

USP — UNIVERSIDADE DE SÃO PAULO

Aprendizagem automática de redes soma-produto

Relatório Final de Projeto de Iniciação Científica CNPq PIBIC Projeto 800585/2016-0

Bolsista: Renato Lui Geh

Orientador: Prof. Dr. Denis Deratani Mauá

São Paulo 2018

Resumo

Modelos probabilísticos baseados em grafo (PGMs) possibilitam modelar distribuições de probabilidade complexas com milhares de varíaveis. Devido a grande expressividade em representabilidade, PGMs mostraram-se viáveis para modelagem de casos reais.

Redes soma-produto (SPNs) são PGMs que restringem-se ao escopo de distribuições de probabilidade tratáveis. SPNs tiveram bons resultados em diversas aplicações, obtendo valores comparáveis a outros modelos estado-da-arte, porém com tempo de execução ordens de magnitude menor.

Apesar dos resultados promissores, atualmente existem poucas bibliotecas para inferência e aprendizado de SPNs. Além disso, não existe atualmente uma comparação detalhada entre diferentes algoritmos de rede-soma produto.

Este projeto teve dois objetivos. O primeiro foi construir uma biblioteca livre e gratuita para inferência e aprendizado de redes soma-produto. O segundo foi fazer uma comparação de alguns algoritmos de aprendizado de SPNs no domínio de classificação e compleição de imagens.

Palavras-chave: Modelos probabilísticos baseados em grafo, redes somaproduto, processamento de imagens

1 Introdução

Modelos probabilísticos baseados em grafos (PGM, do inglês *Probabilistic Graphical Models*) representam uma distribuição de probabilidade de forma compacta. Estes modelos representados por grafos facilitam tanto a compreensão humana ao estudá-los, quanto possibilitam que vários problemas já existentes em Teoria dos Grafos sejam utilizados como solução para problemas em PGMs. Extrair conhecimento de PGMs é análogo a extrair a probabilidade de um certo evento ocorrer dado que eventos distintos tenham ocorrido. Tal extração de conhecimento é chamada de inferência. Fazer inferência exata em PGMs clássicas, ou seja, achar a probabilidade exata de um certo evento, é intratável. Uma solução para este problema é utilizar métodos para inferência aproximada nestes modelos. No entanto, tais algoritmos aproximados são muitas vezes difíceis de analisar. Além disso, como os algoritmos de aprendizado do modelo utilizam inferência como subrotina, por consequência o aprendizado torna-se aproximado.

Figura 1: Fonte [12]

Redes soma-produto (SPN, de Sum-Product Network) são PGMs que representam uma distribuição de probabilidade tratável. Proposto em 2011, SPNs computam inferência exata em tempo linear ao número de arestas de seu grafo se sua estrutura obedecer a certas propriedades [14]. A Figura 1 mostra um exemplo de rede soma-produto representando o modelo Naïve Bayes com três atributos. SPNs apresentam uma série de características interessantes, como sua arquitetura profunda que permite representar funções de forma mais eficiente quanto mais profundo seu grafo [3]. Outras interessantes propriedades teóricas incluem uma generalização de SPNs para qualquer semianel em que o produto tenha escopo disjunto [7]. Com relação a aplicações, SPNs tiveram resultados impressionantes em diversas áreas, como enovelamento de proteínas [6], modelagem de sinais [13], classificação e reconstrução de imagens [10, 14, 4], reconhecimento de atividade [1] e linguagem natural [2].

Uma SPN pode ser definida como um DAG onde nós são somas ponderadas, produtos, variáveis indicadoras ou distribuições de probabilidade univariadas. Uma folha de uma SPN é sempre uma variável indicadora ou uma distribuição univariada e vice-versa. O escopo de uma SPN é o conjunto de todas variáveis da rede. O escopo de uma folha de uma SPN é a variável descrita pela variável indicadora ou distribuição univariada. Semânticamente, o

conjunto de filhos de um nó soma pode ser interpretado como uma relação de semelhança entre as variáveis dos escopos dos filhos, enquanto que o conjunto de filhos de um produto pode ser visto como uma relação de independência entre os escopos dos filhos do nó produto. O valor de um nó soma é a soma ponderada de seus filhos em função dos pesos de suas arestas de saída. O valor de um nó produto é o produto dos valores dos filhos e o valor de uma folha é o valor da variável indicadora ou a probabilidade da distribuição univariada.

