Lemma 1. Fixer has a winning strategy against Breaker in the chronicled game on P_5 with superabundant list assignment L where $|L(v_1)| = 2$, $|L(v_2)| = 3$, $|L(v_3)| = 2$, $|L(v_4)| = 3$ and $|L(v_5)| = 2$.

Proof. We show that for each possible such list assignment L on G, Fixer has a winning strategy. Up to symmetry, the following cases cover all the possible list assignments.

Case 1. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 2. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{0, 2\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 3. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 1 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 1 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 1 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 4. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 2 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 5. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 2\} \text{ and } L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 3 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph.

Case 6. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 3\}$.

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 3 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 7. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 2\} \text{ and } L(v_5) = \{1, 3\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 3 at v_4 and v_4 . This results

in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 8. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 3\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 2 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 2 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 9. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{1,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{1,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have

vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 10. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 11. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 3\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 1, 2\}$

and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. Case 12. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 1, 2\} \text{ and } L(v_5) = \{0, 1, 2\}, L(v_4) = \{0,$

 $\{2,3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_1 . This results in

a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 13. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have

vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 14. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 15. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 16. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\} \text{ and } L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 17. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 3\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 18. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 19. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in

a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,3\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 20. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 3\} \text{ and } L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,3\}, L(v_3) = \{0,1\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 21. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph.

Case 22. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph.

Case 23. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 2\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 24. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 2\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 25. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_0 . This results

in a position with lists $L(v_1) = \{1,3\}$, $L(v_2) = \{0,2,3\}$, $L(v_3) = \{0,2\}$, $L(v_4) = \{1,2,3\}$ and $L(v_5) = \{0,1\}$, but then Fixer can edge-color the graph. Case 26. $L(v_1) = \{0,1\}$, $L(v_2) = \{0,2,3\}$, $L(v_3) = \{1,2\}$, $L(v_4) = \{0,2,3\}$ and $L(v_5) = \{0,1\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}, \{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 27. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 2\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 28. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 2, 3\} \text{ and } L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and

 $\{0,3\}.$

 $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. Case 29. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 2, 3\} \text{ and } L(v_5) = \{0, 2, 3\}, L(v_4) = \{0,$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results

in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph.

Case 30. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph.

Case 31. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 2\} \text{ and } L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$

and $\{v_1, v_3\}$, then Fixer should swap 2 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 2 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph.

Case 32. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 2 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 2 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 33. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 3 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 34. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 2 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 35. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 2, 4\} \text{ and } L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 2 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph.

Case 36. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 3 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph.

Case 37. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 3 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 38. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 1, 2\} \text{ and } L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results

in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 39. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 40. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 4\} \text{ and } L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2\}, L(v_4) = \{0,2,4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have

vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2\}, L(v_4) = \{0,2,4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph.

Case 41. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{1,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,2,4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{1,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,2,4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2\}, L(v_4) = \{0,2,4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{2, 3, 4\}$ and

 $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1,3\}, L(v_2) = \{1,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,2,4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2\}, L(v_4) = \{0,2,4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 42. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph.

Case 43. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results

in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 44. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}, \{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{1,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,2,4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1,3\}, L(v_2) = \{1,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,2,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2\}, L(v_4) = \{0,2,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2\}, L(v_4) = \{0,2,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph.

Case 45. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 46. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 47. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 4\} \text{ and } L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 48. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 4\} \text{ and } L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,3\}, L(v_3) = \{0,1\}, L(v_4) = \{0,2,4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in $\{2,4\}.$

a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. Case 49. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2, 3\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}, \{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,3\}, L(v_3) = \{0,1\}, L(v_4) = \{0,2,4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 50. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 4\} \text{ and } L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph.

Case 51. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph.

Case 52. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{1, 2, 3\} \text{ and } L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph.

Case 53. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 2\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 54. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph.

Case 55. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{2, 3, 4\} \text{ and } L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph.

Case 56. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists

 $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\} \text{ and } L(v_5) = \{2, 4\}, \text{ but then Fixer can edge-color the graph.}$

Case 57. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 58. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 59. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{1, 2, 3\} \text{ and } L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph.

Case 60. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 2\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex

sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{1,2,4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}, \{v_0, v_2\}$ and $\{v_1, v_4\},$ then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 61. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 62. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{2, 3, 4\} \text{ and } L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph.

Case 63. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 64. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}, \{v_0, v_4\}$ and $\{v_1, v_2\},$ then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph.

Case 65. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 66. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 67. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 68. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph.

Case 69. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_4 and v_4 . This results

in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 70. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 1\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 71. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 72. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 3\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph.

Case 73. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 2, 3\} \text{ and } L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have

vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph.

Case 74. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 4\}$.

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 75. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 4\} \text{ and } L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph.

Case 76. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph.

Case 77. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 2, 4\} \text{ and } L(v_5) = \{4, 5\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 2 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph.

Case 78. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{4, 5\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph.

Case 79. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 4\} \text{ and } L(v_5) = \{4, 5\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph.

Case 80. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{2, 3, 4\} \text{ and } L(v_5) = \{4, 5\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists

 $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\} \text{ and } L(v_5) = \{4, 5\}, \text{ but then Fixer can edge-color the graph.}$

Case 81. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{4, 5\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph.

Case 82. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 2, 3\} \text{ and } L(v_5) = \{0, 5\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 5\}$, but then Fixer can edge-color the graph.

Case 83. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 5\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph.

Case 84. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{4, 5\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$

and $\{v_1, v_4\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 5\}$, but then Fixer can edge-color the graph.

Case 85. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 4, 5\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 86. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{0, 5\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{0, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{0, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 4, 5\}$ and $L(v_5) = \{0, 5\}$, but then Fixer can edge-color the graph.

Case 87. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{1, 5\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 4, 5\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph.

Case 88. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{2, 5\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 4, 5\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph.

Case 89. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{3, 5\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{3, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 4, 5\}$ and $L(v_5) = \{3, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph.

Case 90. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{4, 5\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 4, 5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{3, 5\}$, but then Fixer can edge-color the graph.

Case 91. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{5, 6\}$.

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{5, 6\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{5, 6\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists

 $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 4, 5\} \text{ and } L(v_5) = \{5, 6\}, \text{ but then Fixer can edge-color the graph.}$

Case 92. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 2\} \text{ and } L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 15.

Case 93. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 2\} \text{ and } L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 11. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 12. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 6. Case 94. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{2, 3\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 8. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_4\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph.

Case 95. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 1 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 3\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 8. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 1 at v_3 . This results in a position with

lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 1 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph.

Case 96. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 13. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph.

Case 97. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 21. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0,3\}$, but then Fixer wins by Case 18. If the components of A_S have vertex

sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 14. If the components of A_S have vertex sets $\{v_2\}, \{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{0,3\}$, but then Fixer wins by Case 4. If the components of A_S have vertex sets $\{v_2\}, \{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}$, $L(v_2) = \{0,2,3\}$, $L(v_3) = \{0,1\}$, $L(v_4) = \{0,1,2\}$ and $L(v_5) = \{0,1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0,3\}$, but then Fixer wins by Case 18. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0,1\}$, but then Fixer wins by Case 14. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0,3\}$, but then Fixer wins by Case 18. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 14.

