Calculus 1 - 2022ba

Amit Bajar

Question 1

Let us define the following set: $A:=\{x\in[a,b]:f(x)\leq 0\}$ It is non-empty because f(a)<0 and also bounded from above because $x\in A\Rightarrow x\leq b$. We can thus conclude from the axiom of completeness that it has a supremum we can denote by c and i will prove that f(c)=0. First note that we showed in class that there must exist a sequence of elements from A which converges to c, let us denote it as follows: $(x_n)\underset{n\to\infty}{\to} c$ Now because of the definition of A it holds that $f(x_n)\leq 0$ for all n whoever limits preserve weak inequalities and thus $\lim_{n\to\infty} f(x_n)\leq 0$ whoever f is continuous and thus $f(c)=f(\lim_{n\to\infty} x_n)=\lim_{n\to\infty} f(x_n)\leq 0$ and thus $f(c)\leq 0$. Now assume by contradiction that f(c)<0. because f is continuous there is a Neighbourhood of c we can denote by $B_c:=\{x:|x-c|<\delta\}$ such that $x\in B_c\Rightarrow f(x)<0$ (the delta is from the definition of the limit $\lim_{x\to c} f(x)=f(c)$ and a sufficiently small epsilon for example e0. This proves that e0. This is a contradiction to the fact that e1 is the supremum of e2. This proves that e3. This is a contradiction to

Question 2

- (a) We saw in class that a sequence converges if and only if it is a Cauchy Sequence. Thus it is sufficient to show that the sequence is Cauchy. We will do this by first proving that the following inequality holds for all n using induction: $|a_{n+1} a_n| \le \lambda^{n-1} |a_2 a_1|$ for n=1 we get $|a_2 a_1| \le |a_2 a_1|$ which trivially holds. Now by induction we get: $|a_{n+1} a_n| \le \lambda |a_n a_{n-1}| \le \lambda \lambda^{n-2} |a_2 a_1| = \lambda^{n-1} |a_2 a_1|$ which proves the result. Now note: $|a_n a_m| \le \sum_{k=n}^{m-1} |a_{k+1} a_k| \le \sum_{k=n}^{m-1} \lambda^{k-1} |a_2 a_1| \le |a_2 a_1| \sum_{k=n}^{\infty} \lambda^{k-1}$ whoever $|a_2 a_1| \sum_{k=n}^{\infty} \lambda^{k-1}$ converging geometric series $|a_2 a_1| \frac{\lambda^{n-1}}{1-\lambda} \to 0.$ This proves that for some ϵ there is a sufficiently large N for which $N < n < m \Rightarrow |a_n a_m| < \epsilon$ which proves the result.
- (b) (i) By the Inequality of arithmetic and geometric means we get $\sqrt{a_n a_{n+1}} \leq \frac{a_n + a_{n+1}}{2}$ so it is sufficient to show that $\sum_{n=1}^{\infty} \frac{a_n + a_{n+1}}{2}$ converges $(0 < a_n)$ so we can use comparison test). Whoever this is trivial because we know that $\sum_{n=1}^{\infty} a_n < \infty$.
- (ii) First notice that (a_n) must be monotonic decreasing, if we assume by contradiction that it is monotonic increasing we get $\sqrt{a_n a_{n+1}}$ is monotonic increasing and thus $0 < \sqrt{a_1 a_2} \le \sqrt{a_n a_{n+1}}$ which means that $\sqrt{a_n a_{n+1}} \to 0$ which is a contradiction because $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}} < \infty \Longrightarrow \sqrt{a_n a_{n+1}} \to 0$. Now we can finish the proof using the comparison test and the following observation: $a_{n+1} = \sqrt{a_{n+1}^2} \le \sqrt{a_n a_{n+1}}$ (Also the theorem about changing a finite number of elements).

