear projection* of X_1 onto X_2
 - ullet X_1^* is the component of X_1 that is orthogonal to X_2

- let (X_1, X_2) have some joint distribution
- define

$$b = \frac{\text{cov}(X_1, X_2)}{V[X_2]}$$
$$a = E[X_1] - bE[X_2]$$

- and let $X_1^* = X_1 (a + bX_2)$
- what is
 - $cov(X_1^*, X_2)$?
 - $E[X_1^*]$
- is X_1^* independent of X_2 ?
- we say $a + bX_2$ is the linear projection of X_1 onto X_2
 - X_1^* is the component of X_1 that is orthogonal to X_2

- let (X_1, X_2) have some joint distribution
- define

$$b = \frac{\operatorname{cov}(X_1, X_2)}{V[X_2]}$$
$$a = E[X_1] - bE[X_2]$$

- and let $X_1^* = X_1 (a + bX_2)$
- what is
 - $cov(X_1^*, X_2)$?
 - E[X₁*]
- is X_1^* independent of X_2 ?
- we say $a + bX_2$ is the *linear projection* of X_1 onto X_2
 - X_1^* is the component of X_1 that is orthogonal to X_2

- Before we talk about the statistical properties of regression estimates, we need to understand exactly what OLS does mechanically
- given N data points $(Y_i, X_{i1}, \dots X_{iK})$, consider

$$\min_{\beta_0,\ldots,\beta_K} \sum_{i=1}^N (Y_i - \beta_0 - \beta_1 X_{i1} \ldots - \beta_K X_{iK})^2$$

- what are the first-order conditions for this problem?
- we can write the data in matrix form
 - ullet X is the N imes (K+1) matrix of regressors
 - Y is a N × 1 vector of "outcomes"

- Before we talk about the statistical properties of regression estimates, we need to understand exactly what OLS does mechanically
- given N data points $(Y_i, X_{i1}, \dots X_{iK})$, consider

$$\min_{\beta_0,\ldots,\beta_K} \sum_{i=1}^N (Y_i - \beta_0 - \beta_1 X_{i1} \ldots - \beta_K X_{iK})^2$$

- what are the first-order conditions for this problem?
- we can write the data in matrix form
 - ullet X is the N imes (K+1) matrix of regressors
 - Y is a N × 1 vector of "outcomes"

- Before we talk about the statistical properties of regression estimates, we need to understand exactly what OLS does mechanically
- given N data points $(Y_i, X_{i1}, ... X_{iK})$, consider

$$\min_{\beta_0,\ldots,\beta_K} \sum_{i=1}^N (Y_i - \beta_0 - \beta_1 X_{i1} \ldots - \beta_K X_{iK})^2$$

- what are the first-order conditions for this problem?
- we can write the data in matrix form
 - X is the $N \times (K+1)$ matrix of regressors
 - Y is a N × 1 vector of "outcomes"

- Before we talk about the statistical properties of regression estimates, we need to understand exactly what OLS does mechanically
- given N data points $(Y_i, X_{i1}, ... X_{iK})$, consider

$$\min_{\beta_0,\ldots,\beta_K} \sum_{i=1}^N (Y_i - \beta_0 - \beta_1 X_{i1} \ldots - \beta_K X_{iK})^2$$

- what are the first-order conditions for this problem?
- we can write the data in matrix form
 - X is the $N \times (K+1)$ matrix of regressors
 - Y is a $N \times 1$ vector of "outcomes"

- Before we talk about the statistical properties of regression estimates, we need to understand exactly what OLS does mechanically
- given N data points $(Y_i, X_{i1}, \dots X_{iK})$, consider

$$\min_{\beta_0,\ldots,\beta_K} \sum_{i=1}^N (Y_i - \beta_0 - \beta_1 X_{i1} \ldots - \beta_K X_{iK})^2$$

- what are the first-order conditions for this problem?
- we can write the data in matrix form
 - X is the $N \times (K+1)$ matrix of regressors
 - Y is a N × 1 vector of "outcomes"

- Before we talk about the statistical properties of regression estimates, we need to understand exactly what OLS does mechanically
- given N data points $(Y_i, X_{i1}, ... X_{iK})$, consider

$$\min_{\beta_0,\ldots,\beta_K} \sum_{i=1}^N (Y_i - \beta_0 - \beta_1 X_{i1} \ldots - \beta_K X_{iK})^2$$

- what are the first-order conditions for this problem?
- we can write the data in matrix form
 - X is the $N \times (K+1)$ matrix of regressors
 - Y is a $N \times 1$ vector of "outcomes"

$$(X'X)\hat{\beta} = X'Y \Longrightarrow \hat{\beta} = (X'X)^{-1}X'Y$$

- now let
 - $\hat{e} = Y X \hat{B}$ be the residuals
 - $M = I X(X'X)^{-1}X'$ be the "residual maker" matrix $(N \times N)$
 - If notice that M is symmetric (M'=M) and idempotent $(M\times M=M)$ is also notice that $MY=\emptyset$ and $MX=\emptyset$
- we can write $Y = X\hat{\beta} + \hat{e}$
 - i.e. decomposition into predicted values + residuals
 - these follow from facts about linear algebra, not anything about causality!
 - in fact, you could do this with purely deterministic data: no statistics necessary

$$(X'X)\hat{\beta} = X'Y \Longrightarrow \hat{\beta} = (X'X)^{-1}X'Y$$

- now let
 - $\hat{\mathbf{e}} = Y X\hat{\beta}$ be the residuals
 - $M = I X(X'X)^{-1}X'$ be the "residual maker" matrix $(N \times N)$
 - ightharpoonup notice that M is symmetric (M'=M) and idempotent ($M\times M=M$)
 - ightharpoonup also notice that $MY = \hat{e}$ and MX = 0
 - ightharpoonup and, $X'\hat{e}=0$, by construction
- we can write $Y = X\hat{\beta} + \hat{e}$
 - i.e. decomposition into predicted values + residuals
 - these follow from facts about linear algebra, not anything about causality!
 - In fact, you could do this with purely deterministic data: no statistics necessary.

$$(X'X)\hat{\beta} = X'Y \Longrightarrow \hat{\beta} = (X'X)^{-1}X'Y$$

- now let
 - $\hat{e} = Y X\hat{\beta}$ be the residuals
 - $M = I X(X'X)^{-1}X'$ be the "residual maker" matrix $(N \times N)$
 - notice that M is symmetric (M'=M) and idempotent $(M\times M=M)$
 - ightharpoonup also notice that $MY = \hat{e}$ and MX = 0
 - ightharpoonup and, $X'\hat{e}=0$, by construction
- we can write $Y = X\hat{\beta} + \hat{e}$
 - i.e. decomposition into predicted values + residuals
 - these follow from facts about linear algebra, not anything about causality!
 - in fact, you could do this with purely deterministic data: no statistics necessary

$$(X'X)\hat{\beta} = X'Y \Longrightarrow \hat{\beta} = (X'X)^{-1}X'Y$$

- now let
 - $\hat{e} = Y X\hat{\beta}$ be the residuals
 - $M = I X(X'X)^{-1}X'$ be the "residual maker" matrix $(N \times N)$
 - ▶ notice that M is symmetric (M' = M) and idempotent ($M \times M = M$)
 - ightharpoonup also notice that $MY = \hat{e}$ and MX = 0
 - ▶ and, $X'\hat{e} = 0$, by construction
- we can write $Y = X\hat{\beta} + \hat{e}$
 - i.e. decomposition into predicted values + residuals
 - these follow from facts about linear algebra, not anything about causality!
 - in fact, you could do this with purely deterministic data: no statistics necessary

$$(X'X)\hat{\beta} = X'Y \Longrightarrow \hat{\beta} = (X'X)^{-1}X'Y$$

- now let
 - $\hat{e} = Y X\hat{\beta}$ be the residuals
 - $M = I X(X'X)^{-1}X'$ be the "residual maker" matrix $(N \times N)$
 - ▶ notice that M is symmetric (M' = M) and idempotent ($M \times M = M$)
 - ightharpoonup also notice that $MY = \hat{e}$ and MX = 0
 - ▶ and, $X'\hat{e} = 0$, by construction
- we can write $Y = X\hat{\beta} + \hat{e}$
 - i.e. decomposition into predicted values + residuals
 - these follow from facts about linear algebra, not anything about causality!
 - in fact, you could do this with purely deterministic data: no statistics necessary

