

EE290C - Fall 2018

Advanced Topics in Circuit Design VLSI Signal Processing

Lecture 2: Computation Models
DSP Arithmetic

Announcements

- Assignment 1 due on Thursday, 8/30
- Assignment 2 due on Thursday 9/6
 - Will be posted on Thursday 8/30
 - If you have finished Bootcamp 2.2, just continue...

Advanced Topics in Circuit Design VLSI Signal Processing

Computational Models

Reading

Models

- Parhi, VLSI Digital Signal Processing Systems, Wiley'99
- Woods, McAllister, Lightbody, Yi, FPGA Implementation of DSP Systems, 2017 (Ch. 8)
- Khan, Digital Design of Signal Processing Systems, 1999.

Numbers

 Markovic, Brodersen, DSP Architecture Design Essentials, 2012, (Ch. 5)

CORDIC

- Markovic, Brodersen, DSP Architecture Design Essentials, 2012,
 (Ch. 6)
- Any other book above

Sampling and Quantization

Analog waveform

Sampled in time

Quantized

Throughput and Latency

- Sampling rate
- Throughput (rate)
- Clock rate
- Latency

Parallelism

Three processes, P1, P2 and P3

Sequential processing of a single source

Throughput =

Interleaving

Processes – P1, P2, P3

Processing elements

Pipelining

- Throughput⁻¹ = max $\{P1, P2, P3\}$
- Latency increased by clock 2 cycles

Recursions and Pipelining

Single-cycle recursion

Pipelining PE1:

DSP Algorithm Representations

- Common representations:
 - Kahn Process Network (KPN)
 - Signal Flow Graph (SFG)
 - Dataflow Graph (DFG)
 - Block diagram
- Formal rules yield formal transformations

Kahn Process Network

- A node fires when tokens are available at input FIFOs
 - Straightforward method of mapping DSP into hardware
 - Each node executes a sequential program, and can either wait or execute on inputs
 - G. Kahn, 1974.

KPN for MPEG Compression

Limitations of KPN

- > FIFO hard to reorder data
- Sparse data (token always consumed)
- Iterations on the same data

Block Diagrams

- Equation
- > FIR filter, direct form

$$y[n] = a_0x[n] + a_1x[n-1] + a_2x[n-2] + ... + a_Nx[n-N+1]$$

Signal Flow Graph

- Collection of nodes and directed edges [Crochiere, Oppenheim, 1975]
- Edges constant multipliers and delays
- Source and sink nodes
- Effective graph transformations
- > 3-tap FIR

Dataflow Graph

Dataflow Graph (DFG) Model

- Computational functions represented as nodes A, B
- Delays shown on edges (kD for k delays, representing z-k)
- Computation time in brackets next to the nodes: t(A), t(B), ...
- A(i), B(i), represent ith iteration of functions

Precedence Constraints

Edge represents intra-iteration precedence constraint – B(i) must occur after A(i)

Delay represents inter-iteration precedence constraint – B(i) must occur after A(i-1)

Schedules and Throughput

> 3 processors? 4 processors? ∞ processors? _______

Recursive Computation

3 processors? 4 processors? ∞ processors?

Throughput Limit: Iteration Bound

- Theorem: DFG is dead-lock free if and only if every cycle has non-zero sumdelay on it's edges
- If C is the set of cycles, t(v) is the computation delay of node v, and d(e) is the delay on edge e, then the Iteration Bound T_{∞} is given by the Maximum Cycle Mean:

$$m{T}_{\infty} = \sum_{cycles \ C}^{max} \left[\frac{\sum_{m{v} \in m{C}} m{t}(m{v})}{\sum_{m{e} \in m{C}} m{d}(m{e})} \right]$$

Iteration Bound

- Iteration Bound = max cycle mean = max {6/2, 11/1} = 11 t.u.
- Very useful for understanding limits to achievable thput
 - Ito-Parhi Algorithm for computing MCM: O(# nodes x # edges)

DFG Transformations

- There are many graph transformations that can be used to trade off power, performance, area
 - Pipelining
 - Paralleism
 - Interleaving
 - Folding
 - Loop unrolling
- Instead of going through theoretical concepts now, we will get to them through practical examples

Advanced Topics in Circuit Design VLSI Signal Processing

DSP Arithmetic

Number Systems: Algebraic

Algebraic Expressions e.g. $a = \pi + b$

- High-level abstraction
- Infinite precision
- Often easier to understand
- Good for theory/algorithm development
- Hard to implement
- Area/power vs. bitwidth and representation

^[1] C. Shi, Floating-point to Fixed-point Conversion, Ph.D. Thesis, University of California, Berkeley, 2004.

Number Systems: Floating Point

Widely used in CPUs

Chisel type: DSPReal

- Multiple precisions
- Often 'golden model' is in FP

Value =
$$(-1)^{Sign} \times Fraction \times 2^{(Exponent - Bias)}$$
 [2]

IEEE 754 standard	Sign	Exponent	Fraction	Bias
Single precision [31:0]	1 [31]	8 [30:23]	23 [22:0]	127
Double precision [63:0]	1 [63]	11 [62:52]	52 [51:00]	1023

[2] J.L. Hennesy and D.A. Paterson, Computer Architecture: A Quantitative Approach.

