2016-2017 年第1学期《高等代数-2》补考试卷

人:		学号: _		班号	ਰੋ:
本试卷共]稿纸。		<u>六</u> 页,满分			使用卷后附加
题号	卷面	成绩汇总	表(阅卷教》	市填写)	总成绩
满分	24	24	25	27	TO THE STATE OF
得分	21	21	20		
1) ì		(每空 $4 分,$) $\varepsilon_2 = (0,1,0)$ 3 中两组基,	$\varepsilon_3 = (0,0,1)$) 及 $\eta_1 = (0,0)$	
1) 1	及ε ₁ = (1,0,0 线性空间ℝ	$\varepsilon_2 = (0,1,0)$	ε ₃ = (0,0,1 则从第一约)及η _ι =(0,0 组基到第二	二组基的过
一 1) i =(1,1,0) 是 为	没ε ₁ = (1,0,0 浅性空间ℝ , 向量	ε ₂ =(0,1,0) 3中两组基,	ε ₃ = (0,0,1 则从第一组 在第二组基)及η ₁ =(0,0 组基到第二 下的坐标	力
1) i =(1,1,0) 是	及ε ₁ = (1,0,0 浅性空间 ℝ ,向量 (复数)的集	$arepsilon_2 = (0,1,0)$ 3 中两组基, $\alpha = (1,0,1)$	ε₃ = (0,0,1 则从第一。 在第二组基 数域℃上自)及η ₁ =(0,0 组基到第二 下的坐标 的线性空间	上组基的过 为

5) 欧氏空间 \mathbb{R}^2 中,基 $\varepsilon_1 = (1,0)$ $\varepsilon_2 = (0,1)$ 的度量矩阵为 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

每分 二、判断题(每题3分,对的在括号里画√,错的画×)

1、线性空间V的两个子空间 V_1 与 V_2 的和是直和的充要条件是 $V_1 \cap V_2 = \{\theta\}$ P_2 62. が .

(人) 2、数域 P 上两个有限维线性空间同构的充要条件是它们的维数相同 P371

 (\checkmark) 3、 V_1 与 V_2 是线性空间V的两个真子空间,则 $V_1 \cup V_2 \neq V$

(V) 4、有限维线性空间中的线性变换是单射是充要条件是它是满射 305 数.

(5、线性变换在不同基下的矩阵是相似的 P 288 反 5.

 $(\sqrt{)}$ 6、n阶矩阵A可对角化的充要条件是它有n个线性无关的特征向量 P 379. 这7

(人) 7、正交向量组必线性无关

1、已知 $\mathbb{R}^{2\times 2}$ 上的线性变换 $\sigma(X)=MX+XN$, 其中

$$M = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \quad N = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

第2页共6页

2、 求正交线性替换化下列实二次型为标准型: (ギア384) 作文 ア3% Ti8(1)

f(x₁,x₂,x₃)=x₁²+x₂²+x₃²-2x₁x₂-2x₁x₃+2x₂x₃

第3页共6页

得 分

四、证明题(27分)

1、设 \mathscr{A} 是n维线性空间V上的线性变换,满足 $\mathscr{A}^2 = \mathscr{A}$,

证明: 1) $\forall \alpha \in \mathscr{N} V$, $\mathscr{N} \alpha = \alpha$

2) $V = \sqrt{V} \oplus \sqrt{-1}(\theta)$, 即 $V \neq \sqrt{-1}$ 的值域和核的直和

3) $\sqrt{\frac{E_{V}}{e^{V}}}$ 在V中某组基下的矩阵为对角阵 $\begin{pmatrix} E_{r} & 0 \\ 0 & 0 \end{pmatrix}$

证明= 11) $\forall \alpha \in \mathbb{AV}$, 所 $\exists \beta \in V$, 使得 $\alpha = \mathbb{A\beta}$ $\exists \alpha \in \mathbb{A\beta}$

12) Yaedv. 由(1) 知 XX= X 若 XE N-1(0) 、別 XX= O 、こ Q= O

V = &V () X-1(0)

(3) 取 以的 - 姐基 在1, 12 ... 在 . 由(1)知知(= む , ゼ=1,2,...).

(3) 取 以的 - 姐基 在1, 12 ... な ... 由(1) 知(= む , ゼ=1,2,...)

(4) 知 知 在1, 位, ... な ... な 見 V的 - 俎基

在比基下的矩阵力 (Fr D)

第5页共6页

2、证明:正交的向量组必线性无关

- 3、设V是n维欧氏空间, W是V的线性子空间, 试证: $W^{\perp} = \{ \alpha \in V : (\alpha, \beta) = 0, \forall \beta \in W \} \uparrow \forall \in W^{\perp}$
- 0 til W C { a e V : (a, B) = 0, YBEW} 已知 WL是 W的正支补
 - : W I W W = V
 - :有 YXE W1, YBEW, 恒有(X,B)=D
 - .: W'C FREV: (a, B) = 0, YBEW]
- B AIR {deV=(d, B)=0. YBEW] C W1 € W1={ X ∈ V = (X, B) = 0 - Y B ∈ W}

YdeWICV = W+W1

d= b+y , Bew, yew!

由, W, 矢口 (以, 月) = 0

 $(\alpha, \beta) = (\beta + \gamma, \beta) = (\beta, \beta) + (\gamma, \beta) = 0$ P>60. 57 书P300 默.

€ to (y, f) = 0 . . . (β, β) = 0 . β=0

RP d= YEW : WICW P304 2011