$$(X'X)\hat{\beta} = X'Y \Longrightarrow \hat{\beta} = (X'X)^{-1}X'Y$$

- now let
 - $\hat{e} = Y X\hat{\beta}$ be the residuals
 - $M = I X(X'X)^{-1}X'$ be the "residual maker" matrix $(N \times N)$
 - ▶ notice that M is symmetric (M' = M) and idempotent ($M \times M = M$)
 - ightharpoonup also notice that $MY = \hat{e}$ and MX = 0
 - ▶ and, $X'\hat{e} = 0$, by construction
- we can write $Y = X\hat{\beta} + \hat{e}$
 - i.e. decomposition into predicted values + residuals
 - these follow from facts about linear algebra, not anything about causality!
 - in fact, you could do this with purely deterministic data: no statistics necessary

$$(X'X)\hat{\beta} = X'Y \Longrightarrow \hat{\beta} = (X'X)^{-1}X'Y$$

- now let
 - $\hat{e} = Y X\hat{\beta}$ be the residuals
 - $M = I X(X'X)^{-1}X'$ be the "residual maker" matrix $(N \times N)$
 - ▶ notice that M is symmetric (M' = M) and idempotent ($M \times M = M$)
 - ightharpoonup also notice that $MY = \hat{e}$ and MX = 0
 - ▶ and, $X'\hat{e} = 0$, by construction
- we can write $Y = X\hat{\beta} + \hat{e}$
 - i.e. decomposition into predicted values + residuals
 - these follow from facts about linear algebra, not anything about causality!
 - in fact, you could do this with purely deterministic data: no statistics necessary

$$(X'X)\hat{\beta} = X'Y \Longrightarrow \hat{\beta} = (X'X)^{-1}X'Y$$

- now let
 - $\hat{e} = Y X\hat{\beta}$ be the residuals
 - $M = I X(X'X)^{-1}X'$ be the "residual maker" matrix $(N \times N)$
 - ▶ notice that M is symmetric (M' = M) and idempotent ($M \times M = M$)
 - ightharpoonup also notice that $MY = \hat{e}$ and MX = 0
 - ightharpoonup and, $X'\hat{e}=0$, by construction
- we can write $Y = X\hat{\beta} + \hat{e}$
 - i.e. decomposition into predicted values + residuals
 - these follow from facts about linear algebra, not anything about causality!
 - in fact, you could do this with purely deterministic data: no statistics necessary

$$(X'X)\hat{\beta} = X'Y \Longrightarrow \hat{\beta} = (X'X)^{-1}X'Y$$

- now let
 - $\hat{e} = Y X\hat{\beta}$ be the residuals
 - $M = I X(X'X)^{-1}X'$ be the "residual maker" matrix $(N \times N)$
 - ▶ notice that M is symmetric (M' = M) and idempotent ($M \times M = M$)
 - ightharpoonup also notice that $MY = \hat{e}$ and MX = 0
 - ightharpoonup and, $X'\hat{e}=0$, by construction
- we can write $Y = X\hat{\beta} + \hat{e}$
 - i.e. decomposition into predicted values + residuals
 - these follow from facts about linear algebra, not anything about causality
 - in fact, you could do this with purely deterministic data: no statistics necessary

$$(X'X)\hat{\beta} = X'Y \Longrightarrow \hat{\beta} = (X'X)^{-1}X'Y$$

- now let
 - $\hat{e} = Y X\hat{\beta}$ be the residuals
 - $M = I X(X'X)^{-1}X'$ be the "residual maker" matrix $(N \times N)$
 - ▶ notice that M is symmetric (M' = M) and idempotent ($M \times M = M$)
 - ightharpoonup also notice that $MY = \hat{e}$ and MX = 0
 - ▶ and, $X'\hat{e} = 0$, by construction
- we can write $Y = X\hat{\beta} + \hat{e}$
 - i.e. decomposition into predicted values + residuals
 - these follow from facts about linear algebra, not anything about causality!
 - in fact, you could do this with purely deterministic data: no statistics necessary

$$(X'X)\hat{\beta} = X'Y \Longrightarrow \hat{\beta} = (X'X)^{-1}X'Y$$

- now let
 - $\hat{e} = Y X\hat{\beta}$ be the residuals
 - $M = I X(X'X)^{-1}X'$ be the "residual maker" matrix $(N \times N)$
 - ▶ notice that M is symmetric (M' = M) and idempotent ($M \times M = M$)
 - ightharpoonup also notice that $MY = \hat{e}$ and MX = 0
 - ightharpoonup and, $X'\hat{e}=0$, by construction
- we can write $Y = X\hat{\beta} + \hat{e}$
 - i.e. decomposition into predicted values + residuals
 - these follow from facts about linear algebra, not anything about causality!
 - in fact, you could do this with purely deterministic data: no statistics necessary

- now, suppose we have $X = [X_1 \ X_2]$ where X_1 contains a constant and X_2 is a single column
 - we want to express the OLS coefficient on X_2 in a different way
 - why we want to do this will become clear later
- let $M_1 = I X_1(X_1'X_1)^{-1}X_1'$
 - as before, this is symmetric and idempotent
 - further, $M_1X_1=0$
 - and, $M_1 \hat{e} = \hat{e} X_1 (X_1' X_1)^{-1} X_1' \hat{e} = \hat{e} 0$
- take our decomposition $Y=X_1\hat{\beta}_1+X_2\hat{\beta}_2+\hat{e}$ and premultiply by M_1
 - ullet premultiply again by X_2' (check that the dimensions are appropriate!)
 - then, we get

$$X_2' M_1 Y = X_2' M_1 X_2 \hat{\beta}_2$$

$$\hat{\beta}_2 = ((x_2^*)'(x_2^*))^{-1}((x_2^*)'Y)$$

- now, suppose we have $X = [X_1 \ X_2]$ where X_1 contains a constant and X_2 is a single column
 - we want to express the OLS coefficient on X_2 in a different way
 - why we want to do this will become clear later
- let $M_1 = I X_1(X_1'X_1)^{-1}X_1'$
 - as before, this is symmetric and idempotent
 - further, $M_1X_1=0$
 - and, $M_1 \hat{e} = \hat{e} X_1 (X_1' X_1)^{-1} X_1' \hat{e} = \hat{e} 0$
- take our decomposition $Y = X_1 \hat{\beta}_1 + X_2 \hat{\beta}_2 + \hat{e}$ and premultiply by M_1
 - premultiply again by X_2 (check that the dimensions are appropriate!)
 - then, we get

$$X_2' M_1 Y = X_2' M_1 X_2 \hat{\beta}_2$$

$$\hat{\beta}_2 = ((x_2^*)'(x_2^*))^{-1}((x_2^*)'Y)$$

- now, suppose we have $X = [X_1 \ X_2]$ where X_1 contains a constant and X_2 is a single column
 - we want to express the OLS coefficient on X_2 in a different way
 - why we want to do this will become clear later
- let $M_1 = I X_1(X_1'X_1)^{-1}X_1'$
 - as before, this is symmetric and idempotent
 - further, $M_1X_1=0$
 - and, $M_1 \hat{e} = \hat{e} X_1 (X_1' X_1)^{-1} X_1' \hat{e} = \hat{e} 0$
- take our decomposition $Y = X_1 \hat{\beta}_1 + X_2 \hat{\beta}_2 + \hat{e}$ and premultiply by M_1
 - ullet premultiply again by X_2' (check that the dimensions are appropriate!)
 - then, we get

