high_order_integrals

 $high_order_integrals$ is a small Python program that is able to calculate 6th order accurate thickness parameters $(\delta_{99}, \delta^*, \theta)$ for a temporal turbulent boundary layer (TTBL). It also calculates the related Reynolds numbers $(Re_{\tau}, Re_{\delta^*}, Re_{\theta})$, the streamwise shear velocity $u_{\tau,x}$ and the streamwise friction coefficient $c_{f,x}$.

It employs mean statistics calculated with <code>post_incompact3d</code>, in particular mean velocity profile and mean streamwise velocity gradient. <code>high_order_integrals</code> is able to automatically open each <code>mean_stats</code> and <code>vort_stats</code> files, based on inputs given through <code>post.prm</code>. Time-units are read from the <code>.xdmf</code> snapshots' headers at the folder corresponding to the flow realization 1.

High order interpolation

The mean velocity profile is reconstructed with the SciPy function InterpolatedUnivariateSpline, with a spline of order 5 that passes through all data points. Integrals are evaluated with the integral command of the same function. In this manner, the integrals calculated are 6th order accurate.

List of calculated quantities

• BL thickness δ_{99} (O(6))

$$\delta_{99} \equiv y : \langle u(y)
angle = 0.01 U_w$$

• Displacement thickness (O(6))

$$\delta^* = \int_0^\infty rac{\langle u
angle}{U_w} dy$$

• Momentum thickness (O(6))

$$heta = \int_0^\infty rac{\langle u
angle}{U_w}igg(1-rac{\langle u
angle}{U_w}igg)dy$$

• Friction Reynolds number (O(6))

$$Re_{ au}=rac{u_{ au}\delta_{99}}{
u}=\delta_{99}^{+}$$

• Reynolds number based on displacement thickness (O(6))

$$Re_{\delta^*} = rac{U_w \delta^*}{
u}$$

• Reynolds number based on momentum thickness (O(6))

$$Re_{ heta} = rac{U_w heta}{
u}$$

• Shear velocity (O(6))

$$u_{ au}=\sqrt{
urac{\partial U}{\partial y}}$$