Integrated Power Analysis and Battery Justification for Rover System

(Full Drivetrain Calculations + Gripper Analysis)

Prepared for: Team Deimos IIT Mandi Prepared by: Gaurav Tiwari, Aayan Garg and Banoth Tharun

September 29, 2025

Abstract

This report merges the drive train and battery guidance from the uploaded system report with a detailed Gripper Power Analysis (2×28 BYJ-48 steppers + 2×SG90 servos). All key arithmetic is shown explicitly. The document gives per-component power, battery-side draws at the nominal 24 V bus, runtime tables for 24 V 20 Ah and 35 Ah packs across typical driving scenarios, peak current considerations, and procurement recommendations.

Contents

1	Overview	1						
2	Base numbers and assumptions	2						
3	Drivetrain detailed calculations							
	3.1 Motor power at 24 V	2						
	3.2 Add electronics + gripper contributions							
	3.3 Runtimes (digit-by-digit) for 20 Ah and 35 Ah							
	3.4 Notes on the tables	4						
4	Gripper analysis (integrated)	4						
	4.1 Components and typical currents	4						
	4.2 Actuator-side power (explicit)	4						
	4.3 Energy per grip (2 s)							
	4.4 Peak/stall sizing for the gripper	5						
5	Sizing & procurement recommendations (full)	5						
	5.1 Battery selection	5						
	5.2 DC–DC and 5 V rail							
	5.3 Wiring, fuses and protection							
6	Summary	6						

1 Overview

This document contains:

1. Full drivetrain power calculations (digit-by-digit) derived from the original uploaded report.

- 2. Ancillary electronics and gripper power analyses.
- 3. Integrated runtime tables for several realistic scenarios: straight driving, turning, climbing, and heavy loads.
- 4. Peak/stall current treatment and wiring/protection recommendations.
- 5. A one-page purchase justification summary.

2 Base numbers and assumptions

- System nominal bus voltage: 24 V (from original report).
- Battery candidates: 24 V, 20 Ah (480 Wh) and 24 V, 35 Ah (840 Wh).
- Drivetrain continuous baseline (from uploaded report): **384** W combined for 4 wheel motors (used as a baseline).
- Reported typical current ranges (from uploaded report): straight driving $\approx 12\,\mathrm{A}$ to $15\,\mathrm{A}$, turning $\approx 15\,\mathrm{A}$ to $18\,\mathrm{A}$, climbing $\approx 20\,\mathrm{A}$ to $25\,\mathrm{A}$, reported continuous $\approx 16.7\,\mathrm{A}$, stall bursts up to $\approx 120\,\mathrm{A}$.
- DC-DC (24 \rightarrow 5 V) converter efficiency assumed: $\eta = 0.90$.
- Two electronics budgets used for scenario comparison:
 - **Light electronics** (MCU, sensors, telemetry): $30\,\mathrm{W}$ (actuator-side) \rightarrow battery-side $30/0.9 = 33.333\ldots$ W.
 - **Heavy electronics** (Raspberry Pi, camera, heavier payload): $75 \,\mathrm{W} \to \mathrm{battery\text{-}side}$ $75/0.9 = 83.333... \,\mathrm{W}.$
- Gripper battery-side draw (from gripper analysis): $P_{gripper,bat} = \frac{6.8 \text{ W}}{0.9} = 7.555555556 \text{ W}$ (see Section 4).

3 Drivetrain detailed calculations

We compute motor power for several currents (digit-by-digit) and add electronics + gripper draws.

3.1 Motor power at 24 V

Power $P = V \times I$. Using $V = 24 \,\text{V}$.

$$\begin{array}{lll} \text{At } I=12\,\text{A}: & P=24\times12=288\;\text{W}.\\ \text{At } I=15\,\text{A}: & P=24\times15=360\;\text{W}.\\ \text{At } I=16.7\,\text{A}: & P=24\times16.7=24\times16.7=400.8\;\text{W}.\\ \text{At } I=18\,\text{A}: & P=24\times18=432\;\text{W}.\\ \text{At } I=20\,\text{A}: & P=24\times20=480\;\text{W}.\\ \text{At } I=25\,\text{A}: & P=24\times25=600\;\text{W}.\\ \text{At } I=120\,\text{A}\;\text{(stall)}: & P=24\times120=2880\;\text{W}.\\ \end{array}$$

Notes:

- The original report quoted a combined continuous motor electrical power $\approx 384 \,\mathrm{W}$ which equates to about 16 A at 24 V; report also quoted $\approx 16.7 \,\mathrm{A}$ as a typical figure (400.8 W). Both are consistent baselines.
- Stall power is extremely large (2880 W) and only occurs in brief bursts design wiring and motor drivers to safely handle stall currents; do not expect to sustain stall power for runtime calculations.

