

Data Science & Business Analytics

Machine Learning Models

David Issá davidribeiro.issa@gmail.com

1. Unsupervised Learning

1. Unsupervised Learning – Definição

Correspondonde a um conjunto de técnicas de machine leraning, cujo objetivo é o de aprender padrões a partir de dados não rotulados (unlabeled).

- Conjunto de dados de treino rotulado;
- Aprende a relação entre as variáveis independentes e a variável alvo;
- Utilizado para classificar novas observações.

Unsupervised Learning

- Os dados não têm etiquetas;
- Encontra clusters (grupos) óptimos;
- Não utilizado com novas observações.

1. Unsupervised Learning – Clustering

Por vezes, existe alguma confusão relativamente à distinção entre algoritmos de clustering (unsupervised) e algoritmos classificação (supervised).

Clustering

Classification

2. Clustering

2. Clustering – Definição

Tarefa de agrupar observações com base na sua semelhança. Parte do princípio de que os pontos semelhantes estão relacionados e, por conseguinte, podem ser considerados um grupo (cluster).

2. Clustering – Definição

É bastante utilizado na análise exploratória de dados:

- Permite resumir grandes conjuntos de dados: trade-off entre detalhe e compreensão dos dados.
- Permite caracterizar entidades numa base de dados (clientes, produtos, etc.).

Algumas das principais aplicações das análises de clustering são:

- Business/Marketing: segmentação de clientes;
- Saúde: gestão de doenças;
- Planeamento urbano: planeamento de transportes.

1. Definição de variáveis

O tipo de problema determina as variáveis a escolher.

- A inclusão de variáveis discriminantes é decisiva;
- A qualidade de qualquer análise de clusters é altamente condicionada pelas variáveis utilizadas,

A escolha das variáveis deve ter um contexto teórico de suporte:

• Este processo é efectuado a partir de um conjunto de variáveis que sabemos serem bons discriminantes para o problema em causa.

2. Métrica de semelhança

Função que recebe duas observações e devolve uma pontuação de similaridade/dissimilaridade:

- A escolha correta é fundamental para obter bons clusters;
- A escolha depende do tipo de dados e do problema.
- Os dados são categóricos ou numéricos? A magnitude é importante? Os dados são altamente dimensionais?

2. Métrica de semelhança

Função que recebe duas observações e devolve uma pontuação de similaridade/dissimilaridade:

- A escolha correta é fundamental para obter bons clusters;
- A escolha depende do tipo de dados e do problema.
- Os dados são categóricos ou numéricos? A magnitude é importante? Os dados são altamente dimensionais?

O tipo mais comum de medidas são as medidas geométricas:

• Distância entre os pontos de dados X_i e X_i com v dimensões

2. Métrica de semelhança (entre observações)

Distância Euclidiana (a mais usada)

• A distância entre dois elementos (i, j) é a raiz quadrada da soma dos quadrados das diferenças entre os valores de i e j para todas as variáveis (v = 1, 2, ..., p)

$$d_{ij} = \sqrt{\sum_{v=1}^{p} (X_{iv} - X_{jv})^2}$$

Distância Euclidiana Ponderada

 Se a cada variável for atribuído um peso de acordo com a sua importância para a análise, a distância euclidiana ponderada assume a seguinte forma:

$$d_{ij} = \sqrt{\sum_{v=1}^{p} W_v (X_{iv} - X_{jv})^2}$$

2. Métrica de semelhança (entre observações)

Distância Manhattan

- Melhor para aplicações de elevada dimensão
- Sendo a soma das diferenças absolutas, trata todas as dimensões de forma igual, impedindo que grandes diferenças numa dimensão enviazem a métrica.

Cosine Similarity

- Mais usada para medir a semelhança de documentos em aplicações de NLP.
- Mede a semelhança entre dois vectores através do cosseno do ângulo entre os vectores.

2. Métrica de semelhança (entre observações)

Distância Hamming

 Utilizado para comparar variáveis categóricas. É o número de posições de bits em que os dois bits são diferentes:

ld	Gender	Student	Nationality	code
u_1	Male (1)	Yes (1)	Indian (1)	111
u_2	Female (0)	No (0)	Spain (2)	002
u_3	Male (1)	No (1)	Australia (3)	113

- Difference between u_1 and u_2 is 3
- Difference between u_2 and u_3 is 3
- Difference between u_1 and u_3 is 1

LTDR: A escolha da métrica de distância depende, em última análise, das caraterísticas dos dados e do algoritmo de clustering que está a ser utilizado.

2. Métrica de semelhança (entre variáveis)

Coeficiente de correlação Pearson

- Medir o grau de associação linear entre duas variáveis;
- Mede o grau em que duas variáveis se movem uma em relação à outra (variáveis numéricas).

$$r_{xy} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2} \sqrt{\sum (y_i - \bar{y})^2}}$$

Coeficiente de correlação Spearman

- Determina a força da relação entre duas variáveis (em que d é a diferença entre as classificações emparelhadas e n é o número de observações);
- Usado em variáveis numéricas e categóricas.

