HMM Training

Viterbi and Baum-Welch Examples

Given sequence \boldsymbol{X} and model $\boldsymbol{\theta}$, each cell in ... represents P(...)

Viterbi Matrix

optimal state path π going to state k at position i, from the start of X

Forward Matrix

any* state path π going to state k at position i, from the start of X

 $P(\pi_i = k \mid X(..i))$

Backward Matrix

any* state path π going from state k at position i, to the end of X

 $P(\pi_i = k \mid X(i..))$

Forward × Backward Matrix

any* state path π going through state k at position i, in X

 $P(\pi_i = k \mid X)$

^{*:} values in matrix cells are "weighted" by the probabilities of contributing state paths

Expectation == Counting

Given model $\boldsymbol{\theta}$ (prior \boldsymbol{A} and \boldsymbol{E}), we **expect** that sequence(s) \boldsymbol{X} were generated by \boldsymbol{A} ' transitions and \boldsymbol{E} ' emissions.

In other words:

"How often do we see each transition and emission occur in X?"

Viterbi Training

Quite straightforward!

Baum-Welch

Slightly trickier...

Suppose some prior $\boldsymbol{\theta}$ found optimal state paths $\boldsymbol{\pi}$ for the sequences \boldsymbol{X} :

$$X_1 = ATG$$

 $\pi_1 = B Q1 Q1 Q1 E$

$$X_2 = ACGC$$

$$\pi_2 = B Q1 Q2 Q2 Q1 E$$

$$X_3 = GG$$

$$\pi_3 = B Q2 Q2 E$$

What are A' and E'?

Suppose some prior $\boldsymbol{\theta}$ found optimal state paths $\boldsymbol{\pi}$ for the sequences \boldsymbol{X} :

X ₁ =				
$\pi_1 = B$	Q1	Q1	Q1	E
$X_2 =$	A	C	G	C
$\pi_2 = B$	Q1	Q2	Q2	Q1 E
$X_3 =$	G	G		
$\pi_3 = B$	Q2	Q2	E	
What a	re 🖊	1 ' aı	nd <i>E</i>	= '?

В		
Q1		
Q2		
E		

Q1 Q2

E'	Α	Т	С	G
В				
Q1				
Q2				
E				

$X_1 = A T G$
$X_1 = A T G$ $\pi_1 = B Q1 Q1 Q1 E$
$X_2 = A C G C$
$X_2 = A C G C$ $\pi_2 = B Q1 Q2 Q2 Q1 E$
$X_3 = G G$
$X_3 = G G$ $\pi_3 = B Q2 Q2 E$
What are A' and E'?

What	are	A'	and	E "?
vviiat	ai C		alla	

A'	В	Q1	Q2	E
В	0	2	1	0
Q1				
Q2				
E				

E'	Α	Т	С	G
В				
Q1				
Q2				
E				

Suppose some prior $\boldsymbol{\Theta}$ found optimal state paths $\boldsymbol{\pi}$ for the sequences \boldsymbol{X} :

$$X_1 = A T G$$

 $\pi_1 = B Q1 Q1 Q1 E$

$$X_2 = A C G C$$

 $\pi_2 = B Q1 Q2 Q2 Q1 E$

$$X_3 = G G$$

$$\pi_3 = B Q2 Q2 E$$

What are **A'** and **E'**?

A'	В	Q1	Q2	E
В	0	2	1	0
Q1				
Q2				
E				

E'	Α	Т	С	G
В	0	0	0	0
Q1				
Q2				
E				

X ₁ =				
$\pi_1 = B$	Q1	Q1	Q1	E
	- 1	- 1	ı	
$X_2 =$				
$\pi_2 = B$	QT	QZ	Q2	Q7E
X ₃ =	G	G		
$\pi_3 = B$	Q2	Q2	E	

What	are	Δ,	and	F '?
vviiai	alc	$\boldsymbol{\mathcal{A}}$	anu	_ :

A'	В	Q1	Q2	E
В	0	2	1	0
Q1	0	2	1	2
Q2				
E				

E'	Α	Т	С	G
В	0	0	0	0
Q1				
Q2				
Ε				

$X_1 = \pi_1 = B$	A T	Ģ	
$\pi_1 = B$	Q1 Q1	Q1 E	
	' '		
$X_2 =$	A C	G	Ç
$X_2 = \pi_2 = B$	Q1 Q2	Q2 Q	1 E
			1
$X_3 =$	G G		
$\pi_3 = B$	Q2 Q2	E	