3.2 Add electronics + gripper contributions

We add the battery-side electronics and gripper contributions to form total battery-side draw for each scenario.

Let:

Therefore for a given motor power P_{motor} :

$$P_{total,light} = P_{motor} + P_{elec,light} + P_{gripper,bat},$$

$$P_{total,heavy} = P_{motor} + P_{elec,heavy} + P_{gripper,bat}.$$

3.3 Runtimes (digit-by-digit) for 20 Ah and 35 Ah

Battery energies:

$$E_{20} = 24 \times 20 = 480 \text{ Wh}, \qquad E_{35} = 24 \times 35 = 840 \text{ Wh}.$$

Compute total draws and runtimes (hours) for representative currents. The arithmetic below is explicit.

Scenario	Motor power (W)	Total (light) (W)	Runtime on 20Ah (h)
Straight (12 A)	$24 \times 12 = 288$	288 + 33.3333 + 7.5556 = 328.8889	480/328.8889 = 1.45946 h
Straight (15 A)	$24 \times 15 = 360$	360 + 33.3333 + 7.5556 = 400.8889	480/400.8889 = 1.19734 h
Reported continuous (16.7 A)	$24 \times 16.7 = 400.8$	400.8 + 33.3333 + 7.5556 = 441.6889	480/441.6889 = 1.08674 h
Turning (18 A)	$24 \times 18 = 432$	432 + 33.3333 + 7.5556 = 472.8889	480/472.8889 = 1.01532 h
Climbing (20 A)	$24 \times 20 = 480$	480 + 33.3333 + 7.5556 = 520.8889	480/520.8889 = 0.92166 h
Climbing heavy (25 A)	$24 \times 25 = 600$	600 + 33.3333 + 7.5556 = 640.8889	480/640.8889 = 0.74896 h

The same table but for **heavy electronics** ($P_{elec,heavy} = 83.3333 \text{ W}$) — useful when using Raspberry Pi + camera:

Scenario	Motor power (W)	Total (heavy) (W)	Runtime on 20Ah (h)
Straight (12 A)	288	288 + 83.3333 + 7.5556 = 378.8889	480/378.8889 = 1.26686 h
Straight (15 A)	360	360 + 83.3333 + 7.5556 = 450.8889	480/450.8889 = 1.06456 h
Reported continuous (16.7 A)	400.8	400.8 + 83.3333 + 7.5556 = 491.6889	480/491.6889 = 0.97623 h
Turning (18 A)	432	432 + 83.3333 + 7.5556 = 522.8889	480/522.8889 = 0.91828 h

Scenario	Motor power (W)	Total (heavy) (W)	Runtime on 20Ah (h)
Climbing (20 A)	480	480 + 83.3333 + 7.5556 = 570.8889	480/570.8889 = 0.84099 h
Climbing heavy (25 A)	600	600 + 83.3333 + 7.5556 = 690.8889	480/690.8889 = 0.69476 h

3.4 Notes on the tables

- All arithmetic is explicit: motor power computed as $24 \times I$ (W), electronics are scaled by the converter efficiency, and totals are summed before dividing into battery Wh to compute runtime.
- Differences between light and heavy electronics examples show how payloads like a camera/RPi reduce runtime substantially.
- Stall events (e.g., 120 A) are not usable for runtime—they are short bursts that stress wiring and the BMS. Example: stall power = $24 \times 120 = 2880$ W (instantaneous).

4 Gripper analysis (integrated)

This is the gripper analysis previously computed and now referenced within the integrated runtimes.

4.1 Components and typical currents

- 2 × 28BYJ-48 stepper motors: 5 V, typical active current ≈ 0.48 A per motor.
- 2 × SG90 micro servos: 5 V, moving current $\approx 0.20\,\mathrm{A}$ per servo, stall $\approx 1.3\,\mathrm{A}$.