Case 98. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\} \text{ and } L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 2\}$

and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{2,3\}$, but then Fixer wins by Case 20. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 16. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,3\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2,3\}$, but then Fixer wins by Case 20. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 16. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2,3\}$, but then Fixer wins by Case 20. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 16. Case 99. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 3\} \text{ and } L(v_5) = \{0, 1\}, L(v_4) = \{0, 1\}$ $\{0,1\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 28. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 26. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 19. Case 100. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 17. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 3\}$ and

 $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 101. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 15. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph.

Case 102. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 3\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 21. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 103. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 1. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 1. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 1. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 6. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists

 $L(v_1) = \{0,1\}, L(v_2) = \{0,1,3\}, L(v_3) = \{0,2\}, L(v_4) = \{0,1,3\} \text{ and } L(v_5) = \{0,2\},$ but then Fixer wins by Case 6. If the components of A_S have vertex sets $\{v_1\}, \{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 3\} \text{ and } L(v_5) = \{0, 2\}, \text{ but}$ then Fixer wins by Case 6. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2\}, L(v_4) = \{0,2,3\} \text{ and } L(v_5) = \{0,1\},$ but then Fixer wins by Case 21. If the components of A_S have vertex sets $\{v_3\}, \{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 3\} \text{ and } L(v_5) = \{0, 2\}, \text{ but}$ then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}, \{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 3\} \text{ and } L(v_5) = \{0, 1\}, \text{ but}$ then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}, \{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 3\} \text{ and } L(v_5) = \{0, 2\}, \text{ but }$ then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{0, 1\},$ but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 3\} \text{ and } L(v_5) = \{0, 2\},$ but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 3\} \text{ and } L(v_5) = \{0, 1\},$ but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 3\} \text{ and } L(v_5) = \{0, 2\},$ but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 3\} \text{ and } L(v_5) = \{0, 1\},$ but then Fixer can edge-color the graph.

Case 104. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 3\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 1 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 1 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 1 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 29.

Case 105. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 24.

Case 106. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 3\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 30. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 107. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 1 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 1 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 1 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 25.

Case 108. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 18. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins

by Case 20. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 29. Case 109. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 3\}$.

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 4\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 36.

Case 110. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 4\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 32. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 2 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph.

Case 111. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 41.

Case 112. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 4. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1, 4\}$, $L(v_2) = \{1, 2, 4\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$

and $L(v_5) = \{0,3\}$, but then Fixer wins by Case 39. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1,4\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{2,3\}$, $L(v_4) = \{0,2,3\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1,4\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{2,3\}$, $L(v_4) = \{2,3,4\}$ and $L(v_5) = \{3,4\}$, but then Fixer can edge-color the graph.

Case 113. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 46. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 3 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 49.

Case 114. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 51.

Case 115. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{3, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 52.

Case 116. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 51. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 3 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 117. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 54.

Case 118. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 57. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph.

Case 119. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 4\}$,

but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 56.

Case 120. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 55. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph.

Case 121. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 4. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,4\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 67. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0,3\}$, but then Fixer wins by Case 67. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results

in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 57. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,4\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 57. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 57. Case 122. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1, 2\}$ $\{1,4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{1,2\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 39. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1,4\}$, but then Fixer wins by Case 39. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{1,2\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 39. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex

sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 38. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 38.

Case 123. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{1,2\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 38. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{1,2\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{3,4\}$, but then Fixer wins by Case 38. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{1,2\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{3,4\}$, but then Fixer wins by Case 38. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{3,4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 2, 3\}$

and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{2,3\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 39. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 39.

Case 124. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 42.

Case 125. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_0 . This results in a

position with lists $L(v_1) = \{0,3\}$, $L(v_2) = \{0,2,3\}$, $L(v_3) = \{1,2\}$, $L(v_4) = \{0,2,4\}$ and $L(v_5) = \{2,4\}$, but then Fixer wins by Case 43. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0,v_2\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{1,2\}$, $L(v_4) = \{0,2,4\}$ and $L(v_5) = \{2,4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0,v_1\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,2,3\}$, $L(v_3) = \{2,3\}$, $L(v_4) = \{0,2,4\}$ and $L(v_5) = \{2,4\}$, but then Fixer can edge-color the graph.

Case 126. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{3, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 44.

Case 127. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 3\}$.

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 59. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 3 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph.

Case 128. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 3\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 4. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 4 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 4 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 4 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 72.

Case 129. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 65. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 41.

Case 130. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 40. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 69.

Case 131. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 4. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}, \{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 57. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2\}, L(v_4) = \{2,3,4\}$

and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 57. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3,4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,4\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0,3\}$, but then Fixer wins by Case 67. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3,4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,4\}, L(v_4) = \{0,2,3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 67. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3,4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 67.

Case 132. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{3, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 4. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 4 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 4 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 4 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 64.

Case 133. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_0 . This results in a

position with lists $L(v_1) = \{1,3\}$, $L(v_2) = \{0,2,3\}$, $L(v_3) = \{2,4\}$, $L(v_4) = \{0,2,4\}$ and $L(v_5) = \{3,4\}$, but then Fixer wins by Case 75. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0,v_4\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,2,3\}$, $L(v_3) = \{2,4\}$, $L(v_4) = \{2,3,4\}$ and $L(v_5) = \{3,4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0,v_3\}$, then Fixer should swap 0 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,2,3\}$, $L(v_3) = \{2,4\}$, $L(v_4) = \{0,2,4\}$ and $L(v_5) = \{0,4\}$, but then Fixer can edge-color the graph.

Case 134. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{3, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 76. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph.

Case 135. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{4, 5\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer wins by Case 80.

Case 136. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{4, 5\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer wins by Case 78. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph.

Case 137. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 4 and 5. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 4 and 5 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 5\}$, $L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 4 and 5 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 4 and 5 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{3, 5\}$, but then Fixer wins by Case 89.

Case 138. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 4, 5\}$ and $L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 5. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 5 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 5\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 4, 5\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 84. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 3 and 5 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 3 and 5 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 4, 5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph.

Case 139. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 104.

Case 140. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 3\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 2\}$,

but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 16.

Case 141. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 3\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 106. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph.

Case 142. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 3\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{2,3\}$, but then Fixer wins by Case 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{2,3\}$, but then Fixer wins by Case 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 1, 2\} \text{ and } L(v_5) = \{2, 3\},$ but then Fixer wins by Case 3. If the components of A_S have vertex sets $\{v_1\}, \{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{2,3\}, L(v_4) = \{0,1,2\} \text{ and } L(v_5) = \{2,3\},$ but then Fixer wins by Case 12. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 1, 2\} \text{ and } L(v_5) = \{2, 3\},$ but then Fixer wins by Case 12. If the components of A_S have vertex sets $\{v_1\}, \{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{2,3\}, L(v_4) = \{0,1,2\} \text{ and } L(v_5) = \{2,3\},$ but then Fixer wins by Case 12. If the components of A_S have vertex sets $\{v_2\}, \{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\} \text{ and } L(v_5) = \{2, 3\},$ but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\} \text{ and } L(v_5) = \{2, 3\},$ but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 1, 2\} \text{ and } L(v_5) = \{1, 2\},$ but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\} \text{ and } L(v_5) = \{2, 3\},$ but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 2\} \text{ and } L(v_5) = \{2, 3\},$ but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\} \text{ and } L(v_5) = \{2, 3\},$ but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 1, 2\} \text{ and } L(v_5) = \{1, 2\},$ but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 3\} \text{ and } L(v_5) = \{2, 3\},$ but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 1, 2\} \text{ and } L(v_5) = \{1, 2\},$ but then Fixer can edge-color the graph.

Case 143. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 123. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 144. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{3, 4\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 122. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_1\}$, then Fixer should swap 0 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 145. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 124.