Apesar dos resultados expressivos, atualmente existem poucas bibliotecas para inferência e aprendizado de redes soma-produto. Grande parte dos códigos existentes possuem pouca documentação ou não são mais mantidos ou atualizados. Além disso, não existem comparações detalhadas entre algoritmos de aprendizado de SPNs na literatura ou uma biblioteca que facilite esta tarefa.

Neste projeto, buscou-se criar uma biblioteca livre e gratuita para inferência e aprendizado de redes soma-produto. Foram implementadas subrotinas para computar a probabilidade de evidência exata, a probabilidade maximum a posteriori aproximada de uma SPN e três métodos de aprendizado de redes soma-produto. Adicionalmente, foram implementadas funções para auxiliar a comparação entre diferentes arquiteturas de SPNs, verificar propriedades da estrutura da rede e classificar e completar imagens.

2 Objetivos

O projeto teve como objetivos criar uma biblioteca livre e gratuita para inferência e aprendizado de redes soma-produto e gerar dados comparativos de diversos algoritmos de aprendizado de SPNs estado-da-arte.

Originalmente, planejava-se implementar quatro algoritmos de aprendizado. No entanto, preferiu-se gerar um relatório mais detalhado de três algoritmos. Os três algoritmos implementados são listados abaixo.

- a. Algoritmo de Poon-Domingos [14]
- b. Algoritmo de aprendizado estrutural de Dennis-Ventura $\left[4\right]$
- c. Algoritmo de aprendizado estrutural de Gens-Domingos [10]

Após as implementações, foram feitos testes de desempenho em conjuntos de dados reais e artificiais para classificação e compleição de imagens.

3 Metodologia

Neste projeto, buscou-se analisar três artigos de aprendizado de redes soma-produto.

- 1. Sum-Product Networks: A New Deep Architecture, H. Poon e P. Domingos, UAI 2011 [14]
- 2. Learning the Structure of Sum-Product Networks, R. Gens e P. Domingos, ICML 2013 [10]
- 3. Learning the Architecture of Sum-Product Networks Using Clustering on Variables, A. Dennis e D. Ventura, NIPS 2012 [4]

Foram implementados os algoritmos descritos e tentou-se replicar os resultados apresentados nos artigos. Para isso, foi construída a biblioteca GoSPN¹ na linguagem Go. A escolha da linguagem foi dada pelo suporte nativo a programação concorrente e paralela, velocidade de execução, e por ser uma linguagem fortemente tipada e compilada.

Após implementados os métodos de aprendizagem, foram feitos testes e comparações nos desempenhos e acurácias dos três algoritmos nos seguintes conjuntos de dados de imagens.

- (a) Caltech-101 [5]
- (b) Olivetti Faces Dataset [15]
- (c) Digits [8]
- (d) DigitsX [9]
- (e) MNIST [11]

4 Resultados e Discussão

O projeto consistiu na elaboração de três algoritmos de aprendizado. Estes algoritmos foram implementados na biblioteca $GoSPN^1$. Duas variações do método de otimização de descida de gradiente foram escritas para os algoritmos de Poon-Domingos e Dennis-Ventura. Para o algoritmo de Gens-Domingos, foram implementados dois métodos de *clustering*, DBS-CAN e k-means. Adicionalmente, os algoritmos k-mode e k-medoid foram implementados por Diarmaid Conaty² e Cassio P. de Campos² como contribuições à biblioteca. Para os testes de independência entre variáveis foram implementados os testes de qui-quadrado e

¹https://github.com/RenatoGeh/gospn

²Queen's University Belfast

G-test. A biblioteca também possibilita o uso de distribuições gaussianas ou multinomiais como folhas da rede.