$$X_2' M_1 Y = X_2' M_1 X_2 \hat{\beta}_2$$

$$\hat{\beta}_2 = ((x_2^*)'(x_2^*))^{-1}((x_2^*)'Y)$$

- now, suppose we have $X = [X_1 \ X_2]$ where X_1 contains a constant and X_2 is a single column
 - we want to express the OLS coefficient on X_2 in a different way
 - why we want to do this will become clear later
- let $M_1 = I X_1(X_1'X_1)^{-1}X_1'$
 - · as before, this is symmetric and idempotent
 - further, $M_1X_1=0$
 - and, $M_1 \hat{e} = \hat{e} X_1 (X_1' X_1)^{-1} X_1' \hat{e} = \hat{e} 0$
- take our decomposition $Y = X_1 \hat{\beta}_1 + X_2 \hat{\beta}_2 + \hat{e}$ and premultiply by M_1
 - \bullet premultiply again by X_2' (check that the dimensions are appropriate!)
 - then, we get

$$X_2' M_1 Y = X_2' M_1 X_2 \hat{\beta}_2$$

$$\hat{\beta}_2 = ((x_2^*)'(x_2^*))^{-1}((x_2^*)'Y)$$

- now, suppose we have $X = [X_1 \ X_2]$ where X_1 contains a constant and X_2 is a single column
 - we want to express the OLS coefficient on X_2 in a different way
 - why we want to do this will become clear later
- let $M_1 = I X_1(X_1'X_1)^{-1}X_1'$
 - as before, this is symmetric and idempotent
 - further, $M_1 X_1 = 0$
 - and, $M_1\hat{e} = \hat{e} X_1(X_1'X_1)^{-1}X_1'\hat{e} = \hat{e} 0$
- take our decomposition $Y = X_1 \hat{\beta}_1 + X_2 \hat{\beta}_2 + \hat{e}$ and premultiply by M_1
 - ullet premultiply again by X_2' (check that the dimensions are appropriate!)
 - then, we get

$$X_2' M_1 Y = X_2' M_1 X_2 \hat{\beta}_2$$

$$\hat{\beta}_2 = ((x_2^*)'(x_2^*))^{-1}((x_2^*)'Y)$$

- now, suppose we have $X = [X_1 \ X_2]$ where X_1 contains a constant and X_2 is a single column
 - we want to express the OLS coefficient on X_2 in a different way
 - why we want to do this will become clear later
- let $M_1 = I X_1(X_1'X_1)^{-1}X_1'$
 - · as before, this is symmetric and idempotent
 - further, $M_1X_1 = 0$
 - and, $M_1 \hat{e} = \hat{e} X_1 (X_1' X_1)^{-1} X_1' \hat{e} = \hat{e} 0$
- take our decomposition $Y = X_1 \hat{\beta}_1 + X_2 \hat{\beta}_2 + \hat{e}$ and premultiply by M_1
 - premultiply again by X_2 (check that the dimensions are appropriate!)
 - then, we get

$$X_2' M_1 Y = X_2' M_1 X_2 \hat{\beta}_2$$

$$\hat{\beta}_2 = ((x_2^*)'(x_2^*))^{-1}((x_2^*)'Y)$$

- now, suppose we have $X = [X_1 \ X_2]$ where X_1 contains a constant and X_2 is a single column
 - we want to express the OLS coefficient on X_2 in a different way
 - why we want to do this will become clear later
- let $M_1 = I X_1(X_1'X_1)^{-1}X_1'$
 - as before, this is symmetric and idempotent
 - further, $M_1 X_1 = 0$
 - and, $M_1 \hat{e} = \hat{e} X_1 (X_1' X_1)^{-1} X_1' \hat{e} = \hat{e} 0$
- take our decomposition $Y = X_1 \hat{\beta}_1 + X_2 \hat{\beta}_2 + \hat{e}$ and premultiply by M_1
 - premultiply again by X₂ (check that the dimensions are appropriate!)
 then, we get

$$X_2'M_1Y = X_2'M_1X_2\hat{\beta}_2$$

$$\hat{\beta}_2 = ((x_2^*)'(x_2^*))^{-1}((x_2^*)'Y)$$

- now, suppose we have $X = [X_1 \ X_2]$ where X_1 contains a constant and X_2 is a single column
 - we want to express the OLS coefficient on X_2 in a different way
 - why we want to do this will become clear later
- let $M_1 = I X_1(X_1'X_1)^{-1}X_1'$
 - as before, this is symmetric and idempotent
 - further, $M_1 X_1 = 0$
 - and, $M_1 \hat{e} = \hat{e} X_1 (X_1' X_1)^{-1} X_1' \hat{e} = \hat{e} 0$
- take our decomposition $Y=X_1\hat{\beta}_1+X_2\hat{\beta}_2+\hat{e}$ and premultiply by M_1
 - premultiply again by X'_2 (check that the dimensions are appropriate!)
 - then, we get

$$X_2' M_1 Y = X_2' M_1 X_2 \hat{\beta}_2$$

$$\hat{\beta}_2 = ((x_2^*)'(x_2^*))^{-1}((x_2^*)'Y)$$

- now, suppose we have $X = [X_1 \ X_2]$ where X_1 contains a constant and X_2 is a single column
 - we want to express the OLS coefficient on X_2 in a different way
 - why we want to do this will become clear later
- let $M_1 = I X_1(X_1'X_1)^{-1}X_1'$
 - as before, this is symmetric and idempotent
 - further, $M_1 X_1 = 0$
 - and, $M_1\hat{e} = \hat{e} X_1(X_1'X_1)^{-1}X_1'\hat{e} = \hat{e} 0$
- take our decomposition $Y=X_1\hat{\beta}_1+X_2\hat{\beta}_2+\hat{e}$ and premultiply by M_1
 - premultiply again by X_2' (check that the dimensions are appropriate!)
 - then, we get

$$X_2' M_1 Y = X_2' M_1 X_2 \hat{\beta}_2$$

• use the fact that M_1 is symmetric and idempotent to write

$$\hat{\beta}_2 = ((x_2^*)'(x_2^*))^{-1}((x_2^*)'Y)$$

- now, suppose we have $X = [X_1 \ X_2]$ where X_1 contains a constant and X_2 is a single column
 - we want to express the OLS coefficient on X_2 in a different way
 - why we want to do this will become clear later
- let $M_1 = I X_1(X_1'X_1)^{-1}X_1'$
 - as before, this is symmetric and idempotent
 - further, $M_1 X_1 = 0$
 - and, $M_1\hat{e} = \hat{e} X_1(X_1'X_1)^{-1}X_1'\hat{e} = \hat{e} 0$
- take our decomposition $Y=X_1\hat{\beta}_1+X_2\hat{\beta}_2+\hat{e}$ and premultiply by M_1
 - premultiply again by X_2' (check that the dimensions are appropriate!)
 - then, we get

$$X_2' M_1 Y = X_2' M_1 X_2 \hat{\beta}_2$$

• use the fact that M_1 is symmetric and idempotent to write

$$\hat{\beta}_2 = ((x_2^*)'(x_2^*))^{-1}((x_2^*)'Y)$$

- now, suppose we have $X = [X_1 \ X_2]$ where X_1 contains a constant and X_2 is a single column
 - we want to express the OLS coefficient on X_2 in a different way
 - · why we want to do this will become clear later
- let $M_1 = I X_1(X_1'X_1)^{-1}X_1'$
 - as before, this is symmetric and idempotent
 - further, $M_1 X_1 = 0$
 - and, $M_1\hat{e} = \hat{e} X_1(X_1'X_1)^{-1}X_1'\hat{e} = \hat{e} 0$
- take our decomposition $Y=X_1\hat{\beta}_1+X_2\hat{\beta}_2+\hat{e}$ and premultiply by M_1
 - ullet premultiply again by X_2' (check that the dimensions are appropriate!)
 - then, we get

$$X_2'M_1Y=X_2'M_1X_2\hat{\beta}_2$$

• use the fact that M_1 is symmetric and idempotent to write

$$\hat{\beta}_2 = ((x_2^*)'(x_2^*))^{-1}((x_2^*)'Y)$$

- the OLS coefficient on X₂ is numerically identical to the one we would obtain from:
 - regressing X_2 on X_1 and obtaining the residuals x
 - regressing Y on x_2^*
- implications:
 - if X₂ ⊥ X₁, we get the same coefficient on X₂ whether we include "controls" for X₁ or not
 - as we will see, richer conditioning sets are not always weakly better
 - we can interpret "multicollinearity" as a case where the residual variation in x_2 is tiny

