Examen E1 (temas 2 y 3)

- Duración del examen: 1:15 horas.
- La solución de cada ejercicio se tiene que escribir en el espacio reservado para ello en el propio enunciado.
- N o podéis utilizar calculadora, móvil, apuntes, etc.
- La solución del examen se publicará en Atenea mañana y las notas antes del 8 de marzo a la noche.

Pregunta 1) (Objetivos 2.4) (1.5 punto)

Cada fila de la tabla tiene 3 columnas con: el vector X de 8 bits, X expresado en hexadecimal y el valor en decimal, X_u, que representa X interpretado como un número natural codificado en binario. Completa todas las casillas vacías.

X	X (hexa)	$X_{\rm u}$
10010101		
		79
	C9	
00111100		

Pregunta 2) (*Objetivos 3.5 y 3.17*) (*1 punto*)

Dado el esquema del siguiente circuito (incluida la tabla de verdad del bloque C1) completad la tabla de verdad de la salida W y escribid la expresión lógica en suma de minterms.

Tabla de verdad de W:

X	Y	Z	W
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Tabla de verdad de C1

a	b	C	d	е
0	0	0	1	0
0	1	1	0	0
1	0	1	0	1
1	1	1	1	0

Expresión en suma de minterms de W:

Pregunta 3) (Objetivo 3.13) (1 punto)

Dado el esquema del circuito de la pregunta anterior, escribid el camino crítico (todos si hay varios) y el tiempo de propagación del circuito. Los tiempos de propagación del bloque C1 (en la tabla) y de las puertas son: $Tp_{(Not)} = 10$, $Tp_{(And-2)} = 20$, $Tp_{(Or-2)} = 30$ y $Tp_{(Xor-2)} = 40$ u.t. Por ejemplo, si el camino que va de Y a W y pasa por el bloque C1 y por la puerta OR fuese un camino crítico, se especificaría de la siguiente forma: $Y \rightarrow C1_{a-e} \rightarrow OR-2 \rightarrow W$.

Tiempos de propagación de C1

-		P P	8	
	Тр	С	d	е
	а	15	30	60
	b	20	50	70

Tp del circuito =

Caminos Críticos =

Pregunta 4) (*Objetivos 2.1 y 2.2*) (*1 punto*)

a) Escribid la fórmula que da el valor de un número natural en función de los 5 dígitos que lo representan en el sistema convencional en base 3.

b) Expresad el rango de los números naturales que se pueden representar en el sistema convencional en base 2 para el caso de un vector X de 70 bits.

Pregunta 5) (*Objetivos 3.6 y 3.10*) (*1 punto*)

a) ¿Cuantas puertas And y Or y de cuantas entradas cada una hacen falta para implementar directamente la expresión en suma de minterms de la función w de la siguiente tabla de verdad

а	h	C.	w
0	^	0	1
0	0	1	
U	U	Τ	U
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

b) Especificar el tamaño mínimo de la ROM para sintetizar un circuito de 6 entradas y 5 salidas.

Número de palabras =	Bits por palabra =	

Pregunta 6) (Objetivo 3.12) (1.5 puntos)

Completad el siguiente cronograma de las señales del esquema lógico sabiendo que los tiempos de propagación de las puertas son: $Tp_{(Not)} = 10$, $Tp_{(And-2)} = 20$, $Tp_{(Or-2)} = 20$ u.t. Debéis operar adecuadamente con las zonas sombreadas (no se sabe el valor que tienen) y dibujar la señal sombreada cuando no se pueda saber si vale 0 o 1.

()				5	0				1(00			1	50			
а																		
b																		
k																		
m																		
				g			g					g	 					
W							Î						 					
		ļ	ļ	ļ				ļ	ļ	ļ	ļ	 	 		ļ	ļ	ļ	

entradas.

Apellidos: Nombre: DNI:

Dibujad el mapa de Karnaugh con las agrupaciones de unos adecuadas para obtener la expresión mínima en suma de productos de la función w de un circuito al que le correspondería la siguiente tabla de verdad.

a	b	С	d	w
0	0	0	0	1
0	0	0	1	x
0	0	1	0	1
0	0	1	1	х
0	1	0	0	1
0	1	0	1 0	1
0	1	1		1 1 1
0	1	1	1	1
1	0	0	0	1 0
1 1 1	0	0	1 0	
1	0	1		1
1	0	1	1	X
1	1	0	0	0
1	1	0	1	X
1 1 1	1	1	0	1
1	1	1	1	0

a) Dibuja el Mapa de Karnaugh donde se vea claramente los grupos que has escogido

b) Indica la expresión mínima de w

$$\mathbf{w} =$$

Pregunta 8) (*Objetivos 3.2 y 3.11*) (*1.5 puntos*)

Implementad con una ROM el circuito que calcule las siguientes operaciones aritméticas. Cada una de las entradas (a y b) es un vector de 2 bits que representa un número natural. La salida w es un vector de 3 bits que codifica un valor natural. Nota: el asterisco es la operación de multiplicación, la admiración es el factorial y las barras verticales representa el truncamiento del valor por defecto.

$$w = \left\lfloor \frac{a*2}{3!} \right\rfloor + \left\lfloor \frac{b^2 + 7}{5} \right\rfloor$$

Dibujad la implementación del circuito usando únicamente una ROM e indicando claramente su contenido.