Vortices for N = 40.

- N=40, λ_x =0, exponent =-1.03204516273 - N=40, λ_x =0.2, exponent =-1.03008785941

Vortices for N = 48.

- N=48, λ_x =1, exponent =-1.20267548167 - N=48, λ_x =0.4, exponent =-1.08159082284 - N=48, λ_x =0.6, exponent =-1.10369317299 - N=48, λ_x =0, exponent =-1.04937252138 - N=48, λ_x =0.2, exponent =-1.04178981137

Vortices for N = 64.

Vortices for N = 128.

- N=128, λ_x =1, exponent =-1.10535049972 - N=128, λ_x =0.8, exponent =-1.18964608111 - N=128, λ_x =0.4, exponent =-0.951750903131 - N=128, λ_x =0.6, exponent =-0.975710590147 - N=128, λ_x =0, exponent =-0.996880699416 - N=128, λ_x =0.2, exponent =-0.97079956057

-N=104, $\lambda_x=0.4$, exponent =-0.951938893139 -N=104, $\lambda_x=0$, exponent =-1.0035426973 -N=104, $\lambda_x=0.2$, exponent =-0.974871254234

Vortices for N = 72.

-N=72, $\lambda_x = 0.4$, exponent =-1.03070658032 -N=72, $\lambda_x = 0$, exponent =-1.02227901906 -N=72, $\lambda_x = 0.2$, exponent =-1.01370565686