Claims:

1. A compound represented by the formula:

$$R_{16}$$
 R_{17} Y Z R_{23} R_{24} W $(CH_2)_y$ CR_{15} Q or R_{21} R_{22}

$$R_{11}$$
 R_{29}
 $(CH_2)_m$
 R_{11}
 R_{20}
 $(CH_2)_m$
 R_{25}
 R_{25}
 R_{25}
 R_{25}
 R_{25}
 R_{25}
 R_{25}
 R_{25}

5 wherein

W is CR₂₇R₂₈ or (CH₂)_nNH (CO);

wherein R_{27} and R_{28} are independently selected from the group consisting of H, halo and hydroxy;

Y is selected from the group consisting of a bond, CR₉R₁₀, carbonyl, NH, O or

10 S;

wherein R_9 and R_{10} are independently selected from the group consisting of H, halo, hydroxy and amino;

Z is CH2, aryl, halo substituted aryl or heteroaryl;

R₁₁ and R₁₆ are independently selected from the group consisting of C₅-C₁₂

alkyl, C_5 - C_{12} alkenyl, C_5 - C_{12} alkynyl, C_5 - C_{12} alkoxy, $(CH_2)_pO(CH_2)_q$, C_5 - C_{10} (aryl) R_{20} , C_5 - C_{10} (heteroaryl) R_{20} , C_5 - C_{10} (cycloalkyl) R_{20} , C_5 - C_{10} alkoxy(heteroaryl) R_{20} and C_5 - C_{10} alkoxy(cycloalkyl) R_{20} ;

wherein R₂₀ is H or C₁-C₁₀ alkyl;

R₂₉ is H or halo;

20 R₁₇ is selected from the group consisting of H, halo, NH₂, C₁-C₆ alkyl, C₁-C₆ alkylamino, C₁-

 R_2 , and R_{21} are both NH_2 ;

 R_3 is selected from the group consisting of H, C_1 - C_6 alkyl, $(C_1$ - C_4 alkyl)OH, and $(C_1$ - C_4 alkyl)NH₂;

 R_{22} is selected from the group consisting of C_1 - C_6 alkyl, (C_1 - C_4 alkyl)OH and (C_1 - C_4 alkyl)NH₂;

R₂₃ is selected from the group consisting of H, F, CO₂H, OH, C₁-C₆ alkyl, (C₁-C₄ alkyl)OH, and (C₁-C₄ alkyl)NH₂;

R₂₄ is selected from the group consisting of H, F and PO₃H₂, or R₂₃ together with R₂₄ and the carbon to which they are attached form a carbonyl group;

 R_{25} , R_7 and R_8 are independently selected from the group consisting of O, S, CHR₂₆, CHR₂₆, NR₂₆, and N;

wherein R₂₆ is H, F or C₁-C₄ alkyl;

R₁₅ is selected from the group consisting of hydroxy, phosphonate, and

$$-X-P$$
OH;

wherein R₁₂ is selected from the group consisting of O, NH and S;

X is selected from the group consisting of O, NH and S;

y and m are integers independently ranging from 0 to 4;

p and q are integers independently ranging from 1 to 10;

n is an integer ranging from 0 to 10;

or a pharmaceutically acceptable salt or tautomer thereof, with the proviso that W and Y are not both methylene.

2. The compound of claim 1 wherein the compound is represented by the formula:

$$R_{16}$$
 R_{17}
 R_{16}
 R_{17}
 R_{23}
 R_{24}
 R_{21}
 R_{21}
 R_{21}
 R_{21}
 R_{22}
 R_{24}

25 wherein

5

10

15

20

R₁₅ is selected from the group consisting of hydroxy, phosphonate, and

$$-x-P$$
OH
OH:

wherein X and R_{12} are independently selected from the group consisting of O and S;

 R_{23} and R_{24} are independently selected from the group consisting of H, F and R_{1} - R_{23} alkyl;

or a pharmaceutically acceptable salt or tautomer thereof.

- 3. The compound of claim 2 wherein
- 10 y is 0 or 1;

n is 1-10;

Z is CH₂; and

 R_{17} is H.

15 4. The compound of claim 2 wherein

y is 0 or 1;

n is 0;

Z is C₅-C₆ aryl or C₅-C₆ heteroaryl;

R₁₆ is selected from the group consisting of C₅-C₁₂ alkyl C₂-C₁₂ alkenyl or C₅-

20 C₁₂ alkoxy; and

R₁₇ and R₂₃ are each H.