Para o método de otimização de descida de gradiente, foram criadas as versões soft e hard. A primeira usa as derivadas parciais da SPN em função dos pesos para atualizar os parâmetros da rede. No entanto, para o caso de redes profundas o gradiente tende a se aproximar de zero conforme o sinal é propagado pela rede. Para evitar este problema, usa-se o segundo método. Seja S uma SPN, define-se M a rede máximo-produto (MPN) de S como o grafo cópia de S em que todos os nós somas são substituidos por nós máximo. O valor de um nó máximo é o maior valor ponderado de seus filhos. O valor de uma MPN é o valor da raíz. O caminho percorrido a partir da raíz de maior valor representa a probabilidade maximum a posteriori (MAP). Denotaremos por W o multiconjunto de todas as arestas que pertencem ao caminho descrito pelo MAP. Extraindo as derivadas da MPN M e denotando Ch(n) e Pa(n) os conjuntos de filhos e pais do nó n respectivamente, temos os valores descritos nas tabelas 1 e 2.

Método	Derivada parcial do nó j		
Soft	$\frac{\partial S}{\partial S_j} = \sum_{\substack{n \in \text{Pa}(j) \\ n: \text{ soma}}} w_{n,j} \frac{\partial S}{\partial S_n} + \sum_{\substack{n \in \text{Pa}(j) \\ n: \text{ produto}}} \frac{\partial S}{\partial S_n} \prod_{k \in \text{Ch}(n) \setminus \{j\}} S_k$		
Hard	$\frac{\partial M}{\partial M_{j}} = \sum_{\substack{n \in \operatorname{Pa}(j) \\ n: \text{ soma}}} \begin{cases} w_{k,n} \frac{\partial M}{\partial M_{k}} & \text{se } w_{k,n} \in W \\ 0 & \text{c.c.} \end{cases} + \sum_{\substack{n \in \operatorname{Pa}(j) \\ n: \text{ produto}}} \frac{\partial M}{\partial M_{n}} \prod_{k \in \operatorname{Ch}(n) \setminus \{j\}} M_{k}$		

Tabela 1 As derivadas parciais da SPN em função de um nó j no caso geral.

Método	Derivada parcial do peso
Soft	$\frac{\partial S}{\partial w_{n,j}} = S_j \frac{\partial S}{\partial S_n}$
Hard	$\frac{\partial M}{\partial w_{n,j}} = M_j \frac{\partial M}{\partial M_n}$

Tabela 2 As derivadas parciais da SPN em função da aresta $n \to j.$

Todas as derivadas são em função de certa evidência. Portanto a notação $\partial S/\partial S_j$ equivale a $\partial S/\partial S_j(X)$, onde X é algum conjunto de valorações válidas para as variáveis de S. Para computar o gradiente, deriva-se a log-verossimilhança da distribuição da SPN em função do conjunto de parâmetros w, ou seja, $\frac{\partial}{\partial w} \log P(X)$, obtendo os resultados da Tabela 3.

Método	Gradientes
Soft	$\Delta w_{n,j} = \eta \frac{\partial S}{\partial w_{n,j}}$
Hard	$\Delta w_{n,j} = \eta \frac{c_{n,j}}{w_{n,j}}$

Tabela 3 As derivadas parciais da SPN em função da aresta $n \to j$.

Onde $c_{n,j}$ denota a contagem de vezes que $w_{n,j}$ pertence a W. No caso do método soft de gradiente descendente, a atualização do peso depende da derivada parcial $\partial S/\partial w_{n,j}$, enquanto que na versão hard, $\Delta w_{n,j}$ apenas depende do número de passagens pela aresta. É portanto possível perceber o porquê do método soft ter problemas com difusão de gradiente e hard não. Testes feitos com todos os conjuntos de dados usados mostraram que difusão de gradiente ocorreu em todos eles, o que mostra que, em casos de mundo real é necessário o uso do método de otimização de gradiente descendente hard.

Figura 2: O gradiente no método soft tende a se diluir conforme a altura da rede. Usando a derivação hard, o gradiente não depende da derivada parcial diluída.

Para a implementação e replicação dos resultados do artigo de Poon-Domingos, foi necessário implementar o algoritmo de geração de estrutura densa descrito no artigo. O código escrito para este algoritmo é restrito ao domínio de imagens, no entanto, a ideia por trás da arquitetura pode ser aplicada a qualquer domínio em que existe uma forte relação de dependência entre variáveis locais [14].

