氢分子的键长与原子化能

ABINIT 的主程序使用赝势和平面波,用密度泛函理论计算总能量,电荷密 度,分子和周期性固体的电子结构。本报告用密度泛函理论计算氢分子的键长 和原子化能,并与实验值进行对比。

关键词: ABINIT, 密度泛函理论, 氢分子

1 理论和算法

1.1 理论部分

密度泛函理论的基础是 KS 方程组,

$$\left(\left[-\frac{1}{2} \nabla^2 + V(\boldsymbol{r}) \right] \psi_i(\boldsymbol{r}) = \varepsilon_i \psi_i(\boldsymbol{r}) \right)$$
(1)

$$V(\boldsymbol{r}) = \int \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} n(\boldsymbol{r}') d\boldsymbol{r}' - \sum_{I} \frac{Z_{I}}{|\boldsymbol{r} - \boldsymbol{R}_{I}|} + v_{xc}(\boldsymbol{r})$$
(2)

$$v_{xc}(\boldsymbol{r}) = \frac{\delta E_{xc}[n(\boldsymbol{r})]}{\delta n(\boldsymbol{r})}$$
 (3)

$$\begin{cases} \left[-\frac{1}{2} \nabla^2 + V(\boldsymbol{r}) \right] \psi_i(\boldsymbol{r}) = \varepsilon_i \psi_i(\boldsymbol{r}) \\ V(\boldsymbol{r}) = \int \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} n(\boldsymbol{r}') d\boldsymbol{r}' - \sum_I \frac{Z_I}{|\boldsymbol{r} - \boldsymbol{R}_I|} + v_{xc}(\boldsymbol{r}) \end{cases}$$
(2)
$$v_{xc}(\boldsymbol{r}) = \frac{\delta E_{xc}[n(\boldsymbol{r})]}{\delta n(\boldsymbol{r})}$$
(3)
$$n(\boldsymbol{r}) = \sum_{i=1}^{N} |\psi_i(\boldsymbol{r})|^2$$
(4)

- (1) 式为单电子薛定谔方程,把相互作用项都归结到势能V(r)中去了。
- (2) 中第一项为电子之间相互作用的势能,第二项为电子和离子实的相互作 用,第三项考虑到电子交换导致能量降低和关联项。统称为交换关联势。
- (3) 式是交换关联势的定义, E_{rc} 称交换关联能。 $E_{rc}[n(\mathbf{r})]$ 常用的近似方案 有局域密度近似(LDA)和广义梯度近似(GGA)。
 - (4) 式为体系的电荷密度跟波函数的关系。

此外,体系的总能量为

$$\mathcal{E} = \sum_{i} \varepsilon_{i} - \frac{1}{2} \int \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} n(\boldsymbol{r}) n(\boldsymbol{r}') d\boldsymbol{r} d\boldsymbol{r}' + E_{xc}[n(\boldsymbol{r})] - \int v_{xc}(\boldsymbol{r}) n(\boldsymbol{r}) d\boldsymbol{r}$$
 (5)

1.2 算法部分

自洽场迭代方法求体系波函数由以下四步组成。

第 0 步: 获取初始电荷密度 $n_0(\mathbf{r})$ 、初始总能量 \mathcal{E}_0 。

由晶胞、原子位置以及赝势生成初始电荷密度 $n_0(\mathbf{r})$ 、体系总能量 \mathcal{E}_0 。

第1步: 计算单电子势能V(r)。

由(2、3)式计算V(r)。

第2步: 求解薛定谔方程(平面波展开法)。

将势能用平面波展开

$$V(\mathbf{r}) = V(\mathbf{r} + \mathbf{G}_n) = \sum_{n} V(\mathbf{G}_n) e^{i(\mathbf{k} + \mathbf{G}_n) \cdot \mathbf{r}}$$
(6)

其中 G_n 为倒格矢,为了使展开的系数是有限的,必须设置一个截止的倒格矢。

二次量子化的哈密顿量为

$$H = \sum_{k} \frac{1}{2} k^{2} c_{k}^{\dagger} c_{k} + \sum_{n} \frac{1}{2} V(\mathbf{G}_{n}) c_{k+G}^{\dagger} c_{k} + h.c.$$
 (7)

将哈密顿量对角化后可以获得 ε_i 和 $\psi_i(\mathbf{r})$,并获得新的电荷密度 $\eta(\mathbf{r})$,再代入

(5) 式可以获得新的总能量 ε 。

第3步: 判断收敛情况。

计算 $|\mathcal{E}_n - \mathcal{E}_{n-1}|$ 并判断其是否小于程序设定的容差范围。如果小于容差范围或是达到迭代次数,计算结束;否则将回到第1步再次循环。

2 计算过程和结果

通过密度泛函计算分子性质时,晶胞体积大才能忽略周期结构的影响,此 外平面波截止能量越大,计算结果越精确。因此,本文中先固定晶胞体积,取 一系列截止能量使得计算值与实验值误差降低。然后固定的截止能量,优化晶 胞体积同样使误差降低。最后同时取优化后的晶胞体积和截止能量做进一步计 算。

2.1 优化截止能量

取截止能量 Ecut 从 10 Ha 到 35 Ha,步长为 5 Ha; 晶胞为边长 10 Bohr 的立方体。对于氢气分子,取初始位置为两原子相距 1.4 Bobr 对称置于 x 轴两侧,最大力容差 5d-5。对于氢原子初始位置位于原点,自旋朝上,两条能带用以区分自旋,力容差为 1d-6。求得

截止能量 /Ha	原子化能 /eV	键长 /Bohr	原子化能误差百	键长误差百分比
			分比	
10	4. 4900	1. 522	5. 41	8. 64
15	4. 6446	1. 502	2. 15	7. 21
20	4. 7097	1. 480	0. 79	5. 64
25	4. 7368	1. 466	0. 21	4.64
30	4. 7531	1. 460	0. 13	4.21
35	4. 7612	1. 459	0.30	4.14

从数据可以得到当截止能量取 30 Ha 时,原子化能误差在 2%以内,键长误差在 5%以内。

2.2 优化晶胞尺寸

取晶胞边长从 8 Bohr 到 18 Bohr, 步长为 2 Bohr; 截止能量为 10 Ha, 其他与上节设置相同。求得

晶胞边长 /Bohr	原子化能 /eV	键长 /Bohr	原子化能误差百	键长误差百分比
			分比	
8	4. 2831	1.568	9. 77	11.92
10	4. 5062	1.522	5. 07	8. 64
12	4. 5878	1.509	3. 35	7.71
14	4.6014	1.51	3.07	7. 78
16	4.6096	1.508	2.89	7. 64
18	4. 6123	1.508	2.84	7.64

从数据可以得到,晶胞边长为12 Bohr时,原子化能和键长误差百分比都

比较低。

2.3 计算原子性质

最终以选定的截止能量 30 Ha, 晶胞边长 12 Bohr 进行计算, 得到原子化能为 4.833 eV, 误差为 1.8%; 键长为 1.452, 误差为 3.64%。

除此之外,还有其他影响计算精度的因素,比如赝势的选择,自洽场迭代过程中的容差等等。

3 致谢

所用软件包由 github-abinit 提供。