Case 146. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 159. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph.

Case 147. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 126. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 148. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{2, 3, 4\}$

and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 128.

Case 149. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 110. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 150. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 2 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 111.

Case 151. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 112. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph.

Case 152. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with

lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 114.

Case 153. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 115.

Case 154. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 118. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph.

Case 155. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 116.

Case 156. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 116. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph.

Case 157. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 3\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 4. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 4 at v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 115. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_4\}$, then Fixer should swap 1 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 57.

Case 158. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 2 at v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 121.

Case 159. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 41. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}$,

but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 160. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 109.

Case 161. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 3\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 4. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 4 at v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 123. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 1 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 131.

Case 162. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 2 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 131.

Case 163. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 4 at v_1 . This results in a position with

lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 2 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 132.

Case 164. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 112. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 75.

Case 165. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{3, 4\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 133. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph.

Case 166. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{4, 5\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer wins by Case 136. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph.

Case 167. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{4, 5\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer wins by Case 135.

Case 168. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 2 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{3, 4, 5\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 5\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 137.

Case 169. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{3, 4, 5\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{3, 4\}$, $L(v_4) = \{3, 4, 5\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 138. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 4, 5\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{3, 4, 5\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph.

Case 170. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 151. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_3 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 3, 4\}$ and

 $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 171. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 4\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 31. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 2 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 146.

Case 172. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 4\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 145.

Case 173. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 125.

Case 174. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_0 . This results in a position with

lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 152.

Case 175. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 2 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 154. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 176. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 2 at v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 198.

Case 177. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 2 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 197. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 178. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}, \{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 155. If the components of A_S have vertex sets $\{v_3\}, \{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 155. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0,1\}$, but then Fixer wins by Case 155. If the components of A_S have vertex sets $\{v_3\}, \{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 179. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 148. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 180. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 153. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 3 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 154.

Case 181. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 3\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 3\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 197.

Case 182. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 3\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with

lists $L(v_1) = \{0,3\}$, $L(v_2) = \{0,2,3\}$, $L(v_3) = \{0,2\}$, $L(v_4) = \{1,2,4\}$ and $L(v_5) = \{1,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{0,2\}$, $L(v_4) = \{1,2,4\}$ and $L(v_5) = \{1,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,2,3\}$, $L(v_3) = \{0,2\}$, $L(v_4) = \{2,3,4\}$ and $L(v_5) = \{1,3\}$, but then Fixer wins by Case 157.

Case 183. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 111.

Case 184. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 1\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 4. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 4 at v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 164. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 1 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 185. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 4. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 4 at v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 190. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 1 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 186. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 156. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph.

Case 187. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 3\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 185. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 3\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph.

Case 188. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 151. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 165.

Case 189. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 2, 4\} \text{ and } L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 1 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 164. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 1 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 4\}$,

but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 1 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 190. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 149. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{2,4\}$, but then Fixer wins by Case 149. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 149. If the components of A_S have vertex sets $\{v_1\}, \{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 76. If the components of A_S have vertex sets $\{v_1\}, \{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,4\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 76. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,4\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph.

Case 191. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{4, 5\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 2 at v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer wins by Case 167.

Case 192. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{2, 4, 5\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{3, 4\}$, $L(v_4) = \{2, 4, 5\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 169. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 2 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{3, 4\}$, $L(v_4) = \{2, 4, 5\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 2 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{2, 4, 5\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph.

Case 193. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 179. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 179. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 179. If the components of A_S have vertex

sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,3\}, L(v_4) = \{0,1,4\}$ and $L(v_5) = \{0,1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,3\}, L(v_4) = \{0,3,4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 172. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0,1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1\}, L(v_4) = \{0,1,4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,3\}, L(v_4) = \{0,1,4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 172. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,3\}, L(v_4) = \{0,3,4\}$ and $L(v_5) = \{0,1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 172.

Case 194. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{1, 3, 4\}$

and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 201.

Case 195. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{1, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 184. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_1\}$, then Fixer should swap 0 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 196. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1\}, L(v_4) = \{1,2,4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1\}, L(v_4) = \{1,2,4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1\}, L(v_4) = \{1,2,4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1\}, L(v_4) = \{1,2,4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1\}, L(v_4) = \{1,2,4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 158. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1\}, L(v_4) = \{1,2,4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 158. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a

position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2,3\}$, but then Fixer wins by Case 180. If the components of A_S have vertex sets $\{v_2\}, \{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1\}, L(v_4) = \{1,2,4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 180. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1\}, L(v_4) = \{1,2,4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 180. Case 197. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{1, 2, 4\} \text{ and } L(v_5) = \{1, 2, 4\}$

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 1 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 48. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 1 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 47. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 1 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 198.

 $\{0,4\}.$

Case 198. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 1 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 47. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 1 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 48. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 1 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 197. Case 199. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 182.

Case 200. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 2 at v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 199.

Case 201. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 194.

Case 202. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 3\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 1 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 157. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 1 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 121. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_2\}$, then Fixer should

swap 0 and 1 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 128. Case 203. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 3\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 42. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 38. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 161. Case 204. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 111. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 68.

Case 205. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 4. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 4 at v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 124. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 122. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 189. Case 206. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 3\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 1 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 161. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 1 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins

by Case 67. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 1 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 72. Case 207. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1\}, L(v_4) = \{0,3,4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 219. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{0,1\}$, but then Fixer wins by Case 219. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 219. If the components of A_S have vertex sets $\{v_1\}, \{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1\}, L(v_4) = \{0,3,4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1\}, L(v_4) = \{0,1,4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,3\}, L(v_4) = \{0,3,4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1\}, L(v_4) = \{0,1,4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{0,1\}$, $L(v_4) = \{0,1,4\}$ and $L(v_5) = \{0,1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{0,1\}$, $L(v_4) = \{0,3,4\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph.

Case 208. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 187. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 187. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 187. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 60. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 60. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 60. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2\}, L(v_4) = \{0,2,4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{2,3\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{2,3\}, L(v_4) = \{2,3,4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{0,2\}$, $L(v_4) = \{0,2,4\}$ and $L(v_5) = \{0,2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0,v_2\}$ and $\{v_1,v_3\}$, then Fixer should swap 0 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{0,2\}$, $L(v_4) = \{2,3,4\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0,v_4\}$ and $\{v_1,v_2\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{0,2\}$, $L(v_4) = \{0,2,4\}$ and $L(v_5) = \{0,2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0,v_3\}$ and $\{v_1,v_2\}$, then Fixer should swap 0 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{0,2\}$, $L(v_4) = \{2,3,4\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph.

Case 209. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\} \text{ and } L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 155. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 155. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 155. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 172.

Case 210. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1\}, L(v_4) = \{0,1,4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 110. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 110. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 110. If the components of A_S have vertex sets $\{v_1\}, \{v_0, v_2\}$ and $\{v_3, v_4\},$ then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1\}, L(v_4) = \{0,1,4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ $\{0,1\}.$

and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,3\}, L(v_4) = \{0,1,4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 171. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 171. Case 211. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1, 2\}$

Let S and A_S be as in Lemma 3 using colors 0 and 4. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2\}, L(v_4) = \{1,2,4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 199. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 199. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0,1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results

in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,4\}, L(v_4) = \{1,2,4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 205. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0,1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 205. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0,1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 205.

Case 212. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$.

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 2 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 205.

Case 213. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 1 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 195. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 1 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 3, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$

and $\{v_2, v_3\}$, then Fixer should swap 0 and 1 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{1, 3, 4\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph.

Case 214. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 2\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 195.