A estrutura densa é formulada a partir da ideia de que existe uma relação de semelhança entre os pixels de uma região retangular de uma imagem, e uma relação de independência entre outras regiões retangulares que não a contém. Cada região retangular é representada

por um conjunto de *m* nós somas. Para cada região retangular, decompõe-se a região em duas partições de forma que as partições também sejam regiões retangulares da imagem. Na SPN, representa-se esta decomposição por um conjunto de nós produtos.

Figura 3: Decomposição de uma região R em duas subregiões R_1 e R_2 . O conjunto Π de nós produtos representa a relação de independência entre as duas subregiões.

Quando R representa a própria imagem, ou seja, a região retangular que engloba todos os pixels da imagem, então o conjunto de nós somas contém apenas um nó soma. Para regiões unitárias em que a região é apenas um pixel, ao invés de somas, geram-se g gaussianas de tal forma que cada k gaussiana é o k-ésimo quantil da distribuição dos valores do pixel. Quando a região tem dimensões menores que $r \times r$, a chamamos de região fina. As regiões maiores ou iguais a $r \times r$ são chamadas de regiões grosseiras. Para as regiões grosseiras tomam-se apenas partições que geram subregiões maiores ou iguais a $r \times r$, enquanto que para regiões finas, geram-se partições para todas as possíveis subregiões retangulares. As arestas conectando uma região R ao conjunto de produtos Π são geradas de tal forma que todo nó soma de R está conectada a todo nó produto de Π . Porém, as arestas ligando cada produto em Π a cada nó soma nas subregiões r_1 e R_2 podem ou não existir. Para decidir quais arestas devem existir, escolhe-se uma ligação $\pi_k \to \sigma_j^i$, onde $\pi \in \Pi$ e $\sigma_j^i \in R_j$, tal que esta aresta seja a mais provável dada uma instância do conjunto de treinamento.

No código disponibilizado pelos autores do artigo³, o algoritmo usa *hard* Expectation-Maximization (EM) para gerar as arestas mais prováveis e decidir seus pesos, apesar do artigo dar resultados para o método de otimização de gradiente descendente. Com o intuito de gerar resultados mais semelhantes ao artigo possível, foi implementada a parte de se gerar as arestas mais prováveis por *hard* EM, porém a ponderação das arestas foi feita a partir do método de gradiente.

O algoritmo de Dennis-Ventura segue uma ideia similar ao de Poon-Domingos, bus-

³http://spn.cs.washington.edu/spn/downloadspn.php

cando achar relações de semelhança e independência entre regiões da imagem. No entanto, generaliza-se a ideia de região para qualquer conjunto de pixels similares, mesmo que não sejam localmente próximas, e podendo tomar formas arbitrárias. Para isso, usa-se métodos de clustering para achar tais regiões.

Seja D o conjunto de dados, onde D_i é a i-ésima instância. D_i então descreve um conjunto ordenado de valorações dos pixels (ou seja, uma imagem) indexado pelos pixels. É possível visualizar D como uma matriz $n \times m$, onde n é o número de imagens do conjunto de dados e m é o número de pixels na imagem. A transposta de D^{T} é portanto a matriz $m \times n$, onde as colunas são as imagens e as linhas as valorações de um mesmo pixel.

Para o algoritmo de Dennis-Ventura, gera-se inicialmente um "grafo de regiões" que descreve a SPN por meio de um esboço da arquitetura final. Um nó no grafo de regiões é um nó região ou um nó partição. A raíz do grafo é sempre a imagem inteira. O grafo de regiões é gerado particionando-se, recursivamente, cada região em duas subregiões. Seja R um nó região e D_R^{T} o conjunto de dados transposto contendo apenas variáveis no escopo de R, particiona-se R em duas subregiões R_1 e R_2 usando 2-means clustering em D_R^{T} . O resultado deste clustering são os dois conjuntos de dados transpostos $D_{R_1}^{\mathsf{T}}$ e $D_{R_2}^{\mathsf{T}}$. Cria-se um nó partição P e liga-se $R \to P$, $P \to R_1$ e $P \to R_2$. Em seguida, faz-se a recorrência em R_1 e R_2 se, para cada região, seu escopo for maior que um. Para o nó raíz, repetem-se estes passos k vezes, onde a cada passo i, usa-se o i-ésimo cluster de um k-cluster em D (não transposto).

