ASSOCIATION RULES MARKET BASKET ANALYSIS USING PYTHON

Contents

- 1. Introduction to Market Basket Analysis
 - i. Uses
 - ii. Definitions and Terminology
- 2. Rule Evaluation
 - i. Support
 - ii. Confidence
 - iii. Lift
- 3. Market Basket Analysis in Python

Introduction to Market Basket Analysis

The most widely used area of application for association rules is Market Basket
 Analysis

Market Basket Analysis (Association Analysis) is a mathematical modeling technique based upon the theory that if you buy a certain group of items, you are likely to buy another group of items

 It is used to analyze the customer purchasing behavior and helps in increasing the sales and maintain inventory by focusing on the point of sale transaction data

Market Basket Analysis - Uses

Product Building

 Develop combo offers based on products bought together

Optimisation

 Organise and place associated products/categories nearby inside a store

Advertising and Marketing

Determine the layout of the catalog of an ecommerce site

Inventory Management

 Control inventory based on product demands and what products sell together

Definitions and Terminology

Term	Definition				
Transactions	A set of items (Item set)				
	Ratio of number of times two or more items occur				
Support	together to the total number of transactions				
	Support can be thought of as P(A and B)				
	Conditional probability that a randomly selected				
Confidence	transaction will include Item B given Item A				
	P(B A) (written as A => B)				
	Ratio of the probability of Items A and B occurring				
Lift	together (Joint probability) to the product of P(A) and				
	P(B)				

Rule Evaluation – Support

Transaction No.	Item 1	Item 2	Item 3	•••
100	Beer	Diaper	Chocolate	
101	Milk	Chocolate	Shampoo	
102	Beer	Wine	Vodka	
103	Beer	Cheese	Diaper	
104 A	Ic ® Cream	Diaper	Beer	

Support of {Diaper, Beer}

$$Support = \frac{\text{No.of transactions containing both A and B}}{\text{Total no.of transactions}} = \frac{3}{5} = 60\%$$

Support of {Diaper, Beer} is 3/5

Rule Evaluation - Confidence

Transaction No.	Item 1	Item 2	Item 3	•••
100	Beer	Diaper	Chocolate	
101	Milk	Chocolate	Shampoo	
102	Beer	Wine	Vodka	
103	Beer	Cheese	Diaper	
104	Ice Cream No	Diaper of transactions	Beer containing both A	and I

Confidence for $\{A\} \Rightarrow \{B\} = \frac{B}{\text{No. of transactions containing A}}$

Confidence for $\{Diaper\} \Rightarrow \{Beer\} \text{ is } 3/3$

When Diaper is purchased, the likelihood of Beer purchase is 100%

Confidence for $\{Beer\} \Rightarrow \{Diaper\}$ is 3/4

When Beer is purchased, the likelihood of Diaper purchase is 75%

{Diaper} ⇒ {Beer}is a more important rule according to Confidence

Rule Evaluation - Lift

Transaction No.	Item 1	Item 2	Item 3	Item 4
100	Beer	Diaper	Chocolate	
101	Milk	Chocolate	Shampoo	
102	Beer	Milk	Vodka	Chocolate
103	Beer	Milk	Diaper	Chocolate
104	Mi j k	₿ iaper	Beer	

Consider {Chocolate} \Rightarrow {Milk}

Lift =
$$\frac{P(A \cap B)}{P(A)P(B)} = \frac{\frac{3}{5}}{\left(\frac{4}{5}\right)\left(\frac{4}{5}\right)} = 0.9375$$

Lift < 1 indicates Chocolate is decreasing the chance of Milk purchase

Case Study - Online Retail Data

Background

 A typical retail transactional data from a UK retailer from 2010-11

Objective

To mine association rules and information about item sets

Available Information

- Total number of transactions is 541910
- Items are aggregated to 392 categories
- Data is collected for 1 year (365 days)

Data Snapshot

ONLINE RETAIL Variables

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
•	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850	United Kingdom
	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850	United Kingdom
	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850	United Kingdom

Column	Description	Type	Measurement	Possible Values
InvoiceNo	Invoice Number	Numeric	-	-
StockCode	Stock Code	Categorica I	-	-
Descriptio n	Product Description	Character	WHITE HANGING HEART T-LIGHT	-
Quantity	Quantity	Continuou s	-	Positive and Negative value
InvoiceDat e	Date of Invoice	Date	dd-mm-yyyy hh:mm	01/12/2010 8:26 to 09/12/2011 12:50
UnitPrice	Price per unit of product	Continuou s	-	Positive and Negative value
CustomerI D	Customer ID	Continuou s	-	-

