

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

THIS PAGE BLANK (USPTO)

BUNDESREPUBLIK DEUTSCHLAND

EP00/9301

29/3

4

EPO-Munich
51

20. Okt. 2000

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

Aktenzeichen:

199 45 879.0

REC'D 08 NOV 2000
WIPO PCT

Anmeldetag:

24. September 1999

Anmelder/Inhaber:

MesoTec Gesellschaft für medizinische
Sensortechnik mbH, Duisburg/DE;
Acritec Gesellschaft für ophthalmologische
Produkte mbH, Glienicke/DE.

Bezeichnung:

Vorrichtung zum Messen von physikalischen Größen,
insbesondere zur Druckmessung im Auge

IPC:

A 61 F, A 61 B, H 04 B

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 28. September 2000
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

A handwritten signature in black ink, appearing to read "J. Jerofsky".

Jerofsky

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

[Patentanmeldung]

MesoTec Gesellschaft für medizinische
Sensortechnik mbH
Bismarckstr. 120
5 D-47057 Duisburg

Acritec Gesellschaft für
ophthalmologische Produkte mbH
10 Lindenstr. 24
D-16548 Glienicke

15

[Bezeichnung der Erfindung]

Vorrichtung zum Messen von physikalischen Größen,
insbesondere zur Druckmessung im Auge

[Beschreibung]

Die Erfindung betrifft eine Vorrichtung nach dem Oberbegriff des Patentanspruches 1, wie aus der DE 197 28 069 C1 bekannt.

[Stand der Technik]

- 5 Die bekannte Vorrichtung dient zum Messen des Augeninnendrucks und besitzt ein faltbares Implantat, an welchem außerhalb des Blickfeldes des Auges ein telemetrisches System mit einem Drucksensor und einer Spule aufweisenden Sendeeinrichtung vorgesehen sind. Mit der Sendeeinrichtung können den
10 Sensorsignalen entsprechende Informationen drahtlos an eine außerhalb des Auges angeordnete Empfangseinrichtung weitergegeben werden. In einer an die Empfangseinrichtung angeschlossenen Auswerteeinrichtung werden die empfangenen Informationen in wiedergebbare Daten umgewandelt.

15

Bei der bekannten Vorrichtung kann die in das Auge implantierbare Fernmeßeinrichtung einen Datalogger aufweisen, in welchem die vom Drucksensor kontinuierlich gelieferten Meßdaten speicherbar und aus welchem die Meßdaten beim Sende-
20 empfangsbetrieb zeitlich begrenzt bei Bedarf abgefragt werden können.

[Aufgabe der Erfindung]

- Aufgabe der Erfindung ist es eine Vorrichtung der eingangsge-
nannten Art zu schaffen, welche bei hervorragender Empfangs-
25 und Sendequalität falt- bzw. rollbar ist.

Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruches 1 gelöst, wobei die Unteran-
sprüche vorteilhafte Weiterbildungen der Erfindung beinhal-
30 ten.

Bei der Erfindung ist auf einer faltbaren Trägerfolie die Spule in einer ebenen Fläche in Form mehrerer nebeneinander liegender Spulenwindungen, planar aufgebracht. Die die Elektronik und/oder den Sensor enthaltende Fernmeßeinrichtung

5 sind bevorzugt in wenigstens einem elektronischen Baustein (Chip) enthalten und ebenfalls mit elektrischer Kontaktierung zu der Spule auf der faltbaren Trägerfolie aufgebracht. Diese Anordnung ist in ein faltbares biokompatibles Implantatmaterial, insbesondere aus Polyorganosiloxan, z.B. Polydimethyl-

10 siloxan eingegossen. Hierbei kann das Implantatmaterial nicht nur als Umhüllung für die Sendeeinrichtung und Fernmeßeinrichtung, sondern auch als Übertragungsmedium für die zu messende physikalische Größe, welche insbesondere der Augeninnendruck oder auch die Temperatur im Auge sein kann, zum

15 Sensor hin dienen. D.h. bei einer bevorzugten Ausführungsform ist auch der Sensor von dem biokompatiblen Implantatmaterial umgeben. Es ist jedoch auch möglich, den Sensor an einer Sensorfläche, welche gegenüber der zu messenden bzw. zu erfassenden physikalischen Größe empfindlich ist, bzw. in

20 einem bestimmten Sensorbereich freizulegen. Die im Auge vorliegende zu messende physikalische Größe, beispielsweise der Augeninnendruck oder die Temperatur, wirkt dann unmittelbar auf die Sensorfläche oder diesen Sensorbereich. Ferner ist es möglich, ein anderes Übertragungsmedium für die physi-

25 kalische Größe zu verwenden als das Implantatmaterial.