Figura 4: A arquitetura de Dennis-Ventura gera um grafo de regiões (a) que representa um esboço da arquitetura real da rede soma-produto (b). Fonte: [4]

Após gerado o grafo de regiões, é feita uma transformação para uma rede soma-produto válida. Cada nó região é transformado em um conjunto de m nós somas. Se a região representa apenas um pixel, então geram-se g nós gaussianas, onde cada q-ésima gaussiana é o q-quantil do pixel. Para um nó partição P, sejam R_1 e R_2 as duas subregiões filhas de P, e sejam $|R_1|$ e $|R_2|$ o número de nós em cada filho do nó partição. São então criados $|R_1||R_2|$ nós produtos, onde cada aresta de P é uma combinação dois a dois dos nós R_1^i e R_2^j . O resultado desta transformação é a arquitetura de Dennis-Ventura. Após criada a arquitetura, aprende-se os pesos através do método de otimização de gradiente descendente.

5 Conclusão

Referências

- [1] Mohamed R. Amer e Sinisa Todorovic. "Sum-Product Networks for Activity Recognition". Em: *IEEE Transactions on Pattern Recognition and Machine Intelligence* (TPAMI 2015) (2015).
- [2] Wei-Chen Cheng et al. "Language Modelling with Sum-Product Networks". Em: Annual Conference of the International Speech Communication Association 15 (INTERS-PEECH 2014) (2014).
- [3] Olivier Delalleau e Yoshua Bengio. "Shallow vs. Deep Sum-Product Networks". Em: Advances in Neural Information Processing Systems 24 (NIPS 2011) (2011).
- [4] Aaron Dennis e Dan Ventura. "Learning the Architecture of Sum-Product Networks Using Clustering on Variables". Em: Advances in Neural Information Processing Systems 25 (2012).
- [5] L. Fei-Fei, R. Fergus e P. Perona. "Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories". Em: *IEEE CVPR-2014 Workshop on Generative-Model Based Vision* (2014).
- [6] Abram L. Friesen e Pedro Domingos. "Recursive Decomposition for Non-convex Optimization". Em: International Joint Conference on Artificial Intelligence 24 (IJCAI 2015) (2015).
- [7] Abram L. Friesen e Pedro Domingos. "The Sum-Product Theorem: A Foundation for Learning Tractable Models". Em: *International Conference on Machine Learning 33* (ICML 2016) (2016).
- [8] Renato Lui Geh. *Digits Dataset*. URL: https://github.com/RenatoGeh/datasets/tree/master/digits.
- [9] Renato Lui Geh. *DigitsX: Digits-Expanded Dataset*. URL: https://github.com/RenatoGeh/datasets/tree/master/digits_x.
- [10] Robert Gens e Pedro Domingos. "Learning the Structure of Sum-Product Networks". Em: International Conference on Machine Learning 30 (2013).
- [11] Y. LeCunn et al. "Gradient-Based Learning Applied to Document Recognition". Em: *Proceedings of the IEEE* (1998).
- [12] Robert Peharz. "Foundations of Sum-Product Networks for Probabilistic Modeling". Tese de dout. Graz University of Technology, 2015.
- [13] Robert Peharz et al. "Modeling Speech with Sum-Product Networks: Application to Bandwidth Extension". Em: *IEEE International Conference on Acoustics, Speech, and Signal Processing 39 (ICASSP 2014)* (2014).
- [14] Hoifung Poon e Pedro Domingos. "Sum-Product Networks: A New Deep Architecture". Em: *Uncertainty in Artificial Intelligence* 27 (2011).

[15] Ferdinando Samaria e Andy Harter. "Parameterisation of a stochastic model for human face identification". Em: *Proceedings of 2nd IEEE Workshop on Applications of Computer Vision* (1994).