Ho Chi Minh City University of Technology Faculty of Computer Science and Computer Engineering

Handwritten Digits Recognition System – Research Report

No.	Name	Student ID
1	Nguyen Tien Anh	1752076
2	Nguyen Minh Dang	1752170
3	Tran Minh Hieu	1752199

Instructor: Dr. Tran Ngoc Thinh

June 14, 2019

Contents

1	Intr	oduction	1
	1.1	Project	1
	1.2	Zedboard	1
	1.3	MNIST Database	2
	1.4	Algorithm	2
2	Met	hods	2
	2.1	Pre-processing	2
	2.2	Implement on Zedboard	3
3	Resi	alts	4
4	Disc	ussion	5

List of Figures

1	Zedboard	1
2	MNIST Database	2
3	Quad SPI Flash	3
4	Quad SPI Flash	4
5	Vivado HLS deisgn flow	4

1 Introduction

1.1 Project

The target is to implement a Handwritten Digits Recognition system using Machine learning based on the Zedboard FPGA development kit. The tool used to program the Zedboard is the Xilinx Vivado High-Level Synthesis (HLS). The project is built based on two programing languages: Python and C.

1.2 Zedboard

ZedBoard™ is a complete development kit for designers using Xilinx Zynq®-7000 All Programmable SoC. The board provides various interfaces such as USB-JTAG Programming, USB OTG 2.0, USB-UART bridge, SD card and so on. Combining a dual Corex-A9 Processing System (PS) with Programmable Logic (PL) cells, the Zedboard can be targeted to use in many applications.

Figure 1: Zedboard

1.3 MNIST Database

The dataset consists of 60000 digits for the training set and 10000 examples for the test set. Each digit have been size-normalized and centered in a fixed-size 28x28 pixel image.

Figure 2: MNIST Database

1.4 Algorithm

In this project, the implementation of the system is based on Perceptron Learning Algorithm (PLA) - an algorithm for supervised learning of binary classifiers. A binary classifier is a function which can decide whether or not an input, represented by a vector of numbers, belongs to some specific class.

2 Methods

2.1 Pre-processing

Before input to the system, an image goes through the 8-stage pre-processing procedure.

Figure 3: Pre-processing

2.2 Implement on Zedboard

In this project, the Perceptron algorithm is programed on the Zedboard via Quad SPI Flash, which is a non-volatile memory Zedboard's Zynq chip looks at on every startup. If Quad SPI is flashed then the Zynq will program itself with the contents found in Quad SPI's Flash memory. A picture below indicates the set up of the Zedboard.

In a high productivity design flow, the primary means of generating the core design IP is through the use of C-based IP and High-Level Synthesis (HLS) of C code into RTL. The design

Figure 4: Quad SPI Flash

flow for Vivado HLS is shown in the figure below.

Figure 5: Vivado HLS deisgn flow

3 Results

The source code of the project: https://github.com/dangne/tkllHTR/

4 Discussion

References

- [1] Zedboard http://zedboard.org//
- [2] THE MNIST DATABASE of handwritten digits http://yann.lecun.com/exdb/mnist/
- [3] Zedboard https://machinelearningcoban.com/2017/01/21/perceptron/