What	are	A'	and	E '?
------	-----	----	-----	-------------

A'	В	Q1	Q2	E
В	0	2	1	0
Q1	0	2	1	2
Q2				
E				

E'	Α	Т	С	G
В	0	0	0	0
Q1	2	1	1	1
Q2				
Ε				

$$X_1 = A T G$$
 $\pi_1 = B Q1 Q1 Q1 E$
 $X_2 = A C G C$
 $\pi_2 = B Q1 Q2 Q2 Q1 E$
 $X_3 = G G$
 $\pi_3 = B Q2 Q2 E$

What are A' and E'?

A'	В	Q1	Q2	E
В	0	2	1	0
Q1	0	2	1	2
Q2	0	1	2	1
E				

E'	Α	Т	С	G
В	0	0	0	0
Q1	2	1	1	1
Q2	0	0	1	3
Ε				

$$X_1 = A T G$$
 $\pi_1 = B Q1 Q1 Q1 E$
 $X_2 = A C G C$
 $\pi_2 = B Q1 Q2 Q2 Q1 E$
 $X_3 = G G$
 $\pi_3 = B Q2 Q2 E$

What are A' and E'?

A'	В	Q1	Q2	E
В	0	2	1	0
Q1	0	2	1	2
Q2	0	1	2	1
E	0	0	0	0

E'	Α	Т	С	G
В	0	0	0	0
Q1	2	1	1	1
Q2	0	0	1	3
Ε	0	0	0	0

Expectation == Counting

Given model $\boldsymbol{\theta}$ (prior \boldsymbol{A} and \boldsymbol{E}), we **expect** that sequence(s) \boldsymbol{X} were generated by \boldsymbol{A} ' transitions and \boldsymbol{E} ' emissions.

Divide our A' and E' counts by their respective row sums:

A'	В	Q1	Q2	E
В	0	2	1	0
Q1	0	2	1	2
Q2	0	1	2	1
E	0	0	0	0

E'	Α	Т	С	G
В	0	0>	0	0
Q1	2	1	1	1
Q2	0	0	1	3
E	0	0	0	0

Divide our A' and E' counts by their respective row sums:

а	В	Q1	Q2	E
В	0	² ⁄ ₃ 0.666	⅓ 0.333	0
Q1	0	% 0.4	½ 0.2	% 0.4
Q2	0	½ 0.25	½ 0.5	½ 0.25
Ε	0	0	0	0

Posterior Transition and Emission probabilities!

е	Α	Т	С	G
Q1	% 0.4	½ 0.2	½ 0.2	½ 0.2
Q2	0	0	½ 0.25	³ ⁄ ₄ 0.75

... can be **priors** for the next iteration!

Given this **X** and **\theta**, what are **A'** and **E'**?

A	В	L	D	Е
В	0	0.5	0.5	0
L	0	0.7	0.2	0.1
D	0	0.2	0.7	0.1
E	0	0	0	0

E	Н	P	С
L	0.5	0	0.5
D	0	0.5	0.5

Emission counts for X_1

$E_k(b) = \sum_{j} \frac{1}{P(x^j)} \sum_{\{i \mid x_i^j = b\}} f_k^j(i) b_k^j(i)$

Forward

i	0	1	2	3	4
X	-	С	С	Н	-
В	1	0	0	0	0
L	0	0.25	0.112	0.0506	0
D	0	0.25	0.112	0	0
E	0	0	0	0	0.00506

Backward

i	0	1	2	3	4
X	-	С	С	Н	-
В	0.00506	0.012	0.025	0	0
L	0.00534	0.0132	0.035	0.1	0
D	0.00377	0.007	0.01	0.1	0
E	0	0	0	0	1*

^{*} Initialized to 0 by Durbin

Emission counts for X_1

Forwa	Forward × Backward						
i	0	1	2	3	4		
X	-	С	С	Н	-		
В	0.00506	0	0	0	0		
L	0	0.0033	0.00392	0.00506	0		
D	0	0.00175	0.00112	0	0		
E	0	0	0	0	0.00506		

$$E_k(b) = \sum_{j} \frac{1}{P(x^j)} \sum_{\{i \mid x_i^j = b\}} f_k^j(i) b_k^j(i)$$

