MCE4101 Robotic Engineering

Assignment 6

Due: 30 Sept 2021

Todsayad T 6114215

Narong Aphiratsakun, D.Eng

Assumption University Faculty of Engineering

Assignment 6 : Q1

- Q1. Given DH table for RPP manipulator.
- a. Obtain θ_1, d_2 and d_3 by inverse kinematic analysis method for positions: P0 (0,0.2,0.5) and P1 (1,1.2,0.5).
- b. With the <u>calculated angle and movements</u>, obtain the trajectory, velocities and acceleration <u>equations</u> for P0 and P1 with required time as 2 s. Initial and final velocity is 0 unit/s.

Given

d1 = 0.5

Link	a _i	$lpha_i$	d _i	æ		
1	0	0	d ₁ (offset)	\mathcal{E}_{1}^{ullet}		
2	0	-90°	d_2^*	0		
3	0	0	d_3^{ullet}	0		


```
Q2.m × FN_Q1.m ×
                                                                                            Assignment6Q1.m × +
%RPP
                                                 d2 1 =
clear all; clc;
                                                                         &B) Polynomial trajectories, velocities amd accelerations equation
%A) DH and TOend
                                                                                                                                                                     A1 =
syms th1 1 th1 2 d2 1 d2 2 d3 1 d3 2
                                                                         %Cubic Polynomial
d1 = 0.5;
                                                                         t0 = 0; tf = 2;
%A) Analytic Method
                                                                                                                                                                                  0
                                                                         %joint 1
%POSITION1
                                                 th1 1 =
                                                                         q1 0 = Data1 deg(1,1);
Pend1 = [0; 0.2; 0.5];
                                                                                                                                                                        -29.8542
                                                                         g1 f = Data2 deg(1,1);
Xc 1 = 0; Yc 1 = 0.2; Zc 1 = 0.5;
d2 1 = Zc 1-d1
                                                      1.5708
                                                                         v1 0 = 0; v1 f = 0;
                                                                                                                                                                           9.9514
th1 1 = atan2(Yc_1, Xc_1)
                                                                         Y1 = [q1 \ 0; v1 \ 0; q1 \ f; v1 \ f];
th1 1 deg = atan2d(Yc 1, Xc 1)
                                                                         B1 = [1 t0 t0^2 t0^3; 0 1 2*t0 3*t0^2; 1 tf tf^2 tf^3; 0 1 2*tf 3*tf^2];
d3 1 = Yc 1/cosd(th1 1)
                                                                         %A1 = [a1 0; a1 1; a1 2; a1 3];
%DH Table
                                                 th1 1 deg =
                                                                                                                                                                     A2 =
                                                                         A1 = inv(B1)*Y1
%%L = link([alpha A theta D])
L1 = link([0 \ 0 \ th1 \ 1 \ d1,0]);
                                                      90
                                                                                                                                                                         1.0e-14 *
L2 = link([-pi/2 \ 0 \ 0 \ d2 \ 1,1]);
                                                                         %joint 2
L3 = link([0 \ 0 \ 0 \ d3 \ 1,1]);
                                                                         q2 \ 0 = Data1 \ deg(1,2);
iVMErobot 1 = robot({L1 L2 L3});
                                                                         q2 f = Data2 deg(1,2);