Case 215. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 216. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 216. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 2\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 4. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 220. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2, 3\}$, an

 $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,4\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 220. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,4\}, L(v_4) = \{1,2,4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 119. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2\}, L(v_4) = \{1,2,4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 119. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 119.

Case 217. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 1 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 219. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 1 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 1 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 218. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 202. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3\}$, $L(v_4) = \{2, 3, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 219. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 207. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 207. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 207. If the components of A_S have vertex sets $\{v_1\}, \{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 178. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2\}, L(v_4) = \{0,1,4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2\}, L(v_4) = \{0,2,4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 220. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4\}$, $L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 4. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2\}, L(v_4) = \{1,2,4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 216. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 216. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,4\}, L(v_4) = \{1,2,4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results

in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,4\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 130. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2\}, L(v_4) = \{0,1,2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,4\}, L(v_4) = \{1,2,4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 130. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4\}, L(v_4) = \{0, 1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 130. Case 221. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1, 2\}, L(v_4) = \{0, 1$ $\{0,1\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{2,3\}, L(v_4) = \{0,2,4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 202. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0,1\}$, but then Fixer wins by Case 202. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0,1\}$, but then Fixer wins by Case 202. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0,1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{1,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,2,4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{1,2,3\}, L(v_3) = \{2,3\}, L(v_4) = \{0,2,4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex

sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2\}, L(v_4) = \{0,2,4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 184. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{0, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 184.

Case 222. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1\}, L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 3\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 180.

Case 223. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 1 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 199. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 1 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins

by Case 155. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 1 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 184. Case 224. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 196. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{1, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 217. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 184.

Case 225. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2\}, L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 178. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 214. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2\}$, $L(v_4) = \{0, 2, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 223.

Lemma 2. Fixer has a winning strategy against Breaker in the chronicled game on P_5 with superabundant list assignment L where $|L(v_1)| = 2$, $|L(v_2)| = 3$, $|L(v_3)| = 3$, $|L(v_4)| = 2$ and $|L(v_5)| = 2$.

Proof. We show that for each possible such list assignment L on G, Fixer has a winning strategy. Up to symmetry, the following cases cover all the possible list assignments.

Case 1. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 3\}$ and

 $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2,3\}, L(v_4) = \{0,3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,2\}, L(v_4) = \{0,3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2,3\}, L(v_4) = \{0,3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2,3\}, L(v_4) = \{0,3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,2\}, L(v_4) = \{0,3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph.

Case 2. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 3\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 3 at v_3 and v_4 . This results

in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph.

Case 3. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 2\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{1, 2, 3\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2, 3\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2, 3\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,2\}, L(v_4) = \{2,3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2, 3\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,2\}, L(v_4) = \{0,2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2,3\}, L(v_4) = \{2,3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,2,3\}, L(v_4) = \{2,3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 4. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 3\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 3\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 3\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 5. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 3\}, L(v_4) = \{0, 2\} \text{ and } L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 3\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 3 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 3\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 6. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 3\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 3\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 2 at v_4 and v_0 . This results

in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 3\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 7. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 3\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 8. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 1\} \text{ and } L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2,3\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,2\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2,3\}, L(v_4) = \{0,3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,2\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,2\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2,3\}, L(v_4) = \{0,3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2,3\}, L(v_4) = \{0,3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 9. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{1, 2\} \text{ and } L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 1 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 1 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 1 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 10. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 3\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_3 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 2\}$ and

 $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2,3\}, L(v_4) = \{2,3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,2\}, L(v_4) = \{2,3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,2\}, L(v_4) = \{1,2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2,3\}, L(v_4) = \{2,3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2,3\}, L(v_4) = \{2,3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. Case 11. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{1, 3\} \text{ and } L(v_5) = \{1, 3\}, L(v_4) = \{1, 3\}, L(v_4) = \{1, 3\}, L(v_5) = \{1, 3\}$ $\{0,3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 1 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 1 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 1 at v_4 . This results in a position with lists

 $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{1, 3\} \text{ and } L(v_5) = \{1, 3\}, \text{ but then Fixer can edge-color the graph.}$

Case 12. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{1, 3\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 3\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph.

Case 13. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 14. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 2\} \text{ and } L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph.

Case 15. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{1, 2\} \text{ and } L(v_5) = \{0, 1\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 2 at v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$

and $\{v_0, v_4\}$, then Fixer should swap 0 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 16. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 3\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 17. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1,2\}, L(v_4) = \{0,3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,3\}, L(v_4) = \{0,3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1,2\}, L(v_4) = \{0,1\}$

and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1,2\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph.

Case 18. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{1, 3\} \text{ and } L(v_5) = \{0, 1\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph.

Case 19. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 2\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_0 . This results

in a position with lists $L(v_1) = \{1,3\}$, $L(v_2) = \{0,2,3\}$, $L(v_3) = \{0,1,2\}$, $L(v_4) = \{2,3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. Case 20. $L(v_1) = \{0,1\}$, $L(v_2) = \{0,2,3\}$, $L(v_3) = \{0,1,2\}$, $L(v_4) = \{2,3\}$ and $L(v_5) = \{1,2\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}, \{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}, \{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,3\}, L(v_4) = \{2,3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1,2\}, L(v_4) = \{2,3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,3\}, L(v_4) = \{1,2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,3\}, L(v_4) = \{2,3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,3\}, L(v_4) = \{2,3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 21. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 3\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph.

Case 22. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{1, 3\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 23. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph.

Case 24. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 3\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 3\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1,3\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,3\}, L(v_4) = \{0,2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 3\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 3\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 25. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{1, 2\} \text{ and } L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 1 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 1 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 1 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 26. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 3\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,3\}, L(v_4) = \{1,2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1,2\}, L(v_4) = \{1,2\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,3\}, L(v_4) = \{2,3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1,2\}, L(v_4) = \{1,2\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,3\}, L(v_4) = \{2,3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,3\}, L(v_4) = \{2,3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 27. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 2\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 3\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 28. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 3\}, L(v_4) = \{0, 2\} \text{ and } L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 1 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 1 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 1 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 29. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 3\}, L(v_4) = \{0, 4\} \text{ and } L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 3\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 3\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 30. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 3\}, L(v_4) = \{3, 4\} \text{ and } L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 4. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 3\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 3, 4\}, L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 3, 4\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 3\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 4\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 3\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1,4\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,3\}, L(v_4) = \{3,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,3,4\}, L(v_4) = \{3,4\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,3\}, L(v_4) = \{0,3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 3\}, L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{1,3,4\}, L(v_4) = \{3,4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{1,3,4\}$, $L(v_4) = \{3,4\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0,v_2\}$ and $\{v_1,v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{0,1,3\}$, $L(v_4) = \{0,3\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0,v_2\}$ and $\{v_1,v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{0,1,3\}$, $L(v_4) = \{3,4\}$ and $L(v_5) = \{3,4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0,v_4\}$ and $\{v_1,v_2\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{0,1,3\}$, $L(v_4) = \{0,3\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0,v_3\}$ and $\{v_1,v_2\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{0,1,3\}$, $L(v_4) = \{3,4\}$ and $L(v_5) = \{3,4\}$, but then Fixer can edge-color the graph.

Case 31. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 3\}$.