Emission counts for X_1

$E_k(b) = \sum_{j} \frac{1}{P(x^j)} \sum_{\{i \mid x_i^j = b\}} f_k^j(i) b_k^j(i)$

Forwa	Forward × Backward							
i	0	1	2	3	4			
X	-	С	С	Н	-			
В	0.00506	0	0	0	0			
L	0	0.0033	0.00392	0.00506	0			
D	0	0.00175	0.00112	0	0			
E	0	0	0	0	0.00506			

-orward × Backward / P(X ₁)							
i	0	1	2	3	4		
X	-	С	С	Н	-		
В	1	0	0	0	0		
L	0	0.667	0.775	1	0		
D	0	0.333	0.221	0	0		
E	0	0	0	0	1		

Emission counts for X1

E'	Н	Р	С
L	1		
D			

$$k = L$$

 $b = H$
 $j = 1$

$$E_k(b) = \sum_{j} \frac{1}{P(x^j)} \sum_{\{i \mid x_i^j = b\}} f_k^j(i) b_k^j(i)$$

i	0	1	2	3	4
X	-	С	С	Н	-
В	1	0	0	0	0
L	0	0.667	0.775	1	0
D	0	0.333	0.221	0	0
E	0	0	0	0	1

Emission counts for X1

E'	Н	Р	С
L	1	0	
D			

$$k = L$$

$$b = P$$

$$j = 1$$

$$E_k(b) = \sum_j \frac{1}{P(x^j)} \sum_{\{i \mid x_i^j = b\}} f_k^j(i) b_k^j(i)$$

i	0	1	2	3	4		
X	-	С	С	Н	-		
В	1	0	0	0	0		
L	0	0.667	0.775	1	0		
D	0	0.333	0.221	0	0		
E	0	0	0	0	1		

Emission counts for X1

E'	Н	Р	С
L	1	0	1.441
D			

$$k = L$$

 $b = C$
 $j = 1$

$$E_k(b) = \sum_{j} \frac{1}{P(x^j)} \sum_{\{i \mid x_i^j = b\}} f_k^j(i) b_k^j(i)$$

i	0	1	2	3	4		
X	-	С	С	Н	-		
В	1	0	0	0	0		
L	0	0.667	0.775	1	0		
D	0	0.333	0.221	0	0		
Е	0	0	0	0	1		

Emission counts for X1

E'	Н	Р	С
L	1	0	1.441
D	0		

$$k = \mathbf{D}$$

$$b = \mathbf{H}$$

$$j = \mathbf{1}$$

$$E_k(b) = \sum_{j} \frac{1}{P(x^j)} \sum_{\{i \mid x_i^j = b\}} f_k^j(i) b_k^j(i)$$

i	0	1	2	3	4
X	-	С	С	Н	-
В	1	0	0	0	0
L	0	0.667	0.775	1	0
D	0	0.333	0.221	0	0
E	0	0	0	0	1

Emission counts for X1

E'	Н	Р	С
L	1	0	1.441
D	0	0	

$$k = \mathbf{D}$$
$$b = \mathbf{P}$$
$$j = \mathbf{1}$$

$$E_k(b) = \sum_{j} \frac{1}{P(x^j)} \sum_{\{i \mid x_i^j = b\}} f_k^j(i) b_k^j(i)$$

	ormand X Baokinard / 1 (XII)					
i	0	1	2	3	4	
X	-	С	С	Н	-	
В	1	0	0	0	0	
L	0	0.667	0.775	1	0	
D	0	0.333	0.221	0	0	
E	0	0	0	0	1	

Emission counts for X1

E'	Н	Р	С
L	1	0	1.441
D	0	0	0.554

$$k = \mathbf{D}$$
 $b = \mathbf{C}$ (Actual values differ slightly $j = \mathbf{1}$ due to rounding errors.)

$E_k(b) = \sum_{j} \frac{1}{P(x^j)} \sum_{\{i \mid x_i^j = b\}} f_k^j(i) b_k^j(i)$

i	0	1	2	3	4
X	-	С	С	Н	-
В	1	0	0	0	0
L	0	0.667	0.775	1	0
D	0	0.333	0.221	0	0
E	0	0	0	0	1

Transition counts for X₁

$$P(\pi_i = k, \pi_{i+1} = l | x, \theta) = \frac{f_k(i) a_{kl} e_l(x_{i+1}) b_l(i+1)}{P(x)}$$

To get A', iterate over every possible combination of i, k and I and add up the resulting $P(\pi_i = k, \pi_{i+1} = I)$

Do this for every sequence X_i in X. Counts add up together!

