1

Assignment 15

Shaik Zeeshan Ali AI20MTECH11001

Download all python codes from

https://github.com/Zeeshan-IITH/IITH-EE5609/new/master/codes

and latex-tikz codes from

https://github.com/Zeeshan-IITH/IITH-EE5609

1 PROBLEM

Let f be a non-zero symmetric bilinear form on \mathbb{R}^3 . Suppose that there exist linear transformations T_i : $\mathbb{R}^3 \to \mathbb{R}, i = 1, 2$ such that for all $\alpha, \beta \in \mathbb{R}^3$, $f(\alpha, \beta) = T_1(\alpha) T_2(\beta)$. Then

- 1) rank f = 1
- 2) dim $\{\beta \in \mathbb{R}^3 : f(\alpha, \beta) = 0 \text{ for all } \alpha \in \mathbb{R}^3\} = 2$
- 3) f is positive semi-definite or negative semi-definite
- 4) $\{\alpha : f(\alpha, \alpha) = 0\}$ is a linear subspace of dimension 2

2 construction

Definition	A bilinear form on a vector space V is a function f , which assigns to each ordered pair
of bilinear	of vectors α, β in V a scalar $f(\alpha, \beta)$ in field F which satisfies
form	$i) \ f(c\alpha_1 + \alpha_2, \beta) = cf(\alpha_1, \beta) + f(\alpha_2, \beta)$
	$ii) \ f(\alpha, c\beta_1 + \beta_2) = cf(\alpha, \beta_1) + f(\alpha, \beta_2)$
Symmetric	A bilinear form on the vector space V is symmetric if
bilinear	$f(\alpha, \beta) = f(\beta, \alpha)$
form	for all vectors $\alpha, \beta \in \mathbf{V}$
Matrix of	Let $\alpha, \beta \in \mathbb{R}^3$ be two vectors, which are represented in standard basis as
bilinear	$\alpha = \alpha_1 \mathbf{e_1} + \alpha_2 \mathbf{e_2} + \alpha_3 \mathbf{e_3}$ and $\beta = \beta_1 \mathbf{e_1} + \beta_2 \mathbf{e_2} + \beta_3 \mathbf{e_3}$, therefore $f(\alpha, \beta)$ can be represented
form	in matrix form as
	$f(\alpha,\beta) = f(\alpha_1\mathbf{e}_1 + \alpha_2\mathbf{e}_2 + \alpha_3\mathbf{e}_3, \beta_1\mathbf{e}_1 + \beta_2\mathbf{e}_2 + \beta_3\mathbf{e}_3)$
	$= \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{pmatrix} \begin{pmatrix} f(\mathbf{e_1}, \mathbf{e_1}) & f(\mathbf{e_1}, \mathbf{e_2}) & f(\mathbf{e_1}, \mathbf{e_3}) \\ f(\mathbf{e_2}, \mathbf{e_1}) & f(\mathbf{e_2}, \mathbf{e_2}) & f(\mathbf{e_2}, \mathbf{e_3}) \\ f(\mathbf{e_3}, \mathbf{e_1}) & f(\mathbf{e_3}, \mathbf{e_2}) & f(\mathbf{e_3}, \mathbf{e_3}) \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$

Given

Given a non-zero symmetric bilinear form f such that $f(\alpha,\beta) = T_1(\alpha) T_2(\beta)$ where $\alpha,\beta \in \mathbb{R}^3$. So the symmetric bilinear form can be represented on matrix form as

$$\alpha,\beta \in \mathbb{R}^{3}. \text{ So the symmetric bilinear form can be represented on matrix form as}$$

$$f(\alpha,\beta) = \begin{pmatrix} \alpha_{1} & \alpha_{2} & \alpha_{3} \end{pmatrix} \begin{pmatrix} f(\mathbf{e_{1}},\mathbf{e_{1}}) & f(\mathbf{e_{1}},\mathbf{e_{2}}) & f(\mathbf{e_{1}},\mathbf{e_{3}}) \\ f(\mathbf{e_{2}},\mathbf{e_{1}}) & f(\mathbf{e_{2}},\mathbf{e_{2}}) & f(\mathbf{e_{2}},\mathbf{e_{3}}) \\ f(\mathbf{e_{3}},\mathbf{e_{1}}) & f(\mathbf{e_{3}},\mathbf{e_{2}}) & f(\mathbf{e_{3}},\mathbf{e_{3}}) \end{pmatrix} \begin{pmatrix} \beta_{1} \\ \beta_{2} \\ \beta_{3} \end{pmatrix}$$

$$f(\alpha,\beta) = \begin{pmatrix} \alpha_{1} & \alpha_{2} & \alpha_{3} \\ T_{1}(\mathbf{e_{1}}) & T_{2}(\mathbf{e_{1}}) & T_{1}(\mathbf{e_{1}}) & T_{2}(\mathbf{e_{2}}) & T_{1}(\mathbf{e_{1}}) & T_{2}(\mathbf{e_{3}}) \\ T_{1}(\mathbf{e_{3}}) & T_{2}(\mathbf{e_{1}}) & T_{1}(\mathbf{e_{3}}) & T_{2}(\mathbf{e_{2}}) & T_{1}(\mathbf{e_{3}}) & T_{2}(\mathbf{e_{3}}) \\ T_{1}(\mathbf{e_{3}}) & T_{2}(\mathbf{e_{1}}) & T_{2}(\mathbf{e_{2}}) & T_{2}(\mathbf{e_{3}}) \end{pmatrix} \begin{pmatrix} \beta_{1} \\ \beta_{2} \\ \beta_{3} \end{pmatrix}$$