- the OLS coefficient on X₂ is numerically identical to the one we would obtain from:
 - regressing X_2 on X_1 and obtaining the residuals x_2^*
 - regressing Y on x_2^*
- implications:
 - if $X_2 \perp X_1$, we get the same coefficient on X_2 whether we include "controls' for X_1 or not
 - as we will see, richer conditioning sets are not always weakly better
 - we can interpret "multicollinearity" as a case where the residual variation in x₂
 is tiny

- the OLS coefficient on X₂ is numerically identical to the one we would obtain from:
 - regressing X_2 on X_1 and obtaining the residuals x_2^*
 - regressing Y on x_2^*
- implications:
 - if $X_2 \perp X_1$, we get the same coefficient on X_2 whether we include "controls" for X_1 or not
 - as we will see, richer conditioning sets are not always weakly better
 - we can interpret "multicollinearity" as a case where the residual variation in x_2^* is tiny

- the OLS coefficient on X₂ is numerically identical to the one we would obtain from:
 - regressing X_2 on X_1 and obtaining the residuals x_2^*
 - regressing Y on x_2^*
- implications:
 - if X₂ ⊥ X₁, we get the same coefficient on X₂ whether we include "controls" for X₁ or not
 - as we will see, richer conditioning sets are not always weakly better
 - we can interpret "multicollinearity" as a case where the residual variation in x_2^* is tiny

- the OLS coefficient on X₂ is numerically identical to the one we would obtain from:
 - regressing X_2 on X_1 and obtaining the residuals x_2^*
 - regressing Y on x_2^*
- implications:
 - if X₂ ⊥ X₁, we get the same coefficient on X₂ whether we include "controls" for X₁ or not
 - as we will see, richer conditioning sets are not always weakly better
 - we can interpret "multicollinearity" as a case where the residual variation in x_2^* is tiny

- the OLS coefficient on X₂ is numerically identical to the one we would obtain from:
 - regressing X_2 on X_1 and obtaining the residuals x_2^*
 - regressing Y on x_2^*
- implications:
 - if X₂ ⊥ X₁, we get the same coefficient on X₂ whether we include "controls" for X₁ or not
 - as we will see, richer conditioning sets are not always weakly better
 - we can interpret "multicollinearity" as a case where the residual variation in x_2 is tiny

- the OLS coefficient on X₂ is numerically identical to the one we would obtain from:
 - regressing X_2 on X_1 and obtaining the residuals x_2^*
 - regressing Y on x_2^*
- implications:
 - if X₂ ⊥ X₁, we get the same coefficient on X₂ whether we include "controls" for X₁ or not
 - as we will see, richer conditioning sets are not always weakly better
 - we can interpret "multicollinearity" as a case where the residual variation in x_2^st is tiny

- suppose we have a sample of workers observed at the same date
 - we observe their wages (w), and the results of an IQ test (x)
 - all workers in the sample were tested at the same date, say 20 years ago
 - we also have their age in years which we encode in a vector of dummies (D)
- suppose we want to estimate

$$\log w = \alpha x + D\gamma + e$$

- suppose age has the following effects:
 - as workers gain experience their productivity rises and employers may pay them more
 - some cohorts differ in ability because of changes in e.g. school quality or environmental factors
- also assume that age at testing affects measured IQ, with older kids doing better on average

- suppose we have a sample of workers observed at the same date
 - we observe their wages (w), and the results of an IQ test (x)
 - all workers in the sample were tested at the same date, say 20 years ago
 - we also have their age in years which we encode in a vector of dummies (D)
- suppose we want to estimate

$$\log w = \alpha x + D\gamma + e$$

- suppose age has the following effects:
 - as workers gain experience their productivity rises and employers may pay them more
 - some cohorts differ in ability because of changes in e.g. school quality or environmental factors
- also assume that age at testing affects measured IQ, with older kids doing better on average

- suppose we have a sample of workers observed at the same date
 - we observe their wages (w), and the results of an IQ test (x)
 - all workers in the sample were tested at the same date, say 20 years ago
 - we also have their age in years which we encode in a vector of dummies (D)
- suppose we want to estimate

$$\log w = \alpha x + D\gamma + e$$

- suppose age has the following effects:
 - as workers gain experience their productivity rises and employers may pay them more
 - some cohorts differ in ability because of changes in e.g. school quality or environmental factors
- also assume that age at testing affects measured IQ, with older kids doing better on average

- suppose we have a sample of workers observed at the same date
 - we observe their wages (w), and the results of an IQ test (x)
 - all workers in the sample were tested at the same date, say 20 years ago
 - we also have their age in years which we encode in a vector of dummies (D)
- suppose we want to estimate

$$\log w = \alpha x + D\gamma + e$$

- suppose age has the following effects:
 - as workers gain experience their productivity rises and employers may pay them more
 - some cohorts differ in ability because of changes in e.g. school quality or environmental factors
- also assume that age at testing affects measured IQ, with older kids doing better on average

- suppose we have a sample of workers observed at the same date
 - we observe their wages (w), and the results of an IQ test (x)
 - all workers in the sample were tested at the same date, say 20 years ago
 - we also have their age in years which we encode in a vector of dummies (D)
- suppose we want to estimate

$$\log w = \alpha x + D\gamma + e$$

- suppose age has the following effects:
 - as workers gain experience their productivity rises and employers may pay them more
 - some cohorts differ in ability because of changes in e.g. school quality or environmental factors
- also assume that age at testing affects measured IQ, with older kids doing better on average

- suppose we have a sample of workers observed at the same date
 - we observe their wages (w), and the results of an IQ test (x)
 - all workers in the sample were tested at the same date, say 20 years ago
 - we also have their age in years which we encode in a vector of dummies (D)
- suppose we want to estimate

$$\log w = \alpha x + D\gamma + e$$

- suppose age has the following effects:
 - as workers gain experience their productivity rises and employers may pay them more
 - some cohorts differ in ability because of changes in e.g. school quality or environmental factors
- also assume that age at testing affects measured IQ, with older kids doing better on average

- suppose we have a sample of workers observed at the same date
 - we observe their wages (w), and the results of an IQ test (x)
 - all workers in the sample were tested at the same date, say 20 years ago
 - we also have their age in years which we encode in a vector of dummies (D)
- suppose we want to estimate

$$\log w = \alpha x + D\gamma + e$$

- suppose age has the following effects:
 - as workers gain experience their productivity rises and employers may pay them more
 - some cohorts differ in ability because of changes in e.g. school quality or environmental factors
- also assume that age at testing affects measured IQ, with older kids doing better on average

- suppose we have a sample of workers observed at the same date
 - we observe their wages (w), and the results of an IQ test (x)
 - all workers in the sample were tested at the same date, say 20 years ago
 - we also have their age in years which we encode in a vector of dummies (D)
- suppose we want to estimate

$$\log w = \alpha x + D\gamma + e$$

- suppose age has the following effects:
 - as workers gain experience their productivity rises and employers may pay them more
 - some cohorts differ in ability because of changes in e.g. school quality or environmental factors
- also assume that age at testing affects measured IQ, with older kids doing better on average

- suppose we have a sample of workers observed at the same date
 - we observe their wages (w), and the results of an IQ test (x)
 - all workers in the sample were tested at the same date, say 20 years ago
 - we also have their age in years which we encode in a vector of dummies (D)
- suppose we want to estimate

$$\log w = \alpha x + D\gamma + e$$

- suppose age has the following effects:
 - as workers gain experience their productivity rises and employers may pay them more
 - some cohorts differ in ability because of changes in e.g. school quality or environmental factors
- also assume that age at testing affects measured IQ, with older kids doing better on average