5. The compound of claim 4 wherein

Z is C_5 - C_6 aryl;

 R_{24} is H; and

R₂₁ is selected from the group consisting of C₁-C₄ alkyl, and (C₁-C₄ alkyl)OH.

6. The compound of claim 1 wherein the compound is represented by the formula:

$$R_{16}$$
 H

Y Z R_{23} R_{24}

W (CH₂)_y CR₁₅

wherein Z is aryl or heteroaryl;

R₁₆ is selected from the group consisting of C₅-C₁₂ alkyl, C₅-C₁₂ alkenyl, C₅-5 C₁₂ alkynyl and C₅-C₁₂ alkoxy;

Y is selected from the group consisting of CHOH, CF₂, CFH, carbonyl, NH, O and S;

W is CR₂₇R₂₈;

10

wherein R₂₇ and R₂₈ are independently selected from the group consisting of H, halo and hydroxy;

 R_{21} is selected from the group consisting of C_1 - C_6 alkyl, (C_1 - C_4 alkyl)OH and (C_1 - C_4 alkyl)NH₂;

R₂₃ is selected from the group consisting of H, F, CO₂H, C₁-C₆ alkyl, (C₁-C₄ alkyl)OH, and (C₁-C₄ alkyl)NH₂;

R₂₄ is selected from the group consisting of H, F and PO₃H₂, or R₂₃ together with R₂₄ and the carbon to which they are attached form a carbonyl group;

R₁₅ is selected from the group consisting of hydroxy, phosphonate, and

wherein X and R₁₂ are independently selected from the group

20 consisting of O and S;

y is an integer ranging from 0 to 4; or a pharmaceutically acceptable salt or tautomer thereof.

- 7. The compound of claim 6 wherein
- 25 R₂₃ and R₂₄ are both H;

 R_{27} and R_{28} are independently selected from the group consisting of H and F; Z is C_5 - C_6 aryl or C_5 - C_6 heteroaryl;

 R_{21} is selected from the group consisting of OH, $C_1\text{-}C_4$ alkyl, and $(C_1\text{-}C_3$ alkyl)OH; and

y is 0 or 1.

8. The compound of claim 6 wherein the compound is represented by the formula:

$$R_{16}$$
 or R_{16} R_{23} R_{15} R_{23}

10

wherein R₁₅ is selected from the group consisting of hydroxy, phosphonate,

$$-X-P$$
OH:

and

wherein X and R_{12} are independently selected from the group consisting of O and S;

15 R₂₁ is selected from the group consisting of C₁-C₃ alkyl and (C₁-C₄ alkyl)OH; R₂₃ is selected from the group consisting of H, F, C₁-C₃ alkyl and (C₁-C₄ alkyl)OH;

or a pharmaceutically acceptable salt thereof.

- 20 9. The compound of claim 8 wherein Y is selected from the group consisting of carbonyl, NH and O.
 - 10. The compound of claim 9 wherein

R₁₅ is OH; and

25 R₂₃ is selected from the group consisting of H, F and C₁-C₃ alkyl; or a pharmaceutically acceptable salt thereof.

11. The compound of claim 1 wherein the compound is represented by the formula:

$$R_{11}$$
 $(CH_2)_{m}$
 R_{g}
 R_{25}
 R_{25}
 R_{2}
 R_{2}
 R_{3}
 R_{24}

wherein

 R_{11} is selected from the group consisting of C_5 - C_{12} alkyl, C_5 - C_{12} alkenyl and C_5 - C_{12} alkynyl;

 R_7 and R_8 are independently selected from the group consisting of O, S, CHR₂₆, CHR₂₆, NR₂₆, and N;

wherein R₂₆ is H, F or C₁-C₄ alkyl;

10 R₂₅ is N or CH;

C₁-C₄ alkyl;

R₂ is NH₂;

R₃ is selected from the group consisting of H, C₁-C₄ alkyl, (C₁-C₄ alkyl)OH, and (C₁-C₄ alkyl)NH₂;

R₁₅ is selected from the group consisting of hydroxy, phosphonate, and

$$-X-P$$
 CH
 OH

15

20

wherein X and R₁₂ is selected from the group consisting of O and S;

R₂₃ is selected from the group consisting of H, F, OH, C₁-C₄ alkyl, CO₂H and

 R_{24} is selected from the group consisting of H, F, C_1 - C_4 alkyl and PO_3H_2 , or R_{23} together with R_{24} and the carbon to which they are attached form a carbonyl group; and

y and m are integers independently ranging from 0 to 4; or a pharmaceutically acceptable salt or tautomer thereof.

25 12. The compound of claim 11 wherein m is 0;

y is 0 or 1;

R₂₅ is CH;

R₂₃ is H or F; and

R₂₄ is selected from the group consisting of H, F and C₁-C₄ alkyl.