$$f(\alpha,\beta) = \begin{pmatrix} \alpha_{1} & \alpha_{2} & \alpha_{3} \\ T_{1}(\mathbf{e_{1}}) \\ T_{1}(\mathbf{e_{2}}) \\ T_{1}(\mathbf{e_{3}}) \end{pmatrix} \begin{pmatrix} T_{1}(\mathbf{e_{1}}) \\ T_{2}(\mathbf{e_{1}}) & T_{2}(\mathbf{e_{2}}) & T_{2}(\mathbf{e_{3}}) \\ T_{2}(\mathbf{e_{3}}) \end{pmatrix} \begin{pmatrix} \beta_{1} \\ \beta_{2} \\ \beta_{3} \end{pmatrix} = \alpha^{T} \mathbf{T_{1}} \mathbf{T_{2}}^{T} \beta$$

$$g(\alpha,\beta) = \begin{pmatrix} \alpha_{1} & \alpha_{2} & \alpha_{3} \\ T_{1}(\mathbf{e_{1}}) \\ T_{1}(\mathbf{e_{2}}) \\ T_{1}(\mathbf{e_{3}}) \end{pmatrix} \text{ and } \mathbf{T_{2}} = \begin{pmatrix} T_{2}(\mathbf{e_{1}}) \\ T_{2}(\mathbf{e_{2}}) \\ T_{2}(\mathbf{e_{3}}) \end{pmatrix} \text{ are the matrix representation of the linear}$$

transformations T_1 , T_2 .So, the matrix representation of f is $\mathbf{T_1T_2}^T$ or $\mathbf{T_2T_1}^T$ since f is symmetric.

note: Since f is non-zero symmetric bilinear form $rank(\mathbf{T_1}) = rank(\mathbf{T_2}) = 1$

TABLE 1: Construction

3 Answer

Option 1	By using the property of rank of product of two matrices, we get
	$rank(f) = rank(\mathbf{T_1}\mathbf{T_2}^T) \le min(rank(\mathbf{T_1}), rank(\mathbf{T_2})) \le 1.$
	Since f is non-zero the $rank(f) \neq 0$. Hence the $rank(f) = 1$
Option 2	$\beta \in \mathbb{R}^3 : f(\alpha, \beta) = 0 \text{ for all } \alpha \in \mathbb{R}^3 \implies \beta \in \mathbb{R}^3 : T_2(\beta) = 0 \text{ for all } \alpha \in \mathbb{R}^3 \text{ because}$
	$T_1(\alpha) \neq 0$ for all $\alpha \in \mathbb{R}^3$. By using rank nullity theorem

	$rank\{T_2\} + dim\{Nullspace(T_2)\} = 3 \implies dim\{Nullspace(T_2)\} = 2$. Similarly for T_1 , we
	get dim{Nullspace(T_1)}=2. Therefore
	$\dim \{\beta \in \mathbb{R}^3 : f(\alpha, \beta) = 0 \text{ for all } \alpha \in \mathbb{R}^3\} = \dim\{Nullspace(T_1)\} = \dim\{Nullspace(T_2)\} = 2$
Option 3	By using rank nullity theorem we get $rank(f) + dim\{nullspace(f)\} = 3$. We know that
	$rank(f) = 1 \implies dim\{nullspace(f)\} = 2$. Therefore two eigen values of f will be 0.
	Since the matrix is a symmetric matrix the eigen values are real. So, the third eigen value
	can be either positive or negative. So, the matrix will be either positive semi-definite
	or negative semi-definite accordingly. This option is correct.
Option 4	$\{\alpha: f(\alpha, \alpha) = 0\}$ is a linear subspace of dimension 2. Since the $dim\{nullspace(f)\} = 2$,
	and f diagonalizable the two eigen vectors corresponding to 0 eigen values form a
	subspace of dimension 2.

TABLE 2: Answer

4 Example

Construction	Consider the non-zero symmetric bilinear form $f(\alpha, \beta) = T_1(\alpha) T_2(\beta)$ on \mathbb{R}^3 where
	Where the matrix of linear transformations are $\mathbf{T_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and $\mathbf{T_2} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$.
	The matrix of symmetric bilinear form is $f = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 0 & 0 \\ 2 & 0 & 2 \end{pmatrix}$. The $rank(f) = 1$.
	$f(\alpha, \beta) = \alpha^T \begin{pmatrix} 2 & 0 & 2 \\ 0 & 0 & 0 \\ 2 & 0 & 2 \end{pmatrix} \beta$
	The characteristic equation is $ \mathbf{f} - \lambda \mathbf{I} = \lambda^2 (\lambda - 4)$. So the eigen values are $0, 0, 4$

Therefore f is positive semi-definite.

$$f(\alpha,\beta) = 0$$
 for all $\alpha \in \mathbb{R}^3$, then $\beta = xe_1 + ye_2$ where $e_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $e_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$. Therefore

dim $\{\beta \in \mathbb{R}^3 : f(\alpha, \beta) = 0 \text{ for all } \alpha \in \mathbb{R}^3\} = 2$

 $\alpha: f(\alpha, \alpha) = 0$ also has a dimension of 2 which forms the nullspace of f, where nullspace of f is the $span\{e_1, e_2\}$

TABLE 3: Example