ЗАДАНИЕ на лабораторную работу №2

Тема: Программно- алгоритмическая реализация методов Рунге-Кутта 2-го и 4-го порядков точности при решении системы ОДУ в задаче Коши.

Цель работы. Получение навыков разработки алгоритмов решения задачи Коши при реализации моделей, построенных на системе ОДУ, с использованием методов Рунге-Кутта 2-го и 4-го порядков точности.

Исходные данные.

1. Задана система электротехнических уравнений, описывающих разрядный контур, включающий постоянное активное сопротивление $R_{_{p}}(I)$, зависящее от тока I , индуктивность $L_{_{k}}$ и емкость $C_{_{k}}$.

$$\begin{cases} \frac{dI}{dT} = \frac{U - (R_k + R_p(I))I}{L_k}, \\ \frac{dU}{dt} = -\frac{I}{C_k}. \end{cases}$$

Начальные условия:

$$t = 0, I = I_0, U = U_0.$$

Здесь I, U - ток и напряжение на конденсаторе.

Сопротивление $R_{\scriptscriptstyle p}$ рассчитать по формуле

$$R_p = \frac{l_p}{2\pi R^2 \int\limits_0^1 \sigma(T(z)) z \, dz}.$$

Для функции T(z) применить выражение $T(z) = T_0 + (T_w - T_0) z^m$.

Параметры T_0, m находятся интерполяцией из табл. 1 при известном токе I .

Коэффициент электропроводности $\sigma(T)$ зависит от T и рассчитывается интерполяцией из табл.2.

Таблица 1

I, A	To, K	m
0.5	6730	0.50
1	6790	0.55
5	7150	1.7
10	7270	3
50	8010	11
200	9185	32
400	10010	40
800	11140	41
1200	12010	39

Таблица 2

T, K	σ , 1/Om cm
4000	0. Ф 36лица 2
5000	0.27
6000	2.05
7000	6.06
8000	12.0
9000	19.9
10000	29.6
11000	41.1
12000	54.1
13000	67.7
14000	81.5

Параметры разрядного контура:

R=0.35 см

l_э=12 см

 $L_k = 187 \ 10^{-6} \ \Gamma_H$

 $C_k=268\ 10^{-6}\ \Phi$

R_k=0.25 Ом

 $U_{co} = 1400 \text{ B}$

I₀=0..3 A

 $T_w = 2000 K$

Для cnpaвки: при указанных параметрах длительность импульса около 600 мкс, максимальный ток — около 800 А

Результат работы программы.

- 1. Графики зависимости от времени импульса t: $I(t), U(t), R_p(t), I(t) \cdot R_p(t), T_0(t)$ при заданных выше параметрах. На одном из графиков привести результаты вычислений двумя методов разных порядков точности. Показать, как влияет выбор метода на шаг сетки.
- 2. График зависимости I(t) при $R_k + R_p = 0$. Обратить внимание на то, что в этом случае колебания тока будут не затухающими.
- 3. График зависимости I(t) при $R_k = 200\,$ Ом в интервале значений $t\,$ 0-20 мкс.

Вопросы при защите лабораторной работы.

Ответы на вопросы дать письменно в Отчете о лабораторной работе.

- 1. Какие способы тестирования программы можно предложить?
- 2. Получите систему разностных уравнений для решения сформулированной задачи неявным методом трапеций. Опишите алгоритм реализации полученных уравнений.
- 3. Из каких соображений проводится выбор того или иного метода, учитывая, что чем выше порядок точности метода, тем он более сложен?

Методика оценки работы.

Модуль 2, срок - 12-я неделя.

- 1. Задание полностью выполнено 6 баллов (минимум).
- 2. В дополнение к п.1 даны исчерпывающие ответы на 3 вопроса, и эти ответы не являются копией ответов в ранее сданных работах 10 баллов (максимум).
- 3. В дополнение к п.1 даны удовлетворительные ответы на отдельные вопросы 8 баллов (средний балл).