STATS 2107

Statistical Modelling and Inference II

Solutions

Workshop 9:

χ^2 test of association

Matt Ryan

Semester 2 2022

Contents

Vhat and Why?	2
The Titanic	2
The question	
The story so far	
χ^2 test	
Welcome to the cross tabs	
A null hypothesis	
A test statistics	
Back to our question	9
Is there a relationship between a passengers class and their survival rate?	9
What does the data say?	9
Perform a test	
chisq.test	
our turn	4
What to do	4
Vhy does this all work?	Ę
Consider the 2×2 case	Ę
What happens under the null hypothesis?	
Estimating π and expected values	
Table of expected values	
Our test statisitic	
Consider W_1	
What does this look like?	
What are the degrees of freedom?	
Your turn	7
What to do	,

What and Why?

The Titanic

```
titanic <- read_csv(here::here("data/titanic.csv"), col_types = cols())</pre>
```

The Titanic is a very famous ship that sank in 1912, and we have data on it! This data set contains the following information on 891 passengers:

```
tribble(
    ~"Variable", ~"Info",
    "survived", "Categorical, 1 for yes, 0 for no",
    "pclass", "Categorical, either 1, 2, or 3",
    "sex", "Categorical, either F or M"
) %>%
    knitr::kable()
```

Variable	Info
survived	Categorical, 1 for yes, 0 for no
pclass	Categorical, either 1, 2, or 3
sex	Categorical, either F or M

The question

Is there a relationship between a passengers class and their survival rate?

How can we go about answering this?

The story so far

```
tribble(
    ~"", ~"Continuous", ~"Categorical",
    "Continuous", "Linear regression", "t-test",
    "Categorical", "Next year!", "$\\chi^2$ test"
) %>%
    knitr::kable()
```

	Continuous	Categorical
Continuous Categorical	Linear regression Next year!	t-test χ^2 test

χ^2 test

The χ^2 test of association tests for independence between two categorical variables X and Y. Suppose

- X has I levels $i = 1, 2, \ldots, I$
- Y has J levels $j = 1, 2, \dots, J$

Welcome to the cross tabs

$$\frac{Y_1}{X_1} \quad \frac{Y_2}{X_{11}} \quad \cdots \quad Y_J$$

	Y_1	Y_2	• • •	Y_J
$\overline{X_2}$	N_{21}	N_{22}	• • •	N_{2J}
:	:	:	٠	:
X_I	N_{I1}	N_{I2}		N_{IJ}

A null hypothesis

The χ^2 test works under the following hypothesis:

 H_0 : There is no association between X and Y

VS

 H_a : There is an association between X and Y

A test statistics

$$\chi = \sum_{i,j} \frac{\left(N_{ij} - \mathrm{E}[N_{ij}]\right)^2}{\mathrm{E}[N_{ij}]}.$$

Under H_0 , $\chi \sim \chi^2_{(I-1)(J-1)}$.

Back to our question

Is there a relationship between a passengers class and their survival rate?

We test the hypothesis:

 H_0 : There is no association between the passenger class and whether they survived.

 $_{\mathrm{VS}}$

 H_a : There is an association between the passenger class and whether they survived.

What does the data say?

```
titanic %>%
  count(pclass, survived) %>%
  pivot_wider(names_from = survived, values_from = n) %>%
  knitr::kable()
```

pclass	0	1
1	80	136
2	97	87
3	372	119

Perform a test

First, we need this data in a nice format. We can do it tidy, but base is better here:

```
(survival_class_crosstabs <- table(titanic$pclass, titanic$survived))</pre>
```

chisq.test

chisq.test(survival_class_crosstabs)

```
##
## Pearson's Chi-squared test
##
## data: survival_class_crosstabs
## X-squared = 102.89, df = 2, p-value < 2.2e-16</pre>
```

Your turn

What to do

1. We rejected the hypothesis test. By looking at the cross tabs, which class do you think is most related to survival outcome? Why do you think this is?

Solutions:

Looking at the crosstabs table, we see that A LOT of third class passengers died. This is likely because

- a. They were lower class citizens.
- b. They were trapped at the bottom of the boat.
- 2. Obtain a crosstabs table relating passenger sex to survival rate.

Solutions:

```
(survival_sex_crosstabs <- table(titanic$sex, titanic$survived))</pre>
```

```
## ## 0 1
## female 81 233
```

3. Test the hypothesis at the 5% level that there is no association between sex and whether a passenger survived or not.

Solutions:

chisq.test(survival_sex_crosstabs)