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 32. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 33. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{3, 4\} \text{ and } L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 4. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 4\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex

sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 4\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 4\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1,4\}, L(v_2) = \{0,1,2\}, L(v_3) = \{2,3,4\}, L(v_4) = \{3,4\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 4\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1,4\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2,3\}, L(v_4) = \{3,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{2,3,4\}, L(v_4) = \{3,4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2,3\}, L(v_4) = \{0,3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2,3\}, L(v_4) = \{3,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{3, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{2,3,4\}, L(v_4) = \{3,4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2,3\}, L(v_4) = \{3,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. Case 34. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{3, 4\} \text{ and } L(v_5) = \{0, 1, 2\}, L(v_4) = \{0,$

 $\{2,3\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 4\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 4 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 4\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 4 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 4\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph.

Case 35. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{0, 2\} \text{ and } L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 3 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 36. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 4. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1, 4\}$, $L(v_2) = \{1, 2, 4\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 4\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 4\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph.

Case 37. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{1, 3\} \text{ and } L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 4. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 4 at v_3 and v_4 . This results in a position with lists $L(v_4) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 4 at v_4 and v_4 . This results in

a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 4\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{1, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{3, 4\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 3\}, L(v_4) = \{1, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,3\}, L(v_4) = \{3,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 3\}, L(v_4) = \{1, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{1, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 3\}, L(v_4) = \{1, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 3\}, L(v_4) = \{1, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{1, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{1, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph.

Case 38. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{2, 3\} \text{ and } L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 4\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have

vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 4 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 4\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 4 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 4\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 39. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 2\} \text{ and } L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{2,3,4\}, L(v_4) = \{2,3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2,4\}, L(v_4) = \{0,2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}, \{v_0, v_1\}$ and $\{v_2, v_4\},$ then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2,4\}, L(v_4) = \{2,3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1,3\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{0,2,4\}$, $L(v_4) = \{0,2\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{2,3,4\}$, $L(v_4) = \{2,3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_3 and v_3 . This results in a position with lists $L(v_1) = \{1,3\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{2,3,4\}$, $L(v_4) = \{2,3\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph.

Case 40. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 3\} \text{ and } L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 4. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 4\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 4\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 4\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 4\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1,4\}, L(v_2) = \{0,1,2\}, L(v_3) = \{2,3,4\}, L(v_4) = \{3,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1,4\}, L(v_2) = \{0,1,2\}, L(v_3) = \{2,3,4\}, L(v_4) = \{0,3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2,3\}, L(v_4) = \{0,3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2,3\}, L(v_4) = \{0,3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{0,2,3\}$, $L(v_4) = \{0,3\}$ and $L(v_5) = \{3,4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0,v_2\}$ and $\{v_1,v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{2,3,4\}$, $L(v_4) = \{3,4\}$ and $L(v_5) = \{3,4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0,v_2\}$ and $\{v_1,v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{2,3,4\}$, $L(v_4) = \{0,3\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0,v_4\}$ and $\{v_1,v_2\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{2,3,4\}$, $L(v_4) = \{3,4\}$ and $L(v_5) = \{3,4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0,v_3\}$ and $\{v_1,v_2\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{2,3,4\}$, $L(v_4) = \{0,3\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph.

Case 41. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{3, 4\}$.

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 4\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 2 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 42. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 2\} \text{ and } L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 43. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$

and $\{v_0, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 44. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{3, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph.

Case 45. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 4. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 4 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 4 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 4 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 46. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{1, 4\} \text{ and } L(v_5) = \{0, 1\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 4. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 1\}$ and a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 1\}$ and

 $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{1,2,4\}, L(v_4) = \{1,4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1,2\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1,2\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. Case 47. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{2, 4\} \text{ and } L(v_5) = \{0, 1, 2\}, L(v_4) = \{0,$ $\{0,4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists

 $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{1, 4\} \text{ and } L(v_5) = \{0, 4\}, \text{ but then Fixer can edge-color the graph.}$

Case 48. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 49. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph.

Case 50. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{2, 4\} \text{ and } L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph.

Case 51. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 2\}$.

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have

vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 4 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 4 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 52. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 4. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3,4\}, L(v_4) = \{2,4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,3\}, L(v_4) = \{2,4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3,4\}, L(v_4) = \{2,4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 2\}$

and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 53. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 3\}, L(v_4) = \{1, 4\} \text{ and } L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{1, 3, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 4 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 4 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph.

Case 54. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 3\}, L(v_4) = \{2, 4\} \text{ and } L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 4. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 4 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 4 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 4 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 55. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results

in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 56. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 4\} \text{ and } L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 57. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 4\} \text{ and } L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 58. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\} \text{ and } L(v_5) = \{0, 1\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{1,4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,4\}, L(v_4) = \{1,4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 59. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\} \text{ and } L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 60. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{1,4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph.

Case 61. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\} \text{ and } L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 62. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\} \text{ and } L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 63. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\} \text{ and } L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{2,4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and

 $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,4\}, L(v_4) = \{2,4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 64. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\} \text{ and } L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{2,4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in

a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 65. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 1\} \text{ and } L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 4. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 4 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 4 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 4 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 66. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 2\} \text{ and } L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$

and $\{v_1, v_4\}$, then Fixer should swap 2 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 67. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 4\}$.

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, and $L(v_5) = \{0, 1\}$, $L(v_5) = \{0, 2, 4\}$, $L(v_5) = \{0, 2, 4\}$, $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph.

Case 68. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 3\} \text{ and } L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 69. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 3\} \text{ and } L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 70. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 4\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 1 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 1 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 1 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph.

Case 71. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\} \text{ and } L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 2 at v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 72. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{3, 4\} \text{ and } L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph.

Case 73. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{0, 1\} \text{ and } L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 4. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in

a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{1,2,4\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 74. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 4\}$.

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$

and $\{v_1, v_4\}$, then Fixer should swap 2 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 75. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{1, 3\}$ and $L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph.

Case 76. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{2, 3\} \text{ and } L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3,4\}, L(v_4) = \{1,2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3,4\}, L(v_4) = \{2,3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{1, 2\}$ and

 $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3,4\}, L(v_4) = \{1,2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3,4\}, L(v_4) = \{2,3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3,4\}, L(v_4) = \{2,3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 77. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 78. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{0, 4\} \text{ and } L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 1 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 1 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 1 at v_4 and v_4 . This results

in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. Case 79. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 80. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{3, 4\} \text{ and } L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{3, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{1,2,4\}, L(v_4) = \{3,4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3,4\}, L(v_4) = \{3,4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{1,2,4\}, L(v_4) = \{1,4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3,4\}, L(v_4) = \{3,4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3,4\}, L(v_4) = \{3,4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{1,2,4\}, L(v_4) = \{1,4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{1,2,4\}, L(v_4) = \{1,4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph.

Case 81. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 4\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 4. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,3\}, L(v_4) = \{2,4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,3\}, L(v_4) = \{0,2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3,4\}, L(v_4) = \{2,4\}$

and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3,4\}, L(v_4) = \{0,2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,3\}, L(v_4) = \{0,2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 82. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 4. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 4 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 4 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 4 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 83. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 4\} \text{ and } L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 2 at v_4 and v_0 . This results

in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 84. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{2, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}, \{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{1, 3, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}, \{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 3, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 3, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 3, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{1,3,4\}, L(v_4) = \{1,4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,3,4\}, L(v_4) = \{2,4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}, \{v_0, v_2\}$ and $\{v_1, v_3\},$ then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph.

Case 85. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{3, 5\}$ and $L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 4 and 5. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 4 and 5 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 5\}$, $L(v_4) = \{3, 5\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 4 and 5 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 4 and 5 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{3, 5\}$ and $L(v_5) = \{3, 5\}$, but then Fixer can edge-color the graph.