T03 1 = fkine(iVMErobot 1, [th1 1 d2 1 d3 1])
                                                 d3 1 =
                                                                         v2 0 = 0; v2 f = 0;
P0end 1 = T03 \ 1*[0;0;0;1]
%POSITION2
                                                                         Y2 = [q2 \ 0; v2 \ 0; q2 \ f; v2 \ f];
                                                                                                                                                                         -0.2385
Pend2 = [1; 1.2; 0.5];
                                                      0.2001
                                                                         B2 = [1 t0 t0^2 t0^3; 0 1 2*t0 3*t0^2; 1 tf tf^2 tf^3; 0 1 2*tf 3*tf^2];
                                                                                                                                                                           0.0795
Xc 2 = 1; Yc 2 = 1.2; Zc 2 = 0.5;
                                                                         %A2 = [a2 0; a2 1; a2 2; a2 3];
d2 \ 2 = Zc \ 2-d1
                                                                         A2 = inv(B2)*Y2
                                                  d2 2 =
th1 2 = atan2(Yc 2, Xc 2)
th1 2 deg = atan2d(Yc 2, Xc 2)
d3 2 = Yc 2/cosd(th1 2)
                                                                                                                                                                     A3 =
                                                        0
                                                                         %joint 3
%DH Table
                                                                         q3 \ 0 = Data1 \ deg(1,3);
%%L = link([alpha A theta D])
                                                                                                                                                                         11.4592
L1 = link([0 0 th1 2 d1,0]);
                                                                         q3 f = Data2 deg(1,3);
L2 = link([-pi/2 0 0 d2 2,1]);
                                                  th1 2 =
                                                                         v3 0 = 0; v3 f = 0;
L3 = link([0 \ 0 \ 0 \ d3 \ 2,1]);
                                                                         Y3 = [q3 \ 0; v3 \ 0; q3 \ f; v3 \ f];
                                                                                                                                                                         58.5298
iVMErobot 2 = robot({L1 L2 L3});
                                                       0.8761
T03 2 = fkine(iVMErobot 2, [th1 2 d2 2 d3 2])
                                                                         B2 = [1 t0 t0^2 t0^3; 0 1 2*t0 3*t0^2; 1 tf tf^2 tf^3; 0 1 2*tf 3*tf^2];
                                                                                                                                                                        -19.5099
P0end 2 = T03 \ 2*[0;0;0;1]
                                                                         %A3 = [a3 0; a3 1; a3 2; a3 3];
                                                                         A3 = inv(B2)*Y3
%ikine POSITION1
                                                  th1 2 deg =
position1 = transl(Pend1);
IG1 = [0 0 0]; %Data given
                                                      50.1944
M = [1 \ 1 \ 1 \ 0 \ 0 \ 0]; %3DOF
Data1_rad = ikine(iVMErobot_1, position1, IG1, M)
Data1 deg = rad2deg(Data1 rad)
%T0end1 = fkine(iVMErobot 1, Data1 rad)
                                                  d3 2 =
%ikine POSITION2
                                                       1.2001
position2 = transl(Pend2);
IG2 = [0 0 0]; %Data given
M = [1 \ 1 \ 1 \ 0 \ 0 \ 0]; %3DOF
Data2 rad = ikine(iVMErobot 2, position2, IG2, M)
Data2 deg = rad2deg(Data2 rad)
%T0end2 = fkine(iVMErobot 2, Data2 rad)
```