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: survival_sex_crosstabs
## X-squared = 260.72, df = 1, p-value < 2.2e-16</pre>
```

Solutions:

Under the null hypothesis, our test statistics follows a χ_1^2 distribution. Our observed statistic is 260.72 with a p-value less than $2.2 \times 10^{-16} < 0.05$. Hence, we reject the null hypothesis and conclude there is an association between passenger sex and whether they survived.

Why does this all work?

Consider the 2×2 case

	Y_1	Y_2	Total
$\overline{X_1}$	W_1	$N_1 - W_1$	N_1
X_2	W_2	$N_2 - W_2$	N_2
Total	\mathbf{W}	$\mathbf{N}-\mathbf{W}$	\mathbf{N}

What happens under the null hypothesis?

Since there is no association between Y and X, there is a probability π of seeing Y_1 and $1 - \pi$ of seeing Y_2 , no matter what X is. Hence

$$W_i \sim \text{Bin}(N_i, \pi)$$

Estimating π and expected values

Our best guess of the probability of being in Y_1 is

$$\hat{\pi} = \frac{W}{N} \, .$$

Hence,

$$\mathrm{E}\left[W_{i}\right] \approx N_{i}\hat{\pi} \quad \mathrm{and} \quad \mathrm{var}\left(W_{i}\right) \approx N_{i}\hat{\pi}(1-\hat{\pi}) \,.$$

Table of expected values

Truth

	Y_1	Y_2	Total
$\overline{X_1}$	W_1	$N_1 - W_1$	N_1
X_2	W_2	$N_2 - W_2$	N_2
Total	\mathbf{W}	$\mathbf{N}-\mathbf{W}$	\mathbf{N}

Expected

$$\begin{array}{c|cccc} & Y_1 & Y_2 \\ \hline X_1 & N_1 \hat{\pi} & N_1 (1 - \hat{\pi}) \\ X_2 & N_2 \hat{\pi} & N_2 (1 - \hat{\pi}) \end{array}$$

Our test statisitic

$$\chi = \frac{(W_1 - \operatorname{E}[W_1])^2}{\operatorname{E}[W_1]} + \frac{(N_1 - W_1 - \operatorname{E}[N_1 - W_1])^2}{\operatorname{E}[N_1 - W_1]} + \frac{(W_2 - \operatorname{E}[W_2])^2}{\operatorname{E}[W_2]} + \frac{(N_2 - W_2 - \operatorname{E}[N_2 - W_2])^2}{\operatorname{E}[N_2 - W_2]}$$

Consider W_1

$$\frac{(W_1 - \operatorname{E}[W_1])^2}{\operatorname{E}[W_1]} + \frac{(N_1 - W_1 - \operatorname{E}[N_1 - W_1])^2}{\operatorname{E}[N_1 - W_1]}$$

$$= \frac{(W_1 - N_1\hat{\pi})^2}{N_1\hat{\pi}} + \frac{(N_1 - W_1 - N_1(1 - \hat{\pi}))^2}{N_1(1 - \hat{\pi})}$$

$$= \frac{(W_1 - N_1\hat{\pi})^2}{N_1\hat{\pi}} + \frac{(W_1 - \hat{\pi})^2}{N_1(1 - \hat{\pi})}$$

$$= \frac{(W_1 - N_1\hat{\pi})^2(1 - \hat{\pi}) + (W_1 - N_1\hat{\pi})^2\hat{\pi}}{N_1\hat{\pi}(1 - \hat{\pi})}$$

$$= \frac{(W_1 - N_1\hat{\pi})^2}{N_1\hat{\pi}(1 - \hat{\pi})}$$

What does this look like?

$$\left(\frac{\text{Random variable} - \text{mean}}{\text{SE}}\right)^2$$

For large N_1 CLT implies $W_1 \sim N(N_1 \hat{\pi}, N_1 \hat{\pi} (1 - \hat{\pi}))$, hence

$$\frac{(W_1 - N_1 \hat{\pi})^2}{N_1 \hat{\pi} (1 - \hat{\pi})} \stackrel{\cdot}{\sim} \chi_1^2$$

What are the degrees of freedom?

$$\chi = \frac{(W_1 - N_1 \hat{\pi})^2}{N_1 \hat{\pi} (1 - \hat{\pi})} + \frac{(W_2 - N_2 \hat{\pi})^2}{N_2 \hat{\pi} (1 - \hat{\pi})},$$

why is $\chi \sim \chi_1^2$?

Solutions:

Because we have $\hat{\pi}$ in each of the expressions, so this is not the sum of *independent* squared standard normals. This is analogous to the distribution of the sample variance!

Your turn

What to do

1. Consider the contingency table for sex and survival:

355.5253

survival_sex_crosstabs

```
## ## 0 1
## female 81 233
## male 468 109
```

Calculate the table of expected counts. Under the null hypothesis, how many males would we expect to survive the sinking of the Titanic?

Solutions:

Our total W is given by 81 + 468 = 549. Our total N is given by 81 + 233 + 468 + 109 = 891. Hence, the probability of not surviving under the null hypothesis is $\hat{\pi} = \frac{W}{N} \approx 0.6162$. Finally, the number of females is 81 + 233 = 314 and the number of males is 468 + 109 = 577. Then we get the table of expected counts by:

```
W <- 81 + 468
N <- 81 + 233 + 468 + 109
pi.hat <- W/N
sex_counts <- rowSums(survival_sex_crosstabs)

nonsurvival_column <- sex_counts * pi.hat
survival_column <- sex_counts * (1-pi.hat)

(expect_tab <- cbind(nonsurvival_column, survival_column))

## nonsurvival_column survival_column
## female 193.4747 120.5253</pre>
```

Solutions:

male

Thus, we would expect approximately 221 males to survive the sinking of the Titanic under the null hypothesis.

221.4747

2. Manually calculate the test statistics for this χ^2 test. Does this agree with what you got before?

Solutions:

We calculate the test statistic as

```
(X2 <- sum((survival_sex_crosstabs - expect_tab)^2/(expect_tab)))
## [1] 263.0506</pre>
```

Solutions:

Notice that this does not agree with what we got before. However, if we look at the output from before, it says

"Pearson's Chi-squared test with Yates' continuity correction". If we do not use the continuity correction, we get

```
chisq.test(survival_sex_crosstabs, correct = F)

##
## Pearson's Chi-squared test
##
## data: survival_sex_crosstabs
## X-squared = 263.05, df = 1, p-value < 2.2e-16</pre>
```

Solutions:

and our result matches.