5

- 13. The compound of claim 11 wherein R₃ is selected from the group consisting of C₁-C₃ alkyl and (C₁-C₄ alkyl)OH.
 - 14. The compound of claim 12 or 13 wherein

10 R₇ is NH; and

X is O;

or a pharmaceutically acceptable salt or tautomer thereof.

- 15. The compound of claim 14 wherein
- 15 y is 0; and

R₁₅ is OH.

16. The compound of claim 13 wherein the compound is represented by the formula:

$$R_{11}$$
 R_{8}
 R_{2}
 R_{3}

or

$$R_{11}$$
 R_{8}
 R_{11}
 R_{11}
 R_{11}
 R_{2}
 R_{2}

20

wherein R_{11} is C_5 - C_{18} alkyl or C_5 - C_{18} alkenyl; and

R₈ is N;

or a pharmaceutically acceptable salt or tautomer thereof.

17. The compound of claim 16 wherein

R₁₅ is selected from the group consisting of hydroxy and

$$-O-P$$
OH;

wherein R_{12} is O or S;

or a pharmaceutically acceptable salt or tautomer thereof.

18. The compound of claim 17 wherein R₁₁ is C₅-C₉ alkyl;

R₁₅ is OH and

R₃ is selected from the group consisting of CH₃, CH₂CH₃, CH₂OH, CH₂CH₂OH and CH₂CH₂CH₂OH.

15 19. A composition comprising a compound of claim 1, 2, 6, 8, 11 or 16 and

a pharmaceutically acceptable carrier.

20. A composition comprising a compound represented by the formula

$$R_{23}$$
 CHR_{15}
 R_{11}
 R_{2}
 NH_{2}

20

5

10

wherein R_{11} is C_5 - C_{18} alkyl or C_5 - C_{18} alkenyl;

Q is selected from the group consisting of C_3 - C_6 optionally substituted cycloalkyl, C_3 - C_6 optionally substituted heterocyclic, C_3 - C_6 optionally substituted aryl, C_3 - C_6 optionally substituted heteroaryl and -NH(CO)-;

25 R₂ is selected from the group consisting of H, C₁-C₄ alkyl and (C₁-C₄ alkyl)OH;

 R_{23} is H or C_1 - C_4 alkyl, and

R₁₅ is selected from the group consisting of hydroxy, phosphonate, and

$$-X-P$$
 COH

wherein X and R_{12} is selected from the group consisting of O and S; or a pharmaceutically acceptable salt or tautomer thereof and

- 5 a pharmaceutically acceptable carrier.
 - 21. The composition of claim 20 wherein Q is selected from the group consisting of

10

22. The composition of claim 21 wherein R_{15} is selected from the group consisting of hydroxy and

$$-O-P$$
OH:

wherein R_{12} is O or S.

23. The composition of claim 22 wherein Q is selected from the group consisting of

R₁₅ is OH;

20 or a pharmaceutically acceptable salt or tautomer thereof.

24. A method for modulating the activity of an S1P receptor, said method comprising the step of contacting said receptor with a compound represented by the formula:

$$R_{16}$$
 R_{17} Y Z R_{23} R_{24} W $(CH_2)_y$ CR_{15} or R_{21} R_{22}

$$R_{11}$$
 R_{29}
 R_{11}
 R_{29}
 R_{20}
 R_{20}
 R_{21}
 R_{25}
 R_{25}
 R_{25}
 R_{25}
 R_{25}
 R_{25}
 R_{25}
 R_{25}

5 wherein

W is $CR_{27}R_{28}$ or $(CH_2)_nNH$ (CO);

wherein R_{27} and R_{28} are independently selected from the group consisting of H, halo and hydroxy;

Y is selected from the group consisting of a bond, CR₉R₁₀, carbonyl, NH, O or

10 S;

wherein R_9 and R_{10} are independently selected from the group consisting of H, halo, hydroxy and amino;

Z is CH2, aryl, halo substituted aryl or heteroaryl;

R₁₁ and R₁₆ are independently selected from the group consisting of C₁-C₁₂

alkyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, C₅-C₁₂ alkoxy, (CH₂)_pO(CH₂)_q, C₅-C₁₀

(aryl)R₂₀, C₅-C₁₀ (heteroaryl)R₂₀, C₅-C₁₀ (cycloalkyl)R₂₀, C₅-C₁₀ alkoxy(aryl)R₂₀, C₅-C₁₀ alkoxy(heteroaryl)R₂₀ and C₅-C₁₀ alkoxy(cycloalkyl)R₂₀;

wherein R₂₀ is H or C₁-C₁₀ alkyl;