- does it make sense to adjust the IQ scores for age?
 - it depends: do we want
 - the effect of ability on wages, holding experience constant?
 - or, the effects of experience, holding ability constant?
- notice that all of the following regressions will give the same $\hat{\alpha}$
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on αx^* (3)
- however, the estimated age effects will change
 - consider regressing log w on D alone (4)
 - because $x^* \perp D$ by construction, (4) gives the same $\hat{\gamma}$ as (2)

- does it make sense to adjust the IQ scores for age?
 - it depends: do we want
 - the effect of ability on wages, holding experience constant?
 - or, the effects of experience, holding ability constant?
- notice that all of the following regressions will give the same $\hat{\alpha}$
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on αx^* (3)
- however, the estimated age effects will change
 - consider regressing log w on D alone (4)
 - because $x^* \perp D$ by construction, (4) gives the same $\hat{\gamma}$ as (2)

- does it make sense to adjust the IQ scores for age?
 - it depends: do we want
 - the effect of ability on wages, holding experience constant?
 - or, the effects of experience, holding ability constant?
- notice that all of the following regressions will give the same $\hat{\alpha}$
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on αx^* (3)
- however, the estimated age effects will change
 - consider regressing log w on D alone (4)
 - because $x^* \perp D$ by construction, (4) gives the same $\hat{\gamma}$ as (2)

- does it make sense to adjust the IQ scores for age?
 - it depends: do we want
 - the effect of ability on wages, holding experience constant?
 - or, the effects of experience, holding ability constant?
- notice that all of the following regressions will give the same $\hat{\alpha}$
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on αx^* (3)
- however, the estimated age effects will change
 - \bullet consider regressing log w on D alone (4)
 - ullet because $x^* \perp D$ by construction, (4) gives the same $\hat{\gamma}$ as (2)

- does it make sense to adjust the IQ scores for age?
 - it depends: do we want
 - the effect of ability on wages, holding experience constant?
 - or, the effects of experience, holding ability constant?
- notice that all of the following regressions will give the same $\hat{\alpha}$
 - regress $\log w$ on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on αx^* (3)
- however, the estimated age effects will change
 - consider regressing log w on D alone (4)
 - because $x^* \perp D$ by construction, (4) gives the same $\hat{\gamma}$ as (2)

- does it make sense to adjust the IQ scores for age?
 - it depends: do we want
 - the effect of ability on wages, holding experience constant?
 - or, the effects of experience, holding ability constant?
- notice that all of the following regressions will give the same $\hat{\alpha}$
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on αx^* (3)
- however, the estimated age effects will change
 - \bullet consider regressing log w on D alone (4)
 - because $x^* \perp D$ by construction, (4) gives the same $\hat{\gamma}$ as (2)

- does it make sense to adjust the IQ scores for age?
 - it depends: do we want
 - the effect of ability on wages, holding experience constant?
 - or, the effects of experience, holding ability constant?
- notice that all of the following regressions will give the same $\hat{\alpha}$
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on αx^* (3)
- however, the estimated age effects will change
 - consider regressing log w on D alone (4)
 - because $x^* \perp D$ by construction, (4) gives the same $\hat{\gamma}$ as (2)

- does it make sense to adjust the IQ scores for age?
 - it depends: do we want
 - the effect of ability on wages, holding experience constant?
 - or, the effects of experience, holding ability constant?
- notice that all of the following regressions will give the same $\hat{\alpha}$
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on αx^* (3)
- however, the estimated age effects will change
 - ullet consider regressing log w on D alone (4)
 - because $x^* \perp D$ by construction, (4) gives the same $\hat{\gamma}$ as (2)

- does it make sense to adjust the IQ scores for age?
 - it depends: do we want
 - the effect of ability on wages, holding experience constant?
 - or, the effects of experience, holding ability constant?
- notice that all of the following regressions will give the same $\hat{\alpha}$
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on αx^* (3)
- however, the estimated age effects will change
 - consider regressing log w on D alone (4)
 - because $x^* \perp D$ by construction, (4) gives the same $\hat{\gamma}$ as (2)

- does it make sense to adjust the IQ scores for age?
 - it depends: do we want
 - the effect of ability on wages, holding experience constant?
 - or, the effects of experience, holding ability constant?
- notice that all of the following regressions will give the same $\hat{\alpha}$
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on αx^* (3)
- however, the estimated age effects will change
 - consider regressing log w on D alone (4)
 - because $x^* \perp D$ by construction, (4) gives the same $\hat{\gamma}$ as (2)

- does it make sense to adjust the IQ scores for age?
 - it depends: do we want
 - the effect of ability on wages, holding experience constant?
 - or, the effects of experience, holding ability constant?
- notice that all of the following regressions will give the same $\hat{\alpha}$
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on αx^* (3)
- however, the estimated age effects will change
 - consider regressing log w on D alone (4)
 - because $x^* \perp D$ by construction, (4) gives the same $\hat{\gamma}$ as (2)

- how should we interpret the age effects when we age-adjust IQ compared to raw IQ?
 - is it possible to determine whether a given cohort earns more at a given point in time because of
 - higher ability
 - greater experience
 - some combination of the two?
- clearly, without including the IQ measure, the age coefficients pick up both effects
- with IQ as a control, the age effects will be estimated using variation in age that is not predicted by IQ
 - but, is this variation that is orthogonal to cohort ability?
- example: two cohorts
 - one is younger but smarter
 - another is older but less able
 - ullet the two effects could cancel each other out so that IQ ot cohort

- how should we interpret the age effects when we age-adjust IQ compared to raw IQ?
 - is it possible to determine whether a given cohort earns more at a given point in time because of
 - higher ability
 - greater experience
 - some combination of the two?
- clearly, without including the IQ measure, the age coefficients pick up both effects
- with IQ as a control, the age effects will be estimated using variation in age that is not predicted by IQ
 - but, is this variation that is orthogonal to cohort ability?
- example: two cohorts
 - one is younger but smarter
 - another is older but less able
 - ullet the two effects could cancel each other out so that ${\sf IQ} \perp {\sf cohort}$

- how should we interpret the age effects when we age-adjust IQ compared to raw IQ?
 - is it possible to determine whether a given cohort earns more at a given point in time because of
 - higher ability
 - greater experience
 - some combination of the two?
- clearly, without including the IQ measure, the age coefficients pick up both effects
- with IQ as a control, the age effects will be estimated using variation in age that is not predicted by IQ
 - but, is this variation that is orthogonal to cohort ability?
- example: two cohorts
 - one is younger but smarter
 - another is older but less able
 - ullet the two effects could cancel each other out so that IQ $oldsymbol{\perp}$ cohort

- how should we interpret the age effects when we age-adjust IQ compared to raw IQ?
 - is it possible to determine whether a given cohort earns more at a given point in time because of
 - higher ability
 - greater experience
 - some combination of the two?
- clearly, without including the IQ measure, the age coefficients pick up both effects
- with IQ as a control, the age effects will be estimated using variation in age that is not predicted by IQ
 - but, is this variation that is orthogonal to cohort ability?
- example: two cohorts
 - one is younger but smarter
 - another is older but less able
 - ullet the two effects could cancel each other out so that IQ $oldsymbol{\perp}$ cohort

- how should we interpret the age effects when we age-adjust IQ compared to raw IQ?
 - is it possible to determine whether a given cohort earns more at a given point in time because of
 - higher ability
 - greater experience
 - some combination of the two?
- clearly, without including the IQ measure, the age coefficients pick up both effects
- with IQ as a control, the age effects will be estimated using variation in age that is not predicted by IQ
 - but, is this variation that is orthogonal to cohort ability?
- example: two cohorts
 - one is younger but smarter
 - another is older but less able
 - ullet the two effects could cancel each other out so that ${\sf IQ} \perp {\sf cohort}$

- how should we interpret the age effects when we age-adjust IQ compared to raw IQ?
 - is it possible to determine whether a given cohort earns more at a given point in time because of
 - higher ability
 - greater experience
 - some combination of the two?
- clearly, without including the IQ measure, the age coefficients pick up both effects
- with IQ as a control, the age effects will be estimated using variation in age that is not predicted by IQ
 - but, is this variation that is orthogonal to cohort ability?
- example: two cohorts
 - one is younger but smarter
 - another is older but less able
 - ullet the two effects could cancel each other out so that IQ $oldsymbol{\perp}$ cohort

