

A Level · OCR · Physics





**Structured Questions** 

## **Electric Potential & Energy**

Electric Potential / Calculating Electric Potential / Capacitance of an Isolated Sphere / Force-Distance Graph / Electric Potential Energy

/8

Scan here to return to the course

or visit savemyexams.com





**Total Marks** 

**1 (a)** The structure of atoms was deduced in the early 1900s by Rutherford and his co-workers from the scattering of alpha-particles by a very thin sheet of gold.

Rutherford assumed that the scattering of the alpha-particles was due to electrostatic forces.

Fig. 23 shows a detector used to record the number N of alpha-particles scattered through an angle  $\theta$ .



Fig. 23

At  $\theta = 0^{\circ}$ , N was too large to be measured. The table below summarises some of the collected data.

| θ/° | lg (N)      |
|-----|-------------|
| 150 | 1.5         |
| 75  | 2.3         |
| 60  | 2.7         |
| 30  | 3.9         |
| 15  | 5.1         |
| 0   | N too large |

|     | i) Show that the number of alpha-particles scattered through 15° is about 4000 times more than those scattered through 150°.                     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|
|     | [1]                                                                                                                                              |
|     | ii) Use the evidence from the table to explain the structure of the atom.                                                                        |
|     | [3]                                                                                                                                              |
|     |                                                                                                                                                  |
|     |                                                                                                                                                  |
|     |                                                                                                                                                  |
|     | (4 marks)                                                                                                                                        |
| (b) | A proton with kinetic energy 0.52 MeV is travelling directly towards a stationary nucleus of cobalt-59 ( $^{59}_{27}Co)$ in a head-on collision. |
|     | i) Explain what happens to the electric potential energy of the proton-nucleus system.                                                           |
|     | [1]                                                                                                                                              |
|     |                                                                                                                                                  |
|     | ii) Calculate the <b>minimum</b> distance <i>R</i> between the proton and cobalt nucleus.                                                        |
|     | R = m [3]                                                                                                                                        |
|     |                                                                                                                                                  |
|     |                                                                                                                                                  |
|     |                                                                                                                                                  |
|     | (4 marks)                                                                                                                                        |
|     |                                                                                                                                                  |
|     |                                                                                                                                                  |