Московский Физико-Технический Институт (государственный университет)

Вычислительная математика

Лабораторная работа №4

Автор:

Овсянников Михаил Б01-008

Долгопрудный, 2022

Содержание

Цель	3
Теоретические сведения	3
Общая задача	3
Многочлен Ньютона	3
Сплайн-интерполяция	4
Построение сплайна по таблично заданной функции	5 11
Общая постановка задачи	
Интерполяция многочленом Ньютона	
Сплайн-интерполяция	
Вывод	14

Цель

Познакомиться с различными способами интерполяции, реализовать их и провести сравнение, сопоставить полученные значения с действительными и оценить ошибки.

Теоретические сведения

Общая задача

Пускай у нас есть набор данных зависимости одной величины от другой. Скажем, одна величина таблично задана от другой.

x	x_0	x_1	x_2	 x_{n-1}	x_n
f(x)	f_0	f_1	f_2	 f_{n-1}	f_n

Таблица 1. Таблично заданная функция

Наша задача — найти значения функции в точках, не указанных в таблице, то есть произвести интерполяцию, если говорить о точках между x_1 и x_n , и экстраполяцию в противном случае.

Для этого всего применяются различные методы. В частности, используемые в данной работе многочлен Ньютона и сплайн-интерполяция. Остановимся на них поподробнее и рассмотрим их построение.

Многочлен Ньютона

Это метод интерполяции, при котором искомая функция приближается многочленом степени n, где $n \leq N-1$, N — количество точек в таблице. Причем все эти точки предполагаются попарно различными.

Описание алгоритма построения состоит в следующем. Сначала посчитаем так называемые разделенные разности b_k . Для простоты будем предполагать, что используется вся таблица функции, хотя все следующее применимо и к определенному участку таблицы для интерполяции функции лишь по нескольким точкам из таблицы.

Нулевая разделенная разность b_0 по определению есть значение функции в точке x_i , равное $f(x_i)$. Обозначим значения разделенных разностей для b_{j-i} между точками x_i и x_j , где i < j как $f(x_i, x_{i+1}, \ldots, x_j)$. Они определяются рекурсивно:

$$f(x_i, x_{i+1}, \dots, x_{j-1}, x_j) = \frac{f(x_{i+1}, \dots, x_{j-1}, x_j) - f(x_i, x_{i+1}, \dots, x_{j-1})}{x_j - x_i}.$$

Таким образом, мы получаем следующего вида таблицу разделенных разностей:

	b_0	b_1	b_2		b_n
x_0	$f(x_0)$				
x_1	$f(x_1)$	$f(x_0, x_1)$	$f(x_0, x_1, x_2)$		
x_2	$f(x_2)$	$\int f(x_1, x_2)$:		$\left f(x_0, x_1, \dots, x_n) \right $
:	:	:	$f(x_{n-2}, x_{n-1}, x_n)$	•••	
x_n	$f(x_n)$	$f(x_{n-1}, x_n)$			

Таблица 2. Таблица разделенных разностей

Для упрощения, пусть нужно проинтерполировать функцию на промежутке $[x_0, x_1]$, тогда возьмем главную верхнюю диагональ получившейся таблицы. Многочлен Ньютона строится по следующему принципу:

$$N_n(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + \dots + b_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

Преимущество многочлена Ньютона состоит в том, что его легко построить. Вдобавок, его легко модифицировать, ведь при добавлении новой точки требуется лишь посчитать одну новую строчку таблицы.

Недостатком же является его точность. При интерполяции все достаточно хорошо, а вот при экстраполяции, как мы увидим, ошибка становится запредельной.

Сплайн-интерполяция

Данный метод приближает искомую функцию совокупностью кубических многочленов.

Пусть весь отрезок интерполяции [a,b] разбит на элементарные отрезки, значения на концах которых мы знаем: $a=x_0 < x_1 < \ldots < x_n = b$. На каждом таком отрезке интерполянт S(x) представляет собой кубический полином $S_k(x)$:

$$S_k(x) = a_k + b_k(x - x_k) + \frac{c_k}{2}(x - x_k)^2 + \frac{d_k}{6}(x - x_k)^3.$$

Введем $h_k = x_k - x_{k-1}, k = 1, 2, \dots, n$.

Для a_k имеем по условию интерполяции: $a_k = f(x_k)$.

Коэффициенты b_k , c_k и d_k определяются из условий сшивки полиномов на концах элементарных отрезков:

$$S_k(x_k) = S_{k+1}(x_k)$$

$$S'_k(x_k) = S'_{k+1}(x_k)$$

$$S''_k(x_k) = S''_{k+1}(x_k)$$

где $k = 1, 2, \dots, n - 1$.

В данной работе используется так называемый естественный сплайн, в котором есть граничные условия: S''(a) = S''(b) = 0.

Подставляя все S_k в эти условия и используя утверждение выше, мы приходим к следующим системам на искомые коэффициенты:

$$h_k c_{k-1} + 2(h_k + h_{k+1})c_k + h_{k+1}c_{k+1} = 6\left(\frac{f_{k+1} - f_k}{h_{k+1}} - \frac{f_k - f_{k-1}}{h_k}\right)$$

где $k=1,2,\ldots,n-1$. Или, в используемом в коде виде:

$$\frac{h_k}{6}c_{k-1} + \frac{h_k + h_{k+1}}{3}c_k + \frac{h_{k+1}}{6}c_{k+1} = \frac{f_{k+1} - f_k}{h_{k+1}} - \frac{f_k - f_{k-1}}{h_k}$$

Через c_k выражаются остальные коэффициенты:

$$b_k = \frac{2c_k + c_{k-1}}{6}h_k + \frac{f_k - f_{k-1}}{h_k}$$
$$d_k = \frac{c_k - c_{k-1}}{h_k}.$$

Преимуществом сплайн-интерполяции является его точность. Его ошибка достаточно мала при интерполяции. То же и для экстраполяции – тут уже нет больших погрешностей, как в многочлене Ньютона.