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

2. Métrica de semelhança (entre variáveis)

ID	х	у	Rank x	Rank y	d_i^2
1	87	241	5	6	1
2	46	160	1	1	0
3	72	210	4	4	0
4	64	195	3	3	0
5	123	285	7	7	0
6	97	233	6	5	1
7	50	174	2	2	0
Avg	77	212	NA	NA	NA

Coeficiente de correlação Pearson

$$r_{xy} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{(x_i - \bar{x})^2}\sqrt{(y_i - \bar{y})^2}} = 0.985$$

Coeficiente de correlação Spearman

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)} = 0.964$$

2. Métrica de semelhança (entre variáveis)

3. Algoritmo

Algoritmos Clustering

Connectivitybased

Os objectos estão mais relacionados com objectos mais próximos do que com objectos mais distantes.

Hierarchical Clustering

Centroid-based

Os clusters são representados por um vetor central.

K-Means

Density-based

Clusters são regiões densas no espaço de dados, separadas por regiões de menor densidade de pontos.

DBSCAN

O objetivo principal é compreender o que se distingue em cada cluster.

Comparar médias para cada variável

Comparar distribuições dos clusters

Comparar corelações entre variáveis

O objetivo principal é compreender o que se distingue em cada cluster.

Como interpretar os resultados?

- Obter summary statistics para cada variável, para o grupo de dados que compõe cada cluster;
- Analisar também em termos de variáveis não utilizadas no clustering;
- Etiquetar o cluster (por exemplo: clientes que compram tudo exceto roupa, clientes com churn, ...).

3. Hierarchical Clustering

3. Hierarchical Clustering

Aglomerativo

Abordagem Bottom-up

Cada observação começa no seu próprio cluster, e pares de clusters são integrados à medida que se sobe na hierarquia

Divisivo

Abordagem Top-down

Todas as observações começam num cluster, e as divisões são efectuadas recursivamente à medida que se desce na hierarquia

Passo 1

Definir uma função de distância: como calcular a distância entre 2 observações? (slides 10-14)

Passo 2

Escolher um critério de ligação: como calcular a distância entre 2 clusters?

Passo 3

Calcular hierarquia de clusters:

- Começar com cada observação no seu próprio cluster;
- Em cada iteração, integrar os dois clusters mais próximos;
- Parar quando todos as observações pertencerem a um único cluster.

Passo 4

Escolher o número de clusters e obter a atribuição dos clusters.

Passo 1

Definir uma função de distância: como calcular a distância entre 2 observações? (slides 10-14)

Passo 2

Escolher um critério de ligação: como calcular a similaridade entre 2 clusters?

Passo 3

Calcular hierarquia de clusters:

- Começar com cada observação no seu próprio cluster;
- Em cada iteração, integrar os dois clusters mais próximos;
- Parar quando todos as observações pertencerem a um único cluster.

Passo 4

Escolher o número de clusters e obter a atribuição dos clusters.

Quanto mais elevado o resultado da medida, menos similares (mais dissimilares) são os clusters.

Método Ward (variância mínima): tem em conta a "perda de informação" que ocorre quando os registos são agrupados. Minimiza a variância total dentro do agrupamento.

- Quando cada cluster tem um registo, não há perda de informação.
- Quando os registos são agrupados, a informação sobre um registo individual é substituída pela informação do agrupamento a que pertence.
- Assim, <u>o novo cluster corresponde à integração dos 2 clusters cuja combinação resulta na</u>
 <u>menor perda de informação</u> (ou seja, menor aumento na variância do cluster).

Para medir a variância, é usada a Sum of Squared Errors (SSE):

- Valores x₁ (2, 6, 5, 6, 2, 2, 2, 2, 2, 0, 0, 0)
- Média de $x_1 = 2.5$
- SSE = $(2 2.5)^2 + (6 2.5)^2 + (5 2.5)^2 + ... + (0 2.5)^2 = 50.5$

Passo 1

Definir uma função de distância: como calcular a distância entre 2 observações? (slides 10-14)

Passo 2

Escolher um critério de ligação: como calcular a distância entre 2 clusters?

Passo 3

Calcular hierarquia de clusters:

- Começar com cada observação no seu próprio cluster;
- Em cada iteração, integrar os dois clusters mais próximos;
- Parar quando todos as observações pertencerem a um único cluster.

Passo 4

Escolher o número de clusters e obter a atribuição dos clusters.

Passo 1: Começar com n clusters, onde n corresponde ao número de observações.

Passo 2: Calcular dissimilaridade entre clusters (compostos por 1 observação cada) e integrar num novo cluster as 2 mais similares.

<u>Passo 3:</u> Em cada iteração seguinte, os 2 clusters mais próximos (segundo o critério de dissimilaridade escolhido) são combinados.

<u>Passo 3:</u> Em cada iteração seguinte, os 2 clusters mais próximos (segundo o critério de dissimilaridade escolhido) são combinados.

Passo 1

Definir uma função de distância: como calcular a distância entre 2 observações? (slides 10-14)

Passo 2

Escolher um critério de ligação: como calcular a distância entre 2 clusters?

