

# University of Sri Jayewardenepura

# **Department of Statistics**

# STA 114 2.0 Probability and Distribution Theory I

# **Course Outline**

Type: Core

**Duration:** 30 lecture hours

Note: (But actual number of hours allocated in the master time table is 26.25 hours.

(105 min. per week \* 15 weeks = 26.25 hrs))

Pre-requisites: None

# **Course objective:**

To introduce the fundamentals of probability theory and basic principles of random variables and illustrate these concepts with engineering, medicine, business etc. applications.

## **Course contents:**

## 1 ELEMENTS OF PROBABILITY

- 1.1 Introduction
  - 1.1.1 Terminology
- 1.2 Events
  - 1.2.1 Events as subsets of sample spaces
  - 1.2.2 Random variables\*
  - 1.2.3 Events in terms of random variables\*
- 1.3 Event operations
  - 1.3.1 Complement
  - 1.3.2 Intersection
  - 1.3.3 Union
- 1.4 Axioms of probability
- 1.5 Interpretations of probability
  - 1.5.1 Relative frequency interpretation
  - 1.5.2 Subjective interpretation
- 1.6 Methods for determining probability
  - 1.6.1 Classical method
  - 1.6.2 Relative frequency method
  - 1.6.3 Subjective method
  - 1.6.4 Using probability models

# 1.7 Conditional probability

- 1.8 Rules of probability
  - 1.8.1 Complement rule
  - 1.8.2 Addition rule
  - 1.8.3 Multiplication rule
  - 1.8.4 The law of total probability
  - 1.8.5 Bayes' theorem

## 2 RANDOM VARIABLES\*

- 2.1 Definition of a random variable
- 2.2 Continuous random variables
- 2.3 Discrete random variables
- 2.4 Events in terms of random variable

## 3 DISTRIBUTION FUNCTION

- 3.1 Probability mass function (pmf)
  - 3.1.1 Introduction to probability mass functions
  - 3.1.2 Properties of a probability mass function
  - 3.1.3 How to define a probability mass function
- 3.2 Probability density function (pdf)
  - 3.2.1 Introduction to probability density functions

# 4 MODELS FOR DISCRETE DISTRIBUTIONS

- 4.1 Binomial distribution
  - 4.1.1 Bernoulli trial
  - 4.1.2 Binomial experiment
  - 4.1.3 Derivation of the pmf of the binomial distribution
- 4.2 Geometric distribution
- 4.3 Negative binomial distribution
- 4.4 Hypergeometric distribution
- 4.5 Poisson distribution

# **Learning Outcomes:**

At the end of this course, students should be able to:

- explain the meaning of technical terms
- state and prove probability rules and theorems
- write down events as subsets of sample spaces
- property define events related to problem
- write down complex events in terms of basic events
- calculate probability of events using probability rules
- interpret the probability
- identify random variables of interest in problems
- express events of interest in terms of random variables
- select suitable probability models for random variables
- Correctly use the notations introduced in class.
- calculate probabilities related to distributions
- use relationships between distributions in solving problems
- Solve the problems provided in class, answer the past papers available in the website
  of the department, and solve any other problem of similar nature that involves the
  course content.

#### **Method of Assessment:**

- 1. Mid Semester Examination 20%
- 2. End of Semester Examination 80%

Note: At least 80% attendance for lectures is required to sit for end semester examination

## **Reference Text books:**

- Introduction to the Theory of Statistics Authors: Mood, A.M., Graybill, F. A., and Boes, D. Publisher: McGraw Hill ISBN-13: 978-0070854659
- Probability and Statistics for Engineering and the Sciences, Eighth Edition Author: Jay L. Devore Publisher: Brooks/ Cole, Cengage learning ISBN – 13: 978-0-538-73352-6

Lecturer in charge: Ms. T. S. Talagala