COMPREHENSIVE EXAM

SHREYA SHARMA

Contents

1.	Personal Background	1
2.	Introduction	1
2.1.	. Definition and Examples.	1
3.	Fano Threefolds with $\rho = 1$	1
4.	Fano Threefolds with $\rho \geq 2$	2
5.	References	2

1. Personal Background

Basically Copy.

2. Introduction

Notations, definition(index, ρ , degree, etc., extremal rays and stuff?), basic examples, goal(s), other preliminaries about invariants, definitions, etc., potential research?

- 2.1. **Definition and Examples.** Throughout we work over the field of complex numbers \mathbb{C} . A nonsingular projective variety X is called a *Fano Variety* if the anticanonical divisor $-K_X$ is ample. For any Cartier divisor D on a variety X, $\mathcal{O}_X(D)$ will denote the corresponding invertible sheaf, and, in particular, $\mathcal{O}_X(-K_X)$ is the canonical sheaf on X where $-K_X$ is the canonical divisor of X.
- Q.2 Complete linear system, $h^i(X)$, Proposition 1.3, build upto Prop 1.6 & as a consequence genus, and the following para- NS(X) =Pic(X) has no torsion, $\rho = b_2$, fundamental divisor H, index. Then Def 1.13 for degree.

For any positive integer n, \mathbb{P}^n is a n-dimensional Fano variety since its anticanonical sheaf is $\mathcal{O}(n+1)$ which is ample by Hart. In fact \mathbb{P}^1 is the only 1-dimensional Fano variety. Fano varieties of dimension 2 are called *del Pezzo surfaces* and their classification is given in AG V. Clearly, \mathbb{P}^3 is a 3-dimensional Fano variety. + 1 more example of hypersurfaces.

Fano varieites of dim 3 with $\rho = 1$ are called *prime* Fano 3-folds and they are completely classified by Iskovskikh in Isko-1,2. Fano 3-folds with $\rho \geq 2$ were all classified by mori and mukai in refer with timeline?.

In this paper(?), we aim to understand the classification of Fano 3-folds.

3. Fano Threefolds with $\rho = 1$

 V_d notation, etc that will be used in next section For the classification here, we follow Isko-1,2.

-,--

4. Fano Threefolds with $\rho \geq 2$

outline from mm(1981). Some details from others yet to add because what I have now is just not sufficient.

In this section, we consider Fano 3-folds with $B_2 \geq 3$. The main result is

Theorem 4.1. There are exactly 88 types of Fano 3-folds with $B_2 \ge 2$ up to deformations.

We begin with some definitions.

Definition 4.2. A Fano 3-fold is imprimitive if it is isomorphic to the blow-up of a Fano 3-fold along a smooth irreducible curve. A Fano 3-fold is primitive if it is not imprimitive.

Definition 4.3. A smooth variety over a smooth surface S is a conic bundle if every geometic fibre of $X \to S$ is isomorphic to a conic, i.e., a scheme of zeroes of a non zero homogeneous form of degree 2 on \mathbb{P}^2 .

The following theorem gives a complete classification for primitive Fano 3-folds.

Theorem 4.4. Let X be a primitive Fano 3-fold. Then we have

- (1) $B_2 \leq 3$,
- (2) if $B_2 = 2$, then X is a conic bundle over \mathbb{P}^2 , and
- (3) if $B_2 = 3$, then X is a conic bundle over $\mathbb{P}^1 \times \mathbb{P}^1$ and has either a divisor $D \simeq \mathbb{P}^1 \times \mathbb{P}^1$ such that $\mathcal{O}_D(D) \simeq \mathcal{O}(-1, -1)$ or another conic bundle structure over $\mathbb{P}^1 \times \mathbb{P}^1$.

The following proposition is important for classifying imprimitive Fano 3-folds.

Proposition 4.5. On a Fano 3-fold X with $B_2 = 2$, there are two smooth rational curves C_1 and C_2 and two numerically effective divisors H_1 and H_2 such that $(C_i \cdot H_j) = \delta_{ij}$ for all i, j = 1, 2.

It turns out that imprimitive Fano 3-folds can be obtained from successive curve-blow-ups of primitive Fano 3-folds by using their conic bundle structure or the existence of lines on Fano 3-folds with $B_2 = 2$. In the latter case, there can be several possibilities for each of the extremal rays and each possibility leads to an imprimitive Fano 3-fold with $B_2 = 2$. Combining all this information we get Table 2 in refer tables.

Since the blowing-up of a Fano 3-fold raises B_2 by 1(refer?), we obtain $B_2 \geq 3$ imprimitive Fano 3-folds by the blowing-up of a Fano 3-fold Y along a smooth irreducible curve C. The following Propositions give strong necessary conditions on $C \subset Y$.

5. References