Недостаток данного метода очевиден – трудоемкость построения.

Построение сплайна по таблично заданной функции

В качестве примеров на построение сплайна по таблично заданной функции возьмем номер VI.9.28. Тут все просто – дана табличная функция и точка, в которой необходимо найти значение. Для каждого пункта построим сплайн и найдем значение в необходимой точке. Помимо этого, построим график сплайна и посмотрим визуально, как хорошо работает приближение.

а) Дана точка $x^* = 1.5$.

x	0.00000	1.00000	2.00000	3.00000	4.00000
f(x)	0.00000	0.50000	0.86603	1.00000	0.86603

Таблица 3. Данные пункта а)

Строим сплайн. Получаем график:

Рис. 1. График для пункта а)

Красной точкой отмечена точка интерполяции.

Из графика $f(x^*) = 0.7061482812500001$.

б) Дана точка $x^* = 0.8$.

\boldsymbol{x}	0.00000	0.50000	0.90000	1.30000	1.70000
f(x)	-2.30260	-0.69315	-0.10536	0.26236	0.53063

Таблица 4. Данные пункта б)

Строим сплайн. Получаем график:

Рис. 2. График для пункта б)

Красной точкой отмечена точка интерполяции.

Из графика $f(x^*) = -0.21275445989173225$.

в) Дана точка $x^* = 3.0$.

	0.00000				
f(x)	0.00000	1.30380	1.84390	2.25830	2.60770

Таблица 5. Данные пункта в)

Строим сплайн. Получаем график:

Рис. 3. График для пункта в)

Красной точкой отмечена точка интерполяции.

Из графика $f(x^*) = 1.7531560510017157$.

г) Дана точка $x^* = 0.1$.

x	-0.40000	-0.10000	0.20000	0.50000	0.80000
f(x)	1.98230	1.67100	1.36940	1.04720	0.64350

Таблица 6. Данные пункта г)

Строим сплайн. Получаем график:

Рис. 4. График для пункта г)

Красной точкой отмечена точка интерполяции.

Из графика $f(x^*) = 1.4694391534391535$.

д) Дана точка $x^* = 1.5$.

	0.00000				
f(x)	1.00000	1.54030	1.58390	2.01000	3.34640

Таблица 7. Данные пункта д)

Строим сплайн. Получаем график:

Рис. 5. График для пункта д)

Красной точкой отмечена точка интерполяции.

Из графика $f(x^*) = 1.5862379464285716$.

Как видим, интерполяция удачна, ошибки малы.

Оценка численности населения США

Общая постановка задачи

Для примера построения многочлена Ньютона и сплайн-интерполяции был взят номер VI.9.32. В нем таблично заданы значения численности населения США в период 1910-2000 гг. Наша задача — экстраполировать зависимость к 2010 году.

Год	Население
1910	92 228 496
1920	106 021 537
1930	123 202 624
1940	132 164 569
1950	151 325 798
1960	179 323 175
1970	203 211 926
1980	226 545 805
1990	248 709 873
2000	281 421 906

Таблица 8. Тенденция численности населения США в период 1910–2000 гг.

Интерполяция многочленом Ньютона

Для начала построим интерполянт в форме многочлена Ньютона. Алгоритм построения уже был описан в работе, поэтому просто предоставляем результаты.

Рис. 6. Интерполяция многочленом Ньютона

По графику видно, что интерполяция удачна и весьма правдоподобна, чего нельзя сказать про необходимую экстраполяцию. На графике наблюдается резкий всплеск, предсказанная численность в 2010 году составляет 827 906 509 человек. В реальности такого скачка нет, и действительное значение населения 308 745 538 человек.

Как видим, метод интерполяции многочленом Ньютона имеет колоссальную ошибку при экстраполяции. В данном случае она даже превосходит само действительное значение экстраполируемой величины.

Сплайн-интерполяция

Теперь попробуем другой метод и выясним, какой же лучше. В этот раз построим кубический сплайн, причем будем использовать так называемый естественный сплайн. Опять же, весь алгоритм построения сплайна был описан выше, поэтому обсуждаем лишь результаты.

Рис. 7. Сплайн-интерполяция

Опять же, интерполяция более чем удачна. Однако на этот раз не только она, но и экстраполяция тоже. Предсказанное значение населения США к 2010 году составляет 314 133 939 человек. Это невероятно близко к настоящему значению 308 745 538! Ошибка составляет около 2%.

Вывод

В данной работе были исследованы методы интерполяции такие как многочлен Ньютона и сплайн-интерполяция. По заданию с предсказанием населения США можно судить об их достоинствах и недостатках и провести сравнение методов между собой. В течение написания кода и тестирования программы было выяснено, что метод интерполяции многочленом Ньютона достаточно быстро и легко строится, однако имеет весомые ошибки при экстраполяции, хоть и при интерполяции они малы. У другого же метода — сплайна — ошибки малы как при интерполяции, так и при экстраполяции, но в противовес этому его достаточно трудоемко строить.

Наиболее точную оценку населения США к 2010 году дал метод сплайнитерполяции. Его предсказание – $314\ 133\ 939$ человек, что хорошо согласуется с действительным значением $308\ 745\ 538$ с относительной ошибкой примерно 2%.