Durch die planare Ausbildung der Spule mit mehreren nebeneinander liegenden Spulenwindungen, welche bevorzugt in einer zur optischen Achse des Auges bzw. des als Intraokularlinse

30 ausgebildeten Implantats senkrechten Ebene liegt, wird eine hohe Sende- und Empfangsqualität erreicht, ohne daß die Falt- bzw. Rollbarkeit des Implantatmaterials beeinträchtigt wird.

Ferner wird für die gesamte Vorrichtung die erforderliche Verträglichkeit mit dem Auge erreicht. Neben einer planaren Lage können auch mehrere planare übereinanderliegende Lagen (Ebenen) für die Spulenwindungen vorgesehen sein.

5

- In bevorzugter Weise ist das Implantat als Intraokularlinse ausgebildet, wobei die Telemetrieeinrichtung und die die Spule aufweisende Sendeeinrichtung außerhalb des optischen Linsenteils, insbesondere im wesentlichen im Bereich der
- 10 Haptik der Intraokularlinse, welche den optischen Linsenteil umgibt, untergebracht sind. Hierzu kann die Haptik einen den optischen Linsenteil umgebenden ringförmigen Bereich aufweisen, innerhalb welchem die planare Anordnung der Spulenwindungen, untergebracht ist. Die Spulenwindungen sind bevorzugt
- 15 als planare elektrische Leiterbahnen ausgebildet, die bevorzugt aus Edelmetall, insbesondere Gold bestehen. Die Leiterbahnen der Spulenwindungen werden auf der Trägerfolie in herkömmlicher Planartechnik, beispielsweise durch Metallabscheiden, insbesondere galvanische Abscheidung, wie sie bei
- 20 Mikrostrukturierungsverfahren bekannt sind, hergestellt.

- Die Trägerfolie ist als dünne flexible und faltbare Folie ausgebildet, die eine gute Haftung für das Metall der Spulenwindungen gewährleistet, insbesondere besitzt das Folienmaterial dielektrische Eigenschaften und kann aus einem geeigneten Kunststoff, z.B. einem Polyimid, bestehen.

- Aufgrund der extremen Roll- bzw. Faltbarkeit der Vorrichtung kann diese ohne die üblichen minimal-invasiven Operationsmethoden zu ändern, in das Auge implantiert werden. Hierdurch können mikroelektronische und sensorische Komponenten für die drahtlose Energie- und Signalübertragung, beispielsweise in

Form einer künstlichen Intraokularlinse, welche faltbar ist, in das Auge appliziert werden. Nach der Implantation entfällt sich die Intraokularlinse.

[Beispiele]

- 5 Anhand der Figuren wird an einem Ausführungsbeispiel die Erfindung noch näher erläutert. Es zeigt:
- Figur 1 eine Draufsicht auf ein als Intraokularlinse ausgebildetes Ausführungsbeispiel;
- 10 Figur 2 in Draufsicht eine Ausführungsform für ein telemetrisches System, welches bei dem in der Figur 1 dargestellten Ausführungsbeispiel zur Anwendung kommen kann;
- Figur 3 eine schnittbildliche Darstellung des in Figur 2
15 dargestellten telemetrischen Systems; und
- Figur 4 eine schnittbildliche Darstellung eines telemetrischen Systems eines weiteren Ausführungsbeispiels.
- 20 Das dargestellte Ausführungsbeispiel eines Augenimplantats 6 ist als Intraokularlinse ausgebildet. Diese besitzt einen optischen Linsenteil 1, welcher im Sehbereich des Auges einsetzbar ist. Der optische Linsenteil 8 besitzt eine optische Achse 10, welche im wesentlichen senkrecht zur Zeichenebene der Figur 1 verläuft. Die optische Achse ist im implantierten Zustand im wesentlichen zur Sehachse des Auges ausgerichtet. Der optische Linsenteil 8 deckt im wesentlichen das Blickfeld des Auges ab.
- 25 Auf einer Trägerfolie 2 (Figur 2), welche flexibel d. h. faltbar und rollbar ausgebildet ist, befindet sich eine Spule 1, welche in der Sende- und Empfangseinrichtung die Indukti-