- how should we interpret the age effects when we age-adjust IQ compared to raw IQ?
 - is it possible to determine whether a given cohort earns more at a given point in time because of
 - higher ability
 - greater experience
 - some combination of the two?
- clearly, without including the IQ measure, the age coefficients pick up both effects
- with IQ as a control, the age effects will be estimated using variation in age that is not predicted by IQ
 - but, is this variation that is orthogonal to cohort ability?
- example: two cohorts
 - one is younger but smarter
 - another is older but less able
 - ullet the two effects could cancel each other out so that IQ ot cohort

- how should we interpret the age effects when we age-adjust IQ compared to raw IQ?
 - is it possible to determine whether a given cohort earns more at a given point in time because of
 - higher ability
 - greater experience
 - some combination of the two?
- clearly, without including the IQ measure, the age coefficients pick up both effects
- with IQ as a control, the age effects will be estimated using variation in age that is not predicted by IQ
 - but, is this variation that is orthogonal to cohort ability?
- example: two cohorts
 - one is younger but smarter
 - another is older but less able
 - ullet the two effects could cancel each other out so that IQ $oldsymbol{\perp}$ cohort

- how should we interpret the age effects when we age-adjust IQ compared to raw IQ?
 - is it possible to determine whether a given cohort earns more at a given point in time because of
 - higher ability
 - greater experience
 - some combination of the two?
- clearly, without including the IQ measure, the age coefficients pick up both effects
- with IQ as a control, the age effects will be estimated using variation in age that is not predicted by IQ
 - but, is this variation that is orthogonal to cohort ability?
- example: two cohorts
 - one is younger but smarter
 - another is older but less able
 - ullet the two effects could cancel each other out so that IQ ot cohort

- how should we interpret the age effects when we age-adjust IQ compared to raw IQ?
 - is it possible to determine whether a given cohort earns more at a given point in time because of
 - higher ability
 - greater experience
 - some combination of the two?
- clearly, without including the IQ measure, the age coefficients pick up both effects
- with IQ as a control, the age effects will be estimated using variation in age that is not predicted by IQ
 - but, is this variation that is orthogonal to cohort ability?
- example: two cohorts
 - one is younger but smarter
 - another is older but less able
 - ullet the two effects could cancel each other out so that IQ ot cohort

- how should we interpret the age effects when we age-adjust IQ compared to raw IQ?
 - is it possible to determine whether a given cohort earns more at a given point in time because of
 - higher ability
 - greater experience
 - some combination of the two?
- clearly, without including the IQ measure, the age coefficients pick up both effects
- with IQ as a control, the age effects will be estimated using variation in age that is not predicted by IQ
 - but, is this variation that is orthogonal to cohort ability?
- example: two cohorts
 - one is younger but smarter
 - · another is older but less able
 - ullet the two effects could cancel each other out so that IQ ot cohort

- how should we interpret the age effects when we age-adjust IQ compared to raw IQ?
 - is it possible to determine whether a given cohort earns more at a given point in time because of
 - higher ability
 - greater experience
 - some combination of the two?
- clearly, without including the IQ measure, the age coefficients pick up both effects
- with IQ as a control, the age effects will be estimated using variation in age that is not predicted by IQ
 - but, is this variation that is orthogonal to cohort ability?
- example: two cohorts
 - one is younger but smarter
 - · another is older but less able
 - \bullet the two effects could cancel each other out so that IQ \perp cohort

- ullet now, supposing that IQ ot D, compare
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on $D\gamma$ (4)
 - regress log w on $D^*\gamma$ (5)
- because $x \perp D$ in this example, (4) and (5) give the same estimate of γ
 - ullet further, (1) and (4) give the same estimate of γ for the same reason
 - ullet and, we have seen (2) and (4) always give the same estimate of γ
- we have no way of telling the difference between changes in experience and cohort ability
- the fundamental problem is:
 - we have no information about how measured IQ would change with the age of testing
 - adjusting, normalizing, etc do not solve this problem!
 - age-adjusting IQ scores isolates within-cohort variation in ability, but it does not tell us about which cohorts are smart or dumb

- ullet now, supposing that IQ ot D, compare
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on $D\gamma$ (4)
 - regress log w on $D^*\gamma$ (5)
- because $x \perp D$ in this example, (4) and (5) give the same estimate of γ
 - ullet further, (1) and (4) give the same estimate of γ for the same reason
 - ullet and, we have seen (2) and (4) always give the same estimate of γ
- we have no way of telling the difference between changes in experience and cohort ability
- the fundamental problem is:
 - we have no information about how measured IQ would change with the age of testing
 - adjusting, normalizing, etc do not solve this problem!
 - age-adjusting IQ scores isolates within-cohort variation in ability, but it does not tell us about which cohorts are smart or dumb

- ullet now, supposing that IQ ot D, compare
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on $D\gamma$ (4)
 - regress log w on $D^*\gamma$ (5)
- because $x \perp D$ in this example, (4) and (5) give the same estimate of γ
 - ullet further, (1) and (4) give the same estimate of γ for the same reason
 - ullet and, we have seen (2) and (4) always give the same estimate of γ
- we have no way of telling the difference between changes in experience and cohort ability
- the fundamental problem is:
 - we have no information about how measured IQ would change with the age of testing
 - adjusting, normalizing, etc do not solve this problem!
 - age-adjusting IQ scores isolates within-cohort variation in ability, but it does not tell us about which cohorts are smart or dumb

- ullet now, supposing that IQ ot D, compare
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on $D\gamma$ (4)
 - regress log w on $D^*\gamma$ (5
- because $x \perp D$ in this example, (4) and (5) give the same estimate of γ
 - ullet further, (1) and (4) give the same estimate of γ for the same reason
 - ullet and, we have seen (2) and (4) always give the same estimate of γ
- we have no way of telling the difference between changes in experience and cohort ability
- the fundamental problem is:
 - we have no information about how measured IQ would change with the age of testing
 - adjusting, normalizing, etc do not solve this problem!
 - age-adjusting IQ scores isolates within-cohort variation in ability, but it does not tell us about which cohorts are smart or dumb

- ullet now, supposing that IQ ot D, compare
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on $D\gamma$ (4)
 - regress log w on $D^*\gamma$ (5)
- because $x \perp D$ in this example, (4) and (5) give the same estimate of γ
 - ullet further, (1) and (4) give the same estimate of γ for the same reason
 - ullet and, we have seen (2) and (4) always give the same estimate of γ
- we have no way of telling the difference between changes in experience and cohort ability
- the fundamental problem is:
 - we have no information about how measured IQ would change with the age of testing
 - adjusting, normalizing, etc do not solve this problem!
 - age-adjusting IQ scores isolates within-cohort variation in ability, but it does not tell us about which cohorts are smart or dumb

- ullet now, supposing that IQ ot D, compare
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on $D\gamma$ (4)
 - regress log w on $D^*\gamma$ (5)
- ullet because $x\perp D$ in this example, (4) and (5) give the same estimate of γ
 - further, (1) and (4) give the same estimate of γ for the same reason
 - ullet and, we have seen (2) and (4) always give the same estimate of γ
- we have no way of telling the difference between changes in experience and cohort ability
- the fundamental problem is:
 - we have no information about how measured IQ would change with the age of testing
 - adjusting, normalizing, etc do not solve this problem!
 - age-adjusting IQ scores isolates within-cohort variation in ability, but it does
 not tell us about which cohorts are smart or dumb

- ullet now, supposing that IQ \perp D, compare
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on $D\gamma$ (4)
 - regress log w on $D^*\gamma$ (5)
- ullet because $x\perp D$ in this example, (4) and (5) give the same estimate of γ
 - further, (1) and (4) give the same estimate of γ for the same reason
 - ullet and, we have seen (2) and (4) always give the same estimate of γ
- we have no way of telling the difference between changes in experience and cohort ability
- the fundamental problem is:
 - we have no information about how measured IQ would change with the age of testing
 - adjusting, normalizing, etc do not solve this problem!
 - age-adjusting IQ scores isolates within-cohort variation in ability, but it does
 not tell us about which cohorts are smart or dumb