R₂₉ is H or halo;

20 R₁₇ is selected from the group consisting of H, halo, NH₂, C₁-C₆ alkyl, C₁-C₆ alkylamino, C₁-C₆ alkylcyano and C₁-C₆ alkylthio;

R₂, and R₂₁ are both NH₂;

5

10

15

20

 R_3 is selected from the group consisting of H, C_1 - C_6 alkyl, $(C_1$ - C_4 alkyl)OH, and $(C_1$ - C_4 alkyl)NH₂;

R₂₂ is selected from the group consisting of C₁-C₆ alkyl, (C₁-C₄ alkyl)OH and (C₁-C₄ alkyl)NH₂;

R₂₃ is selected from the group consisting of H, F, CO₂H, OH, C₁-C₆ alkyl, (C₁-C₄ alkyl)OH, and (C₁-C₄ alkyl)NH₂;

R₂₄ is selected from the group consisting of H, F and PO₃H₂, or R₂₃ together with R₂₄ and the carbon to which they are attached form a carbonyl group;

R₂₅, R₇ and R₈ are independently selected from the group consisting of O, S, CHR₂₆, CHR₂₆, NR₂₆, and N;

wherein R₂₆ is H, F or C₁-C₄ alkyl;

R₁₅ is selected from the group consisting of hydroxy, phosphonate, and

$$-x$$
 $\stackrel{R_{12}}{=}$ OH $_{OH}$;

wherein R₁₂ is selected from the group consisting of O, NH and S;

X is selected from the group consisting of O, NH and S;

y and m are integers independently ranging from 0 to 4;

p and q are integers independently ranging from 1 to 10;

n is an integer ranging from 0 to 10;

or a pharmaceutically acceptable salt or tautomer thereof, with the proviso that W and Y are not both methylene.

25. A method of providing immuno-modulation to a patient in need thereof, said method comprising the step of administering to said patient a composition comprising a compound represented by the formula:

$$R_{16}$$
 R_{17} R_{23} R_{24} R_{21} R_{22} R_{22} R_{23} R_{24} or

$$R_{29}$$
 (CH₂)_m R_{7} R_{8} (CH₂)_y R_{15} R_{25} R_{2} R_{3}

wherein

S;

10

15

20

W is $CR_{27}R_{28}$ or $(CH_2)_nNH$ (CO);

wherein R_{27} and R_{28} are independently selected from the group

5 consisting of H, halo and hydroxy;

Y is selected from the group consisting of a bond, CR₉R₁₀, carbonyl, NH, O or

wherein R_9 and R_{10} are independently selected from the group consisting of H, halo, hydroxy and amino;

Z is CH2, aryl, halo substituted aryl or heteroaryl;

 R_{11} and R_{16} are independently selected from the group consisting of C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_5 - C_{18} alkoxy, $(CH_2)_pO(CH_2)_q$, C_5 - C_{10} (aryl) R_{20} , C_5 - C_{10} (heteroaryl) R_{20} , C_5 - C_{10} (cycloalkyl) R_{20} , C_5 - C_{10} alkoxy(heteroaryl) R_{20} and C_5 - C_{10} alkoxy(cycloalkyl) R_{20} ;

wherein R₂₀ is H or C₁-C₁₀ alkyl;

R₂₉ is H or halo;

R₁₇ is selected from the group consisting of H, halo, NH₂, C₁-C₆ alkyl, C₁-C₆ alkyleyano and C₁-C₆ alkylthio;

R₂, and R₂₁ are both NH₂;

 R_3 is selected from the group consisting of H, C_1 - C_6 alkyl, $(C_1$ - C_4 alkyl)OH, and $(C_1$ - C_4 alkyl)NH₂;

WO 2004/010949 PCT/US2003/023768

 R_{22} is selected from the group consisting of C_1 - C_6 alkyl, (C_1 - C_4 alkyl)OH and (C_1 - C_4 alkyl)NH₂;

 R_{24} is selected from the group consisting of H, F and PO₃H₂, or R_{23} together with R_{24} and the carbon to which they are attached form a carbonyl group;

 R_{25} , R_7 and R_8 are independently selected from the group consisting of O, S, CHR₂₆, CHR₂₆, NR₂₆, and N;

wherein R₂₆ is H, F or C₁-C₄ alkyl;

R₁₅ is selected from the group consisting of hydroxy, phosphonate, and

$$-X-P$$
 COH
 OH

10

5

wherein R₁₂ is selected from the group consisting of O, NH and S;