- vitt bildet. Die Spule wird von planaren Spulenwindungen 3, in Form von nebeneinander liegenden Leiterbahnen gebildet. Die Leiterbahnen der Spulenwindungen 3 liegen nebeneinander in einer im wesentlichen senkrecht zur optischen Achse 10, 5 verlaufenden Ebene. Die Breite einer Spulenwindung liegt in der Groenordnung von ca. 3 bis 90 µm, vorzugsweise von ca. 10 bis 90 µm. Es konnen etwa 10 bis 65 Spulenwindungen in einer jeweiligen Ebene fr die Spule 1 vorgesehen sein. Durch eine derartige Ausbildung der Spule 1 bleibt die Faltbarkeit, 10 Rollbarkeit und gegebenenfalls Knickbarkeit der Tragerfolie 2 unbeeintrtigt. Die Spulenwindungen 3 konnen beispielsweise durch galvanische Abscheidung, wie sie bei Verfahren der Mikrostrukturierung bekannt ist, hergestellt werden. Beim dargestellten Ausfhrungsbeispiel befindet sich die Spule 1 15 auf einer kreisringformigen Flache. In Anpassung an den Einsatzort des Implantates 6 kann die Spule jedoch auch oval, ovalhnlich ausgebildet sein oder eine andere Ausgestaltung haben.
- 20 Auf der Tragerfolie 2 befindet sich ferner die Elektronik des telemetrischen Systems, welche in einem elektronischen Baustein (Chip) 4 untergebracht ist, wobei selbstverndlich auch mehrere elektronische Bausteine Verwendung finden knnen. An diesem elektronischen Baustein 4 kann bevorzugt in 25 einem Randbereich ein Sensor 5 zur Erfassung der zu messenden physikalischen Groe, insbesondere des Augeninnendrucks vorgesehen sein. Wie die Figur 3 zeigt, ist der elektronische Baustein 4 in geeigneter Weise mit der Spule 1 kontaktiert (elektrische Kontaktierungen 11). Im Bereich des elektronischen Bausteins 4 verlaufen zur erleichterten Kontaktierung die Spulenwindungen 3 vorzugsweise im wesentlichen geradlinig, wie es in einem geradlinigen Windungsbereich 7 der Figur 30

- 2 gezeigt ist. Die elektrische Kontaktierung 11 zwischen der Spule 1 und dem elektronischen Bauteil 4 kann in Hybrid- oder Flip-Chip-Technologie durch Bonden erreicht werden. Die elektrischen Kontaktierungsstellen 11 (Figur 3) können durch 5 Goldbumps mit einer Dicke von 30 µm und weniger gebildet werden. Neben monolithischer Bauform kann der Chip bzw. können die elektronischen Bausteine in eine oder mehrere Folien eingearbeitet und somit falt- bzw. rollbar sein.
- 10 Die planaren Spulenwindungen besitzen eine Dicke (Höhe) im Bereich von 5 bis 60 µm. Die Höhe des elektronischen Bausteins 4 beträgt ca. 600 µm und kann wesentlich geringer beispielsweise 300 µm betragen. Die Fläche des elektronischen Bausteins 4 beträgt ca. 2,0 mm x 2,0 mm. Die Dicke der Trägerfolie kann etwa 8 µm betragen. Die Spule kann einen Außenradius von ca. 5,15 mm und einen Innenradius von ca. 3,85 mm aufweisen. Der Bereich der Trägerfolie 2, welcher innerhalb 15 der Spule 1 liegt, kann ausgestanzt sein, so daß die Trägerfolie 2 als ringförmige Trägerfolie, welche im wesentlichen 20 mit den Spulenwindungen 3 bedeckt ist, vorliegt.

Die Trägerfolie 2 mit den darauf angeordneten telemetrischen Einrichtungen, wie sie in den Figuren 2 und 3 gezeigt sind, wird von einem biokompatiblen Implantatmaterial, insbesondere 25 Linsenmaterial vollständig, insbesondere durch Eingießen umhüllt. Das Implantatmaterial bzw. Linsenmaterial überdeckt auch den Sensor 5, welcher insbesondere als Drucksensor ausgebildet ist. Die Figur 1 zeigt die Intraokularlinse, in welche das in den Figuren 2 bis 4 dargestellte telemetrische 30 System eingegossen ist. Die in der Figur 1 wieder gegebenen Abmessungsangaben sind beispielshafte Angaben, welche inner-

halb der für eine Augenimplantation zulässigen Grenzen variabel sind.