- ullet now, supposing that IQ ot D, compare
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress $\log w$ on $D\gamma$ (4)
 - regress log w on $D^*\gamma$ (5)
- ullet because $x\perp D$ in this example, (4) and (5) give the same estimate of γ
 - further, (1) and (4) give the same estimate of γ for the same reason
 - \bullet and, we have seen (2) and (4) always give the same estimate of γ
- we have no way of telling the difference between changes in experience and cohort ability
- the fundamental problem is:
 - we have no information about how measured IQ would change with the age of testing
 - adjusting, normalizing, etc do not solve this problem!
 - age-adjusting IQ scores isolates within-cohort variation in ability, but it does not tell us about which cohorts are smart or dumb

- ullet now, supposing that IQ \perp D, compare
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on $D\gamma$ (4)
 - regress log w on $D^*\gamma$ (5)
- ullet because $x\perp D$ in this example, (4) and (5) give the same estimate of γ
 - \bullet further, (1) and (4) give the same estimate of γ for the same reason
 - and, we have seen (2) and (4) always give the same estimate of γ
- we have no way of telling the difference between changes in experience and cohort ability
- the fundamental problem is:
 - we have no information about how measured IQ would change with the age of testing
 - adjusting, normalizing, etc do not solve this problem!
 - age-adjusting IQ scores isolates within-cohort variation in ability, but it does not tell us about which cohorts are smart or dumb

- now, supposing that IQ $\perp D$, compare
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on $D\gamma$ (4)
 - regress log w on $D^*\gamma$ (5)
- ullet because $x\perp D$ in this example, (4) and (5) give the same estimate of γ
 - further, (1) and (4) give the same estimate of γ for the same reason
 - and, we have seen (2) and (4) always give the same estimate of γ
- we have no way of telling the difference between changes in experience and cohort ability
- the fundamental problem is:
 - we have no information about how measured IQ would change with the age of testing
 - adjusting, normalizing, etc do not solve this problem!
 - age-adjusting IQ scores isolates within-cohort variation in ability, but it does not tell us about which cohorts are smart or dumb

- ullet now, supposing that IQ ot D, compare
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress $\log w$ on $D\gamma$ (4)
 - regress log w on $D^*\gamma$ (5)
- ullet because $x\perp D$ in this example, (4) and (5) give the same estimate of γ
 - further, (1) and (4) give the same estimate of γ for the same reason
 - and, we have seen (2) and (4) always give the same estimate of γ
- we have no way of telling the difference between changes in experience and cohort ability
- the fundamental problem is:
 - we have no information about how measured IQ would change with the age of testing
 - adjusting, normalizing, etc do not solve this problem!
 - age-adjusting IQ scores isolates within-cohort variation in ability, but it does not tell us about which cohorts are smart or dumb

- now, supposing that IQ $\perp D$, compare
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on $D\gamma$ (4)
 - regress log w on $D^*\gamma$ (5)
- ullet because $x\perp D$ in this example, (4) and (5) give the same estimate of γ
 - further, (1) and (4) give the same estimate of γ for the same reason
 - and, we have seen (2) and (4) always give the same estimate of γ
- we have no way of telling the difference between changes in experience and cohort ability
- the fundamental problem is:
 - we have no information about how measured IQ would change with the age of testing
 - adjusting, normalizing, etc do not solve this problem!
 - age-adjusting IQ scores isolates within-cohort variation in ability, but it does not tell us about which cohorts are smart or dumb

- now, supposing that IQ $\perp D$, compare
 - regress log w on $\alpha x + D\gamma$ (1)
 - regress log w on $\alpha x^* + D\gamma$ (2)
 - regress log w on $D\gamma$ (4)
 - regress log w on $D^*\gamma$ (5)
- ullet because $x\perp D$ in this example, (4) and (5) give the same estimate of γ
 - \bullet further, (1) and (4) give the same estimate of γ for the same reason
 - and, we have seen (2) and (4) always give the same estimate of γ
- we have no way of telling the difference between changes in experience and cohort ability
- the fundamental problem is:
 - we have no information about how measured IQ would change with the age of testing
 - · adjusting, normalizing, etc do not solve this problem!
 - age-adjusting IQ scores isolates within-cohort variation in ability, but it does not tell us about which cohorts are smart or dumb

- now, what if you had instead z, an IQ test administered at the same age?
 - would controlling for z help us isolate the experience effects?
- answer: depends whether you adjust z for age.
 - if you use raw z, you are fine
 - the component of ability that predicts cohort gets residualized out by OLS
 - and, our D* will be variation in experience that is orthogonal to cohort ability
- HOWEVER, if you age-adjust z to form z*, you undo the benefit of having kids tested at the same age
 - you would then be regressing log wages on $\alpha z^* + D\gamma$
 - because z^* is orthogonal to D by construction, we know the estimated γ will be identical to the one from regressing log wages on D alone
 - and, as we discussed, that reflects both cohort and experience effects

- now, what if you had instead z, an IQ test administered at the same age?
 - would controlling for z help us isolate the experience effects?
- answer: depends whether you adjust z for age.
 - it you use raw z, you are tine
 - the component of ability that predicts cohort gets residualized out by OLS
 - ullet and, our D^* will be variation in experience that is orthogonal to cohort ability
- HOWEVER, if you age-adjust z to form z*, you undo the benefit of having kids tested at the same age
 - you would then be regressing log wages on $\alpha z^* + D\gamma$
 - because z^* is orthogonal to D by construction, we know the estimated γ will be identical to the one from regressing log wages on D alone
 - and, as we discussed, that reflects both cohort and experience effects

- now, what if you had instead z, an IQ test administered at the same age?
 - would controlling for z help us isolate the experience effects?
- answer: depends whether you adjust z for age.
 - if you use raw z, you are fine
 - the component of ability that predicts cohort gets residualized out by OLS
 - ullet and, our D^st will be variation in experience that is orthogonal to cohort ability
- HOWEVER, if you age-adjust z to form z*, you undo the benefit of having kids tested at the same age
 - you would then be regressing log wages on $\alpha z^* + D\gamma$
 - because z^* is orthogonal to D by construction, we know the estimated γ will be identical to the one from regressing log wages on D alone
 - and, as we discussed, that reflects both cohort and experience effects.

- now, what if you had instead z, an IQ test administered at the same age?
 - would controlling for z help us isolate the experience effects?
- answer: depends whether you adjust z for age.
 - if you use raw z, you are fine
 - the component of ability that predicts cohort gets residualized out by OLS
 - ullet and, our D^st will be variation in experience that is orthogonal to cohort ability
- HOWEVER, if you age-adjust z to form z*, you undo the benefit of having kids tested at the same age
 - you would then be regressing log wages on $\alpha z^* + D\gamma$
 - because z^* is orthogonal to D by construction, we know the estimated γ will be identical to the one from regressing log wages on D alone
 - In and, as we discussed, that reflects both cohort and experience effects

- now, what if you had instead z, an IQ test administered at the same age?
 - would controlling for z help us isolate the experience effects?
- answer: depends whether you adjust z for age.
 - if you use raw z, you are fine
 - the component of ability that predicts cohort gets residualized out by OLS
 - ullet and, our D^* will be variation in experience that is orthogonal to cohort ability
- HOWEVER, if you age-adjust z to form z*, you undo the benefit of having kids tested at the same age
 - you would then be regressing log wages on $\alpha z^* + D\gamma$
 - because z^* is orthogonal to D by construction, we know the estimated γ will be identical to the one from regressing log wages on D alone
 - and, as we discussed, that reflects both cohort and experience effects.