X is selected from the group consisting of O, NH and S;

y and m are integers independently ranging from 0 to 4;

p and q are integers independently ranging from 1 to 10;

n is an integer ranging from 0 to 10;

- or a pharmaceutically acceptable salt or tautomer thereof, with the proviso that W and Y are not both methylene.
- 26. The method of claim 25 further comprising the step of administering a second immuno-modulatory agent selected from the group consisting of cyclosporine,
 20 tacrolimus, rapamycin, azathioprine, and corticosteroids such as prednisolone and prednisone.
 - 27. The method of claim 25 wherein the compound has the general formula:

25

5

10

15

20

wherein R_{11} is selected from the group consisting of C_1 - C_{22} alkyl, C_2 - C_{22} alkenyl and C_2 - C_{22} alkynyl;

 R_3 is selected from the group consisting of NH₂, OH, C₁-C₆ alkyl, (C₁-C₄ alkyl)OH, -(C₁-C₄ alkyl)NH₂, (C₁-C₄ alkyl)aryl(C₀-C₄ alkyl) and (C₁-C₄ alkyl)aryloxyaryl(C₀-C₄ alkyl);

R₈ is selected from the group consisting of O, S and N.

R₁₅ is selected from the group consisting of hydroxy, phosphonate, and

$$-X-P$$
 OH
 OH

wherein R₁₂ is selected from the group consisting of O, NH and S; and X is selected from the group consisting of O, NH and S; or a pharmaceutically acceptable salt or tautomer thereof.

28. A method of promoting wound healing in a warm blooded vertebrate, said method comprising the step of administering a composition comprising a a compound of the general structure:

wherein R₁₁ is C₅-C₁₈ alkyl or C₅-C₁₈ alkenyl;

Q is selected from the group consisting of C₃-C₆ optionally substituted cycloalkyl, C₃-C₆ optionally substituted heterocyclic, C₃-C₆ optionally substituted aryl, C₃-C₆ optionally substituted heteroaryl and -NH(CO)-;

 R_2 is selected from the group consisting of H, C_1 - C_4 alkyl and $(C_1$ - C_4 alkyl)OH;

 R_{23} is H or C_1 - C_4 alkyl, and

R₁₅ is selected from the group consisting of hydroxy, phosphonate, and

$$-X-P$$
 CH
OH

wherein X and R_{12} is selected from the group consisting of O and S; or a pharmaceutically acceptable salt or tautomer thereof.

29. The method of claim 28 wherein

Q is selected from the group consisting of -NH(CO)-,

and R₁₅ is selected from the group consisting of hydroxy and

$$-O-P$$
OH;

wherein R₁₂ is O or S.

5

10

15

30. . The method of claim 29 wherein

Q is selected from the group consisting of

R₁₅ is OH;

or a pharmaceutically acceptable salt or tautomer thereof.

31. A method for treating a patient suffering from a disease associated with abnormal cell growth, said method comprising the steps of administering a a compound of the general structure:

$$\begin{array}{c|c} R_{23} \\ \hline \\ R_{11} \\ \hline \\ R_{2} \\ \hline \\ NH_{2} \\ \end{array}$$

wherein R_{11} is located in the meta or para position and is selected from the group consisting of C_5 - C_{18} alkyl and C_5 - C_{18} alkenyl;

Q is selected from the group consisting of C_3 - C_6 optionally substituted cycloalkyl, C_3 - C_6 optionally substituted heterocyclic, C_3 - C_6 optionally substituted aryl C_3 - C_6 optionally substituted heteroaryl and -NH(CO)-;

 R_2 is selected from the group consisting of H, C_1 - C_4 alkyl and (C_1 - C_4 alkyl)OH;

R₂₃ is H or C₁-C₄ alkyl, and

5

10

15

R₁₅ is selected from the group consisting of hydroxy, phosphonate, and

$$-X-P$$
 CH
OH:

wherein X and R_{12} is selected from the group consisting of O and S; or a pharmaceutically acceptable salt or tautomer thereof.

32. The method of claim 31 wherein

Q is selected from the group consisting of -NH(CO)-;

$$S$$
, S , S , and N

and R_{15} is selected from the group consisting of hydroxy and

$$-O^{-\frac{R_{12}}{\parallel}OH}$$
 OH ;

wherein R₁₂ is O or S.

33. The method of claim 32 wherein

Q is selected from the group consisting of

$$N \longrightarrow N$$
, $N \longrightarrow N$, $N \longrightarrow N$, and

5 R_{15} is OH;

or a pharmaceutically acceptable salt or tautomer thereof.