

Exam #2 Solutions

Problem 1.

- (1) f is defined for all x and y, so $D = \mathbb{R}^2$.
- (2) The graph of f is the surface with equation $z = x^2 y^2$. It is a quadric, more precisely a hyperbolic paraboloid.
- (3) The level curve through the origin is the curve with equation f(x, y) = f(0, 0) in the xy-plane, i.e. $x^2 y^2 = 0$. Since $x^2 y^2 = (x y)(x + y)$, it is the union of the two straight lines x y = 0 and x + y = 0 (see Figure 1 below).

Figure 1: Level curve through the origin

(4) No, because f(x, y) can limit to $\pm \infty$ as x or y limits to $\pm \infty$. Alternatively, we could calculate that f only has one critical point, at (0, 0), and the Hessian determinant is negative there so it is merely a saddle point.

Problem 2.

- (1) The graph of f is the plane with equation 2x y z + 1 = 0. It does not go through the origin because the equation is not satisfied for (x, y, z) = (0, 0, 0). The vector (2, -1, -1) is a normal vector to this plane.
- (2) It is a straight line, as is always the intersection of two non-parallel planes.
- (3) The previous answer shows that any contour curve of f is a straight line in 3-dimensional space. Since the level curves of f are the translations to the xy-plane of the contour curves, they are also straight lines.
- (4) The *c*-level curve of *f* is the curve with equation 2x y + 1 c = 0 in the *xy*-plane. It is a straight line. A parallel vector to this line is $\vec{w}_1 = (1, 2)$ and an orthogonal vector is $\vec{w}_2 = (2, -1)$. Note that \vec{w}_1 and \vec{w}_2 do not depend on *c*: they work for all level curves.
- (5) The *c*-level curve of *f* is the straight line with equation y = 2x + 1 c = 0. Here are a few of these lines: (see Figure 2 below)

Figure 2: A few level curves of f

- (6) $\vec{\nabla} f(x, y) = (2, -1)$. It is parallel to $\vec{w_2}$ (actually they are equal). This is expected because the gradient is always orthogonal to the level curves.
- (7) $D_{\vec{w_1}}f(x,y) = \vec{\nabla}f(x,y) \cdot \vec{w_1} = (2,-1) \cdot (1,2) = 0$. This is expected because the direction tangent to the level curves is the direction of zero change.

Problem 3.

(1) f is defined on \mathbb{R}^2 . The gradient of f is $\vec{\nabla} f(x, y) = (6x^2 + 6y, 6x - 6y)$. The coordinates (x, y) of a critical point must satisfy:

$$\begin{cases} 6x^2 + 6y = 0 \\ 6x - 6y = 0 \end{cases}$$

This is equivalent to:

$$\begin{cases} x^2 + x = 0 \\ y = x \end{cases}$$

and:

$$\{ x = 0 \text{ or } x = -1 \ y = x \}$$

Therefore there are two critical points: $P_1(0,0)$ and $P_2(-1,-1)$.

In order to study the nature of these critical points, we do the second derivative test. First we compute the second partial derivatives:

$$r = \frac{\partial^2 f}{\partial x^2}(x, y) = 12x$$
$$s = \frac{\partial^2 f}{\partial y^2}(x, y) = -6$$
$$t = \frac{\partial^2 f}{\partial x \partial y}(x, y) = 6$$

At the point $P_1(0,0)$, we have $rs - t^2 = -36 < 0$, so it is a saddle point. At the point $P_2(-1,-1)$, we have $rs - t^2 = 36 > 0$ and r = -12 < 0, so it is a local maximum.

- (2) f(-1,-1) = 3 and f(1,0) = 4.
- (3) No. If f had a global minimum, it would be a local minimum, but f has no local minima. If f had a global maximum, it would be a local maximum. The only local maximum of f is at (-1, -1), but it is not a global maximum since f(1,0) > f(-1,-1).