Passo 3

Calcular hierarquia de clusters:

- Começar com cada observação no seu próprio cluster;
- Em cada iteração, integrar os dois clusters mais próximos;
- Parar quando todos as observações pertencerem a um único cluster.

Passo 4

Escolher o número de clusters e obter a atribuição dos clusters.

Determinar o número de clusters: as observações são afectadas aos clusters desenhando uma linha horizontal através do dendrograma. As observações que se juntam acima da linha formam os clusters.

3. Hierarchical Clustering – Vantagens e Desvantagens

O hierarchical clustering é um algoritmo "guloso". Por conseguinte:

É mais simples de compreender e interpretar que os algoritmos particionais.

Uma vez efectuada uma interação (fusão ou divisão), não pode voltar atrás → Pode conduzir a soluções não óptimas.

Computacionalmente intensivo para grandes volumes de dados → requer o cálculo de distâncias entre todos os pares de pontos de dados.

Não pode ser utilizado para "prever" novas observações.

4. K-Means

Método de clustering que tem por objetivo dividir n observações em k clusters em que cada observação pertence ao cluster com a média das respetivas variáveis mais próxima.

Dado um conjunto de dados com n objectos, o K-means constrói k partições, em que cada partição representa um cluster ($k \le n$).

Os dados são dividos em k clusters, satisfazendo as seguintes condições:

- Cada cluster contém pelo menos um objeto.
- Cada objeto pertence apenas a um cluster.

O algortimo executa os seguintes passos iterativamente:

- 1. Inicialização das seeds (normalmente aleatoriamente);
- 2. Cada observação é associada à seed mais próxima;
- 3. Calcula os centroides dos clusters formados;
- 4. Executa novamente o passo 2;
- 5. Processo termina quando os centroides deixam de mudar (ou as mudanças são mínimas, abaixo do threshold pré definido).

Este processo iterativo garante que a distância intra cluster é minimizada (Within Cluster Sum of Squares), onde x corresponde às variáveis e c aos centroids:

$$WCSS = \sum_{j=1}^{K} \sum_{i=1}^{n} distance(x_i, c_j)^2$$

Os dados:

- 2 variáveis
- Agrupar em 5 clusters!

Incialização

 Definir as seeds inciais (normalmente aleatório)

Iteração 1 – 1º passo

 Definir a seed mais próxima para cada observação

Iteração 1 – 2º passo

 Recalcular a seed de modo a que fique na nuvem de pontos, representando o seu centro (designado por centroide)

E REPETIR ITERAÇÃO....

Iteração 2 – 1º passo

 Definir a seed mais próxima para cada observação

Iteração 2 – 2º passo

Recalcular o centroid

E REPETIR ITERAÇÃO....

Iteração 3 – 1º passo

 Definir a seed mais próxima para cada observação

Iteração 3 – 2º passo

Recalcular o centroid

E REPETIR ITERAÇÃO....

Iteração 4 – 1º passo

 Definir a seed mais próxima para cada observação

SEM MAIS ALTERAÇÕES... Solução final!

4. K-Means – Variantes

K-Medoids

- Variante do K-Means que altera a forma como o centróide de cada cluster é definido;
- Cada cluster é representado por uma das observações pertencentes ao cluster.

Pode ser usado devido em alternativa ao K-Means devido à sua robustez em relação a outliers, maior interpretabilidade e permite a aplicação de mais funções de distânica.

K-Mode

- Variante do K-Means para dados categóricos, que utiliza a moda em vez da média
- Utiliza uma medida de dissimilaridade simples Hamming distance.

4.K-Means – Vantagens e Desvantagens

- (+) Simples de implementar, perceber e interpretar.
- + Fácil adaptabilidade a novas observações.
- + Rápida implementação.
- \triangle

O número de seeds: é necessário definir o número de clusters a criar à priori.

A inicialização: sensível às posições iniciais das seeds, bem como à existência de outliers.

A "forma" dos dados: os métodos de partição funcionam bem com clusters de formas esféricas. Para dados com formas complexas, os métodos de partição não são a melhor escolha.

4. K-Means – Quantos clusters?

4. K-Means – Quantos clusters?

Opção 1: Produzir várias soluções de clusters com diferentes k, e escolher a melhor solução (Elbow method).

Ou seja, o número de clusters k para os quais a distorção (WCSS) é menor, mantendo o k a um nízel razoável e interpretável.

4. K-Means – Quantos clusters?

Opção 2: Utilizar um método hierárquico para escolher o número de clusters com base no dendograma

4. K-Means – Problema de Inicialização

Um dos problemas do K-means é a sua sensibilidade às posições iniciais das seeds.

Uma solução possível: K-Means ++

Variante do K-Means com uma nova inicialização das seeds.

- Objetivo: Abordar a sensibilidade do modelo à inicialização;
- Intuição: A dispersão das seeds iniciais conduz a boas seeds finais.

Repetir passos 2 e 3 até k seeds terem sido selecionadas.

Depois, prosseguir normalmentepara definição de clusters tal como no K-Means.

Obrigado!