Problem Set 2: Solution

Part One: Hand-Written Exercise

1. Since $\hat{r}_{i,1}$ is the OLS residual of regressing x_1 on the constant one and $x_2, ..., x_k$, we can write:

$$x_{i,1} = \hat{c}_0 + \hat{c}_2 x_{i,2} + \dots + \hat{c}_k x_{i,k} + \hat{r}_{i,1},$$

where \hat{c}_j are the OLS estimates. We now continue with the proof:

$$\sum \hat{r}_{i,1}^2 = \sum \hat{r}_{i,1} (x_{i,1} - \hat{c}_0 - \hat{c}_2 x_{i,2} - \dots - \hat{c}_k x_{i,k})$$

$$= \sum \hat{r}_{i,1} x_{i,1} - \hat{c}_0 \sum \hat{r}_{i,1} - \hat{c}_2 \sum \hat{r}_{i,1} x_{i,2} - \dots - \hat{c}_k \sum \hat{r}_{i,1} x_{i,k}$$

$$= \sum \hat{r}_{i,1} x_{i,1},$$

by the fact that $\sum \hat{r}_{i,1} = \sum \hat{r}_{i,1} x_{i,2} = ... = \sum \hat{r}_{i,1} x_{i,k} = 0$.

- 2. (a) By $\beta = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$, we can get $\hat{\beta}_0 = -0.25$, $\hat{\beta}_1 = 2$ and $\hat{\beta}_2 = 1.25$.
 - (b) By $\tilde{\beta}_1 = \frac{\sum_{i=1}^n (y_i \bar{y})(x_{i1} \bar{x}_1)}{\sum_{i=1}^n (x_{i1} \bar{x}_1)^2}$ and $\tilde{\beta}_2 = \frac{\sum_{i=1}^n (y_i \bar{y})(x_{i1} \bar{x}_2)}{\sum_{i=1}^n (x_{i2} \bar{x}_2)^2}$, we can get $\tilde{\beta}_1 = 2$ and $\tilde{\beta}_2 = 1.25$. Thus, $\hat{\beta}_1 \tilde{\beta}_1 = \hat{\beta}_2 \tilde{\beta}_2 = 0$.
 - (c) x_1 and x_2 should be uncorrelated, which means $Cov(x_1, x_2)$ is equal to 0.
- 3. (a)

$$\tilde{\beta}_1 = \frac{\sum x_i y_i}{\sum x_i^2}$$

$$\mathbb{E}(\tilde{\beta}_1) = \frac{\sum x_i \mathbb{E}(y_i)}{\sum x_i^2} = \beta_0 \cdot \frac{\sum x_i}{\sum x_i^2} + \beta_1.$$

(b) If $\beta_0 \neq 0$, then $\tilde{\beta}_1$ is biased iff $\sum x_i \neq 0$.

(c) $\operatorname{Var}(\tilde{\beta}_1) = \operatorname{Var}\left(\frac{\sum x_i y_i}{\sum x_i^2}\right) = \operatorname{Var}\left(\frac{\sum x_i u_i}{\sum x_i^2}\right) = \frac{\sigma^2}{\sum x_i^2}$

(d)
$$\operatorname{Var}(\hat{\beta}_1) = \frac{\sigma^2}{\sum (x_i - \bar{x})^2}.$$

As $\sum x_i^2 \ge \sum (x_i - \bar{x})^2$ for any sample of data, $Var(\hat{\beta}_1) \ge Var(\tilde{\beta}_1)$ in general.

(e) No, since $\tilde{\beta}_1$ is NOT unbiased in general. In the case where $\tilde{\beta}_1$ is unbiased, then we have $\bar{x} = 0$, causing $Var(\hat{\beta}_1) = Var(\tilde{\beta}_1)$.