Assignment 6: Q2

Q2. From Q1) RPP robot,

- a. Obtain θ_1 , d_2 and d_3 by inverse kinematic (invk) function for positions: P0 (0,0.2,0.5) and P1 (1,1.2,0.5). For P0 use initial guess as (0, 0, 0) and P1 use initial guess as (pi, 0, 0).
- b. With the <u>angle and movements obtained</u>, find the trajectory data using jtraj for P0 and P1 with required time as 2s with sampling of 0.1s.

۸١	signment6Q2.m* × +	30 1 -													
a)	%RPP	$d2_1 =$	$d2_2 =$	╡	Data1_rad	d =									
	clear all; clc;														
	%A) DH and TOend	0	- 0)		0	0	0.2000							
	syms th 1 th 2 d2 1 d2 2 d3 1 d3 2														
	d1 = 0.5;														
	%A) Analytic Method				Data1 deg	-									
		th1 1 =	th1 2	_	Datai_deg	_									
	%POSITION1														
	Pend1 = [0;0.2;0.5]; %Xc;Yc;Zc					0	0	11.4592							
	$d2_1 = Pend1(3,1)-d1$	3.1416	2.	4469											
	th1_1 = atan2(Pend1(1,1),-Pend1(2,1))														
	$th1_1_{deg} = atan2d(Pend1(1,1),-Pend1(2,1))$				Data2_rad	d =									
	d3_1 = Pend1(1,1)/sin(th1_1)-d1														
	%DH Table	$th1_1_deg =$	th1_2	deg =	2.446	9 0.0	000	-1.5620							
	%%L = link([alpha A theta D])														
	L1 = link([0 0 th1 1 d1,0]);	180	140	1944											
	L2 = link([-pi/2 0 0 d2 1,1]);	100	140.	1944	Data 2 dam										
	L3 = link([0 0 0 d3 1,1]);				Data2_deg) =									
	iVMErobot 1 = robot({L1 L2 L3});														
	%POSITION2	d3 1 =	d3 2 =		140.194	0.0	000	-89.4989							
		u3_1 -	u3_2 =												
	Pend2 = [1;1.2;0.5]; %Xc;Yc;Zc														
	d2_2 = Pend2(3,1)-d1	-0.5000	1.	0620											
	th1_2 = atan2(Pend2(1,1),-Pend2(2,1))														
	th1_2_deg = atan2d(Pend2(1,1),-Pend2(2,1))	t =													
	d3_2 = Pend2(1,1)/sin(th1_2)-d1														
	%DH Table	Columns 1 through 15													
	%%L = link([alpha A theta D])	0 0.1	000 0.200	0.3000	0.4000	0.5000 (0.6000	0.7000	0.8000 0.9000	1.0000	1.1000	1.2000	1.3000	1.4000	
	$L1 = link([0 0 th1_2 d1,0]);$	0 0.1	0.200	0.5000	0.4000	0.5000	0.0000	0.7000	7.0000 0.5000	1.0000	1.1000	1.2000	1.5000	1.4000	
	$L2 = link([-pi/2 \ 0 \ d2 \ 2,1]);$	Columns 16 thro													
	$L3 = link([0 \ 0 \ d3_2,1]);$														
	<pre>iVMErobot_2 = robot({L1 L2 L3});</pre>	1.5000 1.6	000 1.700	1.8000	1.9000	2.0000									
	%ikine POSITION1														
	<pre>position1 = transl(Pend1);</pre>														
	IG1 = [0 0 0]; %Data given	Q =													
	M = [1 1 1 0 0 0]; %3DOF														
	Data1_rad = ikine(iVMErobot_1, position1, IG1, M)	0	0	0.2000											
	Data1_deg = rad2deg(Data1_rad)	0.0028	0.0000	0.1980											
	%ikine POSITION2	0.0209	0.0000	0.1849											
	<pre>position2 = transl(Pend2);</pre>	0.0651	0.0000	0.1531											
	IG2 = [pi 0 0]; %Data given	0.1417	0.0000	0.0979											
	M = [1 1 1 0 0 0]; %3DOF	0.2533	0.0000	0.0176											
	Data2_rad = ikine(iVMErobot_2, position2, IG2, M) Data2_deg = rad2deg(Data2_rad)	0.3990	0.0000	-0.0874											
	bacaz_deg = radzdeg (bacaz_rad)	0.5754	0.0000	-0.2144											
b)	%B) Fina trajextory data using jtraj	0.3754													
N/	%POSITION1			-0.3593											
	%POSITION2	0.9956		-0.5169											
	t = [0:0.1:2]	1.2234		-0.6810											
	Q = jtraj(Data1_rad,Data2_rad,t)	1.4513		-0.8451											
	for i = 1:3	1.6701		-1.0027											
	Q1(i) = Q(i,1);	1.8714	0.0000	-1.1477											
	Q2(i) = Q(i,2);	2.0478	0.0000	-1.2747											
	Q3(i) = Q(i,3);	2.1936	0.0000	-1.3797											
	figure(1)	2.3051	0.0000	-1.4600											
	plot_(iVMErobot_1, [Q1(i),Q2(i),Q3(i)])	2.3817		-1.5152											
	figure (2) pause (1)	2.4259		-1.5470											
	plot(iVMErobot 2.[01(i) 02(i) 03(i)])	2 1110	0 0000	-1 5600											
	plot(iVMErobot_2, [Q1(i),Q2(i),Q3(i)]) pause(1)	2.4440		-1.5600 -1.5620											
	plot(iVMErobot_2,[Q1(i),Q2(i),Q3(i)]) pause(1) %end	2.4440		-1.5600 -1.5620											

