МФТИ

Алгоритмы и структуры данных, осень 2022 Семинар №14. Триангуляция Делоне

- 1. Докажите, что если в множестве n точек, то для него существует не более $2^{C_n^2}$ триангуляций.
- **2.** Докажите, что для для бесконечно многих n существует набор из n точек на плоскости, у которого есть по крайней мере $2^{n-o(n)}$ триангуляций.
- **3.** Для данной триангуляции определите, является ли она триангуляцией Делоне за O(n), где n число сайтов.
- **4.** С помощью триангуляции Делоне найдите две ближайшие точки в множестве за $O(n \log n)$.
- **5.** С помощью триангуляции Делоне для каждой точки множества найдите ближайшую к ней за $O(n \log n)$.
- **6.** Дано множество точек на плоскости. Пусть круг, построенный на отрезке $p_i p_j$ как диаметре, не содержит других точек множества внутри себя или на своей границе, то отрезок $p_i p_j$ обязательно является ребром триангуляции Делоне.
- 7. Найдите евклидово минимальное остовное дерево за $O(n \log n)$. То есть на плоскости даны n точек, стоимость ребра между i-й и j-й точками равна расстоянию между ними; требуется найти минимальное остовное дерево.
- 8. Пусть дано множество из n точек на плоскости, которое нужно разбить на k непустых кластеров. Расстояние между двумя кластерами минимальное расстояние между парами точек в этих кластерах. Кластерное расстояние минимальное из расстояний между парами кластеров.
 - а) Докажите, что если кластерное расстояние достигается на паре точек $p_i p_j$, то этот отрезок обязательно является ребром триангуляции Делоне.
 - б) Найдите разбиение на k кластеров с максимальным кластерным расстоянием за $O(n \log n)$.
- **9.** Пусть уже известна триангуляция Делоне для данного множества сайтов. Постройте его диаграмму Вороного за $O(n \log n)$. Что нужно потребовать от триангуляции, чтобы диаграмму можно было построить за O(n)?

- 1. Каждая пара точек либо образует ребро триангуляции, либо нет.
- **2.** Для n = 3k рассмотрите k вложенных друг в друга треугольников. Соединить два соседних уровня можно как минимум 8 способами.
- 3. Нужно проверить легальность триангуляции, то есть легальность каждого ребра.
- 4. По сути, эта задача решена на прошлом семинаре. Вспомните, как строится триангуляция Делоне по диаграмме Вороного.
- **5.** По сути, эта задача решена на прошлом семинаре. Вспомните, как строится триангуляция Делоне по диаграмме Вороного.
- **6.** На лекции доказан критерий: часть серединного перпендикуляра $p_i p_j$ является ребром диаграммы Вороного, если и только если на нём найдётся точка q, пустой круг которой содержит только p_i и p_j . Здесь в роли q выступает середина отрезка $p_i p_j$.
- 7. Пусть какое-то ребро $p_i p_j$ минимального остова не входит в триангуляцию Делоне. Построим круг на $p_i p_j$ как на диаметре. Внутри него или на его границе должна быть ещё хотя бы одна точка p_k . Но тогда ребро $p_i p_j$ самое длинное в цикле $p_i p_j p_k$.
- 8.
 - а) Внутри и на границе круга, построенного на $p_i p_i$ как на диаметре, не может быть других точек.
 - б) Отсортируйте рёбра триангуляции Делоне, а вершины изначально отнесите в n отдельных кластеров. При прохождении очередного ребра придётся объединить два кластера в один.
- 9. Чтобы определить ячейку очередной вершины, нужно пересечь только те полуплоскости, которые порождаются смежными вершинами в триангуляции. Если изначально список рёбер каждой вершины отсортирован по полярному углу, то при пересечении полуплоскостей сортировку выполнять не нужно, и суммарное время работы составим O(n) ввиду линейности размера триангуляции.