Market Basket Analysis in Python

#Market Basket Analysis Using Apriori Recommendation

```
pip install mlxtend
```

```
import pandas as pd
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

df = pd.read_excel('Online Retail.xlsx')

df.head()
```

- We will be using library "mlxtend" for performing Market Basket Analysis in Python.
- Library "mlxtend" is used for extracting frequent itemsets with applications in association rule
 Learning

Data Source: Dr Daqing Chen, Director: Public Analytics group. chend '@' Isbu.ac.uk, School of Engineering, London South Bank University, London SE1 0AA, UK, UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science

Market Basket Analysis in Python

Output:

Index	InvoiceNo	StockCode	Description Qua	ntity InvoiceDat	e UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6 01-12-2010 8.2	6 2.55	17850	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6 01-12-2010 8.2	6 3.39	17850	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8 01-12-2010 8.2	6 2.75	17850	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6 01-12-2010 8.2	6 3.39	17850	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6 01-12-2010 8.2	6 3.39	17850	United Kingdom

Visualise Item Frequency

#Item Frequency Plot

```
import seaborn as sns
import matplotlib.pyplot as plt

sns.countplot(x = 'Description', data = df, order =
df['Description'].value_counts().iloc[:10].index)
plt.xticks(rotation=90)
```

- sns.countplot() calculates item frequency and returns a barplot.
- order = used to plot the categorical levels in specific order

Item Frequency Plot

Output

Interpretation:

The plot shows items by frequency in a descending order.

Basic Data Cleanup

Data Cleaning and Consolidation

```
df['Description'] = df['Description'].str.strip()
df.dropna(axis=0, subset=['InvoiceNo'], inplace=True)
df['InvoiceNo'] = df['InvoiceNo'].astype('str')
df = df[~df['InvoiceNo'].str.contains('C')]
```

- strip() returns a copy of the string with both leading and trailing characters removed.
- dropna() removes all the missing values and a new object is returned which does not have any NaN values present in it.
- □ **contains()** function is used to test if pattern or regex is contained within a string of a Series or Index. Here it is used to remove rows where 'InvoiceNo. Contains 'C'

After the cleanup, consolidation of the items into 1 transaction per row with each product is done.

Basic Data Cleanup

Output:

Descriptio n	10 COLOUR SP ACEBOY PEN	12 COLOURED P ARTY BALLOONS		PAINT	12 MESSA GE CARDS WITH EN VELOPES	12 PENCIL TUBE WOOI	L SMALL D	RETROS	12 PENCILS SMALL TUBE SKULL	12 PENCILS TAL L TUBE POSY
InvoiceNo 536370	0.0	0.6	1	0.6	0.0		0.0	0.0	0.6	0.0
536852	0.0	0.6)	0.6	0.0		0.0	0.0	0.6	0.0
536974	0.0	0.6		0.0	0.0		0.0	0.0	0.6	0.0
537065	0.0	0.0)	0.0	0.0		0.0	0.0	0.6	0.0
537463	0.0	0.6	1	0.6	0.0		0.0	0.0	0.6	0.0

Consolidation of items

```
# Data consolidation
def encode_units(x):
    if x <= 0:
        return 0
    if x >= 1:
        return 1

basket_sets = basket.applymap(encode_units)
basket_sets.drop('POSTAGE', inplace=True, axis=1)
```

- applymap() method applies a function that accepts and returns a scalar to every element of a DataFrame.
- This way, we generated a data frame that shows use_colnames=True)
- Once data is structured properly, frequent item sets that have a support of at least 7% is generated.

Get and Display the Rules

#Get the Rules

```
rules = association_rules(frequent_itemsets, metric="lift",
min_threshold=1)
```

association_rules() generate the rules with their corresponding support, confidence and lift.

#Show Top 5 Rules

rules.head()

Output:

Index	antecedents	consequents	antecedent support	consequent support		confidence	lift	leverage	conviction
0	<pre>frozenset({'ALARM CLOCK BAKELIKE</pre>	<pre>frozenset({'ALARM CLOCK BAKELIKE GREEN'})</pre>	0.102040816	0.096938776	0.073979592	0.725	7.478947368	0.06408788	3.283858998
1	<pre>frozenset({'ALARM CLOCK BAKELIKE</pre>	<pre>frozenset({'ALARM CLOCK BAKELIKE PINK'})</pre>	0.096938776	0.102040816	0.073979592	0.763157895	7.478947368	0.06408788	3.79138322
2	<pre>frozenset({'ALARM CLOCK BAKELIKE</pre>	<pre>frozenset({'ALARM CLOCK BAKELIKE GREEN'})</pre>	0.094387755	0.096938776	0.079081633	0.837837838	8.642958748	0.069931799	5.568877551
3	<pre>frozenset({'ALARM CLOCK BAKELIKE</pre>	frozenset({'ALARM CLOCK BAKELIKE RED'})	0.096938776	0.094387755	0.079081633	0.815789474	8.642958748	0.069931799	4.916180758
4	<pre>frozenset({'POSTAGE'})</pre>	frozenset({'ALARM CLOCK BAKELIKE GREEN'})	0.765306122	0.096938776	0.084183673	0.11	1.134736842	0.009995835	1.014675533

Manage How the Rules are Displayed

#Sort the Rules

Dataframe can be filtered using standard pandas code. In this case, rules with high lift (>6) and high confidence (>8) are displayed.

```
antecedent consequent
                                                                                       lift leverage conviction
Index
            antecedents
                                                                support confidence
                             consequents
                                            support
                                                       support
      frozenset({'ALARM frozenset({'ALARM
         CLOCK BAKELIKE
                        CLOCK BAKELIKE
                                                     0.0943878 0.0790816 0.8157895 8.6429587 0.0699318
               GREEN' })
                                  RED'\) 0.0969388
     frozenset({'ALARM frozenset({'ALARM
         CLOCK BAKELIKE
                        CLOCK BAKELIKE
                 RED'})
                                GREEN'}) 0.0943878 0.09693880.0790816 0.83783788.6429587 0.0699318
                                                                                                       5.5688776
     frozenset({'SET/6 frozenset({'SET/
       RED SPOTTY PAPER 20 RED RETROSPOT
   17
              PLATES' ) PAPER NAPKINS' )
                                          0.127551 0.13265310.1020408
                                                                              0.86.0307692 0.0851208 4.3367347
```

Interpretation:

Green and red alarm clocks are purchased together and the red paper cups, napkins and plates are purchased together in a manner that is higher than the overall probability

Manage How the Rules are Displayed

```
basket['ALARM CLOCK BAKELIKE GREEN'].sum()
340.0
basket['ALARM CLOCK BAKELIKE RED'].sum()
316.0
```

- In order to check how much opportunity is there to use the popularity of one product to drive sales of another, their sum is calculated.
- For example, it can be seen that 340 Green Alarm clocks are sold but only 316 Red Alarm clocks are sold, hence maybe selling of Red Alarm Clock can be increased through recommendations

Combinations by country

- □ It is interesting to see how the combinations vary by country of purchase.
- Here, some popular combinations in Germany are displayed

Combinations by country

Output:

```
antecedent consequent
                                                                      support confidence
                                                                                                  lift
                                                                                                          leverage conviction
Index
             antecedents
                              consequents
                                             support
                                                         support
                        frozenset({'PLAS
     frozenset({'PLASTE
                             TERS IN TIN
        RS IN TIN CIRCUS
                                WOODL AND
               PARADE'})
                              ANIMALS'})
                                           0.1159737
                                                       0.1378556  0.067833698  0.58490566  4.242887092  0.051846071  2.076984285
                        frozenset({'PLAS
     frozenset({'PLASTE
                             TERS IN TIN
               RS IN TIN
                                WOODLAND
             SPACEBOY'})
                              ANIMALS')
                                            0.107221
                                                       0.1378556 0.061269147 0.571428571 4.145124717 0.046488133 2.011670314
        frozenset({'RED frozenset({'WOOD
               RETROSPOT LAND CHARLOTTE
       CHARLOTTE BAG'})
                                   BAG'})
                                           0.0700219
                                                       0.1269147 0.059080963
                                                                                   0.84375 6.648168103 0.050194159 5.587746171
```

Interpretation:

It can be inferred that Germans like Plasters in Tin Spaceboy and Woodland Animals.

Quick Recap

In this session, we learnt **Market Basket Analysis:**

Market Basket Analysis

- Mathematical modeling technique based upon the theory that if you buy a certain group of items, you are likely to buy another group of items
- Transactions, Support, Confidence and Lift are the key concepts used in this analysis
- The analysis is performed by creating and studying rules based on different itemsets

Market Basket
Analysis in
Python

- Library mlxtend is used for undertaking MBA in Python
- sns.countplot() plots frequency
- apriori() builds frequent items
- association_rules() builds the rules

THANK YOU!

