$$\frac{\partial M_x(t)}{\partial t} = \gamma \left(\mathbf{M}(t) \times \mathbf{B}(t) \right)_x - \frac{M_x(t)}{T_2^*}$$
(1a)

$$\frac{\partial M_y(t)}{\partial t} = \gamma \left(\mathbf{M}(t) \times \mathbf{B}(t) \right)_y - \frac{M_y(t)}{T_2^*}$$
(1b)

$$\frac{\partial M_z(t)}{\partial t} = \gamma \left(\boldsymbol{M(t)} \times \boldsymbol{B(t)} \right)_z - \frac{M_z(t)}{T_1}$$
 (1c)

$$[A] = \frac{10^{5.006 + \alpha + \beta/T}}{k_B T} \tag{2}$$

$1/\Delta\omega$ M haha

	⁴ He	³ He	Temp. depen.	N_2	Temp. depen.
D_1 full width	18.0 ± 0.2	18.7 ± 0.3	$T^{0.05\pm0.05}$	17.8 ± 0.3	$\mathrm{T}^{0.3}$
(GHz/amg)					
D_1 line shift	4.3 ± 0.1	5.64 ± 0.15	$T^{1.1\pm0.1}$	-8.25 ± 0.15	$\mathrm{T}^{0.3}$
(GHz/amg)					

The energy levels of ⁸⁷Rb are shown in Fig. 1. where Γ_A is the pressure dependent FWHM, $\Gamma_A \approx 0.04 nm/amg \cdot [^3He]$.

Figure 1: Level Diagram of $^{87}{\rm Rb}$. The splittings are not to scale. Adapted from Dolph's PhD thesis.

Bibliography