Wie aus der Figur 1 zu ersehen ist, befindet sich die Spule 1 innerhalb eines ringförmigen Haptikbereiches, welcher den optischen Linsenteil 8 konzentrisch umgibt. Es kann sich um einen Kreisring oder ovalen oder ovalähnlichen Ring handeln. Ein zwischen diesem ringförmigen Haptikbereich und dem optischen Linsenteil 8 liegender ringförmiger Bereich 12 des Linsenmaterials ist mit Langlöchern 9 versehen, die an ihren Begrenzungsrändern etwa konzentrisch zu der ringförmigen Spule 1 und dem ringförmigen Bereich 12 um die optische Achse 10 sich erstrecken. Diese Langlöcher 9 erleichtern nicht nur das Falten bzw. Rollen der Linse, sondern unterstützen die Fixierung der Linse im Auge, da in diese Langlöcher Augenewebe einwachsen kann. Wie aus der Figur 1 ferner zu ersehen ist, befindet sich der Sensor 5 in der Nähe des optischen Linsenteiles 8. Er liegt zwischen dem optischen Linsenteil 8 und dem Innenrand der Spule 1 in einem Bereich, welcher die Fläche der Spule 1 nicht überlappt. Der Sensor 5 wird von einem Linsenmaterial umschlossen, das sich zwischen zwei Enden der Langlöcher 9 im ringförmigen Bereich 12 des Linsenmaterials befindet. Das Linsenmaterial dient zur Übertragung der im Auge zu messenden physikalischen Größe, beispielsweise der Temperatur oder des Augeninnendrucks. In bevorzugter Weise kommt ein Polyorganosiloxan, insbesondere Polydimethylsiloxan für das Linsenmaterail zur Anwendung. Es ist auch möglich, ein anderes Übertragungsmedium im Bereich des Sensors 5 oder eines auf die physikalische Größe (z.B. Druck, Temperatur) ansprechenden Sensorbereichs vorzusehen oder diesen Bereich freizulegen, wie es anhand der Figur 4 noch erläutert wird.

- Der Außendurchmesser der Intraokularlinse kann etwa 12 mm oder weniger z. B. 8,5 mm betragen. Der Durchmesser des optischen Linsenteils 8 kann 6 mm oder weniger, beispielsweise 4,8 mm betragen. Die Dicke der Linse im Zentrum des optischen Linsenteiles 8 kann etwa 0,780 mm oder weniger betragen. Im nichtoptischen Bereich kann die Dicke 0,500 mm oder weniger betragen, wobei jedoch im Bereich der elektronischen Baueinheit 4 gewährleistet ist, daß diese vom Linsenmaterial 5 vollständig umhüllt ist und demgemäß die Linse in diesem Bereich eine entsprechende Dicke aufweist. Die Länge der Langlöcher 9 kann etwa 4,6 mm oder geringer bemessen sein. Die Breite kann 1,2 mm oder weniger betragen.
- 15 Bei dem in der Fig. 3 dargestellten Ausführungsbeispiel befinden sich die Spule 1 und der elektronische Baustein 4 auf der gleichen Seite der Trägerfolie 2. Bei dem in der Figur 4 dargestellten Ausführungsbeispiel befindet sich die Spule 1 auf der einen Seite der Trägerfolie 2 und der elektronische Baustein 4 auf der anderen Seite der Trägerfolie 2. Die elektrische Kontaktierung 11 zwischen der Spule 1 und dem elektronischen Baustein 4 erfolgt mit Hilfe von Durchkontaktieren durch die Trägerfolie 2.
- 20 25 Wie aus dem Ausführungsbeispiel der Figur 4 zu ersehen ist, kann ein für die zu erfassende physikalische Größe empfindlicher Bereich des Sensors 5 freigelegt sein. Beim dargestellten Ausführungsbeispiel ist es eine Sensorfläche 13. Hierzu kann in der Trägerfolie 2 eine Ausnehmung vorgesehen sein.
- 30 Diese Ausnehmung befindet sich auch in dem umhüllenden Implantat bzw. Intraokularlinsenmaterial. Es ist jedoch auch möglich, daß in der Ausnehmung ein anderes die physikalische

Größe übertragendes Material als das Implantatmaterial verwendet wird. Beim dargestellten Ausführungsbeispiel der Fig. 4 befindet sich die freigelegte Sensorfläche 13 an der Innenseite des Sensors 5. Die freigelegte Sensorfläche kann auch 5 auf der anderen Seite, d.h. an der Außenseite des Sensors 5 liegen.