4.2 Actuator-side power (explicit)

$$P_{\text{stepper,per}} = 5.0 \times 0.48 = 2.4 \text{ W}.$$

$$P_{\text{servo,per}} = 5.0 \times 0.20 = 1.0 \text{ W}.$$

Total actuator-side moving power:

$$P_{act} = 2 \times 2.4 + 2 \times 1.0 = 6.8 \text{ W}.$$

Battery-side (24 V bus) with $\eta = 0.9$:

$$P_{bat} = \frac{6.8}{0.9} = 7.555555556 \text{ W}.$$

Battery-side current at 24 V:

$$I_{bat} = \frac{7.55555555556}{24} = 0.3148148148 \text{ A} \approx 0.315 \text{ A}.$$

4.3 Energy per grip (2 s)

$$t = \frac{2}{3600} = 0.0005555555556 \text{ h}.$$

 $E_{op} = 7.55555555556 \times 0.0005555555556 = 0.0041975308642$ Wh.

This energy is negligible relative to battery capacity (see runtime tables).

4.4 Peak/stall sizing for the gripper

Worst-case actuator-side peak (both servos stalled, steppers active):

$$\begin{split} P_{act,peak} &= 2 \times (5.0 \times 0.48) + 2 \times (5.0 \times 1.3) = 4.8 + 13.0 = 17.8 \text{ W}, \\ P_{bat,peak} &= \frac{17.8}{0.9} = 19.777777778 \text{ W}, \\ I_{bat,peak} &= \frac{19.7777777778}{24} = 0.8240740741 \text{ A} \approx 0.82 \text{ A}. \end{split}$$

5 Sizing & procurement recommendations (full)

5.1 Battery selection

- \bullet For 1–2 hour operation under typical cruising loads, a 24 V, 35 Ah pack (840 Wh) is recommended.
- For ≈ 4 hours at cruising load, required energy is:

$$E_{\rm req} = P_{cruise} \times 4 \approx 417.33 \times 4 = 1669.32 \text{ Wh},$$

$$Ah_{req} = \frac{1669.32}{24} \approx 69.56 \text{ Ah}.$$

So choose \approx 70–80 Ah @ 24 V (e.g., two matched 35 Ah packs in parallel, or one 70–80 Ah pack).

• Batteries must be rated to supply brief stall bursts (up to the reported 120 A). Choose pack with appropriate C-rating or parallel cells to support short high-current delivery.

5.2 DC-DC and 5 V rail

- 5 V buck converter: \geq 3 A (15 W) recommended to handle servo stalls and steppers margin.
- 5 V rail fuse: 4 A slow-blow recommended.
- Local decoupling: 470–1000 μF low ESR electrolytic + 0.1 μF ceramic near servos.

5.3 Wiring, fuses and protection

- Main fuse: sized above expected continuous draw but below wiring limit; a practical main fuse of **100 A slow-blow** is suggested given stall risk (tune after final motor-driver selection).
- Per-motor fuses (or current-limited motor drivers): **30 A** or per-motor rating as recommended by motor driver datasheets.
- Use XT90 / Anderson connectors for high-current battery connections; AWG sized wiring for continuous and peak currents.
- BMS with balancing and cell monitoring; if paralleling packs, ensure safe paralleling procedure and compatible BMS.

6 Summary

System battery needs: Drivetrain continuous draw $384\,\mathrm{W}$ ($16\,17\mathrm{A}$ at $24\,\mathrm{V}$). For 1-2 hours operation a $24\,\mathrm{V}$, $35\,\mathrm{Ah}$ pack ($840\,\mathrm{Wh}$) is recommended. For ≈ 4 hours at cruising load choose $70\,\mathrm{Ah}$ (e.g., two $35\,\mathrm{Ah}$ packs in parallel). Battery must support short stall bursts up to reported $120\,\mathrm{A}$.

Gripper: 2×28 BYJ-48 steppers $+ 2 \times SG90$ servos draw 6.8 W actuator-side; battery-side 7.56 W. One grip (2 s) uses 0.0042 Wh. Impact on main pack runtime is negligible; design local 5 V rail (≥ 3 A buck, 4 A fuse, decoupling caps) and wiring for servo stall currents.

Other procurement: 5 V buck (\geq 3 A), main fuse 100 A slow-blow (verify), per-motor fuses (per driver spec), XT90/Anderson connectors, AWG correct wiring, BMS with balancing, motor drivers rated for continuous and peak currents.