Question 3

(a) First note that $a_{n+1} = \ln(e^{a_n} - a_n) \iff e^{a_{n+1}} = e^{a_n} - a_n \iff a_n = e^{a_n} - e^{a_{n+1}}$. Thus: $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \sum_{k=1}^n a_k = \lim_{n \to \infty} \sum_{k=1}^n (e^{a_k} - e^{a_{k+1}}) = \lim_{n \to \infty} (e^{a_1} - e^{a_{n+1}}) = \lim_{n \to \infty} (e - e^{a_{n+1}})$. Now we only need to prove that $(a_n) \downarrow 0$ and we are done because then $\lim_{n \to \infty} (e - e^{a_{n+1}}) = e - 1$. Indeed i will prove by induction that a_n is monotonic decreasing and bounded from below and then from a theorem in class (which is easy to prove) will will get that $a_n \to \inf\{a_n : n \in \mathbb{N}\}$. Using induction: $0 \le a_1 = 1 \land 0 \le a_n \implies 0 \le \ln(e^{a_n} - a_n) = a_{n+1}$. The last inequality holds because $0 \le \ln(e^x - x) \iff 1 \le e^x - x \iff 0 \le e^x - x - 1$ and indeed that is the case for $x \in [0, \infty)$ because: $f(x) = e^x - x - 1 \implies f'(x) = e^x - 1 \ge 0$ for $0 \le x$ so f is monotonic increasing and thus $0 = f(0) \le f(x) = e^x - x - 1$ for $x \in [0, \infty)$. Thus $0 \le a_n$, now i will prove by induction that it is monotonic decreasing: $a_1 = 1 = \ln(e) \ge \ln(e - 1) = a_2 \land a_{n+2} = \ln(e^{a_{n+1}} - a_{n+1}) \le \ln(e^{a_n} - a_n) = a_{n+1}$ such that the inequality follows from the induction hypothesis that $a_{n+1} \le a_n$ and the fact that (easy to show using derivatives) $f(x) = \ln(e^x - x)$ is monotonic increasing for $x \in [0, \infty)$. This proves that (a_n) converges. To show the limit is 0 notice that from the uniqueness of the limit (denoted by L): $a_{n+1} = \ln(e^{a_n} - a_n) \implies L = \ln(e^L - L) \implies L = 0$

(b) Because $e^x \neq 0$ for all $x \in \mathbb{R}$ we get that f(x) and $g(x) = 9e^{x/3}f(x)$ have the same roots. let $x_1 < x_2 \cdots < x_7$ be some roots of g(x). From Rolle's theorem it follows that there are $y_1 \in [x_1, x_2], \ldots y_6 \in [x_6, x_7]$ such that $g'(y_i) = 0$. If we apply Rolle's theorem again on g'(x) (remember f(x) is twice differentiable and thus so is g(x)) we get $z_1 \in [y_1, y_2], \ldots, z_5 \in [y_5, y_6]$ such that $g''(z_i) = 0$. After computation we get that $g''(x) = e^{x/3}(f(x) + 6f'(x) + 9f''(x))$ and again because $e^x \neq 0$ for all $x \in \mathbb{R}$ we get that z_1, \ldots, z_5 are roots of f(x) + 6f'(x) + 9f''(x) as needed.

Question 4

- (a) On one direction: $f(c) = g(c) \implies h(c) = f(c) = g(c)$ now because f(x) and g(x) are continuous at x = c we can take $\delta = \min\{\delta_f, \delta_g\}$ that fit some ϵ and get that $|x c| < \delta \implies |h(x) h(c)| < \epsilon$ On the other direction: both \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$ are dense sets in \mathbb{R} and thus there are sequences $x_n \subset \mathbb{Q}$, $y_n \subset \mathbb{R} \setminus \mathbb{Q}$ such that $x_n, y_n \to c$. Now because h(x) is continuous at x = c it follows from heine limit definition that $\lim_{n \to \infty} h(x_n) = \lim_{n \to \infty} h(y_n)$ and Thus $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(y_n)$ whoever f(x) and g(x) are continuous at x = c so $f(c) = f(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(y_n) = g(\lim_{n \to \infty} y_n) = g(c)$.
- (b) Let $x < y \in (0,1)$. Note that by Lagrange's theorem it holds that g(y) g(x) = g'(c)(y-x) whoever $g'(c) = \frac{1}{c}(f'(c) \frac{f(c)}{c})$. If we apply Lagrange's theorem on [0,x] we get that f'(c)(x-0) = f(x) f(0) for some $c \in (0,x)$ whoever this means that $f'(x) \frac{f(x)}{x} = f'(x) f'(c) \ge 0$ because f'(x) is monotonic increasing and thus $g'(c) = \frac{1}{c}(f'(c) \frac{f(c)}{c}) \ge 0$ and from a theorem in class we get that $g(x) = \frac{f(x)}{x}$ is monotonic increasing in (0,1).