Transition counts for X_1

$$P(\pi_i = k, \pi_{i+1} = l | x, \theta) = \frac{f_k(i) a_{kl} e_l(x_{i+1}) b_l(i+1)}{P(x)}$$

Forward

i	0	1	2	3	4
X	-	С	С	Н	-
В	1	0	0	0	0
L	0	0.25	0.112	0.0506	0
D	0	0.25	0.112	0	0
E	0	0	0	0	0.00506

Backward

Backwara					
i	0	1	2	3	4
X	-	С	C	Н	-
В	0.00506	0.012	0.025	0	0
L	0.00534	0.0132	0.035	0.1	0
D	0.00377	0.007	0.01	0.1	0
E	0	0	0	0	1*

Prior $\boldsymbol{\theta}$

A	В	L	D	E	
В	0	0.5	0.5	0	
L	0	0.7	0.2	0.1	
D	0	0.2	0.7	0.1	
Ε	0	0	0	0	

For example, with i = 1, k = D and l = L...

$$P(\pi_1 = D_1\pi_2 = L) = 0.25 \times 0.2 \times 0.5 \times 0.035 / 0.00506 = 0.173$$

E	Н	P	С
L	0.5	0	0.5
D	0	0.5	0.5

Transition counts for X_1

$$P(\pi_i = k, \pi_{i+1} = l | x, \theta) = \frac{f_k(i) a_{kl} e_l(x_{i+1}) b_l(i+1)}{P(x)}$$

Forward

i	0	1	2	3	4
X	-	С	С	Н	-
В	1	0	0	0	0
L	0	0.25	0.112	0.0506	0
D	0	0.25	0.112	0	0
E	0	0	0	0	0.00506

Backward

Duoi	TVV	OI .			
i	0	1	2	3	4
X	-	С	С	Н	-
В	0.00506	0.012	0.025	0	0
L	0.00534	0.0132	0.035	0.1	0
D	0.00377	0.007	0.01	0.1	0
E	0	0	0	0	1*

Prior $\boldsymbol{\theta}$

Α	В	L	D	E
В	0	0.5	0.5	0
L	0	0.7	0.2	0.1
D	0	0.2	0.7	0.1
Е	0	0	0	0

For every	other <i>i</i> , at	least one	factor = 0.
-----------	---------------------	-----------	-------------

$$P(\pi_1 = D, \pi_2 = L) = 0.25 \times 0.2 \times 0.5 \times 0.035 / 0.00506 = 0.173$$

Para Across all positions i in X_i , we **count** a total of 222 0.173 + 0.222 = **0.395** transitions from **D** to **L**.

E	Н	P	С
L	0.5	0	0.5
D	0	0.5	0.5

Given X and θ , what are A and E?

E '1	Н	Р	С
L	1	0	1.432
D	0	0	0.568

E' 2	Н	Р	С
L	2	0	0.778
D	0	0	0.222

E' 3	Н	P	С
L	1	0	0.222
D	0	1	0.778

A '1	В	L	D	E
В	0	0.654	0.346	0
L	0	1.383	0.049	1
D	0	0.395	0.173	0
E	0	0	0	0

A' 3	В	L	D	E
В	0	1	0	0
L	0	0	1	0.222
D	0	0.222	0.778	0.778
E	0	0	0	0

This is the 0.395 we found before!

A'2	В	L	D	E
В	0	0.778	0.222	0
L	0	1.778	0	1
D	0	0.222	0	0
E	0	0	0	0

Given X and prior θ , what is posterior θ (a and e)?

Add up A' and E' across all j in X and divide by the row sums again!

Prior

Expectation

Maximization

 $X_1 = CCH$

 $X_2 = CHH$

 $X_3 = HPC$

<u>A</u>	В	L	D	E
В	0	0.5	0.5	0
L	0	0.7	0.2	0.1
D	0	0.2	0.7	0.1
E	0	0	0	0

<u>E</u>	Н	Р	С
L	0.5	0	0.5
D	0	0.5	0.5