Ashutosh Pattnaik

CONTACT 111N IST Building Cell: (814) 777-7319

Penn State University Email: ashutosh@cse.psu.edu **INFORMATION**

Homepage: http://ashutoshpattnaik.github.io University Park, PA, 16802 (Office)

RESEARCH

RESEARCH

PRESENTATIONS

COURSES @ PENN

GPU Architectures, CPU-GPU Heterogeneous Architectures, New Memory Technologies **INTERESTS**

EDUCATION The Pennsylvania State University, University Park, PA, USA Fall 2013 - Present

Ph.D. Candidate in Computer Science and Engineering, Advisor: Dr. Chita R. Das

Current GPA: 3.76/4.0

National Institute of Technology, Rourkela, India Fall 2009 - Spring 2013

Bachelor of Technology (Hons.) in Electronics and Instrumentation Engineering

GPA: 9.24/10

WORK AMD Research, Co-Op Engineer, Manager: John Keaty **Summer 2015**

EXPERIENCE Austin, TX

> Graduate Research Assistant **Summer 2014-Present** Penn State,

University Park, PA

Understanding the research issues and opportunities involved in near-data computing in GPUs **CURRENT** and tackling the issues of co-scheduling data and compute in order to minimize the data

movement costs in these GPU systems.

Adwait Jog, Onur Kayiran, Tuba Kesten, Ashutosh Pattnaik, Evgeny Bolotin, Nilardish **PUBLICATION**

> Chatterjee, Steve Keckler, Mahmut Kandemir, Chita Das, Anatomy of GPU Memory System for Multi-Application Execution, In Proceedings of the 1st International Symposium on Memory

Systems (MEMSYS), Washington, D.C., October 2015

Ashutosh Pattnaik, Sharad Agarwal, Subhasis Chand, A New and Efficient Method for Removal of High Density Salt and Pepper Noise Through Cascade Decision based Filtering Algorithm, In Proceedings of the 2nd International Conference on Communication, Computing

& Security (ICCCS), India, 2012

TALKS AND A New and Efficient Method for Removal of High Density Salt and Pepper Noise Through

Cascade Decision based Filtering Algorithm

- ICCCS 2012, India, October 2012

Topics in Computer Architecture

TEACHING Teaching Assistant, CMPEN 431, Introduction to Computer Architecture **Spring 2014 Fall 2013**

EXPERIENCE Teaching Assistant, CMPEN 270, Digital Design: Theory and Practice

C/C++, Perl/Bash Scripting, GPGPU-Sim, FabScalar, MATLAB, CACTI, GDB **SKILLS**

Computer Networks **Numerical Computations** STATE

> Ashutosh Pattnaik, Penn State University Last Updated: 27th November 2015

Data Structures & Algorithms

Operating System Design Approximate Computing Compiler Construction Programming Language Concepts Algorithm Design & Analysis Programming of Many-Core Architectures

COURSE PROJECTS

Evaluating the Energy Cost of Data Movement in GPGPU Applications

• Created micro-benchmarks for evaluating the energy requirements of data movement among the different levels of memory hierarchy in NVIDIA K20m GPU.

Implementation and Scalability Study of HPCG on Many-Core Architectures

 Ported and optimized the HPCG v2.4 code for implementation on Intel Xeon Phi coprocessors.

AMPEG: Flexible Approximate MPEG decoding for handhelds

• Implemented tuneable parameters for approximation in MPEG decoding for powerconstraint handheld devices.

UNDERGRADUATE RESEARCH

Undergraduate Thesis, NIT Rourkela, India

Fall 2012 – Spring 2013

Robotic Arm Control Through Human Arm Movement using Accelerometers Built a robotic arm to be controlled by using a wearable device

Summer Research Intern, IIT Kharagpur, India

Summer 2012

Floating-Point and Fixed-Point Implementation of Divide & Conquer SVD Algorithm for Symmetric Tridiagonal Matrices

Implemented fast SVD Algorithm to be used in facial recognition algorithms

Research Intern, DRDO, India

Winter 2011

Radar Wave Propagation Modeling

Investigated and modeled the effects of different environmental conditions on Radar waves propagation through them

PROFESSIONAL SERVICE AND MEMBERSHIPS

- Student Member of ACM, IEEE, ACM SIGARCH
- On-Behalf Reviewer (Conferences): ISCA, MICRO, HPCA, IPDPS, ICCAD, PPoPP

REFERENCES

References are available on request.