Case 86. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{3, 5\}$ and $L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 4 and 5. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 4 and 5 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3, 5\}$, $L(v_4) = \{3, 5\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 4 and 5 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 4 and 5 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{3, 5\}$ and $L(v_5) = \{3, 5\}$, but then Fixer can edge-color the graph.

Case 87. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{4, 5\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph.

Case 88. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 4\} \text{ and } L(v_5) = \{0, 5\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 5\}$, but then Fixer can edge-color the graph.

Case 89. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\} \text{ and } L(v_5) = \{1, 5\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{1,4\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{1,4\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,4\}, L(v_4) = \{1,4\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph.

Case 90. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 5\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{2,4\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph.

Case 91. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{0, 5\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{0, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{0, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{0, 5\}$, but then Fixer can edge-color the graph.

Case 92. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{4, 5\}$ and $L(v_5) = \{1, 5\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph.

Case 93. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{4, 5\}$ and $L(v_5) = \{2, 5\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph.

Case 94. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{4, 5\}$ and $L(v_5) = \{4, 5\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph.

Case 95. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 5\}$ and $L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 4 and 5. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 4 and 5 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 5\}$, $L(v_4) = \{0, 5\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 4 and 5 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 4 and 5 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 5\}$ and $L(v_5) = \{0, 5\}$, but then Fixer can edge-color the graph.

Case 96. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{4, 5\}$ and $L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 5. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 5 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 5 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 5 at v_3 and v_2 . This results in

a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4, 5\}, L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 5 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 5 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4, 5\}, L(v_4) = \{4, 5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 5 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,4,5\}, L(v_4) = \{0,4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 5 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4, 5\}, L(v_4) = \{4, 5\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 5 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 5 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{4, 5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 5 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4, 5\}, L(v_4) = \{4, 5\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 5 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4, 5\}, L(v_4) = \{4, 5\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 5 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 5 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,4\}, L(v_4) = \{4,5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 5 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 5 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{4, 5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph.

Case 97. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{1, 5\}$ and $L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 4 and 5. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 4 and 5 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 5\}$, $L(v_4) = \{1, 5\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$

and $\{v_2, v_4\}$, then Fixer should swap 4 and 5 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 4 and 5 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 5\}$ and $L(v_5) = \{1, 5\}$, but then Fixer can edge-color the graph.

Case 98. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{4, 5\}$ and $L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 5. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 5 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 5\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 5 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 5\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 5 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 5\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph.

Case 99. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 5\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 4 and 5. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 4 and 5 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 5\}$, $L(v_4) = \{2, 5\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 4 and 5 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 4 and 5 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 5\}$ and $L(v_5) = \{2, 5\}$, but then Fixer can edge-color the graph.

Case 100. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{4, 5\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 5. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 5 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 5\}$, $L(v_3) = \{3, 4, 5\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 5 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 5\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 5 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 5\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph.

Case 101. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 4\}$.

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 3, 5\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_4 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 102. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4, 5\}, L(v_4) = \{0, 4\} \text{ and } L(v_5) = \{4, 5\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 5. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 5 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4, 5\}, L(v_4) = \{4, 5\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 5 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 5 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{4, 5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 5 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4, 5\}, L(v_4) = \{4, 5\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 5 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 5 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,4\}, L(v_4) = \{4,5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 5 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 5 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{2,4,5\}, L(v_4) = \{4,5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 5 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4, 5\}, L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 5 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,4\}, L(v_4) = \{0,4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 5 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,2,3\}$, $L(v_3) = \{0,2,4\}$, $L(v_4) = \{0,4\}$ and $L(v_5) = \{4,5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 5 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,2,3\}$, $L(v_3) = \{2,4,5\}$, $L(v_4) = \{4,5\}$ and $L(v_5) = \{4,5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 5 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,2,3\}$, $L(v_3) = \{2,4,5\}$, $L(v_4) = \{0,4\}$ and $L(v_5) = \{0,4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 5 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,2,3\}$, $L(v_3) = \{2,4,5\}$, $L(v_4) = \{4,5\}$ and $L(v_5) = \{4,5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 5 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,2,3\}$, $L(v_3) = \{2,4,5\}$, $L(v_4) = \{0,4\}$ and $L(v_5) = \{0,4\}$, but then Fixer can edge-color the graph.

Case 103. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4, 5\}, L(v_4) = \{1, 4\} \text{ and } L(v_5) = \{4, 5\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 5. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 5 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 5\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 5 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 5\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 5 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 5\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph.

Case 104. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4, 5\}, L(v_4) = \{2, 4\} \text{ and } L(v_5) = \{4, 5\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 5. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 5 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 5\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 2 and 5 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 5 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 105. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4, 5\}, L(v_4) = \{3, 4\} \text{ and } L(v_5) = \{4, 5\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 5. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 3 and 5 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 5\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have

vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 5 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 5\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 5 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 5\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph.

Case 106. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{4, 5\}$ and $L(v_5) = \{5, 6\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{5, 6\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{5, 6\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{5, 6\}$, but then Fixer can edge-color the graph.

Case 107. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4, 5\}, L(v_4) = \{4, 6\}$ and $L(v_5) = \{4, 5\}.$

Let S and A_S be as in Lemma 3 using colors 5 and 6. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 5 and 6 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4, 6\}$, $L(v_4) = \{4, 6\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 5 and 6 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{4, 5\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 5 and 6 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{4, 6\}$ and $L(v_5) = \{4, 6\}$, but then Fixer can edge-color the graph.

Case 108. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 5. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 17. Case 109. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{1, 3\}$ and $L(v_5) = \{1, 3\}$.

Case 109. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{1, 3\} \text{ and } L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 27. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 110. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 3\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 1 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 26. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 1 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 1 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 111. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 4\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 2 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 2 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 36.

Case 112. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 4\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 33. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 2 and 4 at v_3 . This results in a position with lists

 $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{3, 4\} \text{ and } L(v_5) = \{0, 3\}, \text{ but then Fixer can edge-color the graph.}$

Case 113. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 4. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1, 4\}$, $L(v_2) = \{1, 2, 4\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 34. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 4\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 4\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph.

Case 114. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 4. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1, 4\}$, $L(v_2) = \{1, 2, 4\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 4\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 4\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 79.

Case 115. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 45. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 2 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 55.

Case 116. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 65. If the components of A_S have vertex

sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 117. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{0, 1\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 46. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 2 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 58.

Case 118. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 4 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 59. If the components of A_S have vertex sets $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 4 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 4 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 119. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 4\} \text{ and } L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 36.

Case 120. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 70. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 121. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 4. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 4 at v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 42. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 1 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 66.

Case 122. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 66.

Case 123. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{1, 2\} \text{ and } L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 32. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists

 $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 3\} \text{ and } L(v_5) = \{2, 4\}, \text{ but then Fixer wins by Case 69.}$

Case 124. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 2\}$.

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 51. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 125. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{3, 4\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 71.

Case 126. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{3, 4\} \text{ and } L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 83. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 127. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 39. If the components of A_S have vertex sets

 $\{v_1\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 81.

Case 128. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 3\}$.

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 74.

Case 129. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{1, 2\}$.

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 53. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph.

Case 130. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{2, 4\} \text{ and } L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 41.

Case 131. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{3, 4\} \text{ and } L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 84. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 132. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4, 5\}, L(v_4) = \{2, 4\} \text{ and } L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 5. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 5 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 5\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 3 and 5 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 5 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{4, 5\}$, but then Fixer wins by Case 104.