Wie aus der Fig. 1 zu ersehen ist, kann das Implantat- bzw. Linsenmaterial um etwa parallel zueinander verlaufende Faltkanten 14, gefaltet oder gerollt werden, die beidseits des elektronischen Bausteins 4 liegen. Selbst wenn der elektronische Baustein 4 aus einem nicht faltbaren monolithischen Baustein besteht, erreicht man eine erhebliche Verringerung des Implantatquerschnittes für die Implantation. Die beiden 15 Faltkanten 14 verlaufen beidseits des elektronischen Bausteins. Ferner kann das Implantat auch entlang einer durch die Linsenmitte (optische Achse 10) verlaufende Faltkante 15 gefaltet werden. Hieraus ist ersichtlich, daß es eine große Anzahl an Faltmöglichkeiten des Implantats gibt, selbst wenn 20 der elektronische Baustein 4 monolithisch ausgebildet ist. Durch die spezielle Ausbildung der Spule ~~4~~ ist diese unter Erzielung einer hohen Induktivität faltbar.

Im elektronische Baustein 4 kann ein Speicher vorgesehen 25 sein, welcher die vom Sensor, insbesonder Drucksensor 5 kontinuierlich aufgenommenen Druckwerte speichert. Diese Druckwerte können aus diesem Speicher von Zeit zu Zeit beispielsweise im Turnus von einer Woche jeweils abgerufen werden und von der Telemetrieeinrichtung auf eine nicht näher 30 dargestellte Empfangseinrichtung mit angeschlossener Auswerteeinrichtung übertragen werden, wie es beispielsweise in der deutschen Patentschrift DE 197 28 069 C1 beschrieben ist. Es

ist auch möglich, daß der elektronische Baustein 4 aus faltbarem Trägermaterial gebildet wird, so daß eine Verformung der Intraokularlinse auf einen geringen Durchmesser möglich ist und am Auge ein nur kleiner Schnitt für die Implantation 5 vorgesehen werden muß. Das Linsenmaterial ist in der Weise ausgebildet, daß es sich nach der Implantation entfaltet und die gewünschte Linsenform annimmt.

[Bezugszeichenliste]

- | | |
|-------|--|
| 1 | Spule |
| 2 | Trägerfolie |
| 5 3 | Spulenwindungen |
| 4 | elektronischer Baustein (Chip) |
| 5 | Sensor, insbesondere Drucksensor |
| 6 | Implantat, insbesondere Intraokularlinse |
| 7 | geradliniger Windungsbereich |
| 10 8 | optischer Linsenteil |
| 9 | Langloch |
| 10 | optische Achse |
| 11 | elektrische Kontaktierung |
| 12 | ringförmiger Bereich |
| 15 13 | Sensorfläche |
| 14 | Faltkante |
| 15 | Faltkante |

[Patentansprüche]

1. Vorrichtung zum Messen physikalischer Größen im Auge mit einem faltbaren Implantat, an welchem außerhalb eines das Blickfeld des Auges überdeckenden Implantatteil eine Fernmeßeinrichtung mit einem Sensor und einer Spule aufweisenden Sendeeinrichtung zur drahtlosen Übertragung von den Sensorsignalen entsprechenden Informationen angeordnet ist, und einer außerhalb des Auges angeordneten Empfangseinrichtung, welche die von der Sendeeinrichtung gesendeten Informationen empfängt, und einer Auswerteeinrichtung, welche die empfangenen Informationen in wieder-gebbare Daten wandelt, dadurch gekennzeichnet, daß auf einer faltbaren Trägerfolie (2) die Spule (1) in Form mehrerer nebeneinander liegender Spulenwindungen in we-nigstens einer Fläche angeordnet ist und mit der Spule wenigstens ein die Elektronik der Fernmeßeinrichtung ent-haltender elektronischer Baustein (4) elektrisch kontak-tiert ist und daß diese Anordnung in das faltbare biokom-patible Implantatmaterial eingegossen ist.
- 20 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Implantat (6) als Intraokularlinse ausgebildet ist und daß die Trägerfolie (2) im Bereich des optischen Lin-senteils (8) eine Ausnehmung aufweist, welche innerhalb der Spulenwindungen (3) liegt.
- 25 3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeich-net, daß Spulenwindungen (3) aus planaren elektrischen Leiterbahnen gebildet sind.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Spulenwindungen (3) in einer oder mehreren Ebenen angeordnet sind.

5. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Leiterbahnen der Spulenwindungen (3) aus Edelmetall, insbesondere Gold gebildet sind.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Höhe der Spulenwindungen etwa 5 bis 60 µm beträgt.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Trägerfolie (2) aus einem dielektrischen Material besteht.
- 10 8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß am Sensor (5) die die physikalische Größe erfassende Sensorfläche (13) freiliegt.
9. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Sensor (5) ganz oder teilweise von einem die physikalische Größe übertragenden Übertragungsmedium umhüllt ist.
- 15 10. Vorrichtung nach einem der Ansprüche 1 bis 7 und 9, dadurch gekennzeichnet, daß das biokompatible Implantatmaterial das Übertragungsmedium bildet.
- 20 11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Spulenwindungen (3) im Bereich ihrer Verbindung mit dem elektronischen Baustein (4) im wesentlichen geradlinig verlaufen.
12. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Spulenwindungen (3) im wesentlichen sich im gesamten außerhalb des Blickfeldes des Auges liegenden Implantatteil erstrecken.

13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß der Sensor (5) als Drucksensor ausgebildet ist.
14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß der Drucksensor (5) kontinuierlich den Augeninnendruck mißt und die Elektronik der Fernmeßeinrichtung einen Speicher aufweist, in welchem die Sensorsignale für ein zeitlich begrenztes Senden an eine Empfangseinrichtung gespeichert werden.
5
- 10 15. Vorrichtung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß der Sensor (5) in einem die Fläche der Spulenwindungen (3) nicht überlappenden Bereich liegt.
16. Vorrichtung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß der Sensor (5) in unmittelbarer Nähe des das Blickfeld durchsetzenden Implantatteils, insbesondere des optischen Linsenteils (8) der Intraokularlinse liegt.
15
17. Vorrichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die Spule (1) und der elektronische Bauteil (4) in Hybridtechnik miteinander verbunden und elektrisch kontaktiert sind.
30
18. Vorrichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die Spulenwindungen (3) und die Elektronik des elektronischen Bausteins (4) durch Flip-Chip-Technik miteinander verbunden und elektrisch kontaktiert sind.
25
19. Vorrichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß an den Ecken des elektronischen Bau-

steins (4) Flip-Chip-Verbindungsstellen für die Verbindung vom elektronischen Bauteil (4) und Trägerfolie (2), vorgesehen sind.

20. Vorrichtung nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß die elektrische Kontaktierung (11) mittels Flip-Chip-Bumps erfolgt.
21. Vorrichtung nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß im Implantatmaterial zwischen der Spule (1) und dem das Blickfeld durchsetzenden Implantatteil, insbesondere optischen Linsenteil (8) der Intraokularlinse, Langlöchern (9) eingeformt sind.
- 10 22. Vorrichtung nach Anspruch 21, dadurch gekennzeichnet, daß die Langlöcher (9) den Konturen am Implantat (6) angepaßt sind.
- 15 23. Vorrichtung nach Anspruch 21 oder 22, dadurch gekennzeichnet, daß der Sensor (5) in einem ringförmigen Bereich (12) des Implantatmaterials liegt, in welchem die Langlöcher (9) sich erstrecken.
- 20 24. Vorrichtung nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, daß die Fläche bzw. die Flächen, in welcher bzw. in welchen die Spule (1) angeordnet ist, sich etwa senkrecht zur optischen Achse (10) des als Intraokularlinse ausgebildeten Implantats (6) erstreckt bzw. erstrecken.
- 25 25. Vorrichtung nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, daß die Trägerfolie (2) aus einem Polyimid besteht.

26. Vorrichtung nach einem der Ansprüche 1 bis 25, dadurch gekennzeichnet, daß die Spule (1) an der einen Oberfläche und der elektronische Baustein (4) auf der anderen Oberfläche der Trägerfolie (2) angeordnet sind.

[Zusammenfassung]

Eine Vorrichtung zum Messen von physikalischen Größen im Auge, insbesondere des Augeninnendrucks mit einem faltbaren Telemetriesystem, enthaltend eine auf einem faltbaren Träger, 5 flächig angeordneten Spule 1, welche zusammen mit einem die Elektronik des Telemetriesystems enthaltenden elektronischen Baustein 4, vollständig im biokompatiblen Implantatmaterial eingegossen ist.

10 (Figur 1)

[Anhängende Zeichnungen]

Anzahl anhängende Zeichnungen: 4 Zeichnungen (2 Blatt)

5

Fig. 1

Fig. 1

Fig. 2

THIS PAGE BLANK (USPTO)