- now, what if you had instead z, an IQ test administered at the same age?
 - would controlling for z help us isolate the experience effects?
- answer: depends whether you adjust z for age.
 - if you use raw z, you are fine
 - the component of ability that predicts cohort gets residualized out by OLS
 - ullet and, our D^* will be variation in experience that is orthogonal to cohort ability
- HOWEVER, if you age-adjust z to form z*, you undo the benefit of having kids tested at the same age
 - vou would then be regressing log wages on $\alpha z^* + D^2$
 - because z^* is orthogonal to D by construction, we know the estimated γ will be identical to the one from regressing log wages on D alone
 - and, as we discussed, that reflects both cohort and experience effects

- now, what if you had instead z, an IQ test administered at the same age?
 - would controlling for z help us isolate the experience effects?
- answer: depends whether you adjust z for age.
 - if you use raw z, you are fine
 - the component of ability that predicts cohort gets residualized out by OLS
 - ullet and, our D^* will be variation in experience that is orthogonal to cohort ability
- HOWEVER, if you age-adjust z to form z*, you undo the benefit of having kids tested at the same age
 - you would then be regressing log wages on $\alpha z^* + D\gamma$
 - because z^* is orthogonal to D by construction, we know the estimated γ will be identical to the one from regressing log wages on D alone
 - and, as we discussed, that reflects both cohort and experience effects

- now, what if you had instead z, an IQ test administered at the same age?
 - would controlling for z help us isolate the experience effects?
- answer: depends whether you adjust z for age.
 - if you use raw z, you are fine
 - the component of ability that predicts cohort gets residualized out by OLS
 - ullet and, our D^* will be variation in experience that is orthogonal to cohort ability
- HOWEVER, if you age-adjust z to form z*, you undo the benefit of having kids tested at the same age
 - you would then be regressing log wages on $\alpha z^* + D\gamma$
 - because z^* is orthogonal to D by construction, we know the estimated γ will be identical to the one from regressing log wages on D alone
 - and, as we discussed, that reflects both cohort and experience effects

- now, what if you had instead z, an IQ test administered at the same age?
 - would controlling for z help us isolate the experience effects?
- answer: depends whether you adjust z for age.
 - if you use raw z, you are fine
 - the component of ability that predicts cohort gets residualized out by OLS
 - ullet and, our D^* will be variation in experience that is orthogonal to cohort ability
- HOWEVER, if you age-adjust z to form z^* , you undo the benefit of having kids tested at the same age
 - you would then be regressing log wages on $\alpha z^* + D\gamma$
 - because z^* is orthogonal to D by construction, we know the estimated γ will be identical to the one from regressing log wages on D alone

and, as we discussed, that reflects both cohort and experience effects

- now, what if you had instead z, an IQ test administered at the same age?
 - would controlling for z help us isolate the experience effects?
- answer: depends whether you adjust z for age.
 - if you use raw z, you are fine
 - the component of ability that predicts cohort gets residualized out by OLS
 - ullet and, our D^* will be variation in experience that is orthogonal to cohort ability
- HOWEVER, if you age-adjust z to form z*, you undo the benefit of having kids tested at the same age
 - you would then be regressing log wages on $\alpha z^* + D\gamma$
 - because z^* is orthogonal to D by construction, we know the estimated γ will be identical to the one from regressing log wages on D alone
 - and, as we discussed, that reflects both cohort and experience effects

- the bottom line here is that your choice of specification determines the residual variation used to estimate your coefficient of interest
- many specification choices, e.g.
 - fixed effects
 - measurement error
 - normalizations
 - omitted variables
- the key to thinking clearly about the costs and benefits of these choices is to think about how they change the residual variation "in the denominator"

- the bottom line here is that your choice of specification determines the residual variation used to estimate your coefficient of interest
- many specification choices, e.g.
 - fixed effects
 - measurement error
 - normalizations
 - omitted variables
- the key to thinking clearly about the costs and benefits of these choices is to think about how they change the residual variation "in the denominator"

- the bottom line here is that your choice of specification determines the residual variation used to estimate your coefficient of interest
- many specification choices, e.g.
 - fixed effects
 - measurement error
 - normalizations
 - omitted variables
- the key to thinking clearly about the costs and benefits of these choices is to think about how they change the residual variation "in the denominator"

- the bottom line here is that your choice of specification determines the residual variation used to estimate your coefficient of interest
- many specification choices, e.g.
 - fixed effects
 - · measurement error
 - normalizations
 - omitted variables
- the key to thinking clearly about the costs and benefits of these choices is to think about how they change the residual variation "in the denominator"

- the bottom line here is that your choice of specification determines the residual variation used to estimate your coefficient of interest
- many specification choices, e.g.
 - fixed effects
 - · measurement error
 - normalizations
 - omitted variables
- the key to thinking clearly about the costs and benefits of these choices is to think about how they change the residual variation "in the denominator"

- the bottom line here is that your choice of specification determines the residual variation used to estimate your coefficient of interest
- many specification choices, e.g.
 - fixed effects
 - · measurement error
 - normalizations
 - omitted variables
- the key to thinking clearly about the costs and benefits of these choices is to think about how they change the residual variation "in the denominator"

- the bottom line here is that your choice of specification determines the residual variation used to estimate your coefficient of interest
- many specification choices, e.g.
 - fixed effects
 - measurement error
 - normalizations
 - omitted variables
- the key to thinking clearly about the costs and benefits of these choices is to think about how they change the residual variation "in the denominator"

- suppose now we have $Y_{it} = \alpha + \beta D_i + \gamma T_t + \theta D_i \times T_t + e$
 - D_i is an indicator for a treatment group that starts off untreated
 the "control" group with D_i = 0 never gets treated
 - \bullet T_t is a dummy for the period after treatment is applied
 - what would the data matrix look like?
- the OLS orthogonality conditions tell us that

$$\sum_{D_i=1} \hat{e}_i = 0$$

- suppose now we have $Y_{it} = \alpha + \beta D_i + \gamma T_t + \theta D_i \times T_t + e$
 - D_i is an indicator for a treatment group that starts off untreated
 - ▶ the "control" group with $D_i = 0$ never gets treated
 - T_t is a dummy for the period after treatment is applied
 - what would the data matrix look like?
- the OLS orthogonality conditions tell us that

$$\sum_{D_i=1} \hat{e}_i = 0$$

- suppose now we have $Y_{it} = \alpha + \beta D_i + \gamma T_t + \theta D_i \times T_t + e$
 - D_i is an indicator for a treatment group that starts off untreated
 - ightharpoonup the "control" group with $D_i = 0$ never gets treated
 - T_t is a dummy for the period after treatment is applied
 - what would the data matrix look like?
- the OLS orthogonality conditions tell us that

$$\sum_{D_i=1} \hat{e}_i = 0$$

- suppose now we have $Y_{it} = \alpha + \beta D_i + \gamma T_t + \theta D_i \times T_t + e$
 - ullet D_i is an indicator for a treatment group that starts off untreated
 - ightharpoonup the "control" group with $D_i=0$ never gets treated
 - T_t is a dummy for the period after treatment is applied
 - what would the data matrix look like?
- the OLS orthogonality conditions tell us that

$$\sum_{D_i=1} \hat{e}_i = 0$$

- suppose now we have $Y_{it} = \alpha + \beta D_i + \gamma T_t + \theta D_i \times T_t + e$
 - D_i is an indicator for a treatment group that starts off untreated
 - ightharpoonup the "control" group with $D_i=0$ never gets treated
 - T_t is a dummy for the period after treatment is applied
 - what would the data matrix look like?
- the OLS orthogonality conditions tell us that

$$\sum_{D_i=1} \hat{e}_i = 0$$

- suppose now we have $Y_{it} = \alpha + \beta D_i + \gamma T_t + \theta D_i \times T_t + e$
 - D_i is an indicator for a treatment group that starts off untreated
 - ightharpoonup the "control" group with $D_i=0$ never gets treated
 - T_t is a dummy for the period after treatment is applied
 - what would the data matrix look like?
- the OLS orthogonality conditions tell us that

$$\sum_{D_i=1} \hat{\mathsf{e}}_i = 0$$

Conditional Independence and Causal Effects

References

Table of Contents

Linear Projections

Derivation of OLS Formula

Frisch-Waugh-Lovell Theorem

Examples

Conditional Independence and Causal Effects