Case 133. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4, 5\}, L(v_4) = \{3, 4\} \text{ and } L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 5. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 5 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 5\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 100. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 3 and 5 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 5 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{4, 5\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 134. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 4. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1, 4\}$, $L(v_2) = \{1, 2, 4\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 113. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 4\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_4 and v_0 . This results

in a position with lists $L(v_1) = \{1, 4\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 135. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 3\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 4\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 112. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 2 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 2 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 136. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 3\}$.

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 126. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 2 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 2 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph.

Case 137. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 117. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 138. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 2\} \text{ and } L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$

and $\{v_1, v_3\}$, then Fixer should swap 2 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 2 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 119.

Case 139. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 117. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph.

Case 140. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 122.

Case 141. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{3, 4\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 125.

Case 142. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 125.

Case 143. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{1, 3\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 114.

Case 144. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{3, 4\}$.

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 130.

Case 145. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{0, 4\} \text{ and } L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 113. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists

 $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 4\} \text{ and } L(v_5) = \{2, 4\}, \text{ but then Fixer wins by Case 83.}$

Case 146. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 4\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 114. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph.

Case 147. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 124. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph.

Case 148. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 5\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 5. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 5 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 5\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 5\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 133. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 2 and 5 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{3, 4, 5\}$, $L(v_4) = \{2, 5\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 2 and 5 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 5\}$ and $L(v_5) = \{3, 5\}$, but then Fixer can edge-color the graph.

Case 149. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{3, 4\}$.

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$

and $\{v_1, v_3\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 5\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 132.

Case 150. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 143.

Case 151. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{1, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 4. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_0 . This results in a position with lists $L(v_1) = \{1, 4\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 146. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 4\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph.

Case 152. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 4\} \text{ and } L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 134. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 51.

Case 153. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{2, 4\} \text{ and } L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 135. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 52.

Case 154. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 2 at v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 74. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 73. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 118. Case 155. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 3\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 182.

Case 156. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 1\} \text{ and } L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 134. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists

 $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 3\} \text{ and } L(v_5) = \{0, 2\}, \text{ but then Fixer wins by Case 124.}$

Case 157. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 2 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 141.

Case 158. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 1 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 145. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 1 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 1 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph.

Case 159. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 4. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1,2\}, L(v_4) = \{2,4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 153. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex

sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 4 at v_3 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 153. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{1,2,4\}, L(v_4) = \{2,4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}, \{v_0, v_1\}$ and $\{v_2, v_3\},$ then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 127. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 127. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 127.

Case 160. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 3\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 187.

Case 161. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 182.

Case 162. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{1, 2\} \text{ and } L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 129. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 3, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph.

Case 163. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{2, 4, 5\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 2 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 2 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 4 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{2, 4, 5\}$, $L(v_4) = \{3, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 149.

Case 164. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 3\}, L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 1\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 3\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 152. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 3\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 45. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_1\}$, then Fixer should

swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 3\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 29. **Case 165.** $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}, \{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_0 , v_4 and v_1 . This results in a position with lists $L(v_1) = \{1,3\}, L(v_2) = \{1,2,3\}, L(v_3) = \{2,3,4\}, L(v_4) = \{0,2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 135. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{2,3,4\}, L(v_4) = \{0,2\}$ and $L(v_5) = \{2,3\}$, but then Fixer wins by Case 39. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2,4\}, L(v_4) = \{0,2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{2,3,4\}, L(v_4) = \{2,3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{2,3\}$, but then Fixer wins by Case 39. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 39.

Case 166. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 29. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 30. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 183. Case 167. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{1, 2\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 151.

Case 168. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 4\} \text{ and } L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 151.

Case 169. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\} \text{ and } L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 170.

Case 170. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\} \text{ and } L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{1,4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{2,4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\},$ $L(v_4) = \{1,4\}$ and $L(v_5) = \{2,4\}$, but then Fixer wins by Case 142. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\},$ $L(v_4) = \{2,4\}$ and $L(v_5) = \{2,4\}$, but then Fixer wins by Case 64. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\},$ $L(v_4) = \{1,4\}$ and $L(v_5) = \{1,4\}$, but then Fixer wins by Case 60. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,4\},$ $L(v_4) = \{1,4\}$ and $L(v_5) = \{2,4\}$, but then Fixer wins by Case 158. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 158. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 64. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 60. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 64. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 60.

Case 171. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 3\}.$

Let S and A_S be as in Lemma 3 using colors 3 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 3 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 4\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 3 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 3\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 3 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 179.

Case 172. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{0, 2\} \text{ and } L(v_5) = \{0, 4\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 138. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 116. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 127. Case 173. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{1, 2\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results

in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 and v_6 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 167.

Case 174. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{1, 3\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 4. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 4 at v_0 . This results in a position with lists $L(v_1) = \{1, 4\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 145. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 4\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 78. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_1\}$, then Fixer should swap 0 and 4 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{3, 4\}$, but then Fixer wins by Case 37. Case 175. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 3\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 135. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 32. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 3\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 54. Case 176. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 4\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 2 at v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 78. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 79. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 168. Case 177. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 2 at v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$

and $\{v_0, v_4\}$, then Fixer should swap 0 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_3\}$, then Fixer should swap 0 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 178.

Case 178. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 4. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 4 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 4 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 4 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 166.

Case 179. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{1, 2\} \text{ and } L(v_5) = \{1, 4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 4. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 4 at v_0 . This results in a position with lists $L(v_1) = \{0, 4\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 48. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 43. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_2\}$, then Fixer should swap 1 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 4\}$, but then Fixer wins by Case 142. Case 180. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 2\}$.

Let S and A_S be as in Lemma 3 using colors 2 and 3. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 2 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 2 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 2 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 181.

Case 181. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 3\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{1, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 159.

Case 182. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{0, 2\} \text{ and } L(v_5) = \{2, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 187. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 39. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 35.

Case 183. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 2\}, L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 30. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_0, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 29. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_0, v_1\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{2, 4\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 166. Case 184. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 2\}$

and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,4\}, L(v_4) = \{1,2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,4\}, L(v_4) = \{1,2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 157. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,4\}, L(v_4) = \{1,2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 157. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 193. If the components of A_S have vertex sets $\{v_2\}, \{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,4\}, L(v_4) = \{1,2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 193. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 193. Case 185. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{0, 1\} \text{ and } L(v_5) = \{0, 1\}, L(v_4) = \{0, 1$

 $\{1,2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 1 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 156. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 1 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 1 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph.

Case 186. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{2,3,4\}, L(v_4) = \{0,2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 198. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0,1\}$, but then Fixer wins by Case 198. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0,1\}$, but then Fixer wins by Case 198. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0,1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{1, 2, 3\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{1,3\}, L(v_2) = \{1,2,3\}, L(v_3) = \{2,3,4\}, L(v_4) = \{0,2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,2,4\}, L(v_4) = \{0,2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 3\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 197. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{1, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 197.

Case 187. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{2, 3, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 182. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 35. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{2, 3, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer wins by Case 39.

Case 188. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 1\}$

and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 156. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 192. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0,1\}$, but then Fixer wins by Case 199. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 156. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 156. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 192. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0,1\}$, but then Fixer wins by Case 199. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 192. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 199.

Case 189. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 2\} \text{ and } L(v_5) = \{0, 2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 1 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 167. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 1 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 192. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 0 and 1 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 184.