Assignment 6: Q3

Q3. With RRP (SCARA).

Given DH table and Transformation matrix.

- a). Find the Jacobian Matrix J equation, J will be 6x3 matrix.
- b). Obtain the Jacobian Matrix value when

$$a1 = 3$$

$$a2 = 5$$

$$\theta 1 = 20^{\circ}, \, \theta 2 = -10^{\circ}$$

d1 = 5 (Link offset from base)

$$d3 = 1$$

a)
$$j = \begin{bmatrix} jv \\ jw \end{bmatrix}$$
 $jv = \begin{bmatrix} Z_0(0s - 0o) & Z_1(0s - 01) & Z_2 \end{bmatrix}$
 $= \begin{bmatrix} 3 & (laC_1 + la_2C_1C_2 - laS_1S_2) & 3 & (laC_1 + la_2C_1S_2 + la_2C_2S_1) & 0 \\ 01 & (laS_1 + la_2C_1S_2 + la_2C_2S_1) & 02 & (laS_1 + la_2C_1S_2 + la_2C_2S_1) & 0 \\ 01 - 0ls & 01 - 0ls &$

0)	jeq=	- A1S1- A1C1+	A2S12 A2C12 O O	- 2512 22612 0 0 0 -1	0 0 -1 0 0 0
		$ \theta_1 = 0 \\ \theta_2 = 0 \\ \lambda_1 = 0 \\ \lambda_2 = 0 $	20°, 10° 3 5		
		7.7	943 431 0 0 0	-0.466 4.9240 0 0	0 0 -1 0 0 0
					V

Assignment 6 : Q4

Q4. Using MATLAB and obtain Jacobian parameter for Q3b) by using jacob0 from robotic toolbox when

```
a1 = 3

a2 = 5

\theta 1 = 20^{\circ}, \theta 2 = -10^{\circ}

d1 = 5 (Link offset from base)

d3 = 1
```

Attached your code and result.

```
Jvalue =
   -1.8943
              -0.8682
                           0.0000
    7.7431
              4.9240
                           -0.0000
   -0.0000
               -0.0000
                           -1.0000
    0.0000
               0.0000
                                  0
                                  0
                      0
    1.0000
               1.0000
                                  0
clear all; clc;
syms th1 th2 a1 a2 d1 d3
% th1 = 0; th2 = 0;
%B When a1 = 3; a2 =5; d1 =5; d3 = 1;
%SCARA(RRP) + 1DOF
L1 = link([0 a1 th1 d1,0]);
L2 = link([pi a2 th2 0,0]);
L3 = link([0 \ 0 \ 0 \ d3,1]);
RRP 1 = robot(\{L1\});
RRP 2 = robot(\{L1 L2\});
RRP 3 = robot(\{L1 L2 L3\});
T01 = fkine(RRP 1, [th1])
T02 = fkine(RRP 2, [th1 th2])
T03 = fkine(RRP_3, [th1 th2 d3])
01 = T01(:,4)
02 = T02(:,4)
03 = T03(:,4)
Z1 = T01(:,3)
Z2 = T02(:,3)
Z3 = T03(:,3)
Jvalue = jacob0(RRP_3,[degtorad(th1) degtorad(th2) d3])
%B When Jvalue = jacob0(RRP 3, [degtorad(20) degtorad(-10) 1])
```