Floating-Point Standard: IEEE 754

Property #1

- Rounding a "half-way" result to the nearest float (picks even)
- Example:

```
6.1 \times 0.5 = 3.05 (base 10, 2 digits)
even 3.0 3.1 (base 10, 1 digit)
```

Property #2

- Includes special values (NaN, ∞, -∞)
- Examples:

$$sqrt(-0.5) = NaN$$
, $f(NaN) = NaN$ [check this!] $1/0 = \infty$, $1/\infty = 0$

Floating-Point Standard: IEEE 754

Property #3

 \rightarrow Uses denormals to represent the result < 1.0 \times e Emin

Example:

base 10, 4 significant digits, $x = 1.234 \times 10^{\text{Emin}}$

denormals:
$$\chi/10 \rightarrow 0.123 \times 10^{\text{Emin}}$$

$$x/1,000 \rightarrow 0.001 \text{ x } 10^{\text{Emin}}$$

$$x/10,000 \to 0$$

$$x = y \Leftrightarrow x - y = 0$$

$$x = 1.256 \times 10^{\text{Emin}}, y = 1.234 \times 10^{\text{Emin}}$$

$$x - y = 0.022 \times 10^{\text{Emin}} = 0$$
 (although $x \neq y$)

denormal number (exact computation)

Floating-Point Standard: IEEE 754

- Property #4
 - Rounding modes
 - Nearest (default)
 - Toward 0
 - ➤ Toward ∞
 - ➤ Toward -∞

Floating-Point Numbers

- Single precision: 32 bits
 - > Sign: 1 bit
 - Exponent: 8 bits
 - Fraction: 23 bits
 - Fraction < 1 \Rightarrow Significand = 1 + Fraction
 - ▶ Bias = 127

Example:

```
1 10000001 0100...0 (significand = 1.25) sign exponent fraction 129 - 127 0.01_2 = 0.25 -1.25 \times 2^2 = -5
```

Fixed Point: 2's Complement

- W_{Int} and W_{Fr} suitable for predictable dynamic range
 - o-mode (overflow, wrap-around)
 - q-mode (trunc, roundoff)
- Compact implementation

Fixed Point: Unsigned Magnitude

- Useful built-in MATLAB functions:
 - fix, round, ceil, floor, dec2bin, bin2dec, etc.
- Find them in Scala!
 - > round, ceil floor, Scala Breeze

Fixed-Point Representations

Sign magnitude

Chisel types: Uint, SInt

- 2's complement
 - $x + (-x) = 2^n$ (complement each bit, add 1)
 - Most widely used (signed arithmetic easy to do)
- > 1's complement
 - $x + (-x) = 2^n 1$ (complement each bit)
- Biased add bias, encode as ordinary unsigned number
 - > k + bias ≥ 0, bias = 2^{n-1} (typically)

Fixed-Point Representations: Example

Example: n = 4 bits, k = 3, -k = ?

> Sign-magnitude: $k = 0011_2 \rightarrow -k = 1011_2$

> 2's complement:
$$k + 1011 = 2^n$$
 0011
 $-k = 1100$ $+ 1101$
 $+ 1$ 10000

Procedure:

- Bit-wise inversion
- Add "1"

- > 1's complement: $-k = 1100_2 k + (-k) = 2^n 1$
- Biased: $k + \text{bias} = 1011_2$ $-k + \text{bias} = 0101_2 = 5 ≥ 0$ $2^{n-1} = 8 = 1000_2$

Overflow

> Example: unsigned 4-bit addition

$$6 = 0110_{2}$$

+11 = 1011₂
= 17 = 10001₂ (5 bits!)
extra bit

- Property of 2's complement
 - Negation = bit-by-bit complement + 1 → C_{in} = 1, result: a b

Interval Arithmetic

- Don't think of numbers as bits with bitwidths!
- Think of them as numbers (Interval types), with ranges!

Op	Naive Width	Lower Bound	Upper Bound	Precision
add(x, y)	$max(x_w, y_w) + 1$	$x_l + y_l$	$x_h + y_h$	$max(x_p, y_p)$
sub(x, y)	$max(x_{w}, y_{w}) + 1$	$x_l - y_h$	$x_h - y_l$	$max(x_p, y_p)$
mul(x, y)	$x_w + y_w$	$min(x_l * y_l, x_l * y_h, x_h * y_l, x_h * y_h)$	$max(x_l * y_l, x_l * y_h, x_h * y_l, x_h * y_h)$	$x_p + y_p$
$\ \operatorname{wrap}(x, y) \ $	$ w_x $	y_l	y_h	$ x_p $
clip(x, y)	$min(x_w, y_w)$	$max(x_l, y_l)$	$min(x_h, y_h)$	$ x_p $

- + Propagate smart inference!
 - Reduce # of intermediate bits 😊
 - Guarantee correct result ©

Chisel type: Interval

Don't sweat the details!

Other Number Representations

- Affine arithmetic
 - Intervals with correlations
- Logarithmic number systems (LNS)
- Redundant number systems
 - Carry-free arithmetic
 - Will revisit later
- Residue number system

Next Lecture

- Quantization, finite precision
- CORDIC algorithm