Case 190. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{1, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 1 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 198. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 1 at v_2 . This results in a position with lists

 $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{2, 3\} \text{ and } L(v_5) = \{1, 3\}, \text{ but then Fixer wins by Case 143. If the components of } A_S \text{ have vertex sets } \{v_4\} \text{ and } \{v_1, v_2\}, \text{ then Fixer should swap 0 and 1 at } v_4. \text{ This results in a position with lists } L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{2, 3\} \text{ and } L(v_5) = \{0, 3\}, \text{ but then Fixer wins by Case 140.}$

Case 191. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 167. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 115. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 195. Case 192. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{0,2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 164. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{0,2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{0,2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_4 . This results

in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 115. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,4\}, L(v_4) = \{0,2\}$ and $L(v_5) = \{0, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 188. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0,1\}$, but then Fixer wins by Case 115. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 188. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 115. Case 193. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 2\} \text{ and } L(v_5) = \{1, 2\}$ $\{2,3\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{1,2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{1,2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{1,2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,4\}, L(v_4) = \{1,2\}$ and $L(v_5) = \{2, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{2,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,4\}, L(v_4) = \{1,2\}$ and $L(v_5) = \{2,3\}$, but then Fixer wins by Case 190. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,4\}, L(v_4) = \{1,2\}$ and $L(v_5) = \{2,3\}$, but then Fixer wins by Case 190. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 184. If the components of A_S have vertex sets $\{v_2\}, \{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_4 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{1,2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 184. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{1,2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 184.

Case 194. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{1, 2\} \text{ and } L(v_5) = \{2, 4\}.$

Let S and A_S be as in Lemma 3 using colors 2 and 4. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 2 and 4 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 3, 4\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 2 and 4 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 2\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{2, 4\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 2 and 4 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{1, 4\}$ and $L(v_5) = \{2, 4\}$, but then Fixer wins by Case 170.

Case 195. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{0, 2\} \text{ and } L(v_5) = \{1, 2\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 115. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_0, v_4\}$, then Fixer should swap 0 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins

by Case 167. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_0, v_2\}$, then Fixer should swap 0 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 191. Case 196. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,3,4\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 192. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0,1\}$, but then Fixer wins by Case 192. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0,1\}$, but then Fixer wins by Case 192. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,3,4\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0,1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,3,4\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,3,4\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,4\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,4\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 1, 2\}$, $L(v_3) = \{0, 3, 4\}$, $L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_2 and v_1 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 199.

Case 197. $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{0, 1\}$.

Let S and A_S be as in Lemma 3 using colors 0 and 2. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 0 and 2 at v_4 and v_3 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 185. If the components of A_S have vertex sets $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 184. If the components of A_S have vertex sets $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 0 and 2 at v_4 and v_0 . This results in a position with lists $L(v_1) = \{1, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{1, 2\}$ and $L(v_5) = \{1, 2\}$, but then Fixer wins by Case 199.

Case 198. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{1, 2, 4\}, L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 0 and 1. If the components of A_S have vertex sets $\{v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 0 and 1 at v_4 and v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 190. If the components of A_S have vertex sets $\{v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 0 and 1 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 140. If the components of A_S have vertex sets $\{v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 0 and 1 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{1, 2, 4\}$, $L(v_4) = \{2, 3\}$ and $L(v_5) = \{1, 3\}$, but then Fixer wins by Case 143.

Case 199. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results

in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,1,3\}, L(v_3) = \{0,1,4\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,2,4\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 115. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}, L(v_2) = \{0, 1, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 2, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 1\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 1\}$, but then Fixer wins by Case 115. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 188. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 2\}$ and $L(v_5) = \{0,1\}$, but then Fixer wins by Case 115. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_4 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 2\}$, but then Fixer wins by Case 188. Case 200. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\} \text{ and } L(v_5) = \{0, 1, 4\}, L(v_4) = \{0,$ $\{0,4\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 2. If the components of A_S have vertex sets $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 2 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 1, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 66. If the components of A_S have vertex sets $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 2 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 2, 4\}$, $L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 29. If the components of A_S have vertex

sets $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 2 at v_3 and v_0 . This results in a position with lists $L(v_1) = \{0, 2\}$, $L(v_2) = \{0, 2, 3\}$, $L(v_3) = \{0, 1, 4\}$, $L(v_4) = \{0, 2\}$ and $L(v_5) = \{0, 4\}$, but then Fixer wins by Case 201.

Case 201. $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{0, 1\} \text{ and } L(v_5) = \{0, 3\}.$

Let S and A_S be as in Lemma 3 using colors 1 and 3. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,3,4\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0,3\}$, but then Fixer wins by Case 115. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0,3\}$, but then Fixer wins by Case 115. If the components of A_S have vertex sets $\{v_0\}$, $\{v_1, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_0 . This results in a position with lists $L(v_1) = \{0, 3\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0,3\}$, but then Fixer wins by Case 115. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_2\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0,1\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,3,4\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0,3\}$, but then Fixer wins by Case 156. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_3\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0,3\}$, but then Fixer wins by Case 156. If the components of A_S have vertex sets $\{v_1\}$, $\{v_0, v_4\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 2, 3\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0,3\}$, but then Fixer wins by Case 156. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_1\}$ and $\{v_3, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_1\}$ and $\{v_2, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_1\}$ and $\{v_2, v_3\}$, then Fixer should swap 1 and 3 at v_1 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,2,3\}, L(v_3) = \{0,3,4\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0, 3\}$, but then Fixer wins by Case 164. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_3\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_2\}$, $\{v_0, v_4\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 1, 4\}, L(v_4) = \{0, 1\}$ and $L(v_5) = \{0, 3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_2\}$ and $\{v_1, v_4\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0, 1\}, L(v_2) = \{0, 1, 2\}, L(v_3) = \{0, 3, 4\}, L(v_4) = \{0, 3\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_2\}$ and $\{v_1, v_3\}$, then Fixer should swap 1 and 3 at v_2 and v_0 . This results in a position with lists $L(v_1) = \{0,3\}, L(v_2) = \{0,1,2\}, L(v_3) = \{0,1,4\}, L(v_4) = \{0,1\}$ and $L(v_5) = \{0,3\}$, but then Fixer wins by Case 121. If the components of A_S have vertex sets $\{v_3\}$, $\{v_0, v_4\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 . This results in a position with lists $L(v_1) = \{0,1\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{0,3,4\}$, $L(v_4) = \{0,3\}$ and $L(v_5) = \{0,3\}$, but then Fixer can edge-color the graph. If the components of A_S have vertex sets $\{v_4\}$, $\{v_0, v_3\}$ and $\{v_1, v_2\}$, then Fixer should swap 1 and 3 at v_3 and v_4 . This results in a position with lists $L(v_1) = \{0,3\}$, $L(v_2) = \{0,1,2\}$, $L(v_3) = \{0,3,4\}$, $L(v_4) = \{0,3\}$ and $L(v_5) = \{0,3\}$, but then Fixer wins by Case 199.

Lemma 3. Let G be a multigraph, L a list assignment on G and $\alpha, \beta \in \text{Pot}(L)$. Let $S \subseteq V(G)$ be those vertices v with $|\{\alpha, \beta\} \cap L(v)| = 1$. Then there is a graph A_S with vertex set S and $\Delta(A_S) \leq 1$ such that Fixer has a sequence of moves against Breaker in the chronicled game resulting in a list assignment where Fixer has chosen to swap α and β all or none of the vertices in each component of A_S .

Proof. For each $v \in S$, Fixer should swap α and β at v twice in a row. Now every $v \in S$ is incident to an edge in C; that is, as long as Fixer only does swaps with α and β , Breaker's moves are already foretold in the chronicle. Now add an edge in A_S for each $xy \in C - \infty$ labeled $\{\alpha, \beta\}$. The lemma follows.